# **Internship Program Report**

# By

# BOREDDY BHARGAVA 18481A0214



## In association with



## Contents

| Introduction                                                                         | 3  |
|--------------------------------------------------------------------------------------|----|
| Program organiser                                                                    | 3  |
| Courtesy                                                                             | 3  |
| Program details                                                                      | 3  |
| Internship program                                                                   | 3  |
| 3 <sup>rd</sup> May2021: Introduction to EPC Industry                                | 4  |
| 4 <sup>th</sup> May2021: Engineering documentation for EPC projects                  | 5  |
| 5 <sup>th</sup> May2021: Engineering documentation for commands and formulae         | 6  |
| 7 <sup>th</sup> May2021: Engineering documentation for Electrical system design      | 7  |
| 10 <sup>th</sup> May2021: Engineering documentation for Typical diagrams             | 8  |
| 11th May2021: Classification of Transformers and Generators                          | 9  |
| 12th May2021: Classification of Switchgare construction and power factor improvement | 10 |
| 17th May2021: Detailing about UPS system and Busducts                                | 11 |
| 18th May2021: Detailing about Motor Starters and Sizing of motors.                   | 12 |
| 19th May2021: Discribing about Earthing system and Lighting Protection               | 13 |
| 20th May2021: Lighting or illumination systems and calculations.                     | 14 |
| 21th May2021: Lighting or illumination systems using DIALUX software                 | 15 |
| 24 <sup>th</sup> May2021: Cabling and their calculations and types                   |    |
| 25 <sup>th</sup> May2021: Cabling calculations and Cable gland selection             | 17 |
| 28 th May2021: Load calculations and Transformer sizing calculations                 | 18 |
| 29th May2021: DG set calculations                                                    | 19 |
| 2nd june2021: Caluculations of Earthing and Lighting protection                      | 20 |
| 5 th june 2021: Cable sizing and cable tray sizing calculations                      | 21 |
| Conclusion                                                                           | 22 |
| Foodback:                                                                            | 22 |

#### Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3<sup>rd</sup> year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

## Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical sessions and Industrial Automation projects.



## Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Dr.G.Srinivasa Rao-Coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Softwar/Technical Support

## Program details

Smart Internz program schedule: 4 weeks starting from 3<sup>rd</sup> May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: Online through ZOOM

Presenter: Mr Ramesh V

## Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

## 3<sup>rd</sup> May2021: Introduction to EPC Industry

| 1 | EPC Industry &      | EPC Industry | Introduction                         |
|---|---------------------|--------------|--------------------------------------|
|   | Electrical Detailed | Engineering  | Types of Engineering                 |
|   | Engineering         | Procurement  | Engineering role in procurement      |
|   |                     | Construction | Engineering role during construction |

## Topic details:

## 1A. INTRODUCTION TO EPC INDUSTRY



- ➤ EPC Engineering, procurement & construction
- ➤ EPC companies Engineering, Procurement & Construction (TECHNIP, TOYO, L&T, JACOBS, JGC, PUNJ LLOYD, TCE)
- > Industry: Oil & gas, Power, Fertilizer, Chemical, Textile, Food & beverage, Utility sectors.
- Projects: Green Field & Brown Field.
- Engineering Basic engineering, FEED (Front End Engineering & Design), Detailed engineering. Detailed Engineering
   Engineering (for Procurement) & detailed design (for Construction)



Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

## 4<sup>th</sup> May2021: Engineering documentation for EPC projects

| 2 | Electrical Design | Engineering Deliverables list  | Sequence of deliverables        |
|---|-------------------|--------------------------------|---------------------------------|
|   | Documentation     | Detailed Engineering work flow | Detailed engineering process    |
|   |                   | Document transmission          | Document submission and info    |
|   |                   |                                | exchange                        |
|   |                   | Deliverables types             | Different types of deliverables |

Topic details:

## SEQUENCE OF DELIVERABLES



On this day I have learned the Deliverable list of details and work flow in electrical design. And after sequence of deliverables, Detailed engineering process, Document submission and exchange process, and at last I learned about different types of deliverables.

## 5<sup>th</sup> May2021: Engineering documentation for commands and formulae

3 Electrical Design
Documentation Ms word commands
Ms excel formulae
Auto cad basic commands

Topic details:

MS Word, Excel and Auto cad COMMANDS.

## Word Shortcut Keys

| Command Name      | Keys                |
|-------------------|---------------------|
| All Caps          | Ctrl+Shift+A        |
| Apply List Bullet | Ctrl+Shift+L        |
| Auto Format       | Alt+Ctrl+K          |
| Auto Text         | F3                  |
| Bold              | Ctrl+B              |
| Cancel            | ESC                 |
| Center Para       | Ctrl+E              |
| Change Case       | Shift+F3            |
| Clear             | Del                 |
| Close or Exit     | Alt+F4              |
| Copy              | Ctrl+C              |
| Create Auto Text  | Alt+F3              |
| Cut               | Ctrl+X              |
| Double Underline  | Ctrl+Shift+D        |
| Find              | Ctrl+F              |
| Help              | F1                  |
| Hyperlink         | Ctrl+K              |
| Indent            | Ctrl+M              |
| Italic            | Ctrl+I              |
| Justify Para      | Ctrl+J              |
| Merge Field       | Alt+Shift+F         |
| New Document      | Ctrl+N              |
| Open              | Ctrl+O              |
| Outline           | Alt+Ctrl+O          |
| Overtype          | Insert              |
| Page              | Alt+Ctrl+P          |
| Page Break        | Ctrl+Return         |
| Paste             | Ctrl+V              |
| Paste Format      | Ctrl+Shift+V        |
| Print             | Ctrl+P              |
| Print Preview     | Ctrl+F2             |
| Redo              | Alt+Shift+Backspace |
| Redo or Repeat    | Ctrl+Y              |
| Save              | Ctrl+S              |
| Select All        | Ctrl+A              |
| Small Caps        | Ctrl+Shift+K        |
| Style             | Ctrl+Shift+S        |
| Subscript         | Ctrl+=              |
| Superscript       | Ctrl+Shift+=        |
| Task Pane         | Ctrl+F1             |
| Time Field        | Alt+Shift+T         |

| Underline       | Ctrl+U       |  |
|-----------------|--------------|--|
| Undo            | Ctrl+Z       |  |
| Update Fields   | F9           |  |
| Word Count List | Ctrl+Shift+G |  |

| Function Keys |                                                                                                                                                                                                                                                                                                                   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1            | Get Help or visit Microsoft Office Online.                                                                                                                                                                                                                                                                        |
| F2            | Move text or graphics.                                                                                                                                                                                                                                                                                            |
| F3            | Insert an AutoText (AutoText: A storage location for text or graphics you want to use again, such as a standard contract clause or a long distribution list. Each selection of text or graphics is recorded as an AutoText entry and is assigned a unique name.) entry (after Microsoft Word displays the entry). |
| F4            | Repeat the last action.                                                                                                                                                                                                                                                                                           |
| F5            | Choose the Go To command (Edit menu).                                                                                                                                                                                                                                                                             |
| F6            | Go to the next pane or frame.                                                                                                                                                                                                                                                                                     |
| F7            | Choose the Spelling command (Tools menu).                                                                                                                                                                                                                                                                         |
| F8            | Extend a selection.                                                                                                                                                                                                                                                                                               |
| F9            | Update selected fields.                                                                                                                                                                                                                                                                                           |
| F10           | Activate the menu bar.                                                                                                                                                                                                                                                                                            |
| F11           | Go to the next field.                                                                                                                                                                                                                                                                                             |
| F12           | Choose the Save As command (File menu).                                                                                                                                                                                                                                                                           |

Here we need to check the Page setup, spelling, Grammer, Punctuation, Paragraphs, Overall prasentations, Tables & pictures to be numbered and titled at last we check the Document name & date of versions.

## 7<sup>th</sup> May2021: Engineering documentation for Electrical system design

4 Electrical system Overall plant description design for a small small project Sequence of approach Approach to detailed design

Topic details: Overall plant description, approach to detailed design.



Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

## 10<sup>th</sup> May2021: Engineering documentation for Typical diagrams

5 Electrical system
design for typical Load lists shedule Power flow diagram
diagrams Single line diagram Typical schematic diagram

Topic details: Typical diagrams and Load calculations.

| _          |                                                                                                                                                                                                                                                                                 | EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 2                                                         | 70               | 12 5    | Absorbe<br>load |                             | Load<br>factor        | Efficiency<br>at load                  | Power<br>factor at                                                                                           | KW =    |                | onsume                      |                                       |                            |           | kVAr =         | offitan j      |                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|---------|-----------------|-----------------------------|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|----------------|-----------------------------|---------------------------------------|----------------------------|-----------|----------------|----------------|----------------------------------------------------------------------|
| S.S        | Equipment                                                                                                                                                                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ly by                                                       | la li            | artic   |                 | rating                      | =A/B or H             |                                        | load factor                                                                                                  | _ c     | ontinuous      |                             | Intermitten                           | and spares                 | Н         | Star           | dby            | Remarks                                                              |
| o)         | No.                                                                                                                                                                                                                                                                             | Descriptori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Supply                                                      | > 88             | On 6    | kW              | kW B                        | In decimat            | s in decima                            |                                                                                                              | ko.     | kVAr           | No.                         | kW                                    | KVAr                       | No.       | kW             | RVAr           |                                                                      |
|            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 00                                                        | -                | 2 "     |                 | 1.00                        | III ORCHIGA           | s in decima                            | 10 COS V                                                                                                     | K.07    | AVAI           |                             | ***                                   | Ken                        |           | 1.11           | AVAI           |                                                                      |
| _          | PROCESS LOADS                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | ╙                | -       |                 | 1 497                       |                       | 1                                      | 1                                                                                                            |         | _              |                             |                                       |                            | Ш         |                |                |                                                                      |
| 2          | PD-3431<br>34-PM8401A                                                                                                                                                                                                                                                           | Portable MEG Injection Pump Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEWA                                                        | ₩                | X       | 27.00           |                             | 0.73                  | 0.91                                   | 0.83                                                                                                         | _       | +              | 1                           | 29.67                                 | 19.94<br>19.81             | $\vdash$  |                |                | Portable Skid (Please refer Note-d)                                  |
| 3          | 34-PM8401A<br>34-PM8401B                                                                                                                                                                                                                                                        | Liquid Return Pump Motor<br>Liquid Return Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LEWA                                                        | -                | ×       | 25.45           |                             | 0.82                  | 0.93                                   | 0.81                                                                                                         |         | _              | <u>'</u>                    | 27.37                                 | 19.01                      | 4         | 27.37          | 19,81          |                                                                      |
| 4          | 34-PM8402A                                                                                                                                                                                                                                                                      | Booster Pump Motor (LRP Package)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEWA                                                        | -                | Ŷ       | 1.40            | 2.20                        | 0.64                  |                                        | 0.84                                                                                                         |         | _              | 1                           | 1.79                                  | 1.16                       | •         | 21.31          | 10.01          |                                                                      |
| 5          | 34-PM8402B                                                                                                                                                                                                                                                                      | Booster Pump Motor (LRP Package)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEWA                                                        | +                | x       | 1.40            | 2.20                        | 0.64                  | 0.78                                   | 0.84                                                                                                         |         | _              | <u> </u>                    | 1110                                  | 1.10                       | 1         | 1.79           | 1.16           |                                                                      |
| 6          | 34-PM7902A                                                                                                                                                                                                                                                                      | Corrosion Inhibitor Injection Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEWA                                                        | $\vdash$         | x       | 6.45            | 11,00                       | 0.59                  | 0.90                                   | 0.77                                                                                                         | 1 7,17  | 5.94           |                             |                                       |                            |           |                |                |                                                                      |
| 7          | 34-PM7902B                                                                                                                                                                                                                                                                      | Corrosion Inhibitor Injection Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEWA                                                        |                  | x       | 6.45            | 11.00                       | 0.59                  | 0.90                                   | 0.77                                                                                                         |         |                |                             |                                       |                            | 1         | 7.17           | 5.94           |                                                                      |
| 8          | 34-PM7903A                                                                                                                                                                                                                                                                      | Batch Corrosion Inhibitor Injection Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RAM                                                         |                  | X       | 133.50          |                             | 0.83                  | 0.96                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 139.06         | 104.30         |                                                                      |
| 9          | 34-PM7903B                                                                                                                                                                                                                                                                      | Batch Corrosion Inhibitor Injection Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RAM                                                         | ₩.               | X       | 133.50          |                             | 0.83                  | 0.96                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 139.06         | 104.30         |                                                                      |
| 10         | 34-PM7904A<br>34-PM7904B                                                                                                                                                                                                                                                        | KHI Inhibitor Injection Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LEWA                                                        | ₩                | X       | 6.45            | 11.00                       |                       | 0.90                                   | 0.77                                                                                                         | 1 7.17  | 5.94           |                             |                                       |                            | 1         | 7.17           | 5.94           | VSD for speed control                                                |
| 12         | 34-PM7905A                                                                                                                                                                                                                                                                      | KHI Inhibitor Injection Pump Motor Scale Inhibitor Injection Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FUTURE                                                      | -                | ×       | 3.00            | 4.00                        | 0.59                  | 0.90                                   | 0.77                                                                                                         | 1 3.53  | 2.56           |                             | _                                     |                            | '         | 7.17           | 0.94           | VSD for speed control<br>Future                                      |
| 13         | 34-PM7905B                                                                                                                                                                                                                                                                      | Scale Inhibitor Injection Pump Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FUTURE                                                      | ++               | ×       | 3.00            | 4.00                        | 0.75                  | 0.85                                   | 0.81                                                                                                         | 3.03    | 2.00           |                             |                                       |                            | 1         | 3.53           | 2.56           | Future                                                               |
| 4          | 34-KM9602A                                                                                                                                                                                                                                                                      | Nitrogen Compressor Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GENERON                                                     | $\vdash$         | x       | 30.00           |                             | 0.80                  | 0.90                                   | 0.80                                                                                                         | 1 33.33 | 25.00          |                             |                                       |                            |           | 0.00           | 2              |                                                                      |
| 5          | 34-KM9602B                                                                                                                                                                                                                                                                      | Nitrogen Compressor Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GENERON                                                     |                  | х       | 30.00           | 37.50                       | 0.80                  | 0.90                                   | 0.80                                                                                                         | 1 33.33 | 25.00          |                             |                                       |                            |           |                |                |                                                                      |
| 6          | 34-KM9602C                                                                                                                                                                                                                                                                      | Nitrogen Compressor Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GENERON                                                     |                  | х       | 30.00           |                             | 0.80                  | 0.90                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 33.33          | 25.00          |                                                                      |
| 7          | 34-EM9602A                                                                                                                                                                                                                                                                      | Aftercooler for Nitrogen Compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERON                                                     |                  | x       | 1.15            | 2.50                        | 0.46                  | 0.78                                   | 0.80                                                                                                         |         |                | 1                           | 1.47                                  | 1.11                       |           |                |                |                                                                      |
| 8          | 34-EM9602B                                                                                                                                                                                                                                                                      | Aftercooler for Nitrogen Compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERON                                                     | -                | X       | 1.15            | 2.50                        | 0.46                  | 0.78                                   | 0.80                                                                                                         |         |                | 1                           | 1.47                                  | 1.11                       | 1         |                | 1.08           |                                                                      |
| 9          | 34-EM9602C<br>34-H9602                                                                                                                                                                                                                                                          | Aftercooler for Nitrogen Compressor Nitrogen Heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERON                                                     | +                | ×       | 6.20            | 1.00                        | 6.20                  | 0.80                                   | 1.00                                                                                                         |         |                |                             |                                       |                            | 1         | 1.44           | 1.08           |                                                                      |
| 1          | 34-PM9701A                                                                                                                                                                                                                                                                      | Hydraulic Fluid Pump - Wellhead HPU - Very High Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FRAMES                                                      | +                | ×       | 0.19            | 0.55                        | 0.35                  | 0.90                                   | 0.70                                                                                                         |         |                | 1                           | 0.24                                  | 0.24                       |           |                |                |                                                                      |
| 2          | 34-PM9701B                                                                                                                                                                                                                                                                      | Hydraulic Fluid Pump - Welhead HPU - Very High Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FRAMES                                                      | +                | ı x     | 0.19            | 0.55                        | 0.35                  | 0.80                                   | 0.70                                                                                                         |         |                | 1                           | 0.24                                  | 0.24                       | Н         |                |                |                                                                      |
| 13         | 34-PM9702A                                                                                                                                                                                                                                                                      | Hydraulic Fluid Pump - Wellhead HPU - Medium High Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FRAMES                                                      | $\vdash$         | x       | 5.80            | 7.50                        | 0.77                  | 0.80                                   | 0.86                                                                                                         |         |                | 1                           | 7.25                                  | 4.30                       |           |                |                |                                                                      |
| 14         | 34-PM9702B                                                                                                                                                                                                                                                                      | Hydraulic Fluid Pump - Wellhead HPU - Medium High Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FRAMES                                                      |                  | х       | 5.80            | 7.50                        | 0.77                  | 0.80                                   | 0.86                                                                                                         |         |                | 1                           | 7.25                                  | 4.30                       |           |                |                |                                                                      |
| 5          | 34-A9704A                                                                                                                                                                                                                                                                       | Hydraulic Fluid Pump -IOPPS Valves HPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LEDEEN                                                      |                  | х       | 5.42            | 5.50                        | 0.99                  | 0.80                                   | 0.86                                                                                                         |         |                | 1                           | 6.78                                  | 4.02                       |           |                |                |                                                                      |
| 16         | 34-A9704B                                                                                                                                                                                                                                                                       | Hydraulic Fluid Pump -IOPPS Valves HPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LEDEEN                                                      |                  | X       | 5.42            | 5.50                        | 0.99                  | 0.80                                   | 0.86                                                                                                         |         |                | 1                           | 6.78                                  | 4.02                       |           |                |                |                                                                      |
| 7          | 34-PM9705A<br>34-PM9705B                                                                                                                                                                                                                                                        | Hydraulic Fluid Pump - ESDVs HPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEDEEN                                                      | 1                | X       | 5.42            | 5.50                        | 0.99                  | 0.80                                   | 0.86                                                                                                         |         |                | 1                           | 6.78                                  | 4.02                       | $\square$ |                |                |                                                                      |
| 18         | 34-PM9705B<br>AC-3435                                                                                                                                                                                                                                                           | Hydraulic Fluid Pump - ESDV's HPU Crane motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIEBHERR                                                    | -                | X       | 112.00          |                             | 0.99                  | 0.80                                   | 0.96                                                                                                         |         | _              | 1                           | 117.89                                | 4.02<br>57.10              | $\vdash$  |                |                |                                                                      |
| 10         | 34-XZM8303                                                                                                                                                                                                                                                                      | Lifeboat Recovery Starter Panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCHAT HARDING                                               | -                | ×       | 8.74            |                             | 0.80                  |                                        | 0.90                                                                                                         |         | +              | ,                           | 117.89                                | 57.10                      | 1         | 9.60           | 6.70           |                                                                      |
| l1         | CP34302                                                                                                                                                                                                                                                                         | Flare Knock Out Drum Heater Control Panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHROMALOX                                                   | -                | Ŷ       | 35.00           |                             | 1.00                  | 0.90                                   | 0.90                                                                                                         |         | _              | 1                           | 38.89                                 | 18.83                      |           | 0.00           | 0.70           |                                                                      |
| _          | HVAC LOADS                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.110.114.00.1                                              | +                | 17      | 00.00           | 00.00                       | 1100                  | 0.00                                   |                                                                                                              |         | _              |                             | 00100                                 | 10.00                      |           |                |                |                                                                      |
| _          | 34-YH4201ACCU01                                                                                                                                                                                                                                                                 | Ale Control Condension Unit - DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | сстс                                                        | Н.               |         | 37.25           | 42.90                       | 0.87                  | 0.82                                   | 0.80                                                                                                         | 1 45.43 | 34.07          |                             |                                       |                            | $\vdash$  |                |                |                                                                      |
| 3          | 34-YH4201ACCU02                                                                                                                                                                                                                                                                 | Air Cooled Condensing Unit - 01 Air Cooled Condensing Unit - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCTC                                                        | H.               | +       | 37.25           | 60.00                       | 0.62                  | 0.82                                   | 0.80                                                                                                         | 40.40   | 34.07          |                             |                                       |                            |           | 45.43          | 34.07          |                                                                      |
| 4          | 34-YH4201AHU01                                                                                                                                                                                                                                                                  | Air Handling Unit - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCTC                                                        | H â              |         | 8.85            | 10.00                       | 0.89                  | 0.80                                   | 0.80                                                                                                         | 1 11.06 | 8.30           |                             |                                       |                            | -         | 40.43          | 34.07          |                                                                      |
| 5          | 34-YH4201AHU02                                                                                                                                                                                                                                                                  | Air Handling Unit - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCTC                                                        | ×                |         | 8.85            | 10.00                       | 0.89                  | 0.80                                   | 0.80                                                                                                         | 11100   | 0.00           |                             |                                       |                            | 1         | 11.06          | 8.30           |                                                                      |
| 6          | 34-YH4201FF01                                                                                                                                                                                                                                                                   | Fresh Air Fan - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCTC                                                        | l x              |         | 8.00            | 8.00                        | 1.00                  | 0.90                                   | 0.80                                                                                                         | 1 8.89  | 6.67           |                             |                                       |                            |           |                |                |                                                                      |
| 17         | 34-YH4201FF02                                                                                                                                                                                                                                                                   | Fresh Air Fan - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCTC                                                        | ×                |         | 8.00            | 8.00                        | 1.00                  | 0.90                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 8.89           | 6.67           |                                                                      |
| 8          | 34-YH4201EF01                                                                                                                                                                                                                                                                   | Exhaust Fan - Toilet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCTC                                                        | X                |         | 1.00            | 1.00                        | 1.00                  | 0.90                                   | 0.80                                                                                                         |         |                | 1                           | 1.11                                  | 0.83                       |           |                |                |                                                                      |
| 9          | 34-YH4201EDH01                                                                                                                                                                                                                                                                  | Duct heater - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CCTC                                                        | ×                | 4       | 9.78            | 9.78                        | 1.00                  | 1.00                                   | 1.00                                                                                                         |         | _              | 1                           | 9.78                                  | 0.00                       | -         |                |                |                                                                      |
| 10         | 34-YH4201EDH02                                                                                                                                                                                                                                                                  | Duct heater - 02<br>Duct heater - 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCTC                                                        | l X              |         | 4.69<br>0.90    | 4.69                        | 1.00                  | 1.00                                   | 1.00                                                                                                         |         | _              |                             | 4.69                                  | 0.00                       |           |                |                |                                                                      |
| 11         | 34-YH4201EDH03<br>34-YH4201EDH04                                                                                                                                                                                                                                                | Duct heater - 03 Duct heater - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCTC                                                        | l ×              |         | 4.98            | 0.90<br>4.98                | 1.00                  |                                        | 1.00                                                                                                         |         | _              | 1                           | 0.90                                  | 0.00                       |           |                |                |                                                                      |
| 12         |                                                                                                                                                                                                                                                                                 | Dact House - O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COIC                                                        | <del>    ^</del> | ++      | 4.00            | 4.00                        | 1.00                  | 1.00                                   | 1.00                                                                                                         |         | _              | -                           | 4.00                                  | 0.00                       |           |                |                |                                                                      |
| _          | ELECTRICAL LOADS                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | ш.               | $\perp$ |                 |                             |                       |                                        |                                                                                                              |         |                |                             |                                       |                            | ш         |                |                |                                                                      |
| 3          | AC-3431<br>UPS-3441/3442/3443                                                                                                                                                                                                                                                   | Power Distribution Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MASSEERA<br>GUTOR                                           | l x              |         | 41.00           |                             | 1.00                  | 0.98                                   | 0.80                                                                                                         | 1 41.84 | 31.38          |                             |                                       |                            | Н         |                |                | Inclusive of MOV, Choke valve, Control valve and heat tracing loa    |
| 5          | BC-3442                                                                                                                                                                                                                                                                         | UPS- Mein/Bypess<br>Switchgear 24 V DC UPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAFT                                                        | H.               |         | 1.20            | 1.20                        | 1.00                  | 0.82                                   | 0.80                                                                                                         | 1 1.50  |                |                             |                                       |                            | Н         |                |                |                                                                      |
| 6          | LTR-3431                                                                                                                                                                                                                                                                        | Lighting Transformer for LP-3431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SCHNEIDER                                                   | l ×              | 1       | 27.00           |                             | 1.00                  |                                        |                                                                                                              | 1 27.58 |                |                             |                                       |                            |           |                |                | Inclusive of lighting load, convenience outlets and small power loa  |
| 17         | ELTR-3431                                                                                                                                                                                                                                                                       | Lighting Transformer for ELP-3431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SCHNEIDER                                                   | l î              |         | 27.00           |                             | 1.00                  |                                        | 0.90                                                                                                         | 1 27.58 |                |                             |                                       |                            | Н         |                |                | Inclusive of lighting load, convenience outlets and small power load |
| 8          | WD-3431A                                                                                                                                                                                                                                                                        | Welding Socket Outlet 1 - Upper Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAHL                                                       | Η'n              | x       | 33.00           |                             | 1.00                  | 0.98                                   | 0.80                                                                                                         | 2100    | 10.04          |                             |                                       |                            | 1         | 33.67          | 25.26          |                                                                      |
| •          | WD-3431B                                                                                                                                                                                                                                                                        | Welding Socket Outlet 2 - Upper Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAHL                                                       |                  | x       | 33.00           | 33.00                       | 1.00                  | 0.98                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 33.67          | 25.26          |                                                                      |
| 0          | WD-3432A                                                                                                                                                                                                                                                                        | Welding Socket Outlet 1 - Lower Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAHL                                                       | П                | x       | 33.00           |                             | 1.00                  |                                        | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 33.67          | 25.26          |                                                                      |
| 1          | WD-3432B                                                                                                                                                                                                                                                                        | Welding Socket Outlet 2 - Lower Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAHL                                                       | н                | X       | 33.00           | 33.00                       | 1.00                  | 0.98                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 33.67          | 25.26          |                                                                      |
| 3          | WD-3433A<br>WD-3433B                                                                                                                                                                                                                                                            | Welding Socket Outlet 1 - Mezz Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAHL<br>STAHL                                              | -                | X       | 33.00           | 33.00                       | 1.00                  | 0.98                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 33.67<br>33.67 | 25.26<br>25.26 |                                                                      |
| 4          | WD-3433B<br>WD-3434                                                                                                                                                                                                                                                             | Welding Socket Outlet 2 - Mezz Deck Welding Socket Outlet - Cellar Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STAHL                                                       | ++               | - X     | 33.00           | 33.00                       | 1.00                  | 0.98                                   | 0.80                                                                                                         |         |                |                             |                                       |                            | 1         | 33.67          | 25.26          |                                                                      |
| 4          | WD-3434                                                                                                                                                                                                                                                                         | Welding Socket Outlet - Cellar Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SIAPL                                                       | -                | X       | 33.00           | 33.00                       | 1.00                  | 0.96                                   | 0.80                                                                                                         |         | _              |                             |                                       |                            | ,         | 33.07          | 20.20          |                                                                      |
|            | Max. of normal running plant load                                                                                                                                                                                                                                               | 1: 353 kW, 232 kVAr,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V(kW2 + kVdr-7)                                             |                  | 423     | KVA             | ×                           | 100                   |                                        | OTAL                                                                                                         | 278     | 195            |                             | 252                                   | 125                        |           | 671            | 503            | Power factor without compensation [Cos φ] 0.836                      |
|            | (Est. x %E + y %F)                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |         |                 | y.                          | 30                    | μ,                                     | U.AL                                                                                                         | 2/8     | 195            |                             | 202                                   | 120                        |           | 6/1            | 903            | Power factor with compensation [Cos q <sub>1</sub> ]                 |
|            | Peak load:<br>(Est. x %E + y %F + z%G)                                                                                                                                                                                                                                          | 420 kW, 282 kVAr,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{(kW^2 + kV_0h^2)}$                                   |                  | 506     | kVA             | Z                           | 10                    | AFA=1                                  | (RF*+R54r)                                                                                                   |         | 339            |                             | 2                                     | 82                         | $\vdash$  | 8              | 18             | Reqd capacitor rat: [=kW(ten \varphi - ten \varphi,)] KVA            |
|            |                                                                                                                                                                                                                                                                                 | b) Absorbed loads:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | -                | C.      | Consun          | ed loads:                   | _                     |                                        |                                                                                                              |         | G - "          | Stand -                     | hy": low                              | Is required                | in        |                |                |                                                                      |
| ıs -       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  | 111     |                 | Continuous                  | ": all loads          | that may                               |                                                                                                              |         |                |                             |                                       | , such as                  |           | nter           |                |                                                                      |
| s -        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |         |                 |                             |                       |                                        | mal operation                                                                                                |         |                |                             |                                       | f not norm                 |           |                |                |                                                                      |
| n)         | Load classification/restarting:<br>For definitions of "Vital", "Essent                                                                                                                                                                                                          | - for pumps, shaft load on duty point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nmunication, & air                                          |                  |         |                 |                             |                       |                                        |                                                                                                              |         |                |                             |                                       |                            |           |                |                | QATARGAS 3&4                                                         |
| 8-         | Load classification/restarting:                                                                                                                                                                                                                                                 | - for pumps, shaft load on duty point for instrumentation, computers, con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                  |         |                 | peration in                 |                       |                                        | workshops                                                                                                    |         |                |                             | electrica                             | ly driven u                | nits &    |                |                |                                                                      |
| n)         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and ap                                                                                                                                                                     | - for pumps, shaft load on duty point. ial" and - for instrumentation, computers, con- optication condit'g, the required load during fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                  |         |                 | peration in<br>Intermittent |                       |                                        |                                                                                                              | r       |                |                             |                                       | ly driven u<br>by for norr |           |                |                | OFFSHORE FACILITIES PROJECT                                          |
| 8.         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and as<br>of "Restarting", see DEP 33.64.1                                                                                                                                 | iel" and - for pumps, shaft load on duty point.  Iel" and - for instrumentation, computers, con condity, the required load during fu 0.10 - Gen for lighting, during dark hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Il operation of plant.                                      |                  |         | F - "           | Intermittent                | and spare             | ss"; the loa                           | workshops<br>ads required folloading, etc., a                                                                |         | e              | lectrica<br>unning          | al stand -<br>steam - o               | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| <b>s</b> - | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and ap                                                                                                                                                                     | iel" and - for pumps, shaft load on duty point.  Iel" and - for instrumentation, computers, con condity, the required load during fu 0.10 - Gen for lighting, during dark hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Il operation of plant.                                      |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | storage,                               | nds required fo                                                                                              |         | e              | lectrica<br>unning          | al stand -<br>steam - o               | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| a)         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and as<br>of "Restarting", see DEP 33.64.1                                                                                                                                 | - for pumps, shaft load on duty point.  Isal and - for instrumentation, computers, completes, completes, completes, computers, computers, computers, computers, computers, computers, computers, computers, considerable, and computers of comp | Il operation of plant.                                      |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | storage,                               | nds required fo<br>loading, etc, a                                                                           |         | e              | lectrica<br>unning          | al stand -<br>steam - o               | by for norr                | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| a)         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and as<br>of "Restarting", see DEP 33,64.1<br>Electrical engineering guidelines<br>The Panel shall feed Injection Pu                                                       | - for pumps, shaft load on duty point.  Isal and - for instrumentation, computers, completes, completes, completes, computers, computers, computers, computers, computers, computers, computers, computers, considerable, and computers of comp | Il operation of plant.<br>d in normal full                  |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | storage,                               | nds required fo<br>loading, etc, a                                                                           |         | e              | lectrica<br>unning          | al stand -<br>steam - o               | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| a)         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and as<br>of "Restarting", see DEP 33,64.1<br>Electrical engineering guidelines<br>The Panel shall feed Injection Pu                                                       | - for pumps, sheft laid and only point laif and - for instrumentation, computers, con opplication conditry, the required code during fu 0,10 - Gen for lighting, during dark hours for work-indept, the average total on opporation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Il operation of plant.<br>d in normal full                  |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | storage,                               | nds required fo<br>loading, etc, a                                                                           |         | e              | lectrica<br>unning          | al stand -<br>steam - o               | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| a)         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and as<br>of "Restarting", see DEP 33,64.1<br>Electrical engineering guidelines<br>The Panel shall feed Injection Pu                                                       | - for pumps, sheft laid and only point laif and - for instrumentation, computers, con opplication conditry, the required code during fu 0,10 - Gen for lighting, during dark hours for work-indept, the average total on opporation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Il operation of plant.<br>d in normal full                  |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | storage,                               | nds required fo<br>loading, etc, a                                                                           |         | e              | lectrica<br>unning          | al stand -<br>steam - o               | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM?                       |
| d)         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and as<br>of "Restarting", see DEP 33,64.1<br>Electrical engineering guidelines<br>The Panel shall feed Injection Pu                                                       | - for pumps, sheft laid and only point laif and - for instrumentation, computers, con opplication conditry, the required code during fu 0,10 - Gen for lighting, during dark hours for work-indept, the average total on opporation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Il operation of plant.<br>d in normal full                  |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | storage,                               | nds required fo<br>loading, etc, a                                                                           |         | e              | lectrica<br>unning          | al stand -<br>steam - o               | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| d)         | Load classification/restarting:<br>For definitions of "Vital", "Essent<br>Non - Essential", services and as<br>of "Restarting", see DEP 33,64.1<br>Electrical engineering guidelines<br>The Panel shall feed Injection Pu                                                       | Infrared on the purpose that fixed on only point, liaff and for instrumention, computers or optication conflict, the required tools during to 0.00 - Gen. — for lighting, during dark hours. — for lighting, during dark hours. — for workshopp, the average both be operated.  The purpose of the  | Il operation of plant.<br>d in normal full                  |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | storage,                               | nds required fo<br>loading, etc, a                                                                           | d       | b              | lectrica<br>unning<br>umps, | al stand -<br>steam - o               | by for norr<br>triven ones | maily     | charge         |                | OF SHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| d)         | Load classification/restarting:<br>For definitions of "Vita", "Essent<br>Nessentia", services and as<br>of "Restarting", see DEP 3.8.4.1<br>Electrical engineering guidelines<br>The Panel shall feed Irijection Pu<br>Batch Injection pump considered                          | Infrared on the purpose that fixed on only point, liaff and for instrumention, computers or optication conflict, the required tools during to 0.00 - Gen. — for lighting, during dark hours. — for lighting, during dark hours. — for workshopp, the average both be operated.  The purpose of the  | d in normal full                                            |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | es"; the los<br>storage,<br>electrical | eds required fo<br>loading, etc., a<br>y driven units.                                                       | FOR CON | e n p          | lectrica<br>unning<br>umps, | al stand -<br>steam - o<br>boiler fee | by for norr<br>triven ones | maily     | charge         |                | OF SHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| a)         | Load classification/restarting:<br>For definitions of 'Villa', 'Essent<br>Non - Essentia', nevtoes and a<br>of 'Restarting', see DEP 33.64.1<br>Electrical engineering guidelines<br>The Panel shall feed injection Pur<br>Batch Injection pump considere                       | Inf and only point, and had not only point, liaf and of rein insurancesino, computers, or optication configure, and charging to 10 - 0 cm for instructioning dark hours, or for lighting, during dark hours, or for workshops, the average total ban operation.  The property of the configure of th    | d in normal full  d in normal full  ing philosophy.         |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | es"; the los<br>storage,<br>electrical | ads required for<br>loading, etc., a<br>loading, etc., a<br>loading, etc., a<br>loading, etc., a<br>APPROVED | FOR CON | STRUCTION WITH | lectrica<br>unning<br>umps, | al stand -<br>steam - o<br>boiler fee | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |
| n)         | Load classification/restarting:<br>For definitions of "Ville", "Essential", services and as<br>Ville", Essential", services and as<br>of "Restarting", see DEP 33.64. Electrical engineering guidelines<br>The Panel shall feed Injection Pu<br>Batch Injection pump consideres | Inf and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d in normal full  d in normal full  ling philosophy.  AK PJ |                  |         | F-              | Intermittent<br>ntermediate | and spare<br>pumping, | es"; the los<br>storage,<br>electrical | APPROVED FOR                                                                                                 | FOR CON | STRUCTION WITH | lectrica<br>unning<br>umps, | al stand -<br>steam - o<br>boiler fee | by for norr<br>triven ones | maily     | charge         |                | OFFSHORE FACILITIES PROJECT WELLHEAD PLATFORM 7                      |

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

## 11th May2021: Classification of Transformers and Generators

6 Classification of Transformers and Generators

Different types of Transformers Di

Different types of Generators

Topic Details: Classification of Transformers and Generators.







1 Ph. Pad mounted 3 Ph Pole mounted Commercial/ 3 Ph Oil filled (ONAN) Distribution Residential lighting Residential/ street lighting type for industrial & commercial.





415V Diesel generator sets for standby / 240V 1 ph diseal generator set for lighting and & small power only Emergency power supply.

Transformer shall include a primary disconnect on the incoming power source. The disconnect means shall be either a breaker or a load break primary switch that is fused. Transformers are sized to carry the peak running load of all busses connected to them. In addition, feeders to and from power transformers shall be rated to carry full current at the maximum rating.

The packaged combination of a diesel engine, an alternator and various ancillary devices such as base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, starting systems etc., is referred to as a Diesel Generating Set or a DG Set in short.

12th May2021: Classification of Switchgare construction and power factor improvement

7 Classification of Switchgare construction and power factor improvement

Different types of Switchgare assembles

Power factor improvement

Topic details: Classifiaction of Switchgare contruction and Power Factor Improvement.



Switchgear includes switching & protecting devices like fuses, switches, CTs, VTs, relays, circuit breakers, etc. This device allows operating devices like electrical equipment, generators, distributors, transmission lines, etc.





Power factor defined as the ratio of real power to volt-amperes and is the cosine of the phase angle between the voltage and current in an AC circuit.

17<sup>th</sup> May2021: Detailing about UPS system and Busducts.

| 8 | Detailing about |                              |                       |
|---|-----------------|------------------------------|-----------------------|
|   | UPS system and  | Uninterruptible power supply | Busduts of the system |
|   | Busducts        | system                       |                       |

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.



Busducts are classified into various types depending on its application viz phase separated Busducts, segregated phase busducts, non-segregated phase busducts.



18th May2021: Detailing about Motor Starters and Sizing of motors.

| 9 | Detailing about<br>Motor Starters and<br>Sizing of motors | Motor starters and drives | Sizing and selection of motors |
|---|-----------------------------------------------------------|---------------------------|--------------------------------|
|   |                                                           |                           |                                |

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter
- Star Delta Starter



- Starting method soft starter, Auto transformer, Star/Delta
- Speed variation Constant speed, variable speed for VFD
  - Frame Size 56 to 280
- Insulation class & Temp rise A, E, B, F & H
- Protection Protection based on voltage & KW rating
- Cable entry, size & termination Cable sizing based on staring/running voltage drop and short circuit current Vibration monitoring based on KW rating.

19<sup>th</sup> May2021: Discribing about Earthing system and Lighting Protection.

| 10 | Discribing about<br>Earthing system<br>and Lighting | Plant Earthing system | Lighting Protection materials |
|----|-----------------------------------------------------|-----------------------|-------------------------------|
|    | Protection.                                         |                       |                               |

Topic details: Discribing about Earthing system and Lighting Protection.

The purpose of earthing is to prevent damage to people and prevent or limit plant damage. Various earthing systems are provided with each earthing system is isolated from the other.



Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20<sup>th</sup> May2021: Lighting or illumination systems and calculations.

| 11 Lighting or Illumination systems and Calculations | Lighting or illumination systems | Lighting calculations |
|------------------------------------------------------|----------------------------------|-----------------------|
|------------------------------------------------------|----------------------------------|-----------------------|

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.



Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG Lux

Applicable Standards: IS 6665: Code of practice for industrial lighting, IS 3646: Code of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

## 21th May2021: Lighting or illumination systems using DIALUX software.

12 Lighting or Illumination using DIALUX software

Lighting or illumination systems

Operation of dialux software

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.





We have the indoor calculations and outdoor calculations too.



Indoor calculation



outdoor calculations

24<sup>th</sup> May2021: Cabling and their calculations and types.

| 13 | Cabling and their |
|----|-------------------|
|    | types and         |
|    | claculations      |

Cabling calculations

Types of cabling materials

Topic details: Cabling and their types and claculations.



Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

Cable trays shall be generally loaded 60 to 70% leaving space for future use. Underground cabling shall be done in concrete cable trenches with cable trays in paved areas and directly buried with mandatory gap of 300mm between different systems of cables.

## 25<sup>th</sup> May2021: Cabling calculations and Cable gland selection.

| 14 | Cabling                                      |                      |                       |
|----|----------------------------------------------|----------------------|-----------------------|
|    | claculations and<br>cable gland<br>selection | Cabling calculations | Cable gland selection |

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point.

Results shall be checked with specified limits mentioned in design basis.

## Cable gland:



Cable Gland Selection Table
Refer to illustration at the top of the page.

| Cable Gland<br>Size | (Alternat | entry Threads "C"<br>Metric Thread<br>hs Available) | Cable<br>Bedding<br>Diameter<br>"A" | Overall<br>Cable<br>Diameter<br>"B" | Armou | r Range | Across<br>Flats<br>"D" | Across<br>Corners<br>"D" | Protrusion<br>Length "F" |
|---------------------|-----------|-----------------------------------------------------|-------------------------------------|-------------------------------------|-------|---------|------------------------|--------------------------|--------------------------|
| Size                | Metric    | Thread Length<br>(Metric) "E"                       | Max                                 | Max                                 | Min   | Max     | Max                    | Max                      | Length F                 |
| 20516               | M20       | 10.0                                                | 8.7                                 | 13.2                                | 0.8   | 1.25    | 24.0                   | 26.4                     | 35.2                     |
| 205                 | M20       | 10.0                                                | 11.7                                | 15.9                                | 0.8   | 1.25    | 24.0                   | 26.4                     | 32.2                     |
| 20                  | M20       | 10.0                                                | 14.0                                | 20.9                                | 0.8   | 1.25    | 30.5                   | 33.6                     | 30.6                     |
| 25                  | M25       | 10.0                                                | 20.0                                | 26.2                                | 1.25  | 1.6     | 36.0                   | 39.6                     | 36.4                     |
| 32                  | M32       | 10.0                                                | 26.3                                | 33.9                                | 1.6   | 2.0     | 46.0                   | 50.6                     | 32.6                     |
| 40                  | M40       | 15.0                                                | 32.2                                | 40.4                                | 1.6   | 2.0     | 55.0                   | 60.5                     | 36.6                     |
| 505                 | M50       | 15.0                                                | 38.2                                | 46.7                                | 2.0   | 2.5     | 60.0                   | 66.0                     | 39.6                     |
| 50                  | M50       | 15.0                                                | 44.1                                | 53.1                                | 2.0   | 2.5     | 70.1                   | 77.1                     | 39.1                     |
| 635                 | M63       | 15.0                                                | 50.0                                | 59.4                                | 2.0   | 2.5     | 75.0                   | 82.5                     | 52.0                     |
| 63                  | M63       | 15.0                                                | 56.0                                | 65.9                                | 2.0   | 2.5     | 80.0                   | 88.0                     | 49.8                     |
| 755                 | M75       | 15.0                                                | 62.0                                | 72.1                                | 2.0   | 2.5     | 90.0                   | 99.0                     | 63.7                     |
| 75                  | M75       | 15.0                                                | 68.0                                | 78.5                                | 2.5   | 3.0     | 100.0                  | 110.0                    | 57.3                     |
| 90                  | M90       | 24.0                                                | 80.0                                | 90.4                                | 3.15  | 4.0     | 114.3                  | 125.7                    | 66.6                     |

## 28 th May2021: Load calculations and Transformer sizing calculations

15 Load calculations and TR Load calculations TR calculations calculations

## Topic details:

## List of electrical load calculations.

| 14-A<br>14-B<br>15<br>15<br>08<br>13                                                                                                                                                                                                                                                          | Equipment De  Silica (filter feed pump Absorbers (filter and oil pump (fil) Absorbers (filter and oil pump (fil) Feed Pump (Sperator) MODER (VI) | cription                                                                                                                                                                                                                                                                                 | Breaker<br>Rating          | Breaker<br>Type                       | Breaker<br>No. of<br>Poles | ELCB<br>Rating<br>mA          | Absorbed<br>Load<br>[A] | Motor / Load<br>Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Load<br>Factor<br>[A]/[B]<br>[C] | Efficiency<br>at Load<br>Factor [C] | Power<br>Factor at<br>Load<br>Factor [C]                | Continue                                              |                                                                       | Intermit                       | tent                                | Stand-b                        | Ьу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|----------------------------|-------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|-------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-A<br>14-B<br>15<br>15<br>08<br>13                                                                                                                                                                                                                                                          | Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)                                                  |                                                                                                                                                                                                                                                                                          | Α                          |                                       |                            | mA                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         | 500                                                   |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14-A<br>14-B<br>15<br>15<br>08<br>13                                                                                                                                                                                                                                                          | Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)                                                  |                                                                                                                                                                                                                                                                                          | _ A                        |                                       |                            | mA                            | kW.                     | L/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14-A<br>14-B<br>15<br>15<br>08<br>13                                                                                                                                                                                                                                                          | Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | decimal                          | decimal                             | cos d                                                   | kW                                                    | kVAR                                                                  | kW.                            | KVAR                                | kW                             | RVAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14-A<br>14-B<br>15<br>15<br>08<br>13                                                                                                                                                                                                                                                          | Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 12.47                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.83                             | 0.85                                | 0.73                                                    | 14.67                                                 | 13.74                                                                 |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14 -B<br>15<br>15<br>08<br>13                                                                                                                                                                                                                                                                 | Absorbesnt/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 3.62                    | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.77                             |                                     | 0.73                                                    | 4.3                                                   | 4.0                                                                   |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 05<br>05<br>08<br>13                                                                                                                                                                                                                                                                          | Feed Pump (Seperator)<br>MIXER (W)                                                                                                               |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 3.11                    | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.84                             |                                     | 0.73                                                    | 4.3                                                   | 71.01                                                                 |                                |                                     | 3.7                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 05<br>08<br>13                                                                                                                                                                                                                                                                                | MIXER (W)                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 12.58                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.84                             |                                     | 0.73                                                    | 14.8                                                  | 13.9                                                                  |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 08<br>13                                                                                                                                                                                                                                                                                      |                                                                                                                                                  | <del></del>                                                                                                                                                                                                                                                                              |                            |                                       |                            |                               | 12.68                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.85                             |                                     | 0.73                                                    | 14.9                                                  | 14.0                                                                  |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13                                                                                                                                                                                                                                                                                            | MIXER(S)                                                                                                                                         |                                                                                                                                                                                                                                                                                          |                            | ·                                     |                            |                               | 12.68                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.85                             |                                     | 0.73                                                    | 14.0                                                  | 17.0                                                                  |                                |                                     | 14.9                           | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                               | Blower                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 5.45                    | 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.73                             | 0.85                                | 0.73                                                    | 6.4                                                   | 6.0                                                                   |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               | TK 2313B (II)                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                            | · · · · · · · · · · · · · · · · · · · |                            |                               | 0.53                    | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.71                             |                                     | 0.73                                                    |                                                       |                                                                       | 0.6                            | 0.6                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               | Screw conveyor (I)                                                                                                                               |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 1.23                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.82                             |                                     | 0.73                                                    |                                                       |                                                                       | 145                            | 1.35                                |                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 244                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            | t                                     |                            |                               | 0.91                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         | 107                                                   | 100                                                                   |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24B                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 0.91                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     | 11                             | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         | 3.93                                                  | 3.68                                                                  | ,                              |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       | ·                              | ·                                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 121                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       | ·                              |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               | 2 12                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                               | DOSE NO DOSE TORRESTOR OF                                                                                                                        |                                                                                                                                                                                                                                                                                          |                            | t                                     |                            |                               | 160.760                 | 3,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                                     |                                                         |                                                       |                                                                       | ,                              | tt                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | 4                          |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     | _                                                       |                                                       | -                                                                     | ř – –                          | - 1                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| um of norm<br><e+y%f)< td=""><td>al running plant load :</td><td>66.0 kW</td><td></td><td>61.8</td><td>KVAR</td><td></td><td>sqn</td><td>kW' +kVAR') =</td><td>90.4</td><td>kVA</td><td>TOTAL</td><td>65.40</td><td>61.23</td><td>2.07</td><td>1.94</td><td>19.65</td><td>18.3</td></e+y%f)<> | al running plant load :                                                                                                                          | 66.0 kW                                                                                                                                                                                                                                                                                  |                            | 61.8                                  | KVAR                       |                               | sqn                     | kW' +kVAR') =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90.4                             | kVA                                 | TOTAL                                                   | 65.40                                                 | 61.23                                                                 | 2.07                           | 1.94                                | 19.65                          | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| oad:                                                                                                                                                                                                                                                                                          |                                                                                                                                                  | 68.0 kW                                                                                                                                                                                                                                                                                  |                            | 63.7                                  | EVAR                       |                               | sort                    | kW*+kVAR*)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.1                             | kVA                                 | kVA                                                     | 89.55                                                 |                                                                       | 2.8                            | 4                                   | 26.91                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4E + 9%F +                                                                                                                                                                                                                                                                                    | z%G)                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nptions                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| factor, Eff                                                                                                                                                                                                                                                                                   | iciency and Power factor.                                                                                                                        |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                            |                                       |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               | > 2U - <= 45<br>> 4E - 2 4E0                                                                                                                     |                                                                                                                                                                                                                                                                                          | 0.                         | 91                                    |                            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               | >= 150                                                                                                                                           |                                                                                                                                                                                                                                                                                          | 0.5                        | 94                                    |                            | 0.02                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                     |                                                         |                                                       |                                                                       |                                |                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                               | 24A 24B 25 25 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                       | Citica exist on a grateor (V)  Citica desid and agrateor (V)  Citica desid and agrateor (S)  Citica desident agrateor (S)  Citica desident agrateor (S)  Citica desident agrateor (S)  Soap Addrotham Tariti Agrateor  And Formal running plant load  (E + y/CF)  Coad  C + y/CF + 2/CG) | Carlo acid on agration (V) | Chris acid fam agration (W)           | 24A                        | Clinic section angitector (W) | 26A                     | Ost   Ost | 24A                              | Ceric and tan againster (V)         | Chris acid san agridator (V)   0.91   130   0.03   0.05 | Chric acid san agridator M   0.51   130   0.65   0.75 | Clinic acid san agripator (M)   0.91   130   0.83   0.85   0.75   107 | Clinic acid tain againster (W) | Clinic and ten against relative (5) | Clinic acid tan againstant (b) | Clinic acid ten agridator (W)   Clinic acid ten agridator (W |

## TR sizing calculations:

## Calculation for Transformer Capacity

## Example of calculation for Transformer Capacity Calculation for consumed load Consumed loads used for this example are as follows:

|                                                             | kV    | k¥ar | kVA    |       |
|-------------------------------------------------------------|-------|------|--------|-------|
| a. Continuous load                                          | 65.4  | 61.2 | 89.57  | (i)   |
| b. Intermittent load / Diversity Factor                     | 2.07  | 1.9  | 2.81   | (ii)  |
| <ul> <li>Stand-by load required as consumed load</li> </ul> | 19.65 | 18.4 | 26.92  | (iii) |
|                                                             |       |      |        |       |
| Max. Consumed load = ((i) + 30% (ii) + 10% (iii) ) =        | 66.0  | 61.8 | 90.42  |       |
| Future expansion load (20% capacity)                        | 13.2  | 12.4 | 18.08  |       |
| Total Load =                                                | 79.2  | 74.2 | 108.50 |       |

#### 1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

Max. Consumed load Spare capacity Required capacity Transformer rated capacity

During starting or reacceleration of max.capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:



Result During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is appro: 6.90%

## 29th May2021: DG set calculations.

DG set calculations

## Topic details:

Transformer and DG set calculations, types, sizing or selections



## 2nd june2021: Caluculations of Earthing and Lighting protection.

17 Calculation of
Earthing and Earthing calculations
Lighting protection
calculations

Lighting protection calculation

## Topic details:

Calculation of Earthing and Lighting protection calculations

|                                            | 2                           |         |                                  |
|--------------------------------------------|-----------------------------|---------|----------------------------------|
| Location                                   | Bangalore                   |         |                                  |
| Building                                   | Srtuctural, Industrial      |         |                                  |
| Type of Building                           | Triangle Roofs (c)          |         |                                  |
| Building Length (L)                        | 18                          |         |                                  |
| Building breadth (W)                       | 8                           |         |                                  |
| Building Height (H)                        | 6                           |         |                                  |
| Risk Factor Calculation                    |                             |         |                                  |
| Collection Area (A <sub>c</sub> )          |                             |         |                                  |
| A <sub>c</sub>                             |                             | -       | (3.14*H*H)+(2*H*W                |
|                                            |                             |         | 209.04                           |
| Probability of Being Struck (P)            |                             |         |                                  |
| P                                          |                             | -       | Ac * Ng * 10-6                   |
|                                            |                             |         | 0.000585312                      |
| Overall weighing factor                    |                             |         |                                  |
| a) Use of structure (A)                    |                             | 360     | 1.0                              |
| b) Type of construction (B)                |                             | 366     | 0.8                              |
| c) Contents or consequential effects (C)   |                             | 200     | 0.8                              |
| d) Degree of isolation (D)                 |                             | -       | 1.0                              |
| e) Type of country (E)                     |                             | -       | 0.3                              |
| Wo - Overall weighing factor               |                             | -       | A * B * C * D * E                |
|                                            |                             | =       | 0.192                            |
| Overall Risk Factor                        | Po                          | 200     | P * Wo                           |
|                                            | Po                          | -       | 0.00011238                       |
|                                            | Pa                          |         | 10 <sup>-5</sup>                 |
| As per clause no. 9.7 of BS- 6651, suggest | ed acceptable risk factor ( | Po) has | s been taken as 10 <sup>-5</sup> |
| Since Po > Pa lightning protection require | d.                          |         |                                  |

## **Earthing calculations:**

|                                                                                                                                  | 2      |     |
|----------------------------------------------------------------------------------------------------------------------------------|--------|-----|
|                                                                                                                                  |        |     |
| Maximum line-to-ground fault in kA for 1 sec                                                                                     | 14     |     |
| Earthing material (Earth rod & earth strip)                                                                                      | GI     |     |
| Depth of earth flat burrial in meter                                                                                             | 0.5    |     |
| Average depth / length of Earth rod in meters                                                                                    | 4.5    |     |
| Soil resistivity Ω-meter                                                                                                         | 13     |     |
| Ambient temperature in deg C                                                                                                     | 55     |     |
| Plot dimensions (earth grid) L x B in meters                                                                                     | 75     | 135 |
| Number of earth rods in nos.                                                                                                     | 6      |     |
|                                                                                                                                  |        |     |
| Earth electrode sizing:                                                                                                          |        |     |
| Ac - Required conductor cross section in sq.mm                                                                                   |        |     |
| $I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$ |        |     |
| αr - Thermal co-efficient of resistivity, at 20 oC                                                                               | 0.0032 |     |
| ρr - Resistivity of ground conductor at 20 oC                                                                                    | 20.10  |     |
| Ta - Ambient Temperature is °C                                                                                                   | 55     |     |
| I <sub>I-g</sub> - RMS fault current in kA = 50 KA                                                                               | 14     |     |
| tc - Short circuit current duration sec                                                                                          | 1      |     |
| Thermal capacity factor, TCAP J/(cm3.oC)                                                                                         | 3.93   |     |
| Tm - Maximum allowable temperature for copper conductor, in oC                                                                   | 419    |     |
| KO - Factor at oC                                                                                                                | 293    |     |

18

## 5 th june 2021: Cable sizing and cable tray sizing calculations.

Cable sizing and Cable sizing calculations cable tray sizing Cable tray calculation calculations

Topic details: Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

| Description                | Consume<br>d<br>Load KW | Load<br>Ratin<br>g<br>KW | Voltag<br>e<br>(V) | No<br>of<br>ph | Full<br>Load<br>Curre<br>nt<br>(A) | Startin<br>g<br>Curren<br>t | Load<br>P.F.<br>Runnin<br>g | SIN 0<br>Runnin<br>g | Motor<br>P.F<br>Staring | SIN 0<br>Starin<br>g | Туре | No. of<br>Runs | No. of<br>Cores | Size<br>(mm2) | Current<br>Rating<br>(A) | Derating<br>factor<br>k1 | Derating<br>factor<br>k2 | Derating<br>factor<br>k3 | Derating<br>factor<br>k4 | Overall<br>Derating<br>factor<br>k | Derated<br>Current<br>(A) | Cable<br>Length<br>(M) | Cable<br>Resistan<br>ce<br>(Ohms/k<br>M) | Cable<br>Reactance<br>(Ohms/kM | Voltage<br>drop<br>(Runnin<br>g)<br>(V) | Voltage<br>drop<br>(Runnin<br>g)<br>(%) | Voltage<br>drop<br>(Startin<br>g)<br>(V) | drop<br>(starting | Cable |
|----------------------------|-------------------------|--------------------------|--------------------|----------------|------------------------------------|-----------------------------|-----------------------------|----------------------|-------------------------|----------------------|------|----------------|-----------------|---------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------------|---------------------------|------------------------|------------------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------|-------|
| Dia Steriotypa             | 2.0                     |                          | 415                | 3              | 21.7                               | 130.12                      | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 10            | 66                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 58.2                      | 95                     | 2.3400                                   | 0.0852                         | 6.86                                    | 165                                     | 40.99                                    | 9.88              | DK    |
| Nicoless/Verledai/pag/0]   | 3.62                    | ,                        | 415                | 3              | 6.3                                | 37.77                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 95                     | 9.4800                                   | 0.1007                         | 7.92                                    | 191                                     | 47.45                                    | 11.43             | DK    |
| Nandona (Yestesta) pag (2) | 3.11                    | 1                        | 415                | 3              | 5.4                                | 32.45                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 60                     | 9.4800                                   | 0.1007                         | 4.30                                    | 104                                     | 25.75                                    | 6.20              | DK    |
| teritas jūgendas           | 2.50                    | 6                        | 415                | 3              | 21.9                               | 131.26                      | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 85                     | 3.9400                                   | 0.0902                         | 10.33                                   | 249                                     | 61.78                                    | 14.89             | DK    |
| HIERINI                    | 241                     | 6                        | 415                | 3              | 221                                | 13231                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 75                     | 3.9400                                   | 0.0902                         | 9.18                                    | 221                                     | 54.95                                    | 13.24             | DK    |
| ния                        | 24                      | 6                        | 415                | 3              | 221                                | 13231                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 10            | 66                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 58.2                      | 105                    | 2.3400                                   | 0.0852                         | 7.71                                    | 186                                     | 46.07                                    | 11.10             | DK    |
| Value .                    | 5.6                     | 7.                       | 415                | 3              | 9.5                                | 56.87                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 100                    | 3.9400                                   | 0.0902                         | 5.26                                    | 127                                     | 31.49                                    | 7.59              | DK    |
| ncassil                    | 0.53                    |                          | 415                | 3              | 0.9                                | 5.53                        | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 100                    | 3.9400                                   | 0.0902                         | 0.51                                    | 0.12                                    | 3.06                                     | 0.74              | DK    |
| ionemorph                  | 123                     | ,                        | 415                | 3              | 21                                 | 12.83                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 75                     | 3.9400                                   | 0.0902                         | 0.89                                    | 0.21                                    | 5.33                                     | 128               | DK    |
| Christilla ajldo:M         | 1,91                    | ,                        | 415                | 3              | 1.6                                | 9.50                        | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 110                    | 9.4800                                   | 0.1007                         | 2.30                                    | 0.56                                    | 13.81                                    | 3.33              | DK    |
| Christian Bulling          | 1,91                    | ,                        | 415                | 3              | 16                                 | 9.50                        | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 75                     | 3.9400                                   | 0.0902                         | 0.66                                    | 0.16                                    | 3.94                                     | 0.95              | DK    |
| Chinales Cananal adula     | 334                     | ,                        | 415                | 3              | 5.8                                | 34.85                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 105                    | 3.9400                                   | 0.0902                         | 3.39                                    | 0.82                                    | 20.26                                    | 4.88              | DK    |
| lg all malacene lajida     | 121                     |                          | 415                | 3              | 21                                 | 1263                        | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 25            | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 85                     | 9.4800                                   | 0.1007                         | 2.37                                    | 0.57                                    | 14.19                                    | 3.42              | DK    |
| igral malas municipleis    | 121                     | ,                        | 415                | 3              | 21                                 | 1263                        | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 25            | 28                       | 0.98                     | 0.9                      | 1./                      | 1                        | 0.882                              | 24.7                      | 95                     | 9.4800                                   | 0.1007                         | 2.65                                    | 0.64                                    | 15.86                                    | 3.82              | OK    |
| Lag Minokal Tak Ngildo     | 2.12                    | 1                        | 415                | 3              | 3.7                                | 22.12                       | 0.8                         | 0.6                  | 0.8                     | 0.5                  | 2    | 1              | 4.0             | 25            | 28                       | 0.98                     | 0.9                      | 1/                       | 1                        | 0.882                              | 24.7                      | 65                     | 9,4800                                   | 0.1007                         | 3.17                                    | 0.76                                    | 19.01                                    | 4.58              | OK    |
|                            |                         |                          |                    |                |                                    |                             |                             | 8 4                  |                         | V                    |      | - 8            |                 |               |                          |                          | 1                        | 4                        |                          |                                    |                           |                        |                                          |                                |                                         |                                         |                                          |                   |       |
|                            |                         |                          |                    | -              | -                                  |                             |                             |                      | -                       |                      | -    |                |                 |               | 1                        |                          |                          |                          |                          |                                    | -                         |                        |                                          |                                |                                         | -                                       |                                          |                   |       |
|                            | -                       |                          | -                  |                | -                                  |                             |                             | 2 -                  |                         | 1                    |      |                |                 |               |                          |                          |                          | -                        |                          |                                    | 0 7                       |                        | -                                        | 0                              | -                                       | -                                       |                                          |                   |       |
| 1<br>2                     |                         |                          |                    |                |                                    |                             | 8                           |                      |                         |                      | - 40 |                |                 |               |                          |                          |                          |                          |                          |                                    | 0 3                       |                        | 3                                        |                                |                                         |                                         |                                          |                   |       |
|                            |                         |                          |                    |                |                                    |                             |                             |                      |                         |                      | - 4  | - 10           | 100             |               |                          |                          |                          |                          |                          |                                    |                           |                        |                                          |                                |                                         |                                         |                                          |                   |       |

| Sr.<br>No.                                                 | Cable Route (From-To)            | Type & Cable Size | Size of<br>Cable<br>(mm2) | No. of<br>Cable | Overall<br>Diameter of<br>each Cable<br>(mm) | Sum of<br>Cable OD<br>(mm) | Self Weight of<br>Cable<br>(Kg/Mt) | Total Weight<br>of Cable<br>(Kg/Mt) | Remarks                  |
|------------------------------------------------------------|----------------------------------|-------------------|---------------------------|-----------------|----------------------------------------------|----------------------------|------------------------------------|-------------------------------------|--------------------------|
| 1                                                          | LV MCC                           | 4                 | 10                        | 1               | 18                                           | 18                         | 3.95                               | 0.9                                 |                          |
| 2                                                          | PU2315- VFD                      | 4                 | 10                        | 1               | 18                                           | 18                         | 0.37                               | 0.9                                 |                          |
| 3                                                          | PU2315- VFD                      | 5                 | 1.5                       | 1               | 15                                           | 15                         | 3.95                               | 0.4                                 |                          |
| 4                                                          | LVMCC                            | 4                 | 2.5                       | 1               | 16                                           | 16                         | 0.37                               | 0.5                                 |                          |
| 5                                                          | LVMCC                            | 5                 | 1.5                       | 1               | 15                                           | 15                         | 3.95                               | 0.4                                 |                          |
| 6                                                          | LVMCC                            | 4                 | 2.5                       | 1               | 16                                           | 16                         | 0.37                               | 0.5                                 |                          |
| 7                                                          | PU 2314 -B- VFD                  | 4                 | 2.5                       | 1               | 16                                           | 16                         | 0.9                                | 0.5                                 |                          |
|                                                            | PU 2314 -B- VFD                  | 5                 | 1.5                       | 1               | 15                                           | 15                         | 0.9                                | 0.4                                 |                          |
| 9                                                          | LV MCC                           | 4                 | 6                         | 1               | 18                                           | 18                         | 2.9                                | 0.7                                 |                          |
| 10                                                         | PU2305- VFD                      | 4                 | 6                         | 1               | 18                                           | 18                         | 1.2                                | 0.7                                 |                          |
| 11                                                         | PU2305- VFD                      | 5                 | 1.5                       | 1               | 15                                           | 15                         | 1.2                                | 0.4                                 |                          |
| 12                                                         | LVMCC                            | 4                 | 6                         | 1               | 18                                           | 18                         | 1.2                                | 0.7                                 |                          |
| 13                                                         | LVMCC                            | 5                 | 1.5                       | 1               | 15                                           | 15                         | 1.45                               | 0.4                                 |                          |
| 14                                                         | LVMCC                            | 4                 | 10                        | 1               | 18                                           | 18                         | 2                                  | 0.9                                 |                          |
| 15                                                         | LVMCC                            | 5                 | 1.5                       | 1               | 15                                           | 15                         | 2.4                                | 0.4                                 |                          |
| 16                                                         | LVMCC                            | 4                 | 6                         | 1               | 18                                           | 18                         | 2.4                                | 0.7                                 |                          |
| 17                                                         | BW2313- VFD                      | 4                 | 6                         | 1               | 18                                           | 18                         | 0.85                               | 0.7                                 |                          |
| 18                                                         | BW2313- VFD                      | 5                 | 1.5                       | 1               | 15                                           | 15                         | 0.85                               | 0.4                                 |                          |
| 19                                                         | LVMCC                            | 4                 | 6                         | 1               | 18                                           | 18                         | 0.85                               | 0.7                                 |                          |
| 20                                                         | LVMCC                            | 5                 | 1.5                       | 1               | 15                                           | 15                         | 1                                  | 0.4                                 |                          |
| 21                                                         | LVMCC                            | 4                 | 6                         | 1               | 18                                           | 18                         | 0.85                               | 0.7                                 |                          |
|                                                            | Total                            | <u>'</u>          |                           | 21              |                                              | 348                        | 33.91                              | 12.3                                |                          |
| alc                                                        | ulation                          |                   |                           |                 |                                              | Result                     |                                    |                                     |                          |
| 1axi                                                       | mum Cable Diameter:              |                   | 18                        | mm              |                                              | Selected Cab               | le Tray width:                     | O.K                                 |                          |
| ons                                                        | ider Spare Capacity of Cable Tra | 1U:               | 30%                       |                 |                                              | Selected Cal               | ble Tray Depth:                    | O.K                                 |                          |
| lista                                                      | nce between each Cable:          | •                 | 0                         | mm              |                                              |                            | ole Tray Weight:                   | O.K                                 | Including Spare Capacity |
|                                                            | ulated Width of Cable Trav:      |                   | 452                       | mm              |                                              |                            | ble Tray Size:                     | O.K                                 | Including Spare Capacity |
|                                                            | ulated Area of Cable Tray:       |                   | 8143                      | Sq.mm           |                                              | Science Cu                 | oic Truy Size.                     | O.K                                 | incidanty Spare Capacity |
|                                                            | Layer of Cables in Cable Tray:   |                   | 2                         | Sq.mm           |                                              | Required Cal               | ole Tray Size:                     | 300 x 50                            | mm                       |
|                                                            | cted No of Cable Tray:           |                   | 1                         | Nos.            |                                              |                            | of Cable Tray:                     | 300 x 30                            | No                       |
|                                                            | cted No or Cable Tray.           |                   | 300                       | mm              |                                              |                            | ole Tray Weight:                   | 150.00                              | Ko/Meter/Tray            |
|                                                            |                                  |                   | 50                        | mm              |                                              | Type of Cabl               |                                    | Ladder                              | Reginisterring           |
|                                                            | cted Cable Tray Weight Capacity  |                   | 150                       | KolMet          | or .                                         | . Abe or capi              | o may.                             | Laudei                              |                          |
|                                                            |                                  | •                 | Ladder                    | I GIMEU         | <b>51</b>                                    | Cable Tran V               | /idth Area Reman                   | 25%                                 |                          |
| Fype of Cable Tray: Ladder Fotal Area of Cable Tray: 15000 |                                  |                   | Sq.mm                     |                 |                                              | rea Remaning:              | 46%                                |                                     |                          |

## Conclusion:

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

## Feedback:

## **Smart Bridge**

They conduct summer internships, work shops, debates, hackthons, technical sessions.

## **Method of conducting program**

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

## **Program highlights**

It is for the detailed design of any industrial sectors.

## **Material**

The material was good.

## **Benefits**

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

# Assignment-1 ELECTRICAL LOAD CALCULATIONS LV MCC

| 0.       | Equipment<br>No.                   | Equipment Description                                                       | Breaker<br>Rating |      | Breaker<br>No. of<br>Poles |          | Absorbed<br>Load | Motor / Load Rating Factor [A] / [B] |                | Eff ciency<br>at Load<br>Factor [C] | Power<br>Factor at<br>Load<br>Factor [C] | kW = [A] / [D] Continuo |              | Consumed I |      | kVAR = kW<br>Stand-l |       | Remarks |
|----------|------------------------------------|-----------------------------------------------------------------------------|-------------------|------|----------------------------|----------|------------------|--------------------------------------|----------------|-------------------------------------|------------------------------------------|-------------------------|--------------|------------|------|----------------------|-------|---------|
|          |                                    |                                                                             | A                 |      |                            | m A      | [A]<br>kW        | kM<br>[R]                            | [C]<br>decimal | [D]<br>decimal                      | cos φ                                    | kW                      | kVAR         | kW         | kVAR | kW                   | kVAR  |         |
| $\dashv$ |                                    |                                                                             | Α                 |      |                            | IIIA     | K V V            | KVV                                  | uecimai        | uecimai                             | cos ψ                                    | KVV                     | KVAN         | N V V      | KVAN | NVV                  | KVAN  |         |
| 1 1      | PU2315                             | Silica filter feed pump                                                     |                   |      |                            |          | 12.47            | 15.00                                | 0.83           | 0.85                                | 0.73                                     | 14.67                   | 13.74        |            |      |                      |       |         |
|          | PU 2314-A                          | Absorbesnt/Neutral oil pump (W)                                             |                   |      |                            |          | 3.62             | 4.70                                 | 0.77           | 0.85                                | 0.73                                     | 4.3                     | 4.0          |            |      |                      |       |         |
|          | PU 2314 -B                         | Absorbesnt/Neutral oil pump (S)                                             |                   |      |                            |          | 3.11             | 3.70                                 | 0.84           | 0.85                                | 0.73                                     |                         |              |            |      | 3.7                  | 3.4   |         |
|          | PU2305                             | Feed Pump (Seperator)                                                       |                   |      |                            |          | 12.58            |                                      | 0.84           |                                     | 0.73                                     | 14.8                    | 13.9         |            |      |                      |       |         |
|          | MX2305                             | MIXER (W)                                                                   |                   |      |                            |          | 12.68            |                                      | 0.85           | 0.85                                | 0.73                                     | 14.9                    | 14.0         |            |      |                      |       |         |
|          | MX 2308                            | MIXER (S)                                                                   |                   |      |                            |          | 12.68            |                                      | 0.85           | 0.85                                |                                          |                         |              |            |      | 14.9                 | 14.0  |         |
|          | BW2313                             | Blower                                                                      |                   |      |                            |          | 5.45             | 7.50                                 | 0.73           |                                     | 0.73                                     | 6.4                     | 6.0          |            |      |                      |       |         |
| 3 1      | Rotary valve                       | TK 2313B (I)                                                                |                   |      |                            |          | 0.53             | 0.75                                 | 0.71           | 0.85                                | 0.73                                     |                         |              | 0.6        |      |                      |       |         |
|          | SC2314                             | Screw conveyor (I)                                                          |                   |      |                            |          | 1.23             |                                      | 0.82           | 0.85                                | 0.73                                     | 4.0-                    | 4.00         | 1.45       | 1.35 |                      |       |         |
|          | AG 2324A                           | Citric acid tan agitator (W)                                                |                   |      |                            |          | 0.91             | 1.10                                 | 0.83           |                                     | 0.73                                     | 1.07                    | 1.00         |            |      |                      |       |         |
| 1 /      | AG 2324B                           | Citric acid tank agitator (S)                                               |                   |      |                            |          | 0.91             | 1.10                                 | 0.83           |                                     | 0.73                                     | 2.02                    | 2.00         |            |      | 1.1                  | 1.0   |         |
|          | AG 2305                            | Citric oil rection vessol agitator                                          |                   |      |                            |          | 3.34             |                                      | 0.90           |                                     |                                          | 3.93                    | 3.68         |            |      |                      |       |         |
|          | AG 2309<br>AG 2310                 | Lye oil reaction vessel agitator                                            |                   |      |                            |          | 1.21<br>1.21     | 1.50<br>1.50                         | 0.81<br>0.81   | 0.85<br>0.85                        | 0.73                                     | 1.42                    | 1.33<br>1.33 |            |      |                      |       |         |
|          | AG 2310<br>AG 2314                 | Lye oil reaction vessel agitator Soap Adsorbant Tank Agitator               |                   |      |                            |          | 2.12             | 3.00                                 | 0.81           |                                     | 0.73<br>0.73                             | 1.42<br>2.49            | 2.34         |            |      |                      |       |         |
| 3 /      | AG 2314                            | Soap Ausorbant Tank Agitator                                                |                   |      |                            |          | 2.12             | 3.00                                 | 0.71           | 0.65                                | 0.73                                     | 2.49                    | 2.34         |            |      |                      |       |         |
|          |                                    |                                                                             |                   |      |                            |          |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
|          |                                    |                                                                             |                   |      |                            |          |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
|          |                                    |                                                                             |                   |      |                            |          |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
| -        |                                    |                                                                             |                   |      |                            |          |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
|          | Maximum of norn<br>(Est. x%E + y%F | nal running plant load : 66.0 kW                                            |                   | 61.8 | kVAR                       |          | sqrt (           | kW² +kVAR²) =                        | 90.4           | kVA                                 | TOTAL                                    | 65.40                   | 61.23        | 2.07       | 1.94 | 19.65                | 18.39 |         |
|          | Peak Load :<br>(Est_x%E + v%E      | 68.0 kW                                                                     |                   | 63.7 | kVAR                       |          | sqrt (           | kW² +kVAR²) =                        | 93.1           | kVA                                 | kVA                                      | 89.59                   | )            | 2.8        | 4    | 26.91                |       |         |
|          | Peak Load :<br>(Est. x%E + y%F     |                                                                             |                   | 63.7 | kVAR                       |          | sqrt (           | kW² +kVAR²) =                        | 93.1           | kVA                                 | kVA                                      | 89.59                   | )            | 2.8        | 4    | 26.91                |       |         |
|          | Assumptions 1) Load factor, Et     | fficiency and Power factor.  Load Rating (kW)  <= 20                        | Effici<br>0.8     |      |                            | Power ta |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
|          |                                    | > 20 - <= 45                                                                | 0.0               |      |                            | 0.78     |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
|          |                                    | > 45 - < 150                                                                | 2.0               | 93   |                            | 0.82     |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
|          |                                    | >= 150                                                                      | 0.9               | 94   |                            | 0.91     |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |
| :        | 2) Coincidence fa                  | actors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermittent and | standby load.     |      |                            |          |                  |                                      |                |                                     |                                          |                         |              |            |      |                      |       |         |

## **Calculation for Transformer Capacity**

## 1.0 Example of calculation for Transformer Capacity

#### 1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

|                                                      | kW    | kVar | kVA    |       |
|------------------------------------------------------|-------|------|--------|-------|
| a. Continuous load                                   | 65.4  | 61.2 | 89.57  | (i)   |
| b. Intermittent load / Diversity Factor              | 2.07  | 1.9  | 2.81   | (ii)  |
| c. Stand-by load required as consumed load           | 19.65 | 18.4 | 26.92  | (iii) |
|                                                      |       |      |        |       |
| Max. Consumed load = ((i) + 30% (ii) + 10% (iii) ) = | 66.0  | 61.8 | 90.42  |       |
| Future expansion load (20% capacity)                 | 13.2  | 12.4 | 18.08  |       |
| Total Load =                                         | 79.2  | 74.2 | 108.50 |       |

#### 1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 90.4 kVA

 Spare capacity
 =
 18.1 kVA

 Required capacity
 =
 108.5 kVA

 Transformer rated capacity
 =
 120 kVA

### 1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW ), while all the other loads running, the voltage regulation is as follows:



Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx 6.90%

## 1.4 Selection of rated capacity

120 kVA transformer selected.

|   | Assignment-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
|   | DG SIZING CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                |
|   | Design Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                |
|   | Rated Volatge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 415      | KV                             |
|   | Power factor (CosØ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.73     | Avg                            |
|   | Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85     | Avg                            |
|   | Total operating load on DG set in kVA at 0.73 power factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.4     |                                |
|   | Largest motor to start in the sequence - load in KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15       | KW                             |
|   | Running kVA of last motor (CosØ= 0.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24       | KVA                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6        | (Considering starting          |
|   | Starting current ratio of motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145      | method as Soft starter)<br>KVA |
|   | Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 10     | NV/                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66       | KVA                            |
|   | Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86       | KVA                            |
|   | (Total operating local in No. 1 (all lings of the local in the local i |          |                                |
| Α | Continous operation under load -P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                |
|   | Capacity of DG set based on continuous operation under load P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66       | KVA                            |
| В | Transient Voltage dip during starting of Last motor P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                |
|   | Total momentary load in KVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 211      | KVA                            |
|   | (Starting KVA of the last motor+Base load of DG set in KVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                |
|   | Subtransient Reactance of Generator (Xd'')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.91%    | (Assumed)                      |
|   | Transient Reactance of Generator (Xd')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.065%  | (Assumed)                      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.089875 | (Assumed)                      |
|   | Xd''' =(Xd"+Xd')/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                |
|   | Transient Voltage Dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15%      | (Max)                          |
|   | Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd''' x (1-Transient Voltage Dip)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108      | KVA                            |
|   | (Transient Voltage Dip)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | NVA                            |
| С | Overload capacity P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                |
|   | Capacity of DG set required considering overload capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                |
|   | Total momentary load in KVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 211      | KVA                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /        |                                |
|   | overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150%     |                                |
|   | Capacity of DG set required considering overload capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                |
|   | (P3) = Total momentary load in KVA overcurrent capacity of DG (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141      | KVA                            |
|   | Considering the last value amongst P1, P2 and P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                |
|   | Continous operation under load -P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66       | KVA                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108      | KVA                            |
|   | Transient Voltage dip during Soft starter starting of Last motor P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                |
|   | Overload capacity P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141      | KVA                            |
|   | Considering the last value amongst P1, P2 and P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 141      | KVA                            |
|   | starting capacity  Hence, DG set is 150 KVA is adequated and catch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150      | KVA                            |
|   | Tience, 20 Sec is 130 KVA is adequated and catch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                |

## Earthing calculations

| Maximum line-to-ground fault in kA for 1 sec  | 14  |     |
|-----------------------------------------------|-----|-----|
| Earthing material (Earth rod & earth strip)   | GI  |     |
| Depth of earth flat burrial in meter          | 0.5 |     |
| Average depth / length of Earth rod in meters | 4.5 |     |
| Soil resistivity Ω-meter                      | 13  |     |
| Ambient temperature in deg C                  | 55  |     |
| Plot dimensions (earth grid) L x B in meters  | 75  | 135 |
| Number of earth rods in nos.                  | 6   |     |

## Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

| αr - Thermal co-efficient of resistivity, at 20 oC                         | 0.0032 |
|----------------------------------------------------------------------------|--------|
| pr - Resistivity of ground conductor at 20 oC                              | 20.10  |
| Ta - Ambient Temperature is °C                                             | 55     |
| $I_{l-g}$ - RMS fault current in kA = 50 KA                                | 14     |
| tc - Short circuit current duration sec                                    | 1      |
| Thermal capacity factor, TCAP J/(cm3.oC)                                   | 3.93   |
| Tm - Maximum allowable temperature for copper conductor, in oC             | 419    |
| KO - Factor at oC                                                          | 293    |
| The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod: |        |
| 14 = Ac *                                                                  | 0.123  |
| Ac - Required conductor cross section in sq.mm                             | 114    |
| Earth rod dia in mm                                                        | 12     |
| Earth rod dia (including 25% corrosion allowance) in mm                    | 15     |

## Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

| αr - Thermal co-efficient of resistivity, at 20 oC                         | 0.0032 |
|----------------------------------------------------------------------------|--------|
| ρr - Resistivity of ground conductor at 20 oC                              | 20.10  |
| Ta - Ambient Temperature is °C                                             | 55     |
| $I_{l-g}$ - RMS fault current in kA = 50 KA                                | 14     |
| tc - Short circuit current duration sec                                    | 1      |
| Thermal capacity factor, TCAP J/(cm3.oC)                                   | 3.93   |
| Tm - Maximum allowable temperature for copper conductor, in oC             | 419    |
| KO - Factor at oC                                                          | 293    |
| The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod: |        |
| 14 = Ac *                                                                  | 0.123  |
| Ac - Required conductor cross section in sq.mm                             | 114    |
| Earth flat area in mm                                                      | 12     |
| Earth flat area (including 25% corrosion allowance) in mm                  | 15     |
| Selected flat size W * Thk in sq mm                                        | 20     |

#### Rq - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_{g} = \rho \, \left[ \begin{array}{ccc} 1 & & & & \\ & 1 & & \\ \hline \end{array} \right] + \, \frac{1}{\sqrt{20 \times A}} \, \left[ \begin{array}{ccc} 1 & & & \\ \hline \end{array} \right] + \, \frac{1}{1 + h \, \sqrt{20 \, /A}} \, \left[ \begin{array}{ccc} \\ \hline \end{array} \right]$$

| $\rho$ - Soil resistivity in $\Omega$ -meter=        | 13    |
|------------------------------------------------------|-------|
| L - Total buried length of ground conductor in meter | 420   |
| h - Depth of burial in meter                         | 0.5   |
| A - Grid area in sq. meter                           | 10125 |

Rg - Grid resistance 0.088

#### Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R = \frac{\rho}{r} \frac{1}{2 \times \pi \times n_{r} \times L_{r}} \frac{1}{2 \times n} \frac{4 \times L_{r}}{b} \frac{1}{2} \frac{1}{1} + \frac{2 \times k_{\underline{1}} \times L_{r}}{\sqrt{A}} \sqrt{n_{r}} - 1^{2}$$

| $\rho$ - Soil resistivity in $\Omega$ -meter, 16.96 | 13    |
|-----------------------------------------------------|-------|
| n - No of earth electrodes                          | 6     |
| Lr - Length of earth electrode in meter             | 4.5   |
| b - Diameter of earth electrode in meter            | 0.020 |
| k1 - co-efficient                                   | 1     |
| A - Area of grid in square metre                    | 10125 |

*Rr* - Earth Electrode resistance 4.7747

## Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{s} = \frac{R_{g} \times R_{2} \ \ \square \ \, {R_{m}}^{2}}{R_{g} + R_{2} - 2R_{m}}$$

 $R_m$  - Mutual ground resistance between the group of ground conductors,  $R_g$  and group of electrodes,  $R_r$  in  $\Omega.$  Neglected  $R_m$ , since this is for homogenous soil

Rs - Total earthing system resistance 0.087 Ohms

The calculated resistance grounding system is less than the allowable 1  $\Omega$  value.

## **Lighting Protection Caculations**

| Location Building Type of Building Building Length (L) Building breadth (W) | Bangalore<br>Srtuctural, Industrial<br>Triangle Roofs (c)<br>18<br>8 |   |                                                                   |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------|---|-------------------------------------------------------------------|
| Building Height (H)                                                         | 6                                                                    |   |                                                                   |
| Risk Factor Calculation 1 Collection Area (A <sub>c</sub> )                 |                                                                      |   |                                                                   |
| Ac                                                                          |                                                                      | = | (3.14*H*H)+(2*H*W)<br>209.04                                      |
| 2 Probability of Being Struck (P)                                           |                                                                      |   |                                                                   |
| Р                                                                           |                                                                      | = | A <sub>c</sub> * N <sub>g</sub> * 10 <sup>-6</sup><br>0.000585312 |
| 3 Overall weighing factor                                                   |                                                                      |   |                                                                   |
| a) Use of structure (A)                                                     |                                                                      | = | 1.0                                                               |
| b) Type of construction (B)                                                 |                                                                      | = | 0.8                                                               |
| c) Contents or consequential effects (C)                                    |                                                                      | = | 0.8                                                               |
| d) Degree of isolation (D)                                                  |                                                                      | = | 1.0                                                               |
| e) Type of country (E)                                                      |                                                                      | = | 0.3                                                               |
| Wo - Overall weighing factor                                                |                                                                      | = | A * B * C * D * E                                                 |
|                                                                             |                                                                      | = | 0.192                                                             |
| 4 Overall Risk Factor                                                       | Po                                                                   | = | P * Wo                                                            |
|                                                                             | Po                                                                   | = | 0.00011238                                                        |
|                                                                             | _                                                                    |   |                                                                   |

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor ( Po) has been taken as  $10^{-5}$  Since Po > Pa lightning protection required.

## 5 Air Terminations

| = | 2(L+W) |      |
|---|--------|------|
| = | 52     | Mts. |
|   |        |      |
|   |        |      |
| = | 52     | Mts. |
| = | 3      | Nos. |
|   | =      | = 52 |

Hence 3 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

#### Cable Sizing Calculations

| S.NO.    | Description | Equipment<br>No. | Description                       | Consumed<br>Load KW | Load<br>Rating<br>KW | Voltage<br>(V) |        | nt Curren |     | SIN Φ Mo<br>Running St | tor P.F<br>taring | SIN Φ<br>Staring | No. of<br>Runs | No. of<br>Cores | Size<br>(mm2) | Current<br>Rating<br>(A) | Derating<br>factor<br>k1 | Derating<br>factor<br>k2 | Derating<br>factor<br>k3 | Derating<br>factor<br>k4 | Overall<br>Derating<br>factor<br>k | Derated<br>Current<br>(A) |     | ,      | (Ohms/kM) | Voltage<br>drop<br>(Running)<br>(V) | Voltage<br>drop<br>(Running)<br>(%) | drop<br>(Starting)<br>(V) | Voltage<br>drop<br>(starting)<br>(%) | size | OD of<br>Cable<br>(mm) | Gland<br>size |
|----------|-------------|------------------|-----------------------------------|---------------------|----------------------|----------------|--------|-----------|-----|------------------------|-------------------|------------------|----------------|-----------------|---------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------------|---------------------------|-----|--------|-----------|-------------------------------------|-------------------------------------|---------------------------|--------------------------------------|------|------------------------|---------------|
| 3        | LV MCC      | PU2315           | Silicatibe feed pump              | 12.47               | 15.00                |                | 3 21.7 |           |     |                        |                   | 0.5 2            | 1              | 4.0             | 10            | 66                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 58.2                      | 95  | 2.3400 | 0.0852    | 6.86                                | 1.65                                | 40.99                     | 9.88                                 | OK   | 18                     | 20            |
| 4        | LV MCC      | PU 2314-A        | AbsorberntNeutral oil pump (W)    | 1.62                | 4.70                 | 415            |        | 37.77     | 0.8 |                        | 8.0               | 0.5 2            | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 95  | 9.4800 | 0.1007    | 7.92                                | 1.91                                | 47.45                     | 11.43                                | OK   | 16                     | 20s           |
| 5        | LV MCC      | PU 2314 -B       | Absorbernt Neutral of pump (5)    | 3.11                | 170                  | 415            |        | 32.45     |     |                        | 0.8               | 0.5 2            | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 60  | 9.4800 | 0.1007    | 4.30                                | 1.04                                | 25.75                     | 6.20                                 | OK   | 16                     | 20s           |
| 6        | LV MCC      | PU2305           | Feed Pump (Seperator)             | 12.58               | 15.00                |                | 3 21.9 |           |     | 0.6                    | 8.0               | 0.5 2            | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 85  | 3.9400 | 0.0902    | 10.33                               | 2.49                                | 61.78                     | 14.89                                | OK   | 18                     | 20s           |
| 7        | LV MCC      | M042305          | MIXER (W)                         | 12.68               | 15.00                | 415            | 3 22.1 |           |     |                        | 0.8               | 0.5 2            | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 75  | 3.9400 | 0.0902    | 9.18                                | 2.21                                | 54.95                     | 13.24                                | OK   | 18                     | 20s           |
| 8        | LV MCC      | MEX 2308         | MOXER (5)                         | 12.68               | 15.00                | 415            | 3 22.1 | 132.31    | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 10            | 66                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 58.2                      | 105 | 2.3400 | 0.0852    | 7.71                                | 1.86                                | 46.07                     | 11.10                                | OK   | 18                     | 20s           |
| 9        | LV MCC      | BW2313           | Diower                            | 5.45                | 7.50                 | 415            | 3 9.5  | 56.87     | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 100 | 3.9400 | 0.0902    | 5.26                                | 1.27                                | 31.49                     | 7.59                                 | OK   | 18                     | 20s           |
| 10       | LV MCC      | Rotary valve     | TK 2313B (I)                      | 0.53                | 0.75                 | 415            | 3 0.9  | 5.53      | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 100 | 3.9400 | 0.0902    | 0.51                                | 0.12                                | 3.06                      | 0.74                                 | OK   | 18                     | 20s           |
| 11       | LV MCC      | 902014           | Screwconveyor (I)                 | 1.23                | 1.50                 | 415            | 3 2.1  | 12.83     | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 75  | 3.9400 | 0.0902    | 0.89                                | 0.21                                | 5.33                      | 1.28                                 | OK   | 18                     | 20            |
| 12       | LV MCC      | AG 232NA         | Citric acid tan agitator (W)      | 0.91                | 1.10                 | 415            | 3 1.6  | 9.50      | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 110 | 9.4800 | 0.1007    | 2.30                                | 0.56                                | 13.81                     | 3.33                                 | OK   | 16                     | 20s           |
| 13       | LV MCC      | AG 23248         | Otric acid tank agitator (S)      | 0.91                | 1.10                 | 415            | 3 1.6  | 9.50      | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 75  | 3.9400 | 0.0902    | 0.66                                | 0.16                                | 3.94                      | 0.95                                 | OK   | 18                     | 20            |
| 14       | LV MCC      | AG 2305          | Ctric oil rection vessol agitator | 134                 | 3.70                 | 415            | 3 5.8  | 34.85     | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 6             | 51                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 45.0                      | 105 | 3.9400 | 0.0902    | 3.39                                | 0.82                                | 20.26                     | 4.88                                 | OK   | 18                     | 20            |
| 15       | LV MCC      | AG 2309          | Lye of reaction vessel agitator   |                     | 1.50                 | 415            | 3 2.1  | 12.63     | 0.8 | 0.6                    | 0.8               | 0.5 2            | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 85  | 9.4800 | 0.1007    | 2.37                                | 0.57                                | 14.19                     | 3.42                                 | OK   | 16                     | 32            |
| 16       | LV MCC      | AG 2310          | Lye of reaction vessel agitator   | 1,21                | 1.50                 |                | 3 2.1  | 12.63     | 0.8 |                        |                   | 0.5 2            | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 95  | 9.4800 | 0.1007    | 2.65                                | 0.64                                | 15.86                     | 3.82                                 | OK   | 16                     | 20s           |
| 17       | LV MCC      | AG 2314          | Scap Adsorbant Tank Agitator      | 2.12                | 300                  | 415            | 3 3.7  | 22.12     | 0.8 | 0.6                    | 8.0               | 0.5 2            | 1              | 4.0             | 2.5           | 28                       | 0.98                     | 0.9                      | 1                        | 1                        | 0.882                              | 24.7                      | 65  | 9.4800 | 0.1007    | 3.17                                | 0.76                                | 19.01                     | 4.58                                 | OK   | 16                     | 20s           |
| 18       |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    |                           |     |        |           |                                     |                                     |                           |                                      |      |                        |               |
| 20       |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    | _                         |     |        | -         | -                                   |                                     |                           |                                      |      |                        |               |
| 21       |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    | _                         |     |        |           |                                     |                                     |                           |                                      |      |                        |               |
| 22       |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    |                           |     |        |           |                                     |                                     |                           |                                      |      |                        |               |
| 23       |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    |                           |     |        |           |                                     |                                     |                           |                                      |      |                        |               |
| 24       |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    |                           |     |        |           |                                     |                                     |                           |                                      |      |                        |               |
| 25<br>26 |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    |                           |     |        |           |                                     |                                     |                           |                                      |      |                        |               |
|          |             |                  |                                   |                     |                      |                |        |           | -   |                        |                   |                  |                |                 |               | -                        |                          | 1                        |                          | 1                        |                                    |                           | -   | 1      | 1         | 1                                   | 1                                   |                           |                                      |      |                        |               |
| 27       |             |                  |                                   |                     |                      |                |        |           | -   |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    |                           | ļ   |        |           |                                     |                                     |                           |                                      |      |                        |               |
| -        |             |                  |                                   |                     |                      |                |        |           |     |                        |                   |                  |                |                 |               |                          |                          |                          |                          | 1                        |                                    |                           |     |        |           |                                     |                                     |                           |                                      |      |                        |               |
|          |             |                  |                                   |                     |                      |                |        |           | -   |                        |                   |                  |                |                 |               |                          |                          |                          |                          |                          |                                    |                           | ļ   |        |           |                                     |                                     |                           |                                      |      |                        |               |
| 1        |             |                  |                                   |                     |                      |                | 1 1    | 1         | 1   | 1                      |                   | 1                | 1              | l               | 1             | 1                        | 1                        | 1                        | 1                        |                          | l                                  | 1                         |     | l      | 1         |                                     |                                     |                           |                                      | 1 1  |                        |               |

Basis:

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors : Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed

TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

#### Cable Tray Sizing calculations

|                                                                 | CABLES                             |                   |                           |                 |                                              |                            |                                    |                                     |                                       |
|-----------------------------------------------------------------|------------------------------------|-------------------|---------------------------|-----------------|----------------------------------------------|----------------------------|------------------------------------|-------------------------------------|---------------------------------------|
| AB                                                              | LETRAY: FROM                       | LT-4              |                           | TO              | L                                            | T-5                        |                                    |                                     |                                       |
|                                                                 |                                    |                   |                           |                 |                                              |                            |                                    |                                     |                                       |
| Sr.<br>No.                                                      | Cable Route (From-To)              | Type & Cable Size | Size of<br>Cable<br>(mm2) | No. of<br>Cable | Overall<br>Diameter of<br>each Cable<br>(mm) | Sum of Cable<br>OD<br>(mm) | Self Weight of<br>Cable<br>(Kg/Mt) | Total Weight of<br>Cable<br>(Kg/Mt) | Remarks                               |
| 1                                                               | LV MCC                             | 4                 | 10                        | 1               | 18                                           | 18                         | 3.95                               | 0.9                                 |                                       |
| 2                                                               | PU2315- VFD                        | 4                 | 10                        | 1               | 18                                           | 18                         | 0.37                               | 0.9                                 |                                       |
| 3                                                               | PU2315- VFD                        | 5                 | 1.5                       | 1               | 15                                           | 15                         | 3.95                               | 0.4                                 |                                       |
| 4                                                               | LV MCC                             | 4                 | 2.5                       | 1               | 16                                           | 16                         | 0.37                               | 0.5                                 |                                       |
| 5                                                               | LV MCC                             | 5                 | 1.5                       | 1               | 15                                           | 15                         | 3.95                               | 0.4                                 |                                       |
| 6                                                               | LV MCC                             | 4                 | 2.5                       | 1               | 16                                           | 16                         | 0.37                               | 0.5                                 |                                       |
| 7                                                               | PU 2314 -B- VFD                    | 4                 | 2.5                       | 1               | 16                                           | 16                         | 0.9                                | 0.5                                 |                                       |
| 8                                                               | PU 2314 -B- VFD                    | 5                 | 1.5                       | 1               | 15                                           | 15                         | 0.9                                | 0.4                                 |                                       |
| 9                                                               | LV MCC                             | 4                 | 6                         | 1               | 18                                           | 18                         | 2.9                                | 0.7                                 |                                       |
| 10                                                              | PU2305- VFD                        | 4                 | 6                         | 1               | 18                                           | 18                         | 1.2                                | 0.7                                 |                                       |
| 11                                                              | PU2305- VFD                        | 5                 | 1.5                       | 1               | 15                                           | 15                         | 1.2                                | 0.4                                 |                                       |
| 12                                                              | LV MCC                             | 4                 | 6                         | 1               | 18                                           | 18                         | 1.2                                | 0.7                                 |                                       |
| 13                                                              | LV MCC                             | 5                 | 1.5                       | 1               | 15                                           | 15                         | 1.45                               | 0.4                                 |                                       |
| 14                                                              | LV MCC                             | 4                 | 10                        | 1               | 18                                           | 18                         | 2                                  | 0.9                                 |                                       |
| 15                                                              | LV MCC                             | 5                 | 1.5                       | 1               | 15                                           | 15                         | 2.4                                | 0.4                                 |                                       |
| 16                                                              | LV MCC                             | 4                 | 6                         | 1               | 18                                           | 18                         | 2.4                                | 0.7                                 |                                       |
| 17                                                              | BW2313- VFD                        | 4                 | 6                         | 1               | 18                                           | 18                         | 0.85                               | 0.7                                 |                                       |
| 18                                                              | BW2313- VFD                        | 5                 | 1.5                       | 1               | 15                                           | 15                         | 0.85                               | 0.4                                 |                                       |
| 19                                                              | LV MCC                             | 4                 | 6                         | 1               | 18                                           | 18                         | 0.85                               | 0.7                                 |                                       |
| 20                                                              | LV MCC                             | 5                 | 1.5                       | 1               | 15                                           | 15                         | 1                                  | 0.4                                 |                                       |
| 21                                                              | LV MCC                             | 4                 | 6                         | 1               | 18                                           | 18                         | 0.85                               | 0.7                                 |                                       |
|                                                                 | Total                              |                   |                           | 21              |                                              | 348                        | 33.91                              | 12.3                                |                                       |
| alc                                                             | culation                           |                   | •                         | •               |                                              | Result                     |                                    |                                     | ·                                     |
|                                                                 | mum Cable Diameter:                |                   | 18                        | mm              |                                              | Selected Cable T           | rav width:                         | O.K                                 | ı                                     |
|                                                                 | ider Spare Capacity of Cable Tray: |                   | 30%                       |                 |                                              | Selected Cable T           |                                    | 0.K                                 |                                       |
|                                                                 | nce between each Cable:            |                   | 0                         | mm              |                                              | Selected Cable T           |                                    | 0.K                                 | Including Spare Capacity              |
| Distance between each Cable:<br>Calculated Width of Cable Trav: |                                    |                   |                           | mm              |                                              | Selected Cable T           |                                    | 0.K                                 | Including Spare Capacity              |
|                                                                 | ulated Area of Cable Tray:         |                   | 452<br>8143               | Sq.mm           |                                              | Ociected Cable I           | ay oize.                           | J.K                                 | morading opare capacity               |
|                                                                 | Layer of Cables in Cable Tray:     |                   | 2                         | Jq.mmi          |                                              | Required Cable 1           | ray Size                           | 300 x 50                            | mm                                    |
|                                                                 | ted No of Cable Tray:              |                   | 1                         | Nos.            |                                              | Required Nos of            |                                    | 1                                   | No                                    |
|                                                                 | cted Cable Tray Width:             |                   | 300                       | mm              |                                              | Required Cable 1           |                                    | 150.00                              | Kg/Meter/Tray                         |
|                                                                 | cted Cable Tray Width:             |                   | 50                        | mm              |                                              | Type of Cable Tra          |                                    | Ladder                              | · · · · · · · · · · · · · · · · · · · |
|                                                                 | cted Cable Tray Weight Capacity:   |                   | 150                       | Kg/Meter        |                                              | . , po o. Gable III        | -,-                                | Luddei                              |                                       |
|                                                                 | of Cable Tray:                     |                   | Ladder                    | . tg, meter     |                                              | Cable Tray Width           | Area Remaning                      | 25%                                 |                                       |
|                                                                 | Area of Cable Tray:                |                   | 15000                     | Sq.mm           |                                              | Cable Tray Area            |                                    | 46%                                 |                                       |