COMP90051

Workshop Week 11

About the Workshops

- □ 7 sessions in total
 - ☐ Tue 12:00-13:00 AH211
 - ☐ Tue 12:00-13:00 AH108 *
 - ☐ Tue 13:00-14:00 AH210
 - ☐ Tue 16:15-17:15 AH109
 - ☐ Tue 17:15-18:15 AH236 *
 - ☐ Tue 18:15-19:15 AH236 *
 - ☐ Fri 14:15-15:15 AH211

About the Workshops

Homepage

https://trevorcohn.github.io/comp90051-2017/workshops

☐ Solutions will be released on next Friday (a week later).

Syllabus

1	Introduction; Probability theory	Probabilistic models; Parameter fitting
2	Linear regression; Intro to regularization	Logistic regression; Basis expansion
3	Optimization; Regularization	Perceptron
4	Backpropagation	CNNs; Auto-encoders
5	Hard-margin SVMs	Soft-margin SVMs
6	Kernel methods	Ensemble Learning
7	Clustering	EM algorithm
8	Principal component analysis; Multidimensional Scaling	Manifold Learning; Spectral clustering
9	Bayesian inference (uncertainty, updating)	Bayesian inference (conjugate priors)
10	PGMs, fundamentals	PGMs, independence
11	Guest lecture (TBC)	PGMs, inference
12	PGMs, statistical inference	Subject review

Outline

- Review the lecture, background knowledge, etc.
 - ☐ Formal notations for probability
 - Joint probability for probabilistic graphical models (PGMs)
 - Directed PGMs
 - Undirected PGMs
 - ☐ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

■ Worksheet

Formal notations for probability

- Upper-case letters for random variables (r.v.'s)
- $\square A, B, C$

- ☐ Lower-case letters for specific values
- $\Box a, b, c$

- \square *P* for the operator to calculate the probability
- $\square P(A = a), P(A = a|B = b), P(A < 10), P(A = 1|B \ge 5)$

Formal notations for probability

□ Suppose *A* is a binary random variable

- $\square P(A=0)$ is a number
- $\square P(A=1)$ is a number

- $\square P(A)$ is the distribution for the random variable A
- $\square P(A)$ represents P(A = 0) and P(A = 1)

P(A, B) and P(A = a, B = b)

□ Suppose *A* and *B* are both binary random variables

- $\square P(A,B) = P(A)P(B)$ is equivalent to ...
- $\square P(A = a, B = b) = P(A = a)P(B = b) \quad \forall a, b \in \{0, 1\}$

- $\square P(A = 0, B = 0) = P(A = 0)P(B = 0)$
- $\square P(A = 1, B = 0) = P(A = 1)P(B = 0)$
- $\square P(A = 0, B = 1) = P(A = 0)P(B = 1)$
- $\square P(A = 1, B = 1) = P(A = 1)P(B = 1)$

Sometimes we write partially P(A = 1, B)

☐ Given the probability table:

	$\square P$	A =	1, <i>B</i>)	can	be
--	-------------	-----	---------------	-----	----

P(A,B)	B = 0	B=1
A = 0	0.1	0.2
A = 1	0.3	0.4

□ interpreted as an unnormalized distribution for *B*

P(A = 1, B) is unnormalized P(B|A = 1)

☐ Given the probability table:

$$egin{array}{c|cccc} P(A,B) & B=0 & B=1 \\ A=0 & 0.1 & 0.2 \\ A=1 & 0.3 & 0.4 \\ \hline \end{array}$$

$$\square P(A = 1, B)$$
 can be

 \square interpreted as an unnormalized distribution for B (A=1)

$$\square P(B|A=1) \propto P(A=1,B)$$

$$\square P(A = 1, B = 0) = 0.3 \rightarrow P(B = 0|A = 1) = 3/7$$

$$\square P(A = 1, B = 1) = 0.4 \rightarrow P(B = 1|A = 1) = 4/7$$

P(A)

☐ Given the probability table:

P(A,B)	B=0	B=1
A = 0	0.1	0.2
A = 1	0.3	0.4

$$\square P(A)$$
 is

the marginal distribution for *A*

$$\square P(A) = \sum_{B} P(A, B)$$

$$P(A = 0) = \sum_{B} P(A = 0, B) = \sum_{b \in \{0,1\}} P(A = 0, B = b)$$
$$= P(A = 0, B = 0) + P(A = 0, B = 1) = 0.3$$

$$\square P(A = 1) = 1 - P(A = 0) = 0.7$$

What about P(A|B)?

- ☐ Given the probability table:
- $\square P(A|B)$ can be

P(A,B)	B = 0	B=1
A = 0	0.1	0.2
A = 1	0.3	0.4

 \square interpreted as two distributions for *A* given B=0 and 1

- $\square P(A|B=0)$ is a distribution
- $\square P(A = 0|B = 0) = 1/4, P(A = 1|B = 0) = 3/4$

- $\square P(A|B=1)$ is another one
- $\square P(A = 0|B = 1) = 1/3, P(A = 1|B = 1) = 2/3$

And P(A = 1|B) ... ?

☐ Given the probability table:

P(A,B)	B = 0	B=1
A = 0	0.1	0.2
A = 1	0.3	0.4

$$\square P(A=1|B)$$
 is

 \Box the likelihood of observing A = 1 under different values of B

☐ We have calculated that

$$\square P(A = 0|B = 0) = 1/4, P(A = 1|B = 0) = 3/4$$

$$\square P(A = 0|B = 1) = 1/3, P(A = 1|B = 1) = 2/3$$

If we know the joint distribution P(A, B)

- ☐ We can calculate everything, such as
- Marginal distributions
 - $\square P(A)$ and P(B)
 - □ Summation or integration over other random variables
 - $\square P(A) = \sum_{B} P(A, B) = \sum_{b \in \{0,1\}} P(A, B = b)$
- Conditional distributions
 - $\square P(A|B)$ and P(B|A)
 - Division of two unconditional distributions
 - $\square P(A|B) = P(A,B)/P(B)$

In general, if we know P(A, B, C, D, E)

- $\square P(A) = \sum_{B,C,D,E} P(A,B,C,D,E)$
- $\square P(A,B) = \sum_{C,D,E} P(A,B,C,D,E)$
- $\square P(A,B,C) = \sum_{D,E} P(A,B,C,D,E)$
- $\square P(A,B,C,D) = \sum_{E} P(A,B,C,D,E)$

- $\square P(B|A) = P(A,B)/P(A)$
- $\square P(B,C|A) = P(A,B,C)/P(A)$
- $\square P(C,D|A,B) = P(A,B,C,D)/P(A,B)$

Outline

- Review the lecture, background knowledge, etc.
 - ☐ Formal notations for probability
 - ☐ Joint probability for probabilistic graphical models (PGMs)
 - Directed PGMs
 - Undirected PGMs
 - ☐ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

■ Worksheet

How to calculate the joint distribution?

☐ Directed PGMs

$$P(\text{all } r. v.) = \prod_{\text{every } r. v.} P(r. v. | \text{parents of } r. v.)$$

☐ Undirected PGMs

$$P(\text{all } r.v.) \propto \int_{\text{every } clique} f_{clique}(r.v. \text{in } clique)$$

$$P(A,B,C,D,E,F)$$

$$= P(A)P(B|A)P(C|B)$$

$$\cdot P(D|A,B)P(E|A,B,D)P(F|B,C)$$

$$P(A,B,C,D,E,F)$$

$$\propto f_1(A,B,D,E)f_2(B,C,F)$$

$$= \frac{1}{Z}f_1(A,B,D,E)f_2(B,C,F)$$

 $Z = \sum_{A,B,C,D,E,F} f_1(A,B,D,E) f_2(B,C,F)$

Outline

- Review the lecture, background knowledge, etc.
 - ☐ Formal notations for probability
 - Joint probability for probabilistic graphical models (PGMs)
 - ☐ Directed PGMs
 - Undirected PGMs
 - ☐ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

■ Worksheet

Independence in directed PGMs

- \square Paths from Y to X
- \square If a path exists, then X and Y are dependent*
 - * the PGM doesn't require they should be independent

Independence in undirected PGMs

- □ Paths from *Y* to *X*
- \square If the path exists, then *X* and *Y* are dependent

A practice for independence in PGMs

http://web.mit.edu/jmn/www/6.034/d-separation.pdf

Outline

- Review the lecture, background knowledge, etc.
 - ☐ Formal notations for probability
 - Joint probability for probabilistic graphical models (PGMs)
 - Directed PGMs
 - Undirected PGMs
 - ☐ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

Worksheet