

Introduction to Robotics

Search and Motion Planning

WS 2015 / 16

Prof. Dr. Daniel Göhring
Intelligent Systems and Robotics
Department of Computer Science
Freie Universität Berlin

Freie Universität

Graph [Z, Op]

State-Space Search

- States Z (Vertices)
- Operators $Op \subset Z \times Z$ (Edges)
- Initial states z_{initial}∈Z
- Target states Z_{final} ⊆ Z
- Cost functions c: $Z \times Z \rightarrow R^+$

Costs of a path $w = z_0 z_1 ... z_n \in Z^*$:

$$C(Z_0 Z_1 ... Z_n) := \sum_{i=1,...,n} C(Z_{i-1}, Z_i)$$

Estimator function $\sigma: Z \to R$ (Heuristic) for remaining costs from z to a target state.

Slides: H.-D. Burkhard

State-Space Search

- Tasks:
- Can a goal state z ∈ Z_{final} be reached from initial state Z_{initial}∈Z ?
- Find a way from initial state Z_{initial} ∈ Z to a target state Z ∈ Z_{final}
- Find an optimal path from initial state $z_{initial} \in Z$ to a target state $z \in Z_{final}$

Complexity (Number of States / Vertices)

8 Puzzle: 9! states

9!/2 = 181.440 reachable

- 15 Puzzle: 16! states
- 16!/2 reachable
- Rubik's cube: 12 · 4,3 · 10¹⁹ states
- 1/12 reachable: 4,3 · 10¹⁹
- Towers of Hanoi: 3ⁿ States for n discs

solvable in (2ⁿ) - 1 moves

- Checkers: approx. 10⁴⁰ games of average length
- Chess: approx. 10¹²⁰ games of average length
- Go: 3³⁶¹ states

Expansion Strategies

Directions

- Forward, start with z_{initial} (forward chaining, data driven, bottom up)
- Reverse Z_{final} (backward chaining, goal driven, top down)
- Bi-directional

- Expansion

- Depth first
- Breadth first

Additional information

- blind search ("uninformed")
- heuristisc search with σ ("informed")

Bi-Direktional Breadth-Search

Parallel search from start and goal until meeting

• Search depth from both sides only half

Expansion

Data structures:

•OPEN List:

A vertex is "open", if it was constructed but not expanded (neighboring vertices not calculated)

•CLOSED List:

A vertex is "closed", if it was fully expanded (all neighboring vertices are known)

Further information:

Predecessor / successor of vertices for reconstruction of found paths

Heuristic Search for best Way: A*


```
Costs to reach z' from z:
```

– If z' is reachable from z :

```
g(z,z') := Min\{ c(s) / s path from z to z' \},
```

- Else: $g(z,z') := \infty$

Tentative cost calculation during expansion:

G'=[V', E'] is a (known) partial graph of G g'(z, z',G') := Min { c(s) / s path in G' from z to z' }

$$g'(z,z',G') \geq g(z,z')$$

Heuristic Search for Best Path

•

 $g'(z_0, z', G')$: so far known costs to reach z' from Start

 $\sigma(z')$: estimated costs to reach target state, starting from z'

Algorithm A* ("soft form") For Trees

- A*0: (Start) OPEN := $[z_0]$, CLOSED := [].
- A*1: (negative exit)
 If OPEN = []: EXIT("no").
- A*2: (positive exit)
 If z first vertice in OPEN:
 If z is target: EXIT("yes:" z).

Search space as a tree: CLOSED not used.

```
• A*3: (expand)
```

```
OPEN := OPEN - \{z\}. CLOSED := CLOSED \cup \{z\}. Succ(z):= set of successors of z. If Succ(z)= \{\}: Goto A*1.
```

- A*4: (Organization of OPEN)
 - OPEN := OPEN U Succ(z) with increasing order of g'(z₀, z',G') + σ(z')
- Goto A*1.

Algorithm A* ("soft form") Freie Unit For Trees and for Cyclic Graphs

- Freie Universität Berlin
- A*0: (Start) OPEN := $[z_0]$, CLOSED := [].
- A*1: (negative exit)If OPEN = []: EXIT("no").
- A*2: (positive exit)
 If z first vertice in OPEN:
 If z is target: EXIT("yes:" z).

If search space has cycles: use CLOSED.

A*3: (expand)

```
OPEN := OPEN - {z} . CLOSED := CLOSED \cup{z} . Succ(z):= set of successors of z. If Succ(z)= {} : Goto A*1. NEW = Succ(z) - {z´ | z´ ∈ Succ(z) and z´ ∈ CLOSED and g´(z<sub>0</sub>, z´,G´) >= g´(z<sub>0</sub>, z´,G´<sub>old</sub>) }
```

- A*4: (Organization of OPEN)
 - OPEN := OPEN \cup NEW with increasing order of $g'(z_0, z', G') + \sigma(z')$
 - If elements z' occur twice in OPEN, delete entry with bigger costs.
- Goto A*1.

Algorithm A* ("soft form")

```
Definition: f(z) := Min \ \{ \ g(z,z_{final}) \mid z_{final} \in Z_{final} \} 
= real \ costs \ from \ z \ to \ target \ state \ (vertex) 
( \ f(z_0) = cost \ of \ the \ optimal \ path) 
Heuristic function \sigma is called optimistic (a.k.a. admissible) or underestimating,  if \ \sigma(z) \le f \ (z) \ for \ all \ z \in Z \ .
```

Proposition:

Given.: Ex. $\delta > 0$ with $c(z,z') > \delta$ for all z,z'. σ is optimistic heuristic.

every node has a finite number of successors.

One can prove: If solution exists, A* (soft form) finds an optimal path.

Special Cases

$$c \equiv 0$$
:

Search for best path with heuristic σ and no cost function (Hill climbing)

$$\sigma \equiv 0$$
:

Search for best path without heuristic ($\sigma \equiv 0$ ist also optimistic heuristic) - Dijkstra

$$c \equiv 1 (g' \equiv Search depth), \sigma \equiv 0$$
:

Breadth first search

Influence of Heuristic σ

- Trade-off between quality of result and calculation efford
- Criteria for order of extension
- Same order as g' + σ is also provided by
 a· (g'+ σ) + b for arbitrary positive constants a, b.
- optimal order for $\sigma = f$
- σ_2 more effective for σ_1 if $\sigma_1 \le \sigma_2 \le f$ (Hierarchy for heuristic functions)

• A*0: (Start) OPEN := $[z_0]$, CLOSED := []. A*1: (negative exit) Falls OPEN = []: EXIT(,no"). A*2: (positive exit) If z first state in OPEN. If z target state: EXIT("yes:" z). A*3: (expand) OPEN := OPEN - $\{z\}$ CLOSED := CLOSED $\cup \{z\}$. Succ(z):= set of successors of z. If $Succ(z) = \{\}$: Goto A*1. A*4: (Organize of OPEN) OPEN := OPEN \cup (Succ(z) - CLOSED) sorted by increasing $g'(z_0, z', G') + \sigma(z')$ Goto A*1.

- Problem:
- For optimistic σ the hard form is not always correct

Definition:

Heuristic σ is called *consistent*,

if for all states z', z'' holds:

$$\sigma(z') \le g(z', z'') + \sigma(z'')$$

Lemma: If σ is consistent, σ is optimistic.

(The reverse does not necessarily apply)

Proposition:

Given: Ex. $\delta > 0$ with $c(z,z') > \delta$ for all z,z'.

σ is a consitent heuristic

One can prove: if a solution exists, A* (hard form) finds an

optimal path

- "consistent" functions harder to find then "optimistic"
- It is also possible to use an optimistic heuristic with weaker pruning of search space
- Erase states in OPEN (or Succ(z)) only if new evaluation is worse than earlier evaluation.

Algorithm A*

- Search costs ~ Number of states to expand,
- Calculational effort of σ and g΄

Space requirements exponential

- Search costs vs. costs of solution (optimal / suboptimal solutions)
- Measure: Path length/expanded vertices

Memory Saving Variants of Algorithm A*

- Iterative Deepening A* (IDA*) in analogy to IDA:
 - Depth first till boundary $g'(z_0, z', G') + \sigma(z')$ is exceeded from earlier iteration
- SMA* (simplified memory-bounded A*)

Anytime (or Weighted) A*

 If the heuristic σ (sometimes also denoted h) is closer to the real costs, less vertices have to be expanded

 But "inflating" the heuristics can lead to a heuristic which is not optimistic (admissible),

(the following slides with courtesy to Likhachev)

Heuristics in Heuristic Search

- Dijkstra's: expands states in the order of f = g values
- A* Search: expands states in the order of f = g + h values
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

Suboptimality

- Heuristic includes factor ε
- Suboptimality is bounded by factor ε
 - The length of the found solution is not longer than ϵ times the optimal solution
- Exampe:
 - costs from cell to cell are 1
 - Heuristic is the larger of coordinate difference from current cell to goal cell
 - Start is upper left cell
 - Goal is lower right
 - Obstacles black
 - Free space white
 - Expanded cells gray

Anytime Search based on weighted A*

- Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ε :

Freie Universität Berlin

Anytime A*

- Problem:
 - Running A* with increasing ε each time from scratch can be very expensive
 - Many states remain the same through various iterations
 - A solution for reusing the search results is described in ARA* (Likhachev)
- ARA*: an efficient version of the above that reuses state values within any search iteration

ARA*

• Efficient series of weighted A* searches with decreasing ε :

ComputePathwithReuse function

```
while(f(s_{goal}) > minimum\ f-value in OPEN)

remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN;

insert s into CLOSED;

for every successor s of s

if g(s') > g(s) + c(s,s')

g(s') = g(s) + c(s,s');

if s not in CLOSED then insert s into OPEN;

otherwise insert s into INCONS
```

ARA*

• Efficient series of weighted A* searches with decreasing ε :

ComputePathwithReuse function

```
while(f(s_{goal}) > minimum\ f-value in OPEN)

remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN;

insert s into CLOSED;

for every successor s of s

if g(s') > g(s) + c(s,s')

g(s') = g(s) + c(s,s');

if s not in CLOSED then insert s into OPEN;

otherwise insert s into INCONS
```

```
set \varepsilon to large value;

g(s_{start}) = 0; OPEN = \{s_{start}\};

while \varepsilon \ge 1

CLOSED = \{\}; INCONS = \{\};

ComputePathwithReuse();

publish\ current\ \varepsilon\ suboptimal\ solution;

decrease\ \varepsilon;

initialize\ OPEN = OPEN\ U\ INCONS;
```

ARA*

A series of weighted A* searches

$$\varepsilon = 2.5$$

13 expansions solution=11 moves $\varepsilon = 1.5$

15 expansions solution=11 moves $\varepsilon = 1.0$

20 expansions solution=10 moves

ARA*

$$\varepsilon = 2.5$$

1 expansion solution=11 moves $\varepsilon = 1.0$

9 expansions solution=10 moves

13 expansions solution=11 moves

University of Pennsylvania

D* and Variations

 D* and its variations have been used on Mars rovers Opportunity and Spirit and by CMU at the DARPA Grand Challenge

- Roughly:
 - D* works as A* but from goal to target
 - Every expanded node "knows" its predecessor
- When start node (vertex) is the next node, the search is done
- modes are marked: NEW (was never in OPEN), OPEN, CLOSE (no longer in OPEN), LOWER, RAISE (cost is higher than last time in OPEN)

Literature

- J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.
- Hans-Dieter Burkhard: Einführung in die Künstliche Intelligenz (2008)
- Likhachev, ARA*, CMU
- Choset, Motion Planning, CMU,
- Toussaint, Lecture Notes Robotics, 2011
- Dr. John (Jizhong) Xiao, City College New York