Collaborative Competitive Filtering:

Learning Recommender Using Context of User Choice

Постановка задачи

- есть множество пользователей $U = \{1, 2, ..., U\}$ и множество товаров $I = \{1, 2, ..., I\}$
- пользователь $u \in U$ посещает сайт
- система рекомендует u множество товаров $O = \{i_1, ..., i_l\}$
- u выбирает подмножество $D \subseteq O$ и предпринимает соответствующие действия
- полагаем: $D = \{i*\}, \text{ т.е. } |D| = I$
- цель: составить O_t так, чтобы максимизировать удовлетворение u_t

Collaborative Filtering

- принцип: похожие пользователи сходным образом реагируют на похожие товары
- определяется отображение (u, i) → y_{ui}: y_{ui} например, оценка товара пользователем или указание на то, предпринял ли u действия по поводу i
- рассматривается множество $\{(u, i, y_{ui})\}$
- 2 подхода в CF

CF: Neighborhood model

- идея: распространение ответов среди пользователей и товаров-«соседей»
- шаг 1: определение похожих пользователей и товаров (вычисление т.н. меры подобия)
- шаг 2: паре (u, i) сопоставляется значение, каким-то образом полученное из значений, соответствующим «соседним» пользователям и товарам

CF: Latent factor model (1)

- Matrix factorization models:
 - каждому пользователю и товару сопоставляется вектор из k независимых переменных (factor vector):

$$u \to \varphi_u \in \mathbb{R}^k$$
$$i \to \varphi_i \in \mathbb{R}^k$$

- заинтересованность пользователя *u* в товаре *i* значение функции выгоды $r(u, i) = \varphi_u^T \varphi_i$
- полагаем $p(y_{ui}|u,i) = p(y_{ui}|r_{ui},\Theta)$, где Θ множество т.н. гиперпараметров
- lacktriangle проблема вычисление $oldsymbol{arphi}_u$ и $oldsymbol{arphi}_i$

CF: Latent factor model (2)

- два наиболее популярных подхода:
 - L2 regression

$$\min_{\boldsymbol{\phi}} \sum_{(u,i) \in \Omega} (y_{ui} - \boldsymbol{\phi}_u^{\intercal} \boldsymbol{\phi}_i)^2 + \lambda_{\mathcal{U}} \sum_{u \in \mathcal{U}} ||\boldsymbol{\phi}_u||^2 + \lambda_{\mathcal{I}} \sum_{i \in \mathcal{I}} ||\boldsymbol{\phi}_i||^2$$

здесь Ω – множество пар (u, i), для которых известно y_{ui} , λ_U и λ_I – веса для регуляризации

Logistic regression

$$\min_{\phi} \sum_{(u,i) \in \Omega} \log \left[1 + \exp(-\phi_u^{\mathsf{T}} \phi_i) \right] + \lambda u \sum_{u \in \mathcal{U}} \left| \left| \phi_u \right| \right|^2 + \lambda_{\mathcal{I}} \sum_{i \in \mathcal{I}} \left| \left| \phi_i \right| \right|^2$$

Недостатки CF – мотивация для CCF

- используются только пары (u, i^*) , остальные же $\{(u, i) | i \in O, i \neq i^*\}$ не рассматриваются, отсюда $∀ (u, i) y_{ui}$ равен I либо не определен
- в результате система ставит высокую оценку соответствия практически всем парам (*u*, *i*)
- обучение проходит путем обработки либо приближения ответов {у_{иі*}}
- CF не моделирует поведение пользователя в процессе выбора и принимает во внимание только совершенные им действия

Collaborative Competitive Filtering (1)

- идея: необходимо рассматривать контекст принятия решения пользователем (т.е. множество O_t)
- решение пользователя зависит от контекста (разные O_t разные решения)
- пользователь *и* всегда принимает *рациональное* (локально оптимальное) *решение* :

```
i^* = \arg\max_i \pi_{ui} по всем i \in O, где \pi_{ui} = r_{ui} - c_{ui} при c_{ui} = \max\{r_{uj} : j \in O \setminus i\}
```

- на шаге t пользователю доступны только товары из O_t
- ССF, в отличие от СF, различает понятия «было предложено и не было выбрано» и «не было предложено»

CCF (2)

• принцип локальной оптимальности:

$$\forall i^* \in \mathcal{D}_t, \quad r_{ui^*} \geqslant \max\{r_{ui} | i \in \mathcal{O}_t \setminus \mathcal{D}_t\}$$

or $P(i^* \text{ is taken}) = P(r_{ui^*} \geqslant \max\{r_{ui} | i \in \mathcal{O}_t \setminus \mathcal{D}_t\})$

- минусы такой формулировки:
 - неравенство определяет функцию выгоды с точностью до монотонности
 - решение не единственно
 - формулировка неэффективна с точки зрения вычислений из-за оператора max
- 2 удобные формулировки

CCF: Softmax model (1)

- функция выгоды: r_{ui} + e_{ui} , где:
 - r_{ui} характеризует непосредственный интерес пользователя u к товару $i:r_{ui}$ =
 - = $\varphi_u^T \varphi_i$ (см. latent factor models)
 - *e_{ui}* отражает неточность и сложность процесса выбора
 - полагаем:

$$\Pr(e_{ui} \leq \epsilon) = e^{-e^{-\epsilon}}$$

CCF: Softmax model (2)

• отсюда:

$$p(i^* = i | u, \mathcal{O}) = \frac{e^{r_{ui}}}{\sum_{j \in \mathcal{O}} e^{r_{uj}}} \text{ for all } i \in \mathcal{O}$$

на обучающем множестве {(u_t, O_t, i_t*)}
 скрытые факторы оцениваются
 следующим образом:

$$\min_{\boldsymbol{\phi}} \ \sum_{t} \log \Bigl[\sum_{i \in \mathcal{O}_t} \exp(\boldsymbol{\phi}_{u_t}^{\intercal} \boldsymbol{\phi}_i) \Bigr] - \boldsymbol{\phi}_{u_t}^{\intercal} \boldsymbol{\phi}_{i_t^*}$$

$$+ \lambda u \sum_{u \in \mathcal{U}} ||\phi_u||^2 + \lambda \tau \sum_{i \in \mathcal{I}} ||\phi_i||^2$$

CCF: Hinge model (1)

 модель основана на простом следствии из принципа локальной оптимальности:

$$P(i = i^* | u, \mathcal{O}) = P((r_{ui^*} - r_{ui}) > (e_{ui} - e_{ui^*}), \ \forall i \in \mathcal{O})$$
 $\leqslant P((r_{ui^*} - \bar{r}_{u\bar{i}}) > (\bar{e}_{u\bar{i}} - e_{ui^*})),$ где $\bar{r}_{u\bar{i}} = \frac{1}{|\mathcal{O}| - 1} \sum_{i \in \mathcal{O} \setminus i^*} r_{ui}$

является средней возможной выгодой, которую пользователь *и* мог бы получить от не выбранных им товаров

 пользователь принимает решение, сравнивая между собой возможные варианты и оценивая разницу потенциальных значений выгоды

CCF: Hinge model (2)

• получаем:

$$\min_{ heta,\xi} \ \sum_t \xi_t + \lambda_{\mathcal{U}} \sum_{u \in \mathcal{U}} ||\phi_u||^2 + \lambda_{\mathcal{I}} \sum_{i \in \mathcal{I}} ||\phi_i||^2$$
 так, чтобы $r_{ui_t^*} - \frac{1}{|\mathcal{O}_t|-1} \sum_{i \in \mathcal{O}_t \setminus \left\{i_t^*\right\}} r_{ui} \geq 1 - \xi_t$ и $\xi_t \geq 0$

 цель – максимизировать разницу между выбором пользователя и средним арифметическим невыбранных товаров

Пара слов о сложности

- описанные выше алгоритмы линейны:
 O(| I | x |O|)
- в большинстве случаев |O| ≤ 10
- ССF работает быстрее большой части подходов СF
- некоторые подходы CF имеют такую же сложность, как описанные модели CCF

Обучение (1)

- Стохастическая оптимизация (stochastic gradient descent algorithm)
 - для всех $i \in O_t$

$$\phi_i \leftarrow \phi_i - \eta \left[l'(\phi_u^{\mathsf{T}} \phi_i) \phi_u + \lambda_{\mathcal{I}} \phi_i \right]$$

для всех и

$$\phi_u \leftarrow \phi_u - \eta \left[\sum_{i \in \mathcal{O}_t} l'(\phi_u^{\top} \phi_i) \phi_i + \lambda_{\mathcal{U}} \phi_u \right]$$

градиенты:

$$l'_{\text{Softmax}}(r_{ui}) = \frac{\exp(r_{ui})}{\sum_{j \in \mathcal{O}} \exp(r_{uj})} - \delta_{i,i*}$$
$$l'_{\text{Hinge}}(r_{ui}) = -\frac{|\mathcal{O}| \, \delta_{i,i*} - 1}{|\mathcal{O}| - 1} H(1 - r_{ui*} + \bar{r}_{u\bar{i}})$$

Обучение (2)

H(x) = 1 при x > 0 и H(x) = 0 в остальных случаях

для удобства используется приближение
 H(x) непрерывной функцией

$$\frac{1}{1+e^{-100x}}$$

• хеширование фактор-векторов

ССГ: дополнения (1)

- сессии без ответа (реакции) пользователя
 - может быть: $D_t = \emptyset$
 - Softmax :
 - добавляем скаляр θ_u для обозначения порога действия (action threshold) пользователя u

$$p(i^* = i|u, \mathcal{O}) = \frac{\exp(\phi_u^\top \phi_i)}{\exp(\theta_u) + \sum_{j \in \mathcal{O}} \exp(\phi_u^\top \phi_j)}$$

 соответственно, вероятность остаться без ответа пользователя равна

$$\frac{\exp(\theta_u)}{\exp(\theta_u) + \sum_{j \in \mathcal{O}} \exp(\phi_u^{\top} \phi_j)}$$

CCF: дополнения (2)

- Hinge model :
 - добавление константы С > 0

$$\min_{\phi,\xi,\varepsilon,\theta}$$

$$\min_{\phi,\xi,\varepsilon,\theta} \sum_{t} \xi_{t} + C \sum_{t} \varepsilon_{t} + \lambda_{\mathcal{U}} \sum_{u \in \mathcal{U}} ||\phi_{u}||^{2} + \lambda_{\mathcal{I}} \sum_{i \in \mathcal{I}} ||\phi_{i}||^{2}$$

• причем:

при
$$D_t \neq m{\emptyset}$$
 для всех $i^* \in D_t$ $r_{u_t i_t^*} - ar{r}_{u_t ilde{i}} - heta_u \geqslant 1 - \xi_t$

$$\forall i \in O_t$$
 при $D_t = \emptyset$

$$\theta_u - r_{u+i} \geqslant 1 - \varepsilon_t$$

а также

$$r_{ui} = \phi_u^{\mathsf{T}} \phi_i$$

$$\xi_t \geqslant 0$$
 $\varepsilon_t \geqslant 0$

ССF: дополнения (3)

- свойства контента
 - формула $r(u, i) = \varphi_u^T \varphi_i$ не подходит для новых (отсутствовавших в обучающем множестве) данных
 - идея: CF + Content Filtering
 - помимо скрытых переменных φ рассматриваются явные свойства пользователей и товаров x_u ∈ R^m (e.g. введенные при регистрации данные) и x_i ∈ Rⁿ (e.g. текстовое описание товара) соответственно
 - тогда $r_{ui} \sim p(r_{ui}|\phi_u^\top\phi_i + x_u^\top M x_i)$ где $\mathbf{M} \in \mathbf{R}^{m \times n}$ определяет билинейную форму для вычисления пользы i для u

Результаты экспериментов (1)

- первый этап тестирования:
 - обработка только таких пар (u, i), в которых и предпринял какие-либо действия касательно i (action dyads)
 - такие пары взяты из наборов данных CF
 - контекст выбора синтетический
 - Netflix, данные из соц. сети
- второй этап тестирования:
 - обработка реальных данных, полученных в результате взаимодействия пользователей с коммерческой системой рекомендаций новостей

Результаты экспериментов (2)

- оценки эффективности:
 - средняя полнота

average recall =
$$\frac{|Drel \cap Dretr|}{|Drel|}$$

• средняя точность

average precision =
$$\frac{|Drel \cap Dretr|}{|Dretr|}$$

Normalized Discounted Cumulative Gain

$$DCG_{p} = rel_{1} + \sum_{i=2}^{p} \frac{reli}{\log 2(i)}$$

$$nDCG_p = DCG_p / IDCG_p$$

Результаты экспериментов (3)

- CCF превосходит CF по всем оценкам эффективности:
 - первый этап

Model		AP@5	AR@5	nDCG@5			
Social							
CF	ℓ_2	0.448	0.230	0.475			
$_{\mathrm{CF}}$	Logistic	0.449	0.230	0.476			
CCF	Softmax	0.688	0.261	0.704			
CCF	Hinge	0.686	0.260	0.702			
Netflix-5star							
CF	ℓ_2	0.135	0.022	0.145			
$_{\mathrm{CF}}$	Logistic	0.135	0.023	0.146			
CCF	Softmax	0.186	0.033	0.189			
CCF	Hinge	0.185	0.032	0.188			

Результаты экспериментов (4)

• второй этап

Model		AP@4	AR@4	nDCG@4		
30% Training						
CF	ℓ_2	0.245	0.261	0.255		
$_{\mathrm{CF}}$	Logistic	0.246	0.263	0.257		
CCF	Softmax	0.262	0.278	0.274		
CCF	Hinge	0.261	0.278	0.273		
50% Training						
CF	ℓ_2	0.250	0.273	0.268		
$_{\mathrm{CF}}$	Logistic	0.252	0.276	0.269		
CCF	Softmax	0.266	0.285	0.278		
CCF	Hinge	0.265	0.285	0.277		
70% Training						
$^{\mathrm{CF}}$	ℓ_2	0.253	0.275	0.271		
$_{\mathrm{CF}}$	Logistic	0.253	0.276	0.274		
CCF	Softmax	0.267	0.287	0.280		
CCF	Hinge	0.267	0.286	0.280		