Лабораторная работа. Настройка туннеля VPN GRE по схеме «точка-точка»

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
WEST	G0/1	192.168.1.1	255.255.255.0	Недоступно
	G0/0	64.103.211.2	255.255.255.252	Недоступно
	Tunnel0	10.1.1.1	255.255.255.252	Недоступно
EAST	G0/1	192.168.2.1	255.255.255.0	Недоступно
	G0/0	209.165.122.2	255.255.255.252	Недоступно
	Tunnel0	10.1.1.2	255.255.255.252	Недоступно
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1
PC-C	NIC	192.168.2.3	255.255.255.0	192.168.2.1

Задачи

- Часть 1. Базовая настройка устройств
- Часть 2. Настройка туннеля GRE
- Часть 3. Включение маршрутизации через туннель GRE

Исходные данные/сценарий

Универсальная инкапсуляция при маршрутизации (GRE) — это протокол туннелирования, способный инкапсулировать различные протоколы сетевого уровня между двумя объектами по общедоступной сети, например, в Интернете.

GRE можно использовать с:

- подключением сети IPv6 по сетям IPv4
- пакетами групповой рассылки, например, OSPF, EIGRP, RIP и приложениями потоковой передачи данных

В этой лабораторной работе необходимо настроить незашифрованный туннель GRE VPN «точка-точка» и убедиться, что сетевой трафик использует туннель. Также будет нужно настроить протокол маршрутизации RIP ver.2 внутри туннеля GRE VPN. Туннель GRE существует между маршрутизаторами WEST и EAST. Интернет-провайдер не знает о туннеле GRE. Для связи между маршрутизаторами WEST и EAST и интернет-провайдером применяются статические маршруты по умолчанию. Параметры маршрутизатора ISP выбираются исходя из исходных данных.

Примечание. В практических лабораторных работах ССNA используются маршрутизаторы с интеграцией сервисов Cisco 1941 (ISR) под управлением ОС Cisco IOS версии 15.2(4) МЗ (образ universalk9). В лабораторной работе используются коммутаторы Cisco Catalyst серии 2960 под управлением ОС Cisco IOS 15.0(2) (образ lanbasek9). Допускается использование коммутаторов и маршрутизаторов других моделей, под управлением других версий ОС Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и выходные данные могут отличаться от данных, полученных при выполнении лабораторных работ. Точные идентификаторы интерфейсов указаны в сводной таблице интерфейсов маршрутизаторов в конце лабораторной работы.

Необходимые ресурсы:

Часть 1: Базовая настройка устройств

В части 1 вам предстоит настроить топологию сети и базовые параметры маршрутизатора, например, IP-адреса интерфейсов, маршрутизацию.

- Шаг 1: Подключите кабели в сети в соответствии с топологией.
- **Шаг 2:** Выполните инициализацию и перезагрузку маршрутизаторов и коммутаторов.
- Шаг 3: Произведите базовую настройку маршрутизаторов.
 - а. Отключите поиск DNS.
 - b. Назначьте имена устройств.
 - с. Примените IP-адреса к интерфейсам Serial и Gigabit Ethernet в соответствии с таблицей адресации и активируйте физические интерфейсы. На данном этапе не настраивайте интерфейсы Tunnel0.
 - d. Настройте тактовую частоту на **128000** для всех последовательных интерфейсов DCE.

Шаг 4: Настройте статические маршруты по умолчанию к маршрутизатору интернетпровайдера.

```
WEST(config) # ip route 0.0.0.0 0.0.0.0 64.103.211.1

EAST(config) # ip route 0.0.0.0 0.0.0.0 209.165.122.1
```

Шаг 5: Настройте компьютеры.

Настройте ІР-адреса и шлюзы по умолчанию на всех ПК в соответствии с таблицей адресации.

Шаг 6: Проверьте соединение.

На данный момент компьютеры не могут отправлять друг другу эхо-запросы. Каждый ПК должен получать ответ на эхо-запрос от своего шлюза по умолчанию. Маршрутизаторы могут отправлять эхо-запросы на последовательные интерфейсы других маршрутизаторов в топологии. Если это не так, устраните неполадки и убедитесь в наличии связи.

Шаг 7: Сохраните текущую конфигурацию.

Часть 2: Настройка туннеля GRE

В части 2 необходимо настроить туннель GRE между маршрутизаторами WEST и EAST.

Шаг 1: Настройка интерфейса туннеля GRE.

а. Настройте интерфейс туннеля на маршрутизаторе WEST. Используйте S0/0/0 на маршрутизаторе WEST в качестве интерфейс источника туннеля и 209.165.122.2 как назначение туннеля на маршрутизаторе EAST.

```
WEST(config)# interface tunnel 0 // Создать интерфейс туннеля
WEST(config-if)# ip address 10.1.1.1 255.255.252 //Задать IP-адрес
интерфеса туннеля
WEST(config-if)# tunnel source 64.103.211.2 // Задать IP-адрес источника
туннеля
WEST(config-if)# tunnel destination 209.165.122.2//Задать IP-адрес назначения
туннеля
```

b. Настройте интерфейс туннеля на маршрутизаторе EAST. Используйте S0/0/1 на маршрутизаторе EAST в качестве интерфейс источника туннеля и 64.103.211.2 как назначение туннеля на маршрутизаторе WEST.

```
EAST(config) # interface tunnel 0
EAST(config-if) # ip address 10.1.1.2 255.255.252
EAST(config-if) # tunnel source 209.165.122.2
EAST(config-if) # tunnel destination 64.103.211.2
```

Примечание. Для команды **tunnel source** в качестве источника можно использовать имя интерфейса или IP-адрес.

Часть 3: Включение маршрутизации через туннель GRE

В части 3 необходимо настроить протокол маршрутизации RIP version 2 таким образом, чтобы локальные сети (LAN) на маршрутизаторах WEST и EAST могли обмениваться данными с помощью туннеля GRE.

После установления туннеля GRE можно реализовать протокол маршрутизации. Для туннелирования GRE команда network будет включать сеть IP туннеля, а не сеть, связанную с последовательным интерфейсом. точно так же, как и с другими интерфейсами, например, Serial и Ethernet. Следует помнить, что маршрутизатор ISP в этом процессе маршрутизации не участвует.

Шаг 1: Настройка маршрутизации по протоколу RIP по туннелю.

а. Настройте протокол на маршрутизаторе WEST для сетей 192.168.1.0/24 и 10.1.1.0/30.

```
WEST(config) # router rip
WEST(config-router) #version 2
WEST(config-router) # network 192.168.1.0
WEST(config-router) # network 10.1.1.0
WEST(config-router) # no auto-summary
```

b. Настройте протокол на маршрутизаторе EAST для сетей 192.168.2.0/24 и 10.1.1.0/30.

```
EAST(config) # router rip
```

```
EAST(config-router)# version 2
EAST(config-router)# network 192.168.2.0
EAST(config-router)# network 10.1.1.0
EAST(config-router)# no auto-summary
```

Шаг 2: Проверка маршрутизации RIP.

C.

а. Отправьте с маршрутизатора WEST команду **show ip route** для проверки маршрута к локальной сети 192.168.2.0/24 на маршрутизаторе EAST.

```
WEST# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
       + - replicated route, % - next hop override
С
        64.103.211.0/30 is directly connected, Serial0/0/0
        64.103.211.2/32 is directly connected, Serial0/0/0
        192.168.1.0/24 is directly connected, GigabitEthernet0/1
С
        192.168.1.1/32 is directly connected, GigabitEthernet0/1
т.
        192.168.2.0/24 [110/1001] via 10.1.1.2, 00:00:07, Tunnel0
C.
        10.1.1.0/30 is directly connected, Tunnel0
         10.1.1.1/32 is directly connected, Tunnel0
```

Какой выходной интерфейс и IP-адрес используются для связи с сетью 192.168.2.0/24?

b. Отправьте с маршрутизатора EAST команду для проверки маршрута к локальной сети 192.168.1.0/24 на маршрутизаторе WEST.

Какой выходной интерфейс и IP-адрес используются для связи с сетью 192.168.1.0/24?

EAST# show ip route Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP + - replicated route, % - next hop override S* 64.103.211.0/30 [1/0] via 209.165.211.1 С 209.165.122.0/30 is directly connected, Serial0/0/1 L 209.165.122.2/32 is directly connected, Serial0/0/1 192.168.1.0/24 [110/1001] via 10.1.1.1, 00:02:44, Tunnel0

192.168.2.0/24 is directly connected, GigabitEthernet0/1

L 192.168.2.1/32 is directly connected, GigabitEthernet0/1
C 10.1.1.0/30 is directly connected, Tunnel0
L 10.1.1.2/32 is directly connected, Tunnel0

Шаг 3: Проверьте связь между конечными устройствами.

- а. Отправьте эхо-запрос с ПК А на ПК С. Эхо-запрос должен пройти успешно. Если это не так, устраните неполадки и убедитесь в наличии связи между конечными узлами.
- b. Запустите трассировку от ПК А к ПК С. Каков путь от ПК А до ПК С?

Вопросы на закрепление

1. Какие еще настройки необходимы для создания защищенного туннеля GRE?

2. Если вы добавили дополнительные локальные сети к маршрутизатору WEST или EAST, то что нужно сделать, чтобы сеть использовала туннель GRE для трафика?

Индивидуальные задания к лабораторной работе №4

№	Адрес сети	Адрес сети	Адрес сети
п/п.	офиса WEST	офиса EAST	туннеля
1	192.168.101.0/24	192.168.201.0/24	10.10.10.0/30
2	192.168.102.0/24	192.168.202.0/24	10.10.10.4/30
3	192.168.103.0/24	192.168.203.0/24	10.10.10.8/30
4	192.168.104.0/24	192.168.204.0/24	10.10.10.12/30
5	192.168.105.0/24	192.168.205.0/24	10.10.10.16/30
6	192.168.106.0/24	192.168.206.0/24	10.10.10.20/30
7	192.168.107.0/24	192.168.207.0/24	10.10.10.24/30
8	192.168.108.0/24	192.168.208.0/24	10.10.10.28/30
9	192.168.109.0/24	192.168.209.0/24	10.10.10.32/30
10	192.168.110.0/24	192.168.210.0/24	10.10.10.36/30
11	192.168.111.0/24	192.168.211.0/24	10.10.10.40/30
12	192.168.112.0/24	192.168.212.0/24	10.10.10.44/30
13	192.168.113.0/24	192.168.213.0/24	10.10.10.48/30
14	192.168.114.0/24	192.168.214.0/24	10.10.10.52/30
15	192.168.115.0/24	192.168.215.0/24	10.10.10.56/30
16	192.168.116.0/24	192.168.216.0/24	10.10.10.60/30
17	192.168.117.0/24	192.168.217.0/24	10.10.10.64/30
18	192.168.118.0/24	192.168.218.0/24	10.10.10.68/30
19	192.168.119.0/24	192.168.219.0/24	10.10.10.72/30
20	192.168.120.0/24	192.168.220.0/24	10.10.10.76/30
21	192.168.121.0/24	192.168.221.0/24	10.10.10.80/30
22	192.168.122.0/24	192.168.222.0/24	10.10.10.84/30
23	192.168.123.0/24	192.168.223.0/24	10.10.10.88/30
24	192.168.124.0/24	192.168.224.0/24	10.10.10.92/30
25	192.168.125.0/24	192.168.225.0/24	10.10.10.96/30
26	192.168.126.0/24	192.168.226.0/24	10.10.10.100/30
27	192.168.127.0/24	192.168.227.0/24	10.10.10.104/30
28	192.168.128.0/24	192.168.228.0/24	10.10.10.108/30
29	192.168.129.0/24	192.168.229.0/24	10.10.10.112/30
30	192.168.130.0/24	192.168.230.0/24	10.10.10.116/30

Остальная адресация сохраняется согласно описания лабораторной работы.