Recitation 23: Parametric equations & Polar coordinates

Warm up:

Describe the motion given by x = 8, $y = 7\sin(t)$ for all t.

Group work:

Problem 1 Try to figure out the shape of the following curve and then eliminate the parameter and check your intuition.

$$x = \ln t - 1 \qquad y = (\ln t)^2$$

 $\begin{tabular}{ll} \textbf{Problem 2} & Find \ parametric \ equations \ for \ the \ path \ of \ a \ particle \ moving \ around \ the \ circle \end{tabular}$

$$(x-3)^2 + (y+7)^2 = 4$$

- (a) one time around clockwise starting at (5, -7).
- (b) three times around counterclockwise starting at (5, -7).
- (c) halfway around clockwise starting at (-1, -7).

Problem 3 Find the intersection point(s) of the lines

$$x = -6 + 9t, y = 3 - 2t (1)$$

and

$$x = 3 + t, y = -4 - 2t.$$
 (2)

Do they intersect at the same time?

Problem 4 Consider the curve defined by the parameterization $x = t^2$, y = $t^3 - 3t$. Show that this curve has two tangent lines at (3,0), and find the equations of the tangent lines there.

Problem 5 Plot the following (polar) points in the xy-plane and then rewrite them as rectangular coordinates.

- (a) $\left(3, \frac{5\pi}{4}\right)$ (b) $\left(3, -\frac{5\pi}{4}\right)$ (c) $\left(-3, \frac{5\pi}{4}\right)$ (d) $\left(-3, -\frac{5\pi}{4}\right)$

Problem 6 Rewrite the rectangular point (3,5) in polar coordinates in three different ways.

Problem 7 The graph of the curve $r = 4 \sin \theta$ is a circle. Use the graph below to sketch this circle. Can you verify this algebraically? What is the period of the polar curve? Is $0 \le \theta \le 2\pi$ necessary to complete the graph?

Problem 8 Graph $r = 2 + 4\cos\theta$ using the "Cartesian-to-Polar" method.