1 Grammar

$$\begin{array}{lll} e ::= x & expressions \\ & r & \\ & \operatorname{new}_{\sigma} x \Rightarrow \overline{\sigma = e} \\ & \operatorname{new}_{d} x \Rightarrow \overline{d = e} \\ & | e.m(e) & \\ & | e.\pi & \\ \end{array}$$

$$\tau ::= \{ \overline{\sigma} \} & types \\ & | \{ \overline{d} \} & \\ & | \{ \overline{d} \} & \\ & | \{ \overline{d} \text{ captures } \varepsilon \} \\ \end{array}$$

$$\sigma ::= d \text{ with } \varepsilon \qquad labeled decls.$$

$$d ::= \operatorname{def} m(x : \tau) : \tau \text{ unlabeled decls.}$$

Notes:

- $-\sigma$ denotes a declaration with effect labels; d a declaration without effect labels.
- new_{σ} is for creating annotated objects; new_d for unannotated objects.
- $-\{\bar{\sigma}\}\$ is the type of an annotated object. $\{\bar{d}\}\$ is the type of an unannotated object.
- $-\{\bar{d} \text{ captures } \varepsilon\}$ is a special kind of type that doesn't appear in source programs but may be assigned by the new rules in this section. Intuitively, ε is an upper-bound on the effects captured by $\{\bar{d}\}$.

2 Semantics

2.1 Static Semantics

$$\Gamma \vdash e : \tau$$

$$\begin{split} \frac{\Gamma \vdash e_1 : \{r\}}{\Gamma, \ x : \tau \vdash x : \tau} \ &(\text{T-Var}) & \frac{\Gamma \vdash e_1 : \{r\}}{\Gamma \vdash r : \{r\}} \ &(\text{T-Resource}) & \frac{\Gamma \vdash e_1 : \{r\}}{\Gamma \vdash e_1 . \pi : \text{Unit}} \ &(\text{T-OperCall}) \\ & \frac{\Gamma \vdash e_1 : \{\bar{\sigma}\} \quad \text{def } m(y : \tau_2) : \tau_3 \text{ with } \varepsilon_3 \in \{\bar{\sigma}\} \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 . m(e_2) : \tau_3} \ &(\text{T-MethCall}_{\sigma}) \\ & \frac{\Gamma \vdash e_1 : \{\bar{d}\} \quad \text{def } m(y : \tau_2) : \tau_3 \in \{\bar{d}\} \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 . m(e_2) : \tau_3} \ &(\text{T-MethCall}_{d}) \\ & \frac{\Gamma, x : \{\bar{\sigma}\} \vdash \overline{\sigma = e} \ \text{OK}}{\Gamma \vdash \text{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e} : \{\bar{\sigma}\}} \ &(\text{T-New}_{\sigma}) \\ & \frac{\Gamma, x : \{\bar{d}\} \vdash \overline{d = e} \ \text{OK}}{\Gamma \vdash \text{new}_{d} \ x \Rightarrow \overline{d = e} : \{\bar{d}\}} \ &(\text{T-New}_{d}) \end{split}$$

$$\boxed{ \Gamma \vdash d = e \text{ OK} } \\ \frac{d = \text{def } m(y:\tau_2):\tau_3 \quad \Gamma, y:\tau_2 \vdash e:\tau_3}{\Gamma \vdash d = e \text{ OK}} \text{ (ValidImpl}_d) }$$

 $\Gamma \vdash \sigma = e \text{ OK}$

$$\frac{\varGamma,\ y:\tau_2\vdash e:\tau_3\ \text{with}\ \varepsilon_3\quad \sigma=\text{def}\ m(y:\tau_2):\tau_3\ \text{with}\ \varepsilon_3}{\varGamma\vdash\sigma=e\ \text{OK}}\ \left(\text{VALIDIMPL}_\sigma\right)$$

 $\Gamma \vdash e : au$ with arepsilon

$$\frac{\Gamma \vdash \tau_1 <: \tau_2 \quad \Gamma \vdash \tau_2 <: \tau_3}{\Gamma \vdash \tau_1 <: \tau_3} \quad (\text{ST-Reflexive})$$

$$\frac{\Gamma \vdash e : \tau_1 \quad \Gamma \vdash \tau_1 <: \tau_2}{\Gamma \vdash e : \tau_2} \quad (\text{ST-Subsumption})$$

$$\frac{\Gamma \vdash \{\bar{\sigma}_1\} \text{ is a permutation of } \{\bar{\sigma}_2\}}{\Gamma \vdash \{\bar{\sigma}_1\} <: \{\bar{\sigma}_2\}} \quad \text{(St-Permutation}_{\sigma})} \qquad \frac{\Gamma \vdash \{\bar{d}_1\} \text{ is a permutation of } \{\bar{d}_2\}}{\Gamma \vdash \{\bar{d}_1\} <: \{\bar{d}_2\}} \quad \text{(St-Permutation}_{d})}$$

$$\frac{\Gamma \vdash \sigma_i <:: \sigma_j}{\Gamma \vdash \{\sigma_i \ ^{i \in 1...n}\} <: \{\sigma_j \ ^{j \in 1...n}\}} \quad \text{(St-Depth}_{\sigma})} \qquad \frac{\Gamma \vdash d_i <:: d_j}{\Gamma \vdash \{d_i \ ^{i \in 1...n}\}} \quad \text{(St-Depth}_{d})}$$

$$\frac{n, k \geq 0}{\Gamma \vdash \{\sigma_i \ ^{i \in 1...n}\} <: \{\sigma_i \ ^{i \in 1...n}\}} \quad \text{(St-Width}_{\sigma})} \qquad \frac{n, k \geq 0}{\Gamma \vdash \{d_i \ ^{i \in 1...n}\}} \quad \text{(St-Width}_{d})}$$

 $\Gamma \vdash \sigma < :: \sigma$

$$\begin{split} \sigma_i &= \text{def } m_A(y:\tau_1):\tau_2 \text{ with } \varepsilon_A \qquad \sigma_j = \text{def } m_B(y:\tau_1'):\tau_2' \text{ with } \varepsilon_B \\ &\frac{\Gamma \vdash \tau_1' <:\tau_1 \qquad \Gamma \vdash \tau_2 <:\tau_2' \qquad \varepsilon_A \subseteq \varepsilon_B}{\Gamma \vdash \sigma_i <::\sigma_j} \end{split} \tag{ST-METHOD}_\sigma)$$

 $\varGamma \vdash d < :: d$

$$\begin{aligned} d_i &= \text{def } m_A(y:\tau_1):\tau_2 & d_j &= \text{def } m_B(y:\tau_1'):\tau_2' \\ &\frac{\Gamma \vdash \tau_1' <:\tau_1 & \Gamma \vdash \tau_2 <:\tau_2'}{\Gamma \vdash d_i <::d_i} & \text{(St-Method}_d) \end{aligned}$$

 $\varGamma \vdash \tau \text{ with } \varepsilon \mathrel{<:} \tau \text{ with } \varepsilon$

$$\frac{\varGamma \vdash \tau_1 <: \tau_2 \qquad \varepsilon_1 \subseteq \varepsilon_2}{\varGamma \vdash \tau_1 \text{ with } \varepsilon_1 <: \tau_2 \text{ with } \varepsilon_2} \text{ (ST-Subsumption}_\varepsilon)$$

$$\frac{\{\bar{d}_1\}<:\{\bar{d}_2\}\quad \varepsilon_A\subseteq \varepsilon_B\quad \varepsilon_1\subseteq \varepsilon_2}{\{\bar{d}_1 \text{ captures } \varepsilon_A\} \text{ with } \varepsilon_1<:\{\bar{d}_2 \text{ captures } \varepsilon_B\} \text{ with } \varepsilon_2} \ (\text{ST-SUMMARY})$$

 $\Gamma \vdash \tau \text{ WFT}$

$$\frac{}{\varGamma, r : \{r\} \vdash \{r\} \text{ WFT}} \text{ (WFT-RESOURCE)} \qquad \frac{}{\varGamma, x : \tau \vdash \tau \text{ WFT}} \text{ (WFT-VARIABLE)}$$

$$\begin{aligned} d_i &= \text{def } m(y:\tau_2):\tau_3 \\ &\frac{\Gamma \vdash \tau_2 \text{ WFT} \quad \Gamma \vdash \tau_3 \text{ WFT}}{\Gamma \vdash \{\bar{d}\} \text{ WFT}} \text{ (WFT-OBJ}_d) \end{aligned} \qquad \frac{\sigma_i &= \text{def } m(y:\tau_2):\tau_3 \text{ with } \varepsilon \\ &\frac{\Gamma \vdash \tau_2 \text{ WFT} \quad \Gamma \vdash \tau_3 \text{ WFT} \quad r.\pi \in \varepsilon \implies \Gamma \vdash r \text{ WFT}}{\Gamma \vdash \{\bar{\sigma}\} \text{ WFT}} \text{ (WFT-OBJ}_\sigma) \end{aligned}$$

$$\frac{\varGamma \vdash \{\bar{d}\} \text{ WFT} \quad r.\pi \in \varepsilon_c \implies \varGamma \vdash r \text{ WFT}}{\varGamma \vdash \{\bar{d} \text{ captures } \varepsilon_c\} \text{ WFT}} \text{ (WFT-Summary)}$$

 $\Gamma \vdash e \text{ WFE}$

$$\frac{}{\varGamma, r: \{r\} \vdash r \text{ WFE}} \text{ (WFE-RESOURCE)} \quad \frac{}{\varGamma, x: \tau \vdash x \text{ WFE}} \text{ (WFE-VARIABLE)}$$

$$\frac{\varGamma \vdash e \text{ WFE}}{\varGamma \vdash e.\pi \text{ WFE}} \text{ (WFE-OPERATION)} \quad \frac{\varGamma \vdash e_1 \text{ WFE}}{\varGamma \vdash e_1.m(e_2) \text{ WFE}} \text{ (WFE-METHCALL)}$$

$$\begin{split} d_i &= \text{def } m(y:\tau_2):\tau_3 \\ \frac{\varGamma \vdash \tau_2 \text{ WFT} \quad \varGamma \vdash \tau_3 \text{ WFT} \quad \varGamma, y:\tau_2 \vdash e_i \text{ WFE}}{\varGamma \vdash \text{new}_d \ x \Rightarrow \overline{d=e} \text{ WFE}} \ (\text{WFE-ObJ}_d) \end{split}$$

$$\begin{split} \sigma_i &= \text{def } m(y:\tau_2):\tau_3 \text{ with } \varepsilon \quad r.\pi \in \varepsilon \implies \Gamma \vdash \{r\} \text{ WFT} \\ &\frac{\Gamma \vdash \tau_2 \text{ WFT} \quad \Gamma \vdash \tau_3 \text{ WFT} \quad \Gamma, y:\tau_2 \vdash e_i \text{ WFE}}{\Gamma \vdash \text{new}_\sigma \ x \Rightarrow \overline{\sigma = e} \text{ WFE}} \end{split} \tag{WFE-Obj}$$

Notes:

- This system includes all the rules from the fully-annotated system.
- The T rules do standard typing of objects, without any effect analysis. Their sole purpose is so ε -ValidImpl_d can be applied. We are assuming the T-rules on their own are sound.
- C-NewObj: Γ' is intended to be some subcontext of the current Γ . The object is labelled as capturing the effects in Γ' (exact definition in the next section).
- A good choice of Γ' would be Γ restricted to the free variables in the object definition.
- C-NewObj: in the premise we need $capture(\tau) \supseteq \varepsilon_c$, for every type of every argument of every visible method. This is to ensure any capabilities passed to that method don't exceed what the type signature says.
- C-METHCALL: we must add capture(τ_2) to the static effects of the object, because the method body will have access to the resources captured by τ_2 (the type of the argument passed into the method).
- By convention we use ε_c to denote the output of the capture function.
- If Γ can prove that an expression is well-formed (WFE) then that means there are no free variables in any types (all types are WFT) and subexpressions are WFE.

2.2 capture Function

The capture function returns the set of effects captured in a particular context.

$$- \operatorname{capture}(\varnothing) = \varnothing$$

 $- \operatorname{capture}(\Gamma, x : \tau) = \operatorname{capture}(\Gamma) \cup \operatorname{capture}(\tau)$

```
\begin{split} &-\operatorname{capture}(\{r\}) = \{r.\pi \mid \pi \in \varPi\} \\ &-\operatorname{capture}(\{\bar{\sigma}\}) = \bigcup_{\sigma \in \bar{\sigma}} \operatorname{capture}(\sigma) \\ &-\operatorname{capture}(\{\bar{d}\}) = \bigcup_{d \in \bar{d}} \operatorname{capture}(d) \\ &-\operatorname{capture}(d \text{ with } \varepsilon) = \varepsilon \cup \operatorname{capture}(d) \\ &-\operatorname{capture}(\operatorname{def} \operatorname{m}(x : \tau_2) : \tau_3) = \operatorname{capture}(\tau_2) \cup \operatorname{capture}(\tau_3) \\ &-\operatorname{capture}(\{\bar{d} \text{ captures } \varepsilon_c\}) = \varepsilon_c \end{split}
```

Notes:

- In the last case we don't want to recurse to sub-declarations because the effects have already been captured previously (this is ε_c) by a potentially different context (will this matter?).
- capture is monotonic: if $\Gamma_1 \subseteq \Gamma_2$ then $\operatorname{capture}(\Gamma_1) \subseteq \operatorname{capture}(\Gamma_2)$.

2.3 arg-types Function

This function examines the declaration of every method which could be (directly) invoked inside a particular Γ . It returns a set of the types of the arguments of those methods.

```
\begin{array}{l} -\operatorname{arg-types}(\varnothing)=\varnothing\\ -\operatorname{arg-types}(\varGamma,x:\tau)=\operatorname{arg-types}(\varGamma)\cup\operatorname{arg-types}(\tau)\\ -\operatorname{arg-types}(\{r\})=\varnothing\\ -\operatorname{arg-types}(\{\bar{\sigma}\})=\bigcup_{\sigma\in\bar{\sigma}}\operatorname{arg-types}(\sigma)\\ -\operatorname{arg-types}(\{\bar{d}\})=\bigcup_{d\in\bar{d}}\operatorname{arg-types}(d)\\ -\operatorname{arg-types}(\{\bar{d}\operatorname{ captures }\varepsilon_c\})=\operatorname{arg-types}(\{\bar{d}\})\\ -\operatorname{arg-types}(d\operatorname{ with }\varepsilon)=\operatorname{arg-types}(d)\\ -\operatorname{arg-types}(\operatorname{def}\ m(y:\tau_2):\tau_3)=\{\tau_2\}\cup\operatorname{arg-types}(\tau_3)\cup\operatorname{arg-types}(\tau_2)\ (\operatorname{is\ arg-types}(\tau_2)\operatorname{necessary?}) \end{array}
```

2.4 higher-order-args Function

$$\frac{\tau \in \mathsf{arg\text{-}types}(\varGamma) \quad \mathsf{is\text{-}higher\text{-}order}(\tau)}{\tau \in \mathsf{higher\text{-}order\text{-}args}(\varGamma)} \ (\mathsf{HigherOrderArgs})$$

2.5 is-obj Predicate

The is-obj predicate says whether or not a particular type τ is an object.

$$\frac{}{\text{is-obj}(\{\bar{d}\})} \text{ (IsOBJ}_d) \quad \frac{}{\text{is-obj}(\{\bar{\sigma}\})} \text{ (IsOBJ}_\sigma) \quad \frac{}{\text{is-obj}(\{\bar{d} \text{ captures } \varepsilon_c\})} \text{ (IsOBJSUMMARY)}$$

2.6 is-higher-order Predicate

A type is higher-order if it has a method accepting another object as an argument.

$$\frac{d_i = \text{def } m(y:\tau_2):\tau_3 \quad \text{is-obj}(\tau_2)}{\text{is-higher-order}(\{\bar{d}\})} \ (\text{HigherOrder}_d)$$

$$\frac{\sigma_i = \text{def } m(y:\tau_2):\tau_3 \text{ with } \varepsilon \quad \text{is-obj}(\tau_2)}{\text{is-higher-order}(\{\bar{\sigma}\})} \text{ } (\text{HigherOrder}_\sigma)$$

2.7 Dynamic Semantics

$$e \longrightarrow e \mid \varepsilon$$

$$\frac{e_1 \longrightarrow e'_1 \mid \varepsilon}{e_1.m(e_2) \longrightarrow e'_1.m(e_2) \mid \varepsilon} \text{ (E-METHCALL1)}$$

$$\frac{v_1 = \mathsf{new}_\sigma \ x \Rightarrow \overline{\sigma = e} \quad e_2 \longrightarrow e_2' \mid \varepsilon}{v_1.m(e_2) \longrightarrow v_1.m(e_2') \mid \varepsilon} \ (\text{E-MethCall2}_\sigma) \qquad \frac{v_1 = \mathsf{new}_d \ x \Rightarrow \overline{d = e} \quad e_2 \longrightarrow e_2' \mid \varepsilon}{v_1.m(e_2) \longrightarrow v_1.m(e_2') \mid \varepsilon} \ (\text{E-MethCall2}_d)$$

$$\frac{v_1 = \mathsf{new}_\sigma \ x \Rightarrow \overline{\sigma = e} \quad \mathsf{def} \ \mathsf{m}(y : \tau_1) : \tau_2 \ \mathsf{with} \ \varepsilon = e \in \overline{\sigma = e}}{v_1.m(v_2) \longrightarrow [v_1/x, v_2/y]e \mid \varnothing} \ (\text{E-MethCall3}_\sigma)$$

$$\frac{v_1 = \mathsf{new}_d \ x \Rightarrow \overline{d = e} \quad \mathsf{def} \ \mathsf{m}(y : \tau_1) : \tau_2 = e \in \overline{d = e}}{v_1.m(v_2) \longrightarrow [v_1/x, v_2/y]e \mid \varnothing} \ (\text{E-MethCall3}_d)$$

$$\frac{e_1 \longrightarrow e_1' \mid \varepsilon}{e_1.\pi \longrightarrow e_1'.\pi \mid \varepsilon} \text{ (E-OPERCALL1)} \qquad \frac{r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}}{r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}}$$

$$e \longrightarrow_* e \mid \varepsilon$$

$$\frac{e \longrightarrow e' \mid \varepsilon}{e \longrightarrow_* e \mid \varnothing} \text{ (E-MultiStep1)} \qquad \frac{e \longrightarrow e' \mid \varepsilon}{e \longrightarrow_* e' \mid \varepsilon} \text{ (E-MultiStep2)}$$

$$\frac{e \longrightarrow_* e' \mid \varepsilon_1 \quad e' \longrightarrow_* e'' \mid \varepsilon_2}{e \longrightarrow_* e'' \mid \varepsilon_1 \cup \varepsilon_2}$$
 (E-MULTISTEP3)

Notes:

- E-METHCALL2_d and E-METHCALL2_{σ} are really doing the same thing, but one applies to labeled objects (the σ version) and the other on unlabeled objects. Same goes for E-METHCALL3_{σ} and E-METHCALL3_d.
- E-MethCall can be used for both labeled and unlabeled objects.

2.8 Substitution Function

We extend our Substitution function from the previous system in a straightforward way by adding a new case for unlabeled objects.

$$\begin{aligned} &-[e'/z]z=e'\\ &-[e'/z]y=y, \text{ if } y\neq z\\ &-[e'/z]r=r\\ &-[e'/z](e_1.m(e_2))=([e'/z]e_1).m([e'/z]e_2)\\ &-[e'/z](e_1.\pi)=([e'/z]e_1).\pi\\ &-[e'/z](\text{new}_d\ x\Rightarrow \overline{d=e})=\text{new}_d\ x\Rightarrow \overline{\sigma=[e'/z]e}, \text{ if } z\neq x \text{ and } z\notin \text{freevars}(e_i)\\ &-[e'/z](\text{new}_\sigma\ x\Rightarrow \overline{\sigma=e})=\text{new}_\sigma\ x\Rightarrow \overline{\sigma=[e'/z]e}, \text{ if } z\neq x \text{ and } z\notin \text{freevars}(e_i)\end{aligned}$$

3 Proofs

Lemma 3.1. (Canonical Forms)

Statement. Suppose e is a value. The following are true:

- If $\Gamma \vdash e : \{\bar{r}\}$ with ε , then e = r for some resource r.
- If $\Gamma \vdash e : \{\overline{\sigma}\}$ with ε , then $e = \text{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e}$.
- $-\text{ If }\Gamma\vdash e:\{\bar{d}\text{ captures }\varepsilon_c\}\text{ with }\varepsilon\text{, then }e=\mathtt{new}_d\ x\Rightarrow\overline{d=e}.$

Furthermore, $\varepsilon = \emptyset$ in each case.

Proof. These typing judgements each appear exactly once in the conclusion of different rules. The result follows by inversion of ε -RESOURCE, ε -NEWOBJ, and C-NEWOBJ respectively.

Lemma 3.2. (Substitution Lemma)

Statement. If $\Gamma, z : \tau' \vdash e : \tau$ with ε , and $\Gamma \vdash e' : \tau'$ with ε' , then $\Gamma \vdash [e'/z]e : \tau$ with ε .

Intuition If you substitute z for something of the same type, the type of the whole expression stays the same after substitution.

Proof. We've already proven the lemma by structural induction on the ε rules. The new case is defined on a form not in the grammar for the fully-annotated system. So all that remains is to induct on derivations of $\Gamma \vdash e : \tau$ with ε using the new C rules.

Case. C-METHCALL.

Then $e = e_1.m(e_2)$ and $[e'/z]e = ([e'/z]e_1).m([e'/z]e_2)$. By inductive assumption we know that e_1 and $[e'/z]e_1$ have the same types, and that e_2 and $[e'/z]e_2$ have the same types. Since e and [e'/z]e have the same syntactic struture, and their corresponding subexpressions have the same types, then Γ can use C-METHCALL to type [e'/z]e the same as e.

Case. C-NewObj.

Then $e = \text{new}_d \ x \Rightarrow \overline{d = e}$. z appears in some method body e_i . By inversion we know $\Gamma, x : \{\bar{\sigma}\} \vdash \overline{d = e}$ OK. The only rule with this conclusion is ε -ValidImpl_d; by inversion on that we know for each i that:

- $-d_i = \operatorname{def} m_i(y:\tau_1):\tau_2 \text{ with } \varepsilon$
- $-\Gamma,y: au_1\vdash e_i: au_2$ with arepsilon

If z appears in the body of e_i then $\Gamma, z : \tau \vdash d_i = e_i$ OK by inductive assumption. Then we can use ε -ValidImpl $_d$ to conclude $\overline{d = [e'/z]e}$ OK. This tells us that the types and static effects of all the methods are unchanged under substitution. By choosing the same $\Gamma' \subseteq \Gamma$ used in the original application of C-NewObJ, we can apply C-NewObJ to the expression after substitution. The types and static effects the methods are the same, and the same Γ' has been chosen, so [e'/z]e will be ascribed the same type as e.

Lemma 3.3. (Well-Formedness Principle)

Statement. If $\Gamma \vdash \tau$ WFT then $capture(\tau) \subseteq capture(\Gamma)$

Proof. By induction on the judgement $\Gamma \vdash \tau$ WFT.

Case. WFT-RESOURCE.

 $\overline{\text{Then capture}}(\tau) = \mathtt{capture}(\{r\}) \subseteq \mathtt{capture}(\Gamma, r : \{r\}).$

Case. WFT-VARIABLE.

Then $capture(\tau) \subseteq capture(\Gamma, x : \tau)$

Case. WFT-OBJ $_d$.

Then for any def $m(y:\tau_2):\tau_3\in \bar{d}$, we have by inversion $\Gamma\vdash\tau_2$ WFT and $\Gamma\vdash\tau_3$ WFT. By inductive assumption, capture $(\tau_2)\cup$ capture $(\tau_3)\subseteq$ capture (Γ) . But this is capture(d), for an arbitrary $d\in \bar{d}$, so capture $(\{\bar{d}\})\subseteq$ capture (Γ) .

Case. WFT-OBJ $_{\sigma}$.

Then for any $\operatorname{def} m(y:\tau_2):\tau_3$ with $\varepsilon\in\bar{\sigma}$, we have by inversion $\Gamma\vdash\tau_2$ WFT and $\Gamma\vdash\tau_{\text{WFT}}$. By inductive assumption, $\operatorname{capture}(\tau_2)\cup\operatorname{capture}(\tau_3)\subseteq\operatorname{capture}(\Gamma)$. Also by inversion we know that $\Gamma\vdash\{r\}$ WFT, for any $r.\pi\in\varepsilon$. By inductive assumption, $\operatorname{capture}(\{r\})\subseteq\operatorname{capture}(\Gamma)$. Now $\operatorname{capture}(\sigma)=\operatorname{capture}(\tau_2)\cup\operatorname{capture}(\tau_3)\cup\varepsilon\subseteq\operatorname{capture}(\Gamma)$. This is for an arbitrary $\sigma\in\bar{\sigma}$, so $\operatorname{capture}(\{\bar{\sigma}\})\subseteq\operatorname{capture}(\Gamma)$.

Case. WFT-Summary.

By inversion we know that $\operatorname{capture}(\{r\}) \subseteq \operatorname{capture}(\Gamma)$, for any $r.\pi \in \varepsilon_c$. The union of these is exactly $\operatorname{capture}(\{\bar{d} \text{ captures } \varepsilon_c\})$.

Lemma 3.4. (Use Principle)

Statement. If $\Gamma \vdash e$ WF and $\Gamma \vdash e : \tau$ with ε , then $\varepsilon \subseteq \text{capture}(\Gamma)$.

Proof. By induction on the typing judgement $\Gamma \vdash e : \tau$ with ε .

Case. ε -Var, ε -Resource, ε -NewObj.

Then e is a value. By canonical forms, $\varepsilon = \emptyset \subseteq \mathsf{capture}(\Gamma)$.

Case. C-NewObj.

 $\overline{\text{Then }\Gamma} \vdash e : \{\overline{d} \text{ captures } \varepsilon_c\} \text{ with } \varnothing, \text{ and } \varnothing \subseteq \text{capture}(\Gamma).$

Case. C-METHCALL.

Then $e = e_1.m_i(e_2)$. From inversion on C-METHCALL we know $\Gamma \vdash e_1 : \{\bar{d} \text{ captures } \varepsilon_c\} \text{ with } \varepsilon_1 \text{ and } \Gamma \vdash e_2 : \tau_2 \text{ with } \varepsilon_2, \text{ where } \varepsilon_c = \text{capture}(\Gamma') \text{ and } \Gamma' \subseteq \Gamma.$ The typing rule also gives us $\Gamma \vdash e_1.m_i(e_2) : \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_c$.

We know $\varepsilon_1 \subseteq \mathtt{capture}(\Gamma)$ and $\varepsilon_2 \subseteq \mathtt{capture}(\Gamma)$ by inductive assumption on the subexpressions e_1 and e_2 . Since $\Gamma' \subseteq \Gamma$ then $\varepsilon_c = \mathtt{capture}(\Gamma') \subseteq \mathtt{capture}(\Gamma)$.

Case. ε -OperCall.

Then $e = e_1.\pi$ and $\Gamma \vdash e$: Unit with $\varepsilon_1 \cup \{r.\pi\}$, where $\Gamma \vdash e_1 : \{r\}$ with ε_1 . By inductive assumption, $\varepsilon_1 \subseteq \text{capture}(\Gamma)$. By well-formedness, $r \in \Gamma$ which implies that $r.\pi \in \text{capture}(\Gamma)$.

Case. ε -METHCALL.

Then $e = e_1.m_i(e_2)$ and $\Gamma \vdash e_1.m_i(e_2) : \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$. By inductive assumption $\varepsilon_1 \cup \varepsilon_2 \subseteq \text{capture}(\Gamma)$. To show $\varepsilon_3 \subseteq \text{capture}(\Gamma)$ consider inversion on ε -NEWOBJ and then again on ε -VALIDIMPL $_\sigma$. From this we get the subderivation $\Gamma, x : \{\bar{\sigma}\}, y : \tau_2 \vdash e_{body} : \tau_3 \text{ with } \varepsilon_3$. By inductive assumption, $\varepsilon_3 \subseteq \text{capture}(\Gamma) \cup \text{capture}(\{\bar{\sigma}\}) \cup \text{capture}(\tau_2)$.

By definition, capture($\{\bar{\sigma}\}$) = $\bigcup_{\sigma \in \bar{\sigma}}$ capture(σ). For any particular $\sigma_i = \text{def } m_i(y : \tau_2) : \tau_3 \text{ with } \varepsilon_3$, we have capture(σ_i) = capture(τ_2) \cup capture(τ_3).

By inversion on $\Gamma \vdash e$ WFE we know $\Gamma \vdash e_1$ WFE. By the well-formedness principle, for any $\tau \in e_1$ we have $\operatorname{capture}(\tau) \subseteq \operatorname{capture}(\Gamma)$. Then $\operatorname{capture}(\tau_2) \cup \operatorname{capture}(\tau_3) \subseteq \operatorname{capture}(\Gamma)$ This was for an arbitrary σ_i so $\operatorname{capture}(\bar{\sigma}) = \bigcup_{\sigma \in \bar{\sigma}} \operatorname{capture}(\sigma) \subseteq \operatorname{capture}(\Gamma)$.

Theorem 3.5. (Inference Lemma)

Statement. If the following are true:

- $-\Gamma \vdash e \text{ WF}$
- $-\Gamma \vdash e : \tau$
- $-\tau \in \text{higher-order-args}(\Gamma) \implies \text{capture}(\tau) \supseteq \text{capture}(\Gamma)$

Then $\Gamma \vdash e : \tau'$ with ε , where $\tau' <: \tau$ and $\varepsilon \subseteq \mathsf{effects}(\Gamma)$.

Proof. The proof is by induction on $\Gamma \vdash e$. It suffices to show that $\Gamma \vdash e : \tau'$ with ε in each case. The relation $\varepsilon \subseteq \text{effects}(\Gamma)$ holds by the use principle. Furthermore, in every case except T-MethCall, $\tau' = \tau$. (NOTE: THIS RELIES ON $\{\bar{d} \text{ captures } \varepsilon\} <: \{\bar{d}\} \text{ BEING TRUE}$)

Case. T-VAR.

 $\overline{\text{You can directly apply } \varepsilon\text{-VAR}}$. Then $\Gamma \vdash x : \tau$ with \varnothing .

Case. T-RESOURCE.

You can directly apply ε -RESOURCE. Then $\Gamma \vdash r : \{r\}$ with \varnothing .

Case. | T-OperCall.

Then $e = e_1.\pi$. By inversion $\Gamma \vdash e_1 : \{r\}$ and by inductive hypothesis, $\Gamma \vdash e_1 : \{r\}$ with ε_1 . Then by ε -OPERCALL we know $\Gamma \vdash e_1.\pi : \{r\}$ with $\varepsilon \cup \{r.\pi\}$.

Case. | T-METHCALL $_{\sigma}$.

Then $e = e_1.m(e_2)$, where the method m is def $m(y:\tau_2):\tau_3$ with ε_3 . By inversion and inductive hypothesis, $\Gamma \vdash e_1 : \{\bar{\sigma}\}$ with ε_1 and $\Gamma \vdash e_2 : \tau_2$ with ε_2 . By applying ε -METHCALL we get $\Gamma \vdash e_1.m(e_2) : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2 = \varepsilon$ $\varepsilon_2 \cup \varepsilon_3$.

Case. T-METHCALL_d.

Then $e = e_1.m(e_2)$, where the method m is def $m(y : \tau_2) : \tau_3$. By inversion and inductive hypothesis, $\Gamma \vdash e_1 : \tau'_1$ with ε_1 . By inspection, the only rule which could have ascribed this is C-NewObJ, from which we learn $\tau'_1 = \{\bar{d} \text{ captures } \varepsilon_c\}$, where $\varepsilon_c = \text{capture}(\Gamma')$ and $\Gamma' \subseteq \Gamma$. By inversion and inductive hypothesis again, we have $\Gamma \vdash e_2 : \tau_2$ with ε_2 . From an application of C-METHCALL, we have $\Gamma \vdash e_1.m(e_2)$: τ_3 with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_c \cup \text{capture}(\tau_2)$.

Case. T-New $_{\sigma}$.

Then $e = \text{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e}$. By inversion of T-New, $\Gamma \vdash \overline{\sigma = e}$ OK. This is exactly the premise of ε -NEWOBJ, which gives us the judgement $\Gamma \vdash \text{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e} : \{\overline{\sigma}\} \text{ with } \emptyset$.

Case. T-New_d.

Then $e = \text{new}_d \ x \Rightarrow \overline{d = e}$ and $\Gamma \vdash e : \{d\}$. To type e with an effect we shall use C-NewObj, selecting $\Gamma' = \Gamma$. We know $\tau \in \text{higher-order-args}(\Gamma) \implies \text{capture}(\tau) \supseteq \text{capture}(\Gamma)$ from the theorem statement. Therefore we may apply C-NEWOBJ. The result is that $\Gamma \vdash e : \{\bar{d} \text{ captures } \varepsilon_c\}$ with \emptyset , where $\varepsilon_c = 0$ $effects(\Gamma)$.

Theorem 3.6. (Jump Lemma)

If $\Gamma \vdash e : \{\bar{d} \text{ captures } \varepsilon_c\}$ with ε , then for a particular $d_{body} = e_{body}$, that is, def $m(y : \bar{d})$ τ_2): $\tau_3 = e_{body}$, the following is true.

- $\begin{array}{l} -\ \varGamma, x: \{\bar{d}\}, y: \tau_2 \vdash e_{body}: \tau_3' \text{ with } \varepsilon_{body} \\ -\ \tau_3' <: \tau_3 \end{array}$
- $-\varepsilon_{body}\subseteq\varepsilon_c\cup\mathtt{capture}(au_2)$

Proof. From inversion on $\Gamma \vdash e : \{\bar{d} \text{ captures } \varepsilon_c\}$ with ε we know, for some $\Gamma' \subseteq \Gamma$, that $\Gamma', x :$ $\{d \text{ captures } \varepsilon_c\} \vdash d = e \text{ OK. Also } \varepsilon_c = \text{capture}(\Gamma'). \text{ Fix some particular method def } m(y:\tau_2): \tau_3 = e_{body}.$

The theorem assumes a typing judgement $\Gamma \vdash \{\bar{d} \text{ captures } \varepsilon_c\}$ with ε . By inversion on C-NewObj we know $\Gamma \vdash e : \{d\}$. By inversion on T-NeW_d we know $\Gamma, x : \{d\} \vdash d = e_{body}$ 0K. By inversion on ValidImpl_d we know

that $\Gamma, x : \{\bar{d}\}, y : \tau_2 \vdash e_{body} : \tau_3$. For concision, define $\hat{\Gamma}$ as $\Gamma, x : \{\bar{d}\}, y : \tau_2$.

Note that $\operatorname{capture}(\hat{\Gamma}) = \operatorname{capture}(\Gamma') \cup \operatorname{capture}(\tau_2) = \varepsilon_c \cup \operatorname{capture}(\tau_2)$. This is because $\varepsilon_c = \operatorname{capture}(\Gamma') \subseteq \operatorname{capture}(\Gamma)$, by monotonicity.

By the Inference Lemma, $\hat{\Gamma} \vdash e_{body} : \tau_3'$ with ε_3 . By the Use Principle, $\varepsilon_3 \subseteq \texttt{effects}(\hat{\Gamma}) = \texttt{effects}(\Gamma') \cup \texttt{capture}(\tau_2)$.

Theorem 3.7. (Soundness Theorem)

Statement. If $\Gamma \vdash e_A : \tau_A$ with ε_A and $e_A \longrightarrow e_B \mid \varepsilon$ then $\Gamma \vdash e_B : \tau_B$ with ε_B , where $\tau_B <: \tau_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$.

Proof. By induction on the judgement $\Gamma \vdash e_A : \tau_A$ with ε_A .

Case. C-MethCall.

Then $e = e_1.m_i(e_2)$ and we know the following.

- 1. $\Gamma \vdash e_1 : \{\bar{d} \text{ captures } \varepsilon_c\} \text{ with } \varepsilon_1$
- 2. $\Gamma \vdash e_2 : \tau_2 \text{ with } \varepsilon_2$
- 3. $d_i = \text{def } m_i(y : \tau_2) : \tau_3$
- 4. $\Gamma \vdash e_1.m_i(e_2) : \tau_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \text{effects } (\tau_2) \cup \varepsilon_c$
- 5. $\tau \in \text{higher-order-args}(\Gamma') \implies \text{capture}(\tau) \supseteq \varepsilon_c$

There are three reduction rules which could be applied to $e_1.m_i(e_2)$, where e_1 is a (deeply) unlabelled object.

<u>Subcase.</u> E-METHCALL1. Then we know $e_1 \longrightarrow e'_1 \mid \varepsilon$ and $e_1.m_i(e_2) \longrightarrow e'_1.m_i(e_2) \mid \varepsilon$. By applying the inductive assumption to e_1 , we know that $\Gamma \vdash e'_1 : \tau'_1$ with ε'_1 , where $\tau'_1 <: \{\bar{d} \text{ captures } \varepsilon_c\}$ and $\varepsilon'_1 \cup \varepsilon = \varepsilon_1$.

We can typecheck $e'_1.m_i(e_2)$ with E-METHCALL. Then $\Gamma \vdash e'_1.m_i(e_2) : \tau_3$ with $\varepsilon'_1 \cup \varepsilon_2 \cup \text{capture}(\tau_2) \cup \varepsilon_c$. $\tau_3 <: \tau_3$ trivially and since $\varepsilon'_1 \cup \varepsilon = \varepsilon_1$, we have $\varepsilon \cup \varepsilon_B = \varepsilon \cup \varepsilon'_1 \cup \varepsilon_2 \cup \text{capture}(\tau_2) \cup \varepsilon_c = \varepsilon_1 \cup \varepsilon_2 \cup \text{capture}(\tau_2) \cup \varepsilon_c = \varepsilon_A$.

Subcase. E-METHCALL2 Then we know $e_1 = v_1 = \text{new}_d \ x \Rightarrow \overline{d = e}$ and $v_1.m_i(e_2) \longrightarrow v_1.m_i(e_2') \mid \varepsilon$, where $e_2 \longrightarrow e_2' \mid \varepsilon$. By applying the inductive assumption to e_2 , we know that $\Gamma \vdash e_2' : \tau_2'$ with ε_2' , where $\tau_2' <: \tau_2$ and $\varepsilon_2' \cup \varepsilon \subseteq \varepsilon_2$.

We can typecheck $v_1.m_i(e_2')$ with E-METHCALL. Then $\Gamma \vdash v_1.m_i(e_2') : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2' \cup \text{capture}(\tau_2) \cup \varepsilon_c$. $\tau_3 <: \tau_3$ trivially and since $\varepsilon_2' \cup \varepsilon \subseteq \varepsilon_2$, we have $\varepsilon \cup \varepsilon_B = \varepsilon \cup \varepsilon_1 \cup \varepsilon_2' \cup \text{capture}(\tau_2) \cup \varepsilon_c = \varepsilon_1 \cup \varepsilon_2 \cup \text{capture}(\tau_2) \cup \varepsilon_c = \varepsilon_A$.

<u>Subcase.</u> E-METHCALL3 Then we know $e_1 = v_1 = \text{new}_d \ x \Rightarrow \overline{d = e}$ and $e_2 = v_2$ and $v_1.m_i(v_2) \longrightarrow [v_1/x, v_2/y]e_{body} \mid \varnothing$. Since $\varepsilon = \varnothing$, it is sufficient to type $[v_1/x, v_2/y]e_{body} : \tau_{body}$ with ε_{body} , where $\tau_{body} <: \tau_A$ and $\varepsilon_{body} \subseteq \varepsilon_A$.

By inversion on (1) we know $\Gamma' \subseteq \Gamma$ and $\Gamma' \vdash e_1 : \{\bar{d}\}$. By inversion on VALIDIMPL_d we know $\Gamma' \vdash \overline{d_{body}} = e_{body}$ OK, for every method defined in e_1 . Then if method m_i is $d_{body} = e_{body}$, we know $\Gamma', y : \tau_2 \vdash e_{body} : \tau_3$ from inversion on VALIDIMPL_d. By the jump lemma, $\Gamma', y : \tau_2 \vdash e_{body} : \tau_3$ with ε_B .

Now in this case, since e_1 and e_2 are values, then $\varepsilon_1 = \varepsilon_2 = \emptyset$ by canonical forms. Then $\varepsilon_A = \varepsilon_c \cup \text{capture}(\tau_2) = \text{capture}(\Gamma') \cup \text{capture}(\tau_2)$. Since $\varepsilon = \emptyset$, we just have to show that $\varepsilon_B \subseteq \varepsilon_A$. The jump lemma also tells us that $\varepsilon_B \subseteq \text{capture}(\Gamma', y : \tau_2) = \text{capture}(\Gamma') \cup \text{capture}(\tau_2) = \varepsilon_A$.

Case. ε -METHCALL.

Then $e = e_1.\pi$ and we know the following:

```
1. \Gamma \vdash e_1 : \{\bar{\sigma}\} with \varepsilon_1
```

- 2. $\Gamma \vdash e_2 : \tau_2 \text{ with } \varepsilon_2$
- 3. $\sigma_i = \text{def } m_i(y : \tau_2) : \tau_3 \text{ with } \varepsilon_3$
- 4. $\Gamma \vdash e_1.m_i(e_2) : \tau_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$

There are three reduction rules which could have been applied, depending on which of e_1 and e_2 are values.

Subcase. E-METHCALL1. Then we know $e_1 \longrightarrow e'_1 \mid \varepsilon$, and the reduction in the theorem statement is $e_1.m(e_2) \longrightarrow e'_1.m(e_2) \mid \varepsilon$. By inductive assumption, $\Gamma \vdash e'_1 : \tau'_1$ with ε'_1 , where $\tau'_1 <: \tau_1$ and $\varepsilon'_1 \cup \varepsilon = \varepsilon_1$. We may type $e'_1.m_i(e_2)$ using the rule ε -METHCALL, from which we get $\Gamma \vdash e'_1.m_i(e_2) : \tau'_3$ with $\varepsilon'_1 \cup \varepsilon_2 \cup \varepsilon_3$, where $\tau'_3 <: \tau_3$. Furthermore, $\varepsilon \cup \varepsilon_B = \varepsilon \cup \varepsilon'_1 \cup \varepsilon_2 \cup \varepsilon_3 = \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3 = \varepsilon_A$.

Subcase. E-METHCALL2. Then we know $e_1 = v_1$ is a value, and $e_2 \longrightarrow e_2' \mid \varepsilon$, and the reduction in the theorem statement is $v_1.m(e_2) \longrightarrow v_1.m(e_2') \mid \varepsilon$. By inductive assumption, $\Gamma \vdash e_2' : \tau_2'$ with ε_2' , where $\tau_2' <: \tau_2$ and $\varepsilon_2' \cup \varepsilon = \varepsilon_2$. We may type $v_1.m_i(e_2')$ using the rule ε -METHCALL, from which we get $\Gamma \vdash v_1.m_i(e_2') : \tau_3' \mid \varepsilon_1 \cup \varepsilon_2' \cup \varepsilon_3$. By canonical forms, since $e_1 = v_1$ is a value, $\varepsilon_1 = \varnothing$. Then $\varepsilon \cup \varepsilon_B = \varepsilon \cup \varepsilon_2' \cup \varepsilon_3 = \varepsilon_2 \cup \varepsilon_3 = \varepsilon_A$.

Subcase. E-METHCALL3. Then we know $e_1 = v_1$ and $e_2 = v_2$ are both values and the reduction in the theorem statement is $v_1.m_i(v_2) \longrightarrow [v_1/x, v_2/y]e_{body} \mid \varnothing$. Because $\Gamma \vdash v_1 : \{\bar{\sigma}\}$ with \varnothing , by inversion on the rule ε -NewObj and then by inversion on the rule ε -ValidImpl $_{\sigma}$, we know $\Gamma, y : \tau_2 \vdash e_{body} : \tau_3$ with ε_3 . From the substitution lemma, we have $\Gamma, y : \tau_2 \vdash [v_1/x, v_2/y]e_{body} : \tau_3$ with ε_3 , so $\tau_A = \tau_B$.

Since v_1 and v_2 are values, by canonical forms $\varepsilon_1 = \varepsilon_2 = \emptyset$, so $\varepsilon_A = \varepsilon_3 = \emptyset \cup \varepsilon_B = \varepsilon \cup \varepsilon_B$.

Case. ε -OperCall.

Then $e = e_1.\pi$ and we know the following:

- 1. $\Gamma \vdash e_1 : \{r\}$ with ε_1
- 2. $\Gamma \vdash e_1.\pi$: Unit with $\{r.\pi\} \cup \varepsilon_1$

There are two reduction rules which could have been applied, depending on whether e_1 is a value or not.

<u>Subcase.</u> E-OPERCALL1. Then we know $e_1 \longrightarrow e'_1 \mid \varepsilon$, and the reduction in the theorem statement is $e_1.\pi \longrightarrow e'_1.\pi \mid \varepsilon$. By induction assumption, $\Gamma \vdash e'_1 : \tau'_1$ with ε'_1 , where $\tau'_1 <: \tau_1$ and $\varepsilon_1 \cup \varepsilon = \varepsilon'_1$. We can type $e'_1.\pi$ with the rule ε -OPERCALL. We get $\Gamma \vdash e'_1.\pi$: Unit with $\varepsilon'_1 \cup \{r.\pi\}$. Then $\tau_A = \tau_B = \text{Unit}$ and $\varepsilon'_1 \cup \{r.pi\} \cup \varepsilon \subseteq \varepsilon_1 \cup \{r.\pi\}$, from inductive assumption.

Subcase. E-OPERCALL2 Then we know $e_1 = v_1 = r$ is a resource, and the reduction in the theorem statement is $r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$. By a trivial application of $\varepsilon - NewObj$, we have $\Gamma \vdash \text{unit}$: Unit with \varnothing . Since r is an object, by canonical forms we know $\varepsilon_A = \varnothing \cup \{r.\pi\}$, and $\varepsilon_B \cup \varepsilon = \varnothing \cup \{r.\pi\}$.

Case. ε -Var, ε -Resource, ε -NewObj, C-NewObj.

Then e_A is a value and cannot be reduced. Soundness holds trivially.