Causal Mediation Analysis with Multiple Mediators of General Structures

Youngho Bae

Department of Statistics, Sungkyunkwan University, Seoul, Republic of Korea

Motivation

Previous Study

- Counterfactaul definitions of path specific estimands [1]
- Two mediators, causally independent or dependent [2]
- Develop new methods for multiple mediators [3]
- New strategy to assess direct and indirect effect [4]

Limatation

• In general cases, we don't know how they are related **Suggestion**

Notation

Notation

T = Treatment, X = Confounders,M, V, W = Mediators, Y = Outcome

Potential Outcome Values

• $M_i(t)$, $V_i(t)$, $W_i(t)$, $V_i(t)$, $Y_i(t)$, $M_i(t)$, $V_i(t)$, $W_i(t)$, $W_i(t)$) when T = t

Observed Data

• T_i, M_i, V_i, W_i, Y_i for unit i

Consistency Assumption[5]

• For unit i, with observed treatment value $T_i = t$, $M_i = M_i(t)$, $V_i = V_i(t)$, $W_i = W_i(t, V_i(t))$, $Y_i = Y_i(t, M_i(t), V_i(t), W_i(t, V_i(t)))$ for t=0,1

Effect Decomposition

- Decompose the total effect into direct & indirect effects
 First Decomposition: Direct Effect & M Effect
 - $\tau = Y_i(1, V_i(1), W_i(1, V_i(1)), M_i(1)) Y_i(0, V_i(0), W_i(0, V_i(0)), M_i(0))$
 - $= Y_i(1, V_i(1), W_i(1, V_i(1)), M_i(1)) Y_i(1, V_i(1), W_i(1, V_i(1)), M_i(0))$
 - + $Y_i(1, V_i(1), W_i(1, V_i(1)), M_i(0)) Y_i(0, V_i(1), W_i(1, V_i(1)), M_i(0))$
 - + $Y_i(0, V_i(1), W_i(1, V_i(1)), M_i(0)) Y_i(0, V_i(0), W_i(0, V_i(0)), M_i(0))$

Second Decomposition: V Effect & W Effect after V Effect

 $Y_i(0, V_i(1), W_i(1, V_i(1)), M_i(0)) - Y_i(0, V_i(0), W_i(0, V_i(0)), M_i(0))$ = $Y_i(0, V_i(1), W_i(1, V_i(1)), M_i(0)) - Y_i(0, V_i(0), W_i(1, V_i(1)), M_i(0))$

 $+Y_i(0, V_i(0), W_i(1, V_i(1)), M_i(0)) - Y_i(0, V_i(0), W_i(0, V_i(0)), M_i(0))$

Assumptions

Sequentially Ignorability Assumptions (S.I.A)

 $\{Y_{i}(t, v, w, m), M_{i}(t'), V_{i}(t''), W_{i}(t''', v')\} \perp \perp T_{i} \mid X_{i} = x$ $Y_{i}(t', v, w, m) \perp \perp M_{i} \mid T_{i} = t, X_{i} = x$ $\{Y_{i}(t', v, w, m), W_{i}(t'', v')\} \perp \perp V_{i} \mid T_{i} = t, X_{i} = x$ $Y_{i}(t', v', w, m) \perp \perp W_{i} \mid V_{i}(t) = v, T_{i} = t, X_{i} = x$ (1) $\{Y_{i}(t', v, w, m) \perp \perp W_{i} \mid T_{i} = t, X_{i} = x$ $Y_{i}(t', v', w, m) \perp \perp W_{i} \mid V_{i}(t) = v, T_{i} = t, X_{i} = x$ (2)

for any t, t', t'', t''', m, v, v', w, x.

Implication of Assumptions

These assumptions imply,

- (a) $Y_i(t, v, w, m) \perp T_i \mid M_i(t') = m', X_i = x$
- (b) $Y_i(t, v, w, m) \perp T_i \mid W_i(t'', v'') = w', V_i(t') = v', X_i = x$
- (c) $W_i(t, v) \perp T_i \mid V_i(t') = v', X_i = x$

for any t, t', t'', v, v', v'', w, w', m, m', x.

Identification

$$\begin{split} \bar{\tau} &= \int \{E[Y_i|T_i=1,X_i=x] - E[Y_i|T_i=0,X_i=x]\} \, dF_{X_i}(x) \\ \bar{\delta}^M(t) &= \iint E[Y_i|M_i=m,\,T_i=t,\,X_i=x] \, \{dF_{M_i|T_i=1,X_i=x}(m) - dF_{M_i|T_i=0,X_i=x}(m)\} \, dF_{X_i}(x) \\ \bar{\delta}^{V,W}(t') &= \iiint E[Y_i|W_i=w,\,V_i=v,\,T_i=t',\,X_i=x] \, \{dF_{V_i|T_i=1,X_i=x}(v) \, dF_{W_i|V_i=v,\,T_i=1,X_i=x}(w) \\ &- dF_{V_i|T_i=0,X_i=x}(v) \, dF_{W_i|V_i=v,\,T_i=0,X_i=x}(w)\} \, dF_{X_i}(x) \\ \bar{\delta}^V(t',t'') &= \iiint E[Y_i|W_i=w,\,V_i=v,\,T_i=t',\,X_i=x] \, \{dF_{V_i|T_i=1,X_i=x}(v) - dF_{V_i|T_i=0,X_i=x}(v)\} \\ &\times dF_{W_i|V_i=v,\,T_i=t'',\,X_i=x}(w) \, dF_{X_i}(x) \end{split}$$

Simulation Study

Main data-generating models

 $X_1 \sim N(0, 0.5), \quad X_2 \sim N(-3, 0.5), \quad X_3 \sim N(3, 0.5)$ $logit(P(T_i = 1)) = 0.2 + 0.2X_{1i} + 0.7X_{2i} + 0.5X_{3i}$ $T_i \sim Bernoulli(P(T_i = 1))$ $M_i = 1 + T_i + X_{1i} + X_{2i} + X_{3i} + \varepsilon_{iM}$ $\varepsilon_{iM} \sim N(0, 0.5)$ $V_i = 2 + 1.5T_i + 0.7X_{1i} + 0.5X_{2i} + 0.2X_{3i} + \varepsilon_{iV}$ $\varepsilon_{iV} \sim N(0, 0.4)$ $W_i = 3 + 0.8T_i + 1.4V_i + 0.4X_{1i} + 0.4X_{2i} + 0.4X_{3i} + \varepsilon_{iW}$ $\varepsilon_{iW} \sim N(0, 0.35)$

Scenario I

 $Y_i = 5 + 1.2T_i + 1.2M_i + 1.4V_i + 0.7W_i + 0.5X_{1i} + 0.4X_{2i} + 0.6X_{3i} + \varepsilon_{iY} \qquad \varepsilon_{iY} \sim N(0, 0.2)$

Scenario II

 $Y_i = 5 + 1.2T_i + 1.2M_i + 1.4V_i + 0.7W_i + T_iM_i + 0.5X_{1i} + 0.4X_{2i} + 0.6X_{3i} + \varepsilon_{iY}$ $\varepsilon_{iY} \sim N(0, 0.2)$

Simulation Result

	Scenario I					Scenario II			
Effects	Truth	n=50	n=100	n=500	Truth	n=50	n=100	n=500	
Total	6.531	0.038(0.164)	0.001(0.063)	0.008(0.014)	8.532	0.120(0.237)	-0.012(0.153)	-0.009(0.024)	
M	1.201	-0.019(0.048)	-0.043(0.023)	-0.001(0.005)	2.200	0.038(0.152)	0.021(0.098)	0.002(0.016)	
V&W	4.130	0.055(0.033)	0.039(0.009)	0.013(0.002)	4.131	0.087(0.058)	-0.018(0.024)	-0.007(0.005)	
Direct	1.200	0.003(0.158)	0.005(0.058)	-0.004(0.013)	2.201	-0.005(0.172)	-0.015(0.060)	-0.003(0.010)	
V	2.100	0.021(0.094)	0.016(0.035)	0.017(0.009)	2.101	0.016(0.105)	-0.028(0.048)	0.004(0.007)	
W	2.030	0.033(0.109)	0.023(0.040)	-0.004(0.009)	2.030	0.072(0.108)	0.010(0.031)	-0.011(0.007)	

Table 1: Biases and MSEs of our estimates

Sensitivity Anls.

Sensitivity parameters

 $\rho_{1} = Corr(\varepsilon_{iM}, \varepsilon_{iY})$ $\rho_{2} = Corr(\varepsilon_{iV}, \varepsilon_{iY})$ $\rho_{3} = Corr(\varepsilon_{iV}, \varepsilon_{iW})$

Idea

- randomized
 - ⇔ S.I.A (1) holds
- $\rho_1 = 0 \Leftrightarrow S.I.A$ (2) holds
- $\rho_2 = \rho_3 = 0$
- \Leftrightarrow S.I.A (3) holds

Sensitivity Analysis Result

Fig. 1: Changes in estimates according to the sensitivity parameters

Future Study

Sensitivity Analysis

- Sensitivity parameter for the fourth assumption of the sequentially ignorability assumptions
- New sensitivity analysis method with more practical assumptions

Application to real data

• The pollination data: Emission Control Technology

Other relationships between mediators

- Mediators affecting each other
- Mediators that affected by more than one mediator

References

- [1] DANIEL, R. M., DE STAVOLA, B. L., COUSENS, S., AND VANSTEELANDT, S. Causal mediation analysis with multiple mediators. *Biometrics 71*, 1 (2015), 1–14.
- [2] IMAI, K., AND YAMAMOTO, T. Identification and sensitivity analysis for multiple causal mechanisms: Revisiting evidence from framing experiments. *Political Analysis* (2013), 141–171.
- [3] KIM, C., DANIELS, M. J., HOGAN, J. W., CHOIRAT, C., AND ZIGLER, C. M. Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls. *The annals of applied statistics* 13, 3 (2019), 1927.
- [4] VANDERWEELE, T., AND VANSTEELANDT, S. Mediation analysis with multiple mediators. *Epidemiologic methods 2*, 1 (2014), 95–115.
- [5] VANDERWEELE, T. J. Concerning the consistency assumption in causal inference. *Epidemi-ology 20*, 6 (2009), 880–883.