Al Essentials

Search AlgorithmsDefinition

- A search problem consists of:
 - A State Space: Set of all possible states where you can be.
 - A Start State: The state from where the search begins.
 - A Goal Test: A function that looks at the current state returns whether or not it is the goal state.
- The Solution to a search problem is a sequence of actions, called the Plan that transforms the start state to the goal state.
- The Plan is determined by a search algorithm

Uninformed Search

- No additional information on the goal node other than the one provided in the problem definition.
- The plans to reach the goal state from the start state differ only by the order and/or length of actions
- Blind search

Uninformed Search

- These algorithms have:
 - A problem graph with start node S and goal node G
 - A strategy describing how to travers the graph
 - A fringe, the data structure representing the graph
 - A sequence from node S to G called the solution plan

Informed Search

- More information
- Helps for more efficient searching
- The information is obtained by a heuristic
- A heuristic is a function that estimates how close a state is to the goal state.

Depth First Search

Uninformed Search

• Exploring as far as possible along each branch before backtracking

Breadth Frist Search

Uninformed Search

 Exploring all of the neighbour nodes a the present depth prior to moving on to the nodes at the next depth level

Uniform Cost Search

Uninformed Search

The goal is to find the path where the total costs is the least

Uniform Cost Search

Uninformed Search

Path: S -> D -> C -> G2

Greedy Search

Informed Search

Choose the node closest to the goal

• The closest node is estimated by the heuristic (h)

A* Search

Informed Search

- Combines the strengths of uniform-cost search and greedy search
- Heuristic = summation of the cost in UCS + cost in greedy search
- f(x) "the total cost" = h(x) "forward cost" + g(x) "backward cost"
- Choose the node with the lowest f(x) value

A* Search

Informed Search

	h(x)	g(x)	f(x)
S->A S->D	9 5	3 2	12 7
S->D->B S->D->E	4 3	2+1=3 2+4=6	7 9
S->D->B->C S->D->B->E	2 3	2+1+2=5 2+1+1=4	7 7
S->D->B->C->G S->D->B->E->G	0	2+1+2+4=9 2+1+1+3=7	9 7

Path: S -> D -> B -> E-> G

Cost: 7