

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE FÍSICA

Física II

Cursos: Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e Gestão Industrial

Regente - Félix Tomo

Assitentes - Fernando Mucomole, Esménio Macassa, Tomásio Januário, Graça Massimbe & Valdemiro Sultane

2022 - Aula Prática # 8 - Fontes do Campo Magnético

- 1. Explique a diferença entre:
 - (a) A circulação do campo eléctrico \vec{E} e a circulação do campo magnético \vec{B} .
 - (b) A lei de Gauss para o campo eléctrico \vec{E} e para o campo magnético \vec{B} .
- 2. Determine o campo magnético criado no ponto P que dista $50 \, cm$, perpendicularmente a um segmento rectilíneo de corrente $i = 0.5 \, A$.
- 3. Três condutores longos e paralelos, passam pelos vértices de um quadrado de lado L. Calcule o campo magnético \vec{B} no vértice vazio, sabendo que todas as correntes entram no plano do papel.
- 4. Determine o campo magnético \vec{B} ao longo do eixo de uma corrente circular.
- 5. Uma esfera condutora de raio R e carregada uniformemente com a densidade superficial de carga σ , gira emtorno do seu eixo com velocidade angular ω . Determine o campo magnético \vec{B} no centro da esfera.
- 6. No circuito apresentado na Figura 1, uma corrente $i=56,2\,mA$ circula em uma espira formada por dois segmentos radiais e duas semicircunferências de raios $a=5,72\,cm$ e $b=9,36\,cm$, com um centro comum P. Determine (a) O módulo e o sentido (entra ou sai da página) do campo magnético no centro e, (b) O módulo e sentido do momento magnético dipolar $\vec{\mu}$ do circuito.

Figura 1.

- 7. Determine o campo magnetico \vec{B} , dentro e fora de um cilindro infinito de raio $R=1\,m$, percorrido por uma corrente de densidade $(\mu=2)$.
 - (a) $j = 5A/m^2$
 - (b) $j = 5 (r/R) A/m^2$
- 8. Na Figura 2, dois arcos de circunfência têm raios a=13.5~cm e b=10.7~cm, formam um ângulo $\theta=74^\circ$, conduzem uma corrente i=0.411~A e têm o mesmo centro de curvatura P. Determine o módulo e o sentido do campo magnético no ponto P.

Figura 2.

9. Um fio rectilíneo longo AB, representado na Figura 3, conduz corrente de $i_1=14,0\,A$. A espira rectangular cuja aresta mais longa é paralela ao fio, conduz corrente $i_2=5,0\,A$. Determine o módulo, a direcção e sentido da força magnética resultante produzida pelo campo do fio e exercida sobre a espira.

Figura 3.