Geometry of Vectors, Matrices

Hayk Aprikyan, Hayk Tarkhanyan

March 21, 2025

What if we want to measure the length of some vector?

Aprikyan, Tarkhanyan Lecture 2

What if we want to measure the length of some vector?

What we can say, is that

the length of the vector

=

the distance between O and A.

But how to measure distance?

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025

But how to measure distance?

For a bishop, the distance to its upper-right neighbor is 1.

While for a rook, it is 2.

But how to measure distance?

For a bishop, the distance to its upper-right neighbor is 1.

While for a rook, it is 2.

So there are different ways to measure distance and length.

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 3 / 36

For a vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , its **Euclidean norm** or **L2 norm** is:

$$\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

or, equivalently,

$$\|\mathbf{v}\|_2 = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

Aprikyan, Tarkhanyan

For a vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , its **Euclidean norm** or **L2 norm** is:

$$\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

or, equivalently,

$$\|\boldsymbol{v}\|_2 = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$$

Example

Let $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. The Euclidean norm of \mathbf{v} is:

$$\|\mathbf{v}\|_2 = \sqrt{3^2 + 4^2} = 5$$

Aprikyan, Tarkhanyan

Lecture 2

For a vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , its **Euclidean norm** or **L2 norm** is:

$$\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

or, equivalently,

$$\|\mathbf{v}\|_2 = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

Example

Let $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. The Euclidean norm of \mathbf{v} is:

$$\|\mathbf{v}\|_2 = \sqrt{3^2 + 4^2} = 5$$

Euclidean norm is the standard length we use in classic geometry. Sometimes we omit the little "2" and just write $\|\mathbf{v}\|$ instead of $\|\mathbf{v}\|_2$.

For a vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , its **Manhattan norm** or **L1 norm** is:

$$\|\mathbf{v}\|_1 = |v_1| + |v_2| + \cdots + |v_n|$$

5/36

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025

For a vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$
 in \mathbb{R}^n , its **Manhattan norm** or **L1 norm** is:

$$\|\mathbf{v}\|_1 = |v_1| + |v_2| + \cdots + |v_n|$$

Example

Let $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. The Manhattan norm of \mathbf{v} is:

$$\|\mathbf{v}\|_1 = |3| + |4| = 7$$

Aprikyan, Tarkhanyan

As we have seen, there are different types of norms (=many different ways to calculate the length of a vector), and one of them is chosen depending on the problem.

As we have seen, there are different types of norms (=many different ways to calculate the length of a vector), and one of them is chosen depending on the problem.

Notice, however, that independently of which one we take, all norms always satisfy the following three properties:

- $||\mathbf{v}|| \ge 0$, and equals 0 if only if $\mathbf{v} = \mathbf{0}$,
- $||c\mathbf{v}|| = |c| \cdot ||\mathbf{v}||,$
- $\| \mathbf{v} + \mathbf{u} \| \le \| \mathbf{v} \| + \| \mathbf{u} \|.$

Aprikyan, Tarkhanyan

Aprikyan, Tarkhanyan

Geometrically, a vector is an arrow in space, that is, it has both a length and direction.

Geometrically, a vector is an arrow in space, that is, it has both a length and direction. How do we describe a direction in mathematics?

Geometrically, a vector is an arrow in space, that is, it has both a length and direction. How do we describe a direction in mathematics? By angles!

Geometrically, a vector is an arrow in space, that is, it has both a length and direction. How do we describe a direction in mathematics? By angles!

Remember the formula from high school geometry:

 $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \alpha$, where α is the angle between \mathbf{a} and \mathbf{b} .

8/36

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025

Definition

The angle θ between two vectors ${\bf u}$ and ${\bf v}$ is the angle $0 \le \theta \le \pi$ for which:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

Definition

The angle θ between two vectors **u** and **v** is the angle $0 < \theta < \pi$ for which:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

Example

Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$. Find the angle θ between \mathbf{u} and \mathbf{v} .

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|} = \frac{(3 \cdot 7) + (4 \cdot 1)}{\sqrt{3^2 + 4^2} \cdot \sqrt{7^2 + 1^2}} = \frac{25}{\sqrt{25} \cdot \sqrt{50}} = \frac{1}{\sqrt{2}}$$
$$\frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} \quad \Rightarrow \quad \theta = \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{4} = 45^{\circ}$$

March 21, 2025

Corollary 1

For any vectors \mathbf{u} , $\mathbf{v} \in \mathbb{R}^n$,

$$\mathbf{v} \cdot \mathbf{u} = \|\mathbf{v}\| \cdot \|\mathbf{u}\| \cdot \cos \theta,$$

where θ is the angle between \mathbf{v} and \mathbf{u} .

Corollary 1

For any vectors \mathbf{u} , $\mathbf{v} \in \mathbb{R}^n$,

$$\mathbf{v} \cdot \mathbf{u} = \|\mathbf{v}\| \cdot \|\mathbf{u}\| \cdot \cos \theta,$$

where θ is the angle between \mathbf{v} and \mathbf{u} .

Corollary 2

The dot product of two vectors equals 0 if and only if they are perpendicular to each other (form a 90° angle).

Corollary 1

For any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$\mathbf{v} \cdot \mathbf{u} = \|\mathbf{v}\| \cdot \|\mathbf{u}\| \cdot \cos \theta,$$

where θ is the angle between **v** and **u**.

Corollary 2

The dot product of two vectors equals 0 if and only if they are perpendicular to each other (form a 90° angle).

Corollary 3

Any vector $\mathbf{v} \in \mathbb{R}^n$ forms an angle of 0° with itself and 180° with its negative.

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 10 / 36

Finally, we are left to notice two things. Take, for example,

- the set $D = \{0, 1, 2, \dots, 9\}$ of digits, and
- the set $P = \{x \in \mathbb{R} : x > 0\}$ of positive numbers.

Aprikyan, Tarkhanyan

Finally, we are left to notice two things. Take, for example,

- the set $D = \{0, 1, 2, ..., 9\}$ of digits, and
- the set $P = \{x \in \mathbb{R} : x > 0\}$ of positive numbers.

Notice that,

• while the sum of two digits may not be a digit (e.g. 5 + 7 = 12), the sum of two vectors is *always* a vector,

Aprikyan, Tarkhanyan

Finally, we are left to notice two things. Take, for example,

- the set $D = \{0, 1, 2, ..., 9\}$ of digits, and
- the set $P = \{x \in \mathbb{R} : x > 0\}$ of positive numbers.

Notice that,

• while the sum of two digits may not be a digit (e.g. 5 + 7 = 12), the sum of two vectors is *always* a vector,

and

• while the product of a positive number with an arbitrary scalar c may not be positive (e.g. $4 \cdot (-1) = -4$), the product of a vector with a scalar is *always* a vector.

Finally, we are left to notice two things. Take, for example,

- the set $D = \{0, 1, 2, ..., 9\}$ of digits, and
- the set $P = \{x \in \mathbb{R} : x > 0\}$ of positive numbers.

Notice that,

• while the sum of two digits may not be a digit (e.g. 5 + 7 = 12), the sum of two vectors is *always* a vector,

and

• while the product of a positive number with an arbitrary scalar c may not be positive (e.g. $4 \cdot (-1) = -4$), the product of a vector with a scalar is *always* a vector.

In this case we say that the set of vectors is **closed under addition and scalar multiplication**, while D or P are not (P is closed under addition only).

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

11/36

Furthermore, take the line y = 2x and choose any vector on it:

After multiplying it with any number c, it will still stay on the line y=2x:

Similarly, if we add two vectors \mathbf{v}_1 and \mathbf{v}_2 which both lie on the line y=2x, their sum would again be on the same line.

Aprikyan, Tarkhanyan

Similarly, if we add two vectors \mathbf{v}_1 and \mathbf{v}_2 which both lie on the line y = 2x, their sum would again be on the same line.

In other words, the line y=2x is **closed under addition and scalar multiplication**, just like the whole set of vectors \mathbb{R}^2 . This motivates us to give a special name to the good sets like the line y=2x and \mathbb{R}^2 .

Similarly, if we add two vectors \mathbf{v}_1 and \mathbf{v}_2 which both lie on the line y = 2x, their sum would again be on the same line.

In other words, the line y=2x is **closed under addition and scalar multiplication**, just like the whole set of vectors \mathbb{R}^2 . This motivates us to give a special name to the good sets like the line y=2x and \mathbb{R}^2 .

We say that \mathbb{R}^2 is a **vector space**, and the set of vectors lying on the line y = 2x are a **vector subspace** of \mathbb{R}^2 .

Definition

A set V is called a **vector space** if

- 1 it is closed under addition and scalar multiplication,
- (u + v) + w = u + (v + w)
- **3** u + v = v + u
- There exists a vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in V$
- **5** For every $\mathbf{v} \in V$, there exists a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- $\mathbf{0} \ 1 \cdot \mathbf{v} = \mathbf{v}$
- $(c+d) \cdot \mathbf{v} = c \cdot \mathbf{v} + d \cdot \mathbf{v}$

No need to memorize the properties—just the natural laws of addition and scalar multiplication.

Definition

A subset U of a vector space V is called a **subspace** of V if U itself is a vector space.

Definition

A subset U of a vector space V is called a **subspace** of V if U itself is a vector space.

How to check if a subset U of V is a subspace? Just make sure that it is closed under addition and scalar multiplication!

Definition

A subset U of a vector space V is called a **subspace** of V if U itself is a vector space.

How to check if a subset U of V is a subspace? Just make sure that it is closed under addition and scalar multiplication!

Theorem,

Assume V is a vector space, and U is a subset of V. Then U is a subspace of V if and only if

- 1. $\mathbf{x} + \mathbf{y} \in U$, for all $\mathbf{x}, \mathbf{y} \in U$,
- 2. $c\mathbf{x} \in U$, for all $\mathbf{x} \in U$ and $c \in \mathbb{R}$.

Vector Space

Definition

A subset U of a vector space V is called a **subspace** of V if U itself is a vector space.

How to check if a subset U of V is a subspace? Just make sure that it is closed under addition and scalar multiplication!

Theorem

Assume V is a vector space, and U is a subset of V. Then U is a subspace of V if and only if

- 1. $\mathbf{x} + \mathbf{y} \in U$, for all $\mathbf{x}, \mathbf{y} \in U$,
- 2. $c\mathbf{x} \in U$, for all $\mathbf{x} \in U$ and $c \in \mathbb{R}$.
- So \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , ... are all vector spaces.
- The set of all vectors that lie on the same line (e.g. y = kx) form a subspace (on the condition that the line also contains the **0** vector).

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 16 / 36

Matrices

Definition

An $m \times n$ tuple A of elements a_{ij} (i = 1, ..., m and j = 1, ..., n), is called a real-valued (m, n) matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \qquad a_{ij} \in \mathbb{R}.$$

The set of all real-valued (m, n) matrices is denoted by $\mathbb{R}^{m \times n}$.

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times 3} \qquad B = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

Matrices

Definition

An $m \times n$ tuple A of elements a_{ij} (i = 1, ..., m and j = 1, ..., n), is called a real-valued (m, n) matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \qquad a_{ij} \in \mathbb{R}.$$

The set of all real-valued (m, n) matrices is denoted by $\mathbb{R}^{m \times n}$.

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times 3} \qquad B = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

Note that the first number in (m, n) always shows rows, second: columns,

 Aprikyan, Tarkhanyan
 Lecture 2
 March 21, 2025
 17 / 36

The vectors are practically 1-column matrices: $\mathbb{R}^n = \mathbb{R}^{n \times 1}$. Similar to vectors, we define the following operations with the matrices:

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 18 / 36

The vectors are practically 1-column matrices: $\mathbb{R}^n = \mathbb{R}^{n \times 1}$. Similar to vectors, we define the following operations with the matrices:

Definition

The sum of two matrices A and B, denoted as A+B, is obtained by adding corresponding elements. If A is of size $m \times n$ and B is of the same size, then A+B is also of size $m \times n$.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 18 / 36

Example

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$
$$A + B = \begin{bmatrix} -1 & 2 \\ 4 & 7 \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$
$$A + B = \begin{bmatrix} -1 & 2 \\ 4 & 7 \end{bmatrix}$$

Remark

Matrix addition is only defined for matrices of the same size.

Aprikyan, Tarkhanyan

Scalar Multiplication of a Matrix

Definition

The product of a scalar c and a matrix A, denoted as cA, is obtained by multiplying each element of the matrix by the scalar.

$$c \cdot A = c \cdot \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} c \cdot a_{11} & c \cdot a_{12} & \dots & c \cdot a_{1n} \\ c \cdot a_{21} & c \cdot a_{22} & \dots & c \cdot a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c \cdot a_{m1} & c \cdot a_{m2} & \dots & c \cdot a_{mn} \end{bmatrix}$$

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 20 / 36

Scalar Multiplication of a Matrix

Definition

The product of a scalar c and a matrix A, denoted as cA, is obtained by multiplying each element of the matrix by the scalar.

$$c \cdot A = c \cdot \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} c \cdot a_{11} & c \cdot a_{12} & \dots & c \cdot a_{1n} \\ c \cdot a_{21} & c \cdot a_{22} & \dots & c \cdot a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c \cdot a_{m1} & c \cdot a_{m2} & \dots & c \cdot a_{mn} \end{bmatrix}$$

Scalar multiplication can be performed for any scalar c and any matrix A.

 Aprikyan, Tarkhanyan
 Lecture 2
 March 21, 2025
 20 / 36

Negative of a Matrix

Definition

The negative of a matrix A, denoted as -A, is obtained by changing the sign of each element in the matrix.

$$-A = -\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} -a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & -a_{22} & \dots & -a_{2n} \\ \dots & \dots & \dots & \dots \\ -a_{m1} & -a_{m2} & \dots & -a_{mn} \end{bmatrix}$$

Negative of a Matrix

Definition

The negative of a matrix A, denoted as -A, is obtained by changing the sign of each element in the matrix.

$$-A = -\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} -a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & -a_{22} & \dots & -a_{2n} \\ \dots & \dots & \dots & \dots \\ -a_{m1} & -a_{m2} & \dots & -a_{mn} \end{bmatrix}$$

Remark

The negative of a matrix equals (-1) times the matrix.

Matrix Subtraction

Definition

The difference of two matrices A and B, denoted as A-B, is obtained by subtracting corresponding elements, or by adding A and -B. If A and B are both of size $m \times n$, then A-B is also of size $m \times n$.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$

$$A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \dots & a_{1n} - b_{1n} \\ a_{21} - b_{21} & a_{22} - b_{22} & \dots & a_{2n} - b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} - b_{m1} & a_{m2} - b_{m2} & \dots & a_{mn} - b_{mn} \end{bmatrix}$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

Matrix Subtraction

Definition

The difference of two matrices A and B, denoted as A - B, is obtained by subtracting corresponding elements, or by adding A and -B. If A and B are both of size $m \times n$, then A - B is also of size $m \times n$.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$

$$A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \dots & a_{1n} - b_{1n} \\ a_{21} - b_{21} & a_{22} - b_{22} & \dots & a_{2n} - b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} - b_{m1} & a_{m2} - b_{m2} & \dots & a_{mn} - b_{mn} \end{bmatrix}$$

Matrix subtraction is only defined for matrices of the same size.

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 22 / 36

Zero Matrix

Definition

The **zero matrix**, denoted as O or $O_{m \times n}$, is a matrix where all elements are zero.

Zero Matrix

Definition

The **zero matrix**, denoted as O or $O_{m \times n}$, is a matrix where all elements are zero.

Example

$$O_{2 imes 3} = egin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} \quad O_{3 imes 2} = egin{bmatrix} 0 & 0 \ 0 & 0 \ 0 & 0 \end{bmatrix}$$

Zero Matrix

Definition

The **zero matrix**, denoted as O or $O_{m \times n}$, is a matrix where all elements are zero.

Example

$$O_{2 imes3}=egin{bmatrix} 0&0&0\0&0&0 \end{bmatrix} \quad O_{3 imes2}=egin{bmatrix} 0&0\0&0\0&0 \end{bmatrix}$$

Remark

A + O = O + A = A for any matrix A.

Transpose of a Matrix

Definition

The **transpose** of a matrix A, denoted as A^T , is obtained by swapping its rows and columns.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$

Transpose of a Matrix

Definition

The **transpose** of a matrix A, denoted as A^T , is obtained by swapping its rows and columns.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 7 & 4 & 2 \\ 0 & 1 & -3 \end{bmatrix} \qquad A^{\mathsf{T}} = \begin{bmatrix} 7 & 0 \\ 4 & 1 \\ 2 & -3 \end{bmatrix}$$

$$A^T = \begin{vmatrix} 7 & 0 \\ 4 & 1 \\ 2 & -3 \end{vmatrix}$$

Transpose of a Matrix

Definition

The **transpose** of a matrix A, denoted as A^T , is obtained by swapping its rows and columns.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 7 & 4 & 2 \\ 0 & 1 & -3 \end{bmatrix} \qquad A^{\mathsf{T}} = \begin{bmatrix} 7 & 0 \\ 4 & 1 \\ 2 & -3 \end{bmatrix}$$

Remark

The transpose of an (m, n) matrix is an (n, m) matrix.

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 24 / 36

Matrices

Matrices can be added together and multiplied by numbers, and these operations share the same "good" properties (e.g. A + B = B + A) with vectors.

Aprikyan, Tarkhanyan

Matrices

Matrices can be added together and multiplied by numbers, and these operations share the same "good" properties (e.g. A + B = B + A) with vectors.

In that sense, it is not difficult to prove that:

Theorem

For each $m, n \in \mathbb{N}$ the set of real-valued matrices $\mathbb{R}^{m \times n}$ forms a vector space.

Aprikyan, Tarkhanyan

Definition

Let A be an $m \times n$ matrix and **v** be a column vector of size $n \times 1$. The product $A\mathbf{v}$ is a column vector of size $m \times 1$ obtained by multiplying each row of A by the corresponding element of \mathbf{v} and summing the results.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

$$A\mathbf{v} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \dots + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \dots + a_{mn}v_n \end{bmatrix}$$

26 / 36

Or, in other words, if we denote the rows of A by $\mathbf{A}_1, \mathbf{A}_2, \ldots, \mathbf{A}_m$, the product $A\mathbf{v}$ will be a column vector of size $m \times 1$ obtained by taking the dot product of each row of A with the vector \mathbf{v} :

$$A = \begin{bmatrix} \dots & \mathbf{A}_1 & \dots \\ \dots & \mathbf{A}_2 & \dots \\ & \vdots & \\ \dots & \mathbf{A}_m & \dots \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

$$A\mathbf{v} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \dots + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \dots + a_{mn}v_n \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \cdot \mathbf{v} \\ \mathbf{A}_2 \cdot \mathbf{v} \\ \vdots \\ \mathbf{A}_m \cdot \mathbf{v} \end{bmatrix}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 27 / 36

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

$$A\mathbf{v} = \begin{bmatrix} 1 \cdot 2 + 2 \cdot (-1) + 3 \cdot 3 \\ 4 \cdot 2 + 5 \cdot (-1) + 6 \cdot 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 21 \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

$$A\mathbf{v} = \begin{bmatrix} 1 \cdot 2 + 2 \cdot (-1) + 3 \cdot 3 \\ 4 \cdot 2 + 5 \cdot (-1) + 6 \cdot 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 21 \end{bmatrix}$$

Example

$$A = \begin{bmatrix} -2 & 1 \\ 0 & 3 \\ 1 & -1 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$A\mathbf{v} = \begin{bmatrix} (-2) \cdot 4 + 1 \cdot 2 \\ 0 \cdot 4 + 3 \cdot 2 \\ 1 \cdot 4 + (-1) \cdot 2 \end{bmatrix} = \begin{bmatrix} -6 \\ 6 \\ 2 \end{bmatrix}$$

Aprikyan, Tarkhanyan

Matrix-vector multiplication shares properties with scalar multiplication and addition of vectors.

• Distributive Property:

For a matrix A and vectors \mathbf{v} and \mathbf{w} of appropriate sizes:

$$A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w}$$

Scalar Multiplication:

For a matrix A and a scalar c:

$$A(c\mathbf{v})=c(A\mathbf{v})$$

Matrix-vector multiplication shares properties with scalar multiplication and addition of vectors.

• Distributive Property:

For a matrix A and vectors \mathbf{v} and \mathbf{w} of appropriate sizes:

$$A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w}$$

Scalar Multiplication:

For a matrix A and a scalar c:

$$A(c\mathbf{v}) = c(A\mathbf{v})$$

Note that we can only multiply a matrix by a vector if the number of columns of the matrix equals the length of the vector.

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 30 / 36

Why do we define the matrix-vector multiplication this way? Turns out, it has a beautiful geometrical interpretation.

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 31/36

Why do we define the matrix-vector multiplication this way? Turns out, it has a beautiful geometrical interpretation.

Think this way: when you multiply, say, a 2×2 matrix A by a vector $\mathbf{v} \in \mathbb{R}^2$, what you get is another vector $\mathbf{u} = A\mathbf{v} \in \mathbb{R}^2$. We call this \mathbf{u} the **transformed version** of \mathbf{v} (and we say that A is a linear transformation).

Aprikyan, Tarkhanyan Lecture 2 March 21, 2025 31/36

As we will see later, the resulting "transformed version" **u** is just the same old \mathbf{v} except it is **rotated** and **scaled** to become longer or shorter (and possibly, flipped).

As we will see later, the resulting "transformed version" \mathbf{u} is just the same old \mathbf{v} except it is **rotated** and **scaled** to become longer or shorter (and possibly, flipped).

In this sense, all matrices are either just rotating vectors by some degree, or flipping them horizontally/vertically, or scale them, or do all three.

The key thing is: whatever a matrix "does" to one vector, it does the same to all other vectors too (when being multiplied with them).

Check different matrices yourself:

- visualize-it.github.io/linear_transformations/simulation.html
- www.shad.io/MatVis

We will learn more about this later–now back to matrices \sim

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□<

Definition

Let A be an $m \times n$ matrix, and let B be an $n \times k$ matrix. The product C = AB is an $m \times k$ matrix, where each element c_{ij} is obtained by taking the dot product of the i-th row of A and the j-th column of B:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1k} \\ b_{21} & b_{22} & \dots & b_{2k} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nk} \end{bmatrix}$$

$$C = AB = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1k} \\ c_{21} & c_{22} & \dots & c_{2k} \\ \dots & \dots & \dots & \dots \\ c_{m1} & c_{m2} & \dots & c_{mk} \end{bmatrix}$$

where
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj} = \sum_{p=1}^{n} a_{ip}b_{pj}$$

A
B
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$
 $\begin{bmatrix} 1 \times 6 + 2 \times 8 = 22 \\ 1 \times 5 + 2 \times 7 = 19 \\ 3 \times 5 + 4 \times 7 = 43 \\ 3 \times 6 + 4 \times 8 = 50 \end{bmatrix}$

34 / 36

Matrix multiplication shares properties with scalar multiplication and addition of vectors, as well as matrix-vector multiplication.

• Distributive Property:

For matrices A, B, and C of appropriate sizes:

$$A(B+C) = AB + AC$$
 and $(A+B)C = AC + BC$

• Associativity Property:

For matrices A, B, and C of appropriate sizes:

$$A(BC) = (AB)C$$

Scalar Multiplication:

For matrices A, B of appropriate sizes and a scalar c:

$$A(cB) = c(AB) = (cA)B$$

Matrix multiplication shares properties with scalar multiplication and addition of vectors, as well as matrix-vector multiplication.

• Distributive Property:

For matrices A, B, and C of appropriate sizes:

$$A(B+C) = AB + AC$$
 and $(A+B)C = AC + BC$

• Associativity Property:

For matrices A, B, and C of appropriate sizes:

$$A(BC) = (AB)C$$

Scalar Multiplication:

For matrices A, B of appropriate sizes and a scalar c:

$$A(cB) = c(AB) = (cA)B$$

Note that we can only multiply two matrices if the number of columns of the first matrix equals the number of rows of the second matrix: $(m \times n)$ with $(n \times k)$.

Example

Let

$$C = \begin{bmatrix} -1 & 0 \\ 2 & -3 \\ 4 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 2} \qquad D = \begin{bmatrix} 5 & -2 & 1 \\ 3 & 0 & 7 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$

$$CD = \begin{bmatrix} -1 \cdot 5 + 0 \cdot 3 & -1 \cdot (-2) + 0 \cdot 0 & -1 \cdot 1 + 0 \cdot 7 \\ 2 \cdot 5 + (-3) \cdot 3 & 2 \cdot (-2) + (-3) \cdot 0 & 2 \cdot 1 + (-3) \cdot 7 \\ 4 \cdot 5 + 1 \cdot 3 & 4 \cdot (-2) + 1 \cdot 0 & 4 \cdot 1 + 1 \cdot 7 \end{bmatrix}$$

$$= \begin{bmatrix} -5 & 2 & -1 \\ 1 & -4 & -19 \\ 23 & -8 & 11 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

36 / 36