

planetmath.org

Math for the people, by the people.

proof of inverse function theorem (topological spaces)

Canonical name ProofOfInverseFunctionTheoremtopologicalSpaces

Date of creation 2013-03-22 13:31:55 Last modified on 2013-03-22 13:31:55

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 5

Author paolini (1187)

Entry type Proof

Classification msc 54C05

We only have to prove that whenever $A\subset X$ is an open set, then also $B=(f^{-1})^{-1}(A)=f(A)\subset Y$ is open (f is an open mapping). Equivalently it is enough to prove that $B'=Y\setminus B$ is closed.

Since f is bijective we have $B' = Y \setminus B = f(X \setminus A)$

As $A' = X \setminus A$ is closed and since X is compact A' is compact too (this and the following are well know properties of compact spaces). Moreover being f continuous we know that also B' = f(A') is compact. Finally since Y is Hausdorff then B' is closed.