Total 84 100

Numerical Linear Algebra

Kevin Corcoran

January 31, 2022

Contents

1:	Assignment 1	2											
1	Problem 1 $1.1 \text{If } A \in \mathbb{C} \text{ is unitary and upper triangular, then } A \text{ is diagonal } . \ . \ .$												
2	Problem 2 2.1 If A is invertible and $\lambda \neq 0$ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}	3 3 3											
3	 roblem 3 1 Prove all eigenvalues of A are real												
4	Problem 4												
5	Problem 5 5.1 Let (λ, x) be an eigenpair of A , show $ \lambda = 1 \dots \dots$	4 4 5											
6	Problem 6 6.1 Show eigenvalues of A are pure imaginary 6.2 Show $I - A$ is nonsingular	5 5											
7	Problem 7	5											
8	Problem 8 8.1 Prove of disprove $ A _2 = u _2 v _2$	5 6											
9	Problem 9 9.1 Show $ AQ _2 = A _2 \dots \dots$	6 6 7											
10	Problem 10	7											

	10.1	Show that	if A	and	B	ar	eυ	ınit	ar	ily	ec	ıui [.]	val	en	t,	$^{ m th}$	en	t	h€	y	h	a١	/e	
		the same s	ingul	ar v	alue	es.																		7
	10.2	Show the c	onve	rse i	s n	ot :	$_{ m nec}$	ess	ari	ly	tru	ıе												7
11	Pro	blem 11																						7
	11.1	$f(x_1, x_2) =$	$= x_1 +$	$-x_2$																				7
	11.2	$f(x_1, x_2) =$	x_1x_2	2 .																				8
		$f(x) = (x - 1)^{-1}$																						8
12	Pro	blem 12																						8
	12.1	Plot $f(x)$																						8
	12.2	Plot $g(x)$																						9
		Conclusion																						9

1: Assignment 1

Sat 29 Jan 2022 15:42

1 Problem 1

1.1 If $A \in \mathbb{C}$ is unitary and upper triangular, then A is diagonal

 $A \in \mathbb{C}^{m \times m}$ unitary implies, by definition,

$$A^*A = AA^* = I.$$

If A is upper triangular, then

$$A^*A = \begin{pmatrix} \overline{a_{11}} & 0 & \dots & 0 \\ \overline{a_{12}} & \overline{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{1m}} & \overline{a_{2m}} & \dots & \overline{a_{mm}} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mm} \end{pmatrix}$$

7

where $\overline{a_{ij}}$ is the conjugate of a_{ij} . Then the first column of $A^*A = e_1$, where e_1 is the standard basis vector,

$$\begin{pmatrix} \overline{a_{11}} & 0 & \dots & 0 \\ \overline{a_{12}} & \overline{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{1m}} & \overline{a_{2m}} & \dots & \overline{a_{mm}} \end{pmatrix} \begin{pmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = e_1.$$

implies $|a_{11}|^2 = 1$, and

$$\overline{a_{1j}} = a_{1j} = 0$$
 for $j > i = 1$.

Could be note explicit here

Continuing for the remaining columns, we find that $|a_{ii}|^2 = 1$ and

$$\overline{a_{ij}} = a_{ij} = 0 \quad \text{for } j > i = 2, 3, \dots, m.$$

4

This implies that A is diagonal. This would also hold if A is lower triangular and unitary since, $A^*A = AA^*$. \square .

2 Problem 2

2.1 If A is invertible and $\lambda \neq 0$ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}

Let (λ, v) be an eigenpair for $A \in \mathbb{C}$, then

$$Av = \lambda v$$

$$A^{-1}Av = \lambda A^{-1}v$$
 multiplying by A^{-1}
$$\frac{1}{\lambda}v = A^{-1}v$$

 $\Rightarrow \frac{1}{\lambda}$ is an eigenvalue of A^{-1} , and A and A^{-1} have the same eigenvectors. \square

2.2 Show AB = BA have the same eigenvalues.

Let Bv = w and (λ, v) be an eigenpair of AB, then

$$(AB) v = \lambda v$$

implies

$$Aw = \lambda v.$$

Multiplying both sides by B

$$(BA) w = \lambda Bv$$
$$= \lambda w$$

 $\Rightarrow \lambda$ is an eigenvalue of both AB and BA with different eigenvectors. \square

2.3 Show $A \in \mathbb{R}$ and A^* have the same eigenvalues

Let $\langle \cdot, \cdot \rangle$ be an inner product, and (λ, v) be an eigenpair of A, then

$$\begin{split} \langle Av,Av\rangle &= \lambda \langle v,Av\rangle \\ &= \lambda \bar{\lambda} \langle v,v\rangle \quad \text{conjugate linearity} \\ &= \lambda \langle A^*v,v\rangle \quad \text{definition of adjoint} \end{split}$$

 $\Rightarrow A^*v = \bar{\lambda}v$. So $(\bar{\lambda}, v)$ is an eigenpair of A^* , and since complex eigenvalues of a real valued matrix come in conjugate pairs then both λ and $\bar{\lambda}$ are eigenvalues of A and A^* . Otherwise if $\lambda \in \mathbb{R}$, then $\lambda = \bar{\lambda}$, and hence they have the same eigenvalues. \square

who happers For VE Null (B) and W=0? Need 1=0 us a Special case.

-1

Problem 3 3

Let $A \in \mathbb{C}$ be hermitian

Prove all eigenvalues of A are real

$$\langle Av,v\rangle = \lambda \langle v,v\rangle \underbrace{\qquad \qquad}_{\text{definition of Adjoint}} \langle v,A^*v\rangle \underbrace{\qquad \qquad}_{A \text{ hermitian}} \langle v,Av\rangle \underbrace{\qquad \qquad}_{\text{conjugate symmetry}} \bar{\lambda} \langle v,v\rangle.$$

 $\Rightarrow \lambda = \bar{\lambda} \Rightarrow \lambda \in \mathbb{R}$ Since the only way λ equals its conjugate is if it is real.

If x and y are eigenvectors corresponding to distinct eigenvalues, show they are orthogonal

$$\langle Ax, y \rangle = \lambda_x \langle x, y \rangle \underbrace{=}_{\text{Hermitian}} \langle x, Ay \rangle \underbrace{=}_{\lambda_y \in \mathbb{R}} \lambda_y \langle x, y \rangle.$$

Since $\lambda_x \neq \lambda_y$ (distinct), then $\langle x, y \rangle = 0$

Problem 4 4

Show that a hermitian matrix A is positive definite iff $\lambda_i > 0$ for all λ_i in the spectrum of A

Since A is hermitian, then A is unitarily diagonalizable with real eigenvalues, i.e. $A = UDU^*$ where D is diagonal and U is unitary, $(U^*U = I)$. Considering change of basis $y = U^*x$ into the basis where A is diagonal, then $y^* = x^*U$ and

Since $||y||^2 > 0$ for $x \neq 0$, then $\langle Ax, x \rangle > 0$ if and only if $\lambda_i > 0$ Solving the standard of the s

Let $A \in \mathbb{C}$ be unitary

Let (λ, x) be an eigenpair of A, show $|\lambda| = 1$

A unitary implies $A^*A = I$

$$\langle Av,Av\rangle=\lambda\bar\lambda\langle v,v\rangle=|\lambda|^2\langle v,v\rangle=\langle v,A^*Av\rangle=\langle v,v\rangle.$$

$$\Rightarrow |\lambda|=1$$

5.2 Prove or disprove
$$||A||_F = 1$$

Prove or disprove
$$||A||_F = 1$$

 $||A||_F^2 = Tr(A^*A) = Tr(I) = m \neq 1.$

Problem 6

Let $A \in \mathbb{C}$ be skew-hermition

$$\langle Av,v\rangle = \underbrace{\lambda\langle v,v\rangle}_{} = \langle v,A^* \hspace{-0.5em} \bigvee = \langle v,-Av\rangle = \underbrace{-\bar{\lambda}\langle v,v\rangle}_{}.$$

 $\Rightarrow \lambda = -\bar{\lambda} \Rightarrow \lambda \in \mathbb{C}$ is pure imaginary

6.2 Show I - A is nonsingular

Consider $v \in \ker(I - A)$

$$(I-A)v=0$$
 $Iv=v=Av$ There is conclude.

Then,

$$\langle v, v \rangle = \langle Av, v \rangle = \langle v, A^*v \rangle = -\langle v, v \rangle.$$

Which is only possible if v=0. This shows the kernal is trivial, and hence I-Ais nonsingular.

7 Problem 7

Show $\rho(A) \leq ||A||$, where $\rho(A)$ is the spectral radius of A

Spectral radius $\rho(A) = \max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|\}.$

$$= |\lambda|^2 ||x||^2 \qquad \leq \qquad = ||A||^2 ||x||^2$$
 property of induced norm

$$\Rightarrow |\lambda| \le ||A|| \ \forall \lambda \Rightarrow \rho(A) \le ||A||$$

Problem 8

Let A be defined by the inner product $A = uv^*$

Prove of disprove $||A||_2 = ||u||_2 ||v||_2$

Consider A^*Av

$$A^*Av = vu^*uv^*v$$

$$= ||u||_2^2 v(v^*v)$$

$$= ||u||_2^2 ||v||_2^2 v$$

This shows v is the only eigenvector of A^*A , and since A is rank 1, this is the only singular value (squared). So

$$\Rightarrow ||A||_2 = \sigma_{\max} = \sigma = ||u||_2 ||v||_2.$$

Prove or disprove $||A||_F = ||u||_F ||v||_F$ 8.2

Since A is rank 1 the equality holds. Where the only singular value of A is $\sigma = \|u\|_2 \|v\|_2$. Since, the frobenius norm is the same as the two norm for vectors, then

$$||A||_F = \sqrt{Tr(A^*A)} = \sum_{i=1}^m \sqrt{\sigma_i^2} = \sigma = ||u||_2 ||v||_2 = ||u||_F ||v||_F = ||A||_2.$$

9 Problem 9

 $A,Q \in \mathbb{C}$ where A is arbitrary and Q is unitary

Show $||AQ||_2 = ||A||_2$

Definition of 2-norm, and Q unitary, its easy to see that $||QA||_2$

$$||QA||_2 = \sqrt{\lambda_{\max}(A^*Q^*QA)} = \sqrt{\lambda_{\max}(A^*A)} = \sigma_{\max}(A) = ||A||_2.$$

If we let B = QA, then noting that B * B, and BB^* are positive definite

$$\langle B^*Bx, x \rangle = \langle Bx, Bx \rangle > 0$$

 $\langle BB^*x, x \rangle = \langle B^*x, B^*x \rangle > 0$

The for $x \neq 0$, then referencing problem (10.1) TA is as RS, could full

$$\begin{split} \|AQ\|_2 &= \sqrt{\lambda_{\max}(Q^*A^*AQ)} = \sqrt{\lambda_{\max}(B^*B)} = \sigma_{\max}(B^*B) \\ &= \sigma_{\max}(BB^*) \\ &= \|AQ\|_2 \\ &= \|A\|_2 \end{split}$$

9.2 Show $||AQ||_F = ||QA||_F = ||A||_F$

First it's easy to show $||QA||_F = ||A||_F$

$$||QA||_F = \sqrt{\operatorname{trace}(A^*Q^*QA)} = \sqrt{\operatorname{trace}(A^*A)} = ||A||_F.$$

then using the cyclic nature of the trace

$$||AQ||_F = \sqrt{\operatorname{trace}(Q^*A^*AQ)} = \sqrt{\operatorname{trace}(QQ^*A^*A)}\sqrt{\operatorname{trace}(A^*A)} = ||A||_F.$$

10 Problem 10

10.1 Show that if A and B are unitarily equivalent, then they have the same singular values.

Unitarily equivalent means $A = QBQ^*$ for some unitary $Q \in \mathbb{C}$.

Since A is square and has SVD, write $A = U\Sigma V^*$. Then.

$$A = U\Sigma V^* = QBQ^*$$

$$Q^*U\Sigma V^*Q = B$$

$$\hat{U}\Sigma \hat{V}^* = B$$

Which forms the SVD of B. Hence A and B have the same singular values. This can be seen by noting \hat{U} and \hat{V} form the unitary eigendecomposition of BB^* and B^*B respectively. i.e.

$$BB^* = Q^*U\Sigma^2U^*Q$$

$$= \hat{U}\Sigma^2\hat{U}^*$$
and,
$$B^*B = Q^*V\Sigma^2V^*Q$$

$$= \hat{V}\Sigma^2\hat{V}^*$$

10.2 Show the converse is not necessarily true

11 Problem 11

Find the relative condition number of the following functions and discuss if there is any concern of being ill-conditioned

11.1
$$f(x_1, x_2) = x_1 + x_2$$

The Jacobian is Jf = (1 1). Using the infinity norm the relative condition number is

$$\kappa = \frac{\|Jf(x)\|_{\infty} \|x\|_{\infty}}{\|f(x)\|_{\infty}} = \frac{2\max\{|x_1|, |x_2|\}}{|x_1 + x_2|}.$$

This is ill-conditioned for $x_1 \longrightarrow -x_2$

8

11.2 $f(x_1, x_2) = x_1 x_2$

The Jacobian is $Jf = (x_2)$ x_1). Using the infinity norm the relative condition number is.

$$\kappa = \frac{\|Jf(x)\|_{\infty}\|x\|_{\infty}}{\|f(x)\|_{\infty}} = \frac{(|x_2| + |x_1|)\max{\{|x_1|, |x_2|\}}}{|x_1x_2|}.$$
 This is ill-conditioned for x_1 or $x_2 \longrightarrow 0$

11.3
$$f(x) = (x-2)^9$$

The Jacobian is $Jf = 9(x-2)^8$. Using the infinity norm, the relative condition number is.

$$\kappa = \frac{|9(x-2)^8||x|}{|(x-2)^9|} = \frac{1|x|}{|x-2|}$$

$$= \frac{|9x| |x+2|}{|x-2| |x+2|}$$

$$= \frac{|9x^2+18x|}{|x^2+4|}$$

$$= \frac{|9x^2+18x|}{|x^2+4|}$$

Which, after simplifying, we see is not ill-conditioned.

12 Problem 12

Plot f(x)12.1

Figure 1: Plot f

12.2 Plot g(x)

Figure 2: Plot f and g

12.3 Conclusion

It appears the expanded form of g(x) is unable to remove the discontinuity at x=2

How do I all of compact? Und role does conditioning Day?

-3