DATA STRUCTURES WITH C

Course code: 18IS3DCDSA

Credits: 04

Total Hours: 50

Course objectives:

1. Explain fundamentals of data structures and their applications essential for programming / problem solving

2. Analyze Linear Data Structures: Stack, Queues, Lists

3. Analyze Non-Linear Data Structures: Trees, Graphs

4. Assess appropriate data structure during program development / problem solving

Course Outcomes: At the end of the course, student will be able to:

CO1	Acquire knowledge of - Various types of data structures, operations and algorithms						
	Sorting and searching operations.						
CO2	, and the state with space stricted of disportations						
CO3	Ability to apply various data structures and its properties to illustrate storage of data						
	efficiently.						
CO4	Analyze the performance of - Stack, Queue, Lists, Trees, Graphs, Searching and Sorting						
	Techniques.						
CO5	Implement all the applications of Data structures in a high-level language.						
CO6							

Mapping of Course outcomes to Program outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	•	-	-	-	-	-	•	2	2	2	-
CO2	3	2	2	-	•	-	-	-	-	•	•	2	2	2	-
CO3	3	2	2	-	•	-	-	-	-	-	-	2	2	2	-
CO4	3	2	2	-		-	-	•	-	-	-	2	2	2	-
CO5	3	2	2	-	-	-	-	-	-		-	2	2	2	-
CO6	3	2	2	-	•	•	-	•	-	-	-	2	2	2	-

Unit	Contents of the Unit	Hours	COs
<i>₹</i> 1.	BASIC CONCEPTS: Structure & Union, Introduction to Data Structure and its classification, the need for Data structure, Algorithm specification, performance analysis & measurements, Polynomials and Sparse Matrices.	10	CO1 & CO2

2.	STACKS AND QUEUES: Introduction to Stacks, Stacks Using Dynamic Arrays, Evaluation of Expressions, Introduction to Queues, Types of Queue: Ordinary queue, Circular Queues & Double ended queue, Application of stacks and Queues.	10	CO3& CO4
3.	LINKED LISTS: Definition of Linked lists and Chains, Representing Chains in C, Types of Linked List: Singly Linked List, Circular Singly Linked List, Doubly Linked Lists & Circular doubly linked list, Application of Linked List.	10	CO3 & CO4
4.	TREES & GRAPH: Introduction to Binary Search Trees (BST), Properties of Binary Tree, Operation on BST, Traversals in Binary Trees, Heaps, Selection Trees, Forests tree, Counting Binary Trees.	10	CO4& CO6
5.	EFFICIENT BINARY SEARCH TREES: Optimal Binary Search Trees, AVL Trees, Properties of AVL tree, Construction of AVL tree, Red-Black Trees, Properties of red black tree, Construction of red black tree.	10	CO5 & CO6

Self-study component:

Note: 1.Questions for CIE and SEE not to be set from self-study component.

2. Assignment Questions should be from self-study component only.

UNIT 1: Dynamic Memory Allocation

UNIT 2: Multiple Stacks and Queues

UNIT 3:Operation on Linked list using Stacks, Queues, Polynomials

UNIT 4:Introduction to Graph, properties of graph, Representation of graph in memory

UNIT 5:Splay Trees

TEXT BOOK:

1. Horowitz, Sahni, Anderson-Freed: Fundamentals of Data Structures in C, 2nd Edition, Universities Press, 2007.

REFERENCE BOOKS:

- 1 Yedidyah, Augenstein, Tannenbaum: Data Structures Using C and C++, 2nd Edition, Pearson Education, 2003.
- 2 Richard F. Gilberg and Behrouz A. Forouzan: Data Structures A Pseudocode Approach with C, Cengage Learning, 2005.
- 3 A.M Padma Reddy," Approach of Data Structures", Person Publication, 5th Edition, 2015
- 4 Reema Theraja " Data Structure using C. 1st Edition, 2014