03/03/2025, 20:12 SVM

Muhammad Danial Hakim Nor Azman C00253517

	Changes	Time	Difficulty
	Using the base SVC with kernel ='rbf',c=1.0 and gamma = 'scale with training split of 75%. Get an accuracy of 51%	30 mins	3
	Use standardScaler to normalize the features and get an accuracy of 63%	30 mins	3
	Try different training split with the best being 68% with 90% training	10 mins	1
	Try changing c value ranging from 0.1 to 100 and 1.0 have the accuracy	30 mins	3
	Try using different gamma values but the accuracy move slightly lower than 68%	30 mins	3
	Changing the condition for the model to now guess if the wine is good based on score and get an accuracy of 88%	1 hour	6
	Changing training split to 75% training and get 92% accuracy	10 mins	1
	<pre>from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler</pre>		
	<pre>from sklearn.svm import SVC, SVR from sklearn.metrics import accuracy_score, classification_r from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as sns import matplotlib.pyplot as plt</pre>	report ,	mean_abso
In [7]:	<pre>from sklearn.svm import SVC, SVR from sklearn.metrics import accuracy_score, classification_r from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as sns</pre>	report ,	mean_abso
	<pre>from sklearn.svm import SVC, SVR from sklearn.metrics import accuracy_score, classification_r from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as sns import matplotlib.pyplot as plt</pre>	report ,	mean_abso
	<pre>from sklearn.svm import SVC, SVR from sklearn.metrics import accuracy_score, classification_r from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv("wine_data.csv") X = df.iloc[:, :-1] # exclude quality y = (df["quality"] > 6.5).astype(int) scaler = StandardScaler()</pre>		
	<pre>from sklearn.svm import SVC, SVR from sklearn.metrics import accuracy_score, classification_r from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv("wine_data.csv") X = df.iloc[:, :-1] # exclude quality y = (df["quality"] > 6.5).astype(int) scaler = StandardScaler() normalized_X = scaler.fit_transform(X)</pre>		
	<pre>from sklearn.svm import SVC, SVR from sklearn.metrics import accuracy_score, classification_r from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv("wine_data.csv") X = df.iloc[:, :-1] # exclude quality y = (df["quality"] > 6.5).astype(int) scaler = StandardScaler() normalized_X = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(normalizet)</pre>		
	<pre>from sklearn.svm import SVC, SVR from sklearn.metrics import accuracy_score, classification_r from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv("wine_data.csv") X = df.iloc[:, :-1] # exclude quality y = (df["quality"] > 6.5).astype(int) scaler = StandardScaler() normalized_X = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(normalized_train_test_split(normal</pre>		

03/03/2025, 20:12 SVM

Accuracy: 0.92

Classification	Report:			
	precision	recall	f1-score	support
0	0.93	0.98	0.95	347
1	0.78	0.55	0.64	53
accuracy			0.92	400
macro avg	0.86	0.76	0.80	400
weighted avg	0.91	0.92	0.91	400

```
In [20]: cm = confusion_matrix(y_test,predictions)

plt.figure(figsize=(6,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Negative', 'Pos
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```

