# SD 203 Linear Model

### François Portier, Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

### **Outline**

### Statistical hypothesis Test

Definition

Linear regression test

#### Courbe ROC

Présentation

Exemples

### **Outline**

### Statistical hypothesis Test Definition

Linear regression test

#### Courbe ROC

Présentation

Exemples

# **General principle**

#### Context

- We observe  $X_1, \ldots, X_n$  from a common distribution  $\mathcal{P}$
- We are interested in  $\theta \in \Theta$ , a parameter of  $\mathcal{P}$

#### Goal

To decide whether an assumption on  $\theta$  is likely (or not)

$$\mathcal{H}_0 = \{ \theta \in \Theta_0 \}$$

against some alternative

$$\mathcal{H}_1 = \{\theta \in \Theta_1\}$$

Call  $\mathcal{H}_0$  the null hypothesis,  $\mathcal{H}_1$ : the alternative

## **General principle**

#### Means

Determine a test statistics  $T(X_1, \ldots, X_n)$  and a region R such that if

$$T(X_1,\ldots,X_n)\in R \implies \text{we reject } \mathcal{H}_0$$

In words : The observed data discriminates between  $H_0$  and  $H_1$ 

## Hypothesis testing for "heads or tails"

When flipping a coin the model is a Bernoulli distribution with parameter p,  $\mathcal{B}(p)$ .

#### Is the coin fair?

$$\mathcal{H}_0 = \{ p = 0.5 \}$$
 against  $\mathcal{H}_1 = \{ p \neq 0.5 \}$ 

### Is the coin possibly unfair?

$$\mathcal{H}_0 = \{0.45 \le p \le 0.55\}$$
 against  $\mathcal{H}_1 = \{p \notin [0.45, 0.55]\}$ 

## Do we reject or do we accept?

In most practical situations,  $\mathcal{H}_0$  is simple, i.e.,

$$\Theta_0 = \{\theta_0\}$$

and  $\Theta_1 = \Theta \backslash \Theta_0$  is large

( $\mathcal{H}_0$  is often an hypothesis on which we care particularly, e.g., something acknowledged to be true, easy to formulate)

### We only reject $\mathcal{H}_0$

If  $\mathcal{H}_0$  is not rejected we cannot conclude  $\mathcal{H}_0$  is true because  $\mathcal{H}_1$  is too general

e.g.,  $\{p \in [0, 0.5[\cup]0.5, 1]\}$  can not be rejected!

### 2 types of error

|                                 | $\mathcal{H}_0$        | $\mathcal{H}_1$        |
|---------------------------------|------------------------|------------------------|
| $\mathcal{H}_0$ is not rejected | Correct                | Wrong (False negative) |
| $\mathcal{H}_0$ is rejected     | Wrong (False positive) | Correct                |

Type I : probability of a wrong reject

$$\mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)$$

Type II : probability of wrong non-reject

$$\mathbb{P}(T(X_1,\ldots,X_n)\notin R\mid \mathcal{H}_1)$$

# Significance level and power

### Significance level $\alpha$ if

$$\lim_{n \to +\infty} \sup \mathbb{P}(T(X_1, \dots, X_n) \in R \mid \mathcal{H}_0) \leq \alpha$$

(We speak of 95%-test when  $\alpha$  is 0.05%)

### Consistency

A test statistics (given by  $T(X_1,\ldots,X_n)$  and a region R) is said to be  $\alpha$ -consistent if the significant level is  $\alpha$  and if the power goes to one, i.e.,

$$\lim_{n \to +\infty} \sup \mathbb{P}(T(X_1, \dots, X_n) \in R \mid \mathcal{H}_0) \leq \alpha$$

$$\lim_{n\to\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_1)=1$$

## Test statistic and reject region

Goal : to build a  $\alpha$ -consistent test

- (1) Define the test statistic  $T(X_1,\ldots,X_n)$  and the level  $\alpha$  you wish
- (2) Do some maths to determine a reject region R that achieve a significance level  $\alpha$
- (3) Prove the consistency
- (4) Rule decision : reject whenever  $T_n(X_1, \dots, X_n) \in R$

### Famous tests

- ▶ Test of the equality of the mean for 1 sample
- ► Test of the equality of the means between 2 samples
- Chi-square test for the variance
- Chi-square test of independence
- Regression coefficient non-effects test

### Examples: "heads or tails"

- Model :  $\Theta = [0, 1]$ ,  $\mathbb{P}_{\theta} = \mathcal{B}(\theta)$
- Observe  $(X_1, \ldots, X_n)$  i.i.d. from this model
- Null hypothesis  $\mathcal{H}_0: \{\theta = 0.5\}$
- ▶ Define  $T_n(X_1, ..., X_n) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i 0.5)$
- $\triangleright$  Critical region for  $T_n$ ? Gaussian quantile : Show that

$$\lim_{n \to \infty} \mathbb{P}(T_n \in [-1.96, 1.96] \mid \mathcal{H}_0) \to 0.95$$

▶ Take  $R = ]-\infty, -1.96[\cup]1.96, +\infty[$ 

#### Exo:

Specify the procedure for an arbitrary significance level  $\alpha$ 

# **Example : Gaussian mean**

- Model :  $\Theta = \mathbb{R}$ ,  $\mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$
- Observe  $(X_1, \ldots, X_n)$  i.i.d. from this model
- Null hypothesis :  $\mathcal{H}_0$  :  $\{\theta = 0\}$
- Under  $\mathcal{H}_0$ ,  $T_n(X_1,\ldots,X_n)=\frac{1}{\sqrt{n}}\sum_i X_i \sim \mathcal{N}(0,1)$
- Critical region for  $T_n$ ? Gaussian quantile :

$$\mathbb{P}(T_n \in [-1.96, 1.96] \mid \mathcal{H}_0) = 0.95$$

- ▶ Take  $R = ]-\infty, -1.96[\cup]1.96, +\infty[.$
- Numerical example : If  $T_n=1.5$ , we do not reject  $\mathcal{H}_0$  at level 95%

### **Outline**

### Statistical hypothesis Test

Definition

Linear regression test

# Courbe ROC

Présentation

Exemples

### Test of no-effect: Gaussian case

### Gaussian Model

$$\begin{aligned} y_i &= \theta_0^{\star} + \sum_{k=1}^p \theta_k^{\star} x_{i,k} + \varepsilon_i \\ x_i^{\top} &= (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1} \text{ (deterministic)} \\ \varepsilon_i &\stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2), \text{ for } i = 1, \dots, n \end{aligned}$$

#### **Theorem**

Let  $X = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times (p+1)}$  of full rank, and  $\hat{\sigma}^2 = \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2/(n - (p+1))$ , then

$$\hat{T}_j = \frac{\hat{\theta}_j - \theta_j^*}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

where  $\mathcal{T}_{n-p}$  est une loi dite de Student (de degré n-(p+1))

### Test of no-effect: Gaussian case

### Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_i^* = 0$$

equivalently,  $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_i = 0 \}$ 

Under  $\mathcal{H}_0$ , we know the value of  $\hat{T}_i$ :

$$T_j := \frac{\hat{\theta}_j}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

Choosing  $R=[-t_{1-\alpha/2},t_{1-\alpha/2}]^c$  with  $t_{1-\alpha/2}$  the  $1-\alpha/2$ -quantile of  $\mathcal{T}_{n-(p+1)}$ ), we decide to reject  $\mathcal{H}_0$  whenever

$$|\hat{T}_j| > t_{1-\alpha/2}$$

# Test of no-effect: Random-design case

### Random design Model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} \mathbf{x}_{i,k} + \varepsilon_{i}$$

$$\mathbf{x}_{i}^{\top} = (1, \mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_{i}, \mathbf{x}_{i}) \stackrel{i.i.d}{\sim} (\varepsilon, \mathbf{x}), \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon | \mathbf{x}) = 0, \text{ Var}(\epsilon | \mathbf{x}) = \sigma^{2}$$

### **Theorem**

If  $var(\mathbf{x})$  has full rank, then

$$\hat{T}_j = \frac{\hat{\theta}_j - \theta_j^*}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1)$$

# Test of no-effect: Random design case

### Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_j^* = 0$$

equivalently,  $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_i = 0 \}$ 

Under  $\mathcal{H}_0$ , we know the value of  $\hat{T}_i$ :

$$T_j := \frac{\hat{\theta}_j}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1)$$

Choosing  $R = [-z_{1-\alpha/2}, z_{1-\alpha/2}]^c$  with  $z_{1-\alpha/2}$  the  $1 - \alpha/2$ -quantile of  $\mathcal{N}(0,1)$ ), we decide to reject  $\mathcal{H}_0$  whenever

$$|\hat{T}_j| > z_{1-\alpha/2}$$

### Link between IC and test

Rappel (modèle gaussien) :

$$IC_{\alpha} := \left[\hat{\theta}_j - t_{1-\alpha/2}\hat{\sigma}\sqrt{(X^{\intercal}X)_{j,j}^{-1}}, \hat{\theta}_j + t_{1-\alpha/2}\hat{\sigma}\sqrt{(X^{\intercal}X)_{j,j}^{-1}}\right]$$

est un IC de niveau  $\alpha$  pour  $\theta_i^*$ . Dire que " $0 \in IC_{\alpha}$ " signifie que

$$|\hat{\theta}_j| \leqslant t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\hat{\theta}_j|}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \leqslant t_{1-\alpha/2}$$

Cela est donc équivalent à accepter l'hypothèse  $\theta_j^*=0$  au niveau  $\alpha$ . Le  $\alpha$  le plus petit telle que  $0\in IC_{\alpha}$  est appelé la p-value.

Rem: On sait que si l'on prend  $\alpha$  très proche de zéro un  $IC_{\alpha}$  va recouvrir l'espace entier, on peut donc trouver (par continuité) un  $\alpha$  qui assure l'égalité dans les équations ci-dessus.

### **Outline**

Statistical hypothesis Test

Definition

Linear regression test

Courbe ROC Présentation

Exemples

### Contexte médical

- Un groupe de patients  $i=1,\ldots,n$  est suivi pour un dépistage.
- Pour chaque individu, le test se base sur une variable aléatoire  $X_i \in \mathbb{R}$  et un seuil  $q \in \mathbb{R}$

dès lors que 
$$X_i > q$$
 le test est **positif** sinon le test est **négatif**

### Ensemble des configurations possibles

|         | Normal $H_0$ | Atteint $H_1$ |
|---------|--------------|---------------|
| négatif | vrai négatif | faux négatif  |
| positif | faux positif | vrai positif  |



















## Sensibilité - Spécificité

- lackbox On suppose que les individus normaux ont la même fonction de répartition F
- $\,\check{}\,$  On suppose que les individus atteints ont la même fonction de répartition G

#### Définition

- Sensibilité :  $\mathrm{Se}(q) = 1 - G(q)$  (1- risque de  $2^{\mathrm{nde}}$  espèce)

• Spécificité : Sp(q) = F(q) (1- risque de 1<sup>re</sup> espèce)

#### Définition

La courbe ROC est la courbe décrit par  $(1 - \mathrm{Sp}(q), \mathrm{Se}(q))$ , quand  $q \in \mathbb{R}$ . C'est donc la fonction  $[0,1] \to [0,1]$ 

$$ROC(t) = 1 - G(F^{-}(1-t))$$

où 
$$F^{-}(1-t) = \inf\{x \in \mathbb{R} : F(x) \ge 1-t\}.$$







































#### **Outline**

Statistical hypothesis Test

Definition

Linear regression test

#### Courbe ROC

Présentation

Exemples

#### La courbe ROC dans le cas bi-normal

- ▶ F et G sont des Gaussiennes de paramètres  $\mu_0, \sigma_0$  et  $\mu_1, \sigma_1$ , respectivement.
- On spécifie  $\mu_0 = 0$ ,  $\sigma_0 = \sigma_1 = 1$ , on fait varier  $\mu_1$



#### **Estimation**—application

#### Estimation de la courbe ROC

- Maximum de vraisemblance
- Non-paramétrique
- ▶ Bayésien avec variable d'état latente
- Estimation de l'aire sous la courbe ROC

#### **Application**

- Pour comparer différents tests statistiques
- ► Pour comparer différents algorithmes d'apprentissage supervisé
- ► Pour comparer des méthodes de sélection de support du Lasso

nb : ROC = Receiver Operating Characteristic

Références