EECS 203 Exam 1 Review

Day 2

Today's Review Topics

- Proof Methods
 - Direct Proof
 - Proof by Contrapositive
 - Proof by Contradiction
 - Proof by Cases
- Sets

Proof Methods

Proofs Overview

- Direct Proof Prove p → q by showing that if p is true, then q must also be true.
- Proof by Contraposition Prove $p \rightarrow q$ by showing that **if not q, then not p.**
 - Assume not q and arrive at not p
- Proof by Contradiction
 - Prove p by assuming ¬p and arriving at a contradiction, therefore
 proving p is true (can think of this as ¬-intro from natural deduction)
 - Prove $p \to q$ by assuming p and $\neg q$ and arriving at a contradiction, therefore $\neg (p \text{ and } \neg q)$ is true which is equivalent to saying $p \to q$ is true

Overview Cont.

- Proof by Cases
 - Prove that a predicate is true by separating into all possible cases and showing that the predicate is true in each individual case.
 - Proof by cases is similar to the idea of ∨ elimination.

NOTE: Proof by Induction will not be covered in Exam 1

Proof Methods Table

$p \to q$	Assumptions	Want to Reach
Direct Proof	р	q
Proof By Contrapositive	¬q	¬р
Proof By Contradiction	p ∧ ¬q	F

Proving + Disproving Quantified Statements

	Prove	Disprove
∀xP(x)	Show that arbitrary x satisfies P(x)	Find a counterexample x which does not satisfy P(x)
∃xP(x)	Find an example x which satisfies P(x)	Show that an arbitrary x does not satisfy P(x)

NOTE: The above does not show proof by example. Proof by example is **never** valid.

WLOG

Without Loss of Generality (WLOG) – used when the same argument can be made for multiple cases

Example: Show that if x and y are integers and both $x \cdot y$ and x+y are even, then both x and y are even.

Proof: Use a proof by contraposition. Suppose x and y are not both even. Then, one or both are odd. Without loss of generality, assume that x is odd. Then x = 2m + 1 for some integer k.

Case 1: y is even. Then y = 2n for some integer n, so x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd.

Case 2: y is odd. Then y = 2n + 1 for some integer n, so $x \cdot y = (2m + 1)(2n + 1) = 2(2m \cdot n + m + n) + 1$ is odd.

Prove that if n is an odd integer, then n² is odd.

Prove that if a \cdot b < 0, where a $\in \mathbb{R}$ and b $\in \mathbb{R}$, then (a / b) < 0.

Prove that if n = ab, where a and b are positive

integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Prove that if 3n + 2 is odd, then n is odd.

Prove or Disprove: For all rational numbers x and y, x^y is

also rational.

Prove or Disprove: There exists an integer n such that

 $4n^2 + 8n + 16$ is prime

Which of the following describe the proof method(s) used to show the following statement? Mark all that apply.

Statement: If x is rational and y is irrational, then x + y is irrational.

Proof: Assume that x is rational, y is irrational, and x + y is rational. Notice that y = (x + y) - x. Since both x + y and x are rational, and the difference of two rational numbers is also rational, this means that y is rational. But we assumed y was irrational. So it must be the case that whenever x is rational and y is irrational, x + y is irrational.

- (a) Proof by contrapositive
- (b) Proof by cases
- (c) Proof by contradiction
- (d) Direct Proof
- (e) Exhaustive proof Proving all cases possible

Identify the mistakes in the following proof, multiple answers

We prove that 0 = 2 as follows.

- S1. We have $4x^2 = 4x^2$.
- S2. Rewriting the left and right hand sides, we get $(-2x)^2 = (2x)^2$.
- S3. Taking the square root, we get -2x = 2x.
- S4. Adding $x^2 + 1$ on both sides gives $-2x + x^2 + 1 = 2x + x^2 + 1$.
- S5. By algebra, this can be written as $(x-1)^2 = (x+1)^2$.
- S6. Taking the square root, we get x 1 = x + 1.
- S7. Subtracting x 1 on both sides, we get x 1 (x 1) = x + 1 (x 1), i.e., 0 = 2.

5 Minute Break

https://paveldogreat.github.io/WebGL-Fluid-Simulation/

Sets and Set Proofs

Overview/Definitions

Set: An unordered collection of distinct objects

Subset (\subseteq): A set A is considered to be a **subset** of B if every element in A is also in B (Note that, with this definition, A is a subset of itself)

Proper Subset (\subsetneq): A set A is considered to be a **proper subset** of B if A is a subset of B, and B contains at least one element not in A.

Power set (P(S)): A set containing all of the subsets of S as **elements** in the set.

Inclusion-Exclusion Principle: $|A \cup B| = |A| + |B| - |A \cap B|$

Sets Question 1

Which of the following are valid subsets of the set S where S = $\{1, \{2\}, \emptyset\}$? Select all that apply.

- A. Ø
- B. {∅}
- C. 1
- D. {1}
- E. {2}

More definitions and Sets Question 2

Cardinality: The number of elements in a set, denoted |A|

Note that power sets of sets with n elements are of cardinality 2ⁿ

Cartesian Product: A x B is the set of all pairs of elements from A and B, i.e. (a,b) where $a \in A$ and $b \in B$. Note that $|A \times B| = |A| * |B|$

What is the cardinality of {E,E,C,S} X {2,0,3}?

Sets Question 3

Prove that if $C \subseteq \text{comp}(A - B)$, then $A \cap C \subseteq B$. Note that comp() is the complement of the set.

Good luck studying!