Homework 4

Brett Scroggins
Due 3/9/2018

```
1. 100000 = 15k + 12L

Ly 10000 - 15k

L= 12

f(L) = .05 L 2/8 k 1/8

The company will be able to create about 204 printers
```

```
machines = function(K){
  L = (100000-15*K)/12
  machines = 0.05*L^(2/3)*K^(1/3)
  return(-machines)
}
optim(200, machines, method='BFGS')
## $par
## [1] 2216.799
##
## $value
## [1] -204.6681
##
## $counts
## function gradient
    11
##
## $convergence
## [1] 0
##
## $message
## NULL
```

).	AT	X		6			
	[1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	51		1			
	A= 0 1 0	1	>	1-1 1			
	man (1) man (2) . a. mance	528		(10.)			
-	d = (0,0,,0) D=2. (countrie matrix)						
	0 0-101 1 3:						
			THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I				

```
stocks = read.csv('/Users/brettscroggins/Downloads/homework4stocks.csv')
# Get info from the stocks data set
num = ncol(stocks)
mean = colMeans(stocks[,2:num])
std = sqrt(apply(stocks[,2:num],2,var))
corr = cor(stocks[,2:num], use = 'pairwise.complete.obs')
cov = cov(stocks[,2:28], use='pairwise.complete.obs')
\# Create the A, b, d, and D components
A_{mat} = matrix(c(rep(1,27), diag(27), mean),27)
b_{vec} = c(1, rep(0, 27), .01)
d_{vec} = rep(0,27)
D_mat = 2*cov
# Solution
sol2 = solve.QP(D_mat, d_vec, A_mat, b_vec)
perc_return = sum(sol2$solution*mean)
perc_return
## [1] 0.01
variance = sum(sol2$solution*(std^2))
variance
## [1] 0.003101297
stnddev = sum(sol2$solution*std)
stnddev
```

[1] 0.05330648

3.	Ligassian	Sum of Syure Residents	
	4= 311	7901.299	
+	y=\$2X2	878. 8358	
+	y3 = \$3 x3	8575.636	4-29
+	44 = B1x1 + B2x2	26.19087	
+	45 = B1x, + B3x3	7860.089	12 00 2 00
-	$y_{2} = B_{2}x_{2} + 3_{3}x_{3}$	878.1811	1 2 1 1 1 1
	96 922 933		
	The rares on that	best fits the data (has	the lovest
	Contract Contract	unls) is yy = 3, x, + B2 x2	

```
vars = read.csv('/Users/brettscroggins/Downloads/variable_selection.csv')
lm1 = lm(vars$y ~ vars$x1)
lm2 = lm(vars$y ~ vars$x2)
lm3 = lm(vars$y ~ vars$x3)
lm4 = lm(vars$y ~ vars$x1 + vars$x2)
lm5 = lm(vars$y ~ vars$x1 + vars$x3)
lm6 = lm(vars$y ~ vars$x2 + vars$x3)
r1 = sum(resid(lm1)^2)
r1
## [1] 7901.299
r2 = sum(resid(lm2)^2)
r2
## [1] 878.8358
r3 = sum(resid(lm3)^2)
r3
## [1] 8575.636
r4 = sum(resid(lm4)^2)
r4
## [1] 26.19087
# r4 is lowest with 26.19 sum of square residuals
r5 = sum(resid(lm5)^2)
r5
## [1] 7860.089
r6 = sum(resid(lm6)^2)
## [1] 878.1811
```

	I, +I4 = 710 I, = I6 + I12 -> -I1	+T .T	1.40	1 4 4	3740 m		
	I3 4 T4+ I6 -> I3						
•	Min: 1 12 + 3 13+ 4	1 I 4 (o I 2+	DI2			
	1=(00000		Га	0 0	001		
-	$A = (0,0,0,0,0)$ $D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$						
			0	0 0	224		
	AT	V		Ь	0 4 9		
		T T.	1				
	10100	T2		710			
	10100	I ₃	=	0			
	0 1-1-19	I I S		[0			
-			77				

```
D_{mat} = matrix(0,5,5)
D_{mat[1,1]} = 1*2
D_{mat}[2,2] = 3*2
D_{mat[3,3]} = 4*2
D_{mat}[4,4] = 6*2
D_{mat}[5,5] = 12*2
d_{\text{vec}} = \text{rep}(0,5)
A_{mat} = matrix(c(1,0,1,0,0,-1,0,0,1,1,0,1,-1,-1,0),5,3)
b_{vec} = c(710,0,0)
solve.QP(D_mat,d_vec,A_mat,b_vec)
## $solution
## [1] 371.3846 502.4615 338.6154 163.8462 207.5385
##
## $value
## [1] 2031911
## $unconstrained.solution
## [1] 0 0 0 0 0
##
## $iterations
## [1] 4 0
##
## $Lagrangian
## [1] 5723.692 4980.923 3014.769
## $iact
## [1] 1 2 3
```

```
5. To normalize, the prameters from the Solution were transformed the following way:

Normalized score = prameter + (85 - mean (prameters))

The ratings yield a Score for the "home field admininge" effect of all 30 NFL terms.

Two terms with ratings of 80 and 91 does NOT yield that them playing on a newtral field would result in a 9 point win for term 91.

What this revents is that term 91 is above league revenge at home while term 80 is below average.
```

```
nfl_ratings = read.csv('/Users/brettscroggins/Downloads/nflratings.csv', header = FALSE)
nfl_ratings$spread = nfl_ratings$V4 - nfl_ratings$V5
error = function(scores){
 num = nrow(nfl_ratings)
 pred_spread = 0
  for(i in 1:num){
    pred_spread = pred_spread + (nfl_ratings$spread[i] - (scores[nfl_ratings[i,2]] - score;
 return(pred_spread)
start = rep(0,33)
sol5 = optim(start, error, method='BFGS')
normalized = sol5*par[1:32] + (85 - mean(sol5*par[1:32]))
normalized = c(normalized, sol5$par[33])
normalized
## [1] 84.522358 89.841612 92.745183 83.089265 88.760069 79.812553 87.543497
## [8] 76.886322 92.120642 85.636517 70.503351 92.255064 86.984740 90.862198
## [15] 78.439387 76.888502 86.615294 92.064543 96.123163 95.629714 85.099246
## [22] 93.148915 75.033602 90.958388 86.641868 67.720162 92.605720 85.241670
## [29] 74.731408 79.170973 82.187631 80.136444 2.172819
```