Implementar un Buscador de Documentos. Crear un pequeño buscador para recuperar documentos relevantes según una consulta.

Actividades:

- 1. Preprocesamiento de Documentos PDF: Elegir un conjunto de documentos en formato PDF.
 - Utilizar bibliotecas en Python como PyMuPDF o pdfplumber para extraer el texto.
 - Aplicar técnicas de limpieza, como: Eliminación de caracteres especiales. Conversión a minúsculas. Eliminación de stopwords en español. Tokenización y lematización usando spaCy o NLTK.
 - Guardar el resultado en archivos de texto procesados.
- 2. Implementar un modelo de búsqueda y la representación vectorial de los documentos basandose en TF-IDF, BM25 o Word2Vec.
- 3. Permitir que un usuario ingrese una consulta en lenguaje natural.
- 4. Retornar los documentos más relevantes ordenados por puntaje de similitud. Comparar los documentos calculando la similitud con la métrica de coseno. Permitir que la aplicación recomiende documentos similares a uno seleccionado.
- 5. Evaluar la calidad de las recomendaciones con métricas
- 6. Crear una interfaz sencilla (puede ser en Jupyter Notebook, Streamlit, Fllask o algún otro).
- 7. Entregar un informe con el código, capturas de pantalla y conclusiones.

Realizar 3 grupos. Cada grupo escogerá uno de los siguientes métodos de clustering: K-Means, DBSCAN, Hierarchical Clustering, etc

Recomendaciones:

- Librerías: spaCy, NLTK, scikit-learn, pandas, numpy, matplotlib, seaborn, scipy, gensim, streamlit
- Datasets sugeridos: Artículos académicos, noticias, papers de arXiv, documentos institucionales.
- ° Utilizar KDD

Comparación de Algoritmos

Algoritmo	Necesita definir clusters	Maneja diferentes densidades	Computacionalmente eficiente	Forma de clusters adecuada
K-Means	✓ Sí	× No	Rápido	Esféricos
DBSCAN	× No	✓ Sí	Rápido	▲ Cualquier forma
Hierarchical Clustering	✓ Sí	✓ Sí	X Puede ser lento	▲ Cualquier forma
Mean-Shift	× No	✓ Sí	X Lento	▲ Cualquier forma
GMM	✓ Sí	× No	X Lento	Elípticos
Affinity Propagation	× No	✓ Sí	X Lento	▲ Cualquier forma
OPTICS	× No	✓ Sí	X Lento	▲ Cualquier forma
Spectral Clustering	✓ Sí	× No	X Lento	▲ Cualquier forma

¿Cuál elegir?

- Si los datos tienen clusters bien separados y esféricos: ✓ K-Means.
- Si los clusters tienen formas irregulares y densidades variables: ✓ DBSCAN u OPTICS.
- Si no sabemos cuántos clusters hay: <a>Mean-Shift, Affinity Propagation o DBSCAN.
- Si los datos tienen una estructura compleja: <a>Z Spectral Clustering.
- Si queremos probabilidades en la asignación de clusters: <a> GMM.

Fecha de entrega: 28/03/2025