International Rectifier

IRF8707PbF

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	Qg
30V	11.9 m Ω @ $V_{GS} = 10V$	6.2nC

Applications

- Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
- Control MOSFET for Isolated DC-DC Converters in Networking Systems

Benefits

- Very Low Gate Charge
- Very Low R_{DS(on)} at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- 20V V_{GS} Max. Gate Rating
- 100% tested for Rg
- Lead-Free

Description

The IRF8707PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the industry standard SO-8 package. The IRF8707PbF has been optimized for parameters that are critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors for notebook and Netcom applications.

Absolute Maximum Ratings

Absolute Maximum Hatings						
	Parameter	Max.	Units			
V _{DS}	Drain-to-Source Voltage	30	V			
V _{GS}	Gate-to-Source Voltage	± 20	v			
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	11				
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	9.1	Α			
I _{DM}	Pulsed Drain Current ①	88				
P _D @T _A = 25°C	Power Dissipation	2.5	10/			
$P_D @ T_A = 70^{\circ}C$	Power Dissipation	1.6	— w			
	Linear Derating Factor	0.02	W/°C			
T_J	Operating Junction and	-55 to + 150	°C			
T _{STG}	Storage Temperature Range					

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ©		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @S		50	C/VV

Notes ① through ⑤ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.022	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		9.3	11.9	0	V _{GS} = 10V, I _D = 11A ③
			14.2	17.5	mΩ	V _{GS} = 4.5V, I _D = 8.8A ③
V _{GS(th)}	Gate Threshold Voltage	1.35	1.80	2.35	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.8		mV/°C	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 24V, V_{GS} = 0V$
				150	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -20V
gfs	Forward Transconductance	25			S	$V_{DS} = 15V, I_D = 8.8A$
Q_g	Total Gate Charge		6.2	9.3		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		1.4			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		0.7		nC	$V_{GS} = 4.5V$
Q _{gd}	Gate-to-Drain Charge		2.2		I IIC	$I_{D} = 8.8A$
Q _{godr}	Gate Charge Overdrive		1.9		1	See Figs. 15 & 16
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		2.9		1	
Q _{oss}	Output Charge		3.7	_	nC	V _{DS} = 16V, V _{GS} = 0V
R_g	Gate Resistance		2.2	3.7	Ω	
t _{d(on)}	Turn-On Delay Time		6.7	_		$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		7.9		1	$I_{D} = 8.8A$
t _{d(off)}	Turn-Off Delay Time		7.3		ns	$R_G = 1.8\Omega$
t _f	Fall Time		4.4		1	See Fig. 18
C _{iss}	Input Capacitance		760			$V_{GS} = 0V$
C _{oss}	Output Capacitance		170		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		82		1	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		53	mJ
I _{AR}	Avalanche Current ①		8.8	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			3.1	А	MOSFET symbol
	(Body Diode)			3.1	^	showing the
I _{SM}	Pulsed Source Current			88	Α	integral reverse
	(Body Diode) ①			00		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25$ °C, $I_S = 8.8A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		12	18	ns	$T_J = 25$ °C, $I_F = 8.8A$, $V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 300A/µs ③
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

International TOR Rectifier

IRF8707PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International IOR Rectifier

5.0 I_D= 8.8A V_{DS=24V} V_{GS}, Gate-to-Source Voltage (V) 4.0 V_{DS}= 15V 3.0 2.0 1.0 0.0 8 2 3 5 6 7 Q_G, Total Gate Charge (nC)

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

4

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Unclamped Inductive Test Circuit and Waveform

Fig 15. Gate Charge Test Circuit

Fig 16. Gate Charge Waveform

International TOR Rectifier

IRF8707PbF

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

International

TOR Rectifier

DIM	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
V	0.0	8"	0.	8"	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

8X 0.72 [.028] 6.46 [.255] 3X 1.27 [.050] 8X 1.78 [.070]

FOOTPRINT

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

International IOR Rectifier

IRF8707PbF

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 1.38mH, $R_G = 25\Omega$, $I_{AS} = 8.8$ A.
- ③ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- 4 When mounted on 1 inch square copper board.
- ⑤ R_{θ} is measured at T_J of approximately 90°C.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/2007

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.