MNSTPSKLLPIDKHSHLQLQPQSSSASIFNSPTKPLNFPRTNSKPSLDPNSSSDT YTSEQDQEKGKEEKKDTAFQTSFDRNFDLDNSIDIQQTIQHQQQQPQQQQQLS QTDNNLIDEFSFQTPMTSTLDLTKQNPTVDKVNENHAPTYINTSPNKSIMKKATPK ASPKKVAFTVTNPEIHHYPDNRVEEEDQSQQKEDSVEPPLIQHQWKDPSQFNYS DEDTNASVPPTPPLHTTKPTFAQLLNKNNEVNSEPEALTDMKLKRENFSNLSLDE KVNLYLSPTNNNNSKNVSDMDSHLQNLQDASKNKTNENIHNLSFALKAPKNDIEN PLNSLTNADISLRSSGSSQSSLQSLRNDNRVLESVPGSPKKVNPGLSLNDGIKGF SDEVVESLLPRDLSRDKLETTKEHDAPEHNNENFIDAKSTNTNKGQLLVSSDDHL DSFDRSYNHTEQSILNLLNSASQSQISLNALEKQRQTQEQEQTQAAEPEEETSFS DNIKVKQEPKSNLEFVKVTIKKEPVSATEIKAPKREFSSRILRIKNEDEIAEPADIHP KKENEANSHVEDTDALLKKALNDDEESDTTQNSTKMSIRFHIDSDWKLEDSNDG DREDNDDISRFEKSDILNDVSQTSDIIGDKYGNSSSEITTKTLAPPRSDNNDKENS KSLEDPANNESLQQQLEVPHTKEDDSILANSSNIAPPEELTLPVVEANDYSSFND VTKTFDAYSSFEESLSREHETDSKPINFISIWHKQEKQKKHQIHKVPTKQIIASYQQ YKNEQESRVTSDKVKIPNAIQFKKFKEVNVMSRRVVSPDMDDLNVSQFLPELSE DSGFKDLNFANYSNNTNRPRSFTPLSTKNVLSNIDNDPNVVEPPEPKSYAEIRNA RRLSANKAAPNQAPPLPPQRQPSSTRSNSNKRVSRFRVPTFEIRRTSSALAPCD MYNDIFDDFGAGSKPTIKAEGMKTLPSMDKDDVKRILNAKKGVTQDEYINAKLVD QKPKKNSIVTDPEDRYEELQQTASIHNATIDSSIYGRPDSISTDMLPYLSDELKKP PTALLSADRLFMEQEVHPLRSNSVLVHPGAGAATNSSMLPEPDFELINSPARNVS NNSDNVAISGNASTISFNQLDMNFDDQATIGQKIQEQPASKSANTVRGDDDGLA SAPETPRTPTKKESISSKPAKLSSASPRKSPIKIGSPVRVIKKNGSIAGIEPIPKATH KPKKSFQGNEISNHKVRDGGISPSSGSEHQQHNPSMVSVPSQYTDATSTVPDE NKDVQHKPREKQKQKHHHRHHHHHHKQKTDIPGVVDDEIPDVGLQERGKLFFR VLGIKNINLPDINTHKGRFTLTLDNGVHCVTTPEYNMDDHNVAIGKEFELTVADSL EFILTLKASYEKPRGTLVEVTEKKVVKSRNRLSRLFGSKDIITŢTKFVPTEVKDTWA NKFAPDGSFARCYIDLQQFEDQITGKASQFDLNCFNEWETMSNGNQPMKRGKP YKIAQLEVKMLYVPRSDPREILPTSIRSAYESINELNNEQNNYFEGYLHQEGGDC PIFKKRFFKLMGTSLLAHSEISHKTRAKINLSKVVDLIYVDKENIDRSNHRNFSDVL LLDHAFKIKFANGELIDFCAPNKHEMKIWIQNLQEIIYRNRFRRQPWVNLMLQQQ QQQQQQQSSQQ

### FIGURE 1

1 cccaaaaaag ataaaataaa aacaaaacaa aacaaaagta ctaacaaatt attgaaactt 61 ttaattttta ataaagaatc agtagatcta ttgttaaaag aaatgaactc aactccaagt 121 aaattattac cgatagataa acattctcat ttacaattac agcctcaatc gtcctcggca 181 tcaatattta attocccaac aaaaccattg aatttcccca gaacaaattc caagccgagt 241 ttagatccaa attcaagctc tgatacctac actagcgaac aagatcaaga gaaagggaaa 301 gaagagaaaa aggacacagc ctttcaaaca tcttttgata gaaattttga tcttgataat 361 tcaatcgata tacaacaaac aattcaacat cagcaacaac agccacaaca acaacaacaa 421 ctctcacaaa ccgacaataa tttaattgat gaattttctt ttcaaacacc gatgacttcg 481 actttagacc taaccaagca aaatccaact gtggacaaag tgaatgaaaa tcatgcacca 541 acttatataa atacctcccc caacaaatca ataatgaaaa aggcaactcc taaagcgtca 601 cctaaaaaag ttgcatttac tgtaactaat cccgaaattc atcattatcc agataataga 661 gtcgaggaag aagatcaaag tcaacaaaaa gaagattcag ttgagccacc cttaatacaa 721 catcaatgga aagateette teaatteaat tattetgatg aagatacaaa tgetteagtt 781 ccaccaacac caccacttca tacgacgaaa cctacttttg cgcaattatt gaacaaaaac 841 aacgaagtca atctggaacc agaggcattg acagatatga aattaaagcg cgaaaatttc 901 agcaatttat cattagatga aaaagtcaat ttatatctta gtcccactaa taataacaat 961 agtaagaatg tgtcagatat ggatctgcat ttacaaaact tgcaagacgc ttcgaaaaac 1021 aaaactaatg aaaatattca caatttgtca tttgctttaa aagcaccaaa gaatgátatt 1081 gaaaacccat taaactcatt gactaacgca gatattctgt taagatcatc tggatcatca 1141 caatcgtcat tacaatcttt gaggaatgac aatcgtgtct tggaatcagt gcctgggtca 1201 cctaagaagg ttaatcctgg attgtctttg aatgacggca taaaggggtt ctctgatgag 1261 gttgttgaat cattacttcc tcgtgactta tctcgagaca aattagagac tacaaaagaa 1321 catgatgcac cagaacacaa caatgagaat tttattgatg ctaaatcgac taataccaat 1381 aagggacaac tettagtate atetgatgat catttggact ettttgatag atectataac 1441 cacactgaac aatcaatttt gaatcttttg aatagtgcat cacaatctca aatttcgtta 1501 aatgcattgg aaaaacaaag gcaaacacag gaacaagaac aaacacaagc ggcagagcct 1561 gaagaagaaa cttcgtttag tgataatatc aaagttaaac aagagccaaa gagcaatttg 1621 gagtttgtca aggttaccat caagaaagaa ccagttctgg ccacggaaat aaaagctcca 1681 aaaagagaat tttcaagtcg aatattaaga ataaaaaatg aagatgaaat tgccgaacca 1741 gctgatattc atcctaaaaa agaaaatgaa gcaaacagtc atgtcgaaga tactgatgca 1801 ttgttgaaga aagcacttaa tgatgatgag gaatctgaca cgacccaaaa ctcaacgaaa 1861 atgtcaattc gttttcatat tgatagtgat tggaaattgg aagacagtaa tgatggcgat 1921 agagaagata atgatgatat ttctcgtttt gagaaatcag atattttgaa cgacgtatca 1981 cagacttctg atattattgg tgacaaatat ggaaactcat caagtgaaat aaccaccaaa 2041 acattagcac coccaagate ggacaacaat gacaaggaga attetaaate tttggaagat 2101 ccagctaata atgaatcatt gcaacaacaa ttggaggtac cgcatacaaa agaagatgat 2161 agcattttag ccaactcgtc caatattgct ccacctgaag aattgacttt gcccgtagtg 2221 gaagcaaatg attattcatc ttttaatgac gtgaccaaaa cttttgatgc atactcaagc 2281 tttgaagagt cattatctag agagcacgaa actgattcaa aaccaattaa tttcatatca 2341 atttggcata aacaagaaaa gcagaagaaa catcaaattc ataaagttcc aactaaacag 2401 atcattgcta gttatcaaca atacaaaaac gaacaagaat ctcgtgttac tagtgataaa 2461 gtgaaaatcc caaatgccat acaattcaag aaattcaaag aggtaaatgt catgtcaaga 2521 agagttgtta gtccagacat ggatgatttg aatgtatctc aatttttacc agaattatct 2581 gaagactctg gatttaaaga tttgaatttt gccaactact ccaataacac caacagacca 2641 agaagtttta ctccattgag cactaaaaat gtcttgtcga atattgataa cgatcctaat

### FIGURE 2A

2701 gttgttgaac ctcctgaacc gaaatcatat gctgaaatta gaaatgctag acggttatca 2761 gctaataagg cagcgccaaa tcaggcacca ccattgccac cacaacgaca accatcttca 2821 actogttoca attoaaataa acgagtgtoc agatttagag tgcccacatt tgaaattaga 2881 agaacttett cagcattage acettgtgae atgtataatg atatttttga tgattteggt 2941 gcgggttcta aaccaactat aaaggcagaa ggaatgaaaa cattgccaag tatggataaa 3001 gatgatgtca agaggatttt gaatgcaaag aaaggtgtga ctcaagatga atatataaat 3061 gccaaacttg ttgatcaaaa acctaaaaag aattcaattg tcaccgatcc cgaagaccga 3121 tatgaagaat tacaacaaac tgcctctata cacaatgcca ccattgattc aagtatttat 3181 ggccgaccag actocatttc taccgacatg ttgccttatc ttagtgatga attgaaaaaa 3241 ccacctacgg ctttattatc tgctgatcgt ttgtttatgg aacaagaagt acatccgtta 3301 agatcaaact ctgttttggt tcacccaggg gcaggagcag caactaattc ttcaatgtta 3361 ccagagccag attttgaatt aatcaattca cctgctagaa atgtgctgaa caacagtgat 3421 aatgtcgcca tcagtggtaa tgctagtact attagtttta accaattgga tatgaatttt 3481 gatgaccaag ctacaattgg tcaaaaaatc caagagcaac ctgcttcaaa atccgccaat 3541 actgttcgtg gtgatgatga tggattggcc agtgcacctg aaacaccaag aactcctacc 3601 aaaaaggagt ccatatcaag caagcctgcc aagctttctt ctgcctcccc tagaaaatca 3661 ccaattaaga ttggttcacc agttcgagtt attaagaaaa atggatcaat tgctggcatt 3721 gaaccaatcc caaaagccac tcacaaaccg aagaaatcat tccaaggaaa cgagatttca 3781 aaccataaag tacgagatgg tggaatttca ccaagctccg gatcagagca tcaacagcat 3841 aatcctagta tggtttctgt tccttcacag tatactgatg ctacttcaac ggttccagat 3901 gaaaacaaag atgttcaaca caagcctcgt gaaaagcaaa agcaaaagca tcaccatcgc 3961 catcatcatc atcatcataa acaaaaaact gatattccgg gtgttgttga tgatgaaatt 4021 cctgatgtag gattacaaga acgaggcaaa ttattcttta gagttttagg aattaagaat 4081 atcaatttac ccgatattaa tactcacaaa ggaagattca ctttaacgtt ggataatgga 4141 gtgcattgtg ttactacacc agaatacaac atggacgacc ataatgttgc cataggtaaa 4201 gaatttgagt tgacagttgc tgattcatta gagtttattt taactttgaa ggcatcatat 4261 gaaaaacctc gtggtacatt agtagaagtg actgaaaaga aagttgtcaa atcaagaaat 4321 agattgagtc gattatttgg atcgaaagat attatcacca cgacaaagtt tgtgcccact 4381 gaagtcaaag atacetggge taataagttt geteetgatg gtteatttge tagatgttae 4441 attgatttac aacaatttga agaccaaatc accggtaaag catcacagtt tgatctcaat 4501 tgttttaatg aatgggaaac tatgagtaat ggcaatcaac caatgaaaag aggcaaacct 4561 tataagattg ctcaattgga agttaaaatg ttgtatgttc eacgatcaga tccaagagaa 4621 atattaccaa ccagcattag atccgcatat gaaagcatca atgaattaaa caatgaacag 4681 aataattact ttgaaggtta tttacatcaa gaaggaggtg attgtccaat ttttaagaaa 4741 cgttttttca aattaatggg cacttcttta ttggctcata gtgaaatatc tcataaaact 4861 gatcgttcca atcatcgaaa tttcagtgat gtgttattgt tggatcatgc attcaaaatc 4921 aaatttgcta atggtgagtt gattgatttt tgtgctccta ataaacatga aatgaaaata 4981 tggattcaaa atttacaaga aattatctat agaaatcggt tcagacgtca accatgggta 5041 aatttgatgc ttcaacaaca acaacaacaa caacaacaac aaagctccca acagtaattg 5101 aaaggtctac ttttgatttt tttaatttta attggcaaat atatgcccat tttgtattat 5161 cttttagtct aatagcgttt tcttttttc cagt

FIGURE 2B

### Activation of "Subtilisin-like" Proprotein Convertases

| Signal  | <u>Propeptide</u> | Inactive Subtilisin | P-Domain            |
|---------|-------------------|---------------------|---------------------|
| peptide | Xn-K/R            | DHNS                | D-H-N <rgd> S</rgd> |
|         |                   |                     | Substrate = K/R↓    |

The processing or "P-domain" clips the propeptide at the carboxy terminal side of dibasic residues, thereby releasing the propeptide. Exposed D-H-N-S active site residues assume the subtilisin serine protease conformation.



F16. 3

## Amino terminal processing of Int1p



### P Domain Subtilisin Motifs

F16.5

Comparison of the high affinity heparin-binding site of Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin (HBHA) with the proposed heparin-binding site of Candida albicans Int1p

HBHA  $\underline{\mathbf{K}}_{180}$  AAA  $\underline{\mathbf{K}}\underline{\mathbf{K}}$  APA  $\underline{\mathbf{K}}\underline{\mathbf{K}}$  AAA  $\underline{\mathbf{K}}\underline{\mathbf{K}}_{195}$ 

Int1p  $\underline{\mathbf{K}}_{155}$  SIM  $\underline{\mathbf{K}}\underline{\mathbf{K}}$  ATP  $\underline{\mathbf{K}}$  ASP  $\underline{\mathbf{K}}\underline{\mathbf{K}}_{169}$ 

F16.6 =



F16 7



F16.8



F16 9

| Si<br>8<br>n<br>al | PRO-<br>PEPTIDE<br>KR | CATALYTIC<br>DOMAIN<br>D(DX)-H-N-S | PROCESSING<br>DOMAIN<br>D-H-N-RGD-S | C-TERMINAL<br>EXTENSION |
|--------------------|-----------------------|------------------------------------|-------------------------------------|-------------------------|
|                    |                       |                                    |                                     |                         |

FIG. 10

|             |                       | [ant                                   | 1.CB52) | 1                                      |     | anti-RGD                              |      |                         |  |  |
|-------------|-----------------------|----------------------------------------|---------|----------------------------------------|-----|---------------------------------------|------|-------------------------|--|--|
|             | PRO-<br>PEPTIDE<br>KR | "CATALYTIC<br>DOMAIN 1"<br>D(DX)-H-N-S |         | "CATALYTIC<br>DOMAIN 2"<br>D(DX)-H-N-S |     | "PROCESSING<br>DOMAIN"<br>D-H-N-RGD-S |      | C-TERMINAL<br>EXTENSION |  |  |
| ī           | 263                   | 435                                    | 639     | 738                                    | 949 | 1022                                  | 1236 | 5 1664                  |  |  |
| anti-INT600 |                       |                                        |         |                                        |     |                                       |      |                         |  |  |

FIG. 11



FIG. 12



FIG. 13

### SILVER STAIN

### Anti 6X His WESTERN



F16.14



F16 15

### Model for the Participation of Intlp in Candidemia



FIG. 16

# MHC Class II-Binding Peptides

NNVVFTNKELE 田日 山 N N N N MAM 15 F V Q N L Intlp

F16.17

### Linkage of T Lymphocyte to Antigen-Presenting Cell

