- Problem Statement: For an organization of your choice, choose a set of business processes. Design star / snowflake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process.
- Multi-dimensional Schema :
 - Used to model data warehouse systems
 - To address unique needs of very large databases for analytical purposes
- Types of Schemas :
 - Star
 - Simplest type
 - Structure resembles a star
 - Center of the star has 1 fact table and many dimension tables
 - Also called Star join and optimized for querying large data sets
 - Fact Table : Comprises of the measurements, metrics or facts of a business process
 - Dimension Table : A structure that categorizes facts and measures in order to enable users to answer business questions. Commonly used dimensions are people, products, place and time.
 - o Snowflake
 - Extension of Star Schema
 - Additional dimensions
 - Dimension tables are normalized which splits data into additional tables
 - Constellation/Galaxy Schema
 - Contains 2 fact tables that share dimension tables
 - Collection of stars hence galaxy

- Problem Statement: Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tools.
- Clustering :
 - Grouping a set of similar objects together
 - Main task of explorative data mining & statistical analysis
 - Used in ML, Pattern recognition, image analysis etc
- K means clustering
 - Clusters data into k groups where k is predefined
 - Algorithm
 - Select k random points as cluster centers
 - Assign points to cluster centers according to their Euclidean distances
 - Calculate the centroid in each cluster to get new center
 - Repeat the above steps until all points are assigned the best cluster
 - Use elbow method to find the most optimum k
 - Elbow Method :
 - Vary the k from 1-10
 - For each k calculate the WCSS (Within-Cluster Sum of Square)
 - WCSS is the sum of squared distance between each point and the centroid in a cluster
 - When we plot the WCSS with the K value, the plot looks like an Elbow. As the number of clusters increases, the WCSS value will start to decrease.
 - WCSS value is largest when K = 1. W
 - Then we analyze the graph we can see that the graph will rapidly change at a point and thus creating an elbow shape.
 - From this point, the graph starts to move almost parallel to the X-axis. The K value corresponding to this point is the optimal K value or an optimal number of clusters.

- Problem Statement: Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis
- Accumulation of vast quantities of data
- Data Mining / Knowledge Discovery Database used to find anomalies, correlations, patterns and trends to predict outcomes
- Apriori Algorithm :
 - Used for mining frequent item sets and relevant association rules
 - Devised to operate on a database containing lot of transactions
 - o Terms in Apriori :
 - min_length : min no of items we want in our rules
 - Support: Number of transactions containing a particular item divided by total number of transactions.
 - Confidence: Likelihood that B is bought if A is also bought.
 - Confidence(A-->B) = (Transactions containing both A and B)/(Transactions containing A)
 - Lift: increase in ratio of sale of B when A is sold.
 - Life = Confidence(A-->B)/Support(B)

- Problem Statement: Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall
- Feature selection :
 - Process of selecting a subset of the terms occurring in training set and using only this subset as features in text classification
 - Makes training and applying a classifier more efficient by decreasing the size of the effective vocabulary
 - o Increases classification accuracy by eliminating noise features
- Stemming:
 - Reduce inflectional forms and derived words to a common base form.
 - o cleaning: removing @ # links
 - **Stopwords** is, where, when, etc propositions
 - **Stemmer** stems the morphological part
 - Countvectorizer count/frequency of each word
 - Lemmatization dictionary based stemming

Testing

- Testing Methodology :
 - Exploratory (Black Box Testing): Purpose is to make sure critical defects are removed before testing next levels of testing can start
 - Functional (White Box Testing): Performed to check the functions of the application. Input is fed and output from the app is validated
 - User Acceptance Test (Integration): Focuses on validating the business logic.
 Allows end user to complete one final review of the system prior to deployment

Process followed

- Testing Tools
 - TestNG is a testing framework inspired from JUnit and NUnit but with new functionalities which make it more power and easier to use
 - Annotations
 - Run your tests in arbitrarily big thread pools with various policies available (all methods in their own thread, one thread per test class,

- Test that your code is multithread safe.
- Flexible test configuration.
- Support for data-driven testing (with @DataProvider).
- Support for parameters.
- Powerful execution model (no more TestSuite).
- Supported by a variety of tools and plug-ins (Eclipse, IDEA, Maven)
- Embeds BeanShell for further flexibility.
- Default JDK functions for runtime and logging (no dependencies).
- Dependent methods for application server testing.

Selenium

- Open source tool that automates web browsers
- Single interface to run test scripts in multiple languages like Ruby, Java, NodeJS, Python, Perl, PHP, C#
- o Browser driver executes these scripts on a browser-instance on the device
- Selenium WebDriver :
 - Also known as Selenium 2.0, WebDriver executes test scripts through browser- specific drivers. It consists of:
 - API : Application Programming Interface. Ports test scripts you write in Ruby, Java, Python, or C# to Selenese (Selenium's own scripting language), through bindings.
 - Library: Houses the API and language-specific bindings. Although
 plenty of third party bindings exist to support different
 programming languages, the core client-side bindings supported
 by the main project are: Selenium Java (as selenium jar files),
 Selenium Ruby, Selenium dotnet (or Selenium C#, available as .dll
 files), Selenium Python, and Selenium JavaScript (Node).
 - Driver: Executable module that opens up a browser instance and runs the test script. Browser-specific—for instance, Google develops and maintains Chromedriver for Selenium to support automation on Chromium/Chrome.
 - Framework: Support libraries for integration with natural or programming language test frameworks, like Selenium with Cucumber or Selenium with TestNG.

JUnit

- Unit testing framework for Java language
- Originates from family of unit testing frameworks collectively known as xUnit
- Features of JUnit :
 - JUnit is an open source framework, which is used for writing and running tests.
 - Provides annotations to identify test methods.
 - Provides assertions for testing expected results.
 - Provides test runners for running tests.
 - JUnit tests allow you to write codes faster, which increases quality.
 - JUnit is elegantly simple. It is less complex and takes less time.

- JUnit tests can be run automatically and they check their own results and provide immediate feedback.
- JUnit tests can be organized into test suites containing test cases and even other test suites.
- JUnit shows test progress in a bar that is green if the test is running smoothly, and it turns red when a test fails

Unit Test Case

- o Part of code which ensures another part of code (method) works as expected
- Characterized by a known input and an expected output, which is worked out before the test is executed
- This known input should test a precondition and the expected output should test a post condition