Exercice 1. Soient deux réels a et b. Montrer que la fonction $x \mapsto ax + b$ est uniformément continue. Déterminer l'ensemble des k > 0 pour lesquels cette fonction est k-Lipschitzienne.

Exercise 1

Soit exo, et prenons
$$\delta = \frac{e}{\log x}$$
. Supposes Alors,

 $|f(x) - f(y)| = |ax + b - ay - b| = |ax - ay| = |a||x - y| < |a|| \delta = E$.

 $|f(x) - f(y)| = |a||x - y| \le |k||x - y|| \le |k||x - y||x - y|| \le |k||x - y||x - y||x - y|| \le |k||x - y||x - y||x - y||x - y||x - y||x - y|$

Exercice 2. (Fonctions α -Hölderiennes)

Soit I un intervalle de \mathbb{R} non nécessairement borné. Une fonction $f: I \to \mathbb{R}$ est α -Hölderienne (où $\alpha > 0$) s'il existe C > 0 tel que pour tout $x, y \in I$, $|f(x) - f(y)| \le C|x - y|^{\alpha}$.

- (i) Montrer qu'une fonction Hölderienne est uniformément continue.
- (ii) Montrer que $x \mapsto \sqrt{x}$ est 1/2-Hölderienne sur $I = \mathbb{R}_+$. (En revanche, en classe nous avons montré que $x \mapsto \sqrt{x}$ n'est k-Lipschitzienne pour aucun k.)
- (iii) Montrer qu'une fonction α -Hölderienne est constante si $\alpha > 1$.

Exercise 2

(i) Soit E>0, et prenons
$$\delta = \frac{|E|}{C}$$
. Alors, comme E est a-Holderienne,

 $|E(x) - E(y)| \le C|x - y|^{2k} \le CS^{k} = E$ donc E est uniformement continue.

(ii) Soins perte de généralité, supposois $x > y$. Prenons $C = 1$.

Alors, $|E(x) - E(y)| \le |x - y|^{2k} \iff \sqrt{y} \le \sqrt{x} - \sqrt{y} \le \sqrt{x} + y \le x - y \iff 2y - 2\sqrt{x}y \iff 0 \le 0$

Et (x) est vraie car $x > y$, donc $|E(x) - E(y)| \le |x - y|^{2k}$ est vraie.

(iii) $|E(x) - E(y)| \le C|x - y|^{2k} \implies \frac{|E(x) - E(y)|}{|x - y|} \le C|x - y|^{2k+1}$ et comme $|x - y| \le C|x - y|^{2k+1}$ et comme $|x - y| \le C|x - y|^{2k+1}$ tend vers $|x - y| \le$

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ continue. Supposons que f tend vers zéro en $+\infty$ et en $-\infty$.

- (i) Soit $\varepsilon > 0$, montrer qu'il existe M > 0 tel que pour tout $x \in \mathbb{R} \setminus [-M, M]$, on a $|f(x)| < \varepsilon/2$.
- (ii) Montrer qu'il existe $\delta > 0$ tel que pour tout $x, y \in [-(M+1), M+1]$ tels que $|x-y| < \delta$ on a $|f(x) f(y)| < \varepsilon$.
- (iii) Déduire des deux questions précédentes que f est uniformément continue sur \mathbb{R} .
- (iv) Montrer que f est bornée.

Exercice 4. soit I un intervalle et $f \in C(I, \mathbb{R})$ injective. Le but de cet exercice est de montrer que f est monotone.

- (i) Soient a < x < b dans I. Montrer que f(x) est strictement comprise entre f(a) et f(b). (Indication: théorème des valeurs intermédiaires.)
- (ii) Conclure que f est monotone.

Exercice 5. Calculer la dérivée de la fonction $f: \mathbb{R} \to \mathbb{R}^2$,

$$f(x) = \left(x^3 - x, \frac{1}{x^2 + 1}\right)$$

Exercise 5
$$F'(x) = \frac{dF}{dx} = \frac{d}{dx} \left(x^2 \times_{f} \frac{1}{x^2 + 1}\right) = \frac{d}{dx} x^2 \times_{f} \frac{d}{dx} \frac{1}{x^2 + 1} = \left(2x - 1, \frac{2x}{x^4 + 2x^2 + 1}\right)$$

Exercice 6. Donner une fonction $f:(0,1)\to\mathbb{R}$ continue qui n'est pas uniformément continue.

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ continue et *périodique*, c'est-à-dire que f(x+1) = f(x) pour tout $x \in \mathbb{R}$. Montrer que f est bornée et uniformément continue.

Exercice 8. On définit $f: \mathbb{R} \to \mathbb{R}$ par la formule

$$f(x) = \begin{cases} 0 & \text{si } x \text{ est irrationnel,} \\ \frac{1}{q} & \text{si } x \text{ est rationnel et s'écrit } x = \frac{p}{q} \text{ avec } p \text{ et } q \text{ premiers entre eux.} \end{cases}$$

Montrer que f est discontinue en tout point rationnel et continue en tout point irrationnel.

