12.11 The Binomial Series

The **Binomial Theorem** states that if a and b are any real numbers and k is a positive integer, then

$$(a+b)^{k} = a^{k} + ka^{k-1}b + \frac{k(k-1)}{2!}a^{k-2}b^{2} + \frac{k(k-1)(k-2)}{3!}a^{k-3}b^{3} + \dots + \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}a^{k-n}b^{n} + \dots + kab^{k-1} + b^{k}$$

The traditional notation for the binomial coefficients is

$$\binom{k}{0} = 1$$
 $\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$ $n = 1, 2, \dots, k$

which enables us to write the Binomial Theorem in the abbreviated form

$$(a+b)^k = \sum_{n=0}^k \binom{k}{n} a^{k-n} b^n$$

Definition 12.11.1 (The Binomial Series). If k is any real number and |x| < 1, then

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots$$
$$= \sum_{n=0}^{\infty} {k \choose n} x^n$$

where
$$\binom{k}{n} = \frac{k(k-1)\cdots(k-n+1)}{n!}$$
 $(n \ge 1)$ and $\binom{k}{0} = 1$

Proof. Newton extended the Binomial Theorem to the case in which k is no longer a positive integer. In particular, if we put a = 1 and b = k, we get

$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n$$

To find this series we compute the Maclaurin series of $(1+x)^k$ in the usual way.

$$f(x) = (1+x)^{k} f(0) = 1$$

$$f'(x) = k(1+x)^{k-1} f'(0) = k$$

$$f''(x) = k(k-1)(1+x)^{k-2} f''(0) = k(k-1)$$

$$f'''(x) = k(k-1)(k-2)(1+x)^{k-3} f'''(0) = k(k-1)(k-2)$$

$$\vdots \vdots \vdots$$

$$f^{(n)}(x) = k(k-1) \cdots (k-n+1)(1+x)^{k-n} f^{(n)}(0) = k(k-1) \cdots (k-n+1)$$

Therefore the Maclaurin series of $f(x) = (1+x)^k$ is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{k(k-1)\cdots(k-n+1)}{n!} x^n$$

Now we use the Ratio Test to test the binomial series for convergence. If the nth term is a_n , then

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{k(k-1)\cdots(k-n+1)(k-n)x^{n+1}}{(n+1)!} \cdot \frac{n!}{k(k-1)\cdots(k-n+1)x^n} \right|$$

$$= \frac{|k-n|}{x+1}|x| = \frac{\left| 1 - \frac{k}{n} \right|}{1 + \frac{1}{n}}|x| \to |x| \quad \text{as } n \to \infty$$

The binomial series converges if |x| < 1 and diverges if |x| > 1 by the Ratio Test.

Example 12.11.1. Expand $\frac{1}{(1+x)^2}$ as a power series.

Solution. Use the binomial series with k=2. The binomial coefficient is

$${\binom{-2}{n}} = \frac{(-2)(-3)(-4)\cdots(-2-n+1)}{n!}$$
$$= \frac{(-1)^n 2 \cdot 3 \cdot 4 \cdot \dots \cdot n(n+1)}{n!} = (-1)^n (n+1)$$

and so, when |x| < 1,

$$\frac{1}{(1+x)^2} = (1+x)^{-2} = \sum_{n=0}^{\infty} {\binom{-2}{n}} x^n$$
$$= \sum_{n=0}^{\infty} (-1)^n (n+1) x^n = 1 - 2x + 3x^2 - 4x^3 + \cdots$$