NEUREĐENI IZBORI

1. Koliko ima prirodnih brojeva manjih od 1000000 čiji je zbir cifara 7?

 $Re \check{s}enje:$ Svaki prirodan broj manji od 10^6 možemo zapisati kao niz $a_1a_2\dots a_6,$ gde je $0\leq a_i\leq 9.$ Dakle, prirodnih brojeva koji zadovoljavaju uslov iz zadatka ima koliko ima i rešenja jednačine $a_1+a_2+\ldots+a_6=7$ na skupu nenegativnih celih brojeva, odnosno $\binom{7+6-1}{7}=\binom{7+6-1}{6-1}.$

2. Domina je pločica za igru na koju su nalepljene dve sličice (ne obavezno različite). Ako na raspolaganju imamo 7 vrsta sličica, koliko je različitih domina moguće napraviti pomoću njih?

Rešenje: Standardni paket sadrži domine sa sledećim sličicama:

Neka je sa x_i označen broj sličica na kojima je nacrtano i tačkica na jednoj uočenoj domini, $i \in \{0, 1, 2, ..., 6\}$. Kako svaka domina ima dve sličice, važi $0 \le x_i \le 2$, za svako i. Sada broj domina odgovara broju rešenja jednačine

$$x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 2$$

u skupu nenegaticnih celih brojeva. Prema tome, broj različitih domina koje možemo napraviti sa datim vrstama sličica je $\binom{2+6}{2} = \binom{8}{2} = 28$.

3. Iz kompleta koji sadrži 32 razližite karte bira se 8 karata SA/BEZ vraćanja, tako da njihov redosled JESTE/NIJE bitan. Koliko različitih izbora ima?

Rešenje:

Slučaj SA/JESTE (sa vraćanjem, a redosled jeste bitan) odgovara broju 8–permutacija elemenata multiskupa $\overline{P}(32;8)=32^8$.

Slučaj SA/NIJE odgovara kombinacijama elemenata multiskupa (32 karte kao 32 kutije razdvojene 31 pregradom i 8 kuglica), $\overline{C}(32;8) = {8+31 \choose 8} = {39 \choose 8}$.

Slučaj BEZ/JESTE odgovara broju 8-permutacija elemenata skupa sa 32 elementa, tj. $P(32;8) = 32 \cdot 31 \cdot ... \cdot (32 - 8 + 1)$.

Slučaj BEZ/NIJE odgovara kombinacijama elemenata skupa $C(32;8) = \binom{32}{8}$.

4. Koliko ima binarnih nizova od n nula i 2n+2 jedinica takvih da se između svake dve nule nalaze bar dve jedinice?

Rešenje: Rasporedimo n nula, a zatim 2(n-1) jedinica po dve između svake dve nule. Broj načina da rasporedimo preostale 4 jedinice odgovara broju rasporeda 4 kuglice u n+1 kutiju, gde u svakoj kutiji može da bude od 0 do 4 kuglice, tj. traženi broj je $\binom{n+4}{4}$.

1

5. Koliko celobrojnih rešenja ima jednačina

$$x_1 + x_2 + x_3 + x_4 + x_5 = 23$$

pod uslovom da važi $x_1 > 1$, $x_2 > 2$, $x_3 > 3$, $x_4 > 4$ i $x_5 > 5$?

 $Re \check{s}enje:$ Kako su uslovi $x_i \geq i+1,$ uvodeći nove promenljive $y_i = x_i-i-1$ dobijamo da za svako y_i važi $y_i \geq 0,$ kao i

$$y_1 + y_2 + y_3 + y_4 + y_5 = 23 - (2 + 3 + 4 + 5 + 6) = 3.$$

Dakle, problem se sveo na traženje broja rešenja jednačine $y_1 + y_2 + y_3 + y_4 + y_5 = 3$ na skupu nenegativnih celih brojeva i taj broj iznosi $\binom{3+4}{3}$.

6. Broj studenata koji izlaze na usmeni ispit iz Algebre je 60. Usmeni se može polagati kod jednog od tri profesora. Prva dva profesora moraju ispitati bar 10 studenata, a treći bar 15. Na koliko načina profesori mogu da izvrše podelu posla, ukoliko nam nije bitno koji će student kod koga odgovarati, nego samo broj ispitanih studenata po profesoru? (domaći)

 $Re\check{s}enje$: Neka je x_i broj studenata koje ispita i-ti profesor, $1 \le i \le 3$. Tražimo broj rešenja jednačine

$$x_1 + x_2 + x_3 = 60$$
, also je $x_1 \ge 10$, $x_2 \ge 10$, $x_3 \ge 15$.

Uvodeći nove promenljive $y_1=x_1-10,\ y_2=x_2-10$ i $y_3=x_3-15$ problem se svodi na određivanje broja rešenja jednačine $y_1+y_2+y_3=60-35=25$ na skupu nenegativnih celih brojeva, $y_i\geq 0$. Profesori mogu podeliti posao na $\binom{25+2}{2}=\binom{27}{2}$ načina.

7. Koliko rešenja u skupu nenegativnih celih brojeva ima nejednačina

$$x_1 + x_2 + \ldots + x_m \le n?$$

Rešenje: Jedan način jeste da nađemo brojeve rešenja jednačina

$$x_1 + x_2 + \ldots + x_m = i, \quad 0 \le i \le n$$

u skupu nenegativnih celih brojeva i sve ih saberemo, tj. $\sum_{i=0}^{n} \binom{i+m-1}{i}$.

Nešto elegantniji način bi bio da nađemo broj svih rešenja jednačine

$$x_1 + x_2 + \ldots + x_m + y = n$$

u skupu nenegativnih celih brojeva. Jasno, y može uzimati vrednosti od 0 do n, čime preostali zbir $x_1 + x_2 + \ldots + x_m$ uzima respektivno vrednosti od n do 0.

Broj rešenja nejednačine iznosi $\binom{n+m}{n}$.

- 8. Koliko ima n-cifrenih prirodnih brojeva u čijem dekadnom zapisu nijedna cifra
 - (a) nije manja od prethodne;
 - (b) nije veća od prethodne?

Napisati kod u programskom jeziku JAVA koji ispisuje sve takve šestocifrene brojeve.

Rešenje:

(a) Svaki n—cifreni prirodni broj koji zadovoljava uslov zadatka se može predstaviti kao niz $a_1a_2a_3\ldots a_{n-1}a_n$, pri čemu važi $a_1\geq a_2\geq a_3\geq \cdots \geq a_{n-1}\geq a_n$, tj. trebaju nam n—cifreni brojevi kod kojih su cifre u **neopadajućem** poretku. Svaki takav broj je jedinstveno određen brojem jedinica, dvojki, trojki,..., devetki u njegovom dekadnom zapisu. Ako sa x_i označimo broj pojavljivanja cifre i, $1\leq i\leq 9$, traženi broj odgovara broju rešenja jednačine

$$x_1 + x_2 + \dots + x_9 = n.$$

Broj n-cifrenih prirodnih brojeva kod kojih su cifre u neopadajućem poretku je $\binom{n+8}{8}$. Ovaj broj odgovara raspoređivanju n kuglica u 9 kutija.

```
public class Neopadajuci6-cifreni{
    public static void main(String []args) {
        int s=0;
        for (int i=1; i<=9; i++){</pre>
            for (int j=i; j<=9; j++){</pre>
                for (int k=j; k<=9; k++){</pre>
                    for (int l=k; 1<=9; 1++){</pre>
                        for (int m=1; m<=9; m++){</pre>
                            for (int n=m; n<=9; n++){</pre>
                                 System.out.println(""+i+j+k+l+m+n);
                                 s += 1;
                        }
                    }
                }
            }
        }
        System.out.println("S="+s);
    }
}
```

Traženih šestocifrenih brojeva ima $\binom{6+8}{8} = \binom{14}{8} = 3003.$

(b) Poredak cifara u ovom slučaju treba da bude **nerastući**, pa je potrebno da važi uslov $a_1 \le a_2 \le a_3 \le \cdots \le a_{n-1} \le a_n$. Zadatak rešavamo slično kao u primeru pod (a), jedino što je sada i cifra 0 na raspolaganju. Broj rešenja jednačine

$$x_0 + x_1 + x_2 + \dots + x_9 = n$$

je $\binom{n+9}{9}$. Međutim, ne odgovaraju sva rešenja n-cifrenim prirodnim brojevima. Među rešenjima jednačine je i rešenje $x_0=n,\,x_1=x_2=\cdots=x_9=0$, koje bi odgovaralo broju 0 koji nije prirodan broj. Prema tome, traženih brojeva ima $\binom{n+9}{9}-1$.

```
public class Nerastuci6-cifreni{
    public static void main(String []args) {
        for (int i=1; i<=9; i++){</pre>
            for (int j=0; j<=i; j++){</pre>
                for (int k=0; k<=j; k++){</pre>
                    for (int 1=0; 1<=k; 1++){</pre>
                        for (int m=0; m<=1; m++){</pre>
                             for (int n=0; n<=m; n++){</pre>
                                 System.out.println(""+i+j+k+l+m+n);
                                 s += 1;
                    }
                }
            }
        }
        System.out.println("S="+s);
    }
}
```

Ovakvih šestocifrenih brojeva ima $\binom{6+9}{9}-1=\binom{15}{9}-1=5\,004.$

9. Odrediti broj svih monotono nerastućih uređenih petorki $(a_1, a_2, a_3, a_4, a_5)$ elemenata iz skupa $\{1, 2, 3\}$. (domaći)

Rešenje: Pošto su u pitanju narastuće petorke treba da važi

$$3 \ge a_1 \ge a_2 \ge a_3 \ge a_4 \ge a_5 \ge 1$$
.

Rešenje možemo interpretirati pomoću kutija i kuglica kao i u prethodnom zadatku. Kutije su numerisane redom brojevima 3, 2 i 1, a kuglica imamo 5. Svaki raspored kuglica u kutijama odgovara jednoj uređenoj petorci koja zadovoljava uslove zadatka i obrnuto. Na primer, rasporedu u kome u prvoj kutiji imamo 2 kuglice, drugoj 3, a nijednu u trećoj kutiji odgovara uređena petorka $(a_1, a_2, a_3, a_4, a_5) = (3, 3, 2, 2, 2)$.

Rešenje je
$$\binom{2+5}{5} = \binom{7}{2} = 21.$$

10. Dati kombinatornu interpretaciju izračunavanja vrednosti promenljive s na kraju izvršavanja koda napisanog u programskom jeziku JAVA:

```
public class IzracunajS{
   public static void main(String[] args) {
       int s=0;
       for (int i=1; i<=20; i++){</pre>
           for (int j=1; j<=20; j++){</pre>
               for (int k=j; k<=20; k++){</pre>
                   for (int l=k; 1<=20; 1++){</pre>
                       if (i != j){
                            s += 1;
                   }
               }
           }
       }
      System.out.println("S= "+s);
   }
}
```

Rešenje: Brojač i je nezavisan od preostala 3 brojača i uzima vrednosti od 1 do 20. Za brojače $j,\ k$ i l važi $1 \le j \le k \le l \le 20$. Promenljiva s broji uređene četvorke (i,j,k,l) kod kojih je $i \ne j,\ 1 \le i \le 20$ i $1 \le j \le k \le l \le 20$.

Ideja je da prvo nađemo broj četvorki (i,j,k,l) sa uslovima $1 \le i \le 20$ i $1 \le j \le k \le l \le 20$, dakle bez uslova $i \ne j$. Za traženje broja uređenih trojki (j,k,l) sa uslovom $1 \le j \le k \le l \le 20$, koristimo ideju koju smo videli u prethodnim zadacima. Ovakvih trojki ima koliko ima i rasporeda 3 kuglice u 20 kutija, tj. $\binom{19+3}{3} = \binom{22}{3}$, pa je broj četvorki, uzimajući u obzir da i uzima vrednosti od 1 do 20 nezavisno od preostala 3 brojača, jednak $20 \cdot \binom{22}{3}$.

Zatim nalazimo broj cetvorki (i, j, k, l) sa uslovima $1 \le i \le 20$ i $1 \le j \le k \le l \le 20$ kod kojih je i = j.

Analiziramo po slučajevima:

```
Za i=1 tražimo sve trojke (j,k,l) za koje je j=1 i važi j\leq k\leq l\leq 20. Za i=2 tražimo sve trojke (j,k,l) za koje je j=2 i važi j\leq k\leq l\leq 20 .
```

Za i=20 tražimo sve trojke (j,k,l) za koje je j=20 i važi $j\leq k\leq l\leq 20.$

Kako u svim trojkama (j, k, l), $1 \le j \le k \le l \le 20$ promenljiva j uzima vrednosti od 1 do 20, gornji slučajevi su ustvari pokupili sve ove uređene trojke. Ovakvih trojki ima $\binom{22}{3}$.

Dakle, rešenje je
$$20 \cdot \binom{22}{3} - \binom{22}{3} = 19 \cdot \binom{22}{3}$$
.

BINOMNI I POLINOMNI KOEFICIJENTI

11. Dokazati da je
$$\sum_{i=0}^{r} \binom{n+i}{i} = \binom{n+r+1}{r}.$$

 $Re\check{s}enje$: Dokaz dajemo indukcijom po r.

BI: Za r=0 jednakost je tačna, jer je $\binom{n+0}{0}=\binom{n+0+1}{0}=1$.

IH: Pretpostavimo da je jednakost tačna za r=k, tj. da važi

$$\sum_{i=0}^{k} \binom{n+i}{i} = \binom{n+k+1}{k}.$$

IK: Dokažimo da je jednakost tačna za r=k+1.

$$\sum_{i=1}^{k+1} \binom{n+i}{i} = \sum_{i=1}^{k} \binom{n+i}{i} + \binom{n+k+1}{k+1}$$

$$= \binom{n+k+1}{k} + \binom{n+k+1}{k+1}$$
(Paskalov iden.)
$$= \binom{n+k+2}{k+1}.$$

II način: Treba dokazati da važi:

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+r-1}{r-1} + \binom{n+r}{r} = \binom{n+r+1}{r}.$$

Koristeći Paskalov identitet dobijamo:

$$\binom{n+r+1}{r} = \binom{n+r}{r} + \binom{n+r}{r-1}$$

$$= \binom{n+r}{r} + \binom{n+r-1}{r-1} + \binom{n+r-1}{r-2} =$$

$$= \binom{n+r}{r} + \binom{n+r-1}{r-1} + \binom{n+r-2}{r-2} + \binom{n+r-2}{r-3}$$

$$\vdots$$

$$= \binom{n+r}{r} + \binom{n+r-1}{r-1} + \dots + \binom{n+2}{2} + \binom{n+2}{1}$$

$$= \binom{n+r}{r} + \binom{n+r-1}{r-1} + \dots + \binom{n+2}{2} + \binom{n+1}{1} + \binom{n+1}{0} .$$

Kako je
$$\binom{n+1}{0} = 1 = \binom{n}{0}$$
 dobijamo da važi

$$\binom{n+r+1}{r} = \binom{n+r}{r} + \binom{n+r-1}{r-1} + \dots + \binom{n+2}{2} + \binom{n+1}{1} + \binom{n}{0}.$$

12. Dokazati da je
$$\sum_{k=1}^{n} k \binom{n}{k} = n \ 2^{n-1}.$$

Rešenje:

$$\sum_{k=1}^{n} k \binom{n}{k} = \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} = \sum_{k=1}^{n} \frac{n(n-1)!}{(k-1)!(n-1-(k-1))!}$$

$$= n \sum_{k=1}^{n} \binom{n-1}{k-1} \qquad \text{(smena: j=k-1)}$$

$$= n \sum_{j=0}^{n-1} \binom{n-1}{j} = n2^{n-1}.$$

II način: Posmatrajmo razvoj izraza $(1+x)^n$:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = 1 + \sum_{k=1}^n \binom{n}{k} x^k.$$

Diferenciranjem razvoja po x dobijamo

$$n(1+x)^{n-1} = \sum_{k=1}^{n} \binom{n}{k} kx^{k-1}.$$

Kada uvrstimo x = 1 u prethodni izraz dobijamo

$$n(1+1)^{n-1} = \sum_{k=1}^{n} \binom{n}{k} k,$$

čime je pokazano traženo tvrđenje.

13. Dokazati da je
$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} = \frac{2^{n+1}-1}{n+1}$$
.

Rešenje:

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} = \sum_{k=0}^{n} \frac{1}{k+1} \cdot \frac{n!}{k!(n-k)!} \cdot \frac{n+1}{n+1}$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} \frac{(n+1)!}{(k+1)!(n+1-(k+1))!}$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} \binom{n+1}{k+1} \quad \text{(smena: } j=k+1)$$

$$= \frac{1}{n+1} \sum_{j=1}^{n+1} \binom{n+1}{j} = \frac{1}{n+1} \left(\sum_{j=0}^{n+1} \binom{n+1}{j} - \binom{n+1}{0}\right)$$

$$= \frac{1}{n+1} \cdot (2^{n+1} - 1).$$

14. Dokazati da je
$$\binom{m}{n}\binom{n}{k} = \binom{m}{k}\binom{m-k}{n-k}$$
.

Rešenje: Algebarski dokaz:

$$\binom{m}{n} \binom{n}{k} = \frac{m!}{n!(m-n)!} \cdot \frac{n!}{k!(n-k)!}$$

$$= \frac{m!}{k!(m-k)!} \cdot \frac{(m-k)!}{(n-k)!(m-n)!}$$

$$= \binom{m}{k} \binom{m-k}{n-k}.$$

Kombinatorni dokaz:

Neka je dat skup M sa m elemenata. Izračunajmo broj načina da formiramo skupove N i K, takve da važi $K \subseteq N \subseteq M$, |K| = k i |N| = n. Dva su moguća pristupa rešavanju zavisno od redosleda formiranja ovih skupova.

Možemo prvo formirati skup N na $\binom{m}{n}$ načina, birajući n od m elemenata skupa M. Kako skup K mora biti podskup od N, njega možemo formirati na $\binom{n}{k}$ načina. Dakle, broj načina da formiramo skupove N i K, takve da važi $K\subseteq N\subseteq M$ iznosi $\binom{m}{n}\binom{n}{k}$, što je leva strana jednakosti.

Ukoliko bismo problem rešavali tako što prvo formiramo skup K, birajući k od m elemenata skupa M, a zatim skup K dopunjavali do skupa N dobili bismo desnu stranu jednakosti koju dokazujemo. Naime, broj načina da formiramo skup K je $\binom{m}{k}$, a broj načina da izaberemo još n-k od m-k elemenata za dopunjavanje do skupa N iznosi $\binom{m-k}{n-k}$.

15. Dokazati Vandermondov identitet

$$\binom{m}{0}\binom{n}{k} + \binom{m}{1}\binom{n}{k-1} + \ldots + \binom{m}{k}\binom{n}{0} = \binom{m+n}{k}.$$

 $Re\check{senje}$: Posmatrajmo problem izbora k ljudi iz grupe od m žena i n muškaraca. Kako nemamo nikakav uslov u vezi sa polom osoba koje biramo, broj načina da izaberemo k ljudi iz ove grupe je $\binom{m+n}{k}$, što odgovara desnoj strani jednakosti koju dokazujemo.

S druge strane, sve te izbore možemo grupisati u zavisnosti od broja žena među k izabranih. Izbora u kojima nema žena ima $\binom{m}{0}\binom{n}{k}$, sa jednom ženom $\binom{m}{1}\binom{n}{k-1}$, itd. Završavamo sa izborima u kojima su sve žene i njih ima $\binom{m}{k}\binom{n}{0}$. Dakle, ovom pristupu odgovara leva strana jednakosti, čime smo pokazali da su leva i desna strana jednakosti iste jer predstavljaju rešenje istog kombinatornog problema.

Napomena: Primetimo da se Vandermondov identitet može zapisati na sledeći način:

$$\sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i} = \binom{m+n}{k}.$$

16. Dokazati da je
$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

 $\it Re \check{\it senje} :$ U dokazu korisitimo Vandermondov identitet i simetričnost binomnih koeficijenata.

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{n+n}{n} = \binom{2n}{n}.$$

17.* Dokazati da je
$$\binom{n}{0} + \binom{n}{2} + \dots + \binom{n}{2k} + \dots = \binom{n}{1} + \binom{n}{3} + \dots + \binom{n}{2k+1} + \dots = 2^{n-1}$$
.

Rešenje: Prvi deo tvrđenja možemo zapisati na sledeći način: dokazati da svaki skup sadrži isti broj podskupova sa parnim i sa neparnim brojem elemenata. Posmatrajmo proizvoljan skup X sa n elemenata i neka je $x \in X$. Neka se u \mathcal{A} nalaze svi podskupovi skupa X koji imaju paran broj elemenata, a u \mathcal{B} svi podskupovi sa neparnim brojem elemenata. Sada za $A \in \mathcal{A}$ definišemo preslikavanje $f: \mathcal{A} \to \mathcal{B}$ na sledeći način:

$$f(A) = \begin{cases} A \cup \{x\}, & x \notin A \\ A \setminus \{x\}, & x \in A \end{cases}$$

Ovo preslikavanje je očigledno bijekcija, te vazi $|\mathcal{A}| = |\mathcal{B}|$. Ovime je dokazan prvi deo tvrđenja. Kako je ukupan broj podskupova skupa sa n elemenata 2^n i kako svaki skup ima isti broj podskupova sa parnim i sa neparnim brojem elemenata, trivijalno važi da je broj takvih podskupova 2^{n-1} .

II način: Ako u formulu $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ stavimo x=1 i x=-1, dobijamo

sledeće identitete $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ i $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$. Ukoliko saberemo dobijene jednakosti dobićemo da važi

$$2\binom{n}{0} + 2\binom{n}{2} + 2\binom{n}{4} + \dots + 2\binom{n}{2k} + \dots = 2^n,$$

odakle je
$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots + \binom{n}{2k} + \dots = 2^{n-1}$$
.

Slično, oduzimanjem gornjih jednakosti dobijamo

$$2\binom{n}{1} + 2\binom{n}{3} + 2\binom{n}{5} + \dots + 2\binom{n}{2k+1} + \dots = 2^n,$$

pa je
$$\binom{n}{1}$$
 + $\binom{n}{3}$ + $\binom{n}{5}$ + \cdots + $\binom{n}{2k+1}$ + \cdots = 2^{n-1} .

18. Naći koeficijent uz a^3b^2 u razvoju izraza $(3a-2b)^5$.

Rešenje:

$$(3a - 2b)^5 = \sum_{k=0}^{5} {5 \choose k} (3a)^k (-2b)^{5-k} = \sum_{k=0}^{5} {5 \choose k} 3^k (-2)^{5-k} a^k b^{5-k}.$$

Za k=3 dobijamo da je koeficijent uz a^3b^2 jednak $\binom{5}{3}3^3(-2)^{5-3}=1080.$

19. Naći koeficijent uz x^5 u razvoju izraza $(3\sqrt{x} + \frac{1}{2\sqrt[3]{x}})^{20}$.

Rešenje:

$$(3\sqrt{x} + \frac{1}{2\sqrt[3]{x}})^{20} = \sum_{k=0}^{20} {20 \choose k} (3\sqrt{x})^k (\frac{1}{2\sqrt[3]{x}})^{20-k} = \sum_{k=0}^{20} {20 \choose k} \frac{3^k}{2^{20-k}} \cdot x^{\frac{k}{2} - \frac{20-k}{3}}.$$

Eksponent od x je jednak 5 kada je $\frac{k}{2} - \frac{20-k}{3} = 5$, odnosno za k = 14. Koeficijent uz x^5 je $\binom{20}{14} \frac{3^{14}}{2^{20-14}} = \binom{20}{14} 3^{14} \cdot 2^{-6}$.

20. Zbir binomnih koeficijenata pri razvoju $(1+x)^n + (1+x)^{n+1}$ jednak je 1536. Odrediti koeficijent uz x^6 .

Rešenje:

$$(1+x)^n + (1+x)^{n+1} = \sum_{i=0}^n \binom{n}{i} x^i + \sum_{j=0}^{n+1} \binom{n+1}{j} x^j$$
 (1)

Zbir binomnih koeficijenata dobijamo za x = 1, pa važi:

$$2^n + 2^{n+1} = 1536.$$

Rešenje gornje jednačine je n=9. Iz (1) sledi da za i=6 i j=6 dobijamo koeficijent uz x^6 , pa je traženi koeficijent $\binom{9}{6}+\binom{10}{6}=294$.

Napomena: Primetimo da smo do traženog koeficijenta mogli doći i na sledeći način.

$$(1+x)^n + (1+x)^{n+1} = (1+(1+x)) (1+x)^n$$

$$= (x+2) \sum_{k=0}^n \binom{n}{k} x^k$$

$$= \sum_{k=0}^n \binom{n}{k} x^{k+1} + 2 \sum_{k=0}^n \binom{n}{k} x^k.$$

Kako je n=9, dobijamo da je koeficijent uz x^6 jednak $\binom{9}{5}+2\binom{9}{6}=294$.

21. Naći koeficijent uz $x^2y^3z^2$ u razvoju izraza $(x+y+z)^7$.

Rešenje:

$$(x+y+z)^7 = \sum_{\substack{\frac{3}{\sum i=1} n_i = 7, \ n_i \ge 0}} {7 \choose n_1, n_2, n_3} x^{n_1} y^{n_2} z^{n_3}.$$

Monom $x^2y^3z^2$ dobijamo za $n_1=2,\ n_2=3,\ n_3=2,$ te je koeficijent uz njega $\binom{7}{2,3,2}=\frac{7!}{2!3!2!}.$

22. Naći koeficijent uz x^{10} u razvoju izraza $(1-x^2+x^3)^{11}$.

Rešenje:

$$(1 - x^2 + x^3)^{11} = \sum_{\substack{\substack{1 \\ \sum_{i=1}^3 n_i = 11, \ n_i \ge 0}} {11 \choose n_1, n_2, n_3} (-x^2)^{n_2} (x^3)^{n_3}.$$

Eksponent od x je jednak 10 kada je $2n_2 + 3n_3 = 10$. Kako su n_2 i n_3 nenegativni celi brojevi, rešenja su uređeni parovi $(n_2, n_3) = (5, 0)$ i $(n_2, n_3) = (2, 2)$.

Koeficijent uz x^{10} je: $(-1)^5 \frac{11!}{6!5!0!} + (-1)^2 \frac{11!}{7!2!2!}$.