VISUALIZATION

Program

[†]A modified version of Hadley Wickham's analytic process

ggplot2

- R has several systems for making graphs
- ggplot2 is the most elegant and versatile
- Implements the grammar of graphics theory behind data visualization

PREREQUISITES

PACKAGE PREREQUISITE

```
library(tidyverse)
#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr
#> Loading tidyverse: dplyr
#> Conflicts with tidy packages
#> filter(): dplyr, stats
#> lag(): dplyr, stats
```

DATA PREREQUISITE

```
mpg
#> # A tibble: 234 × 11
   manufacturer model displ year cyl trans drv
#>
                                                 cty
                                                     hwy
         #>
#> 1
          audi
                a4 1.8 1999
                                          f
                                                 18
                                4 auto(15)
                                                      29
                                4 \text{ manual}(m5) f 21
                    1.8 1999
#> 2
          audi
                                                      29
                a4
                                4 manual(m6) f
#> 3
          audi
                    2.0
                        2008
                                                 20
                                                      31
                a4
                                   auto(av) f
                        2008
                                               21
#> 4
          audi
                a4
                    2.0
                                                      30
                                   auto(15) f
                    2.8 1999
#> 5
                                                 16
                                                      26
          audi
                a4
                                                            p
#> 6
                    2.8 1999
                                6 manual(m5)
                                                 18
          audi
                                                      26
                 a4
#> # ... with 228 more rows, and 1 more variables: class <chr>
```

Type View(mpg) in the console for a spreadsheet view of the data

YOURTURN!

Can you find the help file explaining the mpg data set?

additional documentation for the mpg data set
?mpg

CANVAS

LET'S CREATE OUR "CANVAS"

```
# left
ggplot(data = mpg)

# right
ggplot(data = mpg, aes(x = displ, y = hwy))
```


GEOMS

geom_abline geom_histogram geom_jitter geom_bar geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_point geom_contour geom_polygon geom_count geom_hex geom_quantile geom_raster geom_crossbar geom_ribbon geom_density geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_freqpoly geom_violin

LETS ADD "GEOMS"

- We display data with geometric shapes
- ~ 30 built-in geoms (with many more offered by other pkgs)

Type geom_ + tab in the console

geom_abline geom_histogram geom_jitter geom_bar geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_contour geom_point geom_count geom_polygon geom_quantile geom_hex geom_crossbar geom_raster geom_density geom_ribbon geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_freqpoly geom_violin

UNIVARIATE GEOMS

```
ggplot(data = mpg, aes(x = hwy)) +
  geom_histogram()

ggplot(data = mpg, aes(x = hwy)) +
  geom_freqpoly()

ggplot(data = mpg, aes(x = hwy)) +
  geom_density()
```


geom_abline geom_histogram geom_jitter geom_bar geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_contour geom_point geom_polygon geom_count geom_hex geom_quantile geom_crossbar geom_raster geom_density geom_ribbon geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_freqpoly geom_violin

UNIVARIATE GEOMS

ggplot(data = mpg, aes(x = class)) +
 geom_bar()

geom_abline geom_histogram geom_bar geom_jitter geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_point geom_contour geom_polygon geom_count geom_hex geom_quantile geom_raster geom_crossbar geom_density geom_ribbon geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_freqpoly geom_violin

UNIVARIATE GEOMS

```
ggplot(data = mpg, aes(x = class)) +
  geom_bar()
```

- This is called an **aes**thetic mapping argument
- Every geom requires a mapping argument
 - Some geoms require just one (x variable)
 - While other geoms require two (x & y variable)

geom_histogram geom_abline geom_bar geom_jitter geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_contour geom_point geom_count geom_polygon geom_hex geom_quantile geom_crossbar geom_raster geom_ribbon geom_density geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_violin geom_freqpoly

BIVARIATE GEOMS

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point()

ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_boxplot()

ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_violin()
```


geom_abline geom_histogram geom_bar geom_jitter geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_contour geom_point geom_polygon geom_count geom_hex geom_quantile geom_crossbar geom_raster geom_density geom_ribbon geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_violin geom_freqpoly

YOURTURN!

- I. Import the CustomerData.csv file
- 2. Create a chart that illustrates the distribution of the **DebtToIncomeRatio** variable.

- 3. Create a chart that shows the counts for each JobCategory
- 4. Create a scatter plot of HHIncome vs CardSpendMonth

```
#1: import data
customer <- read_csv("data/CustomerData.csv")</pre>
#2: distribution of DebtToIncomeRatio variable
ggplot(data = customer, aes(x = DebtToIncomeRatio)) +
 geom_histogram()
#3: distribution of JobCategory variable
ggplot(data = customer, aes(x = JobCategory)) +
  geom_bar()
#4: scatter plot for HHIncome vs CardSpendMonth
ggplot(data = customer, aes(x = HHIncome, y = CardSpendMonth)) +
 geom_point()
```

NON-MAPPING AESTHETICS

```
ggplot(data = mpg, aes(x = displ, y = hwy)) + geom_point(color = "blue", size = 2, shape = 17, alpha = .5)
```


We can also change other visual aesthetics in our graphics

- color
- size
- $sh \triangle pe (0-25 ?pch)$
- opacity

Lots of color and sh ◆ pe options; just google and you'll find plenty of references

NON-MAPPING AESTHETICS

```
ggplot(data = mpg, aes(x = displ, y = hwy)) + geom_point(color = "blue", size = 2, shape = 17, alpha = .5)
```


We can also change other visual aesthetics in our graphics

- color
- size
- sh∆pe
- opacity
- Why are some points darker than others?
- Try geom_jitter in place of geom_point
- What do you think geom_jitter does?

ADDING A 3RD DIMENSION

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point(color = "blue")
```

By moving the color argument to within aes(), we can map a 3rd variable to our plot

```
ggplot(data = mpg, aes(x = displ, y = hwy, color = class)) +
  geom_point()
```


ADDING A 3RD DIMENSION

A common error...what happened???

```
ggplot(data = mpg, aes(x = displ, y = hwy, color = "blue")) +
  geom_point()
```


YOURTURN!

Create a scatter plot of HHIncome vs
 CardSpendMonth and color all points blue.

2. Create a scatter plot of HHIncome vs

CardSpendMonth and color all points based on whether or not the customer is retired.

#1. Create a scatter plot of HHIncome vs CardSpendMonth and color all points blue.
ggplot(customer, aes(x = HHIncome, y = CardSpendMonth)) +
 geom_point(color = "blue")


```
#2. Create a scatter plot of HHIncome vs CardSpendMonth and color all points based on
# whether or not the customer is retired..
ggplot(customer, aes(x = HHIncome, y = CardSpendMonth, color = Retired)) +
    geom_point()
```


FA	CETS	1986				

FACETS = SMALL MULTIPLES

- The facet functions provide a simple way to create small multiples
 - facet_wrap: primarily used to create small multiples based on a single variable
 - facet_grid: primarily used to create a small multiples grid based on two variables

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  facet_wrap(~ class, nrow = 2)
```


FACETS = SMALL MULTIPLES

- The facet functions provide a simple way to create small multiples
 - facet_wrap: primarily used to create small multiples based on a single variable
 - facet_grid: primarily used to create a small multiples grid based on two variables

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  facet_wrap(~ class, nrow = 2)
```

- use **nrow** or **ncol** to specify dimensions
- ?facet_wrap to see other arguments to control the output

FACETS = SMALL MULTIPLES

- The facet functions provide a simple way to create small multiples
 - facet_wrap: primarily used to create small multiples based on a single variable
 - facet_grid: primarily used to create a small multiples grid based on two variables

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  facet_grid(drv ~ cyl)
```


YOURTURN!

- 1. Create a scatter plot of HHIncome vs CardSpendMonth facetted by JobCategory.
- 2. Create a scatter plot of **HHIncome** vs **CardSpendMonth** facetted by **JobCategory** and **Gender**.
- 3. Assess UnionMember across each JobCategory.

2. Create a scatter plot of HHIncome vs CardSpendMonth facetted by JobCategory & Gender.
ggplot(customer, aes(x = HHIncome, y = CardSpendMonth)) +
 geom_point() +
 facet_wrap(~ JobCategory)

2. Create a scatter plot of HHIncome vs CardSpendMonth facetted by JobCategory & Gender.
ggplot(customer, aes(x = HHIncome, y = CardSpendMonth)) +
 geom_point() +
 facet_grid(Gender ~ JobCategory)


```
# 3. Assess UnionMember across each JobCategory
ggplot(customer, aes(x = UnionMember)) +
   geom_bar() +
   facet_wrap(~ JobCategory)
```


TITLES & AXES

ADDINGTITLES

```
# top
ggplot(data = mpg, aes(x = (lass, y = hwy)) +
  geom_point() +
  ggtitle("Displacement vs Highway MPG")
# bottom
ggplot(data = mpg, aes(x = class, y = hwy)) +
 geom_boxplot() +
  ggtitle("Displacement vs Highway MPG",
          subtitle = "Data from 1999 & 2008")
```


ADJUSTING AXIS SCALES

```
ggplot(data = txhousing, aes(x = volume, y = median)) +
  geom_point(alpha = .25) +
  scale_x_log10()
```


ADJUSTING AXISTITLES & LABELS

```
ggplot(data = txhousing, aes(x = volume, y = median)) +
   geom_point(alpha = .25) +
   scale_y_continuous(name = "Median Sales Price", labels = scales::dollar) +
   scale_x_log10(name = "Total Sales Volume", labels = scales::comma)
```


PUT IT ALL TO GETHER

YOURTURN!

I. Remove all missing values from the customer data and then...

- 2. Create a scatter plot of **HHIncome** vs **CardSpendMonth** facetted by **JobCategory** and...
- 3. add a title, subtitle, and nicely format the axes.

Relationship between income and credit card expenditures

OVERPLOTTING

LAYERING HELPS DISPLAY PATTERNS

```
ggplot(data = txhousing, aes(x = volume, y = median)) +
  geom_point(alpha = .25) +
  scale_x_log10() +
  geom_smooth()
```


LAYERING HELPS DISPLAY PATTERNS

```
ggplot(data = txhousing, aes(x = volume, y = median)) +
  geom_point(alpha = .25) +
  scale_x_log10() +
  geom_smooth(method = "lm")
```


LAYERING HELPS DISPLAY PATTERNS

```
ggplot(data = txhousing, aes(x = volume, y = median)) +
  geom_point(alpha = .25) +
  scale_x_log10() +
  geom_smooth(method = "lm") +
  facet_wrap(~ month)
```


YOURTURN!

- 1. Remove all missing values from the customer data and then...
- 2. Create a scatter plot of **HHIncome** vs **CardSpendMonth** facetted by **JobCategory** and...
- 3. add a title, subtitle, and nicely format the axes and...
- 4. add a linear line to assess if the slope changes across JobCategory

Relationship between income and credit card expenditures

LEVERAGE HELP AS YOU'RE LEARNING

Help >> Cheatsheets >> Data Visualization with ggplot2

Data Visualization with ggplot2

Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same few components: a data set, a set of geoms-visual marks that represent data points, and a coordinate

To display data values, map variables in the data set to aesthetic properties of the geom like size, color, and **x** and **y** locations.

Build a graph with ggplot() or qplot()

Geoms - Use a geom to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer. **Graphical Primitives Two Variables Continuous Bivariate Distribution** a <- ggplot(seals, aes(x = long, y = lat)) Continuous X, Continuous Y e <- ggplot(mpg, aes(cty, hwy)) b <- ggplot(economics, aes(date, unemploy))

geom_blank()

+ geom_curve(aes(yend = lat + delta_lat, xend = long + delta_long, curvature = z)) x, xend, y, yend, alpha, angle, color, curvature, linetype, size

geom_path(lineend="butt", linejoin="round', linemitre=1) x, y, alpha, color, group, linetype, size

+ geom_polygon(aes(group = group)) x, y, alpha, color, fill, group, linetype, size

geom_rect(aes(xmin = long, ymin = lat, xmax= long + delta_long, ymax = lat + delta_lat)) xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

geom_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900))

geom_segment(aes(yend=lat + delta_lat, xend = long + delta_long)) x, xend, y, yend, alpha, color, linetype, size

xend = long + delta_long)) x, y, angle, radius, alpha, color, linetype, size

geom_spoke(aes(yend = lat + delta_lat,

+ geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface,

hjust, lineheight, size, vjust + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

+ geom_point() x, y, alpha, color, fill, shape, size, stroke

geom_quantile() x, y, alpha, color, group, linetype, size, weight

geom_rug(sides = "bl") x, y, alpha, color, linetype, size

geom_smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

f <- ggplot(mpg, aes(class, hwy))

Discrete X, Continuous Y

x, y, alpha, color, fill, linetype, size, weight

h <- ggplot(diamonds, aes(carat, price))

 $h + geom_bin2d(binwidth = c(0.25, 500))$ x, y, alpha, color, fill, linetype, size, weight

geom_density2d() x, y, alpha, colour, group, linetype, size

geom_hex() x, y, alpha, colour, fill, size

i <- ggplot(economics, aes(date, unemploy))</pre> geom_area()

x, y, alpha, color, fill, linetype, size

geom_line() x, y, alpha, color, group, linetype, size

+ geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

Visualizing error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) j <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))</pre>

geom_crossbar(fatten = 2) x, y, ymax, ymin, alpha, color, fill, group,

linetype, size

WHATTO REMEMBER

FUNCTIONS TO REMEMBER

Operator/Function	Description
ggplot()	Initializes a ggplot object (creates the blank canvas)
aes()	Creates aesthetic mappings
geom_xx	Geometric shapes to plot the data
color, shape, size, alpha, etc	Aesthetic parameters
facet_wrap, facet_grid	Create small multiples
position	Position argument (primarily used with bar charts)
coord_xx	Functions to adjust the coordinate system
scale_xx	Functions to adjust x and y axis