		Nome e Cogno	ome:						□LUN Data:	□MER	□GIO	15)
	Auto e mutua induzione Scopo dell'esperienza è valutare auto e mutua induzione in diversi avvolgimenti e sistemi di avvolgimenti, e in varie											
(configurazioni, di volta in volta indicate nei riquadri tratteggiati, e alimentati con il generatore di funzioni (onda <u>sinusoidale</u>).											
			. 1 = avv. intern	. – – – – -								Avv.
1.	1 c c	Montate lo scher l'avvolgimento interference l'avvolgimento interference l'avvolgimento interference l'avvolgimento interference le lega V_R a circuito si compor di taglio f_T (con la misura di L_{int} (il per anche della resiste)	terno della bobi V_I e il corrisp ti come da aspe a debita incerte redice sta per avv nza interna r del	na. Scriv ondente ttative, ir zza!) e, c v. "internal'avvolgi	vete nel i guadagno ndividuat lalla mis o"). Si co	riquadro $A(f)$. Ve con una ura di R onsiglia di a misurar	la funzion Verificate la singola la deducet la tenere c	ne di trasfe rapidamento misurala fre e indirettan onto, se nec nultimetro.	rimento = e che il equenza nente la	Generatore of	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V_R
		espressione T(f)	A(f)	ssione	f_T [misura [R [misura]	<i>r</i> [misur]	L_{int}	misura [
2. Ora dovete sviluppare e applicare un metodo di misura "alternativo" per l'induttanza L basato sull'uso di una frequenza f tale da far funzionare il circuito nel "regime di transizione": in questo regime il guadagno $A = V_R/V_I$ si può approssimativamente esprimere come una semplice funzione di f e f_T , dunque delle grandezze misurate f , R (ed eventualmente r) e della grandezza incognita L . Scrivete la relazione esplicita che permette la misura indiretta di L , scegliete una frequenza f opportuna, da mantenere per tutto il resto dell'esercitazione (se non altrimenti indicato) e determinate con questo metodo L per le tre scelte di avvolgimenti.								espressione				
		dice)	<i>V</i> ₁ []			V_R	[]			L_{pedio}	re []	
-	e	×t										
	se	rie										
(b) Avv. 1 = avv. esterno di una bobina Avv. 2 = avv. interno della stessa bobina V_I									Avv. 1 /	Avv. 2 V_2		
3.	V J Č	Collegate anche le verificate che que V_R . Determinate due avvolgimenti a V_R e infine determinate determinate V_R e infine V_R e in	sto non modified is spressione character as V_2 , V_R , R , f ,	chi signi le lega la misurate	ficativam ı mutua	nente la l induzione	ettura di e <i>M</i> tra i	Generatore di funzioni)	V_R	3	
	M		espressione	$\Delta \phi =$		[π rad	[]	/////		• •		/////
				$V_2 =$		[]	V_R	=]] $M =$		[]
4.	S	Determinate la rela scrivere nel riquad esso sia compatibi	lro, dovrebbe co	ntenere s	olo M e	L_{ext} . Qui	ndi misur	ate V_I , deter				

5. <u>Facoltativo</u>: scambiate l'avvolgimento interno con quello esterno e ripetete la misura <u>del punto 3</u> per verificare che il nuovo valore di M sia compatibile con il precedente. <u>Non facoltativo</u>: determinate il coefficiente di accoppiamento magnetico k_{intext} .

V ₂ = []	$V_R = $ []	<i>M</i> = []	$k_{\text{int ext}} = \frac{M}{\sqrt{L_{ext}L_{int}}} =$
----------------------	--------------	----------------	--

6. Mantenendo la stessa scelta di avvolgimenti del punto 4, <u>cortocircuitate</u> l'Avv. 2 come nello schema qui sotto. Scrivete, usando sempre le solite approssimazioni dipendenti da f, l'<u>espressione</u> attesa per l'induttanza $L'_{I,\mathrm{att}}$ di Avv. 1 con Avv. 2 cortocircuitato. Tale espressione deve contenere L_{int} , L_{ext} e M, ovvero k definito al punto 5. Quindi dovete determinare il valore di L'_{I} a partire dalle misure dirette eseguite. A questo scopo potete usare il <u>metodo</u> sviluppato al punto 2. Verificate infine la congruenza tra la misura e il valore atteso; commentate a proposito nel riquadro, scrivendo anche qualsiasi altra informazione riteniate utile.

misure dirette	$V_I =$	[]	$V_R =$	[]
		espressi	ione		dalle misure
$L'_{l,l}$	att =			$L'_{l}=$	[]

Congruenza tra misura e valore atteso (scrivetelo!):

7. Modificate il circuito secondo quanto indicato nello schema qui sotto, che prevede il collegamento <u>in serie</u> dei due avvolgimenti. Scrivete, usando sempre le solite approssimazioni, l'espressione attesa per l'induttanza L_S della serie di Avv. 1 e Avv. 2. Tale espressione deve contenere L_I , L_2 , M (le cui grandezze sono state valutate in precedenza). Quindi, usando sempre il <u>metodo</u> sviluppato al punto 2, determinate L_S a partire dalle misure dirette. Verificate infine la congruenza tra la misura e il valore atteso; commentate a proposito nel riquadro, aggiungendo eventuali altre informazioni.

misure dirette	$V_I =$	[]	$V_R =$	[]
		espressione		dalle misure
$L_{s,a}$	_{tt} =		$L_s =$	[]

Congruenza tra misura e valore atteso (scrivetelo!):

8. Ripetete la misura precedente invertendo il senso di percorrenza della corrente in Avv. 2: qui si vuole che le correnti abbiano versi <u>opposti</u> nei due avvolgimenti, e questo è segnalato nello schema dalla posizione del pallino grigio vicino ad Avv. 2. Determinate l'espressione attesa e il valore dell'autoinduttanza della anti-serie, *L'*_S, in queste condizioni,

misure dirette	$V_I =$	[]	$V_R =$	[]
	-	espress	ione		dalle misure
$L'_{s,}$	att =			$L'_s =$	[]

Congruenza tra misura e valore atteso (scrivetelo!):

☐MAR ☐GIO

Nota: per alcuni banchi Avv. 2 è una bobina

a tre boccole, la centrale collegata a

LUN

Data:

entrambi gli avvolgimenti)

10.	"facce" parallele e con gli involucri a contatto, così da avere un ragionevole accoppiamento magnetico. Seguendo quanto realizzato al punto 3, determinate la mutua induzione e il coefficiente di accoppiamento magnetico tra i due avvolgimenti, qui chiamati M_b e k_b , in questa nuova configurazione (per i coefficienti di autoinduzione potete o rimisurarli ex-novo con il metodo del punto 2, oppure supporre che tutte le bobine abbiano le stesse caratteristiche, compresa L_S già misurata: scrivete nei commenti come avete fatto). Ripetete le misure del punto 9 dopo aver infilato il nucleo attraversare le due bobine!) per determinare $M_{b,l}$ e $k_{b,l}$ stavolta dovete valutarlo usando il metodo sviluppato al ben verificate) e usando la misura di V_I ; potete supporre				o di ferro <u>lam</u> . Dato che no punto 2 (veri	inato inato on conficand	noscete il coef lo che le appros	ue bobine () ficiente di a	lo <u>stes</u> autoin	$\frac{1}{1}$ nucleo deve duzione, $L_{lb,l}$, iti siano ancora
		$V_1 =$	[]	$V_R =$	[]	$V_2 =$	[]	
		$L_{1b,l} =$	[]	$M_{b,l} =$	[]	$k_{b,l}$ =			
11.	Facoltativo:	ora che siete esper	ti, potete rip	etere le misur	e del punto 9	usand	o il nucleo di fe	erro <u>pieno</u> .		•
		$V_1 =$	[]	$V_R =$	[]	$V_2 =$	[]	
		$L_{1b,p}=$	[]	$M_{b,p} =$	[]	$k_{b,p} =$			
12.	2. È comunque necessario che commentiate, nel riquadro qui sotto, sugli andamenti di <i>M</i> e <i>k</i> in assenza o in presenza del nucleo, e sulle eventuali differenze in funzione del tipo di nucleo adottato. Dovete fornire una spiegazione fisica, breve ma convincente. Se volete, potete fare anche altre prove (per esempio, allontanare le bobine mantenendo il nucleo infilato, oppure, in assenza di nucleo, disporre le bobine con assi obliqui fra loro, etc.). Usate il riquadro e, se serve, il retro del foglio per descrivere, spiegare, commentare.									
Со	mmenti sulle	differenze nei valo	ri di auto e m	nutua induzior	ne con e senza	a il fer	ro, con <u>interpre</u>	tazione fisio	<u>a,</u> e a	Itri commenti:
										Page 3 of 3
										raye o ui o

Nome e Cognome:

d(d) Avv. 1 = una bobina con avvolgimenti in serie

9. Da qui in avanti dovete usare <u>le due bobine</u> disponibili sul banco, ognuna delle quali dovrà avere <u>i propri</u>

avvolgimenti in serie tra loro. Le due bobine devono essere poste in modo da essere coassiali, con le

Avv. 2 = l'altra bobina con avvolgimenti in serie