Введение в CNN

CNN – сверточные нейронные сети (convolutional neural network)

Зачем нужны?

Зачем нужны?

Зачем еще нужны?

Что есть до сверток?

Как свертки изменили мир

ImageNet Classification Error (Top 5)

Свертки: предыстория

Свертки у нас в мозгу

Как видит изображение компьютер?

Свертки

1	0	1
0	1	0
1	0	1

1 _{×1}	1,0	1 _{×1}	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Convolved Feature

Свертки

Свертки в PyTorch

```
1 from torch import nn

1 nn.Conv2d()

Init signature:
nn.Conv2d(
    in_channels: int,
    out_channels: int,
    kernel_size: Union[int, Tuple[int, int]],
    stride: Union[int, Tuple[int, int]] = 1,
    padding: Union[str, int, Tuple[int, int]] = 0,
    dilation: Union[int, Tuple[int, int]] = 1,
    groups: int = 1,
    bias: bool = True,
```

Пулинг (MaxPool / AvgPool)

- Нужен для снижения размерности
- Вычленяет самые главные признаки

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

	_	
3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

Пулинг в PyTorch

```
1 from torch import nn
1 nn.MaxPool2d()
Init signature:
nn.MaxPool2d(
   kernel_size: Union[int, Tuple[int, ...]],
    stride: Union[int, Tuple[int, ...], NoneType] = None,
    padding: Union[int, Tuple[int, ...]] = 0,
    dilation: Union[int, Tuple[int, ...]] = 1,
    return_indices: bool = False,
   ceil_mode: bool = False,
 -> None
```

Что узнали за сегодня?

- Свертки
- Пулинг

Теперь пора кодить

Конец

Батч нормализация

• Помогает быстрее сходиться алгоритму оптимизации

Архитектуры нейросетей (VGG)

• Проблема – затухающий градиент

Как бороться с затухающим градиентом?

Архитектуры нейросетей (ResNet)

