

第一章 事件与概率

▲ 重点题型一 事件的关系、运算与概率的性质

【事件的运算律】

- (1) 交換律 $A \cup B = B \cup A$, AB = BA;
- (2) 结合律 $A \cup (B \cup C) = (A \cup B) \cup C$, A(BC) = (AB)C;
- (3) 分配律 $A \cup (BC) = (A \cup B)(A \cup C)$, $A(B \cup C) = (AB) \cup (AC)$;
- (4) 摩根律 $\overline{A \cup B} = \overline{AB}$, $\overline{AB} = \overline{A} \cup \overline{B}$;
- (5) 吸收律 $A \cup (AB) = A$, $A(A \cup B) = A$.

【例 1.1】设 A, B 为随机事件,且 $P(A) = P(B) = \frac{1}{2}$, $P(A \cup B) = 1$,则【 】 (A) $A \cup B = \Omega$ (B) $AB = \emptyset$ (C) $P(\overline{A} \cup \overline{B}) = 1$ (D) P(A - B) = 0 【详解】

顶尖考研祝您上岸)

【例 1.2】(2020,数一、三)设A,B,C为随机事件,且 $P(A) = P(B) = P(C) = \frac{1}{4}$,P(AB) = 0,

 $P(AC) = P(BC) = \frac{1}{12}$,则 A, B, C 只有一个事件发生的概率为【

(A) $\frac{3}{4}$ (B) $\frac{2}{3}$ (C) $\frac{1}{2}$ (D) $\frac{5}{12}$

【详解】

【例 1.3】设随机事件 A,B 满足 $AB=\overline{AB}$,且 0 < P(A) < 1,0 < P(B) < 1,则 $P(A\mid \overline{B}) + P(B\mid \overline{A}) = \overline{AB}$

2023 考研晚千老师概率统计强化讲义

【例 1.4】设随机事件 A,B,C 两两独立,满足 $ABC=\emptyset$,且 P(A)=P(B)=P(C), A,B,C 至少有一个发生的概率为 $\frac{9}{16}$,则 P(A)=_______.

【详解】

【详解】

▲ 重点题型二 三大概型的计算

【方法】

【**例 1.6**】(2016,数三)设袋中有红、白、黑球各 1 个,从中有放回地取球,每次取 1 个,直到三种颜色的球都取到为止,则取球次数恰好为 4 的概率为

【详解】

【例 1.7】在区间(0,a)中随机地取两个数,则两数之积小于 $\frac{a^2}{4}$ 的概率为______.

【详解】

【例 1.8】设独立重复的试验每次成功的概率为p,则第 5次成功之前至多 2次失败的概率为_____

▲ 重点题型三 三大概率公式的计算

【三大概率公式】

条件概率公式
$$P(A|B) = \frac{P(AB)}{P(B)}$$

推论 $P(AB) = P(B)P(A \mid B)$, $P(A_1A_2 \cdots A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1A_2) \cdots P(A_n \mid A_1 \cdots A_{n-1})$

全概率公式
$$P(A) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i)$$

贝叶斯公式
$$P(B_j | A) = \frac{P(B_j)P(A | B_j)}{\sum_{i=1}^{n} P(B_i)P(A | B_i)}$$

【例 1.9】设 A, B 为随机事件,且 $P(A \cup B) = 0.6$, $P(B \mid A) = 0.2$,则 P(A) =_______.

【详解】

微信公众号: djky66

【例 1.10】(2018,数一)设随机事件 A 与 B 相互独立,A 与 C 相互独立,满足 $BC = \emptyset$,且 $P(A) = P(B) = \frac{1}{2} \,, \quad P(AC \mid AB \cup C) = \frac{1}{4} \,, \quad \text{则 } P(C) = \underline{\hspace{1cm}}.$

【详解】

【例 1.11】(2003,数一)设甲、乙两箱装有同种产品,其中甲箱装有 3 件合格品和 3 件次品,乙箱装有 3 件合格品.从甲箱中任取 3 件产品放入乙箱,

- (I) 求乙箱中次品件数X的数学期望;
- (II) 求从乙箱中任取一件产品是次品的概率.

ዹ 重点题型四 事件独立的判定

【事件独立的充要条件】

事件 A 与 B 相互独立

- $\Leftrightarrow P(AB) = P(A)P(B)$
- $\Leftrightarrow P(A \mid B) = P(A) \Leftrightarrow P(A \mid \overline{B}) = P(A) \Leftrightarrow P(A \mid B) = P(A \mid \overline{B})(0 < P(B) < 1)$
- $\Leftrightarrow P(A \mid B) + P(\overline{A} \mid \overline{B}) = 1(0 < P(B) < 1)$

【**例 1.12**】设A, B为随机事件,且0 < P(A) < 1,则【 】

- (A) 若 $A \supset B$,则A,B一定不相互独立 (B) 若 $B \supset A$,则A,B一定不相互独立
- (C) 若 $AB = \emptyset$,则 A,B一定不相互独立 (D) 若 $A = \overline{B}$,则 A,B一定不相互独立

顶尖考研祝您上岸)

【例 1.13】设 A,B,C 为随机事件, A 与 B 相互独立,且 P(C) = 0 ,则 $\overline{A},\overline{B},\overline{C}$ 【

- (A) 相互独立
- (B) 两两独立,但不一定相互独立
- (C) 不一定两两独立
- (D) 一定不两两独立

第二章 一维随机变量

▲ 重点题型一 分布函数的判定与计算

【分布函数的性质】

- (1) $0 \le F(x) \le 1, -\infty < x < +\infty; F(-\infty) = 0, F(+\infty) = 1;$
- (2) (单调不减) 当 $x_1 < x_2$ 时, $F(x_1) \le F(x_2)$;
- (3) (右连续) F(x+0) = F(x);
- (4) $P\{a < X \le b\} = F(b) F(a)$;
- (5) $P\{X < x\} = F(x-0), P\{X = x\} = F(x) F(x-0).$
- 【例 2.1】设随机变量 X 的分布函数为 F(x),a,b 为任意常数,则下列一定不是分布函数的是【 1

(A)
$$F(ax+b)$$

(B)
$$F(ax^2+b)$$

(A)
$$F(ax+b)$$
 (B) $F(ax^2+b)$ (C) $F(ax^3+b)$ (D) $1-F(-x)$

(D)
$$1 - F(-x)$$

【例 2.2】设随机变量 X 的概率密度为 $f(x) = \begin{cases} 1-|x|,|x|<1\\0,$ 其他 ,则 X 的分布函数 $F(x) = _____,$

$$P\left\{-2 < X < \frac{1}{4}\right\} = \underline{\qquad}.$$

▲ 重点题型二 概率密度的判定与计算

【概率密度的性质】

- (1) $f(x) \ge 0, -\infty < x < +\infty;$
- (2) $\int_{-\infty}^{+\infty} f(x) dx = 1$;
- (3) $P\{a < X \le b\} = \int_a^b f(x) dx$;

推广 $P\{a < X \le b\} = P\{a \le X < b\} = P\{a \le X \le b\} = P\{a < X < b\} = \int_a^b f(x)dx;$

(4) 在 f(x) 的连续点处有 F'(x) = f(x).

【例 2.3】设随机变量 X 的概率密度为 f(x) ,则下列必为概率密度的是【

- (A) f(-x+1) (B) f(2x-1) (C) f(-2x+1) (D) $f(\frac{1}{2}x-1)$

【详解】

信公众号: djky66

【**例 2.4**】(2011,数一、三)设 $F_1(x)$, $F_2(x)$ 为分布函数,对应的概率密度 $f_1(x)$, $f_2(x)$ 为连续函数,

则下列必为概率密度的是【

- (A) $f_1(x)f_2(x)$ (B) $2f_2(x)F_1(x)$ (C) $f_1(x)F_2(x)$ (D) $f_1(x)F_2(x)+f_2(x)F_1(x)$

【详解】

【例 2.5】(2000,三)设随机变量 X的概率密度为

$$f(x) = \begin{cases} \frac{1}{3}, x \in [0,1] \\ \frac{2}{9}, x \in [3,6] \\ 0, \text{ 其他} \end{cases}$$

▲ 重点题型三 关于八大分布

【八大分布】

(1)
$$0-1$$
 分布 $X \sim B(1,p)$ $\frac{X \mid 0 \quad 1}{P \mid 1-p \quad p}$

(2) 二项分布
$$X \sim B(n, p)$$
 $P\{X = k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots n$

(3) 泊松分布
$$X \sim P(\lambda)$$
 $P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda} (\lambda > 0), k = 0, 1, \cdots$

(4) 几何分布
$$X \sim G(p)$$
 $P\{X = k\} = p(1-p)^{k-1}, k = 1, 2, \cdots$

(5) 超几何分布
$$X \sim H(N, M, n) P\{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, \dots, \min(n, M)$$

(6) 均匀分布
$$X \sim U(a,b)$$
 $f(x) = \begin{cases} \frac{1}{b-a}, a \le x \le b \\ 0, & 其他 \end{cases}$, $F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$

(7) 指数分布
$$X \sim E(\lambda)$$
 $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0 \\ 0, x \le 0 \end{cases} (\lambda > 0), F(x) = \begin{cases} 1 - e^{-\lambda x}, x > 0 \\ 0, x \le 0 \end{cases}$

(8) 一般正态分布
$$X \sim N(\mu, \sigma^2)$$
 $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}, F(u) = \frac{1}{2}, F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

标准正态分布
$$X \sim N(0,1)$$
 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad \Phi(0) = \frac{1}{2}, \quad \Phi(-x) = 1 - \Phi(x)$

正态分布的标准化 若 $X \sim N(\mu, \sigma^2)$,则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

【例 2.6】设随机变量 X 的概率分布为 $P\{X=k\}=C\frac{\lambda^k}{k!}, k=1,2,\cdots, 则 <math>C=$ _______.

【例 2.7】设随机变量 X 的概率密度为 $f(x) = Ae^{\frac{x^2}{2} + Bx}$,且 EX = DX ,则 A =_______, B =

【详解】

【例 2.8】(2004,数一、三)设随机变量 $X\sim N(0,1)$,对给定的 $\alpha(0<\alpha<1)$,数 u_{α} 满足

 $P\{X>u_{\alpha}\}=\alpha$.若 $P\{|X|< x\}=\alpha$,则x等于【 】

- (A) $u_{\frac{\alpha}{2}}$ (B) $u_{1-\frac{\alpha}{2}}$ (C) $u_{\frac{1-\alpha}{2}}$
- (D) $u_{1-\alpha}$

【详解】

微信公众号: djky66

【例 2.9】设随机变量 $X \sim N(2, \sigma^2)$,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} =$ ______.

【详解】

【例 2.10】设随机变量 $X \sim N(\mu, \sigma^2)(\mu < 0)$, F(x) 为其分布函数, a 为任意常数,则【

- (A) F(a) + F(-a) > 1
- (B) F(a) + F(-a) = 1
- (C) F(a)+F(-a)<1 (D) $F(\mu+a)+F(\mu-a)=\frac{1}{2}$

2023 考研晚千老师梳牵统计强化讲义

【例 2.11】设随机变量 X 与 Y 相互独立,均服从参数为 1 的指数分布,则 $P \left\{ 1 < \max \left\{ X,Y \right\} < 2 \right\} =$

【详解】

【例 2.12】设随机变量 X 与 Y 相互独立,均服从区间 $\left[0,3\right]$ 上的均匀分布,则 $P\left\{1<\min\left\{X,Y\right\}<2\right\}=$

【详解】

【例 2.13】(2013, 数一)设随机变量 $Y \sim E(1)$, a > 0, 则 $P\{Y \le a + 1 | Y > a\} = ______$

微層公众号:djky66 (顶尖考研祝您上岸)

【例 2.14】设随机变量 $X \sim G(p)$,m,n为正整数,则 $P\{X > m+n \mid X > m\}$ 【 】

- (A) 与m 无关,与n 有关,且随n 的增大而减少
- (B) 与m 无关,与n 有关,且随n 的增大而增大
- (C) 与n 无关,与m 有关,且随m 的增大而减少
- (D) 与n 无关,与m 有关,且随m 的增大而增大

▲ 重点题型四 求一维连续型随机变量函数的分布

【方法】设随机变量 X 的概率密度为 $f_X(x)$, 求 Y = g(X) 的分布.

分布函数法

- (1) 设Y的分布函数为 $F_Y(y)$,则 $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$.
- (2) 求Y = g(X)在X的正概率密度区间的值域 (α, β) , 讨论y.

当 $y < \alpha$ 时, $F_y(y) = 0$;

$$\stackrel{\text{def}}{=} \alpha \leq y < \beta$$
 时, $F_Y(y) = \int_{g(x) \leq y} f_X(x) dx$;

当 $y \ge \beta$ 时, $F_y(y) = 1$.

(3) 若Y为连续型随机变量,则Y的概率密度为 $f_{Y}(y) = F'_{Y}(y)$.

公式法 设y=g(x)在X的正概率密度区间单调,值域为 (α,β) ,反函数为x=h(y),则Y的概率密度为

 $f_{Y}(y) = \begin{cases} f_{X}(h(y))|h'(y)|, \alpha < y < \beta \\ 0, \quad \text{id} \end{cases}$

若y = g(x)在X的正概率密度区间[a,b]分段严格单调,则分段运用公式法,然后将概率密度相加.

【**例 2.15**】设随机变量 $X \sim E(\lambda)$,则 $Y = \min\{X, 2\}$ 的分布函数【 】

- (A) 为连续函数
- (B) 为阶梯函数
- (B) 至少有两个间断点
- (D) 恰好有一个间断点

2023 考研晚干老师梳车统计程化讲义

【例 2.16】(2013,数一)设随机变量 X的概率密度为 $f(x) = \begin{cases} \frac{1}{a}x^2, 0 < x < 3 \\ 0, 其他 \end{cases}$, $Y = \begin{cases} 2, X \le 1 \\ X, 1 < X < 2 \\ 1, X \ge 2 \end{cases}$

- (I) 求 Y 的分布函数;

【详解】

【**例 2.17**】(2021,数一、三)在区间(0,2)上随机取一点,将该区间分成两段,较短一段的长度记为X,较长一段的长度记为Y.若 $Z=\frac{Y}{X}$,

- (I) 求X的概率密度;
- (II) 求Z的概率密度;
- (III) $\Re E\left(\frac{X}{Y}\right)$.

第三章 二维随机变量

▲ 重点题型一 联合分布函数的计算

【联合分布函数的性质】

(1) $0 \le F(x, y) \le 1, -\infty < x < +\infty, -\infty < y < +\infty$, $F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0$,

 $F(+\infty, +\infty) = 1$;

- (2) F(x,y) 关于 x 和 y 均单调不减;
- (3) F(x,y) 关于x和y均右连续;
- (4) $P\{a < X \le b, c < Y \le d\} = F(b,d) F(b,c) F(a,d) + F(a,c)$.

【例 3.1】设随机变量 X 与 Y 相互独立, $X \sim B(1,p)$, $Y \sim E(\lambda)$,则 (X,Y) 的联合分布函数 F(x,y) =

→ 重点题型二 二维离散型随机变量分布的计算

【方法】

【例 3.2】设随机变量 X 与 Y 相互独立,均服从参数为 p 的几何分布.

- (I) 求在 $X + Y = n(n \ge 2)$ 的条件下, X 的条件概率分布;

▲ 重点题型三 二维连续型随机变量分布的计算

【方法】

联合概率密度的性质

- (1) $f(x, y) \ge 0, -\infty < x < +\infty, -\infty < y < +\infty$;
- (2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1;$
- (3) $P\{(X,Y) \in D\} = \iint_D f(x,y) dxdy$;
- (4) 在 f(x,y) 的连续点处有 $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$.

边缘概率密度

(X,Y) 关于 X 的边缘概率密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$

(X,Y) 关于 Y 的边缘概率密度 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

在 X = x 的条件下, Y 的条件概率密度 $f_{Y|X}(y|x) = \frac{f(x,y)}{f(x)}$

【例 3.3】(2010,数一、三)设二维随机变量(X,Y)的概率密度为

$$f(x, y) = Ae^{-2x^2 + 2xy - y^2}, -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

【例 3.4】设随机变量 $X \sim U(0,1)$, 在 X = x(0 < x < 1)的条件下,随机变量 $Y \sim U(x,1)$.

- (I) 求(X,Y)的联合概率密度;
- (II) 求(X,Y)关于Y的边缘概率密度 $f_{Y}(y)$;
- (III) $\Re P\{X+Y>1\}.$

【详解】

微信公众号: djky66

→ → → → → 重点题型四 关于二维正态分布

二维正态分布的性质 设 $(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$,则

- (1) $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 反之不成立;
- (2) X 与 Y相互独立 $\Leftrightarrow X 与 Y$ 不相关 $(\rho = 0)$;

(3)
$$aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\rho\sigma_1\sigma_2);$$

特别地,若X与Y相互独立, $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,则

$$aX+bY\sim N(a\mu_{\rm l}+b\mu_{\rm 2},a^2\sigma_{\rm l}^2+b^2\sigma_{\rm 2}^2)\;;$$

(4) 若
$$U = aX + bY$$
, $V = cX + dY$, 即 $\begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$, 则 (U,V) 服从二维正态分布

$$\Leftrightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$$

【例 3.5】设二维随机变量 $(X,Y) \sim N\left(1,2;1,4;-\frac{1}{2}\right)$,且 $P\left\{aX+bY\leq 1\right\} = \frac{1}{2}$,则(a,b)可以为【

(A)
$$\left(\frac{1}{2}, -\frac{1}{4}\right)$$

(B)
$$\left(\frac{1}{4}, -\frac{1}{2}\right)$$

(A)
$$\left(\frac{1}{2}, -\frac{1}{4}\right)$$
 (B) $\left(\frac{1}{4}, -\frac{1}{2}\right)$ (C) $\left(-\frac{1}{4}, \frac{1}{2}\right)$ (D) $\left(\frac{1}{2}, \frac{1}{4}\right)$

(D)
$$\left(\frac{1}{2}, \frac{1}{4}\right)$$

【详解】

【例 3.6】(2020,数三)设二维随机变量 $(X,Y) \sim N\left(0,0;1,4;-\frac{1}{2}\right)$,则下列随机变量服从标准正态 分布且与 X 相互独立的是【

(A)
$$\frac{\sqrt{5}}{5}(X+Y)$$
 (B) $\frac{\sqrt{5}}{5}(X-Y)$ (C) $\frac{\sqrt{3}}{3}(X+Y)$ (D) $\frac{\sqrt{3}}{3}(X-Y)$

(B)
$$\frac{\sqrt{5}}{5}(X-Y)$$

(C)
$$\frac{\sqrt{3}}{3}(X+Y)$$

(D)
$$\frac{\sqrt{3}}{3}(X-Y)$$

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

【例 3.7】(2022,数一)设随机变量 $X \sim N(0,1)$,在 X = x的条件下,随机变量 $Y \sim N(x,1)$,则 X与Y的相关系数为【 1

$$(A) \frac{1}{4}$$

(B)
$$\frac{1}{2}$$

(C)
$$\frac{\sqrt{3}}{3}$$

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{2}}{2}$

【详解】

■ 重点题型五 求二维离散型随机变量函数的分布

【例 3.8】设随机变量 X 与 Y 相互独立, $X\sim P(\lambda_1)$, $Y\sim P(\lambda_2)$, 求 Z=X+Y 的概率分布.

【详解】

▲ 重点题型六 求二维连续型随机变量函数的分布

【方法】设二维随机变量(X,Y)的联合概率密度为f(x,y),求Z=g(X,Y)的概率密度 $f_Z(z)$.

分布函数法

- (1) 设Z的分布函数为 $F_Z(z)$,则 $F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\}$.
- (2) 求Z = g(X,Y)在(X,Y)的正概率密度区域的值域 (α,β) , 讨论z.

当 $z < \alpha$ 时, $F_z(z) = 0$;

$$\stackrel{\text{def}}{=} \alpha \le z < \beta$$
 时, $F_Z(z) = \iint_{g(x,y) \le z} f(x,y) dx dy$;

当 $z \ge \beta$ 时, $F_Z(z) = 1$.

(3) Z的概率密度为 $f_Z(z) = F_Z'(z)$.

卷积公式

(2)
$$\ \, \forall Z = XY \,, \ \, \mathbb{N} \, f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|y|} f\left(\frac{z}{y}, y\right) dy \,;$$

【例 3.9】设二维随机变量(X,Y)的联合概率密度为 $f(x,y) = \begin{cases} 1,0 < x < 1,0 < y < 2x \\ 0,其他 \end{cases}$,求:

- (I) (X,Y) 的联合分布函数 F(x,y);
- (II) (X,Y)的边缘概率密度 $f_X(x), f_Y(y)$;
- (III) 条件概率密度 $f_{x|y}(x|y), f_{y|x}(y|x)$;

$$(\text{IV}) \ P\left\{Y \leq \frac{1}{2} \middle| X \leq \frac{1}{2}\right\}, \ P\left\{Y \leq \frac{1}{2} \middle| X = \frac{1}{2}\right\};$$

(V) Z = 2X - Y 的概率密度 $f_Z(z)$.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

▲ 重点题型七 求一离散一连续随机变量函数的分布

【方法】

【例 3.10】(2020,数一)设随机变量 X_1,X_2,X_3 相互独立, X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2}$, $Y=X_3X_1+(1-X_3)X_2$.

- (I) 求 (X_1,Y) 的联合分布函数(结果用标准正态分布函数 $\Phi(x)$ 表示);
- (II) 证明 Y 服从标准正态分布.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

第四章 数字特征

▲ 重点题型一 期望与方差的计算

【方法】

期望的定义

(1) 设随机变量 X 的概率分布为 $P\{X=x_i\}=p_i, i=1,2,\cdots$,则 $EX=\sum_i x_i p_i$;

推广 若
$$Y = g(X)$$
,则 $EY = \sum_{i} g(x_i)p_i$;

(2) 设随机变量 X 的概率密度为 f(x),则 $EX = \int_{-\infty}^{+\infty} x f(x) dx$;

推广 若
$$Y = g(X)$$
,则 $EY = \int_{-\infty}^{+\infty} g(x) f(x) dx$

推广 若 Y = g(X),则 $EY = \int_{-\infty}^{+\infty} g(x) f(x) dx$;
(3) 设二维随机变量 (X,Y) 的联合概率分布为 $P\{X = x_i, Y = y_j\} = p_{ij}$, $i,j=1,2,\cdots$,

$$Z = g(X,Y)$$
,则 $EZ = \sum_{i} \sum_{j} g(x_i, y_j) p_{ij}$;

(4) 设二维随机变量(X,Y)的联合概率密度为f(x,y),Z=g(X,Y),则

$$EZ = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dx dy.$$

特别地,
$$EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xf(x,y)dxdy$$
, $EY = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} yf(x,y)dxdy$.

期望的性质

- (1) E(aX + bY + c) = aEX + bEY + c;
- (2) $E(XY) = EX \cdot EY \Leftrightarrow X 与 Y$ 不相关;

特别地, 若X与Y相互独立,则 $E(XY) = EX \cdot EY$.

方差的定义

$$DX = E(X - EX)^2 = EX^2 - (EX)^2$$

方差的性质

(1)
$$D(aX+c) = a^2DX$$
;

(2)
$$D(X \pm Y) = DX + DY \pm 2Cov(X, Y)$$
;

推论 $D(X \pm Y) = DX + DY \Leftrightarrow X 与 Y 不相关;$

特别地, 若X与Y相互独立,则 $D(X\pm Y) = DX + DY;$

(3) 若X与Y相互独立,则 $D(XY) = DX \cdot DY + (EX)^2 DY + (EY)^2 DX$.

【例 4.1】设随机变量 X 的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}$, $-\infty < x < \infty$,则 $E\left[\min\left\{|X|,1\right\}\right] = 1$

【详解】

微信公众号: djky66

【例 4.2】(2016, 数三) 设随机变量 X 与 Y 相互独立, $X \sim N(1,2)$, $Y \sim N(1,4)$,则 $D(XY) = \mathbb{I}$

- (A) 6
- (B) 8
- (C) 14
- (D) 15

【详解】

【例 4.3】设随机变量
$$X$$
 与 Y 同分布,则 $E\left(\frac{X^2}{X^2+Y^2}\right) = \underline{\qquad}$

【详解】

【例 4.4】设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1)$, $Y \sim P(\lambda_2)$,且 $P\{X+Y>0\}=1-e^{-1}$,则 $E(X+Y)^2 = \underline{\hspace{1cm}}.$

2023 考研晚千老师梳单统计强化讲义

【例 4.5】设随机变量 X 与 Y 相互独立, $X \sim E\left(\frac{1}{3}\right)$, $Y \sim E\left(\frac{1}{6}\right)$.若 $U = \max\left\{X,Y\right\}$,

$$V = \min\{X,Y\}$$
,则 $EU = _____$, $EV = _____$

【详解】

【**例 4.6**】(2017,数一)设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$,其中 $\Phi(x)$ 为标准正态分布函数,则 EX =_______.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

【例 4.7】设随机变量 $X \sim N(0,1)$,则 $E |X| = _______, D |X| = _______$

【详解】

【例 4.8】设随机变量 X 与 Y 相互独立,均服从 $N(\mu,\sigma^2)$,求 $E\left[\max\left\{X,Y\right\}\right]$, $E\left[\min\left\{X,Y\right\}\right]$. 【详解】

2023 考研晚千老师概率统计强化讲义

【例 4.9】设独立重复的射击每次命中的概率为p,X表示第n次命中时的射击次数,求EX,DX.

【详解】

【例 4.10】(2015,数一、三)设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, x > 0 \\ 0, x \le 0 \end{cases}$,对 X 进行独立重

复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.

- (I) 求Y的概率分布;
- (II) 求EY.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

♣ 重点题型二 协方差的计算

【方法】

协方差的定义 $Cov(X,Y) = E[(X-EX)(Y-EY)] = E(XY) - EX \cdot EY$

协方差的性质

- (1) Cov(X,Y) = Cov(Y,X), Cov(X,X) = DX;
- (2) Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z).

【例 4.11】设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本.若 DX=4 ,正整数 $s \leq n$, $t \leq n$,则

$$Cov\left(\frac{1}{s}\sum_{i=1}^{s}X_{i}, \frac{1}{t}\sum_{j=1}^{t}X_{j}\right) = \mathbf{I}$$

- (A) $4 \max\{s,t\}$ (B) $4 \min\{s,t\}$ (C) $\frac{4}{\max\{s,t\}}$ (D) $\frac{4}{\min\{s,t\}}$

【详解】

【例 4.12】(2005,数三)设 $X_1,X_2,\cdots,X_n (n>2)$ 为来自总体 $N(0,\sigma^2)$ 的简单随机样本,样本均值 为 \overline{X} .记 $Y_i = X_i - \overline{X}, i = 1, 2, \dots, n$.

- (I) 求 Y_i 的方差 DY_i , $i = 1, 2, \dots, n$;
- (II) 求 Y_1 与 Y_n 的协方差 $Cov(Y_1,Y_n)$;
 - (III)若 $c(Y_1+Y_n)^2$ 为 σ^2 的无偏估计量,求常数c. 【详解】

▲ 重点题型三 相关系数的计算

【方法】

相关系数的定义 $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}$

相关系数的性质

(1) $|\rho_{XY}| \le 1$;

(2) $\rho_{XY} = 0 \Leftrightarrow Cov(X,Y) = 0 \Leftrightarrow E(XY) = EX \cdot EY \Leftrightarrow D(X \pm Y) = DX + DY$;

 $(3) \quad \rho_{XY} = 1 \Leftrightarrow P\left\{Y = aX + b\right\} = 1(a > 0); \quad \rho_{XY} = -1 \Leftrightarrow P\left\{Y = aX + b\right\} = 1(a < 0).$

【例 4.13】(2016,数一)设试验有三个两两互不相容的结果 A_1,A_2,A_3 ,且三个结果发生的概率均为

 $\frac{1}{3}$.将试验独立重复地做两次,X表示两次试验中 A_1 发生的次数,Y表示两次试验中 A_2 发生的次数,则X

与Y的相关系数为【

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{3}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$

【详解】

微信公众号: djky66 顶尖考研祝您上岸

【例 4.14】设随机变量 $X \sim B\left(1, \frac{3}{4}\right)$, $Y \sim B\left(1, \frac{1}{2}\right)$, 且 $\rho_{XY} = \frac{\sqrt{3}}{3}$.

(I) 求(X,Y)的联合概率分布;

(II) $\Re P\{Y=1|X=1\}$.

▲ 重点题型四 相关与独立的判定

【方法】

【例 4.15】设二维随机变量(X,Y)服从区域 $D = \{(x,y) | x^2 + y^2 \le a^2\}$ 上的均匀分布,则【 】

- (A) X与Y不相关,也不相互独立
- (B) X与Y相互独立

(C) X与Y相关

(D) X 与 Y 均服从U(-a,a)

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

【例 4.16】设随机变量 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$.

- (I) 求X的期望与方差;
- (II) 求X与|X|的协方差,问X与|X|是否不相关?
- (III) 问X与|X|是否相互独立?并说明理由.

第五章 大数定律与中心极限定理

【方法】

【例 5.1】(2022, 数一)设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, $\mu_k = EX_i^{\ k} (k=1,2,3,4)$.由切

比雪夫不等式,对任意 $\varepsilon > 0$,有 $P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\mu_{2}\right| \geq \varepsilon\right\} \leq \mathbf{C}$

- (A) $\frac{\mu_4 \mu_2^2}{n\varepsilon^2}$ (B) $\frac{\mu_4 \mu_2^2}{\sqrt{n}\varepsilon^2}$ (C) $\frac{\mu_2 \mu_1^2}{n\varepsilon^2}$ (D) $\frac{\mu_2 \mu_1^2}{\sqrt{n}\varepsilon^2}$

【详解】

微信公众号:djky66

【**例 5.2**】(2022,数三)设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立同分布, X_i 的概率密度为

 $f(x) = \begin{cases} 1 - |x|, |x| < 1 \\ 0, \quad \text{其他} \end{cases}, \quad \text{则当} \, n \to \infty \, \text{时}, \quad \frac{1}{n} \sum_{i=1}^{n} X_i^2 \, \text{依概率收敛于} \, \mathbb{C}$

- (A) $\frac{1}{8}$ (B) $\frac{1}{6}$ (C) $\frac{1}{2}$

【详解】

【例 5.3】(2020,数一)设 X_1, X_2, \dots, X_n 为来自总体X的简单随机样本, $P\{X=0\} = P\{X=1\} = \frac{1}{2}$,

 $\Phi(x)$ 表示标准正态分布函数.利用中心极限定理得 $P\left\{\sum_{i=1}^{100}X_{i}\leq 55\right\}$ 的近似值为【 】

- (A) $1-\Phi(1)$ (B) $\Phi(1)$ (C) $1-\Phi(0.2)$ (D) $\Phi(0.2)$

第六章 统计初步

♣ 重点题型一 求统计量的抽样分布

【方法】

 χ^2 分布的定义 设随机变量 X_1, X_2, \cdots, X_n 相互独立,均服从 N(0,1),称 $\chi^2 = X_1^2 + X_2^2 + \cdots + X_n^2$ 服从自由度为 n 的 χ^2 分布,记作 $\chi^2 \sim \chi^2(n)$.特别地,若 $X \sim N(0,1)$,则 $X^2 \sim \chi^2(1)$.

χ^2 分布的性质

- (1) 设 χ_1^2 与 χ_2^2 相互独立, $\chi_1^2 \sim \chi^2(n_1)$, $\chi_2^2 \sim \chi^2(n_2)$,则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$;

X/ F **分布的定义** 设随机变量 X 与 Y 相互独立, $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$, 称 $F = \frac{X/}{n_1}$ 服从自由度

为 n_1, n_2 的F分布,记作 $F \sim F(n_1, n_2)$

F 分布的性质

(2)
$$F_{1-\alpha}(n_2, n_1) = \frac{1}{F_{\alpha}(n_1, n_2)}$$
.

t **分布的定义** 设随机变量 X 与 Y 相互独立, $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 称 $T = \frac{X}{\sqrt{Y/n}}$ 服从自由度为

n的t分布,记作 $T \sim t(n)$.

t 分布的性质

(2)
$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$
.

单正态总体 设 X_1,X_2,\cdots,X_n 为来自总体 $X\sim N(\mu,\sigma^2)$ 的简单随机样本, \overline{X} 与 S^2 分别为样本均值与 样本方差,则

(1)
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$
, $\square \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$;

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
, 即 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1)$, 且 $\overline{X} 与 S^2$ 相互独立;

(3)
$$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t(n-1).$$

双正态总体 设总体 $X\sim N(\mu_1,\sigma_1^2)$,总体 $Y\sim N(\mu_2,\sigma_2^2)$, X_1,X_2,\cdots,X_{n_1} 与 Y_1,Y_2,\cdots,Y_{n_2} 分别为来 自总体X与Y的简单随机样本且相互独立,样本均值分别为 \overline{X} , \overline{Y} ,样本方差分别为 S_1^2 , S_2^2 ,则

(4)
$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

(5)
$$\frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1);$$

(4)
$$\frac{\overline{X} - \overline{Y} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1);$$
(5)
$$\frac{S_{1}^{2}}{\sqrt{\sigma_{1}^{2}}} \sim F(n_{1} - 1, n_{2} - 1);$$
(6)
$$\stackrel{\text{def}}{=} \sigma_{1}^{2} = \sigma_{2}^{2} \text{ By}, \quad \frac{\overline{X} - \overline{Y} - (\mu_{1} - \mu_{2})}{S_{\omega} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \sim t(n_{1} + n_{2} - 2), \quad \cancel{\exists} + S_{\omega} = \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}.$$

【例 6.1】(2013,数一)设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$.给定 $\alpha(0 < \alpha < 0.5)$,常数 c满足

$$P\{X > c\} = \alpha$$
 , $\mathbb{Q}P\{Y > c^2\} = \mathbb{I}$

(A) α

(B) $1-\alpha$ (C) 2α (D) $1-2\alpha$

【详解】

【例 6.2】设 X_1, X_2, \dots, X_9 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + X_2 + \dots + X_6)$,

$$Y_2 = \frac{1}{3}(X_7 + X_8 + X_9)$$
, $S^2 = \frac{1}{2}\sum_{i=7}^9(X_i - Y_2)^2$, $\Rightarrow \frac{\sqrt{2}(Y_1 - Y_2)}{S}$ 的分布.

【详解】

▲ 重点题型二 求统计量的数字特征

【方法】

【例 6.3】设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,则

$$E\left[\sum_{i=1}^{n} X_{i} \cdot \sum_{j=1}^{n} \left(nX_{j} - \sum_{k=1}^{n} X_{k}\right)^{2}\right] = \underline{\qquad}$$

【详解】

【例 6.4】设 X_1,X_2,\cdots,X_9 为来自总体 $N(0,\sigma^2)$ 的简单随机样本,样本均值为 \overline{X} ,样本方差为 S^2 .

(I) 求
$$\frac{9\overline{X}^2}{S^2}$$
的分布;

(II)
$$Rightarrow E \left[(\overline{X}^2 S^2)^2 \right]$$
.

第七章 参数估计

♣ 重点题型一 求矩估计与最大似然估计

【方法】

矩估计 令 $EX^k = \frac{1}{n} \sum_{i=1}^n X_i^k$ 或 $E(X - EX)^k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k, k = 1, 2, \cdots$, 得 $\theta_1, \theta_2, \cdots$ 的矩估计量.

最大似然估计

(1) 对样本值
$$x_1, x_2, \dots, x_n$$
,似然函数为 $L(\theta) = \begin{cases} \prod_{i=1}^n p(x_i; \theta) \\ \prod_{i=1}^n f(x_i; \theta) \end{cases}$;

(2) 似然函数两端取对数求导数;

(3) 令
$$\frac{d \ln L(\theta)}{d \theta}$$
 = 0 ,得 θ 的最大似然估计量. 【**例 7.1**】(2002,数一)设总体 X 的概率分布为

$$egin{array}{c|cccc} X & 0 & 1 & 2 & 3 \\ \hline P & heta^2 & 2 heta(1- heta) & heta^2 & 1-2 heta \end{array}$$

其中 $0 < \theta < \frac{1}{2}$ 为未知参数,利用总体X的如下样本值3, 1, 3, 0, 3, 1, 2, 3, 求 θ 的矩估计值与 最大似然估计值.

2023 考研晚千老师梳牵统计强化讲义

【例 7.2】(2011,数一)设 X_1, X_2, \cdots, X_n 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本,其中 μ_0 已知, $\sigma^2 > 0$ 未知,样本均值为 \overline{X} ,样本方差为 S^2 .

- (I) 求 σ^2 的最大似然估计量 $\widehat{\sigma^2}$;
- (II) 求 $E\widehat{\sigma^2}$ 与 $D\widehat{\sigma^2}$.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)

【例 7.3】(2022,数一、三)设 X_1,X_2,\cdots,X_n 为来自期望为 θ 的指数分布总体的简单随机样本, Y_1,Y_2,\cdots,Y_m 为来自期望为 2θ 的指数分布总体的简单随机样本,两个样本相互独立.利用 X_1,X_2,\cdots,X_n 与 Y_1,Y_2,\cdots,Y_m ,

- (I) 求 θ 的最大似然估计量 $\hat{\theta}$;
- (II) 求 $D\hat{\theta}$.

▲ 重点题型二 估计量的评价标准

【估计量的评价标准】

- (1) (无偏性)设 $\hat{\theta}$ 为 θ 的估计量,若 $E\hat{\theta} = \theta$,则称 $\hat{\theta}$ 为 θ 的无偏估计量;
- (2) (有效性)设 $\hat{\theta}_1,\hat{\theta}_2$ 为 θ 的无偏估计量,若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效;
- (3) 设 $\hat{\theta}$ 为 θ 的估计量,若 $\hat{\theta}$ 依概率收敛于 θ ,则称 $\hat{\theta}$ 为 θ 的一致(相合)估计量.

【例 7.4】设总体 X 的概率密度为 $f(x) = \begin{cases} 2e^{-2(x-\theta)}, x > \theta \\ 0, x \le \theta \end{cases}$, 其中 $\theta > 0$ 为未知参数, X_1, X_2, \dots, X_n

为来自总体 X 的简单随机样本.

- (I) 求 θ 的最大似然估计量 $\hat{\theta}$;
- (II) 问 $\hat{\theta}$ 是否为 θ 的无偏估计量?并说明理由.

【详解】

微信公众号: djky66 (顶尖考研祝您上岸)