Estatistica Descritiva - lista 3 *

Bruna Umino, Beatriz Vianna *IME - USP*

professora Marcia D'Elia Branco

Keywords: pandoc, r markdown, knitr

Questão 1

1a)

^{*}Replication files are available on the author's Github account (http://github.com/svmiller). Current version: maio 24, 2017; Corresponding author: svmille@clemson.edu.

Gráfico de dispersão


```
#Correlacao linear
cor(preco, colheita)
```

[1] -0.6239457

Como podemos observar, o gráfico apresenta uma correlação linear significativa e negativa (ou seja, quanto menor a colheita, mais alto fica o preço), que está sendo influenciada pelo dado do ano de 1943. Devido a este valor, a correlação está mais elevada.

1b)

Gráfico de dispersão com reta de regressão

Colheita (em milhares de hectolitros)

```
lm (preco ~ colheita)

##

## Call:

## lm(formula = preco ~ colheita)

##

## Coefficients:
```

(Intercept) colheita ## 3.4297758 -0.0001209

Dado que o resultado do coeficiente angular foi igual a -0.0001209, podemos observar que consiste em um valor negativo, ou seja, o preço e a colheita são inversamente proporcionais.

1c)

lm(preco~colheita)

```
##
## Call:
## lm(formula = preco ~ colheita)
##
## Coefficients:
## (Intercept) colheita
## 3.4297758 -0.0001209
```

```
residuos <- resid(lm(preco~colheita))
plot(colheita, residuos,
    ylab="Residuos",
    xlab="Colheita",
    main="Gráfico de resíduos")
abline(0,0)</pre>
```

Gráfico de resíduos

Observando o gráfico, podemos ver que aumentando o valor da colheita, não aumenta a variabilidade dos dados, então o gráfico é homocedástico.

1d)

Gráfico colheita x ano x preço

Através dos gráficos podemos observar que ocoreu uma considerável colheita no ano de 1943, que resultou no pior preço e no ano de 1952 ocorreu a menor colheita deste intervalo de tempo. O resto dos valores coletados está na faixa de 5000 a 10900 milhares de hectolitros. Em relação ao preço, há picos nos anos de 1946, 1961, 1952 e 1958, que são os anos nos quais ocorreram as piores colheitas, e nos anos de 1944, 1943 e 1954, quando foram relatados os menores preços.

1e)

Gráfico de probabilidades normais

quantis dos resíduos não se aproximam muito para uma normal, mas podemos observar que os valores do meio estão mais próximos da linha Y=X e as caudas se afastam consideravelmente. — #Questao 2

2a)

```
library (magrittr)
dados <- read.csv2("/home/be/viabianna/Downloads/dadosmalariaCEA15P14.csv")
#Retirar os dados que contém N/A
dados %>% subset(!is.na(pc)) %>% subset(!is.na(peso)) %>% subset(!is.na(est))
```

```
#Gráfico de Dispersão Perímetro Cefálico x Peso
plot(dados$pc~dados$peso, xlab="Perímetro Cefálico", ylab="Peso",
main= "Gráfico de Dispersão Perímetro Cefálico x Peso")
```

Gráfico de Dispersão Perímetro Cefálico x Peso

#Correlação Perímetro Cefálico x Peso cor(dados\$pc,dados\$peso)

[1] NA

#Gráfico de Dispersão Perímetro Cefálico x Estatura
plot(dados\$pc~dados\$est, xlab="Perímetro Cefálico", ylab="Estatura",
main= "Gráfico de Dispersão Perímetro Cefálico x Estatura")

Gráfico de Dispersão Perímetro Cefálico x Estatura


```
#Correlação Perímetro Cefálico x Estatura cor(dados$pc,dados$est)
```

[1] NA

2b)

```
equação <- (lm(dados$pc~dados$peso))
equação
```

```
##
## Call:
## lm(formula = dados$pc ~ dados$peso)
##
## Coefficients:
## (Intercept) dados$peso
## 26.06791 0.00244
```

A partir destes dados, sabemos que a reta de regressão para Perímetro Cefálico x Peso (que é a variável que apresenta maior correlação) será

```
y=0.002x+26.061 portanto, o perímetro cefálico, em centímetros, esperado para um bebê de 3000g é: y=0.002*3000+26.061 y=32.061
```

```
equação <- (lm(dados$pc~dados$est))</pre>
equação
##
## Call:
## lm(formula = dados$pc ~ dados$est)
## Coefficients:
## (Intercept) dados$est
##
       10.2103
                      0.4824
   Já a reta Perímetro Cefálico x Estatura (que apresenta menor correlação) será
   y = 0.482x + 10.21
   Assim sendo, o perímetro cefálico esperado, em centímetros, para um recém nascido de 50cm
será:
   y = 0.482 * 50 + 10.21
   y = 34.31 \, \text{#2c}
#organização dos dados a serem usados,
#transformar grupo em variável binária
dados2 <- data.frame(dados$peso, dados$grupo, dados$pc)</pre>
dadosgrupo <- vector(length=length(dados2$dados.grupo))</pre>
dadosgrupo[which(dados2$dados.grupo!=0)] <- 'Infectada'</pre>
dadosgrupo[which(dados2$dados.grupo==0)] <- "Não Infectada"
dados2$dados.grupo <- dadosgrupo</pre>
library(ggplot2)
legenda <- as.factor(dados2$dados.grupo)</pre>
ggplot(data = dados2,
      aes(x = dados2$dados.pc, y =dados2$dados.peso, colour = legenda)) +
      geom_point()+
      xlab("Perímetro Cefálico")+
      ylab("Peso")+
      labs(title="Gráfico de Dispersão Perímetro Cefálico x Peso")
```

Warning: Removed 70 rows containing missing values (geom_point).

2d)

```
#organização dos dados a serem utilizados, transformar grupo em binário
#transformar idade em binária (maior que 35/ menor ou igual a 35)
dados3 <- data.frame( dados$grupo, dados$pc, dados$idade)
dadosgrupo <- vector(length=length(dados3$dados.grupo))
dadosgrupo[which(dados3$dados.grupo!=0)] <- 1
dados3$dados.grupo <- dadosgrupo
dadosgrupo2 <- vector(length=length(dados3$dados.idade))
dadosgrupo2[which(dados3$dados.idade<=35)] <- 0
dadosgrupo2[which(dados3$dados.idade>35)] <- 1
dados3$idadecat<- dadosgrupo2</pre>
```

```
fit1 <- lm(dados3$dados.pc~dados3$dados.grupo+dados3$idadecat)
summary(fit1)</pre>
```

```
##
## Call:
## lm(formula = dados3$dados.pc ~ dados3$dados.grupo + dados3$idadecat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.616 -1.063 0.384 1.384 5.384
```

```
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           34.0626
                                         0.1240 274.756
                                                           < 2e-16 ***
   dados3$dados.grupo
                           -0.4467
                                         0.1561
                                                  -2.861
                                                           0.00439 **
   dados3$idadecat
                                                           0.20342
                            0.4748
                                         0.3728
                                                   1.273
##
## Signif. codes:
                      0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' 1
## Residual standard error: 1.747 on 527 degrees of freedom
##
      (70 observations deleted due to missingness)
## Multiple R-squared: 0.01885,
                                          Adjusted R-squared:
## F-statistic: 5.062 on 2 and 527 DF, p-value: 0.006647
par(mfrow=c(2,2))
plot(fit1, caption = c("Resíduos x Ajustados", "QQ-Plot Normal",
                           "Locação e Escala", "residuos e alavancagem"))
                                                     Standardized residuals
                  Resíduos x Ajustados
                                                                      QQ-Plot Normal
    Residuals
            33.6
                   33.8
                         34.0
                                34.2
                                       34.4
                                                                                        2
                                                                                             3
                                                               -3
                                                                              0
                        Fitted values
                                                                     Theoretical Quantiles
   Standardized residuals
                                                     Standardized residuals
                    Locação e Escala
                          4650
         1.5
                                                                                           103Č
                                                                    <sub>l65</sub>Cook's distance
         0.0
            33.6
                   33.8
                         34.0
                                34.2
                                       34.4
                                                             0.00
                                                                    0.01
                                                                           0.02
                                                                                  0.03
                                                                                        0.04
```

O modelo está ajustando o perímetro cefálico em relação ao grupo da gestante (0=não infectada e 1=infectada) e a idade da gestante (0= até 35 anos e 1=mais de 35 anos)

Leverage

O desvio padrão dos resíduos é 1.748

Fitted values

Devido aos dados estarem agrupados de forma binária, os gráficos com exceção do qqnorm saem alinhados verticalmente. Em relação ao gráfico de residuos podemos observar que a medida que aumenta o eixo x (a idade e o grupo), diminui a variabilidade dos dados, mostrando uma não homocedastidade. No entanto, analisando o gráfico qqnorm, o modelo se aproxima de uma normal, exceto nas caudas.

Questão 3

Ao se fazer um diagnóstico binário, no qual Y assume apenas dois valores (positivo e negativo), queremos uma regra de predição que minimize os erros cometidos. Se tomarmos $\pi=1$ por exemplo, nosso Y sempre será positivo. Isso irá maximizar o diagnóstico de verdadeiros positivos, mas também irá minimizar o diagnóstico dos quadros negativos, ou seja, também teremos muitos falsos positivos (valores negativos que foram diagnosticados erroneamente como positivos).

Para a escolha do valor de pi é utilizada a curva ROC (do inglês Receiver Operating Characteristic - Característica de operação do receptor). Este gráfico apresenta em seu eixo vertical $P(Y=1 \mid Y=1)$ - chamado sensibilidade - e em seu eixo horizontal $1-P(Y=0 \mid Y=0)$ - chamado especificidade. A curva apresenta a associação entre as duas variáveis (sensibilidade e especificidade) para cada valor de pi entre 0 e 1. O que procuramos é o ponto da curva que apresenta um valor muito alto para a variável do eixo y e um muito baixo para a variável do eixo x.

s positivos falsos positivos
tivos verdadeiros negativos vos total negativos
de especificidade
•