Bases de données NoSQL: une introduction

Module BDA et GL

Dr I. Gueye

Nota

 Ce cours fera appelle souvent à des notions de BD avancées à très avancées (Transactions ACID, CAP, distributed computing, traitements distribués, MapReduce, etc.). Ces notions sont développées en DIC2 et DIC3.

 Nous prendrons donc ce qui nous y intéresse seulement.

Les SGBD sont Universelles

- Systèmes « SQL »
 - Facilité d'utilisation
 - Cohérence des données
 - Persistance des données
 - Fiabilité (Pannes)
 - Efficacité
 - Universalité

- Vues SQL
- Données Structurées
- Transactions
- Optimisation des requêtes
- Indexation des données

Peut-on répondre à tous les besoins avec un système? « One size fits all »

Caractéristiques du Big Data

Variety: Manage and benefit from

diverse data types and data

structures

Velocity: Analyze streaming data and

large volumes of persistent

data

Volume: Scale from terabytes to

zettabytes

Tout à changé... évolution

Nouvelles **Données** :

- Web 2.0 : Facebook, Twitter, news, blogs, ...
- LOD: graphes, ontologies, ...
- Flux : capteurs, GPS, ...

Nouveaux **Traitements**:

- Moteurs de recherche
- Extraction, analyse, ...
- Recommandation, filtrage collaboratif, ...

Nouvelles Infrastructures:

 Cluster, réseaux mobiles, microprocesseurs multicoeurs, ... → très gros volumes, données pas ou faiblement structurées

→ transformation, agrégation, indexation

→ distribution, parallélisation, redondance

L'évolution conduit à la spécialisation

Systèmes « noSQL » (not only SQL):

- Facilité d'utilisation
- Cohérence des données
- Persistance des données
- Fiabilité (Pannes)
- Efficacité
- Universalité

- Langages spécialisés
- Données hétérogènes
- Réplication
- Parallélisation
- Indexation de contenus

« Systèmes sur mesure »

- Théorème CAP : dans un système distribué il est impossible de garantir à chaque instant t plus que deux parmi les trois propriétés suivantes :
- Consistency (cohérence) :
 - tous les noeuds voient la même version
- Availability (disponibilité) :
 - chaque requête obtient une réponse
- Partition tolerance (résistance à une panne partielle) :
 - la perte de messages n'empêche pas le système de continuer à fonctionner

 Impossibilité d'assurer C (cohérence), A (Disponibilité) et P (tolérance aux pannes) en même temps

A et C : si A alors Node2 réponds à req2 si C alors la variable **a** de Node2 contient 2

 Impossibilité d'assurer C (cohérence), A (Disponibilité) et P (tolérance aux pannes) en même temps

A et P : si A alors Node2 réponds à req2 si P alors le msg de Node1 vers Node2 perdu et donc a=1 sur ce dernier

 Impossibilité d'assurer C (cohérence), A (Disponibilité) et P (tolérance aux pannes) en même temps

C et P : Exercice

SQL ← vs → NoSQL

Cohérence forte :

- Logique : Schémas, contraintes
- Physique : Transactions ACID

Distribution des données

Transactions distribuées

Ressources limitées

Optimisation de requêtes

Langage **standard**: SQL

Cohérence faible :

- Schémas, contraintes
- Cohérence « à terme »

Distribution des traitements :

- Traitements « Batch »
- MapReduce

Ressources « illimitées »

Passage à L'échelle horizontal

Langages spécialisés, API

Infrastructures RAIN: le Cloud

- Redundant Array of Independent Nodes (cloud)
- Infrastructure à faible coût :
 - PC, open-source, LAN générique
- Tolérance aux fautes :
 - redondance du matériel, des données et des traitements
- Administration facile :
 - Architecture « shared-nothing »
 - Virtualisation
- Utilisation facile :
 - Modèles de programmation restreint : MapReduce

SQL ← vs → NoSQL

- Traitements centralisés
- Accès distribué

- Traitements distribués
- Accès local

SQL ← vs → NoSQL

Accès à grain fin :

 beaucoup de lectures / écritures de de petits objets

 peu de lectures / écritures de grands objets

Vue sur le Web

SQL NoSQL

Pros

Relational databases are good at structured data and transactional, high-performance workloads.

Offerings are proven and mature with a wide variety of tools available.

Cons

Can be difficult to scale.

Fixed schema for organizing data.

EXAMPLES

MySQL, PostGreSQL, SQL Server, Oracle Good for non-relational data. Schema-less architecture allows for frequent changes to the database and easy addition of varied data to the system.

Easily scalable, runs well on distributed systems (the cloud).

Cons

Installation, management and toolsets still maturing.

Can have slower response time.

EXAMPLES

Amazon DynamoDB, MongoDB, Couchbase, Riak

Vue sur le Web

Vers le NoSQL

- Etendre / adapter un SGBD traditionnel :
 - niveaux de concurrence, indexes, stockage

- Définir des systèmes spécialisés pour
 - une infrastructure (distribuée) : cloud, clusters
 - un type de données : profils, documents XML, RDF, ...
 - un type de traitements : partage, analyse/agrégation, visualisation

Classification de systèmes

Classer selon:

- Les types de données : tables, clés/valeurs, arbres, graphes, documents
- Le paradigme (langages) : map/reduce (PIG, Hive)
- L'API / Protocole : JSON/REST
- La persistance : mémoire, disque, Cloud...
- La gestion de concurrence / cohérence
- La réplication, protocoles
- Le langage d'implémentation, ...

Liste (non exhaustive) des systèmes NoSQL

- Document store (DS) :
 <u>Collections de documents</u>
 - Natifs : CouchDB,MongoDB, TerraStore, ...
 - Soft : eXist, Virtuoso
- Key-value store (KVS) :
 Absence de schéma
 - DynamoDB, Voldemort,
 Azure Table Storage,
 MongoDB, Bigtable,
 Oracle KV-Store, ...

- Tabular store (TS) :
 <u>Tables</u>
 - Cassandra, Hadoop / Hbase, Hypertable (Bigtable)
- Graph store (GS) : <u>Graphes</u>
 - Neo4j, AllegroGraph,
 InfiniteGraph

Autres types de systèmes NoSQL: XML, Triplestore (RDF), orientés objets, etc.

Vue sur le Web

Acteurs majeurs du NoSQL

- Amazon: DynamoDB, SimpleDB
- Microsoft : Azure Table Storage
- Google: BigTable, Datastore, GFS
- Apache: CouchDB, Cassandra, Hadoop / Hbase
- Beaucoup de start-ups...

Hands on MongoDB

- Install via Atlas
 - https://www.mongodb.com/download-center? jmp=nav#atlas
 - Modèle IaaS: Payant à l'utilisation avec une part gratuite, 100% Cloud
 - Possibilité de choisir son Cloud Provider
 - ... et sa région de déploiement