ECEN3714

Homework #05

Lab on___ Wed __Thu ___Fri____

Name (PRINT):

(Frist Name)

(Pay attention to the notation completeness and rigor of analytics).

5.1. A periodical function h(t) is shown in the following figure. Apparently it has a period of 6, and within the first period, it varies over [0 4]. Let's denote the function within this first period as $h_1(t)$. (5 points)

- (a). Represent $h_1(t)$ using unit step functions. (2 points)
- (b). Determine the Laplace transform $F_1(s)$ of $h_1(t)$. (2 points)
- (c). Determine the Laplace transform F(s) of h(t) (1 points)

5.2 (a) Express the function $\,\upsilon_{in}(t)\,$ shown in the following figure by using step functions. (2 points)

(b) Find the Laplace transform $V_{in}(s)$ of the $\upsilon_{in}(t)$ by using LT tables/properties (3 points)

All Answers and Work
is on Second Page

$$4 \xrightarrow{\begin{array}{c} h(t) \\ t^2 \\ 2 & 4 & 6 \end{array}} t$$

$$= \left[t^2 \cup (t) - t^2 \cup (t-2)\right] \cdot \left[4 \cup (t-2) - \cup (t-4)\right]$$

$$= \left[t^{2} \upsilon(t) - (t-2)^{2} \upsilon(t-2) + 4(t-2) \upsilon(t-2) + 4\upsilon(t-2) \right] \cdot \left[4\upsilon(t-2) - \upsilon(t-4) \right]$$

$$= \left[t^{2} \upsilon(t) - (t-2)^{2} \upsilon(t-2) + 4(t-2) \upsilon(t-2) + 4\upsilon(t-2) \right] \cdot \left[4\upsilon(t-2) - \upsilon(t-4) \right]$$

$$F_{1}(s) = \left[\frac{2}{s^{3}} - e^{-2S} \frac{2}{s^{3}} + 4e^{-2S} \frac{1}{s^{2}} + 4e^{-2S} \frac{1}{s} \right] \cdot \left[4e^{-2S} \frac{1}{s} - e^{-4S} \frac{1}{s} \right]$$

$$F(s) = \frac{F(s)}{1 - e^{-TS}} = \frac{\left[\frac{2}{5^3} - e^{-2S}\frac{2}{5^3} + 4e^{-2S}\frac{1}{5^2} + 4e^{-2S}\frac{1}{5}\right] \cdot \left[4e^{-2S}\frac{1}{5} - e^{-4S}\frac{1}{5}\right]}{\left[-e^{-6S}\right]}$$

$$V_{in}(s) = \begin{bmatrix} \frac{2}{s} & \frac{1}{s^2} \\ \frac{1}{s} & \frac{1}{s^2} \end{bmatrix} - \left[\left(e^{-2s} \frac{1}{s^2} + 2e^{-2s} \frac{1}{s} \right) - \left(\frac{2}{s} \right) \right]$$

$$= \left[2 \cup (t) \cdot t \cup (t) \right] - \left[t \cup (t-z) \cdot 2 \cup (t) \right]$$

$$= \left[2 \upsilon(t) \cdot \frac{1}{2} \upsilon(t) \right] - \left[\left(\frac{1}{2} - 2 \right) + 2 \cdot \upsilon(t - 2) \right] \cdot 2 \upsilon(t)$$

$$= \left[2 \upsilon(t) \cdot t \upsilon(t) \right] - \left[(t-2) \upsilon(t-2) + 2 \upsilon(t-2) \right] \cdot \left[2 \upsilon(t) \right]$$