Serii - considerații teoretice

O serie de numere reale este o pereche ordonată de dou a șiruri $((x_n),(s_n))_{n\geq k}$ unde

$$s_n = x_k + x_2 + \dots + x_n.$$

numit şriul sumelor parţiale. Notaţiile uzuale pentru serii sunt:

$$\sum_{n \ge k} x_n = \sum x_n.$$

Dacă există $\lim_{n\to\infty} s_n\in\overline{\mathbb{R}}=\mathbb{R}\cup\{\pm\infty\}$ ea se numește suma seriei și se notează cu

$$\sum_{n=k}^{\infty} x_n = \lim_{n \to \infty} s_n.$$

Atunci când $\sum_{n=k}^{\infty} x_n \in \mathbb{R}$, seria se numește **convergentă**. Ea este divergentă în rest, adică dacă:

- a) $\exists \lim_{n \to \infty} s_n$
 - san
- b) $\lim_{n\to\infty} s_n \in \{\pm\infty\}.$

1 Criteriul general de convergență al lui Cauchy

Seria $\sum x_n$ este convergentă dacă și numai dacă

$$\forall \varepsilon > 0, \exists n_\varepsilon \in \mathbb{N}, \forall n \geq n_\varepsilon, \forall p \in \mathbb{N} : \|x_{n+1} + \ldots + x_{n+p}\| < \varepsilon.$$

2 Teorema de legătură între seria $\sum x_n$ și $\lim_{n\to\infty} x_n$.

Dacă seria $\sum x_n$ este convergentă, atunci $\lim_{n\to\infty} x_n = 0$ Care este echivalentă cu

$$\lim_{n \to \infty} x_n \neq 0 \Longrightarrow \sum x_n \quad divergenta.$$

Această teoremă este foarte utilă atunci când exercițiul se referă la o serie divergentă, deorece dacă $\lim x_n \neq 0$, am terminat rapid rezolvarea.

Aplicații la teorema de legătură între seria $\sum x_n$ și $\lim_{n\to\infty} x_n$

Aplicația 1 Studiați natura seriei

$$\sum \ln \left(2 + \frac{1}{n}\right).$$

Rezolvare: Deoarece

$$\lim_{n\to\infty} \ln\left(2 + \frac{1}{n}\right) = \ln 2 \neq 0$$

rezultă că seria $\sum \ln \left(2 + \frac{1}{n}\right)$ este divergentă.

Aplicația 2 Studiați natura seriei

$$\sum_{n\geq 3} \ln\left(1 + \frac{1}{n}\right).$$

Rezolvare: Constatăm că

$$\lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right) = \ln 1 = 0.$$

Nu putem concluziona nimci încă, seria trebuie studiată prin alte mijloace. Constatăm că

$$x_n = \ln\left(\frac{n+1}{n}\right) = \ln(n+1) - \ln n.$$

Deci seria este una telescopică, definită cu ajutorul șirului (a_n) , având termenul general

$$a_n = \ln n$$
 cu $\lim_{n \to \infty} a_n = \infty$.

Conform teoriei de la seminarul anterior, deoarece $x_n = a_{n+1} - a_n$ iar $\lim_{n \to \infty} a_n$ există, seria $\sum x_n$ are sumă, iar aceasta este:

$$\sum_{n=3}^{\infty} x_n = \lim_{n \to \infty} a_n - a_3 = \infty - \ln 3 = \infty.$$

Astfel, seria $\sum_{n\geq 3} \ln\left(1+\frac{1}{n}\right)$ este divergentă, cu suma $+\infty$.

3 Serii cu termeni pozitvi

Seriile cu termeni pozitivi (STP) sunt acelea care au

$$x_n > 0, \forall n \in \mathbb{N}.$$

STP sunt caracterizate de faptul că șirul sumelor parțiale este strict crescător, deoarece

$$s_{n+1} - s_n = x_{n+1} > 0.$$

Astfel, confrom teoremi lui Weierstrass, (s_n) are întotdeauna limită, deci seria $\sum x_n$ are întotdeauna sumă. Mai mult, seria este

 $convergenta \iff sirul (s_n) este marginit.$

Deci, dacă seria $\sum x_n$ este divergentă, întot
deauna $\sum_{n=1}^\infty x_n = \infty.$

3.1 Criteriul condensării al lui Cauchy

Fie $\sum x_n$ o STP cu (x_n) descrescător. Atunci

$$\sum x_n \sim \sum 2^n x_{2^n}.$$

Aplicație la criteriul condensării al lui Cauchy - Seria armonică generalizată

Este seria

$$\sum_{n\geq 1} \frac{1}{n^{\alpha}}$$

cu $\alpha \in \mathbb{R}$. Despre ea avem următoarele concluzii:

$$\sum_{n \geq 1} \frac{1}{n^{\alpha}} \quad este \quad \left\{ \begin{array}{ll} convergenta: & \alpha > 1 \\ divergenta: & \alpha \leq 1 \end{array} \right.$$

Ea are întotdeau
ana sumă, iar în cazul în care $\alpha \leq 1$ suma este

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \infty.$$

În particular:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

Această serie este deseori folosită ca termen de comparație în C2C.

3.2 Criterii de comparație pentru STP

C1C

Fie $\sum x_n$ și $\sum y_n$ două STP astfel încât $\exists a>0, \exists n_0\in\mathbb{N}$ pentru care

$$x_n \le ay_n, \forall n \ge n_0.$$

Atunci

$$(*) \left\{ \begin{array}{ll} \sum y_n & convergenta & \Longrightarrow & \sum x_n & convergenta \\ \sum x_n & divergenta & \Longrightarrow & \sum y_n & divergenta \end{array} \right.$$

C2C

Fie $\sum x_n$ şi $\sum y_n$ două STP astfel încât

$$\exists \quad l = \lim_{n \to \infty} \frac{x_n}{y_n} \in [0, \infty].$$

Atunci

- 1. Dacă l = 0 atunci (*).
- 2. Dacă $l=\infty$ atunci

$$(**) \left\{ \begin{array}{ccc} \sum x_n & convergenta & \Longrightarrow & \sum y_n & convergenta \\ \sum y_n & divergenta & \Longrightarrow & \sum x_n & divergenta \end{array} \right.$$

3. Dacă $l \in (0, \infty)$, atunci (*) și (**). Deci

$$\sum x_n \sim \sum y_n,$$

adică seriile au aceeași natură (deci sunt amândouă simultan, fie convergente, fie divergente).

Aplicații la criteriile de comparație pentru STP

Studiați natura seriilor:

$$a) \sum \frac{2^n}{3^n + 5^n} \quad si \quad b) \sum \frac{1}{\sqrt{n(n^2 + 1)}}.$$

Rezolvare: a) Întot deauna atunci când în expresia termenului general al seriei apar constante la putere a n, încercăm o comparație cu seria geoemetrica. Pentru cazul nostru constatăm destul de simplu că

$$\frac{2^n}{3^n + 5^n} \le \frac{2^n}{3^n}, \forall n \in \mathbb{N}.$$

Seria $\sum_{n=1}^{\infty} \frac{2^n}{3^n} = \frac{2}{3} \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n-1}$ este convergentă deoarece este o constantă înmulțită cu seria geoemtrică

de raţie $\frac{2}{3} < 1$, care este convergentă. Aplicăm C1C pentru $\sum x_n = 2^n 3^n + 5^n$ şi $\sum y_n = \sum \frac{2^n}{3^n}$. Din (*) va rezulta că $\sum x_n$ este convergentă, deorece seria mai mare, adică $\sum y_n$ este tot convergentă.

b) Atunci când în expresia termenului general al seriei apare n la putere constantă, încercăm o comparație cu seria armonică generalizată $\sum y_n = \sum \frac{1}{n^{\alpha}}$, prin C2C. Nu fixăm de la început valoarea parametrului α ci o vom deduce pe parcurs. Efectuăm astfel

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n(n^2 + 1)}}}{\frac{1}{n^{\alpha}}} = \lim_{n \to \infty} \frac{n^{\alpha}}{\sqrt{n(n^2 + 1)}}.$$

Pentru a obține echivalența celor două serii, care are loc doar pentru limita $\in (0, \infty)$ setam $\alpha = \frac{3}{2}$. Atunci

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{n}{\sqrt{n(n^2 + 1)}} = 1$$

deci, conform C2C

$$\sum x_n \sim \sum \frac{1}{n^{\frac{3}{2}}}.$$

Deoarece $\frac{3}{2} > 1$, seria $\sum \frac{1}{n^{\frac{3}{2}}}$ este convergentă, în consecință și seria inițială este convergentă.

Consecința criteriului raportului și a radicalului

Fie $\sum x_n$ o serie cu termeni pozitivi. Dacă există

$$l = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} \quad sau \quad l = \lim_{n \to \infty} \sqrt[n]{x_n}$$

atunci

$$(***) \begin{cases} l < 1 \Longrightarrow \sum x_n & convergenta; \\ l > 1 \Longrightarrow \sum x_n & divergenta; \\ l = 1 \Longrightarrow ? \end{cases}$$

Criteriul lui Raabe-Duhamel

Fie $\sum x_n$ o serie cu termeni pozitivi. Dacă există

$$l = \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right)$$

atunci

$$(****) \begin{cases} l > 1 \Longrightarrow \sum x_n & convergenta; \\ l < 1 \Longrightarrow \sum x_n & divergenta; \\ l = 1 \Longrightarrow ? \end{cases}$$

Algoritm în doi pași pentru rezolvarea problemelor cu rapoarte

Pasul 1: Calculam

$$D := \lim_{n \to \infty} D_n = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}. \quad Atunci \left\{ \begin{array}{l} D < 1 \Longrightarrow \sum x_n \quad convergenta; \\ D > 1 \Longrightarrow \sum x_n \quad divergenta; \\ D = 1 \Longrightarrow \quad go \quad to \quad Pasul \quad 2 \end{array} \right..$$

Pasul 2: Calculam

$$R := \lim_{n \to \infty} R_n = \lim_{n \to \infty} n \left(\frac{1}{D_n} - 1 \right). \quad Atunci \left\{ \begin{array}{l} R > 1 \Longrightarrow \sum x_n \quad convergenta; \\ R < 1 \Longrightarrow \sum x_n \quad divergenta; \\ R = 1 \Longrightarrow \quad go \quad to \quad ipoteze \end{array} \right..$$

Aplicație la algoritmul în doi pași:

Studiați natura seriei, pentru a > 0:

$$\sum \frac{n!}{a(a+1)...(a+n-1)}.$$

Observăm că termenii succesivi ai şirului care generează seria sunt reductibili, de aceea mergem cu gândul la criteriul raportului, și aplicăm algoritumul în 2 pasi.

Pasul 1: Calculăm

$$D := \lim_{n \to \infty} D_n = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{(n+1)!}{a(a+1)...(a+n-1)(a+n)} \cdot \frac{a(a+1)...(a+n-1)}{n!}$$
$$= \lim_{n \to \infty} \frac{n+1}{n+a} = 1$$

Deci trecem la pasul 2, deoarece pasul 1 nu ne oferă nici o concluzie. Calculăm

$$R:=\lim_{n\to\infty}R_n=\lim_{n\to\infty}n\bigg(\frac{1}{D_n}-1\bigg)=\lim_{n\to\infty}n\bigg(\frac{n+a}{n+1}-1\bigg)=\lim_{n\to\infty}(a-1)\cdot\frac{n}{n+1}=1-a.$$

Conform concluziilor teoremei lui Raabe-Duhamel:

$$\begin{cases} a-1>1 \Longrightarrow \sum x_n & convergenta; \\ a-1<1 \Longrightarrow \sum x_n & divergenta; \\ a-1=1 \Longrightarrow & go & to & ipoteze \end{cases} \iff \begin{cases} a>2 \Longrightarrow \sum x_n & convergenta; \\ a<2 \Longrightarrow \sum x_n & divergenta; \\ a=2 \Longrightarrow & go & to & ipoteze \end{cases}$$

Înlocuind a cu 2 în expresia inițială a seriei obținem seria

$$\sum \frac{n!}{2 \cdot 3 \cdot \dots \cdot (2+n-1)} = \sum \frac{n!}{(n+1)!} = \sum \frac{1}{n+1}.$$

Studiem natura seriei nou-obținute

$$\sum \frac{1}{n+1}$$

în formularea cărei observăm ca intervine doar n la o putere constantă. În acest caz folosim comparația cu seria armonică generalizată

$$\sum y_n = \sum \frac{1}{n^{\alpha}}$$

prin cel de-al doilea criteriul al comparației (C2C). Deci calculăm

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n^{\alpha}}} = \lim_{n \to \infty} \frac{n^{\alpha}}{n+1}.$$

Se observă că C2C oferă concluzii pentru cazul în care limita de mai sus $\in [0, \infty]$, dar nu complete (adică există situații care se exclud, cum ar fi cazul în care $\sum y_n$ este divergentă dacă limita este 0, sau $\sum x_n$ convergentă tot pentru acestă limita 0).

Atunci când obţinem o limită $\in (0, \infty)$, cele două serii sunt echivalente, deci au aceeşi natură. În consecințătot timpul când aplicăm C2C ar fi de preferat să obţinem o astfel de limită. În cazul particular al exercițiului nostru, o astfel de limită se obţinem doar pentru

$$\alpha = 1$$
.

Astfel

$$\lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1,$$

deci, conform C2C cele două serii au aceeași natură

$$\sum x_n \sim \sum \frac{1}{n}.$$

Deoarece $\sum \frac{1}{n}$ este divergentă, obținem concluzia că

$$\sum \frac{1}{n+1}$$

este divergentă.

Adunăm concluziile:

$$\sum \frac{n!}{a(a+1)...(a+n-1)} \quad este \quad \left\{ \begin{array}{cc} convergenta & daca & a>2; \\ divergenta & daca & a\leq2; \end{array} \right.$$

Aplicație la consecința criteriului radicalului

Studiați natura seriei, atunci când $a \in \mathbb{R}$

$$\sum \frac{n^{n^2+a}}{(n+1)^2}.$$

Atunci când în expresia lui x_n apare n la o putere care depinde tot de n încercăm să aplicăm consecința criterilui radicalului. Astfel calculăm

$$\lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \sqrt[n]{\frac{n^{n^2+a}}{(n+1)^{n^2}}} = \lim_{n\to\infty} \frac{n^{n+\frac{a}{n}}}{(n+1)^n} = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n \cdot \left(\sqrt[n]{n}\right)^a.$$

Observăm că limita este separabilă (deoarece ambele șiruri au limită, și înmulțindu-le nu obținem un caz de nedeterminare). Calulăm cele două limite separat:

$$\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n \stackrel{1^{\infty}}{=} \lim_{n \to \infty} \left(1 + \frac{-1}{n+1} \right)^n = e^{\lim_{n \to \infty} \left(-\frac{n}{n+1} \right)} = e^{-1} = \frac{1}{e}.$$

$$\lim_{n \to \infty} \left(\sqrt[n]{n} \right)^a = 1^a = 1.$$

Înmulțindu-le obținem

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \frac{1}{e} \cdot 1 = \frac{1}{e} < 1.$$

Atunci, conform consecinței criteriului radicaluli, pentru ca limta este < 1, seria este convergentă.