# **Creating table based on ERD**

ITC 6000 - Database Management Systems

**GROUP 2 REPRESENTATIVES** 

Abhilash Dikshit Nastaran Zamanian Shamim Sherafati Smit Parmar

COLLEGE OF PROFESSIONAL STUDIES (CPS)NORTHEASTERN UNIVERSITY – VANCOUVER, CANADA

#### I. NTRODUCTION

The following report has been created by Group G2of ITC 6000 - Database Management Systems. In this report, we deal with Creating the bank database related to previous ERD in relational database software MS SQL Server. And since having and installing the proper software is important for every operating system, we provide some description for installing this software on mac. Then we talk about components of related table and state conclusion.

#### II. HOW TO INSTALL SQL?

First we need to recognize about our software version; based on our software which is mac 13.0 .we should see the require software for SQL Based on Microsoft website minimum requirement :for SQL is like this figure

So compare with our MacOS version which is show below, are completely set to each other and can be prepare to download:



| Component          | Requirement                                                                                                                                                                                                                                              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hard Disk          | SQL Server requires a minimum of 6 GB of available hard-disk space.                                                                                                                                                                                      |
|                    | Disk space requirements will vary with the SQL Server components you install. For more information, see Hard Disk Space Requirements later in this article. For information on supported storage types for data files, see Storage Types for Data Files. |
| Monitor            | SQL Server requires Super-VGA (800x600) or higher resolution monitor.                                                                                                                                                                                    |
| Internet           | Internet functionality requires Internet access (fees may apply).                                                                                                                                                                                        |
| Memory *           | Minimum:                                                                                                                                                                                                                                                 |
|                    | Express Editions: 512 MB                                                                                                                                                                                                                                 |
|                    | All other editions: 1 GB                                                                                                                                                                                                                                 |
|                    | Recommended:                                                                                                                                                                                                                                             |
|                    | Express Editions: 1 GB                                                                                                                                                                                                                                   |
|                    | All other editions: At least 4 GB and should be increased as database size increases to ensure optimal performance.                                                                                                                                      |
| Processor<br>Speed | Minimum: x64 Processor: 1.4 GHz                                                                                                                                                                                                                          |
| Speed              | Recommended: 2.0 GHz or faster                                                                                                                                                                                                                           |
| Processor<br>Type  | x64 Processor: AMD Opteron, AMD Athlon 64, Intel Xeon with Intel EM64T support, Intel Pentium IV with EM64T support                                                                                                                                      |

As we can seen and compare, the minimum memory for SQL is 512 MB. The recommended memory is 1 GB but we have 24 GB which is great for installing it.

Generally, SQL Server Management Studio (SSMS) only runs on Windows, but there are two ways you can install it on Mac.

The first way is to install a virtual machine (VM) using programs like VirtualBox, Parallels Desktop, etc. Then you'll install Windows onto that VM, which requires a payment for the license, and finally, you'll use the VM to install SSMS.

The second option which we use is to install the SQL server using Docker. Microsoft provides Azure Data Studio as a graphical user interface to run the SQL server on Mac. This article covers the second option. Docker is a tool designed to make the creation, deployment, and running of applications by using containers much easier. Below are the following steps to run SSMS on Mac.

# So, in this step we should begin install it FROM 7 STEPS TO INSTALLING SQL SERVER MANAGEMENT STUDIO ON MAC:

#### STEP 1: DOWNLOAD AND INSTALL DOCKER

Then you'll select whether to download it to a Mac with an Intel chip or an Apple chip. Which we choose an Apple chip one. By default, docker allocates 2 GB of memory, and an SQL server needs 3.25 GB to run, so we need to increase the memory to 4 GB in Docker. To do that, go to settings, then preferences, then select the "Resources" screen and slide the memory slider up to at least 4 GB. Click "Apply & Restart."

#### STEP 2: DOWNLOAD THE MS SQL SERVER IMAGE TO DOCKER

Open the terminal in the Mac and run the following code. This will install the 2022 MS SQL Server image on your device. Once we run the above command, Docker will start extracting the image from the web and downloading the same into your local machine.

#### STEP 3: LAUNCH THE SQL SERVER IMAGE IN DOCKER

Run the following command in the terminal again to launch the image that was downloaded in Docker:

docker run -d --name sql\_server\_test -e 'ACCEPT\_EULA=Y' -e 'SA\_PASSWORD=reallyStrongPwd123' -p 1433:1433 mcr.microsoft.com/mssql/server:2022-latest

Once the above command runs successfully, go to Docker desktop and select the container option. Then look for the container "sql\_server\_test" as we mentioned in the above command.

#### STEP 4: INSTALL THE MS SQL CLI

We need to install sql-cli via npm. Before proceeding, npm should be installed on the Mac.

#### **STEP 5: TEST THE INSTALLATION**

You can now go ahead and run SQL queries against the SQL server.

### STEP 6: DOWNLOAD AND INSTALL THE GUI APPLICATION - AZURE DATA STUDIO

We need to install a graphical user interface (GUI). For that, we'll download Azure Data Studio. Azure Data Studio is available on Mac as well as on Windows because SSMS won't work on Mac.

#### STEP 7: CLOSING AND RESTARTING

Once you complete your work, you can save your progress and quit the workspace. Enter the mssql prompt [press ctrl+c] and stop the running Docker container using the docker stop command. If you want to re-open it, restart the existing docker container and start the SQL server via the terminal giving your username and password.

For this assignment, some of the SQL commands we used in the script are:

**CREATE TABLE** table name (Column 1 datatype (#characters)Define column you want to have)

(Column 2 datatype (#characters)Define column you want to have)

.

(Column n datatype (#characters)Define column you want to have)

PRIMARY KEY (column) Has to be identified.

Note: before creating table in SQL, first we should create a data base.

The command would be

**CREATE DATABASE name** 

In our case we use the command below

CREATE DATABASE bank\_ca

#### According to the following ERD:

Since we have 6 entities in bank domain, we ;should identify 6 separate tables

- 1. Table ~ Bank
- 2. Table ~ Branch
- 3. Table ~ loan
- 4. Table ~ Account
- 5. Table ~ Customer
- 6. Table ~ Employee



For table 1 (bank table) we have 4 attributes whose names are ba\_code, ba\_name, ba\_address and ba\_type. We need to define 4 columns with these names along with their types. It should be mentioned that among these attributes ba\_code is primary key.

For filling each table we use INSERT INTO table VALUES () command for 10 times to have a table of 10 rows. It is done by considering the number of attributes and their types.

Here is the output,

```
CREATE TABLE bank(
ba_code INT NOT NULL,
ba_name NVARCHAR(50) NOT NULL,
ba_address NVARCHAR(100) NOT NULL,
ba_type NVARCHAR(50) NOT NULL,
CONSTRAINT pk_bank_ba_code PRIMARY
KEY (ba_code)
);
```

|    | ba_code 🗸 | ba_name                  | ba_address 	v           | ba_type 🗸 |  |  |  |  |
|----|-----------|--------------------------|-------------------------|-----------|--|--|--|--|
| 1  | 1         | Royal National Bank      | 1350 Georgia Street     | Public    |  |  |  |  |
| 2  | 2         | CIBC                     | 555 Robson Street       | Public    |  |  |  |  |
| 3  | 3         | Canadian Western Bank    | 436 Duismuir Street     | Private   |  |  |  |  |
| 4  | 4         | National Bank of Canada  | 324 Homer Street        | Private   |  |  |  |  |
| 5  | 5         | Exchange Bank of Canada  | 245 Georgia Street      | Public    |  |  |  |  |
| 6  | 6         | BMO Financial Group      | 177 West Cordova Street | Private   |  |  |  |  |
| 7  | 7         | B2B Bank                 | 777 Richards Street     | Public    |  |  |  |  |
| 8  | 8         | The Bank of Nova Scotia  | 458 Granville Street    | Private   |  |  |  |  |
| 9  | 9         | Fairstone Bank of Canada | 131 Burrard Street      | Private   |  |  |  |  |
| 10 | 10        | RFA Bank of Canada       | 439 Robson Street       | Public    |  |  |  |  |

For table 2, branch table, we have 3 columns of b\_id which is primary key, b\_name, and b\_address and a foreign key of ba\_code from bank table. So the command will be:

```
CREATE TABLE branch(
    b_id VARCHAR(6) NOT NULL,
    b_name NVARCHAR(100) NOT NULL,
    b_address NVARCHAR(100) NOT NULL,
    ba_code INT NOT NULL,
    CONSTRAINT pk_branch_b_id PRIMARY KEY (b_id),
        CONSTRAINT fk_branch_ba_code FOREIGN KEY(ba_code)
REFERENCES bank(ba_code)
);
```

## Here is the output table:

| Res | Results Messages |                            |                         |           |  |  |  |  |
|-----|------------------|----------------------------|-------------------------|-----------|--|--|--|--|
|     | b_id ~           | b_name                     | b_address ~             | ba_code 🗸 |  |  |  |  |
| 1   | A4D67            | RFA Bank of Canada Branch  | 439 Robson Street       | 10        |  |  |  |  |
| 2   | B2739            | B2B Bank Branch            | 787 Richards Street     | 7         |  |  |  |  |
| 3   | BM378            | BMO Financial Group Branch | 177 West Cordova Street | 6         |  |  |  |  |
| 4   | C6778            | CIBC Branch ATM            | 787 Richards Street     | 2         |  |  |  |  |
| 5   | CW275            | Canadian Western Bank Bra… | 436 Duismuir Street     | 3         |  |  |  |  |
| 6   | EB783            | Exchange Bank of Canada B  | 245 Georgia Street      | 5         |  |  |  |  |
| 7   | F6793            | Fairstone Bank of Canada   | 131 Burrard Street      | 9         |  |  |  |  |
| 8   | NB870            | National Bank of Canada B  | 324 Homer Street        | 4         |  |  |  |  |
| 9   | NSC34            | The Bank of Nova Scotia B  | 458 Granville Street    | 8         |  |  |  |  |
| 10  | RN235            | Royal National Bank Branc… | 1350 Georgia Street     | 1         |  |  |  |  |

Table 3, loan table, would be a table of 7 attributes like loan\_type, loan\_id, ..., c\_id and b\_id in which c\_id and b\_id are the foreign keys and loan\_id is primary key. We selected decimal type for interest attribute because usually interests are shown with .decimal

```
)CREATE TABLE loan
,loan_type VARCHAR(20) NOT NULL
,loan_id INT NOT NULL
,loan_amount NUMERIC NOT NULL
,loan_interest DECIMAL(5,2) NOT NULL
,c_id INT
,b_id VARCHAR(6)
CONSTRAINT pk_loan_customer_c_id_branch_b_id
,PRIMARY KEY(c_id,b_id)
CONSTRAINT fk_loan_c_id FOREIGN KEY(c_id)
,REFERENCES customer(c_id)
CONSTRAINT fk_loan_b_id FOREIGN KEY(b_id)
REFERENCES branch(b_id)
;(
```

#### Here is the output table:

|    | loan_type 🗸        | loan_id 🗸 | loan_amount 🗸 | loan_duration 🗸 | loan_interest 🗸 | c_id 🗸 | b_id ∨ |
|----|--------------------|-----------|---------------|-----------------|-----------------|--------|--------|
| 1  | Debt Consolidation | 426436795 | 140000        | 3               | 10.60           | 983    | B2739  |
| 2  | Personal           | 426436789 | 50000         | 12              | 3.40            | 2130   | RN235  |
| 3  | Credit-Builder     | 426436794 | 100000        | 6               | 5.30            | 2345   | BM378  |
| 4  | Home Equity        | 426436793 | 54000         | 36              | 9.35            | 4200   | EB783  |
| 5  | Student            | 426436797 | 20000         | 12              | 12.99           | 4702   | F6793  |
| 6  | Student            | 426436791 | 40000         | 24              | 12.99           | 5348   | CW275  |
| 7  | Mortgage           | 426436798 | 900000        | 68              | 3.01            | 6018   | A4D67  |
| 8  | Payday             | 426436796 | 15000         | 1               | 8.40            | 6721   | NSC34  |
| 9  | Auto               | 426436790 | 55000         | 24              | 5.28            | 7658   | C6778  |
| 10 | Mortgage           | 426436792 | 90000         | 56              | 3.01            | 7891   | NB870  |

Table 4 or account table is consist of 6 columns, 3 of which are foreign keys and acc\_no is the primary key. We choose numeric type for balance attribute.

```
CREATE TABLE account (
    acc_no INT NOT NULL,
    acc_balance NUMERIC,
    acc_type VARCHAR(100) NOT NULL,
    c_id INT NOT NULL,
    e_id INT NOT NULL,
    b_id VARCHAR(6) NOT NULL,
    CONSTRAINT pk_account_acc_no PRIMARY KEY (acc_no),
    CONSTRAINT fk_account_c_id FOREIGN KEY(c_id) REFERENCES customer(c_id),
    CONSTRAINT fk_account_eid FOREIGN KEY(e_id) REFERENCES employee(e_id),
    CONSTRAINT fk_account_b_id FOREIGN KEY(b_id) REFERENCES branch(b_id)
    );
```

#### Here we can see account table;



Table 5, customer table, include 5 attributes of c\_id, c\_name, c\_dob, c\_contact and c\_address, among which c\_id is the Primary key should be mentioned that for dob column we choose date type and for c\_contact we select bigint type.

# Here we can see account table;

|    | c_id 🗸 | c_name             | c_dob 🗸    | c_contact 🗸 | c_address         |
|----|--------|--------------------|------------|-------------|-------------------|
| 1  | 983    | Jack Brown         | 2002-05-17 | 9081451073  | 52nd Avenue Surre |
| 2  | 2130   | Smit Parmar        | 2000-07-20 | 21846570194 | 177 Robson Street |
| 3  | 2345   | John Smith         | 1999-03-01 | 4658962931  | West Vancouver    |
| 4  | 4200   | Sarah Nadi         | 1989-11-06 | 8971256891  | 781 Duismuir Stre |
| 5  | 4702   | Dave Park          | 1970-04-10 | 9608512278  | 256 Metrotown     |
| 6  | 5348   | Shamim Sherafati   | 1997-10-28 | 687213456   | 768 Richards Stre |
| 7  | 6018   | Justin Bieber      | 1994-08-29 | 6354387654  | 2nd Avenue Surrey |
| 8  | 6721   | Jacquile Fernandez | 1989-01-12 | 7420638906  | 555 Seymour Stree |
| 9  | 7658   | Abhilash Dikshit   | 1993-05-10 | 2365744375  | W 23 Cordova Stre |
| 10 | 7891   | Nastaran Zamanian  | 1992-01-16 | 1879578123  | West Vancouver    |

In table 6, employment table, we define 6 attributes totally like e\_id, e\_name, e\_dob, e\_dept, e\_contact, e\_address, e\_age in which e\_id is the primary key . For e\_contact we choose bigint type.

```
CREATE TABLE employee
(
    e_id INT NOT NULL,
    e_name NVARCHAR(40) NOT NULL,
    e_dob DATE NOT NULL,
    e_dept NVARCHAR(30) NOT NULL,
    e_contact BIGINT NOT NULL,
    e_address NVARCHAR(100) NOT
NULL,
    e_age INT NOT NULL
    CONSTRAINT pk_employee_eid
PRIMARY KEY (e_id)
);
```

|    | e_id ∨ | e_name             | e_dob      | e_dept ~            | e_contact ∨ | e_address           | e_age 🗸 |
|----|--------|--------------------|------------|---------------------|-------------|---------------------|---------|
| 1  | 984    | Jack Brown         | 2002-05-17 | HR                  | 9081451073  | 52nd Avenue Surrey  | 23      |
| 2  | 2131   | Smit Parmar        | 2000-07-20 | Investment Planning | 21846570194 | 177 Robson Street   | 21      |
| 3  | 2346   | John Smith         | 1999-03-01 | Marketing           | 4658962931  | West Vancouver      | 39      |
| 4  | 4201   | Sarah Nadi         | 1989-11-06 | Investment Planning | 8971256891  | 781 Duismuir Street | 48      |
| 5  | 4703   | Dave Park          | 1970-04-10 | Corporate Services  | 9608512278  | 256 Metrotown       | 52      |
| 6  | 5349   | Shamim Sherafati   | 1997-10-28 | HR                  | 687213456   | 768 Richards Street | 25      |
| 7  | 6019   | Justin Bieber      | 1994-08-29 | Marketing           | 6354387654  | 2nd Avenue Surrey   | 22      |
| 8  | 6722   | Jacquile Fernandez | 1989-01-12 | Investment Planning | 7420638906  | 555 Seymour Street  | 33      |
| 9  | 7659   | Abhilash Dikshit   | 1993-05-10 | Marketing           | 2365744375  | W 23 Cordova Street | 29      |
| 10 | 7892   | Nastaran Zamanian  | 1992-01-16 | Corporate Services  | 1879578123  | West Vancouver      | 30      |

# Creating a Relational Database.

In this part, we shall be creating a relational database by using the primary keys from different tables. In the different table the same primary key shall be a foreign key. Hence we shall use JOIN commands to create the relational databases.

```
SELECT
    fk.name 'FK Name',
    tp.name 'Parent table',
   cp.name, 'cp.column_id',
   tr.name 'Refrenced table',
    cr.name, 'cr.column_id'
FROM
   sys.foreign_keys fk
INNER JOIN
   sys.tables tp ON fk.parent_object_id = tp.object_id
INNER JOIN
    sys.tables tr ON fk.referenced_object_id = tr.object_id
INNER JOIN
   sys.foreign_key_columns fkc ON fkc.constraint_object_id = fk.object_id
INNER JOIN
   sys.columns cp ON fkc.parent_column_id = cp.column_id AND fkc.parent_object_id = cp.object_id
INNER JOIN
   sys.columns cr ON fkc.referenced_column_id = cr.column_id AND fkc.referenced_object_id = cr.object_id
ORDER BY
    tp.name, cp.column_id
```

| Res | Results Messages  |                |         |                    |                   |         |                    |  |
|-----|-------------------|----------------|---------|--------------------|-------------------|---------|--------------------|--|
|     | FK Name 🗸         | Parent table 🗸 | name 🗸  | (No column name) 🗸 | Refrenced table 🗸 | name 🗸  | (No column name) 🗸 |  |
| 1   | fk_account_c_id   | account        | c_id    | cp.column_id       | customer          | c_id    | cr.column_id       |  |
| 2   | fk_account_eid    | account        | e_id    | cp.column_id       | employee          | e_id    | cr.column_id       |  |
| 3   | fk_account_b_id   | account        | b_id    | cp.column_id       | branch            | b_id    | cr.column_id       |  |
| 4   | fk_branch_ba_code | branch         | ba_code | cp.column_id       | bank              | ba_code | cr.column_id       |  |
| 5   | fk_loan_c_id      | loan           | c_id    | cp.column_id       | customer          | c_id    | cr.column_id       |  |
| 6   | fk_loan_b_id      | loan           | b_id    | cp.column_id       | branch            | b_id    | cr.column_id       |  |

|    | acc_no 🗸 | b_id ~ | acc_balance 🗸 |
|----|----------|--------|---------------|
| 1  | 22045811 | RN235  | 5000          |
| 2  | 22045812 | C6778  | 50000         |
| 3  | 22045813 | CW275  | 10000         |
| 4  | 22045814 | NB870  | 2000          |
| 5  | 22045815 | EB783  | 2000000       |
| 6  | 22045816 | BM378  | 10000         |
| 7  | 22045817 | B2739  | 50000         |
| 8  | 22045818 | NSC34  | 90000         |
| 9  | 22045819 | F6793  | 80000         |
| 10 | 22045820 | A4D67  | 82000         |

|    | b_id ∨ | b_name                     | ba_code 🗸 |
|----|--------|----------------------------|-----------|
| 1  | A4D67  | RFA Bank of Canada Branch  | 10        |
| 2  | B2739  | B2B Bank Branch            | 7         |
| 3  | BM378  | BMO Financial Group Branch | 6         |
| 4  | C6778  | CIBC Branch ATM            | 2         |
| 5  | CW275  | Canadian Western Bank Bra… | 3         |
| 6  | EB783  | Exchange Bank of Canada B  | 5         |
| 7  | F6793  | Fairstone Bank of Canada   | 9         |
| 8  | NB870  | National Bank of Canada B  | 4         |
| 9  | NSC34  | The Bank of Nova Scotia B  | 8         |
| 10 | RN235  | Royal National Bank Branc… | 1         |

We shall create some more relational table using Cross Join and as follows

| SELECT ba_name, ba_address, ba_type       |
|-------------------------------------------|
| FROM bank                                 |
| LEFT JOIN branch                          |
| <pre>ON bank.ba_name = branch.b_id;</pre> |

|     | ba_name                   | ba_address ∨            | ba_type 🗸 |
|-----|---------------------------|-------------------------|-----------|
| 1 R | esults grid National Bank | 1350 Georgia Street     | Public    |
| 2   | CIBC                      | 555 Robson Street       | Public    |
| 3   | Canadian Western Bank     | 436 Duismuir Street     | Private   |
| 4   | National Bank of Canada   | 324 Homer Street        | Private   |
| 5   | Exchange Bank of Canada   | 245 Georgia Street      | Public    |
| 6   | BMO Financial Group       | 177 West Cordova Street | Private   |
| 7   | B2B Bank                  | 777 Richards Street     | Public    |
| 8   | The Bank of Nova Scotia   | 458 Granville Street    | Private   |
| 9   | Fairstone Bank of Canada  | 131 Burrard Street      | Private   |
| 10  | RFA Bank of Canada        | 439 Robson Street       | Public    |

SELECT c\_name, loan\_type, loan\_amount, loan\_duration, loan\_interest
FROM customer
RIGHT JOIN loan
ON customer.c\_id = loan.c\_id;

|    | c_name             | loan_type ~        | loan_amount 🗸 | loan_duration 🗸 | loan_interest 🗸 |
|----|--------------------|--------------------|---------------|-----------------|-----------------|
| 1  | Jack Brown         | Debt Consolidation | 140000        | 3               | 10.60           |
| 2  | Smit Parmar        | Personal           | 50000         | 12              | 3.40            |
| 3  | John Smith         | Credit-Builder     | 100000        | 6               | 5.30            |
| 4  | Sarah Nadi         | Home Equity        | 54000         | 36              | 9.35            |
| 5  | Dave Park          | Student            | 20000         | 12              | 12.99           |
| 6  | Shamim Sherafati   | Student            | 40000         | 24              | 12.99           |
| 7  | Justin Bieber      | Mortgage           | 900000        | 68              | 3.01            |
| 8  | Jacquile Fernandez | Payday             | 15000         | 1               | 8.40            |
| 9  | Abhilash Dikshit   | Auto               | 55000         | 24              | 5.28            |
| 10 | Nastaran Zamanian  | Mortgage           | 90000         | 56              | 3.01            |

#### III.CONCLUSION

In this report, we explained the process of installing SQL in MacOS software. After that, we create tables based on our entities which we showed in ER Diagram. There are several attributes which each of them have different characters like CHAR, VARCHAR and etc. Then we used this command "INSERT INTO" for filling each table. Moreover we created relational tables using different types of JOIN commands.

#### IV.REFERENCES

- 1. <a href="https://www.youtube.com/watch?v=mlpbd8kbcok">https://www.youtube.com/watch?v=mlpbd8kbcok</a>
- 2. Difference between INT and BIGINT data type in Sql Server, June 4 2017,

# https://sqlhints.com/2017/06/04/difference-between-int-and-bigint-data-type-in-sql-server/

- 3. SSMS Utility, Article, 07/27/2021, <a href="https://learn.microsoft.com/en-us/sql/ssms/ssms-utility?view=sql-server-ver16">https://learn.microsoft.com/en-us/sql/ssms/ssms-utility?view=sql-server-ver16</a>
- 4. AZURE COMMAND-LINE INTERFACE (CLI) DOCUMENTATION, <a href="https://learn.microsoft.com/en-us/cli/azure/">https://learn.microsoft.com/en-us/cli/azure/</a>
- 5. DATETIME (TRANSACT-SQL), ARTICLE, 08/25/2022 ,https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetime-transact-sql?view=sql-server-ver16