Problem Set 1

Due Time:

• Friday, March 2 (12th Esfand), 23:59 PM

Notes:

- Solution should be submitted in: http://Courses.iust.ac.ir/(Where you may get this problem set)
- If you can't solve a problem, **Don't copy** It's answer.
- Format of file name: ProblemSetl_[Student ID].zip/rar
- All problems will be solved in our next class, on Saturday, 12-13:15. Don't miss it.

Additional Resources:

- **CLRS** 3rd Chapter 2,3,4
- Foundations of Algorithms 3rdEdition Chapter 1

Exercises:

- 1. Observe that the INSERTION-SORT procedure, uses a linear search to scan (backward) through the sorted subarray A[1 .. j -1] to find proper place of A[j]. Can we use a binary search instead to improve the overall worst-case running time of insertion sort to $\theta(n \mid g \mid n)$? (2.3-6)
- **2.** Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$? (Prove)(3.1-4)
- 3. Prove that the running time of an algorithm is $\theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$. (3.1-6)
- **4.** Is the function $\lceil \lg n \rceil$! polynomially bounded? Is the function $\lceil \lg \lg n \rceil$! polynomiallybounded?(Prove)(3.2-4 **) (We say that a function f(n) is **Polynomially** bounded if $f(n) = O(n^k)$ for some constant k)

- 5. Which is asymptotically larger: lg(lg* n) or lg*(lg n) ? (Show with an example)(3.2-5)
- **6.** Let f(n) and g(n) be asymptotically positive functions. <u>Prove</u> or <u>disprove</u> each of the following conjectures: (3-4)
 - **a.** $f(n) + g(n) = \theta (min(f(n), g(n)))$.
 - **b.** $f(n) = O((f(n))^2)$.
 - **c.** $f(n) = \theta(f(n/2))$.
 - **d.** $f(n) + o(f(n)) = \theta(f(n))$.
- 7. Use the master method, to show that the solution to the recurrence T(n) = 4T(n/3) + n is $T(n) = \theta(n^{\log_3^4})$. Then show that a <u>substitution proof</u> with the assumption $T(n) \le c n^{\log_3^4}$ fails and show how to subtract off a lower-order term to make a substitution proof work. (4.3-7 *)
- 8. Use the master method, to show that the solution to the recurrence $T(n) = 4T(n/2) + n^2$ is $T(n) = \theta(n^2)$. Then show that a <u>substitution proof</u> with the assumption $T(n) \le c n^2$ fails and show how to subtract off a lower-order term to make a substitution proof work. (4.3-8 *)

Emad Aghajani