SignText

Hunter College - CS499 - Major Capstone Spring 2020 - MVP Demo

Product Definition

- <u>Problem:</u> Deaf & Hard of Hearing people lack technological tools that allow them to communicate with a native interface (without text or speech).
- Vision: To make technology more accessible.
- <u>Strategy:</u> Create a web application that translates ASL into written text, built from a machine learning model.
- Goal: Having a functional & accurate interface.
- Currently, our project is composed of:
 - A functional UI that is split with the webcam & text box sections.
 - A working machine learning model that makes correct predictions about 90% of the time.

Demo

Remaining Work:

Putting It All Together

Integration:

- Integrate our React front-end and Python back-end through Flask.
- Be able to send captured webcam frames from the front-end to our back-end server.
- Be able to receive a prediction quickly.
- Display the prediction in the Text Translation box.

Additional:

- Creating a timer countdown (with a 3-second reset) on the front-end.
- Isolating the user's hand from background when they sign.
- Ensuring smooth translation with translation/punctuation/deletion.

Tools, Technologies & Sources

Web Framework

Dataset & ML Model from Kaggle

kaggle

Front-End: User Interface

Technical Details

Our ML Model & Data

- Our Dataset & ML Model came from Kaggle
 - <u>"Classifying Images of the ASL</u>
 <u>Alphabet using Keras"</u> by Dan

 Rasband
- Dataset contains 87,000 total images
 - 29 classes: 26 are for the letters
 A-Z, and then 3 more for 'SPACE',
 'DELETE', and 'NOTHING'
 - o 3,000 images per class
 - The images have differing lighting and backgrounds.
 - Sample of each:

Plotted Sample of Each Class

Technical Details

Our ML Model & Prediction Script

- Our ML model was trained on the dataset and has about 90% prediction accuracy.
- We have a script that:
 - Loads the model
 - Intakes an image (will be retrieved from webcam capture)
 - Preprocesses the image → resizing & color tuning
 - Outputs a prediction with the letter it most closely resembles.

Future Development Ideas

- Search Bar
 - An ASL symbol lookup function for those users who may be new to the language.
- Two-Way Functionality
 - Enter an English character and output the ASL equivalent

Questions?