See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231437230

Development of the Copper-Catalyzed Olefin Aziridination Reaction

ARTICLE in CHEMINFORM · APRIL 1994

Impact Factor: 0.74 · DOI: 10.1021/ja00086a007

READS

CITATIONS

377 31

3 AUTHORS, INCLUDING:

David A. Evans **Harvard University**

410 PUBLICATIONS 31,170 CITATIONS

SEE PROFILE

Margaret M Faul

Amgen

94 PUBLICATIONS 4,156 CITATIONS

SEE PROFILE

Development of the Copper-Catalyzed Olefin Aziridination Reaction

David A. Evans, Margaret M. Faul, and Mark T. Bilodeau

Contribution from the Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Received November 23, 1993®

Abstract: Soluble Cu(I) and Cu(II) triflate and perchlorate salts are efficient catalysts for the aziridination of olefins employing (N-(p-tolylsulfonyl)imino)phenyliodinane, PhI—NTs, as the nitrene precursor. Electron-rich as well as electron-deficient olefins undergo aziridination with this reagent in 55-95% yields, at temperatures ranging from -20 °C to +25 °C. The catalyzed nitrogen atom-transfer reaction to enol silanes and silylketene acetals has also been developed to provide facile syntheses of α -amino ketones. Other metal complexes were found to be less effective at catalyzing the reaction, while PhI—NTs proved to be superior to other imido group donors as the nitrene precursor. Reaction rates and yields are enhanced in polar aprotic solvents such as MeCN and MeNO₂. Reaction stereospecificity in the aziridination of *cis* and *trans* disubstituted olefins was evaluated and found to be both catalyst and substrate dependent. Intermolecular competition experiments between pairs of mono- and disubstituted olefins indicate that the olefin selectivity profile for the reaction is independent of the oxidation state of the copper catalyst employed. It is concluded that these reactions are proceeding through the 2+ catalyst oxidation state under the conditions employed in this study.

Introduction

Considerable attention has been devoted to the development of reactions that effect catalytic atom transfer to olefins. Due to the utility of these processes in organic synthesis, such reactions have been extensively refined for both epoxidation¹ and cyclopropanation.² On the other hand, the analogous nitrogen atom-transfer processes, particularly metal-catalyzed variants, have been less developed in spite of the fact that the broad utility of aziridines as electrophiles has been amply demonstrated.^{3,4}

Although the formation of aziridines from the addition of thermally or photochemically generated nitrenes to olefins is a well-known reaction, its utility is limited by low yields due to competing hydrogen abstraction and insertion processes.⁵ Two of the most general olefin aziridinations are illustrated below (eqs 1 and 2). The oxidation of a variety of heteroatom-substituted

amines with Pb(OAc)₄ in the presence of olefins has been found to provide a stereospecific route to aziridines of some generality (eq 1).6.7 While these reactions have traditionally been postulated

(2) For a recent review on the metal-catalyzed cyclopropanation reaction, see: Doyle, M. P. Chem. Rev. 1986, 86, 919-939.

to proceed through nitrenes, this point has not been unequivocally established. Atkinson has proposed that the isolable intermediate N-acetoxyamide 2b functions mechanistically as a peracid equivalent, thus bypassing the nitrene manifold, 6b and has also documented that olefin aziridination via 2 is hydroxyl-directed as are peracid epoxidations. 6c In related studies, Rudchenko has demonstrated the utility of dimethoxyamine, in conjunction with BF₃·OEt₂ catalysis, as a stereospecific aziridination reagent, 8a and Vedejs has recently reported that TMSOTf appears to be even more efficient in promoting the reaction (eq 2).8b

The first metal-catalyzed nitrogen atom-transfer process was reported by Kwart and Kahn, who demonstrated that copper powder promoted the decomposition of benzenesulfonyl azide when heated in cyclohexene (eq 3).9 The resulting distribution of products is consistent with the intervention of nitrene (or metal nitrenoid) intermediates.

In 1983, Groves reported an example of the stoichiometric activation and transfer of nitrogen from a nitridomanganese(V)

In Comprehensive Heterocyclic Chemistry; Lwowski, W., Ed.; Pergamon: Oxford, 1984; Vol. 7, pp 47-93.

(4) (a) Iyer, V. N.; Szybalski, W. Science 1964, 145, 55-58. (b) Akhtar, M. H.; Begleiter, A.; Johnson, D.; Lown, J. W.; McLaughlin, L.; Sim, S.-K. Can. J. Chem. 1975, 53, 2891-2905. (c) Connors, T. A.; Melzack, D. H. Int. J. Cancer 1971, 7, 86.

(5) For reviews, see: (a) Lwowski, W. Carbonylnitrenes. In *Nitrenes*; Lwowski, W., Ed.; Interscience: New York, 1970; pp 185-224. (b) Edwards, O. E. Acylnitrenes. In *Nitrenes*; Lwowski, W., Ed.; Interscience: New York, 1970; pp 225-247. (c) Lwowski, W. Acyl Azides and Nitrenes. In *Azides and Nitrenes*, *Reactivity and Utility*; Scriven, E. F. V., Ed.; Academic: New York, 1984; pp 205-246.

[•] Abstract published in Advance ACS Abstracts, March 1, 1994.

⁽¹⁾ For a recent review on the metal-catalyzed epoxidation reaction, see: Jorgensen, K. A. Chem. Rev. 1989, 89, 431-458.

^{(3) (}a) Deyrup, J. A. In *The Chemistry of Heterocyclic Compounds*; Hassner, A., Ed.; Wiley: New York, 1983; Vol. 42, Part 1, pp 1-214. (b) Padwa, A.; Woolhouse, A. D. Aziridines, Azirines and Fused Ring derivatives In *Comprehensive Heterocyclic Chemistry*; Lwowski, W., Ed.; Pergamon: Oxford, 1984; Vol. 7, pp 47-93.

Table 1. Olefin Aziridination with Mn(III) and Fe(III) Porphyrin Catalysts (Eq 6)

entry	catalyst ^a	olefin	yield,% ^b	
1	Mn(TPP)Cl ^c	Ph 🔨	80	
2	Mn(TDCPP)ClO ₄ d	n-Bu	23	
3	Fe(TDCPP)CIO ₄	Ph	36	
4	Fe(TDCPP)CIO ₄	Ph	43°	
5	Mn(TDCPP)CIO ₄		o f	

^a All reactions were performed in CH₂Cl₂ with 5 mol % catalyst and 100 equiv of olefin at 25 °C. b Based on 1 equiv of PhI=NTs. c TPP = tetraphenylporphyrin. ^d TDCPP = tetrakis(2,6-dichlorophenyl)porphyrin. Product isolated as the trans-1,2-diphenylaziridine only. The product of allylic insertion was obtained, see eq 7.

porphyrin complex to an olefin.¹⁰ Irradiation of 3 afforded the manganese nitrido complex 4, which was isolated in 80% yield (eq 4). Treatment of 4 with trifluoroacetic anhydride (TFAA, 1.2 equiv) in the presence of cyclooctene (11 equiv) provided the N-(trifluoroacetyl)-protected aziridine in 82-94% yield, apparently through the intermediacy of the manganese(V) imido complex 5 (eq 5).

Prior to the present investigation, the only study addressing the scope of metal-catalyzed nitrogen atom transfer to olefins had been reported by Mansuy.¹¹ In this investigation, Fe(III)and Mn(III)-derived porphyrin catalysts were employed in the aziridination of olefins, employing the nitrene precursor (N-(ptolylsulfonyl)imino)phenyliodinane, PhI=NTs, (eq 6, Table 1).12 Catalysts derived from tetraphenylporphyrin (TPP) and tetrakis-(2,6-dichlorophenyl)porphyrin (TDCPP) were utilized.

$$R_1$$
 $\xrightarrow{R_2}$ $\xrightarrow{5 \text{ mol \% catalyst}}$ R_2 $\xrightarrow{R_3}$ R_3 R_3 R_3 R_3 R_3

Although the Mn(TPP)Cl-catalyzed reaction of PhI=NTs with styrene afforded the derived aziridine in 80% yield (entry

(6) (a) For a review, see: Atkinson, R. S. Azides and Nitrenes Attached to Elements Other than Carbon. In Azides and Nitrenes; Scriven, E. F. V., Ed.; Academic: New York, 1984; pp 247-295. (b) Atkinson, R. S.; Grimshire, M. J.; Kelly, B. J. *Tetrahedron* 1989, 45, 2875-2886. (c) Atkinson, R. S.; Kelly, B. J. J. Chem. Soc., Chem. Commun. 1988, 624-625. (d) Atkinson, R. S.; Coogan, M. P.; Cornell, C. L. J. Chem. Soc., Chem. Commun. 1993, 1215-1216.

(7) Atkinson, R. S.; Tughan, G. J. Chem. Soc., Perkin Trans. 1 1987, 2803–2807. Atkinson, R. S.; Tughan, G. J. Chem. Soc., Perkin Trans. I 1987, 2787–2796. Chilmonczyk, Z.; Egli, M.; Behringer, C.; Dreiding, A. S. Helv. Chim. Acta 1989, 72, 1095-1106. Kapron, J. T.; Santarsiero, B. D.; Vederas, J. C. J. Chem. Soc., Chem. Commun. 1993, 1074-1076.

(8) (a) Rudchenko, V. F.; Ignatov, S. M.; Kostyanovsky, R. G. J. Chem. Soc., Chem. Commun. 1990, 261-262. (b) Vedejs, E.; Sano, H. Tetrahedron Lett. 1992, 33, 3261-3264.

(9) Kwart, H.; Kahn, A. A. J. Am. Chem. Soc. 1967, 89, 1951-1953. (10) Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073-2074.

1), significantly lower yields were obtained with other olefins, even with optimized catalysts (entries 2-4). Nitrogen atom transfer to cis-stilbene catalyzed by Fe(TDCPP)ClO₄ was not stereospecific, yielding only the trans-2,3-diphenylaziridine (entry 4). Allylic insertion by the metal nitrenoid is frequently the major side reaction encountered during olefin aziridination. In fact, the equally useful allylic amination process can be amplified into the dominant process with proper catalyst selection (eqs 7-9).11b

The present investigation was initiated¹³ with the objective of finding metal catalysts which might extend the scope of the aziridination process and ultimately developing enantioselective reaction variants. Preliminary results which document the realization of this latter objective have recently been published in independent investigations from this and the Jacobsen laboratories, where chiral, copper-based catalysts were used (eqs 10 and 11).14-16

(11) (a) Mansuy, D.; Mahy, J.-P.; Dureault, A.; Bedi, G.; Battioni, P. J. Chem. Soc., Chem. Commun. 1984, 1161-1163. (b) Mahy, J.-P.; Bedi, G.; Battioni, P.; Mansuy, D. Tetrahedron Lett. 1988, 29, 1927-1930. (c) Mahy, J.-P.; Bedi, G.; Battioni, P.; Mansuy, D. J. Chem. Soc., Perkin. Trans. 2 1988, 1517-1524.

(12) Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975, 361-

(13) A preliminary account of this work has appeared: Evans, D. A.; Faul,

M. M.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744-6746. (14) (a) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326-5327. (b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328-5329. (c) Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726-728. (d) Lowenthal, R. E.; Masamune, S. Tetrahedron Lett. 1991, 32, 7373-7376.

(15) For catalysis with Mn(salen) complexes, see: O'Connor, K. J.; Wey, .-J.; Burrows, C. J. Tetrahedron Lett. 1992, 33, 1001-1004. Noda, K.; Hosoya, N.; Irie, R.; Ito, Y.; Katsuki, T. Synlett 1993, 469-471.

(16) Following the publication of our initial report, a study appeared reporting the use of a trispyrazolylborate ligand for CuOTf in the aziridination reaction: Pérez, P. J.; Brookhart, M.; Templeton, J. L. Organometallics 1993, 12, 261-262.

Table 2. Transition-Metal Catalysts in the Aziridination of Styrene and Cyclohexene (Eqs 12 and 13)

entry	catalyst ^a	yield 9 , % ^b	yield 10 , % ^{b,c}
1	CuClO ₄	90	54
2	CuOTf	92	50
3	CuCl	61	nd
4	CuBr	56	nd
- 5	Cu(acac) ₂	95	30
6	Cu(OTf) ₂	92¢	60
7	Mn(TPP)Cl	71	O ^d
8	$Mn(OTf)_2$	30°	50
9	Fe(TPP)Cl	31	0ª
10	Fe(OTf) ₂	63¢	21*
11	$Co(OTf)_2$	38¢	0
12	Rh ₂ (OAc) ₄	48	0
13	Rh(PPh ₃)Cl	10	0
14	Ni(acac) ₂	9	0
15	$Ni(OTf)_2$	12°	0
16	Pd(acac) ₂	12	0

^a All reactions were performed with 5 mol % catalyst and 5 equiv of olefin in CH₂Cl₂ unless otherwise noted. Experiments which were not performed are denoted by nd. ^b Based on 1 equiv of PhI—NTs. ^c Reaction run in MeCN. ^d Reaction provided insertion product (see text). ^e Reaction provided product of insertion in addition to aziridination (see text).

Results and Discussion

Mn(III) and Fe(III) catalysts are commonly employed in olefin epoxidation, while Cu(I) and Rh(II) complexes are among the best metal catalysts for cyclopropanation. In conjunction with the present investigation, it was of interest to determine whether an analogy might be drawn between aziridination and either of the other two atom-transfer processes since such a correlation might provide a useful vehicle for catalyst selection.

During the course of our studies on asymmetric cyclopropanation with Cu(I) catalysts, ^{14c} we were presented with the opportunity of evaluating the aziridination ↔ cyclopropanation analogy for the two group-transfer processes. This analogy led us to screen soluble copper catalysts early in this study. Our subsequent survey of a range of other metal complexes has confirmed that copper-based catalysts are superior to those catalysts which one normally associates with oxo-transfer processes.

Catalyst Development. We initially screened a variety of Cu-(I) and Cu(II) salts and later compared their catalytic competency to that of other metal complexes which have been employed in both cyclopropanation^{2,17} and epoxidation¹ reactions. All experiments were performed at 25 °C with 5–10 mol % catalyst in CH₂Cl₂ or MeCN containing 5 equiv of olefin and 1 equiv of PhI=NTs (eqs 12 and 13, Table 2). Metal complexes were

initially screened in the aziridination of styrene since this olefin affords good yields of product in the Mansuy experiments (eq 12, Table 2). The styrene studies were then followed up with the analogous experiments with cyclohexene (eq 13, Table 2), which was chosen as a representative aliphatic disubstituted olefin (vide infra). Unless specified, the catalyzed reaction of olefin and nitrene reagent, PhI—NTs, afforded the desired N-tosylaziridine along with benzenesulfonamide. In those instances where other side reactions such as allylic insertion were encountered, these reactions are specifically mentioned in the following discussion.

Styrene. Our results indicate that Cu(I) and Cu(II) salts are optimal for this substrate (entries 1-5), providing 9 in 56-95% yield. The cationic Cu(I) salts, Cu(MeCN)₄ClO₄ (CuClO₄)¹⁸ and CuOTf·¹/₂PhH (CuOTf)¹⁹ (Table 2, entries 1 and 2) were more efficient catalysts than the Cu(I) halides (entries 3 and 4). The use of CuClO₄ is preferred to CuOTf since it is more easily prepared and less air sensitive. We have also used Cu-(MeCN)₄PF₆¹⁸ as a catalyst in isolated cases. In contrast to olefin cyclopropanation, Cu(II) catalysts have been found to be competent in the aziridination reaction (entry 5). The use of Cu(II) salts as catalysts is particularly attractive as these complexes are both commercially available and air stable.

Among the selection of metal complexes screened, Mn(TPP)-Cl, as expected, also proved to be a competent catalyst, (71% 9, entry 7).²⁰ This result is to be contrasted with the lower yield obtained with the Mn(OTf)₂²¹-catalyzed process (31% 9, entry 8). In contrast, the iron-derived complex Fe(TPP)Cl provided only a 31% yield of 9 (entry 9), whereas the Fe(OTf)₂ catalyst²² afforded a 63% yield of aziridine (entry 10). It is evident from these four cases that no generalizations can be made between ligand architecture and catalytic efficiency in comparisons between Mn and Fe-derived catalysts.

Co(OTf)₂ afforded a moderate yield of the aziridine (entry 11). Rh₂(OAc)₄, which has previously been shown to be an effective catalyst for intramolecular nitrenoid insertions,²³ afforded a 48% yield of product (entry 12). The poor performance of this excellent cyclopropanation catalyst indicates that the aziridination \leftrightarrow cyclopropanation analogy does not extend to rhodium. Finally, Rh(PPh₃)Cl, Ni(acac)₂, Ni(OTf)₂,²¹ and Pd-(acac)₂ were all uniformly poor catalysts in the aziridination reaction, affording low yields of 9 after prolonged reaction times (entries 13–16).

Cyclohexene. The metal complexes listed in Table 2 were also screened against this less reactive olefin (eq 13), a substrate which also presents the opportunity for allylic insertion. In general, reactions carried out in CH_2Cl_2 afforded very low yields of aziridine 10. Reactions performed in MeCN provided higher yields of aziridine, and consequently all metals were screened in this solvent. For the metals listed in Table 2, the copper catalysts were unique in affording no competing allylic insertion. As with styrene, the best catalysts for the reaction were copper salts with dissociable counterions (entries 1, 2, and 6).

The Mn(TPP)Cl and Fe(TPP)Cl catalysts afforded primarily insertion products with cyclohexene. In exploring the role of solvent with these catalysts, the mechanistically interesting insertion product 11 was produced in good yield (eq 14). A rationale for this transformation is presented below (eq 15). The

important step is suggested to involve solvent trapping of the

⁽¹⁷⁾ Anciaux, A. J.; Hubert, A. J.; Noels, A. F.; Petiniot, N.; Teyssié, P. J. Org. Chem. 1980, 45, 695-702.

⁽¹⁸⁾ Kubas, G. J. Inorg. Synth. 1979, 19, 90-92. (19) (a) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 3300-3310. (b) Cohen, T.; Ruffner, R. J.; Shull, D. W.; Fogel, E. R.; Falck, J. R. Organic Synthesis Collective Volume VI; Wiley: New York, 1988; pp 737-

Table 3. Lewis Acid-Catalyzed Aziridination of trans-β-Methylstyrene (Eq 18)

entry	catalysta	yield 17, % ^b
1	SmI ₂ (O-t-Bu)	76°
2	Sm(OTf) ₃	< 5
3	$Mg(OTf)_2$	18
4	$Zn(OTf)_2$	21
5	Sn(OTf) ₂	17

^a All reactions were performed in MeCN at 25 °C with 5 mol % catalyst and 5 equiv of olefin. ^b Based on 1 equiv of PhI—NTs. ^c Isolated as a 9:1 mixture of *trans* and *cis* aziridines, respectively.

initially generated metal-imido intermediate 12^{24} and the subsequent $13 \rightarrow 14$ rearrangement prior to allylic insertion. This reaction affords a 63% yield of 11 when Mn(TPP)ClO₄ is used as catalyst (eq 14), in contrast to a 27% yield with Mn(TPP)Cl and a 41% yield with Fe(TPP)Cl. A mixture of aziridine (21%) and allylic insertion product 11 (20%) was also obtained when the Fe(OTf)₂ catalyst was employed (entry 10). A mixture of aziridination (5%) and insertion (6%) was also observed with Mn(OTf)₂ but in low overall yield (entry 8). The remainder of the metal complexes provided at best only traces of either aziridination or insertion products.

In general, copper catalysts exhibit a low propensity for C-H insertion. In the current study we have observed only two cases in which an insertion product was produced. The Cu(I)-catalyzed aziridination of cyclohexene in MeNO₂ provided a mixture of the aziridine 10 and the allylic sulfonamide 6 (eq 16), while the reaction of methyl cinnamyl ether catalyzed by CuClO₄ afforded the aziridine 15 in 31% yield as well as 20% of the imine 16 (eq 17). Presumably 16 arises from allylic insertion followed by elimination of MeOH. This reaction is metal-catalyzed although an analogous uncatalyzed C-H insertion adjacent to oxygen has been observed with tetrahydrofuran (vide infra).

Lewis Acid Catalysis. During the initial phases of catalyst screening, the choice of metals was guided by epoxidation and cyclopropanation precedents which are generally believed to proceed through metal oxo and carbenoid intermediates, respectively. However, we have subsequently discovered that the reaction can be catalyzed to some extent by a variety of Lewis acids that are unlikely to participate in redox pathways.²⁵ Table 3 lists those metal complexes falling into this category that have

been screened during the course of this study in the aziridination of $trans-\beta$ -methylstyrene (eq 18).

SmI₂(O-t-Bu)²⁶ (5 mol %) was found to be a good reaction catalyst, providing a 76% yield of the aziridine 17 (entry 1). The Lewis acid-catalyzed aziridinations proceeded in higher yield in MeCN than in CH₂Cl₂. Substantially lower yields were provided by the Mg(II), Zn(II), and Sn(II) triflate catalysts (entries 3-5). It came as a surprise that the reaction catalyzed by SmI₂(O-t-Bu) afforded, in addition to the expected trans adduct, some of the cis aziridine (trans/cis = 9). Circumstantial evidence that this contaminant was produced through a product isomerization pathway was provided by the following experiment. A sample of the pure trans aziridine which was treated with 5 mol % SmI₂-(O-t-Bu) in MeCN (24 h, 25 °C) reproduced the observed 9:1 ratio of trans and cis aziridines. Independently, treatment of the pure cis aziridine under identical conditions failed to promote any isomerization. As SmI₂(O-t-Bu) proved to be an efficient catalyst of the reaction with trans-\beta-methylstyrene, it was screened against other olefins in order to determine the scope of the reaction. In the reaction of styrene, competitive olefin polymerization accounted for a low yield of aziridine (11%), while the analogous reaction with cyclohexene provided a 21% yield of the allylic insertion product 6. Finally, electron-poor olefins are not good substrates for the reaction. For example, no aziridine was isolated from the attempted aziridination of trans-methyl cinnamate.

In summary, these Lewis acid catalysts, while raising intriguing questions with respect to mechanism, do not exhibit the efficiency and generality of copper catalysts (vide infra).

Nitrogen Atom Sources. Subsequent to catalyst screening, we examined alternative nitrogen atom-transfer reagents. In a recent report by $Holm_1^{27}$ compounds 18–21 were found to function as imido group donors to N_1N_2 -diethyldithiocarbamate (Et₂dtc) complexes of molybdenum (eqs 19–22). As this was the most

$$MoO(Et_2dtc)_2 + \begin{cases} PhMeS = NTs & 18 & (19) \\ \hline N-NTs & 19 & (20) \\ Phl = NTs & 20 & (21) \\ \hline TsN = \dot{N} = \dot{N} & 21 & (22) \end{cases}$$

comprehensive list of compounds reported to undergo imido group transfer, it provided a useful starting point for our study.²⁸ Compounds 18–21 were examined in the aziridination of styrene (100 equiv) using 5 mol % CuOTf. Among the illustrated nitrene precursors, PhI—NTs proved to be the best, providing a 96% yield of 9 in <5 min at 25 °C. No reaction occurred in the absence of catalyst. Tosyl azide (21) was less effective, affording only 12% of 9 after 12 h at 65 °C.²⁹ Finally, compounds 18 and 19 gave no reaction.

Solvent Effects. The copper-catalyzed aziridination of styrene with PhI—NTs provided excellent yields of aziridine 9 in both polar and nonpolar media. Under standard conditions, the reaction afforded the indicated yields of 9 in the following solvents: benzene (99%), CH₂Cl₂ (92%), MeNO₂ (90%), and MeCN (92%); however, these observations did not extend to other olefins. For less reactive substrates, both the reaction rate and the efficiency are enhanced when more polar solvents, such as MeCN and MeNO₂, are employed. In solvents of lower polarity such as CH₂Cl₂, the reactions are substantially slower and in

⁽²⁰⁾ The yields that we obtained for the aziridination of styrene with Mn-(TPP)Cl and Fe(TPP)Cl are lower than those reported by Mansuy (ref 11a), who employed 100 equiv of styrene.

⁽²¹⁾ Fujinaga, T.; Sakamoto, I. J. Electroanal. Chem. Interfac. Electro-chem. 1976, 73, 235-246.

⁽²²⁾ Haynes, J. S.; Sams, J. R.; Thompson, R. C. Can. J. Chem. 1981, 59, 669-678.

⁽²³⁾ Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1983, 105, 6728-6729.

⁽²⁴⁾ Apparent [2 + 2] reactions of a zirconium nitrenoid with alkynes have been reported: Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729-8731.

⁽²⁵⁾ For studies of Lewis acid-catalyzed epoxidation of olefins employing iodosylbenzene, see: Yang, Y.; Diederich, F.; Valentine, J. S. J. Am. Chem. Soc. 1991, 113, 7195-7205.

⁽²⁶⁾ Namy, J. L.; Souppe, J.; Collin, J.; Kagan, H. B. J. Org. Chem. 1984, 49, 2045-2049.

Table 4. Effect of Solvent on the Cu-Catalyzed Aziridination of Olefins (Eq 23)

entry	olefin ⁸	yield,% ^b CH ₂ Cl ₂ MeCN	
1	n-Bu	45	66
2		30	54
3	CO₂Me	35	45
4	Ph CO ₂ Me	70	69

^a All reactions were performed with 5-10 mol % CuClO₄ and 5 equiv of olefin at 25 °C. ^b Isolated yield of aziridine based on 1 equiv of PhI=NTs.

some cases provide moderately lower yields of products (eq 23, Table 4). For example, 1-hexene afforded a 45% yield of aziridine

$$R_1$$

$$R_3$$

$$\frac{5 \cdot 10 \text{ mol } \% \text{ Cu(I)}}{\text{Phi=NTs}}$$

$$R_2$$

$$R_3$$

$$R_3$$

$$(23)$$

after 2 h at room temperature in CH_2Cl_2 . In contrast, this same reaction when carried out in MeCN at 25 °C proceeded to completion within 5 min and gave a 66% yield of the derived aziridine (entry 1). Cyclohexene and methyl acrylate behaved similarly (entries 2–3). *trans*-Methyl cinnamate provided the same yield in the two solvents; however, the reaction rate was also significantly enhanced in MeCN (entry 4). Some solvents are incompatible with the reaction conditions. Not unexpectedly, hydroxylic solvents afford only p-tolylsulfonamide, presumably as a consequence of solvent trapping.³⁰ The oxidation of DMSO by PhI=NTs has been reported,¹² and we have found that PhI=NTs readily reacts with THF in the absence of metals to afford the α -insertion product.

The preceding results show that, with Cu(I) and Cu(II) complexes, acetonitrile is the optimal solvent for the the aziridination of a variety of olefins with PhI=NTs. In the following discussion, the scope of the process is explored.

Reaction Scope. The results obtained for the aziridination of a representative selection of olefins with CuClO₄, Cu(acac)₂, and Cu(OTf)₂ in MeCN are summarized in Table 5.³¹ Under the "standard conditions" (MeCN, 5-10 mol % catalyst, 1 equiv of PhI=NTs, 5 equiv of olefin, 25 °C), good yields of aziridines were obtained from either electron-rich or electron-deficient olefins. PhI=NTs, like its oxygen analogue PhI=O,³² is insoluble in a variety of solvents, including MeCN, and the course of the reaction may be followed by monitoring the dissolution of this reagent.

CuClO₄, rather than CuOTf, was utilized in this study due to its greater air stability and associated convenience in handling. CuClO₄ and Cu(acac)₂ afforded similar yields of aziridine

Table 5. Cu-Catalyzed Aziridination of Representative Olefins

entry	olefin ^a	catalyst	yield,% ^b
_	X = H	CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	89 95 92
1 X	X = OMe X = Me X = Ci X = NO ₂	CuClO ₄ CuClO ₄ CuClO ₄ CuClO ₄	78 83 90 89
2	Ph	CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	78 72 (66) ^c 73
3		CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	71 73 73
4	Ph CO₂Me	CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	69 36 75
5	CO₂Me	CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	45 32 40
6		CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	90 ^d 95 ^d 50 ^d
7	n-Bu	CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	66 39 62
8		CuCiO ₄ Cu(acac) ₂ Cu(OTf) ₂	54 (77, -20 °C) 30 60
9	Me	CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	46 (66, -20 °C) 32 51

^a All reactions were performed in MeCN with 5-10 mol % catalyst and 5 equiv of olefin at 25 °C unless otherwise noted. ^b Isolated yield of aziridine based on 1 equiv of PhI=NTs. ^c Value in parentheses for Cu(acac)₂ reaction carried out open to the air. ^d Three equivalents of olefin were used; the exo isomer was the exclusive product.

products for many olefins examined.³³ However, for those cases where $Cu(acac)_2$ is inferior, the utilization of $Cu(OTf)_2$ provided yields comparable to those obtained with $CuClO_4$. It appears that for reactive olefins, $Cu(acac)_2$ is as suitable in the reaction as $CuClO_4$, whereas for less reactive olefins, $Cu(acac)_2$ provides somewhat lower yields of aziridine. For these less reactive olefins, Cu(II) catalysts with dissociable counterions afford higher yields of aziridines. Although all reactions were initially performed under an atmosphere of nitrogen, this is an unnecessary precaution for $Cu(acac)_2$. For example, α -methylstyrene affords a 66% yield of aziridine when the reaction is carried out open to the air (entry 2).

The results listed in Table 5 indicate that mono-, di-, and trisubstituted olefins are aziridinated successfully in MeCN using Cu(acac)₂, CuClO₄, or Cu(OTf)₂ as catalysts. All phenylsubstituted olefins afford high yields of aziridines (entries 1-3). The low yield of the p-methoxystyrene-derived aziridine was due to decomposition of the product during isolation. α, β -Unsaturated esters such as trans-methyl cinnamate and methyl acrylate are also good substrates for the reaction (entries 4 and 5). When the following cinnamate esters were employed under the standard conditions using CuClO₄, the indicated yields were obtained: Me (69%, entry 4), i-Pr (67%), t-Bu (61%), Bn (62%), Ph (64%). These results indicate that competing C-H insertion adjacent to the alkyl oxygen moiety is not a problem (see eq 17). Not surprisingly, unsaturated ketones appear to be much less reactive; cyclohexenone provides only trace amounts of aziridination product. The copper-catalyzed aziridination of norbornene by PhI=NTs was found to provide the exo adduct in high yield

⁽²⁷⁾ Harlan, E. W.; Holm, R. H. J. Am. Chem. Soc. 1990, 112, 186-193. (28) Preparations of imido group donors: (a) S-Methyl-S-phenyl-N-tosylsulfilimine. Tsujihara, K.; Furukawa, N.; Oae, K.; Oae, S. Bull. Chem. Soc. Jpn. 1969, 42, 2631-2635. (b) N-1-Pyridinium sulfonamidate. Balasubramian, A.; McIntosh, J. M.; Snieckus, V. J. Org. Chem. 1970, 35, 433-438. (c) (N-(p-Tolylsulfonyl)mino)phenyliodinane. Seeref 12. (d) Tosyl azide. Doering, W. von E.; DePuy, C. H. J. Am. Chem. Soc. 1953, 75, 5955-5957.

⁽²⁹⁾ The decompostion of azides by transition metals to provide aziridines has been reported, although elevated temperatures are required and yields are low: (a) Reference 9. (b) Migita, T.; Chiba, M.; Takahashi, K.; Saitoh, N.; Nakaido, S.; Kosugi, M. Bull. Chem. Soc. Jpn. 1982, 55, 3943-3944.

⁽³⁰⁾ The reaction of Phi—NTs catalyzed by cytochrome P-450 in MeOH has been shown to provide p-tolylsulfonamide: White, R. E. *Inorg. Chem.* 1987, 26, 3916–3919.

⁽³¹⁾ CuOTf gave the same results as Cu(MeCN)₄ClO₄ for all olefins reported in Table 5.

⁽³²⁾ The existence of iodosylbenzene in a polymeric form, (Phi—O)_m, has been reported: Siebert, H.; Handrich, M. Z. Anorg. Chem. 1976, 426, 173.

⁽³³⁾ In our initial communication of these results (ref 13), some experiments had inadvertently been run with catalysts possessing a bis(oxazoline) ligand.

Table 6. Copper-Catalyzed Aziridination of Enol Silanes (Eq 25)

entry	enolsilane ^a	product	yield,% ^b
1	TMSO Ph	Ph	75
2	TMSO Me	Ph NHTs	58 ^c
3	TMSO 7-Bu	n-Bu NHTs	70
4	TMSO	NHTs	64 ^d
5	TMSO	NHTs	53°

^a All reactions were performed in MeCN with 5-10 mol % CuClO₄ and 1.5 equiv of enol silane at -20 °C unless otherwise indicated. ^b Isolated yield of α -amino ketone based on 1 equiv of PhI=NTs. ^c Reaction performed at 0 °C. ^d Reaction performed at -20 °C.

(>90%) with both CuClO₄ and Cu(acac)₂, although, surprisingly, the reaction provides a substantially lower yield with Cu(OTf)₂ (entry 6).³⁴

The CuClO₄-catalyzed aziridination of alkyl-substituted olefins affords higher yields of aziridines when the reaction is carried out at lower temperatures (entries 8 and 9). For example, aziridination of cyclohexene at -20 °C gave a 77% yield of aziridine compared to the 54% yield obtained at room temperature.

The use of excess olefin (5 equiv relative to PhI=NTs) is unnecessary if the reactions are run at relatively high concentrations. For example, when equimolar quantities of cyclohexene and PhI=NTs were employed at 1 M in MeCN with CuClO₄ as the catalyst, a 58% yield of the aziridine was obtained at 25 °C, while at -20 °C, a 69% yield could be obtained. Under the same conditions at 25 °C, 1-methylcyclohexene provided a 45% yield of the corresponding aziridine.

Amination of Enol Silanes. The direct amination of enol silanes in 35–60% yields³⁵p and silyl ketene acetals in 21–38% yields³⁶ by either thermolysis or photolysis of azidoformates has been reported (eq 24).

TMSO
$$R_1$$
 Δ or hv R_2 Δ or hv R_2 R_2 R_2 R_2 R_3 R_4 R_2 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_9 R_9

As an extension of the present study, we have evaluated this reaction as an approach to the synthesis of α -amino acids and ketones (eq 25, Table 6). All of the reactions were carried out

in MeCN at either 0 or -20 °C with 5-10 mol % CuClO₄, 1 equiv of PhI=NTs, and 1.5 equiv of enol silane,³⁷ conditions which

Table 7. Cu-Catalyzed Aziridination of Silylketene Acetals (Eq 26)

entry	R	R′3	yield, %
1	Me	Me ₃	27 (10)¢
2	Ph	Me ₃	43 (50)¢
3	Ph	t-BuMe ₂	45 `
4	Ph	PhMe ₂	0

^a All reactions were performed in MeCN with 5-10 mol % CuClO₄ and 1.5 equiv of silylketene acetal at 25 °C unless otherwise noted. ^b Isolated yield of α -amino ester based on 1 equiv of PhI=NTs. ^c Values in parentheses for reactions performed at -20 °C.

provide the α -amino ketones in 53-75% yield based on nitrene precursor as the limiting reagent.

A comparison of the Cu(I) and Cu(II) catalysts using 1-trimethylsilyloxy)cyclohexene at room temperature showed that with Cu(acac)₂ the derived α -amino ketone could be obtained in 35% yield, while CuClO₄ afforded a 47% yield of the expected product at the same temperature. The major side reaction observed in these aziridinations is the substrate oxidation product cyclohexenone. In view of the the greater nucleophilicity of these enol ethers, it is reasonable to speculate that metal catalysis might be unnecessary. However, in the absence of catalyst, 1-((trimethylsilyl)oxy)cyclohexene reacted very slowly in the presence of PhI—NTs and provided none of the expected α -amino ketone adduct.

The influence of the silyl moiety on reaction yields was also evaluated. The CuClO₄ catalyzed amination of 1-((tert-butyldimethylsilyl)oxy)cyclohexene with PhI=NTs in MeCN at -20° C gave a 65% yield of the α -amino ketone, which was comparable to the 64% yield obtained when the trimethylsilyl protecting group was employed (Table 6, entry 4).

The copper-catalyzed amination of silylketene acetals has also been examined (eq 26, Table 7).³⁸ All reactions were carried out

in MeCN at 25 °C or -20 °C with 5-10 mol % CuClO₄, 1 equiv of PhI=NTs, and 1.5 equiv of substrate and provided the corresponding N-(p-tolylsulfonyl)- α -amino esters in the indicated yields. The yield of the reaction varied depending on the ester and silyl groups employed. When the trimethylsilylketene acetal derived from phenyl hexanoate was employed, a 50% yield of product was obtained (entry 2), which was significantly greater than the 10% yield afforded by the analogous derivative of methyl hexanoate (entry 1). (Trimethylsilyl)- and (tert-butyldimethylsilyl)ketene acetals afforded similar yields of α -amino esters (entries 2 and 3), while no reaction was observed with a (phenyldimethylsilyl)ketene acetal (entry 4). A control experiment indicated that the uncatalyzed reaction between silylketene acetals and PhI=NTs is slow and provides no α -tosylamino ester products. We thus conclude that the enol amination of silvlketene acetals under these conditions does not represent a practical approach to the synthesis of α -amino esters.

Observations Pertaining to Mechanism

Reaction Stereospecificity. The issue of reaction stereospecificity was addressed in the aziridination of cis and trans 1,2-disubstituted olefins (eq 27, Table 8). All trans 1,2-disubstituted olefins gave the derived trans 2,3-disubstituted aziridines in high yields (entries 1, 3, and 5). On the other hand, the aziridination of cis-stilbene was not stereospecific (entry 2). At 0 °C, the CuClO₄-catalyzed reaction provided a 73% yield of a 83:17 cis/trans ratio of 2,3-diphenylaziridines, while the same reaction at -20 °C afforded an 80% yield of an improved 90:10 cis/trans product ratio. When Cu(acac)₂ was employed as the catalyst at 25 °C, a 54% yield of a 40:60 cis/trans ratio of aziridines was

⁽³⁴⁾ The exo adduct was assigned by comparison to spectral data previously reported for the phenylsulfonyl adduct: Franz, J. E.; Osuch, C.; Dietrich, M. W. J. Org. Chem. 1964, 29, 2922-2927.

⁽³⁵⁾ Lociuro, S.; Pellacani, L.; Tardella, P. A. Tetrahedron Lett. 1983, 24,

⁽³⁶⁾ Cipollone, A.; Loreto, M. A.; Pellacani, L.; Tardella, P. A. J. Org. Chem. 1987, 52, 2584-2586.

obtained. When Cu(OTf)₂ was utilized at -20 °C, the reaction provided a 67% yield of a 90:10 cis/trans ratio of aziridines. These results are to be contrasted with the Mn(TPP)Cl- or Fe(TPP)-Cl-catalyzed aziridination of cis-stilbene, which affords exclusively trans-2,3-diphenylaziridine.11c

Table 8. Aziridination of Cis and Trans Disubstituted Olefins (Eq

_ ,							
	entry	olefina	catalyst	temp,°C	aziridine trans : cis ^b	yield,% ^{c,d}	
	1	Ph	CuClO ₄ Cu(acac) ₂	25 25	>95 : 5 >95 : 5	56° 50°	
	2	Ph	CuClO ₄ CuClO ₄ Cu(acac) ₂ Cu(OTf) ₂	0 -20 25 -20	17 : 83 10 : 90 60 : 40 10 : 90	73 80 54 67	
	3	Ph Me	CuClO ₄ Cu(acac) ₂	25 25	>95 : 5 >95 : 5	81 75	
	4	Ph Me	CuClO ₄ CuClO ₄ Cu(acac) ₂ Cu(ClO ₄) ₂ CuBr ₂	25 -20 25 25 25	7:93 7:93 74:26 <5:95 70:30	87 89 64 76 40	
	5	n-Pr	CuClO ₄	-20	>95 : 5	64	
	6	n-Pr	CuClO ₄	-20	<5 : 95°	78	

^a All reactions were performed in MeCN with 5-10 mol % catalyst and 5 equiv of olefin unless otherwise noted. b Ratios determined by 500-MHz NMR. c Isolated yield of aziridine based on 1 equiv of PhI=NTs. d For the cis-olefins the yields reported are for the cis and trans disubstituted aziridines combined. * Reaction performed in CH₂Cl₂. f No trans aziridine detected by 500-MHz NMR.

The aziridination of cis-β-methylstyrene³⁹ afforded varying ratios of cis and trans aziridines depending on the nature of the copper catalyst employed (Table 8, entry 4). At -20 °C, CuClO₄ gave an 89% yield of a 93:7 cis/trans ratio of aziridines. With Cu(II) catalysts, the reaction selectivity was dependent on the nature of the ligand. With Cu(ClO₄)₂, the reaction exhibited apparent stereospecificity, giving a 76% yield of the cis aziridine uncontaminated by its trans diastereomer. However, reactions catalyzed by CuBr2 and Cu(acac)2 afforded predominantly the trans adduct. Examination of recovered β -methylstyrene from reactions run to partial conversion showed that, for the CuClO₄-(-20 °C) and Cu(ClO₄)₂-catalyzed (-20 °C) processes, no loss of olefin geometry occurred (Table 9). However, those reactions catalyzed by Cu(acac)₂ and CuBr₂ exhibited 3-5% loss of olefin stereochemistry (entries 3 and 5). In the absence of PhI=NTs, no isomerization of $cis-\beta$ -methylstyrene was observed with either Cu(I) or Cu(II) catalysts. Furthermore, no isomerization of cis-N-(p-tolylsulfonyl)-2-methyl-3-phenylaziridine was observed when

Table 9. Stereochemistry of Recovered cis-β-Methylstyrene

	olefin ^a	entry	catalyst	temp,°C	olefin trans : cis ^b
		1	CuClO ₄	25	4:96
		2	CuClO ₄	-20	1:99
F	h Me	3	Cu(acac) ₂	25	3:97
	1:99	4	Cu(CIO ₄) ₂	25	1:99
		5	CuBr ₂	25	5:95

^a All reactions were performed in CH₃CN with 5-10 mol % catalyst and 1 equiv of PhI=NTs. b Ratios were determined by capillary GLC.

Scheme 1

it was stirred with CuClO₄ or Cu(acac)₂ in MeCN at room

Phenyl substitution on the olefin seems to alter the process from a stereospecific to a nonstereospecific reaction manifold. This point is highlighted by the observation that the CuClO₄catalyzed aziridination of cis-4-octene by PhI=NTs was stereospecific, providing exclusively the cis-di-n-propylaziridine in 78% yield (Table 8, entry 6). On the other hand, in the aziridination of cis-stilbene (CuClO₄, 0 °C) the trans aziridine is formed to a moderate extent (trans/cis = 17:83). If the reaction proceeds through a charged intermediate, during the reaction of styrene one would expect charge accumulation at the benzylic position. Accordingly, the relative rates of aziridination of styrene and p-nitrostyrene were determined (5 equiv of each olefin, 8 mol % CuClO₄, 1 equiv of PhI=NTs, 25 °C) in both MeCN and CH₂Cl₂. In MeCN, styrene is only 1.4 times as reactive as p-nitrostyrene, while in CH₂Cl₂, the rate difference is only 1.1. It is thus concluded that the intervention-charged intermediates in this process is unlikely.

For unfunctionalized alkyl-substituted olefins such as cis-4octene (Table 8, entry 6), the observed stereospecificity of the reaction supports a concerted mechanism. However, a stepwise process in which the rate of ring closure is fast relative to the rate of C-C bond rotation is also possible. To probe for the possible intermediacy of radical intermediates in alkyl-substituted olefins, we examined the aziridination of trans-2-phenyl-1-vinylcyclopropane (22)^{40,41} to determine whether any radical intermediates might be intercepted through cyclopropylcarbinyl rearrangement (Scheme 1).42 The aziridination of 22 (1 equiv of PhI=NTs, MeCN, 25 °C) using the CuClO₄ catalyst afforded, in addition to aziridines 24 (43%) and recovered starting material, no products derived from cyclopropyl ring-opening based on analysis of the unpurified reaction mixture. 43 The formation of 24 in conjunction with the absence of rearrangement products provides added support for the concerted mechanism for the aziridination of alkyl-substituted olefins. This conclusion is consistent with our

(40) (a) Marvell, E. N.; Lin, C. J. Am. Chem. Soc. 1978, 100, 877-883.

(b) Closs, G. L.; Moss, R. A. J. Am. Chem. Soc. 1964, 86, 4042-4053.
(41) (a) Fu, H.; Look, G. C.; Zhang, W.; Jacobsen, E. N.; Wong, C.-H. J. Org. Chem. 1991, 56, 6497-6500. (b) Feldman, K. S.; Ruckle, R. E., Jr.; Romanelli, A. L. Tetrahedron Lett. 1989, 30, 5845-5848. (c) Feldman, K. S.; Control of the c S.; Simpson, R. E. Tetrahedron Lett. 1989, 30, 6985-6988. (d) Feldman, K.
S.; Simpson, R. E. J. Am. Chem. Soc. 1989, 111, 4878-4886.
(42) (a) He, G.-X.; Bruice, T. C. J. Am. Chem. Soc. 1991, 113, 2747-

2753. (b) Newcomb, M.; Manek, M. B. J. Am. Chem. Soc. 1990, 112, 9662-

⁽³⁷⁾ Enolsilanes were prepared from the corresponding ketones according to the reported procedure: House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, Org. Chem. 1969, 34, 2324-2336.

⁽³⁸⁾ Silyl ketene acetals were synthesized from the corresponding esters according to the reported procedures: (a) Ainsworth, C.; Chen, F.; Kuo, Y.-N. J. Organomei. Chem. 1972, 46, 59-71. (b) Slougui, N.; Rousseau, G.; Conia, J. M. Synthesis 1982, 58-60. (b) Slougui, N.; Rousseau, G. Synth.

Commun. 1987, 17, 1-11.
(39) Davies, D. E.; Gilchrist, T. L.; Roberts, T. G. J. Chem. Soc., Perkin Trans. 1 1983, 1275-1281.

observation that cis disubstituted olefins such as cis-4-octene are transformed to the derived N-tosylaziridine without detectable isomerization.

Competition Experiments. Competition experiments were carried out to assess relative olefin reactivity with both Cu(I) and Cu(II) catalysts. If the two catalyst oxidation states are maintained during the course of the reaction, one might anticipate that Cu(I) catalysts, which coordinate well with olefins, 20a might exhibit a different selectivity profile than Cu(II) catalysts, which show a low tendency to coordinate olefins except under special circumstances.44 The results of the study are presented in Table 10. All reactions were carried out under identical conditions (MeCN, 5-10 mol % catalyst, 1 equiv of PhI=NTs and 5 equiv of each olefin at -20 °C). Two conclusions may be drawn from the data. First, the modest difference in reactivity between styrene and 1-hexene (entry 1) is again inconsistent with the intervention of polar intermediates during the aziridination process. Second, the comparable selectivity profiles for the three olefin pairs for Cu(I) and Cu(II) catalysts suggests that a common catalyst oxidation state is being accessed in both instances.

Table 10. Relative Olefin Reactivity with Various Cu Catalysts^a

			ratio, olefin B/olefin A			
entry o	lefin A	olefin B	CuClO ₄ CuOTf		Cu(OTf) ₂	
1 <i>n</i> -Bu	<u> </u>	Ph N	5	5	5	
2 <i>n</i> -Bu	<u></u>	-Pr	2	1.5	1.5	
3 <i>n</i> -Bu			7	6	6	

^a All reactions were performed in MeCN with 5-10 mol % catalyst and 5 equiv of each olefin at -20 °C. Ratios were determined by capillary GLC using internal standards.

Catalyst Oxidation State. The preceding experiments provide strong circumstantial evidence for a common catalyst oxidation state irrespective of the oxidation state of the copper complex employed. In view of the fact that iodine(III) reagents are oxidants, it is reasonable to conclude that these reactions are being catalyzed through Cu(II) rather than Cu(I) as originally presumed. Supporting evidence that PhI=NTs will promote catalyst oxidation was obtained with the chiral complex derived from CuOTf and the bis(oxazoline) ligand 7. When an acetonitrile solution of this ligand and CuOTf was treated with PhI=NTs, the solution became green. The UV-vis spectrum of this solution is nearly indistinguishable from a spectrum of a solution of Cu-(OTf)₂ complexed with this bis(oxazoline) ligand in the same solvent. It thus appears that a similar catalytically active metal complex is accessible from either oxidation state, at least in MeCN at 25 °C. In spite of these observations, it is not clear whether the 2+ oxidation state of the catalyst is being accessed at low temperature (-78 °C) and in less polar solvents, conditions reported by Jacobsen in his asymmetric aziridination study. 14a

Conclusions

This study has demonstrated that soluble Cu(I) and Cu(II) complexes are the most efficient catalysts yet discovered for olefin aziridination using PhI=NTs. With these catalysts, the reaction scope has been significantly extended to include both electron-

rich and electron-deficient olefins. Solvent optimization studies have also contributed significantly to both yield improvement and rate acceleration, and the polar aprotic solvent MeCN appears to be the optimal choice for preparative reactions. Examination of cis and trans disubstituted olefins reveals that the derived aziridination reactions can be rendered either highly stereoselective or stereospecific with the proper choice of catalyst. These results should be contrasted to previous observations that aziridination of cis-stilbene catalyzed by Fe(TPP)Cl affords exclusively trans-2,3-diphenylaziridine.

The intervention of radical intermediates through cyclopropyl-based radical traps was probed, and results obtained with *trans*-2-phenyl-1-vinylcyclopropane support a concerted process for unfunctionalized alkyl-substituted olefins.

Experimental Section

General. Infrared spectra were recorded on a Nicolet 5SX or 5PC FT-IR spectrometer. 1H NMR spectra were recorded on Bruker AM-500 (500 MHz) and AM-400 (400 MHz) spectrometers at ambient temperature. Data are reported as follows: chemical shift in ppm from internal standard tetramethylsilane on the δ scale, multiplicity (b = broad, s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), integration, coupling constant (Hz), and assignment. 13C NMR were recorded on Bruker AM-500 (126 MHz) and AM-400 (101 MHz) spectrometers at ambient temperature. Chemical shifts are reported in ppm from tetramethylsilane on the δ scale, with the solvent resonance employed as the internal standard (deuteriochloroform at 77.0 ppm, DMSO-d₆ at 39.5 ppm and benzene-d₆ at 128.5 ppm). Combustion analyses were performed by Spang Microanalytical Laboratory (Eagle Harbor, MI) and Galbraith Microanalytical Laboratory (Knoxville, TN). High-resolution mass spectra were obtained on Jeol AX-505 or SX-102 spectrometers in the Harvard University Mass Spectrometry Laboratory. Analytical thin-layer chromatography was performed on EM Reagent 0.25-mm silica gel 60-F plates. Visualization was accomplished with UV light and aqueous ceric ammonium molybdate solution followed by heating. Purification of reaction products was carried out by mediumpressure liquid chromatography using Michel-Miller columns (Ace Glass, Inc.) dry-packed with 230-400 mesh silica gel or by conventional flash column chromatography.45 All reactions were carried out under an atmosphere of nitrogen in glassware that had been flame-dried under a stream of nitrogen. When necessary, solvents and reagents were purified prior to use. Dichloromethane and acetonitrile were distilled from calcium hydride under nitrogen. CuClO₄¹⁸ and CuOTf¹⁹ were handled in the drybox under an atmosphere of nitrogen. Cu(OTf)2 and Cu(acac)2 were purchased from the Aldrich Chemical Co. All olefins were distilled prior to use.

Representative Experimental Details for the Aziridination Reaction Catalyzed by Cu(acac)₂. Cu(acac)₂ (10 mol %) was added to a suspension of the olefin (5 equiv) and PhI=NTs (1 equiv) in 10 mL of MeCN at room temperature. When all the PhI=NTs had been drawn into solution, the reaction was filtered through a plug of silica with EtOAc as eluent. The solvent was removed *in vacuo* to give an oil that was purified by MPLC or flash column chromatography.

Representative Experimental Details for the Aziridination Reaction Catalyzed by Cu(MeCN)₄ClO₄. Cu(MeCN)₄ClO₄. ClO(MeCN)₄ClO₄ (5-10 mol %) in 5 mL of MeCN was added under nitrogen to a suspension of olefin (5 equiv) and PhI=NTs (1 equiv) in 5 mL of MeCN. When all the PhI=NTs had been drawn into solution, the reaction was filtered through a plug of silica with 200 mL of EtOAc as eluent. The solvent was removed in vacuo to give an oil that was purified by MPLC or flash column chromatography.

Representative Experimental Details for the Aziridination Reaction Catalyzed by $Cu(OTf)_2$. To $Cu(OTf)_2$ (5–10 mol %) in 5 mL of MeCN under nitrogen were added olefin (5 equiv) and PhI—NTs (1 equiv) under a flow of N_2 . When all the PhI—NTs had been drawn into solution, the reaction was filtered through a plug of silica with 50 mL of EtOAc as eluent. The solvent was removed *in vacuo* to give an oil that was purified by MPLC or flash column chromatography.

Competition Experiments. The competition experiments were carried out according to the general procedure. When complete, the reactions were filtered through a plug of silica and the ratios determined quantitatively by capillary GLC (DB-1, 4 psi, 200 °C) employing *n*-docosane as the internal standard. The relative retention times of the

⁽⁴³⁾ One of the referees has suggested that, one must consider that copper(II) will oxidize carbon radicals with ligand transfer at diffusion controlled
rates (Kochi). Thus failure to see ring-opened products may just reflect a
kinetic victory for the three-membered ring closure to give the aziridine even
in the face of the so-called hypersensitive radical probe. The authors concur
with this qualification to the radical trapping experiments illustrated in Scheme
1.

⁽⁴⁴⁾ Zelonka, R. A.; Baird, M. C. J. Organomet. Chem. 1971, 33, 267-272.

products are as follows: N-(p-tolylsulfonyl)-2-n-butylaziridine ($t_RRt=5.2 \text{ min}$); N-(p-tolylsulfonyl)-2-phenylaziridine ($t_R=10.9 \text{ min}$); trans-N-(p-tolylsulfonyl)-2,3-di-n-propylaziridine ($t_R=6.5 \text{ min}$); N-(p-tolylsulfonyl)-7-azabicyclo[4.1.0]heptane ($t_R=6.5 \text{ min}$).

N-(p-Tolylsulfonyl)-2-phenylaziridine (9). The general procedure was followed using 103 mg (0.276 mmol) of PhI=NTs, 5.0 mg (0.014 mmol) of Cu(OTf)2, and 0.160 mL (0.145 g, 1.40 mmol) of styrene in 1 mL of MeCN. Reaction time: 1 h at room temperature. Flash column chromatography (2- × 18-cm silica, 4:1 hexane/EtOAc) afforded 69 mg (92%) of the aziridine as a crystalline solid: mp 88-89 °C (lit. mp 88-89 °C);46 TLC R_f 0.62 (2:1 hexane:EtOAc); IR (CHCl₃) 3017, 1327, 1217, 1161, 916, 783, 769, 715, 696, 665 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.86 (d, 2H, J = 8.3 Hz, Ar-H), 7.27 (m, 7H, Ar-H), 3.77 (dd. 1H. $J_{cis} = 7.2 \text{ Hz}, J_{trans} = 4.5 \text{ Hz}, CHPh), 2.98 (d, 1H, J = 7.8 \text{ Hz}, cis-$ CH-aziridine), 2.43 (s, 3H, Ar-Me), 2.38 (d, 1H, J = 4.4 Hz, trans-CH-aziridine); 13 C NMR (CDCl₃, 101 MHz) δ 144.5, 134.9, 129.6, 128.4, 128.1, 127.8, 126.4, 40.9, 35.7, 21.4; HRMS (FAB, MNBA) exact mass calcd for $C_{15}H_{15}NO_2S(M+H)^+$ 274.0902, found 274.0916. Anal. Calcd for C₁₅H₁₅NO₂S: C, 65.91; H, 5.53; N, 5.12. Found: C, 65.79; H, 5.46; N, 5.08.

N-(p-Tolylsulfonyl)-2-(p-methoxyphenyl)aziridine. The general procedure was followed using 600 mg (1.60 mmol) of PhI=NTs, 33 mg (0.089 mmol) of Cu(MeCN)₄ClO₄, and 0.32 mL (0.32 g, 2.4 mmol) of p-methoxystyrene. Reaction time: 15 min at room temperature. Direct crystallization of the product aziridine from the reaction mixture using hexane:EtOAc as solvent provided 254 mg (54%) of aziridine, and an additional 127 mg (26%) of product was obtained by flash chromatography (SiO₂, 2 × 16 cm², 4:1:0.2 hexane:EtOAc:Et₃N). Overall yield 381 mg (78%) of aziridine as a white crystalline solid: mp 87-88 °C; TLC R_f 0.4 (4:1 hexane:EtOAc); IR (CH₂Cl₂) 3056, 3002, 2960, 2838, 1614, 1600, 1515, 1460, 1380, 1322, 1304, 1246, 1158, 1092, 1030, 910, 832, 811, 689, 665, 656 cm⁻¹; ¹H NMR (benzene- d_6 , 500 MHz) δ 7.94 (d, 2H, J = 8.3 Hz, Ar-H), 6.94 (d, 2H, J = 8.6 Hz, Ar-H), 6.75 (d, 2H, Hz)J = 8.0 Hz, Ar-H), 6.64 (d, 2H, J = 8.7 Hz, Ar-H), 3.77 (dd, 1H, J_{cis} = 4.4 Hz, J_{trans} = 7.1 Hz, CHPh-aziridine), 3.24 (s, 3H, OCH₃), 2.79 (d, 1H, J = 7.1 Hz, trans-CH-aziridine), 1.93 (d, 1H, J = 4.4 Hz, cis-CH-aziridine), 1.84 (s, 3H, Ar-CH₃); ¹³C NMR (benzene-d₆, 126 MHz) δ 160.1, 151.3, 144.0, 136.8, 129.7, 128.2, 127.8, 114.3, 54.8, 41.0, 35.6,

N-(p-Tolylsulfonyl)-2-(p-methylphenyl)aziridine. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 16 mg (0.043 mmol) of Cu(MeCN)₄ClO₄ and 0.44 mL (0.39 g, 3.3 mmol) of p-methylstyrene. Reaction time: 1 h at room temperature. MPLC purification was carried out by elution with hexane:EtOAc (6:1) to give 159 mg (83%) of aziridine as a white crystalline solid: mp 136-137 °C; TLC R₁0.28 (4:1 hexane:EtOAc); IR (CHCl₃) 3034, 1600, 1516, 1380, 1322, 1158, 1092, 1018, 978, 911, 814, 716, 708, 692, 660 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.86 (d, 2H, J = 8.3 Hz, Ar-H), 7.31 (d, $2H, J = 7.9 \text{ Hz}, \text{Ar-}H), 7.09 \text{ (s, } 4H, \text{Ar-}H), 3.73 \text{ (dd, } 1H, J_{cis} = 7.2 \text{ Hz},$ $J_{\text{trans}} = 4.5 \text{ Hz}$, CHPh-aziridine), 2.96 (d, 1H, J = 7.2 Hz, cis-CHaziridine), 2.42 (s, 3H, Ar-CH₃), 2.36 (d, 1H, J = 4.5 Hz, trans-CHaziridine), 2.3 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃, 126 MHz) δ 144.4, 138.0, 135.1, 132.0, 129.6, 129.1, 127.8, 126.4, 41.0, 35.6, 21.5, 21.0; HRMS (FAB, MNBA) exact mass calcd for C₁₆H₁₇NO₂S (M + Na)+ 310.0878, found 310.0894.

N-(p-Tolylsulfonyl)-2-(p-chlorophenyl)aziridine. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 20 mg (0.054 mmol) of Cu(MeCN)₄ClO₄, and 0.40 mL (0.46 g, 3.3 mmol) of p-chlorostyrene. Reaction time: 1 h at room temperature. MPLC purification was carried out by elution with hexane:EtOAc (6:1) to give 186 mg (90%) of aziridine as a white crystalline solid: mp 115-116 °C; TLC R_f 0.25 (4:1 hexane:EtOAc); IR (CH₂Cl₂) 3056, 1600, 1494, 1462, 1376, 1325, 1185, 1160, 1190, 1014, 980, 908, 812, 688, 667 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.85 (d, 2H, J = 8.2 Hz, Ar-H), 7.33 (d, 2H, J = 8.1 Hz, Ar-H), 7.26 (d, 2H, J = 8.4 Hz, Ar-H), 7.15 (d, 2H, J = 8.4 Hz, Ar-H), 3.73 (dd, 1H, $J_{cis} = 7.1 \text{ Hz}$, $J_{trans} = 4.3 \text{ Hz}$, CHPhaziridine), 2.97 (d, 1H, J = 7.1 Hz, trans-CH-aziridine), 2.44 (s, 3H, Ar-CH₃), 2.34 (d, 1H, J = 4.3 Hz, CH-aziridine); ¹³C NMR (CDCl₃, 126 MHz) δ 144.8, 134.8, 134.2, 133.6, 129.8, 128.7, 127.9, 127.8, 40.2, 36.0, 21.6; HRMS (FAB, MNBA) exact mass calcd for $C_{15}H_{14}ClNO_2S$ (M+H)+308.0512, found 308.0516. Anal. Calcd for C₁₅H₁₄ClNO₂S: C, 58.53; H, 4.58; N, 4.55. Found: C, 58.15; H, 4.64; N, 4.39.

N-(p-Tolylsulfonyl)-2-(p-nitrophenyl)aziridine. The general procedure was followed using 250 mg (0.670 mmol) of PhI—NTs, 17 mg (0.046

mmol) of Cu(MeCN)₄ClO₄, and 0.50 g (3.3 mmol) of p-nitrostyrene.⁴⁷ Reaction time: 2 h at room temperature. MPLC purification was carried out by elution with hexane:EtOAc (6:1) to give 190 mg (89%) of aziridine as a white crystalline solid: mp 116–117 °C; TLC R_f 0.13 (4:1 hexane: EtOAc); IR (CHCl₃) 3028, 1606, 1624, 1346, 1330, 1186, 1160, 1112, 1092, 980, 908, 854, 812, 715, 688, 659 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.16 (d, 2H, J = 8.6 Hz, Ar-H), 7.87 (d, 2H, J = 8.2 Hz, Ar-H), 7.40 (d, 2H, J = 8.7 Hz, Ar-H), 7.35 (d, 2H, J = 8.3 Hz, Ar-H), 3.84 (dd, 1H, J_{cis} = 4.4 Hz, J_{trans} = 7.3 Hz, CHPh-aziridine), 3.05 (d, 1H, J_{trans} = 7.3 Hz, trans-CH-aziridine); 13C NMR (CDCl₃, 101 MHz) δ 147.7, 145.1, 142.4, 134.3, 129.8, 127.9, 127.4, 123.7, 39.6, 36.4, 21.6; HRMS (FAB, MNBA) exact mass calcd for C₁₅H₁₄N₂O₄S (M + H) + 319.0752, found 319.0761. Anal. Calcd for C₁₅H₁₄N₂O₄S: C, 56.59; H, 4.43; N, 8.80. Found: C, 56.51; H, 4.46; N, 8.64.

trans-N-(p-Tolylsulfonyl)-2,3-diphenylaziridine. The general procedure was followed with the exception of the use of 5 mL of CH₂Cl₂ as solvent. The reaction was run using 400 mg (1.07 mmol) of PhI-NTs. 18 mg (0.055 mmol) of Cu(MeCN)₄ClO₄, and 0.965 g (5.35 mmol) of trans-stilbene. Reaction time: 2 h at room temperature. Flash column chromatography (3 × 18-cm silica, 1:1 hexane/CH₂Cl₂) afforded 210 mg (56%) of trans-aziridine as a white crystalline solid: mp 139-139 °C (lit.46 mp 139 °C; TLC Rf 0.19 (4:1 hexane:EtOAc); IR (CHCl₃) 3031, 3019, 1327, 1306, 1215, 1161, 1088, 930, 910, 814, 745, 741, 708, 698, 691 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.62 (d, 2H, J = 8.2 Hz, Ar-H), 7.42–7.32 (m, 10H, Ar-H), 7.19 (d, 2H, J = 8.2 Hz, Ar-H), 4.26 (s, 2H, CH-aziridine), 2.38 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃, 126 MHz) δ 143.9, 137.0, 133.0, 129.4, 128.7, 128.4, 128.3, 127.5, 50.3, 21.5; HRMS (FAB, MNBA) exact mass calcd for C₂₁H₁₉NO₂S (M + H)⁺ 350.1215, found 350.1222. Anal. Calcd for C₂₁H₁₉NO₂S: C, 72.18; H, 5.48; N, 4.01. Found: C, 71.90; H, 5.57; N, 4.02.

cis-N-(p-Tolylsulfonyl)-2,3-diphenylaziridine. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 18 mg (0.048 mmol) of Cu(MeCN)₄ClO₄, and 0.60 mL (0.60 g, 3.3 mmol) of cisstilbene. Reaction time: 3 h at -20 °C. MPLC purification was carried out by elution with hexane: EtOAc (6:1) to give 187 mg (80%) of cis and trans aziridines in a 9.0:1.0 ratio as determined by 500-MHz ¹H NMR. The aziridines can be separated by MPLC gradient elution with hexane: CH₂Cl₂ (2:1) to hexane:CH₂Cl₂ (1:1): mp 155-156 °C; TLC R_f 0.19 (4:1 hexane:EtOAc); IR (CHCl₃) 3034, 1599, 1495, 1329, 1306, 1186, 1161, 1092, 1026, 909, 814, 801, 698, 675 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.95 (d, 2H, J = 8.1 Hz, Ar-H), 7.35 (d, 2H, J = 8.1 Hz, Ar-H), 7.11-7.03 (m, 10H, Ar-H), 4.22 (s, 2H, CH-aziridine), 2.43 (s, 3H, Ar-CH₃); 13 C NMR (CDCl₃, 126 MHz) δ 144.7, 134.9, 132.0, 129.8, 128.0, 127.9, 127.8, 127.7, 47.4, 21.6; HRMS (FAB, MNBA) exact mass calcd for $C_{21}H_{19}NO_2S(M+H)^+$ 350.1215, found 350.1213. Anal. Calcd for C₂₁H₁₉NO₂S: C, 72.18; H, 5.48; N, 4.01. Found: C, 72.29; H, 5.34; N, 4.14.

trans-N-(p-Tolylsulfonyl)-2-methyl-3-phenylaziridine (18). The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 19 mg (0.051 mmol) of Cu(MeCN)₄ClO₄, and 0.40 mL (0.40 g, 3.3 mmol) of trans-\beta-methylstyrene. Reaction time: 1.5 h at room temperature. MPLC purification was carried out by elution with hexane: EtOAc (6:1) to give 156 mg (81%) of aziridine as a white cyrstalline solid: mp 72-74 °C; TLC R_f 0.25 (4:1 hexane:EtOAc); IR (CHCl₃) 3031, 1458, 1321, 1306, 1291, 1217, 1159, 1090, 1038, 974, 891, 814, 772, 743, 710, 698, 687, 667 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.82 (d, 2H, J = 8.3 Hz, Ar-H), 7.26-7.20 (m, 5H, Ar-H), 7.13 (d, 2H, J =7.9 Hz, Ar-H), 3.79 (d, 1H, J = 4.3 Hz, CHPh), 2.9 (dq, 1H, J = 6.0, 4.4 Hz, CHCH₃), 2.37 (s, 3H, Ar-CH₃), 1.83 (d, 3H, J = 6.0 Hz, CH₃); ¹³C NMR (CDCl₃, 126 MHz) δ 143.8, 137.9, 135.5, 129.5, 128.4, 128.0, 127.1, 126.2, 49.1, 21.5, 14.1; HRMS (FAB, MNBA) exact mass calcd for $C_{16}H_{17}NO_2S$ (M + Na)⁺ 310.0878, found 310.0887. Anal. Calcd for C₁₆H₁₇NO₂S: C, 66.87; H, 5.96; N, 4.87. Found: C, 67.06; H, 5.88;

Catalysis Employing SmI₂(O-t-Bu).²⁶ To 1.0 mL of a 0.1 M solution of SmI₂ (0.10 mmol) under nitrogen was added 10 μ L (8.0 mg, 0.054 mmol) of tert-butyl peroxide. After 20 min, the resulting yellow mixture was concentrated in vacuo. The residue was then redissolved in 3 mL of MeCN. A 10-mL flask under N₂ was charged with a 1-mL aliquot of the SmI₂(O-t-Bu) solution. To this solution were added trans- β -methylstyrene and PhI=NTs. After 6 h, the homogeneous reaction was filtered through a plug of silica and washed with EtOAc. Purification by flash chromatography (2- × 18-cm silica gel, 5:1 hexane/EtOAc) afforded 145 mg (76%) of the aziridine.

cis-N-(p-Tolylsulfonyl)-2-methyl-3-phenylaziridine. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 12 mg (0.032 mmol) of Cu(MeCN)₄ClO₄, and 0.40 mL (0.40 g, 3.3 mmol) of cis-β-methylstyrene. 40 Reaction time: 1 h at -20 °C. MPLC purification was carried out by elution with hexane:EtOAc (6:1) to give 170 mg (89%) of cis and trans aziridines in a 13:1 ratio as determined by 500-MHz ¹H NMR: TLC R_f 0.25 (4:1 hexane:EtOAc); IR (neat) 3065, 3035, 2936, 1600, 1585, 1498, 1452, 1404, 1321, 1240, 1160, 1090, 1042, 984, 880, 760, 728, 698, 670 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.88 (d, 2H, J = 8.3 Hz, Ar-H), 7.33-7.19 (m, 7H, Ar-H), 3.92 (d, 1H, J = 8.3 Hz, Ar-H), 7.33-7.19 (m, 7H, Ar-H), 3.92 (d, 1H, J = 8.3 Hz, Ar-H), 7.33-7.19 (m, 7H, Ar-H), 3.92 (d, 1H, J = 8.3 Hz, Ar-H), 7.33-7.19 (m, 7H, Ar-H), 3.92 (d, 1H, J = 8.3 Hz, Ar-H), 7.33-7.19 (m, 7H, Ar-H), 3.92 (d, 1H, J = 8.3 Hz, Ar-H), 7.33-7.19 (m, 7H, Ar-H), 7.33-7.7.3 Hz, CHPh), 3.18 (dq, 1H, J = 7.3, 5.8 Hz, CHCH₃), 2.41 (s, 3H, Ar-CH₃), 1.0 (d, 3H, J = 5.8 Hz, CH₃); ¹³C NMR (CDCl₃, 101 MHz) δ 144.4, 135.1, 132.6, 129.6, 129.4, 128.2, 127.7, 127.4, 45.9, 41.5, 21.5, 11.8; HRMS (FAB, MNBA) exact mass calcd for C₁₆H₁₇NO₂S (M + Na)⁺ 310.0878, found 310.0875. Anal. Calcd for C₁₆H₁₇NO₂S: C, 66.87; H, 5.96; N, 4.87. Found: C, 66.85; H, 5.86; N, 4.83.

trans-N-(p-Tolylsulfonyl)-2-(carbomethoxy)-3-phenylaziridine. The general procedure was followed using 400 mg (1.07 mmol) of PhI=NTs, 20 mg (0.055 mmol) of Cu(OTf)₂, and 0.870 g (5.37 mmol) of transmethyl cinnamate. Reaction time: 1 hat room temperature. Purification by flash column chromatography $(3- \times 18$ -cm silica, 6:1 hexane/EtOAc) afforded 267 mg (75%) of trans-aziridine as a white crystalline solid: mp 44.2-44.6 °C; TLC R_f 0.21 (4:1 hexane:EtOAc); IR (CHCl₃) 3068, 3021, 2960, 1750, 1600, 1498, 1456, 1440, 1412, 1338, 1306, 1292, 1161, 1086, 1081, 1004, 938, 906, 834, 812, 709, 692, 646 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.77 (d, 2H, J = 8.3 Hz, Ar-H), 7.31-7.24 (m, 7H, Ar-H), 4.44 (d, 1 H, J = 3.9 Hz, CH-aziridine), 3.85 (s, 3H, OCH₃), 3.53 (d, 1H, J = 4.0 Hz, CH-aziridine), 2.41 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃, 101 MHz) δ 166.2, 144.3, 136.9, 132.5, 129.5, 128.9, 128.5, 127.4, 127.3, 53.1, 47.6, 46.7, 21.6; HRMS (FAB, MNBA) exact mass calcd for $C_{17}H_{17}NO_4S$ (M + Na)⁺ 354.0776, found 354.0765. Anal. Calcd for C₁₇H₁₇NO₄S: C, 61.61; H, 5.17; N, 4.23. Found: C, 61.65; H, 5.01; N, 4.30.

N-(p-Tolylsulfonyl)-2-methyl-2-phenylaziridine. The general procedure was followed using 300 mg (0.804 mmol) of PhI=NTs, 21 mg (0.080 mmol) of Cu(acac)₂, and 0.52 mL (0.47 g, 4.0 mmol) of α -methylstyrene. Reaction time: 1 h at room temperature. MPLC purification was carried out by elution with hexane: EtOAc (6:1) to give 165 mg (72%) of aziridine as a white crystalline solid: mp 83-84 °C; TLC R_c 0.26 (4:1 hexane:EtOAc); IR (CCl₄) 3060, 3028, 2992, 2930. 1600, 1449, 1330, 1267, 1160, 1128, 1089, 1027, 939, 870, 715, 694, 680, 650 cm⁻¹; ¹H NMR (benzene- d_6 , 400 MHz) δ 8.03 (d, 2H, J = 8.3 Hz, Ar-H), 7.38–7.12 (m, 5H, Ar-H), 6.92 (d, 2H, J = 8.4 Hz, Ar-H), 2.81 (s, 1H, CH-aziridine), 2.16 (s, 1H, CH-aziridine), 2.08 (s, 3H, CH₃), 2.01 (s, 3H, CH₃); 13 C NMR (benzene- d_6 , 101 MHz) δ 144.4, 142.5, 139.7, 130.4, 129.3, 128.8, 128.5, 127.6, 52.2, 42.7, 21.9, 21.5; HRMS (FAB, MNBA) exact mass calcd for $C_{16}H_{17}NO_2S(M + Na)^+310.0878$, found 310.0889.

trans-N-(p-Tolylsulfonyl)-2-(methoxymethyl)-3-phenylaziridine (15). The general procedure was followed using 373 mg (1.00 mmol) of PhI=NTs, 16 mg (0.050 mmol) of Cu(MeCN)₄ClO₄, and 0.148 g (1.00 mmol) of trans-methyl cinnamyl ether. Reaction time: 30 min at room temperature. Flash column purification was carried out by elution (2-× 18-cm silica) with hexane: EtOAc (5:1) to give 77 mg of the trans aziridine 15 as a colorless oil. Repurification of the other fractions under identical conditions afforded 20 mg of aziridine (97 mg total, 31%) and 56 mg of the imine 16 (20%) as a crystalline solid.

15: TLC R_f0.28 (4:1 hexane:EtOAc); IR (CHCl₃) 3023, 3018, 2930, 1599, 1498, 1458, 1440, 1322, 1216, 1160, 1102, 1089, 911 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.82 (d, 2H, J = 8.3 Hz, Ar-H), 7.28–7.24 (m, 5H, Ar-H), 7.20-7.17 (m, 2H, Ar-H), 4.16 (dd, 1 H, J = 5.4, 10.9)Hz, CH_2 -OMe), 3.96 (dd, 1H, J = 6.6, 10.9, CH_2 -OMe), 3.91 (d, 1H, J = 4.3 Hz, CH-aziridine), 3.44 (s, 3H, -OCH₃), 3.13-3.09 (m, 1H, CH-aziridine), 2.40 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃, 101 MHz) δ 144.1, 137.1, 134.5, 129.5, 128.5, 128.3, 127.4, 126.7, 69.3, 59.1, 50.4, 47.1, 21.6; HRMS (FAB, MNBA) exact mass calcd for C₁₇H₂₀NO₃S $(M + H)^+$ 318.1164, found 318.1171.

N-(p-Tolylsulfonyl)cinnamaldehyde imine (16): mp 120-121 °C; TLC R_f 0.22 (4:1 hexane:EtOAc); IR (CHCl₃) 3022, 1622, 1583, 1451, 1361, 1320, 1170, 1156, 1090, 965 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.78 (d, 1H, J = 8.3, imine-CH) 7.86 (d, 2H, J = 8.3 Hz, Ar-H), 7.56–7.40 (m, 6H, Ar-H), 7.34 (d, 2H, J = 8.4 Hz, Ar-H), 6.98 (dd, 1 H, J = 9.4,15.8 Hz, vinyl-CH), 2.43 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃, 101 MHz) δ 170.8, 153.7, 144.4, 135.3, 134.1, 131.6, 129.7, 129.1, 128.6, 127.9 124.7, 21.6; HRMS (CI, NH₃) exact mass calcd for C₁₆H₁₆NO₂S (M + H)+ 286.0902, found 286.0901.

N-(p-Tolylsulfonyl)-2-n-butylaziridine. The general procedure was followed using 400 mg (0.670 mmol) of PhI=NTs, 20 mg (0.055 mmol) of Cu(OTf)₂, and 0.670 mL (0.451 g, 5.36 mmol) of 1-hexene. Reaction time: 1 h at room temperature. Flash column chromatography (3- x 18-cm silica, 4:1 hexane/EtOAC) afforded 167 mg (62%) of the aziridine as a colorless oil: TLC R_f0.42 (4:1 hexane:EtOAc); IR (thin film) 2959, 2932, 1456, 1325, 1306, 1291, 1233, 1163, 1092, 957, 943, 924, 866, 816, 716, 694, 662 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.81 (d, 2H, J = 8.3Hz, Ar-H), 7.33 (d, 2H, J = 8.3 Hz, Ar-H), 2.70 (m, 1H, CH-aziridine), 2.61 (d, 1H, J = 7.0 Hz, cis-CH-aziridine), 2.42 (s, 3H, Ar-CH₃), 2.05 (d, 1H, J = 4.6 Hz, trans-CH-aziridine), 1.54 (m, 1H, aliphatic), 1.34-1.18 (m, 5H, aliphatic), 0.8 (t, 3H, J = 7 Hz, CH₃); ¹³C NMR (CDCl₃, 126 MHz) 8 144.1, 134.9, 129.3, 127.7, 40.0, 33.4, 30.6, 28.6, 21.8, 21.2, 13.5; HRMS (EI) exact mass calcd for C₁₃H₁₉NO₂S (M)⁺ 253.1136, found 253.1119. Anal. Calcd for C₁₃H₁₉NO₂S: C, 61.63; H, 7.56; N, 5.53. Found: C, 61.80; H, 7.41; N, 5.68.

trans-N-(p-Tolylsulfonyl)-2,3-di-n-propylaziridine. The general procedure was followed using 400 mg (1.07 mmol) of PhI=NTs, 32 mg (0.086 mmol) of Cu(MeCN)₄ClO₄, and 0.84 mL (0.60 g, 5.4 mmol) of trans-4-octene. Reaction time: 5 h at -20 °C. MPLC purification was carried out by elution with hexane:EtOAc (9:1) to give 191 mg (64%) of the trans aziridine as a colorless oil: TLC R_f 0.32 (4:1 hexane: EtOAc); IR (neat) 2968, 2940, 2880, 1602, 1470, 1322, 1316, 1249, 1160, 1092, 984, 930, 816, 710, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 7.83 (d, 2H, J = 8.3Hz, Ar-H), 7.30 (d, 2H, J = 8.4 Hz, Ar-H), 2.66 (m, 2H, cis-CH), 2.43 (s, 3H, Ar-CH₃), 1.78-1.62 (m, 4H, CH₂Et), 1.40-1.31 (m, 4H, CH₂-CH₃), 0.9 (t, 6H, J = 7.4 Hz, CH₃); ¹³C NMR (CDCl₃, 101 MHz) δ 143.6, 137.9, 129.3, 127.3, 49.5, 31.8, 21.5, 20.7, 13.6; HRMS (FAB, MNBA) exact mass calcd for $C_{15}H_{23}NO_2S$ (M + Na) + 304.1347, found 304.1333. Anal. Calcd for C₁₅H₂₃NO₂S: C, 64.02; H, 8.24; N, 4.98. Found: C, 64.18; H, 8.14; N, 5.06.

cis-N-(p-Tolylsulfonyl)-2,3-di-n-propylaziridine. The general procedure was followed using 400 mg (1.07 mmol) of PhI=NTs, 22 mg (0.059 mmol) of Cu(MeCN)₄ClO₄, and 0.84 mL (0.60 g, 5.4 mmol) of cisoct-4-ene.7 Reaction time: 5 h at -20 °C. MPLC purification was carried out by elution with hexane:EtOAc (9:1) to give 235 mg (78%) of cisaziridine. No trans isomer was detected by 500-MHz ¹H NMR. Capillary GLC (DB-1, 5 psi, 160 °C) indicated >96:4 ratio of aziridines: TLC R_f 0.32 (4:1 hexane:EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (d, 2H, J = 8.3 Hz, Ar-H), 7.32 (d, 2H, J = 8.2 Hz, Ar-H), 2.79 (m,2H, trans-CH), 2.44 (s, 3H, Ar-CH₃), 1.49-1.24 (m, 8H, CH₂CH₂-CH₃), 0.89 (t, 6H, J = 7.2 Hz, CH₃); ¹³C NMR (CDCl₃, 101 MHz) δ 144.1, 135.4, 129.4, 127.9, 127.3, 44.9, 28.7, 21.6, 20.7, 20.5, 13.7; HRMS (FAB, MNBA) exact mass calcd for $C_{15}H_{23}NO_2S (M + Na)^+ 304.1347$, found 304.1334. Anal. Calcd for C₁₅H₂₃NO₂S: C, 64.02; H, 8.24; N, 4.98. Found: C, 64.21; H, 8.07; N, 5.06.

N-(p-Tolylsulfonyl)-2-(carbomethoxy)aziridine. The general procedure was followed using 400 mg (1.07 mmol) of PhI=NTs, 20 mg (0.055 mmol) of Cu(OTf)2, and 0.485 mL (0.464 g, 5.39 mmol) of methyl acrylate. Reaction time: 1 hat room temperature. Purification by flash column chromatography (3- × 18-cm silica, 3:1 hexane/EtOAc) afforded 110 mg (40%) of the aziridine as a colorless oil: TLC R_f 0.35 (3:1 hexane: EtOAc); IR (thin film) 2950, 1752, 1441, 1395, 1333, 1306, 1292, 1233, 1209, 1186, 1165, 1096, 909, 816, 781, 733, 710, 692, 642 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.84 (d, 2H, J = 8.3 Hz, Ar-H), 7.36 (d, $2H, J = 8.2 \text{ Hz}, \text{Ar-}H), 3.73 \text{ (s, 3H, OC}H_3), 3.34 \text{ (dd, 1H, } J = 7.1, 4.1)$ Hz, $CHCO_2Me$), 2.76 (d, 1H, J = 7.1 Hz, cis-CH-aziridine), 2.56 (d, 1H, J = 4.1 Hz, trans-CH-aziridine), 2.45 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃, 126 MHz) δ 167.1, 145.2, 133.9, 129.8, 128.1, 52.7, 35.6, 31.9, 21.5; HRMS (FAB, MNBA) exact mass calcd for C₁₁H₁₃NO₄S (M + Na)+ 278.0463, found 278.0482. Anal. Calcd for C₁₁H₁₃NO₄S: C, 51.75; H, 5.13; N, 5.49. Found: C, 51.82; H, 5.30; N, 5.50.

N-(p-Tolylsulfonyl)-3-azatricyclo[3.2.1.0.24exo]octane. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 25 mg (0.067 mmol) of Cu(MeCN)₄ClO₄, and 0.19 g (2.0 mmol) of norbornene. Reaction time: 30 min at room temperature. MPLC purification was carried out by elution with hexane:EtOAc (6:1) to give 158 mg (90%) of aziridine as a white crystalline solid: mp 123-124 °C; TLC R_f 0.22 (4:1 hexane:EtOAc); IR (CHCl₃) 3017, 1310, 1296, 1277, 1138, 1080, 961, 895, 858, 770, 741, 725, 656 cm⁻¹; ¹H NMR (benzene-d₆, 400 MHz) δ 7.97 (d, 2H, J = 8.3 Hz, Ar-H), 6.77 (d, 2H, J = 7.9 Hz, Ar-H), 2.87 (s, 2H, H₂, H₃), 1.98 (s, 2H, H₁, H₄), 1.86 (s, 3H, Ar-CH₃), 1.45 (dt, 1H, $J = 2.0, 9.9 \text{ Hz}, \text{ syn-}H_7), 0.97-0.92 \text{ (m, 2H, } H_5, H_6), 0.77-0.71 \text{ (m, 2H, } H_7, H_8)$ H_5 , H_6), 0.32 (d, 1H, J = 9.9 Hz, anti- H_7); ¹³C NMR (CDCl₃, 126 MHz)

 δ 144.0, 135.9, 129.5, 127.6, 41.9, 35.8, 28.2, 25.6, 21.6; HRMS (FAB, MNBA) exact mass calcd for $C_{14}H_{17}NO_2S$ (M + Na)+ 286.0878, found 286.0870.

N-(p-Tolylsulfonyl)amino)-1,2,3,4-tetrahydronaphthalen-1,2-imine. The general procedure was followed using 300 mg (0.804 mmol) of PhI=NTs, 20 mg (0.080 mmol) of Cu(acac)₂, and 0.52 mL (0.52 g, 4.0 mmol) of 1,2-dihydronaphthalene. Reaction time: 1 h. MPLC purification was carried out by elution with hexane:EtOAc (6:1) to give 176 mg (73%) of aziridine as a crystalline solid: mp 123-124 °C; TLC R_f 0.2 (4:1 hexane:EtOAc); IR (CHCl₃) 3029, 1599, 1495, 1399, 1321, 1306, 1291, 1229, 1217, 1198, 1174, 1157, 1092, 990, 947, 909, 878, 816, 781, 762 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.80 (d, 2H, J = 8.2 Hz, Ar-H), 7.28-7.01 (m, 6H, Ar-H), 3.8 (d, 1H, $J_{cis} = 7$ Hz, CH-aziridine), 3.52 (d, 1H, $J_{cls} = 6.9$ Hz, CH-aziridine), 2.72 (dt, 1H, J = 14.5, 6.2 Hz, PhCH), 2.51 (dd, 1H, J = 15.5, 5.2 Hz, PhCH), 2.36 (s, 3H, Ar-CH₃), 2.21 (dd, 1H, J = 14.2, 6.3 Hz, PhCH₂CH), 1.62 (dt, 1H, J = 13.7, 5.4 Hz, PhCH₂CH); 13 C NMR (CDCl₃, 126 MHz) δ 144.1, 136.4, 135.4, 129.8, 129.5, 129.2, 128.4, 128.2, 127.4, 126.1, 41.8, 41.6, 24.5, 21.4, 19.8; HRMS (FAB, MNBA) exact mass calcd for C₁₇H₁₇NO₂S (M + Na)+ 322.0878, found 322.0886. Anal. Calcd for C₁₇H₁₇NO₂S: C, 68.20; H, 5.72; N, 4.68. Found: C, 68.09; H, 5.75; N, 4.64.

N-(p-Tolylsulfonyl)-7-azabicyclo[4.1.0]heptane (10). The general procedure was followed using 400 mg (1.07 mmol) of PhI=NTs, 20 mg (0.055 mmol) of Cu(OTf)₂, and 0.540 mL (0.438 g, 5.33 mmol) of cyclohexene. Reaction time: 1 h at room temperature. Flash column chromatography (3- × 18-cm silica, 4:1 hexane/EtOAc) provided 161 mg (60%) of the aziridine as a white crystalline solid: mp 55.3-55.9 °C; TLC R_f 0.32 (4:1 hexane:EtOAc); IR (CHCl₃) 3020, 2950, 2860, 1600, 1440, 1395, 1315, 1305, 1155, 1090, 965, 920 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.82 (d, 2H, J = 8.3 Hz, Ar-H), 7.33 (d, 2H, J = 8.0 Hz, Ar-H), 2.98 (t, 2H, J = 1.4 Hz, CH-aziridine), 2.44 (s, 3H, Ar-CH₃), 1.79 (m, 4H, ring-CH), 1.43-1.36 (m, 2H, ring-CH), 1.26-1.19 (m, 2H, ring-CH); ¹³C NMR (CDCl₃, 101 MHz) δ 144.0, 135.8, 129.5, 127.5, 39.7, 22.7, 21.6, 19.4; HRMS (FAB, MNBA) exact mass calcd for C₁₃H₁₇-NO₂S (M + Na)⁺ 274.0878, found 274.0872. Anal. Calcd for C₁₃H₁₇NO₂S: C, 62.12; H, 6.82; N, 5.57. Found: C, 62.14; H, 6.79; N, 5.65.

N-(p-Tolyksulfonyl)-1-methyl-7-azabicyclo[4.1.0]heptane. The general procedure was followed using 400 mg (1.07 mmol) of PhI=NTs, 20 mg (0.055 mmol) of Cu(OTf)2, and 0.635 mL (0.516 g, 5.37 mmol) of 1-methyl-1-cyclohexene. Reaction time: 1 h at room temperature. Flash column chromatography (2- × 18-cm silica, 4:1 hexane/EtOAc) afforded 145 mg (51%) of the aziridine: mp 84.4-85.2 °C; TLC R_f 0.30 (4:1 hexane:EtOAc); IR (CHCl₃) 3010, 2940, 2860, 1600, 1455, 1450, 1435, 1400, 1310, 1300, 1175, 1150, 1090, 1035, 975, 940 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.82 (d, 2H, J = 8.3 Hz, Ar-H), 7.30 (d, 2H, J $= 8.1 \text{ Hz}, \text{Ar-}H), 3.05 (d, 1H, J = 5.1 \text{ Hz}, CH-aziridine}), 2.42 (s, 3H, 1H, 2H) = 8.1 Hz, Ar-H), 3.05 (d, 1H, J = 5.1 Hz, CH-aziridine), 2.42 (s, 3H, 2H)$ $Ar-CH_3$), 2.05 (ddd, J = 4.3, 5.0, 14.4 Hz, 1H, CH-aziridine), 1.86-1.78 (m, 1H, ring-CH), 1.71 (s, 3H, CH₃), 1.59-1.49 (m, 2H, ring-CH),1.45-1.25 (m, 3H, ring-CH), 1.16-1.08 (m, 1H, ring-CH); ¹³C NMR (CDCl₃, 101 MHz) δ 143.3, 138.9, 129.3, 126.9, 51.2, 47.2, 33.0, 22.8, 21.5, 20.4, 19.7, 19.5; HRMS (FAB, MNBA) exact mass calcd for C₁₄H₁₉-NO₂S (M + Na)⁺ 288.1034, found 288.1031. Anal. Calcd for C₁₄H₁₉NO₂S: C, 63.37; H, 7.22; N, 5.28. Found: C, 63.18; H, 7.29;

2-(N-(p-Tolylsulfonyl)amino)cyclohexanone. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 22 mg (0.059 mmol) of Cu(MeCN)₄ClO₄, and 0.20 mL (0.17 g, 1.0 mmol) of (1cyclohexenyloxy)trimethylsilane.³⁷ Reaction time: 1.5 h at -20 °C. MPLC purification was carried out by elution with hexane:EtOAc (5:1) to give 115 mg (64%) of aziridine: mp 133-135 °C; TLC R_f 0.28 (2:1 hexane:EtOAc); IR (CHCl₃) 3350, 1694, 1345, 1296, 1219, 1163, 1094, 781, 748, 743, 687, 671 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.72 (d, 2H, J = 8.2 Hz, Ar-H), 7.28 (d, 2H, J = 8.4 Hz, Ar-H), 5.79 (bd, 1H, J = 4.3 Hz, NHTs), 3.76 (m, 1H, CHNHTs), 2.54-2.42 (m, 2H, ring-CH), 2.41 (s, 3H, Ar-CH₃), 2.22 (dt, 1H, J = 1.0, 10.6 Hz, ring-CH), 2.07 (m, 1H, ring-CH), 1.86 (m, 1H, ring-CH), 1.71-1.48 (m, 3H, ring-CH); 13 C NMR (CDCl₃, 126 MHz) δ 205.6, 143.5, 137.0, 129.7, 126.9, 60.6, 40.7, 36.8, 27.4, 23.9, 21.4; HRMS (FAB, MNBA) exact mass calcd for $C_{13}H_{17}NO_3S$ (M + H)⁺ 268.1007, found 268.1003. Anal. Calcd for C₁₃H₁₇NO₃S: C, 58.41; H, 6.41; N, 5.24. Found: C, 58.2; H, 6.33; N, 5.32.

2-(N-(p-Tolylsulfonyl)amino)acetophenone. The general procedure was followed using 250 mg (0.670 mmol) of PhI—NTs, 18 mg (0.048 mmol) Cu(MeCN)₄ClO₄ and 0.20 mL (0.19 g, 1.0 mmol) (1-styrenyloxy)-trimethylsilane. Reaction time: 3 h at -20 °C. MPLC purification was

carried out by elution with hexane:EtOAc (5:1) to give 146 mg (76%): mp 112–114 °C; TLC R_f 0.25 (2:1 hexane:EtOAc); IR (CHCl₃) 3350, 1694, 1344, 1296, 1219, 1163, 1094, 781, 748, 743, 687, 671 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.85 (d, 2H, J = 7.3 Hz, Ar-H), 7.78 (d, 2H, J = 8.2 Hz, Ar-H), 7.61 (t, 1H, J = 7.6, 7.3 Hz, Ar-H), 7.47 (t, 2H, J = 7.6, 7.9 Hz, Ar-H), 7.29 (d, 2H, J = 8.1 Hz, Ar-H), 5.64 (bs, 1H, NHTs), 4.46 (d, 2H, J = 4.6 Hz, CH₂CO), 2.39 (s, 3H, Ar-H₃); ¹³C NMR (CDCl₃, 126 MHz) δ 192.5, 143.7, 136.2, 134.4, 133.8, 129.8, 129.0, 127.8, 127.2, 48.6, 21.5; HRMS (FAB, MNBA) exact mass calcd for C₁₅H₁₅NO₃S (M + Na)+ 312.0670, found 312.0687. Anal. Calcd for C₁₅H₁₅NO₃S: C, 62.27; H, 5.23; N, 4.84. Found: C, 62.35; H, 5.07; N, 4.88.

2-(N-(p-Tolylsulfonyl)amino)tetralone. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 20 mg (0.053 mmol) of Cu(MeCN)₄ClO₄ and 0.22 g (4.2 mmol) of (1-naphthalenyloxy)trimethylsilane. Reaction time: 90 min at 0 °C. MPLC purification was carried out by elution with hexane:EtOAc (5:1) to give 111 mg (53%) of aziridine. mp 106.2-106.8 °C; TLC R_f0.27 (4:1 hexane:EtOAc); IR (CHCl₃) 3660-3120, 3025, 1690, 1605, 1460, 1405, 1360, 1338, 1295, 1165, 1098, 1005, 960, 815, 679 cm⁻¹; ¹H NMR (benzene-d₆, 500 MHz) δ 7.95 (d, 1H, J = 7.8 Hz, Ar-H), 7.86 (d, 2H, J = 8.1 Hz, Ar-H), 6.98 (t, 1H, J = 7.5, 7.4 Hz, Ar-H), 6.84 (t, 1H, J = 7.5, 7.5 Hz, Ar-H), 6.80(d, 2H, J = 7.9 Hz, Ar-H), 6.60 (d, 2H, J = 7.6 Hz, Ar-H), 6.29 (s, 1H, J)NHTs), 3.82 (dd, 1H, J = 4.6, 13.6 Hz, COCH), 2.63 (bd, 1H, J = 12.9Hz, ring-CH), 2.40 (dt, 1H, J = 4.0, 13.0 Hz, ring-CH), 2.23 (bd, 1H, J = 17.0 Hz, ring-CH), 1.89 (s, 3H, Ar-CH₃), 1.67 (dq, 1H, J = 4.2, 13.3 Hz, ring-CH); ¹³C NMR (benzene- d_6 , 126 MHz) δ 194.4, 144.7, 143.8, 134.6, 130.5, 129.6, 128.9, 128.7, 128.6, 128.2, 127.4, 60.1, 32.8, 28.5, 21.7; HRMS (FAB, MNBA) exact mass calcd for C₁₇H₁₇NO₃S $(M + Na)^+$ 338.0827, found 338.0836. Anal. Calcd for $C_{17}H_{17}NO_3S$: C, 64.74; H, 5.43; N, 4.44. Found: C, 64.80; H, 5.47; N, 4.51.

2-(N-(p-Tolylsulfonyl)amino)propiophenone. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 30 mg (0.08 mmol) of Cu(MeCN)₄ClO₄, and 0.22 g (1.0 mmol) of 2-methyl-1styrenyloxy)trimethylsilane. Reaction time: 15 min at 0 °C. MPLC purification was carried out by elution with hexane:EtOAc (5:1) to give 118 mg (58%): mp 112.2-114.8 °C; TLC R_f 0.26 (2:1 hexane:EtOAc); IR (CHCl₃) 3400-3220, 3117, 1690, 1494, 1451, 1342, 1278, 1165, 1095, 972, 814, 701, 674 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.76 (d, 2H, J = 7.3 Hz, Ar-H), 7.69 (d, 2H, J = 8.2, Ar-H), 7.58 (t, 1H, J = 1.1,7.5 Hz, Ar-H), 7.43 (t, 2H, J = 7.6 Hz, Ar-H), 7.16 (d, 2H, J = 8.1 Hz, Ar-H), 5.79 (bs, 1H, NHTs), 4.93 (m, 1H, CHCH₃), 2.31 (s, 3H, Ar- CH_3), 1.39 (d, 3H, J = 7.2 Hz, CH_3); ¹³C NMR (CDCl₃, 126 MHz) δ 198.1, 143.5, 137.1, 134.0, 133.4, 129.6, 128.8, 128.4, 127.0, 53.3, 21.4, 21.1; HRMS (FAB, MNBA) exact mass calcd for C₁₆H₁₇NO₃S (M + Na)+: 326.0827, found 326.0826. Anal. Calcd for C₁₆H₁₇NO₃S: C, 63.35; H, 5.65; N, 4.62. Found: C, 63.40; H, 5.48; N, 4.68.

1-(N-(p-Tolylsulfonyl)amino)-2-hexanone. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 30 mg (0.080 mmol) of Cu(MeCN)₄ClO₄, and 0.17 g (1.0 mmol) of (2-hexenyloxy)trimethylsilane. Reaction time: 90 min at 0 °C. MPLC purification was carried out by elution with hexane:EtOAc (5:1) to give 111 mg (53%) of aziridine: mp 78.8-79.5 °C; TLC R_f 0.27 (4:1 hexane:EtOAc); IR (CHCl₃) 3660-3160, 3018, 2964, 2918, 2880, 1730, 1588, 1495, 1400, 1342, 1300, 1160, 1120, 1048, 812, 662 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.73 (d, 2H, J = 8.2 Hz, Ar-H), 7.30 (d, 2H, J = 8.2 Hz, Ar-H), 5.34 (bs, 1H, NHTs), 3.83 (d, 2H, J = 4.6 Hz, CH₂CO), 2.42 (s, 3H, Ar-CH₃), 2.33 (t, 2H, J = 7.4 Hz, CH₂CH₂CO), 1.61-1.45 (m, 2H, CH_2), 1.25–1.17 (m, 2H, CH_2), 0.85 (t, 3H, J = 7.4 Hz, CH_3); ¹³C NMR (CDCl₃, 126 MHz) δ 203.8, 143.7, 136.1, 129.7, 127.2, 51.3, 39.8, 25.6, 22.1, 21.5, 13.6; HRMS (FAB, MNBA) exact mass calcd for C₁₃H₁₉-NO₃S (M + Na)⁺ 292.0983, found, 292.0990. Anal. Calcd for C₁₃H₁₉NO₃S: C, 57.97; H, 7.11; N, 5.2. Found: C, 58.08; H, 7.13; N,

2-(N-(p-Tolylsulfonyl)amino)phenylhexanoate. The general procedure was followed using 250 mg (0.670 mmol) of PhI=NTs, 29 mg (0.080 mmol) of Cu(MeCN)₄ClO₄, and 0.26 g (1.0 mmol) of 1-phenoxy-2-nbutyl-1-(tert-butyldimethylsiloxy)ethene. Reaction time: 1 h at -20 °C. MPLC purification was carried out by elution with hexane:EtOAc (5:1) to give 120 mg (50%) of the α -amino ester as a white crystalline solid: mp 98-99 °C; TLC R_f of 0.34 (2:1 hexane:EtOAc); IR (CHCl₃) 3020, 2964, 2938, 1760, 1494, 1349, 1090, 1060, 1032, 964, 816, 688, 660 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, 2H, J = 8.2 Hz, Ar-H), 7.24–7.10 (m, 5H, Ar-H), 6.66 (d, 2H, J = 7.5 Hz, Ar-H), 5.33 (d, 1H, J = 9.6 Hz, NHTs), 4.05 (m, 1H, CHCO), 2.33 (s, 3H, Ar-CH₃), 1.86–1.65 (m, 2H, CH₂), 1.37–1.22 (m, 4H, CH₂CH₂CH₃), 0.81 (t, 3H, J = 7.2

Hz, CH₃); 13 C NMR (CDCl₃, 101 MHz) δ 170.5, 149.9, 143.7, 136.7, 129.7, 129.3, 127.3, 126.1, 120.8, 55.7, 33.0, 27.0, 21.9, 21.4, 13.7; HRMS (FAB, MNBA) exact mass calcd for C₁₉H₂₃NO₄S (M + Na)⁺ 384.1245, found 384.1262.

N-(p-Tolylsulfonyl)-N-(1-cyclohex-2-ene)acetamidine (11). A flamedried 25-mL flask under N_2 was charged with 143 mg (0.383 mmol) of PhI=NTs. MeCN (3 mL) was added followed by addition of cyclohexene (3.90 mL) (3.16 g, 38.4 mmol). Mn(TPP)ClO₄ dissolved in 1 mL of MeCN was added. After 2 h, the homogenous solution was filtered through a plug of silica (wash with EtOAc). Purification by flash column chromatography (2- × 16-cm silica) afforded 60.3 mg (63%) of allylic insertion product 11: TLC R_f 0.18 (1:1 hexane:EtOAc); IR (CHCl₃) 3432, 3307, 3020, 2975, 2929, 1565, 1533, 1444, 1276, 1147, 1095, 1042 cm⁻¹; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.71 (d, 1H, J = 7.2 Hz, NH), 7.66 (d, 2H, J = 8.1 Hz, Ar-H), 7.33 (d, 2H, J = 8.2 Hz, Ar-H), 5.86-

5.83 (m, 1H, vinyl-CH), 5.54 (dd, 1H, J = 2.3, 10.0 Hz, vinyl-CH), 4.36–4.35 (bm, 1H, allyl-CH), 2.36 (s, 3H), 2.19 (s, 3H), 1.99–1.96 (m, 2H), 1.82–1.76 (m, 1H), 1.68–1.64 (m, 1H), 1.55–1.46 (m, 2H); 13 C NMR (DMSO- d_6 , 100 MHz) δ 164.8, 141.5, 141.2, 130.5, 129.2, 126.6, 125.7, 46.4, 27.6, 24.3, 20.9, 19.8, 19.4; HRMS (CI, NH₃) exact mass calcd for C₁₃H₂₁N₂O₂S (M + H)⁺ 293.1324, found 293.1323.

Acknowledgment. This research has been supported by the National Science Foundation and the National Institutes of Health. We are grateful to Dr. Andrew Tyler of the Harvard Mass Spectrometry Facility for mass spectra. The NIH (BRS Shared Instrumentation Grant 1 S10 RR01748-01A1) and the NSF (Grant CHE88-14019) are acknowledged for providing NMR facilities.