ГРУППЫ 20.Б12, 20.С02 VI семестр, 2022/2023 уч. год Задание №1

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Пусть дано алгебраическое или трансцендентное уравнение вида

f(x) = 0, (1

причем, известно, что все интересующие вычислителя корни находятся на отрезке [A, B], на котором функция f(x) определена и непрерывна.

Требуется найти все корни уравнения (1) на [A, B] нечетной кратности (здесь A, B, f(x) – параметры задачи).

Решение задачи разбить на два этапа:

- 1. Процедура отделения корней уравнения (1) на отрезке [A, B];
- 2. Уточнение корней уравнения (1) на отрезках перемены знака вида [ai, bi]
 - а. Методом половинного деления (методом бисекции);
 - b. Методом Ньютона (методом касательных);
 - с. Модифицированным методом Ньютона;
 - d. Методом секущих

с заданной точностью $\varepsilon > 0$ (ε – параметр задачи).

Примечания:

- 1) Требования к оформлению задачи: вывести на печать название темы, исходные параметры задачи: А, В, вид функции f(x), ε .
- 2) Отделение корней произвести способом табулирования [A, B] с шагом h>0 (где h=(B-A)/N, $N\geq 2$ параметр задачи). При реализации выбирать достаточно малые значения h. Результатом решения задачи отделения корней является последовательный вывод отрезков перемены знака функции f(x) вида [a_i, b_i] из [A, B], а также указание их количества.
- 3) При уточнении корней на каждом из отрезков [a_i, b_i] указанными методами, выводить на печать (для каждого метода)
 - название метода (для порядка));
 - начальное(ые) приближение(я) к корню;
 - количество шагов m (в каждом методе своё) для достижения точности ε , такой что $|x_m x_{m-1}| < \varepsilon$;
 - приближенное решение x_m уравнения (1), найденное каждым из упомянутых методов с точностью ε ;
 - $|x_m x_{m-1}|$ (в методе бисекции выводить длину последнего отрезка);
 - абсолютную величину невязки для прибл. решения $x_m : |f(x_m) \theta|$.

Тестовые задачи:

$1. f(x) = x - 10 \cdot \sin(x)$	[A, B] = [-5; 3]	$\epsilon = 10^{-6}$
2. $f(x) = 2^{-x} - \sin(x)$	[A, B] = [-5; 10]	$\varepsilon = 10^{-6}$
3. $f(x)=2^x-2\cos(x)$	[A, B] = [-8; 10]	$\epsilon = 10^{-6}$
4. $f(x) = sqrt(4x+7) - 3 \cdot cos(x)$	[A, B] = [-1,5; 2]	$\epsilon = 10^{-8}$
$5. f(x) = x \cdot \sin(x) - 1$	[A, B] = [-10; 2]	$\varepsilon = 10^{-5}$
6. $f(x) = 8 \cdot \cos(x) - x - 6$	[A, B] = [-9; 1]	$\epsilon = 10^{-7}$
7. $f(x) = 10 \cdot \cos(x) - 0.1 \cdot x^2$	[A, B] = [-8; 2]	$\varepsilon = 10^{-5}$
8. $f(x) = 4 \cdot \cos(x) + 0.3 \cdot x$	[A, B] = [-15; 5]	$\varepsilon = 10^{-5}$
9. $f(x) = 5 \cdot \sin(2x) - \operatorname{sqrt}(1 - x)$	[A, B] = [-15; -10]	$\varepsilon = 10^{-6}$
10. $f(x) = 1, 2 \cdot x^4 + 2 \cdot x^3 - 13 \cdot x^2 - 14, 2 \cdot x - 24, 1 \text{ [A, B]} = [-5; 5]$ $\varepsilon = 10^{\circ}$		$\varepsilon = 10^{-6}$
11. $f(x) = 2 \cdot x^2 - 2^x - 5$	[A, B] = [-3; 7]	$\varepsilon = 10^{-5}$
12. $f(x) = 2^{-x} + 0.5 \cdot x^2 - 10$	[A, B] = [-3; 5]	$\varepsilon = 10^{-8}$
13. $f(x) = \sin(x) + x^3 - 9x + 3$	[A, B] = [-5; 4]	$\epsilon = 10^{-8}$
14. $f(x) = x - \cos^2(\pi x)$	[A, B] = [-1; 2]	$\epsilon = 10^{-8}$
15. $f(x) = (x-1)^2 - \exp(-x)$	[A, B] = [-1; 3]	$\epsilon = 10^{-8}$
16. $f(x) = \sin(5x) + x^2 - 1$	[A, B] = [-3; 3]	$\varepsilon = 10^{-8}$
17. $f(x) = \cos(3x) - x^3$	[A, B] = [-2; 1]	$\epsilon = 10^{-8}$
18. $f(x) = x^2 - \sin(5x)$	[A, B] = [-2; 1]	$\varepsilon = 10^{-8}$
19. $f(x) = 1.8 \cdot x^2 - \sin(10 x)$	[A, B] = [-1; 1]	$\varepsilon = 10^{-6}$
20. $f(x) = sqrt(x) - 2 \cdot cos(\pi x/2)$	[A, B] = [0; 4.5]	$\epsilon = 10^{-8}$
21. $f(x) = x - 3 \cos^2(1.04 x)$	[A, B] = [0; 3,5]	$\varepsilon = 10^{-8}$