

Homework #3

HTTP Request Arrival Estimation (4 points)

Deadline: 14/04/2022

Assignments

- You are requested to perform and evaluate the performance of the following regression tasks:
 - Predict when the next UL Request is sent by the Video Client
 - Predict how large is the response of the Server to the next UL Request
- For the tasks at hand, you are provided with 20 traffic captures (.csv files) of ~180 [s] long Youtube Video Sessions

Assignments

Regression vs Classification

- Classification is the task of predicting a discrete class label
- Regression is the task of predicting a continuous quantity (e.g., arrival time, burst volume, etc.)
- For this homework, you can use the regression version of the Random Forest Classifier:
 - from sklearn.ensemble import RandomForestRegressor
- The training process works as well as what seen during class
- For the test phase, use Root Mean Square Error as performance metric

Assignments (1 points)

- 1. For each video session, extract features from the corresponding traffic trace:
 - a) Parse DNS responses and find Server(s) IP
 - b) Keep only the dominant traffic flow
 - c) Extract features:
 - a) Size of last observed HTTP Request
 - b) Inter Request-Response Time
 - c) Server Burst Download Time
 - d) Server Burst Volume
 - e) # of Packets in Server Burst
 - f) Playback Time
- 2. Join sessions' data in a single dataset (vertical concatenation of single session dataset)

What to expect as dataset output

₽		Request_Size	Inter_RR_Time	DL_Time	DL_Vol	DL_Size	PB_Time
	0	660	0.009949	0.015693	512272	340	31.785389
	1	660	0.009757	0.039912	1016740	674	33.786951
	2	660	0.011463	0.279520	509764	339	36.788042
	3	660	0.010261	0.122553	1027372	682	38.789221
	4	660	0.003953	0.392465	1029212	682	41.793379

Assignments (3 points)

- 3. For each video session, extract groundtruth from the corresponding traffic trace to:
 - a) (2 Points) Estimate the arrival time of next HTTP Request:
 - HINT: The arrival time of the next HTTP Request is the time between the last DL packet and the next "large" UL packet...
 - b) (1 Point) Predict the size of next burst from the server
 - HINT: this groundtruth comes from free from "Server Burst Volume" feature...

What to expect as groundtruth output

	Next_Request_Time	Next_Response_Vol
0	1.975919	1016740.0
1	2.951421	509764.0
2	1.710192	1027372.0
3	2.871343	1029212.0
4	1.608527	510772.0

My prediction performance:

- a) Estimate the arrival time of next HTTP Request:
 - RMSE = 4.85 [s]
- b) Predict the size of next burst from the server
 - RMSE = 389.73 [KB]

Hands On!

You can use Homework_Skeleton.ipyn for this homework!