Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figur C -3250.000 -3500.000 -3750.000 -4000.000 Radiell fart m/s -4250.000 -4500.000 -4750.000 -5000.000 -5250.000 ò 500 1000 1500 2000 2500 3000 Tidspunkt for observasjon (timer)

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt Luminositeten øker med en faktor 9.40e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

STJERNE B) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

STJERNE C) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer

hydrogen til helium i kjernen

STJERNE D) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) stjerna er bare noen hundretusen år gammel men skal allerede snart begynne sin første heliumfusjon

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 2.070e+06 kg/m $\hat{3}$ og temperatur 15 millioner K.

Kjernen i stjerne B har massetet
thet 9.734e+06 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne C har massetet
thet $5.628\mathrm{e} + 06~\mathrm{kg/m}\hat{3}$ og temperatur 26

millioner K.

Kjernen i stjerne D har massetet
thet 2.528e+06 kg/m3̂ og temperatur 20 millioner K.

Kjernen i stjerne E har massetet
thet 7.294e+06 kg/m3̂ og temperatur 36 millioner K.

Filen 1K/1K.txt

Påstand 1: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 2: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: denne stjerna er lengst vekk

Påstand 4: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L_Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.556\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.41 millioner K.

Kjernen i stjerne B har massetet
thet 1.088e+05 kg/m3̂ og temperatur 29.81 millioner K.

Kjernen i stjerne C har massetet
thet $1.344\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 27.00

millioner K.

Kjernen i stjerne D har massetet
thet 2.896e+05 kg/m3̂ og temperatur 17.30 millioner K.

Kjernen i stjerne E har massetet
thet 1.280e+05 kg/m3̂ og temperatur 35.37 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 1O/1O.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 1.86 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.14130 km/t.

Filen 3E.txt

Tog1 veier 99300.00000 kg og tog2 veier 71200.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 492 km/s.

Filen 4E.txt

Massen til gassklumpene er 4400000.00 kg.

Hastigheten til G1 i x-retning er 8400.00 km/s.

Hastigheten til G2 i x-retning er 11580.00 km/s.

Filen 4G.txt

Massen til stjerna er 16.45 solmasser og radien er 3.76 solradier.