CS473-Algorithms I

Lecture 16

Strongly Connected Components

Definition: a strongly connected component (SCC) of a directed graph G=(V,E) is a maximal set of vertices $U\subseteq V$ such that

- For each $u,v \in U$ we have both $u \mapsto v$ and $v \mapsto u$ i.e., u and v are mutually reachable from each other ($u \stackrel{\iota}{\to} v$)

Let $G^T = (V, E^T)$ be the *transpose* of G = (V, E) where $E^T = \{(u, v): (u, v) \in E\}$

– i.e., \mathbf{E}^{T} consists of edges of G with their directions reversed Constructing \mathbf{G}^{T} from G takes $\mathbf{O}(\mathbf{V}+\mathbf{E})$ time (adjacency list rep) Note: G and \mathbf{G}^{T} have the same SCCs ($u \stackrel{\iota}{\rightarrow} v \text{ in } \mathbf{G} \Leftrightarrow u \stackrel{\iota}{\rightarrow} v \text{ in } \mathbf{G}^{\mathrm{T}}$)

Algorithm

- (1) Run DFS(G) to compute finishing times for all $u \in V$
- (2) Compute G^T
- (3) Call $DFS(G^T)$ processing vertices in main loop in decreasing f[u] computed in Step (1)
- (4) Output vertices of each DFT in DFF of Step (3) as a separate SCC

Lemma 1: no path between a pair of vertices in the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC $\Rightarrow u \stackrel{\iota}{\Rightarrow} v$

let w be on some path
$$u \mapsto w \mapsto v \Rightarrow u \mapsto w$$

but
$$v \mapsto u \Rightarrow \exists$$
 a path $w \mapsto v \mapsto u \Rightarrow w \mapsto u$

therefore u and w are in the same SCC

QED

(1) Run DFS(G) to compute finishing times for all $u \in V$

(1) Run DFS(G) to compute finishing times for all $u \in V$

(1) Run DFS(G) to compute finishing times for all $u \in V$

Vertices sorted according to the finishing times:

$$\langle b, e, a, c, d, g, h, f \rangle$$

(2) Compute G^T

(4) Output vertices of each DFT in DFF as a separate SCC

Thrm 1: in any DFS, all vertices in the same SCC are placed in the same DFT

Proof: let r be the first vertex discovered in SCC S_r because r is first, $\operatorname{color}[x]=\operatorname{white} \ \forall x \in S_r - \{r\}$ at time $\operatorname{d}[r]$ So all vertices are white on each $r \mapsto x$ path $\forall x \in S_r - \{r\}$ – since these paths never leave S_r

Hence each vertex in $S_r - \{r\}$ becomes a descendent of r

(White-path Thrm)

QED

Notation for the Rest of This Lecture

- d[u] and f[u] refer to those values computed by DFS(G) at step (1)
- $u \mapsto v$ refers to G not G^T

Definition: forefather $\phi(u)$ of vertex u

- 1. $\phi(u) = \text{That vertex } w \text{ such that } u \mapsto w \text{ and } f[u] \text{ is } maximized$
- 2. $\phi(u) = u$ possible because $u \mapsto u \Longrightarrow f[u] \le f[\phi(u)]$

Lemma 2: $\phi(\phi(u)) = \phi(u)$

Proof try to show that $f[\phi(\phi(u))] = f[\phi(u)]$:

For any $u, v \in V$; $u \mapsto v \Rightarrow R_v \subseteq R_u \Rightarrow f[\phi(v)] \le f[\phi(u)]$

So,
$$u \mapsto \phi(u) \Rightarrow f[\phi(\phi(u))] \leq f[\phi(u)]$$

Due to definition of $\phi(u)$ we have $f[\phi(\phi(u))] \ge f[\phi(u)]$

Therefore $f[\phi(\phi(u))] = f[\phi(u)]$

QED

Note:

$$f[x] = f[y] \Rightarrow$$
 $x = y$
(same vertex)

Properties of forefather:

- Every vertex in an SCC has the same forefather which is in the SCC
- Forefather of an SCC is the representative vertex of the SCC
- In the DFS of G, forefather of an SCC is the
 - first vertex discovered in the SCC
 - last vertex finished in the SCC

THM2: $\phi(u)$ of any $u \in V$ in any DFS of G is an ancestor of u

PROOF: Trivial if $\phi(u) = u$.

If $\phi(u) \neq u$, consider color of $\phi(u)$ at time d[u]

- $\phi(u)$ is GRAY: $\phi(u)$ is an ancestor of $u \Rightarrow$ proving the theorem
- $\phi(u)$ is BLACK: $f[\phi(u)] < f[u] \Rightarrow$ contradiction to def. of $\phi(u)$
- $\phi(u)$ is WHITE: \exists 2 cases according to colors of intermediate vertices on $p(u, \phi(u))$

Path $p(u, \phi(u))$ at time d[u]:

Case 1: every intermediate vertex $x_i \in p(u, \phi(u))$ is WHITE

- $\Rightarrow \phi(u)$ becomes a descendant of u (WP-THM)
- $\Rightarrow f[\phi(u)] < f[u]$
- \Rightarrow contradiction

Case 2: \exists some non-WHITE intermediate vertices on $p(u, \phi(u))$

- Let x_t be the last non-WHITE vertex on $p(u, \phi(u)) = \langle u, x_1, x_2, ..., x_r, \phi(u) \rangle$
- Then, x_t must be GRAY since BLACK-to-WHITE edge (x_t, x_{t+1}) cannot exist
- But then, $p(x_t, \phi(u)) = \langle x_{t+1}, x_{t+2}, \dots, x_r, \phi(u) \rangle$ is a white path
- $\Rightarrow \phi(u)$ is a descendant of x_t (by white-path theorem)
- $\Rightarrow f[x_t] > f[\phi(u)]$
- \Rightarrow contradicting our choice for $\phi(u)$ Q.E.D.

C1: in any DFS of G = (V, E) vertices u and $\phi(u)$ lie in the same SCC, $\forall u \in V$

PROOF: $u \mapsto \phi(u)$ (by definition) and $\phi(u) \mapsto u$ since $\phi(u)$ is an ancestor of u (by THM2)

THM3: two vertices $u,v \in V$ lie in the same SCC $\Leftrightarrow \phi(u) = \phi(v)$ in a DFS of G = (V, E)

PROOF: let u and v be in the same SCC $C_{uv} \Rightarrow u \stackrel{l}{\Rightarrow} v$

 $\forall w: v \mapsto w \Rightarrow u \mapsto w \text{ and } \forall w: u \mapsto w \Rightarrow v \mapsto w, \text{ i.e.,}$ every vertex reachable from u is reachable from v and vice-versa So, $w = \phi(u) \Rightarrow w = \phi(v)$ and $w = \phi(v) \Rightarrow w = \phi(u)$ by definition of forefather

PROOF: Let $\phi(u) = \phi(v) = w \in C_w \Rightarrow u \in C_w$ by C1 and $v \in C_w$ by C1

By THM3: SCCs are sets of vertices with the same forefather

By THM2 and parenthesis THM: A forefather is the first vertex discovered and the last vertex finished in its SCC

SCC: Why do we Run DFS on GT?

Consider $r \in V$ with largest finishing time computed by DFS on G r must be a forefather by definition since $r \mapsto r$ and f[r] is maximum in V

```
C_r = ?: C_r = \text{vertices in } r's SCC = \{u \text{ in } V: \phi(u) = r\}

\Rightarrow C_r = \{u \in V: u \mapsto r \text{ and } f[x] \leq f[r] \ \forall x \in R_u\}

where R_u = \{v \in V: u \mapsto v\}

\Rightarrow C_r = \{u \in V: u \mapsto r\} \text{ since } f[r] \text{ is maximum}

\Rightarrow C_r = R_r^T = \{u \in V: r \mapsto u \text{ in } G^T\} = \text{reachability set of } r \text{ in } G^T

i.e., C_r = \text{those vertices reachable from } r \text{ in } G^T

Thus DFS-VISIT(G^T, r) identifies all vertices in C_r and
```

Thus DFS-VISIT(G^{T} , r) identifies all vertices in C_{r} and blackens them

SCC: Why do we Run DFS on GT?

 $BFS(G^T, r)$ can also be used to identify C_r

Then, DFS on G^T continues with DFS-VISIT(G^T , r') where $f[r'] > f[w] \forall w \in V - C_r$

r must be a forefather by definition since $r' \mapsto r'$ and f[r'] is maximum in $V - C_r$

SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT(G^T , r') identifies $C_{r'}$

Impossible since otherwise r', $w \in C_r \Rightarrow r'$, w would have been blackened

Thus, each DFS-VISIT(G^T , x) in DFS(G^T) identifies an SCC C_x with $\phi = x$