

Professora: Aline de Oliveira Contagem, 2020

CLASSIFICAÇÃO DAS SUBSTÂNCIAS

Substâncias simples

São formadas por átomos de um mesmo elemento químico. Exemplos: H_2 , O_2 , S_8 e He.

São formadas por átomos de elementos químicos

Substâncias compostas (compostos químicos)

diferentes. Exemplos: H₂O, CO₂, NaCl e C₂H₆O

Dadas as fórmulas químicas das substâncias, indique se são do tipo simples ou composta.

Indique também os átomos e suas respectivas quantidades na fórmula química das substâncias.

- (a) CaCl₂: substância composta; 1 átomo de cálcio e 2 átomo de cloro.
- (b) Xe: substância simples; 1 átomo de xenônio.
- (c) P₄: substância simples; 4 átomos de fósforo.
- (d) NaI: substância composta; 1 átomo de sódio e 1 átomo de iodo.
- (e) Mg(OH)₂: substância composta; 1 átomo de magnésio; 2 átomos de oxigênio; 2 átomos de hidrogênio.
- (f) $Al_2(SO_4)_2$: substância composta; 2 átomos de alumínio; 2 átomos de enxofre; 8 átomos de oxigênio.

CLASSIFICAÇÃO DAS SUBSTÂNCIAS

Substâncias simples

São formadas por átomos de um mesmo elemento químico. Exemplos: H_2 , O_2 , S_8 e He.

Substâncias compostas (compostos químicos)

São formadas por átomos de elementos químicos diferentes. Exemplos: H₂O, CO₂, NaCl e C₂H₆O

Dadas as fórmulas químicas das substâncias, indique se são do tipo simples ou composta.

Indique também os átomos e suas respectivas quantidades na fórmula química das substâncias.

- (a) CaCl₂: substância composta; 1 átomo de cálcio e 2 átomo de cloro.
- (b) Xe: substância simples; 1 átomo de xenônio.
- (c) P₄: substância simples; 4 átomos de fósforo.
- (d) NaI: substância composta; 1 átomo de sódio e 1 átomo de iodo.
- (e) Mg(OH)₂: substância composta; 1 átomo de magnésio; 2 átomos de oxigênio; 2 átomos.
- (f) Al₂(SO₄)₂: substância composta; 2 átomos de alumínio; 2 átomos de enxofre; 8 átomos de oxigênio.

CLASSIFICAÇÃO DAS SUBSTÂNCIAS

Exercício 01. Dadas as fórmulas químicas das substâncias, indique se são do tipo simples ou composta. Indique também os átomos e suas respectivas quantidades na fórmula química das substâncias.

- (a) I₂:
- (b) Au:
- (c) Li₂O:
- (d) MgF_2 :
- (e) KBr:
- (f) $Cu(NO_3)_2$:
- (g) $Ca_3(PO_4)_2$:

SUBSTÂNCIA PURA E MISTURAS

- ☐ Substâncias puras são constituídas por um só tipo de molécula ou aglomerado iônico.
- ☐ Misturas homogêneas: consiste em moléculas (ou espécies químicas) diferentes misturadas.

Dados os sistemas a seguir, identifique se são substâncias puras ou misturas. Indique também se as substâncias que constituem os sistemas são simples ou compostas.

Substância pura Uma substância composta

Mistura Duas substâncias, uma simples e outra composta

Duas substâncias simples

SUBSTÂNCIA PURA E MISTURAS

Exercícios 02: Dados os sistemas A, B e C a seguir, identifique se são substâncias puras ou misturas. Indique também se as substâncias que constituem os sistemas são simples ou compostas.

Sistema A

Partícula	Massa	Carga elétrica		
Próton	1	+1		
Nêutron	1	0		
Elétron	1/1836	-1		

A **eletrosfera** tem volume praticamente igual ao volume dos átomos

A identificação dos átomos

Número atômico (Z): é o número de prótons existentes no núcleo de um átomo.

O número de elétrons é igual ao número atômico em um elemento neutro.

Átomo neutro: #elétrons = #prótons

Número de massa (A): é a soma do número e prótons (Z) e de nêutrons (N) existente em um átomo.

$$A = Z + N$$

Elemento químico: é o conjunto de átomos com o mesmo número atômico

Portanto: o número atômico identifica o elemento químico.

Notação geral de um átomo

A_ZX

X = símbolo do elemento.

A = número de massa.

Z = número atômico.

$$A = Z + N$$

$$N = A - Z$$

$$A = 23$$

$$Z = 11$$

$$N = 23 - 11 = 12$$

$$A = 23$$

$$Z = 11$$

$$N = 22 - 11 = 11$$

$$A = 35$$

$$Z = 17$$

$$N = 35 - 17 = 18$$

$$A = 37$$

$$Z = 17$$

$$N = 37 - 17 = 20$$

Íons

São átomos que ganharam ou perderam elétrons (Xcarga).

Cátion: é um átomo que perdeu elétrons e consequentemente torna-se um íon positivo. Exemplos: Na⁺, Zn²⁺, Al³⁺.

Ânion: é um átomo que ganhou elétrons e consequentemente torna-se um íon negativo. Exemplos: Cl⁻, S²⁻, Br⁻.

Quando um átomo ganha elétrons, seu tamanho aumenta. Quando o átomo perde elétrons, diminui de tamanho. No entanto, em ambos os casos sua massa praticamente não se altera, pois a massa dos elétrons é desprezível.

$$S + 2e \rightarrow S^{2}$$

Massa de $S = massa de S^{2-}$

S²- é maior do que S

Al
$$\rightarrow$$
 Al³⁺ + 3e-

Massa de Al = massa de Al $^{3+}$

Al³⁺ é menor do que Al

Identifique a qual elemento químico as seguintes espécies pertencem. Indique também para cada caso o número de prótons (Z), neutros (N) e elétrons (#e-).

		A = Z + N	N = A - Z					
¹⁶ ₈ E ²⁻								
¹⁶ ₈ D								
$^{52}_{24}B^{3+}$								
⁵² ₂₄ A								
Espécie	Z	A	N	Ganhou ou perdeu e-	#e-	Elemento		
também para cada caso o mamero de protons (2), neddros (11) e electrons (11e).								

Exercício 03: Identifique a qual elemento químico as seguintes espécies pertencem.

Indique também para cada caso o número de prótons (Z), nêutrons (N) e elétrons (#e-).

$$_{25}^{55}A^{2+}$$

$$^{127}_{53}B^{-}$$

Identifique a qual elemento químico as seguintes espécies pertencem. Indique também para cada caso o número de prótons (Z), neutros (N) e elétrons (#e-).

Espécie	Z	A	N	Ganhou ou perdeu e-	#e-	Elemento	
⁵² ₂₄ A	24	52	52-24=28	não	24	Cr	
$^{52}_{24}B^{3+}$	24	52	52-24=28	Perdeu 3	24-3=21	Cr	
¹⁶ ₈ D	8	16	16-8=8	não	8	О	
¹⁶ ₈ E ²⁻	8	16	16-8=8	Ganhou 2	8+2=10	О	

$$A = Z + N \qquad N = A - Z$$

Exercício 03: Identifique a qual elemento químico as seguintes espécies pertencem.

Indique também para cada caso o número de prótons (Z), nêutrons (N) e elétrons (#e-).

$${}^{55}_{25}A^{2+}$$

$$^{127}_{53}B^{-}$$

Diagrama de Pauling

Os elétrons recebidos ou perdidos pelos átomos para formarem os íons são recebidos ou retirados da última camada eletrônica.

Camada de valência

É a última camada de elétrons de um elemento químico (camada com maior número quântico principal)

Distribuição eletrônica

			Е	xemp	olos:		
(a)	Sr:						
(b)	Sr ²	+:					
(c)	As:						
(d)	Be:						
(e)	0:						
(f)	0^{2-1}	•					
				38Sr 33As			
				33As			
				₄ Be			
				₈ O			

Distribuição eletrônica

Exemplos:

- (a) Sr: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2$
- (b) Sr^{2+} : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6$
- (c) As: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^3$
- (d) Be: 1s² 2s²
- (e) $0: 1s^2 2s^2 2p^4$
- (f) 0^2 : $1s^2 2s^2 2p^6$

38Sr

₃₃As

₄Be

 ^{8}O

Exercícios 04: realize a distribuição eletrônica das espécies abaixo.

- (a) Mg
- (b) Mg^{2+}
- (c) N
- (d) C
- (e) Br
- (f) Br