2010-2011 学年线性代数 I (H) 期末

任课老师: 统一命卷 考试时长: 120 分钟

- 一、(10 分) 求全部的实数 a,使线性方程组 $\begin{cases} 3x_1 + 2x_2 + x_3 = 2 \\ x_1 x_2 2x_3 = -3 \end{cases}$ 的解集非空. $ax_1 2x_2 + 2x_3 = 6$
- 二、 $(10 \, \text{分})$ 设 $M_{3\times 2}(\mathbf{F})$ 是数域 \mathbf{F} 上全体 3×2 矩阵构成的线性空间,

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

定义 $T: M_{3\times 2}(\mathbf{F}) \to M_{3\times 2}(\mathbf{F})$ 如下,对任意的 $A \in M_{3\times 2}(\mathbf{F})$ 有 T(A) = PAQ.

- (1) 证明 T 是线性映射.
- (2) 求出 T 的像空间和核空间.
- (3) 验证关于 T 的维数公式.
- 三、 $(10 \, \text{分})$ 设 A 和 B 是 n 阶方阵, 其中 n 是奇数. 若 AB = -BA, 证明: A 是不可逆的或者 B 是不可逆的.
- 四、(10 分) 设 V 是欧氏空间, $\mathbf{u}, \mathbf{v} \in V$ 且 $\mathbf{v} \neq \mathbf{0}$. 证明

$$|(\mathbf{u}, \mathbf{v})| = |\mathbf{u}||\mathbf{v}|$$

当且仅当存在 $\lambda \in \mathbf{R}$, 使 $\mathbf{u} = \lambda \mathbf{v}$.

- 五、 $(10 \, \text{分})$ 设 $A = (a_{ij})_{n \times n}$ 是实正交矩阵.
 - (1) 证明 $|\sum_{i=1}^{n} a_{ii}| \leq n$.
 - (2) 在什么条件下等式成立?
- 六、 $(10\ eta)$ 求 2×2 实矩阵 A,使得 A 的特征值是 2 和 1,而对应于 2 的特征子空间由 $\begin{pmatrix} 1\\1 \end{pmatrix}$ 生成,对应于 1 的特征子空间由 $\begin{pmatrix} 2\\1 \end{pmatrix}$ 生成.
- 七、 $(10 \, \text{分})$ 设 n 阶方阵 A 和 B 都可对角化,并且它们有相同的特征子空间(但不一定有相同的特征值),证明 AB = BA.

$$f(x, y, z) = 2x^2 - 8xy + y^2 - 16xz + 14yz + 5z^2.$$

- (1) 给出 3×3 实对称矩阵 A,使 $f(x,y,z) = (x,y,z)A(x,y,z)^{T}$.
- (2) 给出一个与 A 相合的对角矩阵.
- (3) 给出 A 的秩,正惯性指数和负惯性指数.
- 九、(20分)判断下面命题的真伪. 若它是真命题,给出一个简单证明; 若它是伪命题,举一个具体的反例将它否定.
 - (1) 若线性映射 $T_1, T_2: V \to W$ 对 V 的一组基中的每一个基向量 v 满足 $T_1(v) = T_2(v)$,则 $T_1 = T_2$.
 - (2) 若对于任何正整数 n, 方阵 A (阶数大于 1) 的 n 次乘积 A^n 都是非零方阵,则 A 可逆.
 - (3) 若线性映射 $T: V \to W$ 的核是 K, 则 $\dim V = \dim W + \dim K$.
 - (4) 若方阵 A 相似于方阵 B, 则 A 与 B 有相同的特征向量.