2. THE BOUNDARY SPECTRUM

In Chapter B-III we have seen that under suitable assumptions the boundary spectrum $\sigma_b(A)$, which consists of all spectral values with maximal real part, is a cyclic set (cf. B-III,Def.2.5). In the main theorem of this section we prove a result which is more general and which is true for arbitrary Banach lattices.

We first want to extend some of the notions used in B-III to the more general setting considered here. If E is a Banach lattice and f,g \in E such that g \in E f , then (sign f)g is well-defined (cf. Sec.8 of C-I). Thus the following definition makes sense:

<u>Definition</u> 2.1. If E is a Banach lattice then for $f \in E$, $n \in \mathbb{Z}$ we define $f^{[n]}$ recursively as follows:

(2.1)
$$f^{[0]} := |f| \\ f^{[n]} := (sign f) f^{[n-1]} & if n > 0 \\ f^{[n]} := (sign \overline{f}) f^{[n+1]} & if n < 0.$$

Obviously, for E = $C_0(X)$ this amounts to the same as B-III,Def.2.2. Moreover, in case E is an L^p -space, then $f^{[n]}$ is the function given by

(2.2)
$$f^{[n]}(x) = \begin{cases} (f(x)/|f(x)|)^{n-1}f(x) & \text{if } f(x) \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

The following properties are immediate consequences of Def.2.1:

(2.3)
$$f^{[0]} = |f|$$
, $f^{[1]} = f$, $f^{[-1]} = \overline{f}$, $|f^{[n]}| = |f|$ (n $\in \mathbb{Z}$)

(2.4)
$$f^{[n]} = (\text{sign } f) f^{[n-1]} = (\text{sign } \overline{f}) f^{[n+1]}$$
 for all $n \in \mathbb{Z}$;

(2.5)
$$(\alpha f)^{[n]} = \alpha (\alpha/|\alpha|)^{n-1} f^{[n]}$$
 for $n \in \mathbb{Z}$, $\alpha \in \mathbb{C}$, $\alpha \neq 0$.

Next we show that B-III, Thm.2.4 is true for arbitrary Banach lattices. For defintion and simple properties of the signum operator S_h see C-I, Sec.8.

Theorem 2.2. Let $(T(t))_{t\geq 0}$ be a positive semigroup on a Banach lattice E with generator A and suppose that for $h\in E$, $\alpha,\beta\in\mathbb{R}$ we have

(2.6)
$$Ah = (\alpha + i\beta)h$$
, $A|h| = \alpha|h|$.