The Ratio and Root Test

October 11, 2006

The Ratio Test

1. If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1,$$

then the series $\sum a_n$ is absolutely convergent.

2. If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1 \quad \text{or} \quad \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty,$$

then the series $\sum a_n$ is divergent.

3. If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1,$$

the Ratio Test is inconclusive.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$
.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$$
.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$
.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$$
.

$$\bullet \ \sum_{n=1}^{\infty} e^{-n} n!.$$

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$
.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$$
.

$$\bullet \ \sum_{n=1}^{\infty} e^{-n} n!.$$

•
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$
.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$$
.

$$\bullet \ \sum_{n=1}^{\infty} e^{-n} n!.$$

$$\bullet \ \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

$$\bullet \quad \sum \frac{(n+3)!}{3!n!3^n}$$

The Root Test

- 1. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum a_n$ is absolutely convergent.
- 2. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum a_n$ is divergent.
- 3. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

Lecture 10

$$\bullet \sum \frac{(-1)^n}{(\ln n)^n}$$

$$\bullet \quad \sum \frac{(-1)^n}{(\ln n)^n}$$

$$\bullet \sum \frac{(-1)^n}{n \ln n}$$

$$\bullet \sum \frac{(-1)^n}{(\ln n)^n}$$

$$\bullet \sum \frac{(-1)^n}{n \ln n}$$

•
$$\sum \frac{(-1)^n}{(\arctan n)^n}$$