

Class AB Stereo Headphone Driver with Mute

Features

- High Signal-to-Noise Ratio
- High Slew Rate
- Low Distortion
- Large Output Voltage Swing
- Flexible Mute Function
- Excellent Power Supply Ripple Rejection
- Low Power Consumption
- Short-circuit Elimination
- Wide Temperature Range
- No Switch ON/OFF Clicks
- Integrated Voltage Divider (V_{DD}/2) to Eliminate External Resistors

Applications

Portable Digital Audio

General Description

The APA3541/4 is an integrated class AB stereo headphone driver contained in an SO-8 or a DIP-8 plastic package with Mute feature . Besides the common Mute feature , the APA3541/4 further integrates a voltage divider inside the chip . Thus , the external resistors can be eliminated . The APA3541 has a fixed gain of 0dB and the APA3544 has a fixed gain of 6dB so that external gain setting is unnecessary. The device is fabricated in a CMOS process and has been primarily developed for portable digital audio applications .

Ordering and Marking Information

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Block Diagram

^{*} The values in parenthessis are for the APA3544.

Function Pin Description

Pin Name	I/O	Function Description
Out A	0	A channel output pin
Mute	I	Chip disable control input, low active and high for normal operating
Input A	I	A channel input terminal
V _{ss}		Power ground pin
Input B	I	B channel input terminal
BIAS	I	Right channel bias input pin
OUT B	0	B channel output pin
V_{DD}		Power input pin

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V_{DD}	Supply Voltage	7	V
t _{SC(O)}	Output Short-circuit Duration, at T _A =25°C, P _{tot} =1W	20	S
T_{A}	Operating Ambient Temperature range	-40 to 85	°C
T₁	Maximum Junction Temperature	150	°C
$T_{\mathtt{STG}}$	Storage Temperature Range	-65 to +150	°C
Ts	Soldering Temperature,10 seconds	300	°C
V _{ESD}	Electrostatic Discharge	-3000 to 3000 *1	V

Note: 1. Human body model : C=100pF, R=1500 Ω , 3 positive pulses plus 3 negative pulses

Thermal Characteristics

Symbol	Parameter	Rating	Unit
R_{THJA}	Thermal Resistance from Junction to Ambient in Free Air		
	DIP-8	108	K/W
	SOP-8	210	
R_{THJC}	Thermal Resistance from Junction to Case		
	DIP-8	45	K/W
	SOP-8	40	

Electrical Characteristics

 $\rm V_{IN} = 0 dBV, \ V_{CC} = 5V, \ T_A = 25^{\circ}C, \ f = 1 kHz, \ R_L = 32\Omega \ (unless \ otherwise \ noted)$

Symbol Parameter		Tost Condition	Test Condition		PM354	1/4	Unit	
Symbol	Farameter	Test Condition	Min.	Тур.	Max.	Onit		
V _{DD}	Supply Voltage			3.0	5.0	6.0	V	
IQ	Quiescent Current	VIN= 0 Vrms			3.5	5	mA	
Imute	Mute Current				200		μΑ	
Vтм	Mute Terminal Voltage			0.3	0.7	1.6	V	
ΔG VCL	Differential Channel Voltage Gain			-0.5	0	0.5	dB	
	Valta na Cair	Vin=1Vrms,f= 1kHz,RL=32 Ω	APA3541	-2	0	2	-10	
Gvcl	Voltage Gain	Vin=0.5Vrms, f=1kHz,RI=32Ω	APA3544	4	6	8	dB	
THD	Total Harmonic Channel Distortion Factor	BW<80kHz	1		0.03	0.1	%	
P _{U1}	Rated Output Power1	RL=32Ω,THD+N=0.1%,BW<8	APA3541	50	55		mW	
1 01	italed Odiput i Ower i	0kHz	APA3544	75	80		- 11100	
Pu ₂	Rated Output Power2	RL=16Ω,THD+N=0.1%,BW<8	APA3541	105	110		mW	
1 02	Rated Output Fower2	0kHz	APA3544	140	145		IIIVV	
Vno	Output Noise Voltage	BW=20~20kHz , Vin=0Vrms			-93	-85	dBV	
CS	Oh a sa a li O a sa a sa d'a sa	E 4111-	APA3541	-90	-95		J.D.	
CS	Channel Separation	F=1kHz	APA3544	-65	-70		dB	
ATT	Mute Attenuation	VIN=1Vrms,f=1kHz,Mute=L		65	70		dB	
RR	Ripple Rejection	F _{RR} =100Hz,V _{RR} =-20dBV		50	60		dB	

Test and Application Circuit

Typical Characteristics

Figure 2 : Supply Voltage : $V_{DD}(V)$

Figure 3 : Mute Control Voltage : $V_{TM}(V)$

Figure 4: Frequency: f (Hz)

Typical Characteristics Cont.

Figure 5 : Output Voltage : V_{OUT} (dBv)

Figure 6 : Output Voltage : V_{OUT} (dBv)

Figure 7 : Output Voltage : V_{OUT} (dBv)

Figure 8 : Output Voltage : V_{OUT} (dBv)

6

Typical Characteristics Cont.

Figure 9: Frequency: f (Hz)

Figure 10: Frequency: f (Hz)

Figure 11 : Supply Voltage : $V_{DD}(V)$

Application Note

Input Capacitor, Ci

In the typical application an input capacitor, Ci, is required to allow the amplifier to bias the input signal to the proper DC level for optimum operation . In this case, the external capacitor Ci and the internal resistance Ri form a high-pass filter with the corner frequency determined in the follow equation:

fc (highpass)=
$$1/(2\pi RiCi)$$
 (1)

The value of Ci is important to consider as it directly affects the low frequency performance of the circuit. Consider the APA3541 where Ri is $180k\Omega$ and APA3544 is $90k\Omega$ internal fixed . Equation is reconfigured as follow:

Ci=
$$1/(2\pi^*180k\Omega^*fc)$$
 for APA3541
Ci= $1/(2\pi^*90k\Omega^*fc)$ for APA3544 (2)
And the ceramic capacitor is recommanded.

Bias Capacitor, Cb

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. The effect of a larger half supply bias capacitor is improved PSRR due to increased half-supply stability. Typical applications employ a 5V regulator with $10\mu F$ and a $0.1\mu F$ bias capacitors which aid in supply filtering.

This does not eliminate the need for bypassing the supply nodes of the APA3541/4. The selection of bias capacitors, especially Cb, is thus dependent upon desired PSRR requirements, click and pop performance . The capacitor is fed from a $95k\Omega$ source inside the amplifier. To keep the start-up pop as low as possible, the relationship shown in equation should be maintained.

$$1/(Cb*95k\Omega) \le 1/\{Ci*Ri\}$$
 (3)

As an example, consider a circuit where Cb is $4.7\mu F$, Ci is $1\mu F$ and APA3541 Ri is $180k\Omega$. Inserting these values into the equation we get 2.24≤ 5.55 which satisfies the rule . Bias capacitor , Cb , values of 2.2μF to 10μF ceramic or tantalum low-ESR capacitors are recommended for the best THD and noise performance.

Output Coupling Capacitor, Cc

In the typical single-supply SE configuration, an output coupling capacitor (Cc) is required to block the DC bias at the output of the amplifier thus preventing DC currents in the load. As with the input coupling capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by equation.

$$fc(highpass) = 1/(2\pi R_{L}Cc)$$
 (4)

For example, a 220 μ F capacitor with an 32 Ω speaker would attenuate low frequencies below 22Hz. The main disadvantage, from a performance standpoint , is the load impedance is typically small, which drives the low-frequency corner higher degrading the bass response. Large values of Cc are required to pass low frequencies into the load.

Optimizing Depop Circuitry

When the amplifier is in mute mode, both of the output stage and input bypass continues to be biased. And no pop noise will be heard during the transition out of mute mode.

Power Supply Decoupling, Cs

APA3541/4 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents the oscillations causing by long lead length between the amplifier and the speaker. The optimum decoupling is achieved by using two different type capacitors that target on different type of noise on the power supply leads . For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1µF placed as close as possible to the device V lead works best . For filtering lowerfrequency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near the audio power amplifier is recommended.

Packaging Information

PDIP-8 pin (Reference JEDEC Registration MS-001)

Dim	Millin	neters	Inches		
	Min.	Max.	Min.	Max.	
Α		5.33		0.210	
A1	0.38		0.015		
A2	2.92	3.68	0.115	0.145	
D	9.02	10.16	0.355	0.400	
e1	2.54BSC		0.100BSC		
e2	0.36	0.56	0.014	0.022	
e3	1.14	1.78	0.045	0.070	
E	7.62 BSC		0.300 BSC		
E1	6.10	7.11	0.240	0.280	
E3		10.92		0.430	
L	2.92	3.81	0.115	0.150	
φ1	1	5°		15°	

Packaging Information

SOP-8 pin (Reference JEDEC Registration MS-012)

Dim	Millimeters		Incl	hes
Dilli	Min.	Max.	Min.	Max.
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
D	4.80	5.00	0.189	0.197
Е	3.80	4.00	0.150	0.157
Н	5.80	6.20	0.228	0.244
L	0.40	1.27	0.016	0.050
e1	0.33	0.51	0.013	0.020
e2	1.27	1.27BSC		BSC
φ 1	8	0	8°	

Physical Specifications

Terminal Material	Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb)
Lead Solderability	Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.

Reflow Condition (IR/Convection or VPR Reflow)

Reference JEDEC Standard J-STD-020A APRIL 1999

Classification Reflow Profiles

	Convection or IR/ Convection	VPR
Average ramp-up rate(183°C to Peak)	3°C/second max.	10 °C /second max.
Preheat temperature 125 ± 25°C)	120 seconds max	
Temperature maintained above 183°C	60 - 150 seconds	
Time within 5°C of actual peak temperature	10 –20 seconds	60 seconds
Peak temperature range	220 +5/-0°C or 235 +5/-0°C	215-219°C or 235 +5/-0°C
Ramp-down rate	6 °C /second max.	10 °C /second max.
Time 25°C to peak temperature	6 minutes max.	

Package Reflow Conditions

ļ. O	pkg. thickness < 2.5mm and pkg. volume < 350mm ³
Convection 220 +5/-0 °C	Convection 235 +5/-0 °C
VPR 215-219 °C	VPR 235 +5/-0 °C
IR/Convection 220 +5/-0 °C	IR/Convection 235 +5/-0 °C

Copyright © ANPEC Electronics Corp. Rev. B.1 -Apr., 2003

Reliability test Program

Test item	Method	Description
SOLDERABILITY	MIL-STD-883D-2003	245° C , 5 SEC
HOLT	MIL-STD-883D-1005.7	1000 Hrs Bias @ 125 °C
PCT	JESD-22-B, A102	168 Hrs, 100 % RH , 121 °C
TST	MIL-STD-883D-1011.9	-65°C ~ 150°C, 200 Cycles
ESD	MIL-STD-883D-3015.7	VHBM > 2KV, VMM > 200V
Latch-Up	JESD 78	10ms , I _{tr} > 100mA

Carrier Tape & Reel Dimensions

Application	Α	В	С	J	T1	T2	W	Р	E
	330 ± 1	62 +1.5	12.75+ 0.15	2 ± 0.5	12.4 ± 0.2	2 ± 0.2	12± 0. 3	8± 0.1	1.75±0.1
SOP-8	F	D	D1	Ро	P1	Ao	Во	Ко	t
	5.5± 1				2.0 ± 0.1				

Cover Tape Dimensions

Application	Carrier Width	Cover Tape Width	Devices Per Reel
SOP-8	12	9.3	2500

Customer Service

Anpec Electronics Corp.

Head Office:

5F, No. 2 Li-Hsin Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000

Fax: 886-3-5642050

Taipei Branch:

7F, No. 137, Lane 235, Pac Chiao Rd., Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.

Tel: 886-2-89191368 Fax: 886-2-89191369