This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

PCT

RLD INTELLECTUAL PROPERTY ORGANIZAT International Bureau

1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 495/04, 498/04, 231/54, 335/10, A01N 43/90, 43/52, 43/18 // (C07D 495/04, 335:00, 231:00) (C07D 498/04, 335:00, 261:00) (C07D 495/04, 335:00, 239:00) (C07D 495/04, 335:00, 221:00) (C07D 495/04, 337:00, 231:00) (C07D 495/04, 335:00, 333:00)

(11) International Publication Number:

WO 97/19087

(43) International Publication Date:

29 May 1997 (29.05.97)

(21) International Application Number:

PCT/US96/18381

A1

(22) International Filing Date:

13 November 1996 (13.11.96)

(30) Priority Data:

60/006,876

17 November 1995 (17.11.95) US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): TSENG, Chi-Ping [US/US]: 1103 Artwin Road, Wilmington, DE 19803 (US).
- (74) Agent: KATZ, Elliott, A.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TRICYCLIC HERBICIDAL HETEROCYCLES

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{3}_{p}$$

$$\mathbb{R}^{3}_{p}$$

$$\mathbb{R}^{3}_{p}$$

(57) Abstract

Compounds of Formula (1), and their N-oxides and agriculturally-suitable salts, are disclosed which are useful for controlling undesired vegetation, wherein J is Formula (II) and Q, X, Y, Z, R¹-R¹⁹, m, n, p, q and r are as defined in the disclosure. Also disclosed are compositions containing the compound of Formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of Formula (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		GB	United Kingdom	MW	Malawi
AM	Armenia	GE	Georgia	MX	Mexico
AT	Austria	GN	Guinea	NE	Niger
ΑU	Australia	GR	Greece	NL	Netherlands
BB	Barbados	HU	Hungary	NO	Norway
BE	Belgium	1E	Ireland	NZ	New Zealand
BF	Burkina Faso	IT.	Italy	Pl.	Poland
BG	Bulgaria	JP	Japan	PT	Portugal
BJ	Benin	-	•	RO	Romania
BR	Brazil	KE	Kenya	RU	Russian Federation
BY	Relarus	KG	Kyrgystan Democratic People's Republic	SD	Sudan
CA	Canada	KP	•	SE	Sweden
CF	Central African Republic		of Korea	SG	Singapore
CG	Congo	KR	Republic of Korea	SI	Slovenia
CH	Switzerland	KZ	Kazakhstan	SK	Slovakia
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	I.K	Sri Lanka	SZ	Swaziland
CN	China	LR	Liberia	SZ TD	Chad
CS	Czechoslovakia	T.I	Lithuania	TG	Togo
CZ	Czech Republic	เบ	Luxembourg		•
DE	Germany	LV	Latvia .	TJ	Tajikistan Trinidad and Tobago
DK	Denmark	MC	Мопасо	TT	•
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

TITLE

l

TRICYCLIC HERBICIDAL HETEROCYCLES BACKGROUND OF THE INVENTION

This invention relates to certain tricyclic heterocycles, their *N*-oxides,

agriculturally-suitable salts and compositions, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumers. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly and environmentally safe.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, N-oxides, and agriculturally suitable salts thereof, agricultural compositions containing them and their use for controlling undesirable vegetation:

20

10

15

wherein

Q is

$$Z$$
 R^4

Q-1

O-2

25

$$R^{10}$$
 R^{9}
 R^{11}
 R^{12}
 $Q-3$
 $Q-4$

J is

$$(\mathbb{R}^2)_n$$

5

10

X is O, $S(O)_r$, $N(C_1-C_2 \text{ alkyl})$ or CH_2 optionally substituted with 1-2 $C_1-C_2 \text{ alkyl}$; Y together with the carbons to which it is attached form a phenyl ring or a fused five or six-membered heterocyclic ring, which may be fully aromatic or partially or fully saturated, containing 1 to 3 heteroatoms independently selected from the group nitrogen, oxygen, and sulfur, provided that the heterocyclic ring contains no more than 2 oxygens and no more than 2 sulfurs, and the ring is optionally substituted with one to three groups independently selected from the group C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, aminosulfonyl, C₁-C₂ alkylaminosulfonyl, C₂-C₄ dialkylaminosulfonyl, NR¹⁵R¹⁶, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxycarbonyl, C2-C6 alkylcarbonyl, halogen, cyano, nitro, phenyl optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro, and pyridyl optionally substituted with C1-C3 alkyl, halogen, cyano or nitro, provided that when a nitrogen atom of the fused heterocyclic ring is substituted, then the nitrogen substituent is other than halogen;

20

15

Z is selected from the group -CH₂CH₂CH₂-, -OCH₂CH₂-, -O-CH=CH-, -NR¹³CH₂CH₂-, -NR¹³CH=CH-, -N=CHCH₂-, -OCH₂O-, -NR¹³CH₂NR¹³-, -N=CHNR¹³-, -CH₂OCH₂-, -CH₂NR¹³CH₂-, -CH₂S(O)_TCH₂-, -CH₂C(O)CH₂-, -CH=NCH₂-, -CH₂CH₂-, -OCH₂-, -SCH₂-, and -NR¹³CH₂-, each group optionally substituted with one to four R⁵, and the directionality of the Z linkage is defined such that the moiety

25

10

15

20

25

30

depicted on the left side of the linkage is bonded to the carbonyl carbon of Q-1;

R¹ and R² are independently H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl, aminosulfonyl, C₁-C₂ alkylaminosulfonyl, C₂-C₄ dialkylaminosulfonyl, halogen, cyano or nitro;

each R^3 is C_1 - C_2 alkyl;

R⁴ is OR¹⁴, SH, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl, halogen or NR¹⁵R¹⁶; or R⁴ is phenylthio, phenylsulfonyl or -SCH₂C(O)Ph, each optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro;

each R⁵ is independently H, C₁-C₃ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₁-C₃ alkoxy, formyl, C₂-C₆ alkoxycarbonyl, -CH(C₁-C₃ alkoxy)₂, C₁-C₃ alkylthio, C₂-C₄ alkylthioalkyl, cyano or halogen; or when two R⁵ are attached to the same carbon atom, then said R⁵ pair can be taken together to form -OCH₂CH₂O-, -OCH₂CH₂CH₂O-, -SCH₂CH₂S- or -SCH₂CH₂CH₂S-, each group optionally substituted with 1-4 CH₃;

 R^6 is OR^{14} , SH, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, halogen or $NR^{15}R^{16}$; or R^4 is phenylthio, phenylsulfonyl or -SCH₂C(O)Ph, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro:

R⁷ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl or -CH₂CH₂OR¹³; or R⁷ is phenyl or benzyl, each optionally substituted on the phenyl ring with C₁-C₃ alkyl, halogen, cyano or nitro;

 R^8 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, evano or nitro;

 R^9 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl or C_3 - C_6 halocycloalkyl; R^{10} is H, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 haloalkoxycarbonyl, CO_2 H or cyano;

R¹¹ is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl optionally substituted with 1-4 C_1 - C_3 alkyl or C_3 - C_6 halocycloalkyl;

 R^{12} is cyano, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylcarbonyl, $S(O)_rR^{16}$ or $C(O)NR^{15}R^{16}$;

 R^{13} is H or C_1 - C_6 alkyl;

35 R¹⁴ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkoxyalkyl, formyl, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C(O)NR¹⁵R¹⁶, C₁-C₆ alkylsulfonyl or C₁-C₆ haloalkylsulfonyl; or R¹⁴ is phenyl, benzyl, benzyl, -CH₂C(O)phenyl or phenylsulfonyl, each optionally substituted on the phenyl ring with C₁-C₃ alkyl, halogen, cyano or nitro;

```
R<sup>15</sup> is H or C<sub>1</sub>-C<sub>6</sub> alkyl;

R<sup>16</sup> is C<sub>1</sub>-C<sub>6</sub> alkyl or C<sub>1</sub>-C<sub>6</sub> alkoxy; or

R<sup>15</sup> and R<sup>16</sup> can be taken together as -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-,

-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- or -CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>-;

m is 0, 1 or 2;

n is 1 or 2;

p is 0, 1, or 2; and

r is 0, 1 or 2.
```

The dotted line in the ring containing Y in J of Formula I indicates that the ring may be unsaturated, or may be partially or fully saturated as further defined in the above recitation of Y.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent 15 may be alkyl. "Alkenyl" includes straight-chain or branched alkenes such as 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include 20 moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy. pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkylthio" includes branched or 25 straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH3S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl. pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include 30 CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and 35 cvclohexyl.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂,

CF₃CH₂ and CF₃CCl₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O. Examples of "haloalkylthio" include CCl₃S, CF₃S, CCl₃CH₂S and ClCH₂CH₂CH₂S. Examples of "haloalkylsulfonyl" include CF₃S(O)₂, CCl₃S(O)₂, CF₃CH₂S(O)₂ and CF₃CF₂S(O)₂.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 6. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I includes a six-membered aromatic ring which contains a nitrogen atom, then all substituents on the heterocyclic ring are attached through the carbon atom(s) of that ring.

When a group contains a substituent which can be hydrogen, for example R¹ or R¹⁴, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, *N*-oxides and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

Some compounds of this invention can exist as one or more tautomers. One skilled in the art will recognize, for example, that compounds of Formula Ia (Formula I where Q is Q-1, R⁴ is OR¹⁴, and R¹⁴ is H) can also exist as the tautomers of Formulae Ib and Ic as shown below. One skilled in the art will recognize that said tautomers often exist in equilibrium with each other. As these tautomers interconvert under environmental and physiological conditions, they provide the same useful biological effects. The present invention includes mixtures of such tautomers as well as the individual tautomers of compounds of Formula I.

5

10

15

20

25

30

35

10

15

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfurie, acetie, butyrie, fumarie, lactie, maleic, malonie, oxalie, propionie, salicylie, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as a carboxylic acid or enol. Preferred salts include the lithium, sodium, potassium, triethylammonium, and quaternary ammonium salts of the compounds of the invention.

Preferred compounds for reasons of better activity and/or ease of synthesis are: Preferred 1. Compounds of Formula I, and N-oxides and agriculturally-suitable salts thereof, wherein J is selected from the group

$$R^{17}$$
 R^{1}
 R^{18}
 R^{19}
 $R^$

$$\mathbb{R}^{1} \xrightarrow{N \to O} \mathbb{R}^{18}$$

$$\mathbb{R}^{2} \xrightarrow{(\mathbb{R}^{2})_{n}} \mathbb{R}^{18}$$

$$\mathbb{R}^{1} \xrightarrow{O \longrightarrow N} \mathbb{R}^{18}$$

$$\mathbb{R}^{2} \xrightarrow{(R^{2})_{n}} \mathbb{R}^{18}$$

J-5

J-7

$$\mathbb{R}^{18}$$
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}

J-9

$$R^{17}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

J-11

$$(\mathbb{R}^2)_n$$

$$\mathbb{R}^1$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-4

$$\mathbb{R}^{1}$$
 \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18}

J-6

$$\begin{array}{c}
R^{18} \\
 & N \\
 & S \\
 & (R^3)_p
\end{array}$$

J-8

$$\begin{array}{c} R^{18} \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{3}$$

J-10

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-12

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

J-15

$$R^{18}$$
 R^{18}
 R^{19}
 R

J-17

$$R^{18}$$
 R^{18}
 R

J-19

$$R^{18}$$
 R^{17}
 R^{18}
 R^{17}
 R^{18}
 R^{18}
 R^{17}
 R^{18}
 R^{18}

J-14

$$\begin{array}{c}
R^{18} \\
 & S \\
 & S \\
 & R^{18} \\
 & R^{18}
\end{array}$$

$$\begin{array}{c}
 & R^{18} \\
 & R^{18} \\
 & R^{18}
\end{array}$$

J-16

J-18

$$\begin{array}{c|c}
R^{18} \\
& N \\
& N \\
& N \\
& N \\
& R^{17} \\
& (R^3)_p
\end{array}$$

J-2()

$$\begin{array}{c|c}
R^{1} & N & \\
 & S \\
 & (R^{3})_{p}
\end{array}$$

J-23

$$\begin{array}{c|c} R^{18} \\ \hline \\ (R^2)_n \\ \end{array}$$

J-25

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-27

$$\mathbb{R}^{1}$$
 \mathbb{R}^{1}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}

J-22

J-24

$$(R^2)_n$$
 R^{17}
 $(R^{19})_q$
 $(R^{19})_p$

J-26

$$\begin{array}{c}
R^{18} \\
N \\
N \\
N \\
R^{17} \\
(R^{3})_{p}
\end{array}$$

J-28

$$\mathbb{R}^1$$
 \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18}

$$(R^{18})_q$$
 $(R^{3})_p$
 $(R^{2})_n$

J-31

$$(\mathbb{R}^{2})_{n} \xrightarrow{\mathbb{R}^{1}} \mathbb{R}^{18})_{q}$$

J-33

$$(R^{18})_q$$

$$(R^{18})_p$$

$$(R^{3})_p$$

$$(R^{3})_p$$

J-35

$$(\mathbb{R}^2)_n \xrightarrow{\mathbb{R}^1 \longrightarrow \mathbb{R}^3} \mathbb{R}^{(\mathbb{R}^{19})_q}$$

J-30

$$(R^{18})_{q}$$

J-32

$$(\mathbb{R}^{2})_{n}$$

$$(\mathbb{R}^{2})_{n}$$

$$(\mathbb{R}^{2})_{n}$$

$$(\mathbb{R}^{2})_{n}$$

J-34

$$(R^{2})_{n}$$

$$(R^{18})_{q}$$

$$(R^{3})_{p}$$

J-36

$$(R^{2})_{n}$$
 $(R^{18})_{q}$
 $(R^{3})_{p}$

$$(R^{2})_{n}$$

$$(R^{18})_{q}$$

$$(R^{3})_{p}$$

J - 38

$$(R^{18})_q$$
 $(R^{18})_p$
 $(R^2)_n$
 $(R^3)_p$

J-39

$$(R^{18})_q$$

$$(R^{2})_m$$

$$(R^{3})_p$$

J-4()

$$(\mathbb{R}^2)_n \xrightarrow{\mathbb{N}} \mathbb{N} \mathbb{N} \mathbb{N}$$

J-41

$$(\mathbb{R}^2)_n$$

$$\mathbb{R}^1$$

$$\mathbb{N}$$

J-42

R¹⁷ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, aminosulfonyl, C₁-C₂ alkylaminosulfonyl, C₂-C₄ dialkylaminosulfonyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl; or R¹⁷ is phenyl or pyridyl, each optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro;

10

5

each R¹⁸ is independently H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, aminosulfonyl, C₁-C₂ alkylaminosulfonyl, C₂-C₄ dialkylaminosulfonyl, NR¹⁵R¹⁶, C₂-C₆

```
alkoxyalkyl, C2-C6 alkoxycarbonyl, C2-C6 alkylcarbonyl, halogen,
                              cyano or nitro;
                        each R<sup>19</sup> is independently H. C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>2</sub>-C<sub>6</sub>
                              alkoxyalkyl, C2-C6 alkoxycarbonyl or C2-C6 alkylcarbonyl; and
 5
                        q is 0, 1 or 2.
            Preferred 2. Compounds of Preferred 1 wherein:
                        Q is Q-1.
            Preferred 3. Compounds of Preferred 2 wherein:
                        Z is CH2CH2CH2 optionally substituted with one to four R5;
                        R<sup>1</sup> and R<sup>2</sup> are independently H, C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, halogen or
10
                               nitro:
                        R4 is OR14; and
                        R^{14} is H or C_1-C_4 alkylsulfonyl; or R^{14} is benzoyl or phenylsulfonyl.
                               each optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or
15
                               nitro.
            Preferred 4. Compounds of Preferred 3 wherein:
                        X is S(O)_r;
                        m is 1 or 2; and
                        r is 2.
            Preferred 5. Compounds of Preferred 1 wherein:
20
                        O is O-2;
            Preferred 6. Compounds of Preferred 5 wherein:
                         R1 and R2 are independently H, C1-C3 alkyl, C1-C3 alkoxy, halogen or
                        R^6 is H or C_1-C_4 alkylsulfonyl; or R^6 is benzoyl or phenylsulfonyl, each
25
                                optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano, or nitro;
                         R^7 is H, C_1-C_6 alkyl, or C_3-C_6 alkenyl; and
                         R<sup>8</sup> is H:
             Preferred 7. Compounds of Preferred 6 wherein:
30
                         X is S(O)_r;
                         m is 1 or 2; and
                         r is 2.
             Preferred 8. Compounds of Preferred 1 wherein:
                         Q is Q-3.
             Preferred 9. Compounds of Preferred 8 wherein:
 35
                         R1 and R2 are independently H, C1-C3 alkyl, C1-C3 alkoxy, halogen or
                         R^9 is H, C_1-C_3 alkyl, or cyclopropyl; and
                         R<sup>10</sup> is H or C<sub>2</sub>-C<sub>3</sub> alkoxycarbonyl.
```

```
Preferred 10. Compounds of Preferred 9 wherein:
                      X is S(O)_r;
                      m is 1 or 2; and
                      r is 2.
  5
           Preferred 11. Compounds of Preferred 1 wherein:
                      Q is Q-4.
           Preferred 12. Compounds of Preferred 11 wherein:
                      R^1 and R^2 are independently H, C_1-C_3 alkyl, C_1-C_3 alkoxy, halogen or
                            nitro:
                      R^{11} is C_3-C_6 cycloalkyl or C_3-C_6 halocycloalkyl, each optionally
10
                            substituted with 1-4 C<sub>1</sub>-C<sub>3</sub> alkyl; and
                     R^{12} is cyano or C_2-C_6 alkoxycarbonyl.
           Preferred 13. Compounds of Preferred 12 wherein:
                     X is S(O)_{\epsilon}:
15
                     m is 1 or 2; and
                     r is 2.
               Most preferred are compounds of Formula Ia above, and sodium, potassium.
               and quaternary ammonium salts thereof, selected from the group:
               a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
20
               yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;
               b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
               yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;
               c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
               yl)carbonyl]-5-methyl-1,3-cyclohexanedione S.S-dioxide;
25
               d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-
               ethyl-5-hydroxy-1H-pyrazol-4-yl)methanone S,S-dioxide;
               e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-
               c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide; and
               f) 2-[(4.5-\text{dihydro}-2.7.10-\text{trimethyl}-2H[1]\text{benzothiepino}[5.4-c]\text{pyrazol}-9-
30
               yl)carbonyl]-5-methyl-1,3-cyclohexanedione S.S-dioxide.
            This invention also relates to herbicidal compositions comprising herbicidally
      diluent or a liquid diluent. The preferred compositions of the present invention are
```

effective amounts of the compounds of Formula I and at least one of a surfactant, a solid those which comprise the above preferred compounds.

35 This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of Formula I (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

10

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-24. The definitions of Q, X, Y, Z, R¹-R¹⁹, m, n, p and r in the compounds of Formulae 1-27 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ig are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ig are as defined above for Formula I.

Compounds of General Formula Id can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 1-16 of this section as well as by following the specific procedures given in Examples 1, 2 and 4.

$$(\mathbb{R}^{2})_{n}$$

Id

Scheme 1 illustrates the preparation of compounds of Formula Id ($R^4 = OR^{14a}$ and R^{14a} is the same as R^{14} as described in the Summary of the Invention excluding H) whereby a compound of Formula Id ($R^4 = OH$) is reacted with a reagent of Formula 1 in the presence of a base wherein X^1 is chlorine, bromine, fluorine, trifluorosulfonyloxy (OTf), or acetyloxy (OAc) and R^{14a} is as previously defined. The coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see K. Nakamura, et al., WO 95/04054.

20

15

Scheme 1

Id
$$(R^4 = OH) + R^{14a}X^1$$
 base Id $(R^4 = OR^{14a})$

Compounds of Formula Id ($R^4 = Nu$; $Nu = SR^{14b}$ or OR^{14c} ; R^{14b} is H, C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; R^{14c} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkoxyalkyl) can be prepared by one skilled in the art from a compound of Formula Id ($R^4 = \text{halogen}$) by treatment with a nucleophile of Formula 2 ($Nu = SR^{14b}$ or OR^{14c} ; M = Na, K, or Li) as shown in Scheme 2 using methods well documented in the literature (or slight modification of these methods): for example, see S. Miyano, et al., *J. Chem. Soc.*, *Perkin Trans.* 1 (1976), 1146.

30

25

Scheme 2

Id
$$(R^4 = halogen) + MSR^{14b}$$
 or $MOR^{14c} \longrightarrow Id (R^4 = SR^{14b})$ or OR^{14c}

Compounds of Formula Id (R^4 = halogen) can be prepared by reacting a compound of Formula Id (R^4 = OH) with a halogenating reagent such as oxalyl bromide or oxalyl chloride (Scheme 3). This conversion is carried out by methods known in the art (or by slight modification of these methods): for example see S. Muller, et al., WO 94/13619; S. Muller, et al., DE 4,241,999.

Scheme 3

10

15

5

Scheme 4 illustrates the preparation of compounds of Formula Id ($R^4 = OH$), whereby an enol ester of Formula 3 is reacted with a base such as triethylamine in the presence of a catalytic amount of cyanide source (e.g., acetone cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by slight modification of these methods): for example see W. J. Michaely? EP 369.803.

Scheme 4

base (e.g., tricthylamine)

cyanide source in catalytic amount (e.g., acetone cyanohydrin or potassium cyanide)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4}

10

Enol esters of Formula 3 can be prepared by reacting a dione of Formula 4 with an acid chloride of Formula 5 in the presence of a slight mole excess of a base such as triethylamine in an inert organic solvent such as acetonitrile, methylene chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 5). This type of coupling is known in the art: for example, see W. J. Michaely, EP 369,803.

Scheme 5

$$(R^2)_n$$

base (e.g., triethylamine)

 $(R^2)_n$
 $(R^2)_n$
 $(R^3)_p$
 $(R^3)_p$

The acid chlorides of Formula 5 can be prepared by one skilled in the art by reacting an acid of Formula 6 with chlorinating agents such as oxalyl chloride or thionyl chloride and a catalytic amount of dimethylformamide (Scheme 6). This chlorination is well known in the art: for example, see W. J. Michaely, EP 369.803.

Scheme 6

HO
$$(R^{2})_{n}$$

$$(R^{2})_{n}$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

15

20

25

Scheme 7 illustrates the preparation of acids of Formula 6 ($X = S(O)_r$; r = 1 or 2) whereby an acid of Formula 6 (X = S) is reacted with an oxidizing reagent such as peroxyacetic acid, m-chloroperoxybenzoic acid, Oxone[®], or hydrogen peroxide (the reaction may be buffered with a base such as sodium acetate or sodium carbonate). The oxidation is carried out by methods known in the art (or by slight modification of these methods): for example, see B. M. Trost, et al., J. Org. Chem. (1988), 53, 532; B. M. Trost, et al., Tetrahedron Lett. (1981), 21, 1287; S. Patai, et al., The Chemistry of Sulphones and Sulphoxides, John Wiley & Sons. For some acids of Formula 6 (X = S) with a functional group not compatible with the reaction conditions, the functional group may be protected before the oxidation and then be

BNSDOCID: <WO___9719087A1_I_>

deprotected after the oxidation. The protecting and deprotecting procedures are well known in the literature: for example see T. W. Greene, et al., *Protective Groups in Organic Synthesis* (Second Edition), John Wiley & Sons, Inc.

Scheme 7

HO
$$(R^{2})_{n}$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

HO
$$(R^2)_n$$

$$(R^3)_p$$

6 $(X = S(O)_r; r = 1 \text{ or } 2)$

5

10

15

Scheme 8 illustrates the preparation of acids of Formula 6 (r = 0 if $X = S(O)_r$) whereby a phenyl bromide of Formula 7 (r = 0 if $X = S(O)_r$) is treated with n-butyllithium (or magnesium) and the lithium salt (or the Grignard reagent) generated $in \ situ$ is then reacted with carbon dioxide followed by acidification with an acid such as hydrochloric acid. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see M. A. Ogliaruso, et al., $Synthesis\ of\ Carboxylic\ Acids$, $Esters\ and\ Their\ Derivatives$, pp 27-28, John Wiley & Sons; A. J. Bridges, et al., $J.\ Org.\ Chem.\ (1990)$, 55, 773; C. Franke, et al., Angew. $Chem.\ Int.\ Ed.\ (1969)$, 8, 68. Protecting and deprotecting functional groups not compatible with the reaction conditions may be necessary for compounds with such a functional group.

Scheme 8

Br
$$(R^3)_p$$
 $(R^3)_p$ $($

Scheme 8a illustrates the preferred method for the preparation of acids of Formula 6 (r = 2 if X = S(O)_r) whereby a phenyl bromide of Formula 7 (r = 2 if X = S(O)_r) is treated with copper cyanide followed by hydrolysis of the intermediate nitrile to the carboxylic acid. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see L. Friedman and H. Shechter J. Org. Chem. (1961), 26, 2522. Protecting and deprotecting functional groups not compatible with the reaction conditions may be necessary for compounds with such a functional group.

Scheme 8a

Br
$$(R^3)_p$$
 1) CuCN, DMF $(R^3)_p$ 2) H_2SO_4 , $NaNO_2$ $(R^2)_n$ $(R^2)_n$ $(R^3)_p$ 6. $(r = 2 \text{ if } X = S(O)_p)$

Phenyl bromides of Formula 7 (r = 0 if $X = S(O)_r$) can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 9-14 (or by slight modification of these methods). Scheme 9 illustrates the preparation of phenyl bromides of Formula 7a (r = 0 if $X = S(O)_r$) and Formula 7b (r = 0 if $X = S(O)_r$) whereby a ketone of Formula 8 is reacted with a hydrazine of Formula 9. Some of the immediate products from the reactions of Scheme 9 may be further modified (e.g., conversion of OH on the pyrazole ring to Cl by treatment with POCl₃ or N-alkylation of the 1-H-pyrazole with an alkylating reagent such as ethyl bromide or ethyl sulfate) to give the desired phenyl bromides of Formula 7a (r = 0 if $X = S(O)_r$) and Formula 7b (r = 0 if $X = S(O)_r$). The above-mentioned reactions are carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., Comprehensive Heterocyclic Chemistry, Volume 5, p 121 and

15

20

25

pp 277-280, (1984) Pergamon Press; M. Hauser, et al., J. Org. Chem. (1961), 26, 451; E. F. M. Stephenson, Org. Synth. (1949), 29, 54.

Scheme 9

$$R^{1} \longrightarrow 0 \longrightarrow 0 \longrightarrow R^{18a}$$

$$R^{1} \longrightarrow 0 \longrightarrow R^{1}$$

$$R^{1} \longrightarrow 0$$

 $R^{17a} = H \text{ or } C_1 \cdot C_4 \text{ alkyl}$ $R^{18a} = R^{18} \text{ excluding halogen, evano, and nitro}$

5

10

15

20

Alternatively, many phenyl bromides of Formula 7a (r = 0 if $X = S(O)_r$) and Formula 7b (r = 0 if $X = S(O)_r$) can also be prepared by reacting a ketone of Formula 10 with a hydrazine of Formula 9 (Scheme 10) in an inert organic solvent such as acctonitrile, ethanol or toluene at temperatures between 0 °C and 110 °C for a period of time ranging from 1 hour to 3 days. The reaction mixture is then concentrated and the resulting residue is flash column chromatographed over silica gel with eluents such as mixtures of ethyl acetate and hexanes to give the phenyl bromides of Formula 7a (r = 0 if $X = S(O)_r$) and Formula 7b (r = 0 if r = 0 if r

Phenyl bromides of Formula 7a $(X = S(O)_r)$ and r = 0 and Formula 7b $(X = S(O)_r)$ and r = 0 can also be oxidized to compounds of Formula 7a $(X = S(O)_r)$ and r = 1 or 2) and Formula 7b $(X = S(O)_r)$ and r = 1 or 2) by employing similar methods as described for Scheme 7.

Scheme 10

$$R^{1} \longrightarrow N(CH_{3})_{2} \longrightarrow H_{2}NNHR^{17}a$$

$$R^{18} \longrightarrow With further modification on the pyrazole ring if appropriate
$$R^{1} \longrightarrow R^{1} \longrightarrow R^{1}$$

$$R^{1} \longrightarrow R^{1} \longrightarrow R^{1} \longrightarrow R^{1}$$

$$R^{1} \longrightarrow R^{1} \longrightarrow R^{1} \longrightarrow R^{1}$$

$$R^{1} \longrightarrow R^{1} \longrightarrow R^{1} \longrightarrow R^{1} \longrightarrow R^{1}$$

$$R^{1} \longrightarrow R^{1} \longrightarrow$$$$

 $R^{18b} = H \text{ or } C_1 - C_6 \text{ alkyl}$

Similarly, phenyl bromides of Formula 7c (r = 0 if X = S(O)_r) and Formula 7d (r = 0 if X = S(O)_r) can also be prepared by reacting a ketone of Formula 8 or

Formula 10 with hydroxylamine or hydroxylamine hydrochloride (Scheme 11). Some of the immediate products from the reactions of Scheme 11 may be further modified (e.g., conversion of OH on the isoxazole ring to Cl by treatment with POCl₃) to give the desired phenyl bromides of Formula 7a (r = 0 if X = S(O)_r) and Formula 7b (r = 0 if X = S(O)_r). The above-mentioned conversions are carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., Comprehensive Heterocyclic Chemistry, Volume 6, pp 61-64 and p 118, (1984)

Pergamon Press; H. Boshagen, Chem. Ber., (1967), 100, 3326.

Scheme 11

8 (or 10)

With further modification on the isoxazole ring if appropriate

$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{2}

$$Q \xrightarrow{(R^2)_n} R^1 \xrightarrow{O-N} R^{18}$$

$$(R^3)_p$$

$$7d$$

Scheme 12 illustrates the preparation of phenyl bromides of Formula 7e (r = 0 if X = S(O)_r) whereby a ketone of Formula 8 or Formula 10 is reacted with an amidine of Formula 11. Some of the immediate products from the reactions of Scheme 12 may be further modified (e.g., conversion of OH on the pyrimidine ring to Cl by treatment with POCl₃ or conversion of NH₂ on the pyrimidine ring to Cl by treatment with NaNO₂/HCl/H₂O). The above-mentioned reactions are carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., *Comprehensive Heterocyclic Chemistry*, Volume 3, p 112-114, (1984) Pergamon Press; D. J. Brown, et al., *J. Chem. Soc. C.* (1967), 1922; I. Kogon, et al., *Org. Synth.* (1963), IV, 182.

Scheme 12

HN

R18c

H2N

with further modification on the pyrimidine ring if appropriate

$$(R^2)_n$$
 R^{18}
 R^{18}

 $R^{18c} = H, C_1 - C_4$ alkyl, OH or NH₂

Scheme 13 illustrates the preparation of phenyl bromides of Formula 7f (r = 0 if X = S(O)_r) whereby a ketone of Formula 12 is reacted with a hydrazine of Formula 9. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., *Comprehensive Heterocyclic Chemistry*, Volume 5, pp 278-279, (1984) Pergamon Press.

20

Scheme 13

Br
$$R^{19}$$
 R^{19} R^{19}

Other phenyl bromides of Formula 7 can be prepared in an analogous manner using methods known in the art (or by slight modification of these methods): for

example, see A. R. Katritzky, et al., *Comprehensive Heterocyclic Chemistry*, Volumes 2-6, (1984) Pergamon Press; E. Campaigne, et al., *J. Heterocycl. Chem.*, (1969), 553; A. N. Fujiwara, *J. Heterocycl. Chem.*, (1968), 853.

PC 1/0390/10301

The ketones of Formula 8 can be prepared by one skilled in the art by reacting a ketone of Formula 13 with an anhydride of Formula 14 (or an acyl chloride of Formula 15) and a catalytic amount of a Lewis acid such as boron trifluoride (Scheme 14). This conversion is well known in the art: for example, see A. Philipp, et al., Can. J. Chem., (1979), 57, 3292; B. M. Perfetti, et al., J. Am. Chem. Soc., (1953), 75, 626.

10

5

Scheme 14

Br
$$(R^{2})_{n}$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

$$R^{18a}C - O - CR^{18a} \text{ or } R^{18a} - CC$$

$$14$$

$$15$$

$$13$$

$$13$$

$$13$$

$$13$$

$$R^{18a}C - O - CR^{18a} \text{ or } R^{18a} - CC$$

The ketones of Formula 10 can be prepared by one skilled in the art by reacting a ketone of Formula 13 with an amide dimethyl acetal of Formula 16 (Scheme 15). This conversion is well known in the art: for example, see G. Litkei, et al., *Org. Prep. Proced. Int.*, (1990), 22, 47-56; N. Dereu, et al., *J. Organomet. Chem.*, (1981), 208, 11; B. Gammill., *Synthesis*, (1979), 901.

Scheme 15

20

25

15

The ketones of Formula 12 can be prepared by one skilled in the art by reacting a ketone of Formula 13 with an aldehyde or a ketone of Formula 17 (or its equivalent) in the presence of an acid or a base as shown in Scheme 16. This conversion is well known in the art: for example, see J. L. Gras., *Tetrahedron Lett.*, (1978), 2111; L. Engman, et al., *Tetrahedron Lett.*, (1981), 5251; A. Roedig, et al., *Chem. Ber.*, (1960), 2294; T. Girija, et al., *J. Chem. Soc.*, *Perk. Trans. 1*, (1991), 1467; A. J. Laurent, et al., *Tetrahedron Lett.*, (1992) 8091.

Scheme 16

The ketones of Formula 13 can be prepared by methods known in the art (or by slight modification of these methods): for example, see W. Flemming, et al., *Chem. Ber.*, (1925), 58, 1612; I. W. J. Still, et al., *Can. J. Chem.*, (1976), 54, 453-470; V. J. Traynelis, et al., *J. Org. Chem.*, (1961), 26, 2728; I. Nasuno, et al., WO 94/08988.

Compounds of General Formula Ie can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 17-19 of this section as well as by following the specific procedures given in Examples 3, 5, and 6.

$$\mathbb{R}^{8}$$
 \mathbb{R}^{6}
 \mathbb{R}^{2}
 \mathbb{R}^{6}
 \mathbb{R}^{2}
 \mathbb{R}^{6}
 \mathbb{R}^{2}
 \mathbb{R}^{6}
 \mathbb{R}^{2}

Scheme 17 illustrates the preparation of compounds of Formula Ie (R^{6a} is OR^{14} as described in the Summary of the Invention excluding OH) whereby a compound of Formula Ie ($R^6 = OH$) is reacted with a reagent of Formula 18 in the presence of a base wherein X^2 is chlorine, bromine, fluorine, OTf, or OAc and R^{6a} is as previously defined. This coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see K. Nakamura, et al., WO 95/04054.

Scheme 17

Ie
$$(R^6 = OH) + R^{14}X^2$$
 Ie $(R^6 = R^{6a})$

Scheme 18 illustrates the preparation of compounds of Formula Ie ($R^6 = OH$), whereby an ester of Formula 19 or its isomer 19a is reacted with a base such as triethylamine in the presence of a catalytic amount of cyanide source (e.g., acctone

5

10

15

20

25

cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by slight modification of these methods): for example, see W. J. Michaely, EP 369,803.

Scheme 18

$$R^{8}$$

N

 R^{7}
 R^{2}
 R^{8}
 R^{7}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{5}
 R^{7}
 R^{2}
 R^{3}
 R^{5}
 R^{7}
 R^{2}
 R^{3}
 R^{5}
 R^{7}
 R^{7}
 R^{2}
 R^{3}
 R^{5}
 R^{7}
 R^{7}
 R^{2}
 R^{3}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{2}
 R^{3}
 R^{5}
 R^{7}
 R^{7}

Esters of Formula 19 or amides of Formula 19a can be prepared by reacting a hydroxypyrazole of Formula 20 with an acid chloride of Formula 5 in the presence of a slight mole excess of a base such as triethylamine in an inert organic solvent such as acetonitrile, methylene chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 19). This type of coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see W. J. Michaely, EP 369,803.

Scheme 19

15

5

10

Compounds of General Formula If can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 20-23 of this section.

If

Scheme 20 illustrates the preparation of compounds of Formula If whereby a compound of Formula 21 is reacted with a salt of hydroxylamine such as hydroxylamine hydrochloride in the presence of a base or acid acceptor such as triethylamine or sodium acetate. The substituents of the immediate products may be further modified if appropriate. This cyclization is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

10

5

Scheme 20

Scheme 20

$$R^{10a} \xrightarrow{O} R^{1} \xrightarrow{R^{1}} (R^{3})_{p} \xrightarrow{H_{2}NOH \ HCl} (or \ other \ salt \ of \ H_{2}NOH)}$$
 $R^{9} \xrightarrow{(R^{2})_{n}} 11$

wherein

L is a leaving group such as C_1 - C_4 alkoxy (e.g. OC_2H_5) or N.N-dialkylamino (e.g. dimethyl amino) R^{10a} is H, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 haloalkoxycarbonyl or $CONH_2$

Scheme 21 illustrates the preparation of compounds of Formula 21 whereby a compound of Formula 22 is reacted with a reagent of Formula 23 or Formula 24. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

Scheme 21

$$R^{20} = C_1 \cdot C_4 \text{alkyl}$$

$$R^{10a} \cdot C(OR^{20})_3$$

Scheme 22 illustrates the preparation of compounds of Formula 22 whereby a ester of Formula 25 is decarboxylated in the presence of a catalyst, such as *p*-toluenesulfonic acid, in an inert solvent such as toluene. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

Scheme 22

R9

$$(R^3)_p$$
 p -toluenesulfonic acid toluene

22

25

10

5

Esters of Formula 25 can be prepared by reacting the metal salt of a compound of Formula 26 with an acid chloride of Formula 5 (Scheme 23). This type of coupling is known in the art: for example see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

15

20

Scheme 23

Scheme 24 illustrates the preparation of compounds of Formula Ig whereby a compound of Formula 5 is reacted with a compound of Formula 27 in the presence of a base such as triethylamine, potassium carbonate, sodium hydride or Mg(OEt)₂ in an

inert organic solvent such as diethyl ether, tetrahydrofuran, N.N-dimethylformamide, dichloromethane or acetonitrile.

$$\mathbb{R}^{11} \xrightarrow{\mathbb{R}^{12}} \mathbb{R}^{12} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{1} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{3}$$

5

This conversion is carried out by methods known in the art (or slight modification of these methods); for example, see J. W. Ashmore, EP 213,892 and P. A. Caln, EP 496,631 A1.

Scheme 24

$$5 + R^{11}$$
 base $\log R^{12}$

10

15

20

25

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The

10

15

20

25

30

35

following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated.

¹H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

Example 1

Step A: Preparation of 3-[(2,5-dimethylphenyl)thio]propanoic acid

43.4 g (1.086 mol) of sodium hydroxide was added to 230 mL of water. 75.0 g (0.543 mol) of 2.5-dimethylthiophenol (purchased from Aldrich Chemical Company) was then added and the mixture was cooled to about 10 °C. 91.30 g (0.597 mol) of 3-bromopropionic acid (purchased from Aldrich Chemical Company) was added in portions keeping the temperature below 25 °C. The mixture was warmed to room temperature, stirred for 2 hr under nitrogen, and was then washed with diethyl ether (3 x 500 mL). The aqueous layer was acidified with 1N HCl and filtered to yield 112.79 g of the title compound of Step A as a solid melting at 97-98 °C. ¹H NMR (CDCl₃): δ 2.3 (s,3H), 2.34 (s,3H), 2.68 (t,2H), 3.1 (t,2H), 6.9 (d,1H), 7.06-7.14 (m,2H).

Step B: Preparation of 2,3-dihydro-5,8-dimethyl-4H-1-benzothiopyran-4-one

530 mL of concentrated sulfuric acid was added to 24.91 g (0.119 mol) of the title compound of Step A while being cooled with an acetone/ice bath. The ice bath was removed, the mixture stirred for 1 hr and was then poured over crushed ice. The aqueous layer was extracted with a 1:9 mixture of diethyl ether: hexane (6 x 500 mL), dried (MgSO₄), filtered, and evaporated to dryness to yield 11.75 g of the title compound of Step B as an oil. ¹H NMR (CDCl₃): δ 2.3 (s.3H), 2.6 (s.3H), 2.97 (m,2H), 3.2 (m,2H), 6.9-7.1 (m.2H).

Step C: Preparation of 6-bromo-2,3-dihydro-5,8-dimethyl-4*H*-1-benzothiopyran-4-one

A solution of 4.07 g (0.021 mol) of the title compound of Step B in 25 mL of methylene chloride was added dropwise to a mixture of 7.07 g (0.053 mol) of aluminum chloride (purchased from Aldrich Chemical Company) and 25 mL of methylene chloride. The suspension was stirred for approximately 15 minutes, 1.14 mL (0.022 mol) of bromine (purchased from Janssen) was added dropwise and the mixture was refluxed for 10 minutes. The hot mixture was poured into 10 mL of concentrated hydrochloric acid containing 75 g of ice, stirred for 10 minutes, diluted with 50 mL of water, and extracted with diethyl ether (2 x 200 mL). The organic layer was washed with water (2 x 200 mL), dried (Na₂SO₄), filtered and evaporated to dryness. The crude product was chromatographed over silica gel eluting with ethyl acetate: hexane (5%):

10

30

35

95%) to yield 2.62 g of the title compound of Step C as a solid melting at 87-88 °C. ¹H NMR (CDCl₃): δ 2.3 (s,3H), 2.6 (s,3H), 3.0 (m,2H), 3.2 (m,2H), 7.45 (s,1H).

Step D: Preparation of 6-bromo-3-[(dimethylamino)methylene]-2,3-dihydro-5,8-dimethyl-4*H*-1-benzothiopyran-4-one

20.0 g (0.074 mole) of the title compound of Step C and 100 mL of *N.N*-dimethylformamide dimethyl acetal (purchased from Aldrich Chemical Company) were stirred under nitrogen at reflux overnight. The mixture was concentrated, the residue was stirred in water, and filtered. The solid was dissolved in methylene chloride, dried (MgSO₄), filtered, and evaporated to dryness to yield 21.54 g of the title compound of Step D as an oil. ¹H NMR (CDCl₃): δ 2.49 (s.3H), 2.56 (s.3H), 3.16 (s.6H), 3.86 (s.2H), 7.34 (s.1H), 7.57 (s.1H).

Step E: Preparation of 8-bromo-2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole

4.53 mL (0.085 mol) of methyl hydrazine (purchased from Aldrich Chemical Company) was added dropwise to a mixture of 21.54 g (0.066 mol) of the title compound of Step D in 115 mL of ethanol. The mixture was stirred at reflux under nitrogen for 5 hr and was then evaporated to dryness. The crude product was chromatographed over silica gel eluting with a mixture of (1:9) ethyl acetate: hexane to yield two components. Concentration of the major fraction yielded 14.72 g of the title compound of Step E as an oil; ¹H NMR (CDCl₃): δ 2.3 (s,3H), 2.82 (s,3H), 3.76 (s,2H), 3.9 (s,3H), 7.2 (s, 1H), 7.3 (s,1H). Concentration of the minor fraction yielded 3.87 g of the isomer 8-bromo-1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole as an oil; ¹H NMR (CDCl₃): δ 2.3 (s,3H), 2.46 (s,3H), 3.75 (s,3H), 3.59 and 3.81 (2d,2H), 7.4 (s,1H), 7.45 (s,1H).

25 <u>Step F: Preparation of 2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylic acid</u>

3.73 mL (0.050 mol) of bromoethane (purchased from Aldrich Chemical Company) was added dropwise to a mixture of 2.11 g (0.088 mol) of magnesium in 70 mL of tetrahydrofuran. After stirring for 10 minutes, a solution of 7.77 g (0.025 mol) of the title compound of Step E in 100 mL of tetrahydrofuran was added dropwise and the mixture stirred at reflux under nitrogen overnight. After cooling to room temperature, carbon dioxide was bubbled into the mixture for 1 hr keeping the temperature below 20 °C. 55 mL of 10% hydrochloric acid was added dropwise and the resulting mixture was allowed to stir for 5 hr at room temperature. The mixture was evaporated to dryness, extracted with ethyl acetate (3 x 250 mL), dried (Na₂SO₄), filtered, and evaporated to dryness. The residue was triturated in hexane, the hexane was decanted, and the residue was dissolved in 1M sodium carbonate. The aqueous solution was extracted with diethyl ether (3 x 200 mL), acidified with concentrated hydrochloric acid, and extracted with diethyl ether (3 x 300 mL). The combined organic

10

15

20

25

30

35

layers were dried (MgSO₄), filtered, and evaporated to dryness to yield 2.55 g of the title compound of Step F as a solid melting at 195 °C (decomposed). ¹H NMR (Me₂SO- d_6): δ 2.3 (s, 3H), 2.77 (s,3H), 3.89 (m,5H), 7.4 (s,1H), 7.6 (s,1H).

Step G: Preparation of 2,4-dihydro-2,6,9-trimethyl[1]benzothiopyran[4,3-c]pyrazole-8-carboxylic acid 5,5-dioxide

6.70 mL (0.066 mol) of hydrogen peroxide (35%) was added to 50 mL of trifluoroacetic acid, and allowed to stir under nitrogen for 30 minutes. The solution was cooled to about 0 °C, and 4.46 g (0.016 mol) of the title compound of Step F was added in portions while keeping the temperature below 15 °C. The mixture stirred at room temperature overnight and then 2 mL of methyl sulfide was added to the mixture. The resulting mixture was allowed to stir for 15 minutes and was then evaporated to dryness. The residue was triturated in a mixture of diethyl ether: hexane (8:2), allowed to stand overnight, and the organic mixture was decanted. The residue was triturated in water, and an orange solid was removed. The orange solid was dissolved in 250 mL of chloroform, dried (MgSO₄), filtered, and evaporated to dryness to yield a portion of the title compound of Step G. The diethyl ether: hexane (8:2) decant was concentrated, the residue was triturated in water, and the water was decanted. The residue was dissolved in chloroform, dried (MgSO₄), filtered, and evaporated to dryness to yield the title compound of Step G. The two products were combined to yield 3.62 g of the title compound of Step G as a semi-solid. ¹H NMR (Me₂SO- d_6): δ 2.63 (s.3H), 2.7 (s.3H), 3.9 (s,3H), 4.7 (s,2H), 7.5 (s,1H), 7.8 (s,1H).

Step H: Preparation of 3-oxo-1-cylcohexen-1-yl 2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide

3.62 g (0.0118 mol) of the title compound of Step G, 3.09 mL (0.035 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N*,*N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 hr, and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and was then evaporated to dryness. Another 50 mL of methylene chloride was added to the residue, and the solution was cooled to about 0 °C. 1.46 g (0.013 mol) of 1,3-cyclohexanedione (purchased from Aldrich Chemical Company) was added followed by 5.1 mL (0.0366 mol) of tricthylamine, and the mixture was stirred overnight while warming to room temperature. The mixture was evaporated to dryness, and the crude product was chromatographed over silica gel cluting with a mixture of methylene chloride: diethyl ether (9:1) to yield 1.53 g of the title compound of Step H as a solid melting at 158-160 °C. ¹H NMR (CDCl₃): δ 2.2 (m.2H), 2.5 (m.2H). 2.7 (m.2H), 2.78 (s.3H), 2.9 (s.3H), 3.99 (s.3H), 4.39 (s.2H), 6.1 (s.1H), 7.5 (s.1H), 7.6 (s.1H).

10

15

20

25

35

.,

Step I: Preparation of 2-[(2,4-dihydro-2,6,9-trimethyl] I]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide

1.44 g (0.0036 mol) of the title compound of Step H, 2 drops of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.88 mL (0.0063 mol) of triethylamine were added to 100 mL of acetonitrile and the mixture was allowed to stir overnight at room temperature under nitrogen. About 0.10 g of potassium cyanide was added to the mixture, and the mixture was stirred for 1 hr. The mixture was evaporated to dryness and water was added to the residue. The mixture was acidified to pH 1 with concentrated hydrochloric acid and then filtered to provide the crude product. The crude product was dissolved in methylene chloride and the solution was dried (MgSO₄), filtered, and evaporated to dryness to yield 0.79 g of the title compound of Step I, a compound of the invention, as a solid melting at 228 °C (dec.). ¹H NMR (CDCl₃): δ 1.96 (m,2H), 2.4 (m,2H), 2.48 (s,3H), 2.6 (s,3H), 2.7 (m,2H), 3.8 (s,3H), 4.27 (s,2H), 6.8 (s,1H), 7.3 (s,1H).

Example 2

Step A: Preparation of 1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylic acid

6.74 g (0.021 mol) of 8-bromo-1,4-dihydro-1,6,9-trimethyl[1]benzo-thiopyrano[4,3-c]pyrazole (from Example 1, Step E) was added to 150 mL of tetrahydrofuran and cooled to -70 °C. 10.4 mL (0.026 mol) of 2.5 M n-butyllithium in hexanes (purchased from Aldrich Chemical Company) was added dropwise keeping the temperature below -60 °C. After stirring for 10 minutes, carbon dioxide was bubbled into the mixture for 1 hr. The mixture warmed to room temperature, 200 mL of hexane was added, and then the mixture was filtered. The solid was added to 300 mL of water, acidified to about pH 1 with concentrated hydrochloric acid and then filtered. The filtered residue was dissolved in chloroform and the solution was dried (MgSO₄), filtered and evaporated to dryness to yield 4.02 g of the title compound of Step A as a solid melting at >230 °C. ¹H NMR (CDCl₃): δ 2.4 (s,3H), 2.7 (s,3H), 3.77 (s,3H), 3.67 and 3.88 (2d,2H), 7.48 (s,1H), 7.88 (s,1H).

30 <u>Step B:</u> <u>Preparation of 1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylic acid 5,5-dioxide</u>

5.8 mL (0.0598 mol) of 35% hydrogen peroxide was added to 50 mL of trifluoroacetic acid and the mixture was allowed to stir under nitrogen for 30 minutes. The solution was cooled to about 0 °C, 4.0 g (0.0145 mol) of the title compound of Step A was added in portions while keeping the temperature below 15 °C, the mixture was then stirred at room temperature for 2 days. 2 mL of methyl sulfide was added to the mixture. The mixture was allowed to stir for 15 minutes and was then evaporated to dryness. The residue was stirred in a diethyl ether: hexane (8:2) mixture for 30 minutes and filtered to yield approximately 6.0 g of the title compound of Step B as a

10

15

20

25

30

solid melting at >210°C. ¹H NMR (Me₂SO- d_6): δ 2.5(s,3H), 2.63 (s, 3H), 3.7 (s, 3H), 4.7 (m, 2H), 7.68 (s,1H), 7.8 (s,1H).

Step C: Preparation of 3-oxo-1-cyclohexen-1-yl 1,4-dihydro-1,6,9trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide

2.0 g (0.0065 mol) of the title compound of Step B, 1.71 mL (0.0196 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N.N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was then evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0 °C. 0.80 g (0.0071 mol) of 1.3-cyclohexanedione (purchased from Aldrich Chemical Company) was added followed by 2.8 mL (0.020 mol) of triethylamine, and the mixture was stirred for 3 days while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel eluting with a mixture of ethyl acetate: hexane (6:4) to yield 0.86 g of the title compound of Step C as a solid melting at 196 °C (decomposed). ¹H NMR (CDCl₃): δ 2.2(m.2H), 2.5 (m.2H), 2.64 (s,3H), 2.7 (m,2H), 2.8 (s,3H), 3.8 (s,3H), 4.3 and 4.4 (2d, 2H), 6.06 (s,1H), 7.65 (s,1H), 7.94 (s,1H).

Step D: Preparation of 2-[(1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione *S,S*-dioxide

0.80 g (0.0020 mol) of the title compound of Step C, 2 drops of acctone cyanohydrin (purchased from Aldrich Chemical Company), and 0.49 mL (0.0035 mol) of triethylamine were added to 100 mL of acetonitrile and the mixture was allowed to stir overnight at room temperature under nitrogen. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was acidified to pH 1 with concentrated hydrochloric acid and filtered to provide the crude product. The crude product was dissolved in methylene chloride and the solution was dried (MgSO₄), filtered and evaporated to dryness to yield 0.47 g of the title compound of Step D, a compound of the invention, as a solid melting at >220 °C. ¹H NMR (CDCl₃): δ 2.1 (m,2H), 2.3 (s,3H), 2.6-2.76 (m,7H), 3.8 (s,3H), 4.2-4.4 (m,2H), 6.98-7.6 (2H).

Example 3

Step A: Preparation of 1-ethyl-1*H*-pyrazol-5-yl 1,4-dihydro-1,6,9trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide

2.0 g (0.0065 mol) of the title compound of Step B in Example 2, 1.71 mL (0.0196 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N*,*N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to

15

35

about 0 °C. 0.80 g (0.0071 mol) of 1-ethyl-1*H*-pyrazol-5-ol was added followed by 2.8 mL (0.020 mol) of triethylamine, and the mixture was stirred for 3 days while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel eluting with a mixture of ethyl acetate: hexane (6:4) to yield 0.40 g of the title compound of Step A as a solid melting at 173-175°C. ¹H NMR (CDCl₃): δ 1.5 (t,3H), 2.7 (s,3H), 2.8 (s,3H), 3.8 (s,3H), 4.1 (q,2H), 4.3 and 4.4 (2d,2H), 6.2-8.0 (4H).

Step B: Preparation of (1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl) (1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S,S*-dioxide

0.38 g (0.95 mmol) of the title compound of Step A, 1 drop of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.23 mL (1.66 mmol) of triethylamine were added to 50 mL of acetonitrile and the mixture was allowed to stir at room temperature under nitrogen overnight. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was acidified to pH 1 with concentrated hydrochloric acid and filtered to yield 0.12 g of the title compound of Step B₅ a compound of the invention, as a solid melting at 96 °C (decomposed). ¹H NMR (CDCl₃): δ 1.5 (t,3H), 2.60 (s,3H), 2.76 (s,3H), 3.83 (s,3H), 4.0-4.4 (m,4H), 7.4-7.8 (m,3H).

Example 4

Step A: Preparation of 3-[(4-bromo-2,5-dimethylphenyl)thio]propanoic acid
25.23 g (0.12 mol) of the title compound of Example 1, Step A was dissolved in
250 mL of dichloromethane and cooled to 5 °C. A solution of 19.12 g (0.12 mol) of
bromine in 25 mL of dichloromethane was added dropwise over 45 minutes, keeping
the reaction temperature at 5 °C. The reaction was then allowed to warm to room
temperature, diluted with 200 mL of dichloromethane and washed twice with 400 mL of
water. The organice layer was separated, dried over magnesium sulfate, filtered, and
concentrated under reduced pressure to yield 34.35 g of the title compound of step A as
a white solid melting at 105-107 °C. ¹H NMR (CDCl₃): δ 2.33 (s,3H), 2.34 (s, 3H),
2.67 (t, 2H), 3.10 (t, 2H), 7.18 (s, 1H), 7.36 (s, 1H).

30 Step B: Preparation of 6-bromo-2,3-dihydro-5,8-dimethyl-4*H*-1-benzothiopyran-4-one

19.50 g (67.4 mmol) of the title compound of Step A was dissolved in 156 mL of dichloromethan and cooled to 5 °C. 78 mL of concentrated sulfuric acid was added dropwise over 45 minutes with vigorous stirring and the reaction was then allowed to stir at 5 °C for 1.5 hours. The reaction was poured into 500 mL of ice water, the layers were separated and the aqueous phase extracted twice with 300 mL of dichloromethane. The combined organic layers were washed twice with 1.0 N NaOH, once with water, dried over magnesium sulfate and concentrated under reduced pressure to yield 16.04 g

10

15

20

25

30

of the title compound of Step B as a yellow solid melting at 86-87 °C. ¹H NMR (CDCl₃): δ 2.26 (s, 3H), 2.59 (s, 3H), 3.00 (t, 2H), 3.19 (t, 2H), 7.45 (s. 1H).

Step C: Preparation of 8-bromo-2.4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole

2.80 g (10 mmol) of the title compound of Step B and 1.79 g(15 mmol) of *N,N*-dimethylformamide dimethyl acetal were dissolved in 16 mL of ethyl acetate and heated to reflux. The methanol/ethyl acetate mixture was removed via a Dean Stark trap and was replaced with fresh ethyl acetate. After heating to reflux for 4 hours, the reaction was cooled to room temperature and allowed to stand overnight. It was then reluxed further for 2 hours, cooled to 60 °C, and 0.75 g (15 mmol) of hydrazine monohydrate was added. The reaction was reheated to reflux for 1 hour, cooled to room temperature, and diluted to 100 mL with ethyl acetate. The organic phase was washed twice with 100 mL of water, dried over magnesium sulfate, and concentrated under reduced pressure to yield 3.10 g of an oily yellow solid. This solide was triturated with hexanes, collected by filtration, washed further with hexanes, and dried to yield 2.79 g of the title compound of Step C as a pale yellow solid melting at 162-164 °C. ¹H NMR (CDCl₃): 8 2.34 (s, 3H), 2.79 (s, 3H), 3.84 (s, 2H), 7.35 (s, 1H), 7.46 (s, 1H), 10.4 (br s).

Step D: Preparation of 8-bromo-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole

A mixture of 6.09 g (20 mmol) of the title compound of Step C, 1.52 g (23 mmol) of potassium hydroxide, 0.31 g (5% by weight of the title compound of Step C) of tetrabutylammonium hydrogen sulfate, 25 mL of toluene, and 25 mL of water was stirred fo 15 minutes at room temperature. 3.85 g (25 mmol) of diethyl sulfate was added and the reaction stirred vigorously for 6.5 hours. The reaction was then diluted with 250 mL of ethyl acetate, washed twice with 100 mL of 1.0 N HCl, once with brine, dried over magnesium sulfate and concentrated under reduced pressure. The crude oil was dissolved in 300 mL of methanol, 3 mL of a 25% sodium methoxide/methanol solution was added and the resulting solution was concentrated at 60 °C under reduced pressure. The mixture was then redissolved in diethyl ether and 1.0 N HCl, the layers were separated, and the organic phase was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure to yield 6.50 g of a reddish oil. GC analysis showed a ratio of approximately 10:1 of the title compound of Step D to the 1-ethyl isomer. ¹H NMR (CDCl₃): δ 1.52 (t, 3H), 2.32 (s, 3H), 2.83 (s, 3H), 3.77 (s, 2H), 4.18 (q, 2H), 7.23 (s, 1H), 7.30 (s, 1H).

35 <u>Step E</u>: <u>Preparation of 8-bromo-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole 5,5-dioxide</u>

6.42 g (approximately 17 mmol) of the crude title compound of Step D, 32 mL of glacial acetic acid, and 12 drops of concentrated sulfuric acid were heated to 70 °C. The heat source was removed and 7.76 g (80 mmol) of 35% aqueous hydrogen peroxide

15

20

25

30

35

was added dropwise over 15 minutes, keeping the reaction temperature at about 70 °C. After 1 hour at 73-74 °C, the reaction was cooled to room temperature, poured into 400 mL of ethyl acetate, washed with 400 mL of water, 400 mL of aqueous sodium metabisulfite, aqueous sodium bicarbonate, and brine. A check for peroxides with starchiodide paper was negative. The organic phase was dried over magnesium sulfate and concentrated under reduced pressure to yield 6.90 g of a yellow solid. This solid was dissolved in 100 mL of dichloromethane and rinsed through a one inch bed of silica gel which was further rinsed with one liter of dichloromethane. The combined rinses were concentrated under reduced pressure to yield 5.70 g of the title compound of Step E as an off-white solid melting at 138-141 °C. ¹H NMR (CDCl₃): δ 1.54 (1, 3H), 2.70 (s, 3H), 2.85 (s, 3H), 4.22 (q, 2H), 4.35 (s, 2H), 7.44 (s, 1H), 7.50 (s, 1H).

Step F: Preparation of 2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-clpyrazole-8-carbonitrile 5,5-dioxide

3.00 g (8 mmol) of the title compound of Step E, 1.07 g (12 mmol) of copper (I) cyanide, and 50 mL of *N.N*-dimethylformamide were heated to reflux fo 5.5 hours and then let stir at room temperature overnight. The reaction was then diluted with 300 mL of ethyl acetate, washed twice with 200 mL of a solution of 50% saturated ammonium chloride in water with 20 mL of 35% ammonium hydroxide added, washed twice with 300 mL of water, dried over magnesium sulfate and concentrated under reduced pressure to yield 2.50 g of a tan solid. This solid was dissolved in 50 mL of dichloromethane and rinsed through a one inch bed of silica gel, which was further rinsed with 500 mL of dichloromethane and then 200 mL of 10% ethyl acetate:dichloromethane. The rinses were separately concentrated under reduced pressure. The dichloromethane rinse yielded 2.31 g of the title compound of Step F as an off-white solid melting at 185-187 °C. ¹H NMR (CDCl₃): δ 1.53 (t, 3H), 2.35 (s, 3H), 2.92 (s, 3H), 3.86 (s, 2H), 4.20 (q, 2H), 7.26 (s, 1H), 7.27 (s, 1H).

Step G: Preparation of 2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylic acid 5,5-dioxide

1.00 g (3.2 mmol) of the title compound of Step F, 2 mL of water, and 6 mL of sulfuric acid were heated to 140 °C for one hour. The reaction was allowed to cool to 60 °C and 0.25 g of sodium nitrite in 1 mL of water was added dropwise over 30 minutes and stirring was continued for another 30 minutes. The reaction was allowed to cool to room temperature, poured into 25 mL of ice water and the resulting solid was isolated by filtration and washed with 5 mL of cold water. Drying overnight yielded 1.02 g of a tan solid. The aqueous filtrate was extracted three times with 50 mL of dichloromethane and the organic phases were combined, dried over magnesium sulfate and concentrated under reduced pressure to yield 0.36 g of a brown oil. This oil and the isolated solid were dissolved in 50 mL of 1.0 N sodium hydroxide, washed with 25 mL of diethyl ether, acidified with concentrated HCl, and extracted four times with 50 mL.

of ethyl acetate. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to yield 0.98 g of the title compound of Step G as a tan solid melting at 204-206 °C. ¹H NMR (CDCl₃): δ 1.53 (t, 3H), 2.38 (s, 3H), 2.99 (s, 3H), 3.83 (s, 2H), 4.21 (q, 2H), 7.26 (s, 1H), 7.68 (s, 1H).

5 <u>Step H:</u> <u>Preparation of 3-oxo-1-cyclohexen-1-yl 2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide</u>

6.0 g (0.019 mol) of the title compound of Step G, 4.9 mL (0.056 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N.N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 hr and was evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0 °C. 2.31 g (0.021 mol) of 1,3-cyclohexanedione (purchased from Aldrich Chemical Company) was added followed by 8.1 mL (0.058 mol) of triethylamine and the mixture was stirred overnight while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel cluting with a mixture of ethyl acetate: hexane (6:4) to yield 1.78 g of the title compound of Step H as a solid melting at 160-162 °C. ¹H NMR (CDCl₃): δ 1.6 (t,3H), 2.2 (m,2H), 2.5 (m,2H), 2.7 (m,2H), 2.8 (s,3H), 2.9 (s,3H), 4.2 (q,2H), 4.4 (m,2H), 6.07 (s,1H), 7.46-7.6 (m,2H).

20 Step I: Preparation of 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl[-1,3-cyclohexanedione S,S-dioxide

1.70 g (0.0041 mol) of the title compound of Step H, 2 drops of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 1.0 mL (0.0072 mol) of tricthylamine were added to 100 mL of acetonitrile and the mixture was allowed to stir at room temperature under nitrogen overnight. About 0.05 g of potassium cyanide was then added to the mixture and it was stirred for 4 h. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was acidified to pH 1 with concentrated hydrochloric acid and filtered to yield 1.51 g of the title compound of Step I, a compound of the invention, as a solid melting at 205 °C (decomposed). ¹H NMR (CDCl₃): δ 1.5 (t,3H), 2.06 (m,2H), 2.5 (m,2H), 2.6 (m,2H), 2.7 (s,3H), 2.8 (m,2H), 4.2 (q,2H), 4.4 (m,2H), 6.9-7.4 (m,2H).

Example 5

Step A: Preparation of 1-ethyl-1*H*-pyrazol-5-yl 2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5.5-dioxide

5.9 g (0.018 mol) of the title compound of Step G in Example 4, 4.8 mL (0.055 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of N,N-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness.

10

15

25

30

10

15

20

25

30

35

::

Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0°C. 2.48 g (0.022 mol) of 1-ethyl-1*H*-pyrazol-5-ol was added followed by 7.97 mL (0.057 mol) of triethylamine, and the mixture was stirred overnight while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel eluting with a mixture of ethyl acetate: hexane (6:4) to yield 0.18 g of the title compound of Step A as a solid melting at 137°C (decomposed). ¹H NMR (CDCl₃): δ 1.45 (t.3H), 1.56 (t.3H), 2.8 (s.3H), 2.9 (s.3H), 4.1 (m.2H), 4.3 (m.2H), 4.4 (m.2H), 6.3-7.7 (m.4H).

Step B: Preparation of (2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S*,*S*-dioxide

0.18 g (0.43 mmol) of the title compound of Step A, 0.50 drops of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.11 mL (0.76 mmol) of triethylamine were added to 25 mL of acetonitrile and the mixture was allowed to stir at room temperature under nitrogen overnight. About 0.05 g of potassium cyanide was added to the mixture and it was stirred for 4 h. About 0.03 g of potassium cyanide was then added and the mixture was allowed to stir for 1h. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was then acidified to pH 1 with concentrated hydrochloric acid, and filtered to yield 0.11 g of the title compound of Step B, a compound of the invention, as a solid melting at 97 °C (decomposed). ¹H NMR (CDCl₃): δ 1.47 (t, 3H), 1.54 (t, 3H), 2.7 (s, 3H), 2.8 (s, 3H), 4.1 (q, 2H), 4.2 (q, 2H), 4.4 (m, 2H), 7.2-7.45 (m,3H).

Example 6

Step A: Preparation of 1-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-2-ethyl-1,2-dihydro-3*H*-pyrazol-3-one *S*,*S*-dioxide

4.0 g (0.013 mol) of the title compound of Step G in Example 1, 3.42 mL (0.039 mol) of oxalyl chloride (purchased from Janssen) and 2 drops of N, N-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0 °C. 1.60 g (0.014 mol) of 1-ethyl-1H-pyrazol-5-ol was added followed by 5.62 mL (0.040 mol) of triethylamine, and the mixture was stirred under nitrogen overnight while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel cluting first with a mixture of ethyl acetate: hexane (7:3) and then with ethyl acetate to yield 1.35 g of the title compound of Step A as a solid melting at >210 °C. 1 H NMR (CDCl₃): δ 7.45 (s, 1H), 7.2-7.35 (m, 2H), 5.74 (d, 1H), 4.4 (m, 4H), 3.98 (s, 3H), 2.78 (s, 3H), 2.7 (s, 3H), 1.3 (t, 3H).

Step B: Preparation of (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S,S*-dioxide

1.3 g (3.25 mmol) of the title compound of Step A, I drop of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.79 mL (5.69 mmol) of tricthylamine were added to 25 mL of acetonitrile and the mixture was allowed to stir at 5 room temperature under nitrogen for 15 min. 0.06 g of potassium cyanide was then added and the mixture was allowed to stir at room temperature under nitrogen overnight. Another 0.03 g of potassium cyanide was added and the reaction mixture was allowed to stir at room temperature under nitrogen for another 3 days. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture 10 was acidified to pH 1 with concentrated hydrochloric acid and filtered. The solid collected was dissolved in methylene chloride and the resulting solution was dried over MgSO₄ and then concentrated to yield 0.48 g of the title compound of Step B, a compound of the invention, as a solid melting at 133 °C (decomposed). ¹H NMR (Me_2SO-d_6) : δ 7.86 (s, 1H), 7.32 (s, 1H), 7.25 (s, 1H), 4.72 (s, 2H), 3.9-4.0 (m, 5H). 15 2.64 (s, 3H), 2.57 (s, 3H), 1.28 (t, 3H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 18 can be prepared. The following abbreviation is used in the Tables which follow: Ph = phenyl.

<u>R</u> å	Rb	<u>R</u> ^c	<u>R17</u>	<u>R18</u>
Н	H	PhC(=O)	Н	Н
Н	СН3	PhC(=O)	Н	Н
CH ₃	CH ₃	PhC(=O)	Н	Н
H	Н	PhC(=O)CH ₂	H	Н
Н	CH ₃	$PhC(=O)CH_2$	Н	I-I
CH ₃	CH ₃	PhC(=O)CH ₂	Н	Н
Н	Н	$4-CH_3PhC(=O)$	Н	Н
H	CH ₃	4-CH ₃ PhC(=0)	Н	Н
CH_3	CH ₃	4-CH ₃ PhC(=0)	11	Н
Н	Н	$CH_3S(O)_2$	H	H
H	CH ₃	$CH_3S(O)_2$	Н	H
CH_3	CH ₃	$CH_3S(O)_2$	Н	Н
H	Н	$CH_3CH_2S(O)_2$	Н	Н
H	CH ₃	$CH_3CH_2S(O)_2$	Н	Н
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	Н	H
H	Н	$CH_3CH_2CH_2S(O)_2$	Н	H
Н	CH ₃	$CH_3CH_2CH_2S(O)_2$	H	Н
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	Н	Н
Н	Н	PhS(O) ₂	Н	H
Н	CH ₃	$PhS(O)_2$	Н	H
CH_3	CH ₃	PhS(O) ₂	Н	Н
Н	Н	$4-CH_3PhS(O)_2$	Н	H
Н	CH ₃	4-CH ₃ PhS(O) ₂	Н .	Н
CH_3	CH ₃	4-CH ₃ PhS(O) ₂	H	Н

Н	Н	PhC(=O)	CH ₃	Н
Н	CH ₃	PhC(=O)	CH ₃	Н
CH ₃	CH ₃	PhC(=O)	CH ₃	Н
Н	Н	PhC(=O)CH ₂	CH ₃	Н
Н	CH ₃	$PhC(=O)CH_2$	CH ₃	Н
CH ₃	CH ₃	PhC(=O)CH ₂	CH ₃	Н
H	Н	4-CH ₃ PhC(=O)	CH ₃	Н
Н	СН3	4-CH ₃ PhC(=O)	CH ₃	Н
CH ₃	CH ₃	4-CH ₃ PhC(=O)	CH ₃	Н
Н	Н	$CH_3S(O)_2$	CH ₃	Н
Н	CH ₃	CH ₃ S(O) ₂	CH ₃	H
CH_3	CH ₃	CH ₃ S(O) ₂	CH ₃	Н
Н	H	$CH_3CH_2S(O)_2$	CH ₃	Н
Н	CH ₃	$CH_3CH_2S(O)_2$	CH ₃	H
CH ₃	CH ₃	CH ₃ CH ₂ S(O) ₂	CH ₃	Н
Н	Н	$CH_3CH_2CH_2S(O)_2$	CH ₃	Н
Н	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃	Н
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃	H
H	H	PhS(O) ₂	CH ₃	Н
Н	CH ₃	PhS(O) ₂	CH ₃	Н
CH ₃	CH ₃	PhS(O) ₂	CH ₃	Н
H	Н	4-CH ₃ PhS(O) ₂	CH ₃	Н
H	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃	Н
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃	Н
Н	Н	PhC(=O)	CH ₃ CH ₂	Н
Н	CH ₃	PhC(=O)	CH ₃ CH ₂	Н
CH_3	CH ₃	PhC(=())	CH ₃ CH ₂	H
H	Н	$PhC(=O)CH_2$	CH ₃ CH ₂	Н
Н	CH ₃	$PhC(=0)CH_2$	CH ₃ CH ₂	H
CH ₃	CH ₃	PhC(=O)CH ₂	CH ₃ CH ₂	Н
H	11	4-CH ₃ PhC(=O)	CH ₃ CH ₂	Н
Н	CH ₃	4-CH ₃ PhC(=O)	CH ₃ CH ₂	Н
CH_3	CH ₃	$4-CH_3PhC(=O)$	CH ₃ CH ₂	Н
Н	Н	CH ₃ S(O) ₂	CH ₃ CH ₂	Н
Н	CH ₃	CH ₃ S(O) ₂	CH ₃ CH ₂	Н
CH_3	CH ₃	$CH_3S(O)_2$	CH ₃ CH ₂	Н
Н	Н	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	Н
Н	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	H

CH_3	CH ₃	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂	Н
Н	Н	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃ CH ₂	. Н
Н	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃ CH ₂	Н
CH_3	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃ CH ₂	Н
H	Н	$PhS(O)_2$	CH ₃ CH ₂	Н
Н	CH ₃	$PhS(O)_{\underline{2}}$	CH ₃ CH ₂	Н
CH ₃	CH ₃	$PhS(O)_2$	CH ₃ CH ₂	Н
Н	Н	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	Н
Н	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	Н
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	Н
Н	Н	PhC(=O)	CH ₃ CH ₂ CH ₂	Η.
Н	CH ₃	PhC(=O)	CH ₃ CH ₂ CH ₂	Н
CH_3	CH ₃	PhC(=O)	CH ₃ CH ₂ CH ₂	Н
Н	Н	. PhC(=0)CH ₂	CH ₃ CH ₂ CH ₂	11
Н	CH_3	PhC(=O)CH ₂	CH ₃ CH ₂ CH ₂	Н
CH_3	CH ₃	PhC(=O)CH ₂	$\mathrm{CH_3CH_2CH_2}$	H
Н	Н	4-CH ₃ PhC(=O)	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃	$4-CH_3PhC(=O)$	$CH_3CH_2CH_2$	Н
CH_3	CH ₃	$4-CH_3PhC(=O)$	$\mathrm{CH_3CH_2CH_2}$	Н
Н	Н	$CH_3S(O)_2$	$CH_3CH_2CH_2$	Н
Н	CH ₃	$CH_3S(O)_2$	$CH_3CH_2CH_2$	H
CH_3	CH ₃	$CH_3S(O)_2$	$\mathrm{CH_{3}CH_{2}CH_{2}}$	Н
H	Н	$CH_3CH_2S(O)_2$	$CH_3CH_2CH_2$	Н
Н	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	Н
CH_3	CH ₃	$CH_3CH_2S(O)_2$	$CH_3CH_2CH_2$	Н
Н	Н	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Н
Н	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	Н
CH_3	CH ₃	$CH_9CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Н
Н	Н	$PhS(O)_2$	$CH_3CH_2CH_2$	Н
Н	CH ₃	PhS(O) ₂	CH ₃ CH ₂ CH ₂	Н
CH ₃	CH ₃	$PhS(O)_2$	CH ₃ CH ₂ CH ₂	H
Н	Н	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂ CH ₂	H
Н	CH ₃	$4-CH_3PhS(O)_2$	$CH_3CH_2CH_2$	Н
CH_3	CH ₃	$4\text{-CH}_3\text{PhS}(O)_2$	$CH_3CH_2CH_2$	Н
Н	Н	PhC(=O)	Н	CH_3
Н	CH ₃	PhC(=O)	H	CH_3
CH ₃	CH ₃	PhC(=O)	Н	CH_3
Н	Н	$PhC(=O)CH_2$	Н	CH ₃

H	CH ₃	PhC(=O)CH ₂	H	CH_3
CH ₃	CH ₃	$PhC(=O)CH_2$	Н	CH_3
Н	Н	$4-CH_3PhC(=O)$	Н	CH ₃
Н	CH ₃	$4\text{-CH}_3\text{PhC}(=0)$	Н	CH ₃
CH ₃	CH_3	$4-CH_3PhC(=O)$	Н	CH ₃
H	H	CH ₃ S(O) ₂	Н	CH_3
Н	CH ₃	CH ₃ S(O) ₂	H	CH ₃
CH ₃	CH ₃	CH ₃ S(O) ₂	Н	CH ₃
Н	Н	$CH_3CH_2S(O)_2$	Н	CH ₃
Н	CH ₃	$CH_3CH_2S(O)_2$	Н	CH_3
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	Н	CH_3
Н	Н	$CH_3CH_2CH_2S(O)_2$	Н	CH_3
H	CH ₃	$CH_3CH_2CH_2S(O)_2$	H	CH_3
CH_3	CH_3	$CH_3CH_2CH_2S(O)_2$	Ħ	CH_3
Н	Н	PhS(O) ₂	Н	CH_3
Н	CH ₃	PhS(O) ₂	Н	CH ₃
CH_3	CH ₃	PhS(O) ₂	H	CH ₃
Н	Н	4-CH ₃ PhS(O) ₂	Н	CH_3
Н	CH ₃	4-CH ₃ PhS(O) ₂	Н	CH_3
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	H	CH ₃
Н	Н	PhC(=O)	CH ₃	CH ₃
Н	CH ₃	PhC(=O)	CH ₃	CH ₃
CH_3	CH ₃	PhC(=O)	CH ₃	CH ₃
H	Н	$PhC(=O)CH_2$	CH ₃	CH ₃
H	CH ₃	PhC(=O)CH ₂	CH_3	CH ₃
CH_3	CH ₃	$PhC(=O)CH_2$	CH ₃	CH_3
Н	Н	$4-CH_3PhC(=O)$	CH ₃	CH_3
Н	CH ₃	$4-CH_3PhC(=O)$	CH ₃	CH ₃
CH_3	CH ₃	$4 \cdot CH_3PhC(=O)$	CH ₃	CH_3
Н	Н	$CH_3S(O)_2$	СН3	CH ₃
H	CH ₃	$CH_3S(O)_2$	CH ₃	CH_3
CH ₃	CH ₃	$CH_3S(O)_2$	CH ₃	CH ₃
Н	Н	$CH_3CH_2S(O)_2$	CH ₃	CH ₃
Н	CH ₃	$CH_3CH_2S(O)_2$	CH ₃	CH_3
CH_3	CH ₃	$CH_3CH_2S(O)_2$	CH ₃	CH ₃
Н	Н	$CH_3CH_2CH_2S(O)_2$	CH ₃	CH ₃
Н	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃	CH ₃
CH ₃	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃	CH ₃

H	Н	PhS(O)2	CH ₃	CH ₃
Н	CH ₃	PhS(O) ₂	CH ₃	CH ₃
CH_3	CH ₃	PhS(O) ₂	CH ₃	CH_3
Н	Н	$4-CH_3PhS(O)_2$	CH ₃	CH ₃
Н	CH ₃	$4-CH_3PhS(O)_2$	CH ₃	CH ₃
CH_3	CH ₃	$4-CH_3PhS(O)_2$	CH_3	CH_3
Н	Н	PhC(=O)	CH ₃ CH ₂	CH ₃
Н	CH ₃	PhC(=O)	CH ₃ CH ₂	CH ₃
CH_3	CH ₃	PhC(=O)	CH ₃ CH ₂	CH ₃
H	Н	PhC(=O)CH ₂	CH ₃ CH ₂	CH ₃
H	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂	CH ₃
CH_3	CH ₃	$PhC(=O)CH_2$	CH₃CH₂	СН3
H	Н	$4-CH_3PhC(=O)$	CH ₃ CH ₂	CH_3
Н	CH ₃	4-CH ₃ PhC(=O)	CH ₃ CH ₂	CH_3
CH_3	CH_3	$4-CH_3PhC(=O)$	CH₃CH₂	CH ₃
Н	Н	$CH_3S(O)_2$	CH ₃ CH ₂	CH_3
Н	CH ₃	$CH_3S(O)_2$	CH ₃ CH ₂	CH_3
CH_3	CH ₃	$CH_3S(O)_2$	CH ₃ CH ₂	CH ₃
H	Н	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂	CH_3
Н	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	CH_3
CH_3	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	CH ₃
Н	Н	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃ CH ₂	CH_3
Н	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂	CH ₃
CH_3	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂	CH ₃
Н	Н	$PhS(O)_2$	CH ₃ CH ₂	CH ₃
Н	CH ₃	$PhS(O)_2$	CH ₃ CH ₂	CH ₃
CH ₃	СН3	PhS(O) ₂	CH ₃ CH ₂	CH ₃
Н	H	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	CH_3
Н	CH ₃	4-CH ₃ PhS(O) ₂	CH_3CH_2	CH_3
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	CH_3
H	H	PhC(=O)	CH ₃ CH ₂ CH ₂	CH_3
H	CH ₃	PhC(=O)	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH ₃	PhC(=O)	CH ₃ CH ₂ CH ₂	CH_3
H	H	$PhC(=O)CH_2$	CH ₃ CH ₂ CH ₂	CH ₃
H .	CH ₃	$PhC(=O)CH_2$	$CH_3CH_2CH_2$	CH_3
СН3	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂ CH ₂	СН3
H	Н	4-CH ₃ PhC(=O)	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃	$4-CH_3PhC(=O)$	$CH_3CH_2CH_2$	CH ₃

CH ₃	CH ₃	$4\text{-CH}_3\text{PhC}(=0)$	CH ₃ CH ₂ CH ₂	CH_3
Н	Н	$CH_3S(O)_2$	$CH_3CH_2CH_2$	CH_3
Н	CH ₃	$CH_3S(O)_2$	$CH_3CH_2CH_2$	CH_3
CH ₃	CH ₃	$CH_3S(O)_2$	CH ₃ CH ₂ CH ₂	CH_3
Н	Н	$CH_3CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH ₃	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂ CH ₂	CH_3
Н	Н	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	CH_3
Н	Н	$PhS(O)_2$	CH₃CH₂CH₂	CH_3
Н	CH ₃	$PhS(O)_2$	$CH_3CH_2CH_2$	CH ₃
CH ₃	CH ₃	$PhS(O)_2$	$CH_3CH_2CH_2$	CH_3
H	H	4-CH ₃ PhS(O) ₂	$CH_3CH_2CH_2$	CH_3
Н	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	$CH_3CH_2CH_2$	CH_3
Н	Н	PhC(=O)	Н	C1
H	CH ₃	PhC(=O)	Н	Cl
CH ₃	CH ₃	PhC(=O)	Н	Cl
Н	Н	PhC(=O)CH ₂	H	Cl
Н	CH ₃	PhC(=O)CH ₂	Н	Cl
CH ₃	CH ₃	PhC(=O)CH ₂	Н	Cl
Н	Н	$4 \cdot CH_3PhC(=O)$	Н	CI
Н	CH ₃	$4-CH_3PhC(=O)$	Н	Cl
CH ₃	CH ₃	$4 \cdot CH_3PhC(=O)$	Н	Cl
Н	Н	CH ₃ S(O) ₂	Н	CI
Н	CH ₃	CH ₃ S(O) ₂	Н	C1
CH ₃	CH ₃	CH ₃ S(O) ₂	Н	Cl
Н	Н	$CH_3CH_2S(O)_2$	Н	CI
H	CH ₃	CH ₃ CH ₂ S(O) ₂	Н	Cl
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	Н	Cl
Н	Н	$CH_3CH_2CH_2S(O)_2$	Н	Cl
Н	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	Н	Cl
CH_3	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	Н	Cl
H	Н .	PhS(O) ₂	Н	Cl
Н	CH ₃	PhS(O) ₂	Н	Cl
CH_3	CH ₃	PhS(O) ₂	Н	C1
Н	Н	4-CH ₃ PhS(O) ₂	Н	Cl

والمسيود العرادي

Н	CH ₃	4-CH ₃ PhS(O) ₂	H	Cl
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	Н	CI
Н	Н	PhC(=O)	CH ₃	CI
Н	CH ₃	PhC(=O)	CH ₃	Cl
CH ₃	CH ₃	PhC(=O)	CH ₃	CI
Н	Н	$PhC(=O)CH_2$	CH ₃	CI
H	CH ₃	$PhC(=O)CH_2$	CH ₃	Cl
CH_3	CH ₃	$PhC(=O)CH_2$	CH ₃	Cl
Н	H	$4 \cdot CH_3PhC(=O)$	CH ₃	Cl
H	CH ₃	$4-CH_3PhC(=O)$	CH ₃	CI
CH ₃	CH ₃	$4\text{-CH}_3\text{PhC}(=0)$	CH ₃	Cl
H	H	CH ₃ S(O) ₂	CH ₃	Cl
Н	CH ₃	$CH_3S(O)_2$	CH ₃	Cl
CH_3	CH ₃	CH ₃ S(O) ₂	CH ₃	Cl
H	Н	CH ₃ CH ₂ S(O) ₂	CH ₃	Cl
Н	CH ₃	CH ₃ CH ₂ S(O) ₂	CH ₃	Cl
CH_3	CH ₃	$CH_3CH_2S(O)_2$	CH ₃	Cl
Н	Н	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃	CI
H	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃	CI
CH_3	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃	CI
Н	H	$PhS(O)_2$	CH ₃	Cl
H	CH ₃	$PhS(O)_2$	CH ₃	CI
СН3	CH ₃	$PhS(O)_2$	CH ₃	CI
H	H	4-CH ₃ PhS(O) ₂	CH ₃	Cl
H	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃	Cl
CH_3	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃	CI
Н	Н	PhC(=O)	CH ₃ CH ₂	Cl
Н	CH ₃	PhC(=O)	CH ₃ CH ₂	Cl
CH ₃	CH ₃	PhC(=O)	CH ₃ CH ₂	Cl
Н	Н	$PhC(=O)CH_2$	CH ₃ CH ₂	Cl
Н	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂	Cl
CH ₃	СН3	PhC(=O)CH ₂	CH ₃ CH ₂	CI
Ή	Н	$4-CH_3PhC(=O)$	CH ₃ CH ₂	Cl
Н	CH ₃	4-CH ₃ PhC(=O)	CH_3CH_2	Cl
CH ₃	CH ₃	4-CH ₃ PhC(=O)	CH_3CH_2	CI
Н	Н	CH ₃ S(O) ₂	CH ₃ CH ₂	Cl
Н	CH ₃	CH ₃ S(O) ₂	CH ₃ CH ₂	CI
CH ₃	CH ₃	CH ₃ S(O) ₂	CH_3CH_2	Cl

Н	Н	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂	Cl
Н	CH ₃	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂	Cl
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	CH_3CH_2	Cl
Н	Н	CH3CH2CH2S(O)2	CH ₃ CH ₂	Cl
Н	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	CH_3CH_2	Cl
CH_3	CH_3	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂	C1
Н	Н	PhS(O) ₂	CH ₃ CH ₂	Cl
Н	CH ₃	PhS(O) ₂	CH ₃ CH ₂	Cl
CH ₃	CH ₃	$PhS(O)_2$	CH ₃ CH ₂	C1
Н	Н	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	CI
Н	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	Cl
CH ₃	CH ₃	$4-CH_3PhS(O)_2$	CH ₃ CH ₂	Cl
Н	Н	PhC(=O)	$CH_3CH_2CH_2$	Cl
Н	CH ₃	PhC(=O)	CH ₃ CH ₂ CH ₂	CI
CH ₃	CH ₃	PhC(=O)	CH ₃ CH ₂ CH ₂	Cl
Н	Н	$PhC(=O)CH_2$	$CH_3CH_2CH_2$	Cl
Н	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂ CH ₂	Cl
H	Н	$4-CH_3PhC(=O)$	CH ₃ CH ₂ CH ₂	Cl
Ħ	CH ₃	4-CH ₃ PhC(=0)	CH ₃ CH ₂ CH ₂	CI
CH_3	CH ₃	4-CH ₃ PhC(=O)	CH ₃ CH ₂ CH ₂	Cl
Н	H	CH ₃ S(O) ₂	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃	CH ₃ S(O) ₂	$\mathrm{CH_3CH_2CH_2}$	CI
CH ₃	CH ₃	CH ₃ S(O) ₂	CH ₃ CH ₂ CH ₂	Cl
Н	Н	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	$CH_3CH_2CH_2$	Cl
Н	Н	CH3CH2CH2S(O)2	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Cl
CH_3	CH ₃	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Cl
Н	Н	PhS(O) ₂	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃	PhS(O) ₂	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH ₃	$PhS(O)_2$	CH ₃ CH ₂ CH ₂	Cl
Н	Н	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂ CH ₂	CI
Н	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂ CH ₂	CI
CH_3	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂ CH ₂	CI

<u>R</u> a	<u>R</u> b	Rc	<u>R17</u>	<u>R18</u>
Н	CH_3CH_2	PhC(=O)	Н	Н
CH ₃	CH ₃	PhC(=O)	Н	Н
Н	CH ₃ CH ₂	4-CH ₃ PhC(=O)	Н	Н
CH ₃	CH ₃	$4\text{-CH}_3\text{PhC}(=\text{O})$	Н	Н
Н	CH ₃ CH ₂	$CH_3S(O)_2$	Н	Н
CH_3	CH ₃	$CH_3S(O)_2$	Н	Н
Н	CH_3CH_2	$CH_3CH_2S(O)_2$	Н	H
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	Н	Н
Н	CH_3CH_2	$CH_3CH_2CH_2S(O)_2$	Н	H
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	Н	Н
Н	CH_3CH_2	$PhS(O)_2$	Н	Н
CH ₃	CH ₃	$PhS(O)_2$	Н	Н
Н	CH_3CH_2	4-CH ₃ PhS(O) ₂	Н	Н
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	Н	H
Н	CH_3CH_2	PhC(=O)	CH ₃	Н
CH_3	CH ₃	PhC(=O)	CH ₃	11
H	CH_3CH_2	4-CH ₃ PhC(=O)	СН3	Н
CH_3	CH ₃	$4-CH_3PhC(=O)$	CH ₃	Н
Н	CH_3CH_2	$CH_3S(O)_2$	CH ₃	Н
CH_3	CH ₃	CH ₃ S(O) ₂	CH ₃	Н
H	CH_3CH_2	$CH_3CH_2S(O)_2$	CH ₃	H
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	CH ₃	Н
Н	CH_3CH_2	$CH_3CH_2CH_2S(O)_2$	CH ₃	\mathbf{H}_{\perp}
CH_3	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃	Н
H	CH_3CH_2	$PhS(O)_2$	CH ₃ .	Н
CH_3	CH ₃	PhS(O) ₂	CH ₃	Н
Н	CH ₃ CH ₂	4-CH ₃ PhS(O) ₂	CH ₃	Н
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃	Н
H	CH ₃ CH ₂	PhC(=O)	CH_3CH_2	Н

CH ₃	CH ₃	PhC(=O)	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	4-CH ₃ Pl ₁ C(=O)	CH ₃ CH ₂	Н
CH ₃	CH ₃	4-CH ₃ PhC(=O)	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	CH ₃ S(O) ₂	CH ₃ CH ₂	Н
CH ₃	CH ₃	CH ₃ S(O) ₂	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	Н
CH3	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃ CH ₂	H
СНз	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	PhS(O) ₂	CH ₃ CH ₂	Н
CH ₃	CH ₃	PhS(O) ₂	CH ₃ CH ₂	H
Н	CH ₃ CH ₂	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	Н
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	$\mathrm{CH_{3}CH_{2}}$	Н
Н	CH ₃ CH ₂	PhC(=O)	CH ₃ CH ₂ CH ₂	H
CH ₃	CH ₃	PhC(=O)	$CH_3CH_2CH_2$	Н
H	CH ₃ CH ₂	$4-CH_3PhC(=O)$	$CH_3CH_2CH_2$	Н
CH ₃	CH ₃	$4-CH_3PhC(=O)$	$CH_3CH_2CH_2$	Н
Н	CH_3CH_2	$CH_3S(O)_2$	$CH_3CH_2CH_2$	H
CH ₃	CH ₃	CH ₃ S(O) ₂	$CH_3CH_2CH_2$	H
Н	CH ₃ CH ₂	$CH_3CH_2S(O)_2$	$CH_3CH_2CH_2$	Н
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Н
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Н
H	CH_3CH_2	PhS(O) ₂	CH ₃ CH ₂ CH ₂	H
CH ₃	CH ₃	PhS(O) ₂	CH ₃ CH ₂ CH ₂	H
Н	CH ₃ CH ₂	$4-CH_3PhS(O)_2$	CH ₃ CH ₂ CH ₂	Н
CH ₃	CH ₃	$4-CH_3PhS(O)_2$	CH ₃ CH ₂ CH ₂	Н
Н	CH_3CH_2	PhC(=O)	Н	CH ₃
CH ₃	CH ₃	PhC(=O)	H	CH ₃
Н	CH_3CH_2	$4-CH_3PhC(=O)$	H	CH ₃
CH ₃	CH ₃	$4\text{-CH}_3\text{PhC}(=\text{O})$	Н	CH ₃
Н	CH ₃ CH ₂	CH ₃ S(O) ₂	H	CH ₃
CH ₃	CH ₃	$CH_3S(O)_2$	Н	CH ₃
Н	CH ₃ CH ₂	$CH_3CH_2S(O)_2$	Н	CH ₃
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	Н	CH ₃
Н	CH_3CH_2	$CH_3CH_2CH_2S(O)_2$	Н	CH ₃
CH_3	CH ₃	$CH_3CH_2CH_2S(O)_2$	Н	CH ₃
Н	CH_3CH_2	$PhS(O)_2$	Н	CH ₃
	*			

CH ₃	CH ₃	$PhS(O)_{2}$	Н	CH ₃
Н	CH ₃ CH ₂	$4\text{-CH}_3\text{PhS}(O)_2$	Н	СН3
CH_3	CH ₃	$4-CH_3PhS(O)_2$	Н	CH ₃
H	CH_3CH_2	PhC(=O)	CH ₃	CH ₃
CH_3	CH ₃	PhC(=O)	CH ₃	CH ₃
Н	CH₃CH₂	4-CH ₃ PhC(=O)	CH ₃	CH ₃
CH ₃	CH ₃	$4-CH_3PhC(=O)$	CH ₃	CH ₃
Н	CH ₃ CH ₂	$CH_3S(O)_2$	CH ₃	CH ₃
CH ₃	CH_3	$CH_3S(O)_2$	CH ₃	CH ₃
Н	CH_3CH_2	$CH_3CH_2S(O)_2$	CH ₃	CH ₃
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	CH ₃	CH ₃
H	CH_3CH_2	$CH_3CH_2CH_2S(O)_2$	CH ₃	СН3
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃	CH ₃
H	CH ₃ CH ₂	$PhS(O)_2$	CH ₃	CH ₃
CH ₃	CH ₃	$PhS(O)_2$	CH ₃	CH ₃
H	CH_3CH_2	$4\text{-CH}_3\text{PhS}(O)_2$	CH ₃	CH ₃
CH ₃	CH ₃	$4-CH_3PhS(O)_2$	CH ₃	CH ₃
Н	CH_3CH_2	PhC(=O)	CH ₃ CH ₂	CH ₃
CH_3	CH ₃	PhC(=O)	CH ₃ CH ₂	CH ₃
Н	CH_3CH_2	$4-CH_3PhC(=O)$	CH ₃ CH ₂	CH_3
CH ₃	CH ₃	4-CH ₃ PhC(=O)	CH ₃ CH ₂	CH ₃
Н	CH_3CH_2	$CH_3S(O)_2$	CH ₃ CH ₂	СН3
CH ₃	CH ₃	$CH_3S(O)_2$	CH ₃ CH ₂	CH_3
H	CH ₃ CH ₂	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	CH ₃
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	CH_3
Н	CH_3CH_2	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂	CH_3
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH_3CH_2	CH_3
Н	CH ₃ CH ₂	PhS(O) ₂	CH ₃ CH ₂	CH ₃
CH ₃	CH ₃	PhS(O) ₂	CH ₃ CH ₂	CH ₃
Н	CH ₃ CH ₂	$4-CH_3PhS(O)_2$	CH_3CH_2	CH ₃
CH ₃	CH ₃	$4-CH_3PhS(O)_2$	CH ₃ CH ₂	CH_3
Н	CH_3CH_2	PhC(=O)	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH ₃	PhC(=O)	$CH_3CH_2CH_2$	CH_3
Н	CH₃CH₂	$4-CH_3PhC(=O)$	$CH_3CH_2CH_2$	CH_3
CH ₃	CH ₃	$4-CH_3PhC(=O)$	$CH_3CH_2CH_2$	CH ₃
Н	CH_3CH_2	CH ₃ S(O) ₂	$CH_3CH_2CH_2$	СН3
CH ₃	CH ₃	$CH_3S(O)_2$	CH ₃ CH ₂ CH ₂	CH ₃
H	CH ₃ CH ₂	$CH_3CH_2S(O)_2$	$CH_3CH_2CH_2$	CH_3

CH ₃	CH ₃	CH ₃ CH ₂ S(O) ₂	CH ₃ CH ₂ CH ₂	CH_3
Н	СH ₃ CH ₂	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	CH_3
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	CH ₃
Н	CH ₃ CH ₂	PhS(O) ₂	$CH_3CH_2CH_2$	CH_3
CH ₃	CH ₃	PhS(O) ₂	$CH_3CH_2CH_2$	CH ₃
Н	CH ₃ CH ₂	4-CH ₃ PhS(O) ₂	$CH_3CH_2CH_2$	CH ₃
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂ CH ₂	CH ₃
H	CH ₃ CH ₂	PhC(=O)	Н	Cl
CH ₃	CH ₃	PhC(=O)	Н	CI
Н	CH_3CH_2	$4-CH_3PhC(=O)$	Н	CI
CH ₃	CH ₃	$4\text{-CH}_3\text{PhC}(=0)$	Н	CI
Н	CH_3CH_2	$CH_3S(O)_2$	Н	Cl
CH_3	CH ₃	CH ₃ S(O) ₂	Н	Cl
Н	CH_3CH_2	$CH_3CH_2S(O)_2$	Н	CI
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	Н	Cl
Н	CH_3CH_2	$CH_3CH_2CH_2S(O)_2$	Н	Cl
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	Н	Cl
Н	CH_3CH_2	PhS(O) ₂	Н	Cl
CH ₃	CH ₃	$PhS(O)_2$	Н	Cl
Н	CH ₃ CH ₂	$4-CH_3PhS(O)_2$	Н	Cl
CH ₃	CH ₃	4-CH ₃ PhS(O) ₂	Н	CI
Н	CH ₃ CH ₂	PhC(=O)	CH ₃	Cl
CH ₃	CH ₃	PhC(=O)	CH ₃	CI
Н	CH_3CH_2	4-CH ₃ PhC(=O)	CH ₃	CI
CH3	CH ₃	$4-CH_3PhC(=O)$	CH ₃	Ci
Н	CH_3CH_2	CH ₃ S(O) ₂	CH ₃	Cl
CH ₃	CH ₃	$CH_3S(O)_2$	CH ₃	CI
Н	CH_3CH_2	$CH_3CH_2S(O)_2$	CH ₃	Cl
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	CH ₃	Cl
H	CH ₃ CH ₂	-	CH ₃	Cl
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃	Cl
Н	CH ₃ CH ₂	PhS(O) ₂	CH ₃	Cl
CH ₃	CH ₃	PhS(O) ₂	CH ₃	CI
Н .	CH ₃ CH ₂	4-CH ₃ PhS(O) ₂	CH ₃	Cl
СН3	CH ₃	4-CH ₃ PhS(O) ₂	CH ₃	Cl
Н	CH_3CH_2	PhC(=O)	CH ₃ CH ₂	Cl
CH ₃	CH ₃	PhC(=O)	CH ₃ CH ₂	Cl
Н	CH ₃ CH ₂	4-CH ₃ PhC(=O)	CH ₃ CH ₂	Cl

CH_3	CH ₃	$4\text{-CH}_3\text{PhC}(=0)$	CH ₃ CH ₂	CI
Н	CH₃CH₂	$CH_3S(O)_2$	CH_3CH_2	Cl
CH ₃	CH_3	CH ₃ S(O) ₂	CH_3CH_2	Ci
Н	CH₃CH₂	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	CI
CH_3	CH ₃	$CH_3CH_2S(O)_2$	CH ₃ CH ₂	CI
Н	CH ₃ CH ₂	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂	. Cl
CH_3	CH ₃	$CH_3CH_2CH_2S(O)_2$	CH ₃ CH ₂	Cl
Н	CH_3CH_2	$PhS(O)_2$	CH₃CH₂	CI
CH_3	CH ₃	$PhS(O)_2$	CH ₃ CH ₂	CI
H	CH_3CH_2	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	CI
CH ₃	CH_3	4-CH ₃ PhS(O) ₂	CH ₃ CH ₂	Cl
Н	CH_3CH_2	PhC(=O)	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH ₃	PhC(=O)	CH ₃ CH ₂ CH ₂	CI
Н	CH_3CH_2	4-CH ₃ PhC(=O)	$CH_3CH_2CH_2$	Cl
CH_3	CH_3	4-CH ₃ PhC(=O)	CH ₃ CH ₂ CH ₂	CI
Н	CH ₃ CH ₂	$CH_3S(O)_2$	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH ₃	CH ₃ S(O) ₂	$CH_3CH_2CH_2$	CI
Н	CH_3CH_2	$CH_3CH_2S(O)_2$	$CH_3CH_2CH_2$	CI
CH ₃	CH ₃	$CH_3CH_2S(O)_2$	$CH_3CH_2CH_2$	CI
Н	CH ₃ CH ₂	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Cl
CH ₃	CH ₃	$CH_3CH_2CH_2S(O)_2$	$CH_3CH_2CH_2$	Cl
H	CH ₃ CH ₂	PhS(O) ₂	CH ₃ CH ₂ CH ₂	Cl
CH_3	CH ₃	$PhS(O)_2$	CH ₃ CH ₂ CH ₂	Cl
H	CH ₃ CH ₂	$4\text{-CH}_3\text{PhS}(O)_2$	CH ₃ CH ₂ CH ₂	Cl
CH_3	CH ₃	$4\text{-CH}_3\text{PhS}(O)_2$	$CH_3CH_2CH_2$	CI
H	$\mathrm{CH_{3}CH_{2}}$	PhC(=O)CH ₂	Н	Н
CH ₃	CH ₃	PhC(=O)CH ₂	Н	Н
Н	CH_3CH_2	$PhC(=O)CH_2$	CH ₃	Н
CH ₃	CH ₃	$PhC(=O)CH_2$	CH ₃	Н
Н	CH₃CH₂	$PhC(=O)CH_2$	CH ₃ CH ₂	Н
CH ₃	CH ₃	PhC(=O)CH ₂	CH_3CH_2	Н
Н	CH ₃ CH ₂	$PhC(=O)CH_2$	$CH_3CH_2CH_2$	Н
CH ₃	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂ CH ₂	Н
H	CH_3CH_2	$PhC(=O)CH_2$	Н	CH ₃
CH ₃	CH ₃	$PhC(=O)CH_2$	Н	CH_3
Н	CH_3CH_2	PhC(=O)CH ₂	CH ₃	CH_3
CH ₃	CH ₃	$PhC(=O)CH_2$	CH ₃	CH_3
Н	CH_3CH_2	$PhC(=O)CH_2$	CH ₃ CH ₂	CH ₃

CH_3	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂	CH ₃
Н	CH ₃ CH ₂	$PhC(=O)CH_2$	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH ₃	PhC(=O)CH ₂	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃ CH ₂	PhC(=O)CH ₂	H	CI
CH ₃	CH ₃	PhC(=O)CH ₂	H	CI
Н	CH ₃ CH ₂	$PhC(=O)CH_2$	CH_3	Cl
CH ₃	CH ₃	$PhC(=O)CH_2$	CH ₃	Cl
Н	CH ₃ CH ₂	$PhC(=O)CH_2$	CH_3CH_2	Cl
CH ₃	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂	CI
Н	CH ₃ CH ₂	PhC(=O)CH ₂	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH ₃	$PhC(=O)CH_2$	CH ₃ CH ₂ CH ₂	Cl

Table 3 R17 R18 R2 0 0

<u>R</u> 1	<u>R²</u>	$R^{1.7}$	<u>R18</u>
H-1	H ees.	H	Ħ.,
CH ₃	H	H	Н
СН3	CH ₃	H	H
CI	H	$\mathbf{H}_{\mathbf{I}}$. [-]
Cl	CH ₃	H,	H
Cl	Cl	$[H] = \{ (x,y) \in \mathbb{R}^n : y \in \mathbb{R}^n \}$	1-1
H	Н	CH ₃	H
CH ₃ .	H	CH ₃	Н
yCH ₃	CH ₃	CH ₃	$_{A_{\beta}}\mathbf{H}_{\beta}$
Cl	Н	CH ₃	Н
Cl	CH ₃	CH ₃	H
Cl	Cl	CH ₃	H
H · · · · · · · · · · · · · · · · · · ·	Н	CH ₃ CH ₂	H
CH3	H	CH ₃ CH ₂	Н
CH ₃	CH ₃	CH ₃ CH ₂	Н
		CH3CH2	. H.
Cl .	CH ₃	CH ₃ CH ₂	Н

The state of the s

Cl	Cl	CH3CH2CH2	Н
Н	Н	CH ₃ CH ₂ CH ₂	11
CH ₃	Н	CH ₃ CH ₂ CH ₂	Н
CH ₃	CH ₃	CH ₃ CH ₂ CH ₂	Н
Cl	H	$CH_3CH_2CH_2$	Н
Cl	CH ₃	CH ₃ CH ₂ CH ₂	Н
CI	Cl	CH ₃ CH ₂ CH ₂	Н
Н .	H	н	CH ₃
CH ₃	H	Н	CH ₃
CH ₃	CH ₃	Н	CH ₃
Cl	H	Н	CH ₃
Cl	CH ₃	Н	CH ₃
Cl	Cl	Н	CH_3
Н	H	CH ₃	CH_3
CH ₃	H	CH ₃	CH_3
CH ₃	CH ₃	CH ₃	CH ₃
Cl	H	CH ₃	CH_3
Cl	CH ₃	CH_3	CH ₃
Cl	Cl	CH ₃	CH ₃
Н	Н	CH ₃ CH ₂	CH ₃
CH ₃	Н	CH ₃ CH ₂	CH ₃
CH ₃	CH ₃	CH ₃ CH ₂	CH ₃
Cl	Н	CH ₃ CH ₂	CH_3
Cl	CH ₃	CH_3CH_2	CH_3
Cl	Cl	$CH_3CH_2CH_2$	CH ₃
Н	H	CH ₃ CH ₂ CH ₂	CH ₃
CH ₃	Н	CH ₃ CH ₂ CH ₂	CH ₃
CH ₃	CH ₃	CH ₃ CH ₂ CH ₂	CH_3
Cl	Н	CH ₃ CH ₂ CH ₂	CH ₃
CI	CH ₃	CH3CH2CH2	CH ₃
Cl	CI	CH ₃ CH ₂ CH ₂	CH_3
Н	Н	Н	CI
CH ₃	Н	Н	CI
CH ₃	CH ₃	Н	C1
Cl	Н	H	Cl
Cl	CH ₃	Н	Cl
Cl	Cl	Н	Cl
H	Н	CH ₃	Cl
•			

CH ₃	Н	CH ₃	Cl
CH ₃	CH ₃	CH ₃	Cl .
Cl	Н	CH ₃	Cl
Cl	CH ₃	CH ₃	Cl
Cl	Cl	CH ₃	Cl
Н	Н	CH ₃ CH ₂	Cl
СН3	Н	CH ₃ CH ₂	Cl
CH ₃	CH ₃	CH ₃ CH ₂	Cl
Cl	Н	CH ₃ CH ₂	CI
Cl	CH ₃	CH_3CH_2	CI
Cl	Cl	$CH_3CH_2CH_2$	Cl
Н	Н	$CH_3CH_2CH_2$	Cl
CH ₃	Н	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH_3	CH ₃ CH ₂ CH ₂	Cl
Cl	H	$CH_3CH_2CH_2$	Cl
Cl	CH ₃	$CH_3CH_2CH_2$	Cl
Cl	Cl	CH ₃ CH ₂ CH ₂	Cl

<u>R</u> 1	<u>R²</u>	<u>R17</u>	<u>R¹⁸</u>
Н	Н	Н	Н
CH ₃	Н	Н	H
CH ₃	CH ₃	Н	Н
Cl	H	Н	Н
Cl	CH ₃	Н	Н
Cl	Cl	Н	H
Н .	Н	CH ₃	Н
CH ₃	Н	CH ₃	H
CH ₃	CH_3	CH ₃	H
Cl	Н	CH ₃	Н

Cl	CH ₃	CH ₃	Н
Cl	Cl	CH ₃	Н
Н	Н	CH ₃ CH ₂	Н
CH ₃	Н	CH ₃ CH ₂	Н
CH ₃	CH ₃	CH_3CH_2	Н
Cl	Н	CH_3CH_2	Н
CI	CH ₃	CH_3CH_2	Н
Cl	Cl	CH ₃ CH ₂ CH ₂	H
Н	Н	$CH_3CH_2CH_2$	}-[
CH3	Н	CH ₃ CH ₂ CH ₂	Н
CH ₃	CH ₃	CH ₃ CH ₂ CH ₂	Н
Cl	H .	CH ₃ CH ₂ CH ₂	Н
Cl	CH ₃	CH ₃ CH ₂ CH ₂	Н
C1	CI	CH ₃ CH ₂ CH ₂	H
Н	Н	H	CH ₃
CH ₃	Н	H	CH ₃
CH ₃	CH ₃	H	CH ₃
Cl	Н	Н	CH_3
Cl	CH ₃	H	CH_3
Cl	Cl	Н	CH_3
Н	H	CH_3	СН3
CH ₃	Н	CH ₃	CH_3
CH ₃	CH ₃	CH ₃	СН3
Cl	Н	CH ₃	CH_3
Cl	CH ₃	CH ₃	CH_3
Cl	Cl	CH ₃	CH_3
Н	Н	CH ₃ CH ₂	CH_3
CH ₃	Н	CH ₃ CH ₂	CH_3
CH ₃	CH ₃	CH ₃ CH ₂	CH_3
Cl	H	CH_3CH_2	CH_3
Cl	CH ₃	CH ₃ CH ₂	CH ₃
Cl	Cl	$CH_3CH_2CH_2$	CH_3
H	Н	$CH_3CH_2CH_2$	CH ₃
CH ₃	Н	$CH_3CH_2CH_2$	CH_3
CH ₃	CH ₃	CH ₃ CH ₂ CH ₂	CH ₃
Cl	Н	$CH_3CH_2CH_2$	CH_3
Cl	CH ₃	CH ₃ CH ₂ CH ₂	CH_3
CI	Cl	$CH_3CH_2CH_2$	CH_3

Н	Н	Н	C1
CH ₃	Н	Н	C1
CH ₃	CH ₃	H	Cl
Cl	Н	Н	Cl
Cl	CH ₃	Н	Cl
CI	Cl	Н	C1
Н	Н	CH ₃	Cl
CH ₃	Н	CH ₃	Cl
CH ₃	CH ₃	CH ₃	Cl
Cl	H	CH ₃	CI
Cl	CH ₃	CH ₃	Cl
Cl	CI	CH ₃	Cl
H	Н	CH ₃ CH ₂	Cl
CH ₃	H	CH ₃ CH ₂	C1
CH ₃	CH ₃	CH ₃ CH ₂	Cl
Cl	Н	CH ₃ CH ₂	CI
Cl	CH ₃	CH ₃ CH ₂	CI
Cl	Cl	$CH_3CH_2CH_2$	CI
Н	H	CH ₃ CH ₂ CH ₂	Cl
CH ₃	Н	CH ₃ CH ₂ CH ₂	CI
CH ₃	CH ₃	CH ₃ CH ₂ CH ₂	Cl
Cl	Н	CH ₃ CH ₂ CH ₂	Cl
Cl	CH ₃	CH ₃ CH ₂ CH ₂	Cl
Cl	Cl	CH ₃ CH ₂ CH ₂	Cl

Table 5

$$R^{17}$$
 R^{18}
 R^{18}
 R^{18}

<u>R</u> a	R^b	<u>R l</u>	<u>R²</u>	ūĵ	<u>R17</u>	<u>R18</u>
Н	Н	Н	Н	1	Н	Н
СН3	Н	Н	Н	1	Н	H
CH ₃	CH ₃	Н	H	1	Н	Н
Н	Н	CH ₃	Н	1	H	Н

CH ₃	Н	CH_3	Н	ì	Н	Н
CH ₃	CH ₃	СН3	Н	1	Н	Н
Н	Н	CI	Н	1	Н	H
CH_3	Н	CI	Н	1	Н	Н
CH_3	CH ₃	Cl	H	ì	Н	Н
Н	Н	H	CH ₃	1	Н	H
CH ₃	Н	Н	CH_3	1	Н	Н
CH_3	CH_3	Н	CH_3	1	Н	Н
Н	Н	CH_3	CH_3	1	Н	H
CH_3	H	CH_3	CH_3	1	H	Н
CH_3	CH_3	CH_3	CH_3	1	Н	Н
H	Н	Cl	. CH ₃	1	Н	Н
CH_3	Н	Cl	CH_3	1	H	Н
CH_3	CH_3	CI	CH_3	l	Н	11
H	Н	Н	Cl	ì	Н	Н
CH_3	Н	Н	Cl	!	Н	Н
CH ₃	CH_3	Н	Cl	1	Н	Н
Н	Н	CH_3	Cl	J	Н	Н
CH_3	Н	CH_3	Cl	1	Н	Н
CH_3	CH_3	CH_3	Cl	1	Н	Н
Н	Н	Cl	CI	1	Н	Н
CH ₃	H	CI	Cl	1	Н	Н
CH ₃	CH_3	Cl	Cl	1	Н	Н
H	Н	Н	H	١	CH_3	Н
CH ₃	H	H	Н	1	CH_3	Н
CH ₃	CH_3	H	H	1	CH_3	Н
Н	H	CH_3	Н]	CH_3	Н
CH ₃	Н	CH_3	H	1	CH_3	H
CH ₃	CH ₃	CH ₃	Н	!	CH_3	Н
Н	Н	CI	Н	1	CH_3	Н
CH ₃	Н	Cl	Н	1	CH ₃	Н
CH ₃	CH ₃	CI	Н	i	CH ₃	Н
Н	Н	Н	CH_3	i	CH ₃	Н
CH ₃	Н	Н	CH_3	i	CH ₃	Н
CH ₃	CH_3	Н	CH ₃	ì	CH_3	Н
Н	Н	CH ₃	CH_3	I	CH_3	Н
СН3	H	CH ₃	CH_3	:	CH_3	Н
СН3	CH_3	CH_3	CH ₃	1	CH_3	Н

Н	H	CI	CH ₃	1	CH ₃	Н
CH ₃	Н	Cl	CH ₃	ì	CH ₃	Н
CH ₃	CH ₃	Cl	CH ₃	1	CH ₃	Н
H	Н	Н	Cl	1	CH ₃	H
CH_3	Н	Н	Cl	1	CH ₃	Н
CH ₃	CH ₃	Н	Cl	ı	CH ₃	Н
Н	Н	CH_3	Cl	1	CH ₃	Н
CH ₃	Н	CH_3	CI	1	CH ₃	Н
CH ₃	CH ₃	CH_3	Cl	ì	CH ₃	Н
Н	Н	Cl	Cl	1	CH ₃	Н
CH_3	Н	C1	CI	l	CH ₃	H
CH_3	CH ₃	Cl	Cl	l	CH ₃	Н
Н	Н	Н	H	1	CH₃CH₂	H
CH ₃	Н	H	H	1	CH ₃ CH ₂	Н
CH_3	CH_3	H	Н	I	CH₃CH₂	Н
Н	Н	CH ₃	Н	I	CH_3CH_2	Н
CH ₃	Н	CH_3	Η.	1	CH ₃ CH ₂	Н
CH ₃	CH_3	CH_3	H	1	CH_3CH_2	Н
Н	Н	Cl	Н	1	$\mathrm{CH_{3}CH_{2}}$	Н
CH ₃	Н	Cl	Н	1	CH_3CH_2	Н
CH ₃	CH ₃	CI	Н	1	CH_3CH_2	Н
Н	Н	Н	CH_3	ì	CH_3CH_2	Н
CH ₃	Н	H	CH_3	1	CH ₃ CH ₂	H
CH ₃	CH_3	Н	CH_3	l	CH_3CH_2	I-I
H	Н	CH_3	CH ₃	I	CH_3CH_2	Н
CH ₃	Н	CH_3	CH ₃	i	CH ₃ CH ₂	H
CH ₃	CH_3	CH_3	CH ₃	1	CH_3CH_2	H
Н	Н	Cl	CH_3	Į	CH_3CH_2	Н
CH ₃	Н	Cl	CH_3	1	CH_3CH_2	Н
CH_3	CH_3	Cl	СН3	1	CH_3CH_2	Н
Н	Н	Н	Cl	1	CH ₃ CH ₂	H
CH ₃	H	Н	Cl	1	CH ₃ CH ₂	Н
CH_3	CH ₃	Н	Cl	1	CH ₃ CH ₂	Н
Н	Н	CH ₃	Cl	I	CH₃CH₂	Н
CH ₃	Н	CH_3	Cl	l	CH ₃ CH ₂	Н
CH ₃	CH ₃	CH ₃	CI	1	CH ₃ CH ₂	Н
Н	Н	Cl	Cl	1	CH ₃ CH ₂	Н
CH ₃	H	Cl	Cl	l	CH ₃ CH ₂	FI

CH_3	CH_3	Cl	Cl	l	CH ₃ CH ₂	Н
Н	Н	Н	H	I	CH ₃ CH ₂ CH ₂	Н
CH_3	Н	Н	Н	1	$CH_3CH_2CH_2$	Н
CH_3	CH_3	Н	H	1	$CH_3CH_2CH_2$	Н
Н	Н	CH_3	Н	1	СН ₃ СН ₂ СН ₂	Н
CH ₃	Н	CH_3	Н	j	$CH_3CH_2CH_2$	Н
CH ₃	CH_3	CH_3	Н	1	$CH_3CH_2CH_2$	Н
Н	Н	Cl	Н	1	CH ₃ CH ₂ CH ₂	Н
CH_3	Н	Cl	Н	1	CH ₃ CH ₂ CH ₂	Н
CH_3	CH ₃	Cl	H	1	CH ₃ CH ₂ CH ₂	Н
Н	Н	Н	CH_3	1	CH ₃ CH ₂ CH ₂	Н
CH ₃	Н	Н	CH_3	1	CH ₃ CH ₂ CH ₂	Н
CH ₃	CH_3	Н	CH_3	1	CH ₃ CH ₂ CH ₂	Н
H	Н	CH_3	CH_3	I	CH ₃ CH ₂ CH ₂	H
CH_3	1-1	CH ₃	CH_3	1	СН ₃ СН ₂ СН ₂	Н
CH_3	CH_3	CH_3	CH_3	l	СН ₃ СН ₂ СН ₂	11
H	H	Cl	CH_3	1	$CH_3CH_2CH_2$	H
CH_3	H	Cl	CH_3	1	$CH_3CH_2CH_2$	H
CH_3	CH_3	Cl	CH_3	1	$\mathrm{CH_3CH_2CH_2}$	Н
H	H	Н	Cl	}	$CH_3CH_2CH_2$	Н
CH ₃	Н	Н	Cl	1	$CH_3CH_2CH_2$	Н
CH ₃	CH ₃	Н	CI	i	$CH_3CH_2CH_2$	Н
H	H	CH ₃	CI	1	CH ₃ CH ₂ CH ₂	Н
CH ₃	Н	CH ₃	Cl	1	CH ₃ CH ₂ CH ₂	H
CH ₃	CH ₃	CH ₃	Cl	1	$CH_3CH_2CH_2$	Н
Н	Н	Cl	Cl	1	$CH_3CH_2CH_2$	1-1
CH ₃	Н	Cl	Cl	i	$CH_3CH_2CH_2$	1-I
CH ₃	CH ₃	CI	Cl	l	$CH_3CH_2CH_2$	Н
H	Н	H	Н	1	Н	CH_3
CH ₃	Н	Н	Н	l	Ħ	CH_3
CH ₃	CH ₃	H.	Н	ì.	Н	CH_3
H	Н	CH ₃	Н	I	Н	CH_3
CH ₃	H	CH_3	Н	i	Н	CH_3
CH ₃	CH_3	CH_3	Н	I	Н	CH_3
Н	Н	CI	Н	l	H	CH_3
CH ₃	Н	Cl	Н	l	.H	СНЗ
СН3	CH_3	Cl	Н	ı	Н	CH ₃
Н	Н	Н	CH ₃	1	Н	CH_3

						6911
CH ₃	H	H	CH ₃	i	Н	CH ₃
CH ₃	CH ₃	Н	CH ₃	1	Н	CH ₃
H	H	CH ₃	CH ₃		H	CH ₃
CH ₃	Н	CH ₃	CH ₃	1	H	CH ₃
CH ₃	CH ₃	CH ₃	CH ₃		H	CH ₃
Н	Н	Cl	CH ₃		Н	CH ₃
CH ₃	Н	Cl	CH ₃		Н	CH ₃
CH_3	CH ₃	Cl	CH ₃		Н	CH ₃
Н	H	Н	Cl	1	Н	CH ₃
CH ₃	Н	Н	Cl	1	Н	CH ₃
CH ₃	CH ₃	Н	Cl	1	Н	CH ₃
H	Н	CH ₃	Cl	I	H	CH_3
CH ₃	H	CH ₃	Cl	1	H	CH ₃
CH ₃	CH ₃	CH ₃	Cl	1	Н	CH ₃
H	H	Cl	CI	1	Н	CH_3
CH ₃	Н	Cl	Cl	1	Н	CH ₃
CH ₃	CH ₃	Cl	Cl	1	Н	CH_3
Н	Н	Н	Н	1	CH ₃	CH ₃
CH_3	Н	Н	H-	ì	CH ₃	CH ₃
CH_3	CH ₃	H	H	1	CH_3	CH ₃
Н	Н	CH_3	Н	1	CH_3	CH ₃
CH_3	H	CH_3	H	l	CH_3	CH ₃
CH_3	CH_3	CH_3	Н	1	CH_3	CH ₃
Н	Н	Cl	Н	1	CH_3	CH ₃
CH_3	Н	Cl	FI	1	CH_3	CH ₃
CH_3	CH_3	Cl	Н	l	CH_3	CH ₃
H	Н	Н	CH_3	1	CH_3	CH ₃
CH_3	Н	Н	CH ₃	l	CH_3	CH3
CH_3	CH_3	Н	CH ₃	l	CH_3	CH ₃
H	Н	CH_3	CH_3	l	CH_3	CH ₃
CH_3	H	CH_3	CH_3	ì	CH_3	CH ₃
CH_3	CH ₃	CH_3	CH_3	1	CH_3	CH ₃
Н	Н	Cl	CH_3	1	CH_3	CH ₃
СН3	H	Cl	CH_3	1	CH_3	CH ₃
CH ₃	CH_3	CI	CH_3	1	CH_3	CH ₃
Н	Н	Н	Cl	1	CH_3	CH ₃
СН3	Н	Н .	Cl	I	CH ₃	CH ₃
CH ₃	СН3	Н	Cl	1	CH_3	CH ₃

Н	Н	CH_3	CI	i	CH ₃	CH_3
$CH_{\mathfrak{Z}}$	Н	CH3	Cl	1	CH ₃	CH_3
CH_3	CH_3	CH3	Cl	1	CH ₃	CH_3
Н	Н	Cl	Cl	1	CH ₃	CH_3
CH ₃	Н	CI	Cl	1	CH ₃	CH_3
CH_3	CH_3	Cl	Cl	1	CH ₃	CH ₃
H	Н	Н	Н	l	CH ₃ CH ₂	CH_3
CH_3	H	H	Н	}	CH ₃ CH ₂	CH_3
CH_3	CH ₃	Н	Н	1	CH ₃ CH ₂	CH_3
Н	Н	CH ₃	Н	l	CH ₃ CH ₂	CH_3
CH_3	Н	CH ₃	Н	l	CH ₃ CH ₂	СН3
CH_3	CH ₃	CH ₃	Н	l	CH ₃ CH ₂	СН3
Н	Н	Cl	H	į	CH ₃ CH ₂	CH_3
CH_3	Н	Cl	H	i	CH ₃ CH ₂	CH_3
CH_3	CH_3	Cl	Н	ł	CH ₃ CH ₂	CH_3
Н	Н	Н	CH ₃	1	CH ₃ CH ₂	CH_3
CH_3	Н	Н	CH ₃	ŀ	CH ₃ CH ₂	CH_3
CH ₃	CH ₃	Н	CH_3	ŀ	CH ₃ CH ₂	CH_3
Н	Н	CH ₃	CH_3	1	CH ₃ CH ₂	CH_3
CH ₃	Н	CH ₃	CH ₃	}	CH ₃ CH ₂	CH_3
CH_3	CH ₃	CH ₃	CH_3	ì	CH ₃ CH ₂	CH_3
Н	Н	Cl	CH ₃	1	CH ₃ CH ₂	CH_3
CH ₃	H	Cl	CH ₃	l	CH ₃ CH ₂	СН3
CH ₃	CH_3	Cl	CH ₃	l	CH ₃ CH ₂	СН3
Н	Н	Н	Cl .	l	CH_3CH_2	СН3
CH ₃	Н	H	Cl	l	CH₃CH₂	CH_3
CH_3	CH_3	Н	Cl	1	CH ₃ CH ₂	CH_3
Н	Н	CH ₃	CI	l	CH ₃ CH ₂	CH_3
CH_3	H	CH ₃	CI	l	CH ₃ CH ₂	CH_3
CH ₃	CH ₃	CH ₃	Cl	1	CH ₃ CH ₂	CH ₃
Н	Н	CI	Cl	1	CH ₃ CH ₂	CH_3
CH ₃	Н	CI	Cl	1	CH ₃ CH ₂	CH ₃
CH_3	CH_3	CI	CI	1	CH ₃ CH ₂	CH ₃
H	Н	Н	Н	1 .	CH ₃ CH ₂ CH ₂	СН3
CH ₃	Н	Н	Н	1	CH ₃ CH ₂ CH ₂	CH_3
CH_3	CH_3	Н	Н	ì	CH ₃ CH ₂ CH ₂	CH_3
Н	Н	СН3	Н]	CH ₃ CH ₂ CH ₂	СН3
CH_3	Н	CH ₃	Н	1	CH ₃ CH ₂ CH ₂	CH_3

	CH ₃	CH ₃	CH ₃	Н	1	CH ₃ CH ₂ CH ₂	CH_3
*	H	Н	Cl	Н	1	CH ₃ CH ₂ CH ₂	CH_3
	CH_3	Н	Cl	Н	1	CH ₃ CH ₂ CH ₂	CH_3
	CH ₃	CH ₃	Cl	H	l	CH ₃ CH ₂ CH ₂	CH_3
	Н	Н	Н	СН3	1	CH ₃ CH ₂ CH ₂	CH_3
	CH ₃	Н	Н	CH ₃	1	CH ₃ CH ₂ CH ₂	CH_3
	CH ₃	CH ₃	Н	СН3	1.	CH ₃ CH ₂ CH ₂	CH ₃
	Н	Н	CH ₃	СН3	i	CH ₃ CH ₂ CH ₂	CH ₃
	CH ₃	Н	CH ₃	CH ₃	ı	CH ₃ CH ₂ CH ₂	CH ₃
	CH ₃	CH ₃	СН3	CH ₃	1.	CH ₃ CH ₂ CH ₂	CH ₃
	Н	H	Cl	CH ₃	1	CH ₃ CH ₂ CH ₂	CH ₃
	СН3	Н	Cl	CH ₃	1	CH3CH2CH2	CH ₃
	CH ₃	CH ₃	Cl	СНз	1	CH ₃ CH ₂ CH ₂	CH ₃
	Н	Н	H	Cl	1	CH ₃ CH ₂ CH ₂	CH ₃
	CH ₃	Н	Η.	CI	1	CH ₃ CH ₂ CH ₂	CH ₃
	CH ₃	СНз	Н	. Cl	l	CH ₃ CH ₂ CH ₂	СН3
	Н	Н	CH ₃	Cl	1	CH ₃ CH ₂ CH ₂	СНз
	СНз	H	CH ₃	Cl	1	CH ₃ CH ₂ CH ₂	CH ₃
	CH ₃	CH ₃	CH ₃	CI	ì	CH ₃ CH ₂ CH ₂	CH ₃
	H	Н	CI	CI CI	1	CH ₃ CH ₂ CH ₂	СН3
	CH ₃	Н	Cl	Cl	Į.	CH ₃ CH ₂ CH ₂	CH ₃
	CH ₃	СНз	Cl	Cl	. 1	CH ₃ CH ₂ CH ₂	CH ₃
Beiling partition and water the	Н	Н	H H	Н	1	Н	Cl
A CARLON AND A CAR	€Н₃	Н	Н	Н	1.	Н	C1
	CH ₃	CH ₃	H	H.	i	H	Cl
	H	Н	CH ₃	Н	1	Н.	Cl
	СНз	. _H	СНз		1	Н	Cl
		CH ₃	-		1	$\mathbf{H}^{(i)}$	Cl
	Ĥ	Н	Cl	Н	1	H	Cl
	CH ₃	H	: C I	H	1	H	CI
	CH ₃	CH ₃	CI	$\mathbf{H}^{(i)}$	ı	H	Cl
	Н	H	· H	СНз	l	H	Cl
	CH ₃	H	Н	CH ₃	1	Н	Cl
	CH ₃	CH ₃	Н	CH ₃	1	Н	Cl
	: H	Н	СНз	CH ₃	1	H	Cl
	°CH ₃	Н	CH ₃	CH ₃	1	Н	C1
	CH ₃	CH ₃	-	CH ₃	1	H	CI
					i apsi	THE THE	ا Cr
	• •	••	• • • • • • • • • • • • • • • • • • • •	,1			•

CH ₃	Н	CI	CH ₃	l	Н	CI
СН3	СН3	Cl	CH ₃	i	Н	CI
Н	Н	Н	CI	1	Н	Cl
СН3	Н	Н	CI	1	Н	Cl
СН3	CH ₃	Н	Cl	1	Н	CI
H	Н	CH ₃	CI	1	Н	Cl
СН3	H	CH_3	CI	1	Н	Cl
CH ₃	CH_3	CH ₃	Cl	1	Н	Cl
Н	Н	CI	CI	1	Н	Cl
СН3	Н	Cl	Cl	ì	Н	Cl
CH ₃	CH_3	CI	CI	1	Н	Cl
Н	H	Н	Н	1	CH_3	Cl
CH ₃	Н	Н	H	ì	CH ₃	Cl
CH ₃	CH ₃	Н	Н	1	CH_3	CI
Н	Н	CH ₃	Н	1	CH_3	Cl
CH ₃	Н	CH_3	Н	1	CH ₃	Cl
CH_3	CH_3	CH_3	Н	1	CH_3	Cl
Н	Н	Cl	Н	l	CH_3	Cl
CH ₃	H	Cl	H	1	CH_3	CI
CH ₃	CH_3	Cl	Н	l	CH ₃	Cl
Н	H	Н	CH_3	1	CH_3	Ci
CH ₃	Н	H	CH_3	1	CH_3	Cl
CH ₃	CH_3	Н	CH_3	1	CH_3	CI
Н	Н	CH_3	CH_3	j	CH_3	Cl
CH ₃	Н	$CH_{\mathfrak{F}}$	CH_3	1	CH ₃	CI
CH_3	CH_3	CH_3	CH_3	1	CH_3	Cl
Н	Н	Cl	CH_3	1	CH ₃	Cl
CH ₃	Н	Cl	CH_3	1	CH ₃	Cl
CH_3	CH_3	Cl	CH_3	ł	CH ₃	C1
Н	Н	Н	Cl	į	.CH ₃	Ct
CH ₃	Н	Н	CI	ŧ	CH ₃	CI
CH ₃	CH ₃	Н	Cl	l	CH ₃	CI
Н	Н	CH_3	Cl	1	CH ₃	Cl
CH_3	Н	CH_3	Cl	I	CH_3	Cl
CH ₃	CH_3	CH_3	Cl	1	CH ₃	Cl
H	Н	Cl	CI	ì	CH ₃	· Cl
CH ₃	Н	Cl	Cl	1	CH_3	Cl
CH ₃	CH_3	Cl	Cl	ì	CH ₃	Cl

Н	Н	Н	H	1	CH ₃ CH ₂	C1
СН3	Н	H	Н	1	CH ₃ CH ₂	Cl
CH ₃	CH_3	H	Н	ŀ	CH ₃ CH ₂	Cl
H	Н	CH_3	Н	I	CH ₃ CH ₂	Cl
CH_3	H	CH_3	Н	l	CH ₃ CH ₂	Cl
CH ₃	CH ₃	CH_3	Н	1	CH ₃ CH ₂	Cl
Н	Н	Cl	Н	1	CH ₃ CH ₂	Cl
CH ₃	Н	Cl	Н	l	CH ₃ CH ₂	Cl
CH ₃	CH ₃	CI	Н	1	CH ₃ CH ₂	CI
H	Н	Н	CH_3	1	$\mathrm{CH_3CH_2}$	Cl
CH_3	H	Н	CH ₃	l	CH ₃ CH ₂	Cl
CH_3	CH ₃	Н	CH ₃	1	CH ₃ CH ₂	CI
H	Н	CH ₃	CH ₃	1	CH ₃ CH ₂	CI
CH_3	Н	CH_3	CH ₃	l	CH ₃ CH ₂	Cl
CH_3	CH_3	CH_3	CH_3	ŧ	CH_3CH_2	Cl
Н	Н	Cl	CH ₃	1	CH_3CH_2	Ct
CH ₃	Н	Cl	CH_3	1	CH_3CH_2	Cl
CH ₃	CH_3	Cl	CH_3	1	CH ₃ CH ₂	Cl
Н	H	Н	Cl	1	CH ₃ CH ₂	Cl
CH_3	H	Н	Cl	1	CH ₃ CH ₂	Cl
CH_3	CH_3	Н	CI	1	CH_3CH_2	CI
H	Н	CH_3	Cl	1	CH_3CH_2	Cl
CH_3	Н	CH_3	CI	I	CH ₃ CH ₂	Cl
CH_3	CH_3	CH_3	Cl	I	CH ₃ CH ₂	Cl
Н	Н	Cl	Cl	ì	CH ₃ CH ₂	CI
CH_3	H	Cl	C1	}	CH₃CH₂	Cl
CH_3	CH_3	Cl	C1	1	CH ₃ CH ₂	Cl
H	Н	Н	Н	1	CH ₃ CH ₂ CH ₂	Cl
CH_3	Н	Н	Н	1	CH ₃ CH ₂ CH ₂	Cl
CH_3	CH_3	Н	Н	1	CH ₃ CH ₂ CH ₂	CI
Н	Н	CH_3	Н	1	CH ₃ CH ₂ CH ₂	Cl
CH_3	Н	CH_3	Н	1	CH ₃ CH ₂ CH ₂	Cl
CH_3	CH_3	CH_3	Н	i	CH ₃ CH ₂ CH ₂	CI
Н	Н	CI	Н	I	CH ₃ CH ₂ CH ₂	CI
CH_3	H	CI	Н	i	CH ₃ CH ₂ CH ₂	CI
CH_3	CH_3	CI	Н	1	CH ₃ CH ₂ CH ₂	CI
H	Н	Н	CH_3	l	CH ₃ CH ₂ CH ₂	Cl
CH ₃	Н	Н	CH_3	1	CH ₃ CH ₂ CH ₂	Cl

CH ₃	Н	CH ₃	1	CH ₃ CH ₂ CH ₂	CI
H	CH ₃	CH ₃	l	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃	CH_3	1	CH ₃ CH ₂ CH ₂	Cl
СН3	CH_3	CH ₃	1	$CH_3CH_2CH_2$	CI
Н	Cl	CH_3	1	$CH_3CH_2CH_2$	Cl
Ι·Ι	Cl	CH_3	1	CH ₃ CH ₂ CH ₂	CI
CH_3	Cl	CH_3	ì	CH ₃ CH ₂ CH ₂	C1
Н	Н	CI	1	CH ₃ CH ₂ CH ₂	CI
Н	H	Cl	I	CH ₃ CH ₂ CH ₂	Cl
CH_3	H	Cl	l	СН ₃ СН ₂ СН ₂	CI
Н	CH_3	Cl	1	CH ₃ CH ₂ CH ₂	CI
H	CH_3	CI	l	$CH_3CH_2CH_2$	Cl
CH_3	CH_3	CI	1	CH ₃ CH ₂ CH ₂	CI
Н	Cl	Cl	1	CH ₃ CH ₂ CH ₂	Cl
Н	Cl	Cl	i	CH ₃ CH ₂ CH ₂	Cl
CH_3	CI	Cl	l	$CH_3CH_2CH_2$	Cl
Н	H	Н	2	Н	Н
H	CH_3	H	2	Н	Н
H	CI	Н	2	Н	Н
Н	CH_3	CH_3	2	Н	Н
H	Cl	CH_3	2	Н	H
Н	CI	Cl	2	Н	H
H	Н	Н	2	CH ₃	H
H	CH_3	H	2	CH ₃	Н
Н	C1	H	2	CH ₃	H
Н	CH_3	CH_3	2	CH ₃	Н
Н	Cl	CH ₃	2	CH ₃	H
Н	Cl	CI	2	CH ₃	H
Н	Н	H	2	CH ₂ CH ₃	Н
Н	CH ₃	H	2	CH ₂ CH ₃	Н
H	Cl	Н	2	CH ₂ CH ₃	Н
Н	CH ₃	CH_3	2	CH_2CH_3	Н
H	Cl	CH_3	2	CH ₂ CH ₃	Н
Н	Cl	CI	2	CH ₂ CH ₃	H
H	Н	Н	2	CH ₂ CH ₂ CH ₃	Н
Н	CH ₃	Н	2	CH ₂ CH ₂ CH ₃	Н
Н	Cl	H	2	CH ₂ CH ₂ CH ₃	Н
H ,	CH_3	CH ₃	2	CH ₂ CH ₂ CH ₃	Н
	H H CH ₃ H H CH ₃ H H CH ₃ H H H H H H H H H H H H H	H CH3 H CH3 H CH3 CH3 CH3 H CI H CI CH3 CI H H H CH3 H CH3 H CH3 H CI H CI CH3 H CI H H H CH3 H CI	H CH3 CH3 H CH3 CH3 CH3 CH3 CH3 H CI CH3 H CI CH3 H CI CH3 H CI CH3 H H CI H CH3 CI H CH3 CI H CH3 CI CH3 H CI CI CH3 H CI CI CH3 H CI CI CH3 H CI CI H CI CI CH3 H CI CI H CH3 H H H H CH3 H CI CI H CI CI CH3 H CI CH3	H	H CH3 CH3 I CH3CH2CH2 H CH3 CH3 I CH3CH2CH2 CH3 CH3 CH3 I CH3CH2CH2 H CI CH3 I CH3CH2CH2 CH3 CI CH3 I CH3CH2CH2 H H CI I CH3CH2CH2 H H CI I CH3CH2CH2 H H CI I CH3CH2CH2 CH3 H CI I CH3CH2CH2 H CH3 CI I CH3CH2CH2 H CH3 CI I CH3CH2CH2 H CH3 CI I CH3CH2CH2 H CI CI I CH3CH2CH2 H H H 2 H H CH3 H 2 H H CI CH3 2 CH3 H CI CI 2 CH2CH3 H CI CH3 2 CH2CH3

Н	Н	Cl	CH_3	2	CH ₂ CH ₂ CH ₃	Н
H	Н	Cl	Cl	2	CH ₂ CH ₂ CH ₃	Н
Н	Н	Н	Н	2	phenyl	Н
Н	Н	.CH ₃	Н	2	phenyl	Н
Н	Н	Cl	Н	2	phenyl	Н
Н	Н	CH_3	CH ₃	2	phenyl	Н
Н	Н	Cl	CH ₃	2	phenyl	Н
Н	Н	Cl	Cl	2	phenyl	Н
Н	Н	Н	Н	2	H	CH_3
H	Н	CH ₃	Н	2	Н	CH_3
Н	Н	Cl	H	2	Н	CH_3
Н	Н	CH_3	CH_3	2	Н	CH_3
Н	H	, Cl	CH_3	2	Н	CH_3
H	Н	Cl	Cl	2	H	CH ₃
Н	H	Н	Н	2	СН3	CH ₃
Н	Н	CH ₃	Ħ	2	CH ₃	CH ₃
H	Н	Cl	H	2	CH ₃	CH_3
Н	Н	CH_3	CH_3	2	CH ₃	СНЗ
H	Н	Cl	CH_3	2	CH ₃	CH ₃
Н	H	Cl	Cl	2	CH ₃	CH ₃
Н	Н	Н	Н	2	CH ₂ CH ₃	CH ₃
Н	H	CH_3	Н	2	CH ₂ CH ₃	CH_3
Н	Н	Cl	11	2	CH ₂ CH ₃	CH ₃
Н	Н	CH_3	CH ₃	2	CH ₂ CH ₃	CH ₃
Н	Н	Cl	CH_3	2	CH ₂ CH ₃	CH ₃
Н	H	Cl	Cl	2	CH ₂ CH ₃	CH ₃
Н	Н	H	Н	2	CH ₂ CH ₂ CH ₃	CH ₃
Н	H	CH_3	Н	2	CH ₂ CH ₂ CH ₃	CH_3
Н	H	Cl	Н	2	CH ₂ CH ₂ CH ₃	CH ₃
Н	Н	CH_3	CH_3	2	CH ₂ CH ₂ CH ₃	CH ₃
Н	Н	Cl	CH_3	2	CH ₂ CH ₂ CH ₃	CH ₃
Н	Н	Cl	CI	2	CH ₂ CH ₂ CH ₃	CH ₃
Н	H	Н	Н	2	phenyl	CH ₃
Н	H	CH_3	Н	2	phenyl	CH ₃
Н	Н	Cl	Н	2	phenyl	CH ₃
Н	Н	CH_3	CH_3	2	phenyl	CH ₃
Н	Н	Cl	CH_3	2	phenyl	CH ₃
Н	Н	Cl	Cl	2	phenyl	CH ₃

Н	Н	Н	Н	2	H	CI
H	Н	CH ₃	Н	2	Н	Cl
H	H	Cl	Н	2	Ħ	Cl
Н	Н	CH_3	CH_3	2	H	Cl
Н	H	Cl	CH ₃	2	Н	CI
Н	Н	Cl	Cl	2	Н	Cl
Н	Н	Н	H	2	CH ₃	CI
Н	. H	CH_3	Н	2	CH ₃	CI
H	Н	CI	H	2	CH ₃	CI
H	Н	CH_3	CH_3	2	CH ₃	CI
Н	Н	Cl	CH_3	2	CH ₃	C!
Н	Н	Cl	Cl	2	CH ₃	Cl
Н	Н	Н	Н	2	CH ₂ CH ₃	Cl
H	Н	CH_3	H	2	CH ₂ CH ₃	CI
H	Н	Cl	Н	2	CH ₂ CH ₃	CI
Н	Н	CH_3	CH_3	2	CH ₂ CH ₃	CI
Н	Н	Cl	CH ₃	2	CH ₂ CH ₃	C1
Н	H	Cl	Cl	2	CH ₂ CH ₃	Cl
Н	Н	H	Н	2	$\mathrm{CH_{2}CH_{2}CH_{3}}$	Cl
Н	Н	CH_3	Н	2	$CH_2CH_2CH_3$	CI
Н	Н	Cl	Н	2,	$CH_2CH_2CH_3$	CI
Н	Н	CH_3	CH_3	2	$\mathrm{CH_{2}CH_{2}CH_{3}}$	CI
Н	Н	Cl	CH_3	2	CH ₂ CH ₂ CH ₃	CI
H	Н	CI	Cl	2	CH ₂ CH ₂ CH ₃	Cl
Н	Н	H	Н	2	phenyl	CI
H	H	CH_3	Н	2	phenyl	Cl
Н	Н	Cl	Н	2	phenyl	Cl
Н	Н	CH ₃	CH ₃	2	phenyl	Cl
Н	Н	CI	CH_3	2	phenyl	Cl
Н	H	CI	Cl	2	phenyl	CI

<u>Tat</u>	ole 6	
		R^{17}
O 0	\mathbb{R}^1	N-N
		R18
		Rise
)m
R-1	Ĭ,	
	k^2	O: O :

	•	. •				
<u>R</u> 4	<u>R l</u>	<u>R</u> 2	<u>m</u> -	<u>R17</u>		<u>R18</u>
SH	Н	Н	l	11		Н
CI .	Н	Н	1	. Н		Н
SH	CH ₃	Н	1.	\mathbf{H}^{-1}		H
Cl	CH_3	Н	ŧ	Н		Н
SH	Cl .	Н	1	H		Н
Cl	Cl	H	1	Н		Н
SH	CH ₃	CH_3	I	Н		Н
Cl	CH_3	CH ₃	1	Н		Н
SH	Cl	Cl	1	Н		H
Cl	Cl	Cl	i	H		Н
SH	H	Н	2 1	H	•	Н
Cl	H	Н	2	Н		H
SH	CH ₃	H	2	Η,		i-l
Cl	CH_3	Н	2	Н		Н
SH	Cl	Н	2	Н		Н
Cl	Cl	П	2	$(H_{\mathcal{A}}}}}}}}}}$		Н
SH	CH ₃	CH ₃	2	H		H
Cl	СН3	CH ₃	2	Н		Н
SH	CI :	Cl	. 2	H		Н
CI .	Cl	Cl	2 .	Н		Н
SH	Н	Н	1	CH_3		H
Cl	H	H	1	CH ₃		Н
SH	CH ₃	Н	1	CH ₃		H
Cl	CH ₃	H	1	CH ₃	**	Н
SH	Cl	Н	1	CH_3		Н
Cl	Cl	H	l	CH ₃		J- [
SH	CH ₃	СН3	1	CH ₃		Н
ÇŢ	CH ₃	CH ₃	1	CH ₃	: G7 15	Н
SH	Cl	e a≱er feet aye Cl		CHγ	marianam ji terdik	Н

BNSDOCID: <WO___9719087A1_I_:

ాడాలు చేశాలుతోనుడుంట

Cl	Cl	CI	1	CH ₃	Н
SH	Н	Н	2	CH ₃	Н
CI	Н	Н	2	CH ₃	Н
SH	CH ₃	Н	2	CH ₃	Н
Cl	CH_3	Н	2	CH ₃	Н
SH	CI	Н	2	CH_3	Н
Cl	Cl	Н	2	CH ₃	H
SH	CH_3	CH ₃	2	CH_3	Н
CI	CH_3	CH_3	2	CH_3	H
SH	CI	CI	2	CH ₃	Н
Ci	Cl	Cl	2	CH ₃	Н
SH	Н	Н	1	CH ₂ CH ₃	H
Cl	Н	H	ı	CH ₂ CH ₃	H
SH	CH_3	H	l	CH ₂ CH ₃	Н
CI	CH_3	H	1	CH ₂ CH ₃	H
SH	Cl	Н	I	CH ₂ CH ₃	Н
Cl	Cl	H	1	CH ₂ CH ₃	Н
SH	CH ₃	CH_3	1	CH ₂ CH ₃	Н
Cl	CH_3	CH_3	1	CH ₂ CH ₃	Н
SH	Cl	Cl	1	CH_2CH_3	Н
Cl	Cl	Cl	1	CH ₂ CH ₃	Н
SH	Н	H	2	CH ₂ CH ₃	Н
Cl	Н	Н	2	CH ₂ CH ₃	Н
SH	CH_3	Н	2	CH ₂ CH ₃	Н
Cl	CH_3	Н	2	СН ₂ СН ₃	Н
SH	Cl	Н	2	CH ₂ CH ₃	H
Cl	Cl	H	2	CH ₂ CH ₃	Н
SH	CH_3	CH ₃	2	CH_2CH_3	Н
Cl	CH_3	CH_3	2	CH ₂ CH ₃	Н
SH	Cl	Cl	2	CH_2CH_3	Н
Cl	Cl	Cl	2	CH ₂ CH ₃	Н
SH	Н	Н	ì	CH ₂ CH ₂ CH ₃	Н
CI	Н	Н	ì	$CH_2CH_2CH_3$	H
SH	CH ₃	Н	i	CH ₂ CH ₂ CH ₃	Н
Cl	CH ₃	Н	1	CH ₂ CH ₂ CH ₃	H
SH	Cl	Н	ì	$CH_2CH_2CH_3$	Н
Cl	C!	Н	l	$CH_2CH_2CH_3$	Н
SH	CH_3	CH ₃	l	$CH_2CH_2CH_3$	H

- 1	1	- 1
- 1	٦	J

Cl	CH_3	CH ₃	l	CH ₂ CH ₂ CH ₃	H
SH	Cl	Cl	i	CH ₂ CH ₂ CH ₃	Н
Cl	Cl	Cl	1.	CH ₂ CH ₂ CH ₃	Н
SH	Н	H	2	CH ₂ CH ₂ CH ₃	Н
Cl	1-1	H	2	$CH_2CH_2CH_3$	H
SH	CH ₃	Н	2	$CH_2CH_2CH_3$	Н
Ci	CH ₃	Н	2	$\mathrm{CH_2CH_2CH_3}$	Н
SH	Cl	Н	2	CH ₂ CH ₂ CH ₃	Н
Cl	Cl	Н	2	$CH_2CH_2CH_3$	Н
SH	CH ₃	CH_3	2	$CH_2CH_2CH_3$	Н
Cl	СН3	CH_3	2	CH ₂ CH ₂ CH ₃	Н
SH	Cl	Cl	2	CH ₂ CH ₂ CH ₃	Н
CI	Cl	Cl	2	CH ₂ CH ₂ CH ₃	Н
SH	Н	Н	1	Н	CH ₃
Cl	H	Н	1	H	CH_3
SH	CH_3	Н	ì	Н	CH_3
Cl	CH_3	Н	1	Н	CH ₃
SH	Cl	Н	l	H	CH ₃
Cl	Cl	Н	ł	Н	CH ₃
SH	CH_3	CH_3	1	Н	CH ₃
Cl	CH_3	CH_3	I	Н	CH ₃
SH	Cl	Cl	1	Н	CH_3
C1	CI	Cl	l	H	CH ₃
SH	H	H	2	Н	CH ₃
Cl	Н	Н	2	H	CH_3
SH	CH_3	H	2	Н	СН3
Cl	CH_3	Н	2	H	CH ₃
SH	Cl	Н	2	Н	CH_3
Cl	Cl	H	2	Н	CH ₃
SH	CH_3	CH ₃	2	Н	CH ₃
Cl	CH ₃	CH_3	2	Н	CH ₃
SH	Cl	Cl	2	Н	CH ₃
Cl	Cl	Cl	2	Н	CH ₃
SH	H	Н	1	CH ₃	-CH ₃
Cl	Н	Н	i	CH ₃	CH ₃
SH	CH ₃	Н	1	CH ₃	CH ₃
Cl	CH ₃	Н	1	CH ₃	CH ₃
SH	Cl	Н	ì	CH ₃	CH ₃

Ci	Cl	Н	1 .	CH ₃	CH_3
SH	CH_3	CH_3	i	CH ₃	CH_3
Cl	CH_3	CH_3	ì	CH ₃	CH_3
SH	Cl	Cl	1	CH ₃	CH_3
Cl	CI	Cl	1	CH ₃	CH_3
SH	Н	Н	2	CH ₃	CH_3
Cl	H	Н	2	CH ₃	CH_3
SH	CH_3	H	2	CH ₃	CH_3
Cl	CH_3	Н	2	CH ₃	CH_3
SH	Cl	Н	2	CH ₃	CH_3
CI	Cl	Н	2	CH ₃	CH_3
SH	CH_3	CH_3	2	CH ₃	CH_3
Cl	CH_3	CH_3	2	CH ₃	CH_3
SH	Cl	Cl	2	CH_3	CH_3
Cl	Cl	CI	2	CH ₃	CH_3
SH	Н	Н	1	CH ₂ CH ₃	CH_3
Cl	Н	Н	Ī	CH ₂ CH ₃	CH_3
SH	CH_3	H	i	CH ₂ CH ₃	CH_3
Cl	CH_3	Н	l	CH ₂ CH ₃	CH_3
SH	Cl	Н	1	CH ₂ CH ₃	CH_3
CI	Cl	Н	1	CH ₂ CH ₃	CH_3
SH	CH ₃	CH_3	l	CH ₂ CH ₃	CH_3
Cl	CH_3	CH_3	1	CH ₂ CH ₃	CH_3
SH	Cl	CI	1	CH ₂ CH ₃	CH_3
CL	CI	CI	1	CH ₂ CH ₃	CH_3
SH	Н	Н	2	CH ₂ CH ₃	CH_3
Cl	Н	Н	2	CH_2CH_3	CH_3
SH	CH_3	H	2	CH_2CH_3	CH_3
Cl	CH_3	Н	2	CH_2CH_3	CH_3
SH	Cl	Н	2	CH ₂ CH ₃	CH_3
Cl	Cl	Н	2	CH ₂ CH ₃	CH_3
SH	CH ₃	CH ₃	2	CH_2CH_3	CH_3
CI	CH_3	CH_3	2	CH ₂ CH ₃	CH_3
SH	CI	Cl	2	CH ₂ CH ₃	CH_3
Cl	Cl	Cl	2	CH ₂ CH ₃	CH_3
SH	Н	Н	ŀ	CH ₂ CH ₂ CH ₃	CH_3
Cl	Н	Н	l	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH ₃	Н	l	CH ₂ CH ₂ CH ₃	CH_3

Cl	CH ₃	Н	i	CH ₂ CH ₂ CH ₃	CH_3
SH	CI	Н	;	$CH_2CH_2CH_3$	CH_3
CI	Cl	Н	1	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH ₃	CH_3	1	CH ₂ CH ₂ CH ₃	CH ₃
CI	CH ₃	CH ₃	1	$CH_2CH_2CH_3$	CH_3
SH	C1	Cl	1	$CH_2CH_2CH_3$	CH_3
Cl	Cl	Cl	1	$CH_2CH_2CH_3$	CH_3
SH	Н	Н	2	$CH_2CH_2CH_3$	CH_3
Cl	Н	Н	2	CH ₂ CH ₂ CH ₃	CH_3
SH	CH ₃	Н	2	CH ₂ CH ₂ CH ₃	CH ₃
Cl	CH ₃	Н	2	$CH_2CH_2CH_3$	CH ₃
SH	Cl	H	2	$CH_2CH_2CH_3$	CH_3
Cl	CI	Н	2	$CH_2CH_2CH_3$	CH ₃
SH	CH ₃	CH_3	2	$CH_2CH_2CH_3$	CH_3
Cl	CH_3	CH ₃	2	$CH_2CH_2CH_3$	CH_3
SH	CI	Cl	2	$CH_2CH_2CH_3$	CH_3
Cl	Cl	Cl	2	$CH_2CH_2CH_3$	CH_3
SH	H	H	ì	Н	Cl
Cl	Н	Н	ŀ	Н	Cl
SH	CH_3	Н	١	Н	Cl
Cl	CH_3	Ħ	1	11	C1
SH	Cl	Н	1	Н	Cl
Cl	Cl	Н	1	Н	Cl
SH	CH_3	CH_3	1	H	Cl
Cl	CH_3	CH_3	l	Н	Cl
SH	Cl	Cl	1	Н	Cl
Cl	Cl	Cl	l	Н	Cl
SH	Н	Н	2	Н	CI
Cl	Н	Н	2	Н	CI
SH	CH_3	H	2	Н	Cl
Cl	CH_3	H	2	Н	Cl
SH	Cl	Н	2	Н	CI
CI	Cl	Н	2	Н	Cl
SH	CH_3	CH_3	2	H	Cl
Cl	CH ₃	CH_3	2	Н	C1
SH	Cl	Cl	2	H	CI
·Cl	Cl	Cl	2	Н	C)
SH	Н	Н	1	CH ₃	CI

CI	Н	Н	1	CH ₃	CI
SH	CH_3	Н	1 .	CH ₃	Cl
Cl	CH_3	Н	1	CH ₃	Cl
SH	Cl	Н	1	CH_3	Cl
Cl	Cl	Н	1	CH_3	Cl
SH	CH_3	CH_3	1	СН3	CI
Cl	CH_3	CH_3	1	CH ₃	Cl
SH	Cl	CI	1	CH_3	Cl
C1	Cl	CI	1	CH ₃	Cl
SH	Н	Н	2	CH ₃	Cl
Cl	Н	H	2	CH ₃	Cl
SH	CH_3	H	2	CH_3	Cl
Cl	CH_3	H	2	CH ₃	Cl
SH	Cl	Н	2	CH ₃	Cl
CI	Cl	H	2	CH ₃	CI
SH	CH_3	CH_3	2	CH ₃	CI
Cl	CH_3	CH_3	2	CH ₃	CI
SH	Cl	Cl	2	CH_3	CI
Cl	CI ·	Cl	2	CH ₃	CI
SH	Н	H	1	CH_2CH_3	CI
Cl	Н	H	i	CH_2CH_3	CI
SH	CH_3	Н	1	CH ₂ CH ₃	CI
Cl	CH_3	Н	1	CH ₂ CH ₃	Cl
SH	Cl	Н	1	CH_2CH_3	C1
Cl	Cl	H	1	CH_2CH_3	Cl
SH	CH_3	CH_3	i	CH ₂ CH ₃	Cl
Ct	CH_3	CH_3	l	CH_2CH_3	Cl
SH	Cl	CI	i	CH_2CH_3	Ct
CI	Cl	Cl	i	CH_2CH_3	C1
SH	Н	Н	2	CH_2CH_3	CI
Cl	H	Н	2	CH_2CH_3	CI
SH	CH_3	Н	2	CH ₂ CH ₃	CI
CI	CH_3	Н	2	CH ₂ CH ₃	CI
SH	Cl	Н	2	CH₂CH₃	CI
CI	Cl	Н	2	CH ₂ CH ₃	CI
SH	CH_3	СН3	2	CH ₂ CH ₃	CI
CI	CH ₃	СН3	2	CH ₂ CH ₃	CI
SH	CI	C1	2	CH ₂ CH ₃	CI

Cì	Cl	CI	2	CH ₂ CH ₃	Cl
SH	H	Н	1	$CH_2CH_2CH_3$	Cl
C:	Н	Н	1	CH ₂ CH ₂ CH ₃	C!
SH	CH ₃	Н	1	$CH_2CH_2CH_3$	Cl
Cl	CH_3	H	1	CH ₂ CH ₂ CH ₃	Cl
SH	Cl	Н	1	CH ₂ CH ₂ CH ₃	Cl
Cl	Cl	Н	l	CH ₂ CH ₂ CH ₃	Cl
SH	CH_3	CH_3	1	$CH_2CH_2CH_3$	Cl
Cl	CH_3	CH_3	1	CH ₂ CH ₂ CH ₃	Cl
SH	Cl	Cl	l	$\mathrm{CH_{2}CH_{2}CH_{3}}$	CI
Cl	Cl	C:1	ł	CH ₂ CH ₂ CH ₃	CI
SH	Н	Н	2	CH ₂ CH ₂ CH ₃	CI
Cl	Н	H	2	CH ₂ CH ₂ CH ₃	Cl
SH	CH_3	Ĥ	2	CH ₂ CH ₂ CH ₃	Cl
Cl	CH_3	H	2	CH ₂ CH ₂ CH ₃	Cl
SH	Cl	H	2	CH ₂ CH ₂ CH ₃	Cl
Cl	Cl	Н	2	CH ₂ CH ₂ CH ₃	Cl
SH	CH_3	CH ₃	2	CH ₂ CH ₂ CH ₃	Cl
CI	CH ₃	CH_3	2	CH ₂ CH ₂ CH ₃	CI
SH	Cl	Cl	2	CH ₂ CH ₂ CH ₃	Cl
Cl	Cl	C1	2	CH5CH5CH3	Cl

<u>R l</u>	<u>R²</u>	<u>R¹⁷</u>	<u>R18</u>
Н	Н	CH(CH ₃) ₂	Н
CH ₃	Н	$CH(CH_3)_2$	Н
Cl	Н	CH(CH ₃) ₂	H
CH ₃	CH ₃	CH(CH ₃) ₂	Н
Cl	Cl	CH(CH ₃) ₂	Н
Н	Н	phenyl	Н
CH ₂ .	Н	phenyl	Н

Cl	Н	phenyl	Н
CH ₃	CH ₃	phenyl	Н
CI	CI	phenyl	H
Η .	Н	(4-CH ₃)Ph	H
CH ₃	F-1	(4-CH ₃)Ph	Н
CI	Н	(4-CH ₃)Ph	Н
CH ₃	CH ₃	(4-CH ₃)Ph	Н
Cl	CI	(4-CH ₃)Ph	Н
Н	Н	(4-Cl)Ph	Н
CH ₃	Н	(4-Cl)Ph	Н
Cl	Н	(4-Cl)Ph	Н
CH ₃	CH ₃	(4-Cl)Ph	Н
Cl	Cl	(4-Cl)Ph	Н
Н	Н	(4-NO ₂)Ph	Н
CH ₃	H	(4-NO ₂)Ph	Н
Cl	Н	(4-NO ₂)Ph	Н
CH ₃	CH ₃	(4-NO ₂)Ph	Н
Cl	Cl	(4-NO ₂)Ph	Н
Н	Н	(4-CN)Ph	H
CH ₃	H	(4-CN)Ph	Н
Cl	Н	(4-CN)Ph	H
CH ₃	CH ₃	(4-CN)Ph	Н
. CI	CI	(4-CN)Ph	Н
H	Н	2-pyridyl	H
CH ₃	Н	2-pyridyl	Н
Cl	H .	2-pyridyl	Н
CH ₃	CH ₃	2-pyridyl	H
Cl	Cl	2-pyridyl	Н
H	Н	4-pyridyl	H
CH ₃	Н	4-pyridyl	Н
Cl	Н	4-pyridyl	Н
CH ₃	CH ₃	4-pyridyl	Н
CI	Cl	4-pyridyl	Н
Н	Н	CH ₂ CF ₃	Н
CH ₃	Н	CH ₂ CF ₃	Н
CI	Н	CH ₂ CF ₃	H
CH ₃	CH ₃	CH ₂ CF ₃	Н
CI	Cl	CH ₂ CF ₃	Н

H	Н	CH(CH ₃) ₂	Cl
CH ₃	Н	$CH(CH_3)_2$	Cl
Cl	Н	CH(CH ₃) ₂	Cl
CH ₃	CH ₃	$CH(CH_3)_2$	CI
Cl	Cl	CH(CH ₃) ₂	CI
Н	Н	phenyl	C1
CH ₃	Н	phenyl	Cl
Cl	Н	phenyl	Cl
CH ₃	CH_3	phenyl	Cl
Cl	Cl	phenyl	Cl
Н	Н	(4-CH ₃)Ph	Cl
CH ₃	H	(4-CH ₃)Ph	Cl
Cl	н	(4-CH ₃)Ph	CI
CH ₃	CH_3	(4-CH ₃)Ph	Cl
Cl	Cl	(4-CH ₃)Ph	Cl
Н	Н	(4-CI)Ph	Cl
CH ₃	Н	(4-C1)Ph	Cl
Cl	Н	(4-Cl)Ph	Cl
CH ₃	CH_3	(4-Cl)Ph	Cl
Cl	Cl	(4-Cl)Ph	Cl
Н	Н	(4-NO ₂)Ph	Cl
CH ₃	Н	(4-NO ₂)Ph	Cl
Cl	Н	(4-NO ₂)Ph	Cl
CH ₃	CH ₃	(4-NO ₂)Ph	CI
CI	Cl	(4-NO ₂)Ph	Cl
Н	Н	(4-CN)Ph	Cl
CH ₃	Н	(4-CN)Ph	Cl
CI	11	(4-CN)Ph	Cl
CH_3	CH ₃	(4-CN)Ph	Ci
Cl	Cl	(4-CN)Ph	Cl
Н	Н	2-pyridyl	Cl
CH ₃	Н	2-pyridyl	CI
Cl	Н	2-pyridyl	CI
CH ₃	CH ₃	2-pyridyl	C1
Cl	Cl	2-pyridyl	C1
Н	Н	4-pyridyl	Cl
CH ₃	Н	4-pyridyl	C1
Cl	Н	4-pyridyl	CI

CH ₃	CH ₃	4-pyridyl	Cl
Cl	CI	4-pyridyl	CI
Н	Н	CH ₂ CF ₃	Cl
CH ₃	Н	CH ₂ CF ₃	CI
CI	Н	CH ₂ CF ₃	Cl
CH ₃	CH ₃	CH ₂ CF ₃	Cl
Cl	CI	CH ₂ CF ₃	Cl
Н	Н	CH(CH ₃) ₂	CH_3
CH ₃	Н	CH(CH ₃) ₂	CH ₃
CI	H	CH(CH ₃) ₂	CH ₃
CH ₃	CH ₃	CH(CH ₃) ₂	CH ₃
Cl	Cl	CH(CH ₃) ₂	CH_3
Н	Н	phenyl	CH_3
CH ₃	Н	phenyl	CH_3
C1	Н	phenyl	СН3
CH ₃	CH ₃	phenyl	CH ₃
Cl	Cl	phenyl	CH ₃
Н	Н	(4-CH ₃)Ph	СН3
CH ₃	Н	(4-CH ₃)Ph	CH ₃
Cl	Н	(4-CH ₃)Ph	CH ₃
CH ₃	CH ₃	(4-CH ₃)Ph	CH ₃
Cl	Cl	(4-CH ₃)Ph	CH ₃
Н	Н	(4-Cl)Ph	CH ₃
CH ₃	Н	(4-Cl)Ph	CH_3
Cl	Н	(4-Cl)Ph	CH ₃
CH ₃	CH ₃	(4-C1)Ph	CH ₃
Cl	Cl	(4-Cl)Ph	CH ₃
H	Н	(4-NO ₂)Ph	CH_3
CH ₃	Н	(4-NO ₂)Ph	CH ₃
Cl .	Н	(4-NO ₂)Ph	CH_3
CH ₃	CH ₃	(4-NO ₂)Ph	CH_3
·CI	Cl	(4-NO ₂)Ph	CH_3
H	Н	(4-CN)Ph	CH_3
CH ₃	Н	(4-CN)Ph	CH_3
Cl	Н	(4-CN)Ph	CH_3
СН3	CH ₃	(4-CN)Ph	СН3
Cl	Cl	(4-CN)Ph	CH ₃
Н	Н	2-pyridyl	CH ₃

CH ₃	Н	2-pyridyl	CH_3
Cl	Н	2-pyridyl	CH_3
CH ₃	CH ₃	2-pyridyl	CH_3
Cl	Cl	2-pyridyl	CH ₃
Н	Н	4-pyridyl	CH_3
CH ₃	Н	4-pyridyl	CH_3
Cl	Н	4-pyridyl	CH ₃
CH ₃	CH ₃	4-pyridyl	CH_3
Cl	Cl	4-pyridyl	CH ₃
Н	Н	CH ₂ CF ₃	CH ₃
CH ₃	Н	CH ₂ CF ₃	СН3
Cl	Н	CH ₂ CF ₃	CH_3
CH ₃	CH ₃	CH ₂ CF ₃	CH ₃
C1 .	Cl	CH ₂ CF ₃	CH_3

Table 8 O O R¹ N-N R¹⁷ R¹⁸

<u>R</u> ⁴	<u>R I </u>	R_2	R17	R^{18}
ОН	CH ₂ CH ₃	Н	H	H
SH	CH ₂ CH ₃	Н	Н	Н
Cl	CH ₂ CH ₃	Н	Н	Н
ОН	NO_2	Н	H	Н
SH	NO_2	Н	H	Н
Cl	NO ₂	Н	Н	Н
ОН	OCH ₃	Н	Н	H
SH	OCH ₃	Н	Н	Н
CI	OCH ₃	Н	H	Н
ОН	CH ₂ CH ₃	CH ₃	Н	Н
SH	CH ₂ CH ₃	CH ₃	Н	Н
Cl	CH ₂ CH ₃	CH ₃	Н	H
ОН	NO_2	CH ₃	Н	Н
SH ·	NO ₂	CH ₃	Н	Н

BNSDOCID: <WO__9719087A1_I_>

WO 97/19087

CI	NO_2	CH ₃	H	H
ОН	OCH ₃	CH ₃	Н	H
SH	OCH ₃	CH ₃	Н	Н
Cl	OCH ₃	CH ₃	Н	Н
ОН	CH ₂ CH ₃	CI	Н	Н
SH	CH ₂ CH ₃	CI	Н	Н
CI	CH ₂ CH ₃	Cl	Н	Н
ОН	NO ₂	Cl	Н	Н
SH	NO ₂	Cl	Н	Н
Cl	NO_2	Cl	Н .	Н
ОН	OCH ₃	Cl	Н	Н
SH	OCH_3	Cl	Н	Н
Cl	OCH ₃	Cl	Н	Н
ОН	CH ₂ CH ₃	Н	CH ₃	Н
SH	CH₂CH₃	Н	CH ₃	Н
Cl	CH₂CH₃	Н	CH ₃	Н
ОН	NO_2	H	CH_3	Н
SH	NO_2	Н	CH_3	Н
Cl	NO_2	Н	CH ₃	Н
ОН	OCH ₃	Н	CH ₃	H
SH	, OCH ₃	Н	CH ₃	Н
Cl	OCH_3	н	CH ₃	Н
ОН	CH_2CH_3	CH ₃	CH ₃	Н
SH	CH ₂ CH ₃	CH ₃	CH_3	Н
CI	CH_2CH_3	CH ₃	CH_3	Н
ОН	NO_2	CH ₃	СН3	Н
SH	NO ₂	CH ₃	CH ₃	Н
CI	NO ₂	CH ₃	CH ₃	Н
ОН	OCH ₃	CH ₃	CH ₃	Н
SH	OCH ₃	CH ₃	CH ₃	Н
Cl	OCH ₃	CH ₃	CH ₃	Н
ОН	CH ₂ CH ₃	Cl	CH ₃	Н
SH	CH_2CH_3	CI	CH ₃	Н
Cl	CH ₂ CH ₃	Cl	CH ₃	Н
ОН	NO ₂	Cl	CH ₃	Н
SH	NO_2	Cl	CH ₃	Н
Cl	NO ₂	Cl	CH ₃	Н
ОН	OCH ₃	CI	CH ₃	H

SH	OCH ₃	CI	CH ₃	}-i
Cl	OCH ₃	Cl	CH ₃	Н
ОН	CH ₂ CH ₃	H	CH ₂ CH ₃	Н
SH	CH ₂ CH ₃	\sim H	CH ₂ CH ₃	Н
Cl	CH ₂ CH ₃	Н	CH ₂ CH ₃	Н
ОН	NO_2	Н	CH₂CH₃	H
SH	NO_2	Н	CH ₂ CH ₃	Н
Cl	NO_2	Н	CH ₂ CH ₃	Н
ОН	OCH ₃	Н	CH ₂ CH ₃	Н
SH	OCH ₃	Н	CH ₂ CH ₃	. Н
Cl	OCH ₃	Н	CH ₂ CH ₃	Н
ОН	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	H
: ;;C1	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	Н
ОН	NO_2	CH ₃	CH ₂ CH ₃	Н
SH	NO ₂	CH_3	CH ₂ CH ₃	H
Cl	NO_2	CH ₃	CH ₂ CH ₃	H
ОН	OCH_3	CH ₃	CH ₂ CH ₃	H
SH	OCH ₃	CH ₃	CH ₂ CH ₃	·H·
Cl	OCH ₃	CH ₃	CH ₂ CH ₃	Н
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₃	H
SH	CH ₂ CH ₃	Cl	CH ₂ CH ₃	H
Cl	CH ₂ CH ₃	Cl	Сн ₂ Сн ₃	μĤ
OH	NO_2	Cl	CH ₂ CH ₃	а. Н.
SH	NO ₂	Cl Cl	CH ₂ CH ₃	Н
Cl	NO_2	Cl	CH ₂ CH ₃	Н
ОН	OCH ₃	Cl	CH ₂ CH ₃	, , H,
SH	OCH ₃	Cl	CH ₂ CH ₃	Н
Cl	OCH ₃	Ci	CH ₂ CH ₃	Н
ОН	CH ₂ CH ₃	H The	CH ₂ CH ₂ CH ₃	Н
SH	CH₂CH₃	Н	CH ₂ ČH ₂ CH ₃	Н
Clu	CH ₂ CH ₃	H	CH ₂ CH ₂ CH ₃	Н
ОН	NO_2	H	CH2CH2CH3	Н
SH	NO_2	Н	CH ₂ CH ₂ CH ₃	H
Cl	NO_2	Н	CH ₂ CH ₂ CH ₃	Н
ОН	OCH ₃	Н	CH ₂ CH ₂ CH ₃	Н
SH	OCH ₃	Н	CH2CH2CH3	Н
CI*	OCH ₃	H	CHECHACH3	FI.
1				•

ОН	CH ₂ CH ₃	CH_3	CH ₂ CH ₂ CH ₃	Н
SH	CH_2CH_3	CH ₃	CH ₂ CH ₂ CH ₃	H
Cl	CH ₂ CH ₃	CH ₃	$CH_2CH_2CH_3$	Н
ОН	NO_2	CH_3	CH ₂ CH ₂ CH ₃	Н
SH	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	Н
Cl	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	Н
ОН	OCH ₃	CH ₃	$CH_2CH_2CH_3$	Н
SH	OCH_3	CH ₃	CH ₂ CH ₂ CH ₃	H
Cl	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Н
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₂ CH ₃	Н
SH	CH_2CH_3	Cl	$CH_2CH_2CH_3$	H
Cl	CH ₂ CH ₃	C)	CH ₂ CH ₂ CH ₃	Н
ОН	NO_2	Cl	CH ₂ CH ₂ CH ₃	н
SH	NO_2	Cl	CH2CH2CH3	H
CI	NO_2	CI	CH ₂ CH ₂ CH ₃	Н
OH	OCH_3	Cl	CH ₂ CH ₂ CH ₃	H
SH	OCH_3	Cl	$CH_2CH_2CH_3$	Н
Cl	OCH ₃	CI	$CH_2CH_2CH_3$	Н
ОН	CH ₂ CH ₃	Н	Н	CH_3
SH	CH_2CH_3	Н	H	CH_3
Cl	CH_2CH_3	Н	H	CH_3
ОН	NO_2	Н	Н	CH_3
SH	NO_2	Н	Ħ	CH_3
Cl	NO_2	Н	Н	CH_3
ОН	OCH ₃	Н	Н	CH_3
SH	OCH ₃	Н	Н	CH_3
Cl	OCH ₃	Н	Н	CH_3
ОН	CH ₂ CH ₃	CH ₃	Н	CH_3
SH	CH ₂ CH ₃	CH ₃	Н	CH_3
CI	CH ₂ CH ₃	CH ₃	H	CH_3
ОН	NO_2	CH ₃	H	CH_3
SH	NO ₂	CH ₃	H	CH_3
CI	NO_2	CH ₃	Н	CH_3
ОН	OCH_3	CH ₃	Н	CH_3
SH	OCH ₃	CH ₃	Н	CH_3
Cl	OCH_3	CH ₃	Н	CH_3
ОН	CH ₂ CH ₃	Cl	Н	CH ₃
SH	CH ₂ CH ₃	Cl	Н	CH ₃

Cl	CH ₂ CH ₃	Cl	Н	CH ₃
ОН	NO_2	Cl	н	CH_3
SH	NO ₂	CI	H	CH_3
Cl	NO_2	. Cl	Н	CH_3
ОН	OCH ₃	Cl	Н	CH ₃
SH	OCH ₃	Cl	\mathbf{H}	CH_3
Cl	OCH ₃	Cl	H ,	СН3
ОН	CH ₂ CH ₃	Н	CH ₃	CH_3
SH	CH ₂ CH ₃	Н	CH ₃	CH ₃
Cl	CH ₂ CH ₃	H	CH ₃	CH_3
ОН	NO_2	Н	CH ₃	CH ₃
SH	NO_2	Н	CH ₃	CH ₃
Ċl	NO_2	Н	CH ₃	CH ₃
ОН	OCH ₃	Н	CH ₃	CH ₃
SH	OCH ₃	H	CH ₃	CH_3
Cĺ	OCH ₃	H	CH ₃	CH ₃
ОН	CH ₂ CH ₃	CH ₃	CH ₃	CH ₃
SH	CH₂CH₃	CH ₃	CH ₃	CH ₃
Čl	CH ₂ CH ₃	CH ₃	CH ₃	CH_3
ОH	NO_2	CH ₃	CH ₃	CH ₃
SH	NO_2	CH ₃	CH ₃	CH ₃
Cl	NO ₂	CH ₃	CH ₃	CH ₃
ОН	OCH ₃	CH ₃	CH ₃	CH ₃
SH	OCH ₃	CH ₃	CH ₃	CH ₃
Cl	OCH ₃	CH_3	CH3	СНз
ОН	CH ₂ CH ₃	Cl	CH ₃	СН3
SH	CH ₂ CH ₃	Cl	CH ₃	CH ₃
Cl	CH ₂ CH ₃	Cl	CH ₃	CH ₃
OH	NO_2	Cl	CH ₃	CH ₃
SH	NO_2	Cl	CH ₃	СНз
Cl	NO ₂	Cl	СН3	CĤ₃
ОH	OCH ₃	Cl	CH ₃	CH ₃
SH	OCH ₃	Cl	CH ₃	CH ₃
Cl	OCH ₃	Cl	CH ₃	CH ₃
ОН	CH ₂ CH ₃	Н	CH ₂ CH ₃	CH ₃
SH	CH ₂ CH ₃	Н	CH ₂ CH ₃	CH ₃
Cl	CH ₂ CH ₃	H	CH ₂ CH ₃	CH ₃
OH OH	NÖ2	н 🕶	CH ₂ CH ₃	CHı

SH	NO ₂	Н	CH ₂ CH ₃	CH ₃
Cl	NO_2	Н	CH ₂ CH ₃	CH_3
ОН	OCH ₃	Н	CH ₂ CH ₃	CH_3
SH	OCH_3	Н	CH ₂ CH ₃	CH ₃
CI	OCH_3	Н	CH ₂ CH ₃	CH ₃
ОН	CH ₂ CH ₃	CH ₃	CH_2CH_3	CH ₃
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	CH ₃
Cl	CH_2CH_3	CH ₃	CH ₂ CH ₃	CH_3
ОН	NO_2	CH ₃	CH ₂ CH ₃	CH_3
SH	NO_2	CH ₃	CH ₂ CH ₃	CH_3
Cl	NO_2	CH ₃	CH ₂ CH ₃	CH ₃
ОН	OCH ₃	CH ₃	CH ₂ CH ₃	CH_3
SH	OCH ₃	CH ₃	CH ₂ CH ₃	CH ₃
Cl	OCH_3	CH ₃	CH ₂ CH ₃	CH ₃
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CH ₃
SH	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CH ₃
Cl	CH₂CH₃	CI	CH ₂ CH ₃	CH ₃
ОН	NO_2	CI	CH ₂ CH ₃	CH_3
SH	NO_2	CI	CH ₂ CH ₃	CH_3
Cl	NO_2	Cl	CH ₂ CH ₃	СН3
ОН	OCH_3	CI	CH ₂ CH ₃	CH_3
SH	OCH_3	Cl	CH ₂ CH ₃	CH_3
CI	OCH_3	CI	CH ₂ CH ₃	CH_3
ОН	CH₂CH₃	Н	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH₂CH₃	Н	CH ₂ CH ₂ CH ₃	CH_3
CI	CH ₂ CH ₃	H	CH ₂ CH ₂ CH ₃	CH_3
ОН	NO_2	Н	CH ₂ CH ₂ CH ₃	CH ₃
SH	NO_2	Н	CH ₂ CH ₂ CH ₃	CH ₃
Cl	NO_2	Н	CH ₂ CH ₂ CH ₃	CH_3
ОН	OCH ₃	Н	CH ₂ CH ₂ CH ₃	CH_3
SH	OCH ₃	Н	CH ₂ CH ₂ CH ₃	CH ₃
Cl	OCH ₃	Н	CH2CH2CH3	CH_3
ОН	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CH_3
Cl	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CH_3
ОН	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	CH ₃
SH	NO ₂	CH ₃	CH ₂ CH ₂ CH ₃	CH_3
CI	NO ₂	CH ₃	CH ₂ CH ₂ CH ₃	CH ₃

ОН	осн ₃		СН3	CH ₂ CH ₂ CH ₃		СН3
SH	OCH ₃		CH ₃	CH ₂ CH ₂ CH ₃		CH ₃
CI	OCH ₃		CH_3	CH ₂ CH ₂ CH ₃		CH_3
ОН	CH ₂ CH ₃	;	Cl	CH ₂ CH ₂ CH ₃		CH ₃
SH	CH ₂ CH ₃		Cl	CH ₂ CH ₂ CH ₃		CH ₃
Cl	CH ₂ CH ₃		Cl	CH ₂ CH ₂ CH ₃	'a	СНз
ОН	NO_2		Cl	CH2CH2CH3		СН3
SH	NO_2		Cl	CH ₂ CH ₂ CH ₃		CH ₃
ÇÎ CI	NO ₂		Cl ,	CH ₂ CH ₂ CH ₃		CH ₃
ОН	OCH ₃		(CI	CH ₂ CH ₂ CH ₃		CH ₃
SH	осн3		Cl	CH ₂ CH ₂ CH ₃		CH ₃
Cl	OCH ₃	5) 11	CI	CH2CH2CH3		CH ₃
· OH	CH ₂ CH ₃	gradija s	Ēł	\mathbf{H}		Cl
SH	CH ₂ CH ₃		Н	H		Cl
Cl	CH ₂ CH ₃		Н	Н	: :	Cl
ОН	NO_2		Н	H		Cl
SH	NO ₂		Н	Н		CI
Cl	NO ₂		Н	H		Cl
ОН	OCH ₃		H	$(H_{ij}, ij) = (H_{ij}, ij)$		Cl
SH	OCH ₃		Н	$\mathbf{H}^{(i)}$		Cl
Cl	OCH ₃		Ĥ	H		Cl
ОН	CH ₂ CH ₃		СН3	H		Cl
SH	CH₂CH₃		CH ₃	H	. ***	Cl
Cl	CH ₂ CH ₃		CH ₃	$\mathbf{H}_{\mathrm{tot}}$	Ş.	Cl
ОН	NO ₂		CH ₃	$\mathbf{H}_{\mathbf{H}}$		Cl
SH	NO ₂		CH ₃	$\hat{\mathbf{H}}$,C1
Cl	NO_2		CH ₃	$oldsymbol{H}$		Cl
ОН	OCH ₃	ja ja	CH ₃	\mathbf{H}		Cl
SH	OCH ₃		CH ₃	H		Cl
Cl	OCH ₃		CH ₃	Ĥ		Cl
ОН	CH ₂ CH ₃		Cl	\mathbf{H}	***	ĈΙ
SH	CH ₂ CH ₃		Cl	H H		Cl
Cl	CH ₂ CH ₃		Cl	H 1	,	Cl
ОН	NO ₂		Cl	H		Cl
SH	NO ₂		Cl	$\prod_{i \in \mathcal{I}_{\mathcal{A}}} \prod_{i \in \mathcal{I}_{\mathcal{A}}} \prod_{i \in \mathcal{I}_{\mathcal{A}}} \mathbb{I}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}}) = \mathbb{I}_{\mathcal{A}}$		Cl ,
Cl	NO ₂		Cl	$\mathbf{H} = \mathbf{H}$	*	Cl
OH	OCH ₃	ententia	Cl	Harris Sax weeks to the control of the	1848	C!
SH	OCH ₃		Cl Cl	TO THE REPORT OF THE PARTY OF T		Ć١

CI	OCH ₃	Cl	Н	CI
ОН	CH ₂ CH ₃	Н	CH_3	Cl
SH	CH ₂ CH ₃	Н	CH ₃	CI
Cl	CH ₂ CH ₃	Н	CH ₃	CI
ОН	NO_2	Н	CH ₃	CI
SH	NO_2	. Н	CH ₃	CI
Cl	NO_2	Н	CH ₃	CI
OH	OCH ₃	Н	CH ₃	CI
SH	OCH ₃	Н	CH ₃	C1
Cl	OCH ₃	Н	CH ₃	CI
ОН	CH ₂ CH ₃	CH ₃	CH ₃	Cl
SH	CH ₂ CH ₃	CH ₃	CH ₃	CI
CI	CH_2CH_3	CH ₃	CH ₃	CI
ОН	NO_2	CH ₃	CH ₃	Cl
SH	NO_2	CH ₃	CH ₃	CI
CI	NO_2	CH ₃	CH ₃	CI
ОН	OCH ₃	CH ₃	CH ₃	Cl
SH	OCH ₃	CH ₃	CH ₃	CI
Cl	OCH ₃	CH ₃	CH ₃	CI
ОН	CH ₂ CH ₃	Cl	CH_3	CI
SH	CH ₂ CH ₃	Cl	CH ₃	CI
CI	CH ₂ CH ₃	. Cl	CH ₃	Cl
ОН	NO ₂	CI	CH ₃	Cl.,
SH	NO ₂	Cl	CH_3	Cl
Cl	NO_2	CI	CH ₃	Cl
ОН	OCH ₃	Cl	CH ₃	Cl
SH	OCH ₃	Cl	CH_3	CI
CI	OCH ₃	Cl	CH ₃	Cl
ОН	CH ₂ CH ₃	Н	CH ₂ CH ₃	CI
SH	CH ₂ CH ₃	Н	CH ₂ CH ₃	CI
Cl	CH ₂ CH ₃	Н	CH ₂ CH ₃	Cl
ОН	NO_2	Н	CH₂CH₃	Cl
SH	NO_2	Н	CH ₂ CH ₃	Cl
Cl	NO_2	Н	СН ₂ СН ₃	C.I
ОН	OCH ₃	H	СH ₂ CH ₃	Cl
SH	OCH ₃	Н	CH ₂ CH ₃	CI
Cl	OCH ₃	Н	CH₂CH₃	CI
ОН .	CH₂CH₃	CH ₃	CH ₂ CH ₃	Ci

SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	Cl
Cl	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	Cl
ОН	NO_2	CH ₃	CH ₂ CH ₃	CI
SH	NO_2	CH ₃	CH ₂ CH ₃	Cl
Cl	NO ₂	CH ₃	CH ₂ CH ₃	Cl
ОН	OCH ₃	CH ₃	CH ₂ CH ₃	Cl
SH	OCH ₃	CH ₃	CH ₂ CH ₃	C1
Cl	OCH ₃	CH ₃	CH ₂ CH ₃	Cl
ОН	CH ₂ CH ₃	CI	CH ₂ CH ₃	Cl
SH	CH ₂ CH ₃	Cl	CH ₂ CH ₃	- Cl
Cl	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CI
ОН	NO_2	Cl	CH ₂ CH ₃	Cl
SH	NO_2	Cl**	CH ₂ CH ₃	Cl
Cl	NO_2	Cl	CH ₂ CH ₃	Cl
ОН	OCH ₃	Cl	CH ₂ CH ₃	Cl
SH	OCH ₃	Cl	CH ₂ CH ₃	Cl
Cl	OCH ₃	Cl	CH ₂ CH ₃	Cl
ОН	CH ₂ CH ₃	H	CH ₂ CH ₂ CH ₃	Cl
SH	€H ₂ CH ₃	H	CH ₂ CH ₂ CH ₃	Cl
Cl	CH ₂ CH ₃	Н	CH ₂ CH ₂ CH ₃	CI.
ОН	NO_2	H	CH ₂ CH ₂ CH ₃	Cl
SH	NO ₂	H.	CH ₂ CH ₂ CH ₃	Cl
Cl	NO_2	$\pi_{i_0} \cdot \pi_{i_0} \cdot \Pi_{i_0} = \pi_{i_0} \cdot \pi_{i_0}$	СЫ ₂ СЫ ₂ СЫ ₃	Cl
ОН	OCH ₃	H	CH2CH2CH3	C!
SH	OCH ₃	н	CH ₂ CH ₂ CH ₃	Cl
Cl	OCH ₃	Н	CH ₂ CH ₂ CH ₃	Cl
ОН	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Cl
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Cl
Cl	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Cl
ОН	NO ₂	CH ₃	CH₂CH₂CH₃	Cl
SH	NO ₂	CH ₃	CH ₂ CH ₂ CH ₃	Cl
Cl	NO ₂	CH ₃	CH ₂ CH ₂ CH ₃	Cl
ОН	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CI
SH	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Cl
Cl	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CI
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₂ CH ₃	. Cl
SH	CH ₂ CH ₃	Cl	CH ₂ CH ₂ CH ₃	Cl
° ci	CH2CH3	Cl	ЕЙЗЕЙЗСИЗ	⊸Cl-
			And the second s	

ОН	NO_2	C1	CH ₂ CH ₂ CH ₃	CI
SH	NO_2	CI	CH ₂ CH ₂ CH ₃	CI
Cl	NO_2	Cl	CH ₂ CH ₂ CH ₃	Cl
ОН	OCH ₃	Cl	CH ₂ CH ₂ CH ₃	CI
SH	OCH ₃	Cl	CH2CH2CH3	CI
CI	OCH ₃	Cl	СН2СН2СН3	CI .

Table 9

<u>R</u> a	<u>R</u> b	<u>R 1</u>	<u>R</u> ²	R^{18}
H	H	H	Н	Н
CH ₃	Н	Н	Н	Н
CH ₃	CH ₃	H	Н	Н
Н	Н	CH ₃	Н	Н
CH ₃	Н	CH ₃	Н	Н
CH ₃	CH ₃	CH ₃	Н	Н
Н	H	CI	Н	H
CH ₃	H	CI	Н	F {
СН3	CH ₃	CI	H	Н
Н	Н	Н	CH ₃	Н
CH ₃	Н	Н	CH ₃	Н
CH ₃	CH ₃	Н	CH ₃	Н
Н	Н	CH ₃	CH ₃	Н
CH ₃	Н	CH ₃	CH ₃	Н
CH_3	CH ₃	CH ₃	CH ₃	Н
Н	H	Cl	CH ₃	Н
CH ₃	Н	Cl	CH ₃	Н
CH ₃	CH ₃	Cl	CH ₃	H
Н	Н	Н	Cl	H
CH ₃	Н	Н	CI	Н
CH ₃	CH ₃	Н	Cl	Н

Н	Н	CH ₃	Cl	Н
CH ₃	Н	CH ₃	Cl	Н
CH ₃	CH ₃	CH ₃	CI	H
Н	Н	Cl	Cl	Н
CH ₃	Н -	CI	Cl	Н
CH ₃	CH ₃	Cl	[*] Cl	Н
Н	Н	Ή	Н	CH ₃
CH ₃	Н	Н	Н	CH ₃
CH ₃	CH ₃	Н	H	CH ₃
Н	Н	CH ₃	Н	CH ₃
CH ₃	H	CH ₃	H :	CH ₃
CH ₃	CH ₃	CH ₃	$\mathcal{H}_{\mathcal{F}_{k}}$ \mathbf{H}	CH ₃
$\mathbf{H}_{\mathbf{u}}$	H	Cl	Н	CH ₃
CH ₃	H	Cl	H H	CH ₃
CH ₃	CH ₃	Cl	H	CH ₃
Н	Н	Н	CH ₃	CH ₃
CH ₃	Н	Н	CH ₃	CH ₃
: CH ₃	CH ₃	H.	CH ₃	CH ₃
Н	Н	CH ₃	CH ₃	CH ₃
CH ₃	H	CH ₃	CH ₃	CH ₃
ĊH ₃	CH ₃	CH ₃	CH ₃	CH ₃
Н	Н	Čl	CH ₃	CH ₃
CH ₃	H	C1 (1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CH ₃	CH ₃
cH ₃	CH ₃	Cl Cl	CH ₃	CH ₃
H	Ĥ	H	i Čl	CH ₃
CH ₃	Н	H	ČI	CH ₃
СН3	CH ₃	Н	Cl	CH ₃
Ĥ	H 2	CH ₃	Cl	CH ₃
CH ₃	H	CH ₃	Cl	CH ₃
CH ₃	CH ₃ .	CH ₃	CI CI	CH ₃
Н	Ħ	Ci i i i i i i i i i i i i i i i i i i	CI (1)	CH ₃
CH ₃	H	ÇI	Cl	CH ₃
CH ₃	CH ₃	Cl · · · · · · · · · · · · · · · · · · ·	Cl	CH ₃
Н	. H	\mathbf{H}°	Н	Cl
CH ₃	H is a	Н	Н	Cl
CH ₃	CH ₃	H	Н	CI
H	H Solda d ar eta di da sola	CH ₃	H Santasan a t a a ua	Cl
CH ₃	H	CH3	Jan San Anna Anna San Jan	1. 1997 A Cl ic

CH ₃	CH ₃	Н	Cl
Н	CI	Н	CI
Н	CI	Н	Cl
CH ₃	CI	Н	Cl
Н	Н	CH ₃	Cl
H	Н	CH ₃	CI
CH ₃	Н	CH ₃	Cl
Н	CH ₃	CH ₃	Cl
Н	CH ₃	CH ₃	Cl
CH ₃	CH ₃	CH ₃	CI
Н	Cl	CH ₃	CI
Н	CI	CH ₃	C1
CH ₃	CI	СН3	Cl
Н	Н	CI	CI
H	Н	Cl	Cl
CH ₃	Н	CI	Cl
Н	CH ₃	Cl	C1
Н	CH ₃	Cl	Cl
CH ₃	CH ₃	Cl	CI ·
Н	CI	Cl	Cl
Н	Cl	Cl	Cl
CH ₃	Cl	Cl	Cl
	H CH ₃ H H	H CI H CI CH ₃ CI H H H H H H CH ₃ H CH ₃ CH ₃ H CI H CI CH ₃ CH ₃ H CI H CI CH ₃ CI H CI CH ₃ CI H CI CH ₃ CI H CH H CH H CH H CH H CH CH CH H CH C	H CI H CH3 CI H CH3 CI H H CH3 H H CH3 H CH3 CH3 CH3 H CH3

<u>R</u> a	<u>R</u> b	<u>R 1</u>	<u>R²</u>	<u>R18</u>
Н	Н	Н	Н	H
CH ₃	H	Н	Н	H
CH ₃	CH_3	Н	H	Н
Н	Н	CH ₃	Н	Н
CH ₃	Н	CH ₃	Н	Н
CH ₃	· CH ₃	CH ₃	Н	Н

Н	Н	Cl	Н	11
CH ₃	н	CI	Н	Н
CH ₃	CH ₃	Cl	H	Н
Н	Н	Н	CH ₃	Н
CH ₃	Н	Н	CH ₃	Н
CH ₃	CH ₃	Н	CH ₃	Н
Н	Н	CH ₃	CH ₃	Н
CH ₃	Н	CH ₃	CH ₃	Н
CH ₃	CH ₃	CH ₃	CH ₃	Н
Н	Н	CI	CH ₃	Н
CH ₃	Н	Cl	CH ₃	Н
CH ₃	CH ₃	Cl	CH ₃	Н
Н	Н	Н	CI	H
CH ₃	Н	Н	Cl	Н
CH_3	CH ₃	Н	C1	Н
Н	I-1	CH ₃	Cl	Н
CH ₃	Н	CH ₃	Cl	1-1
СН3	CH ₃	CH ₃	Cl	Н
Н	Н	CI	C)	Н
CH ₃	Н	Cl	CI	Н
CH ₃	CH ₃	Cl	CI	Н
Н	Н	Н	H	6-CH ₃
CH_3	Н	Н	Н	6-CH ₃
CH_3	CH ₃	Н	H	6-CH ₃
Н	Н	CH_3	H	6-CH ₃
CH ₃	н	CH ₃	Н	6-CH ₃
CH ₃	CH ₃	CH ₃	Н	6-CH ₃
Н	Н	Cl	Н	6-CH ₃
CH_3	Н	Cl	Н	6-CH ₃
CH ₃	CH ₃	Cl	Н	6-CH ₃
Н	Н	H	CH ₃	6-CH ₃
CH ₃	Н	Н	CH ₃	6-CH ₃
CH_3	CH ₃	Н	CH ₃	6-CH ₃
Н	H	CH ₃	CH ₃	6-CH ₃
CH ₃	Н	CH ₃	CH ₃	6-CH ₃
CH ₃ .	CH ₃	CH ₃	CH ₃	6-CH ₃
H	Н	Cl	CH ₃	6-CH ₃
CH ₃	Н	Cl	CH ₃	6-CH ₃

CH ₃	CH ₃	Cl	CH ₃	6-CH ₃
Н	Н	Н	Cl	6-CH ₃
CH ₃	Н	Н	CI	6-CH ₃
CH ₃	CH ₃	Н	Cl	6-CH ₃
Н	Н	CH_3	Cl	6-CH ₃
CH_3	Н	CH ₃	Cl	6-CH ₃
CH ₃	CH ₃	CH ₃	Cl	6-CH ₃
H	H	Cl	CI	6-CH ₃
CH ₃	H	Cl	Cl	6-CH ₃
CH ₃	CH ₃	CI	CI	6-CH ₃
Н	Н	Н	Н	5-CH ₃
CH_3	н	Н	H	5-CH ₃
CH ₃	CH ₃	H	Н	5-CH ₃
H	H	CH ₃	Н	5-CH ₃
CH_3	H	CH ₃	Н	5-CH ₃
CH_3	CH ₃	CH ₃	Н	5-CH ₃
Н	Н	Cl	H	5-CH ₃
CH ₃	Н	Cl	Н	5-CH ₃
CH ₃	CH ₃	Cl	H	5-CH ₃
H	H	Н	CH ₃	5-CH ₃
CH ₃	Н	Н	CH ₃	5-CH ₃
CH ₃	CH ₃	Н	CH ₃	5-CH ₃
Н	Н	CH ₃	CH ₃	5-CH ₃
CH ₃	Н	CH ₃	CH ₃	5-CH ₃
CH_3	CH ₃	CH ₃	CH ₃	5-CH ₃
Н	Н	CI	CH ₃	5-CH ₃
CH ₃	Н	CI	CH ₃	5-CH ₃
CH ₃	CH ₃	CI .	CH ₃	5-CH ₃
Н	Н	Н	CI	5-CH ₃
CH ₃	Н.	н	CI	5-CH ₃
CH ₃	CH ₃	Н	Cl	5-CH ₃
Н	Н	CH ₃	Cl	5-CH ₃
CH ₃	H	- CH ₃	CI	5 CH ₃
CH ₃	CH ₃	CH ₃	Cl	5-CH ₃
Н	Н	Cl	Cl	5-CH ₃
CH ₃	Н	Cl	Cl	5-CH ₃
CH ₃	CH ₃	Cl	CI	5-CH ₃
Н	Н	Н	Н	4-CH ₃

CH ₃	Н	Н	Н	4-CH ₃
CH ₃	CH ₃	Н	H	4-CH ₃
Н	Н	CH ₃	Н	4-CH ₃
CH ₃	Н	CH ₃	Н	4-CH ₃
CH ₃	CH ₃	CH ₃	H	4-CH ₃
Н	Н	Cl	Н	4-CH ₃
CH ₃	Н	Cl	Н	4-CH ₃
CH ₃	CH ₃	CI	Н	4-CH ₃
Н	Н	Н	CH ₃	4-CH ₃
CH ₃	Н	Н	CH ₃	4-CH ₃
CH ₃	CH ₃	Н	CH ₃	4-CH ₃
Н	H	CH ₃	CH ₃	4-CH ₃
CH ₃	Н	CH ₃	CH ₃	4-CH ₃
CH ₃	CH_3	CH ₃	CH ₃	4-CH ₃
Н	Н	Cl	CH ₃	4-CH ₃
CH ₃	Н	Cl	CH ₃	4-CH ₃
CH ₃	CH ₃	C1	CH ₃	4-CH ₃
Н	Н	H	Cl	4-CH ₃
CH ₃	Н	Н	Cl	4-CH ₃
CH ₃	CH ₃	Н	Cl	4-CH ₃
Н	Н	CH ₃	Cl	4-CH ₃
CH ₃	Н	CH ₃	Cl	4-CH ₃
CH ₃	CH ₃	CH ₃	Cl	4-CH ₃
Н	Н	Cl	Cl	4-CH ₃
CH ₃	Н	Cl	Cl	4-CH ₃
CH ₃	CH ₃	Cl .	Cl	4-CH ₃
Н	Н	Н	Н	6-C1
CH ₃	Н	Н	H.	6-Cl
CH ₃	CH ₃	Н	Н	6-C1
Н	Н	CH ₃	Н	6-C1
CH ₃	H	CH ₃	Н	6-CI
CH ₃	CH ₃	CH ₃	H	6-CI
Н	Н	CI	H	6-Cl
CH ₃	Н	Cl	Н	6-CI
CH ₃	CH ₃	Cl	H	6-CI
Н	Н	Н	CH ₃	6-Cl
CH ₃	Н	Н	CH ₃	6-Cl
CH ₃	CH ₃	H ·	CH ₃	6-C1

		CIL	CU	6-Cl
Н	H	CH ₃	CH ₃	6-Cl
CH ₃	Н	CH ₃	CH ₃	
CH ₃	CH ₃	CH ₃	CH ₃	6-Cl
Η .	H	Cl	CH ₃	6-CI
CH ₃	Н	Cl	CH ₃	6-Cl
CH ₃	СН3	Cl	CH ₃	6-Cl
Н	Н	H		6-Cl
CH ₃	Н	Н	Cl	6-Cl
CH ₃	CH ₃	Н	Cl	6-Cl
Н	Н	CH ₃	Cl	6-Cl
CH ₃	Н	CH ₃	Cl	6-Cl
CH ₃	CH ₃	CH ₃	Cl	6-Cl
Н	Н	Cl	Cl	6-C1
CH ₃	H	Cl	Cl .	6-Cl
CH ₃	CH ₃	Cl	Cl	6-CI
Н	H	Н	Н	4-Cl
CH ₃	Н	H	Н	4-Cl
CH ₃	CH ₃	Н	Н	4-Cl
Н	Н	CH ₃	H	4-Cl
CH ₃	Н	CH ₃	Н	4-Cl
CH ₃	CH ₃	CH ₃	H	4-Cl
Н	Н	Cl	Н	4-Cl
CH ₃	Н	Cl	Н	4-Cl
CH ₃	CH ₃	Cl	Н	4-Cl
Н	Н	Н	CH ₃	4-Cl
CH ₃	Н	Н	CH ₃	4-Cl
CH ₃	CH ₃	Н	CH ₃	4-Cl
Н	Н	CH ₃	CH ₃	4-C1
CH ₃	Н	CH ₃	CH ₃	4-Cl
CH ₃	CH ₃	CH ₃	CH ₃	4-Cl
Н	Н	CI	CH ₃	4-Cl
CH ₃	H	Cl	CH ₃	4-Cl
CH ₃	CH ₃	CI	CH ₃	4-Cl
H	H	Н	CI	4-C1
CH ₃	Н	Н	Cl	4-Cl
CH ₃	CH ₃	н	CI	4-CI
H	H	CH ₃	Cl	4-Cl
CH ₃	· H	CH ₃	Cl	4-Cl
		٠,		

H

CH ₃	CH_3	CH ₃	Cl	4-CI
Н	Н	Cl	. CI	4-C1
CH ₃	Н	Cl	CI	4-C1
CH ₂	CH ₂	Cl	CI	4 C1

<u>rucic rr</u>

Ra	<u>R</u> b	<u>R 1</u>	<u>R</u> 2	<u>R18</u>
Н	Н	Н	H	Н
CH ₃	н	\mathbf{H}	H	H
CH ₃	CH ₃	H	H	Н
Н	H	CH ₃	H	Н
CH ₃	H	CH ₃	H	Н
CH ₃	$_{\mathbb{R}^{n}}\in CH_{3\mathbb{R}^{n}}, \mathbb{R}_{\mathbb{R}^{n}}$	$_{c}$ CH $_{3}$	\mathbf{H}_{i}^{0}	Н
$\mathbf{H}_{\mathbf{G}}$	H	Cl	Н	Н
CH ₃	H	or of CI to the	$\hat{\mathbf{H}} = \frac{1}{2\sqrt{2}} \frac{1}{2\sqrt{2}}$.	H
CH ₃	CH ₃	Cl	Н	Н
Н	H	\mathbf{H}_{i}	CH ₃	\mathbf{H}
CH ₃	H	$\mathbf{H} = -\frac{\sqrt{2}}{2\pi}$	CH ₃	H
CH ₃	CH ₃	$\mathbf{H}_{\mathbf{u}}$	CH ₃ :	H .
H	H	CH ₃	CH ₃	H
CH ₃	H	CH ₃	CH ₃	Н
CH ₃	CH ₃	CH ₃	CH ₃	tis in H
H	H	7 C 1: .	CH ₃	$\mathbf{H}_{r_{i}}$
CH ₃	Н	Cl	CH ₃	H
CH ₃	CH ₃	Cl	CH ₃	Н
Н	Н	'H	CI -	Н
CH ₃	H	H	Cl - A	H
CH ₃	CH ₃	H	Cl	Н
Н.	H .	CH ₃	Cl	Н
CH ₂	H	CH3LE	G	Carried Harrison

 CH_3

Н	Н	Cl	Cl	H
CH ₃	Н	Cl	Cl	Н
CH ₃	CH ₃	CI	CI	Н
H	Н	Н	Н	2-CH ₃
CH ₃	Н	Н	Н	2-CH ₃
CH ₃	CH ₃	Н	Н	2-CH ₃
Н	Н	CH_3	H	2-CH ₃
CH ₃	Н	CH ₃	H	2-CH ₃
CH ₃	CH ₃	CH ₃	Н	2-CH ₃
Н	Н	Cl	Н	2-CH ₃
CH ₃	Н	Cl	H	2-CH ₃
CH ₃	CH ₃	CI	H	2-CH ₃
Н	Н	Н	CH ₃	2-CH ₃
CH ₃	H	H	CH ₃	2 CH ₃
CH ₃	CH ₃	H	CH ₃	2-CH ₃
Н	Н	CH ₃	CH ₃	2-CH ₃
CH ₃	Н	CH ₃	CH ₃	2-CH ₃
CH ₃	CH ₃	CH ₃	CH ₃	2-CH ₃
Н	Н	CI	CH ₃	2-CH ₃
CH ₃	Н	Cl	CH ₃	2-CH ₃
CH ₃	CH ₃	Cl	CH ₃	2-CH ₃
Н	Н	H	CI	2-CH ₃
CH ₃	Н	Н	Cl	2-CH ₃
CH ₃	CH ₃	н	Cl	2-CH ₃
Н	Н	CH ₃	Cl	2-CH ₃
CH ₃	Н	CH ₃	CI	2-CH ₃
CH ₃	CH ₃	CH ₃	CI	2-CH ₃
Н	Н	Cl	Cl	2-CH ₃
CH ₃	Н	Cl	Cl	2- CH ₃
CH ₃	CH ₃	Cl	Cl	2-CH ₃
Н	Н	Н	Н	6-CH ₃
CH ₃	Н	Н	Н	6-CH ₃
CH ₃	CH ₃	Н	Н	6-CH ₃
Н	Н	CH ₃	Н	6-CH ₃
CH ₃	Н	CH ₃	Н	6-CH ₃
CH ₃	CH ₃	CH ₃	Н	6-CH ₃
Н	Н	Cl	Н	6-CH ₃
CH ₃	Н	Cl	H	6-CH ₃

CH ₃	CH ₃	Cl	Н	6-CH ₃
Н	Н	H	CH ₃	6-CH ₃
CH ₃	Н	Н	CH ₃	6-CH ₃
CH ₃	CH ₃	Н	СН3	6-CH ₃
Н	Н	CH_3	CH ₃	6-CH ₃
CH ₃	Н	CH ₃	CH ₃	6-CH ₃
CH ₃	CH ₃	CH ₃	CH ₃	6-CH ₃
Н	Н	Cl	CH ₃	6-CH ₃
CH ₃	Н	Cl	CH ₃	6-CH ₃
CH ₃	CH ₃	Cl	CH_3	6-CH ₃
H	H	Н	Cl	6-CH ₃
CH ₃	Н	н	Cl	6-CH ₃
CH ₃	CH ₃	H	Cl	6-CH ₃
Н	Н	CH ₃	Cl	6-CH ₃
СН3	Н	CH ₃	Cl	6-CH ₃
CH ₃	CH ₃	CH ₃	Cl	6-CH ₃
Н	Н	Cl	Cl	6-CH ₃
CH ₃	Н	Cl	Cl	6-CH ₃
CH ₃	CH ₃	Cl	CI	6-CH ₃
Н	Н	Н	II	2-C1
CH ₃	Н	Н	Н	2-C1
CH_3	CH ₃	Н	Н	2-C1
Н	Н	CH ₃	Н	2-C1
CH ₃	Н	CH ₃	Н	2-C1
CH_3	CH ₃	CH ₃	H	2-C1
Н	Н	Cl	Н	2-C1
CH ₃	Н	Cl	Н	2-C1
CH ₃	CH ₃	Cl	Н	2-C1
Н	Н	Н	CH ₃	2-C1
CH ₃	Н	Н	CH ₃	2-C1
CH ₃	CH ₃	Н	CH ₃	2-CI
H	Н	CH ₃	CH ₃	2-C1
CH ₃	Н	CH ₃	CH ₃	2-C1
CH ₃	CH ₃	CH ₃	CH ₃	2-C1
Н	Н	CI	CH ₃	2-C1
CH_3	Н	Cl	CH ₃	2-C1
CH ₃	CH_3	Cl	CH ₃	2-Ci
Н	Н	Н	Cl	2-Cl

CH ₃	H	Н	Cl	2-C1
CH ₃	CH ₃	Н	Cl	2-C1
Н	Н	CH ₃	Cl	2-C1
CH ₃	Н	CH ₃	Cl	2-CI
CH ₃	CH ₃	CH ₃	Cl	2-Cl
Н	Н	C1	Cl	2-C1
CH ₃	Н	Cl	Cì	2-CI
CH ₃	CH ₃	Cl	Cl	2-C1

Table 12

$$R^{17}$$
 R^{17}
 R^{18}
 R^{18}
 R^{18}

<u>R</u> ^a	<u>R</u> h	<u>R 1</u>	\mathbb{R}^2	$\overline{\mathbf{m}}$	<u>R17</u>	<u>R¹⁸</u>
CH_3	CH ₃	Н	Н	1	Н	Н
Н	CH_3CH_2	Н	H	1	Н	Н
CH ₃	CH ₃	CH_3	Н	1	Н	H
Н	CH_3CH_2	CH_3	Н	1	Н	Н
СН3	CH ₃	Cl	H	1	H	Н
Н	CH_3CH_2	Cl	H	i	H	Н
CH ₃	CH ₃	Н	СН3	l	Н	1:1
Н	CH ₃ CH ₂	Н	CH_3	1	Н	Н
CH_3	CH ₃	CH_3	CH_3	1	H	Н
H	CH ₃ CH ₂	CH_3	CH_3	i	H	H
CH ₃	CH ₃	Cl	CH_3	ì	Н	H
H	CH_3CH_2	Cl	CH_3	I	Н	H
CH_3	CH ₃	Н	Cl	1	H	Н
Н	CH ₃ CH ₂	Н	Cl	1	Н	Н
CH ₃	CH ₃	CH_3	Cl	1	Н	Н
Н	CH_3CH_2	CH_3	Cl	i	Н	Н
CH ₃	CH ₃	Cl	Cl	1	H	Н
H	CH ₃ CH ₂	CI	Cl	t	Н	Н
CH ₃	CH ₃	Н	Н	l	CH ₃	Н
Н	CH ₂ CH ₂	н	Н	1	CH ₂	Н

CH_3	CH_3	CH_3	Н	ì	CH ₃	Н
Н	CH ₃ CH ₂	CH_3	Н	1	CH ₃	Н
CH ₃	CH ₃	CI	Н	1	CH ₃	Н
Н	CH ₃ CH ₂	CI	Н	l	CH ₃	Н
CH ₃	CH ₃	Н	СН3	1	CH_3	Н
Н	CH_3CH_2	Н	CH_3	1	CH ₃	Н
CH ₃	CH ₃	CH_3	CH_3	1	CH ₃	H
Н	CH ₃ CH ₂	CH_3	CH_3	i	CH ₃	Н
СН3	CH ₃	Ci	CH_3	l	CH ₃	Н
Н	CH₃CH₂	Cl	CH ₃	1	CH_3	Н
CH_3	CH ₃	Н	Cl	1	CH_3	Н
Н	CH_3CH_2	Н	Cl	1	CH ₃	Н
CH ₃	CH_3	CH_3	Cl	1	CH ₃	Н
Н	CH_3CH_2	CH_3	Cl	1	CH ₃	Н
CH_3	CH ₃	Cl	Cl	l	CH ₃	Н
Н	CH_3CH_2	Cl	CI	1	CH ₃	Н
CH ₃	CH ₃	Н	Н	l	CH_3CH_2	H
Н	CH ₃ CH ₂	Н	H	ì	CH ₃ CH ₂	H
CH ₃	CH ₃	CH_3	H	ï	CH_3CH_2	H
Н	CH_3CH_2	CH_3	Н	1	CH ₃ CH ₂	H
CH ₃	CH ₃	Cl	Н	J	CH_3CH_2	H
Н	CH ₃ CH ₂	Cl	Н	l	CH ₃ CH ₂	H
CH ₃	CH ₃	Н	CH_3	I	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	Н	CH_3	1	CH ₃ CH ₂	H
CH ₃	CH ₃	CH_3	CH_3	!	CH ₃ CH ₂	Н
Н	CH_3CH_2	CH_3	CH_3	1	CH_3CH_2	H
CH ₃	CH_3	Cl	CH ₃	1	CH ₃ CH ₂	Н
Н	CH_3CH_2	Cl	CH_3	1	CH ₃ CH ₂	Н
CH_3	CH ₃	H	Cl	l	CH ₃ CH ₂	H
Н	CH_3CH_2	H	CI	1	CH_3CH_2	Н
CH ₃	CH ₃	CH_3	CI	1	CH_3CH_2	Н
Н	CH_3CH_2	CH_3	Cl	1	CH ₃ CH ₂	Н
CH ₃	CH ₃	Cl	Cl	1	CH ₃ CH ₂	H
H	CH ₃ CH ₂	Cl	Čl	1	CH_3CH_2	Н
CH ₃	CH ₃	H	Н	l	$\mathrm{CH_3CH_2CH_2}$	Н
Н	CH_3CH_2	Н	Н	I	$\mathrm{CH_3CH_2CH_2}$	Н
CH ₃	CH ₃	CH_3	H	l	$CH_3CH_2CH_2$	Н
Н	CH ₃ CH ₂	CH ₃	H	1	$CH_3CH_2CH_2$	Н

СН3	CH ₃	CI	Н	ł	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	Cl	Н	l	CH ₃ CH ₂ CH ₂	H
CH ₃	CH ₃	H	CH_3	ı	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	Н	CH ₃	ì	CH ₃ CH ₂ CH ₂	H
CH ₃	CH ₃	CH ₃	CH_3	1	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	CH ₃	CH_3	1	$CH_3CH_2CH_2$	Н
CH ₃	CH ₃	Cl	CH_3	1	$CH_3CH_2CH_2$	H
Н	CH ₃ CH ₂	CI	CH_3	1	CH ₃ CH ₂ CH ₂	Н
CH ₃	CH ₃	Н	CI	l	CH ₃ CH ₂ CH ₂	H
Н	CH ₃ CH ₂	Н	Cl	l	CH ₃ CH ₂ CH ₂	H
СН3	CH ₃	CH_3	Cl	ı	CH ₃ CH ₂ CH ₂	H
Н	CH ₃ CH ₂	CH_3	Cl	1	CH ₃ CH ₂ CH ₂	Н
CH ₃	CH ₃	Cl	Cl	1	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	Cl	Cl	ı	CH ₃ CH ₂ CH ₂	H
CH ₃	CH ₃	Н	Н	1	Н	CH_3
Н	CH ₃ CH ₂	H	Н	1	1-1	CH_3
CH ₃	CH_3	CH ₃	Н	l	Н	CH_3
Н	CH ₃ CH ₂	CH ₃	Н	l	Н	CH_3
CH ₃	CH ₃	CI	Н	ı	Н	CH_3
Н	CH ₃ CH ₂	Cl	Н	1	Н	CH_3
СН3	CH ₃	Н	CH ₃	1	Н	CH_3
H	CH ₃ CH ₂	Н	CH_3	1	Н	CH_3
CH_3	CH ₃	CH ₃	CH_3	1	H	CH_3
Н	CH ₃ CH ₂	CH_3	CH_3	1	Н	CH_3
CH ₃	CH ₃	Cl	CH_3	1	H	CH_3
Н	CH ₃ CH ₂	Cl	CH_3	1	H	$CH_{\mathfrak{Z}}$
СН3	CH ₃	Н	Cl	l	Н	CH_3
Н	CH ₃ CH ₂	Н	Cl	t	1-1	CH_3
CH ₃	CH ₃	CH_3	Cl	i	Н	CH_3
Н	CH ₃ CH ₂	CH ₃	Cl.,	l	Н	CH_3
CH ₃	CH ₃	Cl	CI	l	Н	CH_3
Н	CH ₃ CH ₂	Cl	Cl	1	Н	CH_3
CH ₃	CH ₃	Н	Н	1	CH ₃	CH_3
Н	CH ₃ CH ₂	Н	Н	I	CH ₃	CH_3
CH ₃	CH ₃	CH_3	Н	1	CH ₃	CH_3
Н	CH ₃ CH ₂	CH ₃	Н	i	CH ₃	CH_3
СН3	CH ₃	CI	Н	l	CH ₃	СНз
Н	CH ₃ CH ₂	Cl.	Н	l	CH ₃	CH_3

CH_3	CH ₃	Н	CH_3	1	CH ₃	$CH_{\mathfrak{I}}$
Н	CH_3CH_2	Н	CH_3	1	CH ₃	CH_3
СН3	CH ₃	CH_3	CH ₃	I	CH ₃	CH_3
Н	CH_3CH_2	CH_3	CH ₃	1	CH ₃	CH_3
CH ₃	CH ₃	Cl	CH ₃	1	CH ₃	CH ₃
Н	CH ₃ CH ₂	Cl	CH ₃	1	CH ₃	CH ₃
CH ₃	CH ₃	Н	Cl	1	CH ₃	CH ₃
Н	CH ₃ CH ₂	Н	Cl	1	CH ₃	CH ₃
CH ₃	CH ₃	CH ₃	Cl	i	CH ₃	CH ₃
Н	CH_3CH_2	CH_3	Cl	l	CH ₃	CH ₃
CH ₃	CH ₃	Cl	Cl	1	CH ₃	CH ₂
H	CH ₃ CH ₂	C1	Cl	1	CH ₃	CH ₃
CH ₃	CH ₃	Н	Н	1	CH₃CH₂	CH ₃
Н	CH_3CH_2	Н	Н	l	CH₃CH₂	CH ₂
CH ₃	CH ₃	CH_3	Н	1	CH ₃ CH ₂	CH ₃
Н	CH_3CH_2	CH_3	Н	I	CH ₃ CH ₂	CH ₃
СН3	CH ₃	Cl	H	1	CH₃CH₂	CH ₃
Н	CH_3CH_2	Cl	Н	I	CH₃CH₂	CH ₃
CH ₃	CH ₃	Н	CH ₃	J	CH₃CH₂	CH ₃
Н	CH_3CH_2	Н	CH_3	1	CH₃CH₂	CH ₃
CH ₃	CH ₃	CH_3	CH_3	l	CH_3CH_2	CH ₃
Н	CH_3CH_2	CH_3	CH ₃	1	CH₃CH₂	CH_3
CH ₃	CH ₃	Cl	CH ₃	1	CH₃CH₂	CH_3
Н	CH ₃ CH ₂	Cl	CH ₃	}	CH ₃ CH ₂	CH_3
CH ₃	CH_3	H	Cl	1	CH₃CH₂	CH_3
Н	CH ₃ CH ₂	Н	Cl	1	CH_3CH_2	CH_3
CH ₃	CH ₃	CH_3	Cl	ì	CH_3CH_2	CH ₃
H	CH_3CH_2		Cl	1	CH_3CH_2	CH_3
CH ₃	CH ₃	Cl	Cl	ŧ	CH ₃ CH ₂	CH_3
Н	CH_3CH_2	Cl	Cl	l	CH ₃ CH ₂	CH_3
CH ₃	CH ₃	Н	Н	1	$CH_3CH_2CH_2$	CH_3
Н	CH_3CH_2	Н	H	1	$\mathrm{CH_3CH_2CH_2}$	CH_3
CH ₃	CH ₃	CH ₃	Н	1	$\mathrm{CH_3CH_2CH_2}$	CH_3
H	CH_3CH_2	CH_3	Н	1	$CH_3CH_2CH_2$	CH ₃
CH ₃	CH ₃	Cl	Н	1	$CH_3CH_2CH_2$	CH_3
Н	CH_3CH_2	CI	Н	i	$CH_3CH_2CH_2$	CH_3
CH ₃	CH ₃	Н	CH ₃	1	$\mathrm{CH_3CH_2CH_2}$	CH_3
Н	CH_3CH_2	Н	CH ₃	1	$CH_3CH_2CH_2$	CH ₃

CH_3	CH ₃	CH_3	CH_3	1	CH ₃ CH ₂ CH ₂	СН3
H	CH_3CH_2	CH_3	CH ₃	i	CH ₃ CH ₂ CH ₂	CH_3
CH_3	CH ₃	Cl	CH_3	1	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃ CH ₂	CI	CH_3	. 1	CH ₃ CH ₂ CH ₂	CH_3
СН3	CH_3	Н	CI	ı	CH ₃ CH ₂ CH ₂	CH_3
Н	CH_3CH_2	Н	Cl	i	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH_3	CH_3	Cl	l	CH ₃ CH ₂ CH ₂	CH_3
Н	CH_3CH_2	CH_3	Cl	1	CH ₃ CH ₂ CH ₂	CH_3
CH ₃	CH_3	Cl	Cl	1	CH ₃ CH ₂ CH ₂	СН3
Н	CH ₃ CH ₂	Cl	Cl	1	CH ₃ CH ₂ CH ₂	CH ₃
СН3	СН3	H	Н	1	Н	CI
Н	CH ₃ CH ₂	Н	Н	l	Н	Cl
CH ₃	CH ₃	CH ₃	Н	ĺ	Н	CÌ
Н	CH ₃ CH ₂	CH_3	Н	ı	Н	Cl
CH ₃	CH ₃	CI	H	1	H	Cl
Н	CH ₃ CH ₂	CI	H	i	Н	CI
CH ₃	CH ₃	H	CH_3	İ	Н	Cl
H	CH ₃ CH ₂	Н	CH ₃	1	Н	Cl
CH ₃	CH ₃	CH_3	CH ₃	1	Н	Cl
H	CH ₃ CH ₂	CH_3	CH_3	1	Н	Cl
СН3	CH ₃	Cl	CH _{3.}	l	Н	Cl
H	CH ₃ CH ₂	Cl	CH_3	ļ	Н	Cl
CH ₃	CH ₃	·	Cl	l	Н	CI
Н	CH ₃ CH ₂	Н	Cl	1	Н	Cl
CH ₃	CH ₃	CH ₃	Cl	1	Н	Cl
Н	CH_3CH_2	CH ₃	Cl	l	Н	Cl
CH ₃	CH ₃	CI	Cl	1	Н	Cl
Н	CH_3CH_2	Cl	Cl	1	Н	Cl
CH ₃	CH ₃	Н	H	1	CH ₃	Cl
Н	CH ₃ CH ₂	Н	Н	ı	CH ₃	C1
CH ₃	CH ₃	CH_3	Н	l	CH ₃	Cl
H	CH ₃ CH ₂	CH ₃	Н	I	CH ₃	Cl
CH ₃	CH ₃	Cl	H	1	CH ₃	Cl
Н	CH ₃ CH ₂	Cl	Н	1	CH ₃	·Cl
CH ₃	CH ₃	Н	CH_3	t	СН3	Cl
4	CH ₃ CH ₂	Н	CH ₃			Cl
СНЗ	CH ₃	CH ₃	CH ₃	1		Cl
ŀ	CH ₃ CH ₂	CH ₃	CH ₃	I	СН3	Cl

CH ₃	CH ₃	Cl	CH ₃	1	CH ₃	Cl
Н	CH ₃ CH ₂	Cl	CH ₃	1	CH ₃	CI
CH ₃	CH ₃	Н	CI	}	CH ₃	CI
Н	CH_3CH_2	Н	CI	i	CH ₃	Cl
CH ₃	CH_3	CH_3	CI	1	CH_3	CI
Н	CH ₃ CH ₂	CH ₃	CI	1	CH ₃	Cl
CH_3	CH ₃	CI	CI	1	CH ₃	Cl
Н	CH_3CH_2	Cl	Cl	1	CH_3	Cl
CH_3	CH ₃	Н	Ħ	1	CH₃CH₂	Cl
Н	CH_3CH_2	H	Н	1	CH_3CH_2	Cl
CH_3	CH_3	CH_3	Н	1	CH_3CH_2	Cl
Н	CH ₃ CH ₂	CH_3	H	1	CH ₃ CH ₂	Cl
CH ₃	CH ₃	Cl	H	1	CH ₃ CH ₂	Cl
Н	CH_3CH_2	Cl	Н	1	CH ₃ CH ₂	CI
CH_3	CH ₃	Н	СН3	1	CH ₃ CH ₂	C1
Н	$\mathrm{CH_3CH_2}$	Н	CH_3	1	CH ₃ CH ₂	Cl
CH_3	СН3	CH_3	CH_3	1	CH ₃ CH ₂	Cl
Н	$\mathrm{CH_{3}CH_{2}}$	CH_3	CH_3	l	CH ₃ CH ₂	CI
CH_3	CH ₃	Cl	CH ₃	1	CH ₃ CH ₂	CI
1-1	$\mathrm{CH_{3}CH_{2}}$	Cl	CH ₃	1	CH ₃ CH ₂	Cl
CH_3	CH ₃	H	Cl	1	CH ₃ CH ₂	Cl
Н	CH ₃ CH ₂	Н	Cl	l	CH_3CH_2	Cl
CH_3	CH ₃	CH_3	Cl	l	CH ₃ CH ₂	Cl
Н	CH ₃ CH ₂	CH_3	Cl	l	CH_3CH_2	CI
CH_3	CH_3	Cl	CI	}	CH_3CH_2	Cl
Н	CH ₃ CH ₂	Cl	Cl	1	CH ₃ CH ₂	Cl
CH ₃	CH ₃	Н	Н	l	$\mathrm{CH_3CH_2CH_2}$	Cl
Н	CH_3CH_2	Н	Н	1	$CH_3CH_2CH_2$	Cl
CH ₃	CH ₃	CH_3	Н	1	$\mathrm{CH_3CH_2CH_2}$	Cl
Н	CH ₃ CH ₂	CH ₃	Н	1	CH ₃ CH ₂ CH ₂	Cl
CH_3	CH ₃	Cl	H	1	$CH_3CH_2CH_2$	CI
Н	CH ₃ CH ₂	Cl	H.	1	CH ₃ CH ₂ CH ₂	Cl
CH_3	СН3	Н	CH_3	1	CH ₃ CH ₂ CH ₂	Cl
Н	CH_3CH_2	Н	CH_3	1	CH ₃ CH ₂ CH ₂	CI
CH_3	CH ₃	CH_3	CH_3	i	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃ CH ₂	CH_3	CH_3	1	CH ₃ CH ₂ CH ₂	Cl
CH_3	CH_3	Cl	CH_3	ì	$\mathrm{CH_3CH_2CH_2}$	CI
Н	CH ₃ CH ₂	Cl	CH_3	1	CH ₃ CH ₂ CH ₂	CI

CH ₃	CH ₃	Н	CI	1	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃ CH ₂ ·	Н	Cl	l	CH ₃ CH ₂ CH ₂	Cl
CH ₃	CH ₃	CH_3	CI	1	CH ₃ CH ₂ CH ₂	Cl
H	CH ₃ CH ₂	CH ₃	Cl	1	CH ₃ CH ₂ CH ₂	Cl
CH ₃	СН3	Cl	C1	ı	CH ₃ CH ₂ CH ₂	CI
Н	CH ₃ CH ₂	Cl	CI	1	CH ₃ CH ₂ CH ₂	CI
Н	CH ₃	Н	Н	1	Н	Н
Н	CH ₃	CH ₃	Н	1	Н	Н
H	CH ₃	Cl	Н	1	Н	Н
Н	CH ₃	Н	CH ₃	ŀ	Н	Н
Н	СН3	CH ₃	CH ₃	1	Н	Н
Н	CH ₃	CI	СН3	1	Н	Н
Н	CH ₃	Н	Cl	I	Н	Н
Н	CH ₃	CH ₃	Cl	Ī	Н	Н
Н	CH ₃	Cl	C1	l	Н	Н
Н	CH ₃	Н	Н	1	CH ₃	Н
H	CH ₃	CH ₃	Н	[CH ₃	Н
Н	CH_3	CI	Н	l	CH ₃	H
H	CH ₃	Н	CH ₃	1	CH ₃	H
Н	CH ₃	CH_3	СН3	1	CH ₃	Н
Н	CH ₃	Cl	СН3	ł	CH ₃	Н
H	CH ₃	Н	Cl	1	CH ₃	Н
Н	CH ₃	CH ₃	CI	ı	CH_3	Н
H	CH_3	CI	Cl	I	CH ₃	Н
Н	CH_3	H	Н	;	CH ₃ CH ₂	Н
Н	CH_3	CH_3	Н	I	CH ₃ CH ₂	Н
Н	CH ₃	CI	Н	i	CH₃CH₂	Н
Н	CH ₃	Н	CH ₃	1	CH ₃ CH ₂	Н
Н	CH ₃	CH_3	CH ₃	j	CH ₃ CH ₂	H
Н	CH ₃	Cl	CH ₃	l	CH ₃ CH ₂	Н
H	CH ₃	Н	Cl	1	CH ₃ CH ₂	Н
H	CH_3	CH_3	Cl	1	CH ₃ CH ₂	Н
Н	CH ₃	Cl	Cl	1	CH₃CH₂	Н
Н	CH ₃	H	Н	1	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃	CH_3	Н	1	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃	Cl	H	1	СН ₃ СН ₂ СН ₂	Н
Н	CH ₃	Н	CH ₃	1	CH ₃ CH ₂ CH ₂	Н
H	CH ₃	CH ₃	CH_3	1	CH ₃ CH ₂ CH ₂	H

CH ₃ CH ₂ CH ₂ H CH ₃ CH ₂ CH ₃ H
CH ₃ CH ₂ CH ₂ H CH ₃ CH ₂ CH ₂ H CH ₃ CH ₃ CH ₃ CH ₃
CH ₃ CH ₂ CH ₂ H CH ₃
CH ₃
I CH ₃
I CH ₃
CH ₃
CH ₃
CH_3
CH ₃
CH_3
I CH ₃
TH ₃ CH ₃
CH_3 CH_3
TH ₃ CH ₃
TH ₃ CH ₃
CH ₃ CH ₃
H ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₃
CH ₃ CH ₂ CH ₂ CH ₃
CH ₃ CH ₂ CH ₂ CH ₃
CH ₃ CH ₂ CH ₂ CH ₃
CH ₃ CH ₂ CH ₂ CH ₃
المهومة المعاملة الم

Н	CH ₃	CH ₃	Cl	1	CH ₃ CH ₂ CH ₂	СН3
Н	CH ₃	CI	Cl	1	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃	Н	Н	1	Н	Cl
Н	CH ₃	CH_3	Н	1	Н	CI
Н	CH ₃	CI	Н	1	H	CI
Н	CH ₃	Н	CH ₃	1	Н	Cl
Н	CH ₃	CH ₃	CH_3	ł	H	Cl
Н	CH ₃	Cl	СН3	1	H	Cl
Н	CH ₃	H.	CI	ţ	H	CI
Н	CH ₃	CH_3	Cl	1	Н	Cl
Н	CH_3	CI	Cl	1	Н	Cl
Н	CH ₃	Н	Н	1	CH ₃	Cl
Н	CH ₃	CH ₃	Н	ŀ	CH ₃	Cl
Н	CH_3	C1	H	i	CH ₃	Cl
Н	CH ₃	Н	CH_3	ł	CH_3	Cl
Н	CH ₃	CH ₃	CH_3	1	CH ₃	CI
Н	CH ₃	Cl	CH_3	1	CH ₃	Cl
Н	·CH ₃	Н	Cī	1	CH ₃	CI
Н	CH ₃	CH ₃	Cl	1	CH ₃	CI
Н	CH ₃	Cl	CI	1	CH ₃	CI
Н	CH_3	Н	Н	1	CH ₃ CH ₂	Cl
Н	CH ₃	CH_3	Н	1	CH₃CH₂	C1
Н	CH_3	CI	Н	1	CH ₃ CH ₂	CI
Н	CH ₃	Н	CH_3	1	CH ₃ CH ₂	Cl
Н	CH_3	CH_3	CH_3	1	CH ₃ CH ₂	CI
Н	CH ₃	CI	CH_3	1	CH ₃ CH ₂	CI
Н	CH ₃	Н	Cl	!	CH ₃ CH ₂	Cl
Н	CH_3	CH_3	CI	I	CH ₃ CH ₂	Cl
Н	CH ₃	CI	Cl	1	CH_3CH_2	CI
Н	CH ₃	Н	Н	1	CH ₃ CH ₂ CH ₂	CI
H.	CH ₃	CH_3	Н	1	$CH_3CH_2CH_2$	Cl
Н	CH ₃	C1	Н	ĺ	$CH_3CH_2CH_2$	CI
H	CH_3	Н	CH_3	1	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃	CH ₃	CH ₃	1	CH ₃ CH ₂ CH ₂	Cl
H	CH ₃	Cl	CH_3	I	$\mathrm{CH_3CH_2CH_2}$	CI
Н	CH_3	Н	CI	1	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃	CH_3	CI	1	CH ₃ CH ₂ CH ₂	Cl
Н	CH_3	Cl	Cl	1	CH ₃ CH ₂ CH ₂	CI

Н	CH ₃ CH ₂	Н	Н	2	Н	H
H	CH ₃ CH ₂	CH ₃	Н	2	Н	Н
Н	CH ₃ CH ₂	Cl	Н	2	Н	Н
Н	CH ₃ CH ₂	H	CH ₃	2	Н	Н
Н	CH ₃ CH ₂	CH ₃	CH_3	2	H	Н
Н	CH ₃ CH ₂	Cl	CH ₃	2	H	H
Н	CH ₃ CH ₂	Н	CI	2	Н	Н
Н	CH ₃ CH ₂	CH_3	CI	2	Н	Н
Н	CH ₃ CH ₂	Cl	CI	,2	Н	Н
Н	CH ₃ CH ₂	Н	Н	2	CH ₃	Н
Н	CH ₃ CH ₂	CH ₃	Н	2	CH ₃	H
Н	CH ₃ CH ₂	Cl	Н	2	CH ₃	H
Н	CH ₃ CH ₂	Н	CH_3	2	CH ₃	H
Н	CH ₃ CH ₂	CH_3	CH_3	2	CH ₃	Н
Н	CH ₃ CH ₂	Ci	CH ₃	2	CH ₃	Н
H	CH ₃ CH ₂	Н	CI	2	CH ₃	H
Н	CH ₃ CH ₂	CH_3	Cl	2	CH ₃	Н
H	CH ₃ CH ₂	Cl	CI	2	CH ₃	Н
H	CH ₃ CH ₂	Н	H	2	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	CH ₃	H	2	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	Cl	Н	2	CH ₃ CH ₂	Н
Н	CH_3CH_2	H	CH ₃	2	CH ₃ CH ₂	H
Н	CH ₃ CH ₂	CH_3	CH ₃	2	CH ₃ CH ₂	Н
Н	CH_3CH_2	Cl	CH ₃ ·	2	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	H	CI	2	CH ₃ CH ₂	Н
Н	CH ₃ CH ₂	CH ₃	CI	2	CH ₃ CH ₂	H
Н	CH_3CH_2	Cl	Cl	2	CH ₃ CH ₂	H
Н	CH ₃ CH ₂	Н	Н	2	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	CH_3	H	2	$CH_3CH_2CH_2$	Н
Н	CH_3CH_2	Cl	Н	2	$CH_3CH_2CH_2$	Н
Н	CH ₃ CH ₂	Н	CH ₃	2	СН ₃ СН ₂ СН ₂	Н
Н	CH ₃ CH ₂	CH ₃	CH ₃	2	СН ₃ СН ₂ СН ₂	Н
Н	CH_3CH_2	Cl	CH_3	2	СН ₃ СН ₂ СН ₂	H
Н	CH_3CH_2	Н	Cl	2	СН ₃ СН ₂ СН ₂	H
H	CH_3CH_2	CH ₃	Cl	2	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	Cl	Cl	2	CH ₃ CH ₂ CH ₂	Н
Н	CH ₃ CH ₂	Н	Н	2	H	CH_3
Н	CH ₃ CH ₂	CH_3	Н	2	Н .	CH_3

H	CH_3CH_2	Cl	Н	2	H	CH ₃
Н	CH_3CH_2	Н	CH ₃	2	Н	CH ₃
H	CH ₃ CH ₂	CH ₃	CH ₃	2	H	CH ₃
H	CH ₃ CH ₂	Cl	CH ₃	2	Н	CH ₃
Н	CH ₃ CH ₂	Н	Cl	2	Н	CH ₃
Н	CH ₃ CH ₂	CH_3	Cl	2	Н	CH ₃
Н	CH_3CH_2	Cl	Cl	2	H	CH ₃
Н	CH_3CH_2	Н	Н	2	CH ₃	CH ₃
H	CH_3CH_2	CH_3	Н	2	CH ₃	CH_3
H	CH ₃ CH ₂	Cl	Н		CH ₃	CH_3
Н	CH ₃ CH ₂	Н	CH_3	2	CH ₃	CH_3
Н	CH ₃ CH ₂	CH_3	CH_3	2	CH ₃	CH_3
Н	CH_3CH_2	Cl	CH_3	2	CH ₃	CH_3
Н	CH ₃ CH ₂	Н	Cl	2	CH ₃	CH_3
Н	CH_3CH_2	CH_3	Cl	2	CH ₃	CH_3
Н	CH_3CH_2	Cl	Cl	2	CH ₃	CH ₃
Н	CH_3CH_2	H	Н	2	CH_3CH_2	CH ₃
Н	CH ₃ CH ₂	CH_3	Н	2	CH ₃ CH ₂	CH ₃
H	CH ₃ CH ₂	Cl	Н	2	CH ₃ CH ₂	CH ₃
H	CH ₃ CH ₂	Н	CH ₃	2	CH ₃ CH ₂	CH_3
Н	CH ₃ CH ₂	CH ₃	CH ₃	2	CH ₃ CH ₂	CH_3
Н	CH ₃ CH ₂	Cl	CH_3	2	CH ₃ CH ₂	CH_3
Н	CH ₃ CH ₂	Н	Cl	2	CH ₃ CH ₂	CH_3
Н	CH ₃ CH ₂	CH ₃	Cl	2	CH ₃ CH ₂	CH_3
Н	CH ₃ CH ₂	Cl	Cl	2	CH ₃ CH ₂	CH_3
Н	CH ₃ CH ₂	Н	Н	2	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃ CH ₂	CH ₃	Н	2	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃ CH ₂	Cl	Н	2	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃ CH ₂	Н	CH_3	2	CH ₃ CH ₂ CH ₂	CH_3
H	CH ₃ CH ₂	CH ₃	CH ₃	2	CH ₃ CH ₂ CH ₂	CH_3
Н	CH_3CH_2	Cl	CH_3	2	CH ₃ CH ₂ CH ₂	CH ₃
Н	CH ₃ CH ₂	Н	Cl	2	CH ₃ CH ₂ CH ₂	CH_3
Н	CH ₃ CH ₂	CH ₃	CI	2	CH ₃ CH ₂ CH ₂	CH ₃
Н	CH ₃ CH ₂	Cl	Cl	2	CH ₃ CH ₂ CH ₂	CH ₃
Н	CH ₃ CH ₂	Н	Н	2	Н	Cl
H	CH ₃ CH ₂	CH ₃	Н	2	Н	Cl
Н	CH ₃ CH ₂	Cl .	Н	2	Н	Cl
H	CH ₃ CH ₂	Н	CH ₃	2	Н	Cl
			-			

H	CH ₃ CH ₂	CH_3	CH_3	2	Н	CI
Н	CH ₃ CH ₂	CI	CH ₃	2	Н	CI
Н	CH ₃ CH ₂	Н	CI	2	Н	Cl
H	CH ₃ CH ₂	CH_3	Cl	2	Н	CI
Н	CH_3CH_2	CI	CI	2	Н	Cl
H	CH ₃ CH ₂	Н	Н	2	CH ₃	CI
Н	CH ₃ CH ₂	CH_3	Н	2	CH ₃	CI
Н	CH ₃ CH ₂	Cl	Н	2	CH ₃	CI
Н	CH ₃ CH ₂	Н	СН3	2	CH ₃	CI
Н	CH ₃ CH ₂	CH_3	СН3	2	CH ₃	CI
Н	CH ₃ CH ₂	CI	CH_3	2	CH ₃	CI
Н	CH_3CH_2	Н	Cl	2	CH ₃	CI
Н	CH_3CH_2	CH_3	Cl	2	CH ₃	Cl
H,	CH_3CH_2	Cl	Cl	2	СН3	Cl
Н	CH ₃ CH ₂	Н	Н	2	CH₃CH₂	Cl
Н	CH_3CH_2	CH_3	Н	2	CH ₃ CH ₂	Cl
Н	CH_3CH_2	Cl	Н	2	CH_3CH_2	Cl
H	CH ₃ CH ₂	H	CH_3	2	CH_3CH_2	Cl
Н	CH ₃ CH ₂	CH_3	CH ₃	2	CH_3CH_2	Cl
Н	CH_3CH_2	CI	CH_3	2	CH_3CH_2	Cl
Н	CH_3CH_2	Н	Cl	2	CH ₃ CH ₂	Cl
Н	CH_3CH_2	CH ₃	Cl	2	CH ₃ CH ₂	Cl
Н	CH_3CH_2	Cl	Cl	2	CH ₃ CH ₂	Cl
Н	CH_3CH_2	Н	Н	2	CH ₃ CH ₂ CH ₂	Cl
H	CH_3CH_2	CH_3	H	2	$CH_3CH_2CH_2$	Cì
H	CH_3CH_2	Cl	Н	2	$\mathrm{CH_{3}CH_{2}CH_{2}}$	CE
Н	CH_3CH_2	Н	CH_3	2	$\mathrm{CH_3CH_2CH_2}$	CL
Н	CH ₃ CH ₂	CH_3	CH_3	2	CH ₃ CH ₂ CH ₂	CI
H	CH ₃ CH ₂	CI	CH_3	2	$\mathrm{CH_3CH_2CH_2}$	Cl
Н	CH ₃ CH ₂	Н	CI	2	CH ₃ CH ₂ CH ₂	Cl
Н	СН ₃ СН ₂	CH_3	CI	2	CH ₃ CH ₂ CH ₂	Cl
Н	CH ₃ CH ₂	Cl	Cl	2	CH ₃ CH ₂ CH ₂	Cl

Table 13

<u>R</u> a	<u>R</u> b	<u>R l</u>	<u>R²</u>	<u>R18</u>
CH ₃	CH ₃	Н	Н	Н
Н	CH_3CH_2	Н	Н	H
CH_3	СНЗ	CH ₃	H	Н
H	CH_3CH_2	CH ₃	Н	H
CH ₃	CH ₃	Cl	H	Н
Н	CH ₃ CH ₂	Cl	Н	Н
CH ₃	CH ₃	Н	CH ₃	Н
Н	CH_3CH_2	Н	CH ₃	Н
CH ₃	CH ₃	CH ₃	CH ₃	Н
Н	CH ₃ CH ₂	CH ₃	CH ₃	Н
CH ₃	CH ₃	CI	CH ₃	H
Н	CH_3CH_2	Cl	CH ₃	Н
CH ₃	CH ₃	H	Cl	Н
Н	$\mathrm{CH_{3}CH_{2}}$	Н	CI	Н
CH ₃	CH ₃	CH ₃	Cl	Н
Н	CH ₃ CH ₂	CH ₃	CI	Н
CH ₃	CH ₃	Cl	Cl	Н
H	CH ₃ CH ₂	Cl	CI	Н
CH ₃	CH ₃	Н	H	CH_3
Н	CH_3CH_2	Н	Н	CH_3
CH ₃	CH ₃	CH ₃	H	CH_3
Н	CH_3CH_2	CH ₃	Н	CH_3
CH ₃	CH ₃	Cl	Н	CH_3
Н	CH ₃ CH ₂	Cl	Н	CH ₃
CH ₃	CH ₃	Н	CH ₃	CH ₃
Н	CH_3CH_2	Н	CH ₃	CH_3
CH ₃	CH_3	CH_3	CH ₃	CH ₃
Н .	CH_3CH_2	CH ₃	CH ₃	CH ₃

CH ₃	CH ₃	Cl	CH ₃	CH_3
Н	CH ₃ CH ₂	Cl	CH ₃	CH_3
CH ₃	CH ₃	Н	Cl	CH_3
Н	CH ₃ CH ₂	Н	Cl	CH_3
CH ₃	CH ₃	CH ₃	Cl	CH_3
Н	CH ₃ CH ₂	CH ₃	Cl	CH_3
CH ₃	CH ₃	Cl	Cl	CH_3
Н	CH_3CH_2	Cl	Cl	CH_3
CH ₃	CH ₃	Н	Н	Cl
Н	CH ₃ CH ₂	Н	Н	Cl
CH ₃	CH ₃	CH ₃	Н	Cl
Н	CH_3CH_2	CH ₃	Н	C1
CH ₃	CH ₃	Cl	Н	Cl
Н	CH ₃ CH ₂	CI	Н	Cl
CH ₃	CH ₃	Н	CH ₃	C1
Н	CH ₃ CH ₂	Н	CH ₃	Cl
CH ₃	CH ₃	CH ₃	CH ₃	Cl
Н	CH ₃ CH ₂	CH ₃	CH ₃	Cl
CH ₃	СН3	Cl	CH ₃	Cl
Н	CH_3CH_2	Cl	CH ₃	Cl
CH ₃	CH ₃	Н	Cl	Cl
Н	CH ₃ CH ₂	Н	Cl	Cl
CH ₃	CH ₃	CH ₃	Cl	Cl
H	CH ₃ CH ₂	CH ₃	Cl	Cl
CH ₃	CH ₃	Cl	Cl	Cl
Н	CH ₃ CH ₂	Cl	Cl	Cl
Н	CH ₃	Н	Н	Н
H	CH ₃	СН3	Н	Н
Н	CH ₃	Cl	Н	Н
Н	CH ₃	Н	CH ₃	Н
Н	CH ₃	CH ₃	CH ₃	Н
Н	CH ₃	Cl	CH ₃	H
Н	CH ₃	Н	Cl	H
H	CH ₃	CH ₃	Cl	Н
Н	СН3	Cl	Cl	Н
Н	CH ₃	Н	Н	CH ₃
Н	CH ₃	CH ₃	Н	CH ₃
Н	CH ₃	Cl	Н	CH ₃

Н	CH_3	Н	CH ₃	CH ₃
Н	CH ₃	CH ₃	CH ₃	CH ₃
Ħ	CH ₃	CI	CH ₃	СН3
H	CH ₃	H	Cl	CH ₃
H	CH ₃	CH ₃	CI	CH ₃
Н	CH ₃	Cl	Cl	CH ₃
H	CH ₃	H	Н	CI
Н	CH ₃	CH ₃	Н	CI
Н	CH ₃	Cl	Н	Cl
Н	CH_3	Н	CH ₃	CI
H	CH ₃	CH_3	CH_3	Cl
H	CH ₃	C1	CH ₃	CI
Н	CH ₃	Н	Cl	CI
Н	CH ₃	CH_3	Cl	CL.
H	CH ₃	Cl	Cl	CI

<u>R</u> ^a	<u>R</u> b	<u>R</u> 1	<u>R²</u>	<u>R18</u>
CH ₃	CH ₃	н .	Н	Н
Н	CH ₃ CH ₂	Н	Н	Н
CH ₃	CH ₃	CH ₃	Н	Н
Н	CH ₃ CH ₂	CH ₃	Н	Н
CH ₃	CH ₃	CI	Н	Н
Н	CH ₃ CH ₂	Cl	Н	Н
CH ₃	CH ₃	Н	CH ₃	Н
Н	CH ₃ CH ₂	Н	CH ₃	Н
CH ₃	CH ₃	CH ₃	CH ₃	Н
Н	CH ₃ CH ₂	CH ₃	CH ₃	Н
CH ₃	CH ₃	Cl	CH ₃	H
Н	CH ₃ CH ₂	Cl	CH ₃	Н
CH ₃	CH ₃	H	Cl	Н

	H	CH ₃ CH ₂	Н	Cl	Н
	CH ₃	CH ₃	CH ₃	Cl	Н
	H [*]	CH ₃ CH ₂	CH ₃	Cl	Н
	CH ₃	СН3 .	Cl	Cl	Н
	$\mathbf{H}^{(1)}$	CH ₃ CH ₂	Cl	Cl	Н
	CH ₃	CH ₃	$\mathbf{H}^{-\frac{1}{2}}$. H	6-CH ₃
	Н	CH ₃ CH ₂	H	H	6-CH ₃
	CH ₃	CH ₃	CH ₃	H	6-CH ₃
	\mathbf{H}	CH ₃ CH ₂	CH ₃	Н	6-CH ₃
	CH ₃	CH ₃	Cl	H	6-CH ₃
	$\mathbf{H}_{\mathrm{obs}}$	CH ₃ CH ₂	Ci	Н	6-CH ₃
	CH ₃	CH ₃	H	CH ₃	6-CH ₃
	Н	CH ₃ CH ₂	H	CH ₃	6-CH ₃
	CH ₃	CH ₃	CH ₃	CH ₃	6-CH ₃
	$\mathbf{H}^{(1)} = \mathbb{R}^{n} \otimes \mathbb{R}^{n}$	CH ₃ CH ₂	CH ₃	CH ₃	6-CH ₃
	CH ₃	CH ₃	CI.	CH ₃	6-CH ₃
	H	CH ₃ CH ₂	Cl	CH ₃	6-CH ₃
	CH ₃	CH ₃	\mathbf{H}_{-1}	Cl	6-CH ₃
	H	CH ₃ CH ₂	H	Cl	6-CH ₃
	CH ₃	CH ₃	CH ₃	Cl	6-CH ₃
	He to the second	CH ₃ CH ₂	CH ₃	Cl	6-CH ₃
	CH ₃	CH ₃	Cl	Cl	6-CH ₃
	Н	CH ₃ CH ₂	Cl	CL	6-CH ₃
	CH ₃	CH ₃	H	Н	5-CH ₃
	н	CH ₃ CH ₂	H	Н	5 CH ₃
	CH ₃	CH ₃	CH ₃	H	5-CH ₃
	H	CH ₃ CH ₂	CH ₃	Н	5-CH ₃
	CH ₃	CH ₃	CI (A.C.	H	5-CH ₃
	H	CH ₃ CH ₂	CI	H	5-CH ₃
	CH ₃	CH ₃	H	CH ₃	5-CH ₃
	H	°CH ₃ CH ₂	H	CH ₃	5-CH ₃
ì	CH ₃	CH ₃	CH ₃	CH ₃	5-CH ₃
	H	CH ₃ CH ₂	CH ₃	CH ₃	5-CH ₃
	CH ₃	CH ₃	Cl	CH ₃	5-CH ₃
	H	CH ₃ CH ₂	Cl	СН3	5-CH ₃
	CH ₃	CH ₃	н	Cl	5-CH ₃
	$\mathbf{H}_{\mathcal{A}}$	CH ₃ CH ₂	\mathbf{H} .	Cl.	5-CH ₃
	CHG	СН3	CH ₃ ×2····································	Classic	5-CH ₃
	1.0				

Н	CH ₃ CH ₂	CH ₃	Cl	5-CH ₃
CH ₃	CH ₃ CH ₂	Cl	Cl	5-CH ₃
Н	CH ₃ CH ₂	Cl	Cl	5-CH ₃
CH ₃	CH ₃	H	Н	4-CH ₃
Н	CH ₃ CH ₂	Н	H	4-CH ₃
CH ₃	CH ₃	CH ₃	Н	4-CH ₃
Н	CH ₃ CH ₂	CH ₃	Н	•
CH ₃	CH ₃	CI ₃	Н	4-CH ₃
Н	-	Cl	Н	4-CH ₃
	CH ₃ CH ₂			4-CH ₃
CH ₃	CH ₃	Н	CH ₃	4-CH ₃
Н	CH ₃ CH ₂	H	CH ₃	4-CH ₃
CH ₃	CH ₃	CH ₃	CH ₃	4-CH ₃
Н	CH ₃ CH ₂	CH ₃	CH ₃	4-CH ₃
CH ₃	CH ₃	Cl	CH ₃	4-CH ₃
Н	CH ₃ CH ₂	Cl	CH ₃	4-CH ₃
CH ₃	CH ₃	Н	Cl	4-CH ₃
Н	CH ₃ CH ₂	Н	Cl	4-CH ₃
CH ₃	CH ₃	CH ₃	Cl	4-CH ₃
H	CH ₃ CH ₂	СН3	Cl	4-CH ₃
CH ₃	CH ₃	CI	Cl	4-CH ₃
Н	CH ₃ CH ₂	C1	Cl	4-CH ₃
CH ₃	CH ₃	Н	H	6-C1
Н	CH ₃ CH ₂	н	Н	6-Cl
CH ₃	CH ₃	CH ₃	. Н	6-C1
H	CH_3CH_2	CH ₃	Н	6-Cl
CH ₃	CH ₃	Cl	Н	6-Cl
Н	CH ₃ CH ₂	Cl	Н	6-Cl
CH ₃	CH ₃	Н	CH_3	6-CI
Н	CH_3CH_2	Н	CH_3	6-Cl
CH ₃	CH ₃	CH ₃	CH ₃	6-CI
Н	CH_3CH_2	CH ₃	CH ₃	6-CI
СН3	CH ₃	CI	CH ₃	6-C1
Н	CH ₃ CH ₂	Cl	CH ₃	6-CI
CH ₃	CH ₃	Н	CI	6-C1
Н	CH ₃ CH ₂	Н	Cl	6-Cl
CH ₃	CH ₃	CH ₃	Cl	6-CI
Н	CH ₃ CH ₂	CH ₃	Cl	6-C1
CH ₃	CH ₃	Cl	Cl	6-C1

Н	CH ₃ CH ₂	Cl	Cl	6-Cl
CH ₃	CH ₃	Н	Н	4-Cl
H	CH ₃ CH ₂	H	Н	4-Cl.
CH ₃	CH ₃	CH ₃	Н	4-C1
H	CH ₃ CH ₂	CH ₃	H	4-C!
CH ₃	CH ₃	CI The Company of the	H say say	4-Cl
Н	CH ₃ CH ₂	Cl	H	4-Cl
CH ₃	CH ₃	Н	CH ₃	4-C1
\mathbf{H}^{-1}	CH ₃ CH ₂	$\mathbf{H}_{i} = \mathbb{I}_{i} \cdot \mathbb{I}_{i}$	CH ₃	4-Cl
CH ₃	CH ₃	°СН3	CH ₃	4-Cl
Н	CH ₃ CH ₂	CH ₃	CH ₃	4-C1
©H ₃	CH ₃	Cl	CH ₃	4-Cl
H ·	CH ₃ CH ₂	Cl	CH ₃	4-Cl
CH ₃	CH ₃	H	Cl	4-Cl
H	CH ₃ CH ₂	H	Cl	4-Cl
CH ₃	CH ₃	CH ₃	Cl	4-C1
Н	CH ₃ CH ₂	CH ₃	Cl	4-C1
CH ₃	CH ₃	Cl	C1	4-Cl
H	CH ₃ CH ₂	Cl	Cl	4-CI
H	∠CH ₃	H	.H	Н.
H	CH ₃	CH ₃	Н	Н
H	CH ₃	Cl (in c)	Н	H
Ĥ	CH ₃	Н	CH ₃	H
Н	CH ₃	CH ₃	CH ₃	H
H	CH ₃	. Cl	CH ₃	H
H	CH ₃	H	CI	H
\mathbf{H}	CH ₃	CH ₃	Cl	H
\mathbf{H}	CH ₃	Cl	Cl	H
H	CH ₃	Н	$\mathbf{H}_{\mathbf{A}}}}}}}}}}$	6-CH ₃
H.	CH ₃	CH ₃	H	6-CH ₃
^A √ H	CH ₃	Charles States	H	6-CH3
H	CH ₃	H	CH ₃	6-CH ₃
H	CH ₃	CH ₃	CH ₃	6-CH ₃
Н	CH ₃	Cl	CH ₃	6-CH ₃
Н	CH ₃ .	Н	Cl	6-CH ₃
Н	CH ₃	CH ₃	Cl	6-CH ₃
H	CH ₃	Cl	Cl	6-CH ₃
CHO WAR I I				5.CH ₃

Н	CH ₃	CH ₃	Н	5-CH ₃
Н	CH ₃	Cl	H	5-CH ₃
Н	CH ₃	Н	CH ₃	5-CH ₃
Н	CH ₃	CH ₃	CH ₃	5-CH ₃
Н	CH ₃	Cl	CH ₃	5-CH ₃
H	CH ₃	Н	Cl	5-CH ₃
H	CH ₃	CH ₃	. C1	5-CH ₃
H	CH ₃	CI	Cl	5-CH ₃
Н	CH ₃	Н	Н	4-CH ₃
Н	CH ₃	CH ₃	Н	CH ₃
Н	CH ₃	Cl	Н	4-CH ₃
H	CH ₃	Н	CH ₃	4-CH ₃
Н	CH ₃	CH ₃	CH ₃	4-CH ₃
Н	CH_3	Cl	CH ₃	4-CH ₃
Н	CH ₃	Н	Cl	4-CH ₃
Н	CH ₃	CH ₃	Cl	4-CH ₃
Н	CH ₃	CI	C1	4-CH ₃
Н	CH ₃	Н	Н	6-CI
H	CH_3	CH ₃	Н	6-CI
H	CH ₃	CI	H	6-Cl
Н	CH ₃	H	CH ₃	6-C1
Н	CH ₃	CH ₃	CH ₃	6-C1
Н	CH ₃	Cl	CH ₃	6-CI
Н	CH_3	H	Cl	6-CI
H	CH_3	CH ₃	Cl	6-C1
Н	CH ₃	Cl	CI	6-CI
H	CH ₃	Н	Н	4-CI
Н	CH ₃	CH ₃	Н	4-C1
Н	CH_3	Cl	Н	4-Cl
Н	CH ₃	Н	CH ₃	4-C1
Н	CH ₃	CH ₃	CH ₃	4-Cl
Н	CH ₃	Cl	CH ₃	4-C1
Ή	CH ₃	Н	Cl	4-C1
Н	CH ₃	CH ₃	Cl	4-C1
Н	CH ₃	Cl	Cl	4-Cl

Table 15

O R¹

N

Kp

Ra	<u>R</u> b	<u>R¹</u> Н	<u>R</u> 2	<u>R18</u>
CH ₃	CH ₃	Н	H	Н
Н	CH ₃ CH ₂	Н	Н	Н
CH ₃	CH ₃	СН3	H ,	Н
H	CH ₃ CH ₂	CH ₃	$\langle \hat{\mathbf{H}} \rangle_{\mathrm{loc}} = \hat{\mathbf{H}} \rangle_{\mathrm{loc}}$	H
CH ₃	CH ₃	Cl	H .	H .
Н	CH ₃ CH ₂	Cl	H,	La de H
CH ₃	CH ₃	Н	CH ₃	H ,
Н	CH₃CH₂	H	CH ₃	H
CH ₃	CH ₃	CH ₃	CH ₃	$\mathbb{R}^{n+1} = \mathbb{R}^{n+1}$
Н	CH ₃ CH ₂	CH ₃	CH ₃	H
CH ₃	CH ₃	CI	CH ₃	Н
Н	CH ₃ CH ₂	Cla a	CH ₃	Н
CH ₃	CH ₃	H (***)	CI	H
, H	CH ₃ CH ₂	Н	e e	Н
CH ₃	CH ₃	СИЗ	Cl	$H : \mathbb{R}^{n}$
H	CH ₃ CH ₂	CH ₃	Cl	$\mathbf{H}^{(1)}$
CH ₃	СН3	Cl	Cl _i	Н
Н	CH ₃ CH ₂	CI	Cl	Н
CH ₃	CH ₃	Н	\mathbf{H}	2-CH ₃
H	СН ₃ СН ₂	Н	H	2-CH ₃
CH ₃	CH ₃	CH ₃	H	2-CH ₃
Н	CH ₃ CH ₂	CH ₃	Н	2-CH ₃
CH ₃	CH ₃	Cl	Н	2-CH ₃
H	CH ₃ CH ₂	CI	H.	2-CH ₃
CH ₃	CH ₃	Н	CH ₃	2-CH ₃
Н	CH ₃ CH ₂	\mathbf{H}^{r}	CH ₃	2-CH ₃
CH ₃	CH ₃	CH ₃	CH ₃	2-CH ₃
H	CH ₃ CH ₂	CH ₃ CH ₃	CH ₃	2 ČH ₃
			and the profit of the control of the	

CH ₃	CH ₃	CI	CII	2 (21)
Н	-	Cl	CH ₃	2-CH ₃
п СНз	CH ₃ CH ₂	Cl	CH ₃	2-CH ₃
Сп ₃ Н	CH ₃	Н	CI	2-CH ₃
	CH ₃ CH ₂	Н	CI	2-CH ₃
CH ₃	CH ₃	CH ₃	Cl	2-CH ₃
H	CH ₃ CH ₂	CH ₃	CI	2-CH ₃
СНЗ	CH ₃	Cl	Cl	2-CH ₃
Н	CH ₃ CH ₂	Cl	Cl	2-CH ₃
СН ₃	CH ₃	Н	Н	6-CH ₃
Н	CH ₃ CH ₂	Н	Н	6-CH ₃
CH ₃	CH ₃	CH ₃	Н	6-CH ₃
Н	CH ₃ CH ₂	CH ₃	Н	6-CH ₃
CH ₃	CH ₃	Cl	Н	6-CH ₃
Н	CH ₃ CH ₂	CI	Н	6-CH ₃
CH ₃	CH ₃	Н	CH ₃	6-CH ₃
Н	CH ₃ CH ₂	H	CH ₃	6-CH ₃
CH ₃	CH ₃	CH ₃	CH ₃	6-CH ₃
Н	CH ₃ CH ₂	CH ₃	CH ₃	6-CH ₃
CH ₃	CH ₃	Cl	CH ₃	6-CH ₃
Н	CH_3CH_2	Cl .	CH ₃	6-CH ₃
CH ₃	CH ₃	Н	Cl	6-CH ₃
Н	CH_3CH_2	H	Cl	6-CH ₃
CH ₃	CH ₃	CH ₃	Cl	6-CH ₃
H	CH₃CH₂	CH ₃	Cl	6-CH ₃
CH ₃	CH ₃	Cl	Cl	6-CH ₃
Н	CH ₃ CH ₂	Cl	Cl	6-CH ₃
CH ₃	CH ₃	Н	Н	2-C1
Н	CH₃CH₂	Н	Н	2-Cl
CH ₃	CH ₃	CH ₃	Н	2-CI
Н	CH₃CH₂	CH ₃	H	2-C1
CH ₃	CH ₃	CI	Н	2-C1
H	CH₃CH₂	Cl	Н	2-C1
CH ₃	CH ₃	Н	CH ₃ ·	2-CI
Н	CH ₃ CH ₂	Н	CH ₃	2-C1
CH ₃	CH ₃	CH ₃	CH ₃	2-C1
Н	CH ₃ CH ₂	CH ₃	CH ₃	2-C1
CH ₃	CH ₃	Cl	CH ₃	2-C1
Н	CH ₃ CH ₂	Cl	CH ₃	2-C1

CH ₃	CH ₃	H	Cl	2-C1
Н	CH ₃ CH ₂	H	Cl	2-C1
CH ₃	CH ₃	CH ₃	CI	2-C1
Н	CH ₃ CH ₂	CH ₃	Cl	2-C1
CH ₃	CH ₃	Cl	CI	2-C1
H	CH ₃ CH ₂	CI	Cl	2-C1
Н	CH ₃	H	H 💸	Н
Н	CH ₃	CH ₃	Н	Н
Н	CH ₃	CI ()	H	H
\mathbf{H}_{i}	CH ₃	Н	CH ₃	\mathbf{H}^{-1}
Н	CH ₃	CH ₃	CH ₃	H
Н	CH ₃	Cl	CH ₃	Н
Н	CH ₃	H	CI	Н
Н	CH ₃	CH ₃	$CI \in \mathbb{R}^{n}$	Н
Н	CH ₃	CI	CL	Н .
Ĥ	CH ₃	H - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	H	2-CH ₃
Н	CH ₃	CH ₃	$\mathbf{H}^{(1)}$	2-CH ₃
Н	CH ₃	CL	Н	2-CH ₃
H	CH ₃	H = 1	CH ₃	2-CH ₃
* H See	CH ₃	CH3 - 1 - 1 - 1 - 1 - 1	CH ₃	2-CH ₃
H	CH ₃	Cl	CH ₃	2-CH ₃
H	CH ₃	H	Cl	2-CH ₃
н	CH ₃	CH ₃	$\mathbf{C}\hat{\mathbf{I}}_{\mathbf{V}}^{(1)} = \mathbf{I}_{\mathbf{V}}^{(1)}$	2-CH ₃
H	CH ₃	CI	Cl	2-CH ₃
H	СН3	H .	H	6-CH ₃
H	CH ₃	CH ₃	H	6-CH ₃
H	CH ₃	CI CI	H	6-CH ₃
H	CH ₃	H parties to	CH ₃	6-CH ₃
He de la company	CH ₃	CH ₃	CH ₃	6-CH ₃
H	CH ₃	Cl	CH ₃	6-CH ₃
H MARK A CONTRACTOR	CH ₃	H	CI	6-CH ₃
H	CH ₃	CH ₃	Cl	6-CH ₃
* H	CH ₃	CI	Cl	6-CH ₃
H	СН3	Н	Н	2-C1
н Д.,	CH ₃	CH ₃	H	2-C1
Н	CH ₃	Cl	Н	2-C1
Н	CH ₃	H	CH ₃	2-C1
	CH3	Č113	CH ₃	2-C1

WO 97/19087 PCT/US96/18381

<u>R6</u>	R^{1}	<u>R</u> 2	<u>m</u>	<u>R17</u>	<u>R18</u>
SH	Н	Н	1	Н	Н
Cl	Н	Н	1	Н	Н
SH	CH ₃	H	1	Н	H
Cl	CH_3	Н	1	Н	Н
SH	CI	Н	I	Н	Н
Cl	CI	H	ł	Н	Н
SH	CH_3	CH_3	1	Н	Н
Cl	CH ₃	CH_3	l	H	Н
SH	Cl	CI	1	Н	Н
CI	Cl	CI	1	Н	Н
SH	H	Н	2	Н	Н
Cl	Н	H	2	Н	Н
SH	CH_3	Н	2	Н	H
Cl	CH_3	Н	2	Н	Н
SH	CI	Н	2	Н	Н
Cl	Cl	Н	2	Н	Н
SH	CH_3	CH_3	2	Н	Н
Cl	CH_3	CH ₃	2	Н	Н
SH	Cl	C1	2	Н	Н
Cl	CI	CI	2	Н	Н
SH	Н	Н	1	CH ₃	Н
Cl	H	Н	1	CH_3	Н
SH	CH_3	Н	ı	CH ₃	H

Cl	CH_3	Н	1	CH ₃	Н
SH	Cl	Н	1	CH ₃	Н
Cl	Cl	Н	1	CH_3	H
SH	CH_3	CH_3	1	CH_3	Н
Cl	CH_3	CH_3	1	CH ₃	Н
SH	Cl	Cl	1	CH ₃	Н
Cl	Cl	Cl	1	CH ₃	Н
SH	H	Н	2	CH ₃	Н
Cl	H	Н	2	CH ₃	Н
SH	CH_3	Н	2	CH ₃	Н
Cl	CH ₃	Н	2	CH ₃	Н
SH	CI	Н	2	CH ₃	Н
Cl	C:	Н	2	CH ₃	Н
SH	CH_3	СНЗ	2	CH ₃	1-1
Cl	CH_3	CH_3	2	CH_3	Н
SH	Cl	Cl	2	CH ₃	Н
Cl	Cl	CI	2	CH ₃	H
SH	Н	Н	1	CH ₂ CH ₃	Н
Cl	Н	Н	1	CH ₂ CH ₃	H
SH	CH_3	H	I	CH ₂ CH ₃	Н
Cl	CH_3	H	l	CH ₂ CH ₃	Н
SH	Cl .	Н	l	CH_2CH_3	Н
Cl	Cl	Н	1	CH ₂ CH ₃	Н
SH	CH_3	CH_3	ì	CH ₂ CH ₃	H
Cl	CH ₃	CH_3	1	CH ₂ CH ₃	H
SH	Cl	CI	1	CH ₂ CH ₃	Н
CI	C1	Cl	1	CH ₂ CH ₃	H
SH	Н	H	2	CH ₂ CH ₃	Н
Cl	H	Н	2	CH ₂ CH ₃	Н
SH	CH ₃	Н	2	CH ₂ CH ₃	H
Cl	CH ₃	Н	2	CH ₂ CH ₃	H
SH	C1	Н	2	CH ₂ CH ₃	H
Cl	CI	Н	2	CH ₂ CH ₃	H
SH	CH_3	$CH_{\mathfrak{Z}}$	2	CH ₂ CH ₃	Н
Cl	CH_3	CH_3	2	CH ₂ CH ₃	H
SH	Cl	CI	2	CH ₂ CH ₃	Н
Cl	C1	· C1	2	CH ₂ CH ₃	H
SH	Н	Н	I	$CH_2CH_2CH_3$	Н

CI	Н	H	1	CH ₂ CH ₂ CH ₃	Н
SH	CH ₃	Н	I	CH ₂ CH ₂ CH ₃	Н
Cl	CH ₃	Н	l	CH2CH2CH3	Н
SH	Cl	Н	1	CH ₂ CH ₂ CH ₃	H
CI	Cl	Н	i	CH ₂ CH ₂ CH ₃	Н
SH	CH ₃	CH_3	1	CH ₂ CH ₂ CH ₃	Н
CI	CH_3	CH_3	1	CH ₂ CH ₂ CH ₃	H
SH	Cl	Cl	1	CH ₂ CH ₂ CH ₃	Н
CI	Cl	Cl	ì	CH ₂ CH ₂ CH ₃	H
SH	Н	Н	2	CH ₂ CH ₂ CH ₃	Н
CI	Н	Н.	2	CH ₂ CH ₂ CH ₃	H
SH	CH ₃	Н	2	CH ₂ CH ₂ CH ₃	H
Cl	CH_3	Н	2	CH ₂ CH ₂ CH ₃	H
SH	Cl	Н	2	CH ₂ CH ₂ CH ₃	Н
Cl	Cl	Н	2	CH ₂ CH ₂ CH ₃	11
SH	CH_3	CH_3	2	CH ₂ CH ₂ CH ₃	H
Cl	CH_3	CH_3	2	CH ₂ CH ₂ CH ₃	H
SH	Cl	Cl	2	CH ₂ CH ₂ CH ₃	H
CI	CI	Cl	2	CH2CH2CH3	Н
SH	Н	Н	l	Н	CH_3
Cl	H	H	1	Н	CH_3
SH	CH_3	Н	1	H	CH_3
C)	CH_3	Н	1	Н	CH ₃
SH	C1	H	1	H	CH_3
Cl	Cl	Н	1	Н	CH_3
SH	CH_3	CH_3)	Н	CH_3
Cl	CH_3	CH_3	1	Н	CH_3
SH	Cl	Cl	ì	Н	CH_3
Cl	Cl	Cl	ì	Н	CH ₃
SH	Н	Н	2	H	CH_3
Cl	Н	Н	2	Н	CH ₃
SH	CH_3	Н	2	Н	CH ₃
CI	CH_3	Н	2	Н	CH_3
SH	Cl	Н	2	Н	CH_3
Cl	ÇI	Н	2	Н	CH_3
SH	CH_3	CH_3	2	Н	CH_3
Cl	CH ₃	CH_3	2	H	CH_3
SH	Cl	Cl	2	Н	CH ₃

Cl	Cl	Cl	2	Н	CH_3
SH	Н	Н	1	CH ₃	СН3
CI	H	Н	1	CH ₃	CH ₃
SH	CH_3	Н	1	CH ₃	CH_3
Cl	CH ₃	Н	1	CH ₃	CH_3
HZ	CI	Н	1	CH ₃	CH ₃
CI	Cl	Н	1	CH ₃	CH ₃
SH	CH ₃	CH ₃	1	CH ₃	CH ₃
CI	CH ₃	CH ₃	1	CH ₃	СН3
SH	Cl	Cl	1	CH ₃	CH ₃
Cl	Cl	Cl	1	CH ₃	CH ₃
SH	H	Н	2	CH ₃	СН3
Cl	Н	Н	2	CH ₃	CH ₃
SH	СН3	Н	3	CH ₃	CH ₃
Cl	CH ₃	Н	2	CH ₃	CH ₃
SH	CI	H	2	CH ₃	CH_3
Cl	Cl	Н	2	CH ₃	CH_3
SH	CH_3	CH ₃	2	CH ₃	CH ₃
CI	CH ₃	CH ₃	2	CH ₃	CH ₃
SH	Cl	CI	5 ,	CH ₃	CH ₃
Cl	Cl	Cl	2	CH ₃	CH_3
SH	Н	Н	ŧ	CH ₂ CH ₃	CH_3
C1	Н	Н	1	CH ₂ CH ₃	CH_3
SH	CH ₃	Н	1	CH ₂ CH ₃	CH ₃
Cl	CH ₃	Н]	CH ₂ CH ₃	CH ₃
SH	Cl	Н	1	CH ₂ CH ₃	CH ₃
Cl	Cl	Н	I	CH ₂ CH ₃	CH ₃
SH	CH_3	CH ₃	1	CH ₂ CH ₃	CH ₃
Ċŀ	CH ₃	CH ₃	l	СН ₂ СН ₃	CH ₃
SH	CI	Cl	1	CH ₂ CH ₃	CH_3
Cl	Cl	Cl	l	CH ₂ CH ₃	CH_3
SH	H	Н	2	CH ₂ CH ₃	CH ₃
Cl	Н	Н	2	CH ₂ CH ₃	СН3
SH	CH ₃	Н	2	CH ₂ CH ₃	CH ₃
CI	CH ₃	Н	2	CH ₂ CH ₃	CH ₃
SH	CI	Н	2	CH ₂ CH ₃	СН3
Cl	CI	Н	2	CH ₂ CH ₃	СН3
SH	CH ₃	СН3	2.	CH ₂ CH ₃	CH ₃

Cl	CH ₃	CH ₃	2	CH ₂ CH ₃	CH_3
SH	Cl	Cl	2	CH ₂ CH ₃	CH_3
Cl	Cl	Cl	2	CH ₂ CH ₃	CH_3
SH	H	Н	1	$CH_2CH_2CH_3$	CH_3
CI	Н	Н	1	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH ₃	Н	1	CH ₂ CH ₂ CH ₃	CH_3
Cl	CH ₃	Н	l	$CH_2CH_2CH_3$	CH_3
SH	Cl	H	1	CH ₂ CH ₂ CH ₃	CH ₃
CI	Cl	Н	1	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH_3	CH ₃	1	CH ₂ CH ₂ CH ₃	СН3
CI	CH ₃	CH_3	1	CH ₂ CH ₂ CH ₃	CH ₃
SH	Cl	Cl	1	CH ₂ CH ₂ CH ₃	СН3
Cl	Cl	Cl	1	CH ₂ CH ₂ CH ₃	CH ₃
SH	Η	H	2	CH ₂ CH ₂ CH ₃	СН3
C1	Н	Н	2	CH ₂ CH ₂ CH ₃	CH_3
SH	CH_3	H	2	$CH_2CH_2CH_3$	CH_3
Cl	CH_3	H	2	CH ₂ CH ₂ CH ₃	CH_3
SH	CI	ŀi	2	CH ₂ CH ₂ CH ₃	CH_3
CI	CI	Н	2	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH_3	CH_3	2	$\mathrm{CH_2CH_2CH_3}$	CH ₃
Cl	CH_3	CH_3	2	CH ₂ CH ₂ CH ₃	CH_3
SH	Cl	Cl	2	CH ₂ CH ₂ CH ₃	CH_3
Cl	CI	Cl	2	$CH_2CH_2CH_3$	CH_3
SH	Н	Н	1	Η.	Cl
Cl	Н	Н	1	H	CI
SH	CH_3	Н	1	H	Cl
Cl	CH_3	Н	i	H	Cl
SH	CI	H	1	Н	Cl
Cl	Cl ·	Н	1	Н	C1
SH	CH ₃	CH_3	1	Н	CI
Cl	CH_3	CH_3	i	Н	Cl
SH	Cl	Cl	1	H	Cl
CI	CI	CI	1	H	Cl
SH	Н	Н	2	Н	CI
CI	Н	Н	2	Н	CI
SH	CH ₃	Н	2	Н	CI
CI	CH_3	Н	2	Н	Cl
SH	CI	Н	2	Н	CI ·

Cl	Cl	Н	2	Н	CI
SH	CH_3	CH_3	2	Н	CI
Cl	CH_3	CH_3	2	Н	CI
SH	Cl	CI	2	Н	Cl
Cl	Cl	Cl	2	Н	Cl
SH	Н	Н	1	CH ₃	Cl
C!	Н	Н	ı	CH ₃	Cl
SH	CH_3	Н	1	CH ₃	Cl
CI	CH_3	Н	I	CH ₃	Cl
SH	Cl	Н	l	CH ₃	Cl
Cl	Cl	H	1	CH ₃	CI
SH	CH_3	CH_3	1	CH ₃	Cl
Cl	CH_3	CH_3	l	CH ₃	Cl
SH	Cl	Cl	1	CH ₃	CI
Ci	Cl	Cl	1	CH ₃	CI
SH	Н	Н	2	CH ₃	Cl
Cl	Н	Н	2	CH_3	C1
SH	CH_3	H	2	CH ₃	Cl
Cl	CH_3	H	2	CH ₃	CI
SH	Cl	Н	2	CH ₃	Cl
Cl	Cl	Н	2	CH ₃	Cl
SH	CH_3	CH_3	2	CH ₃	Cl
Cl	CH_3	CH_3	2	CH ₃	Cl
SH	Cl	Cl	2	CH ₃	Cl
Cl	C1	Cl	2	CH_3	Cl
SH	H	Н.	I	CH ₂ CH ₃	Cl
Cl	Н	Н	l	CH_2CH_3	Cl
SH	CH_3	Н	1	CH ₂ CH ₃	Cl
Cl	CH_3	Н	I	CH ₂ CH ₃	Cl
SH	Cl	Н	1	CH ₂ CH ₃	Cl
Cl	Cl	Н	1	CH ₂ CH ₃	Cl
SH	CH_3	CH_3	1	CH ₂ CH ₃	Cl
Cl	CH_3	CH_3	1	CH ₂ CH ₃	CI
SH	Cl	Cl	1	CH_2CH_3	CI
Cl	Cl	Cl	1	CH ₂ CH ₃	CI
SH	Н	Н	2	CH ₂ CH ₃	Cl
Cl	Н	Н	2	CH ₂ CH ₃	Cl
SH	CH_3	Н	2	CH_2CH_3	Cl

Section 12 18 18

CI	CH3	H	2	CH ₂ CH ₃	C1
SH	Cl	Н	2	CH ₂ CH ₃	CI
Cl	CI	Н	2	CH ₂ CH ₃	Cl
SH	CH ₃	CH ₃	2	CH ₂ CH ₃	CI
Cl	CH ₃	CH ₃	2	CH ₂ CH ₃	CI
SH	Cl	Cl	2	CH ₂ CH ₃	CI
CI	Cl	Cl	2	CH ₂ CH ₃	Cl
SH	Н	H	1	CH ₂ CH ₂ CH ₃	CI
Cl	Н	Н]	CH ₂ CH ₂ CH ₃	Cl
SH	CH ₃	Н	1	CH ₂ CH ₂ CH ₃	CI
Cl	CH ₃	H	1	CH ₂ CH ₂ CH ₃	CI
SH	Cl	Н	1	CH ₂ CH ₂ CH ₃	Cl
Cl	Cl	Н	1	CH ₂ CH ₂ CH ₃	CI
SH	CH ₃	CH_3	1	CH ₂ CH ₂ CH ₃	Cl
Cl	CH ₃	CH ₃	1	CH ₂ CH ₂ CH ₃	Cl
SH	Cl	Cl	1	CH ₂ CH ₂ CH ₃	Cl
CI	CI	Cl	1	CH ₂ CH ₂ CH ₃	Cl
SH	Н	Н	2 .	CH ₂ CH ₂ CH ₃	Cl
Cl	Н	Н	2	CH ₂ CH ₂ CH ₃	CI
SH	СНз	Н	2	CH ₂ CH ₂ CH ₃	Cl
CI	CH ₃	Н	2	CH ₂ CH ₂ CH ₃	Cl
SH	Cl	Н	2	CH ₂ CH ₂ CH ₃	Cl
Cl	Cl	H	2	CH ₂ CH ₂ CH ₃	Cl
SH	CH ₃	CH_3	2	CH ₂ CH ₂ CH ₃	Cl
Cl	СН3	CH ₃	2	CH ₂ CH ₂ CH ₃	CI
SH	Cl	Cl	2	CH ₂ CH ₂ CH ₃	Cl
Cl	Cl	CI	2	CH ₂ CH ₂ CH ₃	CI

$$\begin{array}{c|c} \text{Table 17} \\ \text{O} & R^1 & N-N \\ \text{CH}_3\text{CH}_2 & \text{O} & \text{O} \end{array}$$

\mathbb{R}^{1}	<u>R²</u>	<u>R17</u>	<u>R18</u>
Н	H	CH(CH ₃) ₂	Н
CH ₃	Н	$CH(CH_3)_2$	Н
Cl	Н	CH(CH ₃) ₂	Н
CH ₃	CH_3	CH(CH ₃) ₂	Н
Cl	Cl	$CH(CH_3)_2$	Н
Н	Н	phenyl	H
CH ₃	H	phenyl	Н
CI	H	phenyl	Н
CH ₃	CH ₃	phenyl	· H
Cl	Cl	phenyl	H
Н	H	(4-CH ₃)Ph	Н
CH ₃	H	(4-CH ₃)Ph	Н
Cl	Н	(4-CH ₃)Ph	Н
CH ₃	CH_3	(4-CH ₃)Ph	Н
Cl	Cl	(4-CH ₃)Ph	H
H	Н	(4-C1)Ph	Н
CH ₃	Н	(4-CI)Ph	Н
CI	Н	(4-Cl)Ph	Н
CH ₃	. CH ₃	(4-C1)Ph	Н
Cl	Cl	(4-CI)Ph	H
Н	Н	(4-NO ₂)Ph	Н
CH ₃	Н	(4-NO ₂)Ph	H
Cl	Н	(4-NO ₂)Ph	Н
CH ₃	CH ₃	(4-NO ₂)Ph	Н
Cl	Cl	(4-NO ₂)Ph	Н
Н	Н	(4-CN)Ph	Н
CH ₃	Н	(4-CN)Ph	Н
Cl	Н	(4-CN)Ph	Н

CH ₃	CH ₃	(4-CN)Ph	ŀł
CI	Cl	(4-CN)Ph	Н
Н	Н	2-pyridyl	Н
CH ₃	Н	2-pyridyl	1-(
CI	Н	2-pyridyl	Н
CH ₃	CH ₃	2-pyridyl	Н
CI .	Cl	2-pyridyl	Н
H	Н	4-pyridyl	Н
CH ₃	Н	4-pyridyl	Н
Cl	Н	4-pyridyl	Ы
CH ₃	CH ₃	4-pyridyl	Ы
CI	Cl	4-pyridyl	Н
Н	Н	CH ₂ CF ₃	Н
CH_3	Н	CH ₂ CF ₃	Н
CI	Н	CH ₂ CF ₃	H
CH ₃	CH ₃	CH ₂ CF ₃	H
Cl	Cl	CH ₂ CF ₃	Н
Н	Н	CH(CH ₃) ₂	CI
CH ₃	Н	CH(CH ₃) ₂	Cl
CI	Н	CH(CH ₃) ₂	Cl
CH ₃	CH ₃	CH(CH ₃) ₂	Cl
Cl	CI	CH(CH ₃) ₂	Cl
Н	Н	phenyl	Cl
CH ₃	Н	phenyl	CI
Cl	Н	phenyl	CI
CH ₃	CH ₃	phenyl	Cl
CI	CI	phenyl	Cl
Н	Н	(4-CH ₃)Ph	C1
CH ₃	Н	(4-CH ₃)Ph	CI
Cl	Н	(4-CH ₃)Ph	Cl
CH ₃	CH ₃	(4-CH ₃)Ph	CI
Cl	CI	(4-CH ₃)Ph	Cl
Н	Н	(4-CI)Ph	Cl
CH ₃	н	(4-CI)Ph	Cl
CI	H	(4-Cl)Ph	Cl
CH ₃	CH ₃	(4-CI)Ph	CI
Cl	Cl	(4-Cl)Ph	Cl
Н	H	(4-NO ₂)Ph ·	Cl

CH ₃	Н	(4-NO ₂)Ph	Cl
Cl	Н	(4-NO ₂)Ph	Cl
CH ₃	CH ₃	(4-NO ₂)Ph	Cl
Cl	Cl	(4-NO ₂)Ph	Cl
Н	Н	(4-CN)Ph	CI
CH ₃	H	(4-CN)Ph	CI
Cl	Н	(4-CN)Ph	CI
CH ₃	CH ₃	(4-CN)Ph	Cl
Cl	Cl	(4-CN)Ph	Cl
Н	H	2-pyridyl	Cl
CH ₃	Н	2-pyridyl	Cl
Ċl	Н	2-pyridyl	Cl
CH ₃	CH ₃	2-pyridyl	Cl
Cl	Cl	2-pyridyl	Cl
Н	Н	4-pyridyl	CI
CH ₃	Н	4-pyridyl	Cl
Cl	Н	4-pyridyl	CI
CH ₃	CH ₃	4-pyridyl	Cl
Cl	Cl	4-pyridyl	CI
Н	H	CH ₂ CF ₃	Cl
CH ₃	Н	CH ₂ CF ₃	Cl
Cl	Н	CH ₂ CF ₃	Cl
CH ₃	CH ₃	CH ₂ CF ₃	Cl
Cl	Cl	CH ₂ CF ₃	Cl
Н	Н	CH(CH ₃) ₂	CH ₃
CH ₃	Н	CH(CH ₃) ₂	СН3
Cl	Н	CH(CH ₃) ₂	CH_3
CH ₃	CH ₃	CH(CH ₃) ₂	CH ₃
Cl	Cl	CH(CH ₃) ₂	CH ₃
Н	Н	phenyl	CH ₃
CH ₃	Н	phenyl	CH ₃
CI	Н	phenyl	CH ₃
CH ₃	CH ₃	phenyl	CH ₃
Cl	Cl	phenyl	CH ₃
Н	Н	(4-CH ₃)Ph	CH ₃
CH ₃	Н	(4-CH ₃)Ph	CH ₃
Cl	Н	(4-CH ₃)Ph	CH ₃
CH ₃	CH ₃	(4-CH ₃)Ph	CH ₃

CI	Cl	(4-CH ₃)Ph	CH_3
Н	Н	(4-C1)Ph	CH_3
CH ₃	Н	(4-C1)Ph	CH ₃
Cl	Н	(4-Cl)Ph	CH ₃
CH ₃	CH ₃	(4-C1)Ph	CH_3
CI	Cl	(4-Cl)Ph	CH ₃
Н	Н	(4-NO ₂)Ph	CH_3
CH ₃	Н	(4-NO ₂)Ph	CH ₃
Cl	H	(4-NO ₂)Ph	CH_3
CH ₃	CH ₃	(4-NO ₂)Ph	CH_3
Cl	Cl	(4-NO ₂)Ph	CH ₃
Н	H	(4-CN)Ph	CH_3
CH ₃	·H	(4-CN)Ph	CH ₃
Cl	Н	(4-CN)Ph	CH_3
CH ₃	CH ₃	(4-CN)Ph	CH_3
Cl	CI	(4-CN)Ph	CH_3
Н	Н	2-pyridyl	CH_3
CH ₃	H	2-pyridyl	CH ₃
Cl	H	2-pyridyl	CH_3
CH_3	CH ₃	2-pyridyl	CH ₃
Cl	CI	2-pyridyl	CH_3
Н	Н	4-pyridyl	CH_3
CH ₃	Н	4-pyridyl	CH ₃
Cl	Н	4-pyridyl	CH_3
CH ₃	CH ₃	4-pyridyl	CH_3
Cl	Cl	4-pyridyl	CH_3
Н	Н	CH ₂ CF ₃	CH ₃
CH ₃	Н	CH ₂ CF ₃	CH ₃
Cl	Н	CH ₂ CF ₃	CH_3
CH ₃	CH ₃	CH ₂ CF ₃	CH_3
CI	CI	CH ₂ CF ₃	CH_3

<u>R</u> 6	<u>R 1</u>	<u>R²</u>	<u>R17</u>	<u>R18</u>
ОН	CH2CH3	Н	Н	Н
SH	CH ₂ CH ₃	, H	н	Н
Cl	CH2CH3	· ' H ·	Н	.H
ОН	NO_2 +	Н	H	Н
SH	NO_2	Н	H	H
Cl	NO ₂	Н	H	Н
ОН	OCH ₃	Н	$\mathbf{H}_{1}^{(n)}$. $\mathbf{H}_{2}^{(n)}$	Н
SH	OCH ₃	Ĥ	H	Н
Cl	OCH ₃	Н	$\mathbf{H}_{\mathbf{k}}$	H
OH	CH ₂ CH ₃	CH ₃	$\mathbf{H}_{\mathcal{A}_{n+1}}$	Н
SH	CH ₂ CH ₃	CH ₃	H en	H
Cl	CH ₂ CH ₃	CH ₃	Н	Н
ОН	NO_2	CH ₃	H. Carlotte	Н
SH	NO_2	CH ₃	H - 1	Н
Cl	NO_2	CH ₃	$(\mathcal{H}_{\mathcal{H}}}}}}}}}}$	Н
ОН	OCH ₃	CH ₃	Н	H
⇒SH	OCH ₃	CH ₃	Н	H
CI	OCH ₃	CH ₃	H	H_{-i}
ОН	CH ₂ CH ₃	Cl Cl	\mathbf{H}_{i}	Н
SH	CH₂CH₃	Ċl	\mathbf{H}_{i}	Н
Cl	CH ₂ CH ₃	Cl	\mathbf{H}	Н
ОН	NO_2	C1	H	Н
SH	NO_2	C.J	Н	Н
Cl	NO_2	Cl	Н	Н
ОН	OCH ₃	CI	H	Н
SH	OCH ₃	Cl	Н	Н
Cl	OCH ₃	Cl Street	H	H
ŎH ***	CH ₂ CH ₃	Н	CH ₃	Η̈́

SH	CH ₂ CH ₃	Н	CH ₃	Н
CI	CH ₂ CH ₃	Н	CH ₃	Н
ОН	NO_2	Н	CH ₃	Н
SH	NO_2	Н	CH ₃	Н
Cl	NO ₂	Н	CH ₃	Н
ОН	OCH_3	Н	CH ₃	Н
SH	OCH_3	Н	CH_3	Н
Cl	OCH ₃	Н	CH ₃	Н
ОН	CH ₂ CH ₃	CH ₃	CH ₃	Н
SH	CH ₂ CH ₃	CH ₃	CH ₃	Н
Cl	CH ₂ CH ₃	CH ₃	CH ₃	Н
OH	NO ₂	CH ₃	СН3	Н
SH	NO ₂	CH ₃	CH_3	Н
CI ·	NO_2	CH ₃	CH_3	Н
ÖН	OCH_3	CH ₃	CH_3	Н
SH	OCH_3	CH ₃	CH ₃	Н
Cl	OCH ₃	CH ₃	CH ₃	Н
OH	CH ₂ CH ₃	Cl	CH ₃	Н
SH	CH ₂ CH ₃	CI	CH ₃	H
Cl	CH₂CH₃	Cl	CH ₃	Н
ОН	NO_2	Cl	CH ₃	H
SH	NO_2	CI	CH ₃	Н
CI	NO_2	Cl	CH ₃	н
ОН	OCH ₃	CI	CH ₃	Н
SH	OCH ₃	CI	CH_3	Н
Cl	OCH ₃	CI	CH ₃	I-I
ОН	CH ₂ CH ₃	Н	CH ₂ CH ₃	Н
SH	CH ₂ CH ₃	Н	CH ₂ CH ₃	Н
Cl	CH_2CH_3	Н	CH ₂ CH ₃	Н
OH	NO_2	Н	CH ₂ CH ₃	Н
SH	NO_2	Н	CH ₂ CH ₃	Н
Cl	NO_2	H	CH_2CH_3	Н
ОН	OCH ₃	Н	CH ₂ CH ₃	H
SH	OCH ₃	Н	CH ₂ CH ₃	Н
Cl	OCH_3	Н	CH ₂ CH ₃	H
ОН	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	Н
SH	CH ₂ CH ₃	CH_3	CH ₂ CH ₃	Н
Cl	CH ₂ CH ₃	CH ₃	CH_2CH_3	Н

ОН	NO_2	CH ₃	CH ₂ CH ₃	Н
SH	NO ₂	CH ₃	CH ₂ CH ₃	H
CI	NO_2	CH ₃	CH ₂ CH ₃	Н
ОН	OCH ₃	CH ₃	CH ₂ CH ₃	Н
SH	OCH ₃	СН3	CH ₂ CH ₃	Н
C1	OCH ₃	CH ₃	СH ₂ CH ₃	[- [
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₃	Н
SH	CH ₂ CH ₃	Cl	CH ₂ CH ₃	H
CI	CH ₂ CH ₃	Cl	CH ₂ CH ₃	H
OH	NO_2	Cl	CH ₂ CH ₃	H
SH	NO_2	Cl	CH ₂ CH ₃	Н
Cl	NO_2	Cl	CH ₂ CH ₃	Н
ОН	OCH ₃	Cl	CH ₂ CH ₃	H
SH	OCH ₃	Cl	CH ₂ CH ₃	H
Cl	OCH ₃	Cl	CH ₂ CH ₃	Н
ОН	CH ₂ CH ₃	Н	CH ₂ CH ₂ CH ₃	Н
SH	CH ₂ CH ₃	H	CH ₂ CH ₂ CH ₃	H
Cl	СH ₂ СH ₃	H	CH ₂ CH ₂ CH ₃	H
ОН	NO ₂	Н	CH ₂ CH ₂ CH ₃	H
SH	NO_2	H	CH ₂ CH ₂ CH ₃	Н
CI	NO ₂	H	CH ₂ CH ₂ CH ₃	H
ОН	OCH ₃	Н	CH ₂ CH ₂ CH ₃	Н
SH	OCH ₃	Н	CH ₂ CH ₂ CH ₃	Н
Cl	OCH ₃	Н	CH ₂ CH ₂ CH ₃	H
ОН	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	H
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	H
Cl	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Н
ОН	NO ₂	CH ₃	CH ₂ CH ₂ CH ₃	Н
SH	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	Н
Cl	NO ₂	CH ₃	$CH_2CH_2CH_3$	Н
ОН	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Н
SH	OCH ₃	CH3	CH ₂ CH ₂ CH ₃	Н
Cl	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Н
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₂ CH ₃	Н
SH	CH ₂ CH ₃	C1	CH ₂ CH ₂ CH ₃	Н
Cl	CH ₂ CH ₃	Cl	CH ₂ CH ₂ CH ₃	Н
ОН	NO ₂	Cl	CH ₂ CH ₂ CH ₃	Н
SH	NO_2	Cl	CH ₂ CH ₂ CH ₃	Н
•				

CI	NO_2	Cl	CH ₂ CH ₂ CH ₃	Н
ОН	OCH ₃	Cl	CH ₂ CH ₂ CH ₃	Н
SH	OCH ₃	CI	CH ₂ CH ₂ CH ₃	Н
Cl	OCH ₃	Cl	CH ₂ CH ₂ CH ₃	Н
ОН	CH ₂ CH ₃	H	Н	CH_3
SH	CH ₂ CH ₃	Н	Н	CH_3
Cl	CH ₂ CH ₃	Н	Н	CH_3
ОН	NO ₂	Н	Н	CH_3
SH	NO_2	Н .	Н	CH_3
Cl	NO_2	Н	Н	CH_3
ОН	OCH ₃	Н	Н	CH_3
SH	OCH ₃	Н	Н	СН3
CI	OCH ₃	Н	Н	CH_3
ОН	CH ₂ CH ₃	CH ₃	Н	CH_3
SH	CH ₂ CH ₃	CH ₃	Н	CH_3
CI	CH ₂ CH ₃	CH ₃	Н	CH_3
ОН	NO ₂	CH ₃	H	CH_3
SH	NO_2	CH ₃	Н	CH_3
Cl	NO_2	CH ₃	Н	CH_3
ОН	OCH ₃	CH ₃	Н	CH_3
SH	OCH ₃	CH ₃	Н	CH_3
Cl	OCH ₃	CH ₃	Н	CH_3
ОН	CH ₂ CH ₃	Cl	Н	CH_3
SH	CH ₂ CH ₃	Cl	Н	CH_3
Cl	CH ₂ CH ₃	Cl	Н	CH_3
ОН	NO_2	Cl	Н	CH_3
SH	NO_2	Cl	Н	CH_3
Cl	NO_2	Cl	Н	CH_3
ОН	OCH ₃	Cl	Н	CH_3
SH	OCH ₃	Cl	Н	CH_3
Cl	OCH ₃	Cl	H	CH_3
ОН	CH ₂ CH ₃	Н	CH ₃	CH_3
SH	CH ₂ CH ₃	Н	CH ₃	CH_3
Cl	CH ₂ CH ₃	Н	CH ₃	CH_3
ОН	NO_2	Н	CH ₃	CH_3
SH	NO ₂	Н	CH ₃	CH_3
Cl	NO ₂	Н	CH ₃	CH_3
ОН	OCH ₃	Н	CH ₃	CH_3

SH	OCH ₃	н	CH ₃	СНз
Cl	OCH ₃	Н	CH ₃	CH ₃
ОН	CH ₂ CH ₃	CH ₃	CH ₃	CH_3
SH	CH ₂ CH ₃	CH ₃	CH ₃	CH ₃
Cl	CH ₂ CH ₃	CH ₃	CH ₃	CH ₃
ОН	NO_2	CH ₃	CH ₃	CH ₃
SH	NO ₂	CH ₃	CH ₃	CH ₃
Cl	NO ₂	CH ₃	CH ₃	CH_3
ОН	OCH ₃	CH ₃	CH ₃	CH ₃
SH	OCH ₃	CH ₃	CH ₃	CH ₃
Cl	OCH ₃	CH ₃	CH ₃	CH ₃
ОН	CH ₂ CH ₃	Cl	CH ₃	CH_3
SH	CH_2CH_3	Cl	CH ₃	CH_3
Cl	CH ₂ CH ₃	Cl	CH ₃	CH_3
ОН	NO_2	Cl	CH ₃	CH ₃
SH	NO_2	Cl	CH ₃	CH_3
Cl	NO_2	Cl	CH ₃	CH ₃
ОН	OCH ₃	Cl	CH ₃	CH_3
SH	OCH_3	CI	CH ₃	CH ₃
CI	OCH ₃	Cl	CH ₃	CH_3
ОН	CH ₂ CH ₃	H	CH ₂ CH ₃	CH_3
SH	CH ₂ CH ₃	Н	CH_2CH_3	CH_3
Cl	CH_2CH_3	Н	CH ₂ CH ₃	CH_3
ОН	NO_2	Н	CH ₂ CH ₃	CH_3
SH	NO_2	Н	CH ₂ CH ₃	CH ₃
CI	NO_2	Н	CH ₂ CH ₃	CH_3
ОН	OCH ₃	Н	CH ₂ CH ₃	CH_3
SH	OCH ₃	Н	CH ₂ CH ₃	CH_3
CI	OCH ₃	Ħ	CH ₂ CH ₃	CH ₃
ОН	CH ₂ CH ₃	CH ₃	CH_2CH_3	CH_3
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	CH ₃
CI	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	CH_3
ОН	NO_2	CH ₃	CH ₂ CH ₃	CH ₃
SH	NO_2	CH ₃	CH ₂ CH ₃	CH_3
CI	NO ₂	CH ₃	CH ₂ CH ₃	CH_3
ОН	OCH ₃	CH ₃	CH ₂ CH ₃	CH_3
SH	OCH ₃	CH ₃	CH ₂ CH ₃	CH_3
Cl	OCH ₃	CH ₃	CH ₂ CH ₃	СНз

ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CH_3
SH	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CH ₃
Cl	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CH ₃
ОН	NO ₂	Cl	CH ₂ CH ₃	CH_3
SH	NO ₂	Cl	CH ₂ CH ₃	CH_3
Cl	NO_2	Cl	CH ₂ CH ₃	CH_3
ОН	OCH ₃	Cl	CH ₂ CH ₃	CH_3
SH	OCH ₃	Cl	CH ₂ CH ₃	CH_3
Cl	OCH ₃	Cl	CH ₂ CH ₃	CH_3
ОН	CH ₂ CH ₃	Н	CH ₂ CH ₂ CH ₃	CH_3
SH	CH ₂ CH ₃	Н	$CH_2CH_2CH_3$	CH_3
Cl	CH ₂ CH ₃	H	CH ₂ CH ₂ CH ₃	CH_3
ОН	NO_2	Н	CH ₂ CH ₂ CH ₃	CH_3
SH	NO_2	Н	CH ₂ CH ₂ CH ₃	CH_3
Cl	NO_2	Н	CH ₂ CH ₂ CH ₃	CH_3
ОН	OCH ₃	Н	$CH_2CH_2CH_3$	CH_3
SH	OCH ₃	Н	CH ₂ CH ₂ CH ₃	CH_3
Cl	OCH ₃	Н	CH ₂ CH ₂ CH ₃	CH_3
ОН	CH ₂ CH ₃	CH_3	CH ₂ CH ₂ CH ₃	CH_3
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CH_3
Cl	CH ₂ CH ₃	CH_3	CH ₂ CH ₂ CH ₃	CH_3
ОН	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	CH ₃
SH	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	CH_3
Cl	NO ₂	CH ₃	CH2CH2CH3	CH_3
ОН	OCH_3	CH ₃	CH ₂ CH ₂ CH ₃	CH ₃
SH	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CH_3
Cl	OCH_3	CH ₃	CH ₂ CH ₂ CH ₃	CH_3
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₂ CH ₃	CH ₃
SH	CH₂CH₃	Cl	CH ₂ CH ₂ CH ₃	CH_3
Cl	CH ₂ CH ₃	CI	CH ₂ CH ₂ CH ₃	CH_3
ОН	NO_2	Cl	CH ₂ CH ₂ CH ₃	CH_3
SH	NO_2	Cl	CH ₂ CH ₂ CH ₃	CH ₃
Cl	NO ₂	Cl	$CH_2CH_2CH_3$	CH_3
ОН	OCH ₃	Cl	CH ₂ CH ₂ CH ₃	CH ₃
SH	OCH ₃	C1	CH ₂ CH ₂ CH ₃	CH_3
Cl	OCH ₃	Cl	CH ₂ CH ₂ CH ₃	CH ₃
ОН	CH ₂ CH ₃	Н	Н	Cl
SH	CH ₂ CH ₃	Н	Н	Cl

Cl		CH ₂ CH ₃	Н		Н		CI
ОН		NO_2	Н		Н		Cl
SH		NO ₂	H		Н	-23	Cl
Cl		NO_2	Н		Н	, , , , , , , , , , , , , , , , , , ,	· CI
ОН		OCH ₃	H		H		Cl
SH	200 m 18 20	OCH ₃	$[H]_{\mathcal{S}_{1},\ldots,\mathcal{S}_{n-1},\ldots,\mathcal{S}_{n-1},\ldots,\mathcal{S}_{n}}$		H	Mary Company	ČI
Cl		OCH ₃	Н		Н		Cl
ОН		CH ₂ CH ₃	CH ₃		Н		.C1
SH		CH ₂ CH ₃	CH ₃		Н		Cl
Cl		CH ₂ CH ₃	CH ₃		Н		CI
ОН		NO ₂	CH ₃		H		CI
SH		NO ₂	СН3		Н		CI
Cl		NO_2	CH ₃		H		CL
ОН		OCH ₃	CH ₃		Н		CI
SH		OCH ₃	CH ₃		Н		Cl
CI ·		OCH ₃	CH ₃		Н		ے CI
ОН		CH ₂ CH ₃	Cl		H		, Cl
SH		CH ₂ CH ₃	Cl		H		of Cl
· Cl		CH ₂ CH ₃	Cl		Н		Cl
ЮН		NO ₂	Cl		Н		Cl
SH		NO ₂	Cl	* **. *.	H *		Cl
CI		NO ₂	Cl		H		C1
OH		OCH ₃	CI ()		Н		, CI
SH		OCH ₃	Cl		H [*] ,		CI
Cľ	ray or the way of the second o	OCH ₃	Cl		Н		Cl
ОН		CH ₂ CH ₃	H		СН3		CI
SH		CH ₂ CH ₃	H	٠.	CH ₃ ,		CI
Cl		CH ₂ CH ₃	Ĥ		CH ₃		Cl
ОН		NO ₂	H		CH ₃		Cl
SH		NO ₂	Haraman San Maria		CH ₃	The second second	Cl
. Cl		NO ₂	H		СНз		Ci
ОН		OCH ₃	H		CH ₃		CI
SH		OCH ₃	H ·		CH ₃		CI
Cl		OCH ₃	H		CH ₃		CI
ОН		CH ₂ CH ₃	CH ₃		CH ₃		Cl
SH		CH ₂ CH ₃	CH ₃		CH ₃		Cl
C1		CH ₂ CH ₃	CH ₃		CH ₃		Cl
QН		NO ₂	GH ₃	1 365	CH3.		, let Ci

SH	NO_2	CH ₃	CH ₃	Cl
Cl	NO_2	CH ₃	CH ₃	Cl
ОН	OCH ₃	CH ₃	CH ₃	C1
SH	OCH ₃	CH ₃	CH_3	CI
Cl	OCH ₃	CH_3	CH ₃	CI
ОН	CH ₂ CH ₃	CI	CH ₃	CI
SH	CH ₂ CH ₃	Cl	CH ₃	Cl
Cl	CH ₂ CH ₃	CI	CH ₃	Cl
ОН	NO ₂	Cl	CH ₃	Cl
SH	NO_2	CI	CH ₃	Cl
Cl	NO_2	Cl	CH ₃	CI
OH	OCH ₃	Cl	CH ₃	CI
SH	OCH_3	Cl	CH ₃	C1
Cl	OCH ₃	C)	CH ₃	Cl
ОН	CH ₂ CH ₃	H	CH ₂ CH ₃	CI
SH	CH₂CH₃	Н	CH ₂ CH ₃	Cl
Cl	CH_2CH_3	H	CH_2CH_3	C1
ОН	NO_2	Н	CH ₂ CH ₃	C1
SH	NO_2	Н	CH ₂ CH ₃	Cl
Cl	NO_2	Н	CH ₂ CH ₃	Cl
ОН	OCH_3	H	CH_2CH_3	CI
SH	OCH_3	Н	CH ₂ CH ₃	Cl
Cl	OCH_3	· H	CH ₂ CH ₃	CI
ОН	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	Cl
SH	CH_2CH_3	CH ₃	CH ₂ CH ₃	Cl
Cl	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	CI
ОН	NO ₂	CH ₃	CH ₂ CH ₃	CI
SH	NO_2	$CH_{\mathfrak{Z}}$	CH ₂ CH ₃	Cl
Cl	NO_2	CH ₃	CH ₂ CH ₃	Cl
ОН	OCH ₃	CH_3	CH ₂ CH ₃	Cl
SH	OCH_3	CH_3	CH ₂ CH ₃	Cl
Cl	OCH_3	CH ₃	CH ₂ CH ₃	Cl
ОН	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CI
SH	CH ₂ CH ₃	Cl	CH ₂ CH ₃	CI
CI	CH₂CH₃	Cl	CH ₂ CH ₃	CI
ОН	NO ₂	Cl	CH ₂ CH ₃	Cl
SH	NO_2	Cl	CH ₂ CH ₃	Cl
CI	NO_2	Cl	CH ₂ CH ₃	CI -

ОН	OCH ₃	Cl	CH ₂ CH ₃	CI
SH	OCH ₃	Cl	CH ₂ CH ₃	Cl
Cl	OCH ₃	CI	CH ₂ CH ₃	CI
ОН	CH ₂ CH ₃	Н	CH ₂ CH ₂ CH ₃	Cl
SH	CH_2CH_3	Н	CH ₂ CH ₂ CH ₃	CI
CI	CH ₂ CH ₃	Н	CH ₂ CH ₂ CH ₃	CI
ОН	NO_2	Н	CH ₂ CH ₂ CH ₃	CI
SH	NO_2	Н	CH ₂ CH ₂ CH ₃	Cl
Cl	NO_2	Н	CH ₂ CH ₂ CH ₃	CI
ОН	осн ₃	H	CH ₂ CH ₂ CH ₃	Cl
SH	OCH ₃	H	CH ₂ CH ₂ CH ₃	Cl
Cl	OCH ₃	Н .	CH ₂ CH ₂ CH ₃	Cl
ОН	CH₂CH₃	CH_3	CH ₂ CH ₂ CH ₃	Cl
SH	CH ₂ CH ₃	CH ₃	CH ₂ CH ₂ CH ₃	CI
Cl	CH ₂ CH ₃	CH_3	CH ₂ CH ₂ CH ₃	CI
ОН	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	CI
SH	NO_2	CH ₃	CH ₂ CH ₂ CH ₃	CI
Cl	NO_2	CH ₃	CH2CH2CH3	Cl
ОН	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Cl
SH	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Cl
Cl _g	OCH ₃	CH ₃	CH ₂ CH ₂ CH ₃	Cì
OH	CH ₂ CH ₃	Cl	CH2CH2CH3	CI
SH	CH_2CH_3	Cl	CH ₂ CH ₂ CH ₃	. C1
Cl	CH ₂ CH ₃	Cl	CH2CH2CH3	Cl
OH	NO_2	Cl	CH ₂ CH ₂ CH ₃	, Cl
SH	NO_2	Cl	CH ₂ CH ₂ CH ₃	Cl
Cl	NO_2	Cl	CH ₂ CH ₂ CH ₃	CI
ОН	OCH ₃	Cl	СН ₂ СН ₂ СН ₃	CL
SH	OCH ₃	Cl	CH2CH2CH3	Cl
Cl	OCH ₃	·CI	CH ₂ CH ₂ CH ₃	Ċŀ

10

15

20

25

Formulation/Utility

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	Weight Percent		
_	Active Ingredient	<u>Diluent</u>	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	()94	1-15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5-50	40-95	0-15
Dusts Granules and Pellets	1-25 0.01-99	7()-99 5-99.99	05 015
High Strength Compositions	9()99	0-10	0-2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorilionite, attapulgite and kaolin, starch, sugar, silica, tale, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wetmilling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147-48, *Perry's Chemical Engineer's Handbook*, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, *Weed Control as a Science*, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., *Weed Control Handbook*, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-C.

5

10

15

20

25

	Example A	
	High Strength Concentrate	
	Compound 2	98.5%
	silica aerogel	0.5%
5	synthetic amorphous fine silica	1.0%.
	Example B	
	Wettable Powder	
	Compound 1	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
10	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
15	Compound 15	10.0%
	attapulgite granules (low volatile matter,	
	0.71/0.30 mm; U.S.S. No. 25–50 sieves)	90.0%.
	Example D	
	Extruded Pellet	27.00
20	Compound 6	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
2.7	calcium/magnesium bentonite	59.0%.
25	Test results indicate that the compounds of the prese	
	preemergent and postemergent herbicides or plant growth	
	have utility for broad-spectrum pre- and/or postemergence	
	complete control of all vegetation is desired such as aroun	
20	storage areas, parking lots, drive-in theaters, air fields, riv	-
30	waterways, around billboards and highway and railroad st	
	compounds will be useful for the control of selected grass	
	tolerance to important agronomic crops which include but	•
	cotton, wheat, rape, sugar beets, corn (maize), soybeans, r	•
25	plantation crops including coffee, cocoa, oil palm, rubber,	
35	trees, nut trees, banana, plantain, pineapple, hops, tea, fore	ests such as eucalyptus and

conifers, e.g., loblolly pine, and turf species, e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject

compounds are useful to modify plant growth.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxaçor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly 5 useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate. anilofos, asulam, atrazine, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butylate, chlomethoxyfen, chloramben, 10 chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its 15 dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium. dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, 2-[4.5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1*H*-imidazol-2-yl]-20 5-methyl-3-pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate. diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC. esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethyl 0,2-dichloro-5-[4-(difluoromethyl)-4.5-dihydro-3-methyl-5-oxo-1*H*-1,2,4-triazol-1-vl]-4-25 fluorobenzenepropanoate (F8426), fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam, flumicloracpentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, fluridone, flurochloridone, fluroxypyr, fluthiacet-methyl, fomesafen, fosamine-ammonium, 30 glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox (AC 299 263). imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, 35 isoxaben, isoxaflutole (RPA 201772), lactofen, lenacil, linuron, maleic hydrazide. MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methyl [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4a]pyridazin-1-ylidene)amino]phenyl]thioacetate (KIH 9201), methylarsonic acid and its

10

20

25

30

35

calcium, monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4-

pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1*H*-pyrazole-4-carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon, 3-oxetanyl 2-[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoate (CGA 277476), oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron,

sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone,
sulfometuron-methyl, sulfosulfuron, TCA, TCA-sodium, tebuthiuron, terbacil,
terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390),
thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron,
tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane,
trifluralin, triflusulfuron-methyl, and vernolate.

pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyrithiobac, pyrithiobac-sodium,

quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron,

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for $-\frac{1}{24}$ preventing the development of resistant weeds.

Certain combinations of compounds of this invention with other herbicides may provide synergistic herbicidal effects on weeds or may provide enhanced crop safety.

Preferred for better control of undesired vegetation in winter wheat, winter barley, spring wheat, spring barley, and peas (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds in winter wheat, winter barley, spring wheat, spring barley, and peas are mixtures of a compound of this invention with one or more of the herbicides selected from the group tribenuron-methyl, thifensulfuron-methyl, metsulfuron-methyl, chlorsulfuron, triasulfuron, 2,4-D, dicamba, bromoxynil, MCPA, fluroxypyr, clopyralid, fenoxaprop, diclofop, tralkoxydim, clodinafop, imazamethabenz, sulfosulfuron, difenzoquat, propanil, prosulfuron, metribuzin, glyphosate, triallate, trifluralin, paraquat, diallate, linuron, diflufenican, pendimethalin, cyanazine, neburon, terbutryn, prosulfocarb, isoproturon, chlortoluron, methabenzthiazuron, metoxuron, simazine, ioxynil, mecoprop, metosulam, fluroglycophen-ethyl, flamprop-M-isopropyl, benzoylpropethyl, ethametsulfuron-methyl, quinclorac, and bentazone.

Specifically preferred mixtures for use in winter wheat, winter barley, spring wheat, spring barley, and peas are selected from the group:

144

a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione *S*,*S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

			Preferred		Preferred
			Ratio	Use Rate	Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
]	tribenuron-methyl	1:10-300:1	1:1-14:1	1-50	5-20
2	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
3	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:5-300:1	2:1-14:1	1-20	5-10
4	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
5	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
6	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:10-300:1	1:1-7:1	1-20	5-10
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
7	chlorsulfuron	1:10-300:1	2:3-7:1	1-50	10-30
8	chlorsulfuron	1:10-300:1	1:1-7:1	1 50	10-20
	in combination with				
	metsulfuron-methyl	1:2-300:1	5:1-35:1	1-10	2-4
9	triasulfuron	1:10-300:1	2:3-7:1	1-50	10-30
10	2,4-D	1:1000-3:1	1:100-1:3	100-4000	200-2000
11	dicamba	1:150-10:1	1:15-1:1	30-600	70-300
12	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
13	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
14	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
	in combination with				
	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
15	fluroxypyr	1:150-10:1	1:15-1:1	30-600	70-300
16	clopyralid	1:125-30:1	1:12-1:1	10-500	50-250

17	ťenoxaprop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				
	fenchlorazole	1:12-300:1	1:1-7:1	1-50	10-25
18	diclofop	1:500-3:1	1:50-1:7	100-2000	500-1000
19	ıralkoxydim	1:125-3:1	1:15-1:2	100-500	150-300
20	clodinafop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with	!			
	cloquintocet-mexyl	1:12-300:1	1:1-7:1	1-50	10-25
21	sulfosulfuron	1:12-300:1	1:2-20:1	1-50	4-4()
22	prosulfuron	1:125-125:1	1:3-3:1	4-300	20-70
23	metribuzin	1:250-30:1	1:25-1:1	10-1000	50-500
24	glyphosate	1:500-3:1	1:50-1:4	100-2000	250-1000
25	ethametsulfuron-methyl	1:10-300:1	2:3-7:1	1-50	10-30

b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1.3-cyclohexanedione S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

			Preferred	Use Rate	Preferred Use Rate
			Ratio		
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
1	tribenuron-methyl	1:10-300:1	1:3-14:1	1-50	5-20
2	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
3	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:5-300:1	2:1-14:1	1-20	5-10
4	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
5	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
6	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:10-300:1	1:1-7:1	1-20	5-10
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
7	chlorsulfuron	1:10-300:1	2:3-7:1	1-50	10-30

	· · · · · · · · · · · · · · · · · · ·			·	
8	chlorsulfuron	1:10-300:1	1:1-7:1	i i 1-50	10-20
	in combination with				
	metsulfuron-methyl	1:2-300:1	5:1-35:1	1-10	2-4
9	triasulfuron	1:10-300:1	2:3-7:1	1-50	10-30
10	2.4-D	1:1000-3:1	1:100-1:3	100-4000	200-2000
11	dicamba	1:150-10:1	1:15-1:1	30-600	70-300
12	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
13	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
14	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
	in combination with				
	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
15	fluroxypyr	1:150-10:1	1:15-1:1	30-600	70-300
16	clopyralid	1:125-30:1	1:12-1:1	10-500	50-250
17	fenoxaprop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				
	fenchlorazole	1:12-300:1	1:1-7:1	1-50	10-25
18	diclofop	1:500-3:1	1:50-1:7	100-2000	500-1000
19	tralkoxydim	1:125-3:1	1:15-1:2	100-500	150-300
20	clodinafop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				
	cloquintocet-mexyl	1:12-300:1	1:1-7:1	1-50	10-25
21	sulfosulfuron	1:12-300:1	1:2-20:1	1-50	4-4()
22	prosulfuron	1:125-125:1	1:3-3:1	4-300	20-70
23	metribuzin	1:250-30:1	1:25-1:1	10-1000	50-500
24	glyphosate	1:500-3:1	1:50-1:4	100-2000	250-1000
25	ethametsulfuron-methyl	1:10-300:1	2:3-7:1	1-50	10-30

c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S.S*-dioxide (mixture partner A. generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

			Preferred		Preferred
]			Ratio	Use Rate	Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
l	tribenuron-methyl	1:10-300:1	1:1-14:1	1-50	5-20
2	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
3	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:5-300:1	2:1-14:1	1-20	5-10
4	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
5	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
6	thifensulfuron-methyl	1:10-300:1	1:4-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:10-300:1	1:1-7:1	1-20	5-10
	in combination with				•
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
7	chlorsulfuron	1:10-300:1	2:3-7:1	1-50	10-30
8	chlorsulfuron	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	metsulfuron-methyl	1:2-300:1	5:1-35:1	1-10	2-4
9	triasulfuron	1:10-300:1	2:3-7:1	1-50	10-30
10	2.4-D	1:1000-3:1	1:100-1:3	100-4000	200-2000
11	dicamba	1:150-10:1	1:15-1:1	30-600	70-300
12	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
13	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
14	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
	in combination with				•
	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
15	fluroxypyr	1:150-10:1	1:15-1:1	30-600	70-300
16	clopyralid	1:125-30:1	1:12-1:1	10-500	50-250
17	fenoxaprop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				
	fenchlorazole	1:12-300:1	1:1-7:1	1-50	10-25
18	diclofop	1:500-3:1	1:50-1:7	100-2000	500-1000

19	tralkoxydim	1:125-3:1	1:15-1:2	100-500	150-300
20	clodinatop in combination with	1:50-30:1	1:5-2:1	10-200	40-100
	cloquintocet-mexyl	1:12-300:1	1:1-7:1	1-50	10-25
21	sulfosulfuron	1:12-300:1	1:2-20:1	1-50	4-4()
22	prosulfuron	1:125-125:1	1:3-3:1	4-300	20-70
23	metribuzin	1:250-30:1	1:25-1:1	10-1000	50-500
24	glyphosate	1:500-3:1	1:50-1:4	100-2000	250-1000
25	ethametsulfuron-methyl	1:10-300:1	2:3-7:1	1-50	10-30

d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S,S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

				l l	
İ			Preferred		Preferred
<u> </u>			Ratio	Use Rate	Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
1	tribenuron-methyl	1:10-300:1	1:1-14:1	1-50	5-20
2	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
3	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:5-300:1	2:1-14:1	1-20	5-10
44	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
5	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
6	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:10-300:1	1:1-7:1	1-20	5-10
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
7	chlorsulfuron	1:10-300:1	2:3-7:1	1-50	10-30
8	chlorsulfuron	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with		Ì		
	metsulfuron-methyl	1:2-300:1	5:1-35:1	1.10	2.4

9	triasulfuron	1:10-300:1	2:3-7:1	1-50	10-30
10	2,4-D	1:1000-3:1	1:100-1:3	100-4000	200-2000
11	dicamba	1:150-10:1	1:15-1:1	30-600	70-300
12	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
13	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
14	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
	in combination with				
	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
15	fluroxypyr	1:150-10:1	1:15-1:1	30-600	70-300
16	clopyralid	1:125-30:1	1:12-1:1	10-500	50-250
17	fenoxaprop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				
	fenchlorazole	1:12-300:1	1:1-7:1	1-50	10-25
18	diclofop	1:500-3:1	1:50-1:7	E00-2000	500-1000
19	tralkoxydim	1:125-3:1	1:15-1:2	100-500	150-300
20	clodinafop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				r.
	cloquintocet-mexyl	1:12-300:1	1:1-7:1	1-50	10-25
21	sulfosulfuron	1:12-300:1	1:2-20:1	1-50	4-4()
22	prosulfuron	1:125-125:1	1:3-3:1	4-300	20-70
23	metribuzin	1:250-30:1	1:25-1:1	10-1000	50-500
24	glyphosate	1:500-3:1	1:50-1:4	100-2000	250-1000
25	ethametsulfuron-methyl	1:10-300:1	2:3-7:1	1-50	10-30

e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

			Preferred		Preferred
			Ratio	Use Rate	Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
11	tribenuron-methyl	1:10-300:1	1:1-14:1	1-50	5-20
2	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40

in combination with tribenuron-methyl 1:5-300:1 2:1-14:1 1-20 5-10			T	 	T	<u></u>
tribenuron-methyl 1:5-300:1 2:1-14:1 1-20 5:10	3	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
4 metsulfuron-methyl 1:5-300:1 3:1-35:1 1-20 2-6		in combination with				
5 thifensulfuron-methyl in combination with metsulfuron-methyl in combination with metsulfuron-methyl in combination with tribenuron-methyl in combination with tribenuron-methyl in combination with metsulfuron-methyl in combination with metsulfuron-methyl in combination with metsulfuron methyl in combination with metsulfuron in combination with in combination with in combination with in combination with metsulfuron in combination with metsulfuron in combination with metsulfuron in combination with metsulfuron in combination with fenchlorazole in combination with fenchlorazole in combination with fenchlorazole in combination with combination with combination with combination with combination with combination with combination with combination with cloquintocet-mexyl in 125-30:1 in 1:50-1:7 in 100-2000 50:000 100-1000 in combination with cloquintocet-mexyl in 1:23-30:1 in 1:2-2:1 in 10-200 40-100 in combination with cloquintocet-mexyl in 1:2-300:1 in 1:2-2:1 in 1-50 4-4:00 2:00 prosulfuron in 1:2-2:1:1 in 1:2-3:1 1-5:00 4-4:00 2:00 prosulfuron in 1:2-2:1:1 in 1:2-3:1 1-5:00 4-4:00 2:00 prosulfuron in 1:2-2:1:1 in 1:2-3:00 1-1:2-3:1 1-3:00 4-4:00 2:00 1-3:00 1-3:00 1-3:00 1-3:00 1-3:00 1-3:00 1-3:00 1-3		tribenuron-methyl	1:5-300:1	2:1-14:1	1-20	5-10
in combination with metsulfuron-methyl 1:5-300:1 3:1-35:1 1-20 2-6	4	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
metsulfuron-methyl	5	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
6 thifensulfuron-methyl in combination with tribenuron-methyl in combination with tribenuron-methyl in combination with metsulfuron with metsulfuron with metsulfuron tin combination with cloquintocet-mexyl tin combination with cloquintocet-mexyl tin combination tin tin combination with cloquintocet-mexyl tin combination tin combination with cloquintocet-mexyl tin combination tin combination with cloquintocet-mexyl tin combination tin combination tin combination with cloquintocet-mexyl tin combination tin combination with cloquintocet-mexyl tin combination tin combination with cloquintocet-mexyl tin combination tin combination tin combination with cloquintocet-mexyl tin combination tin combination tin combination with cloquintocet-mexyl tin combination tin combin tin combination tin combination tin combination with cloquintoc		in combination with				
In combination with tribenuron-methyl in combination with metsulfuron-methyl in combination with metsulfuron with metsulfuron 1:10-300:1 2:3-7:1 1-50 10:30 1:10-300:1 1:1-7:1 1-50 10:30 1:10-300:1 1:1-7:1 1-50 10:30 1:10-300:1 1:1-7:1 1-50 10:30 1:10-300:1 1:1-7:1 1-50 10:30 1:10-300:1 1:1-7:1 1-50 10:30 1:10-300:1 1:1-7:1 1-50 10:30 1:10-300:1		metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
tribenuron-methyl 1:10-300:1 1:1-7:1 1-20 5-10	6	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
In combination with metsulfuron-methyl 1;5-300;1 3;1-35;1 1-20 2-6 7 chlorsulfuron 1;10-300;1 2;3-7;1 1-50 10:30 8 chlorsulfuron 1;10-300;1 1;1-7;1 1-50 10:20 10:		in combination with				
metsulfuron-methyl		tribenuron-methyl	1:10-300:1	1:1-7:1	1-20	5-10
7 chlorsulfuron 1:10-300:1 2:3-7:1 1-50 10-30 8 chlorsulfuron 1:10-300:1 1:1-7:1 1-50 10-20 8 chlorsulfuron 1:10-300:1 2:3-7:1 1-50 10-20 9 triasulfuron 1:10-300:1 2:3-7:1 1-50 10-30 10 2,4-D 1:1000-3:1 1:100-1:3 100-4000 200-2000 11 dicamba 1:150-10:1 1:15-1:1 30-600 70-300 12 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 13 MCPA 1:500-6:1 1:50-1:4 100-2000 250-1000 14 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 15 fluroxypyr 1:500-6:1 1:50-1:4 50-2000 100-1000 15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:12-30:1 1:12-1:1 10-50 50-250 17 </td <td></td> <td>in combination with</td> <td></td> <td></td> <td></td> <td></td>		in combination with				
8 chlorsulfuron in combination with metsulfuron-methyl 1:10-300:1 1:1-7:1 1-50 10-20 9 triasulfuron 1:10-300:1 2:3-7:1 1-50 10-30 10 2,4-D 1:1000-3:1 1:100-1:3 100-4000 200-2000 11 dicamba 1:150-10:1 1:15-1:1 30-600 70-300 12 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 13 MCPA 1:500-6:1 1:50-1:1 50-2000 100-1000 14 bromoxynil 1:500-6:1 1:50-1:4 100-2000 250-1000 15 fluroxypyr 1:150-10:1 50-2000 100-1000 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with fenchlorazole 1:12-300:1 1:15-1:2 100-200 500-100 19 tralkoxydim 1:125-3:1 1:50-1:7 100-200 500-100		metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
in combination with metsulfuron-methyl 1:2-300:1 5:1-35:1 1-10 2-4 9 triasulfuron 1:10-300:1 2:3-7:1 1-50 10-30 10 2.4-D 1:1000-3:1 1:100-1:3 100-4000 2000-2000 11 dicamba 1:150-10:1 1:15-1:1 30-600 70-300 12 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 13 MCPA 1:500-6:1 1:50-1:1 50-2000 100-1000 14 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 14 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 15 fluroxypyr 1:150-10:1 1:50-1:1 30-600 70-300 15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop 1:50-30:1 1:50-1:7 100-200 500-1000 18 diclofop 1:500-3:1 1:50-1:7 100-200 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop 1:50-30:1 1:50-30:1 1:5-2:1 10-200 40-100 in combination with cloquintocet-mexyl 1:12-300:1 1:5-2:1 10-200 40-100 10-25 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	7	chlorsulfuron	1:10-300:1	2:3-7:1	1-50	10-30
metsulfuron-methyl 1:2-300:1 5:1-35:1 1-10 2-4	8	chlorsulfuron	1:10-300:1	1:1-7:1	1-50	10-20
9 triasulfuron 1:10-300:1 2:3-7:1 1-50 10-30 10 2.4-D 1:1000-3:1 1:100-1:3 100-4000 200-2000 11 dicamba 1:150-10:1 1:15-1:1 30-600 70-300 12 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 13 MCPA 1:500-6:1 1:50-1:1 50-2000 100-1000 14 bromoxynil 1:500-6:1 1:50-1:1 50-2000 100-1000 15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with fenchlorazole 1:12-300:1 1:1-7:1 1-50 10-25 18 diclofop 1:500-3:1 1:50-1:7 100-2000 500-1000 20 clodinafop 1:50-30:1 1:5-2:1 10-50 40-100 in co		in combination with				
10		metsulfuron-methyl	1:2-300:1	5:1-35:1	1-10	2-4
11 dicamba 1:150-10:1 1:15-1:1 30-600 70-300 12 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 13 MCPA 1:500-6:1 1:50-1:1 50-2000 100-1000 14 bromoxynil 1:500-3:1 1:50-1:4 100-2000 250-1000 15 fluroxypyr 1:150-10:1 1:50-1:1 50-2000 100-1000 15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with fenchlorazole 1:12-300:1 1:17-7:1 1-50 10-25 18 diclofop 1:500-3:1 1:50-1:7 100-200 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop 1:50-30:1 1:5-2:1 10-200 40-100	9	triasulfuron	1:10-300:1	2:3-7:1	1-50_	10-30
12	10	2.4-D	1:1000-3:1	1:100-1:3	100-4000	200-2000
13 MCPA	11	dicamba	1:150-10:1	1:15-1:1	30-600	70-300
14 bromoxynil in combination with MCPA 1:500-3:1 1:50-1:4 100-2000 250-1000 15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop in combination with fenchlorazole 1:50-30:1 1:5-2:1 10-200 40-100 18 diclofop 1:500-3:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop in combination with cloquintocet-mexyl 1:12-300:1 1:5-2:1 10-200 40-100 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	12	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
in combination with MCPA 1:500-6:1 1:50-1:1 50-2000 100-1000 15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with fenchlorazole 1:12-300:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:50-3:1 1:5-2:1 100-500 150-300 20 clodinafop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with cloquintocet-mexyl 1:12-300:1 1:1-7:1 1-50 10-25 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	13	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
MCPA 1:500-6:1 1:50-1:1 50-2000 100-1000 15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop in combination with fenchlorazole 1:50-30:1 1:5-2:1 10-200 40-100 18 diclofop 1:500-3:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop in combination with cloquintocet-mexyl 1:50-30:1 1:5-2:1 10-200 40-100 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	14	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
15 fluroxypyr 1:150-10:1 1:15-1:1 30-600 70-300 16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop in combination with fenchlorazole 1:50-30:1 1:5-2:1 10-200 40-100 18 diclofop 1:500-3:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with cloquintocet-mexyl 1:12-300:1 1:1-7:1 1-50 10-25 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70		in combination with				
16 clopyralid 1:125-30:1 1:12-1:1 10-500 50-250 17 fenoxaprop in combination with fenchlorazole 1:50-30:1 1:5-2:1 10-200 40-100 18 diclofop 1:500-3:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop in combination with cloquintocet-mexyl 1:50-30:1 1:5-2:1 10-200 40-100 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70		МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
17 fenoxaprop in combination with fenchlorazole 1:50-30:1 1:5-2:1 10-200 40-100 18 diclofop 1:50-30:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop in combination with cloquintocet-mexyl 1:12-300:1 1:5-2:1 10-200 40-100 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	15	fluroxypyr	1:150-10:1	1:15-1:1	30-600	70-300
in combination with fenchlorazole 1:12-300:1 1:1-7:1 1-50 10-25 18	16	clopyralid	1:125-30:1	1:12-1:1	10-500	50-250
fenchlorazole 1:12-300:1 1:1-7:1 1-50 10-25 18 diclofop 1:500-3:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with cloquintocet-mexyl 1:12-300:1 1:1-7:1 1-50 10-25 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	17	fenoxaprop	1:50-30:1	1:5-2:1	10-200	40-100
18 diclofop 1:500-3:1 1:50-1:7 100-2000 500-1000 19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop 1:50-30:1 1:5-2:1 10-200 40-100 in combination with cloquintocet-mexyl 1:12-300:1 1:1-7:1 1-50 10-25 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70		in combination with				
19 tralkoxydim 1:125-3:1 1:15-1:2 100-500 150-300 20 clodinafop in combination with cloquintocet-mexyl 1:50-30:1 1:5-2:1 10-200 40-100 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70		fenchlorazole	1:12-300:1	1:1-7:1	1-50	10-25
20 clodinafop in combination with cloquintocet-mexyl 1:50-30:1 1:5-2:1 10-200 40-100 21 sulfosulfuron 1:12-300:1 1:1-7:1 1-50 10-25 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	18	diclofop	1:500-3:1	1:50-1:7	100-2000	500-1000
in combination with cloquintocet-mexyl 1:12-300:1 1:1-7:1 1-50 10-25 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	19	tralkoxydim	1:125-3:1	1:15-1:2	100-500	150-300
cloquintocet-mexyl 1:12-300:1 1:1-7:1 1-50 10-25 21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70	20	clodinafop	1:50-30:1	1:5-2:1	10-200	40-100
21 sulfosulfuron 1:12-300:1 1:2-20:1 1-50 4-40 22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70		in combination with				
22 prosulfuron 1:125-125:1 1:3-3:1 4-300 20-70		cloquintocet-mexyl	1:12-300:1	1:1-7:1	1-50	10-25
	21	sulfosulfuron	1:12-300:1	1:2-20:1	1-50	4-4()
23 metribuzin 1:250-30:1 1:25-1:1 10-1000 50-500	22	prosulfuron	1:125-125:1	1:3-3:1	4-300	20-70
1 10-1000 10-1000 10-1000	23	metribuzin	1:250-30:1	1:25-1:1	10-1000	50-500

	24	glyphosate	1:500-3:1	1:50-1:4	100-2000	250-1000
i	25	ethametsulfuron-methyl	1:10-300:1	2:3-7:1	1-50	10-30

f) 2-[(4,5-dihydro-2,7,10-trimethyl-2*H*[1]benzothiepino[5,4-*c*]pyrazol-9-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S,S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

			Preferred		Preferred
			Ratio	Use Rate	Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
1	tribenuron-methyl	1:10-300:1	1:1-14:1	1-50	5-20
2	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
3	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:5-300:1	2:1-14:1	1-20	5-10
4	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
5	thifensulfuron-methyl	1:25-300:1	1:2-7:1	1-100	10-40
	in combination with				
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
6	thifensulfuron-methyl	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	tribenuron-methyl	1:10-300:1	1:1-7:1	1-20	5-10
	in combination with			'	•
	metsulfuron-methyl	1:5-300:1	3:1-35:1	1-20	2-6
7	chlorsulfuron	1:10-300:1	2:3-7:1	1-50	10-30
8	chlorsulfuron	1:10-300:1	1:1-7:1	1-50	10-20
	in combination with				
	metsulfuron-methyl	1:2-300:1	5:1-35:1	1-10	2
9	triasulfuron	1:10-300:1	2:3-7:1	1-50	1()-3()
10	2,4-D	1:1000-3:1	1:100-1:3	100-4000	200-2000
11	dicamba	1:150-10:1	1:15-1:1	30-600	70-300
12	bromoxynil	1:500-3:1	1:50-1:4	100-2000	250-1000
13	MCPA	1:500-6:1	1:50-1:1	50-2000	100-1000

14	bromoxynil in combination with	1:500-3:1	1:50-1:4	100-2000	250-1000
	МСРА	1:500-6:1	1:50-1:1	50-2000	100-1000
15	fluroxypyr	1:150-10:1	1:15-1:1	30-600	70-300
16	clopyralid	1:125-30:1	1:12-1:1	10-500	50-250
17	fenoxaprop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				
	fenchlorazole	1:12-300:1	1:1-7:1	1-50	10-25
18	diclofop	1:500-3:1	1:50-1:7	100-2000	500-1000
19	tralkoxydim	1:125-3:1	1:15-1:2	100-500	150-300
20	clodinafop	1:50-30:1	1:5-2:1	10-200	40-100
	in combination with				
	cloquintocet-mexyl	1:12-300:1	1:1-7:1	1-50	10-25
21	sulfosulfuron	1:12-300:1	1:2-20:1	1-50	4-4()
22	prosulfuron	1:125-125:1	1:3-3:1	4-300	20-70
23	metribuzin	1:250-30:1	1:25-1:1	10-1000	50-500
24	glyphosate	1:500-3:1	1:50-1:4	100-2000	250-1000
25	ethametsulfuron-methyl	1:10-300:1	2:3-7:1	1-50	10-30

Preferred for better control of undesired vegetation in corn (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds in corn are mixtures of a compound of this invention with one or more of the herbicides selected from the group thifensulfuron-methyl, rimsulfuron, nicosulfuron, primisulfuron, atrazine, terbuthylazine, 2,4-D, dicamba, bromoxynil, imazethapyr, clopyralid, prosulfuron, glyphosate, glyphosate-trimesium, glufosinate, fluthiacet-methyl, quizalofop-P-ethyl, bentazone, flumetsulam, halosulfuron, sethoxydim, and flumiclorac-pentyl.

Specifically preferred mixtures for use in corn are selected from the group:
a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione *S,S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

15

10

			Preferred		Preferred
			Ratio	Use Rate	Use Rate
Combination	Combination		Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
1	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
2	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
3	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
4	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with	1			
	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
5	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with				
	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
6	prosulfuron	1:10-300:1	2:1-70.1	1-50	1-10
7	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-10
	in combination with				
	primisulfuron	1:10-300:1	2:1-70:1	1-50	1-10
8	atrazine	1:500-3:1	1:25-1:1	100-2000	100-500
9	terbuthylazine	1:500-3:1	1:25-1:1	100-2000	100-500
10	dicamba	1:125-30:1	1:5-7:1	10-500	10-100
11	2,4-D	1:250-6:1	1:25-1:1	50-1000	50-500
12	bromoxynil	1:250-6:1	1:25-1:1	50-1000	50-500
13	imazethapyr	1:25-300:1	1:2-14:1	1-100	5-5()
14	glyphosate	1:250-6:1	1:25-1:1	50-1000	50-500
15	glufosinate	1:250-6:1	1:25-1:1	50-1000	50-500
16	glyphosate-trimesium	1:250-6:1	1:25-1:1	50-1000	50-500

b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S.S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

					
		İ	Preferred		Preferred
			Ratio	Use Rate	Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
1	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
2	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
3	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
4	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with				
	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-1()
5	rımsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with				
	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-1()	1-5
6	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-10
7	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-10
	in combination with				
	primisulfuron	1:10-300:1	2:1-70:1	1-50	1-10
8	atrazine	1:500-3:1	1:25-1:1	100-2000	100-500
4)	terbuthylazine	1:500-3:1	1:25-1:1	100-2000	100-500
10	dicamba	1:125-30:1	1:5-7:1	10-500	10-100
11	2,4-D	1:250-6:1	1:25-1:1	50-1000	50-500
12	bromoxynil	1:250-6:1	1:25-1:1	50-1000	50-500
13	irnazethapyr	1:25-300:1	1:2-14:1	1-100	5-50
14	glyphosate	1:250-6:1	1:25-1:1	50-1000	50-500
15	glufosinate	1:250-6:1	1:25-1:1	50-1000	50-500
16	glyphosate-trimesium	1:250-6:1	1:25-1:1	50-1000	50-500

c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-5-methyl-1,3-cyclohexanedione <math>S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

			Preferred Ratio	Use Raie	Preferred Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
1	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-1()
2	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
3	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
4	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with				
	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
5	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
·	in combination with				
	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
6	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-1(1
7	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-10
	in combination with				į
	primisulfuron	1:10-300:1	2:1-70:1	1-50	1-10
8	atrazine	1:500-3:1	1:25-1:1	100-2000	100-500
9	terbuthylazine	1:500-3:1	1:25-1:1	100-2000	100-500
10	dicamba	1:125-30:1	1:5-7:1	10-500	10-100
11	2,4-D	1:250-6:1	1:25-1:1	50-1000#	50-500
12	bromoxynil	1:250-6:1	1:25-1:1	50-1000	50-500
13	imazethapyr	1:25-300:1	1:2-14:1	1-100	5-50
14	glyphosate	1:250-6:1	1:25-1:1	50-1000	50-500
15	glufosinate	1:250-6:1	1:25-1:1	50-1000	50-500
16	glyphosate-trimesium	1:250-6:1	1:25-1:1	50-1000	50-500

d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S,S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

····		·		
		Preferred		Preferred
		Ratio	Use Rate	Use Rate
	Ratio Range	Range	Range of	Range
Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
nicosulfuron	1:10-300:1	1:1-70:1		1-10
rimsulfuron	1:5-300:1	1:1-70:1		1-10
in combination with				1-10
nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
in combination with	ļ			
thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
prosulfuron	1:10-300:1	2:1-70:1		1-10
prosulfuron	1:10-300:1		1	1-10
in combination with				1-10
primisulfuron	1:10-300:1	2:1-70:1	1-50	1-10
atrazine	1:500-3:1	1:25-1:1		100-500
terbuthylazine				100-500
dicamba				10-100
2,4-D	1:250-6:1			50-500
bromoxynil	1:250-6:1			50-500
unazethapyr	1		i	5-50
				50-500
				50-500
glyphosate-trimesium	1:250-6:1	1:25-1:1	50-1000	50-500
	thifensulfuron-methyl nicosulfuron rimsulfuron in combination with nicosulfuron rimsulfuron in combination with thifensulfuron-methyl prosulfuron prosulfuron in combination with primisulfuron atrazine terbuthylazine dicamba 2.4-D bromoxynil tmazethapyr glyphosate glufosinate	Mixture Partner B of A:B rimsulfuron 1:5-300:1 thifensulfuron-methyl 1:2-300:1 nicosulfuron 1:10-300:1 rimsulfuron 1:5-300:1 in combination with 1:10-300:1 rimsulfuron 1:5-300:1 prosulfuron 1:10-300:1 prosulfuron 1:10-300:1 in combination with 1:10-300:1 primisulfuron 1:10-300:1 atrazine 1:500-3:1 terbuthylazine 1:500-3:1 dicamba 1:125-30:1 2.4-D 1:250-6:1 bromoxynil 1:250-6:1 umazethapyr 1:25-300:1 glyphosate 1:250-6:1 glufosinate 1:250-6:1	Mixture Partner B Ratio Range of A:B Range of A:B rimsulfuron 1:5-300:1 1:1-70:1 thifensulfuron-methyl nicosulfuron 1:10-300:1 1:1-70:1 rimsulfuron 1:5-300:1 1:1-70:1 prosulfuron 1:10-300:1 2:1-70:1 prosulfuron 1:10-300:1 2:1-70:1 in combination with 1:10-300:1 2:1-70:1 prosulfuron 1:10-300:1 2:1-70:1 in combination with 1:10-300:1 2:1-70:1 primisulfuron 1:10-300:1 2:1-70:1 atrazine 1:500-3:1 1:25-1:1 dicamba 1:125-30:1 1:25-1:1 bromoxynil 1:250-6:1 1:25-1:1 umazethapyr 1:25-30:1 1:25-1:1 glyphosate 1:250-6:1 1:25-1:1	Mixture Partner B Ratio Range of A:B Range of A:B B (g/ha) rimsulfuron 1:5-300:1 1:1-70:1 1-20 thifensulfuron-methyl 1:2-300:1 1:1-70:1 1-10 nicosulfuron 1:10-300:1 1:1-70:1 1-50 rimsulfuron 1:5-300:1 1:1-70:1 1-50 prosulfuron 1:10-300:1 2:1-70:1 1-50 prosulfuron 1:10-300:1 2:1-70:1 1-50 in combination with 1:10-300:1 2:1-70:1 1-50 in combination with 1:10-300:1 2:1-70:1 1-50 atrazine 1:500-3:1 1:25-1:1 100-2000 terbuthylazine 1:500-3:1 1:25-1:1 50-1000 dicamba 1:125-30:1 1:25-1:1 50-1000

e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

			Preferred		Preferred
j			Ratio	Use Rate	Use Rate
Combination		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
ı	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
2	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
3	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
4	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with				
	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-1()
5	rimsulfuron	1:5-300:1	1:1-70:1	1-20	,1-10
-	in combination with	İ			
	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
6	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-[(1
7	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-10
	in combination with				
	primisulfuron	1:10-300:1	2:1-70:1	1-50	1-10
8	atrazine	1:500-3:1	1:25-1:1	100-2000	100-500
9	terbuthylazine	1:500-3:1	1:25-1:1	100-2000	100-500
10	dicamba	1:125-30:1	1:5-7:1	10-500	10-100
11	2.4-D	1:250-6:1	1:25-1:1	50-1000	50-500
12	bromoxynil	1:250-6:1	1:25-1:1	50-1000	50-500
13	imazethapyr	1:25-300:1	1:2-14:1	1-100	15-50
14	glyphosate	1:250-6:1	1:25-1:1	50-1000	50-500
15	glutosinate	1:250-6:1	1:25-1:1	50-1000	50-500
16	glyphosate-trimesium	1:250-6:1	1:25-1:1	50-1000	50-500

f) 2-[(4,5-dihydro-2,7,10-trimethyl-2*H*[1]benzothiepino[5,4-*c*]pyrazol-9-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S.S*-dioxide (mixture partner A. generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

		· _Y · · · · · · · · · · · · · · · · · · ·			~
			Preferred		Preferred
Cartina			Ratio	Use Rate	Use Rate
Combination -		Ratio Range	Range	Range of	Range
Number	Mixture Partner B	of A:B	of A:B	B (g/ha)	of B (g/ha)
1	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
2	thifensulfuron-methyl	1:2-300:1	1:1-70:1	.1-10	1-5
3	nicosulfuron	1:10-300:1	1:1-70:1	1-50	1-10
4	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with				1-1(,
	nicosulfuron	1:10-300:1	1:1-70:1	1-50	l-10
5	rimsulfuron	1:5-300:1	1:1-70:1	1-20	1-10
	in combination with				• • • • •
	thifensulfuron-methyl	1:2-300:1	1:1-70:1	1-10	1-5
6	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-10
7	prosulfuron	1:10-300:1	2:1-70:1	1-50	1-10
	in combination with				, , , , , , , ,
	primisulfuron	1:10-300:1	2:1-70:1	1-50	1-1()
8	atrazine	1:500-3:1	1:25-1:1	100-2000	100-500
9	terbuthylazine	1:500-3:1	1:25-1:1	100-2000	100-500
10	dicamba	1:125-30:1	1:5-7:1	10-500	10-100
11	2,4-D	1:250-6:1	1:25-1:1	50-1000	50-500
12	bromoxynil	1:250-6:1	1:25-1:1	50-1000	50-500
13	imazethapyr	1:25-300:1	1:2-14:1	1-100	5-50
14	glyphosate	1:250-6:1	1:25-1:1	50-1000	50-500
15	glufosinate	1:250-6:1	1:25-1:1	50-1000	50-500
16	glyphosate-trimesium	1:250-6:1	1:25-1:1	50-1000	50-500

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.004 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control. The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The following abbreviation is used in the Index Tables which follow: Ph = phenyl. The abbreviation "dec." indicates that the compound appeared to decompose on melting.

5

The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

Index Table A

$$R^{a}$$
 R^{b}
 R^{b}
 R^{b}
 R^{b}
 R^{b}
 R^{b}
 R^{b}
 R^{b}
 R^{b}

Cmpd	Ra	R^{b}	<u>R</u>	<u>R!</u>	<u>. n</u>	m.p. (°C)
1	Н	Н	ОН	CH ₃	2	228 (dec.)
2	H	Н	ОН	CH₂CH₃	2	205 (dec.)
3	Н	Н	ОН	CH(CH ₃) ₂	2	92 (dec.)
4	H	Н	ОН	CH ₂ CH ₂ CH ₃	2	104 (dec.)
5	CH ₃	CH ₃	ОН	CH ₃	2	106 (dec.)
6	CH_3	Н	ОН	CH ₃	2	>210
7	H	Н	ОН	CH ₃	()	98 (dec.)
8	Н	Н	ОН	CH ₃	i	:95 (dec.)
9	Н	Н	Cl	CH ₂ CH ₃	2	157-159 (dec.)
10	Н	Н	OCH_3	CH ₂ CH ₃	2	semi-solid *
11	Н	Н	OSO ₂ Ph	CH ₂ CH ₃	2	semi-solid *
12	Н	Н	O-Et ₃ NH+	СН ₂ СН ₃	2	171-182
13	Н	Н	O-K+	CH_2CH_3	2	208-210 (dec.)
14	Н	Н	O-Na ⁺	CH ₂ CH ₃	2	210-212 (dec.)
32	Н	Н	OH	phenyl	2	237-240
33	Н	Н	(2-CH ₃)phenylthio	phenyl	2	>245
34	Н	Н	(2-Cl)phenylthio	$CH_2CH_2CH_3$	2	204-208
35	Н	Н	(3-methoxy)phenylthio	$CH_2CH_2CH_3$	2	198-200
36	Н	Н	(4-CH ₃)phenylthio	$CH_2CH_2CH_3$	2	218-224
37	Н	Н	(2-CH ₃)phenylthio	$CH_2CH_2CH_3$	2	226-228
38	Н	Н	(2,6-diCl)phenylthio	$CH_2CH_2CH_3$	2	190-197
39	Н	Н	phenylthio	$CH_2CH_2CH_3$	2	230-233

40	Н	Н	benzylthio	CH ₂ CH ₂ CH ₃	2	197-199
41	Н	Н	phenylthio	CH ₂ CH ₃	2	261-262
42	H	Н	Cl	CH ₃	2	140-141 (dec.)
43	Н	Н	O-Na+	CH ₃	2	>230

Index Table B

<u>Cmpd</u>	<u>R1</u>	<u>R²</u>	<u>R³</u>	ņ	m.p. (°C)
15	CH_2CH_3	Н	CH ₂ CH ₃	2	97 (dec.)
16	CH ₂ CH ₃	Н	CH ₃	2	133 (dec.)
17	CH ₃	Н	CH ₃	2	134 (dec.)
18	CH ₂ CH ₃	SO ₂ CH ₂ CI	CH ₃	2	oil*
19	CH ₃	Н	CH ₃	()	90-91 (dec.)
20	CH ₂ CH ₃	H	CH ₃	()	58 (dec.)
21	CH ₃	Н	CH ₃	1	semi-solid *
22	CH ₂ CH ₃	Н	CH ₃	1	124 (dec.)
23	CH ₃	SO ₂ Ph	CH ₃	2	78 (dec.)
44	CH ₂ CH ₃	(4-CH ₃)phenylsulfonyl	CH ₃	2	74-75
45	CH ₂ CH ₃	C(=O)Ph	CH ₃	2	208-210
46	CH ₂ CH ₃	SO ₂ CH ₃	CH ₃	2	194-196
47	CH_2CH_3	SO ₂ Ph	CH ₃	2	oil*
48	CHaCHa	Na	CH2	า	>230

Index Table C

m.p. (°C) Structure Cmpd No. CH2CH3 196 (dec.) 24 ÇH₃ ОН ĊH3 0 25 150-152 CH₃ ОН CH3CH2 CH₃ CH₃ 75 (dec.) 26 ÇH3 ОН CH_3 CH_3 27 120 (dec.) CH₃ СНз HO CH₃ 0 CH₃ H₃C >220 28 ÇH3 ОН CH₃ 0

29 H₃C 96 (dec.)

*See Index Table D for ¹H NMR data.

Index Table D

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
10	δ 7.44 (s, 1H), 6.78 (s, 1H), 4.38 (s, 2H), 4.2 (q, 2H), 3.1 (m, 2H), 2.8 (m,
	2H), 2.71 (s, 3H), 2.54 (s, 3H), 2.2 (m, 1H), 1.8 (m, 1H), 1.52 (t, 3H), 1.48
	(s, 3H).
11	$\delta~7.7\text{-}7.3~(\text{m. 6H}),~7.1~(\text{s. 1H}),~4.36~(\text{s. 2H}),~4.21~(\text{q. 2H}),~3.1~(\text{t. 2H}),~2.7\text{-}2.5$
	(m, 8H), 2.2 (m, 2H), 1.54 (t, 3H).
18	δ 7.48 (s. 1H), 7.43 (s, 1H), 7.12 (s. 1H), 5.46 (s, 2H), 4.41 (s, 2H), 4.22 (q,
	2H), 3.97 (s, 3H), 2.76 (s, 3H), 2.64 (s, 3H), 1.54 (t, 3H).
21	$\delta~7.50~(s,~1H),~7.36~(s,~1H),~7.2~(s,~1H),~4.4~(d,~1H),~4.0~(s,~3H),~3.8~(d,~1H),$
	3.72 (s, 3H), 2.75 (s, 3H), 2.74 (s, 3H).
30	δ 7.29 (s, 1H), 6.92 (s, 1H), 3.95 (s, 3H), 3.64 (t, 2H), 2.9-2.74 (m, 4H),
	2.73 (s, 3H), 2.44 (m, 2H), 2.26 (s, 3H), 2.05 (m, 2H).
47	δ 7.97 (d, 2H), 7.7-7.5 (m, 3H), 7.45 (s, 1H), 7.34 (s, 1H), 6.91 (s, 1H), 4.3
	(s, 2H), 4.12 (q, 2H), 3.86 (s, 3H), 2.63 (s, 3H), 2.51 (s, 3H), 1.43 (t, 3H).

a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated
 by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet.

TEST A

The compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood test. Water depth was approximately 2.5 cm for the flood test and was maintained at this level for the duration of the test.

10

15

20

25

30

Plant species in the preemergence and postemergence tests consisted of barnyardgrass (Echinochloa crus-galli), barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halpense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa), barnyardgrass (Echinochloa crus-galli) and Late watergrass (Echinochloa oryzicola) grown to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response this ratings, summarized in Table A, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table A		СОМ	POUND	Table A		COMPOUND
Rate 250 g/ha	1	1.9	28	Rate 250 g/ha	1	28
POSTEMERGENCE				PREEMERGENCE		
Barley Igri	90	-	15	Barley Igri	65	G
Barnyard 2	100	0	95	Barnyardgrass	100	2 C
Barnyardgrass	90	-	9 C	Bedstraw	40	С
Bedstraw	100		45	Blackgrass	65	0
Blackgrass	95	-	40	Chickweed	100	30
Chickweed	100	_	50	Cocklebur	100	О
Cocklebur	90	-	85	Corn	10	20
Corn	80	-	0	Cotton	100	45
Cotton	100	~	90	Crabgrass	100	100
Crabgrass	90		90	Downy Brome	90	ō.
Downy Brome	85		25	Giant foxtail	100	C
Duck salad	70	15	60	Italn. Rygrass	80	О
Giant foxtail	90	-	85	Johnsongrass	100	,0
Italn. Rygrass	85	-	0	Lambsquarter	100	95
Johnsongrass	100	-	90	Morningglory	80	50
Lambsquarter	100	-	100	Rape	3.6	20
Morningglory	100	-	95	Redroot Pigweed	100	90
Rape	100	~	85	Soybean	70	60
Redroot Pigweed	95	-	90	Speedwell	100	95
Rice Japonica	95	0	95	Sugar beet	100	100
Soybean	90	-	90	Velvetleaf	100	10C
Speedwell	100	~	95	Wheat	0	С
Sugar beet	100	-	100	Wild buckwheat	80	55
Umbrella sedge	95	10	95	Wild oat	85	0
Velvetleaf	100	-	90			
Watergrass 2	100		30			
Wheat	80	-	45			
Wild buckwheat	100	-	65			
Wild oat	1.00	-	15			

Table A				COM	POUN	D				
Rate 125 g/ha	1	2	3	12	14	16	19	25	26	28
POSTEMERGENCE										
Barley Igri	80	70	30	55	65	0	-	0	10	10
Barnyard 2	100	-	80	90	-	-	10	15	25	80
Barnyardgrass	90	95	95	100	95	100	-	90	90	90
Bedstraw	95	80	90	80	90	100	***	70	70	45
Blackgrass	95	95	60	95	90	80		0	30	35
Chickweed	100	100	100	100	100	100	-		-	5 C
Cocklebur	90	90	90	95	95	100		9.0	90	.85
Corn	80	1 C	0	Э	10	55		10	20	0
Cotton	100	100	90	100	100	100	-	70	90	90
Crabgrass	90	95	9 C	95	95	100	-	85	50	90
Downy Brome	85	90	60	80	90	65	-	Ģ	C	25
Duck salad	70	-	50	90	-	-	С	10	70	3.5
Giant foxtail	90	95	70	95	95	100		60	70	70
Italm. Rygrass	85	75	50	95	70	0	-	0	C	9
Johnsongrass	95	100	90	30	95	90	-	20	40	80
Lambsquarter	100	100	95	100	100	95		90	90	100
Morningglory	100	90	90	90	90	90	-	4 C	90	90
Rape	100	90	8.0	-	95	10	-	50	90	85
Redroot Pigweed	95	90	90	100	95	95	-	90	80	-
Rice Japonica	95		55	90	-	-	0	0	60	95
Soybean	90	90	90	9.5	90	50	_	5.5	60	90
Speedwell	100	100	100	100	100	100	-	80	70	85
Sugar beet	100	100	100	100	100	100	-		-	100
Umbrella sedge	95	-	50	90	-	-	25	50	85	90
Velvetleaf	100	100	100	100	100	100	-	90	90	90
Watergrass 2	95	-	80	-	••	_	-		-	-
Wheat	70	90	50	70	85	О	-	0	0	30
Wild buckwheat	100	95	-	6.8	90	70	-	0	60	65
Wild oat	100	100	65	95	100	95		C	20	0

	1
.	<i>))</i>
	Alexander .

Table A			CO	MPOU	ND				
Rate 125 g/ha	. 1	2	3	12	14	16	25	26	28
PREEMERGENCE									
Barley Igri	0	0	0	0	9	0	O ₂	0	C
Barnyardgrass	100	95	70	95	100	100	0 .	50	10
Bedstraw	30	50	1.0	70	55	90	0.7	³ 3 O	Ţ.
Blackgrass	10	.50	10	. 0	10	10,	0	3.0	С
Chickweed	95	100	90	100	100	90	e,	100	3 G
Cocklebur	100	20	75	35	40	2,0	0	0	. 0
Corn	С	Э	0	0	Ō	. 0	0	O	0
Cotton	100	50	20	30	30	10	20	4.0	3.5
Crabgrass	100	100	100	100	100	100	C,	70	65
Downy Brome	40	0	0	95	5.5	Ó	0,	0,	0.
Giant foxtail	100	9.0	40	80	90	90 ,	0	30	Э
Italn. Rygrass	80.	С	30	0	3.0	0	1 C	0.	0
Johnsongrass	95	75	8,0	70	60	3.0	0	20	03
Lambsquarter	100	100	100	100	100	100	3.0	95	95
Morningglory	40	40	60	100	- 60	4.0	0	40	50
Rape	Ç	8.5	20	-	75	, O.,	O.	0	0
Redroot Pigweed	100	-	90	-		80.	O	7.0	60
Soybean	70	3.0	. 3.0	40	40	· C	10	3.0	50
Speedwell	100	100	95	100	100	100	11 41	3.0	801
Sugar beet	100	100	1.00	100	100	9.0			100
Velvetleaf	100	100	100	1,00	100	100	Ģ	75	100
Wheat	С.	3.0	. C	· · · · · · · · · · · · ·	3 5	o	- 0	0	e
Wild buckwheat	10	0	10	20	20	. C	·O.	o	10
Wild oat	2 80	3.0	40	0	25	0.	0	. 0	. 0

Table A					CC	OMPOU	JND						
Rate 62 g/ha	1	2	3	4	12	1.4	16	18	19	24	25	26	28
POSTEMERGENCE													
Barley Igri	70	25	20	1.0	45	45	0	C	-	20	C	О	10
Barnyard 2	95		75	3.0	90	-	-	1.00	0	C	10	10	4.5
Barnyardgrass	90	95	95	90	100	95	100	90	-	90	90	90	90
Bedstraw	95	90	80	70	80	90	95	90	-	80	60	70	4 Ŏ
Blackgrass	.90	60	50	50	75	90	70	60	-	60	С	30	20
Chickweed	100	100	100	90	100	100	100	95	-	95	-	70	5 C
Cocklebur	90	90	90	90	95	90	100	90	-	90	90	80	80
Corn	80	20	C	0	0	5	45	45	-	0	10	10	C
Cotton	100	100	90	95	100	100	100	100	-	8.0	60	80	90
Crabgrass	90	90	90	95	90	90	90	90	-	90	80	5 C	90
Downy Brome	8.0	65	3.0	30	8.0	30	20	60	-	75	0	C	10
Duck salad	50	-	30	40	70	-	-	70	0	C	0	C	35
Giant foxtail	90	90	50	70	90	90	90	90	-	80	50	60	50
Italn. Rygrass	60	70	20	3.0	60	50	0	30	-	10	0	0	0
Johnsongrass	95	50	90	70	80	90	70	100	-	70	20	35	5 0
Lambsquarter	100	100	95	100	100	100	95	100	-	90	7 C	90	100
Morningglory	95	95	90	9.0	90	90	90	90		90	3 C	85	90
Rape	95	95	80	70	-	90	10	Õ	-	-	3.0	8.0	40
Redroot Pigweed	95	95	90	90	95	90	90	90	-	7.5	90	70	9.0
Rice Japonica	90	-	35	50	80	-	-	25	20	C	Û.	50	5.5
Soybean	90	90	8.0	90	95	9 ()	40	60	-	90	55	50	90
Speedwell	100	100	100	100	100	95	100	100	-	100	4 C	-	80
Sugar beet	100	100	100	100	100	100	100	6 0	-		-	-	100
Umbrella sedge	95	-	40	90	80	-	-	70	0	0	30	60	25
Velvetleaf	100	100	100	90	100	100	100	90	-	90	85	80	90
Watergrass 2	95		70	25	-	-	-	-		-	-	-	3.0
Wheat	45	50	40	30	65	75	С	10	-	20	0	0	20
Wild buckwheat	80	80	85	80	70	90	-	30	-	O	0	20	65
Wild oat	100	95	50	60	95	95	95	60	-	70	C	C	C

Aller Green Commence

BNSDOCID: <WO___9719087A1_I_>

Table A					C	COMPO	DUND					
Rate 62 g/ha	1	2	3	4	12	14	16	18	24	25	26	28
PREEMERGENCE												
Barley Igri	0	0	С	-	0	0	C	0	0	0	. 0	C
Barnyardgrass	95	85	50	50	45	90	3 C	10	С	C	10	0
Bedstraw	С	0	10	-	70	30	40	20	О	0	Э	9
Blackgrass	0	20	С	-	-	10	Û	20	10	0	25	0
Chickweed	95	100	45	_	100	100	80	60	50	Ç	90	10
Cocklebur	70	10	40	65	20	30	0	C	Ģ	0	0	G
Corn	0	0	0	0	0	0	C	0	0	ō	()	0
Cotton	90	50	10	C	30	20	10	20	G	10	20	25
Crabgrass	100	95	100	80	100	100	70	100	70	Ç	4 C	30
Downy Brome	25	0	0		95	30	0	С	-	0	つ	0
Giant foxtail	95	60	10	0	40	70	50	70	0	O	10	Э
Italn. Rygrass	60	О	20		0	Э	Ç	0	0	C	9	0
Johnsongrass	30	45	50	80	40	30	20	0	0	0	0	0
Lambsquarter	100	100	100	-	100	100	100	100	95	2.0	95	95
Morningglory	30	0	3 C	0	3.0	20	40	0	С	О	G	٥
Rape	С	-	0	-	Э	25	С	0	С	0	ē.	0
Redroot Pigweed	95	-	80	60	-		70	50	С	-	30	10
Soybean	50	3.0	1 C	10	30	30	0	C	С	0	9	4.0
Speedwell	95	100	95	-	100	100	100	100	100	ō	3.0	0.8
Sugar beet	90	100	100		100	100	80	-	-	-		95
Velvetleaf	100	100	100	60	100	100	100	1.00	100)	Ģ	60
Wheat	0	3 0	O	-	G	3.5	0	0	С	0	0	0
Wild buckwheat	0	O	0	0	-	20	9	C	10)	0,	0
Wild oat	70	3 C	30	-	C	25	0	0	10	0	0	0

							C	COMPOUND	QZ								
€	F	C	~	<	ц	VC		· •	٠,-	α	1.9	2.4	25	36	2.1	~ :	
Rate 31 g/ha		71	n	#	r.	Ď	4	.		2	-))	1		
POSTEMERGENCE																	
Barley Igri	30	25	10	٦	40	85	€	30	0	0	:	2.0	0	0	0		
Barnyard 2	95	80	7.0	20	2.0	2.0	05	;	2.0	10	20	0	0	0	15	_	
Barnyardgrass	9.0	95	9.0	90	96	95	100	56	100	06	ı	06	80	9.0	5	6	
Bedstraw	90	7.0	8.0	70	100	80	9	07	80	06	ı	80	30	09	15	m	
Blackgrass	80	45	40	10	06	95	09	07.	09	20	ı	20	0	15	53	1	
Chickweed	100	100	100	90	I	95	000	O O	100	1	+	1	1	40		2	
Cocklebur	90	06	06	90	90	90	9.0	9.0	95	90	1	9.0	9.0	80	06	7	
Corn	7.0	0	0	0	0	0	0	0	40	30		0	0	េ	30		
Cotton	100	95	9.0	95	9.0	100	100	10C	100	100	ŧ	80	40	09	80	ω	
Crabgrass	06	90	90	96	06	9.5	85	06	06	9.0	ı	0.8	10	40	06	6	
Downy Brome	07.	50	10	01	70	75	0	7.0	0	09	:	40	0	0	3.0	1	
Duck salad	40	. 0	10	30	80	75	5	1	8.0	50	0	0	0	0	70		
Giant foxtail	90	9.0	50	50	9.0	06	70	85	0.6	8.0	:	80	40	60	09	'n	
Italn. Rygrass	30	25	20	10	30	55	20	50	0	10	ı	0	0	0	0		
Johnsongrass	95	75	01.	40	9.0	9.0	7.0	8.5	69	80	I	09	10	30	08	2	
Lambsquarter	100	100	95	90	100	100	90	100	95	66	•	70	09	0	100	CH	
Morningglory	06	98	06	96	9.0	9.0	06	90	90	90	ı	90	2.0	80	70	σ	
Rape	06	80	70	50	8.0	50	ı	40	0	0	ı	90	0	50	07.	eş t	•
Redroot Pigweed	06 1	9.0	90	75	06	000	9.0	9.0	85	9.0	ı	1	75	50	9.0	6	
Rice Japonica	7.5	30	3.5	40	45	υ. Ω	30		2.0	10	0	0	0	0	09	\sim	
Soybean	9.0	9.0	7.0	80	9.0	90	85	9.0	35	50	;	90	45	O T	8 5	တ	
Speedwell	100	100	100	100	9.0	œ, π,	85	9.5	95	100	ı	1	25	30	100	∞	

Mgar beet	100	1001	00	00		000	000	100	1.00						, ; 1 ,	0
mbrella sedge	8.5	85 20 30 60 75 80 80 70 25 0 0 10 30 85 2	3.0	09	75	80	. 96		7.0	255	0	0	1.0	30	85	. (\)
elvetleaf F	1.00	100	0.0	06	06	95. 1	0.01	100	100	6	'n	06	Ω	80	9.0	6
atergrass 2	7.0	85	. O	20.	4	1	10		ÿ.	1.	1	f	, i.,			
N eat	35	35	30	15	7.0	9	4 5	7.0	C)	10		10	G	, Ç	300	₩.
11d buckwheat	7.0	ر رق	80	် က	7.5	95	5	ි ි	07.	50		0	0	0	40	Ġ
lld oat	100	80%	35	40	90	0.0	7.5	. 06	9.5	40		76	С	Ċ	7.0%	1. 1

() () () () () () () () () ()							COM	COMPOUND								
Rate 31 d/ha	-	C	m	4	ហៈ	9	12	14	16	8	24	25	56	رن ز.'	C) 30	~
	1	I														
FREEMENGENCE						•	,	(<	¢	Ó	ć	<	Ċ	c	
Barley Igri	ပ	0	0	;	0	0	0	0	0	>	>	೨	>	<u>.</u>	5	
Barnyardgrass	80	15	10	20	7.0	35	10	7.0	С	C	0	0	0	9	0	
Bedstraw	0	0	10	1	40	0	53 53	30	0	10	0	၁	0	07.	0	
Blackgrass	0	0	0	1	10	15	0	10	0	20	0	0	10	0	0	
Chickweed	ያ የ	10	30	1	0	85	95	100	30	09	0	0	10	0	0	6
Cocklebur	3.0	2.0	30	30	20	0	٠	20	0	0	0	0	0	ဝ	0	
Corn	0	0	0	0	0	C	O	C	С	0	C	0	0	C:	0	
Cotton	30	30	10	O	C	3 C		0:	C	2.0	0	0	10	0	20	~:
Crabgrass	95	95	100	35	100	06	0.6	007	70	0	30	0	0	08	07	4
Downy Brome	С	0	0	ı	0	0	98	30	0	0	С	0	0	С	0	
Giant foxtail	75	20	O	0	50	40	20	3.0	30	20	O	0	0	10	0	,_
Italn. Rygrass	40	0	10	•	0	0	0	0	0	0	0	0	0	0	0	
Johnsongrass	20	10	ı	0	10	20	30	20	0	0	0	0	0	C	0	
Lambsquarter	100	95	100	ı	95	100	100	100	0.6	100	09	C	09	06	9.6	10
Morningglory	10	5.0	0	0	0	10	ı	1	20	0	С	0	0	C	0	10
Rape	0	0	0	1	0	O	ı	0	С	O	0	C	С	1.0	0	
Redroot Pigweed	3.0	08	7.0	30	07.	ì	:	1	50	:	0	0	0	7.0	1	
Soybean	∵	O	೦	10	0	10	3.0	10	0	0	ت	0	0	С	୍ଷ	
Speedwell	7.0	100	95	ŧ	0	100	100	100	100	100	0	1	;	50	08	10
Sugar beet	36	100	95	i	ı	80	100	100	50			1			95	6
Velvetleaf	100	160	100	30	100	100	1.00	100	09	100	08	0	0	96	90	m
Wheat	C	0	0	:	0	3.0	0	3.0	0	0	0	0	0	0	Ç	
Wild buckwheat	C	0	0	1	0	0	0	0	0	C	Ċ.	0	0	0	0	
Wild oat	40	C	10	:	0	25	0	25	Ö	0	10	0	0	C	0	

Table A			* 1				S)	COMPOUND	NC						* * * * * * * * * * * * * * * * * * * *		
Rate 16 g/ha		L1	, m	4	S	æ	1.2	1.4	16	C	5.7	(ე დ	26.	27	30	33	
POSTEMERGENCE			ŕ					+ 1 +1 +1									
Barley Iqri	5.5	10	0	0	40	0.9	10	10	0	0	50	0	0	0	20	2.0	
Barnyard 2	52	7.0	3.0	15.	10	1.5	9.0	,1	2.0	0.4	O	, o	0	15.	10	0	٠
Barnyardgrass	95	90	0.6	၁ 6	90	95	9 S	9.2	100	06	06	\$# ·	82	9 D	100	9 5	
Bedstraw	7.0	0		0.9	06	7.0	0.9		80	08	08	3.0	20	50	70	9	
Blackgrass	8.5	3.5	35	0	75	0.6	40.	09	30	30	20	0	0.1	33	50	80	
Chuckweed	100	100	9.5	7.0	9.0	9.0	.95.	95:	0.6	ì	. 1	i	ì.	1	96	,	
Cocklebur	100	06	66	06	06	0.6	06	0.6	0.6	90	, O	80	2.0	06	ı	7.0	
Corn	75	0	0	0	.0	0	ر <u>ن</u> ي :	0	C	10	0	0	O,	2.0	0	0	
Cotton	100	9.2	85	8.5	7.0	100	100	0.6	0.6	0.6	10	40	45	8.0	06	80	
Crabgrass	95	9.0	8.5	0.6	06	.06	io C	22	ec æ	ω .	8.0	0.9	40	80	95	0.6	
Downy Brome	S S	10	0	0	70.	40	0	45	0	3.0	404	ÇЭ	0	1.0	50	2.0	
Dack salad	30	0	0	20	75	2.5	70	;	40	35	0	0	0	33	0	0	
Giant foxtail	96	06	45	30	70	8	09	0.8	ထ	û/.	0.9	52	0	50	08	06	
Italn. Rygrass	40	25	10	C	30	0	Ô	က က	0	0	0	0	0	0	3.0	40	
Johnsongrass	100	75	7.0	40	90	9.0	50	75	09	7.0	4.0	0	30	7.0	80	06	
Lambsquarter	υ) σ-	100	9.5	06	06	የብ:	0.6	<u>ာ</u>	06	⊕. œ	ر ان	ر در	20	80	0 6	09	
Mgrningglory	06	06	82	0.6	06	80	6.0	06	9.0	<u>\$</u>	06	୍ର	80	5.0	69	09	
Rape	2.5	80	70	3.0	80	100	1	3.0	Ç	Ç.	30	Ç.	02	20	606	.20	
Redroot Pigweed	0.6	06	80	75	06	0.7	യ യ	0.8	80.	7.5	09	ያን የያ	99	$\overset{\bigcirc}{\infty}$	80	0.8	
Rice Japonica	<u>0</u> ;	25	25	10	0	2.5	3.0	1	20	0.1	0	0	٥	2.0	C	0	
Søybean	06	707	70	. 80	သ္ထ	.08	85	0.6	G:	4.0	08	3.5	0.	္တဲ့	30	08	
Speedwell	90	9.5	1001	80	.}	80.	08	0.6	9.6	08	8.0	i		00	1		
Swgar beet	100	100	1.00	1.00	1	9.2	1.00	100	9.5			,	Ć i		100	1	
Umbrella sedge	5 6	0	Ö	3.0	20	80	80	1	10	Ö	o ·	0	<u>.</u>	117	15	0	

Velvetleaf	100	100 100 100		06 06	06	06	9.5	100	95 90		0.6	80	80	80	100	06
Watergrass 2	30	25	30 25 30	ı			ı		•	ı	1	1	ì	1	•	t
Wheat	30	30 25	20	7,0	5.0	3	20	50	0	0	0 0 10 0 0	0	0	2.0	09	6.5
Wild buckwheat	85	85 65	09	30 40	40	75	30	0 75	7.0	0	70 0 0 0 0 30	0	0	30	30	20
Wild oat	90	90 65	25	5.5	7.0	95	65	80	7.0	30	0.0	0	0	0.0	06	06

	1.									e i								
	fable A							ŭ	COMPOUND	ONI			j ,	¥				
	Eate 16 g/ha		Z	m,	4	ហ	9	v(1) 	77	16	$\frac{\infty}{1}$	24	25	26	27	3.0	3.1	
	PREEMERGENCE																	
	Barley Igri	0	0	0	i	0	0	0	0	0	0	0		0	တ်	0	: 0	
	Barnyardgrass	0.9	0	0	0	30	10		10	0	0	0	0	0	0	ن	0	
	Bedstraw	0	,0	0	1	10	0		.0	0	0	0	0	0	50	0	0	
	Blackgrass	0	0	С	1	0	10	C	10	O		0	O	0	Ö	0	3.0	
	Chickweed	20	O .:	30	. 1	0	10.	95	1.00	30	40.	0	0	30	0		00	
	&ocklebur	20	(O	20	10	0	0	20	20	0	0	0	, 0	0	0	0	0	
	(orn	20	0,	0	0	0	0	©	0.0	0	, 0	0	ت	0	0	0	0	
P.	Cotton	Ģ	3.0	0	0	0	3.0	47	0	.0	10	0	0	0	0	0	0	
	Grabss	09	80	100	50	75	80	10	L- π)	30	80	0	Q	0	20	2.0		
	aowny Brome	0	C	0	1	9	0	95	30	0	, ¹ 0	O,	0	0	0	O	0	
	Grant foxtail	20	10	0	O	1.0	5.0	10	r T	Ö	,0	0	೦	0	10	0	25	
	jealn. Rygrass	0	0	1.0	. •	<u>ت</u> ۽	P.	0	<u></u>	9	0	0	0	0	c O	0	0	
	Johnsongrass	2.0	0	40	C	0	1.0	0	1,	0	0	0	Ö	0	0	0	10	
	gambsquarter	7.0	9.	100	1.	95	100	100	100	90	60	j	0	0.7	· .t ·	O	10	
	Morningglory	30	0	Ô	Ö,	0	0	G /	0	3.0	\circ	r <u>i</u> :	0	0	0	3.0	10	
	Rape	0	0,	0		0	0	١,	1	O	0	©	0	0	D	0	0	
	Redroot Pigweed	40	30	70.	0	40	F.	٠.	Ε.	, O	.20	, O	څ	0	40	Q.	30	
	Soybean	30	0	0	С	Ca ,	10	3.0	0	, O '	= 1	0	O	0	0	0	0	
	Speedwell	100	00!	06	1	2 !	100	1001	100	Θά	07.	Û	Ç	0	C.	9.6	07.0	
٠	Sugar beet	25	Ö.	10	1.		1.	06	55	Ö	i			i	•	<u>ن</u>		
	Velvetleaf	.0 .0	06	82	20	100	100	06	100	40	0.7	<u>.</u> .	C.	5	07	0	08 08	
	Wheat	C	C	Ç.	. 1	Ci	2	©	07	0	\$3°	75	G,	၁	Q	:	Φ	
	Wild buckwheat	0.	(C)	0		0	0	÷	0	0	0	0	0	ਹ	ن	O	0	
	Wild cat	0	0	10	.1	Ō	53	s.	25	0	O	C	0	0	0	O	0	

Table A							COM	POUN	D				
Rate 8 g/ha	1	2	4	5	6	12	14	16	1.5	24	27	30	3 L
POSTEMERGENCE													
Barley Igri	35	0	o	30	50	40	10	Ō	0	0	G	0	10
Barnyard 2	35	40	1 C	10	Э	10	_	15	0	0	10	0	0
Barnyardgrass	95	90	90	90	95	95	90	90	90	90	95	95	95
Bedstraw	60	O	50	90	40	10	30	80	0.8	60	50	40	50
Blackgrass	60	1 C	O	60	80	0	40	1 C	20	3.0	20	3.0	40
Chickweed	95	90	70	90	80	75	90	75	-	90		8 C	
Cocklebur	100	90	70	90	9 C	85	9.5	90	90	85	90	90	60
Corn	55	С	0	С	0	0	0	15	5	0	15	О	С
Cotton	100	90	85	60	90	95	90	70	40	70	70	80	50
Crabgrass	90	85	70	90	85	50	75	9.0	8.5	80	80	85	80
Downy Brome	40	0	. 0	70	3 C	C	3 5	Э	20	10	0	3.0	20
Duck salad	30	0	10	9	10	0	-	10	0	С	0	Q	О
Giant foxtail	90	85	20	70	75	40	55	7.5	40	35	40	75	80
Italn. Rygrass	30	1. C	0	20	0	С	20	0	O	0	C	20	Û
Johnsongrass	95	€5	3.0	70	85	35	70	40	35	20	70	8.0	85
Lambsquarter	85	95	90	90	95	85	85	80	80	20	70	50	50
Morningglory	90	90	3.0	90	6.0	85	90	4 0	1.5	90	40	40	50
Rape	10	75	10	80	0	-	3.0	C	0	30	30	70	10
Redroot Pigweed	90	90	65	85	60	80	80	70		50	80	5.5	70
Rice Japonica	35	10	10	Ü	10	0		15	0	C	10	0	Э
Soybean	90	70	70	75	8.0	70	85	40	15	70	75	70	70
Speedwell	90	70	8.0	6C	80	70	8.5	60	70	70	70	C	8 C
Sugar beet	100	100	90	-	90	95	100	-	-		-	100	-
Umbrella sedge	20	0	20	0	20	60	-	20	0	9	0	0	Ű
Velvetleaf	100	100	70	90	90	95	95	90	80	85	80	90	90
Watergrass 2	25	10	0	-	-	-	_	-	-	-	-		-
Wheat	10	0	0	35	80	0	35	0	. 0	0	10	10	15
Wild buckwheat	60	65	30	30	50	3.0	35	40	0	G	20	20	0
Wild oat	90	25	10	55	90	20	70	0	10	35	30	70	50

WO 97/19087 PCT/US96/18381

Table A							COME	POUNE)				
Rate 8 g/ha	1	2	4	5	6	12	14	1.6	18	24	27	3 G	3.1
PREEMERGENCE													
Barley 1gri	0	0		0	0	O	0	0	0	Ō	Ç	0	Ç
Barnyardgrass	20	O	0	0	0	0	0	С	e	0	Э	Ċ	G
Bedstraw	0	0	-	0	0	O	O	10	0	0	Э	Э	O
Blackgrass	O	0	-	С	10	С	10	0	~	0	Ĉ	Q	20
Chickweed	0	0	-	0	-	-	95	C	-	0	-	2.5	70
Cocklebur	10	0	О	Ō	O	С	0	0	Ç	0	?	G	0
Corn	0	0	0	0	0	0	Э	0	O	C	C	C	0
Cotton	0	0	С	0	10	20		0	10	O	Ō	0	Ć
Crabgrass	20	20	С	30	50	10	3.0	60	40	0	1 0	Çı	40
Downy Brome	0	0	-	0	0	95	30	0	C	0	C	Ç	0
Giant foxtail	10	C	C	10	1.0	0	0	0	÷	0	0	C	15
Itain. Rygrass	0	O	-	0	0	0	0	C	Ċ	О	0	0	0
Johnsongrass	10	0	O	0	0	О	С	О	9	0	C	0	C
Lambsquarter	50	90	-	70	100	0	100	80	60	0	C	О	0
Morningglory	0	0	C	0	0	O	0	0	ô	0	9	Ç	O
Rape	С	0	***	О	-	0		0	Ç	Э	-	-,	Ç
Redroot Pigweed	20	. 0	0	20	-	-	-	50	Ç	O	20	0	0
Soybean	10	0	0	9	-	20	G	0	0	0	C	e	Ç
Speedwell	90	õ		-	100	100	1.00	0	5.0	-	9		C
Sugar beet	C	0	-	-	20	90	35	_		-	-	C	-
Velvetleaf	4 C	20	0	80	80	50	6¢	65	40	O	60	Ú	60
Wheat	С	С	-	С	30	G	30	Ō	Э	С	0	0	Q
Wild buckwheat	0	0	-	Ü	0	-	0	O	0	0	Ü	C	0
Wild oat	С	0	-	С	25	0	25	О	е	O	Э	Э	0

Table A			(COMPO	מאטכ			
Rate 4 g/ha	1	2	5	6	16	27	30	31
POSTEMERGENCE								
Barley Igri	0	O	Э	30	0	0	0	0
Barnyard 2	30	25	0	0	10	C	0	0
Barnyardgrass	90	90	90	95	90	90	95	90
Bedstraw	45	0	50	35	6 C	-	40	50
Blackgrass	3.5	0	20	65	C	0	10	30
Chickweed	95	7 5	80	45	-		60	-
Cocklebur	9 C	90	80	80	6.8	80	80	50
Corn	20	0	С	C	10	10	0	0
Cotton	90	90	60	80	70	70	40	50
Crabgrass	80	80	75	85	80	60	60	70
Downy Brome	30	0	20	Э	G	0	10	10
Duck salad	20	С	0	O	С	С	0	0
Giant foxtail	90	65	40	50	50	10	50	70
Italn. Rygrass	10	C	15	0	0	0	0	0
Johnsongrass	95	60	50	65	30	40	60	70
Lambsquarter	80	75	80	90	70	50	5.5	15
Morningglory	90	90	90	3.0	40	40	10	25
Rape	0	30	5.0	9	0	20	40	О
Redroot Pigweed	60	90	80	4.5	40	7 C	50	70
Rice Japonica	20	0	C	O	15	10	0	0
Soybean	85	45	70	70	40	75	40	50
Speedwell	85	70		60	30	70	О	60
Sugar beet	100	100	-	60	-	-	90	
Umbrella sedge	1 C	С	О	С	10	0	0	0
Velvetleaf	100	100	90	90	90	80	90	90
Watergrass 2	20	10	-	-	-	-	-	-
Wheat	0	0	10	35	0	О		0
Wild buckwheat	25	20	10	30	0	0	10	-
Wild oat	65	С	30	7 C	. 0	10	20	35

Table A				СОМРО	DUND			
Rate 4 g/ha	1	2	5	6	16	27	30	31
PREEMERGENCE								
Barley Igri	О	0	0	Э	0	0	0	0
Barnyardgrass	0	. 0	0	0	O	0	0	0.0
Bedstraw	0	0	0	C	0	е	0	0
Blackgrass	0	0	0	0	0	O	С	0
Chickweed	0	0	C	-	0	0	25	С
Cocklebur	0	C	O	О	Ö	. 0	. 0	0
Corn	0	Э	0	0	G	Э	0	0
Cotton	. 0	0	0	О	0	0	0	0
Crabgrass	0	10	10	20	30	С	C	0
Downy Brome	0	- O	О	0	0	ô	C	Û
Giant foxtail	O	О	O	0	0	Э,	0	10
Italn. Rygrass	0	C	O	С	0	0	0	0
Johnsongrass	0	О	0	0	0	0	0	С
Lambsquarter	20	70	0	100	5.01	0	. '0	. 0
Morningglory	0	0	0	,0	0 '	. C	О	0
Rape	ÇO	0	0	c	0	0	0	. 0
Redroot Pigweed	. 0	O,	10	-	3.0	0	0	0
² Soybean	0	0	С	Ú	0.	0	-0	9
Speedwell	2 0.	. 0		30	0	C.	95 `	- 1
Sugar beet	O	, 0		20		-	0.	· .
Velvetleåf	.20	Ö	40	0.	50	40	9	20
Wheat	0	0	0.	3 C	0	o O	0.	. 0
Wild buckwheat	0.	0	0	, O	0.	. 0	0	О
Wild oat	0	0	c	25	0	0	. 0	0

Table A	COMPOUND	Table A	COMPOUND
Rate 2 g/ha	1	Rate 2 g/ha	<u>.</u>
POSTEMERGENCE		PREEMERGENCE	
Barley Igri	С	Barley Igri	9
Barnyard 2	30	Barnyardgrass	0
Barnyardgrass	90	Bedstraw	G
Bedstraw	10	Blackgrass	0
Blackgrass	30	Chickweed	()
Chickweed	70	Cocklebur	Ó
Cocklebur	80	Corn	C
Corn	С	Cotton	Ç
Cotton	80	Crabgrass	9
Crabgrass	80	Downy Brome	٥
Downy Brome	10	Giant foxtail	C
Duck salad	20	Italn. Rygrass	Ĝ
Giant foxtail	80	Johnsongrass	0
Italn. Rygrass	0	Lambsquarter	20
Johnsongrass	70	Morningglory	C
Lambsquarter	40	Rape	0
Morningglory	70	Redroot Pigweed	l C
Rape	0	Soypean	9
Redroot Pigweed	60	Speedwell	20
Rice Japonica	10	Sugar beet	Ç
Soybean	85	Velvetleaf	0
Speedwell	3.5	Wheat	0
Sugar beet	95	Wild buckwheat	0
Umbrella sedge	C	Wild oat	0
Velvetleaf	100		
Watergrass 2	20		
Wheat	С		
Wild buckwheat	0		
Wild oat	40		

Table A	COMPOUND	Table A	COMPOUND
Rate 1 g/ha	1	Rate 1 g/ha	1
POSTEMERGENCE		PREEMERGENCE	
Barley Igri	Э	Barley Igri	0
Barnyard 2	30	Barnyardgrass	0
Barnyardgrass	90	Bedstraw	0
Bedstraw	Э	Blackgrass	0
Blackgrass	10	Chickweed	C
Chickweed	60	Cocklebur	0
Cocklebur	80	Corn	0
Corn	0	Cotton	G ·
Cotton	50	Crabgrass	Č
Crabgrass	70	Downy Brome	0
Downy Brome	C	Giant foxtail	0
Duck salad	С	Italn, Rygrass	0
Giant foxtail	60	Johnsongrass	0
Italn. Rygrass	0	Lambsquarter	10
Johnsongrass	50	Morningglory	0
Lambsquarter	20	Rape	Ð
Morningglory	4 C	Redroot Pigweed	0
Rape	0	Soybear.	0
Redroot Pigweed	30	Speedwell	10
Rice Japonica	10	Sugar beet	¢
Soybean	70	Velvetleaf	0
Speedwell	30	Wheat	0
Sugar beet	95	Wild buckwheat	0
Umbrella sedge	0	Wild oat	0
Velvetleaf	90		
Watergrass 2	20		
Wheat	C .		
Wild buckwheat	0		
Wild oat	35	·	

TEST B

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test, and 13 days after the last postemergence planting.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alexandergrass (Brachiaria plantaginea), american black nightshade (Solanum americanum), apple-of-Peru (Nicandra physaloides), arrowleaf sida (Sida rhombifolia), brazilian sicklepod (Cassia tora Brazilian), brazilian signalgrass (Brachiaria decumbens), capim-colchao (Digitaria horizontalis), cristalina soybean (Glycine max Cristalina), florida beggarweed (Desmodium purpureum), hairy beggarticks (Bidens pilosa), slender amaranth (Amaranthus viridis), southern sandur (Cenchrus echinatus), tall morningglory (Ipomoea purpurea), tropical spiderwort (Commelina benghalensis), W20 Soybean (Glycine max W20), W4-4 Soybean (Glycine max W4-4) and wild pointsettia (Eupohorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 13 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table B, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

Table B	C	COMPO	DUND		Table B	(COMPO	DUND
Rate 280 g/ha	1	2	4		Rate 140 g/ha	1	2	4
POSTEMERGENCE				e .	POSTEMERGENCE			
Acanthospermum	100	100	100		Acanthospermum	100	90	100
Alexandergrass	100	100	100		Alexandergrass	100	100	100
Apple-of-Peru	100	100	100		Apple-of-Peru	100	100	100
Arrowleaf Sida	80	85	100		Arrowleaf Sida	70	80	100
B. Signalgrass	100	90	100		B. Signalgrass	100	9.5	100
Bl. Nightshade	100	100	100		Bl. Nightshade	.100	100	100
Braz Sicklepod	60	65	100		Braz Sicklepod	55	40	50
Capim-Colch	100	100	100		Capim-Colch	100	85	100
Crist. Soybean	95	25	90		Crist. Soybean	100	95	90
Fl. Beggarweed	100	100	100		Fl. Beggarweed	100	100	-
H. Beggarticks	95	100	100		H. Beggarticks	80	8.0	100
Morningglory	100	90	75		Morningglory	100	100	100
Sl. Amaranth	100	100	80		Sl. Amaranth	100	85	80
Tr. Spiderwort	100	100	100		Tr. Spiderwort	85	70	90
Wld Pointsettia	100	100	100		Wld Pointsettia	100	100	100
W2C Soybean	85	80	90		W20 Soybean	90	85	90
W4-4 Soybean	95	80	100		W4-4 Soybean	95	85	100

Table B	COMPOUND			Table B	COMPOUN		
Rate 70 g/ha	1	2	4	Rate 35 g/ha	1	2	4
POSTEMERGENCE				POSTEMERGENCE			
Acanthospermum	100	90	100	Acanthospermum	100	80	100
Alexandergrass	100	100	85	Alexandergrass	100	95	75
Apple-of-Peru	100	100	80	Apple-of-Peru	7.0	100	70
Arrowleaf Sida	65	75	100	Arrowleaf Sida	60	65	100
B. Signalgrass	90	90	70	B. Signalgrass	90	80	70
Bl. Nightshade	100	100	100	Bl. Nightshade	100	100	100
Braz Sicklepod	50	3.0	40	Braz Sicklepod	15	15	20
Capim-Colch	90	75	100	Capim-Colch	80	6.5	80
Crist. Soybean	100	90	80	Crist. Soybean	160	8.0	87
Fl. Beggarweed	100	30	-	Fl. Beggarweed	80	8.0	-
H. Beggarticks	75	70	8 C	H. Beggarticks	70	69	6.3
Morningglory	100	85	100	Morningglory	100	70	8.5
Sl. Amaranth	75	8.0	70	Sl. Amaranth	75	6.5	65
Tr. Spiderwort	80	65	85	Tr. Spiderwort	75	6.5	6 C
Wld Pointsettia	100	100	100	Wld Pointsettia	1.00	100	8.5
W20 Soybean	90	85	85	W20 Soybean	90	85	85
W4-4 Soybean	90	85	90	W4-4 Soybean	90	85	90

Table B	(COMP	OUND	Table B	(СОМР	OUND
Rate 17 g/ha	<u>-</u>	2	4	Rate 8 g/ha	1	2	4
POSTEMERGENCE				POSTEMERGENCE			
Acanthospermum	100	70	85	Acanthospermum	90	70	80
Alexandergrass	100	9 C	70	Alexandergrass	85	80	60
Apple-of-Peru	70	100	60	Apple-of-Peru	65	100	40
Arrowleaf Sida	60	65	70	Arrowleaf Sida	50	65	50
B. Signalgrass	85	70	70	B. Signalgrass	80	60	65
Bl. Nightshade	70	85	100	Bl. Nightshade	70	85	80
Braz Sicklepod	10	15	15	Braz Sicklepod	0	10	1.0
Capim-Colch	70	40	55	Capim-Colch	5.5	25	25
Crist. Soybean	100	75	80	Crist. Soybean	8 C	75	55
Fl. Beggarweed	80	8 û	100	Fl. Beggarweed	80	70	100
H. Beggarticks	6.5	55	65	H. Beggarticks	5.5	50	60
Morningglory	80	65	75	Morningglory	70	65	55
Sl. Amaranth	65	65	55	Sl. Amaranth	60	60	5 G
Tr. Spiderwort	60	60	50	Tr. Spiderwort	40	40	35
Wld Pointsettia	70	85	75	Wld Pointsettia	70	65	50
W20 Soybean	85	75	85	W20 Soybean	75	70	65
W4-4 Soybear.	85	75	85	W4-4 Soybean	85	65	65

TEST C

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include American black nightshade (Solanum americanum), arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), Florida beggarweed (Desmodium purpureum), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb (Polygonum persicaria), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table C, were based upon a 0 to 100 scale where 0 was no effect and 100 was complete control. A dash response (-) means no test result.

		i		
Table C	COMPOUND	Table C	COM	POUND
Rate 280 g/ha	2 4	Rate 280 g/ha	2	4
POSTEMERGENCE		PREEMERGENCE		
Arrowleaw Sida	70 ⊴75 ∞	Arrowleaw Sida	95	100
Barnyardgrass	100 100	Barnyardgrass	100	90
Cocklebur	100 100	Cocklebur	95	55
Common Ragweed	100 100	Common Ragweed	100	100
Corn	10 10	Corn	0	C
Cotton	100 100	Cotton	100	25
Estrn Blknight	100 100	Estrn Blknight	-	
Fall Panicum	100 100	Fall Panicum	100	100
Field Bindweed	100 90	Field Bindweed	90	90
Fl Beggarweed	100 100	Fl Beggarweed	100	160
Giant Foxtail	100 100	Giant Foxtail	100	100
Hairy Beggartic	75 70	Hairy Beggartic	100	60
Ivyleaw Mrnglry	100 100	Ivyleaw Mrnglry	55	65
Johnsongrass	95 80	Johnsongrass	75	5.5
Ladyschumb	100 100	Ladysthumb	100	1,0:0
Lambsquarters	100 100	Lambsquarters	. –	- .
Large Crabgrass	100 100	Large Crabgrass	100	100
Purple Nutsedge	90 75	Purple Nutsedge	80	60
Redroot Pigweed	100 -	Redroot Pigweed	100	100
Soybean	100 100	Soybear.	70	20::
Serinam Grass	100 100	Surinam Grass	100	9.0
Velvetleaf	100 100	Velvetleaf	100	100
Wild Poinsettia	100 100	Wild Poinsettia	95	90

						1			
Table C		CC	OMPOU	JND		Table C	C	OMPO	JND
Rate 140 g/ha	1	2	4	5	,6.	Rate 140 g/ha	1	2	4
POSTEMERGENCE						PREEMERGENCE			
Arrowleaw Sida	100	50	55	60	90	Arrowleaw Sida	100	40	45
Barnyardgrass	100	100	95	100	100	Barnyardgrass	100	100	25
Cocklebur	100	100	100	95	100	Cocklebur	90	75	40
Common Ragweed	100	1.00	100	100	100	Common Ragweed	100	100	95
Corr.	0	0	0	45	5	Corn	0	0	0
Cotton	100	1.00	90	95	100	Cotton	45	65	10
Estrn Blknight	100	100	100	100	100	Estrn Blknight	100	100	-
Fall Panicum	100	95	95	100	100	Fall Panicum	100	100	100
Field Bindweed	100	95	85	100	90	Field Bindweed	60	50	55
Fl Beggarweed	100	100	100	100	100	Fl Beggarweed	100	100	100
Giant Foxtail	100	100	95	100	100	Giant Foxtail	100	95	70
Hairy Beggartic	85	65	65	95	100	Hairy Beggartic	1.0	90	35
Ivyleaw Mrnglry	80	100	95	100	100	Ivyleaw Mrnglry	70	3.0	25
Johnsongrass	100	85	70	100	100	Johnsongrass	90	45	15
Ladysthumb	100	100	100	100	100	Ladysthumb	100	100	100
Lambsquarters	100	100	100	95	95	Lambsquarters	95	100	-
Large Crabgrass	90	95	95	100	100	Large Crabgrass	100	100	90
Purple Nutsedge	85	80	45	20	100	Purple Nutsedge	10	70	25
Redroot Pigweed	100	100	-	100	90	Redroot Pigweed	100	100	85
Soybean	100	100	100	95	90	Soybean	60	20	C
Surinam Grass	100	90	90	90	100	Surinam Grass	100	80	65
Velvetleaf	100	100	100	100	100	Velvetleaf	100	100	100
Wild Poinsettia	100	100	100	100	100	Wild Poinsettia	1.00	45	3.0

WO 97/19087 PCT/US96/18381

Table C COMPOUND											
Rate 70 g/ha	1	2	3	ί,	5	6	16	31			
POSTEMERGENCE											
Arrowleaw Sida	100	50	85	70	60	85	65				
Barnyardgrass	100	95	95	95	95	100	100	95			
Cocklebur	95	100	85	95	95	95	95	60			
Common Ragweed	1.00	100	100	100	100	100	190	95			
Corn	0	10	1 C	0	30	5	60	0			
Cotton	1.00	95	85	90	95	100	95	95			
Estrn Blknight	100	100	100	95	100	100	100	100			
Fall Panicum	100	95	80	100	100	100	95	95			
Field Bindweed	90	100	85	65	80	6 C	6C	50			
Fl Beggarweed	100	100	100	100	100	100	1.00	95			
Giant Foxtail	95	95	50	8 C	100	100	95	90			
Hairy Beggartic	70	65	75	60	85	85	C 8	90			
Ivyleaw Mrnglry	8.0	100	90	95	95	100	:5	80			
Johnsongrass	95	1.00	25	60	95	100	65	95			
Ladysthumb	1.00	100	95	100	100	100	100	100			
Lambsquarters	100	100	100	1.00	95	95	100	100			
Large Crabgrass	90	95	80	80	100	100	95	90			
Purple Nutsedge	80	80	0	25	20	95	95	75			
Redroot Pigweed	100	100	100	95	100	90	100	100			
Scybean	100	100	95	95	90	85	60	80			
Surinam Grass	95	95	80	65	90	100	90	9 C			
Velvetleaf	100	100	100	90	100	100	100	100			
Wild Poinsettia	100	95	100	100	85	90	65	80			

Table C	COMPOUND						
Rate 70 g/ha	1	2	3	4			
PREEMERGENCE							
Arrowleaw Sida	80	50	С	15			
Barnyardgrass	100	95	35	15			
Cocklebur	90	10	0	0			
Common Ragweed	95	100	95	55			
Corn	0	Э	0	0			
Cotton	20	0	10	10			
Estrn Blknight	100	100	-	100			
Fall Panicum	100	100	75	85			
Field Bindweed	50	3.0	10	0			
F: Beggarweed	95	85	-	100			
Giant Foxtail	100	3 5	10	2 C			
Hairy Beggartic	Ð	25	10	20			
Ivyleaw Mrnglry	20	0	С	С			
Johnsongrass	40	25	25	10			
Ladysthumb	90	55	-	50			
Lambsquarters	95	95	-	95			
Large Crabgrass	100	100	100	100			
Purple Nutsedge	5	6C	0	0			
Redroot Pigweed	90	80	55	3.5			
Soybean	55	15	0	0			
Surinam Grass	100	70	60	1.0			
Velvetleaf	100	100	100	95			
Wild Poinsettia	80	35	20	15			

Table C					COM	POUN	D			
Rate 35 g/ha	1	2	3	4	5	6	16	1.8	30	3.1
POSTEMERGENCE										
Arrowleaw Sida	80	90	70	4.5	60	50	20	70	70	65
Barnyardgrass	100	100	95	90	85	100	95	90	100	95
Cocklebur	90	100	80	95	90	95	95	80	95	60
Common Ragweed	100	100	100	90	100	100	100	100	95	95
Corn	О	20	15	Q	20	0	20	3.5	5	0
Cotton	100	100	75	80	85	100	95	90	95	9 C
Estrn Blknight	100	100	95	8.5	100	95	100	85	100	100
Fall Panicum	90	100	75	95	100	100	100	90	100	9.5
Field Bindweed	90	80	80	50	80	60	50	6.5	5	50
Fl Beggarweed	90	100	95	100	9 C	50	95	100	100	100
Giant Foxtail	80	95	40	55	85	100	100	85	100	90
Hairy Beggartic	70	70	60	40	60	80	70	70	70	80
Ivyleaw Mrnglry	70	9.5	80	95	90	80	40	60	60	65
Johnsongrass	8 C	90	20	60	70	100	20	70	100	85
Ladysthumb	100	100	95	90	100	100	100	100	100	100
Lambsquarters	95	100	95	100	95	95	90	80	100	95
Large Crabgrass	85	95	75	7 C	85	100	100	100	100	90
Purple Nutsedge	3.0	85	C	25	20	3 0	90	75	7.5	-
Redroot Pigweed	95	100	95	90	80	90	95	80	190	100
Soybean	8.5	100	95	9.5	95	80	40 -	65	95	75
Surinam Grass	90	95	70	65	80	95	90	75	20	85
Velvetleaf	100	100	95	9 C	100	100	100	100	100	100
Wild Poinsettia	90	100	95	9.0	85	85	20	6.5	8.0	75

Table C		COMP	DKUC						
Rate 35 g/ha	1	2	3	4					
PREEMERGENCE									
Arrowleaw Sida	80	25	0	C					
Barnyardgrass	20	15	10	0					
Cocklebur	20	55	С	0					
Common Ragweed	90	75	35	20					
Corn	0	0	C	0					
Cotton	5	100	0	C					
Estrn Blknight	100	95	-	95					
Fall Panicum	100	100	15	75					
Field Bindweed	50	3 C	0	0					
Fl Beggarweed - 50 25 15									
Giant Foxtail	100	15	0	0					
Hairy Beggartic	0	35	0	O					
lvyleaw Mrnglry	O	О	C	0					
Johnsongrass	10	0	0	0					
Ladysthumb	_	30	••	30					
Lambsquarters	C	95	-	75					
Large Crabgrass	-	95	70	3.5					
Purple Nutsedge	0	25	0	0					
Redroot Pigweed	50	7 C	-	15					
Soybear	40	0	U	0					
Surinam Grass	95	45	10	0					
Velvetleaf	100	100	100	70					
Wild Poinsettia	50	25	0	С					

Table C					COM	POUN	D			
Rate 17 g/ha	1	2	3	4	5	6	16	18	30	31
POSTEMERGENCE										
Arrowleaw Sida	50	6 C	65	35	10	50	20	70	20	80
Barnyardgrass	100	95	90	90	70	100	95	90	100	90
Cocklebur	90	100	70	90	90	90	85	85	85	50
Common Ragweed	100	100	100	95	85	90	100	80	95	9 C
Corn	0	0	С	0	5	0	20	25	5	0
Cotton	100	100	70	70	60	90	90	80	90	75
Estrn Blknight	95	100	95	80	95	9 C	100	80	100	100
Fall Panicum	70	85	45	40	85	100	100	85	95	85
Field Bindweed	80	65	55	45	8 Û	60	20	5.5	5	25
Fl Beggarweed	8.5	100	7.5	60	85	50	80	90	100	100
Giant Foxtail	65	80	25	45	0.8	90	100	80	95	80
Hairy Beggartic	50	65	40	30	60	10	30	60	60	65
Ivyleaw Mrnglry	70	95	60	80	80	80	40	45	60	5 5
Johnsongrass	50	80	15	15	70	80	5	60	95	80
Ladysthumb	90	55	85	75	100	95	100	90	100	100
Lambsquarters	8 C	100	80	85	95	80	90	80	100	100
Large Crabgrass	85	85	45	55	60	100	90	90	100	85
Purple Nutsedge	5	60	0	15	5	30	50	45	20	
Redroot Pigweed	80	95	80	90	75	80	90	80	100	95
Soybean	85	100	85	85	90	70	3.5	35	8.5	70
Surinam Grass	90	80	45	60	60	80	80	70	5	70
Velvetleaf	100	100	95	95	100	100	100	100	100	95
Wild Poinsettia	70	95	85	90	60	80	5	50	60	65

Table C		COMPO	CNUC	
Rate 17 g/ha	-	2	3	4
PREEMERGENCE				
Arrowleaw Sida	50	15	О	0
Barnyardgrass	10	10	0	0
Cocklebur	20	20	0	C
Common Ragweed	20	55	0	O
Corn	0	0	0	O
Cotton	C	15	0	0
Estrn Blknight	0	60	-	20
Fall Panicum	5.0	65	0	15
Field Bindweed	20	O	0	C
Fl Beggarweed	C	15	0	0
Giant Foxtail	0	0	O	0
Hairy Beggartic	O	15	C	С
Ivyleaw Mrnglry	0	0	0	0
Johnsongrass	5	0	0	С
Ladysthumb	-	30	-	0
Lambsquarters	0	45	-	3 5
Large Crabgrass	100	15	35	С
Purple Nutsedge	0	0	0	0
Redroot Pigweed	0	20	-	10
Soybean	C	9	С	0
Surinam Grass	10	0	C	0
Velvetleaf	100	35	35	3 5
Wild Poinsettia	45	10	0	С

Table C					COMI	POUNI)			
Rate 8 g/ha	1	2	3	4	5	б	16	18	30	3.1
POSTEMERGENCE										
Arrowleaw Sida	50	45	55	1.5	5	1.0	1. C	65	-	35
Barnyardgrass	100	90	85	85	65	100	90	90	95	90
Cocklebur	80	100	65	50	8 C,	85	85	75	80	20
Common Ragweed	95	95	95	75	50	90	100	8,0	60	90
Corn	. 0	10	Ö	0	0	0	5	.1.5	0	О
Cotton	100	95	3.0	35	50	8,0	80	70	70,	70
Estrn Blknight	95	100	90	75	85	90	100	75	100	100
Fall Panicum	50	8,0	25	2,5	6 C	70	95	80	90	8.5
Field Bindweed	70	35	30	3.5	10	. 60	10	50	5	10
Fl Beggarweed	70	100	65	60	80	50	0.8	85	. 80	85
Giant Foxtail	60	70	10	20	70	80	70	75	-90	80
Hairy Beggartic	50	50	3 0	20	55	О	30	55	40	50
Ivyleaw Mrnglry	70	7.0	45	80	70	65	25	35	.15	10
Johnsongrass	30	50	1 C	20	60	55	5	55	€5	40
Ladysthumb	90	40	75	65	10	90	100	75	70	10
Lambsquarters	70	95	75	75	9.0	40	90	- 75	60.	65
Large Crabgrass	08	80	3 5	50	, 6,0	85	95	85	90	75
Purple Nutsedge	.0	0	0	. 5	. C	10,	Ľ,	.25.	1.5	.20
Redroot Pigweed	85	95	75	65	70	70	80	8.0	80	85
Soybean	80	100	75	. 60	70	60	2,0	20	80	45
Surinam Grass	80	65	25	40	4.0	45	70	65	O	20
Velvetieaf	100	100	85	75	100	100	,85	85	95	95
Wild Poinsettia	50	85	70	60	70	70	0	30	15	- 50

Table C	•	COMPO	DUND	
Rate 8 g/ha	1	2	3	4
PREEMERGENCE				
Arrowleaw Sida	50	C.	0	0
Barnyardgrass	0	0	С	0
Cocklebur	G	10	O	0
Common Ragweed	0	5 C	0	0
Corn	Ģ.	0	C	0
Cotton	0	Û	Ô	0
Estrn Blknight	0	45	-	-
Fall Panicum	C	20	0	0
Field Bindweed	Ç.	C	О	C
Fl Beggarweed	0	0	С	C
Giant Foxtail	0	0	0	C
Hairy Beggartic	0	0	C	С
Ivyleaw Mrnglry	Û	0	0	0
Johnsongrass	0	C	О	C
Ladysthumb	0	0	-	С
Lambsquarters	Э	30	-	1 C
Large Crabgrass	80	0	C	C
Purple Nutsedge	C:	0	O	0
Redroot Pigweed	O	C	-	0
Soybean	C	C	0	0
Surinam Grass	C	С	0	О
Velvetleaf	70	15	10	20
Wild Poinsettia	С	10	0	0

Table C COMPOUND									
Rate 4 g/ha	2	3	4	16	18	30	31		
POSTEMERGENCE									
Arrowleaw Sida	35	45	15	5	55	5	35		
Barnyardgrass	90	30	55	90	85	95	85		
Cocklebur	95	30	45	70	65	70	10		
Common Ragweed	90	85	65	95	55	C	60.		
Corn	0	0	0	0	10	0	9		
Cotton	60	15	25	70	60	65	35		
Estrn Blknight	80	75	65	100	70	95	100		
Fall Panicum	60	10	20	90	7 0	80	40		
Field Bindweed	25	20	10	5	3.0	0	10		
Fl Beggarweed	100	50	25	75	70	75	100		
Giant Foxtail	55	0	15	65	65	70	50		
Hairy Beggartic	25	20	10	10	50	30	25		
Ivyleaw Mrnglry	60	25	70	0	20	5	C		
Johnsongrass	35	0	0	0	50	10	10		
Ladysthumb	25	60	25	100	45	70	10		
Lambsquarters	85	70	60	75	70	40	50		
Large Crabgrass	55	25	20	90	75	85	65		
Purple Nutsedge	C	0	0	5	20	10	50		
Redroot Pigweed	75	70	60	8.0	75	60	65		
Soybean	90	60	60	15	15	70	15		
Surinam Grass	55	15	20	4 C	55	0	20		
Velvetleaf	100	60	60	70	75	90	75		
Wild Poinsettia	75	45	30	0	20	15	40		

				1		
Table C	C	омроц	JND	Table C	COMP	OUND
Rate 4 g/ha	2	3	4	Rate 2 g/ha	2	4
PREEMERGENCE				POSTEMERGENCE .		
Arrowleaw Sida	0	0.	О	Arrowleaw Sida	25	10
Barnyardgrass	0	0	0	Barnyardgrass	75	25
Cocklebur	0	0	0	Cocklebur	80	0
Common Ragweed	25	0	0	Common Ragweed	85	60
Corn	0	o Î	0	Corn	О	С
Cotton	O	0	0	Cotton	25	15
Estrn Blknight	0	-	0	Estrn Blknight	75	6 C
Fall Panicum	0	0	О	Fall Panicum	15	15
Field Bindweed	-	С	C	Field Bindweed	20	5
Fl Beggarweed	0	C	С	Fl Beggarweed	100	5 C
Giant Foxtail	С	0	0	Giant Foxtail	15	С
Hairy Beggartic	0	0	0.	Hairy Beggartic	15	1 C
Ivyleaw Mrnglry	Э	0	0	Ivyleaw Mrnglry	40	10
Johnsongrass	0	0	0	Johnsongrass	0	С
Ladysthumb	С	-	0	Ladysthumb	10	10
Lambsquarters	О	_	С	Lambsquarters	85	60
Large Crabgrass	С	O	0	Large Crabgrass	45	10
Purple Nutsedge	0	С	0	Purple Nutsedge	0	O
Redroot Pigweed	С	25	0	Redroot Pigweed	70	45
Soybean	С	0	0	Soybean	70	20
Surinam Grass	0	G	С	Surinam Grass	30	C
Velvetleaf	10	0	0	Velvetleaf	95	,15
Wild Poinsettia	С	0	0	Wild Poinsettia	50	20

Table C		COMPOUND
Rate 2 g/ha	2	4
PREEMERGENCE		
Arrowleaw Sida	0	0
Barnyardgrass	0	0
Cocklebur	0	0
Common Ragweed	0	0
Corn	Q	О
Cotton	0	. 0
Estrn Blknight	0	0
Fall Panicum	0	0
Field Bindweed	С	C
Fl Beggarweed	С	0
Giant Foxtail	0	5
Hairy Beggartic	0	0
Ivyleaw Mrnglry	С	0
Johnsongrass	0	0
Ladysthumb	0	-
Lambsquarters	O	0
Large Crabgrass	0	0
Purple Nutsedge	0	0
Redroot Pigweed	0	0
Soybean	0	0
Surinam Grass	0	0
Velvetleaf	С	0
Wild Poinsettia	0	С

TEST D

Seeds of barnyardgrass (Echinochloa crus-galli), bindweed (Concolculus arvensis), black nightshade (Solanum ptycanthum dunal), cassia (Cassia obtusifolia), cocklebur (Xanthium strumarium), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutam), crabgrass (Digitaria spp.), fall panicum (Panicum dichotomi- florum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarter (Chenopodium album), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), prickly sida (Sida spinosa), shattercane (Sorghum vulgare), signalgrass (Brachiaria platyphylla), smartweed (Polygonum pensylvanicum), soybean (Glycine max), sunflower (Helianthus annuus), velvetleaf (Abutilon theophrasti), wild proso (Pancium miliaceum), woolly cupgrass (Eriochloa villosa), yellow foxtail (Setaria lutescens) and purple nutsedge (Cyperus rotundus) tubers were planted into a sandy loam or clay loam soil. These crops and weeds were grown in the greenhouse until the plants ranged in height from two to eighteen cm (one to four leaf stage), then treated postemergence with the test chemicals formulated in a nonphytotoxic solvent mixture which included a surfactant. Pots receiving preemergence treatments were planted immediatley prior to test chemical application. Pots treated in this fashion were placed in the greenhouse and maintained according to routine greenhouse procedures.

Treated plants and untreated controls were maintained in the greenhouse approximately 14-21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

Table D	-	COMP	OUND	Table D COMPO	OUND
Rate 280 g/ha	1	2	4	Rate 140 g/ha 1 2	<u>:</u>
POSTEMERGENCE				POSTEMERGENCE	
Barnyardgrass	100	100	1.00	Barnyardgrass 100 100	100
Bindweed	95	95	100	Bindweed 95 100	100
Blk Nightshade	100	100	1.00	Blk Nightshade 100 100	100
Cassia	60	20	10	Cassia 50 5	10
Cocklebur	100	100	100	Cocklebur 100 100	100
Corn	10	35	20	Corn 5 30	20
Cotton	90	90	100	Cotton 90 100	1.00
Crabgrass	95	95	100.	Crabgrass 95 100	100
Fall Panicum	100	95	100	Fall Panicum 95 100	100
Giant Foxtail	95	95	100	Grant Foxtail 95 100	100
Green Foxtail	95	95	100	Green Foxtail 95 100	100
Jimsonweed	100	100	100	Jimsonweed 100 100	100
Johnson Grass	95	95	100	Johnson Grass 95 100	100
Lambsquarter	95	95	100	Lambsquarter 95 100	100
Morningglory	100	100	100	Morningglory 100 90	100
Nutsedge	95	95	80	Nutsedge 95 100	60
Pigweed	100	9.5	100	Pigweed 100 100	9 C,
Prickly Sida	80	50	80	Prickly Sida 80 50	50
Ragweed	100	100	100	Ragweed 100 100	100
Shattercane	100	100	100	Shattercane 100 100	100
Signalgrass	95	100	10C	Signalgrass 95 100	100
Smartweed	100	100	100	Smartweed 100 100	1.00
Soybean	90	90	100	Soybean 90 100	100
Sunflower	100	100	100	Sunflower 100 100	100
Velvetleaf	100	100	1.00	Velvetleaf 100 100	100
Wild Proso	95	95	1.00	Wild Proso 95 100	100
Woolly cupgrass	95	95	80	Woolly cupgrass 95 100	80
Yellow Foxtail	95	95	100	Yellow Foxtail 95 100	100

Table D		COMP	OUNE)		Table D		COME	OUND)
Rate 70 g/ha	.1	3	4	28		Rate 35 g/ha	i.	2	4	28
POSTEMERGENCE						POSTEMERGENCE				
Barnyardgrass	100	100	100	90		Barnyardgrass	95	100	100	60
Bindweed	90	100	100	60		Bindweed	90	95	90	50
Blk Nightshade	100	100	100	100		Blk Nightshade	100	100	190	90
Cassia	5	5	5	0	-	Cassia	5	e	5	C
Cocklebur	100	100	100	50		Cocklebur	1.00	100	95	40
Corn	5	50	1.5	С		Corn	0	30	1.5	, o
Cotton	90	100	100	50		Cotton	90	100	100	50
Crabgrass	95	100	100	70		Crabgrass	90	90	100	50
Fall Panicum	95	100	1.00	20		Fall Panicum	95	100	80	5
Giant Foxtail	95	100	95	0		Giant Foxtail	90	100	85	C
Green Foxtail	95	100	100	O		Green Foxtail	95	100	90	C
Jimsonweed	100	100	100	100	ĺ	Jimsonweed	100	100	100	95
Johnson Grass	90	100	80	10		Johnson Grass	90	100	6.0	Ü
Lambsquarter	9 C	100	100	100		Lambsquarter	90	100	90	100
Morningglory	100	100	100	90		Morningglory	1.00	1.00	90	60
Nutseage	95	100	30	10		Nutsedge	90	90	10	5
Pigweed	100	100	8.0	60		Pigweed	95	100	70	60
Prickly Sida	50	60	20	0		Prickly Sida	10	50	5	Э
Ragweed	100	100	100	40		Ragweed	100	1.00	100	40
Shattercane	100	100	100	0		Shattercane	100	100	100	0
Signalgrass	95	100	100	-		Signalgrass	95	100	60	-
Smartweed	100	10C	100	90		Smartweed	100	100	100	60
Soybean	90	100	95	70		Soybean	9 0	100	95	70
Sunflower	100	100	100	3 C		Sunflower	100	100	100	30
Velvetleaf	100	100	100	90		Velvetleaf	100	100	100	85
Wild Proso	95	100	90	20		Wild Proso	95	100	83	5
Woolly cupgrass	90	90	70	5		Woolly cupgrass	90	80	70	C
Yellow Foxtail	95	100	100	0		Yellow Foxtail	95	100	50	С

					1				
Table D		COM	POUN	D	Table D		COM	POUNI)
Rate 17 g/ha	1	2	4	28	Rate 8 g/ha	1	2	4	28
POSTEMERGENCE					POSTEMERGENCE				
Barnyardgrass	95	100	100	60	Barnyardgrass	90	100	100	5
Bindweed	90	90	80	50	Bindweed	85	90	20	40
Blk Nightshade	100	100	80	70	Blk Nightshade	100	100	70	70
Cassia	0	0	0	0	Cassia	0	0	0	c
Cocklebur	100	1.00	80	3.0	Cocklebur	100	100	60	0
Corn	0	5	0	0	Corn	0	5	C	0
Cotton	90	100	80	50	Cotton	90	100	50	35
Crabgrass	90	90	80	5	Crabgrass	8.0	80	60	0
Fall Panicum	95	90	70	С	Fall Panicum	9.0	80	30	0
Giant Foxtail	90	70	60	0	Giant Foxtail	70	60	3.0	0
Green Foxtail	90	90	80	0	Green Foxtail	90	70	5	0
Jimsonweed	100	100	100	60	Jimsonweed	95	100	1.00	60
Johnson Grass	90	0.8	60	О	Johnson Grass	70	7.0	5	9
Lambsquarter	85	100	75	100	Lambsquarter	3.0	90	50	90
Morningglory	100	100	80	20	Morningglory	90	8.5	80	0
Nutsedge	90	90	C	0	Nutsedge	60	70	Ú	Ó
Pigweed	95	100	7 C	4.0	Pigweed	85	80	40	40
Prickly Sida	0	50	C	0	Prickly Sida	9	30	0	С
Ragweed	100	100	100	40	Ragweed	90	95	60	3.0
Shattercane	100	100	70	0	Shattercane	90	8.0	40	0
Signalgrass	95	1.00	60	-	Signalgrass	90	90	55	-
Smartweed	100	100	80	5 0	Smartweed	90	90	70	50
Soybean	90	100	90	6 C	Soybean	C 8	90	70	55
Sunflower	100	100	85	0	Sunflower	90	100	63	С
Velvetleaf	100	100	100	85	Velvetleaf	100	100	68	70
Wild Proso	95	100	70	0	Wild Proso	9 O	10C	60	0
Woolly cupgrass	85	50	50	0	Woolly cupgrass	60	1.0	10	0
Yellow Foxtail	95	90	50	С	Yellow Foxtail	95	90	40	0

Table D		COMP	DUND
Rate 4 g/ha	1	2	
POSTEMERGENCE			
Barnyardgrass	100	100	
Bindweed	70	90	
Blk Nightshade	70	95	
Cassia	0	0	
Cocklebur	70	100	
Corn	С	0	
Cotton	70	95	
Crabgrass	6 C	60	
Fall Panicum	70	50	
Giant Foxtail	50	30	
Green Foxtail	60	3.0	
Jimsonweed	100	100	
Johnson Grass	30	40	
Lambsquarter	0	60	
Morningglory	60	90	
Nutsedge	Ü	5	
Pigweed	60	80	
Prickly Sida	0	9	
Ragweed	90	90	
Shattercane	70	60	
Signalgrass	80	80	
Smartweed	40	80	
Soybean	50	90	
Sunflower	80	90	
Velvetleaf	100	100	
Wild Proso	80	8 C	
Woolly cupgrass	70	10	
Yellow Foxtail	80	85	

TEST E

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table E	COMP	OUND	Table E	400	1POUND
Rate 2000 g/ha	1 2	26	Rate 2000 g/ha	1	28
POSTEMERGENCE			Pre Soil		
Barley	9	6	Barley	5	0
Barnyardgrass	9	9	Barnyardgrass	10	8
Bedstraw	10	9	Bedstraw	9	8
Blackgrass	10	3	Blackgrass	9	4
Chickweed	10	9	Chickweed	9	8
Cocklebur	9	9	Cocklebur	9	5
Corn	10	4	Corn	6	C
Cotton	10	g.	Cotton	9	7
Crabgrass	9	9	Crabgrass	10	10
Downy brome	9	7	Downy brome	10	9
Glant foxtail	9	8	Giant foxtail	10	9
Lambsquarter	9	9	Lambsquarter	10	10
Morningglory	9 1	10	Morningglory	10	9
Nutsedge	8	7	Nucsedge	10	4
Rape	10 1	10	Rape	10	7
Rice	8	9	Rice	1.0	10
Sorghum	10	8	Sorghum	10	3
Soybean	9 1	1.0	Soybean	9	9
Sugar beet	9 1	10	Sugar beet	10	1 O
Velvetleaf	10 :	.0	Velvetleaf	10	10
Wheat	1.0 1	10	Wheat	8	4
Wild buckwheat.	9	8	Wild buckwheat	10	7
Wild oat	10	5	Wild oat	10	5

Table E			C	OMPO	INUC)		
Rate 400 g/ha	1	2	12	15	16	18	28	29
POSTEMERGENCE								
Barley	· · · · · · · · · · · ·	9	. 8	³⁵ 9 2	3	4	5	2
Barnyardgrass	÷ 9	. 9	10	9	10	9	9	9
Bedstraw	10	9	9	7	10	9	8	9
Blackgrass	- 9	. 9	9	•7	9	9	. 3	, 0
Chickweed	9	9	10	9	10	9	9	9
Cocklebur	9	9	10	9	10	10	. 9	9
Corn	10	10	6	5	. 9	₹8°	.3	ó
Cotton	10	10	10	9	1.0	10	9	, 9
Crabgrass	9	9	1,0	9	1.0	:9	9	9
Downy prome	9	9	è	2	7	. 7	*: 7	`.6
Giant foxtail	. 9	9	10	9	9	9	8	6
Lampsquarter	9	9	9	8	10	9	9	9
Merningglory	10	9	10	- 3	7	9	9	0
Nutsedge	9	8,	9	9	9	7	5	C
Rape	10	10	1,0	3	10	5	. 18	ò
Rice	8.	, g	10	9	9	. 9	8	8
Sorghum	9	10	1. C	6-	9	1.0	6	7
Soybean	9	ò	9	75	. 9	7	9	-8
Sugar beet	10	10	10	8	10	10,	10	1. C
Velvetleaf	10	1,0	- 1-0	ŝ	3,0	. 9	10	9
Wheat	9	9	9	6	9	- 3	9	2
Wild buckwheat	9	9	9	. 2,	1.C	9	8	8
Wild oat	10	9	10	9	1.0	10	4	9

PCT/US96/18381

Table E			C	OMP	ומטכ)		
Rate 400 g/ha	1	2	12	15	16	18	28	29
PREEMERGENCE								
Barley	1	С	0	С	0	0	0	С
Barnyardgrass	8	10	9	9	10	5	2	1
Bedstraw	7	3	8	9	10	8	5	Э
Blackgrass	8	5	5	3	4	3	0	0
Chickweed	9	8	1.0	8	9	8	3	8
Cocklebur	7	8	8	3	6	6	2	0
Corn	1	1	1.	0	-	1	О	0
Cotton	9	4	3	3	3	3	2	С
Crabgrass	10	9	10	9	10	1.0	9	9
Downy brome	9	9	à	2	10	0	0	0
Giant foxtail	10	8	7	5	9	9	2	3
Lambsquarter	1.0	10	10	9	1.0	9	1.0	9
Morningglory	7	3	9	0	1	1	3	0
Nutsedge	6	2	5	С	8	3	0	0
Rape	4	2	5	2	С	1	4	5
Rice	9	9	10	8	9	6	8	4
Sorghum	8	9	9	0	è	4	1	0
Soybean	9	8	9	0	0	1	6	2
Sugar beet	10	10	10	8	10	10	10	8
Veivetleaf	10	10	10	7	10	10	10	5
Wheat	3	3.	4	0	2	-	0	C
Wild buckwheat	7	5	6	2	С	1	0	0
Wild oat	7	7	7	3	1.0	Ģ	-	0

Table E								00	COMPOUND	CNO									
Rate 200 g/ha	\leftarrow	~	\sim	77	60	9	σ	10	15	19	2.0	. Сі	23	ਾ ਹਾ ਹ	25	5.6	27	30	31
POSTEMERGENCE																			
Barley	∞	∞	9	۲-	6	σ	1	0	!~	0	~	7	m	1.	၁	m	4	10	σ
Barnyardgrass	10	9	9/	6	0	10	10	 -	0	œ	0:	6	9	9	6	6	10	9	10
Bedstraw	6	δ	6	6	10	9	9	- 1	۵١	S	α	1.	9	6	Ø	6	10	6	∞
Blackgrass	δ	6	7	5	6	· 0	Μ	0	œ·	- i	R.	ç	m	ω	4	5	9	6	6
Chickweed	6	10	10	σ	6	9	6	~	10	\sim	∞	5	6	σ	6	1	10	6	σ.
Cocklebur	10	9	6	9	10	1.0	10	0	10	6	10	10	10	6	ा	10	0	10	10
Corn	٣	6	\sim	-	7	C4	\sim 1	r~-1	9	Н		0	φ	വ	\sim	m	∞	\sim	7
Cotton	10	10	6	10	10	0.1	1.0	\sim	1 0	4	6	6	10	0,	10	1.0	10	10	10
Crabgrass	6	6	6	6.	10	10	6	0	6	4	4	ம	10	σ	m	Μ	10	6	σι
Downy brome	œ	6	6	œ	σ	2,	√1,	0	6	0	m		ഗ	∞	c	C1	Ŋ	6	σι
Giant foxtail	6	9	S	∞	6	0.7	6	-	o,	C4	64	വ	10	6	m	ហ	σ	9	6
Lambsquarter	6	Φ	10	σι	6	10	9	۲4	ς.	σ	6)	6	6	6	σ	6	10	σ	9
Morningglery	10	6	6	10	10	10	ထ	\vdash	3 0	m	C2	5.	6.	10	, i	6	6	6	10
Nutsedge	1	œ	4	\sim	Ľ.	Φ.		ì	۲~	47	C3	-		7	\sim	۲~	6	Øì	9
Rape	9	10	10	œ	10	10	m	0	10	づ	7	ω	10	10	∞	10	10	10	5
Rice	σ	σ	œ	10	σν	10	σ	0	Ø,	ıΩ	œ	s)	5	σ,	9	6	σ,	6	9
, sorghum	δ	10	ထ	9.	10	10	on.	0	10	\bigcirc	m	C3	6	œ	Ċ1	m	10	10	10
Soybean	10	2	S	σ٠	10	07	σ.	04	(~	বা	T.	5	0	σι	<i>:</i>	9	đ.	œ	10
Sugar beet	o,	1.0	10	0:	07	10	œ	ST.	<u></u>		0	10	σ ₁	σv	10	10	10	10	10
Velvetleaf	$\stackrel{\circ}{\dashv}$	10	C,	\ominus	9	C	0	: 4	<u></u>	ω	٥١	r.,	은 급	10	07	0	10	10	10
Wheat	9	6	:~	α	œ.	c.	ব	Ú	¢.		(1	CN.	r.	۲-	4	č<	σı.	6	9
Rild buckwheat	Ð	9	7	ው	0	¢.		0	5		۲۲	c4	0.7	w	\sim	<u>; -</u>	σ	œ	œ
Wild oat	6	6	α:	G,	10	10		C.	C)	-1	៤ ៈ	Q	α	σ	\sim	ব	\bigcirc	10	10

Table E							U	COM	COMPOUND	9										
Rate 200 g/ha	r-1	\sim	~،	7	ır.	9	9	0	16	61	20	2.1	23	57 C:	25.	26	27	30	٦ 3	
PREEMERGENCE																		.;		
Barley	0	0	0	0	m	~	0	0	0	0	0	0	0	0	0	0	0	0	m	
. Barnyardgrass	6	10	10	9	σ.	un.	۲-	Ö	10	0	0	←	m	 i	0	CA	٢٦	C`	<u> </u>	
Sedstraw		∞	ď ነ	10			0	Ċ	C-)	0	ı			7		0	6	6	σ_i	
Blackgrass	4	CI	2	9	∞	6	\leftarrow	C	ניז	0		С	0	~	C	0	۲۷	9	ؿ	
Chickweed	6	6	7	9	6	6	9	O	0.		C-l	ı	rr:	9	•	ı	σ'n.	10	0	
Cocklebur	ς:	7	7	5	10	۲~	Ċ	0	~n	С	0	0	0	0	0	77	\mathcal{C}	-	~7	
Corn	0	0	C)	0	C1	0	0	0	C٠	Û	0	0	С	0	O	0	0	O	ت	
Cotton	Ţ	4	5	C1	C4	٠,۴	0	\circ	O	C)	c	0	C	С	Ó	_	О	un.	œ	
Crabgrass	6	9	10	9	10	0.7	9	C	ĵŷ	0	-	\sim	10	9	-	C4	10	0.1	10	
Downy brome	7	7	٦	တ	6	œ	ပ	0	:-	0	0	0	0	Н	0	0	∞	9	0.7	
Giant foxtail		∞	9	1	တ	9	c)	0	1~	0	0	ţ	٢-	\sim	0	~~	œ	9	o:	
Lambsquarter	0	10	1.0	9	6	0	è	¢	σ.	;	۲-	1	1.0	ø,		;	10	10	10	
Morningglory	c:	m	1 ~~	\sim	α	7	m)	0	0	0	0	\circ	0	٦	0	7	171	ć.	၁	
Nutsedge	ı	0		~	4	₹		;	0	0	C	Ø	٦	0	0	C1	1	C_1	10	
Rape	0	:-	œ	ıC	α 0	~	4	\bigcirc		0	\circ	Ċ	0	œ	0	0	~;	~	/.	
Rice	∞	6	œ.	Ċ	9	5	C4	C	ې	0	0	0	\sim	cs.	0	~3	√1′	δ	្ន	
Sorghum	œ	6.	7	C4	6	ъ,	0	ς,	٠.	0	0	0	C)		0	0	Ç.	전	σ	
Soybean	9	un:	9	0	77	ហ	0	0	=	0	С	0	0	C:	C.)	C	S	m,	
Sugar beet	σ	10	10	0	10	: :	ø.	0	0	ur.	C	0	\propto	7	0	0	6	Ð	10	
Velvetleaf	10	10	5	œ	10	0	្យ	C	<u> </u>	0	0	C4	ω,	10	63	9	10	10	10	
Wheat	-	0	0	0	9	r~	c)	C	=	0	O	0	0	0	0	0		0	i~	
Wild buckwheat	0	ব	-	2	4	دي	C	0	0	c	0	C	0	C4	0	0	0	m	c:	
Wild oat	10		~1	4	С	æ	আ	0	F# +	\circ	0	0	O	∞	0	0	σv	C:	10	

Table E					CC)MP(OUNI)			
Rate 100 g/ha	1	2	5	5	7	8	12	15	16	18	29
POSTEMERGENCE											
Barley	5	8	9	9	2	8	4	1	1	1	О
Barnyardgrass	10	10	10	10	10	10	10	9	10	9	9
Bedstraw	9	8	9	9	9	8	3	8	10	9	7
Blackgrass	9	9	9	9	5	8	7	5	8	8	0
Chickweed	9	9	9	9	9	8	1. C	9	10	9	9
Cocklebur	10	9	10	10	9	9	9	9	10	1.0	9
Corn	1	9	7	2	2	0	2	3	8	6	2
Cotton	10	1. C	10	10	8	10	10	. 5	10	10	9
Crabgrass	9	9	9	10	9	9	9	9	10	9	9
Downy brome	7	8	ġ	8	3	8	ਹੁ	1	6	5	0
Giant foxtail	9	9	9	9	ϵ	8	9	9	ò	9	1
Lambsquarter	9	9	9	9	9	8	9	8	10	9	9
Morningglory	1.0	9	9	9	9	9	10	3	8	9	0
Nutsedge	8	8	-	8	` 5	S	8	2	6	5	С
Rape	7	10	9	10	- 9	10	10	2	7	5	7
Rice	9	9	9	8	9	à	10	9	9	8	8
Sorghum	9	10	9	9	9	9	10	2	9	9	3
Soybean	10	9	10	10	5	9	g	.3	7	7	6
Sugar beet	9	10	10	10	10	10	10	8	10	10	1.0
Velvetleaf	1 C	9	1 C	7	ģ	Ģ	10	8	1. C	9	7
Wheat	б	9	9	9	4	9	7	6	8	5	0
Wild buckwheat	7	8	6	9	4	2	8	2	10	9	7
Wild oat	9	9	9	9	5	9	10	6	9	9	4

Table E					C	OMP	OUN	D			
Rate 100 g/ha	1	2	5	6	7	8	12	15	16	18	29
PREEMERGENCE											
Barley	Э	0	0	Э	0	0	0	0	0	0	0
Barnyardgrass	6	7	2	3	2	3	2	О	3	1	C
Bedstraw	С	3	С	С	0	2	0	4	9	1	0
Blackgrass	3	1	4	4	0	1	3	0	2	1 .	0
Chickweed	7	8	8	3	2	5	5	7	9	7	3
Cocklebur	3	4	5	2	-	3	3	c	7	_	Ō
Corn	C	0	C	О	0	0	Ü	0	O	0	ð
Cotton	0	2	0	3	0	0	2	0	0	0	ð
Crabgrass	5	9	ó	5	3	7	9	9	9	9	<u>.</u>
Downy brome	3	7	3	7	Û	3	2	О	4	0	Q
Giant foxtail	4	5	3	3	0	3	2	3	9	4	0
Lambsquarter	10	10	9	9	8	9	9	9	1.0	9	8
Morningglory	2	2	3	3	0	-	9	C	0	C	0
Nutsedge	-	0	-		0	3	С	0	4	1	0
Rape	0	1	0	0	G	r;	0	0	С	0	9
Rice	3	9	5	5	С	0	8	С	3	0	0
Sorghum	5	0	6	5	0	0	0	. 0	2	3	C
Soybean	ŝ	0	С	O	5	0	5	0	O	0	С
Sugar beet	7	10	0	0	Ç	3	9	1	10	9	0
Velvetleaf	9	1.0	10	10	O	8	10	0	10	10	0
Wheat	C	0	0	0	0	0	0	O	0	0	0
Wild buckwheat	0	2	0	O	O	С	0	2	Ç	С	0
Wild oat	7	1	5	7	С	1	7	0	9	2	0

BNSDOCID: <WO___9719087A1_I_>

the second of the Control of the Control

Table E									Ö	G W D	COMPOUND	Ω										
Rate 50 g/ha		C_1	~	4	5	9	<i>'</i> .	Φ)	c.	10	16	19	20	21	23	5 €	C1 TU	56	2.7	30	<u>_</u>	
POSTEMERGENCE																						
Barley	ď	4	(>)	5	6	6	-7	~	C;	0	C1	0	0	0	\sim	9	0	,_	C)	٥'n	9	
Barnyardgrass	10	10	9	9	10	10	10	10	16	0	10	5	9	4	ڼ	σ	∞	σ'n.	О Н	σ	10	
Bedstraw	ω	σ	œ	6	9	6	œ	ထ	رب	0	2/	$_{\circlearrowleft}$	7	9	6	9.	7	σı	1.0	ο,	7	
Blackgrass		œ	Ŋ	4	σ.	6	73	3	H	C	7	0	•~+	٦	~`i	ব	~;	m	Φ	6	φ	
Chickweed	6	10	10	6	6	σ	7	œ	α	0	10	C1	1	1	6	6	6	1	10	9	1	
Cocklebur	10	6	ω	6	1.0	10	σ	9	0.1	0	10	9	9	∞	10	δ	σ _ν	σ.	C	0:	6	
Corn	0	6	₹ ~4	7	'n	7	<i>C</i> :	၁	7	0	9	\bigcirc	0	0	Μ	1	C	e-1	ς.	C4	\sim	
Cotton	10	0	ထ	9	10	10	œ	<i>f.</i>	σ.	C	10	J.	6	6	10	6	9	٩	1.0	10	10	
Crabgrass	5	0	6	∞	6	שר	۲-	δ	σ'n	С	σ	m	C)	C1	σı	œ	m	-	ಞ	6	6	
Downy brome	ļ.	7	9	Ø	9	9	- -i	9	~	O	7	0	0	O	1	<#	0	C)	ক	σ	6	
Giant foxtail	σ	9	3	5	9	6	S.	7	σ	1	6	, -1	:	Н	σ	ω	H	42	α :	σν	6	
Lambsquarter	သ	9	9	σ	σ,	ς,	œ	7	œ	O	9	œ	တ	:	6	φĐ	œ	9	σ.	6	6	
Morningglory	Q	6	6	0:	10	6	∞	∞	œ.	,	∞		, -1	-	S)	6	C4	œ	co	Ω.	∞	
Nutsedge	7	æ	ব্য	m	4	5	S	cs:		1	r-	O	0	0		C4	0	2	:-	ক	7	
Rape	7	6	0 :	∞	10	6	œ	O H	-	0	1	\sim	7	ហៈ	9	0.	;~	gn.	10	10	ω	
Rice	σ	σ	∞	9	σ	97	œ	6	6	0	9	O	m	۲-	δ	¢Ή	?	Ö	σı	۵۰	σ.	
Sorghum	6	O 111	æ	6	Ø)	6	6	6/	σ	0	ς,	0	m	C	α	c)	(N	ري	c)	10	10	
Soybean	10	σ		6	10	6	?	∞	cc	0	9	다	~	C4	σ	S)	۲:	<1.	31	Ø1	6	
Sugar beet	Q,	10	σı	10	1.0	10	Q	10	σι	0	10	ŗ	δ	œ	δ	eq.	10	Œ\	0.7	j ()	∞	
Velvetleaf	10	10	Ø1	\circ	0:	$\overset{\vdash}{\circ}$	6	C1	0	0	ĵ	۲-	œ	:	10	Ċ	σ,	<u> </u>	10	9	6	
Wheat	Ŋ	œ	4	:	6	⊅.	4	UC.	**	Э	ß	Ċ	1	· :	٠.7	•==	1.1		Œ	es.	9	
Wild buckwheat	9	∞	:-	7	6	J.	c4	-	c	၁	7	_	r		9	۲)	C :	ø	Ç	₹	m.	
Wild oat	σ	œ	m	7	10	10	ຜາ	Φ	471	0	6	Û	m	m	m	σ.	\sim	(*)	C١	0.7	10	

Table E									_	25	COMPOUND	9										
Rate 50 g/ha		C1	~:	4	5	5	ί.	∞	6	10	91	19	2.0	C:	6 3	24	C3 √7	26	C:	30	~÷	
PREEMERGENCE																						
Barley	0	0	0	9	0	0	0	¢	0	0	0	0	0	0	Þ	C	0	0	C		C	
Barnyardgrass	m	(.)	7	0	~	C3	0		m	၁	0	0	0	0	0	С	0	7	w.		2	
Bedstraw	0	u;	:	Μ	7	₹	0	0	0	0	C:	t	C;	0	0	m	0	0	C3	m	4	
Blackgrass	0	0	٦	0	7	9	0	0	0	0	0	0	ာ	O	0	Ú	0	0	O	C1	9	
Chickweed	_	œ	4	(∞	7	0	S	0	0	6	С	0	i	m	9	!	0	∞	10	9	
Cocklebur	0	۲۳.	2	?	4	ς;	0	0	0	0	\sim	0	0	0	၁	0	0	0	0	0	0	
Corn	0	0	0	0	0	C	0	0	ပ	0	\circ	0	0	0	0	0	C	0	0	C	0	
Cotton	0	0	0	0	0	0	0	0	0	Ç)	0	0	Φ	0	0	\sim 1	0	0	၁	0	, - 1	
Crabgrass	S	0	œ	9	6	10	C_1	ς:	7	0	6	\circ	0	0	ထ	J	ı	~	9	10	10	
Downy brome	0	0	0	4	2	च	0	0	0	0	O	0	0	0	0	0	0	Ċ	c:	۲۲:	9	
Giant foxtail	~	C3	٦	0	m	9	0	0	O	C	\sim	0	0	0	C)	0	0	0	-:	m	ស	
Lambsquarter	6	ø,	۵)	œ	9	Q	0	œ	œ	C	6	0	1	0	10	7	0	0	0.1	σ)	10	
Morningglory	0	C4	~	=	0	0	0	С	-	0	0	С	O	0	Ç	0	0	0	-	0	Ö	
Nutsedge		0	ı	0	C\$	c:	0	0	1		0	0	0		1	0	0	:	၁	0	0	
Rape	0	64	C4	J)	'n.	. ∾	0	0	0	0	0	0	0	0	0	Ö	0	С	O	m	S	
Rice	3	0	ব	0	S	7	0	0	ت	С	0	0	0	0	೦	Ö	၁	0	c:	***	٠,	
Sorghum	<#	0	\sim	0	ι,	'n	0	0	0	С	0	0	Ü	0	0	Ð	C	0	C		C3	
Soybean ,		S	7	С	~	0	0	0	0	0	0	O	0	0	0	0	С	٥	0	e;	C1	
Sugar beet	7	10	9	10	10	6	0	0	-;	0	7	0	C.	\bigcirc	\circ	С	0	0	7.	æ	9	
Velvetleaf	10	۲-	4	7.	10	10	0	<u>-</u>	œ	С	10	0	0	0	m	α	0	*;;*	۲,	٥١	10	
Wheat	0	С	0	0	-	0	0	0	Ċ	0	0	\bigcirc	0	0	C.	0	0	C	C.	0	<#	
Wild buckwheat	0	C	0	O		m;	0	0	0	0	0	0	0	0	0	0	0	0	C.	0	0	
Wild oat	∞		C	m	7	다	0	О	0	Ċ	C)	0	С	С	C	IJ	C	C	(-	CO.	

Table E	COMPOUND	Table E	Сомро	UND
Rate 20 g/ha	1 5 6	 Rate 20 g/ha	1 5	6
POSTEMERGENCE		PREEMERGENCE		
Barley	4 9 8	Barley	0 0	0
Barnyardgrass	10 10 9	Barnyardgrass	0 1	1
Bedstraw	8 8 8	Bedstraw	0 0	9
Blackgrass	7 9 6	Blackgrass	0 0	0
Chickweed	7 9 8	Chickweed	0 5	0
Cocklebur	10 10 10	Cocklebur	0 0	0
Corn	0 1 1	Corn	0 0	0
Cotton	9 8 10	Cotton	0 0	Q.
Crabgrass	989	Crabgrass	2 1	1
Downy brome	5 7 7	Downy brome	0 0	0
Giant foxtail	999	Giant foxtail	0 C	Ĺ
Lambsquarter	8 9 9	Lambsquarter	6 9	8
Morningglory	9 9 8	Morningglory	0 0	0
Nutsedge	8 4 4	Nutsedge		
Rape	296	Rape	0 0	0
Rice	9 9 8	Rice	0 0	0
Sorghum	9 9 9	Sorghum	0 0	Ú
Soybean	10 9 8	Soybean	0 0	0
Sugar beet	9 10 7	Sugar beet	0 0	0
Velvetleaf	10 10 10	Velvetleaf	10 10	à
Wheat	5 9 9	Wheat	0 0	Q
Wild buckwheat	4 7 7	Wild buckwheat	0 0	0
Wild oat	9 9 9	Wild oat	0 3	3

			1		
Table E	COM	1POUND	Table E	COMP	DNUC
Rate 10 g/ha	7	8	Rate 10 g/ha	7	8
POSTEMERGENCE			PREEMERGENCE		
Barley	0	0	Barley	0	0
Barnyardgrass	9	8	Barnyardgrass	0	О
Bedstraw	4	2	Bedstraw	0	0
Blackgrass	0	1	Blackgrass	0	0
Chickweed	5	6	Chickweed	o	0
Cocklebur	8	6	Cocklebur	О	0
Corn	0	0	Corn	0	0
Cotton	3	4	Cotton	0	C
Crabgrass	3	3	Crabgrass	0	C
Downy brome	0	0	Downy brome	0	0
Giant foxtail	2	2	Giant foxtail	0	Ĉ
Lambsquarter	7	3	Lambsquarter	0	C
Morningglory	7	2	Morningglory	0 ,	ē.
Nutsedge	2	3	Nutsedge	0	e
Rape	Ü	-	Rape	ô	O
Rice	4	7	Rice	0	0
Sorghum	4	6	Sorghum	0	С
Soybean	3	3	Soybear.	G	O
Sugar beet	6	9	Sugar beet	0	0
Velvetleaf	5	7	Velvetleaf	C	0
Wheat	1.	2	Wheat	О	0
Wild buckwheat	0	0	Wild buckwheat	0	0
Wild oat	0	2	Wild oat	. 0	0

TEST F

5

10

15

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture and applied to the surface of the water which was contained in each pot. Individual containers of barnyardgrass (*Echinochloa oryzicola*), small flower umbrella sedge (*Cyperus difformus*), common falsepimpernel (*Lindernia procumbens*), monochoria (*Monochoria vaginalis*) and bulrush (*Scirpus juncoides*) were seeded and allowed to grow until the 1.5 to 2.5 leaf stage of development. A clay loam soil was used for this propagation. Japonica rice (*Oryza sativa*) was tran-splanted at 0 and 2 cm depth five days before application of the test compound to the water surface.

Treated plants and untreated controls were maintained under greenhouse conditions for twenty to thirty days at which time treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table F, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) indicated that no test result was recorded.

Table F COMPOUND	Table F COMPOUND
Rate 250 g/ha 3	Rate 125 g/ha 3
Flood Saita soi	Flood Saita soi
barnyard early 100	barnyard early 100
barnyard late 85	barnyard late 70
C. difformis ea 80	C. difformis ea 85
C. difformis la 90	C. difformis la 70
Japoni rice 0cm 100	Japoni rice 0cm 100
Japoni rice 2cm 100	Japoni rice 2cm 40
L. procumben ea 100	L. procumben ea 100
L. procumben la 100	L. procumben la 100
M. vaginalis ea 100	M. vaginalis ea 100
M. vaginalis la 80	M. vaginalis la 80
S. juncoides 1. 90	S. juncoides 1. 85
S. juncoides 2. 70	3. juncoides 2. 50

Table F COMPOUND	Table F	COMPOUND
Rate 64 g/ha 2 3	Rate 32 g/ha	1 2 3
Flood Saita soi	Flood Saita soi	
barnyard early 90 70	barnyard early	85 45 20
barnyard late 65 40	barnyard late	50 45 20
C. difformis ea 100 95	C. difformis ea	80 55 60
C. difformis la 70 40	C. difformis la	85 50 40
Japoni rice 0cm 100 95	Japoni rice Ocm	90 75 40
Japoni rice 2cm 75 70	Japoni rice 2cm	65 5 0
1. procumben ea 100 100	L. procumben ea 1	00 100 100
L. procumben la 100 100	L. procumben la 1	00 90 100
M. vaginalis éa 100 100	M. vaginalis ea 1	00 80 70
M. vaginalis la 80 80	M. vaginalis la	70 75 70
S. juncoides L. 75 70	S. juncoides 1.	80 65 50
S. juncoides 2. 65 50	S. juncoides 2.	60 40 30
	,	
Table F COMPOUND	Table F	COMPOUND
Table F COMPOUND Rate 16 g/ha 1 2	Table F Rate 8 g/ha	
	i	a 1 2
Rate 16 g/ha 1 2	Rate 8 g/ha	a 1, 2
Rate 16 g/ha 1 2 Flood Saita soi	Rate 8 g/ha Flood Saita soi	a 1 2 40 20
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20	Rate 8 g/ha Flood Saita soi barnyard early	40 20 30 20
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45	Rate 8 g/ha Flood Saita soi barnyard early barnyard late	40 20 30 20 4 55 20
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45 C. difformis ea 80 50	Rate 8 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea	40 20 30 20 4 55 20 4 50 20
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45 C. difformis ea 80 50 C. difformis la 75 50	Rate 8 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea	40 20 30 20 4 55 20 4 50 20 1 35 10
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45 C. difformis ea 80 50 C. difformis la 75 50 Japoni rice 0cm 65 40	Rate 8 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm	40 20 30 20 4 55 20 4 50 20 5 35 10
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45 C. difformis ea 80 50 C. difformis la 75 50 Japoni rice 0cm 65 40 Japoni rice 2cm 25 0	Rate 8 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm Japoni rice 2cm	40 20 40 20 30 20 4 55 20 4 50 20 1 35 10 1 0 0
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45 C. difformis ea 80 50 C. difformis la 75 50 Japoni rice 0cm 65 40 Japoni rice 2cm 25 0 L. procumben ea 100 100	Rate 8 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis 13 Japoni rice 0cm Japoni rice 2cm L. procumben ea	40 20 30 20 35 20 4 55 20 4 50 20 1 35 10 1 0 0
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45 C. difformis ea 80 50 C. difformis la 75 50 Japoni rice 0cm 65 40 Japoni rice 2cm 25 0 L. procumben ea 100 100 E. procumben la 100 100	Rate 8 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm Japoni rice 2cm L. procumben ea L. procumben la	40 20 30 20 35 20 4 55 20 4 50 20 5 35 10 6 0 0 4 100 100 4 70 60
Rate 16 g/ha 1 2 Flood Saita soi barnyard early 40 20 barnyard late 65 45 C. difformis ea 80 50 C. difformis la 75 50 Japoni rice 0cm 65 40 Japoni rice 2cm 25 0 L. procumben ea 100 100 L. procumben la 100 100 M. vaginalis ea 90 75	Rate 8 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm Japoni rice 2cm L. procumben ea L. procumben la M. vaginalis ea	40 20 30 20 30 20 4 55 20 4 50 20 4 50 20 6 35 10 6 0 0 4 100 100 4 100 100 4 70 60 ,

Table F	COMPOUNI
Rate 4 g/ha	2
Flood Saita soi	
barnyard early	30
barnyard late	40
C. difformis ea	30
C. difformis la	20
Japoni rice 0cm	20
Japoni rice 2cm	5
1. procumben ea	100
L. procumben la	100
M. vaginalis ea	50
M. vaginalis la	65
S. juncoides 1.	20
S. juncoides 2.	30

TEST G

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were in the one-to four leaf stage (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

10

15

20

25

30

5

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include annual bluegrass (*Poa annua*), black nightshade (*Solanum nigra*), blackgrass (*Alopecurus myosuroides*), chickweed (*Stellaria media*), deadnettle (*Lamium amplexicaule*), downy brome (*Bromus tectorum*), field violet (*Viola arvensis*), galium (*Galium aparine*), green foxtail (*Setaria viridis*), jointed goatgrass (*Aegilops cylindrica*), kochia (*Kochia scoparia*), lambsquarters (*Chenopodium album*), littleseed canarygrass (*Phalaris minor*), rape (*Brassica napus*), redroot pigweed (*Amaranthus retroflexus*), ryegrass (*Lolium multiflorum*), sentless chamonile (*Matricaria inodora*), speedwell (*Veronica persica*), spring barely (*Hordeum vulgare cv. 'Klages'*), spring wheat (*Triticum aestivum cv. 'ERA'*), sugar beet (*Beta vulgaris cv. 'US1'*), sunflower (*Helianthus annuus cv. 'Russian Giant'*), wild buckwheat (*Polygonum convolvulus*), wild mustard (*Sinapis arvensis*), wild oat (*Avena fatua*), windgrass (*Apera spica-venti*), winter barley (*Hordeum vulgare cv. 'Igri'*) and winter wheat (*Triticum aestivum cv. 'Talent'*).

Wild oat was treated at two growth stages. The first stage (1) was when the plant had two to three leaves. The second stage (2) was when the plant had approximately four leaves or in the initial stages of tillering. Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table G, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

Table G COM	CNUOQ:	Table G			COM	POUN	D		
Rate 250 g/ha	10	Rate 125 g/ha	2	5	б	3	9	10	12
POSTEMERGENCE		POSTEMERGENCE							
Annual Bluegras	30	Annual Bluegras	85	100	65	100	40	20	20
Blackgrass (2)	30	Blackgrass (2)	45	3.0	20	70	45	20	20
Blk Nightshade 1	.00	Blk Nightshade	100	100	100	100	100	100	100
Chickweed 1	100	Chickweed	100	100	100	95	100	100	100
Deadnettle 1	100	Deadnettle	100	100	100	100	100	100	100
Downy brome	50	Downy brome	50	40	55	75	25	30	20
Field violet 1	100	Field violet	100	60	70	100	100	100	75
Galium (2)	100	Galium (2)	40	50	60	60	70	75	98
Green foxtail	1 C 0	Green foxtail	100	100	75	100	100	100	100
Jointed Goatgra	30	Jointed Goatgra	40	30	40	100	30	20	3 C
Kochia	85	Kochia	100	100	75	100	100	100	100
Lambsquarters :	100	Lambsquarters	1.00	100	95	100	100	100	100
LS Canarygrass	100	LS Canarygrass	100	60	70	100	70	4.5	30
Rape	-	Rape	-	-	100	****	-	-	40
Redroot Pigweed	100	Redroot Pigweed	100	100	65	100	100	100	100
Russian Thistle	100	Russian Thistle	100	100	-	80	100	100	-
Ryegrass	20	Ryegrass	20	20	15	20	5	. 0	С
Scentless Chamo	95	Scentless Chamo	100	100	100	100	100	75	100
Speedwell	-	Speedwell		-	-	-		-	-
Spring Barley	30	Spring Barley	4 C	40	50	85	10	10	Ģ
Sugar beet	-	Sugar beet	-		10	-	-	-	100
Sunflower	-	Sunflower		-	7.0	-	•	-	100
Veronica hedera	100	Veronica hedera	100	100	-	100	100	100	100
Wheat (Spring)	3 C	Wheat (Spring)	40	3.0	40	100	40	20	20
Wheat (Winter)	20	Wheat (Winter)	60	40	20	95	20	15	20
Wild buckwheat	100	Wild buckwheat	100	55	10	50	100	-	4 C
Wild mustard	100	Wild mustard	100	100	70		100		100
Wild oat (1)	65	Wild oat (1)	100	100	75	100	100	40	100
Wild oat (2)	-	Wild oat (2)	-			-	-	-	-
Windgrass	45	Windgrass	50	55	4.5	95	60	20	3.0
Winter Barley	30	Winter Barley	3.0	20	5.5	4.5	10	10	G

WO 97/19087 PCT/US96/18381

223.

Table G					COM	POUN	D				
Rate 62 g/ha	1	2	4	5	6	7	8	9	10	12	30
POSTEMERGENCE											
Annual Bluegras	100	60		70	50	100	100	50	10	20	100
Blackgrass (2)	55	35	-	25	20	50	60	4.0	20	30	60
Blk Nightshade	100	100	100	100	75	100	100	100	75	100	100
Chickweed	100	100	100	100	75	100	100	100	100	100	100
Deadnettle	100	100	1.00	100	100	100	100	100	100	100	100
Downy brome	60	40	-	5 0	30	100	75	25	20	1.0	95
Field violet	100	100	100	50	70	100	100	70	70	60	70
Galium (2)	65	30	60	40	30	55	60	70	60	70	40
Green foxtail	75	100	_	65	60	100	100	100	100	100	100
Jointed Goatgra	40	30	-	30	20	100	100	20	10	20	100
Kochia	65	65	65	100	60	50	100	100	75	55	90
Lambsquarters	100	100	100	100	60	100	100	100	100	100	100
LS Canarygrass	100	40	-	40	5 C	1.00	100	50	40	20	100
Rape	100		-	-	7 C	-	-	-	-	40	-
Redroot Pigweed	100	70	100	100	30	100	100	100	100	100	100
Russian Thistle	100	100	1.00	100	30	100	80	85	100		100
Ryegrass	30	20		20	1.0	15	25	0	9	0	30.
Scentless Chamo	100	100	60	100	65	100	100	100	70	60	100
Speedwell	_	-	-	-	-	-	-		-	-	-
Spring Barley	60	3.0	20	3.0	4 C	100	60	5	20	0	96
Sugar beet	100	-	-	-	10	-	••		-	100	-
Sunflower	100	-	-	-	40		_	-	-	100	-
Veronica hedera	100	100	100	100	20	100	100	100	100	100	100
Wheat (Spring)	30	30	25	20	3.0	100	85	30	10	20	100
Wheat (Winter)	40	3.0	30	3.0	15	100	100	20	10	10	100
Wild buckwheat	60	70	50	40	10	100	70	100	100	1. C	10
Wild mustard	100	100	-	100	75	÷-	70	60	100	50	100
Wild oat (1)	95	100	-	100	70	100	100	50	30	60	100
Wild oat (2)	~	-	-	-	-	-	-	-	-	-	-
Windgrass	100	30	-	30	45	85	100	50	20	30	100
Winter Barley	50	20	20	20	30	85	40	15	10	10	70

Table G				C	OMP	OUND					
Rate 31 g/ha	1	2	4	5	6	7	8	9	10	12	3.0
POSTEMERGENCE											
Annual Bluegras	60	50	-	30	1 C	100	100	30	20	10	100
Blackgrass (2)	50	30	-	20	10	40	50	30	20	15	50
Blk Nightshade	100	100	100	100	75	100	100	100	75	100	100
Chickweed	100	100	100	100	60	100	80	100	100	70	100
Deadnettle	100	100	60	100	75	65	75	100	100	70	100
Downy brome	50	30	-	30	20	65	50	20	1.0	15	75
Field violet	100	65	60	~	50	60	100	50	60	50	
Galium (2)	65	30	60	20	20	50	50	60	50	50	40
Green foxtail	70	70	-	65	55	100	75	100	68	65	100
Jointed Goatgra	30	20	-	1.5	10	45	75	10	0	20	50
Kochia	60	55	60	60	5 C	20	60	70	60	40	70
Lambsquarters	100	1.00	100	100	50	100	100	100	1.00	75	100
LS Canarygrass	100	30	-	30	3.0	100	100	35	30	15	100
Rape	70		-	-	60	-	-	-	-	20	
Redroot Pigweed	100	50	-	75	3.0	70	50	80	70	70	100
Russian Thistle	100	75	100	7.5	20	100	70	80	70		80
Ryegrass	20	10	-	10	0	15	20	О	0	0	5 C
Scentless Chamo	100	75	50	7.0	60	100	100	100	60	60	100
Speedwell	100	_	-	**	-	••	-	-	_	-	-
Spring Barley	45	20	10	2.0	3 0	100	65	O	5	0	50
Sugar beet	100	-		-	0	-		-	-	1.00	_
Sunflower	100	~	-	-	3 C	-	-		-	85	_
Veronica hedera	100	70	100	100	1.0	100	60		60	75	100
Wheat (Spring)	20	20	10	20	20	95	75	20	10	20	70
Wheat (Winter)	3 C	20	2.0	20	15	55	60			10	
Wild buckwheat	100	50	4 C	50	С	100				10	10
Wild mustard	100	70	-		70						100
Wild oat (1)	50	100	-	65	50	100	1.00				100
Wild oat (2)	100	45		-	_					-	-
Windgrass	70	10) –	- 20	20						
Winter Barley	30	20	10	30	20	55	3 0) 0	0	0	30

Table G	COM	POUND
Rate 31 g/ha	1	2
PREEMERGENCE		
Annual Bluegras	0	C
Blackgrass (2)	0	15
Blk Nightshade	35	0
Chickweed	15	10
Deadnettle	60	20
Downy brome	С	5
Galium (2)	0	5
Green foxtail	10	0
Jointed Goatgra	Э	0
Kochia	15	40
Lambsquarters	85	95
LS Canarygrass	9	O
Redroot Pigweed	60	-
Ryegrass	0	0
Scentless Chamo	0	0
Speedwell	100	70
Spring Barley	C	0
Wheat (Spring)	0	0
Wheat (Winter)	C	0
Wild buckwheat	Ġ.	20
Wild mustard	C	10
Wild oat (1)	C	0
Windgrass	0	0
Winter Barley	0	0

Table G				CO	MPOU	ND			
Rate 16 g/ha	1	2	4	5	6	7	8	9	30
POSTEMERGENCE									
Annual Bluegras	50	10	-	2 C	4 C	70	0.8	20	85
Blackgrass (2)	4 C	2 C	-	10	35	20	30	20	30
Bik Nightshade	100	75	100	100	55	100	75	100	100
Chickweed	100	100	100	100	75	80	70	75	100
Deadnettle	100	100	65	100	45	50	65	65	70
Downy brome	30	20		20	C	40	30	1.0	5 C
Field violet	100	5 C	**	30	45	3 C	60	50	60
Galium (2)	60	15	50	3.0	2.0	50	3 0	60	30
Green foxtail	65	50		:00	55	100	70	70	100
Jointed Goatgra	20	10		10	0	.50	3.0	10	40
Kochia	60	25	55	60	40	10	50	40	5.5
Lambsquarters	100	100	100	100	29	100	100	100	100
LS Canarygrass	100	20	-	20	40	50	1.00	3.0	100
Rape	50	-	~	-	~	-	-	-	-
Redroot Pigweed	100	65	60	60	20	60	370	80	100
Russian Thistle	100	75	70	80	0	100	60	80	70
Ryegrass	20	10	_	5	0	10	10	0	20
Scentless Chamo	50	75	50	60	60	75	70	60	75
Speedwell	100	-		-	~	-		*	-
Spring Barley	20	20	10	20	0	100	3 C	C	30
Sugar beet	100	-				-		***	-
Sunflower	65		•	-	-			-	-
Veronica hedera	100	75	70	100	30	65	60	75	70
Wheat (Spring)	10	20	1.0	20	10	65	30	10	70
Wheat (Winter)	20	10	10	15	0	50	30	5	50
Wild buckwheat	60	30	20	40	10	50	10	60	20
Wild mustard	100	65		60	-	-	60	3 0	100
Wild oat (1)	70	100	-	75	30	130	75	3.0	85
Wild oat (2)	85	45	-	-	-	-	-	-	
Windgrass	50	10	-	10	30	30	50	20	50
Winter Barley	20	10	10	20	5	55	20	0	20

Table G	CON	1POUND
Rate 16 g/ha	1	2
PREEMERGENCE		
Annual Bluegras	0	0
Blackgrass (2)	0	5
Blk Nightshade	35	0
Chickweed	20	0
Deadnettle	15	0
Downy brome	0	0
Galium (2)	0	O
Green foxtail	Ō.	0
Jointed Goatgra	e	0
Kochia	10	30
Lambsquarters	7.6	95
LS Canarygrass	G	0
Redroot Pigweed	75	65
Ryegrass	0	0
Scentless Chamo	-	0
Speedwell	60	60
Spring Barley	0	0
Wheat (Spring)	0	0
Wheat (Winter)	G	0
Wild buckwheat	0	5
Wild mustard	0	5
Wild oat (1)	0	0
Windgrass	0	Э
Winter Barley	0	O

Table G			С	OMPO	UND			
Rate 8 g/ha	1	2	4	6	7	8	9	30
POSTEMERGENCE								
Annual Bluegras	50	-	-	10	40	55	10	-
Blackgrass (2)	30	5		10	10	20	10	20
Blk Nightshade	100	85	100	40 1	100	75	100	75
Chickweed	55	85	100	60	70	50	100	80
Deadnettle	100	50	60	30	30	30	100	55
Downy brome	20	10	-	0	20	20	0	40
Field violet	75	15	60	.30	40	50	60	50
Galium (2)	50	15	40	10	3.0	10	60	20
Green foxtail	65	75	-	55	60	65	100	65
Jointed Goatgra	20	0	-	0	10	1.0	10	3 C
Kochia	55	-	50	30	10	3 0	20	35
Lambsquarters	100	30	65	20	75	95	100	70
LS Canarygrass	100	5		40	40	65	25	65
Rape	40		-	-	•	-	-	-
Redroot Pigweed	60	25	50	1.0	50	3.0	70	70
Russian Thistle	100	-	60	0	75	50	40	70
Ryegrass	10	0	-	0	5	10	0	20
Scentless Chamo	65	25	50	50	60	60	60	7 C
Speedwell	65	35	-	-	÷ ÷		-	-
Spring Barley	10	C	10	Э	40	10	1.0	20
Sugar beet	100		-	-	-		-	_
Sunflower	65	_	-	-	-		-	-
Veronica hedera	100	-		30		60		60
Wheat (Spring)	10	C	10	10	3 C	- C	10	
Wheat (Winter)	10	() 10	0	30	20) 5	
Wild buckwheat	40	(25	0	3.0	C	40	
Wild mustard	100			3 0	50	5 (100
Wild oat (1)	30	1	0 -	20	50	4 (D 20	
Wild oat (2)	75	1	5, -					
Windgrass	30		0 -	- 3() 40	5	0 10	
Winter Barley	10)	0 10) (3.0	1	0 10) 10

Table G	COM	POUND
Rate 8 g/ha	1.	2
PREEMERGENCE		
Annual Bluegras	О	C
Blackgrass (2)	O	0
Blk Nightshade	C	- 0
Chickweed	0	0
Deadnettle	5	0
Downy brome	C	0
Galium (2)	0	0
Green foxtail	0	0
Jointed Goatgra	0	С
Kochia	0	Ç
Lambsquarters	50	65
LS Canarygrass	0	С
Redroot Pigweed	60	25
Ryegrass	0	0
Scentless Chamo	0	0
Speedwell	20	30
Spring Barley	0	0
Wheat (Spring)	О	0
Wheat (Winter)	-	0
Wild buckwheat	-	0
Wild mustard	C	O
Wild oat (1)	0	0
Windgrass	С	0
Winter Barley	O	0

Table G		C	OMPO	UND		
Rate 4 g/ha	1	2	6	7	9	3 C
POSTEMERGENCE						
Annual Bluegras	30	-	10	20	10	10
Blackgrass (2)	40	5	10	10	0	10
Blk Nightshade	100	75	3 0	65	75	70
Chickweed	50	60	50	60	50	70
Deadnettle	100	45	20	20	10	30
Downy brome	20	O	0	10	0	20
Field violet	60	0	30	30	40	40
Galium (2)	30	15	0	20	10	10
Green foxtail	60	60	3.0	45	45	50
Jointed Goatgra	1:0	0	o	ξ,	C	20
Kochia	30		20	0	10	30
Lambsquarters	60	25	15	70	65	50
LS Canarygrass	55	9	20	3.0	10	60
Rape	3 C		-	-	-	-
Redroot Pigweed	50	10	30	3.3	4 C	50
Russian Thistle	70	-	0	70	10	50
Ryegrass	5	٥	0	0	0	1.0
Scentless Chamo	55	45	10	50	50	60
Speedwell	40	15	-	-	-	-
Spring Barley	5	0	0	1.0	0	5
Sugar beet	100	_	-	-	-	-
Sunflower	50	_	-	-	-	-
Veronica hedera	100	-	30	50	30	50
Wheat (Spring)	5	C	5	3.0	5	30
Wheat (Winter)	5	C	0	20	Õ	10
Wild buckwheat	50	С	0	35	C	0
Wild mustard	100	15	15	10	0	60
Wild oat (1)	20	5	10	30	1 C	30
Wild oat (2)	-	0	-	-		
Windgrass	10	0	О	10	0	20
Winter Barley	10	0	0	10	0	5

Table G	COF	IPOUND
Rate 4 g/ha	1	2
PREEMERGENCE		
Annual Bluegras	C	0
Blackgrass (2)	С	0
Blk Nightshade	0	0
Chickweed	0	0
Deadnettle	0	0
Downy brome	0	0
Galium (2)	0	0
Green foxtail	0	0
Jointed Goatgra	С	0
Kochia	0	0
Lambsquarters	35	25
LS Canarygrass	С	0
Redroot Pigweed	0	10
Ryegrass	0	C
Scentless Chamo	O	C
Speedwell	15	15
Spring Barley	9	0
Wheat (Spring)	0	0
Wheat (Winter)	Ō	0
Wild buckwheat	Э	0
Wild mustard	Û	0
Wild oat (1)	C	0
Windgrass	0	0
Winter Barley	0	О

TEST H

20

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), alfalfa (Medicago sativa), bermudagrass (Cynodon dactylon), broadleaf signalgrass (Brachiaria plantyphylla), common purslane (Portulaca oleracea), common ragweed 5 (Ambrosia elatior), cotton (Gossypium hirsutum), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rotthoellia exaltata), johnson grass (Sorghum halepense), large crabgrass (Digitaria sanguinalis), peanuts (Arachis hypogaea), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), 10 surinam grass (Brachiaria decumbens) and texas panicum (Panicum Texas) were planted into greenhouse pots of flats containing greenhouse planting medium. Plant species were grown grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to 15 twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence and postemergence to the plants. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table H, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

Table H CC	MPGUND	Table H	COMPOUND
Rate 1000 g/na	1	Rate 1000 g/ha	*
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass		Alexandergrass	-
ADexandergrass	-	Bermudagrass	~
Bermudagrass	~	Brdlf Sgnlgras	s -
Brdlf Sgnlgrass	-	Cmn Purslane	-
Cmn Purslane	_	Cmr. Ragweed	
Cmn Ragweed	•	Cotton	
Cotton	~	Dallisgrass	_
Dallisgrass	-	Goosegrass	-
Goosegrass	-	Guinea Grass	-
Guineagrass	-	Guineagrass	
Itchgrass	-	Itchgrass	-

Johnson grass	-	Johnson grass	-
Large Crabgrass	-	Johnsongrass	-
Peanuts	-	Large Crabgrass	-
Pit Morninglory	-	Peanuts	-
Purple Nutsedge	-	Pit Morninglory	
Sandbur	-	Purple Nutsedge	-
Sourgrass	.=	Sandbur	-
Sugarcane	90	Sourgrass	-
Surinam grass	-	Sugarcane	35
		Surinam grass	_

Table H	COMPOUND	Table H	COMPOUND
Rate 500 g/ha	<u>.</u>	Rate 500 g/ha	-
POSTEMERGENCE		PREEMERGENÇE	
Alexandergrass	-	Alexandergrass	-
ADexandergrass	-	Bermudagrass	_
Bermudagrass	~	Brdlf Sgnlgrass	5 -
Brdlf Sgnlgrass	5 -	Cmn Purslane	•
Cmn Purslane	-	Cmn Ragweed	-
Cmr. Ragweed		Cotton	-
Cotton		Dallisgrass	_
Dallisgrass	-	Goosegrass	
Goosegrass	-	Guinea Grass	~
Guineagrass		Guineagrass	-
Itchgrass	-	Itchgrass	-
Johnson grass	***	Johnson grass	-
Large Crabgrass	.	Johnsongrass	-
Peanuts	-	Large Crabgrass	-
Pit Morninglory	-	Peanuts	-
Purple Nutsedge	·	Pit Morninglory	
Sandbur	_	Purple Nutsedge	-
Sourgrass	_	Sandbur	-
Sugarcane	80	Sourgrass	-
Surinam grass	•==	Sugarcane	10
	•	Surinam grass	=

Table H					COMP	OUND				
Rate 250 g/ha	1	2	3	4	5	6	12	14	24	30
POSTEMERGENCE										
Alexandergrass	100	90	9,5	95	90	7.0.	75	75	90	85
ADexandergrass	98	·	-,	_	s., -	7.	₹	. .		
Bermudagrass	95	75	85	90	65	65	65	65	70	70,
Brdlf Sgnlgrass	100	98	98	100	50	70	70	65	85	0.6
Cmn Purslane	100	80	65	8.5%	55	35	40	50	0-	0
Cmn Ragweed	100	100	95	90	85	70	70	75	75	<u> </u>
Cotton	100	9,8	98	98	65	100	95	75	90	98
Dallisgrass	100	90	95	90	65	55	80	810	90	90
Goosegrass	85	40	50	90	65	7,0	65,	20	85	60
Guineagrass	98	80	50	65	7:5	60	8.0	30	8:01	25
Itchgrass	90	-	~		80	55	90	75	75	70
Johnson grass	100	98	65		75	60	75	70	50	85
Large Crabgrass	100	75	0.8	80	70	75	65	70	85	9.8
Peanuts	40	60	50	1.0	7.0	40	40	3.0	12.0	10
Pit Morninglory	100	80	85	95	75	75	60	50	8.0	85
Purple Nutsedge	75	7,5	70	7.5	20	25	30	65	2.0	45
Sandbur	100	60		50	75	,6,5	75	135	80	7.0
Sourgrass	90	75	65	70	65	7.0	50	60	8.5	75
Sugarcane	8.0	, , ,	-		· _	. -		ε^{-1}	÷	-
Surinam grass	100	90	75	90	80	7.0	75	75	75	45

WO 97/19087 PCT/US96/18381

Table H					COMP	OUND					
Rate 250 g/ha	1	2	3	4	5	6	12	1.4	16	24	3 3
PREEMERGENCE											
Alexandergrass	95	98	0	0	100	100	100	100	80	10	100
Bermudagrass	98	100	98	98	100	100	100	100	100	95	100
Brdlf Sgnlgrass	95	100	-	0	90	100	98	93	8,0	40	98
Cmn Purslane	100	100	95	100	100	100	100	100	100	75	30
Cmn Ragweed	10C	100	100	100	-	100	-		100	-	100
Cotton	100	10	15	0	30	20	50	90	10	С	98
Dallisgrass	98	100	98	20	100	100	100	100	100	C	100
Goosegrass	80	100	98	98	100	100	100	100	9.8	1.00	100
Guinea Grass	-	-	-	-			-	-	_	~	-
Guineagrass	95	95	20	Э	95	100	80	95	80	10	€5
Itchgrass	40	50	0	0	0	10	10	3.0	G	0	25
Johnson grass	85	90	80	70	95	9.8	95	95	90	35	100
Johnsongrass	-	-	-			-	-		-	-	-
Large Crabgrass	65	100	100	98	100	100	100	100	100	35	9.8
Peanuts	40	80	5	C	60	3.5	50	40	0	20	79
Pit Morninglory	30	95	2.0	35	80	95	85	68	90	70	96
Purple Nutsedge	65	20	5	10	. 0	3 0	30	60	10	5	3 C
Sandbur	100	80	3.0	50	9.8	85	98	65	85	0	90
Sourgrass	100	100	100	90	100	100	160	100	100	95	100
Sugarcane	5	-	-	~	-	-	-	-	-	-	-
Surinam grass	100	85	40	Б	100	100	100	98	9.8	10	10

Table H	COMPOUND								
Rate 125 g/ha	1	2	3	4	5	12	14	30	
POSTEMERGENCE									
Alexandergrass	100	85	70	75	80	75	75	80	
ADexandergrass		-	~	-		-	-	~	
Bermudagrass	95	75	70	90	60	50	65	55	
Brdlf Sgnlgrass	100	90	90	90	50	50	65	75	
Cmn Purslane	100	75	65	75	50	30	60	0	
Cmn Ragweed	100	98	80	95	9.0	65	80		
Cotton	100	9.8	100	8.0	65	75	85	35	
Dallisgrass	100	85	90	85	75	75	80	75	
Goosegrass	85	40	30	50	65	20	20	40	
Guineagrass	90	75	50	40	80	75	80	20	
Itchgrass	90	-	-		8.0	75	70	55	
Johnson grass	100	90	65	90	8.0	75	70	65	
Large Crabgrass	95	75	-	80	40	65	70	85	
Peanuts	35	10	10	10		35	30	10	
Pit Morninglory	100	75	85	95	65	3.0	35	80	
Purple Nutsedge	9.8	75	50	50	0	3.0	65	25	
Sandbur	98	30	10	40	75	10	10	60	
Sourgrass	80	75	50	3.0	65	50	60	75	
Sugarcane		-	-		-	-		-	
Surinam drass	95	9.0	50	9.0	85	75	75	3.5	

Table H				COMP	OUND)				
Rate 125 g/ha	1	2	3	4	5	5	12	14	16	
PREEMERGENCE										
Alexandergrass	95	85	0	0	98	98	90	90	25	
Bermudagrass	98	100	80	80	100	100	95	90	98.	
Brdlf Sgnlgrass	35	75	3 O	0	80	25	95	50	С	
Cmn Purslane	100	80	90	1.00	100	-	100	100	100	
Cmr Ragweed	100	100	100	100	~	100	-	-	100	
Cotton	60	0	9	O	30	0	10	50	10	
Dallisgrass	95	100	O	О	100	90	95	100	100	
Goosegrass	100	100	98	9 Ü	100	100	9 8	100	100	
Guinea Grass	-	-	~	-	-	**	-		-	
Guineagrass	65	90	Đ	0	85	90	50	40	45	
Itchgrass	10	40	0	0	0	C	10	3 C	0	
Johnson grass	75	40	40	0	63	90	C	75	20	
Johnsongrass	-	~	-	-	-		-	-	-	
Large Crabgrass	100	100	90	100	100	1.00	100	100	98	
Peanuts	40	40	0	0	60	30	50	10	Û	
Pit Morninglory	80	75	35	30	80	95	75	50	80	
Purple Nutsedge	9	0	5	5	С	25	30	20	С	
Sandbur	85	65	20	0	95	40	50	-	70	
Sourgrass	100	1.00	90	70	100	100	100	100	100	
Sugarcane	-	-		-		٠	•••	-	-	
Surinam grass	9.8	10	0	0	100	98	90	85	90	

Table H		C	OMPO	UND		
Rate 64 g/ha	1	2	3	4	5	30
POSTEMERGENCE						
Alexandergrass	100	85	80	75	80	80
ADexandergrass	***	-	-	-	-	-
Bermudagrass	95	75	40	80	60	45
Brdlf Sgnlgrass	100	85	90	90	50	65
Cmn Purslane	100	75	65	70	50	0
Cmn Ragweed	100	9.8	60	90	60	-
Cotton	100	98	70	90	65	35
Dallisgrass	100	75	70	70	80	70
Goosegrass	75	40	35	3.0	65	40
Guineagrass	80	50	-	50	65	Ç
Itchgrass	1:00		-	-	75	45
Johnson grass	100	75	65	75	80	50
Large Crabgrass	90	60	60.	90	40	75
Peanuts	25	5	O	10	60	5
Pit Morninglory	100	60	70	90	65	60
Purple Nutsedge	65	75	10	35	0	20
Sandbur	75		0	20	40	4 (1
Sourgrass	95	60	3.0	3.5	60	75
Sugarcane	-	-			••	-
Surinam grass	9 C	65	3.0	40	70	35

Table H			C	OMPO	UND				
Rate 64 g/ha	1	2	3	4	5	5	16	30	
PREEMERGENCE									
Alexandergrass	90	60	С	0	30	0	0	20	
Bermudagrass	98	100	- 5 C	75	95	90	85	100	
Brdlf Sgnlgrass	6	10	20	0	50	5	0	0	
Cmn Purslane	10	60	65	50	100	-	100	0	
Cmn Ragweed	100	100	80	100		100	100	100	
Cotton	20	0	С	0	30	Ō	Ó	46	
Dallisgrass	80	98	-	C	100	90	85	70	
Goosegrass	100	98	50	98	100	3 6	98	100	
Guinea Grass	-	-	-	-	-	-	-		
Guineagrass	5	85	Ü	Ĉ	10	50	C	C	
ltchgrass	0	0	-	0	O		0	0	
Johnson grass	50	20	0	0	30	20	9	Ô	
Johnsongrass	-		-	-	-	_		-	
Large Crabgrass	50	98	0	50	75	70	98	100	
Peanuts	5	20	٥	С	60	0	0	0	
Pit Morninglory	90	65	С	-	75	0.8	40	40	
Purple Nutsedge	C	0	С	0	0	5	0	Q	
Sandbur	40	50	0	Û	65	0	5.0	8.0	
Sourgrass	100	100	90	40	100	98	98	100	
Sugarcane	-	-	-	••		-		-	
Surinam grass	9.8	0	0	c	95	2.0	80	9	

Table H	C	COMPO	DUND		
Rate 32 g/ha	1	2	3	4	5
POSTEMERGENCE					
Alexandergrass	***	75	75	75	0.8
ADexandergrass		-	-	-	-
Bermudagrass	90	60	40	70	50
Brdlf Sgnlgrass	95	80	40	98	30
Cmn Purslane	95	60	40	65	50
Cmn Ragweed	100	98	75	95	50
Cotton	100	75	90	70	50
Dallisgrass	95	75	40	35	80
Goosegrass	70	30	20	30	65
Guineagrass	75	3 C	40	20	65
Itchgrass	80		-	-	70
Johnson grass	100	65	20	50	70
Large Crabgrass	90	40	35	5 C	35
Peanuts	25	5	0	10	50
Pit Morninglory	100		70	90	35
Purple Nutsedge	65	40	10	10	0
Sandbur	60		0	20	50
Sourgrass	8.0	60	4.0	3 C	60
Sugarcane	-	-			
Surinam grass	8.0	45	40	5 O	65

Table H			COM	POUN	D		
Rate 32 g/ha	1.	2	3	4	5	6	16
PREEMERGENCE							
Alexandergrass	20	45	0	0	0	20	0
Bermudagrass	98	75	40	30	50	90	75
Brdlf Sgnlgrass	O	С	0	0	50	0	0
Cmm Purslane	50	4 C	40	30	100		100
Cmn Ragweed	80	80	100	75	-	100	100
Cotton	50	0	0	0	20	С	O
Dallisgrass	65	20	0	С	100	10	0
Goosegrass	25	85	О	90	100	9.5	90
Guinea Grass	-	-	-	-	-	-	С
Guineagrass	10	60	0	0	1 C	40	
Itchgrass	0	0		С	C		0
Johnson grass	10	0	С	C	0	10	
Johnsongrass		-	-	-			С
Large Crabgrass	40	75	0	30	70	65	75
Peanuts	0	20	Э	Э	10	-	0
Pit Morninglory	80	50	-	30	20	75	25
Purple Nutsedge	Ç	Ō	0	0	0	0	0
Sandbur	-	0	0	С	5 C	0	0
Sourgrass	98	100	Ō	20	100	98	8.5
Sugarcane	-		_		-		_
Surinam grass	10	0	0	0	40	0	0

Table H		COMP	DUND		1	Table H	(COME	OUND		
Rate 16 g/ha	 	2	3	4	5	Rate 16 g/ha	<u>:</u>	2	3	4	5
POSTEMERGENCE	-	2	.,	_		PREEMERGENCE					
	75	7.0	50	60	75	Alexandergrass	0	30	0	Ō	Ō
Alexandergrass		. •	20	-	_	Bermudagrass	35	0	4.0	3.0	3.0
ADexandergrass	_		-		Ì		0	0	0	C	50
Bermudagrass	90	40	1.0	50	40	Brdlf Sgnlgrass	-	-		-	
Brdlf Sgnlgrass	100	75	20	20	0	Cmn Purslane	0	0	40	0	80
Cmn Purslane	98	50	20	60	20	Cmn Ragweed	50	20	100	20	
Cmn Ragweed	100	70	70	75		Cotton	-	С	0	Ç	C
Cotton	100	60	70	55	20	Dallisgrass	5	0	Ģ	C	90
Dallisgrass	70	80	2 C	20	80	Goosegrass	Û	20	0	-	90
Goosegrass	7.0	3.0	С	0	40	Guinea Grass	-	~-	-	-	•
Guineagrass	50	3.0	10	5	50	Guineagrass	0	C	(:	Ę.	C
ltchgrass	60	-	-	-	50	Itchgrass	0	0		0	5
Johnson grass	90	35	О		60	Johnson grass	Ç	0	9	Э	0
Large Crabgrass	75	3 0	5	50	35	Johnsongrass	-	-	-	-	-
Peanuts	5	C	0	10	-	Large Crabgrass	20	C	?	10	3.0
Pit Morninglory	90	3 0	10	80	3.5	Peanuts	O	0	0	C	0
Purple Nutsedge	98	20	5	5	0	Pit Morninglory	50	0	0	G	20
Sandbur	75	20	С	20	20	Purple Nutsedge	0	0	0	0	-
Sourgrass	75	40	10	20	60	Sandbur		0	0	Ç	0
Sugarcane	-	-		-	-	Sourgrass	98	70	Ó	C_{i}	95
Surinam grass	70	45	20	40	5 C	Sugarcane	-	-	-	-	-
						Surinam grass	20	0	0	Э	10

Table H		COME	OUNE			Table H		COME	OUNE	:	
Rate 8 g/ha	1	2	3	4	5	Rate 8 g/ha	1.	2	3	4	5
POSTEMERGENCE						PREEMERGENCE					
Alexandergrass	-	70	10	5	60	Alexandergrass	0	20	0	0	0
ADexandergrass		-	-	-	-	Bermudagrass	5	0	0	20	О
Bermudagrass	80	40	0	35	40	Brdlf Sgnlgrass	C	0	0	0	10
Brdlf Sgnlgrass	75	40	0	0	0	Cmn Purslane	0	0	30	O	0
Cmm Purslane	90	25	20	50	20	Cmn Ragweed	ę	0	50	0	_
Cmn Ragweed	95	50	40	: 0	30	Cotton	0	0	0	Э	C
Cotton	100	40	С	5	20	Dallisgrass	5	Ĝ	e		20
Dallisgrass	50	10	20	10	80	Goosegrass	C	0	C	Ç	Ç
Goosegrass	60	0	0	0	10	Guinea Grass	-	-	-		-
Guineagrass	40	20	C	5	20	Guineagrass	С	Ċ	Ċ	<i>.</i> .	U
Itchgrass	30	-	-	-	50	Itchgrass	Ō	ō.	e	ō.	0
Johnson grass	80	30	0	5	50	Johnson grass	0	Ç	0	0	Э
Large Crabgrass	7.5	25	5	35	35	Johnsongrass		-	-	-	-
Peanuts	C	0	0	10	30	Large Crabgrass	20	0	0	5	3.0
Pit Morninglory	75	0	-	75	20	Peanuts	C	50	0	Ó	9
Purple Nutsedge	0	20	С	0	0	Pit Morninglory	80	Ç	С	(;	0
Sandbur	75	0	О	20	10	Purple Nutsedge	0	_	9	0	0
Sourgrass	6.5	20	0	0	30	Sandbur	-	С	0	0	-
Sugarcane	-	-	-	-	-	Scurgrass	8 C	50	C	C	50
Surinam grass	4 Ĝ	10	0	С	65	Sugarcane	-	-	_	-	-
						Surinam grass	0	0	0	Ċ	e

Table H	C	OMPO	DUND	Table H	C	COMPC	UND
Rate 4 q/ha	1	2	5	Rate 4 g/ha	1	2	5
POSTEMERGENCE				PREEMERGENCE			
	100	6 C	60	Alexandergrass	G	10	0
ADexandergrass	_	_	_	Bermudagrass	0	0	С
Bermudagrass	75	0	20	Brdlf Sgnlgrass	0	9	10
-	75	40	0	Cmn Purslane	0	0	0 -
Brdlf Sgnlgrass	65	0	0	Cmn Ragweed	0	0	-
Cmn Purslane	-	65	30	Cotton	0	0	0
Cmn Ragweed	80		-		0	0	1.0
Cotton	80	0	20	Dallisgrass	C	0	-
Dallisgrass	20	0	65	Goosegrass	-		
Goosegrass	30	20	0	Guinea Grass	-	-	
Guineagrass	10	C	C	Guineagrass	G	Ç,	G
Itchgrass	20	_	0	Itchgrass	0	9	0
Johnson grass	35	0	29	Johnson grass	0	0	O
Large Crabgrass	65	O	20	Johnsongrass	-	-	***
Peanuts	0	0	30	Large Crabgrass	20	C	3 C
Pit Morninglory	0.8	0	20	Peanuts	0	0	0
Purple Nutsedge	0	Ú	0	Pit Morninglory	60	Э	0
Sandbur	35		, C	Purple Nutsedge	0	0	-
Sourgrass	35	10	.10	Sandbur	-	O	O
Sugarcane				Sourgrass	0	20	C
-	50	0	3.0	Sugarcane	_	_	
Surinam grass	<i>)</i> (J.,	Surinam grass	0	0	0
				Jul Tham 92 abo	•		

CLAIMS

What is claimed is:

1. A compound selected from Formula I, *N*-oxides and agriculturally-suitable salts thereof,

5

wherein

Q is

$$R^{8}$$
 R^{8}
 R^{7}
 R^{6}
 R^{7}
 R^{10}
 R^{10}
 R^{9}
 R^{10}
 R^{11}
 R^{12}

J is

Q-3

$$\mathbb{R}^1$$
 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3

Q-4

15

10

X is O, $S(O)_r$, $N(C_1-C_2$ alkyl) or CH_2 optionally substituted with 1-2 C_1-C_2 alkyl; Y together with the carbons to which it is attached form a phenyl ring or a fused five or six-membered heterocyclic ring, which may be fully aromatic or

	partially or fully saturated, containing 1 to 3 heteroatoms independently
	selected from the group nitrogen, oxygen, and sulfur, provided that the
	heterocyclic ring contains no more than 2 oxygens and no more than 2
	sulfurs, and the ring is optionally substituted with one to three groups
5	independently selected from the group C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6
	alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6
	alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6
	haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_2 - C_4
	dialkylaminosulfonyl, $NR^{15}R^{16}$, C_2 - C_6 alkoxyalkyl, C_2 - C_6 alkoxycarbonyl,
10	C2-C6 alkylcarbonyl, halogen, cyano, nitro, phenyl optionally substituted
	with C ₁ -C ₃ alkyl, halogen, cyano or nitro, and pyridyl optionally substituted
	with C ₁ -C ₃ alkyl, halogen, cyano or nitro, provided that when a nitrogen
	atom of the fused heterocyclic ring is substituted, then the nitrogen
	substituent is other than halogen;
15	Z is selected from the group -CH ₂ CH ₂ CH ₂ -, -OCH ₂ CH ₂ -, -O-CH=CH-,
	$-NR^{13}CH_2CH_2$ -, $-NR^{13}CH=CH$ -, $-N=CHCH_2$ $-OCH_2O$ -,
	$-NR^{13}CH_2NR^{13}$ -, $-N=CHNR^{13}$ -, $-CH_2OCH_2$ -, $-CH_2NR^{13}CH_2$ -,
	-CH2S(O)rCH2-, -CH2C(O)CH2-, -CH=NCH2-, -CH2CH2-, -OCH2-,
	-SCH ₂ -, and -NR ¹³ CH ₂ -, each group optionally substituted with one to four
20	R ⁵ , and the directionality of the Z linkage is defined such that the moiety
	depicted on the left side of the linkage is bonded to the carbonyl carbon of
	Q-1;
	R^1 and R^2 are independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy,
	C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6
25	alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6
	haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_2 - C_4
	dialkylaminosulfonyl, halogen, cyano or nitro;
	each R^3 is C_1 - C_2 alkyl;
	R^4 is OR^{14} , SH , C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6
30	haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, halogen or
	$NR^{15}R^{16}$; or R^4 is phenylthio, phenylsulfonyl or -SCH ₂ C(O)Ph, each
	optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro;
	each R^5 is independently H, C_1 - C_3 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_3
	alkoxy, formyl, C_2 - C_6 alkoxycarbonyl, -CH(C_1 - C_3 alkoxy) ₂ , C_1 - C_3
35	alkylthio, C_2 - C_4 alkylthioalkyl, cyano or halogen; or when two R^5 are
	attached to the same carbon atom, then said R ⁵ pair can be taken together to

```
form -OCH2CH2O-, -OCH2CH2CH2O-, -SCH2CH2S- or -SCH2CH2CH2S-.
                           each group optionally substituted with 1-4 CH<sub>3</sub>;
                  R^6 is OR^{14}, SH, C_1-C_6 alkylthio, C_1-C_6 haloalkylthio, C_1-C_6 alkylsulfinyl, C_1-C_6
                           haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, halogen or
  5
                          NR<sup>15</sup>R<sup>16</sup>; or R<sup>4</sup> is phenylthio, phenylsulfonyl or -SCH<sub>2</sub>C(O)Ph, each
                          optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;
                  R^7 is H, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_3-C_6 alkenyl, C_3-C_6 alkynyl or
                          -CH<sub>2</sub>CH<sub>2</sub>OR<sup>13</sup>; or R<sup>7</sup> is phenyl or benzyl, each optionally substituted on the
                          phenyl ring with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;
10
                 R<sup>8</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, halogen,
                          cyano or nitro;
                 R<sup>9</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl or C<sub>3</sub>-C<sub>6</sub> halocycloalkyl;
                 R<sup>10</sup> is H, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl, C<sub>2</sub>-C<sub>6</sub> haloalkoxycarbonyl, CO<sub>2</sub>H or cyano;
                 R<sup>11</sup> is C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl optionally substituted with
                          1-4 C<sub>1</sub>-C<sub>3</sub> alkyl or C<sub>3</sub>-C<sub>6</sub> halocycloalkyl;
15
                  R^{12} is cyano, C_2-C_6 alkoxycarbonyl, C_2-C_6 alkylcarbonyl, S(O)_r R^{16} or
                          C(O)NR<sup>15</sup>R<sup>16</sup>:
                 R^{13} is H or C_1-C_6 alkyl;
                 R^{14} is H, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkoxyalkyl, formyl, C_2-C_6
                          alkylcarbonyl, C2-C6 alkoxycarbonyl, C(O)NR<sup>15</sup>R<sup>16</sup>, C1-C6 alkylsulfonyl or
20
                          C_1-C_6 haloalkylsulfonyl; or R^{14} is phenyl, benzyl, benzoyl,
                          -CH<sub>2</sub>C(O)phenyl or phenylsulfonyl, each optionally substituted on the
                          phenyl ring with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;
                 R^{15} is H or C_1-C_6 alkyl;
                 R^{16} is C_1-C_6 alkyl or C_1-C_6 alkoxy; or
25
                 R<sup>15</sup> and R<sup>16</sup> can be taken together as -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-CH<sub>2</sub>-,
                         -CH2CH2CH2CH2-, -CH2CH2CH2CH2CH2- or -CH2CH2OCH2CH2-;
                 m is 0, 1 or 2;
                 n is 1 or 2;
30
                 p is 0, 1, or 2; and
```

r is 0, 1 or 2.

2. A compound of Claim 1 wherein J is selected from the group

$$R^{1}$$
 R^{17}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

J-1

J-3

$$\mathbb{R}^{1}$$
 \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18}

J-5

$$\mathbb{R}^{18}$$
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}

J-7

$$\begin{array}{c}
R^{18} \\
R^{17} \\
N \\
(R^{3})_{p}
\end{array}$$

J-2

$$(R^2)_0$$

$$(R^3)_p$$

$$(R^3)_p$$

J-4

$$\mathbb{R}^1$$
 \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18}

J-6

$$\mathbb{R}^{18}$$
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}
 \mathbb{R}^{18}

J-8

$$R^{17}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

$$\begin{array}{c} R^{18} \\ R^{2}$$

J-13

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}

J-15

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-1()

$$\begin{array}{c} R^{1} \\ R^{18} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{18} \\$$

J-12

$$R^{18}$$
 R^{17}
 R^{18}
 R^{17}
 R^{18}
 R^{18}
 R^{19}
 R^{18}

3-14

$$\begin{array}{c}
R^{18} \\
R^{2} \\
R^{2} \\
R^{18}
\end{array}$$

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R

$$\begin{array}{c} R^{18} \\ R^{18$$

J-19

J-21

$$\begin{array}{c|c} R^{18} \\ \hline \\ R^{2} \\ \hline \\ R^{2} \\ \end{array}$$

J-23

$$\begin{array}{c} R^{18} \\ R^{18$$

J-18

$$\begin{array}{c|c} R^{18} \\ \hline \\ R^{1} \\ \hline \\ R^{17} \\ \hline \\ R^{17} \\ \hline \\ R^{2})_{n} \\ \hline \\ R^{18} \\ \hline \\ R^{17} \\ \hline \\ R^{2})_{n} \\ \hline \\ R^{17} \\ \hline \\ R^{17} \\ \hline \\ R^{17} \\ \hline \\ R^{17} \\ \hline \\ R^{17} \\ \hline \\ R^{1} \\ \\ R^{1} \\ \hline \\ R^{1} \\ \\ R^{1} \\ \\ R^{1} \\ \\ R^{1} \\ \\$$

J-2()

J-22

$$\begin{array}{c}
R^{17} \\
N - N \\
(R^3)_p
\end{array}$$

$$\begin{array}{c}
R^{18} \\
X
\end{array}$$

J-27

$$\mathbb{R}^1$$
 \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18} \mathbb{R}^{18}

J-29

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-31

$$(R^2)_n$$
 $(R^3)_p$
 $(R^{19})_q$

J-26

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{17}
 R^{17}
 R^{2}
 R^{2}
 R^{2}

J-28

$$(R^2)_n$$

$$(R^3)_p$$

$$(R^3)_p$$

J-3()

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

$$(\mathbb{R}^2)_n$$

$$(\mathbb{R}^3)_p$$

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-35

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-37

$$(R^{18})_q$$

$$(R^{18})_p$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-39

$$(R^{18})_{q}$$

$$(R^{2})_{n}$$

$$(R^{2})_{p}$$

J-34

$$(R^2)_n$$

$$(R^{18})_q$$

$$(R^3)_p$$

J-36

$$(\mathbb{R}^{2})_{n}$$

$$(\mathbb{R}^{2})_{n}$$

$$(\mathbb{R}^{2})_{p}$$

J-38

$$(R^{18})_q$$

$$(R^{18})_q$$

$$(R^{3})_p$$

$$(R^{2})_n$$

5

10

$$(R^2)_n \xrightarrow{R^1} X \xrightarrow{N} R^{18}$$

$$(R^3)_p \qquad \text{and}$$

J-42

R¹⁷ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, aminosulfonyl, C₁-C₂ alkylaminosulfonyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxyalkyl or C₂-C₆ alkylcarbonyl; or R¹⁷ is phenyl or pyridyl, each optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro;

each R¹⁸ is independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_2 - C_4 dialkylaminosulfonyl, C_1 - C_6 alkoxyalkyl, C_2 - C_6 alkoxyarbonyl, C_2 - C_6 alkylcarbonyl, halogen, cyano or nitro;

each R^{19} is independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkoxyalkyl, C_2 - C_6 alkoxycarbonyl or C_2 - C_6 alkylcarbonyl; and

15 q is 0, 1 or 2.

3. A compound of Claim 2 wherein: Q is Q-1.

4. A compound of Claim 3 wherein:

Z is CH₂CH₂CH₂ optionally substituted with one to four R⁵;

20 R¹ and R² are independently H, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, halogen or nitro: R⁴ is OR^{14} ; and

 R^{14} is H or C_1 - C_4 alkylsulfonyl; or R^{14} is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro.

5. A compound of Claim 4 wherein:

25 $X \text{ is } S(O)_r$; m is 1 or 2; and

254

r is 2.

6. A compound of Claim 2 wherein:

Q is Q-2.

7. A compound of Claim 6 wherein:

5 R1 and R2 are independently H, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, halogen or nitro;

 R^6 is H or C_1 - C_4 alkylsulfonyl; or R^6 is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, evano, or nitro:

 R^7 is H, C_1 - C_6 alkyl, or C_3 - C_6 alkenyl; and

R⁸ is H.

10 8. A compound of Claim 7 wherein:

X is $S(O)_r$;

m is 1 or 2; and

r is 2.

9. A compound of Claim 2 wherein:

15 Q is Q-3.

10. A compound of Claim 9 wherein:

 R^1 and R^2 are independently H, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, halogen or nitro;

 R^9 is H, C_1 - C_3 alkyl, or cyclopropyl; and

 R^{10} is H or C_2 - C_3 alkoxycarbonyl.

20 11. A compound of Claim 10 wherein:

X is $S(O)_r$;

m is 1 or 2; and

r is 2.

12. A compound of Claim 2 wherein:

25 Q is Q-4.

13. A compound of Claim 12 wherein:

 R^1 and R^2 are independently H, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, halogen or nitro;

 R^{11} is C_3 - C_6 cycloalkyl or C_3 - C_6 halocycloalkyl, each optionally substituted with 1-4 C_1 - C_3 alkyl; and

R¹² is cyano or C_2 - C_6 alkoxycarbonyl.

14. A compound of Claim 13 wherein:

X is $S(O)_r$;

m is 1 or 2; and

r is 2.

35

	15.	The compound of Claim 1 which is selected from the group:
		a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
		yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;
		b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
5		yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;
		c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
		yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide;
		d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-
		5-hydroxy-1 <i>H</i> -pyrazol-4-yl)methanone <i>S</i> , <i>S</i> -dioxide;
10		e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-
		c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;
		f) $2-[(4,5-dihydro-2,7,10-trimethyl-2H[1]benzothiepino[5,4-c]pyrazol-9-$
		yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide;
		g) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
15		yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monosodium salt;
		h) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
		yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monosodium salt;
		i) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
		yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide monosodium salt;
20		j) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-
		5-hydroxy-1 <i>H</i> -pyrazol-4-yl)methanone <i>S</i> , <i>S</i> -dioxide monosodium salt;
		k) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-
		c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S.S-dioxide monosodium salt;
		1) $2-[(4,5-dihydro-2,7,10-trimethyl-2H[1]benzothiepino[5,4-c]pyrazol-9-$
25		yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide monosodium salt;
		m) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
		yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monopotassium salt;
		n) $2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-$
		yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monopotassium salt;
30		o) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
		yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide monopotassium salt;
		p) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl
		5-hydroxy-1 <i>H</i> -pyrazol-4-yl)methanone <i>S</i> , <i>S</i> -dioxide monopotassium salt;
		q) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-
35		c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S , S -dioxide monopotassium
		salt;

- r) 2-[(4,5-dihydro-2,7,10-trimethyl-2*H*[1]benzothiepino[5,4-*c*]pyrazol-9-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S*,*S*-dioxide monopotassium salt;
- s) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)[1-ethyl-5-[(methylsulfonyl)oxy]-1H-pyrazol-4-yl] methanone <math>S,S-dioxide; and
- t) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)[1-ethyl-5-[(4-methylphenyl)sulfonyloxy]-1*H*-pyrazol-4-yl] methanone *S*,*S*-dioxide.
- A mixture comprising a herbicidally effective amount of a compound of 16. Claim 15 with a herbicidally effective amount of one or more compounds selected from tribenuron-methyl, thifensulfuron-methyl, metsulfuron-methyl, chlorsulfuron, triasulfuron, 2,4-D, dicamba, bromoxynil, MCPA, fluroxypyr, clopyralid, fenoxaprop, 10 diclofop, tralkoxydim, clodinafop, imazamethabenz, sulfosulfuron, difenzoquat, propanil, prosulfuron, metribuzin, glyphosate, triallate, trifluralin, paraquat, diallate, linuron, diflufenican, pendimethalin, cyanazine, neburon, terbutryn, prosulfocarb. isoproturon, chlortoluron, methabenzthiazuron, metoxuron, simazine, ioxynil, mecoprop, metosulam, fluroglycophen-ethyl, flamprop-M-isopropyl, benzoylpropethyl, 15 ethametsulfuron-methyl, quinclorac, bentazone, rimsulfuron, nicosulfuron, primisulfuron, atrazine, terbuthylazine, imazethapyr, glyphosate-trimesium, glufosinate, fluthiacet-methyl, quizalofop-P-ethyl, flumetsulam, halosulfuron, sethoxydim, and flumiclorac-pentyl.
 - 17. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
 - 18. A herbicidal composition comprising a herbicidally effective amount of a mixture of Claim 16 and at least one of a surfactant, a solid diluent or a liquid diluent.
 - 19. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
 - 20. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a mixture of Claim 16.

5

20

25

Inter mal Application No P 5 96/18381

A. CLASSIFICATION OF SUBJECT MAITER IPC 6 C07D495/04 C07D498/04 C07D A01N43/52 A01N43/18 //(C (C07D498/04,335:00,261:00),(C0	070495/04,335:00,239:00),	43/90
According to International Patent Classification (IPC) or to both national	al classification and IPC	
B. FIELDS SEARCHED	- Lulai	
Minimum documentation searched (classification system followed by cl. IPC 6 C07D A01N	assilication symbols)	
Documentation searched other than minimum documentation to the exte	ent that such documents are included in the fields of	carched
Electronic data base consulted during the international search (name of	data hase and, where practical, search terms used)	
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category Citation of document, with indication, where appropriate,	of the relevant passages	Relevant to claim No.
A US 3 341 552 A (CORNELL) 12 3 see column 1, line 63 - column 1	September 1967	1,17
		-
		2
		"
Further documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special categories of cited documents: A document defining the general state of the art which is not	T later document published after the ir or priority date and not in conflict crited to understand the principle or	with the application out
considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or	invention "X" document of particular relevance; the cannot be considered novel or canninvolve an inventive step when the considered in th	of he considered to
which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means	'Y' document of particular relevance; the cannot be considered to involve an document is combined with one or ments, such combination being obvious the art.	e claimed invention inventive step when the more other such docu-
'P' document published prior to the international filing date but later than the priority date claimed	'&' document member of the same pate	nt family
Date of the actual completion of the international search	Date of mailing of the international 2 1. 04, 97	search report
15 April 1997		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer	
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Alfaro Faus, I	

Form PCT-ISA/210 (second sheet) (July 1992)

1

inter	nal Application No	
PC1	T/US 96/18381	

A. CLASSIE IPC 6	(CO7D495/04,335:00,221:00),(CO7D499 (CO7D495/04,335:00,333:00)	5/0	04,337:00,231:00),
According to	International Patent Classification (IPC) or to both national classifi	catio	ion and IPC
	SEARCHED		
Minimum do	cumentation searched (classification system followed by classification	on sy	symbols)
	on searched other than minimum documentation to the extent that si		
Electronic da	ata base consulted during the international search (name of data base	and	id, where practical, search constraints
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	levar	ant passages Relevant to claim No.
Fur	ther documents are listed in the continuation of box C.	Γ	Patent family members are listed in annex.
* Special c. 'A' docum consultation of the carlier in the count which create the count of the c	nent defining the general state of the art which is not detered to be of particular relevance or document but published on or after the international date of the statolish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means the published prior to the international filing date but than the priority date claimed.	.X.	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. (document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. (document member of the same patent family)
Name and	mailing address of the ISA		Authorized officer

ational application No.

INTERNATIONAL SEARCH REPORT

PCT/US 96/18381

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see next sheet
-
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
covers only those claims for which lees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

International Application No. PCT/US 96/ 18381

	SA/210
) of the PCT (conciseness of claims) on in the EPO, Part B, Chapter III, 2.2 een restricted to a generalization of in the description.
	·
·	

on on patent family members

US 96/18381

				Publication
Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 3341552 A	12-09-67	US 3397271	Α	13-08-68
				•
		•		

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)