

임베디드시스템

컴퓨터공학과 이병문

Log In

Password

2018.10.4

강의일정

- 01 강의소개, 강의일정소개, 평가소개
- 02 사물인터넷, 라즈베리파이3 설치/구축
- 03 임베디드 액츄레이터/센서 제어 1
- 04 임베디드 액츄레이터I센서 제어 2
- Buzzer Light sensor
- Touch sensor

- 05 임베디드 액츄레이터/센서 제어 3
- 06 임베디드 액츄레이터/센서 제어 4
- 07 임베디드 액츄레이터/센서 제어 5
- 08 중간고사

■ 하드웨어 구성

☑ Piezo Speaker (= Buzzer) 모듈

- 압전물질(수정, 세라믹)에 전압을 인가하면 떨림이 발생 (떨리는 부분에 얇은 판을 대면, 판과 부딪혀 소리가 발생)
- 압력을 주게 되면, 전압이 발생하는 센서

- Active buzzer
- Passive buzzer

Piezo buzzer 를 활용한 기기, knocki

■ 하드웨어 구성

☑ Passive buzzer 모듈

- 전기신호를 공급하더라도 짧은 시간만 소리를 냄
- 주파수(1.5kHz ~ 2.5kHz) 를 달리하면 각각 다른 Tone을 생성함
- PWM(Pulse Width Modulation) 기법이나 Delay를 이용하여 코딩

☑ Active buzzer 모듈

- 전기신호를 공급하면 소리를 지속적으로 냄
- 신호를 약 2.5kHz 주파수로 소리를 생성하므로 소리변화가 다양하지 못함
- 소리가 Passive 에 비해서 매우 크다(85db / 10cm)

■ 하드웨어 구성

☑ Piezo Speaker (= Buzzer)

옥타브 및 음계별 표준 주파

옥타브 음계	1	2	3	4	5	6	7	8
(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.602	2093.005	4186.009
C#	34.6478	68.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.668	587.3295	1174.659	2349.318	4698.646
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(OI)	41.2034	82.4069	164.8138	329.6276	659.2551	1318.510	2637.020	5274.041
F	43.6535	87.3071	174.6141	349.2283	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9942	739.9888	1479.978	2959.955	5919.911
G(솔)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	330.0000	880.0000	1760000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3729.310	7040.000
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

■ 하드웨어 구성

^{*} Active Buzzer 는 Passive Buzzer 보다 소리의 크기가 매우 큼

임베디드 액츄레이터 제어

- Example code (Node.js node-wiring-pi 모듈 활용)
 - ☑ wiringPi 외부모듈 설치 (wiringPi API 와 거의 비슷한 함수와 기능을 제공)

Wiring-pi 모듈의 문서(Documentation)

https://github.com/WiringPi/WiringPi-Node/blob/master/DOCUMENTATION.md

- Example code (Node.js node-wiring-pi 모듈 활용)
 - ☑ Buzzer 소리를 제어(On/Off)하는 자바스크립트

```
$ vi buzzer.js
                                           $ sudo node ./buzzer.js
const gpio = require('node-wiring-pi');
const BUZZER = 29;
const TurnOn = function() {
   gpio.digitalWrite(BUZZER, 1);
   console.log("Nodejs: BUZZER on");
   setTimeout(TurnOff, 200);
const TurnOff = function() {
   gpio. digitalWrite(BUZZER, 0);
   console.log("Nodejs: BUZZER off");
   setTimeout(TurnOn, 1000);
gpio.setup('wpi');
gpio.pinMode(BUZZER, gpio.OUTPUT);
setTimeout(TurnOn, 200);
```


임베디드 액츄레이터(부져, LED) 제어

■ Buzzer & SMD형 LED 3color 센서를 활용한 문제

☑ 하드웨어구성

다음 조건을 만족하는 하드웨어구성과 led_buzzer.js 프로그램을 완성하세요 조건1) SMD형 LED의 빨강색을 1초 동안 켜고 난 뒤에, LED를 끄고 바로 100ms 동안 Buzzer 소리를 울린다.

임베디드 액츄레이터(부져, LED) 제어

■ Example code (Node.js 기반 자바스크립트)

```
$ vi led_buzzer.js
$ sudo node ./led_buzzer.js
```

```
const gpio = require('node-wiring-pi');
const BUZZER = 25; // Buzzer wPi 핀번호
const LED = 29: // LED wPi 핀번호
const TurnOnLed = function() {
   gpio.digitalWrite(BUZZER, 0);
   gpio.digitalWrite(LED, 1);
   console.log("Nodejs: LED on, Buzzer off");
   setTimeout(TurnOnBuzzer, 1000);
const TurnOnBuzzer = function() {
   gpio.digitalWrite(LED, 0);
   gpio.digitalWrite(BUZZER, 1);
   console.log("Nodejs: LED off, Buzzer on");
   setTimeout(TurnOnLed, 200);
```

예제2 (led_buzzer.js)

```
process.on('SIGINT', function() {
    gpio.digitalWrite(LED, 0);
    gpio.digitalWrite(BUZZER, 0);
    console.log("Program Exit...");
    process.exit();
});

gpio.setup('wpi');
gpio.pinMode(BUZZER, gpio.OUTPUT);
gpio.pinMode(LED, gpio.OUTPUT);
setTimeout(TurnOnLed, 200);
```

■ Example code (참고, 2~4옥타브 도레미파솔라시도.... 연주를 위한 코드)

```
$ vi tone.js
$ sudo node tone.js
const gpio = require('node-wiring-pi');
const BUZZER = 25;
var tones = [ 65, 73, 82, 87, 97, 110, 123, 130, // 2옥타브
             146, 164, 174, 195, 220, 246, 261, // 3옥타브
             294, 330, 349, 392, 440, 494, 523 ] // 4옥타브
var index = 0:
const TurnOn = function() {
   gpio.softToneCreate (BUZZER);
   if (index >= tones.length - 1) i=0;
   gpio.softToneWrite (BUZZER, tones[index++]);
   console.log("Nodejs: %d번째(frequency:%d)", i, tones [index]);
   setTimeout(TurnOn, 1000);
gpio.setup('wpi');
gpio.pinMode(BUZZER, gpio.OUTPUT);
setImmediate(TurnOn);
```


슬라이드 4 의 도표참조

예제3) tone.js

임베디드 액츄레이터 제어

- 실습일지
 - ☑ 실습1
 - ☑ 실습2

임베디드 센서(광센서) 제어

■ 하드웨어 구성

☑ Light detector (digital sensor) 모듈

- 빛(광)을 센싱해서 디지털 값(밝음, 어두움)을 측정해내는 센서모둘

임베디드 센서(광센서) 제어

■ 하드웨어 구성

임베디드 센서(광센서) 제어

- Example code (Node.js 기반 자바스크립트)
 - ☑ Light (조도) 를 측정하여 어두우면 LED를 켜고, 밝으면 LED를 끄는 자바스크립트 프로그램을 작성하면 ...

```
const gpio = require('node-wiring-pi');
const LIGHT = 7;
const LED = 25:
const CheckLight = function() {
   gpio.digitalWrite(LED, 0);
   var data = gpio. digitalRead(LIGHT);
   if (! data) {
      console.log("Nodejs: Bright!!");
      gpio.digitalWrite(LED, 0);
   else {
      console.log("Nodejs: Dark..");
      gpio.digitalWrite(LED, 1);
   setTimeout(CheckLight, 500);
```

```
예제4 ( light_led.js)
```



```
process.on('SIGINT', function() {
    gpio.digitalWrite(LED, 0);
    console.log("Program Exit...");
    process.exit();
});

gpio.setup('wpi');
gpio.pinMode(LIGHT, gpio.INPUT);
gpio.pinMode(LED, gpio.OUTPUT);
setTimeout(CheckLight, 200);
```

임베디드 센서(인체터치센서) 제어

■ 하드웨어 구성 ☑ Touch sensor switch module 감도 전원 P#2 (<mark>5V</mark>) DO GND P#33 **(23)** P#34 (GND)

임베디드 센서(인체터치센서) 제어

■ Example code (node.js 기반 자바스크립트로 .. 완성하세요)

☑ touch 센싱 코드

예제5 (touch.js)

```
const gpio = require('node-wiring-pi');
const TOUCH = 23;
const CheckTouch = function( ) {
   var data = gpio.digitalRead(TOUCH);
   if (data)
        console.log("Nodejs: Touched !");
   setTimeout(CheckTouch, 300);
process.on('SIGINT', function() {
   console.log("Program Exit...");
   process.exit();
});
gpio.setup('wpi');
gpio.pinMode(TOUCH, gpio.INPUT);
setTimeout(CheckTouch, 10);
$ vi touch.js
$ sudo node ./touch.js
```


임베디드 센서측정 제어

- 실습일지
 - ☑ 실습3
 - ☑ 실습4

