Imię i nazwisko:
Logika dla informatyków
Egzamin końcowy (część licencjacka)
3 lutego 2009
Aby zdać tę część egzaminu (być dopuszczonym do części zasadniczej) trzeba uzyskać co najmniej 10 punktów. Egzamin trwa 60 minut.
Zadanie 1 (1 punkt). W prostokąt poniżej wpisz równoważną z $\neg p \Leftrightarrow (q \lor r)$ formułę w koniunkcyjnej postaci normalnej.
Zadanie 2 (1 punkt). Jeśli formuła $(p \lor q \lor r) \Rightarrow (((p \lor q) \land \neg r) \lor (r \land p \land q))$ jest tautologią to w prostokąt poniżej wpisz słowo "TAUTOLOGIA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 3 (1 punkt). W prostokąt poniżej wpisz formułę, która (interpretowana w zbiorze liczb rzeczywistych) mówi, że funkcja $f: \mathbb{R} \to \mathbb{R}$ nie jest bijekcją. Formuła ta nie może zawierać negacji.
Zadanie 4 (1 punkt). W prostokąt poniżej wpisz nie zawierającą symbolu negacji formułę równoważną formule $\neg(\forall (\varepsilon > 0) \exists (k \in \mathbb{N}) \ \forall n \ ((n > k) \Rightarrow f(n) - a < \varepsilon)).$
Zadanie 5 (1 punkt). Jeśli inkluzja $A \cap (B \setminus C) \cap D \subseteq B \cap (A \setminus C) \cap D$ zachodzi dla dowolnych zbiorów A, B, C i D , to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Zadanie 6 (1 punkt). Jeśli inkluzja $\bigcap_{t \in T} (A_t \cup B_t) \subseteq \bigcap_{t \in T} A_t \cup \bigcap_{t \in T} B_t$ zachodzi dla dowolnych indekso-
wanych rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 7 (1 punkt). Niech $A_n = \{i \in \mathbb{N} \mid i \leq n\}$. W prostokąt poniżej wpisz wyliczoną wartość
zbioru $\bigcup_{m=5}^{\infty}\bigcap_{n\leq m}A_n$, tzn. wpisz wyrażenie oznaczające ten sam zbiór i nie zawierające symboli \cap, \cup .
Zadanie 8 (1 punkt). Niech $R = \{\langle n, n+3 \rangle \mid n \in \mathbb{N}\} \cup \{\langle n, n \rangle \mid n \in \mathbb{N}\}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle n, m \rangle \mid \varphi\}$ jest przechodnim domknięciem relacji R .
Zadanie 9 (1 punkt). Jeśli równość $f(X \div Y) = f(X) \div f(Y)$ zachodzi dla dowolnych funkcji $f: A \to B$ i dowolnych zbiorów $X, Y \subseteq A$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 10 (1 punkt). W prostokąt poniżej wpisz dowolny przykład porządku w zbiorze liczb naturalnych \mathbb{N} , który nie jest izomorficzny z naturalnym porządkiem $\langle \mathbb{N}, \leq \rangle$.

	Imi	ę i nazwi	isko:				
ma najmniej	(1 punkt). Jeśli i jszy punkt stały, t ym przypadku wpis	o w pro	stokąt poniżej				
Zadanie 12	(1 punkt). Wpis	z w pust	e pola poniższe	ej tabelki m	oce odpowie	ednich zbio	rów.
$\mathbb{N}\times\{0,1\}$	$\{1,2,3\} \times \{4,5\}$	$\mathbb{Q}\times\mathbb{N}$	$\mathcal{P}(\mathbb{N} \times \{0,1\})$	$\{2009\}^{\mathbb{R}}$	$(\mathbb{Q}\setminus\mathbb{N})^{\mathbb{N}}$	$(\mathbb{R}\setminus\mathbb{Q})^\mathbb{Q}$	$\{0,1\}^{\{2,3,4\}}$
przedział do	3 (1 punkt). Jeśli mknięty od x do y iej bijekcji. W prze	w zbior	rze liczb rzeczy	wistych, to			
Zadanie 14	: (1 punkt). W zl	piorze N ^N	^ℕ wszystkich fu	mkcii z N w	√N definiui	emy porząd	ek ≺ wzorem
$f \leq g \iff g$	$\forall n \in \mathbb{N} \ f(n) \le g(n)$						
Niech f_i	$(n) = \begin{cases} n & \text{dla } n > \\ 0 & \text{dla } n \le \end{cases}$	i i niec	$ch X = \{f_i \mid i \in$	E N}. Wpisz	w prostoką	ty poniżej v	wzory definiu-
jące funkcje kres nie istni	będące odpowiedni	o kresem	ı górnym i doln	ym zbioru .	X lub słowo	, "NIE", jeś	li odpowiedni
(a) $\sup X$							
(b) $\inf X$							
graficznym r	(1 punkt). Jeśli ozszerzeniem natur cych porządków. W	alnego po	orządku, są izo	morficzne, t	o w prostok	ąt poniżej v	vpisz dowolny

Zadanie 16 (1 punkt). Jeśli porządki $\langle \mathbb{N}, \leq \rangle$ i $\langle \{0\}^*, \leq_{lex} \rangle$ są izomorficzne, to w prostokąt poniż wpisz dowolny izomorfizm tych porządków. W przeciwnym przypadku wpisz uzasadnienie, dlaczego ta
zomorfizm nie istnieje.
Zadanie 17 (1 punkt). Jeśli zbiór klauzul $\{\neg p \lor r, \ \neg q \lor r, \ p \lor q, \ \neg r \lor \neg s, \ \neg r \lor s\}$ jest sprzeczny, w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpiwartościowanie spełniające ten zbiór.
Zadanie 18 (1 punkt). Jesli termy $f(x,g(x))$ i $f(f(y,z),z)$ są unifikowalne, to w prostokąt poniż wpisz dowolny unifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 19 (1 punkt). Jesli termy $f(x,z)$ i $f(f(y,z),y)$ są unifikowalne, to w prostokąt poniżej wpidowolny unifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 20 (1 punkt). W prostokąt poniżej wpisz sformułowanie (dowolnej wersji) zasady indukc

Imię i nazwisko:	
Oddane zadania:	

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

2 lutego 2009

Za każde z poniższych zadań można otrzymać od -10 do 10 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów. Mniej niż -2 punkty otrzymuje osoba, która umieszcza w swoim rozwiązaniu odpowiedzi kompromitująco fałszywe. Rozwiązania, w których nie ma odpowiedzi kompromitująco fałszywych, będą oceniane w skali od -2 do 10 punktów.

Zadanie 21. Udowodnij, że istnieje dokładnie jedna monotoniczna bijekcja $f: \mathbb{N} \to \mathbb{N}$.

Zadanie 22. Udowodnij, że zbiory $\{0,1\}^{\mathbb{R}}$, $\mathbb{N}^{\mathbb{R}}$ oraz $\mathbb{R}^{\mathbb{R}}$ są równoliczne.

Zadanie 23. Rozważmy zbiór liczb wymiernych Q.

- (a) Niech X będzie takim nieskończonym podzbiorem \mathbb{Q} , który nie ma elementu największego. Udowodnij, że istnieje nieskończony ściśle rosnący ciąg elementów zbioru X.
- (b) Niech X będzie dowolnym nieskończonym podzbiorem \mathbb{Q} . Udowodnij, że istnieje nieskończony ściśle monotoniczny (rosnący lub malejący) ciąg elementów zbioru X.

Zadanie 24. Rozważmy dowolne izomorficzne zbiory częściowo uporządkowane $\langle A, \leq_A \rangle$ i $\langle B, \leq_B \rangle$ oraz izomorfizm porządkowy $f: A \to B$. Udowodnij, że dla dowolnego zbioru $X \subseteq A$ jeśli $a = \sup X$ to $f(a) = \sup \{f(x) \mid x \in X\}$.

Student name:	
Logic for (Computer Science
Final exa	am (bachelor part)
Feb	ruary 3, 2009
This part lasts 60 minutes. To pass it one	needs at least 10 points.
Task 1 (1 point). In the box below write a formula $\neg p \Leftrightarrow (q \lor r)$.	a formula in conjunctive normal form equivalent to the
	\Rightarrow $(((p \lor q) \land \neg r) \lor (r \land p \land q))$ is a tautology then in the Otherwise write a corresponding counter-example.
Task 3 (1 point). In the box below write a that a function f is not a bijection. The form	formula that interpreted in the set of real numbers says ula must not contain negation symbols.
Task 4 (1 point). In the box below write a forto $\neg(\forall (\varepsilon > 0) \exists (k \in \mathbb{N}) \ \forall n \ ((n > k) \Rightarrow f(n) - k) $	ermula that contains no negation symbol and is equivalent $-a <\varepsilon)$).
· · · · · · · · · · · · · · · · · · ·	$0 \cap D \subseteq B \cap (A \setminus C) \cap D$ is true for all sets A, B, C and D . Otherwise write a corresponding counter-example.

Task 6 (1 point). If the inclusion $\bigcap_{t \in T} (A_t \cup B_t) \subseteq \bigcap_{t \in T} A_t \cup \bigcap_{t \in T} B_t$ is true for all indexed families of sets
$\{A_t\}_{t\in T}$ and $\{B_t\}_{t\in T}$, then in the box below write the word "YES". Otherwise write a corresponding counter-example.
Task 7 (1 point). Let $A_n = \{i \in \mathbb{N} \mid i \leq n\}$. In the box below write the value of the set $\bigcup_{m=5}^{\infty} \bigcap_{n \leq m} A_n$, that is, write an expression that denotes the same set and contains no symbols \cap, \cup .
that is, write an expression that denotes the same set and contains no symbols (1, 0.
Task 8 (1 point). Let $R = \{\langle n, n+3 \rangle \mid n \in \mathbb{N}\} \cup \{\langle n, n \rangle \mid n \in \mathbb{N}\}$. In the box below write a formula φ such that $\{\langle n, m \rangle \mid \varphi\}$ is the transitive closure of the relation R .
Task 9 (1 point). If the equality $f(X - Y) = f(X) - f(Y)$ is true for all functions $f: A \to B$ and all sets $X, Y \subseteq A$, then in the box below write the word "YES". Otherwise write a corresponding counter-example.
Task 10 (1 point). In the box below write any example of an order relation on the set of natural numbers \mathbb{N} that is not isomorphic with the natural order (\mathbb{N}, \leq) .

	St	tudent na	ame:				
	point). If the function then in the						
Task 12 (1	point). Write in t	he empty	fields of the tab	ole below th	ne cardinali	ties of the re	espective sets
$\mathbb{N}\times\{0,1\}$	$\{1,2,3\} \times \{4,5\}$	$\mathbb{Q}\times\mathbb{N}$	$\mathcal{P}(\mathbb{N}\times\{0,1\})$	$\{2009\}^{\mathbb{R}}$	$(\mathbb{Q}\setminus\mathbb{N})^{\mathbb{N}}$	$(\mathbb{R}\setminus\mathbb{Q})^\mathbb{Q}$	$\{0,1\}^{\{2,3,4\}}$
closed interv	point). If there exact al from x to y in the ection. Otherwise y	e set of r	eal numbers, the				
$f \preceq g \iff$	point). Consider $\forall n \in \mathbb{N} \ f(n) \leq g(n)$						
Let $f_i(n)$	$ = \begin{cases} n & \text{for } n > n \\ 0 & \text{for } n \le n \end{cases} $	and le	$t X = \{ f_i \mid i \in$	\mathbb{N} In the	e boxes bel	ow write th	ne expression
defining fund	etions that are respective. "NO" if the respective respective.	ectively t	he least upper b	ound and the	he greatest	lower bound	1 of the set X
(a) $\sup X$							
(b) $\inf X$							
cographic ex	point). If the ord tension of the natuers. Otherwise writers.	ıral order	r, are isomorphic	then in the	he box belo	w write any	

Task 16 (1 point). If the ordered sets $\langle \mathbb{N}, \leq \rangle$ and $\langle \{0\}^*, \leq_{lex} \rangle$ are isomorphic, then in the box below write any isomorphism of these orders. Otherwise write a justification why such an order does not exist
write any isomorphism of these orders. Otherwise write a justimeation why such an order does not order
Task 17 (1 point). If the set of clauses $\{\neg p \lor r, \ \neg q \lor r, \ p \lor q, \ \neg r \lor \neg s, \ \neg r \lor s\}$ is inconsistent then in the box below write a resolution proof of inconsistency of this set. Otherwise write a valuation satisfying this set.
Task 18 (1 point). If the terms $f(x, g(x))$ and $f(f(y, z), z)$ are unifiable, then in the box below write any unifier of these terms. Otherwise write the word "NO".
Task 19 (1 point). If the terms $f(x,z)$ i $f(f(y,z),y)$ are unifiable, then in the box below write any unifier of these terms. Otherwise write the word "NO".
Task 20 (1 point). In the box below write a formulation of (any version of) the induction principle.

Student name:	
Solutions returned:	

Logic for Computer Science

Final exam (main part)

February 3, 2009

Each of the task below is scored from -10 to 10 points. Empty solutions are scored with 0 points. Only solutions that contain discreditably false statements are scored with negative points.

- **Task 21.** Prove that there exists exactly one monotone bijection $f: \mathbb{N} \to \mathbb{N}$.
- **Task 22.** Prove that the sets $\{0,1\}^{\mathbb{R}}$, $\mathbb{N}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}}$ are equinumerous.
- **Task 23.** Consider the set of rational numbers \mathbb{Q} .
 - (a) Let X be an infinite subset of \mathbb{Q} such that it has no greatest element. Prove that there exists an infinite strictly increasing sequence of elements of the set X.
 - (b) Let X be an arbitrary infinite subset of \mathbb{Q} . Prove that there exists an infinite strictly monotone (increasing or decreasing) sequence of elements of the set X.

Task 24. Consider two isomorphic partially ordered sets $\langle A, \leq_A \rangle$ and $\langle B, \leq_B \rangle$ and an order isomorphism $f: A \to B$. Prove that for all sets $X \subseteq A$, if $a = \sup X$ then $f(a) = \sup \{f(x) \mid x \in X\}$.