CS 473ug: Algorithms

Chandra Chekuri chekuri@cs.uiuc.edu 3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2007

Part I

Longest Increasing Subsequence

Longest Increasing Subsequence

Sequence: an ordered list a_1, a_2, \ldots, a_n . Length of sequence is n

$$a_{i_1}, a_{i_2}, \ldots, a_{ik}$$
 is a subsequence of a_1, a_2, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

A sequence is increasing if $a_1 < a_2 < \ldots < a_n$. It is non-decreasing if $a_1 \le a_2 \le \ldots \le a_n$. Similarly decreasing and non-increasing.

Longest Increasing Subsequence

Sequence: an ordered list a_1, a_2, \ldots, a_n . Length of sequence is n

$$a_{i_1}, a_{i_2}, \ldots, a_{ik}$$
 is a subsequence of a_1, a_2, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

A sequence is increasing if $a_1 < a_2 < \ldots < a_n$. It is non-decreasing if $a_1 \le a_2 \le \ldots \le a_n$. Similarly decreasing and non-increasing.

Longest Increasing Subsequence

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an *increasing subsequence* $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example

L(i): length of longest common subsequence in first i elements a_1, a_2, \ldots, a_i .

L(i): length of longest common subsequence in first i elements a_1, a_2, \ldots, a_i .

Can we write L(i) in terms of $L(1), L(2), \ldots, L(i-1)$?

Case 1 : L(i) does not contain a_i , then L(i) = L(i-1)

Case 2 : L(i) contains a_i , then L(i) = ?

L(i): length of longest common subsequence in first i elements a_1, a_2, \ldots, a_i .

Can we write L(i) in terms of $L(1), L(2), \ldots, L(i-1)$?

Case 1 : L(i) does not contain a_i , then L(i) = L(i-1)

Case 2 : L(i) contains a_i , then L(i) = ? What is the element in the subsequence before a_i ? If it is a_j then it better be the case that $a_i < a_i$ since we are looking for an increasing sequence.

L(i): length of longest common subsequence in first i elements a_1, a_2, \ldots, a_i .

Can we write L(i) in terms of $L(1), L(2), \ldots, L(i-1)$?

```
Case 1 : L(i) does not contain a_i, then L(i) = L(i-1)
```

Case 2: L(i) contains a_i , then L(i) = ? What is the element in the subsequence before a_i ? If it is a_j then it better be the case that $a_j < a_i$ since we are looking for an increasing sequence. Do we know which j? No!

L(i): length of longest common subsequence in first i elements a_1, a_2, \ldots, a_i .

Can we write L(i) in terms of $L(1), L(2), \ldots, L(i-1)$?

Case 1 : L(i) does not contain a_i , then L(i) = L(i-1)

Case 2: L(i) contains a_i , then L(i) = ? What is the element in the subsequence before a_i ? If it is a_j then it better be the case that $a_j < a_i$ since we are looking for an increasing sequence. Do we know which j? No! So we try all possibilities

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

L(i): length of longest common subsequence in first i elements a_1, a_2, \ldots, a_i .

Can we write L(i) in terms of $L(1), L(2), \ldots, L(i-1)$?

Case 1 : L(i) does not contain a_i , then L(i) = L(i-1)

Case 2: L(i) contains a_i , then L(i) = ? What is the element in the subsequence before a_i ? If it is a_j then it better be the case that $a_j < a_i$ since we are looking for an increasing sequence. Do we know which j? No! So we try all possibilities

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

Is the above correct?

L(i): length of longest common subsequence in first i elements a_1, a_2, \ldots, a_i .

Can we write L(i) in terms of $L(1), L(2), \ldots, L(i-1)$?

Case 1 : L(i) does not contain a_i , then L(i) = L(i-1)

Case 2: L(i) contains a_i , then L(i) = ? What is the element in the subsequence before a_i ? If it is a_i then it better be the case that $a_i < a_i$ since we are looking for an increasing sequence. Do we know which j? No! So we try all possibilities

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

Is the above correct? No, because we do not know that L(i) is a subsequence that actually ends at a_i !

L(i): longest common subsequence in first i elements a_1, a_2, \ldots, a_i that ends in a_i

L(i): longest common subsequence in first i elements a_1, a_2, \ldots, a_i that ends in a_i

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

What is the final solution?

L(i): longest common subsequence in first i elements a_1, a_2, \ldots, a_i that ends in a_i

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

What is the final solution? $\max_{i=1}^{n} L(i)$

How many subproblems?

L(i): longest common subsequence in first i elements a_1, a_2, \ldots, a_i that ends in a_i

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

What is the final solution? $\max_{i=1}^{n} L(i)$

How many subproblems? O(n)

Table based Iterative Algorithm

Recurrence:

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

Iterative algorithm:

```
for i=1 to n do L[i]=1 for j=1 to i-1 do if a_j < a_i and 1+L[j] > L[i] L[i]=1+L[j]
```

Output $\max_{i=1}^{n} L[i]$

Running Time:

Table based Iterative Algorithm

Recurrence:

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

Iterative algorithm:

```
for i=1 to n do L[i]=1 for j=1 to i-1 do if a_j < a_i and 1+L[j] > L[i] L[i]=1+L[j]
```

Output $\max_{i=1}^{n} L[i]$

Running Time: $O(n^2)$

Space:

Table based Iterative Algorithm

Recurrence:

$$L(i) = 1 + \max_{j < i \text{ and } a_j < a_i} L(j)$$

Iterative algorithm:

```
for i=1 to n do L[i]=1 for j=1 to i-1 do if a_j < a_i and 1+L[j] > L[i] L[i]=1+L[j]
```

Output $\max_{i=1}^{n} L[i]$

Running Time: $O(n^2)$

Space: O(n)

A DAG Based Approach

Given sequence a_1, a_2, \ldots, a_n create DAG as follows:

- for each i there is a node v_i
- if i < j and $a_i < a_j$ add an edge (v_i, v_j)

Dynamic Programming Methods

There is always a DAG of computation underlying every dynamic program but it is not always clear.

Dynamic Programming Methods

There is always a DAG of computation underlying every dynamic program but it is not always clear.

Three ways to come up with dynamic programming solutions

- recursion followed by memoization with a polynomial number of subproblems
- bottom up via tables
- identify a DAG followed by a shortest/longest path in DAG

But there is always a recursion+memoization that is implicit in the other methods!

Given sequence a_1, a_2, \ldots, a_n the longest increasing subsequence can be of size 1.

Given sequence a_1, a_2, \ldots, a_n the longest increasing subsequence can be of size 1.

Example: $a_1 > a_2 > a_3 > ... > a_n$

Given sequence a_1, a_2, \ldots, a_n the longest increasing subsequence can be of size 1.

Example: $a_1 > a_2 > a_3 > ... > a_n$

In the above example the longest *decreasing* sequence is of size n.

Given sequence a_1, a_2, \ldots, a_n the longest increasing subsequence can be of size 1.

Example: $a_1 > a_2 > a_3 > ... > a_n$

In the above example the longest *decreasing* sequence is of size n.

Question: Given a sequence of length n, can the longest increasing sequence and the longest decreasing sequence be both small?

Given sequence a_1, a_2, \ldots, a_n the longest increasing subsequence can be of size 1.

Example: $a_1 > a_2 > a_3 > ... > a_n$

In the above example the longest decreasing sequence is of size n.

Question: Given a sequence of length n, can the longest increasing sequence and the longest decreasing sequence be both small?

Dilworth's Theorem Consequence: In any sequence of length n, either the longest increasing sequence or the longest decresing sequence is of length $\sqrt{n} \mid +1$.

Exercise: give a sequence of length n in which both the longest increasing subsequence and longest decreasing subsequence are no more than $|\sqrt{n}|+1$.

Part II

Edit Distance

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a *nearby* string?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a *nearby* string?

What does nearness mean?

Question: Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a *nearby* string?

What does nearness mean?

Question: Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y.

Edit Distance

Edit Distance: minimum number of "edits" to transform x into y.

Edit operations:

- delete a letter
- add a letter
- substitute a letter with another letter

Edit Distance

Edit Distance: minimum number of "edits" to transform x into y.

Edit operations:

- delete a letter
- add a letter
- substitute a letter with another letter

Why is substitute not "delete plus add"?

In general different edits can have different *costs* and using substitution as a edit allows a single operation as far as distance is concerned

Example

Edit Distance as Alignment

FOO_D MONEY

Edit Distance Problem

- Input Two strings $x = x_1 x_2 \dots x_n$ and $y = y_1 y_2 \dots y_m$ over some fixed alphabet Σ
- Goal Find edit distance between x and y: minimum number of edits to transform x into y

Edit Distance Problem

- Input Two strings $x = x_1 x_2 \dots x_n$ and $y = y_1 y_2 \dots y_m$ over some fixed alphabet Σ
- Goal Find edit distance between x and y: minimum number of edits to transform x into y

Note: EditDist(x,y) = EditDist(y,x)

Think of aligning the strings. Can we express the full problem as a function of subproblems?

AFOOD _ _FOOD Y

Think of aligning the strings. Can we express the full problem as a function of subproblems?

Case 1 x_n is aligned with y_m . Then $x_1x_2...x_{n-1}$ is aligned with $y_1y_2...y_{m-1}$

Think of aligning the strings. Can we express the full problem as a function of subproblems?

- Case 1 x_n is aligned with y_m . Then $x_1x_2...x_{n-1}$ is aligned with $y_1y_2...y_{m-1}$
- Case 2a x_n is aligned with _ and y_m is to left of _. Then $x_1x_2...x_{n-1}$ is aligned with $y_1y_2...y_n$

Think of aligning the strings. Can we express the full problem as a function of subproblems?

- Case 1 x_n is aligned with y_m . Then $x_1x_2...x_{n-1}$ is aligned with $y_1y_2...y_{m-1}$
- Case 2a x_n is aligned with _ and y_m is to left of _. Then $x_1x_2...x_{n-1}$ is aligned with $y_1y_2...y_n$.
- Case 2b y_m is aligned with _ and x_n is to left of _. Then $x_1x_2...x_n$ is aligned with $y_1y_2...y_{m-1}$.

Think of aligning the strings. Can we express the full problem as a function of subproblems?

- Case 1 x_n is aligned with y_m . Then $x_1x_2...x_{n-1}$ is aligned with $y_1y_2...y_{m-1}$
- Case 2a x_n is aligned with _ and y_m is to left of _. Then $x_1x_2...x_{n-1}$ is aligned with $y_1y_2...y_n$.
- Case 2b y_m is aligned with _ and x_n is to left of _. Then $x_1x_2...x_n$ is aligned with $y_1y_2...y_{m-1}$.

Subproblems involve aligning *prefixes* of the two strings. Find edit distance between prefix x[1..i] of x and prefix y[1..j] of y EditDist(x,y) is the distance between x[1..n] and y[1..m]

E[i,j]: edit distance between x[1..i] and y[1..j]

E[i,j]: edit distance between x[1..i] and y[1..j]

Case 1
$$x_i$$
 aligned with x_i

$$E[i,j] = diff(x_i, y_j) + E[i-1, j-1]$$

where $diff(x_i, y_j) = 0$ if $x_i = y_j$, otherwise $diff(x_i, x_j) = 1$

E[i,j]: edit distance between x[1..i] and y[1..i]

Case 1 x_i aligned with x_i .

$$E[i,j] = diff(x_i, y_j) + E[i-1, j-1]$$

where $diff(x_i, y_i) = 0$ if $x_i = y_i$, otherwise $diff(x_i, x_i) = 1$

Case 2a x_i is mapped to _ and x_i is to right of x_i

$$E[i,j] = 1 + E[i-1,j]$$

E[i,j]: edit distance between x[1..i] and y[1..j]

Case 1 x_i aligned with x_i .

$$E[i,j] = diff(x_i, y_j) + E[i-1, j-1]$$

where $diff(x_i, y_j) = 0$ if $x_i = y_j$, otherwise $diff(x_i, x_j) = 1$

Case 2a x_i is mapped to _ and x_i is to right of x_i

$$E[i,j] = 1 + E[i-1,j]$$

Case 2b y_j is mapped to _ and x_i is to left of y_j

$$E[i,j] = 1 + E[i,j-1]$$

$$E[i,j] = \min\{diff(x_i, y_j) + E[i-1, j-1], 1 + E[i-1, j], 1 + E[i, j-1]\}$$

Base cases:

$$E[i,j] = \min\{diff(x_i, y_j) + E[i-1, j-1], 1 + E[i-1, j], 1 + E[i, j-1]\}$$

Base cases:

$$E[i, 0] = i \text{ for } i \ge 0$$

$$E[0,j] = j$$
 for $i \ge 0$

How many subproblems?

$$E[i,j] = \min\{diff(x_i, y_j) + E[i-1, j-1], 1 + E[i-1, j], 1 + E[i, j-1]\}$$

Base cases:

$$E[i, 0] = i \text{ for } i \ge 0$$

$$E[0,j] = j$$
 for $i \ge 0$

How many subproblems? O(mn)

What is table?

What is table? E is a two-dimensional array of size (n+1)(m+1) How do we order the computation?

What is table? E is a two-dimensional array of size (n+1)(m+1) How do we order the computation? To compute E[i,j] need to have computed E[i-1,j-1], E[i-1,j], E[i,j-1].


```
for i=0 to n E[i,0]=i for j=0 to m E[0,j]=j for i=1 to n do for j=1 to m do E[i,j]=\min\{diff(x_i,y_j)+E[i,j],1+E[i-1,j],1+E[i,j-1]\}
```

Running Time:

```
for i = 0 to n
E[i,0] = i

for j = 0 to m
E[0,j] = j

for i = 1 to n do
for j = 1 to m do
E[i,j] = \min \{ diff(x_i, y_j) + E[i,j], 1 + E[i-1,j], 1 + E[i,j-1] \}

Running Time: O(nm)

Space:
```

```
for i = 0 to n
E[i,0] = i

for j = 0 to m
E[0,j] = j

for i = 1 to n do
for j = 1 to m do
E[i,j] = \min \{ diff(x_i, y_j) + E[i,j], 1 + E[i-1,j], 1 + E[i,j-1] \}

Running Time: O(nm)

Space: O(nm)
```

```
for i = 0 to n
    E[i, 0] = i
for i = 0 to m
    E[0, i] = i
for i = 1 to n do
    for j=1 to m do
         E[i, j] = \min\{diff(x_i, y_i) + E[i, j], 1 + E[i - 1, j], 1 + E[i, j - 1]\}
Running Time: O(nm)
Space: O(nm)
```

Can reduce space to O(n+m) if only distance is needed but not obvious how to actually compute the edits. Can do it with a clever scheme (see Jeff's notes).

Example

Where is the DAG?

- one node for each (i,j), $1 = 0 \le i \le n$, $0 \le j \le m$.
- Edges for node (i,j): from (i-1,j-1) of cost $diff(x_i,y_j)$, from (i-1,j) of cost 1, from (i,j-1) of cost 1
- find shortest path from (0,0) to (n,m)