附录 A 一些基本定义

惯例 A.1 (**幂集**): 对于任意集合 A,我们使用 $\mathcal{P}(A)$ 代表 A 的所有子集。 $\mathcal{P}(A)$ 也 叫做 A 的幂集。有时也写作 2^A 。

惯例 A.2 (**函数集**): 对于集合 A 和 B , $A \to B$ 代表所有从 A 到 B 的函数的集合。 而 $A \to B$ 代表所有从 A 到 B 的 "partial functions"。

注释 A.1: 对于集合 A, B,关系 $\mathcal{C} \subseteq A \times B$,我们可以把 \mathcal{C} 理解为函数 $\mathcal{C} \in A \longrightarrow \mathcal{P}(B)$ 。

惯例 A.3 (元组投影): 对于 n 元组 $t = (x_1, x_2, \dots, x_n)$,我们使用符号 $\pi_i(t)$ $(1 \le i \le n)$ 代表元组元素 x_i ;我们使用符号 $\bar{\pi}_i(1 \le i \le n)$ 代表 (n-1) 元组 $(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ 。 π 和 $\bar{\pi}$ 自然扩展到元组集。

惯例 A.4 (组合关系): 给出集合 A, B, C 和两个关系 $E \subseteq A \times B$ 和 $F \subseteq B \times C$, 定义组合关系 (插入操作符。):

$$E \circ F = \{(a, c) : (\exists b : b \in B : (a, b) \in E \land (b, c) \in F)\}\$$

惯例 A.5 (等价关系的等价类): 对任何集合 A 上的等价关系 E, 我们使用 $[A]_E$ 代表等价类集合,即:

$$[A]_E = \{[a]_E : a \in A\}$$

集合 $[A]_E$ 也叫做 A 的由 E 引出的"划分 (partition)"。

定义 A.1 (等价类的指数): 对于集合 A 上的等价关系 E, 定义 $\sharp E = |[A]_E|$ 。 $\sharp E$ 也 叫做 E 的 "指数"。

定义 A.2 (字母表): 字母表是有限大小的非空集合。

定义 A.3 (等价关系的细化): 对于等价关系 E 和 E' (在集合 A 上),当且仅当 $E \subseteq E'$, $E \not = E'$ 的 "细化"。

定义 A.4 (**划分的细化关系** \subseteq): 对于等价关系 E 和 E' (在集合 A 上),当且仅当 $E \subseteq E'$, $[A]_E$ 也被称为 $[A]_{E'}$ 的细化(写作 $[A]_E \subseteq [A]_{E'}$)。当且仅当 E 下的每一个等价类完全包含在 E' 下的某些等价类时,等价命题是 $[A]_E \subseteq [A]_{E'}$ 。

定义 A.5 (元组和关系反转): 对一个 n 元组 (x_1, x_2, \cdots, x_n) ,定义反转为函数 R (后缀和上标)

$$(x_1, x_2, \cdots, x_n)^R = (x_n, \cdots, x_2, x_1)$$

给出一个集合元组 A, 定义 $A^R = \{x^R : x \in A\}$ 。

附录 B 有限自动机

本节中我们定义有限自动机、其性质及其一些变化。大部分定义直接取自 定义 B.1 (有限自动机 (Finite automata, FA)): 自 动 机 是 一 个 6 元 组 (Q, V, T, E, S, F), 其中:

- Q 是有限状态集;
- V 是一个字母表;
- $T \in \mathcal{P}(P \times V \times Q)$ 是一个转换关系;
- $E \in \mathcal{P}(Q \times Q)$ 是一个 ϵ -转换关系 (空转换);
- $S \subset Q$ 是开始状态集;
- $F \subseteq Q$ 是结束状态集;

字母表和函数 \mathcal{P} 的定义分别在"定义A.2"和"惯例A.1"。

注释 B.1: 我们也会在状态转换关系的表示上采取一定的自由。例如,我们也把转移关系写成 $T \in V \longrightarrow \mathcal{P}(Q \times Q), T \in Q \times Q \longrightarrow \mathcal{P}(V), T \in Q \times V \longrightarrow \mathcal{P}(Q), T \in Q \longrightarrow \mathcal{P}(V \times Q), E \in Q \longrightarrow \mathcal{P}(Q)$ 。 每种情况下,Q 的从左到右的顺序会是"preserved";例如,函数 $T \in Q \longrightarrow \mathcal{P}(V \times Q)$ 定义为 $T(p) = \{(a,q): (p,a,q) \in T\}$ 。所使用的签名将从上下文中清除。详见备注 A.3。"——"的定义出现在惯例 A.2。

由于本文中我们只考虑有限自动机,所以我们将会频繁的使用简化术语"自动机"。

B.1 有限自动机的性质

本小节将会定义一些有限自动机 (下称 FA) 的性质。为了使定义更加简洁明了,我们引进三个特殊的 FA: M=(Q,V,T,E,S,F), $M_0=(Q_0,V_0,T_0,E_0,S_0,F_0)$, $M_1=(Q_1,V_1,T_1,E_1,S_1,F_1)$ 。

定义 B.2 (FA 的大小): 定义一个 FA 的大小为 |M| = |Q|。

定义 B.3 (FA **的同构** \cong): 我们把同构定义为 FA 的等价关系。当且仅当 $V_0 = V_1$,并且存在双射 $g \in Q_0 \longrightarrow Q_1$,使得

- $T_1 = \{(g(p,q), a, g(q)) : (p, a, q) \in T_0\}$
- $E_1 = \{(q(p,q), a, q(q)) : (p,q) \in E_0\}$
- $S_1 = \{q(s) : s \in S_0\}$
- $F_1 = \{q(f) : f \in F_0\}$

时 M_0 和 M_1 是同构的 (写作 $M_0 \cong M_1$)。

定义 B.4 (转移关系 T 的扩展): 我们把 $T \in V \longrightarrow \mathcal{P}(Q \times Q)$ 到 $T^* \in V^* \longrightarrow \mathcal{P}(Q \times Q)$ 的转换关系以如下方式扩展:

$$T^*(\epsilon) = E^*$$

且对于 $(a \in V, w \in V^*)$ 有

$$T^*(aw) = E^* \circ T(a) \circ T^*(w)$$

操作符。在惯例 A.5 中定义。<u>这个定义也可以对称的表示</u>。

注释 B.2: 有时候我们也使用把转移关系写成: $T^* \in Q \times Q \longrightarrow \mathcal{P}(V^*)$ 。

定义 B.5 (左语言和右语言): 状态 $(M \ P)$ 的左语言由函数 $\overleftarrow{\mathcal{L}}_M \in Q \longrightarrow \mathcal{P}(V^*)$ 给出,其中:

$$\overleftarrow{\mathcal{L}}_M(q) = (\cup s : s \in S : T^*(s, q))$$

状态 $(M \ \text{中})$ 的右语言由函数 $\overrightarrow{\mathcal{L}}_M \in Q \longrightarrow \mathcal{P}(V^*)$ 给出,其中

$$\overrightarrow{\mathcal{L}}_M(q) = (\cup f : f \in F : T^*(q, f))$$

通常在没有歧义的时候移除下标M。

定义 B.6 (FA 的语言): 有限自动机的语言由函数 $\mathcal{L}_{FA} \in FA \longrightarrow \mathcal{P}(V^*)$ 给出,该函数的定义为:

$$\mathcal{L}_{FA}(M) = (\cup s, f : s \in S \land f \in F : T^*(s, f))$$

定义 B.7 (完全自动机 (Complete)): 一个完全有限自动机满足:

$$Complete(M) \equiv (\forall q, a: q \in Q \land a \in V: T(q, a) \neq \emptyset)$$

定义 B.8 $(\epsilon$ -free): 当且仅当 $E = \emptyset$ 时, $M \neq \epsilon$ -free 的。

定义 B.9 (Start-useful 自动机): 一个 $Useful_s$ 有限自动机定义如下:

$$Useful_s(M) \equiv (\forall q : q \in Q : \overleftarrow{\mathcal{L}}(q) \neq \emptyset)$$

定义 B.10 (Final-useful 自动机): 一个 $Useful_f$ 有限自动机定义如下:

$$Useful_f(M) \equiv (\forall q : q \in Q : \overrightarrow{\mathcal{L}}(q) \neq \emptyset)$$

注释 B.3: $Useful_s$ 和 $Useful_f$ 与 FA 的反转密切相关(见变换 B.22),对所有的 $M \in FA$,有 $Useful_f(M) \equiv Useful_s(M^R)$ 。

定义 B.11 (Useful **自动机**): Useful 有限自动机是一个只有可达状态的有限自动机:

$$Useful(M) \equiv Useful_s(M) \wedge Useful_f(M)$$

性质 B.1 (确定性有限自动机 (DFA)): 当且仅当

- 无多重初始状态;
- 无 ε 转移;
- 转移函数 $T \in Q \times V \longrightarrow \mathcal{P}(Q)$ 不将 $Q \times V$ 映射至多重状态。

时有限自动机 M 是确定性的。形式表达为:

$$Det(M) \equiv (|S| \le 1 \land \epsilon - free(E) \land (\forall q, a : q \in Q \land a \in V : |T(q, a)| \le 1))$$

定义 B.12 (FA 的确定性): DFA 代表所有确定性的有限自动机的集合。我们把 $FA \setminus DFA$ 称为非确定性有限自动机 (NDFA,nondeterministic finite automata) 的集合。

惯例 B.1 (DFA 的转换函数): 对于 $(Q, V, T, \emptyset, S, F) \in DFA$,我们考虑把转换函数记为 $T \in Q \times V \nrightarrow Q$ (\nrightarrow 的定义可以查看惯例 A.2)。当且仅当 DFA 是完全自动机的时候,转换函数是全函数。

性质 B.2 (**弱确定性自动机**): 一些作者用比 Det 弱的确定性自动机的定义; 使用 左语言, 定义如下:

$$Det'(M) \equiv (\forall q_0, q_1 : q_0 \in Q \land q_1 \in Q \land q_0 \neq q_1 : \overleftarrow{\mathcal{L}}(q_0) \cap \overleftarrow{\mathcal{L}}(q_1) = \emptyset)$$

很容易证明 $Det(M) \Rightarrow Det'(M)$ 。

定义 B.13 (DFA 的最小化): 满足以下条件时, $M \in DFA$ 是最小化的:

$$Min(M) \equiv (\forall M' : M' \in DFA \land Complete(M') \land \mathcal{L}(M) = \mathcal{L}_{FA}(M') : |M| \leq |M'|)$$

Min 仅定义在 DFA 上。如果我们定义一个最小的但是仍然完全的 DFA,那么一些定义将会更加简单。它的定义如下:

$$Min_{\mathcal{C}}(M) \equiv (\forall M': M' \in DFA \land Complete(M') \land \mathcal{L}_{FA}(M) = \mathcal{L}_{FA}(M'): |M| \leq |M'|)$$

 $Min_{\mathcal{C}}$ 仅定义在完全 DFA 上。

定义 B.14 (*DFA* **的最小化**): 根据 Myhill-Nerode 定理, <u>An M, such that Min(M)</u>, 是唯一的最小化 *DFA*, 定理的相关介绍在^[4]。

性质 B.3 (DFA 最小化的一个替代定义): 为了最小化 DFA,使用定义 (仅定义 在 DFA 上):

$$Minimal(Q, V, T, \emptyset, S, F) \equiv (\forall q_0, q_1 : q_0 \in Q \land q_1 \in Q \land q_0 \neq q_1 : \overrightarrow{\mathcal{L}}(q_0) \neq \overrightarrow{\mathcal{L}}(q_1))$$
$$\land Useful(Q, V, T, \emptyset, S, F)$$

有 $Minimal(M) \equiv Min(M)$ (对所有 $M \in DFA$) 。 很容易证明 $Min(M) \Rightarrow Minimal(M)$ 。 The reverse direction follows from the Myhill-Nerode 定理。

与 Minc 相似的定义是 (同样也只定义在 DFA 上):

$$Minimal_{\mathcal{C}}(Q, V, T, \emptyset, S, F) \equiv (\forall q_0, q_1 : q_0 \in Q \land q_1 \in Q \land q_0 \neq q_1 : \overrightarrow{\mathcal{L}}(q_0) \neq \overrightarrow{\mathcal{L}}(q_1))$$
$$\land Useful(Q, V, T, \emptyset, S, F)$$

有 $Minimal_{\mathcal{C}}(M) \equiv Min_{\mathcal{C}}(M)$ 的性质(对于所有的 $M \in DFA$)。很容易证明 $Min_{\mathcal{C}}(M) \Rightarrow Minimal_{\mathcal{C}}(M)$ 。 The reverse direction follows from the Myhill-Nerode 定理。

B.2 有限自动机的变换

变换 B.1 (FA **反转**): FA 反转由后缀(上标)函数 $R \in FA \longrightarrow FA$ 给出,它的 定义如下:

$$(Q, V, T, S, F)^R = (Q, V, T^R, E^R, F, S)$$

函数 R 满足

$$(\forall M : M \in FA : (\mathcal{L}(M))^R = \mathcal{L}_{FA}(M^R))$$

变换 B.2 (**移除开始状态不可达状态**): 变换 $useful_s \in FA \longrightarrow FA$ 移除开始状态 不可达状态:

$$useful_s(Q,V,T,E,S,F) \ = \ \mathbf{let} \quad U = SReachable(Q,V,T,E,S,F)$$

$$\mathbf{in}$$

$$(U,V,T\cap (U\times V\times U),E\cap (U\times U),S\cap U,F\cap U)$$

$$\mathbf{end}$$

函数 use ful。满足

$$(\forall M: M \in FA: Useful_s(useful_s(M)) \land \mathcal{L}_{FA}(useful_s(M)) = \mathcal{L}_{FA}(M))$$

变换 B.3 (子集构造): 函数 subset 把一个 ϵ -free FA 转换为一个 DFA (in the let clause $T' \in \mathcal{P}(Q) \times V \longrightarrow \mathcal{P}(\mathcal{P}(Q))$):

$$subset(Q,V,T,\emptyset,S,F) \ = \ \mathbf{let} \qquad T'(U,a) = \{(q:q\in U:T(q,a))\}$$

$$F' = \{U:U\in \mathcal{P}(Q) \land U\cap F \neq \emptyset\}$$

$$\mathbf{in} \qquad \qquad (\mathcal{P}(Q),V,T',\emptyset,\{S\},F')$$

$$\mathbf{end}$$

有时候也把它说成"幂集"构造。

性质 B.4 (子集构造): 设 $M_0 = (Q_0, v, t_0, \emptyset, S_0, F_0)$ 和 $M_1 = subset(M_0)$ 为有限自动机。通过子集构造,状态集 M_1 成为 $\mathcal{P}(Q_0)$ 。有如下性质:

$$(\forall p: p \in \mathcal{P}(Q_0): \overrightarrow{\mathcal{L}}_{M_1}(p) = (q: q \in p: \overrightarrow{\mathcal{L}}_{M_1}(q)))$$

定义 B.15 (优化子集构造): 函数 subsetopt 把一个 ϵ - $free\ FA$ 转换为一个 DFA 。 此函数是 subset 的一个优化版本:

$$subset(Q,V,T,\emptyset,S,F) \ = \ \mathbf{let} \qquad T'(U,a) = \{(q:q\in U:T(q,a))\}$$

$$Q' = \mathcal{P}(Q)\setminus\{\emptyset\}$$

$$F' = \{U:U\in\mathcal{P}(Q)\wedge U\cap F\neq\emptyset\}$$

$$\mathbf{in}$$

$$(Q',V,T'\cap(Q'\times V\times Q'),\emptyset,\{S\},F')$$

$$\mathbf{end}$$

除了性质 $\mathcal{L}_{FA}(subsetopt(M)) = \mathcal{L}(M)$ (对所有的 $M \in FA$) 之外,函数 subsetopt 还满足

$$(\forall M: M \in FA \land \epsilon\text{-}free(M): Det(subset(M)))$$