Using Illumina Sequencing Technology to Explore The Bacterial Genome

Björn Espedido, PhD

Senior Field Application Scientist, Illumina

Zhiliang Chen, PhD

Senior Bioinformatics Sales Specialist, Illumina

Agenda

SECTIONS

BaseSpace® SEQUENCE HUB

Understanding the Illumina MiSeq system and library preparation

Introduction to BaseSpace Sequence Hub

Understanding bacterial whole genome alignment and variant calling

MiSeq and Library Preparation

MiSeq System Overview

MiSeq System Features

MiSeq Control Software/ Touchscreen

Waste Container

Flow Cell Compartment

Reagent Cartridge Chiller

Sequencing Reagents

MiSeq Software

MiSeq Control Software (MCS)

Main functions

- System operation
- Performing sequencing runs
- Performing primary analysis

Local Run Manager (LRM)

Main functions

- Creating a run
- Run monitoring
- Performing Secondary analysis

MiSeq Sequencing Reagent Kit

Four components, all single-use

Box	Components	Storage	
Box 1/2	1 Reagent Cartridge	Froozor 25°C to 15°C	
BOX 1/2	② HT1	Freezer, -25°C to -15°C	
Day 2/2	③ Flow Cell	Refrigerator, 2°C to 8°C	
Box 2/2	4 PR2 Buffer		

Box 2/2

Museriere

Flow Cell Types

Use the reagent cartridge associated with your flow cell type

MiSeq Reagent Kit Variations

Standard Flow Cells

MISEQ REAGENT KIT V2		MISEQ REAGENT KIT V3		
READ LENGTH	OUTPUT	READ LENGTH	OUTPUT	
1 × 36 bp	540-610 Mb	2 × 75 bp	3.3-3.8 Gb	
2 × 25 bp	750-850 Mb	2 × 300 bp	13.2-15 Gb	
2 × 150 bp	4.5-5.1 Gb			
2 × 250 bp	7.5-8.5 Gb			

Reads Passing Filter	V2	V3	
Single reads	12-15 M	22-25 M	
Paired- End Reads	24-30 M	44-50 M	

Low Output Applications

Flow cell	# of Reads	Read length	2 x 75 Output	2 x 150 Output	2 x 250 Output
Micro FC	4 M	Up to 2 x 150	600 Mb	1.2 Gb	
Nano FC	1 M	Up to 2 x 250	150 Mb	300 Mb	500 Mb

Library Prep

Illumina Sequencing Workflow

Planning Your Prep and Run

 Before proceeding to library prep and creating your run, you will need to plan your run by defining the following parameters of your sequencing run:

Library Prep is Critical for Successful Sequencing

The aim of library prep is to obtain nucleic acid fragments with adapters attached on both ends

Dual Index Library shown

P5 and P7 sequences are complimentary to oligos bound to flow cell surface and *required* for any library

Indexes are used to tag individual samples to allow pooling of multiple libraries

Rd1 and Rd2 sequencing primers regions are used to initiate sequencing

Library Prep

Illumina DNA Prep, Tagmentation and DNA Indexes

Illumina Bead-Linked Transposome Chemistry

PCR amplify template out of genomic DNA using region of interest-specific primers with overhang adapters

For large amplicons & whole genome sequencing

Amplicon sequencing using custom locus-specific primers with Illumina DNA indexes

Library Quality and Quantity Methods

- How are you planning to assess library quality and quantity?
 - Accurate quantification of quality libraries is critical for optimal cluster density and data quality

Not Sure Which Kit to Use?

Use the Sequencing Sample Preparation Kit Selector

http://www.illumina.com/library-prep-array-kit-selector.html

MiSeq Sequencing Technology

Illumina Sequencing Workflow

Cluster Generation Overview

If the internet is available, click here to view a video:

Data Yield Increases as Number of Usable Cluster Increases

Cluster is unit of data production Tile image Cluster A cluster produce a read or a pair of reads illumına^{*} @STM:1:FCX:4:15:6329:1045 1:Y:0:2 TCGACCTCAACGCCCTGCATACGATA <>; ##=><9=AAAAAAAAAAAA9#:<#<

Illumina Sequencing Workflow

Sequencing by Synthesis

Imaging on the MiSeq

 Clusters are imaged using LEDs, cameras and filter combinations specific for each fluorescently labeled nucleotide

 After imaging is complete for one section (tile), the flow cell is moved to the next tile and the process is repeated

Illumina Sequencing Workflow

SUBTITLE

Introduction to BaseSpace Sequence Hub

Analysis Tools

Diverse and growing set of tools allow for easier analysis of WGS data and new insights

Clinical Microbiology Reviews Aug 2017, 30 (4) 1015-1063; DOI: 10.1128/CMR.00016-17

Accessing BaseSpace Sequence Hub

- US Instance
 - AWS Virginia
 - More compute power
 - https://basespace.illumine.com
- AU Instance
 - AWS Sydney
 - Data Stores within Australia
 - https://aps2.sh.basespace.illumine.com
- 2 instances share the same set of credentials
 - Data cannot be shared/transferred across regions

BaseSpace™ Sequence Hub

Enables anyone to analyze their NGS data

BaseSpace™ Sequence Hub

Genomics computing environment for NGS data

Monitor run quality, share data

Use BaseSpace apps to interact with your data

Share and Collaborate

Broad Range of Sequence Hub Applications for Secondary Analysis

DRAGEN™ is Hardware-Accelerated Secondary Analysis

Dynamic Read Analysis for GENomics

DRAGEN Software Pipelines

Flexible Data Analysis

DRAGEN on BaseSpace Sequence Hub

Accurate, rapid secondary analysis in an easy-to-use, cloud-based environment

Accurate, Fast Analysis

Simple Workflow

Low-cost, Scalable Platform

Secure, Compliant Environment

Available Pipelines

- ORAGEN Germline Pipeline
- ORAGEN Somatic Pipeline
- ORAGEN Enrichment Pipeline
- ORAGEN RNA Pipeline
- ORAGEN Joint Genotyping Pipeline
- ORAGEN Methylation Pipeline
- DRAGEN Reference Builder

Bacterial Whole Genome Alignment and Variant Calling

Bacterial Whole genome resequencing

- Microbial whole-genome resequencing involves sequencing the entire genome of a bacteria, virus, or other microbe, and comparing the sequence to that of a known reference.
- The Germline (resequencing) workflow compares the DNA sequence in the samples against a reference genome and identifies any variants (SNPs or indels) relative to the reference sequence.

Whole Genome Resequencing

What is variant calling?

DRAGEN Germline Pipeline

Mapping & Aligning—Germline Pipeline Example

Position Sorting—Germline Pipeline Example

Duplicate Marking—Germline Pipeline Example

Variant Calling—Germline Pipeline Example

DRAGEN Automatic QC Metrics Reporting: Mapper

Removes the need to run downstream tools for QC

- Number of samples
- Reads Processed
- Total
- Biallelic
- Multiallelic
- ✓ SNPs
- ✓ INDELs
- ✓ MNPs
- SNP Transitions
- SNP Transversions
- ✓ Ti/Tv ratio

- Heterozygous
- Homozygous
- Het/Hom ratio
- ✓ In dbSNP
- Novel
- Total
- Biallelic
- Multiallelic
- ✓ SNPs
- INDELs
- MNPs

DRAGEN Automatic QC Metrics Reporting: Variant Caller

- Total input reads
- Number of duplicate reads (marked not removed)
- Number of unique reads
- · Reads with mate sequenced
- Reads without mate sequenced
- QC-failed reads
- Mapped reads
- Number of unique & mapped reads (excl. dups)
- Unmapped reads
- Singleton reads (itself mapped; mate unmapped)
- Paired reads (itself & mate mapped)
- Properly paired reads
- Not properly paired reads (discordant)
- Reads with MAPQ [40:inf)
- Reads with MAPQ [30:40)
- Reads with MAPQ [20:30)
- Reads with MAPQ [10:20)
- · Total reads in RG
- Supplementary (chimeric) alignments
- Average sequenced coverage over genome

- Total alignments
- Secondary alignments
- Supplementary (chimeric) alignments
- · Estimated read length
- · Bases in reference genome
- Bases in target bed [% of genome]
- Average sequenced coverage over genome
- Average alignment coverage over genome
- PCT of genome with coverage [40x:inf)
- PCT of genome with coverage [30x:40x)
- PCT of genome with coverage [20x:30x)
- PCT of genome with coverage [10x:20x)
- PCT of genome with coverage [5x:10x)
- PCT of genome with coverage [2x: 5x)
- PCT of genome with coverage [1x: 2x)
- PCT of genome with coverage [0x: 1x)
- DRAGEN mapping rate [mil. reads/second]
- · Secondary alignments
- · Estimated read length
- Insert length: mean

- Number of duplicate reads (marked)
- Number of unique reads
- · Reads with mate sequenced
- Reads without mate sequenced
- QC-failed reads
- Mapped reads
- Number of unique & mapped reads (excl. dups)
- Unmapped reads
- Singleton reads (itself mapped; mate unmapped)
- Paired reads (itself & mate mapped)
- Properly paired reads
- Not properly paired reads (discordant)
- Reads with MAPQ [40:inf)
- Reads with MAPQ [30:40)
- Reads with MAPQ [20:30)
- Reads with MAPQ [10:20)
- Reads with MAPQ [0:10)
- Total alignments
- Secondary alignments
- · Insert length: standard deviation

WGS Tools Help Genomic Epidemiology Characterize the Flow of Resistomes Between Animals and Humans

Bioinformatics tools available to detect Antimicrobial Resistance (AMR) determinants

- Public Health England's GeneFinder
 - SRST2

NCBI's AMRFinder

ResFinder

KmerResistance

WGS can predict AMR and the minimal inhibiting concentration (MIC) of an antimicrobial, applying machine or deep learning to genome sequence data[1].

FDA, the Centers for Disease Control and Prevention (CDC), and the U.S. Department of Agriculture (USDA) established the National Antimicrobial Resistance Monitoring System (NARMS) to systematically sequence pathogens from food-animals for AMR surveillance 2

- Scientific Report. (2018) 8:421-18972. doi: 10.1038/s41598-017-18972-w
- Foodborne Pathog Dis. (2017) 14:545–57. doi: 10.1089/fpd.2017.2283

Culture-based Whole-Genome Sequencing (WGS) in Action

Zoonotic transfer of *Clostridium difficile* harboring antimicrobial resistance between farm animals and humans

"The phylogeny demonstrates clear mixing of European and North American strains, indicating multiple transmission events between continents, and mixing of human and animal strains, indicating multiple transmissions events between these hosts."

Sequenced on Illumina HiSeq[™] Sequencer

C. W. Knetsch et al. Journal of Clinical Microbiology Feb 2018, 56 (3) e01384-17; DOI: 10.1128/JCM.01384-17

Microbial Genomics on the MiSeq

Advantage of Using Illumina Technology in Microbial Studies

- Sequencing the 5 Mb genome of Escherichia coli with Illumina technology can be done in one day at a fraction of the cost of traditional capillary electrophoresis methods
- Microbial genomes are small and data analysis is relatively simple
- NGS has the ability to measure the changes in the genome with prior knowledge
- Single-base resolution allows tracking of microbial adaptation over a short period of time

Microbial Genomics Resources

https://www.illumina.com/areas-of-interest/microbiology.html

Thank you

For any additional technical queries please contact Illumina Tech Support

techsupport@illumina.com or 1800.775.688

