CgWave: Composite Grid Wave Equation Solver. User Guide and Reference Manual

W. D. Henshaw^{a,2,*}

^aDepartment of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract

Here is the user guide and reference manual for CgWave, a composite grid wave equation solver based on Overture. CgWave is meant to be a simple example of an efficient Overture based PDE solver that also runs in parallel. CgWave is also used by CgWaveHoltz to compute solutions to the time-harmonic wave equation (i.e. Helmholtz equation) using Daniel Appelö's WaveHoltz approach.

Keywords: Wave equation; overset grids.

Contents

1	Introduction	1
2	Governing Equations	2
3	Numerical Scheme	2
4	Upwind dissipation	2
5	Numerical results 5.1 Plane Wave	6
	5.3 Gaussian Plane Wave	•

1. Introduction

Note: This is a work in progress. Note all features are implemented. yet.

Here is the user guide and reference manual for CgWave, a composite grid wave equation solver based on Overture. CgWave solves the wave equation in second-order form using overset grids. CgWave solves problems in two and three space dimensions.

Here is a citation [1].

Things to do:

- 1. Add 4th order compatibility conditions.
- 2. Sixth and eight-order accurate BCs.
- 3. Finish 3D version of CgWave.
- 4. Finish upwind-dissipation for implicit time-stepping

^{*}Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA. Email address: henshw@rpi.edu (W. D. Henshaw)

¹This work was performed under DOE contracts from the ASCR Applied Math Program.

²Research supported by the National Science Foundation under grant DMS-1519934.

³Research supported by a U.S. Presidential Early Career Award for Scientists and Engineers.

2. Governing Equations

CgWave solves the initial boundary-value problem for the wave equation in second-order form for u = $u(\mathbf{x},t),$

$$\partial_t^2 u = c^2 \Delta u + f(\mathbf{x}, t),$$
 for $\mathbf{x} \in \Omega, t > 0,$ (1a)

$$Bu = g for \mathbf{x} \in \partial \Omega, t > 0, (1b)$$

$$Bu = g for \mathbf{x} \in \partial\Omega, t > 0, (1b)$$

$$u(x,0) = u_0(\mathbf{x}), \quad \partial_t u(\mathbf{x},0) = u_1(\mathbf{x}), \text{for } \mathbf{x} \in \partial\Omega. (1c)$$

Here Bu = g denotes some boundary conditions. Boundary conditions include

- Dirichlet
- Neumann
- Mixed
- Even symmetry
- Radiation boundaries (far field) to-do.

3. Numerical Scheme

The equations 1 are advanced using a modified equation approach [2]. Second and fourth-order accurate schemes are currently available.

At fourth-order accuracy the scheme takes the form

$$D_{+t}D_{-t}U_{\mathbf{i}}^{n} = c^{2}\Delta_{4h}U_{\mathbf{i}}^{n} + \frac{\Delta t^{2}}{12}(c^{2}\Delta_{2h})^{2}U_{\mathbf{i}}^{n} + f(\mathbf{x}_{\mathbf{i}}, t^{n}) + \frac{\Delta t^{2}}{12}(c^{2}\Delta_{2h}f(\mathbf{x}_{\mathbf{i}}, t^{n}) + \partial_{t}^{2}f(\mathbf{x}_{\mathbf{i}}, t^{n}))$$

where Δ_{ph} is a p-th order accurate approximation to Δ .

4. Upwind dissipation

Upwind dissipation for the wave equation in second-order form was first discussed in [3] and later extended to Maxwell's equations in [4]. The simplified version presented here is developed in a paper not yet completed [5].

At the continuous level, the upwind dissipation adds a term proportional to a high spatial derivative of $\partial_t u$, and roughly takes the form in one-dimension as

$$\partial_t^2 u = c^2 \Delta u - \nu_p \frac{c}{\Delta x} (-\Delta x^2 \partial_x^2)^q \partial_t u, \tag{2}$$

for some coefficient ν_q , and where q = p/2 + 1 is defined in terms of the order of accuracy of the scheme p. To avoid a time-step restriction, upwind dissipation is added using a predictor-corrector scheme (UWPC). Let us describe the approach in one space dimension. The predictor consist of the usual modified equation update to determine the predicted value $u_i^p \approx u_i^{n+1}$,

$$u_j^p = 2u_j^2 - u_j^{n-1} + \Delta t^2 \Big(c^2 D_{h,xx} u_j^n + \ldots \Big),$$
(3)

applyBoundaryConditions(
$$u^p$$
). (4)

The dissipation is added in a corrector step where $\partial_t u^n$ is approximated with D_{0t} ,

$$u^{n+1} = u^p - \nu_p \lambda (-\Delta_+ \Delta_-)^q \left(\frac{u^p - u^{n-1}}{2}\right),\tag{5}$$

applyBoundaryConditions
$$(u^{n+1}),$$
 (6)

where ν_q is the coefficient of the upwind dissipation and λ is the CFL parameter,

$$\lambda \stackrel{\text{def}}{=} \frac{c\Delta t}{\Delta x}.\tag{7}$$

The stability condition turns out to be [5] **check me**

$$\lambda < 1,$$
 (8)

$$\zeta < 2, \tag{9}$$

$$\zeta \stackrel{\text{def}}{=} \nu_p \,\lambda \,(4\sin^2(\xi/2))^q \tag{10}$$

which implies we need the usual CFL condition, $\lambda < 1$ as well as the restriction on ν_p

$$\nu_p < \frac{2}{\lambda 4^q} = \frac{1}{\lambda 2^{p+1}} \tag{11}$$

In two-dimensions **check me**

$$\zeta \stackrel{\text{def}}{=} \nu_p \left((\lambda_x \left(4 \sin^2(\xi_x/2) \right)^q + \lambda_y \left(4 \sin^2(\xi_y/2) \right)^q \right)$$
(12)

and we need $\zeta < 2$ or

$$\nu_p \left((\lambda_x (4\sin^2(\xi_x/2))^q + \lambda_y (4\sin^2(\xi_y/2))^q \right) < 2, \tag{13}$$

or

$$\nu_p < \frac{2}{\lambda_x 4^q + \lambda_y 4^q} = \frac{1}{2^{p+1}} \frac{1}{\lambda_x + \lambda_y}$$
 (14)

In two-dimensions the CFL condition is

$$\lambda_x^2 + \lambda_y^2 < 1 \tag{15}$$

which implies $\lambda_x + \lambda_y < \sqrt{2}$. Whence

$$\nu_p < \frac{1}{\sqrt{2}} \, \frac{1}{2^{p+1}} \tag{16}$$

In three-dimensions

$$\nu_p < \frac{1}{2^{p+1}} \frac{1}{\lambda_x + \lambda_y + \lambda_z} \tag{17}$$

where

$$\lambda_x^2 + \lambda_y^2 + \lambda_z^2 < 1 \tag{18}$$

which implies $\lambda_x + \lambda_y + \lambda + z < \sqrt{3}$ and

$$\nu_p < \frac{1}{\sqrt{3}} \frac{1}{2^{p+1}} \tag{19}$$

Summary: In *d*-dimensions we require

$$\nu_p < \frac{1}{\sqrt{d}} \frac{1}{2^{p+1}}.$$
(20)

Note. The value of $\nu_2 = 1/8$ suggested in [5] seems to be too big in 2D or 3D, instead we seem to need

$$\nu_2 = \frac{1}{\sqrt{d}} \frac{1}{8} \tag{21}$$

in d-dimensions which is smaller than 1/8 for d=2,3. This conclusion agrees with computations.

For fourth-order, p = 2, we require

$$\nu_4 < \frac{1}{\sqrt{d}} \, \frac{1}{32} \tag{22}$$

The suggested value for $\nu_4 = 5/288 = 1/(57.6)$ Now $32\sqrt{3} \approx 55.456$ and thus this suggested value of $\nu_4 = 5/288$ should work in 2D or 3D. This conclusion also agrees with computations.

Note: We could choose ν_p from the condition $\zeta < 2$ - choose a value slightly less than the largest value allowed by stability.

An alternative scheme which allows a bigger value for ν_p is to evaluate $D_{0t}U^n$ in a Gauss-Seidel fashion. The predictor sets a preliminary value for u_i^{n+1} ,

$$u_j^{n+1} = 2u_j^2 - u_j^{n-1} + \Delta t^2 \Big(c^2 D_{h,xx} u_j^n + \ldots \Big),$$
(23)

applyBoundaryConditions(
$$u^{n+1}$$
). (24)

The corrector adds the upwind dissipation to u_i^{n+1} , always using the latest value in the right-hand-side,

$$u_j^{n+1} \leftarrow u_j^{n+1} - \nu_p \lambda \left(-\Delta_+ \Delta_-\right)^q \left(\frac{u_j^{n+1} - u_j^{n-1}}{2}\right),$$
 (25)

applyBoundaryConditions(
$$u^{n+1}$$
), (26)

This version is stable for p=2 with $\nu_2=1/8$ (found in practice, need to do the analysis). This version has the advantage of not needed storage to hold $(u^p-u^{n-1})/2$.

Note: The actual upwind scheme implemented in CgWave (and CgMx) uses a slightly modified algorithm that avoids one application of the boundary conditions (applying the BCs and interface conditions in CgMx can sometimes be expensive). Instead of adding the dissipation at the end of the step to u^{n+1} , we add it at the start of the step to u^n ,

$$u_j^n \leftarrow u_j^n - \nu_p \lambda \left(-\Delta_+ \Delta_-\right)^q \left(\frac{u_j^n - u_j^{n-2}}{2}\right),\tag{27}$$

and do not apply the boundary conditions (this works since formally one application of the dissipation adds a small $\mathcal{O}(h^{p+2})$ correction to u_j^n so the BCs will still be satisfied to the expected order of accuracy). This is followed by the usual update

$$u_j^{n+1} = 2u_j^2 - u_j^{n-1} + \Delta t^2 \Big(c^2 D_{h,xx} u_j^n + \ldots \Big), \tag{28}$$

applyBoundaryConditions
$$(u^{n+1})$$
. (29)

5. Numerical results

Here are some numerical results.

5.1. Plane Wave

Here are errors in computing an exact plane wave solution

$$u = \sin(2\pi(k_x y + k_y y + k_z z) - \omega t)$$

with $\omega/k = c$ and $k = |\mathbf{k}|$.

Square - Plane Wave Order 2

grid	N	u	r
square8	1	4.6e-2	
square16	2	1.3e-2	3.66
square32	4	3.0e-3	4.25
square64	8	7.4e-4	4.01
square128	16	1.9e-4	3.94
rate		2.00	

Table 1: CgWave, planeWave, max norm, order=2, t=.5, cfl=0.9, diss=0, kx=1, ky=0, kz=0, Sun Mar 1 11:12:19 2020

Square -Plane Wave Order 4

grid	N	u	r
square8	1	1.3e-2	
square16	2	5.1e-4	26.26
square32	4	2.9e-5	17.91
square64	8	1.4e-6	20.35
square128	16	7.3e-8	19.24
square256	32	4.0e-9	18.42
square512	64	2.3e-10	17.30
square1024	128	1.4e-11	16.55
rate		4.25	

Table 2: CgWave, plane Wave, max norm, order=4, t=.5, cfl=0.9, diss=0, kx=1, ky=0, kz=0, S un Mar 1 11:15:18 2020

CIC - circle in a channel - Plane Wave Order 2

grid	N	u	r
cic2	1	1.1e-2	
cic4	2	2.6e-3	4.18
cic8	4	6.2e-4	4.20
cic16	8	1.5e-4	4.11
cic32	16	3.7e-5	4.05
rate		2.05	

Table 3: CgWave, plane Wave, max norm, order=2, t=.5, cfl=0.9, diss=0, kx=1, ky=0, kz=0, Sun Mar 1 13:35:54 2020

CIC - circle in a channel - Plane Wave Order 4

grid	N	u	r
cic2	1	2.7e-4	
cic4	2	1.3e-5	20.61
cic8	4	5.9e-7	22.32
cic16	8	3.0e-8	19.70
cic32	16	1.7e-9	17.33
rate		4.33	

Table 4: CgWave, planeWave, max norm, order=4, t=.5, cfl=0.9, diss=0, kx=1, ky=0, kz=0, Sun Mar 1 13:36:19 2020

Box - Plane Wave Order 2

grid	N	u	r
box1	1	5.8e-2	
box2	2	1.4e-2	4.26
box4	4	2.8e-3	4.82
box8	8	6.3e-4	4.49
rate		2.18	

Table 5: CgWave, planeWave, max norm, order=2, ts=explicit, orderInTime=-1, dtMax0=10000000000, t=.5, cfl=0.9, diss=0, -known=planeWave, kx=1, ky=1, kz=1, Sat Jul 17 06:23:09 2021

Box - Plane Wave Order 4

grid	N	u	r
box1	1	1.3e-2	
box2	2	4.6e-4	28.38
box4	4	1.6e-5	29.55
box8	8	6.3e-7	24.45
box16	16	2.8e-8	22.64
rate		4.71	

Table 6: CgWave, planeWave, max norm, order=4, ts=explicit, orderInTime=-1, dtMax0=10000000000, t=.5, cfl=0.9, diss=0, -known=planeWave, kx=1, ky=1, kz=1, Sat Jul 17 06:09:54 2021

5.2. Time-periodic solution in a box (showing forcing)

An exact solution to the forced wave equation in a rectangular box $[0,1]^d$ is given by

$$u_e(\mathbf{x}, t) \stackrel{\text{def}}{=} \sin(k_x x) \sin(k_y y) [\sin(k_z z)] \cos(\omega t),$$

where the forcing function is

$$f(\mathbf{x},t) = \left(-\omega^2 + c^2(k_x^2 + k_y^2)\right)u_e(\mathbf{x},t)$$

Square - Order 2

grid	N	u	r
square8	1	5.6e-2	
square16	2	2.1e-3	27.37
square32	4	1.9e-4	10.79
square64	8	1.0e-5	18.45
square128	16	5.6e-7	18.26
square256	32	4.0e-8	14.17
square512	64	2.7e-9	14.96
rate		4.02	

Table 7: CgWave, helmholtz, max norm, order=4, t=.5, cfl=0.9, diss=0, kx=2, ky=2, kz=0, Sun Mar 1 13:18:51 2020

Square - Order 4

grid	N	u	r
square8	1	5.6e-2	
square16	2	2.1e-3	27.37
square32	4	1.9e-4	10.79
square64	8	1.0e-5	18.45
square128	16	5.6e-7	18.26
square256	32	4.0e-8	14.17
square512	64	2.7e-9	14.96
rate		4.02	

Table 8: CgWave, helmholtz, max norm, order=4, t=.5, cfl=0.9, diss=0, kx=2, ky=2, kz=0, Sun Mar 1 13:18:51 2020

CIC - circle in a channel - Order 2

grid	N	u	r
cic2	1	1.7e-2	
cic4	2	2.4e-3	6.86
cic8	4	5.8e-4	4.17
cic16	8	1.4e-4	4.03
cic32	16	3.6e-5	4.01
rate		2.18	

Table 9: CgWave, helmholtz, max norm, order=2, t=.5, cfl=0.9, diss=0, kx=1, ky=1, kz=0, Sun Mar 1 13:42:02 2020

${ m CIC}$ - circle in a channel - Order 4

grid	N	u	r
cic2	1	3.3e-4	
cic4	2	1.9e-5	17.74
cic8	4	7.1e-7	26.27
cic16	8	2.3e-8	30.26
cic32	16	5.9e-10	39.80
rate		4.78	

Table 10: CgWave, helmholtz, max norm, order=4, t=.5, cfl=0.9, diss=0, kx=1, ky=1, kz=0, Sun Mar 1 13:41:12 2020

Box - Order 2

grid	N	u	r
box1	1	2.8e-3	
box2	2	6.0e-4	4.76
box4	4	1.4e-4	4.29
box8	8	3.4e-5	4.06
rate		2.12	

Table 11: CgWave, helmholtz, max norm, order=2, ts=explicit, order InTime=-1, dtMax0=10000000000, t=.7, cfl=0.9, diss=0, , kx=1, ky=1, kz=1, Sat Jul 17 06:49:00 2021

Box - Order 4

grid	N	u	r
box1	1	1.5e-3	
box2	2	1.2e-4	12.26
box4	4	6.4e-6	19.44
box8	8	3.3e-7	19.45
box16	16	1.4e-8	23.10
rate		4.20	

Table 12: CgWave, helmholtz, max norm, order=4, ts=explicit, orderInTime=-1, dtMax0=10000000000, t=.7, cfl=0.9, diss=0, , kx=1, ky=1, kz=1, Sat Jul 17 06:37:57 2021

Non-Box - Order 2

grid	Ν	u	r
nonBox1	1	6.0e-4	
nonBox2	2	1.4e-4	4.29
nonBox4	4	3.4e-5	4.06
nonBox8	8	8.5e-6	4.02
rate		2.04	

Table 13: CgWave, helmholtz, max norm, order=2, ts=explicit, order InTime=-1, dtMax0=10000000000, t=.7, cfl=0.9, diss=0, , kx=1, ky=1, kz=1, Sat Jul 17 06:49:38 2021

Non-Box - Order 4

grid	N	u	r
nonBox1	1	1.2e-4	
nonBox2	2	6.4e-6	19.44
nonBox4	4	3.3e-7	19.45
nonBox8	8	1.4e-8	23.10
rate		4.36	

Table 14: CgWave, helmholtz, max norm, order=4, ts=explicit, orderInTime=-1, dtMax0=10000000000, t=.7, cfl=0.9, diss=0, , kx=1, ky=1, kz=1, Sat Jul 17 08:19:54 2021

5.3. Gaussian Plane Wave

Figure 1 shows a modulated Gaussian plane wave hitting some shapes, scheme FD44s.

Figure 1: Modulated Gaussian plane wave hitting some shapes, FD44s.

References

- [1] W. D. Henshaw, D. W. Schwendeman, Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement, J. Comput. Phys. 227 (16) (2008) 7469–7502.
- [2] W. D. Henshaw, A high-order accurate parallel solver for Maxwell's equations on overlapping grids, SIAM J. Sci. Comput. 28 (5) (2006) 1730–1765.
- [3] J. W. Banks, W. D. Henshaw, Upwind schemes for the wave equation in second-order form, J. Comput. Phys. 231 (17) (2012) 5854–5889.
- [4] J. Angel, J. W. Banks, W. D. Henshaw, High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form, J. Comput. Phys. 352 (2018) 534–567.
- [5] J. Angel, J. W. Banks, W. D. Henshaw, Efficient high-order upwind difference schemes for the second-order wave equation on overlapping grids, Tech. rep., in preparation (2018).