

RdF – Reconnaissance des Formes Semaine 2 : attributs de contour

Master ASE: http://master-ase.univ-lille1.fr/

Master Informatique: http://www.fil.univ-lille1.fr/

Spécialité IVI: http://master-ivi.univ-lille1.fr/

Plan du cours

- 1 Codage de Freeman
 - codage de Freeman absolu codage de Freeman relatif variantes du codage de Freeman
- 2 Codage polygonal
 - régression linéaire et axe principal d'inertie approximation polygonale d'un contour réduction d'un contour par l'algorithme de la corde
- 3 Transformée de Hough
 - transformée de Hough: principe et méthode recherche de droites dans une image discrétisation de l'espace des paramètres

Codage de Freeman

Principe

- codage avec un nombre limité de bits de la direction locale d'un élément de contour défini dans une image discrète.
- constitution d'une chaîne de codes à partir d'un pixel initial, considérant qu'un élément de contour relie 2 pixels connexes.

Méthode

- 1) on choisit un pixel initial du contour et un sens de parcours;
- 2) on code la direction qui permet de passer d'un pixel du contour à son voisin immédiat;
- 3) on continue jusqu'à revenir au pixel initial.

07764332

Codage de Freeman relatif

Principe

on code le changement de direction plutôt que la direction.

Propriétés

- le code de Freeman standard est invariant en translation uniquement.
- le code de Freeman relatif est invariant en translation et aux rotations de 45 deg.

Variantes

codage sur 2 bits pour connexité 4 codage sur 3 bits pour connexité 8 codage sur 4 bits pour connexité 8 + longueur 2

07076707

Variantes du codage de Freeman

4 directions: 2 bits

8 directions: 3 bits

Régression linéaire

Principe

approcher un ensemble de points par un segment de droite.

Méthode

- minimisation d'un résidu entre le modèle (la droite) et les données (points repérés par leurs coordonnées).
- données : n points de coordonnées (x_i, y_i)
- modèle : droite d'équation y=a.x+b
- résidu: $d^2(a,b) = \sum_{i=1}^n (y_i (a \cdot x_i + b))^2$

Solution

$$a = \frac{cov(X,Y)}{var(X)}$$
 $b = E(Y) - a \cdot E(X)$

Axe principal d'inertie

Principe

minimiser un résidu qui est la somme des distances au carré entre les points et la droite recherchée.

Méthode

avec la contrainte $a^2+b^2=1$, le résidu prend la forme :

$$d^{2}(a,b) = \sum_{i=1}^{n} (a \cdot x_{i} + b \cdot y_{i} + c)^{2} + \lambda (1 - (a^{2} + b^{2}))$$

Solution

l'orientation de la droite est le vecteur propre qui correspond à la plus petite valeur propre de la matrice d'inertie des points. Complexité de N^2

puis:
$$c = -a \cdot E(X) - b \cdot E(Y)$$

Approximation polygonale

Objectif

représenter le contour d'une forme par une série de segments de droite, eux-mêmes définis par une série de points.

Méthode

- détermination du contour de la forme en tenant compte de tous les pixels (ex: méthode similaire au codage de Freeman).
- remplacement des séries de points alignés par des segments.

Algorithme de la corde

Transformée de Hough

Objectif

rechercher des courbes paramétriques dans une image.

Principe

- on associe à l'image (fonction binaire de deux variables réelles) un espace transformé dont les axes sont les paramètres des courbes recherchées dans l'image.
- une courbe dans l'image correspond à un point d'accumulation dans l'espace des paramètres.

Recherche de droites (1/2)

Courbe paramétrique

une droite a pour équation paramétrique : y = a.x + b

Principe de calcul de la transformée

à chaque pixel de l'image correspond une droite dans l'espace des paramètres:

soit
$$M_i = (x_i, y_i)$$
, si $y_i = a \cdot x_i + b$, alors $b = -x_i \cdot a + y_i$.

Méthode

- on balaye l'image à la recherche de pixels non nuls. pour chaque pixel on trace la droite correspondante dans l'espace des paramètres en accumulant les valeurs.
- quand tous les pixels ont été balayés, on recherche les valeurs maximales dans l'espace des paramètres.
- à chaque maximum correspond une droite dans l'image.

Recherche de droites (2/2)

Autre paramétrisation

$$\rho = x_i \cdot \cos(\theta) + y_i \cdot \sin(\theta)$$

car l'espace des paramètres est décrit de façon plus uniforme.

Nouveau calcul de la transformée

à chaque pixel de l'image correspond une sinusoïde dans le nouvel espace des paramètres.

Discrétisation de l'espace des paramètres

Intérêt

le temps de calcul est constant ou en tout cas borné.

Pour approfondir

Duda, Hart, Stork, « Pattern Classification », 2ème édition, Wiley-Interscience, 2001.

http://rii.ricoh.com/~stork/DHS.html

Statistical moments, Jamie Shutler (CVonline: Robert B. Fisher)

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/CVonline_moments.html

cours de master de Florence Tupin (ENST)

http://www.tsi.enst.fr/~tupin/NEW_PAGE/cours.html

