物理演習 第3ターム試験 解答用紙

<対象:12B 口群>

1

2020.12.11 (金) 1 時限目

(1)	$40~\Omega$	(2)	10 Ω
(3)			50 Ω
		ı	
(4)	2.0 A	(5)	$\frac{4.0\times10^2}{2\pi}\;\mathrm{Hz}$

2

(1)	向き:	y軸の正の向き 大	きさ: $\frac{eE}{m}$	(2)		$\frac{l}{v}$	
(3)							$\frac{eEl^2}{2mv^2}$
(4)							$\frac{2v^2y}{El^2}$
(5)	向き: 奥	(手前から奥)		磁束	密度の大きさ:	$\frac{E}{v}$	

3

(1)	鉛直:物体Aにはたらく垂直抗力の大きさを $N_{ m A}$ とすると $N_{ m A}=m_1g$	水平:物体Aにはたらく動摩擦力の大きさを f とすると $m_1a_1=-f$, $m_1a_1=-\mu'm_1g$				
(2)	鉛直:物体Aにはたらく垂直抗力の大きさを $N_{ m B}$ とすると $N_{ m B}=N_{ m A}+m_2g$	水平: $m_2a_2=f$, $m_2a_2=-\mu'm_1g$				

(3)

A の加速度:
$$a_1=-\mu'g$$
 , B の加速度: $a_2=-\mu'\frac{m_1}{m_2}g$

$$\frac{m_2}{m_1 + m_2} \cdot v_0 \mu' g$$

(6)

$$\sqrt{\frac{2}{\mu'g} \cdot \frac{m_1 + m_2}{m_2} \cdot (l_2 - l_1)}$$

4

A の速さ: $\frac{1}{5}v$,B の速さ: $\frac{4}{5}v$,エネルギー変化量: $-\frac{4}{25}mv^2$

Aの速さ: $\frac{1}{2}v$,Bの速さ: $\frac{1}{2}v$,エネルギー変化量: $-\frac{1}{4}mv^2$

(1)	
	240 g
(2)	$40~\mathrm{cm}^3$
(3)	6.0 g/cm ³

ア	$\frac{nh}{2\pi}$	イ	$m \cdot \frac{v^2}{r}$		$rac{e^2}{4\piarepsilon_0 r^2}$, または $k_0rac{e^2}{r^2}$
工	$\frac{\varepsilon_0 n^2 h^2}{\pi m e^2}$		$\frac{1}{2}mv^2$		$-rac{e^2}{4\piarepsilon_0 r}$, または $k_0rac{e^2}{r}$
+	$-rac{e^2}{8\piarepsilon_0 r}$, または $rac{k_0 e^2}{2r}$	ク	$-rac{me^4}{8arepsilon_0^2h^2}\cdotrac{1}{n^2}$,または $-rac{2\pi^2{k_0}^2me^4}{h^2}\cdotrac{1}{n^2}$	ケ	$\frac{me^4}{8{\varepsilon_0}^2h^2} \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}\right)$, または $\frac{2\pi^2{k_0}^2me^4}{h^2} \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}\right)$
コ	$\frac{hc}{\lambda}$	サ	$rac{me^4}{8{arepsilon_0}^2 ch^3} \Big(rac{1}{{n_1}^2} - rac{1}{{n_2}^2}\Big)$, 又は $rac{2\pi^2 {k_0}^2 me^4}{ch^3} \Big(rac{1}{{n_1}^2} - rac{1}{{n_2}^2}\Big)$	<i>◇</i>	$rac{me^4}{8{arepsilon_0}^2ch^3}$, 又は $rac{2\pi^2{k_0}^2me^4}{ch^3}$