Adv Abstract Algebra: AAA #04

Due on March 2022 at 11:59PM

 $Prof.\ Peter\ Hermann\ Spr\ 2022$

Xianzhi

2023

Xianzhi

Let G be a finite group and p a prime. Suppose that $N_p \triangleleft G$ such that $|G:N_p|$ is some power of p and $|N_p|$ is not divisible by p. (Then N_p is called a normal p-complement in G.) Prove that (for the give p) N_p is unique, i.e., a group can have at most one normal p-complement.

Solution:

Take normal p-complement N and N' in G, we show that they are actually equal.

$$G$$
 (1)

$$N \cdot N'$$
 (2)

$$N \qquad N' \tag{3}$$

$$N \cap N'$$
 (4)

Since the order of a normal p-complement is not divisible by p, and its index in G is some power of p, we write

$$|N| = |N'| = m \tag{5}$$

$$|G| = p^k \cdot m \text{ where } p/m. \tag{6}$$

We know that in general, for $H \leq G$, $N \triangleleft G$, $\Longrightarrow HN \leq G$.

Thus, $N \cdot N' \leq G$, so $|N \cdot N'|$.

By 2nd iso theorem

$$\frac{N \cdot N'}{N} \cong \frac{N'}{N \cap N'} \tag{7}$$

$$\frac{|N \cdot N'|}{|N|} = \left| \frac{N \cdot N'}{N} \right| = \left| \frac{N'}{N \cap N'} \right| \tag{8}$$

$$\implies |N \cdot N'| = \left| \frac{N'}{N \cap N'} \right| \cdot |N| \tag{9}$$

(10)

Thus, since |N'| is normal p-complement, p/|N'|, and since

$$\left|\frac{N'}{N \cap N'}\right| = \frac{|N'|}{|N \cap N'|}\tag{11}$$

$$\implies p / |\frac{N'}{N \cap N'}|. \tag{12}$$

Also, p / |N| implies $p / |N \cdot N'|$.

Since we have $N \cdot N' \leq G$, and $|N \cdot N'| \mid |G| = p^k \cdot m$, and $|N| = m \mid |N \cdot N'|$,

We have $|N \cdot N'| = p^{k_0} \cdot m$ for some $k_0 \in \mathbb{Z}^+ \cup \{0\}$,

but $p/|N \cdot N'|$ implies $k_0 = 0$ so $|N \cdot N'| = m$.

Thus, since $|N| = |N \cdot N'|$ and $N \leq N \cdot N'$, we conclude $N = N \cdot N'$. By symmetry, $N = N \cdot N' = N'$. And we are done.

Part A

Show $L \cap N_p$ is a normal p-complement in L.

Let $|G| = p^k \cdot m$ where $p \not\mid m$.

Take $a \in L \cap N_p, \ \ell \in L$.

Then $\ell a \ell^{-1} \in L$, and $\ell a \ell^{-1} \in N_p$ since N_p is normal.

So $\ell a \ell^{-1} \in L \cap N_p \implies L \cap N_p \triangleleft L$. Or just use 2nd Iso Thm. By 2nd Iso Thm,

$$\frac{L}{L \cap N_p} \cong \frac{L \cdot N_p}{N_p} \tag{13}$$

so

$$|L:L\cap N_p| = \frac{|L|}{|L\cap N_p|} = |\frac{L}{L\cap N_p}| = |\frac{L\cdot N_p}{N_p}|$$
 (14)

since $L \cdot N_p \leq G \implies \frac{L \cdot N_p}{N_p} \leq \frac{G}{N_p}$ (the factor group $\frac{L \cdot N_p}{N_p}$ is subgroup of the factor group $\frac{G}{N_p}$. Thus,

$$\left|\frac{L \cdot N_p}{N_p}\right| \left|\frac{G}{N_p}\right| = \frac{|G|}{|N_p|} = p^k.$$
 (15)

so $|L:L\cap N_p|$ divide p^k implies that $|L:L\cap N_p|$ is some power of p.

 $|L \cap N_p|$ is not divisible by p since $|N_p|$ is not divisible by p, and $|L \cap N_p|$ is a factor of $|N_p|$. (Since $L \cap N_p \leq N_p$).

Thus, $L \cap N_p$ is indeed a normal p-complement in L.

Now we show $\frac{L\cdot N_p}{L}$ is a normal p-complement in $\frac{G}{L}.$ Show

$$(L \cdot N_p)/L \lhd G/L \tag{16}$$

Let $\ell \in L$, $n \in N_p$, $g \in G$, so

$$(g+L)(\ell \cdot n + L)(g^{-1} + L)$$
 (17)

$$= g \cdot \ell \cdot n \cdot g^{-1} + L \tag{18}$$

$$= g\ell g^{-1}gng^{-1} + L (19)$$

$$= \ell' n' + L \tag{20}$$

$$\implies \in (L \cdot N_p)/L$$
 (21)

where $\ell' = g\ell g^{-1} \in L$ and $n' = gng^{-1} \in N_p$ since normality. so the last inclusion follows. Thus,

$$(L \cdot N_p)/L \triangleleft G/L \tag{22}$$

By third isomorphism, we have

$$\frac{G/L}{(L \cdot N_p)/L} \cong G/(L \cdot N_p) \tag{23}$$

The reason we could use 3rd Iso Thm because

$$L \lhd G,$$
 (24)

and $L \cdot N_p \lhd G$ because of the same proof.

for $\ell \in L, n \in N_p, g \in G$, so we have

$$g(\ell \cdot n)g^{-1} = (g\ell g^{-1})(gng^{-1}) = \ell' n' \in L \cdot N_p.$$
(25)

Thus,

Let G be a finite group, $L \lhd G$ and p a prime. Suppose that N_p is a normal p-complement in G. Show that $L \cap N_p$ is a normal p-complement in L and $L \cdot N_p/L$ is a normal p-complement in G/L. Solution:

Let p be a prime and denote the cyclic group of order p by C. Determine the number of all automorphisms of $C \times C$.

For fun: Let p be a prime, 0 < k < t integers, and denote the cyclic group of order p^k by A and the cyclic group of order p^t by B. Determine the number of all automorphisms of $A \times B$ and $A \times A$.

From Final: Let a solvable group G act faithfully and transitively on the set Ω , where $|\Omega| = 35$.

- 1. Prove that this action is not primitive.
- 2. Show that if G is abelian then it must be cyclic.