MATH 242 - Quiz 6

03/07/2024

1. [3 pts] List the first three terms a_1, a_2, a_3 of the following sequence

$$Q_{1} = \begin{pmatrix} 1 \end{pmatrix}^{1+1} \frac{3}{n^{2}+1} = \begin{pmatrix} 1 \end{pmatrix}^{\infty} \frac{3}{n^{2}+1} = \begin{pmatrix} 1 \end{pmatrix}^{2} \frac{3}{n^{2}+1} = \begin{pmatrix} 1 \end{pmatrix}^$$

$$\left\{\frac{1}{3}, -\frac{2}{5}, \frac{3}{7}, -\frac{4}{9}, \frac{5}{11}, \dots\right\}$$

$$\left(\frac{(-1)^{n+1}h}{2n+1}\right)$$

3. [4 pts] Prove the sequence is monotone. (Hint: consider $f(x) = \frac{3x}{2x+5}$):

$$a_n = \frac{3n}{2n+5}$$

$$f(x) = \frac{5x+2}{3x}$$

$$(5x+2)_{s}$$

 $(7)^{-3}(5x+2)-5(3x)$

$$= \frac{(5x+2)_5}{2} > 0 \neq X > 1$$

hence
$$f(x+i) > f(x) + x \ge 1$$

 $f(n+i) > f(n)$

$$\frac{5(41)+2}{3(41)} > \frac{542}{34}$$

$$q_{n1} > q_n$$