CH5115 : Parameter and State Estimation (Jul-Nov 2020) Assignment 2 - Solutions

INDIAN INSTITUTE OF TECHNOLOGY MADRAS Department of Chemical Engineering

Mark Distribution

	Question 1	Question 2	Question 3	Question 4
(a)	10	20	5	10
(b)	10	10	15	20

Question 1

Part a

Random process:

$$v[k] = A\cos^2(2\pi f k + \phi)$$

 $\phi = \text{constant}$

A = Random variable such that E(A) = 0, var(A) = 1

$$E(A^2) = var(A) + E(A)^2 = var(A) = 1$$

$$\begin{split} &\sigma_{vv}[l] = E(v[k]v[k-l]) \\ &\sigma_{vv}[l] = E(A^2cos^2(2\pi f k + \phi)cos^2(2\pi f (k-l) + \phi)) \\ &\sigma_{vv}[l] = E[\frac{A^2}{4}(cos(4\pi f k + 2\phi) + 1)(cos(4\pi f (k-l) + 2\phi) + 1)] \\ &\sigma_{vv}[l] = \frac{1}{4}(cos(4\pi f k + 2\phi) + 1)(cos(4\pi f (k-l) + 2\phi) + 1) \end{split}$$

Autocovariance is time (lag) dependent. Therefore, v[k] is a non-stationary process.

Part b

$$\begin{split} v[k] &= v[k-1] + e[k] \\ var\left(v[k]\right) &= var\left(v[k-1] + e[k]\right) \\ var\left(v[k]\right) &= var\left(v[k-1]\right) + var\left(e[k]\right) \\ var\left(v[k]\right) &= var\left(v[k-2] + e[k-1]\right) + \sigma_e^2 \\ var\left(v[k]\right) &= var\left(v[k-2]\right) + var\left(e[k-1]\right) + \sigma_e^2 \\ var\left(v[k]\right) &= var\left(v[k-2]\right) + 2\sigma_e^2 \\ & \vdots \\ var\left(v[k]\right) &= var\left(v[0]\right) + k\sigma_e^2 \end{split}$$

Since, variance of v[k] depends on time k, the process is variance non-stationary. Using MATLAB to test this numerically

Figure 1: Variance Non-Stationarity in Random Walk

```
clc
   close all
   clear
  var_v = [];
  sigma_e = 1;
                        % Standard deviation of e
  v = zeros(1000, 1); \% 1000 realizations of v[0]
  % Calculate var(v[k]) for k = 1 to 20
   for k=1:20
9
      % Random walk v[k] = v[k-1] + e[k] (1000 realizations)
10
       v = v + normrnd(0, sigma_e, 1000, 1);
11
12
      % Append sample variance of v[k]
13
       var_v = [var_v; var(v)];
14
  end
15
16
  figure
^{17}
   plot (var_v)
18
   title ('Sample Variance vs Time (k)');
19
  xlabel('k')
20
  ylabel ('Estimate of Variance of v[k]')
```

Question 2

Part a

$$\begin{split} y[k] &= \frac{b_2^0 q^{-2}}{1 + f_1^0 q^{-1}} u[k] + e[k] \\ &= b_2^0 u[k-2] - f_1^0 y[k-1] + e[k] + f_1^0 e[k-1] \\ \sigma_{yy} &= E\left(y[k]y[k]\right) \\ &= E\left(\left(b_2^0 u[k-2] - f_1^0 y[k-1] + e[k] + f_1^0 e[k-1]\right)^2\right) \\ &= E\left(\left(b_2^0 u[k-2]^2 + \left(f_1^0\right)^2 y[k-1]^2 + e[k]^2 + \left(f_1^0\right)^2 e[k-1]^2 - 2b_2^0 f_1^0 u[k-2]y[k-1] + 2b_2^0 u[k-2]e[k] + 2b_2^0 f_1^0 u[k-2]e[k-1] - 2f_1^0 y[k-1]e[k] - 2\left(f_1^0\right)^2 y[k-1]e[k-1] + 2f_1^0 e[k]e[k-1]\right] \\ &= \left(b_2^0\right)^2 \sigma_{uu}[0] + \left(f_1^0\right)^2 \sigma_{yy}[0] + \left(1 + \left(f_1^0\right)^2\right) \sigma_{ee}[0] + -2b_2^0 f_1^0 \sigma_{yu}[1] + 2b_2^0 \sigma_{eu}[2] + 2b_2^0 f_1^0 \sigma_{eu}[1] \\ &- 2f_1^0 \sigma_{ey}[1] - 2\left(f_1^0\right)^2 \sigma_{ye}[0] + 2f_1^0 \sigma_{ee}[1] \\ \sigma_{yu}[l] &= 0; \ \forall l < 2 \ (\text{Two sample delay between u and y}) \end{split}$$
 Therefore, $\sigma_{yu}[1] = 0$ $\sigma_{eu}[l] = 0 \ \forall l > 0 \ (\text{Future e don't affect past y)} \\ \sigma_{ee}[l], \sigma_{uu}[l] &= 0 \ \forall l > 0 \ (\text{Future e don't affect past y)} \\ \sigma_{ee}[l], \sigma_{uu}[l] &= 0 \ \forall l \neq 0 \ (\text{White noise property}) \\ E\left(y[k]e[k]\right) &= E\left(b_2^0 u[k-2]e[k] - f_1^0 y[k-1]e[k] + e[k]^2 + f_1^0 e[k-1]e[k]\right) \\ E\left(y[k]e[k]\right) &= b_2^0 \sigma_{eu}[2] - f_1^0 \sigma_{ey}[1] + \sigma_e^2 + f_1^0 \sigma_{ee}[1] \\ \sigma_{ey}[0] &= \sigma_e^2 \end{aligned}$

Substituting in the expression for σ_{yy}

$$\begin{split} \sigma_y^2 &= (b_2^0)^2 \sigma_u^2 + (f_1^0)^2 \sigma_y^2 + \left(1 + (f_1^0)^2\right) \sigma_e^2 - 2(f_1^0)^2 \sigma_e^2 \\ \sigma_y^2 &= \frac{(b_2^0)^2}{1 - (f_1^0)^2} \sigma_u^2 + \sigma_e^2 \end{split}$$

To compute $\sigma_{uu}[2]$

$$\begin{split} \sigma_{yu}[l] &= E(y[k]u[k-l]) \\ y[k]u[k-2] &= b_2^o u[k-2]^2 - f_1^o y[k-1]u[k-2] + e[k]u[k-2] \\ E(y[k]u[k-2]) &= b_2^o E\left(u[k-2]^2\right) - f_1^o E(y[k-1]u[k-2]) + E(e[k]u[k-2]) \\ \sigma_{yu}[2] &= b_2^0 \sigma_u^2 - f_1^0 \sigma_{yu}[1] + \sigma_{eu}[2] \\ \sigma_{yu}[2] &= b_2^0 \sigma_u^2 \end{split}$$

To compute $\sigma_{yy}[1]$

$$\begin{split} \sigma_{yy}[1] &= E\left(y[k]y[k-1]\right) \\ y[k]y[k-1] &= b_2^0 u[k-2]y[k-1] - f_1^0 y[k-1]^2 + e[k]y[k-1] + f_1^0 e[k-1]y[k-1] \\ \sigma_{yy}[1] &= b_2^0 \sigma_{yu}[1] - f_1^0 \sigma_y^2 + \sigma_{ey}[1] + f_1^0 \sigma_{ey}[0] \\ &= -f_1^0 \frac{(b_2^0)^2}{1 - (f_1^0)^2} \sigma_u^2 \end{split}$$

Part b

The MATLAB code to numerically verify the above:

```
clc;
   clear;
   close all;
3
  N = 500;
  sigma2_u = 2;
  SNR = 10;
  b20 = 2;
   f10 = 0.5;
10
  % Generating y_star using filter on u
  b = [0 \ 0 \ b20];
12
  a = [1 f10];
  u = normrnd(0, sigma2_u^0.5, N, 1);
   y_star = filter(b, a, u);
16
  % Calculating sigma2_e based on SNR
   sigma2_v_star = var(v_star);
18
   sigma2_e = sigma2_y_star/SNR;
19
   disp(['Sigma^2 e = ', num2str(sigma2_e)]);
20
21
  % Simulating y from y_star and e
22
  e = normrnd(0, sigma2_e^0.5, N, 1);
23
  y = y_s tar + e;
24
25
  \% Numerical Estimates
26
   sigma2_y = var(y);
27
   acf = xcov(y, 10, 'unbiased');
   \operatorname{sigma_-yy1} = \operatorname{acf}(12);
   ccf = xcov(y, u, 10, 'unbiased');
   \operatorname{sigma_vu1} = \operatorname{ccf}(12);
31
   sigma_yu2 = ccf(13);
33
  % Theoretical Values
34
   Tsigma2_y = b20^2/(1-f10^2)*sigma2_u + sigma2_e;
35
   Tsigma_y = -f10*b20^2/(1-f10^2)*sigma2_u;
   Tsigma_yu1 = 0;
37
   Tsigma_yu2 = b20*sigma2_u;
38
39
   disp(['Sigma^2 y: Theoretical = ', num2str(Tsigma2_y), ' | Numerical = ', num2str(
40
      sigma2_y);
   disp(['Sigma_yy[1]: Theoretical = ', num2str(Tsigma_yy1), ' | Numerical = ',
41
      num2str(sigma_yy1)]);
   disp(['Sigma_yu[1]: Theoretical = ', num2str(Tsigma_yu1), ' | Numerical = ',
      num2str(sigma_yu1)]);
   disp(['Sigma_vu[2]: Theoretical = ', num2str(Tsigma_vu2), ' | Numerical = ',
      num2str(sigma_yu2)]);
  The output produced for a sample run was
  Sigma^2 e = 1.0076
  Sigma^2 y : Theoretical = 11.6743 | Numerical = 11.7059
  Sigma_yy[1]: Theoretical = -5.3333 | Numerical = -5.2591
  Sigma_yu[1]: Theoretical = 0
                                    | Numerical = -0.049482
  Sigma_yu[2]: Theoretical = 4
                                    | Numerical = 3.9251
```

Question 3

```
close all
clear
load('a2_q3.mat')
```

3.a) Check for integrating effects

Visual Inference

```
figure
subplot(3, 1, 1)
plot(vk)
title('Time Series Plot')
ylabel('vk')

subplot(3, 1, 2)
autocorr(vk)
title('Orginial Series --> ACF')
ylabel('Sample ACF')

subplot(3, 1, 3)
parcorr(vk)
title('Orginial Series --> PACF')
ylabel('Sample PACF')
```


Very slowly decaying ACF indicates the presence of integrating effect.

PACF at lag 1 is close to unity indicating the presence of a unit root.

Perform ADF Test to verify unit root presence

```
[~, pValue] = adftest(vk);
alpha = 0.05;
disp('ADF Test on series:')
```

ADF Test on series:

```
if pValue < alpha
    disp('Null Hypothesis rejected: Unit root not present')
else
    disp('Failed to reject Null Hypothesis: Unit root might be present')
end</pre>
```

Failed to reject Null Hypothesis: Unit root might be present

3.b) Fit a model

Determine order of integrating effect

Difference the time series once

```
vk_diff = diff(vk);
```

Visual Inference

```
figure
subplot(2, 1, 1)
plot(vk_diff)
title('Differenced Time Series Plot')
ylabel('vk')

subplot(2, 1, 2)
autocorr(vk_diff)
title('Differenced Time Series - ACF')
ylabel('Sample ACF')
```


ACF dies down. Integrating effects might be removed.

Confirm using ADF test

```
[~, pValue] = adftest(vk_diff);
alpha = 0.05;
disp('ADF Test on differenced series')
```

ADF Test on differenced series

```
if pValue < alpha
    disp('Null Hypothesis rejected: Unit root not present')
else
    disp('Failed to reject Null Hypothesis. Unit root might be present')
end</pre>
```

Null Hypothesis rejected: Unit root not present

Therefore, integrating effect order = 1

Finding model orders for the difference series

Plot PACF to check AR order

```
figure;
parcorr(vk_diff)
title('Differenced Time Series - PACF')
ylabel('Sample PACF')
```


AR order 3 observed

Plot ACF to check MA order

```
figure;
autocorr(vk_diff)
title('Differenced Time Series - ACF')
ylabel('Sample ACF')
```


MA order 9 observed

Testing out different models

ARIMA(3, 1, 0)

Since AR(3) has a better parsimony than MA(9), we start with AR(3) on the differenced data

```
mod_arma30 = arima(3,0,0);
mod_arma30est = estimate(mod_arma30, vk_diff);
```

ARIMA(3,0,0) Model (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	-0.01367	0.022482	-0.60805	0.54316
$AR\{1\}$	1.6748	0.022404	74.754	0
AR{2}	-0.92222	0.038405	-24.013	2.0388e-127
AR{3}	0.17419	0.02181	7.9867	1.3865e-15
Variance	1.0076	0.030858	32.652	7.4083e-234

p-value for constant is high --> Set to 0 and fit

```
mod_arma30.Constant = 0;
mod_arma30est = estimate(mod_arma30, vk_diff);
```

ARIMA(3,0,0) Model (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	0	0	NaN	NaN
AR{1}	1.6751	0.022411	74.741	0
AR{2}	-0.9225	0.038407	-24.019	1.7467e-127
AR{3}	0.17443	0.021801	8.0011	1.2329e-15
Variance	1.0078	0.03086	32.656	6.6054e-234

Null hypothesis (parameter=0) rejected for all parameters. Therefore no overfit present.

Residual Analysis (Checking underfit)

```
[res_arma30,~,logL] = infer(mod_arma30est, vk_diff);
figure
subplot(3, 1, 1)
plot(res_arma30)
title('Time Series Plot of Residuals')
ylabel('vk')

subplot(3, 1, 2)
autocorr(res_arma30)
title('Residuals --> ACF')
ylabel('Sample ACF')

subplot(3, 1, 3)
parcorr(res_arma30)
title('Residuals --> PACF')
ylabel('Sample PACF')
```


ACF and PACF indicate whiteness (no significant correlations at any lag). We confirm whiteness of residuals using the Ljung-Box test

Failed to reject Null Hypothesis: Series might be white

Thus, the model does not underfit the data.

To verify goodness we also try ARIMA(1,1,1) and ARMA(2,1,1)

ARIMA(1, 1, 1)

This has a lower parsimony than ARIMA(3,1,0)

```
mod_armall = arima(1,0,1);
mod_armallest = estimate(mod_armall, vk_diff);
```

ARIMA(1,0,1) Model (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	-0.014795	0.038653	-0.38275	0.7019
AR{1}	0.91346	0.0090158	101.32	0
$MA\{1\}$	0.62324	0.018035	34.557	1.1034e-261
Variance	1.1305	0.033626	33.62	8.5902e-248

p-value for constant is high --> Set to 0 and fit

```
mod_armall.Constant = 0;
mod_armallest = estimate(mod_armall, vk_diff);
```

ARIMA(1,0,1) Model (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	0	0	NaN	NaN
AR{1}	0.91364	0.0090131	101.37	0
$MA\{1\}$	0.6232	0.018022	34.579	5.2203e-262
Variance	1.1306	0.033631	33.617	9.3518e-248

Null hypothesis (parameter=0) rejected for all parameters. Therefore no overfit present.

Residual Analysis (Checking underfit)

```
[res_armal1,~,logL] = infer(mod_armallest, vk_diff);
figure
subplot(3, 1, 1)
plot(res_armal1)
title('Time Series Plot of Residuals')
ylabel('vk')

subplot(3, 1, 2)
autocorr(res_armal1)
title('Residuals --> ACF')
ylabel('Sample ACF')

subplot(3, 1, 3)
parcorr(res_armal1)
title('Residuals --> PACF')
ylabel('Sample PACF')
```


ACF and PACF do not indicate whiteness (significant correlations are present at small lags). We also test this using the Ljung-Box test.

```
else
    disp('Failed to reject Null Hypothesis: Series might be white')
end
```

Null Hypothesis rejected: Some correlations are significant (Series not white)

Thus, the model underfits the data. The model is not complex enough.

ARIMA(2, 1, 1)

This model has the same number of parameters as ARIMA(3,1,0)

```
mod_arma21 = arima(2,0,1);
mod_arma2lest = estimate(mod_arma21, vk_diff);
```

ARIMA(2,0,1) Model (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	-0.018296	0.028552	-0.64077	0.52167
AR{1}	1.4104	0.028476	49.531	0
AR{2}	-0.50723	0.028004	-18.113	2.5372e-73
MA{1} Variance	0.27084 1.006	0.031775 0.030744	8.5239 32.723	1.543e-17 7.3548e-235

p-value for constant is high --> Set to 0 and fit

```
mod_arma21.Constant = 0;
mod_arma2lest = estimate(mod_arma21, vk_diff);
```

ARIMA(2,0,1) Model (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	0	0	NaN	NaN
AR{1}	1.4104	0.028474	49.532	0
AR{2}	-0.50695	0.028009	-18.099	3.2211e-73
$MA\{1\}$	0.27108	0.031765	8.5337	1.4173e-17
Variance	1.0062	0.03075	32.723	7.4176e-235

Null hypothesis (parameter=0) rejected for all parameters. Therefore no overfit present.

Residual Analysis (Checking underfit)

```
[res_arma21,~,logL] = infer(mod_arma2lest, vk_diff);
figure
subplot(3, 1, 1)
plot(res_arma21)
title('Time Series Plot of Residuals')
ylabel('vk')

subplot(3, 1, 2)
autocorr(res_arma21)
title('Residuals --> ACF')
ylabel('Sample ACF')
```

```
subplot(3, 1, 3)
parcorr(res_arma21)
title('Residuals --> PACF')
ylabel('Sample PACF')
```


ACF and PACF indicate whiteness (no significant correlations at any lag). We confirm whiteness of residuals using the Ljung-Box test

Failed to reject Null Hypothesis: Series might be white

Thus, the model does not underfit the data.

Choosing the final model using Information Criteria

```
summarize(mod_arma30est)
```

ARIMA(3,0,0) Model (Gaussian Distribution)

Effective Sample Size: 1999

Number of Estimated Parameters: 4

LogLikelihood: -2844.2

AIC: 5696.4 BIC: 5718.8

	Value	StandardError	TStatistic	PValue
Constant	0	0	NaN	NaN
$AR\{1\}$	1.6751	0.022411	74.741	0
AR{2}	-0.9225	0.038407	-24.019	1.7467e-127
AR{3}	0.17443	0.021801	8.0011	1.2329e-15
Variance	1.0078	0.03086	32.656	6.6054e-234

summarize(mod_arma21est)

ARIMA(2,0,1) Model (Gaussian Distribution)

Effective Sample Size: 1999 Number of Estimated Parameters: 4

LogLikelihood: -2842.66

AIC: 5693.32 BIC: 5715.73

	Value	StandardError	TStatistic	PValue
Constant	0	0	NaN	NaN
AR{1}	1.4104	0.028474	49.532	0
AR{2}	-0.50695	0.028009	-18.099	3.2211e-73
MA{1}	0.27108	0.031765	8.5337	1.4173e-17
Variance	1.0062	0.03075	32.723	7.4176e-235

ARIMA(2,1,1) has a smaller AIC and BIC than ARIMA(3,1,0). Thus the final model used is

$$(1+0.2711q^{-1})e[k] = (1-q^{-1})(1-1.4104q^{-1}+0.50695q^{-2})v[k]$$

Question 3

Part a

Finding the log likelihood for N observations (ln $f(\mathbf{y}_N \mid \mu)$):

$$L(\mu; \mathbf{y}_N) = \ln f(\mathbf{y}_N \mid \mu) = \ln \Pi_{k=1}^N \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y[k] - \mu)^2}{2\sigma^2}\right)$$
$$= c - \frac{N}{2} \ln \sigma^2 - \frac{1}{2} \sum_{k=1}^N \frac{(y[k] - \mu)^2}{\sigma^2}$$

Since μ is constrained to be a non-negative value, we add the constraint to the likelihood equation:

$$L(\mu; \mathbf{y}_N) = \ln f(\mathbf{y}_N \mid \mu) = \ln \prod_{k=1}^N \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y[k] - \mu)^2}{2\sigma^2}\right) + \lambda(\mu - 0)$$

such that $\lambda(\mu - 0) = 0$

Solving the above constrained equation, we get:

$$\hat{\mu}_{\text{MLE}} = max(0, \frac{1}{N} \sum_{k=1}^{N} y[k])$$

Finding Score (by ignoring constraints):

$$S(\mu; \mathbf{y}_N) = \frac{\partial}{\partial \mu} L(\mu; \mathbf{y}_N) = \sum_{k=1}^{N} \frac{(y[k] - \mu)}{\sigma^2}$$

Finding Fisher's Information from Score:

$$I(\mu) = -E\left(\frac{\partial S}{\partial \mu}\right) = \frac{N}{\sigma^2}$$

Note: Fisher's information assumes that the parameters are unconstrained. Therefore, any knowledge of constraints cannot be incorporated while calculating the Score or FI.

Part b

Given that $Y = aX + b + \varepsilon$, we can write $y[k] = ax[k] + b + \varepsilon$.

Since $\varepsilon \sim \mathcal{N}\left(0, \sigma_e^2\right)$ and X is free of randomness, $y[k] \sim \mathcal{N}\left(ax[k] + b, \sigma_e^2\right)$

$$L(a, b; \mathbf{y}_N) = \ln f(\mathbf{y}_N \mid a, b) = \ln \prod_{k=1}^N \frac{1}{\sqrt{2\pi}\sigma_e} \exp\left(-\frac{(y[k] - (ax[k] + b))^2}{2\sigma_e^2}\right)$$
$$= c - \frac{N}{2} \ln \sigma_e^2 - \frac{1}{2} \sum_{k=1}^N \frac{(y[k] - (ax[k] + b))^2}{\sigma_e^2}$$

Finding Score for a, b:

$$S(a; \mathbf{y}_N) = \frac{\partial}{\partial a} L(a, b; \mathbf{y}_N) = \sum_{k=1}^N \frac{(y[k] - (ax[k] + b))x[k]}{\sigma_e^2}$$
$$S(b; \mathbf{y}_N) = \frac{\partial}{\partial b} L(a, b; \mathbf{y}_N) = \sum_{k=1}^N \frac{(y[k] - (ax[k] + b))}{\sigma_e^2}$$

Equating both scores to zero and solving the system of equations for a and b gives:

$$\begin{split} \hat{a}_{MLE} &= \frac{N \sum_{k=1}^{N} y[k] x[k] - \sum_{k=1}^{N} x[k] \sum_{k=1}^{N} y[k]}{N \sum_{k=1}^{N} x[k]^2 - (\sum_{k=1}^{N} x[k])^2} \\ \hat{b}_{MLE} &= \frac{\sum_{k=1}^{N} y[k] - \hat{a}_{MLE} \sum_{k=1}^{N} x[k]}{N} \end{split}$$

Finding Fisher's Information from Score:

$$I(a) = -E\left(\frac{\partial S}{\partial a}\right) = \frac{\sum_{k=1}^{N} x[k]^2}{\sigma_e^2}$$
$$I(b) = -E\left(\frac{\partial S}{\partial b}\right) = \frac{N}{\sigma_e^2}$$

The MATLAB code to numerically verify the MLE estimates:

```
%Generating Data
  clc;
  clear all;
  N = 100;
  a = 2;
  b = 3;
  e = randn(N,1);
  xk = 2 + randn(N,1);
  yk = a*xk + b + e;
10
  % Analytical estimates of a and b(a_MLE, b_MLE) based on the derived
  % expressions
  a_{MLE} = (N*sum(yk.*xk) - sum(xk)*sum(yk))/(N*sum(xk.*xk) - sum(xk)^2);
  b_MLE = (sum(yk) - a_MLE * sum(xk))/N;
15
  llh = [];
  arange = 0:0.1:5;
17
  brange = 0:0.1:5;
19
  for ai=arange
20
       1 = [];
21
       for bi=brange
22
           1 = [1, -0.5*sum((yk - (ai*xk + bi)).^2)];
23
       end
       11h = [11h; 1];
25
  end
  % Finding a_hat, b_hat from LLH plot
  llhmax = max(llh(:));
```

```
[a-hat\_ind, b\_hat\_ind] = find(llh == llhmax);
29
   a-hat = arange(a-hat_ind);
30
   b_hat = brange(b_hat_ind);
31
32
   [A,B] = meshgrid (arange, brange);
33
   figure; surf(A, B, llh)
34
   hold on; line([a, a], [0, 5], [-3000, 2000], 'Color', 'red');
35
   hold on; line([a_hat, a_hat], [0, 5], [-3000, 2000], 'Color', 'green'); hold on; line([0, 0.5], [b, b], [-3000, 2000], 'Color', 'blue');
36
   hold on; line([0, 0.5], [b_hat, b_hat], [-3000, 2000], 'Color', 'black');
38
   legend('Log likelihood', 'a (true value)', 'a (predicted)', 'b (true value)', 'b (
       predicted)')
   xlabel('Parameter a')
   ylabel('Parameter b')
41
   zlabel('Log likelihood function')
42
43
   disp(['a_hat: Theoretical = ', num2str(a_MLE), '| Numerical = ', num2str(a_hat)])
   disp(['b_hat: Theoretical = ', num2str(b_MLE), '| Numerical = ', num2str(b_hat)])
45
   Output:
   a_hat: Theoretical = 2.0339— Numerical = 2
  b_hat: Theoretical = 2.9178— Numerical = 3
```


Figure 2: 3D plot of Log likelihood as a function of a and b

Figure 3: 3D plot of Log likelihood as a function of \boldsymbol{a}

Figure 4: 3D plot of Log likelihood as a function of \boldsymbol{b}