

## Principal Component Analysis

STAT5241 Section 2

Statistical Machine Learning

Xiaofei Shi

### **Data Visualization**

- How can we visualize data?
- Example: 53 features for 65 people?



### • Matrix format (65x53)

|          |  |    | H-WBC  | H-RBC  | H-Hgb   | H-Hct   | H-MCV    | H-MCH   | H-MCHC  |
|----------|--|----|--------|--------|---------|---------|----------|---------|---------|
| (        |  | A1 | 8.0000 | 4.8200 | 14.1000 | 41.0000 | 85.0000  | 29.0000 | 34.0000 |
|          |  | A2 | 7.3000 | 5.0200 | 14.7000 | 43.0000 | 86.0000  | 29.0000 | 34.0000 |
| es       |  | A3 | 4.3000 | 4.4800 | 14.1000 | 41.0000 | 91.0000  | 32.0000 | 35.0000 |
| Stanc    |  | A4 | 7.5000 | 4.4700 | 14.9000 | 45.0000 | 101.0000 | 33.0000 | 33.0000 |
| ⊳ ল      |  | A5 | 7.3000 | 5.5200 | 15.4000 | 46.0000 | 84.0000  | 28.0000 | 33.0000 |
| <u> </u> |  | A6 | 6.9000 | 4.8600 | 16.0000 | 47.0000 | 97.0000  | 33.0000 | 34.0000 |
| <u>-</u> |  | A7 | 7.8000 | 4.6800 | 14.7000 | 43.0000 | 92.0000  | 31.0000 | 34.0000 |
|          |  | A8 | 8.6000 | 4.8200 | 15.8000 | 42.0000 | 88.0000  | 33.0000 | 37.0000 |
| (        |  | A9 | 5.1000 | 4.7100 | 14.0000 | 43.0000 | 92.0000  | 30.0000 | 32.0000 |
|          |  |    |        |        |         |         |          |         |         |

**Features** 



Difficult to see the correlations between the features...

• Curves (65 curves, one for each person)



Difficult to compare the different patients...



Curves (53 pictures, one for each feature)





Difficult to see the correlations between the features...



#### Tri-variate





### Moreover...

- Is there a representation better than the coordinate axes?
- Is it really necessary to show all the 53 dimensions?
  - ... what if there are strong correlations between the features?
- How could we find the *smallest* subspace of the 53-D space that keeps the *most information* about the original data?
- A solution: Principal Component Analysis



### **PCA**



#### PCA:

- Orthogonal projection of the data onto a lower-dimension linear space that <u>equivalently</u>...
  - 1. minimizes the mean squared distance between
    - data points (red points) and projections (green points)
    - i.e. sum of squares of blue line lengths
  - 2. maximizes variance of projected data (green points)



### **PCA**

#### Idea:

- ☐ Given data points in a N-dimensional space, project them into a lower dimensional space while preserving as much information as possible.
  - Find best planar approximation of 3D data
  - Find best 12-D approximation of 10,000-D data
- ☐ In particular, choose <u>linear</u> projection that minimizes <u>squared error</u> in reconstructing the original data.



## **Example:**





## **Example:**





# Algorithm: sequential

Given the **<u>centered</u>** data  $\{x_1, ..., x_m\}$ , compute the principal vectors:

$$\mathbf{w}_1 = \arg \max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^m \{ (\mathbf{w}^T \mathbf{x}_i)^2 \} \qquad \mathbf{1}^{\mathsf{st}} \; \mathsf{PCA} \; \mathsf{vector}$$

To find  $\mathbf{w_1}$ , maximize the variance of projection of  $\mathbf{x}$ 



## Algorithm: sequential

Given the **centered** data  $\{x_1, ..., x_m\}$ , compute the principal vectors:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^m \{(\mathbf{w}^T \mathbf{x}_i)^2\} \qquad 1^{\text{st}} \text{ PCA vector}$$

To find  $\mathbf{w_1}$ , maximize the variance of projection of  $\mathbf{x}$ 

$$\mathbf{w}_{2} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \mathbf{w}_{1} \mathbf{w}_{1}^{T} \mathbf{x}_{i})]^{2} \}$$
 2<sup>nd</sup> PCA vector 
$$\mathbf{x'} \text{ projection onto w\_1}$$

To find w<sub>2</sub>, we maximize the variance of the projection in the residual subspace





# Algorithm: sequential

Given  $\mathbf{w_{1}}, \dots, \mathbf{w_{k-1}}$ , we calculate  $\mathbf{w_{k}}$  principal vector as before:

Maximize the variance of projection of  $\mathbf{x}$   $\mathbf{w}_{k} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \sum_{j=1}^{k-1} \mathbf{w}_{j} \mathbf{w}_{j}^{T} \mathbf{x}_{i})]^{2} \}$   $\mathbf{x}' \text{ projection onto previous directions}$ 





### Algorithm: sample covariance matrix

• Given data  $\{x_1, ..., x_m\}$ , compute covariance matrix  $\Sigma$ 

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \quad \text{where} \quad \overline{\overline{\mathbf{x}}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$$

• **PCA** basis vectors = the eigenvectors of  $\Sigma$ 





### Algorithm: sample covariance matrix

PCA algorithm( $\mathbf{X}$ ,  $\mathbf{k}$ ): top  $\mathbf{k}$  eigenvalues/eigenvectors

- $\% X = N \times m$  data matrix, N is number of features
- % ... each data point  $\mathbf{x}_i$  = column vector, i=1..m
- $\bullet \ \underline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}$
- X ← subtract mean <u>x</u> from each column vector x<sub>i</sub> in <u>X</u>
- Σ ← XX<sup>T</sup> ... covariance matrix of X
- $\{\lambda_i, \mathbf{u}_i\}_{i=1..N}$  = eigenvectors/eigenvalues of  $\Sigma$  where  $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_N$
- Return { λ<sub>i</sub>, **u**<sub>i</sub> }<sub>i=1..k</sub>
   % top k PCA components



### Singular value decomposition (SVD)

Singular Value Decomposition of the **centered** data matrix **X**.





1. Data visualization (blood example)







2. Noise reduction (eigenfaces)



3. Data compression (image example)





### Application: eigenface

- ☐ Example data set: Images of faces
  - Eigenface approach
     [Turk & Pentland], [Sirovich & Kirby]
- ☐ Each face x is ...
  - 256 × 256 values (luminance at location)
  - $\mathbf{x}$  in  $\Re^{256 \times 256}$  (view as 64K dim vector)
- □ Form  $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_m]$  centered data matrix
- $\Box$  Compute  $\Sigma = XX^T$
- □ Problem:  $\Sigma$  is 64K × 64K ... HUGE!!! (34 GB in memory)





### Computational complexity

- □ Suppose m instances, each of size N
  - Eigenfaces: m=500 faces, each of size N=64K
- $\square$  Given  $\mathbb{N} \times \mathbb{N}$  covariance matrix  $\Sigma$ , can compute
  - all N eigenvectors/eigenvalues in O(N³)
  - first k eigenvectors/eigenvalues in O(k N²)





## Computational complexity: how about...

- Note that m<<64K
- Use L=X<sup>T</sup>X instead of Σ=XX<sup>T</sup>
- If v is eigenvector of L
   then Xv is eigenvector of Σ
- $O(Nm^2) + O(km^2)$
- 64M vs 42,000M operations



## (Dis)advantages

- Required carefully handled data. Sensitive to data preprocessing quality.
- Completely knowledge-free!



## (Dis)advantages





## (Dis)advantages



PCA cannot capture NON-LINEAR structure!



### **Takeaways**

- PCA:
  - Finds orthonormal basis for data
  - Sorts dimensions in order of "importance"
  - Usually discard unimportant dimensions
- Applications:
  - Visualization
  - Data compression / compact representation
  - Remove noise to improve classification (hopefully)
- Disadvantages:
  - Doesn't know class labels
  - Can only capture linear variations
- One of many ways to reduce dimensionality!



### References

- Trevor Hastie, Robert Tibshirani, Jerome Friedman: The Elements of Statistical Learning: Data
   Mining, Inference and Prediction, Chapter 14.5
- Ziv Bar-Joseph, Tom Mitchell, Pradeep Ravikumar and Aarti Singh: CMU 10-701

