日期:

一美雅松的

- Step 1: 求所有频繁项集. 牛, 花 作、方
- Step 2: 使用频繁项集去产生关联规则.
 - 对每一个频繁项集 f
 - 生成f的所有非空子集。
 - 对 f 的每一个非空子集 s
 - 输出 s → (f-s) 如果 support (f) / support (s) > Φ (找出所有可能的关联规则, 然后再进行校验)

step1:

- (1) Apriori算法假设事务或项集里的各项已经预先按字典顺序进行排列
- (2) 只对 L_k 中那些 X 和 Y 前 k-1 项相同且第 k 项不同的频繁项集进行连接, 生成 C_{k+1} 的候选项集,连接方法如下:

候选项集产生 $\{X \cup Y | X, Y \in L_k, X_i = Y_i, \forall i \in [1, k-1], X_k \neq Y_k\}$ 有序列表

孝(5.):

数据库 D

TID	项集
	134
200	235
300	1235
400	2 5

日期: 农 极来 => L2 => 11/1 51,64 \$1,34 11.37 11124 52.37 42.34 {1.54 41.14 53,54 12.54 S 顶梁 => 1, 顶梁 {2,3.54 {2,3,54 新县近县 {113 } * ? m \$ 1-7} {1} 如元章 Lonf: = {2} Sup= == Worf: 3 {3} {5} 12.34 Sup = 2 62 - 1 - 3 {1,3} sup- & 124-1- 3 {2,3} {2,5} 久 2-25 sup= -} {3,5} Sup: 3 Lonf : 3 {2,3,5} Sup = 2 Loot = 2 53.54 Sup= = Lout= 3 2-> 3V5 Sup= 2 conf= 2 8203.54

日期:	/				
		305-72	~	$ \begin{array}{c} \text{Low } f = \frac{2}{2} \\ \text{Low } f = \frac{2}{3} \\ \text{Con } f = \frac{2}{3} \\ \text{Con } f = \frac{2}{3} \end{array} $	A
			~/	1 2 4 2	
		3-77 15		1 - 3	
		2 12-7 }	~	wint = 2	
		5-7247	~	conf = 2	
		213-75	~	$\operatorname{Lon} f = \frac{2}{2}$	Ð
				(2	<i>N</i>

3期: /

二月到挖掘

- 大小(size): 序列的大小是序列中元素(或项集)的个数
- **长度**: 一个序列的长度是序列中所有项的个数 レー **冷**る・
- 称 t=<t₁ t₂ ··· t_m> 是 s=<s₁ s₂ ··· s_n> 的一个**子序列**如果存在整数 1 ≤ j₁<j₂< ··· <j_m≤n 使得 t₁⊆ s_{j1}, t₂⊆ s_{j2}, ··, t_m⊆ s_{jm}. 我们也称 s 是 t 的**超序列**, 或 s **包含** t, 记为 t ⊂ s

学的 计算子及到

- 假定没有时限约束, 列举包含在下面的数据序列中的所有3个元素 (项集) 的子序列 <{1,3}, {2}, {2,3}, {4}>
- 列举如下:
- $< \{1, 3\} \{2\} \{2, 3\} >$, $< \{1, 3\} \{2\} \{4\} >$
- \bullet < {1, 3} {3} {4}>, <{1, 3} {2} {2} >
- \bullet < {1, 3} {2} {3}>, <{1, 3} {2, 3} {4} >
- \bullet < {1} {2} {2, 3}>, <{1} {2} {4} >
- < {1} {3} {4}>, <{1} {2} {2} >
- \bullet < {1} {2} {3}>, <{1} {2, 3} {4} >
- < {3} {2} {2, 3}>, <{3} {2} {4} >
- \bullet < {3} {3} {4}>, <{3} {2} {2} >
- < {3} {2} {3}>, <{3} {2, 3} {4}>
- 假定没有时限约束,列举包含在下面的数据序列中的所有4-子序列

155{1,3}, {2}, {2,3}, {4}>

- 列举如下:
- < {1, 3} {2} {2}>, <{1, 3} {2} {3}>, < {1, 3} {2} {4}>,
- <{1, 3}{2, 3} >, < {1, 3} {3} {4}>, <{1} {2} {2, 3} >,
- < {1} {2} {4}>, <{1} {2} {3} {4}>, < {1} {2, 3} {4}>,
- <{3} {2} {2, 3} >, < {3} {2} {4}>, <{3} {2} {3} {4}>,
- < {3} {2, 3} {4}>,<{2} {2, 3} {4} >

- 序列 s 的支持度是包含 s 的所有数据序列所占的比例
- **频繁序列 (或序列模式)**: 如果序列 s 在序列数据库 S 中的支持度大于或等于用户指定的最小支持度阈值,则称序列s为**频繁序列** (或**序列模式**)
- 序列的支持度计数是 S 中包含该序列的总数据序列个数
- 长度为1的序列模式记为1-模式

美的一支接处计算

区分不同的客户

CID	时间戳	项
Α	1	1, 2, 4
Α	2	2, 3
А	3	5
В	1	1, 2
В	2	2, 3, 4
С	1	1, 2
С	2	2, 3, 4
С	3	2, 4, 5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

数据集S含5个数据序列, A、B、C、D、E各一个

支持度	
<{1, 2}>	60%
<{2, 3}>	60%
<{2, 4}>	80%
<{3} {5}>	80%
<{1} {2}>	80%
<{2} {2}>	60%
<{1} {2, 3}>	60%
<{2} {2, 3}>	60%
<{1, 2} {2, 3}>	60%

supp(
$$<\{1,2\}>$$
) = $\frac{\#<\{1,2\}>}{\#S} = \frac{3}{5} = 60\%$
supp($<\{1\},\{2\}>$) = $\frac{\#<\{1\},\{2\}>}{\#S} = \frac{4}{5} = 80\%$

S1= < \$1,2.47, \$2,34, \$54>

房外左身:

序列合并过程

序列 $s^{(1)}$ 与另一个序列 $s^{(2)}$ 合并,仅当从 $s^{(1)}$ 中去掉第一个事件得到的子序列与从 $s^{(2)}$ 中去掉最后一个事件得到的子序列相同。结果候选是序列 $s^{(1)}$ 与 $s^{(2)}$ 的最后一个事件的连接。 $s^{(2)}$ 的最后一个事件可以作为最后一个事件合并到 $s^{(1)}$ 的最后一个元素中,也可以作为一个不同的元素,取决于如下条件:

- (1) 如果 $s^{(2)}$ 的最后两个事件属于相同的元素,则 $s^{(2)}$ 的最后一个事件在合并后的序列中是 $s^{(1)}$ 的最后一个元素的一部分。
- (2) 如果 $s^{(2)}$ 的最后两个事件属于不同的元素,则 $s^{(2)}$ 的最后一个事件在合并后的序列中成为连接到 $s^{(1)}$ 的尾部的单独元素。

• 例子

- <{1} {2} {3} {4}>是通过合并<{1} {2} {3}>和<{2} {3} {4}>得到。由于事件3和事件4属于第二个序列的不同元素,它们在合并后序列中也属于不同的元素。
- <{1} {5} {3,4} >通过合并<{1} {5} {3}>和<{5} {3,4}>得到。由于事件3和事件4属于第二个序列的相同元素,4被合并到第一个序列的最后一个元素中。

- 候选剪枝
 - 一个候选k-序列被剪枝,如果它的(k-1)-序列最少有一个是非 频繁的。
 - 例如,假设<{1} {2} {3} {4}>是一个候选4-序列。我们需要检查 <{1} {2} {4}>和<{1} {3} {4}>是否是频繁3-序列。由于它们都不 是频繁的,因此可以删除候选<{1} {2} {3} {4}>。
- 支持度计数
 - 在支持度计数期间,算法将枚举属于一个特定数据序列的所有候选k-序列。
 - 计数之后,算法将识别出频繁k-序列,并可以丢弃其支持度 计数小于最小支持度阈值 minsup 的候选。
 - □考虑以下频繁3-序列: < {1, 2, 3} >, < {1, 2}{3} >, < {1}{2, 3} >, < {1, 2}{4} >, < {1, 3}{4} >, < {1, 2, 4} >, < {2, 3}{3} >, < {2, 3}{4} >, < {2, 3}{4} >, < {2, 3}{4} >, < {2, 3}{4} >, < {2, 3}{3} >, 和 < {2}{3}{4} >
 - (1) 列举出候选生成步骤产生的所有候选4-序列

所有候选4-序列列举如下:

- < {1, 2, 3} {3} >, < {1, 2, 3} {4} >, < {1, 2} {3} {3} >, < {1, 2} {3} {4} >, < {1, 2} {3} {3} >, < {1, 2} {3} {4} >,
- (2) 列出候选剪枝步骤剪掉的所有候选4-序列(假定没有时限约束)。 如果没有时间限制,则所有候选子序列都必须频繁。 因此,经 过修剪的候选子序列为:
 - < {1, 2, 3} {3} >, < {1, 2} {3} {3} >, < {1, 2} {3} {4} >,
 - $< \{1\} \{2, 3\} \{3\} >, < \{1\} \{2, 3\} \{4\} >$

剪枝后的候选序列为: < {1, 2, 3} {4} >

日期:	/		