Unimathematik für Informatikstudiengänge Zusammenfassung

Konstantin Lukas

Fassung vom 03.08.2021

Contents

1	Mengen 1.1 Vereinigung 1.2 Durchschnitt 1.3 Differenz 1.4 Symmetrische Differenz 1.5 Definierte Zahlenmengen	2
2	Betrag	3
3	Intervalle3.1 Abgeschlossene Intervalle3.2 Offene Intervalle3.3 Halboffene Intervalle	
4	Binomische Formeln	4
5	Euklidischer Algorithmus	4
6	Brüche dividieren	4
7	Potenzgesetze	5
8	Wurzelgesetze 8.1 Wurzeltherme vereinfachen (Beispiele)	5
9	Lösungsmenge	7
10	Normalform 10.1 p-q-Formel	8
11	Quadratische Ergänzung	8

12 Faktorisieren	9
12.1 Faktorisierung durch Ausklammern	9
12.2 Faktorisierung mit binomischen Formeln	9
12.3 Faktorisierung mit dem Satz von Viëta	10

1 Mengen

1.1 Vereinigung

 $A \cup B := \{x \mid x \in A \ oder \ x \in B\}$

1.2 Durchschnitt

 $A\cap B:=\{x\mid x\in A\ und\ x\in B\}$

1.3 Differenz

$$A \setminus B := \{x \mid x \in A \ und \ x \not\in B\}$$

1.4 Symmetrische Differenz

$$A \triangle B := \{ x \mid (x \in A) \ \veebar \ (x \in B) \}$$

$$A\triangle B := \{x \mid (x \in A) \iff (x \in B)\}$$

1.5 Definierte Zahlenmengen

Natürliche Zahlen

$$\mathbb{N} = \{1; 2; 3; ...\}$$

Menge der Natürliche Zahlen

$$\mathbb{N}_0 = \{0; 1; 2; 3; ...\}$$

Ganze Zahlen

$$\mathbb{Z} = \{...; -2; -1; 0; 1; 2; 3; ...\}$$

Rationale Zahlen

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$$

Reelle Zahlen

Die reellen Zahlen umfassen die rationalen Zahlen und die irrationalen Zahlen.

Irrationale Zahlen

$$\mathbb{R}\setminus\mathbb{Q}$$

2 Betrag

$$|a| = \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$$

$$|-a| = |a|$$

3 Intervalle

3.1 Abgeschlossene Intervalle

$$[a;b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$

3.2 Offene Intervalle

$$(a;b) =]a;b[:= \{x \in \mathbb{R} \mid a < x < b\}$$

3.3 Halboffene Intervalle

Rechtsoffen

$$[a;b) = [a;b[:= \{x \in \mathbb{R} \mid a \le x < b\}]$$

Linksoffen

$$(a; b] =]a; b] := \{x \in \mathbb{R} \mid a < x \le b\}$$

4 Binomische Formeln

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

5 Euklidischer Algorithmus

Der euklidische Algorithmus findet den größten gemeinsamen Teiler zweier Zahlen. Das eignet sich ausgezeichnet dazu, Brüche zu kürzen. Der vorletzte Rest bevor R=0 eintritt, ist das Ergebnis.

2160:2592=0 R=2160

2592:2160=1 R=432

2160:432=5 R=0

 $\frac{2592}{2160} = \frac{6 \cdot 432}{5 \cdot 432} = \frac{6}{5}$

6 Brüche dividieren

Um zwei Brüche zu dividieren bildet man den Kehrwert vom Divisor und multipliziert diesen mit dem Dividend.

$$\frac{p_1}{q_1} : \frac{p_2}{q_2} = \frac{p_1}{q_1} \cdot \frac{q_2}{p_2}$$

$$\frac{\frac{p_1}{q_1}}{\frac{p_2}{q_2}} = \frac{p_1}{q_1} \cdot \frac{q_2}{p_2}$$

7 Potenzgesetze

$$a^k \cdot a^m = a^{k+m}$$

$$\frac{b^k}{b^m} = b^{k-m}$$

$$a^k \cdot b^k = (a \cdot b)^k$$

$$\frac{a^k}{b^k} = \left(\frac{a}{b}\right)^k$$

$$(a^k)^m = a^{k \cdot m}$$

Für a>0 und jede rationale Zahl $\frac{p}{q}$ (mit $p,q\in\mathbb{Z}$ und q>0) ist

$$a^{\frac{p}{q}} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p$$

Beispiel: Bestimmen Sie m und n so, dass gilt: $(9x^7)^2 = mx^n$

$$(9x^7)^2 = mx^n$$

$$81x^{14} = mx^n$$

m=81 und n=14

8 Wurzelgesetze

Für $a,b,c\in\mathbb{R}$ mit $a,b\geq 0,c>0$ und $m,n\in\mathbb{N}$ gilt

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{\frac{a}{c}} = \frac{\sqrt[n]{a}}{\sqrt[n]{c}}$$

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n \cdot m]{a}$$

Beispiel 1: Nach der dritten Binomischen Formel gilt für $a,b>0, a\neq b$:

$$\frac{1}{\sqrt{a} + \sqrt{b}} \cdot (\sqrt{a} - \sqrt{b})$$

$$= \frac{\sqrt{a} - \sqrt{b}}{(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})}$$

$$= \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a^2} - \sqrt{b}^2}$$

$$= \frac{\sqrt{a} - \sqrt{b}}{a - b}$$

Beispiel 2:

$$\frac{\sqrt{(1+a^2)\cdot(a-b)^2}}{\sqrt[4]{16(1+a^2)^2}}$$

$$=\sqrt{\frac{(1+a)^2\cdot(a-b)^2}{\sqrt{16(1+a^2)^2}}}$$

$$=\sqrt{\frac{(1+a)^2\cdot(a-b)^2}{4(1+a)^2}}$$

$$=\frac{1}{2}\sqrt{(a-b)^2}$$

$$=\frac{|a-b|}{2}$$

8.1 Wurzeltherme vereinfachen (Beispiele)

$$\sqrt{2} + \frac{2}{2\sqrt{2} + 3} = \sqrt{2} + \frac{2 \cdot (2\sqrt{2} -])}{(2\sqrt{2} + 3)(2\sqrt{2} - 3)}$$

$$= \sqrt{2} + \frac{4\sqrt{2} - 6}{(2\sqrt{2})^2 - 3^2}$$

$$= \sqrt{2} + \frac{4\sqrt{2} - 6}{-1}$$

$$= \sqrt{2} - 4\sqrt{2} + 6$$

$$= 6 - 3\sqrt{2}$$

$$\frac{1}{\sqrt{1+x^2}-1} - \frac{1}{\sqrt{1+x^2}+1} = \frac{\sqrt{1+x^2}+1}{\left(\sqrt{1+x^2}-1\right)\cdot\left(\sqrt{1+x^2}+1\right)} - \frac{\sqrt{1+x^2}-1}{\left(\sqrt{1+x^2}+1\right)\cdot\left(\sqrt{1+x^2}-1\right)}$$

$$= \frac{\left(\sqrt{1+x^2}+1\right)-\left(\sqrt{1+x^2}-1\right)}{1+x^2-1}$$

$$= \frac{2}{x^2}$$

Beispiel 3: Bestimmen Sie x und y, sodass $\frac{x}{y}$ vollständig gekürzt ist.

$$\frac{2 \cdot 2^{\frac{5}{2}}}{2^{\frac{1}{4}}} = 2^{\frac{x}{y}}$$

$$2 \cdot \frac{2^{\frac{5}{2}}}{2^{\frac{1}{4}}} = 2^{\frac{x}{y}}$$

$$2 \cdot 2^{\frac{5}{2} - \frac{1}{4}} = 2^{\frac{x}{y}}$$

$$2 \cdot 2^{\frac{9}{4}} = 2^{\frac{x}{y}}$$

$$2^{\frac{13}{4}} = 2^{\frac{x}{y}}$$

Damit gilt x = 13 und y = 4.

9 Lösungsmenge

Beispiel 1
$$(x^2 = -1)$$
:
 $\mathbb{L} = \emptyset$
Beispiel 2 $(x^2 = 4)$:
 $\mathbb{L} = \{-2; 2\}$
Beispiel 3 $(sin(x) = 0)$:
 $\mathbb{L} = \{...; -2\pi; -\pi; 0; \pi; 2\pi; ...\}$
Beispiel 4 $(x^2 + y = 5)$:
 $\mathbb{L} = \{(x_0; y_0) \in \mathbb{R}^2 \mid x_0^2 + y_0 = 5\} = \{(x_0; 5 - x_0^2) \mid x_0 \in \mathbb{R}^2\}$

In diesem Fall ist die Lösungsmenge die Funktion $y = 5 - x^2$.

10 Normalform

Eine Gleichung in der Form $ax^2 + bx + c = 0$ mit $a \neq 0$ und $b, c \in \mathbb{R}$, heißt quadratisch. Spezial bezeichnet man $x^2 + px + q = 0$ mir $p, q \in \mathbb{R}$, als quadratische Gleichung in Normalform.

Man kann eine quadratische Gleichung in die Normalform überführen, indem man durch a teilt: $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$.

10.1 p-q-Formel

Um die Nullstellen einer quadratischen Gleichung in der Normalform zu finden, kann man die p-q-Formel benutzen: $x_{\pm} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$.

 $D = \left(\frac{p}{2}\right)^2 - q$ ist die Diskriminante. Sie gibt Aufschluss über die Lösungsmenge.

 $D > 0 \Rightarrow Es\ gibt\ zwei\ Lsg.$

 $D = 0 \Rightarrow Es \ gibt \ eine \ Lsg.$

 $D < 0 \Rightarrow Es \ gibt \ keine \ Lsg.$

11 Quadratische Ergänzung

Die äquivalente Umformung der quadratischen Gleichung in Normalform $x^2+px+q=0$ in $\left(x+\frac{p}{2}\right)^2=-q+\left(\frac{p}{2}\right)^2$ wird als quadratische Ergänzung bezeichnet. In anderen Worten fügt man den Term $+\left(\frac{p}{2}\right)^2-\left(\frac{p}{2}\right)^2$ hinzu.

Beispiel:

$$x^{2} + 8x + 7 = 0$$

$$x^{2} + 8x + \left(\frac{8}{2}\right)^{2} + \left(\frac{8}{2}\right)^{2} + 7 = 0$$

$$x^{2} + 8x + 4^{2} + 4^{2} + 7 = 0$$

$$(x+4)^{2} + 4^{2} + 7 = 0$$

$$(x+4)^{2} - 9 = 0 \qquad |+9$$

$$(x+4)^{2} = 9 \qquad |\sqrt{}$$

$$x = \pm \sqrt{9} - 4$$

$$\mathbb{L} = \{-1; -7\}$$

12 Faktorisieren

Um die Nullstellen eines Terms zu finden, bietet es sich an, ihn als Produkt einfacher Terme zu schreiben, denn ist ein Faktor 0, ist das Produkt ebenfalls 0. Den Term in so eine Form zu überführen, nennt sich Faktorisieren.

12.1 Faktorisierung durch Ausklammern

Beispiel:

$$x^{4} + 2x^{3} + 3x^{2} = 0$$

$$x^{2}(x^{2} + 2x + 3) = 0$$

$$x^{2} = 0 \ oder \ (x^{2} + 2x + 3) = 0$$

$$\mathbb{L} = \{0\}$$

Für $x^2 + 2x + 3 = 0$ existiert keine reelle Lösung (s. p-q-Formel).

12.2 Faktorisierung mit binomischen Formeln

Beispiel:

$$9x^{2} + 30x + 25 = 0$$

$$(3x + 5)^{2} = 0$$

$$3x + 5 = 0 \qquad | -5$$

$$3x = -5 \qquad | : 3$$

$$x = -\frac{5}{3}$$

$$\mathbb{L} = \left\{-\frac{5}{3}\right\}$$

12.3 Faktorisierung mit dem Satz von Viëta

Der Satz von Viëta besagt, dass $x^2+px+q=(x-x_1)\cdot(x-x_2)$ ist. p und q lassen sich auf die Nullstellen zurückführen: $x_1+x_2=-p$ und $x_1\cdot x_2=q$.

Daraus lässt sich $x_2 = \frac{q}{x_1}$ ableiten. Wenn man also durch Raten eine Nullstelle findet, kann man so die andere Nullstelle auch ganz einfach finden.

Beispiel (eine Nullstelle ist 1, die andere ergibt sich als $\sqrt{2} = \frac{\sqrt{2}}{1}$):

$$x^{2} + (\sqrt{2} - 1)x - \sqrt{2} = 0$$
$$(x - 1) \cdot (x + \sqrt{2}) = 0$$
$$\mathbb{L} = \{1; -\sqrt{2}\}$$