STA2002: Probability and Statistics II Hypothesis Testing II

Fangda Song and Ka Wai Tseng

School of Data Science, CUHK(SZ)

October, 2025

Introduction

In this lecture, we will

- Continue our journey in hypothesis testing
- Discuss hypothesis testing for:
 - Equality of two means
 - Equality of two variances
- Hypothesis testing involves:
 - Pooled t-test
 - Welch's t-test
 - Paired t-test
 - F-test
- Suggested reading: Chapter 8.1, 8.2 of the textbook

Recap of Hypothesis Testing Framework

- Formulate H_0 and H_1 , determine significance level α (e.g., 0.05 or 0.01)
- ② Determine test statistic T, its distribution under H_0 , and compute realized value t
- Oraw conclusion:
 - p-value approach: Reject H_0 if p-value $\leq \alpha$
 - Critical region approach: Reject H_0 if $t \in C$ (critical region)
 - Confidence interval approach: Reject H_0 if CI exclude null parameter value

Test Equality of Two Normal Means

- Two populations with i.i.d. samples:
 - $X_1, \ldots, X_n \sim N(\mu_X, \sigma_X^2)$
 - $Y_1, \ldots, Y_m \sim N(\mu_Y, \sigma_Y^2)$
- Test H_0 : $\mu_X = \mu_Y$ against some possible competing H_1

Three cases:

- **1** Pooled t-test: X_1, \ldots, X_n and Y_1, Y_2, \cdots, Y_n are independent, $\sigma_X^2 = \sigma_Y^2 = \sigma^2$ unknown
- **2** Welch's t-test: X_1, \ldots, X_n and Y_1, Y_2, \cdots, Y_n are independent, $\sigma_X^2 \neq \sigma_Y^2$ unknown
- 3 Paired t-test: n = m, (X_i, Y_i) are independent pairs

Consider the pooled t-test statistic:

$$T := \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

where pooled variance:

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

- Under H_0 , $T \sim t(n+m-2)$
- Once we observe the data $x_1, ..., x_n$ and $y_1, ..., y_m$, we can compute

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}.$$

For one-sided test H_0 : $\mu_X = \mu_Y$ vs H_1 : $\mu_X > \mu_Y$:

p-value is

$$p = \Pr(T > t; H_0) = \Pr(T > t; T \sim t(n + m - 2))$$

• Decision rules: Reject H_0 at significance level α when

$$p = \Pr(T > t; T \sim t(n+m-2)) \le \alpha$$

 $\Leftrightarrow t \ge t_{\alpha}(n+m-2)$
 $\Leftrightarrow 0 \notin (\bar{x} - \bar{y} - t_{\alpha}(n+m-2)s_{p}\sqrt{\frac{1}{n} + \frac{1}{m}}, \infty)$

For one-sided test H_0 : $\mu_X = \mu_Y$ vs H_1 : $\mu_X < \mu_Y$:

p-value is

$$p = \Pr(T < t; H_0) = \Pr(T < t; T \sim t(n+m-2))$$

• Decision rules: Reject H_0 at significance level α when

$$p = \Pr(T < t; T \sim t(n+m-2)) \le \alpha$$

$$\Leftrightarrow t \le -t_{\alpha}(n+m-2)$$

$$\Leftrightarrow 0 \notin (-\infty, \bar{x} - \bar{y} + t_{\alpha}(n+m-2)s_{p}\sqrt{\frac{1}{n} + \frac{1}{m}})$$

For two-sided test $H_0: \mu_X = \mu_Y$ vs $H_1: \mu_X \neq \mu_Y$:

p-value is

$$p = \Pr(|T| > |t|; H_0) = 2 \Pr(T > |t|; T \sim t(n+m-2))$$

• Decision rules: Reject H_0 at significance level α when

$$p = 2 \Pr(T > |t|; T \sim t(n+m-2)) \le \alpha$$

$$\Leftrightarrow |t| \ge t_{\alpha/2}(n+m-2)$$

$$\Leftrightarrow 0 \notin (\bar{x} - \bar{y} - t_{\alpha/2}s_p \sqrt{\frac{1}{n} + \frac{1}{m}}, \bar{x} - \bar{y} + t_{\alpha/2}s_p \sqrt{\frac{1}{n} + \frac{1}{m}})$$

• Note that: Last interval is just the two-sided pooled t-interval

Example: Pooled t-test

Example

Suppose $X \sim N(\mu_X, \sigma^2)$ and $Y \sim N(\mu_Y, \sigma^2)$. We observe

- n = 12, $\bar{x} = 1076.75$, $s_X^2 = 29.30$
- m = 12, $\bar{y} = 1072.33$, $s_V^2 = 26.24$

We would like to test

$$H_0: \mu_X = \mu_Y \text{ vs } H_1: \mu_X \neq \mu_Y$$

at significance level $\alpha = 0.10$.

Compute test statistic:

$$t = \frac{1076.75 - 1072.33}{\sqrt{\frac{11(29.30) + 11(26.24)}{22} \left(\frac{1}{12} + \frac{1}{12}\right)}} = 2.05$$

- Comparison: $|t| = 2.05 > t_{0.05}(22) = 1.717$ or $p = 2 \Pr(T > 2.05; T \sim t(22)) = 0.0525 < 0.1$
- Decision: Reject H_0 at 10% significance level

Case 2: Welch's t-test

Consider the Welch's t-test statistic:

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}$$

• Under H_0 , $T \sim t(r)$ approximately with

$$r = \left\lfloor \frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{1}{n-1}\left(\frac{S_X^2}{n}\right)^2 + \frac{1}{m-1}\left(\frac{S_Y^2}{m}\right)^2} \right\rfloor$$

• Once we observe the data $x_1, ..., x_n$ and $y_1, ..., y_m$, we can compute,

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}.$$

• Here, only the two-sided hypothesis testing is discussed.

Case 2: Welch's t-test

For two-sided test $H_0: \mu_X = \mu_Y$ vs $H_1: \mu_X \neq \mu_Y$:

p-value is

$$p = \Pr(|T| > |t|; H_0) = 2 \Pr(T > |t|; T \sim t(r))$$

• Decision rules: Reject H_0 at significance level α when

$$\begin{aligned} & p = 2 \Pr(T > |t|; \, T \sim t(r)) \leq \alpha \\ \Leftrightarrow & |t| \geq t_{\alpha/2}(r) \\ \Leftrightarrow & 0 \notin \left(\bar{x} - \bar{y} - t_{\alpha/2}(r) \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}, \right. \\ & \bar{x} - \bar{y} + t_{\alpha/2}(r) \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}} \right) \end{aligned}$$

• **Note that:** Last interval is just the Welch's t-interval

Case 3: Paired t-test

Consider the following two-sided test,

$$H_0: \mu_X = \mu_Y, \quad H_1: \mu_X \neq \mu_Y$$

• Introduce D_i , i = 1, 2, ..., n,

$$D_i := X_i - Y_i$$

• We consider the paired statistic,

$$T:=rac{ar{D}}{S_D/\sqrt{n}}=rac{ar{X}-ar{Y}}{S_D/\sqrt{n}}.$$

- Under $H_0: \mu_X = \mu_Y, \ T \sim t(n-1)$
- Here, only the two-sided hypothesis testing is discussed.

Case 3: Paired t-test

• Once we observe the data $x_1, ..., x_n$ and $y_1, ..., y_n$, we can compute

$$t = \frac{\bar{x} - \bar{y}}{s_D/\sqrt{n}}.$$

p-value is

$$p = \Pr(|T| > |t|; H_0) = 2\Pr(T > |t|; T \sim t(n-1))$$

• Decision rules: Reject H_0 at significance level α when

$$egin{aligned} & p = 2 \operatorname{Pr}(\, T > |t|; \, T \sim t(n-1)) \leq lpha \ \Leftrightarrow & |t| \geq t_{lpha/2}(n-1) \ \Leftrightarrow & 0
otin \left(ar{x} - ar{y} - t_{lpha/2}(n-1) rac{s_D}{\sqrt{n}},
ight. \ & ar{x} - ar{y} + t_{lpha/2}(n-1) rac{s_D}{\sqrt{n}}
ight) \end{aligned}$$

Note that: Last interval is just the paired t-interval

Example: Paired t-test

Example

Twenty-four girls in the 9th and 10th grades were put on an ultraheavy rope-jumping program. Someone thought that such a program would increase their speed in the 40-yard dash. Let D equal the difference in time to run the 40-yard dash—the "before-program time" (X) minus the "after-program time." (Y) Assume that the distribution of D is approximately $N(\mu_d, \sigma_d^2)$. We shall test the null hypothesis $H_0: \mu_D = 0$ against the alternative hypothesis $H_1: \mu_D > 0$ at significance level $\alpha = 0.10$. We observe n = 24, $\bar{d} = 0.0788$, $s_D = 0.2549$.

Example: Paired t-test

- p-value approach:
 - $p = \Pr(T > 1.514; T \sim t(23)) = 0.0718 < 0.1$, so we reject H_0 at 10% significance level.
- Critical region approach:
 - |t| = 1.514 > 1.319, so we reject H_0 at 10% significance level.
- Confidence interval approach: The 90% one-sided paired CI is

$$(0.0788-1.319\times\frac{0.2549}{\sqrt{24}},\infty)=(0.0101,\infty),$$

which doesn't include 0, so we reject H_0 at 10% significance level.

- Suppose we have two populations with i.i.d. samples:
 - $X_1, \ldots, X_n \sim N(\mu_X, \sigma_X^2)$
 - $Y_1, \ldots, Y_m \sim N(\mu_Y, \sigma_Y^2)$

and these two populations are independent.

• We would like to test:

$$H_0: \sigma_X^2 = \sigma_Y^2 \text{ vs } H_1: \sigma_X^2 \neq \sigma_Y^2$$

We have

$$U = \frac{(n-1)S_X^2}{\sigma_X^2} \sim \chi^2(n-1)$$

$$V = \frac{(m-1)S_Y^2}{\sigma_Y^2} \sim \chi^2(m-1)$$

• Recall *F*-distribution definition: If $U \sim \chi^2(u)$, $V \sim \chi^2(v)$ independent, then:

$$\frac{U/u}{V/v} \sim F(u,v)$$

Define test statistic:

$$F := \frac{U/(n-1)}{V/(m-1)} = \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2}$$

• Under H_0 ($\sigma_X^2 = \sigma_Y^2$), the ratio becomes:

$$F = \frac{S_X^2}{S_Y^2} \sim F(n-1, m-1)$$

• Once we have the data x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_m , compute:

$$f = \frac{s_X^2}{s_Y^2}$$

Intuitively, the data reject H₀ and favors H₁ when the ratio t
is either too small or too large.

• Reject H_0 at significance level α when:

$$f \ge F_{\alpha/2}(n-1, m-1)$$
 or $f \le F_{1-\alpha/2}(n-1, m-1)$

• Remark: For F distribution,

$$F_{1-\alpha/2}(n-1,m-1) = \frac{1}{F_{\alpha/2}(m-1,n-1)}$$

For two-sided test H_0 : $\sigma_X^2 = \sigma_Y^2$ vs H_1 : $\sigma_X^2 \neq \sigma_Y^2$:

• When f > 1, p-value is

$$p = 2 \Pr(F > f; F \sim F(n-1, m-1))$$

• When f < 1, p-value is

$$p = 2 \Pr(F < f; F \sim F(n-1, m-1))$$

Decision rules: Reject H_0 at significance level α when

$$\begin{aligned} p &= 2 \cdot \min \left\{ \Pr(F > f), \Pr(F < f) \right\} \leq \alpha \\ \Leftrightarrow &f \geq F_{\alpha/2}(n-1, m-1) \quad \text{or} \quad f \leq F_{1-\alpha/2}(n-1, m-1) \\ \Leftrightarrow &1 \notin \left(\frac{s_Y^2}{s_X^2} F_{1-\alpha/2}(n-1, m-1), \frac{s_Y^2}{s_X^2} F_{\alpha/2}(n-1, m-1) \right) \end{aligned}$$

Note:
$$\left[\frac{s_Y^2}{s_X^2}F_{1-\alpha/2}(n-1,m-1), \frac{s_Y^2}{s_X^2}F_{\alpha/2}(n-1,m-1)\right]$$
 is the two-sided $100(1-\alpha)\%$ CI of $\frac{\sigma_Y^2}{\sigma_X^2}$

Summary

H ₀	H_1	p-value	Critical Region
Pooled t-test $(T \sim t(n+m-2), t = (\bar{x} - \bar{y})/(s_p \sqrt{\frac{1}{n} + \frac{1}{m}}))$			
$\mu_X = \mu_Y$	$\mu_X > \mu_Y$	Pr(T > t) Pr(T < t)	$t \ge t_{lpha}(n+m-2)$ $t \le -t_{lpha}(n+m-2)$
$\mu_X = \mu_Y$ $\mu_X = \mu_Y$	$\mu_{X} < \mu_{Y}$ $\mu_{X} \neq \mu_{Y}$	$2\Pr(T> t)$	$ t \ge -t_{\alpha}(n+m-2)$ $ t \ge t_{\alpha/2}(n+m-2)$
Welch's t-test $(T \sim t(r), t = (\bar{x} - \bar{y})/(\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}))$			
$\mu_{X} = \mu_{Y}$	$\mu_X > \mu_Y$	$Pr(\mathcal{T} > t)$	$t \geq t_{\alpha}(r)$
$\mu_{X} = \mu_{Y} \\ \mu_{X} = \mu_{Y}$	$\mu_{X} < \mu_{Y} \mu_{X} \neq \mu_{Y}$	$\Pr(T < t)$ $2\Pr(T > t)$	$t \leq -t_{lpha}(r) \ t \geq t_{lpha/2}(r)$
Paired t-test $(T \sim t(n-1), \ t = \bar{d}/(s_D/\sqrt{n}))$			
$\mu_D = 0$ $\mu_D = 0$ $\mu_D = 0$	$\mu_D > 0$ $\mu_D < 0$ $\mu_D \neq 0$	$\Pr(T > t)$ $\Pr(T < t)$ $2\Pr(T > t)$	$egin{aligned} t &\geq t_lpha(n-1) \ t &\leq -t_lpha(n-1) \ t &\geq t_{lpha/2}(n-1) \end{aligned}$