

Slides adapted from Philipp Koehn

Language Models

Natural Language Processing: Jordan Boyd-Graber University of Colorado Boulder SEPTEMBER 10, 2014

Roadmap

After this class, you'll be able to:

- Give examples of where we need language models
- Explain the independence assumptions of language models
- Estimate probability distributions using Laplace and Dirichlet smoothing
- Evaluate language models

Outline

What is a Language Model?

Evaluating Language Models

Estimating Probability Distributions

Advanced Zero Avoidance

Language models

- Language models answer the question: How likely is a string of English words good English?
- Autocomplete on phones and websearch
- Creating English-looking documents
- Very common in machine translation systems
 - Help with reordering / style

$$p_{
m LM}({
m the\ house\ is\ small})>p_{
m LM}({
m small\ the\ is\ house})$$

Help with word choice

 $p_{\scriptscriptstyle
m LM}({\sf I} \ {\sf am \ going \ home}) > p_{\scriptscriptstyle
m LM}({\sf I} \ {\sf am \ going \ house})$

N-Gram Language Models

- Given: a string of English words $W = w_1, w_2, w_3, ..., w_n$
- Question: what is p(W)?
- Sparse data: Many good English sentences will not have been seen before
- \rightarrow Decomposing p(W) using the chain rule:

$$p(w_1, w_2, w_3, ..., w_n) = p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) ... p(w_n|w_1, w_2, ...w_{n-1})$$

(not much gained yet, $p(w_n|w_1, w_2, ...w_{n-1})$ is equally sparse)

Markov Chain

- Markov independence assumption:
 - only previous history matters
 - limited memory: only last k words are included in history (older words less relevant)
 - $\rightarrow k$ th order Markov model
- For instance 2-gram language model:

$$p(w_1, w_2, w_3, ..., w_n) \simeq p(w_1) p(w_2|w_1) p(w_3|w_2)...p(w_n|w_{n-1})$$

• What is conditioned on, here w_{i-1} is called the **history**

Outline

What is a Language Model?

Evaluating Language Models

Estimating Probability Distributions

Advanced Zero Avoidance

How good is the LM?

- A good model assigns a text of real English W a high probability
- This can be also measured with perplexity

perplexity(W) =
$$P(w_1, \dots w_N)^{-\frac{1}{N}}$$

= $\sqrt[N]{\prod_{i}^{N} \frac{1}{P(w_i|w_1 \dots w_{i-1})}}$

Comparison 1-4-Gram

word	unigram	bigram	trigram	4-gram
i	6.684	3.197	3.197	3.197
would	8.342	2.884	2.791	2.791
like	9.129	2.026	1.031	1.290
to	5.081	0.402	0.144	0.113
commend	15.487	12.335	8.794	8.633
the	3.885	1.402	1.084	0.880
reporter	10.840	7.319	2.763	2.350
	4.896	3.020	1.785	1.510
	4.828	0.005	0.000	0.000
average				
perplexity	265.136	16.817	6.206	4.758

Outline

What is a Language Model?

Evaluating Language Models

Estimating Probability Distributions

Advanced Zero Avoidance

• Suppose we want to estimate $P(w_n = home | h = go)$.

• Suppose we want to estimate $P(w_n = home | h = go)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

• Suppose we want to estimate $P(w_n = home | h = go)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

Maximum likelihood (ML) estimate of the probability is:

$$\hat{\theta}_i = \frac{n_i}{\sum_k n_k} \tag{1}$$

Example: 3-Gram

Counts for trigrams and estimated word probabilities

the red (total: 225)

word	C.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.

Example: 3-Gram

Counts for trigrams and estimated word probabilities

the red (total: 225)

word	C.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.
- Is this reasonable?

The problem with maximum likelihood estimates: Zeros

 If there were no occurrences of bageling in a history go, we'd get a zero estimate:

$$\hat{P}(\text{bageling}|go) = \frac{T_{go,\text{bageling}}}{\sum_{w' \in V} T_{go,w'}} = 0$$

- \rightarrow We will get P(go|d) = 0 for any sentence that contains go bageling!
- Zero probabilities cannot be conditioned away.

- In computational linguistics, we often have a prior notion of what our probability distributions are going to look like (for example, non-zero, sparse, uniform, etc.).
- This estimate of a probability distribution is called the maximum a posteriori (MAP) estimate:

$$\theta_{MAP} = \operatorname{argmax}_{\theta} f(x|\theta)g(\theta)$$
 (2)

Add-One Smoothing

- Equivalent to assuming a uniform prior over all possible distributions over the next word (you'll learn why in CL2)
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
 - 86,700 distinct words
 - \circ 86, $700^2 = 7,516,890,000$ possible bigrams
 - $\circ~$ but only about 30,000,000~words (and bigrams) in corpus

• Assuming a **sparse Dirichlet** prior, $\alpha < 1$ to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

• α_i is called a smoothing factor, a pseudocount, etc.

• Assuming a **sparse Dirichlet** prior, $\alpha < 1$ to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When $\alpha_i = 1$ for all i, it's called "Laplace smoothing"

• Assuming a **sparse Dirichlet** prior, $\alpha < 1$ to each count

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{3}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When $\alpha_i = 1$ for all i, it's called "Laplace smoothing"
- What is a good value for α ?
- Could be optimized on held-out set to find the "best" language model

Example: 2-Grams in Europarl

Count	Adjusted count		Test count
С	(c + 1)	$(c + \alpha)$	t_c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202
5	0.02266	4.78558	4.35234
6	0.02644	5.74266	5.33762
8	0.03399	7.65683	7.15074
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

Example: 2-Grams in Europarl

Count	Adjusted count		Test count
С	(c + 1)	$(c + \alpha)$	t_c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202

Can we do better?

In higher-order models, we can learn from similar contexts!

Ö	U.U3399	7.00003	1.13U14
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

Outline

What is a Language Model?

Evaluating Language Models

Estimating Probability Distributions

Advanced Zero Avoidance

Back-Off

- In given corpus, we may never observe
 - Scottish beer drinkers
 - Scottish beer eaters
- Both have count 0
 - ightarrow our smoothing methods will assign them same probability
- Better: backoff to bigrams:
 - beer drinkers
 - beer eaters

Interpolation

- Higher and lower order n-gram models have different strengths and weaknesses
 - high-order n-grams are sensitive to more context, but have sparse counts
 - low-order n-grams consider only very limited context, but have robust counts
- Combine them

$$p_{I}(w_{3}|w_{1}, w_{2}) = \lambda_{1} p_{1}(w_{3}) + \lambda_{2} p_{2}(w_{3}|w_{2}) + \lambda_{3} p_{3}(w_{3}|w_{1}, w_{2})$$

Back-Off

Trust the highest order language model that contains n-gram

$$\begin{split} p_n^{BO}(w_i|w_{i-n+1},...,w_{i-1}) &= \\ &= \begin{cases} \alpha_n(w_i|w_{i-n+1},...,w_{i-1}) \\ &\text{if } \mathsf{count}_n(w_{i-n+1},...,w_i) > 0 \\ d_n(w_{i-n+1},...,w_{i-1}) \ p_{n-1}^{BO}(w_i|w_{i-n+2},...,w_{i-1}) \\ &\text{else} \end{cases} \end{split}$$

- Requires
 - adjusted prediction model $\alpha_n(w_i|w_{i-n+1},...,w_{i-1})$
 - discounting function $d_n(w_1, ..., w_{n-1})$

Back-Off

Trust the highest order language model that contains n-gram

$$\begin{split} p_n^{BO}(w_i|w_{i-n+1},...,w_{i-1}) &= \\ &= \begin{cases} \alpha_n(w_i|w_{i-n+1},...,w_{i-1}) \\ &\text{if } \mathsf{count}_n(w_{i-n+1},...,w_i) > 0 \\ d_n(w_{i-n+1},...,w_{i-1}) \ p_{n-1}^{BO}(w_i|w_{i-n+2},...,w_{i-1}) \\ &\text{else} \end{cases} \end{split}$$

- Requires
 - o adjusted prediction model $\alpha_n(w_i|w_{i-n+1},...,w_{i-1})$
 - discounting function $d_n(w_1, ..., w_{n-1})$
 - More next time

Reducing Vocabulary Size

- For instance: each number is treated as a separate token
- Replace them with a number token NUM
 - but: we want our language model to prefer

$$p_{\scriptscriptstyle
m LM}({
m I} \ {
m pay} \ 950.00 \ {
m in \ May} \ 2007) > p_{\scriptscriptstyle
m LM}({
m I} \ {
m pay} \ 2007 \ {
m in \ May} \ 950.00)$$

not possible with number token

$$p_{\scriptscriptstyle ext{LM}}(ext{I pay NUM in May NUM}) = p_{\scriptscriptstyle ext{LM}}(ext{I pay NUM in May NUM})$$

 Replace each digit (with unique symbol, e.g., @ or 5), retain some distinctions

 $p_{\text{\tiny LM}}(\text{I pay 555.55 in May 5555}) > p_{\text{\tiny LM}}(\text{I pay 5555 in May 555.55})$

Summary

- Language models: How likely is a string of English words good English?
- N-gram models (Markov assumption)
- Perplexity
- Count smoothing
- Interpolation and backoff

In Class . . .

- Any remaining questions for first homework
- Discussing homework assignment: building bigram language models