

计算机组成与系统结构

第五章 中央处理机 (3)

吕昕晨

lvxinchen@bupt.edu.cn

网络空间安全学院

中央处理机

回顾: CPU的功能总结

- CPU: 中央处理器
 - 根据编写的程序,自动从存储器中取出指令,并完成指令操作
- 指令操作——复杂的控制过程
 - 核心: 多个操作信号在指定时间完成对应控制
 - 关键: 描述时间、事件
 - 操作控制(一条指令有若干操作信号实现)
 - 时间控制(指令各个操作实施时间的定时)

如何 控制

取指令—操作控制、时间控制 → 执行指令

第四章 机器指令

Chp5-1: 时间控制

Chp5-2:操作控制(方框图)

控制器: 时间控制+操作控制

第四章 机器指令

Chp5-1: 时间控制

T0-Tn (脉冲)

Chp5-2:操作控制(方框图)

电位信号 (CPU周期)

控制器: 时间控制+操作控制

- 节拍脉冲
 - CNT: 0~3
 - T1 T4

- 读写控制信号
 - 读写控制功能
 - RD (电位信号)
 - RD非 (生成脉 冲控制)

脉冲控制信号: RD & (T2+T3)

微程序控制

Chp5-1: 时间控制

Chp5-2: 操作控制 (方框图)

微程序控制: 思路

指令周期流程图

- 问题:如何存储/翻译方框图内容
 - 表示: 指令→多个CPU周期内容(微程序/微指令)
 - 存储:依照指令的方式,用(微/控制)存储器存储微指令
 - 翻译:微指令译码(结合T周期),生成控制信号

第五章 中央处理机

- 微程序/硬件布线控制器简介
- 微程序控制原理
- 微程序控制技术
- 微程序控制设计

微程序控制器

- 基本思想与实现方法
 - 把操作控制信号编制成微指令,存放到控制存储器里, 运行时,从控存中取出微指令,产生指令运行所需的操 作控制信号
 - 微程序设计技术是用软件方法来设计硬件的技术

硬件布线控制器

- 基本思想
 - 通过逻辑电路直接 连线而产生的,又 称为组合逻辑控制 方式
- 设计目标
 - 使用最少元件(复 杂的树形网络)
 - 速度最高
 - FPGA实验

微操作控制信号产生

- 微程序控制器
 - 微操作控制信号由微指令产生,并且可以重复使用
 - 优点: 灵活、设计方便
- 硬件布线控制器
 - 某一微操作控制信号由布尔代数表达式描述的输出函数产生
 - 树形网络结构复杂,设计困难,但适合VLSI实现
 - 设计微操作控制信号流程
 - 根据所有机器指令流程图,寻找出产生同一个微操作信号的所有条件,并与适当的节拍电位和节拍脉冲组合
 - 从而写出其布尔代数表达式并进行简化
 - 用门电路或可编程器件来实现

类 别对比项目	微程序控制器	硬布线控制器		
工作原理	微操作控制信号以微程序的形式 存放在控制存储器中,执行指令时 读出即可	微操作控制信号由组合逻辑电路 根据当前的指令码、状态和时序, 即时产生		
执行速度	慢	快		
规整性	较规整	烦琐、不规整		
应用场合	CISC CPU	RISC CPU		
易扩充性	易扩充修改	困难		

第五章 中央处理机

- 微程序/硬件布线控制器简介
- 微程序控制原理
 - 微命令/微操作/微指令/微程序
 - 微程序控制原理与示例
- 微程序控制技术
- 微程序控制设计

微命令和微操作

微命令

- 控制部件向执行部件发出的各种控制命令
- 构成控制序列的最小单位
- 例如:打开或关闭某个控制门的电位信号、某个寄存器的打入脉冲等
- 微操作: 微命令的操作过程
 - 微命令和微操作是——对应的
 - 关系: 微命令是微操作的控制信号, 微操作是微命令的操作过程
 - 微操作是执行部件中最基本的操作

微操作相容、互斥性质

- 由于数据通路/操作对象的 结构关系,微操作可分为:
 - 互斥微操作
 - 不能同时或不能在同一个CPU周期内并行执行的微操作
 - 相容微操作
 - 是指能够同时或在同一个CPU周期内并行执行的微操作

微操作相容、互斥性质

- 互斥微操作
 - ALU控制信号
 - +、-、M (传送)
 - ALU的X/Y输入端
 - X: 4, 6, 8
- 相容微操作
 - 寄存器R1~R3
 - 1, 2, 3
 - X端与Y端
 - 4、7 (任意组合)

微指令结构

微指令

- 一个CPU周期可执行多条微操作(相容微操作)
- 这些微操作控制信息,存储在控制存储器里,就是微指令
- 微命令的组合,微指令存储在控制器的控制存储器

组成

- 操作控制字段 (1~17位)
- 顺序控制字段 (18~23位)

微指令——操作/顺序控制字段

- 操作控制字段,又称微操作码字段
 - 产生各个微操作控制信号
 - 某位为1,表明发微指令
 - 微指令发出的控制信号都是节拍电 位信号,持续时间为一个CPU周期
 - 引入节拍脉冲信号作时间控制
- 顺序控制字段, 又称微地址码字段
 - 控制产生下一条要执行的微指令地址

微程序

- 机器指令包含多个CPU周期
 - 一个CPU周期微操作对应一条微指令
 - 一条机器指令包含多条微指令

微程序

- 一系列微指令的有序集合
- 一段微程序对应一条机器指令

机器指令与微指令的关系

- 机器指令对应微程序
 - 微程序由一系列微指令组成
 - 例如,BCD加法
- 存储位置与地址
 - 机器指令存储在**主存储器**,对应PC
 - 微指令存储在**控制存储器**,对应微地址
- 作用
 - 机器指令明确指令功能
 - 微指令明确微操作信号

相关概念总结 (重要)

- 指令系统: 所有机器指令的集合 (第四章)
- 1条机器指令(第四章):1个微程序(第五章)
- 微程序: 若干条微指令的组合(指令周期)
- 微指令: 一系列微命令 (CPU周期)
- 微命令与微操作 (一一对应、T周期)
- 程序执行流程涉及:
 - 程序→机器指令→微程序

→微指令→微命令 (微操作)

下列描述正确的是

- 若干条微指令实现一条机器指令,一条微指令包含 多个微命令
 - 罗 若干条机器指令实现一条微指令,一条微命令包含 多个机器指令。
 - 一条微指令实现一条机器指令,一条微指令包含多个微命令。
- 若干个微命令实现一条机器指令,一个微命令包含 多条微指令。

第五章 中央处理机

- 微程序/硬件布线控制器简介
- 微程序控制原理
 - 微命令/微操作/微指令/微程序
 - 微程序控制原理与示例
- 微程序控制技术
- 微程序控制设计

微程序控制原理对比

微程序控制原理框图

指令译码/控制器 控制信号~ IRin IR AdIRout **PCin** PC **PCout** MARout MARin MemR → 主 MAR 存 MDRoutE **MDRin MDR** 1emW→ MDRinE MDRout R0in R_0 R0out Rn-1in R_{n-1} Rn-1out Yin Y ALUin 控制信号 ALU Zout Z 数据通路图

26

微程序控制原理框图

- 控制存储器(μCM)
 - 微程序控制器的核心部件,用来存放微程序
 - 性能(容量、速度、可靠性等)与计算机性能密切相关
- 微指令寄存器(μIR)
 - 用来存放从μCM取出的正在执行的微指令
 - 位数同微指令字长相等

微程序控制原理框图

- 微地址形成部件
 - 用来产生初始微地址和后继微地址
 - 保证微指令的连续执行
- 微地址寄存器(μMAR/μAR/μPC)
 - 接受微地址形成部件送来的微地址
 - 为下一步从μCM中读取微指令作准备

微程序控制

-uCM组织

- 公共部分
 - 取指周期
- 执行部分
 - 对应指令功
 - 末尾转下地址0
 - 循环执行

微程序控制示例

- 十进制加法指令 (一条指令)
 - 功能:用BCD码完成十进制加法运算
 - 流程框图 (R3=6)
 - 取指、译码、正常加法
 - 加6修正
 - 若产生进位
 - 保持不变
 - 若未产生进位
 - 退回,减6

微程序控制示例

• 取指令——微指令编码

000	000	000	000	10111	10	0000
-----	-----	-----	-----	-------	----	------

- 第13位: RD (I) , I-Cache读操作
- 第15位: LDIR, 指令放入IR
- 第16位: LDAR, PC送I-Cache
- 第17位: PC+1, 自增
- 第18位,P1测试,用IR寄存器OP段作为地址

微程序控制示例

• 加法指令——微指令编码

010 100 100 100 00000 00 1001

R1+R2→R2,下一条微地址1001

- $R2+R3 \rightarrow R2$
- LDR2, R2 \rightarrow X, R3 \rightarrow Y, +
- 执行P2测试,测试进位标志Cy

第五章 中央处理机

- 微程序/硬件布线控制器简介
- 微程序控制原理
- 微程序控制技术
 - 微指令结构 (操作控制字段)
 - 微地址形成(顺序控制字段)
 - 微指令格式
- 微程序控制设计

微程序设计——微指令结构

- 设计微指令应当追求的目标
 - 有利于缩短微指令的长度
 - 有利于缩小控制存储器的容量
 - 有利于提高微程序的执行速度
 - 有利于提高微程序设计的**灵活性**
- 微命令编码
 - 直接表示法
 - 编码表示法
 - 混合表示法

微命令编码——直接表示法

• 直接表示法

- 操作控制字段中的各位分别可以直接控制计算机,不需要进行译码
- 优点:简单直观,输出直接进行控制
- 缺点:微指令字较长,控制存储器容量大

微命令编码——编码表示法

• 编码表示法

- 将操作控制字段分为若干个小段(段内互斥),每段内 采用最短编码法,段与段之间采用直接控制法
- 优点: 利用互斥性, 缩短微指令字长
- 缺点: 额外译码电路, 执行速度较慢

微命令编码——混合表示法

• 混合表示法

- 结合直接表示法与编码表示法
- 综合指令字长、灵活性、执行速度等方面要求

某微程序控制器采用直接表示/编码表示法进行编码,已知共有33个微命令,构成5个互斥类,分别包含7、3、12、5、6个微命令,则控制字段位数为?

- (A) 12, 5
- B 33、12
- 33、15
- D 33, 5

第五章 中央处理机

- 微程序/硬件布线控制器简介
- 微程序控制原理
- 微程序控制技术
 - 微指令结构(操作控制字段)
 - 微地址形成 (顺序控制字段)
 - 微指令格式
- 微程序控制设计

微地址形成方法

- 入口地址
 - 每条机器指令对应一段微程序,当公用的取指微程序从主存中取出机器指令
 - 通过P1测试,机器指令的操作码字段 指出各段微程序的入口地址,这是一 种多分支(或多路转移)的情况
- 微地址形成方式
 - 计数器方式
 - 多路转移方式

计数器方式

- 计数器方式
 - 微程序顺序执行时,其后继微地址就是现行微地址加上一个增量(通常为1)
 - 当微程序遇到转移或转子程序时,由微指令的转移地 址段来形成转移微地址
 - 在微程序控制器中也有一个微程序计数器μPC,一般情况下都是将微地址寄存器μMAR作为μPC
- 性能分析
 - 优点: 简单、易于掌握,编制微程序容易
 - 缺点:这种方式不能实现两路以上的并行微程序转移, 不利于提高微程序的执行速度

多路转移方式

- 多路转移方式
 - 基本原理
 - 若不产生分支,顺序执行
 - 产生分支,根据状态条件,产生"备选"地址(IR OP段)
 - N位状态条件标志→2^N路转移
 - 性能分析: 灵活性好、并行转移; 需设计地址转移逻辑

第五章 中央处理机

- 微程序/硬件布线控制器简介
- 微程序控制原理
- 微程序控制技术
 - 微指令结构
 - 微地址形成

- 微指令格式(常见水平型,其他表示方法?)
- 微程序控制设计

微指令格式分类

• 水平型微指令

- 指一次能定义并能并行执行多个微命令的微指令
- 分别为: 直接表示、编码、混合

• 垂直型微指令

- 类似机器指令操作码方式,由微操作码字段给出微命令
- 缺点:一次给出的微命令数目较少

控制字段 判别测试字段 下	下地址字段 本 平 型
-------------------	-------------

15 13	12 8	7 3	2 0
000	源寄存器编址	目标寄存器编址	其他

垂直型

水平型/垂直型微指令比较

- 水平型微指令和垂直型微指令的比较
 - 并行能力
 - 水平型微指令并行操作能力强,效率高,灵活性强
 - 垂直型微指令则较差
 - 执行时间
 - 水平型微指令执行一条指令的时间短
 - 垂直型微指令执行时间长
 - 微指令字长
 - 水平型微指令: 微指令字较长而微程序短的特点
 - 垂直型微指令则相反

第五章 中央处理机

- 微程序/硬件布线控制器简介
- 微程序控制原理
- 微程序控制技术
- 微程序控制设计(填uCM,填微指令)

- 指令周期流程图与微程序控制对比与转换
 - 共同点: 对机器指令的微观 (微操作) 表征
 - 示例, ADD R2, R0 → (功能) R2+R0→R0

指周期流程图 (图形化表示)

• 示例, ADD R2, R0 → (功能) R2+R0→R0

微程序控制 (程序化表示)

• 根据表格情况,调整微指令内容

微地址	微操作命令	功能
		取指阶段 uAR=OP;微地址由 操作码决定
		ADD R2, R0: R2+R0→R0
		注: ADD语句 OP 码为0101

B总线

IR J

微程序控制 (程序化表示)

微地址	微操作命令	功能
0	PC _o ,G,AR _{i,} ,R/W=R uAR=uAR+1	取指阶段 uAR=OP;微地址由 操作码决定
1	DR _o ,G,IR _i uAR=OP	
5	R ₂₀ ,G,Y _i uAR=uAR+1	ADD R2,R0: R2+R0→R0 注: ADD语句 OP 码为0101
6	R ₀₀ ,G,X _i uAR=uAR+1	
7	$+,G,R_{0i},uAR=0$	

IR 。

- 按指令格式编码
 - P测试
 - 下地址
- 根据实验流程加强知识巩固

微地址	微操作命令	功能
0	PC_{o} ,G,AR _{i,} ,R/W=R uAR=uAR+1	取指阶段 uAR=OP;微地址
1	DR _o ,G,IR _i uAR=OP	由操作码决定
5	R_{20} , G , Y_i uAR=uAR+1	ADD R2, R0 : R2+R0→R0
6	R_{0o} , G , X_i uAR=uAR+1	注: ADD语句 OP码为0101
7	$+,G,R_{0i},uAR=0$	

