Machine Learning

Classification Methods
Bayesian Classification, Nearest
Neighbor, Ensemble Methods

Bayesian Classification: Why?

- <u>A statistical classifier</u>: performs *probabilistic prediction, i.e.,* predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance:</u> A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data

Bayes' Rule

$$p(h \mid d) = \frac{P(d \mid h)P(h)}{P(d)}$$

Understanding Bayes' rule

d = data

h = hypothesis (model)

- rearranging

$$p(h \mid d)P(d) = P(d \mid h)P(h)$$

$$P(d,h) = P(d,h)$$

the same joint probability on both sides

Who is who in Bayes' rule

P(h): prior belief (probability of hypothesis h before seeing any data)

P(d | h): likelihood (probability of the data if the hypothesis h is true)

 $P(d) = \sum_{i} P(d \mid h)P(h)$: data evidence (marginal probability of the data)

P(h|d): posterior (probability of hypothesis h after having seen the data d)

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Choosing Hypotheses

 Maximum Likelihood hypothesis:

$$h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(d \mid h)$$

- Generally we want the most probable hypothesis given training data. This is the maximum a posteriori hypothesis:
 - Useful observation: it does not depend on the denominator P(d)

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} P(h \mid d)$$

Bayesian Classifiers

Consider each attribute and class label as random variables

- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C \mid A_1, A_2,...,A_n)$
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{_{1}}A_{_{2}} \boxtimes A_{_{n}}) = \frac{P(A_{_{1}}A_{_{2}} \boxtimes A_{_{n}} \mid C)P(C)}{P(A_{_{1}}A_{_{2}} \boxtimes A_{_{n}})}$$

- Choose value of C that maximizes
 P(C | A₁, A₂, ..., A_n)
- Equivalent to choosing value of C that maximizes
 P(A₁, A₂, ..., A_n | C) P(C)
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j)... P(A_n | C_j)$
 - Can estimate P(A_i | C_i) for all A_i and C_i.
 - This is a simplifying assumption which may be violated in reality
- The Bayesian classifier that uses the Naïve Bayes assumption and computes the MAP hypothesis is called Naïve Bayes classifier

$$c_{Naive\ Bayes} = \underset{c}{\operatorname{arg\ max}} P(c)P(\mathbf{x} \mid c) = \underset{c}{\operatorname{arg\ max}} P(c)\prod_{i} P(a_{i} \mid c)$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class: $P(C) = N_{c}/N$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{c_k}$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi} (54.54)} e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Naïve Bayesian Classifier: Training Dataset

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

New Data:

X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)</pre>

D		ı		
age	income	student	<mark>credit_ratir</mark>	ng_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize P(X|Ci)P(Ci), for i=1,2

First step: Compute P(C) The prior probability of each class can be computed based on the training tuples:

P(buys_computer=yes)=9/14=0.643

P(buys computer=no)=5/14=0.357


```
Given X (age=youth, income=medium, student=yes, credit=fair)
Maximize P(X | Ci)P(Ci), for i=1,2
Second step: compute P(X | Ci)
P(X|buys_computer=yes)= P(age=youth|buys_computer=yes)x
            P(income=medium|buys_computer=yes) x
            P(student=yes|buys_computer=yes)x
            P(credit rating=fair|buys computer=yes)
            = 0.044
P(age=youth|buys computer=yes)=0.222
P(income=medium|buys_computer=yes)=0.444
P(student=yes|buys_computer=yes)=6/9=0.667
P(credit rating=fair|buys computer=yes)=6/9=0.667
```



```
Given X (age=youth, income=medium, student=yes, credit=fair)
Maximize P(X | Ci)P(Ci), for i=1,2
Second step: compute P(X | Ci)
P(X|buys_computer=no)= P(age=youth|buys_computer=no)x
            P(income=medium|buys_computer=no) x
            P(student=yes|buys_computer=no) x
            P(credit rating=fair|buys computer=no)
            = 0.019
P(age=youth|buys computer=no)=3/5=0.666
P(income=medium|buys_computer=no)=2/5=0.400
P(student=yes|buys_computer=no)=1/5=0.200
P(credit_rating=fair|buys_computer=no)=2/5=0.400
```


Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize P(X|Ci)P(Ci), for i=1,2

We have computed in the first and second steps:

P(buys_computer=yes)=9/14=0.643

P(buys_computer=no)=5/14=0.357

P(X|buys_computer=yes)= 0.044

P(X|buys_computer=no)= 0.019

Third step: compute P(X | Ci)P(Ci) for each class

P(X|buys_computer=yes)P(buys_computer=yes)=0.044 x 0.643=0.028

P(X|buys_computer=no)P(buys_computer=no)=0.019 x 0.357=0.007

The naïve Bayesian Classifier predicts **X belongs to class ("buys_computer = yes")**

Example

Training set : (Öğrenme Kümesi)

k

Given a Test Record:

$$X = (Refund = No, Married, Income = 120K)$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Married, Income = 120K)$$

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

P(X|Class=No) = P(Refund=No|Class=No)
 × P(Married| Class=No)
 × P(Income=120K| Class=No)
 = 4/7 × 4/7 × 0.0072 = 0.0024

P(X|Class=Yes) = P(Refund=No| Class=Yes)
 × P(Married| Class=Yes)
 × P(Income=120K| Class=Yes)
 = 1 × 0 × 1.2 × 10⁻⁹ = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)Therefore P(No|X) > P(Yes|X)=> Class = No

Avoiding the 0-Probability Problem

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original:
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes

p: prior probability

m: parameter

Naïve Bayes (Summary)

Advantage

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes

<u>Disadvantage</u>

- Assumption: class conditional independence, which may cause loss of accuracy
- Independence assumption may not hold for some attribute.
 Practically, dependencies exist among variables
 - Use other techniques such as Bayesian Belief Networks (BBN)

Remember

- Bayes' rule can be turned into a classifier
- Maximum A Posteriori (MAP) hypothesis estimation incorporates prior knowledge; Max Likelihood (ML) doesn't
- Naive Bayes Classifier is a simple but effective Bayesian classifier for vector data (i.e. data with several attributes) that assumes that attributes are independent given the class.
- Bayesian classification is a generative approach to classification

Classification Paradigms

- In fact, we can categorize three fundamental approaches to classification:
- Generative models: Model $p(x|C_k)$ and $P(C_k)$ separately and use the Bayes theorem to find the posterior probabilities $P(C_k|x)$
 - E.g. Naive Bayes, Gaussian Mixture Models, Hidden Markov Models,...
- Discriminative models:
 - Determine $P(C_k|x)$ directly and use in decision
 - E.g. Linear discriminant analysis, SVMs, NNs,...
- Find a discriminant function f that maps x onto a class label directly without calculating probabilities

Bayesian Belief Networks

- Bayesian belief network allows a subset of the variables to be conditionally independent
- A graphical model of causal relationships (neden sonuç ilişkilerini simgeleyen bir çizge tabanlı model)
 - Represents <u>dependency</u> among the variables
 - Gives a specification of joint probability distribution

- Nodes: random variables
- ☐ Links: dependency
- ☐ X and Y are the parents of Z, and Y is the parent of P
- □ No dependency between Z and P
- ☐ Has no loops or cycles

Bayesian Belief Network: An Example

The conditional probability table **(CPT)** for variable LungCancer:

	(FH, S)	(FH, ~S)	(~FH, S)	(~FH, ~S)
LC	0.8	0.5	0.7	0.1
~LC	0.2	0.5	0.3	0.9

CPT shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of X, from CPT:

Bayesian Belief Networks
$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(Y_i))$$

Training Bayesian Networks

- Several scenarios:
 - Given both the network structure and all variables observable: learn only the CPTs
 - Network structure known, some hidden variables: gradient descent (greedy hill-climbing) method, analogous to neural network learning
 - Network structure unknown, all variables observable: search through the model space to reconstruct network topology
 - Unknown structure, all hidden variables: No good algorithms known for this purpose
- Ref. D. Heckerman: Bayesian networks for data mining

Lazy Learners

- The classification algorithms presented before are eager learners
 - Construct a model before receiving new tuples to classify
 - Learned models are ready and eager to classify previously unseen tuples

Lazy learners

- The learner waits till the last minute before doing any model construction
- In order to classify a given test tuple
 - Store training tuples
 - Wait for test tuples
 - Perform generalization based on similarity between test and the stored training tuples

Lazy vs Eager

Eager Learners	Lazy Learners				
Do lot of work on training data	Do less work on training data				
Do less work when test tuples are presented	Do more work when test tuples are presented				

Basic k-Nearest Neighbor Classification

- Given training data $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
- Define a distance metric between points in input space $D(x_1,x_i)$
 - E.g., Eucledian distance, Weighted Eucledian, Mahalanobis distance, TFIDF, etc.
- Training method:
 - Save the training examples
- At prediction time:
 - Find the k training examples $(x_1, y_1), ... (x_k, y_k)$ that are closest to the test example x given the distance $D(x_1, x_i)$
 - Predict the most frequent class among those y_i 's.

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

K-Nearest Neighbor Model

Classification:

$$\hat{y} = \text{most common class in set } \{y_1, ..., y_K\}$$

Regression:

$$\hat{y} = \frac{1}{K} \sum_{k=1}^{K} y_{k}$$

K-Nearest Neighbor Model: Weighted by Distance

Classification:

$$\hat{y}$$
 = most common class in wieghted set $\{D(\mathbf{x}, \mathbf{x}_1) y_1, ..., D(\mathbf{x}, \mathbf{x}_K) y_K\}$

Regression:

$$y = \frac{\sum_{k=1}^{K} D(x, x_k) y_k}{\sum_{k=1}^{K} D(x, x_k)}$$

Definition of Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

The decision boundary implemented by 3NN

The boundary is always the perpendicular bisector of the line between two points (Voronoi tessellation)

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from other

classes

Determining the value of k

- In typical applications k is in units or tens rather than in hundreds or thousands
- Higher values of k provide smoothing that reduces the risk of overfitting due to noise in the training data
- Value of k can be chosen based on error rate measures
- We should also avoid over-smoothing by choosing k=n, where n is the total number of tuples in the training data set

Determining the value of k

- Given training examples $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
- Use N fold cross validation
 - Search over K = (1,2,3,...,Kmax). Choose search size Kmax based on compute constraints
 - Calculated the average error for each K:
 - Calculate predicted class \(\) for each training point

$$(\mathbf{x}_i, y_i), i = 1, ..., N$$
 (using all other points to build the model)

- Average over all training examples
- Pick K to minimize the cross validation error

	-		
RID	Income(\$000's)	lot Size (000's sq.ft)	class: Owners =1 Non-Owners=2
1	60	18.4	1
2	85.5	16.8	
3	64.8	21.6	1 mower
4	61.5	20.8	1
5	87	23.6	1
6	110.1	19.2	
7	108	17.6	1
8	82.8	22.4	1
9	69	20	1
10	93	20.8	! We randomly divide
11	51	22	
12	81	20	the data into
13	75	19.6	2
14	52.8	20.8	2 18 training cases
15	64.8	17.2	2
16	43.2	20.4	2
17	84	17.6	6 test cases:
18	49.2	17.6	2 tuples 6,7,12,14,19, 20
19	59.4	16	2
20	66	18.4	2 Use training ages
21	47.4	16.4	2 Use training cases
22	33	18.8	2 to classify test cases
23	51	14	2 and compute error rates
24	63	14.8	2

Choosing k

- to
- If we choose k=1 we will classify in a way that is very sensitive to the local characteristics of our data
- If we choose a large value of k we average over a large number of data points and average out the variability due to the noise associated with data points
- If we choose k=18 we would simply predict the most frequent class in the data set in all cases
 - Very stable but completely ignores the information in the independent variables

k	1	3	5	7	9	11	13	18
Misclassification error %	33	33	33	33	33	17	17	50

→ We would choose k=11 (or possibly 13) in this case

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
- Adv: No training time
- Disadv:
 - Testing time can be long, classifying unknown records are relatively expensive
 - Curse of Dimensionality: Can be easily fooled in high dimensional spaces
 - Dimensionality reduction techniques are often used

Ensemble Methods

 One of the eager methods => builds model over the training set

Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=1}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging

Boosting

Random Forests

Bagging: Bootstrap AGGregatING

- Bootstrap: data resampling
 - Generate multiple training sets
 - Resample the original training data
 - With replacement
 - Data sets have different "specious" patterns
- Sampling with replacement
 - Each sample has probability $(1 1/n)^n$ of being selected

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
 - Specious patterns will not correlate
- Underlying true pattern will be common to many
- Combine the classifiers: Label new test examples by a majority vote among classifiers

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round
- The final classifier is the weighted combination of the weak classifiers.

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	<u> </u>	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds