FIBONACCI NUMBERS

Silvia Marcaida

Department of Applied Mathematics, Statistics and Operations Research (UPV/EHU)

Leioa, 22 December 2011

Fibonacci numbers

Leonardo de Pisa, Fibonacci (1175-1250), posed:

Every pair of rabbits (at least two months old) gives birth to one pair of rabbits every month.

How many pairs of rabbits are there each month if there was 1 at the beginning?

Answer:

Month:	1	2	3	4	5	6
Pairs:	1	1	1+1	1+1+1	1+1+1+1+1	1+1+1+1+1+1+1+1+1
	1	1	$1+1=\frac{2}{2}$	2+1=3	3+2=5	5+3=8

Fibonacci numbers: 1 1 2 3 5 8 13 21 34 55 89 144...

Fibonacci numbers and the golden ratio

Golden ratio or divine proportion:

$$\frac{x+y}{x} = \frac{x}{y} \Rightarrow (y=1)$$
 $x^2 - x - 1 = 0 \Rightarrow x = \frac{1 \pm \sqrt{1+4}}{2} \Rightarrow x = \frac{1+\sqrt{5}}{2}$

 F_n : nth Fibonacci number or number of pairs of rabbits in the nth month.

$$F_1 = 1$$
 $F_2 = 1$
 $F_n = F_{n-2} + F_{n-1}, \quad n \ge 3$

Theorem : $F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$ Corollary : $\frac{F_{n+1}}{F_n} \sim \frac{1+\sqrt{5}}{2}$

 \downarrow

The ratio between two consecutive Fibonacci numbers is around the golden ratio

Fibonacci numbers in Nature

Fibonacci numbers: 1 1 2 3 5 8 13 21 34 55 89 144...

