Use this space for computations.

15 Triangle DAN is graphed on the set of axes below. The vertices of $\triangle DAN$ have coordinates D(-6,-1), A(6,3), and N(-3,10).

What is the area of $\triangle DAN$?

(1) 60

(3) $20\sqrt{13}$

(2) 120

 $(4) \ 40\sqrt{13}$

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 A triangle has vertices A(-2,4), B(6,2), and C(1,-1).

Prove that $\triangle ABC$ is an isosceles right triangle.

[The use of the set of axes below is optional.]

26 Determine and state the area of triangle PQR, whose vertices have coordinates P(-2,-5), Q(3,5), and R(6,1).

[The use of the set of axes below is optional.]

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Triangle ABC has vertices with coordinates A(-1,-1), B(4,0), and C(0,4). Prove that $\triangle ABC$ is an isosceles triangle but *not* an equilateral triangle. [The use of the set of axes below is optional.]

28 The vertices of $\triangle ABC$ have coordinates A(-2,-1), B(10,-1), and C(4,4). Determine and state the area of $\triangle ABC$. [The use of the set of axes below is optional.]

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Quadrilateral *NATS* has coordinates N(-4,-3), A(1,2), T(8,1), and S(3,-4).

Prove quadrilateral *NATS* is a rhombus. [The use of the set of axes below is optional.]

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Riley plotted $A(-1,6)$, $B(3,8)$, $C(6,-1)$, and $D(1,0)$ to form a quadrilateral.
Prove that Riley's quadrilateral $ABCD$ is a trapezoid.
[The use of the set of axes on the next page is optional.]
Question 32 is continued on the next page.

Question 32 continued

Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that *ABCD* is *not* an isosceles trapezoid.

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for the question to determine your answer. Note that diagrams are not necessarily drawn to scale. For the question in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

Question 35 continued

Prove that your quadrilateral ABCD is a square. [The use of the set of axes below is optional.]

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

35 In the coordinate plane, the vertices of triangle PAT are $P(-1,-6)$, $A(-4,5)$, and $T(5,-2)$. Prove that $\triangle PAT$ is an isosceles triangle. [The use of the set of axes on the next page is optional.]
State the coordinates of R so that quadrilateral $PART$ is a parallelogram.
State the coordinates of 11 so that quadrilateral 17111 is a parallelogram.
Question 35 is continued on the next page.

Prove that quadrilateral $\it PART$ is a parallelogram.

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for the question to determine your answer. Note that diagrams are not necessarily drawn to scale. For the question in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

35 The vertices of quadrilateral $MATH$ have coordinates $M(-4,2)$, $A(-1,-3)$, $T(9,3)$, and $H(6,8)$.
Prove that quadrilateral <i>MATH</i> is a parallelogram.
[The use of the set of axes on the next page is optional.]
Question 35 is continued on the next page.
Carrier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Question 35 continued

Prove that quadrilateral *MATH* is a rectangle.

[The use of the set of axes below is optional.]

