Логика-2, 3 курс М

Виктор Львович Селиванов 1

¹ФМКН СП6ГУ

Весенний семестр, 2024

v.selivanov@spbu.ru

Важная дополнительная информация: https://github.com/vseliv/Logic2-2023/tree/main

Литература

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. 4-е изд., доп. М.: МЦНМО, 2012. 240 с.
- 2. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., доп. М.: МЦНМО, 2012. 159 с.
- 3. Н. Катленд. Вычислимость. Введение в теорию рекурсивных функций. М: Мир, 1983, 255 с.
- 4. И.А. Лавров, Л.Л. Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. Издание четвертое, М.: Наука, 2001. 256 с.
- 5. Дж. Шенфилд. Математическая логика. М.: Наука, 1975. 528

Выражения Π^{σ} строятся из следующих исходных различных символов:

Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoonup Логические символы $\land \lor \to \lnot \forall \exists$

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- lacktriangle Логические символы $\land \lor \to \lnot \forall \exists$
- ▶ Вспомогательные символы () ,

Осмысленные выражения $\Pi \Pi^{\sigma}$

тоже терм.

 σ -ТЕРМЫ: любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$

Осмысленные выражения $\Pi\Pi^{\sigma}$

σ -ТЕРМЫ:

любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$ тоже терм.

σ -ФОРМУЛЫ:

суть формулы.

выражение $P(t_1,\ldots,t_n)$, где t_1,\ldots,t_n — термы, а P - n-местный предикатный символ из σ , является формулой; если φ и ψ — формулы, а x — переменная, то выражения $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $\neg \varphi$, $\forall x \varphi$, $\exists x \varphi$

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ; $FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ;

 $FV(\forall x \varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Переменные, которые входят в формулу, но не являются свободными, называются связанными. Формулы без свободных переменных называются предложениями.

Запись $\varphi=\varphi(x_1,\ldots,x_m)$ означает, что $FV(\varphi)\subseteq\{x_1,\ldots,x_m\}$. Аналогично для термов.

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\text{И},\text{Л}\},$ а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to\{\mathsf{VI},\mathsf{II}\}$, а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

Изоморфизмом $\mathbb A$ на $\mathbb B$ называется биекция g множества A на множество B такая, что $P^{\mathbb A}(a_1,\dots,a_n)=P^{\mathbb B}(g(a_1),\dots,g(a_n))$ и $g(f^{\mathbb A}(a_1,\dots,a_n))=f^{\mathbb B}(g(a_1),\dots,g(a_n))$ для любых $a_1,\dots,a_n\in\mathbb A$.

Структуры \mathbb{A} и \mathbb{B} называются изоморфными ($\mathbb{A} \simeq \mathbb{B}$), если существует изоморфизм \mathbb{A} на \mathbb{B} .

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathrm N, \mathrm J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x), f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu});$$

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathsf N, \mathsf J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x)$$
, $f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $P(t_1,\ldots,t_n)^{\mathbb{A},\nu} = P^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $(\varphi \wedge \psi)^{\mathbb{A},\nu} = \varphi^{\mathbb{A},\nu} \wedge \psi^{\mathbb{A},\nu}$, аналогично для \vee,\to,\neg ;

$$(\forall x\varphi)^{\mathbb{A},\nu} = \bigwedge_{a \in A} \varphi^{\mathbb{A},\nu_a^x} \text{ in } (\exists x\varphi)^{\mathbb{A},\nu} = \bigvee_{a \in A} \varphi^{\mathbb{A},\nu_a^x}$$

где ν_a^x — означивание, полученное из ν изменением значения x на a.

Значения термов и формул

Пусть $t = t(x_1, \ldots, x_m)$ и $\varphi = \varphi(x_1, \ldots, x_m)$.

- Если означивания μ и ν согласованы на x_1,\dots,x_m , то $t^{\mathbb{A},\mu}=t^{\mathbb{A},\nu}$ и $\varphi^{\mathbb{A},\mu}=\varphi^{\mathbb{A},\nu}$. Поэтому вместо $t^{\mathbb{A},\nu}$ часто пишут $t^{\mathbb{A}}(x_1/a_1,\dots,x_m/a_m)$ или, короче, $t^{\mathbb{A}}(a_1,\dots,a_m)$, где $a_i=\nu(x_i)$; аналогично для формул. Вместо $\varphi^{\mathbb{A}}(a_1,\dots,a_m)=\mathbb{N}$ часто пишут $\mathbb{A}\models\varphi(a_1,\dots,a_m)$.
- Если a изоморфизм $\mathbb A$ на $\mathbb B$, то $g(t^{\mathbb A, \nu}) = t^{\mathbb A, g \circ \nu}$ и $\varphi^{\mathbb A, \nu} = \varphi^{\mathbb A, g \circ \nu}$. Иными словами, $g(t^{\mathbb A}(a_1, \dots, a_m)) = t^{\mathbb B}(g(a_1), \dots, g(a_m))$ и $\varphi^{\mathbb A}(a_1, \dots, a_m) = \varphi^{\mathbb B}(g(a_1), \dots, g(a_m))$.
- ▶ Если $\mathbb{A} \simeq \mathbb{B}$, то эти структуры элементарно эквивалентны ($\mathbb{A} \equiv \mathbb{B}$), т.е. в них истинны одни и те же σ -предложения.

Общезначимость и ее варианты

- ho общезначима (тождественно истинна), если $\varphi^{\mathbb{A}, \nu} = \mathbb{N}$ для любых \mathbb{A} и ν .
- $ightharpoonup \varphi$ и ψ равносильны $(\varphi \equiv \psi)$, если $\varphi^{\mathbb{A},\nu} = \psi^{\mathbb{A},\nu}$ для любых \mathbb{A} и ν .
- ▶ Моделью множества предложений T называется структура, в которой все предложения из T истинны.
- ▶ Предложение φ логически следует из множества педложений T ($T \models \varphi$), если φ истинно в любой модели множества T.

Общезначимость и ее варианты

- ightharpoonup arphi общезначима $\iff \models arphi$.
- $ho = \psi \iff (\varphi \to \psi) \land (\psi \to \varphi)$ общезначима.
- ightharpoonup arphi(ar x) общезначима $\iff orall ar x arphi$ общезначима.
- $T \models (\varphi \to \psi) \iff T \cup \{\varphi\} \models \psi.$
- $ightharpoonup T \models arphi \iff T \cup \{ \neg arphi \}$ не имеет модели.
- $lacktriangledown T \models arphi \iff \bigwedge T
 ightarrow arphi$ общезначима, где T конечное множество предложений.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subseteq I$.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subseteq I$.

ПРЕДЛОЖЕНИЕ.

- 1. Ультрафильтры на I это в точности максимальные фильтры по включению.
- 2. Если F ультрафильтр, то $A \in F \iff (I \setminus A) \in F$ и $A \cup B \in F \iff (A \in F \lor B \in F) \in F$, для любых $A, B \subseteq I$.
- 3. Любой фильтр на I содержится в некотором ультрафильтре.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

ТЕОРЕМА. Для любых ультрафильтра F, σ -формулы $\varphi(x_1,\ldots,x_m)$ и $a_1,\ldots,a_m\in A$ имеем: $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_m])\iff\{i\mid\mathbb{A}_i\models\varphi(a_1(i),\ldots,a_m(i))\}\in F.$

В частности, при m=0: $\mathbb{A}_F\models \varphi\iff \{i\mid \mathbb{A}_i\models \varphi\}\in F.$

Теорема компактности

TEOPEMA. Если любое конечное подмножество данного множества предложений T имеет модель, то и все множество T имеет модель.

Теорема компактности

TEOPEMA. Если любое конечное подмножество данного множества предложений T имеет модель, то и все множество T имеет модель.

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

TEOPEMA. Если любое конечное подмножество данного множества предложений T сигнатуры с равенством имеет нормальную модель, то и все множество T имеет нормальную модель.

Для доказательства надо применить предыдущую теорему к множеству $T \cup E_{\sigma}$, где E_{σ} — аксиомы равенства (утверждающие, что = есть σ -конгруэнтность) и профакторизовать полученную модель $\mathbb A$ по конгруэнтности $=^{\mathbb A}$.

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

TEOPEMA. Если теория содержит аксиомы равенства и имеет модель, то она имеет и нормальную модель.

- lack A подструктура $\Bbb B$ ($\Bbb A\subseteq\Bbb B$), если $A\subseteq B$, $P^{\Bbb A}(a_1,\ldots,a_n)=P^{\Bbb B}(a_1,\ldots,a_n)$ и $f^{\Bbb A}(a_1,\ldots,a_n)=f^{\Bbb B}(a_1,\ldots,a_n)$ для всех $a_1,\ldots,a_n\in A$;
- ▶ *вложение* структуры \mathbb{A} в структуру \mathbb{B} это изоморфизм \mathbb{A} на подструктуру структуры \mathbb{B} ;
- ▶ \mathbb{A} элементарная подструктура \mathbb{B} ($\mathbb{A} \leq \mathbb{B}$), если $A \subseteq B$ и $\varphi^{\mathbb{A}}(\overline{a}) = \varphi^{\mathbb{B}}(\overline{a})$) для всех $\overline{a} \in \mathbb{A}$ и для всех формул $\varphi(\overline{x})$;
- ▶ элементарное вложение \mathbb{A} в \mathbb{B} это изоморфизм \mathbb{A} на элементарную подструктуру структуры \mathbb{B} ;
- $ightharpoonup \mathbb{A}$ элементарно эквивалентно \mathbb{B} ($\mathbb{A} \equiv \mathbb{B}$), если они удовлетворяют одни и те же предложения.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X\subseteq A$, $|X|\leq |\mathsf{For}_\sigma|$. Тогда существует $\mathbb{B}\preceq \mathbb{A}$: $X\subseteq B$ и $|\mathbb{B}|\leq |\mathsf{For}_\sigma|$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность

$$X = S_0 \subseteq S_1 \subseteq \dots$$
 по индукции:

$$S_{n+1} = S_n \cup \{ \eta(e) \mid e \in E_n \},$$

где E_n и $\eta:E_n\to A$ определены так:

$$E_n = \{ (\overline{a}, \varphi(\overline{x}, y)) \mid \overline{a} \in S_n \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \}$$

$$\mathbb{A} \models \varphi(\overline{a}, \eta(e))$$
 для всех $e \in E_n$. $B = \bigcup_n S_n$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность $X=S_0\subseteq S_1\subseteq\dots$ по индукции: $S_{n+1}=S_n\cup\{\eta(e)\mid e\in E_n\},$ где E_n и $\eta:E_n\to A$ определены так: $E_n=\{(\overline{a},\varphi(\overline{x},y))\mid \overline{a}\in S_n \text{ и } \mathbb{A}\models \exists y\;\varphi(\overline{a},y)\}$ и $\mathbb{A}\models \varphi(\overline{a},\eta(e))$ для всех $e\in E_n.$ $B=\bigcup_n S_n.$

Известен следующий важный результат: Не существует логики, собственным образом расширяющей логику предикатов и удовлетворяющей теоремам компактности и понижения мощности.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $B|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $B|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Например, пусть $\mathbb{A}-\sigma$ -структура, а $\sigma_A=\sigma\cup\{c_a\mid a\in A\}$ ее обогащение новыми константными символами c_a такими, что $c_a\neq c_b$ при $a\neq b$. Стандартным константным обогащением структуры \mathbb{A} называется ее σ_A -обогащение, в котором новые символы интерпретируются так: $c_a\mapsto a$, для любого $a\in A$.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n})$, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n}),$ истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

ПРЕДЛОЖЕНИЕ. 1. σ -Структура $\mathbb A$ изоморфно вкладывается в σ -структуру $\mathbb B\iff \mathbb B$ является σ -обеднением некоторой модели множества $D(\mathbb A)$.

2. σ -Структура $\mathbb A$ элементарно вкладывается в σ -структуру $\mathbb B \iff \mathbb B$ является σ -обеднением некоторой модели множества $D^*(\mathbb A)$.

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \geq \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \geq \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

В качестве следствий получаем:

TEOPEMA. Если σ -теория T имеет модель мощности $\geq n$ для любого $n\in\mathbb{N}$, то она имеет модель любой мощности $\kappa\geq |{\sf For}_\sigma|.$

ТЕОРЕМА. Если σ -теория T имеет единственную с точностью до изоморфизма модель некоторой мощности $\kappa \geq |\mathsf{For}_\sigma|$ и не имеет конечных моделей, то она полна (т.е. $T \models \varphi \lor T \models \neg \varphi$ для любого σ -предложения φ).

Аксиоматизируемые классы

- ightharpoonup T множество σ -предложений.
- ▶ Теории T соответствует класс ее моделей $\mathrm{Mod}(T) = \{\mathbb{A} \mid \mathbb{A} \models T\}$
- ► Классу структур $K \subseteq \operatorname{Str}_{\sigma}$ соответствует его теория $\operatorname{Th}(K) = \{ \varphi \in \operatorname{Sent}_{\sigma} \mid \forall \mathbb{A} \in K \ (\mathbb{A} \models \varphi) \}.$
- Класс структур K аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой теории T.
- Класс структур K конечно аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой конечной теории $T = \{\varphi_1, \dots, \varphi_n\}$. Это равносильно аксиоматизируемости одной формулой $(\varphi_1 \wedge \dots \wedge \varphi_n)$.

Аксиоматизируемые классы: свойства

- 1. Если $T \subseteq T'$, то $\mathsf{Mod}(T) \supseteq \mathsf{Mod}(T')$;
- 2. Если $K \subseteq K'$, то $\mathsf{Th}(K) \supseteq Th(K')$;
- 3. $K \subseteq \mathsf{Mod}(\mathsf{Th}(K))$ и $T \subseteq \mathsf{Th}(\mathsf{Mod}(T))$;
- 4. Класс K аксиоматизируем тогда и только тогда, когда $K = \mathsf{Mod}(\mathsf{Th}(K));$
- 5. Любое пересечение аксиоматизируемых классов является аксиоматизируемым классом. Объединение двух аксиоматизируемых классов является аксиоматизируемым классом;
- 6. Класс K конечно аксиоматизируем тогда и только тогда, когда K и $\mathsf{Str}_\sigma \backslash K$ аксиоматизируемы;
- 7. Класс K аксиоматизируем тогда и только тогда, когда K замкнут относительно элементарной эквивалентности и ультрапроизведений.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- lacksquare Σ_1 множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- lacktriangle множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- lacksquare Σ_1 множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- ▶ множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

```
ПРЕДЛОЖЕНИЕ. \Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}; \varphi \in \Pi_n тогда и только тогда, когда \neg \varphi \in \Sigma_n; \bigcup \Sigma_n = \bigcup \Pi_n = \operatorname{For}_{\sigma}.
```

Π_1 - и Π_2 -аксиоматизируемость

В теории моделей имеется ряд теорем об аксиоматизируемости классов структур предложениями того или иного вида. Приведем два важных примера.

TEOPEMA. Аксиоматизируемый класс является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур (т.е. если какая-то структура лежит в классе, то и любая её подструктура тоже лежит в нём).

Π_1 - и Π_2 -аксиоматизируемость

В теории моделей имеется ряд теорем об аксиоматизируемости классов структур предложениями того или иного вида. Приведем два важных примера.

ТЕОРЕМА. Аксиоматизируемый класс является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур (т.е. если какая-то структура лежит в классе, то и любая её подструктура тоже лежит в нём).

Класс структур K замкнут относительно объединений цепей структур, если из $\forall n \ (\mathbb{A}_n \in K)$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \ldots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T\models\varphi$, либо $T\models\neg\varphi$. ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия: T-полна; $[T]=\text{Th}(\mathbb{A}),$ для любой $\mathbb{A}\models T$ (где $[T]=\{\varphi\mid T\models\varphi\}-\text{множество всех логических следствий теории }T;$ $\text{Th}(\mathbb{A})=\text{Th}(\mathbb{B})$ для любых $\mathbb{A},$ $\mathbb{A}\models T.$

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T \models \neg \varphi$.

ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия:

T — полна;

 $[T]=\operatorname{Th}(\mathbb{A})$, для любой $\mathbb{A}\models T$ (где $[T]=\{arphi\mid T\modelsarphi\}$ — множество всех логических следствий теории T; $\operatorname{Th}(\mathbb{A})=\operatorname{Th}(\mathbb{B})$ для любых \mathbb{A} , $\mathbb{A}\models T$.

Теория называется *категоричной в мощности* κ , если она имеет единственную с точностью до изоморфизма модель мощности κ .

Ранее уже доказали простую, но важную теорему:

Если σ -теория не имеет конечных моделей и категорична в некоторой мощности $\geq |\mathsf{For}_{\sigma}|$, то она полна.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

TEOPEMA. Для теории T, имеющей модель, равносильны:

- 1. *T* модельно полна.
- 2. Для любой $\mathbb{A} \models T$, теория $T \cup D(\mathbb{A})$ полна.
- 3. Для любых $\mathbb{A},\mathbb{B}\models T$ из $\mathbb{A}\subseteq\mathbb{B}$ следует, что любое Σ_1 -предложение в сигнатуре σ_A , которое истинно в \mathbb{B}_A , будет истинно и в \mathbb{A}_A .
- 4. $\Sigma_1=\Pi_1$ по модулю T (т.е. любая Σ_1 -формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле $\psi(\overline{x})$ в T: $T\models \forall \overline{x}\; (\varphi(\overline{x})\leftrightarrow \psi(\overline{x}))$.
- 5. $For_{\sigma} = \Pi_1$ по модулю T.

Дополнительные свойства

TEOPEMA.

- 1. Любая модельно полная теория Π_2 -аксиоматизируемая.
- 2. Если модельно полная теория T имеет модель, которая вкладывается в любую модель T, то T полна.
- 3. Если для любых двух моделей модельно полной теории T существует третья модель, в которую они обе вкладываются, то T полна.
- 4. Теория T допускает элиминацию кванторов (т.е. $For_{\sigma} = \Pi_0$ по модулю T) в точности тогда, когда теория $T \cup D(\mathbb{A})$ полна для любой $\mathbb{A} \subseteq \mathbb{B} \models T$.
- 5. Если теория Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |\mathsf{For}_\sigma|$, то она модельно полна.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a}, \overline{b}$, изоморфны относительно соответствия $a_i \mapsto b_i$, $c^\mathbb{A} \mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a}, \overline{b}$, изоморфны относительно соответствия $a_i \mapsto b_i$, $c^\mathbb{A} \mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Игра $G(\mathbb{A},\mathbb{B})$ отличается только тем, что первый ход I начинает выбором числа n; далее игра идёт как $G_n(\mathbb{A},\mathbb{B})$.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегия для данного игрока называется выигрышной, если игрок, следуя этой стратегии, выигрывает в любой партии, при любых ходах своего оппонента.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегия для данного игрока называется выигрышной, если игрок, следуя этой стратегии, выигрывает в любой партии, при любых ходах своего оппонента.

Выражение $G_n^I(\mathbb{A},\mathbb{B})$ означает, что игрок I имеет выигрышную стратегию в игре $G_n(\mathbb{A},\mathbb{B})$. Аналогично определяются сокращения $G_n^{II}(\mathbb{A},\mathbb{B})$, $G^I(\mathbb{A},\mathbb{B})$, $G^{II}(\mathbb{A},\mathbb{B})$.

Свойства выигрышных стратегий

- 1. $G_{n+1}^{I}(\mathbb{A}, \mathbb{B}) \Leftrightarrow$ $(\exists a \in \mathbb{A} \ \forall b \in \mathbb{B} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b))) \lor$ $(\exists b \in \mathbb{B} \ \forall a \in \mathbb{A} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b)))$
- 2. $G_{n+1}^{II}(\mathbb{A}, \mathbb{B}) \Leftrightarrow$ $(\forall a \in \mathbb{A} \exists b \in \mathbb{B} \ G_n^{II}((\mathbb{A}, a), (\mathbb{B}, b))) \land$ $(\forall b \in \mathbb{B} \exists a \in \mathbb{A} \ G_n^{II}((\mathbb{A}, a), (\mathbb{B}, b)))$
- 3. $G^{II}(\mathbb{A}, \mathbb{B}) \Leftrightarrow \forall n \ G_n^{II}(\mathbb{A}, \mathbb{B})$
- 4. $G^{I}(\mathbb{A}, \mathbb{B}) \Leftrightarrow \exists n \ G_{n}^{I}(\mathbb{A}, \mathbb{B})$
- 5. В любой игре $G_n(\mathbb{A}, \mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.
- 6. В любой игре $G(\mathbb{A},\mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : Если φ атомарная, то $q(\varphi)=0$; Если $\varphi=\neg\varphi_1$, то $q(\varphi)=q(\varphi_1)$; Если $\varphi=\varphi_1\wedge\varphi_2$, то $q(\varphi)=\max(q(\varphi_1),q(\varphi_2))$; Если $\varphi=\exists x\ \varphi_1$, то $q(\varphi)=q(\varphi_1)+1$.

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : Если φ атомарная, то $q(\varphi) = 0$; Если $\varphi = \neg \varphi_1$, то $q(\varphi) = q(\varphi_1)$; Если $\varphi = \varphi_1 \wedge \varphi_2$, то $q(\varphi) = \max(q(\varphi_1), q(\varphi_2))$; Если $\varphi = \exists x \ \varphi_1$, то $q(\varphi) = q(\varphi_1) + 1$. Пусть $C_n^{\overline{x}}$ — множество всех σ -формул $\varphi(\overline{x})$ глубины не более n. Если φ — предложение, сокращаем $C_n^{\overline{x}}$ до C_n .

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : Если φ атомарная, то $q(\varphi)=0$; Если $\varphi=\neg\varphi_1$, то $q(\varphi)=q(\varphi_1)$; Если $\varphi=\varphi_1\wedge\varphi_2$, то $q(\varphi)=\max(q(\varphi_1),q(\varphi_2))$; Если $\varphi=\exists x\ \varphi_1$, то $q(\varphi)=q(\varphi_1)+1$.

Пусть $C_n^{\overline{x}}$ — множество всех σ -формул $\varphi(\overline{x})$ глубины не более n. Если φ — предложение, сокращаем $C_n^{\overline{x}}$ до C_n .

ЛЕММА. Фактор-множество $C_n^{\overline{x}}/_{\equiv}$ по отношению равносильности формул конечно.

Выигрышные стратегии и элементарная эквивалентность

TEOPEMA.
$$G_n^{II} \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$$

Выигрышные стратегии и элементарная эквивалентность

ТЕОРЕМА. $G_n^{II} \iff \forall \varphi \in C_n \ (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$ СЛЕДСТВИЕ. $G^{II}(\mathbb{A}, \mathbb{B}) \iff \forall \varphi \in \mathsf{Sent}_\sigma \ (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}) \iff \mathbb{A} \equiv \mathbb{B}.$

Выигрышные стратегии и элементарная эквивалентность

ТЕОРЕМА.
$$G_n^{II} \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$$
 СЛЕДСТВИЕ. $G^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in \mathsf{Sent}_\sigma \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}) \iff \mathbb{A} \equiv \mathbb{B}.$

Отношение элементарной эквивалентности структур гораздо грубее чем отношение изоморфизма, однако во многих случаях оно полезно, поскольку дает важную классификацию структур, и с ним легче работать. В приложениях важны также следующие варианты элементарной эквивалентности: говорят, что $\mathbb A$ n-эквивалентно $\mathbb B$ (обозначение $\mathbb A \equiv_n \mathbb B$), если $\forall \varphi \in C_n(\varphi^\mathbb A = \varphi^\mathbb B)$.

Основной результат ЛП

Множество всех общезначимых преложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

Основной результат ЛП

Множество всех общезначимых преложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

- 1) фиксируются некоторые конкретные простые общезначимые предложения (называемые аксиомами);
- 2) фиксируются некоторые простые правила, позволяющие чисто синтаксически выводить одни формулы из других;
- 3) доказывается, что многократное применение правил вывода к аксиомам и уже выведенным формулам порождает все общезначимые формулы.

Основной результат ЛП

Множество всех общезначимых преложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

- 1) фиксируются некоторые конкретные простые общезначимые предложения (называемые аксиомами);
- 2) фиксируются некоторые простые правила, позволяющие чисто синтаксически выводить одни формулы из других;
- 3) доказывается, что многократное применение правил вывода к аксиомам и уже выведенным формулам порождает все общезначимые формулы.

Глубина основного результата в том, что определение Тарского не дает никакой верхней границы для вычислительной сложности множества общезначимых предложений. Известно, что не существует логики, расширяющей ЛП и удовлетворяющей теоремам компактности и основному результату.

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним *исчисление секвенций с равенством*. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним *исчисление секвенций с равенством*. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Аксиомы:
$$\Gamma, \varphi \vdash \Delta, \varphi$$
; $\Gamma \vdash \Delta, t = t$

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним *исчисление секвенций с равенством*. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Аксиомы:
$$\Gamma, \varphi \vdash \Delta, \varphi; \qquad \Gamma \vdash \Delta, t = t$$
 Правила:
$$\frac{\Gamma \vdash \Delta, \varphi; \, \varphi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} \qquad \frac{\Gamma \vdash \Delta, \varphi; \, \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \rightarrow \psi \vdash \Delta} \qquad \frac{\Gamma, \varphi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \rightarrow \psi}$$

$$\frac{\Gamma \varphi(t) \vdash \Delta, \psi(t)}{\Gamma, t = t', \varphi(t') \vdash \Delta, \psi(t')} \qquad \frac{\Gamma \varphi(t) \vdash \Delta, \psi(t)}{\Gamma, t' = t, \varphi(t') \vdash \Delta, \psi(t')}$$

Дополнительные правила см. ниже

Дополнительные правила вывода

$$\frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \neg \varphi \vdash \Delta}, \qquad \frac{\Gamma, \varphi(t) \vdash \Delta}{\Gamma, \forall x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(y) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta},$$

$$\frac{\Gamma \vdash \Delta, \varphi; \ \Gamma \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \land \psi},$$

$$\frac{\Gamma \vdash \Delta, \varphi \land \psi}{\Gamma \vdash \Delta, \varphi \lor \psi},$$

$$\frac{\Gamma \vdash \Delta, \varphi \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi},$$

$$\frac{\Gamma \vdash \Delta, \varphi(y)}{\Gamma \vdash \Delta, \forall x \varphi(x)},$$

$$\frac{\Gamma \vdash \Delta, \varphi(t)}{\Gamma \vdash \Delta, \exists x \varphi(x)}$$