

Scientific Tools for Marine and MetOcean Analysis

ESRI OCEAN GIS FORUM

November 1–3, 2016 | Esri Conference Center, Redlands, California

Thank You to Our Sponsors

Emerald

Emerald and Social

Schedule

9:00	0 - 9:15	Overview

Scientific Multidimensional Data

- Stored in netCDF, GRIB, and HDF formats
- Multidimensional
 - Ocean data
 Sea temperature, salinity, ocean current
 - Weather data
 Temperature, humidity, wind
 - Land
 Soil moisture, NDVI, land cover

Scientific Data in ArcGIS - Vision

Ingesting Scientific data in ArcGIS

- Directly reads netCDF file using
 - Make NetCDF Raster Layer
 - Make NetCDF Feature Layer
 - Make NetCDF Table View
- Scientific data formats are supported in mosaic dataset
 - netCDF
 - HDF
 - GRIB

Make OPeNDAP Raster Layer

- Ingest OPeNDAP Service
- Output dynamic multidimensional raster
- Support Sub-setting

CF Convention

Climate and Forecast (CF) Convention http://cf-pcmdi.llnl.gov/

Initially developed for

- Climate and forecast data
- Atmosphere, surface and ocean model-generated data
- Also for observational datasets
- CF is now the most widely used conventions for geospatial netCDF data. It has the best coordinate system handling.
- Current version 1.6
- You can use Compliance checker utility to check a netCDF file.

http://cf-pcmdi.llnl.gov/conformance/compliance-checker/

NetCDF and Coordinate Systems

- Geographic Coordinate Systems (GCS)
 - X dimension units: degrees_east
 - Y dimension units: degrees_north
- Projected Coordinate Systems (PCS)
 - X dimension standard_name: projection_x_coordinate
 - Y dimension standard_name: projection_y_coordinate
 - Variable has a grid_mapping attribute.
 - CF 1.6 conventions currently supports thirteen predefined coordinate systems (<u>Appendix F: Grid Mappings</u>)
- Undefined
 - If not GCS or PCS
- ArcGIS writes (and recognizes) PE String as a variable attribute.

Changing Time Slice

What about Aggregation?

- Create a seamless multi-dimensional cube from
 - files representing different regions
 - files representing different time steps/slices

Mosaic dataset supports multiple files and variables, normalize time and depth

Multidimensional Mosaic Datasets - Storage

Multivariate Cube

- Use geodatabase table to manages multidimensional arrays
 - Do not store pixels but reference it
- Each row is a Raster of 2D array
- Dimensions and variable names are fields in the table

The second second	OBJ	Raster	Name	Variable *	Standard Time	Standard Z	•••
	1	<kaster< td=""><td>hycom_glb_regp01.nc.water_temp:0</td><td>water_temp</td><td>5/17/2013</td><td>0</td><td></td></kaster<>	hycom_glb_regp01.nc.water_temp:0	water_temp	5/17/2013	0	
	2	<raster< td=""><td>hycom_glb_regp01.nc:water_temp:1</td><td>water_temp</td><td>5/17/2013</td><td>-2</td><td></td></raster<>	hycom_glb_regp01.nc:water_temp:1	water_temp	5/17/2013	-2	
	3	<raster< td=""><td>hycom_glb_regp01.nc.water_temp.2</td><td>water_temp</td><td>5/17/2013</td><td>-4</td><td></td></raster<>	hycom_glb_regp01.nc.water_temp.2	water_temp	5/17/2013	-4	
	4	<raster< td=""><td>hycom_glb_regp01.nc:water_temp:3</td><td>water_temp</td><td>5/17/2013</td><td>-6</td><td></td></raster<>	hycom_glb_regp01.nc:water_temp:3	water_temp	5/17/2013	-6	
	5	<raster< td=""><td>hycom_glb_regp01.nc:water_temp:4</td><td>water temp</td><td>5/17/2013</td><td>-8</td><td></td></raster<>	hycom_glb_regp01.nc:water_temp:4	water temp	5/17/2013	-8	

Scientific data support in Mosaic Dataset

- Supports netCDF, HDF and GRIB
 - Spatial Aggregation
 - Temporal Aggregation
 - On-the-fly analysis
- Serve as Multidimensional
 - Image Service
 - Map Service
 - WMS
- Supports direct ingest
- Eliminates data conversion
- Improves workflow performance
 Integrates with service oriented architecture

Demo #1: Ingest

Using Scientific Data in ArcGIS

Behaves the same as any layer or table

- Display
 - Same display tools for raster and feature layers will work on multidimensional raster and feature layers.
- Graphing
 - Driven by the table just like any other chart.
- Animation
 - Multi-dimensional data can be animated through time dimension
- Analysis Tools

Will work just like any other raster layer, feature layer, or table. (e.g. create buffers around points, reproject rasters, query tables, etc.)

Visualization of Scientific Data

- Slicing
- Temporal animation using Time Slider
- Dimensional animation using Range Slider
- Predefined renderer

Visualization of Raster as Vectors

- New Vector Field renderer for raster
 - Supports U-V and Magnitude-direction
 - Oynamic thinning
 - On-the-fly vector calculation

- Eliminates raster to feature conversion
- Eliminates data processing
 Improves workflow performance

Spatial and Temporal Analysis

- Hundreds of analytical tools available for raster, features, and table
- Temporal Modeling
 - Looping and iteration in ModelBuilder and Python

Python – Extending Analytical Capabilities

Supplemental tools

- OPeNDAP to NetCDF
- Make NetCDF Regular Point Layer
- Make NetCDF Station Point Layer
- Make NetCDF Trajectory Point Layer
- Describe Multidimensional Dataset
- Get Variable Statistics
- Get Variable Statistics Over Dimension
- Multidimensional Zonal Statistics
- Multidimensional Zonal Statistics As Table

http://blogs.esri.com/esri/arcgis/2013/05/24/introducing-the-multidimension-supplemental-tools-2/

Community Developed Tools

Geoprocessing Resource Center

http://resources.arcgis.com/geoprocessing/

- Marine Geospatial Ecology Tools (MGET)
 - · Developed at Duke Univ.
 - Over 180 tools for import management, and analysis of marine data

http://mgel.env.duke.edu/mget

Australian Navy tools

 (not publicly available)

Demo #2: Analysis & Visualization

Sharing / WMS Support (for multi-dimensions)

- Map Service (supports WMS)
 - Makes maps available to the web.
- Image Service (supports WMS)
 - Provides access to raster data through a web service.
- Geoprocessing Service
 - Exposes the analytic capability of ArcGIS to the web.

Publishing a WMS on ArcGIS Server

Enable WMS capabilities on Service Editor or Manager

Multi-dimensional data support in WMS

- getCapabilities
 - Supports time, elevation and other dimensions (e.g. depth)
- getMap
 - Returns map for any dimension value&DIM_<dimensionName>=<value>&
 - Supports CURRENT for time dimension &TIME=CURRENT&

getFeatureInfo

Returns information about feature for any dimension value

Services of Scientific Data

Online Imagery content that can be directly used:

- MODIS data
 - MODIS land cover 2000-2011
 - MODIS Vegetation Analysis
 - MODIS Greenland Sea Ice
- Live NOAA wind service
- NASA Global Land Data Assimilation (GLDS)
 - Soil moisture
 - Evapotranspiration
 - Snow pack
 - More

Consuming Scientific Data Services

- ArcGIS Desktop/Pro/Server
- Wep Mapviewer
- Web Applications
- Story maps
- Operational Dashboard

WMS in Dapple Earth Explorer

Things to Consider...

- Embrace the Common Data Model (netCDF, HDF etc.)
- Use Data and metadata standards (OGC, CF etc)
- Produce and use CF complainant data
- Make your data "spatial" (by specifying geographic or a projected coordinate system)
- Create sample tools where possible
- Clearly define workflow and requirements

Directed Activities

- 1. Ingest data using Make OPeNDAP Raster Layer
- 2. Analysis Create pseudo-climate regions
- 3. Visualization
 - 1. Make NetCDF Raster Layer
 - 2. Choose appropriate symbology
 - 3. Enable time
 - 4. Animate
 - 5. Explore time settings
 - 6. Range Slider
- 4. Repeat with your own data as time is available

ModelBuilder

- ModelBuilder is a visual programming language for building geoprocessing workflows.
- Geoprocessing models automate and document your spatial analysis and data management processes.
- A model is represented as a diagram that chains together sequences of processes and geoprocessing tools, using the output of one process as the input to another process.

Please Take Our Survey!

Download the Esri Events app and find your event

Select the session you attended

Select
"Moderated Paper Session"
or
"Technical Workshop Survey"

Complete Answers and Select "Submit"

