Algebra II

Algunos ejercicios propuestos para examen

- **Ejercicio 1.** 1. Demostrar que en un grupo de orden par el número de elementos de orden 2 es impar.
 - 2. Describe dos grupos de orden 6 que sean isomorfos y otros dos que no lo sean. Razona la respuesta.

Ejercicio 2. Razona, de forma breve, si son verdaderas o falsas las siguientes afirmaciones:

- 1. Si $\sigma = (1243)(52) \in S_5$ entonces $\sigma^{106} = \sigma$.
- 2. Usando las presentaciones usuales de D_{14} y D_7 se puede definir un homomorfismo sobreyectivo de D_{14} en D_7 .
- 3. Los grupos $D_3 \times D_4$ y D_{24} son isomorfos.
- 4. En $D_6 = \langle r, s | r^6 = 1 = s^2, sr = r^{-1}s \rangle$ se tiene que el subgrupo $H = \langle r^3 \rangle$ es normal y el cociente D_6/H tiene un único subgrupo de orden 2 y otro de orden 3.
- 5. Si $\sigma = (1\,2\,3\,4\,5\,6\,7)$ y $\tau = (2\,7)(3\,6)(4\,5)$ son dos permutaciones de S_7 , se tiene que $G = \langle \sigma, \tau \rangle \cong D_7$.

Ejercicio 3. Razona, de forma breve, si son verdaderas o falsas las siguientes afirmaciones:

- 1. Podemos definir un homomorfismo de grupos $f: D_4 \to S_3$ que lleve los generadores r y s de D_4 en f(r) = (12) y f(s) = (23).
- 2. Si H es un subgrupo normal de un grupo G entonces todo subgrupo K de H es también normal en G.
- 3. Si X es un conjunto con 11 elementos sobre el que actúa el grupo de Klein, entonces en X hay un elemento fijo bajo dicha acción.
- 4. D_4 no es producto directo interno de dos subgrupos propios suyos.
- **Ejercicio 4.** 1. Ordena de mayor a menor los enteros positivos n_1 , n_2 , n_3 , n_4 donde n_1 es el número de grupos abelianos no isomorfos de orden 252, n_2 es el número de grupos abelianos no isomorfos de orden 585, n_3

es el número de grupos abelianos no isomorfos de orden 1683 y n_4 es el número de grupos abelianos no isomorfos de orden 440. Describe a continuación las descomposiciones cíclica y cíclica primaria de los grupos abelianos no isomorfos de orden el mayor de los n_i , i = 1, 2, 3, 4. ¿Hay algún n_i de los anteriores de forma que no existen grupos simples de ese orden?

Ejercicio 5. Sean, p un número primo, G un grupo finito, H un subgrupo normal de G y P un p-subgrupo de Sylow de G. Demuéstrese que:

- 1. $H \cap P$ es p-subgrupo de Sylow de H.
- 2. HP/H es un p-subgrupo de Sylow de G/H.
- **Ejercicio 6.** 1. Sea $f: S_4 \to S_6$ la aplicación dada por $f(\sigma) = \overline{\sigma}$ donde $\overline{\sigma}$ actúa igual que σ sobre los elementos $\{1, 2, 3, 4\}$ y los elementos $\{5, 6\}$ los fija si σ es par o bien los intercambia si σ es impar. Demuestra que f es un homomorfismo inyectivo de grupos y que su imagen está contenida en A_6 .
 - 2. Considera los grupos $Q_2 = \langle x, y | x^4 = 1, y^2 = x^2, yx = x^{-1}y \rangle$ y S_4 . Demuestra que la asignación

$$x \mapsto (12)(34) \ , \ y \mapsto (34)$$

determina un homomorfismo de grupos. Calcula su imagen y su núcleo, dando todos sus elementos.

- Ejercicio 7. 1. Si $\sigma = (123)(1345)(456)(16) \in S_6$ ¿Es verdad que σ^{16} es una permutación par de orden 3?
 - 2. Razona, utilizando el teorema de Dyck, que S_5 tiene un subgrupo isomorfo a D_5 .
- **Ejercicio 8.** 1. Clasifica todos los grupos (abelianos o no) de orden 6175. Da una serie de composición para cada uno de ellos.
 - 2. Sea G un grupo de orden 1690.
 - a) Demuestra que G contiene un subgrupo normal N de orden 169 que es abeliano.
 - b) Demuestra que G contiene un subgrupo normal M que contiene a N con |M|=845.
 - c) Si G tiene un único 2-subgrupo de Sylow, demuestra que G contiene un subgrupo normal H de orden 338.

Ejercicio 9. Razona, de forma breve, si son verdaderas o falsas las siguientes afirmaciones:

- 1. Si un grupo G tiene un único subgrupo H de un orden dado entonces H es un subgrupo normal de G.
- 2. El orden del elemento $(a^3, b, c^2) \in C_{21} \oplus C_{25} \oplus C_5$ es 35, donde a, b, c son, respectivamente, los generadores de C_{21} , C_{25} y C_5 .
- 3. No hay grupos simples de orden 561 y todo grupo de este orden es resoluble.
- 4. El grupo $S_3 \times \mathbb{Z}_4$ es resoluble, tiene un único 3-subgrupo de Sylow y un 2-subgrupo de Sylow que no es normal.
- 5. Todo subgrupo de S_n de orden impar está contenido en A_n .

Ejercicio 10. Razona, de forma breve, si son verdaderas o falsas las siguientes afirmaciones:

- 1. Si G es un grupo tal que [G:Z(G)]=15 entonces G es abeliano.
- 2. Un grupo simple de orden 60 tiene 30 elementos de orden 5.
- 3. Si G es un grupo finito y N un subgrupo normal suyo entonces, $\forall x \in G$ se tiene que el orden del elemento xN en el cociente G/N divide al orden de x en G.
- 4. No hay grupos simples de orden 429 y todo grupo de este orden es resoluble.
- 5. Si X es un conjunto con 23 elementos sobre el que actúa el grupo diédrico D_4 entonces en X hay un punto fijo.
- 6. Si H y K son subgrupos normales de un grupo G tales que $H \cap K = 1$ entonces $hk = kh \ \forall h \in H$ y $\forall k \in K$.
- **Ejercicio 11.** 1. Clasifica, dando sus descomposiciones cíclica y cíclica primaria, todos los grupos abelianos de orden 144.
 - 2. Si G es un grupo simple de orden 168, calcula el número de 7-subgrupos de Sylow de G. Si P es un 7-subgrupo de Sylow de G, calcula el orden del normalizador $N_G(P)$ y razona entonces que G no tiene subgrupos de orden 14.