Anomaly Detection

1 / Anomaly Detection 종류

Anomaly Detection 종류

학습 시 label 유무에 따른 분류

1. Supervised Anomaly Detection

- 학습시, Labeling된 정상/비정상 데이터를 모두 사용한 경우
- Class-Imbalance(불균형) 문제
 모델 성능 평가가 가능하다는 점에서 직관적일 수 있지만, 척도 선정에 주의
- 비정상 sample을 확보하는데 많은 시간과 비용이 든다

2. Semi-supervised (One-Class) Anomaly Detection

- 정상 sample만 이용해서 모델을 학습시키는 방법
- 정상 sample들을 둘러싸는 boundary를 설정하고, 이 boundary 밖에 있는 sample들을 모두 비정상으로 간주
- One-Class SVM, Deep SVDD 논문이 잘 알려져있음

3. Unsupervised Anomaly Detection

- 대부분의 데이터가 정상 sample이라는 가정하에 **차원을 축소하고 복원을 하는 과정**으로 비정상을 검출하는 방법이 대표적
- 모델 학습 후, 정상/비정상 데이터의 구분에 대한 임계치 설정이 필요할 수 있음
- 적합이 잘 된다면 정상/비정상 데이터의 모델링 후 분포가 이질적으로 나타날 수 있음

Semi-supervised (One-Class) Anomaly Detection 관련논문

• Energy-based 방법론

"Deep structured energy based models for anomaly detection, 2016 ICML"

• Deep Autoencoding Gaussian Mixture Model 방법론

"Deep autoencoding gaussian mixture model for unsupervised anomaly detection, 2018 ICLR"

• Generative Adversarial Network 기반 방법론

"Anomaly detection with generative adversarial networks, 2018 arXiv"

• Self-Supervised Learning 기반

"Deep Anomaly Detection Using Geometric Transformations, 2018 NeurIPS"

Unsupervised Anomaly Detection 관련논문

- Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
- <u>Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images</u>
- MVTec AD A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection

2 Anomaly Detection 적용사례

Anomaly Detection 적용사례

Cyber-Intrusion Detection

컴퓨터 시스템 상에 일련의 시계열 데이터에 대해 이상치를 검출하여 침입을 탐지함

Fraud Detection

보험, 신용, 금융 관련 데이터에서 불법 행위를 검출하는 사례

IoT Big-Data Anomaly Detection

센서들로부터 생성된 데이터에 대해 이상치를 탐지하는 사례

Social Networks Anomaly Detection

Text를 통해 스팸 메일, 비매너 이용자, 허위 정보 유포자 등을 검출

Anomaly Detection 적용사례

Cyber-Intrusion Detection

의료 영상, 뇌파 기록 등의 의학 데이터에 대한 이상치 탐지

Industrial Anomaly Detection

제조업 데이터에 대한 이상치를 탐지하는 사례

Log Anomaly Detection

시스템이 기록한 log를 보고 실패 원인을 추적하는 사례

Video Surveillance

비디오 영상에서 이상한 행동이 발생하는 것을 모니터링하는 사례

3 Autoencoder based Anomaly Detection

Autoencoder based Anomaly Detection

- 왼쪽에 있는 항은 입력값인 x가 신경망에 들어가는 것을 의미하며, 그 결과가 오른쪽에 있는 x와 같아지도록 근사하는 것
- 즉 Autoencoder란 '입력값 x를 받아서 다시 입력값 x를 결과로 뱉어내는 함수'
- Autoencoder는 입력을 latent variable로 압축하는 Encoding구조를 가지며 이는 데이터의 압축된 표상(representation)을 학습 시키고 그 구조(structure)를 찾는 과정이다. 이는 은닉 유닛(hidden unit)의 수를 제한하는 방법을 통해 가능
- 이를 다시 원본과 가깝게 복원해내는 Decoding 과정으로 진행

Unsupervised Anomaly Detection

- 입력 샘플을 인코더를 통해 저차원으로 압축
- 압축된 샘플을 디코더를 통과시켜 다시 원래의 차원으로 복원
- 입력 샘플과 복원 샘플의 복원 오차(reconstruction error) 계산
- 복원 오차는 이상 점수(anomaly score)가 되어 threshold와 비교를 통해 이상 여부를 결정
 - threshold 보다 클 경우 이상으로 간주
 - threshold 보다 작을 경우 정상으로 간주

4 One-class SVM

One-Class SVM

- 주어진 데이터를 잘 설명할 수 있는 최적의 support vector를 구하고 이 영역 밖의 데이터들은 outlier로 간주하는 방식으로 이상치 탐지, 이미지 검색, 문서/ 텍스트 분류 등에 사용
- One class svm은 기본적으로 SVDD에서 파생되었다. SVDD에서는 모든 데이터를 고차원 공간으로 매핑한 다음 대부분의 데이터가 내부에 있도록 한다.
- 위의 그림에서 센터인 c로부터의 거리가 R보다 큰 경우를 모두 이상치로 판단한다.

One-Class SVM

- one-class svm 은 정상데이터만을 이용해 학습시키고, 이상탐지에 관한 성능을 확인하기 위해서 정상데이터를 분할하여 train dataset을 만든다.
- 정상데이터 중 train dataset이 아닌 데이터와 이상치 데이터를 결합해 validation dataset으로 활용하는 경우가 많다.

reference

- https://velog.io/@vvakki_/Anomaly-Detection%EC%9D%B4%EC%83%81%EC%B9%98-%ED%83%90%EC%A7%80%EB%9E%80
- https://hoya012.github.io/blog/anomaly-detection-overview-1/