

Input rectifier bridge + Brake + 3 Phase Bridge NPT IGBT Power Module

APTGS25X120RTP2: Without Brake (Pin 7 & 14 not connected)

20 19 18 17 16 15 14 13 12 11 10 21 9 8 23 7 24

Application

AC Motor control

Features

- Non Punch Through (NPT) Low Loss IGBT®
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 20 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - Avalanche energy rated
 - RBSOA and SCSOA rated
- Very low stray inductance
- High level of integration
- Internal thermistor for temperature monitoring

Benefits

- Low conduction losses
- Stable temperature behavior
- Very rugged
- Solderable terminals for easy PCB mounting
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive TC of VCEsat
- Low profile

All ratings @ $T_i = 25^{\circ}C$ unless otherwise specified

1. Absolute maximum ratings

Diode rectifier Absolute maximum ratings

Symbol	Parameter			Max ratings	Unit
V_{RRM}	Repetitive Peak Reverse Voltage		1600	V	
I_D	DC Forward Current		$T_C = 80^{\circ}C$	25	
ī	Surge Forward Current	$t_p = 10 \text{ms}$	$T_j = 25^{\circ}C$	300	A
1_{FSM}	Surge Porward Current	t _p – Toms	$T_{\rm j} = 150^{\circ}{\rm C}$	230	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

IGBT & Diode Brake (only for APTGS25X120BTP2) Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		1200	V
T	I _C Continuous Collector Current	$T_C = 25^{\circ}C$	20	
1C		$T_C = 80^{\circ}C$	12.5	Α
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	25	
$ m V_{GE}$	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25^{\circ}C$	100	W
I_{F}	DC Forward Current	$T_C = 80^{\circ}C$	25	Α

IGBT & Diode Inverter Absolute maximum ratings

Symbol	Parameter			Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage			1200	V
$I_{\rm C}$	Continuous Collector Current		$T_C = 25^{\circ}C$	45	
1C			$T_C = 80^{\circ}C$	25	Α
I_{CM}	Pulsed Collector Current	Trent $T_C = 25$		50	
V_{GE}	Gate – Emitter Voltage			±20	V
P_D	Maximum Power Dissipation		$T_C = 25^{\circ}C$	230	W
SCSOA	Short circuit Safe Operating Area $T_j = 125$		$T_j = 125$ °C	160A @ 720V	
I_{F}	DC Forward Current		$T_C = 80^{\circ}C$	25	A
I_{FSM}	Surge Forward Current	$t_p = 1 ms$	$T_C = 80^{\circ}C$	50	A

2. Electrical Characteristics

Diodes Rectifier Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I_R	Reverse Current	$V_R = 1600V$	$T_j = 150$ °C		2		mA
V_{F}	Earword Voltage	$I_F = 30A$	$T_j = 25^{\circ}C$		1.3	1.5	V
	Forward Voltage	$I_F = 25A$	$T_j = 150$ °C		1.05	1.1	v
R_{thJC}	Junction to Case					1	°C/W

IGBT Brake & Diode (only for APTGS25X120BTP2) Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit	
ī	Zana Cata Waltaga Callagtan Cumunt	$V_{GE} = 0V$	$T_j = 25^{\circ}C$		0.5	500	μΑ
1 _{CES}	I_{CES} Zero Gate Voltage Collector Current $V_{CE} = 1200V$	$V_{CE} = 1200V$	$T_j = 125^{\circ}C$		0.8		mA
V	$V_{CE(on)}$ Collector Emitter on Voltage $V_{GE} = 15V$ $I_C = 12.5A$	$V_{GE} = 15V$	$T_j = 25^{\circ}C$		2.7	3.15	V
V CE(on)		$I_{\rm C} = 12.5 A$	$T_j = 125$ °C		3.1		V
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 0.35 \text{ mA}$		4.5	5.5	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE} = 0V$				300	nA
C _{ies}	Input Capacitance	$V_{GE} = 0V, V_{CE} = 25V$ f = 1MHz			600		pF
17	Farmend Walters	$V_{GE} = 0V$	$T_j = 25^{\circ}C$		2.05	2.4	V
$V_{\rm F}$	Forward Voltage	$I_F = 25A$	$T_j = 125$ °C		1.9		V
R_{thJC}	Junction to Case		IGBT			1.2	°C/W
1\thJC	Diode Diode					1.2	CIW

IGBT & Diode Inverter Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit	
BV_{CES}	Collector - Emitter Breakdown Voltage	$V_{GE} = 0V, I_C = 5$	500μΑ	1200			V
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V$	$T_j = 25^{\circ}C$		1.5	500	μΑ
1CES	Zero Gate Voltage Concetor Current	$V_{CE} = 1200V$	$T_i = 125^{\circ}C$		2		mA
W	Collector Emitter on Voltage	$V_{GE} = 15V$	$T_j = 25^{\circ}C$		2.1	2.55	V
V _{CE(on)}	Conector Emitter on Voltage	of Efficiency of Voltage $I_C = 25A$ $T_i = 125^{\circ}C$	$T_j = 125^{\circ}C$		2.45		·
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}$, $I_C =$	1mA	4.5	5.5	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE}$				300	nA
C _{ies}	Input Capacitance	$V_{GE} = 0V, V_{CE} =$	= 25V		1500		pF
	-	f = 1MHz					Г
$T_{d(on)}$	Turn-on Delay Time	Inductive Switch		45		ns	
$T_{\rm r}$	Rise Time	$V_{GE} = \pm 15V$ $V_{Bus} = 600V$		45			
$T_{d(off)} \\$	Turn-off Delay Time	$I_{\text{Bus}} = 600 \text{ V}$ $I_{\text{C}} = 25 \text{ A}$		290			
T_{f}	Fall Time	$R_G = 27\Omega$		60			
$T_{d(on)}$	Turn-on Delay Time	Inductive Switch	ning (125°C)		45		
$T_{\rm r}$	Rise Time	$V_{GE} = \pm 15V$			45		ne
$T_{d(off)}$	Turn-off Delay Time	$V_{Bus} = 600V$ $I_{C} = 25A$			340		ns
T_{f}	Fall Time	$R_G = 27\Omega$			80		
E_{off}	Turn off Energy	1.0 2/11			3.2		mJ
$V_{\rm F}$	Forward Voltage	$V_{GE} = 0V$	$T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$		2.05	2.5	V
V F	Tot ward voltage	$I_F = 25A$	$T_j = 125$ °C		1.9		·
		$I_F = 25A$	$T_j = 25^{\circ}C$	_	2.1	_	
Q_{rr}	Reverse Recovery Charge	$V_R = 600V$ $di/dt = 800A/\mu s$	$T_j = 125$ °C		4.5		μС
R_{thJC}	Junction to Case		IGBT			0.55	°C/W
••thJC	Junction to Case		Diode			1.2	<i>57</i> 11

Temperature sensor NTC

Symbol	Characteristic	Min	Typ	Max	Unit
R ₂₅	Resistance @ 25°C		5		kΩ
B 25/50	$T_{25} = 298.16 \text{ K}$		3375		K

$$R_T = \frac{R_{25}}{\exp\left[B_{25/50}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]}$$
 T: Thermistor temperature R_T: Thermistor value at T

3. Thermal and package characteristics

Symbol	Characteristic		Min	Typ	Max	Unit	
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz			2500			V
T_{J}	Operating junction temperature range			-40		150	
T_{STG}	Storage Temperature Range			-40		125	°C
$T_{\rm C}$	Operating Case Temperature			-40		125	
Torque	Mounting torque	To Heatsink	M5			3.3	N.m
Wt	Package Weight					185	g

4. Package outline

ALL DIMENSIONS MARKED " * " ARE TOLERENCED AS : \bigcirc 0,4

APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.