Differential Evolution

Thea Behrens,
Jonas Grlich,
Inga Ibs,
Noa Kallioinen,
Aiswarya Rajendran Nair Minikutty

December 4, 2017

Table of Contents

Introduction

Modules (Mutation)

Topology

Introduction

Introduction and Basic Algorithm and relation to the other algorithms in the course so fa

Overview and Terminology

Initialize the population repeat

Select target vectors from population

for each target

Create a donor vector

Combine target and donor to a trial vector

Update population with trial vectors

Overview and Terminology

Initialize the population repeat

Select target vectors from population Use the whole population as targets

for each target

Create a *donor* vector

Combine target and donor to a *trial* vector

Update population with trial vectors

Ackley's function

Initialization

Initialize NP d-dimensional population vectors x:

$$x = (x_1, x_2, ..., x_d)$$
 with $x_i \sim PDF_i$

Initialization

Initialize NP d-dimensional population vectors x:

$$x = (x_1, x_2, ..., x_d)$$
 with $x_i \sim PDF_i$

Generate a donor vector y for each target by differential mutation:

Generate a donor vector y for each target by differential mutation:

► Select *base* vector *a*

Example random selection, $a \neq x$

Generate a donor vector y for each target by differential mutation:

- ► Select *base* vector *a*
- Select two other vectors b, c

Example

random selection, $x \neq b \neq a, x \neq c \neq a$

Generate a donor vector *y* for each target by differential mutation:

- Select base vector a
- Select two other vectors b, c
- ightharpoonup Compute difference b-c

Generate a donor vector y for each target by differential mutation:

- Select base vector a
- ► Select two other vectors *b*, *c*
- ightharpoonup Compute difference b-c
- Scale difference and add to base

$$y = a + F(b - c)$$

Example

F = 0.5, but could be anything > 0

Binomial Crossover

Generate *trial* vector *z* for each donor *y* target *x*:

- ▶ Pick random $r \in [1..d]$
- Combine target x with donor y:

$$z_i = egin{cases} y_i & ext{if } r \sim \mathcal{U}(0,1) \leq \mathit{CR} \ y_i & ext{else if } i = r \ x_i & ext{otherwise} \end{cases}$$

Example

Crossover-rate CR = 1, other possibilites transparent

Binomial Crossover

Evaluate objective function for each target and trial:

- ightharpoonup Compare f(x) with f(z)
- Winner becomes member of next population

