gome direct numbers, other the calculated sample measured in the calculated sample mumbers are ignored in the conduction equal to this fixed numbers are ignored in the conduction and the sample size is adjusted accordingly. The sum dest can be used for one sided or two sided alternatives. If the abternative hypothesis is simply non randomness a two sided test should be used since the prosence a two sided test should be used since the prosence of a trend would usually be indicated by an elustraining of similar objects which is suffected by an elustraining of similar objects which is suffected by an elustraining small no. of pounds. A one sided test is unusually small no. of pounds.

The following are the marks secured by two batches. The following are the marks secured by two batches of salesman in the final test taken after the of salesman of towning. Completion of towning.

Completion of towning.

Use U-test and Run test for the mult hypothesis

Use U-test and Run test for the mult hypothesis

that the samples are drawn from identical distribution differ that the samples are drawn that the distributions differ that the alternative that the distributions of the capainst the alternative that the distribution only in location only 27, 31, 26, 19, 21, 20, 25, 30

Botch B (Y) 23, 28, 26, 24, 22, 19

Seq	19	19	20	21	22	23	24	25	26 26 26	47 46 30 31	Tue
1	X	Ÿ	X	X .	Υ	Y	Υ	X.	γ. × × ×	X X X	3
2	×	Y	×	×	Y	Y	Υ	X	хүх	XXXX	9
3		1	X	X	, Y	Υ	Y		γ × γ	x y x x	9
4	Y	×	*	*	7	· 4	4	×	A X X	x y x x	8
5	Y	×	X	X	Y	Y	Y	×	× Y X		8
£	Y	Х	*	· • ×	Y	Y	Υ'	×	х х Ү	x Y X X	8

V1 = n, n2 - U

= 5A-301 = 2A

U test at 0.02 level of significance 7

24>7 23>7 So, we accept the rull hypothesis.

Then, samples are drawn

is 4

U=1+1+4+4+4+6+6 - so, 9>4

we accept the

mull hypothesis

Let x1, x2,..., Xn, be a random sample of I size on, derawn from a population with continuous dist in func in F(1) and . Y, , Y2, ..., Yn2 be a grandom sample of size no droawn from a poput with Continuous distroibution Function (1), Gr(x) = F(x-8), SETR 8 the samples are drawn independently of each other. Consider the problem of testing, Ho.: 8=0 against H1: 18 >0 8 =0 @ Test Procedure: Let Z. = (X1, X2, ..., Xn,, Y1, Y2, ..., Yn) denote the combined sample. Let Ri denote the round of the ith individual as in the combined sample . R:, (121(1) n,+n2) Now consider a indicator function Now let us consider the statistic, T= No. of 2nd sample observations exceeding the combined sample median, D. $=\sum_{i=1}^{n_2} \psi(Y_i - \widetilde{O}) = \sum_{i=1}^{m} \psi(R_i - \lfloor \frac{n+1}{2} \rfloor), \text{ where } m = n_1 + n_2$ and $\left[\frac{n+1}{2}\right] = Rank of the$ combined sample median. Thus Tean be interpreted as the no. of second sample manks

exceeding [n+1]. T is called the median test statisti @ Non-parametric justification: Under to R= (R, R2,..., Rm) has a uniform distribution over the set of n! realisation of (1,2,...,n). For this we consider the the following Result: Let X, X2, ..., Xn be ind with condinuous oresult. d.f. (F(), Let Ri = Rank of Xi = No. of obsequations R = (R, Re, Rn) = Vectors of manks. Then P(R=10)=/1! + 7 = (8, 72, ... ren 3 of 41,2, ... ry 0,0.0

Provof >> Let X(1) <X(2)...<X(n) be the oroder statistics.

The of X,, X2,..., Xny ({X(1), X(2), ..., X(n), R, R2...Rn)

 $R = (r_1, r_2, ..., r_n)$ is nothing but a permutation of (1,2,...,n). Giren (X(1), X(2), ..., X(n)), (X1, X2,...,Xn) has n! possible permutations. so since X1, X2, ... Xn are sid

and F(1) is continuous, these Permutations are equally trely.

Example original sample . 18, 11,7,15

Page 5 of 36 So, the conditional distrobution of $(x_1, x_2, ..., x_n)$ given $(x_1, x_2, ..., x_n)$ given .; P(f = x | X(1). X(2):..., X(n)) = tr., which is independent of the conditioning variables. Hence, $P(R = n_c) = \begin{cases} \frac{1}{n!} \cdot \chi = \{r_1, r_2, ..., r_m\} \end{cases}$ $\begin{cases} \frac{1}{n!} \cdot \chi = \{r_1, r_2, ..., r_m\} \end{cases}$ O, otherowise Therefore the dist D of R is independent of F, whenever F is Continuous. Hence T, being a function of R has its distribution independent of Funder Ho. So the test perovided by the exactly dist ! Free under the and hence non-parametric. croitical Region = 5>0 implies that the

se cond sample observations are expected to be larger than the first sample observations, i.e. the second sample same expected to be larger under H,, 5>0 than that under Ho, SFD. So T is expected to be larger under Hi, 8>0 than that under Ho. Therefore a right tailed test is approxpariate for testing Ho: $\delta=0$ against H: $\delta>0$ Similarly a list tail test is appropriate for testing to: 8=0 against \$1,:820

and a two tailed dest is appropriate for testing to: 8=0 against 870

	10000	
Alternat		p-value
\$ >0 0 0 ₂ >0	T>CX	P(T) to), To:-observed value of the test statistic
820	1 1 2 2	P(T < To)
8 0 + 8	or T>C	2. Minimum of the above two
02 +	1 1 1 1 1 1	Sent and the sent

@000 Null distaitation, Expectation and Variance

P_H(T=t) = $\frac{(1,2,...,n)}{(n)}$ such that $\frac{\sum_{j=n_1+1}^{n} y(R_j-[\frac{n+1}{2}])}{(n)}$

(n₂)

[Mark the combined dample median, there are
$$m-\lceil \frac{m+1}{2} \rceil$$
 observations and $m-\lceil \frac{m+1}{2} \rceil$ observations and $m-\lceil \frac{m+1}{2} \rceil$ ways. Remaining be arranged there in $\binom{m-\lceil \frac{m+1}{2} \rceil}{2}$ ways. Remaining be arranged among $\lceil \frac{m+1}{2} \rceil$ ways be arranged among $\lceil \frac{m+1}{2} \rceil$ ways $\lceil \frac{m+1}{2} \rceil$ and $\lceil \frac{m+1}{2} \rceil$ $\lceil \frac{m+1}{2}$

$$\frac{\left[\frac{m+1}{2}\right] > n_{2} - t}{t > n_{2} - \left[\frac{m+1}{2}\right]}$$

$$t \leq n - \left[\frac{m+1}{2}\right]$$

$$t \leq n - \left[\frac{m+1}{2}\right]$$

$$t \leq n_{2}$$

$$\frac{\left(\frac{NP}{2}\right) \cdot N - NP}{\left(\frac{NP}{2}\right) \cdot \left(\frac{NP}{2}\right)}$$

$$\frac{\left(\frac{NP}{2}\right) \cdot \left(\frac{NP}{2}\right)}{\left(\frac{NP}{2}\right) \cdot \left(\frac{NP}{2}\right)}$$

$$\frac{\left(\frac{NP}{2}\right) \cdot \left(\frac{NP}{2}\right)}{n}$$

EM= No. 11-[11-1]

@ Large Sample distribution and test: Suppose for each m, there are $n_1 = n_1(n)$ and $m_2 = m_2(n)$ such that as $m \to \infty$, (ii) $\frac{m_1}{n} \rightarrow \lambda + \frac{m_2}{n} \rightarrow 1 - \lambda$, $\lambda \in (0,1)$ (i) $n_1, n_2 \rightarrow \infty$ Then under to, as now

Sto T- $\frac{n_2}{\sqrt{n_1 n_2}}$ $\sqrt{\frac{n_1 n_2}{4n}}$ $\sqrt{\frac{n_1 n_2}{4n}}$ $\sqrt{\frac{n_1 n_2}{4n}}$ $\sqrt{\frac{n_1 n_2}{4n}}$

计 建加

$$P(T=7) = {8 \choose 2} {8 \choose 7} = 0 = 0 + 95$$

$$P(T=8) = \frac{\binom{8}{1}\binom{8}{8}}{\binom{16}{9}}$$

$$P-value = \frac{0.0343 + 0.137 + 0.0195 + 0.006}{-0.01914} = P_{Ho}(T=5) + P_{Ho}(T=6) + P_{Ho}(T=7) + P_{Ho}(T=8)$$

p-value = 0. [0.05

We reject mill hypothesis 1.e. not drawn from Identical dist ?.

Example 2:

X: 26,27,31,26,19,21,20,25,30

Y. 23, 28, 26, 24, 22,19 W1 2 B n2 = 6

Combined sample

To = 2 Combined sample median =
$$\left[\frac{15+1}{2}\right]$$

$$\frac{6}{6} = \frac{10!}{60!} \cdot \frac{8}{5} = 0$$

$$\frac{1}{1} \cdot \frac{1}{5} \cdot \frac{7}{5} = 0$$

$$\frac{1}{15} \cdot \frac{1}{15} \cdot \frac{1}{15} \cdot \frac{1}{15} \cdot \frac{1}{15} = 0$$

$$\frac{1}{15} \cdot \frac{1}{15} \cdot \frac{1$$

Wilcoxon's Rank Sum Test

Let X1, X2, ..., Xn, be i.i.d with distribution function In F(.) and Y, 172, ..., Ynz be i.i.d with d.f. Gr(.) With G(x) = F(x-8), $\delta \in \mathbb{R}$. The samples are derawn independently of each other and F() is univariente continuous. Let Z= (X1, X2 :... Xn, Y1, Y2, Y4 be the combined sample. Let R; be the nank of the ith observation in the combined sample. The wilcoxon's many sum test statistic is defind as $W = \sum_{i=n,+1}^{m_1+n_2} R_i = \frac{sun of the rounds cognes ponding}{to the second sample observations.}$

Non-parametric justification:

R = (R1, R2,..., Rn) has aniform distribution over the set of M! realization of 1,2,..., so the distribution of R is independent of F whenever F is continuous. W; being a function of R has its distribution independent of F under Ho. Hence the test provided by W is exactly distribution force and non-

· Crotical Region: 870 implies that any & Y; is expected to be larger than any X; i.e. Yj'x are expected to be larger under H, : 8>0 than a that under Ho: 8=0. In other words R_j 's $(j=n_1+1(1)n_1+n_2)$ are expected to be larger under H1: 5>0 than then under to i.e. W is expected to be larger under H,: 8>0 than under Ho. So a night tail test is appropriate for testing Ho against H.: 8>0. Similarly a left tail best is appropriate for testing Ho against tail best is appropriate for testing Ho against HI: 8 LO. It can be shown that the distribution of W under Ho is symmetric about its expectation. So an equal tail test is appropriate for testing to against 4, : 8 \$ 0. Exact size & test for testing to against this \$ \$ 10 is given by $\phi = |1| if |W - \frac{m_2(m+1)}{2}| > W_{\frac{1}{2}}$ γ if $\left| W - \frac{m_2(m+1)}{2} \right| = W_{d/2}$ $\int_{0}^{\infty} \int_{0}^{\infty} \left| W - \frac{m_{2}(\mathbf{m}+1)}{2} \right| \leq W d_{2}$

ord Work are such that · Et, [P] = X

· Expectation and Variance of W, under Ho

$$W = \sum_{i=m_1+1}^{m_1+n_2} R_i$$

under Ho, Rn,+1, Rng+2, ..., Rn,+n2 has

(m) possible realizations and all of them are equally likely.

So, under Ho, (Rn, +1, , Rn, +21..., Rn, +n2) may be considered as a SRSNOR of size no from

Page 14 of

Page 14 of

$$\frac{1}{N_2} \left[\frac{1}{N_2} \sum_{i=n_1+1}^{N_1 N_2} \frac{1}{2} - \frac{m_{+1}}{2} \right] = \frac{m_{+1}}{2}$$
or, $E\left(N/n_2\right) = \frac{m_{+1}}{2}$

or, $E\left(N/n_2\right) = \frac{m_{+1}}{2}$

Again,

Var. $\left[\frac{1}{N_2} \sum_{i=n_1+1}^{N_1 + n_2} R_i\right] = \frac{n_1^2 - 1}{12n_2} \cdot \frac{n_1 - n_2}{m_{-1}} \quad \text{using}$
in sps word

[Here, $\sqrt{y} = \frac{m_{-1}^2}{12} = \text{variance of the first}$

or natural numbers]

$$= \frac{(n+1)m_1}{12m_2} \left[\frac{n+n_2}{n_1+n_2} \right]$$

$$= \frac{(n+1)m_1}{12m_2} \left[\frac{n+1}{n_2} \right]$$

$$= \frac{n_1(n+1)}{12n_2}$$

$$= \frac{n_1(n+1)n_2}{12}$$

$$= \frac{n_1n_2(n_1+n_2+1)}{12}$$

Asympotic test Suppose for each n, here exists m = n, (n) 2 My = m2 (n) such that as n > &

Page 15 or so

(ii)
$$\frac{m_1}{n} \rightarrow \lambda$$
, $\frac{m_2}{n} \rightarrow 1 - \lambda$

Then under the, as $n \rightarrow \infty$
 $N = \frac{n_2(n+1)}{2}$

Alternative Croffical gregion

 $N = \frac{m_2(n+1)}{12}$
 $N = \frac{m_2(n+1)}{12}$

Relationship between
$$V \times V$$

$$V = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \Phi(X_i, Y_j) \qquad \Phi(X_i, Y_j) = \begin{cases} 1 & \text{if } X_i < Y_j \\ 0 & \text{o.o.} \omega \end{cases}$$

$$\sum_{i=1}^{n_2} \Phi(X_i, Y_j) = No. \text{ of } X_i' \leq Y_j'$$

$$= R(Y_j) = No. \text{ of observations } Y_j'$$

$$= No. \text{ of observations } Y_j'$$

Define,
$$q_i = No. \text{ of } Y \text{ observations } Y_i = \binom{n_2 - j}{n_2 - j}$$

No. of observations $Y_j = No. \text{ of } X \text{ obs} Y_j$
 $Y_i = \binom{n_2 - j}{n_1}$
 $Y_i = \binom{n_2 - j}{n_2} = \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2}$
 $Y_i = \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2}$
 $Y_i = \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2}$
 $Y_i = \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2}$
 $Y_i = \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2}$
 $Y_i = \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2 - j} + \binom{n_2 - j}{n_2} + \binom{n_2 - j}{n_2 - j} + \binom{n_2 - j}{n_2} + \binom{n_$

$$W = \sum_{j=1}^{N_2} \mathbf{R}(Y_j)$$

$$W =$$

e i Periodo de la como de la como

One Sample Kolmogorov-Smirnov Test

Assume that we have a random comple X, Xa, ... , Xon and we want to test

 $I_0: F_{\chi}(x) = f_0(x) \quad \forall x$

where to (x) is a completely specified continuous distribution function, against the usual two sided goodness of Sit

11, : Fx(a) + Fo(a) for some x

Define + Fn(x) = No. of xis < x in the sample of xis (sample size) Test Statistic

Emp. (it is called the empirical d.f.)

Expectation & Variance of Fn(x)

 $X_i \leq X \rightarrow \text{success}$

Xi>x -> Failure

nFn(x) = No. of Xis in the sample < x

n Fn(x) takes values 0,1,2,...,n

$$mF_{n}(x) \sim Bin(n, p = p(x_{i} \in x) = F_{x}(x))$$

$$f(nF_{n}(x)) = nF_{x}(x)$$

$$f(F_{n}(x)) = F_{x}(x)$$

$$V(F_{n}(x)) = \frac{F_{x}(x)(1 - F_{x}(x))}{n}$$

By Colivergo-Cantelli's theorem, as on increases Fn(x) with jumps occurring at the values of the order statistics X(1), X(2), ..., X(n) for the famolo Sample, approaches the tome distrobution function Fx(x) + x. Therefore for large on the deviations

between the true function and its statistical image |Fn(x)-Fx(x)| should be small for all values of

7. This suggests the following, statistics,

$$D_n = \sup_{x} \left| F_n(x) - F_x(x) \right|$$

Under Ho, $D_n = \sup_{x} |f_n(x) - f_o(x)|$ $= \max_{\chi} \left[F_{\eta}(\chi) - F_{\delta}(\chi) \right], \left[F_{\eta}(\chi - \epsilon) - F_{\delta}(\chi) \right]$

where E is a very small positive mumber/quantity.

Dn is called one sample Kolmogorov-Smironov test statistic.

The directional desiratives $D_n^+ = \sup_{x} \left[\mp_{y_n}(x) - \mp_{x_n}(x) \right] \text{ and }$ $D_n = \sup_{x} \left[F_{\mathbf{x}}(x) - F_n(x) \right]$ are called One-sided Kolmogorov - Smironav test statistics. Theorem: The statistics Dn, Dn+, and Dn- ane completely distribution free for any continuous Fx. $\frac{\text{Propof}}{\text{Normal Proposition}} \Rightarrow D_n = \frac{\text{Sup}}{x} \left[\frac{\text{Fn}(x) - \text{F}(x)}{x} \right]$ (For some x, Fn(x) - F(x) is positive for some, Fn(x)-F(x) is negative) = Max [Dn, Dn] E. Let us define additional oroder statistics; $\chi_{(0)} = -2$ X (+1) = 0 , 1=0,1,2,...,n $F_n(x) = \frac{i}{n}$ if $X_{(i)} \leq x < X_{(i+1)}$

NOW ! Dn = Sup [Fn(x)-Fx(x)] [F" (N)-EX (N)] - Max Sup KIEN XIDER (XIH

= Max Sup $\left(\frac{i}{n} - F_{\chi}(x)\right)$ $1 \le i \le n \times (1) \le \chi (x)$

x (0) {x {x {x (1)} X(1) { x ; x(5) Fn (x) = 1

X(2) < X < X(3) たなり = 六 ×(n-1) { x < x (n)

= Max
$$\left(\frac{i}{n} - \inf_{X_{(i)}} F_{X}(x)\right)$$

= Max $\left(\frac{i}{n} - F_{X}(X_{(i)})\right)$
= Max $\left(\frac{i}{n} - F_{X}(X_{(i)})\right)$, 0
= Max $\left(\frac{i}{n} - F_{X}(X_{(i)})\right)$, 0
Similarly, $D_{n} = Max \left(\frac{f_{X}(X_{(i)})}{n}\right)$, 0

Similarly, $D_n = \text{Max} \left[\text{Max} \left(\frac{F_X(X_{(i)}) - \frac{i-1}{n}}{n} \right), 0 \right]$ $D_n = \text{Max} \left[\text{Max} \left(\frac{F_X(X_{(i)}) - \frac{i-1}{n}}{n} \right), \text{Max} \left(\frac{i}{n} - \frac{F_X(X_{(i)})}{n} \right) \right]$

The probability distailable of Dnt, Dn and Dn i = 1(1) moder of the roundown variable $f_{x}(x_{(i)})$, i = 1(1) moder depend on the roundown variable $f_{x}(x_{(i)})$ distinctions the order statistics from the U(0,1) distinctions are independent of the positival of $f_{x}(x_{(i)})$ as long as it is regardless of the original $f_{x}(x_{(i)})$ as long as it is regardless of the original $f_{x}(x_{(i)})$ as long as it is regardless of the positival or $f_{x}(x_{(i)})$. Which are independent of the positival or $f_{x}(x_{(i)})$.

Theorem
$$P(D_{n} \left(\frac{1}{2^{n}} + V\right) = \begin{cases} 0, & \text{if } V \leq 0 \\ \frac{1}{2^{n}} + V & \frac{2^{n-1}}{2^{n}} + V \\ \frac{1}{2^{n}} + V & \frac{1}{2^{n}} + V \end{cases} = \begin{cases} 0, & \text{if } V \leq 0 \\ \frac{1}{2^{n}} + V & \frac{2^{n-1}}{2^{n}} + V \\ \frac{1}{2^{n}} + V & \frac{1}{2^{n}} + V \end{cases} = \begin{cases} 0, & \text{if } V \leq 0 \\ \frac{1}{2^{n}} + V & \text{if } V \geq \frac{2^{n-1}}{2^{n}} \end{cases}$$

$$= \begin{cases} 1, & \text{if } V \geq \frac{2^{n-1}}{2^{n}} \\ 1 & \text{if } V \geq \frac{2^{n-1}}{2^{n}} \end{cases}$$

```
Fx(.) is continuous.
   provided 1
    Theorem If Fx() is continuous, then for every $6
                  \lim_{n\to\infty} P(D_n \leq \frac{d}{\sqrt{n}}) = 1 - 2 \sum_{i=1}^{\infty} (-1)^{i-1} e^{-2i^2 d^2}
   The 20 observations below were chosen randomly from U(0,1) distribution, recorded to four significant figures
   Pooblem
    and rearrange in asscending order of magnitude and hypothesis that the square root of Test the null hypothesis that the square root of
this its numbers also have U(0,1) dist is.
       0.0123, 0.1039, 0.1954, 0.2621, 0.2802, 0.3217,
        0-3645, 0.3919, 0.4240, 0.4814, 0.5139, 0.5846,
         0.6275, 0.6541, 0.6889, 0.7621, 0.8320, 0.8871,
        0.9249, 0.9634
  \Rightarrow D_n = \sup_{\chi} |F_n(\chi) - F_o(\chi)|
            = Max [ | Fn (x) - Fo (w) ], | Fn (x-E) - Fo (w)]
        Fr(x) = No. of observation
             n is the square most of our numbers
        Fo(1) = x, x ∈ (0,1), Ho: samples are from
       [Fn(x-E)-Fo(x)/ -> 15t 0-Fo(x)]
                                     2 rd = (0.85 - Fo(x))
```

						50 22 01 3
K	X	4n (x)	Fo(x)	(Fn (x) - Fo (x)	(Fn (x-E) - Fo(x)	7
9.0129	8.1109	0.05	0.1109	0.0609	0.1109	
0.000	0.3223	0.1	0.3223	0.2223	0.342	
0.0107	0.4420	0.15	0.4420	0.292	0.3619	C.
0.0382	0.5119	0.2	0.5119	0.3119	0.3293	
0.0687	0.5293	0.25	.0.5293	0.2793	0.3172	
0.0485	0.5672	0.3	8.5672	0.2672	0.3037	-
0.1035		0.35	6.6037	0.2537	0.276	
8.1329	8.6037	0.4	0.6260	6.226		
	0.6260	2.6	0.6512	0.2012	0.2512	
011936	6.6512	0.45	0.6938	0.1938	0.2438	
0.17.98	6.6938	0.5	0.7169	0.1669	0.2169	
0.2317	0.7169	0.55	0.7646	0.1646	0.2146	
	0,7646	0.6	6.7521	0.1421	0.1921	
0.2641	0.7921	0.65	8.8088	0.1088	0.1588	
0.3418	0.8088	6.7	0.8300	0.08	0.13	
0.3938	0.8300	6.75	0.8729	0.0729	0.1229	
	0.8729	6.8	1 / 20	0.062	0.1121	•
0.4278	3.9121	0.85	6,9121		6.0919	
0.4746		0.9	0.9419	0.0419		
2,52021	0.9419	0.95	0.9617	0.0117	0.0617	
	1.9617	0))		0.0185	0.06/8	
0.6922	0.9815	11	019815	010(8)	0.0315	
.7869	yers and					
,8554	. 1)	Dn = 0	3619	The second	- · · · ·	
1	10			5., n = 20	2 12Y 4 T	
here!		1 63 0		<i>a</i> 1		
202						

It observed Dn > 0.294 (1000 × 30.05), 1 then reject Ho

coming from U(0,1).

 $P(\sqrt{x} \leq x) = P(x \leq x^2) = x^2$

c.d.f of the $\gamma v = -\frac{p(x+\gamma)}{\sqrt{x}}$

 $F_{Y}(y) = y^{2}$ p.d. f of f, $f_{Y}(y) = \frac{1}{2} (y^{2}) = 2f$, 0 < y < 1Beta (2,1)

Prob²: 1.5, 2.3, 4.2, 7.1, 10.4, 8.4, 9.3, 6.5, 2.5,

A.G. Test whether the data comes from

exponential distribution.

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{$

Since the parameter O of the exponential dist in its parameter O of the exponential dist in the problem we dist in the problem we fake the MLE of O, $\delta = \frac{1}{x}$ as an estimate of O.

X	En(a)	to (a)	1 Fn (1) - Fo (2)	1 Fn (M-C)-Fo(a)
1.5	0-1	0.232	0.132	0.132
2.3	0.2	0.333	6.133	0.283
.4.2.5	0.3	0.35-6	8.056	0.1.26
4.2	0.4	6.523	0.123	0.223
b 4.6	0.5	0.555	0.055	0.155
	0.6	0.681	0.081	0.181
9-6.5	0.6	111	0.013	0.113
9888 7·1	0.7	0.713		0.072
8.4	0.8	0.772	0.028	
200 9.3		0.805	0.095	
460 7.3		0.82	0.16	0.06
10.	4			

and use the formula $F_0(x) = 1 - e^{-\hat{0}x}$ to compute Lolinggonor singular test statistic.

$$6 - \frac{1}{5.68} = 0.176$$

 $D_n = 0.233$

at 2=0.05, m=10, Dn=0.409

Conclusion: accept to i.e. data comes from exponential distribution.

Two Sample Kalmagarrov Smirnov Test Let X1, Y2, ..., Xn, be a random sample of size N1 from a population with distroibution function F(.) and Y1, Y2,..., Yn2 be a random sample of size n2 from a population with dist - June = 31(.). We want to test Ho: F(x) = G(x) + x. H1: F(2) 7 G(x) for some 2 , against The order statistics corresponding to these two grandom samples of size m. 2. M2 from the continuous

X(1) \$, X(2), -... X(m,), Y(1), Y(2), ..., Y(m2). popur. F and G oure. They Theira empionical distribution functions are denoted by $f_{n_1}(x)$ and $G_{1n_2}(x)$ and defined

by, $F_{n_1}(x) = \begin{cases} 0 & \text{if } x < x(x) \\ x & \text{if } x(x) + x(x) \end{cases}$ $1 & \text{if } x(x) \times (x) \times (x)$

In a combined ordered amangement of the n1+n2 Sample observations Fn, (x) and Gn2(x) are the prespective proporations of X and Y observations which do not exceed the specified value X. If the which do not exist the specified value X. If the mull hypothesis is true the population distorbutions core identical and we have two samples from the Same population. The empirical distribution functions for the X and Y samples are reasonable estimates of their respective population cdf. Therefore allowing for sampling variation there should be reasonable agreement between the two empirical distributions if to is true, otherwise the data suggest that to is not true and should be sieject. The two soled Kolmagoroov smigner test statistics denoted by Dn, no is defined as $D_{n_1,n_2} = \frac{Max}{x} \left| F_{n_1}(x) - G_{n_2}(x) \right|$ Since here only the magnitudes of the deviations are considered Pn, n2 is appropriate for a gene-real two sided alternative. The critical negion Is given by, Dn, n2 > Co where Co is such that PHo (Dn,, n2 > Cx) < x When $n_1, n_2 \rightarrow \infty$ in such a way that $\frac{m_1}{m_2}$ benains constant, $\lim_{n_1, n_2 \rightarrow \infty} P\left(\frac{n_1 n_2}{n_1 n_2} D_{n_1, n_2} \leq d\right)$

	Page 27 of 3
) Part	10 Jan 1980
$=1-2\sum_{i=1}^{\infty}(-1)^{i-1}e^{-2i^2d^2i}$	· ·
Problem: 8. where generated, I dist is and	inst one from the standard. Normal the second one from 2 dist with dis 18
N(0, 1) * Y 18 Y	
7.91 4.90 -2.18	•
7.25 -1.79	
-112-	*-
-0.96 8.07 -0.72 14.10 -0.65	
10.3 8.05	
017	
0.82	
1.45 23.1	
1.86 28.12 11.67	
Based on these samples in standarised x2-distail but on/	. she then the
Hose samples in	vestigate where
Based on these distribution/	variable 1 trabution
Standarised &-ouseas	a N(0,1) 4137,700
82-1 approoch	of freedom.
Based on these samples on/ Standarised x2-distribution/ 92-n approach Ten approach ven for moderate d	egnels of
even for moo	
	X -> Normal samples
· For large m,	30
$\chi^2-\eta$ $\xrightarrow{\Delta}$	$N(0,1)$ $Y \rightarrow \frac{\chi^2 \text{samples} - 18}{\sqrt{3}}$
$\frac{\chi^2 - \eta}{\sqrt{2r}} \longrightarrow$	√36
- 1	™ 4
Table 1	

	Tab	le		
Combined # x < t endered observations (2) -2.18 (Y) -1.91 (X) -1.79 (Y) -1.66 (Y) -1.22 (X) -0.96 (X) -0.72 (X) -0.65 (Y) -0.65 (Y) 0.14 (X) 0.54 (Y) 5 0.82 (X) 6 6 7 1.69 (Y) 7 1.86 (X) 8	1	1	Gnn ₂ (1) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1	Fn, (1) - Gin, (1) + 0.125 0.25 0.125 0 1/8

 $D_{n_1,n_2} = 0.25$ (max of ' $|F_{n_1}(t) - c_{m_2}(t)|$ $m_1 m_2 D = 16.25$

$$n_1 \quad n_2 \quad m_1 n_2 \quad p$$
 $64 \quad 0.000$
 $88 \quad 56 \quad 0.002 \quad @ \quad P_{H_0} (n_1 n_2 \, D_{m_1; m_2} \ge 32)$
 $48 \quad 0.019 \quad = 0.283$
 $40 \quad 0.087$
 $32 \quad 0.283 \quad @ \quad P_{H_0} (m_1 n_2 \, D_{m_1; m_2} \ge 16)$
 $P_{H_0} (m_1 n_2 \, D_{m_1; m_2} \ge 16)$
 $P_{H_0} (m_1 n_2 \, D_{m_1; m_2} \ge 16)$
 $P_{H_0} (m_1 n_2 \, D_{m_1; m_2} \ge 16)$

(1) P-value = PHO (Dn,, m2 > 1/4) = PHO (n, n2 Dn,, n2 > 16)

(A) .: P-value > 0.283> d.

accept the nod hypothesis.

Kruskal - Wallis Test (Nonparametric competitions of ONE-

WAY ANOVA) The Komskal-Wallis Lest is the natural extension of the wilcoxon Rank sum test for Notation with two independent samples to the situation of K mutually independent samples from continuous populations. The null hypothesis is that the K populations are the same but when we assume the location model is bos this hypotheses can

The acspective location parameters as follows tho: 0, =02 = ... = OK H,! at least two of them differ. against test procedure: To perform the test all ni+ng+ ... +nx = N saw observations are combined into a simple array and nank from 1,2,..., N. The dest statistic is defined as, $H = \frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{1}{n_i} \left[R_i - \frac{m_i(N+1)}{2} \right]^2$ $= \frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{R_i^2}{n_i} - 3(N+1)$ Where Re is the sum of the sounds of the observations corresponding to the Kth group or Kth sample. The statistic is asymptotically distailbuted as x2 with d.f. (K-1). The approximation is generally satisfactory except when K=3 - ond the sample sizes now and the sample sizes are less than equal to 5. The critical region is the large values of H. If Ho is rejected then we go for the pairwise comparison test and we conclude that the location parameters of ith and jth population differ significantly it $\frac{|\vec{R}_i - \vec{R}_j|}{[N(N+1)]} = \frac{|\vec{R}_i - \vec{R}_j|}{[N(N+1)]}$ Then IR: -Ril >2000 is the rejection croiterrion.

[K(N+1)]1/2 If n; = N + i = 1(1)K

Problem: In a companison of the clinic action of four detergents, 20 pieces of white cloths where first soiled with ink. The cloths were then washed under controlled condition with 5 pieces washed by each controlled condition with 5 pieces washed by each of the detergents. Whiteness readings are showing

potengent Test the hypothesis of no difference	
A B C D between the four granus of deter 77 74 73 76 regarding the average whiteness reading after weishing.	gers
77 74 73 76 regarding the average whiteness	()
81 66 78 86 reading after weishing.	
61 58 57 77 R1 = 3.5+ 9.5 + 13.5 + 15.5 =	61
76 63 69 64 R2 = 2+3.5+5.5+8+12 = 31	
69 61 63 80 $R_3 = 1 + 5.5 + 11 + 9.5 + 17 = 44$	
2 24 1 21 11 = 74	
Contined $A = \frac{.20(20+1)}{2} - 61 - 31 - 44 - 77$	-5
observations observations $H = \frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{R_i^2}{m_i^2} - 3(N+1)$, $K = A$, $M = 20$	y i
57 (c) 1 = 6.109	
58 (9) 2	
$61 (B) 3.5 (X^2) = 7.815$	
2 2 2 2 5	
63 (B) 5.5 Reject Ho if H> 12,0.05 - 76.109	
64 (D) 7 Here, 7.815	
66 (B) 8	
69 (A) 9.5 i.e. no difference b/10 the four whiteress read 73 (O) 11 after washing.	ting
69 (1) 9.5 i.e. no differenting the avg.	
73 (0) 11 detergent after washing.	
74 (P) 12 TITE!	
71 (A) 13.5 NOTE 1 FOR K=3	
76 (A) 13.5 76 (D) 13.5 77 (A) 15.5 77 (D) 15.5 Use a special table of Konuskal-	
77 (P) 15:5 Use a special wallis test.	
78 (c) 17 Los use x2 table.	
78 (c) 17 80 (d) 18 For Ky3, use x² table.	
85(b) 20	

```
(2) The following table shows the life times in house in excess of
     thousand hours of the samples of 60 wall decloic light bulbs of three different brands. Test at 5 % level the hyp.
                             that there is no diff
           Brand
                                                                                     any life to
                      11
       T
              -11
                      26
              15
       16
       18
                      24
             20
       13
                      3 D
              16
                                        अध्या) (छ
                      24
              24
                       R1 = 18.5, R2 = 37.5, R3 = 62A
                H = \frac{12}{15 \times 16} \left( 1168.9 \right) - 3 \times 16 = 7.995 | 0.445
                                         H > 5.78 / for , m, m2, m3 = 5.
                               Reject Ho
                \overline{R}_1 = \frac{R_1}{5} = 3.7, \overline{R}_2 = 7.5, \overline{R}_3 = 12.4
                  \frac{|\vec{R}_{1} - \vec{R}_{2}|}{[\vec{K}_{1} + 1)]^{\frac{1}{2}}}, \frac{|\vec{R}_{1} - \vec{R}_{2}|}{(\frac{16 \times 3}{6 \times 2})^{\frac{1}{2}}} = \frac{3.8}{0.943} = 4.029
                 \frac{|\overline{R}_{2} - \overline{R}_{3}|}{(\frac{1613}{648})^{1/2}} = 5.196
\frac{|\overline{R}_{1} - \overline{R}_{3}|}{(\frac{1613}{648})^{1/2}} = 9.226
                                 \frac{|R_i - R_j|}{|R_i - R_j|} > 7_{0.025} ois nejection \frac{|R_i - R_j|}{|R_i - R_j|} > 1.96 rejection
    [R,-R2]=3.8
      [R2-R3] =4.9
      |R1-R3|= Q.7
    .. accord for (1,2), (2,3)
  Therefore broad I 2
                                                                 a else accept
```

		C
1 -> 3 2 -> 4 3 -> 4 4 -> 8 3 5 -> 4 6 -> 4	21 7 2 27 7 A 23 7 2 24 7 O 25 7 I	4 - very frequently 3, - frequently 2 -> sometimes 1 -> rondy 0 -> almost rerer
$\begin{array}{c} 7 \rightarrow 0 \\ 8 \rightarrow 4 \\ 9 \rightarrow 4 \\ 10 \rightarrow 1 \\ 11 \rightarrow 0 \\ 12 \rightarrow 0 \\ 13 \rightarrow 3 \end{array}$	247 2 287 4 297 0 307 \ 3	
14 7 2 15 7 3 16 7 4 17 7 1 18 7 0 19 1 3 20 7 6 1	$32 \rightarrow 3$ $33 \rightarrow 4$ $34 \rightarrow 1$ $38 \rightarrow 2$ $36 \rightarrow 4$	
20-7 0-1		2

10			New works	2 (Y) -	
Hed (X)	Popular wast	ner Rank	New New 10	1 Pas	w.
ji -	13	14	11	8	
	(0	5		()	
	9	11.5	12	14	
	12	11	13	1.5	
	11	8	9	8	
	10	5	14	16	- 1
	8		12	1.1	
	• ,	1 4	-	lA	
	6.1		13.	3877 C - 0	
•	- I	40.5		88.5	
Par.	Rome. 8				
	9 1.5		Upw = 4	10.5 - 71	(7+1)
1	9 1.5	2 7.1	Pw.	d.)	2
14	1 D 5			12.5	
e la di	10 5		6 Z ž	6	(9+1)
	(0 5		U _{NW} =	88.5 - 9	2 "
	[]	5 A C. A	" make a	= 43.5	- 11-1-1
.00	11- 8		1 - 4 - 1	- 75'-	
The second	12 8	salt real	My = 7.		₹. F.
	12 1 1 1		m2 = 9	•	
	12: 11		N1+N2	-14	
	13	1 35	111112	710	
	13 / 142	Y			
	13 14	0	9 9	10 10	ip (
			9 9 X Y	××	A ID
li ti i	1 12 12 X Y Y Y	12	YX	X Y	X
·× Y 1	1 12 12 X Y Y Y Y	Y Y 13		Y X	×
11 11 1 Y X Y Y Y	1 12 12 X Y Y Y Y Y Y	Y 13 X Y	$\frac{x}{\lambda}$ $\frac{\lambda}{\lambda}$		(0)
1 1	X	V	V 3		AND THE PROPERTY OF THE PARTY O

From table VIII of Appendix C, we find.

that for $M_2 = 9$, $M_1 = 7$, for a two tail

test at the level 6.02, the crostcal

Name is 9. Since 49 is greater

than 9, we have no neason to

them 9, we have no neason to

believe that the samples are and drawn

from identical test dist = 1.

26 26 26 26 Y D B X

Run test

Thus we have $n_1 = 7$, $n_2 = 9$, N = 16 and 3 guins of x and y runs of y of y giving x = 6. The critical value of y at the y level from the table is y. Since the obscrived value is greater than the critical value, we accept is greater than the critical value, we accept he mult hypothesis (that the y = y = 1) score the mult hypothesis (that the y = y = 1) devel.