Centers of triangles, a beginner's tour

September 2007

- 2.1. Explain the existence of the circumcenter O, the incenter I, and the excenters I_A , I_B , and I_C of triangle ABC.
- 2.2. Explain the existence of the orthocenter H of triangle ABC.
- 2.3. Let AB be a segment. Points X and Y do not lie on line AB. Point Z lies on line AB. Then X, Y, Z are **collinear** (that is, they lie on a line) if and only if [AXY]/[BXY] = AZ/BZ.

- 2.4. Explain the existence of the centroid G of triangle ABC by establishing the fact that triangles ABG, BCG, and CAG have the same area.
- 2.5. The three medians cut the triangle into 6 smaller triangles with equal area. The centroid of the triangle lies 2/3 along way (from the vertex to the opposite midpoint) on each median.
- 2.6. [Euler] Prove that the orthocenter, circumcenter, and centroid of a triangle lie on a line. This line is called the **Euler line** of the triangle.
- 2.7. Let ABC be a triangle with circumcircle ω . Let O, G, H, I, I_A denote its circumcenter, centroid, orthocenter, incenter, excenter opposite A, respectively. Points M and H_A lie on \widehat{BC} (not including A) such that $\widehat{BM} = \widehat{MC}$ and $AH_A \perp BC$. Let A_1 be the midpoint of side BC. The following are true.
 - (a) points O, A_1, M are collinear;
 - (b) H and H_A are symmetric across the line BC;
 - (c) G lies on segment OH with OG with 2OG = GH, and G is the intersection of segments AA_1 and OH;
 - (d) points A, I, M, I_A are collinear;
 - (e) points B, C, I, I_A lie on a circle centered at M.

2 IDEA MATH Lexington, Massachusetts

- 2.8. Triangle ABC is inscribed in circle ω . Let A_1 be the midpoint of arc \widehat{BC} (not containing A). Define points B_1 and C_1 analogously. Show that the incenter of triangle ABC is the orthocenter of triangle $A_1B_1C_1$.
- 2.9. The incircles of triangle ABC is tangent to sides BC, CA, AB at D, E, F, respectively. Let I_A, I_B, I_C be the incenters of triangles AEF, BDF, CDE, respectively. Prove that lines I_AD, I_BE, I_CF are concurrent.
- 2.10. Let ABC be a triangle with excenters I_A , I_B , and I_C .
 - (a) Prove that the incenter of triangle ABC is the orthocenter of triangle $I_AI_BI_C$.
 - (b) Prove that triangle $I_A I_B I_C$ is acute.
 - (c) Prove that there is a point O such that $I_AO \perp BC$, $I_BO \perp CA$, $I_CO \perp AB$.
- 2.11. Let ABC be an acute-angled scalene triangle, and let H, I, and O be its orthocenter, incenter, and circumcenter, respectively. Circle ω passes through points H, I, and O. Prove that if one of the vertices of triangle ABC lies on circle ω , then there is one more vertex lies on ω .
- 2.12. In triangle ABC, $\angle BAC = 120^{\circ}$. The angles bisectors of angles A, B, and C meet the opposite sides at D, E, and F, respectively. Compute $\angle EDF$.
- 2.13. In triangle ABC, AB = 14, BC = 16, and CA = 26. Let M be the midpoint of side BC, and let D be a point on segment BC such that AD bisects $\angle BAC$. Compute PM, where P is the foot of perpendicular from B to line AD.
- 2.14. Given a circle ω and two fixed points A and B on the circle. Assume that there is a point C on ω such that AC + BC = 2AB.
 - (a) Show that the line passing through the incenter and the centroid of the triangle is parallel to one the side of the triangle.
 - (b) How to construct point C with a compass and a straightedge.