NEURAL NETWORK & DEEP LEARNING(CS-5720)

(CRN:31196) ASSIGNMENT -2

Name: Vamsi Krishna Mekala

ID : 700742751 **Date** : 07/11/2023

Github : https://github.com/vamsi-mekala/Neural-networks-icp-2

Google Drive: https://drive.google.com/file/d/1e0Az26ooIATtz1c7AESxWwF08AOgeC4W/view?usp=sharing

Question 1:

- 1. Add more Dense layers to the existing code and check how the accuracy changes.
- 2. Change the data source to Breast Cancer dataset * available in the source code folder and make required changes. Report accuracy of the model.
- 3. Normalize the data before feeding the data to the model and check how the normalization change your accuracy

```
In [138]: np.random.seed(155)
       my_first_nn = Sequential() # create model
my_first_nn.add(Dense(20, input_dim=8, activation='relu')) # hidden Layer
       my_first_nn.add(Dense(16, input_dim=8, activation='relu'))
my_first_nn.add(Dense(8, input_dim=8, activation='relu'))
       my_first_nn.add(Dense(1, activation='sigmoid')) # output layer
my_first_nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])
my_first_nn_fitted = my_first_nn.fit(X_train, Y_train, epochs=100,
                                   initial epoch=0)
        576/576 [============] - 0s 58us/step - loss: 0.4671 - acc: 0.7743
Epoch 93/100
                                   ===] - 0s 55us/step - loss: 0.4573 - acc: 0.7882
        Epoch 94/100
        576/576 [===
                          Epoch 95/100
       576/576 [====
Epoch 96/100
                           576/576 [===
                              =======] - 0s 29us/step - loss: 0.4729 - acc: 0.7656
        Epoch 97/100
        Epoch 99/100
        576/576 [====
                      Epoch 100/100
```

In the above screen shot we added 2 more dense layers to existing code and the results are at 79% accuracy.

```
In [146]: np.random.seed(155)
         my_first_nn = Sequential() # create model
         my_first_nn.add(Dense(30, input_dim=30, activation='relu')) # hidden layer
         my_first_nn.add(Dense(1, activation='sigmoid')) # output layer
         my_first_nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])
my_first_nn_fitted = my_first_nn.fit(X_train, Y_train, epochs=100,
                                            initial_epoch=0)
          EDOCD 50/100
         Epoch 51/100
         426/426 [===
                                      ======= 1 - 0s 36us/step - loss: 0.1687 - acc: 0.9343
         Epoch 52/100
         426/426 [====
Epoch 53/100
                                  =======] - 0s 45us/step - loss: 0.1756 - acc: 0.9296
         426/426 [===
                                                 0s 39us/step - loss: 0.1789 - acc: 0.9366
         Epoch 54/100
         426/426 [===
                                               - 0s 74us/step - loss: 0.1943 - acc: 0.9366
         Epoch 55/100
         426/426 [===
                                        =====] - 0s 40us/step - loss: 0.1755 - acc: 0.9484
         Epoch 56/100
         426/426 [====
Epoch 57/100
                                                 0s 33us/step - loss: 0.1673 - acc: 0.9390
         426/426 [====
                                               - 0s 34us/step - loss: 0.2249 - acc: 0.9249
         Epoch 58/100
         426/426 [===
                                         =====l - 0s 30us/step - loss: 0.2676 - acc: 0.9131
```

In the above screenshot we can see the model performance for the breast cancer dataset.

```
my_first_nn.add(Dense(30, input_dim=30, activation='relu')) # hidden Layer
         my_first_nn.add(Dense(1, activation='sigmoid')) # output layer
my_first_nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])
my_first_nn_fitted = my_first_nn.fit(X_train, Y_train, epochs=100,
                                             initial epoch=0)
          426/426 [=============] - 0s 33us/step - loss: 0.0172 - acc: 0.9953
          Epoch 92/100
          426/426 [====
                           Enoch 93/100
          426/426 [===:
                                              ==] - 0s 39us/step - loss: 0.0167 - acc: 0.9953
          Epoch 94/100
          426/426 [===:
                                   ========] - 0s 39us/step - loss: 0.0171 - acc: 0.9953
          Epoch 95/100
          426/426 [====
                                  Epoch 96/100
                                              ==] - 0s 39us/step - loss: 0.0162 - acc: 0.9953
          Epoch 97/100
          426/426 [===:
                                      =======1 - 0s 39us/step - loss: 0.0159 - acc: 0.9953
          426/426 [====
Epoch 99/100
                                ========] - 0s 39us/step - loss: 0.0155 - acc: 0.9953
                                     Epoch 100/100
426/426 [=====
                                 ========= 1 - 0s 36us/step - loss: 0.0151 - acc: 0.9953
In [150]: print(my_first_nn.summary())
print(my_first_nn.evaluate(X_test, Y_test))
          Layer (type)
                                     Output Shape
                                                               Param #
          dense_72 (Dense)
                                     (None, 30)
                                                               930
          dense_73 (Dense)
                                      (None, 1)
                                                               31
          Total params: 961
          Trainable params: 961
          Non-trainable params: 0
          143/143 [=======] - 0s 2ms/step
          [0.1936580974322099, 0.9650349654517807]
```

Here is the model performance for the breast cancer dataset after scaling and normalizing the data. And the accuracy went up to 99%

Question 2:

Use Image Classification on the handwritten digits data set (mnist)

- 1. Plot the loss and accuracy for both training data and validation data using the history object in the source code.
- 2. Plot one of the images in the test data, and then do inferencing to check what is the prediction of the model on that single image.
- 3. We had used 2 hidden layers and Relu activation. Try to change the number of hidden layer and the activation to tanh or sigmoid and see what happens.
- 4. Run the same code without scaling the images and check the performance?

Here is the plot for the loss and accuracy for the test and train data.

Plot one of the images in the test data, and then do inferencing to check what is the prediction of the model on that single image In [186]: predictions = model.predict(test_data) In [187]: image = np.array(test_images[0]).reshape(28, 28) plt.iashow(image) Out[187]: cmatplotlib.image.AxesImage at 0x23b64c32b08>

Here is the inference of the prediction and the test data that was predicted by the model.

```
print(dimData)
train_data = train_images.reshape(train_images.shape[0],dimData)
test_data = test_images.reshape(test_images.shape[0],dimData)
#convert data to float and scale values between 0 and 1
train_data = train_data.astype('float')
test_data = test_data.astype('float')
#scale data
train_data /=255.0
test_data /=255.0
#change the labels frominteger to one-hot encoding. to_categorical is doing the same thing as LabelEncoder()
train_labels_one_hot = to_categorical(train_labels)
test_labels_one_hot = to_categorical(test_labels)
#creating network
model = Sequential()
model.add(Dense(512, activation='tanh', input_shape=(dimData,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='sigmoid'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_data, train_labels_one_hot, batch_size=256, epochs=10, verbose=1,
          validation_data=(test_data, test_labels_one_hot))
(28, 28)
784
Train on 60000 samples, validate on 10000 samples
Epoch 1/10
Epoch 2/10
Epoch 3/10
60000/60000 [
           Epoch 4/10
            Epoch 5/10
.
60000/60000 [=
           60000/60000 |
            Epoch 7/10
            Epoch 8/10
60000/60000 [
         Epoch 10/10
```

Now, we added some more dense layers and changed the activation functions from relu to tanh and sigmoid functions and can observe the accuracy dropped from 98 - 97%.

```
In [189]: from keras import Sequential
       from keras.datasets import mnist
      import numpy as no
      from keras.layers import Dense
      from keras.utils import to_categorical
      (train_images,train_labels),(test_images, test_labels) = mnist.load_data()
      print(train images.shape[1:1)
      #convert data to float and scale values between 0 and 1
      train_data = train_data.astype('float')
test_data = test_data.astype('float')
      #scale data
      train_data /=255.0
      test_data /=255.0
      #change the labels frominteger to one-hot encoding. to_categorical is doing the same thing as LabelEncoder()
      train_labels_one_hot = to_categorical(train_labels)
      test_labels_one_hot = to_categorical(test_labels)
      #creating network
      model = Sequential()
      model.add(Dense(512, activation='tanh', input_shape=(dimData,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='sigmoid'))
      model.add(Dense(10, activation='softmax'))
      model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_data, train_labels_one_hot, batch_size=256, epochs=10, verbose=1,
                  validation_data=(test_data, test_labels_one_hot))
      (28, 28)
      Train on 60000 samples, validate on 10000 samples
      Epoch 1/10
      Epoch 3/10
      60000/60000 [=
                  Epoch 4/10
                   60000/60000 F
      60000/60000 [
                      Enoch 6/10
      60000/60000 [=
                   Epoch 7/10
                   60000/60000 1
      Epoch 8/10
      60000/60000 T
                    Epoch 9/10
                  60000/60000 T
      60000/60000 [==============] - 6s 97us/step - loss: 2.3174 - acc: 0.1025 - val_loss: 2.3149 - val_acc: 0.0958
```

Now the same code is executed without scaling the images and now the accuracy is much dropped to 95%, so preprocessing and scaling all the images to the uniform size makes the model more accurate in training.