CS 577 - Basics of Algorithm Analysis

Marc Renault

Department of Computer Sciences University of Wisconsin – Madison

Spring 2023

TopHat Section 001 Join Code: 020205 TopHat Section 002 Join Code: 394523

Algorithm Evaluation

Sound

- Sound
- Complete

- Sound
- Complete
- Resource requirements:

- Sound
- Complete
- Resource requirements:
 - Time

- Sound
- Complete
- Resource requirements:
 - Time
 - Space

- Sound
- Complete
- Resource requirements:
 - Time
 - Space
 - Other...

Algorithm Evaluation

- Sound
- Complete
- Resource requirements:
 - Time
 - Space
 - Other...

How efficient is the solution?

Computational Tractability

Definition 1¹

An algorithm is efficient if, when implemented, it runs quickly on real input instances.

¹Algorithm Design, p. 30

Definition 1¹

An algorithm is efficient if, when implemented, it runs quickly on real input instances.

Issues:

- Not concrete enough for meaning algorithm comparison.
- What is "quickly"?
- What are "real input instances"?

¹Algorithm Design, p. 30

Definition 2²

An algorithm is efficient if it achieves qualitatively better *worst-case* performance, at an analytical level, than *brute force* search.

²Algorithm Design, p. 32

Quantifying an Algorithm's Performance

Brute-force

- Enumerate all possible solutions.
- Check all possible solutions and keep the best one.

Quantifying an Algorithm's Performance

Brute-force

- Enumerate all possible solutions.
- 2 Check all possible solutions and keep the best one.

Worst-case

Considering all possible inputs, what is worst possible performance of the algorithm?

- Absolute guarantee on performance.
- Only needs one data point.

Definition 2²

An algorithm is efficient if it achieves qualitatively better *worst-case* performance, at an analytical level, than *brute force* search.

²Algorithm Design, p. 32

Definition 2²

An algorithm is efficient if it achieves qualitatively better *worst-case* performance, at an analytical level, than *brute force* search.

Issues:

- Still too vague for a good measure.
- What exactly is "qualitative"?

²Algorithm Design, p. 32

Stable Marriage Problem (SMP) $(1962)^{123}$

Problem Definition

Given a set of n men, M, and an opposite set of n women, W. Each person has a preference ranking of the opposite set. Compute a stable matching between M and W. A matching is stable if it is (i) perfect, and (ii) there are no pairs (m, w) and (m', w') in the matching where m prefers w' and w' prefers m.

- A.k.a Stable Matching Problem.
- There are more complicated variations of the model.
- Used in the real world (e.g. matching doctors to hospitals).
- Nobel Prize in Economics in 2012 (Shapley and Roth).

¹Algorithm Design, Ch 1.

²Algorithms, Ch 4.5

³http://mathsite.math.berkeley.edu/smp/smp.html

Analysis of SMP

Algorithm: Gale-Shapley Algorithm (1962)

```
Initially all m \in M and w \in W are free
while there is a man m who is free and hasn't proposed to every woman do
    Choose such a man m
    Let w be the highest-ranked woman in m's preference list to whom m has not
      yet proposed
    if w is free then
         (m, w) become engaged
    else w is currently engaged to m'
         if w prefers m' to m then
              m remains free
         else w prefers m to m'
              (m, w) become engaged
              m' becomes free
         end
    end
end
return the set S of engaged pairs
```

Analysis of SMP

Algorithm: Gale-Shapley Algorithm (1962)

```
Initially all m \in M and w \in W are free
while there is a man m who is free and hasn't proposed to every woman do
    Choose such a man m
    Let w be the highest-ranked woman in m's preference list to whom m has not
      yet proposed
    if w is free then
         (m, w) become engaged
                                       TopHat 1
    else w is currently engaged to m'
         if w prefers m' to m then
                                       How many brute-force possibilities when there
                                       are n men and n women?
             m remains free
         else w prefers m to m'
              (m, w) become engaged
             m' becomes free
         end
    end
end
return the set S of engaged pairs
```

Definition 3³

An algorithm is efficient if it has a polynomial running time with respect to the input size.

³Algorithm Design, p. 32

Definition 3³

An algorithm is efficient if it has a polynomial running time with respect to the input size.

Polynomial: $f(n) = c_d \cdot n^d + c_{d-1} \cdot n^{d-1} + \cdots + c_1 \cdot n + c_0$, where d and c_i are constants.

³Algorithm Design, p. 32

Definition 3³

An algorithm is efficient if it has a polynomial running time with respect to the input size.

Polynomial: $f(n) = c_d \cdot n^d + c_{d-1} \cdot n^{d-1} + \cdots + c_1 \cdot n + c_0$, where d and c_i are constants.

Well defined notion:

• Natural follow-up: what is the most efficient algorithm possible?

³Algorithm Design, p. 32

Definition 3³

An algorithm is efficient if it has a polynomial running time with respect to the input size.

Polynomial: $f(n) = c_d \cdot n^d + c_{d-1} \cdot n^{d-1} + \cdots + c_1 \cdot n + c_0$, where d and c_i are constants.

Well defined notion:

- Natural follow-up: what is the most efficient algorithm possible?
- Not perfect: n^{100} is polynomial, but $n^{1+0.02(\log n)}$ is not.

³Algorithm Design, p. 32

Analysis of SMP

Algorithm: Gale-Shapley Algorithm (1962)

Initially all $m \in M$ and $w \in W$ are free

```
while there is a man m who is free and hasn't proposed to every woman do
    Choose such a man m
    Let w be the highest-ranked woman in m's preference list to whom m has not
      yet proposed
    if w is free then
                                       TopHat 2
         (m, w) become engaged
    else w is currently engaged to m'
                                       In an implementation of SMP, what would be
         if w prefers m' to m then
                                       the input size when there are n men and n
             m remains free
                                       women?
         else w prefers m to m'
             (m, w) become engaged
             m' becomes free
         end
    end
end
return the set S of engaged pairs
```

Analysis of SMP

Algorithm: Gale-Shapley Algorithm (1962)

Initially all $m \in M$ and $w \in W$ are free

```
while there is a man m who is free and hasn't proposed to every woman do
    Choose such a man m
    Let w be the highest-ranked woman in m's preference list to whom m has not
      yet proposed
    if w is free then
                                       TopHat 3
         (m, w) become engaged
    else w is currently engaged to m'
                                       In the Gale-Shapely algorithm, what is the
         if w prefers m' to m then
                                       maximum number of iterations when there are
             m remains free
                                       n men and n women?
         else w prefers m to m'
             (m, w) become engaged
             m' becomes free
         end
    end
end
return the set S of engaged pairs
```

Quantifying an Algorithm's Performance

Brute-force

- Enumerate all possible solutions.
- 2 Check all possible solutions and keep the best one.

Worst-case

Considering all possible inputs, what is worst possible performance of the algorithm?

- Absolute guarantee on performance.
- Only needs one data point.

QUANTIFYING AN ALGORITHM'S PERFORMANCE

Worst-case

Considering all possible inputs, what is worst possible performance of the algorithm?

- Absolute guarantee on performance.
- Only needs one data point.

Average-case

Given a distribution over the possible inputs, what is the expected performance of the algorithm?

- Without mention of distribution, uniform is assumed.
- Analysis typically more complicated.

Quantifying an Algorithm's Performance

Worst-case

Considering all possible inputs, what is worst possible performance of the algorithm?

- Absolute guarantee on performance.
- Only needs one data point.

Best-case

Considering all possible inputs, what is best possible performance of the algorithm?

- Tends to be meaningless
- Could used when choosing between 2 otherwise equivalent algorithms.

Insertion Sort Analysis

```
INSERTION-SORT (A)
                                                 times
                                         cost
   for j = 2 to A. length
   kev = A[i]
      // Insert A[i] into the sorted
          sequence A[1..j-1].
      i = j - 1
      while i > 0 and A[i] > key
6
          A[i + 1] = A[i]
7
          i = i - 1
      A[i+1] = kev
```

```
INSERTION-SORT (A)
                                                 times
                                         cost
   for j = 2 to A. length
                                         C_1
                                                 n
 key = A[j]
      // Insert A[i] into the sorted
          sequence A[1..j-1].
      i = j - 1
      while i > 0 and A[i] > key
6
          A[i + 1] = A[i]
7
          i = i - 1
8
      A[i+1] = kev
```

times

n

INSERTION SORT ANALYSIS

```
INSERTION-SORT (A)
                                         cost
   for j = 2 to A. length
                                         C_1
                                         c_2 \qquad n-1
 key = A[j]
      // Insert A[i] into the sorted
          sequence A[1..j-1].
      i = j - 1
      while i > 0 and A[i] > key
6
          A[i + 1] = A[i]
7
          i = i - 1
      A[i+1] = kev
```

times

n

INSERTION SORT ANALYSIS

```
INSERTION-SORT (A)
                                         cost
   for j = 2 to A. length
                                         C_1
                                         c_2 \qquad n-1
 key = A[j]
      // Insert A[i] into the sorted
          sequence A[1..j-1].
      i = j - 1
      while i > 0 and A[i] > key
6
          A[i + 1] = A[i]
7
          i = i - 1
      A[i+1] = kev
```

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1		
5	while $i > 0$ and $A[i] > key$		
6	A[i+1] = A[i]		
7	i = i - 1		
8	A[i+1] = key		

Insertion-Sort (A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$		11
6	A[i+1] = A[i]		
7	i = i - 1		
8	A[i+1] = key		

(Introduction to Algorithms, P.26)

INCEPTION CORT (4)

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]		-1.
7	i = i - 1		
8	A[i+1] = key		

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1		
8	A[i+1] = key		

INSERTION SORT ANALYSIS

(Introduction to Algorithms, p.26)

Insertion-Sort (A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key		

INSERTION SORT ANALYSIS

(Introduction to Algorithms, P.26)

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

times

cost

INSERTION SORT ANALYSIS (INTRODUCTION TO ALGORITHMS, P.26)

INSERTION-SORT (A)

for j = 2 to A. length C_1 key = A[i]n-1// Insert A[j] into the sorted sequence A[1...j-1]. 0 n-1i = i - 1n-1 C_{Δ} $\sum_{i=2}^{n} t_i$ 5 **while** i > 0 and A[i] > key C_5 $\sum_{i=2}^{n} (t_i - 1)$ 6 A[i + 1] = A[i] C_6 $\sum_{i=2}^{n} (t_i - 1)$ i = i - 1 C_7 A[i+1] = kevn-1 $C_{\mathcal{R}}$ Overall: $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=0}^{n} t_j + c_6 \sum_{j=0}^{n} (t_j - 1) + c_7 \sum_{j=0}^{n} (t_j - 1) + c_8 (n-1)$

INSERTION SORT ANALYSIS

```
(Introduction to Algorithms, p.26)
       INSERTION-SORT (A)
                                                                             times
                                                                  cost
            for j = 2 to A. length
                                                                  C_1
               key = A[i]
                                                                            n-1
                                                                  C_2
       3
               // Insert A[j] into the sorted
                     sequence A[1...j-1].
                                                                  0
                                                                             n-1
               i = i - 1
                                                                             n-1
       4
                                                                  C_{\Delta}
                                                                            \sum_{i=2}^{n} t_i
               while i > 0 and A[i] > key
                                                                  C_5
                                                                            \sum_{i=2}^{n} (t_i - 1)
       6
                     A[i + 1] = A[i]
                                                                  C_6
                                                                            \sum_{i=2}^{n} (t_i - 1)
                    i = i - 1
                                                                  C_7
               A[i+1] = kev
                                                                             n-1
                                                                  C_{\mathcal{R}}
Overall:
T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1)
      \leq c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j + c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)
```

Insertion Sort Analysis

(Introduction to Algorithms, p.26)

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

Overall:

$$T(n) \le c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j + c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$= an^2 + bn - d$$

Asymptotic Order of Growth

Asymptotic Order of Growth

Bounding f(n) as n grows

- Bound f(n) from above.
- Bound f(n) from below.

Asymptotic Order of Growth

Bounding f(n) as n grows

- Bound f(n) from above.
- Bound f(n) from below.

Bachmann-Landau notation (Asymptotic notation)

- Big-Oh: *O* (≤)
- Big-Omega: Ω (\geq)
- Big-Theta: Θ (equivalent)

ASYMPTOTIC ORDER OF GROWTH

Bounding f(n) as n grows

- Bound f(n) from above.
- Bound f(n) from below.

Bachmann–Landau notation (Asymptotic notation)

- Big-Oh: $O(\leq)$
- Big-Omega: Ω (\geq)
- Big-Theta: Θ (equivalent)

- Little-oh: *o* (<<)
- Little-omega: ω (>>)

Asymptotic upper bound

Formal Definition¹

$$O(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid 0 \le f(n) \le cg(n) \ \forall n \ge n_0 \}$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic upper bound

Formal Definition¹

$$O(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid 0 \le f(n) \le cg(n) \ \forall n \ge n_0 \}$$

$$T(n) = an^2 + bn - d$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic upper bound

Formal Definition¹

$$O(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid 0 \le f(n) \le cg(n) \ \forall n \ge n_0 \}$$

$$T(n) = an^2 + bn - d \in O(n^2)$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic upper bound

Formal Definition¹

$$O(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid 0 \le f(n) \le cg(n) \ \forall n \ge n_0 \}$$

Insertion sort:

$$T(n) = an^2 + bn - d = O(n^2)$$

Often used, but technically an abuse of notation

¹Introduction to Algorithms, Ch 3.1

Asymptotic lower bound

Formal Definition¹

$$\Omega(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid \\ 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic lower bound

Formal Definition¹

$$\Omega(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid \\ 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

$$T(n) = an^2 + bn - d$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic lower bound

Formal Definition¹

$$\Omega(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

$$T(n) = an^2 + bn - d \in \Omega(n^2)$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic lower bound

Formal Definition¹

$$\Omega(g(n)) = \{ f(n) : \exists c, n_0 > 0 \mid$$

$$0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

Insertion sort:

$$T(n) = an^2 + bn - d = \Omega(n^2)$$

Often used, but technically an abuse of notation

¹Introduction to Algorithms, Ch 3.1

Asymptotic tight bound

Formal Definition¹

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 > 0 \mid \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic tight bound

Formal Definition¹

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 > 0 \mid \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

$$T(n) = an^2 + bn - d$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic tight bound

Formal Definition¹

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 > 0 \mid \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

$$T(n) = an^2 + bn - d \in \Theta(n^2)$$

¹Introduction to Algorithms, Ch 3.1

Asymptotic tight bound

Formal Definition¹

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 > 0 \mid \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

Insertion sort:

$$T(n) = an^2 + bn - d = \Theta(n^2)$$

Often used, but technically an abuse of notation

¹Introduction to Algorithms, Ch 3.1

Asymptotic tight bound

Formal Definition¹

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 > 0 \mid \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

Key Property

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

¹Introduction to Algorithms, Ch 3.1

Formal Definition¹

$$o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid 0 \le f(n) < cg(n) \ \forall n \ge n_0 \}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

¹Introduction to Algorithms, Ch 3.1

Formal Definition¹

$$o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid 0 \le f(n) < cg(n) \ \forall n \ge n_0 \}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$T(n) = an^2 + bn - d$$

¹Introduction to Algorithms, Ch 3.1

Formal Definition¹

$$o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid 0 \le f(n) < cg(n) \ \forall n \ge n_0 \}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$T(n) = an^2 + bn - d \in o(n^3)$$

¹Introduction to Algorithms, Ch 3.1

Formal Definition¹

$$o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid 0 \le f(n) < cg(n) \ \forall n \ge n_0 \}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$T(n) = an^{2} + bn - d \in o(n^{3})$$

$$\in O(n^{3})$$

$$\in O(n^{2})$$

$$\notin o(n^{2})$$

¹Introduction to Algorithms, Ch 3.1

LITTLE-OMEGA

Formal Definition¹

$$\omega(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid 0 \le cg(n) < f(n) \forall n \ge n_0 \}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

¹Introduction to Algorithms, Ch 3.1

Little-omega

Formal Definition¹

$$\omega(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid$$

$$0 \le cg(n) < f(n) \ \forall n \ge n_0 \}$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

$$T(n) = an^2 + bn - d$$

¹Introduction to Algorithms, Ch 3.1

Little-omega

Formal Definition¹

$$\omega(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid$$

$$0 \le cg(n) < f(n) \ \forall n \ge n_0 \}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$T(n) = an^2 + bn - d \in \omega(n)$$

¹Introduction to Algorithms, Ch 3.1

Little-omega

Formal Definition¹

$$\omega(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \mid$$

$$0 \le cg(n) < f(n) \ \forall n \ge n_0 \}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$T(n) = an^{2} + bn - d \in \omega(n)$$

$$\in \Omega(n)$$

$$\in \Omega(n^{2})$$

$$\notin \omega(n^{2})$$

¹Introduction to Algorithms, Ch 3.1

Useful Asymptotic Properties

Polynomial Bound

For
$$c_d > 0$$
, $f(n) = c_d \cdot n^d + c_{d-1} \cdot n^{d-1} + \dots + c_1 \cdot n + c_0 = O(n^d)$

USEFUL ASYMPTOTIC PROPERTIES

Polynomial Bound

For
$$c_d > 0$$
, $f(n) = c_d \cdot n^d + c_{d-1} \cdot n^{d-1} + \dots + c_1 \cdot n + c_0 = O(n^d)$

Logarithms

- $\bullet \log_b n = \frac{\log_a n}{\log_a b} = \Theta(\log n)$
- $(\log n)^a = o(n^b)$ for any a, b > 0

Useful Asymptotic Properties

Polynomial Bound

For
$$c_d > 0$$
, $f(n) = c_d \cdot n^d + c_{d-1} \cdot n^{d-1} + \dots + c_1 \cdot n + c_0 = O(n^d)$

Logarithms

- $\bullet \log_b n = \frac{\log_a n}{\log_a b} = \Theta(\log n)$
- $(\log n)^a = o(n^b)$ for any a, b > 0

Exponential

- For every r > 1 and every d > 0, $n^d = o(r^n)$
- $r^n = o(s^n)$ for r < s

Analysis of SMP

Algorithm: Gale-Shapley Algorithm (1962)

```
Initially all m \in M and w \in W are free
while there is a man m who is free and hasn't proposed to every woman do
    Choose such a man m
    Let w be the highest-ranked woman in m's preference list to whom m has not
      yet proposed
    if w is free then
                                        Exercise
         (m, w) become engaged
    else w is currently engaged to m'
                                        How would you implement this algorithm so
         if w prefers m' to m then
                                        that it has a running time of O(n^2)?
              m remains free
         else w prefers m to m'
              (m, w) become engaged
              m' becomes free
         end
    end
end
return the set S of engaged pairs
```

COMMON RUNTIMES

Appendix Reference:

Appendix

Appendix References

REFERENCES

PPENDIX REFERENCES

IMAGE SOURCES I

WISCONSIN https://brand.wisc.edu/web/logos/

https://en.wikipedia.org/wiki/Time_complexity#/media/File: Comparison_computational_complexity.svg