Protocol description

The zero knowledge protocol of which you have to show proof works as follows: We have a group ' $\langle g \rangle$ ' whose order is n. Secret is x, and the public key is ' $h = g^x$ '.

Prover		Verifier
$u \in_R \mathbb{Z}_n$		
$a = g^u$	_	
$r = x \cdot c + u \mod n$	$\stackrel{\cdot}{\longrightarrow}$	
	$\overset{\cdot}{\leftarrow}$	$c \in_R \mathbb{Z}_n$
	$\stackrel{\cdot}{\longrightarrow}$	
		$g^r \stackrel{?}{=} h^c a$

Now you'll need to find a combination of (a, c, r) that will pass the check-without knowing x.

Help with notation

- $\langle g \rangle$ is a group with generator g.
- All power operations are performed in the group defined by $\langle g \rangle$.

Some notion of the protocol

This protocol can be used for identification. When used properly, this means the Prover proves that he knows the secret ${\tt x}$ to the Verifier.

Note that in this challenge, neither you nor the server are either the Prover or Verifier.