

PESQUISA OPERACIONAL - PROGRAMAÇÃO LINEAR MÉTODO SIMPLEX

Prof. Angelo Augusto Frozza, M.Sc.

ROTEIRO

- Esta aula tem por base o Capítulo 3 do livro de Taha (2008):
 - Motivação
 - Conceitos Matemáticos Iniciais
 - Transição da Solução Gráfica para a Solução Algébrica
 - Determinação algébrica dos Pontos Extremos
 - Método Simplex
 - Detalhes do cálculo do Algoritmo Simplex

MOTIVAÇÃO

 A resolução de um problema de Programação Linear pelo Método Gráfico só é válida para os casos em que se tem 2, no máximo, 3 variáveis.

Figura 3.2 Região de soluções do problema de PL do Exemplo 3.2-1

MOTIVAÇÃO

 A resolução de um problema de Programação Linear pelo Método Gráfico só é válida para os casos em que se tem 2, no máximo, 3 variáveis.

Figura 3.4 Região de soluções do Problema 3, Conjunto 3.2B

MOTIVAÇÃO

NSTITUTO FEDERAL DE

- A solução, então, é usar um Método Algébrico, por exemplo, o Método Simplex.
- O desenvolvimento dos cálculos do Método Simplex é facilitado pela imposição de dois requisitos às restrições do problema:
 - Todas as restrições (com exceção da não negatividade das variáveis) são equações cujos lados direitos são não negativos;
 - Todas as variáveis são não negativas.
- Esses requisitos padronizam e tornam mais eficientes os cálculos do Método Simplex.

- Conversão de desigualdades em equações com o lado direito não negativo
 - Em restrições MENOR OU IGUAL (≤)

LADO ESQUERDO		LADO DIREITO
$6\mathbf{x}_1 + 4\mathbf{x}_2$	≤	24
Representa a utilização desse recurso limitado pelas atividades (variáveis) do modelo.		Representa o limite imposto à disponibilidade de um recurso.

• A diferença entre o lado direito e o lado esquerdo da restrição (≤) resulta na quantidade de recurso *não utilizada* ou *folga*.

- Conversão de desigualdades em equações com o lado direito não negativo
 - Em restrições MENOR OU IGUAL (≤)
 - o Para converter uma desigualdade (≤) em uma equação, uma *variável de folga* é adicionada ao lado esquerdo da restrição
 - Por exemplo:

$$6x_1 + 4x_2 \le 24$$

Define-se s_1 como variável de folga

$$6x_1 + 4x_2 + s_1 = 24, s_1 \ge 0$$

- Conversão de desigualdades em equações com o lado direito não negativo
 - Em restrições MAIOR OU IGUAL (≥)
 - o Uma restrição (≥) estabelece um limite inferior para as atividades do modelo de PL.
 - A quantidade pela qual o lado esquerdo excede esse limite mínimo representa uma sobra, que é representada por uma variável de sobra.
 - A conversão para igualdade (=) é feita subtraindo-se a variável de sobra no lado esquerdo da desigualdade.
 - Por exemplo:

$$x_1 + x_2 \ge 800$$

Define-se **S**₁ como variável de sobra

$$x_1 + x_2 - S_1 = 800, S_1 \ge 0$$

- Conversão de desigualdades em equações com o lado direito não negativo
 - O único requisito restante é que o lado direito da equação resultante seja não negativo.
 - Por exemplo:

$$-x_1 + x_2 \le -3$$

Define-se **s**₁ como variável de folga

$$-x_1 + x_2 + s_1 = -3, s_1 \ge 0$$

Multiplica-se a equação por -1

$$x_1 - x_2 - s_1 = 3$$

• Exercícios:

- No modelo da Tintas & Tintas, considere a solução viável x₁ = 3 e x₂ = 1
 t. Determine o valor das folgas associadas para as matérias primas M1 e M2.
- No modelo da Casa das Rações, determine a quantidade excedente (sobra) de ração obtida na mistura de 500kg de milho e 600Kg de soja.
- Considere a seguinte desigualdade:

$$10x_1 - 3x_2 \ge -5$$

Mostre que multiplicar ambos os lados da desigualdade por -1 e então converter a desigualdade resultante em uma equação é o mesmo que primeiro convertê-la em uma equação e depois multiplicar ambos os lados por -1.

Figura 3.1
Transição de solução gráfica para solução algébrica

Método gráfico Método algébrico Represente todas as restrições Represente a região de em gráfico, entre elas as soluções por m equações em n restrições de não-negatividade variáveis e restrinja todas as variáveis a valores não Região de soluções consiste negativos, m < nem um número infinito de pontos viáveis O sistema tem um número infinito de soluções viáveis Identifique os pontos Determine as soluções básicas extremos viáveis da viáveis das equações região de soluções Candidatos à solução ótima Candidatas à solução ótima são são dados por um número dadas por um número finito finito de pontos extremos de soluções básicas viáveis Use a função objetivo para Use a função objetivo para determinar a solução básica determinar o ponto extremo viável ótima entre todas ótimo entre todos os candidatos as candidatas

- No Método Gráfico, a região de soluções viáveis é delineada pelos meios-espaços, que representam as restrições.
- No Método Simplex, a região de soluções viáveis é representada por *m* equações lineares simultâneas e *n* variáveis não negativas.

o Lembre-se:

m = equações lineares

n = variáveis não negativas

 Pode-se verificar visualmente pelo gráfico por que a região de soluções viáveis tem um número infinito de pontos de solução.

Figura 3.2 Região de soluções do problema de PL do Exemplo 3.2-1

 Mas como tirar a mesma conclusão da representação algébrica da região de soluções?

o Resposta:

- Na representação algébrica, o número de equações m é sempre menor do que ou igual ao número de variáveis n.
- Caso *m* for maior do que *n*, então no mínimo *m n* equações devem ser redundantes.

 Se m = n, e as equações forem consistentes, o sistema tem somente uma solução.

- Se m < n (maioria dos problemas em PL), e as equações forem consistentes, então tem-se um número infinito de soluções.
 - P.ex.: dada a equação x + y = 1
 m = 1
 n = 2
 => número infinito de soluções
 (qualquer ponto sobre a reta x + y = 1 é uma solução)

- Em um conjunto de $m \times n$ equações (m < n)
 - Se igualarmos n m variáveis a zero,
 - E depois resolvermos as m equações para as m variáveis restantes,
 - A solução resultante, se for única, é denominada solução básica e deve corresponder a um ponto extremo (viável ou inviável) da região de soluções.
 - O número máximo de pontos extremos é:

$$C^{n} = \frac{n!}{m!(n-m)!}$$

• Exemplo:

$$Max z = 2x_1 + 3x_2$$

Sujeito a

$$2x_1 + x_2 \le 4$$
$$x_1 + 2x_2 \le 5$$
$$x_1, x_2 \ge 0$$

3

 x_1

Figura 3.2 Região de soluções do problema de PL do Exemplo 3.2-1

• Exemplo:

 Em linguagem algébrica, a região de soluções do problema de PL é representado como:

$$2x_1 + x_2 + s_1 = 4$$

$$x_1 + 2x_2 + s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

- Esse sistema tem:
 - om = 2 equações
 - o n = 4 variáveis

• Exemplo:

- Os pontos extremos são determinados algebricamente igualando n m = 4 2 = 2 variáveis a zero e depois resolvendo as m = 2 variáveis restantes.
- Fazendo $x_1 = 0$ e $x_2 = 0$, as equações dão a solução (básica) única:

$$s_1 = 4$$
, $s_2 = 5$

Esta solução corresponde ao ponto A na figura...

• Exemplo:

Outro ponto pode ser determinado fazendo

$$s_1 = 0 e s_2 = 0$$

E resolvendo as duas equações (sai s₁ e s₂)

$$2x_1 + x_2 = 4$$

$$x_1 + 2x_2 = 5$$

A solução básica é:

$$x_1 = 1, x_2 = 2$$

Que corresponde ao ponto C na figura...

Figura 3.2 Região de soluções do problema de PL do Exemplo 3.2-1

• Exemplo:

 Você deve estar perguntando como decidir quais (n – m) variáveis devem ser igualadas a zero para chegar a um ponto extremo específico?

Resposta:

Sem o auxílio da solução gráfica (aplicável apenas a 2 ou 3 variáveis), não há como definir quais n – m variáveis zero estão associadas com quais pontos extremos.

• Exemplo:

- Mas isso não nos impede de enumerar TODOS os pontos extremos da região de soluções.
- Basta considerar TODAS as combinações nas quais n – m variáveis sejam igualadas a zero e resolver as equações resultantes.
- Feito isso, a solução ótima é a solução básica viável
 (ponto extremo) que resultar no melhor valor para a função objetivo.

Ótima $(x_1 = 1, x_2 = 2)$

• Exemplo:

Tabela 3.1 Soluções básicas e não básicas

Variáveis (zero) não básicas	Variáveis básicas	Solução básica	Ponto extremo associado	Viável?	Valor da função objetivo, z
(x_1, x_2)	(s_1, s_2)	(4,5)	A	Sim	0
(x_1, s_1)	(x_{2}, s_{2})	(4; -3)	F	Não	_
(x_1, s_2)	(x_2, s_1)	(2,5;	B	Sim	7,5
(x_2, s_1)	(x_1, s_2)	1,5)	D	Sim	4
(x_{2}, s_{2})	(x_1, s_1)	(2,3)	E	Não	
(s_1, s_2)	(x_1, x_2)	(5;-6)	\boldsymbol{C}	Sim	8
		(1; 2)			(ótimo)

Exemplo 3.2-1

• Exemplo:

 No exemplo temos os seguintes pontos extremos (soluções básicas)

$$C_{2}^{4} = \frac{4!}{2!2!} = 6$$

- Que correspondem a quatro pontos extremos viáveis:
 A, B, C e D
- E dois pontos na região não viável: E e F

• Exemplo:

Lembre-se:

As *n* – *m* variáveis zero são **variáveis não básicas**

As demais variáveis são variáveis básicas

A solução para cada conjunto de *n* – *m* é uma **solução básica**

Tabela 3.1 Soluções básicas e não básicas

Variáveis (zero) não básicas	Variáveis básicas	Solução básica	Ponto extremo associado	Viável?	Valor da função objetivo, z
(x_1, x_2)	(s_1, s_2)	(4; 5)	A	Sim	0
(x_1, s_1)	(x_2, s_2)	(4; -3)	F	Não	_
(x_1, s_2)	(x_2, s_1)	(2,5;	B	Sim	7,5
(x_2, s_1)	(x_1, s_2)	1,5)	D	Sim	4
(x_{2}, s_{2})	(x_1, s_1)	(2;3)	E	Não	_
(s_1, s_2)	(x_1, x_2)	(5;-6)	\boldsymbol{C}	Sim	8
		(1; 2)			(ótimo)

• Considerações finais:

- À medida que o tamanho do problema aumenta (isto é, m e n ficam maiores), enumerar todas as soluções básicas envolve cálculos impraticáveis.
 - o Por exemplo: para m = 10 e n = 20 é necessário resolver 184.756 conjuntos de 10 x 10 equações.
 - o Este é um tipo de problema comum na vida real.
- O Método Simplex ameniza drasticamente essa tarefa árdua de cálculo investigando apenas uma fração de todas as possíveis soluções básicas viáveis (pontos extremos) da região de soluções.
- Em essência, o Método Simplex utiliza uma busca inteligente que localiza o ponto extremo ótimo de maneira eficiente.

• Exercício:

Considere o seguinte problema de PL:

$$Maximizar z = 2x_1 + 3x_2$$

Sujeito a

$$x_1 + 3x_2 \le 6$$

 $3x_1 + 2x_2 \le 6$
 $x_1, x_2 \ge 0$

• Exercício:

ISTITUTO FEDERAL DE

- a) Expresse o problema em forma de equação.
- b) Determine todas as soluções básicas do problema e classifique-as como viáveis e não viáveis.
- Use substituição direta na função objetivo para determinar a solução básica viável ótima.
- Verifique graficamente que a solução obtida em (c) é a solução ótima do problema de PL – então, conclua que a solução ótima pode ser determinada algebricamente considerando somente soluções básicas viáveis
- e) Mostre como as soluções básicas *não viáveis* são representadas graficamente na região de soluções básicas.

REFERÊNCIAS BIBLIOGRÁFICAS

• TAHA, H. A. **Pesquisa Operacional**. 8. ed. São Paulo: Pearson, 2008.

