PATENT SPECIFICATION

NO DRAWINGS

Inventors: LESLIE BRETHERICK and WILLIAM ROBERT WRAGG

866.681

Date of filing Camplete Specification (under Section 3 (3) of the Patents

Act 1949): May 19, 1959.

No. 16551/58.

Application Date : May 22, 1958.

No. 12303/59. Application Date : April 10, 1959.

Complete Specification Published: April 26, 1961.

dex at acceptance: —Classes 2(3), B4(A2: M), C2A(3: 5:9:13: 14), C2B(35: 43D1), C2R(15: 16: 17: 19), C2T18, C3A13A3(A4: B2: B3: C: F3: H1); and 81(1), B2(G: S).

ternational Classiffication: -C07d. A61k.

COMPLETE SPECIFICATION

N-Substituted Piperidines

We, MAY & BAKER LIMITED, a British Company, of Dagenham, Essex, England, do hereby declare the invention for which we pray that a patent may be granted to us, and 5 the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to heterocyclic compounds, and has for an object the provision of 10 new and useful compounds which are therapeutically active substances for use in the

treatment of hypertension or are intermediates for the preparation of such therapeutically active substances. Further objects are to pro-15 vide useful processes for the preparation of, and pharmaceutical compositions containing, such compounds.

According to the present invention there are provided new piperidine and tetrahydropyridine derivatives of the general formula:

1

wherein R₁ represents a hydrogen atom or a methyl or ethyl group and R11 represents a hydrogen atom, or R1 and R1 together repre-25 sent a methylene group (=CH₂), an ethylidene group (=CH₂), are an allylidene group (=CH₂), R₂ represents a hydrogen atom or a methyl group, R41 represents a hydrogen atom or an alkyl group con-[Price 3s. 6d.]

taining 1 to 3 carbon atoms and R, and R4 30 each represent a hydrogen atom or together represent a single bond, and acid addition salts thereof.

The compounds of general formula I and their acid addition salts are useful ganglion blocking agents and may consequently be used in the clinical treatment of hypertension.

Preferred compounds according to the invention are 1-amino-2,2,6,6-tetramethyl-piperidine, 1 - methylamino - 2,2,6,6 - tetra-1 - methyleneamino-2,2,6,6 - tetramethylpiperidine, 1 - methylamino - 2,2,6,6 - tetramethyl - 1,2,5,6 - tetramethylpiperidine, anino - 2,24,6,0 - tetramenny - 1,22,5,0 - tetra-hydropyridine, 1 - ethylideneamino - 2,24,6,6-tetramethylipjeridine, 1 - amino - 2,24,6,6-pentamethyl - 1,2,5,6 - tetrahydropyridine and their acid addition salts.

According to features of the invention the aforesaid new piperidines and tetrahydropyridines are prepared by the following methods:-

1. The compounds of formula I where R1 and R11 represent hydrogen atoms may be prepared from the compounds of the general formula:

II

(wherein the various symbols are as hereinbefore defined) by conversion into the corresponding N-amino compounds by known methods. For example, a compound of formula II is converted into an N-nitroso-derivative by treatment with, for example, nitrous acid or with sodium nitrite in the presence of acid, followed by reduction of the nitroso group to amino by known methods, for example, using zinc and acetic acid, lithium aluminium hydride or electrolytic methods. Preferably, the reduction is effected by using zinc and acetic acid is effected by using zinc and

acetic acid. An alternative process comprises
the interaction of a compound of formula II
with hydroxylamine-O-sulphonic acid.
The compounds of general formula II.

while hydroxyames-C-sulphonic acid.

The compounds of general formula II, some of which are known compounds, may be some of which are known compounds, may be possible to the corresponding 4-piperidones by known where R, are hydrogen atoms may be prepared the piperidones, with, for cample, hydrazine and alkali in the present of the piperidones, with, for cample, hydrazine and alkali in the present of the piperidones, with, for cample, hydrazine where R, a represents an alkyl group containing the piperidone with a Grigand reagent of the piperidon with a Griga

30 respectively.

2 The compounds of general formula I where Rs, and Rs, together represent a metalylane, chipfidene or allylidene group may be lower Rs, and Rs, both represent hydrogen to the process of formula St. When Rs, and Rs, both represent hydrogen and the state of the

The compounds of formula I where R₁ represents a methyl or ethyl group and R₂¹ represents a hydrogen atom are prepared:

(e) by alkylation of compounds of formula I where R, and R,¹ both represent hydrogen atoms by known methods for the conversion of a 1,1-discount methods for the conversion of a 1,2-discount of a 1,2-discou

(b) by reduction of compounds of formula

Where R₁ and R₂ together represent a

methylene or ethylidene group by known
methods. Preferably the reduction is carried
out by hydrogenation in the presence of a

catalyst such as Rancy nickel, or

(c) by reduction of the acylamino compounds of the general formula:

Ш

65

(wherein R represents a hydrogen atom or a methyl group and the other symbols are as hereinbefore defined) becomes methods for the reduction of a hydrogen state of hydrogen atomic of a hydrogen atomic of hydrogen with lifthium attention to the defined of the defined with lifthium attention in defined. The reported by the acylation of a compound of formula I in which both R₁ and R₂ represent hydrogen atoms by known methods of acylation.

The expression "known methods" as used in this specification and in the appended claims means methods heretofore used or described in the chemical literature.

When, as is preferred, the compound of

general formula I are used for therapeutic purposes in the form of acid addition salts, it should be understood that only those such salts should in practice be employed as contain anions that are relatively innocuous to the animal organism when used in therapeutic doses so that the beneficial physiological properties inherent in the parent compound are not vitiated by side-effects ascribable to those anions; in other words, only non-toxic salts are contemplated. Suitable acid addition salts include hydrohalides (for example hydrochlorides), phosphates, nitrates, sulphates, maleates, fumarates, citrates, tartrates.

general foremula I by the methods hererofore used in the art for making acid addition salts. For example, the sach addition salts may be 100 made by mirror between the salt of the salts and the salts and acquivalent quantity of results acid in a solvent and isolating the creation acid in a solvent and isolating the creation acid part or all of the solvent. They may be purified by crystallisation or by any other method commonly used in the art.

methane sulphonates and ethane disulphonates.

These salts may be made from the bases of

The invention is illustrated by the following Examples.

EXAMPLE I.

3 866,681

The reaction mixture was basified with concentrated sodium hydroxide solution and then steam distilled until the distillate was no longer basic. The distillate was treated with potassium hydroxide (200 g.) and the oil which separated was extracted with ether.

The ethereal solution was shaken with dilute acetic acid and after separation the aqueous layer was basified and extracted with 10 ether. The ethereal extract was dried, freed of solvent and fractionally distilled. The fraction boiling at 59-65° C./8 mm. was collected and redistilled at 66-68° C./8 mm. to give 1 - amino - 2,2,6,6 - tetramethylpiperidine 1 - annuo - 2,2500 - tetramentypiperstine 15 as a pale yellow liquid. Treatment of the base with ethereal hydrogen chloride gave the hydrochloride salt, m.p. 206—208° C.

EXAMPLE II To a stirred refluxing solution of 2,2,6,6-20 tetramethylpiperidine (71 g.) in water (30 ml.) was added dropwise during 10 minutes an ice-cold solution of hydroxylamine-Osulphonic acid (6 g.) in water (15 ml.). The mixture was refluxed for a further 25 minutes, cooled, and basified with sodium hydroxide (15 ml. of 50% w/v solution). The alkaline solution was extracted with ether, and after drying, the extract was freed of solvent by evaporation. The residue was fractionally distilled in vacuo, and the fraction of b.p. 65-75° C., when examined by analytical gasliquid chromatography, was shown to contain a proportion of 1-amino-2,2,6,6-tetramethylpiperidine. This compound was separated 35 from the accompanying 2,2,6,6-tetramethylpiperidine by preparative gas-liquid chromatography on an Apiezon M/Celite column at 182° C., the emergent vapour fractions being collected in 2N hydrochloric acid. Evaporation 40 and desiccation of the appropriate fraction 1 - amino - 2,2,6,6 - tetramethylpiperidine hydrochloride as a white solid, m.p.

EXAMPLE III.

206-208° C.

To a stirred refluxing mixture of lithium aluminium hydride (1.8 g.) in dry tetrahydro-furan (75 ml.) was added during 3 hours a 1-nitroso-2,2,6,6-tetramethylof solution piperidine (8.5 g.) in dry tetrahydrofuran. 50 The mixture was stirred and refluxed for a further 60 hours. After cooling, the reaction mixture was treated successively with water (1.67 ml.), sodium hydroxide (1.67 ml. of 15% w/v solution) and water (5.2 ml.). In-55 organic material was removed by filtration and the filtrate was evaporated in vacuo. The residue was shaken with acetic acid (40 ml. of 2N solution) and unchanged nitrosamine was separated by ether extraction. The 60 aqueous solution was basified with sodium hydroxide (10 ml. of 50% w/v solution) and extracted with ether. The ethereal extract after drying and evaporation gave crude 1-amino-2,2,6,6-tetramethylpiperidine (3.0 g.) which

was purified by fractional distillation in vacuo, b.p. 78-86° C./13 mm.

EXAMPLE IV. A mixture of 1-amino-2,2,6,6-tetramethylpiperidine (6.24 g.), dry acetone (30 ml.) anhydrous potassium carbonate (6 g.) and methyl iodide (2.5 ml.) was heated under reflux for 16 hours. The suspension was filtered and freed of solvent. The filtrate was dissolved in ether (25 ml.) and a slight excess of aqueous-alcoholic hydriodic acid was added. The solid which separated was filtered, washed with ether, and recrystallised from water, to give 1-methylamino-2,2,6,6-tetramethylpiperidine hydriodide (4.8 g.) as white needles, m.p. 228-30° C. (dec.). The free obtained by basification hydriodide, is a colourless liquid, b.p. 84-87° C. at 17 mm. The hydrogen tartrate salt, prepared by addition of the base in other to a warm alcoholic solution of tartaric acid, was obtained after equilibrating in air at 25° C. as a white microcrystalline monohydrate, m.p. 173-6° C.

EXAMPLE V. A mixture of 1-amino-2,2,6,6-tetramethyl-

piperidine (20 g.), dry acetone (300 ml.) anhydrous potassium carbonate (120 g.) and ethyl iodide (30 g.) was stirred and boiled under reflux for 24 hours. The cooled mixture was diluted with dry ether (500 ml.) and filtered from inorganic material. The filtrate was freed of volatile materials by evaporation in vacuo at 40° C. Ether (50 ml.) was added to the residue, and the solution was extracted with acetic acid (4 portions of 30 ml. of 2N solution). The aqueous solution was basified with sodium hydroxide (40 ml. of 50% w/v solution) and extracted with ether. The extract was dried, and freed of solvent by evaporation in vacuo at 40° C. The residual oil was purified by preparative gas-liquid chromato-graphy on an Apiezon M/Celite column at 182° C., the emergent vapour fractions being collected in 2N hydrochloric acid solution. (The word "Celite" is a Registered Trade Mark). Evaporation and desiccation of the appropriate fraction gave 1-ethylamino-2,2,6,6-tetramethylpiperidine hydrochloride (4 g.) as a white solid, m.p. 210-214° C., with previous shrinking.

EXAMPLE VI. A mixture of 1-amino-2,2,6,6-tetramethylpiperidine (5.0 g.) and formaldehyde (3.0 ml. of 40% w/v solution) was shaken together for 10 minutes, the temperature rising spontaneously to 40° C. After cooling, the turbid solution was extracted with ether. The ethereal extract was dried and evaporated, and the residue was distilled in vacuo. 1-Methyleneamino - 2,2,6,6 - tetramethyl-

hydriodic acid gave the hydriodide salt as a

piperidine (3.6 g.) was obtained as a colour-less liquid, b.p. 70° C./10 mm. Treatment of an ethereal solution of the base with alcoholic cream microcrystalline solid, m.p. 154° C.

EXAMPLE VII.

To an ice-cooled solution of 1-amino-2,2,6,6-tetramethylpiperidine (5.0 g.), in ether (10 ml.) was added acetaldehyde (1.41 g.); heat was evolved and water began to separate. Dried magnesium sulphate (2 g.) was added and the mixture was allowed to stand at room 10 temperature for 18 hours. The mixture was filtered and the ethereal filtrate evaporated. The residue was distilled in vacuo to give 1ethylideneamino - 2,2,6,6 - tetramethylpiperidine (5.3 g.) as a colourless liquid, b.p. 73-77° C./10 mm. The hydriodide salt, prepared in a similar manner to that described in Example VI, was a white crystalline solid, m.p. 204-208° C.

EXAMPLE VIII. To stirred ice-cooled hydrochloric acid (156 ml. of N solution), was added dropwise 2,2,6,6 - tetramethyl - 1,2,5,6 - tetrahydropyridine (21.7 g.). To the neutral solution was added a cold solution of sodium nitrite (10.8 25 g.) in water (100 ml.) during 90 minutes at below 5° C. The mixture was then boiled under reflux for 6 hours, a yellow oil separating. After cooling the solidified oil was extracted into ether. The extract was dried and freed of solvent by distillation, finally in vacuo, to give 1-nitroso-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine (21.2 g.) as a yellow solid, m.p. 50-52° C. after purification by sublimation in vacuo.

To a mixture of the above nitrosamine (23 g.), water (130 ml.) and zinc powder (37.5 g.) was added acetic acid (130 ml. of 90% w/ solution) dropwise during 4 hours, cooling being applied as necessary to keep the internal temperature below 45° C. The mixture was stirred for a further 16 hours at ambient temperature and then filtered). The filtrate was basified with sodium hydroxide (30 ml. of 50% w/v solution), and steam distilled until 45 300 ml. of distillate were collected. To the distillate was added potassium hydroxide (60 g.), and the cooled alkaline solution was extracted with ether several times. The ethereal solution was extracted with acetic acid (5 50 portions of 30 ml. of 50% w/v solution). The aqueous extract was basified with sodium

hydroxide (30 ml. of 50% w/v solution), cooled in ice, and extracted with ether. The extract was dried, freed of solvent by distilla-55 tion, and the residual oil purified by fractional distillation in vacuo. 1-Amino-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine (11.3 g.) was obtained as a colourless liquid, b.p. 83— 85° C./10 mm. The hydriodide salt, prepared

in ether by addition of alcoholic hydriodic acid, was a white crystalline solid, m.p. >300° C.

EXAMPLE IX.

A mixture of 1-amino-2,2,6,6-tetramethyl-65 1,2,5,6-tetrahydropyridine (5.5 g.) and form-

aldehyde (3.23 ml. of 40% w/v solution) was warmed at 50° C. for 30 minutes. The turbid solution was cooled, and extracted with ether. The extract was dried and freed of solvent by evaporation in vacuo. The residue was fractionally distilled in vacuo to give 1methylencamino - 2,2,6,6 - tetramethyl-1,2,5,6-tetrahydropyridine (3.9 g.) as a pale yellow liquid, b.p. 86—88° C./10 mm. The hydriodide salt, prepared by addition of alcoholic hydriodic acid to the base in ether, was a cream crystalline solid, m.p. 132-133° C. (dec.).

EXAMPLE X. A solution of 1-methyleneamino-2,2,6,6tetramethyl-1,2,5,6-tetrahydropyridine (1.2 g. in methanol (15 ml.), containing Raney nickel catalyst (1 g.), was hydrogenated at 22° C. until the theoretical hydrogen uptake had taken place. The catalyst was separated by filtration and the filtrate was evaporated. The residual crude 1 - methylamino - 2,2,6,6 - tetramethyl-1,2,5,6-tetrahydropyridine (0.8 g.) was dissolved in ether, and treated with alcoholic hydriodic acid. The hydriodide salt separated as a crystalline solid, m.p. 219-223° C.

EXAMPLE XI.

2,2,6-Trimethyl-piperidine (37.9 g.) was added slowly to stirred hydrochloric acid (298 ml. of N solution) cooled in ice. To the neutral solution, sodium nitrite (20.6 g.) dissolved in water (200 ml.) was added over 30 minutes and the resulting mixture was refluxed for 10

The reaction mixture was steam distilled, 100 and the distillate (2 1.) was saturated with salt and continuously extracted with ether for 24 hours. The ethereal extract was dried, and evaporated, and the residual oil purified by fractional distillation in vacuo. 1-Nitroso- 105 2,2,6-trimethyl-piperidine (13.5 2,2,6-trimethyl-piperidine (13.5 g.) was obtained as a yellow liquid, b.p. 130—133°

C./10 mm.

To a stirred mixture of the above nitrosamine (13 g.), zinc dust (21 g.) and water (90 ml.), was added acetic acid (90 ml. of 90% w/v solution) at a rate to maintain the internal temperature below 40° C. Thereafter, the reaction mixture was stirred at ambient tem-perature for 16 hours and then filtered. The 115 filtrate was basified with sodium hydroxide (25 ml. of 50% w/v solution) and steam distilled.

The distillate (500 ml.) was treated with potassium hydroxide (100 g.) and extracted 120 with ether. The ethereal extract was extracted with an excess of dilute acetic acid, and after separation, the aqueous phase was basified and extracted with ether. The extract was dried and evaporated and the residue distilled in 125 vacuo. 1 - Amino - 2,2,6 - trimethylpiperidine (4.9 g.) was obtained as a colourless oil, b.p. 62-68° C./13 mm.

EXAMPLE XII. To a solution of 2,2,4,6-6-pentamethyl- 130

866,681

1,25,6-tetrahydropyridine hydriodide (28.1 g, prepared by the reaction of 2,26,6-tetrahydropyridid-4-one with methyl magnetismicodide in dry ether, and dehydration of the 2,24,6,6- pentamethylpiperidin - 4 - ol so formed by the action of heat on its hydriodide in water (300 ml) at 50° C, was added as olution of sodium nitrite (6.9 g.) in water (30 ml). The resulting mixture was refluxed from 10 16 hours, cooled, and extracted with ether. The extract was dried and evaporated, and the residue purified by distillation in page.

the residue purified by distillation in vacuo.

1 - Nitroso - 2,2,4,6,6 - pentamethyl - 1,2,5,6tetrahydropyridine (12.4 g.) was obtained as
a dark yellow liquid, b.p. 136—140° C./10

mm. To a mixture of the above nitrosamine (51.4) g.), zinc powder (83 g.) and water (288 ml.), was added acetic acid (288 ml. of 90% w/ 20 solution) at a rate to maintain the internal temperature below 40° C. Thereafter, the reaction mixture was stirred at ambient temperature for 16 hours and filtered. The filtrate was basified with sodium hydroxide (50% 25 w/v solution) and distilled in steam. The distillate (1 litre) was treated with potassium hydroxide (133 g.) and extracted with ether. The ethereal extract was extracted with an excess of dilute acetic acid and after separa-30 tion the aqueous phase was basified and extracted with ether. The extract was dried and evaporated and the residue distilled in vacuo. 1 - Amino - 2,2,4,6,6 - pentamethyl - 1,2,5,6tetrahydropyridine (15.9 g.) was obtained as a colourless liquid, b.p. 95—98° C./10 mm., the hydriodide of which is a cream solid, m.p. 160-163° C. (dec.).

EXAMPLE XIII.

1 - Amino - 2,2,4,6,6 - pentamethyl
40 1,2,5,6 - tetrahydropyridine (6.72 g.) was
treated with formaldehyde as described in
Example IX to give 1-methyleneamino-

2,2,4,6,6 - pentamethyl - 1,2,5,6 - tetrahydropyridine (3.9 g.) as a colourless liquid b.p. 93—96° C./13 mm., the hydriodide of which is a white solid, m.p. 122—3° C. (dec.).

EXAMPLE XIV.

1 - Amino - 2,2,6,6 - tetramethylpiperidine (7.8 g.) was treated with acrolein (3.5 g.), when the temperature rose spontaneously to 40° C. and water separated. The mixture was warmed to 60° C. for 15 minutes, and after cooling it was diluted with ether and dried with magnesium sulphate. The mixture was 55 filtered, and the solvent evaporated to give 1 - allylideneamino - 2,2,6,6 - tetramethylpiperidine as a yellow liquid, which partly resinified on attempting to distil a portion. The crude base in ether was treated with 60 aqueous alcoholic hydriodic acid, and the precipitated solid, after trituration with ethyl acetate, was recrystallised from water, to give the hydriodide salt as a cream microcrystalline powder, m.p. 231° C. (dec.).

Example XV.

1 - Amino - 2,2,6 - trimethylpiperidine (2.84 g.) was treated with formaldehyde as described in Example VI to give 1-methylenamino - 2,2,6 - trimethylpiperidine (2.4 g.) as a colourless liquid, b.p. 78—810 C,/13 mm., the hydriodide of which is a cream solid, m.p. 183—185° C.

Example XVI.

A solution of 1-amino-2,2,6,6-tertamethylpiperdine (10.4 g) in formic acid (50 mL) was heated at 100° C. for 44 hours. Excess formic acid was removed by distillation, the residual solid was treated with excess 2N sodium hydroxide solution, and the resulting solution was extracted with ether. The etheral extract was dried, and evaporated in ocato. The solid residue was purified by sublimation in ocato to give 1-formylamino-2,2,6,6-tertamethylpiperidine as a white solid, mp. 124—70°

This formylamino compound (4 g.) was reduced in dry terrabydrofunan (100 ml.) containing lithium aluminium hydride (1.65 g.). The mixture was stirred and allowed to react for a further 48 hours, and then reacud ouccessively with water (1.54 ml.), sodium hydroxide (1.54 ml.) of 15/2, wy solution), and water (4.34 ml.). Inorgamic material was removed by filtration and the filtrate evaporated. Fractional distillation of the residue gave 1-methylamino-22,6,6-termethylpiperidine, identical with the material prepared as in Example IV.

The present invention includes within its scope pharmaceutical compositions which 100 comprise one or more compounds of general formula I or their acid addition salts as aforesaid together with a significant amount of a pharmaceutical carrier. The invention includes especially such compositions made up for onal or parenteral administration. In clinical practice the compounds of the present invention will normally be administered orally so that compositions suitable for oral administra-

tion are preferred.

Solid compositions for oral administration include compressed tablets, pills, dispersible powders, and granules. In such solid compositions one or more of the active compositions one or more of the active compounds of general formula I is or are admixed with at 11s least one inert diluent such as calcium carbonate, potatos starch, algainc acid, or lactose. The compositions may also contain, as is normal practice, additional substances other than inert diluents, e.g., lubricating 120 agents, such as magnesium sesterate.

Liquid compositions for oral administration include plarmaceutically acceptable emulsions, solutions, supersions, syrups and elixirs containing inert diluents commonly used in the art, such as water and liquid paraffin. Besides inert diluents such compositions may also comprise adjuvants, such as wetting and sus-

pending agents, and sweetening and flavour-

Compositions for oral administration include capsules of absorbable material such as gelatin containing one or more of the active substances of general formula I with or without the addition of diluents or excipients.

Preparations according to the invention for parenteral administration include sterile 10 aqueous or non-aqueous solutions, suspensions, or emulsions. Examples of non-aqueous solvents or suspending media are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such 15 as ethyl oleate. These compositions may also contain adjuvants such as wetting, emulsifying and dispersing agents. They may be sterilised by, for example, filtration through a bacteria-

retaining filter, by incorporation in the com-20 positions of sterilising agents, by irradiation or by heating. They may also be manufactured in the form of sterile solid compositions. which can be dissolved in sterile water or some other sterile injectable medium immedi-25 ately before use.

The percentage of active ingredient in the compositions of the invention may be varied, it being necessary that it should constitute a proportion such that a suitable dosage shall 30 be obtained. Obviously several unit dosage forms may be administered at about the same time. In general, the preparations of the present invention should normally contain at least 0.025% by weight of active substance in the case of injectable solutions and at least 0.1% by weight of such substance in the case

of oral preparations.

The following Examples will serve to illustrate pharmaceutical compositions according 40 to the invention.

EXAMPLE XVII.

Tablets of the formula:

1-Amino-2,2,6,6-tetramethylpiperidine hydrogen tartrate 2.5 mg. Lactose 87.3 mg. Maize Starch 5.0 mg. Sodium carboxymethyl cellulose 0.2 mg. Stearic acid 5.0 mg.

are prepared by dissolving 1-amino-2,2,6,6-50 tetramethylpiperidine hydrogen tartrate in water and dispersing the sodium carboxymethyl cellulose in the solution. The solution so obtained is then mixed with an intimate mixture of the lactose and starch and the 55 resulting mass passed through a 12-mesh sieve. The resulting granules are dried overnight at 70° C. and then passed through a 16mesh sieve. The stearic acid is added at thisstage as a lubricant. These granules are then 60 compressed into tablets.

EXAMPLE XVIII. An injectable solution of the formula:

1-Amino-2,2,6,6-tetramethylpiperidine hydrochloride 0.25 g Distilled water up to 100 ml.

is prepared by dissolving the 1-amino-2,2,6,6tetramethylpiperidine hydrochloride in the distilled water. The solution is filtered and filled into ampoules which are sterilised in an autoclave.

EXAMPLE XIX. An injectable solution of the formula:

1-Methylamino-2,2,6,6-tetramethyl-

piperidine hydrochloride Chlorocresol 0.2 g Distilled water up to 100 ml. 75

80

is prepared by dissolving the 1-methylamino-2,2,6,6-tetramethylpiperidine hydrochloride in the distilled water containing the chlorocresol and sterilising the solution by heating in an autoclave at a pressure of 10-15 lbs. per square inch during 30 minutes. There is thus obtained a sterile solution suitable for parenteral administration for therapeutic purposes.

EXAMPLE XX. A mixture of 1-methyleneamino-2,2,6,6tetramethylpiperidine hydrogen tartrate (10 g.) and calcium carbonate (70 g.) is granulated by admixture with a sufficient quantity of 10% aqueous maize starch paste. The granules are passed through an 8-mesh sieve and after drying at 50-55° C, they are then coated with a sufficient quantity of a solution of shellac (15 g.), castor oil (3 g.) and ethyl alcohol (800 g.). Magnesium stearate (3 g.) is then added to the granules after which the mixture is compressed to give tablets suitable for oral administration for therapeutic purposes.

WHAT WE CLAIM IS:-1. Compounds of the general formula: 105

where R₁ represents a hydrogen atom or a methyl or ethyl group and R11 represents a hydrogen atom, or R1 and R11 together represent a methylene, ethylidene or allylidene 110 group, R2 represents a hydrogen atom or a methyl group, R4 represents a hydrogen atom or an alkyl group containing 1 to 3 carbon atoms and R₃ and R₄ each represent a

hydrogen atom or together represent a single

bond.

2. An acid addition salt of a compound of the general formula:

where R₂ represents a hydrogen atom or a methyl 'or ethyl group, R₂ represents a hydrogen atom or a methyl group, R₄ represents a hydrogen atom or an alkyl group containing 1 to 3 carbon atoms and R₂ and R₄ each represent a hydrogen atom or together

represent a single bond.

3. An acid addition salt of a compound of the general formula:

where R₁ and R₂ together represent a methylene, ethylidene, or allylidene group, R₁ represents a pletogen atom or a methylene, the property of the prope

piperidine and its acid addition salts.

5. 1-Methylamino - 2,2,6,6 - tetramethylpiperidine and its acid addition salts.

6. 1 - Methyleneamino - 2,2,6,6 - tetramethylpiperidine and its acid addition salts. 7. 1 - Methylamino - 2,2,6,6 - tetramethyl-1,2,5,6-tetrahydropyridine and its acid addition

salts.
8. 1 - Ethylideneamino - 2,2,6,6 - tetramethylpiperidine and its acid addition salts.

9. 1 - Amino - 2,2,4,6,6 - pentamethyl-35 1,2,5,6-tetrahydropyridine and its acid addition salts.

10. Process for the preparation of a compound as claimed in claim 1 where R₁ and R₂¹ represent hydrogen atoms which comprises reducing an N-nitroso compound of the formula:

(wherein the various symbols are as defined in claim 1) by known methods for the reduction of a nitroso group to an amino group.

11. Process according to claim 10 wherein the reduction is carried out with zinc and acetic acid.

12. Process for the preparation of a compound as claimed in claim 1 where R₁ and R₁. represent hydrogen atoms which comprises reacting a compound of the formula:

(wherein the various symbols are as defined in claim 1) with hydroxylamine-O-sulphonic 55

13. Process for the preparation of a compound as claimed in claim 1 where R, and R,* together represent a methylene, ethylidene or allylidene group which comprises reaching a compound of the formula specified in claim 1 where R, and R,* both represent hydrogen atoms with an addebyde of the formula R,* CHO (wherein R, is a hydrogen atom or a methyl or vinyl group) or a derivative thereof such as an acetal, thioacetal, diacyl derivative or bisulphite addition compound.

14. Process according to claim 13 wherein the reaction is effected in an inert solvent, with or without the addition of a dehydrating agent at room or slightly elevated temperature.

15. Process for the preparation of a compound as claimed in claim 1 where R, represents a methyl or ethyl group and R_c¹ represents a hydrogen atom which comprises a hydrogen atom which comprises a compound of the formula specified in claim 1 where R, and R, 3 both represent hydrogen atoms by known methods for the conversion of a 1,1-disubstituted hydrazine to a 2-monoally derivative.

16. Process according to claim 15 wherein the alkylation is effected with a reactive ester, such as methyl or ethyl iodide.

17. Process for the preparation of a compound as claimed in claim 1 where R, represents a methyl or ethyl group and R,¹ represents a hydrogen atom which comprises reducing a compound of the formula:

(wherein R represents a hydrogen atom or a methyl group and the other symbols are as defined in claim 1) by known methods for the reduction of a hydrazide to an N-alkylhydrazine.

18. Process according to claim 17 wherein the reduction is effected with lithium aluminium hydride in an inert solvent,

19. Process as claimed in any of claims 10

to 18 when carried out substantially as described in any one of Examples I to XVI. 20. Compounds as claimed in claim 1 when

prepared by a process claimed in any one of claims 10 to 19.

21. A pharmaceutical composition comprising one or more compounds or acid addition salts thereof as claimed in any one of claims 1 to 9 and 20 in association with a significant amount of a pharmaceutical carrier.

22. A pharmaceutical composition claimed in claim 21 substantially as described in any one of Examples XVII to XX.

> J. A. KÉMP & CO., Chartered Patent Agents, 14, South Square, Gray's Inn, London, W.C.1.

PROVISIONAL SPECIFICATION No. 16551 A.D. 1598

N-Substituted Piperidines We, May & Baker Limited, a British 25 Company, of Dagenham, Essek, England, do hereby declare this invention to be described

in the following statement:-This invention relates to heterocyclic compounds, and has for an object the provision of new and useful compounds which are therapeutically active substances for use in the treatment of hypertension or are intermediates for the preparation of such therapeutically active substances. Further objects are to pro-

35 vide useful processes for the preparation of, and pharmaceutical compositions containing, such compounds. According to an aspect of the present invention, there are provided new and useful

40 piperidine derivatives of the general formula:

wherein R1 and R11 each represent a hydrogen atom or a lower alkyl group, R2 represents a hydrogen atom or a methyl group, R₂ represents a hydrogen atom or a lower alkyl group and R₃ and R₄ may each represent a hydrogen atom or together represent a single bond, and acid addition and quaternary ammonium salts thereof.

These piperidine compounds have a powerful ganglion blocking activity which renders them extremely useful in the treatment of hypertension. Of importance are those compounds in which R2 is a methyl group, and R41 is a hydrogen atom or a methyl or ethyl group. Particular compounds of outstanding importance are 1-amino, and 1methylamino 2:2:6:6 - tetramethylpiperidine and their salts which have been found to be more active as ganglion blocking agents than the known hexamethonium compounds.

According to a feature of the present invention, the new piperidine derivatives of general formula I wherein R₁ and R₂¹ represent hydrogen atoms are prepared from a corresponding piperidine compound of the formula:

II

(wherein the various symbols are as hereinbefore defined) by conversion into the corresponding N-nitroso derivative by treatment with, for example, nitrous acid or with sodium nitrite in the presence of acid, followed by reduction of the nitroso group to amino by known methods, for example using zinc and acetic acid, lithium aluminium hydride or 75 electrolytic methods. An alternative process comprises the interaction of a piperidine com-pound of formula II with hydroxylamine-Osulphonic acid.

The piperidines of general formula I 80 wherein one of R₁ and R₁ represents a lower alkyl group and the other represents a hydrogen atom may be prepared, in accordance with further features of the invention, by the following processes:

 Alkylation of a 1-aminopiperidine of the formula:

5

(wherein the various symbols are as hereinbefore defined) by known methods for the conversion of a 1:1-disubstituted hydrazine to its 2-slkyl or 2:2-disllyl derivative. Such 10 methods include the employment of an alkylating agent in the form of a reactive ester such as methyl iodide or methyl pour-obluensulphonate, each in the presence of an acid

TTT

binding agent.

5 (2) Conversion of a 1-aminopiperidine conforming to formula III to an alkylidene derivative by treatment with an aldehyde RCHO (where R represents a hydrogen atom or an alkyl group) and reaction of the resultant alkylidene derivative of the formula:

(wherein the various symbols are as hereinbefore defined) with a Grignard reagent R²MgX (wherein R² is an alkyl group such as the grouping —CH—R represents the

lower alkyl group R₁) to give a 1-monoalkyl-aminopiperidine of the formula:

For therapeutic purposes, the compounds of 30 formula I may be employed in the form of their salts, it being understood that only those

such salts should in practice be employed as contain anions or radicals that are relatively innocuous to the animal organism when used in therapeutic doses so that the beneficial physiological properties inherent in the parent compound are not vitiated by side-effects ascribable to those anions or radicals. Suitable acid addition salts include hydrohalides, for example, hydrochlorides, 8-chlorotheo-phylnitrates, sulphates, linates, phosphates, tartrates, fumarates, citrates. maleates, methanesulphonates, and ethanedisulphonates. Suitable quaternary ammonium derivatives include those prepared from organic halides, for example, methyl or ethyl iodide, chloride, or bromide or allyl or benzyl chloride or bromide.

The invention is illustated by the following Examples.

EXAMPLE I. 50

To a stirred intxture of 1-nitroso-2:2:6:6-tetramethylpiperidine (Franchimont and Friedmann, Rec. Trav. Chim. 24, 415 (1905); 90 g.), water (500 m.l.) and zinc dust (138 g.) was added 90%, acetic acid (455 mls.) at such a rate to keep the temperature between 20 and 40° C. Stirring was continued for four hours

after the addition was complete.
The reaction mixture was basified with concentrated sedium hydroxide solution and then
steam distilled until the distillate was no
longer basic. The distillate was treated with
potassium hydroxide (200 g.) and the oil
which separated was extracted with ether.

The ethereal solution was shaken with dilute of acctic acid and after separation the aqueous layer was basified and extracted with ether. The ethereal extract was dried, freed of solvent and fractionally distilled. The fraction bound of the control of the contr

ExaMPLE II.

A solution of 1-amino-2; 2: 6: 6-tertramethylipperidine (1.8 g.) in dry benzene (25 ml.) was treated with methyl iodide (0.74 ml.) and allowed to stand four four days. The crystalline hydroidide of 1-methylamino-2; 2: 6: 6 - tetramethylpiperidine which separated was purified by recrystallisation from acetone containing a little methanol. It did not meth below 300° C.

The present invention also provides as a still further feature pharmaceutical compositions comprising one or more of the compounds of formula I, or a sait thereof, and a significant amount of a pharmaceutical carrier which may be either a solid material or a significant amount of a pharmaceutical carrier which may be either a solid material or a few parts of the present invention will normally be administered orally, in consequence of which the preferred formulations are those of the 45 kind suitable for oral administration.

Preparations for oral ingestion can be liquids or solids or any combination of these forms, such as solutions, suspensions, syrups, eliziris, emulsions, powders or tablets. Pharmaceutical preparations for administration of the active therapeutic agents in unit dose form can take the form of compressed powders (or tablets) or of a powder enclosed and the complex of the complex of

acid, magnesium stearate or dextrin.

In yet a further embodiment, the active material may, as such or in the form of a diluted composition, be put up in powder packets and employed as such.

ackets and employed as such.

Preparations for parenteral administration

may be sterile solutions or suspensions in water or other liquids, with or without the addition of soluble or insoluble diluents and/or solid or liquid excipients.

The percentage of active ingredient in the composition of the invention may be varied, 25 it being necessary that it should constitute a proportion such that a suitable dosage shall be obtained. Obviously several unit dosage forms may be administered at about the same time. In general, the preparations of the present invention should normally contain at least 0.12%, by weight of active substance in the case of injectable solutions and at least 0.1% by weight of such substance in the case of or injectable solutions and at least 0.1% by weight of such substance in the case of or injectable solutions and at least 0.1% by weight of such substance in the case of order perparations.

J. A. KEMP & CO., Chartered Patent Agents, 9, Staple Inn, London, W.C.1.

PROVISIONAL SPECIFICATION No. 12303 A.D. 1959

N-Substituted Piperidines

We, MAY AND BAKER LIMITED, a British Company, of Dagenham, Essex, England, do hereby declare this invention to be described in the following statement:—

40 This morning statement to betwooyle composition to the common the control of the conposition of the common that the control of the conposition of the control of the control of the conposition of the control of the control of the conposition of the control of the control of the conposition of the control of the co

According to the present invention there are provided new and useful heterocyclic compounds of the general formula:

(wherein R represents a hydrogen atom, or a methyl group or vinyl group, R, erpresents a hydrogen atom or a methyl group, R, ', represents a hydrogen atom or a lower alkyl group and R, and R, may each represent a hydrogen atom or together represent a single bond and acid addition salts thereof.

These piperidine and tetrahydropyridine derivatives have a powerful ganglion blocking activity which renders them extremely useful in the treatment of hypertension. Of importance are those compounds in which R.

is a methyl group and R₄ is a hydrogen atom or a methyl or ethyl group. Of outstanding importance as ganglion blocking agents are 1methyleneamino 2,2,6,6 - tetramethylpiperidine and its acid addition salts.

70

According to a feature of the present invention, the new heterocyclic compounds of general formula I are prepared by the reaction of a 1-aminopiperidine of 1-aminotetrahydropyridine of the formula:—

(wherein the various symbols are as hereinbefore defined) with an aldelyde of formula RCHO (wherein R is as hereinbefore defined) as such or in the form of a reactive derivative thereof (such as an accent). The reaction is preferably carried out by mixing the reactants in an inert solvent with or without the addition of a dehydrating agent, and at room temperature or with gentle warming.

The compounds of formula I can be used as intermediates for the production of other hypotensive agents as described in the Specification of co-pending Application No. 16551/

11

the invention is or are admixed with at least 58. The said specification also describes the one inert diluent such as calcium carbonate, preparation of the compounds of formula II. potato starch, alginic acid, or lactose. The For therapeutic purposes, the compounds of compositions may also comprise, as is normal formula I may be employed in the form of practice, additional substances other than inert 5 their salts, it being understood that only those diluents, e.g., lubricating agents, such as such salts should in practice be employed as contain anions or radicals that are relatively magnesium stearate. Liquid compositions for oral administration innocuous to the animal organism when used include pharmaceutically acceptable emulsions, in therapeutic doses so that the beneficial solutions, suspensions, syrups and elixirs con-10 physiological properties inherent in the parent taining inert diluents commonly used in the compound are not vitiated by side-effects art, such as water and liquid paraffin. Besides ascribable to those anions or radicals. Suitable inert diluents such compositions may also acid addition salts include hydrohalides, for example, hydrochlorides, 8-chlorotheophyl-linates, phosphates, nitrates, sulphates, maleates, fumarates, citrates, tartrates, comprise adjuvants, such as wetting and suspending agents, and sweetening and flavouring agents. The compositions according to the invenmethanesulphonates and ethanedisulphonates. tion, for oral administration, also include The following Examples illustrate the incapsules of absorbable material such as gelatin containing one or more of the active sub-stances of the invention with or without the Example I. 20 A mixture of 1-amino-2,2,6-6-tetramethyladdition of diluents or excipients. piperidine (5.0 g.) and formaldehyde (3.0 ml. Preparations according to the invention for of 40% w/v solution) was shaken together parenteral administration include sterile for 10 minutes, the temperature rising spontaneously to 40° C. After cooling, the turbid aqueous or non-aqueous solutions, suspensions, or emulsions. Examples of non-aqueous solution was extracted with ether. The ethereal solvents or suspending media are propylene extract was dried and evaporated, and the residue was distilled in vacuo. 1-Methyleneglycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such amino - 2,26,6 - tetramethylpiperidine (3.6 g.) was obtained as a colourless liquid, bp. 70° C./10 mm. Treatment of an ethereal as ethyl oleate. These compositions may also contain adjuvants such as wetting, emulsifying and dispersing agents. They may solution of the base with alcoholic hydriodic sterilised by, for example, filtration through a acid gave the hydriodide salt as a cream bacteria-retaining filter, by incorporation in microcrystalline solid, m.p. 154° C. (dec.). the compositions of sterilising agents, by EXAMPLE II. irradiation, or by heating. They may also be To an ice cooled solution of 1-aminomanufactured in the form of sterile solid com-2,2,6,6-tetramethylpiperidine (5.0 g.) in ether (10 ml.) was added acetaldehyde (1.41 g.), positions, which can be dissolved in sterile water or some other sterile injectable medium heat was evolved and water began to separate immediately before use. 40 Dried magnesium sulphate (2 g.) was added The percentage of active ingredient in the and the mixture was allowed to stand at room compositions of the invention may be varied, temperature for 18 hours. The mixture was it being necessary that it should constitute a filtered and the ethereal filtrate evaporated. proportion such that a suitable dosage shall The residue was distilled in vacuo to give 1be obtained. Obviously several unit dosage 110 45 ethylideneamino - 2,2,6,6 - tetramethylforms may be administered at about the same piperidine (5.3 g.) as a colourless liquid, b.p. 73-77° C./10 mm. The hydriodide salt, pretime. In general, the preparations of the pared as above, was a white crystalline solid, m.p. 204—208° C. present invention should normally contain at least 0.025% by weight of active substance in the case of injectable solutions and at least 115 The present invention also provides as a 0.1% by weight of such substance in the case still further feature pharmaceutical composiof oral preparations.

The following Examples will serve to illustions comprising one or more of the compounds of formula I, or a salt thereof, and a trate pharmaceutical compositions according significant amount of a pharmaceutical carrier 55 which may be either a solid material or a liquid. The invention includes especially such to the invention. EXAMPLE III. Tablets of the formula: compositions made up for oral or parenteral administration. In clinical practice the com-1-Methyleneamino-2,2,6,6-tetrapounds of the present invention will normally be administered orally so that compositions methylpiperidine hydrogen 2.5 mg. 125 suitable for oral administration are preferred. tartrate 87.3 mg. Solid compositions for oral administration Lactose 5.0 mg. include compressed tablets, pills, dispersible Maize starch 0.2 mg. Sodium carboxymethyl cellulose powders or granules. In such solid composi-5.0 mg. 65 tions one or more of the active compounds of Stearic acid

are prepared by dissolving 1-methyleneamino - 2,2,6,6 - tetramethylpiperidine hydrogen tartrate in water and dispersing the

sodium carboxymethyl cellulose in the solution. The solution so obtained is then mixed with an intimate mixture of the lactose and starch and the resulting mass passed through a 12-mesh sieve. The resulting granules are

starch and the resulting mass passed unough a 12-mesh sieve. The resulting granules are dried overnight at 70° C, and then passed 10 through a 16-mesh sieve. The stearic acid is added at this stage as a lubricant. These granules are then compressed into tablets. EXAMPLE IV.

An injectable solution of the formula:

1-Methyleneamino-2,2,6,6-tetramethylpiperidine hydrochloride 0.25 g. Distilled water up to 100 ml.

is prepared by dissolving the 1-methyleneamino - 2,26,6 - tetramethylpiperidine hydrochloride in the distilled water. The solution 20 is filtered and filled into ampoules which are

15

sterilised in an autoclave.

J. A. KEMP & CO.,

Chartered Patent Agents,

9, Staple Inn, London, W.C.1.

Leamington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press,—1961 Published by The Patent Office, 25, Southampton Buildings, London, W.C.2, from which copies may be obtained.