Alexandria University

Faculty of Engineering

Communication and Electronics Department

DS Sheet 1

Primitive Data Types and Arrays

Name/ Mostafa Ahmed Mohamed Rashed ID/ 19017528 Section/ 3

- 1. **(Floating Points)** Floating-point numbers in a certain hexadecimal computer are to be represented using 48-bits: One for the sign, seven for the characteristic part, and forty for the mantissa.
 - 1. What is the precision in such representation?
 - 2. What is the largest and least positive numbers that can be represented in such system?
 - 3. What is the limit of the relative chopping error that may be introduced in representation of a real data item?
 - 4. How is the zero represented?

Solution

1	7	40
Sign	characteristic	Mantissa

Hexadecimal computer \Rightarrow R = 16

- : Mantissa is 40-bit long => N = 10 hex numbers
- ∵ characteristic is 7-bit long
- \therefore 0 ≤ biased exp. ≤ 2^7
- \div -64 \leq true exp. \leq 63 => E_{min} = -64 , E_{max} = 63
 - 1. Precision = 40/4 = 10
 - 2. \therefore Largest positive number = $(1-R^{-n})*R^{\text{Emax}}$

=
$$(1-16^{-10})*16^{63} = 7.23700558 \times 10^{75}$$

 \therefore Least positive number = R^{Emin-1}

$$=16^{-64-1}=16^{-65}=5.39760535\times10^{-79}$$

3. Limit of relative chopping error = $R^{-(n-1)}$

$$= 16^{-(10-1)} = 16^{-9} = 1.45519152 \times 10^{-11}$$

4. Zero is represented by 12 zeroes and in the de-normalized form with characteristic and Mantissa equal zero the sign bit could be 0 indicating +0 or 1 indicating -0 they are both distinct values but compare as equal $\Rightarrow 0.00 \times 16^{-64}$

- 2. **(Relative Error)** Which of the following floating-point systems has the least bound of relative error in the representation of real values:
 - 1. A system with 6 Hexadecimal digits = 16⁻⁵
 - 2. A system with 7 Decimal digits = 10⁻⁶
 - 3 A system with 8 Octal digits = 8^{-7}

$$\frac{16^{-5}}{8^{-7}}$$
 & $\frac{10^{-6}}{8^{-7}} > 1$

- "Bound relative error = $R^{-(n-1)}$
- : System with 8 octal digits has the least bound of relative error
- 3. (Array Mapping) Given the array X[L1..U1, L2..U2, L3..U3, L4..U4, L5..U5]; each element in the array occupies 2 memory cells. Derive the appropriate addressing equation for an element that has the indexes s1, s2, s3, s4, s5 and can be accessed as X[s1][s2][s3][s4][s5], if X is stored:
 - 1. in a row-major order
 - 2. in a column-major order

" C = 2

- 1. Loc(X[s1][s2][s3][s4][s5]) = Loc(X[L1][L2][L3][L4][L5]) + 2 * {
 (U5-L5+1) (U4-L4+1) (U3-L3+1) (U2-L2+1) (s1-L1)
 + (U5-L5+1) (U4-L4+1) (U3-L3+1) (s2-L2)
 + (U5-L5+1) (U4-L4+1) (s3-L3)
 + (U5-L5+1) (s4-L4)
 + (s5-L5)}
- 2. Loc(X[s1][s2][s3][s4][s5]) = Loc(X[L1][L2][L3][L4][L5]) + 2 * {
 (U1-L1+1) (U2-L2+1) (U3-L3+1) (U4-L4+1) (s5-L5)
 + (U1-L1+1) (U2-L2+1) (U3-L3+1) (s4-L4)
 + (U1-L1+1) (U2-L2+1) (s3-L3)
 + (U1-L1+1) (s2-L2)
 + (s1-L1)}

4. **(Sparse Matrices)** If "S" is a pxq matrix with "k" nonzero elements, for what values of "k" does the coordinates-method use less storage space than "S"? (Assume that each of the coordinates occupy the same amount of space as an element of "S").

let S in 2-D representation stores => p*q*c , where c is the amount of space co-ordinate matrix occupies => 3*k*c

Assume:
$$3*k*c < p*q*c$$
, $\therefore k < \frac{p*q}{3}$

- 5. **(Sparse Matrices)** Assume a sparse matrix X of size m x n is to be saved. The array X is estimated to have a maximum of p% nonzero elements. Each array element takes c memory cells. The number of bits required per cell is b.
 - 1. Find the ratio between the memory spaces required to save X as a 2D-array and using the Coordinate method.
 - 2. For what values of p does the coordinate method use less storage than the 2D-array representation?

2-D array =>m*n*c

Co-ordinate method bitmap requires row, column, V each of length equal $V = 3*{(m*n)*(p/100)}*c$

1.
$$m*n*c : {3*{(m*n)*(p/100)}*c} ----- ÷ m*n*c$$

1: $\frac{3*p}{100}$

2. Assume :
$$3*\{(m*n)*(p/100)\}*c < m*n*c => \frac{3*p}{100} < 1$$
 , $3*p < 100$, $p < \frac{100}{3}$

6. **(Triangular Matrices)** Derive the mapping function required to map between the indexes I and j of a lower triangular matrix (represented as 2D array) and the index k of the more efficient linear row-major representation of this matrix. State the range of k. Repeat for the column-major representation for symmetric matrices.

Assuming first element in array is of index 1

• 2-D mapping to row major of lower triangular matrix:

[1][2,3][4,5,6]

$$k = 1+2+3+...+(i-1)+j$$

 $k = (i*(i-1)/2)+j$
min k is when $i=j=0 \Rightarrow k=0$
max k is when $i=j=n \Rightarrow k=(n*(n-1)/2)+n=(n*(n+1))/2$

1		
2	3	
4	5	6

- 2-D mapping to column major of symmetric matrix:
 - Assume <u>lower triangular</u> and use column major [1,2,3][4,5][6]

Let matrix is of size n

$$\begin{split} k &= n + (n-1) + (n-2) + ... + (n-(j-2)) + (i-j+1) \\ k &= \{n^*(j-1) - (1+2+3+...+(j-2))\} + (i-j+1) \\ k &= (n^*(j-1) - \frac{(j-2)(j-1)}{2}) + (i-j+1) \end{split}$$

1	2	3
2	4	5
3	5	6

- Assume <u>upper triangular</u> and use column major [1,2,3][4,5][6]

Same as row major of lower triangular matrix

$$k = 1 + 2 + 3 + ... + (j - 1) + i$$

 $k = (j*(j-1) / 2) + i$

7. **(Triangular Matrices)** Write an algorithm to calculate the sum of two triangular matrices A and B.

SOL1: Loop through indices of both matrices and add each element

SOL2: Map the vectors using column major then add each element

for
$$(k = 0; k < (n*(n-1) / 2); k++){$$

 $sum[k] = a[k] + b[k];}$