Analiza: Vprašanja in odgovori

Patrik Žnidaršič

Verzija iz dne 12. oktober 2021

Kazalo

1 Števila		2	
	1.1	Naravna števila	2
	1.2	Racionalna števila	2
	1.3	Realna števila	3

1 Števila

1.1 Naravna števila

1.1.1 Kako označimo naslednjika naravnega števila n?

 n^+

1.1.2 Kaj so Peanovi aksiomi?

So aksiomi, ki definirajo množico \mathbb{N} skupaj s pravilom, ki vsakemu naravnemu številu n priredi naslednjika n^+ $(n, n^+ \in \mathbb{N})$:

- Za vsaka $n, m \in \mathbb{N}$ in $m^+ = n^+$ velja m = n
- \bullet Obstaja število $1\in\mathbb{N},$ ki ni naslednjik od nobenega naravnega števila
- Aksiom popolne indukcije: Če $A \subset \mathbb{N}$ in če je $1 \in A$ in če je za vsak $n \in A$ tudi $n^+ \in A$, potem je $A = \mathbb{N}$.

1.1.3 Kdaj je množica dobro urejena? Povej primer takšne množice. Povej primer množice, ki ni dobro urejena.

Kadar ima vsaka neprazna podmnožica najmanjši element. Dobro urejena je npr. N, ne pa Z.

1.2 Racionalna števila

1.2.1 Kdaj ulomka $\frac{m}{n}$ in $\frac{k}{l}$ predstavljata isto število?

Kadar je ml = nk.

1.2.2 Kaj so ulomki?

Množica $\mathbb{Z} \times \mathbb{N} = \{(m, n); m \in \mathbb{Z}, n \in \mathbb{N}\}.$

1.2.3 Kaj je racionalno število?

Množico $\mathbb{Z} \times \mathbb{N}$ razdelimo na ekvivalenčne razrede:

$$(m,n) \sim (k,l) \Leftrightarrow ml = nk \quad \forall m,k \in \mathbb{Z}, \forall n,l \in \mathbb{N}$$

Racionalno število je ekvivalenčni razred urejenih parov in ga označimo z $\frac{m}{n}$:

$$\frac{m}{n} = \{(k, l), ml = nk\}$$

1.2.4 Kateri trije aksiomi veljajo za grupe? Kateri dodatni velja za Abelove grupe?

Za grupe veljajo naslednji aksiomi: (prikazani simboli za množico A in dvočlen operator $+: A \times A \rightarrow A$)

2

- 1. Asociativnost: $(a+b)+c=a+(b+c) \quad \forall a,b,c \in A$
- 2. Obstoj enote: obstaja $0 \in A$, tako da za vsak $a \in A$ velja 0 + a = a + 0 = a

3. Obstoj inverznega elementa: za vsak $a \in A$ obstaja inverzni element $-a \in A$, tako da velja a + (-1) = (-a) + a = 0

Za Abelove (oz. komutativne) grupe velja tudi aksiom komutativnosti:

$$a+b=b+a \quad \forall a,b \in A$$

1.2.5 Povej primer Abelove grupe in grupe, ki ni komutativna.

Abelova grupa: $(\mathbb{Q}, +)$ ali $(\mathbb{Q}\setminus\{0\}, \cdot)$ Grupa, ki ni komutativna: $(\mathbb{N}, +)$

1.2.6 Kako označimo enoto in inverzni element a za seštevanje in množenje?

Za seštevanje: 0, -aZa množenje: $1, a^{-1}$

1.2.7 Povej pravilo krajšanja za seštevanje v grupi A z operacijo $+: A \times A \rightarrow A$

Naj bodo $a, x, y \in A$. Če velja a + x = a + y, potem je x = y.

1.2.8 Kaj je komutativen obseg? Kako ga še drugače imenujemo? Povej primer.

To je množica A z operacijama $+,\cdot$, kjer je (A,+) Abelova grupa za seštevanje, $(A\setminus\{0\},\cdot)$ Abelova grupa za množenje, veljata pa še dva aksioma:

- 1. $1 \neq 0$ (enota za seštevanje ni enaka enoti za množenje)
- 2. Aksiom distributivnosti: Za vse $a, b, c \in A$ velja a(b+c) = ab + ac.

Komutativen obseg imenujemo tudi polje. Primer je $(\mathbb{Q}, +, \cdot)$

1.2.9 Kaj je urejen obseg?

To je obseg, ki ima urejenost, ki ustreza naslednjima aksiomoma:

- 1. Za vsako število $a \in A, a \neq 0$ velja, da je natanko eno od števila, -a pozitivno.
- 2. Za vsaki pozitivni števili $a, b \in A$ sta a + b in $a \cdot b$ pozitivni.

1.2.10 Kako je definirana urejenost v urejenem obsegu?

$$a < b \Leftrightarrow b - a$$
 je pozitivno $a, b \in A$

1.3 Realna števila