### **Predictive Maintenance**

Exploratory Data Analysis
Regression Modeling
Binary Classification
Multiclass Classification

Sami Mustafa

#### The Problem

Airlines are interested in predicting engines failures in advance to enhance operations and reduce flight delays. Observing engine's health and condition through sensors and telemetry data is assumed to facilitate this type of maintenance by predicting Time-To-Failure (TTF) of in-service equipment. Using aircraft engine's sensors measurements, can we predict engine's TTF?



### Solution Approach

By exploring aircraft engine's sensor values over time, machine learning algorithm can learn the relationship between sensor values and changes in sensor values to the historical failures in order to predict failures in the future.



#### Data

Text files contain simulated aircraft engine run-to-failure events, operational settings, and 21 sensors measurements are provided by Microsoft. It is assumed that the engine progressing degradation pattern is reflected in its sensor measurements.

### Training Data

| id  | cycle | setting1 | setting2 | setting3 | s1     | s2     | s3      | s4      | s5    | s6    | s7     | s8      | s9      | s10 | s11   | s12    | s13     | s14     | s15    | s16  | s17 | s18  | s19 | s20   | s21     |
|-----|-------|----------|----------|----------|--------|--------|---------|---------|-------|-------|--------|---------|---------|-----|-------|--------|---------|---------|--------|------|-----|------|-----|-------|---------|
| 1   | 1     | -0.0007  | -0.0004  | 100      | 518.67 | 641.82 | 1589.7  | 1400.6  | 14.62 | 21.61 | 554.36 | 2388.06 | 9046.19 | 1.3 | 47.47 | 521.66 | 2388.02 | 8138.62 | 8.4195 | 0.03 | 392 | 2388 | 100 | 39.06 | 23.419  |
| 1   | 2     | 0.0019   | -0.0003  | 100      | 518.67 | 642.15 | 1591.82 | 1403.14 | 14.62 | 21.61 | 553.75 | 2388.04 | 9044.07 | 1.3 | 47.49 | 522.28 | 2388.07 | 8131.49 | 8.4318 | 0.03 | 392 | 2388 | 100 | 39    | 23.4236 |
| 1   | 3     | -0.0043  | 0.0003   | 100      | 518.67 | 642.35 | 1587.99 | 1404.2  | 14.62 | 21.61 | 554.26 | 2388.08 | 9052.94 | 1.3 | 47.27 | 522.42 | 2388.03 | 8133.23 | 8.4178 | 0.03 | 390 | 2388 | 100 | 38.95 | 23.3442 |
| 100 | 198   | 0.0004   | 0        | 100      | 518.67 | 643.42 | 1602.46 | 1428.18 | 14.62 | 21.61 | 550.94 | 2388.24 | 9065.9  | 1.3 | 48.09 | 520.01 | 2388.24 | 8141.05 | 8.5646 | 0.03 | 398 | 2388 | 100 | 38.44 | 22.9333 |
| 100 | 199   | -0.0011  | 0.0003   | 100      | 518.67 | 643.23 | 1605.26 | 1426.53 | 14.62 | 21.61 | 550.68 | 2388.25 | 9073.72 | 1.3 | 48.39 | 519.67 | 2388.23 | 8139.29 | 8.5389 | 0.03 | 395 | 2388 | 100 | 38.29 | 23.064  |
| 100 | 200   | -0.0032  | -0.0005  | 100      | 518.67 | 643.85 | 1600.38 | 1432.14 | 14.62 | 21.61 | 550.79 | 2388.26 | 9061.48 | 1.3 | 48.2  | 519.3  | 2388.26 | 8137.33 | 8.5036 | 0.03 | 396 | 2388 | 100 | 38.37 | 23.0522 |

- ✓ Id: Engine Id. There 100 engines with average 109 cycles/engine in the training data
- ✓ Cycle: sequence per engine, starts from 1 to the cycle number where failure has happened
- ✓ Setting1 to setting3: engine operational settings
- √ S1 to S21: sensors measurements in each cycle

#### Labels:

- ✓ Regression: Time-to-Failure (TTF), for each cycle/engine, is the number cycles between that cycle and last cycle of the engine.
- ✓ **Binary Classification**: if the remaining cycles (TTF) is less than specific number of cycles (e.g. 30) then the engine will fail in the next period, otherwise the engine is fine.
- ✓ Multiclass Classification: dividing TTF into bands (e.g. 0-15, 16-30, 30+), in which band will the engine fail?

**Test Data:** Similar to the training data, 100 engines, with one random cycle per engine, with addition of truth data (TTF).

# **Exploratory Data Analysis**



High positive/negative correlation between features/label (TTF), help in feature selection.



Most features have normal distribution and non-linear relationship with the label (TTF).

# **Exploratory Data Analysis (S7)**



A set of typical EDA graphs applied to each feature individually

# **Regression Modeling**

Used to predict the number remaining cycles before engine failure

#### Machine learning algorithms used:

- √ Linear Regression
- ✓ LASSO Regression
- ✓ Ridge Regression
- ✓ Decision Tree Regression
- √ Polynomial Regression
- ✓ Random Forest Regression

#### Regression metrics calculated:

- √ R-squared (R²)
- ✓ Root Mean Squared Error (RMSE)
- ✓ Mean Absolute Error
- ✓ Explained Variance

# Regression Modeling Results

|                             | Linear | LASSO | Ridge | <b>Decision Tree</b> | Polynomia | Random Forest |
|-----------------------------|--------|-------|-------|----------------------|-----------|---------------|
| Root Mean Squared Error     | 32.04  | 31.97 | 31.97 | 32.10                | 29.68     | 28.63         |
| Mean Absolute Error         | 25.59  | 25.55 | 25.54 | 24.32                | 22.38     | 23.17         |
| R-Squared (R <sup>2</sup> ) | 0.41   | 0.41  | 0.41  | 0.40                 | 0.49      | 0.53          |
| Explained Variance          | 0.67   | 0.67  | 0.67  | 0.63                 | 0.65      | 0.77          |

Random Forest Regressor is likely to perform better than other models

#### Random Forest Regressor predictions vs. actual for first 10 samples:

|            | 0      | 1      | 2     | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10    |
|------------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|-------|
| Actual     | 112.00 | 98.00  | 69.00 | 82.00  | 91.00  | 93.00  | 91.00  | 95.00  | 111.00 | 96.00  | 97.00 |
| Prediction | 151.58 | 119.27 | 74.42 | 96.47  | 112.59 | 130.28 | 128.11 | 100.69 | 116.12 | 127.37 | 74.37 |
| Difference | -39.58 | -21.27 | -5.42 | -14.47 | -21.59 | -37.28 | -37.11 | -5.69  | -5.12  | -31.37 | 22.63 |

# **Regression Modeling**

#### Random Forest Regressor: Feature Importance and Residuals



Features ranked based on their effectiveness in dividing training instances into decision tree branches.



Regression residuals are not randomly spread across the average value of the residuals. A call for additional model/data tuning

# **Binary Classification**

Used to predict if the engine will fail within specific cycles window or not

#### Machine learning algorithms used:

- ✓ Logistic Regression
- ✓ Decision Trees
- ✓ Support Vector Machines
- ✓ Linear Support Vector
- ✓ K Nearest Neighbors
- √ Gaussian Naive Bayes
- ✓ Random Forests

#### Classification metrics calculated:

- ✓ Area Under the Curve ROC (AUC ROC)
- ✓ Precision
- ✓ Recall
- √ F1 Score
- ✓ Accuracy

# **Binary Classification Results**

|           | Logistic Regression<br>B | Logistic Regression<br>A | Decision Tree | Decision Tree<br>A | Random Forest<br>B | Random Forest<br>A | SVC B  | SVC A  | SVC Linear<br>B | SVC Linear<br>A | KNN B  | KNN A  | Gaussian NB<br>B | Gaussian NB<br>A |
|-----------|--------------------------|--------------------------|---------------|--------------------|--------------------|--------------------|--------|--------|-----------------|-----------------|--------|--------|------------------|------------------|
| ROC AUC   | 0.9803                   | 0.9819                   | 0.9451        | 0.9629             | 0.9803             | 0.9824             | 0.8917 | 0.9301 | 0.9717          | 0.9797          | 0.9352 | 0.9635 | 0.9877           | 0.9805           |
| Precision | 0.9333                   | 1.0000                   | 0.9333        | 0.9474             | 0.9444             | 0.9444             | 0.9444 | 0.9474 | 1.0000          | 0.4310          | 0.9444 | 0.9474 | 0.8276           | 0.8276           |
| F1 Score  | 0.7000                   | 0.8095                   | 0.7000        | 0.8182             | 0.7907             | 0.7907             | 0.7907 | 0.8182 | 0.5714          | 0.6024          | 0.7907 | 0.8182 | 0.8889           | 0.8889           |
| Accuracy  | 0.8800                   | 0.9200                   | 0.8800        | 0.9200             | 0.9100             | 0.9100             | 0.9100 | 0.9200 | 0.8500          | 0.6700          | 0.9100 | 0.9200 | 0.9400           | 0.9400           |
| Recall    | 0.5600                   | 0.6800                   | 0.5600        | 0.7200             | 0.6800             | 0.6800             | 0.6800 | 0.7200 | 0.4000          | 1.0000          | 0.6800 | 0.7200 | 0.9600           | 0.9600           |

A: After Feature Engineering

**B**: Before Feature Engineering

- ✓ Naïve Bayes and Random Forests scoring best results for AUC are likely to perform better than others
- ✓ Most of the binary classifiers showed better performance metrics with addition of new features
- ✓ Linear SVC has totally different metrics before and after FE, switching between Precision and Recall

## **Binary Classification Results**



Naïve Bayes and Random Forests have the best curves for AUC ROC and Precision-Recall

## **Binary Classification (Random Forest)**



Threshold at different level facilitate maximum gain based on business capacity (number of engines that could be inspected in specific period i.e. Queue)

## **Expected Profit**

| Rank | Profit                      | Model                       | Queue | Threshold | TP | FP | TN | FN | TPR  | FPR  | TNR  | FNR  |
|------|-----------------------------|-----------------------------|-------|-----------|----|----|----|----|------|------|------|------|
| 0    | 19.00                       | 9.00 Gaussian NB B          |       | 0.09      | 25 | 0  | 69 | 6  | 1.00 | 0.08 | 0.92 | 1.00 |
| 1    | 18.69                       | 18.69 Logistic Regression B |       | 0.11      | 24 | 1  | 71 | 4  | 0.96 | 0.05 | 0.95 | 0.99 |
| 2    | 18.69                       | Gaussian NB A               | 0.28  | 0.97      | 24 | 1  | 71 | 4  | 0.96 | 0.05 | 0.95 | 0.99 |
| 3    | 17.70 Logistic Regression A |                             | 0.29  | 0.06      | 24 | 1  | 70 | 5  | 0.96 | 0.07 | 0.93 | 0.99 |
| 4    | 17.35                       | Random Forest A             | 0.26  | 0.18      | 23 | 2  | 72 | 3  | 0.92 | 0.04 | 0.96 | 0.97 |
| 5    | 17.35                       | SVC Linear A                | 0.26  | 0.78      | 23 | 2  | 72 | 3  | 0.92 | 0.04 | 0.96 | 0.97 |
| 6    | 17.00                       | Random Forest B             | 0.33  | 0.10      | 25 | 0  | 67 | 8  | 1.00 | 0.11 | 0.89 | 1.00 |
| 7    | 15.72                       | KNN A                       | 0.31  | 0.08      | 24 | 1  | 68 | 7  | 0.96 | 0.09 | 0.91 | 0.99 |
| 8    | 13.05                       | SVC Linear B                | 0.27  | (0.59)    | 22 | 3  | 70 | 5  | 0.88 | 0.07 | 0.93 | 0.96 |
| 9    | 12.16                       | SVC A                       | 0.21  | (0.23)    | 20 | 5  | 74 | 1  | 0.80 | 0.01 | 0.99 | 0.94 |
| 10   | 12.08                       | SVC B                       | 0.28  | (0.94)    | 22 | 3  | 69 | 6  | 0.88 | 0.08 | 0.92 | 0.96 |
| 11   | 10.70                       | KNN B                       | 0.26  | 0.31      | 21 | 4  | 70 | 5  | 0.84 | 0.07 | 0.93 | 0.95 |
| 12   | 10.14                       | Decision Tree A             | 0.30  | 0.18      | 22 | 3  | 67 | 8  | 0.88 | 0.11 | 0.89 | 0.96 |
| 13   | 7.82                        | Decision Tree B             | 0.29  | 0.08      | 21 | 4  | 67 | 8  | 0.84 | 0.11 | 0.89 | 0.94 |

By assigning cost and benefit monetary value for False and True predictions respectively, algorithms have been ranked based on expected profit / engine calculations (for unconstrained queue):

<u>Expected Value</u> =  $Prop(+ve) \times [TPR \times benefit(TP) + FNR \times cost(FN)] + Prob(-ve) \times [TNR \times benefit(TN) + FPR \times cost(FP)]$ 

- √ 100 Test samples (positive class = 25 : negative class = 75):
- ✓ prob positive = 0.25, prop negative = 0.75, TPb = \$300, TNb = \$0, FPc = \$-100, FNc = \$-200
- ✓ These monetary values should be provided by business domain experts.

### **Multiclass Classification**

Used to predict in which cycles window will the engine fail

#### Machine learning algorithms used:

- ✓ Logistic Regression
- ✓ Decision Trees
- ✓ Linear Support Vector
- ✓ K Nearest Neighbors
- √ Gaussian Naive Bayes
- ✓ Random Forests
- ✓ Neural Networks

#### Classification metrics calculated:

- ✓ AUC ROC micro, macro
- ✓ Precision micro, macro
- ✓ Recall micro, macro
- √ F1 Score micro, macro
- ✓ Accuracy

### **Multiclass Classification Results**

|              |             | micro ROC AUC | micro F1 | Accuracy | micro Precision | macro Recall | macro F1 | micro Recall | macro ROC AUC | macro Precision |
|--------------|-------------|---------------|----------|----------|-----------------|--------------|----------|--------------|---------------|-----------------|
| Logistic Reg | gression B  | 0.9705        | 0.8438   | 0.8100   | 0.8804          | 0.5622       | 0.5579   | 0.8100       | 0.9452        | 0.5564          |
| Logistic Reg | gression A  | 0.9718        | 0.8526   | 0.8100   | 0.9000          | 0.5333       | 0.5517   | 0.8100       | 0.9415        | 0.5869          |
| Decisi       | ion Tree B  | 0.9566        | 0.8615   | 0.8400   | 0.8842          | 0.6689       | 0.6841   | 0.8400       | 0.9056        | 0.8190          |
| Decisi       | ion Tree A  | 0.9736        | 0.8571   | 0.8400   | 0.8750          | 0.6511       | 0.6079   | 0.8400       | 0.9499        | 0.8521          |
| Randon       | n Forest B  | 0.9785        | 0.8542   | 0.8200   | 0.8913          | 0.5733       | 0.6125   | 0.8200       | 0.9643        | 0.7767          |
| Randon       | n Forest A  | 0.9806        | 0.8673   | 0.8500   | 0.8854          | 0.6622       | 0.7058   | 0.8500       | 0.9677        | 0.8008          |
| sv           | 'C Linear B | 0.9537        | 0.8000   | 0.6800   | 0.9714          | 0.4178       | 0.4825   | 0.6800       | 0.9347        | 0.5949          |
| SV           | C Linear A  | 0.9172        | 0.6301   | 0.0200   | 0.4792          | 0.7333       | 0.5011   | 0.9200       | 0.9433        | 0.6611          |
|              | KNN B       | 0.9548        | 0.8557   | 0.8300   | 0.8830          | 0.5956       | 0.6417   | 0.8300       | 0.9049        | 0.8008          |
|              | KNN A       | 0.9735        | 0.8731   | 0.8600   | 0.8866          | 0.6844       | 0.7099   | 0.8600       | 0.9499        | 0.7934          |
| Gaus         | ssian NB B  | 0.9627        | 0.8520   | 0.7400   | 0.7724          | 0.9778       | 0.7579   | 0.9500       | 0.9503        | 0.6556          |
| Gaus         | ssian NB A  | 0.9429        | 0.8493   | 0.7400   | 0.7815          | 0.9333       | 0.7550   | 0.9300       | 0.9448        | 0.6645          |
| Neural N     | Net MLP B   | 0.9833        | 0.8763   | 0.8500   | 0.9043          | 0.6689       | 0.7320   | 0.8500       | 0.9706        | 0.8736          |
| Neural N     | Net MLP A   | 0.9813        | 0.8990   | 0.8800   | 0.9082          | 0.7622       | 0.7981   | 0.8900       | 0.9709        | 0.8902          |

Neural Network and Random Forest classifiers are likely to perform better than other classifiers.

### **Multiclass Classification Results**



Neural Network and Random Forest classifiers have the best curves for micro - AUC ROC and micro -. Precision Recall.

# **Next Steps**

- ✓ Enhance regression modeling by model tuning, fixing data, or trying other models
- ✓ Perform features selection and dimensionality reduction techniques to enhance models performance metrics and speed
- ✓ Deploy selected models to be accessible online