Hypothesis Class and ERM

```
Apply ERM over a restricted set of hypotheses \mathcal{H} = hypothesis class \rightarrow H \in \{ " himse models", "SUM", "NNs", ... \{ each h \in \mathcal{H} is a function h: \mathcal{X} \rightarrow \mathcal{Y} ERM_{\mathcal{H}} learner:

ERM_{\mathcal{H}} \in \arg\min_{h \in \mathcal{H}} L_{S}(h) \text{ with the last harmonic one one good}
Which hypothesis classes \mathcal{H} do not lead to overfitting?
```

Finite Hypothesis Classes

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Let h_S be the output of $ERM_{\mathcal{H}}(S)$, i.e. $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$

→ Assumptions ←

- Realizability: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$
- i.i.d.: examples in the training set are independently and identically distributed (i.i.d) according to \mathcal{D} , that is $S \sim \mathcal{D}^m$

Observation: realizability assumption implies that $L_S(h^*) = 0$

Can we learn (i.e., find using ERM) h*? - us determining

(Simplified) PAC learning

Probably Approximately Correct (PAC) learning

Since the training data comes from \mathcal{D} : we can only be approximately correct we can only be probably correct arameters: المعم المعرب المعمل المعرب المعمل المعرب المعمل المعرب المعر Parameters: $L_{D,f}(hs) \leq \varepsilon$ _s I don't lask for O couse I'm not three it were exists • confidence parameter δ : want h_S to be a good hypothesis with probability $\geq 1 - \delta$ We want both & and I small (~ 0)

Theorem

Let $\underline{\mathcal{H}}$ be a finite hypothesis class. Let $\underline{\delta} \in (0,1)$, $\varepsilon \in (0,1)$, and $m \in \mathbb{N}$ such that

if
$$m \ge \frac{\log(|\mathcal{H}|/\delta)}{\delta}$$
. Troining xx

Then for any f and any \mathcal{D} for which the realizability assumption holds, with probability $\geq 1-\delta$ we have that for every ERM hypothesis h_S it holds that $L_{\mathcal{D},f}(h_S) \leq \varepsilon$.

I can apply this to every

Note: log = natural logarithm

Quantifies how large the slotered

The moder the Earl S, the more data I'll need

Proof (see book as well, Corollary 2.3)

let $S|_{X} = \{X_{ij}X_{1,...}, X_{m}\}$ be the instances in the terming set S. We want to bound to:

$$\mathcal{D}^{m}(\{S_{1x}:L_{p,q}(h_s)>\epsilon\})$$

We cold to= \heti Log(hs)> E} (bod hypotoris) and

M= \SIx: Iheths, Ls(h) = 0 \ (mileading samples)

Since the volisobility ornuption holds: (hs)=0

That is, au froming data must be in the set H:

| SIx: LDA (hs) > E | SH

Therefore Dm (| SIx: LD((hs) > E |) & Dm (M). Dm (U beho | SIx | Ls(h)= 2}) D'(U SIx: Ls(h) = 0 }) < \sum D' (\langle Six: Ls(h) = 0 \rangle) Now let's fix hette: Ls(h)= 0 0-> Vi=1,..., m: h(xi)= f(xi) Therefore: $D^{m}(\{S|x:L_{S}(h)=0\})=D^{m}(\{S|x:t_{i=1},...,m;h(x_{i})=f(x_{i})\})$ = $T^{m}(\{S|x:L_{S}(h)=0\})=D^{m}(\{S|x:t_{i=1},...,m;h(x_{i})=f(x_{i})\})$ Counier rom 1, 1416 m : D({xi: h(xi)= f(xi)}) = 1- D(\ \(\xi : \h(\xi) \neq \((\xi) \rangle \) = 1-log(h) < 1-E toylor experient

Combining this venet with the product of the probabilities:

Combining the above with the sun of the probabilisties:

Now, given the charac of m, we have

PAC Learning

Definition (PAC learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f:\mathcal{X} \to \{0,1\}$, if the realizability assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generate by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability $h = 1 - \delta$ (over the choice of examples): $h = 1 - \delta$ (over the choice of examples): $h = 1 - \delta$

 $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}:$ sample complexity of learning \mathcal{H} .

• m_H is the minimal integer that satisfies the requirements.

Corollary

Every finite hypothesis class is PAC learnable with sample complexity $m_{\mathcal{H}}(\varepsilon, \delta) \leq \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon} \right\rceil$. Also it is a local by part of the sample of the sample