

W600 芯片设计指导书

V1. 0. 2

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档历史

版本	完成日期	修订记录	作者	审核	批准
V1. 0. 0	2018-10-25	创建	Linda		
V1. 0. 1	2020-06-08	修正板厚			
V1. 0. 2	2020-07-06	增加电源走线要求			\wedge
					7
			X	XXX	

录目

1 概述		
2 芯片管原	脚定义	
3 芯片外	围电路设计	
3.1	RESET 复位电路设计	
3.2	参考时钟电路设计	
3.3	射频电路设计	
3.4	GPIO 设计	
3.5	电源设计	
3.6	地平面设计	
3.7	天线设计	
3	.7.1 外置天线	
3	.7.2 板载天线	

概述 1

W600 芯片基于 ARM 核心的 CPU,集成了丰富的外部接口,并且集成 Wi-Fi MAC、BB、安 全、RF。CPU 核心运行的软件处理网络相关的协议栈,包括 Wi-Fi, TCP/IP, Http 等网络协议。 该芯片功能丰富,满足目标市场嵌入式产品的硬件需求,具备运行完整嵌入式操作系统,独立处理 端到端的网络服务的能力。该芯片采用 QFN 封装,外围需要极少器件,达到模块最小化设计。本 设计书说明了该芯片的管脚定义、物理尺寸、时钟、电源、射频走线、天线等要求,请严格按照该 设计书使用该芯片设计相应的产品,从而使得所设计的产品获得最佳的射频性能。

芯片管脚定义 2

芯片管脚排列及尺寸信息如图 2-1 所示:

图 2-1 芯片引脚排列及尺寸图

芯片管脚说明如表 2-1 所示:

表 2-1 芯片管脚说明

序号	名称	类型	默认管脚功能	复用功能
1	WAKEUP	Ι	芯片唤醒	高电平唤醒芯片工作
2	RESET	Ι	复位	低电平复位
3	XTAL-OUT	0	外部晶振输出	1/2
4	XTAL-IN	Ι	外部晶振输入	
5	VDD33	P	芯片电源, 3.3V	
6	DVDD33	P	数字电路电源, 3.3V	
7	VDD33LNA	P	LNA 电源, 3.3V	. 7/2
8	ANT	I/P	射频天线	
9	VDD33PA	P	PA 电源, 3.3V	1
10	VDD33ANA	P	模拟电源, 3.3V	
11	EXT24K	P	串联 24K 1% 电阻	
12	TEST	Ι	测试功能配置管脚	
13	PA_0	I/0	ВООТМОДЕ	UART2_RX、PWM_1、GPIOPA_0
14	PA1	I/0	Reserved	SIM_DATA、PWM_2、SPI(M/S)_CK、GPIOPA_1
15	PA4	I/0	UARTO_TX /	PWM_5、SPI(M/S)_DO、I ² S_M_SCL、GPIOPA_4
16	VDD33102	P	IO 电源,3.3V	
17	PA_5	I/0	UARTO_RX	PWM_1、SPI(M/S)_DI、I ² S_M_EXTCLK、GPIOPA_5
18	PB_13	1/0	PWM_2	I ² C_SCL、SDIO_CMD、GPIOPB_13
19	PB_14	1/0	H_SPI_INT	PWM_5、I ² C_DAT、I ² S_S_SDA、GPIOPB_14
20	PB_15	I/0	H_SPI_CS	PWM_4、SPI(M/S)_CS、I ² S_S_SCL、GPIOPB_15
21	PB_16	I/0	H_SPI_CK	PWM_3、SPI(M/S)_CK、I ² S_S_RL、GPIOPB_16
22	PB_17	I/0	H_SPI_DI	PWM_2、SPI(M/S)_DI、UART1_RX、GPIOPB_17
23	PB_18	I/0	H_SPI_DO	PWM_1、SPI(M/S)_DO、UART1_TX、GPIOPB_18
24	CAP	Ι	外接电容, 1µF	
25	VDD33I01	P	IO 电源, 3.3V	
26	PB_6	I/0	Reserved	SWDAT, UARTO_RX, PWM_4, SIM_CLK, GPIOPB_6
27	PB_7	I/0	Reserved	SWCK, UARTO_TX, SDIO_CMD, SPI(M/S)_CS, GPIOPB_7

28	PB_8	I/0	PWM_5	H_SPI_CK、SDIO_CK、I ² S_M_SCL、GPIOPB_8
29	PB_9	I/0	UART1_CTS	H_SPI_INT、SDIO_DATO、I ² S_M_SDA、GPIOPB_9
30	PB_10	I/0	UART1_RTS	H_SPI_CS、SDIO_DAT1、I ² S_M_RL、GPIOPB_10
31	PB_11	I/0	UART1_RX	H_SPI_DI、SDIO_DAT2、I ² C_SCL、GPIOPB_11
32	PB_12	I/0	UART1_TX	H_SPI_DO、SDIO_DAT3、I ² C_DAT、GPIOPB_12
33	PAD	GND	地焊盘	

3 芯片外围电路设计

3.1 RESET 复位电路设计

复位电路建议设计为 RC 电路,上电自动复位设计,W600 采用低电平复位。如果使用外部控制 RESET 管脚,当电平值低于 2.0v 时芯片处于复位状态。低电平需要持续 100us 以上,见图 3-1。

图 3-1 复位电路

3.2 参考时钟电路设计

芯片参考时钟选用 40MHz 频率,要求-40~85℃范围内频率稳定度±10ppm,负载电容 10pF。见图 3-2。

时钟走线尽量靠近芯片,尽量短,并且远离干扰源。时钟下面各层禁止其它走线穿过,防止干扰时钟源。

3.3 射频电路设计

芯片采用单天线设计,内部集成了功放及收发开关,芯片端口阻抗 50 欧。根据模块设计性能匹配要求,建议预留π型匹配网络,根据实际天线阻抗值,优化外部设计匹配元

件。

为了节省成本,客户可使用两层板设计,FR-4 板材,板厚建议 0.8mm,为了射频走线阻抗达到 50 欧姆要求,需要线宽 20mil,线与敷铜间距 5mil。射频走线在 top 层,射频走线背面不能走任何线,全部敷铜处理,保证整个射频参考地的完整性。

3.4 GPIO 设计

芯片上电后 15,17 脚默认为 UARTO 端口,该端口提供下载及 AT 指令端口以及 log 的输出端口。客户在使用时候注意不要随意使用该端口作为 GPIO 使用,防止被占用无法下载及调试。在系统起来后,该端口可以复用为其它端口使用。

表 3-2 芯片 UARTO 管脚说明

15	PA4	I/0	UARTO_TX
17	PA_5	I/0	UARTO_RX

其余各个管脚复用关系及使用见表 2-1。

3.5 电源设计

芯片电源输入脚放置相应滤波电容,且外部对整个芯片供电电源的总电流建议 500mA 及以上。总电源走线线宽要求不低于 30mil。供电范围 3.0V-3.6V。请勿超过该范围,超过 3.6v 可能会对芯片造成永久性损坏。低于 3.0v 可能整体性能会下降。不同管脚放置电容见下表要求。

芯片 5,6 脚附近需放置 1 个 10uf 电容,7 脚放置 10nf 滤波器电容。见表 3-3。具体电源走线方式见 3.6 章。

表 3-3 芯片电源管脚说明

5 VDD33 P		VDD33 P	芯片电源, 3.3V	
(ĉ	DVDD33 P	数字电路电源, 3.3V	
-	7	VDD33LNA P	LNA 电源, 3.3V	

芯片 9,10 脚附近放置 47uf 滤波电容。推荐有条件客户在底板上放置 330uf 电解电容。 见表 3-4。

表 3-4 芯片电源管脚说明

ń				-	
		MDDOODA	ъ	DA + ME O OV	
	9	VDD33PA	Р	PA 电源,3.3V	

10 VDD33ANA P 模拟电源, 3.3V

芯片 24 脚需要外接 1uf 滤波电容。

芯片 11 脚需外接 24K 1%精度电阻。

3.6 地平面及电源走线设计

W600 芯片中间 PAD 是散热地焊盘,需要接地处理,同时需要打孔,跟地良好接触散热。如下图所。

产品设计完成后 PCB 需要所有层做敷铜接地处理,背面要尽量少走线保证地的完整性。

电源建议采用星型走线方式,见下图。特别注意 7 脚电源脚不要跟 5,6 脚直接接一起,7 脚采用星型走线,单走一根电源线到主电源上,避免芯片内部 LNA 供电受到其他电源干扰。并且 7 脚要放置一格 10nF 滤波器电容。

电源星型走线

3.7 天线设计

根据客户需要可使用外置天线,也可以使用 PCB 板载天线。根据不同天线对产品有不同的要求。

3.7.1 外置天线

对连接外置天线的连接座尽可能远离底板电源等噪声源,防止干扰天线。

3.7.2 板载天线

使用板载天线设计需严格按照本指导书设计,防止天线性能下降,影响产品使用。天线背面敷铜需全部挖空,天线参考地平面尽可能大,天线必须经过实际仿真,仿真后天线尺寸图导入 PCB。紫色区域是天线部分,所有层均不能敷铜,全部净空。黄色区域是射频走线。具体见下图所示。

下图为两种常用且对天线性能影响较小的天线摆放方式,建议尽量选择其中一种方式摆放模块;其中,第二种摆放方式要求 PCB 天线两边距离底板两边至少 5.0mm 以上。

