Introduction to VLSI From MOS Transistor to ALU

Reading: Chapter 1 in "CMOS VLSI Design: A Circuits and Systems Perspective," by N. Weste, D. Harris

- HW0 &HW1 is posted on Moodle
 - Due: 3/5
- Makeup class: 9/28
- Today:From MOS Transistor to ALU

Introduction

- Integrated circuits: many transistors on one chip.
- Very Large Scale Integration (VLSI): very many >10K gates in a chip
- Complementary Metal Oxide Semiconductor (CMOS)
 - Fast, cheap, low power transistors
- Today:
 - CMOS transistors
 - Building logic gates from transistors

Silicon Lattice

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

Dopants

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

p-n Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

nMOS Transistor

- Four terminals: gate, source, drain, body
- Source and drain: n type (n+ mean it is heavily doped)
- Body: p type
- Gate is used to control the transistor
- MOS stands for metal—oxide—semiconductor (MOS)
- Gate—oxide—body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator

Even though gate is no longer made of metal

nMOS Operation (V_G=0V)

- Body is commonly tied to ground (0 V)
- When the gate is at a low voltage (V_G=0V):
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation (V_G=VDD)

- When the gate is at a high voltage (V_G=V_{DD}):
 - Positive charge on the gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under the gate to n-type
 - Now current can flow through n-type silicon from the source through the channel to drain; the transistor is

pMOS Transistor

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- GND = 0 V
- In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

Source: Scaled CMOS Technology Reliability Users Guide

Summary: Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at the gate controls the path from source to drain

CMOS Logic Gate Design

CMOS Inverter

A	Υ
0	
1	

CMOS Inverter

CMOS Inverter

А	Υ
0	1
1	0

Α		В		Υ
0		0		
0		1		
1		0		
1		1		

Α	В		Υ	
0	0		1	
0	1			
1	0			
1	1			

А	В	Y		
0	0	1		
0	1	1		
1	0			
1	1			

Α	В	Υ		
0	0	1		
0	1	1		
1	0	1		
1	1			

Α	В	Υ		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

CMOS NOR Gate

Α	В	Υ	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

A	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

3-input NOR Gate

- Y pulls high if ALL inputs are 0
- Y pulls low if ANY input is 1

A	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Gate design using Complementary CMOS

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Construction of PDN

NMOS devices in series implement a NAND

function

NMOS devices in parallel implement a NOR

function

Series and Parallel (1)

- Series: both must be ON to be conductive
- Parallel: either can be ON to be conductive

Series and Parallel (2)

- Series: both must be ON to be conductive
- Parallel: either can be ON to be conductive

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

4-input CMOS NOR gate

- Activity:
 - Sketch a 4-input CMOS NOR gate

Compound Gates

- Compound gates can do any inverting function
- Ex: AND-OR-INVERT, AOI22 $Y = \overline{A \cdot B + C \cdot D}$

Example: O3AI

$$Y = \overline{(A+B+C) \cdot D}$$

$$A \bigoplus B = \overline{A}B + A\overline{B}$$

How many transistors?:

14 T

Multiplexers

• 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

How many transistors are needed? 20

$$Y = SD_1 + \overline{S}D_0$$

Gate Comparison -1

NAME	GRAPHIC SYMBOL	FUNCTIONAL EXPRESSION	COST (NUMBER OF TRANSISTORS)	GATE DELAY (NS)
Inverter	$x \longrightarrow F$	F = x'	2	1
Driver	$x \longrightarrow F$	F = x	4	2 *
AND	y—— F	F = xy	6	2.4
OR	y— F	F = x + y	6	2.4
NAND	y— F	F = (xy)'	4	1.4
NOR	$y \longrightarrow F$	F = (x + y)'	4	1.4
XOR	y— F	$F = x \oplus y$	14	4.2
XNOR	y— F	$F = x \odot y$	12	3.2

- 1. Cost (# of trans.)
- 2. Delay

Gate delay is dependent on the VLSI technology and the cell library.

Gate Comparison-2

Which adder has lower transistor number?

Which adder has lower delay?

and gate: 6 trans. xor gate: 14 trans.

Totally, 46 transistors

INPUT/OUTPUT PATH	DELAY (ns)
c_i to c_{i+1}	4.8
c_i to s_i	4.2
x_i, y_i to c_{i+1}	9.0
x_i, y_i to s_i	8.4

Delay (critical path)= 9.0 ns

Totally, 36 transistors

INPUT/OUTPUT PATH	DELAY (ns)	-
c_i to c_{i+1}	2.8	Delay (critical path)
c_i to s_i	3.8	=7.6 ns
x_i, y_i to c_{i+1}	5.2	
x_i, y_i to s_i	7.6	

Threshold Drops

Weak "1"

Signal Strength

- Strength of signal: How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But pass degraded or weak 1
- pMOS pass strong 1
 - But pass degraded or weak 0
- Thus nMOS are best for pulldown network, pMOS are best for pull-up

Pass Transistors

- Input is from the source
- Transistors can be used as switches

$$g = 0$$

$$s \longrightarrow -d$$

$$g = 1$$

$$s \longrightarrow -d$$

$$g = 0$$

$$s \longrightarrow 0$$

$$g = 1$$

Input
$$g = 1$$
 Output $0 \rightarrow -strong 0$

$$g = 1$$

$$1 \rightarrow -degraded 1$$

Input
$$g = 0$$
 Output $0 \rightarrow -$ degraded 0

$$g = 0$$
1 \rightarrow strong 1

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both strong 0 and 1

Input Output
$$g = 1, gb = 0 \\ 0 \longrightarrow \text{strong } 0$$

$$g = 1, gb = 0 \\ g = 1, gb = 0$$

$$g = 1, gb =$$

1⊸→ strong 1

Symbol of Transmission Gates

Finish other gates by yourself

 $\overline{\mathbf{B}}$

Recap: Tristate buffer

Tristate buffer produces Z when not enabled

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Transmission gate as a tristate buffer

- Transmission gate acts as tristate buffer
 - Only two transistors
 - Issue: signal is nonrestoring
 - Noise on A is passed on to Y

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Comparison: Tristate Inverter

- Tristate inverter that produces restored output
 - Restored output: output is strongly driven and noise in the input is not passed to output
 - Violates conduction complement rule because we want a Z output

EN	Α	Υ
0	0	Z
0	1	Z
1	0	1
1	1	0

Multiplexer with Transmission Gate

Nonrestoring mux uses two transmission gates

Only 4 transistors + an Inverter

S	$\bar{\mathbf{S}}$	Y
0	1	D0
1	0	D1

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

D Latch

- When CLK = 1, latch is transparent
 - D flows through to Q like a buffer
- When CLK = 0, the latch is opaque
 - Q holds its old value independent of D
- a.k.a. transparent latch or level-sensitive latch

D Latch Design

- Multiplexer chooses D or old Q
- See the D operation in the next slide

D Latch Operation

 $\overline{\text{CLK}}$

D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop

D Flip-flop Design

 Built from master and slave D latches

D Flip-flop Operation

Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates and flip-flops out of switches

 Now you know everything necessary to start designing schematics and layout for a simple chip!

Backup slides

