3

Introducere în rețele switched

Capitolul 1

? Cum construim o rețea locală eficientă?

Mediul de switching

Concept general

- Diverse tipuri de switch-uri pentru LAN, WAN și PSTN
- Criteriile de decizie ale switch-ului:
 - adresa de destinație
 - portul de intrare

Metode de forward

- Store and Forward
 - e primește tot cadrul
 - se calculează CRC
 - se determină interfața de ieșire
- Cut through

Metode de forward

- Store and Forward
- Cut through
 - *cadru trimis mai repede
 - rată a erorilor mai mare
 - 🖒 nu se așteaptă întregul cadru

Cadru - Store and Forward

Primirea întregului cadru, apoi forwarding

Cadru - Cut Through

Forwardarea începe imediat dupa primirea MAC-ului destinație

Popularea tabelei CAM

 Switch-ul învață adresele MAC și le asociază cu porturile pe care vin.

Tabela CAM București	
Adresă MAC	Port
MAC_Andrei	Etho
MAC_Dana	Eth1

Domenii de coliziune

- Segmente de rețea care împart același bandwidth
- Fiecare port al unui switch delimitează un domeniu de coliziune separat

Domenii de broadcast

Segmente de rețea unde va ajunge un cadru broadcast

Frame-uri broadcast – sunt floodate pe toate porturile switch-ului

Unealta potrivită fiecărei cerințe

Rețele convergente

Convergență = toate serviciile de comunicare într-o singură rețea

Telul este oferirea de servicii mai bune la un cost mai mic

Model Cisco Borderless

Ierarhizare

Modularitate

S Redundanță

* Flexibilitate

Modelul A-D-C (ierarhic)

A = Access

Acces pentru utilizator

D = Distribution

Redundanță

Coloana vertebrală a rețelei (backbone)

Modelul A-D-C (ierarhic)

Design pe 2 niveluri

- Toate design-urile de retele au nevoie de nivelul acces
- Nivelurile distributie si core sunt folosite ca unul singur
 - Locatie mic
 - Numar mic de utilizatori

Collapsed core

- Folosit intr-o retea mica (un bloc)
- Foloseste 2 niveluri
 - Nivelul core si distributie
- Companiile mai mari folosesc modelul pe 3 nivele

Retea Enterprise

Trăsături:

Quality of service

Securitate adițională

🙎 Servicii de mobilitate

Tipuri de switch-uri:

- Fixe
- Modulare
- Stackable

Tipuri de switch-uri:

- Fixe
- Modulare
- Stackable

Tipuri de switch-uri:

- Fixe
- Modulare
- Stackable

Răspunsul zilei

① Cum construim o rețea locală eficientă?

