Unit 2 Intro to Java

Dr. Magdi AMER

```
public class First
{
    public static void main(String[] args)
    {
       System.out.println("First Java application");
    }
}
```

```
Class header public class First First is the name of the class or the identifier for the class.

Class body System.out.println("First Java application");

Public is an access modifier.

First is the name of the class or the identifier for the class.

Public static void main(String[] args)

{
System.out.println("First Java application");
}
```


System is a class.

out is an object. It belongs to the System class. "First Java application" is a literal string that is the argument to the println() method.

System. out. println ("First Java application");

Dots separate classes, objects, and methods. println () is a method. Method names are always followed by parentheses. Every Java statement ends with a semicolon.

Comments

```
// Demonstrating comments
/* This shows
    that these comments
    don't matter */
System.out.println("Hello"); // This line executes
    // up to where the comment started
/* Everything but the println()
    is a comment */
```

Displaying a message

```
import javax.swing.JOptionPane;
public class FirstDialog
{
    public static void main(String[] args)
    {
        JOptionPane.showMessageDialog(null, "First Java dialog");
    }
}
```

JVM

Basic data types

Keyword	Description	
byte	Byte-length integer	
short	Short integer	
int	Integer	
long	Long integer	
float	Single-precision floating point	
double	Double-precision floating point	
char	A single character	
boolean	A Boolean value (true or false)	

Basic Types

```
byte v1 = 126; // 8 bits. -128 to +127
short v2 = -32000; //16 bits. -32,768 to +32,767
int v3= 1234567890; // 32 bits. -2,147,483,648 to +2,147,483,647
long v5 = 123456789L; //64 bits.
float v4 = 35.6F; // 32 bits.
double v6 = 123456789.12345D; //64 bits.
char v7 ='C'; //16 bits.
boolean v8 = true; // or false // 1 bit.
```

Integer

Туре	Minimum Value	Maximum Value	Size in Bytes
byte	-128	127	1
short	-32,768	32,767	2
int	-2,147,483,648	2,147,483,647	4
long	-9,223,372,036,854,775,808	9,223,372,036,854,775,807	8

Integer

```
public class NumbersPrintln
   public static void main(String[] args)
      int billingDate = 5;
      System.out.print("Bills are sent on the ");
      System.out.print(billingDate);
      System.out.println("th");
      System.out.println("Next bill: October " +
         billingDate);
```

Arithmetic Operators

Operator	Description	Example	
+	Addition	45 + 2, the result is 47	
_	Subtraction	45 – 2, the result is 43	
×	Multiplication	45 * 2, the result is 90	
1	Division	45/2, the result is 22 (not 22.5)	
%	Remainder (modulus)	45 % 2, the result is 1 (that is, 45/2 = 22	
		with a remainder of 1)	

Integer

Reading a String from the user

```
import javax.swing.JOptionPane;
public class HelloNameDialog
{
    public static void main(String[] args)
    {
        String result;
        result = JOptionPane.showInputDialog(null, "What is your name?");
        JOptionPane.showMessageDialog(null, "Hello, " + result + "!");
    }
}
```


Control Structures: if

```
if grade \geq
                                                                              true
                                                                                        Print "passed"
                                                                 60
public class MyFirstProgram
                                                                       false
 public static void main(String args[])
  int grade;
  grade = 80;
  if(grade>60)
     System.out.println("passed");
```

Control Structures: if .. else

```
public class MyFirstProgram
 public static void main(String args[])
  int grade;
  grade = 40;
  if(grade>60)
    System.out.println("passed");
  else
    System.out.println("failed");
```


Control Structures: for

```
public MyApplication{
public static void main(String args[ ])
    for(int j=5; j > 0; j--)
      System.out.println("Hello");
     System.out.println(" Good Bye ");
```


Control Structures: breaking a loop

```
public MyApplication{
public static void main(String args[]) {
     for(int i = 0; i<5; i++) {
     for(int j=0; j <5; j++) {
      if(i==j)
        break;
      else
        System.out.print(" "+j);
     System.out.println("");
                                Dr. Magdi Amer
```

```
0
0 1
0 1 2
0 1 2 3
```

Control Structures: Skipping an iteration

```
public MyApplication{
public static void main(String args[]) {
     for(int i = 0; i<5; i++) {
     for(int j=0; j <5; j++) {
      if(i==j)
        continue;
      else
        System.out.print(" "+j);
     System.out.prntln("");
                                 Dr. Magdi Amer
```

Decimal Numbers

Туре	Minimum	Maximum	Size in Bytes
float	-3.4 * 10 ³⁸	3.4 * 10 ³⁸	4
double	-1.7 * 10 ³⁰⁸	1.7 * 10 ³⁰⁸	8

Type Conversion

```
int hoursWorked = 37;
double payRate = 6.73;
int grossPay = hoursWorked * payRate; //ERROR

double bankBalance = 189.66;
float weeklyBudget = (float) bankBalance / 4;

float myMoney = 47.82f;
int dollars = (int) myMoney;
   // dollars is 47, the integer part of myMoney
```

Decimal Numbers

You do not need to perform a cast when assigning a value to a higher unifying type. For example, when you write a statement such as the following, Java automatically promotes the integer constant 10 to be a double so that it can be stored in the payRate variable:

```
double payRate = 10;
```

Note the all the arithmetic operators (except %), works with decimal number to produce decimal numbers.

```
int x = 2;
float y = 4.6f;
float z = y/x; //z = 2.3f;
```

char

```
char myMiddleInitial = 'M';
char myGradeInChemistry = 'A';
```

char aStar = '*';

Escape Sequence	Description	
\p	Backspace; moves the cursor one space to the left	
\t	Tab; moves the cursor to the next tab stop	
\n	Newline or linefeed; moves the cursor to the beginning of	
	the next line	
\r	Carriage return; moves the cursor to the beginning of the	
	current line	
\"	Double quotation mark; prints a double quotation mark	
\'	Single quotation mark; prints a single quotation mark	
	Backslash; prints a backslash character	

```
public class HelloThereNewLine
{
    public static void main(String[] args)
    {
        System.out.println("Hello\nthere");
    }
}
```

Logical Operators

Operator	Description	True example	False example
<	Less than	3 < 8	8 < 3
>	Greater than	4 > 2	2 > 4
==	Equal to	7 == 7	3 == 9
<=	Less than or equal to	5 <= 5	8 <= 6
>=	Greater than or equal to	7 >= 3	1 >= 2
!=	Not equal to	5 != 6	3!=3

Reading Numbers from the user

```
import javax.swing.JOptionPane;
public class SalaryDialog
  public static void main(String[] args)
      String wageString, dependentsString;
      double wage, weeklyPay;
      int dependents;
      final double HOURS IN WEEK = 37.5;
      wageString = JOptionPane.showInputDialog(null,
         "Enter employee's hourly wage", "Salary dialog 1",
         JOptionPane.INFORMATION MESSAGE);
      weeklyPay = Double.parseDouble(wageString) *HOURS IN WEEK;
      dependentsString = JOptionPane.showInputDialog(null,
         "How many dependents?", "Salary dialog 2",
         JOptionPane.OUESTION MESSAGE):
      dependents = Integer.parseInt(dependentsString);
      JOptionPane.showMessageDialog(null, "Weekly salary is $" +
         weeklyPay + "\nDeductions will be made for " +
         dependents + " dependents");
```

Reading Numbers from the user

```
wageString = JOptionPane.showInputDialog(null,
    "Enter employee's hourly wage", "Salary dialog 1",
    JOptionPane.INFORMATION MESSAGE);
```


dependentsString = JOptionPane.showInputDialog(null,
 "How many dependents?", "Salary dialog 2",
 JOptionPane.QUESTION_MESSAGE);


```
JOptionPane.showMessageDialog(null, "Weekly salary is $" +
  weeklyPay + "\nDeductions will be made for " +
  dependents + " dependents");
```

Confirmation Messages

Confirmation Messages

You can also create a confirm dialog box with five arguments, as follows:

- » The parent component, which can be null
- » The prompt message
- » The title to be displayed in the title bar
- » An integer that indicates which option button will be shown (It should be one of the class variables YES_NO_CANCEL_OPTION or YES_NO_OPTION.)
- » An integer that describes the kind of dialog box (It should be one of the class variables ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or WARNING_MESSAGE.)

First Method

```
public class First
   public static void main(String[] args)
      nameAndAddress();
      System.out.println("First Java application");
                                         Method name
               Modifiers
                             Return type
Method
            public static void nameAndAddress()
header
               System.out.println("Event Handlers Incorporated");
Method
               System.out.println("8900 U.S. Hwy 14");
body
               System.out.println("Crystal Lake, IL 60014");
```

A method with a single parameter

```
Parameter type

Parameter type

Parameter identifier that is local to the method

public static void predictRaise (double moneyAmount)

{
    double newAmount;
    final double RAISE = 1.10;
    newAmount = moneyAmount * RAISE;
    System.out.println("With raise, salary is " + newAmount);
}
```

A method with a single parameter

```
public class DemoRaise
   public static void main(String[] args)
      double mySalary = 200.00;
      double moneyAmount = 800.00;
      System.out.println("Demonstrating some raises");
      predictRaise (400.00);
      predictRaise (mySalary);
      predictRaise (moneyAmount);
   public static void predictRaise(double moneyAmount)
      double newAmount:
      final double RAISE = 1.10;
      newAmount = moneyAmount * RAISE;
      System.out.println("With raise, salary is " + newAmount);
```

A method with multiple parameters

```
public class ComputeCommission
  public static void main(String[] args)
     char vTvpe = 'S';
     int value = 23000;
     double commRate = 0.08:
      computeCommission(value, commRate, vType);
      computeCommission(40000, 0.10, 'L');
   public static void computeCommission(int value,
      double rate, char vehicle)
      double commission:
      commission = value * rate:
      System.out.println("\nThe " + vehicle +
          " type vehicle is worth $" + value);
      System.out.println("With " + (rate * 100) +
          "% commission rate, the commission is $" +
          commission);
```

A method that returns a parameter

```
package eq.edu.ufe.midTermExam.Tic1;
public class ComputeCommission {
  public static void main(String[] args)
    double mySalary = 200.00;
    System.out.println("Demonstrating some raises");
    double total = predictRaise(mySalary);
    System.out.println("Total is "+total);
  public static double predictRaise(double moneyAmount)
    double newAmount:
    final double RAISE = 1.10;
    newAmount = moneyAmount * RAISE;
    return newAmount;
                          Output - UFEMidTerm (run)
                             Demonstrating some raises
                             Total is 220.00000000000000
                             BUILD SUCCESSFUL (total time: 0 seconds)
```

Arithmetic Precedence

Operator(s)	Operation(s)	Order of evaluation (precedence)
* / %	Multiplication Division Remainder	Evaluated first. If there are several operators of this type, they're evaluated from left to right.
+	Addition Subtraction	Evaluated next. If there are several operators of this type, they're evaluated from left to right.
=	Assignment	Evaluated last.

Precedence of arithmetic operators.

Relational Operators

Standard algebraic equality or relational operator	Java equality or relational operator	Sample Java condition	Meaning of Java condition
Equality operators			
=	==	x == y	x is equal to y
≠	!=	x != y	x is not equal to y
Relational operators			
>	>	x > y	x is greater than y
<	<	x < y	x is less than y
≥	>=	x >= y	x is greater than or equal to y
≤	<=	x <= y	x is less than or equal to y

Equality and relational operators.

Control Structures: switch

```
public class MyFirstProgram {
 public static void main(String args[])
     int i =4;
     switch(i)
      case 1: System.out.println("1");
             break;
      case 2: System.out.println( "2");
             break;
      default: System.out.println("another number");
             break;
```

Control Structures: switch

```
public class MyFirstProgram {
 public static void main(String args[]) {
    char c='b';
    switch(c)
      case 'a': System.out.println("a");
             break;
      case 'b': System.out.println("b");
             break;
      default: System.out.println("another character");
             break;
                               Dr. Magdi Amer
```

Control Structures: switch

```
public class SwitchString {
   public static void main(String args[]) {
    String test="CS";
    switch(test)
     case "CS": System.out.println("Computer Science");
            break;
     case "CE": System.out.println("Computer Engineering");
            break;
     default: System.out.println("Other");
            break;
                              Dr. Magdi Amer
```

Control Structures: while

```
public MyApplication{
public static void main(String args[ ])
    int j=5;
    while(j > 0)
      System.out.println("Hello");
      j--;
    System.out.println(" Good Bye ");
```


Control Structures: do ... while

```
public MyApplication{
public static void main(String args[ ])
char c=' ';
do
  System.out.print("Java is cool ");
  System.out.println("do you want to see"+
               " the message again (Y/N) ");
   c = System.in.read();
  } while((c =='Y')||(c =='y'));
                                    Dr. Magdi Amer
```

