I Questions de cours

- 1 Démontrer la densité dans \mathbb{R} de \mathbb{D} , \mathbb{Q} et $\mathbb{R}\setminus\mathbb{Q}$.
- 2 Démontrer que toute suite réelle convergente est bornée.
- 3 Soient $a, b \in \mathbb{Z}$.

Montrer que $(a \wedge b)(a \vee b) = |ab|$.

II Exercices d'arithmétique

Exercice 1:

- 1 Déterminer le PGCD de $15n^2 + 8n + 6$ et $30n^2 + 21n + 13$.
- 2 Déterminer les entiers relatifs n tels que n-4 divise 3n-17.

Exercice 2:

Résoudre dans \mathbb{Z}^2 les équations suivantes :

$$323x - 391y = 612$$
 et $221x + 247y = 15$

Exercice 3:

- 1 Montrer que l'équation $x^3 x^2 + x + 1 = 0$ n'admet pas de solutions dans Q.
- 2 Résoudre le système

$$\begin{cases} x \land y = 18 \\ x \lor y = 540 \end{cases}$$

avec $x, y \in \mathbb{N}$.

Exercice 4:

Démontrer que la somme de trois cubes consécutifs est toujours divisible par 9.

$\underline{Exercice\ 5}$:

- 1 Déterminer, suivant les valeurs de $n\in\mathbb{N},$ le reste de la division euclidienne de 2^n par 5.
- 2 Quel est le reste de la division euclidienne de 5 par 1357²⁰¹³?

III Exercices sur les nombres réels

Exercice 6:

Soient $x, y, z \in \mathbb{R}$.

1 - Montrer que :

$$\max(x,y) = \frac{x+y+|x+y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x+y|}{2}$

2 - En déduire une formule pour $\max(x, y, z)$ et $\min(x, y, z)$.

Exercice 7:

Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément et le plus petit élément des ensembles suivants :

$$[0;1] \cap \mathbb{Q}, \]0;1[\cap \mathbb{Q}, \ \mathbb{N} \ \mathrm{et} \ \left\{ (-1)^n + \frac{1}{n^2}, \ n \in \mathbb{N}^* \right\}$$