Digital Fundamentals

Thomas L. Floyd

Counters **Chapter 9**

A 2-bit Asynchronous Counter

In an **asynchronous counter**, the clock is applied only to the first stage. Subsequent stages derive the clock from the previous stage.

The 2-bit asynchronous counter shown is typical.

A 2-bit Asynchronous Counter

In an **asynchronous counter**, the clock is applied only to the first stage. Subsequent stages derive the clock from the previous stage.

The 2-bit asynchronous counter shown is typical. It uses J-K flip-flops in the toggle mode.

A 2-bit Asynchronous Counter Timing Diagram

Shown here is the timing diagram for the 2-bit asynchronous counter shown on the previous slide.

A 3-bit Asynchronous Counter

Propagation Delay

Asynchronous counters are sometimes called **ripple counters**, because the stages do not all change together. For certain applications requiring high clock rates, this is a major disadvantage.

Note how the delays are cumulative as each stage in a counter is clocked later than the previous stage.

4-bit counter with tp=10ns, frequency <=25MHz

Asynchronous Decade Counter

This counter uses partial decoding to recycle the count sequence to zero after the 1001 state. The flip-flops are trailing-edge triggered, so clocks are derived from the Q outputs.

Asynchronous Decade Counter Timing Diagram

This is the timing diagram for the counter in the previous slide. When Q_1 and Q_3 are HIGH together, the counter is cleared by a "glitch" on the \overline{CLR} line.

12-Decoder

(a)

A 2-bit Synchronous Counter

All of the flip-flops in a **synchronous counter** are clocked together with a common clock pulse. Synchronous counters overcome the disadvantage of accumulated propagation delays, but generally they require more circuitry to control

states changes.

A 2-bit Synchronous Counter

All of the flip-flops in a **synchronous counter** are clocked together with a common clock pulse. Synchronous counters overcome the disadvantage of accumulated propagation delays, but generally they require more circuitry to control states changes.

2-bit Synchronous Counter Timing Diagrams

A 3-bit Synchronous Binary Counter

The 3-bit binary counter has an AND gate, unlike the 2-bit counter just described. The output from the AND gate provides the J and K inputs to FF2.

A 4-bit Synchronous Binary Counter

A BCD Decade Counter

The circuit shown is a 4-bit BCD decade counter. After reaching the count 1001, the counter recycles to 0000.

BCD Decade Counter Waveforms

The timing diagram (below) is for the BCD decade counter shown on the previous slide.

Up/Down Synchronous Counters

An up/down counter is capable of progressing in either direction depending on a control input.

Up/Down Synchronous Counters

Design of Synchronous Counters

Summary of the analysis of the counter in Figure 9-15.

	Outputs			J-K Inputs					At the Next Clock Pulse			
Clock Pulse	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	FF2	FF1	FF0
Initially	0	0	0	0	0	0	0	1	1	NC*	NC	Toggle
1	0	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
2	0	1	0	0	0	0	0	1	1	NC	NC	Toggle
3	0	1	1	1	1	1	1	1	1	Toggle	Toggle	Toggle
4	1	0	0	0	0	0	0	1	1	NC	NC	Toggle
5	1	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
6	1	1	0	0	0	0	0	1	1	NC	NC	Toggle
7	1	1	1	1	1	1	1	1	1	Toggle	Toggle	Toggle
										Counter recycles back to 000.		

^{*}NC indicates No Change.

Step 1: State Diagram

Step 2: Next-State Table

TABLE 9–8

Next-state table for 3-bit Gray code counter.

	Present St	ate		Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	O	1
1	0	1	1	0	0
1	0	0	0	0	0

Step 3: Flip-Flop Transition Table

TABLE 9-9

Transition table for a J-K flip-flop.

	Output Trans	Flip-Flop Inputs		
Q_N		Q_{N+1}	J	K
0	→	0	0	X
0	\longrightarrow	1	1	X
1	\longrightarrow	0	X	1
1	\longrightarrow	1	X	0

 Q_N : present state

 Q_{N+1} : next state

X: "don't care"

Step 4: Karnaugh Maps

Next-state table

Step 4: Karnaugh Maps

Step 5: Logic Expressions

$$J_{0} = Q_{2} Q_{1} + \bar{Q}_{2} \bar{Q}_{1}$$

$$K_{0} = Q_{2} \bar{Q}_{1} + \bar{Q}_{2} Q_{1}$$

$$J_{1} = \bar{Q}_{2} Q_{0}$$

$$K_{1} = Q_{2} Q_{0}$$

$$J_{2} = Q_{1} \bar{Q}_{0}$$

$$K_{2} = \bar{Q}_{1} \bar{Q}_{0}$$

Step 6: Counter Implementation

FIGURE 9-29 Three-bit Gray code counter.

Cascaded Counters

Counters can be cascaded to produce various divide-by (or *modulus*) values. In this case, a modulus-4 counter is cascaded with a modulus-8 counter. The resulting counter modulus equals the product of the two counters: Modulus 32.

Frequency Division Using A Modulus-100 Counter

The circuit below contains two cascaded Modulus-10 counters; forming a Modulus-100 counter. The output frequency from the circuit is 1 one-hundredth of the input frequency (f_{in} / 100).

Cascade: Example

$$8 \times 12 \times 16 = 1536$$

$$10 \times 4 \times 7 \times 5 = 1400$$

Counter Decoding

Decoding is the detection of a binary number and can be done with an AND gate.

The output from the AND gate in the circuit shown goes high when the counter output equals six (110).

A System: Digital Clock

Digital Clock: Counter Logic Diagram (Minutes and Seconds)

Digital Clock: Hours Counter & Decoders

Parallel-to-Serial Conversion (Multiplexing)

Finite State Machines

Moore machine: One whose outputs depends only on its internal present state.

Mealy machine: One whose outputs depends on both its internal present state and its inputs.

A Moore Machine

The **Moore machine** (below) controls the number of tablets that go into each bottle. It counts out 25 tablets, then resets, stopping the clock until the next bottle is in place.

A Mealy Machine

The **Mealy machine** (below) controls the number of tablets that go into bottles of various sizes. Its operation depends on the bottle size (external) and the number of tablets remaining in the count (internal).

