Problem

Let Ω be an open subset of \mathbb{C} . Suppose f is a meromorphic function on Ω having exactly one zero at z_0 and exactly one pole at z_1 . Further, m is the order of zero at z_0 and n is the order of the pole at z_1 . If $g:\Omega\to\mathbb{C}$ is analytic and D is an open disc with center a and radius r such that $z_0,z_1\in D$ and $D\subset\Omega$, then show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} g(z) dz = mg(z_0) - ng(z_1),$$

where $\gamma(t) = a + re^{2\pi it}$ for $0 \le t \le 1$.

Solution

We apply the residue theorem to the meromorphic function $\frac{f'}{f}g$.

Step 1: Behavior of $\frac{f'}{f}$ at zeros and poles

Suppose f has a zero of order m at z_0 . Then in a neighborhood of z_0 , we can write

$$f(z) = (z - z_0)^m h(z),$$

where h(z) is analytic and $h(z_0) \neq 0$. Differentiating,

$$f'(z) = m(z - z_0)^{m-1}h(z) + (z - z_0)^m h'(z),$$

SO

$$\frac{f'(z)}{f(z)} = \frac{m}{z - z_0} + \frac{h'(z)}{h(z)}.$$

Hence, $\frac{f'}{f}$ has a simple pole at z_0 with residue

$$\operatorname{Res}_{z=z_0} \frac{f'(z)}{f(z)} = m.$$

Step 2: Behavior at poles

Suppose f has a pole of order n at z_1 . Then in a neighborhood of z_1 , we can write

$$f(z) = \frac{1}{(z - z_1)^n} k(z),$$

where k(z) is analytic and $k(z_1) \neq 0$. Differentiating,

$$f'(z) = -\frac{n}{(z-z_1)^{n+1}}k(z) + \frac{1}{(z-z_1)^n}k'(z),$$

SC

$$\frac{f'(z)}{f(z)} = \frac{-n}{z - z_1} + \frac{k'(z)}{k(z)}.$$

Hence, $\frac{f'}{f}$ has a simple pole at z_1 with residue

$$\operatorname{Res}_{z=z_1} \frac{f'(z)}{f(z)} = -n.$$

Step 3: Apply residue theorem

The function $\frac{f'}{f}g$ is meromorphic on D, and its only singularities inside γ are at z_0 and z_1 . By the Cauchy residue theorem,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} g(z) dz = \sum_{z \in \{z_0, z_1\}} \operatorname{Res}_z \left[\frac{f'(z)}{f(z)} g(z) \right].$$

At z_0 :

$$\operatorname{Res}_{z=z_0} \left[\frac{f'(z)}{f(z)} g(z) \right] = \lim_{z \to z_0} (z - z_0) \frac{f'(z)}{f(z)} g(z) = mg(z_0).$$

At z_1 :

$$\operatorname{Res}_{z=z_1} \left[\frac{f'(z)}{f(z)} g(z) \right] = \lim_{z \to z_1} (z - z_1) \frac{f'(z)}{f(z)} g(z) = -ng(z_1).$$

Final Answer

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} g(z) \, dz = mg(z_0) - ng(z_1)$$