Tutoría 01

Problema 1: Halle el ángulo de fase entre v(t) y i(t). Además, determine la relación de adelanto-retraso entre ambas señales.

$$v(t) = -\cos(2t + 20^{\circ}) V e i(t) = 5\sin(2t - 35^{\circ}) A$$

Respuesta: i(t) adelanta 35^{o} a v(t)

Problema 2: Determine la representación fasorial de $v(t) = -\sin(t - 10^{\circ}) V$.

Respuesta: $V = 1 480^{\circ} \text{ V}$

Problema 3: Determine la señal representada por el fasor $\mathbf{I} = -2je^{-j180^{\circ}}A$.

Respuesta: $i(t) = 2\cos(\omega t + 90^{\circ})A$

Problema 4: Utilizando el método fasorial, determine la tensión v(t) de un circuito el cual esta descrito por la siguiente ecuación integro-diferencial:

$$4v(t) + \int v(t)dt - 3\frac{dv(t)}{dt} = \cos(2t)$$

Respuesta: $v(t) = 0.13\cos(2t + 58.39^{\circ})V$

Problema 5: Para el siguiente circuito si $R = 1\Omega$, L = 1mH, $C = 100\mu F$ y $v_s(t) = 10\sin(1000t)$ [V], determine el diagrama fasorial para los fasores V_s , V_R , V_L , V_C y I rotulando correctamente los ejes del plano.

Respuesta: $\mathbf{I} = 1.1 \pm -6.34^{o} \ A, V_{S} = -10 \mathrm{j} \ V, \ V_{R} = 1.1 \pm -6.34^{o} \ V, \ V_{C} = 11.04 \pm -96.34^{o} \ V$ y $V_{L} = 1.1 \pm 83.66 \ V$.

Problema 6: Considere el circuito que se muestra en la siguiente figura:

Las corrientes del circuito están definidas por:

- $i_s(t) = I_S \cos(\omega t + \theta_s) A$
- $i_L(t) = I_L \cos(\omega t + \theta_L) A$
- $i_R(t) = I_R \cos(\omega t + \theta_R) A$
- a) Determine el valor de I_L si $I_S = \sqrt{34}$ e $I_R = 3$. Respuesta: $I_L = 5$
- b) Considerando los valores de I_s , I_L e I_R obtenidos en el punto anterior, calcule los ángulos θ_S y θ_R si $\theta_L=10^o$.

Respuesta: $\theta_S = 40.96^{\circ} \text{ y } \theta_S = 100^{\circ}.$

Problema 7: Considere la siguiente donde se muestra un circuito eléctrico y dos ondas sinusoidales que pertenecen a dicho circuito.

En el circuito se tienen dos impedancias Z_1 y Z_2 conectadas en paralelo ambas a una fuente de alimentación. Se sabe que las magnitudes de las impedancias son:

- $|Z_1| = 2.5 \Omega$
- $|Z_2| = 5/3 \Omega$

Además, las ondas temporales que se muestran en la figura representan la corriente y la tensión características de la fuente de alimentación, según su definición en el mismo circuito. Considerando toda la información suministrada, determine:

a. Las impedancias $\boldsymbol{Z_1}$ y $\boldsymbol{Z_2}$.

Respuesta:
$$\mathbf{Z_1} = 2.5 4 - 45^o \Omega$$
 y $\mathbf{Z_2} = \frac{5}{3} 4 - 45^o \Omega$.

b. La resistencia y/o capacitancia y/o inductancia características de la impedancia Z_1 según el resultado obtenido en el punto anterior.

Respuesta:
$$R = \frac{5\sqrt{2}}{4}\Omega$$
 y $C = 3.6 \, mF$.

Problema 8: Determine la corriente I_o .

Respuesta: $I_o = 3,35 \pm 174,29^o A$

Problema 9: Utilizando superposición determine la corriente $i_o(t)$ del circuito.

Respuesta: $i_o(t) = 0.1 + 1.18\cos(4000t + 97.32^o) + 0.22\cos(2000t + 134.19^o)$

Problema 10: Para el siguiente circuito, halle el circuito equivalente de Thévenin en las terminales a-b.

Respuesta: $\pmb{Z_{Th}}=44{,}72{\not\preceq}63{,}34^o\;\Omega$ y
 $\pmb{V_{Th}}=134{\not\preceq}123{,}44^o\;V$

Problema 11: Calcule $i_o(t)$ aplicando el teorema de Norton.

Respuesta: $i_o(t) = 0.54\cos(2t - 77,47^o)A$

Problema 12: Si la impedancia de entrada se define como $\mathbf{Z}_{en} = \mathbf{V}_s/I_s$, halle la impedancia de entrada del circuito del amplificador operacional de la siguiente figura cuando $R_1 = 10k\Omega$, $R_2 = 20k\Omega$, $C_1 = 10n\mathrm{F}$, $C_2 = 10n\mathrm{F}$ y $\omega = 5000\,\mathrm{rad/s}$.

Respuesta: $\pmb{Z_{en}} = 22{,}36{\not 4} - 63{,}43^o\;k\Omega$

Problema 13: Considere el siguiente circuito mostrado en la siguiente figura:

Si se sabe que la tensión de entrada es $v_s(t)=10\cos(2000t)~V,~C_1=C_2=1~nF,~R_1=R_2=100~k\Omega,~R_3=20~k\Omega$ y $R_4=40~k\Omega.$

a) Mediante un análisis de nodos, determine la relación V_o/V_s y el desfase existente entre las señales $v_s(t)$ y $v_o(t)$.

Respuesta: $\boldsymbol{V_o/V_s} = -1/8,$ así $\boldsymbol{v_o(t)}$ retrasa 180^o a $\boldsymbol{v_s(t)}$

b) En relación con el resultado del punto a), determine la señal $v_o(t)$.

Respuesta: $v_o(t) = \frac{10}{8}\cos(2000t - 180^o) V$