جامعة 20 أوت 1955 سكيكدة الجامعية : 2022/2021

مقياس : مدخل إلى الإحتمالات و الإحصاء الوصفي

السنة الأولى MI

الفصل الأول : مبادئ أولية وبعض المقاهيم الإحصائية الضرورية

I. تعريف علم الإحصاء

الإحصاء هو فرع من فروع الرياضيات يشمل النظريات و الطرق الموجهة نحو جمع البيانات ووصفها و الاستقراء و صنع القرارات.

يصنف الإحصاء كعلم إلى:

- الإحصاء الوصفي Statistique descriptive: يتناول طرق تنظيم وتلخيص وعرض البيانات في صورة مبسطة.
- الإحصاء الإستدلالي أو التطبيقي Statistique inférentielle: يهتم بطرق الوصول إلى نتائج معينة أو توقعات ما عن المجتمع من خلال دراسة عينة من ذلك المجتمع.

II. المقاهيم الأساسية لعلم الإحصاء

- المعطيات أو البياتات (les données): هي المعلومات التي يتم جمعها و تنظيمها و تحليلها من طرف الإحصانيين.
- المجتمع الإحصائي (population): هو مجموعة الأفراد الذين تخصيهم دراسة إحصائية معينة أي المجموعة التي تجرى عليها المشاهدات. مثلا سكان مدينة، طلبة جامعة ما، مجتمع من الأسر ... إلخ.
- 3. الغرد أو الوحدة الإحصائية (unité statistique ou individu): هو العنصر المكون للمجتمع الإحصائي. مثلا طالب من جامعة ما.
- 4. العينة الإحصائية (échantillon): هو مجموعة جزئية من المجتمع الإحصائي، تجرى المشاهدات عليها
 إذا كان عدد عناصر المجتمع كبيراً.
- 5. الميزة الإحصائية (الصفة أو المتغير الإحصائي) (caractère-variable): هي الخاصية التي يرغب الباحث في دراستها و العنصر المشترك بين أفراد مجتمع ، مثل الطول بالنسبة لمجموعة الطلبة، الوزن،...،الخ. الهينات(القيم) التي يمكن أن تظهر عليها الميزة تسمى الكيفيات (Modalités). الميزة نوعان:
- أ. ميزة نوعية (كيفية وصفية) (caractère qualitatif): هي الميزة الذي لا يمكن قياسها (لا تأخذ قيما عددية). مثلا: اللون، الجنس، الجنسية، الحالة العانلية ...الخ. تنقسم إلى:
 - ميزة نوعية خاضعة للترتيب ordinale: مثل المستوى التعليمي، الرتب العسكرية، تقديرات النجاح... الخ.
 - ميزة نوعية غير خاضعة للترتيب nominale: مثل الجنسية، أنواع السيارات، أنواع الأمراض ...إلخ.
- ب. ميزة كمية (عددية)- caractère quantitatifs: هي الميزة التي يمكن قياسها (تأخذ قيما عددية). مثلا : العمر ، القامة ، نقط اختبار ، عدد الإخوة . المتغير الكمي نوعان :
- كمي متقطع (منفصل) -discret: هي الميزة الكمية التي تأخذ قيما معزولة صحيحة أو قابلة للعد مثلا: العمر،
 عدد الإخوة، سنة الميلاد، عدد أفراد أسرة،....

كمي مستمر (متصل) -continu: هي الميزة الكمية التي تأخذ قيما في مجال معطى مستمر في R أو غير قابلة للعد. مثلا: القامة، الوزن، المسافة،

عندما تكون قيم المتغير الإحصائي مستمرة، تصنف هذه القيم على شكل فنات من R .

- 6. الغنة classe: هي كل مجال من الشكل a ; b a من a غالبا ما تكون الغنات متساوية الطول. طولها هو العدد الموجب a+b و مركز ها هو العدد a+b و المدى هو a+b.
- 7. التكرار المطلق effectif (fréquence absolue) : يمثل عند المرات التي تتكرر فيه نفس القيمة χ_i (قيمة المتغير الإحصائي) و نرمز له ب $n_i = N$ مع $\sum n_i = N$ هو حجم العينة (أو المجتمع الإحصائي).
- 8. التكرار النسبي- fréquence (relative): هو حاصل قسمة التكرار المطلق لكل قيمة على مجموع التكرارات،
 اى:

$$\sum f_i = 1$$
 s. $f_i = \frac{n_i}{\sum n_i} = \frac{n_i}{N}$

9. التكرار النسبي المنوي (fréquence): هو التكرار النسبي مضروبا في 100:

العرض الجدولي للبيانات (تبويب البيانات)

هي إحدى وسائل تصنيف أو تبويب البيانات الإحصائية على صورة جدول منتظم يوضح كيفية توزيع القيم الذي حصلنا عليها من الظاهرة المدروسة

جدول التوزيع التكراري

هو جدول بسيط يتكون من عمودين(سطرين) حيث يدل العمود (السطر) الأول على قيم الظاهرة (كيفيات الميزة)، ويدل العمود (السطر) الثاني على التكرار (المطلق) المقابل لهذه القيم.

المجموع	x_k	•••	<i>x</i> ₂	<i>x</i> ₁	الإحصائية	الميزة	قيم
						x_i (نات	(الكية
N	n_k	***	n ₂	n_1	n	ر العطلق إ	التكرا

مثال1: : تمثل البيانات التالية توزيع 20 مرضى حسب نوعية فصيلة الدم:

OAOAAB BOAABAOOA BBAABOA المجتمع الإحصائي: جماعة ال 20 مرضى المستجوبة.

المتغير الإحصائي: نوعية فصيلة الدم. طبيعته: كيفي غير قابل للترتيب.

المجموع	AB	0	В	Α	فصيلة الدم
20	2	6	4	8	عد العرضي
					(التكرارات)

مثال2: تمثل البيانات التالية عدد الساعات التي قضاها 15 طالب في إستعمال الانترنت في أسبوع:

9 8 9 10 11 8 7 10 8 4 5 7 9 6 5

المجتمع الإحصائي: جماعة ال15 الطلبة المستجوبة.

المتغير الإحصائى: عدد ساعات إستعمال الانترنت في أسبوع من طرف الطلبة المستجوبة. طبيعته: كمي متقطع.

Σ	11	10	9	8	7	6	5	4	عد الساعات
15	1	2	3	3	2	1	2	1	عدد الطلبة
				_					$n_i(التكرار)$

أما في حالة متغير كمى مستمر يتم بناء جدول إحصائي بإنباع الخطوات الاتية:

طريقة تحديد جدول التوزيع التكراري حالة متغير كمي مستمر

1. نحدد المجال (المدى) الذي تنتشر فيه البياتات، و هو الغرق بين أكبر قيمة للبياتات وأصغر قيمة لها، أي أن:

المدى = أكبر قيمة - أصغر قيمة.

- نقسم المدى إلى فنات متساوية الطول k بحيث يكون عددها مناسبا (ما بين 5 و 15 فئة) و هناك عدة طرق لحساب عدد الفنات نذكر منها:
 - معادلة ستيرجس Sturages : التي تنص على أن $k=1+3.322\log(N)$ عدد البيانات. \checkmark
 - التي تنص على أن $k=2.5\sqrt[4]{N}$ عدد البيانات. $k=2.5\sqrt[4]{N}$
 - k نحسب طول الفئة L و هو يساوي المدى مقسوما على عدد الفئات

$$L = \frac{E}{k}$$

عند تحديد طول الفنة يجب مراعاة المعادلة المرنة:

$$E \le k \times L$$

- حساب مراكز الفنات c_i.
- 5. يكون الجدول من عمود (سطرين) يحتوي العمود (السطر) الأول على الغنات أما الثاني فيحتوي على مراكز الغنات و العمود (السطر) الثالث على التكرار (المطلق) المقابل لهذه الغنات.

مثال 3: البيانات التالية متعلقة بأوزان 50 عاملا في مؤسسة ما .

165 162 150 154 155 162 155 164 158 152 171 163 <u>140</u> 157 162 171 158 164 163 159 153 158 150 160 160 149 158 152 165 156 164 157 159 158 159 153 163 158 <u>174</u> 162 156 151 160 158 162 166 162 164 158 153

- تحبيد المدى E الذي تنتشر فيه البيانات :

$$E = 174 - 140 = 34$$

- حساب عدد الفنات
- $k = 1 + 3.322 \log(N) = 1 + 3.322 \log 50 = 6.64 \approx 7$: Sturages معادلة ستير جس
 - k = 2.5. $\sqrt{N} = 2.5$. $\sqrt{50} = 6.65 \approx 7$: yule معادلة بول
 - حساب طول الفنة L و هو

$$L = \frac{E}{k} = \frac{34}{6.64} = 5.12 \approx 5$$

 $34 \le 7 \times 5 = 35$ المعادلة المرنة هي:

Σ	[170,175]	[165,170]	[160,165]	[155,160]	[150,155]	[145,150[[140,145[الأطوال
	172.5	167.5	162.5	157.5	152.5	147.5	142.5	مركز
								القنة
50	3	3	16	17	9	1	1	التكرار
1	0.06	0.06	0.32	0.34	0.18	0.02	0.02	f_1

ملاحظة: إن إختلاف طول الفنة لا يؤثر على الدراسة، لأننا في كل الحالات سواء إختيار الطول أو حسابه، لا نضيع شينا من المعلومات وهذا هو المهم.

IV. التكرارات المجمعة

عندما نرغب في معرفة عدد المشاهدات التي تقل أو تزيد عن قيمة معينة نلجاً حينها إلى حساب:

1. التكرار المجمع الصاعد – Fréquences (effectifs) Cumulées Ascendantes

التكرار المجمع الصاعد (N_i^{\dagger}) لأي قيمة (فئة) هو تكرار (المطلق أو النسبي) هذه القيمة (الفئة) مضافا إليه مجموع تكرارات القيم (الفئات) السابقة.

$$N_{l+1}^{\dagger} = N_{l}^{\dagger} + n_{l+1} = \sum_{k=1}^{l+1} n_{k} , N_{1}^{\dagger} = n_{1}, N_{2}^{\dagger} = n_{1} + n_{2}, \dots, N_{r}^{\dagger} = n_{1} + n_{2} + \dots + n_{r} = \sum_{k=1}^{k} n_{k} = N_{1} + N_{2} + \dots + N_{r} = N_{r} + N_{r} + N_{r} + \dots + N_{r} = N_{r} + N_{r} + \dots + N_{r} = N_{r} + N_{r} + \dots + N_{r} + \dots + N_{r} + \dots + N_{r} = N_{r} + \dots + N_{r}$$

2. التكرار المجمع النازل - Fréquences (effectifs) Cumulées Descendantes

التكرار المجمع النازل (N_l^1) لأي قيمة (فنة) هو عبارة عن مجموع التكرارات (N) مطروحاً منه تكرارات (المطلقة أو النسبية) القيم (الفنات) السابقة.

$$N_{l+1}^{\downarrow} = N - N_{l}^{\downarrow} \,, \qquad N_{1}^{\downarrow} = N \,, \qquad N_{2}^{\downarrow} = N - n_{1} \,, \ldots \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} \,, \ldots \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n_{r} \,, \\ N_{r}^{\downarrow} = N - n_{1} - n_{2} - \cdots - n_{r-1} = n$$

مثال: (مثال 3)

Σ	[170,175]	[165,170]	[160,165]	[155,160]	[150,155]	[145,150]	[140,145]	الم الإ
	172.5	167.5	162.5	157.5	152.5	147.5	142.5	c _I
50	3	3	16	1.7	9	1	1	n_l
-1	0.06	0.06	0.32	0.34	0.18	0.02	0.02	fi
	50	47	44	28	11	2	ı	N,
	1	0.94	0.88	0.56	0.22	0.04	0.02	F.
	3	6	22	39	48	49	50	N‡
	0.06	0.12	0.44	0.78	0.96	0.98	1	F_I^1

العرض البياتي للتكرارات (الأشكال البياتية)

ا. حالة متغير نوعي:

أ. النَّطع الدائرية – (secteurs angulaires)

هى دائرة مقسمة إلى عدة أجزاه، كل جزء يقابل زاوية مركزية ، ب تتناسب مع التكرارات المقابلة لكل خاصية حيث:

$$\phi_i = \frac{n_i}{N} \times 360^\circ = f_i \times 360^\circ$$

ب. الأعدة المستطيلة (الشريط) - Tuynux d'orgue

هي مجموعة من الأعمدة المتجاورة ذات قواعد متساوية إلا أن إرتفاعها يتناسب مع تكرار كل خاصية، كما أنها تكون متباعدة بمسافة متساوية.

ج. العمود العجزا - Diagrammes en barres

هو مستطيل مقسم إلى أجزاء، كل جزء يقابل تكرار معين لخاصية مدروسة.

مثال: توزيع العمال حسب الجنسية

المنسية المنوية	الزاوية	f ₁	n, and	الجنسية
40%	144*	0.40	80	جزائرية
25%	90°	0.25	50	فرنمية
15%	54°	0.15	30	المثية
20%	72°	0.20	40	<u>مــرنية</u>
100%	360°	1.00	200	Σ

2. حالة متغير كمى متقطع:

الأعمدة البسيطة - Diagrammes en bâtons

مجموعة من الأعمدة البسيطة تتناسب أطوالها مع التكر ار المقابل لكل قيمة.

مثال: (مثال 2)

3. حالة متغير كمي مستمر:

أ. المدرج التكراري – Histogramme

مجموعة من المستطيلات المتلاصقة، تتناسب أطوالها مع التكرار المقابل لكل فنة و قاعدة كل مستطيل تساوي طول الفئة المقابلة.

ب. المضلع التكراري - Polygone de fréquence

مجموع من قطع مستقيمة متصلة ومنكسرة تتحدد بنقاط إحداثياتها مركز الفئة و التكرارات المقابلة و (c_i, n_i)

مثال: (مثال3)

ملاحظة: إذا كانت فنات التوزيع غير متساوية، نقوم بتعديل التكرار باستعمال المعادلة التالية:

× طول الفئة المختار التكرار المعدل =

مثال : يبين الجدول التالي توزيع عينة من 100 عامل حسب الأجر اليومي

التكرار المعدل	طول القنة	عدد العمال	فنة الأجر
5	5	5	250 – 200
7.5	10	15	350 – 250
20	5	20	400 – 350
8.33	15	25	550 – 400
7.5	20	30	750 – 550
5	-5	5	800 – 750
		100	المجموع

A. منحنى التكرارات المجمعة الصاعدة و النازلة

أ. متغير كمي متقطع

عبارة عن قطع مستقيمة متصاعدة (متنازلة) حسب تصاعد (تنازل) التكرار المجمع سواء كانت مطلقة أو نسبية لكل قيمة من قيم المتغير الإحصائي المدروس.

مثال:

Σ	11	10	9	8	7	6	.5	4	عدد
									الساعات
15	1	2	3	3	2	1	2	1	n_l
	15	14	12	9	6	4	3	1	N_t^{\dagger}
	1	3	6	9	11	12	14	15	N_t^1

ب. متغیر کمی مستمر

يرسم منحنى التكرار المجمع الصاعد (النازل) عن طريق إيصال مجموعة النقاط ذات الإحداثيات التالية: الحدود العليا(الدنيا) للفنات و التكرار المجمع الصاعد (النازل) المقابل لها: $\{a_l,n_l\}$ (a_l,n_l). يرسم المنحنى بايصال هذه النقاط بالمسطرة. مثال:

[170,175[[165,170]	[160,165]	[155,160]	[150,155]	[145,150]	[140,145[الم الإ
1	0.94	0.88	0.56	0.22	0.04	0,02	F_l^{\dagger}
0.06	0.12	0.44	0.78	0.96	0.98	1	F_l^1

