Delayed On The Ground ...

(Part 2 ... airlines)

ASEN 6519 – Guest Lecture

Max Z. Li

Assistant Professor

Department of Aerospace Engineering Department of Civil and Environmental Engineering Department of Industrial and Operations Engineering

University of Michigan, Ann Arbor

maxzli@umich.edu

Ever been delayed in EWR?

Ever been delayed in EWR?

Distributionally Robust Integer Programs

GDPs ... in the wild ... let's study 'em!

Less red stuff (airborne delays) Less blue stuff (unnecessary ground holds)

We're Forgetting Something ...

Outline

- Motivating Example
- DeLed Framework and Setup
- DeLed Flowchart and Formulation
- Experimental Results

Motivating Example: Initial Delay Assignment

Motivating Example: Intra-Airline Substitution

Airline can perform *intraairline substitution* to reduce delay costs

Airlines swap departure/arrival slots within their own flights

Total delay remains unchanged, but delay costs decrease

Motivating Example: Inter-Airline Swaps

Airline can also swap slots with each other to further reduce costs

Both airlines reduce their delay costs

Challenge: Inter-airline swaps are difficult to facilitate

Centralized Approach

May reveal sensitive business practices and exposes system to gaming behavior

Decentralized Approach

Airlines negotiate with each other

Difficult for an airline to propose acceptable swaps; computational tractability concerns

Outline

- Motivating Example
- DeLed Framework and Setup
- DeLed Flowchart and Formulation
- Experimental Results

Problem Setup: Delays and Ledgers

- Scheduling Round: time duration for which network of flights is scheduled
- **Public Delay**: schedule delay measured with respect to original arrival times—*observable* by all airlines
- **Private Delay Cost:** public delay scaled by private flight valuation— unobservable to other airlines

Inter-airline swaps may cause some airlines to incur public delay

Delay ledger tracks cumulative increase in public delay relative to input solution

Problem Setup: Coordinator and Participants

 Coordinator: Coordinating airline adjusts participants' schedules as well as its own

- Utilizes its own private valuations
- Accounts for *flight priorities* of participants

• Participants:

- Provide flight priorities to coordinator
 - High/medium-priority: flight cannot be delayed further
 - Low-priority: flight can be delayed further
- Provide private valuation ranges of high, medium, low priority flights

Coordinator role given to airline with highest value in delay ledger

Outline

- Motivating Example
- DeLed Framework and Setup
- DeLed Flowchart and Formulation
- Experimental Results

Step 1: Create initial schedule

 Airlines submit feasible departure and arrival times to central agent, which creates the Initial Schedule

Step 2: Intra-Airline Substitution

- With Initial Schedule, airlines individually swap within their own flight slots
- Within an airline, swaps are determined based on private valuations

Step 3: Assimilation of intra-airline swaps

 Airlines submit post Intra-Airline swapped schedule to create the Intra-Airline Solution

Step 4: Delay Ledger Mechanism

- Coordinator role given to airline with highest value in delay ledger
- Participants submit flight priorities to Coordinator
- Coordinator constructs the DeLed Solution

Step 5: Update delay ledger

- For each airline, change in mean delay between the Intra-Airline Solution and the DeLed Solution is recorded
- Ledger is cumulative across scheduling rounds

Round	Delay Change	Delay Ledger		
1	+3	+3		
2	-1	+2		
				

DeLed Solution reduced airline's mean delay by 1 unit, relative to Intra-Airline Solution

Step 6: Intra-Airline Substitution

- With DeLed Solution, airlines individually swap within their own flight slots
- Within an airline, swaps are determined based on private valuations

Flowchart

DeLed Formulation (in words)

Objective

Minimize **coordinator's** private delay costs

Constraints

Total public delay does not exceed that of input solution

Increase in total public delay of each **participant** is bounded

High and medium priority flights cannot be delayed further

Participant private delay costs do not increase

Constraint: Participants' private delay costs

Flight Priority to Flight Valuation Mapping

Priority	Flight Valuation		
High	[b, inf)		
Medium	[a, b)		
Low	[0, a)		

High priority

Medium priority

flight earlier

 $a\sum_{f\in F_{p,l}}\max\left(d_f-D_f,0\right)\ \ \forall p\in P$ Maximum valuation of low priority $\begin{array}{c} \text{No reward for}\\ \text{shifting low priority} \end{array}$

Low priority Min cost reduction from shifting high/medium priority flights earlier

Max cost increase from shifting **low** priority flights later

Outline

- Motivating Example
- DeLed Framework and Setup
- DeLed Flowchart and Formulation
- Experimental Results

Experimental Setup

- Bureau of Transportation Statistics (BTS) On-Time Performance data for May 2019
 - Scheduled/actual departure and arrival times
 - Omit flights between non "Core 30 airports" and on small carriers that operate less than 1.1% of flights
- Round duration is 1 day, and capacity is estimated from throughput
- Random private valuations drawn from uniform distribution

Results: Change in Delay Costs

DeLed Reduction in Private Delay Costs relative to Intra-Airline Solution (%)

	American	United	Delta	Southwest	JetBlue	Alaska	Spirit	Frontier
Overall	-8.3	-12.8	-13.6	-16.3	-16.8	-16.5	-18.6	-22.3
When participant	-7.6	-10.2	-9.5	-10.8	-9.5	-11.4	-9.1	-10.8
When coordinator	-29.6	-36.2	-39.8	-51.7	-53.3	-62.8	-80.7	-68.2

- All airlines see a reduction in private delay costs with DeLed
- Reduction is greater when coordinator (as private valuations can be used), but reduction still present when participant

Challenge: Inter-airline swaps are difficult to facilitate

Delay ledger tracks cumulative increase in public delay relative to input solution

Coordinator role given to airline with highest value in delay ledger

Coordinators use private valuations, and participants provide **flight priorities**

Participants are guaranteed to not see increase in private delay costs

8-22% reduction in private delay costs, relative to just intra-airline substitution

Fig. 1. Typical cost-delay model profile per flight.

Fig. 1. Typical cost-delay model profile per flight.

Thank You!

maxzli@umich.edu

