SCRUM Domain Optimization Model

Generated from Entities, Relationships, Goals, Conditions, Decision Variables ${\rm August}\ 12,\,2025$

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	3
4	4. Conditions	4
5	5. DecisionVariables	5

1 1. Sets (Entities)

- P set of **Projects** (Project)
- T set of **Teams** (Team)
- W set of Workers (Worker)
- F set of Features (Feature)
- S set of **Skills** (Skill)
- R set of Roles (Role)
- PO set of **Product Owners** (ProductOwner)
- SM set of **Scrum Masters** (ScrumMaster)
- PB set of **Product Backlogs** (ProductBacklog)
- SP set of **Sprints** (Sprint)
- SPP set of **Sprint Plannings** (SprintPlanning)
- DS set of **Daily Scrums** (DailyScrum)
- SR set of **Sprint Reviews** (SprintReview)
- SRE set of Sprint Retrospectives (SprintRetrospective)
- SBL set of **Sprint Backlogs** (SprintBacklog)
- SG set of Sprint Goals (SprintGoal)
- E set of **Epics** (Epic)
- *US* set of **User Stories** (UserStory)
- K set of Tasks (Task)
- DEV set of **Development Snapshots** (DevelopmentSnapshot)
- BL set of **Blockers** (Blocker)
- SH set of Stakeholders (Stakeholder)
- VEL set of Velocity records (Velocity)
- REP set of Release Plans (ReleasePlan)
- RM set of **Roadmaps** (Roadmap)
- SCB set of Scrum Boards (ScrumBoard)
- FED set of Feature Documentations (FeatureDocumentation)
- Relationship-induced subsets:
 - -F(PB) features contained in a product backlog (R7).
 - -E(PB) epics contained in a product backlog (R8).
 - -US(e) user stories contained in epic e (R9).
 - -K(u) tasks belonging to user story u (R10).
 - -BL(k) blockers that block task k (R16).

$\mathbf{2}$ 2. Indices

- Indices follow the initial letters of the sets: $p \in P$, $t \in T$, $w \in W$, $f \in F$, $s \in S$, $r \in R$, $po \in PO$, $sm \in SM$, $pb \in PB$, $\sigma \in SP$, $spp \in SPP$, $ds \in DS$, $sr \in SR$, $sre \in SRE$, $sbl \in SBL$, $q \in SG$, $e \in E$, $u \in US$, $k \in K$, $d \in DEV$, $b \in BL$, $sh \in SH$, $v \in VEL$, $rep \in REP$, $rm \in RM$, $scb \in SCB, fed \in FED.$
- Attribute parameters (derived from Entities.csv; sample symbols used later):
 - $-sp_u := story_points of user story u.$
 - $-\hat{e}_f := \mathtt{estimated_effort}$ of feature f.
 - $sev_b :=$ severity of blocker b.
 - $prio_u^{US} := priority of user story u; prio_f^F := priority of feature f.$
 - $-att_{sr}^{SR} := attendes_count of sprint review sr.$
 - $-sat_{sre} := team_satisfaction$ at retrospective sre.
 - $-bud_p := budget of project p.$
 - $-v_t^{\max} := \max_{v \in VEL} that refers to t (R19).$
 - $-\overline{N}^{SBL}:=$ capacity parameter for number_of_tasks in the current sprint backlog.
 - $-\overline{E}^{SBL}:=$ capacity parameter for total_effort in the current sprint backlog.
 - $-\overline{dur}^{DS}, \overline{dur}^{SPP}, \overline{dur}^{SR} :=$ reasonable upper bounds on durations for Daily Scrum, Sprint Planning, and Sprint Review.
 - $avail_{po} := availability of Product Owner po; exp_{sm} := experience of Scrum$ Master sm.

3 3. Goals

Notation. We employ decision variables from Section 5; where attributes are summed, selection variables gate inclusion. Each goal G_i is presented with ID, name, logic, and its mathematical form.

• G0: maximize_total_story_points

Logic: Select user stories to maximize total story points in the sprint.

Math:
$$\max \sum_{u \in US} sp_u \cdot x_u^{US}$$

• G1: minimize_total_task_effort

Logic: Minimize total estimated task effort included via selected user stories. Math:
$$\min\sum_{u\in US}\sum_{k\in K(u)}e_k\cdot x_u^{US}$$

• G2: minimize_blocker_severity_sum

Logic: Prefer plans that include fewer/severity-lower blockers on chosen tasks. Math:
$$\min \sum_{u \in US} \sum_{k \in K(u)} \sum_{b \in BL(k)} sev_b \cdot x_u^{US}$$

• G3: maximize_sprint_goal_achievement

Logic: Favor sprints planned to achieve the sprint goal; use proxy variable $z^{SG} \in [0, 1]$.

Math:
$$\max \sum_{\sigma \in SP} z_{\sigma}^{SG}$$

• G4: maximize_team_satisfaction

Logic: Favor plans correlated with higher retrospective team satisfaction.

Math:
$$\max \sum_{sre \in SRE} sat_{sre}$$

• G5: minimize_project_budget

Logic: Minimize allocated budget across active projects.

Math: min
$$\sum_{p \in P} B_p$$
 (where B_p is decision variable in Sec. 5)

• G6: maximize_velocity_max

Logic: Encourage higher realized max velocity across teams.

Math:
$$\max \sum_{t \in T} v_t^{\max}$$

• G7: maximize_review_attendees

Logic: Increase feedback by targeting more review attendees.

Math:
$$\max \sum_{sr \in SR} A_{sr}$$
 (A_{sr} decision variable)

• G8: minimize_feature_estimated_effort

Logic: Prefer smaller features for faster increments.

Math:
$$\min \sum_{f \in F} \hat{e}_f \cdot x_f^F$$

• G9: minimize_scrumboard_cards

Logic: Limit WIP by capping cards on boards. Math: min
$$\sum_{scb \in SCB} L_{scb}$$
 (L_{scb} decision variable)

• G10: minimize_daily_scrum_duration

Logic: Keep the Daily Scrum short. Math:
$$\min \sum_{ds \in DS} D_{ds}^{DS}$$
 (D_{ds}^{DS} decision variable)

• G11: maximize_skill_level

Logic: Prefer configurations that utilize higher skill levels.

Math:
$$\max \sum_{w \in W} \sum_{s \in S} lvl_{w,s} \cdot u_{w,s}$$
 (where $lvl_{w,s}$ is skill level; $u_{w,s}$ indicates use)

(Optional) Weighted scalarization for multi-objective optimization Let weights ω_{G_i} be taken from the CSV Weight column. A single-objective scalarization is:

$$\max \sum_{i \in \{G0,\dots,G11\}} \operatorname{sgn}(G_i) \,\omega_{G_i} \,\widetilde{f}_{G_i},$$

where $sgn(G_i) = +1$ for maximization goals and -1 for minimization goals, and \widetilde{f}_{G_i} are normalized versions of the goal expressions.

4 4. Conditions

Each condition C_i is stated with logic and a mathematical formulation. Bounds and thresholds correspond to CSV attributes or reasonable caps.

4

• C0: team_size_within_limit

Logic: Team size equals assigned workers and respects min/max.

Math: $\forall t \in T : n_t = \sum_{w \in W} y_{w,t}, \quad 3 \le n_t \le 12.$

• C1: ensure_worker_availability

Logic: A worker can be assigned to at most one team (timebox) and only if available.

Math: $\forall w \in W : \sum_{t \in T} y_{w,t} \leq 1, \ y_{w,t} \leq avail_w \ \forall t.$

• C2: cap_sprint_backlog_tasks

Logic: Tasks induced by selected user stories fit the sprint backlog task cap.

Math: $\sum_{u \in US} \sum_{k \in K(u)} x_u^{US} \leq \overline{N}^{SBL}$.

• C3: allow_only_active_sprints

Logic: Consider only sprints with acceptable status (filter).

Math: $\sigma \in SP_{\text{active}} \subseteq SP$.

• C4: limit_total_effort_in_sprint

Logic: Sum of efforts for tasks of selected user stories within capacity.

Math: $\sum_{u \in US} \sum_{k \in K(u)} e_k \cdot x_u^{US} \leq \overline{E}^{SBL}$

• C5: reduce_blocker_severity

Logic: Average blocker severity on selected tasks not above threshold Θ .

 $\text{Math: } \frac{\sum_{u}\sum_{k\in K(u)}\sum_{b\in BL(k)}sev_{b}\cdot x_{u}^{US}}{\sum_{u}\sum_{k\in K(u)}x_{u}^{US}+\varepsilon}\leq\Theta, \text{ with }\Theta \text{ decision DV10 and }\varepsilon>0.$

• C6: keep_review_duration_reasonable

Logic: Review duration bounded; attendees choice does not violate timebox.

Math: $\forall sr \in SR : dur_{sr}^{SR} \leq \overline{dur}^{SR}$.

• C7: require_po_availability

Logic: At least one Product Owner available for planning/review.

Math: $\sum_{po \in PO} \mathbf{1}[avail_{po} \geq \alpha_{PO}] \geq 1$.

• C8: require_sm_experience

Logic: At least one Scrum Master meets experience threshold.

Math: $\sum_{sm \in SM} \mathbf{1}[exp_{sm} \geq \alpha_{SM}] \geq 1$.

• C9: keep_planning_duration_within_limit

Logic: Sprint Planning sessions respect duration cap. Math: $\forall spp \in SPP: \ D_{spp}^{SPP} \leq \overline{dur}^{SPP}.$

• C10: prioritize_user_stories_above_threshold

Logic: Only user stories with priority above threshold may be selected.

Math: $\forall u \in US : x_u^{US} \leq \mathbf{1}[prio_u^{US} \geq \underline{\pi}^{US}].$

• C11: limit_feature_priority_spread

Logic: Limit number of low-priority features entering near-term plan.

Math: $\sum_{f \in F: prio_f^F < \underline{\pi}^F} x_f^F \le \kappa$.

5 5. DecisionVariables

Decision variables from DecisionVariables.csv are lifted to indexed forms in the natural sets.

5

• DV0: select_feature (x_f^F) — include feature $f \in F$ in next release; $x_f^F \in \{0, 1\}$.

- DV1: select_user_story (x_u^{US}) include user story $u \in US$ in current sprint; $x_u^{US} \in \{0,1\}$.
- **DV2:** schedule_sprint_length (L_{σ}) length (days) of sprint $\sigma \in SP$; $L_{\sigma} \in \mathbb{Z}$, $7 \le L_{\sigma} \le 30$.
- **DV3:** allocate_project_budget (B_p) budget allocated to project $p \in P$; $B_p \in \mathbb{R}_{\geq 0}$, $0 \leq B_p \leq 10^6$.
- **DV4:** assign_worker_to_team $(y_{w,t})$ assignment of worker w to team $t; y_{w,t} \in \{0,1\}.$
- DV5: set_team_size (n_t) configured size of team t; $n_t \in \mathbb{Z}$, $3 \le n_t \le 12$.
- **DV6:** set_daily_scrum_duration (D_{ds}^{DS}) minutes for daily scrum ds; $D_{ds}^{DS} \in \mathbb{Z}$, $10 \le D_{ds}^{DS} \le 20$.
- **DV7:** choose_review_attendees (A_{sr}) target attendees at review $sr; A_{sr} \in \mathbb{Z}_{\geq 0}, 0 \leq A_{sr} \leq 100.$
- **DV8:** set_task_effort (e_k) effort units for task $k \in K$; $e_k \in \mathbb{Z}$, $1 \le e_k \le 13$.
- **DV9:** choose_scrum_board_wip_limit (L_{scb}) WIP limit on board scb; $L_{scb} \in \mathbb{Z}$, $1 \le L_{scb} \le 50$.
- **DV10:** accept_blocker_risk_threshold (Θ) acceptable average blocker severity; $\Theta \in \mathbb{Z}, 0 \leq \Theta \leq 5$.
- **DV11:** set_story_priority (π_u) assigned priority for user story $u; \pi_u \in \mathbb{Z}, 1 \le \pi_u \le 5$
- Auxiliary variables used in goals/constraints: $z_{\sigma}^{SG} \in [0,1]$ proxy for sprint goal achievement; $u_{w,s} \in \{0,1\}$ indicates use of worker w's skill s.