The Relational Data Model and Relational Database Constraints

สอนโดย

ผู้ช่วยศาสตราจารย์ ดร.อารีรัตน์ ตรงรัศมีทอง (Section 001) รองศาสตราจารย์ ดร.ชุรี เตชะวุฒิ (Section 002)

Relational Model Concepts

- Relational model
 - แบบจำลองเชิงสัมพันธ์ ประยุกต์ใช้ทฤษฎี ความสัมพันธ์(Relation) ที่อิงตามแนวคิดของเรื่อง เซต (Set)
 - ➤ Relational Model ถูกนำเสนอครั้งแรก โดย Dr. E.F. Codd จากบริษัท IBM Research จากการตีพิมพ์ในวารสาร ACM ใน บทความชื่อ "A Relational Model for Large Shared Data Banks" ในเดือน มิถุนายน ปี 1970
 - ▶บทความข้างต้น ทำให้เกิดการปฏิวัติครั้งใหญ่ในวงการ การจัดการ ฐานข้อมูล (Database Management) และทำให้ Dr. Codd ได้รับ รางวัล ACM Turing Award
- Hierarchical and network models
 - สำหรับแบบจำลองข้อมูลที่มีการใช้งานมาก่อนแบบจำลองเชิง สัมพันธ์ คือ แบบจำลองข้อมูลที่นำเสนอในรูปแบบ Network Model และ Hierarchical Model

Outlines

- Relational Model Concepts
- Relational Model Constraints and Relational Database Schemas
- ▶ Update Operations and Dealing with Constraint Violations

2

Relational Model Concepts: Informal Definitions

- Informal Definition
 - แบบจำลองข้อมูลเชิงสัมพันธ์ จัดเก็บข้อมูลใน Relation ที่มี ลักษณะคล้ายกับ ตารางข้อมูล
 - l แต่ละ Relation ประกอบด้วย รายการข้อมูล หรือแถวข้อมูล (Row)
- Row
 - แต่ละแถวข้อมูลนำเสนอข้อมูลที่เป็นข้อเท็จจริงที่เกิดขึ้นบนโลกใบนี้ และความสัมพันธ์ระหว่างข้อเท็จจริงเหล่านี้
 - ▶ ในแบบจำลองข้อมูลเชิงสัมพันธ์ เรียก Row ว่า Tuple
- Column
 - แต่ละ Row ประกอบด้วยคอลัมน์ (Column) ต่าง ๆ ในแบบจำลอง ข้อมูลเชิงสัมพันธ์ เรียก Column ว่า แอททริบิวต์ (Attribute)
 - ชื่อคอลัมน์ (Column Name/Attribute Name) ใช้สื่อความหมาย ของข้อมูล เพื่อบอกว่าเป็นข้อมูลเกี่ยวกับเรื่องอะไร

- Key of a Relation
 - ▶ Key คือ ค่าของข้อมูล 1 Attribute หรือ หลาย Attributes ที่มีค่าไม่ซ้ำกันในแต่ละ Row หรือ ค่าที่ทำ ให้แต่ละแถวมีความเป็นเอกลักษณ์
 - ▶ตัวอย่างเช่น รหัสประกันสังคม (SSN) คือ Key ของ ตารางข้อมูล STUDENT
 - ในบางครั้ง มีการกำหนดค่าข้อมูลที่อยู่ในลัษณะ เรียงลำดับ เช่น Running Number, Auto Increment, หรือ Row-id ให้เป็น Key สำหรับ Key ในลักษณะนี้ ถูกเรียกว่า Surrogate key

Relational Model Concepts: Example of a Relation

Figure 5.1
The attributes and tuples of a relation STUDENT.

Formal Definitions: Schema

- Relation Schema R:
 - ▶ โครงสร้างของรีเลชัน (Relation) R ประกอบด้วย แอททริบิวต์ A₁..A₂ แสดงด้วยสัญลักษณ์ R(A₁, A₂, ...,Aₙ) โดยที่ R คือ Relation Name และ A คือ Attribute Name
- Attribute A,
 - Attribute A, แต่ละตัว เป็นองค์ประกอบของ Relation R ใช้อธิบาย คุณลักษณะของ Relation R
 - 🕨 แต่ละ Attribute คือ 1 Domain หรือกลุ่มของข้อมูลที่มีค่าถูกต้อง (Valid)
 - ▶ ตัวอย่างเช่น Domain ของ Cust-id คือ ตัวเลข 6 หลัก เป็นต้น
- Example: CUSTOMER (Cust-id, Cust-name, Address, Phone#)
 - ► CUSTOMER ฅือ Relation Name
 - ข้อมูลในแต่ละแถว ประกอบด้วย 4 Attributes คือ Cust-id, Cust-name, Address, และ Phone#

Formal Definitions: Tuple, Domain

- **Tuple** คือ ชุดของค่าข้อมูลที่อยู่ภายในเครื่องหมาย <> (Angled Brackets)
- ข้อมูลแต่ละตัวที่อยู่ภายใต้ Tuple จะต้องมี Domain ที่เหมาะสม และสะท้อน ถึงความหมายของข้อมูลแต่ละรายการ
- ตัวอย่างเช่น แต่ละแถ้วข้อมูลใน CUSTOMER Relation คือ รายการข้อมูลที่ ประกอบด้วยข้อมุล 4 ค่า (มาจาก 4 Attributes) เรียกว่า 4-tuple

<632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

- Domain คือ กลุ่ม หรือชุดของข้อมูล ที่มีการกำหนด ชนิดข้อมูล (Data Type) และรูปแบบข้อมูล (Format) หรือเรียกว่า ขอบเขตข้อมูล เช่น
 - Domain ชื่อ USA_phone_numbers ใช้กำหนดขอบเขตของข้อมูล หมายเลขโทรศัพท์ในประเทศสหรัฐอเมริกา

Data Type = ตัวเลข 10 หลัก, Format = (ddd)ddd-dddd

Domain ชื่อ **Date** ใช้กำหนดขอบเขตของข้อมูล **วันที่**Data Type = Date, Format = yyyy-mm-dd (หรือ mm-dd-yyyy)

l เราสามารถกำหนด Domain ให้กับ Attribute แต่ละตัวได้ เช่น

Attribute ชื่อ Invoice-date และ Payment-date มี Domain เหมือนกันคือ

Data Type = Date, Format = yyyy-mm-dd

ถึงแม้ Invoice-date และ Payment-date จะมี Domain
 เหมือนกัน แต่ทั้งคู่มีความหมาย/บทบาท ที่แตกต่างกัน

►Invoice-date คือ วันที่ออกใบแจ้งหนึ่

▶Payment-date คือ วันที่ชำระเงิน

Formal Definitions: Relation State

► Relation State

สถานะของข้อมูล (State) ใน Relation ณ เวลาใดเวลาหนึ่ง เรียกว่า Relation State (r) ซึ่งแทนด้วยชุดของ tuple หรือ record แทนด้วยสัญลักษณ์

$$r = \{t_1, t_2, ..., t_m\}$$

▶ ในแต่ละ tuple (t) ประกอบด้วยค่าข้อมูล $v_1, \ v_2, \ ..., \ v_n$ ของ แอททริบิวต์ $A_1, \ A_2, \ ..., A_n$ แสดงด้วยสัญลักษณ์

$$t = \langle v_1, v_2, ..., v_n \rangle$$

▶ค่าข้อมูลแต่ละตัว V_p , $1 \le i \le n$, คือสมาชิกของแต่ละแอททริบิวต์ A_i โดยที่ค่าข้อมูล ต้องอยู่ในขอบเขต (Domain) ที่กำหนดไว้ สำหรับค่า ข้อมูลสามารถจัดเก็บอยู่ในรูป NULL ก็ได้ (หากไม่มีการกำหนด ข้อบังคับว่า ห้ามเป็น NULL)

Relation State Example

▶ ตัวอย่างเช่น Attribute ชื่อ Cust-name ถูกกำหนดให้มี่ ขอบเขตข้อมูลคือ เป็น String ที่มีความยาวสูงสุดได้ไม่ เกิน 25 (Maximum length = 25) แสดงด้วยสัญลักษณ์ ดังนี้

dom(Cust-name) is varchar(25)

dom = domain

Current Relation State

▶ค่าสถานะปัจจุบันของข้อมูลใน Relation และจะต้อง เป็นข้อเท็จจริงที่มีความถูกต้องเท่านั้น จึงจะสามารถ จัดเก็บในแต่ละ Relation ได้ Formal Definitions: Summary

Formally,

Given R(A₁, A₂,, A_n)

 $ightharpoonup r(R) \subset \text{dom } (A_1) \times \text{dom } (A_2) \times \times \text{dom}(A_n)$

 $R(A_1, A_2, ..., A_n)$ is the schema of the relation

R is the name of the relation

 A_1 , A_2 ,, A_n are the attributes of the relation

r(R): a specific state (or "value" or "population") of relation R

this is a set of tuples (rows)

 $r(R) = \{t_1, t_2, ..., t_m\}$ where each t_i is an n-tuple

 $t_i = \langle v_1, v_2, ..., v_n \rangle$ where each v_j element-of dom(A_j)

Then: $dom(A_1) \times dom(A_2)$ is all possible combinations:

{<0,a>, <0,b>, <0,c>, <1,a>, <1,b>, <1,c>}

The relation state $r(R) \subset \text{dom}(A_1) \times \text{dom}(A_2)$

For example: r(R) could be {<0,a>, <0,b>, <1,c>}

this is one possible state (or "population" or "extension") r of the relation R, defined over A_1 and A_2 .

▶ It has three 2-tuples: <0,a> , <0,b> , <1,c>

	Informal Terms	Formal Terms
,	Table	Relation
	Column Header	Attribute
	All possible Column Values	Domain
	Row	Tuple
	Table Definition	Schema of a Relation
	Populated Table	State of the Relation

Figure 5.1

The attributes and tuples of a relation STUDENT.

Characteristics of Relations

- ▶ ลำดับของ Tuple ใน Relation
 - 🕨 ข้อมูลแต่ละแถว (Tuple/Record) ที่จัดเรียงใน Relation ไม่นับเป็นลำดับ
 - > สำหรับค่าข้อมูลของ Attribute ในแต่ละ Tuple $t = \langle v_1, v_2, ..., v_n \rangle$ จะ พิจารณาเรื่องของลำดับตามการประกาศโครงสร้างของ Relation $R(A_1, A_2, ..., A_n)$

▶ จากตัวอย่าง Relation ชื่อ STUDENT ด้านล่าง ค่าข้อมูล Attribute แรกใน แต่ละ แถว คือ ชื่อนักเรียน ส่วนค่าข้อมูล Attribute ตัวที่สองคือ รหัส ประกันสังคม เป็นต้น

Figure 5.2

STUDENT The relation STUDENT from Figure 5.1 with a different order of tuples.

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21

สำหรับ Data Modeling รูปแบบอื่น เช่น NoSQL JSON ไม่มีการกำหนดลำดับ ค่าข้อมูลของ Attribute ตายตัว แต่โครงสร้างอยู่ในลักษณะ Self-Describing

Characteristics of Relations

Example - A relation STUDENT

- ค่าข้อมูลแต่ละตัวใน Tuple
 - ▶ ต้องเป็นค่าข้อมูลที่ไม่สามารถแบ่งแยกได้ (Atomic/Indivisible)
 - ▶ กำหนดให้ Tuple/Row $t = \langle v_1, v_2, ..., v_n \rangle$
 - igwedgeค่าข้อมูลของ $oldsymbol{v}_i$ แต่ละตัว ต้องมาจาก Domain ของแต่ละ

Attribute $dom(A_i)$

- ▶ ค่า NULLใน Tuple
 - ▶ ค่า NULL ใน Attribute หมายถึง
 - ►ไม่ทราบค่า (Unknown)
 - บอกไม่ได้ หรือ ณ ขณะนั้นยังไม่ทราบ
 - ►ไม่ได้กำหนด (Undefined)

Relation State

สถานะของข้อมูลใน Relation ณ เวลาใดเวลาหนึ่ง แทนด้วย
 สัญลักษณ์ที่ใช้อักขระตัวเล็ก เช่น q, r, s ตัวอย่างเช่น

$$r = \{t_1, t_2, ..., t_m\}$$

▶ องค์ประกอบของข้อมูลใน Tuple/Record/Row

 $ightharpoonup t[A_i]$ และ $t.A_i$ ใช้อ้างถึงค่าข้อมูล v_i ของ Attribute A_i ที่อยู่ใน tuple t

▶ $t[A_u, A_w, ..., A_z]$ และ $t.(A_u, A_w, ..., A_z)$ ใช้อ้างถึง sub-tuple ของ ข้อมูล $< v_u, v_w, ..., v_z >$ ซึ่งเป็นส่วนหนึ่งของค่าข้อมูลของ Attribute ที่ระบุใน tuple t

 โนื่องจากในบางกรณีเราอาจจะต้องการอ้างถึงข้อมูลบาง Attribute โดย ที่ไม่ได้อ้างถึงข้อมูลทุก Attribute

Relational Model Notation

STUDENT

ุ
► ตัวอย่าง**โครงสร้าง** Relation **ชื่อ** STUDENT

> STUDENT(Name, Ssn, Home_phone, Address, ...)

▶ Name และ Ssn คือ Attribute ของ Relation ชื่อ STUDENT

> การอ้างอิง Attribute ของ Relation ใช้สัญลักษณ์ R.A โดยที่ A คือ Attribute ของ R เช่น

STUDENT.Name, STUDENT.Ssn

Figure 5.2

The relation STUDENT from Figure 5.1 with a different order of tuples.

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Relational Model Constraints

- Constraints
 - กฏ/ข้อบังคับ ที่กำหนดสถานะของข้อมูล ที่จะจัดเก็บใน ฐานข้อมูล
 - ข้อมูลที่จะจัดเก็บในฐานข้อมูลได้ ต้องผ่าน กฏ/ข้อบังคับ
 ที่กำหนดไว้เท่านั้น จึงจะสามารถจัดเก็บไว้ในฐานข้อมูลได้
 - ข้อบังคับส่วนใหญ่ได้มาจากความเป็นจริงของข้อมูล เช่น
 อายุของสิ่งมีชีวิตมีค่า > 0 เป็นต้น
- 🕨 กฎ/ข้อบังคับ แบ่งออกเป็น 3 กลุ่มหลัก
 - Inherent or Implicit Constraints
 - Schema-based or Explicit Constraints
 - Application based or semantic constraints

Relational Model Constraints

- Inherent or implicit constraints
 - ► กฎข้อบังคับที่ได้รับสืบทอดมาจากกฎข้อบังคับของแต่ละ แบบจำลองข้อมูล เช่น Relational Data Model ไม่อนุญาต ให้ข้อมูลใน Attribute มีค่าเป็น list หรือ มีค่าหลายค่า
- Schema-based or Explicit Constraints
 - กฎข้อบังคับที่สามารถกำหนดโดยตรงในโครงสร้าง
 ฐานข้อมูล เช่น Salary >= 15,000 เป็นต้น ซึ่งส่วนใหญ่จะ
 เป็นกฎข้อบังคับที่ไม่ซับซ้อน
- > Application based or semantic constraints
 - กฎข้อบังคับที่ซับซ้อนที่ไม่สามารถกำหนดโดยตรงใน
 โครงสร้างฐานข้อมูล จะถูกกำหนดไว้ในแอปพลิเคชัน
 โปรแกรมแทน เช่น ห้ามเบิก OT เกิน 4 ชั่วโมงในวันธรรมดา เป็นต้น

Relational Integrity Constraints

- สถานะข้อมูลที่จัดเก็บอยู่ในฐานข้อมูลทุกตัว จะต้อง คงสภาพความถูกต้องตามเงื่อนไขที่กำหนดไว้ใน กฎ/ข้อบังคับ
- Explicit schema-based constraints ใน Relational Data Model แบ่งออกเป็น 3 กลุ่มหลัก ดังนี้
 - Key constraints
 - Entity integrity constraints
 - Referential integrity constraints
- Domain Constraint
 - เป็นอีก 1 ประเภท ของ Schema-based constraint คือ ทุก ค่าข้อมูลใน Tuple จะต้องสอดคล้องกับขอบเขตข้อมูล (Domain) ที่กำหนดไว้ในแต่ละ Attribute หรือ เป็น NULL ได้ หากมีการกำหนดไว้ว่าอนุญาตให้เป็น NULL ได้

Key Constraints

- 🕨 Superkey (SK) of R คือ กลุ่ม หรือ ชุด Attribute (1 Attribute หรือ
 - > 1 ก็ได้) ใน Relation R ที่มีเงื่อนไข ดังนี้
 - ▶ มีค่าไม่ซ้ำกันใน 2 tuples ใด ๆ หรือ เขียนให้อยู่ในรูปสัญลักษณ์ ดังนี้ distinct tuples t_1 and t_2 in r(R), $t_1[SK] \neq t_2[SK]$
- ► Key คือ Superkey ที่เล็กที่สุด (A "minimal" superkey)
 - กลุ่มข้อมูล หรือข้อมูล (1 Attribute หรือ > 1 ก็ได้) ที่จะอยู่ในสถานะ Key k
 ได้ จะต้องเป็น Superkey SK ของ Relation R
 - ▶ วิธีตรวจสอบว่า กลุ่มข้อมูล หรือข้อมูล ใดสามารถอยู่ในสถานะ Key k ได้ หรือไม่ สามารถตรวจสอบได้ดังนี้
 - ▶ หากลบ Attribute A ใด ๆ จาก Key K ออกจะทำให้กลุ่มข้อมูล หรือ ข้อมูลที่เหลืออยู่ขาดคุณสมบัติของการเป็น SK ของ R
- ► Key **k** ทุกตัว จะเป็น Superkey **SK** โดยปริยาย
- 🕨 แต่ Superkey SK ไม่จำเป็นต้องเป็น Key k

Key Constraints (cont'd.)

▶ ตัวอย่าง CAR Relation Schema:

CAR(License_number, Engine_serial_number, Make, Model, Year)

CAR มี key 2 ตัว ดังนี้

Key1 = {License_number}

Key2 = {Engine_serial_number}

- ▶ ทั้ง Key1 และ Key2 เป็น Superkey ของ CAR
- Minimal Superkey หรือ Key ใด ๆ ไม่จำเป็นต้องมีเพียง 1
 Attribute อาจจะมี > 1 Attribute ก็ได้
- ► {Engine_serial_number, Make} เป็น Superkey แต่ไม่เป็น Key เนื่องจาก ไม่ใช่ Minimal Superkey เนื่องจาก หากลบ ตัว ใดตัวหนึ่งออก (เหลือเพียง 1 ตัว คือ Engine_serial_number หรือ Make) จะไม่คงความเป็น Superkey

Key Constraints (cont'd.)

- ▶ Candidate key คือ Minimal Superkey
 - ▶ ใน 1 Relation อาจจะมี Candidate Key ได้ > 1 ตัว
 - ตำหรับ Candidate Key ที่ถูกเลือกให้เป็นตัวแทนในการระบุความ เป็นเอกลักษณ์ของ Tuple ใน Relation (Uniquely Identify: ชุด ข้อมูลที่มีค่าไม่ซ้ำกันใน 2 tuples ใด ๆ) เราเรียก Candidate Key ตัวที่ถูกเลือกว่า คีย์หลัก (Primary Key: PK) ของ Relation
- Primary key of the relation
 - > Candidate Key ที่ถูกเลือกให้เป็น Primary Key จะถูกขีดเส้นใต้
 - ► Candidate Keys **ที่เหลือ**ที่ไม่ได้ถูกเลือก จะถูกกำหนดให้เป็น Unique Keys หรือเรียกว่า Secondary Keys
 - นอกจากนี้ PK ยังใช้ในการอ้างอิง Tuple จาก Relation อื่น ดังนั้น
 - ▶ในการเลือก PK จึงมักจะเลือกตัวที่มีจำนวน Attribute น้อยที่สุด เพื่อให้การรวม (Join) ข้อมูลจากหลาย ๆ Relation ทำได้สะดวกขึ้น และประหยัดเวลามากขึ้น แต่ก็ไม่เสมคไป แล้วแต่สถานการณ์

21

Figure 3.4 The CAR relation, with two candidate keys: License number and Engine serial number.

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

จาก CAR Relation ด้านบน มี 2 Candidate Keys คือ

License_number และ Engine_serial_number

- ทำไม License number จึงถูกเลือกให้เป็น PK?
- · ทำไม ระบบสำนักทะเบียน จึงไม่เลือกให้ รหัสบัตรประชาชนเป็น PK?

Relational Database Schemas

- ▶ Relational database schema S ประกอบด้วย
 - **▶เซตของโครงสร้าง** Relation ที่อยู่ในฐานข้อมูล เดียวกัน แทนด้วยสัญลักษณ์ $S = \{R_1, R_2, ..., R_n\}$ โดยที่
 - ▶S คือ ชื่อฐานข้อมล
 - $ightharpoonup R_1, R_2, ..., R_n$ คือ ชื่อของแต่ละ Relation R_i ที่อยู่ในฐานข้อมูลตัวเดียวกัน
 - เซตของกฎข้อบังคับของการคงสภาพของข้อมูล เรียกว่า Integrity Constraints (IC)

Relational Database Schemas: **COMPANY Database Schema**

EMPLOYEE

Relational Database State

- > Relational database state หรือ Relational database snapshot
 - 🕨 เซ็ตของ สถานะของข้อมล แทนด้วยสัญลักษณ์

$$DB = \{r_1, r_2, ..., r_m\}$$

- ▶ แต่ละ r, คือ **สถานะของข้อมูลในแต่ละ** Relation R,
- แต่ละ r, จะต้องไม่ละเมิดกฎข้อบังคับของการคง สภาพข่องข้อมูล IC ของแต่ละ Relation ที่กำหนด ไว้ในโครงสร้างฐานข้อมูล หรือเรียกว่า อยู่ในสถานะ Valid State
- สถานะข้อมลที่ละเมิดกฎ IC กฎใดกฎหนึ่ง จะ เรียกว่า อยู่ในสถานะ Invalid State

 เมื่อใหร่ที่ฐานข้อมูลมีการเปลี่ยนแปลง จะมีข้อมูล สถานะใหม่/ค่าใหม่ เกิดขึ้น

การดำเนินการพื้นฐานที่ทำให้ข้อมูลเกิดการ
 เปลี่ยนแปลง คือ

▶ INSERT คือ การเพิ่มข้อมูลเข้าไปใน Relation

DELETE คือ การลบข้อมูลออกจาก Relation

► MODIFY คือ การเปลี่ยนแปลงข้อมูลของ Attribute(s) ใน Tuple

Populated Database State for COMPANY

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dname <u>Dnumber</u>		Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

Dnumber Dloc

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

0.0

Figure 5.6
One possible database state for the COMPANY relational database schema.

Populated Database State for COMPANY (Cont.)

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

333445555	10	10.0	DEPENDENT				
333445555	20	10.0	Essn	Dependent_name	Sex	Bdate	Relationship
999887777	30	30.0	333445555	Alice	F	1986-04-05	Daughter
999887777	10	10.0	333445555	Theodore	М	1983-10-25	Son
987987987	10	35.0	333445555	Joy	F	1958-05-03	Spouse
987987987	30	5.0	987654321	Abner	М	1942-02-28	Spouse
987654321	30	20.0	123456789	Michael	М	1988-01-04	Son
987654321	20	15.0	123456789	Alice	F	1988-12-30	Daughter
888665555	20	NULL	123456789	Elizabeth	F	1967-05-05	Spouse

Figure 5.6

One possible database state for the COMPANY relational database schema

- Entity integrity constraint
 - ▶เป็น กฎ/ข้อบังคับ ที่เกี่ยวข้องกับ 1 Relation
 - ▶ เนื่องจาก ค่าคีย์หลัก (PK) ใช้สำหรับระบุแถวข้อมูล tuples
 - ►ดังนั้น ค่าข้อมูลของ PK ในทุก Relation r(R) ใน ฐานข้อมูล S จะต้องไม่เป็น NULL
 - ►ถ้า PK ประกอบด้วยหลาย Attributes, ค่าข้อมูลใน Attribute ใด ๆ ห้ามมีค่าเป็น NULL

 $t[PK] \neq null for any tuple t in <math>r(R)$

Isาสามารถกำหนดให้ Attribute ใด ๆ ห้ามมีค่าเป็น NULL ได้ ถึงแม้ Attribute ดังกล่าว จะไม่ใช่ส่วนหนึ่งของ PK ▶ใช้สำหรับ **กำหนดความสัมพันธ์ระหว่างข้อมูลใน** Tuples **ระหว่าง** 2 Relations

▶ใช้สำหรับรักษาไว้ซึ่งความถูกต้องตรงกันของ ข้อมูลใน tuples ที่เชื่อมโยงกันระหว่าง 2 Relations

▶ใช้อ้างอิงข้อมูลระหว่าง 2 Relations

- ▶ Foreign Key (FK): คีย์นอก
 - ► FK ใช้สำหรับการ**อ้างอิง**ข้อมูลจาก ค่า Attribute ของ Tuple ใน Relation R₁ (เรียกว่า FK) ไปยัง Attribute ที่เป็น PK ใน Relation R₂
 - > Attribute ที่ทำหน้าที่เป็น FK ใน Relation R_1 จะต้องเป็นกลุ่ม ข้อมูลเดียวกับ Attribute PK ใน Relation R_2
 - ▶ เราจะพูดได้ว่า tuple t_1 ใน R_1 อ้างถึง tuple t_2 ใน R_2 ถ้า

 $t_1[FK] = t_2[PK]$

- ค่า FK จะต้องมีลักษณะใด ลักษณะหนึ่ง ดังต่อไปนี้
 - lacktriangleright ค่าข้อมูลของ FK ใน tuple t_1 ของ Relation R_1 จะต้องปรากฏใน tuple t_2 ที่เป็น PK ของ Relation R_2 หรือ
 - > FK มีค่า เป็น NULL ได้ (ในกรณีที่ยังไม่มี PK ใน R_2 ให้อ้างถึง)

Referential Integrity Constraints for COMPANY database

Other Types of Constraints

- Semantic integrity constraints
 - กฎข้อบังคับเชิงความหมาย จะขึ้นอยู่กับตรรกะในแต่ละ Application
 Program ที่มีลักษณะซับซ้อน ไม่สามารถกำหนดผ่าน กฎข้อบังคับที่ กล่าวมาก่อนหน้านี้ เช่น
 - ชั่วโมงทำงานสูงสุดของพนักงานแต่ละคนรวมกันทุกโครงการ ต้องไม่เกิน 56 ชั่วโมงต่อเดือน
- Triggers
 - เมื่อมีเหตุการณ์ที่ทำให้ข้อมูลมีการเปลี่ยนแปลง (Insert/Update/Delete)
 เกิดขึ้นในฐานข้อมูล จะกระตุ้นให้ DBMS ทำอะไรบางอย่าง เช่น
 - ► หาก GPA เฉลี่ยของนักศึกษาต่ำกว่า 1.50 ให้ Update ค่า StudentStatus = "พ้นสภาพ"
- Assertions
 - คำสั่งที่ใช้ในการตรวจสอบความถูกต้องของข้อมูลก่อนที่จะจัดเก็บไว้ใน ฐานข้อมูล ส่วนใหญ่จะตรวจสอบใน Application Program เช่น
 - 🕨 ตรวจสอบเพื่อให้มั่นใจว่าลูกค้าไม่เบิกเงินเกินบัญชี
 - ตรวจสอบเพื่อให้แน่ใจว่าลูกค้าไม่กู้เงินเกินวงเงินที่ฝากไว้

Other Types of Constraints (cont'd.)

- Functional dependency constraint
 - ความสัมพันธ์ระหว่างชุดข้อมูลใน Attribute X และ Y
 ในลักษณะค่าข้อมูลของ X เป็นตัวกำหนดค่าข้อมูลของ
 Y ซึ่งจะได้เรียนในเนื้อหาเกี่ยวกับ Data Normalization
- State constraints
 - กฎข้อบังคับของสถานะที่ถูกต้องของฐานข้อมูล
- Transition constraints
 - ►กฎข้อบังคับที่เกี่ยวข้องกับการเปลี่ยนสถานะของข้อมูล จากสถานะหนึ่ง ไปยังอีกสถานะหนึ่ง ในฐานข้อมูล

Update Operations on Relations

- การดำเนินการกับข้อมูลของแบบจำลองเชิงสัมพันธ์แบ่งออกเป็น 2 ลักษณะ คือ
 - 🕨 การดึงข้อมูล
 - การดำเนินการที่ทำให้ข้อมูลเกิดการเปลี่ยนแปลงสถานะข้อมูล มีดังต่อไปนี้คือ
 - Insert
 - Delet
 - ► Update (or Modify)
- การดำเนินการใด ๆ ที่ทำให้ข้อมูลเกิดการเปลี่ยนแปลง ต้อง ไม่ละเมิด กฎ Integrity Constraints
- การปรับปรุงข้อมูลอาจส่งผลทำให้ข้อมูลอื่น ๆ ที่เกี่ยวข้อง เกิดการเปลี่ยนแปลงไปด้วยอัตโนมัติ ซึ่งเราจะต้องจัดการ ข้อมูลอื่นที่เกี่ยวข้อง ไม่ให้ละเมิดกฎต่าง ๆ ที่กำหนดไว้ด้วย เช่นเดียวกัน

Update Operations on Relations

- ■ในกรณีที่เกิดมีการละเมิดกฎข้อบังคับ เราสามารถ ดำเนินการได้หลายอย่าง ดังนี้
 - RESTRICT หรือ REJECT: ยกเลิกการดำเนินการที่ ทำให้เกิดการละเมิด
 - 🕨 ดำเนินการ แต่แจ้งให้ผู้ใช้ทราบถึงการละเมิด
 - TRIGGER: กระตุ้นให้เกิดการดำเนินการเพิ่มเติม เพื่อ แก้ไขการละเมิด โดยปกติ มี 2 ลักษณะ คือ CASCADE หรือ SET NULL
 - User-specified error-correction routine: ดำเนินการ แก้ไขข้อผิดพลาดตามรูที่นการแก้ไขข้อผิดพลาดที่ผู้ใช้ ระบุ

Possible violations for each operation

- Insert Operation การเพิ่มข้อมูลใหม่ของ Attribute ใน tuple t ของ Relation R มีโอกาสทำให้เกิดการละเมิดกฎข้อบังคับ 4 ประเภท ดังต่อไปนี้
 - Domain constraint: ขอบเขตข้อมูล ของ Attribute ใด Attribute หนึ่ง ไม่เป็นไปตามที่กำหนดไว้ใน Tuple ที่เพิ่มใหม่
 - ▶ Key constraints: ค่า Key ใน Tuple ที่เพิ่มใหม่ ซ้ำกับ ใน Tuple อื่น
 - ► Entity integrity constraint: PK ของ Tuple ที่เพิ่มใหม่ มีค่าเป็น NULL
 - ► Referential integrity constraint: FK ใน Tuple ที่เพิ่มใหม่ ไม่ ปรากฏใน PK ของ Relation ที่อ้างถึง
- หากการเพิ่มข้อมูลใหม่มีการละเมิดกฎข้อบังคับแม้เพียง 1 กฎ การเพิ่มข้อมูลจะถูกปฏิเสธไม่ให้ดำเนินการ

Possible violations for each operation

- ▶ Delete Operation การลบข้อมูลสามารถทำให้ละเมิด เฉพาะกฦ Referential Integrity Constraint
 - > หากลับ tuple ที่มีค่า PK ที่ถูกอ้างอิงโดย FK จาก tuples อื่น การละเมิดกฎดังกล่าว สามารถเลือกดำเนินการ (Delete Option) ได้ดังนี้
 - ▶Restrict: เข้มงวด คือ ปฏิเสธการลบ
 - Cascade: ตามไปลบทุก tuples ที่อ้างอิงด้วย FK ที่ มีค่าเหมือนกับ PK ของ tuple ที่กำลังถูกลบ
 - Set null or set default: ตามไปเปลี่ยน Attribute ที่ เป็น FK ที่อ้างอิงกับ tuple ที่กำลังถูกลบให้เป็นค่า NULL หรือค่า Default
 - ▶ ตัวอย่างเช่น STUDENT-study in-FACULTY

STUDENT.FacultyID

FACULTY.FacultyID

Possible violations for each operation

- Update Operation ในการปรับปรุงข้อมูล จะต้องมีการระบุถึง
 Attribute และ tuples ที่ต้องการปรับปรุงข้อมูล
 - หาก Attribute ที่ปรับปรุงไม่ใช่ส่วนหนึ่งของ PK หรือ FK จะไม่มี โอกาสละเมิดกฎข้อบังคับเกี่ยวกับ Key Constraints, Entity Integrity หรือ Referential Integrity Constraints แต่จะมีโอกาสละเมิดกฎ
 - ▶ Domain Constraint และ NOT NULL Constraint
 - ► หาก Attribute ที่ปรับปรุงเป็นส่วนหนึ่งของ PK หรือ FK จะ มีโอกาสละเมิดกฎข้อบังคับเกี่ยวกับ
 - ▶ Updating the primary key (PK): มีโอกาสละเมิดกฎเหมือนกับ การลบข้อมูล (Delete) ตามด้วยการเพิ่มข้อมูล (Insert) เมื่อเกิดการ ละเมิดกฎ สามารถดำเนินการได้เหมือนกับ Delete Option
 - ►Updating a foreign key (FK): มีโอกาสละเมิดกฎ Referential Integrity
 - ▶Update attribute ตัวอื่น ๆ ที่ไม่ใช่ PK และไม่ใช่ FK: มีโอกาส ละเมิดกฎ Domain constraints

- Presented Relational Model Concepts
 - Definitions
 - Characteristics of relations
- Discussed Relational Model Constraints and

Relational Database Schemas

- Domain constraints
- Key constraints
- Entity integrity
- Referential integrity
- Described the Relational Update Operations and Dealing with Constraint Violations

References

Ramez Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems Seventh Edition", Pearson, 2016.