

Analyse Numérique Corrigé Série 11

1. (**Polynômes de Legendre**) On souhaite démonter le théorème du cours qui dit que les polynômes de Legendre avec $P_k(1) = 1$ satisfont

$$P_0(x) = 1,$$
 $P_1(x) = x,$ $(k+1)P_{k+1}(x) = (2k+1)xP_k(x) - kP_{k-1}(x),$ $k \ge 1.$

(a) Montrer que les polynômes définis par la formule de Rodrigues :

$$P_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} \left((x^2 - 1)^k \right). \tag{1}$$

satisfont la condition

$$\int_{-1}^{1} P_k(x)g(x)dx = 0 \qquad \text{si} \quad \deg(g) \le k - 1.$$
 (2)

La constante (de normalisation) est choisie pour avoir $P_k(1) = 1$ et donc ces polynômes correspondent aux polynômes de Legendre considérés dans le théorème.

Indication : faire plusieurs intégrations par parties.

Sol.: Soit g(x) un polynôme de degré $\leq k-1$.

$$\int_{-1}^{1} P_k(x)g(x)dx = C_k \int_{-1}^{1} \frac{d^k}{dx^k} \left((x^2 - 1)^k \right) g(x)dx$$

$$= \underbrace{C_k \frac{d^{k-1}}{dx^{k-1}} \left((x^2 - 1)^k \right) g(x) \Big|_{-1}^{1}}_{=0} - C_k \int_{-1}^{1} \frac{d^{k-1}}{dx^{k-1}} \left((x^2 - 1)^k \right) g'(x)dx$$

$$= \dots = (-1)^k C_k \int_{-1}^{1} (x^2 - 1)^k g^{(k)}(x)dx = 0,$$

 $car \ g^{(k)}(x) = 0.$

(b) \star (0.25 pts) Démontrer que la dérivée d'une fonction paire est impaire (et vice versa). En déduire que le polynôme de Legendre $P_k(x)$ est une fonction de même parité de k (paire si k est pair, et impaire si k est impair).

Sol.: Si f est pair et dérivable sur \mathbb{R} , alors

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{h \to 0} \frac{f(x-h) - f(x)}{h} = -\lim_{h \to 0} \frac{f(x-h) - f(x)}{-h} = -f'(x).$$

De même, on montre que la dérivée d'une fonction impaire est paire. $P_k(x)$ est la dérivée kième d'une fonction paire, donc $P_k(x)$ est paire si k est paire et impaire si k est impaire.

(c) \star (0.5 pts) Montrer que

$$xP_k(x) = a_{k+1}P_{k+1}(x) + a_{k-1}P_{k-1}(x) + a_{k-3}P_{k-3}(x) + a_{k-5}P_{k-5}(x) + \dots$$
 (3)

Indication: utiliser (b).

Sol.: On décompose $xP_k(x)$, polynôme de de degré k+1 dans la base $P_0(x), \ldots, P_{k+1}(x)$ de \mathbb{P}_{k+1} (c'est bien une base car $P_j(x)$ est de degré j pour tout j),

$$xP_k(x) = \sum_{j=0}^{k+1} a_j P_j(x).$$

On suppose que k est pair, donc $P_k(x)$ est une fonction paire, et $xP_k(x)$ est une fonction impaire et alors elle est une combinaison linéaire des élements impaires de la base qui sont $P_{k+1}(x)$ et $P_{k-1}(x)$ où l est impaire, d'où le résultat. De même si k est impair.

(d) \star (0.25 pts) En utilisant (2) montrer que les coefficients $a_{k-3}, a_{k-5}, \ldots, a_0$ sont nuls.

Sol.: Multipions l'équation (3) par $P_{k-3}(x)$ et intégrons de -1 à 1. Par orthogonalité, tous les termes vont s'annuler sauf le terme $\int_{-1}^{1} (P_{k-3}(x))^2 dx > 0$, donc $a_{k-3} = 0$. Le même raisonnement s'applique à a_{k-5} , a_{k-7} ,

(e) \star (0.5 pts) En comparant le coefficient de x^{k+1} dans (3) avec le terme dominant de (1), et en utilisant le fait que $P_k(1) = 1$, \forall k, montrer que

$$a_{k+1} = \frac{k+1}{2k+1}$$
 et $a_{k-1} = \frac{k}{2k+1}$.

Sol.: Comme $\frac{d^k}{dx^k}x^{2k} = \frac{(2k)!}{k!}x^k$, en utilisant la formule (1), le coefficient dominant de P_k est donné par

$$\frac{(2k)!}{(k!)^2 2^k}.$$

Ainsi, on obtient

$$\frac{(2k)!}{(k!)^2 2^k} = a_{k+1} \frac{(2(k+1))!}{((k+1)!)^2 2^{k+1}}$$

d'où en simplifiant, $a_{k+1} = \frac{k+1}{2k+1}$

Ensuite, en utilisant $P_k(1) = 1$, on obtient $1 = \frac{k+1}{2k+1} + a_{k-1}$, ce qui implique que $a_{k-1} = \frac{k}{2k+1}$.

2. (Opérations sur les lignes d'une matrice)

On considère les matrices élémentaires de taille 4×4 pour effectuer les opérations élémentaires sur les lignes d'une matrice.

(a) * (0.5 pts) Calculer le déterminant des matrices élémentaires suivantes. Indiquer à quelles opérations élémentaires chaque matrice correspond.

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \alpha & 1 \end{pmatrix}, \quad (\alpha \neq 0).$$

Sol.:

 $\det A = -1$ (A échange les lignes 1 et 3).

 $\det B = \alpha$ (B multiplie la ligne 2 par α).

 $\det C = 1$ (C ajoute la ligne 3 multipliée par α sur la ligne 4).

(b) Donner la matrice élémentaire qui permet de permuter les lignes 1 et 4.

Sol.:
$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right).$$

(c) Donner la matrice élémentaire qui ajoute trois fois la ligne 1 sur la ligne 3.

2

Sol.:
$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

(d) Donner la matrice élémentaire qui multiplie la ligne 3 par 7.

Sol.:
$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

(e) Donner les inverses des matrices considérées aux questions (b), (c), et (d).

Sol.: Pour inverser la transformation associée à A, on considère la même transformation qui permute les lignes 1 et 4, ainsi

$$A^{-1} = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right).$$

Pour inverser la transformation associée à B, on considère la transformation qui soustrait trois fois la ligne 1 sur la ligne 3, ainsi

$$B^{-1} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Pour inverser la transformation associée à C, on considère la transformation qui divise la ligne 3 par 7, ainsi

$$C^{-1} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/7 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$