Algebra I Winter 2020

CHAPTER 1 INTEGERS

1.1 Divisors

1. Let $m, n.r.s \in \mathbb{Z}$. If $m^2 + n^2 = r^2 + s^2 = mr + ns$, prove that m = r and n = s.

Joe Starr

We select $m, n.r.s \in \mathbb{Z}$, given $m^2 + n^2 = r^2 + s^2 = mr + ns$ which can write as $m^2 + n^2 - mr - ns = r^2 + s^2 - mr - ns$. From here we can simplify:

$$m^{2} + n^{2} - mr - ns = r^{2} + s^{2} - mr - ns \Rightarrow m(m - r) + n(n - s) = r(r - m) + s(s - n)$$

$$\Rightarrow m(m - r) + n(n - s) - r(r - m) - s(s - n) = 0$$

$$\Rightarrow m(m - r) + r(m - r) + n(n - s) + s(n - s) = 0$$

$$\Rightarrow (m - r)(m + r) + (n - s)(n + s) = 0$$

from here we can see that in order for (m-r)(m+r)+(n-s)(n+s)=0 to be true m=r and n=s.

3. Find the quotient and reminder when a id divided by b.

a
$$a = 99, b = 17$$

b
$$a = -99, b = 17$$

c
$$a = 17, b = 99$$

d
$$a = -1017, b = 99$$

a
$$99 = 17q + r \Rightarrow q = 5, r = 14$$

b
$$-99 = 17q + r \Rightarrow q = -6, r = 3$$

c
$$17 = 99q + r \Rightarrow q = 0, r = 17$$

d
$$-1017 = 99q + r \Rightarrow q = -11, r = 72$$

- 5. Use the Euclidean algorithm to find the following greatest common divisors
 - a (6643, 2873)
 - b (7684, 4148)
 - c (26460, 12600)
 - d (6540, 1206)
 - e (12091, 8439)

Joe Starr

(a) (6643, 2873)

$$6643 = 2873 * 2 + 897$$

$$2873 = 897 * 3 + 182$$

$$897 = 182 * 4 + 169$$

$$182 = 169 * 1 + 13$$

$$169 = 13 * 13$$

(b) (7684, 4148)

$$7684 = 4148 * 1 + 3536$$

$$4148 = 3536 * 1 + 612$$

$$3536 = 612 * 5 + 476$$

$$612 = 476 * 1 + 136$$

$$476 = 136 * 3 + 68$$

$$136 = 68 * 68$$

(c) (26460, 12600)

$$26460 = 12600 * 2 + 1260$$

$$12600 = 1260 * 10$$

(d) (6540, 1206)

$$6540 = 1206 * 5 + 510$$

$$1206 = 510 * 2 + 186$$

$$510 = 186 * 2 + 138$$

$$186 = 138 * 1 + 48$$

$$138 = 48 * 2 + 42$$

$$48 = 42 * 1 + 6$$

$$42 = 6 * 7$$

$$12091 = 8439 * 1 + 3652$$

$$8439 = 3652 * 2 + 1135$$

$$3652 = 1135 * 3 + 247$$

$$1135 = 247 * 4 + 147$$

$$247 = 147 * 1 + 100$$

$$147 = 100 * 1 + 47$$

$$100 = 47 * 2 + 6$$

$$47 = 6 * 7 + 5$$

$$6 = 5 * 1 + 1$$

$$5 = 1 * 5$$

7. For each part of Exercise 5, find integers m and n such that (a,b) is expressed in the form ma+nb.

Joe Starr

(a) (6643, 2873)

$$(6643) - 16 + (2873)37 = 13$$

(b) (7684, 4148)

$$(7684) 27 + (4148) - 50 = 68$$

- (c) (26460, 12600) (26460) 1 + (12600) 2 = 1260
- (d) (6540, 1206) (6540) 26 + (1206) 141 = 6
- (e) (12091, 8439) (12091) 1435 + (8439) 2056 = 1

9. let a, b, c be integers such that a + b + c = 0. Show that if n is an integer which is a divisor of two of the three integers, then it is also a divisor of the third.

Joe Starr

Select $a,b,c\in\mathbb{Z}$ to satisfy a+b+c=0, WLOG let $n\in\mathbb{Z}$ such that n|a and n|b. Since (a+b)+c=0 it must be that (a+b)=-c. From here we must show n|(a+b), or a+b=nq. Since n|a and n|b we may write $a=nq_1$ and $b=nq_2$, yielding, $nq_1+nq_2=n$ $(q_1+q_2)=nq$ thus n|c, as desired. \square 13. Show that if n is any integer, then $(10n_3, 5n + 2) = 1$

Joe Starr

We begin with the Euclidean algorithm,

$$10n + 3 = (5n + 2)1 + (5n + 1)$$

$$5n + 2 = (5n + 1)1 + 1$$

from here we have (10n + 3, 5n + 2) = (5n + 2, 5n + 1) = 1, as desired.

15. For what positive integers n is it true that (n, n + 2) = 2? Prove your claim.

Joe Starr

The conjecture is that the statement is true for even values of n. We begin with rewriting n in terms of k, n=2kthe Euclidean algorithm,

$$(2k) + 2 = (2k) 1 + (2)$$

$$2k = (2) k$$

from here we have (n+2, n) = (2k+2, 2k) = 2, as desired.

17. Show that the positive integer k is the difference of two odd squares if and only if k is divisible by 8.

Joe Starr

We begin by writing $k = a^2 - b^2$, since a and b are odd we can write,

$$a = 2r + 1$$

$$b = 2s + 1$$

from here we have $q^2 - b^2 = 4(r + s + 1)(r - s)$. Since k > 0 we must consider two cases r - s = 2m + 1 and r - s = 2m.

$$r - s = 2m$$
:

In this case we have $q^2 - b^2 = 4(r + s + 1) 2m = 8(r + s + 1) m$ and we are done.

$$r - s = 2m + 1$$
.

In this case we have r-s=2m+1 and r+s=r-s+2s=2m+1+2s

$$q^{2} - b^{2} = 4 (r + s + 1) (2m + 1)$$

$$= 4 (2m (r + s + 1) + (r + s + 1))$$

$$= 4 ((2mr + 2ms + 2m) + (r + s + 1))$$

$$= 4 (2mr + 2ms + 2m + r + s + 1)$$

$$= 4 (2mr + 2ms + 2m + 2m + 1 + 2s + 1)$$

$$= 4 (2mr + 2ms + 2m + 2m + 2s + 2)$$

$$= 8 (mr + ms + m + m + s + 1)$$

as desired.

1.2 Primes

1. Find the prime factorizations of each of the following numbers, and use the them to compute the greatest common divisor and least common multiple of the given pairs of numbers.

(a) (35, 14)

(c) (252, 11)

(e) (6643, 2873)

(b) (15, 11)

(d) (7684, 4148)

Joe Starr				
(a) (35, 14)	14:2,7	(d)	(7684, 4148)	4148:2,2,17,61
35:5,7	gcd: 7		7684:2,2,17,113	gcd: 68
	lcm: 70			lcm: 468724
(b) (15, 11)	11:11	(e)	(6643, 2873)	2873:13,13,17
15:3,5	gcd: 1		6643:7,13,73	gcd: 13
	lcm: 165			lcm: 1468103
(c) (252, 180)	180:2,2,3,3,5			
252:2,2,3,3,7	gcd: 36			
	lcm: 1260			

2. US the sieve of Eratosthenes to find all prime numbers less than 200.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170
171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190
191	192	193	194	195	196	197	198	199	200

3. For each composite number a. with $4 \le a \le 20$, find all positive numbers less than a that are relatively prime to a.

Joe Starr	
4:2,3	14:2,3,5,7,9,11,13
6:2,3,5	$15:\ 2,3,4,5,7,8,11,13,14$
8: 2, 3, 5, 7	16:2,3,5,7,9,11,13,15
9: 2, 3, 4, 5, 7, 8	10 . 9 2 5 7 11 12 17
10: 2, 3, 5, 7, 9	$18:\ 2,3,5,7,11,13,17$
12: 2, 3, 5, 7, 11	20: 2, 3, 5, 7, 9, 11, 13, 17, 19

4. Find all positve integers less than 60 and relatively prime to 60.

Joe Starr

 $60:\,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59$

- 9. (a) For which $n \in \mathbb{Z}^+$ is $n^3 1$ a prime number?
 - (b) For which $n \in \mathbb{Z}^+$ is $n^3 + 1$ a prime number?
 - (c) For which $n \in \mathbb{Z}^+$ is $n^2 1$ a prime number?
 - (d) For which $n \in \mathbb{Z}^+$ is $n^2 + 1$ a prime number?

- (a) For which $n \in \mathbb{Z}^+$ is $n^3 1$ a prime number?
- (b) For which $n \in \mathbb{Z}^+$ is $n^3 + 1$ a prime number?
- (c) For which $n \in \mathbb{Z}^+$ is $n^2 1$ a prime number?
- (d) For which $n \in \mathbb{Z}^+$ is $n^2 + 1$ a prime number?

11. Prove that $n^4 + 4^n$ is composite if n > 1.

13. Let a, b, c be positive integers, and let d = (a, b). Since d|a, there exists an integer h with a = dh. Show that a|bc, then h|c.

14. Show that $a\mathbb{Z} \cap b\mathbb{Z} = [a, b] \mathbb{Z}$.

17. Let a, b be nonzero integers. Prove (a, b) = 1 if and only if (a + b, ab) = 1.

18. Let a, b be nonzero integers with (a, b) = 1. Compute (a + b, a - b).

19. Let a and b be positive integers, and let m be an integer such that ab = m(a, b). Without using the prime factorization theorem, prove that (a, b)[a, b] = ab by verifying that m satisfies the necessary properties of [a, b].

20. A positive integer a is called a square if $a=n^2$ for some $n\in\mathbb{Z}$. Show that the integer a>1 is a square if and only if every exponent in its prime factorization is even.

23. Let p and q be prime numbers. Prove that pq+1 is a square if and only if p and q are twin primes.

26. Prove that if a > 1, then there is a prime p with a .

29. Show that $\log 2/\log 3$ is not a rational number.

CHAPTER 2 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 3 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 4 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 5 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 6 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 7 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 8 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 9 SECTION

I <3 my Wayne State Libraries! Do you?

CHAPTER 10 SECTION

I <3 my Wayne State Libraries! Do you?