SVM Classification

Notebook adapted from the 05.07 Support Vector Machines notebook from the Python Data Science Handbook.

Modified by: Gábor Major Last Modified date: 2025-02-16

Import libraries.

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
```

Graphing Data

Graph some sample data.

Draw potential seperating lines for classifying.

```
xfit = np.linspace(-9.5, -3)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plt.plot([-7], [2], 'x', color='red', markeredgewidth=2,
markersize=10)

for m, b in [(3, 21), (0.6, 6.3), (-0.1, 2)]:
    plt.plot(xfit, m * xfit + b, '-k')

plt.ylim(-2, 7);
```


Maximising margin

Visualise the margin of each dividing line.

```
plt.ylim(-2, 7);
```


Fitting using SVC

Use Scikit-Learn's support vector classifier to train an SVM model.

```
from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

SVC(C=10000000000.0, kernel='linear')
```

Visualise result model and support vectors.

```
def plot_svc_decision_function(model, ax=None, plot_support=True):
    """Plot the decision function for a 2D SVC"""
    if ax is None:
        ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()

# create grid to evaluate model
    x = np.linspace(xlim[0], xlim[1], 30)
```

```
y = np.linspace(ylim[0], ylim[1], 30)
    Y, X = np.meshgrid(y, x)
    xy = np.vstack([X.ravel(), Y.ravel()]).T
    P = model.decision function(xy).reshape(X.shape)
    # plot decision boundary and margins
    ax.contour(X, Y, P, colors='k',
                levels=[-1, 0, 1], alpha=0.5,
linestyles=['--', '--', '--'])
    # plot support vectors
    if plot_support:
        ax.scatter(model.support_vectors_[:, 0],
                    model.support vectors [:, 1],
                    s=300, linewidth=1, edgecolors='black',
                    facecolors='none');
    ax.set xlim(xlim)
    ax.set_ylim(ylim)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot svc decision function(model);
```


Support vector coordinates.

```
model.support_vectors_
```

Graph that only the closest points to the margin make a difference in the model, anything further away, as long as it's on the correct side does not matter.

```
def plot svm(N=10, ax=None):
    X, y = make blobs(n samples=200, centers=2,
                      random state=12, cluster std=0.60)
    X = X[:N]
    y = y[:N]
    model = SVC(kernel='linear', C=1E10)
    model.fit(X, y)
    ax = ax or plt.gca()
    ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    # ax.set xlim(-1, 4)
    ax.set ylim(-2, 7)
    plot svc decision function(model, ax)
fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]):
    plot svm(N, axi)
    axi.set title('N = {0}'.format(N))
```


Using Kernel SVMs

Graph the non lineararily seperatable data and an SVM model.

```
from sklearn.datasets import make_circles
X, y = make_circles(100, factor=.1, noise=.1)
clf = SVC(kernel='linear').fit(X, y)
```

```
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False);
```


Use radial basis function based on the centre clump to seperate data.

```
r = np.exp(-(X ** 2).sum(1))
```

Visualise the seperated data.

```
from mpl_toolkits import mplot3d

ax = plt.subplot(projection='3d')
ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
ax.view_init(elev=20, azim=30)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('r');
```


Use the radial basis function which is built into Scikit-Learn's SVM, which runs through all possible points as the centre value for the radial basis function.

```
clf = SVC(kernel='rbf', C=1E6)
clf.fit(X, y)
SVC(C=1000000.0)
```

Visualise the new SVM with the radial basis function.

Tuning SVM by softening margins

Graph less clean data sample.

Soften the margin of the model by making the C parameter smaller.

Optimise C for data

Use GridSearchCV to test different values of C.

```
from sklearn.model selection import GridSearchCV
param grid = {"C": [x / 100.0 \text{ for } x \text{ in } range(1, 100)]}
svc model = SVC(kernel="linear")
grid = GridSearchCV(svc model, param grid, verbose=2)
grid.fit(X, y)
Fitting 5 folds for each of 99 candidates, totalling 495 fits
[CV] END ......C=0.01; total
time=
     0.0s
[CV] END ......C=0.01; total
time=
     0.0s
[CV] END .....C=0.01: total
time=
     0.0s
[CV] END ......C=0.01; total
time=
     0.0s
[CV] END ......C=0.01; total
time=
     0.0s
[CV] END ......C=0.02; total
     0.0s
time=
[CV] END ......C=0.02; total
time=
     0.0s
[CV] END ......C=0.02; total
     0.0s
time=
[CV] END ......C=0.02; total
time=
     0.0s
[CV] END ......C=0.02; total
time=
     0.0s
[CV] END ......C=0.03; total
[CV] END ......C=0.03: total
time=
     0.0s
```

[CV] ENDC=0.03;	total
time= 0.0s [CV] END	+0+01
time= 0.0s	ισιαι
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+01
time= 0.0s	tutat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+++1
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	4-4-1
[CV] ENDC=0.05; time= 0.0s	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0.06; time= 0.0s	total
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0.06; time= 0.0s	total
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0.0/; time= 0.0s	total
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	total
time= 0.0s	
[CV] END	total

time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.1; total
time= 0.0s
[CV] ENDC=0.1; total
time= 0.0s
[CV] ENDC=0.1; total
time= 0.0s
[CV] ENDC=0.1; total
time= 0.0s
[CV] END
time= 0.0s
CTING- 0.05

[CV] ENDC=0.13; to	otal
time= 0.0s [CV] END	-±-1
time= 0.0s	otal
[CV] END	otal
time= $0.0s$	
[CV] END	otal
time= 0.0s	
[CV] END	otal
time= 0.0s [CV] END	-+-1
time= 0.0s	Jtat
[CV] END	ntal
time= 0.0s	
[CV] END	otal
time= 0.0s	
[CV] END	otal
time= 0.0s [CV] END	1
time= 0.0s	οται
[CV] END	ntal
time= 0.0s	
[CV] END	otal
time= 0.0s	
[CV] END	otal
time= 0.0s [CV] END	
[CV] ENDC=0.15; to time= 0.0s	otal
[CV] END	ntal
time= 0.0s	
[CV] END	otal
time= 0.0s	
[CV] ENDC=0.16; to	otal
time= 0.0s	1
[CV] ENDC=0.16; to time= 0.0s	οται
[CV] END	ntal
time= 0.0s	
[CV] END	otal
time= 0.0s	
[CV] ENDC=0.17; to	otal
time= 0.0s	
[CV] END	otal
time= 0.0s [CV] END	ntal
time= $0.0s$	
[CV] END	otal
time= $0.0s$	
[CV] ENDC=0.18; to	otal

time= 0.0s
[CV] ENDC=0.18; total
time= 0.0s
[CV] ENDC=0.18; total
time= 0.0s
[CV] ENDC=0.18; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.19; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.19; total
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= $0.0s$
[CV] END
time= $0.0s$
[CV] END
time= 0.05
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= 0.0s
LIME- 0.05

[CV] ENDC=0.23; t	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] ENDC=0.23; t	±
time= 0.0s	totat
[CV] END	total
time= $0.0s$	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.05	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] ENDC=0.24; t	+0+01
time= 0.0s	totat
[CV] END	total
time= 0.0s	
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s	_
[CV] END	total
time= 0.0s [CV] ENDC=0.25; t	+-+-1
time= 0.0s	lotat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s	
[CV] ENDC=0.26; t	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] ENDC=0.26; t	+0+01
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] ENDC=0.27; t	totol
[CV] LIVD	ισιαι

time= 0.0s
[CV] ENDC=0.28; total
time= 0.0s
[CV] ENDC=0.28; total
time= 0.0s
[CV] ENDC=0.28; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.28; total
time= 0.0s
[CV] ENDC=0.29; total
time= 0.0s
[CV] ENDC=0.29; total
time= 0.0s
[CV] END
time= $0.0s$
[CV] ENDC=0.29; total
time= $0.0s$
[CV] END
time= $0.0s$
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= 0.0s

[CV] ENDC=0.32;	total
time= 0.0s [CV] END	+0+01
time= $0.0s$	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+2]
time= $0.0s$	tutat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+++1
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	4-4-1
time= 0.0s	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0.35; time= 0.0s	total
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
[CV] END	total
time= $0.0s$	
[CV] ENDC=0.36;	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+21
time= 0.0s	tutat
[CV] END	total

time= 0.0s
[CV] ENDC=0.37; total
time= 0.0s
[CV] ENDC=0.38; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.38; total
time= 0.0s
[CV] ENDC=0.38; total
time= 0.0s
[CV] ENDC=0.39; total
time= $0.0s$
[CV] ENDC=0.39; total
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.39; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] ENDC=0.41; total
time= 0.0s
[CV] ENDC=0.41; total
time= 0.0s
[CV] ENDC=0.41; total
time= 0.0s
[CV] ENDC=0.41; total
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.42; total
time= 0.0s

[CV] END	total
time= 0.0s [CV] END	total
time= 0.0s	ισιαι
[CV] END	total
time= $0.0s$	
[CV] ENDC=0.43;	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	total
time= 0.0s	ισιαι
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	_
[CV] END	total
time= 0.0s [CV] END	+++-1
time= 0.0s	totat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	4.4.1
time= 0.0s	τοται
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] ENDC=0.46; time= 0.0s	total
[CV] END	total
time= 0.0s	
[CV] END	total
time= $0.0s$	
[CV] ENDC=0.46;	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+01
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total

time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time = 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.5; total
time= 0.0s
[CV] ENDC=0.5; total
time= 0.0s
[CV] END
· ·
time= 0.0s
[CV] ENDC=0.5; total
time= 0.0 s
[CV] ENDC=0.5; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.51; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.52; total
time= 0.0s
[CV] END
[ev] Lib 11111111111111111111111111111111111

time= 0.0s
[CV] ENDC=0.52; total
time= 0.0s
[CV] ENDC=0.52; total
time= 0.0s
[CV] END
· · · · · · · · · · · · · · · · · ·
time= 0.0s [CV] ENDC=0.53; total
time= 0.0s
[CV] ENDC=0.53; total
time= 0.0s
[CV] ENDC=0.53; total
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] ENDC=0.54; total
time= 0.0s
[CV] ENDC=0.54; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] ENDC=0.55; total
time= 0.0s
[CV] ENDC=0.55; total
time= 0.0s
[CV] ENDC=0.55; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.56; total
time= 0.0s
[CV] ENDC=0.56; total
time= 0.0s
[CV] ENDC=0.56; total
time= 0.0s
[CV] ENDC=0.56; total
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] ENDC=0.57; total
time= 0.0s

[CV] END	total
time= 0.0s [CV] END	+0+01
time= $0.0s$	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+01
time= 0.0s	totat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+01
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	4-4-1
time= 0.0s	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	4-4-1
[CV] ENDC=0.6; time= 0.0s	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	4-4-1
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] ENDC=0.61;	total
time= 0.0s [CV] END	4-4-1
time= 0.0s	τοται
[CV] END	total
time= $0.0s$	
[CV] ENDC=0.61;	total
time= 0.0s	4.4.7
[CV] END	total
[CV] END	total
time= 0.0s	
[CV] ENDC=0.62;	total

time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= 0.0s [CV] ENDC=0.64; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.65; total
time= $0.0s$
[CV] END
time= 0.0s
CIME- U.US

[CV] ENDC=0.67;	total
time= 0.0s [CV] END	+0+01
time= $0.0s$	ισιαι
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	total
time= 0.0s	tutat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+++1
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	4-4-1
time= 0.0s	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0.69; time= 0.0s	total
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0./; time= 0.0s	total
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	total
time= $0.0s$	totat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+21
time= 0.0s	tutat
[CV] END	total

time= 0.0s
[CV] ENDC=0.72; total
time= 0.0s
[CV] ENDC=0.72; total
time= $0.0s$
[CV] ENDC=0.72; total
time= 0.05
[CV] END
time= 0.0s
[CV] ENDC=0.73; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= $0.0s$
[CV] END
time= 0.0s
[CV] END
time= 0.0s [CV] ENDC=0.74; total
· ·
time= 0.0s [CV] ENDC=0.74; total
time= 0.0s [CV] ENDC=0.74; total
time= 0.0s [CV] ENDC=0.74; total
time= 0.0s [CV] ENDC=0.75; total
time= 0.0s [CV] ENDC=0.75; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.75; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.76; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s

[CV] ENDC=0.77;	total
time= 0.0s [CV] END	+0+01
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+++1
time= 0.0s	ισιαι
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+-+-1
time= 0.0s	totat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+-+-1
time= 0.0s	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s	4-4-1
[CV] END	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] ENDC=0.81;	total
time= 0.0s [CV] END	1 - 1 - 1
[CV] ENDC=0.81; time= 0.0s	total
[CV] END	total
time= $0.0s$	
[CV] END	total
time= $0.0s$	
[CV] END	total

time= 0.0s
[CV] ENDC=0.82; total
time= $0.0s$
[CV] ENDC=0.82; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.82; total
time= 0.0s
[CV] ENDC=0.82; total
time= 0.0s
[CV] ENDC=0.83; total
time= $0.0s$
[CV] ENDC=0.83; total
time= $0.0s$
[CV] END
· · · · · · · · · · · · · · · · · ·
time= 0.0s
[CV] ENDC=0.83; total
time= 0.0s
[CV] ENDC=0.83; total
time= 0.0s
[CV] ENDC=0.84; total
time= 0.0s
[CV] ENDC=0.84; total
time= $0.0s$
[CV] END
time= 0.0s
[CV] ENDC=0.84; total
time= 0.0s
[CV] ENDC=0.84; total
time= 0.0s
[CV] ENDC=0.85; total
time= 0.0s
[CV] END
$\begin{array}{ll} \text{time} = 0.0s \\ \text{COULTINE} \end{array}$
[CV] ENDC=0.85; total
time= 0.0s
[CV] ENDC=0.85; total
time= 0.0s
[CV] ENDC=0.85; total
time= 0.0s
[CV] ENDC=0.86; total
time= 0.0s
[CV] ENDC=0.86; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.86; total
time= 0.0s

[CV] ENDC=0.86;	total
time= 0.0s [CV] END	+0+01
time= $0.0s$	ισιαι
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+01
time= $0.0s$	ισιαι
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	+-+-1
time= 0.0s	totat
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	4-4-1
time= 0.0s	τοται
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0.89; time= 0.0s	total
[CV] END	total
time= $0.0s$	
[CV] END	total
time= 0.0s [CV] END	
[CV] ENDC=0.9; time= 0.0s	total
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	total
time= $0.0s$	totat
[CV] END	total
time= 0.0s	
[CV] END	total
time= 0.0s [CV] END	+0+21
time= 0.0s	tutat
[CV] END	total

time= 0.0s
[CV] ENDC=0.91; total
time= 0.0s
[CV] ENDC=0.92; total
time= 0.0s
[CV] ENDC=0.92; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.92; total
time= 0.0s
[CV] ENDC=0.92; total
time= 0.0s
[CV] ENDC=0.93; total
time= 0.0s
[CV] ENDC=0.93; total
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.93; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.94; total
time= 0.0s
[CV] ENDC=0.94; total
time= 0.0s
[CV] ENDC=0.94; total
time= 0.0s
[CV] END
time= 0.0s
[CV] END
time= 0.0s
[CV] ENDC=0.95; total
time= 0.0s [CV] ENDC=0.95; total
time= 0.0s [CV] ENDC=0.95; total
• •
time= 0.0s
[CV] END
time= 0.0s [CV] ENDC=0.96; total
time= 0.0s [CV] ENDC=0.96; total
time= 0.0s
[CV] END
time= 0.0s
CTIIIC- 0.03

[CV] END	
[CV] END	·
[CV] END	[CV] ENDC=0.96; total
time= 0.0s [CV] END	
time= 0.0s [CV] END	time= $0.0s$
[CV] END	
[CV] END	
time= 0.0s [CV] END	$\begin{array}{ccc} \text{time} = & 0.0s \\ \text{CV1} & \text{END} \end{array}$
time= 0.0s [CV] END	time= 0.0s
[CV] END	
[CV] END	[CV] END
time= 0.0s [CV] END	time = 0.0s
time= 0.0s [CV] END	time= $0.0s$
[CV] END	· ·
[CV] END	[CV] END
<pre>time= 0.0s [CV] END</pre>	
<pre>time= 0.0s [CV] END</pre>	time= 0.0s
[CV] END	
[CV] END	
<pre>time= 0.0s [CV] END</pre>	time= $0.0s$
<pre>time= 0.0s [CV] END</pre>	time= $0.0s$
<pre>[CV] END</pre>	·
GridSearchCV(estimator=SVC(kernel='linear'),	[CV] END
param_grid={'C': [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,]},	time= 0.0s
0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,]},	
0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,]},	
0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,]},	0.09, 0.1, 0.11, 0.12, 0.13, 0.14,
0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,]},	
0.3,]},	0.23, 0.24,

Visualise best result.

Classifying waste images

Set up SVM model to classify the images based on the waste dataset downloaded from UC Irvine Machine Learning Repository which was created for the following article: RealWaste: A Novel Real-Life Data Set for Landfill Waste Classification Using Deep Learning.

The data contains images of real life garbage collected from a waste facility in Australia.

Import libraries

```
from PIL import Image import os
```

```
from numpy import asarray import numpy as np
```

Import the image paths from the waste data folder.

```
image_paths = []
data_location = '../realwaste-main/RealWaste/'
for waste_type in os.listdir(data_location):
    for waste_image in os.listdir(data_location + waste_type + '/'):
        image_paths.append(data_location + waste_type + '/' +
waste_image)
```

Shuffle the paths, so that similar data is evenly distributed.

```
print(len(image_paths))
print(image_paths[:5])

4752
['../realwaste-main/RealWaste/Cardboard/Cardboard_1.jpg',
'../realwaste-main/RealWaste/Cardboard/Cardboard_10.jpg',
'../realwaste-main/RealWaste/Cardboard/Cardboard_100.jpg',
'../realwaste-main/RealWaste/Cardboard/Cardboard_101.jpg',
'../realwaste-main/RealWaste/Cardboard/Cardboard_102.jpg']

np.random.shuffle(image_paths)
print(image_paths[:5])

['../realwaste-main/RealWaste/Plastic/Plastic_522.jpg', '../realwaste-main/RealWaste/Glass/Glass_138.jpg',
'../realwaste-main/RealWaste/Metal_Metal_56.jpg',
'../realwaste-main/RealWaste/Food Organics/Food Organics_330.jpg',
'../realwaste-main/RealWaste/Plastic/Plastic_735.jpg']
```

Load the images and create the data set.

The images are shrunk down according to the following variable, from 0.0 to 1.0. Using the images at full size at 524 pixels uses a considerably large amount of memory when training the model.

```
waste_data = {'data': [], 'images': [], 'target': [], 'target_names':
[]}
for waste image path in image paths:
    image = Image.open(waste image path)
    image = image.resize((round(image.size[0] *
image_size_precentage_amount),
                          round(image.size[1] *
image size precentage amount)))
    numpy_image = asarray(image)
    waste data['data'].append(numpy image.reshape(-1))
    waste data['images'].append(numpy image)
    waste type = waste image path.split('/')[-2]
    if waste_type not in waste_data['target_names']:
        waste data['target names'].append(waste type)
waste data['target'].append(waste data['target names'].index(waste typ
e))
```

Visualise the shuffled data.

Use Principal Component Analysis to extract component data to use in the support vector classifier model.

Split the data into training and testing.

```
from sklearn.model_selection import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(waste_data['data'],
waste_data['target'], random_state=42)
```

Use GridSearchCV to go through values for C and gamma. Gamma is used to change the size of the radial basis function kernel used in the SVC.

```
from sklearn.model selection import GridSearchCV
param grid = \{'svc C': [1, 5, 10],
           'svc__gamma': [0.001, 0.005, 0.01]}
grid = GridSearchCV(model, param grid, verbose=2)
%time grid.fit(Xtrain, ytrain)
print(grid.best_params_)
Fitting 5 folds for each of 9 candidates, totalling 45 fits
[CV] END ......svc C=1, svc gamma=0.001; total
time=
     4.4s
[CV] END ......svc C=1, svc gamma=0.001; total
time=
      3.6s
[CV] END .....svc C=1, svc gamma=0.001; total
time=
      3.1s
[CV] END .....svc C=1, svc_gamma=0.001; total
time=
      3.1s
[CV] END .....svc__C=1, svc__gamma=0.001; total
      6.3s
time=
[CV] END .....svc__C=1, svc__gamma=0.005; total
time=
     3.3s
[CV] END ......svc C=1, svc gamma=0.005; total
      3.3s
[CV] END .....svc__C=1, svc__gamma=0.005; total
time=
      5.1s
[CV] END .....svc C=1, svc gamma=0.005; total
time=
      5.2s
[CV] END ......svc C=1, svc gamma=0.005; total
time=
      7.9s
[CV] END .....svc C=1, svc_gamma=0.01; total
time=
      3.8s
[CV] END .....svc C=1, svc gamma=0.01; total
time=
      5.4s
[CV] END .....svc C=1, svc gamma=0.01; total
time=
      5.3s
[CV] END .....svc__C=1, svc__gamma=0.01; total
      3.6s
time=
[CV] END .....svc C=1, svc gamma=0.01; total
time=
      3.3s
[CV] END ......svc C=5, svc gamma=0.001; total
time=
      3.3s
[CV] END .....svc C=5, svc gamma=0.001; total
      3.3s
time=
[CV] END .....svc C=5, svc gamma=0.001; total
      3.5s
time=
[CV] END ......svc C=5, svc gamma=0.001; total
      3.9s
time=
[CV] END .....gamma=0.001; total
time=
     3.7s
[CV] END .....svc C=5, svc gamma=0.005; total
```

```
time=
     3.5s
[CV] END .....svc C=5, svc gamma=0.005; total
time=
     3.9s
[CV] END ......svc C=5, svc gamma=0.005; total
time=
     4.1s
[CV] END .....svc C=5, svc gamma=0.005; total
time=
     3.8s
[CV] END ......svc C=5, svc gamma=0.005; total
time=
     4.5s
[CV] END .....svc C=5, svc gamma=0.01; total
time=
     4.2s
[CV] END .....svc__C=5, svc__gamma=0.01; total
     3.7s
time=
[CV] END .....svc C=5, svc gamma=0.01; total
time=
     3.6s
[CV] END .....svc C=5, svc gamma=0.01; total
time=
     4.0s
[CV] END .....svc__C=5, svc__gamma=0.01; total
time=
     3.6s
[CV] END .....svc C=10, svc qamma=0.001; total
time=
     4.0s
[CV] END .....svc C=10, svc gamma=0.001; total
     4.2s
time=
[CV] END .....svc C=10, svc gamma=0.001; total
     3.2s
time=
[CV] END .....svc C=10, svc gamma=0.001; total
     4.6s
time=
[CV] END .....svc C=10, svc gamma=0.001; total
time=
     3.2s
[CV] END .....svc__C=10, svc__gamma=0.005; total
time=
     3.3s
[CV] END .....svc__C=10, svc__gamma=0.005; total
time=
     3.3s
[CV] END .....svc C=10, svc gamma=0.005; total
     3.2s
time=
[CV] END .....svc__C=10, svc__gamma=0.005; total
     3.2s
time=
[CV] END .....svc_C=10, svc_gamma=0.005; total
     3.4s
time=
[CV] END .....svc C=10, svc gamma=0.01; total
     3.4s
time=
[CV] END ......svc C=10, svc gamma=0.01; total
time=
     3.4s
[CV] END ......svc C=10, svc gamma=0.01; total
     3.4s
time=
[CV] END .....svc__C=10, svc__gamma=0.01; total
     3.4s
time=
[CV] END ......svc C=10, svc gamma=0.01; total
time=
     3.4s
```

```
CPU times: user 16min 11s, sys: 17.2 s, total: 16min 28s Wall time: 3min {'svc__C': 5, 'svc__gamma': 0.01}
```

Select the best parameters and model.

```
print(grid.best_params_)
model = grid.best_estimator_
yfit = model.predict(Xtest)

{'svc_C': 5, 'svc_gamma': 0.01}
```

Show the images as being labeled correctly or incorrectly.

Predicted Waste; Incorrect Labels in Red

Show the classification report.

from sklearn.metrics import classification_report
print(classification_report(ytest, yfit,
target_names=waste_data['target_names']))

_	_			
	precision	recall	f1-score	support
Plastic	0.61	0.65	0.63	243
Glass	0.74	0.61	0.67	110
Metal	0.55	0.62	0.59	196
Food Organics	0.63	0.54	0.58	100
Textile Trash	0.34	0.29	0.31	73
Cardboard	0.54	0.49	0.51	113
Vegetation	0.51	0.76	0.61	100
Miscellaneous Trash	0.35	0.32	0.33	128
Paper	0.72	0.61	0.66	125
accuracy			0.56	1188
macro avg	0.56	0.54	0.54	1188
weighted avg	0.57	0.56	0.56	1188
3				

Show the confusion matrix of the model.

```
from sklearn.metrics import confusion matrix
import seaborn as sns
mat = confusion_matrix(ytest, yfit)
sns.heatmap(mat.T, square=True, annot=True, fmt='d',
            cbar=False, cmap='Blues',
            xticklabels=waste_data['target_names'],
            yticklabels=waste data['target names'])
plt.xlabel('True label')
plt.ylabel('Predicted label');
```


Save and load the model.

```
import pickle
with open('models/svm_waste.pkl', 'wb') as f:
    pickle.dump(model, f)
```

```
with open('models/svm_waste.pkl', 'rb') as f:
  model = pickle.load(f)
```

Set a path for the image to be predicted and output the result and the resized image used.

