

HowTo: CB

Stefan Kniege and Bjørn Bäuchle baeuchle@th.physik.uni-frankfurt.de

H-QM | Helmholtz Research School Quark Matter Studies

How to subtract the Combinatorial Background

Outline

- Introduction
 - -relevant observable
 - -contributions what will be measured?
 - → wanted contributions
 - → "physical" background
 - → combinatorial background
 - -reducing the physical background
- Combinatorial Background
 - -Origin
 - -Subtraction methods
 - → Like-sign and unlike-sign
 - → Event mixing
- Overview

The relavant observable

We are looking for the **invariant mass spectrum** dN/dm_{inv} of **e**⁺**e**⁻ -pairs

the invariant mass is the root of the product of the sum of the four-momenta $p_1^{\mu} = (E_1, p_1), p_2^{\mu} = (E_2, p_2)$:

$$m_{inv}^{2} = (p_{1}^{\mu} + p_{2}^{\mu})(p_{1\mu} + p_{2\mu})$$

$$= 2(m_{e}^{2} + E_{1}E_{2} - |p_{1}||p_{2}|\cos\Theta_{ee})$$

m_e: electron rest mass

 Θ_{ee} : angle between momenta

, ITP and Stefan Kniege, IKF

HowTo: CB

Wanted contributions

Most commonly, one (or several) specific particle species is (are) to be surveyed, e.g. the J/ψ :

$$J/\Psi \rightarrow e^+ e^-$$

http://www.interactions.org/sgtw/2006/0503/images/jpsi_phenix_700.jpg

, ITP and Stefan Kniege, IKF HowTo: CB

Physical Background

When looking for the spectrum of a given particle, all other particles decaying in e^+e^- (+X) must be considered as background most common sources:

External Pair Conversion

Dalitz decay

Eur.Phys.J.C41:475-513,2005

, ITP and Stefan Kniege, IKF

HowTo: CB

5/16

Reducing the physical BG

There are a number of things one can do to reduce the contributions from external pair conversions and π/ω -Dalitz-decays

- Rejection of small momentum-particles
- Rejection of pairs with small opening angle
 - look for tracks with too big dE/dx!
- using a segmented target
- using a "massless" detector

Combinatorial Background

Spectrum is created from all possible e⁺e⁻ combinations.

You cannot know which pairs combine particles from the same decay

There are much more combinations than decays have happened.

Those pairs that combine particles from different decays form the *Combinatorial Background*.

Combinatorial Background

Let's assume:

- e⁺ and e⁻ come only from pair creation
- all particles are reconstructed
- we have N pairs, so $N^+ = N$ positrons and $N^- = N$ electrons and N^2 possible combinations

The Task:

Extract the signal of N correlated pairs from all combinations:

Obtain shape and size (normalization) of N²-N uncorrelated e⁺e⁻ -pairs:

- → By like-sign-correlations
- → By event-mixing

Normalization:

$$A = \int \frac{\mathrm{d}A}{\mathrm{d}m} \mathrm{d}m$$

Shape:

$$\frac{1}{A} \frac{\mathrm{d} A}{\mathrm{d} m}$$

Like-sign method

The Background B+-:

 $B^{+-} = N^2 - N$ constructed e^+e^- -pairs stem from uncorrelated particles. Pairs constructed from two eor two e+ (like-sign-pairs) are always uncorrelated.

 $N^{++} + N^{-} = N^2 - N$ pairs can be constructed

The Signal S will be:

$$S = N = N^{+-} - (N^{++} + N^{--})$$

actually, the signal is:

$$\frac{\mathrm{d} S}{\mathrm{d} m} = \frac{\mathrm{d} N^{+-}}{\mathrm{d} m} - \left(\frac{\mathrm{d} N^{++}}{\mathrm{d} m} + \frac{\mathrm{d} N^{--}}{\mathrm{d} m} \right)$$

N: Number of pair-decays

N⁺⁻: Number of constructed e⁺e⁻ -pairs

N^{±±}: Number of constructed e[±]e[±] -pairs

B+-: Background from e+e- -pairs

S: Signal

The like-sign-contribution should have the same shape as the contribution from the uncorrelated unlike-sign-pairs

Like-sign method

Watch Out!

Efficiency is not arbitrarily good

Cuts may leave more electrons or more positrons: N⁺ ≠ N⁻

N: Number of pair-decays

N[±]: Number of e[±]-tracks

N⁺⁻: Number of constructed e⁺e⁻ -pairs

N^{±±}: Number of constructed e[±]e[±] -pairs

Like-sign method

But there is a connection between N⁺⁺, N⁻⁻ and B⁺⁻: B⁺⁻ = $2\sqrt{N^{++}N^{--}}$, so $\langle S \rangle = \langle N^{+-} \rangle - 2\langle \sqrt{N^{++}N^{--}} \rangle$ (also if efficiency is imperfect) If all e^+ and e^- are created as singles, the correct normalization is $\langle S \rangle = \langle N^+ \rangle - \langle N^+ \rangle \langle N^- \rangle$

N: Number of pair-decays

N⁺⁻: Number of constructed e⁺e⁻ -pairs

N^{±±}: Number of constructed e[±]e[±] -pairs

B+-: Background from e+e- -pairs

S: Signal

Mixed events techniques

Instead of like-sign pairs from the same event, uncorrelated signals may be extracted from particles from different events.

Statistics is much better: from E events, E(E-1) mixtures can be made

But: Normalization is more complicated

Mixed events techniques

Square-root-normalization:

As in single-event analysis

$$\frac{dB^{+}}{dm_{inv}} = \frac{1}{M^{+}} \frac{dM^{+}}{dm_{inv}} 2\sqrt{N^{+}N^{-}}$$

Divide mixed eventbackground by its integral and multiply by the normalization from single-events 2√N++N--

N: Number of pair-decays

N[±]: Number of e[±]-tracks

N^{±±}: Number of constructed e[±]e[±] -pairs

B+-: Background from e+e- -pairs

Mab: Number of eaeb -pairs from

different events

Mixed events techniques

Empirical method for normalization:

(like sign data) / (like sign mixed)

$$\frac{B^{+-}}{M^{+-}} = \frac{N^{\text{like}}}{M^{\text{like}}}$$

$$\frac{dB^{+-}}{dm_{\text{inv}}} = \frac{dM^{+-}}{dm_{\text{inv}}} \left(\frac{N^{++}}{M^{++}} + \frac{N^{--}}{M^{--}} \right)$$

Get mixed background (M+- pairs), and scale with the number of like sign pairs in single-event analysis devided by the number of like sign pairs in mixed events

$$B^{+} = \frac{1}{2} \left(\frac{N^{+}}{N^{-}} (N^{+2} - N^{+}) + \frac{N^{-}}{N^{+}} (N^{-2} - N^{-}) \right)$$

N: Number of pair-decays

N[±]: Number of e[±]-tracks

N^{±±}: Number of constructed e[±]e[±] -pairs

B+-: Background from e+e- -pairs

Mab: Number of eaeb -pairs from

different events

, ITP and Stefan Kniege, IKF

HowTo: CB

Combinatorial Background

Like sign data

Mixed events data

- Tormalization is

 (comparatively) easy

 depends on assumption
 that different decays in
 one event are independent

 e.g. CERES (NA 45)
- Normalization is difficultmuch better statistics

e.g. NA 60, KEK-PSE325

Thank you very much

for your attention

momentum cut

Pair-conversions from γ 's can be largely **excluded** by cutting out small momenta, because the spectra are much steeper

energy loss

If two electrons too close to distinguish, dE/dx is twice the normal value

Pairs with small invariant mass can be largely removed by excluding all pairs with small opening angle Θ_{a} :

$$m_{inv}^{2} = 2(m_{e}^{2} + E_{1}E_{2} - |p_{1}||p_{2}|\cos\Theta_{ee})$$

$$m_{e} \ll |p_{i}|:$$

$$m_{inv}^{2} = 2|p_{1}||p_{2}|(1-\cos\Theta_{ee})$$

if m_{inv} is small, either

- $cos(\Theta_{ee}) \rightarrow 1 (\Theta_{ee} \rightarrow 0)$ or $|p_1| \rightarrow 0$ or $|p_2| \rightarrow 0$

those cases are covered by low-pcut

, ITP and Stefan Kniege, IKF

HowTo: CB

Detector issues

Pair-conversions from real γ's within the detector can be **prevented** by using a ,,massless" detector (*small Z*-

materials, e.g. Mylar)

target design

(fixed target experiments only): Pair-conversions at other nuclei within the target can be excluded by using segmented targets with corresponding cuts in the acceptance We need big interaction length but small radiation length

