co-RE and Reducibility

Friday Four Square! Today at 4:15PM, Outside Gates

Announcements

- Problem Set 6 graded, will be returned at end of lecture.
 - Late submissions will be graded by Monday.
- Problem Set 7 due this Monday, March 4 at the start of lecture.
 - We are working on shuffling around OH for this weekend; we'll send out an email with updates.

Major Ideas from Last Time

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called deciders.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.

Major Ideas from Last Time

- A language L is called **decidable** iff there is a decider M such that $\mathcal{L}(M) = L$.
- Given a decider M, you can learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run *M* on *w*.
 - Although it might take a staggeringly long time, M will eventually accept or reject w.
- The set \mathbf{R} is the set of all decidable languages.

 $L \in \mathbf{R}$ iff L is decidable

R and RE Languages

- Intuitively, a language is in \mathbf{RE} if there is some way that you could exhaustively search for a proof that $w \in L$.
 - If you find it, accept!
 - If you don't find one, keep looking!
- Intuitively, a language is in \mathbf{R} if there is a concrete algorithm that can determine whether $w \in L$.
 - It tends to be *much* harder to show that a language is in **R** than in **RE**.

The Limits of Computability

All Languages

Outline for Today

- The Halting Problem
 - An important problem about TMs.
- co-RE Languages
 - Resolving a fundamental asymmetry.
- Mapping Reductions
 - A tool for finding unsolvable problems.

The Halting Problem

The Halting Problem

• The **halting problem** is the following problem:

Given a TM M and string w, does M halt on w?

- Note that *M* doesn't have to *accept w*; it just has to *halt* on *w*.
- As a formal language:

$$HALT = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on } w. \}$$

• Is $HALT \in \mathbb{R}$? Is $HALT \in \mathbb{RE}$?

HALT is Recognizable

Consider this Turing machine:

```
H = "On input \langle M, w \rangle:
```

Run *M* on *w*.

If M accepts, accept.

If M rejects, accept."

- Then H accepts $\langle M, w \rangle$ iff M halts on w.
- Thus $\mathcal{L}(H) = HALT$, so $HALT \in \mathbf{RE}$.

Theorem: $HALT \notin \mathbf{R}$.

(The halting problem is undecidable)

Proving *HALT* ∉ **R**

- Our proof will work as follows:
 - Suppose that $HALT \in \mathbf{R}$.
 - Using a decider for HALT, construct a decider for A_{TM} .
 - Reach a contradiction, since there is no decider for A_{TM} ($A_{TM} \notin \mathbf{R}$).
 - Conclude, therefore, that $HALT \notin \mathbf{R}$.

Proving *HALT* ∉ **R**

Our proof will work as follows:

Suppose that $HALT \in \mathbb{R}$.

• Using a decider for HALT, construct a decider for A_{TM} .

Reach a contradiction, since there is no decider for A_{TM} ($A_{TM} \notin \mathbf{R}$).

Conclude, therefore, that $HALT \notin \mathbf{R}$.

Proving $HALT \notin \mathbf{R}$

Our proof will work as follows:

Suppose that $HALT \in \mathbb{R}$.

 Using a decider for HALT, construct a decider for A_{TM} .

Reach a contradiction, since there is no decider for A_{TM} ($A_{TM} \notin \mathbf{R}$).

Conclude, This is the creative step of the proof. How exactly are we going to do this?

Accepting, Rejecting, and Looping

- Suppose we have a TM M and a string w.
- Then *M* either
 - Accepts, or
 - **Does not accept** (by rejecting or looping).
- What if *M* never rejects?
- Then *M* either
 - Accepts, or
 - **Does not accept** (by looping).

The Key Insight

• If M never rejects, then

M accepts w iff M halts on w

• In other words, if M never rejects, then

 $\langle M, w \rangle \in A_{TM}$ iff $\langle M, w \rangle \in HALT$

- If we can modify an arbitrary TM M so that M never rejects, then a decider for HALT can be made to decide A_{TM} .
 - Since $A_{TM} \notin \mathbf{R}$, this is a contradiction!

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w?

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w?

Machine M accepts w, so M' accepts w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w?

Machine M accepts w, so M' accepts w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts *w*? **Accept**

Machine M accepts w, so M' accepts w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts *w*? **Accept**

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? **Accept** M loops on w?

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? **Accept** M loops on w?

Machine M loops on w, so M' loops on w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? **Accept** M loops on w?

Machine M loops on w, so M' loops on w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept
M loops on w? Reject

Machine M loops on w, so M' loops on w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept
M loops on w? Reject

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept M loops on w? Reject M rejects w?

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept
M loops on w? Reject
M rejects w?

Machine M rejects w, so M' loops on w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept
M loops on w? Reject
M rejects w?

Machine M rejects w, so M' loops on w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept
M loops on w? Reject
M rejects w? Reject

Machine M rejects w, so M' loops on w.

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept M loops on w? Reject M rejects w? Reject

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? Accept
M loops on w? Reject
M rejects w? Reject

Machine H is a decider for A_{TM} !

- Transform M into M' by making M loop instead of rejecting.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

What happens if...

M accepts w? AcceptM loops on w? RejectM rejects w? Reject

Machine H is a decider for A_{TM} !

$$\begin{array}{c} \square \rightarrow \square, \, R \\ \textbf{0} \rightarrow \textbf{0}, \, R \end{array}$$

$$\begin{array}{c} \square \rightarrow \square,\, R \\ \textbf{0} \rightarrow \textbf{0},\, R \end{array}$$

$$\square \rightarrow \square$$
, R $0 \rightarrow 0$, R

Theorem: HALT \notin **R**.

Proof: By contradiction; assume $HALT \in \mathbf{R}$.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some

decider *D* for *HALT*.

Proof: By contradiction; assume $HALT \in \mathbf{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

Proof: By contradiction; assume $HALT \in \mathbf{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} .

Proof: By contradiction; assume $HALT \in \mathbf{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

Transform M into M' by making M' loop whenever M rejects.

Run D on $\langle M', w \rangle$.

If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$.

If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

 $H = \text{``On input } \langle M, w \rangle$, where M is a TM and w is a string:

Transform M into M' by making M' loop whenever M rejects.

Run D on $\langle M', w \rangle$.

If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.

If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

 $H = \text{``On input } \langle M, w \rangle$, where M is a TM and w is a string:

Transform M into M' by making M' loop whenever M rejects.

Run D on $\langle M', w \rangle$.

If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.

If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$.

Proof: By contradiction; assume $HALT \in \mathbf{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

Transform M into M' by making M' loop whenever M rejects.

Run D on $\langle M', w \rangle$.

If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.

If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Proof: By contradiction; assume $HALT \in \mathbf{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathcal{L}(H) = A_{TM}$.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathcal{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathcal{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$. Since D decides HALT, D accepts $\langle M', w \rangle$ iff M' halts on w.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string: Transform M into M' by making M' loop whenever M rejects. Run D on $\langle M', w \rangle$. If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$. If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathcal{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$. Since D decides HALT, D accepts $\langle M', w \rangle$ iff M' halts on w. By construction, M' halts iff it accepts, so M' halts on w iff M' accepts w.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

 $H = \text{``On input } \langle M, w \rangle$, where M is a TM and w is a string:

Transform M into M' by making M' loop whenever M rejects.

Run D on $\langle M', w \rangle$.

If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.

If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathcal{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$. Since D decides HALT, D accepts $\langle M', w \rangle$ iff M' halts on w. By construction, M' halts iff it accepts, so M' halts on w iff M' accepts w. Again by construction, M' accepts w iff M accepts w.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

 $H = \text{``On input } \langle M, w \rangle$, where M is a TM and w is a string:

Transform M into M' by making M' loop whenever M rejects.

Run D on $\langle M', w \rangle$.

If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.

If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathcal{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$. Since D decides HALT, D accepts $\langle M', w \rangle$ iff M' halts on w. By construction, M' halts iff it accepts, so M' halts on w iff M' accepts w. Again by construction, M' accepts w iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 Transform M into M' by making M' loop whenever M rejects.
 Run D on $\langle M', w \rangle$.
 If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
 If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathscr{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$. Since D decides HALT, D accepts $\langle M', w \rangle$ iff M' halts on w. By construction, M' halts iff it accepts, so M' halts on w iff M' accepts w. Again by construction, M' accepts w iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus H accepts $\langle M, w \rangle$ iff $\langle M, w \rangle \in A_{TM}$, and so $\mathscr{L}(H) = A_{TM}$, as required.

Proof: By contradiction; assume $HALT \in \mathbb{R}$. Then there must be some decider D for HALT. Consider the following TM H:

H = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 Transform M into M' by making M' loop whenever M rejects.
 Run D on $\langle M', w \rangle$.
 If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
 If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

We claim that H is a decider for A_{TM} . This means that $A_{TM} \in \mathbf{R}$, which contradicts the fact that $A_{TM} \notin \mathbf{R}$. This means our assumption was wrong, and so $HALT \notin \mathbf{R}$, as required.

First, we prove H is a decider. Note that on any input $\langle M, w \rangle$, H constructs the machine M' (which can be done in finite time), then runs D on $\langle M', w \rangle$. Since D is a decider, D always halts. Since H halts as soon as D halts, we know H halts on $\langle M, w \rangle$. Since our choice of $\langle M, w \rangle$ was arbitrary, this means that H halts on all inputs, so H is a decider.

Next, we prove that $\mathscr{L}(H) = A_{TM}$. To see this, note that H accepts $\langle M, w \rangle$ iff D accepts $\langle M', w \rangle$. Since D decides HALT, D accepts $\langle M', w \rangle$ iff M' halts on w. By construction, M' halts iff it accepts, so M' halts on w iff M' accepts w. Again by construction, M' accepts w iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus H accepts $\langle M, w \rangle$ iff $\langle M, w \rangle \in A_{TM}$, and so $\mathscr{L}(H) = A_{TM}$, as required.

All Languages

A_{TM} and HALT

- Both A_{TM} and HALT are undecidable.
 - There is no way to decide whether a TM will accept or eventually terminate.
- However, both A_{TM} and HALT are recognizable.
 - We can always run a TM on a string *w* and accept if that TM accepts or halts.
- Intuition: The only general way to learn what a TM will do on a given string is to run it and see what happens.

Resolving an Asymmetry

A New Complexity Class

- A language L is in **RE** iff there is a TM M such that
 - if $w \in L$, then M accepts w.
 - if $w \notin L$, then M does not accept w.
- A TM *M* of this sort is called a *recognizer*, and *L* is called *recognizable*.
- A language L is in co-RE iff there is a TM M such that
 - if $w \in L$, then M does not reject w.
 - if $w \notin L$, then M rejects w.
- A TM M of this sort is called a co-recognizer, and L is called co-recognizable.

- Intuitively, **RE** consists of all problems where a TM can exhaustively search for proof that $w \in L$.
 - If $w \in L$, the TM will find the proof.
 - If $w \notin L$, the TM cannot find a proof.
- Intuitively, co-**RE** consists of all problems where a TM can exhaustively search for a disproof that $w \in L$.
 - If $w \in L$, the TM cannot find the disproof.
 - If $w \notin L$, the TM will find the disproof.

RE and co-RE Languages

- A_{TM} is an **RE** language:
 - Simulate the TM *M* on the string *w*.
 - If you find that M accepts w, accept.
 - If you find that *M* rejects *w*, reject.
 - (If *M* loops, we implicitly loop forever)
- \overline{A}_{TM} is a co-**RE** language:
 - Simulate the TM M on the string w.
 - If you find that *M* accepts *w*, reject.
 - If you find that M rejects w, accept.
 - (If *M* loops, we implicitly loop forever)

RE and co-RE Languages

- $\overline{L}_{\rm D}$ is an **RE** language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, accept.
 - If you find that M rejects $\langle M \rangle$, reject.
 - (If *M* loops, we implicitly loop forever)
- $L_{\rm D}$ is a co-**RE** language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, reject.
 - If you find that M rejects $\langle M \rangle$, accept.
 - (If *M* loops, we implicitly loop forever)

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in \underline{L}$ iff $w \notin \overline{L}$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in \underline{L}$ iff $w \notin \overline{L}$.

M' does not reject w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects wiff M accepts wiff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$

iff $w \in \overline{L}$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects wiff M accepts wiff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in \underline{L}$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

The same approach works if we flip the accept and reject states of a co-recognizer for \overline{L} .

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects wiff M accepts wiff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

The same approach works if we flip the accept and reject states of a co-recognizer for \overline{L} .

- Every language in R is in both RE and co-RE.
- Why?
 - A decider for L accepts all $w \in L$ and rejects all $w \notin L$.
- In other words, $\mathbf{R} \subseteq \mathbf{RE} \cap \text{co-}\mathbf{RE}$.
- Question: Does $\mathbf{R} = \mathbf{RE} \cap \text{co-RE}$?

Which Picture is Correct?

Which Picture is Correct?

• Theorem: If $L \in \mathbf{RE}$ and $L \in \mathbf{co-RE}$, then $L \in \mathbf{R}$.

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it.

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it. Since $L \in \text{co-}\mathbf{RE}$, there is a co-recognizer \overline{M} for it.

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it. Since $L \in \text{co-}\mathbf{RE}$, there is a co-recognizer \overline{M} for it.

This TM *D* is a decider for *L*:

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it. Since $L \in \text{co-}\mathbf{RE}$, there is a co-recognizer \overline{M} for it.

This TM *D* is a decider for *L*:

D= "On input w:
 Run M on w and \overline{M} on w in parallel.
 If \underline{M} accepts w, accept.
 If \overline{M} rejects w, reject.

A Repeating Pattern

$L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \epsilon \}$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \varepsilon \rangle$.
- Run R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts $\langle M, \varepsilon \rangle$.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects $\langle M, \varepsilon \rangle$."

From $\overline{\mathrm{A}}_{\scriptscriptstyle\mathrm{TM}}$ to $L_{\scriptscriptstyle\mathrm{D}}$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M, \langle M \rangle \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M, \langle M \rangle \rangle$."

From HALT to A_{TM}

H = "On input $\langle M, w \rangle$:

- Build M into M' so M' loops when M rejects.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

The General Pattern

Machine H

The General Pattern

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

• Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

• Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

• Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

- Intuitively, problem *A* reduces to problem *B* iff a solver for *B* can be used to solve problem *A*.
- Reductions can be used to show certain problems are "solvable:"

If A reduces to B and B is "solvable," then A is "solvable."

• Reductions can be used to show certain problems are "unsolvable:"

If A reduces to B and A is "unsolvable," then B is "unsolvable."

Formalizing Reductions

- In order to make the previous intuition more rigorous, we need to formally define reductions.
- There are many ways to do this; we'll explore two:
 - Mapping reducibility (today / Monday), and
 - Polynomial-time reducibility (next week).

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

$$\Sigma_2^*$$

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \notin A$ maps to some $f(w) \notin B$.
- *f* does not have to be injective or surjective.

Why Reductions Matter

- If language *A* reduces to language *B*, we can use a recognizer / co-recognizer / decider for *B* to recognize / co-recognize / decide problem *A*.
 - (There's a slight catch we'll talk about this in a second).
- How is this possible?

$$w \in A$$
 iff $f(w) \in B$

$w \in A$ iff $f(w) \in B$

$w \in A$ iff $f(w) \in B$

Machine H

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

H = "On input w:

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

H accepts w

Machine H

H = "On input w:

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

H accepts w
iff
R accepts f(w)

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

$$\mathscr{L}(H) = A$$

A Problem

• Recall: *f* is a reduction from *A* to *B* iff

$$w \in A \quad \text{iff} \quad f(w) \in B$$

- Under this definition, any language A reduces to any language B unless $B = \emptyset$ or Σ^* .
- Since $B \neq \emptyset$ and $B \neq \Sigma^*$, there is some $w_{yes} \in B$ and some $w_{no} \notin B$.
- Define $f: \Sigma_1^* \to \Sigma_2^*$ as follows:

If
$$w \in A$$
, then $f(w) = w_{yes}$
If $w \notin A$, then $f(w) = w_{no}$

• Then f is a reduction from A to B.

A Problem

- Example: let's reduce $L_{\rm D}$ to 0*1*.
- Take $w_{ves} = 01$, $w_{no} = 10$.
- Then f(w) is defined as
 - If $w \in L_D$, f(w) = 01.
 - If $w \notin L_D$, f(w) = 10.
- There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{\mathbb{D}}$.

• There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{\mathbb{D}}$.

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **computable function** if there is some TM M with the following behavior:

"On input w:

Compute f(w) and write it on the tape.

Move the tape head to the start of f(w).

Halt."

$$f(1^n) = 1^{3n+1}$$

$$f(\mathbf{1}^n) = \mathbf{1}^{3n+1}$$

$$f(w) = \begin{cases} 1^{mn} & \text{if } w = 1^n \times 1^m \\ \varepsilon & \text{otherwise} \end{cases}$$

$$f(w) = \begin{cases} 1^{mn} & \text{if } w = 1^n \times 1^m \\ \varepsilon & \text{otherwise} \end{cases}$$

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

Mapping Reductions

- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a mapping reduction from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.