Using Survey Data as a Predictor of Pandemic Vaccination ## 2a - Classification Modeling

Mark Patterson, March 2021

Introduction to 2a

Change some of the data preperation and that, along with further runs of the models are in notebook 2b. That approach, I have named Approach B.

This notebook contains runs of Approach A classification modeling - utiliing a pipeline for pre-processign and modeling.

A Note on model evaluation criteria.

To evaluate the performance of each model I will use accuracy, to gauge the overall predictive power of the model. Another important criteria is precision of class 1. our target variable are the respondents that DID get the H1N1 vaccination. Precision of class 1 tells us percentage of people that the model predicted to have goten t vaccination, but in reality had not. This is important as it could mean people that need additional vaccination information may get overlooked.

Import Libraries and Load Data

```
In [1]: # Import the relevant libraries
          import numpy as np
import pandas as pd
          from matplotlib import pyplot as plt
          import seaborn as sns
          from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import StandardScaler
          from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier
          from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
          from xgboost import XGBClassifier
           from sklearn.svm import SVC
          from sklearn.model selection import GridSearchCV
          from sklearn.naive bayes import MultinomialNB
from sklearn.model_selection import train_test_split
          from sklearn.metrics import r2_score, explained_variance_score, confusion_matrix, accuracy_score, classification_report, log_loss
           from math import sqrt
          from sklearn.metrics import accuracy_score, roc_curve, auc
          from sklearn.preprocessing import OneHotEncoder
          from sklearn import tree
          from sklearn.model_selection import cross_val_score
          %matplotlib inline
           # Increase column width to display df
          pd.set_option('display.max_columns', None)
```

In [3]: # Load the data df_7 = pd.read_csv('data/df_5.csv') # print the shape print(df_7.shape) df_7.head()

(26707, 37)

Out[3]:

ι	Jnnamed: 0	h1n1_concern	h1n1_knowledge	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_hands	behavioral_large_gatherings	behavioral_outside_home	behavioral_touch_face doctor
0	0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0
1	1	3.0	2.0	0.0	1.0	0.0	1.0	0.0	1.0	1.0
2	2	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
3	3	1.0	1.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0
4	4	2.0	1.0	0.0	1.0	0.0	1.0	1.0	0.0	1.0

In [43]: print(df_7['hln1_vaccine'].value_counts())

df_7['hln1_vaccine'].value_counts(normalize=True)*100

0 21033 5674

Name: h1n1_vaccine, dtype: int64

Out[43]: 0 78.754634

21.245366

Name: h1n1_vaccine, dtype: float64

Classification Modelling

In early explorations (see other Notebook) a "dummy classifier" model was run, and with the "stratified" version, accuracy was 0.67. The plan for classification model test 6 different models:

a) Random Forest (to btain feature importances) b) XGBoost (for its power)

c) KNN

d) Decision Trees

e) Logistic Regression

Grid Search will be used to optimize the parameters of some models.
First, all models will be run with hln1 vaccination as the target variable (Y); and then a second series of models will be run with seasonal vaccination as the target (Y2).

A pipeline will be constructed to address multiple steps of modeling including:

A pipeline will be constructed to address multiple steps of modeling included. Imputing - KNNImputer

b) Scaling - StandardScaler
c) SMOTE - for hinl vaccination set - as there is sizeable class imbalance d) Model - fit and predict
e) Results - summary reports and confusion matrix

Creating Train and Test Set

```
In [4]: df_8 = df_7.drop(columns=['Unnamed: 0'], axis=1)
```

```
In [5]: # Need to split data into X and y dataframes.
            y = df_8['hln1_vaccine']
X = df_8.drop(columns=['hln1_vaccine', 'seasonal_vaccine'], axis=1)
            print(y.shape)
            print(X.shape)
            (26707,)
(26707, 34)
 In [6]: # Create train and test sets.
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=34)
            print(X test.shape)
            print(y_train.shape)
            print(y_test.shape)
            (18694, 34)
(8013, 34)
(18694,)
            (8013,)
            #### Run a Dummy Classifier
 In [7]: from sklearn.dummy import DummyClassifier
 In [8]: dclf = DummyClassifier(strategy='stratified', random_state=15)
dclf.fit(X_train, y_train)
dclf.score(X_test, y_test)
 Out[8]: 0.6680394359166355
            ### Run initial classification models (defaults) without SMOTE
            Initial attempts at running a pipeline that included SMOTE failed. So will first run 6 models in plain default versions using the pipeline. NOTE that this is data pre
            (with 34 variables).
 In [9]: # Load a few more libraries
            from sklearn.impute import KNNImputer
from imblearn.over_sampling import SMOTE
            from sklearn.pipeline import Pipeline
from sklearn.pipeline import make_pipeline
In [31]: # Trying a different type of pipeline (B) and see if SMOTE works. Nope... same error message as before.
# But it does work without the SMOTE.
            # But It tools work without the Smoth.
pipe = make_pipeline(KNNImpuber(), StandardScaler(), RandomForestClassifier(random_state=44))
pipe = pipe.frit(X_train, y_train)
y_pred = pipe.predict(X_test)
accuracy_l = accuracy_score(y_test, y_pred)
In [32]: print(accuracy_1)
            0.842755522276301
In [24]: from imblearn.pipeline import Pipeline
In [29]: # Yet, another version... (C). It runs without an error, BUT it does not appear to actually do the SMOTE (unequal classes still)
            random_state = 38
model3 = Pipeline([
                       riperline((
'imp', KNNImputer()),
('scal', StandardScaler()),
('smote', SMOTE()),
('classification', RandomForestClassifier())
                 1)
            model3.fit(X train, y train)
            training preds = model3.predict(X_train)
test_preds = model3.predict(X_test)
accuracy_3 = accuracy_score(y_test, y_pred)
            print(accuracy 3)
            0.8361412704355422
```

```
In [30]: # Get results - one off for the imblearn pipeline.
        print('----
        print('MODEL: Random Forest with SMOTE')
        print('\nClassification Report - TRAIN')
         print('
        print(classification_report(y_train, training_preds))
        print('--
          Confusion Matrix
        print('--
        print('Confusion Matrix - TRAIN')
        print(
         print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicted'], margins=True))
        print('-----')
print('-----')
         # Classification Report
        print('-----
         print('Classification Report - TEST')
        print(
         print(classification_report(y_test, test_preds))
        print('--
        print('Confusion Matrix - TEST')
        print('
        print(pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], margins=True))
        print('-----
        MODEL: Random Forest with SMOTE
        Classification Report - TRAIN
                     precision recall f1-score support
                  0 1.00 1.00 1.00 14645
1 1.00 1.00 1.00 4049
        accuracy 1.00 18694
macro avg 1.00 1.00 1.00 18694
weighted avg 1.00 1.00 1.00 18694
         _____
         Confusion Matrix - TRAIN
         Predicted 0 1 All
        True 0 14645 0 14645 1 2 4047 4049 All 14647 4047 18694
         ______
         Classification Report - TEST
                     precision recall f1-score support
                       0.88 0.93
0.62 0.48
                   0
1
                                           0.54
                                                       1625
        accuracy 0.84 macro avg 0.75 0.70 0.72 weighted avg 0.82 0.84 0.83
                                                        8013
                                                        8013
                                                        8013
        Confusion Matrix - TEST
        Predicted 0 1 All
        Predicted
True
0 5911 477 6388
1 841 784 1625
All 6752 1261 8013
In [80]: # MODEL RUN 1.
         # Original Pipeline.. SMOTE step throws an error. So commented it out. Will fallback to running SMOTE as a sept. step.
        def classif report (model):
            imputer = KNNImputer()
scaler = StandardScaler()
            xmoter = SMOTE()
pipeline = Pipeline(steps=[('i', imputer), ('s', scaler), ('m', model)])
            pipeline.fit(X_train, y_train)
            training preds = pipeline.predict(X train)
            test_preds = pipeline.predict(X_test)
            # Get results
            print('------
print(f'MODEL: {model}')
print('\nClassification Report - TRAIN')
            print('----
             print(classification_report(y_train, training_preds))
            print('-----
             # Confusion Matrix
            print('Confusion Matrix - TRAIN')
            print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicted'], margins=True))
            print(
             # Classification Report
            print('
            print('Classification Report - TEST')
            print('
            print(classification_report(y_test, test_preds))
            print('-
              Confusion Matrix
            print('-
            print('Confusion Matrix - TEST')
            print(
            print(pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], margins=True))
            print('
```

```
In [82]: # Run the function with the assigned model above.
       classif_report (model)
         _____
       MODEL: RandomForestClassifier()
       Classification Report - TRAIN
                   precision recall f1-score support
                       1.00 1.00 1.00 14645
1.00 1.00 1.00 4049
                 0
       accuracy 1.00 18694
macro avg 1.00 1.00 1.00 18694
weighted avg 1.00 1.00 1.00 18694
       Confusion Matrix - TRAIN
        Predicted 0 1 All
        True
              14645 0 14645
0 4049 4049
14645 4049 18694
       All
        ______
       Classification Report - TEST
                   precision recall f1-score support
                       0.86 0.95 0.91 6388
0.68 0.41 0.51 1625
                                        0.84
0.71
                             0.84
0.68 0.71
0.84 0.82
           accuracy
                                                 8013
                    0.77
0.83
       macro avg
weighted avg
                                                 8013
        ______
       Confusion Matrix - TEST
       Predicted 0 1 All
       Predicted
True
0 6079 309 6388
1 964 661 1625
All 7043 970 8013
        _____
In [83]: # Take a look at feature importances (RandomForest) - from default / vanilla model (no SMOTE)
        importance = pd.DataFrame(data={'features': X_train.columns, 'importance': model.feature_importances_})
        importance = importance.sort_values('importance', ascending=False)
importance = importance.reset_index()
       importance.drop('index', axis=1, inplace=True)
importance.head(20)
```

Out[83]:

	teatures	importance
0	doctor_recc_h1n1	0.111224
1	employment_industry	0.072995
2	opinion_h1n1_risk	0.068024
3	opinion_h1n1_vacc_effective	0.062342
4	hhs_geo_region	0.054741
5	opinion_seas_risk	0.045590
6	age_group	0.037457
7	opinion_h1n1_sick_from_vacc	0.033034
8	education	0.032316
9	opinion_seas_vacc_effective	0.031408
10	h1n1_concern	0.030971
11	opinion_seas_sick_from_vacc	0.030466
12	income_poverty	0.029081
13	doctor_recc_seasonal	0.028419
14	census_msa	0.027187
15	household_adults	0.025311
16	h1n1_knowledge	0.022620
17	household_children	0.022389
18	employment_status	0.020372
19	health_insurance	0.019283

```
In [85]: # Assign the model... change this for each model to run.
model = KNeighborsClassifier()
# Run the function with the assigned model above.
        classif_report (model)
                               -----
        MODEL: KNeighborsClassifier()
        Classification Report - TRAIN
                  precision recall f1-score support
                              0.95
                 1
                        0.75
                                          0.60
                                                   4049
                                          0.86
                                                  18694
           accuracy
        macro avg 0.81 0.73 0.76 weighted avg 0.85 0.86 0.84
                                                   18694
                                                 18694
           ______
        Confusion Matrix - TRAIN
        Predicted 0 1 All
        True
        0
                 13949 696 14645
                 2005 2044 4049
15954 2740 18694
        All
        _____
        Classification Report - TEST
                   precision recall f1-score support
                0
1
                        0.85
                                 0.92
                                          0.88
                                                    6388
                        0.85 0.92
0.54 0.38
                                          0.44
           accuracy
                                          0.81
                                                    8013
        macro avg 0.70
weighted avg 0.79
                                  0.65
                                          0.66
                                                    8013
                               0.81
                                       0.66
                                                   8013
        Confusion Matrix - TEST
        Predicted 0 1 All
                 5874 514 6388
                 1013 612 1625
6887 1126 8013
        All
        ______
In [86]: # Assign the model... change this for each model to run.
model = XGBClassifier()
# Run the function with the assigned model above.
        classif_report (model)
        MODEL: XGBClassifier()
        Classification Report - TRAIN
                   precision recall f1-score support
                        0.87 0.95 0.91
0.72 0.49 0.58
                                                 14645
                 1
                                                   4049
                                          0.85
           accuracy
                                                 18694
                        0.85
0.79 0.72 0.74
0.84 0.85 0.84
           macro avg
                                                   18694
        weighted avg
                                                 18694
        Confusion Matrix - TRAIN
        Predicted 0 1 All
                 13865 780 14645
                   2070 1979
                              4049
                 15935 2759 18694
        All
        Classification Report - TEST
                  precision recall f1-score support
                        0.87 0.94
0.68 0.47
                                                    6388
                                                    1625
                                                    8013
           accuracy
                                          0.85
                                                    8013
           macro avg
        weighted avg
                        0.83
                                  0.85
                                          0.84
                                                    8013
        Confusion Matrix - TEST
        Predicted 0
                        1 All
        True
0 6027 361 6388
1 866 759 1625
```

6893 1120 8013

A11

	model = De	function	on with		ned model a	bove.	
	classif_re						
	MODEL: Dec						
	Classifica						
					f1-score	support	
		0 1	1.00	1.00	1.00 1.00	14645 4049	
	accura macro a	avg	1.00	1.00	1.00		
	weighted a					10094	
	Confusion						
	Predicted			All			
	True 0	14645					
	1 All		4049	4049			
	Classifica	ation Re	eport -				
					f1-score	support	
		0	0.86	0.83	0.84	6388	
		1	0.40				
	macro a	acy	0.63	3 0.64	0.75 0.63	8013 8013	
	weighted a	avg	0.76		0.76	8013	
	Confusion	Matrix	- TEST	r			
	Predicted True	0	1	All			
	0	5281	1107	6388			
	1	885	740	1625			
88]:	1 All # Assign model = Lo	885 6166 the mode	740 1847 	1625 8013 		odel to run.	
88]:	# Assign model = Lot # Run the classif_re	885 6166 	740 1847 	1625 8013 	for each m	odel to run.	
88]:	# Assign model = Ld # Run the classif_re	885 6166 	740 1847	1625 8013 	for each m	odel to run.	
88]:	# Assign model = Ld # Run the classif_re	885 6166 	740 1847	thange this sion() the assignment of the assignm	for each m	odel to run. bove.	
88]:	# Assign model = Ld # Run the classif_re	885 6166 	740 1847	thange this sion() the assig	for each m ned model a f1-score 0.90	support	
88]:	# Assign model = Le # Run the classif_re	885 6166 the mode origination function	740 1847	1625 8013 schange this scion() to the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83	support 14645 4049 18694	
88]:	# Assign model = Le # Run the classif_re	885 6166 the mode origination function	740 1847	1625 8013 schange this scion() to the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83	support 14645 4049 18694	
88]:	# Assign model = Lu # Run the classif_re Classification accurred macro a weighted a	the mode of the mo	740 1847	1625 8013 Schange this sion() In the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Lo # Run the classif_re MODEL: Loc Classification weighted a macro a weighted a macro confusion	885 6166 the mode ggisticRefunction ggisticRefunction acy avg avg Matrix	740 1847 Pal cegresson with model) egression 0.86 0.67 0.77 0.82	1625 8013 Schange this sion() n the assig con() - TRAIN - TRAIN - TRAIN - 0.68 0.94	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Le # Run the classif_re MODEL: Loc Classifice accura macro a weighted a	885 6166 the mode of the mode of the the mode of the	740 1847 1847 el c Regress pon with model) egressi eport 0.86 0.67 0.82	1625 8013 Schange this sion() n the assig con() - TRAIN - TRAIN - TRAIN - 0.68 0.94	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Lo # Run the classifice	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847 1847 1847 1847 1848 1847 1848 1848	1625 8013 Schange this sion() In the assignment of the sion () TRAIN Trecall 5 0.94 7 0.43 7 0.68 9 0.83	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Lo # Run the classification accurr macro a weighted a weighted a confusion	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847	1625 8013 Schange this sion() In the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Le # Run the classifice Classifice weighted a weighted a court macro a court m	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847	1625 8013 8013 8013 8013 8013 8013 8013 8013	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Le # Run the classifice Classifice weighted a weighted a court macro a court m	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847 1847 1847 1848 1848 1849 1849 1849 1849 1849 1849	1625 8013 schange this scion() TRAIN Tecall 5 0.94 7 0.43 7 0.68 2 0.83 7 0.44 14645 4049 18694	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Le # Run the classifice MODEL: Loc Classifice Model = Le # Run the classifice Model: Loc Classifice Model = Le # Run the classifice Model = L	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847 1847 1847 1848 1848 1848 1848 1848	1625 8013 Schange this sion() In the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694	
88]:	# Assign model = Le # Run the classifice MODEL: Loc Classifice Model = Le # Run the classifice Model: Loc Classifice Model = Le # Run the classifice Model = L	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847 1847 1847 1847 1848 1847 1848 1848	1625 8013 Schange this sion() In the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82	support 14645 4049 18694 18694 18694 18694	
88]:	# Assign model = Le # Run the classifice MODEL: Loc Classifice Model = Le # Run the classifice Model: Loc Classifice Model = Le # Run the classifice Model = L	885 6166 the mode of property of the state	740 1847 1847 1847 1847 1848 1847 1848 1848	1625 8013 Schange this sion() In the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82 f1-score 0.90 0.51	support 14645 4049 18694 18694 18694 support 6388 1625	
88]:	# Assign model = Le # Run the classifice MODEL: Loc Classifice Model = Le # Run the classifice Model: Loc Classifice Model = Le # Run the classifice Model = L	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847 1847 1847 1847 1848 1847 1848 1848	1625 8013 schange this sion() 10 the assignment of the assignment	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82 f1-score f1-score	support 14645 4049 18694 18694 18694 18694 18694 18694 18694	
88]:	# Assign model = Lo # Run the classification # Assign model = Lo # Run the classification # Run the classification # Classification # Assign model = Lo # Run the classification # Run	885 6166 cthe mode of the mode	740 1847 1847 1847 1847 1848 1847 1848 1848	1625 8013 Schange this sion() 1 the assig 1001 TRAIN 1 recall 1001 1001 1001 1001 1001 1001 1001 1	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82 f1-score 0.90 0.51 0.84 0.71	support 14645 4049 18694 18694 18694 18694 18694	
88]:	# Assign model = Lu # Run the classification	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847	1625 8013 8013 8013 8013 1001() 1001(for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82 f1-score 0.90 0.51 0.84 0.71 0.82	support 14645 4049 18694 18694 18694 18694 18694 18694 18694	
88]:	# Assign model = Lu # Run the classification	885 6166 cthe mode of gisticRe of functive port (registicRe of functive port) gisticRe of functive port (registicRe of functive port) 3 acy awg awg Matrix 13812 2324 16136 pre of functive port (registicRe of functive port) 1 acy awg awg Matrix Matrix Matrix	740 1847 1847 1847 1848 1847 1848 1848 1848	1625 8013 Schange this sion() 1 the assign the assignment the assign the assi	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82 f1-score 0.90 0.51 0.84 0.71 0.82	support 14645 4049 18694 18694 18694 18694 18694 18694	
88]:	# Assign model = Lo # Run the classifice	885 6166 6166 6166 6166 6166 6166 6166 6	740 1847 1847 1847 1848 1848 1849 1849 1849 1849 1849 1849	1625 8013 Schange this sion() In the assignment the triangle of the assignment the triangle of the assignment t	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82 f1-score 0.90 0.51 0.84 0.71 0.82	support 14645 4049 18694 18694 18694 18694 18694	
88]:	# Assign model = Lo # Run the classification Classification Classification Confusion Predicted True 0 1 All Classification Confusion confusion predicted accuration accuration accuration accuration accuration predicted accuration accuration predicted accuration accuration predicted accuration accuration accuration accuration accuration predicted predicted predicted	885 6166 6166 6the mode of the	740 1847 1847 1847 1848 1848 1849 1849 1849 1849 1849 1849	1625 8013 shange this sion() in the assig tion() - TRAIN - TRAIN - TRAIN - 1	for each m ned model a f1-score 0.90 0.52 0.83 0.71 0.82 f1-score 0.90 0.51 0.84 0.71 0.82	support 14645 4049 18694 18694 18694 18694 18694	

```
In [89]: \# Assign the model... change this for each model to run. model = SVC()
          # Run the fu
                         nction with the assigned model above.
          classif_report (model)
            _____
          MODEL: SVC()
          Classification Report - TRAIN
                       precision recall f1-score support
                              0.88 0.97
0.80 0.51
                      1
                                                     0.62
                                                                 4049
                                                      0.87
                                                               18694
              accuracy
          accuracy 0.87 macro avg 0.84 0.74 0.77 weighted avg 0.86 0.87 0.85
                                                                18694
                                                             18694
          Confusion Matrix - TRAIN
          Predicted 0 1 All
           True
                     14136 509 14645
1986 2063 4049
16122 2572 18694
          0
          All
           _____
          Classification Report - TEST
                         precision recall f1-score support
                     0
1
                              0.87 0.95
0.67 0.42
                                                      0.91
                                                                 6388
                                                  0.52
               accuracy
                                                      0.84
                                                                 8013
                           0.77 0.69 0.71
0.83 0.84 0.83
             macro avq
                                                                 8013
          weighted avg
                                                                 8013
          Confusion Matrix - TEST
           Predicted 0 1 All
           True
                     6056 332 6388
936 689 1625
           A11
                    6992 1021 8013
          #### Observations on the first 6 models - dat prep A with no SMOTE (34 variables)
Accuracy was about equal across most models at 0.84. XGBoost had the best precision (class 1) score at 0.68. Decision Trees performed worst at accuracy of 0.0.75 and
          0.40.
 In [ ]:
          ### Reconfigure things for SMOTE
          Tried using SMOTE as part of the pipeline. Had some issues getting it to run. Tried doing a seperate preprocessing pipeline, but then had issues figuring out how to f
          a seperate SMOTE step.
          imputer = KNNImputer()
scaler = StandardScaler()
pipe_pre = make_pipeline(imputer, scaler)
            x_train = pipe_pre.fit_transform(X_train, y_train)
Out[97]: array([[ 0.42475416, 1.19594035, -0.22565807, ..., -1.18156013,
                  [[ 0.42473416, 1.1593403, -0.22565807, ..., -1.16158015, 
0.49172474, -1.55273258], 
[ 1.52458714, -0.42438383, -0.22565807, ..., -1.18156013, 
-0.58271974, 0.56911297], 
[ -0.67507883, -0.42438383, -0.22565807, ..., 2.80800331, 
0.49172474, -1.23124083],
```

[1.52458714, -0.42438383, -0.22565807, ..., 0.14829435, -0.58271974, -1.23124083], [0.42475416, 1.19594035, -0.22565807, ..., 1.47814883, -0.58271974, 0.44051627], [0.422475416, -0.42438383, -0.22565807, ..., 0.14829435, 0.49172474, -1.55273258]])

```
In [98]: # Address the target class imbalance with SMOTE - as a seperate step. Not sure how to get the output of pre-pipe?
         print("Before OverSampling, counts of label '0': {}".format(sum(y_train == 0)))
print("Before OverSampling, counts of label '1': {}".format(sum(y_train == 1)))
          sm = SMOTE(random_state = 3)
          X_train_s, y_train_s = sm.fit_sample(X_train, y_train)
          print('After OverSampling, the shape of train X: {}'.format(X train s.shape))
          print('After OverSampling, the shape of train_y: {} \n'.format(y_train_s.shape))
         print("After OverSampling, counts of label '0': {}".format(sum(y_train_s == 0)))
print("After OverSampling, counts of label '1': {}".format(sum(y_train_s == 1)))
          Before OverSampling, counts of label '0': 14645
          Before OverSampling, counts of label '1': 4049
                                                        Traceback (most recent call last)
          <ipython=input-98-3af90d0179de> in <module>()
                6 sm = SMOTE(random state = 3)
          ----> 7 X_train_s, y_train_s = sm.fit_sample(X_train, y_train)
                9 print('After OverSampling, the shape of train_X: {}'.format(X_train_s.shape))
          /Users/markp/opt/anaconda3/envs/learn-env/lib/pvthon3.6/site-packages/imblearn/base.pv in fit resample(self, X, v)
                           check_classification_targets(y)
arrays_transformer = ArraysTransformer(X, y)
X, y, binarize_y = self._check_X_y(X, y)
               76
          ---> 77
               79
                           self.sampling_strategy_ = check_sampling_strategy(
          /Users/markp/opt/anaconda3/envs/learn-env/lib/python3.6/site-packages/imblearn/base.py in _check_X_y(self, X, y, accept_sparse)
                           y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
x, y = self._validate_data(
              134
          --> 135
                               X, y, reset=True, accept_sparse=accept_sparse
                           return X, y, binarize y
              137
          /Users/markp/opt/anaconda3/envs/learn-env/lib/python3.6/site-packages/sklearn/base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
                               y = check_array(y, **check_y_params)
else:
              430
                                   X, y = check_X_y(X, y, **check_params)
          --> 432
              433
                               out = X, y
              434
          /{\tt Users/markp/opt/anaconda3/envs/learn-env/lib/python3.6/site-packages/sklearn/utils/validation.py~in~inner\_f(*args, **kwargs)}
                                               FutureWarning)
               72
                           kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
               73
                           return f(**kwargs)
               74
                       return inner_f
               75
          /Users/markp/opt/anaconda3/envs/learn-env/lib/python3.6/site-packages/sklearn/utils/validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order,
          all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
801 ensure_min_samples=ensure_min_samples,
              802
                                        ensure_min_features=ensure_min_features,
          --> 803
                                         estimator=estimator)
                      if multi_output:
              805
                        y = check_array(y, accept_sparse='csr', force_all_finite=True,
          /Users/markp/opt/anaconda3/envs/learn-env/lib/python3.6/site-packages/sklearn/utils/validation.py in inner f(*args, **kwargs)
                          FutureWarning)
kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
               72
          ---> 73
                      return f(**kwargs)
return inner_f
               75
          /Users/markp/opt/anaconda3/envs/learn-env/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, ord
          ce_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
644 if force_all_finite:
              645
                               _assert_all_finite(array,
                                                     allow_nan=force_all_finite == 'allow-nan')
              647
              648
                      if ensure_min_samples > 0:
          /Users/markp/opt/anaconda3/envs/learn-env/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X, allow_nan, msg_dtype)
                                         msg_err.format
               99
                                         (type err,
                                          msg_dtype if msg_dtype is not None else X.dtype)
              101
              102
                     # for object dtype data, we only check for NaNs (GH-13254)
          ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
```

Another attempt at a pipeline with SMOTE

In []:

```
In [69]: # Assemble the Pipeline (no error messages from SMOTE, BUT not applying it either?
       pipeline.fit(X_train, y_train)
           training_preds = pipeline.predict(X_train)
test_preds = pipeline.predict(X_test)
           # Get results
           print('-----')
           print(f'MODEL: {model}')
           print('\nClassification Report - TRAIN')
           print(classification_report(y_train, training_preds))
           print('-----
# Confusion Matrix
           print('---
           print('Confusion Matrix - TRAIN')
           print('
           print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicted'], margins=True))
           print('-----')
           # Classification Report
           print('-----
           print('-----
print('Classification Report - TEST')
           print(classification_report(y_test, test_preds))
           # Confusion Matrix
           print('-----
print('Confusion Matrix - TEST')
           print('-
           print(pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], margins=True))
           print('-----
In [70]: # Assign the model... change this for each model to run.
       model = KNeighborsClassifier()
In [71]: # Run the function with the assigned model above.
       classif_report1 (model)
                              _____
       MODEL: KNeighborsClassifier()
       Classification Report - TRAIN
                precision recall f1-score support
                    0.99 0.74 0.84 14645
0.50 0.96 0.66 4049
          accuracy 0.79
macro avg 0.74 0.85 0.75
ghted avg 0.88 0.79 0.80
                                              18694
18694
18694
          macro avg
       weighted avg
        _____
       Confusion Matrix - TRAIN
        Predicted 0 1 All
        True
            10805 3840 14645
151 3898 4049
               10956 7738 18694
       All
        ______
       Classification Report - TEST
                  precision recall f1-score support
                                              6388
1625
               0 0.90 0.65 0.75
1 0.34 0.71 0.46
                                        0.66
                                                 8013
        accuracy
macro avg 0.62 0.68
weighted avg 0.78 0.66
                                        0.61
                                                 8013
                                     0.69
       Confusion Matrix - TEST
       Predicted 0 1 All
               4132 2256 6388
       1 471 1154 1625
All 4603 3410 8013
In [74]: \# Assign the model... change this for each model to run. model = XGBClassifier()
```

```
In [75]: # Run the function with the assigned model above.
         classif_report1 (model)
            -----
         MODEL: XGBClassifier()
         Classification Report - TRAIN
                        precision
                                    recall f1-score support
                                                         14645
                                              0.9u
0.60
                                    0.91
0.56
                    0
                             0.88
                                                           4049
                                    0.84 18694
0.74 0.75 18694
0.84 0.83 18694
              accuracy
                            0.76
             macro avg
                         0.83
         weighted avg
         Confusion Matrix - TRAIN
          Predicted 0 1 All
          True
                    13368 1277 14645
1773 2276 4049
                   15141 3553 18694
         All
          ______
         Classification Report - TEST
                       precision recall f1-score support
                             0.60
                                       0.53
                                                 0.56
                                                           1625
              accuracy
                                                  0.83
                                                            8013
             macro avg
                             0.74
                                       0.72
                                                  0.73
                                                            8013
          weighted avg
         Confusion Matrix - TEST
          Predicted 0 1 All
          True
                 5801 587 6388
762 863 1625
6563 1450 8013
 In [ ]:
         ## Run Models for Seasonal Vaccination Target
         Will use the seasonal vaccination as the target, so need to reassign Y, and then run the 3 models.. classes are fairly balanced, so for this data, SMOTE is not necess
In [34]: print(df_7.shape)
df_7.head()
         (26707, 37)
Out[34]:
             Unnamed: h1n1_concern h1n1_knowledge behavioral_antiviral_meds behavioral_avoidance behavioral_face_mask behavioral_wash_hands behavioral_large_gatherings behavioral_outside_home behavioral_touch_face
                   n
                             1.0
                                          0.0
                                                              0.0
                                                                               0.0
                                                                                                0.0
                                                                                                                  0.0
                                                                                                                                        0.0
                                                                                                                                                            1.0
                                                                                                                                                                              1.0
                                                                                              0.0
                            3.0
                                         2.0
                                                             0.0
                                                                              1.0
                                                                                                                  1.0
                                                                                                                                        0.0
                                                                                                                                                           1.0
                                                                                                                                                                             1.0
                                                                                             0.0
                            1.0
                                                             0.0
                  2
                                         1.0
                                                                              1.0
                                                                                                                  0.0
                                                                                                                                        0.0
                                                                                                                                                           0.0
                                                                                                                                                                             0.0
          2
                            1.0
                                          1.0
                                                              0.0
                                                                               1.0
                                                                                               0.0
                                                                                                                  1.0
                                                                                                                                        1.0
                                                                                                                                                           0.0
                                                                                                                                                                             0.0
          3
                  3
                             2.0
                                                              0.0
                                                                               1.0
                                                                                                0.0
                                                                                                                  1.0
                                                                                                                                                           0.0
                                                                                                                                                                              1.0
In [35]: df_9 = df_7.drop(columns=['Unnamed: 0'], axis=1)
df_9.shape
Out[35]: (26707, 36)
In [44]: print(df_9['seasonal_vaccine'].value_counts())
         df_9['seasonal_vaccine'].value_counts(normalize=True)*100
         0 14272
               12435
         Name: seasonal_vaccine, dtype: int64
Out[44]: 0 53.439173
               46.560827
         Name: seasonal_vaccine, dtype: float64
In [36]: # Need to split data into X and y dataframes.
  y1 = df_9('seasonal_vaccine')
  X1 = df_9.drop(columns=['hln1_vaccine', 'seasonal_vaccine'], axis=1)
  print(y1.shape)
         print(X1.shape)
         (26707,)
(26707, 34)
In [45]: # Create train and test sets.
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.30, random_state=35)
         print(X1_train.shape)
print(X1_test.shape)
         print(y1_train.shape)
         print(y1_test.shape)
          (18694, 34)
          (8013, 34)
(18694,)
          (8013,)
In [46]: # RUN a DUMMY Classifier as a baseline
         dclf = DummyClassifier(strategy='stratified', random_state=16)
         dclf.fit(X1_train, y1_train)
dclf.score(X1_test, y1_test)
Out[46]: 0.49831523773867464
```

```
### Run classification models (target = seasonal vacc) - data prep A.
          This run of models uses the "classif_report" function to run the pipeline.
          A) KNN
          B) XGBoost
          C) Random Forest (plus feature importance)
          D) Decion Trees
          E) Logistic Regression
          F) SVC
In [102]: # Assemble the Pipeline
          def classif_report (model):
              imputer = KNNImputer()
scaler = StandardScaler()
pipeline = Pipeline(steps=[('i', imputer), ('s', scaler), ('m', model)])
              pipeline.fit(X1_train, y1_train)
              training_preds = pipeline.predict(X1_train)
test_preds = pipeline.predict(X1_test)
               # Get results
              print('-----
               print(f'MODEL: {model}')
              print('\nClassification Report - TRAIN')
              print('-
              print(classification_report(y1_train, training_preds))
              print('-----
               # Confusion Matrix
              print('-
              print('Confusion Matrix - TRAIN')
              print(pd.crosstab(y1_train, training_preds, rownames=['True'], colnames=['Predicted'], margins=True))
              print('-
               # Classification Report
              print('Classification Report - TEST')
              print(classification_report(y1_test, test_preds))
              print('-----
# Confusion Matrix
              print('---
              print('Confusion Matrix - TEST')
              print('----
               print(pd.crosstab(yl_test, test_preds, rownames=['True'], colnames=['Predicted'], margins=True))
              print('-----
 In [48]: # Assign the model... change this for each model to run.
          model = KNeighborsClassifier()
 In [49]: # Run the function with the assigned model above.
          classif_report (model)
          MODEL: KNeighborsClassifier()
          Classification Report - TRAIN
                      precision recall f1-score support
                   0 0.82 0.83 0.83 9946
1 0.81 0.79 0.80 8748
          accuracy 0.81 0.81 18694 weighted avg 0.81 0.81 0.81 0.81 18694
          _____
          Confusion Matrix - TRAIN
          Predicted 0 1 All
                    8278 1668 9946
1837 6911 8748
                   10115 8579 18694
          Classification Report - TEST
                        precision recall f1-score support
                     0 0.73 0.74 0.74
1 0.69 0.68 0.68
                                                            4326
                                                         3687

        accuracy macro avg
        0.71
        8013 veighted avg

        0.71
        0.71
        0.71
        8013 veighted avg

                                                  0.71 8013
           _____
           -----
           Predicted 0 1 All
           True
                   3204 1122 4326
1183 2504 3687
4387 3626 8013
          A11
In [103]: # Assign the model... change this for each model to run.
model = XGBClassifier()
```

```
In [104]: # Run the function with the assigned model above.
            classif_report (model)
               -----
            MODEL: XGBClassifier()
            Classification Report - TRAIN
                             precision recall f1-score support
                                   0.80 0.82 0.81 9946
0.79 0.76 0.77 8748
                         0
                              0.79 0.79 18694
0.79 0.79 0.79 18694
0.79 0.79 0.79 18694
                 accuracy
                macro avg
            weighted avg
            Confusion Matrix - TRAIN
             Predicted 0 1 All
             True
                       8154 1792 9946
2080 6668 8748
                        10234 8460 18694
            A11
             ______
            Classification Report - TEST
                             precision recall f1-score support
                                                      0.8u
0.76
                                          0.01
                                   0.77
                                                                      3687
                                                      0..
0.78
0.78
                 accuracy
                                                           0.78
                                                                       8013
                                   0.78
                macro avq
                                                                       8013
             weighted avg
                                  0.78
             -----
            Confusion Matrix - TEST
            Predicted 0 1 All
            Predictor

True

0 3499 827 4326

1 925 2762 3687

All 4424 3589 8013
  In [ ]: # Try and so some grid search on XGBoost
In [105]: # Set-up the parameter grid
param_grid = {
                 am_grid = {
  'learning_rate': [0.1, 0.3],
  'max_depth': [5, 8],
  'min_child_weight': [3, 5],
  'subsample': [0.5, 0.8],
  'subsample': [0.5, 0.8],
                  'n_estimators': [50],
In [106]: grid_clf = GridSearchCV(model, param_grid, scoring='accuracy', cv=5, n_jobs=1)
grid_clf.fit(X1_train, y1_train)
            best_parameters = grid_clf.best_params_
            print('Grid Search found the following optimal parameters: ')
for param_name in sorted(best_parameters.keys()):
    print('%s: %r' % (param_name, best_parameters[param_name]))
            print('----')
            print(grid_clf.best_estimator_)
            training_preds = grid_clf.predict(X1_train)
            test_preds = grid_clf.predict(X1_test)
training_accuracy = accuracy_score(y1_train, training_preds)
            test_accuracy = accuracy_score(y1_test, test_preds)
            print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
print('Validation accuracy: {:.4}%'.format(test_accuracy * 100))
            Grid Search found the following optimal parameters:
            learning_rate: 0.1 max_depth: 5
             min child weight: 5
             n_estimators:
             subsample: 0.8
            XGBClassifier(max_depth=5, min_child_weight=5, n_estimators=50, subsample=0.8)
             Training Accuracy: 80.05%
            Validation accuracy: 78.52%
In [107]: # Attempt 2 at GridSearchCV on XGBoost
# Set-up the parameter grid
param_grid = {
    'learning_rate': [0.05, 0.1],
    'max_depth': [4, 7],
    'min_child_weight': [4, 5],
    'subsample': [0.6, 0.8],
    'n_extimators', [100]
                  'n_estimators': [100],
```

```
In [108]: grid_clf = GridSearchCV(model, param_grid, scoring='accuracy', cv=5, n_jobs=1)
          grid_clf.fit(X1_train, y1_train)
          best parameters = grid clf.best params
          print('Grid Search found the following optimal parameters: ')
          for param_name in sorted(best_parameters.keys()):
    print('%s: %r' % (param_name, best_parameters[param_name]))
          print(grid_clf.best_estimator_)
          training_preds = grid_clf.predict(X1_train)
          test_preds = grid_clf.predict(XI_test)
training_accuracy = accuracy_score(y1_train, training_preds)
test_accuracy = accuracy_score(y1_test, test_preds)
          print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
print('Validation accuracy: {:.4}%'.format(test_accuracy * 100))
          Grid Search found the following optimal parameters:
          learning_rate: 0.1
          max depth: 4
          min_child_weight: 4
          n estimators: 100
           subsample: 0.6
          XGBClassifier(max_depth=4, min_child_weight=4, subsample=0.6)
          Training Accuracy: 80.15%
          Validation accuracy: 78.57%
In [52]: # Assign the model... change this for each model to run.
model = RandomForestClassifier()
 In [53]: # Run the function with the assigned model above.
          classif_report (model)
           _____
          MODEL: RandomForestClassifier()
          Classification Report - TRAIN
                       precision recall f1-score support
                    0 1.00 1.00 1.00 9946
1 1.00 1.00 1.00 8748
          accuracy 1.00 macro avg 1.00 1.00 1.00 weighted avg 1.00 1.00 1.00
                                                           18694
                                                          18694
          Confusion Matrix - TRAIN
           Predicted 0 1 All
          True
                  9946 0 9946
0 8748 8748
                   9946 8748 18694
          All
          _____
          Classification Report - TEST
                        precision recall f1-score support
                     0
                            0.78 0.80
0.76 0.74
                                                0.75
                                                             3687
                                                   0.77
              accuracy
          macro avg
weighted avg
                             0.77
                                                   0.77
                                                              8013
                         0.77
                                                0.77
```

> 3473 853 4326 960 2727 3687 4433 3580 8013

True

```
importance = pd.DataFrame(data={'features': X1_train.columns, 'importance': model.feature_importances_})
importance = importance.sort_values('importance', ascending=False)
importance = importance.reset_index()
importance.drop('index', axis=1, inplace=True)
         importance.head(20)
Out[55]:
          0
                    opinion_seas_risk
                                  0.098468
                                   0.088989
          1 opinion_seas_vacc_effective
                                   0.085048
                  doctor recc seasonal
          2
                  employment_industry
          3
                        age_group
                                   0.060375
                      hhs_geo_region
                                   0.049494
          6 opinion_h1n1_vacc_effective
                                   0.033921
                                   0.033715
          7
                    opinion h1n1 risk
                                   0.031279
          8
                        education
          9 opinion_seas_sick_from_vacc
                                   0.030675
          10
                      income_poverty
                                   0.029536
          11 opinion_h1n1_sick_from_vacc
                                   0.028192
          12
                      h1n1_concern
                                   0.028158
          13
                     health insurance
                                  0.025172
                                  0.024687
          14
                       census msa
                    household_adults
                                  0.023794
          15
                    h1n1_knowledge
                   household_children
                                   0.021476
          18
                   doctor_recc_h1n1 0.021177
                                  0.020544
          19
                   employment_status
In [56]: # Assign the model... change this for each model to run.
model = DecisionTreeClassifier()
In [57]: # Run the function with the assigned model above.
         classif_report (model)
         ______
         MODEL: DecisionTreeClassifier()
         Classification Report - TRAIN
                       precision
                                  recall f1-score support
                                  1.00
                   0
                           1.00
                                                         9946
                                             1.00
1.00
1.00
                                                       18694
18694
             accuracy
                           1.00
            macro avg
                        1.00
                                   1.00
         weighted avg
                                                       18694
         ______
         Confusion Matrix - TRAIN
         Predicted 0 1 All
         True
                   9946 0
0 8748
                           0 9946
                                 8748
                   9946 8748 18694
         All
         _____
         Classification Report - TEST
                       precision recall f1-score support
                                                          4326
                            0.64
                                      0.65
                                               0.64
                                                         3687
             accuracy
                                               0.67
                                                          8013
         macro avg
weighted avg
                            0.67
                                      0 67
                                                0.67
                                                          8013
                           0.67
                                               0.67
                                     0.67
                                                          8013
         -----
         Confusion Matrix - TEST
         Predicted 0 1 All
         True
                   2978 1348 4326
                   1295 2392 3687
4273 3740 8013
         All
```

In [55]: # Take a look at feature importances - from default / vanilla model

In [58]: # Assign the model... change this for each model to run.
model = LogisticRegression()

```
In [59]: # Run the function with the assigned model above.
        classif_report (model)
         MODEL: LogisticRegression()
         Classification Report - TRAIN
                       precision recall f1-score support
                                  0.81 0.79 9946
0.74 0.76 8748
                   0
                           0.78
                                  0.78 18694
0.78 0.78 18694
0.78 0.78 18694
            accuracy
                       0.78
0.78
            macro avg
         weighted avg
         Confusion Matrix - TRAIN
         Predicted 0 1 All
         True
                  8022 1924 9946
2272 6476 8748
                  10294 8400 18694
         A11
         ______
         Classification Report - TEST
                      precision recall f1-score support
                                            0.79
0.75
                                  0.01
                           0.76
                                                         3687
             accuracy
                                               0.77
                                                          8013
                           0.77
                                      0.77
            macro avg
                                                0.77
                                                          8013
         weighted avg
         Confusion Matrix - TEST
         Predicted 0 1 All
                 3496 830 4326
                 990 2697 3687
4486 3527 8013
In [60]: from sklearn.svm import SVC
In [61]: # Assign the model... change this for each model to run.
         model = SVC()
In [62]: # Run the function with the assigned model above.
        classif_report (model)
         MODEL: SVC()
         Classification Report - TRAIN
                      precision recall f1-score support
                                  0.85
0.81 0.82
                                                        9946
                           0.84
                                             0.82 8748
                           0.83
                                            0.83
                                                0.83 18694
            accuracy
                        0.83
            macro avg
                                      0.83
                                                         18694
         weighted avg
         Confusion Matrix - TRAIN
         Predicted 0 1
                                 All
                  8495 1451 9946
1646 7102 8748
                   10141 8553 18694
         All
         Classification Report - TEST
                    precision recall f1-score support
                           0.78 0.80
0.76 0.74
                                                0.79
                                                          4326
                                                0.75
                                                         3687
                                               0.77
                                                          8013
            accuracy
            macro avg
         weighted avg
                           0.77
                                      0.77
                                               0.77
                                                          8013
         Confusion Matrix - TEST
         Predicted 0 1 All
         True
         True 0 3463 863 4326 1 954 2733 3687 All 4417 3596 8013
         #### Observations on the models run on target - seasonal vaccination
         About 4 of these models had similar accuracy rates, but the best was XGBoost at 0.78, with precision for class 1 at 0.77. The accuracy is lower than was seen for the variable, and my guess is that this is due to the fact that the seasonal target classes are balanced and perhaps not as prone to overfitting.
```

APPENDIX:

In []:

In []: # Melody grid search example:

grid_xgb2 = GridSearchCV(xgb_clf, xgb_param_grid2, scoring='accuracy', cv=None, n_jobs=1)
grid_xgb2.fit(X_train_encoded_cleaned_SMOTE, y_train_SMOTE)

```
In [ ]: # Individual pieces of pre-processing for reference:
          # KNNImputer
imputer = KNNImputer(n_neighbors=5)
          raw5 = pd.DataFrame(imputer.fit_transform(raw5),columns = raw5.columns)
          # Scaler
          scale = StandardScaler().fit(X_train)
          # SMOTE
          # SMOTE
sm = SMOTE(random_state = 2)
X_train, y_train = sm.fit_sample(X_train, y_train)
In [ ]: # Another example of pipeline with SMOTE as part... different type of pipeline. from imblearn.pipeline import Pipeline
          model = Pipeline([
    ('sampling', SMOTE()),
    ('classification', LogisticRegression())
          grid = GridSearchCV(model, params, ...)
          grid.fit(X, y)
# Original SMOTE class
                    ('smote', SMOTE(random_state=random_state)),
('classification', SGDClassifier(loss='hinge', max_iter=1, random_state=random_state, tol=None))
               1)
           # Not sure about the bottom part here...
          model.fit(train_df, train_df['label'].values.tolist())
predicted = model.predict(test_df)
In [ ]: # And one more example
          pipe = make_pipeline(SMOTE(random_state=42), StandardScaler(), LinearSVC(dual=False, random_state=13))
pipe = pipe.fit(X_train, np.array(y_train))
y_pred = pipe.predict(X_test),
accuracy_1 = accuracy_score(y_test, y_pred)
In [ ]: # Example pipeline with some grid search
          sel = SelectFromModel(ExtraTreesClassifier(n_estimators=10, random_state=444),
          threshold='mean')
clf = RandomForestClassifier(n_estimators=5000, random_state=444)
          model = Pipeline([('sel', sel), ('clf', clf)])
          params = {'clf_max_features': ['auto', 'sqrt', 'log2']}
          gs = GridSearchCV(model, params)
          gs.fit(X_train, y_train)
          # How well do your hyperparameter optimizations generalize
# to unseen test data?
gs.score(X_test, y_test)
In [ ]:
```