M 328K: Lecture 5

Katherine Ho

September 10, 2024

1 Modular Congruences

Recall: We often use arguments like "n is of the form 4k, 4k + 1, 4k + 2, or 4k + 3..."

Definition 1.1 (Precise). Let $a, b, n \in \mathbb{Z}$ and n > 0. We say that a is congruent to b mod n if n | (a - b). We write

$$a \equiv b \pmod{n}$$

Definition 1.2 (Informal). $a \equiv b \mod n$ if a and b give the same remainder after division by n. Examples:

- $7 \equiv 2 \pmod{5}$
- $-31 \equiv 11 \pmod{7}$
- $10^{2024} + 1 \equiv 1 \pmod{1}0$
- $a \equiv b \pmod{2}$ iff a and b are both even or both odd
- a can be written in the form

$$a = nk + r$$

iff
$$a \equiv r \pmod{n}$$

Proposition 1.1. Every integer is congruent modulo n to exactly one of 0, 1, 2, ..., n-1

Proof. Let $a \in \mathbb{Z}$. By the division algorithm, we can write

$$a = nq + r, \ 0 \le r < n$$

Then a - r = nq, so n|a - r, ie.

$$a \equiv r \pmod{n}$$

Uniqueness follows from uniqueness of division algorithm remainder.

Theorem 1.1. Let $a, b, c \in \mathbb{Z}, n > 0$. Then

- 1. $a \equiv a \pmod{n}$
- 2. if $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- 3. if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

Proof (3). By definition, n|a-b and n|b-c. Recall that if n|r,n|s, then n|(rx+sy) for any $x,y\in\mathbb{Z}$. In particular,

$$n|((a-b)+(b-c)) \Leftrightarrow n|(a-c)$$

So
$$a \equiv c \pmod{n}$$
.

Theorem 1.2. Let $a, b, c, d \in \mathbb{Z}$ and assume $a \equiv b \pmod{n}$.

- 1. if $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$.
- 2. if $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.
- 3. $a^k \equiv b^k \pmod{n} \ \forall k \in \mathbb{Z}$.

Proof (1). Suppose
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$. By definition, $n|a-b$ and $n|c-d$. But, $(a+c)-(b+d)=(a-b)+(c-d)$ which is divisible by n, so $a+c \equiv b+d \pmod{n}$.

Proof (3) by Induction. Base case: k=1. Tautology Inductive step: Assume for some k>1 that $a^k\equiv b^k\pmod n$ (WTS: $a^{k+1}\equiv b^{k+1}$) Note by (2) we have

$$a^{k} \equiv b^{k} \pmod{n}$$

$$a^{k} \cdot a \equiv b^{k} \cdot b \pmod{n}$$

$$a^{k+1} \equiv b^{k+1} \pmod{n}$$
[2]

WARNING: In general, if $ac \equiv bc \pmod{n}$, it is not true that $a \equiv b \pmod{n}$. Ex: $2 \cdot 3 \equiv 2 \cdot 0 \pmod{6}$

Example 1.2.1. Show $41|(2^{20}-1) \Leftrightarrow Show\ 2^{20} \equiv 1 \pmod{41}$. First,

$$2^{5} \equiv 32 \pmod{41}$$

$$(2^{5})^{2} \equiv (-9)^{2}$$

$$2^{10} \equiv 81 \pmod{41}$$

$$2^{10} \equiv -1 \pmod{41}$$

$$2^{20} \equiv (-1) \equiv 1 \pmod{41}$$

Proposition 1.2. A decimal integer is divisible by 3 iff the sum of its digits is divisible by 3.

Proof. Let n be an integer whose decimal representation is

$$(a_n a_{n-1} \dots a_1 a_0)_{10}$$

Then

$$a = a_0 + a_1 \cdot 10 + a_2 \cdot 100 + \dots + a_n \cdot 10^n$$

Then

$$a = a_0 + a_1 \cdot 10 + \dots + a_n \cdot 10^n \pmod{n}$$

Since $10 \mod 3 \equiv 1$, we have

$$a \equiv a_0 + a_1 + \dots + a_n \pmod{3}$$

2 Congruences with Unknowns

Example 2.0.1. Solve

$$x + 12 \equiv 5 \pmod{8}$$
$$x \equiv -7 \pmod{8}$$

We also have

• $x \equiv 1 \pmod{8}$ is also a solution

- $x \equiv 9$
- $x \equiv 17$

But we consider these to be the "same" since they are congruent.

Example 2.0.2. Solve

$$4x \equiv 3 \pmod{19}$$
$$20x \equiv 15 \pmod{19}$$
$$x \equiv 15 \pmod{19}$$
$$Since \ 20 \equiv 1 \pmod{19}$$

Example 2.0.3. Solve

$$6x \equiv 15 \pmod{514}$$

 $This \ has \ no \ solutions.$

Why?! 6x - 15 is always odd.

In particular, $514 \nmid (6x - 15)$.

In general, we want to understand when $ax \equiv b$ has solutions and how to find them.

Example 2.0.4. $18x \equiv 8 \pmod{22}$ has incongruent solutions $x \equiv 20 \pmod{22}$ and $x \equiv a \pmod{22}$