

1 Parallel und Reihenschaltung

Die Widerstände R₁ und R₂ haben in Reihenschaltung einen 10mal so hohen Widerstand, wie in Parallelschaltung.

- a) Bestimmen Sie R₁ als Funktion von R₂.
- b) Sei $R_2 = 1\Omega$. Bestimmen Sie R_1 .

[a) $R_1 = R_2 \cdot (4\pm\sqrt{15})$, b) 7,87 Ω and 0,127 Ω]

2 Stromteiler

Sei R = 10 Ω und U₀ = 20 V. Bestimmen Sie die Ströme I₀, I₂, I₃ und I₄.

[1,04A; 0,48A; 0,32A; 0,24A]

3 Spannungsteiler

Sei $U_0 = 52V$, $R_1 = R_2 = 10 \Omega$; $R_3 = 15 \Omega$ und $R_4 = 60 \Omega$.

- a) Berechnen Sie U₂, I₂, I₄ und I. [24.38V; 2.44A; 325mA; 2.765A]
- b) Bestimmen Sie das elektrische Potential φ_0 , φ_1 und φ_2 wenn das Potential in A gleich 0 V ist. [φ_0 =32.5 V, φ_1 =4.88 V, φ_2 =-19.5V]
- c) Welche Leistung P₄ wird durch R₄ umgesetzt. [6.34W]
- d) Bestimmen Sie P_4 für den Fall, dass U_0 doppelt so hoch ist wie bei Aufgabe a) . [25.35W]

4 Widerstand in Abhängigkeit der Schalterstellung

Bestimmen Sie R₄ so dass der Gesamtwiderstand R_{ab} der Schaltung unabhängig von der Schalterstellung ist. Rechnen Sie zwecks einfacher Rechnung mit den Leitwerten.

$$[1/R_4 = 1/R_2 - 1/(R_2 + R_3)]$$

5 Leistung

- a) Bestimmen Sie R_x, so dass in R_x die fünffache Leistung im Vergleich zu R₁ umgesetzt wird. [R₁/5]
- b) Sei $R_1 = 20 \Omega$, $I_2 = 10$ mA mit R_x wie in a) berechnet. Bestimmen Sie die Spannung U_0 . [40 mV]

