

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

CX8853

DC-DC 降压转换器

产

品品

说

明

书

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

概述

CX8853 是一款输入耐压 40V, 并且能够实现精确恒压以及恒流的降压型 DC-DC 转换器

CX8853 内置 20mΩ High-side N MOS 以及 20mΩ Low-side NMOS, 可支持 4A 持续输出电流输出电压可调, 最大可支持 95%占空比

CX8853 具备高性能的负载响应以及输入电压响应能力,同时精确的恒压和恒流控制环路实现极小的负载调整率和 线性调整率

CX8853 无需外部补偿,可以依靠自身内置稳定环路实现恒流以及恒压控制,同时具备线缆压降补偿功能 CX8853 是一款应用极简,性能卓越,稳定可靠的恒压恒流降压型 DC-DC 转换器

特点

- 输入电压可达4.75V--40V
- 内置20mΩ High-side NMOS
- 内置20mΩ Low-side NMOS
- 可支持4A持续输出电流
- 可支持95%占空比
- 输出电压电流可设(3.2V-20V)
- 恒流精度 ±6%
- 恒压精度 ±2%(VFB=1.0V)
- 无需外部补偿
- 开关频率可调
- 线缆补偿压降
- 短路保护(SCP), 过热保护(OTP), 过压保护(OVP)。
- 内置SW逐周期检测模式,可避免RSENT限流电阻短路损坏产品。
- SOP-8L封装形式
- 可通过外部控制COMP/EN来关断芯片输出

应用范围

- 汽车充电器
- 照明灯
- 便携式设备供电电源

订购信息

芯片型号	温度范围	封装型号	引脚数量	包装方法	顶标
CX8853	-40°C [~] 150°C	SOP8	8	编带	CX8853 XXXXXX

注: 顶标(XXXXXX)的丝印批次会根据生产的时间推移,而跟着更改。

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

引脚定义

脚位	名称	说明
1	COMP/EN	频率调节引脚
2	VFB	输出电压反馈
3	ISENT	电流检测
4	GND	芯片地
5, 6	SW	开关
7	BS	自举脚,给内部上管MOSFET栅极驱动器提供电源,在BS端与SW端接100NF/50V电容。
8	VIN	电源输入脚,并一个100UF/50V 电解电容和一个 1UF/50V贴片电容到地,这两个电容尽量靠近VIN 脚

典型应用

备注: 1.输入电源是 5-24V 可以短路 R3,需要认证建议 R3 贴 10R;

- 2.调节 RF 的阻值可以调节芯片的开关频率,图上所示频率为150kHZ;
- 3.RF 电阻不能小于 200K,200K 电阻对应芯片频率为 220KHZ.

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

原理框图

CX8853 内部功能框图

额定电气参数(at TA = 25°C)

电气特征	条件	条件	単位
输入到地		-0.3 to +40	V
开关到地		-0.3 to +40	V
BS到地		-0.3 to Vsw +7V	V
ISENT,FB分压取样到地		-0.3 to 7V	V
结与环境热阻		105	℃/W
工作温度		-40 to 140	${\mathbb C}$
储存温度		-55 to 150	$^{\circ}$
焊接温度(焊接10秒)		260	$^{\circ}$

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

规格参数

电气特征	符号	条件	最小	典型	最大	单位
输入电压	VIN		4. 75	1	40	V
欠压锁定	$V_{\scriptscriptstyle UVLO}$		_	_	4.5	V
欠压延迟			0.3	0.5	0.8	V
静态电流	${ m I}_{ m ccq}$	V _{FB} = 1.5V, 强制关 断或EN< 1V	ı	1500	_	uA
待机电流	${ m I}_{\scriptscriptstyle { m SB}}$	无负载	l	3	5	mA
VFB的参考电压	VFB		0. 98	1	1.02	V
输出过压保护电压	OVP	内部定义	1. 27	1.3	1. 35	V
开关频率(COMP脚悬空)	F_{sw}	CX8853 I _{OUT} =500mA	95	110	125	KHz
最大占空比	Dmax			95		%
最小导通时间				200		ns
VISENT参考电压	V _{ISENT} - V _{GND}	3. 0V <vout<5v< td=""><td>87</td><td>93</td><td>99</td><td>mV</td></vout<5v<>	87	93	99	mV
电缆补偿	IFB	V _{SENT} -GND=93mV		5		UA
短路反馈电压	V_{SCP}			0.4		V
功率MOS	High-Side	T -05°C		20		mΩ
力学MUO	Low-Side	T _J =25 ℃		20		mΩ
热关闭温度	T_{SD}			140		$^{\circ}\mathbb{C}$
热关闭滞后	$T_{ ext{SH}}$			30		$^{\circ}$ C

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

功能描述

系统软启动

当CX8853上电或者经过短路保护后重启时,内部恒压和恒流参考源都会从0开始经过3mS缓慢升至预设值,以此避免启动时系统上出现过大的冲击电流。

恒压输出

通过VFB端分压电阻设置系统的输出电压。

$$Vout = 1V * \frac{R1 + R2}{R2}$$

上电复位

上电复位检测线路检测输入电压,当输入电压高于4.75V芯片开始工作,当输入电压低于4.3V芯片关闭输出。

恒流输出

CX8853通过ISENT与GND之间的压差来检测输出电流,并通过闭合环路来调节输出使输出电流为预设的值。输出电流可以通过检流电阻Riserr设置:

$$CurrentLimit(A) = \frac{93mV}{R_{SENSE}}$$

恒定电流输出在输出电压大于3.0V时有效,当负载太重导致输出电压低于3.0V时,CX8853将进入短路保护模式 (此项输出电压是5V)。

短路保护

当由于负载太重,输出电压VFB降至0.7V以下时,CX8853进入短路保护模式。短路保护模式下,自启模式开始工作,逐周期自启转换器。

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

输出线电阻补偿

为了补偿在充电器输出线缆上产生的线压降,CX8853集成了一个简单的用户可编程的输出线缆压降补偿功能,通过FB脚的高侧FB分压电阻来补偿,通过下图曲线来选取合适的FB反馈电阻来补偿,RFB1是FB上拉电阻,VSENT是取VSENT的一个取值:

$$vout = \left\lceil 1 + \left(\frac{RFB1}{RFB2}\right) * VFB \right\rceil + \left\lceil RFB1 * \left(\frac{VSEN}{16.6K} - 5uA\right) * 0.5 \right\rceil$$

VIN=12v vout=5 线缆补偿 (RCS=27mΩ)

过温保护

当CX8853检测芯片内部结温达到140度时则停止输出,一旦冷却下降30度后重新开始工作。

输入电容选择

在连续模式中,转换器的输入电流是一组占空比约为 VOUT/VIN 的方波。为了防止大的瞬态电压,必须采用针对最大 RMS 电流要求而选择低 ESR(等效串联电阻)输入电容。最大 RMS 电容电流由下式给出:

$$IRMS \approx IMAX \times \frac{\sqrt{VOUT(VIN - VOUT)}}{VIN}$$

其中,最大平均输出电流 IMAX 等于峰值电流与 1/2 峰值文波电流值差,即 IMAX=ILIM-△IL/2。在未使用陶瓷电容时,还建议在输出电容上增加一个 0. 1uf-1uf 的陶瓷电容器以进行高频去耦。

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

通常输入电容选择: 100UF/35V +/-20%电解电容并一个 1UF/50V 贴片陶瓷电容。

输出电容选择

同样需要低 ESR 输出电容来保证低输出电压纹波,输出电压纹波为:

VRIPPLE=IOUT*KRIPPLE*RESR+VIN/28*FLX2*L*COUT

FLx2=FLx 的平方

这里的 Ioutmax 是最大输出电流 Kripple 是纹波因数,Resr 是输出电容的等效串联电阻(ESR),Flx 是开关频率,L 是电感量,Cout 是输出电容。假设输出

使用陶瓷电容,Resr 很低不会影响输出纹波。因此,用陶瓷电容时可以用更低的电容值。假设使用钽电容或电解电容时,那么纹波由 Resr 和纹波的电流乘值决定。如果是那样的话,就要选择低 ESR 的输出电容对于陶瓷输出电容,典型选择一个 470UF 的电容,对于钽电容或电解电容,选择一个 ESR 低于 $50M\Omega$ 的电容;通常输出电容选择: 470UF/10V LOW ESR 电解电容再并一个 0.1-1uf 陶瓷电容。

电感资料

电感为输出负载维持连续的电流, 电感电流纹波由电感量决定

更大电感量能够减小电流纹波的峰峰值。较大的电感量会增加电感磁芯尺寸和并联电阻,且会降低电流处理能力,所以要在电感磁芯尺寸和并联电阻之间进行折中,通常根据纹波电流的需要来选取电感值 L:

$L=V_{OUT}*(V_{IN}-V_{OUT})/V_{IN}*F_{LX}*I_{OUTMAX}*K_{RIPPLE}$

在这里 Vin 是输入电压, Vout 数输出电压, Flx 是开关频率, Ioutmax 是最大输出电流, Kripple 是纹波因数。在典型应用中,选择 Kripple=30%

有了电感量,电感峰值电流为 Iout×(1+Kripple/2)。要确保电感峰值电流低于转换器的限流点。最后选择合适磁芯尺寸以至于电感不会达到电感峰值电流时饱和。

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

封装尺寸

SOP-8L

符号	毫米			英寸		
171 75	最小	典型	最大	最小	典型	最大
A	-	_	1. 75	_	-	0.069
A1	0. 1	ı	0. 25	0.04	-	0. 1
A2	1. 25	-		0.049	-	_
С	0. 1	0. 2	0. 25	0.0075	0.008	0.01
D	4. 7	4. 9	5. 1	0. 185	0. 193	0. 2
Е	3. 7	3. 9	4. 1	0. 146	0. 154	0. 161
Н	5.8	6	6. 2	0. 228	0. 236	0. 244
L	0.4	_	1. 27	0.015	-	0.05
b	0. 31	0.41	0. 51	0.012	0.016	0.02
е	1.27 BSC			0.050 BSC		
у	-	_	0. 1	_	-	0.004
θ	0°	_	8°	0°	_	80

SHENZHEN CHENGXINWEI TECHNOLOGY CO., LTD.

CX8853 40V4A DC-DC 同步降压 IC

包装信息

垂	対装	宽度(W)	间距 (P)	卷筒直径(D)	数量
SO	P-8L	$12.0\pm0.$ mm	8.0 ± 0.1 mm	$330\pm\mathrm{mm}$	_

注:载体带尺寸,卷筒尺寸和最小包装量(数量根据生产包装而定)

- 本资料内容,随产品的改进,可能会有未经预告而更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性 应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误 动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。