Predicting Video Game Sales

STAT 204 Fall 2019 FINAL

Meltem Ozcan Gulzina Kuttubekova

Data

Categorical Variables: Name, Platform, Genre, Publisher, Developer, Rating

Numerical Variables: Year, Global_Sales, NA_Sales, EU_Sales, JP_Sales, Other_Sales, Critic_Score, Critic_Count, User_Score, User_Count

6825 complete cases

16 variables + 7 new variables

New Categorical Variables:

Platform_Generation, Family_Platform, Platform_Company, Main_Developer, Developer_Country, Decade, Main_Publisher

New Numerical Variables:

Years_since_Release

Goals

- 1) What properties of games best predict global sales?
- 2) Are the interactions* significant in predicting the global sales?

^{*}We test different hypotheses related to the significance of interactions between pairs of categorical variables

Response variable - Sales

- Total sales in the world and disjoint regions (in millions of units)
- Global Sales = NA + EU + JP + Other Sales
- Use log(+epsilon)-transformation
 - o Epsilon = 0.000001

1/4 Genre vs Region

1) I delile vs Region

$$y_{ijk} = \mu + \alpha_i + \gamma_j + (\alpha \gamma)_{ij} + \epsilon_{ijk} \epsilon_{ijk} \sim N(0, \sigma)$$

where $k = 1, ..., n_{ij}, i = 1, ..., 12$ and $j = 1, 2, 3, 4$.
 α_i is the main effect of genre type i
 γ_j is the main effect of region type j

$$H_0: (\alpha \gamma)_{ij} = 0$$
 for all i, j
 $H_1: (\alpha \gamma)_{ij} \neq 0$ for at least one pair i, j

1/4 Genre vs Region

2/4 Developer Company vs Region

Video game sales for developer companies and region

$$y_{ijk} = \mu + \alpha_i + \gamma_j + (\alpha \gamma)_{ij} + \epsilon_{ijk} \epsilon_{ijk} \sim N(0, \sigma)$$

where $k = 1, ..., n_{ij}, i = 1, ..., 11$ and $j = 1, 2, 3, 4$.

 α_i is the main effect of developer type i γ_i is the main effect of region type j

$$H_0: (\alpha \gamma)_{ij} = 0$$
 for all i, j

 $H_0: (\alpha \gamma)_{ij} = 0$ for all i, j $H_1: (\alpha \gamma)_{ij} \neq 0$ for at least one pair i, j

2/4 Developer Company vs Region


```
## Analysis of Variance Table
## Response: log(Sales)
                           Df Sum Sq Mean Sq
                                                         Pr(>F)
                                              F value
## Main Developer
                           10 15298
                                               88.180 < 2.2e-16 ***
## Region
                            3 243201
                                       81067 4672.672 < 2.2e-16 ***
## Main Developer:Region
                               14842
                                               28.516 < 2.2e-16 ***
## Residuals
                        27256 472869
                                          17
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

3/4 Publisher Company vs Region

Video game sales for publisher companies and region


```
## Analysis of Variance Table
  Response: log(Sales)
                            Df Sum Sq Mean Sq F value
                                                          Pr(>F)
  Main_Publisher
                                22276
                                               132.319 < 2.2e-16 ***
  Region
                             3 243201
                                        81067 4815.478 < 2.2e-16 ***
## Main_Publisher:Region
                                21888
                                          730
                                                43.339 < 2.2e-16 ***
## Residuals
                         27256 458846
                                           17
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

4/4 Genre vs Decade

Checking assumptions for the 4 hypothesis tests

Checking Assumptions

	Method	Independence	Homogeneity (Breusch-Pagan test)	Normality (Shapiro-Wilk test)
Genre vs Region	LS	yes	p-value < 2.2e-16	p-value < 2.2e-16
	WLS	yes	p-value < 2.2e-16	p-value < 2.2e-16
Developer vs Region	LS	yes	p-value < 2.2e-16	p-value < 2.2e-16
	WLS	yes	p-value < 2.2e-16	p-value < 2.2e-16
Publisher vs Region	LS	yes	p-value < 2.2e-16	p-value < 2.2e-16
	WLS	yes	p-value < 2.2e-16	p-value < 2.2e-16
Genre vs Decade	LS	yes	p-value < 2.2e-16	p-value < 2.2e-16
	WLS	yes	p-value < 2.2e-16	p-value < 2.2e-16

Model 1: without interactions

- Split 'sales.csv' into training (70%) and test (30%) set
- Use stratified partitioning method to ensure each level of each categorical variable represented in equal proportion in each set
- Include all explanatory variables mentioned previously

```
## Response: log(Sales)
                       Df Sum Sq Mean Sq F value
                                                     Pr(>F)
                            5619
## Genre
                                           34.684 < 2.2e-16 ***
## Critic Score
                           18614
                                   18614 1263.851 < 2.2e-16 ***
## Critic Count
                           25503
                                   25503 1731.613 < 2.2e-16 ***
## Rating
                            1017
                                           11.507 6.719e-13 ***
## Decade
                            3151
                                    1050
                                           71.311 < 2.2e-16 ***
## Platform_Company
                                    6004 407.694 < 2.2e-16 ***
                           18013
## Platform Gen
                            9145
                                    3048
                                          206.984 < 2.2e-16 ***
## Family Platform
                            4060
                                    1353
                                           91.898 < 2.2e-16 ***
## Main Developer
                       10
                            4143
                                     414
                                           28.130 < 2.2e-16 ***
## Main Publisher
                            2998
                                           20.359 < 2.2e-16 ***
                                   71260 4838.447 < 2.2e-16 ***
## Region
                        3 213781
## Residuals
                    24029 353897
                                      15
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Model 2: with interactions

- Use same train dataset
- Include interactions found significant in the previous hypothesis tests

```
## Analysis of Variance Table
##
## Response: log(Sales)
##
                            Df Sum Sq Mean Sq
                                                F value
                                                            Pr(>F)
## Genre
                                 5619
                                                37.8286 < 2.2e-16 ***
                                18614
                                        18614 1378.4469 < 2.2e-16 ***
## Critic Score
## Critic Count
                                25503
                                        25503 1888.6209 < 2.2e-16 ***
## Rating
                                 1017
                                          169
                                                12.5502 3.509e-14 ***
## Decade
                                 3151
                                         1050
                                                77.7772 < 2.2e-16 ***
## Platform_Company
                                18013
                                         6004
                                                444.6605 < 2.2e-16 ***
## Platform Gen
                                 9145
                                         3048
                                                225.7521 < 2.2e-16 ***
## Family Platform
                                 4060
                                               100.2304 < 2.2e-16 ***
                                         1353
## Main Developer
                                 4143
                                          414
                                                30.6805 < 2.2e-16 ***
## Main Publisher
                                 2998
                                           300
                                                 22.2051 < 2.2e-16 ***
                            10
## Region
                             3 213781
                                        71260 5277.1569 < 2.2e-16 ***
## Genre: Region
                                14570
                                           442
                                                 32.6968 < 2.2e-16 ***
## Main_Developer:Region
                                 8209
                                                20.2643 < 2.2e-16 ***
                                           274
## Main Publisher: Region
                                 6551
                                                 16.1703 < 2.2e-16 ***
                                           218
## Genre:Decade
                                 1644
                                           75
                                                  5.5327 9.463e-16 ***
## Residuals
                         23914 322923
                                           14
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Comparing two models

Model	AIC	ВІС	Adj-R^2	train RMSE	test RMSE
MLR without interactions	133184.3	133637.3	0.4625	6.774657	6.494338
MLR with interactions	131208.4	132591.7	0.5072	6.862823	6.650431

There is an odd relationship between train RMSE and test RMSE, potentially caused by underfitting. This can be explained by the famous "curse of dimensionality" and variance-bias trade-off. For instance, we have a high bias and relatively small variance, which leads to these results.

Checking Assumptions - (Both models)

Checking Assumptions - (Both models)

What we did:

- Addressed multicollinearity by dropping some numeric variables
- Dropped highly dependent categorical variables by EDA and inductive bias
- Log-transformed the response variable

What we got:

- There is an obvious violation of homogeneity of variance (Breusch-Pagan p-value < 2.2e-16)
- Normality assumption is violated (seen in both QQ and residual plots. Shapiro-Wilk p-value < 2.2e-16)
- No outliers, consequently no influential points observed

Conclusions + Future Directions

- How we dealt with challenges?
 - Different transformations on response variable (log, sqrt, etc.)
 - EDA for detecting multicollinearity and dependence
 - LS and WLS methods
- Faced new challenges:
 - Bias-variance trade-off
 - Curse of dimensionality
- Room for improvement:
 - Collect more data
 - Reduce number of parameters, by selecting only few explanatory variables
 - Transform coefficient parameters

References

https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings

https://www.vgchartz.com/analysis/platform_totals/

https://en.wikipedia.org/wiki/Video game console