Big Data Project

PhiUSIIL Phishing URL (Website)

Eng/ Omar Samir

Problem Intro

Definition of selected problem

Technical part

Technical aspect and approach solutions for problem

Conclusion

problem

Business Part

Business aspects of selected

Problem Intro

Definition of selected problem

Technical part

Technical aspect and approach solutions for problem

Conclusion

Problem Intro

Definition

Phishing

Phishing attacks involve malicious websites pretending to be legitimate with the aim of deceiving individuals into proclaiming personal and sensitive information.

Objective

Security

Develop a comprehensive framework for distinguishing between phishing and legitimate websites.

Problem Intro

Definition of selected problem

Technical part

Technical aspect and approach solutions for problem

Conclusion

problem

Business Part

Business aspects of selected

Business Part

healthcare, and beyond.

trust in online platforms

Problem Intro

Definition of selected problem

Dusilless Part

Business aspects of selected problem

Technical part

Technical aspect and approach solutions for problem

Conclusion

Data **Preprocessing**

- Read Dataset
- 2. Check for missing or null values
- 3. Check for the unique values of some columns {URL}
- 4. Transfer categorical features to ONE-HOT encoding vector
- 5. Splitting the data into *Training, Testing & Validation*

Descriptive Statistics

To show the distribution of each column over the labels (phishing or legitimate). We used 2 types of plots

For **numeric features**, we used histograms.

For binary features, we used count plots.

By observing the data distributions, we dropped some features we found that don't differentiate enough between the classes.

Some numeric features

Some numeric features

Some binary features

Some binary features

Model Training

We used various models as:

- 1. Random Forest
- 2. **SVM**
- 3. KNN (With MapReduce and without)
- 4. Naive Bayes (With MapReduce and without)

Random Forest

Initial run

Using cross validation, with 5 folds.

```
Test Accuracy = 0.9999
Test Precision = 0.9999
Test Recall = 0.9999
Test F1 Score = 0.9999
|label|prediction|count|
              0.0 24956
              1.0 33370
```

Train with all features, default parameters

```
Test Accuracy = 0.99993142347717256513
Test Precision = 0.99993143169632792144
Test Recall = 0.99993142347717256513
Test F1 Score = 0.99993142278429758552
Validation Accuracy = 0.99991483321504615045
Validation Precision = 0.99991483415042059502
Validation Recall = 0.99991483321504603943
Validation F1 Score = 0.99991483285983306928
```

Random Forest

By observing the histogram distributions, the URL similarity index almost completely classifies the URL's correctly. Few features have significant weight

Random Forest

Final Model: we capped it down to the features that support up to 90% of the importance, which narrowed it to about 6 features

SVM

Validation data

Validation LinearSVC Accuracy = 0.98873520604591469407 Validation LinearSVC Precision = 0.98895284329765664744 Validation LinearSVC Recall = 0.98873520604591469407 Validation LinearSVC F1 Score = 0.98871507279793557910

SVM

Test data

```
Test LinearSVC Accuracy = 0.987827667198
Test LinearSVC Precision = 0.98808125746
Test LinearSVC Recall = 0.98782766719813
Test LinearSVC F1 Score = 0.987803917562
```


Problem Intro

Definition of selected problem

Technical part

Technical aspect and approach solutions for problem

Conclusion

Conclusion

Data

Data had few features with actual importance/weight that is significant to classification. Therefore it was biased to an extent

Models

All models used got an accuracy above 98 % in classifications.

THANK YOU!

Any Questions?

Team 10 Abdelrahman Yasmine Sarah Yasmin Elzayat Fathy Ghanem Elgendi

Eng/ Omar Samir