Determinación del Sistema Cristalino con MobileNetV2

Juliana del Valle

Universidad de Antioquia

Vierenes 7 de Febrero 2025

- El estudio de la estructura cristalina de los sólidos es fundamental para su comprensión.
- La difracción de rayos-x permite determinar la estructura cristalina.

La estructura cristalina determina el grupo de simetrías del cristal. Las propiedades físicas de los material exhiben las simetrías del cristal (Principio de Neumann)

- El estudio de la estructura cristalina de los sólidos es fundamental para su comprensión.
- La difracción de rayos-x permite determinar la estructura cristalina.

- El indexado de patrones es una tarea compleja que requiere experiencia en cristalografía.
- Las redes neuronales Convolucionales (CNN) pueden utilizarse para determinar la estructura cristalina.
- Esta tarea sigue siendo complicada debido a que hay muchos grupos espaciales.
- Se espera que con "pocos" datos se pueda determinar por lo menos el sistema cristalino.

- El indexado de patrones es una tarea compleja que requiere experiencia en cristalografía.
- Las redes neuronales Convolucionales (CNN) pueden utilizarse para determinar la estructura cristalina.
- Esta tarea sigue siendo complicada debido a que hay muchos grupos espaciales.
- Se espera que con "pocos" datos se pueda determinar por lo menos el sistema cristalino.

- El indexado de patrones es una tarea compleja que requiere experiencia en cristalografía.
- Las redes neuronales Convolucionales (CNN) pueden utilizarse para determinar la estructura cristalina.
- Esta tarea sigue siendo complicada debido a que hay muchos grupos espaciales.
- Se espera que con "pocos" datos se pueda determinar por lo menos el sistema cristalino.

- El indexado de patrones es una tarea compleja que requiere experiencia en cristalografía.
- Las redes neuronales Convolucionales (CNN) pueden utilizarse para determinar la estructura cristalina.
- Esta tarea sigue siendo complicada debido a que hay muchos grupos espaciales.
- Se espera que con "pocos" datos se pueda determinar por lo menos el sistema cristalino.

Metodología

- Obtención de datos (Ong et al., 2013) material ward2018matminer .
- Generación de los patrones.
- MobileNetV2-Capas de convolución separables. (Howard et al., 2017) (Sandler et al., 2019).

Metodología

- Obtención de datos (Ong et al., 2013) material ward2018matminer .
- Generación de los patrones.
- MobileNetV2-Capas de convolución separables. (Howard et al., 2017) (Sandler et al., 2019).

Juliana del Valle

Metodología

- Obtención de datos (Ong et al., 2013) material ward2018matminer .
- Generación de los patrones.
- MobileNetV2-Capas de convolución separables. (Howard et al., 2017) (Sandler et al., 2019).

Obtención de datos.

Materials per Crystal System Monoclinic Hexagonal 21.4% 8.0% Cubic 13.3% Orthorhombic 13.7% Trigonal

Tetragonal

Triclinic

• Generación de los patrones.

MobileNetV2.

	Cubic	Hexagonal	Monoclinic	Orthorhombic	Tetragonal	Triclinic	Trigonal	Accuracy
Precision	0.89	0.57	0.53	0.45	0.48	0.72	0.55	0.54
Recall	0.77	0.44	0.37	0.74	0.68	0.29	0.43	0.54
F1-score	0.83	0.50	0.43	0.56	0.56	0.41	0.48	0.54

• Es posible.

Park et al., lograron exactitudes del 94.99% en la determinación del sistema cristalino(Park et al., 2017).

Oviedo et al., lograron determianr del grupo espacial de peliculas delgadas con una exactitud del 89% (Oviedo et al., 2019).

- Errores en la generación de patrones.
- Muy pocos datos.
- Dificultades teóricas (Sólyom, 2008).

- Errores en la generación de patrones.
- Muy pocos datos.
- Dificultades teóricas (Sólyom, 2008).

- Errores en la generación de patrones.
- Muy pocos datos.
- Dificultades teóricas (Sólyom, 2008).

- El modelo.
- El Formato de los datos.

- El modelo.
- El Formato de los datos.

- Howard, Andrew G. et al. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv: 1704.04861 [cs.CV]. URL: https://arxiv.org/abs/1704.04861.
- Ong, Shyue Ping et al. (2013). "Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis". In: Computational Materials Science 68, pp. 314–319. DOI: 10.1016/j.commatsci.2012.10.028. URL: https://doi.org/10.1016/j.commatsci.2012.10.028.
- Oviedo, Felipe et al. (May 2019). "Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks". In: npj Computational Materials 5.1, p. 60. ISSN: 2057-3960. DOI: 10.1038/s41524-019-0196-x. URL: https://doi.org/10.1038/s41524-019-0196-x.

- Park, Woon Bae et al. (July 2017). "Classification of crystal structure using a convolutional neural network". eng. In: *IUCrJ* 4.Pt 4, pp. 486–494. ISSN: 2052-2525. DOI: 10.1107/S205225251700714X.
- Sandler, Mark et al. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv: 1801.04381 [cs.CV]. URL: https://arxiv.org/abs/1801.04381.
- Sólyom, Jenö (Nov. 2008). Fundamentals of the Physics of Solids: Volume II: Electronic Properties. en. Springer Science & Business Media. ISBN: 978-3-540-85315-2.