00. Presentación del curso

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica Tensorial

2023a

Derrotero

- Mecáncia tensorial
- 2 Contexto universitario
- 3 Contexto profesional y académico
- 4 Metodología, calificación e información

- Mecáncia tensorial
- 2 Contexto universitario
- 3 Contexto profesional y académico
- 4 Metodología, calificación e información

¿ Mecánica tensorial?

¿ Mecánica tensorial?

En este curso se hará una introducción a la mecánica del medio continuo. En particular, se estudiarán los principios rectores de la mecánica de medios continuos (sólidos y fluidos) a traves de su formulación matemática por medio de tensores. en los sistemas de coordenadas espacial y material (Euler y Lagrange) y las ecuaciones fundamentales de la mecánica del medio continuo (masa, momentum, energía), de manera que se pueda comprender la formulación de toda clase de problemas de sólidos y fluidos. Se estudiarán los elementos básicos de los modelos constitutivos de Hooke. Newton y Coulomb que permiten modelar matemáticamente problemas de elasticidad, plasticidad, viscosidad, visco-elasticidad, visco-plasticidad, relajación y reptación. Se aplicarán los conceptos adquiridos a la formulación de las ecuaciones básicas de sólidos elásticos y fluidos Newtonianos.

- Repaso (autónomo) de diferentes temas de álgebra lineal y cálculo vectorial
- 2 Introducción al cálculo tensorial
- Sefuerzos o tensiones
- 4 Desplazamientos y pequeñas deformaciones
- 5 Relación entre esfuerzos y deformaciones
- 6 Desplazamientos y grandes deformaciones
- 7 Ecuaciones fundamentales de la mecánica de medios continuos

Temas que serán de estudio autónomo:

 00. Repaso (autónomo) de diferentes temas de álgebra lineal y cálculo vectorial

Meses 1, 2 y 3:

- 02. Esfuerzos o tensiones
- 03. Desplazamientos y pequeñas deformaciones
- 04. Relación entre esfuerzos y deformaciones

Mes 4:

- 01. Introducción al cálculo tensorial
- 05. Desplazamientos y grandes deformaciones
- 06. Ecuaciones fundamentales de la mecánica de medios continuos

Temas que serán de estudio autónomo:

 00. Repaso (autónomo) de diferentes temas de álgebra lineal y cálculo vectorial

Meses 1, 2 y 3

- 02. Esfuerzos o tensiones
- 03. Desplazamientos y pequeñas deformaciones
- 04. Relación entre esfuerzos y deformaciones

Mes 4:

- 01. Introducción al cálculo tensorial
- 05. Desplazamientos y grandes deformaciones
- 06. Ecuaciones fundamentales de la mecánica de medios continuos

Temas que serán de estudio autónomo:

 00. Repaso (autónomo) de diferentes temas de álgebra lineal y cálculo vectorial

Meses 1, 2 y 3:

- 02. Esfuerzos o tensiones
- 03. Desplazamientos y pequeñas deformaciones
- 04. Relación entre esfuerzos y deformaciones

Vies 4:

- 01. Introducción al cálculo tensoria
- 05. Desplazamientos y grandes deformaciones
- 06. Ecuaciones fundamentales de la mecánica de medios continuos

¿Qué veremos?

Temas que serán de estudio autónomo:

 00. Repaso (autónomo) de diferentes temas de álgebra lineal y cálculo vectorial

Meses 1, 2 y 3:

- 02. Esfuerzos o tensiones
- 03. Desplazamientos y pequeñas deformaciones
- 04. Relación entre esfuerzos y deformaciones

Mes 4:

- 01. Introducción al cálculo tensorial
- 05. Desplazamientos y grandes deformaciones
- 06. Ecuaciones fundamentales de la mecánica de medios continuos

- de un sólido elástico.
- Entender las diferentes suposiciones y limitaciones presentes en la teoría de la elasticidad.
- Entender la deducción y rango de aplicación de ciertas formulaciones que se aplicarán en asignaturas de mecánicas y posteriores.

- Analizar y explicar cómo varían las tensiones y las deformaciones al interior de un sólido elástico.
- Entender las diferentes suposiciones y limitaciones presentes en la teoría de la elasticidad.
- Entender la deducción y rango de aplicación de ciertas formulaciones que se aplicarán en asignaturas de mecánicas y posteriores.

- Analizar y explicar cómo varían las tensiones y las deformaciones al interior de un sólido elástico.
- Entender las diferentes suposiciones y limitaciones presentes en la teoría de la elasticidad.
- Entender la deducción y rango de aplicación de ciertas formulaciones que se aplicarán en asignaturas de mecánicas y posteriores.

Al finalizar

- Analizar y explicar cómo varían las tensiones y las deformaciones al interior de un sólido elástico.
- Entender las diferentes suposiciones y limitaciones presentes en la teoría de la elasticidad.
- Entender la deducción y rango de aplicación de ciertas formulaciones que se aplicarán en asignaturas de mecánicas y posteriores.

- Mecáncia tensorial
- 2 Contexto universitario
- 3 Contexto profesional y académico
- 4 Metodología, calificación e información

n P

¿En dónde estamos?

 $\label{lem:http://mallas.manizales.unal.edu.co/facultades/ingenieriaYArquitectura/civil/index.html $$ $$ $$ http://www.legal.unal.edu.co/rlunal/home/doc.jsp?d_i=92461$$

Derrotero

- Mecáncia tensorial
- Contexto universitario
- 3 Contexto profesional y académico
- 4 Metodología, calificación e información

¿Por qué vemos estas materias?

Problema

La capacidad de cálculo de los computadores ha superado las capacidades propositivas del ingeniero (¿civil?) promedio.

Ingeniería civil moderna

- Necesitamos implementar nuevos modelos, metodologías y criterios de análisis, dejar de lado los métodos simplificados de análisis... ¿machine learning? ¿artificial inteligence?.
- El paradigma de la modernidad ingenieril: Resiliente y Sostenible.

Ingeniería civil moderna

- Necesitamos implementar nuevos modelos, metodologías y criterios de análisis, dejar de lado los métodos simplificados de análisis... ¿machine learning? ¿artificial inteligence?.
- El paradigma de la modernidad ingenieril: Resiliente y Sostenible.

Ingeniería civil moderna

- Necesitamos implementar nuevos modelos, metodologías y criterios de análisis, dejar de lado los métodos simplificados de análisis... ¿machine learning? ¿artificial inteligence?.
- El paradigma de la modernidad ingenieril: Resiliente y Sostenible.

A decade of major erathquakes: lessons for business

- Hazards beyond expectation
- Quakes don't read
- Non-structural damage: the main source of building-related loses

Leer el artículo: link.

Structural engineer - FEA FEM

- Análisis de cargas de viento, software RFEM. video.
- 4 point bending of an unreinforced concrete beam. video.
- Seism on structure reinforced with non-linear steel at max. 14g on all 3 axes - ANSYS WB Transient, video.
- LS-DYNA FINITE ELEMENT ANALYSIS Fracture simulation of steel compact tension specimen. video.

Geotechnical engineer - FEA FEM

- Introducing RocFall3 3D Rockfall Analysis. video.
- Mega models 3D slope stability models (LEM+FEM) buil for you and your team to use. video.

Michael H.P.

Fluis mechanics - CFD

- Drop test of a glass cup with water impacting a rigid tray ANSYS Explicit Dynamics with Fluids. video.
- Catheter Computational Fluid Dynamics Animation. video.

Michael H.P.

n 7

¿Qué podemos hacer con los softwares actuales?

Structural Pathologies + Georeferencing - FEA FEM SIG

• Forensic investigation and Engineering Analysis of Morandi Bridge collapse. video.

Michael H.P.

wecancia censorial Contexto universitano Contexto profesional y academico i victodologia, cannicación e informaci

Figura: Post-Processing of FEM Results with Paraview, link

Derrotero

- Mecáncia tensorial
- 2 Contexto universitario
- 3 Contexto profesional y académico
- 4 Metodología, calificación e información

Docentes

Michael		Diego	
Fecha inicio	Fecha	Fecha inicio	Fecha
	finalización		finalización
Febrero 6	Mayo 7	Mayo 8	Junio 3
(semana 1)	(semana 12)	(semana 13)	(semana 16)

Temas que seránde estudio autónomo:

 00. Repaso (autónomo) de diferentes temas de álgebra lineal y cálculo vectorial.

Meses 1, 2 y 3:

- 02. Esfuerzos o tensiones
- 03. Desplazamientos y pequeñas deformaciones
- 04. Relación entre esfuerzos y deformaciones

Mes 4:

- 01. Introducción al cálculo tensorial
- 05. Desplazamientos y grandes deformaciones
- 06. Ecuaciones fundamentales de la mecánica de medios continuos

Asesorías y tutorías

Preguntar primero por disponibilidad

Asesorías y tutorías

Preguntar primero por disponibilidad

Comunicación con el docente

mherediap@unal.edu.co

Medio formal: lo que haya en el correo, es.

WhatsApp

Medio informal

Asesorías y tutorías

Preguntar primero por disponibilidad

Comunicación con el docente

mherediap@unal.edu.co

Medio formal: lo que haya en el correo, es.

WhatsApp

Medio informal

Repositorio

La siguiente información se encontrará en el repositorio de GitHub:

- Contenido del curso
- Prerrequisitos
- Software recomendado.
- Sobre el main.pdf
- Calificación y evaluación
- Recomendaciones para estudiar
- Presentaciones y código

link: https://github.com/michaelherediaperez/medio_continuo

Bienvenida de semestre :)

