IBM Data Science Project: Select the best location for a new restaurant in Vancouver					
In []:					
Background:					
In []:					
For the IBM Data Science Capstone Project, we are trying to answer to the following business problem.					
A restaurant business owner with multiple locations opened across Canada decides to open a new restaurant in Vancouver. The new unit is going to be focused on Asian cuisine, which is the main specialization gastronomy area on which the restaurants chain is focusing.					
Considering the high real-estate prices across Vancouver, intense competition and the high rates that the restaurant plans to apply, one of the variable to decide upon is the right location. The intention of the owner is to find an optimal location in an area which is close to sceneries eating delights, high frequency tourist sections of the city and easily accessible to wealthier inhabitants.					

The analysis can be driven by using unsupervised machine learning to create clusters of district areas potentially candidates for the optimal location. The new restaurant will be situated closest to culinary centers and tourist attractions.

Data:

To conduct the analysis we need the following sets of data:

- 1. List of the main districts of Vancouver which is obtained through a csv file. List of districts to be obtained from Wikipedia website: https://en.wikipedia.org/wiki/List_of_neighbourhoods_in_Vancouver (https://en.wikipedia.org/wiki/List_of_neighbourhoods_in_Vancouver)
- 1. Geo-coordinates of districts selected at point 1 above to be retrieved in using geocoder tool.
- 1. Venues from each district are collected using Foursquare API.

Problem solve:

After obtaining the complete data in the desired formatting, we apply the k-means methodology in order to create cluster of districts and determine areas where the restaurant should be located.

Analysis begins by uploading wiki data through csv. file and creating a list of districts of Vancouver, together with the geo-coordinates of each district. Basically, the imported list of districts is used in geocode python library to get the latitude and longitude of each district in the list. Districts and their coordinates are stored in a pandas dataframe format. When done, this includes the following details: Districts, Name, Latitude and Longitude.

The next step is to retrieve the venues of each district. This is completed with the help of Foursquare.com credentials via API. Data is retrieved in json format. We setup a limit of 100 venues for each district and a radius of 1000 meter from the coordinates of district center. In addition to that, we determine which venues are the most common within each district.

After collecting this additional data, a new data frame includes the districts and separate columns for "n" most common venues of each districts. At this stage, the columns look like this: Neighborhood, 1st most common venue, 2nd common venue and so on up to the 10th most common venue.

Unsupervised machine learning is applied by using the K-means methodology. In order to do this, first we need to use one-hot encode to create dummy variables to transform the venue categories values and allow the machine learning process.

K-means requires an optimal number of clusters to be used. For determining the appropriate district clustering, the parameter for the optimal number of clusters is identified by using silhouette score approach. We create a chart to show the silhouette scores for a range number of clusters. The highest score on the chart becomes the optimal number of clusters to initiate.

The number of clusters mentioned above is going to be used in the K-means process. The end result will have each district assigned with a cluster label into the data set.

Results:

The clustered data will let us know which cluster is the best for the solution of our problem. Most common venues and their frequency are a valuable indicator when considering the cluster to include the potential restaurant location. We advise the owner to consider district from the cluster where most of the lively part of the city is present with a lot of gastronomy and tourist venues on site.

Conclusion:

By using various Python libraries we are able to analyse and provide the output and recommendation to support decisional process. As a result, business owner selects the most profitable location with the most benefits available to his customers.

In []:	
---------	--

Import of libraries:

```
In [1]:
        import numpy as np
        import pandas as pd
        pd.set_option ('display.max_columns',None)
        pd.set_option ('display.max_rows',None)
        import json
        !conda install -c conda-forge geopy #--yes
        from geopy.geocoders import Nominatim
        import requests
        from pandas.io.json import json_normalize
        import matplotlib.cm as cm
        import matplotlib.colors as colors
        from sklearn.cluster import KMeans
        !conda install -c conda-forge folium=0.5.0 #--yes
        import folium
        print ('Imported')
```

Solving environment: done

Package Plan

environment location: /opt/conda/envs/Python36

added / updated specs:

- geopy

The following packages will be downloaded:

package	build		
ca-certificates-2020.4.5.1 python_abi-3.6 certifi-2020.4.5.1 geopy-1.22.0 openssl-1.1.1g	hecc5488_0 1_cp36m py36h9f0ad1d_0 pyh9f0ad1d_0 h516909a_0	4 KB 151 KB 63 KB	conda-forge conda-forge conda-forge conda-forge conda-forge
geographiclib-1.50	py_0	34 KB	conda-forge
	Total:	2.5 MB	

The following NEW packages will be INSTALLED:

geographiclib: 1.50-py_0 conda-forge geopy: 1.22.0-pyh9f0ad1d_0 conda-forge python_abi: 3.6-1_cp36m conda-forge

The following packages will be UPDATED:

ca-certificates: 2020.1.1-0 --> 2020.4.5.1-hecc5488

conda-forge

2020.4.5.1-py36_0 certifi: --> 2020.4.5.1-py36h9f0a

d1d_0 conda-forge
 openssl: 1.1.1g-h7b6447c_0 --> 1.1.1g-h516909a_0

conda-forge

Downloading and Extractions ca-certificates - 2020	. •	ges ####################################	#### 10
<pre>python_abi-3.6 0%</pre>	4 KB	#####################################	#### 10
certifi-2020.4.5.1 0%	151 KB	#####################################	#### 10
geopy-1.22.0 0%	63 KB	#####################################	#### 10
openssl-1.1.1g 0%	2.1 MB	#####################################	#### 10
geographiclib-1.50	34 KB	#####################################	#### 10

Preparing transaction: done Verifying transaction: done Executing transaction: done Solving environment: done

Package Plan

environment location: /opt/conda/envs/Python36

added / updated specs:

- folium=0.5.0

The following packages will be downloaded:

package	build		
folium-0.5.0 branca-0.4.1 vincent-0.4.4 altair-4.1.0	py_0 py_0 py_1 py_1	26 KB 28 KB	conda-forge conda-forge conda-forge conda-forge
	Total:	713 KB	

The following NEW packages will be INSTALLED:

altair: 4.1.0-py_1 conda-forge branca: 0.4.1-py_0 conda-forge folium: 0.5.0-py_0 conda-forge vincent: 0.4.4-py_1 conda-forge

Downloading and Extracting Packages

folium-0.5.0 0%	45 KB	#####################################	10
branca-0.4.1 0%	26 KB	##################################	10
vincent-0.4.4	28 KB	#####################################	10
altair-4.1.0	614 KB	#####################################	10

Preparing transaction: done Verifying transaction: done

Executing transaction: done

Imported

Import the list of Vancouver districts from the csv file:

```
In [210]:
          import types
          import pandas as pd
          from botocore.client import Config
          import ibm boto3
          def __iter__(self): return 0
          # @hidden cell
          # The following code accesses a file in your IBM Cloud Object Storage. It incl
          udes your credentials.
          # You might want to remove those credentials before you share the notebook.
          client c144cdf0deb84a7aac796d8ae3fcce3f = ibm boto3.client(service name='s3',
              ibm_api_key_id='vB17kp4Lt5iATNwQuNzYxz4tR4mJNJeeuuAP08afu0yd',
              ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
              config=Config(signature version='oauth'),
              endpoint_url='https://s3-api.us-geo.objectstorage.service.networklayer.co
          m')
          body = client_c144cdf0deb84a7aac796d8ae3fcce3f.get_object(Bucket='wk1-donotdel
          ete-pr-1kj4zznzzph6uq',Key='Districts Vancouver 2.csv')['Body']
          # add missing __iter__ method, so pandas accepts body as file-like object
                                '__iter__"): body.__iter__ = types.MethodType( __iter__,
          if not hasattr(body, '
          body )
          # If you are reading an Excel file into a pandas DataFrame, replace `read_csv`
          by `read excel` in the next statement.
          df data 1 = pd.read csv(body)
          df_data_1.head()
```

Out[210]:

	District	Name
0	Vancouver-Downtown	Downtown
1	Vancouver-False Creek	False Creek
2	Vancouver-Fraserview	Fraserview
3	Vancouver-Hastings	Hastings
4	Vancouver-Arbutus ridge	Arbutus ridge

Retrieve list of districts, dimensions of data imported to df data 1:

```
In [211]: | df_data_1.shape
Out[211]: (17, 2)
```

The Vancouver districts retrieved.

```
In [212]: df_data_1
```

Out[212]:

	District	Name
0	Vancouver-Downtown	Downtown
1	Vancouver-False Creek	False Creek
2	Vancouver-Fraserview	Fraserview
3	Vancouver-Hastings	Hastings
4	Vancouver-Arbutus ridge	Arbutus ridge
5	Vancouver-Kingsway	Kingsway
6	Vancouver-Langara	Langara
7	Vancouver-Mount Pleasant	Mount Pleasant
8	Vancouver-Renfrew-Collingwood	Renfrew-Collingwood
9	Vancouver-Yaletown	Yaletown
10	Vancouver-West End	West End
11	Vancouver-Marpole	Marpole
12	North Vancouver-Seymour	North Seymour
13	Vancouver-Kitsilano	Kitsilano
14	North Vancouver-Garibaldi	North Garibaldi
15	Vancouver-Burrard	Burrard
16	Vancouver-Little Mountain	Little Mountain

We add to the dataframe the latitude and longitude columns to get ready for geo-coordinates retrieval:

```
column_names = ['District','Name','Latitude','Longitude']
In [213]:
In [214]: neighbors = pd.DataFrame (columns=column_names)
In [215]:
          neighbors
Out[215]:
             District Name Latitude Longitude
```

Get the geo-coordinates for each district in the df_data_1 range:

```
In [216]: #import geopy.geocoders
          #from geopy.geocoders import Nominatim
          #geolocator = Nominatim(user_agent = "my-application")
          district = df data 1 ['District']
          name = df_data_1 ['Name']
          location = None
          latitude = None
          longitude = None
          for data in range (0,len(district)):
              dt = district [data]
              nm = name [data]
              import geopy.geocoders
              from geopy.geocoders import Nominatim
              geolocator = Nominatim(user agent = "my-application")
              location = geolocator.geocode ('{}'.format(dt))
              latitude = location.latitude
              longitude = location.longitude
               #print ('The geographical coordinates are {},{}.'.format(latitude,longitu
          de))
              neighbors = neighbors.append ({'District':dt,'Name':nm,'Latitude': locatio
          n.latitude, 'Longitude':location.longitude},ignore_index = True)
```

We get the following table:

```
In [217]: neighbors.head()
```

Out[217]:

	District	Name	Latitude	Longitude
0	Vancouver-Downtown	Downtown	49.283393	-123.117456
1	Vancouver-False Creek	False Creek	49.274751	-123.106131
2	Vancouver-Fraserview	Fraserview	49.218416	-123.073287
3	Vancouver-Hastings	Hastings	49.280673	-123.032600
4	Vancouver-Arbutus ridge	Arbutus ridge	49.240968	-123.167001

In [218]: neighbors

B:

Out[218]:

	District		Name	Latitude	Longitude
	0	Vancouver-Downtown	Downtown	49.283393	-123.117456
	1	Vancouver-False Creek	False Creek	49.274751	-123.106131
	2	Vancouver-Fraserview	Fraserview	49.218416	-123.073287
	3	Vancouver-Hastings	Hastings	49.280673	-123.032600
	4	Vancouver-Arbutus ridge	Arbutus ridge	49.240968	-123.167001
	5	Vancouver-Kingsway	Kingsway	49.256732	-123.089712
	6	Vancouver-Langara	Langara	49.219437	-123.118026
	7	Vancouver-Mount Pleasant	Mount Pleasant	49.263330	-123.096588
	8	Vancouver-Renfrew-Collingwood	Renfrew-Collingwood	49.242024	-123.057679
	9	Vancouver-Yaletown	Yaletown	49.276322	-123.120956
	10	Vancouver-West End	West End	49.284131	-123.131795
	11	Vancouver-Marpole	Marpole	49.209223	-123.136150
	12	North Vancouver-Seymour	North Seymour	49.556758	-123.045975
	13	Vancouver-Kitsilano	Kitsilano	49.269410	-123.155267
	14	North Vancouver-Garibaldi	North Garibaldi	49.740507	-123.083205
	15	Vancouver-Burrard	Burrard	49.285636	-123.119815
	16	Vancouver-Little Mountain	Little Mountain	49.241853	-123.113496
In [219]:	nei	ghbors.shape			

Test for Vancouver coordinates:

Out[219]: (17, 4)

```
In [220]: import geopy.geocoders
          from geopy.geocoders import Nominatim
          geolocator = Nominatim(user_agent = "my-application")
          location = geolocator.geocode ('Vancouver')
          latitude = location.latitude
          longitude = location.longitude
          print ('Coordinate Vancouver {}, {}.'.format (latitude, longitude))
```

Visualize data by using the folium library to create a visual map of the districts located across Vancouver.

Coordinate Vancouver 49.2608724, -123.1139529.

```
In [221]:
          map vancouver = folium.Map(location=[latitude,longitude], zoom start=11)
          for lat,lng, district in zip (neighbors['Latitude'], neighbors ['Longitude'],
          neighbors ['District']):
              label = '{}'.format (district)
              label = folium.Popup (label, parse_html = True)
              folium.CircleMarker(
                   [lat,lng],
                   radius=2,
                   popup=label,
                   color='blue',
                   fill = True,
                  fill_color = '#3186cc',
                   fill_opacity = 0.7,
                   parse html = False).add to(map vancouver)
          map_vancouver
```

Out[221]: Make this Notebook Trusted to load map: File -> Trust Notebook

Credential obtained from Foursquare website client account:

```
CLIENT ID = 'DYYSKBE12XE03QDIGIMQJOMKUSUSZ5XE1AQETKDHQJI0JV1E'
In [222]:
          CLIENT SECRET = 'HYKY5BPGPSMAA2SPTWO025FCX201MONU4E55MNRR1ALXCAMX'
          VERSION = '20190823'
          print ('Client Id' + CLIENT ID)
          print ('Client_Secret:' + CLIENT_SECRET)
          Client IdDYYSKBE12XE03QDIGIMQJOMKUSUSZ5XE1AQETKDHQJI0JV1E
          Client Secret:HYKY5BPGPSMAA2SPTW0025FCX201MONU4E55MNRR1ALXCAMX
```

Get the first district from the list together with its geo coordinates:

For the same district, retrieve from Foursquare the first 100 venues within a radius of 1000 meters:

Json detail format for the 100 venues:

Define the venue caterories:

```
In [227]: def get_category_type (row):
              try: categories list = row ['categories']
              except: categories_list = row ['venue.categories']
              if len(categories_list) == 0:
                   return None
              else:
                   return categories_list [0]['name']
```

```
In [228]:
          venues = results ['response']['groups'][0]['items']
          nearby_venues = json_normalize (venues)
          filtered_columns = ['venue.name','venue.id','venue.categories','venue.locatio
          n.lat','venue.location.lng']
          nearby venues
          nearby venues = nearby venues.loc [:, filtered columns]
          nearby_venues ['venue.categories'] = nearby_venues.apply (get_category_type, a
          nearby venues.head()
```

Out[228]:

venue.name venue.id		venue.categories	venue.location.lat	venue.location.lng	
0	Rosewood Hotel Georgia	4d5ec8ce29ef236ae0cb9059	Hotel	49.283429	-123.118911
1	Gotham Steakhouse & Cocktail Bar	4aa7f22bf964a520214e20e3	Steakhouse	49.282830	-123.115865
2	Hawksworth Restaurant	4d2cce46ae3a8cfa4067bf70	Lounge	49.283362	-123.119462
3	SEPHORA	4aa73bb9f964a5206b4c20e3	Cosmetics Shop	49.284092	-123.117204
4	Abercrombie & Fitch	4fcbf990e4b09ba63c216a21	Clothing Store	49.282274	-123.118685
4					•

nearby_venues.columns = [col.split(".") [-1] for col in nearby_venues.columns] nearby_venues.head()

Out[254]:

	name	id	categories	lat	Ing
0	Rosewood Hotel Georgia	4d5ec8ce29ef236ae0cb9059	Hotel	49.283429	-123.118911
1	Gotham Steakhouse & Cocktail Bar	4aa7f22bf964a520214e20e3	Steakhouse	49.282830	-123.115865
2	Hawksworth Restaurant	4d2cce46ae3a8cfa4067bf70	Lounge	49.283362	-123.119462
3	SEPHORA	4aa73bb9f964a5206b4c20e3	Cosmetics Shop	49.284092	-123.117204
4	Abercrombie & Fitch	4fcbf990e4b09ba63c216a21	Clothing Store	49.282274	-123.118685

Create a function to help us get the venue categories for all districts:

```
In [230]: def getNearbyVenues (names, latitudes, longitudes, radius = 1000):
              venues list=[]
              for name, lat, lng in zip (names, latitudes, longitudes):
                   print(name)
                   url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&clie
          nt_secret={}&v={}&ll={},{}&radius={}&limit={}'.format (
                       CLIENT ID,
                       CLIENT SECRET,
                       VERSION,
                       lat,
                       lng,
                       radius,
                       LIMIT)
                  results = requests.get(url).json() ["response"]['groups'][0]['items']
                  venues_list.append ([(
                       name,
                       lat,
                       lng,
                       v['venue']['name'],
                       v['venue']['location']['lat'],
                       v['venue']['location']['lng'],
                       v['venue']['categories'][0]['name']) for v in results])
              nearby_venues = pd.DataFrame ([item for venue_list in venues_list for item
          in venue list])
              nearby venues.columns = ['Neighborhood',
                                             'Neighborhood Latitudine',
                                             'Neighborhood Longitude',
                                             'Venue',
                                             'Venue Latitude',
                                             'Venue Longitude',
                                             'Venue Category']
              return (nearby_venues)
```

vancouver_venues = getNearbyVenues (names=neighbors ['District'],latitudes =ne In [231]: ighbors['Latitude'], longitudes = neighbors ['Longitude'])

Vancouver-Downtown

Vancouver-False Creek

Vancouver-Fraserview

Vancouver-Hastings

Vancouver-Arbutus ridge

Vancouver-Kingsway

Vancouver-Langara

Vancouver-Mount Pleasant

Vancouver-Renfrew-Collingwood

Vancouver-Yaletown

Vancouver-West End

Vancouver-Marpole

North Vancouver-Seymour

Vancouver-Kitsilano

North Vancouver-Garibaldi

Vancouver-Burrard

Vancouver-Little Mountain

In [257]: print(vancouver_venues.shape) vancouver_venues.head(10)

(1113, 7)

Out[257]:

	Neighborhood	Neighborhood Latitudine	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Vancouver- Downtown	49.283393	-123.117456	Rosewood Hotel Georgia	49.283429	-123.118911	Hotel
1	Vancouver- Downtown	49.283393	-123.117456	Gotham Steakhouse & Cocktail Bar	49.282830	-123.115865	Steakhouse
2	Vancouver- Downtown	49.283393	-123.117456	Hawksworth Restaurant	49.283362	-123.119462	Lounge
3	Vancouver- Downtown	49.283393	-123.117456	SEPHORA	49.284092	-123.117204	Cosmetics Shop
4	Vancouver- Downtown	49.283393	-123.117456	Abercrombie & Fitch	49.282274	-123.118685	Clothing Store
5	Vancouver- Downtown	49.283393	-123.117456	Hyatt Regency Vancouver	49.284934	-123.120407	Hotel
6	Vancouver- Downtown	49.283393	-123.117456	Vancouver Art Gallery	49.282827	-123.120457	Art Gallery
7	Vancouver- Downtown	49.283393	-123.117456	The Keg Steakhouse + Bar - Dunsmuir	49.283438	-123.116363	Restaurant
8	Vancouver- Downtown	49.283393	-123.117456	Mogu: Japanese Street Eats	49.284118	-123.117531	Food Truck
9	Vancouver- Downtown	49.283393	-123.117456	Disney store	49.281689	-123.119850	Toy / Game Store
4							•

We get a total of 1113 venues to inspect.

In []:

Determine the number of distinct venue categories for each distict district:

In [233]: vancouver_venues.groupby('Neighborhood').count()

Out[233]:

	Neighborhood Latitudine	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Vancouver-Arbutus ridge	27	27	27	27	27	27
Vancouver-Burrard	100	100	100	100	100	100
Vancouver-Downtown	100	100	100	100	100	100
Vancouver-False Creek	100	100	100	100	100	100
Vancouver- Fraserview	38	38	38	38	38	38
Vancouver-Hastings	50	50	50	50	50	50
Vancouver-Kingsway	100	100	100	100	100	100
Vancouver-Kitsilano	100	100	100	100	100	100
Vancouver-Langara	17	17	17	17	17	17
Vancouver-Little Mountain	55	55	55	55	55	55
Vancouver-Marpole	47	47	47	47	47	47
Vancouver-Mount Pleasant	100	100	100	100	100	100
Vancouver-Renfrew- Collingwood	79	79	79	79	79	79
Vancouver-West End	100	100	100	100	100	100
Vancouver-Yaletown	100	100	100	100	100	100

In [234]: | print('{} unique categories'.format(len(vancouver_venues['Venue Category'].uni que())))

198 unique categories

One hot encoding for machine learning:

```
In [273]: vancouver_onehot = pd.get_dummies(vancouver_venues[['Venue Category']], prefix
          ="",prefix_sep="")
          vancouver_onehot['Neighborhood'] = vancouver_venues ['Neighborhood']
          fixed_columns = [vancouver_onehot.columns[-1]]+ list(vancouver_onehot.columns
          [:-1])
          vancouver_onehot = vancouver_onehot[fixed_columns]
          vancouver_onehot.head()
```

Out[273]:

	Neighborhood	Accessories Store	American Restaurant	Amphitheater	Art Gallery	Arts & Crafts Store	Asian Restaurant	Athletics & Sports
0	Vancouver- Downtown	0	0	0	0	0	0	0
1	Vancouver- Downtown	0	0	0	0	0	0	0
2	Vancouver- Downtown	0	0	0	0	0	0	0
3	Vancouver- Downtown	0	0	0	0	0	0	0
4	Vancouver- Downtown	0	0	0	0	0	0	0
4)

```
In [274]: vancouver_onehot.shape
```

Out[274]: (1113, 199)

Group data by neighborhood and by the mean of frequency of each venue category:

In [275]: vancouver_grouped = vancouver_onehot.groupby('Neighborhood').mean().reset_inde vancouver_grouped.head(20)

Out[275]:

	Neighborhood	Accessories Store	American Restaurant	Amphitheater	Art Gallery	Arts & Crafts Store	Asian Restaurant	Athletics & Sports
0	Vancouver- Arbutus ridge	0.00	0.000000	0.00	0.00	0.00	0.037037	0.000000
1	Vancouver- Burrard	0.00	0.010000	0.00	0.01	0.01	0.000000	0.000000
2	Vancouver- Downtown	0.01	0.000000	0.00	0.01	0.01	0.000000	0.000000
3	Vancouver- False Creek	0.00	0.000000	0.00	0.00	0.00	0.030000	0.000000
4	Vancouver- Fraserview	0.00	0.000000	0.00	0.00	0.00	0.000000	0.000000
5	Vancouver- Hastings	0.00	0.020000	0.02	0.00	0.00	0.020000	0.000000
6	Vancouver- Kingsway	0.00	0.000000	0.00	0.00	0.01	0.010000	0.000000
7	Vancouver- Kitsilano	0.00	0.010000	0.00	0.00	0.00	0.010000	0.000000
8	Vancouver- Langara	0.00	0.058824	0.00	0.00	0.00	0.000000	0.000000
9	Vancouver- Little Mountain	0.00	0.000000	0.00	0.00	0.00	0.000000	0.018182
10	Vancouver- Marpole	0.00	0.021277	0.00	0.00	0.00	0.000000	0.000000
11	Vancouver- Mount Pleasant	0.00	0.000000	0.00	0.00	0.02	0.000000	0.000000
12	Vancouver- Renfrew- Collingwood	0.00	0.012658	0.00	0.00	0.00	0.037975	0.000000
13	Vancouver- West End	0.00	0.000000	0.00	0.01	0.00	0.010000	0.000000
14	Vancouver- Yaletown	0.00	0.010000	0.00	0.01	0.00	0.000000	0.000000
4								•

Check for the top 5 most common venues in each neighborhood:

```
In [276]: | for hood in vancouver_grouped['Neighborhood']:
              print(" "+hood+" ")
              temp = vancouver_grouped[vancouver_grouped['Neighborhood'] == hood].T.rese
          t_index()
              temp.columns = ['venue','freq']
              temp = temp.iloc[1:]
              temp['freq'] = temp['freq'].astype(float)
              temp=temp.round({'freq':2})
              print(temp.sort_values('freq',ascending=False).reset_index(drop=True).head
          (5))
              print('\n')
```

Vancouver-Arbutus ridge venue freq Sushi Restaurant 0.11 1 Bakery 0.07 2 Coffee Shop 0.07 3 Park 0.07 4 Bubble Tea Shop 0.04

Vancouver-Burrard

	venue	freq
0	Hotel	0.10
1	Dessert Shop	0.05
2	Sandwich Place	0.04
3	Japanese Restaurant	0.04
4	Food Truck	0.04

Vancouver-Downtown

	venue	freq
0	Hotel	0.11
1	Dessert Shop	0.05
2	Coffee Shop	0.05
3	Sandwich Place	0.04
4	Restaurant	0.04

Vancouver-False Creek

	venue	freq
0	Coffee Shop	0.07
1	Pizza Place	0.05
2	Bakery	0.05
3	Café	0.04
4	Asian Restaurant	0.03

Vancouver-Fraserview

	venue	freq
0	Pizza Place	0.11
1	Bus Stop	0.08
2	Bus Station	0.05
3	Gas Station	0.05
4	Park	0.05

Vancouver-Hastings

	venue	freq
0	Theme Park Ride / Attraction	0.14
1	Park	0.06
2	Sushi Restaurant	0.04
3	Event Space	0.04
4	Café	0.04

Vancouver-Kingsway

venue freq 0 Vietnamese Restaurant 0.10

```
1
                  Bakery
                          0.06
2
             Pizza Place
                          0.05
3
             Coffee Shop
                          0.04
4
        Sushi Restaurant 0.04
 Vancouver-Kitsilano
         venue freq
               0.11
   Coffee Shop
1
        Bakery
               0.05
2
   Yoga Studio
                0.04
3
    Restaurant 0.03
4
          Café 0.03
 Vancouver-Langara
             venue freq
0
          Bus Stop 0.18
1
              Park 0.12
2
      Liquor Store 0.06
3
   Bubble Tea Shop 0.06
       Coffee Shop 0.06
4
 Vancouver-Little Mountain
                   venue frea
0
             Coffee Shop
1
      Chinese Restaurant
                         0.07
2
  Vietnamese Restaurant 0.05
3
          Farmers Market 0.05
4
                    Café 0.05
 Vancouver-Marpole
                   venue frea
0
        Sushi Restaurant
                         0.06
     Japanese Restaurant
                          0.06
1
2
      Chinese Restaurant 0.06
3
             Pizza Place 0.04
  Vietnamese Restaurant 0.04
 Vancouver-Mount Pleasant
                   venue freq
0
                          0.08
                 Brewery
1
             Coffee Shop
                          0.08
2
                  Bakery
                          0.06
3
  Vietnamese Restaurant 0.04
        Sushi Restaurant 0.04
 Vancouver-Renfrew-Collingwood
```

venue freq

Vietnamese Restaurant 0.13

1 Chinese Restaurant 0.11

2 Bus Stop 0.08 3 Asian Restaurant 0.04

Bus Station 0.04 4

```
Vancouver-West End
                venue freq
                Hotel 0.08
1
         Dessert Shop 0.05
2
  Japanese Restaurant 0.05
                Bakery 0.05
4
       Sandwich Place 0.03
 Vancouver-Yaletown
               venue freq
               Hotel 0.09
1
  Italian Restaurant 0.04
2
                Café 0.04
         Yoga Studio 0.03
3
4
    Sushi Restaurant 0.03
```

Create the dataframe with the neighborhoods and their most common venues:

```
In [277]: num_top_venues =5
          def return_most_common_venues(row,num_top_venues):
              row_categories = row.iloc[1:]
              row_categories_sorted = row_categories.sort_values(ascending=False)
              return row_categories_sorted.index.values[0:num_top_venues]
```

```
In [278]:
          num_top_venues = 10
          indicators = ['st','nd','rd']
          columns =['Neighborhood']
          for ind in np.arange(num_top_venues):
              try:
                  columns.append('{}{} Most common venue'.format(ind+1,indicators[ind]))
              except:
                   columns.append('{} Most common venue'.format(ind+1))
          neighborhoods_venues_sorted = pd.DataFrame(columns=columns)
          neighborhoods_venues_sorted['Neighborhood'] = vancouver_grouped['Neighborhood'
          for ind in np.arange(vancouver_grouped.shape[0]):
              neighborhoods_venues_sorted.iloc[ind,1:] = return_most_common_venues(vanco
          uver_grouped.iloc[ind,:], num_top_venues)
          neighborhoods venues sorted.head()
```

Out[278]:

	Neighborhood	1st Most common venue	2nd Most common venue	3rd Most common venue	4 Most common venue	5 Most common venue	6 Most common venue	7 Most common venue	
0	Vancouver- Arbutus ridge	Sushi Restaurant	Coffee Shop	Park	Bakery	Burger Joint	Ice Cream Shop	Bubble Tea Shop	
1	Vancouver- Burrard	Hotel	Dessert Shop	Food Truck	Japanese Restaurant	Sandwich Place	Coffee Shop	Plaza	F
2	Vancouver- Downtown	Hotel	Dessert Shop	Coffee Shop	Restaurant	Sandwich Place	Plaza	Food Truck	F
3	Vancouver- False Creek	Coffee Shop	Bakery	Pizza Place	Café	Brewery	Sandwich Place	Asian Restaurant	F
4	Vancouver- Fraserview	Pizza Place	Bus Stop	Gas Station	Bus Station	Park	Sporting Goods Shop	Convenience Store	E
4									•

Machine learning:

```
In [279]:
          #import matplotlib as mlp
          import matplotlib.pyplot as plt
          %matplotlib inline
          def plot(x, y, xlabel, ylabel):
              plt.figure(figsize=(20, 10))
              plt.plot(np.arange(2,x),y,'o-')
              plt.xlabel(xlabel)
              plt.ylabel(ylabel)
              plt.xticks(np.arange(2,x))
              plt.show()
```

Display a chart with silhouette scores to determine de number of clusters

```
In [280]:
          max\_range = 8
          vancouver_grouped_clustering = vancouver_grouped.drop ('Neighborhood',1)
          from sklearn.metrics import silhouette_samples, silhouette_score
          indices = []
          scores = []
          for kclusters in range (2, max_range) :
              kmc = vancouver_grouped_clustering
              kmeans = KMeans (n_clusters = kclusters, init = 'k-means++', random_state
          = 0).fit predict(kmc)
              score = silhouette_score (kmc,kmeans)
              indices.append(kclusters)
              scores.append(score)
```

Find the optimal number of clusters:

Apply K-means for the optimal number of clusters: 6 is the number of cluster to use. This is where the score is the highest.

```
In [282]:
          kmeans = KMeans(n_clusters=6, random_state=0).fit(vancouver_grouped_clustering
          )
          kmeans.labels_[0:10]
Out[282]: array([1, 2, 2, 1, 0, 5, 1, 1, 3, 4], dtype=int32)
```

vancouver_grouped_clustering.head()

Out[283]:

	Accessories Store	American Restaurant	Amphitheater	Art Gallery	Arts & Crafts Store	Asian Restaurant	Athletics & Sports	Auto Dealership	BB Joii
0	0.00	0.00	0.0	0.00	0.00	0.037037	0.0	0.0	0
1	0.00	0.01	0.0	0.01	0.01	0.000000	0.0	0.0	0
2	0.01	0.00	0.0	0.01	0.01	0.000000	0.0	0.0	0
3	0.00	0.00	0.0	0.00	0.00	0.030000	0.0	0.0	0
4	0.00	0.00	0.0	0.00	0.00	0.000000	0.0	0.0	0
4									•

New dataframe with top venues for each neighborhoods and cluster labels:

In [284]: | neighbors.rename(columns={'District':'Neighborhood'}, inplace=True) neighbors.head()

Out[284]:

	Neighborhood	Name	Latitude	Longitude
0	Vancouver-Downtown	Downtown	49.283393	-123.117456
1	Vancouver-False Creek	False Creek	49.274751	-123.106131
2	Vancouver-Fraserview	Fraserview	49.218416	-123.073287
3	Vancouver-Hastings	Hastings	49.280673	-123.032600
4	Vancouver-Arbutus ridge	Arbutus ridge	49.240968	-123.167001

In [285]: neighborhoods_venues_sorted.head()

Out[285]:

	Neighborhood	1st Most common venue	2nd Most common venue	3rd Most common venue	4 Most common venue	5 Most common venue	6 Most common venue	7 Most common venue	
0	Vancouver- Arbutus ridge	Sushi Restaurant	Coffee Shop	Park	Bakery	Burger Joint	Ice Cream Shop	Bubble Tea Shop	
1	Vancouver- Burrard	Hotel	Dessert Shop	Food Truck	Japanese Restaurant	Sandwich Place	Coffee Shop	Plaza	F
2	Vancouver- Downtown	Hotel	Dessert Shop	Coffee Shop	Restaurant	Sandwich Place	Plaza	Food Truck	F
3	Vancouver- False Creek	Coffee Shop	Bakery	Pizza Place	Café	Brewery	Sandwich Place	Asian Restaurant	F
4	Vancouver- Fraserview	Pizza Place	Bus Stop	Gas Station	Bus Station	Park	Sporting Goods Shop	Convenience Store	E
4									•

```
neighborhoods_venues_sorted.insert(0,'Cluster Labels', kmeans.labels_)
In [286]:
          vancouver_merged = neighbors
          vancouver_merged = vancouver_merged.join (neighborhoods_venues_sorted.set_inde
          x('Neighborhood'), on='Neighborhood')
          vancouver_merged
```

Out[286]:

	Neighborhood Name Latitude Longitude Cluster Labels 1st Most common venue		2nd Most common venue	3rd Mos commo venu				
0	Vancouver- Downtown	Downtown	49.283393	-123.117456	2.0	Hotel	Dessert Shop	Coffe Sho
1	Vancouver- False Creek	False Creek	49.274751	-123.106131	1.0	Coffee Shop	Bakery	Pizz Plac
2	Vancouver- Fraserview	Fraserview	49.218416	-123.073287	0.0	Pizza Place	Bus Stop	Ga Static
3	Vancouver- Hastings	Hastings	49.280673	-123.032600	5.0	Theme Park Ride / Attraction	Park	Them Pai
4	Vancouver- Arbutus ridge	Arbutus ridge	49.240968	-123.167001	1.0	Sushi Restaurant	Coffee Shop	Paı
5	Vancouver- Kingsway	Kingsway	49.256732	-123.089712	1.0	Vietnamese Restaurant	Bakery	Pizz Plac
6	Vancouver- Langara	Langara	49.219437	-123.118026	3.0	Bus Stop	Park	Bubb Tea Shc
7	Vancouver- Mount Pleasant	Mount Pleasant	49.263330	-123.096588	1.0	Coffee Shop	Brewery	Bakeı
8	Vancouver- Renfrew- Collingwood	Renfrew- Collingwood	49.242024	-123.057679	4.0	Vietnamese Restaurant	Chinese Restaurant	Bus Stc
9	Vancouver- Yaletown	Yaletown	49.276322	-123.120956	2.0	Hotel	Italian Restaurant	Cat
10	Vancouver- West End	West End	49.284131	-123.131795	2.0	Hotel	Dessert Shop	Japanes Restaurai
11	Vancouver- Marpole	Marpole	49.209223	-123.136150	4.0	Chinese Restaurant	Sushi Restaurant	Japanes Restaurai
12	North Vancouver- Seymour	North Seymour	49.556758	-123.045975	NaN	NaN	NaN	Na
13	Vancouver- Kitsilano	Kitsilano	49.269410	-123.155267	1.0	Coffee Shop	Bakery	Yog Stud
14	North Vancouver- Garibaldi	North Garibaldi	49.740507	-123.083205	NaN	NaN	NaN	Na
15	Vancouver- Burrard	Burrard	49.285636	-123.119815	2.0	Hotel	Dessert Shop	Foc Truc
16	Vancouver- Little Mountain	Little Mountain	49.241853	-123.113496	4.0	Coffee Shop	Chinese Restaurant	Cat
4								•

```
In [287]: map clusters = folium.Map(location=[latitude, longitude], zoom start=11)
          x = np.arange(kclusters)
          ys = [i + x + (i*x)**2  for i in range(kclusters)]
          colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
          rainbow = [colors.rgb2hex(i) for i in colors_array]
          markers colors = []
          for lat, lon, poi, cluster in zip(vancouver_merged['Latitude'], vancouver_merg
          ed['Longitude'], vancouver_merged['Neighborhood'], vancouver_merged['Cluster L
          abels']):
              label = folium.Popup(str(poi) + 'Cluster' + str(cluster), parse_html=True)
              folium.CircleMarker(
                   [lat, lon],
                  radius =5,
                  popup=label,
                  #color=rainbow[cluster-1],
                  fill=True,
                  #fill color=rainbow[cluster-1],
                  fill opacity=0.7).add to(map clusters)
          map_clusters
```

Out[287]: Make this Notebook Trusted to load map: File -> Trust Notebook

Clusters map visualize above.

Breakdown of nebighborhoods by cluster label:

In [288]: #Cluster 1 - outer district vancouver_merged.loc[vancouver_merged['Cluster Labels'] == 0, vancouver_merged .columns[[0]+list(range(5, vancouver_merged.shape[1]))]]

Out[288]:

	Neighborhood	1st Most common venue	2nd Most common venue	3rd Most common venue	4 Most common venue	5 Most common venue	6 Most common venue	7 Most common venue	COI
2	Vancouver- Fraserview	Pizza Place	Bus Stop	Gas Station	Bus Station	Park	Sporting Goods Shop	Convenience Store	Elec

In [289]: #Cluster 2

vancouver_merged.loc[vancouver_merged['Cluster Labels'] == 1, vancouver_merged .columns[[0]+list(range(5, vancouver_merged.shape[1]))]]

Out[289]:

7 Most common venue	6 Most common venue	5 Most common venue	4 Most common venue	3rd Most common venue	2nd Most common venue	1st Most common venue	Neighborhood	
Asian Restaurant	Sandwich Place	Brewery	Café	Pizza Place	Bakery	Coffee Shop	Vancouver- False Creek	1
Bubble Tea Shop	Ice Cream Shop	Burger Joint	Bakery	Park	Coffee Shop	Sushi Restaurant	Vancouver- Arbutus ridge	4
Café	Mexican Restaurant	Sushi Restaurant	Coffee Shop	Pizza Place	Bakery	Vietnamese Restaurant	Vancouver- Kingsway	5
Park	Pizza Place	Vietnamese Restaurant	Sushi Restaurant	Bakery	Brewery	Coffee Shop	Vancouver- Mount Pleasant	7
Board Shop	Pizza Place	Vegetarian / Vegan Restaurant	Restaurant	Yoga Studio	Bakery	Coffee Shop	Vancouver- Kitsilano	13
>								4

In [290]: #Cluster 3 vancouver_merged.loc[vancouver_merged['Cluster Labels'] == 2, vancouver_merged .columns[[0]+list(range(5, vancouver_merged.shape[1]))]]

Out[290]:

	Neighborhood	1st Most common venue	2nd Most common venue	3rd Most common venue	4 Most common venue	5 Most common venue	6 Most common venue	7 Most common venue
0	Vancouver- Downtown	Hotel	Dessert Shop	Coffee Shop	Restaurant	Sandwich Place	Plaza	Food Truck
9	Vancouver- Yaletown	Hotel	Italian Restaurant	Café	Yoga Studio	Japanese Restaurant	Park	Seafood Restaurant
10	Vancouver- West End	Hotel	Dessert Shop	Japanese Restaurant	Bakery	Food Truck	Park	Café
15	Vancouver- Burrard	Hotel	Dessert Shop	Food Truck	Japanese Restaurant	Sandwich Place	Coffee Shop	Plaza

In [291]: #Cluster 4 - outer district

vancouver_merged.loc[vancouver_merged['Cluster Labels'] == 3, vancouver_merged .columns[[0]+list(range(5, vancouver_merged.shape[1]))]]

Out[291]:

	Neighborhood	1st Most common venue	2nd Most common venue	3rd Most common venue	4 Most common venue	5 Most common venue	6 Most common venue	7 Most common venue	8 Mos commo venu
6	Vancouver- Langara	Bus Stop	Park	Bubble Tea Shop	Coffee Shop	Café	Liquor Store	Sandwich Place	Fie

In [292]:

vancouver_merged.loc[vancouver_merged['Cluster Labels'] == 4, vancouver_merged .columns[[0]+list(range(5, vancouver_merged.shape[1]))]]

Out[292]:

7 Mc comm ven	6 Most common venue	5 Most common venue	4 Most common venue	3rd Most common venue	2nd Most common venue	1st Most common venue	Neighborhood	
Groce Stc	Park	Asian Restaurant	Bus Station	Bus Stop	Chinese Restaurant	Vietnamese Restaurant	Vancouver- Renfrew- Collingwood	8
Piz Pla	Bubble Tea Shop	Bus Stop	Vietnamese Restaurant	Japanese Restaurant	Sushi Restaurant	Chinese Restaurant	Vancouver- Marpole	11
Sporti Goo Sh	Japanese Restaurant	Vietnamese Restaurant	Farmers Market	Café	Chinese Restaurant	Coffee Shop	Vancouver- Little Mountain	16
•								4

```
In [293]:
          #Cluster 6 - outer district
          vancouver_merged.loc[vancouver_merged['Cluster Labels'] == 5, vancouver_merged
          .columns[[0]+list(range(5, vancouver merged.shape[1]))]]
```

Out[293]:

	Neighborhood	1st Most common venue	2nd Most common venue	3rd Most common venue	4 Most common venue	5 Most common venue	6 Most common venue	7 Most common venue	8 Mc comm ven
3	Vancouver- Hastings	Theme Park Ride / Attraction	Park	Theme Park	Café	Sushi Restaurant	Coffee Shop	Soccer Field	Eve Spa
4									-

Cluster number 5 contains districts where a lot of Asian cuisine venues are already located, probably not a suitable area for the new restaurant due to increased competition over the same niche.

Based on cluster segmentation above, we learn that in cluster 3 the hotel category is the top venue, which might not be a right candidate for our restaurant.

Clusters data shows us that the number 1,4 and 6 clusters are outer districts, therefore might not want to setup the restaurant location around them.

Cluster number 2 is the largest cluster out of the total of 6. It contains many gastronomy related venues. They range from coffee shops, backeries, sushi and pizza places to various restaurants such as those with Vietnamese, Italian or mexican gastronomy. Based on this, we can advise the owner of the new restaurant to consider places inside this cluster as potential location. Cluster number 2 area is the one that the business would best benefit from. Districts inside this cluster are the best candidates due to its restaurant places but also due to its central location in down town part of the city where tourists are most interested visiting.

In []:	
In []:	