Отчёт по лабораторной работе 2

дисциплина: Математическое моделирование

Василиса Михайловна Крючкова, НПИбд-02-18

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	15

List of Tables

List of Figures

3.1	Положение катера и лодки в начальный момент времени	7
3.2	Разложение скорости катера на тангенциальную и радиальную со-	
	ставляющие	ç
3.3	Траектории движения катера и лодки. 1 случай	12
3.4	Траектории движения катера и лодки. 2 случай	13

1 Цель работы

Решить задачу о погоне, построить графики с помощью Python.

2 Задание

Вариант 41 На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 17,4 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,8 раза больше скорости браконьерской лодки.

- 1. Вывести дифференциальное уравнение, описывающее движение катера, с начальными условиями.
- 2. Построить траектории движения катера и лодки для двух случаев.
- 3. Определить точку пересечения катера и лодки.

3 Выполнение лабораторной работы

1. Вывод дифференциального уравнения

- 1.1. Принимаем за $t_0=0$, $x_0=0$ место нахождения лодки браконьеров в момент обнаружения, $x_0=17,4$ км место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 1.2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_0(\theta=x_0=0)$, а полярная ось r проходит через точку нахождения катера береговой охраны. (см. рис. 3.1)

Figure 3.1: Положение катера и лодки в начальный момент времени

1.3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой

охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

1.4. Чтобы найти расстояние х (расстояние, после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии х от полюса. За это время лодка пройдет x, а катер 17, 4-x (или 17, 4+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{17,4-x}{4,8v}$ (во втором случае $\frac{17,4+x}{4,8v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего(-их) уравнения(-й):

$$\frac{x}{v} = \frac{17, 4 - x}{4, 8v}$$

$$\frac{x}{v} = \frac{17, 4+x}{4,8v}$$

Тогда $x_1=\frac{5}{29}k=3$ (км), а $x_2=\frac{5}{19}k=\frac{87}{19}$ (км), задачу будем решать для двух случаев.

1.5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r – радиальная скорость и v_{τ} – тангенциальная скорость. (см. рис. 3.2)

Figure 3.2: Разложение скорости катера на тангенциальную и радиальную составляющие

Радиальная скорость – это скорость, с которой катер удаляется от полюса, $v_r=\frac{\partial r}{\partial t}.$ Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v_r=\frac{\partial r}{\partial t}=v.$

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости на радиус, $v_{ au}=r\frac{\partial \theta}{\partial t}$. Из рис. 3.2 по теореме Пифагора: $v_{ au}=\sqrt{23,04v^2-v^2}=\sqrt{22,04}v=\frac{\sqrt{551}}{5}v$, тогда получаем $r\frac{\partial \theta}{\partial t}=\frac{\sqrt{551}}{5}v$.

1.6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{\partial r}{\partial t} = v \\ r \frac{\partial \theta}{\partial t} = \frac{\sqrt{551}}{5} v \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{\partial r}{\partial \theta} = \frac{5r}{\sqrt{551}}$$

Решив это уравнение, я получу траекторию движения катера в полярных коор-

динатах. Начальные условия:

$$\begin{cases} \theta_0 = 0 \\ r_0 = x_1 = \frac{5}{29}k \end{cases}$$

$$\begin{cases} \theta_0 = 0 \\ r_0 = x_2 = \frac{5}{19}k \end{cases}$$

2. Построение траекторий движения катера и лодки

2.1. Написала программу на Python:

import math
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

k = 17.4fi = 3*math.pi/4

#функция, описывающая движение катера береговой охраны $def\ dr(r,\ tetha)$:

dr = 5*r/math.sqrt(551)
return dr

r01 = 5/29*k #1 случай r02 = 5/19*k #2 случай

te = np.arange(0, 2*math.pi, 0.01)

r1 = odeint(dr, r01, te)

```
r2 = odeint(dr, r02, te)
#функция, описывающая движение лодки браконьеров
def xt(t):
   xt = math.tan(fi)*t
   return xt
t = np.arange(0, 20, 1)
#Перевод в полярные координаты
tete = (np.tan(xt(t)/t))**-1
rr = np.sqrt(t*t + xt(t)*xt(t))
#построение траектории движения катера в полярных координатах. 1 случай
plt.polar(te, r1, 'g')
#построение траектории движения лодки в полярных координатах
plt.polar(tete, rr, 'b')
#построение траектории движения катера в полярных координатах. 2 случай
plt.polar(te, r2, 'g')
#построение траектории движения лодки в полярных координатах
plt.polar(tete, rr, 'b')
```

2.2. Получила следующие графики:(см. рис. 3.3 и 3.4)

Figure 3.3: Траектории движения катера и лодки. 1 случай

Figure 3.4: Траектории движения катера и лодки. 2 случай

3. Точка пересечения

3.1. Для определения точки пересечения я добавила в конце программы:

```
#для 1 случая
idx = np.argwhere(np.diff(np.sign(rr - r1))).flatten()
print (tete[-1])
print (rr[idx[-1]])

#для 2 случая
idd = np.argwhere(np.diff(np.sign(rr - r2))).flatten()
print (tete[-1])
print (rr[idd[-1]])
```

3.2. В итоге я получила, что в 1 случае точка пересечения: $\theta = -0.6420926159343304, r =$

11.313708498984761, а во 2 случае: $\theta=-0.6420926159343304, r=16.970562748477143.$

4 Выводы

Решила задачу о погоне, построила графики с помощью Python.