

Survey data analysis – week 14 Data integration

Peter Lugtig - p.lugtig@uu.nl

TSE is focused on error (accuracy + precision)

Data quality framework of Biemer and Lyberg (2003)

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

Quality is "fitness for use"

Biemer, P. P., & Lyberg, L. E. (2003). Introduction to survey quality. John Wiley & Sons.

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

The degree of confidence that users place in data products based on their image of the data provider.

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

There is clear data documentation (metadata) so that we understand what data is about

	A	В	C	D	E
1	Human	Traffic	cking Survey		
2					
3	ID#	Q1	Q2	Q3 Routes	Q3 Origins
4	101	Yes	Reports	Yes	Yes
5	102	Yes	Reports	Yes	Yes
6	103	Yes	Advocacy	No	No
7	104	No			
8	105	Yes	Grants	Yes	Yes
9	106	Yes	Reports	Yes	Yes
10	107	Yes	Sharing	Yes	Yes
11	108	Yes	GIS	No	Yes
12	109	No			
13	110	Yes	Grants	Yes	No
14	111	Yes	Reports	Yes	Yes
15	112	Yes	Other	No	No
16	113	No			
17		10			

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

The Netherlands HealthRI data access process

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

European Social Survey methodology overview

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

- Data of high quality has....
 - Credibility
 - Comparability
 - Interpretability
 - Accessibility
 - Relevance
 - Timeliness
 - Completeness
 - Accuracy
 - Coherence

Common definitions, classifications, and methodological standards (often over time)

Teen Internet Activities						
Do you ever?	Online Teens (n=886)					
Go to websites about movies, TV shows, music groups, or sports stars	81%					
Get information about news and current events	77					
Send or receive instant messages (IMs)	68					
Watch video sharing site	57					
Use an online social networking site like MySpace or Facebook	55					
Get information about a college or university you are thinking of attending	55					
Play computer or console games online	49					
Buy things online, such as books, clothes, and music	38					
Look for health, dieting, or physical fitness information	28					
Download a podcast	19					
Visit chatrooms	18					

Source: Pew Internet & American Life Project Survey of Parents and Teens, October-November 2006. Margin of error for teens is $\pm 4\%$.

What has changed in the big data landscape?

- More sources
 - Administrative data
 - Survey data
 - Sensor data (phones, IoT)
 - Digital trace data
 - Organic (aka big) data
 - Non-prob surveys
- Each with it's own problems
- Not one methodology for how to do data integration
 - Approach is always statistic-specific

The idea of data integration

Work around a shortcoming of one source with another one

- Credibility
- Comparability
- Interpretability
- Accessibility
- Relevance
- Timeliness
- Completeness
- Accuracy
- Coherence
- Multi-source statistics (de Waal, van Delden, Scholtus, 2020; or Zhang, 2012)

Multi-source statistics

4 dimensions

- 1. Units (sample, population)
- 2. Measurement (same, different)
- 3. Time dimension (same, different)
- 4. Level of aggregation (micro, or macro)

Can be combined

De Waal, T., van Delden, A., & Scholtus, S. (2020). Multi-source statistics: basic situations and methods. *International Statistical Review*, 88(1), 203-228.

A lot of examples of data integration

Question with every application:

Dimension 1: Multiple frames (to cover population)

Dimensions 1,2: same measurements, different units

- Integrate smal probability based survey with
- Larger non-probability one
- Later guest lecture by Camilla Salvatore

Dimensions 1,2: Same units, different measurements

- Link 2 or more microdatasets of same individual
 - Data linkage (admin data)
 - Sampling frame information and survey data
 - Enriching surveys with administrative data

Dimensions 1,2: Same units, different measurements

- Link 2 or more microdatasets of same individual
 - Designed big data
 - Lecture week 10

Dimension 2,3: measurement, time

Reasons for Moving in 2022 (HireAHelper Survey)

% more people moving for a given reason (Source: HireAHelper Customer Survey)

Dimensions 2,4: Same measurement, different aggregation

Use microdata + same statistic at aggregate levels

- Use population statistics for weighting/calibration
- Validate and asses accuracy of survey data
 - E.g. Sensitive questions

Dimensions 3,4: different levels of aggregation

Use national survey data with local administrative data to make predictions at local level

Small area estimation

Multilevel logistic regression models

$$Logit(p_{ij}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_v x_v + u_i$$

Where β_0 is the 'intercept' and, β_1 to β_p are the coefficients of the p explanatory variables

Data Integration and nonprobability samples: Key concepts

Camilla Salvatore

c.salvatore@uu.nl

Revising key concepts: Probability vs nonprobability samples

Probability samples (PS)

Allow inferences to the general population

Can you think about some good characteristics and statistical issues?

Non-Probability samples (NPS)

Drawing inference is hard or not possible

Can you think about some good characteristics and statistical issues?

Revising key concepts: Probability vs nonprobability samples

Probability samples (PS)

Allow inferences to the general population

- High data quality
- Rely on sampling theory
- Design/Model based inference
- Falling response rate, time-consuming, expensive

Non-Probability samples (NPS)

Drawing inference is hard or not possible

- More affordable, timely, convenient, new aspects of phenomena
- No unified inferential framework
- Unknown selection mechanism:
 - Self-selection → selection bias (SB)
 - Diverse: NPS surveys, digital traces

Integrating PS and NPS data (Salvatore, 2023; Rao, 2021; Cornesse et al., 2020):

- Improve inference reducing also the costs of analysis
- Study new aspects not measured by traditional surveys

Revising key concepts: Probability vs nonprobability samples

Comparing PS and NPS estimates (Pasek, 2016):

- Finite population estimates tend to be more dissimilar than correlations and regression coefficients
- No consensus about whether and in which cases differences will be notable

Two inferential approaches (Rao, 2020):

Adjusting for SB with auxiliary data

Blending PS and NPS

Two principles of Data Integration (DI)

Any ideas? Insights from previous lectures/discussions?

Two principles of Data Integration (DI)

1. DI is statistics and purpose specific

How do we integrate data?

- Finite population and analytic inference
- Structured and unstructured data
- Composite indicators
- Variables are available in all sources or only in some
- One source is used as a supplement or to correct for selection bias
- Combining different sources to improve measurement

Two principles of Data Integration (DI)

1. DI is statistics and purpose specific

How do we integrate data?

- Finite population and analytic inference
- Structured and unstructured data
- Composite indicators
- Variables are available in all sources or only in some
- One source is used as a supplement or to correct for selection bias
- Combining different sources to improve measurement

2. DI is a puzzle

Why data integration?

Timeliness New aspects Selection Bias Lower quality

High quality Coverage Small size

Enhancing analytic inference while reducing the costs: a Bayesian data integration approach

Camilla Salvatore

c.salvatore@uu.nl

The research paper

Journal of Survey Statistics and Methodology (2023) 00, 1-35

BAYESIAN INTEGRATION OF PROBABILITY AND NONPROBABILITY SAMPLES FOR LOGISTIC REGRESSION

CAMILLA SALVATORE (3)*
SILVIA BIFFIGNANDI
JOSEPH W. SAKSHAUG
ARKADIUSZ WIŚNIOWSKI (5)
BELLA STRUMINSKAYA

https://doi.org/10.1093/jssam/smad041

The context

Problem

A researcher is interested in making inferences from a PS survey but cannot afford a large sample size

The context

Problem

A researcher is interested in making inferences from a PS survey but cannot afford a large sample size

Alternatives

- 1. Reduce the sample size: small PS → large variance but theoretically unbiased estimates
- 2. Opt for a NPS: bias but low variance

Our proposal

The data integration puzzle

Our proposal

The data integration puzzle

Our proposal

The data integration perspective

- Integrate small PS + larger NPS
- to improve inference on logistic regression coefficients
- under the **Bayesian** framework
- reducing survey costs

Inference

- Based on small PS data (unbiased, high variance)
- Incorporation of biased NPS data into the estimation process (low variance)
- Posterior estimates are likely to have more bias than PS estimates but possibly less variance (bias/var trade off)

Two aims

1. Enhance inference (MSE)

- Baseline situation: analysis of small PS only (gold standard)
- Data Integration: can we reduce MSE with respect to the baseline situation?

2. Reduce survey costs

• Can we obtain at a **lower cost** the same **MSE** that we would obtain analyzing a much larger and costly PS only survey?

Two aims

- Selection scenarios & level of SB
- **1.** Enhance inference (MSE) \rightarrow Simulation & Real Data Analysis \rightarrow Outcome variables
 - Baseline situation: analysis of small PS only (gold standard) PS and NPS sizes
 - Data Integration: can we reduce MSE with respect to the baseline situation?

- 2. Reduce survey costs → Cost Analysis → Interactive Shiny App
 - Can we obtain at a lower cost the same MSE that we would obtain analyzing a much larger and costly PS only survey?

What is Bayesian statistics?

Thomas Bayes

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

What is Bayesian statistics?

Some differences with the frequentist approach

- Bayesian: parameters are random variables
- Frequentist: parameters are non-random. Randomness is introduced by sampling
- In Bayesian statistics prior belief play a fundamental role (subjective approach):
 - We start with a prior belief (prior to looking at the data) and we update it using the data → we obtain the posterior

What is Bayesian statistics?

$$p(\theta|x) = p(D|x) \times p(\theta)/p(D)$$
Posterior Likelihood Prior Marginal
$$\downarrow$$

$$p(\theta|x) \propto p(D|x) \times p(\theta)$$

Why Bayesian? (Kruschke, 2014; Gelman et al., 2013)

- Natural choice to integrate data with varying levels of quality
- Its structure can be exploited in order to incentivize high-quality data

Why Bayesian? (Kruschke, 2014; Gelman et al., 2013)

- Natural choice to integrate data with varying levels of quality
- Its structure can be exploited in order to incentivize high-quality data

The prior is based on NPS. How much it should influence the inference?

We borrow information based on the similarity between PS and NPS

Research structure

• <u>Background:</u> Sakshaug et al (2019) and Wisniowski et al. (2020) papers (Continuous outcome variable)

Part I – Simulation study (100 repetitions)

- Different selection scenarios, prior specifications, PS and NPS sizes
- Evaluate the performance of several informative priors against a PS-ONLY one in terms of MSE

Part II - Real data analysis

- American Trend Panel + 9 parallel NPS surveys
- Shiny app with interactive cost analysis

Priors

PS-ONLY (No data integration)

- A weakly informative prior proposed by Gelman et al. (2008)
- Control prior against which compare data integration results

$$\beta_i \sim Student(\nu = 3, \mu = 0, s = 2.5)$$
 for j=0,1,2

Informative priors: integrating PS and NPS data

Distances priors: The influence of the prior depends on the difference between ML estimates

The Basic distance prior

$$\beta_j \sim \mathcal{N}(\widehat{\beta_{NP}}, |\widehat{\beta_P} - \widehat{\beta_{NP}}|)$$

Informative priors: integrating PS and NPS data

Distances priors: The influence of the prior depends on the difference between ML estimates
The **Distance Log Prior**

$$eta_{j} \sim \mathscr{N}\left(\widehat{eta_{j}}_{ ext{NPS}}, \sqrt{rac{1}{\log(n_{ ext{NPS}})} \cdot ext{max}\left(ig(\widehat{eta_{j}}_{ ext{PS}} - \widehat{eta_{j}}_{ ext{NPS}}ig)^{2}, \widehat{\sigma}_{eta_{j}}^{2} ext{NPS}
ight)}
ight).$$

The Distance Log 10 Prior (wider distribution)

$$eta_j \sim \mathscr{N}\left(\widehat{eta_j}_{ ext{NPS}}, \sqrt{rac{1}{\log_{10}(n_{ ext{NPS}})} \cdot ext{max}\left(\left(\widehat{eta_j}_{ ext{PS}} - \widehat{eta_j}_{ ext{NPS}}
ight)^2, \widehat{\sigma}_{eta_j ext{NPS}}^2
ight)}
ight).$$

Mixed distance priors: Baseline prior for β_0 and distances priors for other coefficients

Informative priors: integrating PS and NPS data

Power prior (Ibrahim et al., 2000)

$$\pi(oldsymbol{eta},a|D_{NP}) \propto L(oldsymbol{eta}|D_{NP})^a\pi_0(oldsymbol{eta})$$
Power prior Likelihood NPS
Baseline prior

Likelihood NPS

How much do we borrow from NPS?

The power parameter "a":

1 = full borrowing

0 = no borrowing

- We select it dynamically based on the similarity between PS and NPS
- We are working on different measures but for now:
- It is the p-value of the Hotelling t-test for the difference between $oldsymbol{eta_{P}}$ and $oldsymbol{eta_{NP}}$)

Results: selected cases - Beta1

Results: selected cases

300 PS size

0.40

0.20

- mechanism)
- Low SB and small PS: large improvements in **MSE**

High Bias MIX

Application: the data

PS data – American Trends Panel (ATP)

- Pew Research Center's nationally representative online survey panel
- Sample size: 3000 units \rightarrow PS \in (50, 100, 150, 200, 500)

NPS data - 9 parallel online NPS from different vendors

- Vendors implemented quota sampling with different quota variables (demographic vs webographic)
- Sample size of about 1000 respondents

Outcome variables: Smoking, Always vote, Neighborhood Trust, Neighborhood Safety, Healthcare coverage, Volunteering

Covariates: Age, gender, education, survey weight

Comparing proportions

Comparing proportions

Comparing coefficients: an example with *Always vote*

Comparing coefficients: an example with *Always vote*

Comparing coefficients: an example with *Always vote*

Results: an example with *Smoking*

Reduction in MSE is driven by a reduction in the variability

Results: an example with *Smoking*

Reduction in MSE is driven by a reduction in the variability

Cost Analysis

Results

- PS costs ≥ 3 times NPS costs: best performing INF priors yield significant cost savings ≈ 70%
- PS costs = 2 times NPS costs: cost savings are marginal or negative

Interactive Analysis: Shiny App

https://bayesdataintegration.shinyapps.io/shiny_bayes_data_integration/

Take aways

- Survey researchers face **budgetary** and **time constraints** → fielding large size PS is difficult
- Small PS yield large variances for survey estimates
- Our approach offers a **practical solution** to improve analytic inference (reduced variances and MSEs) while **lowering survey costs**
- Shiny App: facilitate researchers interested in designing and integrating parallel PS and NPS

Some thoughts:

- 1. Do you think integrating various data types will become crucial for surveys research (& Official Stat.)?
- 2. What do you think about integrating surveys and digital trace (big) data?

Group exercise (40 min)

- 25 min group work + 5 min discussion per group
- 6 groups:
 - Group 1: Smoking
 - Group 2: Always vote
 - Group 3: Volunteering
 - Group 4: Neighborhood Safety
 - Group 5: Healthcare coverage
 - Group 6: Neighborhood Trust
- Shortly present your findings to others
- Points of discussion in the next slides (you can decide to address them all or only the most relevant for your case)

Group exercise (40 min)

- Open the Shiny App and go to Real Data Analysis
- In Data/Additional plots look at the variables of interest:
 - Are there differences across NPS? Which NPS do you think is better?
 - Are PS and NPS estimates similar?
- In Data/Results look at the variables of interest:
 - Is there a bias/variance trade off?
 - Are there differences across NPS? Which NPS you think is better?
 - Which prior works better and under which conditions (ex. PS or NPS size)?
- In Data/Cost Analysis/Max savings look at the variables of interest (use the search tool)
 - Which is the best NPS in terms of savings if the PS cost is 6 times the NPS cost (the default in the app)?
 - Does the result change according to the PS size?

References

- Salvatore, C., Biffignandi, S., Sakshaug, J. W., Wiśniowski, A., & Struminskaya, B. (2023). Bayesian Integration of Probability and Nonprobability Samples for Logistic Regression. *Journal of Survey Statistics and Methodology*, https://doi.org/10.1093/jssam/smad041
- Salvatore, C. (2023). Inference with non-probability samples and survey data integration: a science mapping study. *Metron*, 1-25. https://doi.org/10.1007/s40300-023-00243-6
- Sakshaug, J. W., Wiśniowski, A., Ruiz, D. A. P., & Blom, A. G. (2019). Supplementing small probability samples with nonprobability samples: A Bayesian approach. *Journal of Official Statistics*, *35*(3), 653-681.
- Wiśniowski, A., Sakshaug, J. W., Perez Ruiz, D. A., & Blom, A. G. (2020). Integrating probability and nonprobability samples for survey inference. *Journal of Survey Statistics and Methodology*, *8*(1), 120-147.
- Cornesse, C., Blom, A. G., Dutwin, D., Krosnick, J. A., De Leeuw, E. D., Legleye, S., ... & Wenz, A. (2020). A review of conceptual approaches and empirical evidence on probability and nonprobability sample survey research. *Journal of Survey Statistics and Methodology*, 8(1), 4-36.
- Beaumont, J. F., & Rao, J. N. K. (2021). Pitfalls of making inferences from non-probability samples: Can data integration through probability samples provide remedies? Surv. *Stat*, *83*, 11-22.
- Rao, J. N. K. (2021). On making valid inferences by integrating data from surveys and other sources. Sankhya B, 83, 242-272.
- Pasek, J. (2016). When will nonprobability surveys mirror probability surveys? Considering types of inference and weighting strategies as criteria for correspondence. *International Journal of Public Opinion Research*, 28(2), 269-291.
- Ibrahim, J. G., & Chen, M. H. (2000). Power prior distributions for regression models. *Statistical Science*, 46-60.

References

- Biemer, P. P., & Lyberg, L. E. (2003). Introduction to survey quality. John Wiley & Sons.
- De Waal, T., van Delden, A., & Scholtus, S. (2020). Multi-source statistics: basic situations and methods. *International Statistical Review*, 88(1), 203-228.
- Ilic, G., Schouten, J.G., Lugtig, P., Mulder, J., Streefkerk, M., Kumar, and P. Höcük, S. (2022). <u>Pictures instead of survey questions: An experimental investigation of the feasibility of using pictures in a housing survey</u>. JRSS:A.
- McCool, D., Schouten, J.G. & Lugtig, P. (2021). An app-assisted travel survey in official statistics. Possibilities and challenges. *Journal of Official Statistics*
- van Delden, A., Scholtus, S., de Waal, T., & Csorba, I. (2023). Methods for estimating the quality of multisource statistics. *Advances in Business Statistics, Methods and Data Collection*, 781-804.
- Wiśniowski, A., Sakshaug, J. W., Perez Ruiz, D. A., & Blom, A. G. (2020). Integrating probability and nonprobability samples for survey inference. Journal of Survey Statistics and Methodology, 8(1), 120-147.