CSC236 Week 11: Recurrences...

Hisbaan Noorani

November 25 – November 1, 2021

Contents

1	Merge sort complexity, a sketch	1
	T is non-decreasing, see Course Notes Lemma 3.6	1
3	Prove $T \in \mathcal{O}(n \log_2(n)$ for the general case	2
4	Divide-and-conquer general case 4.1 Divide-and conquer Master Theorem 4.2 Apply the master theorem 4.2.1 Merge sort 4.2.2 Binary search	•
5	Multiply lots of bits 5.1 Divide and recombine	
1	Merge sort complexity, a sketch 1. Derive a recurrence to express worst-case run times in terms of $n = A $:	

$$T(n) = \begin{cases} c' & \text{if } n = 1\\ T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n & \text{if } n > 1 \end{cases}$$

2. Repeated substitution/unwinding in special case where $n=2^k$ for some natural number kleads to:

$$T(2^k) = 2^k T(1)k2^k = c'n + n\log_2(n)$$

We can neglect the c'n term since it is of a lower order so we make the conjecture, $T(2^k) \in$ $\Theta(n \log_2(n)).$

- 3. Prove T is non-decreasing (see Course Notes Lemma 3.6)
- 4. Prove $T \in \mathcal{O}(n \log_2(n))$ and $T \in \Omega(n \log_2(n))$

T is non-decreasing, see Course Notes Lemma 3.6

Exercise: prove the recurrence for binary search is non-decreasing...

Let $\hat{n} = 2^{\lceil \log_2(n) \rceil}$. We want to sandwich T(n) between successive powers of 2.

$$\lceil \log_2(n) \rceil - 1 < \log_2(n) \le \lceil \log_2(n) \rceil$$

$$2^{\lceil \log_2(n) \rceil - 1} < n \le 2^{\lceil \log_2(n) \rceil}$$

$$\frac{\hat{n}}{2} < n \le \hat{n}$$

As an aside, try working out for $n \in \{1, 2, 3, 4, 5, 6, 7, 8\}$.

The remainder of this proof can be found in the Vassos' notes, Lemma 3.6.

3 Prove $T \in \mathcal{O}(n \log_2(n))$ for the general case

Let $d \in \mathbb{R}^+ = 2(2+c)$. Let $B \in \mathbb{R}^+ = 2$. Let $n \in \mathbb{N}$ no smaller than B.

$$T(n) \leq T(\hat{n}) \qquad \qquad \text{(since T is non-decreasing and $n \leq \hat{n}$)}$$

$$= \hat{n} \log_2(\hat{n}) + c\hat{n} \qquad \qquad \text{(by the unwinding)}$$

$$< 2n \log_2(2n) + c \cdot 2n \qquad \qquad \text{(since $\hat{n} < 2n$ and \log_2 is non-decreasing)}$$

$$= 2n(\log_2(2) + \log_2(n)) + 2cn$$

$$= 2n((1+c)\log_2(n) + \log_2(n)) \qquad \qquad \text{(log}_2(n) \geq \log_2(2) = 1, \text{ since $n \geq B$)}$$

$$= 2n(\log_2(n))(1+1+c)$$

$$= 2n(\log_2(n))(2+c)$$

$$= 2n \log_2(n) + 2n(1+c)$$

$$= dn \log_2(n) \qquad \qquad \text{(since $d = 2$ (2+c))}$$

This proves that T is bounded above by some constant times $n \log_2(n)$.

Note: in proving Ω , you will want to use the fact that $\frac{n}{2} \leq \frac{\hat{n}}{2}$.

4 Divide-and-conquer general case

Divide-and-conquer algorithms: partition a problem into b roughly equal sub-problems, solve, and recombine.

$$T(n) = \begin{cases} k & \text{if } n \leq B \\ a_1 T\left(\left\lceil \frac{n}{b}\right\rceil\right) + a_2 T\left(\left\lfloor \frac{n}{b}\right\rfloor\right) + f(n) & \text{if } n > B \end{cases}$$

Where $b, k > 0, a_1, a_2 \ge 0$, and $a = a_1 + a_2 > 0$. f(n) is the cost of splitting and recombining. b is the number of pieces we divide the problem into.

a is the number of recursive calls.

f is the cost of splitting and recombining, we hope $f \in \Theta(n^d)$.

4.1 Divide-and conquer Master Theorem

If f from the previous slide has $f \in \Theta(n^d)$

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log_b n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

Note: the complexity is sensitive to a (the number of recursive calls) and d (the degree of polynomial for splitting and recombining).

There are three steps to the proof of the Master Theorem. They are exactly parallel to the Merge Sort proof.

- 1. Unwind the recurrence, and prove a result for $n = b^k$. The unwinding is only valid for special values of n.
- 2. Prove that T is non-decreasing. See the course notes for details on how to do this.
- 3. Extend to all n, similar to Merge Sort. This is the easiest step, recall the technique with \hat{n} .

4.2 Apply the master theorem

4.2.1 Merge sort

a = b = 2, d = 1. So the complexity is $\Theta(n^1 \log_2 n)$.

4.2.2 Binary search

 $a=1,\ b=2,\ d=1.$ So the complexity is $\Theta(n^0 \log_2 n)$.

5 Multiply lots of bits

Machines are usually able to multiply able to process integers of machine size (64-bit, 32-bit, etc.) in constant time. But what if they don't fit into machine instruction? This process takes a longer time:

Let n be the number of bits of the numbers we are multiplying. We make n copies, and have n additions of 2 n-bit numbers. So the complexity of this "algorithm" is $\Theta(n^2)$.

5.1 Divide and recombine

Recursively, $2^n = n$ left-shifts, and addition/subtractions are $\Theta(n)$.

$$\begin{array}{ccc} 11 & 01 \\ \times 10 & 11 \end{array}$$

Let x_0 be the top left of this table, x_1 be the top right, y_0 be the bottom left, y_1 be the bottom right.

$$xy = (2^{\frac{n}{2}}x_1 + x_0)(2^{\frac{n}{2}}y_1 + y_0)$$
$$= 2^n x_1 y_1 + 2^{\frac{n}{2}}(x_1 y_0 + x_0 y_1) + x_0 y_0$$

The time complexity of this can be broken down as follows:

- 1. Divide each factor (roughly) in half (b = 2).
- 2. Multiply the halves (recursively, if they're too big) (a = 4).
- 3. Combine he products with shifts and adds (linear in number of bits).

According to the master theorem, since we have $a=4,\ b=2,\ d=1$, the time complexity of this algorithm is $\Theta(n^{\log_2 4}) = \Theta(n^2)$.

5.2 Gauss's Trick

Gauss rewrote the multiplication of x and y as follows, to reduce the number of individual calculations by making some of the multiplications repeat themselves.

$$xy = 2^{n}x_{1}y_{1} + 2^{\frac{n}{2}}x_{1}y_{1} + 2^{\frac{n}{2}}((x_{1} - x_{0})(y_{0} - y_{1}) + x_{0}y_{0}) + x_{0}y_{0}$$

Repeated products can be stored after the first calculation, so they don't need to be calculated multiple times. So, not we have just 3 multiplications, at the cost of 2 more subtractions and one more addition. Since addition and subtractions are linear in the number of bits, this greatly reduces the complexity.

So now, using the master theorem, since a=3, b=2, d=1, the time complexity of this algorithm is $\Theta(n^{\log_2 3}) = \Theta(n^{1.5894})$. This is, in fact, better that $\Theta(n^2)$, even if not by much.