En verden av polynomer

Jon-Magnus Rosenblad

13. Mars, 2024

Polynomer

Nullpunkter og røtter

Rasjonale røtter

Polynomer i flere variable

Hva er et polynom?

Hva er et polynom?

Definisjon

$$a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$

hvor a_0, a_1, \ldots, a_n er skalarer (varierer ikke med x).

- ▶ $a_0, \ldots, a_n \rightsquigarrow koeffisienter$. Kan til eksempel være i $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- x → indeterminant eller variabel.
- ▶ største *n* slik at $a_n \neq 0 \rightsquigarrow graden \ n = \deg p$.

Et polynom kalles *monisk* om $a_n = 1$.

Mengden av polynomer med Reelle koeffisienter med indeterminant x benevnes $\mathbb{R}[x]$.

Eksempler

Eksempel

- ▶ $p(x) = x^2 + 3x + 2$ er et polynom i $\mathbb{R}[x]$. Det er også et polynom i $\mathbb{Z}[x]$. Det er monisk.
- ightharpoonup p(x) = (x+1)(x+2) er et polynom.
- ▶ $q(t) = \frac{t^2 + 3t + 2}{t + 1}$ er et polynom av grad 1, \rightsquigarrow det kan skrives som t + 2. Det ligger i $\mathbb{Z}[t]$.

Eksempel (Ikke-polynomer)

▶ $p(x) = \frac{x^2 + 3x + 2}{x - 1}$ er ikke et polynom, \rightsquigarrow polynomdivisjon gir

$$\frac{x^2 + 3x + 2}{x - 1} = x + 4 + \frac{6}{x - 1}$$

 $ightharpoonup p(x) = 3^x$ er ikke et polynom.

Koeffisienter

Algebraens fundamentalteorem

Definisjon

Et tall x_0 kalles en rot til polynomet p(x) om $p(x_0) = 0$.

Teorem (Algebraens fundamentalteorem 1)

Et polynom p av grad n har ikke flere enn n røtter.

Algebraens fundamentalteorem

Definisjon

Et tall x_0 kalles en *rot* til polynomet p(x) om $p(x_0) = 0$.

Teorem (Algebraens fundamentalteorem 1)

Et polynom p av grad n har ikke flere enn n røtter.

▶
$$p(x) = x^2 + 4x - 5$$
 har to røtter: 1, -5.

Algebraens fundamentalteorem

Definisjon

Et tall x_0 kalles en rot til polynomet p(x) om $p(x_0) = 0$.

Teorem (Algebraens fundamentalteorem 1)

Et polynom p av grad n har ikke flere enn n røtter.

- ▶ $p(x) = x^2 + 4x 5$ har to røtter: 1, -5.
- ▶ $p(x) = x^2 + 4x + 5$ har ingen reelle røtter.

Faktorisering av polynomer

Lemma

Om $p(x_0) = 0$, så kan vi faktorisere p som $p(x) = (x - x_0)q(x)$ for et polynom q.

Faktorisering av polynomer

Lemma

Om $p(x_0) = 0$, så kan vi faktorisere p som $p(x) = (x - x_0)q(x)$ for et polynom q.

La
$$p(x) = x^3 + 6x^2 + 7x + 6$$
 har rot -2 , så $(x+2)|p(x)$.

$$q(x) = \frac{p(x)}{x+2} = x^2 + 2x + 3$$

Irredusible polynomer

Definisjon

Et polynom p kalles *irredusibel* om det går an å faktorisere i (ikke-konstante) polynomer.

Bemerkning

Her er det viktig at vi skiller mellom om polynomet er over $\mathbb{Z},\mathbb{Q},\mathbb{R}$ eller $\mathbb{C}!$

Irredusible polynomer

Definisjon

Et polynom p kalles *irredusibel* om det går an å faktorisere i (ikke-konstante) polynomer.

Bemerkning

Her er det viktig at vi skiller mellom om polynomet er over $\mathbb{Z},\mathbb{Q},\mathbb{R}$ eller $\mathbb{C}!$

- $x^2 2 = (x \sqrt{2})(x + \sqrt{2})$ er irredusibel over \mathbb{Q} , men ikke over \mathbb{R} .
- ▶ $x^2 + 1 = (x i)(x + i)$ er irredusibel over \mathbb{R} , men ikke over \mathbb{C} . ("Tallet" i er definert som $\sqrt{-1}$.)
- $x^2 2\sqrt{2}x + 2 = (x \sqrt{2})^2$ er irredusibelt over \mathbb{Q} , men det er ikke heller et polynom over \mathbb{Q} .

Polynomer over $\mathbb C$

Definisjon

De $komplekse\ tallene\ \mathbb{C}$ er mengden av alle mulige røtter av polynomer med koeffisienter i de reelle tallene \mathbb{R} .

Faktum

Det holder å legge til tallet i = $\sqrt{-1}$ til $\mathbb R$ for å få tak i alle røtter!

Algebraens fundamentalteorem over \mathbb{C}

Teorem (Algebraens fundamentalteorem)

Et polynom p av grad n med komplekse koeffisienter kan faktoriseres på formen

$$a_n(x-x_1)\dots(x-x_n).$$

En slik faktorisering er unik opp til permutasjon av faktorene.

Algebraens fundamentalteorem over $\mathbb C$

Teorem (Algebraens fundamentalteorem)

Et polynom p av grad n med komplekse koeffisienter kan faktoriseres på formen

$$a_n(x-x_1)\ldots(x-x_n).$$

En slik faktorisering er unik opp til permutasjon av faktorene.

Korollar

Et polynom p av grad n med reelle koeffisienter kan faktoriseres på formen

$$p = p_1 \dots p_m$$

hvor p_1, \ldots, p_m er polynomer av grad høyst 2.

Algebraens fundamentalteorem over $\mathbb C$

Teorem (Algebraens fundamentalteorem)

Et polynom p av grad n med komplekse koeffisienter kan faktoriseres på formen

$$a_n(x-x_1)\ldots(x-x_n).$$

En slik faktorisering er unik opp til permutasjon av faktorene.

Korollar

Et polynom p av grad n med reelle koeffisienter kan faktoriseres på formen

$$p = p_1 \dots p_m$$

hvor p_1, \ldots, p_m er polynomer av grad høyst 2.

Bemerkning

Vi kan ikke alltid finne alle røttene til et polynom. Det beste vi kan håpe på er en faktorisering i irredusible polynomer.

Faktorisering av reelle polynomer

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

$$= (x - 1)\left(x + \frac{1 + i\sqrt{3}}{2}\right)\left(x + \frac{1 - i\sqrt{3}}{2}\right)$$

Faktorisering av reelle polynomer

$$x^{3} - 1 = (x - 1)(x^{2} + x + 1)$$

$$= (x - 1)\left(x + \frac{1 + i\sqrt{3}}{2}\right)\left(x + \frac{1 - i\sqrt{3}}{2}\right)$$

$$x^{4} + 1 = (x^{2} + 2\sqrt{2} + 1)(x^{2} - 2\sqrt{2} + 1)$$

$$= \left(x - \frac{\sqrt{2} + i\sqrt{2}}{2}\right)\left(x - \frac{\sqrt{2} - i\sqrt{2}}{2}\right)$$

$$\left(x + \frac{\sqrt{2} + i\sqrt{2}}{2}\right)\left(x + \frac{\sqrt{2} - i\sqrt{2}}{2}\right)$$

Kompleks-konjugering

Definisjon

La z=a+ib være et komplekst tall, med $i=\sqrt{-1}$. Definer den komplekskonjugerte av z som $\overline{z}=a-ib$.

La z = a + ib og w = c + id.

$$\overline{(z+w)} = (a+c) - i(b+d).$$

$$= \overline{z} + \overline{w}$$

Kompleks-konjugering

Definisjon

La z=a+ib være et komplekst tall, med $i=\sqrt{-1}$. Definer den komplekskonjugerte av z som $\overline{z}=a-ib$.

La z = a + ib og w = c + id.

$$\overline{(z+w)} = (a+c) - i(b+d).$$

$$= \overline{z} + \overline{w}$$

$$\overline{zw} = (ac - bd) - i(ad + bc).$$

$$= \overline{z} \cdot \overline{w}$$

$$\overrightarrow{(x^n)} = \overline{x} \cdot \overline{(x^{n-1})} = \overline{x}^n$$
ved induksjon.

$$\rightsquigarrow \overline{p(x)} = p(\overline{x}).$$

Bevis av korollar.

Om $p(x_0) = 0$ for et komplekst tall $x_0 = a + ib$, så må $p(\overline{x_0}) = \overline{0} = 0$, så $(x - x_0)(x - \overline{x_0})|p(x)$.

$$(x - x_0)(x - \overline{x_0}) = x^2 - (x_0 + \overline{x_0})x + x_0\overline{x_0}$$

= $x^2 - 2ax + (a^2 + b^2)$.

Hvordan finne polynomrøtter?

Lemma

Et polynom på formen $ax^2 + bx + c$ har røtter gitt ved

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Hvordan finne polynomrøtter?

Lemma

Et polynom på formen $ax^2 + bx + c$ har røtter gitt ved

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Faktum

Det finnes en tilsvarende formel for polynomer av grad 3 og 4.

Hvordan finne polynomrøtter?

Lemma

Et polynom på formen $ax^2 + bx + c$ har røtter gitt ved

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Faktum

Det finnes en tilsvarende formel for polynomer av grad 3 og 4.

Teorem (Niels Henrik Abel – en nordmann)

Det finnes ingen formel for å finne røttene til et generelt polynom av grad 5 eller høyere.

Telle antall røtter

Algebraens fundamentalteorem forteller oss at vi kan skrive

$$p = p_1 \dots p_m$$

hvor $\deg p_i$ er 1 eller 2, og $\deg p = \deg p_1 + \cdots + \deg p_m$.

Telle antall røtter

Algebraens fundamentalteorem forteller oss at vi kan skrive

$$p = p_1 \dots p_m$$

hvor $\deg p_i$ er 1 eller 2, og $\deg p = \deg p_1 + \cdots + \deg p_m$.

Korollar

Et polynom av odd grad har minst én reell rot.

Bevis 1.

Minst ett av polynomene p_1, \ldots, p_m må være lineært.

Skjæringssetningen

Lemma

La p(x) være et polynom. Om det finnes reelle tall a og b slik at a < b, p(a) < 0 og p(b) > 0, så finnes et tall c slik at a < c < b og p(c) = 0.

Bevis 2.

Anta p er et monisk odd polynom. Da finnes det a < b slik at p(a) < 0 og p(b) > 0, så ved skjæringssetningen må det finnes en rot mellom a og b.

Skjæringssetningen for rasjonale polynomer

Bemerkning

Skjæringssetningen holder ikke over de rasjonale tallene!

Eksempel

Polynomet $p(x) = x^3 - \frac{1}{2}$ skjærer ikke x-aksen i et rasjonalt punkt.

Heltallige og rasjonale polynomer

Lemma

La p(x) være et rasjonalt polynom. Om p er redusibel over \mathbb{Q} , så finnes det et heltall $m \gg 0$ slik at mp(x) er redusibel over \mathbb{Z} .

Heltallige og rasjonale polynomer

Lemma

La p(x) være et rasjonalt polynom. Om p er redusibel over \mathbb{Q} , så finnes det et heltall $m \gg 0$ slik at mp(x) er redusibel over \mathbb{Z} .

Eksempel

Teorem

La p(x) være et monisk polynom med heltallige koeffisienter. Om det finnes et rasjonalt tall x_0 slik at $p(x_0) = 0$, så må x_0 være et heltall.

Eisensteins kriterium

Teorem (Eisensteins kriterium [Bar, Oppgave 3.12])

La $h(x) = a_n x^n + \cdots + a_1 x + a_0$ være et polynom over \mathbb{Z} . Om det finnes et primtall p slikt at

- \triangleright $p \nmid a_n$,
- $\triangleright p|a_0,\ldots,a_{n-1},$
- $ightharpoonup p^2 \nmid a_0$,

da er h irredusibel over \mathbb{Z} .

Eksempel

Polynomet x^n-p er irredusibel over \mathbb{Z} (og \mathbb{Q} for alle heltall n og primtall p. Over \mathbb{R} kan det faktoriseres som

$$x^{n} - p = (x - \sqrt[n]{p})(x^{n-1} + \sqrt[n]{p}x^{n-1} + \dots + \sqrt[n]{p}^{n-1}).$$

Mengden av røtter

Hvilke tall trenger vi å ha med for å dele opp alle rasjonale polynomer i lineære polynomer? $\leadsto \overline{\mathbb{Q}}$

- $x^2 2 \rightsquigarrow \sqrt{2}$ er i $\overline{\mathbb{Q}}$, men ikke i $\mathbb{Q}(i)$.
- $x^2 + 1 \rightsquigarrow i = \sqrt{-1} \text{ er i } \overline{\mathbb{Q}}, \text{ men ikke i } \mathbb{R}.$
- ▶ Det er ingen rasjonale polynomer med π som rot, så π er ikke i $\overline{\mathbb{Q}}$.

Bemerkning

Det finnes ingen endelig mengde elementer vi kan legge til for å få alle røtter av rasjonale polynomer.

Polynomer i 2 variable

Definisjon

Et polynom i to variable p(x, y) er et polynom i én variabel x hvor koeffisientene er polynomer i en annen variabel y

$$p(x,y) = p_n(y)x^n + \cdots + p_1(y)x + p_1(y).$$

Graden til polynomet er den største summen av grader $i + \deg p_i$.

- $x^2 + y^2 9$
- ► $x_1^2 + x_2^2 9$ er det samme polynomet, men indeterminantene er gitt ved andre symboler.

Implisitte kurver og parametrisering

Definisjon

En implisitt kurve C i planet \mathbb{R}^2 er en mengde på formen

$$C = \{(x, y) \in \mathbb{R}^2 \mid p(x, y) = 0\},\$$

hvor p er et polynom, dvs. C er mengden av løsninger til likningen p(x,y)=0.

Bemerkning En implisitt kurve er "nullpunktsmengden" til et polynom.

Irredusible polynomer i 2 variable

Definisjon

Et polynom p(x, y) er irredusibel om det ikke kan skrives som et produkt av polynomer av lavere grad.

- $x^2 + y^2 1$ er irredusibel.
- $x^2 y^2 = (x y)(x + y).$

Irredusible polynomer i 2 variable

Definisjon

Et polynom p(x, y) er irredusibel om det ikke kan skrives som et produkt av polynomer av lavere grad.

- $x^2 + y^2 1$ er irredusibel.
- $x^2 y^2 = (x y)(x + y).$
- $x^4 x^2y^2 x^2y + y^3 \frac{3}{4}x^2 + y^2 + \frac{1}{4}y + \frac{1}{4}?$

Irredusible polynomer i 2 variable

Definisjon

Et polynom p(x, y) er irredusibel om det ikke kan skrives som et produkt av polynomer av lavere grad.

- $x^2 + y^2 1$ er irredusibel.
- $x^2 y^2 = (x y)(x + y).$
- $x^4 x^2y^2 x^2y + y^3 \frac{3}{4}x^2 + y^2 + \frac{1}{4}y + \frac{1}{4}?$

$$x^{4} - x^{2}y^{2} - x^{2}y + y^{3} - \frac{3}{4}x^{2} + y^{2} + \frac{1}{4}y + \frac{1}{4}$$
$$= \left(x^{2} - y^{2} - \frac{1}{4}\right)(x^{2} - 1 - y).$$

[Bar] E. J. Barbeau. *Polynomials*. Problem books in mathematics. Springer. DOI: 10.1007/978-1-4612-4524-7.