Mid-term Quiz, Survival Analysis I, Sept. 20, 2011

Your Name:	
Denote by T a survival time variable and C a censoring time variable. Denote by $S(t)$ and $\lambda(t)$ respectively the survival and hazard function of T . Answer the following questions.	
1. Choose correct answers (multiple choices):	
Suppose the distribution of T is continuous.	
(a) The value of pdf $f(t)$, $t \ge 0$, must be non-negative. (b) The value of hazard function $\lambda(t)$, $t \ge 0$, must be non-negative. (c) The value of pdf $f(t)$ is between 0 and 1, that is, $0 \le f(t) \le 1$. (d) The value of hazard function $\lambda(t)$ is between 0 and 1, that is, $0 \le \lambda(t) \le 1$	
2. Choose correct answers (multiple choices):	
Suppose the distribution of T is discrete.	
(a) The value of pdf $f(t)$, $t \ge 0$, must be non-negative. (b) The value of hazard function $\lambda(t)$, $t \ge 0$, must be non-negative. (c) The value of pdf $f(t)$ is between 0 and 1, that is, $0 \le f(t) \le 1$. (d) The value of hazard function $\lambda(t)$ is between 0 and 1, that is, $0 \le \lambda(t) \le 1$	
3. Choose correct answers (multiple choices):	
 (a) The probability structure of T can be completely determined by its survival function. (b) The probability structure of T can be completely determined by its probability density function. (c) The probability structure of T can be completely determined by its hazard function. (d) Modeling the hazard function is a valid approach for statistical modeling 	

4.	Choose correct answers (multiple choices):
	Suppose T follows the Exponential distribution with the parameter $\theta > 0$. It is known that the pdf of T is $f(t) = \theta e^{-\theta t} I(t \ge 0)$ and the survival function of T is $S(t) = e^{-\theta t}$, for $t \ge 0$. Suppose survival data are observed subject to independent censoring. Based on survival data $0.54, 2.32^+, 1.50^+$, the likelihood function is (a) $L = (e^{-0.54 \cdot \theta}) \cdot (\theta e^{-2.32 \cdot \theta}) \cdot (\theta e^{-1.50 \cdot \theta})$ (b) $L = (\theta e^{-0.54 \cdot \theta}) \cdot (e^{-2.32 \cdot \theta}) \cdot (e^{-1.50 \cdot \theta})$ (c) $L = (\theta e^{-0.54 \cdot \theta}) \cdot (\theta e^{-2.32 \cdot \theta}) \cdot (\theta e^{-1.50 \cdot \theta})$ (d) $L = (\theta e^{-0.54 \cdot \theta})$
5.	Choose correct answers (multiple choices):
	For the Kaplan-Meier estimates/curves we discussed in class, what does the Kaplan-Meier curve estimate?
	 (a) Survival function (b) Hazard function (c) Probability density function (d) All of them
6.	Let $h_0(t)$ and $h_1(t)$ respectively be the hazard function for continuous failure times T_0 and T_1 . Let $S_0(t)$ and $S_1(t)$ be their respective survival functions.
	Choose a correct answer (single choice): If the two hazards functions do not cross-over at any time $t>0$, it implies that the two survival functions (a) definitely do not cross-over for $t>0$ (b) could still cross-over each other at certain $t>0$
	Choose a correct answer (single choice): If the two survival functions do not cross-over at any time $t > 0$, it implies that the two hazard functions (a) definitely do not cross-over for $t > 0$ (b) could still cross-over each other at certain $t > 0$