ELECTROTECNIA TEÓRICA

MEEC IST

2° Semestre 2017/18

3° TRABALHO LABORATORIAL

CIRCUITO RLC-SÉRIE em Regime Forçado Alternado Sinusoidal

Prof. V. Maló Machado
Prof. M. Guerreiro das Neves
Prof. Ma Eduarda Pedro

ELECTROTECNIA TEÓRICA

CIRCUITO RLC – SÉRIE

1. OBJECTIVOS

Neste trabalho realiza-se o estudo do circuito *RLC* série, funcionando em regime forçado alternado sinusoidal, imposto por um gerador de tensão de frequência variável.

Obtém-se assim por via experimental, a curva de ressonância do circuito *RLC* série, em função da frequência.

2. INTRODUÇÃO TEÓRICA

2.1 Circuito RLC série

No caso do circuito RLC série da Fig. 1 tem-se, por aplicação da lei geral da indução, a seguinte expressão que relaciona a tensão instantânea aos terminais do gerador, com as tensões aos terminais da bobina de coeficiente de auto-indução L, da resistência R e do condensador C:

$$u_G = u_R + u_L + u_C = Ri + L\frac{di}{dt} + \frac{1}{C}\int i\,dt \tag{1}$$

$$\overline{U}_G = \overline{U}_R + \overline{U}_L + \overline{U}_C = R\overline{I} + j\omega L\overline{I} - j\frac{1}{\omega C}\overline{I}$$
 (2)

À equação (1) de valores instantâneos, corresponde a equação vectorial (2), escrita em termos das amplitudes complexas.

A impedância do circuito, é dada pela expressão (3).

$$\overline{Z} = \frac{\overline{U}_G}{\overline{I}} = Z e^{j\phi} = R + j \left(\omega L - \frac{1}{\omega C}\right)$$
(3)

2.2 Ressonância do circuito RLC série

Da equação (3) pode retirar-se a expressão do valor eficaz da corrente, como função do valor eficaz da tensão do gerador, e dos restantes parâmetros do circuito:

$$I_{ef} = \frac{U_{Gef}}{\sqrt{R^2 + \left[\omega L - \left(1/\omega C\right)\right]^2}} \tag{4}$$

A corrente exibe um máximo situado na frequência ω_0 que minimiza a impedância do circuito. Para essa frequência o circuito está em ressonância (tensão e corrente do gerador em fase).

$$\omega_0 L = \frac{1}{\omega_0 C} \qquad , \qquad \omega_0 = \frac{1}{\sqrt{LC}} \tag{5}$$

A potência activa posta em jogo no circuito vale $P=R\,I_{ef}^{\,2}$, sendo o seu máximo atingido precisamente na ressonância.

$$P_{\text{max}} = R I_{ef \text{ max}}^2 = \frac{U_{Gef}^2}{R} \tag{6}$$

A equação (4) pode ser normalizada dividindo I_{ef} pelo valor eficaz da corrente na ressonância, $I_{ress}=U_{Gef}\left/R\right.$,

$$I_n = \frac{I_{ef}}{I_{ress}} = \frac{1}{\sqrt{1 + \frac{1}{R^2} \left(\omega L - \frac{1}{\omega C}\right)^2}}$$
 (7)

Esta equação pode ainda ser escrita na forma:

$$I_{n} = \frac{1}{\sqrt{1 + Q_{0}^{2} \left(\frac{f}{f_{0}} - \frac{f_{0}}{f}\right)^{2}}}$$
 (8)

sendo $Q_0 = \omega_0 L/R$ e f_0 a frequência de ressonância. Mantendo a amplitude da tensão do gerador, mas variando a frequência de zero a infinito, obtém-se para o valor normalizado da corrente um andamento como se representa na Fig. 2.

Fig. 2 – Curva de ressonância para $Q_0 = 5$.

2.3 Capacidade distribuída

Para se ter em conta a resistência e capacidade distribuídas ao longo da bobine, R_L e C_d , respectivamente, podemos supor a bobina equivalente à malha L, R_L , C_d , representada na Fig. 3.

Fig. 3

A análise do circuito da Fig. 3 conduz à seguinte expressão para a impedância

$$\overline{Z} = R_s + \frac{1}{j\omega C} + \frac{\left(R_L + j\omega L\right)\left(1/j\omega C_d\right)}{R_L + j\omega L + \left(1/j\omega C_d\right)} \tag{9}$$

Supondo $R_L << \omega L$ poderá provar-se que a nova frequência de ressonância vem dada por:

$$1/\omega^2 = L(C + C_d) \tag{10}$$

ou ainda, atendendo a que $\omega = 2\pi f$:

$$1/f^2 = 4\pi^2 L(C + C_d) \quad . \tag{11}$$

Num gráfico com o eixo das ordenadas graduado proporcionalmente a $1/f^2$, e o eixo das abcissas graduado proporcionalmente aos valores da capacidade C que conduzem à ressonância, obtemos uma recta cujo coeficiente angular nos permite calcular L e cuja intersecção com o eixo das abcissas nos dá C_d .

3. DIMENSIONAMENTO

O dimensionamento deve ser entregue na aula de laboratório, antes da realização do trabalho, sem o que o mesmo não poderá ser realizado!

- 3.1 Demonstre a expressão obtida em (10).
- 3.2 Considere o circuito RLC-série, com frequência de ressonância $f_0 = 40$ kHz e admita que o valor estimado do coeficiente de auto-indução da bobina é L = 2,0 mH.
 - a) Determine o valor da capacidade C tal que o circuito esteja em ressonância à frequência f_0 indicada.
 - b) Na folha quadriculada **R 3.2 b**) apresentada em anexo, trace duas curvas da corrente normalizada I_n , em função da frequência normalizada, f_n ,

$$I_n(f_n) = \frac{1}{\sqrt{1 + Q_0^2 (f_n - 1/f_n)^2}}$$
, $10 \text{ kHz} \le f \le 90 \text{ kHz}$

onde
$$f_n = f/f_0$$
, $Q_0 = (\omega_0 L/R_S)$, para $R_S = 250 \Omega$ e $R_S = 500 \Omega$.

- c) Para $R_S = 250 \Omega$, $Ug_{ef} = 1 \text{ V}$ e tomando C o valor determinado em a), calcule os valores eficazes e desfasagens da corrente i e das tensões no condensador, u_C , na bobina, u_L , e na resistência, u_R , para a frequência de ressonância, f_0 , bem como para as frequências $f_1 = 0.95f_0$ e $f_2 = 1.05f_0$. Preencha a tabela **R 3.2 c**) com os valores obtidos.
- d) Para as condições da alínea anterior e para cada uma dessas três frequências trace os correspondentes diagramas vectoriais de tensão.

4. ESQUEMA DE LIGAÇÕES E LISTA DE MATERIAL

Fig. 4

GER - Oscilador/Gerador de funções Beckman Industrial FG 2A.

f - Frequencímetro Beckman Industrial VC 10A.

C - Caixa de condensadores calibrados LIONMOUNT tipo CD1C.

L - Caixa de indutância calibradas LIONMOUNT tipo LD2.

 R_s - Caixa de resistências calibradas LLOYD 0-1111 Ω.

OSC - Osciloscópio Digital tektronix. TDS 200. Ta - Transformador de adaptação (N₁/N₂ = 50/7)

NOTA: O material a utilizar pode variar de bancada para bancada.

5. <u>CONDUÇÃO DO TRABALHO</u>

Monte o circuito representado na Fig. 4. Seleccione na caixa de indutâncias L =2,0 mH.

Antes de ligar os aparelhos, colocar:

Oscilador: FREQUENCY RANGE: 100 kHz

OUTPUT: MAIN AMPLITUDE: Mínimo

FUNCTION: SINUSOIDAL

Ligar os aparelhos por esta ordem:

- O frequencímetro.
- O osciloscópio
- O oscilador.
- Actuar no botão de amplitude do oscilador até se obter $U_{Gef}=1~{
 m V}.$

5.1 Em todos os ensaios manter $U_{Gef} = 1 \text{ V}$.

Com R_S = 250 Ω , para frequências f entre 40 kHz e 90 kHz com intervalos de 10 kHz, obtenha experimentalmente os valores da capacidade, C_{exp} , que conduzem à ressonância. Registe os valores de f, U_{Gef} , U_{Ref} e C_{exp} na tabela **R 5.1**.

5.2 Em todos os ensaios manter $U_{Gef} = 1 \text{ V}$.

Para $R_S = 250 \Omega$ ou $R_S = 500 \Omega$, com $f = f_0 = 40 \text{ kHz}$, ajuste o valor de C de modo a obter a ressonância, mantendo depois constante o valor de C.

- a) Com $R_S = 250 \,\Omega$ e para as frequências f_0 , $f_1 = 0.95 f_0$ e $f_2 = 1.05 f_0$ registe na tabela **R 5.2 a**) os valores de f, U_{Gef} e U_{Ref} , bem como o intervalo de tempo Δt entre dois máximos consecutivos de u_G e u_R (usando os cursores de tempo do osciloscópio).
- b) Para $R_S = 250 \,\Omega$ e $R_S = 500 \,\Omega$, variando a frequência (com f entre 10 kHz e 90 kHz e intervalos de 10 kHz) registe na tabela **R 5.2 b**) os valores de f, U_{Gef} e U_{Ref} .

Quando terminar desligue os aparelhos pela ordem inversa. Primeiro desligue o gerador,..., e no fim o frequencímetro.

6. <u>RELATÓRIO</u>

- 6.1 Com base nos valores de f e C_{exp} da tabela **R 5.1** obtenha por regressão linear (ver nota) os valores experimentais de L e C_d e registe-os na tabela **R 6.1**. No gráfico **R 6.1** represente os pontos experimentais, bem como a recta obtida por regressão linear. Neste gráfico o eixo das ordenadas corresponde à grandeza $1/f^2$ e o eixo das abcissas à grandeza C_{exp} .
- 6.2 A partir dos resultados de 5.2 a), calcule: o valor eficaz da corrente, I_{ef} , a sua desfasagem, α_I . Registe esses valores na tabela **R 6.2**.
- 6.3 A partir dos resultados de 5.2 b), calcule: o valor eficaz da corrente, I_{ef} , bem como os valores normalizados da corrente, I_n , e da frequência, f_n . Registe esses valores na tabela **R 6.3**. Marque sobre as curvas obtidas em 3.2 b) do dimensionamento os pontos experimentais (f_n, I_n) .

O relatório tem que ser entregue no final da aula de laboratório e consiste no preenchimento da ficha apresentada em Anexo.

Nota: Regressão Linear

Considere que foram realizados n ensaios experimentais e que se registaram os valores x_i e y_i de duas grandezas diferentes. Admita que a relação existente entre essas duas grandezas pode ser aproximada por uma recta, y = mx + b, sendo m o declive e b a ordenada na origem. A partir do método dos mínimos quadrados obtém-se:

$$m = \frac{n\sum_{i=1}^{n} (x_{i}y_{i}) - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} (x_{i})^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} ; b = \bar{y} - m\bar{x}$$

sendo $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ e $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ os valores médios das duas grandezas medidas.

REFERÊNCIAS

J. A. Brandão Faria, 'Electromagnetic Foundations of Electrical Engineering', Wiley, 2008. Cap. 7, Secção 7.2.3.

I.S.T., Fevereiro de 2018

ANEXO

RELATÓRIO DO 3º TRABALHO LABORATORIAL

R 3.2 c):

Cálculo das amplitudes complexas $(\overline{X} = \sqrt{2} X_{ef} e^{j\alpha_X})$:

	I _{ef} [mA]	α _I [°]	$U_{Cef}\left[V ight]$	α _C [°]	$U_{Lef}\left[V ight]$	α _L [°]	$U_{Ref}\left[V ight]$	α_R [°]
fo								
f_{I}								
f_2								

R 5.1 e R 6.1:

Valores medidos em 5.1 e calculados em R 6.1:

f [kHz]	U _{Gef} [V]	U_{Ref} [V]	Cexp [nF]

<i>L</i> [mH]	C_d [pF]

R 5.2a) e R 6.2:

Valores medidos em 5.2 a) e calculados em 6.2, para $R_S = 250~\Omega$:

	f[kHz]	$U_{Gef}\left[V ight]$	$U_{Ref}\left[\mathrm{V} ight]$	$\Delta t [ms]$	I _{ef} [mA]	α _I [°]
fo						
f_{I}						
f_2						

R 5.2 b) e R 6.3: Valores medidos em 5.2 b) e calculados em 6.3, para $R_S=250~\Omega$:

f[kHz]	$U_{Gef}\left[V ight]$	$U_{Ref}\left[V ight]$	I _{ef} [mA]	I_n	f_n

Valores medidos em 5.2 b) e calculados em 6.3, para $R_S = 500 \,\Omega$:

f[kHz]	$U_{Gef}\left[V ight]$	$U_{Ref}\left[V ight]$	Ief [mA]	I_n	f_n

Comentários:							
Número	Nome		Auto-Aval. [%]				

R 3.2 b): Representação gráfica de $I_n(f_n)$:

R 6.1: Representação gráfica dos pontos experimentais $(C_{exp}, 1/f^2)$ e da recta obtida por regressão linear:

