Über einige Telluride: MoTe₂, La₂Te₃ und V₃Te

Von E. Montignie

Inhaltsübersicht

Darstellung und Eigenschaften von Molybdänditellurid, Mo Te_2 . Lanthantellurid, La $_2\mathrm{Te}_3$ und Vanadiumtellurid, $\mathrm{V}_2\mathrm{Te}$.

Summary

Preparation and properties of MoTe₂, La₂Te₃ and V₃Te.

Molybdänditellurid. Nach Guichard 1) entsteht MoTe₂ beim Erhitzen von Mo- und Te-Pulver im Vakuum im geschlossenen Rohr bei 400 °C. In einfacherer Weise läßt es sich auch durch Erhitzen von Tellur mit Ammoniummolybdat herstellen:

Tellurpulver und Ammoniummolybdat werden in einem Tiegel 30 Minuten bei 400°C erhitzt. Dabei verflüchtigen sich NH₃ und auch etwas MoO₃; es entsteht MoTe₂ in Form grauer spröder Blättchen. Analyse: gef. Te 72,50; Mo 27,80% (ber. 72,64 bzw. 27,36%).

MoTe₂ ist beständig gegen Luft, warme konz. Mineralsäuren, Brom in CS₂, Ammoniumsulfid und Kaliumcyanid, es ist unlöslich in Wasser, Alkohol, Äther, CS₂. Im Wasserstoffstrom bei 300° entsteht Molybdän, beim längeren Erhitzen an der Luft (400°) wird es zersetzt. Durch Chlor wird MoTe₂ bei 300° zu MoCl₂, MoCl₄ und TeCl₄ chloriert. Durch Erhitzen mit Brom und Jod im geschlossenen Rohr entstehen Bromide bzw. Jodide des Mo und Te.

Lanthantellurid. La $_2$ Te $_3$ läßt sich durch Einwirkung von Tellur auf Lanthanoxid darstellen.

4 g Tellurpulver, 3 g La₂O₃ (wasserfrei) und 10 g Na₂CO₃ werden 1 Stunde lang auf $400\,^{\circ}$ C erhitzt. Es entsteht graues La₂Te₃. Analyse: gef. Te 58,0; La 41,80% (ber. 57,92 bzw. 42,08%).

Beim Erhitzen an der Luft wird La₂Te₃ zu La₂O₃ und TeO₂ oxydiert. H₂O (100°), H₂O₂, KOH (30proz.), KCN-Lsg. reagieren nicht. Bromwasser,

¹⁾ C. R. Guichard, C. R. hebd. Séances Acad. Sci. 129, 1239 (1899).

saure Lösungen von KMnO₄, FeCl₃, ferner HgCl₂ und Ammoniummolybdat werden reduziert.

Schmelzendes KOH an der Luft ergibt La_2O_3 und K_2TeO_4 . Konz. warme HNO_3 oxydiert La_2Te_3 , ebenso konz. warme H_2SO_4 (unter Entstehung von $2TeO_2 \cdot SO_3$ und $La_2(SO_4)_3$).

Vanadiumtellurid. Früher²) wurde mitgeteilt, daß es nicht möglich ist, ein Vanadiumtellurid durch Einwirkung von ${\rm TeO_2}$ auf glühendes ${\rm V_2O_5}$ im ${\rm H_2\text{-}Strom}$ darzustellen. Die Darstellung gelingt jedoch durch Erhitzen von Tellur, Ammoniumvanadat und Ammoniumoxalat.

3 g Te-Pulver, 5 g NH₄VO₃ und 5 g (NH₄)₂C₂O₄ werden 1 Stunde bei 400° erhitzt, anschließend gepulvert und nochmals 15 Minuten erhitzt. Man wäscht mit warmer 20proz. KOH-Lösung und Wasser: Trocknen bei 150°. Es entsteht glänzend schwarzes V₃Te. Analyse: gef. Te 45,0; V 54,3% (ber. 45,4 bzw. 54,6%).

 $\rm V_3$ Te ist bei Raumtemperatur luftbeständig und unlöslich in Alkohol, Benzol, CS₂. Bei längerem Erhitzen an der Luft (600°) wird es zersetzt und oxydiert. Warme oxydierende Mineralsäuren (Schwefelsäure, Salpetersäure, Chlorsäure) zersetzen und oxydieren $\rm V_3$ Te, ebenso schmelzendes KOH an der Luft (jedoch nicht 30proz. KOH-Lsg). Gegenüber KMnO₄-Lsg. wirkt $\rm V_3$ Te schwach reduzierend.

Tourcoing/Frankreich, Rue de Wailly 39.

Bei der Redaktion eingegangen am 2. November 1967, 3. Januar 1968 und 8. Februar 1968.

²) E. Montignie, Bull. Soc. chim. France 1946, 5, 13, 176.