- 1. More on Karnaugh maps
 - a. Further example with don't cares and wrapping

i.
$$f_3 = m0 + D2 + D5 + D7 + m8 + m10$$

		AB			
		00	01	11	10
CD	00				
	01				
	11				
	10				

- b. Whether or not don't cares are included depends on your desired use case
- 2. Timing
 - a. Worst case path

b. Timing diagram

- c. Example
 - i. Implementation of XOR using only AND, OR, NOT on next page

1.
$$A \oplus B = A * ^B + ^A B$$

- ii. Assume that we have the following gate delays
 - 1. NOT = 3 ns
 - 2. AND = 5 ns
 - 3. OR = 4 ns
- iii. What is the clock time of the circuit, if inputs become valid at time 0 ns?

3. Combinational circuit building blocks

4. Multiplexors

a. Implementation

b. Example

i. 2 to 1 MUX

ii. 4 to 1 MUX

- c. Truth table for simple 2-bit 2 to 1 MUX
 - i. Idealized picture below

d. Can use MUXes to implement functions

