Lab2

September 14, 2017

1 Lab de circuitos elétricos e eletrônicos - Preparatório 2 - PUC-Rio

1.1 Rafael Rubim Cabral - 1511068

2 1)

2.0.1 a)

A tensão no terminal não inversor do AmpOp é a tensão no nó entre R_1 e R_2 . No buffer, ela é a tensão de saída, por causa da realimentação. Podemos calculá-la pela fórmula do divisor de tensões:

$$V_{out} = V_{in} \cdot R_2 / (R_1 + R_2)$$

2.0.2 b)

Deseja-se obter por V_{out} a tensão de divisão no nó entre R_1 e R_2 para utilizá-la em uma configuração diferente do circuito de divisão, sem alterar o circuito em si. Isso será possível pois idealmente nenhuma corrente entra no AmpOp do buffer.

2.0.3 c)

Nesse caso, V_{out} saturaria ao atingir valores superiores a V^+ ou inferiores a V^- . Isso significa que V_{out} terá seu valor como calculado na letra (a), exceto em faixas acima de V^+ ou abaixo de V^- , caso em que V_{out} será constante nos valores respectivos.

3 2)

Considere o nó na entrada não inversora do AmpOp N^+ e o nó na entrada inversora N^- . Como $V_{N^-} = V_{N^+}$ por realimentação e N^+ está conectado ao terra, tem-se:

$$V_{N^-} = V_{N^+} = 0$$

A corrente em R_1 deve ser:

$$i_{R_1} = (V_{in} - V_{N^-})/R_1 = V_{in}/R_1$$

Essa corrente deve corresponder à corrente em R_2 , pois idealmente não há corrente na entrada inversora do AmpOp. Temos:

$$i_{R_2} = (V_{N^-} - V_{out})/R_2 = i_{R_1}$$

Portanto:

$$-V_{out}/R_2 = V_{in}/R_1$$

$$V_{out} = -V_{in} \cdot R_2/R_1$$

Estendendo o resultado para a saturação, tem-se:

• No limite V^+ :

$$V_{out} \ge V^+ \Rightarrow -V_{in} \cdot R_2 / R_1 \ge V^+$$

\Rightarrow $V_{in} \le -V^+ \cdot R_1 / R_2$

• No limite V^- :

$$V_{out} \leq V^- \Rightarrow -V_{in} \cdot R_2/R_1 \leq V^- \Rightarrow V_{in} \geq -V^- \cdot R_1/R_2$$

Logo, obteve-se os limites de saturação:

3.0.1
$$V_{out} =$$

$$V^+$$
, se $V_{in} \le -V^+ \cdot R_1/R_2$
 V^- , se $V_{in} \ge -V^- \cdot R_1/R_2$
 $-V_{in} \cdot R_2/R_1$, se $-V^+ \cdot R_1/R_2 < V_{in} < -V^- \cdot R_1/R_2$

4 3)

Considere o nó na entrada não inversora do AmpOp N^+ e o nó na entrada inversora N^- . Como $V_{N^-} = V_{N^+}$ por realimentação e N^+ está conectado à uma fonte de tensão conectada à terra, temse:

$$V_{N^-} = V_{N^+} = V_{in}$$

A corrente em R_1 deve ser (em direção à conexão terra):

$$i_{R_1} = (V_{N^-} - 0)/R_1 = V_{in}/R_1$$

Essa corrente deve corresponder à corrente em R_2 , pois idealmente não há corrente na entrada inversora do AmpOp. Temos:

$$i_{R_2} = (V_{out} - V_{N^-})/R_2 = i_{R_1}$$

Portanto:

$$(V_{out} - V_{in})/R_2 = V_{in}/R_1$$

 $V_{out} = V_{in} \cdot [1 + (R_2/R_1)]$

Estendendo o resultado para a saturação, tem-se:

• No limite V^+ :

$$V_{out} \ge V^+ \Rightarrow V_{in} \cdot [1 + (R_2/R_1)] \ge V^+$$

 $\Rightarrow V_{in} \ge V^+/[1 + (R_2/R_1)]$

• No limite V^- :

$$V_{out} \le V^- \Rightarrow V_{in} \cdot [1 + (R_2/R_1)] \le V^-$$

 $\Rightarrow V_{in} \le V^-/[1 + (R_2/R_1)]$

Logo, obteve-se os limites de saturação:

4.0.1
$$V_{out} =$$

$$V^+$$
, se $V_{in} \ge V^+/[1+(R_2/R_1)]$
 V^- , se $V_{in} \le V^-/[1+(R_2/R_1)]$
 $V_{in} \cdot [1+(R_2/R_1)]$, se $V^-/[1+(R_2/R_1)] < V_{in} < V^+/[1+(R_2/R_1)]$

5 4)

Os circuitos e gráficos estão apresentados mais a frente.

5.0.1 Comentários:

Como esperado do amplificador inversor, o sinal de V_{out} é contrário ao de V_{in} . Como em ambos os casos a fonte senoide utilizada para V_{in} tinha amplitude de 5V, pode-se verificar que a equação encontrada na questão (2) confere com o resultado encontrado: para $R_2 = 3.3k\Omega$, $V_{out} = -V_{in} \cdot 0.33$, que gerou um pico de $V_{out} = 1.65V$. Para $R_2 = 6.8k\Omega$, $V_{out} = -V_{in} \cdot 0.68$, que gerou um pico de $V_{out} = 3.4V$.

6 5)

Os circuitos e gráficos estão apresentados mais a frente.

6.0.1 Comentários:

Como esperado do amplificador não-inversor, o sinal de V_{out} é igual ao de V_{in} . Como em ambos os casos a fonte senoide utilizada para V_{in} tinha amplitude de 5V, pode-se verificar que a equação encontrada na questão (3) confere com o resultado encontrado: para $R_2 = 3.3k\Omega$, $V_{out} = -V_{in} \cdot 1.33$, que gerou um pico ligeiramente inferior a $V_{out} = 6.65V$. Para $R_2 = 6.8k\Omega$, $V_{out} = -V_{in} \cdot 1.68$, que gerou um pico ligeiramente inferior a $V_{out} = 8.4V$. Os valores não foram tão próximos quanto o experimento feito na questão (4), mas as imprecisões devem se dever ao fato de que o AmpOp simulado não é ideal.