WikipediA

P′′

P" (P double prime^[1]) is a primitive computer programming <u>language</u> created by <u>Corrado Böhm</u>^{[2][3]} in 1964 to describe a family of Turing machines.

Contents
Definition Syntax Semantics
Relation to other programming languages Example program
References Weblinks

P"		
Paradigm	Imperative, structured	
Designed by	Corrado Böhm	
First appeared	1964	
Typing discipline	untyped	
Dialects		
Brainfuck		
Influenced		
Brainfuck		

Definition

 \mathcal{P}'' (hereinafter written \mathbf{P}'') is formally defined as a set of words on the four-instruction alphabet $\{R, \lambda, (,)\}$, as follows:

Syntax

- 1. R and λ are words in P".
- 2. If q_1 and q_2 are words in P", then q_1q_2 is a word in P".
- 3. If q is a word in P", then (q) is a word in P".
- 4. Only words derivable from the previous three rules are words in P".

Semantics

- $\{\Box, c_1, c_2, \ldots, c_n\}$ is the tape-alphabet of a <u>Turing machine</u> with left-infinite tape, \Box being the *blank* symbol, equivalent to c_0 .
- lacktriangledown All instructions in P" are <u>permutations</u> of the set X of all possible tape configurations; that is, all possible configurations of both the contents of the tape and the position of the tape-head.
- α is a <u>predicate</u> saying that the current symbol is not \square . It is not an instruction and is not used in programs, but is instead used to help define the language.
- R means move the tape-head rightward one cell (if possible).
- λ means replace the current symbol c_i with $c_{(i+1) \mod (n+1)}$, and then move the tape-head leftward one cell.
- q_1q_2 means the <u>function composition</u> $q_2 \circ q_1$. In other words, the instruction q_1 is performed before q_2 .

• (q) means iterate q in a while loop, with the condition α .

Relation to other programming languages

- P" was the first "GOTO-less" imperative <u>structured programming</u> language to be proven <u>Turing-complete^{[2][3]}</u>
- The Brainfuck language (apart from its I/O commands) is a minor informal variation of P". Böhm gives explicit P" programs for each of a set of basic functions sufficient to compute any computable function, using only (,) and the four words r, r', L, R where $r \equiv \lambda R, r' \equiv r^n$ with r^n denoting the nth iterate of r, and $L \equiv r'\lambda$. These are the equivalents of the six respective Brainfuck commands [,], +, -, <, >. Note that since $c_{n+1} \equiv c_0 \equiv \Box$, incrementing the current symbol n times will wrap around so that the result is to "decrement" the symbol in the current cell by one (r').

Example program

Böhm^[2] gives the following program to compute the predecessor (x-1) of an integer x > 0:

which translates directly to the equivalent Brainfuck program:

```
>[>]<[-[<[<]]-<]>+
```

The program expects an integer to be represented in <u>bijective base-k</u> notation, with c_1, c_2, \ldots, c_k encoding the digits $1, 2, \ldots, k$ respectively, and to have \square before and after the digit-string. (E.g., in bijective base-2, the number eight would be encoded as $\square c_1 c_1 c_2 \square$, because 8 in bijective base-2 is 112.) At the beginning and end of the computation, the tape-head is on the \square preceding the digit-string.

References

- 1. https://github.com/Pbtflakes/pdbl
- 2. Böhm, C.: "On a family of Turing machines and the related programming language", ICC Bull. 3, 185-194, July 1964.
- 3. Böhm, C. and Jacopini, G.: "Flow diagrams, Turing machines and languages with only two formation rules", CACM 9(5), 1966. (Note: This is the most-cited paper on the <u>structured</u> program theorem.)

Weblinks

■ **P"**Online interpreter (http://www.mathiaselsner.de/esolangs/EN/P_dblp_99btls.html): Demonstrating the iterative <u>99 Bottles of Beer</u> song construed in 337568 **P"** instructions.

Retrieved from "https://en.wikipedia.org/w/index.php?title=P"&oldid=951156516"

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use and Privacy Policy</u>. Wikipedia® is a registered trademark of the <u>Wikimedia Foundation</u>, Inc., a non-profit organization.