# Embedded systems engineering Distributed real-time systems

David Kendall

#### Introduction

- ...to embedded systems
  - which are distributed and real-time
- ...to engineering
- ... to embedded systems engineering
- ...to the module

### Embedded systems are everywhere

How many CPUs in a car seat?

- Photo from Convergence 2004
  - automotive electronics show



# How many CPUs in a car seat?

- Low speed LIN network to connect seat motion control nodes
- This is a distributed embedded system
- CPUs
  - Front-back motion
  - Seat tilt motion
  - Lumbar support
  - Control button interface



### How many CPUs in a car?



### Car as a distributed embedded system



CAN Controller area network
GPS Global Positioning System

GSM Global System for Mobile Communications

LIN Local interconnect network

MOST Media-oriented systems transport

[Leen02]



#### Embedded systems



## Embedded systems characterstics

- concurrent composed of multi-tasking and/or distributed processes
- communicating specialized processes communicate in order to achieve some overall system function
- real-time timing requirements are established by the environment
- resource-constrained limited resources: processing, memory, peripherals, power, . . .

## Engineering

The American Engineers' Council for Professional Development defines "engineering" as:

[T]he creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.

## Embedded systems engineering

Application of scientific principles to

- the design of embedded systems
- the construction of embedded systems with "full cognizance" of their design
- the forecasting of the behaviour of embedded systems under specific operating conditions

"all as respects an intended function, economics of operation and safety to life and property"



## Embedded systems engineering

Application of scientific principles to design, construction and analysis of systems that are

- concurrent,
- communicating,
- real-time and
- resource-constrained

### Concurrency

- arises when multiple processes (tasks) share a single processor
- allocation of the processor to a different task can be
  - event-triggered
    - response to any of many possible interrupts: periodic timer overflow, the arrival of a message on a CAN bus, the pressing of a switch, the completion of an A/D conversion,
  - time-triggered
    - response to one source of interrupt only: usually a periodic timer
- managing and reasoning about concurrency is a major challenge for the embedded systems engineer

#### Communication

- Computing nodes that communicate with each other form a distributed system
- Economic and safe allocation of resources in a distributed system requires a predictable communication network
- Predictable communication networks include
  - CAN, TTCAN
  - TTEthernet

#### Real-time

- A real-time system is a system where the total correctness of an operation depends not just on the logical correctness of the result but also on its temporal correctness i.e. the time at which it is produced.
- A deadline specifies the time by which an operation must complete and deliver its result.
- A hard real-time system is a system that is considered useless if an operation misses a single deadline.
- A soft real-time system tries to meet its deadlines but can tolerate an occasional missed deadline, perhaps giving reduced service quality.

#### Introduction to the module

View the module home page

## Summary of the structure

- Uni-processor solutions
  - Time-triggered
  - Event-triggered
- Distributed solutions
  - Networks for embedded systems
    - Focus on Controller Area Network (CAN)
  - Analysing networked embedded systems
    - Distributed Response Time Analysis
- Other topics
  - C programming for embedded systems
  - Methods, tools, standards

#### Acknowledgements

 Philip Koopman http://www.ece.cmu.edu/ ece649/lectures/01\_intro.pdf