BERT

Manfred Klenner

Department of Computerlinguistik University of Zurich

November 16, 2020

see the original paper: https://arxiv.org/pdf/1810.04805.pdf

- a transformer with only a encoder
- self attention
- bi-directional training
- masked LM
- word and sentence prediction

- a transformer with only a encoder
- self attention
- bi-directional training
- masked LM
- word and sentence prediction

- a transformer with only a encoder
- self attention
- bi-directional training
- masked LM
- word and sentence prediction

- a transformer with only a encoder
- self attention
- bi-directional training
- masked LM
- word and sentence prediction

- a transformer with only a encoder
- self attention
- bi-directional training
- masked LM
- word and sentence prediction

- directional models: read the text input sequentially (left-to-right or right-to-left)
- transformer encoder reads the entire sequence of words at once
- bidirectional, well, it's non-directional
- attention is the bidirectional means

- directional models: read the text input sequentially (left-to-right or right-to-left)
- transformer encoder reads the entire sequence of words at once
- bidirectional, well, it's non-directional
- attention is the bidirectional means

- directional models: read the text input sequentially (left-to-right or right-to-left)
- transformer encoder reads the entire sequence of words at once
- bidirectional, well, it's non-directional
- attention is the bidirectional means

- directional models: read the text input sequentially (left-to-right or right-to-left)
- transformer encoder reads the entire sequence of words at once
- bidirectional, well, it's non-directional
- attention is the bidirectional means

- training: 15% of the words in each sequence are replaced with a [MASK] token
- the model tries to predict the original word behind the mask
- this is based on the context of the other, non-masked, words in the sequence
- the prediction of the output words requires:
 - a classification layer on top of the encoders
 - multiplying the output vectors by the embedding matrix, transforming them into the vocabulary dimension
 - calculating the probability of each word in the vocabulary with softmax

- training: 15% of the words in each sequence are replaced with a [MASK] token
- the model tries to predict the original word behind the mask
- this is based on the context of the other, non-masked, words in the sequence
- the prediction of the output words requires:
 - a classification layer on top of the encoder
 - multiplying the output vectors by the embedding matrix, transforming them into the vocabulary dimension
 - calculating the probability of each word in the vocabulary with softmax

- training: 15% of the words in each sequence are replaced with a [MASK] token
- the model tries to predict the original word behind the mask
- this is based on the context of the other, non-masked, words in the sequence
- the prediction of the output words requires:
 - a classification layer on top of the encoder
 - multiplying the output vectors by the embedding matrix, transforming them into the vocabulary dimension
 - calculating the probability of each word in the vocabulary with softmax

- training: 15% of the words in each sequence are replaced with a [MASK] token
- the model tries to predict the original word behind the mask
- this is based on the context of the other, non-masked, words in the sequence
- the prediction of the output words requires:
 - a classification layer on top of the encoder
 - multiplying the output vectors by the embedding matrix, transforming them into the vocabulary dimension
 - calculating the probability of each word in the vocabulary with softmax

- training: 15% of the words in each sequence are replaced with a [MASK] token
- the model tries to predict the original word behind the mask
- this is based on the context of the other, non-masked, words in the sequence
- the prediction of the output words requires:
 - a classification layer on top of the encoder
 - multiplying the output vectors by the embedding matrix, transforming them into the vocabulary dimension
 - calculating the probability of each word in the vocabulary with softmax

- training: 15% of the words in each sequence are replaced with a [MASK] token
- the model tries to predict the original word behind the mask
- this is based on the context of the other, non-masked, words in the sequence
- the prediction of the output words requires:
 - a classification layer on top of the encoder
 - multiplying the output vectors by the embedding matrix, transforming them into the vocabulary dimension
 - calculating the probability of each word in the vocabulary with softmax

- training: 15% of the words in each sequence are replaced with a [MASK] token
- the model tries to predict the original word behind the mask
- this is based on the context of the other, non-masked, words in the sequence
- the prediction of the output words requires:
 - a classification layer on top of the encoder
 - multiplying the output vectors by the embedding matrix, transforming them into the vocabulary dimension
 - calculating the probability of each word in the vocabulary with softmax

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence.

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

- pairs of sentences, learn whether the 2. sentence is realy the subsequent sentence
- 50% of the inputs are truly pairs, the others are wrong pairs
- the assumption is that the random sentence will be disconnected from the first sentence
- preprocessing:
 - a [CLS] token is inserted at the beginning of the first sentence and
 - a [SEP] token is inserted at the end of each sentence
 - a sentence embedding indicating sentence A or sentence B is added to each token
 - sentence embeddings are similar to token embeddings with a vocabulary of 2
 - a positional embedding is added to each token to indicate its position in the sequence

Learning curve

	Training Compute + Time	Usage Compute
BERTBASE	4 Cloud TPUs, 4 days	1 GPU
BERTLARGE	16 Cloud TPUs, 4 days	1 TPU

- model size matters: Bert has 340 million parameters. 24 layer, 1024 hidden nodes, 16 attention heads
- enough training data, more training steps == higher accuracy

 $see:\ https://towards datascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270$