Università "Ca'Foscari" Venezia

Dipartimento di Scienze Ambientali, Informatica e Statistica

Giovanni Fasano †

Prototipi di Esercizi Svolti: Vertici di un poliedro, Branch & Bound, Flusso su reti

 $^{^\}dagger Università$ Ca'Foscari Venezia, Dipartimento di Management, S.Giobbe Cannaregio 873, 30121 Venezia, ITALY. E-mail:fasano@unive.it ; URL: http://venus.unive.it/ $^\sim$ fasano - A.A. 2014-2015.

1 Esercizio 1: Calcolo vertici di un poliedro

Si determinino, se esistono, tutti e soli i vertici del poliedro (P) descritto dai seguenti vincoli, dopo aver determinato il numero massimo di tali vertici.

(I)
$$3x_1 - x_2 - x_3 = 2$$

(II) $2x_3 + 6x_4 \le 5$
(III) $x_1 + x_3 \le 4$
(IV) $x_1 \ge 0$
(V) $x_2 \ge 0$

Dal momento che il poliedro (P) è definito da 5 vincoli (ovvero è m=5) ed è contenuto in \mathbb{R}^4 (ovvero è n=4), il numero massimo di vertici di (P) è limitato da

$$\left(\begin{array}{c} m \\ n \end{array} \right) = \left(\begin{array}{c} 5 \\ 4 \end{array} \right) = \frac{5!}{4!(5-4)!} = \frac{5}{1} = 5.$$

Poichè un punto $v \in P$ è un suo vertice se e solo se rende attivi almeno n vincoli di (P), e di questi esattamente n devono essere linearmente indipendenti, analizziamo tutte le n-ple di vincoli del poliedro:

Vincoli (I)-(II)-(III)-(IV):

$$\begin{cases} 3x_1 - x_2 - x_3 = 2 \\ 2x_3 + 6x_4 = 5 \\ x_1 + x_3 = 4 \\ x_1 = 0 \end{cases} \implies v : \begin{cases} x_1 = 0 \\ x_2 = -6 \\ x_3 = 4 \\ x_4 = -1/2 \end{cases}$$

ma il vettore v NON soddisfa (V), quindi NON può essere un vertice di (P).

Vincoli (I)-(II)-(III)-(V):

$$\begin{cases} 3x_1 - x_2 - x_3 = 2 \\ 2x_3 + 6x_4 = 5 \\ x_1 + x_3 = 4 \\ x_2 = 0 \end{cases} \implies v : \begin{cases} x_1 = 3/2 \\ x_2 = 0 \\ x_3 = 5/2 \\ x_4 = 0 \end{cases}$$

che soddisfa tutti i vincoli di (P). Inoltre, verifichiamo se i 4 vincoli selezionati siano linearmente indipendenti, calcolando il seguente determinante

$$\begin{vmatrix} 3 & -1 & -1 & 0 \\ 0 & 0 & 2 & 6 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = (-1)^5 6(3+1) = -24 \neq 0,$$

pertanto il punto (3/2, 0, 5/2, 0) è vertice di (P).

Vincoli (I)-(II)-(IV)-(V)

$$\begin{cases} 3x_1 - x_2 - x_3 = 2 \\ 2x_3 + 6x_4 = 5 \\ x_1 = 0 \\ x_2 = 0 \end{cases} \implies v : \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = -2 \\ x_4 = 3/2 \end{cases}$$

che soddisfa tutti i vincoli di (P). Inoltre, verifichiamo se i 4 vincoli selezionati siano linearmente indipendenti, calcolando il seguente determinante

$$\begin{vmatrix} 3 & -1 & -1 & 0 \\ 0 & 0 & 2 & 6 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = -6 \neq 0,$$

pertanto il punto (0,0,-2,3/2) è vertice di (P).

Vincoli (I)-(III)-(IV)-(V):

$$\begin{cases} 3x_1 - x_2 - x_3 = 2\\ x_1 + x_3 = 4\\ x_1 = 0\\ x_2 = 0 \end{cases}$$

che risulta un sottoinsieme di vincoli *incompatibili*, pertanto in questo caso non è possibile trovare un candidato a vertice di (P).

Vincoli (II)-(III)-(IV)-(V):

$$\begin{cases} 2x_3 + 6x_4 = 5 \\ x_1 + x_3 = 4 \\ x_1 = 0 \\ x_2 = 0 \end{cases} \implies v : \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 4 \\ x_4 = -1/2 \end{cases}$$

ma il vettore v NON soddisfa (I), quindi NON può essere un vertice di (P).

In definitiva quindi il poliedro (P) ammette complessivamente i seguenti punti di vertice: (3/2, 0, 5/2, 0) e (0, 0, -2, 3/2).

2 Esercizio 2: Branch & Bound

Si vuole risolvere con il metodo del Branch & Bound il seguente esercizio (P_0) di programmazione lineare intera:

$$\max 7x_1 + 2x_2 - x_3$$

$$4x_1 + x_2 + x_3 + 7x_5 \le 10.5$$

$$11x_2 - x_4 \le 8$$

$$x \ge 0$$

$$x \text{ intero.}$$

$$(P_0)$$

Partendo dalla soluzione approssimata intera (ottenuta per ispezione visiva) $\tilde{x} = 0$, $\tilde{z} = 0$, creando la lista dei problemi aperti $\mathcal{L} = \{P_0\}$, si estrae da quest'ultima il solo problema che contiene e se ne risolve il problema rilassato (ottenuto cioè ignorando i vincoli di

interezza) associato a (P_0) , ottenendo il punto

$$x^0 = \begin{pmatrix} 0 \\ 10.5 \\ 0 \\ 107.5 \\ 0 \end{pmatrix},$$

che non risulta a coordinate intere. Pertanto, P_0 si chiude ed a partire da esso si determinano due sottoproblemi (*branching* rispetto alla variabile non intera x_2)

$$\max 7x_1 + 2x_2 - x_3$$

$$4x_1 + x_2 + x_3 + 7x_5 \le 10.5$$

$$11x_2 - x_4 \le 8$$

$$x \ge 0$$

$$x \text{ intero}$$

$$x_2 \le |10.5| = 10$$

$$(P_1)$$

e

$$\max 7x_1 + 2x_2 - x_3$$

$$4x_1 + x_2 + x_3 + 7x_5 \le 10.5$$

$$11x_2 - x_4 \le 8$$

$$x \ge 0$$

$$x \text{ intero}$$

$$x_2 \ge \lfloor 10.5 \rfloor + 1 = 11,$$

$$(P_2)$$

che andranno inseriti nella nuova lista dei problemi aperti $\mathcal{L} = \{P_1, P_2\}$. Estraendo da questa il problema P_1 e risoltone il rilassamento lineare, si ottiene il punto

$$x^0 = \begin{pmatrix} 0.125 \\ 10 \\ 0 \\ 102 \\ 0 \end{pmatrix},$$

cui corrisponde il valore della funzione obiettivo $z^1 = 20.875$. Essendo $z^1 > z^0$ provvediamo a chiudere il problema P_1 ed a suddividerlo (*branching*) nei due seguenti sottoproblemi che inseriremo nella lista \mathcal{L} dei problemi aperti:

$$\max 7x_1 + 2x_2 - x_3$$

$$4x_1 + x_2 + x_3 + 7x_5 \le 10.5$$

$$11x_2 - x_4 \le 8$$

$$x \ge 0$$

$$x \text{ intero}$$

$$x_2 \le 10$$

$$x_1 \le |0.125| = 0$$

$$(P_3)$$

 \mathbf{e}

$$\max 7x_1 + 2x_2 - x_3$$

$$4x_1 + x_2 + x_3 + 7x_5 \le 10.5$$

$$11x_2 - x_4 \le 8$$

$$x \ge 0$$

$$x \text{ intero}$$

$$x_2 \le \lfloor 10.5 \rfloor = 10$$

$$x_1 \ge |0.125| + 1 = 1.$$

$$(P_4)$$

Si osservi che finora non è stato ancora aggiornato il valore del punto di ottimo corrente intero \tilde{x} . Poichè ora è $\mathcal{L} = \{P_2, P_3, P_4\}$, estraiamo da \mathcal{L} il problema P_2 e ne risolviamo il rilassamento: quest'ultimo risulta inammissibile, pertanto il suo insieme ammissibile è vuoto, determinando la chiusura di P_2 senza aggiornare l'ottimo corrente intero \tilde{x} .

Estraiamo ora dalla lista dei problemi aperti P_3 e risolvendone il rilassamento lineare troviamo che gli corrisponde la soluzione

$$x^3 = \begin{pmatrix} 0 \\ 10 \\ 0 \\ 102 \\ 0 \end{pmatrix},$$

con valore della funzione obiettivo z=20. Essendo x^3 intera provvediamo a chiudere il problema P_3 ma ora aggiorniamo anche l'ottimo corrente intero che diventa $\tilde{x}=(0,10,0,102,0)^T$, con $\tilde{z}=20$.

Estraiamo infine P_4 dalla lista dei problemi aperti e ne risolviamo il rilassamento lineare, ottenendo il punto

$$x^4 = \begin{pmatrix} 1 \\ 6.5 \\ 0 \\ 63.5 \\ 0 \end{pmatrix},$$

cui corrisponde nuovamente il valore della funzione obiettivo z=20. Pertanto, essendo il valore della funzione obiettivo nell'ottimo corrente intero $\tilde{z}=20$, provvediamo a chiudere P_4 senza aggiornare il valore di \tilde{z} . Dal momento che risulta ora $\mathcal{L}=\emptyset$, il metodo ha termine e la soluzione finale sarà pertanto

$$x^* = x^3 = \begin{pmatrix} 0 \\ 10 \\ 0 \\ 102 \\ 0 \end{pmatrix},$$

cui corrisponde il valore della funzione obiettivo $z^* = 20$.

3 Esercizio 3: Problema di Flusso su reti

Sia dato il grafo in Figura 1. Dopo aver verificato se il *vettore di flusso* è ammissibile (fare verifica esplicita), calcolare il massimo valore del flusso per il nodo 's', ed indicare un taglio

Figura 1: Grafo iniziale.

a capacità minima del grafo. Si noti intanto che nelle etichette (coppie ordinate di numeri) associate agli archi, ciascuna componente del flusso (primo numero della coppia ordinata) è sempre non negativa, inoltre risulta non superiore alla capacità dell'arco (secondo numero della coppia ordinata). Pertanto il vettore di flusso soddisfa i **vincoli di capacità**. Inoltre, per ogni nodo tranne la sorgente s ed il pozzo t, risulta che il flusso entrante è equivalente al flusso uscente dallo stesso nodo (e.g., nel nodo 6 entra il flusso 4+2=6 ed esce il flusso 3+3=6). Pertanto, il vettore di flusso assegnato soddisfa anche i **vincoli di equilibrio** nei nodi intermedi.

Il valore del flusso \bar{f} associato al vettore di flusso dato in Figura 1 è semplicemente

$$\bar{f} = 3 + 1 + 0 = 4.$$

Iterazione 1:

Cerchiamo un possibile cammino aumentante da s a t. A tal fine identifichiamo il cammino

$$P_1 = \{(s,7), (7,3), (3,t)\}$$

nel quale tutti gli archi compresi risultano essere diretti (ovvero concordi con il verso di percorrenza del cammino dal nodo s al nodo t). Pertanto la variazione di flusso δ consentita dal cammino aumentante P_1 è pari a

$$\delta = \delta^+ = \min\{4 - 0, 5 - 0, 9 - 2\} = 4.$$

Aggiornando le etichette dei nodi del grafo inclusi nel cammino aumentante P_1 si ottiene il grafo in Figura 2, cui corrisponde il nuovo valore di flusso f_1 dato da

$$f_1 = \bar{f} + \delta = 4 + 4 = 8.$$

Figura 2: Grafo al termine della prima iterazione.

Iterazione 2:

Cerchiamo un nuovo possibile cammino aumentante da s a t. A tal fine identifichiamo il cammino

$$P_2 = \{(s,5), (5,6), (6,2), (2,t)\}$$

che contiene 3 archi diretti (non saturi) ed un arco inverso (non vuoto). Pertanto la variazione di flusso δ consentita dal cammino aumentante P_2 è pari a

$$\begin{split} \delta^+ &= \min\{6-3, 5-2, 7-2\} = 3, \\ \delta^- &= \min\{4\} = 4, \\ \delta &= \min\{\delta^+, \delta^-\} = 3. \end{split}$$

Aggiornando le etichette dei nodi del grafo inclusi nel cammino aumentante P_2 si ottiene il grafo in Figura 3, cui corrisponde il nuovo valore di flusso f_2 dato da

$$f_2 = f_1 + \delta = 8 + 3 = 11.$$

Iterazione 3:

Cerchiamo un nuovo possibile cammino aumentante da s a t. A tal fine identifichiamo il cammino

$$P_3 = \{(s,4), (4,6), (6,3), (3,t)\}$$

che contiene 3 archi diretti (non saturi) ed un arco inverso (non vuoto). Pertanto la variazione di flusso δ consentita dal cammino aumentante P_3 è pari a

$$\delta^{+} = \min\{5 - 1, 8 - 3, 9 - 6\} = 3,$$

$$\delta^{-} = \min\{3\} = 3,$$

$$\delta = \min\{\delta^{+}, \delta^{-}\} = 3.$$

Figura 3: Grafo al termine della seconda iterazione.

Aggiornando le etichette dei nodi del grafo inclusi nel cammino aumentante P_3 si ottiene il grafo in Figura 4, cui corrisponde il nuovo valore di flusso f_3 dato da

$$f_3 = f_2 + \delta = 11 + 3 = 14.$$

Inoltre, si nota che il taglio (W, \overline{W}) , in cui

$$\begin{split} W &= \{s, 2, 3, 4, 5, 6, 7\} \\ \bar{W} &= \{t\}, \end{split}$$

risulta a capacità minima, in quanto $F(W, \bar{W}) = C(W, \bar{W}) = 14$. Pertanto, dal Teorema del Max Flow - Min Cut la procedura termina con il valore del flusso finale pari a $f_3 = 14$.

 ${\bf Figura\ 4:\ Grafo\ al\ termine\ della\ terza\ iterazione.}$