## INTERSTELLAR HYDROXYL MASERS IN THE GALAXY. I. THE VLA SURVEY

A. L. ARGON, M. J. REID, 1.2 AND KARL M. MENTEN<sup>2</sup> Received 1999 October 25; accepted 2000 February 15

#### ABSTRACT

Interstellar OH masers are bright signposts for recently formed massive stars, and the maser emission can be used to study the kinematic and physical conditions of dense molecular material surrounding these stars. We present interferometric maps of 91 interstellar OH maser sources in one or both of the ground-state, main-line,  ${}^2\Pi_{3/2}J = 3/2$  OH transitions near 18 cm wavelength. The maps comprising this large, uniformly processed, survey have a spectral resolution of 0.14 km s<sup>-1</sup> and an angular resolution of  $\approx 1.5$ . We measured the absolute positions of the masers to an accuracy of  $\approx 0.3$  in the E-W direction and  $\approx 0.5$  in the N-S direction, except for those sources with declinations below about  $-30^\circ$ , and relative positions of isolated OH maser spots within each source and OH transition to an accuracy of  $\approx 0.01$ . This survey forms a nearly complete sample of interstellar OH masers that are stronger than 1 Jy in both right- and left-circular polarization in at least one of the ground-state OH transitions.

Subject headings: H II regions — ISM: clouds — masers — radio lines: ISM

#### 1. INTRODUCTION

Regions of massive star formation often contain interstellar hydroxyl (OH) masers. When mapped with radio interferometers the maser emission is often found to arise from the molecular envelope surrounding an ultracompact H II (UCH II) region. Thus, OH masers are signposts for newly formed O- and early B-type stars that are still deeply embedded in their dense placental material. Typically, OH emission from a single UCH II region appears to arise from many bright "spots," which are spread over an area of sky with a characteristic size of 10<sup>3</sup>–10<sup>4</sup> AU. At a representative distance of  $\sim 3$  kpc, this corresponds to a few arcseconds. After correcting for the Zeeman splitting, induced by the magnetic field in the maser region (e.g., 3 km s<sup>-1</sup> at 1665 MHz for a typical magnetic field of 5 mG), the maser emission usually covers a radial velocity range of several km s<sup>-1</sup>, centered near the LSR velocity of the region in question.

To date about 300 interstellar OH masers have been found and a sizeable number have been mapped with Very Long Baseline Interferometric (VLBI) arrays or with connected element interferometers. VLBI observations generally achieve an angular resolution of  $\lesssim 0.01$  at 18 cm, the wavelength of the ground-state OH transitions. Highresolution VLBI maps of one or more of the four 18 cm hyperfine transitions have been published for a small number of sources including W3 OH (Reid et al. 1980; Masheder et al. 1994), W75 N (Haschick et al. 1981), W49 N (Kent & Mutel 1982), G351.78 – 0.54 (Fix et al. 1982), W51 M (Benson, Mutel, & Gaume 1984), NGC 6334 F (Zheng 1989), and G45.07 + 0.13 (Zheng 1997). While connected element interferometers, such as the Very Large Array (VLA) and the Multi-Element Radio Linked Interferometer Network (MERLIN), generally have insufficient resolution to resolve individual maser spots, they can be used to determine the relative positions of the centroids of spots accurately enough to study their distribution (e.g., Norris, Booth, & Diamond 1982a; Norris et al. 1982b; Baart &

Cohen 1985; Baart et al. 1986; Gaume & Mutel 1987; Forster & Caswell 1999). The relative positions of maser spots for about a hundred sources have been measured with these interferometers. A large-scale survey has been carried out by Caswell (1998) using the Australian Telescope Compact Array (ATCA), which gives the absolute positions of over 200 southern sky OH masers to an accuracy of  $\approx 1$ ", but little relative positional information.

In order to better study the properties of interstellar OH masers, we conducted extensive observations with the VLA in its most extended A configuration. We mapped 91 sources in one or both of the ground-state, main-line,  ${}^2\Pi_{3/2} J = 3/2$  OH transitions. All maps were sensitive to both right- and left-circular polarization (RCP and LCP, respectively). This survey represents the vast majority of interstellar OH masers that are visible from the latitude of the VLA and that are stronger than 1 Jy in both RCP and LCP. Our interferometric survey has better spectral and angular resolution than any previous survey of this magnitude.

Since our data comprise a nearly complete, flux-density limited, sample of interstellar OH masers, observed with the same instrument and analyzed in a consistent manner, further analysis should allow statistically meaningful estimates of many characteristics of interstellar OH masers, such as their luminosity function and line width versus intensity relation. In addition, the identification of Zeeman pairs within individual sources allows one to estimate the full magnitude and line-of-sight direction of the magnetic field in the dense gas near newly formed stars. Such studies using this large database will be published later. In this paper we document our observations and present interferometric spectra and maps of all sources observed.

## 2. SAMPLE SELECTION

Our sample of interstellar OH masers was chosen in the following manner. First, we compiled a list of all sources showing maser emission in OH and/or water vapor ( $H_2O$ ) above a declination of  $-45^{\circ}$  that are listed in the catalog of Braz & Epchtein (1983). We then added all known interstellar  $H_2O$  maser sources from the Cesaroni et al. (1988) catalog of sources north of  $-30^{\circ}$  declination that are not in the Braz & Epchtein catalog. Finally, we observed all of

<sup>&</sup>lt;sup>1</sup> Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138;

aargon@cfa.harvard.edu, mreid@cfa.harvard.edu.

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, D-53121 Germany; kmenten@mpifr-bonn.mpg.de.

these 396 candidate sources with the NRAO 43 m telescope in Green Bank, WV, between 1992 February 1 and 3. The main-line F=1-1 and F=2-2 hyperfine transitions at 1665.4018 and 1667.3590 MHz were observed in both RCP and LCP. Observations in each transition and polarization covered a total bandwidth of 156 kHz, centered on the expected LSR velocity of the source. The observing band was sampled with 256 spectral channels, and, after discarding a total of 38 spectral channels from the band edges, we obtained spectra covering a velocity range of 24 km s<sup>-1</sup> with a velocity resolution of 0.11 km s<sup>-1</sup>.

After integrating for 45 s, we achieved a typical minimum noise of about 0.2 K antenna temperature,  $T_A$ , corresponding to a single polarization flux density (i.e., multiplying  $T_A$ by  $k/A_{\rm eff}$ , where k is Boltzmann's constant and  $A_{\rm eff}$  is the effective collecting area of the antenna) of about 0.3 Jy. For some regions in the plane of the Milky Way, strong emission from H II regions increased the total system temperature by a factor of up to about 3 from the nominal value of  $\approx 25$  K. Thus, our 3  $\sigma$ , single-channel, detection limit ranged from about 0.9 to 2.7 Jy. Fortunately, the higher noise levels were almost always associated with prominent H II regions (e.g., Sgr B2, W49, and W51) where the strongest masers are usually found. Also, since interstellar OH masers have typical line widths of about 0.4 km s<sup>-1</sup>, and often many spots blend together to further increase the frequency extent of the maser emission, we could almost always detect sources as weak as 1 Jy.

We used our Green Bank 43 m telescope survey to provide a large sample of interstellar OH masers whose declinations were above  $-45^{\circ}$  and peak flux densities were stronger than 1 Jy in both circular polarizations in at least one OH main-line transition. This criterion was motivated by our desire to seek Zeeman pairs for magnetic field measurement. We note that the selection criteria were used to determine "pointing positions" for the VLA. In some cases more than one source was found within a search region of 17' centered on the pointing position and contained within the  $\approx 30'$  FWHM primary beam of a single VLA antenna at this wavelength. An example of this is the source pair G28.199 - 0.048 and G28.147 - 0.005. The first source was the one we intended to observe and satisfies the selection criteria. The second source was a "bonus" and does not meet the criterion that it is stronger than 1 Jy in both circupolarizations. In addition, the outer Galaxy  $(90^{\circ} < \ell < 270^{\circ})$  is less populated with strong interstellar OH masers than the inner Galaxy. This resulted in some extra observing time for outer Galaxy sources, and we chose to include five sources whose flux density fell slightly below selection G97.527 + 3.184the Jy criteria: G126.715 - 0.822, G133.715 + 1.215, G173.481 + 2.445, and G188.946 + 0.886. Finally, observing time permitted the inclusion of one extra source, G337.707-0.051, which is below our Green Bank survey declination  $-45^{\circ}$ . In total, we mapped 91 sources with the VLA in the 1665 and 1667 MHz lines. (The 1612 and 1720 satellite lines are usually much weaker than the main lines in interstellar OH masers and were observed only in a few of the strongest sources.)

To obtain a rough idea of the completeness of our sample, we compared our survey to that of Caswell & Haynes (1983a, 1983b, hereafter CH83). The CH83 survey includes 49 OH maser sources between  $340^\circ < \ell \le 3^\circ$  and 55 between  $3^\circ < \ell \le 60^\circ$  in a complete sampling of the Galactic plane in the range of  $\pm 0^\circ$ 3 of latitude. This totals

104 sources compared to our 70 in the same longitude range. The greater number of sources in the Caswell & Haynes survey can be attributed mostly to their higher sensitivity ( $\approx 0.1$  Jy noise level). The overlap is not perfect; they are missing 14 of our sources and we are missing 48 of theirs. The sources found in our survey, but missing in the CH83 sample, can be explained by three factors: (1) four sources are outside of their  $\pm 0^{\circ}3$  of latitude coverage, (2) their 12' beam blends 8 sources with other sources, and (3) two sources seem to have increased in strength from less than 0.3 Jy to more than 4 Jy in the decade between the surveys. On the other hand, the sources in the CH83 sample that are not found in our survey, can be explained by three factors: (1) four sources appear to be stellar (not interstellar) masers, (2) 26 sources were weaker than 1 Jy in one polarization, and (3) 18 sources had flux densities of typically a few Jy in the early 1980's and weakened sufficiently to fall below our selection criterion.

Since we can account for all of the differences between our survey and the deeper one of Caswell & Haynes, our survey should be essentially complete for the latitude range  $|\ell| < 0^{\circ}$ 3. There are perhaps some undiscovered interstellar OH masers at higher Galactic latitudes. However, since interstellar OH masers are usually associated with massive star forming regions only a small number are likely to have been missed. Also there are some sources which are hard to classify. For example, we have not included the Orion KL (IRc2) OH masers in our survey because this source may be an unusual stellar-like OH maser. Overall, the evidence suggests that we are nearly complete (probably above the 80% level) at the epoch of the Green Bank observations.

### 3. VLA OBSERVATIONS

Observations of the 91 interstellar OH maser sources were conducted in five sessions between 1991 and 1998 (see Table 1) with the National Radio Astronomy Observatory's VLA near Socorro, NM, using all 27 antennas in the A configuration. All sources were observed in spectral-line mode in at least one of the two OH main-line transitions (1665.4018 and 1667.3590 MHz) and a few in one or both of the OH satellite-line transitions (1612.2310 and 1720.5300 MHz) as well. Observations were made using 256 uniformly weighted channels, covering an observing bandwidth of 0.1953 MHz. The channel separation was 0.763 kHz, corresponding to about 0.14 km s<sup>-1</sup> for the main-line OH transitions. For most sources, we retained only the inner 128 channels, covering 18 km s<sup>-1</sup>, which included all of the OH maser emission.

Each source was observed simultaneously in RCP and LCP to ensure accurate registration of maps. When more than one transition was observed, they were observed consecutively in time to minimize the differences of the absolute positions owing to the effects of atmospheric and ionospheric fluctuations. In order to maximize observational efficiency, a single calibrator observation at 1665 MHz was used for both main-lines and usually for several sources nearby in angle on the sky. Typical angular differences between maser sources and a calibrator were  $\approx 15^{\circ}.$  Satellite-line transitions required independent calibrations

<sup>&</sup>lt;sup>3</sup> The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation.

TABLE 1
ABSOLUTE POSITION OF MAP CENTERS

| Source                               | Alias                | Epoch <sup>a</sup> | α <sub>B1950</sub>         | $\delta^{\mathrm{b}}_{\mathrm{B}1950}$ | α <sup>b</sup> <sub>J2000</sub> | $\delta^{	ext{b}}_{	ext{J2000}}$   |
|--------------------------------------|----------------------|--------------------|----------------------------|----------------------------------------|---------------------------------|------------------------------------|
| G0.375+0.041                         |                      | 2b                 | 17 43 11.28                | -28 34 32.7                            | 17 46 21.40                     | -28 35 39.3                        |
| G0.547 – 0.852                       | RCW 142              | 2c                 | 17 47 03.91                | $-28\ 53\ 41.2$                        | 17 50 14.53                     | $-28\ 54\ 30.8$                    |
| $G0.658 - 0.043 \dots$               | Sgr B2S              | 1                  | 17 44 10.65                | $-28\ 22\ 43.3$                        | 17 47 20.48                     | $-28\ 23\ 45.6$                    |
| G0.666 - 0.034                       | Sgr B2M              | 1                  | 17 44 10.32                | $-28\ 22\ 03.8$                        | 17 47 20.13                     | $-28\ 23\ 06.1$                    |
| $G0.670 - 0.058 \dots$               | Sgr B2               | 1                  | 17 44 15.79                | $-28\ 22\ 35.7$                        | 17 47 25.61                     | $-28\ 23\ 37.6$                    |
| $G0.672 - 0.031 \dots$               | Sgr B2N              | 1                  | 17 44 10.23                | $-28\ 21\ 39.2$                        | 17 47 20.03                     | $-28\ 22\ 41.5$                    |
| G0.678 – 0.027                       | Sgr B2               | 1                  | 17 44 10.12                | $-28\ 21\ 14.5$                        | 17 47 19.90                     | $-28\ 22\ 16.8$                    |
| G2.143 + 0.010                       | •••                  | 2c                 | 17 47 28.18                | -27 04 58.5                            | 17 50 36.10                     | -27 05 46.5                        |
| G5.886 – 0.393                       | •••                  | 2b                 | 17 57 27.00                | -24 03 56.4                            | 18 00 30.63                     | -24 04 00.9                        |
| G6.049 – 1.447<br>G9.622 + 0.195     | •••                  | 2b<br>1            | 18 01 48.99<br>18 03 15.90 | $-24\ 26\ 56.2$ $-20\ 31\ 52.1$        | 18 04 53.15<br>18 06 14.70      | -24 26 41.5                        |
| G10.624 – 0.385                      | •••                  | 1                  | 18 03 13.90                | -20 31 32.1<br>-19 56 29.0             | 18 10 28.61                     | $-20\ 31\ 31.3$<br>$-19\ 55\ 49.7$ |
| G12.210 – 0.102                      | •••                  | 2b                 | 18 09 43.89                | $-18\ 25\ 06.2$                        | 18 12 39.89                     | -18 24 17.3                        |
| G12.216 - 0.102                      | •••                  | 2b                 | 18 09 48.43                | $-18\ 25\ 13.2$                        | 18 12 44.43                     | $-18\ 24\ 23.9$                    |
| G12.680 – 0.181                      | W33 B                | 1                  | 18 10 59.24                | -180240.8                              | 18 13 54.75                     | -18 01 46.4                        |
| G12.890 + 0.488                      |                      | 2c                 | 18 08 56.57                | $-17\ 32\ 14.6$                        | 18 11 51.44                     | $-17\ 31\ 29.2$                    |
| G12.908 – 0.259                      | W33 A                | 1                  | 18 11 44.17                | -175257.9                              | 18 14 39.47                     | -175200.2                          |
| $G17.639 + 0.155 \dots$              |                      | 2c                 | 18 19 36.56                | $-13\ 31\ 43.9$                        | 18 22 26.34                     | $-13\ 30\ 12.1$                    |
| $G20.081 - 0.135 \dots$              |                      | 2c                 | 18 25 22.99                | $-11\ 30\ 45.3$                        | 18 28 10.28                     | $-11\ 28\ 48.4$                    |
| $G28.147 - 0.005 \dots$              | •••                  | 2b                 | 18 40 03.86                | $-04\ 18\ 35.5$                        | 18 42 42.57                     | $-04\ 15\ 35.5$                    |
| G28.199 – 0.048                      | •••                  | 2b                 | 18 40 19.36                | -04 16 59.1                            | 18 42 58.04                     | $-04\ 13\ 58.0$                    |
| G30.589 – 0.044                      | •••                  | 2b                 | 18 44 42.58                | $-02\ 09\ 36.8$                        | 18 47 18.81                     | -02 06 16.9                        |
| G30.703 – 0.069                      | •••                  | 2c                 | 18 45 00.63                | $-02\ 04\ 15.7$                        | 18 47 36.76                     | -02 00 54.5                        |
| G31.412+0.307                        | •••                  | 1                  | 18 44 59.05                | -01 16 07.2                            | 18 47 34.25                     | -01 12 46.1                        |
| G32.744 – 0.076<br>G34.257 + 0.154   | •••                  | 2c<br>1            | 18 48 47.80<br>18 50 46.27 | -00 15 43.7                            | 18 51 21.85<br>18 53 18.67      | -00 12 06.4                        |
| G35.024 + 0.350                      | •••                  | 2c                 | 18 50 46.27                | +01 11 12.8<br>+01 57 30.0             | 18 54 00.64                     | $+01\ 14\ 58.5$<br>$+02\ 01\ 18.7$ |
| G35.197 – 0.743                      | •••                  | 2b                 | 18 55 41.09                | +01 37 30.0 +01 36 28.7                | 18 58 13.02                     | +02 01 18.7                        |
| G35.200 – 1.736                      | •••                  | 1                  | 18 59 13.09                | +01 09 11.1                            | 19 01 45.54                     | +01 13 32.6                        |
| G35.577 – 0.029                      | •••                  | 2b                 | 18 53 51.33                | +02 16 28.4                            | 18 56 22.50                     | +02 20 27.1                        |
| G40.622 – 0.137                      | •••                  | 2c                 | 19 03 35.40                | +06 41 56.1                            | 19 06 01.61                     | +06 46 35.8                        |
| $G43.148 + 0.015 \dots$              | W49                  | 1                  | 19 07 47.41                | +09 00 23.1                            | 19 10 11.04                     | +09 05 20.2                        |
| $G43.165 - 0.028 \dots$              | W49 S                | 1                  | 19 07 58.02                | $+09\ 00\ 04.7$                        | 19 10 21.65                     | +09 05 02.6                        |
| $G43.167 + 0.010 \dots$              | W49 N                | 1                  | 19 07 49.56                | $+09\ 01\ 14.9$                        | 19 10 13.18                     | +09 06 12.2                        |
| $G43.796 - 0.127 \dots$              | •••                  | 2c                 | 19 09 30.93                | $+09\ 30\ 45.6$                        | 19 11 54.01                     | +09 35 50.0                        |
| $G45.071 + 0.134 \dots$              | •••                  | 1                  | 19 11 00.42                | +10 45 43.5                            | 19 13 22.08                     | $+10\ 50\ 54.0$                    |
| G45.122+0.133                        | •••                  | 1                  | 19 11 06.19                | +10 48 26.2                            | 19 13 27.81                     | +10 53 37.0                        |
| G45.455 + 0.060                      | •••                  | 2b                 | 19 11 59.93                | +11 04 00.8                            | 19 14 21.26                     | +11 09 15.4                        |
| $G45.465 + 0.047 \dots$              | •••                  | 2b                 | 19 12 04.35                | +11 04 10.2                            | 19 14 25.68                     | +11 09 25.1                        |
| G45.472 + 0.134<br>G49.469 – 0.370   | <br>W51              | 2b<br>1            | 19 11 46.09<br>19 21 20.20 | +11 07 01.9<br>+14 24 05.9             | 19 14 07.36<br>19 23 37.87      | +11 12 15.6<br>+14 29 58.9         |
| G49.488 – 0.387                      | W51 M/S              | 1,3                | 19 21 26.20                | +14 24 03.9                            | 19 23 43.98                     | +14 29 38.9                        |
| G49.489 – 0.368                      | W51 N                | 1,3                | 19 21 20.31                | +14 25 11.1                            | 19 23 40.03                     | +14 31 04.2                        |
| G49.491 – 0.376                      | W51                  | 3                  | 19 21 24.30                | +14 25 06.2                            | 19 23 41.96                     | +14 30 59.4                        |
| G69.540 – 0.976                      | ON 1                 | 2b                 | 20 08 09.81                | +31 22 39.9                            | 20 10 09.05                     | +31 31 35.2                        |
| G70.293 + 1.601                      | K3-50                | 2b                 | 19 59 50.13                | +33 24 21.3                            | 20 01 45.73                     | +33 32 45.3                        |
| $G70.329 + 1.590 \dots$              | ON 3                 | 2b                 | 19 59 58.48                | +33 25 49.3                            | 20 01 54.07                     | +33 34 13.9                        |
| $G75.761 + 0.340 \dots$              | ON 2 S               | 2c                 | 20 19 48.98                | +37 15 51.9                            | 20 21 41.10                     | +37 25 29.3                        |
| $G75.782 + 0.343 \dots$              | ON 2 N               | 2c                 | 20 19 51.86                | $+37\ 17\ 00.5$                        | 20 21 43.97                     | +37 26 38.1                        |
| $G80.864 + 0.421 \dots$              | •••                  | 1                  | 20 35 04.34                | $+41\ 25\ 54.0$                        | 20 36 52.16                     | +41 36 24.5                        |
| $G81.721 + 0.571 \dots$              | W75 S                | 1                  | 20 37 14.05                | $+42\ 12\ 10.5$                        | 20 39 00.97                     | +42 22 48.2                        |
| G81.745 + 0.590                      | W75                  | 1                  | 20 37 13.51                | +42 13 59.4                            | 20 39 00.38                     | +42 24 37.1                        |
| G81.871 + 0.781                      | W75 N                | 3                  | 20 36 49.95                | +42 26 57.9                            | 20 38 36.39                     | +42 37 34.3                        |
| G97.527 + 3.184                      |                      | 2c                 | 21 30 36.82                | +55 40 21.5                            | 21 32 11.28                     | +55 53 40.1                        |
| G109.871 + 2.114                     | Cep A<br>NGC 7538    | 1                  | 22 54 18.93                | +61 45 46.4                            | 22 56 17.87                     | +62 01 48.6                        |
| G111.533 + 0.757 G111.543 + 0.777    | NGC 7538<br>NGC 7538 | 1<br>1             | 23 11 36.27<br>23 11 36.60 | +61 10 28.8<br>+61 11 49.5             | 23 13 45.02<br>23 13 45.34      | +61 26 49.3<br>+61 28 10.1         |
| G111.343 + 0.777<br>G126.715 - 0.822 | NGC 7338             | 2a                 | 01 20 16.03                | +61 11 49.5                            | 01 23 33.17                     | +61 48 49.2                        |
| G120.715 = 0.822 G133.715 + 1.215    | W3                   | 2a<br>2a           | 02 21 53.13                | +61 52 19.5                            | 02 25 40.59                     | +62 05 50.5                        |
| G133.946 + 1.064                     | W3<br>W3 OH          | 2a<br>2a           | 02 23 16.33                | +61 38 57.9                            | 02 27 03.70                     | $+62\ 03\ 30.3$<br>$+61\ 52\ 25.4$ |
| $G173.481 + 2.445 \dots$             | S231                 | 2a                 | 05 35 51.46                | +35 44 13.3                            | 05 39 13.06                     | +35 45 51.4                        |
| G188.946 + 0.886                     | S252                 | 1                  | 06 05 53.09                | +21 39 01.3                            | 06 08 53.33                     | +21 38 29.0                        |
| G196.454 – 1.677                     | S269                 | 1                  | 06 11 46.90                | +13 50 33.9                            | 06 14 37.07                     | +13 49 36.3                        |
| $G213.706 - 12.60 \dots$             | Mon R2               | 2a                 | 06 05 21.56                | $-06\ 22\ 27.9$                        | 06 07 47.84                     | $-06\ 22\ 56.7$                    |
| $G337.707 - 0.051 \dots$             | •••                  | 1                  | 16 34 48.89                | -465430.4                              | 16 38 29.55                     | $-47\ 00\ 27.0$                    |
|                                      |                      |                    |                            |                                        |                                 |                                    |

TABLE 1—Continued

| Source                   | Alias      | Epoch <sup>a</sup> | $\alpha^b_{B1950}$ | $\delta^{\mathrm{b}}_{\mathrm{B}1950}$ | $\alpha^b_{J2000}$ | $\delta^{\mathrm{b}}_{\mathrm{J}2000}$ |
|--------------------------|------------|--------------------|--------------------|----------------------------------------|--------------------|----------------------------------------|
| G340.785 – 0.095         |            | 2b                 | 16 46 38.22        | $-44\ 37\ 15.4$                        | 16 50 14.85        | $-44\ 42\ 23.3$                        |
| G341.219 - 0.212         | •••        | 1                  | 16 48 41.64        | $-44\ 21\ 50.6$                        | 16 52 17.89        | $-44\ 26\ 50.0$                        |
| G343.128 - 0.063         | •••        | 2b                 | 16 54 43.80        | $-42\ 47\ 31.3$                        | 16 58 17.16        | $-42\ 52\ 05.4$                        |
| G344.227 - 0.568         |            | 1                  | 17 00 35.19        | $-42\ 14\ 28.9$                        | 17 04 07.81        | $-42\ 18\ 38.4$                        |
| G344.581 - 0.022         | •••        | 2c                 | 16 59 26.47        | $-41\ 37\ 37.3$                        | 17 02 57.76        | $-41\ 41\ 51.6$                        |
| G345.003 - 0.224         | •••        | 3                  | 17 01 40.24        | $-41\ 25\ 01.1$                        | 17 05 11.25        | $-41\ 29\ 06.0$                        |
| G345.011 + 1.792         |            | 1                  | 16 53 19.61        | -40~09~44.1                            | 16 56 47.61        | $-40\ 14\ 24.3$                        |
| G345.488 + 0.313         | •••        | 2c                 | 17 00 58.58        | $-40\ 42\ 17.6$                        | 17 04 28.13        | $-40\ 46\ 25.5$                        |
| G345.505 + 0.347         |            | 2c                 | 17 00 53.50        | $-40\ 40\ 15.0$                        | 17 04 22.98        | $-40\ 44\ 23.3$                        |
| $G345.699 - 0.090 \dots$ |            | 2b                 | 17 03 20.80        | $-40\ 47\ 00.4$                        | 17 06 50.64        | $-40\ 50\ 58.3$                        |
| G347.628 + 0.149         |            | 1                  | 17 08 24.17        | $-39\ 05\ 51.8$                        | 17 11 51.03        | $-39\ 09\ 28.2$                        |
| G348.549 - 0.978         |            | 3                  | 17 15 53.37        | $-39\ 00\ 46.7$                        | 17 19 20.41        | $-39\ 03\ 51.1$                        |
| G348.698 - 1.027         | •••        | 3                  | 17 16 32.02        | -385511.7                              | 17 19 58.92        | $-38\ 58\ 13.2$                        |
| G350.011 – 1.341         | •••        | 2b                 | 17 21 41.10        | $-38\ 01\ 20.6$                        | 17 25 06.51        | $-38\ 04\ 00.0$                        |
| G350.113 + 0.095         | •••        | 2b                 | 17 16 02.15        | $-37\ 07\ 00.2$                        | 17 19 25.69        | $-37\ 10\ 04.0$                        |
| G351.161 + 0.697         | NGC 6334 B | 2c                 | 17 16 35.99        | -355450.5                              | 17 19 57.41        | $-35\ 57\ 52.0$                        |
| G351.232 + 0.682         | NGC 6334   | 2c                 | 17 16 51.94        | -355151.5                              | 17 20 13.29        | -355451.9                              |
| G351.416 + 0.646         | NGC 6334 F | 2c,3               | 17 17 32.30        | -354404.2                              | 17 20 53.44        | $-35\ 47\ 01.6$                        |
| G351.582 – 0.352         |            | 2b                 | 17 22 03.45        | $-36\ 10\ 03.9$                        | 17 25 25.51        | $-36\ 12\ 41.8$                        |
| G351.775 – 0.538         | •••        | 1                  | 17 23 20.55        | $-36\ 06\ 45.2$                        | 17 26 42.55        | -360917.6                              |
| G353.410 – 0.361         |            | 2b                 | 17 27 06.65        | -343929.6                              | 17 30 26.23        | $-34\ 41\ 45.8$                        |
| G355.345 + 0.146         |            | 1                  | 17 30 12.57        | -324555.3                              | 17 33 29.07        | -324758.1                              |
| G358.235 + 0.116         |            | 1                  | 17 37 41.39        | $-30\ 21\ 07.7$                        | 17 40 54.16        | -302238.1                              |
| G359.138 + 0.032         |            | 2b                 | 17 40 13.99        | $-29\ 37\ 57.3$                        | 17 43 25.68        | $-29\ 39\ 16.7$                        |
| G359.436 - 0.103         | •••        | 1                  | 17 41 29.16        | $-29\ 27\ 01.5$                        | 17 44 40.58        | $-29\ 28\ 15.4$                        |
| G359.969 – 0.457         |            | 2b                 | 17 44 09.15        | $-29\ 10\ 56.2$                        | 17 47 20.19        | $-29\ 11\ 58.5$                        |

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

because of the larger frequency shifts. Most sources were observed with *three* 2 to 4 minute scans, which were as widely spaced in time as possible during the period available between rise and set. Sources with low declinations, which were not above the VLA's  $8^{\circ}$  elevation limit for a long time, were observed with either two scans (for sources with  $-44^{\circ} < \delta < -38^{\circ}$ ) or only one scan ( $\delta \le -44^{\circ}$ ).

### 4. CALIBRATIONS AND IMAGING

Quasi-continuum data obtained by averaging the central 75% of the observing band were used to calibrate the complex instrumental gain of each antenna. All data were analyzed with the NRAO Astronomical Image Processing System (AIPS). We employed the standard method of determining the flux density of the (variable) secondary calibrators based on the primary calibrator, 3C 286, whose flux density was assumed to be 13.6 Jy at 1665 MHz. We then determined complex gains for the secondary calibrator using the task CALIB, interpolated these gains to the observation times of the maser source with the task CLCAL, and applied them to the spectral-line data with the tasks TACOP and SPLIT. Absolute positions for the strongest maser spots ("reference features," see below) were determined from maps made with these data.

For each maser source and transition, we first searched for emission over a large area of sky ( $1024'' \times 1024''$ ) using only data with projected baseline lengths less than 40 k $\lambda$ , and then imaged identified sites of maser emission at full

angular resolution (covering 32" × 32") using all the data. Before the final imaging step, we "self-calibrated" the data in order to remove the residual effects of atmospheric and ionospheric phase corruption. This was accomplished by selecting a strong unresolved feature in one of the polarizations for each transition (i.e., a "reference feature"), shifting the phase center to the position of that feature with the task UVFIX, determining residual phases using a point source model with the task ASCAL, and subtracting these residual phases from the data in all channels for both polarizations using the task ASCOR. Following this "phase-only" self-calibration procedure, we created a map for each spectral channel with the task MX.

## 5. OH MASER SPECTRA

We constructed spectra for all sources by plotting for each spectral channel its extreme brightness (as flux density per beam) within a  $10^{\prime\prime} \times 10^{\prime\prime}$  region centered on the centroid of the emission. In three cases (W49, W51, and G9.622+0.195) emission was detected outside of this region, and for these sources we used a  $16^{\prime\prime} \times 16^{\prime\prime}$  region. Our spectra are displayed in the left-hand panels of Figures 2–38. The OH transition is indicated in the upper left-hand corner of the spectra, and the heavy and light lines indicate RCP and LCP emission, respectively. The "noise" in these spectra is quantized and does *not* follow Gaussian random statistics. This occurs as the plotted image extrema are usually close to  $\pm 2.5$  times the rms noise level ( $\sim 0.05$  Jy,

<sup>&</sup>lt;sup>a</sup> Epoch of observation: (1) 1991 August 10 – 11, (2a) 1992 December 27, (2b) 1993 January 10, (2c) 1993 January 12, and (3) 1998 March 26.

<sup>&</sup>lt;sup>b</sup> E-W ( $\Delta\alpha$  cos  $\delta$ ) position errors are independent of declination and are estimated to be  $\approx$ 0".3. N-S ( $\Delta\delta$ ) position errors show a strong dependence on source declination, with errors increasing as source declination decreases. For sources with  $\delta \lesssim -35^\circ$ , declination errors can exceed 1" and for sources with  $\delta \lesssim -40^\circ$ , they can be several times higher. See text and Fig. 1 for details.

TABLE 2
BEAM AND IMAGE SPECIFICATIONS

|                                                      |                  |                |                             | OH Maser                    | Maps                    |                        | 8.4                         | GHz Conti                   | NUUM MAI                | ?S                      |
|------------------------------------------------------|------------------|----------------|-----------------------------|-----------------------------|-------------------------|------------------------|-----------------------------|-----------------------------|-------------------------|-------------------------|
| Source                                               | Alias            | $\delta$ (deg) | Major <sup>a</sup> (arcsec) | Minor <sup>a</sup> (arcsec) | P.A. <sup>a</sup> (deg) | σ <sup>b</sup><br>(Jy) | Major <sup>a</sup> (arcsec) | Minor <sup>a</sup> (arcsec) | P.A. <sup>a</sup> (deg) | σ <sup>b</sup><br>(mJy) |
| G0.375 + 0.041                                       | •••              | -28            | 3.06                        | 1.49                        | -19.8                   | 0.22                   | 0.63                        | 0.25                        | -16.2                   |                         |
| $G0.547 - 0.852 \dots$                               | RCW 142          | -28            | 2.99                        | 1.70                        | -13.4                   | 0.20                   | 0.66                        | 0.24                        | -21.5                   | 0.14                    |
| $G0.658 - 0.043 \dots$                               | Sgr B2S          | -28            | 2.64                        | 1.49                        | 11.3                    | 0.09                   | 0.56                        | 0.24                        | -4.4                    | 2.00                    |
| $G0.666 - 0.034 \dots$                               | Sgr B2M          | -28            | 2.64                        | 1.49                        | 11.3                    | 0.09                   | 0.56                        | 0.24                        | -4.4                    | 3.48                    |
| $G0.670 - 0.058 \dots$                               | Sgr B2           | -28            | 2.64                        | 1.49                        | 11.3                    | 0.09                   | 0.56                        | 0.24                        | -4.4                    | •••                     |
| G0.672 – 0.031                                       | Sgr B2N          | -28            | 2.64                        | 1.49                        | 11.3                    | 0.09                   | 0.56                        | 0.24                        | -4.4                    | • • •                   |
| G0.678 – 0.027                                       | Sgr B2           | -28            | 2.64                        | 1.49                        | 11.3                    | 0.09                   | 0.56                        | 0.24                        | -4.4                    |                         |
| G2.143 + 0.010<br>G5.886 - 0.393                     | •••              | -27            | 2.82                        | 1.75                        | -13.2                   | 0.04                   | 0.61                        | 0.24                        | -20.9                   | 0.06                    |
| G6.049 – 1.447                                       | •••              | $-24 \\ -24$   | 2.35<br>2.33                | 1.73<br>1.81                | 0.6<br>0.8              | 0.13<br>0.07           | 0.55<br>0.56                | 0.25<br>0.25                | -19.0 $-19.7$           | 0.10<br>0.08            |
| G9.622+0.195                                         |                  | $-24 \\ -20$   | 2.59                        | 1.50                        | -33.1                   | 0.07                   | 0.36                        | 0.23                        | -19.7 $-7.3$            | 0.08                    |
| G10.624 – 0.385                                      | •••              | -20 $-19$      | 2.32                        | 1.70                        | 24.0                    | 0.06                   | 0.44                        | 0.24                        | -7.3<br>-7.7            | 1.61                    |
| G12.210 – 0.102                                      | •••              | -18            | 2.17                        | 1.73                        | -14.3                   | 0.12                   | 0.48                        | 0.25                        | -21.3                   | 0.11                    |
| G12.216 – 0.117                                      |                  | -18            | 2.17                        | 1.73                        | -14.3                   | 0.12                   | 0.48                        | 0.25                        | -21.3                   | 0.11                    |
| G12.680 – 0.181                                      | W33 B            | -18            | 2.17                        | 1.62                        | 27.9                    | 0.07                   | 0.43                        | 0.24                        | -7.9                    |                         |
| $G12.890 + 0.488 \dots$                              |                  | -17            | 2.63                        | 1.52                        | -33.8                   | 0.04                   | 0.48                        | 0.24                        | -25.7                   |                         |
| G12.908 – 0.259                                      | W33 A            | -17            | 2.57                        | 1.53                        | 38.3                    | 0.06                   | 0.42                        | 0.24                        | -7.4                    | 0.03                    |
| $G17.639 + 0.155 \dots$                              | •••              | -13            | 2.27                        | 1.52                        | -22.7                   | 0.03                   | 0.45                        | 0.25                        | -28.3                   |                         |
| $G20.081 - 0.135 \dots$                              |                  | -11            | 2.22                        | 1.29                        | 14.1                    | 0.12                   | 0.43                        | 0.25                        | -28.9                   | 1.26                    |
| $G28.147 - 0.005 \dots$                              | •••              | -4             | 1.90                        | 1.54                        | -41.9                   | 0.03                   | 0.38                        | 0.25                        | -28.9                   | • • •                   |
| $G28.199 - 0.048 \dots$                              |                  | -4             | 1.90                        | 1.54                        | -41.9                   | 0.03                   | 0.38                        | 0.25                        | -28.9                   | 0.24                    |
| $G30.589 - 0.044 \dots$                              | •••              | -2             | 4.01                        | 1.33                        | -51.6                   | 0.04                   | 0.37                        | 0.25                        | -29.9                   | 0.05                    |
| G30.703 – 0.069                                      | •••              | -2             | 2.57                        | 1.43                        | -45.8                   | 0.04                   | 0.37                        | 0.24                        | -33.5                   | •••                     |
| G31.412 + 0.307                                      | •••              | -1             | 2.34                        | 1.29                        | 49.4                    | 0.06                   | 0.34                        | 0.25                        | 25.4                    | 0.25                    |
| G32.744 – 0.076                                      | •••              | -0             | 2.32                        | 1.46                        | -46.5                   | 0.03                   | 0.36                        | 0.25                        | -35.0                   | 0.07                    |
| $G34.257 + 0.154 \dots$                              | •••              | 1              | 1.99                        | 1.41                        | 47.3                    | 0.05                   | 0.33                        | 0.25                        | 25.4                    | 2.30                    |
| G35.024+0.350<br>G35.197-0.743                       | •••              | 1<br>1         | 2.28<br>2.30                | 1.46<br>1.41                | -47.7 $-53.3$           | 0.03<br>0.03           | 0.36<br>0.36                | 0.25<br>0.25                | -35.9 $-33.0$           | 0.05<br>0.07            |
| G35.200 – 1.736                                      |                  | 1              | 2.63                        | 1.41                        | -53.3<br>-57.0          | 0.03                   | 0.30                        | 0.25                        | -33.0<br>24.0           | 1.33                    |
| G35.577 – 0.029                                      | •••              | 2              | 2.25                        | 1.45                        | -48.1                   | 0.09                   | 0.35                        | 0.25                        | -32.4                   | 0.11                    |
| G40.622 – 0.137                                      | •••              | 6              | 2.59                        | 1.36                        | -49.4                   | 0.06                   | 0.34                        | 0.25                        | -40.3                   | 0.08                    |
| G43.148 + 0.015                                      | W49              | 9              | 2.11                        | 1.67                        | 83.5                    | 0.37                   | 0.30                        | 0.25                        | 26.0                    | 2.72                    |
| G43.165 – 0.028                                      | W49 S            | 9              | 2.11                        | 1.67                        | 83.5                    | 0.37                   | 0.30                        | 0.25                        | 26.0                    | 1.71                    |
| $G43.167 + 0.010 \dots$                              | W49 N            | 9              | 2.11                        | 1.67                        | 83.5                    | 0.37                   | 0.30                        | 0.25                        | 26.0                    | 2.03                    |
| $G43.796 - 0.127 \dots$                              |                  | 9              | 2.19                        | 1.41                        | -52.8                   | 0.03                   | 0.33                        | 0.25                        | -43.6                   | 0.04                    |
| $G45.071 + 0.134 \dots$                              | •••              | 10             | 2.03                        | 1.56                        | 71.8                    | 0.05                   | 0.29                        | 0.25                        | 26.2                    | 1.13                    |
| $G45.122 + 0.133 \dots$                              |                  | 10             | 2.03                        | 1.56                        | 71.8                    | 0.05                   | 0.29                        | 0.25                        | 26.2                    | 1.61                    |
| $G45.455 + 0.060 \dots$                              | •••              | 11             | 2.26                        | 1.38                        | -52.2                   | 0.08                   | 0.33                        | 0.26                        | -39.5                   | • • •                   |
| $G45.465 + 0.047 \dots$                              | •••              | 11             | 2.26                        | 1.38                        | -52.2                   | 0.08                   | 0.33                        | 0.26                        | -39.5                   | •••                     |
| G45.472 + 0.134                                      | <br>XV.51        | 11             | 2.26                        | 1.38                        | -52.2                   | 0.08                   | 0.33                        | 0.26                        | -39.5                   | •••                     |
| G49.469 – 0.370<br>G49.488 – 0.387                   | W51              | 14             | 2.01                        | 1.48                        | 72.2<br>72.2            | 0.06<br>0.06           | 0.28<br>0.28                | 0.25                        | 25.1<br>25.1            | 0.62                    |
| G49.489 – 0.368                                      | W51 M/S<br>W51 N | 14<br>14       | 2.01<br>2.01                | 1.48<br>1.48                | 72.2                    | 0.06                   | 0.28                        | 0.25<br>0.25                | 25.1                    | 0.63<br>2.05            |
| G49.491 – 0.376                                      | W51              | 14             | 2.01                        | 1.48                        | 72.2                    | 0.06                   | 0.28                        | 0.25                        | 25.1                    | 0.78                    |
| G69.540 – 0.976                                      | ON 1             | 31             | 2.39                        | 1.25                        | -54.9                   | 0.03                   | 0.23                        | 0.26                        | -81.0                   | 0.78                    |
| G70.293 + 1.601                                      | K3-50            | 33             | 2.30                        | 1.26                        | - 54.9                  | 0.03                   | 0.32                        | 0.26                        | -85.3                   | 1.37                    |
| G70.329 + 1.590                                      | ON 3             | 33             | 2.30                        | 1.26                        | - 54.9                  | 0.03                   | 0.32                        | 0.26                        | -85.3                   | 1.38                    |
| $G75.761 + 0.340 \dots$                              | ON 2 S           | 37             | 1.72                        | 1.30                        | -53.6                   | 0.03                   | 0.35                        | 0.25                        | -84.2                   |                         |
| $G75.782 + 0.343 \dots$                              | ON 2 N           | 37             | 1.72                        | 1.30                        | -53.6                   | 0.03                   | 0.35                        | 0.25                        | -84.2                   | 0.15                    |
| $G80.864 + 0.421 \dots$                              |                  | 41             | 1.60                        | 1.28                        | 88.2                    | 0.05                   | 0.27                        | 0.25                        | -56.6                   | 0.05                    |
| $G81.721 + 0.571 \dots$                              | W75 S            | 42             | 1.79                        | 1.29                        | -69.5                   | 0.05                   | 0.27                        | 0.25                        | -56.0                   | 0.08                    |
| $G81.745 + 0.590 \dots$                              | W75              | 42             | 1.79                        | 1.29                        | -69.5                   | 0.05                   | 0.27                        | 0.25                        | -56.0                   | •••                     |
| G81.871 + 0.781                                      | W75 N            | 42             | 1.79                        | 1.29                        | -69.5                   | 0.05                   | 0.27                        | 0.25                        | -56.0                   | 0.04                    |
| G97.527 + 3.184                                      |                  | 55             | 2.63                        | 1.25                        | -43.9                   | 0.03                   | 0.42                        | 0.24                        | -84.8                   | 0.05                    |
| G109.871 + 2.114                                     | Cep A            | 61             | 1.98                        | 1.17                        | -33.3                   | 0.05                   | 0.29                        | 0.24                        | 2.1                     | 0.11                    |
| G111.533 + 0.757                                     | NGC 7538         | 61             | 1.81                        | 1.21                        | -29.3                   | 0.04                   | 0.29                        | 0.24                        | 6.8                     |                         |
| G111.543 + 0.777                                     | NGC 7538         | 61             | 1.81                        | 1.21                        | -29.3                   | 0.04                   | 0.29                        | 0.24                        | 6.8                     | 0.26                    |
| G126.715 – 0.822 G133.715 + 1.215                    | <br>W3           | 61<br>61       | 1.82<br>1.63                | 1.30<br>1.29                | -79.9 $-60.4$           | 0.10<br>0.13           | 0.34<br>0.31                | 0.25<br>0.24                | -61.2 $-39.8$           | 0.08<br>0.22            |
| G133.946 + 1.064                                     | w 3<br>W 3 OH    | 61<br>61       | 1.66                        | 1.29                        | -60.4 $-62.6$           | 0.13                   | 0.31                        | 0.24                        | -39.8<br>-39.7          | 0.22                    |
| $G133.940 + 1.004 \dots$<br>$G173.481 + 2.445 \dots$ | S231             | 35             | 1.33                        | 1.29                        | -62.6 $-5.4$            | 0.30                   | 0.31                        | 0.24                        | -39.7<br>-10.5          |                         |
| $G173.481 + 2.445 \dots$<br>$G188.946 + 0.886 \dots$ | \$252            | 21             | 2.17                        | 1.36                        | -63.6                   | 0.04                   | 0.50                        | 0.26                        | -62.8                   |                         |
| G196.454 – 1.677                                     | S269             | 13             | 2.74                        | 1.37                        | -58.1                   | 0.05                   | 0.58                        | 0.26                        | -58.7                   |                         |
| 2-2-2-3-                                             |                  |                |                             | 2.07                        | 20.1                    | 3.00                   | <b>0.0</b> 9                | JJ                          | 20.7                    | •••                     |

TABLE 2—Continued

|                          |            |                |                             | OH Maser                    | Maps                    |                        | 8.4                         | GHz Conti                   | NUUM MAI                | PS .                    |
|--------------------------|------------|----------------|-----------------------------|-----------------------------|-------------------------|------------------------|-----------------------------|-----------------------------|-------------------------|-------------------------|
| Source                   | Alias      | $\delta$ (deg) | Major <sup>a</sup> (arcsec) | Minor <sup>a</sup> (arcsec) | P.A. <sup>a</sup> (deg) | σ <sup>b</sup><br>(Jy) | Major <sup>a</sup> (arcsec) | Minor <sup>a</sup> (arcsec) | P.A. <sup>a</sup> (deg) | σ <sup>b</sup><br>(mJy) |
| G213.706 – 12.60         | Mon R2     | -6             | 1.76                        | 1.27                        | -2.9                    | 0.03                   | 0.35                        | 0.25                        | 0.5                     |                         |
| G337.707 - 0.051         | •••        | -46            | 8.24                        | 1.19                        | 0.3                     | 0.07                   | 1.67                        | 0.24                        | 3.8                     | 0.31                    |
| G340.785 - 0.095         |            | -44            | 5.99                        | 1.27                        | -4.6                    | 0.16                   | 1.42                        | 0.25                        | -9.0                    | 0.09                    |
| G341.219 – 0.212         |            | -44            | 5.67                        | 1.24                        | 4.7                     | 0.06                   | 1.30                        | 0.24                        | 1.7                     |                         |
| $G343.128 - 0.063 \dots$ |            | -42            | 5.44                        | 1.31                        | -2.2                    | 0.04                   | 1.23                        | 0.25                        | -10.1                   | 0.10                    |
| G344.227 – 0.568         |            | -42            | 4.81                        | 1.27                        | -4.9                    | 0.06                   | 1.10                        | 0.24                        | -0.1                    |                         |
| G344.581 - 0.022         | •••        | -41            | 5.38                        | 1.26                        | -9.0                    | 0.04                   | 1.21                        | 0.25                        | -14.3                   | 0.08                    |
| G345.003 – 0.224         |            | -41            | 5.32                        | 1.22                        | -8.3                    | 0.06                   | 1.01                        | 0.23                        | -4.8                    | 0.16                    |
| G345.011 + 1.792         |            | -40            | 4.47                        | 1.31                        | 0.6                     | 0.06                   | 0.95                        | 0.24                        | 2.4                     | 0.37                    |
| G345.488 + 0.313         |            | -40            | 4.91                        | 1.27                        | -6.8                    | 0.04                   | 1.13                        | 0.25                        | -14.1                   | 0.48                    |
| G345.505 + 0.347         |            | -40            | 4.91                        | 1.27                        | -6.8                    | 0.04                   | 1.13                        | 0.25                        | -14.1                   |                         |
| $G345.699 - 0.090 \dots$ | •••        | -40            | 4.83                        | 1.32                        | -0.2                    | 0.06                   | 1.08                        | 0.24                        | -11.4                   |                         |
| G347.628 + 0.149         | •••        | -39            | 4.25                        | 1.31                        | -2.0                    | 0.06                   | 0.90                        | 0.24                        | 0.0                     | 0.13                    |
| $G348.549 - 0.978 \dots$ |            | -39            | 4.63                        | 1.22                        | -8.6                    | 0.05                   | 0.88                        | 0.23                        | -7.2                    | 0.11                    |
| G348.698 – 1.027         | •••        | -39            | 4.63                        | 1.22                        | -8.6                    | 0.05                   | 0.88                        | 0.23                        | -7.2                    |                         |
| G350.011 – 1.341         | •••        | -38            | 3.64                        | 1.55                        | 6.2                     | 0.04                   | 0.95                        | 0.25                        | -13.9                   |                         |
| $G350.113 + 0.095 \dots$ |            | -37            | 3.55                        | 1.56                        | 9.9                     | 0.03                   | 0.88                        | 0.25                        | -12.6                   | 1.02                    |
| G351.161 + 0.697         | NGC 6334 B | -35            | 3.62                        | 1.54                        | -4.4                    | 0.13                   | 0.86                        | 0.25                        | -16.1                   | 0.11                    |
| G351.232 + 0.682         | NGC 6334   | -35            | 3.60                        | 1.54                        | 7.1                     | 0.17                   | 0.85                        | 0.25                        | -15.8                   |                         |
| G351.416 + 0.646         | NGC 6334 F | -35            | 3.60                        | 1.54                        | 7.1                     | 0.17                   | 0.85                        | 0.25                        | -15.8                   | 0.73                    |
| G351.582 - 0.353         |            | -36            | 3.42                        | 1.59                        | 11.0                    | 0.04                   | 0.85                        | 0.25                        | -13.4                   | 0.32                    |
| G351.775 – 0.538         |            | -36            | 3.47                        | 1.45                        | 7.3                     | 0.05                   | 0.77                        | 0.24                        | -2.5                    | 0.27                    |
| G353.410 – 0.361         |            | -34            | 3.15                        | 1.73                        | 5.5                     | 0.04                   | 0.77                        | 0.24                        | -14.2                   | 0.32                    |
| G355.345 + 0.146         |            | -32            | 3.11                        | 1.49                        | 7.8                     | 0.05                   | 0.66                        | 0.24                        | -3.0                    | 0.32                    |
| G358.235 + 0.116         |            | -30            | 2.81                        | 1.48                        | 0.8                     | 0.06                   | 0.60                        | 0.24                        | -3.9                    |                         |
| G359.138 + 0.032         |            | -29            | 2.81                        | 1.65                        | 9.2                     | 0.06                   | 0.66                        | 0.25                        | -16.8                   |                         |
| G359.436 - 0.103         |            | -29            | 2.67                        | 1.46                        | 10.2                    | 0.08                   | 0.58                        | 0.24                        | -4.0                    |                         |
| G359.969 - 0.457         | •••        | -29            | 2.79                        | 1.65                        | 10.7                    | 0.13                   | 0.64                        | 0.25                        | -16.7                   | •••                     |

<sup>&</sup>lt;sup>a</sup> Restoring beam specifications: major axis, minor axis, and position angle. Position angles are measured east of north.

see Table 2) in individual channel maps. We note that because our sources can be 100% circularly polarized, we divided the maps produced by the task MX by a factor of 2 so that Stokes I is obtained by summing (rather than averaging) the RCP and LCP maps.

## 6. PARAMETERS OF MASER FEATURES

A two-dimensional Gaussian brightness distribution was fitted to selected peaks in the maps in order to determine flux densities and position offsets relative to the reference feature. The initial selection criteria required that the peak flux density in a channel map be more than 1.3 times the absolute value of the largest negative, roughly corresponding to a 4  $\sigma$  detection. Channel peaks were then grouped into possible features (2-3 adjacent channels per feature) and carefully inspected. Final selection required that the following criteria be met: (1) The emission had to persist at approximately the same position (within about a synthesized beam) over adjacent channels. (2) The emission was not caused by spectral "ringing" from another, much stronger, feature. (3) The emission was not caused by spatial sidelobes in the synthesized (dirty) beam from another, much stronger, feature. Such "artifacts" tend to occur at the LSR velocity of extremely strong features when multiple OH regions occur within the primary beam of a single VLA antenna. For example, strong features in Sgr B2, W49, and W51 were found to cause numerous artifacts. (4) Twochannel "features" had to come from an unblended spectral region.

A Gaussian spectral profile was then fitted to the peak flux densities of three adjacent spectral channels to determine the flux density (S), the LSR velocity of the line center  $(v_{\rm LSR})$ , and the FWHM line width  $(\Delta v)$  of a maser feature. See Tables 3–93 for a complete list of maser features. In some sources, a number of spots were spatially and spectrally blended (e.g., in G0.670–0.058) and the weaker spots could not be fitted reliably by this method. For these cases, position offsets from the reference feature are given as the unweighted average of the three spectral channels.

The formal uncertainty in estimating the position,  $\sigma_{\theta}$ , of a spectrally isolated and spatially unresolved peak in a single channel is given by  $\sigma_{\theta} \approx 0.5\theta_b \, \sigma_S/S$ , where  $\theta_b$ ,  $\sigma_S$ , and S are the synthesized beam size, and the rms and peak flux density, respectively (cf. Reid et al. 1988, eq. [1]). Table 2 gives the synthesized FWHM beam size and rms noise levels in maps for all sources. Note that the synthesized beams become very elongated at low declination because of poor projected N-S (u, v)-coverage. Taking typical values for the beam size in the N-S direction and channel noise levels, e.g., 2".5 and 0.05 Jy, respectively, one obtains a formal fitting error of 0".01 for a 6 Jy single channel peak. Averaging the positions of the three channels reduces this error somewhat further. The position error in the E-W direction is usually significantly smaller than in the N-S direction. Thus, typical position accuracies for spatially isolated, three-channel detections are  $\approx 0''.01$ . Some features are probably spectrally and spatially blended with undetected, weaker maser emission; for such sources the relative

<sup>&</sup>lt;sup>b</sup>  $\sigma$  is rms noise level in single channel of image.

position error could be considerably greater. For the small number of features with detections in only two adjacent channels, we estimated the peak flux density and LSR velocity as that of the strongest channel. No line widths are estimated for two channel features.

### 7. MAPS

The OH maser features found by spatial and spectral fitting are plotted in the right-hand panels of Figures 2–38, superposed on the 8.4 GHz continuum emission indicated by the contour plots. The 1612, 1665, 1667, and 1720 MHz maser features are represented by "triangles," "stars," "squares," and "circles," respectively. Open symbols refer to RCP features and filled symbols to LCP features. The position of the strongest OH maser feature was taken to be the origin (0,0) of each map. The absolute coordinates for the origin of the maps are given in Table 1 in both B1950 and J2000 coordinates.

Supplementary continuum observations were made for all sources at 8.4 GHz. Most of the 8.4 GHz maps came from a single  $\approx 3$  minute "snapshot" observation. In a few cases we recalibrated and reimaged archival VLA data in order to obtain better maps as noted in the figure captions. Since radio continuum emission from massive star forming regions often shows complex structure on many angular scales, and these maps were made with minimal (u, v)-coverage, some of the continuum maps are of poor quality. We present these maps only as a rough indication of the environment in which OH maser emission occurs. The 8.4 GHz continuum contours start at 4 times the rms noise level (see Table 2) and increase in steps of powers of 2. The peak 8.4 GHz brightness is given in the figure caption, and the restoring beam is shown in the lower right-hand corner of the maps as a shaded ellipse.

## 8. POSITIONS

The absolute positions came from images made from data calibrated in the standard manner (i.e., not self-calibrated). We compared our source positions to those of Forster & Caswell (1989) and Caswell (1998) in order to estimate uncertainties of the absolute positions. Forster & Caswell observed with the VLA in the A-B hybrid configuration and Caswell with the Australia Telescope Compact Array (ATCA). Figure 1 shows a plot of these differences with stars" denoting our VLA minus Forster & Caswell's VLA position and "squares" denoting our VLA minus Caswell's ATCA positions. The E-W position differences appear largely independent of source declination,  $\delta$ , and imply an rms error of  $\approx 0$ ".3 for each measurement, assuming equal uncertainties for positions measured with the different telescopes or configurations. No large differences in measurement accuracy are apparent between the telescopes or epochs.

The N-S position differences, on the other hand, vary significantly with source declination. While N-S position differences appear largely independent of source declination for  $\delta > -30^\circ$  (with an implied rms error of  $\approx 0$ .5 for each measurement, assuming equal uncertainties for the positions measured with different telescopes or configurations), they show a strong dependence on source declination for  $\delta \lesssim -30^\circ$ , with differences (and errors) rapidly increasing as source declination decreases. This is in part caused by the decrease in the N-S projection of the interferometer spac-



FIG. 1.—Differences in absolute position, R.A. ( $\alpha$ ) and decl. ( $\delta$ ), plotted as a function of source declination  $\delta$ . Differences are our estimates minus those of Forster & Caswell (1989), denoted by "stars," or our estimates minus those of Caswell (1998), denoted by "squares." Upper panel: The E-W differences ( $\Delta\alpha\cos\delta$ ) show no strong variation with source declination. Assuming equal measurement errors for the different telescopes implies that individual measurements have 1  $\sigma$  uncertainties of  $\approx$ 0"3. Lower panel: The N-S differences ( $\Delta\delta$ ) grow rapidly with decreasing declination, probably owing to uncompensated ionospheric propagation delays at the VLA.

ings (and a corresponding increase in the synthesized beam) for the VLA when observing low declination sources. We note, however, that more than 80% of the declination differences for the VLA minus ATCA positions are positive, in the sense that the VLA declinations tend to be higher than those obtained with the ATCA. Such a systematic effect cannot be simply a result of the change in the synthesized beam size with declination. More likely it is the result of ionospheric bending, which is not compensated for in the interferometer model used when the raw data are correlated. Thus, for sources with  $\delta \lesssim -35^{\circ}$ , our declination position errors can exceed 1", and for  $\delta \lesssim -40^{\circ}$  they can be several times greater still. For example, the southern most source in the sample, G337.707 - 0.051, has a declination position error of 8" at 1665 MHz and about 4" at 1667 MHz, assuming the ATCA position is correct.

The relative positions for maser features in any given OH transition and polarization should not be significantly affected by atmospheric or ionospheric propagation effects, since such effects (and other systematic errors) cancel almost completely over the small field of view (e.g., leaving  $\approx 10^{-5}$  of the original error for a 2" region). However, the cancellation of systematic errors in the relative positions among different OH transitions is not so good. As mentioned in § 3, different transitions were observed sequentially, allowing for temporal variations in propagation delays to enter significantly. While it is difficult to quantify this effect, one might expect the relative positions errors among different transitions to be a fraction (perhaps 1/4 to 1/2) of the absolute position error. Empirically, this seems to be the case for the well-studied source G133.946 + 1.064 (W3 OH), where different transitions appear registered to an accuracy of  $\approx 0$ ".1. Indeed, for most sources, the OH maser features from different ground-state transitions

overlap on the sky. In a few cases, however, the features in the two transitions seem to be spatially separated. For example, in G358.235+0.116, G345.505+0.347, G344.581-0.022, and G337.707-0.051 the 1665 and 1667 MHz OH masers clusters are separated by 0".3, 1", 3", and 4", respectively. These separations are not likely to be real. As for the case of the absolute position errors, the position differences among different OH transitions seem to grow dramatically at very low source declinations.

#### 9. COMMENTS

The entire bandwidth (all 256 channels) was correlated for the sources at three "pointing positions" (the Sgr B2 and W51 sources and G351.775 – 0.538). Since we made no corrections for bandpass response, the amplitude of the signal (and noise) rolls off toward the edges of the band. Caution should be exercised when assessing maser features

in the outer one-eighth of the band in these spectra. This is not a problem for the vast majority of sources, where we only used (and display) the inner 128 spectral channels.

For some sources (e.g., G126.715-0.822 and G348.698-1.027) the spectral "noise" seems to be different for the two polarizations. This may be caused by polarized interference. Also, the "noise level" in the spectra of a few sources seems to be systematically biased above the zero level (e.g., by about 0.3 Jy for G5.886-0.393). These offsets are probably due to the detection of the continuum emission from H II regions at 1.6 GHz.

We thank James Caswell for comments on an earlier version of the text. M. J. R. thanks the Alexander von Humboldt Foundation for a Senior Research Award which funded a long term visit to the Max-Planck-Institut für Radioastronomie where the paper was completed.

TABLE 3 G0.375+0.041

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v^{a}$ (km s $^{-1}$ ) | $\Delta \theta_x^b$ (arcsec) | $\Delta\theta_{y}^{b}$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v^{\rm a}$ (km s $^{-1}$ ) | $\Delta \theta_x^{\ b}$ (arcsec) | $\Delta \theta_y^b$ (arcsec) |
|--------|-----------|---------------------------------|--------------------------------|------------------------------|---------------------------------|--------|-----------|---------------------------------|------------------------------------|----------------------------------|------------------------------|
| 1665 R | 1.35      | 39.43                           | 0.35                           | -0.167                       | -0.372                          | 1665 R | 1.40      | 31.92                           | 0.27                               | 0.200                            | -0.032                       |
|        | 1.00      | 37.93                           | 0.29                           | 0.112                        | -0.151                          | 1665 L | 0.50      | 39.50                           | 0.96                               | -0.116                           | -0.261                       |
|        | 1.11      | 36.70                           | 0.44                           | 0.232                        | 0.167                           |        | 0.51      | 38.77                           | 0.46                               | 0.176                            | -0.081                       |
|        | 1.38      | 36.44                           | 0.41                           | 0.295                        | 0.064                           |        | 0.43      | 38.12                           | 0.38                               | 0.122                            | -0.204                       |
|        | 3.38      | 35.71                           | 0.51                           | 0.020                        | -0.012                          |        | 1.05      | 37.37                           | 0.54                               | 0.047                            | 0.002                        |
|        | 5.88      | 35.41                           | 0.37                           | -0.018                       | -0.008                          |        | 5.00      | 35.74                           | 0.43                               | 0.057                            | -0.173                       |
|        | 1.47      | 33.00                           | 0.26                           | 0.081                        | 0.027                           |        | 7.45      | 33.93                           | 0.33                               | 0.000                            | 0.000                        |
|        | 1.02      | 32.63                           | 0.23                           | 0.181                        | -0.136                          |        |           |                                 |                                    |                                  |                              |

<sup>&</sup>lt;sup>a</sup> Line width (FWHM) determined by fitting a Gaussian profile to the three highest points.

TABLE 4 G0.547 – 0.852 (RCW 142)

| Trans. | S<br>( <b>J</b> y) | $v_{\rm LSR} \over ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|--------------------|---------------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 1.38               | 19.18                                 | 0.34                             | 0.255                      | -0.212                    | 1665 L | 0.65                   | 8.28                             | 0.59                             | 0.218                      | -0.129                     |
|        | 1.93               | 15.08                                 | 0.36                             | -0.040                     | -0.018                    | 1667 R | 0.22                   | 15.27                            | 0.34                             | 0.395                      | 0.448                      |
|        | 1.03               | 13.26                                 | 0.44                             | 0.116                      | -0.232                    |        | 0.40                   | 13.75                            | 0.42                             | 0.014                      | 0.018                      |
|        | 1.01               | 12.95                                 | 0.45                             | 0.097                      | -0.238                    |        | 1.26                   | 13.00                            | 0.88                             | 0.001                      | -0.003                     |
|        | 0.66               | 12.57                                 | 0.36                             | 0.029                      | -0.344                    |        | 1.05                   | 11.82                            | 0.49                             | -0.001                     | 0.030                      |
|        | 0.60               | 12.19                                 | 0.34                             | 0.140                      | -0.364                    |        | 0.34                   | 10.91                            | 0.41                             | 0.084                      | 0.375                      |
|        | 0.74               | 11.39                                 | 0.44                             | 0.033                      | -0.473                    |        | 0.43                   | 10.14                            | 0.43                             | 0.041                      | 0.238                      |
|        | 0.74               | 11.00                                 | 0.32                             | 0.041                      | -0.397                    |        | 0.34                   | 9.03                             | 0.51                             | 0.193                      | 0.495                      |
|        | 0.73               | 10.76                                 | 0.46                             | 0.063                      | -0.217                    |        | 0.90                   | 7.60                             | 0.48                             | 0.155                      | 0.421                      |
|        | 0.68               | 8.85                                  | 0.29                             | 0.184                      | -0.161                    |        | 3.81                   | 6.33                             | 0.39                             | 0.204                      | 0.521                      |
|        | 0.58               | 8.10                                  | 0.45                             | 0.175                      | -0.257                    |        | 0.74                   | 5.09                             | 0.37                             | 0.169                      | 0.532                      |
| 1665 L | 0.30               | 19.95                                 | 0.38                             | 0.091                      | -0.387                    |        | 1.00                   | 4.52                             | 0.34                             | 0.137                      | 0.570                      |
|        | 0.18               | 19.15                                 | 0.71                             | 0.275                      | -0.217                    | 1667 L | 0.25                   | 17.33                            | 0.31                             | 0.005                      | 0.419                      |
|        | 1.39               | 17.99                                 | 0.27                             | -0.092                     | 0.058                     |        | 3.24                   | 13.88                            | 0.37                             | 0.011                      | -0.010                     |
|        | 0.21               | 17.14                                 | 0.42                             | 0.349                      | -0.366                    |        | 5.22                   | 12.90                            | 0.49                             | 0.000                      | 0.000                      |
|        | 1.82               | 13.53                                 | 0.64                             | 0.015                      | -0.578                    |        | 0.92                   | 10.55                            | 0.50                             | 0.042                      | 0.142                      |
|        | 3.48               | 12.98                                 | 0.44                             | 0.017                      | -0.551                    |        | 0.85                   | 7.46                             | 0.93                             | 0.153                      | 0.474                      |
|        | 0.75               | 11.88                                 | 0.52                             | 0.118                      | -0.191                    |        | 0.85                   | 7.23                             | 0.82                             | 0.133                      | 0.518                      |
|        | 0.60               | 11.18                                 | 0.70                             | 0.157                      | -0.177                    |        | 2.93                   | 5.88                             | 0.31                             | 0.199                      | 0.552                      |
|        | 0.75               | 10.40                                 | 0.49                             | 0.162                      | -0.140                    |        | 0.50                   | 5.34                             | 0.43                             | 0.177                      | 0.510                      |
|        | 0.63               | 8.63                                  | 0.46                             | 0.190                      | -0.183                    |        |                        |                                  |                                  |                            |                            |

<sup>&</sup>lt;sup>b</sup> East  $(\Delta \theta_x)$  and north  $(\Delta \theta_y)$  offsets from map center.

TABLE 5 G0.658 – 0.043 (SGR B2S)

| Trans. | <i>S</i> ( <b>J</b> y) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \over ({\rm km~s}^{-1})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|------------------------|-----------------------------------------------------------------|---------------------------------|----------------------------|---------------------------|--------|------------------------|---------------------------------------|---------------------------------|----------------------------|---------------------------|
| 1665 R | 0.51                   | 77.17                                                           | 0.29                            | 0.191                      | -0.519                    | 1665 L | 17.83                  | 71.94                                 | 0.60                            | -0.441                     | -0.768                    |
|        | 5.11                   | 76.68                                                           | 0.41                            | -0.433                     | -0.741                    |        | 12.70                  | 69.71                                 | 0.76                            | -0.413                     | -0.590                    |
|        | 4.44                   | 76.01                                                           | 0.41                            | -0.234                     | -0.685                    |        | 184.93                 | 67.83                                 | 0.60                            | 0.000                      | 0.000                     |
|        | 7.44                   | 75.60                                                           | 0.39                            | 0.374                      | -0.439                    |        | 51.19                  | 66.51                                 | 0.47                            | -0.129                     | -0.099                    |
|        | 6.15                   | 74.44                                                           | 0.39                            | -0.445                     | -0.671                    |        | 0.93                   | 48.85                                 | 0.69                            | -5.690                     | -1.103                    |
|        | 89.63                  | 73.87                                                           | 0.45                            | -0.389                     | -0.602                    |        | 2.22                   | 48.41                                 | 0.40                            | -5.747                     | -1.266                    |
|        | 3.03                   | 73.06                                                           | 0.34                            | -0.346                     | -0.537                    |        | 0.63                   | 47.78                                 | 0.42                            | -5.691                     | -1.324                    |
|        | 3.96                   | 72.78                                                           | 0.39                            | -0.209                     | -0.438                    | 1667 R | 1.83                   | 73.85                                 | 0.50                            | -0.269                     | -0.318                    |
|        | 10.81                  | 72.06                                                           | 0.47                            | -0.017                     | -0.043                    |        | 0.68                   | 72.96                                 | 0.39                            | -0.248                     | -0.330                    |
|        | 3.60                   | 71.40                                                           | 0.39                            | 0.081                      | -0.248                    |        | 0.69                   | 72.62                                 | 0.40                            | -0.292                     | -0.402                    |
|        | 24.64                  | 70.22                                                           | 0.68                            | -0.092                     | -0.087                    |        | 1.48                   | 72.18                                 | 0.31                            | -0.283                     | -0.277                    |
|        | 27.77                  | 69.77                                                           | 0.78                            | -0.030                     | -0.022                    |        | 17.91                  | 69.23                                 | 0.56                            | 0.181                      | 0.242                     |
|        | 9.93                   | 68.91                                                           | 0.37                            | -0.008                     | 0.013                     |        | 1.17                   | 67.86                                 | 0.65                            | 0.047                      | 0.096                     |
|        | 2.79                   | 68.29                                                           | 0.57                            | -0.092                     | -0.057                    | 1665 L | 0.50                   | 75.94                                 | 0.27                            | 0.586                      | -0.155                    |
|        | 2.78                   | 67.96                                                           | 0.67                            | -0.070                     | -0.054                    |        | 4.54                   | 70.58                                 | 0.31                            | -0.337                     | -0.375                    |
|        | 0.82                   | 66.46                                                           | 0.41                            | -0.208                     | -0.044                    |        | 2.60                   | 70.24                                 | 0.61                            | -0.332                     | -0.401                    |
|        | 1.34                   | 50.69                                                           | 0.34                            | -5.575                     | -0.943                    |        | 7.59                   | 69.68                                 | 0.31                            | -0.274                     | -0.313                    |
|        | 0.73                   | 48.51                                                           | 0.41                            | -5.677                     | -1.172                    |        | 26.13                  | 69.05                                 | 0.46                            | 0.346                      | 0.460                     |
|        | 0.54                   | 48.11                                                           | 0.34                            | -5.678                     | -1.199                    |        | 14.48                  | 67.97                                 | 0.74                            | 0.111                      | 0.187                     |
| 1665 L | 0.54                   | 76.58                                                           | 0.36                            | 0.423                      | -0.465                    |        | 11.73                  | 67.24                                 | 0.40                            | 0.069                      | 0.132                     |
|        | 6.78                   | 75.64                                                           | 0.31                            | 0.410                      | -0.440                    |        | 0.89                   | 47.23                                 | 0.35                            | -5.577                     | -1.021                    |

TABLE 6 G0.666-0.034 (SGR B2M)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans.       | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 3.37      | 72.66                            | 0.24                             | 2.247                      | -2.149                     | 1665 L       | 0.81      | 49.20                            | 0.45                             | 0.176                      | 1.682                     |
| 1005 1 | 1.62      | 65.97                            | 0.53                             | 0.554                      | -0.041                     | 1667 R       | 1.00      | 61.28                            | 0.48                             | 0.078                      | 0.103                     |
|        | 2.07      | 64.79                            | 0.43                             | 0.493                      | -0.036                     | 1007 1011111 | 0.62      | 59.76                            | 0.51                             | 0.393                      | 0.738                     |
|        | 0.56      | 64.08                            | 0.52                             | -0.371                     | -2.649                     |              | 0.83      | 59.06                            | 0.43                             | 0.357                      | 0.938                     |
|        | 0.88      | 63.60                            | 0.36                             | -0.433                     | -2.752                     |              | 1.95      | 58.06                            | 0.94                             | 0.295                      | 1.106                     |
|        | 0.42      | 62.66                            | 0.49                             | -0.033                     | 0.051                      |              | 10.34     | 56.04                            | 0.50                             | 0.657                      | 0.945                     |
|        | 50.17     | 61.28                            | 0.46                             | 0.000                      | 0.000                      |              | 2.53      | 55.06                            | 0.62                             | 0.570                      | 1.020                     |
|        | 24.38     | 60.18                            | 0.44                             | 0.271                      | 0.358                      |              | 0.69      | 53.64                            | 0.50                             | 0.515                      | 1.704                     |
|        | 10.14     | 59.25                            | 0.88                             | 0.310                      | 0.337                      |              | 22.75     | 52.15                            | 0.59                             | 0.399                      | 1.962                     |
|        | 10.35     | 57.99                            | 0.92                             | 0.079                      | 0.865                      |              | 2.71      | 49.88                            | 0.61                             | 0.346                      | 1.488                     |
|        | 11.16     | 57.59                            | 0.67                             | 0.123                      | 0.885                      |              | 1.50      | 49.35                            | 0.98                             | 0.352                      | 1.546                     |
|        | 7.76      | 55.76                            | 0.56                             | -2.182                     | 1.293                      |              | 0.52      | 47.70                            | 0.34                             | 0.390                      | 1.690                     |
|        | 0.61      | 54.05                            | 0.39                             | 0.558                      | 1.567                      |              | 4.01      | 46.15                            | 0.47                             | 0.409                      | 1.944                     |
|        | 1.11      | 52.97                            | 0.70                             | 0.674                      | 1.621                      | 1667 L       | 0.53      | 67.31                            | 0.43                             | 0.638                      | -0.276                    |
|        | 1.01      | 52.56                            | 1.03                             | 0.344                      | 1.518                      |              | 0.52      | 60.17                            | 0.45                             | 0.280                      | 1.099                     |
|        | 1.37      | 51.95                            | 0.60                             | 0.121                      | 1.389                      |              | 1.03      | 59.42                            | 0.54                             | 0.306                      | 1.036                     |
|        | 1.00      | 51.45                            | 1.02                             | 0.268                      | 1.514                      |              | 2.13      | 58.65                            | 0.50                             | 0.378                      | 1.545                     |
|        | 5.63      | 50.17                            | 0.80                             | 0.352                      | 1.729                      |              | 1.75      | 57.80                            | 0.41                             | 0.468                      | 1.123                     |
|        | 5.41      | 49.25                            | 0.63                             | 0.111                      | 1.262                      |              | 1.40      | 57.38                            | 0.89                             | 0.637                      | 0.974                     |
|        | 3.22      | 48.83                            | 0.83                             | 0.102                      | 1.259                      |              | 1.02      | 56.04                            | 0.48                             | 0.585                      | 1.038                     |
|        | 0.44      | 47.86                            | 0.36                             | -0.212                     | 1.444                      |              | 2.01      | 51.84                            | 0.51                             | 0.351                      | 1.517                     |
|        | 0.62      | 46.56                            | 0.58                             | 0.160                      | 1.689                      |              | 0.99      | 51.29                            | 0.97                             | 0.383                      | 1.540                     |
| 1665 L | 5.18      | 68.77                            | 0.33                             | 0.551                      | 0.037                      |              | 0.55      | 50.46                            | 0.64                             | 0.378                      | 1.598                     |
|        | 2.40      | 63.83                            | 0.33                             | -0.137                     | 0.036                      | 1612 R       | 1.02      | 66.45                            | 0.44                             | 0.406                      | 0.241                     |
|        | 1.10      | 63.49                            | 0.91                             | -0.159                     | -0.011                     |              | 0.61      | 60.54                            | 0.37                             | -0.779                     | 1.572                     |
|        | 29.61     | 62.27                            | 0.30                             | 0.264                      | 0.492                      |              | 1.41      | 59.26                            | 0.54                             | 0.077                      | 1.218                     |
|        | 7.06      | 61.73                            | 0.36                             | 0.223                      | 0.469                      |              | 0.42      | 54.58                            | 0.97                             | 0.726                      | 1.992                     |
|        | 3.13      | 61.21                            | 0.52                             | 0.014                      | -1.643                     | 1612 L       | 1.20      | 67.40                            | 0.36                             | 0.414                      | 0.327                     |
|        | 4.82      | 60.73                            | 0.39                             | -0.106                     | -1.692                     |              | 1.36      | 66.83                            | 0.33                             | 0.080                      | 0.020                     |
|        | 4.67      | 60.33                            | 0.56                             | 0.131                      | 0.824                      |              | 0.50      | 60.89                            | 0.39                             | -0.727                     | 1.528                     |
|        | 1.76      | 59.35                            | 0.82                             | 0.125                      | 0.785                      |              | 1.35      | 60.09                            | 0.52                             | 0.071                      | 1.213                     |
|        | 1.05      | 58.81                            | 0.71                             | 0.150                      | 0.867                      |              | 0.56      | 55.93                            | 0.38                             | 0.731                      | 2.012                     |
|        | 1.02      | 57.59                            | 0.46                             | 0.190                      | 0.943                      | 1720 R       | 1.10      | 63.29                            | 0.38                             | 0.036                      | -2.395                    |
|        | 8.69      | 55.74                            | 0.61                             | -2.108                     | 1.283                      |              | 14.19     | 61.26                            | 0.32                             | -1.222                     | -6.397                    |
|        | 8.60      | 55.44                            | 1.47                             | -2.077                     | 1.294                      |              | 1.89      | 60.71                            | 0.46                             | -1.221                     | -6.445                    |
|        | 3.18      | 54.68                            | 0.69                             | -0.773                     | 1.189                      | 1720 L       | 1.65      | 62.37                            | 0.39                             | -0.024                     | -2.423                    |
|        | 1.61      | 53.68                            | 0.99                             | -0.045                     | 1.240                      |              | 6.93      | 61.09                            | 0.28                             | -1.217                     | -6.374                    |
|        | 6.24      | 52.51                            | 0.44                             | 0.086                      | 1.205                      |              | 1.61      | 60.59                            | 0.39                             | -1.220                     | -6.417                    |

TABLE 7
G0.670 – 0.058 (SGR B2)

| Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1612 R | 4.09<br>0.44 | 67.22<br>64.79                   | 0.69<br>0.57                     | $0.000 \\ -1.888$          | 0.000<br>0.987            | 1612 L | 3.84<br>0.56 | 67.37<br>64.85                   | 0.85<br>0.41                     | -0.023 $-1.786$            | -0.008 $0.820$            |

TABLE 8 G0.672-0.031 (SGR B2N)

| Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \over ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>Jy</b> ) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|------------------------|---------------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 3.54                   | 55.62                                 | 0.34                             | 0.091                      | -0.023                    | 1667 R | 0.51                   | 49.89                                                           | 0.44                             | 0.214                      | 0.136                      |
|        | 1.32                   | 55.06                                 | 0.47                             | 0.107                      | -0.007                    |        | 0.52                   | 49.64                                                           | 0.33                             | 0.230                      | -0.020                     |
|        | 1.01                   | 54.72                                 | 0.44                             | 0.079                      | -0.015                    |        | 2.52                   | 47.38                                                           | 0.61                             | 0.160                      | 0.139                      |
|        | 0.63                   | 51.03                                 | 0.31                             | 0.038                      | -0.068                    |        | 1.82                   | 46.92                                                           | 0.53                             | 0.162                      | 0.151                      |
|        | 4.28                   | 49.78                                 | 0.30                             | 0.000                      | 0.000                     |        | 1.05                   | 46.52                                                           | 0.50                             | 0.190                      | 0.195                      |
|        | 3.76                   | 47.34                                 | 0.44                             | -0.028                     | -0.049                    |        | 0.77                   | 46.21                                                           | 0.52                             | 0.160                      | 0.171                      |
|        | 1.02                   | 46.42                                 | 0.54                             | -0.010                     | -0.031                    | 1667 L | 1.62                   | 48.02                                                           | 0.42                             | 0.200                      | 0.111                      |
| 1665 L | 3.88                   | 54.41                                 | 0.31                             | 0.061                      | -0.017                    |        | 1.00                   | 47.39                                                           | 0.41                             | 0.152                      | 0.110                      |

TABLE 9 G0.678 – 0.027 (SGR B2)

| Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \over ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $v_{\rm LSR} \over ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|------------------------|---------------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|---------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 0.61<br>2.69           | 71.10<br>62.02                        | 0.64<br>0.33                     | -0.623 $-0.173$            | 3.235<br>0.323            | 1612 L | 3.18<br>0.60           | 69.27<br>64.77                        | 0.60<br>0.44                     | -0.139 $0.323$             | 0.198<br>0.080             |
| 1665 L | 0.66<br>6.95           | 73.57<br>70.11                        | 0.51<br>0.48                     | -0.173 $-0.300$ $0.000$    | -0.323 $-0.396$ $0.000$   | 1012 L | 0.58                   | 64.46                                 | 0.41                             | 0.323                      | 0.199                      |

TABLE 10 G2.143+0.010

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 0.50      | 61.19                            | 0.43                             | -0.210                     | 0.133                     | 1667 R | 1.10      | 60.14                            | 0.36                             | -0.034                     | -0.141                     |
|        | 0.63      | 60.53                            | 0.55                             | -0.215                     | 0.183                     |        | 0.92      | 59.60                            | 0.69                             | -0.215                     | 0.235                      |
|        | 3.86      | 59.71                            | 0.49                             | -0.295                     | 0.210                     |        | 0.96      | 59.26                            | 0.52                             | -0.224                     | 0.258                      |
|        | 2.87      | 59.34                            | 0.66                             | -0.323                     | 0.270                     |        | 0.46      | 56.10                            | 0.54                             | -0.040                     | -0.007                     |
|        | 1.94      | 59.01                            | 0.50                             | -0.360                     | 0.354                     |        | 8.15      | 53.69                            | 0.86                             | 0.000                      | 0.000                      |
|        | 0.24      | 56.96                            | 0.41                             | -0.217                     | 0.416                     | 1667 L | 0.43      | 62.27                            | 0.39                             | 0.000                      | -0.057                     |
| 1665 L | 3.85      | 61.82                            | 0.38                             | -0.038                     | -0.353                    |        | 0.36      | 61.41                            | 0.37                             | 0.103                      | -0.372                     |
|        | 2.33      | 60.60                            | 0.31                             | -0.396                     | 0.455                     |        | 2.57      | 59.26                            | 0.35                             | -0.220                     | 0.288                      |
|        | 4.45      | 59.76                            | 0.37                             | -0.394                     | 0.422                     |        | 0.38      | 53.71                            | 0.54                             | -0.027                     | -0.042                     |
| 1667 R | 0.25      | 62.18                            | 0.56                             | 0.037                      | 0.155                     |        |           |                                  |                                  |                            |                            |

TABLE 11 G5.886-0.393

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|------------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 2.12      | 14.81                              | 0.38                             | -4.162                     | -1.759                     | 1665 L | 1.78      | 6.85                             | 0.72                             | -4.088                     | -1.500                    |
|        | 1.65      | 14.43                              | 0.72                             | -4.108                     | -1.775                     |        | 1.21      | 5.77                             | 0.56                             | -4.016                     | -1.651                    |
|        | 0.62      | 13.87                              | 0.59                             | -4.112                     | -1.708                     | 1667 R | 3.64      | 15.16                            | 0.61                             | -3.998                     | -2.089                    |
|        | 0.45      | 13.43                              | 0.38                             | -4.092                     | -1.672                     |        | 4.33      | 14.66                            | 0.75                             | -3.964                     | -2.010                    |
|        | 1.75      | 12.44                              | 1.09                             | -3.913                     | -1.656                     |        | 4.11      | 14.39                            | 0.79                             | -3.967                     | -2.010                    |
|        | 0.91      | 11.92                              | 0.62                             | -3.924                     | -1.587                     |        | 1.14      | 12.63                            | 0.47                             | -3.877                     | -1.773                    |
|        | 1.13      | 11.60                              | 0.44                             | -3.885                     | -1.630                     |        | 0.59      | 11.91                            | 1.10                             | -3.919                     | -1.682                    |
|        | 1.12      | 10.93                              | 0.22                             | -1.564                     | -1.259                     |        | 0.74      | 11.45                            | 0.55                             | -3.975                     | -1.779                    |
|        | 3.04      | 10.41                              | 0.31                             | -0.160                     | 0.185                      |        | 7.86      | 10.23                            | 0.28                             | -0.011                     | 0.005                     |
|        | 0.86      | 9.72                               | 0.33                             | -0.212                     | 0.166                      |        | 0.96      | 9.44                             | 0.35                             | -0.096                     | 0.020                     |
|        | 1.06      | 9.20                               | 1.06                             | -0.254                     | 0.107                      |        | 0.83      | 8.88                             | 0.44                             | -0.131                     | -0.100                    |
|        | 0.35      | 8.45                               | 0.42                             | -4.263                     | -1.294                     |        | 0.50      | 7.87                             | 0.67                             | -3.797                     | -1.980                    |
|        | 0.47      | 7.59                               | 0.45                             | -3.359                     | -1.268                     |        | 1.48      | 7.08                             | 0.59                             | -3.732                     | -1.951                    |
|        | 1.89      | 7.21                               | 0.36                             | -3.054                     | -1.092                     |        | 0.54      | 5.93                             | 0.80                             | -3.673                     | -2.053                    |
|        | 0.54      | 6.42                               | 0.31                             | -3.467                     | -1.481                     |        | 0.74      | 5.18                             | 0.94                             | -3.498                     | -2.080                    |
| 1665 L | 1.34      | 17.20                              | 0.51                             | -4.902                     | 1.959                      | 1667 L | 2.58      | 15.15                            | 0.69                             | -3.932                     | -2.029                    |
|        | 2.92      | 14.73                              | 0.41                             | -4.060                     | -1.765                     |        | 6.43      | 14.41                            | 0.58                             | -3.958                     | -1.963                    |
|        | 3.26      | 14.31                              | 0.75                             | -4.056                     | -1.756                     |        | 5.05      | 13.39                            | 0.51                             | -3.906                     | -1.827                    |
|        | 3.43      | 14.02                              | 0.95                             | -4.089                     | -1.725                     |        | 0.55      | 12.19                            | 0.51                             | -3.862                     | -1.761                    |
|        | 5.61      | 13.50                              | 0.48                             | -4.062                     | -1.626                     |        | 0.94      | 11.45                            | 0.36                             | -3.908                     | -1.875                    |
|        | 1.15      | 12.65                              | 0.88                             | -3.873                     | -1.631                     |        | 0.67      | 11.06                            | 1.51                             | -2.641                     | -1.664                    |
|        | 0.73      | 11.77                              | 0.69                             | -4.584                     | 0.704                      |        | 8.99      | 9.71                             | 0.28                             | 0.000                      | 0.000                     |
|        | 1.59      | 11.22                              | 0.63                             | -4.199                     | -1.378                     |        | 0.67      | 8.91                             | 0.38                             | -1.392                     | -0.648                    |
|        | 2.89      | 10.94                              | 0.27                             | -2.879                     | -1.299                     |        | 0.76      | 8.34                             | 0.34                             | -0.105                     | -0.094                    |
|        | 1.04      | 9.96                               | 0.55                             | -4.378                     | -1.250                     |        | 0.52      | 7.00                             | 1.03                             | -3.765                     | -1.871                    |
|        | 4.30      | 9.52                               | 0.25                             | -0.153                     | 0.202                      |        | 1.04      | 6.17                             | 1.64                             | -3.801                     | -1.907                    |
|        | 0.93      | 8.55                               | 1.37                             | -2.983                     | -0.799                     |        | 1.47      | 4.94                             | 0.64                             | -3.464                     | -2.053                    |
|        | 1.69      | 8.16                               | 0.33                             | -1.577                     | -0.385                     |        |           |                                  |                                  |                            |                           |

TABLE 12 G6.049 – 1.447

| Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|--------------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 6.95<br>5.28 | 11.13<br>10.65                   | 0.96<br>0.49                     | 0.000<br>-0.021            | 0.000<br>-0.027            | 1665 L | 6.84      | 11.12                           | 0.60                             | -0.005                     | 0.001                     |

TABLE 13 G9.622+0.195

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|---------------------------------|----------------------------|----------------------------|--------|-----------|-----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 4.22      | 5.81                             | 0.42                            | 3.119                      | -12.308                    | 1667 R | 0.29      | 6.02                              | 0.41                             | 1.674                      | -5.454                    |
|        | 2.39      | 4.87                             | 0.20                            | 0.492                      | -2.905                     |        | 0.85      | 4.81                              | 0.38                             | 1.809                      | -5.200                    |
|        | 2.72      | 3.86                             | 0.39                            | 1.519                      | -5.561                     |        | 1.89      | 4.28                              | 0.43                             | 1.756                      | -5.342                    |
|        | 0.27      | 2.86                             | 0.37                            | 1.332                      | -5.303                     |        | 0.25      | 3.06                              | 0.68                             | 1.696                      | -5.162                    |
|        | 8.62      | 1.75                             | 0.31                            | -0.692                     | -0.361                     |        | 0.51      | 2.28                              | 0.25                             | 1.416                      | -5.101                    |
|        | 7.52      | 1.25                             | 0.65                            | -0.685                     | -0.344                     |        | 2.08      | 1.42                              | 0.43                             | -0.034                     | 0.016                     |
| 1665 L | 0.88      | 7.03                             | 0.36                            | 1.574                      | -5.593                     |        | 2.12      | 0.64                              | 0.40                             | -0.476                     | -0.169                    |
|        | 1.40      | 5.49                             | 0.45                            | 1.514                      | -5.653                     | 1667 L | 4.76      | 7.13                              | 0.28                             | 1.797                      | -5.389                    |
|        | 1.41      | 3.93                             | 0.40                            | 1.556                      | -5.586                     |        | 0.77      | 6.02                              |                                  | 1.706                      | -5.359                    |
|        | 8.01      | 1.78                             | 0.26                            | -0.131                     | -1.225                     |        | 0.69      | 4.78                              | •••                              | 1.791                      | -5.334                    |
|        | 2.48      | -1.05                            | 0.36                            | -0.699                     | -0.353                     |        | 0.59      | 3.96                              |                                  | 1.770                      | -5.201                    |
|        | 1.66      | -3.97                            | 0.33                            | -0.523                     | -0.436                     |        | 0.60      | 2.31                              |                                  | 0.172                      | -0.900                    |
| 1667 R | 0.89      | 7.17                             | 0.49                            | 1.791                      | -5.423                     |        | 9.72      | 1.48                              | 0.39                             | 0.000                      | 0.000                     |

TABLE 14 G10.624-0.385

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.45      | 3.21                            | 0.38                             | -0.450                     | 0.800                     | 1665 L | 0.58      | -1.32                           | 0.31                             | 0.083                      | 0.054                     |
|        | 0.54      | 0.35                            | 0.36                             | 0.111                      | 0.151                     |        | 1.44      | -1.91                           | 0.39                             | 0.024                      | 0.031                     |
|        | 0.99      | -0.48                           | 0.30                             | 0.109                      | 0.082                     |        | 9.94      | -2.26                           | 0.28                             | 0.001                      | -0.010                    |
|        | 0.69      | -1.13                           | 0.36                             | 0.267                      | 0.020                     | 1667 R | 1.25      | 0.10                            | 0.34                             | 2.015                      | -0.275                    |
|        | 0.92      | -1.31                           | 0.31                             | 0.261                      | 0.063                     |        | 0.54      | -0.54                           | 0.27                             | 0.052                      | -0.080                    |
|        | 4.46      | -1.90                           | 0.40                             | 0.028                      | 0.009                     |        | 0.70      | -0.78                           | 0.28                             | -0.027                     | -0.043                    |
|        | 29.90     | -2.31                           | 0.33                             | 0.000                      | 0.000                     |        | 0.63      | -1.12                           | 0.46                             | -0.032                     | -0.017                    |
|        | 0.76      | -2.85                           | 0.21                             | 0.597                      | -0.274                    |        | 0.69      | -1.32                           | 0.50                             | -0.027                     | -0.028                    |
| 1665 L | 0.52      | 2.87                            | 0.42                             | 2.014                      | -0.043                    |        | 22.37     | -1.98                           | 0.24                             | -0.041                     | -0.126                    |
|        | 0.44      | 1.21                            | 0.48                             | 0.255                      | 0.154                     | 1667 L | 0.80      | 2.08                            | 0.30                             | 1.988                      | -0.225                    |
|        | 2.88      | 0.06                            | 0.37                             | 0.042                      | 0.024                     |        | 22.01     | -0.58                           | 0.31                             | -0.044                     | -0.127                    |
|        | 6.61      | -0.51                           | 0.55                             | -0.021                     | 0.068                     |        | 2.08      | -1.96                           | 0.24                             | -0.066                     | -0.109                    |

TABLE 15 G12.210 - 0.102

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.93      | 27.04                           | 0.47                             | -1.911                     | -0.223                    | 1665 L | 1.17      | 21.77                           | 0.27                             | 0.000                      | 0.000                     |

TABLE 16 G12.216-0.117

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|-----------------------------------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 2.91      | 29.01                           | 0.49                             | -0.019                     | -0.045                     | 1667 R | 4.28      | 29.06                                                           | 0.49                             | 0.038                      | -0.036                     |
|        | 11.94     | 27.59                           | 0.58                             | 0.027                      | -0.031                     |        | 2.98      | 28.07                                                           | 0.86                             | 0.107                      | -0.073                     |
| 1665 L | 15.26     | 29.08                           | 0.48                             | 0.000                      | 0.000                      |        | 3.88      | 27.71                                                           | 0.56                             | 0.169                      | -0.091                     |
|        | 0.96      | 27.74                           | 0.36                             | 0.019                      | -0.080                     | 1667 L | 3.78      | 30.58                                                           | 0.70                             | -0.128                     | -0.274                     |
|        | 0.47      | 27.18                           | 0.98                             | 0.102                      | -0.377                     |        | 11.93     | 28.82                                                           | 0.44                             | 0.113                      | -0.032                     |
| 1667 R | 2.79      | 30.69                           | 0.39                             | -0.131                     | -0.286                     |        | 0.39      | 26.85                                                           | 0.55                             | 0.147                      | -0.721                     |
|        | 4.05      | 30.37                           | 0.36                             | -0.098                     | -0.277                     |        |           |                                                                 |                                  |                            |                            |

TABLE 17 G12.680-0.181 (W33 B)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_{y}$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({ m km~s}^{-1})$ | $\Delta v \ (\mathrm{km\ s^{-1}})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|---------------------------------|----------------------------|-----------------------------|--------|-----------|--------------------------------------|------------------------------------|----------------------------|---------------------------|
| 1665 R | 0.38      | 66.08                            | 0.41                            | 0.066                      | 0.143                       | 1665 L | 0.83      | 59.68                                | 0.39                               | -0.036                     | -0.015                    |
|        | 0.57      | 65.32                            | 0.46                            | -0.169                     | 0.143                       |        | 0.67      | 59.04                                | 0.40                               | -0.068                     | -0.001                    |
|        | 1.11      | 64.42                            | 0.56                            | -0.085                     | 0.044                       |        | 0.90      | 56.89                                | 0.35                               | -0.168                     | -0.212                    |
|        | 1.52      | 64.04                            | 0.45                            | -0.096                     | 0.070                       | 1667 R | 0.32      | 66.20                                | 0.60                               | -0.321                     | 0.028                     |
|        | 4.54      | 63.34                            | 0.41                            | 0.032                      | 0.010                       |        | 0.57      | 65.64                                | 0.52                               | -0.213                     | -0.056                    |
|        | 2.59      | 62.28                            | 0.51                            | 0.022                      | -0.003                      |        | 1.52      | 64.29                                | 0.52                               | -0.189                     | -0.133                    |
|        | 2.67      | 61.73                            | 2.36                            | 0.023                      | 0.010                       |        | 1.52      | 63.64                                | 1.10                               | -0.152                     | -0.133                    |
|        | 2.61      | 61.16                            | 0.72                            | 0.039                      | -0.009                      |        | 1.84      | 63.37                                | 0.48                               | -0.132                     | -0.150                    |
|        | 10.48     | 59.74                            | 0.38                            | -0.061                     | -0.004                      |        | 3.88      | 62.52                                | 0.46                               | -0.115                     | -0.158                    |
|        | 7.56      | 59.11                            | 0.31                            | -0.067                     | 0.004                       |        | 3.19      | 62.14                                | 0.94                               | -0.122                     | -0.161                    |
|        | 4.27      | 58.57                            | 0.38                            | -0.065                     | -0.010                      |        | 0.90      | 61.09                                | 0.50                               | -0.188                     | -0.107                    |
|        | 0.34      | 54.92                            | 0.73                            | -0.225                     | -0.184                      |        | 1.47      | 60.01                                | 0.46                               | -0.187                     | -0.169                    |
| 1665 L | 0.73      | 65.53                            | 0.34                            | -0.141                     | 0.118                       |        | 0.66      | 59.38                                | 0.35                               | -0.294                     | -0.174                    |
|        | 1.23      | 65.24                            | 0.38                            | -0.101                     | 0.085                       | 1667 L | 0.58      | 65.66                                | 0.52                               | -0.178                     | -0.065                    |
|        | 2.57      | 64.95                            | 0.37                            | -0.056                     | 0.050                       |        | 2.92      | 64.81                                | 0.69                               | -0.167                     | -0.147                    |
|        | 21.27     | 64.46                            | 0.41                            | 0.000                      | 0.000                       |        | 5.51      | 64.50                                | 0.45                               | -0.147                     | -0.161                    |
|        | 3.54      | 63.86                            | 0.41                            | -0.059                     | 0.034                       |        | 0.96      | 63.72                                | 0.65                               | -0.230                     | -0.054                    |
|        | 3.38      | 63.46                            | 0.40                            | -0.092                     | 0.041                       |        | 2.29      | 62.75                                | 0.64                               | -0.133                     | -0.156                    |
|        | 3.45      | 62.93                            | 0.81                            | -0.095                     | 0.026                       |        | 2.65      | 62.56                                | 0.49                               | -0.103                     | -0.172                    |
|        | 5.32      | 62.37                            | 0.48                            | 0.055                      | -0.031                      |        | 1.03      | 61.66                                | 0.58                               | -0.219                     | -0.191                    |
|        | 0.63      | 61.35                            | 0.50                            | -0.054                     | 0.069                       |        | 0.29      | 60.58                                | 0.45                               | -0.186                     | 0.078                     |
|        | 3.96      | 60.78                            | 0.51                            | -0.163                     | 0.189                       |        |           |                                      |                                    |                            |                           |

TABLE 18 G12.890+0.488

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.89      | 35.19                           | 0.32                             | 0.010                      | 0.072                     | 1665 L | 3.97      | 33.37                           | 1.14                             | 0.008                      | 0.030                     |
|        | 0.17      | 34.14                           | •••                              | -0.010                     | 0.085                     |        | 4.16      | 33.10                           | 0.35                             | 0.000                      | 0.000                     |
|        | 0.64      | 33.00                           | 0.46                             | 0.015                      | 0.034                     |        | 2.13      | 32.81                           | 0.29                             | 0.006                      | -0.051                    |
|        | 0.70      | 32.82                           | 0.28                             | 0.099                      | 0.107                     |        | 0.37      | 31.59                           | 0.25                             | 2.705                      | -0.279                    |
|        | 0.29      | 31.53                           | •••                              | 1.102                      | 0.088                     |        |           |                                 |                                  |                            |                           |

TABLE 19 G12.908 – 0.259 (W33 A)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({ m km~s}^{-1})$ | $\Delta v \ (\mathrm{km\ s^{-1}})$ | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\mathrm{km\ s^{-1}})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|--------------------------------------|------------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|------------------------------------|----------------------------|---------------------------|
| 1665 R | 12.61     | 40.52                                | 0.33                               | 0.427                      | 0.195                      | 1665 L | 16.03     | 34.47                            | 0.37                               | 0.164                      | -0.109                    |
|        | 8.36      | 39.93                                | 0.52                               | 0.103                      | 0.020                      |        | 5.55      | 33.59                            | 0.69                               | 0.174                      | -0.212                    |
|        | 3.54      | 39.55                                | 0.51                               | 0.274                      | 0.160                      |        | 4.99      | 32.37                            | 0.50                               | 0.147                      | -0.067                    |
|        | 3.49      | 39.23                                | 0.55                               | 0.350                      | 0.203                      |        | 1.26      | 31.17                            | 0.50                               | 0.156                      | -0.061                    |
|        | 6.01      | 38.91                                | 0.42                               | 0.345                      | 0.162                      |        | 0.46      | 28.44                            | 0.31                               | 0.176                      | -0.019                    |
|        | 44.98     | 38.44                                | 0.43                               | 0.458                      | 0.210                      |        | 0.37      | 27.73                            | 0.25                               | 0.193                      | 0.064                     |
|        | 38.97     | 37.92                                | 0.45                               | 0.156                      | -0.005                     | 1667 R | 5.07      | 40.45                            | 0.75                               | 0.138                      | 0.145                     |
|        | 30.33     | 37.45                                | 0.51                               | 0.076                      | -0.086                     |        | 6.34      | 39.76                            | 0.41                               | 0.244                      | 0.164                     |
|        | 41.78     | 37.15                                | 0.45                               | 0.100                      | -0.057                     |        | 9.35      | 38.96                            | 0.34                               | 0.747                      | 0.500                     |
|        | 2.66      | 35.74                                | 0.50                               | 0.159                      | -0.058                     |        | 5.36      | 38.28                            | 0.48                               | 0.566                      | 0.301                     |
|        | 2.30      | 34.72                                | 0.33                               | 0.196                      | -0.034                     |        | 4.12      | 37.70                            | 1.04                               | 0.422                      | 0.187                     |
|        | 1.78      | 34.26                                | 0.65                               | 0.210                      | -0.041                     |        | 8.47      | 36.49                            | 0.40                               | 0.298                      | 0.120                     |
|        | 4.66      | 33.60                                | 0.34                               | 0.189                      | -0.051                     |        | 0.85      | 35.14                            | 0.36                               | 0.590                      | -0.227                    |
|        | 0.92      | 32.46                                | 0.30                               | 0.190                      | -0.269                     |        | 0.56      | 33.00                            | 0.36                               | 0.719                      | 0.108                     |
|        | 0.89      | 32.28                                | 0.52                               | 0.182                      | -0.199                     | 1667 L | 0.63      | 41.64                            | 0.30                               | 0.310                      | 0.135                     |
|        | 0.65      | 31.72                                | 0.32                               | 0.209                      | -0.198                     |        | 1.52      | 40.70                            | 0.32                               | -0.058                     | 0.125                     |
| 1665 L | 6.16      | 40.52                                | 0.39                               | 0.490                      | 0.215                      |        | 67.18     | 39.95                            | 0.58                               | 0.160                      | 0.136                     |
|        | 87.88     | 39.84                                | 0.45                               | 0.000                      | 0.000                      |        | 10.60     | 38.98                            | 0.42                               | 0.737                      | 0.511                     |
|        | 12.93     | 38.40                                | 0.33                               | 0.503                      | 0.222                      |        | 2.28      | 38.24                            | 0.64                               | 0.375                      | 0.200                     |
|        | 25.52     | 37.64                                | 0.30                               | 0.129                      | -0.028                     |        | 2.33      | 37.80                            | 0.48                               | 0.365                      | 0.198                     |
|        | 14.90     | 36.91                                | 0.48                               | 0.158                      | -0.013                     |        | 0.90      | 36.90                            | 0.73                               | 0.402                      | 0.147                     |
|        | 13.77     | 36.57                                | 0.41                               | 0.186                      | 0.013                      |        | 1.18      | 36.54                            | 0.78                               | 0.408                      | 0.176                     |
|        | 7.72      | 36.04                                | 0.92                               | 0.151                      | -0.080                     |        | 0.90      | 32.76                            | 0.35                               | 1.065                      | 0.201                     |
|        | 32.69     | 35.46                                | 0.52                               | 0.157                      | -0.108                     |        | 1.14      | 30.84                            | 0.26                               | 0.500                      | 0.319                     |

TABLE 20 G17.639+0.155

| Trans. | S<br>(Jy)            | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | <i>S</i> (Jy) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|----------------------|-----------------------------------------------------------------|----------------------------------|----------------------------|----------------------------|--------|---------------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.22<br>2.22<br>2.78 | 23.31<br>20.42<br>20.01                                         | 0.29<br>0.28<br>0.31             | 1.919 $-0.384$ $-0.210$    | 0.658<br>0.266<br>0.144    | 1665 L | 1.86<br>3.16  | 20.92<br>19.95                                                  | 0.31<br>0.25                     | -0.442 $0.000$             | 0.239<br>0.000            |

TABLE 21 G20.081 – 0.135

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 0.43      | 50.57                            | 0.32                             | 0.064                      | 0.145                      | 1665 R | 0.71      | 42.92                            | 0.41                             | 0.131                      | -0.017                     |
|        | 1.42      | 49.79                            | 0.42                             | -0.007                     | 0.020                      | 1665 L | 0.34      | 47.83                            | 0.34                             | 0.128                      | -0.299                     |
|        | 1.03      | 49.16                            | 0.57                             | 0.040                      | -0.077                     |        | 11.10     | 46.60                            | 0.37                             | 0.000                      | 0.000                      |
|        | 2.22      | 48.64                            | 0.39                             | 0.157                      | -0.140                     |        | 4.58      | 45.47                            | 0.32                             | 0.026                      | -0.049                     |
|        | 1.25      | 48.19                            | 0.63                             | 0.189                      | -0.205                     |        | 0.23      | 43.77                            | 0.58                             | 0.266                      | -0.165                     |
|        | 1.25      | 45.54                            | 0.24                             | 0.344                      | 0.099                      |        | 0.64      | 42.90                            | 0.50                             | 0.216                      | -0.147                     |

TABLE 22 G28.147 – 0.005

| Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 0.35<br>0.54 | 102.72<br>100.49                 | 0.30<br>0.24                     | -0.003 $0.027$             | -0.106 $0.038$            | 1665 L | 2.39      | 102.12                          | 0.25                             | 0.000                      | 0.000                      |

TABLE 23 G28.199 – 0.048

| Trans. | S<br>(Jy) | $v_{\rm LSR}$ (km s <sup>-1</sup> ) | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR}$ (km s <sup>-1</sup> ) | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|-------------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|-------------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 1.11      | 99.51                               | 0.39                             | 1.220                      | -0.485                    | 1665 L | 2.86      | 93.23                               | 0.31                             | 0.018                      | -0.023                    |
|        | 1.05      | 99.05                               | 0.37                             | 1.135                      | -0.478                    |        | 0.84      | 92.73                               | 0.38                             | 0.123                      | -0.044                    |
|        | 2.39      | 97.92                               | 0.51                             | 0.860                      | -0.423                    | 1667 R | 0.40      | 98.73                               | 0.43                             | 1.251                      | -0.585                    |
|        | 3.09      | 97.31                               | 0.58                             | 0.897                      | -0.444                    |        | 2.11      | 97.07                               | 0.51                             | 0.845                      | -0.481                    |
|        | 11.23     | 96.71                               | 0.40                             | 0.493                      | -0.211                    |        | 0.80      | 96.12                               | 1.01                             | 0.561                      | -0.345                    |
|        | 1.60      | 95.55                               | 0.72                             | 0.512                      | -0.194                    |        | 0.85      | 95.88                               | 0.63                             | 0.497                      | -0.299                    |
|        | 19.23     | 94.89                               | 0.27                             | 0.000                      | 0.000                     |        | 0.69      | 95.34                               | 0.47                             | 1.275                      | -0.333                    |
|        | 0.54      | 93.98                               | 0.27                             | 1.254                      | -0.258                    |        | 0.62      | 94.69                               | 0.62                             | 1.161                      | -0.287                    |
| 1665 L | 0.39      | 100.69                              | 0.65                             | 1.214                      | -0.494                    |        | 2.41      | 94.21                               | 0.23                             | 0.236                      | -0.133                    |
|        | 4.11      | 98.38                               | 0.32                             | 1.170                      | -0.506                    | 1667 L | 1.02      | 97.16                               | 0.60                             | 1.131                      | -0.562                    |
|        | 5.76      | 96.97                               | 0.70                             | 0.972                      | -0.472                    |        | 0.57      | 96.07                               | 0.88                             | 0.873                      | -0.442                    |
|        | 4.23      | 96.18                               | 0.65                             | 0.827                      | -0.370                    |        | 1.45      | 95.40                               | 0.31                             | 1.327                      | -0.328                    |
|        | 11.48     | 94.92                               | 0.35                             | -0.016                     | 0.005                     |        | 0.35      | 94.08                               | 0.30                             | 0.367                      | -0.036                    |
|        | 1.22      | 94.30                               | 0.80                             | 0.180                      | -0.017                    |        | 0.38      | 93.64                               | 0.33                             | 0.559                      | -0.213                    |
|        | 3.07      | 93.74                               | 0.80                             | 1.338                      | -0.277                    |        | 0.86      | 92.95                               | 0.39                             | 0.342                      | -0.083                    |

TABLE 24 G30.589 – 0.044

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|---------------------------------|----------------------------|----------------------------|
| 1665 R | 0.28      | 41.38                            | 0.26                             | 1.088                      | -0.356                    | 1665 L | 7.62      | 37.10                            | 0.75                            | 0.005                      | -0.025                     |
|        | 1.00      | 39.71                            | 0.34                             | 0.053                      | 0.238                     |        | 0.90      | 36.09                            | 0.31                            | 0.013                      | 0.009                      |
|        | 1.36      | 38.72                            | 0.38                             | 0.047                      | -0.044                    | 1667 R | 2.23      | 38.12                            | 0.29                            | 0.907                      | -0.416                     |
|        | 7.80      | 36.96                            | 0.53                             | 0.000                      | 0.000                     |        | 5.27      | 37.39                            | 0.42                            | 0.985                      | -0.387                     |
|        | 7.48      | 36.09                            | 0.28                             | -0.015                     | 0.155                     |        | 4.50      | 36.94                            | 0.66                            | 0.995                      | -0.366                     |
| 1665 L | 2.26      | 44.20                            | 0.35                             | -0.061                     | -0.109                    |        | 4.86      | 36.64                            | 0.38                            | 1.046                      | -0.287                     |
|        | 1.53      | 41.75                            | 0.29                             | -0.034                     | -0.099                    | 1667 L | 0.31      | 39.15                            | 0.44                            | 1.112                      | -0.231                     |
|        | 1.33      | 39.77                            | 0.34                             | 0.066                      | 0.148                     |        | 0.88      | 38.22                            | 0.88                            | 0.957                      | -0.436                     |
|        | 4.30      | 38.85                            | 0.31                             | 0.106                      | 0.007                     |        | 6.74      | 37.50                            | 0.45                            | 0.987                      | -0.390                     |
|        | 0.64      | 38.19                            | 0.62                             | 0.007                      | -0.016                    |        | 4.32      | 36.95                            | 1.55                            | 1.005                      | -0.372                     |

TABLE 25 G30.703 – 0.069

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 0.74      | 96.33                            | 0.43                             | 0.257                      | -0.723                     | 1667 R | 0.87      | 95.98                              | 0.39                             | 0.371                      | -0.943                     |
|        | 0.93      | 95.72                            | 0.46                             | 0.166                      | -0.735                     |        | 0.93      | 95.24                              | 0.32                             | 0.329                      | -0.759                     |
|        | 0.56      | 95.14                            | 0.33                             | 0.234                      | -0.561                     |        | 11.86     | 91.18                              | 0.34                             | 0.047                      | -0.248                     |
|        | 16.93     | 91.17                            | 0.36                             | 0.000                      | 0.000                      |        | 2.91      | 88.22                              | 0.47                             | 0.381                      | -0.416                     |
|        | 0.24      | 89.42                            | 0.76                             | -0.183                     | 0.186                      |        | 1.13      | 87.77                              | 0.36                             | 0.078                      | -0.442                     |
|        | 1.90      | 88.25                            | 0.35                             | 0.424                      | -0.129                     |        | 1.00      | 86.54                              | 0.25                             | -0.021                     | -0.312                     |
|        | 0.31      | 82.58                            | 0.36                             | 0.408                      | -0.131                     |        | 0.55      | 85.42                              | 0.26                             | 0.072                      | -0.218                     |
|        | 0.33      | 82.22                            | 0.43                             | 0.459                      | -0.145                     | 1667 L | 0.54      | 95.67                              | 0.51                             | 0.425                      | -1.004                     |
| 1665 L | 0.81      | 95.79                            | 0.42                             | 0.312                      | -0.757                     |        | 0.74      | 95.13                              | 0.52                             | 0.371                      | -0.730                     |
|        | 0.52      | 95.15                            | 0.87                             | 0.284                      | -0.478                     |        | 0.57      | 94.09                              | 0.24                             | 0.077                      | -0.872                     |
|        | 2.18      | 90.98                            | 0.54                             | -0.011                     | 0.031                      |        | 5.30      | 90.91                              | 0.33                             | -0.117                     | -0.026                     |
|        | 2.69      | 88.25                            | 0.39                             | 0.405                      | -0.139                     |        | 3.17      | 88.26                              | 0.43                             | 0.446                      | -0.388                     |
|        | 0.57      | 86.70                            | 0.83                             | 0.334                      | -0.133                     |        | 14.90     | 87.59                              | 0.30                             | 0.001                      | -0.420                     |
|        | 0.67      | 86.40                            | 0.61                             | 0.340                      | -0.160                     |        | 1.14      | 86.65                              | 0.20                             | 0.021                      | -0.337                     |
|        | 0.22      | 85.61                            | 0.39                             | 0.419                      | -0.116                     |        | 2.36      | 86.28                              | 0.21                             | 0.121                      | -0.342                     |
| 1667 R | 1.18      | 96.42                            | 0.45                             | 0.474                      | -0.857                     |        | 0.69      | 84.72                              | 0.33                             | 0.463                      | -0.395                     |

TABLE 26 G31.412+0.307

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\mathrm{km\ s^{-1}})$ | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|------------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|---------------------------------|----------------------------|---------------------------|
| 1665 R | 0.81      | 102.96                           | 0.70                               | 1.184                      | 0.308                      | 1667 R | 2.74      | 103.48                           | 0.73                            | 1.371                      | 0.414                     |
|        | 0.22      | 101.35                           | 0.47                               | 1.144                      | 0.085                      |        | 0.60      | 101.58                           | 0.41                            | 0.746                      | 0.108                     |
|        | 0.23      | 100.79                           | 0.62                               | 0.877                      | -0.008                     |        | 0.74      | 100.34                           | 0.50                            | 0.319                      | -0.092                    |
|        | 0.29      | 99.69                            | 0.54                               | 1.230                      | 0.839                      |        | 1.38      | 99.15                            | 0.43                            | 0.480                      | 0.008                     |
|        | 1.34      | 98.46                            | 0.33                               | 0.524                      | -0.069                     |        | 10.47     | 97.84                            | 0.46                            | 0.000                      | 0.000                     |
|        | 2.35      | 97.76                            | 0.40                               | -0.133                     | -0.090                     |        | 3.46      | 97.03                            | 0.50                            | 0.002                      | -0.035                    |
|        | 0.82      | 96.06                            | 0.39                               | 1.005                      | -0.407                     |        | 1.22      | 95.95                            | 0.50                            | 0.174                      | -0.082                    |
|        | 0.47      | 95.42                            | 0.43                               | 0.560                      | -0.154                     |        | 0.85      | 95.61                            | 0.92                            | 0.171                      | -0.161                    |
|        | 1.65      | 94.87                            | 0.27                               | 1.230                      | -0.550                     |        | 0.35      | 94.76                            | 0.47                            | -0.069                     | -0.100                    |
|        | 0.20      | 93.40                            | 0.50                               | -0.472                     | -0.117                     |        | 0.38      | 94.20                            | 0.44                            | -0.215                     | -0.008                    |
|        | 0.23      | 92.22                            | 0.44                               | -0.281                     | -0.317                     |        | 1.03      | 93.38                            | 0.52                            | -0.280                     | -0.004                    |
| 1665 L | 0.80      | 103.77                           | 0.43                               | 1.264                      | 0.308                      |        | 1.13      | 92.20                            | 0.49                            | -0.232                     | 0.005                     |
|        | 0.77      | 102.78                           | 0.61                               | 1.151                      | 0.212                      | 1667 L | 0.47      | 105.39                           | 0.38                            | 1.617                      | 0.419                     |
|        | 1.13      | 101.83                           | 0.67                               | 1.031                      | -0.301                     |        | 0.41      | 104.92                           | 0.62                            | 1.412                      | 0.502                     |
|        | 4.63      | 101.43                           | 0.36                               | 1.064                      | -0.338                     |        | 3.61      | 103.87                           | 0.54                            | 1.383                      | 0.410                     |
|        | 2.20      | 100.56                           | 0.38                               | 1.070                      | -0.322                     |        | 0.54      | 102.68                           | 0.60                            | 1.099                      | 0.300                     |
|        | 0.38      | 99.15                            | 0.38                               | 0.586                      | -0.079                     |        | 0.79      | 102.17                           | 0.49                            | 0.922                      | 0.077                     |
|        | 2.88      | 98.46                            | 0.33                               | 0.372                      | -0.093                     |        | 0.67      | 101.62                           | 0.59                            | 0.869                      | -0.096                    |
|        | 0.80      | 97.89                            | 0.51                               | 0.306                      | -0.073                     |        | 0.81      | 101.04                           | 0.51                            | 0.456                      | -0.049                    |
|        | 0.35      | 97.21                            | 1.09                               | 0.794                      | -0.008                     |        | 0.64      | 100.48                           | 0.71                            | 0.352                      | -0.047                    |
|        | 0.29      | 96.83                            | 0.63                               | 0.866                      | 0.025                      |        | 1.25      | 99.12                            | 0.45                            | 0.489                      | -0.004                    |
|        | 0.50      | 94.87                            | 0.23                               | 1.161                      | -0.488                     |        | 4.21      | 98.07                            | 0.65                            | 0.161                      | 0.007                     |
|        | 0.64      | 93.64                            | 0.42                               | 1.051                      | -0.463                     |        | 2.56      | 97.05                            | 0.80                            | 0.022                      | -0.042                    |
|        | 0.36      | 92.55                            | 0.43                               | 0.377                      | -0.433                     |        | 1.17      | 95.82                            | 0.53                            | 0.015                      | -0.111                    |
| 1667 R | 0.54      | 105.70                           | 0.40                               | 1.592                      | 0.436                      |        | 0.46      | 94.67                            | 0.60                            | -0.104                     | -0.093                    |
|        | 0.39      | 105.10                           | 0.50                               | 1.574                      | 0.467                      |        | 0.77      | 93.44                            | 0.67                            | -0.272                     | -0.035                    |
|        | 0.47      | 104.53                           | 0.41                               | 1.478                      | 0.456                      |        | 0.69      | 92.20                            | 0.46                            | -0.149                     | -0.107                    |

TABLE 27 G32.744 – 0.076

| Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \ ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|------------------------|-----------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.96                   | 39.57                             | 0.31                             | -0.086                     | 0.562                     | 1665 L | 1.13                   | 35.00                                                           | 0.44                             | 0.040                      | 0.068                     |
|        | 0.40                   | 37.30                             | 0.45                             | -0.307                     | 0.891                     |        | 0.84                   | 34.56                                                           | 0.50                             | 0.041                      | 0.074                     |
|        | 0.45                   | 34.01                             | 0.27                             | -0.202                     | 0.121                     |        | 2.17                   | 33.77                                                           | 0.29                             | 0.000                      | 0.000                     |
|        | 1.68                   | 32.42                             | 0.51                             | 0.026                      | 0.014                     |        | 1.27                   | 33.38                                                           | 0.30                             | -0.111                     | -0.173                    |
|        | 0.69                   | 31.01                             | 0.52                             | -0.069                     | -0.286                    |        | 0.63                   | 32.83                                                           | 0.57                             | 0.025                      | -0.246                    |
|        | 0.56                   | 30.21                             | 0.45                             | -0.101                     | -0.250                    |        | 0.18                   | 31.59                                                           | 0.41                             | -0.108                     | -0.418                    |
|        | 0.19                   | 25.77                             | 0.32                             | 0.089                      | -0.190                    |        | 0.37                   | 30.94                                                           | 0.33                             | 0.050                      | -0.402                    |
| 1665 L | 0.28                   | 40.22                             | 0.29                             | -0.319                     | 0.436                     |        | 0.45                   | 30.35                                                           | 0.36                             | -0.015                     | -0.444                    |
|        | 0.56                   | 37.11                             | 0.49                             | -0.235                     | 0.770                     |        | 0.25                   | 25.82                                                           | 0.32                             | -0.008                     | -0.284                    |
|        | 0.59                   | 36.71                             | 0.38                             | -0.134                     | 0.576                     |        |                        |                                                                 |                                  |                            |                           |

TABLE 28 G34.257+0.154

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|---------------------------------|----------------------------|---------------------------|
| 1665 R | 0.73      | 62.49                           |                                  | 0.000                      | 1.902                     | 1665 L | 15.90     | 58.15                            | 0.38                            | -0.092                     | -0.087                    |
|        | 6.68      | 59.56                           | 0.40                             | 0.355                      | 1.808                     |        | 0.36      | 57.43                            | 0.38                            | -0.827                     | -1.490                    |
|        | 16.36     | 59.11                           | 0.35                             | 0.396                      | 1.812                     |        | 24.59     | 55.89                            | 0.33                            | 0.460                      | 1.779                     |
|        | 80.57     | 58.24                           | 0.36                             | -0.075                     | -0.097                    |        | 0.55      | 54.70                            | 0.22                            | -2.065                     | -1.694                    |
|        | 0.61      | 57.33                           | 0.40                             | -0.634                     | -1.156                    |        | 0.50      | 53.86                            | 0.21                            | -0.445                     | 1.211                     |
|        | 2.92      | 56.50                           | 0.24                             | -0.374                     | -0.801                    | 1667 R | 66.09     | 58.49                            | 0.36                            | -0.001                     | 0.003                     |
|        | 0.43      | 55.74                           | 0.73                             | -0.625                     | -1.160                    |        | 10.56     | 57.41                            | 0.27                            | -0.793                     | -1.654                    |
|        | 0.36      | 51.56                           | 0.51                             | -0.449                     | 1.226                     | 1667 L | 1.27      | 62.30                            | 0.36                            | -1.562                     | 2.616                     |
| 1665 L | 2.24      | 62.77                           | 0.30                             | -1.658                     | 2.553                     |        | 1.35      | 60.58                            | 0.43                            | 0.012                      | -0.011                    |
|        | 3.78      | 61.22                           | 0.41                             | -0.087                     | -0.078                    |        | 111.38    | 58.64                            | 0.36                            | 0.000                      | 0.000                     |
|        | 1.66      | 59.88                           | 0.26                             | 0.010                      | 1.879                     |        | 2.24      | 57.97                            | 0.27                            | -0.754                     | -1.679                    |
|        | 1.50      | 59.51                           | 0.34                             | 0.026                      | 0.607                     |        | 7.32      | 57.49                            | 0.31                            | -0.798                     | -1.653                    |
|        | 3.35      | 58.94                           | 0.35                             | 0.040                      | 1.927                     |        |           |                                  |                                 |                            |                           |

TABLE 29 G35.024+0.350

| Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR}$ (km s <sup>-1</sup> ) | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \ ({\rm km\ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_{y}$ (arcsec) |
|--------|------------------------|-------------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|------------------------------------|----------------------------------|----------------------------|-----------------------------|
| 1665 R | 0.23                   | 51.37                               | 0.45                             | -0.167                     | 0.231                     | 1665 L | 1.94                   | 46.71                              | 0.46                             | -0.008                     | 0.106                       |
|        | 2.08                   | 48.19                               | 0.52                             | -0.052                     | -0.081                    |        | 0.17                   | 45.77                              | 0.45                             | -0.062                     | -0.035                      |
|        | 7.89                   | 47.81                               | 0.36                             | 0.009                      | 0.066                     |        | 2.72                   | 44.62                              | 0.24                             | -0.028                     | -0.009                      |
|        | 9.02                   | 47.03                               | 0.32                             | 0.000                      | 0.000                     |        | 0.54                   | 43.86                              | 0.80                             | 0.023                      | -0.033                      |
|        | 1.84                   | 44.64                               | 0.25                             | -0.027                     | -0.001                    |        | 2.16                   | 42.84                              | 0.20                             | 0.055                      | 0.092                       |
| 1665 L | 0.63                   | 51.34                               | 0.26                             | -0.214                     | 0.392                     |        | 0.32                   | 40.93                              | 0.38                             | 0.082                      | 0.201                       |
|        | 5.51                   | 47.79                               | 0.35                             | 0.042                      | 0.171                     |        | 0.47                   | 40.44                              | 0.44                             | 0.036                      | 0.208                       |
|        | 1.86                   | 46.93                               | 0.47                             | -0.029                     | 0.095                     |        |                        |                                    |                                  |                            |                             |

TABLE 30 G35.197 – 0.743

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.71      | 37.47                            | 0.40                             | -0.914                     | 1.858                     | 1665 L | 2.02      | 35.79                           | 0.30                             | -0.422                     | 1.210                     |
|        | 1.63      | 37.02                            | 0.39                             | -0.924                     | 1.851                     |        | 0.67      | 30.39                           | 0.29                             | 0.388                      | -0.050                    |
|        | 1.25      | 36.58                            | 0.67                             | -0.929                     | 1.838                     |        | 0.32      | 30.02                           | 0.54                             | 0.384                      | -0.069                    |
|        | 2.95      | 36.01                            | 0.29                             | -0.935                     | 1.828                     |        | 0.67      | 29.14                           | 0.72                             | -0.058                     | 0.019                     |
|        | 1.35      | 34.23                            | 0.20                             | -0.355                     | 1.083                     |        | 1.80      | 28.75                           | 0.29                             | 0.330                      | -0.176                    |
|        | 2.66      | 30.24                            | 0.20                             | 0.566                      | 0.204                     |        | 2.01      | 26.71                           | 0.32                             | 0.015                      | -0.012                    |
|        | 4.64      | 29.20                            | 0.39                             | -0.059                     | 0.045                     |        | 1.11      | 26.36                           | 0.29                             | 0.053                      | -0.012                    |
|        | 5.39      | 28.81                            | 0.32                             | 0.000                      | 0.000                     |        | 1.04      | 25.11                           | 0.34                             | 0.331                      | -0.006                    |
| 1665 L | 0.49      | 36.63                            | 0.28                             | -0.275                     | 1.003                     |        |           |                                 |                                  |                            |                           |

TABLE 31 G35.200-1.736

| Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|--------------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|--------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 6.03      | 45.96                                | 0.24                             | 0.075                      | 0.029                     | 1665 R | 0.46      | 39.02                                | 0.43                             | 0.122                      | -0.091                     |
|        | 0.62      | 45.61                                | 0.32                             | 0.016                      | 0.039                     | 1665 L | 1.96      | 45.98                                | 0.25                             | 0.120                      | 0.013                      |
|        | 2.61      | 44.48                                | 0.28                             | 0.177                      | 0.179                     |        | 0.90      | 45.56                                | 0.55                             | 0.115                      | 0.061                      |
|        | 0.56      | 43.22                                | 0.39                             | 0.035                      | -0.047                    |        | 0.79      | 44.74                                | 0.43                             | 0.119                      | 0.051                      |
|        | 1.12      | 42.14                                | 0.41                             | 0.034                      | -0.004                    |        | 13.29     | 42.95                                | 0.33                             | 0.000                      | 0.000                      |
|        | 1.50      | 41.65                                | 0.35                             | 0.062                      | -0.049                    |        | 5.93      | 41.87                                | 0.34                             | -0.011                     | -0.011                     |
|        | 1.63      | 40.33                                | 0.27                             | 0.054                      | -0.079                    |        | 5.61      | 39.03                                | 0.33                             | 0.062                      | -0.090                     |

TABLE 32 G35.577 – 0.029

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 52.63     | 49.02                           | 0.28                             | 0.000                      | 0.000                     | 1667 R | 0.29      | 50.25                           | 0.31                             | 0.180                      | -0.159                     |
|        | 2.84      | 48.25                           | 0.39                             | -0.088                     | 0.148                     |        | 0.49      | 49.02                           | 0.37                             | 0.107                      | -0.092                     |
|        | 0.95      | 47.64                           | 0.40                             | -0.096                     | 0.116                     |        | 0.57      | 48.25                           | 0.41                             | 0.098                      | 0.030                      |
| 1665 L | 2.95      | 51.88                           | 0.22                             | -0.002                     | -0.094                    | 1667 L | 11.56     | 50.27                           | 0.24                             | 0.172                      | -0.158                     |
|        | 7.20      | 50.80                           | 0.30                             | -0.006                     | -0.115                    |        | 0.40      | 48.96                           | 0.41                             | 0.119                      | -0.054                     |
|        | 2.75      | 49.90                           | 0.31                             | -0.035                     | -0.087                    |        | 0.50      | 48.28                           | 0.31                             | 0.024                      | 0.073                      |
|        | 29.45     | 48.94                           | 0.42                             | -0.032                     | 0.067                     |        |           |                                 |                                  |                            |                            |

TABLE 33 G40.622 – 0.137

| Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({\rm km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({\rm km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------------|---------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------------|---------------------------------|----------------------------|---------------------------|
| 1665 R | 2.16      | 35.74                                 | 0.31                            | -0.674                     | 0.180                      | 1667 R | 0.28      | 32.59                                 | 0.41                            | 0.038                      | -0.020                    |
|        | 0.56      | 35.13                                 | 0.42                            | -0.695                     | 0.166                      |        | 1.02      | 31.68                                 | 0.46                            | -0.439                     | 0.045                     |
|        | 1.02      | 34.76                                 | 0.30                            | -0.695                     | 0.196                      |        | 1.96      | 30.75                                 | 0.31                            | 0.199                      | 0.069                     |
|        | 2.48      | 34.06                                 | 0.30                            | -0.687                     | -0.079                     |        | 1.03      | 29.79                                 | 0.27                            | 0.023                      | -0.018                    |
|        | 39.62     | 32.63                                 | 0.35                            | -0.008                     | 0.007                      |        | 0.38      | 29.04                                 | 1.99                            | -0.196                     | 0.067                     |
|        | 1.25      | 31.99                                 | 0.28                            | -0.635                     | 0.069                      |        | 0.44      | 27.39                                 | 0.41                            | -0.183                     | -0.016                    |
|        | 0.93      | 31.11                                 | 0.24                            | -0.523                     | 0.103                      |        | 1.08      | 26.72                                 | 0.37                            | -0.156                     | 0.023                     |
|        | 0.91      | 30.01                                 | 0.21                            | 0.096                      | 0.065                      |        | 0.40      | 25.98                                 | 0.48                            | -0.103                     | 0.006                     |
|        | 2.07      | 29.13                                 | 0.20                            | 0.055                      | -0.074                     |        | 0.29      | 25.16                                 | 0.53                            | -0.154                     | 0.024                     |
|        | 1.16      | 28.73                                 | 0.34                            | -0.037                     | 0.221                      | 1667 L | 0.91      | 35.55                                 | 0.31                            | -0.547                     | 0.259                     |
|        | 0.76      | 28.04                                 | 0.28                            | -0.109                     | 0.209                      |        | 0.31      | 34.45                                 | 0.30                            | -0.504                     | 0.125                     |
| 1665 L | 1.31      | 34.47                                 | 0.34                            | -0.723                     | 0.183                      |        | 0.79      | 32.55                                 | 0.32                            | 0.035                      | 0.023                     |
|        | 97.49     | 32.57                                 | 0.29                            | 0.000                      | 0.000                      |        | 18.97     | 31.97                                 | 0.31                            | 0.131                      | -0.006                    |
|        | 1.29      | 29.73                                 | 0.38                            | 0.136                      | 0.442                      |        | 2.88      | 31.53                                 | 0.29                            | 0.148                      | 0.090                     |
|        | 1.26      | 25.76                                 | 0.34                            | -0.338                     | 0.086                      |        | 1.39      | 30.84                                 | 0.30                            | 0.151                      | 0.065                     |
| 1667 R | 0.71      | 36.05                                 | 0.36                            | -0.560                     | 0.259                      |        | 1.75      | 29.32                                 | 0.18                            | -0.278                     | 0.164                     |
|        | 0.88      | 35.50                                 | 0.36                            | -0.534                     | 0.223                      |        | 1.13      | 27.08                                 | 0.51                            | -0.140                     | 0.004                     |
|        | 0.23      | 34.74                                 | 0.34                            | -0.576                     | 0.149                      |        | 1.63      | 25.43                                 | 0.52                            | -0.169                     | 0.000                     |

TABLE 34 G43.148+0.015 (W49)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 L | 7.05      | 13.65                            | 0.92                             | 0.000                      | 0.000                      | 1667 L | 1.40      | 12.72                            | 0.38                             | 0.537                      | 0.277                     |
| 1667 R | 0.47      | 14.53                            | 0.38                             | -1.526                     | -2.624                     |        | 0.56      | 9.78                             | 0.41                             | -1.537                     | -2.515                    |
|        | 1.16      | 12.35                            | 0.39                             | 0.495                      | 0.229                      |        | 0.66      | 9.53                             | 0.49                             | -6.090                     | -2.944                    |
|        | 0.76      | 7.89                             | 0.49                             | -9.606                     | -2.627                     |        | 1.35      | 8.44                             | 0.53                             | -9.519                     | -2.495                    |
| 1667 L | 1.08      | 13.99                            | 0.90                             | 0.541                      | 0.288                      | 1612 R | 2.43      | 13.82                            | 0.79                             | -5.195                     | 0.964                     |
|        | 1.25      | 13.21                            | 0.34                             | 0.507                      | 0.223                      | 1612 L | 2.30      | 13.20                            | 0.25                             | -5.230                     | 0.959                     |

TABLE 35 G43.165 – 0.028 (W49 S)

|        | S      | $v_{ m LSR}$  | $\Delta v$    | $\Delta \theta_x$ | $\Delta 	heta_{	extbf{y}}$ |        | S      | $v_{ m LSR}$  | $\Delta v$    | $\Delta \theta_x$ | $\Delta \theta_y$ |
|--------|--------|---------------|---------------|-------------------|----------------------------|--------|--------|---------------|---------------|-------------------|-------------------|
| Trans. | (Jy)   | $(km s^{-1})$ | $(km s^{-1})$ | (arcsec)          | (arcsec)                   | Trans. | (Jy)   | $(km s^{-1})$ | $(km s^{-1})$ | (arcsec)          | (arcsec)          |
| 1665 R | 2.71   | 24.05         | 0.66          | 0.369             | -0.375                     | 1667 R | 1.52   | 22.58         | 0.78          | 0.641             | -0.026            |
|        | 3.80   | 23.66         | 0.50          | 0.359             | -0.344                     |        | 1.63   | 22.32         | 0.55          | 0.575             | -0.045            |
|        | 6.59   | 22.55         | 0.51          | 0.177             | -0.367                     |        | 14.77  | 21.45         | 0.35          | -0.174            | -0.149            |
|        | 13.48  | 22.16         | 0.34          | 0.172             | -0.383                     |        | 4.93   | 20.84         | 0.55          | -0.117            | -0.143            |
|        | 2.13   | 21.42         | 0.67          | -0.405            | -0.416                     |        | 4.79   | 20.47         | 0.64          | -0.110            | -0.144            |
|        | 13.40  | 20.95         | 0.37          | -0.520            | -0.396                     |        | 16.36  | 20.02         | 0.34          | 0.613             | -0.026            |
|        | 7.13   | 19.74         | 0.33          | -0.473            | -0.399                     |        | 1.82   | 19.03         | 0.30          | 0.050             | -0.120            |
|        | 4.03   | 17.83         | 0.39          | 0.951             | -1.212                     |        | 0.50   | 18.23         | 0.48          | 0.290             | 0.351             |
|        | 19.16  | 17.03         | 0.43          | 0.057             | 0.141                      |        | 2.31   | 16.90         | 0.71          | 0.348             | 0.403             |
|        | 230.48 | 16.23         | 0.31          | 0.000             | 0.000                      |        | 4.82   | 16.33         | 0.63          | 0.303             | 0.365             |
|        | 22.25  | 15.44         | 0.69          | 0.010             | -0.032                     |        | 1.85   | 15.45         | 1.45          | 0.580             | -1.055            |
|        | 16.50  | 14.52         | 0.64          | 0.308             | -1.694                     |        | 0.45   | 14.35         | 0.52          | 0.609             | -1.696            |
|        | 35.31  | 13.69         | 0.61          | 0.337             | -1.487                     |        | 0.35   | 13.70         | 1.01          | 0.682             | -1.591            |
|        | 31.21  | 13.16         | 0.69          | 0.316             | -1.464                     | 1667 L | 14.28  | 19.83         | 0.47          | 0.219             | -0.090            |
|        | 7.47   | 12.20         | 1.15          | 0.288             | -1.353                     |        | 28.50  | 19.25         | 0.52          | 0.527             | -0.031            |
|        | 1.23   | 10.70         | 1.39          | 0.056             | -1.165                     |        | 1.22   | 17.59         | 0.94          | 0.001             | -0.061            |
| 1665 L | 0.80   | 22.38         | 0.38          | 1.032             | -1.177                     |        | 13.94  | 16.99         | 0.29          | -0.117            | -0.121            |
|        | 45.65  | 19.11         | 0.36          | 0.187             | -0.356                     |        | 3.62   | 15.79         | 0.75          | 0.290             | 0.425             |
|        | 42.54  | 18.73         | 0.78          | 0.130             | -0.336                     |        | 0.52   | 14.08         | 0.46          | 0.611             | -1.415            |
|        | 63.44  | 18.36         | 0.43          | 0.017             | -0.389                     | 1720 R | 2.56   | 15.90         | 0.53          | 0.363             | -0.373            |
|        | 56.46  | 17.88         | 0.48          | -0.389            | -0.398                     |        | 1.44   | 14.95         | 0.54          | 0.345             | -0.369            |
|        | 52.88  | 17.71         | 0.68          | -0.520            | -0.399                     |        | 7.32   | 12.95         | 0.69          | 0.355             | -0.367            |
|        | 38.69  | 16.41         | 0.59          | -0.398            | -0.348                     |        | 13.34  | 12.37         | 0.58          | 0.333             | -0.356            |
|        | 64.26  | 15.32         | 0.42          | 0.008             | -0.005                     | 1720 L | 118.83 | 15.12         | 1.34          | 0.363             | -0.357            |
|        | 15.01  | 14.47         | 0.54          | 0.307             | -1.674                     |        | 143.19 | 14.67         | 0.61          | 0.361             | -0.353            |
|        | 26.65  | 13.23         | 0.79          | 0.324             | -1.483                     |        | 5.93   | 13.39         | 0.50          | 0.363             | -0.373            |
|        | 17.79  | 12.18         | 0.47          | 0.255             | -1.532                     |        | 1.95   | 11.54         | 0.89          | 0.333             | -0.352            |

TABLE 36 G43.167+0.010 (W49 N)

| Trans. | <i>S</i> ( <b>J</b> y) | $v_{\rm LSR} \ ({ m km\ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta\theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|------------------------|-----------------------------------|----------------------------------|---------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 5.13                   | 23.19                             | 0.23                             | -0.553                    | 0.995                     | 1667 R | 4.56      | 18.17                            | 0.95                             | 0.512                      | 0.276                     |
|        | 2.70                   | 21.24                             | 0.35                             | -0.006                    | 0.199                     |        | 4.74      | 17.73                            | 1.11                             | 0.519                      | 0.484                     |
|        | 20.39                  | 20.01                             | 0.34                             | -0.053                    | 0.728                     |        | 6.57      | 17.05                            | 0.50                             | 0.780                      | 0.922                     |
|        | 21.09                  | 19.54                             | 0.32                             | -0.132                    | 0.888                     |        | 4.24      | 16.49                            | 0.52                             | 0.740                      | 0.786                     |
|        | 50.34                  | 18.16                             | 0.40                             | 0.152                     | 0.000                     |        | 6.29      | 15.46                            | 0.43                             | 0.435                      | 0.326                     |
|        | 108.61                 | 17.03                             | 0.61                             | 0.156                     | -0.013                    |        | 3.36      | 14.29                            | 0.44                             | -0.831                     | 0.145                     |
|        | 67.14                  | 15.75                             | 0.37                             | 0.147                     | 0.008                     |        | 1.73      | 13.68                            | 0.36                             | 1.141                      | 2.157                     |
|        | 21.02                  | 15.17                             | 0.34                             | -0.728                    | 0.322                     |        | 1.81      | 13.11                            | 0.37                             | 1.364                      | 0.699                     |
|        | 2.64                   | 14.07                             | 0.48                             | -0.389                    | 0.482                     |        | 2.34      | 12.36                            | 0.41                             | 0.442                      | 0.582                     |
|        | 4.35                   | 13.30                             | 0.59                             | -1.180                    | -0.244                    |        | 4.14      | 11.61                            | 0.57                             | 1.397                      | 0.930                     |
|        | 6.53                   | 12.28                             | 0.38                             | 0.914                     | 1.605                     |        | 2.41      | 10.35                            | 0.49                             | 1.349                      | 0.838                     |
|        | 6.26                   | 11.95                             | 0.70                             | 0.902                     | 2.265                     |        | 0.95      | 9.54                             | 1.14                             | 1.326                      | 0.739                     |
|        | 12.09                  | 10.98                             | 0.49                             | 0.578                     | 0.476                     |        | 1.29      | 9.17                             | 0.73                             | 1.364                      | 0.725                     |
|        | 17.03                  | 10.38                             | 0.38                             | 0.789                     | 0.661                     |        | 0.92      | 8.74                             | 0.66                             | 1.632                      | 1.916                     |
|        | 3.19                   | 9.33                              | 0.79                             | 0.628                     | 0.467                     |        | 6.01      | 7.97                             | 0.31                             | 4.932                      | 3.165                     |
|        | 33.46                  | 7.90                              | 0.37                             | 0.645                     | 0.442                     | 1667 L | 0.54      | 24.11                            | 0.50                             | 0.412                      | 0.134                     |
| 1665 L | 1.29                   | 23.14                             | 0.28                             | -0.507                    | 0.829                     |        | 17.10     | 21.38                            | 0.39                             | 0.504                      | 0.205                     |
|        | 0.64                   | 22.51                             | 0.69                             | -0.294                    | 0.670                     |        | 7.42      | 21.00                            | 1.98                             | 0.581                      | 0.259                     |
|        | 1.57                   | 22.15                             | 0.26                             | -0.145                    | 0.306                     |        | 47.24     | 19.09                            | 0.59                             | 0.506                      | 0.275                     |
|        | 169.07                 | 21.04                             | 0.41                             | 0.000                     | 0.000                     |        | 10.27     | 18.49                            | 0.74                             | 0.516                      | 0.384                     |
|        | 7.22                   | 20.36                             | 0.74                             | -0.493                    | 0.206                     |        | 5.55      | 17.89                            | 1.19                             | 0.569                      | 0.467                     |
|        | 10.01                  | 19.93                             | 0.61                             | -0.179                    | 0.077                     |        | 5.49      | 16.79                            | 0.52                             | 0.444                      | 0.347                     |
|        | 8.39                   | 19.62                             | 0.62                             | -0.077                    | 0.495                     |        | 1.58      | 16.33                            | 0.39                             | -0.880                     | 1.855                     |
|        | 58.33                  | 18.29                             | 0.42                             | 0.025                     | 0.483                     |        | 3.12      | 15.85                            | 0.27                             | 1.366                      | 2.236                     |
|        | 21.64                  | 17.64                             | 0.35                             | 0.038                     | 0.524                     |        | 1.51      | 15.38                            | 0.51                             | 1.417                      | 2.273                     |
|        | 91.73                  | 16.98                             | 0.67                             | 0.160                     | -0.047                    |        | 2.46      | 14.60                            | 0.32                             | -0.089                     | 0.002                     |
|        | 47.26                  | 15.77                             | 0.44                             | 0.115                     | 0.170                     |        | 2.18      | 14.01                            | 0.61                             | 0.003                      | 0.248                     |
|        | 8.47                   | 14.63                             | 0.34                             | 0.549                     | 0.410                     |        | 1.59      | 13.46                            | 0.75                             | -0.662                     | -0.374                    |
|        | 24.06                  | 13.82                             | 0.43                             | 0.980                     | 2.056                     |        | 1.03      | 12.90                            | 0.52                             | 1.275                      | 1.984                     |
|        | 3.31                   | 13.11                             | 0.45                             | 0.185                     | 0.660                     |        | 0.94      | 12.30                            | 0.54                             | 1.357                      | 1.011                     |
|        | 81.32                  | 12.18                             | 0.60                             | 0.952                     | 2.167                     |        | 1.38      | 11.21                            | 0.42                             | 1.169                      | 0.782                     |
|        | 20.42                  | 11.15                             | 0.51                             | 0.641                     | 0.467                     |        | 2.21      | 10.46                            | 0.43                             | 1.384                      | 0.830                     |
|        | 14.05                  | 10.48                             | 0.39                             | 0.758                     | 0.568                     |        | 0.74      | 9.49                             | 0.67                             | 3.054                      | 0.989                     |
|        | 8.26                   | 9.97                              | 0.54                             | 0.678                     | 0.441                     |        | 2.35      | 8.29                             | 0.51                             | 3.898                      | 1.267                     |
|        | 12.93                  | 9.34                              | 0.49                             | 0.674                     | 0.459                     | 1612 R | 0.69      | 18.85                            | 0.42                             | -4.908                     | 2.801                     |
|        | 1.24                   | 8.74                              | 0.39                             | -4.815                    | -0.629                    |        | 2.56      | 15.66                            | 0.73                             | -4.295                     | 3.342                     |
|        | 10.01                  | 7.88                              | 0.37                             | 0.659                     | 0.434                     |        | 24.11     | 14.76                            | 0.35                             | -4.289                     | 3.411                     |
| 1667 R | 0.55                   | 24.53                             | 0.48                             | 0.210                     | 1.337                     |        | 0.88      | 14.07                            | 0.56                             | -4.302                     | 3.299                     |
|        | 2.38                   | 21.88                             | 0.35                             | 0.416                     | 0.335                     | 1612 L | 0.56      | 20.54                            | 0.36                             | -4.958                     | 2.794                     |
|        | 0.94                   | 21.37                             | 0.53                             | 0.251                     | 0.327                     |        | 0.63      | 16.22                            | 0.44                             | -4.359                     | 2.836                     |
|        | 3.50                   | 20.89                             | 0.35                             | 0.484                     | 0.291                     |        | 0.83      | 15.84                            | 0.44                             | -4.300                     | 2.864                     |
|        | 1.77                   | 20.03                             | 0.53                             | 0.510                     | 0.326                     |        | 3.16      | 15.00                            | 0.49                             | -4.325                     | 3.391                     |
|        | 2.66                   | 19.58                             | 0.36                             | 0.682                     | 0.409                     |        | 7.70      | 14.07                            | 0.42                             | -4.314                     | 3.408                     |
|        | 3.63                   | 18.92                             | 0.54                             | 0.490                     | 0.309                     |        | 0.55      | 13.49                            | 0.43                             | -4.236                     | 3.327                     |

TABLE 37 G43.796 – 0.127

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({\rm km\ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_{y}$ (arcsec) |
|--------|-----------|------------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|-----------------------------------|----------------------------------|----------------------------|------------------------------|
| 1665 R | 0.71      | 44.74                              | 0.19                             | -0.427                     | 0.191                     |        | 0.71      | 40.04                             | 0.39                             | 0.040                      | 0.015                        |
|        | 28.19     | 44.14                              | 0.23                             | 0.008                      | 0.153                     |        | 2.04      | 39.14                             | 0.36                             | 0.016                      | 0.054                        |
|        | 1.11      | 43.29                              | 0.48                             | -0.072                     | 0.160                     | 1667 R | 1.45      | 43.01                             | 0.48                             | -0.011                     | 0.060                        |
|        | 1.45      | 42.93                              | 0.34                             | 0.087                      | 0.241                     |        | 1.74      | 42.50                             | 0.48                             | 0.023                      | 0.027                        |
|        | 1.62      | 42.71                              | 0.32                             | 0.063                      | 0.294                     |        | 1.39      | 41.87                             | 0.36                             | -0.010                     | 0.012                        |
|        | 0.87      | 42.48                              | 0.42                             | -0.015                     | 0.300                     |        | 0.98      | 41.60                             | 0.80                             | 0.007                      | 0.042                        |
|        | 76.86     | 41.62                              | 0.56                             | 0.031                      | -0.003                    |        | 2.95      | 40.16                             | 0.28                             | -0.245                     | 0.213                        |
|        | 1.35      | 40.16                              | 0.46                             | -0.361                     | 0.250                     | 1667 L | 0.16      | 44.22                             | 0.35                             | -0.229                     | 0.149                        |
| 1665 L | 0.55      | 45.38                              | 0.32                             | -0.334                     | 0.276                     |        | 1.23      | 43.44                             | 0.38                             | -0.587                     | 0.127                        |
|        | 16.35     | 44.20                              | 0.28                             | -0.002                     | 0.148                     |        | 3.82      | 42.52                             | 0.29                             | 0.020                      | 0.009                        |
|        | 4.43      | 43.52                              | 0.46                             | -0.537                     | -0.025                    |        | 2.45      | 41.91                             | 0.40                             | 0.011                      | 0.028                        |
|        | 0.81      | 42.36                              | 0.40                             | -0.497                     | 0.051                     |        | 0.90      | 41.51                             | 0.66                             | -0.056                     | 0.079                        |
|        | 94.26     | 41.52                              | 0.43                             | 0.000                      | 0.000                     |        | 0.34      | 40.37                             | 0.25                             | 0.044                      | 0.186                        |

TABLE 38 G45.071 + 0.134

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 6.86      | 62.16                            | 0.46                             | -0.156                     | 1.346                      | 1665 L | 14.23     | 53.93                            | 0.66                             | -0.096                     | -0.016                    |
|        | 11.04     | 60.07                            | 0.43                             | -0.221                     | -0.134                     |        | 6.53      | 53.57                            | 0.33                             | -0.111                     | -0.005                    |
|        | 0.83      | 59.17                            | 0.52                             | -0.247                     | -0.169                     |        | 8.65      | 52.96                            | 0.27                             | -0.115                     | -0.015                    |
|        | 1.28      | 58.66                            | 0.28                             | -0.286                     | -0.174                     | 1667 R | 0.60      | 62.93                            | 0.33                             | -0.499                     | 0.081                     |
|        | 65.18     | 56.51                            | 0.45                             | 0.000                      | 0.000                      |        | 0.26      | 59.09                            | 0.36                             | 0.458                      | 0.199                     |
|        | 7.36      | 55.90                            | 0.28                             | -0.114                     | -0.005                     |        | 0.92      | 57.18                            | 0.63                             | 0.316                      | 0.219                     |
|        | 9.38      | 54.20                            | 0.27                             | -0.096                     | -0.009                     |        | 3.81      | 56.34                            | 0.43                             | 0.316                      | 0.214                     |
| 1665 L | 1.29      | 65.84                            | 0.26                             | -0.274                     | -0.155                     |        | 0.74      | 55.94                            | 1.74                             | 0.298                      | 0.224                     |
|        | 0.46      | 64.26                            | 0.25                             | -0.207                     | 1.374                      |        | 2.17      | 55.26                            | 0.29                             | 0.229                      | 0.233                     |
|        | 0.61      | 62.17                            | 0.48                             | -0.341                     | 0.829                      |        | 1.19      | 54.55                            | 0.59                             | 0.205                      | 0.242                     |
|        | 0.88      | 61.20                            | 0.48                             | -0.641                     | -0.231                     | 1667 L | 0.75      | 61.45                            | 0.43                             | -0.528                     | 0.077                     |
|        | 0.79      | 60.96                            | 0.45                             | -0.209                     | 0.734                      |        | 3.17      | 55.80                            | 0.37                             | 0.287                      | 0.174                     |
|        | 1.45      | 60.53                            | 0.27                             | -0.784                     | -0.255                     |        | 5.95      | 55.31                            | 0.30                             | 0.308                      | 0.202                     |
|        | 0.60      | 57.08                            | 0.24                             | 0.644                      | -0.480                     |        | 1.01      | 54.05                            | 0.39                             | 0.208                      | 0.232                     |
|        | 5.14      | 54.59                            | 0.45                             | -0.041                     | -0.051                     |        | 6.20      | 53.53                            | 0.27                             | 0.199                      | 0.229                     |

# TABLE 39 G45.122+0.133

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 1.50      | 55.86                           | 0.44                             | 0.316                      | -0.462                     | 1665 L | 2.88      | 54.06                           | 0.27                             | 0.359                      | -0.449                    |
|        | 2.59      | 55.30                           | 0.47                             | 0.302                      | -0.298                     | 1667 R | 1.23      | 55.31                           | 0.25                             | 0.069                      | 0.012                     |
|        | 2.01      | 54.49                           | 0.96                             | 0.349                      | -0.429                     |        | 0.28      | 53.76                           | 0.32                             | 0.718                      | -0.232                    |
|        | 4.66      | 54.08                           | 0.29                             | 0.361                      | -0.432                     |        | 2.04      | 52.18                           | 0.37                             | 0.225                      | -0.057                    |
|        | 0.69      | 52.35                           | 0.33                             | 0.299                      | -0.498                     | 1667 L | 12.55     | 56.57                           | 0.26                             | 0.000                      | 0.000                     |
| 1665 L | 2.93      | 57.08                           | 0.24                             | -0.182                     | -0.061                     |        | 0.38      | 54.29                           | 0.31                             | 0.571                      | -0.179                    |
|        | 4.13      | 55.78                           | 0.60                             | 0.326                      | -0.450                     |        | 1.85      | 52.98                           | 0.43                             | 0.228                      | -0.056                    |
|        | 6.49      | 55.43                           | 0.44                             | 0.391                      | -0.436                     |        |           |                                 |                                  |                            |                           |

# TABLE 40 G45.455+0.060

| Trans. | S<br>(Jy) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.88      | 55.09                                                           | 0.33                             | 0.000                      | 0.000                     |        |           |                                 |                                  |                            |                           |

# TABLE 41 G45.465+0.047

| Trans. | <i>S</i> ( <b>J</b> y) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 1.40                   | 69.76                            | 0.28                             | 0.067                      | -0.025                    | 1665 R | 1.13                   | 63.83                            | 0.34                             | -0.233                     | 0.065                     |
|        | 4.27                   | 68.20                            | 0.56                             | -0.005                     | 0.012                     |        | 0.70                   | 63.28                            | 0.28                             | -0.447                     | -0.501                    |
|        | 1.13                   | 67.52                            | 0.51                             | -0.011                     | 0.030                     |        | 0.41                   | 62.30                            | 0.26                             | 0.081                      | 0.325                     |
|        | 1.97                   | 67.12                            | 0.46                             | -0.002                     | 0.031                     | 1665 L | 5.25                   | 67.24                            | 0.42                             | 0.007                      | 0.188                     |
|        | 1.47                   | 66.62                            | 0.54                             | 0.011                      | 0.030                     |        | 18.77                  | 65.98                            | 0.36                             | 0.000                      | 0.000                     |
|        | 3.05                   | 66.04                            | 0.31                             | 0.014                      | -0.015                    |        | 15.27                  | 65.32                            | 0.41                             | 0.012                      | 0.005                     |
|        | 1.59                   | 65.76                            | 0.71                             | -0.008                     | -0.018                    |        | 4.59                   | 63.78                            | 0.33                             | 0.053                      | -0.050                    |
|        | 0.83                   | 64.45                            | 0.33                             | -0.046                     | 0.288                     |        | 0.25                   | 62.34                            | 0.26                             | 0.218                      | 0.563                     |
|        | 0.98                   | 64.14                            | 0.61                             | -0.224                     | 0.144                     |        |                        |                                  |                                  |                            |                           |

# TABLE 42 G45.472+0.134

| Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \over ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|------------------------|---------------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 L | 0.57<br>35.42          | 64.76<br>59.41                        | 0.24<br>0.26                     | $-0.780 \\ 0.000$          | -0.471 $0.000$            | 1665 L | 3.59<br>4.22           | 58.91<br>58.59                   | 0.32<br>0.26                     | -0.016 $0.000$             | -0.008 $0.013$            |

TABLE 43 G49.469 – 0.370 (W51)

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 2.50      | 73.82                           | 0.29                             | 0.000                      | 0.000                     | 1665 L | 0.64      | 70.46                           | 0.42                             | -0.081                     | 0.025                     |

TABLE 44 G49.488 – 0.387 (W51 M)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({\rm km\ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta\theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|------------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|------------------------------------|----------------------------------|---------------------------|---------------------------|
|        |           |                                    |                                  |                            |                           |        |           |                                    |                                  |                           |                           |
| 1665 R | 0.75      | 71.67                              | 0.72                             | -0.436                     | 6.647                     | 1667 R | 0.61      | 66.11                              | 0.62                             | -0.309                    | 6.414                     |
|        | 1.77      | 67.54                              | 0.77                             | -0.641                     | 6.213                     |        | 0.73      | 64.86                              | 0.63                             | -0.340                    | 6.437                     |
|        | 0.95      | 65.52                              | 0.35                             | -0.151                     | 6.537                     |        | 0.69      | 63.85                              | 0.58                             | -0.436                    | 6.096                     |
|        | 2.79      | 64.47                              | 0.70                             | -0.130                     | 6.553                     |        | 7.20      | 61.94                              | 0.48                             | 0.235                     | -0.442                    |
|        | 0.52      | 62.88                              | 0.37                             | -0.299                     | -0.910                    |        | 1.36      | 61.03                              | 0.66                             | -0.797                    | 3.302                     |
|        | 1.28      | 62.12                              | 0.39                             | -0.163                     | -0.928                    |        | 2.44      | 60.01                              | 0.60                             | 0.065                     | -0.016                    |
|        | 1.89      | 61.38                              | 0.76                             | 0.118                      | -0.317                    |        | 0.92      | 58.84                              | 0.65                             | -0.998                    | 5.634                     |
|        | 3.73      | 60.59                              | 0.49                             | 0.078                      | -0.128                    |        | 1.71      | 58.28                              | 0.68                             | -0.330                    | -0.087                    |
|        | 9.69      | 59.42                              | 0.93                             | 0.021                      | 0.016                     |        | 0.34      | 56.80                              | 0.42                             | -0.782                    | 0.996                     |
|        | 166.86    | 58.26                              | 0.54                             | 0.000                      | 0.000                     |        | 0.49      | 55.91                              | 0.36                             | -0.772                    | 5.568                     |
|        | 0.79      | 56.57                              | 0.51                             | -0.764                     | 2.512                     |        | 1.07      | 48.91                              | 0.68                             | -0.042                    | 5.640                     |
|        | 1.25      | 55.93                              | 0.46                             | -0.558                     | 1.165                     | 1667 L | 0.90      | 70.18                              | 0.37                             | -1.072                    | 6.522                     |
|        | 0.84      | 55.43                              | 0.31                             | -0.815                     | 5.446                     |        | 0.92      | 68.28                              | 0.35                             | -0.428                    | 6.417                     |
| 1665 L | 0.63      | 69.03                              | 0.41                             | -0.437                     | 6.625                     |        | 4.50      | 61.87                              | 0.46                             | 0.134                     | -0.413                    |
|        | 1.63      | 67.42                              | 0.29                             | -0.166                     | 6.524                     |        | 2.13      | 61.14                              | 0.52                             | 0.051                     | -0.224                    |
|        | 1.11      | 64.50                              | 0.70                             | -0.044                     | 6.607                     |        | 2.11      | 60.26                              | 0.90                             | 0.014                     | -0.254                    |
|        | 0.85      | 62.41                              | 0.82                             | -1.857                     | 0.768                     |        | 2.53      | 59.93                              | 0.49                             | 0.073                     | -0.007                    |
|        | 4.78      | 61.58                              | 0.45                             | 0.122                      | 0.060                     |        | 1.29      | 59.47                              | 0.72                             | -1.276                    | 5.186                     |
|        | 5.30      | 60.67                              | 0.49                             | 0.009                      | -0.084                    |        | 1.04      | 59.08                              | 0.61                             | -1.282                    | 5.218                     |
|        | 68.81     | 59.26                              | 0.62                             | 0.030                      | -0.011                    |        | 4.53      | 54.16                              | 0.33                             | -0.939                    | 5.933                     |
|        | 61.71     | 58.85                              | 0.56                             | 0.028                      | -0.015                    |        | 1.72      | 47.02                              | 0.85                             | -0.086                    | 5.634                     |
|        | 13.59     | 57.84                              | 0.45                             | 0.075                      | 0.013                     | 1720 R | 61.37     | 59.56                              | 0.73                             | -0.940                    | 6.050                     |
|        | 6.34      | 57.30                              | 0.44                             | -0.833                     | 5.571                     |        | 88.31     | 58.17                              | 0.46                             | -0.877                    | 6.091                     |
|        | 0.99      | 56.61                              | 0.39                             | -0.329                     | -1.813                    |        | 8.24      | 56.47                              | 0.38                             | -0.962                    | 5.746                     |
|        | 0.37      | 55.03                              | 0.37                             | -0.626                     | 5.854                     |        | 2.20      | 55.89                              | 1.74                             | -0.967                    | 5.916                     |
|        | 0.48      | 54.35                              | 0.61                             | -0.754                     | 5.508                     |        | 5.26      | 55.11                              | 0.95                             | -1.117                    | 5.734                     |
|        | 1.10      | 52.51                              | 0.42                             | 0.063                      | 5.827                     |        | 2.50      | 53.45                              | 0.39                             | -1.921                    | 0.050                     |
|        | 1.30      | 51.89                              | 0.29                             | -0.090                     | 5.637                     | 1720 L | 0.41      | 60.59                              | 0.60                             | -1.137                    | 5.781                     |
|        | 0.34      | 51.00                              | 0.33                             | 0.425                      | 7.146                     |        | 2.22      | 59.54                              | 0.56                             | -0.973                    | 6.009                     |
|        | 0.45      | 49.31                              | 0.59                             | -0.920                     | 5.729                     |        | 26.13     | 58.60                              | 0.47                             | -0.941                    | 6.049                     |
|        | 0.41      | 48.18                              | 0.53                             | -0.966                     | 5.770                     |        | 38.29     | 56.98                              | 0.55                             | -0.878                    | 6.092                     |
|        | 1.66      | 46.65                              | 0.46                             | 0.131                      | 5.742                     |        | 5.91      | 55.77                              | 0.44                             | -0.950                    | 5.756                     |
| 1667 R | 0.58      | 72.45                              | 0.58                             | -1.036                     | 6.517                     |        | 1.45      | 55.04                              | 1.32                             | -0.956                    | 5.853                     |
|        | 0.26      | 70.94                              | 0.71                             | -0.633                     | 6.509                     |        | 2.13      | 54.56                              | 0.66                             | -1.393                    | 3.873                     |
|        | 2.04      | 69.68                              | 0.32                             | -0.437                     | 6.393                     |        | 2.76      | 54.33                              | 0.47                             | -1.134                    | 5.765                     |
|        | 1.43      | 68.74                              | 0.35                             | -0.402                     | 6.567                     |        | 1.92      | 52.64                              | 0.33                             | -1.920                    | 0.064                     |
|        | 0.85      | 66.52                              | 0.67                             | -0.430                     | 6.443                     |        | 1.72      | J2.07                              | 0.55                             | 1.720                     | J.00-T                    |

TABLE 45 G49.489 – 0.368 (W51 N)

| Trans. | S<br>(Jy) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 L | 1.31      | 59.89                                                           | 0.51                             | 0.000                      | 0.000                     |        |           |                                                                 |                                  |                            |                           |

TABLE 46 G49.491 – 0.376 (W51)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta\theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|------------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|---------------------------|---------------------------|
| 1720 R | 0.73      | 64.77                              | 0.44                             | 0.020                      | -0.010                    | 1720 L | 1.07      | 64.02                            | 0.53                             | 0.000                     | 0.000                     |

TABLE 47 G69.540 – 0.976 (ON 1)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 21.17     | 13.11                            | 0.54                             | 0.000                      | 0.000                      | 1665 L | 0.65      | 10.87                            | 0.29                             | -0.716                     | 0.518                     |
|        | 15.72     | 11.86                            | 0.26                             | 0.244                      | -0.134                     |        | 0.42      | 4.03                             | 0.46                             | 0.208                      | 0.838                     |
|        | 0.86      | 10.75                            | 0.42                             | -0.646                     | 0.469                      |        | 13.66     | 2.46                             | 0.30                             | 0.208                      | 0.872                     |
| 1665 L | 5.64      | 15.45                            | 0.34                             | 0.009                      | -0.059                     |        | 3.69      | 1.12                             | 0.23                             | 0.215                      | 0.857                     |
|        | 3.04      | 15.05                            | 0.50                             | 0.025                      | -0.060                     | 1667 R | 2.53      | 13.28                            | 0.30                             | 0.403                      | -0.193                    |
|        | 4.84      | 13.97                            | 0.41                             | 0.374                      | -0.138                     |        | 0.84      | 12.89                            | 0.24                             | 0.252                      | -0.204                    |
|        | 10.74     | 13.25                            | 0.35                             | 0.015                      | 0.027                      | 1667 L | 6.18      | 13.64                            | 0.25                             | 0.522                      | -0.211                    |
|        | 0.35      | 11.94                            | 0.56                             | -0.214                     | 0.260                      |        |           |                                  |                                  |                            |                           |

TABLE 48 G70.293+1.601 (K3-50)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.65      | -18.86                           | 0.31                             | -0.132                     | -0.465                     | 1665 L | 11.84     | -19.76                          | 0.25                             | 0.000                      | 0.000                     |
|        | 3.88      | -19.49                           | 0.30                             | 0.242                      | 0.127                      |        | 4.03      | -20.39                          | 0.30                             | 0.009                      | -0.007                    |
|        | 6.05      | -21.27                           | 0.38                             | -0.010                     | -0.007                     |        | 2.37      | -21.28                          | 0.94                             | 1.710                      | -1.938                    |
|        | 2.73      | -22.27                           | 1.27                             | 1.689                      | -1.913                     |        | 1.80      | -22.43                          | 0.28                             | -0.059                     | -0.445                    |
|        | 2.57      | -22.78                           | 2.31                             | 1.705                      | -1.936                     | 1667 R | 3.56      | -21.08                          | 0.38                             | 0.104                      | 0.040                     |
| 1665 L | 1.95      | -17.55                           | 0.31                             | -0.115                     | -0.579                     | 1667 L | 3.56      | -20.14                          | 0.33                             | 0.108                      | 0.052                     |
|        | 3.06      | -19.45                           | 0.43                             | 0.150                      | 0.058                      |        | 2.60      | -20.81                          | 0.46                             | 0.120                      | 0.050                     |

TABLE 49 G70.329 + 1.590 (ON 3)

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|-----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.80      | -15.70                            | 0.35                             | 0.000                      | 0.000                      | 1665 L | 0.26      | -15.82                           | 0.51                             | -0.075                     | 0.030                     |
|        | 0.57      | -16.38                            | 0.45                             | 0.041                      | 0.055                      |        | 0.33      | -17.67                           | 0.41                             | 0.041                      | 0.001                     |
| 1665 L | 0.50      | -14.29                            | 0.33                             | -0.046                     | 0.028                      |        | 0.22      | -18.32                           | 0.56                             | 0.076                      | 0.017                     |

TABLE 50 G75.761+0.340 (ON 2 S)

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|
| 1667 R | 1.11      | 0.75                            | 0.32                             | 0.000                      | 0.000                      |        |           |                                 |                                  |                            |                            |

TABLE 51 G75.782+0.343 (ON 2 N)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 36.05     | 2.54                             | 0.38                             | 0.000                      | 0.000                      | 1667 R | 2.88      | 2.73                               | 0.77                             | -0.357                     | -0.363                     |
|        | 2.85      | 0.70                             | 0.30                             | 0.877                      | 0.069                      |        | 1.14      | -1.20                              | 0.51                             | 0.656                      | 0.104                      |
|        | 6.63      | -0.57                            | 0.69                             | 0.924                      | 0.043                      |        | 4.61      | -1.74                              | 0.25                             | 0.799                      | -0.599                     |
|        | 3.56      | -1.49                            | 0.43                             | 0.847                      | 0.118                      |        | 1.99      | -2.22                              | 0.30                             | 0.794                      | -0.459                     |
|        | 3.46      | -2.18                            | 0.56                             | 0.913                      | -0.002                     |        | 24.49     | -3.59                              | 0.42                             | 0.829                      | -0.189                     |
|        | 15.94     | -2.87                            | 0.33                             | 0.915                      | 0.032                      |        | 32.74     | -4.07                              | 0.44                             | 0.821                      | -0.146                     |
|        | 31.45     | -3.56                            | 0.36                             | 0.899                      | 0.016                      |        | 25.80     | -4.44                              | 0.46                             | 0.820                      | -0.157                     |
|        | 1.79      | -5.28                            | 0.44                             | 0.893                      | 0.000                      |        | 21.52     | -4.96                              | 0.49                             | 0.820                      | -0.160                     |
| 1665 L | 7.38      | 2.36                             | 0.53                             | -0.004                     | -0.261                     |        | 2.88      | -6.55                              | 0.48                             | 0.827                      | -0.167                     |
|        | 1.55      | 1.36                             | 0.50                             | 0.816                      | -0.027                     |        | 1.13      | -7.95                              | 0.41                             | 0.829                      | -0.310                     |
|        | 2.19      | 0.98                             | 0.31                             | 0.927                      | 0.020                      | 1667 L | 1.62      | 4.14                               | 0.47                             | -0.478                     | -0.381                     |
|        | 1.57      | 0.45                             | 0.29                             | 1.022                      | -0.027                     |        | 4.39      | 2.98                               | 0.86                             | -0.561                     | -0.301                     |
|        | 0.56      | -0.98                            | 0.41                             | 0.878                      | 0.116                      |        | 0.89      | -2.17                              | 0.56                             | 0.816                      | -0.502                     |
|        | 3.43      | -1.59                            | 0.28                             | 0.969                      | 0.020                      |        | 1.03      | -2.65                              | 0.55                             | 0.828                      | -0.222                     |
|        | 2.58      | -2.03                            | 0.55                             | 0.911                      | 0.043                      |        | 5.55      | -4.06                              | 0.44                             | 0.826                      | -0.163                     |
|        | 6.16      | -2.74                            | 1.88                             | 0.904                      | 0.026                      |        | 16.31     | -4.90                              | 0.37                             | 0.834                      | -0.150                     |
|        | 9.32      | -3.39                            | 0.58                             | 0.932                      | 0.004                      |        | 5.68      | -5.37                              | 0.71                             | 0.818                      | -0.191                     |
|        | 6.05      | -4.52                            | 0.47                             | 0.927                      | 0.000                      |        | 2.82      | -6.83                              | 0.34                             | 0.916                      | -0.457                     |
|        | 8.89      | -5.35                            | 0.40                             | 0.910                      | 0.011                      |        | 3.23      | -7.23                              | 0.47                             | 0.965                      | -0.364                     |
|        | 0.77      | -6.24                            | 0.61                             | 0.887                      | -0.541                     |        | 2.59      | -7.47                              | 0.41                             | 0.961                      | -0.384                     |
|        | 2.05      | -6.69                            | 0.29                             | 1.015                      | -0.234                     |        | 0.77      | -8.78                              | 0.61                             | 0.806                      | -0.142                     |
|        | 1.65      | -7.15                            | 0.26                             | 0.841                      | -0.649                     |        | 0.80      | -9.04                              | 0.63                             | 0.814                      | -0.143                     |
|        | 1.67      | -7.88                            | 0.29                             | 1.064                      | -0.228                     |        | 0.74      | -9.66                              | 0.39                             | 0.800                      | -0.257                     |
| 1667 R | 2.08      | 4.37                             | 0.41                             | -0.560                     | -0.329                     |        | 0.57      | -10.18                             | 0.54                             | 0.819                      | -0.261                     |
|        | 1.75      | 3.34                             | 0.53                             | -0.397                     | -0.423                     |        |           |                                    |                                  |                            |                            |

TABLE 52 G80.864+0.421

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 25.40     | -8.46                           | 0.25                             | 0.000                      | 0.000                     | 1665 L | 20.15     | -8.46                            | 0.25                             | -0.001                     | 0.007                     |

TABLE 53 G81.721+0.571 (W75 S)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_{y}$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|-----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 3.88      | 5.19                             | 0.28                             | -0.335                     | 0.367                       | 1665 L | 3.05      | 1.70                             | 0.32                             | -0.060                     | 0.078                     |
|        | 0.35      | 4.29                             | 0.30                             | -0.062                     | 0.152                       |        | 23.33     | 1.33                             | 0.29                             | -0.329                     | 0.343                     |
|        | 0.68      | 3.54                             | 0.34                             | -0.256                     | 0.287                       |        | 16.32     | 0.94                             | 0.39                             | -0.342                     | 0.332                     |
|        | 1.48      | 2.96                             | 0.36                             | -0.399                     | 0.416                       |        | 8.22      | 0.59                             | 0.54                             | -0.288                     | 0.263                     |
|        | 0.73      | 2.34                             | 0.34                             | -0.045                     | 0.367                       |        | 2.44      | -0.28                            | 0.42                             | -0.388                     | 0.394                     |
|        | 12.73     | 1.74                             | 0.28                             | 0.010                      | 0.019                       |        | 7.57      | -1.30                            | 0.28                             | 1.650                      | -0.119                    |
|        | 5.59      | 1.21                             | 0.36                             | -0.011                     | 0.005                       |        | 0.40      | -2.07                            | 0.25                             | 1.338                      | 0.750                     |
|        | 26.53     | 0.65                             | 0.30                             | 0.000                      | 0.000                       |        | 0.34      | -2.80                            | 0.28                             | 0.101                      | 0.101                     |
|        | 4.03      | -0.89                            | 0.35                             | 0.060                      | -0.266                      | 1667 R | 0.71      | 2.13                             | 0.25                             | -0.348                     | 0.381                     |
|        | 0.73      | -2.31                            | 0.38                             | 1.410                      | -0.410                      |        | 1.55      | -1.16                            | 0.41                             | 0.083                      | -0.276                    |
|        | 0.92      | -3.06                            | 0.38                             | 1.457                      | -0.433                      |        | 0.25      | -3.48                            | 0.32                             | 1.826                      | -0.233                    |
|        | 0.69      | -3.59                            | 0.37                             | 1.473                      | -0.343                      | 1667 L | 0.74      | -1.12                            | 0.27                             | 0.162                      | -0.253                    |
|        | 1.40      | -4.00                            | 0.28                             | 1.642                      | -0.222                      |        | 0.93      | -1.94                            | • • •                            | 1.752                      | -0.097                    |
|        | 0.78      | -4.49                            | 0.40                             | 1.269                      | 1.390                       |        |           |                                  |                                  |                            |                           |

TABLE 54 G81.745+0.590 (W75)

| Trans. | S<br>(Jy)    | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|--------------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.83<br>5.20 | 3.34<br>2.50                    | 0.59<br>0.39                     | 0.007<br>0.000             | $-0.012 \\ 0.000$         | 1665 L | 0.56      | 3.65                             | 0.25                             | 0.114                      | 0.057                     |

TABLE 55 G81.871+0.781 (W75 N)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta\theta_x$ (arcsec) | $\Delta\theta_{y}$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|---------------------------|-----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 46.04     | 12.47                            | 0.36                             | 0.000                     | 0.000                       | 1665 L | 1.39      | 4.65                             | 0.52                             | 0.386                      | 1.138                     |
|        | 0.80      | 11.03                            | 0.42                             | 0.226                     | 0.732                       |        | 2.50      | 4.07                             | 0.25                             | 0.296                      | 1.092                     |
|        | 11.31     | 9.33                             | 0.20                             | 0.187                     | 0.542                       |        | 5.59      | 3.69                             | 0.24                             | 0.548                      | 1.465                     |
|        | 2.55      | 9.06                             | 0.20                             | 0.171                     | 0.529                       |        | 27.00     | 3.10                             | 0.32                             | 0.599                      | -0.104                    |
|        | 2.52      | 7.36                             | 0.24                             | 0.356                     | 1.200                       |        | 13.99     | 0.62                             | 0.39                             | 0.686                      | -0.217                    |
|        | 19.35     | 5.74                             | 0.31                             | 0.287                     | 1.049                       | 1667 R | 0.56      | 12.87                            | 0.51                             | 1.929                      | -0.663                    |
|        | 5.40      | 5.24                             | 0.35                             | 0.449                     | 1.276                       |        | 1.24      | 12.57                            | 0.24                             | 1.973                      | -0.650                    |
|        | 30.75     | 3.09                             | 0.32                             | 0.598                     | -0.101                      |        | 0.31      | 11.96                            | 0.49                             | 0.251                      | 0.078                     |
|        | 0.93      | 1.89                             | 0.48                             | 0.660                     | -0.137                      |        | 19.09     | 9.26                             | 0.35                             | 0.341                      | 0.449                     |
|        | 17.36     | 0.63                             | 0.39                             | 0.684                     | -0.216                      |        | 4.88      | 8.11                             | 0.21                             | 0.366                      | 0.608                     |
| 1665 L | 0.79      | 13.69                            | 0.29                             | 0.120                     | -0.040                      |        | 0.49      | 6.42                             | 0.32                             | 0.759                      | 0.068                     |
|        | 1.89      | 12.88                            | 0.26                             | 0.142                     | -0.035                      | 1667 L | 26.78     | 9.33                             | 0.36                             | 0.330                      | 0.458                     |
|        | 0.64      | 12.22                            | 0.38                             | 0.635                     | -0.208                      |        | 0.70      | 6.43                             | 0.25                             | 0.369                      | 0.346                     |
|        | 15.03     | 9.35                             | 0.20                             | 0.007                     | 0.004                       |        | 4.74      | 5.99                             | 0.30                             | 0.361                      | 0.569                     |
|        | 20.65     | 5.74                             | 0.29                             | 0.264                     | 0.927                       |        | 9.81      | 5.43                             | 0.28                             | 0.367                      | 0.625                     |
|        | 16.64     | 5.17                             | 0.41                             | 0.464                     | 1.275                       |        |           |                                  |                                  |                            |                           |

TABLE 56 G97.527+3.184

| Trans. | <i>S</i> ( <b>J</b> y) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|----------------------------------|---------------------------------|----------------------------|---------------------------|
| 1665 R | 2.41                   | -65.78                           | 0.24                             | 0.000                      | 0.000                     | 1665 L | 0.14                   | -67.37                           | 0.32                            | -0.047                     | -0.074                    |

TABLE 57 G109.871 + 2.114 (Cep A)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.28      | -7.10                            | 0.98                             | 1.243                      | -1.005                     | 1667 R | 0.73      | -5.25                            | 0.22                             | 0.059                      | 1.079                     |
|        | 2.65      | -11.72                           | 0.35                             | -0.005                     | -0.004                     |        | 0.52      | -5.43                            | 0.44                             | -0.123                     | 1.183                     |
|        | 0.44      | -13.30                           | •••                              | 1.623                      | 0.562                      |        | 0.56      | -10.96                           | • • •                            | 0.095                      | 0.009                     |
|        | 7.31      | -14.24                           | 0.27                             | 1.741                      | -2.485                     |        | 4.51      | -14.64                           | 0.28                             | 1.839                      | -2.452                    |
| 1665 L | 0.29      | -5.07                            | 0.61                             | 1.355                      | -1.084                     | 1667 L | 3.01      | -3.14                            |                                  | -0.061                     | 1.114                     |
|        | 2.07      | -8.00                            | 0.31                             | 0.951                      | 0.852                      |        | 1.27      | -3.42                            | • • •                            | -0.122                     | 1.204                     |
|        | 40.56     | -11.56                           | 0.30                             | 0.000                      | 0.000                      |        | 0.88      | -11.39                           | 0.25                             | 0.113                      | 0.006                     |
|        | 5.97      | -12.30                           | 0.26                             | -0.183                     | -0.131                     |        | 0.41      | -12.33                           |                                  | 0.025                      | -0.064                    |
|        | 7.00      | -13.90                           | 0.21                             | 1.853                      | -2.334                     |        | 3.77      | -15.78                           | 0.38                             | 1.846                      | -2.449                    |
|        | 9.41      | -16.22                           | 0.27                             | 1.752                      | -2.488                     |        |           |                                  |                                  |                            |                           |

TABLE 58 G111.533+0.757 (NGC 7538)

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 2.47      | -53.00                          | 0.30                             | -0.014                     | -0.003                    | 1665 R | 0.63      | -60.70                          | 0.40                             | -0.079                     | 0.276                     |
|        | 0.21      | -54.06                          | 0.44                             | -0.078                     | -0.381                    | 1665 L | 2.82      | -54.33                          | 0.32                             | 0.000                      | 0.000                     |
|        | 0.26      | -54.84                          | 0.44                             | 0.113                      | 0.184                     |        | 0.94      | -57.69                          | 0.30                             | 1.174                      | 1.042                     |
|        | 0.63      | -57.71                          | 0.36                             | 1.175                      | 1.042                     |        | 0.25      | -60.79                          | 0.45                             | -0.042                     | 0.221                     |

TABLE 59 G111.543+0.777 (NGC 7538)

| Trans. | S<br>(Jy)                     | $v_{\rm LSR} \ ({ m km~s}^{-1})$     | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec)        | $\Delta\theta_y$ (arcsec)         | Trans. | S<br>(Jy)             | $v_{\rm LSR} \ ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_{y}$ (arcsec) |
|--------|-------------------------------|--------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|--------|-----------------------|-----------------------------------|----------------------------------|----------------------------|------------------------------|
| 1665 R | 1.07<br>11.93<br>4.88<br>0.70 | -58.19<br>-59.32<br>-59.82<br>-58.14 | 0.44<br>0.41<br>0.49<br>0.44     | 0.391<br>0.014<br>-0.014<br>0.403 | -0.481 $-0.005$ $-0.001$ $-0.415$ | 1665 L | 39.90<br>3.59<br>5.80 | -59.40<br>-59.22<br>-59.37        | 0.31<br>0.47<br>0.56             | 0.000<br>0.225<br>0.100    | $0.000 \\ -0.011 \\ 0.050$   |

TABLE 60 G126.715 – 0.822

| Trans.           | S<br>(Jy)            | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|------------------|----------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R<br>1665 L | 0.50<br>0.67<br>0.98 | -5.74<br>-8.64<br>-9.35          | 0.23<br>0.35                     | -0.004 $-0.005$ $-0.071$   | -0.195 $-0.051$ $-0.059$  | 1665 L | 0.63<br>1.50 | -10.22<br>-12.06                 | 0.60<br>0.30                     | -0.019<br>0.000            | -0.003<br>0.000           |

TABLE 61 G133.715+1.215 (W3)

| Trans.           | S<br>(Jy)            | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy)            | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|------------------|----------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|----------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R<br>1665 L | 0.75<br>0.67<br>0.31 | -39.20<br>-37.59<br>-38.12       | 0.32<br>0.36                     | 0.004<br>-1.124<br>-1.111  | -0.088 $-2.802$ $-2.812$   | 1665 L | 4.31<br>0.64<br>0.38 | -39.29<br>-40.66<br>-43.96      | 0.26<br>0.27<br>0.48             | 0.000<br>2.018<br>0.372    | 0.000<br>3.317<br>-0.376  |

TABLE 62 G133.946+1.064 (W3 OH)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 1.33      | -40.02                           |                                  | 0.588                      | -1.121                    | 1667 R | 2.21      | -45.04                           | 0.38                             | 0.022                      | -0.023                     |
|        | 2.91      | -40.61                           | 0.46                             | 0.549                      | -1.265                    |        | 0.60      | -47.82                           | 0.26                             | 0.963                      | -2.056                     |
|        | 25.07     | -41.15                           | 0.33                             | 0.896                      | -0.221                    | 1667 L | 0.73      | -43.31                           | 0.29                             | 0.603                      | -1.998                     |
|        | 14.93     | -41.56                           | 0.88                             | 0.615                      | -1.652                    |        | 26.87     | -44.43                           | 0.44                             | 0.477                      | -1.936                     |
|        | 17.30     | -42.87                           | 0.26                             | 0.352                      | -1.608                    |        | 1.15      | -45.52                           | 0.31                             | 0.361                      | -1.101                     |
|        | 3.93      | -43.34                           | 0.37                             | 0.383                      | -1.062                    |        | 1.32      | -46.28                           | 0.57                             | -0.029                     | -0.251                     |
|        | 34.51     | -44.17                           | 0.41                             | 0.261                      | -0.571                    |        | 1.96      | -47.77                           | 0.32                             | 0.942                      | -2.059                     |
|        | 200.54    | -45.02                           | 0.78                             | 0.000                      | 0.000                     | 1612 R | 1.02      | -41.48                           | 0.30                             | 0.840                      | -1.795                     |
|        | 20.42     | -47.44                           | 0.23                             | 0.915                      | -0.093                    |        | 6.21      | -42.17                           | 0.43                             | 1.057                      | -1.852                     |
|        | 1.07      | -48.39                           |                                  | 0.949                      | 0.234                     |        | 3.78      | -42.92                           | 0.44                             | 1.013                      | -1.836                     |
|        | 2.79      | -48.90                           | 0.28                             | 0.879                      | 0.310                     | 1612 L | 0.25      | -42.30                           | 0.34                             | 0.906                      | -1.877                     |
| 1665 L | 1.42      | -41.93                           | 0.24                             | 0.824                      | -1.840                    |        | 1.68      | -43.15                           | 0.44                             | 1.024                      | -1.309                     |
|        | 44.64     | -44.67                           | 0.66                             | 0.573                      | -1.532                    |        | 1.40      | -43.81                           | 0.40                             | 1.034                      | -1.874                     |
|        | 54.01     | -45.21                           | 1.09                             | 0.413                      | -1.801                    |        | 0.90      | -47.51                           | 0.24                             | 1.576                      | -1.650                     |
|        | 132.32    | -46.29                           | 0.51                             | -0.043                     | -0.225                    | 1720 R | 4.47      | -42.72                           | 0.25                             | 0.910                      | -0.052                     |
|        | 32.54     | -47.45                           | 0.22                             | 0.883                      | -0.092                    |        | 5.39      | -43.12                           | 0.27                             | 0.760                      | -1.168                     |
|        | 0.83      | -47.85                           | 0.28                             | 0.177                      | -0.093                    |        | 8.32      | -44.33                           | 0.30                             | 0.885                      | -0.066                     |
|        | 6.18      | -48.56                           | 0.41                             | 0.917                      | 0.193                     |        | 7.72      | -44.70                           | 0.57                             | 0.867                      | -0.086                     |
|        | 14.73     | -48.94                           | 0.28                             | 0.918                      | 0.259                     | 1720 L | 2.69      | -43.50                           | 0.26                             | 0.883                      | -0.302                     |
| 1667 R | 21.36     | -42.17                           | 0.32                             | 0.368                      | -1.955                    |        | 5.72      | -43.76                           | 0.25                             | 0.763                      | -1.051                     |
|        | 2.52      | -42.90                           | 0.21                             | 0.851                      | -1.524                    |        | 6.64      | -45.23                           | 0.45                             | 0.859                      | -0.088                     |
|        | 2.02      | -44.20                           | 0.64                             | 0.585                      | -1.829                    |        | 10.40     | -45.56                           | 0.50                             | 0.885                      | -0.073                     |
|        | 2.95      | -44.69                           | 0.36                             | 0.115                      | -0.509                    |        |           |                                  |                                  |                            |                            |

TABLE 63 G173.481 + 2.445 (S231)

| Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|--------------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 L | 0.35<br>1.72 | -9.17 $-10.64$                   | 0.26<br>0.28                     | 0.004<br>0.000             | -0.038 $0.000$             | 1665 L | 0.14<br>0.34 | -12.53<br>-12.88                 | 0.44<br>0.36                     | $0.037 \\ -0.001$          | -0.232 $-0.216$           |

TABLE 64 G188.946+0.886 (S252)

| Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans.           | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|--------------|------------------------------------|----------------------------------|----------------------------|----------------------------|------------------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.72<br>0.37 | 9.97<br>9.45                       | 0.26<br>0.43                     | $0.000 \\ -0.063$          | $0.000 \\ -0.053$          | 1665 R<br>1665 L | 0.48<br>0.60 | 9.06<br>8.54                     | 0.27<br>0.27                     | -0.013 $-0.028$            | -0.137 $-0.093$           |

TABLE 65 G196.454 – 1.677 (S269)

| Trans. | S<br>(Jy)                    | $v_{ m LSR} \ ({ m km~s^{-1}})$  | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec)     | $\Delta \theta_y$ (arcsec)      | Trans.           | S<br>(Jy)                    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec)      | $\Delta\theta_y$ (arcsec)          |
|--------|------------------------------|----------------------------------|----------------------------------|--------------------------------|---------------------------------|------------------|------------------------------|----------------------------------|----------------------------------|---------------------------------|------------------------------------|
| 1665 R | 0.82<br>0.35<br>1.53<br>1.07 | 17.87<br>16.80<br>16.03<br>14.96 | 0.24<br>0.25<br>0.36<br>0.30     | 0.074 $0.057$ $0.010$ $-0.337$ | 0.024 $-0.056$ $0.068$ $-0.149$ | 1665 R<br>1665 L | 1.45<br>7.47<br>2.34<br>8.73 | 14.38<br>17.90<br>16.85<br>16.04 | 0.31<br>0.28<br>0.26<br>0.31     | -0.261 $0.033$ $-0.046$ $0.000$ | -0.094<br>0.074<br>-0.085<br>0.000 |

TABLE 66 G213.706 – 12.60 (Mon R2)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.62      | 10.37                            | 0.37                             | 0.370                      | -0.050                     | 1665 L | 1.92                   | 8.29                            | 0.21                             | -0.236                     | 0.197                     |
|        | 19.01     | 9.70                             | 0.44                             | 0.000                      | 0.000                      | 1667 R | 2.14                   | 9.77                            | 0.55                             | 0.000                      | 0.003                     |
|        | 3.59      | 9.21                             | 0.52                             | -0.165                     | 0.086                      |        | 0.20                   | 8.75                            | 0.42                             | -0.185                     | 0.209                     |
|        | 2.06      | 8.34                             | 0.24                             | -0.260                     | 0.205                      |        | 0.57                   | 8.35                            | 0.21                             | -0.189                     | 0.236                     |
| 1665 L | 7.54      | 11.48                            | 0.25                             | -0.033                     | 0.006                      | 1667 L | 1.67                   | 10.75                           | 0.32                             | 0.070                      | 0.016                     |
|        | 2.21      | 11.15                            | 0.42                             | -0.003                     | 0.012                      |        | 0.56                   | 9.60                            | 0.25                             | -0.085                     | -0.031                    |
|        | 1.51      | 9.67                             | 0.49                             | -0.096                     | 0.043                      |        | 0.35                   | 8.58                            | 0.43                             | -0.178                     | 0.186                     |
|        | 2.12      | 9.12                             | 0.43                             | -0.229                     | 0.137                      |        | 0.41                   | 8.39                            | 0.33                             | -0.187                     | 0.179                     |

TABLE 67 G337.707 – 0.051

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\mathrm{km\ s^{-1}})$ | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|------------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 7.63      | -49.46                           | 0.73                               | 0.077                      | -0.869                     | 1665 L | 0.60      | -53.39                           | 0.80                             | -0.357                     | -0.133                    |
|        | 6.93      | -49.88                           | 0.57                               | 0.010                      | -0.802                     |        | 0.94      | -54.10                           | 0.38                             | 0.033                      | -0.850                    |
|        | 9.19      | -50.64                           | 0.88                               | -0.158                     | -0.617                     | 1667 R | 4.20      | -49.83                           | 0.44                             | 1.914                      | -3.716                    |
|        | 9.27      | -50.85                           | 1.12                               | -0.140                     | -0.539                     |        | 2.65      | -50.50                           | 0.65                             | 1.805                      | -3.998                    |
|        | 3.20      | -52.22                           | 0.35                               | -0.154                     | -0.255                     |        | 2.48      | -51.20                           | 0.71                             | 1.681                      | -4.070                    |
| 1665 L | 10.40     | -48.68                           | 0.81                               | 0.044                      | -0.382                     |        | 2.49      | -51.35                           | 0.66                             | 1.630                      | -4.006                    |
|        | 15.35     | -49.26                           | 0.76                               | 0.000                      | 0.000                      | 1667 L | 5.51      | -49.27                           | 0.47                             | 1.955                      | -3.658                    |
|        | 2.63      | -50.54                           | 0.71                               | -0.063                     | -0.193                     |        | 3.61      | -49.57                           | 0.65                             | 1.929                      | -3.607                    |
|        | 2.22      | -50.88                           | 1.70                               | -0.081                     | -0.281                     |        | 0.98      | -50.27                           | 0.44                             | 1.789                      | -3.887                    |
|        | 0.82      | -52.22                           | 0.25                               | -0.106                     | -0.031                     |        | 0.67      | -50.55                           | 0.60                             | 1.755                      | -3.859                    |
|        | 0.68      | -52.96                           | 0.28                               | -0.177                     | -0.487                     |        | 1.29      | -51.17                           | 0.33                             | 1.677                      | -4.144                    |

TABLE 68 G340.785 – 0.095

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|------------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 1.68      | -99.21                          | 0.35                             | -0.007                     | 0.325                     | 1665 L | 3.33      | -103.71                            | 0.42                             | -0.069                     | 0.360                     |
|        | 1.12      | -100.70                         | 0.32                             | 0.027                      | 0.059                     |        | 3.90      | -104.01                            | 0.56                             | -0.104                     | 0.435                     |
|        | 9.87      | -101.23                         | 0.50                             | 0.000                      | 0.000                     |        | 1.53      | -105.18                            | 0.42                             | 0.019                      | 0.315                     |
|        | 8.12      | -101.73                         | 0.32                             | -0.076                     | -0.133                    | 1667 R | 4.08      | -101.57                            | 0.79                             | -0.007                     | 0.192                     |
|        | 1.15      | -102.82                         | 0.43                             | -0.109                     | 0.218                     |        | 4.14      | -101.79                            | 0.33                             | -0.030                     | 0.183                     |
|        | 1.38      | -105.79                         | 0.27                             | -0.185                     | 0.413                     | 1667 L | 0.38      | -100.78                            | 0.33                             | 0.084                      | 0.313                     |
| 1665 L | 0.44      | -101.45                         | 0.33                             | 0.004                      | 0.193                     |        | 1.17      | -101.89                            | 0.29                             | -0.030                     | 0.230                     |
|        | 2.92      | -102.24                         | 0.35                             | -0.047                     | -0.051                    |        | 2.94      | -102.27                            | 0.30                             | 0.005                      | 0.275                     |
|        | 5.74      | -102.78                         | 0.40                             | -0.017                     | 0.078                     |        | 0.96      | -102.65                            | 0.54                             | -0.037                     | 0.206                     |

TABLE 69 G341.219 – 0.212

| Trans. | S<br>(Jy)                     | $v_{\rm LSR} \ ({ m km~s^{-1}})$     | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec)       | $\Delta\theta_y$ (arcsec)        | Trans. | S<br>(Jy)            | $v_{ m LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------|----------------------|-----------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 1.94<br>10.06<br>0.35<br>0.86 | -36.40<br>-37.39<br>-38.41<br>-39.06 | 0.56<br>0.34<br>0.38<br>0.27     | 0.041<br>0.000<br>0.105<br>0.009 | -0.108 $0.000$ $-0.114$ $-0.055$ | 1665 L | 0.28<br>3.74<br>3.50 | -39.13<br>-40.20<br>-40.84        | 0.36<br>0.29<br>0.46             | 0.183<br>0.032<br>-0.001   | -0.220<br>0.062<br>-0.015  |

TABLE 70 G343.128 - 0.063

| Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>Jy</b> ) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 14.06                  | -30.69                           | 0.32                             | -0.007                     | 0.020                     | 1665 L | 88.89                  | -31.74                                                          | 0.36                             | 0.000                      | 0.000                      |
|        | 5.72                   | -31.70                           | 0.48                             | 0.026                      | 0.083                     |        | 3.90                   | -32.89                                                          | 0.39                             | 0.028                      | -0.112                     |
|        | 0.56                   | -32.76                           | 0.63                             | 0.153                      | 0.380                     |        | 14.70                  | -33.57                                                          | 0.53                             | 0.071                      | -0.193                     |
|        | 4.00                   | -33.75                           | 0.38                             | 0.020                      | -0.091                    |        | 54.77                  | -33.93                                                          | 0.36                             | -0.028                     | 0.086                      |
|        | 0.52                   | -36.56                           | 0.37                             | -1.559                     | 0.605                     |        | 0.27                   | -38.57                                                          | 0.38                             | 0.210                      | 0.761                      |
| 1665 L | 2.49                   | -30.84                           | 0.42                             | -0.072                     | -0.040                    |        | 0.25                   | -39.67                                                          | 0.42                             | 0.394                      | 0.814                      |

TABLE 71 G344.227 – 0.568

| Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta\theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|--------------|------------------------------------|----------------------------------|---------------------------|---------------------------|
| 1665 R | 0.41<br>4.89 | -29.73 $-30.94$                  | 0.26<br>0.36                     | -0.367 $-0.338$            | -0.963 $-0.875$           | 1665 L | 2.14<br>1.60 | -29.75 $-30.67$                    | 0.48<br>0.44                     | -0.348 $-0.011$           | -0.874 $0.082$            |
| 1665 L | 0.65<br>0.38 | -23.52 $-29.21$                  | 0.28<br>0.34                     | -0.880 $-0.327$            | -0.063 $-0.713$           | 1667 L | 6.87<br>2.28 | -31.19 $-29.88$                    | 0.44<br>0.32<br>0.61             | 0.000<br>0.010            | 0.000<br>0.090            |

TABLE 72 G344.581 – 0.022

| Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({ m km~s}^{-1})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|--------------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|--------------------------------------|---------------------------------|----------------------------|---------------------------|
| 1665 R | 0.89      | 1.35                                 | 0.31                             | 0.393                      | -0.046                     | 1667 R | 2.40      | -2.51                                | 0.42                            | 0.221                      | -2.770                    |
|        | 0.57      | -0.79                                | 0.78                             | 0.124                      | -0.058                     |        | 2.06      | -3.28                                | 0.59                            | 0.438                      | -2.767                    |
|        | 19.02     | -2.30                                | 0.54                             | 0.000                      | 0.000                      |        | 3.58      | -3.94                                | 0.35                            | 0.178                      | -3.044                    |
|        | 10.24     | -2.71                                | 0.54                             | 0.131                      | -0.033                     |        | 1.35      | -4.39                                | 0.48                            | 0.156                      | -2.927                    |
|        | 3.14      | -4.01                                | 0.53                             | 0.024                      | 0.069                      |        | 1.25      | -5.18                                | 0.58                            | 0.301                      | -2.767                    |
|        | 3.58      | -4.36                                | 0.44                             | 0.010                      | 0.132                      |        | 3.91      | -5.61                                | 0.28                            | 0.214                      | -3.087                    |
|        | 3.45      | -5.33                                | 0.51                             | 0.133                      | 0.349                      |        | 2.15      | -6.59                                | 0.36                            | 0.356                      | -2.713                    |
|        | 1.80      | -5.75                                | 0.85                             | 0.165                      | 0.397                      |        | 1.51      | -7.40                                | 0.34                            | 0.338                      | -2.963                    |
|        | 1.47      | -6.36                                | 0.50                             | 0.171                      | 0.309                      |        | 0.82      | -7.68                                | 0.67                            | 0.269                      | -3.099                    |
|        | 1.68      | -6.87                                | 0.78                             | 0.148                      | 0.344                      |        | 0.74      | -8.16                                | 0.38                            | 0.317                      | -2.391                    |
|        | 1.67      | -7.60                                | 0.45                             | 0.092                      | 0.271                      |        | 0.70      | -8.85                                | 0.54                            | 0.315                      | -2.758                    |
|        | 0.84      | -8.23                                | 0.48                             | 0.076                      | 0.253                      |        | 0.53      | -9.63                                | 0.35                            | 0.398                      | -2.444                    |
| 1665 L | 0.67      | 1.31                                 | 0.51                             | 0.171                      | -0.283                     | 1667 L | 0.30      | 0.70                                 | 0.29                            | 0.447                      | -2.997                    |
|        | 0.81      | 0.90                                 | 0.62                             | 0.129                      | -0.101                     |        | 0.63      | -1.49                                | 0.58                            | 0.400                      | -3.118                    |
|        | 1.31      | -0.17                                | 1.13                             | 0.233                      | -0.102                     |        | 3.94      | -2.48                                | 0.40                            | 0.521                      | -2.901                    |
|        | 3.82      | -1.18                                | 0.88                             | 0.289                      | -0.091                     |        | 3.51      | -3.09                                | 0.45                            | 0.387                      | -2.913                    |
|        | 14.22     | -2.63                                | 0.75                             | 0.277                      | -0.057                     |        | 7.32      | -3.62                                | 0.39                            | -0.003                     | -2.950                    |
|        | 2.33      | -4.41                                | 0.54                             | -0.005                     | 0.056                      |        | 1.29      | -5.11                                | 0.56                            | 0.222                      | -2.732                    |
|        | 1.99      | -4.66                                | 1.07                             | -0.014                     | 0.106                      |        | 2.90      | -5.57                                | 0.45                            | 0.379                      | -2.503                    |
|        | 4.66      | -5.84                                | 0.62                             | 0.152                      | 0.313                      |        | 1.35      | -6.07                                | 0.69                            | 0.237                      | -3.160                    |
|        | 15.48     | -6.61                                | 0.36                             | 0.177                      | 0.392                      |        | 1.43      | -7.02                                | 0.46                            | 0.393                      | -2.498                    |
|        | 2.14      | -7.84                                | 0.60                             | 0.074                      | 0.302                      |        | 1.16      | -8.19                                | 0.53                            | 0.296                      | -2.817                    |
|        | 1.83      | -8.22                                | 0.59                             | 0.048                      | 0.222                      |        | 0.56      | -9.01                                | 0.96                            | 0.345                      | -2.581                    |
|        | 2.21      | -8.76                                | 0.75                             | 0.042                      | 0.270                      |        | 0.82      | -9.60                                | 0.74                            | 0.353                      | -2.564                    |
|        | 1.53      | -9.21                                | 0.73                             | 0.083                      | 0.245                      |        | 0.36      | -10.25                               | 0.45                            | 0.379                      | -2.512                    |
| 1667 R | 1.77      | -2.29                                | 0.40                             | 0.247                      | -2.776                     |        |           |                                      |                                 |                            |                           |

TABLE 73 G345.003 – 0.224

| Trans. | <i>S</i> ( <b>Jy</b> ) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.44                   | -22.96                                                          | 0.33                             | -4.360                     | 0.930                     | 1665 L | 6.42                   | -27.54                                                          | 0.22                             | -0.089                     | -0.041                    |
|        | 0.86                   | -24.79                                                          | 0.90                             | -0.639                     | -0.325                    |        | 0.43                   | -28.19                                                          | 0.57                             | -0.578                     | -0.332                    |
|        | 1.08                   | -25.14                                                          | 0.46                             | -0.450                     | -0.337                    | 1667 R | 1.01                   | -25.69                                                          | 0.43                             | -0.282                     | -0.448                    |
|        | 1.23                   | -25.62                                                          | 0.36                             | -0.474                     | -0.298                    |        | 1.18                   | -26.08                                                          | 0.20                             | -0.365                     | -0.247                    |
|        | 2.46                   | -27.35                                                          | 0.45                             | -0.025                     | -0.011                    |        | 3.47                   | -30.76                                                          | 0.29                             | -0.335                     | -0.767                    |
|        | 0.19                   | -28.14                                                          | 0.42                             | -0.373                     | -0.533                    | 1667 L | 0.68                   | -27.73                                                          | 0.24                             | 0.038                      | -0.151                    |
|        | 1.77                   | -31.05                                                          | 0.25                             | -0.694                     | -0.513                    | 1720 R | 2.30                   | -28.83                                                          | 0.50                             | -0.007                     | 0.004                     |
| 1665 L | 2.22                   | -26.98                                                          | 0.32                             | -0.277                     | -0.095                    | 1720 L | 51.62                  | -29.27                                                          | 0.39                             | 0.000                      | 0.000                     |

TABLE 74 G345.011+1.792

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.72      | -17.21                          | 0.35                             | -0.105                     | -0.509                     | 1665 L | 2.90      | -21.19                           | 0.31                             | -0.086                     | 0.077                     |
|        | 10.48     | -19.72                          | 0.25                             | -0.092                     | -0.075                     |        | 3.36      | -21.67                           | 0.63                             | -0.027                     | -0.001                    |
|        | 20.36     | -20.43                          | 0.40                             | -0.188                     | -0.131                     |        | 30.14     | -22.75                           | 0.40                             | 0.000                      | 0.000                     |
|        | 0.80      | -22.87                          | 0.24                             | 0.028                      | 0.035                      | 1667 R | 1.71      | -19.69                           | 0.23                             | -0.345                     | -0.352                    |
| 1665 L | 0.52      | -15.75                          | 0.32                             | -0.243                     | -0.140                     | 1667 L | 0.50      | -17.98                           |                                  | -0.704                     | -0.452                    |
|        | 1.13      | -17.33                          | 0.36                             | 0.060                      | -0.159                     |        | 1.30      | -20.01                           | 0.21                             | -0.369                     | -0.359                    |
|        | 0.70      | -18.99                          | 0.25                             | -0.164                     | -0.078                     |        | 1.27      | -20.89                           | 0.30                             | -0.317                     | -0.329                    |
|        | 0.68      | -19.79                          | 0.21                             | -0.147                     | -0.025                     |        | 0.61      | -21.29                           | 0.51                             | -0.361                     | -0.330                    |

TABLE 75 G345.488+0.313

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 L | 0.73      | -22.81                          | 0.23                             | 0.000                      | 0.000                      |        |           |                                 |                                  |                            |                           |

TABLE 76 G345.505+0.347

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\text{km s}^{-1})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|---------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.37      | -13.79                           | 0.46                            | -0.407                     | 0.236                     | 1667 R | 4.87      | -12.69                          | 0.34                             | -0.468                     | 1.417                     |
|        | 0.68      | -14.43                           | 0.39                            | -0.269                     | 0.110                     |        | 1.30      | -14.18                          | 0.26                             | -0.204                     | 1.127                     |
|        | 2.46      | -15.30                           | 0.27                            | -0.390                     | 0.217                     |        | 4.59      | -17.51                          | 0.57                             | 0.025                      | 0.989                     |
|        | 0.85      | -17.47                           | 0.39                            | -0.016                     | 1.101                     |        | 4.67      | -19.45                          | 0.95                             | -0.896                     | 1.397                     |
|        | 4.38      | -18.01                           | 0.26                            | 0.096                      | 0.028                     |        | 0.73      | -20.12                          | 0.96                             | -0.605                     | 1.592                     |
|        | 1.26      | -18.35                           | 0.23                            | 0.029                      | 0.063                     |        | 3.79      | -21.24                          | 0.32                             | -0.573                     | 1.922                     |
|        | 8.85      | -19.29                           | 0.33                            | -0.925                     | 0.520                     |        | 0.44      | -22.37                          | 0.41                             | -0.813                     | 1.766                     |
|        | 0.29      | -23.64                           | 0.45                            | 1.162                      | 1.024                     | 1667 L | 2.37      | -12.74                          | 0.36                             | -0.461                     | 1.398                     |
| 1665 L | 0.34      | -14.70                           | 0.32                            | 0.318                      | 0.650                     |        | 1.68      | -13.30                          | 0.29                             | -0.327                     | 1.178                     |
|        | 0.49      | -15.49                           | • • •                           | 0.927                      | -0.054                    |        | 0.38      | -15.22                          | 0.41                             | 0.859                      | 1.125                     |
|        | 0.44      | -15.79                           | 0.27                            | -0.250                     | 0.548                     |        | 0.76      | -16.04                          | 0.29                             | -0.089                     | 1.104                     |
|        | 2.70      | -16.92                           | 0.46                            | 0.011                      | -0.034                    |        | 2.06      | -16.83                          | 0.41                             | 0.005                      | 1.058                     |
|        | 10.98     | -17.33                           | 0.35                            | 0.000                      | 0.000                     |        | 1.50      | -17.60                          | 0.44                             | -0.076                     | 1.018                     |
|        | 1.24      | -18.00                           | 0.25                            | 0.010                      | 0.160                     |        | 5.11      | -19.73                          | 0.36                             | -0.627                     | 0.797                     |
|        | 1.62      | -18.43                           | 0.40                            | -0.125                     | 0.183                     |        | 1.67      | -21.58                          | 0.37                             | -0.584                     | 1.932                     |
|        | 3.92      | -19.49                           | 0.55                            | -0.468                     | -0.003                    |        | 0.92      | -23.08                          | 0.26                             | -1.097                     | 1.847                     |
|        | 0.56      | -20.13                           | 0.33                            | -0.478                     | 0.452                     |        |           |                                 |                                  |                            |                           |

TABLE 77 G345.699 – 0.090

| Trans. | <i>S</i> ( <b>Jy</b> ) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>Jy</b> ) | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 0.77                   | -3.15                            | 0.26                             | -0.397                     | -1.017                    | 1665 L | 0.65                   | -6.79                                                           | 0.43                             | -0.253                     | -1.075                     |
|        | 0.43                   | -3.72                            | 0.33                             | -0.357                     | -0.881                    |        | 0.51                   | -8.47                                                           | 0.28                             | 0.105                      | -0.619                     |
|        | 1.03                   | -4.50                            | 0.30                             | -0.486                     | -1.327                    | 1667 R | 2.89                   | -5.79                                                           | 0.26                             | -0.022                     | 0.000                      |
|        | 3.37                   | -5.78                            | 0.34                             | -0.014                     | -0.935                    |        | 12.78                  | -6.45                                                           | 0.29                             | 0.000                      | 0.000                      |
|        | 7.86                   | -6.33                            | 0.37                             | 0.009                      | -0.931                    |        | 1.11                   | -6.97                                                           | 0.43                             | 0.018                      | 0.107                      |
|        | 1.26                   | -6.82                            | 0.63                             | -0.006                     | -0.915                    |        | 0.85                   | -8.27                                                           | 0.40                             | 0.087                      | 0.382                      |
|        | 2.62                   | -7.70                            | 0.32                             | 0.114                      | -0.760                    | 1667 L | 1.09                   | -5.14                                                           | 0.36                             | -0.046                     | 0.048                      |
|        | 3.61                   | -8.22                            | 0.23                             | 0.165                      | -0.723                    |        | 3.88                   | -5.82                                                           | 0.70                             | 0.024                      | 0.004                      |
|        | 0.81                   | -8.55                            | 0.25                             | 0.283                      | -2.960                    |        | 4.38                   | -6.15                                                           | 0.46                             | 0.012                      | 0.026                      |
| 1665 L | 0.94                   | -3.19                            | 0.50                             | -0.360                     | -0.876                    |        | 0.69                   | -6.79                                                           | 0.45                             | -0.105                     | 0.138                      |
|        | 6.43                   | -5.76                            | 0.38                             | 0.028                      | -0.956                    |        | 0.63                   | -8.39                                                           | 0.29                             | 0.063                      | 0.385                      |
|        | 6.39                   | -5.96                            | 0.37                             | 0.035                      | -0.961                    |        | 0.33                   | -10.59                                                          | 0.41                             | -0.069                     | 0.882                      |

TABLE 78 G347.628+0.149

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 3.58      | -94.14                          | 0.32                             | -0.011                     | 0.034                     | 1665 L | 18.43     | -94.18                          | 0.28                             | 0.000                      | 0.000                      |
|        | 1.77      | -95.12                          | 0.24                             | 0.027                      | 0.224                     |        | 1.92      | -95.79                          | 0.26                             | 0.059                      | 0.033                      |
|        | 9.20      | -95.79                          | 0.25                             | 0.002                      | 0.057                     |        | 0.75      | -96.21                          | 0.32                             | 0.010                      | 0.098                      |
|        | 6.45      | -96.86                          | 0.31                             | 0.002                      | 0.074                     |        | 0.88      | -96.89                          | 0.28                             | -0.004                     | -0.032                     |
|        | 1.00      | -97.92                          |                                  | 0.017                      | 0.040                     | 1612 R | 5.86      | -96.42                          | 0.26                             | 0.449                      | -2.163                     |
| 1665 L | 0.72      | -93.02                          | 0.48                             | 0.007                      | 0.035                     | 1612 L | 2.99      | -97.16                          | 0.26                             | 0.456                      | -2.159                     |
|        | 4.24      | -93.38                          | 0.31                             | 0.003                      | 0.014                     |        |           |                                 |                                  |                            |                            |

TABLE 79 G348.549 – 0.978

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.79      | -10.40                          | 0.39                             | 0.119                      | -0.061                     | 1665 R | 2.63      | -19.26                          | 0.45                             | -0.013                     | -0.010                    |
|        | 0.67      | -11.61                          | 0.73                             | 0.093                      | 0.104                      |        | 6.72      | -19.84                          | 0.40                             | 0.000                      | 0.000                     |
|        | 1.01      | -12.19                          | 0.77                             | 0.082                      | 0.085                      |        | 3.32      | -20.79                          | 0.43                             | -0.058                     | 0.049                     |
|        | 4.49      | -13.13                          | 0.46                             | 0.106                      | -0.019                     | 1665 L | 0.89      | -11.98                          | 0.30                             | 0.265                      | 0.059                     |
|        | 1.36      | -13.72                          | 0.45                             | 0.156                      | 0.015                      |        | 0.80      | -13.18                          | 0.68                             | 0.174                      | 0.211                     |
|        | 2.69      | -14.26                          | 0.67                             | 0.146                      | 0.016                      |        | 1.42      | -18.47                          | 0.37                             | 0.041                      | -0.002                    |
|        | 2.68      | -14.43                          | 0.61                             | 0.158                      | -0.006                     |        | 3.08      | -19.88                          | 0.35                             | 0.043                      | -0.001                    |
|        | 0.26      | -15.57                          | 0.76                             | 0.130                      | 0.034                      | 1720 R | 4.57      | -13.40                          | 0.40                             | 0.171                      | -0.014                    |
|        | 1.14      | -16.43                          | 0.25                             | 0.623                      | -0.177                     | 1720 L | 4.89      | -12.77                          | 0.35                             | 0.167                      | 0.032                     |

TABLE 80 G348.698 – 1.027

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|----------------------------|--------|------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 1.19      | -15.44                           | 0.25                             | 0.000                      | 0.000                      |        |                        |                                 |                                  |                            |                           |

TABLE 81 G350.011 – 1.341

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 2.09      | -18.04                          | 0.42                             | 0.102                      | 0.041                     | 1665 L | 5.41      | -19.74                          | 0.29                             | 0.000                      | 0.000                     |
|        | 3.57      | -19.32                          | 0.23                             | -0.012                     | -0.035                    |        | 1.31      | -20.81                          | 0.31                             | 0.693                      | 0.287                     |
|        | 1.10      | -19.78                          | 0.32                             | 0.127                      | 0.011                     |        | 1.63      | -23.76                          | 0.29                             | 0.774                      | 0.113                     |
|        | 1.93      | -23.08                          | 0.27                             | 0.753                      | 0.140                     | 1667 R | 0.31      | -19.37                          | 0.31                             | 0.305                      | -0.257                    |
|        | 1.64      | -23.74                          | 0.29                             | 0.794                      | 0.144                     |        | 0.37      | -19.72                          | 0.47                             | 0.229                      | -0.280                    |
|        | 0.19      | -26.25                          | 0.35                             | 0.509                      | 0.213                     |        | 2.58      | -23.75                          | 0.52                             | 0.975                      | -0.179                    |
| 1665 L | 3.85      | -18.21                          | 0.49                             | 0.095                      | 0.047                     | 1667 L | 0.18      | -19.32                          | 0.51                             | 0.314                      | -0.205                    |
|        | 0.74      | -19.16                          | 0.42                             | 0.004                      | 0.017                     |        | 2.25      | -23.74                          | 0.53                             | 0.981                      | -0.163                    |

TABLE 82 G350.113+0.095

| Trans. | S<br>(Jy)                                              | $v_{\rm LSR} \ ({ m km~s^{-1}})$                                   | $\Delta v$ (km s <sup>-1</sup> )             | $\Delta \theta_x$ (arcsec)                                     | $\Delta \theta_y$ (arcsec)                                       | Trans. | S<br>(Jy)                                              | $\begin{array}{c} v_{\rm LSR} \\ ({\rm km~s^{-1}}) \end{array}$    | $\Delta v$ (km s <sup>-1</sup> )                     | $\Delta \theta_x$ (arcsec)                                 | $\Delta \theta_y$ (arcsec)                                         |
|--------|--------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--------|--------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|
| 1665 R | 0.75<br>1.33<br>23.78<br>3.04<br>2.76<br>1.35<br>10.06 | -65.27<br>-67.72<br>-71.16<br>-72.36<br>-72.81<br>-73.78<br>-74.79 | 0.31<br>0.35<br>0.36<br>0.50<br>0.47<br>0.93 | 0.155<br>0.200<br>0.000<br>-0.004<br>-0.087<br>0.046<br>-0.164 | -0.399<br>-0.326<br>0.000<br>-0.001<br>0.014<br>-0.128<br>-0.303 | 1665 L | 3.39<br>2.55<br>15.38<br>11.06<br>3.28<br>1.92<br>1.13 | -68.66<br>-69.05<br>-71.03<br>-72.78<br>-73.68<br>-74.53<br>-75.15 | 0.29<br>0.40<br>0.54<br>0.46<br>0.51<br>0.56<br>0.48 | -0.048 $-0.066$ $0.006$ $-0.106$ $0.147$ $-0.165$ $-0.151$ | -0.091<br>-0.117<br>-0.109<br>-0.102<br>-0.191<br>-0.084<br>-0.353 |
|        | 1.22                                                   | -75.82                                                             | 0.67                                         | -0.104 $-0.239$                                                | -0.303 $-0.271$                                                  |        | 0.57                                                   | -75.61                                                             | 0.57                                                 | -0.131<br>-0.227                                           | -0.333 $-0.317$                                                    |

TABLE 83 G351.161+0.697 (NGC 6334 B)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v \ (\mathrm{km\ s^{-1}})$ | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \over ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|------------------------------------|----------------------------|----------------------------|--------|-----------|--------------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 1.17      | -5.79                            | 0.59                               | 1.594                      | 1.550                      | 1667 R | 1.02      | -6.70                                | 0.51                             | 0.610                      | 1.775                     |
|        | 3.91      | -6.39                            | 0.33                               | 0.459                      | -0.554                     |        | 21.17     | -7.41                                | 0.24                             | 0.411                      | 2.509                     |
|        | 2.97      | -6.61                            | 0.63                               | -0.172                     | -0.377                     |        | 8.58      | -8.94                                | 0.37                             | 1.045                      | 1.600                     |
|        | 5.49      | -7.69                            | 0.89                               | -0.012                     | 1.129                      |        | 6.76      | -9.26                                | 0.37                             | 0.929                      | 1.642                     |
|        | 14.98     | -8.51                            | 0.34                               | -1.455                     | -1.641                     |        | 78.82     | -9.64                                | 0.22                             | 0.721                      | 2.031                     |
|        | 1.70      | -8.95                            | 0.33                               | -0.528                     | -0.689                     |        | 3.63      | -10.17                               | 0.23                             | 0.477                      | 1.572                     |
|        | 1.74      | -10.23                           | 0.27                               | -0.833                     | -0.965                     |        | 1.68      | -10.94                               | 0.30                             | -0.034                     | 2.172                     |
|        | 1.52      | -10.57                           | 0.29                               | -0.718                     | -1.049                     |        | 1.85      | -11.44                               | 0.49                             | -0.133                     | 1.539                     |
|        | 0.68      | -11.32                           | 0.39                               | -0.768                     | 0.525                      |        | 3.64      | -12.15                               | 0.40                             | -0.493                     | 0.988                     |
|        | 0.85      | -11.64                           | 0.44                               | -0.594                     | 0.351                      |        | 11.39     | -13.23                               | 0.41                             | -0.247                     | 0.258                     |
|        | 1.77      | -12.18                           | 0.40                               | -0.927                     | 0.781                      |        | 13.64     | -14.10                               | 1.63                             | -0.933                     | 0.579                     |
|        | 0.62      | -12.77                           | 0.40                               | -1.202                     | 0.879                      |        | 4.64      | -14.83                               | 0.41                             | -1.181                     | 0.216                     |
|        | 0.85      | -13.15                           | 0.33                               | -1.171                     | 0.450                      |        | 5.15      | -15.23                               | 0.30                             | -1.047                     | 0.139                     |
| 1665 L | 2.56      | -3.95                            | 0.21                               | 1.600                      | -0.828                     | 1667 L | 0.36      | -4.49                                | 0.27                             | 1.990                      | -0.158                    |
|        | 1.67      | -4.27                            | 0.20                               | 1.585                      | -0.714                     |        | 0.38      | -5.59                                | 0.53                             | -0.077                     | 1.993                     |
|        | 1.72      | -5.76                            | 0.27                               | 1.477                      | 2.259                      |        | 1.10      | -6.82                                | 0.27                             | 1.004                      | 2.637                     |
|        | 2.34      | -6.54                            | 0.41                               | -0.112                     | -0.121                     |        | 0.58      | -7.47                                | 0.37                             | 0.790                      | 2.157                     |
|        | 16.44     | -8.84                            | 0.70                               | -0.345                     | -0.589                     |        | 4.82      | -8.22                                | 0.31                             | 0.962                      | 1.538                     |
|        | 2.99      | -9.69                            | 0.34                               | -1.297                     | -1.414                     |        | 27.68     | -9.04                                | 0.60                             | 0.004                      | -0.046                    |
|        | 11.76     | -10.21                           | 0.27                               | -0.788                     | -0.975                     |        | 20.53     | -9.72                                | 0.30                             | 0.733                      | 2.060                     |
|        | 7.41      | -10.48                           | 0.40                               | -0.675                     | -1.007                     |        | 7.32      | -11.56                               | 0.36                             | -0.215                     | 0.227                     |
|        | 8.16      | -11.62                           | 0.35                               | -0.582                     | -0.369                     |        | 96.65     | -12.59                               | 0.28                             | 0.000                      | 0.000                     |
|        | 4.48      | -12.44                           | 0.62                               | -1.144                     | 0.936                      |        | 8.63      | -14.21                               | 0.37                             | -1.030                     | 0.530                     |
|        | 4.65      | -12.67                           | 0.57                               | -1.231                     | 0.927                      |        | 3.87      | -14.68                               | 0.48                             | -1.154                     | 0.323                     |
| 1667 R | 0.91      | -5.72                            | 0.29                               | 0.136                      | 1.115                      |        | 7.59      | -15.29                               | 0.28                             | -1.064                     | 0.140                     |

TABLE 84 G351.232+0.682 (NGC 6334)

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1667 R | 0.50      | -7.39                           |                                  | 0.341                      | 2.383                     | 1667 R | 0.38      | -14.14                           | 0.55                             | -0.978                     | 0.542                     |
|        | 0.38      | -8.82                           | 0.44                             | 1.027                      | 1.434                     | 1667 L | 0.87      | -9.01                            | 0.60                             | -0.127                     | 0.215                     |
|        | 1.89      | -9.65                           | 0.23                             | 0.730                      | 1.861                     |        | 0.58      | -9.72                            | 0.29                             | 0.516                      | 1.752                     |
|        | 0.38      | -13.25                          | 0.47                             | -0.288                     | 0.279                     |        | 2.41      | -12.60                           | 0.30                             | 0.000                      | 0.000                     |

TABLE 85 G351.416+0.646 (NGC 6334 F)

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km\ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km\ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_{y}$ (arcsec) |
|--------|-----------|-----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|-----------------------------------|----------------------------------|----------------------------|-----------------------------|
| 1665 R | 5.35      | -6.08                             | 0.21                             | 1.285                      | 1.147                     | 1667 R | 0.80      | -6.61                             | 0.20                             | 1.113                      | 0.627                       |
|        | 0.67      | -6.86                             | 0.30                             | 0.716                      | -2.284                    |        | 9.39      | -8.97                             | 0.29                             | 0.846                      | 0.278                       |
|        | 4.30      | -7.77                             | 0.41                             | 0.403                      | 0.629                     |        | 6.63      | -9.47                             | 0.25                             | 0.842                      | 0.101                       |
|        | 3.13      | -8.05                             | 0.50                             | 0.650                      | 0.777                     |        | 3.76      | -9.88                             | 0.22                             | 0.349                      | -0.094                      |
|        | 20.64     | -8.50                             | 0.39                             | 0.252                      | 0.631                     |        | 56.58     | -11.11                            | 0.26                             | 0.134                      | 0.065                       |
|        | 7.20      | -9.56                             | 0.38                             | 0.719                      | -0.105                    |        | 2.37      | -12.33                            | 0.47                             | 0.001                      | -1.247                      |
|        | 6.91      | -10.15                            | 0.45                             | 0.682                      | -0.081                    | 1667 L | 0.92      | -7.15                             | 0.41                             | 0.859                      | 0.095                       |
|        | 7.47      | -11.18                            | 0.22                             | 0.258                      | 0.121                     |        | 9.77      | -7.87                             | 0.37                             | 0.429                      | 0.154                       |
|        | 31.26     | -11.98                            | 0.59                             | -0.006                     | -0.040                    |        | 5.45      | -8.54                             | 0.41                             | 0.422                      | 0.312                       |
|        | 40.43     | -12.50                            | 0.67                             | -0.020                     | -0.154                    |        | 48.58     | -9.25                             | 0.27                             | 0.137                      | 0.075                       |
| 1665 L | 1.01      | -6.35                             | 0.49                             | 0.578                      | -0.812                    |        | 37.71     | -9.83                             | 0.27                             | 0.033                      | -0.291                      |
|        | 29.02     | -7.41                             | 0.46                             | 0.313                      | 0.041                     |        | 23.74     | -10.35                            | 0.28                             | 0.176                      | 0.127                       |
|        | 182.49    | -8.87                             | 0.34                             | 0.000                      | 0.000                     |        | 2.46      | -11.09                            | 0.53                             | 0.009                      | -1.287                      |
|        | 4.59      | -9.69                             | 0.39                             | 0.048                      | -0.002                    |        | 0.64      | -12.46                            | 0.18                             | 6.515                      | -1.542                      |
|        | 1.46      | -10.32                            | 0.22                             | 0.342                      | 0.096                     | 1720 R | 0.59      | -9.76                             | 0.23                             | -1.104                     | -0.192                      |
|        | 3.91      | -11.01                            | 0.23                             | 0.931                      | 0.875                     |        | 60.31     | -10.59                            | 0.39                             | -1.047                     | -0.519                      |
|        | 2.54      | -11.89                            | 0.56                             | 0.441                      | 0.770                     | 1720 L | 83.88     | -9.85                             | 0.33                             | -1.045                     | -0.495                      |

TABLE 86 G351.582-0.352

| Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{ m LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|---------------------------------|----------------------------------|----------------------------|----------------------------|--------|-----------|---------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.29      | -91.91                          | 0.33                             | -1.936                     | -1.929                     | 1665 R | 0.52      | -100.88                         | 0.30                             | -3.261                     | -0.780                    |
|        | 0.45      | -93.18                          | 0.29                             | -0.082                     | -0.079                     | 1665 L | 2.82      | -90.97                          | 0.29                             | -0.007                     | 0.004                     |
|        | 6.19      | -93.86                          | 0.22                             | 0.000                      | 0.000                      |        | 1.46      | -94.80                          | 0.48                             | -2.217                     | -1.966                    |
|        | 3.45      | -94.81                          | 0.27                             | -1.293                     | -1.032                     |        | 1.05      | -95.66                          | 0.29                             | -1.257                     | -1.000                    |
|        | 1.13      | -95.51                          | 0.29                             | -1.630                     | -1.859                     |        | 2.62      | -96.12                          | 0.21                             | -0.775                     | -1.672                    |
|        | 0.72      | -96.25                          | 0.77                             | -1.710                     | -2.021                     |        | 0.47      | -96.58                          | 1.17                             | -2.077                     | -1.183                    |
|        | 3.15      | -97.62                          | 0.26                             | -2.066                     | -1.011                     |        | 0.93      | -97.60                          | 0.34                             | -2.092                     | -1.758                    |
|        | 0.83      | -98.61                          | 0.60                             | -2.094                     | -1.309                     |        | 1.06      | -98.34                          | 0.38                             | -1.302                     | -1.126                    |
|        | 1.12      | -98.94                          | 0.50                             | -1.992                     | -1.692                     |        | 2.76      | -99.02                          | 0.23                             | -1.336                     | -1.382                    |
|        | 1.88      | -100.08                         | 0.34                             | -2.076                     | -0.718                     |        | 2.04      | -100.07                         | 0.35                             | -2.075                     | -0.761                    |

TABLE 87 G351.775 – 0.538

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km\ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR}$ (km s <sup>-1</sup> ) | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_{y}$ (arcsec) |
|--------|-----------|-----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|-------------------------------------|----------------------------------|----------------------------|-----------------------------|
| 1665 R | 1.34      | 2.60                              | 0.55                             | -0.156                     | -0.690                    | 1665 L | 14.66     | -7.55                               | 0.31                             | 0.299                      | 0.682                       |
|        | 3.82      | 1.88                              | 0.23                             | -0.377                     | 0.035                     |        | 4.24      | -8.03                               | 0.27                             | 1.480                      | 1.447                       |
|        | 11.84     | 1.21                              | 0.42                             | -0.505                     | -0.548                    |        | 39.15     | -9.24                               | 0.27                             | 1.809                      | 1.499                       |
|        | 3.70      | -0.21                             | 0.33                             | -1.478                     | -0.798                    |        | 0.79      | -13.55                              | 0.37                             | -1.149                     | 0.030                       |
|        | 117.68    | -1.83                             | 0.35                             | -0.012                     | -0.006                    |        | 3.03      | -25.59                              | 0.39                             | 1.195                      | -0.520                      |
|        | 1.05      | -4.30                             | 0.30                             | 0.229                      | 0.700                     | 1667 R | 0.57      | 2.24                                | 0.35                             | 0.194                      | -0.696                      |
|        | 0.52      | -5.55                             | 0.44                             | 1.210                      | 1.283                     |        | 1.12      | 0.25                                | 0.70                             | -1.604                     | -0.773                      |
|        | 1.07      | -6.06                             | 0.35                             | 0.903                      | 1.327                     |        | 1.59      | -0.17                               | 0.52                             | -1.605                     | -0.689                      |
|        | 3.06      | -6.66                             | 0.56                             | 1.377                      | 1.371                     |        | 1.38      | -1.84                               | 0.32                             | -0.611                     | 0.469                       |
|        | 22.25     | -7.25                             | 0.27                             | -0.231                     | 1.553                     |        | 1.86      | -4.95                               | 0.38                             | 0.308                      | 0.768                       |
|        | 6.91      | -7.84                             | 1.04                             | 1.426                      | 1.461                     |        | 2.65      | -5.83                               | 0.27                             | 0.481                      | 2.256                       |
|        | 18.42     | -9.23                             | 0.28                             | 1.780                      | 1.500                     |        | 0.93      | -7.08                               | 0.37                             | 0.326                      | 1.140                       |
|        | 4.42      | -10.15                            | 0.58                             | 1.017                      | 1.110                     |        | 1.33      | -7.89                               | 0.62                             | 0.410                      | 2.845                       |
|        | 2.99      | -10.72                            | 0.39                             | 0.968                      | 1.140                     |        | 6.74      | -8.81                               | 0.35                             | 1.682                      | 1.503                       |
|        | 0.40      | -12.37                            | 0.24                             | -1.037                     | 0.026                     |        | 5.82      | -9.01                               | 0.38                             | 1.261                      | 1.303                       |
|        | 0.83      | -18.50                            | 1.03                             | -0.405                     | 0.569                     |        | 0.70      | -9.85                               | 0.46                             | 1.544                      | 1.543                       |
|        | 0.70      | -19.27                            | 0.65                             | -0.384                     | 0.524                     |        | 0.38      | -15.40                              | 0.48                             | -0.459                     | 0.563                       |
|        | 1.07      | -20.28                            | 0.37                             | -0.397                     | 0.501                     |        | 0.49      | -16.61                              | 0.52                             | -0.348                     | 0.519                       |
|        | 0.77      | -21.22                            | 0.39                             | -0.355                     | 0.390                     |        | 0.31      | -25.84                              | 0.36                             | 0.992                      | -0.392                      |
|        | 4.74      | -27.85                            | 0.41                             | 1.171                      | -0.505                    |        | 4.39      | -27.43                              | 0.39                             | 1.217                      | -0.428                      |
| 1665 L | 5.72      | 1.82                              | 0.26                             | -1.031                     | 0.462                     | 1667 L | 0.34      | 2.31                                | 0.27                             | 0.138                      | -0.767                      |
|        | 11.80     | 1.21                              | 0.49                             | -0.461                     | -0.458                    |        | 1.53      | 0.37                                | 0.42                             | -1.569                     | -0.719                      |
|        | 1.96      | 0.05                              | 0.26                             | 0.179                      | -0.672                    |        | 3.03      | -0.67                               | 0.60                             | -1.713                     | -0.601                      |
|        | 7.07      | -0.49                             | 0.27                             | 0.009                      | -0.142                    |        | 9.70      | -1.96                               | 0.41                             | -0.039                     | 0.088                       |
|        | 0.63      | -1.09                             | 0.39                             | -0.632                     | -0.559                    |        | 10.38     | -5.56                               | 0.26                             | 0.510                      | 2.302                       |
|        | 776.53    | -1.94                             | 0.40                             | 0.000                      | 0.000                     |        | 59.11     | -6.96                               | 0.30                             | 0.342                      | 0.787                       |
|        | 0.62      | -3.97                             | 0.60                             | -0.404                     | 0.396                     |        | 7.80      | -7.67                               | 0.32                             | 1.102                      | 1.232                       |
|        | 7.75      | -4.72                             | 0.30                             | 0.912                      | 1.193                     |        | 7.45      | -8.80                               | 0.26                             | 1.846                      | 1.641                       |
|        | 11.07     | -5.47                             | 0.31                             | 1.271                      | 1.364                     |        | 1.26      | -9.18                               | 0.35                             | 1.785                      | 1.679                       |
|        | 22.45     | -6.07                             | 0.29                             | 0.799                      | 1.284                     |        | 1.92      | -9.82                               | 0.26                             | 1.811                      | 1.796                       |
|        | 17.42     | -6.25                             | 0.50                             | 0.459                      | 1.436                     |        | 0.34      | -13.24                              | 0.46                             | -0.943                     | 0.101                       |
|        | 56.07     | -6.89                             | 0.37                             | 0.973                      | 1.129                     |        | 3.14      | -26.12                              | 0.36                             | 1.226                      | -0.428                      |

TABLE 88 G353.410-0.361

| Trans. | S<br>(Jy)                            | $v_{\rm LSR} \ ({ m km~s^{-1}})$               | $\Delta v$ (km s <sup>-1</sup> )     | $\Delta \theta_x$ (arcsec)                    | $\Delta \theta_y$ (arcsec)               | Trans.           | S<br>(Jy)                     | $v_{\rm LSR} \ ({ m km~s^{-1}})$     | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec)        | $\Delta\theta_y$ (arcsec)         |
|--------|--------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------|------------------------------------------|------------------|-------------------------------|--------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
| 1665 R | 0.41<br>2.18<br>3.30<br>2.93<br>7.41 | -18.73<br>-19.24<br>-19.50<br>-19.79<br>-20.53 | 0.86<br>0.89<br>0.47<br>0.33<br>0.27 | -0.009<br>-0.017<br>-0.023<br>-0.089<br>0.088 | -0.003 $-0.034$ $0.001$ $0.091$ $-0.013$ | 1665 R<br>1665 L | 0.29<br>0.74<br>19.65<br>3.55 | -25.19<br>-18.61<br>-19.56<br>-20.56 | 0.37<br>0.21<br>0.30<br>0.28     | -0.070<br>0.039<br>0.000<br>0.037 | 0.219<br>0.067<br>0.000<br>-0.021 |

TABLE 89 G355.345+0.146

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v \ (\mathrm{km\ s^{-1}})$ | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|-----------|----------------------------------|------------------------------------|----------------------------|---------------------------|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 0.51      | 22.78                            | 0.35                               | -0.082                     | 0.015                     | 1665 L | 17.16     | 19.72                            | 0.42                             | 0.000                      | 0.000                     |
|        | 0.99      | 17.70                            | 0.53                               | 0.015                      | 0.031                     |        | 15.39     | 18.94                            | 0.73                             | -0.005                     | -0.004                    |
|        | 16.27     | 16.57                            | 0.54                               | -0.005                     | -0.002                    |        | 16.10     | 18.59                            | 0.77                             | -0.005                     | -0.013                    |
|        | 3.00      | 14.99                            | 0.37                               | 0.025                      | 0.018                     |        | 6.76      | 18.01                            | 0.40                             | 0.009                      | 0.008                     |
| 1665 L | 2.94      | 20.46                            | 0.55                               | 0.005                      | 0.019                     |        | 0.32      | 16.18                            | 0.37                             | 0.155                      | 0.141                     |

TABLE 90 G358.235+0.116

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | <i>S</i> ( <b>J</b> y) | $v_{\rm LSR} \ ({ m km~s}^{-1})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|
| 1665 R | 0.38      | -23.65                           | 1.13                             | -0.047                     | 0.311                     | 1667 R | 0.44                   | -24.37                           | 1.07                             | -0.038                     | -0.032                     |
|        | 0.35      | -25.40                           | 0.54                             | 0.011                      | 0.353                     |        | 0.43                   | -25.47                           | 0.51                             | -0.096                     | 0.026                      |
|        | 1.36      | -27.07                           | 0.85                             | -0.059                     | 0.329                     |        | 0.52                   | -26.69                           | 0.67                             | -0.036                     | 0.004                      |
|        | 1.46      | -27.84                           | 0.76                             | -0.061                     | 0.344                     |        | 0.50                   | -26.97                           | 0.85                             | -0.012                     | 0.028                      |
|        | 0.82      | -28.74                           | 0.89                             | -0.053                     | 0.342                     |        | 0.61                   | -28.34                           | 0.54                             | -0.022                     | 0.078                      |
|        | 0.39      | -30.28                           | 0.63                             | -0.039                     | 0.253                     |        | 0.62                   | -30.29                           | 0.49                             | -0.012                     | 0.068                      |
|        | 0.41      | -32.15                           | 0.50                             | -0.015                     | 0.407                     |        | 0.69                   | -30.59                           | 0.49                             | 0.036                      | 0.074                      |
| 1665 L | 0.58      | -21.90                           | 0.47                             | -0.072                     | 0.295                     |        | 0.73                   | -31.20                           | 0.56                             | 0.001                      | 0.019                      |
|        | 0.52      | -22.45                           | 0.44                             | -0.029                     | 0.165                     |        | 0.76                   | -32.16                           | 0.54                             | -0.052                     | -0.003                     |
|        | 0.50      | -22.72                           | 0.65                             | -0.050                     | 0.299                     |        | 0.68                   | -32.40                           | 0.51                             | -0.052                     | 0.007                      |
|        | 1.03      | -23.88                           | 0.50                             | -0.054                     | 0.318                     | 1667 L | 1.12                   | -24.65                           | 0.32                             | 0.008                      | 0.028                      |
|        | 1.93      | -25.48                           | 0.59                             | -0.030                     | 0.332                     |        | 1.33                   | -25.21                           | 0.55                             | 0.011                      | -0.019                     |
|        | 1.91      | -26.20                           | 1.40                             | -0.022                     | 0.310                     |        | 3.68                   | -26.40                           | 0.89                             | 0.000                      | 0.000                      |
|        | 2.12      | -26.85                           | 0.80                             | -0.029                     | 0.342                     |        | 2.65                   | -26.92                           | 1.15                             | -0.012                     | -0.008                     |
|        | 2.58      | -27.64                           | 1.15                             | -0.044                     | 0.333                     |        | 1.77                   | -28.00                           | 0.69                             | -0.015                     | 0.014                      |
|        | 2.90      | -28.34                           | 0.89                             | -0.045                     | 0.332                     |        | 1.32                   | -28.52                           | 0.67                             | 0.009                      | -0.055                     |
|        | 0.77      | -30.02                           | 0.86                             | -0.051                     | 0.271                     |        | 1.06                   | -29.26                           | 0.37                             | -0.037                     | 0.114                      |
|        | 0.99      | -30.56                           | 0.73                             | -0.022                     | 0.332                     |        | 1.21                   | -29.90                           | 0.58                             | 0.033                      | -0.030                     |
|        | 0.73      | -32.12                           | 0.37                             | -0.006                     | 0.346                     |        | 1.70                   | -30.36                           | 0.42                             | -0.020                     | 0.035                      |
|        | 0.25      | -32.99                           | 0.51                             | -0.073                     | 0.425                     |        | 1.15                   | -30.96                           | 0.42                             | -0.003                     | -0.031                     |
| 1667 R | 0.34      | -21.22                           | 0.36                             | -0.090                     | 0.194                     |        | 1.13                   | -31.45                           | 0.51                             | -0.044                     | 0.088                      |
|        | 0.46      | -22.68                           | 0.46                             | -0.039                     | -0.083                    |        | 1.45                   | -32.16                           | 0.39                             | -0.002                     | 0.057                      |
|        | 0.45      | -23.34                           | 0.60                             | -0.012                     | -0.042                    |        | 0.92                   | -32.71                           | 0.39                             | 0.024                      | 0.038                      |

TABLE 91 G359.138+0.032

| Trans. | S<br>(Jy)                                            | $v_{ m LSR} \ ({ m km~s^{-1}})$                             | $\Delta v$ (km s <sup>-1</sup> )             | $\Delta \theta_x$ (arcsec)                                         | $\Delta\theta_y$ (arcsec)                                          | Trans. | S<br>(Jy)                                            | $v_{\rm LSR} \ ({ m km~s^{-1}})$                            | $\Delta v \ (\text{km s}^{-1})$                      | $\Delta \theta_x$ (arcsec)                                        | $\Delta\theta_y$ (arcsec)                                         |
|--------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| 1665 R | 0.44<br>3.18<br>4.84<br>2.86<br>3.30<br>0.44<br>0.47 | -0.08<br>-1.34<br>-2.11<br>-2.54<br>-2.99<br>-3.91<br>-4.26 | 0.42<br>0.65<br>0.49<br>0.76<br>0.75<br>0.90 | -0.453<br>-0.172<br>-0.071<br>-0.043<br>-0.133<br>-0.052<br>-0.037 | -0.724<br>-0.383<br>-0.280<br>-0.037<br>-0.065<br>-0.405<br>-0.644 | 1665 L | 4.72<br>8.25<br>0.84<br>0.28<br>0.28<br>0.44<br>0.48 | -0.20<br>-1.33<br>-2.50<br>-3.43<br>-3.81<br>-5.19<br>-5.63 | 0.38<br>0.47<br>0.64<br>0.73<br>0.41<br>1.06<br>0.52 | -0.142<br>0.000<br>-0.303<br>-0.127<br>-0.066<br>-0.260<br>-0.207 | -0.076<br>0.000<br>-0.217<br>-0.600<br>-0.531<br>-0.280<br>-0.111 |
|        | 0.73<br>1.42                                         | -5.65 $-6.09$                                               | 0.55<br>0.29                                 | -0.221 $-0.306$                                                    | -0.343 $-0.088$                                                    |        | 3.03                                                 | -6.19                                                       | 0.31                                                 | -0.283                                                            | -0.128                                                            |

TABLE 92 G359.436 – 0.103

| Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) | Trans. | S<br>(Jy) | $v_{\rm LSR} \ ({\rm km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta\theta_x$ (arcsec) | $\Delta\theta_{y}$ (arcsec) |
|--------|-----------|----------------------------------|----------------------------------|----------------------------|---------------------------|--------|-----------|-----------------------------------|----------------------------------|---------------------------|-----------------------------|
| 1665 R | 2.58      | -52.12                           | 0.69                             | 0.004                      | 0.027                     | 1665 L | 0.81      | -50.91                            | 0.33                             | -0.013                    | -0.037                      |
|        | 0.65      | -52.78                           | 0.40                             | -0.015                     | 0.114                     |        | 4.80      | -51.83                            | 0.43                             | 0.000                     | 0.000                       |
| 1665 L | 0.82      | -48.02                           | •••                              | -5.364                     | 2.965                     |        |           |                                   |                                  |                           |                             |

TABLE 93 G359.969 – 0.457

| Trans. | S<br>(Jy)     | $v_{ m LSR} \ ({ m km \ s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta \theta_y$ (arcsec) | Trans. | S<br>(Jy)    | $v_{\rm LSR} \ ({ m km~s^{-1}})$ | $\Delta v$ (km s <sup>-1</sup> ) | $\Delta \theta_x$ (arcsec) | $\Delta\theta_y$ (arcsec) |
|--------|---------------|-----------------------------------|----------------------------------|----------------------------|----------------------------|--------|--------------|----------------------------------|----------------------------------|----------------------------|---------------------------|
| 1665 R | 3.84<br>10.38 | 17.13<br>15.64                    | 0.22<br>0.25                     | -0.026 $-0.011$            | -0.159 $-0.024$            | 1665 L | 0.28<br>0.25 | 17.05<br>16.76                   | 0.33<br>0.48                     | -0.089 $-0.063$            | -0.002 $-0.031$           |
|        | 2.58          | 14.35                             | 0.23                             | -0.011 0.021               | -0.024 $0.025$             |        | 4.66         | 15.68                            | 0.48                             | -0.063 $-0.008$            | -0.031 $-0.008$           |
| 1665 L | 2.21          | 17.67                             | 0.30                             | -0.154                     | -0.323                     |        | 13.53        | 14.59                            | 0.32                             | 0.000                      | 0.000                     |



Fig. 2.—Spectra and maps of the sources 60.375+0.041 and 60.547-0.852. (Left) Spectra of the ground-state  $^2\Pi_{3/2}J=3/2$  OH hyperfine transitions labeled by the transition frequency in MHz. Heavy lines indicate right-circularly polarized (RCP) emission and light lines left-circularly polarized (LCP) emission. These spectra were constructed by assigning to each channel the maximum brightness (either positive or negative) in a region of the map, usually  $10'' \times 10''$ , containing the maser emission. The "noise" in these spectra is quantized at  $\approx \pm 2.5 \, \sigma$  and does not follow Gaussian random statistics. A few strong sources have spurious features, labeled "artifacts," which occur at the LSR velocity of strong features in neighboring sources within the primary beam of an individual VLA antenna. (Right) OH maser features superposed on 8.4 GHz continuum maps. The "stars" represent 1665, the "squares" 1667, the "triangles" 1612, and the "circles" 1720 MHz masers. Filled symbols are for LCP emission and unfilled symbols are for RCP emission. See Tables 3–93 for detailed positions, LSR velocities, and line widths for each maser feature. The 8.4 GHz continuum contours start at 4 times the rms noise levels (see Table 2) and increase by factors of 2. The maximum of the lower continuum plot is 10.1 mJy beam $^{-1}$ . The restoring beam is shown as a shaded ellipse in the lower right hand corner. Maps are labeled with offsets from the position of the strongest OH maser feature, whose absolute position is given in Table 1.





Fig. 3.—Spectrum and map of the source G0.658-0.043 (Sgr B2S). See Fig. 2 caption for details. Short (u, v)-spacings  $(<50 \text{ k}\lambda)$  were very poorly sampled and therefore omitted in the imaging of the continuum source. Component H was found to have a peak flux density of 18.0 mJy beam  $^{-1}$ . See also Benson & Johnston (1984). Note that twice the spectral range of the previous two sources is covered here.



Fig. 4.—Spectrum and map of the source G0.666-0.034 (Sgr B2M). See Fig. 2 caption for details. Short (u, v)-spacings  $(<50 \text{ k}\lambda)$  were very poorly sampled and therefore omitted in the imaging of the continuum source. Component F was found to have a peak flux density of 76.9 mJy beam<sup>-1</sup>. See also Benson & Johnston (1984).



Fig. 5.—Spectra and maps of the sources G0.670-0.058 (Sgr B2) and G0.672-0.031 (Sgr B2N). See Fig. 2 caption for details. See also Gaume & Mutel (1987).





 $Fig. \ \ 6. — Spectrum \ and \ map \ of \ the \ source \ G0.678 - 0.027 \ (Sgr \ B2). \ See \ Fig. \ 2 \ caption \ for \ details.$ 



Fig. 7.—Spectra and maps of the sources G2.143+0.010, G5.886-0.393, and G6.049-1.447. See Fig. 2 caption for details. The maxima of the upper, middle, and lower continuum plots are 1.5, 74.9, and 1.9 mJy beam  $^{-1}$ , respectively.



Fig. 8.—Spectra and maps of the sources G9.622+0.195, G10.624-0.385, and G12.210-0.102. See Fig. 2 caption for details. The maxima of the upper, middle, and lower continuum plots are 23.0, 58.3, and 5.9 mJy beam<sup>-1</sup>, respectively.



Fig. 9.—Spectra and maps of the sources G12.216-0.117, G12.680-0.181 (W33 B), and G12.890+0.488. See Fig. 2 caption for details. The maximum of the upper continuum plot is 3.8 mJy beam  $^{-1}$ .



Fig. 10.—Spectra and maps of the sources G12.908 - 0.259 (W33 A), G17.639 + 0.155, and G20.081 - 0.135. See Fig. 2 caption for details. The maxima of upper and lower continuum plots are 0.7 and 33.7 mJy beam  $^{-1}$ , respectively. The W33 A continuum source was reimaged from one hour of VLA A array archive data (Ho, 1990 April 18).



Fig. 11.—Spectra and maps of the sources G28.147-0.005, G28.199-0.048, and G30.589-0.044. See Fig. 2 caption for details. The maxima of the middle and lower continuum plots are 35.2 and 22.7 mJy beam $^{-1}$ , respectively.



Fig. 12.—Spectra and maps of the sources G30.703-0.069, G31.412+0.307, and G32.744-0.076. See Fig. 2 caption for details. The maxima of the middle and lower continuum plots are 4.2 and 8.5 mJy beam<sup>-1</sup>, respectively.



Fig. 13.—Spectra and maps of the sources G34.257 + 0.154, G35.024 + 0.350, and G35.197 - 0.743. See Fig. 2 caption for details. The maxima of the upper, middle, and lower continuum plots are 52.9, 5.8, and 1.2 mJy beam  $^{-1}$ , respectively. See also Benson & Johnston (1984) (upper plot).



Fig. 14.—Spectra and maps of the sources G35.200-1.736, G35.577-0.029, and G40.622-0.137. See Fig. 2 caption for details. The maxima of the upper, middle, and lower continuum plots are 23.4, 24.6, and 1.4 mJy beam $^{-1}$ , respectively.



FIG. 15.—Spectra and maps of the sources G43.148 + 0.015 (W49) and G43.165 – 0.028 (W49 S). See Fig. 2 caption for details. The continuum sources were reimaged from 6.5 hr of VLA B array archive data (DePree, 1994 August 27) and the maxima of the upper and lower plots were found to be 116.2 and 196.3 mJy beam $^{-1}$ , respectively. The Components  $I_2$ ,  $J_1$ , and  $J_2$  are labeled in the upper plot. See also Wink & Altenhoff (1975) (upper plot) and Gaume & Mutel (1987) (lower plot).



Fig. 16.—Spectra and maps of the sources G43.167 + 0.010 (W49 N) and G43.796 - 0.127. See Fig. 2 caption for details. The W49 N continuum source was reimaged from 6.5 hours of VLA B array archive data (DePree, 1994 August 27) and the maximum was found to be 298.6 mJy beam<sup>-1</sup>. The components A, B, C, D, F, and G are labeled. See also Dreher et al. (1984). The maximum of the lower continuum plot is 28.7 mJy beam<sup>-1</sup>.



Fig. 17.—Spectra and maps of the sources G45.071 + 0.134, G45.122 + 0.133, and G45.455 + 0.060. See Fig. 2 caption for details. The maxima of the upper and middle continuum plots are 33.8 and 32.6 mJy beam<sup>-1</sup>, respectively.



Fig. 18.—Spectra and maps of the sources G45.465 + 0.047 and G45.472 + 0.134. See Fig. 2 caption for details.



Fig. 19.—Spectra and maps of the sources G49.469 - 0.370 (W51) and G49.488 - 0.387 (W51 M, the region associated with " $e_2$ " and W51 S, the region associated with " $e_1$ "). See Fig. 2 caption for details. The G49.488 - 0.387 continuum source was reimaged from 2 hours of VLA A array archive data (Mehringer, 1992 October 25). Short (u, v)-spacings (<40 k $\lambda$ ) were very poorly sampled and therefore omitted in the imaging of this source. The maximum was found to be 16.7 mJy beam $^{-1}$ . See also Gaume & Mutel (1987).



Fig. 20.—Spectra and maps of the sources G49.489 – 0.368 (W51 N) and G49.491 – 0.376 (W51). See Fig. 2 caption for details. The continuum sources were reimaged from 2 hr of VLA A array archive data (Mehringer, 1992 October 25). Short (u, v)-spacings ( $<40 \text{ k}\lambda$ ) were very poorly sampled and therefore omitted in the imaging of these continuum sources. The maxima for the left and right continuum plots were found to be 22.9 and 15.0 mJy beam<sup>-1</sup>, respectively. The components IRS<sub>2</sub> and IRS<sub>1</sub> are labeled. See also Gaume & Mutel (1987).



Fig. 21.—Spectra and maps of the sources G69.540-0.976 (ON 1), G70.293+1.601 (K3–50), and G70.329+1.590 (ON 3). See Fig. 2 caption for details. The maxima of the upper, middle, and lower continuum plots are 35.0, 49.7, and 24.3 mJy beam<sup>-1</sup>, respectively. Components A and  $C_1$  are labeled. See also Forster et al. (1978) (upper plot) and Winnberg et al. (1981) (middle and lower plots).



Fig. 22.—Spectra and maps of the sources G75.761 + 0.340 (ON 2 S), G75.782 + 0.343 (ON 2 N), and G80.864 + 0.421. See Fig. 2 caption for details. The maxima of the middle and lower continuum plots are 3.5 and 22.9 mJy beam  $^{-1}$ , respectively. See also Cato et al. (1976) (middle plot).



Fig. 23.—Spectra and maps of the sources G81.721 + 0.571 (W75 S), G81.745 + 0.590 (W75), and G81.871 + 0.781 (W75 N). See Fig. 2 caption for details. The W75 S continuum source was imaged from 2.8 hours of VLA A array archive data (Wootten, 1994 April 08), using only 18 antennas. In addition, short (u, v)-spacings ( $<90 \text{ k}\lambda$ ) were very poorly sampled and therefore omitted in the imaging of the continuum source. The experiment was plagued with problems, but a compact component of 3.1 mJy beam<sup>-1</sup> was found. The W75 N continuum source (our observations) was found to have a maximum of 1.7 mJy beam<sup>-1</sup>.



Fig. 24.—Spectra and maps of the sources G97.527 + 3.184, G109.871 + 2.114 (Cep A), and G111.533 + 0.757 (NGC 7538). See Fig. 2 caption for details. The maxima of the upper and middle continuum plots are 0.9 and 3.6 mJy beam<sup>-1</sup>, respectively. See also Lada et al. (1981) (*middle plot*).



Fig. 25.—Spectra and maps of the sources G111.543 + 0.777 (NGC 7538) and G126.715 - 0.822. See Fig. 2 caption for details. The maxima of the upper and lower continuum plots are 29.2 and 1.5 mJy beam  $^{-1}$ , respectively. See also Cato et al. (1976) (upper plot).



Fig. 26.—Spectra and maps of the sources G133.715+1.215 (W3) and G133.946+1.064 (W3 OH). See Fig. 2 caption for details. Short (u, v)-spacings  $(<125 \text{ k}\lambda)$  were very poorly sampled for the W3 continuum source and were therefore omitted in the imaging of this source. The maxima of the upper and lower continuum plots are 5.7 and 56.9 mJy beam<sup>-1</sup>, respectively. Component M is labeled. See also Colley (1980) (upper plot).



 $Fig. \ \ 27. — Spectra \ and \ maps \ of the sources \ G173.481 + 2.445 \ (S231), \ G188.946 + 0.886 \ (S252), \ and \ G196.454 - 1.677 \ (S269). \ See \ Fig. \ 2 \ caption \ for \ details.$ 



Fig. 28.—Spectra and maps of the sources G213.706-12.60 (Mon R2), G337.707-0.051, and G340.785-0.095. See Fig. 2 caption for details. The maxima of the middle and lower continuum plots are 54.3 and 12.2 mJy beam<sup>-1</sup>, respectively. G337.707-0.051 is our southernmost source and can be expected to have a high declination error (see text). A comparison with Caswell's (1998) ATCA position reveals a probable declination error of 8".



Fig. 29.—Spectra and maps of the sources G341.219 - 0.212, G343.128 - 0.063, and G344.227 - 0.568. See Fig. 2 caption for details. The maximum of the middle continuum plot is 3.5 mJy beam  $^{-1}$ .



Fig. 30.—Spectra and maps of the sources G344.581-0.022 and G345.003-0.224. See Fig. 2 caption for details. The maxima of the upper and lower continuum plots are 2.6 and 64.5 mJy beam<sup>-1</sup>, respectively. See also Gaume & Mutel (1987) (lower plot).



Fig. 31.—Spectra and maps of the sources G345.011 + 1.792, G345.488 + 0.313, and G345.505 + 0.347. See Fig. 2 caption for details. The maxima of the upper and middle continuum plots are 66.5 and 48.3 mJy beam $^{-1}$ , respectively.



Fig. 32.—Spectra and maps of the sources G345.699 - 0.090, G347.628 + 0.149, and G348.549 - 0.978. See Fig. 2 caption for details. The maxima of the middle and lower continuum plots are 28.1 and 2.4 mJy beam  $^{-1}$ , respectively. See also Gaume & Mutel (1987) (lower plot).



Fig. 33.—Spectra and maps of the sources G348.698-1.027, G350.011-1.341, and G350.113+0.095. See Fig. 2 caption for details. The maximum of the lower continuum plot is 36.7 mJy beam  $^{-1}$ .



Fig. 34.—Spectra and maps of the sources G351.161+0.697 (NGC 6334 B) and G351.232+0.682 (NGC 6334). See Fig. 2 caption for details. The maximum of the upper continuum plot is  $1.3 \text{ mJy beam}^{-1}$ .



Fig. 35.—Spectra and maps of the sources G351.416 + 0.646 (NGC 6334 F) and G351.582 - 0.352. See Fig. 2 caption for details. The maxima of the upper and lower continuum plots are 98.2 and 73.4 mJy beam $^{-1}$ , respectively.



Fig. 36.—Spectra and maps of the sources G351.775-0.538 and G353.410-0.361. See Fig. 2 caption for details. The maxima of the middle and lower continuum plots are 11.5 and 49.3 mJy beam<sup>-1</sup>, respectively.



Fig. 37.—Spectra and maps of the sources G355.345+0.146, G358.235+0.116, and G359.138+0.032. See Fig. 2 caption for details. The maximum of the upper continuum plot is 17.5 mJy beam  $^{-1}$ .



Fig. 38.—Spectra and maps of the sources G359.436 - 0.103 and G359.969 - 0.457. See Fig. 2 caption for details.

## REFERENCES

Gaume, R. A., & Mutel, R. L. 1987, ApJS, 65, 193
Haschick, A. D., Reid, M. J., Burke, B. F., Moran, J. M., & Miller, G. 1981, ApJ, 244, 76
Kent, S. R., & Mutel, R. L. 1982, ApJ, 263, 145
Lada, C. J., Blitz, L., Reid, M. J., & Moran, J. M. 1981, ApJ, 243, 769
Masheder, M. R. W., Field, D., Gray, M. D., Migenes, V., Cohen, R. J., & Booth, R. S. 1994, A&A, 281, 871
Norris, R. P., Booth, R. S., & Diamond, P. J. 1982a, MNRAS, 201, 209
Norris, R. P., Booth, R. S., Diamond, P. J., & Porter, N. D. 1982b, MNRAS, 201, 191
Reid, M. J., Haschick, A. D., Burke, B. F., Moran, J. M., Johnston, K. J., & Swenson, G. W., Jr. 1980, ApJ, 239, 89
Reid, M. J., Schneps, M. H., Moran, J. M., Gwinn, C. R., Genzel, R., Downes, D., & Rönnäng, B. 1988, ApJ, 330, 809
Wink, J. E., & Altenhoff, W. J. 1975, A&A, 38, 109
Winnberg, A., Terzides, Ch., & Matthews, H. E. 1981, AJ, 86, 410
Zheng, X. 1989, Chinese Astron. Astrophys., 13, 336

-. 1997, Chinese Astron. Astrophys., 21, 182

Forster, J. R., Welch, W. J., Wright, M. C. H., & Baudry, A. 1978, ApJ, 221,