21장 수치미분

21장 수치미분

자유 낙하하는 번지 점프하는 사람의 속도와 이를 적분하여 구한 낙하거리는 다음과 같다.

 $v(t) = \sqrt{\frac{gm}{c_d}} \tanh \left(\sqrt{\frac{gc_d}{m}} t \right) \qquad \Longrightarrow \qquad z(t) = \frac{m}{c_d} \ln \left[\cosh \left(\sqrt{\frac{gc_d}{m}} t \right) \right] \qquad \text{in 198}^t.$

위 문제의 역을 고려해보자. 즉 낙하한 거리를 미분하여 번지 점프하는 사람의 속도와 가속도를 구한다.

$$v(t) = \frac{dz(t)}{dt}$$

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh \left(\sqrt{\frac{gc_d}{m}}t\right)$$

$$a(t) = \frac{dv(t)}{dt} = \frac{d^2z(t)}{dt^2}$$

$$a(t) = g \operatorname{sech}^2\left(\sqrt{\frac{gc_d}{m}}t\right)$$

- 미분이란 무엇인가?
 - 도함수 : 독립변수에 대한 종속변수의 변화율

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x} \qquad \Longrightarrow \qquad \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x} = y' = f'(x_i)$$

차분 근사

도함수

• 1차 도함수 : 곡선의 한 점에서 접선의 구배

• 2차 도함수 : 구배가 얼마나 빨리 변하는지의 정도, 곡율

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

• <mark>편도함수는</mark> 한 개 이상의 변수에 의존하는 함수에 대해 사용한다. 한 개의 변수를 고정시키고, 한 점에서 함수의 도함수를 취한다.

$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

- 공학과 과학에서의 미분
 - Fourier의 열전도 법칙 : 고온 영역에서 저온 영역으로의 열전달을 정량화함.

$$q = -k \frac{dT}{dx}$$

여기서, q = 열플럭스(W/m2), k = 열전도계수[W/(m·K)]T = 온도(K), x = 길이(m)

〈공학과 과학에서 널리 사용되는 1차원 구성 법칙〉

법칙	방정식	물리 분야	구배	플럭스	비례상수
Fourier 법칙	$q = -k \frac{dT}{dx}$	열전도	온도	열플럭스	열전도계수
Fick 법 칙	$J = -D\frac{dc}{dx}$	물질 확산	농도	질량 플럭스	확산계수
D'Arcy 법칙	$q = -k \frac{dh}{dx}$	다공질 매체를 통과하는 유동	수두	유동 플럭스	수력 전도계수
Ohm 법칙	$J = -\sigma \frac{dV}{dx}$	전류	전압	전류 플럭스	전기 전도계수
Newton 점성법 칙	$\tau = -\mu \frac{du}{dx}$	유체	속도	전단 응력	동점성계수
Hooke 법칙	$\sigma = E \frac{\Delta L}{L}$	탄성	변형	응력	탄성계수

- 4장에서 Taylor series expansion을 이용하여 도함수에 대한 유한 차분 근사를 유도하였다. 1차 및 고차 도함수에 대한 전향, 후향, 중심 유한차분 근사를 소개하였음
- 정확도의 수준은 사용하는 Taylor series의 항의 개수에 따른다.
- 예를 들면, $f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + L$

■ 2차 이상의 도함수 항을 무시하면, 전향차분 공식은 다음과 같다(4장).

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)^{k}$$

21장 수치미분

$$0 + (x_{n+1}) = f(x_n) + f(x_n)h + \frac{f''(x_n)}{2}h^2 + \cdots$$

(2)
$$f(x_{n+2}) = f(x_n) + f(x_n)(2h) + f''(x_n)(2h^2) + \cdots$$

$$f''(x_{i}) = \frac{f(x_{i}+x_{i}) - 2f(x_{i}+x_{i}) + f(x_{i})}{h^{2}} + dh)$$

$$f''(x_{i}) = \frac{f(x_{i}+x_{i}) - 2f(x_{i}+x_{i}) + f(x_{i})}{h^{2}} + 3f(x_{i})$$

$$f''(x_{i}) = \frac{f(x_{i}+x_{i}) + 4f(x_{i}+x_{i}) + 3f(x_{i})}{h^{2}} + \frac{1}{2}f(x_{i}+x_{i})$$

+ o(h2)

■ 2차 도함수에 대한 전향차분 근사 (4장 참조)

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)$$

■ 식 (21.13)에 대입하면,

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{2h^2}h + O(h^2)$$

■ 다시 정리하면,

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} + O(h^2)$$

■ 2차 도함수를 고려함으로써 정확도를 O(h²)으로 향상시켰다.

Forward Finite-Difference

First Derivative
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} \qquad O(h)$$

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} \qquad O(h^2)$$
Second Derivative
$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} \qquad O(h^2)$$
Third Derivative
$$f'''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2} \qquad O(h^2)$$
Third Derivative
$$f'''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3} \qquad O(h)$$

$$f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3} \qquad O(h^2)$$
Fourth Derivative
$$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4} \qquad O(h)$$

$$f''''(x_i) = \frac{-2f(x_{i+4}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4} \qquad O(h^2)$$

Backward Finite-Difference

First Derivative
$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} \qquad O(h)$$

$$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} \qquad O(h^2)$$
Second Derivative
$$f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2} \qquad O(h)$$

$$f''(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2} \qquad O(h^2)$$
Third Derivative
$$f'''(x_i) = \frac{f(x_i) - 3f(x_{i-1}) + 3f(x_{i-2}) - f(x_{i-3})}{h^3} \qquad O(h)$$

$$f'''(x_i) = \frac{5f(x_i) - 18f(x_{i-1}) + 24f(x_{i-2}) - 14f(x_{i-3}) + 3f(x_{i-4})}{2h^3} \qquad O(h^2)$$
Fourth Derivative
$$f''''(x_i) = \frac{f(x_i) - 4f(x_{i-1}) + 6f(x_{i-2}) - 4f(x_{i-3}) + f(x_{i-4})}{h^4} \qquad O(h)$$

$$f''''(x_i) = \frac{3f(x_i) - 14f(x_{i-1}) + 26f(x_{i-2}) - 24f(x_{i-3}) + 11f(x_{i-4}) - 2f(x_{i-5})}{h^4} \qquad O(h^2)$$

 $f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4}$

Centered Finite-Difference

Error

 $O(h^2)$

 $O(h^4)$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$$

$$O(h^2)$$
Second Derivative
$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$

$$O(h^2)$$

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$$

$$O(h^2)$$
Third Derivative
$$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^3}$$

$$O(h^2)$$

$$f'''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3}$$

$$O(h^2)$$

 $f''''(x_i) = \frac{-f(x_{i+3}) + 12f(x_{i+2}) + 39f(x_{i+1}) + 56f(x_i) - 39f(x_{i-1}) + 12f(x_{i-2}) + f(x_{i-3})}{6h^4}$

Fourth Derivative

First Derivative

21.7 MATLAB을 이용한 수치미분

MATLAB 함수: gradient

fx = gradient(f)

f =원소의 수가 n인 1차원 벡터 $f_X = f$ 에 기초하여 계산된 n 개의 차분을 포함하는 벡터이다.

- 함수 gradient는 차분을 계산하여 반환한다. 그러나 반환되는 차분은 주어 진 값 사이의 구간에서보다는, 그 값에서의 도함수를 구하게 된다.
- 만일 벡터가 등간격으로 주어진 데이터를 나타낸다면, 다음 구문은 간격으로 나누어 계산한 도함수 값을 반환한다.

fx = gradient(f, h)

h= 데이터 점들 사이의 간격

예제 21.5 (gradient를 사용한 미분)

Q. MATLAB 함수 gradient를 사용하여 다음의 함수를 미분하라.

풀이) 독립변수와 종속변수의 등간격 값을 생성한다.

예제 21.5 (gradient를 사용한 미분)

gradient 함수를 이용하여 도함수를 구한다.

```
| Solution | Solution
```

수치해와 해석해를 그린다.

```
>> xa=0: .01:.8;

>> ya=25-400*xa+3*675*xa.^2-4*900*xa.^3+5*400*xa.^4;

>> plot(x, dy, 'o', xa, ya)
```

예제 21.5 (gradient를 사용한 미분)

(중심차분근사 사용)

$$f'(x_i) = \frac{f(x_1) - f(x_1)}{2h} - 0(h^2)$$

정확한 도함수 값(실선)과 MATLAB의 gradient 함수를 사용해서 계산한 수치 결과(원)의 비교.