Quality Aware Generative Adversarial Networks

Parimala Kancharla, Sumohana S. Channappayya Indian Institute of Technology Hyderabad Email: {ee15m17p100001,sumohana}@iith.ac.in

Objective and Approach

- ► Goal: To design quality aware regularizers for training Generative Adversarial Networks.
- ► Approach: Using the full reference IQA algorithm (SSIM) and No reference IQA algorithm (NIQE).

Background

- ▶ Generative Adversarial Networks (GANs) [1] are generative models designed to learn the probability distribution of data that is aided by adversarial learning.
- ▶ A GAN is composed of two models: the generator model $G(z; \theta_G)$ and the discriminator model $D(x; \theta_D)$.
- Objective function: $\min \max_{D} V(D, G) = E_{x \sim p_{data}(x)}[\log(D(x))] + E_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$
- WGAN [2]

$$W(p_r, p_{\theta}) = \max_{w \in W} E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_{\theta}(z))]$$

Lipschitz constraint enforced by weight clipping $w \in [-c, c]$.

- WGAN-GP [3]
- Duality:

 D_w is 1-lipschitz function w.r.t $||.||_2$ norm $\implies ||\nabla D_w(x)||_2 \le 1 \ \forall x \in \mathbb{R}^n$.

► Gradient penalty for discriminator loss to impose the lipschitz constraint.

$$L = E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_\theta(z))] + \lambda E_{\hat{x}}(||\nabla D_w(\hat{x})||_2 - 1)^2$$

Nhere the distribution of \hat{X} is taken to be the uniform distributions on lines connecting points drawn from $p_{g_{\theta}(z)}$ and p_r .

Structural Similarity Index (SSIM) [4]

SSIM($P_{(i,j)}, T_{(i,j)}$) = $L(P_{(i,j)}, T_{(i,j)}).C(P_{(i,j)}, T_{(i,j)}).S(P_{(i,j)}, T_{(i,j)})$ where P, T refer to the pristine and test image respectively. $L(P_{(i,j)}, T_{(i,j)}), C(P_{(i,j)}, T_{(i,j)}), S(P_{(i,j)}, T_{(i,j)})$ are the local luminance, contrast and structure scores at pixel (i,j) respectively. Further,

$$L(P_{(i,j)}, T_{(i,j)}) = \frac{2\mu_P(i,j)\mu_T(i,j) + C_1}{\mu_P^2(i,j) + \mu_T^2(j,j) + C_1}$$

$$C(P_{(i,j)}, T_{(i,j)}) = \frac{2\sigma_P(i,j)\sigma_T(i,j) + C_2}{\sigma_P^2(i,j) + \sigma_T^2(i,j) + C_2}$$

$$S(P_{(i,j)}, T_{(i,j)}) = \frac{\sigma_{PT}(i,j) + C_3}{\sigma_P(i,j)\sigma_T(i,j) + C_3}$$

The valid distance metric can be derived from the components of the SSIM index by $C_3 = C_2/2$ [5].

$$d^{Q}(P_{(i,j)}, T_{(i,j)}) = \sqrt{2 - L(P_{(i,j)}, T_{(i,j)}) - CS(P_{(i,j)}, T_{(i,j)})}$$

This is a bounded metric : $0 \le d^Q(x, y) \le \sqrt{2}$.

Structural Similarity Index

Figure: Same MSE! but different perceptual quality.

MSCN Coefficients

Figure: MSCN Coefficients

Empirical Histogram of MSCN coefficients

Figure: The empirical histograms of MSCN coefficients

NIQE (No reference Image quality evaluator) [7]

- ▶ NIQE builds a statistical model for the class of pristine natural scenes.
- Specifically, it models MSCN pristine image coefficients [6] using a GGD and AGGD.

Mean subtracted contrast normalization: $\hat{I}(i,j) = \frac{I(i,j) - \mu(i,j)}{\sigma(i,j) + 1}$

- ► The parameters of these GGD and AGGD models are in turn modeled using a Multivariate Gaussian (MVG) distribution.
- ▶ NIQE score: the "distance" of its MVG parameters μ_T, Σ_T from the pristine MVG parameters.

$$D(\mu_P, \mu_T, \Sigma_P, \Sigma_T) = \sqrt{(\mu_P - \mu_T)^T \left(\frac{\Sigma_P + \Sigma_T}{2}\right)^{-1} (\mu_P - \mu_T)}$$

QAGAN -SSIM

▶ The underlying image metric needs to be perceptually correlated.

SSIM GP =
$$E_{X \sim P_r, Y \sim P_G} \left[\left(\frac{|D(X) - D(Y)|}{d^Q(X, Y)} \right) - 1 \right]^2$$

The overall discriminator loss function is

$$L_d = \min_{D \in \mathcal{D}} \left(E_{z \sim P_z} D(G(z)) - E_{X \sim P_r} D(X) \right) + \lambda_1 E_{\hat{x} \sim P_{\hat{x}}} (||\nabla_{\hat{x}} D(\hat{x})||_2 - 1)^2 + \\ \lambda_2 E_{X \sim P_r, G(z) \sim P_G} \left[\left(\frac{|D(X) - D(G(z))|}{d^Q(X, G(z))} \right) - 1 \right]^2$$

where λ_1 and λ_2 are empirically chosen.

QAGAN -NIQE

- ► Motivation: To preserve the MSCN coefficients of the discriminator gradient map.
- ► The naturalness of a test discriminator gradient image *T* is computed to be its "distance" from the pristine image gradient class.

$$L_d = \min_{D \in \mathcal{D}} \left(E_{z \sim P_z} D(G(z)) - E_{X \sim P_r} D(X) \right) + \lambda_1 E_{\hat{x} \sim P_{\hat{x}}} (||\nabla_{\hat{x}} D(\hat{x})||_2 - 1)^2 + \\ \lambda_2 E_{\hat{x} \sim P_{\hat{x}}} (||(\nabla_{\hat{x}} D(\hat{x})|\mu_P, \Sigma_P)||_{\mathsf{NIQE}})$$

where λ_1 and λ_2 are hyper parameters chosen empirically. As before, \hat{x} is sampled from a line joining the real and fake image distributions.

Qualitative and Quantitative results

Figure: Images generated using QAGANs with quality aware distance metric regularizer (SSIM).

Figure: Images generated using QAGANs with quality aware distance metric regularizer (SSIM).

		Model	IS	FID	Model	IS	FID
		Real data	11.24 ± 0.12	7.80	Real data	11.24 ± 0.12	7.80
Model	FID	DCGAN	6.16 ± 0.07	-	DCGAN	6.16 ± 0.07	-
Real Faces (CelebA)	1.09	WGAN-GP	7.86 ± 0.10	40.2 ± 0.0	WGAN-GP	7.86 ± 0.10	40.2 ± 0.0
WGAN-GP	12.89	CTGAN	8.12 ± 0.12	-	CTGAN	8.12 ± 0.12	-
Banach WGAN	10.5	SNGAN	8.12 ± 0.12	21.5 ± 0.21	SNGAN	8.12 ± 0.12	21.5 ± 0.21
MMD GAN-rep-b	6.79	$W^{-\frac{3}{2},2}$ - Banach WGAN	8.26 ± 0.07	-	$W^{-\frac{3}{2},2}$ - Banach WGAN	8.26 ± 0.07	-
QAGAN (SSIM)	6.421	\mathcal{L}^{10} - Banach WGAN	8.31 ± 0.07	-	L ¹⁰ - Banach WGAN	8.31 ± 0.07	-
QAGAN (NIQE)	6.504	MMD GAN-rep-b	8.29 ± 0.0	16.21 ± 0.0	MMD GAN-rep-b	8.29 ± 0.0	16.21 ± 0.0
		QAGAN (SSIM)	$\textbf{8.37} \pm \textbf{0.04}$	$\textbf{13.91} \pm \textbf{0.105}$	QAGAN (SSIM)	$\textbf{8.37}\pm\textbf{0.04}$	$\textbf{13.91} \pm \textbf{0.105}$
		QAGAN (NIQE)	$\textbf{7.87}\pm\textbf{0.027}$	$12.4697 \pm\ 0.068$	QAGAN (NIQE)	$\textbf{7.87}\pm\textbf{0.027}$	$12.4697 \pm\ 0.068$

▶ IS and FID scores on CelebA, STL-10 and CIFAR-10 datasets respectively.

Conclusions

- ► Based on insights from both FR and NR IQA metrics, we have proposed two novel regularization approaches for the WGAN-GP framework.
- ► The key takeaway from our work is that the unique local structural and statistical signature of pristine natural images must be preserved in the generated images.

References

- ► https://www.iith.ac.in/~lfovia/
- Ian Goodfellow et al. Generative adversarial nets. In: Advances in neural information processing systems.
- Martin Arjovsky, Soumith Chintala, and Lon Bottou. Wasserstein generative adver- sarial networks. In: International Conference on Machine Learning . 2017
- Ishaan Gulrajani et al. Improved training of wasserstein gans. In: Advances in Neural Information Processing Systems . 2017, pp. 57675777.
 Zhou Wang et al. Image quality assessment: from error visibility to structural similarity. In: IEEE transactions on image processing 13.4 (2004), pp. 600612
- Zhou Wang et al. Image quality assessment: from error visibility to structural similarity. In: IEEE transactions on image processing 13.4 (2004), pp. 60061.
 Dominique Brunet, Edward R Vrscay, and Zhou Wang. On the mathematical properties of the structural similarity index. In: IEEE Transactions on Image Processing 21.4 (2011), pp. 14881499.
- Daniel L Ruderman. The statistics of natural images. In: Network: computation in neural systems 5.4 (1994), pp. 517548
- Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a completely blind image quality analyzer. In: IEEE Signal Processing Letters 20.3 (2013), pp. 200313

