Lösungsstrategien für NP-schwere Probleme der Kombinatorischen Optimierung

— Übungsblatt 8 —

Walter Stieben (4stieben@inf)

Tim Reipschläger (4reipsch@inf)

Louis Kobras (4kobras@inf)

Hauke Stieler (4stieler@inf)

Abgabe am: 20. Juni 2016

Aufgabe 8.1

Zunächst sei bemerkt, dass $c(T) \leq c(H^*)$ gilt, alle Kanten in T haben weniger oder gleich viele Kosten wie die aus H^* .

Beweis: T ist ein minimaler Spannbaum, man kann also keine Kanten weglassen und trotzdem einen zusammenhängenden Graphen haben und die vorhandenen Kanten sind diejenigen mit minimalem Gewicht womit $c(T) \not> c(H^*)$ gilt.

Vor dem Bilden von T^+ gilt für T die Ungleichung $c(T) < c(H^*)$. Da T ein Baum ist und keinen Zyklus bildet, enthält T keine Tour für das Δ -TSP, somit kann $c(T) = c(H^*)$ nie gelten und es gilt $c(T) < c(H^*)$.

Durch die Hinzunahme von M gibt es einen Zyklus für das Δ -TSP, somit ist $c(T^+) = c(H^*)$, zudem ist $c(T^+) = c(H) = c(T) + c(M)$. aus (*) wissen wir, dass $c(M) \leq \frac{1}{2} \cdot c(H^*)$ gilt. Da alle Kanten aus T^+ in H^* enthalten sind gilt für T^+ :

$$c(T^+) = c(H) = c(T) + c(M) \le c(H^*) + \frac{1}{2} \cdot c(H^*) = \frac{3}{2} \cdot c(H^*)$$

Insgesamt gilt also $c(H) \leq \frac{3}{2} \cdot c(H^*)$.

Aufgabe 8.2

Walter Stieben, Tim Reipschläger, Louis Kobras, Hauke Stieler

Seite 1 von 1