CLIF ANDERSON ISLA SALINAS

AGRIN = 45,525 KJ RI NO DEPONEDINEA

· Hallamos la Pala quila Rx es ospuntanta

$$P = \frac{m}{V} \rightarrow V = \frac{m}{P} \qquad V_{\text{cuarzo}} = \frac{60.089/mol}{2.6489/m^3} = 22.689 \text{ cm}^3/mol}$$

$$Vestis = \frac{60.089/mc1}{4.2879/m³} = 14,014cm³/ms1$$

· Para que la Rx sne respontence AGRXN(PCTE)=0

Sr SO4 -> Sr2+ SO42-

1) Hellemas la concentración activa { }

15042-1= 85097- x 1x4x10-4

· |S=+ = 1,8102,10-6 M

-1502-1= 1,2068,104 H

2) Hallams la AGAM

AGRAN = AGRAN + R.T. In K

· AGRAN = (-557.3 -741.9) + 1335.8 KS/mal

DG9RXW = 36,6 143/mul

DGRW= 36.6 K5 + 8,34 J v (25+27315)K.In /5,2+1 /50,2-4

DGRW= 36.6 KJ + 8,314 x 298,15 x 103 KJ x In (1,8102x10-6x1,2068x10-4) DGRXN = - 18,540 KJ RX. ESPONTANEA

Usemos la lay extendita

I=0.001 0/09 8512+=-0509x (2)2x(103)1/2

8512+= 0.862 = Now2-

· log 1/2 = 10.509 x (-2)x (10-3)/2

(2)

NO2(9) - NU(9) + O2(9); [NO2] = 0.056H

a) [NO2] ? dospos da I hora

Heller la Ky bl oidon (n)

 $\frac{1.93 \cdot 10^{44}}{1_{135 \cdot 10^{45}}} = \left(\frac{5.40 \cdot 10^{5}}{1_{135 \cdot 10^{45}}}\right)^{0}$ $\frac{1.93 \cdot 10^{44}}{5.40 \cdot 10^{-5}} = \left(\frac{0.015}{0.010}\right)^{6}$

 $\frac{0.010}{0.005} = \left(\frac{5,40}{1,35}\right)^{n}$ $2 = 4^{n}$ $1.22,10^{-4} = K.[0.015)$ $1.22,10^{-3} = K.[0.015)$ $1.233 \times 10^{-3} = 1$

This is the state of the state

Hellomos la [] f en 1 hora

-8,13 × 10³, 60 m/s × 60 s/s g^{4} = [NU₂]^{1/2} - 0.056 - Kt = [NU₂]^{1/2} - [NU₂]^{1/2}

 $[NO_2]^{1/2} = 0.056^{1/2} - \frac{8.13.10\frac{3}{4}60^2}{2}$

Siel pH= 10,5 poH= 8,5 [OH]=10^{-3,5}H

Alc = - 34,15 mg/L

Grafica de la pregunta 7

	_				_				
рН	[H*]	Denominador	a0	a1	a3	pH2CO3	pHCO3-	pCO2-	ОН
0	1.00E+00	1.00E+00	1.00E+00	5.01E-07	2.51E-17	<mark>-3.00</mark>	<mark>-9.30</mark>	<mark>-19.60</mark>	-14
1	1.00E-01	1.00E-02	1.00E+00	5.01E-06	2.51E-15	<mark>-3.00</mark>	<mark>-8.30</mark>	<mark>-17.60</mark>	-13
2	1.00E-02	1.00E-04	1.00E+00	5.01E-05	2.51E-13	<mark>-3.00</mark>	<mark>-7.30</mark>	<mark>-15.60</mark>	-12
3	1.00E-03	1.00E-06	9.99E-01	5.01E-04	2.51E-11	<mark>-3.00</mark>	<mark>-6.30</mark>	<mark>-13.60</mark>	-11
4	1.00E-04	1.01E-08	9.95E-01	4.99E-03	2.50E-09	<mark>-3.00</mark>	<mark>-5.30</mark>	<mark>-11.60</mark>	-10
5	1.00E-05	1.05E-10	9.52E-01	4.77E-02	2.39E-07	<mark>-3.02</mark>	<mark>-4.32</mark>	<mark>-9.62</mark>	-9
6	1.00E-06	1.50E-12	6.66E-01	3.34E-01	1.67E-05	<mark>-3.18</mark>	<mark>-3.48</mark>	<mark>-7.78</mark>	-8
7	1.00E-07	6.01E-14	1.66E-01	8.33E-01	4.18E-04	<mark>-3.78</mark>	<mark>-3.08</mark>	<mark>-6.38</mark>	-7
8	1.00E-08	5.14E-15	1.95E-02	9.76E-01	4.89E-03	<mark>-4.71</mark>	<mark>-3.01</mark>	<mark>-5.31</mark>	-6
9	1.00E-09	5.27E-16	1.90E-03	9.50E-01	4.76E-02	<mark>-5.72</mark>	<mark>-3.02</mark>	<mark>-4.32</mark>	-5
10	1.00E-10	7.52E-17	1.33E-04	6.66E-01	3.34E-01	<mark>-6.88</mark>	<mark>-3.18</mark>	<mark>-3.48</mark>	-4
11	1.00E-11	3.01E-17	3.32E-06	1.66E-01	8.34E-01	<mark>-8.48</mark>	<mark>-3.78</mark>	<mark>-3.08</mark>	-3
12	1.00E-12	2.56E-17	3.90E-08	1.96E-02	9.80E-01	<mark>-10.41</mark>	<mark>-4.71</mark>	<mark>-3.01</mark>	-2
13	1.00E-13	2.52E-17	3.97E-10	1.99E-03	9.98E-01	<mark>-12.40</mark>	<mark>-5.70</mark>	<mark>-3.00</mark>	-1
14	1.00E-14	2.51E-17	3.98E-12	1.99E-04	1.00E+00	<mark>-14.40</mark>	<mark>-6.70</mark>	<mark>-3.00</mark>	0

Ka1	5.01E-07	pka1	6.35E+00
Ka2	5.01E-11	pka2	1.03E+01
Ka3			
Ct	0.001		