NECESSARY AND SUFFICIENT CONDITION OF MORSE-SARD THEOREM FOR REAL VALUED FUNCTIONS

AZAT AINOULINE

February 23,2003

Abstract

Necessary and sufficient condition is given for a set $A \subset \mathbb{R}^1$ to be a subset of the critical values set for a C^k function $f: \mathbb{R}^m \to \mathbb{R}^1$.

Introduction

The well known Morse Theorem [4] states that the critical values set $C_v f$ of a C^k map $f: \mathbb{R}^m \to \mathbb{R}^1$ is of measure zero in \mathbb{R}^1 if $k \geq m$, where $C_v f = f(C_p f)$ and $C_p f = \{x \in \mathbb{R}^m; rank Df = 0\}$ is the critical points set of f. Some generalizations of the necessary condition were made by a number of scientists. But the question is still open: whether a given measure zero set $A \subset R^1$ can be a set of critical values of some C^k function $f: \mathbb{R}^m \to \mathbb{R}^1$? In other words, what is necessary and sufficient condition of Morse theorem ? A successful approach to describe the critical values sets was made by Yomdin [7],[8], Bates and Norton [6] using a notion that in this paper we call 0_k -sets:

Definition 0.1 Let A be a compact subset of \mathbb{R} . We define a countable set $Z(A) = \{(\alpha, \beta) \subseteq \mathbb{R} \setminus A : \alpha, \beta \in A, \alpha < \beta\}$. We call A a **set of** k-degree, k > 0, if the series $\sum_{z \in Z(A)} |z|^{\frac{1}{k}}$ converges, and designate A as $\mathbf{0}_k$ -set if A is set of k-degree with measure 0

The following theorem was proven by Bates and Norton:

Theorem ([6]). A compact set $B = C_v f$ for some function $f \in C^k(\mathbb{R}, \mathbb{R})$ with compactly supported derivative if and only if B is 0_k -set.

And according to [6], results equivalent to the theorem above were obtained by Yomdin in his unpublished paper [8], where he made a conjecture equivalent to the following:

Conjecture. For $k \ge n$, a compact set $B = C_v f$ for some function $f \in C^k(\mathbb{R}^n, \mathbb{R})$ with compactly supported derivative if and only if B is $0_{k/n}$ -set.

Math Subject Classification Primary 58K05; Secondary 58C25 Key Words and Phrases: Critical values, differentiability, Morse-Sard.

In this paper author gives necessary and sufficient condition for a set $A \subset \mathbb{R}^1$ to be a subset of the critical value set of a $C^{< k+\lambda}$ function $f : \mathbb{R}^m \to \mathbb{R}^1$.

Main Theorem. A set $A \subseteq C_v f$ for some $C^{\leq k+\lambda}$ function $f: \mathbb{R}^m \to \mathbb{R}^1$, $m \leq k$, if and only if A is subset of a $\sigma - 0_{\leq k+\lambda}$ set.

And as a corollary, the necessary and sufficient condition is given for a set $A \subset \mathbb{R}^n$ to be subset of the image of the critical points set of rank zero of a $C^{< k + \lambda}$ function $f : \mathbb{R}^m \to \mathbb{R}^n$.

Corollary. A set $A \subseteq C_v f$ for some $C^{\langle k+\lambda \rangle}$ function $f: \mathbb{R}^m \to \mathbb{R}^n$, $m \leqslant k$, if and only if its projection on any axis in \mathbb{R}^n is a subset of a $\sigma - 0_{\langle k+\lambda \rangle}$ set,

where we designate:

- for $k \in [1, \infty)$ a compact set $A \subseteq \mathbb{R}$ as $0_{\leq k}$ -set if A is 0_t -set for every positive real $t \leq k$.
- A as a $\sigma \mathbf{0}_k$ set $(\sigma \mathbf{0}_{\leq k}$ set) if $A = \bigcup_{i \in \mathbb{N}} A_i$, where A_i is 0_k -set $(0_{\leq k}$ -set) $\forall i \in \mathbb{N}$.

1 Definitions and Preliminary Lemmas

For $k \in \mathbb{N}$, a map $f : \mathbb{R}^n \to \mathbb{R}^m$ is of class C^k if it possesses continuous derivatives of all orders $\leq k$. For $\lambda \in [0,1)$ f belongs to $C^{k+\lambda}$ provided $f \in C^k$ and the k^{th} derivative $D^k f$ satisfies a local Hölder condition: For each $x_0 \in \mathbb{R}^n$, there exists a neighborhood U of x_0 and a constant M such that

$$||D^k f(x) - D^k f(y)|| \le M|x - y|^{\lambda}$$

for all $x, y \in U$. If $f \in C^t$ for all $t < k + \lambda$ we write $f \in C^{< k + \lambda}$.

Generalized Morse Theorem.

Let $k, m \in \mathbb{N}$, and $\beta \in [0, 1)$. Let A be a subset of \mathbb{R}^m .

a)(see Norton [5]) There exist subsets G_i (i = 0, 1, 2...) of A with $A = \bigcup_{i=1}^{\infty} G_i$ and any $f \in C^{k+\lambda}(\mathbb{R}^m, \mathbb{R})$ critical on A satisfies for each $i : |f(x) - f(y)| \leq M_i |x - y|^{k+\lambda}$ for all $x, y \in G_i$ and some $M_i > 0$.

b) There exist subsets A_i (i=0,1,2...) of A with $A=\bigcup_{i=1}^{\infty}A_i$ and any $f\in C^{< k+\lambda}(\mathbb{R}^m,\mathbb{R})$ critical on A satisfies for each $i:|f(x)-f(y)|\leqslant N_i|x-y|^{k+\lambda}$ for all $x,y\in A_i$ and some $N_i>0$.

Proof.

a)See [5].

b) Similar to a).
$$\Box$$

Definition 1.1 For $m, n \in \mathbb{N}, k \in \mathbb{R}$ a function $\psi : B \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is \mathbf{D}^k -function if $\exists K > 0 : \forall b, b' \in B \quad |\psi(b) - \psi(b')|^k \leqslant K|b - b'|$.

We can rewrite the **Generalized Morse Theorem** in terms of D^k -functions:

Corollary 1.1 Let $k, m \in \mathbb{N}$, and $\beta \in [0, 1)$. Let A be a subset of \mathbb{R}^m .

- a) There are subsets G_i (i = 0, 1, 2...) of A with $A = \bigcup_{i=1}^{\infty} G_i$ and for any
- $f \in C^{k+\lambda}(\mathbb{R}^m, \mathbb{R})$ critical on A, $f \upharpoonright G_i$ is a $D^{\frac{1}{k+\lambda}}$ -function for each i. b) There are subsets A_i $(i=0,1,2\dots)$ of A with $A=\bigcup_{i=1}^\infty A_i$ and for any $f \in C^{k+\lambda}(\mathbb{R}^m, \mathbb{R})$ critical on A, $f \upharpoonright A_i$ is a D^β -function for each i, and every $\beta > \frac{1}{k+\lambda}$.

Properties of D^k -functions:

1) Extension on closure property. If $f: A \subseteq \mathbb{R}^m \stackrel{D^k}{\to} \mathbb{R}^n$ for some k > 0, and \overline{A} is the closure of A, then there exists and unique C^0 function $\overline{f}: \overline{A} \subseteq \mathbb{R}^m \to \mathbb{R}^m$ \mathbb{R}^n such that $\overline{f} \upharpoonright A = f$. And \overline{f} is a D^k function.

Proof. $\forall a \in \overline{A} \text{ let us define } \overline{f}(a) = \lim_{x \in A, x \to a} f(x), \text{ existence of the limit and the}$ properties of \overline{f} easy follow from the fact that $f \in D^k$.

- 2) Composition property. If $q \in D^k$ and $f \in D^p$, then $q \circ f \in D^{kp}$.
- 3) Subsets property. If $f: A \subseteq \mathbb{R}^m \xrightarrow{D^k} \mathbb{R}^m$ for some k > 0, then $f \upharpoonright B \in D^k$ for any $B \subseteq A$.

Now we define a set $K_0^n = \{Q_{i_0}, i_0 \in \mathbb{N}\}$, where every Q_{i_0} is a closed cube in \mathbb{R}^n with side length 1 and every coordinate of any vertex of Q_{i_0} is an integer. In general, having constructed the cubes of K^n_{s-1} , divide each $Q_{i_0,i_1,i_2,...,i_{s-1}} \in K^n_{s-1}$ into 2^n closed cubes of side $\frac{1}{2^s}$, and let K_s^n be the set of all those cubes. More precisely we will write

 $K_s^n = \{Q_{i_0,i_1,i_2,\dots,i_{s-1},i_s} \; ; \; Q_{i_0,i_1,i_2,\dots,i_{s-1},i_s} \subseteq Q_{i_0,i_1,i_2,\dots,i_{s-1}} \in K_{s-1}^n, 1 \leqslant i_s \leqslant 2^n \}.$ We use here a family of continuous space filling curves $f_n: [0,1] \xrightarrow{onto} [0,1]^n, n \in \mathbb{N}$ with special properties:

if
$$\alpha \subseteq [0,1]$$
 and $\exists s \in \mathbb{N} : \alpha \in K_{n \cdot s}^1 \implies f_n(\alpha) \subseteq \delta$ for some $\delta \in K_s^n$ (1.1)

if
$$\delta \subseteq [0,1]^n$$
 and $\exists s \in \mathbb{N} : \delta \in K_s^n \implies f_n^{-1}(int(\delta)) \subseteq \alpha$ for some $\alpha \in K_{n \cdot s}^1$ (1.2)

where $int(\delta)$ is the set of interior points of δ .

Definition 1.2 We call a function $f_n: [0,1] \stackrel{onto}{\rightarrow} [0,1]^n$ with the properties (1.1),(1.2) cubes preserving.

Theorem 1.1 ([1]) For every $n \in \mathbb{N}$ there exists a continuous cubes preserving function $f_n: [0,1] \xrightarrow{onto} [0,1]^n$.

Lemma 1.1 Any continuous space-filling cubes preserving function $f_n:[0,1] \stackrel{\text{onto}}{\to}$ $[0,1]^n$ is a D^n -function.

Proof. Let $a, b \in [0, 1], a < b$, then there exists $s_0 \in \mathbb{N}$ such that $\frac{1}{2^{n(s_0+1)}} \leq b-a \leq$ $\frac{1}{2^{ns_0}}$. Then $[a,b] \subseteq \alpha' \cup \alpha''$ for some $\alpha', \alpha'' \in K^1_{ns_0}$, such that $\alpha' \cap \alpha'' \neq \emptyset$. From the definition of cubes preserving function it follows that $f_n(\alpha') \subseteq \delta', \ f_n(\alpha'') \subseteq \delta''$ for some $\delta', \delta'' \in K^n_{s_0}$ with $\delta' \cap \delta'' \neq \emptyset$ because $\alpha' \cap \alpha'' \neq \emptyset$. Now using $\operatorname{diam}(\delta' \cup \delta'') \leqslant 2\sqrt{n} \cdot \frac{1}{2^{s_0}}$, we get: $|f_n(b) - f_n(a)| \leqslant \operatorname{diam}(f_n(\alpha' \cup \alpha'')) \leqslant \operatorname{diam}(\delta' \cup \delta'') \leqslant 2\sqrt{n} \cdot \frac{1}{2^{s_0}}$ or

$$|f_n(b) - f_n(a)|^n \le (2\sqrt{n}\frac{1}{2^{s_0}})^n = 2^{2n}n^{\frac{n}{2}}\frac{1}{2^{n(s_0+1)}} \le K|b-a|$$
 (1.3)

where $K = 2^{2n} \cdot n^{\frac{n}{2}}$. In case a = b we have

$$|f_n(b) - f_n(a)|^n = 0 \le K \cdot 0 = K \cdot |b - a|.$$
 (1.4)

From (1.3) and (1.4) it follows that f_n is D^n -function on [0,1].

Lemma 1.2 (see Corollary from Lemma 2 in [2] and also combinational lemma in [6]) Let $f:[a,b] \to \mathbb{R}^1$ be continuous with $A \subseteq [a,b]$ compact and B:=f(A). There exists an injective function $\gamma: Z(B) \to Z(A)$ such that for each $z \in Z(B)$ with $(say) \ \gamma(z) = (x,x')$, one has $z \subseteq (f(x),f(x'))$.

Lemma 1.3 Let $f:[a,b]\subseteq \mathbb{R}^1\to \mathbb{R}^1$ be a continuous function such that $f\upharpoonright A$ is D^k -function for some closed $A\subseteq [a,b]$ and k>0, then f(A) is $\frac{1}{k}$ -degree set.

Proof. By the Lemma 1.2, there exists an injective function $\gamma: Z(f(A)) \to Z(A)$ such that for each $z \in Z(f(A))$ with (say) $\gamma(z) = (x, x') \in Z(A)$, one has $z \subseteq (f(x), f(x'))$ then $|z|^k \leqslant |f(x) - f(x')|^k$ for each $z \in Z(f(A))$ and $x, x' \in A$ (Note: $(x, x') \in Z(A)$ means that $x, x' \in A$). On the other hand for any $x, x' \in A$ $|f(x) - f(x')|^k \leqslant K|x - x'|$ for some K > 0 because $f \upharpoonright A \in D^k$. Hence for each $z \in Z(f(A))$: $|z|^k \leqslant |f(x) - f(x')|^k \leqslant K|x - x'| = K|\gamma(z)|$, where $\gamma(z) = (x, x') \in Z(A)$. And consequently $\sum_{z \in Z(f(A))} |z|^k \leqslant K \sum_{z \in Z(f(A))} |\gamma(z)|$, but $\sum_{z \in Z(f(A))} |\gamma(z)| \leqslant \sum_{z \in Z(A)} |z|$ (because the function γ is injective), then $\sum_{z \in Z(f(A))} |z|^k \leqslant K \sum_{z \in Z(A)} |z| \leqslant K|b-a| < \infty$. So that the series $\sum_{z \in Z(f(A))} |z|^k$ converges and by the Definition 0.1 f(A) is $\frac{1}{k}$ -degree set.

2 Proof of necessary condition of Main Theorem

Theorem 2.1 .Let $n \leq k \in \mathbb{N}, \ \lambda \in [0,1)$

- a) If $f \in C^{k+\lambda}(\mathbb{R}^n, \mathbb{R}^1)$, then $C_v f$ is a $\sigma 0_{\underline{k+\lambda}}$ set.
- b) If $F \in C^{\langle k+\lambda}(\mathbb{R}^n, \mathbb{R}^1)$, then $C_v F$ is a $\sigma 0_{\langle \frac{k+\lambda}{n} \rangle}$ set.

Proof.

a) By the Corollary 1.1, there exist G_i $(i=0,1,2\dots)$ such that for each i $f \upharpoonright G_i$ is $D^{\frac{1}{k+\lambda}}$ -function. Then for each i $f \upharpoonright \overline{G_i}$ is $D^{\frac{1}{k+\lambda}}$ by the "Extension on closure property of D^k -functions" and $C_p f = \bigcup_{i=1}^{\infty} \overline{G_i}$ becouse $C_p f$ is closed.

We may suppose without loss of generality that for each i G_i and, therefore, \overline{G}_i , is contained in some closed cube $C_i \subseteq \mathbb{R}^n$ of side length 1 (because otherwise G_i can be represented as countable union of sets contained in such cubes).

Let for each $i \in \mathbb{N}$ $g_i : [0,1] \stackrel{onto}{\to} C_i$ be a continuous D^n function that exists by the Theorem 1.1 and Lemma 1.1.Then on the closed set $g_i^{-1}(\overline{G}_i)$ $g_i \upharpoonright (g_i^{-1}(\overline{G}_i))$ is D^n – function—by the "Subsets property of D^k -functions". And by the "Composition property of D^k -functions" $f \circ g_i \upharpoonright (g_i^{-1}(\overline{G}_i))$ is a $D^{\frac{n}{k+\lambda}}$ -function. So that by the Lemma 1.3 and by the fact that $f \circ g_i$ is continuous on [0,1] as a composition of continuous functions, it follows that the closed set $f(g_i(g_i^{-1}(\overline{G}_i)))$ is of $\frac{k+\lambda}{n}$ – degree set, and therefore $f(\overline{G}_i)$ is of $\frac{k+\lambda}{n}$ -degree set.

By the Morse Theorem [4] $f(C_p f) = C_v f$ is a measure zero set. And becouse for each i $\overline{G}_i \subseteq C_p f$ it follows that $f(\overline{G}_i)$ is $0_{\underbrace{k+\lambda}{n}}$ -set, and consequently $f(C_p f) = C_v f$ is a $\sigma - 0_{\underbrace{k+\lambda}{n}}$ set (recall that $C_p f = \bigcup_{i=0}^{\infty} \overline{G}_i$).

b) Similar to a). The Theorem 2.1 is proven, and thereby the prove of the necessary condition of the Main Theorem has been finished.

3 Proof of sufficient condition of Main Theorem

Theorem 3.1 If A is a $\sigma - 0_{\leq s}$ -set $(1 \leq s \in \mathbb{R})$, then for every $n \in \mathbb{N}$ $A \subseteq C_v F$ for some $C^{\leq sn}$ function $F : \mathbb{R}^n \to \mathbb{R}^1$.

Proof. First let us fix such s, n and prove that for any $0_{\le s}$ set B there exists a $C^{\le sn}$ function $f:[0,1]^n\to\mathbb{R}$ with $B\subseteq C_vF$. Since B is an $0_{\le s}$ -set, then the series $\sum_{z_n\in Z(B)}|z_n|^{1/t}$ converges for any positive t< s. The case $B=\emptyset$ is trivial, so we suppose $B\neq\emptyset$.

Let $P \geqslant 1$ denote the greatest integer less than sn and $\{s_m, m \in \mathbb{N}\}$ be a non-decreasing sequence such that $(P+sn)/2 < s_m < sn$, $\lim_{m \to \infty} s_m = sn$ and $\sum_{z_m \in Z(B)} |z_m|^{1/s_m}$ is convergent. The existence of such sequence $\{s_m\}$ can be seen from the fact that $\forall i \in \mathbb{N}$, $\forall t \in \mathbb{R}^+$, t < sn, there exists $m_i \in \mathbb{N}$ such that $\sum_{m>m_i,z_m \in Z(B)} |z_m|^{1/t} < \frac{1}{2^i}$, and $\sum_{i=1}^{\infty} \frac{1}{2^i} = 2$.

For any closed $B^* \subseteq B$ let us designate the sum $\sum_{z_m \in Z(B^*)} |z_m|^{1/s_m} = G(B^*)$. Further we construct the function f following the scheme of Bates ([3],sec.1.4) and replacing definitions of P, $R(a_k)$ and $\sigma_t(k)$ in his construction.

3.1 Construction of f

For $\beta \in (0, 1/2)$, we can first define the following method for constructing 2^n cubes within any cube in \mathbb{R}^n :

Supposing $Q \subset \mathbb{R}^n$ is a cube of side L > 0 defined by the inequalities $|x_i - c_i| \leq L/2$, we specify 2^n subcubes within Q with the inequalities $|x_i - c_i \pm L/4| \leq \beta L/2$. Note that each subcube is separated from all other subcubes and the boundary of Q by a distance $\geq L(1/4 - \beta/2)$.

3.1.1 A Cantor set in \mathbb{R}^n .

Let $Q_0 \subset \mathbb{R}^n$ be the cube defined by $|x_i| \leq 1/2$. For $i \in \mathbb{Z}^+$ let $\beta_i = (1/2) \cdot e^{-1/i}$ and set $\pi_k = (16k)^{-1} \cdot \prod_{i=1}^k \beta_i$. For $k \in \mathbb{Z}^+$ the index a_k always denotes a k-tuple

of numbers in $\{1, 2, 3, ..., 2^n\}$. We now define a system of subcubes in Q_0 as follows:

- a. Let $\{Q(a_1)\}\$ be the 2^n subcubes constructed in Q_0 by the method described above with $\alpha = \beta_1$.
- b. Having defined $\{Q(a_k)\}$, construct 2^n subcubes within each $Q(a_k)$ according to the above process with $\alpha = \beta_{k+1}$ and label these subcubes $\{Q(a_k, i)\}$ for $i = 1, ..., 2^n$.

Evidently, the cube $Q(a_k)$ has side length $L_k = \prod_{i=1}^k \beta_i$; for integers $k \leq l$ the boundaries of distinct cubes $Q(a_k)$ and $Q(a'_l)$ are separated by a distance $\geq (1/4 - \beta_{k+1}/2)L_k \geq \pi_k$.

Let ζ denote the Cantor set defined by the cubes, i.e. the set of points in Q_0 contained in indefinitely many of subcubes constructed above.

3.1.2 Mapping of ζ .

Let $R_0 = B$. For each $k \in \mathbb{Z}^+$, choose decomposition of R_0 into 2^{nk} non-empty closed set $\{R(a_k)\}$ such that $G(R(a_k)) \leq M \cdot 2^{-nk}$ and $R(a_k) = \bigcup_{i=1}^{2^n} R(a_k, i)$. For each a_k , fix a point $r(a_k) \in R(a_k)$.

Define the map f on ζ by the requirement that for each index a_k , $f(\zeta \cap Q(a_k)) \subseteq R(a_k)$. The conditions imposed on the sets $R(a_k)$ then insure that $R_0 \subseteq f(\zeta)$.

3.1.3 Extension of f.

Consider the cube $Q = Q(a_k)$ and its subcubes $Q_i = Q(a_k, i)$. For each $i = 1, ..., 2^n$ choose a function $h_i : \mathbb{R}^n \to \mathbb{R}$ such that

- (1) $h_i = 1$ on a neighborhood of Q_i ;
- (2) $Supp(h_i) \subset Int \ Q$, and $Supp(h_i) \cap Supp(h_j) = \emptyset$ whenever $i \neq j$.

In view of condition (2) and the distance between the Q_i , we can choose the h_i so that, for each $p \in \mathbb{Z}^+$,

(3) $||D^p h_i|| \leq M_p(\pi_{k+1})^{-p}$.

Now we define the partial extension of f to the region $Q \setminus \bigcup Q_i$ by

$$f = r + \sum_{i=1}^{2^n} (r_i - r)h_i,$$

where $r = r(a_k), r_i = r(a_k, i).$

3.1.4 Smoothness of f.

For $t \in \mathbb{R}$ define $\sigma_t(k) = 2^{-(sn+t)k/2} \cdot (\pi_{k+1})^{-t}$. Since $\beta_k \to 1/2$ as $k \to \infty$, a simple estimation shows that π_k is bounded below by $M' \cdot 2^{-k} k^{-2}$. Consequently, for $t < sn \quad \sigma_t(k) \to 0$ as $k \to \infty$.

To determine the smoothness of f, we first observe that (P+sn)/2n < s, also if $k \ge 1$ is the largest integer such that $x, x' \in Q(a_k) \cap \zeta$, then $|x-x'| \ge \pi_{k+1}$, and

by the definition of f,

$$|f(x) - f(x')| \leq diam(R(a_k)) = \sum_{z_m \in Z(R(a_k))} |z_m|$$

$$\leq \left(\sum_{z_m \in Z(R(a_k))} |z_m|^{2n/(P+sn)}\right)^{(P+sn)/2n} \leq (G(R(a_k)))^{(P+sn)/2n}$$

$$\leq M'\sigma_P(k)\pi_{k+1} \leq M'\sigma_P(k)|x - x'|^P.$$

This implies that $f \upharpoonright \zeta$ is continuous; by condition (1), it follows that the partial extension defined above comprise a continuous extension of $f \upharpoonright \zeta$. Since condition (2) implies $||D^p f|| = 0$ on boundaries $\partial Q(a_k)$ for all $k, p \in \mathbb{Z}^+$, it follows furthermore that f is C^{∞} on $\mathbb{R}^n \setminus \zeta$.

Condition (3) above implies that on $Q(a_k) \setminus \bigcup Q(a_k, i)$

$$||D^p f|| \leq M_p(\pi_{k+1})^{-p} \cdot diam(R(a_k)) \leq M'_p \sigma_p(k).$$

Consequently $D^p f \to 0$ on approach to ζ whenever $p \leqslant P$. By an application of the mean-value theorem to the inequality found for $f \upharpoonright \zeta$ above, it follows that $D^p f = 0$ on ζ for $p \leqslant P$, and so f is C^P on \mathbb{R}^n .

Given $t \in (P, sn)$, we observe that if $x \in \zeta$ and $k \gg 1$ is again the largest integer such that $x, y \in Q(a_k)$, then the same argument used above shows that

$$||D^P f(x) - D^P f(y)||/|x - y|^{t-P} = ||D^P f(y)||/|x - y|^{t-P} \le M_P'' \sigma_t(k+1).$$

Since $f \in C^{\infty}$ outside ζ , this inequality implies $f \in C^t$ throughout \mathbb{R}^n . Evidently, rankDf = 0 on ζ , and $B \subseteq C_v f$.

By construction, f is constant outside Q_0 . Now for a $\sigma - O_{\leq s}$ set A, we can define $C^{\leq sn}$ function $F: \mathbb{R}^n \to \mathbb{R}^1$, such that $A \subseteq C_v F$:

We take $\{Q_0^i\}_{i\in\mathbb{N}}$ - a discrete family of cubes of side length 1 in \mathbb{R}^n and a family of $C^{<sn}$ functions $\{f_i:Q_0^i\to\mathbb{R}^1:A_i\subseteq C_vf_i\}$. For each i we define $F=f_i\upharpoonright Q_0^i$. And we can choose distances between cubes allowing F be C^{∞} on $\mathbb{R}^n\setminus \cup Q_0^i$, and $C^{<sn}$ on \mathbb{R}^n .

References

- Ainouline, A., Vector valued functions not constant on connected sets of critical points, 2003, ArXiv: math. GT/0404404.
- [2] Ainouline, A. and Zvengrowski, P., Critical Values of differential functions on the Reals, University of Calgary, Research Paper No.813, July 2001.
- [3] Bates, S.M., On the image size of singular maps II, Duke Math.J. Vol.68, No.3, December, 1992, 463-476.

- [4] Morse, A.P., The behavior of a function on its critical set, Annals of Math. 40(1939), 62-70.
- [5] Norton, A., A critical set with nonull image has large Hausdorff dimension, Trans.Amer.Math.Soc., 296, No.1, July 1986, 367-376.
- [6] Bates, S.M. and Norton, A., On sets of critical values in the real line, Duke Math.J. 83(1996), No.2, 399-413.
- [7] Yomdin, Y., The geometry of critical and near-critical values of differentiable mappings, Math.Ann. 264(1983), 495-515.
- [8] Yomdin, Y.,β-spread of sets in metric spaces and critical values of smooth functions, preprint, Max-Planck-inst.,Bonn, 1982.