DATA 607 Project 2 Part 2

Subhalaxmi Rout

03/08/2020

UNICEF dataset on Under 5 Mortality

Discussion thread created by : Samuel Bellows

1. Introduction

UNICEF dataset that gives the under 5 mortality for many countries across the years 1950-2015. The problem is that the year variable is spread out into 65 different columns, 1 for each year, that need to be gathered into 1 column. In order to make this dataset tiny we would gather the year columns into one column until we had a 3 column dataset of Country name, Year, and Mortality.

2. Load library

```
#install.packages("dplyr")
#install.packages("tidyr")
#install.packages("ggplot2")
#install.packages("DT")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(tidyr)
library(ggplot2)
library(DT)
```

3. Data load and cleaning

Data is stored in the **Github** and loaded data from Github to Rstudio using **read.csv()** method.

3.1 Gather year from 1950 to 2015

This dataset year has given from 1950 to 2015. Each year mentioned as a column. Using **tidyr** convert these columns to **Year** column.

```
# using gather() convert column to row
data <- data %>% gather(Year, Mortality, U5MR.1950:U5MR.2015, na.rm = TRUE)

# Uremove "U5MR" from the name
data$Year <- sub('U5MR.','',data$Year)

# arrange Mortality by desc order
data <- data %>% arrange(desc(Mortality))

# display data using datatable
datatable(data,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))
```

Show 10	▼ entries						Search:		
		CountryName	-	Year		#		ı	Mortality 🌲
1	Mali		1963						443.5
2	Mali		1964						435.8
3	Mali		1965						428.5
4	Mali		1966						421.8
5	Mali		1967						415.4
6	Mali		1968						409.8
7	Yemen		1963						406.1
8	Mali		1969						404.6
9	Mali		1970						400
10	Yemen		1964						397.7
Showing 1 t	o 10 of 10,244 entries	3	Previous	1	2 ;	3 4	5	 1025	Next

4. Analysis

Mortality based on year:

Year: 1950, Highest/lowest mortalityYear: 2015 Highest/lowest mortality

4.1 Highest mortality in the year 1950

```
# apply filter on year = 1950
data1 <- data %>% filter(Year == "1950")

# display data using datatable
datatable(data1,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))
```

Show 10	entries				Sea	arch:		
		CountryName	÷	Year	*		M	ortality 🏺
1	Burkina Faso		1950					389.7
2	Iraq		1950					364.3
3	Benin		1950					348.2
4	Senegal		1950					346.2
5	Togo		1950					324.4
6	Mauritania		1950					316.4
7	Jordan		1950					275.1
8	Ghana		1950					256.7
9	Swaziland		1950					240.1
10	Thailand		1950					210
Showing 1 to	10 of 29 entries				Previous	5 1 2	3	Next

4.2 Highest to lowest mortality in 1950

```
data1 <- data.frame(data1)

ggplot(data = data1, mapping = aes(x = CountryName, y = Mortality)) +
    geom_bar(aes(reorder(CountryName,Mortality),Mortality),stat = "identity",fill = "steelblue") +
    coord_flip() + xlab("Country") + ylab("#Mortality") +
    ggtitle("Highest to lowest mortality in 1950") +
    theme(plot.title = element_text(hjust = 0.5),panel.background = element_rect(fill = "white", color = geom_text(aes( y = Mortality,label=Mortality), hjust = -0.20, color="black", size=3.5)</pre>
```

Highest to lowest mortality in 1950

4.3 Highest mortality in 2015

```
# apply filter on year = 2015
data2 <- data %>% filter(Year == "2015")

# arrange Mortality by desc
data2 <- data2 %>% arrange(desc(Mortality))

# display data using datatable
datatable(data2,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))
```

Show 10	entries						Sear	ch:		
		CountryName			Year		÷		N	ortality 🏺
1	Angola			2015						156.9
2	Chad			2015						138.7
3	Somalia			2015						136.8
4	Central African Reput	lic		2015						130.1
5	Sierra Leone			2015						120.4
6	Mali			2015						114.7
7	Nigeria			2015						108.8
8	Benin			2015						99.5
9	Congo DR			2015						98.3
10	Niger			2015						95.5
Showing	1 to 10 of 195 entries		Previous	1	2	3	4	5	 20	Next

4.4 Top 10 countries with mortality in 2015

```
data3 <- data.frame(head(data2, 10))

ggplot(data = data3, mapping = aes(x = CountryName, y = Mortality)) +
    geom_bar(aes(reorder(CountryName,Mortality),Mortality),stat = "identity",fill = "steelblue") +
    coord_flip() + xlab("Country") + ylab("#Mortality") +
    ggtitle("Top 10 countries with mortality in 2015") +
    theme(plot.title = element_text(hjust = 0.5),panel.background = element_rect(fill = "white", color = geom_text(aes( y = Mortality,label=Mortality), hjust=-0.20, color="black", size=3.5)</pre>
```

Top 10 countries with mortality in 2015

4.5 Bottom 10 countries with mortality in 2015

```
# last 10 row data stored in the variable
data4 <- data.frame(tail(data2, 10))

ggplot(data = data4, mapping = aes(x = CountryName, y = Mortality)) +
    geom_bar(aes(reorder(CountryName,Mortality),Mortality),stat = "identity",fill = "steelblue") +
    coord_flip() + xlab("Country") + ylab("#Mortality") +
    ggtitle("Bottom 10 countries with mortality in 2015") +
    theme(plot.title = element_text(hjust = 0.5),panel.background = element_rect(fill = "white", color = 1
    geom_text(aes( y = Mortality,label=Mortality), hjust=-0.20,color="black", size=3.5)</pre>
```

Bottom 10 countries with mortality in 2015

4.6 Average mortality of the 10 developed countries

```
# stored data in data frame
data5 <- data.frame(data)</pre>
# calculate mean and group by using country
data5 <- data5 %>% group_by(CountryName) %>% summarise(round(mean(Mortality),2))
data5 <- mutate(data5,Avg_mortality = `round(mean(Mortality), 2)`)</pre>
# select country name and average mortality
data5 <- select(data5, CountryName, Avg_mortality)</pre>
#apply filter on country
data5 <- data5 %>% filter(grepl('United States of America|Japan|Norway|Switzerland|Australia|Ireland|Ge
# 10 developed countries average mortality
ggplot(data = data5, mapping = aes(x = CountryName, y = Avg_mortality)) +
  geom_bar(aes(reorder(CountryName,Avg_mortality),Avg_mortality),stat = "identity",fill = "steelblue")
  xlab("Country") + ylab("Average Mortality") +
  ggtitle("Developed countries Average Mortality") +
  theme(plot.title = element_text(hjust = 0.5)) +
  geom_text(aes( y = Avg_mortality,label=Avg_mortality), vjust = - 0.2, color="black", size=3.5) +
  theme(axis.text.x=element_text(angle=30,hjust=1),panel.background = element_rect(fill = "white", colo
```

Developed countries Average Mortality

4.7 Mortality of United States from 1950 to 2015


```
# display mean, median, upper hinge, lower hindge
summary(data6$Mortality)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.500 8.625 13.650 17.467 26.225 37.700
```

5. Conclusion

The plot 4.2, plot 4.4, and plot 4.5 shows mortality goes down year over year.

- In the year 1950, the African continent countries have more mortality.
- In the year 2015, developed countries have fewer mortality as compared to undeveloped or developing countries.
- The average mortality for 10 developed countries: Sweden has the least average and Singapore has the highest average.
- The boxplot (plot 4.7) shows the mortality of the United States from 1950 to 2015.
- The mortality of the United States has gone down year over year.