Problema 2

Elías López Rivera ¹, Adolfo Ángel Cardoso Vásquez ²

^{1 2} Instituto Politécnico Nacional

Escuela Superior de Física y Matemáticas.

{¹ elopezr2300, ² acardosov2300}@alumno.ipn.mx.

27 de junio de 2024

1. Enunciado

Dado un conjunto no vacio X := [a, b], demostrar que el espacio $\mathfrak{F}(X, \mathbb{R})$, de todas las funciones que van de X a \mathbb{R} con operaciones puntuales, no es espacio vectorial real de dimensión finita.

2. Solución

Supongamos $n = dim(\mathfrak{F})$, con $n \in \mathbb{N}$, esto implicaria que no existe ningún conjunto L.I, dentro de \mathfrak{F} , de tal suerte que su cardinalidad supere n.

Ahora notemos que sea $f(x) = x^k$, con $k \in \mathbb{N}$, cumple que $f \in \mathfrak{F}$, por tanto definimos $\mathfrak{B} := \{1, x, x^2, ..., x^n\}$, subconjunto de \mathfrak{F} , es claro que \mathfrak{B} , es L.I, además que $card(\mathfrak{B}) = n+1$, por tanto existe un subconjunto L.I con cardinalidad mayor a la dimensión del espacio, una contradicción.