Bases for algebras over a monad

Stefan Zetzsche ¹ Alexandra Silva ¹
Matteo Sammartino ^{1,2}

¹University College London

²Royal Holloway University of London

December 7, 2020

⁰https://arxiv.org/abs/2010.10223

Motivation: NFA, DFA

A NFA accepting L^1 :

Up to iso, the minimal DFA accepting L:

 $^{^1}L = \{w \in \{a,b\}^* \mid |w| \geq 3 \text{ and the } 3^{\mathsf{rd}} \text{ symbol from the right is a} \}$

Motivation: NFA \rightarrow DFA

 $^{^{2}\}delta_{a}^{\sharp}(U)=\bigcup_{u\in U}\delta_{a}(u),\quad \varepsilon^{\sharp}(U)=\bigvee_{u\in U}\varepsilon(u)$

Motivation: NFA \rightarrow DFA (in CSL)

$$\delta_{\mathbf{a}}^{\sharp}(U_1 \cup U_2) = \delta_{\mathbf{a}}^{\sharp}(U_1) \cup \delta_{\mathbf{a}}^{\sharp}(U_2)$$
$$\varepsilon^{\sharp}(U_1 \cup U_2) = \varepsilon^{\sharp}(U_1) \vee \varepsilon^{\sharp}(U_2)$$

 $\langle \delta, \varepsilon \rangle \text{ is a NFA in the category of sets } \\ \langle \delta^{\sharp}, \varepsilon^{\sharp} \rangle \text{ is a DFA in the category of complete semilattices}$

$$^{2}\delta_{a}^{\sharp}(U)=\bigcup_{u\in U}\delta_{a}(u),\quad \varepsilon^{\sharp}(U)=\bigvee_{u\in U}\varepsilon(u)$$

Motivation: DFA (in CSL) \rightarrow NFA

$$\langle D, E \rangle : L \to L^A \times 2$$

$$\downarrow 3$$

$$\langle \delta, \varepsilon \rangle : Y \to \mathcal{P}(Y)^A \times 2$$

Possible? Maybe, choose Y as a generator for L? Can we find a minimal Y?

 $^{^3}$ Constraint: $\langle D, E \rangle \sim \langle \delta^{\sharp}, \varepsilon^{\sharp} \rangle$

Motivation: DFA (in CSL) \rightarrow NFA

Let L be a join semi-lattice.

A subset $Y \subseteq L$ is join-dense in L iff for all $x \in L$ there exists a decomposition

$$x = y_1 \vee ... \vee y_n$$

where $y_i \in Y$ for i = 1, ..., n.

If L is finite or satisfies the descending chain condition, the set of join-irreducibles $J(L)^4$ is join-dense in L.

 $^{^4}x \in J(L)$ iff $\forall y, z \in L$: $x = y \lor z$ implies x = y or x = z.

Motivation: DFA (in ?) \rightarrow ?

$$L \to L^A \times 2$$
 $V \to V^A \times 2$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $Y \to T_{\text{CSL}}(Y)^A \times 2$ $Y \to T_{\text{VSP}}(Y)^A \times 2$

 $^{^{4}}T_{\text{CSL}}=\mathcal{P},\ T_{\text{VSP}}=?$

Preliminaries

Algebra in theory ${\mathcal T}$	$TX o X \in Alg(T)$
Free algebra in theory T	$T^2Y o TY \in Alg(T)$
DFA in Set	$X o FX \in Coalg(F)$
DFA in CSL	$TX o X o FX \in Bialg(\lambda)$
NFA in Set	$T^2Y o TY o FTY \in Bialg(\lambda)$

Preliminaries: Monads

A monad is a tuple $\langle T, \eta, \mu \rangle$ consisting of an endofunctor $T: C \to C$ and natural transformations

$$\eta: 1 \Rightarrow T$$
 $\mu: T^2 \Rightarrow T$

satisfying

$$\mu \circ \eta_{\mathcal{T}} = 1 = \mu \circ \mathcal{T}\eta \qquad \mu \circ \mathcal{T}\mu = \mu \circ \mu_{\mathcal{T}}.$$

⁴For instance, the powerset monad with

$$T_{\text{CSL}}X = 2^X$$
, $\eta_X(x)(y) = [x = y]$, $\mu_X(\Phi)(x) = \bigvee_{\varphi \in 2^X} \Phi(\varphi) \wedge \varphi(x)$;

and the free vector space monad with

$$T_{\text{VSP}}X = k^X|_{\text{fs}}, \quad \eta_X(x)(y) = [x = y], \quad \mu_X(\Phi)(x) = \sum_{\varphi \in k^X} \Phi(\varphi) \cdot \varphi(x).$$

Preliminaries: Algebras over a monad

An algebra over a monad $\langle T, \eta, \mu \rangle$ is a tuple $\langle X, h \rangle$ consisting of a morphism

$$h: TX \rightarrow X$$

satisfying

$$h \circ \eta_X = \mathrm{id}_X \qquad h \circ Th = h \circ \mu_X.$$

$$\mathsf{Alg}(\mathit{T}_{\mathtt{CSL}}) \simeq \mathsf{CSL} \qquad \mathsf{Alg}(\mathit{T}_{\mathtt{VSP}}) \simeq \mathsf{VSP}.$$

⁴For instance, there are equivalences

Preliminaries: Distributive laws

A distributive law between a monad $\langle T, \eta, \mu \rangle$ and an endofunctor F is a natural transformation

$$\lambda: TF \Rightarrow FT$$

satisfying the laws

$$\lambda \circ \eta_F = F \eta$$
 $\lambda \mu_F = F \mu \circ \lambda_T \circ T \lambda$.

$$\lambda_X: T(X^A \times B) \stackrel{\langle T\pi_1, T\pi_2 \rangle}{\to} T(X^A) \times TB \stackrel{\mathsf{st} \times h}{\to} (TX)^A \times B$$

gives rise to a distributive law between T and F.

⁴For example, if F satisfies $FX = X^A \times B$ and $\langle B, h \rangle$ is a T-algebra,

Preliminaries: Distributive laws

There exist liftings T_{λ} and F_{λ}

$$\begin{array}{cccc}
\operatorname{Coalg}(F) & \xrightarrow{T_{\lambda}} & \operatorname{Coalg}(F) & \operatorname{Alg}(T) & \xrightarrow{F_{\lambda}} & \operatorname{Alg}(T) \\
U_{F} & & & U_{T} & & & U_{T} \\
C & \xrightarrow{T} & C & & C & \xrightarrow{F} & C
\end{array}$$

satisfying

$$T_{\lambda}(X \xrightarrow{k} FX) = TX \xrightarrow{\lambda_{X} \circ Tk} FTX$$
$$F_{\lambda}(TX \xrightarrow{h} X) = TFX \xrightarrow{Fh \circ \lambda_{X}} FX.$$

⁴In fact, liftings of T to Coalg(F), liftings of F to Alg(T), and distributive laws coincide.

Preliminaries: Bialgebras

A λ -bialgebra is an object with both a T-algebra and a F-coalgebra structure

$$\langle TX \stackrel{h}{\rightarrow} X \stackrel{k}{\rightarrow} FX \rangle$$
,

satisfying

There exist equivalences

$$\mathsf{Alg}(\mathcal{T}_{\lambda}) \simeq \mathsf{Bialg}(\lambda) \simeq \mathsf{Coalg}(\mathcal{F}_{\lambda}).$$

Overview

- Generators for algebras
- Bases for algebras
- Bases for bialgebras
- Basis representation
- Alternative approach
- Future work

A generator⁵ for a T-algebra $\langle X,h \rangle$ is a tuple $\langle Y,i,d \rangle$ consisting of an object Y and morphisms

$$i: Y \rightarrow X$$
 $d: X \rightarrow TY$

satisfying

⁵Arbib and Manes, "Fuzzy machines in a category".

⁵For instance, every *T*-algebra $\langle X, h \rangle$ is generated by $\langle X, id_X, \eta_X \rangle$.

 $\langle Y, i, d \rangle$ is a generator for a T_{CSL} -algebra $\langle X, h \rangle$ iff for all $x \in X$

$$x = \bigvee_{y \in d(x)}^{h} i(y).$$

 $\langle Y, i, d \rangle$ is a generator for a T_{VSP} -algebra $\langle X, h \rangle$ iff for all $x \in X$

$$x = \sum_{y \in Y}^{h} d(x)(y) \cdot {}^{h} i(y).$$

⁵ $i: Y \rightarrow X, d: X \rightarrow TY$

Let $\langle X, h, k \rangle$ be a λ -bialgebra and $\langle Y, i, d \rangle$ a generator for the T-algebra $\langle X, h \rangle$.

Lemma

The morphism $h \circ Ti : TY \to X$ is a λ -bialgebra homomorphism

$$h \circ Ti : \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp 6} \rangle \rightarrow \langle X, h, k \rangle.$$

$$^{6}(Fd \circ k \circ i)^{\sharp} := F\mu_{Y} \circ \lambda_{TY} \circ T(Fd \circ k \circ i)$$

Let λ be the canonical⁷ distributive law between T_{CSL} and F with $FX = X^A \times 2$.

Let $\langle X, h, k \rangle$ be the minimal λ -bialgebra accepting a regular language L.

Then $\langle J(X), i, d \rangle$ with i(y) = y and $d(x) = \{ y \in J(X) \mid y \leq x \}$ is a generator for $\langle X, h \rangle$.

The induced non-deterministic automaton

$$J(X) \stackrel{i}{\rightarrow} X \stackrel{k}{\rightarrow} FX \stackrel{Fd}{\rightarrow} FT_{CSL}(J(X))$$

is given by the so-called canonical residual finite state automaton⁸ for L.

⁷Induced by the T_{CSL} -algebra $\langle 2, h \rangle$ with $h(U) = \bigvee_{u \in U} u$.

⁸Denis, Lemay, and Terlutte, "Residual finite state automata".

Bases

A basis for a T-algebra $\langle X, h \rangle$ is a tuple $\langle Y, i, d \rangle$ consisting of an object Y, a morphism $i: Y \to X$, and a morphism $d: X \to TY$, satisfying

⁸A free *T*-algebra $\langle TX, \mu_X \rangle$ has the basis $\langle X, \eta_X, \operatorname{id}_{TX} \rangle$. In fact, a *T*-algebra admits a basis iff it is isomorphic to a free *T*-algebra.

Bases

Let $\langle Y, i, d \rangle$ be a basis for a T-algebra $\langle X, h \rangle$.

Lemma

The following two diagrams commute

Corollary

A T-algebra homomorphism is uniquely determined by its restriction to a basis

Bases

Let $\langle X, h, k \rangle$ be a λ -bialgebra and $\langle Y, i, d \rangle$ be a basis for the T-algebra $\langle X, h \rangle$.

Lemma

The morphism $d: X \to TY$ is a λ -bialgebra homomorphism

$$d: \langle X, h, k \rangle \to \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle.$$

Corollary

The morphism $h \circ Ti : TY \to X$ is a λ -bialgebra isomorphism

$$h \circ Ti : \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle \rightarrow \langle X, h, k \rangle.$$

Bases for bialgebras

Recall the equivalence

$$\mathsf{Bialg}(\lambda) \simeq \mathsf{Alg}(T_{\lambda} : \mathsf{Coalg}(F) \to \mathsf{Coalg}(F)).$$

Lemma

Let $\langle Y, k_Y, i, d \rangle$ be a generator for a T_{λ} -algebra $\langle X, h, k \rangle$, then the morphism $h \circ Ti : TY \to X$ is a λ -bialgebra homomorphism

$$h \circ Ti : \langle TY, \mu_Y, \lambda_Y \circ Tk_Y \rangle \rightarrow \langle X, h, k \rangle.$$

Lemma

Let $\langle Y, k_Y, i, d \rangle$ be a basis for a T_{λ} -algebra $\langle X, h, k \rangle$, then

$$\lambda_Y \circ Tk_Y = (Fd \circ k \circ i)^{\sharp}.$$

Assume the following data

$$\alpha = \{\alpha_1, ..., \alpha_n\}$$
 : basis for the *k*-vector space V $\beta = \{\beta_1, ..., \beta_m\}$: basis for the *k*-vector space W .

Every linear transformation L:V o W admits a representation $L_{lphaeta}\in \mathsf{Mat}_{k}(m,n)$ with

$$L(\alpha_j) = \sum_i (L_{\alpha\beta})_{i,j} \cdot \beta_i,$$

such that the coordinate vectors 9 satisfy the matrix product equality

$$L(v)_{\beta} = L_{\alpha\beta}v_{\alpha}.$$

 $^{^{9}}v = \sum_{i} (v_{\alpha})_{i} \cdot \alpha_{i}$

Assume the following data

$$\alpha = \langle Y_{\alpha}, i_{\alpha}, d_{\alpha} \rangle$$
: basis for the *T*-algebra $\langle X_{\alpha}, h_{\alpha} \rangle$
 $\beta = \langle Y_{\beta}, i_{\beta}, d_{\beta} \rangle$: basis for the *T*-algebra $\langle X_{\beta}, h_{\beta} \rangle$.

Given a T-algebra homomorphism $f:\langle X_{\alpha},h_{\alpha}\rangle \to \langle X_{\beta},h_{\beta}\rangle$, we define

$$f_{\alpha\beta} := Y_{\alpha} \xrightarrow{i_{\alpha}} X_{\alpha} \xrightarrow{f} X_{\beta} \xrightarrow{d_{\beta}} TY_{\beta}. \tag{1}$$

Given a morphism $p: Y_{\alpha} \to TY_{\beta}$, we define

$$p^{\alpha\beta} := X_{\alpha} \xrightarrow{d_{\alpha}} TY_{\alpha} \xrightarrow{Tp} T^{2}Y_{\beta} \xrightarrow{\mu_{Y_{\beta}}} TY_{\beta} \xrightarrow{Ti_{\beta}} TX_{\beta} \xrightarrow{h_{\beta}} X_{\beta}. \quad (2)$$

Lemma

The morphism $p^{\alpha\beta}: X_{\alpha} \to X_{\beta}$ is a T-algebra homomorphism

$$p^{\alpha\beta}:\langle X_{\alpha},h_{\alpha}\rangle \rightarrow \langle X_{\beta},h_{\beta}\rangle.$$

Lemma

The operations (1) and (2) are mutually inverse,

$$(f_{\alpha\beta})^{\alpha\beta}=f \qquad (p^{\alpha\beta})_{\alpha\beta}=p.$$

Lemma

The operations (1) and (2) are compositional 10 ,

$$g_{eta\gamma}\cdot f_{lphaeta}=(g\circ f)_{lpha\gamma} \qquad q^{eta\gamma}\circ p^{lphaeta}=(q\cdot p)^{lpha\gamma}.$$

 $^{^{10}}q \cdot p := \mu_{Y_{\alpha}} \circ Tq \circ p$

Assume the following data

$$lpha, lpha'$$
: bases for the T -algebra $\langle X_{lpha}, h_{lpha}
angle$
 eta, eta' : bases for the T -algebra $\langle X_{eta}, h_{eta}
angle$
 $f: \langle X_{lpha}, h_{lpha}
angle
ightarrow \langle X_{eta}, h_{eta}
angle.$

Lemma

There exist Kleisli isomorphisms p and q such that

$$f_{\alpha'\beta'}=q\cdot f_{\alpha\beta}\cdot p.$$

Assume the following data

$$lpha, lpha'$$
: bases for the T -algebra $\langle X_{lpha}, h_{lpha} \rangle$
 $f: \langle X_{lpha}, h_{lpha} \rangle o \langle X_{lpha}, h_{lpha} \rangle.$

Corollary

There exists a Kleisli isomorphism p with Kleisli inverse p^{-1} such that

$$f_{\alpha'\alpha'}=p^{-1}\cdot f_{\alpha\alpha}\cdot p.$$

Alternative approach

Let $T: C \to C$ be a monad. The adjunction

$$\mathsf{Alg}(T)$$

$$\mathsf{F}_{\mathsf{T}} \left(\begin{array}{c} \\ \\ \end{array} \right) \mathsf{U}_{\mathsf{T}}$$

$$\mathsf{C}$$

incduces a comonad $\overline{T} = F_T \circ U_T : Alg(T) \to Alg(T)$.

A BASIS 11 for a T-algebra $\langle X,h \rangle$ is a \overline{T} -coalgebra

$$k:\langle X,h\rangle \to \overline{T}\langle X,h\rangle.$$

¹¹Jacobs, "Bases as coalgebras".

Alternative approach

Let $\langle Y, i, d \rangle$ be a basis for a T-algebra $\langle X, h \rangle$.

Lemma

The morphism $Ti \circ d : X \to TX$ is a BASIS for $\langle X, h \rangle$.

Conversely, under certain assumptions 12 , it is possible to recover a basis from a BASIS.

 $^{^{12}}$ If there exists an equaliser of k and η_X , that is preserved by T.

Future work 1

Let $\langle D, \varepsilon, \delta \rangle$ be a comonad.

A cogenerator for a D-coalgebra $\langle X, k \rangle$ is a tuple $\langle Y, i, d \rangle$ consisting of an object Y, a morphism $i: X \to Y$, and a morphism $d: TY \to X$, satisfying

 $^{^{12} \}text{For example, let } \langle \hat{\delta}, \varepsilon \rangle : X \to X^{A^*} \times 2 \text{ be a DFA such that the final coalgebra semantics } [\cdot] : X \to 2^{A^*} \text{ admits a left-inverse } d. \text{ Then } \langle 2, \varepsilon, d \rangle \text{ is a cogenerator for the coalgebra } \langle X, \hat{\delta} \rangle \text{ of the comonad } D \text{ with } DX = X^{A^*}.$

Future work 2

Let T_{CABA} be the neighbourhood monad with $T_{\text{CABA}}X=2^{2^X}$, then $\text{Alg}(T_{\text{CABA}})\simeq \text{CABA}.$

Moreover, for every complete atomic boolean algebra B,

$$B \simeq 2^{\operatorname{At}(B)}$$
.

At(B) is not a T_{CABA} -basis for B, so what is it? Maybe, use a definition parametric in two monads?

The end

Thanks!