1

Assignment 4

Sujal - AI20BTECH11020

Download all latex codes from

https://github.com/https://github.com/sujal100/ EE3900/blob/main/Assignment4/Assignment4. tex

Download all python codes from

https://github.com/https://github.com/sujal100/ EE3900/blob/main/Assignment4/codes/code.py

1 Problem

(Linear forms Q-2.22) Find the shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1},\tag{1.0.1}$$

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \tag{1.0.2}$$

2 Solution

In the given problem

$$\mathbf{A}_1 = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \mathbf{m}_1 = \begin{pmatrix} 7 \\ -6 \\ 1 \end{pmatrix}, \mathbf{A}_2 = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix}, \mathbf{m}_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$
(2.0.1)

The lines will intersect if

$$\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 7 \\ -6 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 (2.0.2)

$$\implies \lambda_1 \begin{pmatrix} 7 \\ -6 \\ 1 \end{pmatrix} - \lambda_2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} - \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$
(2.0.3)

$$\implies \begin{pmatrix} 7 & 1 \\ -6 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} \tag{2.0.4}$$

Row reducing the augmented matrix,

$$\begin{pmatrix} 7 & 1 & 4 \\ -6 & -2 & 6 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{R_3 \leftrightarrow R_1} \begin{pmatrix} 1 & 1 & 8 \\ -6 & -2 & 6 \\ 7 & 1 & 4 \end{pmatrix}$$
(2.0.5)

$$\xrightarrow{R_2 = 6R_1 + R_2} \begin{pmatrix} 1 & 1 & 8 \\ 0 & 4 & 54 \\ 0 & -6 & -52 \end{pmatrix} \xrightarrow{R_2 = \frac{R_2}{4}} \begin{pmatrix} 1 & 1 & 8 \\ 0 & 1 & \frac{27}{2} \\ 0 & -6 & -52 \end{pmatrix}$$

$$(2.0.6)$$

$$\stackrel{R_3=6R_2+R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 1 & 8 \\
0 & 1 & \frac{27}{2} \\
0 & 0 & 29
\end{pmatrix}$$
(2.0.7)

The above matrix has rank = 3. Hence, the lines do not intersect. Note that the lines are not parallel but they lie on parallel planes. Such lines are known as *skew* lines as can be seen in Fig 0.

 \therefore The distance between given two lines is (using equation (2.0.4))

We know that, the minimizer of $||\mathbf{A}\mathbf{x} - \mathbf{B}||$ is given by the solution to the normal equations $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{B}$. Since

$$\begin{pmatrix} 7 & 1 \\ -6 & -2 \\ 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 7 & 1 \\ -6 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 86 & 20 \\ 20 & 6 \end{pmatrix}$$
 (2.0.9)

$$\begin{pmatrix} 7 & 1 \\ -6 & -2 \\ 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.0.10)

the normal equations give us the following system of equations

$$\begin{pmatrix} 86 & 20 \\ 20 & 6 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.0.11}$$

whose solution is $\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. The minimum distance between this two lines is, thus,

Fig. 0: plot of lines