

Nantes Université

R2.03 - Qualité de développement 1 Automatisation des tests

CM10 - Oracle

Le cycle de test dynamique

Oracle du test

- L'oracle est supposé détecter un mauvais comportement
- Comportement
 - Fonctionnel
 - Mauvaise sortie
 - □ résultat renvoyé par la méthode testée
 - □ nouvel état d'un objet
 - ▶ Mauvais comportement
 - □ Évènements
 - □ IHM, etc.
 - Extra-Fonctionnel
 - Temps de réponse
 - Quantité de mémoire utilisée, etc.

Oracle du test

Définition

- L'oracle vérifie que l'exécution d'un test respecte la spécification en analysant le comportement du test.
- L'oracle produit le verdict du test : passe ou échoue
 - ▶ Peut donner davantage d'indications, cf partie du CM suivante

 L'oracle n'est pas systématiquement la donnée de sortie attendue

Difficulté de l'oracle

- L'oracle doit analyser des données parfois complexes pour produire le verdict
 - Type simple dans le cas de méthode renvoyant un résultat
 - Type complexe
 - Objets (avec toutes leurs propriétés)
 - Structures complexes
 - □ Base de données
 - □ Programme compilé
 - □ IHM, etc.
 - Propriétés extra-fonctionnelles
 - □ Temps, environnement (consommation mémoire, processeur), etc.

Difficulté de l'oracle

- L'oracle vérifie le respect de spécifications variées
- Les spécifications sont exprimées
 - Formellement (idéal)
 - Semi-formellement
 - Textuellement
- Les spécifications peuvent être
 - Difficilement interprétables
 - Impossible à traiter automatiquement (majorité des cas)

Pas d'oracle = pas de vérification

- Simple exécution de données de test à partir d'un état donné du logiciel sous test
 - Ne vérifie pas le comportement du logiciel
 - Une seule utilité : le test de robustesse, l'absence de crash du système
- Il ne suffit pas de générer et d'exécuter des données de test pour faire des suppositions sur l'exactitude d'un logiciel

Verdict des oracles

Verdict complet ou partiel

- L'exécution d'un cas de test peut entraîner de nombreuses modifications
- Un verdict partiel assure que ce test a vérifié une partie de la spécification (partie de la spécification, dont le domaine de sortie)
- Un verdict complet assure que ce cas de test respecte la globalité de la spécification
 - Attention les tests ne sont pas complets pour autant

Verdict des oracles

Un cas de test et son oracle considèrent :

Verdict des oracles

- Un cas de test et son oracle considèrent :
 - une partie (multiple) de la spécification
 - les exigences qui sont concernées par le cas de test
 - Un verdict partiel en considère certaines
 - ☐ Un verdict complet les considère toutes
 - l'effet du programme sur une partie du domaine de sortie
 - des propriétés sont concernées
 - Un verdict partiel dira si certaines d'entre elles ont été bien modifiées
 - Un verdict complet les considérera toutes
 - □ Voire même les effets de bords potentiels

Mise en œuvre : Oracle discret

 Directement relié à la détermination d'un ensemble fini de données de test

- Un oracle par résultat de sortie qui vérifie
 - Les données renvoyées en sortie
 - L'état du système le cas échéant
- Solution la plus importante
 - Parce que l'écriture (majoritairement) manuelle des oracles nécessite une limitation de la quantité de test à un nombre fini
 - Néanmoins les tests discrets peuvent laisser passer des erreurs

Oracle discret Exemple – Contre-exemple

- Exemple du test de la fonction sinus : y = sin(x)
- \triangleright Entre 0 et 2π
 - Données de test identifiables fonctionnellement
 - Les valeurs provoquant un changement de sens : π/2, 3π/2
 - Les valeurs dont le sinus est nul : $0, \pi, 2\pi$
 - Des valeurs dans les intervalles : $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$

CT:

DT	Oracle
0	0
π/4	√ 2/2
π/2	I
3π/4	√ 2/2
π	0
5π/4	-√2/2
3π/2	-I
7π/4	-√2/2
2π	0

Oracle discret Exemple – Contre-exemple

- Exemple du test de la fonction sinus : y = sin(x)
- \triangleright Entre 0 et 2π
 - Données de test identifiables fonctionnellement
 - Les valeurs provoquant un changement de sens : $\pi/2$, $3\pi/2$
 - Les valeurs dont le sinus est nul : 0, π , 2π
 - Des valeurs dans les intervalles : $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$

Mise en œuvre : Oracle heuristique

- Un oracle heuristique permet de vérifier certaines propriétés d'un groupe de résultats
- Se base particulièrement sur des liens entre données d'entrée et données de sortie

- Exploite le partitionnement
- cf.: Property Based Testing

Exemple d'heuristiques

- $y = \sin(x)$:
 - I =< y <= I quel que soit x</pre>
 - \rightarrow 0 > y si x mod $2\pi < \pi$
 - \rightarrow 0 < y si x mod $2\pi > \pi$

Oracle vrai (true oracle)

- Un oracle vrai vérifie n'importe quelle exécution d'une donnée de test en renvoyant un verdict complet
 - Très souple car il peut être utilisé dans n'importe quel test
 - Très difficile à obtenir
 - Aussi complexe que le logiciel qu'on vérifie
 - ☐ Le découpage en tests perd son intérêt
 - □ Risque d'erreur
- Logiciel de référence comme oracle
 - Permet les vérifications fonctionnelles
 - Généralement pas adapté aux vérifications extra-fonctionnelles
 - Valable si un logiciel de référence est disponible
 - Cas des changements de plate-forme
 - Cas des améliorations extra-fonctionnelles
 - On n'écrit pas un logiciel de référence spécifiquement pour en faire un oracle
 - Il faudrait aussi le tester

Logiciel inverse comme oracle

- Utiliser un logiciel réalisant l'inverse du logiciel testé
 - Permet les vérifications fonctionnelles
 - Ne permet pas les vérifications extra-fonctionnelles
- On n'écrit pas un logiciel inverse spécifiquement pour en faire un oracle
 - Il faudrait aussi le tester
- Valable si un logiciel inverse est disponible
 - Utopique à l'échelle d'un logiciel
 - Possible à l'échelle d'une fonction
 - En particulier les fonctions mathématiques sous la condition qu'elles soient des applications injectives

Metamorphic testing

Utiliser des propriétés liant entrées et sorties

Si 2 entrées ont une relation, alors leurs sorties peuvent avoir une relation connue

- Ainsi si l'égalité n'est pas respectée, le test échoue
- Pour appliquer cette méthode, il faut identifier les relation r et r'
- Par exemple avec p la fonction sinus, alors pour $r(x) = \pi x$ on a r'(y) = y : l'identité

Synthèse Oracle

- Différentes mises en œuvre
- Quel que soit l'oracle on ne sera pas exhaustif
 - Même difficulté que pour les données de test
- Compromis
 - Utilisation d'oracle discret et heuristique