Отчет о выполнении лабораторной работы 3.2.2 "Резонанс напряжений в последовательном контуре"

Алпатова Александра и Калашников Михаил, Б03-205

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных ха- рактеристик, а также определение основных параметров контура.

В работе используются:

- генератор сигналов;
- источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью;
- двулучевой осциллограф;
- цифровые вольтметры.

1. Теоретические сведения

2. Экспериментальная установка

3. Проведение эксперимента

- 1. Перед включением установки убедимся в правильности соединения приборов.
- 2. Подадим на установку синусоидальный сигнал.
- 3. Включим питание блока "Резонанса напряжений".
- 4. Включим вольтметры.
- 5. Выставим требуемое напряжение на генераторе.
- 6. Включим осциллограф.
- 7. Приступим к измерениям, убедившись, что амплитуда синусоиды E(t) не изменяется.
- 8. Проведем измерение резонансной частоты всех доступных колебательных контуров.
- 9. Для контуров с номерами 2 и 5 проведем измерения АЧХ.
- 10. Для тех же контуров произведем измерения ФЧХ.

4. Обработка и представление результатов

11. Обработаем результаты измерений, проведенных в пункте 8, и занесем их в таблицу.

C_n , н Φ	f_{0n} , к Γ ц	U_c , B	E, MB	L , мк Γ н	Q	ρ , Om	R_{σ} , Om	R_L , Om	I, мА
24.8	32.381	1.96 ± 0.06	77 ± 2	974 ± 4	25.5 ± 1.1	198.2 ± 0.6	7.8 ± 0.3	4.1 ± 0.3	9.9 ± 0.5
33.2	28.024	1.74 ± 0.05	77 ± 2	971 ± 3	22.7 ± 1.0	171.1 ± 0.4	7.5 ± 0.3	3.9 ± 0.3	10.2 ± 0.5
47.6	23.364	1.50 ± 0.04	76 ± 2	975 ± 2	19.6 ± 0.8	143.1 ± 0.2	7.3 ± 0.3	3.7 ± 0.3	10.5 ± 0.5
57.5	21.213	1.37 ± 0.04	76 ± 2	979.0 ± 1.7	18.0 ± 0.8	130.48 ± 0.16	7.3 ± 0.3	3.6 ± 0.3	10.5 ± 0.5
68.0	19.468	1.26 ± 0.04	76 ± 2	982.9 ± 1.4	16.5 ± 0.7	120.22 ± 0.13	7.3 ± 0.3	3.6 ± 0.3	10.5 ± 0.5
102.8	15.861	1.07 ± 0.03	76 ± 2	979.5 ± 1.0	14.0 ± 0.6	97.61 ± 0.07	7.0 ± 0.3	3.4 ± 0.3	10.9 ± 0.6
Среднее значение				977	19	143	7.3	3.7	10.4
Среднеквадратичная погрешность				4	4	33	0.2	0.2	0.3
среднего значения									
Коэффициент Стьюдента $t_{n\alpha}$				2.57					
для $n = 6, \ \alpha = 0.95$									
Случайная погрешность				2	0.8	0.2	0.3	0.3	0.5

12. Построим на одном графике измеренные АЧХ $U_{C}(\nu)$.

 ${\rm AYX}$ обоих контуров схожи по форме, но напряжения в контуре 2 выше чем в контуре 5.

13. Также построим на одном графике AЧX в относительных координатах $\frac{U_C}{U_{C0}} \left(\frac{\nu}{\nu_0} \right)$.

По ширине резонансых кривых на уровне $\frac{1}{\sqrt{2}}$ определим добротности соответсвующих контуров.

$$Q_2 = 23.1 \pm 1.4$$
 $Q_5 = 16.5 \pm 1.0$

Полученные значения очень близки к значениям из таблицы.

14. По данным измерения пункта 10 построим ФЧХ в относительных координатах $\frac{\Delta\phi}{\pi}\left(\frac{\nu}{\nu_0}\right)$.

По расстоянию между точками, в которых относительная разность фаз равна $-\frac{1}{4}$ и $-\frac{3}{4}$, определим добротности контуров.

$$Q_2 = 21 \pm 4$$
 $Q_5 = 17 \pm 3$

Нетрудно показать, что производная ФЧХ равна $\left. \frac{d(\Delta\phi/\pi)}{d(\nu/\nu_0)} \right|_{\nu/\nu_0=1} = -\frac{2Q}{\pi}$. Рассчитаем добротность таким образом.

$$Q_2 = 19.9 \pm 0.6$$
 $Q_5 = 13.6 \pm 0.6$

Первый способ дает более сходящиеся с предыдущими измерениями реузльтаты, несмотря на большую погрешность.

15. Построим график зависимости $R_L(f_0)$

16. Ниже представлена векторная диаграмма для последнего колебательного контура.

