Basic Data Preprocessing

1

working with data frame in pandas # read from csv df = pd.read_csv("./customers.csv", sep=";") # inspect first 3 rows of dataframe df.head(3) # inspect the shape of the data df.shape # inspect column names df.columns # inspect the column data types df.dtypes # get summary of variable df["MonthlyCharges"].describe() # get summary statistics of all numeric variables df.describe() # get the mean of the MonthlyCharges variable df["MonthlyCharges"].mean() # get the unique categories of the InternetService variable df["InternetService"].unique() # check if the InternetService variable only contains unique values df["InternetService"].is_unique() # convert to numeric pd.to_numeric(df_1["Postal_Code"]) # convert to date format pd.to_datetime(df_2["dates"], format="%d/%m/%Y") # sort based on Scores from big to small df_1.sort_values(by="Scores", ascending=False) # select row 2 and column 3 $df_sub = df.iloc[1, 2]$ # select rows 2, 5, 6 and column 4, 5 $df_sub = df.iloc[[1, 4, 5], [3, 4]]$ # select rows 10 until 30 and column 3 until 5 $df_sub = df.iloc[10:30, 3:5]$

select the gender and tenure columns
df_sub = df[["gender", "tenure"]]

df_sub = df[df["gender"] == "Male"]

 $df_sub = df[df["tenure"].isin([1, 2, 3])]$

select all the rows where gender equals Male

select all the rows where tenure equals 1, 2 or 3

```
# select all the rows where gender equals Male and OnlineSecurity equals Yes

df_sub = df[(df["gender"] == "Male") & (df["OnlineSecurity"] == "Yes")]

# group by gender and calculate mean of monthlycharegs for them

df.groupby("gender")["MonthlyCharges"].mean()

# group by gender and apply function

agg_dict = {"tenure":[np.mean, np.sum], "MonthlyCharges":[np.min, np.max]}

df.groupby("gender").agg(agg_dict)
```

	MonthlyCharges		tenure	
	amin	amax	mean	sum
gender				
Female	18.40	118.75	32.244553	112469
Male	18.25	118.35	32.495359	115521

merge two dataframe

pd.merge(left=df_1, right=df_2, on=key, how="outer"/"inner"/"left" / "right")

Drop every duplicate row,The subset parameter allows you to drop duplicates based on a subset of columns instead of all columns

df.drop_duplicates(subset=[columns])

Drop one or multiple columns from a DataFrame

df.drop(columns=[columns])

Define a function that will be applied on the specified column of each row and call it in theapply() function:

```
def replace_negative_values(column_obs):
    if column_obs < 0:
        return(0)
    else:
        return(column_obs)

df_1["Spending"].apply(replace_negative_values)
# Use the lambda expression in the apply() function
df_1["Spending"].apply(lambda x: 0 if x < 0 else x)</pre>
```

2

EDA: STATISTICAL DATA EXPLORATION

Univariate summary statistics:

- Mean
- Median
- Mode
- Interquartile range: $IQR = Q_3 Q_1$
- Standard deviation $s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i \overline{x})^2}$

Bivariate summary statistics:

- Pearson's correlation coefficient: $r = \frac{\sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i \overline{x})^2 (y_i \overline{y})^2}}$
 - strength of linear relationship between X and Y
 - $r \in [-1, 1]$

calculate the median of tenure

np.median(df["tenure"])

calculate the first quartile such that 25% of the observations are lower than the first quartile

np.percentile(df["tenure"], q=25)

calculate the minimum of MonthlyCharges

np.min(df["MonthlyCharges"])

calculate the range of MonthlyCharges(difference between the maximum and minimum)

np.ptp(df["MonthlyCharges"])

calculate the covariance between this two

np.cov([df["MonthlyCharges"], df["tenure"]])

calculate the covariance matrix for all numeric variables

df.cov(numeric_only=True)

Covariance Formula

 $Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{N}$ For Sample

calculate the correlation between this two (standardizes the covariance)

np.corrcoef([df["SeniorCitizen"], df["tenure"]])

calculate the correlation matrix for all numeric variables

df.corr(numeric_only=True)

measures how much each category occurred in a categorical variable

df["Partner"].value_counts() No 3641

Yes 3402

Name: Partner, dtype: int64

measures the relative proportion of each category of a categorical variable

df["Partner"].value_counts(normalize=True)

calculate the correlation matrix for all numeric variables

df["Partner"].mode()

crosstab is a table that is used to aggregate and jointly display the distribution of two or more categorical variables

pd.crosstab(df["gender"], df["Partner"])

Basic Data Preprocessing

3

Data cleaning

1.missing value

check if the InternetService variable have any null

df["InternetService"].isnull()

see how many null this variable has

df["InternetService"].isnull().sum()

Drop every row with one or more NaNs

df 1.dropna()

Drop every row with NaNs for every column

df_1.dropna(how="all")

Drop rows where the 'InternetService' column has NaN

df.dropna(subset=["InternetService"], inplace=True)

Impute missing data with user-defined values

column_imputations = {"Name": "UNKNOWN", "Spend": 0}

df_1.fillna(value=column_imputations)

it is good to add flag to indicate imputation for one row

Impute with constant from training set → avoid data leakage

Table: Missing values: imputation

Height		Height	Height_missing
64		64	FALSE
73	\rightarrow	73	FALSE
59	,	59	FALSE
NA		65	TRUE
64		64	FALSE

2.outlier

Types of outliers:

- Valid vs invalid observationse.g. income of \$1,000,000 vs age of user is 120 years
- Univariate vs multivariate outliers: outlying on 1 dimension vs outlying on multiple dimensions

2,1: Detecting univariate outliers:

- Numerically:
 - Min and max values
 - **T**-scores: $z_i = \frac{x_i \mu}{\sigma}$ outlier if $|z_i| > 3$
- Graphically:
 - Histograms
 - Boxplots:

outlier if observation outside whiskers of box

Min and max values

min value = df["InternetService"].min()

max_value = df["InternetService"].max()

Z-scores calculation

mean_value = df["InternetService"].mean()
std_dev = df["InternetService"].std()

df['z_score'] = (df["InternetService"] - mean_value) / std_dev

Plotting Histograms

df["InternetService"].hist(bins=20)

Plotting Boxplots

df.boxplot(column=["InternetService"])

2,1: Detecting multivariate outliers:

from sklearn.ensemble import IsolationForest

Fit Isolation Forest model

clf = IsolationForest(contamination=0.1) # contamination is the proportion of outliers

clf.fit(X)

Predict outliers

outliers = clf.predict(X)

-1 indicates outlier, 1 indicates normal print(outliers)

Only apply this to the training set

<u>Handling</u>: Invalid observations: treat outlier as missing value Valid observations: truncation → impose lower and upper limit on values (+ indicator), based on ... Z-score: |zi| = 3 Expert opinion

Nonparametric models (e.g. DT, NN, SVM) often insensitive to outliers
Parametric models (e.g. LinR, LogR) often sensitive to outliers.

(Nonparametric models are a type of statistical model that do not assume a specific form for the underlying data distribution.)

3.STRING MANIPULATION

Apply the replacement using regex on the 'PhoneNumber' column

df['PhoneNumber'] = df['PhoneNumber'].str.replace(pattern, replacement, regex=True)

Basic Data Preprocessing

4

FEATURE ENGINEERING

Feature engineering techniques:

- Categorical predictors
 - dummy encoding
 - integer encoding
- Numeric predictors
 - feature scaling
 - feature transformations
 - feature interactions

CATEGORICAL DATA: ENCODING

Table: Integer encoding drinks

Original value	Integer variable	
"not at all"	0	
"rarely"	1	
"socially"	2	
"often"	3	
"very often"	4	
"desperately"	5	

Table: Integer encoding has_link				
Original value	Integer variable			
FALSE	0			
TRUE	1			

Integer Encoding

df['Category_Encoded'] =
df['Category'].astype('category').cat.codes

Define the order of the categories

category_order = {'High School': 1, 'Bachelor': 2, 'Master': 3, 'PhD':
4}

df['EducationLevel_Encoded'] =
df['EducationLevel'].map(category_order)

Table: Dummy encoding status

Original value	Dummy variables				
	is_single	is_available	is_seeing_someone	is_married	
"single"	1	0	0	0	
"available"	0	1	0	0	
"seeing someone"	0	0	1	0	
"married"	0	0	0	1	
"unknown"	0	0	0	0	

One-Hot Encoding using get_dummies

df_encoded = pd.get_dummies(df, columns=['Category'], prefix='Category')

Nominal features with high cardinality (> 10): select OHE categories with top frequency

Need same categories in train & test set Be aware of the dummy variable trap!

NUMERICAL DATA: FEATURE SCALING

Not needed for linear/logistic regression, but scaling makes coefficients more interpretable

Necessary for models with penalization term (ridge/lasso)
Important (but not necessary) for models based on Euclidean distances (SVM,
KNN)

Critical when performing PCA
Tree-based models scale-invarian

Scaling: making sure all numerical features have same scale

Two methods:

- 1 Normalization (min-max scaling)
 - values are shifted and rescaled such that they end up ranging from 0 to 1
- 2 Standardization (standard scaling):
 - lacksquare values are centered and rescaled to fit a standard normal distribution $\mathcal{N}(\mu$ = 0, σ = 1)
 - $X_{\text{new}} = \frac{x_{\text{old}} \mu}{\sigma}$

from sklearn.preprocessing import MinMaxScaler, StandardScaler

1. Normalization (Min-Max Scaling)

min max scaler = MinMaxScaler()

df_normalized = pd.DataFrame(min_max_scaler.fit_transform(df),
columns=df.columns)

2. Standardization (Standard Scaling)

standard_scaler = StandardScaler()

df_standardized = pd.DataFrame(standard_scaler.fit_transform(df),
columns=df.columns)