

Histogramas y gráficos de densidad

Visualización Científica
26 de septiembre de 2016
Eduardo Castro-Nallar, PhD
Center for Bioinformatics and Integrative Biology
www.cbib.cl
www.castrolab.org

Revisar tarea

Código y PDF del documento Tufte o Tufte handout

¿Qué es un histograma?

 Es un gráfico que muestra la frecuencia de un conjunto de datos cuantitativos continuos y discretos

Datos continuos

					diamonds	3					
7 Filter									Q,		
	carat ‡	cut [‡]	color [‡]	clarity [‡]	depth [‡]	table [‡]	price [‡]	x	y	z	
1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43	
2	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31	
3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31	
4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63	
5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75	
6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48	
7	0.24	Very Good	I	VVS1	62.3	57.0	336	3.95	3.98	2.47	
8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53	
9	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49	
10	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39	
11	0.30	Good	J	SI1	64.0	55.0	339	4.25	4.28	2.73	
12	0.23	Ideal	J	VS1	62.8	56.0	340	3.93	3.90	2.46	
13	0.22	Premium	F	SI1	60.4	61.0	342	3.88	3.84	2.33	
14	0.31	Ideal	J	SI2	62.2	54.0	344	4.35	4.37	2.71	
15	0.20	Premium	E	SI2	60.2	62.0	345	3.79	3.75	2.27	
16	0.32	Premium	E	I1	60.9	58.0	345	4.38	4.42	2.68	
17	0.30	Ideal	I	SI2	62.0	54.0	348	4.31	4.34	2.68	

Tipos de variables

^{*}Si no se puede promediar es cualitativa

¿Para qué sirve?

 Al mostrarnos la distribución de los datos, nos da una idea sobre la "normalidad" de los datos, posibles valores atípicos, o algún tipo de sesgo.

¿Para qué sirve?

- Para aproximar la distribución de probabilidad de una variable al representar la frecuencia de observaciones dentro de ciertos rangos de valores
- Distribución de probabilidad = una función cuya integral en cualquier intervalo es la probabilidad de una variable

¿Para qué sirve?

Ejemplo

Tres tipos de histogramas

- De densidad = muestra proporciones en el eje Y
- De frecuencia = muestra el número de observaciones
- De frecuencia relativa = muestra el porcentaje de observaciones

Formas de distintas distribuciones - asimetría

Formas de distintas distribuciones - asimetría

Binning - rangos de datos

Binning - rangos de datos

¿Cómo se calcula el número de bins?

• Ejemplo: usando la fórmula de Sturges,

$$k = 1 + 3.322 \log 10(n)$$

donde k es el número de bins y n es el número de observaciones

¿Cómo se compara un histograma? ¿Área o altura?

¿Cómo se compara un histograma? ¿Área o altura?

Por el área

¿Cómo se compara un histograma? ¿Área o altura?

Por el área Si los rangos son iguales da lo mismo

Pregunta de prueba

 ¿Un gráfico de barras y un histograma son lo mismo?

Pregunta de prueba

 ¿Qué son los espacios blancos?

En un histograma nunca hay espacio entre las barras

Si no hay una barra significa que no hay datos en ese bin o rango

Gráficos de densidad

- ¿A qué nos referimos con densidad?
- Es la construcción de un estimado, basándose en datos observados, de una función de probabilidad no observable
- No podemos observar una probabilidad, pero la podemos estimar a partir de la frecuencia en que observamos un evento

Ejemplos de gráficos de densidad

- El área bajo la curva suma 1
- El área de un intervalo en x es la probabilidad
- Ventaja sobre histogramas, no son afectados por el número de bins

Gráficos de densidad

 Histogramas se hacían antes de que existieran computadores, ahora se hacen gráficos de densidad

Ahora a RStudio

- library(ggplot2)
- data("diamonds")
- ggplot(diamonds, aes(carat)) + geom_histogram()

Efecto del ancho del bin

 ggplot(diamonds, aes(carat)) + geom_histogram(binwi dth = 0.01)

 ggplot(diamonds, aes(carat)) + geom_histogram(bins = 200)

Destacando la composición de cada bin

• ggplot(diamonds, aes(price, fill = cut)) + 5 5000- geom_histogram(binwidth = 500)

Ahora probemos con geom_density

```
ggplot(diamonds, aes(carat)) + geom_density()
ggplot(diamonds, aes(carat)) + geom_density(adjust = 1/5)
ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +
geom_density(alpha = 0.1) +
xlim(55, 70)
ggplot(diamonds, aes(carat, fill = cut)) +
geom_density(position = "stack")
ggplot(diamonds, aes(carat, ..count.., fill = cut)) +
geom_density(position = "fill")
```