ENGG4811: Thesis Project

Project Progress Seminar

Date: 10/05/2021

Student: Adestia Queenslandari (44806644)

Co-supervisor: Dr Dan Kim (UQ)

Co-supervisor: Dr Regis Riveret (CSIRO)

Content Overview

- Background
- Progress
- Demonstration
- Plan

Thesis Topic

Designing and implementing a user-friendly web interface for interacting with a remote rule engine in regulatory technologies

Rule engine? Regulatory technologies?

Background

Rule engine

- This project: Prolog rule-based argumentation engine
- Rules, relations and messages are used to draw a conclusion [2]
- Labels statements with acceptance status

Regulatory technologies (RegTech)

- Application of IT to manage regulation objectives [3]
- Example: law compliance

Project Relevance

Current interaction with rule engine

- Edit Python file with rules and messages
- View HTML file with statement labellings

Problems

- Very primitive client (written in a few hours)
- Rules/messages written in JSON format within Python file

Initial Concept

Related Work

Initial Timeline

Key Tasks

- Interface Layout
- Text Editor
- Message Sending

Basic Interface Layout

Results

Establish contact between client and server

Send prewritten messages

```
Enter your rules or messages here...
```

```
[[],000,[],000,[]] . [[],000,[],000,[]] . [[],000,[],000,[]] .
[[],000,[],000,[]]. [[],000,[],000,[]]. [[],000,[],000,[]].
[[[window(node1)],[location(node1,
[28.0166,153.0251,0])]],000,[],000,[]].
[[[no,distancing(node2,node1,10)],
[obl,distancing(node2,node1,10)],[wall(node2)],
[location(node2,[28.0166,153.0251,0])],
[violation(node2,node1,10)]],ooo,[],ooo,[]].
[[[goodWall(node2)]],ooo,
[[obl,distancing(node2,node1,10)],
[violation(node2,node1,10)]],ooo,[]].
```


Accepting user input

Rules

```
id {name of rule} if {body} then {head}.id {name of rule} then {head}.
```

Relations between rules

```
superior ({rule id 1}, {rule id 2}).
```

Information Messages

```
message ([ {info}={information content}, .... ]).
```

Polishing web interface

```
id obligation if wall(Nodel) and window(Node2) then obl distancing(Nodel, Node2, 10).

id distance if wall(Nodel) and window(Node2) and location(Nodel, [X1, Y1, Z1]) and location(Node2, [X2, Y2, Z2]) and distance_ZD_Less([X1, Y1], [X2, Y2], 10) then no distancing(Nodel, Node2, 10).

id violation if obl distancing(Nodel, Node2, 10) and no distancing(Nodel, Node2, 10) then violation(Nodel, Node2, 10).

id noobligation if goodWall(Nodel) and window(Node2) then no obl distancing(Nodel, Node2, 10).

superior(noObligation, obligation).

message(["nodeID"='node1', "messageID"='message1', "fact"='[window(node1)]', "location"='[location(node1, [280166, 1530251, 0])]']).

message(["nodeID"='node2', "messageID"='message1', "fact"='[wall(node2)]', "location"='[location(node2, [280166, 1530251, 0])]']).

message(["nodeID"='node2', "messageID"='message1', "fact"='[goodWall(node2)]', "location"='[location(node2, [280166, 1530251, 0])]']).
```

Run

UNDECIDED STATEMENTS: ---- Next Message ----ACCEPTED STATEMENTS: [[window(node1)],[location(node1, [280166,1530251,0])]] UNACCEPTED STATEMENTS: UNDECIDED STATEMENTS: ----- Next Message -----ACCEPTED STATEMENTS: [[no,distancing(node2,node1,10)], [obl,distancing(node2,node1,10)],[wall(node2)], [location(node2,[280166,1530251,0])], [violation(node2,node1,10)]] UNACCEPTED STATEMENTS: UNDECIDED STATEMENTS: ----- Next Message -----ACCEPTED STATEMENTS: [[goodWall(node2)]] UNACCEPTED STATEMENTS: [[obl,distancing(node2,node1,10)], [violation(node2,node1,10)]] UNDECIDED STATEMENTS: ----- Next Message -----

Polishing web interface

Home

Run

```
id obligation if wall (Nodel) and window(Node2) then obl distancing(Nodel, Node2, 10).

id distance if wall (Nodel) and window(Node2) and location(Node1, [X1, Y1, Z1]) and location(Node2, [X2, Y2, Z2]) and distance_2D_Less([X1, Y1], [X2, Y2], 10) then no distancing(Node1, Node2, 10).

id violation if obl distancing(Node1, Node2, 10) and no distancing(Node1, Node2, 10) then violation(Node1, Node2, 10).

id noObligation if goodWall(Node1) and window(Node2) then no obl distancing(Node1, Node2, 10).

superior(noObligation, obligation).

message(["nodeID"="node1", "messageID"="message1", "fact"="[window(node1)]", "location"="[location(node1, [280166, 1530251, 0])]"]).

message(["nodeID"="node2", "messageID"="message1", "fact"="[wall(node2)]", "location"="[location(node2, [280166, 1530251, 0])]"]).

message(["nodeID"="node2", "messageID"="message1", "fact"="[goodWall(node2)]", "location"="[location(node2, [280166, 1530251, 0])]"]).
```

[window(node1)],[location(node1,[280166,1530251,0])]

REJECTED STATEMENTS:

UNDECIDED STATEMENTS:

("nodeID":"node2", "messageID":"message1", "fact":"[wall(node2)]", "location":"[location(node2, [280166, 1530251, 0])]"].

ACCEPTED STATEMENTS:

[no,distancing(node2,node1,10)], [obl,distancing(node2,node1,10)],[wall(node2)], [location(node2,[280166,1530251,0])], [violation(node2,node1,10)]

REJECTED STATEMENTS:

UNDECIDED STATEMENTS:

("nodeID":"node2", "messageID":"message1", "fact":" [goodWall(node2)]", "location":"(location(node2, [280166, 1530251, 0]))").

ACCEPTED STATEMENTS:

[goodWall(node2)]

REJECTED STATEMENTS:

[obl,distancing(node2,node1,10)], [violation(node2,node1,10)]

UNDECIDED STATEMENTS:

33

Project Demonstration

Plan

Orchestrator

- Forward messages from sensors to rule engine
- Error handling

Web interface

- Text editor
 - Accepting different syntax for rules/messages
 - Syntax highlighting
 - Upload and save theories
- Results
 - Clear results with each run

References

- [1] Queenslandari, A. (2021). *ENGG4811 Thesis Proposal* [Unpublished Manuscript], ENGG4811: Thesis Project, The University of Queensland.
- [2] Riveret, R., Oren, N., & Sartor, G. (2020). A probabilistic deontic argumentation framework. *International Journal of Approximate Reasoning*, 126, 249. https://doi.org/10.1016/j.ijar.2020.08.012.
- [3] Ascent. (2018–2021). What is RegTech? https://www.ascentregtech.com/what-is-regtech/.
- [4] SWISH-Prolog. (2021). SWISH. https://swish.swi-prolog.org/.