

INTER-PROCESS COMMUNICATION (IPC)

Inter-process communication (IPC) requires the following:

- 1. Synchronization
- 2. Protocol (i.e., how is communication to occur between the endpoints?)
- 3. Precision
- 4. Data marshalling (i.e., translating from "host format" to "network format")

OSI REFERENCE MODEL

Open Systems Interconnection (OSI) Reference Model (~1984)

Standardization of how communication should occur across a network, describing where and how network protocols fit together with one another

A seven-layer protocol stack that supports interoperability of networking components:

- Layer 7: Application (e.g., HTTP, HTTPS, NFS, SMTP, SNMP, TELNET)
- Layer 6: Presentation (e.g., SSL, FTP, SSH)
- Layer 5: Session (e.g., RPC)

[HTTP: http://www.ietf.org/rfc/rfc2616.txt]

- Layer 4: Transport (e.g., TCP, UDP)
- Layer 3: Network (e.g., IP, ICMP, ARP, OSPF)
- Layer 2: Data Link (e.g., MAC)
- Layer 1: Physical (e.g., Ethernet, Frame Relay, IEEE 802.11)

UDP DATAGRAM STRUCTURE https://tools.ietf.org/html/rfc768 User Datagram Protocol (UDP): Connection-less Source Port Destination Port Unreliable (i.e., no re-sending Length Checksum of dropped datagram) Simple Data Low overhead 8 bits 8 bits 8 bits 8 bits

IP ADDRESSES

Each IP address contains information about what network the destination host is on, which enables routing to occur at intermediate "hops" (i.e., routers) along the path from a source endpoint to the destination endpoint

CLASS	BITS	NETWORKS	# of HOSTS	•
CLASS A	0	128	16,777,214	8 / 24 bits
CLASS B	10	16,384	65,534	16 / 16 bits
CLASS C	110	2,097,152		24 / 8 bits
	1110			n/a

