

planetmath.org

Math for the people, by the people.

proof of Urysohn's lemma

Canonical name ProofOfUrysohnsLemma

Date of creation 2013-03-22 13:09:23 Last modified on 2013-03-22 13:09:23

Owner scanez (1021) Last modified by scanez (1021)

Numerical id 4

Author scanez (1021)

Entry type Proof

Classification msc 54D15

First we construct a family U_p of open sets of X indexed by the rationals such that if p < q, then $\bar{U}_p \subseteq U_q$. These are the sets we will use to define our continuous function.

Let $P = \mathbb{Q} \cap [0, 1]$. Since P is countable, we can use induction (or recursive definition if you prefer) to define the sets U_p . List the elements of P is an infinite sequence in some way; let us assume that 1 and 0 are the first two elements of this sequence. Now, define $U_1 = X \setminus D$ (the complement of D in X). Since C is a closed set of X contained in U_1 , by normality of X we can choose an open set U_0 such that $C \subseteq U_0$ and $\overline{U_0} \subseteq U_1$.

In general, let P_n denote the set consisting of the first n rationals in our sequence. Suppose that U_p is defined for all $p \in P_n$ and

if
$$p < q$$
, then $\bar{U}_p \subseteq U_q$. (1)

Let r be the next rational number in the sequence. Consider $P_{n+1} = P_n \cup \{r\}$. It is a finite subset of [0,1] so it inherits the usual ordering < of \mathbb{R} . In such a set, every element (other than the smallest or largest) has an immediate predecessor and successor. We know that 0 is the smallest element and 1 the largest of P_{n+1} so r cannot be either of these. Thus r has an immediate predecessor p and an immediate successor p in p_{n+1} . The sets p and p are already defined by the inductive hypothesis so using the normality of p, there exists an open set p of p such that

$$\bar{U}_p \subseteq U_r$$
 and $\bar{U}_r \subseteq U_q$.

We now show that (1) holds for every pair of elements in P_{n+1} . If both elements are in P_n , then (1) is true by the inductive hypothesis. If one is r and the other $s \in P_n$, then if $s \leq p$ we have

$$\bar{U}_s \subseteq \bar{U}_p \subseteq U_r$$

and if $s \geq q$ we have

$$\bar{U}_r \subseteq U_q \subseteq U_s$$
.

Thus (1) holds for ever pair of elements in P_{n+1} and therefore by induction, U_p is defined for all $p \in P$.

We have defined U_p for all rationals in [0,1]. Extend this definition to every rational $p \in \mathbb{R}$ by defining

$$U_p = \emptyset$$
 if $p < 0$
 $U_p = X$ if $p > 1$.

Then it is easy to check that (1) still holds.

Now, given $x \in X$, define $\mathbb{Q}(x) = \{p : x \in U_p\}$. This set contains no number less than 0 and contains every number greater than 1 by the definition of U_p for p < 0 and p > 1. Thus $\mathbb{Q}(x)$ is bounded below and its infimum is an element in [0,1]. Define

$$f(x) = \inf \mathbb{Q}(x).$$

Finally we show that this function f we have defined satisfies the conditions of lemma. If $x \in C$, then $x \in U_p$ for all $p \ge 0$ so $\mathbb{Q}(x)$ equals the set of all nonnegative rationals and f(x) = 0. If $x \in D$, then $x \notin U_p$ for $p \le 1$ so $\mathbb{Q}(x)$ equals all the rationals greater than 1 and f(x) = 1.

To show that f is continuous, we first prove two smaller results:

(a)
$$x \in \bar{U}_r \Rightarrow f(x) \leq r$$

Proof. If $x \in \overline{U}_r$, then $x \in U_s$ for all s > r so $\mathbb{Q}(x)$ contains all rationals greater than r. Thus $f(x) \leq r$ by definition of f.

(b)
$$x \notin U_r \Rightarrow f(x) \geq r$$
.

Proof. If $x \notin U_r$, then $x \notin U_s$ for all s < r so $\mathbb{Q}(x)$ contains no rational less than r. Thus $f(x) \ge r$.

Let $x_0 \in X$ and let (c, d) be an open interval of \mathbb{R} containing f(x). We will find a neighborhood U of x_0 such that $f(U) \subseteq (c, d)$. Choose $p, q \in \mathbb{Q}$ such that

$$c$$

Let $U = U_q \setminus \bar{U}_p$. Then since $f(x_0) < q$, (b) implies that $x \in U_q$ and since $f(x_0) > p$, (a) implies that $x_0 \notin \bar{U}_p$. Hence $x_0 \in U$.

Finally, let $x \in U$. Then $x \in U_q \subseteq \overline{U}_q$, so $f(x) \leq q$ by (a). Also, $x \notin \overline{U}_p$ so $x \notin U_p$ and $f(x) \geq p$ by (b). Thus

$$f(x) \in [p,q] \subseteq (c,d)$$

as desired. Therefore f is continuous and we are done.