

Mgr. Ivan **Minčík** 

Mgr. Miloslav Michalko, PhD.

Mgr. Jana Kormaníková



# What does it take to build a small GIS office?



#### **Conditions**

- ✓ 12 people staff with equipment
- Server and client hardware
- ✓ No software installed
- All hardware connected to LAN



# What does it take to build a small GIS office?

### Requirements

- Office suite
- Desktop GIS software for technical staff (data processing, analysis)
- Web GIS software for non-technical staff (map browsing, queries)
- Central file data storage and sharing
- Central GIS vector and raster data storage and sharing
- Collaboration tools
- Central backup
- Quick hardware failure recovery



### How to do it?





# How to do it?

### Legacy approach

#### Server

- Server operating system
- Central authentication
- Internet connection (DNS, proxy)
- File storage and sharing
- Email
- Geo-database
- Mapserver (WMS, WFS)
- Web GIS application
- Backup and recovery



# How to do it? Legacy approach

#### **Workstations**

- Desktop operating system (Win 8 or Win 7?)
- Security
- User account
- Desktop environment customization
- Office suite
- Email, chat
- GIS software



# How to do it? Legacy approach

- ? days, weeks, months
- ? EUR



# GIS.lab)approach

One command to install server and clients

# 20 minutes0 EUR



# GIS.lab Unit approach

Plug-and-play

0 minutes450 EUR





# GIS.lab How it works





#### GIS.lab client **How it works Boot from LAN** Mount system GIS.lab client Mount data GIS.lab server GIS.lab client GIS.lab client Server acts as file server Client runs at full hardware speed

#### **How it works**



Any computer can be GIS.lab client



### GIS.lab How it works



Any computer can be GIS.lab client



#### **Features and benefits**

- Open Source software (GNU GPL 3)
- Plug-and-play solution GIS.lab Unit
- No hard dependency on any other Internet service (with exception on OSM and Google maps)
- General usage platform (not limited to GIS)



#### **Features and benefits**

- Extremely low maintenance costs
  - + zero time to install new client machine
  - + central distribution of client systems with rollback
  - + rapid recovery from hardware failure
- High performance client systems (opposite of thin client)



#### **Features and benefits**

#### Server services

- + Internet connection sharing
- + central authentication
- + file storage and sharing
- + central data backup and recovery



#### **Features and benefits**

#### Office suite

- + text documents, tables and presentations processor
- + Internet browser
- + email and chat client
- + images and video viewer and editor



#### **Features and benefits**

#### GIS features

- + OpenStreetMap, Google base maps
- + GIS data editor (desktop and web)
- + GIS analysis tools
- + print composer
- + GIS data storage and sharing (geo-database)
- + OWS services (WMS, WFS)
- + instant export to WebGIS application from all GIS projects





- Teaching and studying platform for GIS and Unix technologies
- Production environment for small GIS businesses
- GIS software development environment
- Supercomputing



# GIS.lab Example work flow



#### **Task**

Create map of possible free time activities in neighbourhood of our local community meeting.





0. GIS.lab client desktop





1. **Ivan**: Ask people to propose some tips of interesting places and activities near the place of our meeting using built-in chat.



2. Janka: Draw map of proposals using WebGIS vector drawing tools.





3. **Janka**: Publish map of proposals and direct link to download drawn data using chat.





4. Ivan: Download data drawn by Janka.





5. Ivan: Load data in new QGIS project.





6. **Ivan**: Create map project from loaded data.





7. Ivan: Publish final map as WebGIS project.





8. Ivan: Final map.



# GIS.lab OPEN SOURCE GIS LABORATORY

- Development state: in active development
- Authors: Ivan Minčík, Marcel Dancák
- Sponsor: GISTA s.r.o. www.gista.sk
- Partner: University of Prešov in Prešov, www.unipo.sk
- Credits: developers of Linux, Debian, Ubuntu, Xubuntu, VirtualBox,
   Vagrant, LTSP, PostgreSQL, PostGIS, PgAdmin, SpatiaLite,
- QGIS, GRASS GIS and tons of other Open Source software
- Home page: http://imincik.github.io/gis-lab
- License of this presentation: CC BY-SA





# GIS.lab Technologies







#### **Host machine requirements**

- Operating System Linux or Windows or Mac OS X
- Virtualization software VirtualBox or VMWare or LXC containers
- Provisioning software Vagrant

#### **Software and Services**

- Boot from LAN tool chain TFTP, DHCP, LTSP
- DNS BIND
- File sharing NFS
- Database PostgreSQL/Postgis
- Mapping server and web GIS Apache, QGIS Mapserver, GIS.lab WebGIS
- Chatting server IRC





#### **Host machine requirements**

- Nothing or
- Operating System Linux or Windows or Mac OS X

#### **Software and Services**

- Office suite LibreOffice, Firefox, Thunderbird, Pidgin, GIMP, VLC ...
- GIS software QGIS, GRASS, Spatialite, PgAdmin
- Developer tools Git, QtCreator, Python, GIS libraries



# GIS.lab OPEN SOURCE GIS LABORATORY

