

Algorithms for graph visualization

Incremental algorithms. Orthogonal drawing.

WINTER SEMESTER 2018/2019

Tamara Mchedlidze

Definition: Orthogonal Drawing

A drawing Γ of a graph G=(V,E) is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

Definition: Orthogonal Drawing

A drawing Γ of a graph G=(V,E) is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

Definition: Orthogonal Drawing

A drawing Γ of a graph G=(V,E) is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

Edges lie on the grid, i.e, bends lie on grid points

Definition: Orthogonal Drawing

A drawing Γ of a graph G = (V, E) is called orthogonal if its veritices are drawn as points and each edge is represented as a sequence of alternating horizontal and vertical segments.

- Edges lie on the grid, i.e, bends lie on grid points
- degree of each vertex has to be at most 4

Orthogonal Layout

Orthogonal Layout

Overview

- Our tool today: st-ordering
- Algorithm of Biedl&Kant
- Properties of the drawing, Planarity
- Construction of st-ordering through ear decomposition

st-ordering

Definition: st-ordering

An st-ordering of a graph G = (V, E) is an ordering of the vertices $\{v_1, v_2, \ldots, v_n\}$, such that for each $j, 2 \le j \le n-1$, vertex v_j has at least one neighbour v_i with i < j, and at least one neighbour v_k with k > j.

st-ordering

Definition: st-ordering

An st-ordering of a graph G = (V, E) is an ordering of the vertices $\{v_1, v_2, \ldots, v_n\}$, such that for each $j, 2 \le j \le n-1$, vertex v_j has at least one neighbour v_i with i < j, and at least one neighbour v_k with k > j.

Example of an st-ordering

st-ordering

Definition: st-ordering

An st-ordering of a graph G = (V, E) is an ordering of the vertices $\{v_1, v_2, \ldots, v_n\}$, such that for each $j, 2 \le j \le n-1$, vertex v_j has at least one neighbour v_i with i < j, and at least one neighbour v_k with k > j.

Example of an st-ordering

Theorem [Lempel, Even, Cederbaum, 66]

Let G be a biconnected graph G and let s, t be vetices of G. G has an st-ordering such that s appears as the first and t as the last vertex in this ordering.

first vertex

first vertex

first vertex

first vertex indegree = 1

first vertex indegree = 1

$$indegree = 1$$

$$indegree = 2$$

$$indegree = 2$$

$$indegree = 4$$

first vertex

indegree = 1 indegree = 2 indegree = 3 indegree = 4

Lemma (Area of Biedl & Kant drawing)

The width is m - n + 1 and the height at most n + 1.

Lemma (Area of Biedl & Kant drawing)

The width is m - n + 1 and the height at most n + 1.

Proof

Width: At each step we increase the number of columns by $outdeg(v_i) - 1$, if i > 1 and $outdeg(v_1)$ for v_1 .

Lemma (Area of Biedl & Kant drawing)

The width is m - n + 1 and the height at most n + 1.

Proof

Width: At each step we increase the number of columns by $outdeg(v_i) - 1$, if i > 1 and $outdeg(v_1)$ for v_1 .

Height: Vertices v_1 and v_2 use two rows, v_i , i = 1, ..., n-1 is placed in a new row. Vertex v_n uses one more row if $indeg(v_n) = 4$.

Lemma (Area of Biedl & Kant drawing)

The width is m - n + 1 and the height at most n + 1.

Proof

Width: At each step we increase the number of columns by $outdeg(v_i) - 1$, if i > 1 and $outdeg(v_1)$ for v_1 .

Height: Vertices v_1 and v_2 use two rows, v_i , i = 1, ..., n-1 is placed in a new row. Vertex v_n uses one more row if $indeg(v_n) = 4$.

Lemma (Number of bends in Biedl & Kant drawing)

There are at most 2m - 2n + 4 bends.

Lemma (Area of Biedl & Kant drawing)

The width is m - n + 1 and the height at most n + 1.

Proof

Width: At each step we increase the number of columns by $outdeg(v_i) - 1$, if i > 1 and $outdeg(v_1)$ for v_1 .

Height: Vertices v_1 and v_2 use two rows, v_i , i = 1, ..., n-1 is placed in a new row. Vertex v_n uses one more row if $indeg(v_n) = 4$.

Lemma (Number of bends in Biedl & Kant drawing)

There are at most 2m - 2n + 4 bends.

Proof

Each vertex v_i , $i \neq 1, n$, introduces $indeg(v_i) - 1$ and $outdeg(v_i) - 1$ new bends.

Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bents at most three times.

Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bents at most three times.

Proof

Let (v_i, v_j) , i < j, $i, j \ne 1, n$. Then $outdeg(v_i)$, $indeg(v_j) \le 3$. I.e (v_i, v_j) gets at most one bend after placement of v_i and at most one before placement of v_j . Edges outgoing from v_1 can me made 2-bend by using the column below v_1 for the edge (v_1, v_2) .

Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bents at most three times.

Proof

Let (v_i, v_j) , i < j, $i, j \ne 1, n$. Then $outdeg(v_i)$, $indeg(v_j) \le 3$. I.e (v_i, v_j) gets at most one bend after placement of v_i and at most one before placement of v_j . Edges outgoing from v_1 can me made 2-bend by using the column below v_1 for the edge (v_1, v_2) .

Lemma (planarity)

For planar embedded graphs, with v_1 and v_n on the outer face, the algorithm produces a planar drawing.

Lemma (Number of bends per edge in Biedl & Kant drawing)

All edges but one bent at most twice. The exceptional edge bents at most three times.

Proof

Let (v_i, v_j) , i < j, $i, j \ne 1, n$. Then $outdeg(v_i)$, $indeg(v_j) \le 3$. I.e (v_i, v_j) gets at most one bend after placement of v_i and at most one before placement of v_j . Edges outgoing from v_1 can me made 2-bend by using the column below v_1 for the edge (v_1, v_2) .

Lemma (planarity)

For planar embedded graphs, with v_1 and v_n on the outer face, the algorithm produces a planar drawing.

Proof

Consider a planar embedding of G. Let v_1, \ldots, v_n be an st-ordering of G. Let G_i be the graph induced by v_1, \ldots, v_i . It holds that if G is planar, vertex v_{i+1} lies on the outer face of G_i

- The proof is by induction on G_i , i = 1, ..., n, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an **invariant** that edges E_i appear in the same order in the orthogonal drawing of G_i .

- The proof is by induction on G_i , i = 1, ..., n, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an **invariant** that edges E_i appear in the same order in the orthogonal drawing of G_i .

- The proof is by induction on G_i , i = 1, ..., n, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an **invariant** that edges E_i appear in the same order in the orthogonal drawing of G_i .
- Since v_{i+1} is on the outer face of G_i , it can be placed without creating any crossing.

- The proof is by induction on G_i , i = 1, ..., n, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an **invariant** that edges E_i appear in the same order in the orthogonal drawing of G_i .
- Since v_{i+1} is on the outer face of G_i , it can be placed without creating any crossing.

Proof (Continuation)

- The proof is by induction on G_i , i = 1, ..., n, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an **invariant** that edges E_i appear in the same order in the orthogonal drawing of G_i .
- Since v_{i+1} is on the outer face of G_i , it can be placed without creating any crossing.

Proof (Continuation)

- The proof is by induction on G_i , i = 1, ..., n, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an **invariant** that edges E_i appear in the same order in the orthogonal drawing of G_i .
- Since v_{i+1} is on the outer face of G_i , it can be placed without creating any crossing.
- The invariant holds after the induction step.

Proof (Continuation)

- The proof is by induction on G_i , i = 1, ..., n, with $G_n = G$.
- Let E_i be the edges outgoing from the vertices of G_i in the order they appear in the embedded G.
- We use as an **invariant** that edges E_i appear in the same order in the orthogonal drawing of G_i .
- Since v_{i+1} is on the outer face of G_i , it can be placed without creating any crossing.
- The invariant holds after the induction step.

Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:

- Area is $(m-n+1) \times n+1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number if bends is at most 2m 2n + 4
- lacktriangle If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in O(n) time.

Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:

- Area is $(m-n+1) \times n+1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number if bends is at most 2m 2n + 4
- lacktriangle If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in O(n) time.
- lacktriangle For the construction we have used an st-ordering of G!

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called st-digraph.

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called st-digraph.

Definition: topological ordering

A topological ordering of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), number (v) > number(u).

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called st-digraph.

Definition: topological ordering

A topological ordering of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), number (v) > number(u).

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called st-digraph.

Definition: topological ordering

A topological ordering of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), number (v) > number(u).

Definition: st-digraph

Let G be a directed graph. A vertex s (resp. t) is called **source** (resp. **sink**) of G if it has only outgoing (resp. incomming edges). A directed acyclic graph with one source and one sink is called st-digraph.

Definition: topological ordering

A topological ordering of a directed graph G (with n vertices) is an assignment of numbers $\{1, \ldots, n\}$ to the vertices of G, such that for every edge (u, v), number (v) > number(u).

How to construct a topological ordering?

Construction of an st-ordering:

G is undirected biconnected graph

Construction of an st-ordering:

G is undirected biconnected graph

Construction of an st-ordering:

G is undirected biconnected graph

Construction of an st-ordering:

G is undirected biconnected graph

G' is an ____ st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Construction of an st-ordering:

G is undirected biconnected graph

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i $(i \neq 1, n) \exists (v_j, v_i)$ and (v_i, v_k) . By the property of topological ordering j < i and i < k.

Construction of an st-ordering:

G is undirected biconnected graph

G' is an st-digraph

Since G' is an st-digraph, for v_i $(i \neq 1, n) \exists (v_j, v_i)$ and (v_i, v_k) . By the property of topological ordering j < i and i < k.

 v_1, \ldots, v_n is an st-ordering of G

Construction of an st-ordering:

G is undirected biconnected graph

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i $(i \neq 1, n) \exists (v_j, v_i)$ and (v_i, v_k) . By the property of topological ordering j < i and i < k.

 v_1, \ldots, v_n is an st-ordering of G

EXAMPLE

Construction of an st-ordering:

G is undirected biconnected graph

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i $(i \neq 1, n) \exists (v_j, v_i)$ and (v_i, v_k) . By the property of topological ordering j < i and i < k.

 v_1, \ldots, v_n is an st-ordering of G

EXAMPLE

Definition: Ear decomposition

An ear decomposition $D = (P_0, \dots, P_r)$ of an undirected graph G = (V, E) is a partition of E into an ordered collection of edge disjoint paths P_0, \dots, P_r , such that:

- $ightharpoonup P_0$ is an edge
- $ightharpoonup P_0 \cup P_1$ is a simple cycle
- **both end-vertices of** P_i belong to $P_0 \cup \cdots \cup P_{i-1}$
- **no** internal vertex of P_i belong to $P_0 \cup \cdots \cup P_{i-1}$

An ear decomposition of open if P_0, \ldots, P_r are simple paths.

Lemma (Ear decomposition)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r) , where $P_0 = (s, t)$.

Lemma (Ear decomposition)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r) , where $P_0 = (s, t)$.

Proof

Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.

Lemma (Ear decomposition)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r) , where $P_0 = (s, t)$.

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.

Lemma (Ear decomposition)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r) , where $P_0 = (s, t)$.

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.

Lemma (Ear decomposition)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r) , where $P_0 = (s, t)$.

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.

Lemma (Ear decomposition)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r) , where $P_0 = (s, t)$.

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.
- Let w be the first vertex of P that is contained in $P_0 \cup \cdots \cup P_i$. Set $P_{i+1} = (u, v) \cup P(v \cdots w)$.

Lemma (Ear decomposition)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. G has an open ear decomposition (P_0, \ldots, P_r) , where $P_0 = (s, t)$.

- Let $P_0 = (s, t)$ and P_1 be path between s and t, it exists since G is biconnected.
- Induction hypothesis: P_0, \ldots, P_i are ears.
- Let (u, v) be an edge in G such that $u \in P_0 \cup \cdots \cup P_i$ and $v \notin P_0 \cup \cdots \cup P_i$. Let (u, u'), such that $u' \in P_0 \cup \cdots \cup P_i$. Let P be a path between v and u', not passing through u. P exists since G is biconnected.
- Let w be the first vertex of P that is contained in $P_0 \cup \cdots \cup P_i$. Set $P_{i+1} = (u, v) \cup P(v \cdots w)$.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

- Let $D=(P_0,\ldots,P_r)$ be an ear decomposition of G=(V,E). Notice that $G=P_0\cup\cdots\cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Distinguish two cases based on whether u and v are connected by a directed path or not.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Distinguish two cases based on whether u and v are connected by a directed path or not.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

Distinguish two cases based on whether u and v are connected by a directed path or not.

Lemma (st-orientation)

Let G = (V, E) be a biconnected graph G and let $(s, t) \in E$. There is an orientation G' of G which represents an st-digraph. G' is called st-orientation of G.

Proof

- Let $D = (P_0, \dots, P_r)$ be an ear decomposition of G = (V, E). Notice that $G = P_0 \cup \dots \cup P_r$.
- Let $G_i = P_0 \cup \cdots \cup P_i$. We prove that G_i has an st-orientation by induction on i.

EXAMPL

Distinguish two cases based on whether u and v are connected by a directed path or not.

G is undirected biconnected graph

G' is an st-digraph

Let v_1, \ldots, v_n be a topological ordering of G'

Since G' is an st-digraph, for v_i $(i \neq 1, n) \exists (v_j, v_i)$ and (v_i, v_k) . By the property of topological ordering j < i and i < k.

 v_1, \dots, v_n is an st-ordering of G

Direct construction of st-ordering from ear decomposition

• We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.
- For G_1 , let $P_1 = \{u_1, \dots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \dots, u_p\}$ is an st-ordering of G_1 .

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.
- For G_1 , let $P_1 = \{u_1, \dots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \dots, u_p\}$ is an st-ordering of G_1 .
- Assume that L contains an st-ordering of G_i and let ear $P_{i+1} = \{v_1, \ldots, v_q\}$. We insert vertices v_1, \ldots, v_q to L after vertex v_1 (or before v_q).

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.
- For G_1 , let $P_1 = \{u_1, \dots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \dots, u_p\}$ is an st-ordering of G_1 .
- Assume that L contains an st-ordering of G_i and let ear $P_{i+1} = \{v_1, \ldots, v_q\}$. We insert vertices v_1, \ldots, v_q to L after vertex v_1 (or before v_q).

- We construct it incrementally, considering $G_i = P_0 \cup \cdots \cup P_i$, $i = 0, \ldots, r$.
- For G_1 , let $P_1 = \{u_1, \dots, u_p\}$, here $u_1 = s$ and $u_p = t$. The sequence $L = \{u_1, \dots, u_p\}$ is an st-ordering of G_1 .
- Assume that L contains an st-ordering of G_i and let ear $P_{i+1} = \{v_1, \ldots, v_q\}$. We insert vertices v_1, \ldots, v_q to L after vertex v_1 (or before v_q).
- Why this is an st-ordering? Let G'_{i+1} be an st-orientation of G_i as constructed in the previous proof. L is a topological ordering of G'_{i+1} and therefore an st-ordering of G_i

Algorithm: *st*-ordering (example)

Algorithm: *st*-ordering (example)

(Implementation details - Based on DFS)

 $s, e, b, \underline{a}, f, g, h, t$

Algorithm: *st*-ordering (example)

Algorithm: *st*-ordering (example)

Algorithm: *st*-ordering (example)

Algorithm st-ordering

```
Data: Undirected biconnected graph G = (V, E), edge \{s, t\} \in E Result: List L of nodes representing an st-ordering of G)
```

dfs(vertex v) begin

```
\begin{array}{l} i \leftarrow i+1; \ DFS[v] \leftarrow i; \\ \textbf{while } \textit{there exists non-enumerated } e = \{v,w\} \ \textbf{do} \\ DFS[e] \leftarrow DFS[v]; \\ \textbf{if } w \textit{ not enumerated then} \\ CHILDEDGE[v] \leftarrow e; PARENT[w] \leftarrow v; \\ dfs(w); \\ \textbf{else} \\ \left\{ w,x\} \leftarrow CHILDEDGE[w]; D[\{w,x\}] \leftarrow D[\{w,x\}] \cup \{e\}; \\ \textbf{if } x \in L \ \textbf{then } process\_ears(w \rightarrow x); \\ \vdots \end{array} \right.
```

begin

```
initialize L as \{s, t\}; DFS[s] \leftarrow 1; i \leftarrow 1; DFS[\{s, t\}] \leftarrow 1; CHILDEDGE[s] \leftarrow \{s, t\}; dfs(t);
```


Function *process_ears*

```
process_ears(tree edge w 	o x) begin
foreach v \hookrightarrow w \in D[w \to x] do
     u \leftarrow v:
     while u \notin L do u \leftarrow PARENT[u];
     P \leftarrow (u \stackrel{*}{\rightarrow} v \hookrightarrow w);
     if w \to x is oriented from w to x (resp.from x to w) then
           orient P from w to u (resp. from u to w);
           paste the inner nodes of P to L
           before (resp. after) u;
     foreach tree edge w' \to x' of P do process\_ears(w' \to x');;
D[\{w,x\}] \leftarrow \emptyset;
```

Theorem

The described algorithm produces an st-ordering of a given biconnected graph G=(V,E) in O(E) time.

Theorem

The described algorithm produces an st-ordering of a given biconnected graph G = (V, E) in O(E) time.

Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:

- Area is $(m-n+1) \times n+1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number if bends is at most 2m 2n + 4
- lacktriangle If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in O(n) time.

Theorem

The described algorithm produces an st-ordering of a given biconnected graph G = (V, E) in O(E) time.

Theorem (Biedl & Kant 98)

A biconnected graph G with vertex-degree at most 4 admits an orthogonal drawing such that:

- Area is $(m-n+1) \times n+1$
- Each edge (except maybe for one) has at most 2 bends
- The exceptional edge has at most 3 bends
- The total number if bends is at most 2m 2n + 4
- lacktriangle If G is plane, the orthogonal drawing is planar
- Finally, provided an st-ordering such a drawing can be constructed in O(n) time.

Together imply an O(n) algorithm for constructing an orthogonal drawing.

