Лабораторная работа 3 по информатике

- 1. Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование
- 2. реализовать решение задач посредством детерминированных вычислительных процессов с управлением по аргументу.
- 3. Оборудование: онлайн компилятор ideone, draw.io

Задание 1

4. Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника левых частей.

7.			
Переменная	Тип	Смысл	
n	const	количество разбиений	
left	const	левая граница	
right	const	правая граница	
step	const	шаг цикла, основанный на количестве	
		разбиений	
ans	double	ответ	
val	double	счетчик цикла и аргумент для функции	

8.

```
1. program ideone;
2.
3. const n = 10;
4. const left = 1.2;
5. const right = 2.8;
6. const step = (right - left) / n;
7. var ans, val : double;
8.
9. function calculate(x : double): double;
10.begin
11. calculate := sqrt(1.2 * x + 0.7) / (1.4 * x + sqrt(1.3 * x * x + 0.5));
12. end;
13.
14. begin
15. val := left;
16. while (val + step <= right) do</pre>
17. begin
18.
           ans := ans + step * calculate(val);
19.
             val := val + step;
20. end;
21. writeln(ans:5:5);
22. end.
```

N	Ответ
10	0.52512
100	0.55412
1000	0.55736
10000	0.55719

10. Для нахождения значения интеграла мы использовали метод **левых прямоугольников**. В таблице представлены значения вывода для каждого из требуемых N

Задание 2

4. Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника правых частей.

5.
$$\int_{1.2}^{2.8} \frac{\sqrt{1,2x+0.7} \, dx}{1,4x+\sqrt{1,3x^2+0.5}};$$

7.

Переменная	Тип	Смысл	
n	const	количество разбиений	
left	const	левая граница	
right	const	правая граница	
step	const	шаг цикла, основанный на количестве	
		разбиений	
ans	double	ответ	
val	double	счетчик цикла и аргумент для функции	

8.

```
    program ideone;

2.
3. const n = 10;
4. const left = 1.2;
5. const right = 2.8;
6. const step = (right - left) / n;
7. var ans, val : double;
8.
9. function calculate(x : double): double;
10.begin
11. calculate := sqrt(1.2 * x + 0.7) / (1.4 * x + sqrt(1.3 * x * x + 0.5));
12. end;
13.
14.begin
15. val := left + step;
16. while (val <= right) do
```

N	Ответ	
10	0.49880	
100	0.55135	
1000	0.55709	
10000	0.55717	

10. Для нахождения значения интеграла мы использовали метод **правых прямоугольников**. В таблице представлены значения вывода для каждого из требуемых N

Задание 3

4. Написать программу для вычисления определенного интеграла из индивидуального задания методом трапеций.

7

Переменная	Тип	Смысл	
n	const	количество разбиений	
left	const	левая граница	
right	const	правая граница	
step	const	шаг цикла, основанный на количестве	
		разбиений	
ans	double	ответ	
val	double	счетчик цикла и аргумент для функции	

8.

```
    program ideone;

2.
3. const n = 10;
4. const left = 1.2;
5. const right = 2.8;
6. const step = (right - left) / n;
7. var ans, val : double;
8.
9. function calculate(x : double): double;
10.begin
11. calculate := sqrt(1.2 * x + 0.7) / (1.4 * x + sqrt(1.3 * x * x + 0.5));
12. end;
13.
14.begin
15. val := left;
16. while (val + step <= right) do</pre>
17. begin
             ans := ans + step * calculate((2 * val + step) / 2);
19.
             val := val + step;
20. end;
21. writeln(ans:5:5);
22. end.
```

9.

N	Ответ	
10	0.51148	
100	0.55273	
1000	0.55722	
10000	0.55718	

10. Для нахождения значения интеграла мы использовали метод **трапеций**. В таблице представлены значения вывода для каждого из требуемых N

Задание 4

4. Написать программу для вычисления определенного интеграла из индивидуального задания методом парабол.

Переменная	Тип	Смысл	
n	const	количество разбиений	
left	const	левая граница	
right	const	правая граница	
step	const	шаг цикла, основанный на количестве	
		разбиений	
ans	double	ответ	
val	double	счетчик цикла и аргумент для функции	
a	double	значение функции для левой границы	
b	double	значение функции для правой границы	

```
1. program ideone;
2.
3. const n = 10000;
4. const left = 1.2;
5. const right = 2.8;
6. const step = (right - left) / n;
7. var ans, val, a, b : double;
```

```
9. function calculate(x : double): double;
10.begin
11. calculate := sqrt(1.2 * x + 0.7) / (1.4 * x + sqrt(1.3 * x * x + 0.5));
13.
14. begin
15. val := left;
16. while (val + step <= right) do
17. begin
           a := val;
19.
           b := val + step;
           ans := ans + step * (calculate(a) + 4 * calculate((a + b) / 2) + calc
  ulate(b));
    val := val + step;
21.
22. end;
23. writeln(ans / 6:5:5);
24. end.
```

9

N	Ответ	
10	0.51164	
100	0.55273	
1000	0.55722	
10000	0.55718	

10. Для нахождения значения интеграла мы использовали метод **парабол**. В таблице представлены значения вывода для каждого из требуемых N

11.

Количество	Шаг	Метод левых	Метод правых	Метод	Метод
разбиений		частей	частей	трапеций	парабол
		прямоугольников	прямоугольников		
10	0.16	0.52512	0.49880	0.51148	0.51164
100	0.016	0.55412	0.55135	0.55273	0.55273
1000	0.0016	0.55736	0.55709	0.55722	0.55722
10000	0.00016	0.55719	0.55717	0.55718	0.55718

Самым точным в данных измерениях оказался метод парабол, как и предполагалось теорией.

Таким образом метод левых и правых частей примерно одинаков, метод трапеций чуть более точный, а метод парабол позволяет вычислять наиболее точно при большом количестве разбиений.