

Programa del curso EE-0407

Termodinámica

Escuela de Ingeniería Electromecánica Carrera de Ingeniería Electromecánica (tronco común)

I parte: Aspectos relativos al plan de estudios

1. Datos generales

Nombre del curso: Termodinámica

Código: EE-0407

Tipo de curso: Teórico

Obligatorio o electivo: Obligatorio

Nº de créditos: 3

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 5

Ubicación en el plan de estudios: Curso de 4^{to} semestre en Ingeniería Electromecánica (tronco co-

mún)

Requisitos: FI-2103 Física general III

Correquisitos: Ninguno

El curso es requisito de: CM-4108 Transferencia de calor

Asistencia: Libre

Suficiencia: Sí

Posibilidad de reconocimiento: Sí

Aprobación y actualización del pro-

grama:

01/01/2026 en sesión de Consejo de Escuela 01-2026

2. Descripción general

El curso de *Termodinámica* aporta en el desarrollo del siguiente rasgo del plan de estudios: aplicar los principios de la mecánica de sólidos y fluidos, termodinámica y transferencia de calor para analizar el comportamiento de los sistemas electromecánicos.

Los aprendizajes que los estudiantes desarrollarán en el curso son: aplicar los conceptos fundamentales de la termodinámica en el análisis energético de sistemas térmicos; analizar las propiedades termodinámicas de las sustancias puras y su impacto en el diseño y operación de sistemas térmicos; evaluar el desempeño de los diferentes ciclos termodinámicos y su aplicación en la conversión de energía en sistemas de potencia, refrigeración y otros procesos industriales; y comprender el uso de la primera y segunda ley de la termodinámica en la solución de problemas de ingeniería.

Para desempeñarse adecuadamente en este curso, los estudiantes deben poner en práctica lo aprendido en los cursos de: Física general I, y Física general III.

Una vez aprobado este curso, los estudiantes podrán emplear algunos de los aprendizajes adquiridos en los cursos de: Transferencia de calor, y Sistemas térmicos.

3. Objetivos

Al final del curso la persona estudiante será capaz de:

Objetivo general

Evaluar los principios básicos de la termodinámica clásica en el análisis energético del comportamiento de los sistemas electromecánicos, desarrollando un enfoque integral en la comprensión y gestión de estos sistemas.

Objetivos específicos

- Aplicar los conceptos fundamentales de la termodinámica en el análisis energético de sistemas térmicos.
- Analizar las propiedades termodinámicas de las sustancias puras y su impacto en el diseño y operación de sistemas térmicos.
- Evaluar el desempeño de los diferentes ciclos termodinámicos y su aplicación en la conversión de energía en sistemas de potencia, refrigeración y otros procesos industriales.
- Comprender el uso de la primera y segunda ley de la termodinámica en la solución de problemas de ingeniería.

4. Contenidos

En el curso se desarrollaran los siguientes temas:

- 1. Conceptos y definiciones
 - 1.1. Definición de la termodinámica
 - 1.2. Sistemas y volúmenes de control
 - 1.3. Propiedades y estado de una sustancia
 - 1.4. Procesos y ciclos termodinámicos

TEC | Tecnológico de Costa Rica

- 2. Energía y transferencia de energía
 - 2.1. Formas de energía
 - 2.2. Transferencia de energía por calor, trabajo y masa
- 3. Propiedades de una sustancia
 - 3.1. Estados de agregación
 - 3.2. Tablas de propiedades termodinámicas
 - 3.3. Diagramas de fases
 - 3.4. Sustancias puras y mezclas
- 4. Trabajo y calor
 - 4.1. Definición y formas de trabajo
 - 4.2. Cálculo del trabajo en procesos termodinámicos
 - 4.3. Transferencia de calor y mecanismos
- 5. Primera ley de la termodinámica
 - 5.1. Balance de energía en sistemas cerrados
 - 5.2. Aplicaciones en sistemas abiertos
 - 5.3. Aplicaciones en procesos cíclicos
- 6. Segunda ley de la termodinámica
 - 6.1. Principios de reversibilidad e irreversibilidad
 - 6.2. Concepto de eficiencia térmica
 - 6.3. Principio de Carnot y su implicación
- 7. Entropía
 - 7.1. Definición y propiedades
 - 7.2. Entropía en procesos reversibles e irreversibles
 - 7.3. Segunda ley en términos de entropía
- 8. Ciclos de generación
 - 8.1. Ciclo de Carnot
 - 8.2. Ciclos de potencia de vapor y gas
 - 8.3. Ciclos de refrigeración

Il parte: Aspectos operativos

5. Metodología

En este curso, se utilizará el enfoque sistémico-complejo para la ejecución de las sesiones magistrales y se integrará la investigación práctica aplicada para las asignaciones extraclase. Esta última se implementará mediante técnicas como el estudio de casos, el aprendizaje basado en proyectos, el modelado y la simulación.

Las personas estudiantes podrán desarrollar actividades en las que:

- Analizarán y definirán los requisitos del sistema térmico.
- Evaluarán distintas configuraciones de sistemas térmicos y su impacto en la eficiencia energética.
- Implementarán soluciones de optimización térmica en aplicaciones reales.

Este enfoque metodológico permitirá a la persona estudiante evaluar los principios básicos de la termodinámica clásica en el análisis energético del comportamiento de los sistemas electromecánicos, desarrollando un enfoque integral en la comprensión y gestión de estos sistemas

Si un estudiante requiere apoyos educativos, podrá solicitarlos a través del Departamento de Orientación y Psicología.

6. Evaluación

La evaluación se distribuye en los siguientes rubros:

- Pruebas parciales: evaluaciones formales que miden el nivel de comprensión y aplicación de los conceptos clave del curso. Generalmente cubren una parte significativa del contenido visto hasta la fecha y pueden incluir problemas teóricos y prácticos.
- Pruebas cortas: evaluaciones breves y frecuentes que sirven para comprobar el dominio de temas específicos. Suelen ser de menor peso en la calificación final y permiten reforzar el aprendizaje continuo.
- Act. aprendizaje activo: actividad diseñada para que los estudiantes se involucren de manera directa y práctica en la construcción de su conocimiento, a través de la resolución de problemas, la discusión y la aplicación de conceptos teóricos en contextos reales o simulados.

Pruebas parciales (2)	60 %
Pruebas cortas (5)	25 %
Act. aprendizaje activo (4)	15 %
Total	100 %

De conformidad con el artículo 78 del Reglamento del Régimen Enseñanza-Aprendizaje del Instituto Tecnológico de Costa Rica y sus Reformas, en este curso la persona estudiante tiene derecho a presentar un examen de reposición si su nota luego de redondeo es 60 o 65.

7. Bibliografía

[1] Y. A. Çengel y M. A. Boles, *Termodinámica*, 9.ª ed. McGraw-Hill Education, 2019.

[2] G. J. V. Wylen y R. E. Sonntag, Fundamentos de Termodinámica, 6.ª ed. Editorial Limusa, 2006.

[3] K. Wark y D. E. Richards, *Termodinámica*, 6.ª ed. McGraw-Hill Education, 2000.

cente

8. Persona do- El curso será impartido por:

M.Sc. Ignacio del Valle Granados

Licenciatura en Ingeniería Mecánica, Universidad de Costa Rica, Costa Rica

Maestría en Administración de Ingeniería Electromecánica, Instituto Tecnológico de Costa Rica, Costa Rica

Maestría en Gestión y Generación de Energía, Universidad de Cadíz, España

Correo: idelvalle@itcr.ac.cr Teléfono: 25509346

Oficina: 9 Escuela: Ingeniería Electromecánica Sede: Cartago

M.Sc. Rodolfo Elizondo Hernandez

Bachillerato en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Licenciatura en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Maestría en Administración de Ingeniería Electromecánica con Enfasis en Administración de Energía, Instituto Tecnológico de Costa Rica, Costa Rica

Correo: relizondo@itcr.ac.cr Teléfono: 25509346

Oficina: 9 Escuela: Ingeniería Electromecánica Sede: Cartago