. Question 1

• If $|x-y|<\delta$ such that $x,y\in[1,\infty)$

$$egin{aligned} |\log(x) - \log(y)| &= \left|\log\left(rac{x}{y}
ight)
ight| \ &\leq \left|\log\left(rac{y+\delta}{y}
ight)
ight| \ &\leq \left|rac{\delta}{y}
ight| \ &\leq \delta \end{aligned}$$

- Therefore, $\forall \epsilon > 0, \exists \delta = \epsilon \text{ such that } |x-y| < \delta \implies |\log(x) \log(y)| < \epsilon$
- Hence \log is uniformly continuous in $[1,\infty)$

. Question 2

- If ϕ is a continuous function and f is Riemann integrable, then $\phi \circ f$ is Riemann integrable
- let $g(x) = x^2$, g is continuous
- then $g \circ f_r + g \circ f_i$ is riemann integrable
- let $h(x) = \sqrt{x}$ which is continuous
- hence, $\sqrt{f_r^2+f_i^2}$ is Riemann integrable
- let f be a Riemann integrable complex function, $c=\alpha+\iota\beta$

$$egin{aligned} c\int\limits_a^b f(x)dx &= (lpha + \iotaeta)\left(\int\limits_a^b f_r(x)dx + \iota\int\limits_a^b f_i(x)dx
ight) \ &= \left(lpha\int\limits_a^b f_r(x)dx - eta\int\limits_a^b f_i(x)dx
ight) + \iota\left(lpha\int\limits_a^b f_r(x)dx - eta\int\limits_a^b f_i(x)dx
ight) \ &= \int\limits_a^b cg(x)dx \end{aligned}$$

• Let $z=\int\limits_0^1 f(x)dx$. Define $O=rac{z}{|z|}$

$$egin{aligned} \left|\int\limits_0^1f(x)dx
ight| &=|z|=O\int\limits_0^1f(x)dx\ &=\int\limits_0^1Of(x)dx\ &=\int\limits_0^1Re(Of(x))dx+\iota\int\limits_0^1Im(Of(x))dx \end{aligned}$$

· As LHS is a real number,

$$ullet \left|\int\limits_0^1 f(x)dx
ight| = \left|\int\limits_0^1 Re(Of(x))dx
ight| \leq \int\limits_0^1 |Of(x)|dx = \int\limits_0^1 |O||f(x)|dx$$

• Therefore $\left| \int_0^1 f(x) dx \right| \leq \int_0^1 |f(x)| dx$

. Question 3

• a)

$$\bullet \quad \frac{1}{p} + \frac{1}{q} = 1$$

• let
$$f(u) = \frac{u^p}{p} + \frac{v^q}{q} - uv$$

•
$$f'(u) = u^{p-1} - v$$

•
$$u^{p-1} = v$$
 for critical points

•
$$f''(u) = (p-1)u^{p-2} = (p-1)\frac{v}{u}$$

•
$$\frac{1}{p} < 1 \implies p > 1 \implies f''(u) > 0$$

$$ullet$$
 hence $u_0^{p-1}=v,u_0$ is a minimum

$$egin{split} rac{u^p}{p} + rac{v^q}{q} - uv &\geq rac{u_0^p}{p} + rac{u_0^{(p-1)q}}{q} - u_0^p \ &\geq rac{u_0^p}{p} + rac{u_0^p}{q} - u_0^p \ &\geq 0 \end{split}$$

• b)

$$ullet \ \ u = rac{f(x)}{(\int_0^1 f^p(x))^{rac{1}{p}}}, v = rac{g(x)}{(\int_0^1 g^q(x))^{rac{1}{q}}}$$

applying part a

$$egin{align*} rac{fg}{\left(\int_{0}^{1}f^{p}dx
ight)^{rac{1}{q}}\left(\int_{0}^{1}g^{q}dx
ight)^{rac{1}{q}}} & \leq rac{1}{p}\left(rac{f}{\left(\int_{0}^{1}f^{p}dx
ight)^{rac{1}{p}}}
ight)^{p} + rac{1}{q}\left(rac{g}{\left(\int_{0}^{1}g^{q}dx
ight)^{rac{1}{q}}}
ight)^{q} \ & \leq rac{1}{p}rac{f^{p}}{\int_{0}^{1}f^{p}dc} + rac{1}{q}rac{g^{q}}{\int_{0}^{1}g^{q}dc} \end{aligned}$$

Integrating on both sides from 0 to 1

$$rac{\int_0^1 f g dx}{(\int_0^1 f^p dx)^{rac{1}{q}} (\int_0^1 g^q dx)^{rac{1}{q}}} \leq rac{1}{p} + rac{1}{q} = 1$$

therfore

$$\int_0^1 fg dx \leq \left(\int_0^1 f^p dx
ight)^{rac{1}{p}} + \left(\int_0^1 g^q dx
ight)^{rac{1}{q}}$$

- · c)
 - as proved in problem 2
 - $|\int_0^1 fg dx| \le \int_0^1 |fg| dx = \int_0^1 |f| |g| dx$
 - taking |f| and |g| be function for path (b)
 - $ullet \ |\int_0^1 fg dx| \leq (\int_0^1 |f|^p)^{rac{1}{q}} + (\int_0^1 |g|^q)^{rac{1}{q}}$

. Question 4

- a)
 - S is not Jordan Measurable
 - Consider a partition $P_1 \times P_2 = P$
 - Since S is dense in I^2 , $L(P,\chi_S)=0$, $U(P,\chi_S)=1$ for any partition P
 - $\inf L(P,\chi_S)=0$
 - $\sup U(P,\chi_S)=1$
 - hence X_S is not Integrable

• b)

- Since no open balls can be made around any point in S which are a subset of S, $S^o=\emptyset$
- ullet $\overline{S}=I^2$
- $\delta S = \overline{S} \setminus S^o = I^2$
- I^2 is a closed and bounded subset of \mathbb{R}^2 , hence I^2 is compact
- Since I^2 is compact, there exits an open cover with finite subcover R_n
- $I^2 \backslash \sup_{1 \leq i \leq n} R_i$
- $ullet \ Area(I^2) \leq Area\left(igcup_{1 \leq i \leq n} R_i
 ight)$
- Therefore area of any union of sets that make a cover of I^2 , hence The jordan measure of δS is non zero

. Question 5

- a)
 - $\delta S = \left\{ \left(\frac{1}{n}, y\right) | n \in \mathbb{N}, y \in I \right\}$
 - The set $(\frac{1}{n}, y)$ for a particulat n can be covered by the rectangle $I \times \left[\frac{1}{n} \frac{\epsilon}{3}, \frac{1}{n} + \frac{\epsilon}{3}\right]$
 - The area of the cover of the set is $\frac{2\epsilon}{3}<\epsilon$, hence the has measure 0
 - countable union of zero measure sets has measure 0, hence δS has measure 0, hence S is Integrable
- b)
 - $Area(S) = Area(I^2) \sum_{i=1}^{\infty} Area\left(\left[\frac{1}{n} + \frac{\epsilon}{2 \cdot 2^i}, \frac{1}{n} \frac{\epsilon}{2 \cdot 2^i}\right]\right)$
 - $Area(S) = 1 \epsilon$
 - Area(S) = 1

. Question 6

- Since f is continuous, it is integrable in a closed interval, let η be the closed figure which is the union of Γ_f , and the area enclosed in the curve.
- since f is integrable, we know that χ_η is integrable $\implies \Gamma_f$ has content 0, as it is a subset of the boundary of η
- If f is only integrable, the above argument still holds as the only Information used in the above proof is that f is integrable.

. Question 7

•
$$\int_{\mathbb{R}} ilde{D} = \int_I D$$

$$egin{align} \int \limits_0^1 (1-x) dx &= x - rac{x^2}{2}|_{[0,1]} \ &= rac{1}{2} \end{array}$$

Using Fubini's theorem

$$egin{aligned} \int_{I imes I} D(x)D(xy)dxdy &= \int_{I imes I} (1-x)(1-xy)dxdy \ &= \int_0^1 (\int_0^1 (1-x)(1-y)dy)dx \ &= \int_0^1 (1-x)*(1-rac{x}{2})dx \ &= rac{5}{2} \end{aligned}$$