Functional Analysis, assignment 1

Zarghoona Ghazi, mlv986

December 14, 2020

Problem 1a

I will show the three properties of being a norm. The triangle inequality:

$$\begin{aligned} \|x+y\|_0 &= \|x+y\|_X + \|T(x+y)\|_Y \\ &\leq \|x\|_X + \|y\|_X + \|Tx+Ty\|_Y \\ &= \|x\|_X + \|Tx\|_Y + \|y\|_X + \|Ty\|_Y \\ &= \|x\|_0 + \|y\|_0 \forall x, y \in X \end{aligned}$$

First equality is by definition, second by T-linear.

Scalar-multiplication:

$$\|\alpha x\|_{0} = \|\alpha x|_{X} + \|T(\alpha x)\|_{Y}$$

$$= \|\alpha x|_{X} + \|\alpha Tx\|_{Y}$$

$$= |\alpha|\|x\|_{X} + |\alpha|\|Tx\|_{Y}$$

$$= |\alpha|(\|x\|_{X} + \|Tx\|_{Y})$$

$$= |\alpha|\|x\|_{0}$$

 $\alpha \in \mathbb{K}, x \in X$

Non-seminorm:

$$||x||_0 = 0 \Rightarrow ||x||_X + ||Tx||_Y = 0$$

So either $||x||_X = 0$ or $||Tx||_Y = 0$, but $||x||_X \ge 0$ and $||Tx||_Y \ge 0$. So for $||x||_X = 0$ we may have x = 0 and if x = 0 then we will get that $||0||_0 = ||0||_X + ||T0||_Y = ||0||_X + ||0||_Y = 0$.

Hence $||x||_0 = 0 \Leftrightarrow x = 0$

It can now be concluded that $\|\cdot\|_0$ is a norm on X.

Problem 1b

I want to show that any linear map $T:X\to Y$ is bounded, if X is finite dimensional.

I Assume that $\dim V = n < \infty$ for a vector space V. I will now use theorem 1.6 which says that if X finite then any two norms on X is equivalent. I showed in a) that $\|\cdot\|_0$ and $\|\cdot\|_X$ are equivalent norms on the linear map T, and gives us that T will be bounded. Since T is an arbitrary linear map, I get that all linear maps must be bounded where it applies that $\dim V = n < \infty$.

Problem 1c

I will now assume that X is infinite dimensional vector space and show that there exist a linear map $T: X \to Y$ which is not bounded.

Since it is given that X is infinite I start by taking a Hamel-basis B_X , and I will define the basis as $B_X := \{b_i : i \in I\}$.

I will now let $b \in X$ such that the following applies:

$$T\left(\frac{b_i}{\|b_i\|}\right) = i \cdot y$$

where $y \in Y$ but $y \neq 0$ and $i \in \mathbb{N}$. If $i \notin \mathbb{N}$ then I will have

$$T\left(\frac{b_i}{\|b_i\|}\right) = 0$$

I let $N:=\{b\in X:\|b\|\leq 1\}$ where $\left\{\frac{b_i}{\|b_i\|}\right\}_{i\in I}\subseteq\{b\in X:\|b\|\leq 1\}$

I.e
$$\left\{\frac{b_i}{\|b_i\|}\right\}_{i\in I}\subseteq N$$

I also have that $\sup_{x\in N} ||Tb|| \ge i||y|| > 0$ for $i\in I$. All this gives us that T is not bounded.

Problem 1d

As before X is infinite. In c) I showed that T is not bounded, i.e X is not bounded. So if X is not bounded then I have from a) that the two norms $\|\cdot\|_0$ and $\|\cdot\|_X$ cannot be equivalent on X. I will now look at $\|x\|_0 = \|x\|_X + \|Tx\|_Y$ to get $\|x\|_X \leq \|x\|_0$. If I just remove $\|Tx\|_Y$ I will end up with having what I wanted: $\|x\|_X \leq \|x\|_0$. I will now conclude $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space. So I got that the two norms are not equivalent on X then by HW 3 P1 I have that X cannot be complete. So I will now assume that $(X, \|\cdot\|_X)$ is a Banach space to see what happens. So if it applies it will be complete. But for $(X, \|\cdot\|_0)$ to be complete it should apply that the norms

should be equivalent, but I just earlier said that they are not. Hence $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space.

Problem 1e

To give an example of a vector space X equipped with two inequivalent norms $\|\cdot\|$ and $\|\cdot\|'$ that satisfies $\|x\|' \leq \|x\|$ for all $x \in X$ such that $(X, \|\cdot\|)$ is complete, while $(X, \|\cdot\|')$ is not, I will start by taking $\ell_1(\mathbb{N})$ with the norm $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$

Then I have that $(\ell_1(\mathbb{N}), \|\cdot\|_1)$ is complete since $(\ell_1(\mathbb{N}), \|\cdot\|_p)$ is complete for $1 \leq p < \infty$ from lecture notes 1. I can now take a sequence $(x_1, ..., x_n)$ in $\ell_1(\mathbb{N})$ then I will get that

$$||x||_1 = \sum_{i=1}^n |x_i| \ge x_1 + x_2 + \dots + x_n \ge \max_{i \in 1,\dots,n} \{|x_i|\} = ||x||_{\infty}$$

i.e I now have that $||x||_{\infty} \leq ||x||_1$.

I let $a_i = 1$ if $i \leq k$ and take a sequence $(a_n)_{n \in \mathbb{N}} = (a_1, a_2, ..., a_k, 0, 0, ...)$ then I will have that $||a_n||_{\infty} = 1$ but $||a_n||_1 = k$, so therefore can we say that there do not exist a c such that $k \leq c \cdot 1$ since I always can choose a k which is bigger. Hence The two norms are inequivalent.

I will now show $(\ell_1(\mathbb{N}), \|\cdot\|_{\infty})$ is not complete, by taking a sequence of sequences, i.e $((x_n)(c))_{n\in\mathbb{N}}=\frac{1}{c}$ for $1\leq c\leq n$ and $(x_n)(c)=0$ for c>n. Since all $x_n(c)$ have finite sum the one-norm I will get $x_n(c)\in\ell_1$. If I let $x(c)=\frac{1}{c}$ $\forall c\in\mathbb{N}$ then I see that:

$$||x_n(c) - x(c)||_{\infty} = \sup\{|x_n(c) - x(c)|\} = \left|\frac{1}{n+1}\right| \to 0$$

for $n \to \infty$.

I can now see that it is a Cauchy sequence with respect to the infinity-norm, which gives us that $\sum_{n=1}^{\infty} |\frac{1}{n+1}| \to \infty$ for $n \to \infty$ i.e $x(c) \notin \ell_1$ hence $(\ell_1(\mathbb{N}), \|\cdot\|_{\infty})$ is not complete.

Problem 2a

I want to show that f is bounded, and to do this I let $\alpha, \beta \in \mathbb{C}$, $\gamma = (a_1, b_1, 0, 0, 0, ...) \in M$ and $\delta = (a_2, b_2, 0, 0, 0, ...) \in M$, then I will have:

$$f(\alpha \cdot \gamma + \beta \cdot \delta) = f(\alpha a_1 + \beta a_2, \alpha b_1 + \beta b_2, 0, 0...)$$

= $\alpha a_1 + \beta a_2 + \alpha b_1 + \beta b_2 = \alpha (a_1 + b_1) + \beta (a_2 + b_2)$
= $\alpha f(\gamma) + \beta f(\delta)$

I do now have that f is linear.

I will now show that f is bounded. I will show that $\exists c > 0$ such that it apply $||a+b||_1 \leq C \cdot ||(a,b,0,0,...)||_p = C \cdot ||a,b||_p$

From lecture notes I have that $||a,b||_p$ is a norm on \mathbb{C}^2 . Furthermore I see that

$$||a+b||_1 = |a+b| \le |a| + |b| = ||(a+b)||_1$$

 $\le C \cdot ||a,b||_p = C||(a,b,0,0,...)||_p$

The first inequality is by triangular inequality, the second one is because we have that \mathbb{C}^2 is finite dimensional vector space. So then I will have that every norm in \mathbb{C}^2 is equivalent. This means that there exists a c > 0 such that the inequality will apply for all $(a, b) \in \mathbb{C}^2$.

I will now compute ||f||:

I will claim that the following holds: $||f|| = 2^{1-\frac{1}{p}}$

I will now show it by defining $d=\left(\frac{1}{2^{1/p}},\frac{1}{2^{1/p}},0,0,\ldots\right)\in M$ where it apply that $\|d\|_p=1$

I also have that:

$$||f|| = \sup\{|a+b| : ||(a,b,0,0...)||_p = 1\}$$

 $\ge \left|\frac{1}{2^{\frac{1}{p}}} + \frac{1}{2^{\frac{1}{p}}}\right| = \frac{2}{2^{\frac{1}{p}}} = 2^{1-1/p}$

I.e I now have that $||f|| \ge 2^{1-1/p}$.

The inequality applies because $\left| \frac{1}{2^{\frac{1}{p}}} + \frac{1}{2^{\frac{1}{p}}} \right| \in \{|a+b| : \|(a,b,0,0...)\|_p = 1\}.$

I will now show $||f|| \le 2^{1-1/p}$:

I have that

$$\begin{split} |a+b| &\leq |a| + |b| = \|(a,b,0,0,\ldots)\|_1 \\ &= \|(a\cdot 1,b\cdot 1,0,0,\ldots)\|_1 \leq \|(a,b,0,0,\ldots)\|_p \cdot \|(1,1,0,0,\ldots)\|_q \end{split}$$

The inequality is by Hölder with $\frac{1}{p} + \frac{1}{q} = 1$, where I have that p is fixed, so I just look at q. I choose $q = \frac{p}{p-1}$ such that $\frac{1}{p} + \frac{1}{q} = 1$ applies.

I will now let $||(a, b, 0, 0, ...)||_p = 1$ and get

$$|a+b| \le ||(1,1,0,0,...)||q$$

$$= \left(\sum_{i=1}^{2} |1|^{q}\right)^{\frac{1}{q}} = 2^{\frac{1}{q}} = 2^{1-\frac{1}{p}}$$

The inequality will apply for all $||(a, b, 0, 0, ...)||_1$, then by this I have

$$||f|| = \sup\{|a+b| : ||(a,b,0,0,...)||_p = 1\} \le 2^{1-\frac{1}{p}}$$

Then for all |a+b| in the supremum set I will get $||a+b|| \le 2^{1-\frac{1}{p}}$ Since I have shown that $||f|| \le 2^{1-\frac{1}{p}}$ and $||f|| \ge 2^{1-\frac{1}{p}}$ I can conclude that $||f|| = 2^{1-\frac{1}{p}}$.

Problem 2b

I will start by showing that there exist a functional F. I have that $(\ell_p(\mathbb{N}), \|\cdot\|_p)$ is a normed vector space, where $M \subseteq (\ell_p(\mathbb{N}), \|\cdot\|_p)$. From a) I have that f is both linear and bounded, i.e $f \in M^*$, hence I can use corollary 2.6 together with Hahn-Banach extension theorem to say that there exists $F \in \ell_p(\mathbb{N})^*$ such that $F|_M = f$ and that $\|F\| = \|f\|$.

I will now show uniqueness:

I start by recalling from HW 1 p 5 that $(\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N})$ where I notice that $1 = \frac{1}{p} + \frac{1}{q}$. I define a isometrically isomorphic function $T : \ell_q(\mathbb{N}) \to (\ell_p(\mathbb{N}))^*$, $T(x) = f_x$ and $f : \ell_p(\mathbb{N}) \to \mathbb{C}$ where I have that $f_x(y) = \sum_{n \in \mathbb{N}} x_n y_n$ for $x \in \ell_q(\mathbb{N})$ and $y \in \ell_p(\mathbb{N})$.

I will now let $F: \ell_p(\mathbb{N}) \to \mathbb{C}$ where I get $F(x_1, x_2, x_3, ...) = a + b$. I can now see that this is a Hahn-Banach extension of f.

I can now assume $F \neq \tilde{F}$ another Hahn-Banach extension, and then I will have that:

 $\exists i \in \mathbb{N}, i > 2 : \tilde{F}(e_i) = c \neq 0$ where I notice that $e_i = (0, 0, ..., i, 0, ...)$.

Now I have that $F \in \ell_p(\mathbb{N})$ *, hence there exists an unique $\xi \in \ell_q(\mathbb{N})$ such that $T(\xi) = F$

Hence $T(\xi) = (x_1, x_2, x_3, ...) = F(x_1, x_2, x_3, ...) = x_n + x_2$ Where I notice that $(x_1, x_2, x_3, ...) \in \ell_p(\mathbb{N})$

 $T(\xi) = (x_1, x_2, x_3, ...) = \sum_{n \in \mathbb{N}} x_n \xi_n$ where $\xi = (\xi_1, \xi_2, ...)$ so I get that $\xi = (1, 1, 0, 0, ...)$.

Since I have that $\tilde{F} \in (\ell_p(\mathbb{N}))^*$ then I can find a $\phi \in \ell_q(\mathbb{N})$ such that $T(\phi) = \tilde{F}$ and since T is bijective I have that $\phi \neq \xi$. So I will have $T(\xi)(x_1, x_2, x_3, 0, ...) = x_1 + x_2 = \sum_{n \in \mathbb{N}} x_n \phi_n$ because I have $\tilde{F}|_M = f$. Hence

$$\phi = \xi + \sum_{i=4}^{\infty} \alpha_i e_i$$

for $x_i\mathbb{C}$ and $e_o = (0, 0, ..., i, 0, ...)$. But then I will get that

$$\|\phi\|_q = \|\sum_{i=4}^{\infty} \alpha_i e_i\|_q = (1+1+\sum_{i=4}^{\infty} |\alpha_i e_i|^q)^{\frac{1}{q}} > \|\phi\|_q = 2^{\frac{1}{q}}$$

Which is a contradiction and I now have that there is a unique linear functional F on $\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Problem 2c

I will show that if p = 1 then there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

So I start by letting p=1 as given and will define $F_i: \ell_1(\mathbb{N}) \to \mathbb{C}$. The functions is given by $(x_1, x_2, ...) \mapsto x_1 + x_2 + x_i$ for i > 2.

 F_i is an extension and linear functional on $\ell_1(\mathbb{N})$, as a result of $F_i|_M(x) = x_1 + x_2 = f(x)$ where I have that $x \in M$. This means that F_i extends f and then $||F_i|| \ge ||f|| = 2^{1-1/p} = 2^{1-1/1} = 1$

I will now look at the 1-norm on F:

$$||F_i||_1 = \sup\{|F_i x| : ||x||_1 = 1\}$$

$$= \sup\{|x_1 + x_2 + x_i| : ||x||_1 = 1\}$$

$$= \sup\{|x_1| + |x_2| + |x_i| : ||x||_1 = 1\}$$

$$< 1$$

Before I got $||F_i|| \ge 1$ and now I have $||F_i|| \le 1$, hence $||F_i|| = 1$. This implies that $||F_i||$ is linear functional extending f. I can now conclude that there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Problem 3a

I have to show that no linear map $F: X \to \mathbb{K}^n$ is injective. I will do the exercise by contradiction

I start by assuming that the map $F: X \to \mathbb{K}^n$ is injective.

Then I let $x_1, ..., x_{n+1}$ be linear independent in X and $F(x_1), ..., F(x_{n+1})$ is linear dependent.

There exists $a_1, ..., a_{n+1} \in \mathbb{K}$ and not all are equal to zero where I have $a_1F(x_1)+, ..., +a_{n+1}F(x_{n+1})=0$ because we had $F(x_1), ..., F(x_{n+1})$ is linear dependent.

From linearity of F I will now get $0 = a_1 F(x_1) + ... + a_{n+1} F(x_{n+1}) = F(a_1 x_1 + ... + a_{n+1} x_{n+1})$. This gives us

that $a_1x_1+,...,+a_{n+1}x_{n+1}=0$ since we at first assumed that the map F is injective. From this and by using that $x_1,...,x_{n+1}$ be linear independent we now have that $a_i=0$. This implies a contradiction because we earlier said that not all a's are equal to zero, but at least one is and now we get that all a are equal to zero. So since I got to a contradiction I can now say that our map $F: X \to \mathbb{K}^n$ is not injective. From this I conclude that no linear map $F: X \to \mathbb{K}^n$ is injective.

Problem 3b

I will show $\bigcap_{j=1}^n ker(f_j) \neq \{0\}$. I start by looking at the map $F: X \to \mathbb{K}^n$ which is given by $F(x) = (f_1(x), f_2(x), ..., f_n(x)), x \in X$.

We have from exercise a) that no linear map is injective, this implies that the map $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x), ..., f_n(x)), x \in X$ is not injective. This gives us that $ker(F) \neq \{0\} \Rightarrow ker(f_1(x), f_2(x), ..., f_n(x)) \neq \{0\}$

So because I have $ker(F) \neq \{0\}$ there exist a $x \neq 0$ where it applies $F(x) = (f_1(x), f_2(x), ..., f_n(x)) = 0$ and then I will have that each of them also will be equal to zero as: $f_1(x) = 0, f_2(x) = 0, ..., f_n(x) = 0$ Hence I can conclude $\{0\} \neq ker(F) = \bigcap_{j=1}^n ker(f_j)$

Problem 3c

I will show that there exists a $y \in X$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$.

From b) I have that $\bigcap_{j=1}^n ker(f_j) \neq \{0\}$, hence I will now pick z non-zero in $\bigcap_{j=1}^n ker(f_j)$ From this I will now define $y = \frac{z}{\|z\|}$ and look at $f_j(y)$.

 $f_j(y)=f_j\left(\frac{z}{\|z\|}\right)=\frac{1}{\|z\|}f_j(z).$ Since I chose a $z\in\bigcap_{j=1}^n ker(f_j)$ we will have that $f_j(z)=0$ so $f_j(y)=0$. This implies $y\in\bigcap_{j=1}^n ker(f_j)$ and hence $\|y\|=\|\frac{z}{\|z\|}\|=\frac{\|z\|}{\|z\|}=1.$ Hence I now have that there exists $y\in\bigcap_{j=1}^n ker(f_j)\subseteq X$ such that $\|y\|=1.$

I will now show $||y - x_j|| \ge ||x_j||$. I know that $||y - x_j|| = ||f_j|| \cdot ||y - x_j||$ since $||f_j|| = 1$, this applies because we have that X is infinite dimensional normed vector space and by theorem 2.7(b) where $f_j \in X^*$.

 $||y-x_j|| = ||f_j|| \cdot ||y-x_j|| \ge ||f_j(y-x_j)|| = |f_j(y-x_j)| = |f_j(y)-f_j(x_j)| = |0-||x_j||| = ||x_j||$. The inequality applies by definition of the norm operator. The first equality after the inequality applies since the norm in \mathbb{K} the absolute value. The second equality is by linearity, the third is from problem 3b. Hence I can conclude $||y-x_j|| \ge ||x_j||$.

Problem 3d

I will show that one cannot cover the unit sphere $S = \{x \in X : ||x|| = 1\}$ with a finite family of closed balls in X such that none of the balls contains 0. I will call this closed balls B_i . I will show that S cannot be covered, i.e I will show that $S \nsubseteq \bigcup_{i=1}^n B_i$. In other words I take a $x \in S$ and will now show that $x \notin \bigcup_{i=1}^n B_i$ this means that we can take a $x \in \bigcap_{j=1}^n \ker(f_j) \cap S \subseteq S \nsubseteq \bigcup_{i=1}^n B_i$

I will now show that B_i is convex to determine weather x lies in B_i or not For every $x, y \in B_i$ and for $0 \le \alpha \le 1$ it applies that $\alpha x + (1 - \alpha)y \in B_i$.

$$\|\alpha x + (1 - \alpha)y - p\| = \|\alpha x - \alpha p + (1 - \alpha)y - p + \alpha p\|$$

$$= \|\alpha(x - p) + (1 - \alpha)y - p(1 - \alpha)\| = \|\alpha(x - p) + (1 - \alpha)(y - p)\|$$

$$\leq \|\alpha(x - p)\| + \|(1 - \alpha)(y - p)\| = |\alpha| \cdot \|(x - p)\| + |(1 - \alpha)| \cdot \|(y - p)\|$$

$$= \alpha\|(x - p)\| + (1 - \alpha)\|(y - p)\| \leq \alpha r + (1 - \alpha)r = \alpha r + r - \alpha r = r$$

I can now conclude that B_i is convex since I showed $\|\alpha x + (1-\alpha)y - p\| \le r$.

For x to lie in B_i , where I have that B_i is convex, it applies by Hahn-Banach that $Re(f_i) \ge 1$.

So these x which is in $\bigcap_{j=1}^n ker(f_j)$ do not lie in B_i , because if $x \in \bigcap_{j=1}^n ker(f_j)$ then I will have $f_j(x) = 0$ and if this applies then I will get that $Re(f_j(x)) = 0$ which is different from 1 as I said earlier. Hence I can conclude that $x \notin B_i$

From this I get $\bigcap_{j=1}^n ker(f_j) \cap B_i = \emptyset$ hence $\bigcap_{j=1}^n ker(f_j) \cap B_i \cap S = \emptyset$. This means that if I $x \in \bigcap_{j=1}^n ker(f_j) \cap B_i \cap S$ then $x \notin \bigcup_{i=1}^n B_i$

Problem 3e

I start by showing that S is not compact and will do it by contradiction. I assume that S is compact then for any $x \in S$ I will consider a open ball $B_x = \{v \in X : \|x - v\| < \frac{1}{2}\}$. So I take $x \in S$ then I will get $\|x - x\| = 0 < \frac{1}{2}$ so therefore by compactness $\{B_x\}_{x \in S}$ is an open covering of S. This implies $x \in B_x$ and $x \in \bigcup \{B_x\}_{x \in S}$, hence $S \subseteq \bigcup \{B_x\}_{x \in S}$.

Compactness of S applies that every open cover of this S will have a finite subcover, the same applies with the open balls $\{B_x\}_{x\in S}$ will have a finite subcover $\{B_{x_1},...,B_{x_n}\}$ since $\{B_x\}_{x\in S}$ is an open cover of S.

I have that $\bigcup_{i=1}^n \overline{B_{x_i}} \subseteq \bigcup_{i=1}^n \overline{B_{x_i}}$ since $B_{x_i} \subseteq \overline{B_{x_i}}$. So now I have that B_{x_i} is a finite subcover and will get that $S \subseteq \bigcup_{i=1}^n \overline{B_{x_i}}$, and $S \subseteq \bigcup_{i=1}^n \overline{B_{x_i}}$. I now have that $\{\overline{B_{x_1}},...,\overline{B_{x_n}}\}$ is a closed ball covering of S and none of them will contain 0, because I have $\overline{B_x} = \{v \in X : ||x-v|| \leq \frac{1}{2}\}$

Since $x \in S$ I have ||x - 0|| = ||x|| = 1, but $1 > \frac{1}{2}$ then $0 \notin \overline{B_{x_i}}$. I have now shown that there exist a family with closed balls which is covering S and contains 0. But this is a contradiction with problem 3d, where I showed that there do not exists a finite family of closed balls in X such that none of the balls will contains 0. In this exercise I just found such a family: $\{\overline{B_{x_1}},...,\overline{B_{x_n}}\}$. So I can conclude that S is non-compact.

I have that $S \subseteq B$ and B is the closed unit ball. We have a property which says that if B is compact then S is compact since a closed subset of a compact space is again compact. But I will now use the contradiction of the statement. So since we showed earlier that S is not compact then I will have that the closed B in X is neither compact.

Problem 4a

To determine weather $E_n \subset L_1([0,1],m)$ is absorbing or not I first look at if it is convex or not. The definition of convex is that $\forall f,g \in E_n$ and $\forall 0 < \alpha < 1$ we have $\alpha f + (1-\alpha)g \in E_n$. I will start by showing

$$\left(\int_{[0,1]} |\alpha f + (1-\alpha)g|^3 dm\right) \le n$$

To do that I will use Minkowski's inequality:

$$\left(\int_{[0,1]} |\alpha f + (1-\alpha)g|^3 dm\right)^{\frac{1}{3}} \le \left(\int_{[0,1]} |\alpha f|^3 dm\right)^{\frac{1}{3}} + \left(\int_{[0,1]} |(1-\alpha)g|^3 dm\right)^{\frac{1}{3}} \\
= \left(\int_{[0,1]} \alpha^3 |f|^3 dm\right)^{\frac{1}{3}} + \left(\int_{[0,1]} (1-\alpha)^3 |g|^3 dm\right)^{\frac{1}{3}} \\
= \alpha \left(\int_{[0,1]} |f|^3 dm\right)^{\frac{1}{3}} + (1-\alpha) \left(\int_{[0,1]} |g|^3 dm\right)^{\frac{1}{3}} \\
\le \alpha n^{\frac{1}{3}} + (1-\alpha)^{\frac{1}{3}} = n^{\frac{1}{3}}$$

 $f,g \in E_n$.

I can now say that the following applies

$$\left(\int_{[0,1]} |\alpha f + (1-\alpha)g|^3 dm\right) \le n$$

and this gives us $\alpha f + (1 - \alpha)g \in E_n$ hence E_n is convex.

I will now see if E_n is absorbing.

I have shown that E_n is convex, so now I will show weather the following holds:

 $\forall f \in L_1([0,1],m) \ \exists t > 0: t^-1f \in E_n$ I let $f(t) = t^{-\frac{1}{3}}$ and look at the following:

$$||f||_1 = \int_{[0,1]} f dm = \int_0^1 x^{-\frac{1}{3}} dx = \left[\frac{1}{-\frac{1}{3} + 1} x^{-\frac{1}{3}} \right]_0^1 = \frac{3}{2} < \infty$$

Hence $f \in L_1([0,1], m)$ where we note that f(t) is measurable.

I will now look at for any t > 0

$$\int_{[0,1]} |f|^3 dm = \int_0^1 |f|^3 dm = \int_0^1 \frac{1}{x} dx \to \infty$$

Hence $\int_0^1 \frac{1}{x} dx \approx \infty$. This means that $f \notin L_3([0,1],m)$ and this gives us that there do not exists t > 0 such that $t^-1f \in E_n$

From $\int_{[0,1]} |f|^3 dm \approx \infty$ I get that $\int_{[0,1]} |t^-1f|^3 dm \approx \infty$. Hence I now have that $\int_{[0,1]} |t^-1f|^3 dm \not\leq n$, so now can I conclude that E_n is not absorbing

Problem 4b

I want to show that E_n has empty interior in $L_1([0,1],m)$ for all $n \ge 1$. I will first look at the definition of a interior which says: The union of all open sets $U \subset E \subset X$, it is the largest open sets contained in E, and it is denoted as E° .

I start by showing that $E_n^{\circ}=\emptyset$ and doing it by contradiction, i.e I will assume $E_n^{\circ}\neq\emptyset$. Hence I have $f\in E_n^{\circ}$ gives us the open ball

$$B(f, \epsilon := \{g \in L_1([0, 1], m) : ||f - g||_1 < \epsilon\} \subseteq E_n$$

for $\epsilon > 0$.

For $0 \neq g \in L_1([0,1], m)$ I get

$$||f - (f + \frac{\epsilon}{2||g||_1}g)||_1 = ||f - f - \frac{\epsilon}{2||g||_1}g||_1 = -||\frac{\epsilon}{2||g||_1}g||_1 = |\frac{\epsilon}{2||g||_1}|||g||_1$$
$$= \frac{\epsilon}{2||g||_1}||g||_1 = \frac{\epsilon}{2} < \epsilon$$

I define h as $h:=f+\frac{\epsilon}{2\|g\|_1}g\in B(f,\epsilon)$, from this I define g: $g=(h-f)\frac{2\|g\|_1}{\epsilon}$

Since I have that $h \in B(f, \epsilon) \subseteq E_n$ I will have $h \in L_3([0, 1], m)$ because we have that any function in E_n also is in $L_3([0, 1], m)$. So then because $f \in E_n$ I get $f \in L_3([0, 1], m)$. From these informations I now have, I can say that $g \in L_3([0, 1], m)$.

From all this I now get that $L_1([0,1],m) \subseteq L_3([0,1],m)$, but this is a contradiction by HW 2 and hence $E_n^{\circ} = \emptyset$ so E_n have empty interior in $L_1([0,1],m)$.

Problem 4c

I will now show that E_n is closed in $L_1([0,1],m)$. I start by taking a sequence $(a_b)_{b\in\mathbb{N}}$ in E_n and will show that the limit of E_n will be in E_n . When I take a sequence $(a_b)_{b\in\mathbb{N}}\subseteq E_n$ I have $\|a_b-a\|_1\to 0$ and I note by Bolzano-Weierstrass that the sequence $(a_{n_b})_{n_b\in\mathbb{N}}$ converges pointwise. I now have:

$$||f||_3^3 = \int_{[0,1]} |f|^3 dm \le \lim_{n_b \to 0} \inf \int_{[0,1]} |f_{n_b}|^3 dm \le \lim_{n_b \to 0} \inf n = n$$

The first inequality is by Fatou's lemma, the second inequality is from $a_{n_b} \in E_n$. I can now see that $||f||_3^3 \le n$, this means that $f \in E_n$ and I can conclude that E_n is closed in $L_1([0,1],m)$.

Problem 4d

I will now use b) and c) to say that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$. For something to be of first category I have by definition 3.12(ii) that here must exist a sequence of nowhere dense sets such that $L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n$. To show this I have to show that $Int(\overline{E_n}) = \emptyset$ and in exercise b) I showed that $Int(E_n) = \emptyset$ and in c) I showed that E_n is closed. This implies $E_n = \overline{E_n}$ and this will now apply that $\emptyset = Int(E_n) = Int(\overline{E_n})$ hence I now get $Int(\overline{E_n}) = \emptyset$ as wanted. I can now say that E_n is nowhere dense set and use it to show $L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n$.

$$\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} \{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \}$$

$$= \{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm < \infty \}$$

$$= \{ f \in L_1([0,1], m) : f \in L_3([0,1], m) \} = L_3([0,1], m)$$

since it was given that $L_3([0,1],m) \subseteq L_1([0,1],m)$. I can now finish the exercise with saying that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Problem 5a

I suppose that $x_n \to x$ in norm and will determine weather $||x_n|| \to ||x||$. I start by observing that

$$||x|| = ||x - x_n + x_n|| \le ||x - x_n|| + ||x_n||$$

and we also observe that

$$||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x||$$

I will now use the reverse triangle inequality and combine the two expressions:

$$|||x|| - ||x_n||| \le ||x - x_n||$$

Since it is given that $x_n \to x$ for $\epsilon > 0$ there will exist $n_{\epsilon} \in \mathbb{N}$ such that $n \geq n_{\epsilon}$ gives us

$$|||x|| - ||x_n||| \le ||x - x_n|| < \epsilon$$

Hence I can conclude that $||x_n|| \to ||x||$ as I wanted.

Problem 5b

I suppose that $x_n \to x$ weakly and I will find out if $||x_n|| \to ||x||$. I will show it by a counterexample.

I let $H = \ell_2(\mathbb{N})$ and $x_n = e_n$. I have that H is separable so I look at e_n , where I will notice that $\langle e_n, e_m \rangle = \delta_{n,m} = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}$ I will now look at what

 e_n is going towards weakly, and for that I assume $e_n \to 0$ weakly. I will start by taking a $x \in H$ then I have by Bessel's inequality that $\sum_n \left| \langle e_n, x \rangle \right|^2 \le \|x\|^2 < \infty$ which converges.

From this I get $|\langle e_n, x \rangle|^2 \to \langle 0, x \rangle = 0$ i.e $|\langle e_n, x \rangle|^2 \to 0$ and hence $\langle e_n, x \rangle \to \langle 0, x \rangle$. since I have a Hilbert space and a sequence I recall from HW $4 \langle e_n, x \rangle \to \langle 0, x \rangle \Leftrightarrow e_n \to 0$ weakly.

So I get that $e_n \to 0$ weakly since I showed $\langle e_n, x \rangle \to \langle 0, x \rangle$.

But can I from all this conclude that $||e_n|| \to ||0|| = 0$

I know that $||e_n|| = 1$ for every n, it applies that $||e_n|| \not\to ||0|| = 0$. So I can now conclude that for $x_n \to x$ weakly it does not follow that $||x_n|| \to ||x||$.

Problem 5c

I notice that $||x_n|| \le 1$ for all $n \ge 1$ and $x_n \to x$ weakly.

I will now find out if $||x|| \le 1$.

I start by looking at the property of a weak convergence, which says that the norm is sequentially weakly lower-semicontinous, i.e $||x|| \le \lim_{n\to\infty} \inf ||x_n||$.

I know that $x_n \to x$ weakly then it applies that $||x|| = \langle x, x \rangle = \lim_{n \to \infty} \langle x, x_n \rangle$ but I have that $\langle x, x_n \rangle \leq ||x_n||$. So this implies

 $||x|| = \lim_{n \to \infty} \langle x, x_n \rangle \leq \lim_{n \to \infty} \inf ||x_n||$. I can now finish with saying that $||x|| \leq 1$ since $||x_n|| \leq 1$.