Provably Personalized and Robust Federated Learning Emerging Topics in Machine Learning

Titouan Borderies, Darius Dabert, Maxime Basse

Ecole Polytechnique

November 13, 2024

Agenda

- Introduction
- The paper
- Our contributions
- 4 Conclusion

Challenges in Federated Learning

- The general Federated Learning (FL) approach encounters several fundamental challenges:
 - **1** Poor Convergence on Highly Heterogeneous Data:
 - The diversity in data distributions among clients can lead to suboptimal convergence.
 - 2 Lack of Solution Personalization:
 - FL may struggle to provide personalized solutions for individual clients.
 - **3** Exposure to Byzantine attacks

Personalized Federated Learning

¹Source: Towards Personalized Federated Learning, Alysa Ziying Tan, IEEE

Modelling assumptions

- Clients belong to K groups that have distinct data distributions.
- The gradients from models of the same group form clusters in the gradient space.
- Gradient clusters are clearly separated between groups
- Objectives:
 - Automatically identifying clusters of gradients at each iteration.
 - Must be Byzantine Robust.
 - Train one personalized model for each client

Notations

- N denotes the number of clients
- *K* is the number of cluster (hyperparameter)

Hypothesis

Figure: Gradients distribution

- ullet Δ denotes the inter-cluster separation
- ullet σ denotes the intra-cluster variance

What would you do?

At every train step, cluster the gradient of every client models and send the cluster center to each client.

What would you do?

At every train step, cluster the gradient of every client models and send the cluster center to each client.

- Intuitive Idea
- ullet Communication-efficient : $\mathcal{O}(N)$

Algorithm 1: Myopic-Clustering

```
Input: Learning rate: \eta. Initial parameters: \{x_{1,0} = \ldots = x_{N,0} = x_0\}.
1 for round t \in [T] do
      for client i in [N] do
           Client i sends g_i(x_{i,t-1}) to server;
      Server clusters \{g_i(x_{i,t-1})\}_{i\in[N]}, generating cluster centers
      \{v_{k,t}\}_{k\in[K]};
    for client i in [N] do
           Server sends v_{k_i,t} to client i, where k_i denotes the cluster to
            which client i is assigned;
           Client i computes update: x_{i,t} = x_{i,t-1} - \eta v_{k_i,t};
  Output: Personalized parameters: \{x_{1,T}, \dots, x_{N,T}\}.
```

The **limits** of this naive approach:

- k-means is not Byzantine robust.
- Doesn't work well in practice because clients from different clusters can be trained in the wrong group of clients if the clustering fails at one step of the algorithm.

Intuition behind Threshold Clustering

Figure: Threshold Clustering

Idea: Group data points that are close to each other within a certain threshold.

Intuition behind Threshold Clustering

Figure: Threshold Clustering

Intuition behind Threshold Clustering

Figure: Threshold Clustering

Byzantine Robustness of Threshold Clustering

Figure: Byzantine Attack

Byzantine Robustness of Threshold Clustering

Figure: Byzantine Attack

Byzantine Robustness of Threshold Clustering

Figure: Byzantine Attack

Algorithm 3: Threshold-Clustering

```
Input: Points to be clustered: \{z_1, \ldots, z_N\}. Number of clusters: K. Cluster-center initializations: \{v_{1,0}, \ldots, v_{K,0}\}.
```

1 for round $l \in [M]$ do

for cluster k in [K] do

Set radius $\tau_{k,l}$;

Update cluster-center estimate:

$$v_{k,l} = \frac{1}{N} \sum_{i=1}^{N} \left(\chi_{\{\|z_i - v_{k,l-1}\| \le \tau_{k,l}\}} z_i + \chi_{\{\|z_i - v_{k,l-1}\| > \tau_{k,l}\}} v_{k,l-1} \right)$$

Output: Cluster-center estimates $\{v_1 = v_{1,M}, \dots, v_K = v_{K,M}\}.$

 $^{^{}a}\chi$ denotes the indicatrice function

Algorithm 2: Federated-Clustering

```
Input: Learning rate: \eta. Initial parameters for each client:
            \{x_{1,0},\ldots,x_{N,0}\}.
1 for client i \in [N] do
2 | Send x_{i,0} to all clients j \neq i;
3 for round t \in [T] do
       for client i in [N] do
      Compute g_i(x_{i,t-1}) and send to client j for all j \neq i \in [N];
      for client i in [N] do
           Compute
            v_{i,t} \leftarrow \mathsf{Threshold}\text{-Clustering}(\{g_i(x_{i,t-1})\}_{i \in [N]}; g_i(x_{i,t-1}));
           Update parameter: x_{i,t} \leftarrow x_{i,t-1} - \eta v_{i,t};
           Send x_{i,t} to all clients j \neq i;
  Output: Personalized parameters: \{x_{1,T}, \dots, x_{N,T}\}.
```

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \|\nabla f_i(x_{i,t-1})\|^2 \lesssim \sqrt{\frac{\max(1, A^2)(\sigma^2/n_i + \sigma^3/\Delta + \beta_i \sigma \Delta)}{T}}.$$

Drawbacks

Federated Clustering suffers from several drawbacks:

- Communication overhead
- Doesn't use sufficiently the information accumulated by the previous clustering
- How to choose the threshold radius tau at each step?
- Computational inefficiency

Algorithm 4: Momentum-Clustering

```
Input: Learning rate: \eta. Initial parameters for each client: \{x_{1,0}, \dots, x_{N,0}\}.
1 for round t \in [T] do
       for client i in [N] do
            Client i sends
                                    m_{i,t} = \alpha g_i(x_{i,t-1}) + (1-\alpha) m_{i,t-1}
              to server.
       Server generates cluster centers
         \{v_{k,t}\}_{k\in[K]} \leftarrow \text{Threshold-Clustering}(\{m_{i,t}\}_{i\in[M]}; K \text{ clusters}; \{v_{k,t-1}\}_{k\in[K]})
         and sends v_{k_i,t} to client i, where k_i denotes the cluster to which i is
         assigned in this step. for client i in [N] do
            Client i computes update: x_{i,t} = x_{i,t-1} - \eta v_{k_i,t}.
  Output: Personalized parameters: \{x_{1,T}, \dots, x_{N,T}\}.
```

Implementation

Dataset: Each cluster has a different rotation of MNIST images

```
0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5 5 5 5
```


Implementation

Limitations of the momentum-clustering

Figure: PCA of Momentums

Our contribution

We choose to focus on communication overhead to improve Federated Clustering (Algorithm 2)

Key Ideas

- Delete useless communications as you go along
- Using information from previous Threshold Clustering

Figure: Our algorithm

Figure: Our algorithm

Our Algorithm: Federated-Clustering++

```
Input: Learning rate: \eta. Initial parameters for each client: \{x_{1,0}, \dots, x_{N,0}\}.
1 for client i \in [N] do
       Send x_{i,0} to clients j in DiffusionList_i;
3 for round t \in [T] do
        for client i in [N] do
        Compute g_i(x_{j,t-1}) and send to client j for all j in DiffusionList<sub>i</sub>;
       for client i in [N] do
             Compute
               v_{i,t} \leftarrow \mathsf{Threshold\text{-}Clustering}(\{g_i(x_{i,t-1})\}_{j:i \in \mathsf{DiffusionList}_i}; g_i(x_{i,t-1}));
             Update DiffusionList<sub>i</sub>;
        Update parameter: x_{i,t} \leftarrow x_{i,t-1} - \eta v_{i,t};
        Send x_{i,t} to all clients j in DiffusionList<sub>i</sub>;
  Output: Personalized parameters: \{x_{1,T}, \dots, x_{N,T}\}.
```

$$\mathbb{E}||g_{i}(x) - g_{j}(x)||^{2} \leq 2\sigma^{2}$$

$$p = P(||g_{i}(x) - g_{j}(x)|| > R) < f(\mathbb{E}||g_{i}(x) - g_{j}(x)||^{2}, R)$$

$$\mathbb{E}(\hat{n}_{i}) = (1 - p)^{Tn_{i}}$$

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \|\nabla f_i(x_{i,t-1})\|^2 \lesssim \sqrt{\frac{\max(1, A^2)(\sigma^2/n_i + \sigma^3/\Delta + \beta_i \sigma \Delta)}{T}}.$$

31 / 40

Figure: PCA of gradients for the batch n°0

Figure: PCA of gradients for the batch n°1

Figure: PCA of gradients for the batch n°2

Figure: PCA of gradients for the batch n°3

Figure: PCA of gradients for the batch n°4

Benchmarking

Figure: Accuracy per epoch

Figure: Losses per epoch

Experiments with 4 clusters, 60 clients, 15 epochs, 150 samples per client

Benchmarking

Figure: Time per epoch

Figure: Accuracy versus time

Experiments with 4 clusters, 60 clients, 15 epochs, 150 samples per client

Conclusion

- Robustness and Personalized
- Communication improvements while remaining efficient
- Remaining challenges: Theoretical guarantees with realistic assumptions.

References

 Mariel Werner Lie He Sai Praneeth Karimireddy Michael Jordan Martin Jaggi , A. (2023). Provably Personalized and Robust Federated Learning, TLMR 2023

