Completing Linear Temporal Logic Objectives Before a Deadline with Reinforcement Learning

Daniel Braun (Supervisors: Sasha Rubin, Rafael Oliveira)

November 24, 2021

Objective-Based Reinforcement Learning

Current Literature: "Take your time, but don't screw it up." (Infinite Horizon)

Our Problem: "Your friend is drowning, hurry up!" (Finite Horizon)

Motivation

Examples of objective-based finite horizon problems:

- Manufacturing a high quality product before the factory closes.
- Performing a surgery before the patient bleeds out.
- ► Getting to school (safely) on time.

Main Contributions

- Created a frozen lake environment suitable for running objective-based reinforcement learning (RL). https://github.com/danbraunai/rl-ltl.
- Introduced QTRM-learning to address the objective-based finite horizon problem.
- Analysed the sample-efficiency and update-efficiency of QTRM-learning and similar algorithms.
- ► Investigated the limitations of reward discounting and step-based penalties for finite horizon problems.

Background: Linear Temporal Logic Objective

Figure 1: Objective in "finite" LTL¹: $\varphi = \Diamond(R \land \Diamond F) \land \Box \neg T$

- $ightharpoonup \lozenge =$ "eventually"
- ▶ □ = "always"

 1 We define finite LTL to consist of co-safe LTL [1], LTL $_{f}$ [2, 3] and LDL $_{f}$ [4]

Background: Reinforcement Learning

Markov Decision Process (MDP):

- Set of states.
- Set of actions that can be applied in each state.
- ► A Markov **transition function** mapping states and actions to new states.
- (Optional) Reward for taking an action and transitioning to a new state.

Reward-based RL: Learn a *policy* (i.e. a function mapping states to actions) that maximises the expected rewards over an infinite or finite horizon.

An RL agent does not have direct access to the transition function!

Problem statement

Objective-Based Finite Horizon Problem

Given: MDP M without rewards and without direct access to the

transition function; deadline H; finite LTL objective φ .

Goal: Learn a policy in M that maximises the probability of

achieving φ before H.

Solution Outline

Reward-based finite horizon methods (QT-learning)

Objective-based infinite horizon methods (CRM) Objective-based finite horizon method (QTRM-learning)

Solution Outline

Reward-based finite horizon methods (QT-learning)

Objective-based infinite horizon methods (CRM) Objective-based finite horizon method (QTRM-learning)

Reward-Based Finite Horizon Q-Learning

- 1. Initialise Q-values $Q_h(s,a)$ arbitrarily (e.g. to 0) for every state s, action a, and timestep remaining $h \in \{0,1,...,H\}$.
- 2. Take an action and gather experience (h, s, a, s').
- 3. Update Q-values:

 $Q_h(s,a) \leftarrow Q_h(s,a) + \alpha \left[\frac{R(s,a,s')}{a'} + \max_{a'} Q_{h-1}(s',a') - Q_h(s,a) \right]$

- ► Learning rate
- ► Reward of transition
- ▶ Value of best action in s' with h-1 steps remaining -

Reward-Based Finite Horizon QT-Learning

QT-learning: Environment transitions are independent of the timestep [5].

- 1. Initialise Q-values $Q_h(s,a)$ arbitrarily (e.g. to 0) for every state s, action a, and timestep remaining $h \in \{0,1,...,H\}$
- 2. Take an action and gather experience (h, s, a, s')
- 3. Update Q-values for all timesteps remaining $\bar{h} \in \{1, 2, ..., H\}$ simultaneously:

$$Q_{\bar{\boldsymbol{h}}}(s,a) \leftarrow Q_{\bar{\boldsymbol{h}}}(s,a) + \alpha \big[R(s,a,s') + \max_{a'} Q_{\bar{\boldsymbol{h}}-\boldsymbol{1}}(s',a') - Q_{\bar{\boldsymbol{h}}}(s,a) \big]$$

Solution Outline

Reward-based finite horizon methods (QT-learning)

Objective-based infinite horizon methods (CRM)

Objective-based finite horizon method (QTRM-learning)

Reward Machines

MDP without rewards

► Reward machine [6, 7, 8]

► Finite LTL objective

Reward Machines

A reward machine (RM) contains:

- ▶ Set of states U representing different stages of the objective (e.g. when the agent has or doesn't have the rope).
- A function δ_u specifying **transitions** between RM states given environment transitions.
- A function δ_r specifying **rewards** given RM states and environment transitions.

If $\delta_r=1$ when the objective is completed, and 0 otherwise, then a policy which maximises rewards also maximises the satisfaction probability of φ .

Objective-Based Infinite Horizon Q-Learning

Counterfactual Experience for Reward Machines (CRM) [8]:

- Create RM from MDP (without rewards) and finite LTL objective.
- 2. Initialise Q-values $Q^u(s, a)$ arbitrarily (e.g. to 0) for every RM state u, environment state s, and action a.
- 3. Take an action and gather experience (u, s, a, u', s').
- 4. Update Q-values for all RM states \bar{u} simultaneously:

$$Q^{\bar{\boldsymbol{u}}}(s,a) \leftarrow Q^{\bar{\boldsymbol{u}}}(s,a) + \alpha \left[\delta_r(\bar{\boldsymbol{u}},s,a,s') + \max_{a'} Q^{\bar{\boldsymbol{u}}'}(s',a') - Q^{\bar{\boldsymbol{u}}}(s,a) \right]$$

Solution Outline

Reward-based finite horizon methods (QT-learning)

Objective-based infinite horizon methods (CRM) Objective-based finite horizon method (QTRM-learning)

Objective-Based Finite Horizon Q-Learning

Q-Learning for Timesteps and Reward Machines (QTRM-learning):

- Create RM from MDP (without rewards) and finite LTL objective.
- 2. Initialise Q-values $Q_h^u(s,a)$ arbitrarily (e.g. to 0) for every RM state u, environment state s, action a, and timestep remaining $h \in \{0,1,...,H\}$.
- 3. Take an action and gather experience (h, u, s, a, u', s').
- 4. Update Q-values for all RM states \bar{u} and timesteps remaining $\bar{h} \in \{1, 2, ..., H\}$ simultaneously:

$$Q_{\bar{\boldsymbol{h}}}^{\bar{\boldsymbol{u}}}(s,a) \leftarrow Q_{\bar{\boldsymbol{h}}}^{\bar{\boldsymbol{u}}}(s,a) + \alpha \left[\delta_r(\bar{\boldsymbol{u}},s,a,s') + \max_{a'} Q_{\bar{\boldsymbol{h}}-\boldsymbol{1}}^{\bar{\boldsymbol{u}}'}(s',a') - Q_{\bar{\boldsymbol{h}}}^{\bar{\boldsymbol{u}}}(s,a) \right]$$

Sample Efficiency

Figure 2: Performance vs number of samples for task with several ropes to be collected in order and horizon H=15.

Discussion

- ➤ Same techniques can be applied to RL that uses function approximation [see 8, for infinite horizon].
- Reward shaping using RM states can reduce reward sparsity.

Future Work

- ► Test on different domains (e.g. continuous state spaces, more varied objectives).
- ▶ Updating only on a subset of counterfactual experiences.
- Handle the case where environment transitions depend on the RM state.
- ► Test methods in a real game of frisbee on ice!

Thanks for listening!

Questions?

Figure 3: Man playing frisbee on a frozen lake for some reason [9]

References I

- [1] Orna Kupferman and Moshe Y Vardi. "Model checking of safety properties". In: Formal Methods in System Design 19 (3 2001), pp. 291–314.
- [2] Thomas Wilke. "Classifying discrete temporal properties". In: Annual symposium on theoretical aspects of computer science (1999), pp. 32–46.
- [3] Alfredo Gabaldon. "Precondition Control and the Progression Algorithm.". In: *ICAPS* (2004), pp. 23–32.
- [4] Giuseppe De Giacomo and Moshe Y Vardi. "Linear temporal logic and linear dynamic logic on finite traces". In: IJCAl'13 Proceedings of the Twenty-Third international joint conference on Artificial Intelligence (2013), pp. 854–860.
- [5] Daishi Harada. "Reinforcement learning with time". In: AAAI/IAAI (1997), pp. 577–582.
- [6] Rodrigo Toro Icarte et al. "Teaching multiple tasks to an RL agent using LTL". In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (2018), pp. 452–461.
- [7] Alberto Camacho and Sheila A McIlraith. "Learning interpretable models expressed in linear temporal logic". In: Proceedings of the International Conference on Automated Planning and Scheduling 29 (2019), pp. 621–630.

References II

- [8] Rodrigo Toro Icarte et al. "Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning". In: arXiv preprint arXiv:2010.03950 (2020).
- [9] Rob McLeod. Man catching frisbee on ice. URL: https://frisbeerob.gumlet.io/wp-content/uploads/2016/12/Silver_ Skate_Frisbee_Rob_008.jpg?compress=true&quality=80&w=940&dpr=1.0.

Appendix

Some additional slides placed below...

Sample Efficiency Zoomed Out

Figure 4: Performance vs number of samples for task with several ropes to be collected in order and horizon H=15.

Update Efficiency

Figure 5: Performance vs number of updates for task with several ropes to be collected in order. Shows that the counterfactual experiences in QTRM-learning are not necessarily less effective than true experiences.

QTRM-learning Example

Suppose H=10, h=5, and in RM state u_0 (i.e. no rope).

Actual experience: $(h, u, s, a, u', s') = (5, u_0, s_3, \downarrow, u_0, s_8)$

$$\begin{aligned} \text{QTRM Updates:} \ & \{ (\mathbf{10}, u_0, s_3, \downarrow, u_0, s_8), (\mathbf{9}, u_0, s_3, \downarrow, u_0, s_8), ..., \\ & (\mathbf{10}, u_1, s_3, \downarrow, u_1, s_8), (\mathbf{9}, u_1, s_3, \downarrow, u_1, s_8), ... \} \end{aligned}$$

Infinite Horizon Optimal Q-Values

After convergence, *optimal* Q-values $Q^*(s, a)$ satisfy:

- Sum over all possible next states
- ightharpoonup Optimal value of a in s

$$Q^*(s,a) = \sum_{s'} P(s'|s,a) \left[\frac{R(s,a,s')}{A} + \max_{a'} Q^*(s',a') \right]$$

- \blacktriangleright Probability of transition to s
- Reward of transition (0 if not goal) -
- lacksquare Optimal value of best action in s' (equivalent to $V^*(s')$)

Infinite Horizon Optimal Policy

Figure 6: Cell values indicate the optimal values $(\max_a Q^*(s,a) \text{ or } V^*(s))$

$$Q^*(s_0, \rightarrow) = 1$$
, $Q^*(s_0, \searrow) = 0.990$, $Q^*(s_0, \downarrow) = 0.991$

Finite Horizon Optimal Policy

Figure 7: Optimal values with 2 steps left $(\max_{a} Q_2^*(s, a) \text{ or } V_2^*(s))$

$$Q_3^*(s_0, \searrow) = 1,$$

 $Q_3^*(s_0, \downarrow) = 0.598,$
 $Q_3^*(s_0, \swarrow) = 0.316$

Figure 8: Optimal values with 1 steps left $(\max_a Q_1^*(s,a) \text{ or } V_1^*(s))$

$$Q_2^*(s_2, \searrow) = 1,$$

 $Q_2^*(s_2, \downarrow) = 0.562,$
 $Q_2^*(s_2, \swarrow) = 0$