

Aula 03: Processos

Introdução, conceitos, estados e implementação

Prof. Rodrigo Campiolo Prof. Rogério A. Gonçalves¹

¹Universidade Tecnológica Federal do Paraná (UTFPR) Departamento de Computação (DACOM) Campo Mourão, Paraná, Brasil

Ciência de Computação

BCC34G - Sistemas Operacionais

Sumário

- Introdução
- 2 Ciclos de processos
- Relacionamento entre processos
- 4 Estados de processos
- 5 Implementação de processos
- 6 Referências

Introdução

- Uma das funcionalidades do SO é o gerenciamento de aplicações.
- As aplicações quando estão em execução são denominadas de Processos.

Introdução

Processos

- Um processo é um programa em execução.
- Um processo é composto por: código, dados e contexto de execução.
- Um mesmo programa pode possuir várias instâncias em execução, com mesmo código, mas dados e contexto de execução diferentes.
- Processos se referem a:
 - Programas do usuário
 - Programas do sistema (daemons)

Introdução

Gerenciamento de Processos pelo SO

- criar e finalizar processos.
- suspender e retomar processos.
- bloquear e ativar processos.
- alterar a prioridade de processos.
- selecionar e despachar processos (para CPU).
- viabilizar à comunicação entre processos (IPC).

Ciclos de um Processo I

Ciclos

- Criação.
- Execução.
- Término.

Ciclos de um Processo II

Criação

- Início do sistema.
- Execução de chamada ao sistema de criação de processos.
- Solicitação do usuário para criar um novo processo
- Início de um job em lote

Ciclos de um Processo III

Execução

- CPU bound (orientados a CPU)
- I/O bound (orientados a E/S)

Ciclos de um Processo IV

Término

- Saída normal (voluntária).
- Saída por erro (voluntária).
- Erro fatal (involuntário).
- Cancelamento por um outro processo.

Relacionamento entre processos I

Processos independentes

- Não apresentam relacionamento com outros processos.
- Por exemplo, no MS Windows não há relação hierárquica.

Grupos de processos

- Apresentam uma relação entre os processos.
- Por exemplo, no Linux há uma relação hierárquica de filiação.

Relacionamento entre processos II

Hierarquia de processos

- Processo criador é denominado pai.
- Processo criado é denominado filho.
- Questões:
 - Quais relações são mantidas entre o pai e filho?
 - O que fazer ao término de um processo?

Nota: mostrar pstree.

Estados de Processos I

Figura 1: Diagrama de estados de um processo - cinco estados. (Stallings (2012))

Estados de Processos II

Descrição dos estados de processos

- New (Novo): criado mas não admitido para a execução.
- Ready (Pronto/Apto): disponível para a execução.
- Blocked (Bloqueado): esperando por um evento (por exemplo, E/S).
- Running (Execução): em execução.
- Exit (Término): execução finalizada ou abortada.

Estados de Processos III

Figura 2: Diagrama de estados de um processo - sete estados. (Stallings (2012))

Estados de Processos IV

Adição de dois novos estados:

- Blocked/Suspend (Bloqueado/Suspenso):
 Processo na memória secundária e esperando um evento.
- Ready/Suspend (Pronto/Suspenso):
 Processo na memória secundária e disponível para execução.

Estados de Processos V

Transições de estados

- Blocked → Blocked/Suspend: liberar espaço na memória principal para outro processo.
- Blocked/Suspend → Ready/Suspend: evento que estava esperando ocorreu.
- Ready/Suspend → Ready: não há processos prontos na memória principal.
- Ready → Ready/Suspend: liberar espaço na memória principal.
- New → Ready/Suspend: não há espaço na memória principal.
- Blocked/Suspend → Blocked: há memória disponível, carrega o processo.
- Running → Ready/Suspend: liberar espaço na memória principal (certas situações).

Estados de Processos VI

Figura 3: Estados de processos no Unix (1).

Implementação de processos I

Bloco de Controle de Processos (BCP)

- BCP é usado pelo SO para gerenciar os processos.
- É uma estrutura de dados mantida no núcleo do SO.
- Os BCP são mantidos em uma Tabela de Controle de Processos.
- Exemplo de BCP: task_struct no Linux^a.

a https://github.com/torvalds/linux/blob/master/include/linux/sched.h

Implementação de processos II

Process management	Memory management	File management
Registers	Pointer to text segment info	Root directory
Program counter	Pointer to data segment info	Working directory
Program status word	Pointer to stack segment info	File descriptors
Stack pointer		User ID
Process state		Group ID
Priority		
Scheduling parameters		
Process ID		
Parent process		
Process group		
Signals		
Time when process started		
CPU time used		
Children's CPU time		
Time of next alarm		

Figura 4: Campos de um bloco de controle de processos.

Atividades

- Faça a leitura e anotações dos capítulos 4 e 5 (5.1,5.2 e 5.3) livro do Maziero (2017).
- 2 Faça a leitura e anotações do capítulo 2 (2.1) livro do Tanenbaum and Bos (2016).
- Resolva a lista de exercícios L02 (Moodle).

Referências I

- Deitel, H. M., Deitel, P. J., and Choffnes, D. R. (2003). *Operating systems*. Prentice-Hall, Inc., 3rd edition.
- Maziero, C. A. (2017). Sistemas operacionais: conceitos e mecanismos. online. Disponível em http://wiki.inf.ufpr.br/maziero/lib/exe/fetch.php?media=so:so-livro.pdf.
- Silberschatz, A., Galvin, P. B., and Gagne, G. (2015). Fundamentos de sistemas operacionais. LTC. 9 edition.
- Stallings, W. (2012). Operating systems: internals and design principles. Pearson Education, 7th edition.
- Tanenbaum, A. S. and Bos, H. (2016). Sistemas operacionais modernos. Pearson Education do Brasil, 4 edition.