# CYTOKINE REGULATOR

Patent number:

JP2001058950

**Publication date:** 

2001-03-06

Inventor:

YONEDA FUMIO; MURAOKA SHIZUKO; MORIGUCHI MIHO;

NORISADA NOBUYOSHI

Applicant:

**FUJIMOTO BROTHERS KK** 

Classification:

- international:

A61K35/36; A61P1/00; A61P17/02; A61P27/02; A61P29/00;

A61P43/00

- european:

Application number: JP19990272893 19990820 Priority number(s): JP19990272893 19990820

Report a data error here

#### Abstract of JP2001058950

PROBLEM TO BE SOLVED: To obtain a cytokine regulator capable of promoting the production of transforming growth factor-&beta having potent cell growth inhibitory action against epithelium-derived cells and the like and inhibiting the production of inflammatory cytokine by including a vaccinia virus-inoculated rabbit skin extract. SOLUTION: This cytokine regulator is obtained by including a vaccinia virus-inoculated rabbit skin extract as active ingredient. It is preferable that cytokine regulation means promoting the production of transforming growth factor-&beta and interleukin-10 and inhibiting the production of tumor necrosis factor and interferon-&gamma, and this regulator is used in treating diseases including wounds, burns, detached retinas, inflammatory intestinal diseases, perforative peritonitis, septicemia convalescence and articular rheumatism. The daily dose of the above extract is pref. 3.6-16 units either singly or in two to four portions, and the administration is conducted intravenously or the like.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-58950 (P2001-58950A)

(43)公開日 平成13年3月6日(2001.3.6)

| (51) Int.Cl. <sup>7</sup> A 6 1 K 35/36 |       | 識別記号                  |      | FI<br>A61K 35/36 |     |            |             | テーマコード(参考) |              |          |     |
|-----------------------------------------|-------|-----------------------|------|------------------|-----|------------|-------------|------------|--------------|----------|-----|
|                                         |       |                       |      |                  |     |            |             | 4 C 0 8 7  |              |          |     |
| A61P                                    | 1/00  |                       |      | A 6              | 1 P | 1/00       |             |            |              |          |     |
|                                         | 17/02 |                       |      |                  | 1   | 7/02       |             |            |              |          |     |
|                                         | 27/02 |                       |      |                  | 2   | 7/02       |             |            |              |          |     |
|                                         | 29/00 |                       |      |                  | 2   | 29/00      |             |            |              |          |     |
|                                         |       |                       | 審查請求 | 未請求              | 請求以 | 頁の数 6      | 書面          | 全          | 7 頁)         | 最終頁      | に続く |
| (21)出願番号                                |       | 特願平11-272893          |      | (71)             | 出願人 | 39705      | 5067        |            |              |          |     |
|                                         |       |                       |      |                  |     | 株式会        | 社フジ         | モト・        | ・ブラも         | チーズ      |     |
| (22)出願日                                 |       | 平成11年8月20日(1999.8.20) |      |                  |     | 大阪府        | 好松原市        | 西大都        | <b>第1丁</b> 目 | 3番40号    |     |
|                                         |       |                       |      | (72)             | 発明者 | 米田         | 文郎          |            |              |          |     |
|                                         |       |                       |      |                  |     | 大阪府        | <b>特松原市</b> | 西大村        | ₹1丁目         | 3番40号    | 藤本  |
|                                         |       |                       | 製薬材  |                  |     | 朱式会社創薬研究所内 |             |            |              |          |     |
|                                         |       |                       |      | (72)             | 発明者 | 村岡         | 静子          |            |              |          |     |
|                                         |       |                       |      |                  |     | 大阪府        | 存松原市        | 西大         | ₹1丁目         | 3 番40号   | 藤本  |
|                                         |       |                       |      |                  |     | 製薬材        | 株式会社        | 創薬         | 开究所内         | 4        |     |
|                                         |       |                       |      | (72)             | 発明者 | 森口         | 美保          |            |              |          |     |
|                                         |       |                       |      |                  |     | 大阪         | 守松原市        | 西大村        | ₹1丁目         | 13番40号   | 藤本  |
|                                         |       |                       |      |                  |     | 製薬         | 株式会社        | 創薬研        | 研究所内         | <b>A</b> |     |
|                                         |       |                       |      |                  |     |            | 最終頁に続く      |            |              |          |     |

### (54) 【発明の名称】 サイトカイン調節剤

#### (57)【要約】

【目的】 ワクシニアウイルス接種家兎炎症皮膚抽出液を有効成分として含有するサイトカイン調節剤を提供する。

【構成】 ワクシニアウイルス接種家兎炎症皮膚抽出液は、トランスフォーミンググロウスファクターー β およびインターロイキンー10の産生を促進し、炎症性のサイトカインである、腫瘍壊死因子、インターフェロンー ア、インターロイキンー1、インターロイキンー6の産生を抑制する作用を有し、炎症性サイトカインの亢進が、疾患の形成、増悪に関与した創傷、熱傷、網膜剥離、炎症性腸疾患、穿孔性腹膜炎または敗血症の予後、関節リウマチ、アレルギー症状またはそれらの治療剤として有用である。

#### 【特許請求の範囲】

【請求項1】 ワクシニアウイルス接種家兎皮膚抽出液 を有効成分として含有するサイトカイン調節剤。

【請求項2】 サイトカイン調節が、トランスフォーミンググロウスファクターー B およびインターロイキンー10の産生を促進し、腫瘍壊死因子およびインターフェロンー r の産生を抑制することである請求項1記載のサイトカイン調節剤。

【請求項3】 創傷、熱傷、網膜剥離、炎症性腸疾患、 穿孔性腹膜炎、敗血症の予後、関節リウマチおよびアレ ルギー症状からなる群のいずれかの疾患の治療に使用さ れる請求項1~2記載のサイトカイン調節剤。

【請求項5】 腫瘍壊死因子およびインターフェロンー アの産出が亢進した疾患における疼痛の治療に使用され る請求項1~2記載のサイトカイン調節剤。

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ワクシニアウイルス接種家兎皮膚抽出液を有効成分とするサイトカイン調節剤を提供するものである。

#### [0002]

【従来の技術】サイトカインは、免疫担当細胞をはじめとする種々の細胞から産生され、極めて微量で細胞間相互作用に不可欠の生物活性を有する糖蛋白であり、リンパ球から産生されるサイトカインはリンフォカイン、単球・マクロファージ系細胞から産生されるサイトカインはモノカインとも称される。サイトカインの生物活性には、正の調節機構と負の調節機構の両方が存在し、正常状態では調節機構がバランスよく作動し相互にネットワークを組み生体の恒常性を担っている。

【0003】しかし、このバランスが崩れると、サイトカイン産生異常が出現したり、または種々の疾患の形成、増悪の原因となる。例えば、産生された腫瘍壊死因子(TNF-α)に対する負の調節機構(制御機構)が十分機能しない場合、TNF-αはサイトカインネットワークを介して、インターロイキン-1(IL-1)、インターロイキン-6(IL-6)、インターロイキン-8(IL-8)等のさまざまな他の炎症性サイトカインの産生を促進し、産生されたサイントカインが再びT

NF-αの産生を促進するといった連鎖反応により、炎症の悪循環を生じさせ、ついには骨、軟骨等での組織が破壊され、自己免疫疾患である関節リウマチ等につながるといわれている。

[0004]

【発明が解決しようとする課題】現在、さまざまな疾患において、病態の形成、増悪及び疼痛に関与するサイトカインが判明してきており、そのため、サイトカインを疾患の診断や治療の判定に応用する研究や、更に進んで、過剰なサイトカインの産生またはその活性の抑制、不足・欠乏サイトカインの補充、産生促進等を新たな治療法とする研究が盛んである。

【0005】種々のサイトカインのうち、トランスフォ ーミンググロウスファクターーβ(TGF – β)は、線 維芽細胞の増殖因子として見出されたサイトカインであ るが、遺伝子工学的に造り出されたTGF-β,欠損マ ウスにおいて、多臓器における多発性炎症または多臓器 不全が発症すること (ネイチャー (Nature), 3 <u>59</u>:693,1992)、及び、骨芽細胞の増殖、細 胞外基質合成基質分泌の促進、基質分解酵素産生の阻 害、各種組織の肉芽形成、線維化促進作用及び細胞分化 作用に基づく創傷または熱傷等の組織損傷修復作用、接 着因子の発現促進作用に基づく網膜剥離に対する治療作 用、過剰な免疫反応の抑制作用、Tリンパ球細胞群をT h<sub>2</sub>細胞群へシフトさせる作用等が観察されている。更 に、最近では、重症動脈硬化症では血清中の活性型TG F-βレベルの著しい低下が認められ (ネイチャー メ ディシン(Nature Medicine), 1:7 4,1995)、動脈硬化症の形成、増悪にもTGFβレベルの低下が関与していると推察されている。この  $TGF-\beta$ の生物活性の作用機序としては、 $TGF-\beta$ が上皮由来の細胞、血管内皮細胞、リンパ球、その他の 造血系細胞に対して強い細胞増殖抑制作用を示するこ と、これら細胞由来のサイトカインの産生を抑制するこ とが重要視されている。

【0006】また、インターロイキンー10(IL-10)は、免疫担当細胞であるTリンパ球のTh<sub>1</sub>とTh<sub>2</sub>からなる細胞群のうち、おもにTh<sub>2</sub>細胞群から産生されるサイトカインで、腸管系における免疫機構の制御作用、CD8+細胞障害性T細胞、抗体産生細胞、肥満細胞に対する促進的作用、Th<sub>1</sub>細胞やマクロファージに対する抑制的作用、Th<sub>1</sub>細胞由来サイトカインであるインターフェロンーr(IFN-r)及びマクロファージ由来のサイトカインであるTNF- $\alpha$ 、IL-1、IL-6等の産生を抑制することが知られている。これらTNF- $\alpha$ とIL-1は、その産生機序または生物活性がよく重複しあうサイトカインとして知られており、また、TNF- $\alpha$ 、IL-1、IL-6は、ヒトの潰瘍性大腸炎やクローン病等の炎症性腸疾患、穿孔性腹膜炎、グラム陰性菌等による敗血症からの予後不良等の疾

患の形成、増悪に深く関与しているといわれている。そして、ヒトの潰瘍性大腸炎やクローン病ではTNFー $\alpha$ 、IL-1、IL-6の産生を抑制するIL-10の血清中レベルが有意に低下していること(<u>臨床免疫</u>、27.16:97,1995)、IL-10遺伝子欠損マウスでは自己免疫性腸疾患が確実に発症すること(セル(Cell),75:263,1993)、IL-10がこれらサイトカインに起因した疼痛をおさえること(ブリティッシュジャーナル オブ ファーマコロジー(Brit.J.Pharmacol.),115:684,1995)等の報告から、IL-10産生の促進は、これらマクロファージ系細胞及びTh1細胞から産生されるサイトカインの過剰が誘因となって、発症、増悪経過をたどる疾患に有用であることが明らかにされている。

#### [0007]

【課題を解決するための手段】本発明者らは、有効成分名がワクシニアウイルス接種家兎炎症皮膚抽出液と称される医薬品原薬に、上皮由来細胞、血管内皮細胞、リンパ球、その他の造血系細胞に対する強い細胞増殖抑制作用、これら細胞に由来する炎症性または細胞障害性等のサイトカインの産生を抑制する $TGF-\beta$ の産生を促進し、また、マクロファージ系細胞または $Th_1$  細胞由来のサイトカインの産生あるいは活性を抑制する作用をもつIL-10の産生を促進し、 $IFN-\gamma$ 及び $TNF-\alpha$ の産生を抑制する活性が存在することを知見し、本発明を完成した。

【0008】ワクシニアウイルス接種家兎炎症皮膚抽出液は、例えば医療薬日本医薬品集1997年10月版第1710頁に記載されている既知の物質であり、これを有効成分とした製剤は、免疫調整、抗アレルギー、鎮痛および鎮静剤、特にストレス状態にある神経組織に対し特異的に作用する薬剤として、その含有量は力価を示す「単位」で表されるか、または当該「単位」と実質的に同等とされている「ノイロトロピン単位」で表され、医療用薬剤として市販されている(以下、「単位」に統一して記す)。しかし、これまで、サイトカインであるTGF- $\beta$ 、IL-10、 $IFN-\gamma$ および $TNF-\alpha$ に対する調節作用は全く知られていなかった。

【0009】本発明にかかるワクシニアウイルス接種家 兎炎症皮膚抽出液の投与量は、疾患の種類や患者個人の 感受性、調節すべきサイトカインのレベルによって異な るが、1~60単位/日の範囲で増減が可能であり、ま た、投与に際しては、適した有機または無機の固体また は液体賦形剤のような医薬用担体と混合して投与するこ とができる。通常は3~32単位/日、好ましくは3. 6~16単位/日を、1日に1回または2~4回に分け て、静脈内投与、皮下投与、筋肉内投与または経口投与 する。

【0010】以下に実施例を示して本発明を詳細に説明

するが、これらの実施例は本発明の範囲を限定するものではない。尚、特に説明がない限り、「抽出液」は本発明のワクシニアウイルス接種家兎炎症皮膚抽出液を意味する。

#### [0011]

【実施例1】8~15週令の(C57BL/6 X D BA/2) F<sub>1</sub> 雌マウスに、本発明のワクシニアウイル ス接種家兎炎症皮膚抽出液(抽出液) 12.5単位/ kgを単回腹腔内投与した場合と、3日間連日腹腔内投 与した場合の、投与後24時間目にマウスを脱血し血清 を採取した。対照群のマウスには、投与した抽出液と同 一容量の注射用生理食塩液を投与した。 各群 3 匹のマウ ス使用。血清を採取したマウスと同一マウスより脾臓を 採取し、直ちに定法により全RNAを抽出精製し-80 ℃に保存し、逆転写反応ーポリメラーゼチェインリアク ション(RT-PCR)用サンプルとした。各々のマウ ス脾臓RNA1μgにTGF-β」遺伝子特異的下流プ ライマーを加え、逆転写酵素を作用させてcDNAを合 成した後、上流プライマーを更に添加し、耐熱性DNA 合成酵素を用いてcDNAを増幅した。各サンプルのc DNAを2%寒天ゲル電気泳動により分画し、525塩 基対のバンドの濃度をデンシトメーターにより測定し た。同様に、各サンプルのRNAより内部標準としてグ リセルアルデヒド-3-リン酸脱水素酵素(G3PD H)遺伝子についても逆転写反応によりcDNAを合成 後、cDNAを増幅した。寒天ゲル電気泳動により分画 した983塩基対のG3PDHバンドの濃度を、デンシ トメーターにより測定した後、各サンプルにつきTGF  $-\beta_1$  バンドとG3PDHバンドの濃度比を算出した。 【0012】その結果として、2%寒天ゲル電気泳動に より分画した各サンプルのTGF-β<sub>1</sub>バンドは抽出液 投与群のc DNA産物のバンドの方が、対照群に比較し 濃いバンドを示し、抽出液投与により $TGF - \beta_1$  遺伝 子転写が促進された。デンシトメーター測定によるTG F-β<sub>1</sub> バンドとG3PDHバンドの濃度比の平均値 は、抽出液投与群は約0.9であり、対照群は約0.7 で、抽出液投与群の平均値が対照群の平均値より高い値 を示した(第1図)。異なる日時に、再度同様の抽出液 腹腔投与実験を繰り返し、ワクシニアウイルス接種家兎 炎症皮膚抽出液腹腔内投与が、TGF-β<sub>1</sub> 遺伝子転写 を統計学的に有意(p < 0.01)に促進することを確 認した(第2図)。

[0013]

【図1】

[0014]

【図2】

[0015]

【実施例2】8 $\sim$ 15週令の(C57BL/6 X D BA/2) $F_1$  雌マウス2匹に、本発明のワクシニアウイルス接種家兎炎症皮膚抽出液(抽出液)12.5単位

/kgを、1日1回3日間連日腹腔内投与した。24時間後に脾臓を採取し、細胞を48時間培養した。対照群のマウス2匹には、投与した抽出液と同一容量の注射用生理食塩液を同様に投与した。培養上清を回収し、TGFーβの生物活性をミンク肺線維芽細胞の増殖抑制活性として、1匹よりのサンプルを2回定量し、その平均値を算出した。あるいは脾臓を採取後、脾細胞を単離し、コンカナバリンAと共に24時間培養後、培養上清を採取した。脾細胞培養上清中の活性型TGFーβ蛋白量を、サンドイッチ固相酵素免疫(ELISA)測定法により決定した。

【0016】抽出液投与により、TGF-βの遺伝子転 写促進ばかりでなく、TGF-8の蛋白産生も促進され ることが確認された。なお本生物活性測定法は、TGF -β<sub>1</sub>、TGF-β<sub>2</sub>、TGF-β<sub>3</sub>の全TGF-β活 性を検出するものであるので、TGF-β<sub>1</sub> ばかりでな く抽出液投与の $TGF - \beta_2$ 、 $TGF - \beta_3$  産生への影 響も推定できることを意味する。生物活性とTGF-B 蛋白量との相関性を示す検量線は遺伝子組み換え型ヒト  $TGF-\beta_1$  を用いて作成した。また活性型 $TGF-\beta$ の測定には、培養上清をそのままサンプルとして用い、 全TGF-βの測定は、培養上清を塩酸で処理して潜在 型 $TGF-\beta$ を活性型に変換させて行った。本実験の抽 出液投与群では、活性型 $TGF-\beta$ は 907, 7pg /ml、全TGF-βは 1226.4 pg/mlで あったのに対し、対照群では各々135.5 pg/m 1、639.6 pg/mlであった(第3図)。この ように抽出液投与は、脾細胞よりの活性型及び潜在型の 両方のTGF-B産生を促進した。

[0017]

【図3】

[0018]

【実施例3】8~15週令の(C57BL/6 X D BA/2) F, 雌マウスに、本発明のワクシニアウイル ス接種家兎炎症皮膚抽出液(抽出液)25単位/kgを 腹腔内に1回注射するのとほぼ同時に、コンカナバリン A6. 25mg/kgあるいは注射用生理食塩液を皮内 注射した。投与後3日目に各マウスより血液を採取し、 血清を分離して被検サンプルとした。サンドイッチEL ISA法を用い、検量線の作成には遺伝子組み換え型ヒ トTGF- $\beta$ , を使用して血清中の活性型TGF- $\beta$ <sub>1</sub> 蛋白量を測定した結果、コンカナバリンAを投与されな かった群では、抽出液投与群の血清中の活性型TGFβ, は8.76 ng/ml、対照群では7.12 ng/ mlであり、コンカナバリンA投与群では、抽出液投与 マウス血清中の活性型TGF-8, は7.86ng/m 1. 対照群では7.05 ng/m1であった(第4 図)。このように抽出液投与により、コンカナバリンA 同時投与の有無に係わらず、血清TGF-βレベルが統 計学的に有意に上昇した(p〈0.05)。また、コン カナバリンA同時投与は、血清中のTGF-βレベルには影響を及ぼさなかった。

[0019]

【図4】

[0020]

【実施例4】8~15週令の(C57BL/6 X D BA/2) F, 健マウスに、本発明のワクシニアウイル ス接種家兎炎症皮膚抽出液(抽出液)12.5単位/k gを1日1回3日間連続腹腔内投与し、24時間後に脾 臓を採取し、直ちに定法により全RNAを抽出精製し、 -80℃に保存後、RT-PCRのサンプルとした。対 照群のマウスには、抽出液と同一容量の注射用生理食塩 液を投与した。各群3匹のマウスを使用。各々のマウス 脾臓RNA1μgにIL-10遺伝子特異的下流プライ マーを加え、逆転写酵素を作用させてcDNAを合成し た後、上流プライマーを更に添加し耐熱性DNA合成酵 素を用いてcDNAを増幅した。同様に、各サンプルの 全RNAより内部標準としてG3PDH遺伝子について も、逆転写反応によりcDNAを合成した後、cDNA を増幅した。各サンプルのcDNAを2%寒天ゲル電気 泳動により分画し、IL-10の421 塩基対バンド の濃度をデンシトメーターにより測定した。 IL-10 及びG3PDHのRT-PCR反応後のcDNA産物の 2%寒天ゲル電気泳動写真で、抽出液投与群(レーン 4、5、6)のcDNA産物の方が、対照群(レーン 1、2、3)より濃いパンドを示した。デンシトメータ ーによりバンド濃度を測定した後、各サンプルにつき I L-10バンドとG3PDHバンドの濃度を比較した結 果、対照群のバンド濃度比平均値を1.0としたとき、 抽出液投与群の平均値は2.62で、抽出液投与によ り、IL-10遺伝子転写が有意(p(0.01)に促 進されていた(第5図)。

[0021]

【図5】

[0022]

【実施例5】本発明のワクシニアウイルス接種家兎炎症皮膚抽出液(抽出液) 12.5単位/kg単回投与によるIL-10遺伝子転写促進確認実験。各群2匹のマウスを用いて、投与回数を単回投与とした以外は実施例4の実験と同様の操作にて、脾臓mRNA1μgよりIL-10遺伝子についてRT-PCRを行い、遺伝子転写レベルを生理食塩液対照群と比較した結果、無処置群のIL-10とG3PDHバンド濃度比を1.0としたとき、生理食塩液投与群1.31、抽出液投与群2.29で、3回投与に比べて程度は低かったが、単回投与でもIL-10遺伝子転写促進傾向が認められた(第6図)。

[0023]

【図6】

[0024]

【実施例6】本発明のワクシニアウイルス接種家兎炎症 皮膚抽出液(抽出液)10、25、50単位/kgを (C57BL/6 X DBA/2)F<sub>1</sub> 雌マウスに、 3日間に5回腹腔内投与後、16時間後に脾臓を採取し て、脾細胞を単離し、コンカナバリンA 3.0µg/ ml存在下で43時間培養し、培養上清中のIL-10 をサンドイッチELISA法により定量した。1群5匹 使用。検量線の作成には、遺伝子組み換え型マウスIL -10を用いた。抽出液投与群の脾細胞培養上清中に含 まれる I L-10蛋白量は、10単位/kg投与群で1 29. 0pg/ml、25単位/kg投与群で131. 1pg/ml、50単位/kg投与群で163.6pg **/mlであり、抽出液投与のいずれの群でも脾細胞培養** 上清中の I L-10蛋白濃度が、無処置群107.5p g/ml、あるいは注射用生理食塩液投与群112.3 pg/mlのIL-10蛋白濃度に比較し、有意(p 〈O. 05、あるいはp〈O. 01)に上昇した(第7 図)。

[0025]

【図7】

[0026]

【実施例7】 (C57BL/6 X DBA/2)  $F_1$  雌マウスに、本発明のワクシニアウイルス接種家兔炎症 皮膚抽出液 (抽出液) 6.25、12.5 単位/kg を、1日1回3日間連続腹腔内投与した。対照群のマウスには注射用生理食塩液、また抑制陽性対照群としてデキサメタゾン2mg/kg/回を同様に投与した。最後の投与より約24時間目に脾臓を採取し、脾細胞をコンカナバリンA2.5 μg/m 1 存在下で2 4時間培養し、培養上清中の 1 FN $-\gamma$  をサンドイッチEL 1 SA 法により定量した。検量線の作成には、遺伝子組み換え型マウス 1 FN $-\gamma$  を用いた。抽出液投与は用量依存的にマウス脾細胞の 1 FN $-\gamma$  産生量を減少させ、1 2 .5 単位/kgで、デキサメタゾン投与群の1 .78 ng/m 1 と同程度の1 .94 ng/m 1 まで、1 FN $-\gamma$  産生量を抑制した(第8図)。

[0027]

【図8】

[0028]

【実施例8】 (C57BL/6 X DBA/2)  $F_1$  雌マウスに、本発明のワクシニアウイルス接種家兎炎症 皮膚抽出液 (抽出液) 12.5 単位/k gを、1 日 1 回 3日間連続腹腔内投与した。対照群のマウスには注射用

生理食塩液、また抑制陽性対照群としてデキサメタゾン2mg/kgを同様に投与した。最後の投与より約24時間目に脾臓を採取し、脾細胞を大腸菌由来エンドトキシン(E.coli026:B6)10/μg/ml存在下で2時間培養し、培養上清中のTNF-αをサンドイッチELISA法により定量した。検量線の作成には、遺伝子組み換え型マウスTNF-αを用いた。抽出液投与群での脾細胞のTNF-α産生は、デキサメタゾン投与群と同程度まで抑制された(第9図)。

[0029]

【図9】

【図面の簡単な説明】

【図1】実施例1におけるRT-PCR反応後のTGF - $\beta_1$ 及びG3PDHのcDNAの電気泳動後のバンド の濃度比を示すグラフである。

【図2】実施例1と同様の実験を異なる日時に行った実験で、 $TGF-\beta_1$ とG3PDHの電気泳動後のバンドの濃度比を示すグラフである。

【図3】実施例2におけるマウスの脾細胞培養上清中の活性型 $TGF-\beta$ 活性及び全 $TGF-\beta$ 活性を示すグラフである。

【図4】実施例3におけるサンドイッチELISA法により測定したマウスの血清中の活性型 $TGF - \beta_1$ を測定した結果を示すグラフである。

【図5】実施例4におけるRT-PCR反応後のIL-10及びG3PDHのcDNAの電気泳動後のバンドの 濃度比を示すグラフである。

【図6】実施例4と同様の実験を異なる日時に行った実験で、IL-10とG3PDHバンドの電気泳動後のバンドの濃度比を示すグラフである。

【図7】実施例6におけるマウスの脾細胞のコンカナバリンA刺激培養上清中のIL-10蛋白量をサンドイッチELISA法により測定した結果を示すグラフである。

【図8】実施例7におけるマウス脾細胞のコンカナバリンA刺激培養上清中のIFN-γ濃度をサンドイッチELISA法測定により測定した結果を示すグラフである。

【図9】実施例8におけるマウス脾細胞の大腸菌由来エンドトキシン刺激培養上清中のTNF-α濃度をサンドイッチELISA法測定により測定した結果を示すグラフである。



## (7) 開2001-58950 (P2001-5P/A)

【図9】



フロントページの続き

(51) Int. Cl. 7

識別記号

A 6 1 P 43/00

111

FΙ

A 6 1 P 43/00

テーマコード(参考)

111

(72)発明者 則貞 伸嘉

大阪府松原市西大塚1丁目3番40号 藤本

製薬株式会社創薬研究所内

Fターム(参考) 4CO87 AAO1 AAO2 BB48 BC83 CAO6

MA01 NA14 ZA33 ZA66 ZA89

ZB02 ZB07 ZB09 ZB11 ZB13

ZB15 ZB35