Дифференциальные уравнения

Свирщевский Сергей Ростиславович $16~{\rm сентябр} \ 2017~{\rm г}.$

 $\it Habop: Aлесандр \ Baлентинов$ $\it Observation Observation \ Observation \ \it Observation \$

Содержание

Іекция 1
Введение
Основные понятия
Задача Коши и теорема существования и единственности для урав-
нения (2)
Іекция 2
Уравнения первого порядка, интегрируемые в квадратурах
Уравнения с разделяющимися переменными
Однородные уравнения
Обобщенные однородные уравнения
Линейные уравнения
Уравнение Бернулли
Уравнения Риккати
Уравнение в полных дифференциалах

Лекция 1

Введение

Основные понятия

Определение. Обыкновенным дифференциальным уравнением (ОДУ) п-го порядка называется уравнение вида:

$$F(x, y, y', \dots y^{(n)}) \tag{1}$$

где x - независимая переменная, y(x) - искомая функция, $y',\ldots,y^{(n)}$ - ее производные, F - заданная функция, определенная в области $\Omega\subseteq\mathbb{R}^{n+2}$. Порядок n уравнения равен порядку старшей производной, входящей в уравнение.

Определение. Функция $y = \varphi(x)$, определенная на некотором интервале $X = (\alpha, \beta)$, называется решением уравнения (1), если

- 1. $\varphi(x)$ п раз дифференцируемо на X,
- 2. $x, \varphi(x), \varphi'(x), \dots \varphi^{(n)} \in \Omega, \forall x \in X,$
- 3. $F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) = 0.$

Замечание. В этом определении в качестве X можно взять полуинтервал или отрезок, т.е любой промежуток действительной оси.

Замечание. Решение может быть определено на сколько можно малом интервале. Разные решения могут быть определены на разных интервалах.

Определение. Уравнение

$$y^{(n)} = f(x, y, y', \dots y^{(n-1)})$$
(2)

где f - заданная функция, определенная в некоторой области $D \subseteq \mathbb{R}^{n+1}$, называется разрешенным относительно старшей производной или уравнение в нормальной форме.

Определение. Функция $y = \varphi(x)$, определенная на некотором интервале $X = (\alpha, \beta)$, называется решением уравнения (2), если

- 1. $\varphi(x)$ п раз дифференцируемо на X,
- 2. $x, \varphi(x), \varphi'(x), \dots \varphi^{(n-1)} \in D, \forall x \in X,$
- 3. $\varphi^{(n)} \equiv f(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n-1)}(x)).$

Замечание. Процесс нахождения решений уравнения называется его интегрированием.

Пример 1.

1.
$$y' = f(x) \Rightarrow y = \int f(x)dx$$

$$y' = e^{-x^2}, \quad y = \frac{1}{2}e^{-x^2} + C$$
2.
$$y^{(n)} = f(x) \Rightarrow y = \int f(x)dx$$

$$y'' = 2x, \quad y' = x^2 + C_1, \quad y = \frac{1}{3}x^3 + C_1x + C_2$$
3.
$$y' = ky, \quad k = const \neq 0$$

$$y = Ce^{kx}$$
4.
$$y' = y^2, \quad y = -\frac{1}{x}$$

Замечание. Формулы, описывающие все решения уравнения содержат n произвольных постоянных.

Задача Коши и теорема существования и единственности для уравнения (2)

Для получения из множества решений какого-либо частного решения, необходимо задать дополнительные условия. Рассмотрим, например, уравнение первого порядка:

$$y' = f(x, y), \quad (x, y) \in D \tag{3}$$

$$y_0 = y(x_0) \tag{4}$$

Возьмем точку $(x_0, y_0) \in D$ и рассмотрим начальное условие (НУ).

Определение. Найти решение уравнения (3), удовлетворяющее НУ (4)

Теорема 1. Пусть функция f(x,y) и ее частная производная $\frac{\partial f(x,y)}{\partial y}$ непрерывны в области $D\subseteq \mathbb{R}^2$. Тогда, $\forall (x_0,y_0)\in D$:

- 1. Существует решение задачи Коши, определенное на некотором интервале $X\ni x_0$
- 2. Если $y_1(x), y_2(x)$ какие-либо решения, то $y_1(x) \equiv y_2(x)$ на пересечении их интервалов определения.

Пример 2.

$$y' = kx, \quad k = const \neq 0$$

Решение: $y=Ce^{kx}, \quad x\in (-\infty,+\infty)$ Докажем, что других решений нет. Пусть $y=\varphi(x), x\in X$ - какое-либо решение. Возъмем произвольную $x_0\in X$ и найдем $y_0=\varphi(x_0)$. Теперь покажем, что в этом семействе есть решение с такими же начальными условиями. Рассмотрим $y=C_0e^{kx}, \quad C_0=y_0e^{kx_0}$. Оба этих решения являются решениями одной и той же задачи Коши с НУ (x_0,y_0) . В силу единственности по теореме (1) мы имеем $\varphi(x)=C_0e^{kx}$ на X.

Замечание. Решение $y = \varphi(x), x \in X$ называется сужением решения $y = C_0 e^{kx}, x \in \mathbb{R}$, на интервал X. А решение $y = C_0 e^{kx}$ называется продолжением решения $y = \varphi(x)$ на \mathbb{R} .

Определение. Пусть $y = \varphi_1(x), \ x \in X_1 \ u \ y = \varphi_2(x), \ x \in X_2$ - какие-либо решения уравнения, и пусть $X_1 \subseteq X_2$. Тогда решение $y = \varphi_2(x)$ называется продолжением решения $y = \varphi_1(x)$ на X_2 .

Замечание. В дальнейшем докажем, что каждое решение может быть продолжено на некоторый максимальный интервал до непродолжаемого решения.

Определение. График решения $y = \varphi(x)$ на плоскости (x, y) называется его интегральной кривой. Если под интегральной кривой понимать непродолжаемое решение, то теорему (1) можно переформулировать так:

Через каждую точку $(x_0, y_0) \in D$ проходит единственная интегральная кривая уравнения (3).

Замечание. Мы можем нарисовать интегральные кривые, не решая уравнение, поскольку мы знаем, как направлена касательная в любой точке. Не каждое уравнение не имеет аналитическое решение, например: $y' = x^2 + y^2$. В качестве альтернативы можно нарисовать на плоскости (x, y) изоклины и получить представления о том, как выглядят интегральные кривые.

Замечание. Для **существования** решения задачи Коши достаточно непрерывности функции f(x,y). Но решение может быть не единственным.

Пример 3.

$$y' = 3\sqrt[3]{y^2}$$

Решения: $y = 0, y = (x - C)^3$

B каждой точки интегральной кривой y = 0 нарушается единственность решения задачи Коши. Решение y = 0 называется особым.

Лекция 2

Определение. Решение уравнения (3) и его интегральная кривая l называются особыми, если в любой окрестности каждой точки кривой l через эту точку проходит, касаясь l, по крайней мере одна интегральная кривая уравнения (3), отличная от l.

Замечание. Условие про касание і избыточно.

Аналогично рассмотрим уравнение (2) при $n\geqslant 1$. Возьмем точку $(x_0,y_0,y_0',\dots y_0^{(n-1)})\in D$. Рассмотрим НУ:

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \ \dots y^{(n-1)}(x_0) = y_0^{(n-1)}$$
 (5)

Задача Коши: найти решение уравнения (2) для НУ (5)

Теорема 2. Пусть функция f и ее частные производные $f_y, f_{y'}, \dots f_{y^{(n+1)}}$ непрерывны в $D \subseteq \mathbb{R}^{(n+1)}$. Тогда задача Коши (2), (5) имеет решение на интервале $X \ni x_0$. Любые два решения задачи (2), (5) совпадают на пересечении их интервалов определения.

Уравнения первого порядка, интегрируемые в квадратурах

Уравнения с разделяющимися переменными

$$\boxed{y'=f(x)g(y)},$$
 где f и g - неперывны на X и Y . Схема решения:

- 1. $g(y) = 0 \Rightarrow$ постоянные решения $y = y_1, y = y_2, ...$
- 2. $g(y) \neq 0$ На каждом интервале это выполнено.

$$\int \frac{y'(x)}{g(y(x))} dx = \int f(x) dx$$

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

G(y) = F(x) + C - решение в неявной форме

G, F - первообразные, C - константа. Т.к. $G'(y) = \frac{1}{g(y)}$ на рассмаотриваемом интервале сохраняет знак, то G(y) строго монотонна и, следовательно, имеет обратную. Поэтому можно написать явную формулу для решения.

Однородные уравнения

$$y' = f\left(\frac{y}{x}\right)$$

Замена: $\frac{y(x)}{x} = z(x), y = xz.$ xz' + z = f(z), xz' = f(z) - z - уравнение, с разделяющимися переменными.

Замечание. Уравнение инвариантно относительно растяжения: $x \rightarrow$ $ax, y \rightarrow ay; a > 0.$

Обобщенные однородные уравнения

$$\boxed{\frac{1}{x^{m-1}}\frac{dy}{dx}=f\left(\frac{y}{x^m}\right)},\,x\neq 0$$
 Замена $\frac{y}{x^m}=z,\,y=x^mz.$

Линейные уравнения

$$y' + a(x)y = b(x)$$

Схема решения:

- 1. Рассматриваем однородное уравнение y' + a(x)y = 0, y' = -a(x)y,
 - (a) y = 0 решение.
 - (b) $y \neq 0 \Rightarrow \int \frac{dy}{y} \int a(x)dx$.

$$ln|y| = A(x) + \dot{C}, \quad A(x) = \int a(t)dt$$

$$y = Ce^{-A(x)}$$

2. Ищем решение в виде $y = C(x)e^{-A(x)}$.

$$C'(x)e^{-A(x)} + C(x)e^{-A(x)}(-a(x)) + C(x)e^{-A(x)}(a(x)) = b(x)$$

$$C(x) = \int_{x_0}^{x} b(t)e^{A(t)}dt + C_0$$

Общее решение:

$$y = e^{-A(x)} \int_{x_0}^{x} b(t)e^{A(t)}dt + C_0e^{-A(x)}$$

Задача Коши с НУ $y(x_0) = y_0$, $C_0 = y_0$.

Каждое решение линейного уравнения определено на всем интервале X.

Уравнение Бернулли

$$y' + a(x)y = b(x)y^n, n \neq 0, 1$$

 $y' + a(x)y = b(x)y^n$, $n \neq 0, 1$ Схема решения. При n > 0 имеется решение y = 0. Пусть $y \neq 0$. Разделим на y^n :

$$y^{-n}y' + a(x)y^{1-n} = b(x)$$

$$\frac{1}{1-n}(y^{1-n})' + a(x)y^{1-n} = b(x)$$
 Замена: $y^{1-n} = z$

Уравнения Риккати

$$y' = a(x)y^2 + b(x)y + c(x)$$

В общем случае не решается в квадратурах. Рассмотрим случай, когда известно какое-либо частное решение $y_0(x)$.

Замена: $y = z + y_0(x)$

$$z' + y'_0 = a(z^2 + 2zy_0 + y_0^2) + b(z + y_0) + C$$

 $z' = az^2 + (2ay_0 + b)z$ - уравнение Бернулли

Уравнение в полных дифференциалах

Уравнения 1-го порядка в симметричной форме

$$P(x,y)dx + Q(x,y)dy = 0$$
(6)

где P,Q непрерывны в области $D\subset\mathbb{R}^2,\,P^2+Q^2\neq 0$ в D.

Уравнение называется уравнением в полных дифференциалах, если существует функция U(x,y) непрерывно дифференцируемая в области D, такая, что

$$dU = Pdx + Qdy (7)$$

в D. dU(x,y)=0, U(x,y)=C - содержит все решения x(y) и y(x). Пусть выполнено (7), тогда $P=\frac{\partial U}{\partial x},$ $Q=\frac{\partial U}{\partial y}.$ Пусть P_y и Q_x непрерывны в D. Тогда имеем:

$$P_{y} = \frac{\partial^{2} U}{\partial x \partial y} = \frac{\partial^{2} U}{\partial y \partial x} = Q_{x} \Rightarrow$$
$$\Rightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

- необходимое условие того, что (6) - уравнение в полных дифференциалах.

Замечание. Если область D односвязна, то это условие является и достаточным. (Из курса математического анализа известно, что любой замкнутый контур можно стянуть в точку в этой области)