Overview

- Principal Components
- Principal Components Applications
- Principal Components Regression
- Partial Least Squares Regression

Transformation to explain

the variance-covariance

structure of the variables

Transformation to explain

the variance-covariance

structure of the *predictors*

The transformation is a set of linear combinations

A linear combination of a set of variables

is a new variable

Example:

$$X = [X_1, X_2, \dots, X_p]$$

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

A linear combination of a set of variables

is a new variable

Example:

$$X = [X_1, X_2, \dots, X_p]$$

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

$$Z_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

:

$$Z_p = a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p$$

 X_1 X_2 X_3 \dots X_p

 $\sigma_1^2 \mid \sigma_2^2 \mid \sigma_3^2 \mid \dots \mid \sigma_n^2$

$$\sum_{i=1}^{p} \sigma_i^2$$

	σ_1^2	$\sigma_{1,2}$	$\sigma_{1,3}$		$\sigma_{1,p}$
	$\sigma_{2,1}$	$\sigma_{1,2}$ σ_2^2 $\sigma_{3,2}$	$\sigma_{2,3}$		$\sigma_{2,p}$
$\Sigma =$	$\sigma_{3,1}$	$\sigma_{3,2}$	σ_3^2		$\sigma_{3,p}$
	:		÷	٠	:
	$\sigma_{p,1}$			$\sigma_{p,p-1}$	σ_p^2

$$\sum_{i=1}^{p} \sigma_i^2$$

$$\sum_{i=1}^{p} \sigma_i^2$$

 $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{1,2} & \sigma_{1,3} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & \sigma_2^2 & \sigma_{2,3} & \cdots & \sigma_{2,p} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma_3^2 & \cdots & \sigma_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2} & \cdots & \sigma_{p,p-1} & \sigma_p^2 \end{bmatrix}$

\overrightarrow{e}_1	\overrightarrow{e}_2	\overrightarrow{e}_3		\overrightarrow{e}_p
------------------------	------------------------	------------------------	--	------------------------

 $\lambda_1 \mid \lambda_2 \mid \lambda_3 \mid \dots \mid \lambda_p$

 $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{1,2} & \sigma_{1,3} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & \sigma_2^2 & \sigma_{2,3} & \cdots & \sigma_{2,p} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma_3^2 & \cdots & \sigma_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2} & \cdots & \sigma_{p,p-1} & \sigma_p^2 \end{bmatrix}$

$\overrightarrow{e_1}$	$\overrightarrow{e_2}$	$\overrightarrow{e_3}$		$\overrightarrow{e_p}$
e_{11}	e_{21}	e_{31}		e_{p1}
e_{12}	e_{22}	e_{32}		e_{p2}
:	:	:	:	
e_{1p}	e_{2p}	e_{3p}		e_{pp}

$\lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_n$	λ_1	λ_2	λ_3		λ_n
--	-------------	-------------	-------------	--	-------------

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{1,2} & \sigma_{1,3} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & \sigma_2^2 & \sigma_{2,3} & \cdots & \sigma_{2,p} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma_3^2 & \cdots & \sigma_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2} & \cdots & \sigma_{p,p-1} & \sigma_p^2 \end{bmatrix} \begin{bmatrix} e_{11} & e_{21} & e_{31} & \cdots & e_{p1} \\ e_{12} & e_{22} & e_{32} & \cdots & e_{p2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ e_{1p} & e_{2p} & e_{3p} & \dots & e_{pp} \end{bmatrix}$$

$$\lambda_1 \mid \lambda_2 \mid \lambda_3 \mid \dots \mid \lambda_p$$

$$\sum_{i=1}^{p} \sigma_i^2 \qquad \qquad = \qquad \qquad \sum_{i=1}^{p} \lambda$$

.

PC_1	PC_2	PC_3	 PC_p

$$X = [X_1, X_2, \dots, X_p]$$

$$PC_1 = e_{11}X_1 + e_{12}X_2 + \dots + e_{1p}X_p$$

$$PC_2 = e_{21}X_1 + e_{22}X_2 + \dots + e_{2p}X_p$$

$$\vdots$$

$$PC_p = e_{p1}X_1 + e_{p2}X_2 + \dots + e_{pp}X_p$$

.

PC_1	PC_2	PC_3	 PC_p

$$PC_1 = e_{11}X_1 + e_{12}X_2 + \dots + e_{1p}X_p$$

$$PC_2 = e_{21}X_1 + e_{22}X_2 + \dots + e_{2p}X_p$$

:

$$PC_p = e_{p1}X_1 + e_{p2}X_2 + \dots + e_{pp}X_p$$

var

λ_1	λ_2	λ_3	 λ_p
-	_	0	P

$$\sum_{i=1}^{p} \lambda_i$$

.

PC_1	PC_2	PC_3	 PC_p

$$\Lambda = egin{bmatrix} \lambda_1 & & 0 \ & \ddots & \ 0 & & \lambda_p \end{bmatrix}$$

var

λ_1	λ_2	λ_3	 λ_p
-	_	9	1 P

$$\sum_{i=1}^{p} \lambda_i = \sum_{i=1}^{p} \sigma_i^2$$

X_1	X_2	X_3	 X_p

n

$$\Sigma = \begin{bmatrix} 1 & \sigma_{1,2} & \sigma_{1,3} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & 1 & \sigma_{2,3} & \cdots & \sigma_{2,p} \\ \sigma_{3,1} & \sigma_{3,2} & 1 & \cdots & \sigma_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2} & \cdots & \sigma_{p,p-1} & 1 \end{bmatrix}$$

data scaled

PC_1	PC_2	PC_3	 PC_p

$$\Lambda = egin{bmatrix} \lambda_1 & & 0 \ & \ddots & \ 0 & & \lambda_p \end{bmatrix}$$

var

n

$$\lambda_1 \quad \lambda_2 \quad \lambda_3 \quad \dots \quad \lambda_p$$

$$\sum_{i=1}^{p} \lambda_i = \sum_{i=1}^{p} \sigma_i^2$$

data scaled

PC_1	PC_2	PC_3	 PC_p

$$\Lambda = egin{bmatrix} \lambda_1 & & 0 \ & \ddots & \ 0 & & \lambda_p \end{bmatrix}$$

var |

$\lambda_1 + \lambda_2 + \lambda_3 + \cdots + \lambda_p$
--

$$\sum_{i=1}^{p} \lambda_i = p$$

data scaled

```
> m1 = eigen(var(d1))
> names(m1)
[1] "values" "vectors"
> str(m1)
List of 2
$ values : num [1:4] 7011.11 201.99 42.11 6.16
$ vectors: num [1:4, 1:4] -0.0417 -0.9952 -0.0463 -0.0752 0.0448 ...
- attr(*, "class")= chr "eigen"
```

```
> m1=prcomp(d1)
> names(m1)
[1] "sdev" "rotation" "center" "scale" "x"

# "sdev": square-root of eigenvalues

# "rotation": matrix of eigenvectors
# "center" "scale": # mean and sd of original data -unscaled-
# "x": transformed data set
```

```
> m1=prcomp(d1)
> names(m1)
[1] "sdev" "rotation" "center" "scale" "x"
```

- Find 1st PC, having the largest variance
- Find 2nd PC, having the largest variance while orthogonal to the 1st PC
- Find 3rd PC, having the largest variance while orthogonal to the 1st and 2nd PCs

.

- Find the straight line closest to a set of points
- How to measure the distance from the line to the points?
- OLS uses vertical distances

- First PC is the solution to the Orthogonal least squares line
- It is the closest
 line to the data

- First PC is the solution to the Orthogonal least squares line
- It is the closest
 line to the data

- First PC is the solution to the Orthogonal least squares line
- The closest line
 is given by
 the 1st eigenvector
 of the covariance
 matrix

Ordinary Least Squares (OLS) plane

- Closest plane to the data points
- Closest measured by vertical distances

- First and second PCs are the solution to the Orthogonal least squares plane
- It is the closest plane to the data

- First and second PCs are the solution to the Orthogonal least squares plane
- The closest plane is given by the 1st and 2nd eigenvectors of the covariance matrix

- Find 1st PC, having the largest variance
- Find 2nd PC, having the largest variance while orthogonal to the 1st PC
- Find 3rd PC, having the largest variance while orthogonal to the 1st and 2nd PCs

for each eigenvector
$$\overrightarrow{e}_i$$
 $e_{i1}^2 + e_{i2}^2 + \dots + e_{ip}^2 = 1$

$$X = [X_1, X_2, \dots, X_p]$$

$$PC_1 = \overrightarrow{e}_1 X$$

$$PC_2 = \overrightarrow{e}_2 X$$

$$PC_p = \overrightarrow{e}_p X$$

for each eigenvector
$$\overrightarrow{e}_{i}$$
 $e_{i1}^{2} + e_{i2}^{2} + \cdots + e_{ip}^{2} = 1$
$$X = [X_{1}, X_{2}, \dots, X_{p}]$$

$$PC_{1} = e_{11}X_{1} + e_{12}X_{2} + \cdots + e_{1p}X_{p}$$

$$PC_{2} = e_{21}X_{1} + e_{22}X_{2} + \cdots + e_{2p}X_{p}$$

$$\vdots$$

$$PC_{p} = e_{p1}X_{1} + e_{p2}X_{2} + \cdots + e_{pp}X_{p}$$

for each eigenvector \overrightarrow{e}_i $e_{i1}^2 + e_{i2}^2 + \cdots + e_{in}^2 = 1$

$$e_{i1}^2 + e_{i2}^2 + \dots + e_{ip}^2 = 1$$

$$X = [X_1, X_2, \dots, X_p]$$

for i^{th} row of the data set

$$PC_{1i} = e_{11}X_{1i} + e_{12}X_{2i} + \dots + e_{1p}X_{pi}$$

$$PC_{2i} = e_{21}X_{1i} + e_{22}X_{2i} + \dots + e_{2p}X_{pi}$$

$$PC_{pi} = e_{p1}X_{1i} + e_{p2}X_{2i} + \dots + e_{pp}X_{pi}$$

Finding 1st Principal Component

- Center the data, then
- look for a linear combination of the predictors values that has the largest variance

Finding 1st Principal Component

To find the first PC solve

$$\max_{e_{11},\dots,e_{1p}} \frac{1}{n} \sum_{i=1}^{n} PC_{1i}^{2} \quad \text{st.} \quad \sum_{i=1}^{p} e_{1j}^{2} = 1$$

Finding 1st Principal Component

To find the first PC solve

$$\max_{e_{11},\dots,e_{1p}} \frac{1}{n} \sum_{i=1}^{n} PC_{1i}^{2} \quad \text{st.} \quad \sum_{i=1}^{p} e_{1j}^{2} = 1$$

$$\max_{e_{11},\dots,e_{1p}} \frac{1}{n} \sum_{i=1}^{n} (e_{11}X_{1i} + e_{12}X_{2i} + \dots + e_{1p}X_{pi})^{2}$$

$$\text{st.} \quad \sum_{i=1}^{p} e_{1j}^{2} = 1$$

Finding Principal Components

- Data X must be centered
- centering does not change data variance
- A data vector X is
 - centered if $\overline{X} = 0$
 - scaled if Var(X) = 1

Finding Principal Components

- Data X must be centered
- centering does not change data variance
- A data vector X is
 - centered if $\sum_{i=1}^{n} X = 0$
 - scaled if Var(X) = 1

Finding Principal Components

- Data X must be centered
- must be scaled if variables in different

scales

##		${\tt Murder}$	${\tt Assault}$	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	${\tt California}$	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

Principal Components - Applications

- Data Visualization
- Principal Components Regression
- Clustering
- Multicollinearity prevention
- Outliers identification

Example: Principal Components Classification

- Predict tumor outcome (benign or malign)
 of patients based on tissue measurements
- Collect lab data of tissue measurements related to cancer tumors
- Use PCs to build a classification model to predict if a patient has a benign or would develop a malign tumor

	<				average	values				>	<				worst	values			
out	radius t	texture	perimeter	area	smoothness	compactness	concavity	concave p	symmetry	fractal_di	radius	texture	perimeter ar	ea s	moothness	compactness	concavity	concave p	symmetry
M	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	25.38	17.33	184.6	2019	0.1622	0.6656	0.7119	0.2654	0.4601
M	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	24.99	23.41	158.8 1	1956	0.1238	0.1866	0.2416	0.186	0.275
M	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	23.57	25.53	152.5 1	1709	0.1444	0.4245	0.4504	0.243	0.3613
M	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	14.91	26.5	98.87 5	67.7	0.2098	0.8663	0.6869	0.2575	0.6638
M	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	22.54	16.67	152.2 1	1575	0.1374	0.205	0.4	0.1625	0.2364
M	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	15.47	23.75	103.4 7	41.6	0.1791	0.5249	0.5355	0.1741	0.3985
M	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	22.88	27.66	153.2 1	1606	0.1442	0.2576	0.3784	0.1932	0.3063
M	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	17.06	28.14	110.6	897	0.1654	0.3682	0.2678	0.1556	0.3196
M	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	15.49	30.73	106.2 7	39.3	0.1703	0.5401	0.539	0.206	0.4378
M	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	15.09	40.68	97.65 7	11.4	0.1853	1.058	1.105	0.221	0.4366
M	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	19.19	33.88	123.8 1	1150	0.1181	0.1551	0.1459	0.09975	0.2948
M	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	20.42	27.28	136.5 1	1299	0.1396	0.5609	0.3965	0.181	0.3792
M	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	20.96	29.94	151.7 1	1332	0.1037	0.3903	0.3639	0.1767	0.3176
M	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	16.84	27.66	112 8	76.5	0.1131	0.1924	0.2322	0.1119	0.2809
M	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	15.03	32.01	108.8 6	97.7	0.1651	0.7725	0.6943	0.2208	0.3596
M	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	17.46	37.13	124.1 9	43.2	0.1678	0.6577	0.7026	0.1712	0.4218
M	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	19.07	30.88	123.4 1	1138	0.1464	0.1871	0.2914	0.1609	0.3029
M	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	20.96	31.48	136.8 1	1315	0.1789	0.4233	0.4784	0.2073	0.3706
M	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	27.32	30.88	186.8 2	2398	0.1512	0.315	0.5372	0.2388	0.2768
В	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	15.11	19.26	99.7 7	11.2	0.144	0.1773	0.239	0.1288	0.2977
В	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	14.5	20.49	96.09 6	30.5	0.1312	0.2776	0.189	0.07283	0.3184
В	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	10.23	15.66	65.13 3	14.9	0.1324	0.1148	0.08867	0.06227	0.245
M	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	18.07	19.08	125.1 9	80.9	0.139	0.5954	0.6305	0.2393	0.4667
M	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	29.17	35.59	188 2	2615	0.1401	0.26	0.3155	0.2009	0.2822

	<				average	values				>	<				worst	values			
out	radius	texture	perimeter	area	smoothness	compactness	concavity	concave p	symmetry	fractal_dir	radius	texture	perimeter	area	smoothness	compactness	concavity	concave p	symmetry
M	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	25.38	17.33	184.6	2019	0.1622	0.6656	0.7119	0.2654	0.4601
M	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	24.99	23.41	158.8	1956	0.1238	0.1866	0.2416	0.186	0.275
M	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	23.57	25.53	152.5	1709	0.1444	0.4245	0.4504	0.243	0.3613
M	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	14.91	26.5	98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638
M	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	22.54	16.67	152.2	1575	0.1374	0.205	0.4	0.1625	0.2364
M	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	15.47	23.75	103.4	741.6	0.1791	0.5249	0.5355	0.1741	0.3985
M	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	22.88	27.66	153.2	1606	0.1442	0.2576	0.3784	0.1932	0.3063
M	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	17.06	28.14	110.6	897	0.1654	0.3682	0.2678	0.1556	0.3196
M	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	15.49	30.73	106.2	739.3	0.1703	0.5401	0.539	0.206	0.4378
M	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	15.09	40.68	97.65	711.4	0.1853	1.058	1.105	0.221	0.4366
M	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	19.19	33.88	123.8	1150	0.1181	0.1551	0.1459	0.09975	0.2948
M	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	20.42	27.28	136.5	1299	0.1396	0.5609	0.3965	0.181	0.3792
M	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	20.96	29.94	151.7	1332	0.1037	0.3903	0.3639	0.1767	0.3176
M	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	16.84	27.66	112	876.5	0.1131	0.1924	0.2322	0.1119	0.2809
M	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	15.03	32.01	108.8	697.7	0.1651	0.7725	0.6943	0.2208	0.3596
M	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	17.46	37.13	124.1	943.2	0.1678	0.6577	0.7026	0.1712	0.4218
M	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	19.07	30.88	123.4	1138	0.1464	0.1871	0.2914	0.1609	0.3029
M	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	20.96	31.48	136.8	1315	0.1789	0.4233	0.4784	0.2073	0.3706
WI.	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	27.32	30.88	186.8	2398	0.1512	0.315	0.5372	0.2388	0.2768
В	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	15.11	19.26	99.7	711.2	0.144	0.1773	0.239	0.1288	0.2977
В	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	14.5	20.49	96.09	630.5	0.1312	0.2776	0.189	0.07283	0.3184
В	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	10.23	15.66	65.13	314.9	0.1324	0.1148	0.08867	0.06227	0.245
W	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	18.07	19.08	125.1	980.9	0.139	0.5954	0.6305	0.2393	0.4667
M	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	29.17	35.59	188	2615	0.1401	0.26	0.3155	0.2009	0.2822

	 				average	values					·			worst	values			
out	radius t	exture	perimeter								,		perimeter area			concavity	concave p	symmetry
M	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	25.38	17.33	184.6 2019		0.6656	0.7119	0.2654	0.4601
M	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	24.99	23.41	158.8 1956		0.1866	0.2416	0.186	0.275
М	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	23.57	25.53	152.5 1709	0.1444	0.4245	0.4504	0.243	0.3613
М	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	14.91	26.5	98.87 567.7	0.2098	0.8663	0.6869	0.2575	0.6638
M	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	22.54	16.67	152.2 1575	0.1374	0.205	0.4	0.1625	0.2364
M	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	15.47	23.75	103.4 741.6	0.1791	0.5249	0.5355	0.1741	0.3985
M	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	22.88	27.66	153.2 1606	0.1442	0.2576	0.3784	0.1932	0.3063
M	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	17.06	28.14	110.6 897	0.1654	0.3682	0.2678	0.1556	0.3196
M	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	15.49	30.73	106.2 739.3	0.1703	0.5401	0.539	0.206	0.4378
M	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	15.09	40.68	97.65 711.4	0.1853	1.058	1.105	0.221	0.4366
M	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	19.19	33.88	123.8 1150	0.1181	0.1551	0.1459	0.09975	0.2948
M	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	20.42	27.28	136.5 1299	0.1396	0.5609	0.3965	0.181	0.3792
M	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	20.96	29.94	151.7 1332	0.1037	0.3903	0.3639	0.1767	0.3176
M	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	16.84	27.66	112 876.5	0.1131	0.1924	0.2322	0.1119	0.2809
M	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	15.03	32.01	108.8 697.7	0.1651	0.7725	0.6943	0.2208	0.3596
M	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	17.46	37.13	124.1 943.2	0.1678	0.6577	0.7026	0.1712	0.4218
M	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	19.07	30.88	123.4 1138	0.1464	0.1871	0.2914	0.1609	0.3029
M	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	20.96	31.48	136.8 1315	0.1789	0.4233	0.4784	0.2073	0.3706
M	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	27.32	30.88	186.8 2398	0.1512	0.315	0.5372	0.2388	0.2768
В	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	15.11	19.26	99.7 711.2	0.144	0.1773	0.239	0.1288	0.2977
В	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	14.5	20.49	96.09 630.5	0.1312	0.2776	0.189	0.07283	0.3184
В	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	10.23	15.66	65.13 314.9	0.1324	0.1148	0.08867	0.06227	0.245
M	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	18.07	19.08	125.1 980.9	0.139	0.5954	0.6305	0.2393	0.4667
M	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	29.17	35.59	188 2615	0.1401	0.26	0.3155	0.2009	0.2822

not good classifier

not good classifiers

good classifiers

- PC Analysis can be used to substitute correlated variables with a set of uncorrelated ones
- The uncorrelated variables can be used as predictors in a regression model

- PC Analysis can be used to substitute correlated variables with a subset of uncorrelated ones
- The uncorrelated variables can be used as predictors in a regression model

- The uncorrelated variables can then be used as predictors in a regression model
- The resulting model is called Principal Components regression (PCR)
- The number of PCs in the PCR model is chosen by cross-validation

Partial least squares Regression

- PCR does not guarantee that the selected
 PCs are associated with y
- The model may be better than linear regression but still poor
- An alternative is PLS

Partial least squares Regression

 PLS identifies components that are linear combination of the original predictors but also are related to y

Partial least squares Regression

Finding 1st PLS Component

.

$$X = [X_1, X_2, \dots, X_p]$$

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

$$Z_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

$$\vdots$$

$$Z_p = a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p$$

Finding 1st PLS Component

.

$$X = [X_1, X_2, \dots, X_p]$$

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p \qquad Y = a_{11}X_1$$

$$Y = a_{12}X_2$$

$$\vdots$$

$$Y = a_{1p}X_p$$

Finding 2nd PLS Component

 $X = [X_1, X_2, \dots, X_p]$

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

$$Z_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

For 2nd component Z_2

regress $X_1, X_2, X_3, \dots, X_p$ on to Z_1 Use the residuals to fit the model

$$Z_2 = a_{21}r_1 + a_{22}r_2 + \dots + a_{2p}r_p$$