Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 6

Jendrik Stelzner

Letzte Änderung: 16. Dezember 2017

Aufgabe 4

(a)

Wir bemerken zunächst einige (intuitive) Aussagen über Primfaktorzerlegungen in faktoriellen Ringen:

Lemma 1. Es seien $x, y \in R$ mit $x, y \neq 0$, so dass x ein Teiler von y ist. Dann lässt sich jede Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ von x zu einer Primfaktorzerlegung $y = \varepsilon' p_1 \cdots p_n p_{n+1} \cdots p_m$ von y ergänzen.

Beweis. Es gibt $z \in R$ mit xz = y, und es gilt $z \neq 0$, da $y \neq 0$ gilt. Also besitzt z eine Primfaktorzerlegung $z = \delta p_{n+1} \cdots p_m$. Dann gilt

$$y = xz = \varepsilon \delta p_1 \cdots p_n p_{n+1} \cdots p_m ,$$

und die Aussage ergibt sich mit $\varepsilon' := \varepsilon \delta$.

Für $x \in R$, $x \neq 0$ mit Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ bezeichnen wir mit $\nu(x) \coloneqq n$ die Anzahl der vorkommenden Primfaktoren (inklusive Vielfachheit). Die Zahl $\nu(x)$ ist wohldefiniert, da die Primfaktorzerlegung bis Einheiten und Permutation der Faktoren eindeutig ist.

Lemma 2. Es seien $x, y \in R$ mit $x, y \neq 0$.

- 1. Es gilt genau dann $\nu(x) = 0$, wenn x eine Einheit ist.
- 2. Es gilt $\nu(xy) = \nu(x) + \nu(y)$.
- 3. Ist x ein Teiler von y, so gilt $\nu(x) \leq \nu(y)$.
- 4. Ist x ein echter Teiler von y, also $(y) \subseteq (x)$, so gilt $\nu(x) < \nu(y)$.

Beweis.

- 1. In der Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ gilt n = 0 und somit $x = \varepsilon \in \mathbb{R}^{\times}$.
- 2. Da R ein Integritätsbereich ist, gilt auch $xy \neq 0$. Es seien $x = \varepsilon p_1 \cdots p_n$ und $y = \delta q_1 \cdots q_m$ Primfaktorzerlegungen. Dann

$$xy = (\varepsilon \delta)p_1 \cdots p_n q_1 \cdots q_m$$

eine Primfaktorzerlegung von xy und somit

$$\nu(xy) = n + m = \nu(x) + \nu(y).$$

3. Es gibt $z \in R$ mit y = xz. Es gilt $z \neq 0$, da $y \neq 0$ gilt, we
shalb $\nu(z)$ definiert ist. Somit gilt

$$\nu(y) = \nu(xz) = \nu(x) + \nu(z) \le \nu(x).$$

4. Ansonsten gilt in der obigen Situation $\nu(z)=0$, weshalb z dann eine Einheit ist. Deshalb gilt dann

$$(y) = (xz) = (x).$$

(i)

Es sei $p \in R$ irreduzibel, und es seien $x, y \in R$ mit $p \mid xy$. Gilt x = 0 oder y = 0, so gilt $p \mid x$ oder $p \mid y$.

Ansonsten gibt es Primfaktorzerlegungen $x = \delta q_1 \cdots q_n$ und $y = \delta' q_1' \cdots q_m'$ Primfaktorzerlegungen. Dann ist

$$xy = (\delta \delta')q_1 \cdots q_n q_1' \cdots q_m' \tag{1}$$

eine Primfaktorzerlegung von xy. Da p irreduzibel ist und $p\mid xy$ gilt, lässt sich p nach Lemma 1 zu einer Primfaktorzerlegung

$$xy = \varepsilon p p_2 \cdots p_r \tag{2}$$

ergänzen. Da R faktoriell ist, sind die beiden Primfaktorzerlegungen (1) und (2) eindeutig bis auf Einheiten und Permutation. Es gilt deshalb $p \mid q_i$ oder $p \mid q'_i$ für passendes i, und somit $p \mid x$ oder $p \mid y$.

(ii)

Wir nehmen an, dass nicht jede aufsteigende Kette von Hauptidealen stabilisieren würde. Dann gibt es eine unendliche echt aufsteigende Kette von Hauptidealen

$$(a_0) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq (a_4) \subsetneq \cdots$$

Dann gilt $a_i \neq 0$ für alle $i \geq 1$ (denn sonst wäre $(a_i) = 0$ für ein solches i, und damit bereits $(a_i) = \cdots = (a_0) = 0$), und für jedes $i \geq 1$ ist a_{i+1} ein echter Teiler von a_i . Nach Lemma 2 erhalten wir eine unendliche absteigende Kette

$$\nu(a_1) > \nu(a_2) > \nu(a_3) > \nu(a_4) > \cdots$$

Dies ist aber nicht möglich.

Wir müssen zeigen, dass es für jedes Element $x \in R$ mit $x \neq 0$ eine Zerlegung

$$x = \varepsilon p_1 \cdots p_n$$

in eine Einheit $\varepsilon \in R^{\times}$ und irreduzible Elemente $p_1, \ldots, p_n \in R$ gibt, und dass eine solche Zerlegung eindeutig bis auf Einheiten und Permutation ist.

Existenz

Lemma 3. Es sei $x \in R$, und es sei x = yz ein Zerlegung mit $z \notin R^{\times}$. Dann gilt $(x) \subsetneq (y)$.

Beweis. Es gilt $y \mid x$ und somit $(x) \subseteq (y)$. Wäre (x) = (y), so gebe es ein $z' \in R$ mit y = xz'. Dann wäre x = yz = xzz' und somit 1 = zz', da R ein Integritätsbereich ist. Dann wäre z eine Einheit mit $z^{-1} = z'$, im Widerspruch zu $z \notin R^{\times}$.

Wir nehmen an, dass es ein Element $x \in R$ mit $x \neq 0$ gibt, dass keine entsprechende Zerlegung besitzt. Dann ist x inbesondere keine Einheit und auch nicht irreduzibel. Es gibt deshalb nicht-Einheiten $y_1, y_2 \in R$ mit $x = y_1 y_2$; dabei gelten $y, z \neq 0$ da $x \neq 0$. Würden x und z entsprechende Zerlegungen besitzten, so würden sich diese zu einer Zerlegung von x kombinieren lassen. Also hat x oder y keine entsprechende Zerlegung; wir können o.B.d.A. davon ausgehen, dass y keine Zerlegung hat. Da z keine Einheit ist, gilt $(x) \subseteq (y)$ nach Lemma $x \in R$

Wir setzen $a_0 := x$ und $a_1 := y$. Durch Induktion erhalten wir eine unendliche aufsteigende Kette von Hauptidealen

$$(a_0) \subseteq (a_1) \subseteq (a_2) \subseteq (a_3) \subseteq \cdots$$

Im Widerspruch zur Annahme (ii).

Bemerkung 4. Ein kommutativer Ring R heißt noethersch, wenn jede aufsteigende Kette

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

von Idealen $I_j \leq R$ stabilisiert. Wir haben soeben insbesondere gezeigt, dass in einem notherschen Ring R jedes Element $x \in R$ eine Zerlegung $x = \varepsilon p_1 \cdots p_n$ in eine Einheit $\varepsilon \in R^{\times}$ und irreduzible Elemente $p_1, \ldots, p_n \in R$ besitzt.

Eindeutigkeit

Es seien

$$x = \varepsilon p_1 \cdots p_n = \delta q_1 \cdots q_m$$

Zerlegungen in Einheiten $\varepsilon, \delta \in \mathbb{R}^{\times}$ und irreduzible Elemente $p_i, q_j \in \mathbb{R}$. Wir zeigen die gewünschte Eindeutigkeit per Induktion über n:

Gilt n=0, so ist $x=\varepsilon\in R^{\times}$ eine Einheit. Dann gilt $q_j\mid x\mid 1$ für alle j, weshalb jedes q_j eine Einheit ist. Irreduzible Elemente sind aber per Definition keine Einheiten,

weshalb m=0 gelten muss. Dann ist also $x=\varepsilon=\delta,$ und die beiden Zerlegungen stimmen überein.

Es sei nun n > 0. Nach Annahme (i) ist p_1 prim. Aus $p_1 \mid x = \delta q_1 \cdots q_m$ folgt damit, dass $p_1 \mid \delta$, oder dass $p_1 \mid q_j$ für ein j. Wäre $p_1 \mid \delta$, so wäre p_1 eine Einheit, im Widerspruch zur Irreduziblität von p_1 . Also gilt $p_1 \mid q_j$ für ein j; wir können o.B.d.A. davon ausgehen, dass $p_1 \mid q_1$. Es gibt also $\delta' \in R$ mit $q_1 = p_1 \delta'$. Da q_1 irreduziblität keine Einheit, so dass δ' eine Einheit ist. Also sind p_1 und q_1 gleich bis auf die Einheit δ' .

Es gilt nun

$$x = \varepsilon p_1 \cdots p_n = \delta q_1 \cdots q_m = \delta \delta' p_1 q_2 \cdots q_m. \tag{3}$$

Da R ein Integritätsbereich ist, können wir die obige Gleichung durch $p_1 \neq 0$ teilen, und erhalten, dass bereits

$$\varepsilon p_2 \cdots p_n = (\delta \delta') q_2 \cdots m$$
 (4)

Nach Induktionsvoraussetzung sind beide Seiten von (4) gleich bis auf Permutation und Einheiten. Da p_1 und q_1 auch gleich bis auf Einheit sind, sind in (3) bereits beide Zerlegungen bis auf Permutation und Einheiten gleich.