1.41 Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid bc$ and (a, b) = 1, then $a \mid c$.

Proof. Let $a, b, c \in \mathbb{Z}$ be given such that $a \mid bc$ and (a, b) = 1. By Theorem 1.38, we know there exists $x, y \in \mathbb{Z}$ such that ax + by = 1. Multiplying this equation by c,

$$c(ax + by) = c(1),$$

$$acx + bcy = c.$$

Observing the left hand side of the equation, a divides any integer multiple of a and a divides any integer multiple of bc. Since a divides both terms, $a \mid c$.