Ripetizioni Annalisa

Marini Mattia

Ottobre 2024

Ripetizioni Annalisa is licensed under $\underline{\text{CC BY 4.0}}$ $\underline{\bigcirc}$.

© 2023 Mattia Marini

Indice

1	Conoscenze fondamentali	2
	1.1 Derivate	2
	1.2 Limiti	2
2	Punti di discontinuità	3
	2.1 Discontinuità a salto finito	3
	2.2 Discontinuità di secondo tipo	4
	2.3 Discontinuità eliminabile	
3	Punti di non derivabilità	Ę
	3.1 Punto angoloso	Ę
	3.2 Cuspide	(
	3.3 Flesso a tangenza verticale	6
	3.4 Casi particolari	7
4	Esercizi preliminari studio di funzione	7
5	Studio di funzione	10
	5.1 Teoria	1(
	5.2 Esercizi	11

Conoscenze fondamentali

1.1 Derivate

Qui di seguito un cheatsheet con le regole di derivazione delle funzioni fondamentali:

Nome funzione	f(x)	f'(x)
Polinomio	x^n	nx^{n-1}
Costante	c	0
Esponenziale	e^x	e^x
Esponenziale con base a	a^x	$a^x \ln(a)$
Logaritmo naturale	ln(x)	$\frac{1}{x}$
Seno	$\sin(x)$	$\cos(x)$
Coseno	$\cos(x)$	$-\sin(x)$
Tangente	tan(x)	$\frac{1}{\cos^2(x)}$
Cotangente	$\cot(x)$	$-\frac{1}{\sin^2(x)}$

Qui di seguito un cheasheet con le regole di derivazioni per funzioni composte, prodotti e divisioni di funzioni:

Tipo operazione	$f\left(x\right)$	f'(x)
Prodotto per costante	cf(x)	cf'(x)
Prodotto fra funzioni	f(x)g(x)	f'(x)g(x) + f(x)g'(x)
Quoziente	$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$
Funzione composta	f(g(x))	f'(g(x))g'(x)

1.2 Limiti

Per quanto riguarda i limiti è fondamentale:

- Avere chiaro dal punto di vista inttuitivo il concetto di infinito, classi di infinito e di "tendere a" (avvicinarsi asintoticamente ad un valore)
- o Sapere risolvere limiti e in particolare le forme indeterminate

Funzione	limite	tipo F.I
Seno	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\left[\frac{0}{0}\right]$
Coseno	$\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2}$	$\left[\frac{0}{0}\right]$
Numero di Nepero	$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$	1^{∞}
Esponenziale	$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$	$\left[\frac{0}{0}\right]$
Logaritmo	$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$	$\left[\frac{0}{0}\right]$
Potenza di se stessa	$\lim_{x \to 0^+} x^x = 1$	0_0

NB: spesso ricondursi ad un limite notevole è più impegnativo che applicare de l'Hopital meccanicamente. L'unico caso in cui è necessario l'utilizzo di un limite notevole è quello in cui si ha 0^0 o 1^∞

1.2.0 Cheatsheet forme indeterminate

1.2.0 Classi di infiniti

"Rapidità" con cui funzioni note tendono "Rapidità" con cui funzioni note tendono ad infinito (in ordine descrescente)

a 0 (in ordine descrescente)

2 Punti di discontinuità

2.1 Discontinuità a salto finito

Limite destro e sinistro tendono a valori finiti ma diversi tra loro:

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x) \quad \text{ esiste finito}$$

2.2 Discontinuità di secondo tipo

Almeno uno dei due limiti (sinistro o destro) tende a valori infiniti o non esiste:

$$\lim_{x \to x_0^-} f(x) \begin{cases} \pm \infty \\ \not \exists \end{cases} \qquad \text{oppute} \quad \lim_{x \to x_0^+} f(x) \begin{cases} \pm \infty \\ \not \exists \end{cases}$$

$$f(x) = \frac{x^2 + 2}{x^2 - 1} \qquad \qquad f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x < 0 \\ 0 & x \ge 0 \end{cases}$$

$$0 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$10 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$10 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$10 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

$$20 \qquad \qquad 0 \qquad \qquad 0$$

2.3 Discontinuità eliminabile

I limiti destro e sinitro esistono finiti e coincidono ma in quel punto la funzione ha vaole diverso o non è definita

$$f(x) = \begin{cases} 1 & x \neq 0 \\ 2 & x = 0 \end{cases} \qquad f(x) = \frac{\sin(x)}{x}$$

$$\begin{cases} 3 & & & \\ & &$$

La discontinuità è detta eliminabile in quanto è possibile rendere la funzione continua modificando solamente il punto in cui questa presenta la discontinuità stessa, facendolo coincidere con il limite destro e sinistro

3 Punti di non derivabilità

3.1 Punto angoloso

Il limite destro e sinistro della derivata prima sono valori finiti ma non coincidono

3.2 Cuspide

Il limite destro e sinistro della derivata prima sono infiniti di segno opposto

$$f\left(x\right) = \left|x\right|$$

$$f(x) = \sqrt[3]{(x-1)^2}$$

3.3 Flesso a tangenza verticale

$$f\left(x\right) = \sqrt[3]{x}$$

$$f\left(x\right) = \sqrt[3]{\frac{\left(x-1\right)}{2}}$$

3.4 Casi particolari

Oltre ai casi sopra citati, vi sono casi particolari in cui non è possibile parlare di derivata di una funzione. Il seguente è quello più comune:

$$f\left(x\right) = \sin\left(\frac{1}{x}\right)$$

vicinandosi all'origine, la funzione oscilla sempre più rapidamente, dunque la sua derivata non tende a nessun valore, ma oscillerà sempre più velocemente anch'essa

Esercizi preliminari studio di funzione

Esercizio 1: Classicifa nunti discontinuità (n. 1560 n. 853)

Data la funzione

$$f(x) = \begin{cases} 2x & \text{se } x \le 1\\ \ln(x-1) & \text{se } x > 1 \end{cases}$$

calcolane i punti di discontinuità e nel casi siano di prima specie, calcolane il salto

4.0.0 Soluzione

Il dominio di $2x \in \mathbb{R}$, mentre il dominio di $\ln(x-1) \in x \in \mathbb{R}$ t.c. x > 1. Il dominio di $f(x) \in \mathbb{R}$ dunque:

$$\mathbb{R}-\{1\}$$

I limiti destro e sinistro valgono:

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \ln(x - 1) = -\infty$$
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2x = 2$$

rientriamo dunque nel caso della discontinuità di secondo tipo

Esercizio 2: Classicifa punti discontinuità (p. 1561 n. 856)

Data la funzione

$$f\left(x\right) = \frac{2\left|x\right|}{x} - 3$$

calcolane i punti di discontinuità e nel casi siano di prima specie, calcolane il salto

Esercizio 3: Classicifa punti discontinuità (p. 1561 n. 871)

Data la funzione

$$f(x) = \frac{\sin(x)}{\sin(2x)}$$

calcolane i punti di discontinuità e nel casi siano di prima specie, calcolane il salto

Qui la situazione è un po' più complicata in quanto dal dominio vanno esclusi tutti e soli i valori che annullano il denominatore. Essendo quest'ultimo una funzione trigonometrica, avremo infiniti valori per i quali questo sarà nullo. Partiamo imponento il denominatore

$$= 0$$
:

$$\sin(2x) = 0 \to 2x = k\pi \to x = \frac{k\pi}{2}$$
 dove $k \in \mathbb{N}$

Prendiamo ora due punti x_1 e x_2 esclusi dal dominio e studiamo il comportamento della funzione nel loro intorno:

$$x_1 = \frac{1 \cdot \pi}{2} = \frac{\pi}{2}$$
 $x_2 = \frac{2\pi}{2} = \pi$

calcoliamo limite destro e sinistro:

$$\lim_{x \to x_1^-} f(x) = \lim_{x \to x_1^-} \frac{\sin(x)}{\sin(2x)} = \left[\frac{\sin\left(\frac{\pi}{2}\right)}{\sin(\pi)} \right] = \left[\frac{1}{0^+} \right] = +\infty$$

$$\lim_{x \to x_1^+} f(x) = \lim_{x \to x_1^-} \frac{\sin(x)}{\sin(2x)} = \left[\frac{\sin\left(\frac{\pi}{2}\right)}{\sin(\pi)} \right] = \left[\frac{1}{0^-} \right] = -\infty$$

facendo la stessa cosa con x_2 ottengo una forma indeterminata che posso risolvere riscrivendo l'espressione così:

$$\frac{\sin(x)}{\sin(2x)} = \frac{\sin(x)}{2\sin(x)\cos(x)} = \frac{1}{2\cos(x)}$$

dunque facendo il limite

$$\lim_{x \to x_2} \frac{1}{2\cos} = \left[\frac{1}{2\cos(\pi)}\right] = \frac{1}{2}$$

Il risultato è dunque interessante: ottengo un punto di discontinuità di secondo tipo per ogni *k dispari*, mentre un punto di discontinuità eliminabile per ogni *k pari*

Esercizio 4: Individua ali asintoti (n. 1565 n. 939)

Individua asintoti orizzontali e verticali della seguente funzione

$$f(x) = \ln\left(\frac{x+1}{x+3}\right)$$

Esercizio 5: Individua qli asintoti (p. 1567 n.964)

Individua asintoti obliqui della seguente funzione

$$f\left(x\right) = x + e^{-x} + 1$$

Si tratta di risolvere due limiti. Trovo m

$$\lim_{x\to\infty}\frac{f(x)}{x}=\lim_{x\to\infty}\frac{x+e^{-x}+1}{x}=1$$

trovo c:

$$\lim_{x \to \infty} f(x) - mx = \lim_{x \to \infty} x + e^{-x} + 1 - x = 1$$

quindi m=1 e c=1. L'equazione dell'asintoto obliquo è y=x+1

5 Studio di funzione

5.1 Teoria

In ogni studio di funzione è opportuno affrontare i seguenti passaggi nell'ordine indicato, ottenendo passo per passo un grafico approssimato

1. Dominio

o Trovo valori per i quali la funzione non ha senso

2. Segno

- o Risolvo equazione associata
- o Trovo zeri e intervalli in cui la funzione è positiva o negativa

3. Limiti

- Vedo come funzione si comporta a $\pm \infty \to \lim_{x \to \pm \infty} f(x)$:
- Vedo come funzione si comporta ad estremi del dominio e in punti esculsi dal dominio

- o Trovo asintoti orizzontali, verticali ed obliqui
 - Verticali: se $\lim_{x\to x_0} f(x) = \pm \infty$ dove x_0 è un punto escluso dal dominio
 - Orizzontali: se $\lim_{x\to\pm\infty} f(x) = k$, dove k è numero finito
 - Obliqui: se $\lim_{x\to\pm\infty}\frac{f(x)}{x}=m$ dove m è finino ed è il coefficiente angolare della retta asintoto. Il quozioente di tale retta è : $\lim_{x\to\pm\infty}[f(x)-mx]$
- 4. Derivata prima
 - \circ se f'(x) > 0 allora f cresce
 - \circ se f'(x) < 0 allora f decresce
 - \circ se f'(x) = 0 allora ho 3 opzioni:
 - Punto di minimo locale/assoluto
 - Punto di massimo locale/assoluto
 - Flesso a tangenza orizzontale
- 5. Derivata seconda
 - o se $f''\left(x\right)>0$ allora fha concavità verso l'alto
 - \circ se f''(x) < allora f ha concavità verso il basso
 - \circ se f''(x) = 0 allora non si può dire nulla
- 5.2 Esercizi

Esercizio 6: Studio di funzione

Studia la seguente funzione:

 $xln\left(x^2\right)$

$$\circ f'(x) = ln(x^2) + 2$$

$$\circ f''(x) = \frac{2}{x}$$

o No asintoti

Esercizio 7: Studio di funzione

Studia la seguente funzione:

$$\frac{x^2+1}{r}$$

$$\circ f'(x) = \frac{x^2 - 1}{x^2}$$

$$\circ f''(x) = \frac{2}{x^3}$$