Principal Component Analysis Tutorial

Prof. Prashanth LA Computer Science and Engineering Indian Institute of Technology, Madras

> Mr. Kumar Ramanand Tutorial Instructor

Table of Contents

1 Principal Component Analysis (PCA)

Some examples

Principal Component Analysis (PCA)

 Step-1: Data matrix X has n data points, each data point consists of m features

$$X = \begin{bmatrix} x_i & x_2 & x_3 & \dots & x_n \end{bmatrix}$$
 where each $x_i = \begin{bmatrix} feature_1 \\ feature_2 \\ \vdots \\ feature_m \end{bmatrix}$

- Step-2: Find the mean vector of data points $\bar{X} = \sum_{i=1}^{n} \frac{1}{n} x_i$
- Step-3: Subtract mean vector from the given data points $X \bar{X} = \begin{bmatrix} x_i \bar{x} & x_2 \bar{x} & x_3 \bar{x} & \dots & x_n \bar{x} \end{bmatrix}$
- Step-4: Find the covariance matrix C (A symmetric mxm matrix) $C = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(x_i \bar{x})^T$

Principal Component Analysis (PCA)

- Step-5: Write the characteristic equation $(C \lambda I) u_i = 0$
- Step-6: Find the eigen vectors and eigen values of matrix C Eigen value matrix: $\Lambda = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \dots & \lambda_n \end{bmatrix}$, Corresponding eigen

vector matrix:
$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$$
 where each $u_j = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$

- Step-7: Choose eigen vectors corresponding to top k eigen values and derive the transformed data points $\tilde{x_i} = \sum_{i=1}^k \alpha_i u_i$ where $\alpha_i = (x_i^T u_i)$
- Step-8: Calculate the reconstruction error and projected variance Reconstruction Error = $J = \frac{1}{n} \sum_{i=1}^{n} ||x_i \tilde{x_i}||^2$, Projected Variance = $\lambda_1 + \lambda_2 + \ldots + \lambda_k$

• Step-1: Data points:
$$x_1 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$, $x_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

- Step-2: Mean vector: $\vec{X} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$
- ullet Step-3: Symmetric matrix, C =

$$\frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix} \begin{bmatrix} -1 & -2 & -3 \end{bmatrix}) =$$

$$\frac{2}{3} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

- Step-4: Characteristic equation: $(\frac{2}{3}\begin{bmatrix}1-\lambda & 2 & 3\\ 2 & 4-\lambda & 6\\ 3 & 6 & 9-\lambda\end{bmatrix})u_j=0$
- Step-5: Eigen values: $\lambda_1=14, \lambda_2=0, \lambda_3=0$ Eigen vectors:

$$\lambda_{1} = 14, a_{1} = \frac{1}{3}, a_{2} = \frac{2}{3}, a_{3} = 1 \Longrightarrow u_{1} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix},$$

$$\lambda_{2} = 0, a_{1} = -2, a_{2} = 1, a_{3} = 0 \Longrightarrow u_{1} = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$

$$\lambda_{3} = 0, a_{1} = -3, a_{2} = 0, a_{3} = 1 \Longrightarrow u_{2} = \frac{1}{\sqrt{10}} \begin{bmatrix} -3\\0\\1 \end{bmatrix}$$

- Step 6: Projecting data points
 Projecting x₁ on u₁
 - Projection on $u_1 = \alpha_1 = \frac{1}{\sqrt{14}}(\begin{bmatrix} 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}) = \frac{42}{\sqrt{14}}$

Projecting x_2 on u_1

• Projection on
$$u_1 = \alpha_1 = \frac{1}{\sqrt{14}}(\begin{bmatrix} 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}) = \frac{28}{\sqrt{14}}$$

Projecting x_3 on u_1

• Projection on
$$u_1=\alpha_1=\frac{1}{\sqrt{14}}(\begin{bmatrix}1&2&3\end{bmatrix}\begin{bmatrix}1\\2\\3\end{bmatrix})=\frac{14}{\sqrt{14}}$$

Figure: PCA using one component

https://www.geogebra.org/calculator/dj8pkvwk

 Step 7: Choose eigen vectors corresponding to top k eigen values (k=1 here)
 Derive the transformed data points:

$$\tilde{x_1} = 3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \tilde{x_2} = 2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix},$$
 $\tilde{x_3} = 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

• Step-8:

Reconstruction Error =
$$J = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \tilde{x}_i||^2 =$$
$$\frac{1}{3} [0^2 + 0^2 + 0^2] = 0,$$
 Projected Variance = $\lambda_1 = 14$

Original		Transformed	
$x_1 =$	[3]		$\lceil 1 \rceil$
	6	$\tilde{x_1}=3$	2
	9		3
$x_2 =$	[2]		[1]
	4	$\tilde{x_2}=2$	2
	[6]		3
<i>x</i> ₃ =	$\lceil 1 \rceil$		$\lceil 1 ceil$
	2	$\tilde{x_3} =$	2
	[3]		[3]

Table: Data points

- Step-1: Data points: $x_1=\begin{bmatrix}2\\0\end{bmatrix}$, $x_2=\begin{bmatrix}0\\2\end{bmatrix}$, $x_3=\begin{bmatrix}2\\4\end{bmatrix}$, $x_4=\begin{bmatrix}4\\2\end{bmatrix}$
- Step-2: Mean vector: $\bar{X} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
- Step-3: Symmetric matrix, Č =

$$\frac{1}{4} \begin{pmatrix} 0 \\ -2 \end{pmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$$

- Step-4: Characteristic equation: $(\begin{bmatrix} 2-\lambda & 0 \\ 0 & 2-\lambda \end{bmatrix})u_j=0$
- Step-5: Eigen values: $\lambda_1 = 2, \lambda_2 = 2$ Eigen vectors:

$$\lambda_1 = 2, a_1 = 1, a_2 = 0 => u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$
 $\lambda_2 = 2, a_1 = 0, a_2 = 1 => u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Step 6: Projecting data points
 Projecting x₁ on u₁
 - Projection on $u_1 = \alpha_1 = (\begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}) = 2$

Projecting x_2 on u_1

• Projection on $u_1 = \alpha_1 = (\begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}) = 0$

Projecting x_3 on u_1

• Projection on $u_1 = \alpha_1 = (\begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}) = 2$

Projecting x_4 on u_1

• Projection on $u_1 = \alpha_1 = (\begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}) = 4$

 Step 7: Choose eigen vectors corresponding to top k eigen values (k=1 here)
 Derive the transformed data points:

$$\tilde{x_1} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \, \tilde{x_2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \, \tilde{x_3} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$\tilde{x_4} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

• Step-8:

Reconstruction Error =
$$J = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \tilde{x}_i||^2 =$$
$$\frac{1}{4} [0^2 + 2^2 + 4^2 + 2^2] = 24,$$
 Projected Variance = $\lambda_1 = 2$

Transformed	
$\tilde{x_1} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	
[0] ~ [0]	
$\tilde{x_2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
$\tilde{x_3} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	
$ ilde{x_4} = egin{bmatrix} 4 \\ 1 \end{bmatrix}$	

Table: Data points

Thank you

