Operaciones binarias y estructuras algebraicas

1. Sea * la operación binaria definida en $\mathbb N$ por:

$$a * b = ab + 1$$

Determina si * es asociativa y/o conmutativa. Justifica tu respuesta.

2. Sea * la operación binaria definida en $\mathbb Z$ por:

$$a * b = a + b - 1$$

Determina si * es asociativa y/o conmutativa. Justifica tu respuesta.

3. Completa la siguiente tabla de modo que la operación binaria en $A = \{a, b, c, d\}$ sea conmutativa.

+	a	b	c	d
a	b	c	-	b
b	-	a	-	b
c	$\mid a \mid$	c	d	-
d	-	-	a	c

- 4. Sea X un conjunto no vacío. ¿Son monoides los siguientes? Justifica.
 - (a) $\mathcal{P}(X)$ con la unión
 - (b) $\mathcal{P}(X)$ con la intersección
 - (c) N con la suma
 - (d) \mathbb{N} con el producto
- 5. Demuestra que \mathbb{Z} con la operación a*b=a+b-ab es un monoide.

Grupos

- 1. En cada inciso Determina si el conjunto con la operación indicada es un grupo.
 - (a) \mathbb{Z} con la resta
 - (b) $\mathcal{P}(X)$ con la unión
 - (c) El conjunto $\mathcal{P}(X)$ con la intersección
 - (d) El conjunto $\{2n \mid n \in \mathbb{N}\}$
- 2. Sean G_1 y G_2 grupos, $G = G_1 \times G_2$ y la operación * definida como

$$(a_1, b_1) * (a_2, b_2) = (a_1 a_2, b_1 b_2)$$

 $\mathcal{L}G$ es grupo? Justifica tu respuesta.

- 3. Demuestra que si G es un grupo abeliano, entonces $(ab)^n = a^n b^n$ para toda $n \in \mathbb{Z}$.
- 4. Sea G tal que todo elemento es su propio inverso. Demuestra que G es abeliano.
- 5. Sea G un grupo, y sean $a, b \in G$ tales que $(ab)^2 = a^2b^2$. Demuestra que ab = ba.
- 6. Demuestra que si H y K son subgrupos del grupo G entonces $H \cap K$ es un subgrupo de G.
- 7. Sea G un grupo y sea $a \in G$. El **normalizador** de G es el conjunto:

$$N(a) = \{ x \in G \mid xa = ax \}$$

Demuestra que el conjunto N(a) es un subgrupo de G.

Definición. Una función, f entre dos grupos G, H es un homomorfismo si

$$f(a *_{G} b) = f(a) *_{H} f(b)$$

es decir, si la función preserva las operaciones respectivas. Un homomorfismo biyectivo, se llama *isomorfismo*.

- 8. Sea G un grupo. Demuestra que la función $f: G \to G$ definida por $f(a) = a^{-1}$ es un isomorfismo si y solo si G es abeliano.
- 9. Sea G un grupo. Demuestra que la función $f: G \to G$ definida por $f(a) = a^2$ es un homomorfismo si y solo si G es abeliano.

10. Sea X un conjunto. Sea $G = \mathcal{P}(X)$, el conjutnos potencia de X. Sea $*: G \times G \to G$ definida como:

$$A * B = A \cap B \quad \forall A, B \in \mathcal{P}(X)$$

¿Qué tipo de estructura forma el par $\langle G, * \rangle$? Describe todas las propiedades que encuentres.

- 11. Sea $\langle G, * \rangle$ un grupo abeliano y sea $x \in G$. Demuestra que el inverso de x respecto a * es único. ¿Existen grupos en donde los inversos no sean únicos?
- 12. Sea $G = \{a, b\}$, ¿cuántos grupos distintos se pueden definir en G?
- 13. Sea $G = \{a, b, c\}$, define un par de operaciones $*_1$ y $*_2$ de forma que $\langle G, *_1 \rangle$ sea un grupo abeliano pero $\langle G, *_2 \rangle$ sea un grupo no abeliano, y que a sea el neutro en ambos grupos.

Anillos

1. Sea $A = \mathbb{Z}$ con las operaciones \oplus y \odot definidas como:

$$a \oplus b = a + b - 1$$
 y $a \odot b = a + b - ab$

muestra que $(\mathbb{Z}, \oplus, \odot)$ es un anillo conmutativo con elemento unitario. ¿Es un dominio entero?

2. Sea X un conjunto arbitrario pero fijo, y sea $A = \mathcal{P}(X)$ el conjunto potencia de X con las operaciones \oplus y \odot definidas como:

$$V \oplus W = V \cup W - V \cap W \text{ v } V \odot W = V \cap W$$

muestra que (A, \oplus, \odot) es un anillo. ¿Es conmutativo? ¿Tiene elemento unitario? ¿Es un dominio entero?

3. Sea $A = \mathbb{Z}$ con las operaciones \oplus y \odot definidas como:

$$a \oplus b = a + b - 7$$
 y $a \odot b = a + b - 3ab$

Explicar por qué (A, \oplus, \odot) no es un anillo.

- 4. Demuestra que el producto en $M_2(D)$ es asociativo.
- 5. Demuestra que se cumplen las propiedades distributivas en $M_2(D)$.
- 6. Sea A un anillo con elemento unitario. Demuestra que si a, b son unidades en A, entonces ab también es una unidad en A.
- 7. Utilizar inducción matemática para probar las leyes de los exponentes.