Atty. Docket No.: Q85681

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (original): A liquid jet head comprising:

a passage-forming substrate in which pressure generating chambers

communicating with nozzle orifices are formed, the passage-forming substrate being made of a

single crystal silicon substrate; and

pressure generating elements for causing pressure changes in the pressure

generating chambers,

wherein a protective film which is made of tantalum oxide and has resistance to

liquid, is provided at least on inner wall surfaces of the pressure generating chambers.

2. (original): The liquid jet head according to claim 1, wherein an etching rate of the

protective film in a liquid at pH 8.0 or more is 0.05 nm/day or less.

3. (previously presented): The liquid jet head according to claim 1, wherein the

protective film is formed by ion assisted deposition.

4. (previously presented): The liquid jet head according to claim 1, wherein the

protective film is formed by facing-target sputtering.

AND PRELIMINARY AMENDMENT

U.S. Appl. No.: 10/520,662

5. (previously presented): The liquid jet head according to claim 1, wherein the

Atty. Docket No.: Q85681

protective film is formed by plasma CVD.

6. (previously presented): The liquid jet head according to claim 1, wherein liquid

passages for supplying liquid to the pressure generating chambers are provided in the passage-

forming substrate, and the protective film is provided also on inner wall surfaces of the liquid

passages.

7. (previously presented): The liquid jet head according to claim 1, wherein the pressure

generating elements are piezoelectric elements arranged on a vibration plate provided on one

sides of the pressure generating chambers.

8.(original): The liquid jet head according to claim 7, wherein the pressure generating

chambers are formed in the single crystal silicon substrate by anisotropic etching, and each layer

of the piezoelectric elements is formed by deposition and lithography.

9. (previously presented): The liquid jet head according to claim 7, further comprising:

a sealing plate made of a single crystal silicon substrate, the sealing plate having a

piezoelectric element holding portion for sealing a space sufficient enough so as not to inhibit

movement of the piezoelectric elements in a state where the space is ensured,

AND PRELIMINARY AMENDMENT

U.S. Appl. No.: 10/520,662

wherein the sealing plate has a reservoir portion constituting at least part of a

Atty. Docket No.: Q85681

common liquid chamber common to the pressure generating chambers, and the protective film is

provided at least on an inner wall surface of the reservoir portion.

10. (original): A liquid jet head comprising:

a passage-forming substrate in which pressure generating chambers

communicating with nozzle orifices are formed;

piezoelectric elements provided on one side of the passage-forming substrate with

a vibration plate interposed therebetween, the piezoelectric elements causing pressure changes in

the pressure generating chambers; and

a sealing plate made of a single crystal silicon substrate, the sealing plate having a

piezoelectric element holding portion for sealing a space sufficient enough so as not to inhibit

movement of the piezoelectric elements in a state where the space is ensured,

wherein the sealing plate has a reservoir portion constituting at least part of a

common liquid chamber common to the pressure generating chambers, and a protective film

having resistance to liquid is provided at least on an inner wall surface of the reservoir portion.

11. (original): The liquid jet head according to claim 10, wherein the protective film is

provided on an entire surface of the sealing plate including the inner wall surface of the reservoir

portion.

RESPONSE TO RESTRICTION REQUIREMENT Atty. Docket No.: Q85681

AND PRELIMINARY AMENDMENT

U.S. Appl. No.: 10/520,662

12. (previously presented): The liquid jet head according to claim 10, wherein the

protective film is a silicon dioxide film formed by thermally oxidizing the sealing plate.

13. (original): The liquid jet head according to claim 10, wherein the protective film is

made of dielectric material and formed by physical vapor deposition (PVD).

14. (original): The liquid jet head according to claim 13, wherein the protective film is

formed by any one of reactive ECR sputtering, facing-target sputtering, ion beam sputtering, and

ion assisted deposition.

15. (previously presented): The liquid jet head according to claim 13, wherein the

protective film is made of any one of tantalum oxide, silicon nitride, aluminum oxide, zirconium

oxide, and titanium oxide.

16. (previously presented): The liquid jet head according to claim 13, wherein the

protective film is formed on a joint surface of the sealing plate with the passage-forming

substrate as well as on the inner wall surface of the reservoir portion.

17. (original): The liquid jet head according to claim 16, wherein interconnections for

connecting the piezoelectric elements and a drive IC for driving the piezoelectric elements are

provided on a surface of the sealing plate on an opposite side to the piezoelectric element holding

portion.

AND PRELIMINARY AMENDMENT

U.S. Appl. No.: 10/520,662

18. (previously presented): The liquid jet head according to claim 10, wherein the

Atty. Docket No.: Q85681

protective film is provided also on inner wall surfaces of the pressure generating chambers.

19. (original): A liquid jet apparatus comprising the liquid jet head according to any one

of claims 1 to 18.

20. (original): A method of manufacturing a liquid jet head including a passage-forming

substrate which is made of a single crystal silicon substrate and in which pressure generating

chambers communicating with nozzle orifices are formed, and piezoelectric elements which are

provided on one side of the passage-forming substrate with a vibration plate interposed

therebetween and cause pressure changes in the pressure generating chambers, the method

comprising the step of:

forming a protective film which is made of metal material and has resistance to

liquid, at least on inner wall surfaces of the pressure generating chambers under a temperature

condition of 150 °C or lower.

21. (original): The method according to claim 20, wherein the protective film is formed

by ion assisted deposition.

22. (original): The method according to claim 20, wherein the protective film is formed

by facing-target sputtering.

AND PRELIMINARY AMENDMENT

U.S. Appl. No.: 10/520,662

23. (original): The method according to claim 22, wherein when the protective film is

Atty. Docket No.: Q85681

formed, the passage-forming substrate is placed so that a longitudinal direction of the pressure

generating chambers is perpendicular to a direction of surfaces of facing targets.

24. (original): The method according to claim 20, wherein the protective film is formed

by plasma CVD.

25. (previously presented): The method according to claim 20, wherein the metal

material is any one of tantalum oxide and zirconium oxide.

26. (previously presented): The method according to claim 20, wherein after liquid

passages for supplying liquid to the pressure generating chambers are formed in the passage-

forming substrate, the protective film is formed also on inner wall surfaces of the liquid

passages.

27. (original): A method of manufacturing a liquid jet head including a passage-forming

substrate in which pressure generating chambers communicating with nozzle orifices for jetting

liquid are formed; piezoelectric elements which are provided on one side of the passage-forming

substrate with a vibration plate interposed therebetween and cause pressure changes in the

pressure generating chambers; and a sealing plate which is made of a single crystal silicon

substrate and has a piezoelectric element holding portion for sealing a space sufficient enough so

as not to inhibit movement of the piezoelectric elements in a state where the space is ensured, the

sealing plate further having a reservoir portion constituting at least part of a reservoir

communicating with the pressure generating chambers, the method comprising the steps of:

forming a mask pattern on a surface of a sealing plate forming material, which

Atty. Docket No.: Q85681

becomes the sealing plate;

forming the reservoir portion and the piezoelectric element holding portion by

etching the sealing plate forming material except a region where the mask pattern has been

formed;

removing the mask pattern to form the sealing plate;

forming a protective film having resistance to liquid at least on an inner wall

surface of the reservoir portion in the sealing plate; and

joining the passage-forming substrate, in which the piezoelectric elements have

been formed, and the sealing plate.

28. (original): The method according to claim 27, wherein the protective film is formed

on an entire surface of the sealing plate including the inner wall surface of the reservoir portion.

29. (previously presented): The method according to claim 27, wherein the protective

film made of silicon dioxide is formed by thermally oxidizing the sealing plate.

30. (previously presented): The method according to claim 27, further comprising the

step of:

AND PRELIMINARY AMENDMENT

U.S. Appl. No.: 10/520,662

forming interconnections for connecting the piezoelectric elements and a drive IC

Atty. Docket No.: Q85681

for driving the piezoelectric elements, on the protective film of the sealing plate on an opposite

side to the piezoelectric element holding portion, after the step of forming the protective film.

31. (original): The method according to claim 27, wherein the protective film made of

dielectric material is formed by physical vapor deposition (PVD).

32. (original): The method according to claim 31, wherein the protective film is formed

by any one of reactive ECR sputtering, facing-target sputtering, ion beam sputtering, and ion

assisted deposition.

33. (previously presented): The method according to claim 31, wherein the protective

film is made of any one of tantalum oxide, silicon nitride, aluminum oxide, zirconium oxide, and

titanium oxide.

34. (previously presented): The method according to claim 31, wherein the piezoelectric

element holding portion and the reservoir portion are formed by etching the sealing plate forming

material by use of an insulation film as the mask pattern, the insulation film being formed by

thermally oxidizing the sealing plate forming material.

35. (original): The method according to claim 34, further comprising the step of:

RESPONSE TO RESTRICTION REQUIREMENT Atty. Docket No.: Q85681

AND PRELIMINARY AMENDMENT

U.S. Appl. No.: 10/520,662

forming interconnections for connecting the piezoelectric elements and a drive IC

for driving the piezoelectric elements, on the insulation film, before the step of forming the

piezoelectric element holding portion and the reservoir portion.

36. (new): A method of manufacturing a liquid jet head including a passage-forming

substrate in which pressure generating chambers communicating with nozzle orifices for jetting

liquid are formed; piezoelectric elements which are provided on one side of the passage-forming

substrate and cause pressure changes in the pressure generating chambers; and a plate which is

made of a single crystal silicon substrate and has a reservoir portion constituting at least part of a

reservoir communicating with the pressure generating chambers, the method comprising:

forming a protective film having resistance to liquid and made of silicon dioxide

on an entire surface of the plate including an inner wall surface of the reservoir portion by

thermally oxidizing the plate; and

joining the passage-forming substrate, in which the piezoelectric elements have

been formed, and the plate, on which the protective film has been formed.

37. (new): The method according to claim 36, further comprising the step of:

forming a protective film which is made of conductive material and has resistance

to liquid, at least on inner wall surfaces of the pressure generating chambers.