Probabilistic Algorithms

Paul Cotofrei

information management institute

PA 2016

Outline

Comparison of algorithms

Statistical tests

Confidence intervals

Pairwise algorithms comparison

Empirical Analysis of Algorithms

- Goals:
 - Show that algorithm A improves state-of-the-art
 - Show that algorithm A is better than algorithm B
 - Show that algorithm A has property P
- Issues:
 - algorithm implementation (fairness)
 - selection of problem instances (benchmarks)
 - performance criteria (what is measured?)
 - experimental protocol
 - data analysis and interpretation
- Comparative empirical performance analysis of optimisation algorithms

Type of Analysis

- Scaling Analysis: analyse scaling of performance with instance size
 - measure performance for various instance sizes
 - fit parametric model (e.g., $\alpha e^{\beta x}$) to data points
 - test interpolation / extrapolation
- Robustness Analysis: Measure robustness of performance w.r.t. ...
 - algorithm parameter settings
 - problem type

Solution Quality Distribution

- Speed measured as CPU time
 - depend on a number of variables (language, compiler, machine)
- Solution quality: absolute measures (if optimal solution is known) or relative measures
- Visual comparisons
 - ► The "Progress Plot" (a single run/multiple runs)

SQD-based methodology

- Run algorithm multiple times on given problem instance(s)
- Estimate empirical solution quality distributions (SQDs) for different run-times
- Get simple descriptive statistics (mean, median, stddev, percentiles, ...) from SQD data
- Check statistical significance using appropriate statistical tests

Statistical hypothesis

- Run algorithms A and B n times.
- Two result vectors: y_A and y_B that contain the best function values.
- ▶ Difference $d_{AB} = y_A y_B$
- $ightharpoonup Var(d_{AB}) \neq 0.$
- Null hypothesis: "There is no difference in means, i.e $E(d_{AB}) = \mu = 0$."
- Error probability

Outline

Comparison of algorithms Statistical tests

Confidence intervals
Pairwise algorithms comparison

Statistical tests

- Consider a hypothesis H₀ about a statistical fact (the value of a distribution parameter, of a set of parameters, the form of a distribution, etc..)
- ► To test this hypothesis we need a statistics $S(x_1, x_2, ..., x_n)$ such that:
 - 1. The distribution of S is known if H_0 is true
 - 2. Extreme values of S are arguments that H_0 is "maybe" false

Statistical tests - examples

- Example1: let be x₁, x₂, ..., x_n a sequence of n i.i.d. scalar measurements, from a variable X with distribution N(μ, σ²)
 - 1. Standard deviation σ known, mean μ unknown
 - 2. Hypothesis H_0 : $\mu = 3$
 - 3. Consider $S(x_1,..,x_n) = \frac{\bar{x}-3}{\sigma/\sqrt{n}}$.
 - If H_0 is true, then S follows a distribution N(0,1)
 - ▶ Very high/low values for S implies that H_0 is maybe false.
- Example2: x₁, x₂, ..., x_n a sequence of n i.i.d. scalar measurements, from a variable X with distribution N(μ, σ²)
 - 1. Standard deviation σ unknown, mean μ unknown
 - 2. Hypothesis H_0 : $\mu = 3$
 - 3. Consider $T(x_1,..,x_n) = \frac{\bar{x}-3}{s/\sqrt{n}}, \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$.
 - If H₀ is true, then T follows a distribution Student-t with n − 1 degree of freedom
 - ▶ Very high/low values for *S* implies that *H*₀ is maybe false.

P-value and significance level

- P-value: provides a measure of the extent to which the statistic appears inconsistent with the null hypothesis.
 - if extreme high values inconsistent with the null hypothesis P-value = $P(S \ge S(\text{data}))$
 - if extreme low values inconsistent with the null hypothesis P-value = $P(S \le S(\text{data}))$
 - if extreme high and low values inconsistent with the null hypothesis P-value = $P(S \ge |S(\text{data})|)$
- ▶ Only for having common references, standard significance error levels have been introduced ($\alpha = 0.1, \alpha = 0.05, \alpha = 0.01$)
 - ▶ The hypothesis is accepted if $P value \le \alpha$
- Accepting/rejecting an hypothesis depends on
 - Size of data (usually, more data, more confidence in final decision)
 - Selected significance level

Example

- Suppose $X = N(\mu, \sigma^2), \mu, \sigma$ unknown
- ▶ Hypothesis $H_0: \mu \leq 0$
- ▶ Data = $x_1, x_2, ..., x_{40}$; $T(data) = T(x_1, ..., x_{40}) = \frac{\bar{x}}{s/\sqrt{39}} = 2.2$, where $\bar{x} = \frac{1}{40} \sum_{i=1}^{40} x_i$ and $s = \sqrt{\frac{1}{39} \sum_{i=1}^{40} (x_i \bar{x})^2}$
- ▶ If H₀ true then T follows student t distribution with 39 degree of freedom; large values of T suggest rejecting the hypothesis
- ► P-value = $P(t_{39} \ge T(data)) = P(t_{39} \ge 2.2) = 0.017$
- If the significance level for this test is fixed at $\alpha=0.05$ then, as *P-value* is less than 0.05, the hypothesis H_0 is rejected. If the significance level is fixed at $\alpha=0.01$, the hypothesis H_0 is accepted.

Outline

Comparison of algorithms

Statistical tests

Confidence intervals

Pairwise algorithms comparison

Confidence interval

- Let be *p* a parameter of interest. We can either
 - 1. Test the statistical hypothesis $H_0: p = \beta$; or
 - 2. Construct a confidence interval for *p*
- ▶ Confidence interval for p with a confidence level α if exist statistics S_1 , S_2 such that

$$P(S_1 \leq p \leq S_2) = \alpha$$

- The upper and lower bounds of a confidence interval: random variables
- ▶ The interval "cover" the true value of parameter p with a probability α

Confidence interval for mean

- $x_1, x_2, ..., x_{40}$ a sequence of 40 independent, i.i.d. scalar measurements, from a variable $X = N(\mu, \sigma^2)$ with unknown σ .
- ▶ The parameter of interest: $\mu = E(X)$
- ► Consider $S = \frac{\bar{x} \mu}{s/\sqrt{40}}$ which follows a Student distribution with 39 degree of freedom (t_{39}) .
- ▶ Let α_1, α_2 two constants such that

$$P(\alpha_1 \leq S \leq \alpha_2) = \alpha$$

- $P(\alpha_1 \le \frac{\bar{x} \mu}{s/\sqrt{40}} \le \alpha_2) = P(\frac{\alpha_1 s}{\sqrt{40}} \le \bar{x} \mu \le \frac{\alpha_2 s}{\sqrt{40}}) = P(\bar{x} \frac{\alpha_2 s}{\sqrt{40}} \le \mu \le \bar{x} \frac{\alpha_1 s}{\sqrt{40}}) = \alpha$
- $S_1 = \bar{x} \alpha_2 s / \sqrt{40}$ and $S_2 = \bar{x} \alpha_1 s / \sqrt{40}$
- In practice, for a confidence level α , we may take

$$\alpha_1 = F^{-1}\left(\frac{1-\alpha}{2}\right) \Rightarrow P(t_{39} \leq \alpha_1) = \frac{1-\alpha}{2}$$

$$\alpha_2 = F^{-1}\left(\frac{1+\alpha}{2}\right) \Rightarrow P(t_{39} \le \alpha_2) = \frac{1+\alpha}{2}$$

Outline

Comparison of algorithms

Statistical tests Confidence intervals

Pairwise algorithms comparison

Two-sample tests

- ▶ Let be an optimization problem related to a loss function L(d) and A, B two optimization randomized heuristics
- ► Consider the sequence $x_1, x_2, ..., x_n$, where x_i is the value of the optimal solution $L(\hat{\theta})$ returned by the algorithm **A** during the i^{th} run
- ► Consider $y_1, y_2, ..., y_m$ a similar sequence, but for the algorithm **B**
- For a randomized algorithm, the returned optimal solution $L(\hat{\mathbf{d}})$ is a random variable. Consider
 - $ightharpoonup X = L(\hat{\mathbf{d}})_{\text{algorithm A}}$, so x_i are samples of X
 - $Y = L(\hat{\mathbf{d}})_{\text{algorithm A}}$, so y_i are samples of Y
 - $\mu_X = E(X)$
 - $\mu_Y = E(Y)$
- ▶ Hypothesis $H_0: \mu_X = \mu_Y$ (the two algorithms provide similar solutions)
- $\{x_i\}$ i.i.d., $\{y_i\}$ i.i.d., but σ_x and σ_y unknown

Case 1

Matched pair tests

- The data are collected as n pairs {x_i, y_i} and each pair shares the same randomness (the two algorithms, A and B, use the same sequence of random numbers; the final solution d differ because the algorithms process this sequence in different ways)
- ▶ The two sequences $\{x_i\}$ and $\{y_i\}$ are highly dependent
- ► Calculate $d_i = x_i y_i$, i = 1..n, representing n samples from D = X Y
- ▶ The hypothesis $H_0: \mu_X = \mu_Y \Leftrightarrow \mu_D = 0$
- ▶ Variance estimate for the variable D = X Y is

$$s_{X-Y}^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d}) = \frac{1}{n-1} \sum_{i=1}^n [x_i - y_i - (\bar{x} - \bar{y})]^2$$

where \bar{x} and \bar{y} are the sample means of $\{x_i\}$ and $\{y_i\}$

Case 2

- Unmatched pair tests with common variance
- ► The sequence $\{x_i\}$, $i = 1..n_X$ is independent of $\{y_j\}$, $j = 1..n_Y$, but both variables (X and Y) have the same variance $\sigma_X^2 = \sigma_Y^2$
- Generally arises when algorithms using the same approach are tested by different individuals
- ▶ The two sample sizes $(n_X \text{ and } n_Y)$ are not necessary equal
- ► The estimate s_P^2 of common variance is calculated using the individual samples variance estimates s_X^2 and s_Y^2

$$s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$$

where

$$s_X^2 = \frac{1}{n_X - 1} \sum_{i=1}^{n_X} (x_i - \bar{x})^2$$

$$s_Y^2 = \frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (y_i - \bar{y})^2$$

Case 3

- Unmatched pair tests with different variances
- ▶ Similar as case 2, but $\sigma_X^2 \neq \sigma_Y^2$
- Generally arise when two fundamental different algorithms are tested
- The two estimates of variances are:

$$s_X^2 = \frac{1}{n_X - 1} \sum_{i=1}^{n_X} (x_i - \bar{x})^2$$

and

$$s_Y^2 = \frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (y_i - \bar{y})^2$$

Generic test statistic

- ► Calculate $\bar{x} = \frac{1}{n_X} \sum_{i=1}^{n_X} x_i$ and $\bar{y} = \frac{1}{n_Y} \sum_{i=1}^{n_Y} y_i$
- Case 1: the statistics is

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_{X-Y}^2}{n}}}$$

Under H_0 , T follows Student (t_{n-1}) with n-1 degree of freedom

Case 2: the statistics is

$$T = \frac{\bar{X} - \bar{y}}{\sqrt{\frac{s_p^2}{n_X} + \frac{s_p^2}{n_Y}}}$$

Under H_0 , T follows Student $(t_{n_X+n_Y-2})$ with n_X+n_Y-2 degree of freedom

Generic test statistic

Case 3: the statistics is

$$T = \frac{\bar{X} - \bar{y}}{\sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}}$$

Under H_0 , T follows Student (t_m) with m degree of freedom, where

$$m = \frac{\left(\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}\right)^2}{\frac{(s_X^2/n_X)^2}{n_X + 1} + \frac{(s_Y^2/n_Y)^2}{n_Y + 1}} - 2$$

- Extreme positive values for T indicate that algorithm B is better than algorithm A
- Extreme negative values for T indicate that algorithm A is better than algorithm B

Acceptance intervals

- An acceptance interval is an interval guaranteed to contain the difference $\bar{x} \bar{y}$ with a probability 1α under the hypothesis $\mu_X = \mu_Y$.
 - Step 1 Set the significance level α of the statistical test H_0
 - Step 2 Construct the acceptance interval [I, u] for the statistic T, given α
 - Step 3 Using data $\{x_i\}, \{y_j\}$ calculate T
 - ▶ If *T* < *I*, accept hypothesis "A is better than B"
 - ▶ If $T \in [I, u]$, accept hypothesis "A and B are equivalent"
 - ▶ If T > u, accept hypothesis "B is better than A"
- If we denote $t_n^{(\alpha/2)} = F^{-1}(\alpha/2)$ where F is the cumulative distribution for random variable following a Student distribution with n degree of freedom, then the acceptance interval is $[-\beta, \beta]$, where

1. Case 1:
$$\beta = t_{n-1}^{(\alpha/2)} \sqrt{\frac{s_{X-Y}^2}{n}}$$

2. Case 2:
$$\beta=t_{n_X+n_Y-2}^{(\alpha/2)}\sqrt{\frac{s_p^2}{n_X}+\frac{s_p^2}{n_Y}}$$

3. Case 3:
$$\beta = t_m^{(\alpha/2)} \sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}$$

Example

- Two algorithms using random search, running 8 times
- L measured with noise; same function, so variance is the same for both algorithms (σ_X = σ_Y)

Run. no	Algorithm A	Algorithm B
1	4.0	2.5
2	2.9	3.6
3	2.8	0.2
4	2.0	2.3
5	3.3	0.3
6	4.0	0.7
7	3.6	3.1
8	1.7	2.1

- $\bar{x} = 3.04, \bar{y} = 1.85, s_X = 0.86, s_Y = 1.296, s_p = 1.1$
- Let $\alpha = 0.1$, so $t_{8+8-2}^{(0.05)} = 1.76$ and the acceptance interval is [-0.97, 0.97]
- ▶ $\bar{x} \bar{y} = 1.19 \notin [-0.97, 0.97]$, so we may reject the hypothesis of "algorithms A and B have the same performance" in favor of "algorithm B is better than algorithm A"
- ▶ Remark: $T = 1.19/\sqrt{0.303}$ and P-value for T is 0.049, which is not a strong indication of rejection; more than, the size of samples is very low (8), so "B is better than A" must be consider with reserve!

Statistical tests in Matlab

Statistical formulae	MatLab function	
$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	\gg mean([x1, x2,,xn])	
$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$	\gg std([x1,,xn])	
$t_n^{\alpha} = F^{-1}(\alpha)$	$\gg \operatorname{tinv}(\alpha, \mathbf{n})$	