Section 8.5

SOLVING TRIGONOMETRIC EQUATIONS

Example 1

Consider the equation $2\sin(t) = \sqrt{3}$.

(1) Find the solutions to the equation on $[0,2\pi]$.

t= = 3, 20 (use leferere ingles

(2) Find all solutions

Sin (1)=
$$\sin(t+2\pi k)$$

Su, $t=\frac{\pi}{3}+2\pi k$, $\frac{2\pi}{3}+2\pi k$

Consider the equation $4\cos(t) = -2$.

(1) Find the solutions to the equation on $[0,2\pi]$.

t= 27 47

(2) Find the solutions to the equation on
$$[-\pi,\pi]$$
.

Example 2 continued

Consider the equation $4\cos(t) = -2$.

(3) Find all solutions

Find all solutions of the equation sin(t) = .312.

$$t_2 = \pi - t_1 = \pi - a(csin(-3/2) + 2\pi k)$$

Example 4

Find all solutions of the equation $\tan(t) = \sqrt{3}$.

$$(-\infty, n)$$
: $t = \frac{\pi}{3} + 2\pi k, \frac{9\pi}{3} + 2\pi k$

$$t_{m}(t) = \frac{1}{x} = \sqrt{3} \rightarrow x = \frac{1}{2}, y = \frac{\sqrt{3}}{2}$$

(1) Find all solutions of the equation $\sin(\mathbf{z}) = \frac{1}{2}$

Suppose we just had
$$\sin(s) = \frac{1}{2}$$
. Then, $s = \frac{1}{4} + 2\pi k$.

Notice that $\sin(2 \cdot \frac{\pi}{8}) = \sin \frac{\pi}{4} = \frac{7\pi}{2}$

This, which the following. For $\sin(2t) = \frac{3\pi}{2}$,

 $t = \frac{5}{2} = \frac{\pi}{8} + \pi k$, $\frac{3\pi}{8} + 2\pi k$.

We expect π (not 2π) here because the period of

sinlet) is Tr.

Example 5 continued

(2) Write down all solutions that are within the interval $[0,2\pi]$.

(1) Find all solutions of the equation
$$\cot(3t) = \sqrt{3}$$
. $\Rightarrow ton(3t) = \sqrt{3}$
(ansiler instead $ton(3) = \frac{1}{\sqrt{3}}$ $\Rightarrow s = \frac{\pi}{6}, \frac{7\pi}{6}$
Niciting by $\frac{3}{3}$ gives $t = \frac{5}{3} = \frac{\pi}{6} + 2\pi k$ $\frac{7\pi}{6} + 2\pi k$ $\frac{7\pi}{6} + 2\pi k$ $\frac{7\pi}{3}$ $\frac{7\pi}{3} + 2\pi k$

Example 6 continued

(2) Write down all solutions that are within the interval $[0,2\pi]$.

(Leck ps, Ble k:
$$k=0$$
: $t=\frac{\pi}{18}, \frac{7\pi}{18}$ Lettin interest

 $k=1$: $t=\frac{13\pi}{18}, \frac{19\pi}{18}$ Lettin interest

 $k=2$: $t=\frac{25\pi}{18}, \frac{31\pi}{18}$ Lettin interest

 $k=3$: not in interest.

Solve the equation
$$4\sin^2(x) = 3$$
. $\sin(x) = \frac{1}{3}$
 $\int \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int \int \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int \int \int \int \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int \int \int \int \int \partial \int (0, 2\pi)^2 dx = \frac{\pi}{3}$
 $\int \int \int \int \partial \int \partial \partial f = \frac{\pi}{3}$
 $\int \int \int \partial f = \frac{\pi}{3}$
 $\int \int \int \partial f = \frac{\pi}{3}$
 $\int \int \int \partial f = \frac{\pi}{3}$
 $\int \int \partial f = \frac{\pi}{3}$

Example 8

Solve the equation $\sin(2x) = .3\cos(x)$.

$$Sin(2x) = 2 sin(x) cos(x)$$
. So,
 $O = 2 Sin(x) cos(x) = .3 cos(x) = .6 cos(x) (2 sin(x) - .3)$
 $Either cos(x) = 0$. $(2 sin(x) - .3 = 0$
 $Sin(x) = .15$
 $X = \frac{1}{2} + \pi h$
 $X = Sin^{-1}(.15) + 2\pi h$

Solve the equation
$$2\sin^2(x) + \sin(x) = 1$$
. $\longrightarrow 2 \cdot \ln(x) + \ln(x) - 1 = 0$
 $\longrightarrow (2 \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$
 $= (x \cdot \ln(x) - 1)(s \cdot \ln(x) + 1) = 0$

Example 10

Solve the equation $\cos(2x) \left[\sqrt{3} \tan(2x) - 1 \right] = 0$.

Fitur
$$c_{1}(2x) = 0$$
 of $\sqrt{3} t_{1}(2x) - 1 = 0$
 $t_{1}(2x) = \frac{1}{\sqrt{3}}$
Consider instead $c_{1}(5) = 0$ Consider instead $t_{1}(5) = \frac{1}{\sqrt{3}}$
 $S = \frac{11}{2} + 2\pi k$, $\frac{3\pi}{2} + 2\pi k$ Fin $F(-)$ Ex 6, $S = \frac{11}{6} + 2\pi k$, $\frac{2\pi}{6} + 2\pi k$
 $X = \frac{1}{2} = \frac{11}{4} + \pi k$, $\frac{3\pi}{4} + \pi k$ $X = \frac{1}{2} = \frac{11}{12} + \pi k$, $\frac{7\pi}{12} + \pi k$.