MSc in Computer Science - University of Moratuwa CS5613 - Neural Networks

Group Assignment

Plant Seedlings Images Classification using Convolutional Neural Networks (CNNs)

Team Avengers

D.P. Jayasuriya (209337M)

T.P.N. Silva (209381P)

H.T.C Leelananda (209351B)

Git Repository URL

https://github.com/DulanGit/Plant-Seedling-Classification

Table of Contents

INTRODUCTION	3
System Configuration	3
Data Set	3
Data Preprocessing	4
Converting String Labels to Binary Classification	6
Strategy to prevent overfitting	6
Model Compile	7
Model Evaluation	8
QUESTION1	10
Defining our Model	10
The summary of the model is as follows.	11
Different optimizers vs Test accuracy	12
Kaggle Submission for Our Model	12
Confusion Matrix	12
QUESTION 2	14
CNN ResNet 50 Model	14
QUESTION3	16
Kaggle submission	16
REFERENCES	17

INTRODUCTION

The objective of this assignment is developing a deep CNN model to classify the images of plant seedlings.

System Configuration

- Tensorflow version 2.2.0
- Python 3.7.6
- Ubuntu 20.04
- Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz
- Nvidia GeForce GTX 1650 (4GB)
- 16 GB RAM

Data Set

The Data Set used for plant seedling classification consisted of a training data set and a testing data set which contained images of plant seedlings at various growth stages. There were 12 plant species used in the classification.

- Black-grass
- Charlock
- Cleavers
- Common Chickweed
- Common wheat
- Fat Hen

- Loose Silky-bent
- Maize
- Scentless Mayweed
- Shepherds Purse
- Small-flowered Cranesbill
- Sugar bee

Data Preprocessing

Cleaning and preprocessing of data is a crucial step of the project. It consisted of 3 phases.

- a. Resize the image
- b. Convert RGB images to HSV format.
- c. Blur the images to remove the noise.

- d. Create a mask to remove the background.
- e. Normalize the pixel values

The images were converted to HSV. HSV color space consists of 3 matrices, 'hue', 'saturation' and 'value'. 'Hue' represents the color, 'saturation' represents the amount to which that respective color is mixed with white and 'value' represents the amount to which that respective color is mixed with black.

Then the images were filtered using GaussianBlur technique.

It was followed by creating a mask to separate the background and extract the seedling.

```
def preprocess image(self, image):
   image = cv.resize(image, Preprocess.input shape)
   blurred image = cv.GaussianBlur(image, (5, 5), 0)
   HSV image = cv.cvtColor(blurred image, cv.COLOR BGR2HSV)
   lower green = (25, 40, 50)
   upper green = (75, 255, 255)
   mask = cv.inRange(HSV image, lower green, upper green)
   kernel = cv.getStructuringElement(cv.MORPH ELLIPSE, (11, 11))
   mask = cv.morphologyEx(mask, cv.MORPH CLOSE, kernel)
   binary mask = mask > 0
   clear = np.zeros like(image, np.uint8) # Create empty image
   clear[binary mask] = image[binary mask] # Apply boolean mask to the origin image
   normalized image = clear / 255
   return normalized image
```

* The following image shows the original image and its respective pre processed image

Converting String Labels to Binary Classification

We have converted the labels(String format) to a binary classification. So an array of size 12 was created. When a species was detected it was denoted as 1 and vise versa.

• Example: If Blackgrass is detected, the array will be as follows.

[1,0,0,0,0,0,0,0,0,0,0,0]

Strategy to prevent overfitting

To prevent the overfitting we have created a function that randomly changes the image characteristics during fitting. This is called data augmentation in machine learning. We have created this data generator such that it will randomly rotate, zoom, shift and crop images and make augmented images.

Model Compile

Since this is a multi class classification, we have chosen **categorical_crossentropy** as the loss function and **adam algorithm** as the optimizer. Initial learning rate was set to **0.001** and momentum to 0.9 inorder to skip the local minimas while training.

```
# Set Optimizer
opt = tf.keras.optimizers.Adam(lr=0.001, momentum=0.9)
# Model compile
model.compile(loss='categorical crossentropy', optimizer=opt, metrics=['accuracy'])
```

Model Training

KFold cross validation was used to train the models. Initially no. of splits (n_splits or K) was set to 5. The value 5 is a standard value and the training time will show an exponential increase when increasing this value.

```
from sklearn.model_selection import KFold

cv = KFold(n_splits=5, random_state=42, shuffle=False)
k_fold_count = 0
for train_index, test_index in cv.split(X):
    k_fold_count += 1
    print("K FOLD : {}".format(k_fold_count))
    trainX, testX, trainY, testY = X[train_index], X[test_index], TrainLabel[train_index], TrainLabel[
    test_index]
```

Learning Rate Reduction

We intend to reduce the learning rate as the convergence is faster. If the validation accuracy didn't increase for a set no. of epochs (patience=4), then the learning rate is reduced by a factor of 0.5.

Model Saving

Only the best models were saved using the ModelCheckpoint file. This will check the validation accuracy and save the model only if there is a increase in validation accuracy.

Model Evaluation

Confusion matrix was used to evaluate the model in the end. Using this method it is easier to check whether there is a class biased towards another class. If so then we can change the preprocessing/hyperparameters accordingly.

```
def get_confusion_matrix(self, best_model path):
    # Load data
    X, y = self.pre_pro.load_data()

# Encode labels
encode_labels = self.label_encoder.transform(y)

# Make labels categorical
categorical_labels = np_utils.to_categorical(encode_labels)

# Load model
model = self.get_model()
model.load_weights(best_model_path)

# PREDICTIONS
y_predictions = model.predict(X)
y_class = np.argmax(y_predictions, axis=1)
y_check = np.argmax(categorical_labels, axis=1)

# Confusion matrix
conf_matrix = confusion_matrix(y_check, y_class)
print(conf_matrix)
```

QUESTION1

Defining our Model

Our CNN model consisted of 4 convolution layers and 3 connected layers.

- **BatchNormalization** used to speed up the learning by normalizing the weights of output of the previous layer.
- Conv2D used to extract localized image features
- **DropOut** used to randomly update dense layer weights to prevent overfitting
- MaxPooling2D used to reduce the output resolution of the convolution layer.

Metric function is used to evaluate the performance of our model and the compile() method takes a metrics argument which is a list of metrics; optimizer and loss.

```
class MyModel(Model):
    def __init__(self):
        pass

    @staticmethod
    def get_model(verbose=1):
        model = Sequential()

    model.add(Conv2D(filters=64, kernel_size=(5, 5), input_shape=(80, 80, 3), activation='relu'))
    model.add(BatchNormalization(axis=3))
    model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(BatchNormalization(axis=3))
    model.add(Conv2D(filters=128, kernel_size=(5, 5), activation='relu'))
    model.add(Conv2D(filters=128, kernel_size=(5, 5), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(filters=256, kernel_size=(5, 5), activation='relu'))
    model.add(Conv2D(filters=256, kernel_size=(5, 5), activation='relu'))
    model.add(Conv2D(filters=256, kernel_size=(5, 5), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(MaxPooling2D((2, 2)))
    model.add(BatchNormalization(axis=3))
    model.add(BatchNormalization(axis=3))
    model.add(BatchNormalization(axis=3))
    model.add(BatchNormalization(axis=3))
    model.add(Flatten())
```

The summary of the model is as follows.

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 76, 76, 64)	4864
batch_normalization (BatchNo	(None, 76, 76, 64)	256
conv2d_1 (Conv2D)	(None, 72, 72, 64)	102464
max_pooling2d (MaxPooling2D)	(None, 36, 36, 64)	0
batch_normalization_1 (Batch	(None, 36, 36, 64)	256
dropout (Dropout)	(None, 36, 36, 64)	0
conv2d_2 (Conv2D)	(None, 32, 32, 128)	204928
batch_normalization_2 (Batch	(None, 32, 32, 128)	512
conv2d_3 (Conv2D)	(None, 28, 28, 128)	409728
max_pooling2d_1 (MaxPooling2	(None, 14, 14, 128)	0
batch_normalization_3 (Batch	(None, 14, 14, 128)	512
dropout_1 (Dropout)	(None, 14, 14, 128)	0
conv2d_4 (Conv2D)	(None, 10, 10, 256)	819456
batch_normalization_4 (Batch	(None, 10, 10, 256)	1024
conv2d_5 (Conv2D)	(None, 6, 6, 256)	1638656
max_pooling2d_2 (MaxPooling2	(None, 3, 3, 256)	0
batch_normalization_5 (Batch	(None, 3, 3, 256)	1024
dropout_2 (Dropout)	(None, 3, 3, 256)	0
flatten (Flatten)	(None, 2304)	0
dense (Dense)	(None, 256)	590080
batch_normalization_6 (Batch	(None, 256)	1024
dropout_3 (Dropout)	(None, 256)	0
dense_1 (Dense)	(None, 256)	65792
batch_normalization_7 (Batch	(None, 256)	1024
dropout_4 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 12)	3084
Total params: 3,844,684 Trainable params: 3,841,868 Non-trainable params: 2,816		

Different optimizers vs Test accuracy

Optimizer	Test Accuracy
SGD	85.62
Adam	82.34
RMSprop	72.21
Adagrad	70.96

Kaggle Submission for Our Model

*** We received an accuracy of 0.76448 for this kaggle submission.

Confusion Matrix

The confusion matrix is used to analyze the errors in the model and for evaluation purposes. This diagram depicts the confusion matrix we obtained for 12 classes and it is evident that the first class is biased towards 7th class.

```
[[ 0 0 0 0 9 0 91 0 2 0 0 0]
[ 0 93 1 0 0 3 0 0 5 0 0 0]
[ 0 16 69 0 7 1 0 2 7 0 0 0]
[ 0 0 0 94 0 0 1 1 3 3 0 0]
[ 0 0 1 1 84 0 3 0 13 0 0 0]
[ 0 1 4 3 1 87 2 0 1 2 0 1]
[ 0 0 0 0 1 0 99 0 2 0 0 0]
[ 0 1 0 1 0 1 0 1 0 3 65 32 0 0 0]
[ 0 2 2 1 1 0 16 14 65 0 0 1]
[ 0 4 2 9 0 2 0 4 28 49 2 2]
[ 0 14 0 1 0 0 0 0 3 4 80 0]
[ 0 0 1 0 0 8 2 1 23 0 10 57]]
```

This might be the reason for the reduced accuracy. This should be further tuned and trained to get a better accuracy. For uptodate information please refer to the Gr github readme page.

https://github.com/DulanGit/Plant-Seedling-Classification/blob/master/README.md

QUESTION 2

CNN ResNet 50 Model

Two dense layers and one dropout layer was added after the Resnet50 base model. This was changed from the original 1000 classes classification to 12 classes. Imagenet weights were loaded as initial weights.

```
def get_model(verbose, type='resnet'):
    # Load base model
    if not type == 'resnet':
        model = tf.keras.applications.ResNet50(include_top=False, weights='imagenet', input_shape=(input_shape[0], input_shape[1], input_shape[1]))
    else:
        model = tf.keras.applications.VGG19(include_top=False, weights='imagenet', input_shape=(input_shape[0], input_shape[1], input_shape[1]))
    input_layer = model.inputs
    x = model.layers[-1].output
# Add Top model
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dense(512, activation='relu')(x)
x = tf.keras.layers.Dense(12, activation='softmax')(x)
model = tf.keras.Model(input_layer, x)
if verbose == 1:
    print(model.summary())
```

*** The first graph shows the accuracy value against the epoch for the relevant train and validation accuracies while the loss value plotted against the epoch for train and validation losses is shown by the second graph.

QUESTION3

Kaggle submission

The final submission was done by using the **Transfer Learn Model** as we received a higher accuracy than our model.

REFERENCES

https://techtutorialsx.com/2019/11/08/python-opency-converting-image-to-hsv/

https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau

https://keras.io/api/layers/pooling_layers/max_pooling2d/

https://scikit-learn.org/stable/user_guide.html

https://machinelearningmastery.com/crash-course-convolutional-neural-networks/

https://www.tensorflow.org/api_docs/python