العلامة		عناصر الإجابة	(الموضوع الأول)
مجموع	مجزأة	عاصر اوِجاب	
			<u>التمرين الأول: (04</u> نقاط)
	0,50	إذن (v_n) متتالية هندسية $\cdot v_{n+1} = \frac{2}{3}v_n$	$_n$ ، $\mathbb N$ من أجل كل n من أجل (1
	0,50	$v_0 = 5$	أساسها $\frac{2}{3}$ و حدّها الأوّل
04	0,50×2	$u_n = 5\left(\frac{2}{3}\right)^n - 4 \text{o} v_n = 5\left(\frac{2}{3}\right)^n$	، $\mathbb N$ من أجل كل n من أجل (2
	0,50	$u_{n+1} - u_n < 0$ و منه $u_{n+1} - u_n = 5\left(\frac{2}{3}\right)^n \left(-\frac{1}{3}\right)^n$	
			إذن (u_n) متتالية متناقصة تما
	0,50	$S_n = 15 \left(1 \right)$	$1 - \left(\frac{2}{3}\right)^{n+1} - 4(n+1) $ (4
	0,50	\mathbb{N} متزایدة تماما علی $w_{n+1}-w_n>0$ ،	$\mathbb N$ من أجل كل n من (5
	0,50	$\cdot \left(\lim_{n\to+\infty} \left(\frac{2}{3}\right)^n = 0\right)$ لأنّ	$) \lim_{n\to+\infty} (u_n - w_n) = 0 \ (\because$
	0,75		التمرين الثاني: (05 نقاط)
		C غير مرتبطين خطيا إذن A ، B و \overline{AC} غير مرتبطين خطيا إذن	$(3;0;1)$, $\overrightarrow{AB}(-3;3;0)$ (1)
			$\cdot(ABC)$ تعیّن مستویا
	01	\overrightarrow{n} إذِن $\overrightarrow{n} \perp \overrightarrow{AC}$ و منه $\overrightarrow{n} \perp \overrightarrow{AB}$ شعاع \overrightarrow{n}	$\overrightarrow{AC} = 0$ $\overrightarrow{n} \cdot \overrightarrow{AB} = 0$ (ب
			$\cdot (ABC)$ ناظمي للمستوي
	0,50	(AB)	$C): x + y + z + d = 0 (\Rightarrow$
05		(ABC): x+y+z-2=0 أي: d	$=-2$ و منه: $A \in (ABC)$
	01	$.G\left(-\frac{1}{2};2;\frac{1}{2}\right)$ الني $\overrightarrow{OG} = \frac{\overrightarrow{OA} + 2\overrightarrow{OB} - \overrightarrow{OC}}{2}$ (أ (2)	
	0,50	ين Γ هو المستوي المحوري للقطعة $[GD]$.	$=MD$ معناه $M\in (\Gamma)$
	0,50	$\cdot(\Gamma)$:	6x - 4y + 2z + 3 = 0 (÷
		$\overrightarrow{n}(1;1;1)$ ناظمي لــر (Γ) . (Γ) شعاع ناظمي للمستوي	لیکن $\vec{u}(6;-4;2)$ شعاع (3
	0,25	(Δ) و (Γ) متقاطعان وفق مستقیم (ABC) . إذِن	→ →

العلامة		عناصر الإجابة	(الموضوع الأول)
مجموع	مجزأة	· • • • • • • • • • • • • • • • • • • •	
	0,50	أو أي تمثيل آخر $ \begin{cases} x = 3t + \frac{1}{2} \\ y = 2t + \frac{3}{2} \end{cases} (t \in \mathbb{R}) $ $z = -5t$	
		نقاط)	التمرين الثالث: (05
	0,75	$z'' = 3\sqrt{2}(1-i) = \overline{z'}$ $z' = 3\sqrt{2}(1+i)$	
	0,75	$.(1+i)z_{A} = 6\sqrt{2}e^{i\frac{\pi}{2}} \cdot z_{B} = z'' = 6e^{-i\frac{\pi}{4}} z_{A}$	$=z'=6e^{i\frac{\pi}{4}}$ (1) (2)
	0,50	$\cdot \left(\frac{(1+i)z_A}{6\sqrt{2}}\right)^{2014}$	$=e^{i1007\pi}=-1 \ (\div$
05	01	ينتمي إلى نفس C ، B ، O انتتمي إلى نفس $DO = DA = DC$ و نصف قطر ها $2\sqrt{2}$.	· · · · · · · · · · · · · · · · · · ·
		$\cdot (\overrightarrow{CA}; \overrightarrow{CB}) = rg \left(rac{z_B - z_C}{z_A - z_C} ight) = rac{\pi}{2}$ و متساوي الساقين $CA = CB$ والنقطة D منتصف القطعة C	$\frac{z_B - z_C}{z_A - z_C} = i (2)$
	0,75	$z_D=rac{z_C}{2}$ و كذلك منتصف القطعة OC لأنّ $D=rac{z_C}{2}$ مربع.	$Z_D = \frac{Z_A + Z_B}{2}$ لأنّ $OACB$ إذن الرباعي
	0,25	للدوران z'=iz :R للدوران	
	0,50	ومنه $\overline{C$ ' A و منه \overline{A} و مرتبطان خطیا $z_{\overline{AC}}=3\sqrt{2}\left(1-i\right)=z_{\overline{C}'\overline{A}}$	
	0,50	المربع) الدوران R هو الرباعي (المربع) $Z_{A'}=C$ بالدوران R هو الرباعي $R(B)=A$ و $R(B)=A'$ ، $R(O)=C$	
	0,25		التمرين الرابع: (06
	×	(C_f) المستقيم ذو المعادلة $x=0$ هو مستقيم مقارب المنحنى $\lim_{x o \infty} dx$	$f(x) = -\infty \ (1$
	4	(C_f) ستقيم ڏو المعادلة $y=1$ هو مستقيم مقارب لـ	المد $\lim_{x \to +\infty} f(x) = 1$
02,75	0,50	. $f'(x) = \frac{2}{x^2} (1 - \ln x)$ ، $]0; +\infty[$	
	0,25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$: f'(x) إشارة
	0,25	$\cdot [e; +\infty[$ و متناقصة تمامًا على $]0;e]$	متزايدة تماما على f
	0,25	$\cdot f$ الدالة	 جدول تغيرات
	0,50	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$)-1=\frac{2\ln x}{x} \text{ (f (2))}$

العلامة		عناصر الإجابة	(الموضوع الأول)
مجموع	مجزأة		, ,
	0,25	(Δ) أسفل (Δ) ، من أجل x من $]1;+\infty[$ أعلى (Δ) أعلى $A(1;1)$ أ $A(1;1)$	$]0;1[$ من أجل x من أجل (Δ) يقطع (C_f) و
	0,25		(T): y = 2x - 1 (ب
	0,75	$\lim_{x \stackrel{>}{\longrightarrow} 0} f\left(x\right) = -\infty$ و $\left[0;1\right]$ متزايدة تماما على المجال $\left[0;1\right]$ ، و $\left[0;1\right]$ تقبل حلا خصب مبر هنة القيم المتوسطة فإنّ المعادلة $\left[0;1\right]$ تقبل حلا $\left[0;1\right]$ $\left[0;1\right]$ $\left[0;1\right]$ أي $\left[0;1\right]$ و $\left[0;1\right]$ و $\left[0;1\right]$	و $f(1)=1>0$ ؛ إذ $g(1)=1>0$ وحيدا $g(1)=1>0$
	0,50	$\cdot ig(C_fig)$ و المنحنى	(T) إنشاء المماس (T)
03,25	0,50	من $\{C_h(x)-h(-x)=0 : R-\{0\}$ ، و منه h دالة زوجية ر لـــ (C_h) .	x أ) من أجل كل (yy') أو (yy')
03,23	0,50	$(C_f$) و منه (C_h) ينطبق على $h(x)=f(x)$ ، $]0$ هو نظير (C_f) بالنسبة إلى (yy')	' '
	0,50		$x^2 = (m-1) x $ (ج C_h) تقاطع المنحنى $m \le 0$ المعادا $m \le 0$ الأدا كان $m < 1 + \frac{2}{e}$ الأدا كان $m = 1 + \frac{2}{e}$

العلامة		7.1.20 1.0	/ *15tl = *- ti
مجموع	مجزأة	عناصر الإجابة	(الموضوع الثاني)
04	0,75	$q=e^{-1}$ إذن $\left(u_{n} ight)$ متتالية هندسية أساسها . $u_{n+1}=e^{-1}.u_{n}$ ،	(104) التمرين الأول: (104) نقاط (10) الله (10) من أجل كل (10) و حدّها الأول (10)
	0,75	متتالية متقاربة. $\left(u_{n} ight)$	$\lim_{n\to+\infty}u_n=0$ (2) انستنج أن
	0,50		$.S_n = \sqrt{e} \left(\frac{1 - e^{-n-1}}{1 - e^{-1}} \right) (3)$
	0,50	$v_{n+1} = v_n - 1$ ، او من أجل كل n من $v_n = \frac{1}{2} - n$ ،	$\mathbb N$ من أجل كل n من (1 (II
	0,50	$v_0=rac{1}{2}$ ها $r=-1$ و حدّها الأولّ	إذن (v_n) متتالية حسابية أساس
	0,50	$P_n = \frac{1-n^2}{2}$ أي $P_n = v_0 + v_1 + v_2 + \dots + v_n = 0$	$\frac{(n+1)}{2}\left(\frac{1}{2}+\frac{1}{2}-n\right) (1) (2)$
	0,50		$+1>0$ (ب $P_n+4n>0$
	0,50	$n \in \{0,1,2,3,4,5,6,7,8\}$ أي n	و بالتالي: $[0;8] \ni n$ و $n \in \mathbb{N}$
	0,75	C و \overrightarrow{AC} غير مرتبطين خطيا إذن \overrightarrow{AC} و \overrightarrow{AB} ؛ \overrightarrow{AC}	
			ليست في إستقامية.
	0,75	او تمثیل $egin{cases} x=1+eta \ y=-1-lpha+eta \ z=-2-lpha+2eta \end{cases}$ او أي تمثيل ABG	C) ب تمثيل وسيطي للمستوي (C
	0,75	x+y-z-2=0 هي: (ABC)	ج) التحقق أنّ معدلة للمستوي
	0,25	(Q) ي لـــ (P) و $u_2(3;2;-1)$ شعاع ناظمي لـــ (P)	
05	0,75	(Δ) اينقاطعان وفق مستقيم (Q) و (P) ينقاطعان وفق $x=t-3$. $\begin{cases} x=t-3 \ y=-t \ z=1+t \end{cases}$	2 1
	0,75	$\cdot (t = -6) \cdot (ABC) \cap (P) \cap (Q) = \{E(-9; 6)\}$	
	0,50	$ x - y - 2z + 5 = 3x + 2y - z + 10 $ أي $\sqrt{6} \times d$ (M),	(P) = $\sqrt{14} \times d(M,(Q))$ (4
			$:$ ڪيث $(\Gamma) = (P_1) \cup (P_2)$
	0,50	$(P_2): 4x + y - 3z + 15 = 0$ $($	P_1): $2x + 3y + z + 5 = 0$

العلامة		عناصر الإجابة	(الموضوع الثاني	
مجموع	مجزأة	(مِجَابِ ((اعتوصوح التاتي	
		04 نقاط)	<u>التمرين الثالث: (4</u>	
	0,25	z=i او $(z-i)=0$ او $(z-i)=0$	0 المعدلة تعني 1	
	0,75	$z''=1-2i \cdot z'=1+$	$2i : \Delta = (4i)^2$	
	0,75	<i>C</i> و <i>B</i> ، <i>A</i>	2) أ) إنشاء النقط	
	0,25		$z_H = 1 + i$ (ب	
04	0,50	$\mathscr{A}=2cm^2$ هي: ABC	ج) مساحة المثلث	
	0,50	$z' = \frac{1}{2}iz + \frac{1}{2} + i$ بة لـــ S هي:	3) أ) الكتابة المرك	
	0,50	$\mathscr{N}'=rac{1}{4} imes 2=rac{1}{2}cm^2$ ف ABC بالتشابه S هي:	ب) مساحة صور	
	0,50	z = z+2-i أي $ z = z+2-i $ ومنه مجموعة النقط هي محور القطعة $ z = z+2-i $	= iz+1+2i (4 $O(-2;1)$ حيث	
	0,50	`	<u>التمرين الرابع: (</u> 7	
	0,50	$\lim_{x \to +\infty} g(x) = +\infty : \lim_{x \to -\infty} g(x)$		
	0,75	، $\mathbb R$ من $g'(x) = 6x^2 - 8x + 7$ من أجل كل x من $g'(x) = 6x^2 - 8x + 7$.		
02		الي g متزايدة تماما على \mathbb{R} . جدول تغيّرات الدالة g .	` ′ .	
	0,50	و متزايدة تماما على $g(0,8) = -0.37$ ، $g(0,7) = -0.37$ و $g(0,8) = 0.07$ إذن المتوسطة المعادلة $g(x) = 0$ تقبل حلا وحيدا α حيث: $g(x) = 0$, ,	
	0,25	$\frac{-\infty - \alpha}{\alpha + +\infty}$		
	0,50	$\lim_{x \to +\infty} f(x) = +\infty : \lim_{x \to -\infty} f(x) = -\infty (1 \text{ (II)})$		
	0,50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(*)	
05	0,50	$f(x) = \frac{1}{2}(x+1) + \frac{1-3x}{2(2x^2-2x+1)}$ ، \mathbb{R} من x من أجل كل x من أجل كل أنّ من أجل كل x من أجل كل أن من أجل كل x من أجل كل أن من أبدل أن أن أن من أجل كل أن من أبدل كل أن كل أن من أبدل كل أن		
	0,50	$\lim_{x \to +\infty} \left[f(x) - \frac{1}{2}(x+1) \right] = 0 \lim_{x \to -\infty} \left[f(x) - \frac{1}{2}(x+1) \right]$	$(x+1) = 0 (\varphi$	
		$y = \frac{1}{2}(x+1):(\Delta)$ یقبل مستقیما مقاربا مائلا	$\left(C_f ight)$ إذن المنحى	
		، \mathbb{R} من أجل كل x من أجل كل $f(x) - \frac{1}{2}(x+1) = \frac{1}{2(2x+1)}$ $-\infty + 0 - + \infty : f(x) - 0$	$\frac{1-3x}{x^2-2x+1}$ (ε	
	0,50	$-\infty + 0 - + \infty : f(x) -$	$\frac{1}{2}(x+1)$ إشارة	
		ا فإنّ $\binom{1}{3};+\infty$ فإنّ $\binom{\Delta}{3}$ أعلى (Δ) و إذا كان x ينتمي إلى أعلى أ $\binom{\Delta}{3}$	إذا كان x ينتمي إلى	
		$Aigg(rac{1}{3};rac{2}{3}igg)$ و $Aigg(\Delta)$ يقطع $Aigg(C_f)$ في	$\left(\Delta ight)$ أسفل $\left(C_{f} ight)$	

0,50	$f'(x) = \frac{x \cdot g(x)}{(2x^2 - 2x + 1)^2}$ ، \mathbb{R} من أجل كل x من أجل (3)
0,25	$-\underline{\infty} + \overset{0}{\oplus} - \overset{\alpha}{\oplus} + + \overset{\infty}{\Longrightarrow} : f'(x)$ ب) إشارة
0,25	(x) (x)
0,25	$f(1) = 0$ (4) $(x-1)(x^2+x-1) = 0$ أي $\frac{(x-1)(x^2+x-1)}{2x^2-2x+1} = 0$ تعني $f(x) = 0$
0,50	و بالتالي $x^2 - 1 = 0$ أو $x^2 + x - 1 = 0$ أو
0,50	$\left(C_f ight)$ و المنحنى $\left(\Delta ight)$ و المنحنى (5
0,25	$h(x) = f(x) - 2$ ، \mathbb{R} من $f(x) = h(x) + h(x)$ التحقق من: من أجل كل
0,25 0,25	$\overrightarrow{v}(0;-2)$ هو صورة $\binom{C_f}{r}$ بالانسحاب الذي شعاعه $\binom{C_h}{r}$ هو المعلم السابق. $\binom{C_h}{r}$