Mi lehet a legjobb ajándék? Két tömb!

Miután Péter visszatért a felfedezőútjáról, kiderült, hogy ma van a születésnapja. A születésnapi ajándéka nem egy tömb volt, hanem kettő! Mindkét tömb nemnegatív egész számokból állt, és azonos N hosszúságúak voltak. Jelöljük az első tömböt A-val, a második tömböt pedig B-vel! Mindkét tömb sorra 1-től N-ig van indexelve. Mivel Péter nagy rajongója a bitműveleteknek, kitalálta, hogyan mérje össze ezen tömbök értékét bitműveletek segítségével. Az L-től R-ig terjedő indexű elemek által alkotott résztömb értékét így definiálja: $(A_L \ xor \ A_{L+1} \ xor \ ... \ xor \ A_R) \cdot (B_L \ and \ B_{L+1} \ and \ ... \ and \ B_R)$, ahol a xor a bitenkénti kizáró vagy műveletet, az and a bitenkénti logikai konjunkció műveletet, a · pedig a szorzást jelenti. A feladatotok az, hogy megtaláljátok a legnagyobb értékű résztömböt – pontosabban, az összes résztömb közül a legnagyobb értékűt.

A bemenet leírása

A szabványos bemenet első sorában egy N egész szám áll, amely a két tömb hosszát jelöli. A szabványos bemenet második sorában N egész szám áll, ahol az i-dik szám az A_i -t jelöli. A szabványos bemenet harmadik és egyben utolsó sorában N egész szám áll, ahol az i-dik szám a B_i -t jelöli.

A kimenet leírása

A szabványos kimenet első és egyben egyetlen sorában a keresett legnagyobb értéket kell kiíratni.

1. Példa

Bemenet

3

4 5 2

0 1 3

Kimenet

7

A példa magyarázata

Az L=2, R=3 résztömbre érhető el a legmagasabb érték. A_2 xor $A_3=7$ és B_2 and $B_3=1$, így ennek a résztömbnek az értéke: $7\cdot 1=7$.

Korlátozások

- $1 \le N \le 2 \cdot 10^5$
- $0 \le A_i, B_i \le 10^9$

A tesztpéldák hat diszjunkt csoportba vannak sorolva:

- A 4 pontot érő tesztpéldákban: $N \leq 2000$.
- A 4 pontot érő tesztpéldákban: $A_i = 1$.

- A 12 pontot érő tesztpéldákban: $A_i \leq 500$.
- A 20 pontot érő tesztpéldákban: $B_i = 1$.
- A 24 pontot érő tesztpéldákban: $B_i \leq 3$.
- A 36 pontot érő tesztpéldákban: nincsenek további korlátozások.

Megjegyzés

A kizáró vagy jelölésére Pascalban a xor-t használják, míg C++-ban a ^ szimbólummal írjuk le. Az x xor y műveletet az x,y nemnegatív számok esetén a folytatásban leírt módon definiálhatjuk. Először a számokat bináris formában kell felírni. Ha egy szám rövidebb, mint a másik, akkor azt vezető nullákkal kell kiegészíteni mindaddig, amíg a bináris számjegyek száma nem lesz megegyező. Így a bináris számok két sorozatát kapjuk, amelyekre a_1,\ldots,a_k és $b_1,\ldots b_k$ jelölést használjuk. Majd minden $i\in 1,\ldots,k$ pozícióra kiszámoljuk a c_i -t az alábbi szabályok mentén:

- Ha $a_i=0, b_i=0$, akkor $c_i=0$
- Ha $a_i=0, b_i=1$, akkor $c_i=1$
- Ha $a_i = 1, b_i = 0$, akkor $c_i = 1$
- Ha $a_i = 1, b_i = 1$, akkor $c_i = 0$

A c_1, \ldots, c_k bináris számjegyekből alkotott sorozat (amely tartalmazhat vezető nullákat is) az eredmény bináris leírása, vagyis az x xor y számé.

A n elem $(x_1,x_2,...,x_n)$ közötti bitenkénti konjunkció az alábbi módon van meghatározva: x_1 and x_2 and ... and $x_n=(...(((x_1 \text{ and } x_2) \text{ and } x_3) \text{ and } x_4)...)$ and x_n .