Applied Category Theory

Caleb Hill

Fall 2025

Contents

/2025
Vhy?
Plan
Groups
Things that came up
0/2025
More groups
Homomorphisms
Subgroups
7/2025
Representations
nner automorphisms

9/3/2025

Why?

Why should you care about studying the coming content and applying it to your field? Physicists:

- The particles in the standard model are irreducible representations. So rep theory is crucial to you.
- Monoidal categories give a good framework for understanding QM.

Computer scientists:

• It gives a framework for the Curry-Howard correspondence (proofs are programs).

Me:

- Began as a study of "analogies" and turned into a study of nifty algebraic gadgets.
- It's written in a wild language, and learning languages is fun.

As a great motivation, see https://arxiv.org/abs/0903.0340

Plan

The **first goal** is to define monoidal categories with some context. The **second goal** is to describe a "skeletal" category defined by diagrammatics. To accomplish the first goal, we will study things including:

- Algebraic objects (groups, vector spaces, ...) and maps between them
- Subobjects, images, combining objects $(\times, \otimes, \oplus, ...)$
- Categories (Grp, Set, PoSet, \mathbb{N} , Vec, ...)

I'd like to have as little fat on this as necessary. That is, not get sidetracked studying, for instance, too much of the internal structure of these objects. I want to give many examples and try to build intuition. For the second goal we'll study things including:

- Representations and maps (T(gv) = gT(v))
- $Rep(D_3)$ in detail

Up to this point I have a strong vision of where we're going. After this we can go where the interest steers us.

This plan is incomplete and non-exhaustive.

Groups

This is the best onramp to categories I know of, so bear with me through some basics.

Definition 1. A group is a triple

$$(G, \mu, e)$$

where G is a set, $\mu: G \times G \to G$ is a function, and $e \in G$, such that

$$\forall a,b,c \in G, \quad \mu(\mu(a,b),c) = \mu(a,\mu(b,c)) \tag{Associativity}$$

$$\forall a \in G, \quad \mu(a, e) = \mu(e, a) = a$$
 (Identity)

$$\forall a \in G, \exists b \in G, \quad such \ that \quad \mu(a,b) = \mu(b,a) = e$$
 (Inverse)

We often call the element b from 1 by a^{-1} . We also often use the following shorthands:

• $\mu(a,b) = a \cdot b = a \star b = ab$

•
$$\underbrace{a \cdot a \cdot \cdot \cdot a}_{n \text{ conies}} = a^n$$

Exercise 1. Translate the three axioms above into the ab notation.

Exercise 2. Prove the identity element in a group is unique. That is, if e and e' both satisfy Axiom 1, show that e' = e.

Now some examples. As an excercise, prove that each of the following is a group. The notation := reads as "is defined to be."

Example 1 (General linear group). (G, μ, e) , where

- $G = GL_2(\mathbb{C}) := \{invertible \ 2 \times 2 \ matrices \ with \ entries \ in \ \mathbb{C} \}$
- $\mu(A,B) := AB$
- $\bullet \ e = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Example 2 (General linear group). (G, μ, e) , where

- $G = GL_n(\mathbb{C}) := \{invertible \ n \times n \ matrices \ with \ entries \ in \ \mathbb{C} \}$
- $\mu(A,B) := AB$
- $e = I_n$ (the $n \times n$ identity matrix)

Example 3 (Integers). (G, μ, e) , where

- $G = \mathbb{Z}$
- $\mu(a,b) \coloneqq a+b$
- e = 0

Example 4 (Not a group! Why?). (G, μ, e) , where

- $G = \mathbb{Z}$
- $\mu(a,b) \coloneqq a \times b$
- e = 1

Example 5 (Braid group). $B_n := (G, \mu, e)$, where

- ullet G=n-strand braid diagrams (up to isotopy/wiggling)
- $\mu = vertical\ concatenation$
- \bullet e = n unbraided strands

Steve pointed out that when n = 2, B_n is isomorphic to \mathbb{Z} . We'll get to that in the next lecture I hope.

Things that came up

- Generators and relations presentations
- Free group/group of words
- Symmetric group/permutation groups
- The natural numbers game: https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/index2.html
- Peano arithmetic: https://en.wikipedia.org/wiki/Peano_axioms

9/10/2025

More groups

Recall that, loosely, a group is a set endowed with a binary operation (multiplication), with some associativity, identity, and inversion constraints. Henceforth we will refer to a group (G, μ, e) almost exclusively as G. Usually, μ and e will be understood from context. For some of the following examples we might also write μ_G to refer specifically to multiplication in G.

Example 6 (Nonzero field elements). The set $\mathbb{C}^{\times} = \mathbb{C} - \{0\}$ is a group under multiplication. Associativity is known. Its identity element is $1 \in \mathbb{C}$. This is true for any field, i.e. \mathbb{R}^{\times} , \mathbb{Q}^{\times} , and $\mathcal{F}_{p^n}^{\times}$ are all groups.

Example 7 (Symmetric groups). Let X be a set. Then (G, μ, e) is a group, where

- $G = \{ \sigma : X \to X \mid \sigma \text{ is bijective } \}$
- $\mu(\sigma_1, \sigma_2) := \sigma_1 \circ \sigma_2$
- $e = id_X$, defined by $\forall x \in X$, $id_X(x) = x$

Example 8. If $X = \{1, ..., n\}$, then we denote the group S_X by S_n . If $\sigma \in S_n$ then we often denote σ as

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Example 9 (Dihedral group). Let G consist of the following six matrices:

These matrices permute the points

$$\left\{ (1,0), (-\frac{1}{2}, \frac{\sqrt{3}}{2}), (-\frac{1}{2}, -\frac{\sqrt{3}}{2}) \right\}$$

So we can see that it's "the same as" a certain permutation group. There are really 3 things at play in this last example:

- Dihedral groups: 3 wasn't special. We could divide by any positive n and get a group of 2n matrices
- Generators and relations: We could equally express this group as

$$\langle r, s \mid r^3 = e, s^2 = e, rs = sr^2 \rangle.$$

In fact, that's usually how dihedral groups are presented.

• Isomorphism: That group of matrices "is" a permutation group.

Homomorphisms

We'll start by definine how two groups can be similar, or the same.

Definition 2. Let G and H be two groups. Let $f: G \to H$ be a function.

ullet We call f a homomorphism if

$$\forall a, b \in G, f(ab) = f(a)f(b)$$

- We call f an isomorphism if it is a bijective homomorphism
- If f is a homomorphism, the **kernel** of f is the set

$$\ker(f) := \{ x \in G \mid f(x) = e_H \}$$

 \bullet If f is a homomorphism, the **image** of f is the set

$$f(G) \coloneqq \{f(X) \mid x \in G\} \subseteq H$$

Here are many examples. It would be useful to prove those you don't see immediately. Well, it would probably be good to prove all of them...

Example 10 (Modular arithmetic). $f: \mathbb{Z} \to \mathbb{Z}_n$, given by $f(x) := x \pmod{n}$

Example 11 (Multiplication). $f: \mathbb{Z} \to \mathbb{Z}$, given by f(x) := 4x. What is special about 4 here? Anything?

Example 12 (Trivial). Let G and H be any two groups. Define $f: G \to H$ by f(x) = e.

Example 13 (Identity). Let G be any group. Define $f: G \to G$ by f(x) := x.

Example 14 (Symmetric group inclusion). Define $f: S_n \to S_{n+1}$ by declaring

$$f(\sigma) := \begin{pmatrix} 1 & 2 & \cdots & n & n+1 \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) & n+1 \end{pmatrix}$$

In particular, since this homomorphism is injective, this means we can think of S_n as "sitting inside of" S_{n+1} . This actually holds more generally. If a homomorphism $f: G \to H$ is injective, then there is an isomorphic copy of G inside of H, in the form of the image f(G). We'll define this more precisely in the next subsection.

Example 15 (Linear maps). Let V and W be vector spaces over \mathbb{C} . The definition of vector spaces says that (V, +) and (W, +) are, in particular, abelian groups. Let $T: V \to W$ be a linear map. The condition

$$T(x+y) = T(x) + T(y)$$

implies that T is a homomorphism of (abelian) groups.

Example 16 (All linear maps). $f: \mathbb{Z} \to \mathbb{Z}_n$, given by $f(x) := x \pmod{n}$

Here's a fact that we'll have uses for.

Exercise 3. Let $f: G \to H$ be a homomorphim of groups. For every $a \in G$, the inverse of f(a) is $f(a^{-1})$. In equation form, that's

$$[f(a)]^{-1} = f(a^{-1}).$$

Subgroups

As we saw above, S_n "sits inside of" S_{n+1} . Here's how we say that precisely.

Definition 3. Let G be a group. A nonempty subset $A \subseteq G$ is called a subgroup of G if

$$\forall a, b \in A, \quad ab \in A$$
 (Closure)

$$\forall a \in A, \quad a^{-1} \in A$$
 (Inversion)

The first consequence of this definition is that if A is a subgroup of G, then $e \in A$. Why? Well, take any element $a \in A$. Its inverse, a^{-1} also is in A by definition. Their product also must be in A. But their product is e.

Here's a fact that will be of use.

Proposition 1. Let $f: G \to H$ be a homomorphism. Then

- 1. The kernel $\ker(f)$ is a subgroup of G.
- 2. The image f(G) is a subgroup of H.

Let's see some examples of subgroups in action.

Example 17 (Dihedral groups). Let $n \geq 1$ be a positive integer. The set of 2n matrices of the forms

$$\begin{bmatrix} \cos 2\pi \frac{k}{3} & -\sin 2\pi \frac{k}{3} \\ \sin 2\pi \frac{k}{3} & \cos 2\pi \frac{k}{3} \end{bmatrix} \quad and \quad \begin{bmatrix} \cos 2\pi \frac{k}{3} & \sin 2\pi \frac{k}{3} \\ \sin 2\pi \frac{k}{3} & -\cos 2\pi \frac{k}{3} \end{bmatrix}$$

for k = 0, 1, ..., n - 1 is a subgroup of $GL_2(\mathbb{C})$.

Example 18 (Special linear group). The set $SL_N(\mathbb{C}) := \{M \in GL_N(\mathbb{C}) \mid \det(M) = 1\}$ is a subgroup of the general linear group $GL_N(\mathbb{C})$.

9/17/2025

I'd like to define a representaiton today, since we have all the prerequisite knowledge. The crux of the problem is this: group multiplication is hard. It's generally undecidable whether a given group element is even the identity. But if we can translate a group's multiplication into something more concrete (like matrices!), then we can learn a lot more about the group.

We'll begin by recalling that a homomorphism between groups G and H is a function $f: G \to H$ satisfying

$$f(\underbrace{ab}_{\in G}) = \underbrace{f(a)f(b)}_{\in H}.$$

It's important to remember which group the multiplication is happening in.

There's a cool way to visualize this property that I'll draw on the board. I won't include it here becasue it's time-consuming to create...

Representations

Groups are meant to *act* on things, that is, to encode structure-preserving permutations. We've seen examples of this already:

- Permutation groups: all permutations of an abstract set X. The structure being preserved here is cardinality.
- Matrix groups: an invertible (bijective!) matrix is a permutation of \mathbb{C}^n .

A representation of a group is a sort of middle ground between these two. That is, it translates some (maybe not all) of the structure of a group into a matrix group, which permutes a vector space.

Definition 4. Let G be a group. A (linear) representation of G is a homomorphism $\rho: G \to \mathrm{GL}_n(\mathbb{C})$.

Remark 1. Soemtimes we will write $\rho(g)$ as ρ_g and $[\rho(g)](v)$ as any one of $\rho_g v$, g.v, or even just gv.

Every group has at least one representation.

Example 19. Let G be any group. Define $\rho: G \to \mathrm{GL}_1(\mathbb{C})$ by $\rho(g) := [1]$ for every $g \in G$. Then ρ defines a representation, since it's a homomorphism:

$$\rho(gh) = [1]$$
$$= [1][1]$$
$$\rho(g)\rho(h)$$

A similar construction gives a representation of G on $GL_n(\mathbb{C})$ by sending $g \mapsto I_n$.

Here's an example that translates modular arithmetic into matrix multiplication.

Example 20. Let $G = \mathbb{Z}_4 = \{0, 1, 2, 3\}$ with addition modulo 4 as the operation. Define $\rho : G \to \mathrm{GL}_1(\mathbb{C})$ by $\rho(k) := [e^{2\pi i \frac{k}{4}}]$. Then ρ defines a representation, since it's a homomorphism:

$$\begin{split} \rho(j+k) &= [e^{2\pi i \frac{j+k}{4}}] \\ &= [e^{2\pi i \frac{j}{4}} e^{2\pi i \frac{k}{4}}] \\ &= [e^{2\pi i \frac{j}{4}}] [e^{2\pi i \frac{k}{4}}] \\ \rho(j) \rho(k) \end{split}$$

Inner automorphisms

I planned to end this lecture talking about the geometric representation of D_3 . Instead, due to a question from Marek, we ended up talking about *inner automorphisms*. The goal here is to morally prove that groups are made to act on things. We'll do that by constructing, for *any* group G, a homomorphism $G \to S_G$ into the set of permutations of the group's elements. This homomorphism won't be surjective; not every permutation of the set G can be viewed as a group element itself. We'll actually be mapping into a subgroup of S_G known as the automorphisms. More specifically, inner automorphisms.

Henceforth, G will be an arbitrary, but fixed, group.

Definition 5 (Automorphism group). Let G be any group, and define the set Aut(G) by

$$\operatorname{Aut}(G) := \{ \varphi : G \to G \mid \varphi \text{ is an isomorphism} \}.$$

A self-isomorphism $G \to G$ is called an **automorphism**. Note that, in particular, an automorphism is a permutation.

Proposition 2. Fix a group G. The set Aut(G) of automorphisms of G forms a group, with the operation being function composition and the identity element being the identity homomorphism id_G .

Proof. We have three things to check: closure under the group operation, existsence of an identity element, and invertibility. I'll outline the logic here.

(Closure) This reduces to checking that the composition of homomorphisms is a homomorphism, and that the composition of bijective functions is bijective.

(Identity) Check that the identity map id_G given by $id_G(x) = x$ is a bijective homomorphism.

(Inversion) Check that, for any automorphism f of G, the inverse function f^{-1} (which only exists because f is assumed bijective!!) is a bijective homomorphism.

Now, for any $x \in G$, let $\sigma_x : G \to G$ be the function defined by

$$\sigma_x(g) \coloneqq xgx^{-1}$$
.

A function of this form is called an inner automorphism. Its name assumes the following fact.

Proposition 3. For any fixed $x \in G$, the function $\sigma_x : G \to G$ is an automorphism.

Proof. This entails proving that $\sigma_x(gh) = \sigma_x(g)\sigma_x(h)$, and that σ_x is a bijective function. To prove it's bijective, it suffices to find an inverse function. Naturally enough, one can show that the function $\sigma_{x^{-1}}$ is the inverse function to σ_x . The homomorphism condition is a neat exercise.

Now the result mentioned earlier.

Theorem 1. Define the function $\Sigma: G \to \operatorname{Aut}(G)$ by $\Sigma(x) := \sigma_x$. Then Σ is an injective homomorphism. In particular, Σ exactly defines an isomorphism

$$G \xrightarrow{\cong} \Sigma(G)$$
.

So G is isomorphic to a subgroup of S_G .

date TBD

UNSTABLE

I want to take a step back and examine some parts of the definition of a representation. We defined a (complex, linear) representation as a homomorphism $G \to \mathrm{GL}_n(\mathbb{C})$. I did this to be a bit more concrete and avoid discussing vector spaces in their own right. But I now realize that was a tactical mistake, and we should discuss vector spaces.

Definition 6. A (complex) **vector space** is a tuple (V, s) where V is a set, and $s : \mathbb{C} \to V$ is a function, satisfying the following properties:

$$\forall u, v \in V, \quad u + v \in V$$
 (Addition)

$$\exists 0 \in V; \forall v \in V \quad 0 + v = v + 0 = v \tag{Zero}$$

$$\forall u \in V, \exists v \in V; \quad u + v = v + u = 0$$
 (Negative)

$$\forall u, v \in V, \quad u + v \in V$$
 (Left distribute)

$$\forall u, v \in V, \quad u + v \in V$$
 (Right distribute)

where we have shortened $s(\lambda, v)$ to λv .

Some expected properties follow immediately from this definition.

Exercise 4. Prove the following.

•
$$v + (-1)v = 0$$

There are many familiar examples.

Example 21 (Column vectors).

Example 22 (Polynomials).