	Bachelor of Technology (Computer Science & Engineering)													
	Credit-Based Scheme of Studies/Examination													
Semester VI (w.e.f. session 2020-2021)														
S. No.	Course Code	Subject	L:T:P	Hours /Week	Credits	Examin	ation So	hedule (M	arks)	Duratio n of Exam				
						Major Test	Minor Test	Practical	Total	(Hrs)				
1	PC-CS- 302	Complier Design	3:0:0	3	3	75	25	0	100	3				
2	PC-CS- 304	Computer Networks	3:0:0	3	3	75	25	0	100	3				
3	PEC	Elective-II	3:0:0	3	3	75	25	0	100	3				
4	PEC	Elective-III	3:0:0	3	3	75	25	0	100	3				
5	OEC	Open Elective-I	3:0:0	3	3	75	25	0	100	3				
6	PROJ – CS-302	Project-1	0:0:6	6	3	0	40	60	100	3				
7	PC-CS- 306L	UNIX and Linux Programming Lab	0:0:4	4	2	0	40	60	100	3				
8	PC-CS- 308L	Computer Networks Lab	0:0:4	4	2	0	40	60	100	3				
		Total		29	22	375	245	180	800					

PEC Elective-II	PEC Elective-III
Advanced Computer Architecture: PE-CS-S302	Simulation & Modeling: PE-CS-S310
Distributed Systems: PE-CS-S304	Mobile Computing: PE-CS-S312
Fault Tolerant Computing: PE-CS-S306	Unix & Linux Programming: PE-CS-S314
Mobile Ad-hoc and Wireless Sensor Networks: PE- CS-S308	Real Time Systems: PE-CS-S316
OEC Open Elective-I	
Soft Skills and Interpersonal Communication: OE-CS-	
302	
Management Information System: OE-CS-304	
Enterprise Resource Planning: OE-CS-306	

Note: Students be encouraged to go to 6-8 weeks summer internships mandatory during the summer break after the completion of sixth semester exams.

The course of both PE & OE will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

PC-CS-302	Complier Design										
Lecture	Tutorial Practical Credit Major Test Mine					Total	Time				
3	0	0	100	3 Hrs.							
Purpose	To introduce complier design concepts and their implementation										
			Course O	utcomes(CO)							
CO1	To understa	nd the role an	d designing	of a lexical an	alyzer.						
CO2	To analyze the role and designing of syntax analyzer or parser.										
CO3	To identify the role of semantic analyzer and intermediate code generation.										
CO4	To explore	the design imp	portance of	optimization of	codes and error	detection					

UNIT I

Introduction to Language Processing System, Compiling Analysis of the Source Program, Phases of a Compiler, Compiler Construction Tools. Lexical Analysis –Regular Expression, Introduction to Finite Automata and Regular Expression, Conversion of Regular Expression to NFA, Role of Lexical Analyzer, Specification of Tokens.

UNIT II

Syntax Analysis: Role of the Parser, Abstract Syntax Trees, Ambiguity in Context-Free Grammars, Types of Parsing:- Top Down Parsing, Recursive Descent Parsing, LL Parser, Back Tracking, Bottom Up Parsing, SLR Parser, Canonical LR Parser, LALR Parser.

UNIT III

Semantic Analysis: Semantic Errors, Attribute Grammar, Synthesized attributes, Static Allocation, Stack Allocation, Heap Allocation, Activation Trees, Symbol Table, Intermediate Code Generation and Code Intermediate languages, Declarations, Assignment Statements, Boolean Expressions, Case Statements, DAG representation of Basic Blocks, A simple Code generator from DAG, Issues in the Design of Code Generator

UNIT 1V

Code Optimization and Run Time Environments, Principal Sources of Optimization, Machine-independent Optimization, Machine-dependent Optimization, Optimization of Basic Blocks, Loop Optimization, Peephole Optimization, Introduction to Global Data Flow Analysis, Storage Organization, Static Storage Management, Heap Storage management, Parameter Passing. Error Recovery, Panic mode, Statement mode, Global correction.

- 1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, "Compilers Principles, Techniques and Tools", Pearson Education Asia, 2018.
- 2. Allen I. Holub "Compiler Design in C", Prentice Hall of India, 2003.
- 3. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings, 2003.
- 4. V Raghavan, "Principles of Compiler Design", Second Edition, Tata McGraw-Hill, 2018.
- 5. Henk Alblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.
- 6. Kenneth C. Louden, "Compiler Construction: Principles and Practice", Thompson Learning, 2003

PC-CS-304	Computer Networks										
Lecture	Tutorial Practical Credit Major Test Minor Test Total Tin										
3	0	0	3	75	25	100	3 Hrs.				
Purpose	To introduce the architecture and layers of computer network, protocols used at different										
	Layers.										
Course Outco	omes(CO)										
CO1	To understa	nd the basic o	concept of	f networking, t	ypes, networkin	g topologie	s and layered				
	architecture.										
CO2	To understa	nd data link l	ayer and	MAC sub-laye	r`						
CO3	To understa	nd the netwo	rk Layer 1	functioning							
CO4	To understa	nd the transp	ort layer a	and application	layer operation						

Unit -I

Introduction to Computer Networks: Data Communication System and its components, Data Flow, Computer network and its goals, Types of computer networks: LAN, MAN, WAN, Wireless and Wired networks, broadcast and point-to-point networks, Network topologies, protocols, interfaces and services, ISO-OSI reference model, TCP/IP architecture.

Physical Layer: Concept of Analog & Digital Signal, Bandwidth, Transmission Impairments: Attenuation, Distortion, Noise, Multiplexing: Frequency Division, Time Division, Wavelength Division, Transmission Media: Twisted pair, Coaxial cable, Fiber optics, Wireless transmission (radio, microwave, infrared), Switching: Circuit Switching, Message Switching, Packet Switching & comparisons, narrowband ISDN, broadband ISDN.

Unit -II

Data link layer: Error Control, Types of errors, framing(character and bit stuffing), error detection & correction methods; Flow control; Protocols: Stop & wait ARQ, Go-Back- N ARQ, sliding window protocols, Selective repeat ARQ, HDLC;

Medium access sub layer: Point to point protocol, FDDI, token bus, token ring; Reservation, polling, Multiple access protocols: Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD, FDMA, TDMA, CDMA, LLC, Traditional Ethernet, fast Ethernet, Network devices-repeaters, hubs, switches, Bridges, Router, Gateway.

Unit-III

Network layer: Addressing: Internet address, sub-netting; Routing techniques, static vs. dynamic routing, routing table, DHCP, IEEE standards 802.x, Routing algorithms: shortest path algorithm, flooding, distance vector routing, link state routing; Protocols: ARP, RARP, IP, ICMP, IGMP, IPV6; Unicast and multicast routing protocols, ATM.

Unit-IV

Transport layer: Process to process delivery; UDP; TCP, RPC, Congestion control algorithm: Leaky bucket algorithm, Token bucket algorithm, choke packets; Quality of service: techniques to improve QoS.

Application layer: DNS; SMTP, SNMP, FTP, HTTP & WWW; Firewalls, Bluetooth, Email, S/MIME, IMAP.

Network Security: Cryptography, user authentication, security protocols in internet, public key encryption algorithm, digital signatures

- 1. Behrouz A. Forouzan, "Data communication and Networking", Tata McGraw Hill, Fourth Edition, 2011
- 2. Computer Networks, 4th Edition, Pearson Education by Andrew S. Tanenbaum
- 1. Larry L.Peterson, Peter S. Davie, "Computer Networks", Elsevier, Fifth Edition, 2012.
- 2. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education, 2007.
- 3. James F. Kurose, Keith W. Ross, "Computer Networking: A Top–Down Approach Featuring the Internet", Pearson Education, 2005.

PC-CS-306L	UNIX and Linux Programming Lab										
Lecture	Tutorial	Tutorial Practical		Credit Minor Test		Total	Time				
0	0	4	3.0	40	60	100	3 Hrs.				
Purpose	Experimen	tal knowledge	e of progran	nming skills wi	th expertisation	on Unix/Lin	ux platform				
	Course Outcomes(CO)										
CO1	Learning of simple and advanced commands of Unix /Linux operating systems.										
CO2	Develop shell programming using Bash or any other shell scripts.										
CO3	Develop ac	dvanced shell	programmi	ng skills.							
CO4	Analyzing & evaluation of performance of various c language based programs with the help of Make file & debug utilities.										
CO5		f user accountinux operatin		g of package in	stallation, bacl	kup and shutd	lown process				

List of Practical

- 1. Familiarize with Unix/Linux Log In/Log Out and various other commands & vi editor.
- 2. Develop simple shell programs using Bash or any other shell in Linux.
- 3. Develop advanced shell programs using grep, fgrep & egrep.
- 4. Compile and debug various C language based programs using 'makefile' & 'debug' utility.
- 5. Learning of installation of dual operating systems with Linux having previously installed window based operating system. Both OSs should be in working operating mode.
- 6. As Supervisor create and maintain user accounts, learn package installation, taking backups, creation of scripts for file and user management, creation of startup and shutdown scripts using at, batch, cron etc.

 ${
m NOTE}$: At least 8 to 12 more programs exercises based on Unix/Linux plateform are to be assigned by the concerned teacher.

PC-CS-308L	Computer Networks Lab										
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
0	0	4	2	40	60	100	3 Hour				
Purpose	To explore networking concepts using Java programming & networking tools.										
Course Outcomes (CO)											
CO1	Do Problem	Solving using	ng algorithi	ms.							
CO2	Design and	test simple p	rograms to	implement netw	vorking concepts	using Java	l.				
CO3	Document artifacts using applied addressing & quality standards.										
CO4	Design simp	ole data trans	mission usi	ing networking	concepts and imp	olement.					

COMPUTER NETWORKS LAB

- 1. Create a socket for HTTP for web page upload and download.
- 2. Write a code simulating ARP /RARP protocols.
- 3. Study of TCP/UDP performance.
- **4.** Performance comparison of MAC protocols
- **5.** Performance comparison of routing protocols.
- **6.** Write a program:
 - a. To implement echo server and client in java using TCP sockets.
 - b. To implement date server and client in java using TCP sockets.
 - c. To implement a chat server and client in java using TCP sockets.
- **7.** Write a program:
 - a. To implement echo server and client in java using UDP sockets
 - b. To implement a chat server and client in java using UDP sockets.
 - c. To implement a DNS server and client in java using UDP sockets.
- **8.** To flood the server from a spoofed source address leading to a DoS attack.
- **9.** To sniff and parse packets that pass through using raw sockets.
- 10. To implement simple calculator and invoke arithmetic operations from a remote client.
- 11. To implement bubble sort and sort data using a remote client.
- 12. To simulate a sliding window protocol that uses Go Back N ARQ.

PE-CS-S308		Mobile Ad-hoc and Wireless Sensor Networks										
Lecture	Tutorial Practical Credit Major Minor Test Total Tim											
3	0	0	3	75	25	100	3 Hrs.					
Program	To enable stu	dents to descr	ibe and dea	l with comp	uter communic	ation and network	ing, various					
Objective	reference mod	dels and archit	ectures alor	ng with imp	lemented wirel	ess communication	n techniques					
(PO)	and various security and privacy parameters are also studied.											
Course Outco	omes (CO)											
After comple	tion of cours	e students wi	ll be able to)								
	•	tional network ous IEEE wirel				king standards, con	mpare and					
	Describe cellular architecture and IPv4 and IPv6 header formats has to be discussed along with mobile IP.											
	Recently deployed high performance computing standards, VPN, routing protocols as to be gone through.											
CO4	Various secui	rity and privac	y standards	/tools to be	described.							

Unit I

Introduction to Mobile Ad hoc Networks (MANET) – Mobility Management, Characteristics and Attributes related to MANETs, Modeling distributed applications for MANET, MAC mechanisms and protocols.

Unit II

MANET Routing Protocols: Ad hoc network routing protocols, destination sequenced distance vector algorithm, cluster based gateway switch routing, global state routing, fish-eye state routing, dynamic source routing, ad hoc on-demand routing, OLSR & TORA routing, location aided routing, zonal routing algorithm.

Unit III

Ad-Hoc Network Security: Link layer, Network layer, Trust and key management. Self policing MANET – Node Misbehaviour, secure routing, reputation systems.

Wireless Sensor Networks (WSN): Design Issues, Clustering, Applications of WSN.

Unit IV

MAC layer and Routing Protocols in WSN

Data Management: Retrieval Techniques in WSN, Sensor databases, distributed query processing, Data dissemination and aggregation schemes, Operating Systems for WSN, Security issues in WSN.

- 1 C. Siva Ram Murthy & B.S. Manoj, Mobile Ad hoc Networks Architectures & Protocols, Pearson Education, New Delhi, 2004
- 2 C M Cordeiro& D.P. Agrawal, Adhoc & Sensor Networks Theory and Applications, ISBN 981256-682-1, World Scientific Singapore, 2006
- 3 C. S. Raghvendra, Wireless Sensor Networks, Springer-Verlag, 2006.

PE-CS-S314		UNIX and Linux Programming										
Lecture	Tutorial Practical		Credit Major Test		Minor Test	Total	Time					
3	0	0	3	75	25	100	3 Hrs.					
Purpose	Expertisation in computational programming skills on Unix/Linux Environment.											
	Course Outcomes(CO)											
CO1	Learning of simple & advanced commands with features and characteristics of Unix											
	/Linux Sys	stems.										
CO2	Exploring knowledge of programming development skills using Shell, Filters, editors and other utilities.											
CO3	Analyzing the programming behaviour based on programming development/management on Unix /Linux Systems.											
CO4	Developin	g creativity	as system a	administrative w	ith networking	expertisa	tion in Unix					
	/Linux Sys	stems.										

UNIT I: Unix/Linux Commands with Usages

History of Unix, Structure of Unix System & its environment, Unix/Linux Startup, User accounts, accessing Linux – starting and shutting processes, Logging in and Logging out, various types of Unix Commands, zip, unzip, compress, uncompress, pack, unpack, various types of shells, shell programming, Unix file system, Mounting & Unmounting File System, Linux/Unix files, i-nodes, files system related commands, shell as command processor, shell variables, scripting, Unix architecture, Handling ordinary files, General purpose utilities and advanced Unix Commands.

UNIT II : Filters and File Compression

Regular Expression and Filters: Introducing regular expression patterns, syntax, character classes, Quantifiers, Bourne Shell Programming, shell scripting, grep: searching pattern, egrep: searching extended regular expression, Editors in Unix/Linux: Stream Editor, Visual Editor, Emac Editor, programming with AWK and PERL, File compression techniques, delta compression, parallel compression with Xdelta utility, data similarities elimination for data reduction.

UNIT III: Program Development Tools

The C Environment: C language programming in Unix/Linux using vi editor & C compiler, various modes of vi editor, C compiler options, C Shell operators, C Shell Script & programming, Program Development Tools, MakeFile Utility for keeping program up-to-date & its use for dependency calculations, dynamic linking and loading of libraries modules, static and shared libraries, dynamic loader, debugging tools like gdb for handling errors, Memory management and managing large projects in Unix programming environment.

UNIT IV: System Administration and Networking

Processes in Linux: Processes, starting and stopping processes, initialization of processes, rc and init files, job control – at, batch, cron, time, network files, security, authentication, password administration, signals handlers, threading, Linux I/O system, Networking tools: Ping, Telnet, FTP, Router, Firewalls, Backup and Restore tar, cpio, dd utility, mail command, Unix Network Security.

Case Study: LINUX Operating System as open source free software.

- 1. Sumitbha Das: Unix Concept and Applications, Fourth Edition TMH, 2015
- 2. B.M Harwani, Unix and Shell Programming, Oxford University Press, 2013
- 3. Neil Matthew, Richard Stones: Beginning Linux Programming, 4th. Edition, Wrox-Shroff, 2011.
- 4. Welsh & Kaufmann: Running Linux, O' Reiley & Associates, 2013.

OE-CS-302	Soft Skills & Interpersonal Communication										
Lecture	Tutorial	Practical	Credit	Major Test Minor Test		Total	Time				
3	0 0 3 75 25 100 3Hrs.										
	Course Outcomes (CO)										
CO1	Develop ba	asic understa	anding of	Communication	1.						
CO2	Understand	d the process	of comm	nunication and s	peaking.						
CO3	Develop the Personality concepts and its implementation.										
CO4	Develop th	ne basic of gr	oup Disc	ussion and inter	rview.						

UNIT-I

Communication: Introduction Verbal, Types of communication, extra personal communication, inter personal communication, intrapersonal communication, mass communication, Creativity in communication, Role of communication, flow of Communications and its need, Speaking Skills, Main features of speaking skills.

UNIT-II

Barriers in the way of communication, noise, inter personal barriers, intrapersonal barriers, organizational barriers, Extra personal barriers, **Basics of communication:** importance of communication, process of communication, objectives and characteristics of communication.

UNIT-III

Personality Development, what is personality? Role of personality, Heredity, Environment, situation, Basics of personality, **Soft skills:** Need and training. Activity in soft skills, **Organizational skill:** introduction and its need, basics principles for organization skills.

UNIT-IV

Group discussion: Group discussion, form of group discussion, strategy for group discussion, discussing problem and solution, Oral presentation, introduction, planning, Occasion, purpose, Modes of delivery, **Resume making:** Purpose of Resume, Resume design and structure, contents in Resume, types of Resume, job interview, introduction, objective of Interview, types of interview, stages of interview, Face to face interview and campus interview.

- 1. Technical Communication Principles and Practice by Meenakshi Raman and Sangeeta Sharma by Oxford Publication.
- 2. Personality Development and soft skills by Barun K. Mitra, Oxford Publication.
- 3. Communication Skills For Engineers by C. Muralikrishna and Sunita Mishra, Pearson Pub.