BERTScore

• BERTScore: Definition

BERTScore is a modern evaluation metric for text generation that uses pre-trained contextual embeddings

from models like BERT to compute semantic similarity between reference and candidate sentences.

Unlike traditional n-gram methods, BERTScore compares the meaning of words using cosine similarity between token embeddings.

BERTScore Formula

Let:

- R = Reference sentence
- C = Candidate sentence
- $e(r_i)$, $e(c\mathbb{Z})$ = contextual embeddings of token r_i from reference and $c\mathbb{Z}$ from candidate

Steps:

1. Compute cosine similarity between all token pairs: $cos(e(c\mathbb{Z}), e(r_i))$

Then:

- Precision (P): average maximum similarity for each token in candidate $P = (1 / |C|) * sum_c \mathbb{Z} (max_r_i cos(e(c\mathbb{Z}), e(r_i)))$
- Recall (R): average maximum similarity for each token in reference $R = (1/|R|) * sum_r_i (max_c \ cos(e(r_i), e(c \)))$
- F1-score (BERTScore): F1 = (2 * P * R) / (P + R)

Example

Reference: "a cat is sitting on the mat"

Candidate: "cat is sitting on mat"

Cosine Similarity Matrix:

```
a cat is sitting on the mat cat 0.3 0.95 0.4 0.2 0.1 0.3 0.5 is 0.2 0.5 0.9 0.4 0.1 0.2 0.3 sitting 0.1 0.3 0.4 0.95 0.6 0.2 0.3 on 0.1 0.2 0.3 0.6 0.9 0.4 0.2
```

Step-by-Step Calculation

1. Precision (Candidate → Reference)

Max similarities: [0.95, 0.9, 0.95, 0.9, 0.93]

$$P = (0.95 + 0.9 + 0.95 + 0.9 + 0.93) / 5 = 0.926$$

2. Recall (Reference \rightarrow Candidate)

Max similarities: [0.3, 0.95, 0.9, 0.95, 0.9, 0.5, 0.93]

$$R = (0.3 + 0.95 + 0.9 + 0.95 + 0.9 + 0.5 + 0.93) / 7 \approx 0.776$$

3. F1 Score (BERTScore)

$$F1 = (2 * 0.926 * 0.776) / (0.926 + 0.776) \approx 0.844$$

Final BERTScore ≈ 0.844

Summary Table

Metric	Value
Precision (P)	0.926
Recall (R)	0.776
BERTScore (F1)	0.844