

Shahira Abousamra, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Joel Saltz and Chao Chen

Introduction

Our Focus

Cells Point Map

Pathology image analysis suffers from limited annotations!

Solution: Augment training with generated labeled data.

Generating pathology images usually involves two steps:

- Generating spatial layout of cells.
- 2. Filling in stains and textures.

Cell Context

- The arrangement of cells.
- Their spatial co-localization.
- Important for pathology data analysis.

Challenges:

- Complexity of the cell layout.
- How to model and learn the underlying distribution.

We introduce mathematical descriptors to model and learn the *spatial distribution* of multi-class cells and their *structural patterns*.

Cell Configuration Descriptors

1. Topological Features

Clusters

K(r)

Persistence Diagram

Red dots = Cell centers

Holes Person

Persistence

 r_{i+1}

2. Spatial Statistics Features

- Cell types co-localization
- Characterize neighborhoods of holes

Persistent Homology Filtration

Ripley's K / Cross-K function

Clustered

An observed K-function

Dispersed radius r

Acknowledgements: Work funded by NSF grants CCF-2144901, IIS-2123920 and IIS-2212046, NIH and NCI grants UH3CA225021, U24CA215109, 5R01CA253368, and generous private fund from Bob Beals and Betsy Barton.

Cell Configuration Loss \mathcal{L}_{cc}

Match holes based on::

size (persistence), and spatial context (cross K functions)

Hinimize distance between density values at matched locations

Multi-scale Density Maps

Results

Eval. on Cell Classification

Close /

	F-Score			
Method	Lym.	Tumor	Stro.	Mean
U-Net	0.498	0.744	0.476	0.572
U-Net + Aug. (Rand.)	0.625	0.735	0.472	0.611
U-Net + Aug. (Ours)	0.65	0.768	0.511	0.644
MCSpatNet	0.635	0.785	0.553	0.658
MCSpatNet + Aug. (Rand.)	0.652	0.772	0.506	0.644
MCSpatNet + Aug. (Ours)	0.678	8.0	0.522	0.667

Sample Generated Cell Layouts

Real Cells' Layout

Generated Cells' Layout

Shahira Abousamra, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Joel Saltz and Chao Chen

Introduction

Our Focus

Cells Point Map

Pathology image analysis suffers from limited annotations!

Solution: Augment training with generated labeled data.

Generating pathology images usually involves two steps:

- Generating spatial layout of cells.
- 2. Filling in stains and textures.

Cell Context

- The arrangement of cells.
- Their spatial co-localization.
- Important for pathology data analysis.

Challenges:

- Complexity of the cell layout.
- How to model and learn the underlying distribution.

We introduce mathematical descriptors to model and learn the *spatial distribution* of multi-class cells and their *structural patterns*.

Train Downstream Tasks

Cell Configuration Descriptors

1. Topological Features

Clusters

K(r)

Persistent Homology Filtration Persistence Diagram

Red dots = Cell centers

Holes Created

Holes
Persistence Close

 r_{i+1}

2. Spatial Statistics Features

- Cell types co-localization
- Characterize neighborhoods of holes

Ripley's K / Cross-K function

Clustered

An observed K-function

Dispersed radius r

Acknowledgements: Work funded by NSF grants CCF-2144901, IIS-2123920 and IIS-2212046, NIH and NCI grants UH3CA225021, U24CA215109, 5R01CA253368, and generous private fund from Bob Beals and Betsy Barton.

Cell Configuration Loss \mathcal{L}_{cc}

Match holes based on::

size (persistence), and spatial context (cross K functions)

Minimize distance between density values at matched locations

Results

Eval. on Cell Classification

	F-Score			
Method	Lym.	Tumor	Stro.	Mean
U-Net	0.498	0.744	0.476	0.572
U-Net + Aug. (Rand.)	0.625	0.735	0.472	0.611
U-Net + Aug. (Ours)	0.65	0.768	0.511	0.644
MCSpatNet	0.635	0.785	0.553	0.658
MCSpatNet + Aug. (Rand.)	0.652	0.772	0.506	0.644
MCSpatNet + Aug. (Ours)	0.678	8.0	0.522	0.667

Sample Generated Cell Layouts

Shahira Abousamra, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Joel Saltz and Chao Chen

Introduction

Pathology image analysis suffers from limited annotations!

Solution: Augment training with generated labeled data.

Generating pathology images usually involves two steps:

- Generating spatial layout of cells.
- 2. Filling in stains and textures.

Cell Context

- The arrangement of cells.
- Their spatial co-localization.
- Important for pathology data analysis.

Our Focus

Challenges:

- Complexity of the cell layout.
- How to model and learn the underlying distribution.

We introduce mathematical descriptors to model and learn the *spatial distribution* of multi-class cells and their *structural patterns*.

Cell Configuration Descriptors

1. Topological Features

Clusters

Persistent Homology Filtration Persistence Diagram

Red dots = Cell centers

Holes Created

Holes
Close

 r_{i+1}

2. Spatial Statistics Features

- Cell types co-localization
- Characterize neighborhoods of holes

Ripley's K / Cross-K function

Acknowledgements: Work funded by NSF grants CCF-2144901, IIS-2123920 and IIS-2212046, NIH and NCI grants UH3CA225021, U24CA215109, 5R01CA253368, and generous private fund from Bob Beals and Betsy Barton.

Cell Configuration Loss \mathcal{L}_{cc}

Match holes based on::

size (persistence), and spatial context (cross K functions)

Minimize distance between density values at matched locations

Multi-scale Density Maps

Results

Eval. on Cell Classification

	F-Score			
Method	Lym.	Tumor	Stro.	Mean
U-Net	0.498	0.744	0.476	0.572
U-Net + Aug. (Rand.)	0.625	0.735	0.472	0.611
U-Net + Aug. (Ours)	0.65	0.768	0.511	0.644
MCSpatNet	0.635	0.785	0.553	0.658
MCSpatNet + Aug. (Rand.)	0.652	0.772	0.506	0.644
MCSpatNet + Aug. (Ours)	0.678	8.0	0.522	0.667

Sample Generated Cell Layouts

Shahira Abousamra, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Joel Saltz and Chao Chen

Introduction

Pathology image analysis suffers from limited annotations!

Solution: Augment training with generated labeled data.

Generating pathology images usually involves two steps:

- Generating spatial layout of cells.
- 2. Filling in stains and textures.

Cell Context

The arrangement of cells.

Train Downstream Tasks

Our Focus

Cells Point Map

Challenges: • Complexity of the cell layout.

■Lym. ■Tumor ■Stromal

• How to model and learn the underlying distribution.

We introduce mathematical descriptors to model and learn the spatial distribution of multi-class cells and their structural patterns.

Acknowledgements: Work funded by NSF grants CCF-2144901, IIS-2123920 and IIS-2212046, NIH and NCI grants UH3CA225021, U24CA215109, 5R01CA253368, and generous private fund from Bob Beals and Betsy Barton.

Cell Configuration Descriptors

1. Topological Features

SIGGRAPH, 40(4), 2021.

Red dots = Cell centers

2. Spatial Statistics Features

Cell types co-localization

Holes

Persistence Created

Cell Configuration Loss \mathcal{L}_{CC}

Match holes based on::

size (persistence), and spatial context (cross K functions)

Minimize distance between density values at matched locations

Results

Ripley's K / Cross-K function

Characterize neighborhoods of holes

K-function of rand. process and its confidence interval Clustered An observed **K-function** Dispersed radius r

Model Backbone: A modified version of SPGAN* * Li et al. SP-GAN: sphere-guided 3d shape generation and manipulation.

Eval. of Persistence Diagrams (Cell Config. Matching)

Holes

Close /

Method	Lym.	Tumor	Stro.	Mean
w/o Spatial Descriptors + w/o \mathcal{L}_{cc}	8.0	1.74	1.66	1.4
w/o \mathcal{L}_{cc}	0.9	1.69	1.79	1.46
w/o Cross K-function Descriptor	0.75	1.74	1.77	1.42
Ours	0.74	1.64	1.71	1.36

Eval. on Cell Classification (F-Score) ↑				
ethod	Lym.	Tumor	Stro.	Me
-Net	0.498	0.744	0.476	0.5

U-Net + Aug. (Rand.) 0.625 0.735 0.472 0.611 U-Net + Aug. (Ours) 0.65 0.768 0.511 0.644

Sample Generated Cell Layouts

Multi-scale Density Maps

