Experimentalphysik III - Formelblatt

Elektromagnetische Optik

Maxwell Medien SI:

$$m{
abla} \cdot m{D} =
ho \qquad m{
abla} imes m{E} = -rac{\partial m{B}}{\partial t}$$
 $m{
abla} \cdot m{B} = 0 \qquad m{
abla} imes m{H} = m{j} + rac{\partial m{D}}{\partial t}$

Medien: $\varepsilon = \varepsilon_0 \varepsilon_r$, $\mu = \dots$:

$$D = \varepsilon E$$
 $B = \mu H$

Wellen:

$$\Delta \boldsymbol{E} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$$
 $c = \frac{1}{\sqrt{\varepsilon \mu}}$

Vakuum

Phasen und Gruppengeschwindigkeit:

$$v_{ph} = \frac{\omega}{k}$$
 $v_{gt} = \frac{\partial \omega}{\partial k}$

Wellenfunktion

$$\boldsymbol{E} = \begin{pmatrix} E_{0x} \sin(\omega t - kz + \delta_x) \\ E_{0y} \sin(\omega t - kz + \delta_y) \end{pmatrix}$$
 eben/monochr.: $\boldsymbol{E} = E_0 e^{i(\omega t - kz)}$

-kz = positive z-Richtung

Polarisationsformen: linear, zirkular ($\delta_x - \delta_y = \pm \pi/2$), elliptisch Zusammenhang zwischen \boldsymbol{E} und \boldsymbol{B} :

$$|\boldsymbol{E}| = c_0 |\boldsymbol{B}|$$
 $\boldsymbol{B} = \frac{1}{\omega} \boldsymbol{k} \times \boldsymbol{E}$

Energiedichte

$$w = \frac{W}{V} = \frac{1}{2}\varepsilon_0(\mathbf{E}^2 + c_0^2 \mathbf{B}^2) = \varepsilon_0 \mathbf{E}^2$$

Intensität

$$I = \frac{W}{A_{\perp}t} = c\varepsilon_0 \mathbf{E}^2$$
 Mittelung: $\langle I \rangle = \frac{1}{T} \int_0^T I \, dt = \frac{1}{2} c\varepsilon_0 \mathbf{E}_0^2$

Pointing-Vektor:

$$|S| = |E \times H| = I$$

Strahlungsdurck und statistischer Impuls:

$$p_{st} = w \pi_{st} = \frac{p_{st}}{c}$$

Isotrope Medien

Phasendifferenz nach durchlaufen eines Mediums

$$\Delta \varphi = 2\pi (n-1) \frac{\Delta z}{\lambda_0}$$

meistens gilt für n: $n = \sqrt{\varepsilon_r}$

D-Feld und Polarisationsvektor (Nichtleiter), Polarisierbarkeit:

$$oldsymbol{D} = arepsilon_0 oldsymbol{E} + oldsymbol{P} \qquad lpha = rac{e^2/m}{\omega_0^2 - \omega^2 + i\gamma\omega}$$

Komplexer Brechungsindex, Formel in (Nicht)Leiter, Näherung

$$n = n' - i\kappa$$
 $n_{NL}^2 = 1 + \frac{N\alpha}{\varepsilon_0}$ $n_L^2 = \varepsilon_r - \frac{\sigma}{\omega\varepsilon_0}i$ $(n^2 - 1) \underset{n \approx 1}{\approx} 2(n - 1)$

Lösung der Wellengleichung mit komplexem Brechungsindex:

$$E = E_0(t) \cdot e^{-\kappa k_0 z}$$
 \Rightarrow $I = I_0 \cdot e^{-Az}$ $A = 2\kappa k_0$ $\delta = 1/A$

Wellen an Grenzflächen

Snelliussches Brechungsgesetz

$$\alpha = \alpha'$$
 $\frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\sin(\alpha)}{\sin(\beta)}$

Brechung zum Lot am optisch dichteren Medium Reflexions- und Transmissionskoeffizient:

Quotient der Amplituden/Feldstärken

Reflexions- und Transmissionsvermögen, Leistung und Intensität:

$$R = \frac{P_r}{P_c}$$
 $T = \frac{P_g}{P_c}$ $P = IA_{\perp} = \int \boldsymbol{S} \, d\boldsymbol{A}$

Summe Refl. und Transm., R bei senkr. Einfall, Intensität:

$$T + P = 1$$
 $R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$ $I_t = TI_0 / I_r = RI_0$

Brewster Winkel: keine Reflexion in p-pol

$$\alpha_B + \beta = \pi/2$$
 $\tan(\alpha_B) = \frac{n_2}{n_1}$

Phasensprünge

Reflexion	s-pol	<i>p</i> -pol
		0 unterhalb α_B
opt. dichteres Medium	π	
		π oberhalb α_B
		π unterhalb α_B
opt. dünneres Medium	0	
		0 oberhalb α_B

Totalreflexion

nur am optisch dünneren Medium $\beta \ge \pi/2 \quad \Rightarrow \quad \sin(\alpha_T) = \frac{n_2}{n_1}$

Doppelbrechung

 $n_a > n_o$ optisch positiv Polarisationsrichtung $n_o \perp$ optische Achse

Polarisation

lineare Polarisation, Malussches Gesetz:

$$I(\theta) = I_0 \cos^2(\theta)$$

Erzeugung, Doppelbrechungsplättchen Phasendifferenz:

$$\Delta \phi = \frac{2\pi}{\lambda_0} d\Delta n$$

 λ -Plättchen für linear polarisiertes Licht

 $\lambda/2$ Spiegelung an optischer Achse $\lambda/4$ zirkular

Unpolarisiertes Licht durch Linearpolarisator

$$I = \frac{1}{2}I_0$$

Wellenoptik

Huygens-Fresnel-Prinzip

Lichtwellenfront sind Ausgangspunkte von Elementarwellen, die sich verhalten wie Kugelwellen und sich überlagern zu einer neuen Wellenfront.

Interferenz

Phasengleiche, Amplitudengleiche ebene Wellen:

$$\Delta \varphi = \mathbf{k}_1 \cdot \mathbf{r} - \mathbf{k}_2 \cdot \mathbf{r} + \varphi_1 - \varphi_2 \qquad \Rightarrow \qquad \langle I \rangle = 4 \langle I_0 \rangle \cos^2 \left(\frac{\Delta \varphi}{2} \right)$$

Phasendifferenz von Welle mit sich Selbst:

$$\Delta \varphi = \frac{2\pi}{\lambda} \Delta s (+Sprung) = k\Delta s$$
 max: $\Delta s = m\lambda$ min: $\Delta s = (m+1/2)\lambda$

Doppelspalt

$$\Delta r = \frac{ay}{s} \qquad a\sin\theta_{max} = m\lambda \quad m \in \mathbb{Z}$$

Dünne Schicht (zweistrahl)

$$\Delta s = 2d\sqrt{n^2 - \sin^2 \alpha}$$

Beugung am Einzelspalt, Kreisförmiger Öffnung

$$\sin \theta_{min} = \frac{\lambda}{b}n$$
 $\sin \theta_{max} = \frac{\lambda}{b} \cdot (m + 1/2)$ $\sin \theta_{min,Kreis} = 0,61\frac{\lambda}{r}$

Gitter (N Spalte), Nebenminimum, Auflösungsvermögen, Bragg (Glanzwinkel)

$$d\sin\theta_{nmin} = m\lambda + \frac{\lambda}{N}$$
 $A = \frac{\lambda}{\Delta\lambda} = mN$ $d\sin\theta_{max} = m\lambda$ $2d\sin(\alpha) = m\lambda$

Fresnel / Fraunhofer

- Fraunhofer Beugung: Abstand zum Schirm groß gegen Hindernis \to Strahlen annähernd parallel \to Beugungsbild nur Richtungsabhängig
- Fresnel Beugung: Summation über Zonen mit Konstanter Phasendifferenz
 → Beugungsbild abstandsabhängig

Fresnelzonen, m-te Zonen Platte

$$E(\mathbf{P}) \approx \frac{E_0}{R + r_0} e^{ik(R + r_0)}$$
 $\rho_m \approx \sqrt{r_0 m \lambda}$

Interferenzen sind Ausblendung einzelner Zonen

Babinetsches Prinzip

Aufteilung der Gesamtfläche in dijunkte Anteile (komplementär), dann ist die Intensität an Orten, die vorher Dunkel waren, gleich:

$$E(\sigma) = E(\sigma_1) + E(\sigma_2)$$

Fresnel - Fourier mit Apertur $\tau(x,y)$

$$E_p \propto \int_{\mathbb{R}^2} \tau(x, y) \exp\left(\frac{ik}{z_0}(x'x + y'y)\right) dx dy$$

Kohärenz

$$\Delta s_c = c \cdot \Delta t_c$$

Geometrische Optik

Fermatsches Prinzip

$$\delta \int n(s)ds = 0$$
 oft: $\frac{dt}{ds} = 0$

Grundaxiome der Geometrischen Optik (4)

- In optisch homogenen Medium sind Lichtstrahlen Geraden.
- An der Grenzfläche zwischen zwei Medien werden Lichtstrahlen gebrochen und reflektiert und gehorchen dabei dem Reflexions und Brechungsgesetz.
- Mehrere Strahlenbündel beeinflussen sich nicht gegenseitig.
- Lichtstrahlen sind umkehrbar.

Spiegel

Sphärischer Hohlspiegel, paraxiale Strahlen:

$$\frac{1}{b} + \frac{1}{g} \approx \frac{2}{R} = \frac{1}{f}$$

Abbildungsmaßstab

$$\Gamma = \frac{B}{G} = -\frac{b}{g}$$

Linsen

Linsengleichung

$$\frac{1}{b} + \frac{1}{g} = (n-1)\left(\frac{1}{r} + \frac{1}{r'}\right) := \frac{1}{f}$$

Abbildungsmaßstab

$$\Gamma = -\frac{b}{a} = \frac{f}{f - a}$$

Bildkonstruktion (3)

- Parallelstrahlen werden zu Brennpunktstrahlen.
- Brennpunktstrahlen werden zu Parallelstrahlen.
- Hauptstrahlen bleiben Hauptstrahlen (durch Mittelpunkt).

Linsensysteme

(2 Linsen), neue Brennweite, bezogen auf?:

Bildseitige Hauptebene:
$$f' = \frac{f_1 f_2}{f_1 + f_2 - d}$$
 $\xrightarrow{d \to 0}$ $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$

Berechnung der Bildweite an 2. Linse, Gesamtabbildungsmaßstab:

Abbildung an beiden durchrechnen.
$$\Gamma = \frac{b_1}{q_1} \frac{b_2}{q_2}$$

Matrixoptik

Vektor, Translation, Brechung, Trafomatrix (dünne) Linse in Luft

$$\begin{pmatrix} r_i \\ n \alpha_i \end{pmatrix} \qquad \begin{pmatrix} 1 & \frac{d}{n} \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ \frac{n_1 - n_2}{B} & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$

Näherung?

paraxiale Strahlen

Anwendungen

Optische Instrumente

Abbildungsgleichung des Auges, Deutliche Sichtweite, kleinster Sehwinkel

$$\frac{f_1}{g} + \frac{f_2}{b} = 1 \qquad s_0 = 25cm \qquad \varepsilon_{min} = 0,02^{\circ}$$

Winkelvergrößerung allgemein

$$V = \frac{Winkel\ mit\ Instrument}{WinkelohneInstrument} = \frac{\varepsilon}{\varepsilon_0}$$

Lupe, Art des Bildes, wo mit dem Auge?, Winkelvergrößerung

imaginär wenn näher als Bildweite
$$V = \frac{s_0}{f}$$

Mikroskop, Abbildungsmaßstab des Objektivs, Okularvergrößerung:

$$\Gamma_{ob} \approx \frac{t}{f_{ob}}$$
 Tubuslänge t $V = \Gamma_{ob}V_{ok} = \frac{ts_0}{f_{ob}f_{ok}}$

Teleskop, Winkelvergrößerung

$$V = \frac{f_{ob}}{f_{ok}}$$

Auflösungsvermögen

Rayleigh-Kriterium, Numerische Apertur

Punke auflösbar, wenn erstes Minimum des einen mit dem Zentralen Maximum des anderen zusammenfällt

$$\Delta x = \frac{0,66\lambda_0}{n\sin\alpha}$$

Kleinster auflösbarer Winkel bei Lochblende, Durchmesser D

$$\delta_{min} = 1, 2\frac{\lambda}{D}$$

nicht für Mikroskop, da Kompizierters Abbe-Kriterium

Lichtstärke

Blendenzahl, Proportionalität der Intensität zu F

$$F = \frac{f}{D}$$
 $I \propto \frac{1}{F^2}$

Kamera Intensität, Schärfentiefe

$$I \propto \frac{t \cdot ISO}{F^2} \qquad \Delta g \propto \frac{c}{\frac{a}{F} \pm 1}$$
 (0.1)

Quantenphysik

Quantelung

$$E_n = nh\nu$$
 $bzw.$ $E_n = \left(n + \frac{1}{2}\right)h\nu$

Temperaturstrahlung

Zustandsdichte, Rayleight-Jeans-Gesetz

$$dZ = 8\pi \frac{V\nu^2}{c^3} d\nu \qquad P d\nu = \frac{\nu^2}{c^2} kT d\nu$$

Wiensches Verschiebungsgesetz, Stefan-Boltzmann/Kirchhoffsches Gesetz

$$\lambda_{max} = \frac{0,29cm \cdot K}{T} \qquad P = \varepsilon \sigma A T^4$$

Teilleistung aus gegebener Gesamtleistung (Kugelabstrahlung) selektieren:

$$P = \int_{A} \mathbf{S} d\mathbf{A}$$
 $P_{sel} = \frac{\Omega_{sel}}{\Omega} P$ $\Omega = \frac{A}{r^2}$

Plancksche Strahlungsformel, was macht der Körper?

Absorbtion, induzierte/spontane Emission $P(\nu) = \frac{h\nu^3}{c^2} \frac{1}{\exp\left(-\frac{h\nu}{kT}\right) - 1}$

Photoeffekt

$$U_{max} = \frac{h}{e}\nu - \frac{W_A}{e} \qquad W_A = h\nu_{grenz}$$

Compton-Effekt

rel. Impuls und Energieerhaltung: $\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = \lambda_c (1 - \cos \theta)$

Photon

Masse vs. Ruhemasse, Impuls, Energie, Geschw., Anzahldichte, Intensität

$$E_{\gamma} = h\nu$$
 $p_{\gamma} = \frac{h}{\lambda}$ $v = c$ $m_0 = 0$ $m\gamma = \frac{E_{\gamma}}{c^2}$ $I = nh\nu c$ $n = \frac{w}{h\nu}$

Relativistische kinetische Energie, Impuls:

$$E_{kr} = (\gamma - 1)m_0c^2 \qquad p_r = \gamma mv$$

Materiewellen

 ω , \boldsymbol{k} , v_{ph}

$$\hbar = \frac{h}{2\pi}$$
 $\omega = \frac{E}{\hbar}$ $k = \frac{p}{\hbar}$ $v_{ph} = \frac{E}{p}$

Wellenpaket mit Abkürzung u

$$\psi(x,t) = 2c(k_0) \cdot \frac{\sin(u\frac{\Delta k}{2})}{u} \exp(i(w_0 t - k_0 x)) \qquad u = \frac{d\omega}{dk} \Big|_{k_0} (t - x)$$

daraus folgende Unschärfe

$$\Delta x = \frac{4\pi}{\Delta k} > \lambda$$

Wahrscheinlichkeitsinterpretation

$$W(x,t)dx = |\psi(x,t)|^2 dx$$
,
$$\int_{\mathbb{R}} |\psi(x,t)|^2 dx = 1$$

Unschärferelation, Impuls und Energie:

Unschärfe am geringsten für Gaußsche k $\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$ $\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$

Schrödingergleichung zeitabh., zeitunabh.

$$-\frac{\hbar^2}{2m}\,\Delta\Psi(\boldsymbol{x},t) + V(\boldsymbol{x},t)\Psi(\boldsymbol{x},t) = i\hbar\frac{\partial\Psi(\boldsymbol{x},t)}{\partial t} \qquad \qquad -\frac{\hbar^2}{2m}\,\Delta\psi(\boldsymbol{x}) + V(\boldsymbol{x})\psi(\boldsymbol{x}) = E\psi(\boldsymbol{x})$$