MATH 310 Homework 7

Chris Camano: ccamano@sfsu.edu

October 27, 2022

Question 1

Find all subgroups of $G = \langle a \rangle$ where |a| = 45. Describe the containments between these subgroups.

Proof.

The unique subgroups of G are:

$$< a^{45} >$$

$$< a^{3} >$$

$$< a^5 >$$

$$< a^{15} >$$

$$< a^9 >$$

With the containment realtion:

$$< e > \subseteq < a^9 > \subseteq < a^3 > \subseteq < a^{45} >$$

$$< e > \subseteq < a^{15} > \subseteq < a^5 > \subseteq < a^{45} >$$

Note that:

$$< a^{15} > \subseteq < a^3 >$$

As well.

Question 2

Find all generators of \mathbb{Z}_{48} .

Proof.

To start there are a total of:

$$\phi(48) = \phi(2^4)\phi(3) = 8(2) = 16$$

Geneators since this is how many times we obtain a denominator of one when solving for the order of each element. The 16 relatively prime numbers to 48 are contained in the unit group of 48 therefore generators for \mathbb{Z}_{48} are the elements of U(48).

Question 3

Let $left(G_1, \circ)$ and (G_2, \bullet) be two groups with the respective group operations \circ and \bullet . Show that the cartesian product $G_1 \times G_2$ is a group with the following operation:

$$(a_1,b_1)\diamond (a_2,b_2) := (a_1 \circ a_2,b_1 \bullet b_2).$$

Proof.

To show that $G_1 \times G_2$ is a group we prove the following:

1. closure

To demonstrate closure under the operation $(a_1,b_1) \diamond (a_2,b_2) := (a_1 \circ a_2,b_1 \bullet b_2)$. Since (G_1,\circ) and (G_2,\bullet) are closed under their respective operators we have the fact that for any ordered pair produced by the cartersian product with our new element $a_1 \circ a_2 \in G_1$ and $b_1 \bullet b_2 \in G_2$. This implies that for all elements produced by our operator we obtain a new element of from the cartesian product of the two sets which is the desired meaning of closure in this context.

2. Assoicativity

Let
$$(a_1,b_1), (a_2,b_2), (a_3,b_3) \in G_1 \times G_2$$

 $(a_1,b_1)((a_2,b_2)(a_3,b_3)) = ((a_1,b_1)(a_2,b_2))(a_3,b_3)$
 $(a_1,b_1)(a_2 \circ a_3,b_2 \bullet b_3) = (a_1 \circ a_2,b_1 \bullet b_2)(a_3,b_3)$
 $(a_1 \circ a_2 \circ a_3,b_1 \bullet b_2 \bullet b_3) = (a_1 \circ a_2 \circ a_3,b_1 \bullet b_2 \bullet b_3)$

3. Identity

Consider the composition of the following:

$$(a_1,b_1)\diamond (a_1^{-1},b_2^{-1}):$$

By definition of the operator we obtain:

$$(a_1 \circ a_1^{-1}, a_1^{-1} \bullet b_1^{-1}) = (e, e)$$

4. Inverse

Consider an element of $G_1 \times G_2$:

$$(c,d) \in G_1 \times G_2$$

By definition

$$(c,d)=(a_1\circ a_2,b_1\bullet b_2)$$

Since $a_1 \circ a_2 \in G_2$ so is c, and likewise since $b_1 \bullet b_2 \in G_2$ so is d, Since G_1 and G_2 are groups there exists an inverse for each element in each group so we can construct an inverse:

$$(c^{-1},d^{-1}) \in G_1 \times G_2$$

Proving the existence of an inverse:

$$(c,d) \diamond (c^{-1},d^{-1}) = (e,e)$$

Thus $G_1 \times G_2$ is a group under $(a_1, b_1) \diamond (a_2, b_2) := (a_1 \circ a_2, b_1 \bullet b_2)$

Question 4

List the elements in the group $\mathbb{Z}_2 \times \mathbb{Z}_3$. Show that this group is cyclic.

Proof.

The elements of $\mathbb{Z}_2 \times \mathbb{Z}_3$ are:

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$$

Assuming that the group operator over the ordered pairs is element wise addidtion with respect to the original modular base: the generator of this set is:

$$<(1,1)>=\{(1,1),(0,2),(1,0),(0,1),(1,2),(0,0)\}$$

Question 5

List the elements in the group $\mathbb{Z}_2 \times \mathbb{Z}_2$. Show that this group is not cyclic. Argue that by now we know two different abelian groups with four elements

Proof.

The elements of this group are as follows:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$$

To demonstrate that this is not a cycic group we will show that each subgroup is not a generator:

$$<(0,0)>=\{(0,0)\}\$$
 $<(0,1)>=\{(0,0),(1,1)\}\$
 $<(1,1)>=\{(0,0),(0,1)\}\$
 $<(1,0)>=\{(0,0),(1,0)\}\$

This group itself is a non cyclic abelian group since the elements involved in the construction of the set come from abelian groups (integers mod n,+). This group has four elements so it is one of our order 4 abelian groups .

One way to find another order 4 abelian group is to consider the cartesian product of an abelian group with two elements and another abelian group with with two elements: Consider = the unit group of 3:

$$U(3) \times U(3) = \{(1,1), (1,2), (2,1), (2,2)\}$$

Which is an abelian group of order 4

Question 6

Prove that neither $\mathbb{Z}_2 \times \mathbb{Z}$ nor $\mathbb{Z} \times \mathbb{Z}$ are cyclic groups.

Subproof 1: $\mathbb{Z}_2 \times \mathbb{Z}$

1. Proof.

$$\mathbb{Z}_2 = \{0,1\}$$

$$\mathbb{Z}_2 \times \mathbb{Z} = \{(0,k), (1,k) : k \in \mathbb{Z}\}$$

By the definition of composition of groups under a cartesian product given in problem 3. Suppose that $\mathbb{Z}_2 \times \mathbb{Z}$ is cyclic, then there exists $(a,b) \in \mathbb{Z}_2 \times \mathbb{Z}$ such that :

$$\langle (a,b) \rangle = \mathbb{Z}_2 \times \mathbb{Z}$$

Consider the following:

Since $(a,b) \in \mathbb{Z}_2 \times \mathbb{Z}$ It is either of the form (1,k) or (0,k) where k is an integer.

Case 1: (a,b) is of the form (1,k):

If (a,b) is of the form (1,k) then the set generated by (a,b) does not contain (0,k) $\forall k \in \mathbb{Z}$ which is a contradiction

Case 2: (a,b) is of the form (0,k):

If (a,b) is of the form (0,k) then the set generated by (a,b) does not contain (1,k) $\forall k \in \mathbb{Z}$ which is a contradiction

Thus in either case we arrive to a contradiction meaning there does not exist a generator for $\mathbb{Z}_2 \times \mathbb{Z}$ implying it is not cyclic.

Subproof 1: $\mathbb{Z} \times \mathbb{Z}$

2. Proof.

To demonstrate that $\mathbb{Z} \times \mathbb{Z}$ is not a cyclic group we will proceed with a proof by cotradiction levergaining the fact that if a group is cyclic then there exists a generator:

Suppose that $\mathbb{Z} \times \mathbb{Z}$ is cyclic, then by definition there exists an ordered pair in $\mathbb{Z} \times \mathbb{Z}$ (a,b) such that :

$$\langle (a,b) \rangle = \mathbb{Z} \times \mathbb{Z}$$

If a = 0 then (1,0) is not in this set, which leads to a contradiction since (a,b) is a supposedly a generator. So we have $a \neq 0$.

If b = 0 then (0,1) is not in this set, which leads to a contradiction since (a,b) is a supposedly a generator. So we have $b \neq 0$.

Consider the element

$$(a,-b) \in \mathbb{Z} \times \mathbb{Z}$$

There is an integer $k \in \mathbb{Z}$ with (ka,kb) = (a,-b), and since $a,b \neq 0$ this gives k=1 and k=-1, which is a contradiction.

Together we have shown that element (0,1) cannot be generated with this construction

Question 7

Let G be a group and let $C_1 = \langle a \rangle$ and $C_2 = \langle b \rangle$ be two cyclic subgroups with orders n and m, respectively. Prove that if $\gcd(n,m) = 1$ then $C_1 \cap C_2 = \{e\}$.

Proof.

If | < a > | = n this implies $a^n = e$ likewise If | < b > | = m this implies $a^m = e$. This knowledge together allows us to build representations of the elements of the group:

$$C_1 = \{e, a, a^1, a^2, \cdots, a^{n-1}\}$$

$$C_2 = \{e, b, b^1, b^2, \cdots, b^{m-1}\}$$

Suppose there exists another element in the intersection of C_1 and C_2 , Since we have the property that:

$$|a^k| = \frac{n}{\gcd(n,k)}$$

This means that:

$$|a^k|\gcd(n,k) = n \to |a^k||n$$

So this means that since $x \in C_1$ that

as
$$x = a^{l}, l \in [1, n-1]$$

Likewise since $x \in C_2$ that

as
$$x = b^i, i \in [1, m-1]$$

But gcd(n,m)=1, meaning that the only time this could be true is when x=1=e