Linear Algebra

Department of Mathematics Indian Institute of Technology Guwahati

January - May 2019

MA 102 (RA, RKS, MGPP, KVK)

Topics:

- Matrix operations
- Invertible matrices
- Elementary matrices and reduction to rref
- Gauss-Jordan elimination for computing in inverse of a matrix
- LU factorization

Recall that an $m \times n$ matrix A with entries a_{ij} has m rows and n columns and can be written as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = [a_{ij}]_{m \times n},$$

Recall that an $m \times n$ matrix A with entries a_{ij} has m rows and n columns and can be written as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = [a_{ij}]_{m \times n},$$

where $\mathbf{A}_i := [a_{i1}, a_{i2}, \dots, a_{in}]$ is the *i*-th row of A for i = 1 : m and $\mathbf{a}_j := [a_{1j}, \dots, a_{mj}]^\top$ is the *j*-th column of A for j = 1 : n.

Recall that an $m \times n$ matrix A with entries a_{ij} has m rows and n columns and can be written as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \\ = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = [a_{ij}]_{m \times n},$$

where $\mathbf{A}_i := [a_{i1}, a_{i2}, \dots, a_{in}]$ is the *i*-th row of A for i = 1 : m and $\mathbf{a}_j := [a_{1j}, \dots, a_{mj}]^\top$ is the *j*-th column of A for j = 1 : n.

Transpose: The transpose of A denoted by A^{\top} is the $n \times m$ matrix given by $A^{\top} = [a_{jj}]_{n \times m}$.

Recall that an $m \times n$ matrix A with entries a_{ii} has m rows and n columns and can be written as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = [a_{ij}]_{m \times n},$$

where $\mathbf{A}_i := [a_{i1}, a_{i2}, \dots, a_{in}]$ is the *i*-th row of A for i = 1 : m and $\mathbf{a}_i := [a_{1i}, \dots, a_{mi}]^{\top}$ is the j-th column of A for j = 1 : n.

Transpose: The transpose of A denoted by A^{\top} is the $n \times m$ matrix given by $A^{\top} = [a_{ii}]_{n \times m}$.

Two matrices $A = [a_{ij}]$ and $B := [b_{ij}]$ are said to be equal (i.e, A=B) if A and B have the same size and $a_{ij}=b_{ij}$ for all i and j.

We denote the set of complex numbers by \mathbb{C} .

A matrix $A := [a_{ij}]$ with entries $a_{ij} \in \mathbb{C}$ (resp., $a_{ij} \in \mathbb{R}$) is said to be a complex (resp.,real) matrix.

We denote the set of complex numbers by \mathbb{C} .

A matrix $A := [a_{ij}]$ with entries $a_{ij} \in \mathbb{C}$ (resp., $a_{ij} \in \mathbb{R}$) is said to be a complex (resp.,real) matrix.

Conjugate transpose: The conjugate transpose of an $m \times n$ complex matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^* and is given by

$$A^* = [\bar{a}_{ji}]_{n \times m} = ([\bar{a}_{ij}]_{m \times n})^\top = (\bar{A})^\top,$$

where \bar{a}_{ij} is the conjugate of a_{ij} .

We denote the set of complex numbers by \mathbb{C} .

A matrix $A := [a_{ij}]$ with entries $a_{ij} \in \mathbb{C}$ (resp., $a_{ij} \in \mathbb{R}$) is said to be a complex (resp.,real) matrix.

Conjugate transpose: The conjugate transpose of an $m \times n$ complex matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^* and is given by

$$A^* = [\bar{a}_{ji}]_{n \times m} = ([\bar{a}_{ij}]_{m \times n})^\top = (\bar{A})^\top,$$

where \bar{a}_{ij} is the conjugate of a_{ij} .

Definition: Let A be an $n \times n$ matrix. Then A is said to be

- symmetric if $A^{\top} = A$,
- **2** skew-symmetric if $A^{\top} = -A$,

We denote the set of complex numbers by \mathbb{C} .

A matrix $A := [a_{ij}]$ with entries $a_{ij} \in \mathbb{C}$ (resp., $a_{ij} \in \mathbb{R}$) is said to be a complex (resp.,real) matrix.

Conjugate transpose: The conjugate transpose of an $m \times n$ complex matrix $A = [a_{ij}]_{m \times n}$ is the $n \times m$ matrix denoted by A^* and is given by

$$A^* = [\bar{a}_{ji}]_{n \times m} = ([\bar{a}_{ij}]_{m \times n})^\top = (\bar{A})^\top,$$

where \bar{a}_{ij} is the conjugate of a_{ij} .

Definition: Let A be an $n \times n$ matrix. Then A is said to be

- symmetric if $A^{\top} = A$,
- 2 skew-symmetric if $A^{\top} = -A$,
- **3** Hermitian if $A^* = A$,
- 4 skew-Hermitian if $A^* = -A$.

Special matrices (recall)

Let A be an $m \times n$ matrix with (i,j)-th entry a_{ij} . Set $p := \min(m, n)$. Then

- a_{ii} for i = 1: p are called the diagonal entries of A;
- A is said to be a diagonal matrix if $a_{ij} = 0$ for all $i \neq j$;

Special matrices (recall)

Let A be an $m \times n$ matrix with (i,j)-th entry a_{ij} . Set $p := \min(m,n)$. Then

- a_{ii} for i = 1: p are called the diagonal entries of A;
- A is said to be a diagonal matrix if $a_{ij} = 0$ for all $i \neq j$;
- A is said to be an upper triangular if $a_{ij} = 0$ for all i > j;
- A is said to be a lower triangular if $a_{ij} = 0$ for all i < j;

Identity matrix: An $n \times n$ diagonal matrix with all diagonal entries equal to 1 is called the identity matrix and is denoted by I_n or I.

Zero matrix: An $m \times n$ matrix with all entries 0 is called the zero matrix and is denoted by $\mathbf{O}_{m \times n}$ or simply by \mathbf{O} .

• $\mathcal{M}_{m \times n} :=$ the set of a $m \times n$ matrices.

- $\mathcal{M}_{m \times n} :=$ the set of a $m \times n$ matrices.
- To specify real (resp., complex) matrices, write $\mathcal{M}_{m \times n}(\mathbb{R})$ (resp., $\mathcal{M}_{m \times n}(\mathbb{C})$).

- $\mathcal{M}_{m \times n} :=$ the set of a $m \times n$ matrices.
- To specify real (resp., complex) matrices, write $\mathcal{M}_{m \times n}(\mathbb{R})$ (resp., $\mathcal{M}_{m \times n}(\mathbb{C})$).
- If m = n, we write \mathcal{M}_n for $\mathcal{M}_{m \times n}$.

- $\mathcal{M}_{m \times n}$:= the set of a $m \times n$ matrices.
- To specify real (resp., complex) matrices, write $\mathcal{M}_{m \times n}(\mathbb{R})$ (resp., $\mathcal{M}_{m \times n}(\mathbb{C})$).
- If m = n, we write \mathcal{M}_n for $\mathcal{M}_{m \times n}$.
- Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be in $\mathcal{M}_{m \times n}$ and α be a scalar. Then

- $\mathcal{M}_{m \times n}$:= the set of a $m \times n$ matrices.
- To specify real (resp., complex) matrices, write $\mathcal{M}_{m \times n}(\mathbb{R})$ (resp., $\mathcal{M}_{m \times n}(\mathbb{C})$).
- If m = n, we write \mathcal{M}_n for $\mathcal{M}_{m \times n}$.
- Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be in $\mathcal{M}_{m \times n}$ and α be a scalar. Then
 - **1** Matrix addition: $A + B := [a_{ij} + b_{ij}] \in \mathcal{M}_{m \times n}$.

- $\mathcal{M}_{m \times n}$:= the set of a $m \times n$ matrices.
- To specify real (resp., complex) matrices, write $\mathcal{M}_{m \times n}(\mathbb{R})$ (resp., $\mathcal{M}_{m \times n}(\mathbb{C})$).
- If m = n, we write \mathcal{M}_n for $\mathcal{M}_{m \times n}$.
- Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be in $\mathcal{M}_{m \times n}$ and α be a scalar. Then
 - **1** Matrix addition: $A + B := [a_{ij} + b_{ij}] \in \mathcal{M}_{m \times n}$.
 - Multiplication by a scalar: $\alpha A := [\alpha a_{ij}] \in \mathcal{M}_{m \times n}$. $(\alpha \in \mathbb{R} \text{ when } A \text{ and } B \text{ are real matrices, and } \alpha \in \mathbb{C} \text{ when } A \text{ and } B \text{ are complex matrices})$

- **1** Commutative Law: A + B = B + A.
- 2 Associative Law: (A + B) + C = A + (B + C).

- **1** Commutative Law: A + B = B + A.
- Associative Law: (A + B) + C = A + (B + C).
- **4** $A + (-A) = \mathbf{0}$, where $-A = (-1)A \in \mathcal{M}_{m \times n}$.

- **1** Commutative Law: A + B = B + A.
- Associative Law: (A + B) + C = A + (B + C).

- $(\alpha + \beta)A = \alpha A + \beta A.$

- **1** Commutative Law: A + B = B + A.
- Associative Law: (A + B) + C = A + (B + C).
- **3** $A + \mathbf{0} = A$, where $\mathbf{0} = \mathbf{0}_{m \times n} \in \mathcal{M}_{m \times n}$.

- $(\alpha + \beta)A = \alpha A + \beta A.$
- **1** A = A.

Let $A := [\mathbf{a}_1 \cdots \mathbf{a}_n] \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $\mathbf{x} := [x_1, \dots, x_n]^\top \in \mathbb{R}^n$. Recall the matrix-vector multiplication

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n \in \mathbb{R}^m.$$

Let $A := [\mathbf{a}_1 \cdots \mathbf{a}_n] \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $\mathbf{x} := [x_1, \dots, x_n]^\top \in \mathbb{R}^n$. Recall the matrix-vector multiplication

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n \in \mathbb{R}^m.$$

This shows that A act on x as a well defined function

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \mathbf{x} \longmapsto A\mathbf{x},$$

and satisfies following:

Let $A:= [\mathbf{a}_1 \cdots \mathbf{a}_n] \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $\mathbf{x}:= [x_1, \dots, x_n]^\top \in \mathbb{R}^n$. Recall the matrix-vector multiplication

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n \in \mathbb{R}^m.$$

This shows that A act on x as a well defined function

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \mathbf{x} \longmapsto A\mathbf{x},$$

and satisfies following:

- $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$ for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n .
- $A(\alpha \mathbf{x}) = \alpha A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

Let $A := \begin{bmatrix} \mathbf{a_1} & \cdots & \mathbf{a_n} \end{bmatrix} \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $\mathbf{x} := [x_1, \dots, x_n]^\top \in \mathbb{R}^n$. Recall the matrix-vector multiplication

$$\mathbf{Ax} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n \in \mathbb{R}^m.$$

This shows that A act on x as a well defined function

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \mathbf{x} \longmapsto A\mathbf{x},$$

and satisfies following:

- \bullet A(x + y) = Ax + Ay for all x, y in \mathbb{R}^n .
- \bullet $A(\alpha \mathbf{x}) = \alpha A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

We refer to $A: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \mathbf{x} \longmapsto A\mathbf{x}$, as a linear mapping.

Let $A \in \mathcal{M}_{m \times n}$ and $B := [\ \mathbf{b_1} \ \cdots \ \mathbf{b_p} \] \in \mathcal{M}_{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Let $A \in \mathcal{M}_{m \times n}$ and $B := [\begin{array}{ccc} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{array}] \in \mathcal{M}_{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Justification: Define AB to be the composition of the maps

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \mathbf{x} \mapsto A\mathbf{x}, \text{ and } B: \mathbb{R}^p \longrightarrow \mathbb{R}^n, \mathbf{y} \mapsto B\mathbf{y}.$$

Let
$$A \in \mathcal{M}_{m \times n}$$
 and $B := [\mathbf{b}_1 \ \cdots \ \mathbf{b}_p] \in \mathcal{M}_{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [Ab_1 \cdots Ab_p].$$

Justification: Define AB to be the composition of the maps

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \mathbf{x} \mapsto A\mathbf{x}, \text{ and } B: \mathbb{R}^p \longrightarrow \mathbb{R}^n, \mathbf{y} \mapsto B\mathbf{y}.$$

Then the linear map $AB : \mathbb{R}^p \longrightarrow \mathbb{R}^m$ is given by

$$AB\mathbf{y} := A(B\mathbf{y}) = A(y_1\mathbf{b}_1 + \dots + y_p\mathbf{b}_p)$$

= $y_1A\mathbf{b}_1 + \dots + y_pA\mathbf{b}_p = [A\mathbf{b}_1 \dots A\mathbf{b}_p]\mathbf{y}$

for all $\mathbf{y} \in \mathbb{R}^p$

Let $A \in \mathcal{M}_{m \times n}$ and $B := [\begin{array}{ccc} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{array}] \in \mathcal{M}_{n \times p}$.

Definition: Define the matrix-matrix multiplication AB by

$$AB := [A\mathbf{b}_1 \cdots A\mathbf{b}_p].$$

Justification: Define AB to be the composition of the maps

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \mathbf{x} \mapsto A\mathbf{x}, \text{ and } B: \mathbb{R}^p \longrightarrow \mathbb{R}^n, \mathbf{y} \mapsto B\mathbf{y}.$$

Then the linear map $AB : \mathbb{R}^p \longrightarrow \mathbb{R}^m$ is given by

$$AB\mathbf{y} := A(B\mathbf{y}) = A(y_1\mathbf{b}_1 + \dots + y_p\mathbf{b}_p)$$

= $y_1A\mathbf{b}_1 + \dots + y_pA\mathbf{b}_p = [A\mathbf{b}_1 \dots A\mathbf{b}_p]\mathbf{y}$

for all
$$\mathbf{y} \in \mathbb{R}^p \Longrightarrow AB = [A\mathbf{b}_1 \cdots A\mathbf{b}_p]$$
.

Let
$$A = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \in \mathcal{M}_{m \times n}, \ B := \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{bmatrix} \in \mathcal{M}_{n \times p}.$$
 Then
$$AB = \begin{bmatrix} \mathbf{A}_1 \mathbf{b}_1 & \cdots & \mathbf{A}_1 \mathbf{b}_p \\ \vdots & \cdots & \vdots \\ \mathbf{A}_m \mathbf{b}_1 & \cdots & \mathbf{A}_1 \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 B \\ \vdots \\ \mathbf{A}_m B \end{bmatrix}.$$

Let
$$A = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \in \mathcal{M}_{m \times n}, \ B := \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{bmatrix} \in \mathcal{M}_{n \times p}.$$
 Then
$$AB = \begin{bmatrix} \mathbf{A}_1 \mathbf{b}_1 & \cdots & \mathbf{A}_1 \mathbf{b}_p \\ \vdots & \cdots & \vdots \\ \mathbf{A}_m \mathbf{b}_1 & \cdots & \mathbf{A}_1 \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 B \\ \vdots \\ \mathbf{A}_m B \end{bmatrix}.$$

Thus if $A:=[a_{ij}]_{m\times n}, B:=[b_{ij}]_{n\times p}$ and $C:=AB=[c_{ij}]_{m\times p}$ then

$$c_{ij} = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ \vdots \\ b_{nk} \end{bmatrix} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Let
$$A = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \in \mathcal{M}_{m \times n}, B := \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{bmatrix} \in \mathcal{M}_{n \times p}.$$
 Then
$$AB = \begin{bmatrix} \mathbf{A}_1 \mathbf{b}_1 & \cdots & \mathbf{A}_1 \mathbf{b}_p \\ \vdots & \cdots & \vdots \\ \mathbf{A}_m \mathbf{b}_1 & \cdots & \mathbf{A}_1 \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 B \\ \vdots \\ \mathbf{A}_m B \end{bmatrix}.$$

Thus if $A:=[a_{ij}]_{m\times n}, B:=[b_{ij}]_{n\times p}$ and $C:=AB=[c_{ij}]_{m\times p}$ then

$$(c_{ij}) = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ \vdots \\ b_{ni} \end{bmatrix} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Note:

$$\mathbf{e}_i^{\top} A = \mathbf{A}_i = i\text{-th row of } A, \text{ where } \mathbf{e}_i \in \mathbb{R}^m$$

$$A\mathbf{e}_j = \mathbf{a}_j = j\text{-th column of } A, \text{ where } \mathbf{e}_j \in \mathbb{R}^n.$$

Thoerm: Let A, B and C be matrices, and let $\alpha \in \mathbb{R}$. Then

Thoerm: Let A, B and C be matrices, and let $\alpha \in \mathbb{R}$. Then

- **1** Associative Law: (AB)C = A(BC), if the respective matrix products are defined.
- ② Distributive Law: A(B+C) = AB + AC, (A+B)C = AC + BC, if the respective matrix sum and matrix products are defined.

Matrix multiplication

Thoerm: Let A, B and C be matrices, and let $\alpha \in \mathbb{R}$. Then

- **1** Associative Law: (AB)C = A(BC), if the respective matrix products are defined.
- ② Distributive Law: A(B+C) = AB + AC, (A+B)C = AC + BC, if the respective matrix sum and matrix products are defined.
- **3** $\alpha(AB) = (\alpha A)B = A(\alpha B)$, if the respective matrix products are defined.

Block matrix

Definition: An $m \times n$ block matrix (or a partition matrix) is a matrix of the form

$$A := \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \cdots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{array} \right]$$

where each A_{ij} is a $p_i \times q_j$ matrix for i = 1 : m and j = 1 : n.

Block matrix

Definition: An $m \times n$ block matrix (or a partition matrix) is a matrix of the form

$$A := \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \cdots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{array} \right]$$

where each A_{ij} is a $p_i \times q_j$ matrix for i = 1 : m and j = 1 : n.

Then $[A_{i1} \cdots A_{in}]$ is the *i*-th block row of A and A_{ij} is A_{mj}

the j-th block column of A.

Block matrix

Definition: An $m \times n$ block matrix (or a partition matrix) is a matrix of the form

$$A := \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \cdots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{array} \right]$$

where each A_{ij} is a $p_i \times q_i$ matrix for i = 1 : m and j = 1 : n.

Then
$$\begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$
 is the *i*-th block row of A and $\begin{bmatrix} A_{1j} \\ \vdots \\ A_{mi} \end{bmatrix}$ is

the *j*-th block column of A.

block columns.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of $A_{ij} =$ size of B_{ij} for i = 1 : m and j = 1 : n. Then $A + B := [A_{ij} + B_{ij}]_{m \times n}$.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of $A_{ij} =$ size of B_{ij} for i = 1 : m and j = 1 : n. Then $A + B := [A_{ij} + B_{ij}]_{m \times n}$.

Block matrix multiplication: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{n \times p}$ be block matrices. If the matrix multiplication $C_{ij} := \sum_{k=1}^{n} A_{ik} B_{kj}$ is well defined for i = 1 : m and j = 1 : p then AB is an $m \times p$ block matrix given by $AB = [C_{ii}]_{m \times p}$.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of A_{ij} = size of B_{ij} for i = 1 : m and j = 1 : n. Then $A + B := [A_{ij} + B_{ij}]_{m \times n}$.

Block matrix multiplication: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{n \times p}$ be block matrices. If the matrix multiplication $C_{ij} := \sum_{k=1}^{n} A_{ik} B_{kj}$ is well defined for i = 1 : m and j = 1 : p then AB is an $m \times p$ block matrix given by $AB = [C_{ij}]_{m \times p}$.

Conformal partition: If a block operation of block matrices A and B are well defined then A and B are said to be partitioned conformably.

Block matrix addition: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{m \times n}$ be block matrices such that size of $A_{ij} =$ size of B_{ij} for i = 1 : m and j = 1 : n. Then $A + B := [A_{ij} + B_{ij}]_{m \times n}$.

Block matrix multiplication: Let $A := [A_{ij}]_{m \times n}$ and $B := [B_{ij}]_{n \times p}$ be block matrices. If the matrix multiplication $C_{ij} := \sum_{k=1}^{n} A_{ik} B_{kj}$ is well defined for i = 1 : m and j = 1 : p then AB is an $m \times p$ block matrix given by $AB = [C_{ij}]_{m \times p}$.

Conformal partition: If a block operation of block matrices A and B are well defined then A and B are said to be partitioned conformably.

Example:
$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix} =$$

$$\left[\begin{array}{ccc} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} & A_{11}B_{13} + A_{12}B_{23} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} & A_{21}B_{13} + A_{22}B_{23} \end{array}\right].$$

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$. The matrix B is called an inverse of A.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$. The matrix B is called an inverse of A.

Fact: Inverse of an invertible matrix A is unique. (Exercise)

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$. The matrix B is called an inverse of A.

Fact: Inverse of an invertible matrix A is unique. (Exercise) We denote the inverse of A by A^{-1} .

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$. The matrix B is called an inverse of A.

Fact: Inverse of an invertible matrix A is unique. (Exercise) We denote the inverse of A by A^{-1} .

Note: We can talk of invertibility only of square matrices.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$. The matrix B is called an inverse of A.

Fact: Inverse of an invertible matrix A is unique. (Exercise) We denote the inverse of A by A^{-1} .

Note: We can talk of invertibility only of square matrices.

• For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$. The matrix B is called an inverse of A.

Fact: Inverse of an invertible matrix A is unique. (Exercise) We denote the inverse of A by A^{-1} .

Note: We can talk of invertibility only of square matrices.

ullet For example, the matrix $A=\left[egin{array}{cc} 2 & 5 \\ 1 & 3 \end{array}
ight]$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

• The zero matrix **O** is not invertible.

Definition: An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$. The matrix B is called an inverse of A.

Fact: Inverse of an invertible matrix A is unique. (Exercise) We denote the inverse of A by A^{-1} .

Note: We can talk of invertibility only of square matrices.

• For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

- The zero matrix **O** is not invertible.
- If A has a zero row, then A is not invertible.

Properties of invertible matrices

Fact: Let A and B be two invertible matrices of the same size.

- If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- 2 The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- **3** The matrix A^T is invertible, and $(A^T)^{-1} = (A^{-1})^T$.
- **4** For any non-negative integer k, the matrix A^k is invertible, and $(A^k)^{-1} = (A^{-1})^k$.

Properties of invertible matrices

Fact: Let A and B be two invertible matrices of the same size.

- If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- 2 The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- 3 The matrix A^T is invertible, and $(A^T)^{-1} = (A^{-1})^T$.
- For any non-negative integer k, the matrix A^k is invertible, and $(A^k)^{-1} = (A^{-1})^k$.

Let
$$A := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$ then A is invertible, and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

for any matrix there exist a inverse iff the determinant of the matrix is not zero.

If ad - bc = 0 then A is not invertible.

Elementary matrices

Type	Operation	Inverse operation
1	$R_i \longleftarrow \alpha R_i$	$R_i \longleftarrow \frac{1}{\alpha} R_i$
11	$R_i \leftarrow cR_i + R_i$	$R_i \longleftarrow -c\widetilde{R}_i + R_i$
111	$R_i \leftrightarrow R_j$	$R_i \leftrightarrow R_j$

Elementary matrices

$$\begin{array}{c|c} \mathsf{Type} & \mathsf{Operation} \\ \mathsf{I} & \mathsf{R}_i \longleftarrow \alpha \, \mathsf{R}_i \\ \mathsf{III} & \mathsf{R}_j \longleftarrow c \mathsf{R}_i + \mathsf{R}_j \\ \mathsf{III} & \mathsf{R}_i \leftrightarrow \mathsf{R}_j \end{array} \quad \begin{array}{c} \mathsf{Inverse \ operation} \\ \mathsf{R}_i \longleftarrow \frac{1}{\alpha} \, \mathsf{R}_i \\ \mathsf{R}_j \longleftarrow -c \mathsf{R}_i + \mathsf{R}_j \\ \mathsf{R}_i \leftrightarrow \mathsf{R}_j \end{array}$$

An elementary matrix is a matrix that is obtained by performing an elementary row operation on the identity matrix.

Elementary matrices

$$\begin{array}{c|c} \mathsf{Type} & \mathsf{Operation} \\ \mathsf{I} & \mathsf{R}_i \longleftarrow \alpha \, \mathsf{R}_i \\ \mathsf{III} & \mathsf{R}_j \longleftarrow c \mathsf{R}_i + \mathsf{R}_j \\ \mathsf{III} & \mathsf{R}_i \leftrightarrow \mathsf{R}_j \end{array} \quad \begin{array}{c} \mathsf{Inverse \ operation} \\ \mathsf{R}_i \longleftarrow \frac{1}{\alpha} \, \mathsf{R}_i \\ \mathsf{R}_j \longleftarrow -c \mathsf{R}_i + \mathsf{R}_j \\ \mathsf{R}_i \leftrightarrow \mathsf{R}_j \end{array}$$

An elementary matrix is a matrix that is obtained by performing an elementary row operation on the identity matrix.

Type I:
$$E_2(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow E_2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ \alpha x_2 \\ x_3 \end{bmatrix}.$$

$$E_2(\alpha)A = \begin{bmatrix} \operatorname{row}_1(A) \\ \alpha \operatorname{row}_2(A) \\ \operatorname{row}_3(A) \end{bmatrix} = \text{ multiply 2nd row of } A \text{ by } \alpha.$$

$$(E_2(\alpha))^{-1} = E_2(\frac{1}{\alpha}).$$

Type II elementary matrices

Type II:
$$E_{13}(2) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = I_3 + 2e_3e_1^T$$

The matrix E_{13} is obtained by performing $R_3 \leftarrow 2R_1 + R_3$ on I_3 .

Type II elementary matrices

Type II:
$$E_{13}(2) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = I_3 + 2e_3e_1^T$$

The matrix E_{13} is obtained by performing $R_3 \leftarrow 2R_1 + R_3$ on I_3 .

$$E_{13}(2)\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = \begin{bmatrix}x_1\\x_2\\x_3+2x_1\end{bmatrix} \Rightarrow E_{13}A = \begin{bmatrix}\operatorname{row}_1(A)\\\operatorname{row}_2(A)\\\operatorname{row}_3(A)+2\operatorname{row}_1(A)\end{bmatrix}.$$

$$(E_{13}(2))^{-1} = E_{13}(-2)$$
 corresponds to $R_3 \leftarrow -2R_1 + R_3$ on I_3 .

Type III elementary matrices

Type III : E_{ij} is obtained by performing $R_i \leftrightarrow R_j$ on I.

$$E_{23} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right] \Rightarrow E_{23} \left[\begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix}\right] = \left[\begin{matrix} x_1 \\ x_3 \\ x_2 \end{matrix}\right] \Rightarrow E_{23} A = \left[\begin{matrix} \operatorname{row}_1(A) \\ \operatorname{row}_3(A) \\ \operatorname{row}_2(A) \end{matrix}\right].$$

Type III elementary matrices

Type III : E_{ij} is obtained by performing $R_i \leftrightarrow R_j$ on I.

 $(E_{ij})^{-1} = E_{ij}$ corresponds to row operation $R_i \leftrightarrow R_j$ on I.

Observation: Inverse of an elementary matrix is also an elementary matrix of same type.

Row operation via elementary matrices

Crux of the matter:

- Type I: Multiplying $E_i(c)$ to A giving $E_i(c)A$ amounts to performing the row operation $R_i \leftarrow cR_i$ on A.
- Type II: Multiplying $E_{ij}(c)$ to A giving $E_{ij}(c)A$ amounts to performing the row operation $R_j \leftarrow cR_i + R_j$ on A..
- Type III: Multiplying E_{ij} to A giving $E_{ij}A$ amounts to performing the row operation $R_i \leftrightarrow R_j$ on A.

Row operation via elementary matrices

Crux of the matter:

- Type I: Multiplying $E_i(c)$ to A giving $E_i(c)A$ amounts to performing the row operation $R_i \leftarrow cR_i$ on A.
- Type II: Multiplying $E_{ij}(c)$ to A giving $E_{ij}(c)A$ amounts to performing the row operation $R_j \leftarrow cR_i + R_j$ on A.
- Type III: Multiplying E_{ij} to A giving $E_{ij}A$ amounts to performing the row operation $R_i \leftrightarrow R_j$ on A.

Recall that two matrices A and B are said to be row equivalent if A can be transformed to B by elementary row operations.

Theorem: The matrices A and B are row equivalent \iff $B = E_k \cdots E_2 E_1 A$ for some elementary matrices E_1, E_2, \cdots, E_k .

Elementary matrices and echelon form

Forward GE: $m \times n$ matrix $A \longrightarrow \text{row echelon form } ref(A)$

 $\operatorname{ref}(A) = E_{\rho} \cdots E_2 E_1 A$ for some elementary matrices E_1, \dots, E_{ρ} .

Elementary matrices and echelon form

Forward GE: $m \times n$ matrix $A \longrightarrow \text{row echelon form } ref(A)$

 $\operatorname{ref}(A) = E_{\rho} \cdots E_2 E_1 A$ for some elementary matrices E_1, \dots, E_{ρ} .

Gauss-Jordan: $A \longrightarrow \text{reduced row echelon form } \text{rref}(A)$

 $\operatorname{rref}(A) = \hat{E}_{\ell} \cdots \hat{E}_{2} \hat{E}_{1} A$ for some elementary matrices $\hat{E}_{1}, \dots, \hat{E}_{\ell}$.

Elementary matrices and echelon form

Forward GE:
$$m \times n$$
 matrix $A \longrightarrow \text{row echelon form } \operatorname{ref}(A)$
 $\downarrow \downarrow$
 $\operatorname{ref}(A) = E_p \cdots E_2 E_1 A$ for some elementary matrices E_1, \ldots, E_p .

Gauss-Jordan: $A \longrightarrow \text{reduced row echelon form } \operatorname{rref}(A)$
 $\downarrow \downarrow$
 $\operatorname{rref}(A) = \hat{E}_{\ell} \cdots \hat{E}_2 \hat{E}_1 A$ for some elementary matrices $\hat{E}_1, \ldots, \hat{E}_{\ell}$.

Fact: Let $[A \upharpoonright b] \longrightarrow \operatorname{ref}([A \upharpoonright b]) =: [U \upharpoonright d]$. Then the system $Ax = b$ and $Ux = d$ are equivalent.

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

Α

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{\overline{E_{12}}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{E_{12}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{E_{13}(-2), E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{E_{12}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{E_{13}(-2), E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{E_{12}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{E_{13}(-2), E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{E_{12}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{E_{13}(-2), E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

$$\frac{}{E_{32}(-1), E_{42}(-1/2)} \leftarrow \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & -2 & -5
\end{bmatrix}
\xrightarrow{E_{43}(2)}
\begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

(Gaussian Elimination stops here.

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{E_{12}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{E_{13}(-2), E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

$$\frac{}{E_{32}(-1), E_{42}(-1/2)} \leftarrow \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & -2 & -5
\end{bmatrix}
\xrightarrow{E_{43}(2)}
\begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{E_{12}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{E_{13}(-2), E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

$$\frac{}{E_{32}(-1), E_{42}(-1/2)} \leftarrow \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & -2 & -5
\end{bmatrix}
\xrightarrow{E_{43}(2)}
\begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\overline{E_{34}(-3), E_{24}(-4)} \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{\overline{E_{12}}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{\overline{E_{13}(-2)}, \ E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

$$\frac{}{E_{32}(-1), E_{42}(-1/2)} \rightarrow \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & -2 & -5
\end{bmatrix}
\xrightarrow{E_{43}(2)}
\begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{E_{34}(-3), E_{24}(-4)} \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\underbrace{E_{13}(-2), E_{23}(4)}_{E_{13}(-2), E_{23}(4)} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Find rref of
$$A = \begin{bmatrix} 0 & 2 & -4 & 4 \\ 1 & 0 & 2 & 0 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix}$$
.

$$A \xrightarrow{E_{12}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 2 & 2 & 1 & 7 \\ 2 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{E_{13}(-2), E_{14}(-2)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 4 \\ 0 & 2 & -3 & 7 \\ 0 & 1 & -4 & -3 \end{bmatrix}$$

$$\frac{}{E_{32}(-1), E_{42}(-1/2)} \leftarrow \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & -2 & -5
\end{bmatrix}
\xrightarrow{E_{43}(2)} \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 2 & -4 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{E_{34}(-3), E_{24}(-4)} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & -4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \underbrace{E_{13}(-2), E_{23}(4)}_{E_{13}(-2), E_{23}(4)} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \underbrace{E_{2}(1/2)}_{E_{2}(1/2)} I_{4}$$

Question: Suppose $rref(A) = I_n$. Is A invertible?.

Question: Suppose $rref(A) = I_n$. Is A invertible?.

Fact: Let A be an $n \times n$ matrix. If $E_p \cdots E_2 E_1 A = I_n$ then $A^{-1} = E_p \cdots E_2 E_1$, where E_1, \dots, E_p are elementary matrices.

Observation: Elementary row operations that transform A to I_n transform I_n to A^{-1} .

Question: Suppose $rref(A) = I_n$. Is A invertible?.

Fact: Let A be an $n \times n$ matrix. If $E_p \cdots E_2 E_1 A = I_n$ then $A^{-1} = E_p \cdots E_2 E_1$, where E_1, \dots, E_p are elementary matrices.

Observation: Elementary row operations that transform A to I_n transform I_n to A^{-1} .

Note: If A is invertible, then the rref of $[A \mid I_n]$ is given by

$$\operatorname{rref}(\left[A\mid I_{n}\right])=\left[E_{k}\cdots E_{2}E_{1}A\mid E_{k}\cdots E_{2}E_{1}\right]=$$

Question: Suppose $rref(A) = I_n$. Is A invertible?.

Fact: Let A be an $n \times n$ matrix. If $E_p \cdots E_2 E_1 A = I_n$ then $A^{-1} = E_p \cdots E_2 E_1$, where E_1, \dots, E_p are elementary matrices.

Observation: Elementary row operations that transform A to I_n transform I_n to A^{-1} .

Note: If A is invertible, then the rref of $[A \mid I_n]$ is given by

$$\operatorname{rref}(\left[A\mid I_{n}\right])=\left[E_{k}\cdots E_{2}E_{1}A\mid E_{k}\cdots E_{2}E_{1}\right]=\left[I_{n}\mid A^{-1}\right].$$

Question: Suppose $ref(A) = I_n$. Is A invertible?.

Fact: Let A be an $n \times n$ matrix. If $E_p \cdots E_2 E_1 A = I_n$ then $A^{-1} = E_p \cdots E_2 E_1$, where E_1, \dots, E_p are elementary matrices.

Observation: Elementary row operations that transform A to I_n transform I_n to A^{-1} .

Note: If A is invertible, then the rref of $[A | I_n]$ is given by

$$\operatorname{rref}([A | I_n]) = [E_k \cdots E_2 E_1 A | (E_k \cdots E_2 E_1)] = [I_n | A^{-1}].$$

So to find A^{-1} , use GJE to $[A \mid I_n]$.

Gauss-Jordan method:

$$[A \mid I_n] \longrightarrow [I_n \mid X] \Rightarrow A$$
 is invertible and $A^{-1} = X$.

Let
$$A := \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{bmatrix}$$
. Then $[A \mid I] \rightarrow [I \mid A^{-1}]$ gives

Let
$$A:=egin{bmatrix}1&2&3\\2&5&7\\3&7&9\end{bmatrix}$$
 . Then $[A\mid I] o [I\mid A^{-1}]$ gives

$$\left[\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 7 & 0 & 1 & 0 \\ 3 & 7 & 9 & 0 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 1 & 0 & -3 & 0 & 1 \end{array}\right] \rightarrow$$

Let
$$A:=egin{bmatrix}1&2&3\\2&5&7\\3&7&9\end{bmatrix}$$
 . Then $[A\mid I] o [I\mid A^{-1}]$ gives

$$\left[\begin{array}{ccc|ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 7 & 0 & 1 & 0 \\ 3 & 7 & 9 & 0 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{cccc|ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 1 & 0 & -3 & 0 & 1 \end{array}\right] \rightarrow$$

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 5 & -2 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & -1 & -1 & -1 & 1 \end{array}\right] \rightarrow \left[\begin{array}{cccc|ccc|c} 1 & 0 & 0 & 4 & -3 & 1 \\ 0 & 1 & 0 & -3 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & -1 \end{array}\right]$$

Let
$$A:=\begin{bmatrix}1&2&3\\2&5&7\\3&7&9\end{bmatrix}$$
 . Then $[A\mid I]\to [I\mid A^{-1}]$ gives

$$\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 7 & 0 & 1 & 0 \\
3 & 7 & 9 & 0 & 0 & 1
\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 & 1 & 0 \\
0 & 1 & 0 & -3 & 0 & 1
\end{array}\right] \rightarrow$$

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 5 & -2 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & -1 & -1 & -1 & 1 \end{array}\right] \rightarrow \left[\begin{array}{cccc|ccc|c} 1 & 0 & 0 & 4 & -3 & 1 \\ 0 & 1 & 0 & -3 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & -1 \end{array}\right]$$

$$\Rightarrow A^{-1} = \left[\begin{array}{rrr} 4 & -3 & 1 \\ -3 & 0 & 1 \\ 1 & 1 & -1 \end{array} \right].$$

Characterization of invertibility

Theorem: Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- **1** A is invertible.
- **2** Ax = b has a unique solution for every b in \mathbb{R}^n .
- **3** Ax = 0 has only the trivial solution.
- The reduced row echelon form of A is I_n .
- **5** *A* is a product of elementary matrices.

LU Factorization

An $n \times n$ matrix A has an LU factorization if A = LU, where U is upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If $A \longrightarrow ref(A)$ without row interchange then A has an LU factorization.

LU Factorization

An $n \times n$ matrix A has an LU factorization if A = LU, where U is upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If $A \longrightarrow ref(A)$ without row interchange then A has an LU factorization.

- $E_p \dots E_2 E_1 A = \operatorname{ref}(A) \Rightarrow A = LU$.
- $L := E_1^{-1} E_2^{-1} \dots E_p^{-1}$ and U := ref(A).
- Each E_j is unit lower triangular and Type-II $\Rightarrow L$ is unit lower triangular.

LU Factorization

An $n \times n$ matrix A has an LU factorization if A = LU, where U is upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If $A \longrightarrow ref(A)$ without row interchange then A has an LU factorization.

- $E_p \dots E_2 E_1 A = \operatorname{ref}(A) \Rightarrow A = LU$.
- $L := E_1^{-1} E_2^{-1} \dots E_p^{-1}$ and U := ref(A).
- Each E_j is unit lower triangular and Type-II $\Rightarrow L$ is unit lower triangular.

Solution of Ax = b via LU factorization (if exists):

- Compute A = LU.
- Solve Ly = b for y forward substitution.
- Solve Ux = y for x back substitution.

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. Set $m_{21} := a_{21}/a_{11}$ and $m_{31} := a_{31}/a_{11}$

when $a_{11} \neq 0$ (pivot) and define

$$E_1 := \begin{bmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } E_2 := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -m_{31} & 0 & 1 \end{bmatrix}.$$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. Set $m_{21} := a_{21}/a_{11}$ and $m_{31} := a_{31}/a_{11}$

when $a_{11} \neq 0$ (pivot) and define

Then

$$E_2 E_1 A = E_2 \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix}.$$

Set $m_{32} := a_{32}^{(1)}/a_{22}^{(1)}$ if $a_{22}^{(1)} \neq 0$ (pivot) and define

$$E_3 := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{bmatrix}$$
. Then we have

$$E_3E_2E_1A = E_3 \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix} = U.$$

.

$$E_3 := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{bmatrix}$$
 . Then we have

$$\begin{bmatrix}
E_3 E_2 E_1 A = E_3 \\
0 & a_{22}^{(1)} & a_{23}^{(1)} \\
0 & a_{32}^{(1)} & a_{33}^{(1)}
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{(1)} & a_{23}^{(1)} \\
0 & 0 & a_{33}^{(2)}
\end{bmatrix} =
\begin{bmatrix}
U.
\end{bmatrix}$$

.

Hence
$$A = LU$$
, where $L = E_1^{-1}E_2^{-1}E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix}$.

Examples: LU factorization

Let
$$A:=\begin{bmatrix}1&1&1\\1&2&2\\1&2&3\end{bmatrix}$$
 . Then $A=LU,$ where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Examples: LU factorization

Let
$$A:=egin{bmatrix}1&1&1\\1&2&2\\1&2&3\end{bmatrix}$$
 . Then $A=LU,$ where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Let
$$A := \begin{bmatrix} 2 & 4 & -1 \\ -4 & -5 & 3 \\ 2 & -5 & -4 \end{bmatrix}$$
. Then $A = LU$, where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -3 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 2 & 4 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Three theorems with similar proof structure

Theorem: rref of a matrix is unique. Equivalently, if R_1 and R_2 are in rref and are row equivalent, then $R_1 = R_2$.

Three theorems with similar proof structure

Theorem: rref of a matrix is unique. Equivalently, if R_1 and R_2 are in rref and are row equivalent, then $R_1 = R_2$.

Theorem: Let A and B be $m \times n$ matrices. Then the systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ are equivalent (i.e. have same solutions) if and only if A and B are row equivalent.

Three theorems with similar proof structure

Theorem: rref of a matrix is unique. Equivalently, if R_1 and R_2 are in rref and are row equivalent, then $R_1 = R_2$.

Theorem: Let A and B be $m \times n$ matrices. Then the systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ are equivalent (i.e. have same solutions) if and only if A and B are row equivalent.

Theorem: Let A and B be $m \times n$ matrices. Suppose that the systems Ax = b and Bx = c are consistent. Then the two systems are equivalent if and only if the matrices $\begin{bmatrix} A & b \end{bmatrix}$ and $\begin{bmatrix} B & c \end{bmatrix}$ are row equivalent.

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Proof: Note that R_1 and R_2 are row equivalent. Hence

$$R_1 \mathbf{x} = \mathbf{0} \Longleftrightarrow R_2 \mathbf{x} = \mathbf{0}. \tag{1}$$

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Proof: Note that R_1 and R_2 are row equivalent. Hence

$$R_1 \mathbf{x} = \mathbf{0} \Longleftrightarrow R_2 \mathbf{x} = \mathbf{0}. \tag{1}$$

Step-1: Claim $R_1 e_1 = R_2 e_1$.

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Proof: Note that R_1 and R_2 are row equivalent. Hence

$$R_1\mathbf{x} = \mathbf{0} \Longleftrightarrow R_2\mathbf{x} = \mathbf{0}. \tag{1}$$

Step-1: Claim $R_1 e_1 = R_2 e_1$.

By (1), we have $R_1\mathbf{e}_1 = \mathbf{0} \iff R_2\mathbf{e}_1 = \mathbf{0}$.

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Proof: Note that R_1 and R_2 are row equivalent. Hence

$$R_1\mathbf{x} = \mathbf{0} \Longleftrightarrow R_2\mathbf{x} = \mathbf{0}. \tag{1}$$

Step-1: Claim $R_1 e_1 = R_2 e_1$.

By (1), we have $R_1\mathbf{e}_1 = \mathbf{0} \iff R_2\mathbf{e}_1 = \mathbf{0}$.

If $R_1\mathbf{e}_1 \neq \mathbf{0}$ then $R_1\mathbf{e}_1$ and $R_2\mathbf{e}_1$ are pivot columns. Hence

$$R_1\mathbf{e}_1=\mathbf{e}_1=R_2\mathbf{e}_1.$$

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Proof: Note that R_1 and R_2 are row equivalent. Hence

$$R_1 \mathbf{x} = \mathbf{0} \Longleftrightarrow R_2 \mathbf{x} = \mathbf{0}. \tag{1}$$

Step-1: Claim R_1 **e**₁ = R_2 **e**₁.

By (1), we have $R_1\mathbf{e}_1 = \mathbf{0} \iff R_2\mathbf{e}_1 = \mathbf{0}$.

If $R_1\mathbf{e}_1 \neq \mathbf{0}$ then $R_1\mathbf{e}_1$ and $R_2\mathbf{e}_1$ are pivot columns. Hence

$$R_1\mathbf{e}_1=\mathbf{e}_1=R_2\mathbf{e}_1.$$

Step-2: Induction: Suppose $R_1\mathbf{e}_j=R_2\mathbf{e}_j$ for j=1:k. Claim: $R_1\mathbf{e}_{k+1}=R_2\mathbf{e}_{k+1}$.

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Proof: Note that R_1 and R_2 are row equivalent. Hence

$$R_1 \mathbf{x} = \mathbf{0} \Longleftrightarrow R_2 \mathbf{x} = \mathbf{0}. \tag{1}$$

Step-1: Claim $R_1 e_1 = R_2 e_1$.

By (1), we have $R_1\mathbf{e}_1 = \mathbf{0} \iff R_2\mathbf{e}_1 = \mathbf{0}$.

If $R_1\mathbf{e}_1 \neq \mathbf{0}$ then $R_1\mathbf{e}_1$ and $R_2\mathbf{e}_1$ are pivot columns. Hence

$$R_1\mathbf{e}_1=\mathbf{e}_1=R_2\mathbf{e}_1.$$

Step-2: Induction: Suppose $R_1\mathbf{e}_j=R_2\mathbf{e}_j$ for j=1:k. Claim: $R_1\mathbf{e}_{k+1}=R_2\mathbf{e}_{k+1}$. If $R_1\mathbf{e}_{k+1}$ is a non-pivot column then there exist α_1,\ldots,α_k such that

Theorem: Let R_1 and R_2 be rref of A. Then $R_1 = R_2$.

Proof: Note that R_1 and R_2 are row equivalent. Hence

$$R_1 \mathbf{x} = \mathbf{0} \Longleftrightarrow R_2 \mathbf{x} = \mathbf{0}. \tag{1}$$

Step-1: Claim $R_1 e_1 = R_2 e_1$.

By (1), we have $R_1\mathbf{e}_1 = \mathbf{0} \iff R_2\mathbf{e}_1 = \mathbf{0}$.

If $R_1\mathbf{e}_1 \neq \mathbf{0}$ then $R_1\mathbf{e}_1$ and $R_2\mathbf{e}_1$ are pivot columns. Hence

$$R_1\mathbf{e}_1 = \mathbf{e}_1 = R_2\mathbf{e}_1.$$

Step-2: Induction: Suppose $R_1\mathbf{e}_j=R_2\mathbf{e}_j$ for j=1: k. Claim: $R_1\mathbf{e}_{k+1}=R_2\mathbf{e}_{k+1}$. If $R_1\mathbf{e}_{k+1}$ is a non-pivot column then there exist α_1,\ldots,α_k such that

$$R_1\mathbf{e}_{k+1} = \alpha_1 R_1 \mathbf{e}_1 + \dots + \alpha_k R_1 \mathbf{e}_k \Longrightarrow R_1 \mathbf{x} = \mathbf{0}, \tag{2}$$

where
$$\mathbf{x} := [\alpha_1, \dots, \alpha_k, -1, 0, \dots, 0]^{\top}$$
.

Since $R_1\mathbf{e}_j=R_2\mathbf{e}_j, j=1,2,\ldots,k$, by (1) and (2), we have

Since
$$R_1\mathbf{e}_j=R_2\mathbf{e}_j, j=1,2,\ldots,k$$
, by (1) and (2), we have
$$R_2\mathbf{x}=\mathbf{0}\Rightarrow R_2\mathbf{e}_{k+1}=\alpha_1R_2\mathbf{e}_1+\cdots+\alpha_kR_2\mathbf{e}_k=R_1\mathbf{e}_{k+1}.$$

Since
$$R_1\mathbf{e}_j=R_2\mathbf{e}_j, j=1,2,\ldots,k$$
, by (1) and (2), we have
$$R_2\mathbf{x}=\mathbf{0}\Rightarrow R_2\mathbf{e}_{k+1}=\alpha_1R_2\mathbf{e}_1+\cdots+\alpha_kR_2\mathbf{e}_k=R_1\mathbf{e}_{k+1}.$$

On the other hand, if $R_1\mathbf{e}_{k+1}$ is a pivot column then $R_2\mathbf{e}_{k+1}$ is also a pivot column.

Since
$$R_1\mathbf{e}_j=R_2\mathbf{e}_j, j=1,2,\ldots,k$$
, by (1) and (2), we have
$$R_2\mathbf{x}=\mathbf{0}\Rightarrow R_2\mathbf{e}_{k+1}=\alpha_1R_2\mathbf{e}_1+\cdots+\alpha_kR_2\mathbf{e}_k=R_1\mathbf{e}_{k+1}.$$

On the other hand, if $R_1\mathbf{e}_{k+1}$ is a pivot column then $R_2\mathbf{e}_{k+1}$ is also a pivot column.

If there are p pivot columns in the first k columns of R_1 then $R_1\mathbf{e}_{k+1}=\mathbf{e}_{p+1}$ and $R_2\mathbf{e}_{k+1}=\mathbf{e}_{p+1}$.

Since
$$R_1\mathbf{e}_j=R_2\mathbf{e}_j, j=1,2,\ldots,k$$
, by (1) and (2), we have
$$R_2\mathbf{x}=\mathbf{0}\Rightarrow R_2\mathbf{e}_{k+1}=\alpha_1R_2\mathbf{e}_1+\cdots+\alpha_kR_2\mathbf{e}_k=R_1\mathbf{e}_{k+1}.$$

On the other hand, if $R_1\mathbf{e}_{k+1}$ is a pivot column then $R_2\mathbf{e}_{k+1}$ is also a pivot column.

If there are p pivot columns in the first k columns of R_1 then $R_1\mathbf{e}_{k+1}=\mathbf{e}_{p+1}$ and $R_2\mathbf{e}_{k+1}=\mathbf{e}_{p+1}$. Hence $R_1\mathbf{e}_{k+1}=R_2\mathbf{e}_{k+1}$.

Since
$$R_1\mathbf{e}_j=R_2\mathbf{e}_j, j=1,2,\ldots,k$$
, by (1) and (2), we have
$$R_2\mathbf{x}=\mathbf{0}\Rightarrow R_2\mathbf{e}_{k+1}=\alpha_1R_2\mathbf{e}_1+\cdots+\alpha_kR_2\mathbf{e}_k=R_1\mathbf{e}_{k+1}.$$

On the other hand, if $R_1\mathbf{e}_{k+1}$ is a pivot column then $R_2\mathbf{e}_{k+1}$ is also a pivot column.

If there are p pivot columns in the first k columns of R_1 then $R_1\mathbf{e}_{k+1}=\mathbf{e}_{p+1}$ and $R_2\mathbf{e}_{k+1}=\mathbf{e}_{p+1}$. Hence $R_1\mathbf{e}_{k+1}=R_2\mathbf{e}_{k+1}$.

Hence we have $R_1 = R_2$.

*** End ***