School of Mathematical Sciences

Assignment Cover Sheet

Student Name	
Student ID	
Assessment Title	Assignment 3
Due Date	Thursday, 10 October, 2019 @ 12:00 noon
Course / Program	APP MTH 3022–Optimal Functions & Nanomechanics
Date Submitted	
OFFICE USE ONLY Date Received	

KEEP A COPY

It is a good idea to keep a copy of your work for your own records. If you have submitted assessment work electronically make sure you have a backup copy.

PLAGIARISM AND COLLUSION

Plagiarism: using another person's ideas, designs, words or works without appropriate acknowledgement. **Collusion**: another person assisting in the production of an assessment submission without the express requirement, or consent or knowledge of the assessor.

In this course you are encouraged to work with other students but the work you submit must be your own. This means you must understand it and be able to explain it if required.

CONSEQUENCES OF PLAGIARISM AND COLLUSION

The penalties associated with plagiarism and collusion are designed to impose sanctions on offenders that reflect the seriousness of the University's commitment to academic integrity. Penalties may include: the requirement to revise and resubmit assessment work, receiving a result of zero for the assessment work, failing the course, expulsion and/or receiving a financial penalty.

I declare that all material in this assessment is my own work except where there is clear acknowledgement and reference to the work of others. I have read the University Policy Statement on Plagiarism, Collusion and Related Forms of Cheating (http://www.adelaide.edu.au/policies/230/). I give permission for my assessment work to be reproduced and submitted to other academic staff for the purposes of assessment and to be copied, submitted and retained in a form suitable for electronic checking of plagiarism.
Signed Date

OFN Assignment 4

Andrew Martin

September 20, 2019

1. (a) dA is obtained using the cross product of the tangent vectors of the parametrisation

$$\begin{split} \frac{\partial r}{\partial \theta} &= (-b\sin\theta\sin\phi, b\cos\theta\sin\phi, 0) \\ \frac{\partial r}{\partial \phi} &= (b\cos\theta\cos\phi, b\sin\theta\cos\phi, -c\sin\phi) \end{split}$$

$$dA = \begin{vmatrix} \frac{\partial r}{\partial \theta} \times \frac{\partial r}{\partial \phi} \end{vmatrix} d\theta d\phi$$

$$\frac{\partial r}{\partial \theta} \times \frac{\partial r}{\partial \phi} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -b\sin\theta\sin\phi & b\cos\theta\sin\phi & 0 \\ b\cos\theta\cos\phi & b\sin\theta\cos\phi & -c\sin\phi \end{vmatrix}$$

$$= (-bc\cos\theta\sin^2\phi, bc\sin\theta\sin^2\phi, -b^2\sin^2\theta\sin\phi\cos\phi - b^2\cos\theta^2\sin\phi\cos\phi)$$

$$= (-bc\cos\theta\sin^2\phi, bc\sin\theta\sin^2\phi, -b^2\sin\phi\cos\phi)$$

 $= b \sin \phi (-c \cos \theta \sin \phi, c \sin \theta \sin \phi, -b \cos \phi)$

$$dA = b \sin \phi \sqrt{(-c \cos \theta \sin \phi)^2 + (c \sin \theta \sin \phi)^2 + (-b \cos \phi)^2} d\theta d\phi$$

$$= b \sin \phi \sqrt{c^2 \cos^2 \theta \sin^2 \phi + c^2 \sin^2 \theta \sin^2 \phi + b^2 \cos^2 \phi} d\theta d\phi$$

$$= b \sin \phi \sqrt{c^2 \sin^2 \phi + b^2 \cos^2 \phi} d\theta d\phi$$

$$= b \sin^2 \phi \sqrt{c^2 - b^2} d\theta d\phi$$

- (b)
- (c)
- 2. (a)
 - (b)

3.

School of Mathematical Sciences

APP MTH 3022/7106 - Optimal Functions and Nanomechanics

Assignment 4 question sheet

Due: Thursday, 10 October, at 12 noon (in the hand-in box on level 6)

When presenting your solutions to the assignment, please include some explanation in words to accompany your calculations. It is not necessary to write a lengthy description, just a few sentences to link the steps in your calculation. Messy, illegible or inadequately explained solutions may be penalised. The marks awarded for each part are indicated in brackets.

All students are to attempt Questions 1-3.

1. A spheroidal surface \mathcal{P} is given parametrically by the position vector $\mathbf{r}(\theta,\phi)$ as

 $r(\theta, \phi) = (b\cos\theta\sin\phi, b\sin\theta\sin\phi, c\cos\phi),$

where $-\pi < \theta \leqslant \pi$, and $0 \leqslant \phi \leqslant \pi$ and the constant b is the minor semi-axis length and c is the major semi-axis length.

- (a) Derive an expression for the scalar surface element dA for \mathcal{P} .
- (b) Integrate your answer from part (a) to find the surface area of \mathcal{P} as a function of b and c.

 Hint: it is easiest to express this in terms of the usual hypergeometric function.
- (c) One isomer of the C_{70} fullerene may be modelled as a spheroid with a minor semi-axis length of b=3.59 Å and major semi-axis length of c=4.17 Å. Use your answer from part (b) to derive a reasonable approximation (to four decimal places) of the mean surface density of carbon atoms for this molecule.

[8 marks]

- 2. Consider a soap film suspended between two parallel concentric, but displaced rings of radius r_0 and r_1 at an offset in the z-direction of z_0 and z_1 (see the figure for a clearer view). Ignoring gravity and other external forces, the shape of the soap film will minimise the surface area.
 - (a) Use the Calculus of Variations to determine the profile that the soap film will adopt.
 - (b) Plot the resulting profile for $(z_0, r_0) = (0, 9)$ and $(z_1, r_1) = (10, 10)$.

[8 marks]

3. Consider the problem of finding the extremal of the functional

$$F\{y\} = \int_0^1 x(y'^2 - \lambda y^2) \, dx,$$

subject to y(0) being finite and y(1) = 0. Assuming that the extremal will be an even function of x, we may choose as basis functions

$$\phi_n(x) = 1 - x^{2n},$$

and propose an approximate series solution of the form

$$y(x) \approx \bar{y}(x) = c_1 \phi_1(x) + c_2 \phi_2(x) + \cdots$$

Use Ritz's method with $\bar{y}(x) = c_1\phi_1(x) + c_2\phi_2(x)$, to derive a constraint on λ that must be satisfied for a non-trivial solution to exist. Give the numerical value (to four significant digits) of the smallest λ that satisfies the constraint.

[8 marks]