CIRCUITOS DIGITAIS

HAZARDS

Prof. Marcelo Grandi Mandelli mgmandelli@unb.br

Glitches e Hazards em Circuitos

Glitch: é um pulso, normalmente indesejável, que ocorre na saída de um circuito lógico combinacional.

 Hazard: um circuito apresenta riscos (hazards) quando ele tem potencial produzir glitches indesejáveis em sua saída

Hazards

 Um circuito apresenta hazards quando uma única variável muda na entrada causando uma ou mais mudanças momentânea (indesejável) na saída

Dois tipos:

■ Hazard estático → quando uma única variável muda na entrada causando uma mudança momentânea na saída glitch

Hazard dinâmico

quando uma mudança na entrada causa múltiplas mudanças na saída.
glitch

Hazards Estáticos

Dois tipos:

■ Hazard de 1-estático (Static-1 hazard) → A saída deveria permanecer em "1", mas ela vai momentaneamente para "0"

■ Hazard de 0-estático (Static-0 hazard) → A saída deveria permanecer em "0", mas ela vai momentaneamente para "1"

Detecção de Hazards estáticos

- Para detectar hazards estáticos, altere apenas uma variável de entrada, enquanto as outras variáveis são mantidas em valores fixos (0 ou 1)
- Um circuito em soma de produtos não tem hazards 0estático, porém tem hazards de 1-estático
- Um circuito em produto de somas não tem hazards 1estático, porém tem hazards de 0-estático

Eliminação de Hazards estáticos

- Para eliminação de hazards estáticos, adicione à função booleana original termos (produto ou soma) redundantes:
 - Em um circuito em soma de produtos adicione um termo produto redundante
 - Em um circuito em produto de somas adicione um termo soma redundante

Hazards Estáticos

- Hazard de 1 estático
 - A saída deveria permanecer em "1", mas ela vai momentaneamente a "0"
 - Ex: F(A,B,X) = AX + BX'

A = 1, B = 1, X = 1

A = 1, B = 1, X = 0

A = 1, B = 1, X = 0

Esse hazard só acontece quando A = 1 e B = 1 emudamos X de 1 para 0

Eliminando Hazard de 1-estático

Como eliminar o hazard?

Eliminando Hazard de 1-estático

Hazards Estáticos

- Hazard de 0 estático
 - A saída deveria permanecer em "0", mas ela vai momentaneamente a "1"
 - Ex: F(D,E,X) = (D + X)(E + X')

D = 0, E = 0, X = 0

 $\mathbf{D} = 0, E = 0, \mathbf{X} = \mathbf{1}$

D = 0, E = 0, X = 1

Esse hazard só acontece quando D = 0 e E = 0 e mudamos X de 0 para 1

Eliminando Hazard de 0-estático

Como eliminar o hazard?

Eliminando Hazard de 0-estático

Circuitos Digitais – Marcelo Grandi Mandelli Slide 32

Exemplo Hazard de 1-estático

Exemplo Hazard de 1-estático

Figure 3.43 Effect of input change from 1101 to 0101.

Exemplo Hazard de 1-estático

Eliminando Hazard de 1-estático

Exemplo Hazard de 0-estático

- $\blacksquare F(A,B,C,D) = (A + D)(A' + C')$
- $\blacksquare A = 0$
- *BCD*=110

- $\blacksquare A=1$
- *BCD*=110

- $\blacksquare A=1$
- *BCD*=110

Exemplo Hazard de 0-estático

Exemplo Hazard de 0-estático

Hazards Dinâmicos

Ocorrem quando o sinal de saída deveria fazer uma única transição de 0 para 1, ou de 1 para 0, e o circuito que gera esse sinal apresenta o potencial de mudar de nível mais de uma vez.

Hazards Dinâmicos

 Em geral, é difícil eliminar hazards dinâmicos de circuitos

A melhor abordagem para esse caso é transformar o circuito, que pode apresentar múltiplos níveis, em um circuito equivalente com dois níveis que seja <u>livre de riscos estáticos</u>