Model Fitting, RANSAC

Jana Kosecka

Fitting

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Fitting

Line Fitting

$$A = \begin{bmatrix} \sum x_i^2 & \sum x_i y_i \\ \sum x_i y_i & \sum y_i^2 \end{bmatrix}$$

second moment matrix associated with each connected component v_1 - eigenvector of A

$$v_1 = [\cos(\theta), \sin(\theta)]^T$$

 $\theta = \arctan(v_1(2)/v_1(1))$
 $\rho = \bar{x}\sin(\theta) - \bar{y}\cos(\theta)$

- Line fitting lines determined from eigenvalues and eigenvectors of A
- Candidate line segments associated line quality

Fitting

Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Source: K. Grauman

Finding lines in an image

Option 1:

- Search for the line at every possible position/orientation
- What is the cost of this operation?

Option 2:

Use a voting scheme: Hough transform

Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b

Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
- What does a point (x₀, y₀) in the image space map to?
 - A: the solutions of $b = -x_0 m + y_0$
 - this is a line in Hough space

Hough transform algorithm

Typically use a different parameterization

$$d = x cos\theta + y sin\theta$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Idea – keep an accumulator array (Hough space) and let each edge pixel contribute to it Line candidates are the maxima in the accumulator array

Typical Hough Transform

Basic Hough transform algorithm

- 1. Initialize H[d, theta]=0
- 2. For each edge point I[x,y] in the image
- 3. For theta = 0 to 180 H[d, theta] += 1 where $d = xcos\theta + ysin\theta$ point is now a sinusoid in Hough space Find the value(s) of (d, theta) where H[d, theta] is maximum

The detected line in the image is given by maxima in the Hough space

What's the running time (measured in # votes)?

Radon Transform

Projection of an image along radial line

Hough Transform for Curves

The H.T. can be generalized to detect any curve that can be expressed in parametric form:

- Y = f(x, a1, a2, ...ap)
- a1, a2, ... ap are the parameters
- The parameter space is p-dimensional
- The accumulating array is LARGE!

Fitting: Issues

- Previous strategies
- Line detection Hough transform
- Simple parametric model, two parameters m, b

$$y = mx + b$$

- Voting strategy
- Hard to generalize to higher dimensions

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

- Now input is a set of points
- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
 - Least squares
- What if there are outliers?
 - Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
 - Model selection

Least squares line fitting

Data: $(x_1, y_1), ..., (x_n, y_n)$

Line equation: $y_i = mx_i + b$

Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \qquad B = \begin{bmatrix} m \\ b \end{bmatrix}$$

$$E = ||Y - XB||^2 = (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)$$

$$\frac{dE}{dB} = 2X^T X B - 2X^T Y = 0$$

$$X^T X B = X^T Y$$

 $X^{T}XB = X^{T}Y$ Normal equations: least squares solution to XB = Y

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i+by_i-d|$

Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i+by_i-d|$ Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

Distance between point (x_i, y_i) and line $ax+by=d (a^2+b^2=1)$: $|ax_i + by_i - d|$ Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0$$

$$d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} y_i = a\bar{x} + b\bar{y}$$

$$ax+by=d$$
Unit normal: $N=$

$$(x_i, y_i) \quad (a, b)$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_{i} + by_{i} - d) = 0 \qquad d = \frac{\alpha}{n} \sum_{i=1}^{n} x_{i} + \frac{\delta}{n} \sum_{i=1}^{n} y_{i} = a\overline{x} + b\overline{y}$$

$$E = \sum_{i=1}^{n} (a(x_{i} - \overline{x}) + b(y_{i} - \overline{y}))^{2} = \begin{bmatrix} x_{1} - \overline{x} & y_{1} - \overline{y} \\ \vdots & \vdots \\ x_{n} - \overline{x} & y_{n} - \overline{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}^{2} = (UN)^{T}(UN)$$

$$\frac{dE}{dN} = 2(U^{T}U)N = 0$$

$$\frac{dE}{dN} = 2(U^T U)N = 0$$

Solution to $(U^TU)N = 0$, subject to $||N||^2 = 1$: eigenvector of U^TU associated with the smallest eigenvalue (least squares solution to homogeneous linear system UN = 0)

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

second moment matrix

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

Least squares: Robustness to noise

Least squares fit to the red points:

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_{i} \rho(r_{i}(x_{i},\theta),\sigma)$$

 $r_i(x_i, \theta)$ – residual of i-th point w.r.t. model parameters θ ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Adaptive choice of scale: approx. 1.5 times median residual (F&P, Sec. 15.5.1)

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers
 - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.

Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Randomly select minimal subset of points

- Randomly select minimal subset of points
- 2. Hypothesize a model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function

- Randomly select minimal subset of points
- Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

39

Uncontaminated sample

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

40

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

RANSAC for line fitting

Repeat **N** times:

- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1 - \left(1 - e\right)^{\varsigma}\right)^{\mathsf{V}} = 1 - p$$

$$N = \log(1-p)/\log(1-(1-e)^s)$$

	proportion of outliers <i>e</i>						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Source: M. Pollefeys

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1 - \left(1 - e\right)^{\varsigma}\right)^{\mathsf{V}} = 1 - p$$

$$N = \log(1-p)/\log(1-(1-e)^s)$$

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Consensus set size d
 - Should match expected inlier ratio

Source: M. Pollefeys

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - *N*=∞, *sample_count* =0
 - While N >sample_count
 - Choose a sample and count the number of inliers
 - Set e = 1 (number of inliers)/(total number of points)
 - Recompute N from e:

$$N = \log(1-p)/\log(1-(1-e)^s)$$

Increment the sample_count by 1

Source: M. Pollefeys

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

