Élio Tiago Sousa Coelho Desenvolvimento de Heurísticas para o Dimensionamento de Redes Óticas Opacas e Transparentes

Development of Heuristics for Opaque and Transparent Optical Networks Dimensioning

Desenvolvimento de Heurísticas para o Dimensionamento de Redes Óticas Opacas e Transparentes

Development of Heuristics for Opaque and Transparent Optical Networks Dimensioning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações, realizada sob a orientação científica do Doutor Armando Humberto Moreira Nolasco Pinto, Professor Associado do Departamento de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro e coorientação empresarial do Doutor Rui Manuel Dias Morais, Doutor em Engenharia Eletrotécnica pela Universidade de Aveiro, coordenador de atividades de investigação em optimização de redes na Infinera Portugal. Tendo como instituição de acolhimento o Instituto de Telecomunicações - Pólo de Aveiro.

o júri / the jury

presidente / president ????? ????? ?????

???? ???? ???? ????

vogais / examiners committee ????? ?????

???? ???? ????

Armando Humberto Moreira Nolasco Pinto

Professor Associado da Universidade de Aveiro

agradecimentos / acknowledgements

Palavras-chave

Resumo

Keywords

Abstract

Índice

Ín	\mathbf{dice}		i
Li	sta d	le figuras	v
Li	sta d	le tabelas	vii
1	Intr	rodução	1
	1.1	Motivação	2
	1.2	Objetivos	2
	1.3	Estrutura da dissertação	2
2	Din	nensionamento de Redes Óticas Opacas e Transparentes	3
	2.1	Elementos de Rede	3
		2.1.1 Arquitetura das Ligações	3
		2.1.2 Arquitetura dos Nós	4
	2.2	Topologias de Rede	5
		2.2.1 Topologia Física	5
		2.2.2 Topologia Lógica	5
	2.3	Modos de Transporte	5
		2.3.1 Modo de Transporte Opaco	5
		2.3.2 Modo de Transparente	5
	2.4	Rede Referência	5
		2.4.1 Topologia Física	5
		2.4.2 Topologia Lógica	6
		2.4.3 Matrizes de Tráfego	6
	2.5	Rede Real	8
		2.5.1 Topologia Física	8
		2.5.2 Matrizes de Tráfego	8
3	$\mathbf{C}\mathbf{A}$	PEX	9
	2 1	Modele Analítico	0

		3.1.1 Modo de Transporte Opaco	. 9
		3.1.2 Modo de Transporte Transparente	. 9
	3.2	ILP	. 9
		3.2.1 Modo de Transporte Opaco	. 9
		3.2.2 Modo de Transporte Transparente	. 9
	3.3	Heurísticas	. 9
		3.3.1 Modo de Transporte Opaco	. 9
		3.3.2 Modo de Transparente	. 9
4	Imp	olementação NetXPTO	11
	4.1	Diagrama do Sistema	. 12
	4.2	Parâmetros de Entrada do Sistema	. 12
		4.2.1 Formato do Ficheiro de Entrada	. 12
	4.3	Estrutura dos Sinais do Sistema	. 12
		4.3.1 Logical Topology	. 12
		4.3.2 Physical Topology	. 12
		4.3.3 Demand Request	. 12
		4.3.4 Path Request	. 12
		4.3.5 Path Request Routed	. 12
		4.3.6 Demand Request Routed	. 12
	4.4	Blocos do Sistema	. 12
		4.4.1 Scheduler	. 12
		4.4.2 LogicalTopologyGenerator	. 12
		4.4.3 PhysicalTopologyGenerator	. 12
		4.4.4 LogicalTopologyManager	. 12
		4.4.5 PhysicalicalTopologyGenerator	. 12
	4.5	Final Report	. 12
5	Alg	oritmos das Heurísticas	13
	5.1	Scheduling	. 13
	5.2	Topologia Lógica	. 13
	5.3	Routing	. 13
	5.4	Wavelength Assignment	. 13
	5.5	Grooming	. 13
6	Res	sultados	15
~	6.1	Rede Referência	
		6.1.1 Modelo Analítico	
		6.1.2 ILP	

		6.1.3	Heurísticas	18
		6.1.4	Análise Comparativa	18
	6.2	Rede	Real	19
		6.2.1	Modelo Analítico	19
		6.2.2	Heurísticas	19
		6.2.3	Análise Comparativa	19
7	Cor	ıclusõe	es e trabalho futuro	21
	7.1	Concl	usões	21
	7.2	Traba	lho futuro	21

Lista de figuras

2.1	Schematic of a node structure containing modules, shelves and a rack. [6515886].	4
2.2	Topologia física da rede referência	5

Lista de tabelas

2.1	Matriz adjacência	da topologia	física da rede referência.		Ę
-----	-------------------	--------------	----------------------------	--	---

Introdução

- 1.1 Motivação
- 1.2 Objetivos
- 1.3 Estrutura da dissertação

Dimensionamento de Redes Óticas Opacas e Transparentes

2.1 Elementos de Rede

2.1.1 Arquitetura das Ligações

2.1.2 Arquitetura dos Nós

Figure 2.1: Schematic of a node structure containing modules, shelves and a rack. [6515886].

2.2 Topologias de Rede

- 2.2.1 Topologia Física
- 2.2.2 Topologia Lógica
- 2.3 Modos de Transporte
- 2.3.1 Modo de Transporte Opaco
- 2.3.2 Modo de Transporte Transparente
- 2.4 Rede Referência

2.4.1 Topologia Física

Figure 2.2: Topologia física da rede referência.

Node	1	2	3	4	5	6
1	0	1	0	0	0	1
2	1	0	1	0	0	1
3	0	1	0	1	1	0
4	0	0	1	0	1	0
5	0	0	1	1	0	1
6	1	1	0	0	1	0

Table 2.1: Matriz adjacência da topologia física da rede referência.

.

$$Dist = \begin{bmatrix} 0 & 350 & 0 & 0 & 0 & 150 \\ 350 & 0 & 400 & 0 & 0 & 120 \\ 0 & 400 & 0 & 250 & 100 & 0 \\ 0 & 0 & 250 & 0 & 200 & 0 \\ 0 & 0 & 100 & 200 & 0 & 600 \\ 150 & 120 & 0 & 0 & 600 & 0 \end{bmatrix}$$

2.4.2 Topologia Lógica

2.4.3 Matrizes de Tráfego

Tráfego Baixo

 $T_1^0 = 120 \mathrm{x} 1.25 = 150 \; \mathrm{Gbits/s} \; \; T_1^1 = 100 \mathrm{x} 2.5 = 250 \; \mathrm{Gbits/s} \; \; T_1^2 = 32 \mathrm{x} 10 = 320 \; \mathrm{Gbits/s} \; \;$

$$T_1^3 = 12 \mathrm{x} 40 = 480 \ \mathrm{Gbits/s} \quad \ T_1^4 = 8 \mathrm{x} 100 = 800 \ \mathrm{Gbits/s}$$

$$T_1 = 150 + 250 + 320 + 480 + 800 = 2000 \text{ Gbits/s}$$
 $T = 1000/2 = 1 \text{ Tbits/s}$

Tráfego Médio

$$T_1^0 = 600 \mathrm{x} 1.25 = 750 \; \mathrm{Gbits/s} \; \; T_1^1 = 500 \mathrm{x} 2.5 = 1205 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 = 160 \mathrm{x} 10 = 1600 \; \mathrm{Gbits/s} \; \; T_1^2 =$$

$$T_1^3 = 60 \mathrm{x} 40 = 2400 \; \mathrm{Gbits/s} \quad T_1^4 = 40 \mathrm{x} 100 = 4000 \; \mathrm{Gbits/s}$$

$$T_1 = 750 + 1250 + 1600 + 2400 + 4000 = 10000 \text{ Gbits/s}$$
 $T = 10000/2 = 5 \text{ Tbits/s}$

Tráfego Elevado

$$ODU0 = \begin{bmatrix} 0 & 100 & 20 & 60 & 20 & 60 \\ 100 & 0 & 0 & 20 & 100 & 0 \\ 20 & 0 & 0 & 20 & 80 & 20 \\ 60 & 20 & 20 & 0 & 20 & 20 \\ 20 & 100 & 80 & 20 & 0 & 60 \\ 60 & 0 & 20 & 20 & 60 & 0 \end{bmatrix} \quad ODU1 = \begin{bmatrix} 0 & 40 & 80 & 40 & 0 & 100 \\ 40 & 0 & 0 & 60 & 20 & 20 \\ 80 & 0 & 0 & 20 & 20 & 0 \\ 40 & 60 & 20 & 0 & 20 & 60 \\ 0 & 20 & 20 & 20 & 0 & 20 \\ 100 & 20 & 0 & 60 & 20 & 0 \end{bmatrix}$$

$$T_1^0 = 1200 \mathrm{x} 1.25 = 1500 \; \mathrm{Gbits/s}$$
 $T_1^1 = 1000 \mathrm{x} 2.5 = 2500 \; \mathrm{Gbits/s}$

$$T_1^2 = 320 \mathrm{x} 10 = 3200 \; \mathrm{Gbits/s}$$
 $T_1^3 = 120 \mathrm{x} 40 = 4800 \; \mathrm{Gbits/s}$

$$T_1^4 = 80 \mathrm{x} 100 = 8000 \; \mathrm{Gbits/s}$$
 $T_1 = 20000 \; \mathrm{Gbits/s}$

$$T = 20000/2 = 10 \text{ Tbits/s}$$

2.5 Rede Real

2.5.1 Topologia Física

2.5.2 Matrizes de Tráfego

CAPEX

- 3.1 Modelo Analítico
- 3.1.1 Modo de Transporte Opaco
- 3.1.2 Modo de Transporte Transparente
- 3.2 ILP
- 3.2.1 Modo de Transporte Opaco
- 3.2.2 Modo de Transporte Transparente
- 3.3 Heurísticas
- 3.3.1 Modo de Transporte Opaco
- 3.3.2 Modo de Transporte Transparente

Implementação NetXPTO

- 4.1 Diagrama do Sistema
- 4.2 Parâmetros de Entrada do Sistema
- 4.2.1 Formato do Ficheiro de Entrada
- 4.3 Estrutura dos Sinais do Sistema
- 4.3.1 Logical Topology
- 4.3.2 Physical Topology
- 4.3.3 Demand Request
- 4.3.4 Path Request
- 4.3.5 Path Request Routed
- 4.3.6 Demand Request Routed
- 4.4 Blocos do Sistema
- 4.4.1 Scheduler
- 4.4.2 LogicalTopologyGenerator
- 4.4.3 PhysicalTopologyGenerator
- 4.4.4 LogicalTopologyManager
- 4.4.5 PhysicalicalTopologyGenerator
- 4.5 Final Report

Algoritmos das Heurísticas

- 5.1 Scheduling
- 5.2 Topologia Lógica
- 5.3 Routing
- 5.4 Wavelength Assignment
- 5.5 Grooming

Resultados

6.1 Rede Referência

6.1.1 Modelo Analítico

Tráfego Baixo

$$D = \frac{1}{2} \times (1+1) \times (\frac{2000}{100}) \qquad D = 20$$

$$< w > = (\frac{20 \times 1.533}{16}) \times (1+0) \qquad < w > = 1.916$$

$$N^R = 16$$

$$C_L = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 1.916) + (2 \times 16 \times 2000) = \textbf{457 280} \in$$

$$< d > = \frac{20}{6} \qquad < d > = 3.33$$

$$< P_{exc} > = 3.333 \times 1.533] \qquad < P_{exc} > = 5.1095$$

$$C_N = (6 \times (10000 + (100 \times 100 \times 5.1095)) + (100 \times 1.25 \times 120) + (100 \times 2.5 \times 100) + (100 \times 10 \times 32) + (100 \times 40 \times 12) + (100 \times 100 \times 8)))$$

$$C_N = 366 570 + 200 00 = \textbf{566 570} \in$$

$$CAPEX = 457 280 + 566 570 \qquad CAPEX = \textbf{1 023 850} \in$$

Tráfego Médio

$$D = \frac{1}{2} \times (1+1) \times (\frac{10000}{100}) \qquad \qquad D = 100$$

$$\langle w \rangle = (\frac{100 \times 1.533}{16}) \times (1+0)$$
 $\langle w \rangle = 9.581$

$$N^R = 16$$

$$C_L = (2 \times 8 \times 15000) + (2 \times 8 \times 5000 \times 9.581) + (2 \times 16 \times 2000) = 1$$
 070 280 \in

$$< d > = \frac{100}{6}$$
 $< d > = 16.6667$

$$\langle P_{exc} \rangle = 16.6667 \times 1.533$$
 $\langle P_{exc} \rangle = 25.5501$

$$C_N = (6 \times (10000 + (100 \times 100 \times 22.5501)) + (100 \times 1.25 \times 120) + (100 \times 2.5 \times 100) + (100 \times 10 \times 32) + (100 \times 40 \times 12) + (100 \times 100 \times 8)))$$

$$C_N = 1 \ 359 \ 006 + 1 \ 000 \ 000 = \mathbf{2} \ \mathbf{359} \ \mathbf{006} \in$$

$$CAPEX = 1\ 070\ 480 + 2\ 359\ 006$$
 $CAPEX = 3\ 429\ 486 \in$

$$< P_{exc} > = 18.75$$

$$\langle P_{oxc} \rangle = 18.75 \times [1 + (1+0) \times 1.533]$$
 $\langle P_{oxc} \rangle = 47.4938$

Tráfego Elevado

6.1.2 ILP

Tráfego Baixo

	Network CAPEX						
			Quantity	Unit Price	Cost	Total	
Link	OLTs		16	15 000 €	240 000 €		
Cost	Optical Channels		56	5000 €	280 000 €	584 000 €	
Cost	Amplifiers		32	2000 €	64 000 €		
	Electrical	EXCs	6	10 000 €	60 000 €	1 020 000 €	
		ODU0 Ports	120	100 €/Gbit/s	15 000 €		
		ODU1 Ports	100	100 €/Gbit/s	25 000 €		
		ODU2 Ports	32	100 €/Gbit/s	32 000 €		
Node		ODU3 Ports	12	100 €/Gbit/s	48 000 €		
Cost		ODU4 Ports	8	100 €/Gbit/s	80 000 €		
		LR Transponders	40	100 €/Gbit/s	400 000 €		
	Optical	OXCs	6	20 000 €	120 000 €		
		OXC Ports	96	2 500 €	240 000 €		
Total Network Cost						1 604 000 €	

Tráfego Médio

Network CAPEX						
			Quantity	Unit Price	Cost	Total
Link	OLTs		16	15 000 €	240 000 €	
Cost	Optical Channels		140	5000 €	700 000 €	1 004 000 €
Cost	Amplifiers		32	2000 €	64 000 €	
		EXCs	6	10 000 €	60 000 €	
		ODU0 Ports	600	100 €/Gbit/s	75 000 €	
		ODU1 Ports	500	100 €/Gbit/s	125 000 €	
	Electrical	ODU2 Ports	160	100 €/Gbit/s	160 000 €	
Node		ODU3 Ports	60	100 €/Gbit/s	240 000 €	2 955 000 €
Cost		ODU4 Ports	40	100 €/Gbit/s	400 000 €	
		LR Transponders	114	100 €/Gbit/s	1 140 000 €	
	Optical	OXCs	6	20 000 €	120 000 €	
		OXC Ports	254	2 500 €	635 000 €	
	3 959 000 €					

Tráfego Elevado

Network CAPEX						
			Quantity	Unit Price	Cost	Total
Link	OLTs		16	15 000 €	240 000 €	
Cost	Optical Channels		260	5000 €	1 300 000 €	1 604 000 €
Cost	Amplifiers		32	2000 €	64 000 €	
	Electrical	EXCs	6	10 000 €	60 000 €	
		ODU0 Ports	1200	$100 \in /\mathrm{Gbit/s}$	150 000 €	
		ODU1 Ports	1000	$100 \in /\mathrm{Gbit/s}$	250 000 €	
		ODU2 Ports	320	$100 \in /\mathrm{Gbit/s}$	320 000 €	
Node		ODU3 Ports	120	$100 \in /\mathrm{Gbit/s}$	480 000 €	5 505 000 €
Cost		ODU4 Ports	80	$100 \in /\mathrm{Gbit/s}$	800 000 €	3 303 000 C
		LR Transponders	214	$100 \in /\mathrm{Gbit/s}$	2 140 000 €	
	Optical	OXCs	6	20 000 €	120 000 €	
		OXC Ports	474	2 500 €	1 185 000 €	
Total Network Cost						7 109 000 €

6.1.3 Heurísticas

Tráfego Baixo

Tráfego Médio

Tráfego Elevado

6.1.4 Análise Comparativa

- 6.2 Rede Real
- 6.2.1 Modelo Analítico
- 6.2.2 Heurísticas
- 6.2.3 Análise Comparativa

Conclusões e trabalho futuro

- 7.1 Conclusões
- 7.2 Trabalho futuro