Octal 3-State Noninverting Transparent Latch

High-Performance Silicon-Gate CMOS

The SL74HC573 is identical in pinout to the LS/ALS573. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALSTTL outputs.

These latches appear transparent to data (i.e., the outputs change asynchronously) when Latch Enable is high. When Latch Enable goes low, data meeting the setup and hold time becomes latched.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices

LOGIC DIAGRAM

PIN ASSIGNMENT

EXABLE [1 ●	20	V CC
DO [2	19	Qu
ם ומ	3	15	Q
D2. [4	17	Q2
D3 🛚	5	16	Q5
D4 [6	15	Q4
DS [7	14	Qō
D6 🛚	a	13	Q6
D7 [9	12	Q7
CND [10	щ	LAICH ENABLE

FUNCTION TABLE

	Inputs		Output
Output Enable	Latch Enable	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	X	no change
Н	X	X	Z

X = don't care

Z = high impedance

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$V_{\rm IN}$	DC Input Voltage (Referenced to GND)	-1.5 to V_{CC} +1.5	V
V_{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} +0.5	V
I_{IN}	DC Input Current, per Pin	±20	mA
I_{OUT}	DC Output Current, per Pin	±35	mA
I_{CC}	DC Supply Current, V _{CC} and GND Pins	±75	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	750 500	mW
Tstg	Storage Temperature	-65 to +150	°C
$T_{\rm L}$	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

SOIC Package: : - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$V_{\rm IN}, V_{\rm OUT}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1) $V_{CC} = 2.0 \text{ V} $ $V_{CC} = 4.5 \text{ V} $ $V_{CC} = 6.0 \text{ V} $	0 0 0	1000 500 400	ns

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $\text{GND} \leq (V_{\text{IN}} \text{ or } V_{\text{OUT}}) \leq V_{\text{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

⁺Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guar	anteed L	imit	
Symbol	Parameter	Test Conditions	V	25 °C to -55°C	≤85 °C	≤125 °C	Unit
V_{IH}	Minimum High-Level Input Voltage	V_{OUT} =0.1 V or V_{CC} -0.1 V I_{OUT} $\leq 20 \mu A$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
V _{IL}	Maximum Low -Level Input Voltage	V_{OUT} =0.1 V or V_{CC} -0.1 V $I_{OUT}I \le 20 \mu\text{A}$	2.0 4.5 6.0	0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{IN}=V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$\begin{aligned} &V_{\rm IN} {=} V_{\rm IH} \text{ or } V_{\rm IL} \\ &I_{\rm OUT} \\ &I_{\rm OUT} \\ &\leq 6.0 \text{ mA} \\ &I_{\rm OUT} \\ &\leq 7.8 \text{ mA} \end{aligned}$	4.5 6.0	3.98 5.48	3.84 5.34	3.7 5.2	
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $ I_{OUT} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{aligned} & V_{\rm IN} = V_{\rm IL} \text{ or } V_{\rm IH} \\ & \mid I_{\rm OUT} \mid \leq 6.0 \text{ mA} \\ & \mid I_{\rm OUT} \mid \leq 7.8 \text{ mA} \end{aligned} $	4.5 6.0	0.26 0.26	0.33 0.33	0.4 0.4	
$I_{\rm IN}$	Maximum Input Leakage Current	V _{IN} =V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μА
I _{OZ}	Maximum Three State Leakage Current	Output in High-Impedance State $V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND	6.0	±0.5	±5.0	±10	μΑ
I_{CC}	Maximum Quiescent Supply Current (per Package)	V_{IN} = V_{CC} or GND I_{OUT} = $0\mu A$	6.0	4.0	40	160	μА

$\textbf{AC ELECTRICAL CHARACTERISTICS}(C_L = 50 pF, Input \ t_r = t_f = 6.0 \ ns)$

		V_{CC}	Gu	Guaranteed Limit		
Symbol	Parameter	V	25 °C to -55°C	≤85°C	≤125°C	Unit
$t_{\rm PLH}, t_{\rm PHL}$	Maximum Propagation Delay, Input D to Q (Figures 1 and 5)	2.0 4.5 6.0	150 30 26	190 38 33	225 45 38	ns
$t_{\rm PLH}, t_{\rm PHL}$	Maximum Propagation Delay,Latch Enable to Q (Figures 2 and 5)	2.0 4.5 6.0	160 32 27	200 40 34	240 48 41	ns
t_{PLZ}, t_{PHZ}	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 4.5 6.0	150 30 26	190 38 33	225 45 38	ns
t_{PZH}, t_{PZL}	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 4.5 6.0	150 30 26	190 38 33	225 45 38	ns
t_{TLH}, t_{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 5)	2.0 4.5 6.0	60 12 10	75 15 13	90 18 15	ns
C_{IN}	Maximum Input Capacitance	-	10	10	10	pF
C_{OUT}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	ı	15	15	15	pF

	Power Dissipation Capacitance (Per Enabled Output)	Typical @25°C,V _{CC} =5.0 V	
C_{PD}	Used to determine the no-load dynamic power consumption: $P_D = C_{PD}V_{CC}^2 f + I_{CC}V_{CC}$	23	pF

TIMING REQUIREMENTS (C_L =50pF,Input t_r = t_f =6.0 ns)

		V_{CC}	(
Symbol	Parameter	V	25 °C to -55°C	≤85°C	≤125°C	Unit
$t_{ m SU}$	Minimum Setup Time, Input D to Latch Enable (Figure 4)	2.0 4.5 6.0	50 10 9	65 13 11	75 15 13	ns
$t_{\rm h}$	Minimum Hold Time, Latch Enable to Input D (Figure 4)	2.0 4.5 6.0	5 5 5	5 5 5	5 5 5	ns
t _w	Minimum Pulse Width, Latch Enable (Figure 2)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
$t_{\rm r,}t_{\rm f}$	Maximum Input Rise and Fall Times (Figure 1)	2.0 4.5 6.0	1000 500 400	1000 500 400	1000 500 400	ns

Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

Figure 3. Switching Waveforms

Figure 4. Switching Waveforms

* Includes all probe and jig capacitance

Figure 5. Test Circuit

Figure 6. Test Circuit

EXPANDED LOGIC DIAGRAM

