Analysis I, Blatt 1

Gruppe 11 Lorenz Bung (Matr.-Nr. 5113060) lorenz.bung@students.uni-freiburg.de Charlotte Rothhaar (Matr.-Nr. 4315016) charlotte.rothhaar97@gmail.com

11. November 2020

Aufgabe 1

- (i) $f^{-1}(C \cap D) = \{x \in A | f(x) \in C \cap D\} = \{x \in A | f(x) \in C \land f(x) \in D\} = \{x \in A | f(x) \in C\} \cap \{x \in A | f(x) \in D\} = f^{-1}(C) \cap f^{-1}(D).$
- (ii) Sei $E:=(-\infty;0]$ und $F:=[0;\infty),$ sowie $f:x\mapsto x^2.$ Dann ist

$$f(E \cap F) = f(\{0\}) = \{0\}$$

aber

$$f(E) \cap f(F) = f((-\infty; 0]) \cap f([0; \infty)) = [0; \infty).$$

(iii) (a) Angenommen, f ist injektiv und es gibt Teilmengen $E, F \subset B$ mit $f(E \cap F) \subsetneq f(E) \cap f(F)$. Dann gäbe es ein $y \in f(E) \cap f(F)$ mit

 $y \notin f(E \cap F)$. Somit: $\exists x_1 \in E, x_2 \in F : f(x_1) = f(x_2) = y$. Nach Injektivität darf jedoch jedes Element aus dem Bild von f nur ein Urbild haben, weswegen $x_1 = x_2$. Widerspruch! \Rightarrow Gleichheit.

(b)

Aufgabe 2

- (i) injektiv: Ja, da keine zwei natürlichen Zahlen denselben Nachfolger haben (folgt direkt aus dem 4. Peanoaxiom). Daher muss ν injektiv sein.
 - surjektiv: Nein. Nach dem 1. Peanoaxiom ist $0 \in \mathbb{N}$. Das 3. Axiom besagt jedoch, dass $\nexists x \in \mathbb{N}$: $\nu(x) = 0$. Daher kann ν nicht surjektiv sein.
 - bijektiv: ν kann nicht bijektiv sein, da die Surjektivität bereits nicht gegeben ist.
- (ii) (a) Seien $a,b \in X, a \neq b$. Dann ist aufgrund der Injektivität von f $f(a) \neq f(b)$. Da auch g injektiv ist, folgt $g(f(a)) \neq g(f(b)) \Leftrightarrow (g \circ f)(a) \neq (g \circ f)(b)$. Die Aussage ist also wahr, weil auch $g \circ f$ injektiv ist.
 - (b) Falsch. Gegenbeispiel: Sei $f: \mathbb{N} \to \mathbb{N}$ mit $f: x \mapsto x+1$ und $g: \mathbb{N} \to \{1\}$ mit $g: x \mapsto 1$. f ist injektiv, da die Nachfolgerfunktion schon injektiv ist. g ist surjektiv, da auf jedes Element aus $\{1\}$ (nämlich nur die 1 selbst) abgebildet wird (z.B. ist g(1) = 1). $g \circ f$ kann jedoch nicht injektiv sein, da $(g \circ f)(1) = g(f(1)) = g(2) = 1 = g(3) = g(f(2)) = (g \circ f)(2)$.
 - (c) Sei $a \in Z$. Aufgrund der Surjektivität von g gilt: $\exists c \in Y : g(c) = a$. Da auch f surjektiv ist, folgt $\exists b \in X : f(b) = c$. Somit ist $(g \circ f)(b) = g(f(b)) = g(c) = a$ und damit ist auch $g \circ f$ surjektiv.

(d)

Aufgabe 3

(i) (a) Zeige zunächst $A(n) \Rightarrow A(n+1)$: Induktionsbehauptung (IB): $\sum_{k=0}^{n} k * k! = (n+1)! + 1$. Induktionsschritt (IS): $\sum_{k=0}^{n+1} k * k! = \sum_{k=0}^{n} k * k! + (n+1) * (n+1)! \stackrel{\text{(IB)}}{=}$

$$(n+1)! + 1 + (n+1) * (n+1)! = (n+1)! * (1 + (n+1)) + 1 = (n+1)! * (n+2) + 1 = (n+2)! + 1.$$

Zeige nun $B(n) \Rightarrow B(n+1)$:

Induktionsbehauptung (IB): $\sum_{k=0}^{n} k * k! = (n+1)! - 1$.

Induktionsschritt (IS): $\sum_{k=0}^{n+1} k * k! = (n+1)! - 1 = \sum_{k=0}^{n} k * k! + (n+1)*$

$$(n+1)! \stackrel{\text{(IB)}}{=} (n+1)! - 1 + (n+1)*(n+1)! = (n+1)!*(1+n+1) - 1 = (n+1)!*(n+2) - 1 = (n+2)! - 1.$$

- (b) Zum Beweis der Aussagen für alle $n \in \mathbb{N}$ fehlt der jeweilige Induktionsanfang. Es wurde zwar die Implikation gezeigt, jedoch nicht, dass die Aussage überhaupt für das erste Element gilt. Um zu zeigen, dass B(n) für alle $n \in \mathbb{N}$ gilt, genügt nun der Induktionsanfang (n=0): $\sum_{k=0}^{0} k * k! = 0 * 0! = 0 = 1! 1 = (0+1)! 1$.
- (ii) Fall 1: n ist durch m teilbar. Dann ist $q = \frac{n}{m} \Leftrightarrow n = q*m$. Setze r := 0: n = q*m+0 = q*m+r.
 - Fall 2: n ist nicht durch m teilbar. Dann existiert eine Zahl $x \in \mathbb{N}$ mit x > n, die durch m teilbar ist, also $\frac{x}{m} = q \Leftrightarrow x = q * m$. Da x > n lässt sich x schreiben als x = n + (n - n) und ferner n + (x - n) = q * m.

Wähle nun r := -(x - n). Dann ist $n + (x - n) = n - r = q * m \Leftrightarrow n = q * m + r$.

Aufgabe 4

• Fall 1:

$$a > 0 \land b > 0. \tag{1}$$

Dann ist |a| = a und |b| = b, und somit $|a| + |b| = a + b \ge 0$. Aus (1) folgt $a + b \ge 0$ und daher auch $|a + b| \ge 0$. Es bleibt also zu zeigen, dass

$$a+b \le a+b+|a-b| \Leftrightarrow 0 \le |a-b|$$
.

Ist $a \ge b$, dann ist $0 \le a - b$ und somit |a - b| = a - b. Dann gilt jedoch bereits $0 \le |a - b| = a - b$. Ist a < b, so ist a - b < 0 und damit |a - b| = -(a - b). Dann ist jedoch |a - b| = -(a - b) > 0.

• Fall 2:

$$a < 0 \land b < 0. \tag{2}$$

Dann ist |a| = -a und |b| = -b, und somit |a| + |b| = -a - b. Aus (2) folgt a + b < 0 und somit |a + b| = -(a + b) = -a - b. Es bleibt also zu zeigen, dass

$$-a - b \le -a - b + |a - b| \Leftrightarrow 0 \le |a - b|$$
.

Ist a < b, dann ist a - b < 0 und damit |a - b| = -(a - b) > 0. Ist $a \ge b$, dann ist $a - b \ge 0$ und $|a - b| = a - b \ge 0$.

• Fall 3:

$$a \ge 0 \land b < 0. \tag{3}$$

Dann ist |a| = a und |b| = -b, sowie b < a. Weiterhin ist |a| + |b| = a - b. Aus (3) folgt -b > 0 und damit a - b > 0. Daher ist |a - b| = a - b. Es bleibt also zu zeigen, dass

$$a - b \le |a + b| + a - b \Leftrightarrow 0 \le |a + b|$$
.

Ist $a + b \ge 0$, dann ist $|a + b| = a + b \ge 0$. Ist a + b < 0, so ist |a + b| = -(a + b) > 0.

• Fall 4:

$$a < 0 \land b \ge 0. \tag{4}$$

Dann ist |a|=-a und |b|=b, sowie |a|+|b|=-a+b. Aus (4) folgt $-b\leq 0$. Damit ist a-b<0 und |a-b|=-(a-b)=-a+b. Es bleibt also zu zeigen, dass

$$-a+b < |a+b| - a+b \Leftrightarrow 0 < |a+b|.$$

Ist $a + b \ge 0$, dann ist $|a + b| = a + b \ge 0$. Ist a + b < 0, so ist |a + b| = -(a + b) > 0.

Es gilt Gleichheit, wenn $a \leq b \land a \geq b \Leftrightarrow a = b$.