Vector Space Model

Slides borrowed from Hongning Wang with modification

Ch. 6

Ranked retrieval

- Thus far, our queries have all been Boolean
 - Documents either match or don't
- Can be good for expert users with precise understanding of their needs and the collection
 - Can also be good for applications: Applications can easily consume 1000s of results
- Not good for the majority of users
 - Most users incapable of writing Boolean queries
 - Or they are, but they think it's too much work
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Document Selection vs. Ranking

Intuitions for Ranking

- Query side: some terms are more important than others to represent the user's information need
- Document side: some terms carry more information about the document

Vector space model

- Represent both document and query by concept vectors
 - Each concept defines one dimension
 - K concepts define a high-dimensional space
 - Element of vector corresponds to concept weight
 - E.g., $d=(x_1,...,x_k)$, x_i is "importance" of concept i
- Measure relevance
 - Similarity between the query vector and document vector in this concept space

VS Model: an illustration

Which document is closer to the query?

What the VS model doesn't say

- How to define/select the "basic concept"
 - Concepts are assumed to be <u>orthogonal</u>
- How to assign weights
 - Weight in query indicates importance of the concept
 - Weight in doc indicates how well the concept characterizes the doc
- How to define the similarity/distance measure

What is a good "basic concept"?

- Orthogonal
 - Linearly independent basis vectors
 - "Non-overlapping" in meaning
 - No ambiguity
- Weights can be assigned automatically and accurately
- Existing solutions
 - Terms or N-grams, i.e., bag-of-words
 - Topics, i.e., topic model

Bag of words representation

How to assign weights?

- Important!
- How?
 - Two basic <u>heuristics</u>
 - TF (Term Frequency) = Within-doc-frequency
 - IDF (Inverse Document Frequency)

TF weighting

- Idea: a term is more important if it occurs more frequently in a document
- TF Formulas
 - Let f(t,d) be the frequency count of term t in doc d
 - Raw TF: tf(t,d) = f(t,d)

TF normalization

- Query: *iphone 6s*
 - D1: iPhone 6s receives pre-orders on September
 12.
 - D2: iPhone 6 has three color options.
 - D3: iPhone 6 has three color options. iPhone 6 has three color options. iPhone 6 has three color options.

TF normalization

Sublinear TF scaling

$$-tf(t,d) = \begin{cases} 1 + \log f(t,d), & \text{if } f(t,d) > 0\\ 0, & \text{otherwise} \end{cases}$$

Raw TF

Document frequency

 Idea: a term is more discriminative if it occurs only in fewer documents

IDF weighting

- Solution
 - Assign higher weights to the rare terms
 - Formula $DF(t) = \log(\frac{N}{df(t)})$ Number of docs in collection $DF(t) = \log(\frac{N}{df(t)})$ Number of docs containing term t
 - A corpus-specific property
 - Independent of a single document

Collection vs. Document frequency

- Collection frequency of t is the total number of occurrences of t in the collection (incl. multiples)
- Document frequency is number of docs t is in
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

 Which word is a better search term (and should get a higher weight)?

tf-idf weighting has many variants

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\mathit{N}-\mathrm{d} f_t}{\mathrm{d} f_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

TF-IDF weighting

- Combining TF and IDF
 - Common in doc \rightarrow high tf \rightarrow high weight
 - Rare in collection → high idf → high weight
 - $-w(t,d) = TF(t,d) \times IDF(t)$
- Most well-known document representation schema in IR! (G Salton et al. 1983)

"Salton was perhaps the leading computer scientist working in the field of information retrieval during his time." - wikipedia

Gerard Salton Award

highest achievement award in IR

Cosine similarity

Angle between two vectors TF-IDF vector

$$-cosine(V_q, V_d) = \frac{V_q \times V_d}{|V_q|_2 \times |V_d|_2} = \frac{|V_q|_2}{|V_q|_2} \times \frac{|V_d|_2}{|V_d|_2}$$

Document length normalized

TF-IDF space

Ouery

Sports

What you should know

- Basic idea of vector space model
- Two important heuristics in VS model
 - TF
 - IDF
- Similarity measure for VS model
 - cosine similarity

Today's reading

- Chapter 6: Scoring, term weighting and the vector space model
 - 6.2 Term frequency and weighting
 - 6.3 The vector space model for scoring
 - 6.4 Variant tf-idf functions