

Vanessa Dantas de Souto Costa vanessa.dantas 796@gmail.com

INTRODUÇÃO

Contextualização com o mundo atual

- A odometria visual é um dos métodos mais usados para sistemas de navegação autônoma [Guedes Maidana 2017]
- Introduzida pela primeira vez para os robôs planetários operando em Marte Moravec 1980, vide [Visual Odometry (VO) n.d.].

Motivação

- Pesquisa do Prof. Dr. Bruno Marques Ferreira da Silva.
- Ressalva: os algoritmos desenvolvidos não são robustos a ambientes dinâmicos.

Objetivo

 O objetivo do projeto é estudar o efeito da parametrização do RANSAC no projeto de odometria visual em ambientes dinâmicos, usando imagens estéreo provenientes do dataset KITTI [Geiger et al. 2012].

Sistema de Referência

Disposição dos sensores no carro usado para construção do dataset KITTI.

Estéreo

- Visão estéreo:
- percepção de profundidadecalculada por triangulação.
 - ex.:

- Visão monocular:
- julgamento de profundidade:
- monoscópico.
- ex.:

Estéreo

 a odometria visual estéreo, consiste no uso de duas câmeras cuja calibração deve ser conhecida (seja por especificação do produto ou por outros métodos de calibração, como alguns descritos em [Kaehler & Bradski 2016]), este modelo permite resolver o problema de escala da visão monocular, pois através de duas imagens é possível determinar a profundidade.

Correspondência

A correspondência ou retificação da imagem consiste em projetá-la, segundo seu próprio feixe perspectivo para um plano horizontal. Em outras palavras, podemos modificar de modo a tentar eliminar os ângulos de atitude da câmera em relação a um dado referencial, bem como a distância focal da imagem,

Cálculo da Profundidade por Triangulação

$$\frac{T-disp}{Z-f} = \frac{T}{Z} \Longrightarrow Z = \frac{f \cdot T}{disp}$$

 disp representa a disparidade e é calculada pela diferença entre os pontos correspondentes da imagem da direita em relação à esquerda, T corresponde à linha de base, f é a distância focal e Z é a profundidade.

Cálculo da Nuvem de Pontos

$$Q = \begin{bmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 0 & f \\ 0 & 0 & -\frac{1}{T_x} & \frac{c_x - c'_x}{T_x} \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = Q \cdot \begin{bmatrix} x \\ y \\ disparity(x, y) \\ 1 \end{bmatrix}$$

 $_3dImage(x,y) = (X/W,Y/W,Z/W)$

Para que possamos calcular a nuvem de pontos, é necessário uma matriz de reprojeção Q para projetar os pontos bidimensionais da imagem no plano tridimensional da nuvem de pontos, ou seja, os pontos citados contêm a distância X,Y e Z no tridimensional da nuvem de pontos. Para esse cálculo devemos utilizamos os valores intrínsecos da câmera já mencionados (f , T e as coordenadas x e y dos pontos principais da câmera esquerda).

Odometria Visual

 A odometria visual é o método para determinar a posição e a orientação de um robô, analisando as imagens da câmera associadas.

RANSAC

 Random sample consensus (RANSAC) constitui um método para estimar os parâmetros de um determinado modelo a partir de um conjunto de dados contaminados por grandes quantidades de outliers.

Parametrização do RANSAC

O algoritmo RANSAC é um método de detecção atípica, ou seja, tem o objetivo de diminuir o erro do sistema, escolhendo um grupo com número mínimo pontos dependendo do modelo matemático (reta, plano, círculo, matriz de rotação e translação, entre outros) para criar uma "hipótese", ou seja, um modelo que calcule a rotação e translação feita pela câmera. Um pressuposto básico é que os dados consistem em "inliers", isto é, dados cuja distribuição pode ser explicada por algum conjunto de parâmetros de modelo, embora possam estar sujeitos a ruído, e "outliers"que são dados que não se encaixam no modelo. A hipótese com maior número de inliers é escolhida como a verdadeira transformação de posição da câmera.

Parametrização do RANSAC

Parametrização do RANSAC

TRABALHOS RELACIONADOS

Trabalhos Relacionados

Conforme discorrido no Capítulo 1, esse projeto surgiu embasado em [Scaramuzza & Fraundorfer 2011b] e na pesquisa de odometria visual com imagens estéreo desenvolvida pela equipe do NatalNet, coordenada pelo Prof. Dr. Bruno Marques Ferreira da Silva.

Trabalhos Relacionados

Trabalho de [Scaramuzza 2011] faz uma análise do RANSAC sob um sistema de odometria visual monocular.

 Trabalho de conclusão de curso, foi [Hossein-Nejad & Nasri 2016]. Nele, é proposto um método para escolha do limiar do RANSAC, no qual o valor limite é calculado com base na variação entre as classes de correspondência correta e incompatibilidade.

Odometria e variações no ambiente

Cálculo da Disparidade em imagens estéreo para pontos distantes

- o erro de correspondência de cada componente no cáLculo da disparidade afeta a profundidade.
- Ao tratar de pontos distantes, o caso estéreo é degenerado para monocular.

ALGORITMO E ABORDAGEM DO PROBLEMA

Estrutura do Algoritmo de Odometria Visual

Estrutura do Algoritmo de Odometria Visual

Estrutura do Algoritmo de Odometria Visual

Medição do Erro

- A métrica utilizada para determinar se o threshold melhorou ou não o desempenho do projeto foi a média do erro de translação calculado pelo devlopment kit do dataset [Geiger et al. 2012].
- Tem base no erro de rotação que usa como métrica o erro de posição relativa (erro entre todas as correspondências).

Parametrização do RANSAC: Teste Exaustivo


```
import os
import commands
texto=[]
numeroSequencia=6
inicio=10
fim=40
passo=1
threshold=inicio
while threshold <=fim:
           s="./rgbd rtk/build/applications/bin/stereo optical flow visual odometry test ./KITTI color/SubColor/ "+str(numeroSequencia)+" "+str(threshold)
          os.system(s)
           s="mv 0"+str(numeroSequencia)+".txt ./devkit/cpp/results/stereo/data/"
           os.system(s)
           os.system("cd ./devkit/cpp/ && ./evaluate odometry stereo")
           s="./devkit/cpp/results/stereo/errors/0"+str(numeroSequencia)+".txt"
           arg = open(s,'r')
           erroTranslacional=0
           numeroLinhas=0
           for linha in arq:
                     valores = linha.split()
                      erroTranslacional=erroTranslacional+float(valores[2])
                      numerol inhas=numerol inhas+1
           erroTranslacional=erroTranslacional/numeroLinhas
           arq.close()
           texto.append(str(threshold)+" "+str(erroTranslacional)+"\n")
           threshold=threshold+passo
          s="./resultadosErro/testeExaustivo0"+str(numeroSequencia)+".txt"
           arq = open(s,'w')
          arq.writelines(texto)
           arq.close();
           os.system("rm ./devkit/cpp/results/stereo/data/* && rm ./devkit/cpp/results/stereo/errors/* && rm ./devkit/cpp/results/stereo/plot error/* && rm ./devkit/cpp/results/stereo/errors/* &cm ./devkit/cpp/results/stereo/errors/stereo/errors/stereo/errors/stereo/errors/stereo/errors/stereo/errors/stereo/errors/stereo/errors/stere
```

Parametrização do RANSAC: Algoritmo Genético

Parametrização do RANSAC: Algoritmo Genético

```
import os
import commands
import numpy
import random
class Agent:
    def init (self, valor):
        self.string = str(valor)
        self.fitness = 1
    def str (self):
        return 'String: ' + str(self.string) + ' Fitness: ' + str(self.fitness)
numeroSequencia=6
population = 10 #a população deve ser sempre >= a 5
media= 22
desvio = 5
generations = 10
```

Parametrização do RANSAC: Algoritmo Genético

```
def algoritmoGenetico():
   texto=[]
    agents = init agents(population, media, desvio)
    for generation in xrange(generations):
        print 'Generation: ' + str(generation)
        agents = fitness(agents)
        agents = ordena(agents)
        print("Agentes depois de fitness e ordenação")
        imprime(agents)
        agents = selection(agents)
        print("Agentes depois de selection")
        imprime(agents)
        agents = crossover(agents)
        print("Agentes depois de crossover")
        imprime(agents)
        agents = mutation(agents)
        print("Agentes depois de mutação")
        imprime(agents)
        agents = ordena(agents)
        print("Agentes depois de ordenação")
        imprime(agents)
        agente = agents[0]
        print("Melhor")
        print(agente.string)
        print(agente.fitness)
        texto.append(agente.string+" "+str(agente.fitness)+"\n")
        s="./resultadosErro/algoritmoGenetico0"+str(numeroSequencia)+".txt"
        arg = open(s,'w')
        arq.writelines(texto)
        arq.close()
```

```
def imprime(agents):
    for agent in agents:
        print(agent.string)
        print(agent.fitness)
def init agents(population, media, desvio):
    agents=[]
    contador=0
    valoresThreshold=numpy.random.normal(media,desvio,population)
    for valor in (valoresThreshold):
        agents.append(Agent(abs(valor)))
        contador=contador+1
    return agents
def fitness(agents):
    for agent in agents:
        if(agent.fitness==1):
            agent.fitness = erro devKit(agent.string)
        print(agent.string)
        print(agent.fitness)
    return agents
def ordena(agents):
    return sorted(agents, key=lambda agent: agent.fitness, reverse=False)
def selection(agents):
    agents = agents[:int(0.4 * len(agents))]
    return agents
```

```
def crossover(agents):
    offspring = []
    for in xrange((population - len(agents)) / 2):
        parent1 = random.choice(agents)
        parent2 = random.choice(agents)
        child1 = Agent(float(parent1.string))
        child2 = Agent(float(parent2.string))
        dif=abs(float(parent1.string)-float(parent2.string))
        influencia = float(parent1.string) +dif
        child1.string=str(influencia)
        influencia = abs(float(parent2.string) -dif)
        child2.string=str(influencia)
        offspring.append(child1)
        offspring.append(child2)
    agents.extend(offspring)
    return agents
def mutation(agents):
    for agent in agents:
        if random.uniform(0.0, 1.0) <= 0.1:
            print("mutação de")
            print(agent.string)
            print(agent.fitness)
            agent.string = str(abs(2*desvio*random.random()+ (media-desvio)))
            agent.fitness=1
    return agents
```

```
def erro devKit(threshold):
    s="./rgbd rtk/build/applications/bin/stereo optical flow visual odometry test ./KITTI color/SubColor/ "+str(numeroSequencia)+" "+threshold
   os.system(s)
   s="mv 0"+str(numeroSequencia)+".txt ./devkit/cpp/results/stereo/data/"
   os.system(s)
   os.system("cd ./devkit/cpp/ && ./evaluate odometry stereo")
   s="./devkit/cpp/results/stereo/errors/0"+str(numeroSequencia)+".txt"
   arqR = open(s,'r')
   erroTranslacional=0
   numeroLinhas=0
    for linha in argR:
       valores = linha.split()
       erroTranslacional=erroTranslacional+float(valores[2])
       numeroLinhas=numeroLinhas+1
    erroTranslacional=erroTranslacional/numeroLinhas
    arqR.close()
   os.system("rm ./devkit/cpp/results/stereo/errors/* && rm ./devkit/cpp/results/stereo/plot error/* && rm ./devkit/cpp/results/stereo/plot pa
   return erroTranslacional
   name == ' main ':
   algoritmoGenetico()
```


Parametrização do RANSAC: Teste Exaustivo

 Para o teste exaustivo executamos o projeto rgbd_rtk com faixa de valores de threshold distintos para os datasets de odometria da KITTI 01, 03, 04 e 06.

Teste Exaustivo: Sequência 04

Teste Exaustivo: Sequência 03

21.0026484588

21.0026484588

21.0026484588

20.5362424457

20.5362424457

0.0996869736842

0.0996869736842

0.0996869736842

0.0986120947368

0.0986120947368

Para o teste em algoritmo genético executamos o projeto robd etk para os datasets de

odometria da KITTI 01, 03, 04 e 06.						
	Dataset 03	media 5, desvio 5		Dataset 04	media 20, desvio 5	
Ī	Threshold (cm)	Média do erro (translação)		Threshold (cm)	Média do erro (translação	
ľ	6.79347974199	0.0823417065217		18.2945042908	0.189460418605	
ľ	8.50717421481	0.075938625		18.2656038554	0.188787069767	
Ī	8.50717421481	0.075938625		18.23670342	0.187898093023	
Ì	10.2208686876	0.0652939021739		18.23670342	0.187898093023	
ľ	10.2208686876	0.0652939021739		18.23670342	0.187898093023	
	Dataset 01	media 52, desvio 10		Dataset 06	media 23, desvio 10	
	Threshold (cm)	Média do erro (translação)	1	Threshold (cm)	Média do erro (translação	

Dataset 03	media 5, desvio 5		Dataset 04	media 20, desvio 5
Threshold (cm)	Média do erro (translação)		Threshold (cm)	Média do erro (translação
6.79347974199	0.0823417065217		18.2945042908	0.189460418605
8.50717421481	0.075938625	2	18.2656038554	0.188787069767
8.50717421481	0.075938625		18.23670342	0.187898093023
10.2208686876	0.0652939021739		18.23670342	0.187898093023

0.635082867099

0.635082867099

0.635082867099

0.632428748784

0.632428748784

49.8855209687

49.8855209687

49.8855209687

49.8118231238

49.8118231238

Algoritmo Genético vs Teste Exaustivo Sequência 01

(b) Teste Exaustivo 01

Algoritmo Genético vs Teste Exaustivo Sequência 03

(b) Teste Exaustivo 03

Algoritmo Genético vs Teste Exaustivo Sequência 04

(a) Algoritmo Genético 04

(b) Teste Exaustivo 04

Algoritmo Genético vs Teste Exaustivo Sequência 06

(a) Algoritmo Genético 06

(b) Teste Exaustivo 06

Desvantagem Teste Exaustivo

Dependente da faixa de valores testada

		9-11-11-11-11-11-1-1-1-1-1-1-1-1-1-1-1-		
	Dataset 01	faixa de 0.5 a 10.5, passo 1		
Threshold cm		Média do erro (translação)		
	0.5	0.926811753647		
	1.5	0.873590789303		
	2.5	0.843967126418		
	3.5	0.819378688817		
	4.5	0.803934641815		
	5.5	0.797938066451		
	6.5	0.794576824959		
	7.5	0.790058658023		
Melhor solução?	8.5	0.781211175041		
1	9.5	0.775006259319		
	10.5	0.76917580389		
		·		

Análise das Sequências Escolhidas

- A sequência 01, possui o maior erro, pois é muito dinâmica, devido a passagem de ciclistas, carros, entre outros. Além de possuir altas variações de iluminação. Fatores para os quais, conforme especificado em capítulos anteriores, o projeto implementado não possui robustez. Além disso, é válido salientar que nas últimas 100 imagens há ofuscamento de uma das câmeras pelo sol, fato que resultou em erro ao gerar a disparidade. Por isso, removemos as 100 últimas imagens do dataset para teste.
- A sequência 03 é pouco dinâmica, contudo, embora não haja movimentação brusca, o automóvel do KITTI segue um outro carro durante o início do trajedo e depois para de seguí-lo. Essa mudança gera um aumento de erro no ponto onde ela ocorre. Além disso, é perceptível o acúmulo do erro gerado pelo rgbd rtk.
- Na sequência 04 (pouco dinâmica) o automóvel do KITTI segue um outro carro durante todo o trajedo. Assim como em todas as outras sequências,há o acúmulo do erro gerado pelo rgbd_rtk.
- A sequência 06 também também com baixa dinamicidade, possui algumas curvas conforme podemos perceber ao observar a trajetória traçada. Por fim, vemos que a escolha do threshold do RANSAC teve impacto significativo no erro de trajetória, mesmo com as limitações do nosso projeto para datasets dinâmicos.

CONCLUSÃO

Conclusão

- Mesmo que a diferença entre o erro gerado pelo threshold escolhido pelo teste exaustivo e pelo algoritmo genético não seja grande. Pudemos verificar as deficiências que uma abordagem por teste exaustivo apresenta.
- A escolha do limiar tem suma importância sobre o projeto de odometria visual com imagens estéreo.
- Altamente recomendável automatizar a parametrização da odometria visual, escolhendo o limiar que minimize o erro, e buscar soluções de aprendizado de máquinas.
- No entanto, ainda há muito o que fazer para que nosso projeto atinja a robustez a ambientes dinâmicos com iluminação inconstante.

Referências

CADENA, C.; CARLONE, L.; CARRILLO H.; LATIF Y.; SCARAMUZZA D.; NEIRA J.; REID I.; LEONARD J. J. (2016), Past, present and future of simultaneous localization and mapping: toward the robust perception age., In: IEEE Transactions on Robotics.

Chang, C. & S. Chatterjee (1992), Quantization error analysis in stereo vision, em '[1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems Computers', pp. 1037–1041 vol.2.

da Silva, B. Marques F., L. F. Maciel Correia, K. de Araújo Bezerra & L. M. Garcia Gonçalves (2017), Tracking spatially distributed features in klt algorithms for rgb-d visual odometry, em '2017 Workshop of Computer Vision (WVC)', pp. 67–72.

da Silva, B. Marques F. & L. M. Garcia Gonçalves (2015), Visual odometry and mapping for indoor environments using rgb-d cameras, Vol. 507, pp. 16–31.

Referências

Scaramuzza, D. (2011), Performance evaluation of 1-point-ransac visual odometry, Journal of Field Robotics.

Scaramuzza, D. & F. Fraundorfer (2011a), Visual odometry: Part 1 - the first 30 years and fundamentals, em 'Robotics and Automation', IEEE Robotics and Automation Magazine 18(4).

Scaramuzza, Davide & Friedrich Fraundorfer (2011b), 'Visual odometry [tutorial]', IEEE Robot. Automat. Mag. 18, 80–92.

Visual Odometry (VO) (n.d.), http://www.cs.toronto.edu/~urtasun/courses/ CSC2541/03_odometry.pdf. Acessed: 2018-06-04. Visão Estéreo (n.d.), http://www.comp.ita.br/~forster/CC-222/lecture/06-Visao-Estereo.pdf. Acessed: 2018-08-07.

Hossein-Nejad, Zahra & Mehdi Nasri (2016), Image registration based on sift features and adaptive ransac transform.

Kaehler, Adrian & Gary Bradski (2016), Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library, 1st edio, O'Reilly Media, Inc.

