bitcoin

CS1699: Blockchain Technology and Cryptocurrency

9. The Bitcoin Network

Bill Laboon

Bitcoin Scripts

- * Recall that all transactions actually include a script (written in the Bitcoin scripting language, Script)
- * The majority of transactions on Bitcoin blockchain contain a simple script to transfer UTXOs
- * But we can do more!

Green Addresses

- Send bitcoin via third-party bank, even if both parties are offline
- * Was exciting ten years ago... but turns out trusting third parties with bitcoin is a generally bad idea
- * See: Mt. Gox NOT YOUR KEYS, NOT YOUR COINS

Efficient Microtransactions

- * Alice keeps signing transactions, each time adding more (e.g. 0.001 btc, 0.002 btc, 0.003 btc, etc.)
- * Bob only signs final transaction that is the only one that goes through
- * Not used often on-chain microtransactions have gone the way of the dodo
 - * Microtransactions have turned out not to be used often in practice
 - * Off-chain or second-tier mechanisms such as Lightning Network are taking over microtransactions

Escrow Transactions

Remember: Bitcoin transactions are immutable once they are completed and on the blockchain!

Escrow Transactions w/ MULTISIG

Judy (third-party arbiter)

m-of-n (2 *of* 3)

Alice (buyer)

bitcoin (P2SH)

goods / services

Bob (legitimate businessman)

Joining the Bitcoin Network

Seeds:

seed.bitcoin.sipa.be
dnsseed.bluematt.me
dnsseed.bitcoin.dashjr.org
seed.bitcoinstats.com
seed.bitcoin.jonasschnelli.ch
btc.petertodd.org
seed.bitcoin.sprovoost.nl

Joining the Bitcoin Network

Seeds taken from: https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp

Dynamic Random Topology

The Gossip Protocol

Initial node Broadcasts
transactions
to all of
its peers

Each receiving node checks for validity

- If valid, passes to its peers
- If invalid, drops it

Valid Transactions at the Gossip Level

- * Is the transaction valid within the current block chain? (i.e., does scriptSig || scriptPubKey return true?)
- * Have the outputs not already been redeemed (i.e., are they unspent?)
- * Has this node not seen this transaction before?
- * Is the script whitelisted?

The Gossip Protocol

"I already have this tx (checked against hash), I will ignore it"

"New valid transaction!

I will add it to the transaction pool, then pass it on."

Transaction Propagation

- * Relatively slow process (decentralization and efficiency are often at loggerheads)
- * Note that block propagation nowadays is much faster than in the book: https://bitnodes.earn.com/ dashboard/?days=90
- * Interestingly, though the number of fully validating nodes has remained about the same! (~10,000)

Storage (as of 26 September 2018)

- * Current size of the Bitcoin blockchain:
 - ~ 183,897 megabytes (monotonically increasing)
- * https://www.blockchain.com/charts/blocks-size?
- * Size of the Bitcoin transaction pool over the last week: 192,629 bytes 9,112,522 bytes (Max: 12 Jan 2018 126 MB)
- https://www.blockchain.com/charts/mempool-size
- * If you really want to get down in the weeds: https://jochen-hoenicke.de/queue/#1,24h

Fully Validating Nodes

- Fully validating nodes:
 - * Connect to the Bitcoin network and act as a full peer
 - Download and verify the entire blockchain (generally > 24 hours to do so)
 - Verify/propagate/drop transactions
 - Broadcast transactions

SPV ("Lightweight") Nodes

- * Simple Payment Verification
- * Not as secure as a fully validating node only downloads headers of blocks, so checks that blocks and their hashes are valid, but not every single transaction in the block
- * Can ONLY validate transactions that "affect them", not the entire network
- * The majority of nodes on the Bitcoin network are SPV nodes if you use a Bitcoin wallet, chances are it is an SPV node.

Why Run a Lightweight Node?

- * Storage/CPU usage savings ~ three orders of magnitude (1/1000th) compared to a fully validating node
- Very little "lag time" when spinning up a node

The Evolution of Bitcoin

- * Want to change Bitcoin? File a BIP (https://github.com/bitcoin/bips/blob/master/ README.mediawiki). Some notable active BIPs:
 - Already mentioned BIP-34: Changed coinbase attribute to include current height
 - * BIP-11: Added MULTISIG support (https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki) Used for escrow
 - * BIP-13: Added P2SH (https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki)
 - * BIP-141: Added SegWit support (https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki) Prevent transaction malleability, allow second-tier scaling to take place

Kinds of Forks

- * Hard fork: Introduce new features were previously considered invalid; previous versions of software will not accept new blocks
 - * Can lead to chain splits ("coin forks", e.g. Bitcoin Cash, Bitcoin Gold, Bitcoin Private)
- * **Soft fork**: Make validation rules stricter; previous versions of software will still accept blocks produced under the stricter rules

Changes to Consensus

- * How do people decide?
- * If nodes accept changes, that change continues
- Other nodes can follow along or go off on their own which has happened before!
 - * Bitcoin Classic, Bitcoin XT, Bitcoin Unlimited all are now subsumed under Bitcoin Cash

Limitations of Bitcoin Network

- * Known implementation bugs (e.g. MULTISIG instruction popping multiple values off of the stack)
- Transactions per second (~ 7)
- Fixed cryptographic hashing algorithms (SHA-256, RIPEMD-160, ECDSA/secp256k1)
- * Future/minor issues: divisibility smaller than satoshis, number of operations per block
- * Not likely to ever be modified: number of bitcoin produced, mean time between blocks, block rewards/halvening
- * Difficult/impossible to fix most of these without a hard fork