

# Scaling Spark applications by connecting code to resource consumption

Vinod Nair

Director of Product Management @ Pepperdata

#### Pepperdata does performance (for Big Data)

18
Thousan
d
Production

50 Million Jobs/Year







#### Today's talk will cover...

- Why debugging performance problems is hard
- Data elements needed for a complete view of application performance from separate tools
- Bringing these elements together in a single tool



# 2 reasons why debugging performance problems is hard



#### Reason #1

Same external symptoms, but many possible causes

- code
- data
- configuration
- cluster weather



#### Reason #2

Existing tools provide limited visibility

- Spark Web UI is the most popular
  - Execution plan with some aggregate performance data
- Ganglia, Ambari, CM etc
  - Time series data about cluster, not specific to Spark apps
- Code execution not connected to resource consumption
- Unhealthy hardware or load from other apps unaccounted



# 3 data elements form a complete picture of Spark application performance

#### Code execution plan

Indicates which block of code is being executed

#### Time series view

- Visual of resource consumption of application
- Outliers in resource use very easy to detect

#### Cluster weather

- A view of all applications that runs on the cluster
- A view of the health of all the nodes in the cluster



First half of the solution

Spark Web UI



# Logical code execution plan from Spark: Jobs / Stages / DAG





### Physical execution plan from Spark: Executors / Tasks

| Execu            | itors                                                                         |                      |                  |               |                                      |               |               |                 |                   |                   |                 |                          |            |     |                 |                  |                  |  |
|------------------|-------------------------------------------------------------------------------|----------------------|------------------|---------------|--------------------------------------|---------------|---------------|-----------------|-------------------|-------------------|-----------------|--------------------------|------------|-----|-----------------|------------------|------------------|--|
| Summai           | PDD<br>Blocks                                                                 | Storage<br>Memory    | Dis<br>Use       |               | Active<br>Cores Tasks                |               | ailed<br>asks | Com             |                   | Total<br>Tasks    | Task T          | ime (GC                  | Inpu       | ıt  | Shuffle<br>Read | Shul             |                  |  |
| Active(S)        | 7                                                                             | 10.4 CB / 18.8<br>GB | 8 0.0            | В             | 16 0                                 | 0             |               | 80              |                   | 80                | 4.03 h          | (39.9 m)                 | 34.0<br>GB |     | 6.8 GB          | 6.8 0            | В                |  |
| Dead(0)          | 0                                                                             | 0.0 B / 0.0 B        | 0.0              | В             | 0 0                                  | a             |               | a               |                   | 0                 | 0 ms (0         | ) ms)                    | 0.01       | 3   | 0.0 B           | 0.0 B            |                  |  |
| Total(9)         | 9) 7 10.4 CB / 18.<br>GB                                                      |                      | 8 0.0            | В             | 16 0                                 |               |               | 80              |                   | 83                | 4.03 h (39.9 m) |                          | 34.0<br>GB |     | 6.8 GB          | 6.8 0            | 6.8 GB           |  |
| Executor<br>ID   | Address                                                                       |                      | Status           | RDD<br>Blocks | Storage<br>Memory                    | Used          | Cores         | Active<br>Tasks | Falk(ii)<br>Tasks | Complete<br>Tasks | Total<br>Taaka  | Task Time<br>(GC Time)   | In         | ut  | Shuffle<br>Read | Shuffle<br>Write | Logs             |  |
| I <b>D</b><br>1  | Address<br>amarilo                                                            |                      | Status           | Blocks        | Memory<br>1522.8 MB /                | Used<br>0.0 B | Cores<br>2    | Tasks<br>D      | Taeks             | Tasks<br>9        | Taaka<br>9      | (GC Time)<br>29.8 m (4.0 | 5.1        |     | Read<br>607.0   | Write<br>927.4   | Logs             |  |
|                  | rm.peppard                                                                    | sta.com:48571        |                  |               | 2.1 GB                               |               |               |                 |                   |                   |                 | m)                       | 9          | L   | MB              | MB               | stderr           |  |
|                  | amarilo-<br>n3.pepperdala.com:49687                                           |                      | Active           |               | 1515.1 MB /<br>2.1 GB                | 0.0 B         | 2             | 0               | 0                 | 11                | 11              | 28.3 m (4.4<br>m)        | 4.1<br>GI  |     | 929.7<br>MB     | 892.5<br>MB      | stderr<br>stderr |  |
| 2                |                                                                               | ala.com:49687        |                  |               | 2. 00                                |               |               |                 |                   |                   | _               |                          |            |     |                 |                  |                  |  |
|                  | n3.pepperd<br>amarilo-                                                        | sla.com:49687        | Active           |               | 1520.3 MB /<br>2.1 GB                | 0.0B          | 2             | D               | D                 | 10                | 10              | 27.0 m (3.6<br>m)        | 4.i<br>Gi  |     | 739.4<br>MB     | 773.8<br>MB      | stdout<br>stderr |  |
| 3                | n3.pepperd<br>amarito-<br>n2.pepperd<br>amarito-                              |                      | Active<br>Active | )             | 1520.3 MB /                          | 0.0 B         | 2             | 0               | D                 | 10                | 10              |                          | Gi         | ).2 |                 |                  |                  |  |
| 2<br>3<br>4<br>5 | n3.pepperdi<br>amarito-<br>n2.pepperdi<br>amarito-<br>n1.pepperdi<br>amarito- | ota.com;47933        |                  | )             | 1520.3 MB /<br>2.1 GB<br>0.0 B / 2.1 | 0.0 B         | 7             |                 |                   |                   |                 | m)<br>28.0 m (4.3        | GI<br>34   | ).2 | MB<br>1251.6    | MB<br>786.7      | stderr<br>stdout |  |



#### Second half of solution

### Time series view



Time series view of resource consumption for the App





#### Best of both worlds

### **Bring them together**



#### Bringing it all together: CPU across Stages





### Memory across all Stages of App





#### GC across all Stages of App





#### **HDFS Reads across all Stages of App**





### Bringing it all together





#### Let's examine GC activity in Stage 4





#### Executor skew increased Stage duration 2x





#### Possible solution: increase number of partitions





Cluster weather

### What if it's not your fault?



#### How does cluster weather impact your app?





### No apparent reason for delay from Spark Web UI

| Stage<br>Id | Description                                               | Submitted              | Duration | Tasks:<br>Succeeded/Total | Input      | Output     | Shuffle<br>Read | Shuffle<br>Write |
|-------------|-----------------------------------------------------------|------------------------|----------|---------------------------|------------|------------|-----------------|------------------|
| 2           | saveAsNewAPIHadoopFile at ScalaTeraSort.scala:60 +details | 2017/05/23<br>16:55:02 | 16 min   | 8/8                       |            | 29.8<br>GB | 13.1 GB         |                  |
| 1           | map at ScalaTeraSort.scala:49 +details                    | 2017/05/23<br>16:51:46 | 3.3 min  | 240/240                   | 29.1<br>GB |            |                 | 13.1 GB          |
| 0           | BaseRangePartitioner at ScalaTeraSort.scala:56 +details   | 2017/05/23<br>16:51:30 | 15 s     | 8/8                       |            |            |                 |                  |

| Stage<br>Id | Description                                      |          | Submitted              | Duration | Tasks:<br>Succeeded/Total | Input       | Output     | Shuffle<br>Read | Shuffle<br>Write |
|-------------|--------------------------------------------------|----------|------------------------|----------|---------------------------|-------------|------------|-----------------|------------------|
| 2           | saveAsNewAPIHadoopFile at ScalaTeraSort.scala:60 | +details | 2017/05/23<br>15:12:33 | 41 min   | 8/8                       |             | 29.8<br>GB | 13.1 GB         |                  |
| 1           | map at ScalaTeraSort.scala:49                    | +details | 2017/05/23<br>14:50:46 | 22 min   | 240/240                   | 29.8 GB     |            |                 | 13.1 GB          |
| 0           | BaseRangePartitioner at ScalaTeraSort.scala:56   | +details | 2017/05/23<br>14:49:35 | 32 s     | 8/8                       | 768.0<br>MB |            |                 |                  |



### Time series shows slower run of App with much lower resources





# View cluster weather conditions for slower run of App





# Cluster weather reveals reason for CPU constraints on slower app





# Cluster weather reveals reason for memory constraints on slower app





# Cluster weather reveals reason for HDFS constraints on slower app





#### To recap

- Execution plan integrated with time series shines a spot light on problems
- Stage and code section integrated with resources consumed enables focus on most impactful areas for optimization
- Knowing cluster weather can prevent time wasted debugging non-existent performance issues



### Code Analyzer for Apache Spark

- Free during Early Access starting June 5th, 2017
- Early Access is for development teams
- To learn more visit pepperdata booth #101
- My contact <u>vinod@pepperdata.com</u>



pepperdata.com/products/code-analyzer



### Thank You.

www.pepperdata.com/products/code-analyzer/