- A sequence of numbers are given by $u_1 = 1$, and $u_n = u_{n-1} + 2$ for all natural numbers n larger than 1.
 - (i) By stating the first 5 terms in the sequence, conjecture u_n in terms of n for all natural numbers n. [2]
 - (ii) Prove the conjecture in (i) using mathematical induction. [2]
- 2 In any order, find the set of real values of λ for which the system of linear equations

$$x + y + \lambda z = \lambda^{2},$$

$$x + \lambda y + z = \lambda,$$

$$\lambda x + y + z = 1,$$

has a unique solution, has infinite number of solutions and does not have a solution. [5]

Solve the system of linear equation for the case that it has infinite number of solutions. [1]

- 3 Let $f(r) = \frac{2}{r^2 1}$.
 - (i) Express f(r) in sum of partial fractions.
 - (ii) Hence, or otherwise, evaluate

$$(a) S_n = \int_{r=2}^n f r, \qquad [3]$$

(b)
$$\lim_{n\to\infty} S_n$$
. [1]

4 The curve *C* has equation

$$y = 1 - x + \frac{2}{x - 2}.$$

- (i) By using algebraic method, find the range of the function of *C*. [4]
- (ii) Show that *C* is decreasing. [2]
- (iii) Sketch *C*, stating the coordinates of the intersections with the axes. [3]

- The planes π_1 and π_2 with equations x-y+2z=1 and 2x+y-z=0 respectively 5 intersect in the line *l*.
 - (i) Find a direction of *l*. Hence, show that the Cartesian equation of *l* could be written as

$$\frac{x}{-1} = \frac{y - \alpha}{5} = \frac{z - \beta}{3}$$

where α and β are constants to be determined.

[5]

Given that the point A has coordinates 1, 0, 1,

- (ii) find the Cartesian equation of the plane through *A* and containing *l*. [2]
- calculate the perpendicular distance from A to l. (iii) [3]
- The cubic equation $x^3 x^2 3x 10 = 0$ has roots α , β , and γ . 6 (i)

Without evaluating α , β , and γ , find a cubic equation having roots $-\alpha + \beta + \gamma$, $\alpha - \beta + \gamma$, and $\alpha + \beta - \gamma$. [5]

Given that (ii)

$$p + q + r = 0,$$

 $p^{2} + q^{2} + r^{2} = 2,$
 $p^{3} + q^{3} + r^{3} = 0,$

find a cubic equation whose roots are p, q and r.

Hence, find possible values for p, q and r. [1]

[5]

7 Answer only **one** of the following two alternatives.

EITHER

A system of linear equations is given by

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2,$

where a_{11} , a_{12} , a_{13} , a_{14} , a_{21} , a_{22} , a_{23} and a_{24} are real numbers, $a_{11} \neq 0$ and $a_{11}a_{22} \neq a_{12}a_{21}$.

Let P_0 be the above system of linear equation when $b_1 = b_2 = 0$, and P_1 be the one when not all b_1 and b_2 are zero.

- (i) (a) Show that P_0 must be consistent. [1]
 - **(b)** If s_1 , s_2 , s_3 , s_4 and t_1 , t_2 , t_3 , t_4 are the non-zero solutions of P_0 , show that the following sets are also the solutions of P_0 .

(i)
$$\lambda s_1$$
, λs_2 , λs_3 , λs_4 where $\lambda \neq 0$. [2]

(ii)
$$s_1 + t_1$$
, $s_2 + t_2$, $s_3 + t_3$, $s_4 + t_4$. [2]

- (ii) (a) If α_1 , α_2 , α_3 , α_4 is a solution of P_1 and t_1 , t_2 , t_3 , t_4 is a solution of P_0 , show that $\alpha_1 + t_1$, $\alpha_2 + t_2$, $\alpha_3 + t_3$, $\alpha_4 + t_4$ is also a solution of P_1 . [4]
 - **(b)** Using the results in **(ii)(a)**, or otherwise, solve the system of linear equations

$$x_1 + x_2 - 2x_3 + x_4 = 1,$$

 $2x_1 + x_2 - x_3 + x_4 = 2.$ [4]

OR

(i) Prove, by mathematical induction, that

$$\int_{r=1}^{n} \frac{1}{r^2} < 2 - \frac{1}{n}$$

for every positive integers $n \ge 2$.

- [4]
- (ii) A series is given by 1 1 + 4 3 + 9 5 + 16 7 + \cdots + U_n .
 - (a) State U_n in terms of n. [1]
 - **(b)** Show that

$$U_r = \frac{1}{6}n \ n+1 \ 3n^2 + n - 1 \ .$$
 [3]

Hence, or otherwise, express, in terms of n, the sum of the first n terms in the series

$$S_n = \ln 2 + 3 \ln 2^4 + 5 \ln 2^9 + 7 \ln 2^{16} + \cdots$$
 [3]

Find the value of

$$\lim_{n\to\infty} n^{-4}S_n . ag{2}$$