18.404/6.840 Lecture 20

shrink me →

Last time:

- Games and Quantifiers
- Generalized Geography is PSPACE-complete
- Logspace: Land NL

Today:

- Review NL ⊆ P
- Review NL \subseteq SPACE($\log^2 n$)
- NL-completeness
- -NL = coNL

Review: log space

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE(
$$\log n$$
)
NL = NSPACE($\log n$)

Log space can represent a constant number of pointers into the input.

Examples

- 1. $\{ww^{\mathcal{R}} \mid w \in \Sigma^*\} \in L$
- $2. \quad PATH \in \mathsf{NL}$

Nondeterministically select the nodes of a path connecting s to t.

Review: L⊆P

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A <u>configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the work tape contents.</u>

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Therefore M runs in polynomial time.

Conclusion: $A \in P$

Review: $NL \subseteq SPACE(\log^2 n)$

Theorem: $NL \subseteq SPACE(\log^2 n)$

Proof: Savitch's theorem works for log space

Each recursion level stores 1 config = $O(\log n)$ space.

Number of levels = $\log t = O(\log n)$.

Total $O(\log^2 n)$ space.

Review: NL ⊆ P

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for *M* on *w*

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from $c_{\rm start}$ to $c_{\rm accept}$

Polynomial time algorithm *T* for *A*:

T = "On input w

- 1. Construct $G_{M,w}$. [polynomial size]
- 2. Accept if there is a path from $c_{\rm start}$ to $c_{\rm accept}$. Reject if not."

NL-completeness

Check-in 20.1

If T is a log-space transducer that computes f, then for inputs w of length n, how long can f(w) be?

- (a) at most $O(\log n)$ (d) at most $2^{O(n)}$

(b) at most O(n)

- (e) any length
- (c) at most polynomial in n

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- read-only input tape of size *n*
- read/write work tape of size $O(\log n)$
- write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is log-space reducible to B $(A \leq_L B)$ if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathsf{L}} B$ and $B \in \mathsf{L}$ then $A \in \mathsf{L}$ Proof: TM for A = "On input w

- 1. Compute f(w)
- 2. Run decider for B on f(w). Output same."

BUT we don't have space to store f(w). So, (re-)compute symbols of f(w) as needed.

PATH is NL-complete

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in NL$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle$$

 $w \in A$ iff G has a path from s to t

Here is a log-space transducer T to compute f in log-space.

T = "on input w

- 1. For all pairs c_i , c_j of configurations of M on w.
- 2. Output those pairs which are legal moves for M.
- 3. Output c_{start} and c_{accept} ."

$\overline{2SAT}$ is NL-complete

Theorem: $\overline{2SAT}$ is NL-complete

Proof: 1) Show $2SAT \in NL$ good exercise

2) Show $PATH \leq_L \overline{2SAT}$

Give log-space reduction f from PATH to $\overline{2SAT}$.

$$f(\langle G, s, t \rangle) = \langle \phi \rangle$$

For each node u in G put a variable x_u in ϕ .

For each edge (u, v) in G, put a clause $(x_u \to x_v)$ in ϕ [equivalent to $(\overline{x_u} \lor x_v)$]. In addition put the clauses $(x_s \lor x_s)$ and $(x_t \to \overline{x_s})$ in ϕ .

Show G has an path from S to t iff ϕ is unsatisfiable.

- (→) Follow implications to get a contradiction.
- (←) If G has no path from s to t, then assign all x_u TRUE where u is reachable from s, and all other variables FALSE. That gives a satisfying assignment to ϕ .

Straightforward to show f is computable in log-space.

NL = coNL (part 1/4)

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let
$$path(G, s, t) = \begin{cases} YES, & \text{if } G \text{ has a path from } s \text{ to } t \\ NO, & \text{if not} \end{cases}$$

Let
$$R = R(G,s) = \{u \mid path(G,s,u) = YES\}$$

$$Let c = c(G, s) = |R|$$

R = Reachable nodes c = # reachable

Check-in 20.2

Consider the statements:

- (1) $PATH \in NL$, and
- (2) Some NL-machine computes the path function.

What implications can we prove *easily*?

- (a) $(1) \rightarrow (2)$ only
- (b) $(2) \rightarrow (1)$ only
- (c) Both implications
- (d) Neither implication

NL = coNL (part 2/4) – key idea

Theorem: If some NL-machine computes c, then some NL-machine computes path.

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node u
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.
 - If u = t, then output YES, else set $k \leftarrow k + 1$.
 - (n) Skip u and continue.
- 5. If $k \neq c$ then reject.
- 6. Output NO." [found all c reachable nodes and none were t}

NL = coNL (part 3/4)

Let
$$path_d(G,s,t) = \begin{cases} \text{YES, if } G \text{ has a path } s \text{ to } t \text{ of length} \leq d \\ \text{NO, if not} \end{cases}$$
 Let $R_d = R_d(G,s) = \{u \mid path_d(G,s,u) = \text{YES}\}$ Let $c_d = c_d(G,s) = |R_d|$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_d$.

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute c_d
- 2. $k \leftarrow 0$
- 3. For each node u
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject. If u = t, then output YES, else set $k \leftarrow k + 1$.
 - (n) Skip u and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO" [found all c_d reachable nodes and none were t}

NL = coNL (part 4/4)

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$.

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node u
- Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.
 - If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.
 - (n) Skip u and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

Check-in 20.3

Can we now show 2SAT is NL-complete?

- (a) No.
- (b) Yes.

Yes: $\overline{PATH} \leq_{L} PATH \& PATH \leq_{L} \overline{2SAT}$

So $\overline{PATH} \leq_{L} \overline{2SAT}$ thus $PATH \leq_{L} 2SAT$

Quick review of today

- 1. Log-space reducibility
- 2. L = NL? question
- 3. *PATH* is NL-complete
- 4. $\overline{2SAT}$ is NL-complete
- 5. NL = coNL