4-4. Two men exert forces of F = 400 N and P = 250 N on two ropes. Determine the moment of each force about A.

4-5. If the man at B exerts a force of P = 150 N on his rope, determine the magnitude of force F the man at C must exert to prevent pole from rotating (i.e. M = 0)

rotating (i.e. $M_A = 0$).

4-10. The hub of the wheel can b attached to the axle either with negative offset (left) or positive offset (right). If the tire is subjected to both a normal and radial force as shown, determine the resultant moment of these loads

about point O on the axle for both cases.

4-13. Determine the moment produced by the force F about point A in terms of the angle q. Plot the graph of M_A versus q.

θ [deg]	M ₀ [N.m]									
0	-36	=-36*COS	(A2*PI()/18	30)-18*SIN(A	A2*PI()/180)					
5	-37.4318	=-36*COS	(A3*PI()/18	30)-18*SIN(A	A3*PI()/180)					
10	-38.5787									
15										
20										
25										
30	-40.1769									
35	-39.8138									
40	-39.1478									
45										
50										
55										
60	-33.5885									
65	-31.5278									
	-29.2272									
75										
80										
85										
90										
	-14.7939									
	-11.4752									
	-8.06918									
	-4.60174									
	-1.09928									
	2.411543									
125	5.904015									
	9.351554									
	12.72792									
	16.00742									
	19.1651									
	22.17691									
155	25.01995									

4-16. The Achilles tendon force F_t is mobilized when one stands on toes. As this is done foot is subjected to a ground reaction force of $N_t = 400 \text{ N}$ The resultant of these two forces about the ankle joint has to be zero. Determine the magnitude of the Achilles tendon force F_t .

4-26. The foot segment is subjected to the pull of the two plantarflexor muscles. Determine the moment of each of these forces about the point of $F_2 = 150 \text{ N}$ contact A on the ground. $F_1 = 100 \text{ N}$ 100 mm

87.5 mm

25 mm-

4-43. Determine the moment produced by each force about point O located on the drill bit. Express results as Cartesian vectors.

4-53. The tool is used to shut off gas valves which are difficult to access. If the force F is applied to the handle, determine the component of the moment created about the rotation axis (z-axis) of the valve.

4-57. Determine the magnitude of the moment that the force F exerts about the y axis of the shaft. 250 mm · x 200 mm 50 mm 30° $F = 16 \text{ N}^{-1}$

4-71. Determine the magnitude of the vertical force \mathbf{F} acting on the handle of the wrench so that this force produces a component of moment along the AB axis of the pipe assembly of $M_{Ax} = -5\mathbf{i}$ N.m.

4-75. The caster wheel is subjected to two couples. Determine the forces F that the bearings exert on shaft so that the resultant couple moment on the caster is zero.

4-87. Determine the required magnitude of force **F**, if the resultant couple moment on the beam is to be zero.

4-93. If F = 80 N, determine the magnitude and coordinate direction angles of the couple moment. The pipe assembly lies in the x-y plane.

4-101. Determine the magnitudes of couple moments \mathbf{M}_1 , \mathbf{M}_2 , and \mathbf{M}_3 so that the resultant couple moment is zero. 225 N·m M_3 0.3 m 0.6m 0.6 m 0.6 m 0.9 m

4-109. Replace the force system acting on the post by a resultant force and couple moment at point A. 0.5 m B500 N 0.2 m 30° 250 N 1 m 300 N 1 m

4-112. Replace the two forces acting on the grinder by a resultant force and couple moment at point O.

4-119. The weights of various components of the truck are shown. Replace the system of forces by an equivalent resultant force and specify its location measured from point A.

4-123. Replace the force and couple system acting on the frame by an equivalent resultant force and specify where the resultant's line of action intersects member BC measured from B.

4-131. The tube supports the four parallel forces. Determine the magnitudes of forces \mathbf{F}_{C} and \mathbf{F}_{D} acting at C and D so that the equivalent resultant force of the force system acts through the midpoint, O, of the tube.

4-140. Replace the three forces acting on the plate by a wrench. Specify the magnitude of the force and couple moment for the wrench and the point, P (y, z) where its line of action intersects the plate.

4-143. Replace the distributed loading with an equivalent resultant force and specify its location on the beam measured from A.

4-149. The wind pressure acting on a triangular sign is uniform. Replace this loading by an equivalent resultant force and couple moment at point O.

4-154. Replace the distributed loading with an equivalent resultant force, and specify its location on the beam measured from point A.

