Machine Learning (ML)

Geo.BigData(Science)

Dr. Joachim Steinwendner

Mitglied der SUPSI

Scuola universitaria professionale della Svizzera italiana

Laboratory for Web Science

Menschen

Geo-Informatik Health-

Laboratory for Web Science Kompetenzen

Applied Data Science:

- Machine Learning
- Deep Learning
- Big Data
- **Complex Networks**
- **■** Recommender Systems

Funding: FWF – Österreichischer Fonds zur Förderung der Wissenschaftlichen Forschung

PhyRS - Physical models in remote sensing image understanding

Funding: FWF – Österreichischer Fonds zur Förderung der Wissenschaftlichen Forschung

PhyRS - Physical models in remote sensing image understanding

WIS - Untersuchung zur flächigen Verdichtung der Waldinformation aus der österreichischen Waldinventur mit Satellitenbilddaten

Abb. 5: Wald-/Nichtwaldkarte für Österreich

Abb. 6: Schätzung des Holzvorrats am Beispiel von Buche (Mitte) und Weichlaubhölzern (Pappel, Weide, Erle, ...) im Wienerwald und in den Donauauen bei Klosterneuburg

TROF — Tree resources outside the forest assessment and monitoring of natural resources in Central America

Funding: PMU - Paracelsus Medizinische Universität Salzburg – UK Anästhesie und Intensivmedizin

GeoHealth — Entwicklung einer semi-automatischen Wunddokumentationsmethode

Ihr Dozent

Bildverarbeitung für erdbeobachtende Satelliten

Medizinische Informationssysteme für Anästhesie, Intensivmedizin und Neonatologie

Laboratory for WebScience
Forschungsinstitut der FFHS
Data Science,
Recommendersysteme
Machine Learning

"a little history"

- A. H. (ante Hinton)
 - Statistik
 - Pattern Recognition
 - Computer Vision
 - Spracherkennung
 - **...**
- 2006 Geoffrey Hinton: "Deep Learning", Erkennung handschriftlicher Ziffern mit >98% Genauigkeit
- P. H. (post Hinton)
 - "Machine Learning" Tsunami
 - Machine Learning erobert die Industrie

Positionierung

"...is the field of study that gives computers the ability to learn without being explicitedly programmed." (Arthur Samuel, 1959)

"...is a computer program that is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." (Tom Mitchell, 1997)

"...is about extracting knowledge from data." (Aurelion Geron, 2017)

"...ist ein Oberbegriff für die "künstliche" Generierung von Wissen aus Erfahrung."
(wikipedia, 22.8.2017)

Machine Learning Positionierung

■ Was ist "Machine Learning"?

Drew Conways Venn Diagram

Positionierung

Joel Grues updated Venn Diagram

■ Traditionelle Methode

■ Machine Learning Methode

Machine Learning
 Methode
 (automatische
 Adaption auf
 Änderungen)

Grundsätzliche Typen

Supervised

Learning known patterns

Unsupervised

Learning unknown patterns

Reinforcement

Generating data

Learning patterns

Supervised Learning - Überwachtes Lernen

Zielfunktion
$$f(x)$$

Supervised Learning - Überwachtes LernenHypothesen

Hypothesen sind Abbildungen von den Trainingsdaten in die Zielgrösse

$$\hat{f}(x) \mapsto \hat{y}$$

Beispiel binäre Klassifikation:
 Die Hypothesenmenge =
 {Alle möglichen Hyperebenen,
 die Positive und Negative
 Beispiele trennen}

Supervised Learning - Überwachtes Lernen

Klassifikation vs. Regression

■ Klassfikation:

Zielvariable: Diskretes, qualitatives Label

Hypothesen haben eine endliche Wertemenge

Regression:

Zielvariable: Reelle Zahl

Hypothesen haben eine reelle Wertemenge

Modelle

- Parametrische Modelle (z.B. $y=f(x)=x^3*a+x^2*b+x*c+d$): Beschreibe die Trainingsdaten durch eine fixe Anzahl an Parametern, brauchen daher im allgemeinen weniger Parameter.
 - z.B.
 - Lineare und nicht-lineare Regression
 - Logistische Regression
 - Naive Bayes Klassifikation

Modelle

■ Nicht-Parametrische Modelle (z.B.: KNN):

Diese Modelle entwickeln eine Funktion, die im Zusammenhang zwischen Eingabe und Ausgabe stehen. Die Struktur der Funktion ist vor dem Training nicht über eine bestimmte Anzahl an Parametern festgelegt.

z.B.

- k-nächste Nachbarn Klassifikation/Regression (KNN)
- Entscheidungsbaum
- Nicht-lineare Support Vector Machines (RBF Kernel SVM)

Kommentare zu Modellkomplexität

■ Berechnungs"komplexität"

Assuming k is fixed (as both of the linked lectures do), then your algorithmic choices will determine whether your computation takes O(nd+kn) runtime or O(ndk) runtime.

First, let's consider a O(nd+kn) runtime algorithm:

- ullet Initialize $selected_i=0$ for all observations i in the training set
- ullet For each training set observation i, compute $dist_i$, the distance from the new observation to training set observation i
- For j=1 to k: Loop through all training set observations, selecting the index i with the smallest $dist_i$ value and for which $selected_i=0$. Select this observation by setting $selected_i=1$.
- Return the k selected indices

Each distance computation requires O(d) runtime, so the second step requires O(nd) runtime. For each iterate in the third step, we perform O(n) work by looping through the training set observations, so the step overall requires O(nk) work. The first and fourth steps only require O(n) work, so we get a O(nd+kn) runtime.

Now, let's consider a O(ndk) runtime algorithm:

- ullet Initialize $selected_i=0$ for all observations i in the training set
- For j=1 to k: Loop through all training set observations and compute the distance d between the selected training set observation and the new observation. Select the index i with the smallest d value for which $selected_i=0$. Select this observation by setting $selected_i=1$.
- Return the k selected indices

For each iterate in the second step, we compute the distance between the new observation and each training set observation, requiring O(nd) work for an iteration and therefore O(ndk) work overall.

Kommentare zu Modellkomplexität

■ Modellierungs"komplexität"

Bias Variance <-> Overfitting

Bias Variance <-> Overfitting

$$Err(x) = E\left[(Y - \hat{f}\left(x
ight))^2
ight]$$

$$Err(x) = \left(E[\hat{f}\left(x
ight)] - f(x)
ight)^2 + E\left[\left(\hat{f}\left(x
ight) - E[\hat{f}\left(x
ight)]
ight)^2
ight] + \sigma_e^2$$

 $Err(x) = Bias^2 + Variance + Irreducible Error$

