Fokusserien-basierte Rekonstruktion von Mikroobjekten

Jan Wedekind

16.5.2002

Betreuer: Axel Bürkle

Referent: Prof. Heinz Wörn

Motivation

aus Fokusserie rekonstruieren:

- Oberfläche (Höhenkarte)
- Bild erweiterter Schärfentiefe

Anwendung

- 3-D Modelle
- Bilderkennung

Lasertriangulation

- Vorteil: schnell, stabil
- Grenze: Linienbreite, Schärfentiefe

Konfokales

Laserscanningmikroskop

- hohe Auflösung, 3-D
- teuer

Stand der Technik

- Höhenkarte d(x, y) aus
 - Maximierung eines Schärfemaßes
 - * Gradientenbetrag
 - * lokale Grauwertvarianz
 - * Wavelet, 2. Ableitung
 - Vergleich der Unschärfe
- Bild erweiterter Schärfentiefe $v(x,y) = g_{d(x,y)}(x,y)$

Meßaufbau

- Leica DM RXA Mikroskop
 - 2 Kanal Beleuchtung mit Filtereinsatz
 - Motorisierter Z-Tisch (Schrittweite $0.1 \mu m$)
- Dual Pentium III mit 1GHz Prozessoren
- 768×576 CCD-Kamera 8-Bit
 - \Rightarrow Auflösung bis zu $0.74 \,\mu\mathrm{m}/\mathrm{Pixel}$

Projektion von Hilfsmustern

Ohne Verwendung von Hilfsmuster

Mit projiziertem $13\,\mu\mathrm{m}$ -Schachbrettmuster

Systematischer Fehler

Erklärung

- Kontrast(b)>Kontrast(d)
- Kontrast(a)<Kontrast(c)

Auflösungsverbesserung I

Approximation der Punktantwort durch $h_z(x,y) = \begin{cases} \frac{1}{\pi(zk)^2} & \sqrt{x^2 + y^2} \le |zk| \\ 0 & \text{sonst} \end{cases}$,

k kalibriert

$$(d'-d)(x,y) = \frac{1}{M} \underset{j \in \{-M,\dots,+M\}}{\operatorname{argmin}} \left\| \begin{cases} g_2 - g_1[\otimes] h_{2j/(cM)} & j < 0 \\ g_1 - g_2[\otimes] h_{2j/(cM)} & j \ge 0 \end{cases} \right\} \right\|$$

Verschlechterung

Vergleich II

simulierte 100³-Fokusserie: geneigte Ebene

Gütemaß
$$\sigma_d^2 = \frac{1}{N^2} \underset{a_1, a_2, b \in \mathbf{R}}{\operatorname{argmin}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} (a_1 x + a_2 y + b - d(x, y))^2$$

	/	\ \
g_{50}	(x,	y)

Algorithmus	σ_d
einfach	21.6531
adaptiv	1.4135
+ Vgl. d. Unschärfe	1.4956
+ Interpolation	1.3704

Zusammenfassung

- Adaptiver Algorithmus unterdrückt systematische Fehler
- Projektion von Hilfsmuster
- wenige Parameter
- Komplexität O(N)
- Berechnung von Tiefenbildern
- Auflösungsverbesserung durch Interpolation

Ausblick

- Meßaufbau:
 - Helligkeitsregler für Beleuchtung
- Algorithmus:
 - Adaptiver Vergleich der Unschärfe
 - Fusion von Fokusserien
 - Interpolation der Höhenkarte
 - Schärfemaß aus Wavelets
 - Zusammensetzen von Höhenkarten

