Importing the Dependencies

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
```

Data Collection

Load the data from .csv file to pandas dataframe
data = pd.read_csv('https://raw.githubusercontent.com/YBI-Foundation/Dataset/main/Titanic.

Printing the first five rows of the dataframe
data.head()

₽		pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	е
	0	1	1	Allen, Miss. Elisabeth Walton	female	29.00	0	0	24160	211.3375	B5	
	1	1	1	Allison, Master. Hudson	male	0.92	1	2	113781	151.5500	C22 C26	
	4											•

Number of rows and columns in our dataset data.shape

(1309, 14)

Information about our data
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	pclass	1309 non-null	int64
1	survived	1309 non-null	int64
2	name	1309 non-null	object
3	sex	1309 non-null	object
4	age	1046 non-null	float64
5	sibsp	1309 non-null	int64
6	parch	1309 non-null	int64

```
object
7
  ticket 1309 non-null
8
  fare
            1308 non-null
                            float64
   cabin 295 non-null
9
                            obiect
10 embarked 1307 non-null object
11 boat
           486 non-null object
12 body
              121 non-null
                            float64
13 home.dest 745 non-null
                            object
dtypes: float64(3), int64(4), object(7)
memory usage: 143.3+ KB
```

Number of missing values in each column
data.isnull().sum()

```
pclass
survived
                0
                0
name
sex
                0
              263
age
sibsp
                0
parch
                0
ticket
                0
fare
                1
            1014
cabin
embarked
                2
boat
              823
body
             1188
              564
home.dest
dtype: int64
```

Handling the Missing Values

0

age sibsp

```
# Dropping the 'cabin', 'boat', 'body' and 'home.dest' columns from the dataframe
data = data.drop(columns = ['cabin', 'boat', 'body', 'home.dest'], axis = 1)
# Replacing the missing values in 'age' column with the mean value
data['age'].fillna(data['age'].mean(), inplace = True)
# Replacing the missing values in 'embarked' column with the mode value
data['embarked'].fillna(data['embarked'].mode()[0], inplace = True)
# Replacing the missing values in 'fare' column with the mode value
data['fare'].fillna(data['fare'].mode()[0], inplace = True)
# Again checking the number of missing values in each column
data.isnull().sum()
    pclass
     survived
                 0
                 a
    name
     sex
                 0
```

parch 0 ticket 0 fare 0 embarked 0 dtype: int64

Data Visualization

```
sns.set()
```

```
# count plot for 'survived' column
sns.countplot('survived', data = data)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass
FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7fbe639fee50>

count plot for 'sex' column
sns.countplot('sex', data = data)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass

count plot for 'survived' column gender-wise
sns.countplot('sex', hue = 'survived', data = data)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fbe52cac210>

count plot for 'pclass' column
sns.countplot('pclass', data = data)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fbe52c25b10>

count plot for 'survived' column class-wise
sns.countplot('pclass', hue = 'survived', data = data)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fbe52c38c50>

Data Encoding

pclass

data['sex'].value_counts()

male 843 female 466

Name: sex, dtype: int64

data['embarked'].value_counts()

S 916

C 270

Q 123

Name: embarked, dtype: int64

```
# Conversion to categorical columns
data.replace({'sex' : {'male' : 0, 'female' : 1}, 'embarked' : {'S' : 0, 'C' : 1, 'Q' : 2}
```

data.head()

	pclass	survived	name	sex	age	sibsp	parch	ticket	
0	1	1	Allen, Miss. Elisabeth Walton	1	29.00	0	0	24160	:
1	1	1	Allison, Master. Hudson Trevor	0	0.92	1	2	113781	
2	1	0	Allison, Miss. Helen Loraine	1	2.00	1	2	113781	
3	1	0	Allison, Mr. Hudson Joshua Creighton	0	30.00	1	2	113781	
1	1	Λ	Allison, Mrs. Hudson J C (Bessie	1	25 00	1	2	112721	,

Data Analysis

Getting statistical data about the dataset
data.describe()

	pclass	survived	sex	age	sibsp	parch	
count	1309.000000	1309.000000	1309.000000	1309.000000	1309.000000	1309.000000	13
mean	2.294882	0.381971	0.355997	29.881138	0.498854	0.385027	
std	0.837836	0.486055	0.478997	12.883193	1.041658	0.865560	
min	1.000000	0.000000	0.000000	0.170000	0.000000	0.000000	
25%	2.000000	0.000000	0.000000	22.000000	0.000000	0.000000	
50%	3.000000	0.000000	0.000000	29.881138	0.000000	0.000000	
75%	3.000000	1.000000	1.000000	35.000000	1.000000	0.000000	
max	3.000000	1.000000	1.000000	80.000000	8.000000	9.000000	5

Getting co-relation data about the dataset
data.corr()

	pclass	survived	sex	age	sibsp	parch	fare	en
pclass	1.000000	-0.312469	-0.124617	-0.366371	0.060832	0.018322	-0.558740	0.
survived	-0.312469	1.000000	0.528693	-0.050198	-0.027825	0.082660	0.244479	0.
sex	-0.124617	0.528693	1.000000	-0.057397	0.109609	0.213125	0.185744	0.
age	-0.366371	-0.050198	-0.057397	1.000000	-0.190747	-0.130872	0.170619	0.
sibsp	0.060832	-0.027825	0.109609	-0.190747	1.000000	0.373587	0.160388	-0.
parch	0.018322	0.082660	0.213125	-0.130872	0.373587	1.000000	0.221668	-0.
fare	-0.558740	0.244479	0.185744	0.170619	0.160388	0.221668	1.000000	0.
embarked	0.038875	0.098450	0.120423	0.035824	-0.073461	-0.095523	0.061337	1.

Separating Features and Target variable

```
X = data.drop(columns = ['name', 'ticket', 'survived'], axis = 1)
y = data['survived']
```

Χ

	pclass	sex	age	sibsp	parch	fare	embarked	1
0	1	1	29.000000	0	0	211.3375	0	
1	1	0	0.920000	1	2	151.5500	0	
2	1	1	2.000000	1	2	151.5500	0	
3	1	0	30.000000	1	2	151.5500	0	
4	1	1	25.000000	1	2	151.5500	0	

У

```
1

1

1

2

0

3

0

4

0

...

1304

0

1305

0

1306

0

1307

0

1308

0
```

Name: survived, Length: 1309, dtype: int64

X.shape, y.shape

```
((1309, 7), (1309,))
```

Splitting the data into Training data and Testing data

Training Model

```
model = LogisticRegression(max_iter = 500)
# Training our model
model.fit(X_train, y_train)
LogisticRegression(max_iter=500)
```

Model Evaluation

Using our model to predict the values for X_test dataframe
y_predict = model.predict(X_test)

y_predict

```
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
      1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0,
      0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
      1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
      0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,
      0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
      0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
      1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
      1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
      0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
      0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0,
      1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
      0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1])
```

confusion_matrix(y_test, y_predict)

```
array([[228, 26], [40, 99]])
```

print(classification_report(y_test, y_predict))

	precision	recall	f1-score	support
0	0.85	0.90	0.87	254
1	0.79	0.71	0.75	139
accuracy			0.83	393
macro avg	0.82	0.80	0.81	393
weighted avg	0.83	0.83	0.83	393

accuracy_score(y_test, y_predict)

0.8320610687022901

✓ 0s completed at 23:19

×