Contenido

Introducción a los Dispositivos de Energía

Funciones y clasificación general

La Fuente de Alimentación

Componentes y funcionamiento básico

3

Tipos de Fuentes

Lineales vs Conmutadas

4

Concepto de Potencia

Importancia para componentes microinformáticos

5

El Transformador del Portátil

Características y especificaciones

6

Conectores y Cargadores

Tipos según fabricantes y usos

Introducción a los Dispositivos de Energía

Definición y Clasificación

Elementos que **suministran energía eléctrica** a los componentes de un sistema informático, convirtiendo la corriente alterna en continua y regulando el voltaje.

Fuentes Internas

Integradas en el equipo (torres, sobremesa)

Fuentes Externas

Transformadores y adaptadores (portátiles)

SAI/UPS

Sistemas de alimentación ininterrumpida

Sevolución Histórica

1980-1995

Fuentes Lineales

Grandes, pesadas, poco eficientes

1995-2010

Fuentes Conmutadas

Más compactas y eficientes

2010-

Actualidad

Alta Eficiencia

80 PLUS, USB-C, PD

Fuente de alimentación moderna con certificación 80 PLUS

*

Importancia en Sistemas Informáticos

Los dispositivos de energía son **fundamentales** para el correcto funcionamiento y estabilidad de cualquier sistema informático moderno.

Estabilidad de componentes

≯ Regulación de voltaje

0° Control térmico

Protección eléctrica

■ Eficiencia energética

U Vida útil del equipo

Distribución de consumo energético en componentes de un sistema informático

La Fuente de Alimentación

Definición y Componentes

Dispositivo que convierte corriente alterna (CA) de la red eléctrica en corriente continua (CC) estabilizada para alimentar componentes del ordenador.

Rectificador: Convierte CA a CC

Filtro: Elimina rizado

Regulador: Mantiene voltaje

Tipos de Fuentes: Lineales vs Conmutadas

- **#** Fuentes Lineales
- Simples y económicas
- Bajo ruido eléctrico
- **Baja eficiencia** (50-60%)
- Seneran mucho calor
- Grandes y pesadas

- **F**uentes Conmutadas
- Alta eficiencia (80-95%)
- **⊘** Compactas y ligeras
- Menor generación de calor
- Complejas y más costosas
- Mayor ruido eléctrico

Certificación 80 PLUS - Evolución en Eficiencia

80 PLUS

80% eficiencia

Bronze

82-85% eficiencia

Silver

85-88% eficiencia

Gold

88-90% eficiencia

Platinum

90-92% eficiencia

Titanium

94-96% eficiencia

Concepto de Potencia

P = V × I

 ★ Kilovatio (kW)

Amperio-hora (Ah)

Consecuencias de Potencia Inadecuada

Insuficiente

- Reinicios inesperados
- Inestabilidad del sistema
- Daño a componentes

Excesiva

- Mayor consumo energético
- Mayor generación de calor
- Costo elevado

Consumo de Componentes

Componente	Consumo Típico	Pico Máximo
CPU	65-95W	130-250W
GPU	120-200W	250-450W
RAM	3-5W	6-10W
Almacenamiento	5-10W	15-25W
Placa Base	30-80W	100-150W

? Recomendación

Calcular el **consumo total** y añadir un **20-30% extra** para futuras actualizaciones y picos de consumo.

Certificación 80 PLUS

Estándar de **eficiencia energética** para fuentes de alimentación. Indica el porcentaje de energía que se convierte en DC respecto a la energía AC consumida.

Beneficios

Menor consumo energético, reducción de costos y menor generación de calor.

El Transformador del Portátil

Definición y Componentes

Dispositivo que convierte corriente alterna (CA) de la red eléctrica en corriente continua (CC) de bajo voltaje para alimentar portátiles.

Transformador: Reduce voltaje

Rectificador: Convierte CA a CC

Filtro: Elimina rizado

Regulador: Mantiene voltaje

Parámetro	Valores Típicos
Voltaje de Salida	19V, 20V, 19.5V
Corriente de Salida	2.1A, 3.25A, 4.5A, 6.7A
Potencia	45W, 65W, 90W, 130W, 180W
Conector	Barrel, USB-C, MagSafe

Red CA

Transforma

Rectifica

Filtra

Portátil

¿Por qué externos?

- Reducción de tamaño y peso del portátil
- Menor generación de calor dentro del equipo
- Facilita el reemplazo en caso de fallo

Conectores y Cargadores

E Comparación de Conectores

Tipo	Velocidad de Carga	Ventajas	Desventajas	Tendencia
Barrel	Estándar	Durabilidad, bajo costo	No reversible, limitaciones de potencia	En declive
MagSafe	Rápida	Seguridad, conveniencia	Exclusivo de Apple, costo elevado	MagSafe 3 con USB-C
USB-C	Muy rápida (PD)	Universal, reversible, multifunción	Calidad variable entre fabricantes	Estándar emergente
Propietarios	Variable	Diseño optimizado, seguridad	Falta de compatibilidad, coste adicional	Transición a USB-C

Cargadores Universales

Definición y Ventajas

Dispositivo capaz de alimentar múltiples equipos mediante conectores intercambiables o estándar universal como USB-C.

- Compatibilidad con múltiples dispositivos
- Reducción de cables y accesorios
- Ahorro económico a largo plazo
- Portabilidad para viajes

Tipos y Consideraciones

Múltiples Conectores

Incluye varios tipos de conectores intercambiables

USB-CPD

Utiliza Power Delivery para mayor potencia

Consideraciones al elegir

- **Potencia adecuada** para tus dispositivos
- **Certificaciones de seguridad** (UL, CE, FCC)
- Calidad de construcción y materiales
- Protecciones contra sobrecarga y cortocircuitos

Recomendaciones por tipo de dispositivo

- Portátiles gaming: 100W o superior
- Ultrabooks: 45-65W
- **Tablets:** 18-30W
- Teléfonos: 18-30W con carga rápida

Verifica siempre la **compatibilidad de voltaje** y **amperaje** antes de conectar un dispositivo.

Resumen y Conclusiones

- Puntos Clave
- Dispositivos energéticos esenciales para el funcionamiento de sistemas informáticos
- Fuentes conmutadas más eficientes que las lineales (80-95% vs 50-60%)
- Potencia adecuada crucial para estabilidad y rendimiento de componentes
- **Transformadores externos** en portátiles reducen tamaño y calor interno
- USB-C tendencia hacia estandarización y multifuncionalidad
- Recomendaciones
 - **■** Calcular consumo total + 20-30%
 - ***** Verificar certificación 80 PLUS
- Priorizar seguridad y calidad
- **♥** Considerar cargadores universales

Carga inalámbrica de mayor potencia y eficiencia

Mayor eficiencia
energética y certificación
80 PLUS Titanium

USB-C como estándar universal con Power Delivery 3.1

Baterías con mayor capacidad y tiempo de carga reducido

Required Efficiency depending on % of Rated Load 80 PLUS Certification 115V Internal Non-Redundant 230V Internal Redundant % of Rated Load 80 PLUS 80% 80 PLUS Bronze 82% 82% 85% 80 PLUS Silver 85% 85% 89% 80 PLUS Gold 87% 92% 80 PLUS Platinum 90% 94%

Conclusión

La evolución hacia dispositivos más **eficientes**, **universales** y **sostenibles** marca el futuro de la tecnología de alimentación en informática.