Math 1021 – Beginning of the Semester Review

In 1-3, fill in the blanks to make each statement true.

- 1. The property a+b=b+a is called the ______ of addition, and (a+b)+c=a+(b+c) is called the ______ property.
- 2. The additive inverse of -3 is ______, and the multiplicative inverse of 1/3 is
- 3. The additive inverse of 0 is _____, that is, -0 = ____; the multiplicative inverse of 1 is _____, that is, $1^{-1} =$ _____.

Evaluate each expression in 4-5.

4. (a)
$$(48 \div 3)[(6+12)\div (4-2)]$$

(b)
$$48 \div \{3[6+12\div(4-2)]\}$$

(c)
$$48 \div 3[6+12 \div 4-2]$$

(d)
$$48 \div 3 \cdot 6 + 12 \div 4 - 2$$

5. (a)
$$8 \cdot [(18+9) \div (3 \cdot 3)]$$

(b)
$$8 \cdot [18 + 9 \div (3 \cdot 3)]$$

(c)
$$8 \cdot [18 + 9 \div 3 \cdot 3]$$

(d)
$$8.18 + 9 \div 3.3$$

In 6-9, fill in the blanks to make each statement true.

- 6. To compute a+b when a and b are unequal and have opposite signs, we
- 7. When there is a minus sign before parentheses, the parentheses can be removed by _____ of each term inside the parentheses.
- 8. The subtraction a-b is equal to the addition ______.
- 9. The division a/b is equal to the multiplication ______.

In 10 - 15, evaluate each of the following.

10.
$$-7 + (-2)$$
 11. $-4 + (-4)$ 12. $5 - (-8)$ 13. $3 + (-8)$

11.
$$-4+(-4)$$

12.
$$5-(-8)$$

13.
$$3+(-8)$$

14.
$$(-3)(-5)$$
 15. $\frac{24}{-6}$

15.
$$\frac{24}{-6}$$

In 16-20, express each of the following without parentheses or brackets.

16.
$$-(-x-7)$$

17.
$$-(6-y)$$

17.
$$-(6-y)$$
 18. $-[-(-x)-(-y)]$ 20. $[-(-5)](-y)$

19.
$$(-4)b$$

20.
$$[-(-5)](-y)$$

21. Express each of the following as a product of a power of 2 by a power of 3.

(a)
$$2^3 \cdot 3^2 \cdot 6$$

(b)
$$4 \cdot 6 \cdot 12 \cdot 6$$

(c)
$$18^2 \cdot 24^3$$

In 22 - 28, simplify each of the following. Leave your answer in exponential notation.

22.
$$(2^2)^4$$

23.
$$7^2 \cdot 7^3 \cdot 7^5$$

24.
$$(-5)(-5)^2(-5)^3$$

25.
$$x^2 \cdot x \cdot x^3 \cdot x \cdot x^4 \cdot x$$
 26. $\left[\left(4^2 \right)^3 \right]^4$

26.
$$\left[\left(4^2 \right)^3 \right]^4$$

27.
$$(2ab)^6$$

28.
$$(a^2b)^5(ac)^3(b^2c^3)^{-4}(ab)^{-4}$$

28. $(a^2b)^5(ac)^3(b^2c^3)^{-4}(ab)^2$ put some in with quotients where you get positive

In 29 - 30, accompany each of the following with an appropriate diagram.

29. On a coordinate plane, locate and clearly label each of the following points.

(a)
$$(5,2)$$

(b)
$$(-4,3)$$

(b)
$$(-4,3)$$
 (c) $(-6,-5)$ (d) $(5,-8)$

(d)
$$(5,-8)$$

30. If a < 0 and b > 0, determine the quadrant of each of the following points.

(a)
$$(a,b)$$

(b)
$$(-a,b)$$

(c)
$$(a,-b)$$

(d)
$$(-a,-b)$$

31. Find two points P_1 and P_2 such that P_1 , P_2 , (-4,-2), and (5,3) are the vertices of a rectangle whose sides are parallel to the coordinate axes.

32. Add.

(a)
$$\frac{13}{15} + \frac{3}{15}$$

(b)
$$\frac{3}{10} + \frac{8}{15}$$

(a)
$$\frac{13}{15} + \frac{3}{15}$$
 (b) $\frac{3}{10} + \frac{8}{15}$ (c) $\frac{5x}{3x+1} + \frac{4x}{3x+1}$ (d) $\frac{4}{t} + \frac{6}{t+2}$

(d)
$$\frac{4}{t} + \frac{6}{t+2}$$

(e)
$$\frac{4}{x^2 - 16} + \frac{x + 2}{x^2 + 4x}$$

33. Subtract.

(a)
$$\frac{12}{5} - \frac{2}{5}$$

(b)
$$\frac{11}{12} - \frac{3}{8}$$

(c)
$$\frac{3b}{3b+2} - \frac{4b}{3b+2}$$

(d)
$$\frac{4}{k} - \frac{6}{k+2}$$

(a)
$$\frac{12}{5} - \frac{2}{5}$$
 (b) $\frac{11}{12} - \frac{3}{8}$ (c) $\frac{3b}{3b+2} - \frac{4b}{3b+2}$ (d) $\frac{4}{k} - \frac{6}{k+2}$ (e) $\frac{x}{4x+16} - \frac{4}{x^2+4x}$

34. Multiply and simplify.

(a)
$$\frac{15}{16} \cdot \frac{8}{5}$$

(b)
$$\frac{15}{4} \cdot \frac{3}{4}$$

(c)
$$\frac{3m^2n}{9x^2y} \cdot \frac{27x^4y^3}{6mn}$$

(a)
$$\frac{15}{16} \cdot \frac{8}{5}$$
 (b) $\frac{15}{4} \cdot \frac{3}{4}$ (c) $\frac{3m^2n}{9x^2y} \cdot \frac{27x^4y^3}{6mn}$ (d) $\frac{8x^2 - 4x}{2x^2 + 5x - 3} \cdot \frac{x^2 - 9}{2x}$

35. Divide and simplify.

(a)
$$\frac{3}{4} \div \frac{3}{7}$$

(b)
$$\frac{1}{20} \div \frac{1}{5}$$

(c)
$$\frac{12x^5y^4}{7a^3b^2} \div \frac{4x^2y}{21a^2b^2}$$

(a)
$$\frac{3}{4} \div \frac{3}{7}$$
 (b) $\frac{1}{20} \div \frac{1}{5}$ (c) $\frac{12x^5y^4}{7a^3b^2} \div \frac{4x^2y}{21a^2b}$ (d) $\frac{x+3}{x-3} \div \frac{x^2+6x+9}{x^2-6x+9}$

36. Combine like terms.

(a)
$$-8+11a-5b+6a-7b-7$$

(b)
$$8x - 5x + 6 + 3y - 2y - 4$$

37. Find the slope, x – and y – intercepts of the following equations.

(a)
$$y = 2x + 1$$

(b)
$$2x + 3y = 6$$

38. Solve the following equations.

(a)
$$7x + 7 = -14$$

(b)
$$(z+5)-7=(z-7)+5$$

(c)
$$-(y+5)-(2+7y)+8y=3y-8$$

(d)
$$-8b+6+6b=-3b+11+b$$

39. Write an expression for the area of the figure shown.

- 40. Write an expression for the difference of 4 and the quotient of x and 6.
- 41. Check to see if -1 is a solution of the equation, $3x^2 2x = -5x$.
- 42. Solve the following inequalities:
 - (a) -13 + x > -12
 - (b) $-3(4-2x) \le 18$
 - (c) -4 < 2x + 5 < 19
- 43. Write the equation of the line using the information given in the indicated form.
 - (a) $m = \frac{1}{4}$; y intercept is -3; slope-intercept form
 - (b) $m = -\frac{3}{7}$; y intercept (0,5); general form
 - (c) Through the points (2,-6) and (-3,-5); slope-intercept form
 - (d) Through the points (3,2) and (4,5); general form
- 44. Factor completely the following polynomials:

(a)
$$x^2 - 12x + 35$$

(a)
$$x^2 - 12x + 35$$
 (b) $2y^3 - 22y^2 + 48y$ (c) $6y - 18$

(c)
$$6y - 18$$

(d)
$$x^2 - 81$$

(e)
$$4x^2y^3 - 12x^3y^2$$
 (f) $10a^2 - 19a + 6$

(f)
$$10a^2 - 19a + 6$$

$$(g) - 4x^2 + 64$$

(g)
$$-4x^2 + 64$$
 (h) $3x(6x-5)-4(6x-5)$

45. Combine the following polynomials and simplify: (a) $(3x^2 - 8x + 2) + (4x^2 - 2x - 9)$ (b) $(-5x^2 + 7x - 9) - (-2x^2 - 8x + 6)$

(a)
$$(3x^2 - 8x + 2) + (4x^2 - 2x - 9)$$

(b)
$$\left(-5x^2 + 7x - 9\right) - \left(-2x^2 - 8x + 6\right)$$

(c)
$$-3x^3(2x^4+5x-7)$$

(d)
$$(3x-5)(4x+7)$$

(e)
$$(7x-4)^2$$

$$(f)\left(\frac{1}{7}x^8\right)\left(-\frac{1}{4}x^2\right)$$