COSC76/276 Artificial Intelligence Fall 2022 Logical agents

Soroush Vosoughi
Computer Science
Dartmouth College
Soroush@Dartmouth.edu

Reminders

- PA3 due tonight at midnight!
- PA4 (due Nov 4th) and SA5 (Due Oct 28th) have been already out

Chess Tournament

Recap:

- Agents reason using states
- States represent set of possible worlds
- Many possible worlds -> large belief space

Today's learning objectives

- Model compact representation of knowledge allowing agents to reason and draw conclusions.
- Basic representation of knowledge → Will restrict the space of possible worlds.

Knowledge-based agents

Reflex Logic

"Low-level intelligence"

"High-level intelligence"

Credit: Courtesy Percy Liang

Knowledge-based agents

Search problems

Markov decision processes

Adversarial games

Constraint satisfaction problems

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Credit: Courtesy Percy Liang

Knowledge-based agents

Where would Machine Learning go?

Search problems

Markov decision processes

Adversarial games

Constraint satisfaction problems

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Credit: Courtesy Percy Liang

Why Do We Need Logic?

- Problem-solving agents were very inflexible: hard code every possible state
- Search is almost always exponential in the number of states
- Problem solving agents cannot infer unobserved information

Why Logic?

- Richer representation of knowledge than belief space.
- Automated theorem proving.
- A good basis for probabilistic reasoning.

 We want an algorithm that reasons in a way that resembles reasoning in humans

<u>Inference in Formal Symbol Systems:</u> Ontology, Representation, Inference

- Formal Symbol Systems
 - Symbols correspond to things/ideas in the world
 - Pattern matching & rewrite corresponds to inference
- Ontology: What exists in the world?
 - What must be represented?
- Representation: Syntax vs. Semantics
 - What's Said vs. What's Meant
- Inference: Schema vs. Mechanism
 - Proof Steps vs. Search Strategy

Ontology:

What kind of things exist in the world?
What do we need to describe and reason about?

Knowledge base

 knowledge base: set of sentences that describe things agent knows

tell → knowledge base → ask

- tell: add sentence to knowledge base
- ask: For every possible world for which all the sentences in the KB are true, is some other sentence true?

Knowledge base

Viewed as constraints:

- tell: adds a constraint on the belief space.
- ask: if all constraints are satisfied

Schematic perspective

If KB is true in the real world, then any sentence α entailed by KB is also true in the real world.

For example: If I tell you (1) Sue is Mary's sister, and (2) Sue is Amy's mother, then it necessarily follows in the world that Mary is Amy's aunt, even though I told you nothing at all about aunts. This sort of reasoning pattern is what we hope to capture.

<u>Inference</u>

- Both tell and ask may involve inference: combining old sentences to form new.
- Example
 - TELL: Father of John is Bob
 - TELL: Jane is John' sister
 - TELL: John's father is the same as John' sister's father
 - ASK: Who's Jane father
- We need precise rules

Knowledge-Based Agents

KB = knowledge base

- A set of sentences or facts
- e.g., a set of statements in a logic language

Inference

- Deriving new sentences from old
- e.g., using a set of logical statements to infer new ones

A simple model for reasoning

- Agent is told or perceives new evidence
 - E.g., agent is told or perceives that A is true
- Agent then infers new facts to add to the KB
 - E.g., KB = { (A -> (B OR C)); (not C) }
 then given A and not C the agent can infer that B is true
 - B is now added to the KB even though it was not explicitly asserted, i.e., the agent inferred B

Types of Logics

- Propositional logic: concrete statements that are either true or false
 - E.g., John is married to Sue.
- Predicate logic (also called first order logic, first order predicate calculus): allows statements to contain variables, functions, and quantifiers
 - For all X, Y: If X is married to Y then Y is married to X.
- Probability: statements that are possibly true; the chance I win the lottery?
- **Fuzzy logic:** vague statements; paint is <u>slightly grey</u>; sky is <u>very cloudy</u>.
- Modal logic is a class of various logics that introduce modalities:
 - Temporal logic: statements about time; John was a student at UCI for <u>four</u> <u>years</u>, and <u>before that</u> he spent <u>six years</u> in the US Marine Corps.
 - Belief and knowledge: Mary knows that John is married to Sue; a poker player believes that another player will fold upon a large bluff.
 - Possibility and Necessity: What <u>might</u> happen (possibility) and <u>must</u> happen (necessity); I <u>might</u> go to the movies; I <u>must</u> die and pay taxes.
 - Obligation and Permission: It is <u>obligatory</u> that students study for their tests;
 it is <u>permissible</u> that I go fishing when I am on vacation.

Types of Logics

- Propositional logic: concrete statements that are either true or false
 - E.g., John is married to Sue.
- Predicate logic (also called first order logic, first order predicate calculus): allows statements to contain variables, functions, and quantifiers
 - For all X, Y: If X is married to Y then Y is married to X.
- Probability: statements that are possibly true; the chance I win the lottery?
- Fuzzy logic: vague statements; paint is <u>slightly grey</u>; sky is <u>very cloudy</u>.
- Modal logic is a class of various logics that introduce modalities:
 - Temporal logic: statements about time; John was a student at UCI for <u>four</u> <u>years</u>, and <u>before that</u> he spent <u>six years</u> in the US Marine Corps.
 - Belief and knowledge: Mary knows that John is married to Sue; a poker player believes that another player will fold upon a large bluff.
 - Possibility and Necessity: What <u>might</u> happen (possibility) and <u>must</u> happen (necessity); I <u>might</u> go to the movies; I <u>must</u> die and pay taxes.
 - Obligation and Permission: It is <u>obligatory</u> that students study for their tests;
 it is <u>permissible</u> that I go fishing when I am on vacation.

Other Reasoning Systems

How to produce new facts from old facts?

Induction

- Reason from facts to the general law
- Scientific reasoning

Abduction

- Reason from facts to the best explanation
- Medical diagnosis, hardware debugging

Analogy (and metaphor, simile)

Reason that a new situation is like an old one

Other Reasoning Systems

Where would ML fit?

How to produce new facts from old facts?

Induction

- Reason from facts to the general law
- Scientific reasoning

Abduction

- Reason from facts to the best explanation
- Medical diagnosis, hardware debugging

Analogy (and metaphor, simile)

Reason that a new situation is like an old one

Wumpus World PEAS description

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

We need rather sophisticated reasoning here!

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Performance measure

- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Logic in general

- We used logical reasoning to find the gold.
- Logics are <u>formal languages for representing information</u> such that conclusions can be drawn from formal inference patterns
- Syntax defines the well-formed sentences in the language
- Semantics define the "meaning" or interpretation of sentences:
 - connect symbols to real events in the world
 - i.e., define truth of a sentence in a world

Ontology:

What kind of things exist in the world?

What do we need to describe and reason about?

Syntax

- Syntax is a set of rules defining well-formed sentences
- Syntax gives the domain of possible sentences: the set from which sentences may be drawn

Syntax example

- Programming language
 - print("hello world")

From

https://en.wikipedia.org/wiki/Esoteric programmi
ng language>

Syntax example

- E.g., the language of arithmetic:
 - $x+2 \ge y$ is a sentence
 - $x2+y > {}$ is not a sentence

Ontology:

What kind of things exist in the world?
What do we need to describe and reason about?

Semantics

- Semantics define the truth of the sentence w.r.t. each possible world, called a model.
- Typically, sentences involve some variables, and variables have domains. A **model** is an assignment of values to variables.

Example. Is the sentence x+y=4 true? (It satisfies the syntax for arithmetic expressions.)

- We could imagine 1+6=4; just symbols.
- But we expect there to be some values of x and y (models) for which the sentence is true, and some other values for which it is not.

Semantics

• We use semantics to **define** the set of worlds for which x+y=4 is true:

x	у	x+y=4	
0	0	False	
1	0	False	
3	1	True	
1	3	True	
2	2	True	

Semantics

 The table is incomplete. We need to know if sentence is true or false for each possible model, and there are infinitely many models.

$$\begin{array}{c|c} \mathsf{sentence} \to \\ \mathsf{model} \to & \mathsf{semantics} \to \mathsf{true/false} \end{array}$$

Entailment – formalism

• Let α and β be sentences.

• We say that $\alpha \models \beta$ iff for every model in which α is true, β is true.

• We let $M(\alpha)$ be the set of models for which a sentence α is true. Then $\alpha \models \beta$ means $M(\alpha) \subset M(\beta)$

Entailment for the logic agent

 Entailment means that one thing follows from another set of things:

$$KB \models \alpha$$

- Knowledge base KB entails sentence α if and only if α is true in all worlds wherein KB is true
- The entailed α MUST BE TRUE in ANY world in which KB IS TRUE.
- Any new sentence that is entailed is less constraining. But maybe in a more useful format.

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then KB $= \alpha$ iff $M(KB) \subseteq M(\alpha)$
- Think of KB and α as collections of constraints and of models m as possible states. M(KB) are the solutions to KB and M(α) the solutions to α.
 Then, KB | α when all solutions to KB are also solutions to α.

Entailment examples

- E.g., the KB = "the Giants won and the Reds won" entails α = "The Giants won".
- Example. In arithmetic, we say that x=0⊨xy=0. If you choose a model (say x=0, y=6) such that x=0 is true, then the sentence xy=0 is also true.
- E.g., KB = "x+y = 4" entails α = "4 = x+y"
- E.g., KB = "Mary is Sue's sister and Amy is Sue's daughter" entails α = "Mary is Amy's aunt."

Entailment example in Wumpus world

- Situation after detecting nothing in [1,1],
- moving right, breeze in [2,1]
- Consider possible models for ?s assuming only pits

Entailment example in Wumpus world

- Situation after detecting nothing in [1,1],
- moving right, breeze in [2,1]
- Consider possible models for ?s assuming only pits

3 Boolean choices -> 8 possible models

All possible models in this reduced Wumpus world. What can we infer?

 M(KB) = all possible wumpus-worlds consistent with the observations and the "physics" of the Wumpus world.

Now we have a query sentence, $\alpha_1 = "[1,2]$ is safe" $KB \models \alpha_1$

M(KB) (red outline) is a subset of M(α_1) (orange dashed outline)

 $\Rightarrow \alpha_1$ is true in any world in which KB is true

Now we have another query sentence, $\alpha_2 = "[2,2]$ is safe" $KB \neq \alpha_2$,

M(KB) (red outline) is a <u>not</u> a subset of $M(\alpha_2)$ (dashed outline)

 $\Rightarrow \alpha_2$ is false in some world(s) in which KB is true

Monotonicity

 Monotonicity: Each new sentence added to the knowledge base further constrains the set of models that holds.

 ⇒ if we can prove that some sentence is entailed by a set of sentences in the knowledge base, then adding new sentences to the knowledge base will never invalidate that proof.

Propositional logic

Winter ∧ NiceWeatherSunday ⇒
 Procrastinated

- Atomic sentence: a symbol that can take on the value true or false.
- Literal: atomic sentence, or negated atomic sentence
- Logical connectives: ¬V∧⇒⇔

Backus-Naur form

 Backus-Naur Form gives a recursive definition of syntax, the set of all legal sentences

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence \rightarrow (Sentence) \mid [Sentence]
\mid \neg Sentence
\mid Sentence \wedge Sentence
\mid Sentence \vee Sentence
\mid Sentence \Rightarrow Sentence
\mid Sentence \Leftrightarrow Sentence
\mid Sentence \Leftrightarrow Sentence
| Sentence \Leftrightarrow Sentence
| Sentence \Leftrightarrow Sentence
| ComplexSentence \Rightarrow Sentence
```

Model and propositional logic

model: true false values for every atomic sentence

 A world with the symbols is Snowing and is Sunny would have the four models (true, true), (true, false), (false, true), and (false, false).

Propositional logic: semantics

 Take a model and sentence and evaluate to T/F. Easy for atomic sentences. For complex sentences, write some rules using truth tables and apply recursively.

P	Q	PA Q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Propositional logic: semantics

- Definition of the implies connective:
- P⇒Q is true in models for which either P is false, or both P and Q are true.

P	Q	P⇒ Q
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Truth tables for all logical connectives

P	Q	¬ P	PΛQ	PVQ	P⇒Q	P⇔Q
false	False	True	False	False	True	True
false	True	True	False	True	True	False
true	False	False	False	True	False	False
true	true	False	True	True	true	true

Summary

- Model: assignment of values to variables
- Sentences: used to select a set of models (winter)
- Syntax: description of legal sentences
- Semantics: maps (sentence + model) to T/F
- Entailment: α⊨β. ("it is greater than 100 degrees" entails "it is greater than 32 degrees")
- Propositional logic with symbols and connectives

Next

• How to make inference?