Statistik för Biologer F1: Introduktion till Statistik och Sannolikhet

Shaobo Jin

Matematiska institutionen

Välkomna till Statistikdelen av Kursen!

Lärare:

- Shaobo Jin: shaobo.jin@math.uu.se
- Martin Andersson: martin.andersson@math.uu.se

Undervisning i statistikdelen

- 10 föreläsningar (Shaobo)
- 5 obligatoriska datorövningar med R
- 5 lektioner (Martin)
- En frågestund inför tentan

Vi Börjar Med Pingvin!

Artwork by • @allison_horst

Det finns tre arter av pingviner i vår dataset.

library(palmerpenguins)
data(penguins, package =
'palmerpenguins')

Mätningar

Forskarna har mätt bland annat

- Näbbens längd (mm)
- Näbbens djup (mm)
- Vingens längd (mm)
- **1** Vikt (g)
- Kön (hona/hane)
- Art (tre arter)

Visualisering: Spridningsdiagram (Scatter Plot)

Alternativ 1: funktionen plot()

```
pch <- as.numeric(penguins$species)</pre>
pch[pch == 1] <- 15
pch[pch == 2] <- 16
pch[pch == 3] <- 17
plot(penguins$flipper_length_mm, penguins$bill_length_mm,
     col = penguins$species, pch = pch,
     xlab = "Flipper length", ylab = "Bill length")
grid()
legend(170, 60, legend = c("Adelie", "Gentoo", "Chinstrap"),
       pch = c(15, 16, 17)
```

Visualisering: Spridningsdiagram (Scatter Plot)

Visualisering: Spridningsdiagram (Scatter Plot)

Alternativ 2: funktionen ggplot() av paketet ggplot2()

Forskningsfråga

Finns storleksskillnader mellan olika arter?

Medelvärden

Ett sätt att jämföra storleken för olika grupper är att räkna ut medelvärden (sample mean or mean) för respektiv grupp. Det ger en bild av hur den genomsnittlig längden i gruppen ser ut.

Om $x_1, x_2, ..., x_n$ är våra n mätvärden ges medelvärdet av

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n}\sum_{i=1}^n x_i.$$

Räkna ut medelvärdet

Våra näbbens längder är $39.1,\,39.5,\,40.3,\,36.7,\,39.3.$ Medelvärdet är

$$\bar{x} = \frac{1}{5}(39.1 + 39.5 + 40.3 + 36.7 + 39.3) = 38.98.$$

Medelvärden av Arter: Näbbens Längd

```
aggregate(bill_length_mm ~ species,
         data = penguins, # Namn av dataset
         FUN = mean) # Rakna ut mean
##
      species bill_length_mm
## 1
    Adelie
             38.79139
  2 Chinstrap 48.83382
## 3
       Gentoo 47.50488
```

Medelvärden av Arter och Kön: Näbbens Längd

```
aggregate(bill_length_mm ~ species + sex,
        data = penguins, # Namn av dataset
        FUN = mean) # Rakna ut mean
##
     species sex bill_length_mm
## 1 Adelie female 37.25753
  2 Chinstrap female 46.57353
## 3 Gentoo female 45.56379
## 4 Adelie male 40.39041
## 5 Chinstrap male 51.09412
      Gentoo male
                     49.47377
## 6
```

Median

Medianen är det mittersta värdet då observationerna sorteras i storleksordning.

• Om antalet observationer är jämnt är medianen medelvärdet av de två mittersta observationerna.

Räkna ut medianen

Våra näbbens längder är 39.1, 39.5, 40.3, 36.7, 39.3.

- Längderna sorteras i storleksordning: 36.7, 39.1, **39.3**, 39.5, 40.3.
- Median är 39.3.
- Medelvärdet behöver inte vara samma som medianen!
 - Medelvärdet är 38.98.

Median av Arter och Kön: Näbbens Längd

```
aggregate(bill_length_mm ~ species + sex,
         data = penguins, # Namn av dataset
         FUN = median) # Rakna ut median
      species sex bill_length_mm
##
## 1 Adelie female
                            37.00
                            46.30
## 2 Chinstrap female
## 3 Gentoo female
                            45.50
## 4 Adelie male
                            40.60
## 5 Chinstrap male
                      50.95
                            49.50
       Gentoo male
## 6
```

Spridningen

Varken medelvärdet eller medianen ger en fullständig bild. Det är också intressant att ha mått på hur stor spridningen är:

Variationsbredd (range): det största värdet minus det minsta värdet:

$$\max(x_1, x_2, ..., x_n) - \min(x_1, x_2, ..., x_n)$$
.

2 Varians (variance): ett mått på hur mycket mätdata avviker från medelvärdet \bar{x} ,

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
.

Standardavvikelse (standard deviation, sd): kvadratroten ur variansen,

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

Variationsbredder av Arter och Kön: Näbbens Längd

```
aggregate(bill_length_mm ~ species + sex,
         data = penguins, # Namn av dataset
         FUN = range) # Rakna ut range
##
      species sex bill_length_mm.1 bill_length_mm.2
## 1 Adelie female
                                32.1
                                                42.2
                               40.9
                                                58.0
  2 Chinstrap female
                              40.9
## 3 Gentoo female
                                                50.5
## 4 Adelie male
                             34.6
                                                46.0
## 5 Chinstrap male
                              48.5
                                                55.8
                              44.4
       Gentoo male
                                                59.6
## 6
```

Varianser av Arter och Kön: Näbbens Längd

```
aggregate(bill_length_mm ~ species + sex,
        data = penguins, # Namn av dataset
        FUN = var) # Rakna ut variance
##
     species sex bill_length_mm
## 1 Adelie female 4.116366
## 2 Chinstrap female 9.663824
## 3 Gentoo female 4.207613
## 4 Adelie male 5.185323
## 5 Chinstrap male 2.447843
      Gentoo male
                  7.401634
## 6
```

Standardavvikelser av Arter och Kön: Näbbens Längd

```
aggregate(bill_length_mm ~ species + sex,
        data = penguins, # Namn av dataset
        FUN = sd) # Rakna ut standard deviation
##
     species sex bill_length_mm
## 1 Adelie female 2.028883
  2 Chinstrap female 3.108669
   Gentoo female 2.051247
## 3
## 4 Adelie male 2.277131
## 5 Chinstrap male 1.564558
      Gentoo male
                     2.720594
## 6
```

Varför Spridningen?

Lika medelvärden men olika varianser.

Kvartil

- Den undre kvartilen är medianen i den undre halvan av det ordnade materialet (inklusive medianen vid udda antal observationer).
- ② Den övre kvartilen är medianen i den övre halvan av det ordnade materialet (inklusive medianen vid udda antal observationer).

Exempel med 8 observationer

Observationer: 1, 3, 7, 4, 5, 2, 6, 8

Sortera alla observationer i stigande storleksordning:

- ② Den undre halvan är 1, 2, 3, 4. Den undre kvartilen är 2.5=(2+3)/2.
- \bullet Den övre halvan är 5, 6, 7, 8. Den övre kvartilen är 6.5=(6+7)/2.

Kvartil

- Den undre kvartilen är medianen i den undre halvan av det ordnade materialet (inklusive medianen vid udda antal observationer).
- Den övre kvartilen är medianen i den ovre halvan av det ordnade materialet (inklusive medianen vid udda antal observationer).

Exempel med 9 observationer

Observationer: 1, 3, 7, 4, 5, 2, 9, 6, 8

• Sortera alla observationer i stigande storleksordning:

- ② Den undre halvan är 1, 2, 3, 4, 5. Den undre kvartilen är 3.
- Den övre halvan är 5, 6, 7, 8, 9. Den övre kvartilen är 7.

Visualisering: Lådagram (Boxplot)

```
boxplot(bill_length_mm ~ species, data = penguins,
        xlab = "Species", ylab = "Bill length(mm)",
        col = rep(c(3, 4), 3)) # Color
```


Visualisering: Lådagram (Boxplot)

```
boxplot(bill_length_mm ~ species + sex, data = penguins,
       xlab = "Sex / Species", ylab = "Bill length (mm)",
       col = rep(c(3, 4), 3))
```


Slumpen

Finns skillnad i längd mellan olika arter?

- Medelvärden och fina figurer är bra, men de som vetenskapliga bevis räcker intel
- De skillnader vi ser skulle kunna bero på andra orsaker:
 - Skillnaderna kan beror på störande faktorer
 - Mätningarna gjordes olika år.
 - Mätningarna gjordes vid olika boplatser.
 - Slumpen kan ha påverkat resultatet. Forskarna råkade kanske välja tyngre hanar av ren slump.

Kunde det blivit annorlunda?

Låt oss anta att det finns totalt 152 Adeliepingviner. Men vi bara studerade 20 individer. Vad skulle medelvärdet bli?

Första Urvalet


```
## species sex bill_length_mm
## 1 Adelie female 37.50000
## 2 Adelie male 40.22222
```

Andra Urvalet


```
## species sex bill_length_mm
## 1 Adelie female 36.68333
## 2 Adelie male 40.14286
```

Tredje Urvalet


```
species
                 sex bill_length_mm
##
      Adelie female
                           37.08571
##
   2
      Adelie
               male
                            40.12727
```

Kunde det blivit annorlunda?

Nu studerar vi bara 20 hanar och 20 honor. Finns storleksskillnader mellan olika kön?

Första Urvalet

Andra Urvalet

Vad Ska Vi Göra?

Hur ska vi kunna känna oss säkra på att den skillnad beror på biologi och inte på slumpen?

- Idé för att beskriva hur stor skillnaden är konfidensintervall: ange inte bara en punktskattning ("skillnaden är 51 mm") utan ett intervall som visar osäkerheten i skattningen ("skillnaden är 32-70 mm")
- 2 Idé för att få statistiskt säkerställda resultat är hypotesprövning Vi kommer att studera båda!

Varför Sannolikhetslära?

Många fenomen är slumpmässiga till sin natur:

- Antal deletioner i en DNA-sekvens under replikation
- Vilka kromosomer ett barn ärver från sina föräldrar
- Var pollen som sprids med vinden hamnar
- 4 Antal ögon när vi kaster en tärning.

Slumpens Matematik

Låt A vara en händelse. Sannolikheten för A skrivs P(A)

• P() betyder probability.

Händelser kan vara nästan vad som helst! Några exempel som vi ska studera i kusen:

- Man slår en sexa med en tärning
- Vid vägning av 20 pingviner blir genomsnittet mer än 4000 g

I många situationer vill man veta hur stor sannolikheten för en viss händelse är. Men sannolikheter är också användbara för att beskriva hur (o)säkra vi är på något.

Definition av Sannolikhet

När vi säger att "sannolikheten att man kastar en krona med ett mynt är 50%" menar vi att "den relativa frekvensen av kronor när man kastar ett mynt oändligt många gånger är 50%"

Kasta!

Heads or Tails: Pure Chance?

When you flip a coin, will it land more often on the same side it started? A well-known physics model suggests it will. Now, for the first time, scientists have gathered robust data to back up this hypothesis. They collected data from 350,757 coin tosses, including 12-hour coin-toss marathons. If you start with the head side up, the coin also more frequently ends up with the head side up.

18 oktober 2023

Kolmogorovs Axiom

Sannolikheterna för två händelser A och B måste följa några grundläggande regler:

- $P(A) \ge 0$: sannolikheter kan aldrig vara negativa.
- **2** P(minst en av alla möjliga händelser inträffar) = 1: något händer alltid!
- \odot Om A och B är oförenliga händelser, dvs. inte kan inträffa samtidigt, så gäller att

P(minst en av A och B inträffar) = P(A) + P(B).

Venndiagram För Händelser

P(A) är den röda ytan.

Venndiagram För Händelser

P(B) är den blåa ytan.

Räkneregler för Sannolikheter: Komplementhändelse

B är en komplementhändelse till A om B inträffar när A inte gör det. I så fall skrivs B som A^c (c =complement). I figuren är den gula ytan A^c . Då gäller att $P(A^c) = 1 - P(A)$.

Om $A = \{\text{Krona}\}\ \text{vid myttkastning med}\ P(A) = 0.4\ \text{har vi}\ P(A^c) = P(\text{Klave}) = 1 - P(\text{Krona}) = 1 - 0.4 = 0.6.$

Venndiagram För Händelser: Snitt

 $P(A \cap B) = P(både A och B inträffar) är den gröna ytan.$

Räkneregler för Sannolikheter: Oberoende Händelser

A och B är oberoende om de inte påverkar varandra (om B har inträffat så ger det ingen information om A, och vice versa).

För oberoende händelser gäller att:

$$P(A \cap B) = P(\text{både A och B inträffar}) = P(A) \cdot P(B).$$

- Exempel 1: A = "fadern får en flicka", B = "det kommer att snöa imorgon". Händelserna är oberoende och $P(A \cap B) = P(A) \cdot P(B)$.
- 2 Exempel 2: A = "den färgblinde fadern får en flicka", B = "barnet är färgblind". Händelserna är inte oberoende, och $P(A \cap B) \neq P(A) \cdot P(B)!$

Venndiagram För Händelser: Unioner

 $P(A \cup B) = P(\text{minst en av A och B inträffar})$ är den färgade ytan.

Allmänt gäller för A och B (inte nödvändigtvis oförenliga) att

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Sammanfattning

- Många fenomen (inte bara inom biologin) påverkas av slumpen.
- Slump påverkar alla mätningar inom biologin.
 - Händelse
 - Frekvensbaserade sannolikheter
 - 3 Räkneregler: Unioner, snitt och komplement