(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. August 2001 (23.08.2001)

(10) Internationale Veröffentlichungsnummer WO 01/61071 A2

(51) Internationale Patentklassifikation7: C23C 16/448. 16/46, 16/52

(21) Internationales Aktenzeichen:

PCT/EP01/01698

(22) Internationales Anmeldedatum:

15. Februar 2001 (15.02.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 07 059.0 16. Februar 2000 (16.02.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AIXTRON AG [DE/DE]; Kackertstrasse 15-17, 52072 Aachen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JÜRGENSEN, Holger [DE/DE]; Rathausstrasse 43d, 52072 Aachen (DE). KÄP-PELER, Johannes [DE/DE]; Zeisigweg 47, 52146 Würselen (DE). STRAUCH, Gert [DE/DE]; Schönauer Friede 80, 52072 Aachen (DE). SCHMITZ, Dietmar [DE/DE]; Lonweg 41, 52072 Aachen (DE).

(74) Anwälte: GRUNDMANN, Dirk usw.; Rieder & Partner, Corneliusstrasse 45, 42329 Wuppertal (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: CONDENSATION COATING METHOD

(54) Bezeichnung: KONDENSATIONSBESCHICHTUNGSVERFAHREN

(57) Abstract: A method and device for the production of coated substrates, such as OLEDs is disclosed, whereby at least one layer is deposited on the at least one substrate, by means of a condensation method and a solid and/or fluid precursor and, in particular, at least one sublimate source is used for at least one part of the reaction gases. The invention is characterised in that, by means of a temperature control of the reaction gases between precursor source(s) and substrate, a condensation of the reaction gases before the substrate(s) is avoided.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, II, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Beschrieben wird ein Verfahren und eine Vorrichtung zur Herstellung von beschichteten Substraten, wie bspw. von "OLED's", bei dem wenigstens eine Schicht mittels eines Kondensationsverfahrens auf das wenigstens eine Substrat aufgebracht wird, und bei dem für wenigstens einen Teil der Reaktionsgase feste und/oder flüssige Vorläufer und insbesondere wenigstens eine Sublimationsquelle verwendet werden. Die Erfindung zeichnet sich durch eine Temperatursteuerung der Reaktionsgase zwischen Vorläufer-Quelle(n) und Substrat aus, durch die eine Kondensation der Reaktionsgase vor dem oder den Substraten vermieden wird.

00001	Kondensationsbeschichtungsverfahren
00002	
00003	<u>Technisches Gebiet</u>
00004	
00005	Die Erfindung bezieht sich auf ein Verfahren und eine
00006	Vorrichtung zur Herstellung von Schichtsystemen, wie
00007	z.B. für Dünnfilmbauelemente wie OLED's oder ähnliche
80000	Schichtstrukturen mittels Kondensationsbeschichtung.
00009	Diese Schichtsysteme bestehen insbesondere aus organi-
00010	schen Materialien, wie z.B. "small molecules" (z.B.
00011	Alq, oder Polymeren (z.B. PPV).
00012	3
00013	Stand der Technik
00014	
00015	Kondensationsbeschichtungsverfahren zur Herstellung von
00016	Bauelementen insbesondere aus organischen Materialien
00017	sind bekannt. Bei diesem Verfahren werden die Bestand-
00018	teile der herzustellenden Schicht mittels gasförmigen
00019	und/oder organischen Verbindungen (Salze) in die Be-
00020	schichtungskammern (im Folgenden als Reaktionskammer
00021	bezeichnet) transportiert.
00022	
00023	Die Beschichtung des Substrates (meist Glas, Folie oder
00024	Kunststoffe) erfolgt auf der Basis des Kondensationspro-
00025	zesses, wobei die Substrate auf einer Temperatur gehal-
00026	ten werden, die niedriger ist, als die Temperatur der
00027	sich in der Gasphase befindlichen Moleküle.
00028	
00029	VPD-Verfahren (Vapor Phase Deposition) werden zur Ab-
00030	scheidung unterschiedlicher Materialien aus der Gaspha-
00031	se verwendet. Auch im Bereich der Abscheidung von orga-
00032	nischen Schichten hat sich dieses Verfahren durchge-
00033	setzt. Das VPD-Verfahren wird mit unterschiedlichen
00034	Reaktorkonzepten kontrolliert, z.B.:
00035	

00036	Horizontale Rohrreaktoren, in denen die Gasströmung
00037	horizontal und parallel zur Beschichtungsoberfläche
00038	verläuft, (den klassischen VPE Reaktoren entlehnt). Zur
00039	Vermeidung von Effizienz reduzierender Wandkondensation
00040	werden die Reaktoren als Heißwandsystem ausgelegt.
00041	
00042	Dieses Verfahren bzw. diese bekannte Vorrichtung wird
00043	zur Beschichtung von meist flachen und nicht variablen
00044	Substratgeometrien eingesetzt.
00045	
00046	Die Nachteile liegen in
00047	a) der verfahrenstechnischen und geometrischen Verkop-
00048	pelung der Prekursor-Sublimation und deren Einlei-
00049	tung,
00050	b) der Verwendung von Reaktorgeometrien mit großer
00051	Systemoberfläche im Verhältnis zur Beschichtungs-
00052	oberfläche, d.h. hydrodynamisch geht eine große
00053	Menge von Prekursoren der Beschichtung auf dem
00054	Substrat verloren
00055	c) aus b) folgend teuerer Heißwandtechnik.
00056	
00057	In Aufdampfanlagen, deren Verfahrensprinzip der Konden-
00058	sation entspricht, sind die Quellmaterialien im System
00059	integriert, d.h. der Quellenstrom ist zeitlich nicht
00060	kontrollierbar. Er kann nicht schlagartig an- oder
00061	abgeschaltet werden. Die zeitliche Kontrolle geschieht
00062	hier über die Steuerung der Verdampfungsenergie (E-Beam
00063	oder Widerstandsheizung). Ferner sind die Systeme nicht
00064	als Heißwandsysteme ausgebildet, so dass ein wesentli-
00065	cher Anteil der Materialien an den Systemwänden und
00066	Komponenten Effizienz mindernd kondensiert.
00067	F.3
83000	Die Nachteile dieser Technik liegen auch in der schlech
00069	ten Kontrollierbarkeit von Stöchiometrie oder von schar
00070	fen Übergängen für Mehrschichtanforderungen.

WO 01/61071

PCT/EP01/01698

3 .

	•
00071	Im CVD System sind die Quellen individuell zeitlich und
00072	in der Menge präzise kontrollierbar, jedoch ist der
00073	Transport aus einer Quelle nicht das Prinzip der Subli-
0074	mation, sondern das der Verdampfung. In diesen CVD-Sys-
00075	temen ist das Beschichtungsverfahren nicht Kondensati-
0076	on, sondern kinetisch oder diffusionslimitiertes Wachs-
0077	tum (chemische Reaktion). Diese Verfahren und Vorrich-
0078	tungen werden zur Beschichtung von meist flachen und
0079	nicht variablen Substratgeometrien eingesetzt.
08000	
00081	Alternative Verfahren sind Spin on oder CMBD.
00082	
28000	Die oben beschriebenen Verfahren und Vorrichtungen
00084	erfüllen in einer oder mehreren Eigenschaften nicht die
00085	Anforderung zur Herstellung der beispielhaft aufgeführ-
00086	ten Schichtsysteme im Hinblick auf präzise Kontrolle
00087	der Stöichiometrie und Mehrschichtanforderung sowie der
88000	Wirtschaftlichkeit.
00089	
0090	Der Erfindung liegt die Aufgabe zugrunde, das gattungs-
0091	gemäße Verfahren dahingehend zu verbessern, dass die
00092	Parameter individualisierter vorgebbar sind, dass die
00093	Effizienz erhöht ist, und die Qualität der auf dem Sub-
0094	strat kondensierten Schichten zu erhöhen.
00095	
00096	Gelöst wird die Aufgabe durch die in den Ansprüchen
00097	angegebene Erfindung. Die Unteransprüche stellen vor-
00098	teilhafte Weiterbildungen der Erfindung dar.
00099	
00100	Die Verwendung einer Kombination von spezieller Prekur-
00101	sorsublimation, Verdampfung, Gaseinlassgeometrie und
00102	Reaktorgeometrie für das Beschichtungsverfahren verbes-
00103	sert die Kontrolle und Wirtschaftlichkeit des Verfah-
00104	rens zur Kondensationsbeschichtung ausgehend von festen
00105	Prekursoren. Dabei werden die Prekursoren individuell

WO 01/61071 PCT/EP01/01698

4

00106	und außerhalb der Reaktionskammer sublimiert bzw. ver-
00107	dampft. Diese Ausgangsstoffe können auf dem Substrat
00108	selektiv kondensieren. Mittels einer dem Substrat zuge-
00109	ordneten Maske kann eine Strukturierung erfolgen. Die
00110	Maske kann auf dem Substrat befestigt werden.
00111	
00112	Allen Reaktorkonzepten gemein ist, dass die Art der
001.1.3	Prekursor-Sublimation nach deren Gaseinspeisung in das
00114	Reaktionsgefäß dabei maßgeblich die Gasphasenchemie der
00115	Elementsubstanzen als auch deren Transportverhalten
00116	bestimmt und damit die Eigenschaften der abgeschiedenen
00117	Schichten, d.h. die Art der Gaseinspeisung dominiert
00118	die Verfahrenskontrolle.
00119	
00120	Diese Eigenschaften sind z.B. (d.h. frei von Fremdato-
00121	men/Stoffen), Partikel und/oder Defektdichte, Zusammen-
00122	setzung im Mehrstoffsystem, optische und elektrische
00123	Eigenschaften der Schichten sowie Effizienz der Deposi-
00124	tion. Die nach Stand der Technik eingesetzten Gasein-
00125	lassgeometrien erfüllen entweder nur die hydrodynami-
00126	sche oder die thermodynamische Aufgabenstellung.
00127	
00128	Oft erfolgt eine ungewollte Deposition im Bereich der
00129	Einlassgeometrie. Diese entsteht dann, wenn im Ein-
00130	lassbereich entweder zu hohe (d.h. kinetisch limitierte
00131	Deposition) oder zu kalte Oberflächentemperaturen (d.h.
00132	Kondensation oder Thermophorese) sich einstellen, oder
001.33	eine Durchmischung der Gase innerhalb der Zone der
00134	Einleitung oder innerhalb der Kammer durch Strömung
00135	und/oder Diffusion auftritt (Nukleation = homogene
00136	Gasphasenreaktion). Die parasitäre Belegung hat dann
00137	zur Folge, dass sich die Eigenschaften (thermisch
00138	und/oder chemisch) des Gaseinlasses im Laufe des Prozes
00139	ses ändern, so dass die Kontrolle über eine kontinuier-
00140	liche und gleichmäßige Abscheidung nicht gewährleistet

00141 ist. Die parasitären Ablagerungen führen zu einer Ver-00142 schleppung einzelner Komponenten in die nachfolgenden 00143 Schichten hinein. Ferner reduziert diese Belegung die 00144 Effizienz der Elemente, besonders wenn die Einlassgeo-00145 metrie eine im Vergleich zur Nutzfläche und große Oberfläche aufweist. 00146 00147 00148 Weiterhin ist die Gaseinlasseinheit typisch so gestal-00149 tet, dass die effektive Trennung der Gase, die die 00150 thermisch unterschiedlichen Eigenschaften der Prekurso-00151 ren erfordert, nicht gewährleistet ist. Die Folge sind 00152 unerwünschte Reaktionen einiger Gase in der Gasphase miteinander (d.h. Nukleation), welche die Eigenschaft 00153 der abzuscheidenden Schicht negativ beeinflusst, z.B. 00154 Partikel oder Kontamination. Die Nukleation reduziert 00155 die Materialeffizienz und führt zur Kontamination der 00156 00157 Schicht mit diesen Verbindungen. 00158 00159 Um die oben aufgeführten Nachteile zu reduzieren, werden heutige Gaseinlässe typischerweise prozesstechnisch 00160 00161 weit von den zu beschichtenden Oberflächen entfernt 00162 angeordnet, d.h. entweder räumlich oder durch Wahl der Prozessparameter (z.B. sehr niedrigen Druck bzw. große 00163 Reynold Zahlen). Die derzeit bekannten Reaktoren zeich-00164 nen sich daher durch eine niedrige Effizienz (deutlich 00165 kleiner als 25%), d.h. nur ein geringer Anteil der 00166 00167 eingeleiteten Elemente deponieren in der brauchbaren funktionalen Schicht. 00168 00169 00170 Somit sind die Schichteigenschaften, hergestellt mit solchen Systemen, nicht optimal und auch die Wirtschaft-00171 00172 lichkeit solcher Systeme ist nur gering. 00173 00174 Zur Sublimation der festen Prekursoren werden überlich-00175 erweise Verdampferquellen verwendet, die durch die Wahl

00176	des Behälterdrucks und Temperatur das Quellenmaterial
00177	aus der festen Phase direkt gasförmig zur Verfügung
00178	stellen, d.h. sublimieren. Ist der Dampfdruck des Quel-
00179	lenmaterials sehr niedrig, werden hohe Temperaturen
00180	erforderlich. Nach heutigem Stand der Technik werden
00181	daher einige Prekursoren in Booten in den Reaktor einge
00182	führt. In den verwendeten Heißwandsystemen wird die
00183	Temperatur der Reaktoren so über die Baulänge profi-
00184	liert, dass die erforderliche Sublimationstemperatur je
00185	Prekursor in je einer Zone eingestellt wird. Nachteil
00186	dieses Aufbaus sind ungenaue Einstellung der optimalen
00187	Sublimationstemperatur, große Volumina der Verdampfer-
00188	Einrichtung, nicht getrennte Druckeinstellung je Prekun
00189	sor verschieden und unabhängig vom Reaktor-Prozess-
00190	druck, nicht flexible und individuelle Temperaturen-
00191	einstellung je Prekursor. Gravierendster Nachteil je-
00192	doch ist der zeitlich nicht gesteuerte Quellenstrom, da
00193	diese Verdampferquellen offen zur Beschichtungszone
00194	wirken.
00195	
00196	Die hier vorgestellte technische Lehre soll alle oben
00197	genannten Nachteile beheben und stellt je nach Anwen-
00198	dungsanforderung die geeigneten Verfahren und Vorrich-
00199	tungen zur Verfügung.
00200	
00201	Die Sublimationsvorrichtung der Ausgangsstoffe (Prekur-
00202	soren) ist geometrisch vom Reaktor getrennt und je
00203	Prekursor einzeln ausgeführt. Damit kann flexible und
00204	optimiert die Transportmenge je Prekursor kontrolliert
00205	und gesteuert werden. Jeder Prekursor ist individuell,
00206	zeitlich präzise steuerbar, und zudem unabhängig von
00207	Reaktorparametern.
00208	
00209	Die Einlassgeometrie sichert minimale Kammeroberfläche
00210	im Verhältnis zur Beschichtungsoberfläche (nahe 1:1)

00211	und damit maximierte Effizienz des Verfahrens. Die
00212	Ausgestaltung der Geometrie des Binlasses vermeidet im
00213	Grundsatz Reaktionen zwischen den Prekursoren als auch
00214	parasitäre Belegung an der Oberfläche des Einlasses
00215	selber.
00216	
00217	Die Ausgestaltung der Einlassgeometrie der Prekursoren
00218	in Verbindung mit der Reaktorgeometrie sichert homogene
00219	Verteilung aller Materialien mit zeitlich präziser
00220	Kontrolle.
00221	
00222	Die erzielten Beschichtungen zeichnen sich dabei durch
00223	eine Homogenität der Zusammensetzung, Sichtdicke und
00224	Dotierung im Bereich von 1% aus. Weiterhin können mit
00225	der Apparatur und dem Verfahren Übergänge im Material
00226	und Dotierstoffprofile präzise und reproduzierbar einge
00227	stellt werden. Die Bildung von Partikel ist durch die
00228	Erfindung vermieden.
00229	
00230	Der Ort'der Sublimation der Ausgangsstoffe (Prekurso-
00231	ren) ist getrennt von der Reaktorkammer ausgeführt.
00232	Dabei ist die Anordnung so gewählt, dass der Ausgangs-
00233	stoff mit minimaler Transiente in den Gaseinlass ge-
00234	führt wird. Hierzu wird in einem Beschichtungssystem
00235	der Ausgangsstoff-Behälter in ummittelbarer Nähe z.B.
00236	auf den Reaktordeckel platziert. Ein kurzer Rohrweg
00237	leitet das Material unmittelbar in die Gaseinlassein-
;	heit.
00239	
00240	Der Tank für die Ausgangsstoffe wird eigens und unabhän
00241	gig von der Reaktortemperatur geheizt. Dazu wird entwe-
00242	der eine Widerstandsheizung um den Tank genutzt, oder
00243	in einem Hohlmantel um den Tank thermostatisierte Flüs-
00244	sigkeit gepumpt.
00245	·

00246	Der Druck im Tank kann mit einem Regelventil an der
00247	Ausgangsseite des Tanks einzeln und unabhängig vom
00248	Reaktor geregelt werden. Das Regelventil ist beheizt
00249	und stellt im Verlauf des Materialweges einen positiver
00250	Temperaturgradienten zur Vermeidung von lokaler Konden-
00251	sation sicher.
00252	
00253	Der Transport des sublimierten Ausgangsstoffes zum Reak
00254	tor wird mittels eines Gasflusses unterstützt. Dieses
00255	Gas wird auch zur Einstellung einer Prekursorkonzentra-
00256	tion in der Zuleitung verwendet.
00257	
00258	Zur zeitlichen Kontrolle der Leitung der Ausgangsstoffe
00259	in den Reaktor wird das Druckventil und der Massenfluss
00260	regler geregelt, d.h. schließt das Drosselventil voll-
00261	ståndig, wird der Massenfluss auf 0 gesetzt.
00262	
00263	Diese Anordnung kann auf dem Reaktor in vielfacher
00264	Weise wiederholt werden, so dass jedes Material unabhän
00265	gig voneinander geregelt wird.
00266	
00267	Der Gaseinlass wird gegenüber dem Substrat im Reaktor
00268	als eine Anordnung von vielen Düsen (im Folgenden Show-
00269	erhead) aus einer Fläche ausgeführt, im Folgenden Ple-
00270	num benannt. Die Düsen sind so dimensioniert, dass sie
00271	entsprechend der Prekursoreigenschaft, wie Viskosität,
00272	Masse und Konzentration eine turbulenzfreie Injektion
00273	in die Kammer gewährleisten.
00274	
00275	Der Abstand von Düse zu Düse ist im Verhältnis des
00276	Abstands zum Gaseinlass optimiert, d.h. die aus den
00277	Düsen austretende "Strahlen" (Jets) sind von der Sub-
00278	stratoberfläche abgeklungen und bilden im Gesamten eine
00279	homogene Strömungsebene.
กกวยก	

00281	Die Düsen können einzeln oder gesamt in beliebigem
00282	Winkel in der Gaseinlassoberfläche ausgeführt werden,
00283	um die Transportverteilung der Ausgangsstoffe homogen
00284	für die Form des Substrats zu kontrollieren.
00285	
00286	Die Ebene in der die Düsen zur Injektion der Ausgangs-
00287	stoffe eingebracht sind, kann plan sein für die Be-
00288	schichtung von planen Substraten und auch Folien oder
00289	gewölbt für nicht ebene, d.h. vorgeformte Substrate.
00290	
00291	Das gesamte Plenum wird aktiv mittels Kühlmittel in
00292	einem Hohlwandaufbau oder mittels einer elektrischen
00293	Heizung (Widerstandsheizung, Peltier), so thermisch
00294	kontrolliert, dass ein positiver Temperaturgradient
00295	gegenüber der Sublimationstemperatur eingestellt wird.
00296	
00297	In das Innenvolumen des Plenums wird der sublimierte
00298	Ausgangsstoff über eine sehr kurze temperierte Leitung
00299	injiziert.
00300	
00301	Zur Einstellung der optimierten hydrodynamischen Bedin-
00302	gungen an den Düsen wird zusätzlich zu den Ausgangsstof
00303	fen über eine weitere Zuleitung Trägergas eingestellt.
00304	
00305	Dieses Gas sichert ferner eine schnelle Spülung des
00306	Plenums zum zeitlich kontrollierten An- und Abschalten
00307	des Prekursors in die Kammer.
80200	
00309	Die beschriebene Anordnung wird für die Mehrstoffanwen-
00310	dung konsequent je Prekursor ausgeführt. Dabei wird
00311	unter Nutzung der "closed coupled showerhead"-Technik
00312	die separate Injektion je Prekursor gesichert. Durch
00313	eine individuelle Heizung jedes Plenums wird jeder
00314	Ausgangsstoff entlang eines positiven Temperaturgradien
00315	ten zur Vermeidung von parasitärer Kondensation kompa-

00316	riert. I	ie Düsen sind so dimensioniert und zueinander	
00317	angeordn	et, dass keine lokale Mischung der Prekursor a	
00318	den Düsen entsteht. Die Anordnung der Pleni in Kbenen		
00319	wird so gewählt, dass die längeren Düsen im thermische		
00320	Kontakt mit den folgenden Pleni einen positiven Temper		
00321	turgradi	enten zur Vermeidung der Kondensation dieses	
00322	Prekurso	rs erhält.	
00323			
00324	Als Ausg	angsstoffe kommen insbesondere solche Salze in	
00325	Betracht	, die das US-Patent 5,554,220 beschreibt. Diese	
00326	Salze we	rden in Verdampfern sublimiert. Die Verdampfer	
00327	können d	abei insbesondere eine Gestalt aufweisen, wie	
00328	sie die	deutsche Patentanmeldung DE 100 48 759 be-	
00329	schreibt	. Dort wird das Gas unterhalb einer Fritte, auf	
00330	der sich	das Salz in Form einer Schüttung befindet, den	
00331	Verdampf	er zugeleitet. Oberhalb der Fritte bzw. der	
00332	Schüttun	g wird das mit dem gasförmigen Ausgangsstoff	
00333	gesättigte Gas abgeleitet. Durch eine entsprechend		
00334	höhere T	emperatur der stromabwärts liegenden Rohre oder	
00335	durch Ve	rdünnung wird der Partialdruck des Ausgangsstof	
00336	fes unte	rhalb seines Sättigungspartialdruckes gehalten,	
00337	so dass	eine Kondensation vermieden ist.	
00338			
00339	Ausführu	ngsbeispiele der Erfindung werden nachfolgend	
00340	anhand b	eigefügter Zeichnungen erläutert. Es zeigen:	
00341			
00342	Figur 1	in grobschematischer Darstellung eine Vorrich-	
00343		tung gemäß der Erfindung,	
00344	3		
00345	Figur 2	ebenfalls in grobschematischer Darstellung	
00346		eine Gaseinlasseinheit, welche in einer Vor-	
00347		richtung gemäß Figur 1 Verwendung finden kann,	
00348			
00349	Figur 3	einen Schnitt gemäß der Linie III-III durch	
00350		die Gaseinlasseinheit,	

00351	Figur 4	einen Schnitt gemäß der Linie IV-IV durch die
00352		Gaseinlasseinheit,
00353		•
00354	Figur 5	ein zweites Ausführungsbeispiel einer Vorrich-
00355		tung in einer grobschematischen Darstellung,
00356		
00357	Figur 6	ein zweites Ausführungsbeispiel der Gaseinlass-
00358		einheit,
00359		
00360	Figur 7	eine Erläuterungshilfe für die Prozessparame-
00361		ter, und
00362		
00363	Figur 8	in schematischer Darstellung eine Quelle für
00364		einen Ausgangsstoff.
00365		
00366	Die in de	n Figuren 1 und 5 dargestellten Vorrichtungen
00367	besitzen	jeweils zwei temperierte Behälter 5, 5'. Bei
00368	der in Fi	gur 1 dargestellten Vorrichtung sind diese
00369	Behälter	unmittelbar auf dem Deckel 14 des Reaktors 10
00370	angeordne	t. Bei dem in Figur 5 dargestellten Ausfüh-
00371	rungsbeis	piel sind die beiden Behälter 5, 5' etwas
00372	entfernt	vom Reaktor 10 angeordnet. In den Behältern 5,
00373	5' befind	en sich Tanks 1, 3. Diese Tanks wirken als
00374	Quelle fü	r die Ausgangsstoffe. In den Tanks 1, 3 befin-
00375	den sich	flüssige Ausgangsstoffe 2, 4. Die Ausgangsstof-
00376	fe können	auch fest sein. Im Innern der temperierten
00377	Behälter	5, 5' herrscht eine derartige Temperatur, dass
00378	die in de	n Tanks 1, 3 befindlichen Ausgangsstoffe 2, 4
00379	verdampfe	n. Die Verdampfungsrate lässt sich über die
00380	Temperatu	r beeinflussen. In dem Behälter 5 sind im
00381	Ausführun	gsbeispiel drei Quellen und im Behälter 5'
00382	sind eben	falls drei Quellen angeordnet. Die beiden
00383	Behälter	5, 5' können auf unterschiedlichen Temperatu-
00384	ren gehal	ten werden.
00385		

00386 In jeden der beiden Behälter 5, 5' führt eine Trägergas-00387 leitung, um ein Trägergas 35 zu leiten. In die Träger-00388 gasleitung münden je Quelle eine Ableitung für die aus 00389 den Tanks 1, 3 heraustretenden gasförmigen Ausgangsstof-00390 fe. Die Tanks 1, 3 sind mittels hitzebeständiger Venti-00391 le, insbesondere Regelventile 34, die auch selbst beheizt sein können, verschließbar und öffenbar. Die 00392 00393 Leitungen 6, 7, durch welche das Trägergas und die vom 00394 Trägergas transportierten Reaktionsgase strömen, münden beim Ausführungsbeispiel der Figur 1 direkt in den 00395 00396 Reaktor. Beim Ausführungsbeispiel gemäß der Figur 5 00397 verlaufen die beiden Leitungen 6, 7 über eine freie 00398 Strecke, wo sie mittels temperierter Mäntel 8, 9 auf 00399 einer Temperatur gehalten werden, die gleich oder grö-00400 ßer ist, als die Temperatur in den Behältern 5, 5'. Die 00401 Leitungen 6, 7 münden in den Reaktor. Die Dosierung der 00402 Reaktionsgase erfolgt über die Temperatur der Behälter 00403 5, 5' bzw. die Regelventile 34. 00404 00405 Im Bereich der Mündung der Leitungen 6, 7 besitzt der 00406 Reaktordeckel 14 eine Temperatur, die größer ist, als 00407 die Temperatur in den temperierten Behältern 5, 5'. Die 00408 Leitungen 6, 7 münden nicht unmittelbar in die Reakti-00409 onskammer 11, sondern zunächst in eine in der Reaktions-00410 kammer, um einen Spalt 29 vom Reaktordeckel 14 beabstandete Gaseinlasseinheit 15. Eine typisch gestaltete 00411 00412 Gaseinlasseinheit zeigen die Figur 2 und 6. 00413 00414 Die Gaseinlasseinheit 15 befindet sich unmittelbar 00415 oberhalb des Substrates 12. Zwischen dem Substrat 12 00416 und der Bodenplatte 17 der Gaseinlasseinheit 15 befin-00417 det sich die Reaktionskammer. Das Substrat 12 liegt auf 00418 einem Suszeptor 13, welcher gekühlt ist. Die Temperatur 00419 des Suszeptors wird geregelt. Hierzu kann der Suszeptor 00420 mit Pelletierelementen versehen sein. Es ist aber auch

00421 möglich, wie in Figur 1 dargestellt, dass der Suszeptor 00422 13 innen eine Hohlkammer 41 besitzt, die mittels Spül-00423 leitungen 40 mit einer Kühlflüssigkeit gespült wird, so 00424 dass damit die Temperatur des Suszeptors 13 auf einer 00425 Temperatur gehalten werden kann, die geringer ist, als 00426 die Temperatur der Gaseinlasseinheit 15. 00427 00428 Diese Temperatur ist auch geringer, als die Temperatur 00429 der Reaktorwände 37. Die Temperatur der Gaseinlassein-00430 heit 15 liegt oberhalb der Kondensationstemperatur der 00431 gasförmig in die Gaseinlasseinheit 15 gebrachten Aus-00432 gangsstoffe 2, 4. Da auch die Temperatur der Reaktorwän-00433 de 37 höher ist, als die Kondensationstemperatur, kon-00434 densieren die aus der Gaseinlasseinheit 15 austretenden 00435 Moleküle ausschließlich auf dem auf dem Suszeptor 13 00436 aufliegenden Substrat 12. 00437 Bei den in den Figuren 2 bzw. 6 dargestellten Gaseinlas-00438 00439 seinheiten 15 handelt es sich jeweils um einen sogenann-00440 ten, an sich bekannten "Showerhead". Das Ausführungsbei-00441 spiel der Figur 2 zeigt einen Showerhead mit insgesamt 00442 zwei voneinander getrennten Volumen 22, 23. Die Volumen 00443 sind mittels einer Zwischenplatte 18 gegeneinander und 00444 mittels einer Deckplatte 16 bzw. einer Bodemplatte 17 00445 gegenüber der Reaktionskammer 11 abgegrenzt. Der "Show-00446 erhead" gemäß Figur 6 besitzt dagegen nur eine Kammer. 00447 Dieses Volumen 22 wird begrenzt von der Bodenplatte 17, 00448 einem Ring 33 und der Deckplatte 16. In die Deckplatte 00449 16 münden die bereits erwähnten Rohrleitungen 6, 7 für 00450 die beiden Ausgangsstoffe. Beim Ausführungsbeispiel 00451 gemäß Figur 6 ist nur eine Rohrleitung 6 erforderlich. 00452 Die Rohrleitungen 6 bzw. 7 münden in sternförmig radial 00453 verlaufende Kanāle 21 bzw. 20, die in der Deckplatte 16 00454 angeordnet sind. Nach einer Umleitung im Randbereich des im Wesentlichen zylinderförmigen Körpers der Gasein-00455

lasseinheit 15 münden die Kanäle 20 bzw. 21 in radial außen liegende Mündungstrichter 27 bzw. 28, die sich an 00457 00458 der äußeren Peripherie der zylinderförmigen Volumina 00459 22, 23 befinden. Die aus den Mündungstrichtern 27, 28 00460 austretenden Gase verteilen sich in den Volumina 22, 23 00461 gleichmäßig. 00462 Die in einem Mehrkammer-Showerhead vorgesehene Zwischen-00463 00464 platte 18 besitzt Öffnungen, von welchen Röhrchen 24 00465 ausgehen, die das Volumen 23 durchragen und mit der 00466 Bodenplatte 17 derart verbunden sind, dass das im Volu-00467 men 22 befindliche Gas nicht in Kontakt tritt, mit dem 00468 im Volumen 23 befindlichen Gas. In der Bodenplatte 17 00469 befinden sich abwechselnd zu den Öffnungen 26 der Röhrchen 24 Öffnungen 25, aus welchen das in dem Volumen 23 00470 00471 befindliche Gas austreten kann. 00472 00473 Die in den Volumen 22, 23 befindlichen Gase treten 00474 durch die düsenartig ausgebildeten Öffnungen 25, 26 in 00475 einem homogenen Strömungsfeld aus. 00476 00477 Aus den Öffnungen 25, 26 treten die Gase turbulent aus. 00478 Sie formen jeweils einen Strahl, so dass sich die aus 00479 nebeneinander liegenden Öffnungen 25, 26 austretenden Gasströme erst unmittelbar oberhalb des Substrates 12 00480 00481 innerhalb der in der Figur 6 mit d bezeichneten Grenzschicht mischen. Oberhalb der Grenzschicht d verlaufen 00482 00483 die Strahlen 36 im Wesentlichen parallel zueinander, 00484 ohne dass zwischen ihnen eine nennenswerte Durchmischung 00485 stattfindet. Im Abstand d ist eine nahezu homogene Gasfront ausgebildet. 00486 00487 00488 Bei dem in Figur 2 dargestellten Ausführungsbeispiel 00489 sind die beiden Volumina 22, 23 unabhängig voneinander 00490 thermostatierbar. Bei dem in Figur 6 dargestellten

00491	Ausführungsbeispiel ist das einzige Volumen 22 thermos-
00492	tatierbar. Um die Volumina 22, 23 auf eine voreinge-
00493	stellte Temperatur zu regeln, die größer ist, als die
00494	Temperatur der Behälter 5, 5' und erheblich größer, als
00495	die Temperatur des Suszeptors 13, sind Heizwendel 30,
00496	32 vorgesehen. Anstelle der Heizwendel 30, 32 ist es
00497	aber auch denkbar, Kanāle in die Platten 17, 18, 16
00498	einzubringen, und diese von einer temperierten Flüssig-
00499	keit durchströmen zu lassen.
00500	
00501	Der Ring 33 kann in einer ähnlichen Weise beheizt wer-
00502	den. Dem Ring können in geeigneter Weise Heizwendel
0503	angeordnet sein. Er kann aber auch mit entsprechend
00504	temperierten Flüssigkeiten auf Temperatur gehalten
0505	werden.
00506	
0507	Beim Ausführungsbeispiel befindet sich unterhalb der
00508	Deckplatte 16 eine Heizplatte 31. Der Figur 3 ist zu
0509	entnehmen, dass in der Heizplatte 31 mäanderförmig eine
00510	Heizwendel 33 eingebracht ist. Auch die Deckplatte der
00511	Gaseinlasseinheit 15 der Figur 6 kann beheizt sein.
00512	
00513	Auch in die Bodenplatte 17 ist eine Heizwendel 33 mäan-
00514	derförmig eingebracht. (vgl. Fig. 4)
00515	
00516	Als Ausgangsstoffe für die Beschichtung können solche
00517	Salze verwendet werden, wie das US-Patent 5,554,220
00518	beschreibt. Diese Salze werden in Tanks sublimiert,
00519	indem den Tanks ein Trägergas zugeleitet wird, welches
0520	durch eine Schüttung der Salze strömt. Ein derartiger
00521	Verdampfer wird in der DE 100 48 759.9 beschrieben.
0522	
00523	Die Figur 8 zeigt ferner exemplarisch einen Verdampfer
00524	für eine Flüssigkeit. Ein Trägergas 42 wird durch ein
0525	Dreiwegeventil über eine Zuleitung in den flüssigen

00526 oder festen Ausgangsstoff 2 eingeleitet. Es durchströmt 00527 dann den Ausgangsstoff 2, um durch die Austrittsleitung und das geheizte Ventil 34 den Tank 1 zu verlassen. 00528 Über eine Rohrleitung 6 wird es mittels des Trägergases 00529 00530 35 der Gaseinlasseinheit 15 zugeführt. Die Spülung des 00531 Tanks mit dem Trägergas 42 kann mittels des Dreiwegeventiles an- und abgeschaltet werden. Im abgeschalteten 00532 00533 Zustand strömt das Trägergas 42 durch eine Bypasslei-00534 tung 44 direkt in die Ableitung bzw. die Rohrleitung 6. 00535 Der Gasfluss 42 und der Gasfluss 35 sind massenflussge-00536 regelt. Um den Massenfluss 42 beim Umschalten des Dreiwegeventiles 43 nicht zu beeinflussen, kann die Bypass-00537 00538 leitung 44 den selben Strömungswiderstand besitzen, wie 00539 der gesamte Tank 1. 00540 00541 Jeder der in den Figuren 1 bzw. 5 angedeutete Tank 1, 3 kann eine Gestaltung und eine Beschaltung haben, wie 00542 00543 sie in Figur 8 dargestellt ist oder wie sie in der 00544 DE 100 48 759.9 beschrieben wird. 00545 00546 Zufolge der Verdünnung die durch das Trägergas 35 erzielt ist, sinkt der Partialdruck des Ausgangsstoffes 2 00547 00548 bzw. des Ausgangsstoffes 3 innerhalb des den Tanks 1, 3 00549 folgenden Rohrleitungssystems bzw. der Gaseinlassein-00550 heit 15. Diese Verdünnung hat zur Folge, dass die Tempe-00551 ratur in diesen nachfolgenden Rohrabschnitten 6, 7 bzw. in der Gaseinlasseinheit 15 geringer sein kann, als die 00552 Temperatur in den Behältern 5, 5', ohne dass eine Kon-00553 00554 densation eintritt, da die Temperatur immer noch so 00555 hoch ist, dass der Partialdruck der einzelnen Ausgangsstoffe unterhalb ihres Sättigungsdampfdruckes liegt. 00556 00557 00558 Mittels eines oder mehrerer Sensoren 38; die insbesonde-00559 re außerhalb der Reaktorwand angeordnet sind und die

00560 über einen Kanal 39 mit der Reaktionskammer 11 verbun-00561 den sind, kann die Substrattemperatur gemessen werden. 00562 00563 Das in dem Spalt 29 eingeleitete Gas kann durch Wahl 00564 einer geeigneten Zusammensetzung in seiner Wärmeleitfä-00565 higkeit variiert werden. Durch die Wahl der Gaszusammen-00566 setzung kann demnach der Wärmetransport von oder zur Gaseinlasseinheit 15 eingestellt werden. Auch auf diese 00567 00568 Weise lässt sich die Temperatur beeinflussen. 00569 00570 Alle offenbarten Merkmale sind (für sich) erfindungswe-00571 sentlich. In die Offenbarung der Ammeldung wird hiermit 00572 auch der Offenbarungsinhalt der zugehörigen/beigefügten 00573 Prioritätsunterlagen (Abschrift der Voranmeldung) voll-00574 inhaltlich mit einbezogen, auch zu dem Zweck, Merkmale 00575 dieser Unterlagen in Ansprüche vorliegender Anmeldung 00576 mit aufzunehmen.

00577	ANSPRÜCHE
00578	
00579	1. Verfahren zum Beschichten von Substraten, bei dem
00580	wenigstens eine Schicht mittels eines Kondensationsver-
00581	fahrens auf das wenigstens eine Substrat aufgebracht
00582	wird, und bei dem für wenigstens einen Teil der Reakti-
00583	onsgase feste und/oder flüssige Ausgangsstoffe und
00584	insbesondere wenigstens eine Sublimationsquelle verwen-
00585	det werden, gekennzeichnet durch eine Konzentrations-/
00586	und/oder Temperatursteuerung der Reaktionsgase zwischer
00587	der Quelle (1, 3) und dem Substrat (12), durch die eine
00588	Kondensation der Reaktionsgase vor dem oder den Substra
00589	ten vermieden wird.
00590	
00591	2. Verfahren nach Anspruch 1 oder insbesondere danach,
00592	dadurch gekennzeichnet, dass eine Gaseinlasseinheit
00593	(15) mit einer Einlassgeometrie verwendet wird, die für
00594	eine Trennung der Gase zur Unterdrückung einer paras-
00595	itären Gasphasenreaktion sorgt.
00596	
00597	3. Verfahren nach einem oder mehreren der vorhergehen-
00598	den Ansprüche oder insbesondere danach, dadurch gekenn-
00599	zeichnet, dass die Quellen (1, 3) auf unterschiedlichen
00600	Temperaturen gehalten werden.
00601	
00602	4. Verfahren nach einem oder mehreren der vorhergehen-
00603	den Ansprüche oder insbesondere danach, gekennzeichnet
00604	durch die Verwendung mehrerer Injektionsanordnungen

00605 (25, 26).

00607 5. Verfahren nach einem oder mehreren der vorhergehen-00608 den Ansprüche oder insbesondere danach, dadurch gekenn-00609 zeichnet, dass zur Minimierung der parasitären Deposi-00610 tion und damit der Verluste aus der Gasphase die einzel-

nen Reaktionsgase ohne Strömungsüberlappung injiziert 00612 werden. 00613 6. Verfahren nach einem oder mehreren der vorhergehen-00614 den Ansprüche oder insbesondere danach, dadurch gekenn-00615 00616 zeichnet, dass die Austrittsgeschwindigkeit der Gase 00617 aus den einzelnen Injektionsdüsen sowie Injektionsbereichen so gewählt sind, dass lokale Bernoulli-Effekte 00618 00619 vermieden werden. 00620 00621 7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekenn-00622 zeichnet, dass der Druck in dem oder den Tanks (1, 3) 00623 00624 der Ausgangsstoffe jeweils mittels Inertgasspülung (35) 00625 und Regelventil (34) unabhängig vom Druck in der Reak-00626 torkammer (11) geregelt wird. 00627 8. Vorrichtung zur Kondensationsbeschichtung mit 00628 00629 einer Reaktionskammer (11), 00630 wenigstens einem Suszeptor (13) und 00631 einem Gaszuführungssystem (5, 5') mit wenigstens 00632 einer Quelle (1, 3) für die Ausgangsstoffe, dadurch gekennzeichnet, dass die Quellen (1, 3) Reser-00633 00634 voire, der oder die Suszeptoren (13), die Reaktorwände 00635 und die Gaseinlasseinheit separat derart thermostati-00636 sierbar sind, dass die Reaktorwände (37) die Gaseinlass-00637 einheit (15) und die Prekursorreservoire (1, 3) auf jeweils höhere Temperaturen als ein Substrat (12) auf 00639 dem Suszeptor (13) regelbar sind. 00640 9. Vorrichtung nach einem oder mehreren der vorhergehen-00641 00642 den Ansprüche oder insbesondere danach, dadurch gekenn-00643 zeichmet, dass die Quellen (1, 3) getrennt thermostati-00644 sierbar sind, so dass ein positiver Temperaturgradient 00645 zu allen Kammer-, und Einlass-Oberflächen einstellbar

00646 ist, und dass über Druck und Temperatur die Transport-00647 menge der gasförmigen Ausgangsstoffe kontrollierbar ist. 00648 00649 10. Vorrichtung nach einem oder mehreren der vorherge-00650 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Thermostatisierung eines oder 00651 aller Reservoire (1, 3) mittels einer Flüssigkeit oder 00652 00653 elektrisch aktiven Komponenten ausgeführt ist. 00654 00655 11. Vorrichtung nach einem oder mehreren der vorherge-00656 henden Ansprüche oder insbesondere danach, dadurch 00657 gekennzeichnet, dass die Heizung derart ausgelegt ist, 00658 dass eine Reinigung eines Reservoirs durch gegenüber 00659 Prozesstemperatur erhöhte Temperatur möglich ist. 00660 00661 12. Vorrichtung nach einem oder mehreren der vorherge-00662 henden Ansprüche oder insbesondere danach, dadurch 00663 gekennzeichnet, dass die Gaseinlasseinheit (15) als Ein- oder Mehrkammer-Showerhead mit einem oder mehreren 00664 00665 separaten Pleni (Volumen 22, 23) ausgebildet ist. 00666 00667 13. Vorrichtung nach einem oder mehreren der vorherge-00668 henden Ansprüche oder insbesondere danach, dadurch 00669 gekennzeichnet, dass als Trägergas Ar, H2, N2, He ein-00670 zeln oder gemischt eingesetzt wird. 00671 00672 14. Vorrichtung nach einem oder mehreren der vorherge-00673 henden Ansprüche oder insbesondere danach, dadurch 00674 gekennzeichnet, dass ein gasförmiger Ausgangsstoff je 00675 Plenum (22, 23) separat über Düsen (25, 26) in die Reaktorkammer (11) einleitbar ist, so dass sich die Quellmaterialien erst nach Austritt aus dem Gaseinlass 00678 insbesondere kurz vor dem Substrat (12) vermischen

00679

00680

können.

- 15. Vorrichtung nach einem oder mehreren der vorherge-00681 00682 henden Ansprüche oder insbesondere danach, dadurch 00683 gekennzeichnet, dass zwei oder mehr gasförmige Ausgangs-00684 stoffe je Plenum (22, 23) separat über Düsen (25, 26) 00685 in die Reaktionskammer eingeleitet werden. 00686 00687 16. Vorrichtung nach einem oder mehreren der vorherge-00688 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Düsen (25, 26) je Plenum gegen-00689 00690 über dem Substrat (12) in einem beliebigen Winkel ange-00691 ordnet sind. 00692 00693 17. Vorrichtung nach einem oder mehreren der vorherge-00694 henden Ansprüche oder insbesondere danach, dadurch ge-00695 kennzeichnet, dass die Düsen (25, 26) je Plenum (22, 23) gleichen oder unterschiedlichen Durchmessern ausgeführt 00697 sind, so dass gleich oder unterschiedlich viskose Mas-00698 senflüsse der Ausgangsstoffe eine homogene Injektions-00699 verteilung sicherstellen. 00700 00701 18. Vorrichtung nach einem oder mehreren der vorherge-00702 henden Ansprüche oder insbesondere danach, dadurch 00703 gekennzeichnet, dass die Düsen (25, 26) je Plenum in 00704 gleichem oder unterschiedlichem Abstand zueinander in 00705 einer Verteilung so ausgeführt sind, dass sich eine 00706 homogene geschlossene Injektionsverteilung ergibt. 00707 00708 19. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass jedes Plenum 22, 23 separat thermos-00710 tatisierbar ist, so dass stark unterschiedliche subli-00712 mierende Ausgangsstoffe eingesetzt werden können. 00713
- 00714 20. Vorrichtung nach einem oder mehreren der vorherge-00715 henden Ansprüche oder insbesondere danach, dadurch

 W_{-}

WO 01/61071 PCT/EP01/01698

22

gekennzeichnet, dass die Thermostatisierung eines oder 00717 aller Pleni (22, 23) mittels Flüssigkeit oder elek-00718 trisch aktiven Komponenten (30, 32) erfolgt, und dass 00719 die Kondensation der Ausgangsstoffe in jedem Plenum 00720 (22, 23) vermieden wird. 00721 00722 21. Vorrichtung nach einem oder mehreren der vorherge-00723 henden Ansprüche oder insbesondere danach, dadurch 00724 gekennzeichnet, dass Sensoren (38) und zugehörige Kanä-00725 le (39) in der Reaktorwandung vorgesehen sind, die 00726 Bemessung von Eigenschaften der Schichten und/oder auf 00727 der Oberfläche der Substrate (12) erlauben. 00728 00729 22. Vorrichtung nach einem oder mehreren der vorherge-00730 henden Ansprüche oder insbesondere danach, dadurch 00731 gekennzeichnet, dass der oder die Suszeptoren (13) zur Aufnahme von Substraten (12) mit runder, eckiger, fla-00732 00733 cher, gewölbter Form oder von Folien ausgebildet sind. 00734 00735 23. Vorrichtung nach einem oder mehreren der vorherge-00736 henden Ansprüche oder insbesondere danach, dadurch ge-00737 kennzeichnet, dass der Suszeptor mittels einer Flüssig-00738 keit in einem Hohlmantel (41) oder elektrisch aktiven 00739 Komponenten (Peltier/Widerstandsheizung) thermisch so 00740 steuerbar ist, dass zwischen der die Suszeptoroberfläche 00741 und allen anderen Wänden (37) sowie der Gasphase einen 00742 negativen Temperaturgradienten besteht, so dass die 00743 Beschichtung des Substrats über Kondensation kontrol-00744 lierbar werden kann. 00745 00746 24. Vorrichtung nach einem oder mehreren der vorherge-00747 henden Ansprüche oder insbesondere danach, dadurch 00748 gekennzeichnet, dass eine Heizung für den Suszeptor 00749 (13) derart ausgelegt ist, dass eine Reinigung des 00750 Suszeptors (13) und der Reaktionskammer (11) durch

nen.

gegenüber der Prozesstemperatur erhöhte Temperatur 00752 durchgeführt werden kann. 00753 00754 25. Vorrichtung nach einem oder mehreren der vorherge-00755 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass durch Verdünnung des aus den Tanks 00756 (1, 3) austretenden Gas mit einem Trägergas (35) die 00757 Konzentration des Ausgangsstoffes in der Rohrleitung 00758 (6) bzw. der Gaseinlasseinheit (15) derartig herabge-00759 setzt wird, dass die Kondensationstemperatur unterhalb 00760 00761 der Quellentemperatur liegt. 00762 26. Vorrichtung nach einem oder mehreren der vorherge-00763 henden Ansprüche oder insbesondere danach, dadurch 00764 gekennzeichnet, dass das Substrat während des Beschich-00765 tungsvorganges maskiert ist, bspw. mit einer Schatten-00766 maske versehen ist. 00767 00768 27. Vorrichtung nach einem oder mehreren der vorherge-00769 henden Ansprüche oder insbesondere danach, dadurch 00770 gekennzeichnet, dass zur Vermeidung abrupter Massen-00771 stromveränderung die geregelten Massenflüsse zu den 00772 Tanks in eine Bypassleitung (44) umgelenkt werden kön-00773

1/7

Fig. 1

Jig: B