Topología Algebraica Computacional en el procesamiento de imágenes biomédicas*

Jónathan Heras¹, Gadea Mata^{1,2} y María Poza¹

¹Departamento de Matemáticas y Computación, Universidad de La Rioja

²Laboratorio de Plasticidad Sináptica Estructural, Departamento de Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de La Rioja

Jornada Aplicaciones Industriales del Álgebra Computacional 18 de noviembre de 2011

^{*}Financiado parcialmente por el Ministerio de Educación y Ciencia, proyecto MTM2009-13842-C02-01, y por el European Union's 7th Framework Programme, proyecto número 243847 (ForMath)

Índice de contenidos

- Contexto
- 2 Problema Biomédico
- 3 Topología Algebraica e Imágenes Digitales
- Demo
- 6 Resultados
- 6 Conclusiones y trabajo futuro

Índice de contenidos

- 1 Contexto
- 2 Prob a Biomedi
- 3 Topologia Algebraica e Imágenes Digitales
- Demo
- 6 Resultados
- 6 Conclusiones y trabajo futuro

Agentes involucrados

PSYCOTRIP Grupo de Programación y Cálculo Simbólico de la Universidad de La Rioja

PSYCOTRIP Grupo de Programación y Cálculo Simbólico de la Universidad de La Rioja

Participantes

- Julio Rubio
- Jónathan Heras
- Gadea Mata
- María Poza

PSYCOTRIP Grupo de Programación y Cálculo Simbólico de la Universidad de La Rioja

Participantes

- Julio Rubio
- Jónathan Heras
- Gadea Mata
- María Poza

ForMath Formalisation of Mathematics (EU FP7 STREP FET)

- Representación de complejos simpliciales
- Cálculo formalizado de grupos de homología
- Representación del Lema de Perturbación Básico
- Integración de sistemas de demostración
- Aplicación al procesamiento de imágenes médicas

PSYCOTRIP Grupo de Programación y Cálculo Simbólico de la Universidad de La Rioja

Participantes

- Julio Rubio
- Jónathan Heras
- Gadea Mata
- María Poza

ForMath Formalisation of Mathematics (EU FP7 STREP FET)

- Representación de complejos simpliciales
- Cálculo formalizado de grupos de homología
- Representación del Lema de Perturbación Básico
- Integración de sistemas de demostración
- Aplicación al procesamiento de imágenes médicas

CIBIR Centro de Investigación Biomédica de La Rioja
Unidad de Plasticidad Sináptica Estructural

CIBIR Centro de Investigación Biomédica de La Rioja Unidad de Plasticidad Sináptica Estructural

Participantes

- Miguel Morales
- Germán Cuesto
- Gadea Mata

CIBIR Centro de Investigación Biomédica de La Rioja Unidad de Plasticidad Sináptica Estructural

Participantes

- Miguel Morales
- Germán Cuesto
- Gadea Mata

Líneas de Investigación

- Estudio de los mecanismos moleculares que determinan la formación de nuevas sinapsis
- Estudio del Glaucoma
- Estudio de mutaciones en los genes implicados en la EMA (Esclerosis Múltiple Amiotrófica)

CIBIR

CIBIR Centro de Investigación Biomédica de La Rioja Unidad de Plasticidad Sináptica Estructural

Participantes

- Miguel Morales
- Germán Cuesto
- Gadea Mata

Líneas de Investigación

- Estudio de los mecanismos moleculares que determinan la formación de nuevas sinapsis
- Estudio del Glaucoma
- Estudio de mutaciones en los genes implicados en la EMA (Esclerosis Múltiple Amiotrófica)

La empresa Spine-Up

Nombre de la empresa Spine-Up (Spin-off de la Universidad de Barcelona)

La empresa Spine-Up

Nombre de la empresa Spine-Up (Spin-off de la Universidad de Barcelona)

Objetivo social

$$\begin{cases} & \text{Investigación} \\ & \text{Desarrollo} \\ & \text{Innovación} \\ & \text{Diseño} \\ & \text{Fabricación} \\ & \text{Comercialización} \\ & \text{Distribución} \end{cases} \rightarrow \left\{ \begin{array}{c} & \text{Fármacos} \\ & \text{Métodos} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} & \text{Investigación} \\ & \text{Diagnosis} \\ & \text{Tratamiento} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} & \text{Enfermedades} \\ & \text{Patologías} \end{array} \right.$$

Gestión de patentes

Procesamiento de imágenes médicas

La empresa Spine-Up

Nombre de la empresa Spine-Up (Spin-off de la Universidad de Barcelona)

Objetivo social

$$\begin{array}{c} \text{Investigación} \\ \text{Desarrollo} \\ \text{Innovación} \\ \text{Diseño} \\ \text{Fabricación} \\ \text{Comercialización} \end{array} \end{array} \\ \rightarrow \left\{ \begin{array}{c} \text{Fármacos} \\ \text{Métodos} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{Investigación} \\ \text{Diagnosis} \\ \text{Tratamiento} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{Enfermedades} \\ \text{Patologías} \end{array} \right.$$

Gestión de patentes

Distribución

Procesamiento de imágenes médicas

Índice de contenidos

- 1 Conte
- 2 Problema Biomédico
- 3 Topologia Algebraica e Imágenes Digitales
- Demo
- 6 Resultados
- 6 Conclusiones y trabajo futuro

Sinapsis

- Sinapsis son los puntos de conexión entre neuronas
- Importancia: Capacidades computacionales del cerebro
- Modificar el número de sinapsis mediante el empleo de fármacos puede ser un importante avance en el tratamiento de enfermedades neurológicas

Conteo manual de sinapsis usando ImageJ

Dificultades y objetivo

Dificultades

- Esfuerzo considerable de tiempo
- Este proceso se aplica sobre baterías de neuronas

Objetivo

Proporcionar un método fiable y automático para contar sinapsis

Dificultades y objetivo

Dificultades

- Esfuerzo considerable de tiempo
- Este proceso se aplica sobre baterías de neuronas

Objetivo

Proporcionar un método fiable y automático para contar sinapsis

Creación de un nuevo plugin para ImageJ llamado SynapCountJ

Automatización conteo sinapsis

Automatización conteo sinapsis

Índice de contenidos

- 1 Conte
- 2 Prob a Biomedia
- 3 Topología Algebraica e Imágenes Digitales
- 4 Demo
- 6 Resultados
- 6 Conclusiones y trabajo futuro

Imagen digital

Imagen digital

ロティタトイミト ミークタウ

Imagen digital Complejo simplicial

Grupos de homología

$$\begin{array}{l} H_0 = \mathbb{Z} \oplus \mathbb{Z} \\ H_1 = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \end{array}$$

 $C_0 = ext{vértices}$ $C_1 = ext{aristas}$ $C_2 = ext{triángulos}$

Complejo de cadenas

Imagen digital a Complejo simplicial

Definición

Sea V un conjunto ordenado, llamado conjunto de vértices, un $\emph{símplice}$ sobre V es cualquier subconjunto finito de V

Imagen digital a Complejo simplicial

Definición

Sea V un conjunto ordenado, llamado conjunto de vértices, un $\emph{símplice}$ sobre V es cualquier subconjunto finito de V

Definición

Un complejo simplicial (abstracto) sobre V es un conjunto de símplices C sobre V satisfaciendo la propiedad:

$$\forall \alpha \in C$$
, si $\beta \subseteq \alpha \Rightarrow \beta \in C$

Imagen digital a Complejo simplicial

Definición

Sea V un conjunto ordenado, llamado conjunto de vértices, un $\emph{símplice}$ sobre V es cualquier subconjunto finito de V

Definición

Un complejo simplicial (abstracto) sobre V es un conjunto de símplices C sobre V satisfaciendo la propiedad:

$$\forall \alpha \in \mathit{C}, \ \mathit{si} \ \beta \subseteq \alpha \Rightarrow \beta \in \mathit{C}$$

Imagen digital a Complejo simplicial

Definición

Sea V un conjunto ordenado, llamado conjunto de vértices, un $\emph{símplice}$ sobre V es cualquier subconjunto finito de V

Definición

Un complejo simplicial (abstracto) sobre V es un conjunto de símplices C sobre V satisfaciendo la propiedad:

$$\forall \alpha \in C, \text{ si } \beta \subseteq \alpha \Rightarrow \beta \in C$$

Imagen digital a Complejo simplicial

Definición

Sea V un conjunto ordenado, llamado conjunto de vértices, un $\emph{símplice}$ sobre V es cualquier subconjunto finito de V

Definición

Un complejo simplicial (abstracto) sobre V es un conjunto de símplices C sobre V satisfaciendo la propiedad:

$$\forall \alpha \in C, \text{ si } \beta \subseteq \alpha \Rightarrow \beta \in C$$

Definición

Un complejo de cadenas C_* es un par de secuencias $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ donde:

- ullet Para cada $q\in\mathbb{Z}$, la componente C_q es un R-módulo, el grupo de cadenas de grado q
- ullet Para cada $q\in\mathbb{Z}$, la componente d_q es un morfismo $d_q:C_q o C_{q-1}$, la función diferencial
- ullet Para cada $q\in\mathbb{Z}$, la composición d_qd_{q+1} es nula: $d_qd_{q+1}=0$

Definición

Un complejo de cadenas C_* es un par de secuencias $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ donde:

- ullet Para cada $q\in\mathbb{Z}$, la componente C_q es un R-módulo, el grupo de cadenas de grado q
- ullet Para cada $q\in\mathbb{Z}$, la componente d_q es un morfismo $d_q:C_q o C_{q-1}$, la función diferencial
- ullet Para cada $q\in\mathbb{Z}$, la composición d_qd_{q+1} es nula: $d_qd_{q+1}=0$

$$0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0$$

Definición

Un complejo de cadenas C_* es un par de secuencias $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ donde:

- ullet Para cada $q\in\mathbb{Z}$, la componente C_q es un R-módulo, el grupo de cadenas de grado q
- ullet Para cada $q\in\mathbb{Z}$, la componente d_q es un morfismo $d_q:\mathcal{C}_q o\mathcal{C}_{q-1}$, la función diferencial
- ullet Para cada $q\in\mathbb{Z}$, la composición d_qd_{q+1} es nula: $d_qd_{q+1}=0$

$$0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0$$

$$\begin{array}{lclccc} C_0 & = & \mathbb{Z} \left[\text{v\'ertices} \right] & d_0(v) & = & 0 \\ C_1 & = & \mathbb{Z} \left[\text{aristas} \right] & d_1(v_1v_2) & = & v_2 - v_1 \\ C_2 & = & \mathbb{Z} \left[\text{triángulos} \right] & d_2(v_1v_2v_3) & = & v_2v_3 - v_1v_3 + v_1v_2 \end{array}$$

Definición

Un complejo de cadenas C_* es un par de secuencias $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ donde:

- ullet Para cada $q\in\mathbb{Z}$, la componente C_q es un R-módulo, el grupo de cadenas de grado q
- Para cada $q \in \mathbb{Z}$, la componente d_q es un morfismo $d_q : C_q \to C_{q-1}$, la función diferencial
- Para cada $q \in \mathbb{Z}$, la composición $d_q d_{q+1}$ es nula: $d_q d_{q+1} = 0$

$$0 \leftarrow \textit{C}_0 \xleftarrow{\textit{d}_1} \textit{C}_1 \xleftarrow{\textit{d}_2} \textit{C}_2 \leftarrow 0$$

$$0 \leftarrow \mathbb{Z}^{26} \xleftarrow{d_1} \mathbb{Z}^{36}$$

$$0 \leftarrow \mathbb{Z}^{26} \xleftarrow{d_1} \mathbb{Z}^{36} \xleftarrow{d_2} \mathbb{Z}^{18} \leftarrow 0$$

Topología Algebraica Computacional en el procesamiento de imágenes biomédicas

Homología

Definición

Si $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ es un complejo de cadenas:

- La imagen $B_q = im \ d_{q+1} \subseteq C_q$ es el (sub)-módulo de q-bordes
- El núcleo $Z_q = ker \ d_q \subseteq C_q$ es el (sub)-módulo de q-ciclos

Definición

Sea $C_*=(C_q,d_q)_{q\in\mathbb{Z}}$ es un complejo de cadenas. Para cada grado $n\in\mathbb{Z}$, el n-ésimo grupo de homología de C_* se define como el cociente:

$$H_n(C_*) = Z_n/B_n$$

Homología

Definición

Si $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ es un complejo de cadenas:

- La imagen $B_q = im \ d_{q+1} \subseteq C_q$ es el (sub)-módulo de q-bordes
- El núcleo $Z_q = ker \ d_q \subseteq C_q$ es el (sub)-módulo de q-ciclos

Definición

Sea $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ es un complejo de cadenas. Para cada grado $n \in \mathbb{Z}$, el n-ésimo grupo de homología de C_* se define como el cociente:

$$H_n(C_*) = Z_n/B_n$$

Geométricamente:

- H₀ mide el número de componentes conexas
- H₁ mide el número de agujeros

Imagen Biomédica → Imagen Digital

CountJ

Imagen Biomédica → Imagen Digital → Complejo Simplicial → Complejo de Cadenas → Homología

```
SynapCountJ
Imagen Biomédica → Imagen Digital → Complejo Simplicial → Complejo de Cadenas → Homología
```

SynapCountJ

- Nuevo plugin para ImageJ
- Mejora la interacción con ImageJ para contar sinapsis
- http://imagejdocu.tudor.lu/doku.php?id=pluginutilities:synapsescountj:start/

fKenzo

- Kenzo: sistema de cálculo simbólico dedicado a la Topología Algebraica implementado en Common Lisp
- fKenzo: interfaz gráfica para Kenzo
- Incorpora nuevas funcionalidades a Kenzo entre ellas el cálculo de homología de imágenes digitales

J. Heras, V. Pascual, J. Rubio y F. Sergeraert. fKenzo: a user interface for computations in Algebraic Topology. Journal of Symbolic Computation 46 (6):685–698, 2011.

Índice de contenidos

- 1 Conte
- 2 Prob a Biomedic
- 3 Topologia Algebraica e Imágenes Digitales
- 4 Demo
- 6 Resultados
- 6 Conclusiones y trabajo futuro

Índice de contenidos

- ① Conte
- 2 Prob a Biomedi
- 3 Topologia Algebraica e Imágenes Digitales
- Demo
- 6 Resultados
- 6 Conclusiones y trabajo futuro

Evolución sináptica

Figura: Conteo manual de sinapsis para dos tratamientos

Figura: Conteo de sinapsis utilizando SynapCountJ para dos tratamientos

Comparativa de tiempos

 $\begin{array}{c} {\sf Imagen} \, \sim 100 \; {\sf sinapsis} \\ {\sf Lote} \, \sim 13 \; {\sf imágenes} \\ {\sf Estudio} \; 3 \; {\sf \acute{o}} \; 4 \; {\sf lotes} \end{array}$

método conteo de	manual	SynapCountJ
imagen	5 minutos	30 segundos
lote	1 hora	2 minutos
estudio	4 horas	6 minutos

Índice de contenidos

- 1 Conte
- 2 Prob a Biomedi
- 3 Topologia Algebraica e Imágenes Digitales
- Demo
- 5 Resultados
- 6 Conclusiones y trabajo futuro

Conclusiones

Conclusiones:

- Aplicación Topología Algebraica Computacional al análisis de imágenes biomédicas
- (Semi-)automatización del estudio de propiedades de estructuras sinápticas
- Metodología para el análisis de imágenes biomédicas por medio de técnicas homológicas

Conclusiones

Conclusiones:

- Aplicación Topología Algebraica Computacional al análisis de imágenes biomédicas
- (Semi-)automatización del estudio de propiedades de estructuras sinápticas
- Metodología para el análisis de imágenes biomédicas por medio de técnicas homológicas

Publicaciones:

- Homological Processing of Biomedical digital images: automation and certification. J. Heras, G. Mata, M. Poza, and J. Rubio. In Computer Algebra in Algebraic Topology and its applications session of the 17th International Conferences on Applications of Computer Algebra (ACA 2011)
- SynapCountJ: un software para el estudio de la densidad sináptica. G. Mata, G. Cuesto, M. Morales, J. Rubio y J. Heras. En XIV Congreso Nacional de la Sociedad Española de Neurociencia (SENC 2011)

Conclusiones

Conclusiones:

- Aplicación Topología Algebraica Computacional al análisis de imágenes biomédicas
- (Semi-)automatización del estudio de propiedades de estructuras sinápticas
- Metodología para el análisis de imágenes biomédicas por medio de técnicas homológicas

Publicaciones:

- Homological Processing of Biomedical digital images: automation and certification. J. Heras, G. Mata, M. Poza, and J. Rubio. In Computer Algebra in Algebraic Topology and its applications session of the 17th International Conferences on Applications of Computer Algebra (ACA 2011)
- SynapCountJ: un software para el estudio de la densidad sináptica. G. Mata, G. Cuesto, M. Morales, J. Rubio y J. Heras. En XIV Congreso Nacional de la Sociedad Española de Neurociencia (SENC 2011)

Nuevos contactos:

Microscopios Leica

Trabajo Futuro

- Aplicación de herramientas topológicas al estudio de problemas más complejos en el contexto del análisis de imágenes biomédicas:
 - Conteo y clasificación de espinas
 - Detección de la estructura neuronal

Trabajo Futuro

- Aplicación de herramientas topológicas al estudio de problemas más complejos en el contexto del análisis de imágenes biomédicas:
 - Conteo y clasificación de espinas
 - Detección de la estructura neuronal

Topología Algebraica Computacional en el procesamiento de imágenes biomédicas

Jónathan Heras¹, Gadea Mata^{1,2} y María Poza¹

¹Departamento de Matemáticas y Computación, Universidad de La Rioja

²Laboratorio de Plasticidad Sináptica Estructural, Departamento de Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de La Rioja

Jornada Aplicaciones Industriales del Álgebra Computacional 18 de noviembre de 2011

