

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Equation (4) may be written

$$y = \pm \frac{a^2 - x^2}{2a \pm 1/(a^2 - x^2)},$$

and hence represents four branches, as in the marginal diagram. a d' b d a is the area as found by Prof. Johnson; a e' b d a is the area as found by us, and a e' b d' a, is the area as found by Messrs. Seitz, Heaton and Baker.

Prof. Johnson writes as follows:-

"The expression given on page 156, line 2, is the value of

$$\int \frac{d\theta}{2 + \cos \theta}$$
 and not of $\int \frac{d\theta}{2 + \sin \theta}$,

but the result is not affected, since, if we put $\theta = \theta' - \frac{1}{2}\pi$, we have

$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta} = \int_{\frac{1}{2}\pi}^{\frac{5}{2}\pi} \frac{d\theta'}{2 + \sin \theta'} = \int_{0}^{2\pi} \frac{d\theta}{2 + \sin \theta}.$$

NOTE ON THE POLYNOMIAL THEOREM.

BY PROF. W. W. JOHNSON.

THE Binomial Theorem may be written in the form

$$\frac{(a+b)^n}{n!} = \frac{a^n}{n!} + \frac{a^{n-1}}{n-1!} \cdot \frac{b}{1} + \frac{a^{n-2}}{n-2!} \cdot \frac{b^2}{2!} + \dots$$

and if we put $a = \frac{a^r}{r!}$ (we might call a the ath ath

$$_{n}(a+b) = \Sigma \cdot _{r}a_{s}b,$$

where r + s = n and r admits of all values from 0 to n inclusive. It follows at once that

$$_{n}(a+b+c) = \Sigma \cdot _{p}(a+b) \cdot _{t}c = \Sigma \cdot _{r}a_{s}b_{t}c,$$

where r+s+t=n; and in general

$$_{n}(a+b+c+\ldots) = \Sigma \cdot _{r}a_{s}b_{t}c\ldots$$

where $r+s+t+\ldots=n$. This last equation is a form of the multinomial theorem.