2 二次関数の最大・最小

2.1 基本

復習

二次関数 $y = x^2 - 2x + 2$ について,

(1) 軸と頂点を求めよ.

$$\begin{cases}
y = -2x + 2 \\
y = (x - 1)^{2} - (x + 2) \\
y = (x - 1)^{2} + (x + 2)
\end{cases}$$

$$(x - 1)^{2} + (x + 1)$$

1C= |

(2) 最大値・最小値を求めよ.

(3) $(0 \le x \le 4)$ での最大値・最小値を求めよ.

練習

以下の二次関数の最大値・最小値を求めよ.

(1)
$$y = x^2 - 4x + 2$$
 $(0 \le x \le 4)$
= $(1c - 2)^2 - 4 + 2$
= $(1c - 2)^2 - 2$

(2)
$$y = 2x^{2} + 12x - 5 \quad (-4 \le x \le 2)$$

 $= 2 \left(\chi^{2} + 6 \chi \right) - 5$
 $= 2 \left((\chi + 3)^{2} - 9 \right) - 5$
 $= 2 \left((\chi + 3)^{2} - 18 - 5 \right)$
 $= 2 \left((\chi + 3)^{2} - 18 - 5 \right)$
 $= 2 \left((\chi + 3)^{2} - 23 \right)$

2.2 縦に動く

2 次関数 $y = x^2 + 2x + c$ $(-2 \le x \le 2)$ について,

(1) 最大値が 3 になるように定数 c の値を定めよ.

左图37), 1€=2012t 最大值 6+0 2"236 264-311/22 EE P+C= 3

(2) cの値が(1)で求めた値であるとき、与えられた2次関数の最 小値を求めよ.

以下の条件を満たすように定数 c の値を求めよ、また、そのときの 最大値・最小値のもう一方を求めよ.

(1) $y = x^2 - 2x + c$ $(-2 \le x \le 2)$ について、最大値が 5 = (20-1) +0-1

左国ップ、 χ=-22" Map. Stc EE3. 242 t 1270302"

Rt C= 5

ずに に= しゃい 最もいはをとるのでり、 最小值は $(1-1)^2 + C - 1 = -3 - 1 = -4$

 $= 2\left(\chi^2 + 2\chi\right) + C$ $= 2((x+1)^2-1)+C$ = 2 (x+1) + c-2. 爾 (-1, C-2) 左国的3. 火ニー るい最い値をしる。 (-2= 1. C=3~tt,最大值设方图的, アーロのいき i.e. 2.0+4.0+3.

=3

(2) $y = 2x^2 + 4x + c$ $(-2 \le x \le 0)$ について、最小値が 1

$$y=x^2-4x+2$$
 $(0 \le x \le a)$ by which then?

(1) 最大値を求めよ.

(2,-2)

20-2.

定美效。在结成" 自由に重中く !!

この問は、「なの値により、最大値はといろなるでいるう?」 という問題.

100Q<4 aut

7607" Maps. 2

9c=0,4 24 Map. 2

X= Q 2" May Q2-40+2.

小心的对 最大值日

$$\begin{cases}
0 < 0 < 4 \text{ ant } 2 & (x=0) \\
0 = 4 \text{ ant } 2 & (x=0,4) \\
4 < 0 \text{ ant } 0^2 = 40 + 2 & (x=0)
\end{cases}$$

(2) 最小値を求めよ.

ii) OCACLAGE

JC= Usu Min Q2-40+2.

90=224 Mm. -2.

印動小量 化的、的

水沢にんいる場合らり必基本リ

練習1

aを正の定数とする. 以下の関数について, 各問いに答えよ.

$$y = x^2 - 2x \quad (0 \le x \le a)$$

(1) 最大値を求めよ.

$$y = yc^2 - 2xc$$

$$= (xc - 1)^2 - 1.$$

(| (-1)

(1)0<Q<2 ant

DC= 034 Mayo. 0

x= 0 74 Map.

小高八部 作的人们

$$\begin{cases} 0 < 0 < 2 < 2 \text{ act.} & 0 & (x=0) \\ 0 = 2 & \text{act.} & 0 & (x=0,2) \\ 0 = 2 < 0 & \text{act.} & 0^2 = 20 & (x=0) \end{cases}$$

(2) 最小値を求めよ.

Fra) > 0 > 0 ((a x)

De= azu Min Q2-2a.

in | sa a vet

7c= (zu Min. - 1.

5動場 (作的, 的

練習2

aを正の定数とする.以下の関数について、各問いに答えよ.

$$y = 2x^2 + 8x - 5 \qquad (0 \le x \le a)$$

(1) 最大値を求めよ.

$$\begin{aligned}
y &= 2x^{2} + 6x - 5 \\
&= 2\left(x^{2} + 4x\right) - 5 \\
&= 2\left(x + 2\right)^{2} - 4 - 5 \\
&= 2\left(x + 2\right)^{2} - 6 - 5 \\
&= 2\left(x + 2\right)^{2} - 13 \\
&= 2\left(x - 2\right)^{2} - 13
\end{aligned}$$

$$(-2, -13)$$

Q>07ののでい、といのようなQの値は今日でも上回のみりなんは置関係はままからない。

(2) 最小値を求めよ.

a をよっ定数とする. 以下の関数について, 各間いに答えよ.

$$y = x^2 - 4x + 2$$
 $(a \le x \le a + 2)$

(1) 最大値を求めよ.

$$f = 9c^{2} - 41c + 2$$

$$= (x-2)^{2} - 4 + 2$$

$$= (x-2)^{2} - 2.$$

() Y=2.

ci) 0<a< | axt

x=azu May. a2-4a+2.

(ii) a= | act.

x= 1, 3 2" hay.

ill) 1 < adut

Ic= at = 2" Mays. (a+2)2-4(a+2)+2. $= 0^2 - 2$

ら動大量 によいの

$$\begin{cases} 0 < Q < | x < t \\ Q = | x < t \\ | (x = 1,3) \\ | (x = 0,4) \end{cases}$$

(2) 最小値を求めよ.

(1) 0<052Act

X=2 2" Min.

2 (anut

OC= Q Z" Min. a= 4a+2.

京副小量 (作低.后

aを正の定数とする.以下の関数について,各問いに答えよ.

$$y = x^2 - 6x + 5$$
 $(a \le x \le a + 2)$

(1) 最大値を求めよ.

- (3.-4)
- 7C=3.

D< Q<2 dut

or= az" hay. a-6a+5

(i) Q=2 Net

2=2,4 zu Max.

こくのかほ

7c= a+2 2" Map. (a+2)2-6 (a+2)+5 20°-20-3

小心间子)最大值日

(2) 最小値を求めよ.

(i) 0 < a < 1 met.

9c= Q-12 Zu Min. Q2- 20-3.

30 (< a ≤ 3 mit

gc= 3 zu Min. -4

n= azu Min. Q2-6a+5

ふんかり 最小値は

Q2-20+3. (x=a+1) $1 \le a \le 3$ and -4 (90=3) 3 < a and $a^2 - b$ at 5 (90=3)

2.5 軸が動く

aを正の定数とする. 以下の関数について, 各問いに答えよ.

$$y = x^2 - 2ax + a^2 + 1$$
 $(0 \le x \le 2)$

(1) 最大値を求めよ.

$$y = x^2 - 2ax + a^2 + 1$$

= $(x - a)^2 + 1$
(a, 1)
 $x = a$

どらいかれきれぬ?

ch ocac at

x= 22" hap.

(ii) a= | axt

9c=0,2 zu Mayo.

mil (< a a wet

90= 0 zu hays.

们心间到. 最大值记

$$\begin{cases}
0 < 0 < | a = 1 \\
0 < 0 < | a = 1
\end{cases}$$

$$\begin{cases}
0 < 0 < | a = 1 \\
0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < | a = 1 \\
0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 1
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 < 0 < 0
\end{cases}$$

$$\begin{cases}
0 < 0 <$$

(2) 最小値を求めよ.

(1) Ocaczast gc=asu Min.

2 ≤ a dut

8=224 MM.

的。 是是

$$\int 0 < Q < 2 \text{ art} \quad (\mathcal{R} = A)$$

$$2 \leq Q \text{ aret} \quad Q^2 - 4(A+5) \quad (\mathcal{R} = 2)$$

練習

a を正の定数とする. 以下の関数について、各問いに答えよ.

$$y = x^2 - 4ax + 4a^2 + 3$$
 $(1 \le x \le 3)$

(1) 最大値を求めよ.

$$y = x^2 - 4ax + 4a^2 + 3$$

= $(x - 2a)^2 + 3$

i) 0<20<2 dut i.e. 0<0</

x=3 24 Map. 9-120+402+3 402-120+12

11) 2a = 2 ant rie. a=1. x=1,32" hay.

1<a. x=1: hop. 1-4a+4a+3 4a2-4a+4

小心的对 最大值日

$$\begin{cases}
0 < a < 1 \text{ ant} & 4a^2 - (2a + 12) \\
0 < a < 1 \text{ ant} & 4 \\
0 < a < 1 \text{ ant}
\end{cases}$$

$$\begin{cases}
1 < a \text{ ant} & 4a^2 - 4a + 4 \\
0 < a < 1 \text{ and}
\end{cases}$$

(2) 最小値を求めよ.

(i) 0 < 20 < 1 i.e. 0 < 0 < \frac{1}{2} ant

\(\chi^2 - 40 + 4 \chi
\)

ii)
$$\leq 2\alpha \leq 3$$
 i.e. $\leq 2 \leq \frac{3}{2}$ are $\chi = 20$ $\chi = 20$

(iii)
$$3 < 20$$
 fie. $\frac{3}{2} < 0$ grat $1 <$

例題

质和 加

_____ 1 辺が 4(cm) である正方形に内接する正方形について考える.

(1) 最小値を予想しよう.

上国の次三兄私 Minimam. zu,

$$S_{min} = (2\sqrt{2})^2$$
= $S_{min} = (2\sqrt{2})^2$

(2) 内接正方形の面積を $y(cm^2)$, A Po 長て x(cm) とする. $y \in x$ の式で表せ.

AP=
$$\chi$$
. μ 3. β D= χ rutos.
... $A\beta$ = $(4-\chi)^2$
 $= \chi^2 + (4-\chi)^2$
 $= 2\chi^2 + (4-\chi)^2$
 $= \chi^2 + (4-\chi)^2$

(3) 最小値を求めよ.

D ABCD a [IN-4 7mm2", 0 ≤ 9c ≤ 4. 7m3.

29節風で y=2x2-fx+16 a Mm を考える.

左国》) 火=2711最小值名.

といろか、問題も、かる程度答えの予想をしておいことでは言葉を入るする。

練習問題

対角線の長さの和が 8 である菱形について, 以下の問いに答えよ. (「予想 → 解く」の癖をつける.)

(1) 面積の最大値を求めよ.

4 C= 8 EBC.

条件的。

0<90<8.

てい、面積をみりないとと

左图的, 9c=4det最大值を

1. Year = 1.4. (8-4)

= 8

ひけれるようりはないとうよりましまり

(2) 周の長さの最小値を求めよ.

DE= 4-80. 2001).

深件的

0< 90<4.

国の長でるりもみべ、

$$AD^{2} = \chi^{2} + (4-\chi)^{2}$$

$$= 2\chi^{2} - 4\chi + 16$$

子が最小値をとるのは、Ja中京がMin 127よりは。

$$Z = 2x^{2} - \beta x + 16 \quad \text{EAC.}$$

$$= 2\left(x^{2} - 4x\right) + 16$$

$$= 2\left((x - x)^{2} - 4\right) + 16$$

$$= 2\left((x - x)^{2} + 4\right) + 16$$

$$= 2\left((x - x)^{2} + 4\right) + 16$$

左回かり「四中旬の最小値はる

ひけるのでかれていなりませ!