

	As rendered by TeX	As rendered by your browser
1	x^2y^2	x^2y^2
2	$_2F_3$	₂ F ₃
3	$\frac{x+y^2}{k+1}$	$\frac{x+y^2}{k+1}$
4	$x + y^{\frac{2}{k+1}}$	$x + y^{\frac{2}{k+1}}$
5	$\frac{a}{b/2}$	<u>a</u> b/2
6	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$
7	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$
8	$\binom{n}{k/2}$	$\binom{n}{k/2}$
9	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$	$\binom{p}{2} x^2 y^{p-2} - \frac{1}{1-x} \frac{1}{1-x^2}$

10	$\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j)$	$\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j)$
11	x^{2y}	x^{2y}
12	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij}b_{jk}c_{ki}$
13	$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}$	$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + x}}}}}$
14	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \varphi(x+iy) ^2 = 0$	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left \phi(x + iy) \right ^2 = 0$
15	$2^{2^{2^x}}$	2 ^{2^{2^x}}
16	$\int_{1}^{x} \frac{dt}{t}$	$\int_{1}^{x} \frac{dt}{t}$
17	$\iint_{D} dx dy$	$\iint_{\mathbb{D}} dx dy$

18	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$		
19	$\overbrace{x + \dots + x}^{k \text{ times}}$	k times ? X + + X		
20	y_{x^2}	Y _x 2		
21	$\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$	$\sum_{p \text{ prime}} f(p) = \int_{t > 1} f(t) d\pi(t)$		
22	$\{\underbrace{a, \dots, a}_{k+l \text{ elements}}, \underbrace{b, \dots, b}_{l \text{ b's}}\}$	k a's		
23	$ \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ 0 & \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{pmatrix} $	$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} e & f \\ g & h \end{vmatrix} $ $ 0 $		

24	det	c_2	c_2 c_3 \vdots	$c_2 \\ c_3 \\ c_4 \\ \vdots \\ c_{n+2}$		$c_{n+1} \\ c_{n+2} \\ \vdots$	> 0	det	$ \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} $	
25				y_{x_2}				y _{x2}		
26		$x_{92}^{31415} + \pi$						$x_{92}^{31415} + \pi$		
27				$x_{y_b^a}^{z_c^d}$				$x^{z_c^d}$ y_b^a		
28				$y_3^{\prime\prime\prime}$				y ₃ ""		