LENDING CLUB CASE STUDY

By Rishabh Vii

Case Study Objective

Background

Lending Club company is the largest online loan marketplace, facilitating personal loans, business loans, and financing of medical procedures. Borrowers can easily access lower interest rate loans through a fast online interface.

Problem Statement

Lending Club wants to identify the risky loan applicants, so that such loans can be reduced thereby cutting down the amount of credit loss. Our aim is to find the driving factors and features behind loan getting defaulted so that appropriate measures can be taken to mitigate this.

Solution Stratergy

Understanding the Data

Data Inputs

loan.csv - csv file of shape - 39717, 111. This is our primary dataset

Data_Dictionary.xlsx - xlsx file of shape - 115, 2. Explains the Loan Dataset features

Our Main loan dataset, initially has features of following data type:

float64(74), int64(13), object(24)

Data Cleaning

The following steps were taken to clean the data:

- Missing Values were treated
- Outliers detected and handled
- Values Transformation (fixing and readying values for analysis)
- Features that aren't relevant to us were dropped the likes of metadata, behavioural features, identifiers, etc.
- Derived Metrics to augment new feature columns like issue year and bucketed income & loan amount.

Post Cleaning the data out final dataset shape is - 38448, 22

Here's the final features which we use for our analysis -

Data Analysis (Univariate)

Exploring numerical features with summary metrics

[51]:			[float, int,]).describe().a	pply (lambda	s: s.apply('{0:.5f}'.f	ormat)) ## exp	oloring nume	ric features
[51]:		loan_amnt	funded_amnt	funded_amnt_inv	term_months	int_rate_pct	installment	annual_inc	dti	issue_year
	count	38577.00000	38577.00000	38577.00000	38577.00000	38577.00000	38577.00000	38577.00000	38577.00000	38577.00000
	mean	11047.02543	10784.05851	10222.48112	41.89844	11.93222	322.46632	68777.97368	13.27273	2010.30907
	std	7348.44165	7090.30603	7022.72064	10.33314	3.69133	208.63921	64218.68180	6.67304	0.88266
	min	500.00000	500.00000	0.00000	36.00000	5.42000	15.69000	4000.00000	0.00000	2007.00000
	25%	5300.00000	5200.00000	5000.00000	36.00000	8.94000	165.74000	40000.00000	8.13000	2010.00000
	50%	9600.00000	9550.00000	8733.44000	36.00000	11.71000	277.86000	58868.00000	13.37000	2011.00000
	75%	15000.00000	15000.00000	14000.00000	36.00000	14.38000	425.55000	82000.00000	18.56000	2011.00000
	max	35000.00000	35000.00000	35000.00000	60.00000	24.40000	1305.19000	6000000.00000	29.99000	2011.00000

Data Analysis (Univariate)

Exploring target feature (loan_status) distribution

Data Analysis (Segmented Univariate)

With segmented univariate analysis we were able to understand how different features impact our target variables(loan_status)

Data Analysis (Segmented Univariate) - Home Ownership & Loan Status

<pre>sc_ho = segmented_comparison('home_ownershi Last executed at 2022-05-09 17:53:11 in 47ms</pre>							
	home_ownership	loan_status	count	ratio			
0	MORTGAGE	Charged Off	2327	0.136713			
1	MORTGAGE	Fully Paid	14694	0.863287			
2	NONE	Fully Paid	3	1.000000			
3	OTHER	Charged Off	18	0.183673			
4	OTHER	Fully Paid	80	0.816327			
5	OWN	Charged Off	443	0.148908			
6	OWN	Fully Paid	2532	0.851092			
7	RENT	Charged Off	2839	0.153626			
8	RENT	Fully Paid	15641	0.846374			

Home Ownership & Loan status distribution

Home Ownership & Loan status distribution

Data Analysis (Segmented Univariate) - Home Ownership & Loan Status

Default percentage by Home Ownership

we can clearly see from this analysis that users with `other` home ownership default much more often, at ~18% vs. a median of ~14% in other (own, rent, mortgage) ownership types

Data Analysis (Segmented Univariate) - Address State & Loan Status

Address State & Loan status distribution

Data Analysis (Segmented Univariate) - Address State & Loan Status

Default percentage by Address State

we can see here that users from state `NE` have a whopping 60% of defaulting. It is worth mentioning only a total of 5 loans were issued in this state, so we don't have big enough sample size. The next worse performing state is `NV` with a ~22% default rate

Data Analysis (Segmented Univariate) - Emp. Length & Loan Status

Emp. Length & Loan status distribution

Data Analysis (Segmented Univariate) - Emp. Length & Loan Status

Emp. Length &
Default
percentage

There is not much of a variance when it comes to a users work experience and they defaulting to conclude anything. Although it seems users with 10+ years of work exp. default the most

Data Analysis (Segmented Univariate) - Purpose & Loan Status

Purpose & Loan status distribution

Data Analysis (Segmented Univariate) - Purpose & Loan Status

Default percentage by Purpose

we can see that loans for `small_business` are the least secure and more likely to default than others

Data Analysis (Segmented Univariate) - verification status & Loan Status

	verification_status	loan_status	count	ratio
0	Not Verified	Charged Off	2122	0.127955
1	Not Verified	Fully Paid	14462	0.872045
2	Verified	Charged Off	3478	0.159074
3	Verified	Fully Paid	18386	0.840926

verification_s tatus & Loan status distribution

Verification status & Loan status distribution

Data Analysis (Segmented Univariate) - Verification Status & Loan Status

Default percentage by verification Status

we can see here that surprisingly users with verified income source are more likely to default than non-verified users

Data Analysis (Segmented Univariate) - Grade & Loan Status

Grade & Loan status distribution

Data Analysis (Segmented Univariate) - Grade & Loan Status

Default percentage by Grade

As expected grade plays a major role in whether a user will default or not. The default percentage seems to keep on increasing as the grade increases

Data Analysis (Segmented Univariate) - Annual income & Loan Status

Annual income & Loan status distribution

Data Analysis (Segmented Univariate) - Annual Income & Loan Status

Default percentage by Annual Income

As seen above Lower income users are more likely to default than higher income users

Data Analysis (Segmented Univariate) - Loan amount & Loan Status

Data Analysis (Segmented Univariate) - Loan Amount & Loan Status

Default percentage by loan amount

As the loan amount increases, the cahnces of default also increases

Data Analysis (Segmented Univariate) - Interest rate & Loan Status

Data Analysis (Segmented Univariate) - Interest rate & Loan Status

Default percentage by interest rate

From the above information we can conclude that users who are charged a higher interest rate are way more lilely to default than users being charged a lower rate

Data Analysis (Segmented Univariate) - Term & Loan Status

	term_months	loan_status	count	ratio
0	36	Charged Off	3200	0.110471
1	36	Fully Paid	25767	0.889529
2	60	Charged Off	2400	0.253138
3	60	Fully Paid	7081	0.746862

Term & Loan status distribution

Term & Loan status distribution

Data Analysis (Segmented Univariate) - Term & Loan Status

Default percentage by term

From the above information we can conclude that users with 60 months term are more highly likely to default

Data Analysis (Segmented Univariate) - Issue Year & Loan Status

	issue_year	loan_status	count	ratio
0	2007	Charged Off	45	0.180000
1	2007	Fully Paid	205	0.820000
2	2008	Charged Off	220	0.153417
3	2008	Fully Paid	1214	0.846583
4	2009	Charged Off	594	0.125954
5	2009	Fully Paid	4122	0.874046
6	2010	Charged Off	1485	0.128772
7	2010	Fully Paid	10047	0.871228
8	2011	Charged Off	3256	0.158705
9	2011	Fully Paid	17260	0.841295

Issue year & Loan status distribution

Issue year & Loan status distribution Data Analysis (Segmented Univariate) - Issue Year & Loan Status

Default percentage by Issue Year

we can clearly see above that most defaults were in the year 2007, this is probably due to the recession

Data Analysis (Multiivariate)

from the above correlation matrix we can conclude that loan amount and installments have a hhigh correlation, which is quite obvious. no other features are highly co-related

Conclusion & Recommendations

Conclusion:

From the Analysis we performed we can say that following are the driving features towards loan default:

- **Grade** (user credit grade)
- int rate (interest rate %)
- <u>term</u> (loan duration)
- <u>home ownership</u> (user home ownership status)
- Purpose (loan purpose)
- <u>funded amnt inv</u> (loan amount)
- <u>annual income</u> (users annual income)

Conclusion & Recommendations

Recommendations:

Since Now we know what are the driving features that leads to a loan defaulting, we can recommend lending club the following

- Users with higher credit grades(A, B, C) are less likely to default and users with low grades(E, F, G) are very likely to default
- If the interest rate is kept under 10%, there's a good chance user won't default
- It is recommended that loan term be kept to 36 months only
- It'd be better if loans are not given to individuals with home ownership status as other/unknown.
- Loans for funding small businesses are very risky. Loans taken for purchasing big equipments like cars seems to be less risky.
- As the loan amount increases, the chances of default also increases
- Users with low annual income have a high chance to default, so appropriate actions needs to be taken while providing loans to low income users

Thank You

Case Study By - Rishabh Vij