Class05: Data Vis with ggplot

Julia (PID: A16950824)

Graphics systems in R

There are many graphics systems in R for making plots and figures.

We have already played a little bit with "base R" graphics and the plot() function.

Today we will start learning about a popular graphics package called ggplot2()

This is an add package – i.e. we need to install it. I install it (like I install any package) with the install.packages() function.

plot(cars)

Before I can use the functions from a package I have to look up the package from my "library". We use the library(ggplot2) command to load it up.

```
#install.packages(ggplot2)
library("ggplot2")
ggplot(cars)
```

Every ggplot is made up of at least 3 things: - data (the numbers etc. that will go into your plot) - aes (how the columns of data map to the plot aesthetics) - geoms (how the plot actually looks, points, bars, lines, ect.)

```
ggplot(cars) + aes(x=speed, y=dist) + geom_point()
```


For simple plots ggplot is more verbose - it takes more code - than base R plot.

Add some more layers to our ggplot:

```
ggplot(cars) + aes(x=speed, y=dist) + geom_point() + geom_smooth(se=F) + labs(title="Stopp
```

 $[\]ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using method} = \ensuremath{\mbox{'loess'}}\ \mbox{and formula} = \ensuremath{\mbox{'y}}\ \sim \ensuremath{\mbox{x'}}\ \mbox{'}$

Stopping Distance of Old Cars

Calling up Gene Data Set from class hand-out

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

Getting information from data set

```
nrow(genes)
```

[1] 5196

```
ncol(genes)

[1] 4

colnames(genes)

[1] "Gene"      "Condition1" "Condition2" "State"

num_upreg<-sum(genes$State == "up")
num_upreg

[1] 127

(num_upreg) / (nrow(genes)) * 100

[1] 2.444188

Making a simple plot of "Genes"</pre>
```


Adding some complexities to the plot

```
gene_plot<-ggplot(genes) + aes(x=Condition1, y=Condition2, col=State) + geom_point()
gene_plot + scale_colour_manual( values=c("purple", "gray", "green") )</pre>
```


Adding Labels to graph

```
gene_plot + labs(title="Gene Expression Changes Upon Drug Treatment", x="Control (no drug)
```


Installed gapminder and dplyr packages

```
# install.packages(gapminder)
# install.packages(dplyr)
library(gapminder)
library(dplyr)
```

Attaching package: 'dplyr'

filter, lag

The following objects are masked from 'package:stats':

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Loading in Gapminder Data Set

```
gapminder_2007 <- gapminder %>% filter(year==2007)
gapminder_2007
```

# 1	A tibble: 142	2 x 6				
	country	continent	year	lifeExp	pop	gdpPercap
	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
1	Afghanistan	Asia	2007	43.8	31889923	975.
2	Albania	Europe	2007	76.4	3600523	5937.
3	Algeria	Africa	2007	72.3	33333216	6223.
4	Angola	Africa	2007	42.7	12420476	4797.
5	Argentina	Americas	2007	75.3	40301927	12779.
6	Australia	Oceania	2007	81.2	20434176	34435.
7	Austria	Europe	2007	79.8	8199783	36126.
8	Bahrain	Asia	2007	75.6	708573	29796.
9	Bangladesh	Asia	2007	64.1	150448339	1391.
10	Belgium	Europe	2007	79.4	10392226	33693.
# i 132 more rows						

Making a basic scatter plot with data

```
ggplot(gapminder_2007) + aes(x=gdpPercap, y=lifeExp) + geom_point()
```


Making points slightly transparent because many of them are overlapping

```
ggplot(gapminder_2007) + aes(x=gdpPercap, y=lifeExp) + geom_point(alpha=0.5)
```


Adding more variables

```
ggplot(gapminder_2007) + aes(x=gdpPercap, y=lifeExp, col=continent, size=pop) + geom_point
```

