

# 大学物理一级实验错论(二)

物理实验教学中心 赵 霞 2019年3月19日



# 今天课后到所在实验室完成、单摆、自由落体两个实验!

预习报告必须手写,上课先交预习报告再做实验,获得相应预习报告分!

单摆: 预习15/操作45/报告40

自由落体: 预习20/操作40/报告40

# 复习



A 类标准不确定度

$$u_A = \frac{\sigma_x}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n(n-1)}}$$

$$\left[\overline{x}-u_{A},\overline{x}+u_{A}\right]$$
上的概率为 68.3%

B类标准不确定度

$$u_R = \Delta_R / C$$

C: 置信系数,与仪器测量误差的分布 概率有关

$$\Delta_{\rm B} = \sqrt{{\Delta_{\rm 1\!\!/}}^2 + {\Delta_{\rm 1\!\!/}}^2}$$

正态分布: 
$$C=3$$
,  $\left[-u_{B},u_{B}\right]$ ,  $P=0.68$ 

均匀分布: 
$$C = \sqrt{3}$$
,  $\left[-u_B, u_B\right]$ ,  $P = 0.58$ 

三角分布: 
$$C = \sqrt{6}$$
,  $\left[-u_{\scriptscriptstyle R}, u_{\scriptscriptstyle R}\right]$ ,  $P = 0.74$ 



#### 合成标准不确定度



$$U_{0.68} = \sqrt{\left(\mathbf{t}_{\mathbf{p}} u_{A}\right)^{2} + u_{B}^{2}} = \sqrt{\left(\mathbf{t}_{\mathbf{p}} u_{A}\right)^{2} + \left(\Delta_{\%}/\mathbf{C}\right)^{2}}$$

#### 展伸不确定度

$$P = 0.95$$

$$U_{0.95} = \sqrt{\left(\mathbf{t}_{0.95} u_A\right)^2 + \left(\mathbf{k}_{p} \Delta_{\chi}/\mathbf{C}\right)^2}$$



# 实验结果的表示



- 1、不确定度通常只取一位有效数字,首位数字 小于3时,也可取两位有效数字。
- 2、不确定度的取舍采用四舍六入五凑偶。
- 3、测量结果有效数字的位数取决于测量结果的不确定度,测量结果的有效位数要向不确定度看齐。
- 4、实验结果一般用绝对不确定度表示,也可用 相对不确定度表示。

# 读数的有效数字

- ❖有效数字:测量结果中可靠的几位数加上有误差 的一位数
- ❖测量只写到开始有误差的那一位,该位数后:四 舍六入五凑偶
- ❖有效数字的位数与小数点无关: 1.23 同123
  - 0.0123和0.01230;前者为3位,后者为4位
  - 1.35 和1.3500;前者为3位,后者为5位
- ❖直接测量: 仪器的最小分度+1位估读位
- ❖间接测量:与运算方式有关

# 间接测量的有效数字



- ❖加减运算,由最大不确定度分量决定: 432.3+0.1263-2=430
- ❖乘除运算,由最少有效数字分量决定:
  - $48 \times 3.2345/1.732=52$
  - $48 \times 3.2345/0.173^2 = 5.2 \times 10^3$
- ❖运算结果第一位是1, 2, 3时,可以多保留一位: 6.3×4.3=27.1
- ❖常数(如π等)多保留1位
- ❖中间计算结果的有效数字:可多保留1位



## 例:测量合金圆柱体的密度,求其标准不确定度 m=14.00 g,最大允差0.04g



| D/cm | 1.0502 | 1.0488 | 1.0516 | 1.0480 | 1.0495 | 1.0470 |
|------|--------|--------|--------|--------|--------|--------|
| H/cm | 2.000  | 2.002  | 1.998  | 2.000  | 2.000  | 2.002  |

$$\bar{D} = 1.04918cm$$

螺旋测微器

$$u_{AD} = \sigma_{\bar{D}} / \sqrt{6} = 0.0007cm$$

$$u_{BD} = \Delta_{fx} / 3 = 0.0004 / 3 = 0.00013cm$$

$$u_D = \sqrt{\left(t_p u_{AD}\right)^2 + \left(k_p u_{BD}\right)^2} = \sqrt{\left(1.11 u_{AD}\right)^2 + \left(u_{BD}\right)^2} = 0.0008cm$$

$$D = \bar{D} \pm u_D = (1.0492 \pm 0.0008)cm$$
  $(P = 0.683)$ 





游标卡尺

$$\bar{H} = 2.0003cm$$

$$u_{AH} = \sigma_{\bar{H}} / \sqrt{6} = 0.0006cm$$

$$u_{BH} = \Delta_{fx} / \sqrt{3} = 0.002 / \sqrt{3} = 0.0012cm$$

$$u_H = \sqrt{(t_p u_{AH})^2 + (k_p u_{BH})^2} = \sqrt{(1.11 u_{AH})^2 + (1.183 u_{BH})^2} = 0.0016cm$$

$$H = \bar{H} \pm u_H = (2.0003 \pm 0.0016)cm$$





$$u_{Bm} = 0.04g / 3 \approx 0.013g$$

$$u_{m} = \sqrt{u_{Am}^{2} + u_{Bm}^{2}} = 0.013g$$

$$m \pm \sigma_m = (14.00 \pm 0.01)g$$





$$\frac{1}{\rho} = \frac{4m}{\pi D^2 H} = \frac{4 \times 14.00}{\pi 1.0492^2 \times 2.0003} = 8.094g / cm^3$$

常数多取一位3.1415

$$\frac{u_{\rho}}{\rho} = \sqrt{\left(\frac{u_{m}}{m}\right)^{2} + \left(\frac{2u_{D}}{D}\right)^{2} + \left(\frac{u_{H}}{H}\right)^{2}}$$

$$= \sqrt{\left(\frac{0.013}{14.00}\right)^2 + \left(\frac{2 \times 0.0008}{1.0492}\right)^2 + \left(\frac{0.0016}{2.0003}\right)^2}$$

= 0.0022

$$u_{\rho} = 8.094 \times 0.0022 = 0.018g / cm^3$$

$$\overline{\rho} = \overline{\rho} \pm u_{\rho} = (8.094 \pm 0.018) g / cm^3$$
  $P = 0.68$ 



#### 不同分布测量仪器的置信概率P与置信因子Kp

| Kp P | 0.500 | 0.577 | 0.650 | 0.683 | 0.900 | 0.950 | 0.955 | 0.990 | 0.997 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 正态分布 | 0.675 |       |       | 1.000 | 1.650 | 1.960 | 2.000 | 2.580 | 3.000 |
| 均匀分布 | 0.877 | 1.000 |       | 1.183 | 1.559 | 1.645 | 1.654 | 1.715 | 1.727 |
| 三角分布 | 0.717 | 0.862 | 1.000 | 1.064 | 1.675 | 1.901 | 1.929 | 2.204 | 2.315 |

#### 几种常见仪器的误差分布与置信系数

| 仪器    | 米尺 | 游标卡尺 | 千分尺 | 物理天平 | 秒表 |
|-------|----|------|-----|------|----|
| 误差分布  | 正态 | 均匀   | 正态  | 正态   |    |
| 置信系数C | 3  | √3   | 3   | 3    | 3  |

# 常用数据处理方法



- (1) 列表法
- (2) 作图法
- (3) 最小二乘法
- (4) 曲线改直



# 一、列表法



列表法是记录数据的基本方法。可使实验结果一目了然,避免混乱和丢失数据,便于查对,列表法是记录的最好方法。 列表法的优点:

- 1. 数据易于参考比较,便于检查数据的合理性,发现和分析问题,指导实验;
- 2. 形式紧凑;
- 3. 同一表被可以同时表示几个变量间的变化而不紊乱。



#### 表1: 伏安法测电阻实验数据

| U(V)  | 0.74 | 1.52 | 2.33 | 3.08 | 3.66 | 4.49  | 5.24  | 5.98  | 6.76  | 7.50  |
|-------|------|------|------|------|------|-------|-------|-------|-------|-------|
| I(mA) | 2.00 | 4.01 | 6.22 | 8.20 | 9.75 | 12.00 | 13.99 | 15.92 | 18.00 | 20.01 |

# 列表法的注意事项:

- 1. 测量量的名称、单位应在名称栏中注明;
- 2. 要正确反映测量数据的有效数字;
- 3. 表格应力求简单明了。
- 4. 用钢笔/圆珠笔,如实记录数据



#### 测量圆柱体的直径D(千分尺)和高H(游标卡尺)

| D/mm | 10.502 | 10.488 | 10.516 | 10.480 | 10.495 | 10.470 |
|------|--------|--------|--------|--------|--------|--------|
| H/mm | 20.00  | 20.02  | 19.98  | 20.00  | 20.00  | 20.02  |

### 或者

测量圆柱体的直径D(千分尺)和高H(游标卡尺)

D/mm 10.502 10.488 10.516 10.480 10.495 10.470

H/mm 20.00 20.02 19.98 20.00 20.00 20.02



# 二、作图法



- 坐标纸 直角、半对数、对数坐标纸等
- 应用软件 origin、matlab、mathematica

作图法可形象、<mark>直观</mark>地显示出物理量之间的函数关系,也可 用来求某些物理参数,因此它是一种重要的数据处理方法。

#### 1. 作图时要先整理出数据表格

选择合适的坐标分度值,确定坐标纸的大小。 坐标分度值的选取应能基本反映测量值的准确度或精密度。 可靠数字在图中也应可靠,可疑位在图中应是估计的,即图纸中的 一小格对应数值中可靠数字的最后一位。

适当选取 x 轴和 y 轴的比例和坐标的起点,使图线比较对称的充满整个图纸,不要缩在一边或一角。除特殊需要以外,坐标轴的起点一般不一定取为零值。根据表 1 数据U 轴可选1mm对应于0.10 V,I 轴可选1mm对应于0.20 mA,并可定坐标纸的大小(略大于坐标范围、数据范围)约为130 mm×130 mm。

#### 2. 标明坐标轴:

用粗实线画坐标轴, 用箭头标轴方向,标坐标 轴的名称或符号、单位, 再按顺序标出坐标轴整分 格上的量值。

#### 3. 标实验点:

实验点可用" <sup>+</sup> "、" <sup>○</sup> "、" <sup>●</sup> "、" <sup>○</sup> " 等符号标出(同一坐标系 下不同曲线用不同的符号 )。

#### 4. 连成图线:

用直尺、曲线板等把 点连成直线、光滑曲线。 一般不强求直线或曲线通



过每个实验点,应使图线两边的实验点与图线最为接近且分布大体均匀。

### 5. 标出图线特征:

在图上空白位置标明实验条件或从图上得出的某些参数。如利用所绘直线可给出被测电阻*R*大小:从所绘直线上读取两点 *A*、*B*的坐标就可求出 *R* 值。

由图上*A、B*两点可得被测电阻*R* 为:

$$R = \frac{U_B - U_A}{I_B - I_A} = \frac{7.00 - 1.00}{18.58 - 2.76} = 0.379 (\text{k}\Omega)$$

#### 6. 标出图名:

在图线下方或空白位 置写出图线的名称及某些 必要的说明。



电阻伏安特性曲线

# 至此一张图才算完成





图1 光杠杆法测铜棒的长度与温度的关系



图1. 电学元件伏安特性曲线

不当: 横轴坐标 分度选取不当。

横轴以3 cm 代表 1 V, 使作图和读 图都很困难。实 际在选择坐标分 度值时, 应既满 足有效数字的要 求又便于作图和 读图,一般以1 mm 代表的量值是 10的整数次幂或 是其2倍或5倍。



# 作图软件介绍: Origin

- ❖ 学校主页——信息门户——正版软件
- ❖ 方法──自己摸索
- ❖ 教学平台课件:Origin简易使用教程

■ 产品列表

高斯 Windows Office MATLAB ORIGIN

福昕PDF

NOD32

产品名称

工具或使用说明

OriginPro 2017

提取密码:ucj3t4 使用说明 培训材料

OriginPro 2018

提取密码:hqfvhh

使用说明 培训材料

· Origin公司提供的资料等已经上载到此页面,如有我校老师教学中需要Origin公司协助准备教程等,可以联系李会民老 师(63600316, hmli@ustc.edu.cn),软件授权及相关问题请联系沈瑜老师(63602248, shenyu@ustc.edu.cn)。





# 三、最小二乘法



用作图法把实验数据表示成曲线,固然可以看出事物 之间的规律,但毕竟不如方程来得确切。

如何从实验数据出发求出方程,这也是数据处理中常常遇到的问题。在多数情况下,两个物理量直接的关系在一定的范围内应是渐变的。应当用光滑连续的曲线来拟合"数据点",描述其关系。因此,拟合的原则是使各数据点(沿纵轴方向)到所拟合的曲线的距离平方之和为最小。在数学上这叫最小二乘法。根据这个原则,各数据点要均匀分布在曲线的两侧。





#### 方程的回归, 首先要确定函数的形式

- 线性的函数关系,则可写成: Y = aX + b;
- 指数函数关系,则可写成:  $Y = ae^{bx} + c$
- ❖ 函数关系不明确,则常用多项式来表示:

$$Y = a_0 X + a_1 X^2 + \cdots$$

#### 原则:

$$\varepsilon = \sum_{i=1}^{k} \left[ y_i - (b_1 x_i + b_0) \right]^2$$
 为最小

$$b_1 = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{x^2 - (\overline{x})^2}$$

$$b0 = \overline{y} - b_1 x$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

$$\overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$



# 27

# 一元线性回归

$$r = \frac{\overline{xy} - \overline{xy}}{\left[\overline{x^2} - (\overline{x})^2\right] \left[\overline{y^2} - (\overline{y})^2\right]}$$
$$-1 \le r \le 1$$

相关系数 r: 定量描述x、y变量之间线性相关程度的好坏。

r 值在 0 < | r | < 1, r 越接近于1, x 和 y 之间线性相关越好; r 为正,称为正相关; r 为负,称为负相关; r 接近于0,  $x_i$  和  $y_i$  为非线性。

# 斜率m和截距b的不确定度评定



❖斜率m的标准差为

$$s_m = m\sqrt{\left(\frac{1}{r^2} - 1\right)/(n-2)}$$

❖ 截距b的标准差为

$$s_b = \sqrt{\overline{x^2}} \cdot s_m$$

❖斜率m和截距b的扩展不确定度

$$u_m = t_p s_m; \quad u_b = t_p s_b$$

式中 $t_P$ 是置信概率P(或显著性水平 $\alpha$ =1-P)时,根据自由度v=N-2查t分 布表所得到的t值。



# t 分布表

| t <sub>P</sub> P | 0.997  | 0.95  | 0.683 |
|------------------|--------|-------|-------|
| 1                | 235.80 | 12.71 | 1.84  |
| 2                | 19.21  | 4.30  | 1.32  |
| 3                | 9.21   | 3.18  | 1.20  |
| 4                | 6.62   | 2.78  | 1.14  |
| 5                | 5.51   | 2.57  | 1.11  |
| 6                | 4.90   | 2.45  | 1.09  |
| 7                | 4.53   | 2.36  | 1.08  |
| 8                | 4.28   | 2.31  | 1.07  |
| 9                | 4.09   | 2.26  | 1.06  |
| 10               | 3.96   | 2.23  | 1.05  |
| 11               | 3.85   | 2.20  | 1.05  |
| 12               | 3.76   | 2.18  | 1.04  |
| 13               | 3.69   | 2.16  | 1.04  |
| 14               | 3.64   | 2.14  | 1.04  |
| 15               | 3.59   | 2.13  | 1.03  |
| 16               | 3.54   | 2.12  | 1.03  |
| 17               | 3.51   | 2.11  | 1.03  |
| 18               | 3.48   | 2.10  | 1.03  |
| 19               | 3.45   | 2.09  | 1.03  |
| 20               | 3.42   | 2.09  | 1.03  |
| 00               | 3.00   | 1.96  | 1     |

# 作图法和最小二乘法 所求解的方程参数及不确定度之比较



- ❖ 作图法的最大优点是直观。在诸多数据点的拟合中,如果发现有一个点明显偏离所拟合的曲线,就需要在这个点所处物理条件附近,再进行仔细的实验,查明是否是实验误差,还是有新的现象或规律。
- ❖ 所拟合曲线的曲率变化较大处,测量点要密集.因此,根据曲线有助于设计改进实验.
- ❖ 作图法需较长时间,曲线拟合过程中也会引入误差;求解实验方程参数及其不确定度比较麻烦。
- ❖ 用回归法只需按动计算器的几个键,就可以确定实验方程的参数及其不确定度。
- ❖ 但如果实验数据有误,或所拟合的方程形式不合适,则相关系数小, 须重新检查数据或方程形式。由于不直观,难以断定问题之所在。





# 四、非线性关系:曲线改直

#### 探测线圈上的感应电压与屏蔽铝箔的厚度之间的关系, 求衰减系数

$$V = V_0 e^{-\alpha d}$$



$$V = V_0 e^{-\alpha d} \quad \longrightarrow \quad \ln V = \ln V_0 - \alpha d$$

 $\ln V - d$  曲线







- ❖在直角坐标纸上作 lnV-d 图 。
- ❖这时求斜率要注意,用纵坐标的长度差除以横坐标的长度差。







$$y = ax^b$$



$$y = ax^b$$
  $\Rightarrow$   $\lg y = \lg a + b \lg x$ 

# 双曲线

$$I\omega = a$$



$$I-\frac{1}{\omega}$$







$$\frac{s}{t} = v_0 + \frac{1}{2}at$$

$$\frac{S}{t} - t$$





# 五、误差杆(棒)



如果在作图时用线段标示出测量值的不确定度  $\pm \Delta_{(Q)}$  则将会更全面地反映出实验的精度。线段的长度为 $2\Delta_{(Q)}$  这种小线段称为误差杆。









- ❖如果绝大多数数据点可以拟合成一条直线(或曲线),只有一个点偏离甚远,就要考虑这一对测量值的可靠性了。严格地讲,应该重新测量。
- ❖但有时无法或没必要重做实验,可不可以舍弃 这个点呢?





一般来说,在有限范围内,两个物理量之间的关系多为连续的;反映其关系的曲线不大可能有大的突然起伏。我们可以参照测量不确定度理论中剔除坏值的3 σ 原则来处理。如果该点到按其他点拟合的曲线的距离大于1.5倍误差杆的长度,且曲率变化不大时,可以考虑舍弃该点。



不画出误差杆就难以判断。要注意,曲线拟合是对多个数据点的统计学意义下的操作,若一共只有3、4个点,就不能草率地舍弃任何一个点了。

还要注意,各个数据点的误差杆长度不一定相等。或者,对数据做某种处理(如取对数)后,再进行作图,误差杆的长度也会变化。



- ❖ 在作图中, 画出误差杆, 标明每一个数据点的合理范围, 显现出科学负责的态度。
- ◆在科研中常常见到。
- ❖在某些年的国际奥林匹克竞赛的评分标准中有此项。





$$U = U_0 e^{-ad}$$

| d/µm                  | 25    | 50    | 75    | 100   | 125   | 150   | 175   |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|
| U/V                   | 44.26 | 37.71 | 31.19 | 25.79 | 20.90 | 18.36 | 15.00 |
| $\Delta U/\mathbf{V}$ | 1.9   | 1.6   | 1.3   | 1.1   | 0.9   | 0.8   | 0.6   |

U-d:  $2\Delta U$ 

 $\ln U$ -d:  $2\Delta U/U$ 



请到相应实验室完成实验!

Thank You!