Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

Johannes Heinrich et al

Index

- 1. Background
 - Extensive-form game
 - Fictitious play
- 2. NFSP
- 3. Experiment

BACKGROUND

Extensive-Form Game

• 전개형 게임 – 수형도의 모양

Extensive Form Game's Normal Form Rep'

• Example:

P1 P2	DH	DI	DJ	EH	EI	EJ
AF	a,b	a, b	a, b	e, f	e, f	e, f
AG	c, d	c, d	c,d	g, h	g,h	g,h
BF	i, j	k, l	m,n	i, j	k,ℓ	m, n
BG	i, j	k, l	m,n	i, j	k,ℓ	m, n
CF	p,q	p,q	p,q	p,q	p,q	p,q
CG	p,q	p,q	p,q	p,q	p,q	p,q

Alternative: Use Behavioural Strategies

- Pure Strategy
 - 결정론적인(deterministic) 정책
 - 모든 상황에 대한 deterministic plan
- Mixed Strategy
 - 가능한 Pure Strategy에 대한 확률분포
- $\pi^i(u)$ 및 이들의 확률분포로 이루어지는 Mixed Strategy로 Normal Form Rep. 를 대체

Fictitious Play

Definition:

1) 상대방의 Average Behaviour에 대하여

2) Best Response를 행하는 Play

• Example:

A STATE OF THE STA
Sale Control
(1,0)
/2,1/2)

Α	В
Chicken	Chicken
Lion	Lion
Lion	Chicken
Lion	Chicken
Lion	Chicken

Random!

Generalized Weakened Fictitious Play

Using Mixed Strategy Rep.

Definition 5. A generalised weakened **fictitious play** is a process of mixed strategies, $\{\Pi_t\}$, $\Pi_t \in \times_{i \in \mathcal{N}} \Delta^i$, s.t.

Best response toward others' average policy

$$\Pi_{t+1}^{i} \in (1 - \alpha_{t+1}) \Pi_{t}^{i} + \alpha_{t+1} (b_{\epsilon_{t}}^{i} (\Pi_{t}^{-i}) + M_{t+1}^{i}), \ \forall i \in \mathcal{N},$$

with $\alpha_t \to 0$ and $\epsilon_t \to 0$ as $t \to \infty$, $\sum_{t=1}^{\infty} \alpha_t = \infty$, and $\{M_t\}$ a sequence of perturbations that satisfies $\forall T > 0$

$$\lim_{t \to \infty} \sup_{k} \left\{ \left\| \sum_{i=t}^{k-1} \alpha_{i+1} M_{i+1} \right\| \text{ s.t. } \sum_{i=t}^{k-1} \alpha_{i+1} \le T \right\} = 0.$$

Randomly perturbed payoffs

- η₁,η₂ are iid with a smooth distribution f_x.
- As x approaches to 0, f_x becomes a unit mass at 0.

	H	T
Н	$2+\eta_1,2+\eta_2$	$\eta_1,0$
T	0, η ₂	1,1

Extensive Form Fictitious Play (XFP)

Lemma 6. Let π and β be two behavioural strategies, Π and B two mixed strategies that are realization equivalent to π and β , and $\lambda_1, \lambda_2 \in \mathbb{R}_{\geq 0}$ with $\lambda_1 + \lambda_2 = 1$. Then for each information state $u \in \mathcal{U}$,

$$\mu(u) = \pi(u) + \frac{\lambda_2 x_\beta(\sigma_u)}{\lambda_1 x_\pi(\sigma_u) + \lambda_2 x_\beta(\sigma_u)} (\beta(u) - \pi(u))$$

defines a behavioural strategy μ at u and μ is realization equivalent to the mixed strategy $M = \lambda_1 \Pi + \lambda_2 B$.

Extensive Form Fictitious Play (XFP)

Generalized Weakened Fictitious Play

$$\Pi_{t+1}^{i} \in (1 - \alpha_{t+1}) \Pi_{t}^{i} + \alpha_{t+1} (b_{\epsilon_{t}}^{i} (\Pi_{t}^{-i}) + M_{t+1}^{i}), \forall i \in \mathcal{N},$$

Realization Plan

• By the previous lemma: $x_{\pi}(\sigma_u) = \prod_{(u',a) \in \sigma_u} \pi(u',a)$.

$$\beta_{t+1}^{i} \in b_{\epsilon_{t+1}}^{i}(\pi_{t}^{-i}),$$

$$\pi_{t+1}^{i}(u) = \pi_{t}^{i}(u) + \frac{\alpha_{t+1} x_{\beta_{t+1}^{i}}(\sigma_{u}) \left(\beta_{t+1}^{i}(u) - \pi_{t}^{i}(u)\right)}{(1 - \alpha_{t+1}) x_{\pi_{t}^{i}}(\sigma_{u}) + \alpha_{t+1} x_{\beta_{t+1}^{i}}(\sigma_{u})}$$

$$\sigma(s,a) \propto \lambda_1 x_{\pi_1}(s) \pi_1(s,a) + \lambda_2 x_{\pi_2}(s) \pi_2(s,a) \quad \forall s,a,$$

XFP's Pseudocode

```
Algorithm 1 Full-width extensive-form fictitious play
  function FICTITIOUSPLAY(\Gamma)
     Initialize \pi_1 arbitrarily
     j \leftarrow 1
     while within computational budget do
        \beta_{i+1} \leftarrow \text{COMPUTEBRS}(\pi_i)
        \pi_{i+1} \leftarrow \text{UPDATEAVGSTRATEGIES}(\pi_i, \beta_{i+1})
       j \leftarrow j + 1
     end while
     return \pi_i
  end function
  function Computebreak (\pi)
     Recursively parse the game's state tree to compute a
     best response strategy profile, \beta \in b(\pi).
     return \beta
  end function
  function UPDATEAVGSTRATEGIES(\pi_i, \beta_{i+1})
     Compute an updated strategy profile \pi_{i+1} according
                                                                        Previous Slide's
     to Theorem 7.
                                                                        Formula
     return \pi_{i+1}
  end function
```

NFSP

Algorithm 1 Full-width extensive-form fictitious play

```
function FICTITIOUSPLAY(\Gamma)
   Initialize \pi_1 arbitrarily
                                                            Reinforcement Learning
  j \leftarrow 1
  while within computational budget do
     \beta_{i+1} \leftarrow \text{COMPUTEBRS}(\pi_i)
     \pi_{i+1} \leftarrow \text{UPDATEAVGSTRATEGIES}(\pi_i, \beta_{i+1})
     j \leftarrow j + 1
  end while
  return \pi_i
end function
function Computebreak (\pi)
   Recursively parse the game's state tree to compute a
  best response strategy profile, \beta \in b(\pi).
  return \beta
end function
function UPDATEAVGSTRATEGIES(\pi_i, \beta_{i+1})
  Compute an updated strategy profile \pi_{i+1} according
  to Theorem 7.
  return \pi_{i+1}
end function
```

Supervised Learning

NFSP Pseudocode

```
Algorithm 1 Neural Fictitious Self-Play (NFSP) with fitted Q-learning
                                            Initialize game \Gamma and execute an agent via RUNAGENT for each player in the game
                                           function RUNAGENT(\Gamma)
                                                 Initialize replay memories \mathcal{M}_{RL} (circular buffer) and \mathcal{M}_{SL} (reservoir)
                                                 Initialize average-policy network \Pi(s, a \mid \theta^{\Pi}) with random parameters \theta^{\Pi} Initialize action-value network Q(s, a \mid \theta^{Q}) with random parameters \theta^{Q}
                                                 Initialize target network parameters \theta^{Q'} \leftarrow \theta^{Q}
                                                 Initialize anticipatory parameter \eta
                                                 for each episode do
                                                     Set policy \sigma \leftarrow \begin{cases} \epsilon\text{-greedy}\left(Q\right), & \text{with probability } \eta \\ \Pi, & \text{with probability } 1 - \eta \end{cases}
                                                      Observe initial information state s_1 and reward r_1
                                                      for t = 1, T do
                                                            Sample action a_t from policy \sigma
                                                            Execute action a_t in game and observe reward r_{t+1} and next information state s_{t+1}
                                                           Store transition (s_t, a_t, r_{t+1}, s_{t+1}) in reinforcement learning memory \mathcal{M}_{RL}
Storing Sample -
                                                           if agent follows best response policy \sigma = \epsilon-greedy (Q) then
                                                                 Store behaviour tuple (s_t, a_t) in supervised learning memory \mathcal{M}_{SL}
                                                            end if
                                                           Update \theta^{\Pi} with stochastic gradient descent on loss
                                                                \mathcal{L}(\theta^{\Pi}) = \mathbb{E}_{(s,a) \sim \mathcal{M}_{SL}} \left[ -\log \Pi(s, a \mid \theta^{\Pi}) \right]
                                                           Update \theta^Q with stochastic gradient descent on loss
                                                                \mathcal{L}\left(\theta^{Q}\right) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{M}_{RL}}\left[\left(r + \max_{a'} Q(s', a' \mid \theta^{Q'}) - Q(s, a \mid \theta^{Q})\right)^{2}\right]
                                                           Periodically update target network parameters \theta^{Q'} \leftarrow \theta^Q
                                                      end for
                                                 end for
                                            end function
```

Storing Sample

- For Supervised Learning
 - Learn average behavior of the agent itself
 - Stores (s, a) when the agent follows best-response policy (best-response's reservoir)
- For Reinforcement Learning(Q-learning)
 - Learn best-response toward others' average policy
 - Always stores (s, a, r, s`) (off-policy learning)

Self-Play시, Dilemma

- 모든 Agent가 Average Policy만 따른다면
 - 다른 Agent가 Average Policy 따름이 보장 (Fictitious Play 전제)
 - Off-Policy로 Q함수 update
 - 그러나 Supervised Learning을 위한 Sample이 X
- 따라서 일정확률로 best-response policy를 행함

$$\text{Set policy } \sigma \leftarrow \begin{cases} \epsilon\text{-greedy }(Q) \,, & \text{with probability } \eta \\ \Pi, & \text{with probability } 1-\eta \end{cases}$$

Loss

Loss

```
Update \theta^{\Pi} with stochastic gradient descent on loss \mathcal{L}(\theta^{\Pi}) = \mathbb{E}_{(s,a) \sim \mathcal{M}_{SL}} \left[ -\log \Pi(s, a \mid \theta^{\Pi}) \right] Update \theta^{Q} with stochastic gradient descent on loss \mathcal{L}\left(\theta^{Q}\right) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{M}_{RL}} \left[ \left( r + \max_{a'} Q(s', a' \mid \theta^{Q'}) - Q(s, a \mid \theta^{Q}) \right)^{2} \right]
```

- $-\log\Pi(s,a|\theta^\Pi)$: s에서 실제 행한 a를 행할 확률을 높이는 방향으로 update
- Reinforcement Learning:

전형적인 Q-Learning의 Loss

EXPERIMENT

Leduc Hold'em NFSP vs DQN

(c) Comparison to DQN

DQN result

- DQN => $\eta = 1$ 인 NFSP
- DQN은 Average policy도 Nash 균형 수렴하지 않음
- Why?
 - ε greedy정책만으로 sample을 수집

highly correlated, focused on narrow state distribution

• NFSP는 보다 slowly changing, stable data distribution

Limit Texas Hold'em

Match-up	Win rate (mbb/h)
escabeche	-52.1 ± 8.5
SmooCT	-17.4 ± 9.0
Hyperborean	-13.6 ± 9.2

Person who always folds: 750

Expert: 40~60

끝

들어주셔서 감사합니다.