- ii. List 10 desirable design features of a response surface design.
- 3 4 3

(OR)

b. Write in detail about CCD and Box-Behnken methods.

12 3 4 4

32. a. Different types of oranges (1-3) form 4 different orchards (A-C) were 12 4 compared. Find out its significance using two-way ANOVA.

Types -		1	2	3
	A	18	13	12
Location	В	20	23	21
	C	11	17	10

(OR)

- b. To assess the relationship between sintering time of 100, 150 and 200 minutes and strength of 3 different metals, 27 experiments were conducted. Complete the ANOVa table and answer the following:
 - (1) What design was employed?
 - (2) What is the total number of observations?
 - (3) What is the contribution of each factor?
 - (4) At 5% significance level, can we conclude whether a metal type has a different effect or not?

Source of variations	DOF	Sum of square	Mean squares	F	P
Sintering time	?	8.22	4.11	1.71	0.244
Metal type	?	20.22	?	4.2	0.0318
Sintering time X metal type?	?	46.22	11.55	?	0.0082
Error	18	?	2.407		
Total	?	118.0	amer, argun	UEVO ,	والمطابق

Reg. No.		 alested in		

B.Tech. DEGREE EXAMINATION, MAY 2023

Fifth to Seventh Semester

18MEO113T - DESIGN OF EXPERIMENTS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

No	te	:
	,,,,	•

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.
- Part B & Part C should be answered in answer booklet.

Time: 3 hours Max. Marks: 100 Marks BL CO PO $PART - A (20 \times 1 = 20 Marks)$ **Answer ALL Questions** is a series of runs or tests. (B) Factor (A) Objective (C) Experiment (D) Response 2. A process affected minimally by external sources of variability is called (A) Reliability (B) Robust design (C) Preventive maintenance (D) Variability 3. Which of these methods produces a poor interaction response? (B) 2^k factorial design (A) Several factors at a time (D) One factor at a time (C) Full-factorial design 4. If the standard deviation is minimal from an experiment, it implies that the experiment is (B) Simple (A) Precise (C) Uncertain (D) Random 5. Identifying which factors affect the outcome of a response is called (A) Response surface (B) Characterisation (C) Process variables (D) Central composite design 6. What information does the sign of the main effect provide? (A) Direction of the effect (B) Strength of the effect (D) Interaction strength (C) Magnitude of the effect 7. What kind of interaction is presented in this diagram?

- (A) Mutually exclusive
- (C) Antagonistic

(B) Cross over (D) Synergistic

27MA5-718MEO113T

8.		formal way to seek the direction process problems is ca		of maximum improvement in	1	2	1	3
		Tunneling						
	(C)	Method of steepest descent	(D)	Method of steepest ascent				
9.	Wha	at is the Hadamard matrix assoc	iated v	vith?	1	2	1	3
	(C)	Taguchi's design Confidence level	(D)	Full-factorial design				
10.	Tag	uchi's design makesth	ne foca	l point of his analysis.	1	2	1	3
	(A)	Control factors	(B)	Interactions				
	(C)	Blocking	(D)	Noise				
11.	Max	imum permissible variation is c	called		1	2	1	3
	(A)	Loss	(B)	Quality				
	(C)	Tolerance	(D)	Function				
12.	In or	rthogonal array design of exper	riments	s, the inner array is for the design	1	2	1	3
		Control factors	(B)	Noise factors				
		Random factors	. ,	Interactions				
13.	A m	aximization problem in RSM is	one o	f .	1	2	1	3
		Star point						
		Steepest descent		Mid point				
14.	How	many levels of a factor does a	Box-E	Behnken design have?	1	2	1	3
	(A)	2	(B)	3				
	(C)	5	(D)	>5				
15.	A de	esign that uses both centre and a	ixial po	oints is called a	1	2	1	3
	(A)	Mixed design	(B)	OFAT				
	(C)	Full – factorial	(D)	CCD				
16.		t-plot designs are encountered in		factors designs.	1	2	1	3
	• /	Random		Fixed				
	(C)	Full	(D)	Higher order				
17.				d by the same linear combination me blocking effects, it is called	1	2	1	3
	(A)	Aliasing	(B)	Blocking				
	• •	Confounding	, ,	Derivatives				
18.	Rela	tionships between independent	variab	ole are explored by	1	2	I	3
	(A)	MANOVA	(B)	Chaining				
	(C)	ANOVA	(D)	Regression				
19.		OVA tests use which of the follows	_		1	1	5	2
	(A) (C)		(B) (D)	Chi-square F				
2 of 4	` '		(-)		27MA5	-718M	E011	3T

	20.	An analysis of variance comparing three treatment conditions produce of dF. Total = 24 for this ANOVA. What is the value of dF. Within? (A) 2 (B) 21 (C) 22 (D) 3	1	2	5	2
		PART – B (5 \times 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
	21.	What is "Bias" or "Distortion"? What should be done to minimize it?	4	3	2	2
	22.	"Statistical thinking adds value to management and decision-making". Discuss this statement w.r.t DOE.	4	3	2	3
	23.	Sketch a surface plot example and briefly discuss why you need it.	4	4	2	5
	24.	Draw up the general 2 ³ full factorial table showing all major effects, 2 and 3-factor interactions.	4	4	2	5
	25.	Write briefly about the three methods used by Taguchi to achieve a robust design.	4	3	3	4
	26.	What is response surface methodology? Give a schematic example.	4	3	4	5
	27.	Write about the assumptions in ANOVA.	4	3	5	4
		$PART - C (5 \times 12 = 60 Marks)$	Marks	BL	co	PO
		Answer ALL Questions				10
28.	a.i.	· · · · · · · · · · · · · · · · · · ·	. 6	3	1	4
28.		Answer ALL Questions	6	3		4
28.	ii.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors. (OR)	6	3	1	4
28.	ii.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors.		3	1 1 1	3
	ii, b.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors. (OR)	6	3	1 1 1	4
	ii, b. 9. a.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors. (OR) Explain all the steps in experimentation in detail. Explain pareto, NPP and cube plots with schematic examples. (OR)	6	3 2 3	1 1 2	3
29	ii. b. 9. a. b.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors. (OR) Explain all the steps in experimentation in detail. Explain pareto, NPP and cube plots with schematic examples. (OR)	6 12 12	3 2 3 4	1 1 2	4 3 3 5
29	ii. b. 9. a. b. 0. a.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors. (OR) Explain all the steps in experimentation in detail. Explain pareto, NPP and cube plots with schematic examples. (OR) Barriers in implementing DOE.	6 12 12	3 2 3 4	1 1 2	4 3 3 5
29	ii. b. 9. a. b. 0. a. b.i.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors. (OR) Explain all the steps in experimentation in detail. Explain pareto, NPP and cube plots with schematic examples. (OR) Barriers in implementing DOE. Discuss Taguchi's loss functions in detail. (OR) Explain the categories of variability in input and output parameters in	6 12 12 12	3 2 3 4	1 1 2 2	4 3 3 5
29	ii. b. 9. a. b. 0. a. ii.	Answer ALL Questions With a schematic, differentiate accuracy and precision. Define efficiency, treatment, response, levels and factors. (OR) Explain all the steps in experimentation in detail. Explain pareto, NPP and cube plots with schematic examples. (OR) Barriers in implementing DOE. Discuss Taguchi's loss functions in detail. (OR) Explain the categories of variability in input and output parameters in detail.	6 12 12 12	3 2 3 4 4	1 1 2 2 3	4 3 5 4 2

27MA5-718MEO113T

Page 3 of 4