Supplementary Material: Catastrophes, connectivity, and Allee effects in the design of marine reserve networks

Easton R. White, 1,2* Marissa L. Baskett, 2,3, Alan Hastings 2,3,4

¹Department of Biology, University of Vermont, Burlington, VT, USA ²Center for Population Biology, University of California, Davis, CA, USA, ³Department of Environmental Science and Policy, University of California, Davis, CA, USA ⁴Santa Fe Institute, Sante Fe, NM, USA

*To whom correspondence should be addressed: E-mail: eastonrwhite@gmail.com

Contents

Appendix S1	<i>n</i> -patch model description	S2
Appendix S2	Additional figures	$\mathbf{S}_{\mathbf{c}}$

Data and code for all the figures and tables can be found at (https://github.com/eastonwhite/MPA-disturbances).

Appendix S1 n-patch model description

To extend the two-patch model described in the main manuscript to an n-patch scenario, we have to use a slightly different model formulation. We use the same Beverton-Holt structure within each patch for production described in the main manuscript. However, we model spatially-explicit dispersal (i.e. resulting connectivity between patches) and disturbances. We focus on a coastline system (a simple one-dimensional landscape) where d_{ij} is the distance between patches i and j (also see Figure 1d in main text). Thus, the patches are in a contiguous line and where discrete patches next to each other would have a distance of $d_{ij} = 1$ between them.

We use geometric decay for the dispersal kernel, with a dispersal shape parameter δ , where increasing δ decreases dispersal amount and distance. The probability of dispersal from patch i to j is

$$P(\text{dispersal from patch i to patch j}) = \text{Geometric}(\delta, d_{ij}).$$
 (S1)

For disturbances, we model the probability of disturbance, M_i , in each patch as a binomial process with probability p_i :

$$M_i(t) \sim \text{Binomial}(1, p_i).$$
 (S2)

The spatial extent of the disturbance is a stochastic process giving the disturbance size (x), which affects patches near the disturbance. If a disturbance in patch i is larger than the distance between patches i and j, d_{ij} , then patch j will also be affected by the disturbance:

$$P(\text{disturbance in patch j} \mid \text{disturbance in patch i}) = \begin{cases} 1 & \text{if } d_{ij} < x \\ 0 & \text{if otherwise.} \end{cases}$$
 (S3)

A disturbance causes density-independent mortality, μ , for the entire patch and all patches with distance x.

With this n-patch model, we can relax the assumption of a "scorched earth" between patches by setting the fraction of biomass fished in non-reserves to be F < 1. This allows us to study the effect of fishing pressure outside reserves on the effectiveness of the marine reserve network.

Notation	Description	Default value(s)
$r_i(t)$	growth factor of patch i at time t described as a normal	
	distribution	
μ_r	mean of growth factor normal distribution	3
σ_r^2	variance of growth factor normal distribution	0.5
K_i	carrying capacity for patch i	1
ω	Allee effect parameter	1 for no Allee ef-
		fect or >1 for Allee effect
δ	dispersal kernel shape parameter (larger δ indicates less	0.7
	dispersal)	
p_i	probability of disturbance	0.02
x	size of disturbance (number of patches adjacent to dis-	1
	turbed patch that will also be disturbed)	
μ	density-independent mortality from disturbance	0.9
F	fraction of biomass fished in non-reserves	for scorched
		earth assump-
		tion of all
		biomass caught
		or <1 for mod-
		erate levels of
		fishing

Table S1: Parameter notation, description, and default values for the n-patch model. As a sensitivity analysis, several parameters are varied in the Figs. 5,6, S4.

Appendix S2 Additional figures

Figure S1: Optimal spacing for varying Allee and r values along with different disturbance parameters.

Figure S2: Optimal spacing for different $\gamma,\,\delta,\,{\bf r},$ and probability of disturbance.

Figure S3: Optimal spacing for all the dispersal parameters and the probability of disturbance.

Figure S4: Optimal mean spacing between reserves for different probabilities of disturbance and fraction of coasline in reserves. The specific parameters used here include: $\delta=0.7,\,\omega=1.2,\,\mathrm{r}=3,\,\mathrm{and}\,\,\mu=0.9.$