Geodesics on a Sphere

- Corent Circles

dT is normal to sphere, so points towards the center of the sphere.

For a circle of lettitude, $\frac{dT}{dA}$ points towards center of circle, So a circle of lutitude is not a geodesic unless it is a great circle.

Geodesics on a Cylinder

"drawing a string tout between two pts"

$$\chi(\theta,Z) = (\cos\theta, \sin\theta, Z)$$

Staight lines - geodesics

Geodesico on ~ Torus

meridians, inner & outer egms.
also, certain curves that spiral around

Geodesics on a cone

Remark:

Suppose x: U open $\subseteq \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is an immersion.

Then X:; can still be written as a tangentral part and a normal part. The tangential part is still ex the form $\sum T_i^{\mu} \chi_{\mu}$ and the T_i^{μ} 's are still intuine.

But the dimension at the normal space is n-m, not necessarily 1.

Define Let $\delta: (a_1b) \longrightarrow M$ be a c'arre on a C'enface $M = 1 \cap \mathbb{R}^3$. a C' vector field on M along V is a C' function $X: (a_1b) \longrightarrow \mathbb{R}^3$ s.t. $\forall t \in (a_1b), X(t) \in T_{Y(t)}M$

- The coverient deviations $\nabla_{i}X$ of X along Y is the component of $\frac{d}{d+}X(t)$ tangent to M at Y(t).

Proper Let $x: u \text{ open } \in \mathbb{R}^t \xrightarrow{\text{onter}} V \text{ open } \in M \text{ be a } C^2 \text{ patch on } M. \text{ Let } Y: (u,b) \longrightarrow V$ be a C^1 curve and let $X: (u,b) \longrightarrow \mathbb{R}^3$ be a C^1 V.f. on Malony Y.

Then $\nabla_{Y} X = \sum_{k} \left(\frac{dX^{k}}{dt} + \sum_{(i,j)} T_{ij}^{k} X^{i} \frac{dY^{i}}{dt} \right) \chi_{k}$ where $Y(t) = \chi(Y(t), Y^{2}(t))$

and
$$X^{(t)} = \sum_{k} X^{k}(t) \chi_{k}(Y'(t), Y^{2}(t))$$
 for all $t \in (a_{1}b)$.
Thus $\nabla_{j} X$ is intrinsic and also X is parallel along Y iff $\forall k$,
$$\frac{dX^{k}}{dt} + \sum_{(i)} \prod_{j} X^{i} \frac{dY^{j}}{dt} \equiv O.$$

$$\frac{d\chi}{dt} = \frac{d}{dt} \left(\sum_{k} \chi^{k} \chi_{k} (Y'(\epsilon), Y'(\epsilon)) \right) = \sum_{k} \left(\frac{1}{4} \chi^{k} \chi_{k} \right) \left(\frac{1}{4} \chi^{k} \chi_{k} \right) + \left(\sum_{i} \chi^{i} \left(\sum_{j} \chi_{i,j} \frac{dY^{j}}{dt} \right) \right)$$

$$= \left(-H \right) + \left(\sum_{i} \chi^{i} \left(\sum_{j} \chi_{i,j} \frac{dY^{j}}{dt} \right) \right)$$

$$= \left(-H \right) + \sum_{i,j} \left(L_{ij} \eta_{i} + \sum_{k} \Gamma_{ij} \chi_{k} \right) \chi^{i} \frac{dY^{j}}{dt}$$

This the tangential part of
$$\frac{dX}{dt}$$
 is
$$\sum_{k} \left(\frac{dX^{k}}{dt} + \sum_{i,j} \prod_{i,j}^{k} X^{i} \frac{dY^{j}}{dt} \right) \chi_{k} \quad \text{as sequired.} \quad [$$

Propr Let X, Y be C' vector fields on M along Y. Then $\frac{d}{dt}\langle X, Y \rangle = \langle \nabla_{\dot{Y}} X, \dot{Y} \rangle + \langle X, \nabla_{\dot{Y}} \dot{Y} \rangle$.

Cosallony If X, Y are C' Vector Fields on Malony Y and each is parallel along Y men the (X(t), Y(t)) is constant.

Corollary If X is a C' vector field on M along X and X is parallel arong Y then $t \longmapsto |X(t)|$ is constant.