Approximation Algorithms ([vitro]
Given a Problem X, let the optimal value be O an Algorithm Apparis Called approximation for X if,
assuminer that the total approximation for X if,
assuminer that the value Aproximals is A
max is bounded Maximization Approximation Ratio
>minimization
Approximation Ratio
approximation > 1
optinal Alg = 1
1) There exist an Approx. Alg. w/t a fixed approx ratio
2) The problems for which one can prove there is no P-time approx.
Alg., unless P=NP.
3) The tanable approximation Algorithms
3-1) Polynomial-Time Approximation Schenes (PTAS)
Given a value &>0, the algorithms Satisfies (1+8)-approx. ratio and runs in patine to the input
Can be exponential to be eg.: O(n2/E) < FPTAS
3-2) Fully PTAS (FPTAS)
Gives a value e>o, the alg. satisfies
(1+E) approx-ratio, and runs in P-time to the input and 1/8.
and lie.

A 2-approximate alg. for V-C first attempts Observation: for every edge, we need to Select at least one vertex X for all edges Pick both end-notes Opt = 1 Aon The algorithm E'= E ; VC={} O(1E1) while E' is not o: Select an orbitrary edge (u,v) EE' add fu, v} to the VC remove all edges incident to a or I from E return uc e.g. Observation: Selected edges are disjoint The optimal alg. must select at least one of the end-nodes of selected edges

⇒ ○ > | Selected Edges |

A = 2 | Selected Edges |

⇒ 20 ≥ 2 | Selected Edges | = A

⇒ A ≤ 2

TSP: general TSP: edge weights can be any Positive value

No Approximation Alg., whiless P=Np

Metric TSP: edge weights follow Triangular inequality

12-approx

1-5-approx

Enclidian TSP: N N Enclidian dist

> PTAS

General TSP (G-TSP)
* There is no Approximation Alg. For G-TSP,
Unless P=NP
H-C So Approx G-TSP 1-1 Approx G-TSP
E' X- approx A Kalle'l Ye
No.
$\forall (u,v) \in E'$ add $w(u,v)=1 + \infty$
$\forall (u,v) \notin E'$ add $w(u,v) = \alpha U \neq [$
†
La Approx-VC an approx. Alg. for MIS? NO V-C MIS
optimal k n-k
Approx k=2k n-k
approx-ratio for MIS: N-K
$\frac{N-K}{N-K'}$
Unbounded
~ On boundled

$$k = N/2$$
 $k' = N$
 $N - k' = 0$
 $N - k' = \infty$