Introduction to All and Machine Learning

What is Artificial Intelligence?

- "The science and engineering of making intelligent machines, especially intelligent computer programs".
 - John McCarthy

Four Phases of Al Research

Branches of Artificial Intelligence

Applications of Al

- Game Playing
- Expert Systems
 - Chatbot
 - Personal Assistant
- Data Analytics
- Object Detection
- Self-Driving Cars

Machine Learning

What is Machine Learning?

- Subfield of artificial intelligence
 - Concerned with techniques that allow computers to "learn".
 - Without being explicitly programmed.

What is Machine Learning?

Learn from experience

Data
Learn from experience

Follow instructions

Types of Machine Learning

(Regression / Classification)

(Clustering)

environment

Supervised Learning Concept

Known Data Set (Training Data)

Model

Predictions

A set of

- Input data
- Response values

Creates response values from input data.

Detailed Concept

Types of Supervised Learning

Supervised learning can be separated into two general categories of algorithms:

Classification:

 Categorical response values, where the data can be separated into specific "classes"

Regression

Continuous-response values

Unsupervised Learning

- Operates on unlabeled examples.
 - Correct responses are not provided
- The algorithm tries to identify similarities between the inputs
 - Inputs that have something in common are categorized together.
- This is called clustering.

Unsupervised Learning

Reinforcement Learning

- Type of ML that interacts with the environment
 - Learns which sequence of actions yields the most favorable results.
- The learner is a decision-making agent that takes actions in an environment
 - Receives reward (or penalty) for its actions.
- After a set of trial-and-error runs, it should learn the best policy
 - The sequence of actions that maximize the total reward.

Reinforcement Learning

Mario Reinforcement Learning

https://youtu.be/qv6UV0Q0F44

How do we fit a line to this data?

$$y = f(x)$$

 $y = a_0 + a_1 x + a_2 x^2 + \cdots$

Universal Approximator

Connection to Biological Neural Networks

This connection is not relevant nowadays.

Architecture

Hidden Node

Input Node

Output Node

Output Layer Input Layer w^{out}, b^{out} ϕ^{out} $z^{in} = x \mid \phi^{out} = z^{in}$ $\hat{y} = z^{out}$ $z^{out} = w^{out}\phi^{out} + b^{out}$

$$\hat{y} = w^{out}x + b^{out}$$

#Parameters: 2

Input Layer

Hidden Layer

Output Layer

$$z^{in} = x$$

$$\phi^{h1} = z^{in}$$

$$z^{h1} = w^{h1}\phi^{h1} + b^{h1}$$

$$\phi^{out} = \frac{1}{1 + e^{-z^{h1}}}$$

Sigmoid Function

$$z^{out} = w^{out}\phi^{out} + b^{out}$$

$$\hat{y} = z^{out}$$

Input Layer

Hidden Layer

Output Layer

$$\hat{y} = w^{out} \left[\frac{1}{1 + e^{-(w^{h_1}x + b^{h_1})}} \right] + b^{out}$$

#Parameters: 4

$$\hat{y} = \sum_{i=1}^{10} \left[w_i^{out} \frac{1}{1 + e^{-(w_i^{h_1} x + b_i^{h_1})}} \right] + b^{out}$$

#Parameters: 31

128

Parameters

Parameters

4160

65

Parameters

#Parameters: 4,353

Deep Neural Network

#Parameters: 110,081

Types of DNN

- Deep ANN
 - Data prediction
- Convolutional neural network
 - Image
- Recurrent neural network
 - Languages, audio
- Transformer
 - Languages, audio