Laboratorio di Fisica

Docenti: Prof. A. Garfagnini - Prof. M. Lunardon Corso di Laurea in Fisica Canale 1 A-L Anno Accademico 2020/2021

ESPERIENZA DI LABORATORIO

Catena Elettronica

Turno T2

NICOLÒ LAI 1193976 nicolo.lai@studenti.unipd.it

 $\begin{array}{c} {\rm DATA} \ \ {\rm ESPERIENZA} \\ 23/11/2020 \\ 25/11/2020 \\ 26/11/2020 \end{array}$

1 Obiettivo

Assemblare i moduli principali costituenti una catena elettronica (preamplificatore, shaper, amplificatore). Studiarne il segnale in uscita e la risposta in frequenza per ciascuno di essi.

2 Strumentazione e Componenti

Nel corso dell'esperienza vengono utilizzati:

- Multimetro digitale Metrix MTX3292
- Generatore di funzioni Tektronix AFG1022
- Oscilloscopio digitale Tektronix TBS1102B
- Alimentatore di tensione continua TTi
- Due circuiti integrati TL082C (in totale quattro amplificatori operazionali)
- Resistori e condensatori di varie taglie
- Scheda Arduino Due

3 Catena Elettronica

L'esperienza si basa sull'assemblamento e sullo studio della risposta di una serie di moduli volti a simulare l'elettronica associata ad un rivelatore di radiazione. In laboratorio, quindi, si utilizza il generatore di funzioni in modo da erogare un segnale che ricordi la rivelazione di un evento da parte del detector: questo segnale viene quindi inizialmente elaborato dal preamplificatore (di tipo charge-sensitive) e successivamente dallo shaper (di tipo CR-RC). Ll segnale in uscita dal formatore viene infine amplificato per favorirne l'acquisizione da parte di una DAQ, che corrisponde in questo caso all'ADC della scheda Arduino Due. I tre stadi (preamplificatore, shaper, amplificatore) costituiscono dunque la catena elettronica rappresentata in Figura 1.

Figura 1: Schema a costanti concentrate della catena elettronica suddivisa nei tre moduli di interesse.

4 Preamplificatore

Il primo stadio della catena (preamplificatore) si utilizza per migliorare il rapporto segnale/rumore, in modo da trasferire un segnale più pulito all'elettronica di acquisizione. Si assembla in laboratorio un preamplificatore charge sensitive: come si può osservare in Figura 1 il modulo consiste di un circuito integratore e la tensione in uscita è quindi direttamente proporzionale alla carica in ingresso. Lo scopo di questa sezione, dedicata al preamplificatore, è di studiare il segnale in uscita verificandone l'integrazione e la linearità rispetto alla carica in ingresso, oltre alla risposta in frequenza del filtro passa basso ricercandone la frequenza di taglio.

4.1 Configurazione Sperimentale

Si comincia utilizzando il generatore per simulare i segnali del rivelatore, impostando sul CH1 un impulso quadrato di frequenza $f_{\text{gen}} = 1 \,\text{kHz}$, tensione di riferimento $V_{\text{high}} = 0 \,\text{V}$, ampiezza negativa $V_{\text{low}} = -1 \,\text{V}$ e durata $T = 5 \,\mu\text{s}$ (cioè il tempo di raccolta del segnale). Viene successivamente assemblato

Misure Dirette - Preamplificatore		
Resistenza	Valore	F.S.
$rac{R_{ m in}}{R_{ m f}}$	$56.56 \pm 0.02 \mathrm{k}\Omega$ $696.1 \pm 0.3 \mathrm{k}\Omega$	$100\mathrm{k}\Omega$ $1000\mathrm{k}\Omega$
$C_{ m f}$	$0.232 \pm 0.009 \mathrm{nF}$	1 nF

Tabella 1: Misure dirette delle componenti circuitali.

sulla breadboard il primo modulo in Figura 1 utilizzando le componenti circuitali riportate in Tabella 1, misurate con il multimetro Metrix. Si utilizza poi un generatore di tensione continua con $V_{\rm cc} = +15\,{\rm V}$ e $V_{\rm ee} = -15\,{\rm V}$ per alimentare l'operazionale. Si assume, inoltre, che esso abbia un comportamento ideale, ovvero che il polo positivo ed il polo negativo si trovino allo stesso potenziale ($virtual\ short$). Il segnale in ingresso

 $V_{\rm in}$ viene prelevato nel punto IN evidenziato nello schema mentre il segnale in uscita $V_{\rm out}^{\rm pre}$ dal preamplificatore viene prelevato al termine del primo modulo, entrambi utilizzando sonde 10X. Concentrando l'attezione sul modulo di ingresso (generatore reale e cablaggio), il sistema è un filtro passa basso con frequenza di taglio $f_{\rm t}^{\rm in} \approx 32\,{\rm MHz}$ che risulta essere molto maggiore delle frequenze in gioco: risulta allora corretto assumere il modulo in ingresso del tutto equivalente ad un generatore ideale, come rappresentato in Figura 1. Trattando ora il preamplificatore, la funzione di trasferimento del circuito risulta essere

$$H(s) = -\frac{1}{R_{\rm in} C_{\rm f}} \frac{1}{s + \frac{1}{\tau_{\rm f}}} \qquad \text{con } \tau_{\rm f} = R_{\rm f} C_{\rm f} \equiv \tau^{\rm pre}$$
 (1)

Ricavando allora la risposta ad un segnale a gradino nell'approssimazione $T \ll \tau^{\text{pre}}$ si trova una crescita lineare direttamente proporzionale alla carica in ingresso al preamplificatore per 0 < t < T e una decrescita smorzata esponenzialmente per $t \gg T$:

$$V_{\text{out}}^{\text{pre}}(t) = \begin{cases} -\frac{Q_{\text{in}}(t)}{C_{\text{f}}} & 0 < t < T \\ -\frac{Q_{\text{c}}}{C_{\text{f}}} e^{-\frac{t}{\tau^{\text{pre}}}} & t \gg T \end{cases} \qquad \text{con} \begin{cases} Q_{\text{in}}(t) = I_{\text{in}} t = \frac{V_{\text{in}}}{R_{\text{in}}} t \\ Q_{\text{c}} = I_{\text{in}} T = \frac{V_{\text{in}}}{R_{\text{in}}} T \end{cases}$$
(2)

dove, appunto, $Q_{\rm in}(t)$ corrisponde alla carica raccolta al tempo t dal preamplificatore mentre $Q_{\rm c}$ rappresenta la carica totale accumulata nel preamplificatore. Ci si aspetta allora che il segnale in uscita $V_{\rm out}^{\rm th}$ visualizzato sull'oscilloscopio presenti una salita lineare, un valore di tensione massimo corrispondente a $V_{\rm max}^{\rm th}=0.388\pm0.017\,{\rm V}$ (misurando l'ampiezza del segnale in ingresso $V_{\rm in}=1.02\pm0.02\,{\rm V}$), e successivamente una decrescita esponenziale di tempo caratteristico $\tau^{\rm th}=161\pm6\,{\rm \mu s}$. Sperimentalmente, si misura un valore massimo di tensione pari a $V_{\rm max}^{\rm sper}=0.392\pm0.007\,{\rm V}$ e un tempo caratteristico di circa $\tau^{\rm sper}\approx158\,{\rm \mu s}$, perfettamente in linea con le aspettative. Si vuole, in ogni caso, approfondire lo studio della risposta del preamplificatore nelle sezioni successive.

4.2 Linearità del Preamplificatore

Ci si propone ora di verificare la dipendenza lineare del segnale in uscita $V_{\text{out}}^{\text{pre}}$ dalla carica in ingresso Q_{in} come esposto in Equazione 2. Si fa variare dunque la durata T del segnale erogato dal generatore di funzioni da 2 µs a 10 µs, in modo da modificare di volta in volta la quantità di carica iniettata nel preamplificatore: per ogni T viene calcolata la quantità di carica totale Q_c e viene misurato con l'oscilloscopio il valore massimo del segnale in uscita $V_{\text{out}}^{\text{max}}$. Ai valori di tensione misurati con l'oscilloscopio viene associato l'errore di acquisizione comprendente sia il contributo di lettura sia il contributo sul guadagno verticale in quanto nel processo di misura sono state utilizzate scale diverse, con la consapevolezza che quest'ultime portano ad una correlazioe almeno parziale delle incertezze. Gli errori sulla carica Q_c , invece, sono totalmente correlati tra loro: V_{in} e R_{in} sono, chiaramente, costanti e l'incertezza sulla carica è dunque semplicemente l'incertezza sulla corrente in ingresso al preamplificatore $\sigma_{I_{\text{in}}}$ riscalata dal tempo T. Si assume, ragionevolmente, che l'incertezza sulla durata T del segnale sia trascurabile. Si rappresentano ora in Figura 2 le coppie $\{Q_c, V_{\text{out}}^{\text{max}}\}$ interpolate da una retta: il coefficiente angolare di quest'ultima corrisponde analiticamente all'inverso della capacità di feedback C_{f} . Si vuole evidenziare che gli errori relativi su $V_{\text{out}}^{\text{pre}}$ e su Q_c sono entrambi circa il 2% della misura: nell'effettuare la regressione si decide di trascurare l'incertezza sulla carica Q_c (in quanto totalmente correlata) e di aggiungere tale contributo successivamente nel calcolo dell'errore sulla capacità C_f . La bontà del fit, l'andamento dei residui, l'errore a posteriori ed il confronto di C_f^{fit} con quanto misurato direttamente con il multimetro verranno presi in considerazione per verificare la linearità del preamplificatore rispetto alla carica

Figura 2: Fit lineare del massimo di tensione in uscita contro la carica totale in ingresso.

Si noti, inizialmente, come il χ^2 della regressione sia notevolmente inferiore rispetto al suo valore di aspettazione: essendo a conoscenza della parziale correlazione tra gli errori di scala dell'oscilloscopio ciò non risulta essere sorprendente in quanto il fit non ne tiene ovviamente conto. Segue direttamente una sottostima dell'errore sui parametri a e b della retta interpolante. Un piccolo (rispetto ai gradi di libertà) valore di χ^2 purtroppo non permette nè di confermare l'ipotesi di linearità nè di poterla rigettare. L'errore a posteriori, invece, si trova essere dello stesso ordine di grandezza dell'errore associato alle tensioni più basse (i primi punti) mentre diventa gradualmente un'ordine di grandezza inferiore rispetto all'incertezza associata alle tensioni maggiori. Questo suggerisce una soddisfacente distribuzione dei punti attorno alla retta di regressione, che si traduce nel grafico dei residui in un'ottimale distribuzione attorno allo zero. I residui, infatti, non presentano andamenti patologici accentuati e lo zero risulta essere sempre ben compreso nelle barre d'errore. Concentrando ora l'attenzione sui parametri della retta restituiti dal fit, si può notare come l'intercetta a sia ben compatibile con zero, evidenziando l'assenza di un eventuale offset sistematico o un errore di zero. Dal coefficiente angolare, invece, si ricava la stima della capacità di feedback

$$C_{\rm f}^{\rm fit} = 0.232 \pm 0.007 \, {\rm nF} \qquad \qquad {\rm con} \ \ \sigma_{C_{\rm f}^{\rm fit}} = \sqrt{\left(\frac{1}{b^2}\right)^2 \sigma_b^2 + 2 \, \left(\frac{1}{b \, I}\right)^2 \sigma_I^2} \qquad \qquad (3)$$

dove, nel computo dell'errore, σ_I rappresenta l'errore sulla corrente $I = \frac{V_{\rm in}}{R_{\rm in}}$ che, nel fit, verrebbe riscalato dalla durata T del segnale. La stima della capacità di feedback risulta essere in ottima compatibilità ($\lambda = 0.05$) con quanto misurato con il multimetro (Tabella 1). Questo porta quindi ad un'ulteriore conferma della linearità del preamplificatore, che risulta comportarsi conformemente alle aspettative teoriche.

4.3 Forma d'Onda del segnale in uscita

In questa sezione si vuole analizzare il segnale in uscita dal preamplificatore $V_{\rm out}^{\rm pre}$: sfruttando la stessa configurazione sperimentale presentata in Sezione 4.1 viene acquisita la forma d'onda del segnale utilizzando la scheda Arduino Due. Inizialmente, si apportano le seguenti conversioni: dividendo il numero di acquisizione per il sampling rate $S=0.955\,{\rm Msps}$ si ottiene l'evoluzione temporale (in secondi) della forma d'onda, mentre sfruttando la funzione di calibrazione in tensione $V=a+b\,{\rm counts}$ (con $a=-0.637\pm0.010\,{\rm V}$ e $b=0.828\pm0.007\,{\rm mV/counts}$) si ottengono i valori in Volt delle misure acquisite in ADC counts. A tali valori si associa l'errore per propagazione $\sigma_V=\sqrt{\sigma_a^2+{\rm counts}^2\sigma_b^2}$: si

nota, tuttavia, che il contributo relativo a σ_b è semplicemente riscalato per la misura in ADC counts acquisita da arduino, ed è trattabile quindi come un errore di scala. In Figura 3 è esposto quanto

acquisito dalla scheda Arduino: si nota immediatamente come siano stati registrati due "eventi", o meglio nel tempo di acquisizione impostato per Arduino il generatore di funzioni ha erogato due impulsi di tensione. Il segnale registrato, inoltre, risulta essere leggermente rumoroso: per rendere l'analisi successiva meglio gestibile si decide di sovrapporre i due picchi di tensione e di effettuarne una media. Osservando la Figura 3, si può inoltre notare chiaramente la salita lineare del segnale e la descrescita esponenziale, come previsto in Equazione 2. Il valore massimo di tensione acquisito con la scheda Arduino, inoltre, è in linea con le aspettative e con quanto misurato sperimentalmente con

Figura 3: Segnale in uscita dal preamplificatore.

l'oscilloscopio. Ci si concentra ora sulla stima del tempo caratteristico $\tau^{\rm pre}$: si vuole inizialmente effettuare un fit esponenziale del tipo $y=a+b\exp(-x/\tau)$. Successivamente, sfruttando i parametri a e b per normalizzare i dati, si vuole considerare il logaritmo delle tensioni normalizzate ed effettuare una regressione lineare. Non è infatti possibile, per questioni analitiche, considerare semplicemente il logaritmo delle tensioni V ed aspettarsi un andamento lineare: si considera invece il logaritmo delle tensioni normalizzate $\tilde{V}=(V-a)/b$ e l'errore su \tilde{V} è dato per propagazione. In questo modo, quindi, i dati si distribuiscono secondo $\log(\tilde{V})=-\frac{t}{\tau}$. Nell'effettuare il fit esponenziale si decide di tenere conto dell'errore di scala dato dalla calibrazione della scheda Arduino, mentre per quanto riguarda la regressione lineare si sceglie di non considerarlo in quanto, computando il logaritmo delle tensioni, tale contributo viene interamente scaricato nell'offset della retta del fit.

Figura 4: A sinistra: fit esponenziale dello smorzamento del segnale in uscita. A destra: fit lineare del logaritmo del segnale in uscita normalizzato.

Osservando rapidamente il grafico a sinistra, si nota come il segnale segua in modo ottimale la funzione esponenziale: la stima del tempo caratteristico $\tau^{\rm exp}$, inoltre, risulta essere sufficientemente compatibile con la stima teorica $\tau^{\rm th}=161\pm 6\,\mu {\rm s}~(\lambda=1.4)$. Come stima del tempo caratteristico, in ogni caso, si preferisce quanto trovato dalla regressione lineare: tale metodo, infatti, è complessivamente più robusto, più preciso e fornisce una stima migliore sugli errori dei parametri. Dal grafico a destra, quindi, si nota chiaramente come computare il logaritmo delle tensioni \tilde{V} porti a considerare più "pesanti" (barre d'errore più piccole) i punti a monte della discesa esponenziale e a dare conseguentemente meno peso ai punti di coda. Questi ultimi, eccessivamente prossimi allo zero, non vengono considerati dato che la propagazione dell'errore su di essi porta ad un contributo decisamente troppo grande ed il fit non ne è praticamente influenzato. Il χ^2 , molto minore del suo valore di aspettazione, indica una probabile sovrastima dell'errore: le misure in cima alla discesa si distribuiscono estremamente fedelmente attorno alla retta, compatibilmente con il loro errore, mentre le misure verso la coda risultano discostarsi più sensibilmente dal fit. Tuttavia, sembra che l'incremento dell'errore su queste ultime sia eccessivo, e che queste si distribuiscano attorno alla retta più fedelmente di quanto ci si aspetta dalle barre d'errore.

Calcolando ora il tempo caratteristico si trova $\tau^{\rm lin} = -1/b = 153.9 \pm 1.0 \,\mu s$: questo presenta infine una compatibilità $\lambda = 1.2$ con la stima teorica $\tau^{\rm th}$.

4.4 Grafico di Bode

Si vuole ora studiare la risposta in frequenza del preamplificatore: si modificano le impostazioni del generatore in modo da erogare un'onda sinusoidale di ampiezza $1 \,\mathrm{V}$ e frequenza f_{gen} variabile da $10 \,\mathrm{Hz}$ a $1 \,\mathrm{MHz}$. Per quanto riportato in Equazione 1, ci si aspetta un comportamento da filtro passa basso avente frequenza di taglio

$$f_{\rm t} = \frac{1}{2\pi R_{\rm f} C_{\rm f}} = 0.99 \pm 0.04 \,\mathrm{kHz}$$
 $con \ \sigma_{f_{\rm t}} = \frac{1}{2\pi} \sqrt{\left(\frac{1}{C_{\rm f} R_{\rm f}^2}\right)^2 \sigma_{R_{\rm f}}^2 + \left(\frac{1}{C_{\rm f}^2 R_{\rm f}}\right)^2 \sigma_{C_{\rm f}}^2}$ (4)

Si intende ora rappresentare le misure acquisite sperimentalmente attraverso un grafico di Bode. Viene acquisita allora l'ampiezza del segnale sia in ingresso sia in uscita utilizzando l'oscilloscopio e viene calcolata la funzione di trasferimento H, alla quale viene associata un'incertezza σ_H data da

$$H = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \sigma_H = H \sqrt{\left(\frac{\sigma_{\text{L}} \times V_{\text{in}}/\text{div}}{V_{\text{in}}}\right)^2 + \left(\frac{\sigma_{\text{L}} \times V_{\text{out}}/\text{div}}{V_{\text{out}}}\right)^2}$$
(5)

dove $\sigma_{\rm L}=0.04$ rappresenta l'incertezza di lettura associata all'oscilloscopio mentre i termini $V_{\rm in}/{\rm div}$ e $V_{\rm out}/{\rm div}$ corrispondono al numero di Volt per divisione per il canale di acquisizione rispettivamente del segnale in ingresso e del segnale in uscita. L'incertezza di guadagno associata all'oscilloscopio non viene invece considerata in quanto, dovendo successivamente prendere il logaritmo $\log_{10} H$ della funzione di trasferimento, tale contributo viene scaricato interamente nell'intercetta delle interpolazioni volte a caratterizzare l'andamento delle misure. Si assume infine trascurabile l'incertezza sulla frequenza dell'onda erogata dal generatore. Si rappresenta allora in Figura 5 il grafico di Bode delle misure acquisite assieme ai punti ottenuti attraverso una simulazione Spice della risposta del circuito.

Figura 5: Grafico di Bode delle misure sperimentali e dei dati simulati.

Confrontando inizialmente le misure sperimentali con la simulazione Spice, si nota un ottimo accordo in tutto lo spettro di frequenze. Questo è chiaramente indice di una risposta in frequenza del circuito

compatibile con le aspettative: il comportamento del filtro, infatti, è evidentemente un passa basso. A basse frequenze, la funzione di trasferimento è pressochè costante a 22 dB (retta in arancione), mentre per frequenze crescenti la funzione di trasferimento decresce linearmente con coefficiente angolare conforme all'aspettativa dei $-20\,\mathrm{dB/dec}$. L'ascissa del punto di intersezione tra le due rette di regressione fornisce una stima della frequenza di taglio del circuito $f_{\rm t}=1.03\pm0.03\,\mathrm{kHz}$, compatibile in modo soddisfacente ($\lambda=0.9$) con la frequenza di taglio teorica esposta in Equazione 4. Si vuole sottolineare che nel computo dell'errore su $f_{\rm t}$ è stata presa in considerazione la convarianza tra parametri appartenenti allo stesso fit. Osservando infine che la formula analitca frequenza di taglio $f_{\rm t}$ riportata in Equazione 4 contiene il termine $R_{\rm f}\,C_{\rm f}=\tau^{\rm pre}$, si vuole valutare l'accordo tra la frequenza di taglio ottenuta dal grafico di Bode e la frequenza di taglio teorica, utilizzando però $\tau^{\rm pre}=\tau^{\rm lin}$ ricavato nella sezione precedente. Si ottiene dunque una frequenza di taglio $f_{\rm t}^{\rm lin}=1.034\pm0.007\,\mathrm{kHz}$ ed è in eccellente compatibilità con quanto appena stimato ($\lambda=0.13$). Da questo notevole accordo si deduce l'assenza di possibili sistematicità di metodo, sia nella stima del tempo caratteristico attraverso il fit lineare in Figura 4, sia nella stima della frequenza di taglio analizzando il grafico di Bode.

5 Shaper CR-RC