

DIGITAL DESIGN

ASSIGNMENT REPORT

ASSIGNMENT ID: 1

Student Name: 罗嘉诚

Student ID: 12112910

Assignment 1

$$\frac{3|234}{3|78} = 0$$

$$\frac{3|78}{3|26} = 0$$

$$\frac{\times 3}{1.5} = 1$$

$$\frac{1}{9} = 0.5$$

$$\frac{\times 3}{1.5} = 1$$

$$\frac{1}{9} = 0.5$$

$$\frac{\times 3}{1.5} = 1$$

$$\frac{\times 3}{1.$$

$$\begin{array}{c|c}
5 & 234 \\
5 & 46 \\
\hline
 & 7 \\
 & 7 \\
\hline
 & 7 \\
 & 7 \\
\hline
 &$$

$$(0.5)_{10} \rightarrow (0.12...)$$

$$\begin{array}{c|c}
6 & 234 & 0.5 \\
6 & 39 & 3 \\
6 & 6 & 30
\end{array}$$

(a)
$$(234.5)_{10} \rightarrow base 16$$

(b) $(234.5)_{10} \rightarrow base 16$

(c) $(234)_{10} = (EA)_{11} - (EA)_{12} = (EA)_{13} - (EA)_{14} = (EA)_{14} - (EA)_{15} = (EA)_{14} - (EA)_{15} = (EA)_{14} - (EA)_{15} = (EA)_{15} - (EA)_{15} =$

(3)
$$(234.5)_{10} \rightarrow b \text{ ase } 6$$

 $\frac{6|234}{39}_{10} \rightarrow \frac{0.5}{3.0}_{10} \rightarrow \frac{12|234}{12|19}_{10} \rightarrow \frac{$

Question 2 (spoint)

Question 3 (15 point)

$$D(a+b+c')(a'b'+c) = (a+b+c')(a'b') + (a+b+c')c$$

$$= a'c(b'+b) + ac(b'+b)$$

$$= a'c + ac = c(a'+a) = c$$

$$= (0+c(a+a')+ab+cb+c)(a'+b'+c)$$

Question 4 (15 point)

$$0 F_{1}(A,B,C) = \sum (1,2,6,7) = A'B'C + A'BC' + ABC' + ABC'$$

$$= A'B'C + (A'BC' + ABC') + (ABC' + ABC) = A'B'C + BC' + AB$$

$$= A'B'(C+C') + A'B(C+C') + AB'C$$

$$= A'B' + A'B + AB'C = A'(B'+B) + AB'C$$

$$= A' + AB'C = A' + B'C$$

Question S (15 point)

$$= A'B'C + AB'C = B'C$$

$$A'B'CD + A'BCD + ABCD + AB'CD$$

$$ABC'D' + AB'C'D' + ABCD' + ABCD' = AC'D' + ACO' = AD'$$
 $AB'C'D + A'BC'D + ABC'D + AB'C'D = A'C'D + AC'D = C'D$

$$F_2(A,B,C,D) = AD' + C'D$$

3 F3 (W, X, Y, Z) = II (0,2,6,11,13,14,15) + d(1,3,9,10,12)

Question 6 (10 point)

	Mux 19	少友 c'd'	值克农 c'd	cd cd	cd'
	ab ed.	000	ا د ا) 	10
a'b'	00	0	0	0	0
ab	. 0-1	.0	. .	. 0	, , 0 ,
ab		. .	0	0	o 0
al'	. (0	0 0	. 0.	0	
					100

Question 7 (15 point)

$$F(A,B,C,O) = A'(B'+C'+D) + B'(C'+D)$$

$$= A'(BCO')' + B'(CO')'$$

$$= ((A'(BCO')')'(B'(CO')')')'$$

a use NOR gates only.

$$F(A,B,c,D) = A'B' + A'C' + A'D + B'C' + B'D$$

$$= A'(B' + C' + D) + B'(C' + D)$$

$$= (A + (B' + C' + D)')' + (B + (C' + D)')'$$

$$= (((A + (B' + C' + D)')' + (B + (C' + D)')')')'$$

Question & (15 point)

$$O F_1(A,B,C,D) = \sum (1,3,5,7)$$

 $f_2(A,B,C,D) = \sum (2,3,6,7)$

ABCD	00	١٥	i i	10	
0.0			1	· /·	1
0 1			7/	. 1	1
1.1.					1
1.0.					

FI= 5 (1,3,5,7)

F1 = 2 (2,3,6,7)

ABCD	00	اه	14	(0)	
. 0.0 .			11		,
. 31.			1	, ,	T
. 1.1.					1
10					Ŧ

$$F = F_1 F_2 = A'B'CD + A'BCD$$
$$= A'CD$$

A'BC'D + ABC'D = BC'D A'B'CD + AB'CD = B'CDAB'C'D'

<u> </u>		· ·	
ABC	י ה ט ה	. 1.	
00		· i	
01	` T	. 0	٠
1.1.	0	0	
1.0	. 1	. 1.	
			_

ABC	0	
00	- F	0
01	i j	0
U.L.,	. 1.	0
10	. [-	(.
10	1. (-	

$$F = AB'C' + AB'C + A'BC'$$

$$= AB' + A'BC'$$

PART 2: DIGITAL DESIGN LAB (TASK1)

DESIGN

Describe the design of your system by providing the following information:

• Truth-table

设 $a = (a_1 a_0)_2, b = (b_1 b_0)_2$ 其中 $a_0, a_1, b_0, b_1 \in \{0, 1\}_{\circ}$

若 $c=a\times b$,则 c 使用二进制表示最少需要 4 位,即 $c=(c_3c_2c_1c_0)_2$ 其中 $c_0c_1c_2c_3\in\{0,1\}_c$

$a = (a_1 a_0)_2$	$b = (b_1 b_0)_2$	$c = (c_3 c_2 c_1 c_0)_2$
$(00)_2$	$(00)_2$	$(0000)_2$
$(00)_2$	$(01)_2$	$(0000)_2$
$(00)_2$	$(10)_2$	$(0000)_2$
$(00)_2$	$(11)_2$	$(0000)_2$
$(01)_2$	$(00)_2$	$(0000)_2$
$(01)_2$	$(01)_2$	$(0001)_2$
$(01)_2$	$(10)_2$	$(0010)_2$
$(01)_2$	$(11)_2$	$(0011)_2$
$(10)_2$	$(00)_2$	$(0000)_2$
$(10)_2$	$(01)_2$	$(0010)_2$
$(10)_2$	$(10)_2$	$(0100)_2$
$(10)_2$	$(11)_2$	$(0110)_2$
$(11)_2$	$(00)_2$	$(0000)_2$
$(11)_2$	$(01)_2$	$(0011)_2$
$(11)_2$	$(10)_2$	$(0110)_2$
$(11)_2$	$(11)_2$	$(1001)_2$

 c_3, c_2, c_1, c_0 关于 a_0, a_1, b_0, b_1 的真值表:

1. c_0 关于 a_0 , a_1 , b_0 , b_1 的真值表

c_0	$b = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$a = (a_1 a_0)_2$					
$(00)_2$		0	0	0	0
$(01)_2$		0	1	0	1
$(10)_2$		0	0	0	0
$(11)_2$		0	1	0	1

2. c_1 关于 a_0, a_1, b_0, b_1 的真值表

c_1	$b = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$a = (a_1 a_0)_2$					
$(00)_2$		0	0	0	0
$(01)_2$		0	0	1	1
$(10)_2$		0	1	0	1
$(11)_2$		0	1	1	0

3. c_2 关于 a_0 , a_1 , b_0 , b_1 的真值表

c_2	$b = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$a = (a_1 a_0)_2$					
$(00)_2$		0	0	0	0
$(01)_2$		0	0	0	0
$(10)_2$		0	0	1	1
$(11)_2$		0	0	1	0

4. c_3 关于 a_0 , a_1 , b_0 , b_1 的真值表

c_3	$b = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$a = (a_1 a_0)_2$					
$(00)_2$		0	0	0	0
$(01)_2$		0	0	0	0
$(10)_2$		0	0	0	0
$(11)_2$		0	0	0	1

Verilog design (provide the Verilog code)

根据上述真值表,可以得到逻辑表达式:

$$c_0 = b_1' b_0 a_1' a_0 + b_1 b_0 a_1' a_0 + b_1' b_0 a_1 a_0 + b_1 b_0 a_1 a_0 = b_0 a_1' a_0 + b_0 a_1 a_0 = b_0 a_0$$

$$c_1 = b_1' b_0 a_1 a_0 + b_1' b_0 a_1 a_0' + b_1' b_0 a_1 a_0' + b_1 b_0 a_1 a_0' + b_1 b_0 a_1' a_0 + b_1 b_0' a_1' a_0 + b_1 b_0' a_1' a_0$$

$$+ b_1 b_0' a_1 a_0 = b_1' b_0 a_1 + b_0 a_1 a_0' + b_1 a_1' a_0 + b_1 b_0' a_0$$

$$c_2 = b_1 b_0 a_1 a_0' + b_1 b_0' a_1 a_0' + b_1 b_0' a_1 a_0' + b_1 b_0' a_1 a_0 = b_1 a_1 a_0' + b_1 b_0' a_1$$

$$c_3 = b_1 b_0 a_1 a_0$$

据此可以使用 verilog 进行编程实现两个 2-bit 二进制数的乘法器。

```
`timescale 1ns / 1ps
module UnsignedMultiplier(in1, in2, product_led);
input [1: 0] in1;
input [1: 0] in2;
output [3: 0] product_led;
assign product_led[0] = in1[0] & in2[0];
assign product_led[1] = ((~in2[1]) & in2[0] & in1[1]) | (in2[0] & in1[1] & (~in1[0])) | (in2[1] & (~in1[1]) & in1[0]) | (in2[1] & (~in1[0])) | (in2[1] & (~in1[0])) | (in2[1] & (~in1[0])) | (in2[1] & (~in2[0]) & in1[1]);
assign product_led[2] = (in2[1] & in1[1] & (~in1[0])) | (in2[1] & (~in2[0]) & in1[1]);
endmodule
```


SIMULATION

Describe how you build the test bench and do the simulation.

Using Verilog(provide the Verilog code)

```
`timescale 1ns / 1ps
module UnsignedMultiplier_sim();
reg [1: 0] in1_sim, in2_sim;
wire [3: 0] out_sim;
UnsignedMultiplier ual(.in1(in1_sim), .in2(in2_sim), .product_led(out_sim));
initial begin
  in1_sim = 2'b0; in2_sim = 2'b0;
  repeat(15) #10 {in1_sim, in2_sim} = {in1_sim, in2_sim} + 1;
  #10 $finish();
end
endmodule
```


Wave form of simulation result (provide screen shots)

 The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation.

在上图中, in1_sim, in2_sim 分别表示输入的两个 2-bit 二进制数, out_sim 表示计算得出的这两个无符号二进制数的乘积。

仿真遍历了输入数据的所有情况(共 16 种),都得到了预期输出,完成构建一个 2-bit 二进制数乘法器的实验目标。并且该视图采用 Full version,可以看到没有多余的仿真。

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK2)

DESIGN

Describe the design of your system by providing the following information:

• Truth-table

(A+B)'	$B = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$A = (a_1 a_0)_2$					
$(00)_2$		11	10	01	00
$(01)_2$		10	10	00	00
$(10)_2$		01	00	01	00
$(11)_2$		00	00	00	00

A'B'	$B = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$A = (a_1 a_0)_2$					
$(00)_2$		11	10	01	00
$(01)_2$		10	10	00	00
$(10)_2$		01	00	01	00
$(11)_2$		00	00	00	00

(AB)'	$B = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$A = (a_1 a_0)_2$					
$(00)_2$		11	11	11	11
(01) ₂		11	10	11	10
$(10)_2$		11	11	01	01

$(11)_2$	11	10	01	00
\ / \			~ —	

A' + B'	$B = (b_1 b_0)_2$	$(00)_2$	$(01)_2$	$(10)_2$	$(11)_2$
$A = (a_1 a_0)_2$					
$(00)_2$		11	11	11	11
$(01)_2$		11	10	11	10
(10) ₂		11	11	01	01
(11) ₂		11	10	01	00

• Verilog design while using data flow (provide the Verilog code)

```
`timescale 1ns / 1ps module DeMorgan2bit_df(x, y, q1, q2, q3, q4); input [1: 0] x, y; output [1: 0] q1, q2, q3, q4; assign q1 = \sim(x | y); assign q2 = (\simx) & (\simy); assign q3 = \sim(x & y); assign q4 = (\simx) | (\simy); endmodule
```


Verilog design while using structured design (provide the Verilog code)

```
`timescale 1ns / 1ps
module DeMorgan2bit_sd(x, y, q1, q2, q3, q4);
input [1: 0] x, y;
output [1: 0] q1, q2, q3, q4;
wire [1: 0] nx, ny;
not not1(nx[0], x[0]); not not2(nx[1], x[1]);
not not3(ny[0], y[0]); not not4(ny[1], y[1]);
nor nor1(q1[0], x[0], y[0]);
nor nor2(q1[1], x[1], y[1]);
and and1(q2[0], nx[0], ny[0]);
and and2(q2[1], nx[1], ny[1]);
nand nand1(q3[0], x[0], y[0]);
nand nand2(q3[1], x[1], y[1]);
or or1(q4[0], nx[0], ny[0]);
or or2(q4[1], nx[1], ny[1]);
endmodule
```


Describe how you build the test bench and do the simulation.

Using Verilog (provide the Verilog code)

```
module DeMorgan2bit_sim();

reg [1: 0] x_sim, y_sim;

wire [1: 0] q1_sim_df, q2_sim_df, q3_sim_df, q4_sim_df;

wire [1: 0] q1_sim_sd, q2_sim_sd, q3_sim_sd, q4_sim_sd;

DeMorgan2bit_df

ual1(.x(x_sim), .y(y_sim), .q1(q1_sim_df), .q2(q2_sim_df), .q3(q3_sim_df), .q4(q4_sim_df));

DeMorgan2bit_sd

ual2(.x(x_sim), .y(y_sim), .q1(q1_sim_sd), .q2(q2_sim_sd), .q3(q3_sim_sd), .q4(q4_sim_sd));

initial begin

x_sim = 2'b0; y_sim = 2'b0;

repeat(15) #10 {x_sim, y_sim} = {x_sim, y_sim} + 1;

#10 $finish();

end

endmodule
```


Wave form of simulation result (provide screen shots)

The description on whether the simulation result is same as the truth-table, is
 the function of the design meet the expectation

在上图中 x_s im 和 y_s im 分别表示给出的两个 2-bit 无符号二进制数A, B, $q1_s$ im_df 表示采用数据流描述方式设计的输出 (A+B)', $q2_s$ im_df 表示采用数据流描述方式设计的输出 A'B', $q3_s$ im_df 表示采用数据流描述方式设计的输出 (AB)', $q4_s$ im_df 表示采用数据流描述方式设计的输出 A'+B'; $q1_s$ im_sd 表示采用结构化描述方式设计的输出 A'+B', $q2_s$ im_sd 表示采用结构化描述方式设计的输出 A'B', $q3_s$ im_sd 表示采用结构化描述方式设计的输出 A'B', $q3_s$ im_sd 表示采用结构化描述方式设计的输出 A'B', $q4_s$ im_sd 表示采用结构化描述方式设计的输出 A'+B'。

仿真遍历了输入数据的所有情况(共 16 种),都得到了预期输出。并且该视图采用 Full version,可以看到没有多余的仿真。

结论:通过上述实验结果,我们有理由相信: DeMorgan Theorem 对 2-bit 二进制数依然成立。 即对于两个 2-bit 二进制数 A,B 等式 (A+B)'=A'B',(AB)'=A'+B'恒成立。

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK3)

DESIGN

Describe the design of your system by providing the following information:

Sum of Minimum Term

$$F(A,B,C,D) = \sum (0,2,3,6,7,10,11,12,13,15) = A'B'C'D' + A'B'CD' + A'B'CD + A'BCD' + A'BCD' + ABC'D' + ABC'D' + ABC'D + ABC'D' + ABCD$$

Product of Maximum Item

$$F(A,B,C,D) = \prod (1,4,5,8,9,14)$$

$$= (A+B+C+D')(A+B'+C+D)(A+B'+C+D')(A'+B'+C'+D)(A'+B+C'+D')(A'+B+C+D')$$

Using a Karnaugh Map to Simplify the Circuit in Sum-of-Product

F	CD	$(00)_2$	$(01)_2$	$(11)_2$	$(10)_2$
AB					
$(00)_2$		1	0	1	1
$(01)_2$		0	0	1	1
$(11)_2$		1	1	1	0
$(10)_2$		0	0	1	1

$$F(A,B,C,D) = (A'B'CD + A'BCD + ABCD + AB'CD) + (A'B'CD + A'BCD + A'B'CD' + A'BCD')$$

$$+ (AB'CD + AB'CD' + A'B'CD + A'B'CD') + (ABC'D' + ABC'D) + (A'B'C'D' + A'B'CD')$$

$$= CD + A'C + B'C + ABC' + A'B'D'$$

Verilog design while using data flow (provide the Verilog code)

```
`timescale 1ns / 1ps module minimum_sum(A, B, C, D, q1, q2, q3); input A, B, C, D; output q1, q2, q3; assign q1 = (-A \& -B \& -C \& -D) | (-A \& -B \& C \& -D) | (-A \& -B \& C \& D) | (-A \& B \& C \& D) | (-A & B & C & C & D) | (-A & B & C & C & D) | (-A & B & C & C & C) | (-A & B & C & C & C) | (-A & B & C & C & C) | (-A & B & C & C & C) | (-A & B & C & C) | (-A & B & C & C) | (-A & C) | (-A & B & C) | (-A & C) | (-A & B & C) | (-A & C) | (-A
```


SIMULATION

Describe how you build the test bench and do the simulation.

Using Verilog (provide the Verilog code)


```
`timescale 1ns / 1ps
module minimum_sum_sim();
reg A_sim, B_sim, C_sim, D_sim;
wire q1_sim, q2_sim, q3_sim;
minimum_sum
ual(.A(A_sim), .B(B_sim), .C(C_sim), .D(D_sim), .q1(q1_sim), .q2(q2_sim), .q3(q3_sim));
initial begin
    A_sim = 0; B_sim = 0; C_sim = 0; D_sim = 0;
    repeat (15) #10 {A_sim, B_sim, C_sim, D_sim} = {A_sim, B_sim, C_sim, D_sim} + 1;
    #10 $finish();
end
endmodule
```


Wave form of simulation result (provide screen shots)

 The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation

在上图中,A_sim, B_sim, C_sim, D_sim 分别表示输入数据的 A,B,C,D 的取值,q1_sim 表示使用 "Sum of Minimum Term"方式计算出表达式F(A,B,C,D)的值,q2_sim 表示使用"Product of Maximum Item"方式计算出表达式F(A,B,C,D)的值,q3_sim 表示使用卡诺图化简得到的表达式 计算出表达式F(A,B,C,D)的值。

仿真遍历了输入数据的所有情况(共 16 种),都得到了预期输出。并且该视图采用 Full version,可以看到没有多余的仿真。

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions