```
import pandas as pd
# Read data. This data represents the cumulative known cases to date (https://covidtracking.com/about-data/faq)
url = 'https://raw.githubusercontent.com/COVID19Tracking/covid-tracking-data/master/data/states_daily_4pm_et.csv'
df = pd.read_csv(url,index_col=0,parse_dates=[0])

df.head(5)
```

₽		state	positive	negative	pending	hospitalizedCurrently	${\color{blue} \textbf{hospitalizedCumulative}}$	inIcuCurrently	inIcuCumulative	onVentilatorCur
	date									
	2020- 05-03	AK	368.0	21210.0	NaN	12.0	NaN	NaN	NaN	
	2020- 05-03	AL	7725.0	84775.0	NaN	NaN	1035.0	NaN	403.0	
	2020- 05-03	AR	3431.0	49459.0	NaN	100.0	427.0	NaN	NaN	
	2020- 05-03	AS	0.0	57.0	NaN	NaN	NaN	NaN	NaN	
	2020- 05-03	AZ	8640.0	72479.0	NaN	732.0	1348.0	282.0	NaN	

Double-click (or enter) to edit

•		state	positive	negative	pending	${\color{blue} \texttt{hospitalizedCurrently}}$	${\color{blue} \textbf{hospitalizedCumulative}}$	recovered	death	totalTestResults
	date									
2020-0	05-03	AK	368.0	21210.0	NaN	12.0	NaN	262.0	9.0	21578.0
2020-0	05-03	AL	7725.0	84775.0	NaN	NaN	1035.0	NaN	290.0	92500.0
2020-0	05-03	AR	3431.0	49459.0	NaN	100.0	427.0	1999.0	76.0	52890.0
2020-0	05-03	AS	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0
2020-0	05-03	AZ	8640.0	72479.0	NaN	732.0	1348.0	1597.0	362.0	81119.0

```
# Create new features
# Divide positive by totalTestResults to get positive_percent
df_drop["percent_positive"] = ""
df_drop["percent_positive"] = 100*df_drop["positive"]/df_drop["totalTestResults"]
df_drop.head()
```

С→

state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent date 2020-05-03 ΑK 368.0 21210.0 NaN 12.0 NaN 262.0 9.0 21578.0 2020-05-03 AL7725.0 84775.0 NaN NaN 1035.0 NaN 290.0 92500.0 2020-05-03 3431 0 427 N 52890.0 ΑR 49459 0 100.0 1999 0 76 N NaN 2020-05-03 AS 0.0 57.0 NaN NaN NaN NaN 0.0 57.0 2020-05-03 ΑZ 8640.0 72479.0 NaN 732.0 1348.0 1597.0 362.0 81119.0

```
# Divide hospitalized by positive to get hospitalized_percent
import numpy as np
df_drop["hospitalized_percent"] = ""
df_drop["hospitalized_percent"] = np.nanmax(df_drop[['hospitalizedCurrently','hospitalizedCumulative']], axis=1)
df_drop["hospitalized_percent"] = 100*df_drop["hospitalized_percent"]/df_drop["positive"]
df_drop.head()
```

_______/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: All-NaN axis encountered This is separate from the ipykernel package so we can avoid doing imports until

state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent positive date 2020-ΑK 368.0 21210.0 NaN 12.0 NaN 262.0 9.0 21578.0 1 7(05-03 2020-ΑL 7725.0 84775.0 NaN NaN 1035.0 NaN 290.0 92500.0 8.3 05-03 2020-AR 3431.0 49459.0 100.0 427.0 1999.0 76.0 52890.0 6.48 NaN 05-03 2020-AS 0.0 57.0 NaN NaN 0.0 0.00 NaN NaN 57.0 05-03 2020-ΑZ 8640.0 72479.0 NaN 732.0 1348.0 1597.0 362.0 81119.0 10.6 05-03

```
# Divide recovered by positive to get recovered_percent

df_drop["recovered_percent"] = ""

df_drop["recovered_percent"] = 100*df_drop["recovered"]/df_drop["positive"]

df_drop.head()
```

state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent_positive recovered death d date 2020-368.0 ΑK 21210.0 12.0 NaN 262.0 9.0 21578.0 1.70 NaN 05-03 2020-ΑL 7725.0 84775.0 NaN NaN 1035.0 NaN 290.0 92500.0 8.35 05-03 2020-100.0 427 0 52890 0 AR 3431 0 49459 0 NaN 1999 0 76.0 6.48 05-03 2020-AS 0.0 57.0 NaN NaN NaN NaN 0.0 57.0 0.00 05-03 2020-ΑZ 8640.0 72479.0 NaN 732.0 1348.0 1597.0 362.0 81119.0 10.6 05-03

```
# Divide death by positive to get death_percent
df_drop["death_percent"] = ""
df_drop["death_percent"] = 100*df_drop["death"]/df_drop["positive"]
df_drop.head()
```

₽

C→

```
state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent_positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults
2020-
                     368.0
           AK
                               21210 0
                                                                            12 0
                                                                                                          NaN
                                                                                                                       262 0
                                                                                                                                  90
                                                                                                                                                    21578 0
                                                                                                                                                                          1.70
                                              NaN
05-03
2020-
           ΔI
                    7725.0
                               84775.0
                                                                           NaN
                                                                                                        1035.0
                                                                                                                        NaN
                                                                                                                                290.0
                                                                                                                                                    92500.0
                                                                                                                                                                          8 3!
                                              NaN
05-03
2020-
                    3431.0
                                                                                                                                                    52890.0
           AR
                               49459 0
                                                                          100.0
                                                                                                         427 N
                                                                                                                      1999 0
                                                                                                                                 76 N
                                                                                                                                                                          6 48
                                              NaN
05-03
2020-
                                                                                                                                                        57.0
           AS
                       0.0
                                                                           NaN
                                                                                                                                  0.0
                                                                                                                                                                          0.00
                                   57.0
                                              NaN
                                                                                                          NaN
                                                                                                                        NaN
05-03
2020-
           ΑZ
                    8640.0
                               72479.0
                                                                          732.0
                                                                                                        1348.0
                                                                                                                      1597.0 362.0
                                                                                                                                                    81119.0
                                                                                                                                                                         10.6
                                              NaN
05-03
```

```
# Fetch the latest state population data (nst-est2019-01.csv)
from google.colab import files
uploaded = files.upload()
```

Choose Files nst-est2019-01.csv

• nst-est2019-01.csv(application/vnd.ms-excel) - 676 bytes, last modified: 4/13/2020 - 100% done Saving nst-est2019-01.csv to nst-est2019-01.csv

```
# Load latest state population data
import io

df_state_pop = pd.read_csv(io.StringIO(uploaded['nst-est2019-01.csv'].decode('utf-8')))

df_state_pop["Population"] = pd.to_numeric(df_state_pop["Population"])

df_state_pop.head()
```

```
    State Population
    AK 731545.0
    AL 4903185.0
    AR 3017804.0
    AS NaN
    AZ 7278717.0
```

```
# Add column of state populations (population) to df_drop_total_posNeg
# Need to sort rows by state using index numbering from state_list

df_drop["population"] = ""

for i in range(len(df_drop)):
    for index in range(len(df_state_pop)):
        if df_drop.iloc[i, 0] == df_state_pop.iloc[index, 0]:
            df_drop.iloc[i, 13] = df_state_pop.iloc[index, 1]

df_drop[["population"]] = df_drop["population"].apply(pd.to_numeric)

df_drop.head()
```

₽		state	positive	negative	pending	hospitalizedCurrently	${\color{blue} \textbf{hospitalizedCumulative}}$	recovered	death	totalTestResults	percent_posi
	date										
	2020- 05-03	AK	368.0	21210.0	NaN	12.0	NaN	262.0	9.0	21578.0	1.7(
	2020- 05-03	AL	7725.0	84775.0	NaN	NaN	1035.0	NaN	290.0	92500.0	8.3
	2020- 05-03	AR	3431.0	49459.0	NaN	100.0	427.0	1999.0	76.0	52890.0	6.4{
	2020- 05-03	AS	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0	0.00
	2020- 05-03	AZ	8640.0	72479.0	NaN	732.0	1348.0	1597.0	362.0	81119.0	10.6

https://colab.research.google.com/drive/1FNfgMzUDDLcyH4QLNmKClyT7CFQloSRi#scrollTo=j2pO3dNu6Edz&printMode=true

С→

```
# Normalize positive to state population
df_drop["positive_norm"] = ""
df_drop["positive_norm"] = df_drop["positive"]/df_drop["population"]
df_drop.head()
```

```
С→
            state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent positive
     2020-
               ΑK
                       368.0
                                21210.0
                                             NaN
                                                                      12.0
                                                                                               NaN
                                                                                                          262.0
                                                                                                                    9.0
                                                                                                                                   21578.0
                                                                                                                                                     1.70
     05-03
     2020-
               ΔI
                      7725.0
                                84775 0
                                                                     NaN
                                                                                             1035.0
                                                                                                           NaN
                                                                                                                 290.0
                                                                                                                                   92500.0
                                                                                                                                                     8 3!
                                             NaN
     05-03
     2020-
                      3431.0
                                                                                                                                   52890.0
               AR
                                49459 0
                                                                    100.0
                                                                                              427 0
                                                                                                         1999 0
                                                                                                                   76.0
                                                                                                                                                     6 48
                                             NaN
     05-03
     2020-
               AS
                          0.0
                                   57.0
                                                                     NaN
                                                                                               NaN
                                                                                                           NaN
                                                                                                                    0.0
                                                                                                                                      57.0
                                                                                                                                                     0.00
                                             NaN
     05-03
     2020-
                      8640.0
                                72479.0
                                                                    732.0
                                                                                                                                   81119.0
                                                                                                                                                    10.6
               ΑZ
                                             NaN
                                                                                             1348.0
                                                                                                         1597.0
                                                                                                                 362.0
     05-03
```

```
# Normalize hospitalized to state population
df_drop["hospitalized_norm"] = ""
df_drop["hospitalized_norm"] = np.nanmax(df_drop[['hospitalizedCurrently','hospitalizedCumulative']], axis=1)
df_drop["hospitalized_norm"] = df_drop["hospitalized_norm"]/df_drop["population"]
df_drop.head()
```

() /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: RuntimeWarning: All-NaN axis encountered

state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent positive date 2020-AK 368.0 21210 0 12 0 NaN 262 0 9 0 21578 0 1 7(NaN 05-03 2020-1035.0 290.0 92500.0 AL7725.0 84775 0 NaN NaN NaN 8.35 05-03 2020-AR 3431.0 49459.0 100.0 427.0 1999.0 76.0 52890.0 NaN 6.48 05-03 2020-AS 0.0 57.0 NaN NaN NaN 0.0 57.0 0.00 NaN 05-03 2020-Δ7 8640 0 72479 0 NaN 732 0 1348 0 1597 0 362.0 81119 0 10.65 05-03

```
# Normalize recovered to state population
df_drop["recovered_norm"] = ""
df_drop["recovered_norm"] = df_drop["recovered"]/df_drop["population"]
df_drop.head()
```

;	state	positive	negative	pending	${\color{blue} \texttt{hospitalizedCurrently}}$	${\color{blue} \textbf{hospitalizedCumulative}}$	recovered	death	totalTestResults	percent_posi
dat	te									
202 05-0		368.0	21210.0	NaN	12.0	NaN	262.0	9.0	21578.0	1.70
202 05-0	ΔΙ	7725.0	84775.0	NaN	NaN	1035.0	NaN	290.0	92500.0	8.35
202 05-0		3431.0	49459.0	NaN	100.0	427.0	1999.0	76.0	52890.0	6.48
202 05-0	Δ.	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0	0.00
202 05-0	Α/	8640.0	72479.0	NaN	732.0	1348.0	1597.0	362.0	81119.0	10.6

```
# Normalize death to state population
df_drop["death_norm"] = ""
df_drop["death_norm"] = df_drop["death"]/df_drop["population"]
df_drop.head()
```

С→

	state	positive	negative	pending	hospitalizedCurrently	${\color{blue} \textbf{hospitalizedCumulative}}$	recovered	death	totalTestResults	percent_posi
date										
2020- 05-03	AK	368.0	21210.0	NaN	12.0	NaN	262.0	9.0	21578.0	1.70
2020- 05-03	AL	7725.0	84775.0	NaN	NaN	1035.0	NaN	290.0	92500.0	8.38
2020- 05-03	AR	3431.0	49459.0	NaN	100.0	427.0	1999.0	76.0	52890.0	6.48
2020- 05-03	AS	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0	0.00
2020- 05-03	AZ	8640.0	72479.0	NaN	732.0	1348.0	1597.0	362.0	81119.0	10.65

```
df_drop.info()
┌⇒ <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 3321 entries, 2020-05-03 to 2020-01-22
    Data columns (total 18 columns):
     # Column
                               Non-Null Count Dtype
                                3321 non-null object
     0 state
     1
         positive
                                3306 non-null float64
     2
         negative
                                3140 non-null
                                              float64
                                677 non-null
                                               float64
         pending
         hospitalizedCurrently 1191 non-null
                                               float64
         hospitalizedCumulative 1239 non-null
                                              float64
                                1037 non-null
                                              float64
         recovered
         death
                                2594 non-null
                                               float64
         totalTestResults
                              3319 non-null
                                              float64
         percent positive
                                3275 non-null
                                               float64
     10 hospitalized_percent 1870 non-null
                                              float64
     11 recovered_percent
                                1037 non-null
                                               float64
     12 death_percent
                                2541 non-null
                                               float64
     13 population
                                3125 non-null
                                              float64
     14 positive_norm
                                3125 non-null
                                               float64
     15 hospitalized_norm
                              1831 non-null
                                               float64
                                               float64
                                950 non-null
     16 recovered norm
     17 death_norm
                                2447 non-null
                                              float64
    dtypes: float64(17), object(1)
    memory usage: 573.0+ KB
# Get the unique values of 'state' column
state_list = df.state.unique()
state_list
'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VI', 'VT', 'WA', 'WI', 'WV',
           'WY'], dtype=object)
#create a data frame dictionary to store the state data frames
df_state_dict = {elem : pd.DataFrame for elem in state_list}
for key in df state dict.keys():
   df_state_dict[key] = df_drop[:][df_drop.state == key]
df_state_dict['AK'].head()
```

	state	positive	negative	pending	${\color{blue} \textbf{hospitalizedCurrently}}$	${\color{blue} \textbf{hospitalizedCumulative}}$	recovered	death	${\tt totalTestResults}$	percent_posi
date										
2020- 05-03	AK	368.0	21210.0	NaN	12.0	NaN	262.0	9.0	21578.0	1.7(
2020- 05-02	AK	365.0	21034.0	NaN	10.0	NaN	261.0	9.0	21399.0	1.70
2020- 05-01	AK	364.0	19961.0	NaN	25.0	NaN	254.0	9.0	20325.0	1.79
2020- 04-30	AK	355.0	18764.0	NaN	19.0	NaN	252.0	9.0	19119.0	1.8{
2020- 04-29	AK	355.0	18764.0	NaN	14.0	NaN	240.0	9.0	19119.0	1.8{

df_st	<pre>df_state_dict['CA'].head()</pre>											
₽		state	positive	negative	pending	hospitalizedCurrently	hospitalizedCumulative	recovered	death	totalTestResults	percent_pos	
	date											
	2020- 05-03	CA	53616.0	662135.0	NaN	4734.0	NaN	NaN	2215.0	715751.0	7.4	
	2020- 05-02	CA	52197.0	634606.0	NaN	4722.0	NaN	NaN	2171.0	686803.0	7.5	
	2020- 05-01	CA	50442.0	604543.0	NaN	4706.0	NaN	NaN	2073.0	654985.0	7.7	
	2020- 04-30	CA	48917.0	576420.0	NaN	4981.0	NaN	NaN	1982.0	625337.0	7.8	
	2020- 04-29	CA	46500.0	556639.0	NaN	5011.0	NaN	NaN	1887.0	603139.0	7.7	

```
from matplotlib import pyplot as plt

fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].positive)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Number of Positive Tests in CA', fontsize=16)
```

₽

plt.show()


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].percent_positive)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Percentage of Positive Tests in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. <Figure size 640x480 with 0 Axes>


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)
```

```
plt.plot(df_state_dict['CA'].positive_norm)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Positive Tests Normalized to Population in CA', fontsize=16)
plt.show()
```



```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].positive_norm, color="red", label="CA")
plt.plot(df_state_dict['NY'].positive_norm, color="blue", label="MY")
plt.plot(df_state_dict['GA'].positive_norm, color="green", label="GA")
plt.plot(df_state_dict['IN'].positive_norm, color="violet", label="IN")
plt.plot(df_state_dict['ME'].positive_norm, color="orange", label="ME")
plt.plot(df_state_dict['NJ'].positive_norm, color="cyan", label="NJ")
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Positive Tests Normalized to Population', fontsize=16)
plt.show()
```

С→

<Figure size 640x480 with 0 Axes>


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].hospitalizedCurrently)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Number Hospitalized in CA', fontsize=16)
plt.show()
```



```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].hospitalized_percent)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Percent Hospitalized in CA', fontsize=16)
plt.show()
```



```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].hospitalized_norm)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Hospitalized Normalized to Population in CA', fontsize=16)
plt.show()
```



```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].hospitalized_norm, color="red", label="CA")
plt.plot(df_state_dict['NY'].hospitalized_norm, color="blue", label="NY")
plt.plot(df_state_dict['GA'].hospitalized_norm, color="green", label="GA")
plt.plot(df_state_dict['IN'].hospitalized_norm, color="violet", label="IN")
plt.plot(df_state_dict['ME'].hospitalized_norm, color="orange", label="ME")
plt.plot(df_state_dict['NJ'].hospitalized_norm, color="orange", label="ME")
plt.plot(df_state_dict['NJ'].hospitalized_norm, color="cyan", label="NJ")
plt.ticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Hospitalized Normalized to Population', fontsize=16)
plt.show()
```

<Figure size 640x480 with 0 Axes>

In several states, population normalized hospitalizations plateau, although population normalized death rate continues to grow.

```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Number Died in CA', fontsize=16)
plt.show()
```



```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death_percent)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Percent Death in CA', fontsize=16)
plt.show()
```



```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death_norm)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Death Normalized to Population in CA', fontsize=16)
plt.show()
```



```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death_norm, color="red", label="CA")
plt.plot(df_state_dict['NY'].death_norm, color="blue", label="NY")
plt.plot(df_state_dict['GA'].death_norm, color="green", label="GA")
plt.plot(df_state_dict['IN'].death_norm, color="violet", label="IN")
plt.plot(df_state_dict['ME'].death_norm, color="orange", label="ME")
plt.plot(df_state_dict['NJ'].death_norm, color="cyan", label="NJ")
plt.plot(df_state_dict['NJ'].death_norm, color="cyan", label="NJ")
plt.vlabel('Date', fontsize=18)
plt.vlabel('Date', fontsize=18)
plt.ylabel('Death Normalized to Population', fontsize=16)
plt.show()
```

С→

₽

<Figure size 640x480 with 0 Axes>

Note how the population normalized death curves relate closely to population normalized postive test curves

```
# Curve fitting done at: http://www.xuru.org/rt/NLR.asp#CopyPaste
# Fetch the parameters for each state (AexpBx^-1.csv) that fit to positive_norm = a*exp(b/x)
# where x is the number of days from March 4, 2020
from google.colab import files
uploaded = files.upload()
     Choose Files | AexpBx^-1.csv
       AexpBx^-1.csv(application/vnd.ms-excel) - 2391 bytes, last modified: 5/3/2020 - 100% done
     Saving AexpBx^-1.csv to AexpBx^-1.csv
\# Load the parameters for each state (AexpBx^-1.csv) that fit to positive_norm = a*exp(b/x)
df_state_params = pd.read_csv(io.StringIO(uploaded['AexpBx^-1.csv'].decode('utf-8')))
df_state_params.head()
₽
        State a (10^-3)
                                    b fit rank
                                                      r^2
                 2.593040
                           -75.366476
                                             1.0 0.996906
      0
           ΑK
           ΑL
                12.121593 -111.222242
                                             2.0 0.997430
                           -75.356785
      2
           AR
                 2.941186
                                             4.0 0.997586
           AS
                                           NaN
      3
                     NaN
                                 NaN
                                                     NaN
                 4.984063 -90.295019
                                             1.0 0.998613
           Α7
df_state_params.describe()
```

https://colab.research.google.com/drive/1FNfgMzUDDLcyH4QLNmKClyT7CFQloSRi#scrollTo=j2pO3dNu6Edz&printMode=true. The property of the property

	a (10^-3)	b	fit rank	r^2
count	52.000000	52.000000	52.000000	52.000000
mean	16.215254	-100.951881	1.769231	0.995682
std	31.801661	25.545128	1.095720	0.004749
min	1.952592	-185.986576	1.000000	0.972728
25%	5.041013	-116.155268	1.000000	0.995399
50%	7.113788	-99.476492	1.000000	0.997030
75%	10.698133	-80.847333	2.000000	0.998087
max	190.553218	-49.104858	5.000000	0.999660

df_state_params.hist(column='r^2')

df_state_params.hist(column='a (10^-3)', bins=20)

High value outliers here are NJ (fit rank 1), NY, (fit rank 1), RI (fit rank 5), and SD (fit rank 4)

df_state_params.hist(column='b', bins=10)

Low value outliers here are RI (fit rank 5) and SD (fit rank 4).

df_state_params.hist(column='fit rank')

The A*exp(B/x) functional form works extremely well for thirty of the 52 states (57.7%).

```
# Fetch static data for each state (CovidCompleteStateData.csv)
from google.colab import files
uploaded = files.upload()

Choose Files | CovidCompl...teData.csv|
```

• CovidCompleteStateData.csv(application/vnd.ms-excel) - 60510 bytes, last modified: 4/20/2020 - 100% done Saving CovidCompleteStateData.csv to CovidCompleteStateData.csv

```
# Load static data for each state (CovidCurrentStateData.csv)
import io
df_state_data = pd.read_csv(io.StringIO(uploaded['CovidCompleteStateData.csv'].decode('utf-8')))
df_state_data.head()
```

C→

	State	Sum of NUM_Medicare_BEN	Sum of NUM_BEN_Age_Less_65	Sum of NUM_BEN_Age_65_to_74	Sum of NUM_BEN_Age_75_to_84	Sum of NUM_BEN_Age_Greater_84	Sum of NUM_Female_BEN	NUM_
0	AK	1820384.0	270970.0	809516.0	468255.0	175296.0	1034762.0	
1	AL	10804823.0	2065353.0	4386595.0	2980828.0	1190504.0	6237445.0	4
2	AR	15892716.0	2818665.0	6370265.0	4555468.0	1848506.0	9275039.0	•
3	AS	NaN	NaN	NaN	NaN	NaN	NaN	
4	AZ	10786064.0	886596.0	4861035.0	3377040.0	1294375.0	5944519.0	4

5 rows × 116 columns

```
# Feature Engineering
# Land Area/Water Area
# df_state_data['State Area Ratio'] = df_state_data['Land Area']/df_state_data['Water Area']
df_state_data['State Area Ratio'] = df_state_data['Land Area'].divide(df_state_data['Water Area'], fill_value=0)
# Elevation Ratio = Highest Elevation/Mean Elevation
# df_state_data['Elevation Ratio'] = df_state_data['Highest Elevation']/df_state_data['Mean Elevation']
df_state_data['Elevation Ratio'] = df_state_data['Highest Elevation'].divide(df_state_data['Mean Elevation'], fill_v
# Capital Area Ratio = Capital Land Area/Capital Water Area
# df_state_data['Capital Area Ratio'] = df_state_data['Captial Land Area']/df_state_data['Capital Water Area']
df_state_data['Captial Land Area'] = df_state_data['Captial Land Area'].astype(float)
df_state_data['Capital Area Ratio'] = df_state_data['Capital Land Area'].divide(df_state_data['Capital Water Area'],
# Boundaries = Number of boarding states + On Coast + Borders Another Country
df_state_data['Boundaries'] = df_state_data['Number of bordering states'] + df_state_data['On Coast'] + df_state_data
# Latitude Difference to State Capital = Latitude - Capital Latitude
df_state_data['Latitude Difference to State Capital'] = df_state_data['Latitude'] - df_state_data['Capital Latitude'
# Longitude Difference to State Capital = Capital Longitude - Longitude
df_state_data['Longitude Difference to State Capital'] = df_state_data['Capital Longitude'] - df_state_data['Longitude']
# Latitude Difference to DC = Latitude - DC Latitude
df_state_data['Latitude Difference to DC'] = df_state_data['Latitude'] - 38.904722
\# Longitude Difference to DC = DC Longitude - Longitude
df_state_data['Longitude Difference to DC'] = -77.016389 - df_state_data['Longitude']
# Latitude Difference to US Center = Latitude - Center Latitude
df_state_data['Latitude Difference to Center'] = df_state_data['Latitude'] - 39.833333
# Longitude Different to US Center = Center Longitude - Longitude
df_state_data['Longitude Difference to Center'] = -98.585522 - df_state_data['Longitude']
df_state_data.head()
```

Sum of Sum of Sum of Sum of Sum of Sum of State NUM_Medicare_BEN NUM_BEN_Age_Less_65 NUM_BEN_Age_65_to_74 NUM_BEN_Age_75_to_84 NUM_BEN_Age_Greater_84 NUM_Female_BEN NUM_ 0 ΑK 1820384.0 270970.0 809516.0 468255.0 175296.0 1034762.0 10804823.0 2065353.0 4386595.0 2980828.0 1190504.0 6237445.0 1 AL 9275039.0 AR 15892716.0 2818665.0 6370265.0 4555468.0 1848506.0 2 3 AS NaN NaN NaN NaN NaN NaN 886596.0 4861035.0 3377040.0 1294375.0 5944519.0 ΑZ 10786064.0

df_state_data.shape

5 rows × 126 columns

```
[→ (56, 126)
```

С→

```
# Define variables for regression

df_temp1 = df_state_data.drop(df_state_data.index[[3, 12, 27, 42, 50]])

X = df_temp1.drop('State', axis = 1)
```

```
df_temp2 = df_state_params.drop(df_state_data.index[[3, 12, 27, 42, 50]])
y = df_temp2['a (10^-3)']

# Look at correlation coefficients
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 1000)
X.corr()
```

	Sum of NUM_Medicare_BEN	Sum of NUM_BEN_Age_Less_65	Sum of NUM_BEN_Age_65_to_74	Sum of NUM_BEN_Age_75_to_84 NU
Sum of NUM_Medicare_BEN	1.000000	0.981404	0.998624	0.998100
Sum of NUM BEN Age Less 65	0.981404	1.000000	0.978099	0.969440
Sum of NUM_BEN_Age_65_to_74	0.998624	0.978099	1.000000	0.996374
Sum of NUM_BEN_Age_75_to_84	0.998100	0.969440	0.996374	1.000000
Sum of NUM_BEN_Age_Greater_84	0.989961	0.960650	0.982712	0.992601
Sum of NUM_Female_BEN	0.999917	0.982576	0.998372	0.997916
Sum of NUM_Male_BEN	0.999897	0.979741	0.998636	0.998296
Sum of NUM_Black_or_African_American_BEN	0.896692	0.926091	0.895722	0.884218
Sum of NUM_Asian_Pacific_Islander_BEN	0.525530	0.475021	0.517514	0.530001
Sum of NUM_Hispanic_BEN	0.893302	0.827878	0.902298	0.899556
Sum of NUM_American_IndianAlaska_Native_BEN	0.082561	0.059858	0.091513	0.086836
Sum of NUM BEN With Race Not Elsewhere Classified	0.823477	0.774080	0.803783	0.832225
Sum of NUM_Non-Hispanic_White_BEN	0.996838	0.978894	0.994391	0.996119
Sum of NUM_Minorities	0.958442	0.925721	0.961095	0.957721
Sum of Average_Age_of_BEN	0.682483	0.730359	0.686432	0.663590
Sum of NUM_BEN_Atrial_Fibrillation	0.990425	0.969550	0.985604	0.991418
Sum of NUM_BEN_Asthma	0.995532	0.979588	0.991583	0.992903
Sum of NUM_BEN_Cancer	0.994765	0.972149	0.992903	0.994874
Sum of NUM_BEN_Heart_Failure	0.997133	0.985150	0.995371	0.993915
Sum of NUM_BEN_Chronic_Kidney_Disease	0.997501	0.980301	0.997095	0.995430
Sum of NUM_BEN_Chronic_Obstructive_Pulmonary_Disease	0.986234	0.980624	0.981625	0.983999
Sum of NUM_BEN_Hyperlipidemia	0.996237	0.974348	0.994742	0.996423
Sum of NUM_BEN_Diabetes	0.997754	0.981227	0.996544	0.995687
Sum of NUM_BEN_Hypertension	0.998856	0.982300	0.998079	0.996943
Sum of NUM_BEN_Ischemic_Heart_Disease	0.994006	0.975145	0.991547	0.994105
Sum of NUM_BEN_Stroke	0.990547	0.972081	0.988818	0.990024
Sum of PCT_MEDICARE	0.713702	0.762102	0.716971	0.696228
% Urban Pop	0.246412	0.181090	0.240984	0.259055
Density (P/mi2)	-0.095479	-0.105571	-0.096280	-0.092015
Children 0-18	0.886252	0.846604	0.876226	0.888481
Adults 19-25	0.865749	0.826231	0.852680	0.868860
Adults 26-34	0.848661	0.804492	0.835397	0.852982
Adults 35-54	0.861684	0.820010	0.848035	0.865769
Adults 55-64	0.840536	0.802214	0.822003	0.845654
65+	0.842520	0.796154	0.822919	0.852028
Latitude	-0.400391	-0.397373	-0.403138	-0.407192
Longitude	0.046601	0.092974	0.034115	0.040031
Land Area	0.229013	0.193883	0.242084	0.230058
Water Area	0.042895	0.056385	0.036723	0.038782
Mean Elevation	-0.163276	-0.224740	-0.147730	-0.155029
Highest Elevation	-0.059881	-0.137582	-0.040603	-0.049835
Lowest elevation	-0.354394	-0.352655	-0.344053	-0.355481
Number of bordering states	0.077790	0.135863	0.075964	0.059448
On Coast	0.471024	0.505115	0.442960	0.461862
colab research google comidition/1ENfaMzLIDDL cvH4OLN	0.050440	0 240640	n nennen	0.055045

Covid_1	19NormedPostiveTestsSt	ateDataA.ipynb - Colabo	ratory	
Borders Another Country	0.358143	0.310618	0.363869	0.356815
Capital Latitude	-0.388663	-0.393979	-0.394070	-0.392266
Capital Longitude	0.027375	0.076949	0.015075	0.019608
Captial Land Area	0.008902	-0.002410	0.018688	0.009403
Capital Water Area	-0.087670	-0.096352	-0.083610	-0.087193
Capital Mean Elevation	-0.194009	-0.217624	-0.182931	-0.190725
Capital is the Largest City	-0.171080	-0.147972	-0.165860	-0.173283
Largest City Latitude	-0.421170	-0.421496	-0.425109	-0.424938
Largest City Longitude	0.057094	0.102104	0.044423	0.050338
Number of Counties	0.663716	0.710105	0.670375	0.645677
Became a State	-0.140415	-0.200801	-0.128869	-0.126557
DaysSinceStayatHomeOrder	-0.020651	-0.019693	-0.030343	-0.027347
DaysSinceFirstPositive	0.368252	0.319941	0.366229	0.374653
DaysSinceTestStart	0.290649	0.242592	0.289428	0.297948
15-49yearsAllcauses	0.888203	0.856564	0.874919	0.889982
15-49yearsAsthma	0.824682	0.787879	0.807656	0.827220
15-49yearsChronickidneydisease	0.918864	0.893772	0.909568	0.918825
15-49yearsChronicobstructivepulmonarydisease	0.896769	0.878089	0.880516	0.897303
15-49yearsDiabetesmellitus	0.912330	0.881654	0.900896	0.914260
15- 49yearsInterstitiallungdiseaseandpulmonarysarcoidosis	0.881251	0.864222	0.866766	0.880121
15-49years/schemicheartdisease	0.928387	0.927789	0.916634	0.923405
15-49yearsNeoplasms	0.887461	0.860138	0.873067	0.888685
15-49yearsOtherchronicrespiratorydiseases	0.906636	0.885246	0.892415	0.906637
15-49yearsRheumaticheartdisease	0.903473	0.893269	0.893364	0.898792
15-49yearsStroke	0.919789	0.898558	0.910295	0.919449
50-69yearsAllcauses	0.880146	0.855617	0.863069	0.881923
50-69yearsAsthma	0.801803	0.765502	0.781306	0.805925
50-69yearsChronickidneydisease	0.917312	0.898401	0.905572	0.916416
50-69yearsChronicobstructivepulmonarydisease	0.879259	0.872843	0.860771	0.878641
50-69yearsDiabetesmellitus	0.882501	0.857522	0.865414	0.884673
50- 69yearsInterstitiallungdiseaseandpulmonarysarcoidosis	0.863191	0.840683	0.846169	0.863950
50-69years/schemicheartdisease	0.905979	0.901073	0.890019	0.902683
50-69yearsNeoplasms	0.872500	0.853408	0.854035	0.873415
50-69yearsOtherchronicrespiratorydiseases	0.885021	0.875159	0.867604	0.883457
50-69yearsRheumaticheartdisease	0.892519	0.890373	0.880528	0.886667
50-69yearsStroke	0.907993	0.892290	0.895108	0.907388
70+yearsAllcauses	0.849263	0.819400	0.828488	0.854118
70+yearsAsthma	0.791486	0.748032	0.769602	0.799338
70+yearsChronickidneydisease	0.877077	0.858325	0.859219	0.877628
70+yearsChronicobstructivepulmonarydisease	0.866728	0.842585	0.846829	0.871197
70+yearsDiabetesmellitus	0.845276	0.815442	0.823824	0.850785
70+yearsInterstitiallungdiseaseandpulmonarysarcoidosis	0.833832	0.799993	0.814083	0.839080
70+yearsIschemicheartdisease	0.841243	0.819787	0.818295	0.844148
70+yearsNeoplasms	0.837485	0.808405	0.816021	0.842466
70+yearsOtherchronicrespiratorydiseases	0.875916	0.859545	0.858192	0.875620
70+yearsRheumaticheartdisease	0.844465	0.839621	0.826738	0.839480
70+yearsStroke	0.871562	0.849583	0.854254	0.873252

Covid_19NormedPostiveTestsStateDataA.ipynb - Colaboratory							
AllAgesAllcauses	0.880003	0.851293	0.863399	0.882592			
AllAgesAsthma	0.833253	0.794917	0.815812	0.836910			
AllAgesChronickidneydisease	0.905462	0.885503	0.891504	0.905307			
AllAgesChronicobstructivepulmonarydisease	0.877214	0.860833	0.858127	0.879265			
AllAgesDiabetesmellitus	0.879728	0.852121	0.862209	0.882908			
All Ages Interstitial lung disease and pulmonary sarcoidos is	0.853912	0.826093	0.835749	0.856759			
AllAgesIschemicheartdisease	0.883535	0.870954	0.864460	0.883069			
AllAgesNeoplasms	0.865325	0.841450	0.846325	0.867726			
AllAgesOtherchronicrespiratorydiseases	0.903592	0.885967	0.888445	0.902970			
AllAgesRheumaticheartdisease	0.880357	0.875286	0.866144	0.875089			
AllAgesStroke	0.895398	0.875735	0.880674	0.895978			
AllAgesTotal	0.880507	0.853923	0.863463	0.882813			
Airpollution	0.889229	0.888442	0.875092	0.882964			
Highbody-massindex	0.893797	0.872739	0.877133	0.894624			
Highfastingplasmaglucose	0.886795	0.870124	0.868909	0.887417			
HighLDLcholesterol	0.893215	0.882483	0.875398	0.892023			
Highsystolicbloodpressure	0.897453	0.882631	0.880346	0.897131			
Impairedkidneyfunction	0.889934	0.872693	0.873173	0.890034			
Noaccesstohandwashingfacility	0.877603	0.857781	0.862453	0.876519			
Smoking	0.881579	0.866726	0.862831	0.882612			
Log10Pop	0.728494	0.737902	0.714057	0.722320			
DaysSinceInfection	0.422525	0.373010	0.419727	0.431233			
Children0-18	0.167133	0.180823	0.181296	0.159580			
Allriskfactors	0.882815	0.860944	0.865530	0.884217			
State Area Ratio	-0.141342	-0.180449	-0.126323	-0.134563			
Elevation Ratio	0.020332	0.007311	0.029598	0.023691			
Capital Area Ratio	-0.119284	-0.151665	-0.109968	-0.112407			
Boundaries	0.499356	0.556393	0.479330	0.477960			
Latitude Difference to State Capital	-0.268652	-0.211068	-0.252026	-0.293417			
Longitude Difference to State Capital	-0.143646	-0.133106	-0.139285	-0.150250			
Latitude Difference to DC	-0.400391	-0.397373	-0.403138	-0.407192			
Longitude Difference to DC	-0.046601	-0.092974	-0.034115	-0.040031			
Latitude Difference to Center	-0.400391	-0.397373	-0.403138	-0.407192			

```
\# Note that there are many highly correlated features which need to be dropped
# Create absolute value correlation matrix
corr_matrix = X.corr().abs()
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
# Find index of feature columns with correlation greater than 0.95
to_drop = [column for column in upper.columns if any(upper[column] > 0.95)]
# Drop features by index which were identified as being highly correlated
X = X.drop(X[to_drop], axis=1)
X.head()
```

-0.046601

-0.092974

-0.034115

₽

Longitude Difference to Center

-0.040031

	Sum of NUM_Medicare_BEN	Sum of NUM_Black_or_African_American_BEN	Sum of NUM_Asian_Pacific_Islander_BEN	Sum of NUM_Hispanic_BEN	! NUM_American_IndianAlaska_Nativ
0	1820384.0	62311.0	76773.0	46525.0	14
1	10804823.0	1549811.0	30624.0	65500.0	
2	15892716.0	1334245.0	19642.0	108428.0	6
4	10786064.0	221183.0	61840.0	689880.0	17
5	42579588.0	2072012.0	3276415.0	5674776.0	11

X.info()

C> <class 'pandas.core.frame.DataFrame'>
 Int64Index: 51 entries, 0 to 55
 Data columns (total 38 columns):

νατα	columns (total 38 columns):		
#	Column	Non-Null Count	Dtype
0	Sum of NUM_Medicare_BEN	51 non-null	float64
1	Sum of NUM_Black_or_African_American_BEN	51 non-null	float64
2	Sum of NUM_Asian_Pacific_Islander_BEN	51 non-null	float64
3	Sum of NUM_Hispanic_BEN	51 non-null	float64
4	Sum of NUM_American_IndianAlaska_Native_BEN	51 non-null	float64
5	Sum of NUM_BEN_With_Race_Not_Elsewhere_Classified		float64
6	Sum of Average_Age_of_BEN	51 non-null	float64
7	Sum of PCT_MEDICARE	51 non-null	float64
8	% Urban Pop	51 non-null	float64
9	Density (P/mi2)	51 non-null	float64
10	Children 0-18	51 non-null	float64
11	Latitude	51 non-null	float64
12	Longitude	51 non-null	float64
13	Land Area	51 non-null	float64
14	Water Area	51 non-null	float64
15	Mean Elevation	51 non-null	float64
16	Highest Elevation	51 non-null	float64
17	Lowest elevation	51 non-null	float64
18	Number of bordering states	51 non-null	float64
19	On Coast	51 non-null	float64
20	Borders Another Country	51 non-null	float64
21	Captial Land Area	51 non-null	float64
22	Capital Water Area	51 non-null	float64
23	Capital Mean Elevation	51 non-null	float64
24	Capital is the Largest City	51 non-null	float64
25	Became a State	51 non-null	float64
26	DaysSinceStayatHomeOrder	51 non-null	float64
27	DaysSinceFirstPositive	51 non-null	float64
28	DaysSinceTestStart	51 non-null	float64
29	Log10Pop	51 non-null	float64
30	DaysSinceInfection	51 non-null	float64
31	Children0-18	51 non-null	float64
32	State Area Ratio	51 non-null	float64
33	Elevation Ratio	51 non-null	float64
34	Capital Area Ratio	51 non-null	float64
35	Boundaries	51 non-null	float64
36	Latitude Difference to State Capital	51 non-null	float64
37	Longitude Difference to State Capital	51 non-null	float64
	es: float64(38)		
memoi	ry usage: 15.5 KB		

X.describe()

	Sum of NUM_Medicare_BEN	Sum of NUM_Black_or_African_American_BEN	Sum of NUM_Asian_Pacific_Islander_BEN	Sum of NUM_Hispanic_BEN	NUM_American_IndianAlaska_!
count	5.100000e+01	5.100000e+01	5.100000e+01	5.100000e+01	
mean	1.038431e+07	9.464777e+05	1.411691e+05	5.310095e+05	38
std	1.311026e+07	1.274593e+06	4.722330e+05	1.629961e+06	87
min	1.655870e+05	2.960000e+02	1.660000e+02	4.130000e+02	
25%	2.252305e+06	5.366600e+04	6.445500e+03	3.101950e+04	2
50%	6.272609e+06	3.156040e+05	2.579200e+04	1.042170e+05	7
75%	1.471830e+07	1.547566e+06	7.063400e+04	2.005865e+05	28
max	7.644909e+07	7.011107e+06	3.276415e+06	1.007620e+07	560

Double-click (or enter) to edit

```
# Train/validate split: random 75/25% train/validate split.
from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.25, random_state = 42)

X_train.shape, y_train.shape, X_val.shape
```

[→ ((38, 38), (38,), (13, 38), (13,))

X_train.describe()

С→

	Sum of NUM_Medicare_BEN	Sum of NUM_Black_or_African_American_BEN	Sum of NUM_Asian_Pacific_Islander_BEN	Sum of NUM_Hispanic_BEN	NUM_American_IndianAlaska_!
count	3.800000e+01	3.800000e+01	3.800000e+01	3.800000e+01	
mean	1.014125e+07	9.685705e+05	1.623107e+05	3.942231e+05	37
std	9.963253e+06	1.001560e+06	5.333709e+05	1.021129e+06	93
min	3.472690e+05	2.689000e+03	4.580000e+02	2.622000e+03	
25%	2.518838e+06	4.934350e+04	1.427175e+04	3.676725e+04	4
50%	7.473651e+06	5.120990e+05	3.068000e+04	1.071920e+05	9
75%	1.563758e+07	1.560497e+06	9.455175e+04	1.983508e+05	27
max	4.257959e+07	3.265865e+06	3.276415e+06	5.674776e+06	560

```
# Optimizing Hyperparameters for Random Forest Regressor
from sklearn.model selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
# Define classifier
forest = RandomForestRegressor(random_state = 1)
# Parameters to fit
max_depth = [2, 3, 4]
n_estimators = [35, 36, 37]
min_samples_split = [1.5, 2, 2.5]
min_samples_leaf = [3.5, 4, 4.5]
max_leaf_nodes = [None]
max_features = ['auto']
ccp_alpha = [0.0, 0.00625, 0.0125]
min_weight_fraction_leaf = [0.0, 0.00625, 0.0125]
\label{eq:hyperF} \mbox{ = dict(n\_estimators = n\_estimators, max\_depth = max\_depth,} \\
              min_samples_split = min_samples_split,
              min_samples_leaf = min_samples_leaf,
              max_leaf_nodes = max_leaf_nodes,
              max_features = max_features,
```

```
ccp alpha=ccp alpha,
             min_weight_fraction_leaf=min_weight_fraction leaf)
gridF = GridSearchCV(forest, hyperF, cv = 3, verbose = 10,
                     scoring='r2', return_train_score=True,
                     n jobs = -1)
bestF = gridF.fit(X_train, y_train)
# Output best accuracy and best parameters
print('The score achieved with the best parameters = ', gridF.best_score_, '\n')
print('The parameters are:', gridF.best_params_)
Fitting 3 folds for each of 729 candidates, totalling 2187 fits
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n jobs=-1)]: Done 1 tasks
                                                elapsed:
                                                             1.35
     [Parallel(n jobs=-1)]: Done
                                  4 tasks
                                                 elapsed:
                                                             1.4s
     [Parallel(n_jobs=-1)]: Done     9 tasks
                                                 elapsed:
                                                             1.65
     [Parallel(n_jobs=-1)]: Done 14 tasks
                                               | elapsed:
                                                             1.7s
     [Parallel(n_jobs=-1)]: Batch computation too fast (0.1862s.) Setting batch_size=2.
     [Parallel(n jobs=-1)]: Done 22 tasks
                                             elapsed:
                                                             1.8s
     [Parallel(n jobs=-1)]: Batch computation too fast (0.1010s.) Setting batch size=4.
     [Parallel(n jobs=-1)]: Batch computation too fast (0.1858s.) Setting batch size=8.
     [Parallel(n_jobs=-1)]: Done 44 tasks
                                                 elansed:
                                                             2 25
     [Parallel(n jobs=-1)]: Done 116 tasks
                                                 elapsed:
                                                             3.95
     [Parallel(n_jobs=-1)]: Done 188 tasks
                                                 elapsed:
                                                             5.3s
     [Parallel(n jobs=-1)]: Done 276 tasks
                                                 elapsed:
                                                             6.7s
     [Parallel(n_jobs=-1)]: Done 364 tasks
                                                 elansed:
                                                             8.55
                                                 elapsed:
     [Parallel(n_jobs=-1)]: Done 468 tasks
                                                            10.65
     [Parallel(n_jobs=-1)]: Done 572 tasks
                                                 elapsed:
                                                            12.25
     [Parallel(n jobs=-1)]: Done 692 tasks
                                                 elapsed:
                                                            14.8s
     [Parallel(n_jobs=-1)]: Done 812 tasks
                                                 elapsed:
                                                            16.7s
     [Parallel(n jobs=-1)]: Done 948 tasks
                                                elapsed:
                                                            19.6s
     [Parallel(n_jobs=-1)]: Done 1084 tasks
                                                  elapsed:
                                                             22.15
     [Parallel(n_jobs=-1)]: Done 1236 tasks
                                                  elapsed:
                                                             25.0s
     [Parallel(n_jobs=-1)]: Done 1388 tasks
                                                  elapsed:
                                                             28.3s
     [Parallel(n_jobs=-1)]: Done 1556 tasks
                                                  elapsed:
                                                             31.0s
     [Parallel(n jobs=-1)]: Done 1724 tasks
                                                  elapsed:
                                                             34.5s
     [Parallel(n jobs=-1)]: Done 1908 tasks
                                                  elansed:
                                                             38.25
     [Parallel(n_jobs=-1)]: Done 2092 tasks
                                                  elapsed:
                                                             41.95
    The score achieved with the best parameters =
                                                  -7.248154911069659
     The parameters are: {'ccp alpha': 0.0, 'max depth': 3, 'max features': 'auto', 'max leaf nodes': None, 'min samples leaf': 4, 'min sample
     [Parallel(n jobs=-1)]: Done 2187 out of 2187 | elapsed: 43.3s finished
!pip install category_encoders==2.0.0
Collecting category_encoders==2.0.0
       Downloading https://files.pythonhosted.org/packages/6e/a1/f7a22f144f33be78afeb06bfa78478e8284a64263a3c09b1ef54e673841e/category_encoder
                                92kB 2.4MB/s
     Requirement already satisfied: patsy>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from category encoders==2.0.0) (0.5.1)
     Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (1.0.3)
     Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (0.22.2.pos
     Requirement already satisfied: statsmodels>=0.6.1 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (0.10.2)
     Requirement already satisfied: scipy>=0.19.0 in /usr/local/lib/python3.6/dist-packages (from category encoders==2.0.0) (1.4.1)
     Requirement already satisfied: numpy>=1.11.3 in /usr/local/lib/python3.6/dist-packages (from category encoders==2.0.0) (1.18.3)
     Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from patsy>=0.4.1->category_encoders==2.0.0) (1.12.0)
     Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.21.1->category_encoders==
     Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.21.1->category_encoders==2.0.0) (20
     Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.20.0->category_encoders==2.0.
     Installing collected packages: category-encoders
    Successfully installed category-encoders-2.0.0
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import make_pipeline
import category_encoders as ce
from sklearn.impute import SimpleImputer
pipeline1 = make pipeline(
   ce.OneHotEncoder(use_cat_names=True),
   SimpleImputer(strategy='mean'),
   RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                     max_depth=3, max_features='auto', max_leaf_nodes=None,
                     max_samples=None, min_impurity_decrease=0.0,
```

min_impurity_split=None, min_samples_leaf=4,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=36, n_jobs=None, oob_score=False,
random_state=0, verbose=0, warm_start=False))

pipeline1.fit(X train. v train)

```
# Get the model's training accuracy
print("Training Accurary: R^2 = ", pipeline1.score(X_train,y_train))
# Get the model's validation accuracy
print('Validation Accuracy: R^2 = ', pipeline1.score(X_val, y_val))
    Training Accurary: R^2 = 0.3013954634238487
     Validation Accuracy: R^2 = 0.069388620867604
print("Feature Importances =")
#print(RandomForestRegressor.feature_importances_)
print(pipeline1.steps[2][1].feature_importances_)
    Feature Importances =
     [1.58960229e-03 5.30566745e-02 4.17410911e-03 1.59284318e-01
     2.61004152e-02 2.17672192e-02 7.81822081e-03 2.43729475e-02
     2.90624300e-03 2.56504641e-02 4.95719120e-02 2.69244094e-02
     1.12768719e-01 1.23221013e-04 4.58989637e-04 2.49941071e-03
     8.43190668e-03 0.00000000e+00 2.63169045e-02 2.37762734e-02
     0.00000000e+00 2.13022103e-01 1.01510181e-01 1.46479728e-04
     0.00000000e+00 2.38233658e-02 5.38444596e-03 0.00000000e+00
     2.61738842e-04 2.59337047e-02 0.00000000e+00 0.00000000e+00
     2.95326741e-03 0.00000000e+00 3.98608558e-03 3.56252545e-02
     3.63475050e-03 6.12666322e-03]
# Plot of feature importances from pure Random Forest Regressor
%matnlotlib inline
import matplotlib.pyplot as plt
# Get feature importances
encoder = pipeline1.named_steps['onehotencoder']
```

```
# Plot of feature importances from pure Random Forest Regressor
%matplotlib inline
import matplotlib.pyplot as plt
# Get feature importances
encoder = pipeline1.named_steps['onehotencoder']
encoded = encoder.transform(X_train)
rf = pipeline1.named_steps['randomforestregressor']
importances1 = pd.Series(rf.feature_importances_, encoded.columns)
# Plot feature importances
n = 12
plt.figure(figsize=(10,n/2))
plt.title(f'Top {n} features pipeline1')
importances1.sort_values()[-n:].plot.barh(color='grey');
```



```
# Generate validation curves
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import validation_curve
pipeline2 = make_pipeline(
   ce.OrdinalEncoder(),
   SimpleImputer(),
   RandomForestRegressor()
)
depth = range(1, 10, 2)
train_scores, val_scores = validation_curve(
   pipeline2, X_train, y_train,
   param_name='randomforestregressor__max_depth',
   param_range=depth,
   cv=3,
```

```
n_jobs=-1
)

plt.figure(dpi=150)
plt.plot(depth, np.mean(train_scores, axis=1), color='blue', label='training error')
plt.plot(depth, np.mean(val_scores, axis=1), color='red', label='validation error')
plt.title('Validation Curve')
plt.xlabel('model complexity: RandomForestClassifier max_depth')
plt.ylabel('model score: Accuracy')
plt.legend();
```


Validation Curve


```
# Get drop-column importances
column = 'Captial Land Area'
pipeline3 = make_pipeline(
   ce.OneHotEncoder(use_cat_names=True),
   SimpleImputer(strategy = 'most_frequent'),
   RandomForestRegressor(bootstrap=True, ccp_alpha=0, criterion='mse',
                      max_depth=3, max_features='auto', max_leaf_nodes=None,
                      max_samples=None, min_impurity_decrease=0.0,
                      min_impurity_split=None, min_samples_leaf=4,
                      min_samples_split=2, min_weight_fraction_leaf=0,
                      n_estimators=36, n_jobs=None, oob_score=False,
                      random_state=0, verbose=0, warm_start=False))
# Fit without column
pipeline3.fit(X_train.drop(columns=column), y_train)
score_without = pipeline3.score(X_val.drop(columns=column), y_val)
print(f'Validation Accuracy without {column}: {score_without}')
# Fit with column
pipeline3.fit(X_train, y_train)
score_with = pipeline3.score(X_val, y_val)
print(f'Validation Accuracy with {column}: {score_with}')
# Compare the error with & without column
print(f'Drop-Column Importance for {column}: {score_with - score_without}')
```

Using Eli5 library which does not work with pipelines
transformers = make_pipeline(
 ce.OneHotEncoder(use_cat_names=True),
 SimpleImputer(strategy='most_frequent')

Validation Accuracy without Captial Land Area: 0.10771758680677601 Validation Accuracy with Captial Land Area: 0.069388620867604 Drop-Column Importance for Captial Land Area: -0.03832896593917201

```
)
X train transformed = transformers.fit transform(X train)
X_val_transformed = transformers.transform(X_val)
model1 =
             RandomForestRegressor(bootstrap=True, ccp_alpha=0, criterion='mse',
                     max_depth=3, max_features='auto', max_leaf_nodes=None,
                      max_samples=None, min_impurity_decrease=0.0,
                     min_impurity_split=None, min_samples_leaf=4,
                     min samples split=2, min weight fraction leaf=0,
                     n_estimators=36, n_jobs=None, oob_score=False,
                      random state=0, verbose=0, warm start=False)
model1.fit(X_train_transformed, y_train)
RandomForestRegressor(bootstrap=True, ccp_alpha=0, criterion='mse', max_depth=3,
                           max features='auto', max leaf nodes=None,
                           max_samples=None, min_impurity_decrease=0.0,
                           min_impurity_split=None, min_samples_leaf=4,
                           min_samples_split=2, min_weight_fraction_leaf=0,
                           n_estimators=36, n_jobs=None, oob_score=False,
                           random_state=0, verbose=0, warm_start=False)
```

```
# Get permutation importances
! pip install eli5
from eli5.sklearn import PermutationImportance
import eli5
permuter = PermutationImportance(
    model1,
    scoring='r2',
    n_iter=2,
    random_state=42
)
permuter.fit(X_val_transformed, y_val)
feature_names = X_val.columns.tolist()
eli5.show_weights(
    permuter.
    top=None, # show permutation importances for all features
    {\tt feature\_names = feature\_names}
)
```

```
Collecting eli5
```

```
Downloading https://files.pythonhosted.org/packages/97/2f/c85c7d8f8548e460829971785347e14e45fa5c6617da374711dec8cb38cc/eli5-0.10.1-py2.
                                112kB 2.8MB/s
Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from eli5) (1.18.3)
Requirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.6/dist-packages (from eli5) (0.22.2.post1)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from eli5) (1.12.0)
Requirement already satisfied: graphviz in /usr/local/lib/python3.6/dist-packages (from eli5) (0.10.1)
Requirement already satisfied: attrs>16.0.0 in /usr/local/lib/python3.6/dist-packages (from eli5) (19.3.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.6/dist-packages (from eli5) (2.11.2)
Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.6/dist-packages (from eli5) (0.8.7)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from eli5) (1.4.1)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.18->eli5) (0.14.1)
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2->eli5) (1.1.1)
Installing collected packages: eli5
Successfully installed eli5-0.10.1
/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.metrics.scorer module is deprecated
  warnings.warn(message, FutureWarning)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.feature_selection.base module is dep
  warnings.warn(message, FutureWarning)
Using TensorFlow backend.
         Weight Feature
 0.1883 \pm 0.0854
                  Captial Land Area
 0.0239 ± 0.2251
                  Longitude
                  Density (P/mi2)
 0.0091 ± 0.0014
 0.0063 ± 0.0098
                  Sum of NUM Black or African American BEN
 0.0049 \pm 0.0032
                  Sum of NUM_Asian_Pacific_Islander_BEN
 0.0045 \pm 0.0043
                  Latitude
 0.0044 \pm 0.0104
                  Became a State
 0.0024 ± 0.0001
                  Capital Area Ratio
 0.0022 \pm 0.0019
                  Sum of Average_Age_of_BEN
 0.0021 ± 0.0014
                  Boundaries
 0.0015 \pm 0.0025
                  Sum of NUM_BEN_With_Race_Not_Elsewhere_Classified
 0.0007 \pm 0.0016
                  % Urban Pop
 0.0005 \pm 0.0008
                  On Coast
                  Sum of NUM Medicare BEN
 0.0003 \pm 0.0014
                  Capital is the Largest City
      0 \pm 0.0000
      0 \pm 0.0000
                  DaysSinceFirstPositive
      0 \pm 0.0000
                  Borders Another Country
      0 \pm 0.0000
                  DaysSinceInfection
      0 \pm 0.0000
                  Lowest elevation
      0 \pm 0.0000
                  Children0-18
      0 \pm 0.0000
                  Elevation Ratio
 -0.0002 ± 0.0021
                  Latitude Difference to State Capital
 -0.0002 ± 0.0001
                  Water Area
 -0.0004 ± 0.0007
                  DaysSinceTestStart
 -0.0004 ± 0.0004
                  Longitude Difference to State Capital
                  Capital Mean Elevation
 -0.0005 \pm 0.0001
 -0.0005 ± 0.0003
                  Land Area
                  Mean Flevation
 -0.0007 ± 0.0015
 -0.0008 ± 0.0002
                  State Area Ratio
 -0.0015 ± 0.0007
                  Highest Elevation
 -0.0036 ± 0.0423
                  Sum of PCT MEDICARE
 -0.0069 ± 0.0009
                  DaysSinceStayatHomeOrder
                  Sum of NUM_American_IndianAlaska_Native_BEN
 -0.0077 ± 0.0167
 -0.0098 ± 0.0251
                  Number of bordering states
 -0.0148 ± 0.0124
                  Capital Water Area
 -0.0154 ± 0.0149
                  Children 0-18
 -0.0157 ± 0.0063
                 Log10Pop
 -0.0338 ± 0.1228 Sum of NUM_Hispanic_BEN
```

```
from sklearn.metrics import mean_squared_error, r2_score

# Coefficient of determination r2 for the training set
pipeline_score = permuter.score(X_train_transformed,y_train)
print("Coefficient of determination r2 for the training set.: ", pipeline_score)

# Coefficient of determination r2 for the validation set
pipeline_score = permuter.score(X_val_transformed,y_val)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)

# The mean squared error
y_pred = permuter.predict(X_val_transformed)
print("Mean squared error: %.2f"% mean_squared_error(y_val, y_pred))

Coefficient of determination r2 for the training set.: 0.3013954634238487
```

```
# Captial Land Area continues to be of importance
# Use importances for feature selection
print('Shape before removing features:' X train shape)
```

Coefficient of determination r2 for the validation set.: 0.069388620867604

Mean squared error: 530.47

```
print shape before removing reacures, , __crain.shape,
Shape before removing features: (38, 38)
# Remove features of 0 importance
zero_importance = 0.0
mask = permuter.feature_importances_ > zero_importance
features1 = X_train.columns[mask]
X_train = X_train[features1]
print('Shape after removing features:', X_train.shape)
Shape after removing features: (38, 14)
# Random forest classifier with fourteen features
X_val = X_val[features1]
pipeline4 = make_pipeline(
    ce.OneHotEncoder(use_cat_names=True),
   SimpleImputer(strategy = 'most_frequent'),
    RandomForestRegressor(bootstrap=True, ccp alpha=0,
                          max_depth=3, max_features='auto', max_leaf_nodes=None,
                          max_samples=None, min_impurity_decrease=0.0,
                          min_impurity_split=None, min_samples_leaf=4,
                          min_samples_split=2, min_weight_fraction_leaf=0,
                          n_estimators=36, n_jobs=None, oob_score=False,
                          random_state=0, verbose=0, warm_start=False)
# Fit on train, score on val
pipeline4.fit(X_train, y_train);
from sklearn.metrics import mean_squared_error, r2_score
# Coefficient of determination r2 for the training set
pipeline score = pipeline4.score(X train,y train)
print("Coefficient of determination r2 for the training set.: ", pipeline_score)
# Coefficient of determination r2 for the validation set
pipeline_score = pipeline4.score(X_val,y_val)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)
# The mean squared error
y_pred = pipeline4.predict(X_val)
print("Mean squared error: %.2f"% mean_squared_error(y_val, y_pred))

Arr Coefficient of determination r2 for the training set.: 0.26984125703310236
     Coefficient of determination r2 for the validation set.: 0.11859396791756194
     Mean squared error: 502.42
pipeline4.fit(X_val, y_val)
# Plot of features
%matplotlib inline
import matplotlib.pyplot as plt
# Get feature importances
encoder = pipeline4.named_steps['onehotencoder']
encoded = encoder.transform(X_val)
rf = pipeline4.named_steps['randomforestregressor']
importances2 = pd.Series(rf.feature_importances_, encoded.columns)
# Plot feature importances
#n = 4
n = 12
plt.figure(figsize=(10,n/2))
plt.title(f'Top {n} features pipeline4')
importances2.sort_values()[-n:].plot.barh(color='grey');
```



```
!pip install pdpbox
```

```
Collecting pdpbox
```

```
Downloading https://files.pythonhosted.org/packages/87/23/ac7da5ba1c6c03a87c412e7e7b6e91a10d6ecf4474906c3e736f93940d49/PDPbox-0.2.0.tar
                                     | 57.7MB 66kB/s
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from pdpbox) (1.0.3)
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from pdpbox) (1.18.3)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from pdpbox) (1.4.1)
Requirement already satisfied: matplotlib>=2.1.2 in /usr/local/lib/python3.6/dist-packages (from pdpbox) (3.2.1)
Requirement already satisfied: joblib in /usr/local/lib/python3.6/dist-packages (from pdpbox) (0.14.1)
Requirement already satisfied: psutil in /usr/local/lib/python3.6/dist-packages (from pdpbox) (5.4.8)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from pdpbox) (0.22.2.post1)
Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas->pdpbox) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->pdpbox) (2018.9)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->pdpbox) (1.2.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->pdpbox) (0.10.0)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.6.1->pandas->pdpbox) (1.12.0)
Building wheels for collected packages: pdpbox
  Building wheel for pdpbox (setup.py) ... done
  Created wheel for pdpbox: filename=PDPbox-0.2.0-cp36-none-any.whl size=57690722 sha256=2eb21b6a2e7bf0b40a562bf76671ac3e8c2da289d9100574
  Stored in directory: /root/.cache/pip/wheels/7d/08/51/63fd122b04a2c87d780464eeffb94867c75bd96a64d500a3fe
Successfully built pdpbox
Installing collected packages: pdpbox
Successfully installed pdpbox-0.2.0
```

```
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.
```

PDP interact for "Sum of NUM Asian Pacific Islander BEN" and "Captial Land Area"

Number of unique grid points: (Sum of NUM Asian Pacific Islander BEN: 10, Captial Land Area: 10)


```
# A two feature partical dependence plot in 3D
pdp = interaction.pdp.pivot_table(
                                  values='preds',
                                  columns=features2[0],
                                  index=features2[1]
                                  )[::-1] # Slice notation to reverse index order so y axis is ascending
import plotly.graph_objs as go
target = 'Value of a parameter'
surface = go.Surface(x=pdp.columns,
                     y=pdp.index,
                     z=pdp.values)
layout = go.Layout(
                   scene=dict(
                              xaxis=dict(title=features2[0]),
                              yaxis=dict(title=features2[1]),
                              zaxis=dict(title=target)
                              )
)
fig = go.Figure(surface, layout)
fig.show()
```


! pip install shap==0.23.0
! pip install -I shap

```
Collecting shap==0.23.0
  Downloading https://files.pythonhosted.org/packages/60/0d/8bd076821f7230edb2892ad982ea91ca25f2f925466563272e61eae891c6/shap-0.23.0.tar.
                               184kB 2.8MB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (1.18.3)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (1.4.1)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (0.22.2.post1)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (3.2.1)
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (1.0.3)
Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (4.38.0)
Requirement already satisfied: ipython in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (5.5.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->shap==0.23.0) (0.14.1)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap==0.23.0) (2.8.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap=
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap==0.23.0) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap==0.23.0) (0.10.0)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->shap==0.23.0) (2018.9)
Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (2.1.3)
Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (0.8.1)
Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (4
Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (4.4.2)
Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (4.3.3)
Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (1.0.1
Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (0.7.5)
Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (46.1.3)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.1->matplotlib->shap==0.23.0) (
Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.6/dist-packages (from pexpect; sys_platform != "win32"->ipython-
Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from traitlets>=4.2->ipython->shap==0.23.0) (0
Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython->shap==0.23.
Building wheels for collected packages: shap
  Building wheel for shap (setup.py) ... done
  Created wheel for shap: filename=shap-0.23.0-cp36-cp36m-linux x86 64.whl size=235674 sha256=888804ee0ed4369d5a0f68454e9a2429aa16412ebe8
  Stored in directory: /root/.cache/pip/wheels/c1/2c/aa/10d1782fe066536fcd564a2f8adea4dd05f57768236038855b
Successfully built shap
Installing collected packages: shap
Successfully installed shap-0.23.0
Collecting shap
 Downloading https://files.pythonhosted.org/packages/a8/77/b504e43e21a2ba543a1ac4696718beb500cfa708af2fb57cb54ce299045c/shap-0.35.0.tar.
Collecting numpy
  Downloading https://files.pythonhosted.org/packages/03/27/e35e7c6e6a52fab9fcc64fc2b20c6b516eba930bb02b10ace3b38200d3ab/numpy-1.18.4-cp3
                                 20.2MB 1.2MB/s
Collecting scipy
  Downloading https://files.pythonhosted.org/packages/dc/29/162476fd44203116e7980cfbd9352eef9db37c49445d1fec35509022f6aa/scipy-1.4.1-cp36
                               26.1MB 1.4MB/s
Collecting scikit-learn
  Downloading https://files.pythonhosted.org/packages/5e/d8/312e03adf4c78663e17d802fe2440072376fee46cada1404f1727ed77a32/scikit learn-0.2
                        7.1MB 41.3MB/s
Collecting pandas
  Downloading <a href="https://files.pythonhosted.org/packages/bb/71/8f53bdbcbc67c912b888b40def255767e475402e9df64050019149b1a943/pandas-1.0.3-cp3">https://files.pythonhosted.org/packages/bb/71/8f53bdbcbc67c912b888b40def255767e475402e9df64050019149b1a943/pandas-1.0.3-cp3</a>
                                 10.0MB 174kB/s
Collecting tqdm>4.25.0
  Downloading https://files.pythonhosted.org/packages/c9/40/058b12e8ba10e35f89c9b1fdfc2d4c7f8c05947df2d5eb3c7b258019fda0/tqdm-4.46.0-py2.
                                   71kB 8.5MB/s
Collecting joblib>=0.11
  Downloading https://files.pythonhosted.org/packages/28/5c/cf6a2b65a321c4a209efcdf64c2689efae2cb62661f8f6f4bb28547cf1bf/joblib-0.14.1-py
                                     296kB 51.1MB/s
Collecting python-dateutil>=2.6.1
  Downloading <a href="https://files.pythonhosted.org/packages/d4/70/d60450c3dd48ef87586924207ae8907090de0b306af2bce5d134d78615cb/python_dateutil-</a>
                          235kB 41.7MB/s
Collecting pytz>=2017.2
  Downloading https://files.pythonhosted.org/packages/4f/a4/879454d49688e2fad93e59d7d4efda580b783c745fd2ec2a3adf87b0808d/pytz-2020.1-py2.
                                | 512kB 50.4MB/s
Collecting six>=1.5
  Downloading https://files.pythonhosted.org/packages/65/eb/1f97cb97bfc2390a276969c6fae16075da282f5058082d4cb10c6c5c1dba/six-1.14.0-py2.p
Building wheels for collected packages: shap
  Building wheel for shap (setup.py) ... done
  Created wheel for shap: filename=shap-0.35.0-cp36-cp36m-linux_x86_64.whl size=394123 sha256=5ad6ad0eec64fad88c98344a30ed50224018eb684f8
  Successfully built shap
ERROR: google-colab 1.0.0 has requirement six~=1.12.0, but you'll have six 1.14.0 which is incompatible.
ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.
ERROR: convertdate 2.2.0 has requirement pytz<2020,>=2014.10, but you'll have pytz 2020.1 which is incompatible.
ERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible.
Installing collected packages: numpy, scipy, joblib, scikit-learn, six, python-dateutil, pytz, pandas, tqdm, shap
Successfully installed joblib-0.14.1 numpy-1.18.4 pandas-1.0.3 python-dateutil-2.8.1 pytz-2020.1 scikit-learn-0.22.2.post1 scipy-1.4.1 sh
WARNING: The following packages were previously imported in this runtime:
  [dateutil,joblib,numpy,pandas,pytz,scipy,six,sklearn,tqdm]
You must restart the runtime in order to use newly installed versions.
 RESTART RUNTIME
```

```
# Local Interpretation using SHAP (for prediction at State # = 4, row 32)
import shap
shap.initjs()
explainer = shap.TreeExplainer(model2)
shap_values = explainer.shap_values(X_train)
i = 32
shap.force_plot(explainer.expected_value, shap_values[i], features=X_train.loc[i], feature_names=X_train.columns)
```

```
С→
                                                           base value
                                                           model output value
    4.837
             0.1627
                        5.163
                                  10.16
                                            15 16
                                                      20.16
                                                                25 53
                                                                          30.16
                                                                                    35.16
                                                                   /////
                                            Captial Land Area = 94.84
                                                                   Sum of NUM_Black_or_A
```

```
# Find Shapley Forces across the training sample i (i = 0 - 37)
processor = make_pipeline(
                          ce.OrdinalEncoder(),
                          SimpleImputer(strategy='median')
X_train_processed = processor.fit_transform(X_train)
column_names = X_train.columns
shap_values_array = pd.DataFrame(columns = column_names)
for i in range(len(y_train)):
        row = X train.iloc[[i]]
        explainer = shap.TreeExplainer(model2)
        row_processed = processor.transform(row)
        shap_values_input = explainer.shap_values(row_processed)
        shap_values_array = np.concatenate((shap_values_array, shap_values_input), axis=0)
# Create a 3D plot of force as a function of state curve displacement from mean curve and features for validation sa
# A two feature partical dependence plot in 3D
import plotly.graph_objs as go
surface = go.Surface(x=column_names,
                     y=y_train,
                     z=shap_values_array)
layout = go.Layout(
        scene=dict(
                 xaxis=dict(title= ''),
                 yaxis=dict(title= 'Value of a for state'),
                 zaxis=dict(title= 'Shapley Force')
)
fig = go.Figure(surface, layout)
fig.show()
```

Recursive Feature Elimination


```
from sklearn.feature_selection import RFE, f_regression
   from sklearn.model_selection import StratifiedKFold
             RandomForestRegressor(bootstrap=True, ccp_alpha=0,
                             max_depth=3, max_features='auto', max_leaf_nodes=None,
                             max_samples=None, min_impurity_decrease=0.0,
                             min_impurity_split=None, min_samples_leaf=4,
                             min_samples_split=2, min_weight_fraction_leaf=0,
                             n_estimators=36, n_jobs=None, oob_score=False,
                             random_state=0, verbose=0, warm_start=False)
   #Selecting 7 features turns out to give maximum validation accuracy
   number_selected_features = 7
   rfe = RFE(rfr, n_features_to_select=number_selected_features, verbose =3)
   rfe.fit(X_train,y_train)
    Fitting estimator with 14 features.
        Fitting estimator with 13 features.
        Fitting estimator with 12 features.
        Fitting estimator with 11 features.
        Fitting estimator with 10 features.
        Fitting estimator with 9 features.
        Fitting estimator with 8 features.
        RFE(estimator=RandomForestRegressor(bootstrap=True, ccp_alpha=0,
                                            criterion='mse', max_depth=3,
                                            max_features='auto', max_leaf_nodes=None,
                                            max_samples=None, min_impurity_decrease=0.0,
                                            min_impurity_split=None, min_samples_leaf=4,
                                            min samples split=2.
                                            min_weight_fraction_leaf=0, n_estimators=36,
                                            n_jobs=None, oob_score=False,
                                            random_state=0, verbose=0,
                                            warm_start=False),
            n_features_to_select=7, step=1, verbose=3)
   rfe_support = rfe.get_support()
   rfe_feature = X_train.loc[:,rfe_support].columns.tolist()
   print(str(len(rfe_feature)), 'selected features')
    7 selected features
   from sklearn.metrics import mean_squared_error, r2_score
   # Coefficient of determination r2 for the training set
   pipeline_score = rfe.score(X_train,y_train)
   print("Coefficient of determination r2 for the training set.: ", pipeline_score)
                         . . .
                                  ~ ~
                                        . .
https://colab.research.google.com/drive/1FNfgMzUDDLcyH4QLNmKClyT7CFQloSRi#scrollTo=j2pO3dNu6Edz&printMode=true
                                                                                                                                             38/40
```

Coefficient of determination r2 for the validation set

```
pipeline score = rfe.score(X val.v val)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)
# The mean squared error
y_pred = rfe.predict(X_val)
print("Mean squared error: %.2f"% mean_squared_error(y_val, y_pred))
Coefficient of determination r2 for the training set.: 0.27619181813440996
     Coefficient of determination r2 for the validation set.: 0.14111881952867034
     Mean squared error: 489.58
# Retain only features with highest importance from RFE
X_train_rfe_select = X_train[rfe_feature]
X val rfe select = X val[rfe feature]
print('Shape after removing features:', X_train_rfe_select.shape, X_val_rfe_select.shape)
F→ Shape after removing features: (38, 7) (13, 7)
# Random forest classifier after RFE Feature Selection on Reduced Feature Set
pipeline5 = make pipeline(
   ce.OneHotEncoder(use_cat_names=True),
   SimpleImputer(strategy = 'most_frequent'),
    RandomForestRegressor(bootstrap=True, ccp_alpha=0,
                          max_depth=3, max_features='auto', max_leaf_nodes=None,
                          max_samples=None, min_impurity_decrease=0.0,
                          min_impurity_split=None, min_samples_leaf=4,
                          min samples_split=2, min_weight_fraction_leaf=0,
                          n_estimators=36, n_jobs=None, oob_score=False,
                          random_state=0, verbose=0, warm_start=False)
# Fit on train, score on val
pipeline5.fit(X_train_rfe_select, y_train);
# Coefficient of determination r2 for the training set
pipeline_score = pipeline5.score(X_train_rfe_select,y_train)
print("Coefficient of determination r2 for the training set.: ", pipeline_score)
# Coefficient of determination r2 for the validation set
pipeline_score = pipeline5.score(X_val_rfe_select,y_val)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)
# The mean squared error
y_pred = pipeline5.predict(X_val_rfe_select)
print("Mean squared error: %.2f"% mean_squared_error(y_val, y_pred))
Coefficient of determination r2 for the training set.: 0.27619181813440996
     Coefficient of determination r2 for the validation set.: 0.14111881952867034
     Mean squared error: 489.58
pipeline5.fit(X_val_rfe_select, y_val)
# Plot of features
%matplotlib inline
import matplotlib.pyplot as plt
# Get feature importances
encoder = pipeline5.named_steps['onehotencoder']
encoded = encoder.transform(X_val_rfe_select)
rf = pipeline5.named_steps['randomforestregressor']
importances3 = pd.Series(rf.feature_importances_, encoded.columns)
# Plot feature importances
n = number_selected_features
plt.figure(figsize=(10,n/2))
plt.title(f'Top {n} features pipeline5')
importances3.sort_values()[-n:].plot.barh(color='grey');
С→
```

https://colab.research.google.com/drive/1FNfgMzUDDLcyH4QLNmKClyT7CFQloSRi#scrollTo=j2pO3dNu6Edz&printMode=true

