PhD Proposal

Approaches to Enable Demand Response by Industrial Loads for Regulation, Reserve and Load Following Provision

PhD candidate: Xiao Zhang

Committee members: Gabriela Hug (advisor)

J. Zico Kolter (advisor)

Ignacio E. Grossmann

Anthony Rowe

Why Demand Response?

- Sustainable energy future and a green planet
 - renewable generation
 - need more balancing power
- Power balance
 - generation equals demand
 - traditional balancing power: generators
- Demand response
 - adjust the other side of the equation
 - potentially provides a cost-effective solution

Why Industrial Loads?

- Demand response resources
 - residential, commercial, industrial loads
 - e.g. residential areas, electric vehicles, buildings, data centers, pumps, furnaces, fans, ...
- Industrial loads
 - advantages
 - infrastructure
 - already installed
 - response
 - large, fast, accurate
 - economic incentive
 - strong

- challenges
 - reliability
 - critical safety constraint
 - complexity
 - production activities
 - granularity
 - power change response

Thesis Goal

- Solution to Challenges for industrial loads
 - reliability
 - aluminum smelting, Chloralkali process, electrolysis process, ...
 - complexity
 - steel manufacturing, air separating, ...
 - granularity
 - cement crushing, thermal-mechanical pulping, ...
- Particular focus on ancillary services

Problem Statement

Account for uncertainty

– how to optimally participate in the uncertain markets, ensuring that the critical reliability constraints are satisfied?

II. Handle complexity of process

– how to model and solve the complex industrial DR problems within acceptable computation time?

III. Overcome granularity restrictions

– how to integrate the industrial loads with poor granularity to fully exploit their DR potentials?

Outline and Proposed Approach

- Introduction of Electricity Markets
- Account for Uncertainty
 - Optimize Regulation Capacity
 - Optimal Bidding of Energy and Reserve
- Handle Complexity of Process
 - Modeling Controllable Transformers
 - Modeling Spinning Reserve Provision
 - Tailored Branch and Bound Algorithm
- Overcome Granularity Restriction
 - MPC Coordination of Loads and Storage

Electricity Markets

- Energy market: electricity as a commodity
 - values depend on time ≠ a barrel of oil
 - expensive to store electricity in large quantities
 - produce, consume: at the same time!
- Ancillary service market
 - ensure supply security: generation = consumption
 - handle uncertainties, e.g. renewable generation
 - spinning reserve: generator or transmission outage
 - regulation, load following: load fluctuations
 - traditionally by generators
 - e.g. compulsory provision requirement for generators

Electricity Markets

Comparison

Service	Response Speed	Response Direction	Frequency, Duration	Market Cycle
Regulation	seconds	up, down	continuous	hourly
Spinning reserve	< 10 min	down	rarely dispatched, 10 min to 120 min	hourly

Prices in MISO [1]

– energy ~ \$30/MWh

regulation ~ \$10/MW (capacity + mileage)

spinning reserve ~ \$1/MW (capacity + dispatch)

Outline and Proposed Approach

- Introduction of Electricity Markets
- Account for Uncertainty
 - Optimize Regulation Capacity
 - Optimal Bidding of Energy and Reserve
- Handle Complexity of Process
 - Modeling Controllable Transformers
 - Modeling Spinning Reserve Provision
 - Tailored Branch and Bound Algorithm
- Overcome Granularity Restriction
 - MPC Coordination of Loads and Storage

Fig 1. Aluminum applications.

Aluminum Smelting

- Aluminum
 - the most widely used nonferrous metal
- Smelting: electrolytic process
 - consumes large amounts of electric energy
 - ~ 7kWh electricity per pound (~12kWh, 50 years ago)
 - only commercial way to produce aluminum
 - cells (pots) connected as potline
 - chemical reaction
 - $2AI_2O_3 + 3C => 4AI + 3CO_2$
 - alumina (ore) to aluminum

Power Consumption of Smelter

- DC power, by rectifier [1]
 - plant power magnitude: hundreds of MWs
 - each cell: voltage ~4V, current 150~250 kA, power 0.6~1MW
 - each potline: dozens of cells, tens of MWs of power
 - power change: precise and fast (within seconds)
 - turn up/down potline input voltage
 - rectifier tap changer, 0.7-1.2 MW/step
 - turn off the entire potline
 - recovery time, rotation among potlines
- Industrial DR experiences
 - Alcoa's Warrick, DRR-Type-2 resource, MISO, US [1]
 - Trimet Aluminium, molten battery, Germany [2]

Optimize Regulation Capacity [1]

- Problem statement
 - decide regulation capacity under uncertainties
 - stochastic programming
 - AGC (regulation command) traces as scenarios
 - assume hourly prices known
- Optimization model
 - minimize
 - net cost
 - energy, production
 - regulation capacity, mileage
 - penalty on mismatch
 - cost on tap movement

- subject to
 - cell temperature range
 - energy consumption for every successive hours
 - plant production amount range
 - tap movement physical limit

Optimize Regulation Capacity

- Simulation results
 - regulation capacity changes according to prices
 - increasing penalty leads to smaller mismatch

hour 1,3: higher regulation price

hour 2: lower regulation price

Fig 1. Regulation capacity for 3 hour simulation.

Fig 2. Changing penalties on mismatch

Optimal Bidding of Reserve and Energy [1]

- Optimally sell energy and spinning reserve
 - energy
 - long-term contract, specified power amount at fixed price
 - sell energy back in real-time market at real-time price
 - spinning reserve
 - power consumption adjustable: rectifier, shut down
 - stochastic optimization
 - price uncertainty
 - pointwise price prediction is not accurate enough
 - based on a set of (possible) price scenarios
 - maximize the expected profit over all scenarios
 - hedge the risk from prediction uncertainty

up to ten Price/MW pairs

(MW/Price)

Optimal Bidding of Reserve and Energy

- Bidding strategy
 - market rule [1]
 - energy: submit a price curve
 - spinning reserve: only one Price/MW pair
 - price taker assumption
 - strategy
 - energy
 - obtain optimal $E_{s,h}$ for every scenario
 - connect the optimal MW/Price pairs

Price (\$/MW)

Fig 2. Optimal Price/MW pairs in hour h.

- spinning reserve
 - seldom dispatched (~ 0.44% annual dispatch rate)
 - » simply standing by makes impressive profits
 - ask for low price, ensure clearing the optimal capacity

Optimal Bidding of Reserve and Energy

- Stochastic optimization
 - maximize
 - electricity market revenue
 - production profit
 - subject to
 - production efficiency
 - changes with loading level
 - minimum energy consumption
 - cell temperature
 - obey bidding rule
 - monotonous MW/Price pairs
 - daily production amount range

Fig. Piece-wise linear modeling of production profit.

$$P_{l,s,h} = \sum_{i=1}^{n_l} (a_{l,i} N_{l,s,h,i} + \Delta P_{l,s,h,i}) \quad \forall l, s, h$$

$$0 \le \Delta P_{l,s,h,i} \le (a_{l,i+1} - a_{l,i}) N_{l,s,h,i} \quad \forall l, s, h, i$$

$$\sum_{i=1}^{n_l} N_{l,s,h,i} = 1 \quad \forall l, s, h$$

Optimal Bidding of Reserve and Energy

Simulation results

Fig 1. Price scenarios.

Fig 2. Optimal bidding curves.

Account for Uncertainty

Timeline

- 13.07-13.12, Optimize Regulation Capacity
- 14.01-14.06, Optimal Bidding of Energy and Reserve
- 15.07-15.12, Optimal Bidding of Energy and Regulation
 - design the bidding strategy in the energy and regulation markets
- 16.01-16.06, Regulation by MPC with AGC Prediction
 - design real-time controller for smelter to provide regulation

Outline and Proposed Approach

- Introduction of Electricity Markets
- Account for Uncertainty
 - Optimize Regulation Capacity
 - Optimal Bidding of Energy and Reserve
- Handle Complexity of Process
 - Modeling Controllable Transformers
 - Modeling Spinning Reserve Provision
 - Tailored Branch and Bound Algorithm
- Overcome Granularity Restriction
 - MPC Coordination of Loads and Storage

Steel Manufacturing

Heat: a certain amount of metal

Source: P. M. Castro, L. Sun, and I. Harjunkoski, "Resource task network formulations for industrial demand side management of a steel plant," Industrial & Engineering Chemistry Research, vol. 52, no. 36, pp.13 046–13 058, 2013.

Steel Plant Scheduling

is a complicated process!

Challenges: multi-stage, large-scale,

Resource-Task Network for Steel Plants

Fig. RTN for a steel plant.

Modeling Controllable Transformers [1]

- Motivation energy cost minimization scheduling
 - basic scheduling optimize by shifting the tasks
 - what about adjusting EAF's melting power?
 - transformer's on-load tap changer (OLTC)

Modeling Controllable Transformers

- Multiple melting modes
 - collect information of melting power options in EAF
 - each mode : specified tap position => melting power, duration
 - total energy : same for all modes
 - choose from multiple modes (tasks) for each heat

same heat, different modes, different tasks

Modeling Controllable Transformers

- Arbitrary flexible melting
 - the tap position can change at any time slot
 - v.s. Modes: change tap position at beginning for each heat
 - need extra variables (a lot!)
 - the melting power rate at each time slot
 - the ending of each melting task
 - the duration of melting is not known ahead => extra binary variables
 - need extra constraints (a lot!)
 - total energy consumption
 - melting power range

. . .

Steel Plant Parameters

EAF energy-intensive!

Table 1. Nominal power consumption [MW]

$d_{h,u}$	EAF_1	EAF_2	AOD_1	AOD_2	LF_1	LF_2	CC_1	CC_2
$power_{h,u}$	85	85	2	2	2	2	7	7

Casting

Table 2. Nominal process time [min]

Group	$d_{h,u}$	EAF_1	EAF_2	AOD_1	AOD_2	LF_1	LF_2	CC_1	CC_2
G_1	H_1-H_4	80	80	75	75	35	35	50	50
G_2	$\overline{H}_5-\overline{H}_6$	85	85	80	80	40	40	60	60
O ₂	$H_7 - H_8$	85	85	80	80	20	20	55	55
G_3	$H_9 - H_{12}$	90	90	95	95	45	45	60	60
~	$H_{13} - H_{14}$	85	85	85	85	25	25	70	70
G_4	$H_{15} - H_{16}$	85	85	85	85	25	25	75	75
	$H_{17}^{}$	80	80	85	85	25	25	75	75
G_5	H_{18}	80	80	95	95	45	45	60	60
05	H_{19}	80	80	95	95	45	45	70	70
	H_{20}	80	80	95	95	30	30	70	70
G	$H_{21} - H_{22}$	80	80	80	80	30	30	50	50
G_6	$H_{23} - H_{24}$	80	80	80	80	30	30	50	60

[1] P. M. Castro, L. Sun, and I. Harjunkoski, "Resource task network formulations for industrial demand side management of a steel plant,"Industrial & Engineering Chemistry Research, vol. 52, no. 36, pp.13 046–13 058, 2013.

Controllable Transformer Simulations

- with more flexibility,
 do better in utilizing price valley
- model Modes slightly different from Flex

Fig. Hourly energy consumptions for scheduling 12 heats.

Controllable Transformer Simulations

TABLE IV. Energy cost minimization with $\delta = 15$ min

Heats	Model	# bin	# var	# con	MIP(k\$)	GAP	CPU(s)
4	Basic	2496	6048	3397	26.239	0	0.3
	Modes	3264	6816	3397	25.972	0	0.3
	Flex	2496	6816	4917	25.858	0	1.7
8	Basic	4992	11232	6122	60.173	0	0.8
	Modes	6528	12768	6122	57.501	0	1.1
	Flex	4992	12768	9162	57.332	0	31.1
12	Basic	7488	16416	8847	104.301	0	2
	Modes	10176	19104	8847	100.061	0	24
	Flex	7488	18720	13407	99.990	1.97%	7200
17	Basic	10560	22848	12253	171.615	0	4
	Modes	14208	26496	12253	159.454	0	170
	Flex	10560	26112	18713	160.896	3.72%	7200
20	Basic	12480	26784	14297	222.427	0	9
	Modes	16704	31008	14297	204.611	0	37
	Flex	12480	30624	21897	211.459	9.00%	7200
24	Basic	14976	31968	17022	299.782	0	320
	Modes	19968	36960	17022	277.283	0	83
	Flex	14976	36576	26142	287.077	11.36%	7200

when flexibility increases:complexity increasesCPU time increases final obj decreases

multiple modes:a great tradeoff

Modeling Spinning Reserve Provision [1]

- Optimization model
 - minimize net cost
 - energy cost minus spinning reserve revenue
 - subject to
 - resource balance (add SP resource and its interactions)
 - task execution
 - intermediate product waiting time
 - final product delivery due time
 - => a large scale mixed integer programming problem

Hourly Prices and Reserve Provision

- Feb 6, 2014, MISO

- provides as much as 70 MW SP

Fig 2. Hourly SP provision.

Spinning Reserve Provision Results

Optimization results with $t_0 = 15$ min

	w/o SP		with SP		
Groups	Obj(k\$)	Obj(k\$)	EN Cost(k\$)	SP Revenue(k\$)	
1-3	39.307	39.002	39.321	0.319	
1-4	57.824	57.357	57.864	0.507	
1-5	69.731	69.157	69.897	0.741	
1-6	86.346	85.508	86.474	0.966	

with SP:EN cost increasesnet cost decreases

Optimization results with $t_0 = 10$ min

	7	v/o SP	Wi	ith SP
Groups	Obj(k\$)	CPU Time(s)	Obj(k\$)	CPU Time(s)
1-3	39.041	397.7	38.651	739.7
1-4	57.517	637.8	57.009	1094.7
1-5	69.162	7200.0	68.468	7200
1-6	85.228	916.0	84.164	3569.7

a finer time grid:net cost decreasesCPU time increases

Tailored Branch and Bound Algorithm [1]

Classical B&B

- branch
 - branch on starting times of tasks
 - constraints set C
 - time restriction (a_{k1}, b_{k1})
 - starting time for task k1 is between a_{k1} , b_{k1}

$$C = [(a_{k1}, b_{k1}), (a_{k2}, b_{k2}), \dots, (a_K, b_K)]$$

$$x_{k1,t} = \begin{cases} 1, & \text{if } a_{k1} \le t < b_{k1} \\ 0, & \text{otherwise} \end{cases}$$

```
\begin{aligned} & \textbf{function} \quad CC = \text{Branch-Nodes}(C) \\ & \textbf{if} \quad C == \{\}: \\ & \quad CC = \text{set}() \\ & \textbf{enumerate} \text{ parallel units:} \\ & \quad CC.\text{add}([(0,T),\ldots,(0,T)]) \\ & \textbf{else:} \\ & k^* \leftarrow \arg\max_k(b_k-a_k) \\ & m^* \leftarrow \inf(\frac{b_k*-a_k*}{2}) \\ & \quad CC = \{[(a_{k1},b_{k1}),\ldots,(a_k*,m^*),\ldots], \\ & \quad [(a_{k1},b_{k1}),\ldots,(m^*,b_{k^*}),\ldots]\} \\ & \text{return } \quad CC \end{aligned}
```

Alg. Classical branching for steel scheduling.

Tailored B&B

- Basic idea
 - consistent process orders
 - for heats within same group
 - tasks within same group
 - leader and followers
 - first heat v.s. others
 - only branch leader task
 - restrict followers by rules
 - dictionary O
 - describe relationship
 - complexity reduced

•
$$T^K => T^L$$

```
( K, L : the number of tasks, leader tasks T : the number of time slots
```

```
function CC = Branch-Nodes(C)
   if C == \{\}:
      CC = set()
      enumerate parallel units:
          CC.add([(0,T),\ldots,(0,T)])
      return CC
   k^* \leftarrow \arg\max_{k \in O.\text{keys}} (b_k - a_k)
   if b_{k^*} - a_{k^*} > \epsilon_d:
      m^* \leftarrow \operatorname{int}(\frac{b_k - a_k}{2})
      o_a, o_b \leftarrow \text{offset for followers in } O[k^*]
      CC = \{[\dots, (a_{k^*}, m^*), (a_{k^*} + o_a, m^* + o_b), \dots \}
                  [\ldots, (m^*, b_{k^*}), (m^* + o_a, b_{k^*} + o_b), \ldots
   else:
      k^* \leftarrow \arg\max_{k \in \mathbb{K}} (b_k - a_k)
      m^* \leftarrow \operatorname{int}(\frac{b_k - a_k}{2})
      CC = \{[(a_{k1}, \bar{b_{k1}}), \dots, (a_{k^*}, m^*), \dots],
                  [(a_{k1},b_{k1}),\ldots,(m^*,b_{k^*}),\ldots]
                      Alg. Tailored branching.
```

$$O[k_{E1}] = \{k_{E2} : (0, \tau_{E1}), \\ k_{E3} : (\tau_{E1}, \tau_{E1}), \\ k_{E4} : (\tau_{E2}, \tau_{E1} + \tau_{E2})\}$$

offsets/delays between leader and its followers

Tailored B&B

Performance

Branch and bound results with $t_0 = 15 \text{min}$

Groups		c0	b1	
	Obj(k\$)	24.553	24.698	1.006
G1-2	CPU(s)	5.8	6.2	
	lpNum	2460	57	
	Obj(k\$)	39.306	39.665	1.009
G1-3	CPU(s)	155.4	50.0	
	lpNum	9071	228	
	Obj(k\$)	57.857	58.694	1.014
G1-4	CPU(s)	60.4	197.8	
	lpNum	3852	280	
	Obj(k\$)	69.737	70.194	1.007
G1-5	CPU(s)	4.3	861.0	
	lpNum	0	478	
	Obj(k\$)	86.352	86.799	1.006
G1-6	CPU(s)	104.9	2737.6	
	lpNum	3698	725	

Fig. Scheduling results comparison.

- c0: cplex, b1: tailored b&b
- significantly reduces iteration
- optimality loss around 1%

Handle Complexity of Process

Timeline

- 14.01-14.06, Modeling Controllable Transformers
- 14.07-14.12, Modeling Spinning Reserve Provision
- 15.01-15.06, Tailored Branch and Bound Algorithm
- 15.07-15.12, Reserve Dispatch and Melting Curves
 - consider actual dispatch of reserve and realistic melting curves
- 16.01-16.06, Transportation between Stages
 - consider various transport modes and exact equipment locations

Outline and Proposed Approach

- Introduction of Electricity Markets
- Account for Uncertainty
 - Optimize Regulation Capacity
 - Optimal Bidding of Energy and Reserve
- Handle Complexity of Process
 - Modeling Controllable Transformers
 - Modeling Spinning Reserve Provision
 - Tailored Branch and Bound Algorithm
- Overcome Granularity Restriction
 - MPC Coordination of Loads and Storage

Cement Plant

Fig. (Left) Energy distribution among cement manufacturing process [1] (Top) A typical cement plant layout in South Africa [2]

Energy intensive

- energy 40% of total cost [3], net profit margin only 2.03% [4]
 - providing regulation helps to further reduce net cost
 - e.g. consider a 10MW crusher, produce 200 ton cement per hour
 - electricity market prices^[5] (approximately)
 - » energy \$30/MWh, spinning reserve \$1/MW, regulation \$10/MW
 - 10 MW in energy + spinning reserve : (250-10)/200ton = 1.2/ton
 - 5 MW in energy + regulation : (125-50)/100ton = 0.75/tton
- [1] 2011, Load-shifting opportunities for a typical South African cement plant.
- [2] 2007, TAMU-PhD-Thesis, Improved cement quality and grinding efficiency by means of closed mill circuit modeling.
- [3] 2008, Greening the construction industry: Enhancing the performance of cements by adding bioglycerol
- [4] 2010, http://www.bloomberg.com/bw/slideshows/20110118/most-and-least-profitable-business-types#slide10
- [5] 2015, https://www.misoenergy.org/MarketsOperations/RealTimeMarketData/Pages/AncillaryMarketMCP.aspx

Mill (crusher)

Fig 1. Jaw crusher [1]

Flexibility

Fig 2. Ball mill layout [2]

- shut-down and start-up of the mill motor [3]
 - without excessive inconvenience
- spinning reserve provision [4]
- fast enough for regulation, load following
 - switch on/off within seconds

^[2] https://en.wikipedia.org/wiki/Cement_mill

^{[3] 2011,} Load-shifting opportunities for a typical South African cement plant.

^{[4] 2012,} Robust integer optimization and scheduling problems for large electricity consumers.

MPC Coordination of Loads and Storage [1]

- Regulation (or load following)
 - continuous, AGC signal
- Cement plant flexibility
 - fast, but not fine enough, several MWs/step
- Coordination
 - cement mills/crushers + on-site storage/battery
 - crushers, large/discrete power change, main body
 - battery, fine/continuous power change
 - model predictive control (MPC)
 - decides the switch on/off of the crushers
 - based on a prediction of the upcoming AGC signal

MPC Framework

Fig 1. AGC signal and ARMA prediction.

MPC Simulation

- Optimal controller
 - given regulation capacity and power baseline
 - optimizes coordination between crusher and battery
 - minimize
 - regulation mismatch, crusher switching, battery level deviation
 - subject to
 - battery energy balance, maximum switch number limitation
- Case study
 - cement plant: 4 crushers, each has 2MW
 - on-site storage ^[1]: 1MWh, -3MW~3MW, no efficiency loss
 - capacity 6MW, baseline 4MW, i.e. range [-2, 10] MW

MPC Simulation Result

Simulation settings:

H = 15

Simulation settings: switch penalty 200

Overcome Granularity Restriction

- Timeline
 - 15.07-15.12, MPC Coordination of Loads and Storage
 - 16.01-16.06, Scheduling with Regulation Provision
 - consider the processing rate of the kilns and the storage capacity of the silos.

Outline and Proposed Approach

- Introduction of Electricity Markets
- Account for Uncertainty
 - Optimize Regulation Capacity
 - Optimal Bidding of Energy and Reserve
- Handle Complexity of Process
 - Modeling Controllable Transformers
 - Modeling Spinning Reserve Provision
 - Tailored Branch and Bound Algorithm
- Overcome Granularity Restriction
 - MPC Coordination of Loads and Storage

Questions & Discussions

Thanks!

backup slides

Research Gap

- Power and Energy communities
 - the integration of DR into power system
 - residential and commercial loads
- Chemical Engineering communities
 - the potentials from chemical processing plants as DR
 - electric energy markets
- Research gap
 - the integration of industrial DR into power system
 - esp. industrial DR in ancillary service markets
 - reserve, regulation, load following

RTN for Steel Plants

- Resources

RTN for Steel Plants

- Tasks

RTN for Steel Plants

- Interactions

Fig. Illustration of RTN for a steel plant.

Interaction Parameter

Simulation settings: other penalties fixed at 10

Simulation settings: other penalties fixed at 10

Simulation settings: switch penalty 1000

Simulation settings: deviation penalty 1000

Simulation settings: switch limit 4 times within 5 mins

Open Questions

- Applications to other industries
 - air separation units, paper & pulp, ...
- Electricity markets redesign
 - AGC signal or load following, consider loads like crushers,
 - use a finer trading horizon, e.g. half hour to enable more participation from steel plants
- Cooperation with buildings, electric vehicles
- Energy hub with industrial loads, generators, ...
- Prediction of market prices

. . .

