Обратные задачи в моделировании нейронных дифференциальных уравнений в частных производных

Александр Терентьев

Московский физико-технический институт, Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем Научный руководитель: д.ф.- м.н. Стрижов Вадим Викторович

17 мая 2025 г.

Классификация траекторий динамических систем

Проблема

В задачах ЕЕG трудность вызывает получение точного сигнала от головного мозга. Исследователи встречаются со следующими проблемами. Высокая чувствительность прибора к движениям и тремору, обусловленному психоэмоциональным напряжением пациента, вызывает помехи в работе, что может затруднить диагностику.

Цель

Целью работы является предложить метод решения восстановления источников сигнала ЭЭГ и уменьшения уровня шума в их определении. Предлагается использовать физико-информированный подход в восстановлении, использующийся в задачах восстановления временных рядов, вносящий априорные знания о модели для уменьшения уровня шума от данных.

Постановка обратной задачи

Дано

- 1. $\mathcal{D} = \{X_i\}_{i=1}^N$ набор данных пространственно-временных рядов ЭЭГ, где $X_i = \chi(r,t): \mathbb{R}^(3 \times 1) \to \mathbb{R}^K$ пространственно-временной ряд сигналов K.
- 2. $S = \{s_i(t)\}_{i=1}^M$ конечный набор источников сигналов.

Найти

- 1. $D(\hat{s}|X,\mathcal{D})$ суперпозиция пространственно-временных рядов ЭЭГ X_i по M источникам
- 2. $G(\hat{X}(t+1)|X(t),\hat{s},\mathcal{D})$ восстановление пространственно-временных рядов ЭЭГ X_i на основе s источника

Критерий

MSE - ошибка предсказаний рядов $\|\hat{X} - X\|_2$

О схеме восстановления источников сигналов

$$\chi_i: (N_x \times N_y \times N_z \times T) \xrightarrow{D(\hat{s}|X,\mathcal{D})} s \xrightarrow{G(\hat{X}|X(t),\hat{s},\mathcal{D})} \hat{\mathbf{X}}$$
 Метод Inverse NPDE

Поверхность головы Г

Разрез объема головы Ω

Воостановление электромагнитных потенциалов

Уравнения Максвелла в СГС

1.
$$\nabla \cdot \mathbf{A} + \frac{\varepsilon \mu}{c} \frac{\partial \varphi}{\partial t} = 0$$

2.
$$\Box \varphi = -4\pi \frac{\rho}{\varepsilon}$$

3.
$$\Box \mathbf{A} = -\frac{4\pi}{c} \,\mu \,\mathbf{j}$$

4.
$$\Box = \Delta - \frac{\varepsilon \mu}{c^2} \frac{\partial^2}{\partial t^2}$$

Разрез объема головы Ω

Задача nPDE

Необходимо восстановить $ho,\phi,{\bf A},{\bf j}$ Моделируется нейросетью с 8 выходами. Граничное условие: $\phi|_{\Gamma}=0,{\bf A}|_{\Gamma}=0$

Критерий

$$\mathsf{Loss} = \mathsf{BCSLoss} + \mathsf{PDELoss} + \|\hat{X} - X\|_2 + R(\mathbf{w})$$

Энергия в качетсве регуляризации

Идея

- 1. Требуется добиться наиболее простое распределение зарядов. Обычные методы регуляризации не решают данную задачу.
- 2. Предлагается в качестве регуляризации брать энергию электрического поля

Подсчет энергии

- 1. $\frac{d\mathcal{E}}{dt}(\mathbf{r},t) = \phi(\mathbf{r},t)$
- 2. Граничное условие $\mathcal{E}(\mathbf{r}=-\infty)=0$

Критерий

$$\mathsf{Loss} = \mathsf{BCSLoss} + \mathsf{PDELoss} + \|\hat{X} - X\|_2 - \mathcal{E} + \mathsf{BCSLoss}_{\mathcal{E}} + \mathsf{PDELoss}_{\mathcal{E}}$$

Цель экспепримента

- 1. Исследовать зависимость качества восстановления источников в зависимости от расположения датчиков
- 2. Исследовать влияние регуляризации на картину распределения зарядов
- 3. Исследовать монотонность сходимости метода

Востановленное распределение зарядов

Распределение зарядов ho в плоскости Оху в момент времени t=0

Востановленный потенциал

Потенциал ϕ в плоскости Оху в момент времени t=0

Схожие работы

1. Zhen Qi, Gregory M. Noetscher, Alton Miles, etc., Enabling electric field model of microscopically realistic brain