Homework 3

Put your name and student ID here 2020-09-24

Q1: Let X_1, \ldots, X_{15} be a simple random sample of $N(0, 2^2)$. What is the distribution of

$$Y = \frac{X_1^2 + \dots + X_{10}^2}{2(X_{11}^2 + \dots + X_{15}^2)}?$$

Q2: Let Z = c + AY, where Y is a random vector, A is a fixed matrix, and c is a fixed vector. Prove that

- 1. the expected value of Z: $\mathbb{E}[Z] = c + A\mathbb{E}[Y]$,
- 2. the covariance matrix of \mathbf{Z} : $Var[\mathbf{Z}] = \mathbf{A}Var[\mathbf{Y}]\mathbf{A}^{\top}$.

Q3: Let X_1, \ldots, X_n be iid sample from $N(\mu, \sigma^2)$, where μ, σ are unknown parameters. Which of the following are statistics? () 多选题

A.
$$X_1 + X_n - 2\mu$$

B.
$$(X_1 - \mu)/\sigma$$

C.
$$(\bar{X} - 10)/5$$

D.
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - S_n)^2$$

Q4: Suppose that $n = 15, \bar{x}_n = 168, s_n = 11.43, x_{n+1} = 170$. Find the values for \bar{x}_{n+1}, s_{n+1}^2 and s_{n+1}^{*2} .

Q5: Show that if X and Y are independent exponential random variables with $\lambda = 1$, then X/Y follows an F distribution. Also, identify the degrees of freedom.

Q6: Suppose that $X = (X_1, ..., X_n)^{\top} \sim N(\mathbf{0}, I_n)$. Show that for any orthogonal matrix U, then $UX \sim N(\mathbf{0}, I_n)$.