Indonesian 3.8m telescope and Instruments

Mikio Kurita (Kyoto University)
Kolokium Mingguan Riset Antariksa
BRIN Indonesia
20230823

Telescope

Seimei as Sister telescope

Aperture: 3.8 m

Focus: Nasmyth \times 2 F/6

Field of view: 10'

Observational

Wavelength: 0.4 to 4.2 um

Adaptive Optics: Near-infrared

Pointing speed < 1 min (whole sky)

Elevation speed: 3°/s

Azimuth speed: 4°/s

NIRCA

Seimei Telescope

	Specifications
Band	Y (λ =1020, $\Delta\lambda$ =120), J (λ =1220, $\Delta\lambda$ =213), H (λ =1630, $\Delta\lambda$ =307),
F	2
FoV	9 × 9 arcmin ²
Pixel scale	0.4 arcsec/pixel
Image quality	0.8 arcsec (EE>73%)
Detector Temp.	120 K

Near Infrared Wide Field Camera NIRKA(CAD model)

EE: Encircled Energy

Field of View (FoV)

The collimator and camera units converts the F-ratio from 6 to 2.

Collimator Unit

Vacuum Chamber

	Detector
Observable wavelength	950 nm ~ 1700 nm
Format size	$1280 \times 1280 \text{ pixel}^2$
Pixel size	15 μm
Effective area	$19.2 \times 19.2 \text{ mm}^2$

Image Quality of NIRCA

+ 1.7835 × 1.6300 s 1.4765 x 1.3265 m 1.2200 s 1.1135 s 1.0800 s 1.0200 s 0.9600

Wavelength

Image Quality of NIRCA

NIRCA

NIRCA is still under developing. The engineering observation is planed in the end of this year.

Camera Unit

Vacuum and cryogenic test of vacuum chamber

Detector box

Vacuum chamber and its window

Filter wheel inside the box

http://www.kusastro.kyoto-u.ac.jp/~mikio/indonesia/NIRcamera.html

OPTIKA

OPTIKA

	Features
Band	g, r, i (Pan-STARRS)
Image quality	0.8 arcsec (EE > 80%)
FoV	12.5 x 12.5 arcmin ²
Throuput	>73%
CCD	E2V 42-40 X 3
Pixel size	13.5 μm
Format size	2048 ×2048 pixel ²
F	F/2.0
Pixel scale	0.37 arcsec/pix

Engineering Observation by OPTIKA

Engineering Observation by OPTIKA

OPTIKA

Optical path

Potential Targets of NIRCA

- ① Galactic center
- Observable from the southern hemisphere
- Near infrared can penetrate the galactic center opaque in visible wavelength with inter stellar dust. Ex. Follow-up of microlensing monitoring, Star-forming region
- 2 Transient objects
- Impossible to predict the timing and location
- Wide FoV and quick telescope are beneficial

Location