	姓	名				
2	0	1				
	班	 级				

题号	[1]	[2]	[3]	[4]	[5]	[6]	Σ
得分							
题分	8	6	56	8	6	16	100

1. B-树 3 + 5

考查包含2018个关键码的16阶B-树,约定根节点常驻内存,且在各节点内部采用顺序查找。

a) 在单次成功查找的过程中,至多可能需要读多少次磁盘?请列出估算的依据。

b) 在单次成功查找的过程中,至多可能有多少个关键码需要与目标关键码做比较?请列出估算的依据。

2. 理想随机 2 x3

本课程所介绍的一些算法与数据结构,乃是针对实际应用中普遍存在的非随机数据集而设计的;反过来,只要数据集是理想随机的,则大可不必采用。试举三个这样的案例,列出讲义页码,并作简要说明(各不超过两行)。

3.	判断(请使用'0'和'X') 2 ×28
	在某节点被删除后AVL树的高度即便下降了,这次操作期间也未必做过旋转调整。
Ш	•••••
	有向图经DFS后若共有 k 条边被标记为BACKWARD,则它应恰有 k 个环路。
Щ	•••••
Щ	对于同一无向图,起始于顶点 s 的DFS尽管可能得到结构不同的DFS树,但 s 在树中的度数必然固定。
Щ	•••••
Ш	采用单向平方策略的散列表,只要长度 \mathcal{M} 不是素数,则每一组同义词在表中都不会超过 $[\mathcal{M}/2]$ 个。
	•••••
	$ ext{PFS过程中}$,尽管每一步迭代都可能多次调用 $ ext{prioUpdater}()$,但累计不过 $\mathcal{O}(e)$ 次。
Ш	•••••
	相对于KMP算法而言,BM算法更适合于大字符集的应用场合。
Ш	•••••
	在存有 n 个词条的跳转表中,各塔高度的期望值为 $\Theta(\log n)$ 。
	•••••
$\overline{\Box}$	红黑树的插入或删除操作,都有可能导致 $\Omega(\log n)$ 个节点的颜色反转。
H	
H	•••••
Н	将 $\{0,1,2,\ldots,2018\}$ 插入一棵空的伸展树后若树高为2018,则上述词条必是按单调次序插入的。
Щ	•••••
Щ	在插入操作后若红黑树黑高度增加,则在双红修复过程中仅做过重染色,而无任何结构调整。
Ш	•••••
	若输入序列包含 $\Omega(n^2)$ 个逆序对,则快速排序算法(LUG版)至少需要执行 $\Omega(n\log n)$ 元素交换操作。
	采用12-C节中介绍的任何一种增量序列, $shellSort()$ 最后的 $l-sorting$ 都只需要 $\mathcal{O}(n)$ 时间。
一	•••••
	无论是单独借助BC[]表或GS[]表,BM算法在最好情况下都只需要 $\mathcal{O}(T / P)=\mathcal{O}(n/m)$ 时间。
	•••••
	对规模为 n 的 AVL 树做一次插入操作,最坏情况下可能引发 $\Omega(\log n)$ 次局部重构。

4. 封闭散列

某散列表 $\mathcal{H}[0,M=2^s)$ 采用封闭散列策略(初始令c=d=0):对于任何key,首先试探 $\mathcal{H}[key\%M]$;以下,只要冲突,就令 $c\leftarrow c+1$ 再 $d\leftarrow d+c$,并继而试探 $\mathcal{H}[(key+d)\%M]$ 。以 $M=2^4=16$ 为例,关键码key=27的前五个试探位置依次是:11、12、14、1、5。但如同对于平方试探策略,我们首先需要确认,这种试探序列是否总能覆盖所有桶单元。若是,请给出证明;否则,试举一(s和key组合的)反例。

5. **多产** 2 x3

计算机科学家往往在多个方面同时有所建树。试以讲义上介绍的算法或数据结构为例,列举出其中的三位,以 及他们各自的两项贡献。请注明在讲义上对应的页码,并作简要说明(每人每项不超过一行)。

6. KMP 5 + 3 + 3 + 5

所谓的斐波那契串(Fibonacci Strings),系由字符集 $\Sigma = \{\text{'O'}, \text{'X'}\}$ 生成: $\phi_0 = \text{"O"}$, $\phi_1 = \text{"X"}$;对于 $k \geq 2$,有 $\phi_k = \phi_{k-1}\phi_{k-2}$,比如: $\phi_2 = \text{"XO"}$, $\phi_3 = \text{"XOX"}$, $\phi_4 = \text{"XOXXO"}$,......。

1) 以下考查 KMP 算法的改进版。试列出 ϕ_7 ,并计算其对应的查询表。

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\phi_7[j]$																					
$improved_next[j]$																					

2) 若 $|\phi| \geq 2$, 则将 ϕ 末尾的两个字符翻转 , 得到的串可记作 ϕ' 。比如 , $\phi'_5 =$ "X0XX0X $\underline{{\rm XO}}$ "。

试证明: $\forall k \geq 2, \ \phi_{k-2}\phi_{k-1} = \phi'_k$

3) 试证明: 若以 ϕ_k 作为模式串,文本串的某个T[i]可能参与 $\Omega(k)$ 次比较。

4) 试证明,对于任何模式串P,文本串的每一字符至多会与P中的 $\mathcal{O}(\log m)$ 个字符做比对,m=|P|。

