

Dec 11, 2024

Mind Controlled Bionic Arm with Sense of Touch [8 class version]

DOI

dx.doi.org/10.17504/protocols.io.n92ldr869g5b/v1

Dhruva Shaw¹, Arittrabha Sengupta¹, Bhavya Choudhary², Dr. Raam Dheep², Jay Baswaraj Khaple²

¹Creative Net; ²Lovely Professional University

Dhruva Shaw Creative Net

DOI: dx.doi.org/10.17504/protocols.io.n92ldr869g5b/v1

Protocol Citation: Dhruva Shaw, Arittrabha Sengupta, Bhavya Choudhary, Dr. Raam Dheep, Jay Baswaraj Khaple 2024. Mind Controlled Bionic Arm with Sense of Touch [8 class version]. **protocols.io** https://dx.doi.org/10.17504/protocols.io.n92ldr869g5b/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development We are still developing and optimizing this protocol

Created: December 11, 2024

Last Modified: December 11, 2024

Protocol Integer ID: 115011

Keywords: Bionic Arm, Robotics, Biotechnology, Mind Control, Prosthetics

Disclaimer

This is a ongoing project, so lot of changes are variation in results are to be expected!

Abstract

Advancements in bionic technology are transforming the possibilities for restoring hand function in individuals with amputations or paralysis. This paper introduces a cost-effective bionic arm design that leverages mind-controlled functionality and integrates a sense of touch to replicate natural hand movements. The system utilizes a non-invasive EEG-based control mechanism, enabling users to operate the arm using brain signals processed into PWM commands for servo motor control of the bionic arm. Additionally, the design incorporates a touch sensor (tactile feedback) in the gripper, offering sensory feedback to enhance user safety and dexterity.

The proposed bionic arm prioritizes three essential features:

- 1. Integrated Sensory Feedback: Providing users with a tactile experience to mimic the sense of touch (signals directly going to the brain). This capability is crucial for safe object manipulation by arm and preventing injuries
- 2. Mind-Control Potential: Harnessing EEG signals for seamless, thought-driven operation.
- 3. Non-Invasive Nature: Ensuring user comfort by avoiding invasive surgical procedures.

This novel approach aims to deliver an intuitive, natural, and efficient solution for restoring complex hand functions.

Downloading of Datasets from Internet & Arranging them in a Proper Format

1 Please acquire the data associated with the following datasets::

Dataset

MILimbEEG: An EEG Signals Dataset based on Upper and Lower Limb $^{\mathsf{NAME}}$

https://data.mendeley.com/datasets/x8psbz3f6x/2

LINK

Dataset

Supporting data for "EEG datasets for motor imagery brain comput $^{\mathsf{NAME}}$

https://gigadb.org/dataset/100295

LINK

Extract it and keep the 2 datasets into 2 seperate folder In the *MILimbEEG dataset* run the following python file (it will sort the data into 8 different categories)

https://github.com/Dhruvacube/Mind-Control-Bionic-

Arm/tree/main/datasets/datasourceDatasets/MILimbEEG%20An%20EEG%20Signals%20Dataset%20based%20on%20Upper%20and%20Lower%20Limb%20Task%20During%20the%20Execution%20of%20Motor%20and%20Motorimagery%20Tasks


```
MindLimbEEG data sorter in python (Windows 11)
from pathlib import Path
import pandas as pd
task_dict = {1: 'BEO', 2: 'CLH', 3: 'CRH', 4: 'DLF', 5: 'PLF', 6:
'DRF', 7: 'PRF', 8: 'Rest'}
task_var_dict = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0}
folders_list = [Path(f'./S{i}') for i in range(1,60+1)]
for j in range(60):
    for k in [i for i in folders_list[j].glob('*.csv')]:
        for h in k.parts[1]:
            if h in ('M', 'I'):
                next_index: int = (k.parts[1].index('M' if h == 'M'
else 'I')) + 1
                task_var_dict[int(k.parts[1][next_index])] += 1
                df = pd.read_csv(k)
                df = df.drop(df.columns[0], axis=1)
                df.to_csv(f'./{task_dict[int(k.parts[1]
[next index])]}/{task dict[int(k.parts[1]
[next_index])]}_{task_var_dict[int(k.parts[1][next_index])]}.csv',
index=False, header=False)
print(f'BEO: {task_var_dict[1]}\nCLH: {task_var_dict[2]}\nCRH:
{task_var_dict[3]}\nDLF: {task_var_dict[4]}\nPLF:
{task_var_dict[5]}\nDRF: {task_var_dict[6]}\nPRF:
{task_var_dict[7]}\nRest: {task_var_dict[8]}')
```

Categories this python file sorts into:

- Recording a Baseline with Eyes Open (BEO) without any task command: only once at the beginning of each run.
- Closing Left Hand (CLH): five times per run.
- Closing Right Hand (CRH): five times per run.
- Dorsal flexion of Left Foot (DLF): five times per run.
- Plantar flexion of Left Foot (PLF): five times per run.
- Dorsal flexion of Right Foot (DRF): five times per run.

- Plantar flexion of Right Foot (PRF): five times per run.
- Resting in between tasks (Rest): after each task.

Now, similarly goto the *GigadbEEG dataset* folder and run the following python file:

https://github.com/Dhruvacube/Mind-Control-Bionic-

<u>Arm/tree/main/datasets/datasourceDatasets/GigaDb</u>

GigaDB class Sorter (Windows 11)

```
# Data to extract
# - movement left
# - movement_right
# - imagery_left
# - imagery_right
# - rest
# next is nose
# - noise
# It is a 5x1 cell array in matlab
import scipy.io
import pandas as pd
for i in range(1, 53):
    mat = scipy.io.loadmat(f's{i}.mat')
    mat_eeg = mat['eeg']
    for j in range(0, 5):
        df_noise = pd.DataFrame(mat_eeg['noise'][0,0][j,0])
        df_noise.to_csv(f'noise/noise_{i}_{j}.csv', index=False,
header=False)
        print(f'noise/noise_{i}_{j}.csv')
    df_movement_left = pd.DataFrame(mat_eeg['movement_left'][0, 0])
    # df_movement_left =
df_movement_left.drop(labels=df_movement_left.columns[0], axis=1)
    df_movement_right = pd.DataFrame(mat_eeg['movement_right'][0, 0])
    # df movement right =
df_movement_right.drop(df_movement_right.columns[0], axis=1)
    df_imagery_left = pd.DataFrame(mat_eeg['imagery_left'][0, 0])
    # df_imagery_left =
df_imagery_left.drop(df_imagery_left.columns[0], axis=1)
    df_imagery_right = pd.DataFrame(mat_eeg['imagery_right'][0, 0])
    # df_imagery_right =
df imagerv right.drop(df imagerv right.columns[0], axis=1)
```


df rest = pd.DataFrame(mat eeg['rest'][0, 0]) # df_rest = df_rest.drop(df_rest.columns[0], axis=1) df_movement_left.to_csv(f'movement_left/movement_left_{i}.csv', index=False, header=False) print(f'movement_left/movement_left_{i}.csv') df_movement_right.to_csv(f'movement_right/movement_right_{i}.csv', index=False, header=False) print(f'movement_right/movement_right_{i}.csv') df_imagery_left.to_csv(f'imagery_left/imagery_left_{i}.csv', index=False, header=False) print(f'imagery_left/imagery_left_{i}.csv') df_imagery_right.to_csv(f'imagery_right/imagery_right_{i}.csv', index=False, header=False) print(f'imagery_right/imagery_right_{i}.csv') df_rest.to_csv(f'rest/rest_{i}.csv', index=False, header=False) print(f'rest/rest {i}.csv')

Note

In GigaDB for this case we will take only the Rest class data

In this GigaDB dataset take the segregated Rest data and mixed with the MindLimb Rest data.

Conversion to Audio Files (single channels) from CSV Files

3 In the sorted data run the following python file to get it segregated into different channels and convert it into audio file in .wav format

CSV to Single Channel Audio File Converter (Windows 11)

```
import pandas as pd
import soundfile as sf
import os
fs = 125 # sampling frequency
destinationFolder = "./audioFiles/"
sourceFolder = "./orderedDatasets/"
for root, dirs, files in os.walk(sourceFolder):
    if len(files) > 0:
        classCurrent = root[len(sourceFolder):]
            os.makedirs(destinationFolder + classCurrent)
        except Exception as e:
            pass
        for file in files:
            df: pd.DataFrame =
pd.read_csv(sourceFolder+classCurrent+'/'+file, header=None)
            columns = list(df.columns)
            for column in columns:
                sf.write(destinationFolder + classCurrent + '/' +
file[:-4] + '_' + str(column) + '.wav', df[column], fs)
```

Training of Model (Transfer Learning from Yamnet)

4 Now open up the **MATLAB** and run the following file to train the *yamnet* for our *specific use* case and then test it and generate the confusion matrix.

Take the supporting files from here: https://github.com/Dhruvacube/Mind-Control-Bionic-Arm/

Model Training and Testing (Transfer Learning from Yamnet) (Windows 11)

```
%start from here
addpath(fullfile('yamnet'))
fs = 125; %since sampled at 125Hz
adsSource = audioDatastore("D:\projects\Research\Mind Control Bionic
Arm\datasets\audioFiles\",IncludeSubfolders=true,LabelSource="folderna
mes",FileExtensions=[".wav"]);
[adsTrain,adsValidation,adsTest] =
splitEachLabel(adsSource, 0.7, 0.2, 0.1, "randomized");
trainLabels = adsTrain.Labels;
classNames = unique(adsTrain.Labels);
numClasses = numel(classNames);
testLabels = adsTest.Labels;
net = audioPretrainedNetwork("yamnet", NumClasses=numClasses);
% Extract features using YAMNet
adsTrain = transform(adsTrain,@audioPreprocess, "IncludeInfo",true);
adsValidation = transform(adsValidation,@audioPreprocess,
"IncludeInfo", true);
adsTest = transform(adsTest,@audioPreprocess, "IncludeInfo",true);
miniBatchSize = 128;
validationFrequency = floor(numel(trainLabels)/miniBatchSize);
options = trainingOptions('sgdm', ...
    InitialLearnRate=3e-4, ...
   MaxEpochs=2, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Metrics="accuracy", ...
    Verbose=false, ...
    LearnRateSchedule="exponential", ...
    ValidationData=adsValidation, ...
    ValidationFrequency=validationFrequency, ...
    ExecutionEnvironment="parallel-auto");
net = trainnet(adsTrain.net,"crossentropy".options):
```


YTest = minibatchpredict(net,adsTest);
YTestFinal = scores2label(YTest,classNames);
plotconfusion(testLabels,YTestFinal);
[C,order] = confusionmat(testLabels,YTestFinal);
stats = statsOfMeasure(C, 1);

Confusion Matrix NaN% 0 0 0 0 0 0 0 BEO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0 0 0 0 0 0 0 NaN% CLH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0 0 0 0 0 0 0 NaN% CRH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0 0 0 0 NaN% 0 0 0 0 DLF Output Class 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% NaN% 0 0 0 0 0 0 0 DRF 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 192 958 960 960 960 960 960 5954 8.1% PLF 1.6% 8.0% 8.1% 8.1% 8.1% 8.1% 8.1% 50.0% 91.9% 0 0 0 0 0 0 NaN% PRF 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0 0 0 0 0 0 0 NaN% Rest 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0.0% 0.0% 0.0% 0.0% 0.0% 100% 0.0% 0.0% 8.1% 100% 100% 100% 100% 100% 0.0% 100% 100% 91.9% CRY OLE OPY **Target Class**

Confusion Matrix of the Trained Model

Protocol references

CITATION

Victor Asanza, Daniel Montoya, Leandro Leonardo Lorente-Leyva, Diego Hernán Peluffo-Ordóñez, Kléber González (2023). MILimbEEG: An EEG Signals Dataset based on Upper and Lower Limb Task During the Execution of Motor and Motorimagery Tasks. Mendeley Data.

LINK

https://doi.org/10.17632/x8psbz3f6x.2

CITATION

Cho H; Ahn M; Ahn S; Kwon M; Jun SC (2017). Supporting data for "EEG datasets for motor imagery brain computer interface". GigaDB Dataset.

LINK

https://doi.org/10.5524/100295

CITATION

(2024). Transfer Learning with Pretrained Audio Networks. Mathworks Help Center.

LINK

https://in.mathworks.com/help/audio/ug/transfer-learning-with-pretrained-audio-networks.html

CITATION

(2024). yamnetPreprocess. Mathworks Help Center.

LINK

https://in.mathworks.com/help/audio/ref/yamnetpreprocess.html

CITATION

(2024). audioDatastore. Mathworks Help Center.

LINK

https://in.mathworks.com/help/audio/ref/audiodatastore.html

CITATION

Google, Dan Ellis, Manoj Plakal (2020). YAMNet. GitHub.

LINK

https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

CITATION

Jon Hamilton (2021). Scientists Bring The Sense Of Touch To A Robotic Arm. NPR.

LINK

https://www.npr.org/sections/health-shots/2021/05/20/998725924/a-sense-of-touch-boosts-speed-accuracy-of-mind-controlled-robotic

CITATION

Almabrok Essa, Hari Kotte (2021). Brain Signals Analysis Based Deep Learning Methods: Recent advances in the study of non-invasive brain signals. arXiv.

LINK

https://doi.org/10.48550/arXiv.2201.04229

Citations

Victor Asanza, Daniel Montoya, Leandro Leonardo Lorente-Leyva, Diego Hernán Peluffo-Ordóñez, Kléber González. MILimbEEG: An EEG Signals Dataset based on Upper and Lower Limb Task During the Execution of Motor and Motorimagery Tasks

https://doi.org/10.17632/x8psbz3f6x.2

Cho H; Ahn M; Ahn S; Kwon M; Jun SC. Supporting data for "EEG datasets for motor imagery brain computer interface" https://doi.org/10.5524/100295

Transfer Learning with Pretrained Audio Networks

https://in.mathworks.com/help/audio/ug/transfer-learning-with-pretrained-audio-networks.html

yamnetPreprocess

https://in.mathworks.com/help/audio/ref/yamnetpreprocess.html

audioDatastore

https://in.mathworks.com/help/audio/ref/audiodatastore.html

Google, Dan Ellis, Manoj Plakal. YAMNet

https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

Jon Hamilton. Scientists Bring The Sense Of Touch To A Robotic Arm

https://www.npr.org/sections/health-shots/2021/05/20/998725924/a-sense-of-touch-boosts-speed-accuracy-of-mind-controlled-robotic

Almabrok Essa, Hari Kotte. Brain Signals Analysis Based Deep Learning Methods: Recent advances in the study of non-invasive brain signals

https://doi.org/10.48550/arXiv.2201.04229