Entropy of subhifts: a sharp computational threshold phenomenon.

Silvere Gangloff, Benjamin Hellouin

10 décembre 2018

Effect of quantified irreducibility on the computability of subshifts entropy, Gangloff, Hellouin, Discr. Cont. Dyn. Sys. (2018)

Milnor (2002): is the entropy of a dynamical system computable?

Milnor (2002): is the entropy of a dynamical system computable?

Examples of results: Koiran 2001, Jeandel 2014, Delvenne and Blondel 2004.

Subshift: set of \cdots 1 0 1 0 0 1 0 1 \cdots ; forbidden: 1 1

 $\text{Possible}: \boxed{0\ 0\ 0} \quad \boxed{1\ 0\ 0} \quad \boxed{0\ 1\ 0} \quad \boxed{0\ 1\ 0} \quad \boxed{0\ 1\ 1} \quad \boxed{1\ 0\ 1}; \ \textit{N}_3 = 5, \ \textit{N}_n = 2^{\textit{n}(\textit{h} + \textit{o}(1))}.$

Subshift: set of \cdots 1 0 1 0 0 1 0 1 \cdots ; forbidden: 1 1

Possible : $\boxed{0\ 0\ 0}$ $\boxed{1\ 0\ 0}$ $\boxed{0\ 1\ 0}$ $\boxed{0\ 1\ 0}$ $\boxed{0\ 1\ 1}$ $\boxed{1\ 0\ 1}$; $N_3=5$, $N_n=2^{n(h+o(1))}$.

Entropy:

$$h = \lim \frac{\log(N_n)}{n} = \inf_{T_h} \frac{\log(N_n)}{n}$$

Subshift: set of \cdots 1 0 1 0 0 1 0 1 \cdots ; forbidden: 1 1

Possible : $\boxed{0\ 0\ 0}$ $\boxed{1\ 0\ 0}$ $\boxed{0\ 1\ 0}$ $\boxed{0\ 1\ 0}$ $\boxed{0\ 1\ 1}$ $\boxed{1\ 0\ 1}$; $N_3=5$, $N_n=2^{n(h+o(1))}$.

Entropy:

$$h = \lim \frac{\log(N_n)}{n} = \inf_{T_h} \frac{\log(N_n)}{n}$$

 Π_1 -computable :

$$1, 2, \dots, n \longrightarrow Algorithm \longrightarrow h$$

Subshift: set of \cdots 1 0 1 0 0 1 0 1 \cdots ; forbidden: 1 1

Possible :
$$\boxed{0}$$
 $\boxed{0}$ $\boxed{0}$ $\boxed{1}$ $\boxed{0}$ $\boxed{0}$ $\boxed{1}$ $\boxed{0}$ $\boxed{0}$ $\boxed{1}$ $\boxed{1}$; $N_3 = 5$, $N_n = 2^{n(h+o(1))}$.

Entropy:

$$h = \lim \frac{\log(N_n)}{n} = \inf_{Th} \frac{\log(N_n)}{n}$$

 Π_1 -computable:

$$1, 2, \dots, n \longrightarrow Algorithm \longrightarrow h$$

Computable \equiv comp. speed


```
set of
Definition:
                               where are forbidden (finite set):
2010:
           Entropy values \equiv \Pi_1-computable (Hochman, Meyerovitch)
2015:
           Gap function K \to f(n) (G., Sablik) : f-block gluing
2017:
```

Decidable subshifts: a computational threshold for entropy

Decidable:

Forbidden patterns \neq finite set

Decidable subshifts: a computational threshold for entropy

Decidable:

Forbidden patterns \neq finite set

Theorem[G.,Hellouin]: define $\Sigma(f) = \sum_n f(n)/n^2$, assumed computable.

- 1. $\Sigma(f) < +\infty$: entropy computable
- 2. $\Sigma(f) = +\infty$: possible values $\equiv \Pi_1$ -computable.

Decidable subshifts: a computational threshold for entropy

Decidable:

Forbidden patterns \neq finite set

Theorem[G.,Hellouin]: define $\Sigma(f) = \sum_{n} f(n)/n^2$, assumed computable.

- 1. $\Sigma(f)<+\infty$: entropy computable
- 2. $\Sigma(f) = +\infty$: possible values $\equiv \Pi_1$ -computable.

Question : $\Sigma(f)$ not computable?

 $N_{2n+f(n)} \leq |\mathcal{A}|^{f(n)}.N_{2n}$

$$N_{2n+f(n)} \leq |\mathcal{A}|^{f(n)}.N_{2n}$$

Repetition+log:

$$\frac{\log(N_n)}{n} - |\mathcal{A}| \cdot \sum_{n=0}^{+\infty} \frac{f(2^k)}{2^k} \le h \le \frac{\log(N_n)}{n}$$

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

$$0 1 0 1 1 0 1$$
 $> p_n$

 $F(n) \equiv 2n + f(n)$; (p_n) discretised of :

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

 $F(n) \equiv 2n + f(n)$; (p_n) discretised of :

Properties:

1. (p_n) comp. \Rightarrow decidability;

1 1 0 1 0 1

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

 $F(n) \equiv 2n + f(n)$; (p_n) discretised of :

Properties:

1. (p_n) comp. \Rightarrow decidability;

1 1 0 1 0 1

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

$$0 1 0 1 1 0 1$$
 $> p_n$

 $F(n) \equiv 2n + f(n)$; (p_n) discretised of :

Properties:

1. (p_n) comp. \Rightarrow decidability; $0 \boxed{1 \boxed{1} \boxed{0} \boxed{1} \boxed{0}$

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

 $F(n) \equiv 2n + f(n)$; (p_n) discretised of :

Properties:

- 1. (p_n) comp. \Rightarrow decidability; 0 0 1
 - 0 0 1 1 0 1 0 1 0 0

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

$$0 1 0 1 1 0 1$$
 $> p_n$

 $F(n) \equiv 2n + f(n)$; (p_n) discretised of :

Properties:

1. (p_n) comp. \Rightarrow decidability; 0 0 0 1 1 1 0 1 0 0 0

Objective : realization of any Π_1 -comp. number.

Bounded density shifts : $(p_n)_n \in \mathbb{N}^{\mathbb{N}}$ growing, forbidden :

$$0 1 0 1 1 0 1$$
 $> p_n$

$$F(n) \equiv 2n + f(n)$$
; (p_n) discretised of :

Properties:

- 1. (p_n) comp. \Rightarrow decidability; 0 0 0 $\boxed{110101}$ 0 0 0
- 2. f-gluing when $p_{F(n)} \ge 2p_n + 4$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \ge \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Set $\alpha_n \to \alpha$, Π_1 -comp.

- 1. $p_{F(n)} \ge 2p_n + 4$
- 2. possible entropies after partial choices $: \geq \alpha$.

Entropy change : $\beta = (\beta_1, \beta_2, ...)$ slopes :

Entropy change : $\beta = (\beta_1, \beta_2, ..)$ slopes :

Tracking works : if $h_{lim} > \alpha$,

Entropy change : $\beta = (\beta_1, \beta_2, ..)$ slopes :

Tracking works : if $h_{lim} > \alpha$,

1. for *n* large : $p_{F(n)} < 2p_n + 4$.

Entropy change : $\beta = (\beta_1, \beta_2, ..)$ slopes :

Tracking works : if $h_{lim} > \alpha$,

- 1. for *n* large : $p_{F(n)} < 2p_n + 4$.
- 2. Repetition+limit : $\inf(p_n/n).\Sigma(f) < +\infty$

Entropy change : $\beta = (\beta_1, \beta_2, ..)$ slopes :

Tracking works : if $h_{lim} > \alpha$,

- 1. for *n* large : $p_{F(n)} < 2p_n + 4$.
- 2. Repetition+limit : $\inf(p_n/n).\Sigma(f) < +\infty$
- 3. $\Sigma(f) = +\infty : \inf(p_n/n) = h_{lim} = 0.$