- 1. (1 + 0.5 points). Let \mathbb{V} be a vector space and $\varphi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$.
- (a) Let dim $\mathbb{V} < \infty$. Prove that φ is injective if and only if it's surjective;
- (b) Is it true if dim $\mathbb{V} = \infty$?

a)
$$\varphi$$
 is injective \longrightarrow $\ker \varphi = 0 \iff$ $\dim(\ker \varphi) = 0 \iff$ \iff $\dim(\operatorname{Im} \varphi) = \dim(\operatorname{Im} \varphi) = \dim(\operatorname{Im} \varphi) = \lim_{n \to \infty} \operatorname{Im} \varphi = \lim_{n \to \infty} \varphi(\operatorname{Im} \varphi) = \lim_{n \to \infty} \operatorname{Im} \varphi = \lim_{n \to$

$$\mathbf{2}^o. \ \, \mathbf{(2 \ points)}. \ \, \mathrm{Let} \,\, \varphi \in \mathcal{L}(\mathbb{R}^4,\mathbb{R}^3), \ \, T(\varphi,\mathcal{E},\mathcal{E}) = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 5 & 3 & 2 \\ 1 & 3 & 2 & 1 \end{bmatrix}. \, \mathrm{Find}$$

(a) Bases
$$\mathcal{A}, \mathcal{B}$$
 such that $T(\varphi, \mathcal{A}, \mathcal{B}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (b) Matrices C_1, C_2 such that $C_1T(\varphi, \mathcal{E}, \mathcal{E})C_2 = T(\varphi, \mathcal{A}, \mathcal{B})$.

a)
$$\begin{bmatrix} 1 & 2 & 1 & 7 \\ 2 & 5 & 3 & 2 \\ 1 & 3 & 2 & 1 \end{bmatrix}$$
 $\begin{bmatrix} 10 & -1 & 1 \\ 0 & 1 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ $= \begin{bmatrix} a - b \\ -a \\ b \end{bmatrix}$

$$\begin{bmatrix} ker & \varphi = \langle \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \rangle \quad \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \rangle \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rangle$$

$$A = \langle \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \rangle \quad \varphi$$

$$B = \langle \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rangle$$

$$C(\xi, B)^{-1}$$

$$\begin{bmatrix}
10007 & 5-20 \\
0100 & -2-10 \\
0000 & 1-11
\end{bmatrix}
\begin{bmatrix}
1211 & 101 \\
01-10 \\
0001 & 0 \\
1-11 & 1321
\end{bmatrix}
\begin{bmatrix}
101 & 1-1 \\
01 & 10 \\
000 & 1
\end{bmatrix}$$

3°. (2 points). Let
$$\varphi \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$$
, $T(\varphi, \mathcal{E}, \mathcal{E}) = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 2 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. Find

(a) Bases
$$\mathcal{A}, \mathcal{B}$$
 such that $T(\varphi, \mathcal{A}, \mathcal{B}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (b) Matrices C_1, C_2 such that $C_1T(\varphi, \mathcal{E}, \mathcal{E})C_2 = T(\varphi, \mathcal{A}, \mathcal{B})$.

a)
$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$
 $\begin{bmatrix} RREF \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} RREF \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} RREF \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} RREF \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} RREF \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\mathbf{4}^{o}. \ \ \mathbf{(2 \ points)}. \ \mathrm{Let} \ \mathcal{A} = \Big(\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}1\\2\\1\end{bmatrix}, \begin{bmatrix}2\\-1\\1\end{bmatrix}\Big), \ \mathcal{B} = \Big(\begin{bmatrix}1\\1\\1\\0\end{bmatrix}, \begin{bmatrix}1\\2\\1\\-1\end{bmatrix}, \begin{bmatrix}2\\-1\\1\\0\end{bmatrix}, \begin{bmatrix}1\\1\\0\\-1\end{bmatrix}\Big), \ \varphi \in \mathcal{L}(\mathbb{R}^{3}, \mathbb{R}^{4}), \ T(\varphi, \mathcal{A}, \mathcal{B}) = \begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix}.$$

Find (a) $T(\varphi, \mathcal{E}, \mathcal{E})$ (b) matrices C_1, C_2 such that $C_1T(\varphi, \mathcal{A}, \mathcal{B})C_2 = T(\varphi, \mathcal{E}, \mathcal{E})$.

a. and b)
$$T(\varphi, \mathcal{E}, \mathcal{E}) = (\mathcal{E}, \mathcal{B})T(\varphi, \mathcal{A}, \mathcal{B})C(\mathcal{A}, \mathcal{E})$$

$$\begin{bmatrix} 1 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & -3 & -1 & 5 \\ 1 & 2 & -1 & 1 & 0 & 0 & 0 & 0 & -2 & 1 & -1 \\ 1 & 2 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 2 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 2 \\ 0 & -1 & 0 & -1 & 0 & 0 & 0 & -1 & -2 & -1 & 3 \end{bmatrix}$$

$$\mathbf{5}^{o}. \ (\mathbf{1} \ \mathbf{point}). \ \mathrm{Let} \ \varphi \in \mathcal{L}(\mathbb{R}^{3}, \mathbb{R}^{3}), \ R = T(\varphi, \mathcal{E}, \mathcal{E}) = \begin{bmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} & 0 \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix} \ \mathrm{and} \ \mathrm{let} \ v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ w = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Draw (sketch) vectors Rv and Rw; (b) Find $\ker \varphi$ and $\operatorname{im} \varphi$.

a)
$$\begin{cases} \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} + \cos \frac{\pi}{3} \end{cases} \Rightarrow \lim_{N \to \infty} \left[\cos \frac{\pi}{3} - \sin \frac{\pi}{3} \\ \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \right] \end{cases}$$

$$\begin{cases} \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} + \cos \frac{\pi}{3} \end{cases}$$

Consider the following relations on the set $Mat(n, m, \mathbb{R})$.

(1) $A \sim_1 B$ if there exist invertible matrices C_1, C_2 such that $C_1AC_2 = B$

(2) $A \sim_2 B$ if RREF(A) = RREF(B).

6. (1.5 points).

(a) Prove that both \sim_1, \sim_2 are equivalence relations;

(b) Is it true that if $A \sim_1 B$ then $A \sim_2 B$?

(c) Is it true that if $A \sim_2 B$ then $A \sim_1 B$?

a) Reflexivity:
$$A \sim_1 A$$
 $\forall A \quad I_n A : I_n = A$.

Symmetry: $A \sim_1 B \Rightarrow_1 B \sim_1 A$
 $C_1 A : C_2 = B \Rightarrow_1 C_1 B : C_2 = A$

Transitivity: $A \sim_1 B$ and $B \sim_1 F \Rightarrow_1 F \Rightarrow_1 A \sim_1 F$

Suppose $A \sim_1 B$ and $B \sim_1 F \Rightarrow_1 F \Rightarrow_$

