Module-2 CSEN 3104 Lecture 15

Dr. Debranjan Sarkar

Interconnection Networks

Inter-PE Communication

- The design of the architecture of an interconnection network for an SIMD machine is based on
 - Operation modes
 - Control strategies
 - Switching methodologies
 - Network topologies

Operation Modes of Interconnection Network

- Synchronous mode
 - To establish synchronous communication path for
 - Data manipulating function
 - Data instruction broadcast
- Asynchronous mode
 - To have asynchronous communication when
 - Connection requests are issued dynamically
- Combined mode
 - To facilitate both synchronous and asynchronous processing
- SIMD machines work in synchronous operation mode, where lockstep operations among all PEs are enforced

Control Strategy

- Interconnection network consists of
 - A number of switching elements, and
 - Interconnecting links
- Interconnection functions are realized by properly setting control of the switching elements
- Two types of control
 - Centralized control -> the control setting function is managed by a centralized controller
 - Distributed control -> the control setting function is managed by the individual switching element
- SIMD machines have interconnection networks with centralized control on all switching elements by the control unit

Switching methodology

- Circuit switching
 - Physical path is actually established between a source and a destination
 - Much more suitable for bulk data transmission
- Packet switching
 - Data is put in a packet and routed through the interconnection network
 - No physical connection is established
 - More efficient for many short data messages
- Integrated switching
 - Includes the capabilities of both circuit switching and packet switching
- SIMD interconnection networks assume circuit switching

Network topology

- A network is depicted by a graph in which nodes represent switching points and edges represent communication links
- Static topology
 - Links between two processors are passive
 - Dedicated buses cannot be reconfigured for direct connections to other processors
- Dynamic topology
 - Can be reconfigured by setting the network's active switching elements
- SIMD interconnection networks are classified into two categories, based on network topologies:
 - Static networks
 - Dynamic networks

Static Networks

- Topologies in the static networks are classified according to the dimensions required for the layout
 - One-dimensional (Linear array)
 - Two dimensional (Ring, star, tree, mesh and systolic array)
 - Three dimensional (Completely connected, Chordal ring, 3-cube, 3-cube-connected cycle)
 - Hypercube
- Show the diagrams

Dynamic Networks

- Single stage dynamic network (show figure)
 - N number of input selectors (IS) and N output selectors (OS)
 - Each IS is essentially a 1-to-D demultiplexer $(1 \le D \le N)$
 - Each OS is essentially an M-to-1 multiplexer $(1 \le M \le N)$
 - To establish a desired path, different control signals are applied to all IS and OS selectors
 - Data items may have to recirculate through the single stage several times to reach the final destination
 - The higher is the hardware connectivity, the less is the number of recirculations required
 - Crossbar-switching network is a single-stage n/w with D=M=N
 - Crossbar is an extreme case in which only one circulation is required for any path

Mesh-connected Illiac Network

- Show figure
- Single stage recirculating network with N = 64 PEs
- In one circulation step, each PE_i is allowed to send data to any one of PE_{i+1} , PE_{i+1} and PE_{i+1}
- In practice, N is a perfect square and r = sqrt(N). For Illiac IV, r = 8
- The interconnection network of Illiac IV is characterized by the following four routing functions:
 - $R_{+1}(i) = (i+1) \mod N$
 - $R_{-1}(i) = (i-1) \mod N$
 - $R_{+r}(i) = (i+r) \mod N$
 - R_{-r}(i) = (i-r) mod N

Where $0 \le i \le (N-1)$

Mesh-connected Illiac Network

- In the reduced Illiac network, the outputs of IS_i are connected to the inputs of OS_j for j = i+1, i-1, i+r, and i-r
- In other words, OS_i gets its inputs from IS_i for i = j-1, j+1, j-r, and j+r respectively
- Each PE_i is directly connected to its four nearest neighbours in the mesh network
- Permutation Cycle (a b c) (d e) represents the permutation $a \rightarrow b$, $b \rightarrow c$, $c \rightarrow a$ and $d \rightarrow e$, $e \rightarrow d$ in a circular fashion within each pair of parentheses
- We may write for Horizontal PEs

$$R_{+1} = (0 \ 1 \ 2 \dots N-2 \ N-1)$$

 $R_{-1} = (N-1 \ N-2 \dots 2 \ 1 \ 0)$

 When the routing function is executed, data is routed as per above only if all PEs in the cycle are active

Thank you