Stat 410 | Salary Project Report ¶

Rachel, Abdullah, Gustavo

Importing Data & Data Cleaning

```
salary = read.csv('Salary Data.csv')
In [1]:
            str(salary)
            'data.frame': 375 obs. of 6 variables:
                                 : int 32 28 45 36 52 29 42 31 26 38 ...
             $ ï..Age
                                  : Factor w/ 3 levels "", "Female", "Male": 3 2 3 2 3 3 2 3
             $ Gender
            2 3 ...
             $ Education.Level : Factor w/ 4 levels "","Bachelor's",..: 2 3 4 2 3 2 3 2
            2 4 ...
            $ Job.Title
                                 : Factor w/ 175 levels "", "Account Manager", ...: 161 19 1
            32 103 24 83 95 106 84 152 ...
             $ Years.of.Experience: num 5 3 15 7 20 2 12 4 1 10 ...
             $ Salary
                                 : int 90000 65000 150000 60000 200000 55000 120000 8000
            0 45000 110000 ...
In [2]: ► salary$Age = salary$i..Age
            salary = subset(salary, select = -c(i..Age))
            str(salary)
            'data.frame':
                           375 obs. of 6 variables:
             $ Gender
                          : Factor w/ 3 levels "", "Female", "Male": 3 2 3 2 3 3 2 3
            2 3 ...
             $ Education.Level : Factor w/ 4 levels "", "Bachelor's",..: 2 3 4 2 3 2 3 2
            2 4 ...
             $ Job.Title
                                : Factor w/ 175 levels "", "Account Manager", ...: 161 19 1
            32 103 24 83 95 106 84 152 ...
            $ Years.of.Experience: num 5 3 15 7 20 2 12 4 1 10 ...
             $ Salary
                                 : int 90000 65000 150000 60000 200000 55000 120000 8000
            0 45000 110000 ...
                                  : int 32 28 45 36 52 29 42 31 26 38 ...
             $ Age
```

Exploratory Data Analysis

Results For Male And Female Salaries


```
In [5]: ▶ levels(salary$Education.Level[])
```

' 'Bachelor\'s' 'Master\'s' 'PhD'

```
    | x = salary$Years.of.Experience

In [6]:
            y = salary$Salary
            plot(x,y, type = 'n',
                 main = 'Salary v Education Level',
                 xlab = 'Experience Years', ylab = 'Salary',
                 bty = '1', las = 1, cex.axis = .8,
                 tc1 = -0.2)
            points(x = salary$Years.of.Experience[salary$Education.Level == "Bachelor's"],
                   y = salary$Salary[salary$Education.Level == "Bachelor's"],
                   pch = 16, col = 'deepskyblue')
            points(x = salary$Years.of.Experience[salary$Education.Level == "Master\'s"],
                   y = salary$Salary[salary$Education.Level == "Master\'s"],
                   pch = 16, col = 'magenta')
            points(x = salary$Years.of.Experience[salary$Education.Level == "PhD"],
                   y = salary$Salary[salary$Education.Level == "PhD"],
                   pch = 16, col = 'green')
            points(x = salary$Years.of.Experience[salary$Education.Level == ''],
                   y = salary$Salary[salary$Education.Level == ''],
                   pch = 16, col = 'blue')
            leg_cols = c("deepskyblue", "magenta", "green", "blue")
            leg_sym = c(16, 16, 16, 16)
            leg_lab = c("Bachelor's", "Master\'s'", "PhD", "na")
            legend('topleft',
                   col = leg_cols, pch = leg_sym,
                   legend = leg lab, bty = "n",
                   title = "Education Levels")
```

Salary v Education Level


```
In [7]: N layout(matrix(1:2, 1, 2))
hist(fem, main = "Salary for Females", col = "lightblue", xlab = "Salaries", brown freq = TRUE)
hist(male, main = "Salary for Males", col = "red", xlab = "Salaries", breaks = Ifreq = TRUE)
```


Statistical Analysis

```
In [9]: 
■ age_form = Salary ~ Gender + Education.Level + Years.of.Experience + Age
form = Salary ~ Gender + Education.Level + Years.of.Experience
```

```
In [10]: N X = model.matrix(form, data = salary)
X[1,]
age_X = model.matrix(age_form, data = salary)
```

(Intercept) 1
GenderFemale 0
GenderMale 1
Education.LevelBach... 1
Education.LevelMast... 0
Education.LevelPhD 0
Years.of.Experience 5

corrplot 0.92 loaded


```
In [12]: | library(corrplot)
    corrplot(cor(X[,-1]), tl.cex = .8)
```


Normal Q-Q Plot

• We can see that the data is not normal enough to contain normality of residuals so we will attempt to Transform the data by taking the Log() of our salary response

Normal Q-Q Plot

In [18]: ▶ plot(lfit, which = 3)

In [19]: ▶ plot(salary\$Salary, lfit\$resiuduals)


```
In [20]:

■ summary(age_lfit)
             Call:
             lm(formula = age_log_form, data = salary)
             Residuals:
                 Min
                          10 Median
                                          3Q
                                                 Max
             -4.9327 -0.1280 -0.0031 0.1393 0.4445
             Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)
             (Intercept)
                                      9.47930
                                                0.31552 30.043 < 2e-16 ***
             GenderMale
                                      0.06118
                                                0.03316
                                                          1.845 0.065838 .
                                                          4.605 5.7e-06 ***
             Education.LevelMaster's 0.20142
                                                0.04374
             Education.LevelPhD
                                                          3.431 0.000670 ***
                                      0.20106
                                                0.05860
             Years.of.Experience
                                      0.02182
                                                0.01286
                                                          1.697 0.090512 .
             Age
                                      0.04198
                                                0.01161
                                                          3.616 0.000341 ***
             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
             Residual standard error: 0.3169 on 367 degrees of freedom
               (2 observations deleted due to missingness)
             Multiple R-squared: 0.7159,
                                            Adjusted R-squared: 0.7121
                           185 on 5 and 367 DF, p-value: < 2.2e-16
             F-statistic:
In [21]:

■ summary(lfit)
             Call:
             lm(formula = logform, data = salary)
             Residuals:
                 Min
                          10 Median
                                          3Q
                                                Max
             -4.9023 -0.1462 0.0057 0.1603 0.4795
             Coefficients:
                                      Estimate Std. Error t value Pr(>|t|)
                                                0.035331 300.396 < 2e-16 ***
             (Intercept)
                                     10.613363
             GenderMale
                                      0.046497
                                                0.033443
                                                           1.390 0.16526
             Education.LevelMaster's 0.181446
                                                0.044096
                                                           4.115 4.79e-05 ***
             Education.LevelPhD
                                      0.183966
                                                0.059363
                                                           3.099 0.00209 **
                                                0.003177 21.065 < 2e-16 ***
             Years.of.Experience
                                      0.066933
             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
             Residual standard error: 0.322 on 368 degrees of freedom
               (2 observations deleted due to missingness)
             Multiple R-squared: 0.7058,
                                            Adjusted R-squared: 0.7026
```

F-statistic: 220.7 on 4 and 368 DF, p-value: < 2.2e-16

	2.5 %	97.5 %
(Intercept)	8.858846279	10.09976267
GenderMale	-0.004025752	0.12637640
Education.LevelMaster's	0.115405674	0.28743033
Education.LevelPhD	0.085815481	0.31629535
Years.of.Experience	-0.003462775	0.04711255
Age	0.019151193	0.06480510

	2.5 %	97.5 %
(Intercept)	10.54388645	10.68283944
GenderMale	-0.01926598	0.11226081
Education.LevelMaster's	0.09473426	0.26815819
Education.LevelPhD	0.06723237	0.30069877
Years.of.Experience	0.06068464	0.07318103


```
In [25]:
          male_master = data.frame(Gender = "Male",
                                            Education.Level = "Master's",
                                            Years.of.Experience = seq(0,25))
             male bachelor = data.frame(Gender = "Male",
                                            Education.Level = "Bachelor's",
                                            Years.of.Experience = seq(0,25))
             age male master = data.frame(Gender = "Male",
                                                                          #new data frame with
                                      Education.Level = "Master's",
                                      Years.of.Experience = seq(0,25),
                                      Age = 35)
             age_male_bachelor = data.frame(Gender = "Male",
                                                                          #new data framewith
                                            Education.Level = "Bachelor's",
                                            Years.of.Experience = seq(0,25),
                                            Age = 35)
             #prediction with Age variable
             male_bach_pred = exp(predict(lfit, newdata = male_bachelor, interval = "predict")
             male mast pred = exp(predict(lfit, newdata = male master, interval = "prediction")
             #predictions with age variable included for bachelors and masters
             age_male_bach_pred = exp(predict(age_lfit, newdata = age_male_bachelor, interval
             age male mast pred = exp(predict(age lfit, newdata = age male master, interval
```

```
In [26]:

    | x = salary$Years.of.Experience

             y = salary$Salary
             ExpSeq = seq(0,25)
             plot(x,y, type = 'n',
                  main = "Salary Prediction w/Age for Males with Bachelor's vs Master's",
                  xlab = 'Experience Years', ylab = 'Salary',
                  bty = 'l', las = 1, cex.axis = .8,
                  tc1 = -0.2)
             points(x = salary$Years.of.Experience[salary$Education.Level == "Bachelor's"],
                    y = salary$Salary[salary$Education.Level == "Bachelor's"],
                    pch = 16, col = 'deepskyblue')
             points(x = salary$Years.of.Experience[salary$Education.Level == "Master\'s"],
                    y = salary$Salary[salary$Education.Level == "Master\'s"],
                    pch = 16, col = 'magenta')
             points(x = salary$Years.of.Experience[salary$Education.Level == "PhD"],
                    y = salary$Salary[salary$Education.Level == "PhD"],
                    pch = 16, col = 'green')
             lines(x = ExpSeq, y = age_male_bach_pred[,'fit'], col = 'black', lwd = 2)
             lines(x = ExpSeq, y = age_male_bach_pred[,'upr'], col = 'black', lwd = 2, lty =
             lines(x = ExpSeq, y = age_male_bach_pred[,'lwr'], col = 'black', lwd = 2, lty =
             lines(x = ExpSeq, y = age_male_mast_pred[,'fit'], col = 'blue', lwd = 2)
             lines(x = ExpSeq, y = age_male_bach_pred[,'upr'], col = 'blue', lwd = 2, lty =
             lines(x = ExpSeq, y = age_male_bach_pred[,'lwr'], col = 'black', lwd = 2, lty =
             leg cols = c("black", "blue")
             leg_sym = c(16, 16)
             leg lab = c("Male Bachelor's", "Male Master's")
             legend('topleft',
                    col = leg_cols, pch = leg_sym,
                    legend = leg_lab, bty = "n",
                    title = "Predictions")
```

Salary Prediction w/Age for Males with Bachelor's vs Master's


```
In [27]:

    | x = salary$Years.of.Experience

             y = salary$Salary
             ExpSeq = seq(0,25)
             plot(x,y, type = 'n',
                  main = "Salary Prediction w/out Age for Males with Bachelor's vs Master's"
                  xlab = 'Experience Years', ylab = 'Salary',
                  bty = 'l', las = 1, cex.axis = .8,
                  tc1 = -0.2)
             points(x = salary$Years.of.Experience[salary$Education.Level == "Bachelor's"],
                    y = salary$Salary[salary$Education.Level == "Bachelor's"],
                    pch = 16, col = 'deepskyblue')
             points(x = salary$Years.of.Experience[salary$Education.Level == "Master\'s"],
                    y = salary$Salary[salary$Education.Level == "Master\'s"],
                    pch = 16, col = 'magenta')
             points(x = salary$Years.of.Experience[salary$Education.Level == "PhD"],
                    y = salary$Salary[salary$Education.Level == "PhD"],
                    pch = 16, col = 'green')
             lines(x = ExpSeq, y = male_bach_pred[,'fit'], col = 'black', lwd = 2)
             lines(x = ExpSeq, y = male_bach_pred[,'upr'], col = 'black', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = male_bach_pred[,'lwr'], col = 'black', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = male_mast_pred[,'fit'], col = 'blue', lwd = 2)
             lines(x = ExpSeq, y = male_bach_pred[,'upr'], col = 'blue', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = male_bach_pred[,'lwr'], col = 'black', lwd = 2, lty = 2)
             leg cols = c("black", "blue")
             leg_sym = c(16, 16)
             leg lab = c("Male Bachelor's", "Male Master's")
             legend('topleft',
                    col = leg_cols, pch = leg_sym,
                    legend = leg_lab, bty = "n",
                    title = "Predictions")
```

Salary Prediction w/out Age for Males with Bachelor's vs Master's


```
In [29]:
          x = salary$Years.of.Experience
             v = salary$Salary
             ExpSeq = seq(0,25)
             plot(x,y, type = 'n',
                  main = "Salary Prediction w/Age for Males vs Females with Bachelor's",
                  xlab = 'Experience Years', ylab = 'Salary',
                  bty = 'l', las = 1, cex.axis = .8,
                  tc1 = -0.2)
             points(x = salary$Years.of.Experience[salary$Education.Level == "Bachelor's"],
                    y = salary$Salary[salary$Education.Level == "Bachelor's"],
                    pch = 16, col = 'deepskyblue')
             points(x = salary$Years.of.Experience[salary$Education.Level == "Master\'s"],
                    y = salary$Salary[salary$Education.Level == "Master\'s"],
                    pch = 16, col = 'magenta')
             points(x = salary$Years.of.Experience[salary$Education.Level == "PhD"],
                    y = salary$Salary[salary$Education.Level == "PhD"],
                    pch = 16, col = 'green')
             points(x = salary$Years.of.Experience[salary$Education.Level == ''],
                    y = salary$Salary[salary$Education.Level == ''],
                    pch = 16, col = 'blue')
             lines(x = ExpSeq, y = age_male_bach_pred[,'fit'], col = 'black', lwd = 2)
             lines(x = ExpSeq, y = age_male_bach_pred[,'upr'], col = 'black', lwd = 2, lty =
             lines(x = ExpSeq, y = age_male_bach_pred[,'lwr'], col = 'black', lwd = 2, lty =
             lines(x = ExpSeq, y = age_fem_bach_pred[,'fit'], col = 'orange', lwd = 2)
             lines(x = ExpSeq, y = age fem bach pred[,'upr'], col = 'orange', lwd = 2, lty =
             lines(x = ExpSeq, y = age_fem_bach_pred[,'lwr'], col = 'orange', lwd = 2, lty =
             leg_cols = c("orange", "blue")
             leg sym = c(16, 16)
             leg_lab = c("Female Bachelor's", "Male Bachelor's")
             legend('topleft',
                    col = leg_cols, pch = leg_sym,
                    legend = leg lab, bty = "n",
                    title = "Predictions")
```

Salary Prediction w/Age for Males vs Females with Bachelor's


```
In [30]:

    | x = salary$Years.of.Experience

             y = salary$Salary
             ExpSeq = seq(0,25)
             plot(x,y, type = 'n',
                  main = "Salary Prediction w/out Age for Males vs Females with Bachelor's",
                  xlab = 'Experience Years', ylab = 'Salary',
                  bty = 'l', las = 1, cex.axis = .8,
                  tc1 = -0.2)
             points(x = salary$Years.of.Experience[salary$Education.Level == "Bachelor's"],
                    y = salary$Salary[salary$Education.Level == "Bachelor's"],
                    pch = 16, col = 'deepskyblue')
             points(x = salary$Years.of.Experience[salary$Education.Level == "Master\'s"],
                    y = salary$Salary[salary$Education.Level == "Master\'s"],
                    pch = 16, col = 'magenta')
             points(x = salary$Years.of.Experience[salary$Education.Level == "PhD"],
                    y = salary$Salary[salary$Education.Level == "PhD"],
                    pch = 16, col = 'green')
             points(x = salary$Years.of.Experience[salary$Education.Level == ''],
                    y = salary$Salary[salary$Education.Level == ''],
                    pch = 16, col = 'blue')
             lines(x = ExpSeq, y = male_bach_pred[,'fit'], col = 'black', lwd = 2)
             lines(x = ExpSeq, y = male_bach_pred[,'upr'], col = 'black', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = male_bach_pred[,'lwr'], col = 'black', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = fem_bach_pred[,'fit'], col = 'orange', lwd = 2)
             lines(x = ExpSeq, y = fem bach pred[,'upr'], col = 'orange', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = fem_bach_pred[,'lwr'], col = 'orange', lwd = 2, lty = 2)
             leg_cols = c("orange", "blue")
             leg sym = c(16, 16)
             leg_lab = c("Female Bachelor's", "Male Bachelor's")
             legend('topleft',
                    col = leg_cols, pch = leg_sym,
                    legend = leg lab, bty = "n",
                    title = "Predictions")
```

Salary Prediction w/out Age for Males vs Females with Bachelor's


```
In [31]:

  | forSection = log(Salary) ~ Age + Years.of.Experience + Education.Level

             forSect = step(lm(forSection, data = salary),
                             scope = list(upper = log(Salary) ~ Age + Years.of.Experience + E
                                          lower = log(Salary) ~ 1), direction = "both")
             Start: AIC=-849.9
             log(Salary) ~ Age + Years.of.Experience + Education.Level
                                     Df Sum of Sq
                                                      RSS
                                                              AIC
             + Job.Title
                                          24.4318 12.764 -902.85
                                    173
             + Gender
                                      1
                                           0.3418 36.854 -851.35
             <none>
                                                  37.196 -849.90
             - Years.of.Experience
                                      1
                                           0.3817 37.578 -848.10
             - Age
                                      1
                                           1.1719 38.368 -840.33

    Education.Level

                                      2
                                           2.2597 39.456 -831.91
             Step: AIC=-902.85
             log(Salary) ~ Age + Years.of.Experience + Education.Level + Job.Title
                                     Df Sum of Sq
                                                      RSS
                                                              AIC
                                           0.0415 12.806 -905.64
             - Education.Level
             - Years.of.Experience
                                           0.0006 12.765 -904.83
                                      1
             <none>
                                                  12.764 -902.85
             + Gender
                                      1
                                           0.0387 12.726 -901.98
                                           0.4268 13.191 -892.58
             - Age
                                      1
                                          24.4318 37.196 -849.90

    Job.Title

                                    173
             Step: AIC=-905.64
             log(Salary) ~ Age + Years.of.Experience + Job.Title
                                     Df Sum of Sa
                                                      RSS
                                           0.0101 12.816 -907.34
             - Years.of.Experience
                                      1
             <none>
                                                  12.806 -905.64
             + Gender
                                      1
                                           0.0282 12.778 -904.46
                                           0.0415 12.764 -902.85
             + Education.Level
                                      2
                                           0.4027 13.209 -896.09
             - Age
                                      1
             - Job.Title
                                          26.6501 39.456 -831.91
                                    173
             Step: AIC=-907.34
             log(Salary) ~ Age + Job.Title
                                     Df Sum of Sq
                                                      RSS
                                                              AIC
             <none>
                                                   12.816 -907.34
                                           0.0316 12.784 -906.26
             + Gender
                                      1
             + Years.of.Experience
                                           0.0101 12.806 -905.64
                                      1
             + Education.Level
                                      2
                                           0.0510 12.765 -904.83
             - Age
                                      1
                                           2.8522 15.668 -834.39
             - Job.Title
                                          27.7076 40.524 -823.95
                                    173
             addmodel = log(Salary) ~ Gender + Education.Level + Years.of.Experience + Gender
In [32]:
             addfit = lm(addmodel, data = salary)
In [33]:
```

```
In [34]:

    summary(addfit)

             Call:
             lm(formula = addmodel, data = salary)
             Residuals:
                 Min
                          10 Median
                                          3Q
                                                 Max
             -4.8891 -0.1442 0.0015 0.1639 0.4776
             Coefficients:
                                             Estimate Std. Error t value Pr(>|t|)
             (Intercept)
                                            10.632737
                                                        0.045440 233.994 < 2e-16 ***
             GenderMale
                                             0.011598
                                                        0.061347
                                                                   0.189 0.85015
             Education.LevelMaster's
                                                        0.044130
                                             0.181213
                                                                   4.106 4.96e-05 ***
             Education.LevelPhD
                                                                   3.117 0.00197 **
                                             0.185293
                                                        0.059439
             Years.of.Experience
                                             0.064985
                                                        0.004283 15.172 < 2e-16 ***
             GenderMale:Years.of.Experience 0.003482
                                                        0.005129
                                                                   0.679 0.49770
             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
             Residual standard error: 0.3223 on 367 degrees of freedom
               (2 observations deleted due to missingness)
             Multiple R-squared: 0.7062,
                                             Adjusted R-squared: 0.7022
             F-statistic: 176.4 on 5 and 367 DF, p-value: < 2.2e-16
In [35]:
          ▶ beta = coef(addfit)
             beta
                         (Intercept)
                                    10.6327372465597
                       GenderMale
                                    0.0115980400473509
             Education.LevelMast...
                                    0.181213011323071
```

```
| Content | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/246559/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/24659/ | 10.632/3/2467/ | 10.632/3/2467/ | 10.632/3/2467/ | 10.632/3/2467/ | 10.632/3/2467/ | 10.632/3/2467/ | 10.6
```

```
In [37]:
          ▶ plot(x,y, type = 'n',
                  main = "Salary Prediction for Males vs Females with Bachelor's",
                  xlab = 'Experience Years', ylab = 'Salary',
                  bty = '1', las = 1, cex.axis = .8,
                  tc1 = -0.2)
             points(x = salary$Years.of.Experience[salary$Education.Level == "Bachelor's"],
                    y = salary$Salary[salary$Education.Level == "Bachelor's"],
                    pch = 16, col = 'deepskyblue')
             points(x = salary$Years.of.Experience[salary$Education.Level == "Master\'s"],
                    y = salary$Salary[salary$Education.Level == "Master\'s"],
                    pch = 16, col = 'magenta')
             points(x = salary$Years.of.Experience[salary$Education.Level == "PhD"],
                    y = salary$Salary[salary$Education.Level == "PhD"],
                    pch = 16, col = 'green')
             points(x = salary$Years.of.Experience[salary$Education.Level == ''],
                    y = salary$Salary[salary$Education.Level == ''],
                    pch = 16, col = 'blue')
             lines(x = ExpSeq, y = male_addpred[,'fit'], col = 'black', lwd = 2)
             lines(x = ExpSeq, y = male_addpred[,'upr'], col = 'black', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = male addpred[,'lwr'], col = 'black', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = fem_addpred[,'fit'], col = 'orange', lwd = 2)
             lines(x = ExpSeq, y = fem_addpred[,'upr'], col = 'orange', lwd = 2, lty = 2)
             lines(x = ExpSeq, y = fem_addpred[,'lwr'], col = 'orange', lwd = 2, lty = 2)
```

Salary Prediction for Males vs Females with Bachelor's

In []: **M**