Particle spectrograph

Wave operator and propagator

Indamental fields $a^{1}a^{\beta} = 0$ $a^{1}b^{\beta} + 0$ $a^{2}b^{\beta} + 0$ $a^$	Source constraints		
$k \sigma_{\alpha \beta \lambda}^{*} = 0$ $k \sigma_{\alpha \beta \lambda}^{*} = 0$ $k \sigma_{\alpha \beta}^{*} = 0$ $k \sigma_{\alpha \beta \beta}^{*} r^{*} r^{*} = 0$ $k \sigma_{\beta \beta}^{*} r^{*} r^{*} + 0 r^{*} r^{*} r^{*} r^{*} + 0 r^{*} r^{*$	SO(3) irreps	Fundamental fields	Multiplicities
$k \sigma_{0}^{\#1} = 0$ $k \sigma_{0}^{\#1} = 0$ $\beta_{0} \sigma_{1} t^{\alpha \beta} = 0 \beta^{\beta} t^{\alpha}_{\alpha} + 2 \delta_{\alpha} \delta^{\beta} \beta^{\alpha} \sigma^{\alpha}_{\alpha}$ $2 i k \sigma_{1}^{\#2} \sigma = 0$ $3 \delta_{0} \delta^{\alpha} \sigma^{1} t^{\beta} x = \partial_{\alpha} \delta^{\beta} \delta^{\beta} t^{\alpha} \sigma^{\beta} + 2 \delta_{0} \delta^{\beta} \delta^{\beta} \delta^{\alpha} \sigma^{\beta}$ $= 0$ $3 \delta_{0} \delta^{\alpha} \sigma^{1} t^{\beta} x + \partial_{\alpha} \delta^{\beta} t^{\alpha} \sigma^{\beta} + 2 \delta_{0} \delta^{\beta} \delta^{\alpha} \delta^{\alpha} \sigma^{\beta}$ $= 0$ $3 \delta_{0} \delta^{\alpha} \sigma^{1} t^{\beta} + \partial_{\alpha} \delta^{\beta} t^{\alpha} \sigma^{\beta} + 3 \delta^{\beta} \delta^{\alpha} \sigma^{\alpha} \sigma^{\beta} \sigma^{\beta} \sigma^{\beta}$ $= 0$ $3 \delta_{0} \delta^{\alpha} \sigma^{\alpha} \delta^{\beta} \delta^{\beta} + \delta_{0} \delta^{\beta} \delta^{\alpha} \sigma^{\alpha} \delta^{\beta} + 2 \delta^{\beta} \delta^{\beta} \delta^{\alpha} \sigma^{\alpha} \sigma^{\beta} \sigma^{\beta}$	$\sigma_{0}^{\#1} == 0$		1
$k \alpha_0^{\# 1} = 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\alpha} \beta = 0 \partial_{\alpha} \partial_{\beta} \rho^{\alpha} r^{\alpha} + 2 \partial_{\alpha} \partial^{\beta} \rho^{\alpha} \sigma^{\alpha}$ $2 i k \alpha_1^{\# 2} \alpha = 0 \partial_{\alpha} \partial_{\beta} \partial^{\alpha} r^{\beta} R = \partial_{\alpha} \partial^{\beta} \partial_{\beta} r^{\alpha} + 2 \partial_{\alpha} \partial^{\beta} \partial_{\alpha} \partial^{\alpha} R$ $= 0 \qquad \partial_{\alpha} \partial_{\beta} \sigma^{\alpha} r^{\beta} R = \partial_{\alpha} \partial^{\beta} \partial_{\beta} r^{\alpha} + 2 \partial_{\alpha} \partial^{\beta} r^{\alpha} \theta = 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + \partial_{\alpha} \partial^{\alpha} r^{\beta} R = 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + \partial_{\alpha} \partial^{\alpha} r^{\beta} R = 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + \partial_{\alpha} \partial^{\beta} r^{\alpha} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} r^{\beta} R + \partial_{\alpha} r^{\beta} R + 0$ $= 0 \qquad \partial_{\alpha} \partial_{\alpha} $	II II	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
2 ik $\alpha_1^{\#2a} = 0$ $\partial_x \partial_{\beta} \partial^{\alpha} r^{\beta X} = \partial_x \partial^{\lambda} \partial_{\beta} t^{\alpha \beta} + 2 \partial_{\delta} \partial^{\beta} \partial_{\lambda} \partial_{\beta} \sigma^{\alpha \beta X}$ =0 $\partial_x \partial_{\beta} \partial^{\alpha} r^{\beta X} + \partial_{\lambda} \partial^{\beta} t^{X} + \partial_{\lambda} \partial^{X} t^{\alpha \beta} = \partial_{\lambda} \partial^{\lambda} \partial_{\beta} r^{\alpha \beta}$ == 0 $\partial_x \partial^{\alpha} r^{X\beta} + \partial_{\lambda} \partial^{\beta} t^{X} + \partial_{\lambda} \partial^{X} t^{\alpha \beta} = \partial_{\delta} \partial_{\lambda} \partial^{\beta} \sigma^{\alpha X} \partial^{\beta} d^{\alpha X} \partial^{\beta} \partial^{\alpha} r^{\lambda \beta} \partial^{\beta} d^{\alpha X} \partial^{\beta} \partial^{\alpha} r^{\lambda \beta} \partial^{\beta} d^{\alpha X} \partial^{\beta} \partial^{\alpha} r^{\lambda \beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} r^{\lambda \beta} \partial^{\beta} \partial^{\beta} \partial^{\beta} r^{\lambda \beta} \partial^{\beta} r^{\lambda \beta} \partial^{\beta} \partial^{\beta} r^{\lambda \beta} \partial^{\beta} \partial^{\beta} r^{\lambda \beta} \partial^{\beta} \partial^{\beta} r^{\lambda \beta} \partial^{\beta} r^{\lambda \beta} \partial^{\beta} \partial^{\beta} r^{\lambda \beta} \partial^{\beta} r^$	$\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} = 0$	$_{\alpha}$ + 2 $\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}$	1
= 0 $ \frac{\partial_{x}\partial_{\beta}\partial^{\alpha} r^{\beta}X}{\partial x^{\beta}} = \frac{\partial_{x}\partial^{\beta}\partial_{\beta} r^{\beta}a}{\partial x^{\beta}} = \frac{\partial_{x}\partial^{\beta}\partial_{\beta} r^{\beta}a}{\partial x^{\beta}} = \frac{\partial_{x}\partial^{\beta}\partial_{\beta} r^{\beta}a}{\partial x^{\beta}} = \frac{\partial_{x}\partial^{\beta}\partial^{\alpha} r^{\beta}a}{\partial x^{\beta}} + \partial_{x}\partial^{\beta} r^{\alpha}a} + \partial_{x}\partial^{\alpha} r^{\beta}a} = \frac{\partial_{x}\partial^{\alpha}r^{\beta}a}{\partial x^{\beta}} + \partial_{x}\partial^{\beta} r^{\alpha}x}{\partial x^{\beta}} + \frac{\partial_{x}\partial^{\beta} r^{\alpha}x}{\partial $	$+2ik \sigma_{1}^{\#2}\alpha$		8
= 0 $\frac{\partial_x \partial^a \tau^b X + \partial_x \partial^b \tau^{Xa} + \partial_x \partial^x \tau^{ab} = =}{\partial_x \partial^a \tau^b X^b + \partial_x \partial^b \tau^{Xa} + \partial_x \partial^x \tau^{ba}}$ == 0 $\frac{\partial_x \partial^a \tau^b X^b + \partial_x \partial^b \tau^{Ab} + \partial_x \partial^b \tau^{ba}}{\partial^a \partial^a \partial^b \partial^a \partial^a \partial^b \partial^a \partial^a \partial^a \partial^a \partial^a \partial^a \partial^a \partial^a \partial^a \partial^a$		$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
== 0 $\partial_{\alpha}\partial^{\alpha} t^{X\beta} + \partial_{\lambda}\partial^{\beta} t^{\alpha X} + \partial_{\lambda}\partial^{x} t^{\beta \alpha}$ == 0 $\partial_{\alpha}\partial_{\alpha}\partial^{\alpha} \nabla^{\beta} \nabla^{\beta} + \partial_{\alpha}\partial^{\beta} \partial_{\alpha} \nabla^{\alpha} \nabla^{\beta} \nabla^{\beta} \nabla^{\beta} \nabla^{\alpha} \nabla^{\beta} \nabla^{\beta} \nabla^{\beta} \nabla^{\alpha} \nabla^{\beta} \nabla^{\beta} \nabla^{\beta} \nabla^{\alpha} \nabla^{\beta} \nabla^{\beta$	$\tau_{1+}^{\#1}\alpha\beta==0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} = =$	3
== 0		$\partial_{\chi}\partial^{\alpha} \iota^{\chi\beta} + \partial_{\chi}\partial^{\beta} \iota^{\alpha\chi} + \partial_{\chi}\partial^{\chi} \iota^{\beta\alpha}$	
	$\sigma_{1}^{\#2}\alpha\beta==0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	8
$2 \partial_{e} \partial^{e} \partial_{\sigma} \partial^{a} \nabla^{a} x^{\delta} + 4 \partial_{e} \partial^{e} \partial^{b} \partial^{a} \partial^{x} +$ $2 \partial_{e} \partial^{e} \partial_{\sigma} \partial^{b} \partial^{x} \nabla^{a} + 4 \partial_{e} \partial^{e} \partial^{b} \partial^{a} \nabla^{a} \nabla^{b} +$ $2 \partial_{e} \partial^{e} \partial_{\sigma} \partial^{b} \partial^{x} \nabla^{a} \nabla^{b} + 2 \partial_{e} \partial^{e} \partial^{b} \partial^{a} \nabla^{a} \nabla^{b} +$ $3 \eta^{b} X \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{a} \partial^{b} \partial_{e} +$ $3 \eta^{b} X \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{a} \partial^{b} \partial_{e} +$ $3 \eta^{b} X \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{a} \partial^{b} \partial_{e} +$ $3 \partial_{e} \partial_{\sigma} \partial^{x} \partial^{b} \partial^{a} \partial^{e} \partial^{a} \partial^{b} \partial_{e} \partial^{b} \partial_{e} \partial^{a} \partial^{b} \partial_{e} \partial^{b} \partial_{e} \partial^{b} \partial_{e} \partial^{b} \partial^{e} \partial^{b} \partial_{e} \partial^{b} \partial^{e} \partial^$	$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
$2 \partial_{e} \partial^{e} \partial_{o} \partial^{b} \sigma^{X} \delta^{\alpha} + 4 \partial_{e} \partial^{e} \partial_{o} \partial^{X} \sigma^{\alpha \beta \beta} + $ $2 \partial_{e} \partial^{e} \partial_{o} \partial^{X} \sigma^{\alpha \delta \beta} + 2 \partial_{e} \partial^{e} \partial_{o} \partial^{X} \sigma^{\alpha \beta \beta} + $ $3 \eta^{bX} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\alpha} \sigma^{\delta e} + $ $3 \eta^{aX} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\alpha} \sigma^{\delta e} + $ $3 \eta^{aX} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{c} \sigma^{\alpha} \partial^{\beta} \partial^{e} + $ $3 \eta^{aX} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{c} \partial^{\alpha} \partial^{\beta} \partial^{e} + $ $2 \partial_{e} \partial_{e} \partial^{X} \partial^{\beta} \partial^{\alpha} \partial^{e} \partial^{e} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta$		$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
$2 \partial_{e} \partial^{e} \partial_{o} \partial^{x} \sigma^{\alpha \delta \beta} + 2 \partial_{e} \partial^{e} \partial_{o} \partial^{c} \sigma^{\beta x} +$ $3 \eta^{\beta X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\alpha} \sigma^{\delta \varepsilon} +$ $3 \eta^{\alpha X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\alpha} \sigma^{\delta \varepsilon} +$ $3 \eta^{\alpha X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\alpha} \sigma^{\delta \varepsilon} +$ $3 \eta^{\alpha X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\varepsilon} \sigma^{\alpha} \sigma^{\delta \varepsilon} +$ $3 \eta^{\alpha X} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\alpha} \partial^{\beta} \partial^{\varepsilon} +$ $2 \partial_{\varepsilon} \partial_{s} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\varepsilon} + 3 \partial_{\varepsilon} \partial^{\varepsilon} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} +$ $2 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{s} \partial^{\alpha} \sigma^{\beta} \partial^{\alpha} \partial^{\varepsilon} + 4 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{s} \partial^{\alpha} \sigma^{\beta} \partial^{\alpha} +$ $2 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{s} \partial^{\alpha} \sigma^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^$		$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
3 η^{bX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{a}\sigma^{\delta\epsilon}_{\delta}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{a}\sigma^{\delta\epsilon}_{\delta}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\epsilon}\sigma^{\beta\delta\epsilon}$ + 3 η^{bX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\epsilon}$ = 10 $\partial_{\epsilon}\partial_{\delta}\partial^{x}\partial^{\beta}\sigma^{a\delta\epsilon}$ + 30 $\partial_{\epsilon}\partial^{\epsilon}\partial^{x}\partial^{\beta}\sigma^{a\delta}$ + 20 $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{a}\sigma^{bX}\partial^{\epsilon}$ + 20 $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{a}\sigma^{b}\partial^{k}$ + 20 $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{a}\sigma^{x}\partial^{k}$ + 20 $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{x}\partial^{k}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\epsilon}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\epsilon}$ + 2 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\delta}\sigma^{\epsilon}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\delta}\sigma^{\epsilon}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\delta}\sigma^{\epsilon}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\delta}\sigma^{\epsilon}\sigma^{\epsilon}$ + 3 η^{aX} $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta}\sigma^{\epsilon}\sigma^{\epsilon}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta}\sigma^{\epsilon}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta}\sigma^{\delta$		$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
3 $n^{\alpha\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial_{\varepsilon}G^{\beta\delta\varepsilon} +$ 3 $n^{\beta\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}G^{\alpha\delta} =$ 3 $n^{\beta\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}G^{\varepsilon}G^{\alpha\delta} =$ 5 $\partial_{\varepsilon}\partial_{\varepsilon}\partial^{\chi}\partial^{\beta}G^{\alpha\delta\varepsilon} +$ 3 $\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\chi}\partial^{\beta}G^{\alpha\delta} +$ 2 $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}G^{\beta\lambda} +$ 2 $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}G^{\beta\lambda} +$ 2 $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}G^{\beta\lambda} +$ 2 $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}G^{\beta\lambda} +$ 3 $n^{\alpha\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\beta}G^{\varepsilon} +$ 3 $n^{\alpha\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}G^{\varepsilon} +$ 3 $n^{\alpha\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}G^{\varepsilon} +$ 5 $n^{\alpha\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}G^{\varepsilon} +$ 5 $n^{\alpha\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}G^{\kappa} +$ 6 $\partial_{\varphi}\partial^{\varphi}\partial_{\varphi}\partial_{\varphi}\partial_{\varphi}\partial_{\varphi}\partial_{\varphi}\partial_{\varphi}\partial_{\varphi}\partial_$		$3 \eta^{eta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta\epsilon}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
3 $\eta^{\beta X}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}\sigma^{\alpha\delta}_{\delta} = =$ $\partial_{\varepsilon}\partial_{s}\partial^{\alpha}\partial^{\beta}\sigma^{\alpha\delta\varepsilon} + 3 \partial_{\varepsilon}\partial^{\varepsilon}\partial^{\alpha}\partial^{\alpha}\sigma^{\delta}_{\delta} +$ $2 \partial_{\varepsilon}\partial^{\varepsilon}\partial_{s}\partial^{\alpha}\sigma^{\beta}\nabla^{\delta} + 4 \partial_{\varepsilon}\partial^{\varepsilon}\partial_{s}\partial^{\alpha}\sigma^{\beta}\nabla^{\delta} +$ $2 \partial_{\varepsilon}\partial^{\varepsilon}\partial_{s}\partial^{\alpha}\sigma^{\beta}\nabla^{\delta} + 2 \partial_{\varepsilon}\partial^{\varepsilon}\partial_{s}\partial^{\alpha}\sigma^{\beta}\nabla^{\delta} +$ $4 \partial_{\varepsilon}\partial^{\varepsilon}\partial_{s}\partial^{\alpha}\sigma^{X}\delta^{\beta} + 2 \partial_{\varepsilon}\partial^{\varepsilon}\partial_{s}\partial^{\alpha}\sigma^{X}\delta^{\beta} +$ $3 \eta^{\alpha X} \partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varphi}\sigma^{\varepsilon}\delta^{\varepsilon} +$ $3 \eta^{\alpha X} \partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial_{\varepsilon}\partial^{\varepsilon}\sigma^{\varepsilon}\delta^{\varepsilon} +$ $3 \eta^{\alpha X} \partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\varphi}\sigma^{\varepsilon}\delta^{\varepsilon} +$ $3 \eta^{\alpha X} \partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\varphi}\sigma^{\varepsilon}\delta^{\varepsilon} +$ $3 \eta^{\alpha X} \partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\varphi}\sigma^{\varepsilon}\delta^{\varepsilon} +$ $3 \eta^{\alpha X} \partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\varphi}\partial^{\varphi}\sigma^{\varepsilon}\delta^{\varepsilon}\delta^{\varphi}\delta^{\varphi}\delta^{\varphi}\delta^{\varphi}\delta^{\varphi}\delta^{\varphi}\delta^{\varphi}\delta^{\varphi$		$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
$\begin{array}{l} \partial_{\varepsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\alpha\delta}\varepsilon + 3\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\chi}\partial^{\beta}\sigma^{\alpha\delta} + \\ 2\partial_{\varepsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta}x^{\delta} + 4\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\varepsilon}\partial^{\alpha}\sigma^{\beta}x^{\delta} + \\ 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta}x^{\delta} + 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta}x^{\delta} + \\ 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi}\delta^{\beta} + 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta}x^{\beta} + \\ 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\varepsilon}\partial^{\beta}\sigma^{\varepsilon} + \\ 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\varepsilon}\sigma^{\kappa} + \\ 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\varepsilon}\sigma^{\kappa} + \\ 3\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\tau^{\chi} + 2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\tau^{\chi} + 2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\chi}\partial^{\beta}\tau^{\chi} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\chi}\partial^{\beta}\tau^{\chi} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\beta}\tau^{\chi} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\beta}\sigma^{\chi} + \\ 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\beta}\tau^{\chi} + \\ 3\partial_{\varepsilon}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\beta}\tau^{\chi} + \\ 3\partial_{\varepsilon}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\beta}\tau^{\chi} + \\ 3\partial_{\varepsilon}\partial^{\delta}\partial_{\zeta}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\zeta}\tau^{\chi} + \\ 3\partial_{\varepsilon}\partial^{\delta}\partial_{\zeta}\partial^{\alpha}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\zeta}\sigma^{\chi} + \\ 3\partial_{\varepsilon}\partial^{\delta}\partial_{\zeta}\partial^{\beta}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\zeta}\partial^{\zeta}\partial^{\zeta}\tau^{\chi} + \\ 3\partial_{\varepsilon}\partial^{\delta}\partial_{\zeta}\partial^{\zeta}\partial^{\zeta}\tau^{\chi} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\tau^{\chi} + \\ 3\partial_{\varepsilon}\partial^{\delta}\partial_{\zeta}\partial^{\zeta}\partial^{\zeta}\tau^{\zeta} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\tau^{\zeta} + \\ 3\partial_{\varepsilon}\partial^{\zeta}\partial_{\zeta}\partial^{\zeta}\partial^{\zeta}\tau^{\zeta} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\tau^{\zeta} + \\ 3\partial_{\varepsilon}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta$		$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
$2 \partial_{e} \partial^{e} \partial_{o} \partial^{a} \sigma^{\beta X \delta} + 4 \partial_{e} \partial^{e} \partial_{o} \partial^{a} \sigma^{\beta \delta X} +$ $2 \partial_{e} \partial^{e} \partial_{o} \partial^{a} \sigma^{X \delta \beta} + 2 \partial_{e} \partial^{e} \partial_{o} \partial^{a} \sigma^{\beta \delta \alpha} +$ $4 \partial_{e} \partial^{e} \partial_{o} \partial^{a} \sigma^{X \delta \beta} + 2 \partial_{e} \partial^{e} \partial_{o} \partial^{a} \sigma^{X \beta} +$ $3 \eta^{a X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\beta} \sigma^{\delta} e^{+}$ $3 \eta^{a X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{c} \sigma^{\delta} e^{+}$ $3 \eta^{a X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{c} \sigma^{\delta} e^{+}$ $3 \eta^{a X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{e} \sigma^{\delta} e^{+}$ $3 \partial_{a} \partial^{b} \partial_{\alpha} \tau^{X \delta} + 2 \partial_{o} \partial^{b} \partial^{a} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \tau^{X \delta} + 3 \partial_{o} \partial^{b} \partial_{\alpha} \tau^{X \delta} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \tau^{X \beta} + 3 \partial_{o} \partial^{b} \partial_{\alpha} \partial^{c} \tau^{X \delta} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 3 \partial_{o} \partial^{b} \partial_{\alpha} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \partial^{c} \sigma^{A} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \partial^{c} \sigma^{A} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \sigma^{a} \tau^{X \beta} + 2 \eta^{a \beta} \partial_{e} \partial^{e} \partial_{\sigma} \partial^{c} \partial^{c} \partial^{c} \sigma^{A} \partial^{c} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial_{\alpha} \partial^{c} \sigma^{a} \partial^{c} \sigma^{a} \partial^{c} \sigma^{a} \partial^{c} $		$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}^{\delta} +$	
$2 \partial_{e} \partial^{e} \partial_{o} \partial^{\alpha} \sigma^{X} \delta^{\beta} + 2 \partial_{e} \partial^{e} \partial_{o} \partial^{x} \sigma^{\beta} \delta^{\alpha} +$ $4 \partial_{e} \partial^{e} \partial_{o} \partial^{a} \sigma^{X} \delta^{\beta} + 2 \partial_{e} \partial^{e} \partial_{o} \partial^{\alpha} \sigma^{X} \delta^{\beta} +$ $3 \eta^{\alpha X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\beta} \sigma^{\alpha} \delta^{e} +$ $3 \eta^{\beta X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{\beta} \sigma^{\alpha} \delta^{e} +$ $3 \eta^{\alpha X} \partial_{\phi} \partial^{\phi} \partial_{e} \partial^{e} \sigma^{\beta} \delta^{e} +$ $3 \partial_{a} \partial^{\beta} \partial^{\alpha} \tau^{X} \delta^{\beta} + 2 \partial_{o} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{X} +$ $3 \partial_{o} \partial^{b} \partial^{\alpha} \tau^{X} \delta^{\beta} + 3 \partial_{o} \partial^{\delta} \partial^{\alpha} \partial^{\alpha} \tau^{\beta} +$ $3 \partial_{o} \partial^{\delta} \partial_{x} \partial^{\alpha} \tau^{X} \partial^{\beta} + 3 \partial_{o} \partial^{\delta} \partial_{x} \partial^{\alpha} \tau^{\beta} +$ $3 \partial_{o} \partial^{\delta} \partial_{x} \partial^{\alpha} \tau^{X} \partial^{\beta} + 3 \partial_{o} \partial^{\delta} \partial_{x} \partial^{\beta} \tau^{\alpha} +$ $3 \partial_{o} \partial^{\delta} \partial_{x} \partial^{\alpha} \tau^{X} \partial^{\beta} + 2 \eta^{\alpha \beta} \partial_{e} \partial^{e} \partial_{o} \partial^{\beta} \partial^{\alpha} \tau^{X} +$ $3 \partial_{o} \partial^{\delta} \partial_{x} \partial^{\alpha} \tau^{X} \partial^{\beta} + 2 \eta^{\alpha \beta} \partial_{e} \partial^{e} \partial_{o} \partial^{\beta} \tau^{X} \partial^{\alpha} \tau^{X} +$ $3 \partial_{o} \partial^{\delta} \partial_{x} \partial^{\alpha} \tau^{X} \partial^{\beta} + 2 \eta^{\alpha \beta} \partial_{e} \partial^{e} \partial_{o} \partial^{\beta} \partial^{\alpha} \tau^{X} \partial^{\alpha} \partial^{\alpha} \tau^{X} \partial^{\alpha} \partial^{\alpha} \tau^{X} \partial^{\alpha} \partial^{\alpha} \tau^{X} \partial^{\alpha} \partial^$		$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\sigma} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\sigma} \sigma^{\alpha \chi \beta} +$ $3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon} +$ $3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha \delta \epsilon} +$ $3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha \delta \epsilon} +$ $5 \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$ $2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial^{\delta} \partial^{\delta} \tau^{\chi}$		$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
3 $\eta^{\alpha \chi}$ $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta\epsilon}_{\delta}$ + 3 $\eta^{\beta \chi}$ $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\alpha\delta\epsilon}$ + 3 $\eta^{\alpha \chi}$ $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\alpha\delta\epsilon}$ + 5 $\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta}$ + 2 $\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi}$ + 2 $\eta^{\alpha\beta}$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\chi}\tau^{\alpha\beta}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\kappa}\tau^{\beta\alpha}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha}$ + 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\alpha}$ + 2 $\eta^{\alpha\beta}$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau^{\chi}$ Generators:		$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
3 $\eta^{\beta\chi}$ $\partial_{\phi}\partial^{\phi}\partial_{\varepsilon}\partial_{\varepsilon}\sigma^{\alpha\delta\varepsilon} +$ 3 $\eta^{\alpha\chi}$ $\partial_{\phi}\partial^{\phi}\partial_{\varepsilon}\partial^{\varepsilon}\sigma^{\varepsilon}\sigma^{\varepsilon}$ 3 $\eta^{\alpha\chi}$ $\partial_{\phi}\partial^{\phi}\partial_{\varepsilon}\partial^{\varepsilon}\sigma^{\varepsilon}\sigma^{\delta}\sigma^{\varepsilon}$ 3 $\partial_{\alpha}\partial^{\beta}\sigma^{\tau}\chi^{\delta} + 2 \partial_{\sigma}\partial^{\delta}\partial^{\beta}\sigma^{\tau}\chi^{\chi} +$ 2 $\eta^{\alpha\beta}$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$ 3 $\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$ 3 $\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 2 \eta^{\alpha\beta} \partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial^{\gamma}\chi^{\chi}$ generators:		$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta\epsilon}_{~~\delta}+$	
3 $\eta^{\alpha\chi}$ $\partial_{\varphi}\partial^{\varphi}\partial_{\varepsilon}\partial^{\varepsilon}\sigma^{\beta\delta}\delta_{\delta}$ $5\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi} +$ 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$ 2 $\eta^{\alpha\beta}$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\lambda}\tau^{\chi\delta} = 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} +$ 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$ 3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\delta}\tau^{\chi}$ generators:		$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} +$	
$5\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\beta}\sigma^{\tau\chi}_{\chi} +$ $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$ $2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\tau^{\chi\delta} = 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\tau}\tau^{\beta\chi} +$ $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$ $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau^{\chi}_{\chi}$ generators:		$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{arepsilon}\partial^{arepsilon}\partial_{arepsilon}\partial^{arepsilon}\partial_{arepsilon}\partial^{arepsilon}\partial_{arepsilon}\partial^{arepsilon}\partial_{a$	
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$ $2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} == 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}$ generators:		$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi \delta} == 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} t^{\alpha \chi} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} t^{\chi \alpha} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{\chi}$ generators:		$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + $ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}$ denerators:		$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} == 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta\chi} +$	
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ generators:		$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
generators:		$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}$	
961618619:	Total constraints/gauge	0,	25

	7	C H	ļ		9	;	
•	$\sigma_1^{\#_1}\!$	$\sigma_{1}^{\#2}$ $\alpha \beta$	$\sigma_1^{\#2} + \alpha \beta \tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1^{-}lpha}^{\#2}$	$ au_{1}^{\#_{1}} lpha$	$ au_1^{\#2} lpha$
$\sigma_{1+}^{\#1} + ^{\alpha\beta}$	$\frac{1}{k^2 (2r_3+r_5)}$	0	0	0	0	0	0
$\sigma_1^{\#2} + \alpha \beta$	0	0	0	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2i)}$
$\sigma_{1}^{#2} +^{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$\frac{i\sqrt{2} (3k^2 (r_3 + 2r_5)}{k(1 + 2k^2)^2 (r_3 + 2r_5)}$
$t_1^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0
$t_1^{#2} +^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2 (r_3 + 2r_5) + 8}{(1 + 2k^2)^2 (r_3 + 2r_5)}$

0	0	0	$\frac{4}{k(1+2k^2)}$	$\frac{i\sqrt{2}(3k^2)^2}{k(1+2k^2)^2}$	0	$\frac{6k^2(r_3+2)}{(1+2k^2)^2}$	
) ×	$\frac{\bar{l} \sqrt{2}}{k(1)}$		6 (1+	ູ່ ອ
0	0	0	0	0	0	0	$\frac{\partial}{\partial \alpha} f^{c}$
0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	Ladratic (free) action == $ \iint \{ f^{\alpha\beta} \ \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \circ_{\alpha\beta\chi^{-\frac{2}{3}}} t_3 (\mathcal{A}^{\alpha'} \alpha_{\beta} \beta_{\alpha}^{\ \beta} - 2 \mathcal{A}^{\ \beta}_{\alpha} \partial_{\beta} f^{\alpha'} + 2 \mathcal{A}^{\beta}_{\beta} \partial_{\beta} f^{\alpha}_{\beta} \partial_{\beta} f^{\alpha'} + 2 \mathcal{A}^{\beta}_{\beta} \partial_{\beta} f^{\beta}_{\beta} \partial_{\beta} f^{\alpha}_{\beta} \partial_$
0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$a_{\beta\chi} - \frac{2}{3}t_{3} (\mathcal{A}^{\alpha_{l}} \mathcal{A}_{\alpha}^{\theta} - 2 \mathcal{A}_{\alpha}^{\theta} \partial_{l} f^{\alpha_{l}} + 5)$ $\partial_{l} f^{\theta} \partial^{l} f^{\alpha}_{\alpha} - \partial_{l} f^{\alpha_{l}} \partial_{\theta} f^{\theta}_{\alpha} + 2 \partial^{l} f^{\alpha}_{\alpha} \partial_{\theta} f^{\beta}_{\beta}$ $\delta \mathcal{A}_{\beta}^{\theta} \partial^{l} \mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{l} \mathcal{A}_{\beta}^{\theta} \partial^{l} \mathcal{A}^{\alpha\beta}_{\alpha} + 3 \partial^{l} f^{\alpha}_{\alpha} \partial_{\theta} f^{\beta}_{\beta}$ $2 \partial^{l} \mathcal{A}^{\alpha\beta}_{\alpha} \partial_{\theta} \mathcal{A}_{\beta}^{\theta} + \partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} \partial_{\theta} \mathcal{A}_{\beta}^{\theta} - 2 \partial^{l} \mathcal{A}^{\alpha\beta_{l}}_{\alpha} \partial_{\theta} \mathcal{A}_{\beta}^{\theta} + 8 \partial_{\beta} \mathcal{A}_{l\theta\alpha}^{\theta} \partial_{\theta} \mathcal{A}_{\beta}^{\theta} + 6 \partial_{\beta} \mathcal{A}_{l\theta\alpha}^{\theta} \partial_{\theta} \mathcal{A}_{\beta}^{\theta} - 2 \partial^{l} \mathcal{A}_{\beta}^{\theta} \partial_{\theta} \mathcal{A}_{\alpha}^{\theta} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\theta} \mathcal{A}_{\alpha}^{\alpha} - \partial_{\theta} \mathcal{A}_{\beta}^{\kappa} \partial_{\theta} \mathcal{A}_{\alpha}^{\alpha} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\alpha} \mathcal{A}_{\beta}^{\alpha} \partial_{\beta} \mathcal{A}_{\beta}^{\alpha} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\alpha\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \mathcal{A}_{\beta}^{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \partial_{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} - (\partial_{\alpha} \mathcal{A}^{\beta\beta_{l}} - 2 \partial_{\beta} \mathcal{A}_{\beta}^{\kappa} \partial_{\beta} $
0	0	0	0	0	0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0	0	0	0	0	0	0	action $\mathcal{A}^{\alpha\beta\chi}$
$d_1^{n+} + d_2^{n-} \left[\frac{k^2 (2 r_3 + r_5)}{k^2 (2 r_3 + r_5)} \right]$	0	0	0	0	0	0	Quadratic (free) action $S == \int \int \int \int \int (f^{\alpha\beta} t_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi}) \int \int \int \int \int f^{\alpha\beta} t_{\beta} dt$
$\sigma_1^{\pi^+} + \Gamma^{\alpha P}$	$\sigma_1^{\#2} + ^{\alpha\beta}$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$ au_1^{\#2} +^{lpha}$	Quadra S == [][][][]

_					_					$\tau_{2}^{\#1}_{c}$	0	0	0			
00-	0	0	0	0	$\mathcal{A}_{0^{ ext{-}}}^{\#1}$	0	0	0	0	$\sigma_{2}^{\#1}$ $\alpha \beta$	$\frac{2}{3k^2r_3}$	0	0			
+0,	0	0	0	0	f#2	0	0	0	0	O.	ı		χ_{g}	<u> </u>		
+ ⁰	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	$f_{0}^{\#1}$	$-i\sqrt{2}kt_3$	$2k^2t_3$	0	0		$\sigma_{2^+}^{#1} + \alpha \beta$		$\int_{0}^{2\pi} d^{2}x + \alpha \beta x$:#1 2+ aß	${\cal A}_{ extsf{2}^{-}lphaeta\chi}^{\#1}$	
+00	$\frac{1}{1+2k^2)^2t_3}$	(1+2) (1+2) (1+2)		0	$\mathcal{A}_{0}^{\#1}$	<i>t</i> ₃	1 1/2 kt3	0	0	Я‡	‡1 †αμ ‡1 †αμ	$-\frac{3k^2}{2}$? r ₃	0 0	0 0	
Ţ	$\sigma_{0}^{#1} + \frac{1}{2}$		τ ^{#2} †	$\sigma_{0^{\text{-}}}^{\#1} +$	' נ	$\mathcal{A}^{\#1}_{0^+}$ †	_	_	$\mathcal{A}_{0^-}^{\#1} \dotplus$	$\mathcal{A}_2^{\#_2^2}$				0	0	
		\mathcal{A}	#1 1 ⁺ αβ		${\cal A}_{1}^{\#2}{}_{lpha_{l}}$	$_{\mathcal{B}}f_{1}^{\#}$	1 + αβ		${\cal R}_1^{\scriptscriptstyle\#}$	‡1 - α		$\mathcal{A}_1^{\#_2^2}$	<u>2</u> α	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$	
Αį	$_{1}^{\#1}$ † lphaeta	k^{2} (2	r ₃ +	r ₅)	0		0	0)		0		0	0	
	$_{1}^{\#2}$ † $^{\alpha \beta}$		0		0		0		C)		0		0	0	
$f_{1+}^{\#1}\dagger^{\alpha\beta}$		0			0		0	0					0	0		
$\mathcal{A}_{1}^{\sharp 1}\! \dagger^{lpha}$		0			0		0	$k^2\left(\frac{r_3}{2}+r_5\right)$		$(_{5}) + \frac{2}{3}$	2 <i>t</i> 3 3	$-\frac{\sqrt{2} t_3}{3}$		0	$-\frac{2}{3}ikt_3$	
$\mathcal{A}_{1}^{\#2}$ † lpha		0			0		0	$-\frac{\sqrt{2} t_3}{3}$			<u>t₃</u> 0		0	$\frac{1}{3}i\sqrt{2}kt_3$		
$f_{1}^{#1} \dagger^{\alpha}$			0		0		0	0)		0		0	0	
j	$f_1^{#2} \dagger^{\alpha}$		0		0		0		<u>2 i k</u> 3		-	$\frac{1}{3}$ \bar{l} $\sqrt{2}$	_ 2 kt ₃	0	$\frac{2k^2t_3}{3}$	

Massive and massless spectra

Quadratic pole

Pole residue:
$$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$$

Polarisations: 2

(No massive particles)

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$