

Machine Intelligence 2 2.3 Second Order Blind Source Separation

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

Second Order Blind Source Separation

Second Order Blind Source Separation

Problem: Noisy observations

- → Estimation of higher order moments is unreliable.
- ∼ Can we do it with the estimation of second order moments (correlations) only?
- → Yes: but only under the assumption of finite length autocorrelations.

Typical examples: Time series, images, videos, etc.

Observations: $\underline{\mathbf{x}}_{(t)}$, recorded at different times (from $\underline{\mathbf{x}} = \underline{\mathbf{A}} \cdot \underline{\mathbf{s}}$)

Example: Two sources & two time shifts

statistical independence $\stackrel{?}{\leftarrow}$ cross-correlation function vanishes

Separation: find unmixing matrix $\underline{\mathbf{W}}$, s.t. both cross-correlations (absolute values) are minimized

Step 1: PCA and sphering

- (a) "centering" of the data: $<\underline{\mathbf{x}}>=\underline{\mathbf{0}}$
- (b) solve the eigenvalue problem

$$\underline{\mathbf{C}}_{\mathbf{x}}^{(0)}\underline{\mathbf{e}}_{k} = \lambda_{k}\underline{\mathbf{e}}_{k} \quad \text{ with } \quad \left[\underline{\underline{\mathbf{C}}_{\mathbf{x}}^{(0)}}\right]_{ij} = \left\langle \mathbf{x}_{i(t)}\mathbf{x}_{j(t)}\right\rangle_{t}$$

(c) transformation into the eigenbasis and sphering

$$\underline{\mathbf{u}} = \underline{\mathbf{M}}_0 \cdot \underline{\mathbf{x}}$$

$$\underline{\mathbf{M}}_0 = \underbrace{\Lambda_0^{-\frac{1}{2}}}_{\text{diagonal matrix of inverse eigenvalues}} \cdot \underbrace{\underline{\mathbf{E}}_0^T}_{\text{matrix of eigenvectors}}$$

Step 2: Rotation of eigenvectors

$$\Rightarrow$$
 ansatz: $\underline{\mathbf{s}} = \underline{\mathbf{B}} \cdot \underline{\mathbf{u}}$

for statistically independent sources we obtain

$$\begin{aligned} \left\langle s_{i(t)} s_{j(t)} \right\rangle_t &= \sum_{k,l=1}^N B_{ik} \underbrace{\left\langle u_{k(t)} u_{l(t)} \right\rangle_t}_{\stackrel{!}{=} \delta_{kl}: (\textit{cf. sphering})} B_{lj}^T \\ &= \sum_{k=1}^N B_{ik} B_{kj}^T \stackrel{!}{=} \delta_{ij} \end{aligned}$$

 $\mathbf{B} \cdot \mathbf{B}^T = \mathbf{1} \rightsquigarrow \text{orthogonal transformation}$

Source separation requires an additional orthogonal transformation.

Step 3: Determination of B

Approach: Determination of $\underline{\mathbf{B}}$ through diagonalization of a time-shifted cross-correlation matrix $\underline{\mathbf{C}}_u^{(\tau)}$:

(a) solve the eigenvalue problem

$$\underline{\mathbf{C}}_{u}^{(\tau)}\underline{\mathbf{e}}_{k} = \lambda_{k}\underline{\mathbf{e}}_{k} \text{ with } \left[\underline{\mathbf{C}}_{u}^{(\tau)}\right]_{ij} = \left\langle u_{i(t)}u_{j(t-\tau)}\right\rangle_{t}$$

(b) transformation into the eigenbasis via $\underline{\mathbf{E}}_{\tau}(=\underline{\mathbf{B}})$

$$\widehat{\underline{\mathbf{s}}} = \underbrace{\underline{\mathbf{E}}_{\tau}^{T}}_{\text{matrix of eigenvectors}} \underline{\mathbf{u}} = \underbrace{\underline{\mathbf{E}}_{\tau} \underline{\mathbf{\Lambda}}_{0}^{-1/2} \underline{\mathbf{E}}_{0}^{T}}_{\underline{\mathbf{W}}} \underline{\mathbf{x}}$$

Molgedey, L., and Schuster, H. G. (1994). Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72:3634 - 3637.

Making it practical

Noisy data: only approximate independence

- ⇒ approach can be extended to design **noise robust algorithms**
 - lacksquare minimizing sensor noise by omitting au=0
 - (approximate) joint diagonalization of multiple cross-correlation matrices

$$\left[\underline{\mathbf{C}}_{\mathbf{x}}^{(\tau)}\right]_{ij} = \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{x}_{i(t)} \mathbf{x}_{j(t-\tau)}$$

Two examples: QDIAG & FFDIAG

Algorithm 1: QDIAG (Vollgraf & Obermayer, 2006)

Cost function: squared sum of all non-diagonal elements

$$E_{[\underline{\mathbf{w}}]}^T = \sum_{\substack{\tau \text{ weighting} \\ \text{factors}}} \sum_{i \neq j} \left(\underline{\mathbf{W}} \cdot \underline{\mathbf{C}}_{\mathbf{x}}^{(\tau)} \cdot \underline{\mathbf{W}}^T\right)_{ij}^2$$

Optimization problem: constrained minimization of cross-correlations

$$E_{[\mathbf{\underline{W}}]}^T \stackrel{!}{=} \min$$

$$\left(\underline{\mathbf{W}}\cdot\underline{\mathbf{C}}_{\mathrm{x}}^{(0)}\cdot\underline{\mathbf{W}}^{T}\right)_{ii}=1$$
 for all $i o$ avoid trivial solutions

- we two versions: $O(k \cdot N^3)$ or $O(N^5)$, k: no. of shifts, N: no. of sources
- allows for arbitrary (rectangular) matrices W
- code and docu: https://www.ni.tu-berlin.de/menue/software_and_data/ approximate_simultaneous_matrix_diagonalization_qdiag/

Algorithm 2: FFDIAG (Ziehe et al., 2004)

Cost function: equally weighted squared sum

$$E_{[\underline{\mathbf{W}}]}^{T} = \sum_{\tau} \sum_{i \neq j} \left(\underline{\mathbf{W}} \cdot \underline{\mathbf{C}}_{\mathbf{x}}^{(\tau)} \cdot \underline{\mathbf{W}}^{T} \right)_{ij}^{2}$$

Optimization problem: constrained minimization

$$E_{[\mathbf{W}]}^T \stackrel{!}{=} \min$$
 minimize cross-correlation

invertability of $\underline{\mathbf{W}}$ constraint to avoid trivial solutions

- \blacksquare computational complexity: $O(k\cdot N^2)$, approaching $O(N^3)$ for large $N,\,k$: no. of shifts, N: no. of sources
- requires square matrices **W**, no weighting
- code: http://www.user.tu-berlin.de/aziehe/code/

Application to optical imaging of brain activity: Stetter et al. (2000)

Experimental Setup (London Site)

Sources of Intrinsic Signals

Hemoglobine Saturation

Blood Volume

Cytochrome Oxidase

Tissue Scattering

Components of Intrinsic Signals

Spatial vs. Temporal Analysis

PCA on Averaged Single Condition Image Series: Temporal Principal Components and Data Projections

Source Separation Using the Molgedey-Schuster Algorithm

Source data: Principal components No. 11-15 from long continuous image time series (1456 frames)

processing: Molgedey-Schuster source separation with $au=10{
m sec}$