

Formula 1

Chapter Chapte

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO₂;

 R_1 is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

Z Z	O'N OH	s N OH	HN N OH	O S O
H O N \$=0	O.N. OH	s N OH	N, N OH	NN SH
N OH	HN N OH	N OH	N OH	N O
HN S.				

R₂ is hydrogen;

 $R_3 \ is \ hydrogen, \ C_1\text{-}C_6 alkyl, \ arylC_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 alkyl carbonyloxy} C_1\text{-}C_6 alkyl \ or \ C_1\text{-}C_6 alkyl carbonyloxy aryl} C_1\text{-}C_6 alkyl;$

R₄ is hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 $R_5, \text{ and } R_6 \text{ are independently hydrogen, trihalomethyl, } C_1\text{-}C_6alkyl, \text{ aryl, aryl} C_1\text{-}C_6alkyl, \\ C_1\text{-}C_6alkyloxycarbonyl, \text{ aryloxycarbonyl, aryl} C_1\text{-}C_6alkyloxycarbonyl, } C_1\text{-}C_6alkyloxy, } C_1\text{-}C_6alkyloxy} C_1\text{-}C_6alkyloxy} C_1\text{-}C_6alkyloxy} C_1\text{-}C_6alkyloxy} C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyloxy} C_1\text{-}C_6alkyl, \text{ NR}_7R_8, } C_1\text{-}C_6alkylamino} C_1\text{-}C_6alkyl, \text{ di}(\text{aryl} C_1\text{-}C_6alkyl)\text{amino} C_1\text{-}C_6alkyl, } C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyl, } C_1\text{-}C_6alkyl, \\ C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyl, \text{ aryl} C_1\text{-}C_6alkyl, } C_1\text{-}C_6a$

 R_7 -and R_8 are independently-selected-from-hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarboxy or aryl C_1 - C_6 alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions; or R_7 and R_8 together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system containing from 3 to 14 carbon atoms and from 0 to 3 additional heteroatoms selected from nitrogen, oxygen or sulphur, wherein the ring system is optionally substituted with at least one C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkyloxy, C_1 - C_6 -alkyloxy C_1 - C_6 alkyl, C_1 - C_6 alkyl or $NR_{11}R_{12}$, wherein R_{11} and R_{12} are independently selected from hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, arylcarbonyl, aryl C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarboxy or aryl C_1 - C_6 alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below; or

R₇ and R₈ are independently a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam;

wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR3, CONR7R8,C1-C6alkyl, C1-C6alkyloxy, aryloxy, arylC1-C6alkyloxy, NR7R8, C1-C6alkylamino, arylamino, arylC1-C6alkylamino, di(arylC1-C6alkyl)amino, C1-C6alkylcarbonyl, arylC1-C6alkylcarbonyl, C1-C6alkylcarboxy, arylcarboxy, arylC1-C6alkylcarboxy, C1-C6alkylcarbonylamino, -C1-C6alkylcarboxy, arylC1-C6alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR7R8, -C1-C6alkylCONR7R8, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R13 is C1-C6alkyl, aryl, arylC1-C6alkyl, C1-C6alkyloxy, aryloxy, arylC1-C6alkyloxy; and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C1-C6alkyl, aryl, arylC1-C6alkyl, hydroxy, CONR7R8, C1-C6alkyloxy, C1-C6alkyloxyC1-C6alkyl, aryloxy, arylC1-C6alkyloxyC1-C6alkyl, NR7R8, C1-C6alkyloxyC1-C6alkylaminoC1-C6alkylaminoC1-C6alkyl, arylamino, arylC1-C6alkylamino, arylC1-C6alkylaminoC1-C6al

 $arylC_1-C_6alkylcarboxy, arylC_1-C_6alkylcarboxyC_1-C_6alkyl, C_1-C_6alkylcarbonylamino, C_1-C_6alkylcarbonylaminoC_1-C_6alkyl, -carbonylNR_7C_1-C_6alkylCOR_{13}, arylC_1-C_6alkylcarbonylamino, arylC_1-C_6-alkylcarbonylaminoC_1-C_6alkyl, -CONR_7R_8, or -C_1-C_6alkylCONR_7R_8.$

C6alkyl, C1-C6alkylcarbonyl, C1-C6alkylcarbonyl, arylC1-C6alkylcarbonyl,

arylC₁-C₆alkylcarbonylC₁-C₆alkyl, C₁-C₆alkylcarboxy, C₁-C₆alkylcarboxyC₁-C₆alkyl

- 111. (new) The compound according to claim 110, wherein R₁ is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl or COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl.
- 112. (new) The compound according to claim 110, wherein n and m are 1.

- 113. (new) The compound according to claim 110, wherein Y is oxygen.
- 114. (new) The compound according to claim 110, wherein R_1 is 5-tetrazolyl, R_5 is C_1 - C_6 alkylN R_7 R_8 and Y is oxygen.
- 115. (new) The compound according to claim 110, wherein R₄ and R₆ are hydrogen.
- 116. (new) The compound according to claim 110, wherein R₆ is C₁-C₆alkylNR₇R₈.
- 117. (new) The compound according to claim 110, wherein the aryl group is pyridyl
- 118. (new) The compound according to claim 110, wherein the aryl group is phenyl optionally substituted with methoxy or CH₃C(O).
- 119. (new) The compound according to claim 110, wherein R₇ is hydrogen and R₈ is C₁-C₆alkylaryl.
- 120. (new) The compound according to claim 110, wherein R_6 is arylaminocarbonylamino C_1 - C_6 alkyl.
- 121. (new) The compound according to claim 110, wherein R₆ is aryloxyC₁-C₆alkyl.
- 122. (new) The compound according to claim 110, wherein the aryl group is 1,1-dioxobenzo[d]isothiazol-3-yl.
- 123. (new) the compound according to claim 110, wherein the aryl group is 1,1-dioxo-5-phenyl-isothiazol-3-yl.

- 124. (new) The compound according to claim 110, wherein the aryl group is benzo[1,3]dioxol-5-yl.
- 125. (new) The compound according to claim 110, wherein the aryl group is 5-methoxy-2-methyl-1H-indol-3-yl.
- 126. (new) A composition comprising an effective amount of a compound of claim 110, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.
- 127. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 110 and an insulin sensitizer.
- 128. (new) A composition comprising an effective amount of a compound of claim 110, together with oone or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from β cells.
- 129. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 110 and an agent stimulating insulin release from ß cells.
- 130. (new) A composition comprising a compound of claim 110, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.
- 131. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 110 and an antiobesity agent.

132. (new) A composition according to claim 126, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.

133. (new) A composition according to claim 126, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.

134. (new) A composition according to claim 126, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

135. (new) The method according to claim 127, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically-acceptable-salt thereof.

136. (new) The method according to claim 127, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

137. (new) The method according to claim 127, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

138. (new) A composition according to claim 128, wherein the agent stimulating insulin release from β cells is repaglinide.

- 139. (new) The method according to claim 129, wherein the agent stimulating insulin release from β cells is repaglinide.
- 140. (new) A composition according to claim 130, wherein the antiobesity agent is orlistat.
- 141. (new) The method according to claim 131, wherein the antiobesity agent is orlistat.
- 142. (new) A method for preparing the compound of claim 110, comprising

A)

- a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;
- B)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo;

C)
$$R_{s} = \begin{pmatrix} R_{s} & R_{1} & R_{2} & R_{3} & R_{4} & R_{1} & R_{2} & R_{3} & R_{3} & R_{4} & R_{1} & R_{2} & R_{3} & R_{3} & R_{4} & R_{1} & R_{2} & R_{3} & R_{3} & R_{4} & R_{1} & R_{2} & R_{3} & R_{4} & R_{2} & R_{3} & R_{4} & R_{2} & R_{3} & R_{4} &$$

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

143. (new) A compound of Formula 1

$$\begin{array}{c|c} R_5 & P_1 & P_2 \\ \hline P_1 & P_2 & O \\ \hline P_1 & P_2 & O \\ \hline P_2 & O & OR_3 \end{array}$$

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO₂;

R₁ is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkyl;

R₄ is hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 R_5 is C_1 - C_6 alkylNR₇R₈ wherein R_7 and R_8 together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system selected from the group consisting of pyrrolopyrazinem, pyrrolopyridine, benzo[d]isoxazole, 1,1-dioxo-1,3-dihydro-benzo[d]isothiazole, pyrrolidine and 1,3-dihydro-benzo[d]isothiazole substituted with two oxo groups at the atom positions adjacent to the nitrogen atom, wherein the ring system is optionally be substituted with at least one C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, COOR₃, hydroxy, nitro, oxo, C_1 - C_6 alkyloxy,

Charles Charle

arylC₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, C₁-C₆alkylaminoC₁-C₆alkyl or NR₉R₁₀, wherein R₉ and R₁₀ are independently selected from hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆-alkylcarboxy or arylC₁-C₆alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below;

wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, CONR₇R₈, C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₇R₈, C₁-C₆alkylamino, arylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₂, arylC₁-C₆alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₇R₈, -C₁-C₆alkylCONR₇R₈, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R₁₂ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy;

and wherein the optionally substituted aryl group is substituted with a group selected from-halo,-nitro,-cyano,-trihalomethyl,-C₁-C₆alkyl,-aryl,-arylC₁-C₆alkyl,-hydroxy,-COOR₃, CONR₇R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy, arylC₁-C₆alkyloxyC₁-C₆alkyl, NR₇R₈, C₁-C₆alkylamino, C₁-C₆alkylamino, arylC₁-C₆alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkyl-aminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonylC₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkylcarboxy, C₁-C₆alkylcarboxyC₁-C₆alkyl, arylC₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxyC₁-C₆alkyl, carboxyC₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkyl, -carbonylNR₇C₁-C₆alkylCOR₁₂, arylC₁-C₆alkylcarbonylamino, arylC₁-C₆-alkylcarbonylaminoC₁-C₆alkyl, -CONR₇R₈, or -C₁-C₆alkylCONR₇R₈;

R₆ is hydrogen, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, oxo, carboxy, carboxyC₁-C₆alkyl, C₁-C₆alkyloxy-carbonyl, aryloxycarbonyl, arylC₁-

C₆alkyloxycarbonyl, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy, aryloxyC₁-C₆alkyl, arylC₁-C₆alkyloxyC₁-C₆-alkyl, NR₈R₉, C₁-C₆alkylaminoC₁-C₆alkyl, arylC₁-C₆alkylaminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonylC₁-C₆alkyl, arylC₁-C₆alkylcarbonyl, arylC₁-C₆-alkylcarbonylC₁-C₆alkyl, C₁-C₆alkylcarboxy, C₁-C₆alkylcarboxyC₁-C₆alkyl, arylC₁-C₆alkylcarboxy, arylC₁-C₆alkyl-carboxyC₁-C₆alkyl, C₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkyl, -carbonylNR₈C₁-C₆alkylCOR₁₁, arylC1-C₆alkylcarbonylamino, arylC₁-C₆alkylcarbonylaminoC₁-C₆alkyl, CONR₇R₈, C₁-C₆alkylCONR₇R₈ or arylaminocarbonylaminoC₁-C₆alkyl; wherein the alkyl and aryl groups are optionally substituted as defined for R₅ and R₁₁ is NR₇R₈, or C₁-C₆alkylNR₇R₈;

R₇ and R₈ are independently selected from hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy or arylC₁-C₆alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions; or R₇ and R₈ together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system containing from 3-to—14 carbon atoms and from 0 to 3 additional heteroatoms selected from nitrogen, oxygen or sulphur, wherein the ring system is optionally substituted with at least one C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, C₁-C₆alkyloxy, C₁-C₆-alkyloxyC₁-C₆alkyl, C₁-C₆alkyl-aminoC₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkylcarbonyl, arylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy or arylC₁-C₆alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below; or

Wherein R₇ and R₈ are independently a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam; wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo,

CHI

COOR₃, CONR₇R₈,C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₇R₈, C₁-C₆alkylamino, arylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₃, arylC₁-C₆alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₇R₈, -C₁-C₆alkylCONR₇R₈, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy;

and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, CONR₇R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy, arylC₁-C₆alkyloxyC₁-C₆alkyl, NR₇R₈, C₁-C₆alkylamino, C₁-C₆alkylaminoC₁-C₆alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkylaminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkylcarbonylC₁-C₆alkylcarboxyC₁-C₆alkylcarboxyC₁-C₆alkylcarboxyC₁-C₆alkylcarboxyC₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkylcoNR₇R₈, or -C₁-C₆alkylcONR₇R₈.

or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, a racemic mixture, or any tautomeric form, or prodrug thereof.

144. (new) The compound according to claim 143, wherein the ring system is 1,3-dihydro-benzo[d]isothiazolyl, substituted with 2 oxo groups at the atom positions adjacent to the nitrogen atom.

145. (new) The compound according to claim 143, wherein the ring system is thiazolidin-2,4-dione.

146. (new) The compound according to claim 143, wherein the ring system is 5-(arylmethyl)-thiazolidin-2,4-dione.

147. (new) The compound according to claim 143, wherein the ring system is pyrrolo[3,4-b]pyridine-5,7-dione.

" Appt

148. (new) The compound according to claim 143, wherein the ring system is pyrrolo[3,4-b]pyridine-1,3-dione.

149. (new) The compound according to claim 143, wherein the ring system is pyrrolo[3,4-b]pyrazine-5,7-dione.

150. (new) A composition comprising an effective amount of a compound of claim 143, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.

151. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 143 and an insulin sensitizer.

152. (new) A composition comprising an effective amount of a compound of claim 143, together with one or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from β cells.

153. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need

thereof an effective amount of a compound of claim 143 and an agent stimulating insulin release from ß cells.

154. (new) A composition comprising a compound of claim 143, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.

155. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 143 and an antiobesity agent.

156. (new) A composition according to claim 150, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.

157. (new) A composition according to claim 150, wherein the insulin senitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic-acid-or-a pharmaceutically-acceptable salts thereof.

158. (new) A composition according to claim 150, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.

159. (new) The method according to claim 151, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

160. (new) The method according to claim 151, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-

oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

- 161. (new) The method according to claim 151, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 162. (new) A composition according to claim 152, wherein the agent stimulating insulin release from β cells is repaglinide.
- 163. (new) The method according to claim 153, wherein the agent stimulating insulin release from β cells is repaglinide.
- 164. (new) A composition according to claim 154, wherein the antiobesity agent is orlistat.
- 165. (new) The method according to claim 155, wherein the antiobesity agent is orlistat.
- 166. (new) A method for preparing the compound of claim 143, comprisingA)

a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;

B)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo;

C)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

167. (new) A compound of Formula 1

$$\begin{array}{c|c} R_5 & R_1 & R_2 \\ \hline \\ Y & \\ R_6 & O & OR_3 \end{array}$$

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO₂;

 R_1 is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyloxyaryl C_1 - C_6 alkyl;

 R_4 is hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 R_5 is C_1 - C_6 alkylNR $_7$ R $_8$ wherein R_7 and R_8 together with the nitrogen to which they are attached form isoindol wherein the ring system is optionally be substituted with at least one C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, fluoro, hydroxy, oxo, C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkyloxy, C_1 - C_6 alkyloxy C_1 - C_6 alkyl, C_1 - C_6 alkylamino- C_1 - C_6 alkyl or NR $_9$ R $_{10}$, wherein R_9 and R_{10} are independently selected from hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl,

CH

 $C_1\text{-}C_6 alkyl carbonyl, \ aryl C_1\text{-}C_6 alkyl carbonyl, \ C_1\text{-}C_6 alkyl carboxy \ or \ aryl C_1\text{-}C_6 alkyl car$ C₆alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below or optionally substituted with one chloro or six chloros; wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₃, CONR₇R₈,C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₇R₈, C₁-C₆alkylamino, arylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆-alkylcarbonyl, C₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₁, arylC₁-C₆alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₇R₈,-C₁-C₆alkylCONR₇R₈, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R₁₁ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy; and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, COOR₃, CONR₇R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁- C_6 alkyloxy, aryl C_1 - C_6 alkyloxy C_1 - C_6 alkyl, C_1 - C_6 alkylthio, aryl C_1 - C_6 alkylthio, NR₇R₈, $C_1\text{-}C_6\text{-}alkylamino, C_1\text{-}C_6alkylamino}C_1\text{-}C_6alkyl, arylamino, arylC_1\text{-}C_6alkylamino, arylC_1\text{-}C_6alkyl$ C₆alkyl-aminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonylC₁-C₆alkyl, arylC₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkyl, C₁-C₆alkylcarboxy, C₁-C₆alkylcarboxyC₁-C₆alkyl, arylC₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxyC₁-C₆alkyl, carboxyC₁-C₆-alkyloxy, C₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkyl, -carbonylNR₇C₁-C₆alkylCOR₁₂, arylC₁- $C_6 alkyl carbonylamino C_1 - C_6 alkyl, -CONR_7 R_8, or -C_1 - C_6 alkyl - CONR_7 R_8, or -C_1 - C_6 alkyl - C_6 Alkyl$ C₆alkylCONR₇R₈;

 $R_6 \ is \ hydrogen, \ trihalomethyl, \ C_1-C_6 alkyl, \ arylC_1-C_6 alkyl, \ oxo, \ carboxyC_1-C_6 alkyl, \ C_1-C_6 alkyloxycarbonyl, \ arylOxycarbonyl, \ arylC_1-C_6 alkyloxycarbonyl, \ C_1-C_6 alkyloxyC_1-C_6 alkyloxy$

Chi

 $C_6 alkylamino C_1 - C_6 alkyl, \ aryl C_1 - C_6 alkylamino C_1 - C_6 alkyl, \ di(aryl C_1 - C_6 alkyl) amino C_1 - C_6 alkyl, \ C_1 - C_6 alkylcarbonyl, \ C_1 - C_6 alkylcarbonyl C_1 - C_6 alkylcarbonyl C_1 - C_6 alkylcarboxy C_1 - C_6 alkylcarbonylamino, \ C_1 - C_6 alkylcarbonylamino C_1 - C_6 alkyl, \ - carbonylNR_8 C_1 - C_6 alkylCOR_{12}, \ arylC_1 - C_6 alkylcarbonylamino C_1 - C_6 alkylcarbonylamino C_1 - C_6 alkyl CONR_7 R_8, \ C_1 - C_6 alkylCONR_7 R_8 \ or \ arylamino carbonylamino C_1 - C_6 alkyl; \ wherein the \ alkyl \ and \ aryl \ groups \ are optionally substituted as defined for R_5 \ and R_{12} \ is \ NR_7 R_8, \ or \ C_1 - C_6 alkylNR_7 R_8;$

Wherein R₇ and R₈ are independently selected from hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy or arylC₁-C₆alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions; or R₇ and R₈ together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system containing from 3 to 14 carbon atoms and from 0 to 3 additional heteroatoms selected from nitrogen, oxygen or sulphur, wherein the ring system is optionally substituted with at least one C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, C₁-C₆alkyloxy, C₁-C₆-alkyloxyC₁-C₆alkyl, C₁-C₆alkylaminoC₁-C₆alkyl or NR₁₁R₁₂, wherein R₁₁ and R₁₂ are independently selected from hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarbonyl, arylCarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy or arylC₁-C₆alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below; or R₇ and R₈ are independently a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam; wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₃, CONR₇R₈,C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₇R₈, C₁-C₆alkylamino, arylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylC₁-

Oppl

C6alkylcarboxy, C1-C6alkylcarbonylamino, -C1-C6alkylaminoCOR13, arylC1-C₆alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₇R₈, -C₁-C₆alkylCONR₇R₈, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R_{13} is C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkyloxy, aryloxy, $arylC_1$ - C_6 alkyloxy; and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C1-C6alkyl, aryl, arylC1-C6alkyl, hydroxy, $CONR_7R_8, C_1-C_6 alkyloxy, C_1-C_6 alkyloxyC_1-C_6 alkyl, aryloxy, arylC_1-C_6 alkyloxy, arylC_1-C_6 alkyl$ C6alkyloxyC1-C6alkyl, NR7R8, C1-C6alkylamino, C1-C6alkylaminoC1-C6alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkylaminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁- $C_6 alkyl, C_1 - C_6 alkyl carbonyl, C_1 - C_6 alkyl carbonyl C_1 - C_6 alkyl carbonyl, aryl C_1 - C_6 alkyl carbonyl, ary$ $arylC_1-C_6alkylcarboxylC_1-C_6alkyl, \ C_1-C_6alkylcarboxy, \ C_1-C_6alkylcarboxylC_1-C_6alkyl, \ C_1-C_6alkylcarboxylC_1-C$ arylC₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxyC₁-C₆alkyl, C₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkyl, -carbonylNR₇C₁-C₆alkylCOR₁₃, arylC₁-C₆alkylcarbonylamino, arylC₁-C₆-alkylcarbonylaminoC₁-C₆alkyl, -CONR₇R₈, or -C₁-C₆alkylCONR₇R₈.

or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, a racemic mixture, or any tautomeric form, or prodrug thereof.

- 168. (new) The compound of claim 167, wherein the ring system is optionally substituted with hydroxy, nitro, methoxy, benzyloxy, fluoro, chloro CH₃CH₂CH₂NHC(O)- or CH₃C(O)NH.
- 169. (new) A composition comprising an effective amount of a compound of claim 167, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.

170. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 167 and an insulin sensitizer.

171. (new) A composition comprising an effective amount of a compound of claim 167, together with one or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from ß cells.

172. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 167 and an agent stimulating insulin release from ß cells.

173. (new) A composition comprising a compound of claim 167, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.

174. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 167 and an antiobesity agent.

175. (new) A composition according to claim 169, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.

176. (new) A composition according to claim 169, wherein the insulin senitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.

177. (new) A composition according to claim 169, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.

178. (new) The method according to claim 170, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

179. (new) The method according to claim 170, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

180. (new) The method according to claim 170, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic-acid-or-a-pharmaceutically—acceptable salt thereof.

181. (new) A composition according to claim 171, wherein the agent stimulating insulin release from β cells is repaglinide.

182. (new) The method according to claim 172, wherein the agent stimulating insulin release from β cells is repaglinide.

183. (new) A composition according to claim 173, wherein the antiobesity agent is orlistat.

- 184. (new) The method according to claim 174, wherein the antiobesity agent is orlistat.
- 185. (new) A method for preparing the compound of claim 167, comprising A)

a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;

B)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo;

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

186. (New) A compound of Formula 1

$$R_5 \xrightarrow{n_1} I_m S \xrightarrow{R_1} N_2 O O O R_3$$

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO₂;

R₁ is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyloxyaryl C_1 - C_6 alkyl;

R₄ is hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

R₅ is or C₁-C₆alkylNR₇R₈ or arylC₁-C₆alkylcarbonylaminoC₁-C₆alkyl,

 R_6 is hydrogen, trihalomethyl, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, hydroxy, oxo, carboxy, carboxy C_1 - C_6 alkyl, C_1 - C_6 alkyloxycarbonyl, aryloxycarbonyl, aryl C_1 - C_6 alkyloxycarbonyl, C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy C_1 - C_6 alkyl, NR_7R_8 , C_1 - C_6 alkylamino C_1 - C_6 alkyl, aryl C_1 - C_6 alkylamino C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, aryl C_1 - C_6 alkylcarbonyl, aryl C_1 - C_6 alkylcarbonyl C_1 - C_6 alkylcarboxy C_1 - C_6 alkyl, aryl C_1 - C_6 alkylcarboxy C_1 - C_6 alkyl, C_1 - C_6 alkyl, aryl C_1 - C_6 alkylcarboxy C_1 - C_6 alkylcarbonylamino, C_1 - C_6 alkylcarbonylamino C_1 - C_6 alkyl, -carbonyl NR_8C_1 - C_6 alkyl COR_{11} , aryl C_1 - C_6 alkylcarbonylamino, aryl C_1 - C_6 alkylcarbonylamino C_1 - C_6 alkylcarbonylamino, aryl C_1 - C_6 alkylcarbonylamino C_1 - C_6 alkyl $CONR_7R_8$, or arylaminocarbonylamino C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined for R_5 and R_{11} is NR_7R_8 , or C_1 - C_6 alkyl NR_7R_8 ;

 R_7 and R_8 are independently selected from hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, aryl C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarboxy or aryl C_1 - C_6 alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions; or R_7 and R_8 are independently a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam;

Otto

wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₃, CONR₇R₈,C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₇R₈, C₁-C6alkylamino, arylC1-C6alkylamino, di(arylC1-C6alkyl)amino, C1-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkyl-carboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₂, arylC₁-C₆alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₇R₈,-C₁-C₆alkylCONR₇R₈, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine, $imide\ or\ lactam,\ wherein\ R_{12}\ is\ C_1\text{-}C_6 alkyl,\ aryl,\ arylC_1\text{-}C_6 alkyl,\ C_1\text{-}C_6 alkyloxy,\ aryloxy,$ arylC₁-C₆alkyloxy; and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, COOR₃, CONR₇R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy, arylC₁-C₆alkyloxyC₁-C₆alkyl, C₁-C₆alkylthio, arylC₁-C₆alkylthio, NR₇R₈, C₁-C₆-alkylamino, C₁-C₆alkylaminoC₁-C₆alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkylaminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonylC₁-C₆alkyl, arylC₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkyl, C₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkyl, -carbonylNR₇C₁-C₆alkylCOR₁₁, arylC₁-

C₆alkylCONR₇R₈ and wherein aryl in R₅ is selected from the group consisting of phenyl, pyridyl, imidazolyl, benzo[1,3]dioxole, benzothizolyl, biphenyl, indenyl, fluorenyl, naphthyl, pyrazolyl, triazolyl, oxazolyl, thiazolyl, quinolyl, pyrimidinyl, benzo[b]thiophenyl, benzothiazolyl, piperidinyl, pyrrolidinyl, phenylpyridyl, phenylpyrimidyl, benzothiazolyl, carbazolyl,

C₆alkylcarbonylamino, arylC₁-C₆-alkylcarbonylaminoC₁-C₆alkyl, -CONR₇R₈, or -C₁-

or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, a racemic mixture, or any tautomeric form, or prodrug thereof.

Chi

- 187. (new) The compound according to claim 186, wherein R_1 is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl.
- 188. (new) The compound according to claim 186, wherein n and m are 1.
- 189. (new) The compound according to claim 186, wherein Y is oxygen.
- 190. (new) The compound according to claim 186, wherein R_1 is 5-tetrazolyl, R_5 is C_1 - C_6 alkylN R_7 R_8 and Y is oxygen.
- 191. (new) The compound according to claim 186, wherein R₄ and R₆ are hydrogen.
- 192. (new) The compound according to claim 186, wherein R₆ is C₁-C₆alkylNR₇R₈.
- 193. (new) The compound according to claim 186, wherein the aryl group is pyridyl.
- 194. (new) The compound according to claim 186, wherein the aryl group is phenyl optionally substituted with methoxy or CH₃C(O).
- 195. (new) The compound according to claim 186, wherein R_7 is hydrogen and R_8 is C_1 - C_6 alkylaryl.
- 196. (new) The compound according to claim 186, wherein R_6 is arylaminocarbonylamino C_1 - C_6 alkyl.

197. (new) The compound according to claim 186, wherein R₆ is aryloxyC₁-C₆alkyl.

198. (new) The compound according to claim 186, wherein the aryl group is 1,1-dioxobenzo[d]isothiazol-3-yl.

199. (new) the compound according to claim 186, wherein the aryl group is 1,1-dioxo-5-phenyl-isothiazol-3-yl.

200. (new) The compound according to claim 186, wherein the aryl group is benzo[1,3]dioxol-5-yl.

201. (new) The compound according to claim 186, wherein the aryl group is 5-methoxy-2-methyl-1H-indol-3-yl.

202. (new) A composition comprising an effective amount of a compound of claim 186, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.

203. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 186 and an insulin sensitizer.

204. (new) A composition comprising an effective amount of a compound of claim 186, together with one or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from β cells.

205. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need

thereof an effective amount of a compound of claim 186 and an agent stimulating insulin release from ß cells.

206. (new) A composition comprising a compound of claim 186, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.

207. (new) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 187 and an antiobesity agent.

208. (new) A composition according to claim 202, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.

209. (new) A composition according to claim 202, wherein the insulin senitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]=2-ethoxypropanoic-acid-or-a-pharmaceutically-acceptable salts thereof.

- 210. (new) A composition according to claim 202, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 211. (new) The method according to claim 203, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 212. (new) The method according to claim 203, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[[4-[3-Methyl-4-

oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

C'

213. (new) The method according to claim 203, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

214. (new) A composition according to claim 204, wherein the agent stimulating insulin release from β cells is repaglinide.

215. (new) The method according to claim 205, wherein the agent stimulating insulin release from β cells is repaglinide.

216. (new) A composition according to claim 206, wherein the antiobesity agent is orlistat.

217. (new) The method according to claim 209, wherein the antiobesity agent is orlistat.

218. (new) A method for preparing the compound of claim 186, comprising A)

a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo;

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

219. (new) A compound which acts as an inhibitor of Protein Tyrosine Phosphatases selected from the group consisting of

2-(Oxalyl-amino) (1,1,3-trioxo-1,3-dihydro-1H-benzo[d]isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran carboxylic acid;

5-(4-Chloro-1 3-dioxo-1,3-dihydro-isoindol-2-yl-methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(4,5,6,7-Tetrachloro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(5-Methoxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

- 5-(4-Hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-Benzyloxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-Fluoro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(1,3-Dioxo-1,3-dihydro-benzo[f]isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Acetylamino-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-Acetylamino-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-b]pyrazin-6-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-b]pyridin-6-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-b]pyridin-6-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-c]pyridin-6-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Nitro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-Methoxy-1,3-dioxo-1 3-dihydro-isoindol-2-ylmethyl) (oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-Nitro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-(4-Chloro-phenylsulfanyl)-6-methyl-1,3-dioxo-1,3-dihydro-pyrrolo[3,4-c]pyridin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(3-Imidazol-1-yl-2,5-dioxo-pyrrolidin-1-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

Oxalic acid 3-carboxy-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-5-ylmethyl este rmethyl;

Oxalic acid (3-carboxy-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-5-ylmethyl) ester;

7-Hydroxymethyl-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

MH

7-(2,4-Dioxo-thiazolidin-3-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

7-(1,3-Dioxo-1,3-dihydro-isoindol-2-yloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

7-(4-Hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(5-Methoxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

7-(5,7-Dioxo-5,7-dihydro-[1,3]dioxolo[4,5-f]isoindol-6-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

7-(((Benzo[1,3]dioxole carbonyl)amino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

7-(3-(2,4-Dimethoxy-phenyl)ureidomethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

2-(Oxalyl-amino)-5-phenylcarbamoyl-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-Benzylcarbamoyl-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

2-(Oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3,7-dicarboxylic acid 7-ethyl ester;

7-Benzylcarbamoyl-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

- 7-((2-(4-Methanesulfonyl-phenyl)-acetylamino)-methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-((3-Carboxy-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-5-ylmethyl)-carbamoyl)nicotinic acid;
- 7-(2,4-Dioxo-5-pyridin-2-ylmethylene-thiazolidin-3-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(2,4-Dioxo-5-pyridin ylmethyl-thiazolidin-3-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5-(4-Methoxy-benzylidene)-2,4-dioxo-thiazolidin-3-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5-(4-Acetylamino-benzylidene)-2,4-dioxo-thiazolidin-3-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5-(3,5-Dimethoxy-benzylidene)-2,4-dioxo-thiazolidin-3-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-[5-(l H-Imidazol-4(5)-ylmethylene)-2,4-dioxo-thiazolidin-3-ylmethyl]-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(1,3-Dioxo-4,7-epoxido-1,3,4,5,6,7-hexahydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(((2R) Amino-3-phenyl-propionylamino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-((2-Acetylamino-3-(4-hydroxy-phenyl)-propionylamino)methyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-((2-Acetylamino-3-methyl-butyrylamino)methyl)-3-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(1,1,3-trioxo-1,3-dihydro-1H-benzo[d]isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(1,1,3-trioxo-1H-benzo[d]isothiazol-3-yloxomethyl)-4,7- dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(3-oxo-3H-benzo[d]isoxazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

- 2-(Oxalyl-amino)-7-(1,1,3-trioxo-5-phenyl-1,3-dihydro-isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(1 1-Dioxo-5-phenyl-1H-isothiazol-3-yloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-5-(1,1,3-trioxo-5-phenyl-1,3-dihydro-isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(1,1-Dioxo-5-phenyl-1H-isothiazol-3-yloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(6-Chloro-1,1,3-trioxo-2,3-dihydro-4H-thieno[3,2-e]-1,2,4-thiadiazin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(6-Chloro-1,1-dioxo-4H-thieno[3,2-e]-1,2,4-thiadiazine-3-yloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(1,3-Dioxo-1,3-dihydro-benzo[d]isothiazol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran carboxylic acid;
- 5-(1,3-Dioxo-1,3-dihydro-benzo[d]isothiazol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Benzyl-l,1-dioxo-[1,2,5]thiadiazolidin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Ethyl-1,1-dioxo-[1,2,5]thiadiazolidin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(l-oxo-1,3-dihydro-isoindol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-5-(2,2,2-trifluoro-acetoxymethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(((Benzo[l,3]dioxol-5-ylmethyl)-amino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-((2-Methoxy-benzylamino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-((2-Benzo[l 3]dioxol yl-acetylamino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;