PRACTICE QUESTIONS

LECTURE 1, 2 AND 3

- 1. Express following numbers as decimal
 - a. $(10110.0101)_2$
 - b. (26.24)₈
 - c. $(16.5)_{16}$
 - d. $(1010.1010)_2$
- 2. Obtain 1's complement and 2's complement of the following binary numbers
 - a. 10000000
 - b. 11011010
 - c. 01110110
 - d. 10000101
- 3. Perform subtraction on the given numbers using 2's complement.
 - a. 10011-10001
 - b. 1001-101000
 - c. 110000-10101
- 4. Suppose an analog audio signal comes in over a wire and the voltage on the wire can range from 0 V to 3 V. You want to convert the analog signal to a digital signal. You can decide to encode each sample using two bits, such that 0 V would be encoded as 00, 1 V as 01, 2 V as 10 and 3 V as 11. Suppose when you sample the signal every millisecond and detect the following sequence of voltages: 0 0 1 2 2 3 2 1 2 0. Represent this signal in binary.
- 5. Suppose 0 V is encoded as 00, 1 V as 01, 2 V as 10 and 3 V as 11. If you are given a digital encoding of an audio signal as 1111101001010000. Plot the recreated signal with time on x axis and voltage on y axis. Assume that each encoding's corresponding voltage should be output for one millisecond.
- 6. Convert the following binary numbers to hexadecimal
 - a. 11001101
 - b. 11101111
 - c. 011001101101101
 - d. 1101101111100
- 7. Convert following hexadecimal numbers to binary
 - a. 4F5E
 - b. 3E2A
 - c. FF

- d. F0A2
- e. 100
- 8. What is the range of numbers that you can represent using 5 bits in
 - a. Unsigned representation
 - b. Sign magnitude representation
 - c. 1's complement representation
 - d. 2's complement representation
- 9. Convert the following numbers
 - a. (1431)₈ to base 10
 - b. 11001010.0101 to base 8 and base 10
 - c. (1984)₁₀ to base 8
 - d. $(1776)_{10}$ to base 16
 - e. $(53.1575)_{10}$ to base 2
- 10. Given that $(16)_{10} = (100)_b$, find the value of b.
- 11. Write a truth table for a circuit having three inputs A, B and D and outputs S and C. The circuit performs addition of the three inputs. The outputs S and C stand for sum and carry respectively. From the truth table, draw the circuit using logic gates that generates the output S.
- 12. A majority gate produces a 'TRUE' output only if more than half of its inputs are 'TRUE'. Write a truth table for a 4 input majority gate.
- 13. A water tank has a capacity of 150cm³. In order to discretize the measurement of the water level, we represent the water level in 16 levels. Suppose no water corresponds to level 0 and full tank corresponds to level 15, write the binary equivalent for each level from level 0 to level 15.