LABORATOR#2

I. ECUAŢII NELINIARE: METODE ITERATIVE DE PUNCT FIX

ALGORITM (Metodă iterativă de punct fix)

```
Date: \phi (construită pornind de la f), a, b;
n = 0 : x_n \in [a, b];
n \geq 1: x_n = \phi(x_{n-1});
       n=n+1; repeat step for n \ge 1;
```

OBS: Metodele iterative de punct fix au viteza/ordinul de convergență cel puțin liniară.

EX#1 Fie ecuația:

$$x^3 + 4x^2 - 10 = 0, \quad x \in [1, 2].$$
 (1)

- (a) Să se construiască în MATLAB® o procedură cu sintaxa $[x_{aprox}] = MetPunctFix(\phi, x_0, N)$, $x_{\rm aprox}$ fiind soluția aproximativă generată de metodă cu datele respective.
- (b) Să se implementeze, într-un fișier script, următoarele cerințe:
 - (b1) Să se construiască graficul funcției $f(x) = x^3 + 4x^2 10$ pe intervalul [1, 2].
 - (b2) Să se afle soluția exactă x^* cu ajutorul funcției simbolice solve predefinită de $\mathsf{MATLAB}^{\circledR}$ și să se aleagă acea soluție care se află în intervalul [1,2].
 - (b3) Considerăm funcțiile $\phi_j: \mathscr{D}_{\phi_j} \cap [1,2] \longrightarrow \mathbb{R}, \ j=1,2,3,4, \ \text{unde} \ \mathscr{D}_{\phi_j} \ \text{sunt}$ domeniile de definiție ale funcțiilor ϕ_i , $j = \overline{1,4}$, definite prin:
 - (i) $\phi_1(x) = -x^3 4x^2 + x + 10;$

 - (ii) $\phi_2(x) = \sqrt{(10/x) 4x};$ (iii) $\phi_3(x) = \frac{1}{2}\sqrt{10 x^3};$
 - (iv) $\phi_4(x) = \sqrt{10/(x+4)}$.

Să se construiască graficele funcțiilor ϕ_j , $|\phi_j'|$, $j=\overline{1,4}$, pe intervalul maxim [1,2] și să se determine care dintre acestea verifică ipotezele Teoremei lui Brouwer.

- (b4) Să se construiască aproximările x_n , $n = \overline{1, N}$, pentru soluția ecuației (1), apelând procedura MetPunctFix cu ϕ_i , $j = \overline{1,4}$, $x_0 = 1$ şi N = 20.
- (b5) Care dintre funcțiile ϕ_i , $j = \overline{1,4}$, generează cea mai rapidă metodă de punct fix în cazul alegerii valorii inițiale $x_0 = 1$?
- (b6) Calculați eroarea absolută, $e_a(x_n) = |x^* x_n|, n = \overline{1, N}$.

II. ECUAŢII NELINIARE: METODA NEWTON-RAPHSON

ALGORITM (Metoda Newton-Raphson)

```
Date: f, f', a, b;

n = 0: x_n \in [a, b];

n \ge 1: x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})};

n = n+1; repeat step for n \ge 1;
```

OBS: Metoda Newton-Raphson are viteza/ordinul de convergență cel puțin pătratică.

EX#2 Fie $f: [-1,1] \longrightarrow \mathbb{R}$, $f(x) = x + e^{-x^2} \cos x$.

- (a) Reprezentați graficul funcției f și salvați imaginea cu numele Graficf.eps
- (b) Creați un fișier funcție Functiaf.m pentru funcția f și un fișier funcție Derivataf.m pentru derivata lui f.
- (c) Creați fișierul funcție NewtonRaphsonf.m care determină, folosind structura repetitivă for, primele 10 aproximări ale rădăcinii funcției f generate de metoda Newton-Raphson cu $x_0 = 0$, apelând în interiorul acestuia funcțiile Functiaf.m și Derivataf.m
- (d) Creați un fișier script prin care se determină, folosind calculul simbolic, rădăcina x^* a funcției f și să se afișeze graficul funcției $\operatorname{err}_{\mathbf{a}}(x_n) = |x^* x_n|$, unde $\{x\}_{n \geq 0}$ este șirul de aproximări generat la (c).
- EX#3 (a) Creați fișierul funcție NewtonRaphson.m cu datele de intrare f, f', prima aproximare x_0 , TOL și data de ieșire $x_{\rm aprox}$, generat de metoda Newton-Raphson folosind structura repetitivă while și criteriul de oprire $|f(x_n)| < \text{TOL}$.
 - (b) Fie f: [0, π/2] → ℝ, f(x) = cos x x şi x₀ = π/4. Apelaţi fişierul funcţie creat la subpunctul (a) pentru aceste date de intrare.
 Afişati, în acelaşi sistem de coordonate xOy, graficul funcţiei f, dreapta de ecuaţie y = 0 şi şirul de aproximări generat.
- **OBS:** Apelarea funcției se face în fereastra de comandă [de exemplu, NewtonRaphson(f, f', 0.5, 1e-5)], unde f și f' fie se dau anterior în fereastra de comandă (Command Window) cu ajutorul funcției anonime @, fie se prescriu într-un fișier de date Date.m.