T1C9 - Propagation d'un signal, interférences et diffraction

I. Notations d'onde et de signal

1. Définition

Définitions

- Un signal est une grandeur Physique qui dépends du temps et de l'espace.
- Une onde est une perturbation locale du signal qui se propage de proche en proche a la vitesse c appelée célérité, qui dépends des propriétés du milieu de propagation. Une onde s'accompagne toujours d'un transport d'énergie sans transport global de matière.

2. Différents types d'ondes

a. Ondes mécaniques

Définitions

Les ondes mécaniques sont des perturbations d'un milieu materiel. Elles peuvent être de deux types :

- Transversales : La perturbation est perpendiculaire a la direction de propagation. (Vagues)
- Longitudinales: La perturbation est le long de la propagation. (Ressort / Son)
 - On distingue aussi:
- Élastiques : Déformation locale du milieu qui se propagent dans un solide. Elles peuvent êtres transversales et / ou longitudinales.
- Acoustiques : Variation de pression dans un fluide. Elles sont toujours longitudinales.

b. Ondes électromagnétiques

Définition

Les ondes électromagnétiques sont la propagation des champs électriques \vec{E} et magnétiques \vec{B} ce sont des ondes transverses et elles peuvent se propager dans le vide et dans le milieu materiel. (Rayon γ, X, uv, IR et visibles)

Les ondes électriques dont un cas particulier des ondes électromagnétiques qui sont graduées dans un conducteur dans ce cas on étudie la tension u ou l'intensité i

ondes	milieu	signaux
élastique	solide	Déformation dans un milieu (vagues)
accoustique	${ m fluide}$	pression
électromagnétique	vide ou conducteur	$ec{E}$ et $ec{B}$
gravitationelles	vide	Déformation de l'espace temps

II. Ondes progressives

1. Exemple

Excalibur 1.

La perturbation imposé à la corde a l'instant t=0 se propage le long de la corde

Excalibur 2.

La perturbation est la même en z_1 à l'instant t_1 et en z_2 à l'instant t_2 et sa vitesse de propagation est c.

Donc

$$c=\frac{z_2-z_1}{t_2-t_1}$$

Écrivons tout les indices 1 à gauche et les indices 2 à droite

$$c(t_2-t_1)=z_2-z_1\Leftrightarrow z_1-ct_1=z_2-ct_2$$

Définition

On appelle onde progressive unidimensionnelle une onde qui se propage sans déformation ni atténuation dans une seule direction donc c est définie par

$$c = rac{d}{t}$$

avec d la distance parcourue par l'onde pendant le temps t

Propriétés d'une onde progressive

Soit une onde progressive unidimensionnelle qui se propage dans le sens des x croissants soit s la grandeur physique associée. s dépends de x et du t

On peut écrire :

$$s(x,t) = f(x-ct) = F\left(t-rac{x}{c}
ight)$$

Si l'onde se propage dans le sens des x décroissants alors

$$s(x,t)=g(x+ct)=G\left(t+rac{x}{c}
ight)$$

III. Onde sinusoïdales progressives

1. Définition

Définition

Une onde progressive sinusoïdale ou harmonique est un cas particulier des ondes progressives pour lesquelles la fonction f (ou F, ou g, ou G) est une sinusoïde.

Dans ce cas l'expression d'une onde progressive sinusoïdale se propageant dans le sens des \boldsymbol{x} croissants est :

$$s(x,t) = A\cos(\omega t - kx + \phi)$$

A : Amplitude de l'onde

• ω : pulsation de l'onde

k : vecteur d'onde

• ϕ : Phase a l'origine La célérité $c=\frac{\omega}{k}=v_p$ appelée ici la vitesse de phase.

2. Double périodicité

Définition

La fonction s(x,t) décrivant une onde est une fonction de 2 variables x et t on peut lui associer 2 périodes :

• En fixant la variable x la fonction s(x,t) présente une période

$$T=\frac{2\pi}{\omega}$$

• En fixant t la fonction s(x,t) présente une périodicité spatiale appelée longueur d'onde.

$$\lambda = \frac{2\pi}{k}$$

Excalibur 3.

Propriété

Période T et longueur d'onde λ sont reliées grâce à la célérité de l'onde c .

$$\lambda = \frac{\omega T}{k} = cT$$

 λ correspond à la distance parcourue par l'onde pendant la durée T

• Relation de dispersion de l'onde :

$$k = rac{\omega}{c}$$

Nombre d'onde
 Pour la périodicité spatiale on définit le nombre d'onde :

$$\sigma = rac{1}{\lambda} = rac{k}{2\pi}$$

Bilan

représentation	période	fréquence	$\operatorname{pulsation}$
temporelle	$T ({ m en } { m s})$	$f=rac{1}{T} \ ({ m en \ Hz})$	$\omega = 2\pi f \ (ext{en rad.} \ s^{-1})$
spatiale	$\lambda \; ({ m en \; m})$	$\sigma = \frac{1}{\lambda} \; ({ m en \; m}^{-1})$	$k=rac{2\pi}{\lambda}\;({ m en\;m}^{-1})$

$$egin{split} s(x,t) &= A\cos(\omega t - kx) \ s(x,t) &= A\cos\left(\omega\left(t - rac{x}{c}
ight)
ight) \ s(x,t) &= A\cos\left(2\pi\left(rac{t}{T} - rac{x}{\lambda}
ight)
ight) \end{split}$$

3. Le Déphasage

Définition

On appelle déphasage $\Delta\phi$ du point x_1 par rapport au point x_2 la différence de phase :

$$\Delta \phi = \phi(x_1) - \phi(x_2)$$

à un instant t donné.

Le retard $\mathcal T$ accumulé par l'onde entre x_1 et x_2 est :

$$\mathcal{T}=rac{x_2-x_1}{c}$$

soit une onde décrite par

$$s(x,t) = Z\cos(\omega t - kx + \phi_0)$$

la phase entre x et t:

$$\phi(x,t) = \omega t - kx + \phi_0$$

Donc entre x_1 et x_2 fixée :

$$\Delta\phi=\phi(x_1)-\phi(x_2)=\omega t-kx_1+\phi_0-(\omega t-kx_2+\phi_0)$$

Propriété 1

Si $\Delta x = n\lambda, \ n \in \mathbb{Z}$

$$k=rac{2\pi}{\lambda} \Rightarrow \Delta\phi=n2\pi=0 \ [2\pi]$$

Excalibur 4.

Les états vibratoires sont les mêmes à chaque instant aux 2 points : on dit que ces points vibrent en phase.

Propriété 2

Si
$$\Delta x = (n + rac{1}{2})\lambda, \ n \in \mathbb{Z}$$

$$\Rightarrow \Delta \phi = \pi \left[2\pi \right]$$

Excalibur 5

Les états vibratoires de deux points sont opposés à chaque instant, on dit que x_1 et x_2 sont en opposition de phase.

IV. Milieu dispersif et non dispersif

Définition

On parle de milieu dispersif quand la vitesse de phase d'une onde dépend de sa fréquence.

Dans le cas contraire le milieu est non dispersif.

1. Conséquence

On considère un signal s(x,t)

On peut l'écrire :

$$s(x,t) = \int_0^{+\infty} A(\omega) \cos(\omega t - k(\omega) x + \phi(\omega)) \, d\omega$$

La vitesse de phase :

$$v_\phi = rac{\omega}{k(\omega)}$$

Dépend à priori de ω

Dans un milieu dispersif l'onde se déforme en se propageant.

Propriété

Dans un milieu non dispersif le vecteur k est relié linéairement à ω

$$k(\omega) = a\omega$$

avec $a=rac{1}{v_{\phi}}=\mathrm{cste}$ avec v_{ϕ} la vitesse de phase.

2. Exemples

a. Propagation en milieu dispersif

- La dispersion de la Lumière par du verre ou de l'eau : arc en ciel.
- La bande passante maximale dans les fibres optiques. (DM 1)
- Les vagues

b. Propagation en milieu non dispersif

- · Les ondes électromagnétiques dans le vide
- Les ondes acoustiques dans un fluide
- Les ondes élastiques longitudinales dans les solides

V. Superposition de 2 ondes interférence

Propriété

Deux ondes qui se propagent dans un milieu non dispersif et linéaire peuvent être additionnés et traitées comme une seule onde.

1. Cas d'une onde quelconque

Excalibur 6.

2 ondes se propagent en sens inverse

L'onde résultante est la somme de ces 2 ondes.

à t_2 l'onde résultante en bleue est la somme des 2 ondes après s'être croisées, les 2 ondes continuent leur chemins.

Excaliburne 7

2. Cas de 2 ondes sinusoïdales synchrone Définition

2 ondes sinusoïdales sont dites synchrones si elles ont la même pulsation ω et une différence de phase a l'origine indépendante du temps.

Définition:

saad ibn abdelaziz ibn ali ismael shik shak shok balla thein shawarma walad bebsi zyadeh batata bdoon salata ma3 gageenet bebsi bardeh bdoon thalj wallak hamodeh e6fi el playstation engale3 jahez lal nom mohammad abdallah

 S_1 et S_2 sont les sources ponctuelles qui émettent des ondes circulaires. La source S_1 émet une onde s_1 décrite par la fonction :

$$S_1(r_1,t) = S_{max}\cos(\omega t - kr_1 + \phi_1)$$

 r_1 étant la distance entre le point et S_1 de même pour S_2

$$S_2(r_2,t) = S_{max}\cos(\omega t - kr_2 + \phi_2)$$

On suppose que l'amplitude est la même.

Définition

Deux ondes de même nature et synchrones qui se superposent en un point m donnent naissance au phénomène d'interférence, l'amplitude de l'onde résultante est différente de la somme des amplitudes des deux ondes.

Excaliburne 8.

L'onde résultante en M s'écrit

$$egin{aligned} S(M,t) &= S_1(M,t) + S_2(M,t) = S_{max}\cos(\omega t - kr_1 + \phi) + S_{max}\cos(\omega t - kr_2 + \delta) \ S(M,t) &= 2S_{max}\cos\left(\omega t - krac{r_1 + r_2}{2} + rac{\phi_1 + \phi_2}{2}
ight)\cos\left(krac{r_1 + r_2}{2} + rac{\phi_1 - \phi_2}{2}
ight) \ S(M,t) &= A\cos(\omega t - kr + \phi) \end{aligned}$$

avec $r=rac{r_1+r_2}{2}$ et $\phi=rac{\phi_1+\phi_2}{2}$ les termes d'interférence et l'amplitude A dépends de r_1-r_2

 S_n : Amplitude initiale

$$A=2S_n\cos\left(krac{r_1-r_2}{2}+rac{\phi_1-\phi_2}{2}
ight)$$

Simplifions avec $\phi_1 = \phi_2 = \phi$ Alors A s'ecrit

$$2A=S_n\cos\left(krac{r_1-r_2}{2}
ight)$$

Propriété

• Si $k \frac{r_1-r_2}{2}=n\pi \Leftrightarrow r_1-r_2=n\lambda, \ {
m où}\ n\in \mathbb{N}$ Alors $S(M,t)=\pm 2S_n\cos(\omega t-kr+\phi)$ L'amplitude de l'onde en M est alors extremale On parle d'interférences constructives

$$ullet$$
 Si $krac{r_1-r_2}{2}=(2n+1)rac{\pi}{2}\Leftrightarrow r_1-r_2=(2n+1)rac{\lambda}{2}$ où $n\in\mathbb{N}$ $\Rightarrow S(M,t)=0$ pour tout t

L'amplitude du signal est nul

On parle d'interférences déstructives

• Dans les cas intermédiaires on la norme de l'amplitude de S(M,t) qui prends des valeurs entre 0 et $2S_n$

Définition

On appelle $\delta=r_1-r_2$ la différence de marche. C'est la différence de distance parcourue par les ondes arrivants en M.

• Le déphasage en M du signal issu de S_1 par rapport a celui issu de S_2 vaut :

$$\Delta\phi=2\pirac{\delta}{\lambda}$$

avec δ la différence de marche et λ la longueur d'onde.

• Le retard en M τ_M de l'onde issue de S_1 par rapport a celle issue de S_1 par rapport a celle issue de S_2 vaut :

$$au_M = rac{\delta}{c}$$

avec c la célérité de l'onde

L'ordre d'interférence est le nombre :

$$p=rac{\delta}{\lambda}$$

3. Conditions d'interférences destructives et constrictives

Interférences constructives en M

Déphasage en M	$\Delta \phi = 2\pi n$
Différence de marche	$\delta=n\lambda$
Ordre d'interférence	p=n

où $n\in\mathbb{Z}$

Interférences déstructives

Déphasage en M	$\Delta\phi=(2n+1)rac{\pi}{2}$	
Différence de marche	$\delta = (2n+1)rac{\lambda}{2}$	
Ordre d'interférence	$p=(2n+1) imes rac{1}{2}=n+rac{1}{2}$	

VI Interférences lumineuses

1. Dispositif des trous d'young

Excalibur 9.

Si on le fait avec 2 laser ca ne marchera pas.

2. Expression de l'intensité

a. L'intensité lumineuse

La lumière est un champ électromagnétique dont l'amplitude E_m est celle de l'onde.

Les yeux et les capteurs photosensibles sont sensibles a l'intensité lumineuse qui correspond a l'énergie de l'onde

$$I = K < E^2 >_t$$
 $I = K E_m^2$

K une constante

L'intensité est proportionnelle à l'amplitude au carré.

b. Formule de Fresnel

Excalibur 10.

 S_1 et S_2 : Sources lumineuses synchrones et cohérentes L'onde issue de S_1 en M

$$E_1(M,t)=E_{m_1}\cos(\omega t-kr_1+\phi_0)$$

avec $r_1 = S_1 M$

L'onde issue de S_2 en M

$$E_2(M,t)=E_{m_2}\cos(\omega t-kr_2+\phi_0)$$

Ces ondes ont la même phase à l'origine ϕ_0 (constante) et la même pulsation ω (synchrone) et milieu linéaire \Rightarrow même k en M, l'onde s'écrit :

$$E(M,t) = E_1(M,t) + E_2(M,t)$$

L'intensité lumineuse en M est donné par la formule de Fresnel :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\left(2\pirac{\delta}{\lambda}
ight)$$

avec I_1 et I_2 les intensités en M des ondes issues de S_1 et S_2 et $S=r_1-r_2$ la différence de marche.

3. Interprétation des trous d'young

a. Cas simple

Excalibur 11.

Hypothèse

Pour pouvoir faire la suite

- Les ondes sont cohérentes en S_1 et S_2 . $\phi_1 = \phi_2$
- MHTI d'indice optique n

On veut connaître I(M) donc on doit exprimer δ la différence de marche

Par définition $\delta = S_2 M - S_1 M$ exprimons δ en fonction de x la position de M

$$S_1M^2=D^2+\left(x-rac{a}{2}
ight)^2 \ S_2M^2=D^2+\left(x+rac{a}{2}
ight)^2 \ \delta=\sqrt{D^2+\left(x+rac{a}{2}
ight)^2}-\sqrt{D^2+\left(x-rac{a}{2}
ight)^2}$$

On suppose que $D\gg a$ et $D\gg x$ et on factorise par D

$$S = D\sqrt{1 + \left(rac{x}{D} + rac{a}{2D}
ight)^2} - D\sqrt{1 + \left(rac{x}{D} - rac{a}{2D}
ight)^2}$$

Développement limité :

$$\sqrt{1+\epsilon}pprox 1+rac{\epsilon}{2}$$

• Si $\epsilon \ll 1$

Dons notre cas
$$(\frac{x}{D}+\frac{a}{2D})^2\ll 1$$
 et $(\frac{x}{D}-\frac{a}{2D})^2\ll 1$

$$\begin{split} \delta &= D \left(1 + \frac{1}{2} \left(\frac{x}{D} + \frac{a}{2D} \right)^2 - \left(1 + \frac{1}{2} \left(\frac{x}{D} - \frac{a}{2D} \right)^2 \right) \right) \\ \delta &\approx D \left(\frac{1}{2} \left(\frac{x}{D} + \frac{a}{2D} \right)^2 - \frac{1}{2} \left(\frac{x}{D} - \frac{a}{2D} \right)^2 \right) \\ \delta &= \frac{D}{2} \left(\left(\frac{x}{D} + \frac{a}{2D} \right)^2 - \left(\frac{x}{D} - \frac{a}{2D} \right)^2 \right) \\ \delta &= \frac{d}{2} \left(\frac{2x}{D} \times \frac{a}{D} \right) \end{split}$$

Donc

$$\delta pprox rac{ax}{D}$$

Position des interférences constrictives et destructives

$$\delta n rac{\lambda}{2} \Leftrightarrow x = rac{n \lambda D}{a}$$

où $n\in\mathbb{Z}$

Interférences destructives

$$\delta = (2n+1)rac{\lambda}{2} \Leftrightarrow (2n+1)rac{\lambda D}{2a}$$

où $n\in\mathbb{Z}$

Définition

L'interférence i est la distance entre 2 forces d'interférences (const ou dest.)

$$i = \frac{\lambda D}{a}$$

b. Utilisation de la f[[]]ormule de fresnel

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\left(2\pirac{\delta}{\lambda}
ight)$$

Si on suppose $I_1=I_2=I_0$

$$2I_0 \left(1 + \cos\left(2\pi \frac{ax}{\lambda D}\right)\right)$$

• Interférences constructives I(M) est maximales alors $1+\cos\left(2\pi\frac{\delta}{\lambda}\right)$ est maximales donc

$$\cos\left(rac{2\pi\delta}{\lambda}
ight) \Leftrightarrow \delta = n\lambda ext{\$avec} ext{\$} n \in \mathbb{Z}$$

• Interférences destr.

I(M) est nulle

Alors
$$1 + \cos\left(\frac{2\pi\delta}{\lambda}\right) = 0$$

Donc

$$\cos\left(rac{2\pi\delta}{\lambda}
ight) = -1 \Leftrightarrow \delta = (2n+1)rac{\lambda}{2}$$

5 Chemin optique

Définition:

Soit un rayon lumineux qui se propage dans un milieu d'indice optique n_i uniforme on appelle chemin optique entre les moints M_1 et M_2 :

$$(M_1M_2) = n_i M_1 M_2$$

Pour les phénomènes d'interférences

Excalibur 12.

les signaux en M:

$$E_1(M,t) = E_m \cos(\omega t - kr_1)$$

$$E_2(M,t) = E_m \cos(\omega t - kr_2)$$

Ondes synchrones constantes et de même amplitudes La grandeur qui détermine l'intensité en M est :

$$\Delta\Phi=k(r_2-r_1)$$

 $k=rac{\omega}{c}$ avec c la vitesse dans le milieu $c=rac{c_0}{n_i}$ et c_0 la vitesse dans le vide

$$\Delta\Phi=rac{\omega}{\omega_0}n_i(r_2-r_1)$$

avec $n_i(r_2-r_1)=(S_2M)-(S_1M)$ La différence de chemin optique

- Interférence constructive $\delta=n>0$ et $\lambda_0=rac{1}{n_i}\lambda_{milieu}$ dans le vide
- Interférence destructive $\delta = (2n+1)rac{\lambda_0}{2}$

VII. Phénomène de diffraction

1. Loi générale

Excalibur 13

Propriété

Lorsqu'une onde rencontre un obstacle dont la taille est de l'ordre de sa longueur d'onde, l'inde va s'étaler après cet obstacle c'est le phénomène de diffraction.

L'angle de diffraction Θ correspond au demi-angle d'ouverture et en a.

$$\sin\Theta\simrac{\lambda}{a}$$

Si l'ouverture est a

$$\sin\Theta pprox 1.22 rac{\lambda}{a}$$

 Θ est proportionnel à λ et inversement proportionnel à a la diffraction s'observe bien pour a tq

2. Théorème de Babinet

Théorème

Les figures de diffraction créés par une ouverture ou une plaque opaque de même forme sont identiques.