and assume that the functions φ_i are differentiable at u for all $i \in I(u)$ and continuous at u for all $i \notin I(u)$. If J is differentiable at u, has a local minimum at u with respect to U, and if the constraints are qualified at u, then there exist some scalars $\lambda_i(u) \in \mathbb{R}$ for all $i \in I(u)$, such that

$$J'_u + \sum_{i \in I(u)} \lambda_i(u)(\varphi'_i)_u = 0$$
, and $\lambda_i(u) \ge 0$ for all $i \in I(u)$.

The above conditions are called the Karush-Kuhn-Tucker optimality conditions. Equivalently, in terms of gradients, the above conditions are expressed as

$$\nabla J_u + \sum_{i \in I(u)} \lambda_i(u) \nabla(\varphi_i)_u = 0$$
, and $\lambda_i(u) \ge 0$ for all $i \in I(u)$.

Proof. By Proposition 50.1(2), we have

$$J_u'(w) \ge 0 \quad \text{for all } w \in C(u),$$
 $(*_1)$

and by Proposition 50.2(2), we have $C(u) = C^*(u)$, where

$$C^*(u) = \{ v \in V \mid (\varphi_i')_u(v) \le 0, \ i \in I(u) \}, \tag{*_2}$$

so $(*_1)$ can be expressed as: for all $w \in V$,

if
$$w \in C^*(u)$$
 then $J'_u(w) \ge 0$,

or

if
$$-(\varphi_i')_u(w) \ge 0$$
 for all $i \in I(u)$, then $J_u'(w) \ge 0$. $(*_3)$

Under the isomorphism \sharp , the vector $(J'_u)^{\sharp}$ is the gradient ∇J_u , so that

$$J_u'(w) = \langle w, \nabla J_u \rangle, \tag{*_4}$$

and the vector $((\varphi_i')_u)^{\sharp}$ is the gradient $\nabla(\varphi_i)_u$, so that

$$(\varphi_i')_u(w) = \langle w, \nabla(\varphi_i)_u \rangle. \tag{*5}$$

Using Equations (*4) and (*5), Equation (*3) can be written as: for all $w \in V$,

if
$$\langle w, -\nabla(\varphi_i)_u \rangle \ge 0$$
 for all $i \in I(u)$, then $\langle w, \nabla J_u \rangle \ge 0$. $(*_6)$

By the Farkas–Minkowski proposition (Proposition 50.4), there exist some sacalars $\lambda_i(u)$ for all $i \in I(u)$, such that $\lambda_i(u) \geq 0$ and

$$\nabla J_u = \sum_{i \in I(u)} \lambda_i(u) (-\nabla (\varphi_i)_u),$$

that is

$$\nabla J_u + \sum_{i \in I(u)} \lambda_i(u) \nabla (\varphi_i)_u = 0,$$