Chương III: CÁC PHƯƠNG PHÁP GIẢI MẠCH ĐIỆN

3.1 : Phương pháp dòng điện nhánh

3.2: Phương pháp dòng điện vòng

3.3 : Phương pháp điện áp 2 nút

3.4 : Phương pháp biến đổi tương đương

3.5 : Phương pháp xếp chồng

3.6 : Mạch điện có nguồn chu kỳ không sin

3.1: Phương pháp dòng điện nhánh (phức)

Ẩn số: dòng nhánh phức

Mạch điện có m nhánh, n nút

 \rightarrow có $m \, \hat{a}n \rightarrow$ Cần tìm $m \, phương \, trình$

ĐL Kiếc Khốp 1: (n - 1) phương trình

ĐL Kiếc Khốp 2: (m - (n-1)) phương trình

Ví dụ

$$\begin{cases} V_1: \quad Z_1 \stackrel{\bullet}{I_1} + \stackrel{\bullet}{Z_2} \stackrel{\bullet}{I_2} = \stackrel{\bullet}{E_1} \\ V_2: \quad -Z_2 \stackrel{\bullet}{I_2} + \stackrel{\bullet}{Z_3} \stackrel{\bullet}{I_3} = -\stackrel{\bullet}{E_3} \end{cases} \Rightarrow \text{ tìm } \stackrel{\bullet}{I_1}, \stackrel{\bullet}{I_2}, \stackrel{\bullet}{I_3}$$

3.2 Phương pháp dòng điện vòng

- Mắt lưới: vòng độc lập
- Ấn số: dòng điện i trong các vòng độc lập
- Viết hệ phương trình theo ĐL Kiếc Khốp
- Giải tìm nghiệm i vòng
- → i nhánh = tổng đại số các dòng điện vòng i khép qua nhánh

Ví dụ

Tìm được:
$$I_{v_1}, I_{v_2}$$

$$\Rightarrow \text{Dòng trong các nhánh}: \qquad I_1 = I_{v_1} \qquad I_2 = I_{v_1} - I_{v_2}$$

3.3 Phương pháp điện áp 2 nút

- Chọn đ/a giữa 2 nút làm ẩn.
- Áp dụng ĐL Kiếc Khốp lập các p/t để tìm đ/a giữa 2 nút.
- Tìm lại dòng trong các nhánh dựa vào đ/a giữa 2 nút

- Tại A, theo ĐL Kiếc Khốp 1 có:

$$\begin{array}{lll} \text{Tại A, theo } \text{DL Kiếc Khốp 1 có}: & \sum\limits_{k=1}^{n(4)} \mathring{\mathbf{I}}_{k} = 0 & \text{(1)} \\ \\ \mathring{\mathbf{I}}_{AB} = -Z_{1} \mathring{\mathbf{I}}_{1} + \mathring{\mathbf{E}}_{1} \\ \mathring{\mathbf{I}}_{1} = \frac{\mathring{\mathbf{E}}_{1} - \mathring{\mathbf{U}}_{AB}}{Z_{1}} & & & \\ \mathring{\mathbf{I}}_{2} = \frac{\mathring{\mathbf{E}}_{2} - \mathring{\mathbf{U}}_{AB}}{Z_{2}} & & \sum\limits_{1}^{n} & \frac{\mathring{\mathbf{E}}_{k} - \mathring{\mathbf{U}}_{AB}}{Z_{k}} = 0 & & \text{Đặt} & \frac{1}{Z_{k}} = Y_{k} \\ \end{array}$$

$$\sum_{k=1}^{n(4)} Y_k (\dot{E}_k - \dot{U}_{AB}) = 0$$

$$\sum_{k=1}^{n(4)} (Y_k \overset{\bullet}{E}_k) = \sum_{k=1}^{n(4)} (Y_k \overset{\bullet}{U}_{AB})$$

$$\overset{\bullet}{U}_{AB} \sum_{k=1}^{n(4)} Y_k = \sum_{k=1}^{n(4)} (Y_k \overset{\bullet}{E}_k)$$

BT về nhà:

Giải bài toán 3 nhánh biết : $Z_1 = 3 + j + Q = Z_2 = Z_3$

$$\dot{E}_1 = 200e^{j90^0}V$$
, $\dot{E}_3 = 200e^{j0^0}V$

Tìm dòng I_k và công suất P, Q, S toàn mạch theo 3 phương pháp dòng nhánh, dòng vòng và điện áp 2 nút

3.4 Phương pháp biến đổi tương đương

1. Nhánh nối tiếp:

Với:
$$Z_{nt} = \sum_{k=1}^{k=n} Z_k = \sum_{k=1}^{k=n} R_k + j \sum_{k=1}^{k=n} X_k = R_{nt} + j X_{nt}$$

2. Nhánh song song:

Với:

$$Z_{//} = \frac{1}{\sum_{k=1}^{k=n} \frac{1}{Z_k}} = R_{//} + jX_{//}$$

Khi có 2 tổng trở nối song song: $Z//=\frac{Z_1Z_2}{Z_1+Z_2}$

Ví dụ 1:
$$Z_1 = 3 + j 4$$
; $Z_2 = 8 - j 6$

- Z_1 nối tiếp Z_2

$$Z_{nt} = 11 - j2 =$$

$$= \sqrt{11^2 + 2^2} e^{jartg\frac{-2}{11}} = 11,18e^{-j10^{\circ}18'}$$

 $-Z_1//Z_2$:

$$Z// = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

$$=\frac{(3+j4)(8-j6)}{11,18e^{-j10^{\circ}18'}} = \frac{5e^{j53^{\circ}8'}10e^{-j36^{\circ}52'}}{11,18e^{-j10^{\circ}18'}} = 4,47e^{j26^{\circ}34'}$$

Ví dụ 2: Cho mạch điện như hình bên.

Biết U = 100 V;
$$X_L = X_C = 10 \Omega$$

 $Tim I_L, I_C, I$

$$I_L = \frac{U}{X_L} = 10 \text{ A}$$

$$I_C = \frac{U}{X_C} = 10 \text{ A}$$

Đồ thị véc tơ

* Biến đổi tương đương

$$Z// = \frac{Z_1 Z_2}{Z_1 + Z_2}$$
 $Z = R + j(X_L - X_C)$
 $Z_L = j X_L$
 $Z_C = -j X_C$

$$Z//=\frac{j10*(-j10)}{j10-j10}=\infty$$
 $I=0$ Cộng hưởng dòng điện

3. Biến đổi sao (Y) – tam giác (Δ)

$$Z_{12} = Z_1 + Z_2 + \frac{Z_1 Z_2}{Z_3}$$

$$Z_{23} = Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1}$$

$$Z_{31} = Z_3 + Z_1 + \frac{Z_3 Z_1}{Z_2}$$

Khi có
$$Z_1 = Z_2 = Z_3 = Z_Y$$

Sao đối xứng

$$Z_{12} = Z_{23} = Z_{31} = Z_{\Delta} = 3 Z_Y$$

2. Biết Z_{12} , Z_{23} , Z_{31} nối tam giác :

$$Z_{1} = \frac{Z_{12} Z_{31}}{Z_{12} + Z_{23} + Z_{31}}$$

$$Z_{2} = \frac{Z_{12} Z_{23}}{Z_{12} + Z_{23} + Z_{31}}$$

$$Z_{3} = \frac{Z_{23} Z_{31}}{Z_{12} + Z_{23} + Z_{31}}$$

$$Z_{1} = Z_{2} = Z_{3} = Z_{4} = Z_{4}$$

$$Z_{1} = Z_{2} = Z_{3} = Z_{4} = Z_{4}$$

$$Z_{1} = Z_{2} = Z_{3} = Z_{4} = Z_{4}$$

$$Z_{1} = Z_{2} = Z_{3} = Z_{4} = Z_{4}$$

Khi có
$$Z_{12} = Z_{23} = Z_{31} = Z \Delta$$

Ví dụ 1: Cho mạch điện như hình bên.

Biết:

$$Z_0 = 5 + j 5 \Omega; \quad Z_1 = 3 + j 4 \Omega;$$

$$Z_2 = 8 - j 6 \Omega; \quad U_{AB} = 100 \text{ V}$$

Tim: I_1, I_2, I_0, U P, Q, S, cosφ toàn mạch

Giải

1. Tìm: I_1, I_2, I_0, U

$$I_1 = \frac{U_{AB}}{S_1} = \frac{100}{\sqrt{3^2 + 4^2}} = 20 \text{ (A)}$$

Tương tự:

$$I_2 = \frac{U_{AB}}{\beta_2}$$

$$= \frac{100}{\sqrt{8^2 + 6^2}} = 10 \text{ (A)}$$

I. Véc to

$$\vec{\mathbf{I}}_1$$
 chậm sau $\vec{\mathbf{U}}_{AB}$ $\psi_{i_1} = -\boldsymbol{\varphi}_1$

$$\varphi_1 = \arctan \frac{4}{3} = 53^{\circ}8'$$

$$\vec{\mathbf{I}}_2$$
 vượt trước $\vec{\mathbf{U}}_{AB}$ $\psi_{i_2} = -\varphi_2$

$$\varphi_2 = \arctan \frac{-6}{8} = -36^{\circ}52'$$

$$\vec{I}_{2}$$
 \vec{I}_{1}
 \vec{I}_{2}
 \vec{I}_{3}
 \vec{I}_{1}
 \vec{I}_{1}
 \vec{I}_{2}
 \vec{I}_{3}
 \vec{I}_{4}
 \vec{I}_{1}
 \vec{I}_{2}
 \vec{I}_{3}
 \vec{I}_{4}
 \vec{I}_{5}
 \vec{I}_{1}
 \vec{I}_{2}
 \vec{I}_{3}
 \vec{I}_{4}
 \vec{I}_{5}
 \vec{I}_{5}
 \vec{I}_{6}
 \vec{I}_{7}
 \vec{I}_{1}
 \vec{I}_{2}
 \vec{I}_{3}
 \vec{I}_{4}
 \vec{I}_{5}
 \vec{I}_{5}
 \vec{I}_{7}
 \vec{I}_{1}
 \vec{I}_{2}
 \vec{I}_{3}
 \vec{I}_{4}
 \vec{I}_{5}
 \vec{I}_{5}
 \vec{I}_{7}
 \vec{I}_{7}

II. Số phức

$$\dot{\mathbf{I}}_{1} = \frac{\dot{\mathbf{U}}_{AB}}{Z_{1}} = \frac{100e^{j0^{\circ}}}{3 + j4} = \frac{100e^{j0^{\circ}}}{5e^{j53^{\circ}8'}}$$

$$I_1 = 20e^{-j53^08'}$$

$$I_{2}^{\bullet} = \frac{\dot{U}_{AB}}{Z_{2}} = \frac{100e^{j0^{\circ}}}{8 - i6} = \frac{100e^{j0^{\circ}}}{10e^{-j36^{\circ}52^{\circ}}}$$

$$I_2 = 10e^{j36^052}$$

$$\vec{I}_0 = \vec{I}_1 + \vec{I}_2 = 20e^{-j53^\circ8'} + 10e^{j36^\circ52'} = 12 - j16 + 8 + j6 = 20 - j10$$

$$I_0 = 22,36e^{-j26^{\circ}34^{\circ}}$$

III. Cân bằng công suất

$$P_{AB} = R_1 I_1^2 + R_2 I_2^2$$

$$P_{AB} = 3.20^2 + 8.10^2 = 2000 \text{ W}$$

$$Q_{AB} = X_1 I_1^2 - X_2 I_2^2 = 4.20^2 - 6.10^2 = 1000 \text{ VAr}$$

$$S_{AB} = \sqrt{P_{AB}^2 + Q_{AB}^2} = \sqrt{2000^2 + 1000^2} = 2236 \text{ VA}$$

$$S_{AB} = U_{AB}I_{o} \implies I_{o} = \frac{S_{AB}}{U_{AB}} = \frac{2236}{100} = 22,36 \text{ A}$$

2. Tìm P, Q, S, cos p toàn mạch

$$P = R_0 I_0^2 + P_{AB}$$

$$P = 5.22,36^2 + 2000 = 4500 \text{ W}$$

$$Q = X_0 I_0^2 + Q_{AB}$$

$$Q = 5.22,36^2 + 1000 = 3500 \text{ VAr}$$

$$S = \sqrt{P^2 + Q^2} = \sqrt{4500^2 + 3500^2} = 5700 \text{ VA}$$
 Cụm AB

$$S = U I_o$$
 $U = \frac{S}{I_o} = \frac{5700}{22,36} = 255 V$

$$\cos \varphi = \frac{P}{S} = \frac{4500}{5700} = 0.79$$

3.5 Phương pháp xếp chồng

Mạch có nhiều nguồn kích thích

Dòng, áp trên mỗi nhánh bằng tổng đại số của các dòng, áp thành phần ứng với từng nguồn kích thích riêng rẽ

VD:
$$u(t) = U_o + \sqrt{2}U_1 \sin(\omega t + \psi_1) + \sqrt{2}U_3 \sin(3\omega t + \psi_3)$$

* Cách giải - Coi bài toán được cấp bởi nhiều nguồn

- Lần lượt cho từng nguồn thành phần tác dụng
- Áp dụng các phương pháp đã học để giải tìm $\overset{\cdot}{I}_k$, $\overset{\cdot}{U}_k$
- Đổi $\overset{\cdot}{I}_k,\overset{\cdot}{U}_k$ về dạng tức thời

- Dòng, áp trên nhánh:
$$i_{(t)} = \sum_{k=0}^{k=n} i_{k(t)}$$
 $u_{(t)} = \sum_{k=0}^{k=n} u_{k(t)}$

* <u>Chú ý</u> :

- Với thành phần k $\boldsymbol{\omega}$

$$X_{L(k \omega)} = k X_{L(\omega)}$$

$$X_{C(k\omega)} = \frac{X_{C(\omega)}}{k}$$

- Chỉ xếp chồng đáp ứng u, i dưới dạng tức thời.

$$\dot{\mathbf{i}}_{(t)} = \sum_{k=0}^{k=n} \dot{\dot{\mathbf{i}}}_{k(t)}$$
 $u_{(t)} = \sum_{k=0}^{k=n} u_{k(t)}$

Tại sao?

Các thành phần có tần số khác nhau

* Trị hiệu dụng của dòng chu kỳ không sin

$$I = \sqrt{\frac{1}{T}} \int_{0}^{T} i^{2} dt$$

$$= \sum_{j \neq l} i_{j} i_{l}$$

$$= \sum_{j \neq l} i_{j} i_{l}$$

$$= \sqrt{\frac{1}{T}} \int_{0}^{T} \sum_{j \neq l} i_{k}^{2} dt$$

$$= \sqrt{\sum_{j \neq l} i_{j} i_{l}}$$

$$= \sqrt{\sum_{j \neq l} i_{k}^{2} dt}$$

VD 2: Cho mạch điện như hình vẽ

Biết
$$R = 8\Omega$$
; $X_{L(\omega)} = 3\Omega$; $X_{C(\omega)} = 9\Omega$;

$$u(t) = \underline{100} + \underline{\sqrt{2.200 \sin(\omega t)}} + \underline{\sqrt{2.50 \sin(3\omega t)}}$$

Tìm i(t), I?

<u>Giải</u>

$$Coi u_{(t)} = \underline{U_o} + \underline{u_1} + \underline{u_3}$$

1. Cho
$$U_o = 100$$
 tác động $\Longrightarrow I_o =$

2. Cho
$$u_1$$
 tác động : $U_1 = 200e^{j0^0}$

$$Z_1 = 8 + j(3-9) = 10e^{-j36^{\circ}52'}$$
 \longrightarrow $I_1 = \frac{200e^{j0^0}}{10e^{-j36^052'}} = 20e^{j36^{\circ}52'}$

$$=>i_{1(t)}=\sqrt{2}.20\sin(\omega t+36^{\circ}52')$$

3. Cho
$$u_3$$
 tác dụng: $X_{L3} = 3X_L = 9$; $X_{c3} = X_c / 3 = 3$

$$Z_3 = 8 + j(9-3) = 10e^{j36^{\circ}52'} \implies I_3 = \frac{50e^{j0^{\circ}}}{10e^{j36^{\circ}52'}} = 5e^{j36^{\circ}52'}$$
$$=> i_{3(t)} = \sqrt{2.5}\sin(3\omega t - 36^{\circ}52')$$

$$i(t) = \sqrt{2.20}\sin(\omega t + 36^{\circ}52') + \sqrt{2.5}\sin(3\omega t - 36^{\circ}52')$$

* Trị hiệu dụng:

$$I = \sqrt{I_1^2 + I_3^2} = \sqrt{20^2 + 5^2} = 20.6 \text{ A}$$