Lecture 3: Algorithmic Meta-Theorems

(A Short Introduction to Parameterized Complexity)

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

June 12, 2024

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
	14.30 – 16.30 Notions of bounded graph width			14.30 – 16.30 FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

- Courcelle's theorem
 - ▶ FPT-results by model-checking MSO-formulas
 - for graphs / structures with bounded tree-width
 - for maximization problems over graphs of bounded tree-width
 - for graphs of bounded clique-width
 - applications to concrete problems

- logic preliminaries
 - first-order logic
 - expressing graph problems by f-o formulas
 - monadic second-order logic (MSO)
 - expressing graph problems by MSO formulas
 - complexity of evaluation and model checking problems
- Courcelle's theorem
 - FPT-results by model-checking MSO-formulas
 - for graphs / structures with bounded tree-width
 - for maximization problems over graphs of bounded tree-width
 - for graphs of bounded clique-width
 - applications to concrete problems

- logic preliminaries
 - first-order logic
 - expressing graph problems by f-o formulas
 - monadic second-order logic (MSO)
 - expressing graph problems by MSO formulas
 - complexity of evaluation and model checking problems
- Courcelle's theorem
 - FPT-results by model-checking MSO-formulas
 - for graphs / structures with bounded tree-width
 - for maximization problems over graphs of bounded tree-width
 - for graphs of bounded clique-width
 - applications to concrete problems
- graph minors

- logic preliminaries
 - first-order logic
 - expressing graph problems by f-o formulas
 - monadic second-order logic (MSO)
 - expressing graph problems by MSO formulas
 - complexity of evaluation and model checking problems
- Courcelle's theorem
 - FPT-results by model-checking MSO-formulas
 - for graphs / structures with bounded tree-width
 - for maximization problems over graphs of bounded tree-width
 - for graphs of bounded clique-width
 - applications to concrete problems
- graph minors
- meta-theorems for first-order model-checking: an example

Meta-theorems: idea, benefits and limitations

idea:

- express a problem P by a logical formula φ_P (of 'short' size)
- use model checking of φ_P on logical structures of bounded width k (tree-, clique-width, ...)
 - is time bounded depending on k, size of φ_P , size of the structure
 - this often facilitates FPT-results

Meta-theorems: idea, benefits and limitations

idea:

- express a problem P by a logical formula φ_P (of 'short' size)
- use model checking of φ_P on logical structures of bounded width k (tree-, clique-width, ...)
 - is time bounded depending on k, size of φ_P , size of the structure
 - this often facilitates FPT-results

benefits:

- a quick and easy way to show that [some problems] are fixed-parameter tractable,
- without working out the tedious details of a dynamic programming algorithm.

r idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Meta-theorems: idea, benefits and limitations

idea:

- express a problem P by a logical formula φ_P (of 'short' size)
- use model checking of φ_P on logical structures of bounded width k (tree-, clique-width, ...)
 - is time bounded depending on k, size of φ_P , size of the structure
 - this often facilitates FPT-results

benefits:

- a quick and easy way to show that [some problems] are fixed-parameter tractable,
- without working out the tedious details of a dynamic programming algorithm.

limitations:

- algorithms obtained by meta-theorems cannot be expected to be optimal.
- a careful analysis of a specific problem at hand will usually yield more efficient fpt-algorithms

Logical preliminaries

$$\varphi_{3} := \exists x_{1} \exists x_{2} \exists x_{3} (\neg(x_{1} = x_{2}) \land \neg E(x_{1}, x_{2}) \land \neg(x_{1} = x_{3}) \land \neg E(x_{1}, x_{3}) \land \neg(x_{2} = x_{3}) \land \neg E(x_{2}, x_{3}))$$

$$\varphi_{3} := \exists x_{1} \exists x_{2} \exists x_{3} \left(\neg (x_{1} = x_{2}) \land \neg E(x_{1}, x_{2}) \land \neg (x_{1} = x_{3}) \land \neg E(x_{1}, x_{3}) \land \neg (x_{2} = x_{3}) \land \neg E(x_{2}, x_{3}) \right)$$

 $\mathcal{A}(\mathcal{G}) \vDash \varphi_3 \iff \mathcal{G} \text{ has a 3-element independent set.}$

$$S \subseteq V$$
 is independent set in $\mathcal{G} = \langle V, E \rangle$: $\iff \forall e = \{u, v\} \in E \ (\neg(u \in S \land v \in S))$
 $\iff \forall u, v \in S \ (u \neq v \Rightarrow \{u, v\} \notin E)$

$$\varphi_{3} := \exists x_{1} \exists x_{2} \exists x_{3} \left(\neg(x_{1} = x_{2}) \land \neg E(x_{1}, x_{2}) \land \neg(x_{1} = x_{3}) \land \neg E(x_{1}, x_{3}) \land \neg(x_{2} = x_{3}) \land \neg E(x_{2}, x_{3}) \right)$$

 $A(G) \models \varphi_3 \iff G$ has a 3-element independent set.

$$\varphi_{\mathbf{k}} := \exists x_1 \dots \exists x_{\mathbf{k}} \Big(\bigwedge_{1 \le i \le j \le \mathbf{k}} (\neg (x_i = x_j) \land \neg E(x_i, x_j)) \Big)$$

$$S \subseteq V$$
 is independent set in $\mathcal{G} = \langle V, E \rangle$: $\iff \forall e = \{u, v\} \in E \ (\neg(u \in S \land v \in S))$
 $\iff \forall u, v \in S \ (u \neq v \Rightarrow \{u, v\} \notin E)$

$$\varphi_{3} := \exists x_{1} \exists x_{2} \exists x_{3} \left(\neg(x_{1} = x_{2}) \land \neg E(x_{1}, x_{2}) \land \neg(x_{1} = x_{3}) \land \neg E(x_{1}, x_{3}) \land \neg(x_{2} = x_{3}) \land \neg E(x_{2}, x_{3}) \right)$$

 $A(G) \models \varphi_3 \iff G$ has a 3-element independent set.

$$\varphi_{\mathbf{k}} := \exists x_1 \dots \exists x_{\mathbf{k}} \Big(\bigwedge_{1 \le i < j \le \mathbf{k}} (\neg (x_i = x_j) \land \neg E(x_i, x_j)) \Big)$$

 $A(\mathcal{G}) \models \varphi_k \iff \mathcal{G} \text{ has a } k\text{-element independent set.}$

$$S \subseteq V$$
 is independent set in $\mathcal{G} = \langle V, E \rangle$: $\iff \forall e = \{u, v\} \in E \ (\neg(u \in S \land v \in S))$ $\iff \forall u, v \in S \ (u \neq v \Rightarrow \{u, v\} \notin E)$

- language based on:
 - ▶ a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - propositional connectives: ∧, ∨, ¬, →, ↔

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - propositional connectives: ∧, ∨, ¬, →, ↔
 - ▶ existential quantifier ∃, universal quantifier ∀

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - propositional connectives: ∧, ∨, ¬, →, ↔
 - ▶ existential quantifier ∃, universal quantifier ∀
- ▶ atomic formulas (atoms): a formula x = y or $R(x_1 ... x_n)$ for $R \in \tau$

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - propositional connectives: ∧, ∨, ¬, →, ↔
 - ▶ existential quantifier ∃, universal quantifier ∀
- ▶ atomic formulas (atoms): a formula x = y or $R(x_1 ... x_n)$ for $R \in \tau$
- quantifier-free formula: atoms, literals (= negated atoms), formulas built up from atoms by using propositional connectives

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - propositional connectives: ∧, ∨, ¬, →, ↔
 - ▶ existential quantifier ∃, universal quantifier ∀
- ▶ atomic formulas (atoms): a formula x = y or $R(x_1 ... x_n)$ for $R \in \tau$
- quantifier-free formula: atoms, literals (= negated atoms), formulas built up from atoms by using propositional connectives
- quantifications over (first-order variables):
 - existential quantifications $\exists x$ and universal quantifications $\forall x$

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - ▶ propositional connectives: ∧, ∨, ¬, →, ↔
 - ▶ existential quantifier ∃, universal quantifier ∀
- ▶ atomic formulas (atoms): a formula x = y or $R(x_1 ... x_n)$ for $R \in \tau$
- quantifier-free formula: atoms, literals (= negated atoms), formulas built up from atoms by using propositional connectives
- quantifications over (first-order variables):
 - existential quantifications $\exists x$ and universal quantifications $\forall x$
- formulas:

```
\varphi ::= x = y \mid R(x_1, \dots, x_{ar(R)}) \quad \text{(where } R \in \tau)\mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \varphi_1 \leftrightarrow \varphi_2\mid \exists x \varphi \mid \forall x \varphi
```

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - ▶ propositional connectives: ∧, ∨, ¬, →, ↔
 - ▶ existential quantifier ∃, universal quantifier ∀
- ▶ atomic formulas (atoms): a formula x = y or $R(x_1 ... x_n)$ for $R \in \tau$
- quantifier-free formula: atoms, literals (= negated atoms), formulas built up from atoms by using propositional connectives
- quantifications over (first-order variables):
 - existential quantifications $\exists x$ and universal quantifications $\forall x$
- formulas:

$$\varphi ::= x = y \mid R(x_1, \dots, x_{ar(R)}) \quad \text{(where } R \in \tau)$$
$$\mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \varphi_1 \leftrightarrow \varphi_2$$
$$\mid \exists x \varphi \mid \forall x \varphi$$

sentences: formulas without free variables.

First-order logic: semantics (structures)

Definition

Let $\tau = \{R_1, \dots, R_n\}$ be a vocabulary.

A τ -structure is a tuple $\mathcal{A} = (A; R_1^{\mathcal{A}}, \dots R_n^{\mathcal{A}})$ consisting of:

 \blacktriangleright the *universe* A,

- $ar(R_i)$
- ▶ interpretations $R_i^A \subseteq A^{ar(R_i)} = \overbrace{A \times \ldots \times A}$ for each of the relation symbols R_i in τ , where $i \in \{1, \ldots, n\}$.

Examples

Let $\tau_G = \{E/2\}$ vocabulary with binary edge relation.

The *standard structure* for a graph $\mathcal{G} = \langle V, E \rangle$:

$$\mathcal{A}_{\tau_{\mathbf{G}}}(\mathcal{G}) \coloneqq \langle V; E^{\mathsf{symm}} \rangle$$
.

First-order logic: semantics (structures)

Definition

Let $\tau = \{R_1, \dots, R_n\}$ be a vocabulary.

A τ -structure is a tuple $\mathcal{A} = \langle A; R_1^{\mathcal{A}}, \dots R_n^{\mathcal{A}} \rangle$ consisting of:

- \blacktriangleright the *universe* A,
- ▶ interpretations $R_i^{\mathcal{A}} \subseteq A^{\operatorname{ar}(R_i)} = \overbrace{A \times \ldots \times A}$ for each of the relation symbols R_i in τ , where $i \in \{1, \ldots, n\}$.

Examples

Let $\tau_G = \{E/2\}$ vocabulary with binary edge relation.

The *standard structure* for a graph $\mathcal{G} = \langle V, E \rangle$:

$$\mathcal{A}_{\tau_{\mathbf{G}}}(\mathcal{G}) \coloneqq \langle V; E^{\mathsf{symm}} \rangle$$
.

Example

Let $\tau_{HG} = \{VERT/1, EDGE/1, INC/2\}$ vocabulary (for hypergraphs).

The *hypergraph structure* for a graph $\mathcal{G} = \langle V, E \rangle$:

$$\mathcal{A}_{\mathsf{THG}}(\mathcal{G}) \coloneqq \langle V \cup E; V, E, \{\langle v, e \rangle \mid v \in V, e \in E, \underline{v} \in \underline{e} \} \rangle.$$

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a τ -formula $\varphi(x_1, \dots, x_k)$ its interpretation $\varphi(\mathcal{A}) \subseteq A^k$ in \mathcal{A} is defined by:

Let $\mathcal{A} = \langle A; \left\{ R^{\mathcal{A}} \right\}_{R \in \tau} \rangle$ be a τ -structure. For a τ -formula $\varphi(x_1, \dots, x_k)$ its interpretation $\varphi(\mathcal{A}) \subseteq A^k$ in \mathcal{A} is defined by:

▶ If
$$\varphi(x_1, \dots, x_k) \equiv R(x_{i_1}, \dots, x_{i_r})$$
 with $i_1, \dots, i_r \in [k]$, then:
$$\varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{i_1}, \dots, a_{i_k} \rangle \in R^{\mathcal{A}} \right\}$$

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a τ -formula $\varphi(x_1, \dots, x_k)$ its interpretation $\varphi(\mathcal{A}) \subseteq A^k$ in \mathcal{A} is defined by:

- ▶ If $\varphi(x_1, \dots, x_k) \equiv R(x_{i_1}, \dots, x_{i_r})$ with $i_1, \dots, i_r \in [k]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ (a_1, \dots, a_k) \in A^k \mid (a_{i_1}, \dots, a_{i_k}) \in R^{\mathcal{A}} \right\}$
- ▶ If $\varphi(x_1,\ldots,x_k) \equiv \varphi_1(x_{i_1},\ldots,x_{i_l}) \land \varphi_2(x_{j_1},\ldots,x_{j_m})$ with $i_1,\ldots,i_l,j_1,\ldots,j_m \in [k]$, then:

$$\varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{i_1}, \dots, a_{i_l} \rangle \in \varphi_1(\mathcal{A}) \right\}$$

$$\cap \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{j_1}, \dots, a_{j_m} \rangle \in \varphi_2(\mathcal{A}) \right\}$$

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a τ -formula $\varphi(x_1, \dots, x_k)$ its interpretation $\varphi(\mathcal{A}) \subseteq A^k$ in \mathcal{A} is defined by:

- ▶ If $\varphi(x_1, \dots, x_k) \equiv R(x_{i_1}, \dots, x_{i_r})$ with $i_1, \dots, i_r \in [k]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ (a_1, \dots, a_k) \in A^k \mid (a_{i_1}, \dots, a_{i_k}) \in R^{\mathcal{A}} \right\}$
- $\begin{array}{l} \blacktriangleright \ \ \text{If} \ \varphi(x_1,\ldots,x_k) \equiv \varphi_1(x_{i_1},\ldots,x_{i_l}) \land \varphi_2(x_{j_1},\ldots,x_{j_m}) \ \text{with} \\ i_1,\ldots,i_l,j_1,\ldots,j_m \in [k], \ \text{then:} \end{array}$

$$\varphi(\mathcal{A}) := \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{i_1}, \dots, a_{i_l} \rangle \in \varphi_1(\mathcal{A}) \right\}$$

$$\cap \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{j_1}, \dots, a_{j_m} \rangle \in \varphi_2(\mathcal{A}) \right\}$$

▶ If $\varphi(x_1, \dots, x_k) \equiv \exists x_{k+1} \varphi_0(x_{i_1}, \dots, x_{i_\ell})$ with $i_1, \dots, i_\ell \in [k+1]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k \rangle \in A^k \middle| \text{ there exists } a_{k+1} \in A \right.$ such that $\langle a_{i_1}, \dots, a_{i_\ell} \rangle \in \varphi_0(\mathcal{A}) \right\}$

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a τ -formula $\varphi(x_1, \dots, x_k)$ its interpretation $\varphi(\mathcal{A}) \subseteq A^k$ in \mathcal{A} is defined by:

- ▶ If $\varphi(x_1, \dots, x_k) \equiv R(x_{i_1}, \dots, x_{i_r})$ with $i_1, \dots, i_r \in [k]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{i_1}, \dots, a_{i_k} \rangle \in R^{\mathcal{A}} \right\}$
- $\text{If } \varphi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k) \equiv \varphi_1(\boldsymbol{x}_{i_1},\ldots,\boldsymbol{x}_{i_l}) \land \varphi_2(\boldsymbol{x}_{j_1},\ldots,\boldsymbol{x}_{j_m}) \text{ with } \\ i_1,\ldots,i_l,j_1,\ldots,j_m \in [k], \text{ then:}$

$$\varphi(\mathcal{A}) := \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{i_1}, \dots, a_{i_l} \rangle \in \varphi_1(\mathcal{A}) \right\}$$

$$\cap \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{j_1}, \dots, a_{j_m} \rangle \in \varphi_2(\mathcal{A}) \right\}$$

- ▶ If $\varphi(x_1, \dots, x_k) \equiv \exists x_{k+1} \varphi_0(x_{i_1}, \dots, x_{i_\ell})$ with $i_1, \dots, i_\ell \in [k+1]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k \rangle \in A^k \middle| \text{ there exists } a_{k+1} \in A \right.$ such that $\langle a_{i_1}, \dots, a_{i_\ell} \rangle \in \varphi_0(\mathcal{A}) \right\}$
 - $ightharpoonup A \vDash \varphi(a_1, \ldots, a_k)$ will mean: $\langle a_1, \ldots, a_k \rangle \in \varphi(A)$.

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a τ -formula $\varphi(x_1, \dots, x_k)$ its interpretation $\varphi(\mathcal{A}) \subseteq A^k$ in \mathcal{A} is defined by:

- ▶ If $\varphi(x_1, \dots, x_k) \equiv R(x_{i_1}, \dots, x_{i_r})$ with $i_1, \dots, i_r \in [k]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ (a_1, \dots, a_k) \in A^k \mid (a_{i_1}, \dots, a_{i_k}) \in R^{\mathcal{A}} \right\}$
- $\text{If } \varphi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k) \equiv \varphi_1(\boldsymbol{x}_{i_1},\ldots,\boldsymbol{x}_{i_l}) \land \varphi_2(\boldsymbol{x}_{j_1},\ldots,\boldsymbol{x}_{j_m}) \text{ with } \\ i_1,\ldots,i_l,j_1,\ldots,j_m \in [k], \text{ then:}$

$$\varphi(\mathcal{A}) \coloneqq \left\{ (a_1, \dots, a_k) \in A^k \mid (a_{i_1}, \dots, a_{i_l}) \in \varphi_1(\mathcal{A}) \right\}$$
$$\cap \left\{ (a_1, \dots, a_k) \in A^k \mid (a_{j_1}, \dots, a_{j_m}) \in \varphi_2(\mathcal{A}) \right\}$$

- ▶ If $\varphi(x_1, \dots, x_k) \equiv \exists x_{k+1} \varphi_0(x_{i_1}, \dots, x_{i_\ell})$ with $i_1, \dots, i_\ell \in [k+1]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k \rangle \in A^k \middle| \text{ there exists } a_{k+1} \in A \right.$ such that $\langle a_{i_1}, \dots, a_{i_\ell} \rangle \in \varphi_0(\mathcal{A}) \right\}$
 - $\mathcal{A} \vDash \varphi(a_1, \ldots, a_k)$ will mean: $\langle a_1, \ldots, a_k \rangle \in \varphi(\mathcal{A})$.
 - ▶ For a sentence φ , $\mathcal{A} \models \varphi$ will mean $\varphi(\mathcal{A}) \neq \emptyset$ (then $\varphi(\mathcal{A}) = \{\langle \rangle \}$).

Exercise

For given formulas $\varphi(x)$ and for all $k \in \mathbb{N}$, $k \ge 1$ define formulas $\exists^{\ge k} x \, \varphi(x)$, $\exists^{< k} x \, \varphi(x)$, $\exists^{=k} x \, \varphi(x)$, such that in a given τ -structure $\mathcal{A} = \langle A; \left\{R^{\mathcal{A}}\right\}_{R \in \mathcal{T}} \rangle$:

$$\mathcal{A} \vDash \exists^{\geq k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \vDash \varphi(a)\}| \geq k$$

$$\mathcal{A} \vDash \exists^{< k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \vDash \varphi(a)\}| < k$$

$$\mathcal{A} \vDash \exists^{= k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \vDash \varphi(a)\}| = k$$

Exercise

For given formulas $\varphi(x)$ and for all $k \in \mathbb{N}$, $k \ge 1$ define formulas $\exists^{\ge k} x \, \varphi(x)$, $\exists^{< k} x \, \varphi(x)$, $\exists^{=k} x \, \varphi(x)$, such that in a given τ -structure $\mathcal{A} = \langle A; \left\{R^{\mathcal{A}}\right\}_{R \in \mathcal{T}} \rangle$:

$$\mathcal{A} \vDash \exists^{\geq k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \vDash \varphi(a)\}| \geq k$$

$$\mathcal{A} \vDash \exists^{< k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \vDash \varphi(a)\}| < k$$

$$\mathcal{A} \vDash \exists^{= k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \vDash \varphi(a)\}| = k$$

Exercise

Express by a first-order formula with the vocabulary $\tau_G = \{E/2\}$ for graphs that:

- (i) a graph G contains a clique with precisely k elements,
- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements,

Exercise

Express by a first-order formula with the vocabulary $\tau_G = \{E/2\}$ for graphs that:

- (i) a graph \mathcal{G} contains a clique with precisely k elements,
- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements,

Recall:

$$\varphi_{\mathbf{k}} := \exists x_1 \dots \exists x_{\mathbf{k}} \Big(\bigwedge_{1 \le i \le j \le \mathbf{k}} (\neg (x_i = y_i) \land \neg E(x_i, x_j)) \Big)$$

$$\mathcal{A}_{\tau_{G}}(\mathcal{G}) \models \varphi_{k} \iff \mathcal{G} \text{ has a } k\text{-element independent set.}$$

Exercise

Express by a first-order formula with the vocabulary $\tau_G = \{E/2\}$ for graphs that:

- (i) a graph \mathcal{G} contains a clique with precisely k elements,
- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements,

Exercise

Express by a first-order formula with the vocabulary $\tau_G = \{E/2\}$ for graphs that:

- (i) a graph \mathcal{G} contains a clique with precisely k elements,
- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements,

Exercise

Express by a first-order formula with the vocabulary with vocabulary $\tau_{HG} = \{ VERT/_1, EDGE/_1, INC/_2 \}$ for hypergraphs that:

- (i) a graph \mathcal{G} contains a clique with precisely k elements,
- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements.

Exercise

Express by a first-order formula with the vocabulary with vocabulary $\tau_{HG} = \{ VERT/_1, EDGE/_1, INC/_2 \}$ for hypergraphs that:

- (i) a graph \mathcal{G} contains a clique with precisely k elements,
- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements.

Evaluation and model checking (first-order logic)

Let Φ be a class of first-order formulas.

The *evaluation problem* for Φ :

$\mathsf{EVAL}(\Phi)$

Instance: A structure A and a formula $\varphi \in \Phi$.

Problem: Compute $\varphi(A)$.

Evaluation and model checking (first-order logic)

Let Φ be a class of first-order formulas.

The *evaluation problem* for Φ :

$\mathsf{EVAL}(\Phi)$

Instance: A structure A and a formula $\varphi \in \Phi$.

Problem: Compute $\varphi(A)$.

The *model checking problem* for Φ :

$MC(\Phi)$

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$.

Problem: Decide whether $A \vDash \varphi$ (that is, $\varphi(A) \neq \emptyset$).

Evaluation and model checking (first-order logic)

Let Φ be a class of first-order formulas.

The *evaluation problem* for Φ :

$EVAL(\Phi)$

Instance: A structure A and a formula $\varphi \in \Phi$.

Problem: Compute $\varphi(A)$.

The *model checking problem* for Φ :

$MC(\Phi)$

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$.

Problem: Decide whether $A \models \varphi$ (that is, $\varphi(A) \neq \emptyset$).

Width of formula φ : maximal number of free variables in a subformula of φ .

Theorem

EVAL(FO) and MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where w is the width of the input formula φ .

Monadic second-order logic (formula example)

$$\psi_{3} := \exists C_{1} \exists C_{2} \exists C_{3} \left(\left(\forall x \left(\bigvee_{i=1}^{3} C_{i}(x) \right) \right) \land \forall x \left(\bigwedge_{1 \leq i < j \leq 3} \neg \left(C_{i}(x) \land C_{j}(x) \right) \right) \right)$$

$$\land \forall x \forall y \left(E(x, y) \to \bigwedge_{i=1}^{3} \neg \left(C_{i}(x) \land C_{i}(y) \right) \right) \right)$$

$$\mathcal{A}(\mathcal{G}) \models \psi_3 \iff \mathcal{G} \text{ has is } 3\text{-colorable}.$$

Monadic second-order logic

- language based on:
 - a vocabulary $\tau = \{R_1, \dots, R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - first-order variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - monadic second-order variable symbols (symbolizing variables for unary predicate symbols): X, Y, Z, W, X₁, Y₁, Z₁, W₁, X₁,...,
 - propositional connectives: ∧, ∨, ¬, →, ↔
 - ▶ existential quantifier ∃, universal quantifier ∀

```
Let \mathcal{A} = \langle A; \left\{ R^{\mathcal{A}} \right\}_{R \in \mathbf{\tau}} \rangle be a \mathbf{\tau}-structure. For a \mathsf{MSO}(\mathbf{\tau})-formula \varphi(x_1, \dots, x_k, X_1, \dots, X_\ell) its interpretation \varphi(\mathcal{A}) \subseteq A^k \times \mathcal{P}(A)^\ell in \mathcal{A} is defined by:
```

```
Let \mathcal{A} = \langle A; \left\{R^{\mathcal{A}}\right\}_{R \in \tau} \rangle be a \tau-structure. For a MSO(\tau)-formula \varphi(x_1, \dots, x_k, X_1, \dots, X_\ell) its interpretation \varphi(\mathcal{A}) \subseteq A^k \times \mathcal{P}(A)^\ell in \mathcal{A} is defined by:
```

similar clauses as before, plus:

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a MSO(τ)-formula $\varphi(x_1, \dots, x_k, X_1, \dots, X_\ell)$ its *interpretation* $\varphi(\mathcal{A}) \subseteq A^k \times \mathcal{P}(A)^\ell$ in \mathcal{A} is defined by:

- similar clauses as before, plus:
- ▶ If $\varphi(x_1, \dots, x_k, X_1, \dots, X_\ell) \equiv X_i(x_j)$ with $i \in [k]$ and $j \in [\ell]$, then: $\varphi(A) \coloneqq \left\{ (a_1, \dots, a_k, P_1, \dots, P_\ell) \in A^k \times \mathcal{P}(A)^\ell \mid a_j \in P_i \right\}$

Let $\mathcal{A} = \langle A; \left\{ R^{\mathcal{A}} \right\}_{R \in \mathbf{T}} \rangle$ be a $\mathbf{\tau}$ -structure. For a MSO($\mathbf{\tau}$)-formula $\varphi(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{X}_1, \dots, \mathbf{X}_\ell)$ its *interpretation* $\varphi(\mathcal{A}) \subseteq A^k \times \mathcal{P}(A)^\ell$ in \mathcal{A} is defined by:

- similar clauses as before, plus:
- ▶ If $\varphi(x_1, ..., x_k, X_1, ..., X_\ell) \equiv X_i(x_j)$ with $i \in [k]$ and $j \in [\ell]$, then: $\varphi(A) := \{(a_1, ..., a_k, P_1, ..., P_\ell) \in A^k \times \mathcal{P}(A)^\ell \mid a_j \in P_i\}$
- $$\begin{split} & \text{If } \varphi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k,\boldsymbol{X}_1,\ldots,\boldsymbol{X}_\ell) \equiv \exists \boldsymbol{X}_{k+1}\varphi_0(\boldsymbol{x}_{i_1},\ldots,\boldsymbol{x}_{i_{k'}},\boldsymbol{X}_{j_1},\ldots,\boldsymbol{X}_{j_\ell'}) \\ & \text{with } i_1,\ldots,i_{k'} \in [k], \text{ and } j_1,\ldots,j_{\ell'} \in [\ell+1] \text{ then:} \end{split}$$

$$\begin{split} \varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in A^k \times \mathcal{P}(A)^\ell \middle| \\ & \text{there exists } P_{\ell+1} \in \mathcal{P}(A) \text{ such that } \\ & \left\langle a_{i_1}, \dots, a_{i_{k'}}, P_{j_1}, \dots, P_{j_{\ell'}} \right\rangle \in \varphi_0(\mathcal{A}) \right\} \end{split}$$

Let $\mathcal{A} = \langle A; \left\{ R^{\mathcal{A}} \right\}_{R \in \mathbf{T}} \rangle$ be a $\mathbf{\tau}$ -structure. For a MSO($\mathbf{\tau}$)-formula $\varphi(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{X}_1, \dots, \mathbf{X}_\ell)$ its *interpretation* $\varphi(\mathcal{A}) \subseteq A^k \times \mathcal{P}(A)^\ell$ in \mathcal{A} is defined by:

- similar clauses as before, plus:
- ▶ If $\varphi(x_1, \dots, x_k, X_1, \dots, X_\ell) \equiv X_i(x_j)$ with $i \in [k]$ and $j \in [\ell]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ (a_1, \dots, a_k, P_1, \dots, P_\ell) \in A^k \times \mathcal{P}(A)^\ell \mid a_j \in P_i \right\}$
- $\begin{array}{l} \blacktriangleright \ \ \text{If} \ \varphi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k,\boldsymbol{X}_1,\ldots,\boldsymbol{X}_\ell) \equiv \exists \boldsymbol{X}_{k+1}\varphi_0(\boldsymbol{x}_{i_1},\ldots,\boldsymbol{x}_{i_{k'}},\boldsymbol{X}_{j_1},\ldots,\boldsymbol{X}_{j_{\ell'}}) \\ \text{with} \ i_1,\ldots,i_{k'} \in [k], \ \text{and} \ j_1,\ldots,j_{\ell'} \in [\ell+1] \ \text{then:} \end{array}$

$$\begin{split} \varphi(\mathcal{A}) \coloneqq \big\{ \langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in A^k \times \mathcal{P}(A)^\ell \big| \\ & \text{there exists } P_{\ell+1} \in \mathcal{P}(A) \text{ such that } \\ & \langle a_{i_1}, \dots, a_{i_{k'}}, P_{j_1}, \dots, P_{j_{\ell'}} \rangle \in \varphi_0(\mathcal{A}) \big\} \end{split}$$

• $\mathcal{A} \vDash \varphi(a_1, \dots, a_k, P_1, \dots, P_\ell)$ will mean: $\langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in \varphi(\mathcal{A})$.

Let $\mathcal{A} = \langle A; \left\{ R^{\mathcal{A}} \right\}_{R \in \mathbf{\tau}} \rangle$ be a $\mathbf{\tau}$ -structure. For a MSO($\mathbf{\tau}$)-formula $\varphi(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{X}_1, \dots, \mathbf{X}_\ell)$ its *interpretation* $\varphi(\mathcal{A}) \subseteq A^k \times \mathcal{P}(A)^\ell$ in \mathcal{A} is defined by:

- similar clauses as before, plus:
- ▶ If $\varphi(x_1, \dots, x_k, X_1, \dots, X_\ell) \equiv X_i(x_j)$ with $i \in [k]$ and $j \in [\ell]$, then: $\varphi(\mathcal{A}) \coloneqq \left\{ (a_1, \dots, a_k, P_1, \dots, P_\ell) \in A^k \times \mathcal{P}(A)^\ell \mid a_j \in P_i \right\}$
- $\begin{array}{l} \blacktriangleright \ \ \text{If} \ \varphi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k,\boldsymbol{X}_1,\ldots,\boldsymbol{X}_\ell) \equiv \exists \boldsymbol{X}_{k+1}\varphi_0(\boldsymbol{x}_{i_1},\ldots,\boldsymbol{x}_{i_{k'}},\boldsymbol{X}_{j_1},\ldots,\boldsymbol{X}_{j_{\ell'}}) \\ \text{with} \ i_1,\ldots,i_{k'} \in [k], \ \text{and} \ j_1,\ldots,j_{\ell'} \in [\ell+1] \ \text{then:} \end{array}$

$$\begin{split} \varphi(\mathcal{A}) \coloneqq \big\{ \langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in A^k \times \mathcal{P}(A)^\ell \big| \\ & \text{there exists } P_{\ell+1} \in \mathcal{P}(A) \text{ such that } \\ & \left\langle a_{i_1}, \dots, a_{i_{k'}}, P_{j_1}, \dots, P_{j_{\ell'}} \right\rangle \in \varphi_0(\mathcal{A}) \big\} \end{split}$$

- $\mathcal{A} \vDash \varphi(a_1, \dots, a_k, P_1, \dots, P_\ell)$ will mean: $\langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in \varphi(\mathcal{A})$.
- ▶ For a sentence φ , $\mathcal{A} \models \varphi$ will mean $\varphi(\mathcal{A}) \neq \emptyset$ (then $\varphi(\mathcal{A}) = \{(\})\}$).

Monadic second-order logic (formula example)

$$\psi_{\mathbf{3}} := \exists C_{1} \exists C_{2} \exists C_{3} \left(\left(\forall x \left(\bigvee_{i=1}^{3} C_{i}(x) \right) \right) \land \forall x \left(\bigwedge_{1 \leq i < j \leq 3} \neg \left(C_{i}(x) \land C_{j}(x) \right) \right) \right)$$

$$\land \forall x \forall y \left(E(x, y) \to \bigwedge_{i=1}^{3} \neg \left(C_{i}(x) \land C_{i}(y) \right) \right) \right)$$

$$\mathcal{A}(\mathcal{G}) \vDash \psi_3 \iff \mathcal{G} \text{ has is } 3\text{-colorable}.$$

Monadic second-order logic (formula example)

$$\psi_{3} := \exists C_{1} \exists C_{2} \exists C_{3} \left(\left(\forall x \left(\bigvee_{i=1}^{3} C_{i}(x) \right) \right) \land \forall x \left(\bigwedge_{1 \leq i < j \leq 3} \neg \left(C_{i}(x) \land C_{j}(x) \right) \right) \right)$$

$$\land \forall x \forall y \left(E(x, y) \rightarrow \bigwedge_{i=1}^{3} \neg \left(C_{i}(x) \land C_{i}(y) \right) \right) \right)$$

$$\equiv \exists C_{1} \exists C_{2} \exists C_{3} \left(\forall x \left(C_{1}(x) \lor C_{2}(x) \lor C_{3}(x) \right) \right)$$

$$\land \forall x \left(\neg \left(C_{1}(x) \land C_{2}(x) \right) \land \neg \left(C_{1}(x) \land C_{3}(x) \right) \right)$$

$$\land \forall x \forall y \left(E(x, y) \rightarrow \neg \left(C_{1}(x) \land C_{1}(y) \right) \right)$$

$$\land \neg \left(C_{2}(x) \land C_{2}(y) \right)$$

$$\land \neg \left(C_{3}(x) \land C_{3}(y) \right) \right) \right)$$

$$\mathcal{A}(\mathcal{G}) \models \psi_3 \iff \mathcal{G} \text{ has is } 3\text{-colorable}.$$

Expressing graph properties by MSO formulas (1)

Exercise

Express by a monadic second-order formula $\varphi(X)$ with one free unary predicate variable X over the vocabulary $\tau_{\mathbf{G}} = \{E/\mathbf{2}\}$ for graphs that for all graphs $\mathcal{G} = \langle V, E \rangle$:

$$\mathcal{A}_{\tau_{\mathsf{G}}}(\mathcal{G}) \vDash \varphi(S) \iff S \subseteq V \text{ is an independent set in } \mathcal{G}$$

Recall:

$$S \subseteq V$$
 is independent set in \mathcal{G} : $\iff \forall e = \{u, v\} \in E \ (\neg(u \in S \land v \in S))$
 $\iff \forall u, v \in S(\ u \neq v \Rightarrow \{u, v\} \notin E)$

Exercise

Express the independent set property by a MSO(τ_{HG}) formula ψ with vocabulary $\tau_{HG} = \{VERT/_1, EDGE/_1, INC/_2\}$ for hypergraphs:

$$\mathcal{A}_{\mathsf{THG}}(\mathcal{G}) \vDash \psi(S) \iff S \subseteq V \text{ is an independent set in } \mathcal{G}$$

Expressing graph properties by MSO formulas (1)

Exercise

Express by a monadic second-order formula $\varphi(X)$ with one free unary predicate variable X over the vocabulary $\tau_{\mathbf{G}} = \{E/\mathbf{2}\}$ for graphs that for all graphs $\mathcal{G} = \langle V, E \rangle$:

$$\mathcal{A}_{\tau_{\mathbf{G}}}(\mathcal{G}) \vDash \varphi(S) \iff S \subseteq V \text{ is an independent set in } \mathcal{G}$$

Exercise

Express the independent set property by a MSO(τ_{HG}) formula ψ with vocabulary $\tau_{HG} = \{VERT/_1, EDGE/_1, INC/_2\}$ for hypergraphs:

$$\mathcal{A}_{\mathsf{THG}}(\mathcal{G}) \vDash \psi(S) \iff S \subseteq V \text{ is an independent set in } \mathcal{G}$$

Expressing graph properties by MSO formulas (2)

Exercise

Express by a monadic second-order formula feedback(X) with one free unary predicate variable X over $\tau_{HG} = \{VERT/_1, EDGE/_1, INC/_2\}$, the vocabulary for graphs, that for all hypergraphs $\mathcal{G} = \langle V, E \rangle$:

$$\mathcal{A}_{\tau_{\mathsf{HG}}}(\mathcal{G}) \vDash \mathit{feedback}(S) \iff S \subseteq V \text{ is a feedback vertex set}$$

(A set $S \subseteq V$ is a feedback vertex set in \mathcal{G} if S contains a vertex of every cycle of \mathcal{G} .)

Steps:

- Construct a formula cycle-family(X) that expresses the property of a set being the union of cycles.
- ▶ Using *cycle-family*(X), construct *feedback*(X).

▶ MSO(τ_{G}): MSO with vocabulary $\tau_{G} = \{E/2\}$

- ▶ MSO(τ_{G}): MSO with vocabulary $\tau_{G} = \{E/2\}$
- ▶ MSO(τ_{HG}): MSO with vocab. $\tau_{HG} = \{VERT/_1, EDGE/_1, INC/_2\}$

▶ MSO($\tau_{\rm G}$): MSO with vocabulary $\tau_{\rm G} = \{E/2\}$ ▶ MSO($\tau_{\rm HG}$): MSO with vocab. $\tau_{\rm HG} = \{VERT/1, EDGE/1, INC/2\}$ ▶ MSO₁:

▶ vocabulary: $\{INC/2\}$ ▶ quantifications: $\exists_{({\rm vert})}x / \forall_{({\rm vert})}x$, $\exists_{({\rm edge})}x / \forall_{({\rm edge})}x$, $\exists_{({\rm vert})}X / \forall_{({\rm vert})}X$

▶ MSO($\tau_{\rm G}$): MSO with vocabulary $\tau_{\rm G} = \{E/2\}$ ▶ MSO($\tau_{\rm HG}$): MSO with vocab. $\tau_{\rm HG} = \{VERT/1, EDGE/1, INC/2\}$ ▶ MSO₁:

▶ vocabulary: $\{INC/2\}$ ▶ quantifications: $\exists_{({\rm vert})}x \mid \forall_{({\rm vert})}x$, $\exists_{({\rm edge})}x \mid \forall_{({\rm edge})}x$, $\exists_{({\rm vert})}X \mid \forall_{({\rm vert})}X$ ▶ MSO₂:

▶ vocabulary: $\{INC/2\}$ ▶ quantifications: $\exists_{({\rm vert})}x \mid \forall_{({\rm vert})}x$, $\exists_{({\rm edge})}x \mid \forall_{({\rm edge})}x$,

 $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X$, $\exists_{(\text{edge})} X / \forall_{(\text{edge})} X$

▶ MSO($\tau_{\rm G}$): MSO with vocabulary $\tau_{\rm G} = \{E/2\}$ ▶ MSO($\tau_{\rm HG}$): MSO with vocab. $\tau_{\rm HG} = \{VERT/1, EDGE/1, INC/2\}$ ▶ MSO₁:

▶ vocabulary: $\{INC/2\}$ ▶ quantifications: $\exists_{({\rm vert})}x / \forall_{({\rm vert})}x$, $\exists_{({\rm edge})}x / \forall_{({\rm edge})}x$, $\exists_{({\rm vert})}X / \forall_{({\rm vert})}X$ ▶ MSO₂:

▶ vocabulary: $\{INC/2\}$ ▶ quantifications: $\exists_{({\rm vert})}x / \forall_{({\rm vert})}x$, $\exists_{({\rm edge})}x / \forall_{({\rm edge})}x$,

Correspondences

$$MSO(\tau_G)$$
 corresponds to MSO_1

 $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X, \ \exists_{(\text{edge})} X / \forall_{(\text{edge})} X$

where 'corresponds to' means: 'is equally expressive as'.

▶ MSO(τ_{G}): MSO with vocabulary $\tau_{G} = \{E/2\}$ ▶ MSO(τ_{HG}): MSO with vocab. $\tau_{HG} = \{VERT/1, EDGE/1, INC/2\}$ ▶ MSO₁:

▶ vocabulary: $\{INC/2\}$ ▶ quantifications: $\exists_{(vert)}x / \forall_{(vert)}x$, $\exists_{(edge)}x / \forall_{(edge)}x$, $\exists_{(vert)}X / \forall_{(vert)}X$ ▶ MSO₂:

▶ vocabulary: $\{INC/2\}$ ▶ quantifications: $\exists_{(vert)}x / \forall_{(vert)}x$, $\exists_{(edge)}x / \forall_{(edge)}x$, $\exists_{(vert)}X / \forall_{(vert)}X$, $\exists_{(edge)}x / \forall_{(edge)}X$

Correspondences

```
MSO(\tau_G) corresponds to MSO_1

MSO(\tau_{HG}) corresponds to MSO_2
```

where 'corresponds to' means: 'is equally expressive as'.

- MSO(τ_G): MSO with vocabulary τ_G = {E/₂}
 MSO(τ_{HG}): MSO with vocab. τ_{HG} = {VERT/₁, EDGE/₁, INC/₂}
 MSO₁:
 vocabulary: {INC/₂}
 quantifications: ∃_(vert)x / ∀_(vert)x , ∃_(edge)x / ∀_(edge)x ,
- ► MSO₂:
 - ▶ vocabulary: {INC/₂}
 - quantifications: $\exists_{(\text{vert})} x / \forall_{(\text{vert})} x$, $\exists_{(\text{edge})} x / \forall_{(\text{edge})} x$, $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X$, $\exists_{(\text{edge})} X / \forall_{(\text{edge})} X$

 $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X$

Correspondences

```
MSO(\tau_G) corresponds to MSO_1

MSO(\tau_{HG}) corresponds to MSO_2
```

where 'corresponds to' means: 'is equally expressive as'.

Note:

 $MSO(\tau_{HG})$ / MSO_2 are more expressive than $MSO(\tau_G)$ / MSO_1 .

- MSO(τ_G): MSO with vocabulary τ_G = {E/₂}
 MSO(τ_{HG}): MSO with vocab. τ_{HG} = {VERT/₁, EDGE/₁, INC/₂}
 MSO₁:
 vocabulary: {INC/₂}
- ► MSO₂:
 - vocabulary: { INC/2}
 - quantifications: $\exists_{(\text{vert})} x / \forall_{(\text{vert})} x$, $\exists_{(\text{edge})} x / \forall_{(\text{edge})} x$, $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X$, $\exists_{(\text{edge})} X / \forall_{(\text{edge})} X$

• quantifications: $\exists_{(\text{vert})} x / \forall_{(\text{vert})} x$, $\exists_{(\text{edge})} x / \forall_{(\text{edge})} x$, $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X$

Correspondences

```
MSO(\tau_G) corresponds to MSO_1

MSO(\tau_{HG}) corresponds to MSO_2
```

where 'corresponds to' means: 'is equally expressive as'.

Note:

We use MSO for either logic, restrict to $MSO(\tau_G)$ / MSO_1 if needed.

- MSO(τ_G): MSO with vocabulary τ_G = {E/₂}
 MSO(τ_{HG}): MSO with vocab. τ_{HG} = {VERT/₁, EDGE/₁, INC/₂}
 MSO₁:
 vocabulary: {INC/₂}
 quantifications: ∃_(vert)x / ∀_(vert)x , ∃_(edge)x / ∀_(edge)x ,
- ► MSO₂:
 - ▶ vocabulary: {INC/₂}
 - quantifications: $\exists_{(\text{vert})} x / \forall_{(\text{vert})} x$, $\exists_{(\text{edge})} x / \forall_{(\text{edge})} x$, $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X$, $\exists_{(\text{edge})} X / \forall_{(\text{edge})} X$

 $\exists_{(\text{vert})} X / \forall_{(\text{vert})} X$

Correspondences

```
MSO(\tau_G) corresponds to MSO_1

MSO(\tau_{HG}) corresponds to MSO_2
```

where 'corresponds to' means: 'is equally expressive as'.

Note:

 $MSO(\tau_{HG})$ / MSO_2 are more expressive than $MSO(\tau_G)$ / MSO_1 .

Expressing graph properties by MSO formulas (5)

Exercise

Express by a $\mathsf{MSO}(\tau_{\mathsf{HG}})$ formula $\mathit{conn}(X)$ with one free unary predicate variable X over $\tau_{\mathsf{HG}} = \{\mathit{VERT/1}, \mathit{EDGE/1}, \mathit{INC/2}\}$, the vocabulary for graphs, that for all hypergraphs $\mathcal{G} = \langle V, E \rangle$:

 $A_{THG}(\mathcal{G}) \models hamiltonian \iff \text{there is a Hamiltonian path in } \mathcal{G}.$

Expressing graph properties by MSO formulas (5)

Exercise

Express by a $\mathsf{MSO}(\tau_{\mathsf{HG}})$ formula $\mathit{conn}(X)$ with one free unary predicate variable X over $\tau_{\mathsf{HG}} = \{\mathit{VERT/1}, \mathit{EDGE/1}, \mathit{INC/2}\}$, the vocabulary for graphs, that for all hypergraphs $\mathcal{G} = \langle V, E \rangle$:

 $\mathcal{A}_{\tau_{HG}}(\mathcal{G}) \vDash hamiltonian \iff \text{there is a Hamiltonian path in } \mathcal{G}.$

Note:

▶ This property is not expressible by a (single) $MSO(\tau_G)$ formula.

Expressing graph properties by MSO formulas (5)

Exercise

Express by a $\mathsf{MSO}(\tau_{\mathsf{HG}})$ formula $\mathit{conn}(X)$ with one free unary predicate variable X over $\tau_{\mathsf{HG}} = \{\mathit{VERT/1}, \mathit{EDGE/1}, \mathit{INC/2}\}$, the vocabulary for graphs, that for all hypergraphs $\mathcal{G} = \langle V, E \rangle$:

 $\mathcal{A}_{\tau_{\mathsf{HG}}}(\mathcal{G}) \vDash \mathit{hamiltonian} \iff \mathsf{there} \; \mathsf{is} \; \mathsf{a} \; \mathsf{Hamiltonian} \; \mathsf{path} \; \mathsf{in} \; \mathcal{G}.$

Note:

- ▶ This property is not expressible by a (single) $MSO(\tau_G)$ formula.
- ▶ Other property that are not $MSO(\tau_G)$ expressible:
 - balanced bipartite graphs
 - existence of a perfect matching
 - simple graphs
 - existence of spanning trees with maximum degree 3

ov idea fo-logic MSO courc-graphs courcelle courc-pet courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Expressing graph properties by MSO formulas (5)

Exercise

 $A_{\tau_{HG}}(\mathcal{G}) \models hamiltonian \iff \text{there is a Hamiltonian path in } \mathcal{G}.$

ov idea fo-logic MSO courc-graphs courcelle courc-pet courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Expressing graph properties by MSO formulas (5)

Exercise

 $A_{\tau_{HG}}(\mathcal{G}) \models hamiltonian \iff \text{there is a Hamiltonian path in } \mathcal{G}.$

Evaluation and model checking (MSO)

The *model checking problem* for MSO-formulas on labeled, ordered unranked trees:

```
MC(MSO, TREE_{lo})
```

Instance: A labeled, ordered, unranked Σ -tree \mathcal{T} ,

and a MSO(τ_{Σ}^{u})-formula φ

Problem: Decide whether $\mathcal{T} \models \varphi$.

where for given alphabet Σ , $\tau_{\Sigma}^{u} := \{E/2, N/2\} \cup \{P_a/1 \mid a \in \Sigma\}.$

Evaluation and model checking (MSO)

The *model checking problem* for MSO-formulas on labeled, ordered unranked trees:

 $MC(MSO, TREE_{lo})$

Instance: A labeled, ordered, unranked Σ -tree \mathcal{T} ,

and a MSO (τ_{Σ}^{u}) -formula φ

Problem: Decide whether $\mathcal{T} \models \varphi$.

where for given alphabet Σ , $\tau_{\Sigma}^{u} := \{E/2, N/2\} \cup \{P_a/1 \mid a \in \Sigma\}$.

Theorem

 $MC(MSO, TREE_{lo}) \in FPT.$

More precisely, there is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $MC(MSO, TREE_{lo})$ can be decided in time $\leq O(f(|\varphi|) + ||\mathcal{T}||)$.

Evaluation and model checking (MSO)

The *model checking problem* for MSO-formulas on labeled, ordered unranked trees:

```
MC(MSO, TREE_{lo})
```

Instance: A labeled, ordered, unranked Σ -tree \mathcal{T} ,

and a MSO(τ_{Σ}^{u})-formula φ

Problem: Decide whether $\mathcal{T} \models \varphi$.

where for given alphabet Σ , $\tau_{\Sigma}^{u} := \{E/2, N/2\} \cup \{P_a/1 \mid a \in \Sigma\}.$

Theorem

 $MC(MSO, TREE_{lo}) \in FPT$.

More precisely, there is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $MC(MSO, TREE_{lo})$ can be decided in time $\leq O(f(|\varphi|) + ||\mathcal{T}||)$.

Note that here: $f(k) \ge 2^{-\frac{k^2}{2}} k$ (a non-elementary function).

Courcelle's Theorem for graphs

```
p^*-tw-MC(MSO)
```

Instance: A graph \mathcal{G} and an MSO(τ_{HG})-sentence φ .

Parameter: $tw(\mathcal{G}) + |\varphi|$ (where $tw(\mathcal{G})$ the tree-width of \mathcal{G})

Problem: Decide whether $A(G) \models \varphi$.

Courcelle's Theorem for graphs

```
p^*-tw-MC(MSO)
```

Instance: A graph $\mathcal G$ and an MSO(τ_{HG})-sentence φ .

Parameter: $tw(\mathcal{G}) + |\varphi|$ (where $tw(\mathcal{G})$ the tree-width of \mathcal{G})

Problem: Decide whether $A(\mathcal{G}) \models \varphi$.

Theorem (special case of Courcelle's Theorem)

 p^* -tw-MC(MSO) \in FPT. More precisely, the problem is decidable, for some computable and non-decreasing function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by an algorithm in time:

$$f(k_1, k_2) \cdot n$$
, where $k_1 := tw(\mathcal{A}), k_2 := |\varphi|, n := |V(\mathcal{G})|$

Courcelle's Theorem: applications (1)

 p^* -tw-Colorability $\in \mathsf{FPT}$

Instance: A graph \mathcal{G} and $\ell \in \mathbb{N}$.

Parameter: tw(C)

Problem: Decide whether is \mathcal{G} ℓ -colorable.

Example

▶ p^* -tw-3-Colorability \in FPT.

Courcelle's Theorem: applications (1)

 p^* -tw-Colorability $\in FPT$

Instance: A graph \mathcal{G} and $\ell \in \mathbb{N}$.

Parameter: tw(C)

Problem: Decide whether is \mathcal{G} ℓ -colorable.

Example

- ▶ p^* -tw-3-Colorability \in FPT.
- ▶ p^* -tw-Colorability \in FPT.

Courcelle's Theorem: applications (1)

 p^* -tw-Colorability $\in FPT$

Instance: A graph \mathcal{G} and $\ell \in \mathbb{N}$.

Parameter: tw(C)

Problem: Decide whether is \mathcal{G} ℓ -colorable.

Example

- ▶ p^* -tw-3-Colorability \in FPT.
- ▶ p^* -tw-Colorability \in FPT.

Courcelle's Theorem: applications (2)

p-tw*-Hamiltonicity

Instance: A graph \mathcal{G} Parameter: $tw(\mathcal{C})$

Problem: Decide whether \mathcal{G} is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Example

 p^* -tw-Hamiltonicity \in FPT.

Courcelle's Theorem: applications (2)

p-tw*-Hamiltonicity

Instance: A graph \mathcal{G} Parameter: $tw(\mathcal{C})$

Problem: Decide whether \mathcal{G} is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Example

 p^* -tw-Hamiltonicity \in FPT.

Tree decompositions, and tree-width for graphs

Definition (recalling tree-width for graphs)

A *tree decomposition* of a graph $\mathcal{G} = \langle V, E \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ for all $t \in T$ such that:

- (T1) $A = \bigcup_{t \in T} B_t$ (every vertex of \mathcal{G} is in some bag).
- (T2) $(\forall a \in A) [\{t \in T \mid a \in B_t\}]$ is connected subtree of $\mathcal{T}]$ (the vertices whose bags contain some vertex of \mathcal{G} form a connected subtree of \mathcal{T}).
- (T3) $(\forall \{u, v\} \in E) (\exists t \in T) [\{u, v\} \subseteq B_t]$ (the vertices of every edge of \mathcal{G} are realized in some bag).

The *width* of a tree dec. $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ is $\max\{|B_t| - 1 \mid t \in T\}$.

The *tree-width tw*(\mathcal{A}) of a τ -structure \mathcal{A} is defined by:

tw(A) := minimal width of a tree decomposition of A.

Tree decompositions, and tree-width for structures

Definition (extension of tree-width to structures)

A tree decomposition of a τ -structure $\mathcal{A} = \langle A; \left\{ R^{\mathcal{A}} \right\}_{R \in \tau} \rangle$ is a pair $\langle \mathcal{T}, \left\{ B_t \right\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ for all $t \in T$ such that:

- (T1) $A = \bigcup_{t \in T} B_t$ (every element of the universe of A is in some bag).
- (T2) $(\forall a \in A) [\{t \in T \mid a \in B_t\}]$ is connected subtree of $\mathcal{T}]$ (the universe elements whose bags contain some vertex of \mathcal{G} form a connected subtree of \mathcal{T}).
- (T3) $(\forall R \in \tau) (\forall (a_1, \dots, a_r) \in R^A) (\exists t \in T) [\{a_1, \dots, a_r\} \subseteq B_t]$ (the vertices of every 'hyperedge' in R^A are realized in some bag).

The *width* of a tree dec. $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ is $\max\{|B_t| - 1 \mid t \in T\}$.

The *tree-width tw*(\mathcal{A}) of a τ -structure \mathcal{A} is defined by:

tw(A) := minimal width of a tree decomposition of A.

 p^* -tw-MC(MSO)

Instance: A structure A and an MSO-sentence φ .

Parameter: $tw(A) + |\varphi|$.

Problem: Decide whether $A \models \varphi$.

 p^* -tw-MC(MSO)

Instance: A structure A and an MSO-sentence φ .

Parameter: $tw(A) + |\varphi|$.

Problem: Decide whether $A \models \varphi$.

Theorem ([Courcelle, 1990])

 p^* -tw-MC(MSO) \in FPT.

```
p^*-tw-MC(MSO)
```

Instance: A structure A and an MSO-sentence φ .

Parameter: $tw(A) + |\varphi|$.

Problem: Decide whether $A \models \varphi$.

Theorem ([Courcelle, 1990])

```
f(k_1, k_2) \cdot |A| + O(\|A\|), where k_1 := tw(A), and k_2 := |\varphi|, f computable and non-decreasing
```

```
p^*-tw-MC(MSO)
```

Instance: A structure A and an MSO-sentence φ .

Parameter: $tw(A) + |\varphi|$.

Problem: Decide whether $A \models \varphi$.

Theorem ([Courcelle, 1990])

$$f(k_1, k_2) \cdot |A| + O(\|A\|)$$
, where $k_1 := tw(A)$, and $k_2 := |\varphi|$, f computable and non-decreasing

$$f(k_1, k_2) \cdot |A| + O(\|A\|) \le f(k_1, k_2) \cdot |A| + c \cdot \|A\|$$
 with some $c > 0$

```
p^*-tw-MC(MSO)
```

Instance: A structure A and an MSO-sentence φ .

Parameter: $tw(A) + |\varphi|$.

Problem: Decide whether $A \models \varphi$.

Theorem ([Courcelle, 1990])

$$f(k_1, k_2) \cdot |A| + O(\|A\|)$$
, where $k_1 := tw(A)$, and $k_2 := |\varphi|$, f computable and non-decreasing

$$\begin{split} f(k_1,k_2)\cdot|A| + O(\|\mathcal{A}\|) &\leq f(k_1,k_2)\cdot|A| + c\cdot\|\mathcal{A}\| \quad \text{with some } c > 0 \\ &\leq (f(k_1,k_2)+c)\cdot\|\mathcal{A}\| \end{split}$$

```
p^*-tw-MC(MSO)
```

Instance: A structure A and an MSO-sentence φ .

Parameter: $tw(A) + |\varphi|$.

Problem: Decide whether $A \models \varphi$.

Theorem ([Courcelle, 1990])

$$f(k_1, k_2) \cdot |A| + O(\|A\|)$$
, where $k_1 := tw(A)$, and $k_2 := |\varphi|$, f computable and non-decreasing

$$\begin{split} f(k_1,k_2)\cdot|A| + O(\|\mathcal{A}\|) &\leq f(k_1,k_2)\cdot|A| + c\cdot\|\mathcal{A}\| &\quad \text{with some } c > 0 \\ &\leq (f(k_1,k_2)+c)\cdot\|\mathcal{A}\| \\ &\leq g(k)\cdot(\|\mathcal{A}\|+|\varphi|) &\quad \text{for } g(x) \coloneqq f(x,x) + c \\ &\quad k \coloneqq k_1 + k_2 \end{split}$$

p^* -tw-MC(MSO)

Instance: A structure \mathcal{A} and an MSO-sentence φ .

Parameter: $tw(A) + |\varphi|$.

Problem: Decide whether $A \models \varphi$.

Theorem ([Courcelle, 1990])

 p^* -tw-MC(MSO) \in FPT. More precisely, the problem is decidable by an algorithm in time:

 $f(k_1, k_2) \cdot |A| + O(\|A\|)$, where $k_1 := tw(A)$, and $k_2 := |\varphi|$, f computable and non-decreasing

$$\begin{split} f(k_1,k_2)\cdot|A| + O(\|\mathcal{A}\|) &\leq f(k_1,k_2)\cdot|A| + c\cdot\|\mathcal{A}\| &\quad \text{with some } c > 0 \\ &\leq (f(k_1,k_2)+c)\cdot\|\mathcal{A}\| \\ &\leq g(k)\cdot(\|\mathcal{A}\|+|\varphi|) &\quad \text{for } g(x)\coloneqq f(x,x)+c \\ &\quad k\coloneqq k_1+k_2 \\ &\leq g(k)\cdot n &\quad \text{where } n\coloneqq \|\mathcal{A}\|+|\varphi| \end{split}$$

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} : \iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} : \iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

```
p*-tw-VERTEX-COVER
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Instance: $tw(\mathcal{G})$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} : \iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

```
p*-tw-VERTEX-COVER
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Instance: $tw(\mathcal{G})$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} : \iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

```
p*-tw-VERTEX-COVER
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Instance: $tw(\mathcal{G})$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

Courcelle's Theorem: Refinement 1

Refinement 1 of Courcelle's Theorem

```
f(k_1, k_2) \cdot |A| + O(\|A\|), where k_1 := tw(A), and k_2 := |\varphi|, f computable and non-decreasing
```

Vertex Cover

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} : \iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

p*-tw-VERTEX-COVER

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Instance: $tw(\mathcal{G})$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

Example

 p^* -tw-Vertex-Cover \in FPT.

Vertex Cover

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} :\iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

p*-tw-VERTEX-COVER

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Instance: tw(G).

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

Example

p*-tw-Vertex-Cover \in FPT.

Courcelle's Theorem: Refinement 2

```
p^*-tw-MC^=(MSO)
```

Instance: A structure A, an MSO-sentence $\varphi(X)$, and $m \in \mathbb{N}$.

Parameter: $tw(A) + |\varphi(X)|$.

Problem: Decide whether $A = \exists X (card^{=m}(X) \land \varphi(X)).$

Refinement 2 of Courcelle's Theorem

```
f(k_1, k_2) \cdot |A|^2 + O(\|A\|), where k_1 := tw(A), and k_2 := |\varphi|, f computable and non-decreasing
```

Courcelle's Theorem Ref. 3: Optimization version

```
\begin{split} p^*\text{-}\textit{tw}\text{-}\mathsf{opt}\text{-}\mathsf{MC}(\mathsf{MSO}) \\ & \textbf{Instance:} \ \mathsf{A} \ \mathsf{graph} \ \mathcal{G} = \langle V, E \rangle, \ \mathsf{an} \ \mathsf{MSO}\text{-}\mathsf{sentence} \ \varphi(X_1, \dots, X_p). \\ & \textbf{Parameter:} \ \textit{tw}(\mathcal{G}) + |\varphi(X_1, \dots, X_p)|. \\ & \textbf{Compute:} \ \max_{\substack{\mathsf{min} \\ \mathsf{min}}} \big\{ \alpha(|X_1|, \dots, |X_p|) \mid \begin{matrix} X_1, \dots, X_p \subseteq V \cup E \\ \mathcal{A}(\mathcal{G}) \vDash \varphi(X_1, \dots, X_p). \end{matrix} \big\}. \\ & \text{where} \ \alpha \ \mathsf{is} \ \mathsf{an} \ \mathsf{affine} \ \mathsf{function} \ \alpha(x_1, \dots, x_p) = a_0 + \sum_{i=1}^p a_i \cdot x_i. \end{split}
```

Optimization version of Courcelle's Theorem

```
p^*-tw-opt-MC(MSO) \in FPT, and it is decidable by an algorithm in time: f(tw(\mathcal{G}), |\varphi|) \cdot |V|, where f computable and non-decreasing.
```

Maximum 2-edge colorable subgraphs

 p^* -tw-max-2-edge-colorable-subgraph

Instance: A graph $\mathcal{G} = \langle V, E \rangle$.

Parameter: $tw(\mathcal{G})$.

Compute: Maximum number of edges

in a 2-edge colored subgraph of G.

Example [AA & Vahan Mkrtchyan]

 p^* -tw-max-2-edge-colorable-subgraph \in FPT.

Maximum 2-edge colorable subgraphs

 p^* -tw-max-2-edge-colorable-subgraph Instance: A graph $\mathcal{G} = \langle V, E \rangle$.

Parameter: $tw(\mathcal{G})$.

Compute: Maximum number of edges

in a 2-edge colored subgraph of G.

Example [AA & Vahan Mkrtchyan]

 p^* -tw-max-2-edge-colorable-subgraph \in FPT.

Courcelle's Theorem: applications (3)

```
p*-tw-INDEPENDENT-SET
```

Instance: A graph \mathcal{G} , a number $\ell \in \mathbb{N}$.

Parameter: $tw(\mathcal{G})$

Problem: Decide whether \mathcal{G} has an independent set of ℓ ele-

ments.

Example

 p^* -tw-Independent-Set \in FPT.

Courcelle's Theorem: applications (3)

```
p*-tw-INDEPENDENT-SET
```

Instance: A graph \mathcal{G} , a number $\ell \in \mathbb{N}$.

Parameter: $tw(\mathcal{G})$

Problem: Decide whether \mathcal{G} has an independent set of ℓ ele-

ments.

Example

 p^* -tw-Independent-Set \in FPT.

Courcelle's Theorem: applications (4)

p*-tw-FEEDBACK-VERTEX-SET

Instance: A graph \mathcal{G} and $\ell \in \mathbb{N}$.

Parameter: tw(C)

Problem: Decide whether \mathcal{G} has a feedback vertex set of ℓ

elements.

Example

 p^* -tw-FEEDBACK-VERTEX-SET \in FPT.

Courcelle's Theorem: applications (4)

p*-tw-FEEDBACK-VERTEX-SET

Instance: A graph \mathcal{G} and $\ell \in \mathbb{N}$.

Parameter: tw(C)

Problem: Decide whether \mathcal{G} has a feedback vertex set of ℓ

elements.

Example

 p^* -tw-FEEDBACK-VERTEX-SET \in FPT.

Courcelle's Theorem: applications (5)

```
p*-tw-Crossing-Number
```

Instance: A graph \mathcal{G} , and $k \in \mathbb{N}$

Parameter: $tw(\mathcal{G}) + k$

Problem: Decide whether the crossing number of \mathcal{G} is k.

Example

 p^* -tw-Crossing-Number \in FPT.

The *crossing number* is the least number of edge crossings required to draw the graph in the plane such that at each point at most two edges cross.

Courcelle's Theorem: applications (5)

Definition

```
Let \mathcal{G}_1 = \langle V_1, E_1 \rangle and \mathcal{G}_2 = \langle V_2, E_2 \rangle be graphs. \mathcal{G}_1 is a subdivision of \mathcal{G}_2 if:
```

G₁ arises by splitting the edges of G₂
into paths with intermediate vertices.

```
\mathcal{H} is a topological subgraph of \mathcal{G} if \mathcal{G} has a subgraph that is a subdivision of \mathcal{H}.
```

Courcelle's Theorem: applications (5)

Definition

Let $\mathcal{G}_1 = \langle V_1, E_1 \rangle$ and $\mathcal{G}_2 = \langle V_2, E_2 \rangle$ be graphs. \mathcal{G}_1 is a *subdivision* of \mathcal{G}_2 if:

G₁ arises by splitting the edges of G₂ into paths with intermediate vertices.

 \mathcal{H} is a *topological subgraph* of \mathcal{G} if \mathcal{G} has a subgraph that is a subdivision of \mathcal{H} .

r idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph-minors fo-metathm's summ Fri ex-sugg refs

Courcelle's Theorem: applications (5)

r idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Courcelle's Theorem: applications (5)

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as topological subgraph.

r idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Courcelle's Theorem: applications (5)

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as topological subgraph.

Courcelle's Theorem: applications (5)

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as topological subgraph.

Lemma

There is a $MSO(\tau_{HG})$ formula top-sub_H such that for every graph G:

 $A_{\tau_{HG}}(\mathcal{G}) \models top\text{-}sub_{\mathcal{H}} \iff \mathcal{H} \text{ is a topological subgraph of } \mathcal{G}.$

Courcelle's Theorem: applications (5)

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as topological subgraph.

Lemma

There is a $MSO(\tau_{HG})$ formula top-sub_H such that for every graph G:

 $\mathcal{A}_{\mathsf{THG}}(\mathcal{G}) \vDash \mathit{top\text{-}sub}_{\mathcal{H}} \iff \mathcal{H} \text{ is a topological subgraph of } \mathcal{G}.$

Using MSO(τ_{HG}) formula path(x, y, Z) that Z is a path from x to y.

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Courcelle's Theorem: applications (5)

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as topological subgraph.

Lemma

There is a $MSO(\tau_{HG})$ formula top-sub_H such that for every graph G:

$$\mathcal{A}_{\mathsf{THG}}(\mathcal{G}) \vDash top\text{-}sub_{\mathcal{H}} \iff \mathcal{H} \text{ is a topological subgraph of } \mathcal{G}.$$

Using $MSO(\tau_{HG})$ formula path(x, y, Z) that Z is a path from x to y.

Lemma

There is a $MSO(\tau_{HG})$ formula $cross_k$ such that for every graph \mathcal{G} :

$$\mathcal{A}_{\mathsf{THG}}(\mathcal{G}) \vDash \mathsf{cross}_k \iff \mathsf{the\ crossing\ number\ of\ } \mathcal{G} \mathsf{\ is\ at\ most\ } k.$$

Proof: By induction, where $cross_0 := \neg top - sub_{K_5} \land \neg top - sub_{K_{3,3}}$.

Computably boundedness between notions of width

(from Sasák, [Sásak, 2010]) $g(wd_1) \succeq wd_2 : \Leftrightarrow wd_1 \stackrel{g}{\to} wd_2$

- ► FPT-results

 transfer upwards

 (and conversely to →)
- (∉ FPT)-results transfer downwards (and along ^g→)

Comparing parameterizations

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- $\kappa_1 \succeq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N} \text{ computable } \forall x \in \Sigma^* \Big[g(\kappa_1(x)) \ge \kappa_2(x) \Big].$

Proposition

For all parameterized problems (Q, κ_1) and (Q, κ_2) with parameterizations $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ with $\kappa_1 \succeq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT}$$

 $\langle Q, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q, \kappa_2 \rangle \notin \mathsf{FPT}$

Courcelle's Theorem for clique-width

Recall that $MSO(\tau_G) \sim MSO_1$ (quantification over sets of vertices, but not sets of edges).

```
p^*-clw-MC(MSO(\tau_{\sf G})/MSO<sub>1</sub>)
```

Instance: A graph \mathcal{G} and an $MSO(\tau_G)$ -sentence φ .

Parameter: $c/w(\mathcal{G}) + |\varphi|$.

Problem: Decide whether $\mathcal{A}(\mathcal{G}) \vDash \varphi$.

```
Theorem ([Courcelle et al., 2000]) p^*-c/w-MC(MSO(\tau_G)/MSO<sub>1</sub>) \in FPT.
```

Also, there is a maximization version of this theorem.

Courcelle's Theorem for clique-width (example)

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} : \iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

```
p*-c/w-Vertex-Cover
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Instance: $clw(\mathcal{G})$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

Example

```
p^*-c/w-VERTEX-COVER \in FPT.
```

Courcelle's Theorem for clique-width (example)

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:
 S is a vertex cover of \mathcal{G} : \iff \forall e = \{u, v\} \in E \ (u \in S \lor v \in S))
```

```
p*-c/w-Vertex-Cover
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Instance: $clw(\mathcal{G})$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

Example

```
p^*-c/w-VERTEX-COVER \in FPT.
```

Application to maximum 2-edge colorable subgraphs?

p*-c/w-max-2-edge-colorable-subgraph

Instance: A graph $\mathcal{G} = \langle V, E \rangle$.

Parameter: $c/w(\mathcal{G})$.

Compute: Maximum number of edges

in a 2-edge colored subgraph of G.

Open problem [AA, Vahan Mkrtchyan]

 p^* -c/w-max-2-edge-colorable-subgraph \in FPT ?

Application to maximum 2-edge colorable subgraphs?

p*-c/w-max-2-edge-colorable-subgraph

Instance: A graph $\mathcal{G} = \langle V, E \rangle$.

Parameter: $c/w(\mathcal{G})$.

Compute: Maximum number of edges

in a 2-edge colored subgraph of G.

Open problem [AA, Vahan Mkrtchyan]

 p^* -c/w-max-2-edge-colorable-subgraph \in FPT ?

We saw that there is a MSO_2 formula $\varphi(X)$ such that:

$$\mathcal{A}_{\mathsf{THG}}(\mathcal{G}) \vDash \varphi(S) \iff S \subseteq E \text{ is an 2-colorable set of edges in } \mathcal{G}$$

But there seems not to be such an MSO₁ formula.

v idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph-minors fo-metathm's summ Fri ex-sugg refs

Courcelle's Theorem for clique-width (non-example)

 p^* -c/w-Hamiltonicity

Instance: A graph \mathcal{G} Parameter: $c/w(\mathcal{C})$

Problem: Decide whether G is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Courcelle's Theorem for clique-width (non-example)

p^* -c/w-Hamiltonicity

Instance: A graph \mathcal{G} Parameter: $c/w(\mathcal{C})$

Problem: Decide whether G is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Recall

There is no MSO₁ formula that expresses Hamiltonicity.

Courcelle's Theorem for clique-width (non-example)

p^* -c/w-Hamiltonicity

Instance: A graph \mathcal{G} Parameter: $c/w(\mathcal{C})$

Problem: Decide whether \mathcal{G} is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Recall

There is no MSO_1 formula that expresses Hamiltonicity.

Hence we cannot apply Courcelle's Theorem for clique-width.

Courcelle's Theorem for clique-width (non-example)

```
p^*-c/w-Hamiltonicity
```

Instance: A graph \mathcal{G} Parameter: $c/w(\mathcal{C})$

Problem: Decide whether G is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Recall

There is no MSO_1 formula that expresses Hamiltonicity.

Hence we cannot apply Courcelle's Theorem for clique-width. Indeed:

Theorems

- (T1) p^* -c/w-HAMILTONICITY \notin FPT, since it is not decidable in time $\notin n^{o(clw(\mathcal{C}))}$ (Fomin et al, 2014).
- (T2) p^* -c/w-HAMILTONICITY $\in O(n^{o(clw(C))})$ (Bergougnoux, Kanté, Kwon, 2020).

Computably boundedness between notions of width

(from Sasák, [Sásak, 2010]) $g(wd_1) \succeq wd_2 : \Leftrightarrow wd_1 \xrightarrow{g} wd_2$

- ► FPT-results

 transfer upwards

 (and conversely to →)
- (∉ FPT)-results transfer downwards (and along ^g→)

Graph Minors

v idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph-minors fo-metathm's summ Fri ex-sugg refs

Graph minors

Definition

A graph \mathcal{G}_0 is a *minor* of a graph \mathcal{G} if \mathcal{G}_0 is obtained by:

- deleting some edges,
- deleting arising isolated vertices,
- contracting edges in G.

Graph minors

Definition

A graph \mathcal{G}_0 is a *minor* of a graph \mathcal{G} if \mathcal{G}_0 is obtained by:

- deleting some edges,
- deleting arising isolated vertices,
- \triangleright contracting edges in \mathcal{G} .

Graph minors

Definition

A graph \mathcal{G}_0 is a *minor* of a graph \mathcal{G} if \mathcal{G}_0 is obtained by:

- deleting some edges,
- deleting arising isolated vertices,
- \triangleright contracting edges in \mathcal{G} .

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Excluded minors

Definition (minor closed)

A class \mathcal{G} is *minor closed* if for every $\mathcal{G} \in \mathcal{G}$ all minors of \mathcal{G} are in \mathcal{G} .

Excluded minors

Definition (minor closed)

A class \mathcal{G} is *minor closed* if for every $\mathcal{G} \in \mathcal{G}$ all minors of \mathcal{G} are in \mathcal{G} .

We say that a class \mathcal{G} is characterized by excluded minors in \mathcal{H} if:

$$\mathcal{G} := \mathsf{Excl}(\mathcal{H}) := \{ \mathcal{G} \mid \mathcal{G} \text{ does not have a minor in } \mathcal{H} \}$$

Excluded minors

Definition (minor closed)

A class \mathcal{G} is *minor closed* if for every $\mathcal{G} \in \mathcal{G}$ all minors of \mathcal{G} are in \mathcal{G} .

We say that a class G is characterized by excluded minors in H if:

$$\mathcal{G} := \mathsf{Excl}(\mathcal{H}) := \{ \mathcal{G} \mid \mathcal{G} \text{ does not have a minor in } \mathcal{H} \}$$

Theorem (Graph Minor Theorem (Robertson–Seymour, 1983–2004))

Every class of graphs that is minor closed can be characterized by finitely many excluded minors. That is, for every class \mathcal{G} of minor closed graphs there are graphs $\mathcal{H}_1, \ldots, \mathcal{H}_m$ such that:

$$G = \text{Excl}(\{\mathcal{H}_1, \dots, \mathcal{H}_m\}).$$

ov idea fo-logic MSO courc-graphs courcelle courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Deciding minor closed classes

$p extsf{-}\mathsf{MINOR}$

Instance: Graphs \mathcal{G} and \mathcal{H} .

Parameter: $\|\mathcal{G}\|$

Problem: Decide whether \mathcal{G} is a minor of \mathcal{H} .

Deciding minor closed classes

p-MINOR

Instance: Graphs \mathcal{G} and \mathcal{H} .

Parameter: $\|\mathcal{G}\|$

Problem: Decide whether \mathcal{G} is a minor of \mathcal{H} .

Theorem

p-MINOR \in FPT, decidable in time $f(k) \cdot n^3$ where $k = ||\mathcal{G}||$, and n is the number of vertices of \mathcal{H} .

Deciding minor closed classes

p-MINOR

Instance: Graphs \mathcal{G} and \mathcal{H} .

Parameter: $\|\mathcal{G}\|$

Problem: Decide whether \mathcal{G} is a minor of \mathcal{H} .

Theorem

p-MINOR \in FPT, decidable in time $f(k) \cdot n^3$ where $k = ||\mathcal{G}||$, and n is the number of vertices of \mathcal{H} .

Corollary

Every minor-closed class of graphs is decidable in cubic time.

Deciding minor closed classes

p-MINOR

Instance: Graphs \mathcal{G} and \mathcal{H} .

Parameter: $\|\mathcal{G}\|$

Problem: Decide whether \mathcal{G} is a minor of \mathcal{H} .

Theorem

p-MINOR \in FPT, decidable in time $f(k) \cdot n^3$ where $k = ||\mathcal{G}||$, and n is the number of vertices of \mathcal{H} .

Corollary

Every minor-closed class of graphs is decidable in cubic time.

Corollary

Let $\langle Q, \kappa \rangle$ be a parameterized problem on graphs such that for every $\mathbf{k} \in \mathbb{N}$, either $\{ \mathcal{G} \in Q \mid \kappa(\mathcal{G}) = \mathbf{k} \}$ or $\{ \mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = \mathbf{k} \}$ is minor closed.

Then every slice $\langle Q, \kappa \rangle_k$ is decidable in cubic time. In this case we can say that $\langle Q, \kappa \rangle$ is nonuniformly fixed-parameter tractable.

Non-uniformly fixed-parameter tractable

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is *fixed-parameter tractable* if:

```
\exists f: \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \\ \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \\ \forall x \in \Sigma^* \big[ \mathbb{A} \text{ decides whether } x \in Q \text{ holds} \\ \text{in time } \leq f(\kappa(x)) \cdot p(|x|) \big]
```

Non-uniformly fixed-parameter tractable

A parameterized problem (Q, Σ, κ) is *fixed-parameter tractable* if:

```
\begin{split} \exists f: \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \\ \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \\ \forall x \in \Sigma^* \big[ \, \mathbb{A} \text{ decides whether } x \in Q \text{ holds} \\ & \text{in time } \leq f(\kappa(x)) \cdot p(|x|) \, \big] \end{split}
```

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is *non-uniformly fixed-parameter tractable* (in nu-FPT) if:

```
\exists f: \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \\ \exists \left\{ \mathbb{A}_k \right\}_{k \in \mathbb{N}} \text{ algorithms, takes inputs in } \Sigma^* \\ \forall x \in \Sigma^* \Big[ \mathbb{A}_{\kappa(x)} \text{ decides whether } x \in Q \text{ holds} \\ \text{ in time } \leq f(\kappa(x)) \cdot p(|x|) \Big]
```

Using minor-closed classes for FPT results

Corollary

Let $\langle Q, \kappa \rangle$ be a parameterized problem on graphs such that for every $k \in \mathbb{N}$, either $\{\mathcal{G} \in Q \mid \kappa(\mathcal{G}) = k\}$ or $\{\mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = k\}$ is minor closed. Then $\langle Q, \kappa \rangle$ is non-uniformly fixed-parameter tractable (in nu-FPT).

Applications:

▶ p-VERTEX-COVER ∈ nu-FPT (p-VERTEX-COVER is minor closed).

Using minor-closed classes for FPT results

Corollary

Let $\langle Q, \kappa \rangle$ be a parameterized problem on graphs such that for every $k \in \mathbb{N}$, either $\{\mathcal{G} \in Q \mid \kappa(\mathcal{G}) = k\}$ or $\{\mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = k\}$ is minor closed. Then $\langle Q, \kappa \rangle$ is non-uniformly fixed-parameter tractable (in nu-FPT).

Applications:

- p-VERTEX-COVER ∈ nu-FPT (p-VERTEX-COVER is minor closed).
- p-FEEDBACK-VERTEX-SET ∈ nu-FPT (problem is minor closed).

Using minor-closed classes for FPT results

Corollary

Let $\langle Q, \kappa \rangle$ be a parameterized problem on graphs such that for every $k \in \mathbb{N}$, either $\{\mathcal{G} \in Q \mid \kappa(\mathcal{G}) = k\}$ or $\{\mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = k\}$ is minor closed. Then $\langle Q, \kappa \rangle$ is non-uniformly fixed-parameter tractable (in nu-FPT).

Applications:

- p-Vertex-Cover ∈ nu-FPT (p-Vertex-Cover is minor closed).
- p-FEEDBACK-VERTEX-SET ∈ nu-FPT (problem is minor closed).
- p-DISJOINT-CYCLES

Instance: A graph \mathcal{G} , and $k \in \mathbb{N}$.

Parameter: k.

Problem: Decide whether \mathcal{G} has k disjoint cycles.

p-DISJOINT-CYCLES \in nu-FPT, since the class of graphs that do not have k disjoint cycles is minor closed.

First-Order Meta-Theorem (example)

A class \mathcal{G} of graphs has bounded degree if there is $d \in \mathbb{N}$ such that $\Delta(\mathcal{G}) \leq d$ for all $\mathcal{G} \in \mathcal{G}$ (where $\Delta(\mathcal{G}) = \max$. degree of vertex in \mathcal{G}).

```
p	ext{-MC}(\mathsf{FO}, \mathcal{G})
```

Instance: A graph $G \in G$, and a f-o formula φ over τ_{HG}

Parameter: $|\varphi|$.

Problem: Decide whether $A(G) \models \varphi$.

A class \mathcal{G} of graphs has bounded degree if there is $d \in \mathbb{N}$ such that $\Delta(\mathcal{G}) \leq d$ for all $\mathcal{G} \in \mathcal{G}$ (where $\Delta(\mathcal{G}) = \max$. degree of vertex in \mathcal{G}).

```
p	ext{-MC}(\mathsf{FO}, \mathcal{G})
```

Instance: A graph $G \in G$, and a f-o formula φ over τ_{HG}

Parameter: $|\varphi|$.

Problem: Decide whether $A(G) \models \varphi$.

Theorem ([Seese, 1995])

 $p ext{-MC}(\mathsf{FO},\mathcal{G}) \in \mathsf{FPT}$ for every class \mathcal{G} of bounded degree. This model checking problem can be solved in time $f(|\varphi|) \cdot |\mathcal{G}|$, (linear in $|\mathcal{G}|$).

A class \mathcal{G} of graphs has bounded degree if there is $d \in \mathbb{N}$ such that $\Delta(\mathcal{G}) \leq d$ for all $\mathcal{G} \in \mathcal{G}$ (where $\Delta(\mathcal{G}) = \max$. degree of vertex in \mathcal{G}).

```
p\text{-MC}(\mathsf{FO}, \mathcal{G})
```

Instance: A graph $G \in G$, and a f-o formula φ over τ_{HG}

Parameter: $|\varphi|$.

Problem: Decide whether $A(G) \models \varphi$.

Theorem ([Seese, 1995])

 $p ext{-MC}(\mathsf{FO},\mathcal{G}) \in \mathsf{FPT}$ for every class \mathcal{G} of bounded degree. This model checking problem can be solved in time $f(|\varphi|) \cdot |\mathcal{G}|$, (linear in $|\mathcal{G}|$).

Theorem (for comparison, we saw it earlier)

EVAL(FO) and MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where w is the width of the input formula φ .

A class \mathcal{G} of graphs has bounded degree if there is $d \in \mathbb{N}$ such that $\Delta(\mathcal{G}) \leq d$ for all $\mathcal{G} \in \mathcal{G}$ (where $\Delta(\mathcal{G}) = \max$. degree of vertex in \mathcal{G}).

```
p	ext{-MC}(\mathsf{FO}, \mathcal{G})
```

Instance: A graph $G \in G$, and a f-o formula φ over τ_{HG}

Parameter: $|\varphi|$.

Problem: Decide whether $A(G) \models \varphi$.

Theorem ([Seese, 1995])

 $p ext{-MC}(\mathsf{FO},\mathcal{G}) \in \mathsf{FPT}$ for every class \mathcal{G} of bounded degree. This model checking problem can be solved in time $f(|\varphi|) \cdot |\mathcal{G}|$, (linear in $|\mathcal{G}|$).

Example

On the class of graphs of bounded degree:

▶ p-CLIQUE ∈ FPT ('is there a clique of size k')?

A class \mathcal{G} of graphs has bounded degree if there is $d \in \mathbb{N}$ such that $\Delta(\mathcal{G}) \leq d$ for all $\mathcal{G} \in \mathcal{G}$ (where $\Delta(\mathcal{G}) = \max$. degree of vertex in \mathcal{G}).

```
p	ext{-MC}(\mathsf{FO}, \mathcal{G})
```

Instance: A graph $G \in G$, and a f-o formula φ over τ_{HG}

Parameter: $|\varphi|$.

Problem: Decide whether $A(G) \models \varphi$.

Theorem ([Seese, 1995])

 $p ext{-MC}(\mathsf{FO},\mathcal{G}) \in \mathsf{FPT}$ for every class \mathcal{G} of bounded degree. This model checking problem can be solved in time $f(|\varphi|) \cdot |\mathcal{G}|$, (linear in $|\mathcal{G}|$).

Example

On the class of graphs of bounded degree:

- ▶ p-CLIQUE ∈ FPT ('is there a clique of size k')?
- 'Does G contain a cycle of length k?' (parameter k) is in FPT.

A class \mathcal{G} of graphs has bounded degree if there is $d \in \mathbb{N}$ such that $\Delta(\mathcal{G}) \leq d$ for all $\mathcal{G} \in \mathcal{G}$ (where $\Delta(\mathcal{G}) = \max$. degree of vertex in \mathcal{G}).

```
p	ext{-MC}(\mathsf{FO}, \mathcal{G})
```

Instance: A graph $G \in G$, and a f-o formula φ over τ_{HG}

Parameter: $|\varphi|$.

Problem: Decide whether $A(G) \models \varphi$.

Theorem ([Seese, 1995])

 $p ext{-MC}(\mathsf{FO},\mathcal{G}) \in \mathsf{FPT}$ for every class \mathcal{G} of bounded degree. This model checking problem can be solved in time $f(|\varphi|) \cdot |\mathcal{G}|$, (linear in $|\mathcal{G}|$).

Example

On the class of graphs of bounded degree:

- ▶ p-CLIQUE ∈ FPT ('is there a clique of size k')?
- ▶ 'Does G contain a cycle of length k?' (parameter k) is in FPT.
- ▶ p-VERTEX-COVER ∈ FPT ('vertex cover of size at most k?')

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

First-order metatheorems: reference

A good reference for other meta-theorems for first-order logic is:

[Kreutzer, 2009]: Stephan Kreutzer: Algorithmic Meta-Theorems.

Summary

- Logic preliminaries
 - first-order logic
 - expressing graph problems by f-o formulas
 - monadic second-order logic (MSO)
 - expressing graph problems by MSO formulas
 - complexity of evaluation and model checking problems
- Courcelle's theorem
 - FPT-results by model-checking MSO-formulas
 - for graphs with bounded tree-width
 - for structures with bounded tree-width
 - for graphs of bounded clique-width
 - applications to concrete problems
- graph minors
- meta-theorems for first-order model-checking: an example

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt ref's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Friday

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
	14.30 – 16.30			14.30 – 16.30
	Notions of bounded graph width			FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph-minors fo-metathm's summ Fri ex-sugg refs

Example suggestions

Examples

- 1. Find a first-order logic formula over $\tau_{\mathbf{G}}$ that expresses that a graph has a cycle of length precisely k.
- 2. Find an MSO₁ or MSO(τ_G) formula that expresses that a graph has a dominating set of $\leq k$ elements.
- 3. Find an MSO_2 or $MSO(\tau_{HG})$ formula *feedback*(S) that expresses that $S \subseteq V$ is a feedback vertex set.
- 4. (*) Find an MSO₁ or MSO($\tau_{\rm G}$) formula that expresses that a graph is connected.
- 5. (*) Find an MSO_2 or $MSO(\tau_{HG})$ formula *path*(x, y, Z) that expresses that Z is a set of edges that forms a path from x to y.

References I

The monadic second-order logic of graphs. i. recognizable sets of finite graphs.

Information and Computation, 85(1):12 – 75.

Courcelle, B., Makowsky, J. A., and Rotics, U. (2000). Linear time solvable optimization problems on graphs of bounded clique-width.

Theory of Computing Systems, 33(2):125-150.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S. (2015). Parameterized Algorithms. Springer, 1st edition.

Flum, J. and Grohe, M. (2006).

Parameterized Complexity Theory.

Springer.

References II

Freutzer, S. (2009).

Algorithmic Meta-Theorems.

Technical report, arXiv.org.

https://arxiv.org/abs/0902.3616.

Sásak, R. (2010).

Comparing 17 graph parameters.

Master's thesis, University of Bergen, Norway.

Seese, D. (1995).

Linear time computable problems and logical descriptions.

Electronic Notes in Theoretical Computer Science, 2:246 – 259. SEGRAGRA 1995, Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation.