

Vision-Language Models

Jordan Boyd-Graber

University of Maryland

Visual Transformers

Slides from Mohit Iyyer, Vicente Ordonez, Fei-Fei

Li, Justin Johnson, and Jacob Andreas

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

*equal technical contribution, †equal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

N input patches, each of shape 3x16x16

CLIP

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford * 1 Jong Wook Kim * 1 Chris Hallacy 1 Aditya Ramesh 1 Gabriel Goh 1 Sandhini Agarwal 1 Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 Ilya Sutskever 1

- OpenAl collect 400 million (image, text) pairs from the web
- Then, they train an image encoder and a text encoder with a simple contrastive loss: given a collection of images and text, predict which (image, text) pairs actually occurred in the dataset

Joint Training

Joint Training

Joint Training

Generating text is one thing, but what about image generation?

- Could do autoregressive model pixel by pixel (people have tried)
- But better to learn higher-order structure