

EIE557 Computational Intelligence and its Applications

Lab 1 Report

Date: 20/4/2018

Laboratory 1: Optimization Using Genetic Algorithms

1.Objectives:

- (1) To gain experience in solving optimization problems using GA's
- (2) To be familiar with a GA optimization tool implemented in MATLAB

2. Exercises

2.1 Evolving Investment Strategies Using the GA

2.1.1 Introduction

A best rule will be found by using the simple genetic algorithm to make monthly decision on whether to make investment to the Hangseng Index (HSI) stocks. The decision rules will make use of the HK macroeconomic data and data from other markets in the previous month to decide the investment for the current month. Two strategies are implemented:

Investment Strategy 1:

A decision is made on whether to be in and out of the HSI stocks. We assume that the return for a month when we do not invest is zero by ignoring the bank interest. The fitness is calculated by accumulating the return of the 'investment' months.

Investment Strategy 2:

A decision is made on whether to long and short the HSI stocks. The fitness is calculated by a summation of the return of those 'long' months plus the summation of the return of those 'short' months. Note that an HSI gain/lose in a month will be a positive/negative return to a 'long" month and a negative/positive return for a 'short' month.

Table 2-1: Data sets to be used in constructing decision rules for investment strategies

Variable	Description	Data File	Remarks	
1	Dow Jones Index	dj.mat	Monthly average of daily	
			close prices	
2	S&P 500 Index	s&p.mat	Monthly average of daily	
			close prices	
3	Nasdaq Index	nasdq.mat	Monthly average of daily	
			close prices	
4	Spot Gold Price	gold.mat	Monthly average of daily	
			close prices	
5	Japanese Yen/US dollar	jpy.mat	Monthly average of daily	
			close prices	
6	10-Year Treasury Bond	10y-yeild.mat	Monthly average of daily	
	Yield		close prices	
7	HK Property Trading	property-trade-	Monthly data	

	Volume	volume.mat	
8	HK Consumer Price	cpi.mat	Monthly data
	Index		
9	HK M3 (money	money.mat	Monthly data
10	HK Saving	saving.mat	Monthly data
11	HK Number of Visitors	visitors.mat	Monthly data
12	HK Retail Index	retail-index.mat	Monthly data
13	HK Trading (Export)	trade-export.mat	Monthly data
14	HK Unemployment Rate	unemployment-rate.mat	Monthly data
15	Monthly Change of	dj_c.mat	
	Variable 1		
16	Monthly Change of	s&p_c.mat	
	Variable 2		
17	Monthly Change of	nasdq_c.mat	
	Variable 3		
18	Monthly Change of	gold_c.mat	
	Variable 4		
19	Monthly Change of	jpy_c.mat	
	Variable 5		
20	Monthly Change of	10y-yeild_c.mat	
	Variable 6		

Table 2-1 shows Hong Kong macroeconomic data sets and the data from the other markets that may be used for building up decision rules. A combination of three variables will be used to construct the decision rules using the GA. Example decision rules look like:

Investment Strategy 1:

IF Variable i is LESS THAN X, AND Variable j is GREATER THAN OR EQUAL TO Y, AND Variable k is LESS THAN Z, THEN invest in common stocks ELSE keep the cash.

Investment Strategy 2:

IF Variable i is LESS THAN X, AND Variable j is GREATER THAN OR EQUAL TO Y, AND Variable k is LESS THAN Z, THEN long common stocks ELSE short the common stocks.

In the implementation, 32 cutoff values are used for each variable. Eight logical groupings and eight combinations of "LESS THAN" and "GREATER THAN OR EQUAL TO" for three variables are used. Therefore, a solution chromosome will be a 21-bit binary string.

2.1.2 Problems

(1) Use a combination of three variables to run the GA to find the best rule. Some possible combinations are (a) Variables 1, 4, 9; (b) Variables 2, 4, and 9; (c) Variables 3, 4, and 9; (d) Variables 7, 8, and 9, and (e) Variables 9, 15, 18. A suggested parameter set for the GA is given in Table 2-2. Record the best rule that produces the best return for each of two investment strategies. Show the return vs. generation graph.

Table 2-2: Suggested parameters for running the GA

Population Size	No. of	Selection	Probability of the	Probability of
	Generations	Function	simple crossover	binary mutation
10	15	Roulette wheel	0.6	0.05
		select		

(a) Variables 1, 4, 9

	Strategy 1	Strategy 2
best_rule	1001111110010101111101	100110111101010001111
final_gain_train	1.0898	2.1792
final_gain_test	1.0402	1.0319
return vs. generation graph	return vs. generation 1.1 0.9 0.7 0.6 0.5 0.5 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7	return vs. generation 2 2 18 18 10 10 10 10 10 10 10 10 15 15

(b) Variables 2, 4, 9

	Strategy 1	Strategy 2
best_rule	111010101001100100101	111001000001000000101
final_gain_train	0.9997	2.0380
final_gain_test	0.9747	1.0231
return vs. generation graph	return vs. generation 0.95 0.9 0.05 0.75 0.	2.1 return vs. generation 1.9 1.8 1.5 1.4 1.3 5 1.0 15 generation

(c) Variables 3, 4, 9

	Strategy 1	Strategy 2
best_rule	001011000101001111101	000100101000010010001
final_gain_train	0.8211	1.9711
final_gain_test	1.0366	0.9938

(d) Variables 7, 8, 9

	Strategy 1	Strategy 2		
best_rule	110100101100010010111	111000101100010100111		
final_gain_train	0.8988	1.8434		
final_gain_test	0.9906	1.0249		
return vs. generation graph	0.9 return vs. generation 0.8 0.85 0.8 0.75 0.8 0.75 0.8 0.75 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85	1.9 return vs. generation 1.8 1.7 1.7 0.0 1.8 1.5 1.4 1.3 0.5 generation 1.5 logeneration 1.5 logeneration		

(e) Variables 9, 15, 18

	Strategy 1	Strategy 2		
best_rule	010010110001110100110	000010110010011001111		
final_gain_train	1.5921	5.0946		
final_gain_test	0.9767	0.8843		
return vs. generation graph	1.6 return vs. generation 1.55 1.5 1.4 5 1.4 5 1.25 1.2 1.15 1.1 0 5 generation 15	75.5 return vs. generation 5.5 return vs. generation 9.3.5 return vs. generation 1.5 return vs. generation 1.5 return vs. generation 1.5 return vs. generation		

(f) Variables 15, 16, 17

	Strategy 1 Strategy 2	
best_rule	110010000101010110101	110000000101010011001
final_gain_train	1.9137	5.3952
final_gain_test	1.1036	1.2906

(g) Variables 15, 17, 20

	Strategy 1	Strategy 2		
best_rule	010110101010011100111	010110101010000100111		
final_gain_train	2.0082	5.8000		
final_gain_test	1.0981	1.2778		
return vs. generation graph	2.02 return vs. generation 2.02 1.98 1.96 1.92 1.99 1.88 1.86 5 generation 15	6 return vs. generation 5.5 5 4.5 90.9 4 186 3.5 3 2.5 2 1.5 0 5 generation 15		

(h) Variables 16, 17, 20

Until now, [16, 17, 20] has the best results.

(2) Use the same three-variable combination as in (1) and change the GA parameters to run the GA. Use Table 2-3 to report the simulation results. Explain your findings. Use graphs and other data if necessary.

Table 2-3: Experimental results for the combination of three variables you have chosen (the gain of the buy-and-

hold strategy is 26% for the training period of 01/2000 - 12/2003 and -6% for the test period of 01/2004 - 06/2005).

Simulation GA The best rule Gain (lose) in the Gain (lose) in the test						
run	parameters	obtained	training period		period (01/2004 06/2005)	
	used		(01/2000 - 12/2003)		(01/2004 – 06/2005)	
	including no.					
	of					
	generation,					
	population					
	size,		Strategy	Strategy	Strategy	Strategy
	selection		1	2	1	2
	function,					
	probabilities					
	for crossover					
	and mutation					
1	no. of	11111010101	2.0955	6.1771	1.1447	1.4056
	generation =	1110100110				
	75					
	(Other values	0101101010				
	unchanged)	11110100010				
2	population	1101001010	2.0955	6.3101	1.0981	1.1207
	size = 50	11111000110				
	(Other values					
	unchanged)	01110010001				
		0011100111				
3	selection	11110010101	2.0955	6.1771	1.1492	1.2778
	function =	1111100110				
	tournSelect					
	(Other values	1100001010				
	unchanged)	11111100110				
4	probabilities	0110101010	2.0082	6.1771	1.0981	1.4056
	for mutation	01100100111				
	= 0.9					
	(Other values	11101010101				
	unchanged)	1110010101				
5	probabilities	0110101010	2.0082	5.1930	1.0981	1.2778
	for crossover	01111100111	2.0002	2.1750	1.0701	1.2,70
	= 0.25	V1111100111				
	Other values	0001001010				
	unchanged)	10011100110				

(3) Use different combinations of three variables to go through the GA simulation in order to find the best combination of three variables. You may fix the GA parameter set. Report and discuss your findings. Use Table 2-4 to report the experimental results.

Table 2-4: Experimental results for different three-variable combinations

Simulation	GA	The best rule	Gain (lose)) in the test
run	parameters	obtained	training pe		period	
	used		(01/2000 –		(01/2004 –	06/2005)
	including no.		`	,	`	,
	of					
	generation,					
	population					
	size,		Strategy	Strategy	Strategy	Strategy
	selection		1	2	1	2
	function,		1	2	1	2
	probabilities					
	for crossover					
	and mutation					
1	no. of	0100001010	2.0955	6.4115	1.1574	1.4308
Variables:	generation =	11111100010				
16, 17, 20	30					
	population	0000101010				
	size = 30	11111000010				
	selection					
	function =					
	tournSelect					
2	same as	0000101010	2.0955	6.1771	1.1529	1.4056
Variables:	above	11110100010				
15, 17, 20						
		0010101010				
		11110100010				
3	same as	0010101100	1.9875	5.8522	1.0981	1.2778
Variables:	above	0101001001				
15, 16, 17		1				
		01110100010				
		1010010101				
4	same as	0000101100	1.8945	5.0946	0.9134	0.8843
Variables:	above	10100001111				
9, 15, 18						
		0001001100				
		10011001111				
5	same as	10011100100	1.1093	2.4733	0.9809	1.1057
Variables:	above	1101000100				
1, 4, 9						
		10011101110				
		1101100100				

(4) Explain the simulation results in the context of investment performance and discuss whether the strategies could work in real situations.

The results showed that the following three variables are most relevant to HSI stocks: (16) Monthly Change of S&P 500 Index, (17) Monthly Change of Nasdaq Index and (20) Monthly Change of 10-Year Treasury Bond Yield.

The strategies couldn't work in real situations because this module is based on the relationship between HSI stocks and other indices in the same period. If you want to predict future HSI stocks you need future other indices. It can only be used as a model for checking past values.

2.2 Optimization of Single-Variable Functions

2.2.1 Introduction

The function to be maximized is $f(x) = x\sin(10\pi \cdot x) + 2.0$ ($x \in [1,2]$). Use a binary string to represent a solution. Assume that a precision of 10-5 should be achieved (19-bit strings should be used).

2.2.2 Problems

(1) Decide a fitness function to be used.

The function $f(x) = x\sin(10\pi \cdot x) + 2.0$ ($x \in [1,2]$) itself can be a fitness function.

(2) Run the GA using different GA parameter setting to find the best solutions. Use Table 2-5 to report the simulation results.

Table 2-5: Experimental results for the optimization of the single-variable function

Simulation	GA parameters used including no. of generation,	The best	The
run	population size, selection function, probabilities for	variable	function
	crossover and mutation	value	value
1	no. of generation = 15, population size = 10,	1.8505	3.8503
	selection function = normGeomSelect, probabilities		
	for crossover and mutation = 0.6 and 0.05		
2	no. of generation = 30, population size = 20,	1.8506	3.8503
	selection function = normGeomSelect, probabilities		
	for crossover and mutation = 0.6 and 0.05		
3	no. of generation = 30, population size = 20,	1.8505	3.8503
	selection function = roulette, probabilities for		
	crossover and mutation = 0.6 and 0.05		
4	no. of generation = 30, population size = 20,	1.8506	3.8503
	selection function = tournSelect, probabilities for		
	crossover and mutation = 0.6 and 0.05		
5	no. of generation = 30, population size = 20,	1.8506	3.8503

selection function = normGeomSelect, probabilities	
for crossover and mutation = 0.9 and 0.05	

(3) Is a real-value encoded chromosome suitable for this problem?

Yes. For the continuous function optimization problem, real-value encoded chromosome can avoids the instability caused by the discontinuities binary codes.

2.3 Multi-Variable Functions

2.3.1 Introduction

The function to be maximized is: $f(x_1, x_2, ..., x_{10}) = (x_1x_2x_3x_4x_5)/(x_6x_7x_8x_9x_{10})$ where $x_i \in [1,10], i = 1,2,...,10$.

2.3.2 Problems

Use 10-gene real-value coded chromosomes and parameters shown in Table 2-5 to conduct the simulation. Set the number of generation to 200 and the population size to 30. Run the GA with different selection, crossover and mutation functions and different parameters. Use Table 2-6 to report the simulation results. Discuss your findings.

Table 2-5: Suggested parameters used for real-value coded multi-variable function optimization

Name	Parameters			
Uniform mutation	5 (the number of mutations of the type to be carried out in each			
	generation with randomly selected parents)			
Boundary mutation	5 (as the above)			
Simple crossover	5 (the number of crossover operations of the type to be carried			
	out in each generation with randomly selected parents)			
Arithmetic crossover	5 (as the above)			
Normalized geometric selection	0.08 (the probability for the best individual)			
Tournament selection	5 (the tournament size)			

Table 2-6: Experimental results for the optimization of the multi-variable function

Simulation	GA operators (selection, crossover, and mutation	Best variable values		The		
run	functions) and parameters used					function
						value
1	normGeomSelect, simpleXover+arithXover,	10	10	10	10	100000
	boundaryMutation+unifMutation	10	1	1	1	
			1	1		
2	normGeomSelect, arithXover, unifMutation	9.8539	9.77	45	9.9545	5.2002e+04
		9.8284	9.88	62	1.0567	
		1.4658	1.09	11	1.0367	
			1.02	25		
3	normGeomSelect, simpleXover, unifMutation	9.8665	9.46	90	9.9954	6.7815e+04
		9.8683	9.90	50	1.0594	

		1.0759	1.0218	1.0450	
		1.1060			
4	normGeomSelect, simpleXover,	10	10 10	10	100000
	boundaryMutation	10	1 1	. 1	
			1 1		
5	tournSelect, simpleXover, unifMutation	9.9393	9.5881	9.6992	7.0646e+04
		9.8239	9.9933	1.0154	
		1.1240	1.0110	1.0309	
			1.0798		
6	tournSelect, arithXover, unifMutation	8.8396	9.4569	9.8748	5.7067e+04
		9.9904	9.5687	1.0451	
		1.0162	1.0505	1.2217	
			1.0145		
7	normGeomSelect, simpleXover+arithXover,	9.7575	9.8792	9.8503	6.1623e+04
	unifMutation	9.7909	9.8851	1.0227	
		1.0304	1.0954	1.0519	
			1.2281		
8	normGeomSelect, simpleXover,	10	10 10	10	100000
	boundaryMutation+unifMutation	10	1 1	. 1	
			1 1		
9	normGeomSelect, simpleXover, unifMutation	9.6915	9.8853	9.9913	8.6399e+04
	no. of generation = 300	9.9917	9.9589	1.0565	
		1.0083	1.0025	1.0177	
			1.0144		
10	normGeomSelect, simpleXover, unifMutation	9.8989	9.5501	9.8683	5.8914e+04
	population size = 90	9.9725	9.9845	1.1355	
		1.2161	1.0180	1.0455	
			1.0728		

As shown above, for selection methods, Normalized geometric selection and Tournament selection had similar results. For crossover methods, Simple crossover performed better than Arithmetic crossover. For mutation methods, Boundary mutation was much better than Uniform mutation. Besides, by increasing no. of generations and population size, this module could perform better, but there will be more calculations.