# High-Level Sprout Geometry Extraction and Analysis of In Vitro Angiogenesis

Gio Borje and Craig Steinke

UC Irvine

July 23, 2013

#### Overview



Figure: Before

| Spreadsheet Report |
|--------------------|
| Sprout Counts      |
| i:                 |
| Branching Factor   |

Figure: After

#### Outline

- Motivation
- Fibrin Gel Bead Sprouting Assay (FGBSA)
- Methodology
- Results

#### Motivation

Solid tumors have an avascular (no nearby blood vessels) growth phase that allows for an approximate maximum size of 1-2mm in diameter<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>Robert S. Kerbel. Tumor angiogenesis: past, present and the near future. *Carcinogenesis*, 21(3):505515, 1999.

#### Motivation

Solid tumors have an avascular (no nearby blood vessels) growth phase that allows for an approximate maximum size of 1-2mm in diameter<sup>1</sup>.

Think of the size of very coarse sand.

<sup>&</sup>lt;sup>1</sup>Robert S. Kerbel. Tumor angiogenesis: past, present and the near future. *Carcinogenesis*, 21(3):505515, 1999.

#### Motivation

Solid tumors have an avascular (no nearby blood vessels) growth phase that allows for an approximate maximum size of 1-2mm in diameter<sup>1</sup>.

Think of the size of very coarse sand.

Tumor angiogesesis enables relentless tumor growth and metastasis.

<sup>&</sup>lt;sup>1</sup>Robert S. Kerbel. Tumor angiogenesis: past, present and the near future. *Carcinogenesis*, 21(3):505515, 1999.

## FGBSA Image



#### Current Methodology

- Sprout Restoration
- Sholl Analysis

#### Current Methodology

- Edge Detection and Polygon Approximation
- Bead Detection (Hough Transform)
- Non-Sprout Detection
- Oilation for Approximate Centerline
- Thinning and Pruning
- Sholl Analysis

Expanded sprout restoration methods

## Original Image



#### Edge Detection and Polygon Approximation



## Bead Detection (Hough Transform)



## Dilation for Approximate Centerline



## Thinning and Pruning



## Sholl Analysis: Why



Figure: D. A. Sholl. Dendritic organization in the neurons of the visual and motor cortices of the cat. *J Anat.*, 87(4):387406, 1953.

- No tracing required
- Morphometric descriptors can be obtained

#### Sholl Analysis: Implementation



## Sholl Analysis: Bresenham Circle Algorithm



## Sholl Analysis: Unordered Property of Circle Algorithm



## Sholl Analysis: Ordered Bresenham Circle Algorithm



## Sholl Analysis: Concentric Circles Analysis



#### Sholl Analysis: Descriptors

#### Important descriptors

- Sprout enumeration
- Average sprout length
- Branching factor (Shoenen Ramification Index)
- Oritical Value

#### Skeleton Reference



#### Sholl Analysis: Sprout Enumeration

Problem 1 Non-continuous sproutsProblem 2 Bad initial radiusSolution Bounded crossings integration

- Mean of n crossings
- Median of n crossings



Figure: Crossing integration over intervals of size 3

#### Results

Resulting sprout counts are compared with an expert observer using 15 images.

$$\mathsf{RMSE} = \sqrt{\frac{1}{n} \sum_{i \leftarrow 1}^{n} (\hat{\mathbf{Y}}_{i} - \mathbf{Y}_{i})^{2}} \tag{1}$$

| Method Variant                    | RMSE  |
|-----------------------------------|-------|
| Median Integration Method         | 1.736 |
| Ignoring isolated points          | 1.79  |
| Mean Integration Method Benchmark | 1.93  |
| LIS on Large Image                | 3.45  |

Table: Results of Method Variants

#### Further Work

- Gather results for median integration method
- ② Distinguish individual sprouts
- Sprout tracing similar to neuron tracing; see Meijering E. Neuron tracing in perspective. Cytometry A 2010;77A: 693704.
- Three-dimensional reconstruction using multiple image depths

Thank you. Questions?