

Institutt for elektronikk og telekommunikasjon

Eksamensoppgave i TTT4120 Digital signalbehandling

Faglig	kontakt	under	eksamen:	Tor	bjørn	Svend	lsen
--------	---------	-------	----------	-----	-------	-------	------

Tlf.: 930 80 477

Eksamensdato: Torsdag 18. desember 2014

Eksamenstid (fra - til): 09.00 - 13.00

Hjelpemiddelkode/tillatte hjelpemidler: D – Ingen trykte og håndskrevne hjelpemidler

tillatt. Bestemt, enkel kalkulator tillatt.

Annen informasjon:

- Eksamen består av 4 oppgaver der
 - oppgave 1 omhandler LTI-systemer
 - oppgave 2 omhandler digitale filtre
 - oppgave 3 omhandler filterrealisering
 - oppgave 4 omhandler signalgenerering
- Vekting av deloppgavene er angitt i parentes ved starten av hver oppgave.
- Alle oppgavene skal besvares
- Sensurfrist er 3 uker etter eksamensdato.

Målform/språk: Norsk - bokmål

Totalt antall sider: 9

Herav, antall vedleggsider: 3

	Kontrollert av:		
Dato	Signatur		

Oppgave 1 (3+3+4+2+3+4=19)

1a) Hvilke egenskaper må være oppfylt for at et tidsdiskret system skal kunne beskrives ved hjelp av enhetspulsresponsen h(n)?

Definér egenskapene stabilitet og kausalitet ved hjelp av h(n).

1b) Et tidsdiskret signal y(n) er dannet ved prosessering av et annet tidsdiskret signal x(n). Sammenhengen mellom signalene er uttrykt ved

$$y(n) = x(n) + 2x(n-1) + x(n-2)$$

Finn overføringsfunksjonen, H(z) av et LTI-system som gjenvinner x(n) fra y(n).

- 1c) Finn den kausale enhetsspulsresponsen, h(n), til systemet i oppgave 1b.
- 1d) Gitt et stabilt og kausalt LTI-system med reelle koeffisienter og overføringsfunksjon

$$H(z) = \frac{1 - \beta z^{-1}}{1 - \alpha z^{-1}}$$

Angi lovlig område for poler og nullpunkt i z-planet. Skissér konvergensområdet (ROC) til systemet.

- 1e) Vis at den tidsdiskrete Fouriertransformen (DTFT) X(f) til en sekvens x(n) har følgende egenskaper
 - i) $X(-f) = X^*(f)$ når x(n) er reell
 - ii) X(f) = -X(-f) når x(n) = -x(-n)
- 1f) Anta at du har et FIR-filter med reelle koeffisienter, h(n), og en endelig reell sekvens, x(n). Vi skal benytte dette filteret til å skape en filtrert versjon av x(n) som har samme fase som det opprinnelige signalet med denne prosedyren:
 - 1. Vi filtrerer først x(n) med h(n) for å danne s(n) = x(n) * h(n).
 - 2. Deretter filtrerer vi den tidsreverserte sekvensen med det samme filteret, dvs. v(n) = s(N-1-n) * h(n), der N er lengden til s(n).
 - 3. Til slutt tidsreverseres v(n), y(n) = v(K 1 n). K er lengden til v(n).

Vis at DTFT av y(n), Y(f), har samme fase som X(f).

Oppgave 2 (2+4+2+2+3=13)

Vi har et lineært, tidsinvariant tidsdiskret system gitt av differanselikninga:

$$y(n) = \sum_{k=0}^{\infty} (-\frac{1}{2})^k x(n-2k); \quad n \ge 0$$

- 2a) Beregn de 8 første verdiene av enhetsspulsresponsen til dette systemet
- **2b)** Vis at systemet kan implementeres med filteret i figur 1. (Hint: Start med å finne y(n) for de første verdiene av n)

Figur 1: Filterimplementasjon

- **2c)** Hva blir z-transformasjonen, H(z) for dette filteret?
- **2d)** Hvor ligger polene og nullpunktene til H(z)?
- **2e)** Anta at vi påtrykker filteret et signal $x(n) = cos(2\pi f n)$. For hvilken frekvens vil amplituden til utgangssignalet y(n) bli størst? Hvor stor blir den maksimale amplituden?

Oppgave 3 (3+2+4+4+4=17)

3a) Et kausalt digitalt filter er gitt av blokkskjemaet i figur 2.

Figur 2: Digitalt filter

Finn filterets overføringsfunksjon, H(z). Skissér plasseringen av poler og nullpunkt i z-planet.

- **3b)** Filteret i figur 2 kan realiseres med andre strukturer. Tegn en realisering av filteret med direkteform I (DF I).
- **3c)** Vis at filteret i figur 3 er ekvivalent med filteret i figur 2. Ta utgangspunkt i filterstrukturen i figur 3 og finn enhetsspulsresponsen, h(n), til filteret.

Figur 3: Alternativ filterstruktur

Filteret vårt skal implementeres i fastkomma-aritmetikk, og vi ønsker å sikre oss mot overflyt i summasjoner, og ha kontroll på avrundingsfeil fra multiplikasjonene.

3d) Finn ut hvordan vi må skalere inngangssignalet for å unngå overflyt i summasjonene i de to filterstrukturene i Figur 2 og 3.

Hint: Hvis en sekvens, x(n), er monotont økende, slik at x(n) < 0 for n < K og $x(n) \ge 0$ for $n \ge K$, så er $\sum_{n=0}^{\infty} |x(n)| = \sum_{n=0}^{\infty} x(n) - 2 \sum_{n=0}^{K-1} x(n)$

3e) Anta at avrundingen etter hver multiplikasjon kan modelleres som en additiv støykilde med null middelverdi og varians σ_q^2 .

Finn effekten til den totale avrundingsstøyen på utgangen av de to filtrene uttrykt ved σ_q^2 .

Oppgave 4 (2+4+2+2=10)

Vi skal lage et kausalt 2.
ordens IIR-filter som har en enhetspulsrespons som er en ren sinusoide. For enkelhets skyld lar vi enhetsspulsresponsen være en cosinusfunksjon med null fase. Filteret opererer på punktprøvingsraten $F_s = 48kHz$, og sinusoiden skal ha frekvens 8kHz.

- **4a)** Finn et uttrykk for enhetsspulsresponsen, h(n), til filterets enhetspulsrespons uttrykt som en sum av eksponensialfunksjoner. (Husk at $e^{j\omega}=\cos\omega+j\sin\omega$)
- 4b) Vis at z-transformasjonen til filteret blir

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 - z^{-1} + z^{-2}}$$

Tegn plasseringen av poler og nullpunkt i z-planet.

- 4c) Hva blir differanselikninga som beskriver systemet?
- 4d) Forklar hvordan et slikt filter kan benyttes som en beregningseffektiv signalgenerator for en digital sinusoide med normalisert frekvens $f = \frac{1}{6}$.

Vedlegg: Noen grunnleggende likninger og formler.

A. Sekvenser:

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1-\alpha^N}{1-\alpha}$$

$$|\alpha| < 1 \Rightarrow \sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \text{ og } -\sum_{n=-1}^{-\infty} \alpha^n = \frac{1}{1-\alpha}$$

$$\sum_{n=0}^{N-1} (n+1)\alpha^n = \frac{1-\alpha^N}{(1-\alpha)^2} - \frac{N\alpha^N}{1-\alpha} ; \quad \alpha \neq 1$$

$$|\alpha| < 1 \Rightarrow \sum_{n=0}^{\infty} (n+1)\alpha^n = \frac{1}{(1-\alpha)^2}$$

B. Lineær foldning:

$$y(n) = h(n) * x(n) = \sum_{k} h(k)x(n-k) = \sum_{k} x(k)h(n-k)$$

$$Y(z) = H(z)X(z) \Rightarrow Y(f) = H(f)X(f) \Rightarrow$$

$$Y(f_k) = H(f_k)X(f_k) \quad f_k = k/N \text{ for } k = 0, \dots, N-1 \text{ der vi skriver } Y(k) = Y(f_k)$$

C. Transformer:

Z:
$$H(z) = \sum_{n} h(n)z^{-n} \Rightarrow H(f) = \sum_{n} h(n) e^{-j2\pi nf}$$

DFT: $H(k) = \sum_{n=0}^{L-1} h(n) e^{-j2\pi nk/N}$ $k = 0, ..., N-1$
IDFT: $h(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j2\pi nk/N}$ $n = 0, ..., L-1$

D. Punktprøvingsteoremet (Nyquist):

Gitt et analogt signal $x_a(t)$ med båndbredde $\pm B$ som er punktprøvd med $F_s=1/T_s$:

$$x(n) = x(nT_s) = x_a(t)|_{t=nT_s}$$
 $n = -\infty,, \infty$

$$X(f) = X(F/F_s) = F_s \sum_{k} X_a[(f - k)F_s]$$

 $x_a(t)$ kan gjenvinnes fra c $x(n) \Leftrightarrow F_s \geq 2B$

E. Autokorrelasjon, energispektrum og Parsevals teorem:

Gitt en sekvens h(n) med endelig energi E_h :

Autokorrelasjon:
$$r_{hh}(m) = \sum_{n} h(n)h(n+m)$$
 $m = -\infty,, \infty$

Energispektrum:
$$S_{hh}(z) = H(z)H(z^{-1}) \Rightarrow S_{hh}(f) = |H(f)|^2$$

Parsevals teeorem:
$$E_h = r_{hh}(0) = \sum_n h^2(n) = \int_0^{2\pi} |H(f)|^2 df$$

F. Multirateformler:

Desimering, der
$$T_{sy} = DT_{sx}$$
:

$$v(mT_{sy}) = \sum_{k} h[(mD - k)T_{sx}] \ x(kT_{sx}) \quad m = -\infty,, \infty$$

Oppsampling, der
$$T_{sx} = UT_{sy}$$
:

$$y(lT_{sy}) = \sum_{n} h[(l - nU)T_{sy}] \ x(nT_{sx}) \quad l = -\infty,, \infty$$

Interpolasjon, der
$$T_{sy} = DT_{sv} = \frac{D}{U}T_{sx}$$
:

$$y(lT_{sy}) = \sum_{m} h[(lD - mU)T_{sv}] \ x(mT_{sx}) \quad l = -\infty,, \infty$$

G. Autokorrelasjon, effektspektrum og Wiener-Khintchins teorem:

Gitt en stasjonær, ergodisk sekvens x(n) med uendelig energi:

Autokorrelasjon:
$$\gamma_{xx}(m) = E[x(n)x(n+m)] \ m = -\infty,, \infty$$

Effektspektrum:
$$\Gamma_{xx}(z) = Z[\gamma_{xx}(m)] \implies$$

Wiener-Khintchin:
$$\Gamma_{xx}(f) = DTFT[\gamma_{xx}(m)] = \sum_{m} \gamma_{xx}(m) e^{-j2\pi mf}$$

H. Yule-Walker og Normallikningene, der $a_0 = 1$:

Yule-Walker likningene:
$$\sum_{k=0}^{p} a_k \gamma_{xx}(m-k) = \sigma_f^2 \ \delta(m) \ \ m=0,...,p$$

Normallikningene:
$$\sum_{k=1}^{p} a_k \gamma_{xx}(m-k) = -\gamma_{xx}(m) \quad m=1,...,p$$

I. Noen vanlige z-transformpar

	Signal, $x(n)$	X(z)	ROC
1	$\delta(n)$	1	Alle z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^n u(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a