Stochastic Integration of Predictable processes

St Xs dYs

T Caelley semi martyale

Process.

$$\int_{\bullet}^{+} N_{s-} dN_{s} = ?$$

if N jumps at s
then
$$N_s \neq N_{s-}$$

 $N_s = N_{s-} + 1$

$$\int_{0}^{t} N_{s-} dN_{s} = 0 \cdot [+] \cdot [+]$$

If you know what happens <t.

then you can predict = t

Nt not.

"predictable"

- Predictable rectangles are subsets of PR+XN of the type (s,t] × F where s<t
 - R collection of all pred rect's.
- The o-field generated by R in IR+XI .

 (denoted P) is called predictable o-field.

· Any P-meesurable function X: IR+× N-) IR is called a predictable process.
Property. A pred process is not only adapted to {Ft} but also adapted to {Ft-}
$\mathcal{F}_{t-}=6\left(\bigcup_{s\leq t}\mathcal{F}_{s}\right)$
Lemma: The following of-fields on R+×N are equal to P:
(a) 6-field generated by all continuous adapted processes
(b) 5-field generated by all left-cont. adapted processes.
(C) all left-ant Divith Vight-limits processes
In particular, all cont. adapted -> preditable [left cont adapted]

right-ant.

deterministic process

$$EM_{t}^{2}-EM_{s}^{2} = E[M_{s}M_{s}]$$

$$If M=B. \quad CBT_{t}=t \qquad (M_{s}F_{s}, T_{s})$$

$$M_{B}(A) = E\int_{a}^{\infty} 1_{A}(t,w) dt = (M \otimes P)(A)$$

$$\lim_{s \to \infty} (R_{+} \times R_{s})$$

If
$$M = Copppensated Poisson$$
.

 $M = N - at$. N is Poisson with rate a .

 $M_{M} = a m \otimes P$
 $[M] = N$.

For pred rect $A = (s, t] \times F$ $[F \in T_{s}]$
 $M_{M}(A) = F_{s} \int_{0}^{\infty} 1_{A}(u, w) d[M]_{n}(w)$
 $= F_{s} \int_{0}^{\infty} 1_{E}(w) 1_{(s, t)}(u) dN_{u}(w)$
 $= F[1_{E}(w)(N_{e}(w) - N_{s}(w))]$
 $= F[1_{E}(w)(N_{e}(w) - N_{s}(w))]$

 $= P(F) \cdot \alpha(t-s) = \alpha m \otimes P(A)$

Fact: Mm = dm & P on R (Timo's notes) then. --- on P. Lem B.5)

For pred process X. defne L'norm over [0,T] under meas Um. by 11X11mn = ([O.T] × N | X | 2 dum) 2 Let Lz denote the collection of all pred processes X s.t. ||X||_um.T < 00 & T<00. rmk metric $\|X\|_{L_{2}} = \sum_{k=1}^{\infty} 2^{-k} (\|A\|X\|_{M_{n},k})$

EX) BM. X & Lz if and only if

E Jo X (s.w) 2/5 < 000 Y T (cop