### **Computer History**

- Abacus
  - c. 500 BC 1200 AD
- Upper Deski

http://www.ee.ryerson.ca:8080/~elf/abacus/

- Mechanical calculating 'engines'
  - Blaise Pascal 1642 (adder)
  - Gottfried Wilhelm von Leibniz 1694 (add and multiply)



BJ Furman SJSU MAE

http://www-history.mcs.st-andrews.ac.uk/history/Bookpages/Leibniz\_machine.jpeg

### Computer History, cont.

- Mechanical calculating 'engines', cont.
  - Charles Babbage c. 1822
    - · Difference engine
      - Calculation by fixed instruction program
    - Analytical engine
      - Forerunner of the modern computer



 $http://mycetes.pwp.blueyonder.co.uk/babbage/Fragment\_Photo.JPG$ 

- Never realized due to lack of precision machining capability
- Herman Hollerith 1889
  - · Punched card tabulator for US Census bureau
  - · Electromechanical (relays)

#### Computer History, cont.

- Electronic Digital Computer
  - John P. Eckert and John W. Mauchly c. 1942 at Univ. Pennsylvania
    - ENIAC
      - WWII artillery calculations
    - "18,000 vacuum tubes, about 1,800 square feet of floor space, and consumed about 180,000 watts of electrical power" (http://www.softlord.com/comp/, 04SEP04)
    - Fast "look-up" calculation
      - 2, 10 digit number multiplication in 200 microseconds
  - John Von Neumann c. 1945
    - · Computer 'architecture'
      - Stored program
      - Subroutines

BJ Furman SJSU MAE

### Miniaturizing the Computer

- The transistor
  - John Bardeen, Walter Brattain, and William Shockley c. 1947
  - Shockley Semiconductor c. 1956 in Palo Alto
  - "Traitorous 8" start Fairchild Semiconductor c. 1957
  - Jack Kilby (TI) and Robert
    Noyce invent the IC c. 1959



http://www.101science.com/transistor.htm

Magnetic core memory
 c. 1952



http://www.fortunecity.com/marina/reach/435/coremem.htm

# The Microprocessor

- Intel ("Integrated Electronics) c. 1969
  - Robert Noyce, Gordon Moore, Andrew Grove leave Fairchild Semiconductor
  - Busicom's desire for high-performance calculator chips (12)
    - Ted Hoff's idea to instead design a single-chip, general purpose logic device
      - Intel 4004 microprocessor
      - The rest is ...





BJ Furman SJSU MAE

http://www.antiquetech.com/chips/4004.htm

http://www.cedmagic.com/history/intel-4004.html

#### Moore's Law

 Doubling of the number of transistors per square inch every 18 months



 $ftp://download.intel.com/intel/intelis/museum/research/arc\_collect/history\_docs/pdf/original+graph.pdf/download.intel.com/intel/intelis/museum/research/arc\_collect/history\_docs/pdf/original+graph.pdf/download.intel.com/intel/intelis/museum/research/arc\_collect/history\_docs/pdf/original+graph.pdf/download.intel.com/intel/intelis/museum/research/arc\_collect/history\_docs/pdf/original+graph.pdf/download.intel.com/intel/intelis/museum/research/arc\_collect/history\_docs/pdf/original+graph.pdf/download.intel.com/intel/intelis/museum/research/arc\_collect/history\_docs/pdf/original+graph.pdf/download.intel.com/intel/intelis/museum/research/arc\_collect/history\_docs/pdf/original+graph.pdf/docs/pdf/original+graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/docs/pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original-graph.pdf/original$ 

### Microprocessors and Microcontrollers

- Microprocessor
  - "A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing data" (http://www.intersil.com/digital/glossary.asp, 04SEP04)
- Microcontroller
  - A single-chip computer system usually comprising a CPU, memory, input/output ports, and often, timers, counters, analog-to-digital converters (ADC), etc. used for control applications

BJ Furman SJSU MAE

#### **CPU**

- · What is it?
  - The "brains" of the controller
- Consists of:
  - Control unit
    - Handles timing and sequencing of operations
    - Fetches instructions, decodes instructions, executes instructions, stores results
  - Arithmetic Logic Unit (ALU)
    - · Carries out data manipulation
  - Registers
    - · Temporary data storage locations

## Memory

- · Random Access Memory (RAM)
  - Volatile
  - Fast
- Read-only Memory (ROM)
  - PROM
  - EPROM
  - EEPROM
    - · Configuration data infrequently changed
    - · Slow, 10's of ms
    - · Byte addressable
  - FEPROM (flash)
    - · Program storage
      - Ex. Atmega128 has 128k of flash memory for program storage
      - Programmed in blocks
      - 10,000 (minimum) write cycle life

BJ Furman SJSU MAE

### 1/0

- · Data exchange with external world
  - Sensors (data IN)
  - Actuators (data OUT)
  - Communications
    - · Displays
    - · Serial data
- Examples:
  - Atmega128 data sheet
  - Motorola 68HC11 data sheet





From Stepper Motor Driving by H. Sax (ST app note AN235/0788

### Timer/Counter

- Registers to capture clock cycles and count pulses for timing and counting functions
  - Generating signals with precise timing, e.g. square wave, PWM signals
    - Interrupts
  - Event timing
  - Examples
    - · Encoder position sensing
    - · Voltage to frequency decoding
- Clock signal
  - External crystal or onboard oscillator system sets the "beat" and synchronizes all operations
    - Ex. Atmega128, 32 kHz 8 MHz

BJ Furman SJSU MAE

# Analog-to-Digital Converter

- Continuously varying values to discrete (digital levels)
- Number of channels
- · Number of bits

#### **Busses**

- The sets of internal conductors that connect the pieces of the microcontroller together
  - · Address bus
    - Carries the address of a location in memory or I/O
    - Width (number of conductors) determines how many memory locations can be addressed
      - » Ex. 68HC11 address bus is 16 bits => ? addresses
  - · Data bus
    - Carries <u>data</u> to and from memory or I/O ports
    - Width (number of conductors) determines the size of the microcontroller, e.g. an 8-bit microcontroller
  - Control bus
    - Carries <u>control</u> signals to memory and peripherals (timers, A/D, serial I/O, etc.), e.g. R/W, IRQ

BJ Furman SJSU MAE

### History

- Intel 8048
  - Magnavox Odyssey video game and and in the original IBM PC keyboard
- Intel 8051 c. 1980
  - Harvard architecture
    - Separate program and data memory structures accessed by separate sets of conductors (busses)
    - Can fetch program and data in parallel (speed advantage)
  - Boolean processing engine for efficient bit operations on internal registers and RAM
  - Widely used (still)!
    - · IBM PC keyboard controller
    - Programmable logic controllers

## History, cont.

- Intel 80186 and 80188 c. 1982
  - Microcontroller version of the 8086/8088 microprocessors (IBM PC)
- Motorola 68HXXX
  - von Neumann architecture
    - Program instructions and data share the same space and are accessed by same the same lines (bus)

BJ Furman SJSU MAE

# Overview of Major Types

- Motorola
- Microchip
- Atmel