

Niels Henrik Abels matematikkonkurranse 2005-2006. Løsning

Andre runde 19. januar 2006

Oppgave 1. Det er to heltall med tre sifre som har 37 som de to første sifrene og som er delelig med 7, nemlig $53 \cdot 7 = 371$ og $54 \cdot 7 = 378$. Så b = 53 eller b = 54. Det er bare ett heltall med tre sifre som har 53 eller 54 som de to første sifrene og som er delelig med 11, nemlig $49 \cdot 11 = 539$. Så Ola skrev 49

Oppgave 2. Arealet av trapeset er $\frac{1}{2} \cdot (10+6) \cdot 4 = 32$. Trekanten ABP har høyde 4/2 = 2 fra AB og areal $\frac{1}{2} \cdot 10 \cdot 2 = 10$. Trekanten PCD har høyde 2 fra CD, og areal $\frac{1}{2} \cdot 6 \cdot 2 = 6$. Trekantene PQC og QBC har samme lengde av grunnlinjene og samme høyde fra PB, og dermed samme areal, som blir $\frac{1}{2}(32-10-6)=8.$

Oppgave 3. Faktorisering gir $x^2 - 20x + 75 = (x - 5)(x - 15)$, som er positivt hvis og bare hvis x < 4 eller x > 16. Hvis x < 3 eller x > 17, blir uttrykket et sammensatt heltall, mens x=4 og x=16 begge gir primtallet 11. 20

Oppgave 4. Vi kaller vinklene i den indre sjukanten α, β, \dots Vinkelsummen i en firkant er 360°, slik at $\alpha + F + A + C =$ 360° . På samme måte er $\beta + G + B + D = 360^{\circ}$. Hvis vi setter opp tilsvarende likning også for de fem andre vinklene i sjukanten og summerer de sju likningene, får vi $\alpha + \beta + \cdots +$ $3(A+B+\cdots+G)=7\cdot360^{\circ}$. Summen av vinklene i den indre sjukanten er $\alpha + \beta + \cdots = 5 \cdot 180^{\circ}$, og vi får $5 \cdot 180^{\circ} + 3(A + B + \cdots + G) = 7 \cdot 360^{\circ}$, som

Hver gang to tall erstattes med et nytt på tavla, reduseres summen av tall på tavla med 10. Den opprinnelige summen var $1+2+\cdots+25=$ 25.26/2 = 325, slik at vi etter å ha erstattet tall 24 ganger, får 325-240 = 85.85

Oppgave 6. Fordi $9^2 + 12^2 = 15^2$, er trekanten *CPD* rettvinklet. La Q være fotpunktet for høyden fra P på CD. Da er trekantene QDP og PDC formlike, og høyden fra AD i trekanten DAP er dermed $x = 12 \cdot 12/15 = 48/5$. Arealet av trekanten APD er

Oppgave 7. Summen i oppgaven er lik antall par (x,b) av hele tall som er slik
at $100+b$ er delelig med x og $1 \le b \le x \le 100$. (Hvis $b \le 100 < x < 100+b$, en
ikke $100+b$ delelig med x .) Men for hver x er nøyaktig ett av de x tallene 101
$102, \ldots, 100 + x$ delelig med x. Altså fins det for hver av de 100 mulighetene
for x nøyaktig ett tall $b \leq x$ slik at $100 + b$ er delelig med x, og antallet en
100

Oppgave 10. Vi markerer to seter med samme bokstav hvis de brukes av et ektepar. Vi har da disse 5 mulighetene hvis ingen ektefeller skal sitte ved siden av hverandre: ABACBC, ABCABC, ABCACB, ABCBAC og ABCBCA. For hver av disse 5 mulighetene er det 6 muligheter for ekteparene å fordele seg på A, B og C – til sammen $5 \cdot 6 = 30$ muligheter. For hver av disse 30 mulighetene er det 2 muligheter å fordele seg for ekteparet som er plassert på A-setene, og tilsvarende for de to andre ekteparene – til sammen $30 \cdot 2^3 = 240$ muligheter.

Fasit

Hvis denne siden kopieres over på en transparent, så fungerer tabellen til venstre som en rettemal.