1. Draw the logic gates represented by the Karnaugh Map below. Show your working.

2. An electronics engineer needs a circuit with the following logic.

$$(A \wedge B) \vee (\neg A \wedge B) \vee (\neg C \wedge \neg D)$$

Complete and use the Karnaugh map below to simplify the expression above.

		AB					
		00	01	11	10		
CD	00						
CD	01						
	11						
	10						

		АВ				
		00	01	11	10	
CD	00		/1			
CD	01	0			0	
	11	0			0	
	10	0	\[\bar{\pi}		0	

$$F = B + \overline{C}\overline{D}$$

[4]

3(a). Draw an XOR gate.

[1]

(b). Explain the difference in the function of OR and XOR gates.

= OR can be seen as AND/OR connector. One or bot choices can be true or choen. XOR, on the other hand, could be described as real OR . Only one of both choices can be true (or chosen)

4. A NAND gate and its truth table are shown in Fig. 10.1.

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Fig. 10.1

Draw a set of gates equivalent to a NAND gate, but built only of AND, OR and NOT gates.

[2]

END OF QUESTION PAPER

[Type here]