On the Relationship between Self-Attention and Convolutional Layers

Jean-Baptiste Cordonnier, Andreas Loukas, Martin Jaggi

Presented by Yenson Lau — Layer 6 AI

August 11th, 2021

Today's talk

- Attention can simultaneously attend to every word in an input sequence
- \bullet NN architectures using self-attention (SA) only (without convolution) can compete with SA + convolutional architectures on vision tasks
- Do SA layers process images in a similar manner to convolutional layers?

Contributions of the paper

 A constructive theoretical proof that SA can express convolutional layers using relative positional encoding:

Main theorem. A multi-head self-attention (MHSA) layer with N_h heads of dimension D_h each, final output dimension D_{out} , and a relative positional encoding of dimension $D_p \geq 3$ can express any 2D convolutional layer of kernel size $\sqrt{N_h} \times \sqrt{N_h}$ and $\min(D_h, D_{out})$ output channels.

 Experiments showing that the first few layers of DNNs using SA do behave similarly to the theoretical construction.

Self-Attention

• Let $X \in \mathbb{R}^{T \times D_{in}}$ be an input matrix consisting of T tokens in D_{in} dimensions. A self-attention layer $SA : D_{in} \to D_{out}$ is expressed as

$$SA(\mathbf{X})_{t,:} \doteq softmax(\mathbf{A}_{t,:})\mathbf{X}\mathbf{W}_{val},$$
 (1)

• We refer to the the elements of the $T \times T$ matrix

$$\mathbf{A} \doteq \mathbf{X} \mathbf{W}_{qry} \mathbf{W}_{key}^T \mathbf{X}^T \tag{2}$$

the attention scores, and the softmax outputs as attention probabilities.

Self-Attention

• So far the learnable parameters are the query, key, and value matrices

$$\mathbf{W}_{qry} \in \mathbb{R}^{D_{in} \times D_k}, \quad \mathbf{W}_{key} \in \mathbb{R}^{D_{in} \times D_k}, \quad \text{and} \quad \mathbf{W}_{val} \in \mathbb{R}^{D_{in} \times D_{out}}.$$

For simplicity, ignore residual connections, batch normalization or constant factors.

- Note that A is permutation equivariant shuffling the order of the tokens (rows) in X shuffles the token scores in A. This is not desired behavior.
 - e.g. "the cat ate the fish" means something very different to "the fish ate the cat"
- ullet To overcome this, we can add a (fixed or learned) positional encoding $m{P}_{t,:}$, for each token in the sequence, to the input matrix for computing attention scores

$$A \doteq (\mathbf{X} + \mathbf{P}) \mathbf{W}_{qry} \mathbf{W}_{key}^{\mathsf{T}} (\mathbf{X} + \mathbf{P})^{\mathsf{T}}, \tag{3}$$

where the encoding matrix P has size $T \times D_{in}$.

Multi-Head Self-Attention (MHSA)

• In practice it is beneficial to replicate the SA mechanism into multiple heads, by concatenating the output of N_h heads of output dimension D_h and projecting it to dimension D_{out} .

$$MHSA(\mathbf{X}) \doteq hcat_{h \in [N_h]} [SA_h(\mathbf{X})] \mathbf{W}_{out} + \mathbf{b}_{out}. \tag{4}$$

Here $\mathbf{W}_{out} \in \mathbb{R}^{N_h D_h \times D_{out}}$ is the projection matrix and $\mathbf{b}_{out} \in \mathbb{R}^{D_{out}}$ is a bias term.

- Replace query and key tokens with pixels $q, k \in [W] \times [H]$, and the input with $X \in \mathbb{R}^{W \times H \times D}$. Each attention score now associates a query and key pixel.
- For a pixel $\mathbf{p} \in (i,j), \mathbf{X}_{\mathbf{p},:} \doteq \mathbf{X}_{i,j,:}$ and $\mathbf{A}_{\mathbf{p},:} \doteq \mathbf{A}_{i,j,:,:}$.
- Then, analogously to the 1D case,

$$SA(\mathbf{A})_{\mathbf{q},:} = \sum_{\mathbf{k}} \operatorname{softmax}(\mathbf{A}_{\mathbf{q},:})_{\mathbf{k}} \mathbf{X}_{\mathbf{k},:} \mathbf{W}_{val},$$
 (5)

and the MHSA retains the same form as Equation (4).

• Given an image tensor $\mathbf{X} \in \mathbb{R}^{W \times H \times D_{in}}$ and kernel tensor $\mathbf{W} \in \mathbb{R}^{K \times K \times D_{in} \times D_{out}}$,

$$\operatorname{Conv}(\boldsymbol{X})_{i,j,:} \doteq \sum_{(\delta_1,\delta_2) \in \Delta_K} \boldsymbol{X}_{i-\delta_1,j-\delta_2,:} \boldsymbol{W}_{\delta_1,\delta_2,:,:} + \boldsymbol{b} \in \mathbb{R}^{D_{out}},$$
 (6)

where

$$\Delta_{K} \; \doteq \; \left[- \left\lfloor \frac{K}{2} \right\rfloor, \dots, \left\lfloor \frac{K}{2} \right\rfloor \right] \times \left[- \left\lfloor \frac{K}{2} \right\rfloor, \dots, \left\lfloor \frac{K}{2} \right\rfloor \right]$$

is the set of all shifts represented by a $K \times K$ kernel.

• We depart from the original notation slightly by using the *unflipped* convolution. In the paper, the summand is flipped to $\mathbf{X}_{i+\delta_1,i+\delta_2,:}\mathbf{W}_{\delta_1,\delta_2,:,:}$. The theorem in the paper is not changed by this.

• In absolute encoding, a fixed or learned vector $P_{p,:}$ is assigned to each pixel p.

$$A_{q,k}^{abs} = (X_{q,:} + P_{q,:}) W_{qry} W_{key}^{T} (X_{q,:} + P_{q,:})^{T}$$

$$= X_{q,:} W_{qry} W_{key}^{T} X_{k,:}^{T} + X_{q,:} W_{qry} W_{key}^{T} P_{k,:}^{T}$$

$$+ P_{q,:} W_{qry} W_{key}^{T} X_{k,:}^{T} + P_{q,:} W_{qry} W_{key}^{T} P_{k,:}^{T},$$
(7)

where \mathbf{q} and \mathbf{k} correspond to the query and key pixels.

 Relative positional encoding instead considers the positional difference between the query pixel (pixel we compute the representation of) and the key pixel (pixel we attend to):

$$\boldsymbol{A}_{q,k}^{rel} = \boldsymbol{X}_{q,:}^{T} \boldsymbol{W}_{qry} \boldsymbol{W}_{key}^{T} \boldsymbol{X}_{k,:} + \boldsymbol{X}_{q,:}^{T} \boldsymbol{W}_{qry}^{T} \hat{\boldsymbol{W}}_{key} \boldsymbol{r}_{\delta} + \boldsymbol{u}^{T} \boldsymbol{W}_{key} \boldsymbol{X}_{k,:}^{T} + \boldsymbol{v}^{T} \hat{\boldsymbol{W}}_{key} \boldsymbol{r}_{\delta}.$$
(8)

- Learnable vectors u, v are unique for each head
- Relative positional encoding $\mathbf{r}_{\delta} \in \mathbb{R}^{D_p}$ depends only on the shift $\delta \doteq \mathbf{k} \mathbf{q}$, and is shared by all layers and heads.
- Key weights are split into W_{key} for the input and \hat{W}_{key} for positional encoding.
- Note the attention scores are now shift equivariant rather than permutation equivariant. This is the desired behavior for convolutional / vision tasks.

Main Theorem

• Main theorem. A multi-head self-attention (MHSA) layer with N_h heads of dimension D_h each, final output dimension D_{out} , and a relative positional encoding of dimension $D_p \geq 3$ can express any 2D convolutional layer of kernel size $\sqrt{N_h} \times \sqrt{N_h}$ and $\min(D_h, D_{out})$ output channels.

Figure 1: Illustration of a Multi-Head Self-Attention layer applied to a tensor image **X**. Each head h attends pixel values around shift $\Delta^{(h)}$ and learn a filter matrix $W_{val}^{(h)}$. We show attention maps computed for a query pixel at position q.

• The theorem is a consequence of two lemmas.

Self-Attention as a Convolutional Layer

• Lemma 1. Consider a MHSA layer consisting of $N_h = K^2$ heads, $D_h \geq D_{out}$ and let $f: [N_h] \to \Delta_K$ be a bijective mapping of heads onto shifts. Further, suppose that for every head

$$\operatorname{softmax}(\mathbf{A}_{\mathbf{q},:}^{(h)})_{\mathbf{k}} = \begin{cases} 1 & \text{if } \mathbf{f}(h) = \mathbf{q} - \mathbf{k}, \\ 0 & \text{otherwise.} \end{cases}$$
(9)

Then for any convolutional layer with a $K \times K$ kernel and D_{out} output channels, there exists $\{\boldsymbol{W}_{val}^{(h)}\}_{h \in [N_h]}$ such that $\mathrm{MHSA}(\boldsymbol{X}) = \mathrm{Conv}(\boldsymbol{X})$, for any kernel tensor $\boldsymbol{W} \in \mathbb{R}^{K \times K \times D_{in} \times D_{out}}$, and for all $\boldsymbol{X} \in \mathbb{R}^{W \times H \times D_{in}}$.

• Proof of Lemma 1. Rewrite Equation (4) as

$$MHSA(\boldsymbol{X}) = \boldsymbol{b}_{out} + \sum_{h \in [N_h]} \operatorname{softmax}(\boldsymbol{A}^{(h)}) \boldsymbol{X} \underbrace{\boldsymbol{W}_{val}^{(h)} \boldsymbol{W}_{out}^{(h)}}_{\boldsymbol{W}^{(h)}}.$$
(10)

Here $m{W}_{val}^{(h)} \in \mathbb{R}^{D_{in} \times D_h}$ is the value matrix for head h, or in MATLAB notation,

$$m{W}_{out}^{(h)} = m{W}[(h-1)*D_h+1:hD_h\;,\;:\;] \;\;\in\;\; \mathbb{R}^{D_h imes D_{out}}.$$

Proof of Lemma 1 (cont). Consider a single "query" pixel from MHSA(X):

$$MHSA(\boldsymbol{X})_{\boldsymbol{q},:} = \boldsymbol{b}_{out} + \sum_{h \in [N_h]} \left(\sum_{\boldsymbol{k} \in [T]} \operatorname{softmax}(\boldsymbol{A}_{\boldsymbol{q},:}^{(h)})_{\boldsymbol{k}} \boldsymbol{X}_{\boldsymbol{k},:} \right) \boldsymbol{W}^{(h)}.$$
 (11)

The summand $\sum_{k} \operatorname{softmax}(A_{q,:}^{(h)})_{k} X_{k,:}$ is a weighted average on the rows of X.

• Applying the assumption from Equation (9), each of the softmax weights pick out a single row k = q - f(h):

$$MHSA(\boldsymbol{X})_{\boldsymbol{q},:} = \boldsymbol{b}_{out} + \sum_{h \in [N_h]} \boldsymbol{X}_{\boldsymbol{q} - \boldsymbol{f}(h),:} \boldsymbol{W}^{(h)}.$$
 (12)

If we set $K = \sqrt{N_h}$, then it is clearly possible to index all the shifts using $h \in [N_h]$, i.e. $f([N_h]) = \Delta_K$. Therefore we can rewrite the expression as

$$MHSA(\boldsymbol{X})_{\boldsymbol{q},:} = \boldsymbol{b}_{out} + \sum_{h \in IM,1} \boldsymbol{X}_{\boldsymbol{q}-\boldsymbol{f}(h),:} \boldsymbol{W}_{\boldsymbol{f}(h),:,:} = Conv(\boldsymbol{X})_{\boldsymbol{q},:}. \qquad \Box$$
 (13)

Self-Attention as a Convolutional Layer

- Lemma 1 says that, with the right choice of relative positional encoding (and a very restricted set of attention parameters), a MHSA layer is exactly equivalent to a convolutional layer.
- The number of linearly independent filters expressible by \boldsymbol{W} is clearly limited by $\min(D_h, D_{out})$. Therefore, to express D_h convolutional filters, it is best to simply let $D_{out} = N_h D_h$ and have $\boldsymbol{W}^{(h)} \in \mathbb{R}^{D_h \times D_h}$.
- There is a generalized version of this lemma in the Appendix of the paper that delves into the space of filters spannable for a given set of dimensions D_h , N_h , D_{out} , etc., for interested readers.

- Lemma 2. There exists a relative encoding scheme $\{\mathbf{r}_{\delta} \in \mathbb{R}^{D_p}\}_{\delta \in \mathbb{Z}^2}$ with $D_p \geq 3$ and parameters \mathbf{W}_{qry} , \mathbf{W}_{key} , $\hat{\mathbf{X}}_{key}$, \mathbf{u} with $D_p \leq D_k$ such that, for every $\Delta \in \Delta_K$ there exists some vector $\mathbf{v}(\Delta)$ that yields $\operatorname{softmax}(\mathbf{A}_{\mathbf{q},:})_k = 1$ if $\mathbf{k} \mathbf{q} = \Delta$, and zero otherwise.
- Proof of Lemma 2. Start with the relative positional encoding of Equation (8):

$$\boldsymbol{A}_{q,k}^{rel} = \boldsymbol{X}_{q,:}^{T} \boldsymbol{W}_{qry} \boldsymbol{W}_{key}^{T} \boldsymbol{X}_{k,:} + \boldsymbol{X}_{q,:}^{T} \boldsymbol{W}_{qry}^{T} \hat{\boldsymbol{W}}_{key} \boldsymbol{r}_{\delta} + \boldsymbol{u}^{T} \boldsymbol{W}_{key} \boldsymbol{X}_{k,:}^{T} + \boldsymbol{v}^{T} \hat{\boldsymbol{W}}_{key} \boldsymbol{r}_{\delta}.$$

Since the desired attention probabilities (9) from Lemma 1 are independent of the input X, set $W_{key} = W_{qry} = 0$.

This leaves only the final term. Setting $\hat{W}_{key} = [I_{D_p}; 0] \in \mathbb{R}^{D_k \times D_p}$ (recall $D_p \leq D_k$) yields

$$\mathbf{A}_{q,k} = \mathbf{v}_{1:D_p}^T \mathbf{r}_{\delta}.$$

Self-Attention as a Convolutional Layer

Lemma 2

• Proof of Lemma 2 (cont). Recall that $\delta \doteq k - q$. Now suppose some v, r_{δ} could be found such that

$$\mathbf{A}_{q,k} = -\alpha(\|\mathbf{\delta} - \mathbf{\Delta}\|^2 + c) \tag{14}$$

so that the maximum score $-\alpha c$ is achieved when $\delta = \Delta$, then

$$\begin{split} \lim_{\alpha \to \infty} \mathsf{softmax} (\pmb{A}_{\pmb{q},:})_{\pmb{k}} \; &= \; \lim_{\alpha \to \infty} \frac{e^{-\alpha (\|\pmb{\delta} - \pmb{\Delta}\|^2 + c)}}{\sum_{\pmb{\delta}' \in \Delta_K} e^{-\alpha (\|\pmb{\delta}' - \pmb{\Delta}\|^2 + c)}} \\ &= \; \frac{1_{\pmb{\delta} = \pmb{\Delta}}}{1 + \lim_{\alpha \to \infty} \sum_{\pmb{\delta}' \neq \pmb{\delta}} e^{-\alpha \|\pmb{\delta}' - \pmb{\Delta}\|^2}} = 1_{\pmb{\delta} = \pmb{\Delta}}. \end{split}$$

• Choosing $\mathbf{v}_{1:D_p} = -\alpha(1, -2\Delta_1, -2\Delta_2)$ and $\mathbf{r}_{\delta} = (\|\boldsymbol{\delta}\|^2, \delta_1, \delta_2)$, yields

$$\mathbf{A}_{q,k} = \mathbf{v}_{1:D_p}^T \mathbf{r}_{\delta}$$

$$= -\alpha (\|\mathbf{\delta}\|^2 - 2\Delta_1 \delta_1 - 2\Delta_2 \delta_2)$$

$$= -\alpha (\|\mathbf{\delta} - \mathbf{\Delta}\|^2 - \|\mathbf{\Delta}\|^2).$$

Setting $c = -\|\Delta\|^2$ recovers Equation (14) and completes the proof.

 The encoding scheme satisfying Lemma 2 is a quadratic encoding scheme, and is achieved by setting

$$\mathbf{v}^{(h)} \doteq -\alpha^{(h)} (1, -2\Delta_1^{(h)}, -2\Delta_2^{(h)}),$$

$$\mathbf{r}_{\delta} \doteq (\|\delta\|^2, \ \delta_1, \ \delta_2),$$

$$\mathbf{W}_{qry} = \mathbf{W}_{key} \doteq 0,$$

$$\hat{\mathbf{W}}_{key} \doteq \mathbf{I}.$$
(15)

Here the learned parameters $\Delta^{(h)} = (\Delta_1^{(h)}, \Delta_2^{(h)})$ and $\alpha^{(h)}$ determine the center and width of attention of each head, and $\delta = (\delta_1, \delta_2)$ is fixed and expresses the relative shift between query and key pixels.

- Although the proof requires $\alpha \to \infty$ to satisfy the assumption (9) of Lemma 1, finite precision arithmetic performs hard attention with sufficiently large enough α . E.g. for Float32, set $\alpha \geq 46$.
- The lemma, and thus the theorem, can be extended in a straightforward manner to cover K-dimensional convolutions, with $D_p = K + 1$.

Experiments Setup

- Baseline. Standard ResNet18 on CIFAR-10
- Model.
 - 6 MHSA layers (see Variations)
 - Use 2x2 invertible downsampling to reduce image size (attention coefficients scale quadratically to image size)
 - Fixed size representation of input image is the average pooling of the last layer representations, and fed to a linear classifier
- Variations. Different types of relative positional encoding

$$\boldsymbol{A}_{q,k}^{rel} = \boldsymbol{X}_{q,:}^T \boldsymbol{W}_{qry} \boldsymbol{W}_{key}^T \boldsymbol{X}_{k,:} + \boldsymbol{X}_{q,:}^T \boldsymbol{W}_{qry}^T \hat{\boldsymbol{W}}_{key} \boldsymbol{r}_{\delta} + \boldsymbol{u}^T \boldsymbol{W}_{key} \boldsymbol{X}_{k,:}^T + \boldsymbol{v}^T \hat{\boldsymbol{W}}_{key} \boldsymbol{r}_{\delta}.$$

- SA with quadratic embedding: Retain final term only and fix the variables using Equation (15). The attention widths $\alpha^{(h)}$ and centers $\Delta^{(h)}$ are still learnt.
- SA with learned embedding: Retain final term only but learn v, \hat{W}_{key} , r_{δ} , with $D_p = D_{out} = 400$. Set $D_h = D_{out}$.
- SA with content-based attention: All terms retained (might actually be just first two terms) and all variables learnable. Same dimensions as above.

- ResNet converges faster:
 Probably because SA's inductive bias is not as strong as ResNet, but may also be due to different optimization setup.
- SA models with more learnable parameters converge slower and ends up with lower testing accuracy.

Figure 2: Test accuracy on CIFAR-10.

- ResNet converges faster:
 Probably because SA's inductive bias is not as strong as ResNet, but may also be due to different optimization setup.
- SA models with more learnable parameters converge slower and ends up with lower testing accuracy.

Figure 2: Test accuracy on CIFAR-10.

19 / 20

Thanks!