

Solar power is a small but increasing source of energy in the United States

- Two major hurdles in becoming significant energy source:
 - Efficiency
 - Reliability
- Reliability
 - Storage improvements
 - Predictive technologies

Renewable Energy Generating Capacity in the United States (Gigawatts)

Project Goal: Develop Competitive Learning Technique for 2013 Kaggle AMS Solar Energy Challenge

Predictive Question: Predict the daily solar energy deposition at 98 sites across Oklahoma over two years using weather data (including short wavelength and long wavelength radiative flux) from a 16x9 grid of collection stations across the area.

Data- 15 NetCDF input and one CSV output file

- 15 weather-related variables (including precipitation, cloud cover, downward/ upward long-wave/short-wave solar flux, max/min/current temp, pressure)
 - At 144 locations, five times of the day, and eleven ensemble members
- 5113 daily solar energy measurements (J/m²) from 1994-2007 at 98 Mesonet locations (~500k predictions)

<type 'netCDF4. netCDF4. Variable'> float32 Downward Short-Wave Rad Flux(time, ens, fhour, lat, lon) FillValue: 9999.0 units: W m-2 long name: Downward Short-Wave Rad Flux Average (Average for Mixed Intervals) @ surface cell methods: time: mean GRIB param discipline: Meteorological products GRIB param category: Short-wave Radiation GRIB param name: Downward short wave rad flux GRIB generating process type: Forecast GRIB param id: [2 0 4 192] GRIB product definition template: 8 GRIB product definition template desc: Average, accumulation, extreme values or other statistically processed value at a horizontal level in a time interval GRIB level type: 1 GRIB level type name: surface GRIB interval stat type: Average GRIB VectorComponentFlag: easterlyNortherlyRelative unlimited dimensions: current shape = (5113, 11, 5, 9, 16) filling on

	ADAX	ALTU	APAC	ARNE
Date		2		
1994-01-02	9778500	10862700	11666400	8062500
1994-01-03	9771900	12627300	12782700	11618400
1994-01-04	6466800	13065300	12817500	12134400
1994-01-05	11545200	8060400	10379400	6918600
1994-01-06	6817200	8157900	7673100	3500400
1994-01-07	12418800	12369900	12873000	12181800
1994-01-08	12375600	12634500	13066500	11608800
1994-01-09	11601000	12156000	12464700	10866000
1994-01-10	3935700	12321900	8164800	11328600

Total Solar Energy (J/m²)

Exploration and Cleaning

Began with a single sample and the surrounding grid of Mesonet points to examine variable correlations.

Next Steps

- Automate tidying data for easier visualization
 - Continue gathering insights from simple visualizations
- Start making predictions at one station
 - Limit the input data points to a surrounding grid
 - Add summary stats across all points or cross-sections (e.g., averages, medians, extremes at all points, similar latitudes, longitudes, elevations)
- Expand to all stations
- Use Apache Spark and MLib to make use of parallel processing algorithms