International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

towns

Language: cs-CZ

Města

V Kazachstánu je N malých měst, očíslovaných od 0 do N-1. Dále je tam neznámý počet velkoměst. Malá města a velkoměsta jsou souhrnně označována jako sidla.

Všechna sídla v Kazachstánu jsou spojena jednou sítí obousměrných dálnic. Každá dálnice propojuje dvě různá sídla. Každá dvojice sídel je spojená nejvýše jednou dálnicí. Malá města jsou taková sídla, která jsou spojena s právě jedním sídlem. Všechna ostatní sídla jsou velkoměsta. Je známo, že žádné velkoměsto není spojeno s přesně dvěma nebo žádným sídlem. Jinými slovy, každé velkoměsto je přímo spojeno se třemi či více sídly. Konečně, pro každou dvojici sídel \boldsymbol{a} a \boldsymbol{b} existuje jediná cesta jdoucí po dálnicích z \boldsymbol{a} do \boldsymbol{b} , není-li žádná dálnice použita vícekrát.

Následující obrázek znázorňuje síť jedenácti malých měst a sedmi velkoměst. Malá města jsou zobrazena jako kroužky a označena celými čísly, zatímco velkoměsta jsou znázorněna čtverečky a označena písmeny.

Každá dálnice má kladnou celočíselnou délku. Vzdáleností mezi dvěma sídly rozumíme minimální součet délek všech dálnic potřebných k docestování z jednoho sídla do druhého.

Pro každé velkoměsto C můžeme spočíst vzdálenost r(C) do nejvzdálenějšího malého města. Velkoměsto C označíme jako hub, jestliže má vzdálenost r(C) nejmenší ze všech velkoměst. Vzdálenost mezi hubem a od něj nejvzdálenějším malým městem označíme jako R. Tudíž R je nejmenší ze všech hodnot r(C).

Ve výše uvedeném příkladu je od velkoměsta a nejvzdálenější malé město 8 a vzdálenost mezi nimi je r(a) = 1 + 4 + 12 = 17. Pro velkoměsto g platí také r(g) = 17. (Jedno z malých měst nejvzdálenějších od g je 6.) Jediným hubem v příkladu je velkoměsto f s r(f) = 16. Tudíž v tomto příkladu je f rovno f rov

Odstranění hubu rozdělí síť na vícero souvislých částí. Hub nazveme vyvážený, je-li v každé z těchto

částí nejvýše $\lfloor N/2 \rfloor$ malých měst. (Zdůrazněme, že velkoměsta se nepočítají.) Symbol $\lfloor x \rfloor$ označuje největší celé číslo, které není větší než x.

V našem příkladu je velkoměsto f hubem. Odstraníme-li velkoměsto f, síť se rozpadne na čtyři souvislé části sestávající po řadě z těchto malých měst: $\{0,1,10\}$, $\{2,3\}$, $\{4,5,6,7\}$ a $\{8,9\}$. Žádná z těchto částí nemá více než $\lfloor 11/2 \rfloor = 5$ malých měst, tudíž velkoměsto f je vyváženým hubem.

Úloha

Na začátku máte o sídlech v síti jedinou informací, a to počet malých měst N. Neznáte počet velkoměst. Nevíte nic o dálnicích mezi sídly. Nové informace můžete získat pouze dotazováním se na vzdálenost mezi páry malých měst.

Vaší úlohou je určit:

- Ve všech podúlohách: vzdálenost R.
- V podúlohách 3 až 6: zda v síti existuje vyvážený hub.

Implementujte funkci hubDistance. Vyhodnocovač vyhodnotí v jednom spuštění více testovacích případů. Počet testovacích případů v jednom spuštění je nejvýš 100. Pro každý testovací případ zavolá vyhodnocovač vaši funkci hubDistance právě jednou. Zajistěte, aby vaše funkce inicializovala všechny proměnné při každém zavolání.

- hubDistance(N, sub)
 - N: počet malých měst.
 - sub: číslo podúlohy (vysvětleno v sekci Podúlohy).
 - Jestliže sub je 1 či 2, funkce vrátí R nebo -R
 - Pro sub větší než 2: existuje-li vyvážený hub, pak funkce musí vrátit R, jinak musí vrátit -R.

Vaše funkce hubDistance může získávat informace o síti voláním funkce getDistance (i, j) vyhodnocovače. Tato funkce vrátí vzdálenost mezi malými městy \boldsymbol{i} a \boldsymbol{j} . Pro stejná \boldsymbol{i} a \boldsymbol{j} vrátí $\boldsymbol{0}$. Rovněž vrátí $\boldsymbol{0}$ pro neplatné argumenty.

Podúkoly

V každém testovacím případu:

- *N* je mezi 6 a 110 včetně.
- Vzdálenost mezi každými dvěma různými malými městy je mezi 1 a 1000000 včetně.

Počet dotazů, které smí váš program položit, je omezený. Limit se může lišit dle podúlohy, viz tabulku níže. Pokusí-li se váš program počet dotazů překročit, bude ukončen a považován za dávající chybný výsledek.

pedáleha	B88Å	₽8 ĕ €ŧ Я8 19Z Å	nalézt vyvážený hňb	લેકો ક્રેલ 8mક <i>ર</i> ક માં
1	13	$\frac{n(n-1)}{2}$	NE	žádná
2	12	$\lceil \frac{7n}{2} \rceil$	NE	žádná
3	13	$\frac{n(n-1)}{2}$	ANO	žádná
4	10	$\lceil \frac{7n}{2} \rceil$	ANO	každé velkoměsto je spojeno s <i>právě</i> třemi dálnicemi
5	13	5n	ANO	žádná
6	39	$\lceil \frac{7n}{2} \rceil$	ANO	žádná

[x] označuje nejmenší celé číslo větší nebo rovno x.

Ukázkový vyhodnocovač

Všimněte si, že číslo podúlohy je součástí vstupu. Ukázkový vyhodnocovač mění své chování podle čísla podúlohy.

Ukázkový vyhodnocovač čte vstup ze souboru towns.in v následujícím tvaru:

- řádek 1: Počet testovacích případů.
- řádek 2: N_1 , počet malých měst v prvním testovacím případu.
- lacktriangled následujících N_1 řádků: j-té číslo $(1 \leq j \leq N_1)$ na i-tém z těchto řádku $(1 \leq i \leq N_1)$ je vzdáleností mezi malými městy i-1 a j-1.
- Následují další testovací případy zadané stejně jako první.

Pro každý testovací případ vzorový vyhodnocovač vypíše návratovou hodnotu funkce hubDistance a počet volání na samostatných řádcích.

Vstupní soubor odpovídající příkladu výše je:

```
1
11
0 17 18 20 17 12 20 16 23 20 11
17 0 23 25 22 17 25 21 28 25 16
18 23 0 12 21 16 24 20 27 24 17
20 25 12 0 23 18 26 22 29 26 19
17 22 21 23 0 9 21 17 26 23 16
12 17 16 18 9 0 16 12 21 18 11
20 25 24 26 21 16 0 10 29 26 19
16 21 20 22 17 12 10 0 25 22 15
23 28 27 29 26 21 29 25 0 21 22
20 25 24 26 23 18 26 22 21 0 19
11 16 17 19 16 11 19 15 22 19 0
```

Tento formát je dost odlišný od specifikace seznamu dálnic. Uvědomte si, že můžete modifikovat vzorový vyhodnocovač tak, aby používal odlišný vstupní formát.