TRIÁNGULOS II

Estructura de las aeronaves de guerra

Soporte de estantería

- CLASIFICACIÓN DE TRIÁNGULOS.
- LINEAS NOTABLES.
- ÁNGULOS ENTRE BISECTRICES.

Museo de FRAM NORUEGA.

Estructura de puentes

CLASIFICACIÓN DE TRIÁNGULOS

TRIÁNGULOS II CLASIFICACIÓN DE TRIÁNGULOS.

La clasificación de los triángulos se da según la medida de sus ángulos y la longitud de sus lados.

RECORDAR:

Cuando nos pidan calcular el máximo o mínimo valor entero de una longitud, normalmente utilizamos el teorema de existencia o correspondencia:

Teo. De existencia 8-4 < X < 8+4 4 < X < 12

Los posibles valores de x: 5, 6, 7, 8, 9, 10, 11.

Pero cuando se conoce el tipo de Angulo del triangulo.

si α<90° (agudo)

Entonces por naturaleza:

$$X^2 < 8^2 + 4^2$$

 $X < 8....$

Entonces los posibles valores de x: 5, 6, 7, 8.

CURSO DE GEOMETRÍA

DEMOSTRAR:

$$a^2 < b^2 + c^2$$

- Si el ΔABC es acutángulos
- Como se quiere determinar una relación con elementos cuadráticos, lo mas conveniente seria aprovechar el teorema de Pitágoras.
- Trazamos un AP perpendicular al AC, tal que AP = C
- Construimos un Δ rectángulo PAC, tal que PC = m
- Por teorema de Pitágoras:

$$b^2 + c^2 = m^2$$
....(1)

• Además el ΔPAB es isósceles:

$$m < APB = m < ABP = \alpha + \theta$$

• Entonces en el $\triangle PBC$ se observa:

$$m < CPB = \theta$$
 $m < CBP = \alpha + \theta + \dots$

Por teorema de correspondencia:

ma < m elevamos al cuadrado
 $a^2 < m^2$(2)

• Reemplazamos (1) en (2):

$$a^2 < b^2 + c^2$$

TRIÁNGULOS II CLASIFICACIÓN DE TRIÁNGULOS.

LINEAS NOTABLES

CURSO DE GEOMETRÍA

LINEAS NOTABLES.

CEVIANA:

Segmento de recta que tiene por extremos un vértice y un punto del lado opuesto o de su prolongación de un triángulo.

MEDIATRIZ:

Si AM=MB
L es perpendicular \overline{AB} L es mediatriz del \overline{AB} A a M a B

EJEMPLOS:

Si \overline{BH} es altura del $\triangle ABC$ y \overline{BP} es bisectriz del Δ HBC. Calcule \overline{PC} .

AC=13

m<ABP=90º-θ

Entonces el ΔBAP es isósceles:

AP=5

Por lo tanto en el \overline{AC} :

X=8

ÁNGULOS ENTRE DOS BISECTRICES

ÁNGULOS ENTRE DOS BISECTRIZ.

DEMOSTRACION:

En el $\triangle APC$ por < exterior:

 $\beta = \alpha + X$ $X = \beta - \alpha$

En el \triangle ABC por < exterior:

 $2\beta=2\alpha+\theta$ $\theta=2\beta-2\alpha$

 $\theta=2(\beta-\alpha)$

θ=2X

 $X=\theta/2$

DEMOSTRACION:

Trazamos \overline{AP} y \overline{CP} bisectrices interna y externa respectivamente.

En el ΔABC por teorema anterior:

$$m < APC = \theta/2$$

Además en el vértice C:

 $2\beta + 2\varphi = 180^{\circ}$ $\beta + \varphi = 90^{\circ}$

Finalmente en el $\triangle QPC$ <externo:

$$X = 90^{\circ} + \frac{\theta}{2}$$

ÁNGULOS ENTRE DOS BISECTRIZ.

