

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1. 1 (Currently Amended). The use of a A method of producing an electrical component comprising moisture sensitive organic substances by providing a layer (HIL 1) composed of a hydrophobic, linearly or two-dimensionally polycyclic aromatic having from 3 to 12 ring structures including metal-containing or metal-free phthalocyanines, which have, as radical groups, -H and/or -F, alkyl groups, aryl groups and/or fluorinated hydrocarbons, said layer being a functional layer of the electrical component and simultaneously serving as a barrier layer between at least one moisture sensitive layer and at least one layer which has been deposited by means of water in a wet processing step in or as an encapsulation of electrical components constructed with organic layers.

2. 2 (Currently Amended). The use method as claimed in claim 1, wherein the layer has been formed from a material selected from the group consisting of anthracene, phenanthrene, tetracene, chrysene, pentacene, hexacene, perylene, triphenylene, coronene, m-naphthodianthracene, pyrene, benzopyrene, ovalene, violanthrene, and derivatives of the aforementioned substances, with radical groups -H and/or -F, alkyl groups, aryl groups and/or fluorinated hydrocarbons.

- 1 3 (Currently Amended). The ~~use~~ method as claimed in claim 1, wherein the
2 layer is formed from a metal-containing phthalocyanine of the formula:

3

- 4 where M is any of Cu, Zn, Fe, Mn, Co, or Ni, and each R may be an -H and/or
5 -F and/or an alkyl group and/or an aryl group and/or a fluorinated
6 hydrocarbon.

- 1 4 (Currently Amended). The ~~use~~ method as claimed in claim 1, wherein the
2 layer is formed from a metal-free phthalocyanine of the formula:

3

- 4 where each R may be an -H and/or -F and/or an alkyl group and/or an aryl

5 group and/or a fluorinated hydrocarbon.

1 5 (Currently Amended). An organic light-emitting diode having a substrate, a
2 first electrode applied to the substrate, at least one electron-injecting and
3 -transporting zone (EIL), at least one hole-injecting and -transporting zone
4 (HTL, HIL) and a second electrode wherein the electron-injecting and -
5 transporting zone (EIL) includes at least one moisture sensitive organic layer
6 and the hole-injecting and -transporting zone includes a layer composed of
7 polycyclic aromatics having linear or two-dimensional chains and from 3 to 12
8 ring structures including metal-containing or metal-free phthalocyanines,
9 which have, as radical groups, -H and/or -F, alkyl groups, aryl groups, and/or
10 fluorinated hydrocarbons, said layer being in the form of an encapsulation
11 layer for the organic light-emitting diode.

1 6 (Currently Amended). An organic light-emitting diode having a substrate, a
2 metallic cathode applied to the substrate, at least one electron-injecting and
3 -transporting zone (EIL), at least one hole-injecting and -transporting zone
4 (HTL, HIL), and a light-transparent anode through which light is eradicated,
5 wherein the electron-injecting and -transporting zone (EIL) is constructed with
6 small molecules, and wherein said electron-injecting and -transporting zone
7 (EIL) is adjoined toward the anode by a layer composed of polycyclic
8 aromatics having linear or two-dimensional chains and from 3 to 12 ring
9 structures including metal-containing or metal-free phthalocyanines, which
10 includes, as radical groups -H and/or -F, alkyl groups, aryl groups and/or
11 fluorinated hydrocarbons.

1 7 (Previously Presented). The organic light-emitting diode as claimed in claim
2 5, in which the material of the layer is formed from substances of the group
3 consisting of anthracene, phenanthrene, tetracene, chrysene, pentacene,
4 hexacene, perylene, triphenylene, coronene, m-naphthodianthracene,

5 m-anthraceneoditetracene, m-tetracenodipentacene, pyrene, benzopyrene,
6 ovalene, violanthrene and derivatives of the aforementioned substances with
7 radical groups --H and/or --F, alkyl groups, aryl groups and/or fluorinated
8 hydrocarbons.

1 8 (Previously Presented). The organic light-emitting diode as claimed in claim
2 5, in which the layer is formed from a metal-containing phthalocyanine of the
3 formula

4

5 where M is any of Cu, Zn, Fe, Mn, Co, or Ni, and each R may be an -H and/or
6 -F and/or an alkyl group and/or an aryl group and/or a fluorinated
7 hydrocarbon.

- 1 9 (Previously Presented). The organic light-emitting diode as claimed in claim
2 5, in which the layer is formed from a metal-free phthalocyanine of the
3 formula

4
5 where each R may be an -H and/or -F and/or an alkyl group and/or an aryl
6 group and/or a fluorinated hydrocarbon.

1 10 (Previously Presented). The organic light-emitting diode as claimed in
2 claim 5 wherein a hole-injecting and -transporting polymer layer (HIL 2)
3 applied from aqueous solution has been applied between the layer (HIL 1) and
4 the second electrode.

1 11 (Previously Presented). The organic light-emitting diode as claimed in
2 claim 6 in which the material of the layer is formed from substances of the
3 group consisting of anthracene, phenanthrene, tetracene, chrysene, pentacene,
4 hexacene, perylene, triphenylene, coronene, m-naphthodianthracene,
5 m-anthraceneoditetracene, m-tetracenodipentacene, pyrene, benzopyrene,
6 ovalene, violanthrene and derivatives of the aforementioned substances with
7 radical groups -H and/or -F, alkyl groups, aryl groups and/or fluorinated
8 hydrocarbons.

1 12 (Previously Presented). The organic light-emitting diode as claimed in

2 claim 6, in which the layer is formed from a metal-containing phthalocyanine
3 of the formula

4

5 where M is any of Cu, Zn, Fe, Mn, Co, or Ni, and each R may be an -H and/or
6 -F and/or an alkyl group and/or an aryl group and/or a fluorinated
7 hydrocarbon.

1 13 (Previously Presented). The organic light-emitting diode as claimed in
2 claim 6, in which the layer is formed from a metal-free phthalocyanine of the
3 formula

4

5 where each R may be an -H and/or -F and/or an alkyl group and/or an aryl
6 group and/or a fluorinated hydrocarbon.

1 14 (Previously Presented). The organic light-emitting diode as claimed in
2 claim 7 wherein a hole-injecting and -transporting polymer layer (HIL 2)
3 applied from aqueous solution has been applied between the layer (HIL 1) and
4 the second electrode.

1 15 (Previously Presented). The organic light-emitting diode as claimed in
2 claim 8 wherein a hole-injecting and -transporting polymer layer (HIL 2)
3 applied from aqueous solution has been applied between the layer (HIL 1) and
4 the second electrode.

1 16 (Previously Presented). The organic light-emitting diode as claimed in
2 claim 9 wherein a hole-injecting and -transporting polymer layer (HIL 2)
3 applied from aqueous solution has been applied between the layer (HIL 1) and
4 the second electrode.

1 17 (New). A method of producing an electrical component constructed of
2 moisture sensitive organic substances by providing a layer (HIL 1) composed
3 of a hydrophobic, linearly or two-dimensionally polycyclic aromatic having
4 from 3 to 12 ring structures including metal-containing or metal-free
5 phthalocyanines, which have, as radical groups, -H and/or -F, alkyl groups,
6 aryl groups and/or fluorinated hydrocarbons, said layer being a functional
7 layer of the electrical component and simultaneously serving as an
8 encapsulation of the electrical component constructed with organic layers.

1 18 (New). The method as claimed in claim 17, wherein the layer has been
2 formed from a material selected from the group consisting of anthracene,
3 phenanthrene, tetracene, chrysene, pentacene, hexacene, perylene,

5 ovalene, violanthrene, and derivatives of the aforementioned substances, with
6 radical groups -H and/or -F, alkyl groups, aryl groups and/or fluorinated
7 hydrocarbons.

1 19 (New). The method as claimed in claim 17, wherein the layer is formed
2 from a metal-containing phthalocyanine of the formula:

3 4 where M is any of Cu, Zn, Fe, Mn, Co, or Ni, and each R may be an -H and/or
5 -F and/or an alkyl group and/or an aryl group and/or a fluorinated
6 hydrocarbon.

1 20 (New). The method as claimed in claim 17, wherein the layer is formed
2 from a metal-free phthalocyanine of the formula:

4 where each R may be an -H and/or -F and/or an alkyl group and/or an aryl
5 group and/or a fluorinated hydrocarbon.

1 21 (New). An organic light-emitting diode having a substrate, a first electrode
2 applied to the substrate, at least one electron-injecting and -transporting zone
3 (EIL), at least one hole-injecting and -transporting zone (HTL, HIL) and a
4 second electrode wherein the electron-injecting and -transporting zone
5 includes at least one moisture sensitive organic layer and the hole-injecting
6 and -transporting zone includes a layer composed of polycyclic aromatics
7 having linear or two-dimensional chains and from 3 to 12 ring structures
8 including metal-containing or metal-free phthalocyanines, which have, as
9 radical groups, -H and/or -F, alkyl groups, aryl groups, and or fluorinated
10 hydrocarbons, said layer being a functional layer of the organic light emitting
11 diode and simultaneously serving as a barrier layer between at least one
12 moisture sensitive organic layer and at least one layer which has been
13 deposited by means of water in a wet processing step.