Network Penetration

Lesson 3: System Hacking + Malvare + Sniffers

Program

- System Hacking
- Malvare
 - Overt and covert channels
- Sniffers
 - Understanding sniffers
 - Using a sniffer
 - Switched network sniffing
- Exercises

System Hacking

Password cracking

- Vulnerable password types:
 - Passwords that use only numbers
 - Passwords that use only letters
 - Passwords that are all upper- or lowercase
 - Passwords that use proper names
 - Passwords that use dictionary words
 - Short passwords (fewer than eight characters)

Password cracking

- Vulnerable (a little less) password types:
 - Passwords that contain only letters, special characters, and numbers: stud@52
 - Passwords that contain only numbers: 23698217
 - Passwords that contain only special characters: &*#@!(%)
 - Passwords that contain only letters and numbers: meetl23
 - Passwords that contain only letters: POTHMYDE
 - Passwords that contain only letters and special characters: rex@&ba
 - Passwords that contain only special characters and numbers: 123@\$4

Password-Cracking Techniques

- Dictionary Attacks (uses dictionary)
- Brute-Force Attacks (tests all keys)
- Hybrid Attack (dictionary with added steps)
- Syllable Attack (combine brute force and dictionary)
- Rule-Based Attack (logical rules followed)
- Passive Online Attacks (listening)
- Active Online Attacks (guessing, Trojan/spyware/key loggers, hash injection, and phishing)
- Offline Attacks (go for storage)
- Nontechnical Attacks (eavesdrop, shoulder surfing, social engineering)

Attack types

- Passive Online Attacks:
 - Packet Sniffing (capture + inspect packets)
 - Man-in-the-Middle (listen on both parties)
 - Replay Attack (capture + use packets)
- Active Online Attacks:
 - Password Guessing (try to guess)
 - Trojans, Spyware, and Keyloggers (using tools)
 - Hash Injection (retrive hash + use)
 - Offline Attacks (find stored passwords)
 - Precomputed Hashes or Rainbow Tables (precompute + match hashes)
 - Distributed Network Attacks (involve several computers)

Other attack types

- Default Passwords
- Guessing
- USB Password Theft
- Using Password Cracking

Authentication on Microsoft Platforms

- Security Accounts Manager
 - File lock unless boot or Blue Screen of Death
- How Passwords Are Stored within the SAM:
 - c:\windows\system32\config\SAM.
 - Link:1010:624AAC413795CDC14E835F1CD90F4C76:6F585FF8FF6280B59CCE2 52FDB500EB8:::
 - bold part before the colon is the LM hash, and the bold part after the colon represents the NTLM hash
 - Ophcrack, LOphtCrack, pwdump display and attempt to decipher these hashes

Authentication on Microsoft Platforms

- NTLM Authentication
 - NT LAN Manager
 - Security Support Provider (SSP) on top
- Kerberos authentication protocol
 - Key distribution center (KDC)
 - Authentication server (AS)
 - Ticket-granting server (TGS)

Elevating privileges

- Gaining better access and more privileges
- Horizontal Privilege Escalation:
 - An attacker attempts to take over the rights and privileges of another user who has the same privileges as the current account.
- Vertical Privilege Escalation:
 - The attacker gains access to an account and then tries to elevate the
 privileges of the account. It is also possible to carry out a vertical escalation by
 compromising an account and then trying to gain access to a higher-privileged
 account.
- Tools: E.g. Trinity Rescue Kit (TRK)

Executing Applications

- Backdoors (E.g. using PsExec, part of PsTools)
- Crackers
- Keyloggers
- Malware
- Remote connection tools:
 - PDQ Deploy
 - RemoteExec
 - DameWare
 - Netcat

Covering your tracks

- Disabling Auditing:
 - auditpol \\<ip address of target> /clear
- Surgically removal tools:
 - Dump Event Log, ELSave, WinZapper, Ccleaner, Wipe, MRU-Blaster, Tracks Eraser Pro, Clear My History
- Data Hiding
 - E.g hidden file types
- Alternate Data Streams (ADS)
 - Fork or hide data within files
 - type triforce.exe > smoke.doc:triforce.exe
 - start smoke.doc:triforce.exe
- Tools for uncovering:
 - Sfind, LNS, Tripwire

Malware

Categories of Malware

- Viruses
- Worms
- Trojan horses
- Rootkits
- Spyware
- Adware

Viruses

Actions:

- Altering data
- Infecting other programs
- Replicating
- Encrypting itself
- Transforming itself into another form
- Altering configuration settings
- Destroying data
- Corrupting or destroying hardware

Viruses

- Development:
 - Design
 - Replication
 - Launch
 - Detection
 - Incorporation
 - Elimination

Virus types

- System or boot sector virus (Master boot record)
- Macro viruses (E.g. VBA scripts)
- Cluster viruses (Alter FAT to point at self)
- Stealth or tunneling virus (Intercept calls, bogus responses)
- Encryption viruses (Partly encrypted)
- Cavity or file-overwriting viruses (Hides in file, alters size)
- Sparse-infector viruses (Only activates some times)
- Companion or camouflage virus (Similar name, runs first)
- Logic bomb (Activates at event/time)
- File or multipartite viruses (Several parts)
- Shell viruses (Makes infected program a subroutine)
- Cryptoviruses (ransomware)

Worms

• Features:

- Do not require a host application to perform their activities.
- Do not necessarily require any user interaction, direct or otherwise, to function.
- Replicate extremely rapidly across networks and hosts.
- Consume bandwidth and resources.
- Transmit information from a victim system back to another location specified by the designer.
- Carry a payload, such as a virus, and drop off this payload on multiple systems rapidly.

Worms

- Differences from virus:
 - A worm can be considered a special type of malware that can replicate and consume memory, but at the same time it does not typically attach itself to other applications or software.
 - A worm spreads through infected networks automatically and requires only that a host is vulnerable. A virus does not have this ability.

Spyware

- Collects and forwards information, without knowledge or consent
- Methods of spyware infection:
 - Peer-to-Peer Networks (P2P)
 - Instant Messaging (IM)
 - Internet Relay Chat (IRC)
 - Email Attachments
 - Physical Access
 - Browser Defects
 - Freeware
 - Websites
 - Software Installations

Other "wares"

- Adware
 - Displays pop-ups, adds, ...
- Scareware
 - Tries to scare user into supplying credit info, ...
- Ransomware
 - Encrypts data, user must pay to get it back

Trojan

- Providing covert access to system
- Goals similar to virus or worm:
 - Control system
 - Take some specific action:
 - Stealing data
 - Installing software
 - Downloading or uploading files
 - Modifying files
 - Installing keyloggers
 - Viewing the system user's screen
 - Consuming computer storage space
 - Crashing the victim's system
- See book for tools

Backdoors

- A backdoor typically achieves one or more of the following key goals:
 - Lets an attacker access a system later by bypassing any countermeasures the system owner may have placed.
 - Provides the ability to gain access to a system while keeping a low profile. This allows an attacker to access a system and circumvent logging and other detective methods.
 - Provides the ability to access a system with minimal effort in the least amount of time.
 - Under the right conditions, a backdoor lets an attacker gain access to a system without having to rehack.

• Types:

- Password-cracking backdoor
- Process-hiding backdoor

Overt and Covert Channels

Overt channel:

 Put in place by design and represents the legitimate or intended way for the system or process to be used

Covert channel:

- Uses a system or process in a way that it was not intended to be used.
- Used most often by Trojans
- Tools for exploitation in book

- Utilities that can capture and scan traffic moving across a network
- Any utility that has the ability to perform a packet-capturing function
- Passive sniffing:
 - Only listening/analyzing packets
- Active sniffing:
 - Altering packets
- Connected network interface must be in promiscous mode
 - Allowing the capture of all traffic
- Shows packets and provides in-depth view of info

- Protocols to be sniffed:
 - Telnet/rlogin
 - HTTP
 - Simple Mail Transfer Protocol (SMTP)
 - Network News Transfer Protocol (NNTP)
 - Post Office Protocol (POP)
 - File Transfer Protocol (FTP)
 - Internet Message Access Protocol (IMAP)

- Tools:
 - Wireshark (you know this[©])
 - Tcpdump
 - WinDump
 - OmniPeek
 - Dsniff
 - EtherApe (Linux/Unix)
 - MSN Sniffer
 - NetWitness NextGen

Switched Network Sniffing

- A wired switch doesn't allow you to sniff the whole network.
- Methods for enabling sniffing on a switch is to turn it into a device that does allow sniffing
- We want to convert it into a hub-like environment
- A switch keeps track of MAC addresses received by writing them to a content addressable memory (CAM) table
- If flooded, fails to write CAM makes the switch fail into a hub
- Tool:
 - Linux Macof

Other sniffing techniques

ARP Poisoning:

- Contaminate a network with improper gateway mappings
- Attempting to become the hub of all network traffic

MAC Spoofing:

 Change the MAC address to the MAC address of an existing authenticated machine already on the network

Port Mirror or SPAN Port

- Getting physical access to the switch and using port mirroring or a Switched Port Analyzer (SPAN) port
- This technique is used to send a copy of every network packet encountered on one switchport or a whole VLAN to another port where it may be monitored

Sniffing countermeasures

- Use a hardware-switched network for the most sensitive portions of your network in an effort to isolate traffic to a single segment or collision domain.
- Implement IP DHCP Snooping on switches to prevent ARP poisoning and spoofing attacks.
- Implement policies preventing promiscuous mode on network adapters.
- Be careful when deploying wireless access points, knowing that all traffic on the wireless network is subject to sniffing.
- Encrypt your sensitive traffic using an encrypting protocol such as SSH or IPsec.

Sniffing countermeasures

- Static ARP entries, which consist of preconfiguring a device with the MAC addresses of devices that it will be working with ahead of time. However, this strategy does not scale well.
- Port security is used by switches that have the ability to be programmed to allow only specific MAC addresses to send and receive data on each port.
- IPv6 has security benefits and options that IPv4 does not have.
- Replacing protocols such as FTP and Telnet with SSH is an effective defense against sniffing. If SSH is not a viable solution, consider protecting older legacy protocols with IPsec.
- Virtual private networks (VPNs) can provide an effective defense against sniffing due to their encryption aspect.
- SSL is a great defense along with IPsec.

Other defensive strategies

- Mitigating MAC Flooding
 - Preventing MAC flooding by settting max number of MAC addresses.
 - Will shut down after threshold is reached.
- Detecting sniffer attacks
 - Look for systems running network cards in promiscuous mode. Under normal circumstances there is little reason for a network card to be in promiscuous mode, and as such all cards running in this mode should be investigated.
 - Run an NIDS to detect telltale signs of sniffing and track it down.
 - Tools such as HP's Performance Insight can provide a way to view the network and identify unusual traffic.