Use of Linear and Logistic Regression Coefficients with Lasso (L1) and Ridge (L2) Regularization for Feature Selection in Machine Learning

Linear Regression

Linear Regression: Multiple Variables

$$\widehat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

Basic Assumptions

- · Linear relationship with the target y
- Feature space X should have gaussian distribution
- · Features are not correlated with other
- · Features are in same scale i.e. have same variance

Lasso (L1) and Ridge (L2) Regularization

Regularization is a technique to discourage the complexity of the model. It does this by penalizing the loss function. This helps to solve the overfitting problem.

- L1 regularization (also called Lasso)
- · L2 regularization (also called Ridge)
- L1/L2 regularization (also called Elastic net)

A regression model that uses L1 regularization technique is called Lasso Regression and model which uses L2 is called Ridge Regression.

What is Lasso Regularisation

3 sources of error

In forming predictions, there are 3 sources of error:

- 1. Noise
- 2 Bias
- 3. Variance

Bias-variance tradeoff Wise bias + Variance Dias | Just like with generalization error, we cannot compute bias and variance RSS(w) + $\lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} (y_i - \mathbf{w}_0 \mathbf{h}_0(\mathbf{x}_i) - \mathbf{w}_1 \mathbf{h}_1(\mathbf{x}_i))^2 + \lambda (|\mathbf{w}_0| + |\mathbf{w}_1|)$

The L1 regularization adds a penalty equal to the sum of the absolute value of the coefficients.

How to choose Lambda

If sufficient amount of data...

What is Ridge Regularisation

The L2 regularization adds a penalty equal to the sum of the squared value of the coefficients.

RSS(w) +
$$\lambda ||w||_2^2$$
 tuning parameter = balance of fit and magnitude

Ridge regression (a.k.a L_2 regularization)

Large λ :

high bias, low variance

(e.g.,
$$\hat{\mathbf{w}} = 0$$
 for $\lambda = \infty$)

In essence, λ controls model complexity

Small \(\lambda\):

low bias, high variance

(e.g., standard least squares (RSS) fit of high-order polynomial for λ =0)

The L2 regularization will force the parameters to be relatively small, the bigger the penalization, the smaller (and the more robust) the coefficients are.

Difference between L1 and L2 regularization

L1 Regularization

- L1 penalizes sum of absolute value of weights.
- · L1 has a sparse solution
- L1 has multiple solutions
- · L1 has built in feature selection
- · L1 is robust to outliers
- L1 generates model that are simple and interpretable but cannot learn complex patterns

L2 Regularization

- L2 regularization penalizes sum of square weights.
- · L2 has a non sparse solution
- · L2 has one solution

- L2 has no feature selection
- · L2 is not robust to outliers
- L2 gives better prediction when output variable is a function of all input features
- · L2 regularization is able to learn complex data patterns

Load the dataset

```
In [1]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
In [2]: from sklearn.model selection import train test split
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.feature selection import SelectKBest, SelectPercentile
         from sklearn.metrics import accuracy score
In [3]: from sklearn.linear_model import LinearRegression, LogisticRegression
         from sklearn.feature selection import SelectFromModel
In [4]: data = pd.read_csv('0.9_5subjectslabelled_data.csv', nrows = 31437)
         data.head()
Out[4]:
            Time Snap
                          AccX
                                   AccY
                                                   Gyro_X Knee Angles Gait Cycle Phase
                                            AccZ
         0
              120.775 -0.181472 -0.088708 -0.665352 0.087145
                                                            67.223821
                                                                                   5
         1
              120.780 -0.181443 -0.088745 -0.659870 0.103506
                                                                                   5
                                                            67.217858
         2
              120.785 -0.183826 -0.089735 -0.654215 0.117635
                                                            67.154903
                                                                                   5
         3
              120.790 -0.188545 -0.091706 -0.648504 0.129259
                                                             67.011479
                                                                                   5
              120.795 -0.195535 -0.094645 -0.642857 0.138193
                                                                                   5
                                                            66.799616
In [5]: X = data.drop('Gait Cycle Phase', axis = 1)
         y = data['Gait Cycle Phase']
        X.shape, y.shape
Out[5]: ((31436, 6), (31436,))
```

```
In [6]: data.isnull().sum()
Out[6]: Time Snap
                               0
         AccX
                               0
         AccY
                               0
         AccZ
                               0
         Gyro_X
                               0
         Knee Angles
         Gait Cycle Phase
         dtype: int64
In [7]: data.head()
Out[7]:
                                                     Gyro_X Knee Angles Gait Cycle Phase
             Time Snap
                           AccX
                                    AccY
                                              AccZ
               120.775 -0.181472 -0.088708 -0.665352 0.087145
                                                                                      5
          0
                                                               67.223821
          1
               120.780 -0.181443 -0.088745 -0.659870 0.103506
                                                               67.217858
                                                                                      5
          2
               120.785 -0.183826 -0.089735 -0.654215 0.117635
                                                               67.154903
                                                                                      5
          3
                                                                                      5
               120.790 -0.188545 -0.091706 -0.648504 0.129259
                                                               67.011479
               120.795 -0.195535 -0.094645 -0.642857 0.138193
                                                               66.799616
                                                                                      5
In [8]: X.shape, y.shape
Out[8]: ((31436, 6), (31436,))
In [9]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rand)
```

Estimation of coefficients of Linear Regression

```
In [13]: sel.estimator .coef
Out[13]: array([ 0.00346151, -1.60165546, -0.03766687, -0.33100167, -0.02932753,
                 0.08248934])
In [14]: | mean = np.mean(np.abs(sel.estimator_.coef_))
In [15]: mean
Out[15]: 0.3476003973292832
In [16]: | np.abs(sel.estimator_.coef_)
Out[16]: array([0.00346151, 1.60165546, 0.03766687, 0.33100167, 0.02932753,
                0.08248934])
In [17]: | features = X_train.columns[sel.get_support()]
         features
Out[17]: Index(['AccX'], dtype='object')
In [18]: |X_train_reg = sel.transform(X_train)
         X test reg = sel.transform(X test)
In [19]: X test reg.shape
Out[19]: (9431, 1)
In [20]: def run randomForest(X train, X test, y train, y test):
             clf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
             clf = clf.fit(X_train, y_train)
             y pred = clf.predict(X test)
             print('Accuracy: ', accuracy_score(y_test, y_pred))
In [21]: | %%time
         run_randomForest(X_train_reg, X_test_reg, y_train, y_test)
         Accuracy: 0.3426996076768105
         CPU times: total: 26.3 s
         Wall time: 5.76 s
In [22]: | %%time
         run_randomForest(X_train, X_test, y_train, y_test)
         Accuracy: 0.9212172622203372
         CPU times: total: 29.5 s
         Wall time: 7.07 s
In [23]: X train.shape
Out[23]: (22005, 6)
```

Logistic Regression Coefficient with L1 Regularization

```
In [28]: | sel = SelectFromModel(LogisticRegression(penalty = '11', C = 0.001, solver = '
         sel.fit(X train, y train)
         sel.get_support()
         C:\Users\ibra5\AppData\Roaming\Python\Python38\site-packages\sklearn\svm\_bas
         e.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the num
         ber of iterations.
           warnings.warn(
Out[28]: array([ True, True, False, True, True])
In [29]: sel.estimator .coef
Out[29]: array([[ 0.00552602,
                                            0.
                                                       , -0.21324871,
                 -0.18081634],
                [-0.00270144, 0.
                                            0.
                                                          0.
                                                                    , -0.014516
                 -0.03474661],
                [ 0.00763851,
                                                          0.
                                                                       0.
                 -0.11690394],
                [ 0.0032008 , 0.
                                                          0.
                 -0.13527313],
                                            0.
                [-0.02126795, -0.13549613,
                                                                       0.29649491,
                                                          0.
                  0.02958175],
                [-0.09962881, 0.
                                            0.
                                                          0.
                  0.22140367],
                [-0.02226582, 0.
                                            0.
                                                          0.
                                                                    , -0.30866153,
                  0.03732548]])
In [30]: X train l1 = sel.transform(X train)
         X test l1 = sel.transform(X test)
In [31]: | %%time
         run_randomForest(X_train_l1, X_test_l1, y_train, y_test)
         Accuracy: 0.894602905312268
         CPU times: total: 27.8 s
         Wall time: 6.18 s
```

L2 Regularization

```
In [37]: | sel = SelectFromModel(LogisticRegression(penalty = '12', C = 0.001, solver = '
         sel.fit(X_train, y_train)
         sel.get_support()
Out[37]: array([False, True, False, True, True, False])
In [38]: sel.estimator .coef
Out[38]: array([[ 0.00830478,
                               0.14460969, -0.16918171, -0.78213138, -0.04940001,
                 -0.21145748],
                [-0.00167044, 0.0336125, 0.020244, 0.32903055, -0.14845027,
                 -0.03613613],
                [0.01100884, 0.30676284, 0.13316299, 0.25528909, -0.00246275,
                 -0.12211148],
                [ 0.00498958, -0.06504516, -0.00982899, 0.1279054 , 0.14397183,
                 -0.15511038],
                [-0.02811745, -0.77456044, 0.14922525, 0.04584105, 0.40598466,
                  0.03736115],
                [-0.11344069, 0.22355685, 0.07274811, 0.12597473, 0.06330075,
                  0.25656452],
                [-0.02924882, -0.52769859, -0.21616341, -0.46042748, -0.40879518,
                  0.04441071]])
In [39]: | X train 12 = sel.transform(X train)
         X_test_l2 = sel.transform(X test)
In [40]: | %%time
         run_randomForest(X_train_12, X_test_12, y_train, y_test)
         Accuracy: 0.7055455412999682
         CPU times: total: 17.5 s
         Wall time: 3.99 s
 In [ ]:
 In [ ]:
 In [ ]:
 In [ ]:
```

n []:
n []:

Use of Linear and Logistic Regression Coefficient for Feature Selection in Machine Learning - Jupyter Notebook

6/25/23, 10:04 PM