Uniwerystet Jagielloński

Pytania do egzaminu licencjackiego na kierunku Informatyka

Małgorzata Dymek

Rok akademicki 2019/2020

Spis treści

1	Zasada indukcji matematycznej.	8
2	Porządki częściowe i liniowe. Elementy największe, najmniejsze, maksymalne i minimalne.	- 9
3	Relacja równoważności i zbiór ilorazowy.	10
4	Metody dowodzenia twierdzeń: wprost, nie wprost, przez kontrapozycję.	11
5	Metody numeryczne rozwiązywania równań nieliniowych: bisekcji, siecznych, Newtona.	12
6 7	Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa, metody iteracyjne Jacobiego i Gaussa-Seidla. 6.1 Metoda eliminacji Gaussa	13 14 14 14 14 14 14 14 15
8	Interpolacja wielomianowa: metody Lagrange'a i Hermite'a. Efekt Rungego. 8.1 Wzór interpolacyjny Lagrange'a	16 16
9	Zmienne losowe dyskretne. Definicje i najważniejsze rozkłady.9.1 Rozkład dwumianowy	19 19 19
10	Zmienne losowe ciągłe. Definicje i najważniejsze rozkłady. 10.1 Rozkład jednostajny	21 21

	10.2 Rozkład wykładniczy	22
11	Łancuchy Markowa. Rozkład stacjonarny.	2 4
12	Testy statystyczne: test z, test t-Studenta, test chi-kwadrat. 12.1 Z-test	26 26 27 29
13	Wzór Bayesa i jego interpretacja.	31
14	Istnienie elementów odwrotnych względem mnożenia w strukturze $(Zm,+,*)$ w zależności od liczby naturalnej m. Rozszerzony algorytm Euklidesa.	32
15	Ortogonalność wektorów w przestrzeni R_n ; związki z liniową niezależnością. Metoda ortonormalizacji Grama-Schmidta.	32
16	Liczby Stirlinga I i II rodzaju i ich interpretacja.	33
17	Twierdzenia Eulera i Fermata; funkcja Eulera.	34
18	Konfiguracje i t-konfiguracje kombinatoryczne.	35
19	Cykl Hamiltona, obwód Eulera, liczba chromatyczna - definicje i twierdzenia.	36
20	${\bf Algorytm~Forda-Fulkersona~wyznaczania~maksymalnego~przepływu.}$	37
21	Rozwiązywanie równan rekurencyjnych przy użyciu funkcji tworzących (generujących) oraz przy użyciu równania charakterystycznego. 21.1 Funkcja tworząca	42 42 43
22	Ciąg i granica ciągu liczbowego, granica funkcji.	45
23	Ciagłość i pochodna funkcji. Definicja i podstawowe twierdzenia.	46

24	Ekstrema funkcji jednej zmiennej. Definicje i twierdzenia.	47
25	Całka Riemanna funkcji jednej zmiennej.	48
26	Pochodne cząstkowe funkcji wielu zmiennych; różniczkowalność i różniczka funkcji.	49
27	Ekstrema funkcji wielu zmiennych. Definicje i twierdzenia.	5 0
28	Twierdzenie o zmianie zmiennych w rachunku całkowym; współrzędne walcowe i sferyczne.	51
2 9	Metody dowodzenia poprawności pętli.	52
30	Odwrotna Notacja Polska: definicja, własności, zalety i wady, algorytmy.	52
31	Modele obliczen: maszyna Turinga.	52
32	Modele obliczen: automat skończony, automat ze stosem.	5 2
33	Złożoność obliczeniowa - definicja notacji: $O,\Omega,\Theta.$	53
34	Złożoność obliczeniowa - pesymistyczna i średnia.	54
35	Metoda "dziel i zwyciężaj"; zalety i wady.	55
36	Lista: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.	5 5
37	Kolejka i kolejka priorytetowa: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.	55
38	Algorytmy sortowania QuickSort i MergeSort: metody wyboru pivota w QS; złożoności.	56
39	Algorytm sortowania bez porównań (sortowanie przez zliczanie, sortowanie kubełkowe oraz sortowanie pozycyjne).	57
	Reprezentacja drzewa binarnego za pomocą porządków (preorder, inorder, postorder).	58

41	Algorytmy wyszukiwania następnika i poprzednika w drzewach BST	;
	usuwanie węzła.	59
42	B-drzewa: operacje i ich złożoność.	59
43	Drzewa AVL: rotacje, operacje z wykorzystaniem rotacji i ich złożoność.	59
44	Algorytmy przeszukiwania wszerz i w głąb w grafach.	59
45	Algorytmy wyszukiwania najkrótszej ścieżki (Dijkstry oraz Bellmana Forda).	- 59
46	Programowanie dynamiczne: podział na podproblemy, porównanie z metodą "dziel i zwyciężaj".	59
47	Algorytm zachłanny: przykład optymalnego i nie optymalnego wykorzystania.	59
48	Kolorowania wierzchołkowe (grafów planarnych) i krawędziowe grafów, algorytmy i ich złożoności.	59
49	Algorytmy wyszukiwania minimalnego drzewa rozpinającego: Boruvki, Prima i Kruskala.	59
50	Najważniejsze algorytmy wyznaczania otoczki wypukłej zbioru punk tów w układzie współrzędnych (Grahama, Jarvisa, algorytm przyrostowy (quickhull)).	- 59
51	Problemy P, NP, NP-zupełne i zależności między nimi. Hipoteza P vs. NP.	59
52	Automat minimalny, wybrany algorytm minimalizacji.	59
53	Lemat o pompowaniu dla języków regularnych.	59
54	Warunki równoważne definicji języka regularnego: automat, prawa kongruencja syntaktyczna, wyrażenia regularne.	59
55	Automaty niedeterministyczne i deterministyczne (w tym ze stosem); determinizacja.	59

56	Problemy rozstrzygalne i nierozstrzygalne w teorii języków.	5 9
57	Klasy języków w hierarchii Chomsky'ego oraz ich zamkniętość ze względu na operacje boolowskie, homomorfizmy, itp.	59
58	Reprezentacja liczb całkowitych; arytmetyka.	60
59	${\bf Reprezentacja\ liczb\ rzeczywistych;\ arytmetyka\ zmiennopozycyjna.}$	60
60	Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych w $\mathrm{C}++.$	60
61	Sposoby przekazywania parametrów do funkcji (przez wartość, przez referencję). Zalety i wady.	60
62	Wskaźniki, arytmetyka wskaźników, różnica między wskaźnikiem a referencją w C++.	60
63	Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm.	- 60
64	Funkcje zaprzyjaźnione i ich związek z przeładowaniem operatorów w $\mathrm{C}{++}.$	60
65	Programowanie generyczne na podstawie szablonów w języku $\mathrm{C}++.$	60
66	Podstawowe kontenery w STL z szerszym omówieniem jednego z nich.	60
67	Obsługa sytuacji wyjątkowych w C++.	60
68	Obsługa plików w języku C.	60
69	Model wodospadu a model spiralny wytwarzania oprogramowania.	60
70	Diagram sekwencji i diagram przypadków użycia w języku UML.	60
71	Klasyfikacja testów.	60
72	Model Scrum: struktura zespołu, proces wytwarzania oprogramowania korzyści modelu	60

73	Wymagania w projekcie informatycznym: klasyfikacja, źródła, specyfikacja, analiza.	60
74	Analiza obiektowa: modele obiektowe i dynamiczne, obiekty encjowe, brzegowe i sterujące.	60
7 5	Wzorce architektury systemów.	60
76	Relacyjny model danych, normalizacja relacji (w szczególności algorytm doprowadzenia relacji do postaci Boyce'a-Codda), przykłady.	61
77	Indeksowanie w bazach danych: drzewa B+, tablice o organizacji indeksowej, indeksy haszowe, mapy binarne.	61
7 8	Podstawowe cechy transakcji (ACID). Metody sterowania współbieżnością transakcji, poziomy izolacji transakcji, przykłady.	61
79	Złączenia, grupowanie, podzapytania w języku SQL.	61
80	Szeregowalność harmonogramów w bazach danych.	61
81	Definicja cyfrowego układu kombinacyjnego - przykłady układów kombinacyjnych i ich implementacje.	61
82	Definicja cyfrowego układu sekwencyjnego - przykłady układów sekwencyjnych i ich implementacje.	61
83	Minimalizacja funkcji logicznych.	61
84	Programowalne układy logiczne PLD (ROM, PAL, PLA).	61
85	Schemat blokowy komputera (maszyna von Neumanna).	61
86	Zarządzanie procesami: stany procesu, algorytmy szeregowania z wywłaszczaniem.	61
87	Muteks, semafor, monitor jako narzędzia synchronizacji procesów.	61
88	Pamieć wirtualna i mechanizm stronicowania.	61

89	Systemy plikowe - organizacja fizyczna i logiczna (na przykładzie wybranego systemu uniksopodobnego).	61
90	Model ISO OSI. Przykłady protokołów w poszczególnych warstwach.	61
91	Adresowanie w protokołach IPv4 i IPv6.	61
92	Najważniejsze procesy zachodzące w sieci komputerowej od momentu wpisania adresu strony WWW do wyświetlenia strony w przeglądarce (komunikat HTTP, segment TCP, system DNS, pakiet IP, ARP, ramka).	61
93	Działanie przełączników Ethernet, sieci VLAN, protokół STP.	61
94	Rola routerów i podstawowe protokoły routingu (RIP, OSPF).	61
95	Szyfrowanie z kluczem publicznym, podpis cyfrowy, certyfikaty.	61
96	Wirtualne sieci prywatne, protokół IPsec.	61

Matematyczne podstawy informatyki

1 Zasada indukcji matematycznej.

Przykład: $2^1+2^2+\cdots+2^n=2^{n+1}-2$, Nierówność Bernoulliego $dla\ h\geqslant -1\ (1+h)^2\geqslant 1+n*h,\ \forall n\in\mathbb{N}^+,\ 1+2+\cdots+n=\frac{n(n+1)}{2}\forall n\in\mathbb{N}$

2 Porządki częściowe i liniowe. Elementy największe, najmniejsze, maksymalne i minimalne.

Przykłady - sprawdź czy porządek: $xRy \Leftrightarrow x|y$

3 Relacja równoważności i zbiór ilorazowy.

Przykład: $xRy \Leftrightarrow x \equiv_3 y$.

4 Metody dowodzenia twierdzeń: wprost, nie wprost, przez kontrapozycję.

5 Metody numeryczne rozwiązywania równań nieliniowych: bisekcji, siecznych, Newtona.

6 Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa, metody iteracyjne Jacobiego i Gaussa-Seidla.

6.1 Metoda eliminacji Gaussa

Obliczając rząd macierzy metodą Gaussa należy za pomocą operacji elementarnych na wierszach sprowadzić macierz do macierzy schodkowej. Wtedy wszystkie niezerowe wiersze są liniowo niezależne i można łatwo odczytać rząd macierzy.

$$\begin{bmatrix} 1 & -1 & 2 & 2 \\ 2 & -2 & 1 & 0 \\ -1 & 2 & 1 & -2 \\ 2 & -1 & 4 & 0 \end{bmatrix} \xrightarrow{w_2 - 2w_1, w_3 + w_1, w_4 - 2w_1} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & -4 \end{bmatrix} \xrightarrow{w_2 \leftrightarrow w_3} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 0 & -4 \end{bmatrix} \sim$$

$$\overset{w_{4-w_{2}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & -3 & -4 \end{bmatrix} \overset{w_{4-w_{3}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Metody iteracyjne

Ogólna postać metody iteracyjnej:

$$Ax = b$$

$$Qx^{n+1} = (Q - A)x^n + b = \tilde{b}$$

$$x^0 = (0, 0, 0)$$

$$\begin{bmatrix} 5 & -2 & 3 \\ 2 & 4 & 2 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 5x_1 + (-2)x_2 + 3x_3 = 10 \\ 2x_1 + 4x_2 + 2x_3 = 0 \\ 2x_1 + (-1)x_2 + (-4)x_3 = 0 \end{cases}$$

6.2 Metoda iteracyjna Jacobiego

6.2.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^N) \\ x_3^{N+1} = -\frac{1}{4}(x_2^N - 2x_1^N) \end{cases}$$

6.2.2 Macierzowo

$$Q = D$$
 (diagonalna)

6.3 Metoda iteracyjna Gaussa-Seidla

6.3.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^{N+1}) \\ x_3^{N+1} = -\frac{1}{4}(x_2^{N+1} - 2x_1^{N+1}) \end{cases}$$

6.3.2 Macierzowo

$$Q = L + D$$
 (diagonalna i dolnotrójkątna)

Wartości i wektory własne macierzy: numeryczne algorytmy ich wyznaczania.

Interpolacja wielomianowa: metody Lagrange'a 8 i Hermite'a. Efekt Rungego.

8.1 Wzór interpolacyjny Lagrange'a

Zadanie 8.1 Znaleźć wielomiany l_i i wzór Lagrange'a dla n=3 i punktów

\boldsymbol{x}	5	-7	-6	0
y	1	-23	-54	-954

Rozwiązanie: Wielomiany l_i wyrażają się przez węzły tak:

1.

$$l_0(x) = \frac{(x+7)(x+6)x}{(5+7)(5+6)\cdot 5} = \frac{1}{660}(x+7)(x+6)x,$$

$$l_1(x) = \frac{(x-5)(x+6)x}{(-7-5)(-7+6)(-7)} = -\frac{1}{84}(x-5)(x+6)x,$$

$$l_2(x) = \frac{(x-5)(x+7)x}{(-6-5)(-6+7)(-6)} = \frac{1}{66}(x-5)(x+7)x,$$

$$l_3(x) = \frac{(x-5)(x+7)(x+6)}{(0-5)(0+7)(0+6)} = -\frac{1}{210}(x-5)(x+7)(x+6).$$

2. Stad wynika, że

$$p(x) = l_0(x) - 23l_1(x) - 54l_2(x) - 954l_3(x).$$

8.2 Interpolacja Hermite'a

Zadanie 8.2 Należy znaleźć wielomian interpolacyjny, przybliżający funkcję o

$$x_1 = 1$$
 , $x_2 = 3$

zadanych węzłach dwukrotnych: $f(x_1) = 3$, $f(x_2) = 5$ $f'(x_1) = 2$, $f'(x_2) = 6$

$$f'(x_1) = 2$$
 , $f'(x_2) = 6$

Rozwiązanie: Zapisuje się wartości w tabeli:

x_i	$f(x_i)$
1	3
1	3
3	5
3	5

Następnie w miejsce powtarzającego się węzła wstawia się wartości pochodnej, a w pozostałe miejsca (w tym przypadku jedno) wstawia się odpowiednią różnicę dzieloną:

x_i	$f(x_i)$	$R_2(x_i)$
1	3	_
1	3	2
3	5	1
3	5	6

Następnie uzupełnia się do końca tabelę:

x_i	$f(x_i)$	$R_2(x_i)$	$R_3(x_i)$	$R_4(x_i)$
1	3	_	_	_
1	3	2	_	_
3	5	1	$-\frac{1}{2}$	_
3	5	6	$-\frac{5}{2}$	$-\frac{3}{2}$

Zatem otrzymuje się wielomian:

$$w(x) = 3 + 2(x - 1) - \frac{1}{2}(x - 1)^{2} + \frac{3}{2}(x - 1)^{2}(x - 3) = \frac{3}{2}x^{3} - 8x^{2} + \frac{27}{2}x - 4.$$

Łatwo sprawdzić, że interpoluje on dane punkty:

$$w(1) = \frac{3}{2} - 8 + \frac{27}{2} - 4 = 3$$

$$w'(1) = \frac{9}{2} - 16 + \frac{27}{2} = 2$$

$$w(3) = \frac{3}{2} \cdot 27 - 8 \cdot 9 + \frac{27}{2} \cdot 3 - 4 = 5$$

$$w'(3) = \frac{9}{2} \cdot 9 - 16 \cdot 3 + \frac{27}{2} = 6.$$

9 Zmienne losowe dyskretne. Definicje i najważniejsze rozkłady.

9.1 Rozkład dwumianowy

Zadanie 9.1 Zmienna losowa X ma rozkład dwumianowy $(X \sim Bin(n, p))$ gdzie n - ilość prób, p - prawdopodobieństwo sukcesu. Ponadto wiemy, że E(X) = np oraz Var(X) = np(1-p)

Rozwiązanie: Mamy $X \sim Bin(n=4, p=\frac{1}{2})$ oraz k=2, więc

$$P(X=2) = {4 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 = 6 \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{3}{8},$$

$$E(X) = 4 \cdot \frac{1}{2} = 2, \quad Var(X) = 2 \cdot \frac{1}{2} = 1.$$

9.2 Rozkład geometryczny

Zadanie 9.2 Zmienna losowa X ma rozkład geometryczny z $p=\frac{1}{2}$. Wzór na prawdopodobieństwo $P(X=k)=(1-p)^{(k-1)}$ oraz mamy $E(X)=\frac{1}{p}, Var(X)=\frac{1-p}{p^2}$. Prawdopodobieństwo że pierwszy orzeł wypadnie w 4 rzucie:

$$P(X = 4) = \left(1 - \frac{1}{2}\right)^{(4-1)} \frac{1}{2} = \left(\frac{1}{2}\right)^3 \frac{1}{2} = \frac{1}{2},$$

$$E(X) = \frac{1}{\frac{1}{2}} = 2, \quad Var(X) = \frac{1 - \frac{1}{2}}{\left(\frac{1}{2}\right)^2} = 2.$$

9.3 Rozkład Poissona

Zadanie 9.3 Zmienna losowa X ma rozkład Posissona z parametrem $\lambda = 2, 4$. Prawdopodobieństwo, że student będzie nieobecny w ciągu semestru:

1. mniej niż 2 razy:

$$P(X < 2) = P(X = 0) + P(X = 1) =$$

$$= e^{-2.4} \cdot \frac{2.4^{0}}{0!} + e^{-2.4} \cdot \frac{2.4^{1}}{1!} = e^{-2.4} + 2.4 \cdot e^{-2.4}.$$

2. więcej niż 5 razy (jedenminus prawdopodobieństwo zdarzenia przeciwnego):

$$P(X > 5) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) = 0$$

$$=1-e^{-2,4}-e^{-2,4}\cdot 2, 4-\frac{e^{-2,4}\cdot 2, 4^2}{2}-\frac{e^{-2,4}\cdot 2, 4^3}{6}-\frac{e^{-2,4}\cdot 2, 4^4}{24}-\frac{e^{-2,4}\cdot 2, 4^5}{120}.$$

10 Zmienne losowe ciągłe. Definicje i najważniejsze rozkłady.

10.1 Rozkład jednostajny

Zadanie 10.1 Zmienna losowa X ma rozkład jednostajny na odcinku [2, 6]. Wykonaj polecenia:

- 1. zapisz wzór na gęstość zmiennej losowej X
- 2. oblicz prawdopodobieństwo zdarzenia że $X \in [3, 3.5]$
- 3. oblicz prawdopodobieństwo zdarzenia że $X \in (3, 3.5)$

Rozwiązanie:

1. wzór na gęstość zmiennej losowej X to

$$\chi_{[2,6]}(x) = \begin{cases} \frac{1}{4} & \text{gdy } x \in [2,6] \\ 0 & \text{gdy } x \notin [2,6] \end{cases}$$

2. prawdopodobieństwo zdarzenia, że $X \in [3, 3.5]$ to

$$P(X \in [3, 3.5]) = \int_3^{3.5} \frac{1}{4} dx = \frac{1}{4} (3.5 - 4) = \frac{1}{8}$$

3. prawdopodobieństwo zdarzenia że $X \in 3, 3.5$ to

$$P(X \in (3, 3.5)) = P(X \in [3, 3.5]) = \frac{1}{8}$$

10.2 Rozkład wykładniczy

Zadanie 10.2 Zmienna losowa X ma rozkład wykładniczy z parametrem $\lambda =$

- 1. Wykonaj polecenia:
 - 1. narysuj gęstość/ zapisz wzór na gęstość zmiennej losowej X
 - 2. na powyższym rysunku przedstaw prawdopodobieństwo zdarzenia że $X \in [0,1]$
 - 3. oblicz prawdopodobieństwo zdarzenia że $X \in [0,1]$

Rozwiązanie:

Punkty 1 i 2:

Punkt 3 - prawdopodobieństwo zdarzenia że $X \in [0,1]$ wynosi

$$P(X \in [0,1]) = \int_0^1 f(x)dx = \int_0^1 e^{-x}dx = [-e^{-x}]_{x=0}^{x=1} = 1 - e^{-1}$$

10.3 Rozkład normalny

Zadanie 10.3 Zmienna losowa X ma rozkład normalny o parametrach $\mu=0$ oraz $\sigma=1$. Podaj prawdopodobieństwo, że X osiąga wartości dodatnie.

Rozwiązanie:

Wykres tej funkcji jest parzysty, a pole calego wykresu wynosi 1 więc z połowy jest $\frac{1}{2}$.

$$P(X>0) = \int_0^\infty f(x)dx = \frac{1}{2}$$

10.4 Rozkład Gamma, Wzór Gamma-Poisona

Zadanie 10.4 Kompilacja programu składa się z 3 części przetwarzanych przez kompilator sekwencyjnie, jedna po drugiej. Czas przetwarzania każdej z części ma rozkład wykładniczy ze średnim czasem 5 minut, niezależnym od czasu przetwarzania pozostałych części.

- 1. oblicz wartość oczekiwaną i wariancję całkowitego czasu kompilacji
- 2. oblicz prawdopodobieństwo, że cały proces kompilacji zostanie przeprowadzony w czasie mniejszym niż 12 minut.

Rozwiazanie:

Całkowity czas kompilacji opisuje zmienna losowa o rozkładzie $Gamma(T \sim \Gamma(\alpha = 3, \lambda = \frac{1}{5}))$. Wartość oczekiwana i wariancja całkowitego czasu kompilacji to

$$E(X) = \frac{\alpha}{\lambda} = \frac{3}{\frac{1}{5}} = 15$$

$$Var(x) = \frac{\alpha}{\lambda^2} = \frac{3}{\frac{1}{25}} = 75$$

Prawdopodobieństwo, że cały proces kompilacji zostanie przeprowadzony w czasie mniejszym niż 12 minut liczymy korzystając z formuły Gamma-Poisona.

$$P(T < t) = P(X \geqslant \alpha),$$

gdzie $X \sim Poisson(\lambda * t = \frac{1}{5} * 12 = 2.4)$ oraz $\alpha = 3, t = 12$. Mamy więc:

$$P(T < 12) = P(X \ge 3) = 1 - P(0) - P(1) - P(2) = 1 - F_X(2) = 1 - 0.5697 = 0.43$$

11 Lancuchy Markowa. Rozkład stacjonarny.

Zadanie 11.1 W pewnym mieście każdy dzień jest słoneczny albo deszczowy. Po dniu słonecznym dzień słoneczny następuje z prawdopodobieństwem 0.7, a po dniu deszczowym z prawdopodobieństwem 0.4.

- 1. Narysuj łańcuch markowa oraz wyznacz macierz przejścia dla niego.
- 2. W poniedziałek padało. Stwórz prognozę na wtorek, środę i czwartek.
- 3. Meteorolodzy przewidują 80% szans na deszcz w poniedziałek. Stwórz proqnozę na wtorek, środę i czwartek.
- 4. Znajdź rozkład stacjonarny.

1. Łańcuch Markowa:

Macierz przejść:

$$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

2.

Wtorek:

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$$

Środa:

$$\begin{bmatrix} 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.52 & 0.48 \end{bmatrix}$$

Czwartek:

$$\begin{bmatrix} 0.52 & 0.48 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.556 & 0.444 \end{bmatrix}$$

3.

Wtorek:

$$\begin{bmatrix} 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.46 & 0.54 \end{bmatrix}$$

Środa:

$$\begin{bmatrix} 0.46 & 0.54 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.538 & 0.462 \end{bmatrix}$$

Czwartek:

$$\begin{bmatrix} 0.538 & 0.462 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.5614 & 0.4386 \end{bmatrix}$$

4. Macierz przejść:

$$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

Rozwiązujemy układ równań:

$$\begin{cases} \pi P = \pi \\ \pi_1 + \pi_2 = 1 \end{cases}$$

$$\pi P = \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.7\pi_1 + 0.4\pi_2 & 0.3\pi_1 + 0.6\pi_2 \end{bmatrix}$$

$$\begin{cases} 0.7\pi_1 + 0.4\pi_2 = \pi_1 \\ 0.3\pi_1 + 0.6\pi_2 = \pi_2 \\ \pi_1 + \pi_2 = 1 \end{cases}$$

Stąd otrzymujemy

$$\begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{7} & \frac{3}{7} \end{bmatrix}$$

12 Testy statystyczne: test z, test t-Studenta, test chi-kwadrat.

Generalnie:

- Z-testów używamy do sprawdzenia czy testowana próba pasuje do zadanej populacji lub do porównywania dwóch **dużych** (n ¿ 30) prób
- T-testów używamy do porównywania dwóch **małych** (n ; 30) prób testowych ze soba
 - Próby mogą być niezależne np. wyniki sprawdzianów w dwóch grupach
 - Mogą być również zależne (dotyczyć jednej i tej samej grupy) np. waga przed zastosowaniem diety i po
 - Może również służyć do porównywania próby do zadanej wartości (np. średniej) podobnie jak Z-testy (?)
- Chi-kwadrat używamy do ustalania goodness of fit dla próbki względem populacji lub do zbadania niezależności

12.1 **Z**-test

Zadanie 12.1 Inżynier jakości znajduje 10 wadliwych produktów w próbie 500 egzemplarzy pewnego komponentu od wytwórcy A. Wśród 400 egzemplarzy od wytwórcy B znajduje 12 wadliwych. Firma komputerowa, korzystająca z tych komponentów twierdzi, że jakość wyrobów od obu producentów jest taka sama. Sprawdź, czy na 5% poziomie istotności istnieją wystarczające dowody do odrzucenia tego twierdzenia.

 H_0 : Jakość wyrobów obu producentów jest taka sama

 H_a : Jakość wyrobów obu producentów jest różna

Obliczamy proporcje dla obu prób:

$$p_1 = \frac{10}{500} = \frac{1}{50}$$

$$p_2 = \frac{12}{400} = \frac{3}{100}$$

oraz proporcję dla próby połączonej:

$$\bar{p} = \frac{10 + 12}{500 + 400} = \frac{11}{450}$$

Następnie używamy wzoru:

$$Z = \frac{p_1 - p_2}{\sqrt{\bar{p}(1 - \bar{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$Z = \frac{\frac{1}{50} - \frac{3}{100}}{\sqrt{\frac{11}{450}(1 - \frac{11}{450})(\frac{1}{500} + \frac{1}{400})}} = \frac{-\frac{1}{100}}{\sqrt{\frac{4829}{45000000}}} \approx -0.9653$$

Odczytujemy z tablic dla Z-testów wartość dla -0.9653 i jest to 0.1685

W naszej hipotezie mamy pytanie o równość więc bierzemy pod uwagę obie końcówki przedziału (?). Mamy sprawdzić prawdziwość naszej hipotezy na 5% poziomie istotności, więc na każdą końcówkę mamy po 2.5%.

0.1685 < 2.5 więc możemy odrzucić hipotezę zerową twierdząc, że jakość wyrobów obu producentów jest różna

12.2 T-testy

Zadanie 12.2 Posiadacz konta internetowego, w długim okresie czasu, w trakcie logowania pisze swój login i hasło z przerwami pomiędzy kolejnymi wciśnięciami klawiszy wynoszącymi 0.2s. Pewnego dnia zarejestrowane logowanie na to konto z prawidłowym hasłem, przy czym czasy odstępów pomiędzy wciśnięciami kolejnych klawiszy wynosiły:

.24, .22, .26, .34, .35, .32, .33, .29, .19, .36, .30, .15, .17, .20, .28, .40, .37, .27 sekund

Na 5% poziomie ufności zweryfikuj, czy dane te mogą być dowodem na nieautoryzowany dostęp do konta?

 H_0 : Dostęp do konta jest autoryzowany

 H_a : Dostęp do konta jest nieautoryzowany

Korzystamy ze wzoru:

$$T = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n}$$

gdzie:

- \bar{x} średnia z badanej próby
- μ_0 zakładana średnia
- σ odchylenie standardowe z próby
- n wielkość próby

W naszym przypadku:

$$\bar{x} \approx 0.28$$
 (1)

$$\mu_0 = 0.2 \tag{2}$$

$$\sigma \approx 0.07324 \tag{3}$$

$$n = 18 \tag{4}$$

Podstawiając do wzoru mamy:

$$T = \frac{0.28 - 0.2}{0.07324} \sqrt{18} \approx 4.63423341$$

Ilość naszych stopni swobody to n-1 więc w naszym przypadku 17

Odczytujemy z tablic rozkładu t-studenta wartość odpowiadającą 2.5% poziomowi ufności (5%/2) oraz 17 stopniom swobody i jest to $\mathbf{2.11}$

Ponieważ 4.63423341 > 2.11 nie mamy podstawy aby odrzucić hipotezę zerową

12.3 Testy Chi-kwadrat

Zadanie 12.3 Producent kostki do gry deklaruje, że oczka na jego niesprawiedliwej kostce wypadają z następującym prawdopodobieństwem:

- 1 oczko $\frac{1}{2}$
- $2 \text{ } oczka \frac{1}{4}$
- $3 \ oczka \frac{1}{25}$
- $4 \ oczka \frac{1}{50}$
- 5 oczek $\frac{1}{25}$
- 6 oczek $\frac{3}{20}$

Dla 100 rzutów zaobserwowano natomiast nastepujące wyniki:

- 1 oczko 55 razy
- 2 oczka 20 razy
- 3 oczka 6 razy
- 4 oczka 3 razy
- 5 oczek 2 razy
- 6 oczek 14 razy

Przeprowadź test zgodności (goodness of fit) χ^2 i rozstrzygnij na poziomie 5% istotności czy producent ma rację

Wyliczamy wartości oczekiwane dla każdego przedziału i zgodnie z rule of thumb w razie potrzeby je łączymy tak, aby dla każdego z nich wartość była \geqslant 5

n	Obs_n	Exp_n	X	Obs_x	Exp_x
1	55	50	1	55	50
2	20	25	2	20	25
3	6	4			
4	3	2	3	11	10
5	2	4			
6	14	15	4	14	15

Następnie aby obliczyć χ^2 stosujemy następujący wzór (N to liczba naszych x):

$$\chi^2 = \sum_{x=1}^{N} \frac{(Obs_x - Exp_x)^2}{Exp_x}$$

W naszym przypadku $\chi^2\approx 1.6666$

Stopnie swobody obliczamy ze wzoru N -1, gdzie N to liczba naszych x-ów. W naszym przypadku liczba stopni swobody jest więc równa 3.

Następnie odczytujemy z tablicy χ^2 wartość dla 5% istotności przy 3 stopniach swobody. Jest ona równa ${\bf 7.82}$

1.6666 < 7.82 stąd nie mamy więc podstawy do odrzucenia hipotezy zerowej

13 Wzór Bayesa i jego interpretacja.

Zadanie 13.1 W firmie IT 20% wytwarzanych modułów przechodzi specjalny proces inspekcji. Z danych historycznych wiadomo, że każdy moduł poddany inspekcji nie ma defektów z prawdopodobieństwem 0.95. Dla modułu nie poddanego procesowi inspekcji prawdopodobieństwo to wynosi jedynie 0.7. Klient znalazł defekt w module. Jakie jest prawdopodobieństwo, że moduł ten przeszedł przez proces inspekcji?

Korzystamy oczywiście ze wzoru Bayesa:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 przy $P(B) > 0$

I - moduł przeszedł przez inspekcję D - moduł ma defekt

$$\begin{split} P(I) &= \frac{20}{100} = \frac{1}{5} \quad P(\bar{I}) = \frac{4}{5} \\ P(\bar{D}|I) &= \frac{95}{100} = \frac{19}{20} \quad P(D|I) = \frac{1}{20} \\ P(\bar{D}|\bar{I}) &= \frac{70}{100} = \frac{7}{10} \quad P(D|\bar{I}) = \frac{3}{10} \end{split}$$

$$P(I|D) = \frac{P(D|I) \cdot P(I)}{P(D)} = \frac{P(D|I) \cdot P(I)}{P(D|I) \cdot P(I) + P(D|\bar{I}) \cdot P(\bar{I})} = \frac{\frac{1}{20} \cdot \frac{1}{5}}{\frac{1}{20} \cdot \frac{1}{5} + \frac{3}{10} \cdot \frac{4}{5}} = \frac{1}{25}$$

Prawdopodobieństwo że moduł, w którym znalazł się defekt przeszedł proces inspekcji wynosi $\frac{1}{25}.$

- 14 Istnienie elementów odwrotnych względem mnożenia w strukturze (Zm,+,*) w zależności od liczby naturalnej m. Rozszerzony algorytm Euklidesa.
- 15 Ortogonalność wektorów w przestrzeni R_n ; związki z liniową niezależnością. Metoda ortonormalizacji Grama-Schmidta.

16 Liczby Stirlinga I i II rodzaju i ich interpretacja.

17 Twierdzenia Eulera i Fermata; funkcja Eulera.

18 Konfiguracje i t-konfiguracje kombinatoryczne. 19 Cykl Hamiltona, obwód Eulera, liczba chromatyczna - definicje i twierdzenia.

20 Algorytm Forda-Fulkersona wyznaczania maksymalnego przepływu.

Weźmy sobie taką sieć przepływową. Chcemy wyznaczyć jej maksymalny przepływ. Musimy zacząć od jakiegoś (dowolnego) przepływu. Szukamy ścieżki rozszerzającej, która połączy źródło s z ujściem t.

Na przykład może to być ścieżka: $P = \{s \to A \to B \to t\}$.

Na ścieżce p znajdują się trzy kanały sieci rezydualnej: (s, A), (A, B)i(B, t). Przepustowość rezydualna $c_f(p)$ ścieżki jest równa najmniejszej przepustowości rezydualnej jej kanałów, czyli przepustowości kanału $(B \to t)$, dla którego $c_f(B, t) = 6$. Zatem wzdłuż krawędzi ścieżki przepływ można zwiększyć o 6 jednostek, o tyle rośnie również przepływ sieciowy, czyli $|f_{nowy}| = |f_{stary}| + c_f(p) = 0 + 6 = 6$.

Budujemy sieć rezydualną. Zwiększenie przepływu w kanale sieci pierwotnej o $c_f(p)$ odpowiada zmniejszeniu przepustowości rezydualnej tego kanału. Jednocześnie wraz z pojawieniem się przepływu w kanale sieci pierwotnej powstaje kanał przeciwny w sieci rezydualnej o przepustowości rezydualnej równej przepływowi.

Przepustowość rezydualna kanału (s, A) wynosi 3 – oznacza to, iż kanałem tym można wciąż jeszcze przesłać trzy dodatkowe jednostki przepływu. W sieci rezydualnej pojawia się kanał przeciwny (A, s) o przepustowości rezydualnej $c_f(A, s) = 6$.

Kanał (A, B) może jeszcze przesłać 1 dodatkową jednostkę przepływu. Również tutaj pojawił się kanał przeciwny o przepustowości rezydualnej równej 6.

Kanał (B,t) przestał istnieć w sieci rezydualnej, ponieważ osiągnął już swoją maksymalną przepustowość – 6 jednostek przepływu. Nie może on być dalej wykorzystywany do powiększania przepływu. Na jego miejscu mamy jednak kanał przeciwny z przepustowością rezydualną równą 6.

W nowej sieci rezydualnej szukamy kolejnej ścieżki rozszerzającej:

$$P = \{s \to A \to C \to t\}, \quad c_f(p) = 3.$$

Przepływ zwiększamy:

$$|f| = 6 + 3 = 9$$

i modyfikujemy przepustowości rezydualne krawędzi ścieżki rozszerzającej otrzymując nową sieć rezydualną. Znikają z niej kanały (s,A) i (A,C) – wykorzystały już swój potencjał zwiększania przepływu.

Szukamy kolejnej ścieżki rozszerzającej:

$$P = \{s \to D \to E \to t\}, \quad c_f(p) = 6$$

W nowej sieci rezydualnej zniknął kanał (D,E). Wciąż jednakże możemy znaleźć nową ścieżkę rozszerzającą:

$$P = \{s \to D \to C \to t\}, \quad c_f(p) = 3$$

Przepływ zwiększamy:

$$|f| = 15 + 3 = 18.$$

Po zmodyfikowaniu sieci rezydualnej otrzymujemy nową sieć rezydualną. W tej sieci rezydualnej **nie znajdziemy już żadnej nowej ścieżki rozszerzającej** – ze źródła s nie wychodzi żaden kanał. Oznacza to zakończenie algorytmu, zatem znaleźliśmy przepływ maksymalny. Aby otrzymać sieć przepływową wystarczy od przepustowości kanałów odjąć otrzymane przepustowości rezydualne – dla nieistniejących kanałów ich przepustowość rezydualna wynosi 0.

Poniżej nasza sieć przepływowa z uzyskanym maksymalnym przepływem:

$$|f| = 18$$

21 Rozwiązywanie równan rekurencyjnych przy użyciu funkcji tworzących (generujących) oraz przy użyciu równania charakterystycznego.

21.1 Funkcja tworząca.

Przykład

$$u_0 = 1$$
, $u_1 = 1$, $u_{n+2} - 4u_{n+1} + 4u_n = 0$

$$u_{n+2} = 4u_{n+1} - 4u_n$$

$$u_n = 4u_{n-1} - 4u_{n-2}$$

$$\sum_{n=0}^{\infty} u_n x^n = 1 + 1 * x + \sum_{n=2}^{\infty} (4u_{n-1} - 4u_{n-2}) x^n = 1 + x + \sum_{n=2}^{\infty} 4u_{n-1} x^n - \sum_{n=2}^{\infty} 4u_{n-2} x^n = 1 + x + 4x \sum_{n=2}^{\infty} u_{n-1} x^{n-1} - 4x^2 \sum_{n=2}^{\infty} u_{n-2} x^{n-2} = 1 + x + 4x \sum_{n=1}^{\infty} u_n x^n - 4x^2 \sum_{n=0}^{\infty} u_n x^n = 1 + x + 4x (\sum_{n=0}^{\infty} u_n x^n - u_0) - 4x^2 \sum_{n=0}^{\infty} u_n x^n = 1 + x - (4x) * 1 + 4x \sum_{n=0}^{\infty} u_n x^n - 4x^2 \sum_{n=0}^{\infty} u_n x^n$$

$$\sum_{n=0}^{\infty} u_n x^n = 1 - 3x + (4x - 4x^2) \sum_{n=0}^{\infty} u_n x^n$$

$$\sum_{n=0}^{\infty} u_n x^n (1 - 4x + 4x^2) = 1 - 3x$$

$$\sum_{n=0}^{\infty} u_n x^n (1 - 4x + 4x^2) = 1 - 3x$$

$$\sum_{n=0}^{\infty} u_n x^n = \frac{1 - 3x}{1 - 4x + 4x^2} = \frac{1 - 3x}{(1 - 2x)^2}$$

Rozkład na ułamki proste:

$$1 - 3x = A(1 - 2x) + B$$
, $1 = A + B$, $-3 = -2A$, $A = \frac{3}{2}$, $B = \frac{-1}{2}$

Stąd:

$$\sum_{n=0}^{\infty} u_n x^n = \frac{3}{2} * \frac{1}{1 - 2x} - \frac{1}{2} * \frac{1}{(1 - 2x)^2} =$$

$$\frac{3}{2} \sum_{n=0}^{\infty} \binom{n+1-1}{n} (2x)^n - \frac{1}{2} \sum_{n=0}^{\infty} \binom{n+2-1}{n} (2x)^n =$$

$$\frac{3}{2} \sum_{n=0}^{\infty} 2^n x^n - \frac{1}{2} \sum_{n=0}^{\infty} (n+1) 2^n x^n =$$

$$\sum_{n=0}^{\infty} (\frac{3}{2} - \frac{1}{2}(n+1)) 2^n x^n$$

Więc

$$u_n = (\frac{3}{2} - \frac{1}{2}(n+1))2^n$$

21.2 Równanie charakterystyczne.

Przykład 1:

$$a_0 = 0$$
, $a_1 = 1$, $a_{n+2} + a_{n+1} - 2a_n = 0$

Załóżmy, że istnieje rozwiązanie takie, że $a_n = t^n$.

$$t^{n+2} + t^{n+1} - 2t^n = 0$$

$$t^2 + t - 2 = 0$$

$$\Delta = 1 + 8 = 9$$

$$r_1 = \frac{-1+3}{2} = 1$$
, $r_2 = \frac{-1-3}{2} = -2$

Nie jest to pierwiastek podwójny $(r_1 \neq r_2)$, zatem wiemy, że:

$$\exists C, D: \quad a_n = Cr_1^n + Dr_2^n$$

Podstawiając:

$$a_n = C + D(-2)^n$$

Wyliczamy C i D na podstawie znanych pierwszych wyrazów ciągu:

$$a_0 = C + (-2)^0 D = C + D = 0$$

$$a_1 = C + (-2)^1 D = C - 2 * D = 1$$

$$C = \frac{1}{3}, \quad D = \frac{-1}{3}$$

$$a_n = \frac{1}{3} - \frac{(-2)^n}{3} = \frac{1 - (-2)^n}{3}$$

Przykład 2.

$$a_{0} = -2, \ a_{1} = 1, \ a_{n+2} - 2a_{n+1} + a_{n} = 0$$

$$t^{2} - 2t + 1 = 0$$

$$(t - 1)^{2} = 0$$

$$r = r_{1} = r_{2} = 1$$

$$a_{n} = (C + Dn)r^{n}$$

$$a_{0} = (C + D * 0) * 1^{0} = C = -2$$

$$a_{1} = (C + D * 1) * 1^{1} = C + D = D - 2 = 1$$

$$C = -2, \ D = 3$$

$$a_{n} = -2 + 3n$$

22 Ciąg i granica ciągu liczbowego, granica funkcji.

23 Ciągłość i pochodna funkcji. Definicja i podstawowe twierdzenia.

24 Ekstrema funkcji jednej zmiennej. Definicje i twierdzenia.

25 Całka Riemanna funkcji jednej zmiennej.

Pochodne cząstkowe funkcji wielu zmiennych; różniczkowalność i różniczka funkcji.

27 Ekstrema funkcji wielu zmiennych. Definicje i twierdzenia.

28 Twierdzenie o zmianie zmiennych w rachunku całkowym; współrzędne walcowe i sferyczne.

Teoretyczne podstawy informatyki

- 29 Metody dowodzenia poprawności pętli.
- 30 Odwrotna Notacja Polska: definicja, własności, zalety i wady, algorytmy.
- 31 Modele obliczen: maszyna Turinga.
- 32 Modele obliczen: automat skończony, automat ze stosem.

33 Złożoność obliczeniowa - definicja notacji: $O,\Omega,\Theta.$

34 Złożoność obliczeniowa - pesymistyczna i średnia.

- 35 Metoda "dziel i zwyciężaj"; zalety i wady.
- 36 Lista: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.
- 37 Kolejka i kolejka priorytetowa: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.

38 Algorytmy sortowania QuickSort i MergeSort: metody wyboru pivota w QS; złożoności.

39 Algorytm sortowania bez porównań (sortowanie przez zliczanie, sortowanie kubełkowe oraz sortowanie pozycyjne).

40 Reprezentacja drzewa binarnego za pomocą porządków (preorder, inorder, postorder).

- 41 Algorytmy wyszukiwania następnika i poprzednika w drzewach BST; usuwanie węzła.
- 42 B-drzewa: operacje i ich złożoność.
- 43 Drzewa AVL: rotacje, operacje z wykorzystaniem rotacji i ich złożoność.
- 44 Algorytmy przeszukiwania wszerz i w głąb w grafach.
- 45 Algorytmy wyszukiwania najkrótszej ścieżki (Dijkstry oraz Bellmana-Forda).
- 46 Programowanie dynamiczne: podział na podproblemy, porównanie z metodą "dziel i zwyciężaj".
- 47 Algorytm zachłanny: przykład optymalnego i nieoptymalnego wykorzystania.
- 48 Kolorowania wierzchołkowe (grafów planarnych) i krawędziowe grafów, algorytmy i ich złożoności.
- 49 Algorytmy wyszukiwania minimalnego drzewa rozpinającego: Boruvki, Prima i Kruskala.
- Najważniejsze algorytmy wyznaczania otoczki wypukłej zbioru punktów w układzie współrzędnych (Grahama₃₉ Jarvisa, algorytm przyrostowy (quickhull)).
- 51 Problemy P, NP, NP-zupełne i zależności między nimi. Hipoteza P vs. NP.
- 52 Automat minimalny, wybrany algorytm mini-

- 58 Reprezentacja liczb całkowitych; arytmetyka.
- 59 Reprezentacja liczb rzeczywistych; arytmetyka zmiennopozycyjna.
- 60 Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych w C++.
- 61 Sposoby przekazywania parametrów do funkcji (przez wartość, przez referencję). Zalety i wady.
- Wskaźniki, arytmetyka wskaźników, różnica między wskaźnikiem a referencją w C++.
- 63 Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm.
- 64 Funkcje zaprzyjaźnione i ich związek z przeładowaniem operatorów w C++.
- 65 Programowanie generyczne na podstawie szablonów w języku C++.
- 66 Podstawowe kontenery w STL z szerszym omówieniem jednego z nich.
- 67 Obsługa sytuacji wyjątkowych w C++.
- 68 Obsługa plików w języku C.
- 69 Model wodospadu a model spiralny wytwarzania oprogramowania.
- 70 Diagram sekwencji i diagram przypadków użycia w języku UML.

- Relacyjny model danych, normalizacja relacji (w szczególności algorytm doprowadzenia relacji do postaci Boyce'a-Codda), przykłady.
- 77 Indeksowanie w bazach danych: drzewa B+, tablice o organizacji indeksowej, indeksy haszowe, mapy binarne.
- 78 Podstawowe cechy transakcji (ACID). Metody sterowania współbieżnością transakcji, poziomy izolacji transakcji, przykłady.
- 79 Złączenia, grupowanie, podzapytania w języku SQL.
- 80 Szeregowalność harmonogramów w bazach danych.
- 81 Definicja cyfrowego układu kombinacyjnego przykłady układów kombinacyjnych i ich implementacje.
- 82 Definicja cyfrowego układu sekwencyjnego przykłady układów sekwencyjnych i ich implementacje.
- 83 Minimalizacja funkcji logicznych.
- 84 Programowalne układy logiczne PLD (ROM, PAL, PLA).
- 85 Schemat blokowy komputera (maszyna von Neumanna).
- 86 Zarządzanie procesami: stany procesu, algorytmy szeregowania z wywłaszczaniem.