### Üstel Fonksiyon:

a > 0,  $a \ne 1$  ve x herhangi bir reel sayı olmak üzere f:  $R \to R^+$ ,  $f(x) = a^x$  fonksiyonuna "üstel fonksiyon" denir.

 $f(x)=2^x$ ,  $f(x)=\left(\frac{1}{4}\right)^x$  ve  $f(x)=3^{-x}$  gibi tabanı sabit sayı (pozitif ve 1' den farklı) ve üssü değişken olan bu fonksiyonlar üstel fonksiyonlara birer örnektir.

#### Üstel Fonksiyonların Grafiği:

 $f(x) = a^x$  üstel fonksiyonunun temel özellikleri şunlardır:

1) Her x değeri için  $a^x > 0$ ' dır. Yani , üstel fonksiyonun tanım kümesi  $(-\infty, \infty)$  için değer kümesi  $(0, \infty)$ ' dur. Böylece fonksiyonun grafiği daima x- ekseninin üst bölgesinde kalır. Özel olarak üstel fonksiyon hiçbir zaman sıfır değerini almaz.

2) $y=a^x$  üstel fonksiyonunda; x=0 için  $a^0=1$  olduğundan üstel fonksiyonun grafiği daima (0,1) noktasından geçer.

3) $y=a^x$  üstel fonksiyonunda; 0 < a < 1 iken  $x_1 < x_2$  için  $a^{x_1} > a^{x_2}$  olduğundan fonksiyon daima azalandır. a > 1 iken  $x_1 < x_2$  için  $a^{x_1} < a^{x_2}$  olduğundan fonksiyon daima artandır.

Buna göre,  $y=a^x$  üstel fonksiyonu  $x_1 \neq x_2$  için  $a^{x_1} \neq a^{x_2}$  olduğundan birebirdir.

**4**) $b \in R^+$  olmak üzere  $a^x = b$  olacak şekilde bir  $x \in R$  sayısı vardır.

5)  $y=a^x$  üstel fonksiyonunda, a=e alınırsa  $y=e^x$  üstel fonksiyonu elde edilir. Buradaki e sayısı irrasyonel bir sayı olup yaklaşık değeri e  $\approx 2,718281...$ ' dir. Bu sayının taban olarak alınması matematiksel açıdan anlamlıdır. Bu fonksiyona "doğal üstel fonksiyon" ya da "eksponansiyel fonksiyon" denir ve  $\exp(x)=e^x$  ile gösterilir.

$$exp(x) = e^x$$

**NOT:** Üstel fonksiyonların grafiklerini aşağıda gösterildiği gibi genelleştirebiliriz:



#### Logaritma Fonksiyonu:

Üstel fonksiyon birebir örten bir fonksiyon olduğundan,  $R^+$  üzerinde tanımlı ve üstel fonksiyonun ters fonksiyonu olan bir fonksiyondan söz edilebilir. Üstel fonksiyonun ters fonksiyonu logaritma fonksiyonudur. Yani,  $f: R \to R^+$ ,  $f(x) = a^x$  ise  $f^{-1}: R^+ \to R$ ,  $f^{-1}(x) = \log_a x$  dir.

a>0,  $a \ne 1$  olmak üzere  $b \in R^+$  sayısının a tabanına göre logaritması  $a^x = b$  eşitliğini sağlayan bir x sayısıdır. Buna göre logaritma fonksiyonu, a > 0,  $a \ne 1$  ve  $b \in R^+$  olmak üzere

$$a^x = b \Leftrightarrow x = \log_a b$$

şeklinde de tanımlanır ve " a tabanına göre logaritma b" diye okunur.

Tabanı 10 olan logaritma fonksiyonuna "bayağı logaritma fonksiyonu" denir. 10 tabanındaki logaritma fonksiyonu taban yazılmadan da belirtilebilir.

Tabanı e (e=2,718281...) sayısı olan logaritma fonksiyonun "doğal logaritma fonksiyonu" denir. e tabanındaki logaritma fonksiyonu, genellikle "ln" fonksiyonu kullanılarak gösterilir. Yani, ln x gösterimi log<sub>a</sub>x anlamına gelmektedir.

## Logaritma Fonksiyonunun Grafiği:





## Logaritma Fonksiyonunun Özellikleri:

 $1\log_{a} 1=0$  (1'in her tabandaki logaritması daima sıfırdır.)

2)log a=1 (Tabanın logaritması daima 1'dir.)

3)
$$\log_a x^y = y.\log_a x$$

**4**)
$$\log_{a^x} b^y = \frac{y}{x} . \log_a b$$

$$5)\log_{a}(x.y) = \log_{a}x + \log_{a}y$$

$$6)\log_a(\frac{x}{y}) = \log_a x - \log_a y$$

7)
$$\log_x y = \frac{\log_a y}{\log_a x}$$
 (Taban Değiştirme)

8) 
$$a^{\log_a x} = x$$

Örnek:  $\log_5 1 = 0$ 

$$\log_{\frac{1}{3}} 1 = 0$$

$$\log 1 = \log_{10} 1 = 0$$

$$\ln 1 = \log_e 1 = 0$$

$$\log_4 4 = 1$$

$$\log_{\frac{1}{2}} \frac{1}{2} = 1$$

$$\log 10 = \log_{10} 10 = 1$$

Örnek:

$$\log_2 64 = \log_2 2^6 = 6.\log_2 2 = 6.1 = 6$$

$$\log_3 81 = \log_3 3^4 = 4.\log_3 3 = 4.1 = 4$$

Örnek: 
$$\log_{27} 81 = \log_{3^3} 3^4 = \frac{4}{3} \cdot \log_3 3 = \frac{4}{3} \cdot 1 = \frac{4}{3}$$

$$\log_{\frac{1}{5}} 125 = \log_{5^{-1}} 5^3 = \frac{3}{-1} \cdot \log_5 5 = -3.1 = -3$$

**Örnek:**  $x \in R^+$  olmak üzere,  $\log_2 x = 4 \Rightarrow x = ?$ 

çözüm:

1. yol: 
$$\log_2 x=4$$
 (Tanımdan:  $a^x = b \Leftrightarrow x = \log_a b$ )

$$x=2^4=16$$

2. yol: 
$$2^{\log_2 x} = 2^4$$
 (Özellikten:  $a^{\log_a x} = x$ )

$$x = 2^4$$

Örnek:  $\ln 8 + \ln 4 - 2 \cdot \ln 5 = \ln (8.4) - \ln 5^2$ 

$$=$$
ln 32  $-$ ln 25

$$=\ln\left(\frac{32}{25}\right)$$

Örnek: 
$$\ln\left(\frac{1}{x^3}\right) = \ln 1 - \ln x^3$$

$$=\log_e 1 - 3.\ln x$$

$$= 0 - 3.\ln x$$

$$=-3.lnx$$

Örnek:  $3^{\log_3 5} = 5$  (Özellikten:  $a^{\log_a x} = x$ )

Örnek:  $log_3 2=a$  ise  $log_2 48$ ' in a türünden değeri nedir?

çözüm: Taban değiştirme kuralından:  $\log_x y = \frac{\log_a y}{\log_a x}$  olduğunu biliyoruz. Buradan:

$$\log_{2} 48 = \frac{\log_{3} 48}{\log_{3} 2}$$

$$= \frac{\log_{3} (2^{4}.3)}{\log_{3} 2}$$

$$= \frac{\log_{3} 2^{4} + \log_{3} 3}{\log_{3} 2}$$

$$= \frac{4.\log_{3} 2 + \log_{3} 3}{\log_{3} 2}$$

$$= \frac{4a+1}{a} \text{ olarak bulunur.}$$

# Üslü ve Logaritmalı Denklemler:

a>0 ve 
$$a \ne 1$$
 için,

1) 
$$a^x = a^y \Leftrightarrow x = y$$

2) x>0 ve y>0 olmak üzere  $\log_a x = \log_a y \Leftrightarrow x=y$ 

Örnek:  $4^{4x} = 16^{3x-8}$  ise x kaçtır?

çözüm: 
$$4^{4x} = 16^{3x-8}$$

$$4^{4x} = \left(4^2\right)^{3x-8}$$

$$4^{4x} = 4^{6x-16}$$

$$4x=6x-16$$

$$2x = 16$$

$$x=8$$

**Örnek:** 
$$e^{-2\ln x} = \frac{1}{16} \Rightarrow x = ?$$

$$\label{eq:cozum:equation} \text{c\"oz\"um: } e^{-2\text{ln }x} \!=\! \frac{1}{16} \! \Longrightarrow e^{\text{ln }x^{-2}} = \! \frac{1}{16}$$

$$\Rightarrow e^{\log_e x^{-2}} = \frac{1}{16}$$

(Özellikten:  $a^{\log_a x} = x$ )

$$\Rightarrow$$
  $x^{-2} = 4^{-2}$ 

$$\Rightarrow$$
x=4

Örnek:  $3^{2x-1}=4^{x+2}$  denklemini çözünüz. (ln  $3 \approx 1,0986$ ; ln  $4 \approx 1,3863$ )

çözüm: Verilen eşitlikte her iki tarafın doğal logaritmasını alırsak:

$$\ln 3^{2x-1} = \ln 4^{x+2}$$

$$(2x-1).\ln 3 = (x+2).\ln 4$$

$$(2x-1) \cdot 1,0986 = (x+2) \cdot 1,3863$$

$$2,1972 \cdot x - 1,0986 = 1,3863 \cdot x + 2,7726$$

$$0,8109.x=3,8712$$

$$x = \frac{3,8712}{0,8109} \approx 4,774$$

bulunur. Buradan da soruda verilen denklemin çözüm kümesi, Ç. $K=\{4,774\}$  olarak elde edilir.

# Örnek:

 $\log_4(3x-8) = \log_4(2x+6)$  denklemini çözünüz.

çözüm:  $\log_4(3x-8) = \log_4(2x+6)$ 

$$3x - 8 = 2x + 6$$

$$x = 14$$

x=14 değeri soruda verilen denklemde logaritmalı ifadelerde yerine yazılırsa:

$$3x-8=3.14-8=34>0$$
 ve  $2x+6=2.14+6=34>0$ 

olduğu görülür. Logaritma fonksiyonu, x-ekseninin pozitif bölgesinde tanımlı olduğundan x=14 değeri soruda verilen denklemin çözüm değeridir.

Buradan denklemin çözüm kümesi, Ç.K={14} olarak elde edilir.

**Uyarı:**  $y=\log_a x$  fonksiyonunda  $x \in (0,\infty)$  olması gerektiğinden, elde edilen çözümlerin her birinin soruda verilen logaritma fonksiyonlarında bu koşulu sağlayıp sağlamadığı kontrol edilmelidir.

Örnek: log(2x+1)=log(x+7)+1 denkleminin çözüm kümesi nedir?

çözüm: 
$$log(2x+1)=log(x+7)+1$$

$$\log(2x+1) = \log(x+7) + \log 10$$

$$log(2x+1) = log [10.(x+7)]$$

$$2x+1=10(x+7)$$

$$2x+1=10x+70$$

$$8x = -69$$

$$x = -\frac{69}{8}$$

Bulduğumuz  $x=-\frac{69}{8}$  değeri soruda verilen denklemde yerine yazılırsa,  $\log(2x+1)$  ve  $\log(x+7)$  fonksiyonları sırasıyla,  $\log\left(-\frac{65}{4}\right)$  ve  $\log\left(-\frac{13}{8}\right)$  olacağından çözüm olarak kabul edilemez. Çünkü  $\log_a x$  fonksiyonu, x-ekseninin pozitif bölgesinde tanımlı idi.

O halde, denklemin kökü yoktur. Denklemin kökü yoksa, çözüm kümesine yazılacak hiç eleman olmadığından denklemin çözüm kümesi, Ç.K= ∅' dir.

Örnek:  $\log_5(x-2) = 0 \Rightarrow x=?$ 

çözüm:

1.yol: 
$$\log_5(x-2) = 0$$

$$x - 2 = 5^0$$

(Tanımdan:  $log_a b=x \Leftrightarrow b=a^x$ )

$$x - 2 = 1$$

$$x=3$$

2.yol: 
$$\log_5(x-2) = 0$$

$$\log_5(x-2) = \log_5 1$$

$$x - 2 = 1$$

$$x=3$$