1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2010	1	공학	53	45
2011	1	공학	56	52
2012	2	공학	39	37
2013	2	공학	56	52
2014	2	공학	60	56

2. 평균 수강인원

수업년도 수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목

No data have been found.

3. 성적부여현황(평점)

D—	

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
			NI III I			

No data have been found.

4. 성적부여현황(등급)

2

2

2

2

В0

C+

C0

D0

4

7

2

3

2012

2012

2012

2012

수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원	비율
2010	1	Α+	8	17.78	2013	2	Α+	8	15.38
2010	1	Α0	6	13.33	2013	2	Α0	7	13.46
2010	1	B+	10	22.22	2013	2	B+	14	26.92
2010	1	ВО	8	17.78	2013	2	ВО	6	11.54
2010	1	C+	9	20	2013	2	C+	9	17.31
2010	1	C0	2	4.44	2013	2	C0	5	9.62
2010	1	D0	2	4.44	2013	2	D0	3	5.77
2011	1	Α+	8	15.38	2014	2	Α+	10	17.86
2011	1	Α0	8	15.38	2014	2	Α0	3	5.36
2011	1	B+	12	23.08	2014	2	B+	9	16.07
2011	1	В0	8	15.38	2014	2	В0	11	19.64
2011	1	C+	10	19.23	2014	2	C+	10	17.86
2011	1	C0	6	11.54	2014	2	C0	9	16.07
2012	2	Α+	7	18.92	2014	2	D+	3	5.36
2012	2	A0	4	10.81	2014	2	D0	1	1.79
2012	2	B+	10	27.03					

10.81

18.92

5.41

8.11

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2014	2	90.75	92.29	90.55	89	
2014	1	90.94	91.66	90.84		
2013	1	90.19	90.91	90.09		
2013	2	89.34	90.7	89.18	96	
2012	2	90.77	90.87	90.76	96	

6. 강의평가 문항별 현황

		н оги						점수팀	별 인원	년분포	
번호	평가문항	본인평 균 (가중 치적용)		학과,디 차 +초과 _.	·0		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점 미만	학	과	대	학	1점	2점	3점	4점	5점
	교강사:	미만	차이	평균	차이	평균	12	4 2	5염	42	5염

No data have been found.

7. 개설학과 현황

학과	2014/2	2013/2	2012/2	2011/1	2010/1
기계공학부	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2010/1	2011/1	2012/2	2013/2	2014/2
일반	1강좌(53)	1강좌(56)	1강좌(39)	1강좌(56)	1강좌(60)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2013 - 2015 교육과 정	서울 공과대학 기계공학부	광학적 현상을 기하광학적 측면과 파동광학적 측면으로 나누어 광학적 제현상에 대해 강의한 다. 기하광학 측면에서는 최소전파시간의 원리, 반사, 굴절 및 렌즈의 원리에 대해 다루고, 파동 광학 측면에서 편광, 회절, 간섭에 대해 강의한 다. 나아가 이러한 광학적 현상을 정밀계측, 가 시화 등 기계공학분야에 응용할 수 있는 Interferometer, Holography, Fiber-Optics, Laser Application 등의 원리와 실례에 대하여 다룬다.	Basic principles of optics, description of optical phenomena and their application to mechanical engineering: imaging by mirror and lens, mirror and lens equations, electro-magnetic characterizations of light, superposition of wave, interference and its applications to interferometry, holography and holographic interferometer, diffraction and Fourier optics, optical signal processing, and laser applications.	
학부 2009 - 2012 교육과 정	서울 공과대학 기계공학부	광학적 현상을 기하광학적 측면과 파동광학적 측면으로 나누어 광학적 제현상에 대해 강의한 다. 기하광학 측면에서는 최소전파시간의 원리, 반사, 굴절 및 렌즈의 원리에 대해 다루고, 파동 광학 측면에서 편광, 회절, 간섭에 대해 강의한 다. 나아가 이러한 광학적 현상을 정밀계측, 가 시화 등 기계공학분야에 응용할 수 있는 Interferometer, Holography, Fiber-Optics, Laser Application 등의 원리와 실례에 대하여	Basic principles of optics, description of optical phenomena and their application to mechanical engineering: imaging by mirror and lens, mirror and lens equations, electro-magnetic characterizations of light, superposition of wave, interference and its applications to interferometry, holography and holographic interferometer, diffraction and Fourier optics, optical	

교육과정	관장학과	국문개요	영문개요	수업목표
		다룬다.	signal processing, and laser applications.	
학부 2005 - 2008 교육과 정	서울 공과대학 기계공학부	광학적 현상을 기하광학적 측면과 파동광학적 측면으로 나누어 광학적 제현상에 대해 강의한 다. 기하광학 측면에서는 최소전파시간의 원리, 반사, 굴절 및 렌즈의 원리에 대해 다루고, 파동 광학 측면에서 편광, 회절, 간섭에 대해 강의한 다. 나아가 이러한 광학적 현상을 정밀계측, 가 시화 등 기계공학분야에 응용할 수 있는 Interferometer, Holography, Fiber-Optics, Laser Application 등의 원리와 실례에 대하여 다룬다.	Basic principles of optics, description of optical phenomena and their application to mechanical engineering: imaging by mirror and lens, mirror and lens equations, electro-magnetic characterizations of light, superposition of wave, interference and its applications to interferometry, holography and holographic interferometer, diffraction and Fourier optics, optical signal processing, and laser applications.	
학부 2001 - 2004 교육과 정	서울 공과대학 기계공학부	광학적 현상을 기하광학적 측면과 파동광학적 측면으로 나누어 광학적 제현상에 대해 강의한 다. 기하광학 측면에서는 최소전파시간의 원리, 반사, 굴절 및 렌즈의 원리에 대해 다루고, 파동 광학 측면에서 편광, 회절, 간섭에 대해 강의한 다. 나아가 이러한 광학적 현상을 정밀계측, 가 시화 등 기계공학분야에 응용할 수 있는 Interferometer, Holography, Fiber-Optics, Laser Application 등의 원리와 실례에 대하여 다룬다.	Basic principles of optics, description of optical phenomena and their application to mechanical engineering: imaging by mirror and lens, mirror and lens equations, electro-magnetic characterizations of light, superposition of wave, interference and its applications to interferometry, holography and holographic interferometer, diffraction and Fourier optics, optical signal processing, and laser applications.	
학부 1997 - 2000 교육과 정	서울 공과대학 기계공학부	광학적 현상을 기하광학적 측면과 파동광학적 측면으로 나누어 광학적 제현상에 대해 강의한 다. 기하광학 측면에서는 최소전파시간의 원리, 반사, 굴절 및 렌즈의 원리에 대해 다루고, 파동 광학 측면에서 편광, 회절, 간섭에 대해 강의한 다. 나아가 이러한 광학적 현상을 정밀계측, 가 시화 등 기계공학분야에 응용할 수 있는 Interferometer, Holography, Fiber-Optics, Laser Application 등의 원리와 실례에 대하여 다룬다.	Basic principles of optics, description of optical phenomena and their application to mechanical engineering: imaging by mirror and lens, mirror and lens equations, electro-magnetic characterizations of light, superposition of wave, interference and its applications to interferometry, holography and holographic interferometer, diffraction and Fourier optics, optical signal processing, and laser applications.	
	서울 공과대학 기계공학 정밀 기계		18-5/	
학부 1993 - 1996 교육과 정	서울 공과대학 정밀기계공학			
학부 1993 - 1996 교육과 정	서울 공과대학 기계.정밀기계 .기계설계.자 동차공학	© 학수번호: PME408 ② 교과목명: 광공학 ③ 이수구분: 전공선택 ③ 학점-강의-실습: 3-3-0 ③ 수강대상 및 학년: 기계공학부 4학년 ③ 교재명: Principles of Optical Engineering, F. Yu와 I. Khoo, Wiley ③ 참고문헌: 1. Introduction to Optics, Pedrotti, Prentice Hall 2. Lasers-Principles and Applications, Wilson and Hawkes, Prentice Hall 1. 교과목설명 광학적 현상을 기하광학적 측면과 파동광학적		

교육과정	관장학과	국문개요	영문개요	수업목표
		측면으로 나누어 빛의 성질과 전파, 렌즈의 원리 , 반사, 굴절, 회절, 간섭등 광학적 제현상에 대 해 강의하며 나아가 이러한 광학적 현상을 정밀 계측, 가시화등 기계공학분야에 응용할 수 있는 Interferometer, Holography, Fiber-Optics, Laser Application 등의 원리와 실례에 대하여 다룬다.		
		2. 수업의 목표		
		최근의 기계공학과 관련된 많은 분야 (특히 각종 현상의 가시화-유동가시화, 진동가시화, 응력분 포 가시화, 음향가시화 등)에서 광학을 이용하는 첨단기술의 적용사례가 급증하고 있고 이들은 실제로 정밀계측, 자동화, 비피괴평가, 안전성평 가등에 유효한 수단이 되고 있어 많은 엔지니어 들이 이 분야의 지식을 필요로 하게 되었다. 따 라서 본 과목에서는 이러한 광학에 관한 기초지 식을 습득케하고, 그것의 공학적 응용기법에 대 하여 고찰하는 것을 목적으로 한다.		
		3. 평가 중간고사: 40%, 기말고사: 40%, 과제: 10%, 출석:10% 출석은 2회 결석시 부터 1회 결석마다 -1점씩 , 4회 이상 결석은 0점 처리한다. 전체 강의 일수의 1/3 이상 결석시 시험성적 에 관계없이 F학점 처리한다.		
		4. 과제물 가. 연습문제 풀이 - 각 Chapter 종료시 해당 Chapter의 문제 를 풀어서 Report		

10. CQI 등록내역

No data have been found.