Построить конечный автомат, распознающий язык.

Ответом на данное задание является конечный автомат, распознающий описанный язык.

Автомат должен быть детерминированным

1.1

$$L=\omega\in\{a,b,c\}^*\mid |\omega|_c=1$$

2.2

$$L=\{\omega\in\{a,b\}^*\ |\ |\omega|_a\leq 2, |\omega|_b\geq 2\}$$

В этом языке имеется 2 условия: 1- меньше или равно 2 букв "а", 2- больше или равно 2 букв "b".

Разделим язык на 2 языка и реализуем для каждого ДКА.

Автомат А: $L_1 = \{w \in \{a,b\}^* \mid |w|_a <= 2\}$

$$A=(\ \sum_1=\{a,b\},\ Q_1=\{q1,q2,q3\},\ s_1=q1,\ T_1=\{q1,q2,q3\},\delta_1\)$$

Автомат В: $L_2=\{w\in\{a,b\}^*\;\mid\;|w|_b>=2\}$

$$B=(\ \sum_2=\{a,b\},\ Q_2=\{t1,t2,t3\},\ s_2=t1,\ T_2=\{t3\},\delta_2\)$$

Теперь выполним операцию прямого произведения 2-ух автоматов.

$$\sum = \{a, b\}$$

$$Q=\{q1t1,q1t2,q1t3,q2t1,q2t2,q2t3,q3t1,q3t2,q3t3\}$$

$$s=\{q1t1\}$$

$$T = \{q1t3, q2t3, q3t3\}$$

 $\delta =$

	a	b
q1t1	q2t1	q1t2
q1t2	q2t2	q1t3
q1t3	q2t3	q1t3
q2t1	q3t1	q2t2
q2t2	q3t2	q2t3
q2t3	q3t3	q2t3
q3t1		q3t2
q3t2		q3t2
q3t3		q3t2

$$L = \{\omega \in \{a,b\}^* \mid |\omega|_a
eq |\omega|_b\}$$

Язык L не является регулярным. Построить автомат невозможно.

1.4

$$L = \{\omega \in \{a,b\}^* \mid \omega\omega = \omega\omega\omega\}$$

Задание 2

Построить конечный автомат, используя прямое произведение

Ответом на данное задание является конечный автомат, распознающий описанный язык. Требуется, чтобы он был построен при помощи прямого произведения ДКА и его свойств.

2.1

$$L_1=\{\omega\in\{a,b\}^*\;\mid\;|\omega|_a\geq 2\wedge |\omega|_b\geq 2\}$$

В этом языке имеется 2 условия: 1- в цепочке количество букв "а" больше или равно 2, 2- в цепочке количество букв "b" больше или равно 2.

Разделим язык на 2 языка и реализуем для каждого ДКА.

Автомат А:
$$L_{11} = \{w \in \{a,b\}^* \; \mid \; |w|_a \geq 2\}$$

$$A=(\ \sum_1=\{a,b\},\ Q_1=\{q1,q2,q3\},\ s_1=q1,\ T_1=\{q3\},\delta_1\)$$

Автомат В: $L_{12} = \{w \in \{a,b\}^* \; \mid \; |w|_b \geq 2\}$

$$B=(\ \sum_2=\{a,b\},\ Q_2=\{t1,t2,t3\},\ s_2=t1,\ T_2=\{t3\},\delta_2\)$$

Теперь выполним операцию прямого произведения 2-ух автоматов.

$$\textstyle\sum=\{a,b\}$$

$$Q = \{q1t1, q1t2, q1t3, q2t1, q2t2, q2t3, q3t1, q3t2, q3t3\}$$

$$s = \{q1t1\}$$

$$T = \{q3t3\}$$

$$\delta =$$

	a	b
q1t1	q2t1	q1t2
q1t2	q2t2	q1t3
q1t3	q2t3	q1t3
q2t1	q3t1	q2t2
q2t2	q3t2	q2t3
q2t3	q3t3	q2t3
q3t1	q3t1	q3t2
q3t2	q3t2	q3t3
q3t3	q3t3	q3t3

$$L_2 = \{\omega \in \{a,b\}^* \mid \; |\omega| \geq 3 \wedge |\omega|$$
 нечётное $\}$

Разделим язык на 2 языка и реализуем для каждого ДКА.

Автомат А: $L_{21} = \{w \in \{a,b\}^* \; \mid \; |w| \geq 3\}$

$$A=(\ \sum_1=\{a,b\},\ Q_1=\{q1,q2,q3,q4\},\ s_1=q1,\ T_1=\{q4\},\delta_1\)$$

Автомат В: $L_{22} = \{w \in \{a,b\}^* \mid |w|$ нечетное $\}$

start
$$t1$$
 a, b $t2$

$$B=(\ \sum_2=\{a,b\},\ Q_2=\{t1,t2\},\ s_2=t1,\ T_2=\{t2\},\delta_2\)$$

Теперь выполним операцию прямого произведения 2-ух автоматов.

$$\sum = \{a, b\}$$

$$Q=\{q1t1,q1t2,q2t1,q2t2,q3t1,q3t2,q4t1,q4t2\}$$

$$s = \{q1t1\}$$

$$T = \{q4t2\}$$

$$\delta =$$

	a	b
q1t1	q2t2	q2t2
q1t2	q2t1	q2t1
q2t1	q3t2	q3t2
q2t2	q3t1	q3t1
q3t1	q4t2	q4t2
q3t2	q4t1	q4t1
q4t1	q4t2	q4t2
q4t2	q4t1	q4t1

Узлы q1t2, q2t1, q3t2 будут недостигаемыми. Упростим ДКА

Если подумать, то по идее можно удалить и еще один узел

$$L_3 = \{\omega \in \{a,b\}^* \; \mid \; |\omega|_a$$
 чётно $\wedge \, |\omega|_b$ кратно трём $\}$

Разделим язык на 2 языка и реализуем для каждого ДКА.

Автомат А: $L_{31}=\{\omega\in\{a,b\}^*\;\mid\;|\omega|_a$ чётно $\}$

$$A=(\ \sum_1=\{a,b\},\ Q_1=\{q1,q2\},\ s_1=q1,\ T_1=\{q1\},\delta_1\)$$

Автомат В: $L_{32} = \{\omega \in \{a,b\}^* \; \mid \; |\omega|_b$ кратно трём $\}$

$$B=(\ \sum_2=\{a,b\},\ Q_2=\{t1,t2,t3\},\ s_2=t1,\ T_2=\{t1\},\delta_2\)$$

Теперь выполним операцию прямого произведения 2-ух автоматов.

$$\sum = \{a,b\}$$

$$Q=\{q1t1,q1t2,q1t3,q2t1,q2t2,q2t3\}$$

$$s=\{q1t1\}$$

$$T = \{q1t1\}$$

$$\delta =$$

	a	b
q1t1	q2t1	q1t2
q1t2	q2t2	q1t3
q1t3	q2t3	q1t1
q2t1	q1t1	q2t2
q2t2	q1t2	q2t3
q2t3	q1t3	q2t1

$$L_4 = \overline{L}_3$$

$$\sum = \{a,b\}$$

$$Q=\{q1t1,q1t2,q1t3,q2t1,q2t2,q2t3\}$$

$$s=\{q1t1\}$$

$$T = \{q1t1\}$$

 $\delta =$

	a	b
q1t1	q2t1	q1t2
q1t2	q2t2	q1t3
q1t3	q2t3	q1t1
q2t1	q1t1	q2t2
q2t2	q1t2	q2t3
q2t3	q1t3	q2t1

2.5

$$L_5=L_2\setminus L_3$$

Упростим

$$L_5=L_2\setminus L_3=L_2\cap \overline{L}_3=L_2\cap L_4$$

$$\sum = \{a,b\}$$

 $Q = \{q1t1, q1t2, q1t3, q1t4, q1t5, q1t6, q2t1, q2t2, q2t3, q2t4, q2t5, q2t6, q3t1, q3t2, q3t3, q3t4, q3t5, q3t6, q4t1, q4t2, q4t3, q4t4, q4t5, q4t8, q4t1, q4t2, q4t3, q4t4, q4t5, q4t4, q4t4, q4t5, q4t4, q4t4,$

 $T=\{q4t1,q4t3,q4t4,q4t5,q4t6\}$

 $\delta =$

	a	b
q1t1	q2t4	q2t2
q1t2	q2t5	q2t3
q1t3	q2t6	q2t1
q1t4	q2t1	q2t5
q1t5	q2t2	q2t6
q1t6	q2t3	q2t4
q2t1	q3t4	q3t2
q2t2	q3t5	q3t3
q2t3	q3t6	q3t1
q2t4	q3t1	q3t5
q2t5	q3t2	q3t6
q2t6	q3t3	q3t4
q3t1	q4t4	q4t2
q3t2	q4t5	q4t3
q3t3	q4t6	q4t1
q3t4	q4t1	q4t5
q3t5	q4t2	q4t6
q3t6	q4t3	q4t4
q4t1	q4t4	q4t2
q4t2	q4t5	q4t3
q4t3	q4t6	q4t1
q4t4	q4t1	q4t5
q4t5	q4t2	q4t6
q4t6	q4t3	q4t4

Построить минимальный ДКА по регулярному выражению

Ответом на данное задание является минимальный ДКА, который допускает тот же язык, что описывается регулярным выражением.

3.1

 $(ab + aba)^*a$

НКА:

ДКА:

	a	b
{q1}	{q3,q6,q10}	Ø
{q3,q6,q10}	Ø	{q4,q7}
{q4,q7}	{q3,q6,q8,q10}	Ø
{q3,q6,q8,q10}	{q3,q6,q10}	{q4,q7}

3.2

 $a(a(ab)^*b)^*(ab)^*$

НКА:

	a	b
{q1}	{q2,q8}	Ø
{q2,q8}	{q3,q7}	Ø
{q3,q7}	{q4}	{q6,q8}
{q4}	Ø	{q5}
{q6,q8}	{q3,q7}	Ø
{q5}	{q4}	{q6}
{q6}	{q3,q7}	Ø

ДКА:

Минимизуруем данный автомат:

0 эквивалентность: (q1, q3q7, q4, q5), (q2q8, q6q8, q6)

1 эквивалентность: (q1), (q3q7, q5), (q4), (q2q8, q6q8, q6)

МДКА:

3.3

$$(a + (a+b)(a+b)b)^*$$

НКА:

	a	b
{q1}	{q1, q2}	{q2}
{q1, q2}	{q1, q2, q3}	{q2, q3}
{q2}	{q3}	{q3}
{q1, q2, q3}	{q1, q2, q3}	{q1, q2, q3}
{q2, q3}	{q3}	{q1, q3}
{q3}	Ø	{q1}
{q1, q3}	{q1, q2}	{q1, q2}

ДКА:

3.4

$$(b+c)((ab)^*c+(ba)^*)^*$$

ДКА:

Минимизуруем ДКА:

0 эквивалентность: (q1, q3, q4, q6), (q2, q5, q7)

1 эквивалентность: (q1), (q4), (q3), (q6), (q2,q5,q7)

МКА:

$$(a+b)^+(aa+bb+abab+baba)(a+b)^+$$

НКА:

	a	b
{q1}	{q2}	{q2}
{q2}	{q1,q3}	{q1,q4}
{q1,q3}	{q2,q9}	{q2,q5}
{q1,q4}	{q2,q6}	{q2,q10}
{q2,q9}	{q1,q3,q11}	{q1,q4,q11}
{q2,q5}	{q1,q3,q7}	{q1,q4}
{q2,q6}	{q1,q3}	{q1,q4,q8}
{q2,q10}	{q1,q3,q11}	{q1,q4,q11}
{q1,q3,q11}	{q2,q9,q11}	{q1,q5,q11}
{q1,q4,q11}	{q2,q6,q11}	{q2,q10,q11}
{q1,q3,q7}	{q2,q9}	{q2,q5,q9}
{q1,q4,q8}	{q2,q6,q10}	{q2,q10}
{q2,q9,q11}	{q1,q3,q11}	{q1,q4,q11}
{q2,q5,q11}	{q1,q3,q7,q11}	{q1,q4,q11}
{q2,q6,q11}	{q1,q3,q11}	{q1,q4,q8,q11}
{q2,q10,q11}	{q1,q3,q11}	{q1,q4,q11}
{q2,q5,q9}	{q1,q3,q7,q11}	{q1,q4,q11}
{q2,q6,q10}	{q1,q3,q11}	{q1,q4,q8,11}
{q1,q3,q7,q11}	{q2,q9,q11}	{q2,q5,q9,q11}
{q1,q4,q8,q11}	{q2,q6,q10,q11}	{q2,q10,q11}
{q2,q5,q9,q11}	{q1,q3,q7,q11}	{q1,q4,q11}
{q2,q6,q10,q11}	{q1,q3,q11}	{q1,q4,q8,q11}

Задание 4

Определить, является ли язык регулярным или нет

Ответом на данное задание является конечный автомат, если язык регулярен, либо доказательство нерегулярности языка при помощи леммы о разрастании.

Запишем лемму о разрастании:

Пусть L - регулярный язык. Тогда

$$\exists n \ \forall w \in L \ |w| \geq n \ \exists x,y,z \ w = xyz \ |xy| \leq n \ y \neq \varepsilon \ \forall i \geq 0 \ xy^iz \in L$$

Отрицание леммы о возрастании:

$$\forall n \ \exists w \in L, |w| \geq n \ \forall x,y,z \ w = xyz \ |xy| \leq n \ y \neq \varepsilon \ \exists i \geq 0 \ xy^iz \not\in L$$

1 1

$$L = \{(aab)^n b (aba)^m \mid n >= 0, m >= 0\}$$

Язык регулярный.

4.2

$$L=\{uaav\mid u\in a,b^*,v\in a,b^*,|u|_b\geq |v|_a\}$$

Рассмотрим:

$$\omega = b^n aaa^n, |\omega| \geq n$$

$$\omega = xyz$$

$$x=b^i \quad y=b^j \quad i+j \leq n \quad j>0$$

$$z=b^{n-i-j}aaa^n\\$$

$$|xy| \le n \quad |y| > 0$$

$$xy^0z=b^ib^{n-i-j}aaa^n=b^{n-j}aaa^n\not\in L$$

Таким образом, доказано, что язык нерегулярный.

4.3

$$L=\{a^mw\mid w\in a,b^*,1\leq |w|_b\leq m\}$$

Рассмотрим:

$$\omega=a^nb^n, |\omega|\geq n$$

$$\omega = xyz$$

$$x=a^i \quad y=a^j \quad i+j \leq n \quad j>0$$

$$z=a^{n-i-j}b^n$$

$$|xy| \le n \quad |y| > 0$$

$$xy^0z=a^ia^{n-i-j}b^n=a^{n-j}b^n\not\in L$$

Таким образом, доказано, что язык нерегулярный.

4.4

$$L = \{a^k b^m a^n \mid k = n \vee m > 0\}$$

$$|y|>0\;xy^0z=b^ib^{n-i-j}aaa^n=b^{n-j}aaa^n\not\in L$$

Рассмотрим:

$$\omega = xyz$$

$$x=a^i \quad y=a^j \quad i+j \leq n \quad j>0$$

$$z = a^{n-i-j}ba^n$$

$$|xy| \le n \quad |y| > 0$$

$$xy^kz=a^ia^{jk}a^{n-i-j}ba^n=a^{n-j(k-1)}ba^n\not\in L\quad\forall k>1$$

Таким образом, доказано, что язык нерегулярный.

4.5

$$L = \{ucv \mid u \in a, b^*, v \in a, b^*, u \neq v^R\}$$

$$\omega = (ab)^n c(ba)^n = lpha_1 lpha_2 \ldots lpha_{4n+1}, |\omega| \geq n$$

Рассмотрим:

$$\omega = xyz$$

$$x=lpha_1lpha_2\ldotslpha_i \quad y=lpha_{i+1}lpha_{i+2}\ldotslpha_{i+j} \quad i+j\leq n \quad j>0$$

$$z = \alpha_{i+j+1}\alpha_{i+j+2}\dots\alpha_{2n}c(ba)^n$$

$$|xy| \le n \quad |y| > 0$$

$$xy^kz=lpha_1\ldotslpha_i(lpha_{i+1}\ldotslpha_{i+j})^klpha_{i+j+1}\ldotslpha_{2n}c(ba)^n
otin L \quad orall k>1$$

Таким образом, доказано, что язык нерегулярный.