

TD n°3: Algèbre II

SMI/SMA - S1 - 2021/2022 - Pr. Hamza El Mahjour

Fractions rationnelles

Exercice 1

Décomposez en éléments simples de $\mathbb{R}(X)$ les fractions suivantes :

(a)
$$\frac{X^3 - 2X^2 + 1}{X^2 + 3X + 2}$$

(b)
$$\frac{3X-5}{X^3-1}$$

(a)
$$\frac{X^3 - 2X^2 + 1}{X^2 + 3X + 2}$$
; (b) $\frac{3X - 5}{X^3 - 1}$; (c) $\frac{X + 3}{(X + 1)(X^2 + 3)}$; (d) $\frac{3X - 3}{X^4 - 2X^2 + 1}$.

(d)
$$\frac{3X-3}{X^4-2X^2+1}$$

[01]

Exercice 2

Décomposez en éléments simples dans $\mathbb{C}(X)$ les fractions suivantes :

(a)
$$\frac{2X-1}{(X^2+1)(X+2i)}$$

(b)
$$\frac{1}{X^3 - 1}$$

(a)
$$\frac{2X-1}{(X^2+1)(X+2i)}$$
; (b) $\frac{1}{X^3-1}$; (c) $\frac{3X^2}{(X-i)^2(X-\sqrt{2})}$.

Indication ▼

[02]

Exercice 3

Déterminer si les fractions rationnelles suivantes sont irréductibles ou non dans $\mathbb{R}(X)$.

(a)
$$\frac{X^5 - 3X^4 - X^3 + 3X^2}{X^3 - 6X^2 + 11X - 6}$$

(b)
$$\frac{X^3-2}{X^2+1}$$
;

(a)
$$\frac{X^5 - 3X^4 - X^3 + 3X^2}{X^3 - 6X^2 + 11X - 6}$$
; (b) $\frac{X^3 - 2}{X^2 + 1}$; (c) $\frac{X^2 + (1 - \sqrt{2})X - \sqrt{2}}{X^2 - (\sqrt{2} - \sqrt{3}) - \sqrt{6}}$; (d) $\frac{1}{X^5 - 1}$.

$$(d) \frac{1}{X^5 - 1}.$$

Indication ▼

Exercice 4

1. Répondez par "vrai" ou "faux" aux questions suivantes :

1	
La fraction $\frac{(X-1)^2}{(X-1)}$ est irréductible	
$\lambda = 2$ est un pôle de la fraction $\frac{(X-1)(X-2)}{(X-2)(X+1)}$	
$\lambda = 1$ est un pôle de multiplicité 3 de la fraction $\frac{(X-1)}{(X-1)^3}$	
$\lambda = 1$ est un pôle de multiplicité 2 de la fraction $\frac{(X-1)}{(X-1)^3}$	
$\lambda = 1$ est un pôle de multiplicité 1 de la fraction $\frac{(X-1)}{(X-1)^3}$	
$\lambda = i$ n'est pas un pôle de la fraction $\frac{X-i}{X^2+1}$ dans $\mathbb{C}(X)$	-

2. En utilisant les dérivées successives du dénominateur, étudiez la multiplicité des pôles de chacune des fractions suivantes

(a)
$$\frac{X^2 - 3X + 10}{18 - 3X - 4X^2 + X^3}$$
; (pôle $\lambda = 3$)

(b)
$$\frac{1}{X^5+13X^4+46X^3-10X^2-175X+125};$$
 (pôle $\lambda=-5$)

(c)
$$\frac{X-i}{X^5-3\sqrt{2}X^4+2X^4+(7-6\sqrt{2})X^3+(12-5\sqrt{2})X^2+(6-4\sqrt{2})X-2\sqrt{2}}; \quad \text{(pôle $\lambda=\sqrt{2}$)}$$

Indication ▼ [04]

Exercice 5

Effectuer la division suivant les puissances croissantes de :

•
$$A(X) = X^6 + 1 \text{ par } B(X) = X^4 + X^2 + 1$$
 (d'ordre 3)

•
$$P(X) = 4X^3 - 2X^2 + 2X + 1$$
 par $Q(X) = 9X^3 + 3X + 1$ (d'ordre 3)

Indication ▼ [05]

Indication pour l'exercice 2 A

N'oubliez pas que les seuls polynômes irréductibles dans $\mathbb{C}[X]$ sont ceux de degré 1.

Indication pour l'exercice 3 ▲

- Pensez à des racines communes entre le numérateur et le dénominateur
- Pensez à l'algorithme d'Euclide du PGCD
- Pensez aux racines n-ièmes de l'unité

Indication pour l'exercice 4 ▲

- Le pôle concerne la fraction irréductible (souvenez-vous!)
- Dérivez et évaluez!

Indication pour l'exercice 5 ▲

La division suivant les puissances croissantes s'arrête si la valuation du reste est supérieur à l'ordre demandé.