4.1 Descrição do modelo

Desenvolvemos um Modelo Baseado em Indivíduo (*IBM - Individual Based Model*) não espacializado utilizando o software R (**RB**), com o qual foram simuladas comunidades com número de indivíduos constante. Cada simulação gerada pelo modelo corresponde a uma comunidade, que passa por ciclos sucessivos em que ocorre morte de indivíduos (que pode ser natural ou por distúrbio), produção de propágulos por meio de reprodução sexuada e recrutamento de novos indivíduos a partir do banco de propágulos. A longevidade e a fecundidade, atributos relacionados respectivamente à probabilidade de sobrevivência e ao número de gametas femininos que cada indivíduo produz por ciclo, estão correlacionadas negativamente (*trade-off*) e juntas compõem a estratégia de vida de um indivíduo. A estratégia é um caráter herdável e sua transmissão se dá de forma análoga a de genes quantitativos, em que o valor do atributo do filhote é a média do valor dos atributos dos parentais. Por fim, há mutação, que insere novas variantes de estratégias de vida nas populações.

Os parâmetros do modelo são: 1) riqueza inicial da comunidade, 2) abundância inicial das espécies, 3) número de ciclos rodados (contagem de tempo discreto), 4) número de gametas femininos produzidos por indivíduo a cada ciclo, 5) número máximo de gametas femininos que um indivíduo pode produzir no decorrer dos ciclos, 6) taxa de mutação, 7) identificação dos ciclos em que ocorrem eventos de distúrbio e 8) intensidade dos eventos de distúrbio.

A probabilidade que um indivíduo tem de morrer a cada contagem de tempo discreto (p_i) é calculada pela razão entre o número de gametas femininos produzidos pelo indivíduo por ciclo (x_i) e o número total de gametas femininos que o indivíduo pode produzir no decorrer dos ciclos (X) (Equação 1). O número potencial máximo de gametas femininos produzidos na simulação é igual e invariável para todos os indivíduos da comunidade, o que delimita uma demanda conflitante (trade-off) entre a probabilidade de morte (longevidade) e o número de gametas produzidos por ciclo (fecundidade). Assim, a probabilidade de morte de um indivíduo a cada ciclo e o número de gametas femininos produzidos por ele no ciclo, diretamente proporcionais, configuram a estratégia de vida deste indivíduo, um atributo que é definido antes do primeiro ciclo se iniciar e que é mantido com o mesmo valor para cada indivíduo ao longo do tempo.

$$p_i = \frac{x_i}{X} \tag{1}$$

A cada ciclo, todos os indivíduos produzem o número de gametas femininos que lhes é característico e um número de gametas masculinos que é igual para todos os indivíduos independente de suas estratégias, compondo dois bancos de gametas que são viáveis apenas para aquele ciclo. Então, são sorteados quais indivíduos morrerão, a partir de uma distribuição binomial em que a probabilidade de sorteio de cada indivíduo é equivalente à sua probabilidade de morte. Posteriormente, caso haja um evento de distúrbio programado para aquele ciclo, é feito o cálculo de quantos indivíduos morrerão com o evento (dado pelo produto de sua intensidade - porcentagem de indivíduos da comunidade que serão mortos - e do número de indivíduos da comunidade) e são sorteados quais indivíduos morrerão a partir de uma distribuição uniforme (todos os indivíduos tem chances iguais de morrer por meio de distúrbio).

Em seguida, os gametas femininos e masculinos que irão formar os indivíduos novos são sorteados dos bancos, em número equivalente ao de indivíduos que morreram. Um par composto por um gameta feminino e um gameta masculino gera um indivíduo novo, cujo número de gametas femininos que lhe é característico (i.e., o número de gametas femininos que este indivíduo novo irá produzir por ciclo ao longo de sua vida) é determinado a partir do sorteio de uma distribuição gaussiana cuja esperança é equivalente à média do número de gametas femininos produzido pelos indivíduos parentais (i.e., aqueles que geraram os gametas femininos e masculinos sorteados na formação do par) e cujo desvio padrão é atribuído por outro parâmetro do modelo, chamado de taxa de mutação. Dessa forma, quanto maior a taxa de mutação, maior a probabilidade de o indivíduo novo divergir da estratégia de vida média dos parentais. Por fim, os indivíduos novos substituem os indivíduos que morreram e dá-se início ao próximo ciclo.

4.2 Descrição das simulações

Para reproduzirmos os cenários evolutivo, ecológico e eco-evolutivo, criamos três grupos de simulações que diferiram em relação aos valores de entrada de alguns parâmetros do modelo. Em termos gerais, as simulações do cenário evolutivo apresentaram apenas uma espécie e taxa de mutação positiva; as simulações do cenário ecológico apresentaram mais de uma espécie (entre cinco e 500) e taxa de mutação nula; e as simulações do cenário eco-evolutivo, por sua vez, apresentaram mais de uma espécie (entre cinco e 500) e taxa de mutação positiva. Todas as simulações apresentaram cerca de 5 000 indivíduos, o número potencial máximo de gametas femininos produzidos pelos indivíduos no decorrer dos ciclos foi estabelecido em 20 000 e o número de ciclos rodados foi de 300 000, tempo suficiente para que houvesse mudança na abundância relativa das espécies e na estratégia de vida

média das comunidades. Delimitamos os valores de riqueza e o número de indivíduos total das comunidades com base em dados empíricos de riqueza e abundância em florestas tropicais.

Em Barro Colorado, em uma área de 10 hectares, há 4 510 árvores com DAP (diâmetro à altura do peito) maior ou igual a 10 cm pertencentes a 170 espécies diferentes (Oksanen et al., 2016). Em áreas do mesmo tamanho na Mata Atlântica, a abundância de árvores com DAP maior ou igual a 10 cm variou de 4 817 a 4 920 e a riqueza variou de 108 a 325 (de Lima et al., 2015). Dessa forma, escolhemos fixar a abundância total em 5 000 e variar a riqueza de cinco a 500, a fim de gerar simulações com padrões de diversidade realistas e que pudessem se aproximar tanto de florestas tropicais quanto de florestas temperadas. O valor utilizado para parametrizar o número máximo de gametas femininos produzidos por ciclo foi estimado a partir de dados da produção de frutos de uma espécie de árvore da Amazônia, Bertholletia excelsa. Dado que todos os gametas femininos do modelo são virtualmente fecundados, podemos considerá-los como propágulos para estimar a ordem de grandeza de sua produção. Uma árvore de B. excelsa produz de 0 a 750 frutos por ciclo reprodutivo (Rockwell et al., 2015). Como cada fruto possui de 10 a 25 sementes (Peres et al., 2003), tem-se que a produção de sementes por ciclo reprodutivo varia de 0 a 18 750. Dessa forma, escolhemos fixar em 20 000 o valor máximo de produção de gametas femininos por ciclo. Para fazer deste valor um dos extremos do gradiente delimitado pela demanda conflitante entre o número de gametas femininos produzidos por ciclo e a probabilidade de morte do indivíduo a cada ciclo, determinamos que o número total de propágulos que os indivíduos poderiam produzir no decorrer de todos os ciclos também seria 20 000.

A fim de gerarmos valores de entrada dentro dos limites que definimos para cada parâmetro (Tabela 1), sorteamos valores por meio do método do Hipercubo Latino¹. Outros parâmetros tiveram valores iniciais fixos entre simulações do mesmo cenário, como a taxa de mutação e o número máximo de gametas que um indivíduo pode produzir no decorrer dos ciclos (Tabela 1). Realizamos 3 000 simulações, divididas entre os três cenários criados (1 000 simulações de cada cenário). O cenário evolutivo, além de ter o parâmetro da riqueza fixado em um, apresentou taxa de mutação de 500. Escolhemos este valor após verificar que ele possibilitou a formação de novas variantes de estratégia de vida no intervalo de ciclos rodados (Apêndice 1). Neste grupo, as simulações apresentaram exatamente 5 000 indivíduos. O número de gametas femininos que os indivíduos produziram por ciclo variou de um a 20 000 entre as simulações - o valor específico em cada uma delas foi sorteado com o Hipercubo Latino a partir de uma distribuição uniforme com mínimo 1 e máximo 20 000. No cenário

-

¹ A técnica do hipercubo latino consiste em uma amostragem sistemática das distribuições de probabilidade dos parâmetros de um modelo, dividindo-as em regiões equiprováveis e sorteando um valor de cada região (Chalom & Prado, 2012). Os valores sorteados são combinados entre si e utilizados como entrada no modelo (o conjunto com um valor de cada um dos parâmetros constitui uma amostra do espaço paramétrico).

ecológico, o valor da riqueza, que variou de cinco a 500 entre as mil simulações, também foi sorteado pelo Hipercubo Latino a partir de uma distribuição uniforme. A partir do valor da riqueza sorteado para uma dada simulação, foi calculada a abundância inicial das espécies tendo como ponto de partida o valor hipotético de 5 000 indivíduos no total da comunidade. O quociente arredondado da razão entre 5 000 e o valor da riqueza foi considerado como a abundância inicial das espécies (assim, o valor exato da abundância total da comunidade foi dada pelo produto do quociente arredondado e da riqueza sorteada). Neste grupo, a taxa de mutação foi fixada em zero. Definimos que o número inicial de gametas femininos produzidos por ciclo seria igual para indivíduos da mesma espécie e, a partir da riqueza sorteada para cada simulação, foi atribuído um valor para cada espécie de forma que o gradiente de 1 a 20 000 gametas fosse ocupado com intervalos regulares. No cenário eco-evolutivo, o valor da riqueza das simulações também foi sorteado do intervalo entre cinco e 500, utilizando-se o Hipercubo Latino, e a abundância inicial das espécies e o número de gametas femininos produzidos por ciclo pelos indivíduos foram determinados da mesma forma que no grupo anterior. No entanto, o valor da taxa de mutação foi fixado em 500, como no primeiro grupo. Nos três cenários, o número de ciclos em que ocorreu eventos de distúrbio foi sorteado do intervalo entre 0 e 300 000 por meio do Hipercubo Latino (i.e., foi possível que não houvesse evento de distúrbio em ciclo algum e também que ocorresse em todos) e a identificação exata dos ciclos em que ocorreram os eventos foi feita de forma que a distribuição temporal do distúrbio fosse regular. A intensidade dos eventos de distúrbio foi sorteada, também com o Hipercubo Latino, do intervalo de 0 a 1, valor referente à proporção de indivíduos da comunidade mortos com o evento.

Tabela 1: Valores de parâmetros utilizados em cada grupo de simulações (cenários evolutivo, ecológico e eco-evolutivo). Os itens que não compreendem intervalos foram iguais em todas as simulações do grupo. Os itens marcados com asterisco (*) tiveram valores do intervalo indicado sorteados com o Hipercubo Latino e cada valor foi associado a uma simulação do grupo.

	Evolutivo	Ecológico	Eco-evolutivo	
Riqueza inicial	1	5 (mín) - 500 (máx) *	5 (mín) - 500 (máx) *	
Taxa de mutação	500	0	500	
Abundância inicial das espécies	5 000	≅ 5 000 / riqueza	≅ 5 000 / riqueza	
Gametas femininos/ciclo	1 (mín) - 20 000 (máx) *	1 (mín) - 20 000 (máx)	1 (mín) - 20 000 (máx)	
Gametas femininos potencial	20 000	20 000 20 000		
Ciclos com distúrbio	0 (mín) - 300 000 (máx) *	0 (mín) - 300 000 (máx) *	0 (mín) - 300 000 (máx) *	
Intensidade do distúrbio	0 (mín) - 1 (máx) *	0 (mín) - 1 (máx) *	0 (mín) - 1 (máx) *	
Número de ciclos rodados	300 000	300 000 300 000		

4.3 Descrição das variáveis operacionais

4.3.1 Variáveis de interesse

Para condensar as informações relativas ao número de gametas femininos produzidos por ciclo e à probabilidade de morte dos indivíduos em cada ciclo, criamos um índice, denominado índice de estratégia de vida, que variou de zero a um: valores de índice que tendem a zero equivalem à probabilidade de morte que tende a zero e a número de gametas femininos por ciclo próximo de 1;

valores de índice que tendem a um equivalem à probabilidade de morte que tende a um e a número de gametas femininos por ciclo próximo de 20 000. Quantificamos as estratégias de vida presentes nas comunidades por meio de três variáveis contínuas: (i) média do índice de estratégia de vida, (ii) variância total do índice de estratégia de vida e (iii) variância interespecífica do índice de estratégia de vida. A primeira variável refere-se à estratégia de vida média da comunidade (EM); a segunda, à diversidade de estratégias de vida presentes na comunidade (DE); e a terceira, à heterogeneidade interespecífica da comunidade em relação às suas estratégias de vida (HI). Essas três variáveis foram as variáveis de interesse. Coletamos os valores das três variáveis de interesse após decorridas duas mil gerações em cada comunidade (Apêndice 3). Consideramos uma geração como o tempo levado para que ocorresse um número de mortes equivalente à abundância total da comunidade. Como as comunidades simuladas tinham cerca de cinco mil indivíduos cada, uma geração corresponde ao tempo levado para a ocorrência acumulada de cinco mil de mortes.

4.3.2 Variáveis preditoras

Utilizamos três variáveis preditoras: duas que, em conjunto, definem os cenários evolutivo, ecológico e eco-evolutivo (taxa de mutação e riqueza inicial) e uma que se refere à força do distúrbio. A taxa de mutação e a riqueza inicial foram tratadas como variáveis categóricas com dois níveis cada: taxa de mutação nula ou positiva e riqueza inicial 1 ou maior que 1. O distúrbio foi representado por um índice que agrega as informações referentes ao número de eventos de distúrbio que ocorre na comunidade no decorrer da simulação e à intensidade destes eventos (Apêndice 2). O índice, dado pelo produto das duas variáveis, variou de 0 a 300 000 e pode ser entendido como o número de vezes que todos os indivíduos da comunidade são repostos em função das mortes por distúrbio.

4.4 Descrição da análise dos dados

Utilizamos uma abordagem de seleção de modelos a fim de investigar diferentes formas possíveis para a relação entre o índice de distúrbio e a estratégia de vida média, a diversidade total de estratégias e a heterogeneidade interespecífica da estratégia de vida nas comunidades sob os distintos cenários (evolutivo, ecológico ou eco-evolutivo). Para cada cenário, ajustamos modelos lineares e não lineares através da estimativa de máxima verossimilhança de seus parâmetros. As distribuições de erro utilizadas foram a normal e a gama². Para a estratégia de vida média, os modelos candidatos

_

² A estratégia de vida média, a diversidade total de estratégias e a heterogeneidade interespecífica da estratégia de vida são variáveis contínuas, positivas e assimétricas. A variação intraespecífica no índice de estratégia de vida, como explicitado na seção 4.1, é dada a partir do sorteio de uma distribuição gaussiana, no momento de determinação do índice de estratégia dos indivíduos novos da comunidade.

apresentaram as funções linear, Michaelis-Menten, potência, logística e exponencial, além do modelo nulo (Tabela 2). Estas funções abarcam diferentes formas de crescimento ou decrescimento monotônico da esperança da variável de interesse (estratégia média) em função da variável preditora (índice de distúrbio). Para a diversidade total e a heterogeneidade interespecífica, além das funções utilizadas na modelagem da estratégia média, ajustamos modelos com as funções gaussiana, quadrática, Ricker e Holling, que abrangem relações não-monotônicas entre as variáveis (Tabela 2). Para a heterogeneidade interespecífica do índice de estratégia de vida, que apresentou maior variação nos dados quando o índice de distúrbio foi intermediário, foram ainda ajustados modelos em que a variância (em contraposição à esperança) da distribuição é função Ricker ou gaussiana do índice de distúrbio. Para cada grupo de simulações, selecionamos os modelos mais plausíveis por meio do critério de informação de Akaike (AIC). [Burmham & Anderson; Bolker.]

Tabela 2: Fórmulas das funções determinísticas usadas nos modelos estatísticos, que relacionam a distribuição das variáveis-resposta (média, variância total e variância interespecífica do índice de estratégia de vida), representadas por f(x), ao índice de distúrbio, representado por x.

Função	Fórmula		
Exponencial	$f(x) = e^{ax+b}$		
Gaussiana	$f(x) = ae^{-\frac{(x-b)^2}{2c^2}}$		
Holling	$f(x) = \frac{ax^2}{b + cx + x^2} + d$		
Linear	f(x) = ax + b		
Logística	$f(x) = \frac{a}{1 + e^{-b(x-c)}}$		
Michaelis-Menten	$f(x) = \frac{ax}{b+x} + c$		
Nulo	$f(x) \perp x$		
Potência	$f(x) = ax^b + c$		
Quadrática	$f(x) = ax^2 + bx + c$		
Ricker	$f(x) = axe^{-bx} + c$		

Considerando essas características, as distribuições de probabilidade mais adequadas para potencialmente explicar a variação nos dados são a normal e a gama.