HW 2 - ASTR501

Created with Wolfram Mathematica 11.0 on February 1, 2016

Daniel George - dgeorge5@illinois.edu

QI

Approximately flux is given by

$$\begin{array}{ll} & \text{In[78]:=} & F \rightarrow \text{I}_{\nu} \, \text{Cos}\left[\theta\right] \, \Delta\Omega \, /. \, \Delta\Omega \rightarrow \frac{\text{dA} \, \text{Cos}\left[\theta\right]}{r^2} \, /. \, \, \text{dA} \rightarrow \frac{\text{d}^2 \, \pi}{4} \, /. \, \, r \rightarrow \text{L} \, \Big/ \, \text{Cos}\left[\theta\right] \, /. \, \, \text{L} \rightarrow \text{f} \, \Big/ \, \text{d} \\ & \text{Out[78]:=} & F \rightarrow \frac{\text{d}^4 \, \pi \, \text{Cos}\left[\theta\right]^4 \, \mathbb{I}_{\nu}}{4 \, \text{f}^2} \end{array}$$

Q2

a)

Luminosity

 $4\pi R_{\star} \sigma T_{\star}^{4}$

b)

Brightness

sB := Brightness ->
$$\frac{\sigma T_{\star}^4}{\pi}$$

Flux

Using spherical coordinates at a point on the disk with the axis passing through the center of the star.

 $\ln[82] = \text{SF} = \text{Flux} -> \text{Integrate} \left[\text{Brightness Sin}[\theta] \cos[\phi] \sin[\theta], \{\theta, \theta, \text{ArcSin}[R_*/r]\}, \{\phi, -\frac{\pi}{2}, \frac{\pi}{2}\} \right]$

$$\text{Out[82]= Flux} \rightarrow \text{Brightness} \left(\text{ArcSin} \left[\frac{R_{\star}}{r} \right] - \frac{R_{\star} \sqrt{1 - \frac{R_{\star}^2}{r^2}}}{r} \right)$$

Solving for T_{disk}

 $log[84] = ST = Solve[SF /. SB /. Flux \rightarrow \sigma T_{disk}^4 /. Rule \rightarrow Equal, T_{disk}][[-1, 1]]$

$$\text{Out[84]= } T_{\text{disk}} \rightarrow \left(\frac{\text{ArcSin} \left[\frac{R_{+}}{r} \right] T_{\star}^{4}}{\pi} - \frac{R_{\star} \sqrt{\frac{r^{2} - R_{+}^{2}}{r^{2}}} T_{\star}^{4}}{\pi r} \right)^{1/4}$$

Series expansion about R_{*}

ln[28]:= Series [T_{disk} /. sT, {R_{*}, 0, 1}] // Simplify

$$\text{Out[28]=} \quad \left(\frac{2}{3\,\pi}\right)^{1/4} \, \left(\frac{T_\star^4}{r^3}\right)^{1/4} \, R_\star^{3/4} \, + \, 0 \, \big[\,R_\star\,\big]^{\,7/4}$$

c)

Equating energy absorbed to emitted

$$\begin{array}{ll} \mbox{In[90]:= Solve} \left[\, \left(4\,\pi\,\sigma\,R_{\star}^2\,T_{\star}^4 \right) \, / \, \left(4\,\pi\,r^2 \right) \,\pi\,R^2 \; = \; \left(4\,\pi\,R^2 \right) \, \left(\sigma\,T_{eff}^4 \right) , \, T_{eff} \right] \left[\, \left[\, -1 \,, \, \, 1 \, \right] \, \right] \\ \mbox{Out[90]:= } T_{eff} \to \frac{\sqrt{R_{\star}} T_{\star}}{\sqrt{2} \, \sqrt{r}} \end{array}$$

The scaling law is different because the planet has more effective surface area.

d)

Twice the energy emitted by each side of the disk divided by luminosity of star.

$$\label{eq:local_$$

Out[95]= $\frac{1}{4}$

e)

Larger. Bigger disk implies more absorption.

a)

$$\label{eq:loss_loss} \begin{split} & \ln[97]:= \text{ SO = $Series$} \Big[\text{Assuming} \Big[\alpha > 0 \& \nu_0 > 0 \& \nu_c > \Delta \nu \, \big/ \, 2 \& \Delta \nu > 0 \,, \\ & \qquad \qquad \text{Integrate} \Big[\, \mathbb{I}_\theta \, \left(\frac{\nu}{\nu \theta} \right)^\alpha \, , \, \left\{ \nu \, , \, \nu_c - \Delta \nu \, \big/ \, 2 , \, \nu_c + \Delta \nu \, \big/ \, 2 \right\} \Big] \, \Big] \, , \, \left\{ \Delta \nu \, , \, \, 0 \, , \, \, 1 \right\} \Big] \\ & \qquad \qquad \text{Out}[97]= \ \ \, \nu \, \theta^{-\alpha} \, \, \mathbb{I}_\theta \, \, \nu_c^\alpha \, \Delta \nu \, + \, 0 \, \big[\, \Delta \nu \, \big]^2 \end{split}$$

b)

Observed Intensity

Surface brightness

Series expansion about Δv

$$\label{eq:loss_loss} \begin{split} & \ln[\text{104}]\text{:=} & \text{SZ = Series} \left[\text{Assuming} \left[\alpha > 0 \&\& \nu_0 > 0 \&\& \nu_c > \Delta \nu \left/ 2 \&\& \Delta \nu > 0 \right. \right. \right. \\ & \left. \text{Integrate} \left[\text{I}_{\text{obs}} \text{ /. sI}, \left\{ \nu, \nu_c - \frac{\Delta \nu}{2}, \nu_c + \frac{\Delta \nu}{2} \right\} \right] \right], \left\{ \Delta \nu, 0, 1 \right\} \right] \\ & \text{Out[104]=} & \left(1 + z \right)^{-3 + \alpha} \nu 0^{-\alpha} \, \mathbb{I}_0 \, \nu_c^\alpha \, \Delta \nu + 0 \, [\Delta \nu]^2 \end{split}$$

c)

$$ln[61] = -2.5 \text{ Log10} [s0/sZ/. \{z \rightarrow 7, \alpha \rightarrow -1\}]$$
Out[61] = $-9.0309 + 0 [\triangle V]^{1}$

04

First integrand

Substituting expression for specific intensity

$$\begin{array}{ll} \text{In[106]:=} & d\Omega \ d\nu \ I_{\nu} \ /. \ I_{\nu} \rightarrow \frac{dE}{c \ dA \ dt \ d\nu \ d\Omega} \\ \\ \text{Out[106]=} & \frac{dE}{c \ dA \ dt} \end{array}$$

Second integrand

Substituting expressions for distribution function, energy, and volume

$$\ln[109] := \ \mbox{d3p fE} \ /. \ \mbox{f} \rightarrow \frac{\mbox{dN}}{\mbox{d3p d3x}} \ /. \ \mbox{dN} \rightarrow \frac{\mbox{dE}}{\mbox{h} \ \nu} \ /. \ \mbox{E} \rightarrow \mbox{h} \ \nu \ /. \ \mbox{d3x} \rightarrow \mbox{c dA dt}$$

$$\mbox{Out}[109] := \ \ \frac{\mbox{dE}}{\mbox{c dA dt}}$$

Thus they are both identical.