```
import pandas as pd
In [2]:
         import warnings
         warnings.filterwarnings("ignore")
In [3]: data=pd.read csv("/home/placement/Desktop/venkatesh/fiat500.csv")
In [4]: #we are doing ridge for lounge
         data1=data.loc[(data.model=='lounge')]
          data1
Out[4]:
                  ID model engine_power age_in_days
                                                         km previous_owners
                                                                                                price
                                                                                  lat
                                                                                           lon
             0
                   1 lounge
                                      51
                                                 882
                                                      25000
                                                                         1 44.907242
                                                                                       8.611560
                                                                                                8900
             3
                                                2739
                                                     160000
                                                                         1 40.633171 17.634609
                                                                                                6000
                   4 lounge
                                      51
                                                 731
             6
                   7 lounge
                                      51
                                                      11600
                                                                         1 44.907242
                                                                                       8.611560
                                                                                               10750
             7
                   8 lounge
                                      51
                                                1521
                                                      49076
                                                                          1 41.903221 12.495650
                                                                                                9190
             11
                  12 lounge
                                      51
                                                 366
                                                      17500
                                                                          1 45.069679
                                                                                      7.704920
                                                                                               10990
           1528
                1529
                     lounge
                                      51
                                                2861
                                                     126000
                                                                          1 43.841980 10.515310
                                                                                                5500
                1530
                                                 731
                                                      22551
                                                                          1 38.122070 13.361120
                                                                                                9900
           1529
                    lounge
                                      51
                1531 lounge
                                                      29000
           1530
                                      51
                                                 670
                                                                         1 45.764648
                                                                                      8.994500
                                                                                               10800
           1534
               1535 lounge
                                      74
                                                3835
                                                     112000
                                                                         1 45.845692
                                                                                       8.666870
                                                                                                4600
           1536 1537 lounge
                                      51
                                                      80750
                                                                                                5990
                                                2557
                                                                         1 45.000702
                                                                                      7.682270
         1094 rows × 9 columns
         data1=data1.drop(['ID','lat','lon'],axis=1)
In [5]:
```

In [6]: data1=pd.get_dummies(data1)
 data1

Out[6]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge
0	51	882	25000	1	8900	1
3	51	2739	160000	1	6000	1
6	51	731	11600	1	10750	1
7	51	1521	49076	1	9190	1
11	51	366	17500	1	10990	1
1528	51	2861	126000	1	5500	1
1529	51	731	22551	1	9900	1
1530	51	670	29000	1	10800	1
1534	74	3835	112000	1	4600	1
1536	51	2557	80750	1	5990	1

1094 rows × 6 columns

```
In [7]: y=data1['price']
X=data1.drop('price',axis=1)
```

```
In [8]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.33,random_state=42)
```

```
In [9]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
         ridge = Ridge()
         parameters = {'alpha': alpha}
         ridge regressor = GridSearchCV(ridge, parameters)
         ridge_regressor.fit(X_train, y_train)
 Out[9]:
            GridSearchCV
          ▶ estimator: Ridge
                ▶ Ridge
In [10]: ridge_regressor.best_params_
Out[10]: {'alpha': 30}
In [11]: ridge=Ridge(alpha=30)
         ridge.fit(X train,y train)
         y pred ridge=ridge.predict(X test)
In [12]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(y pred ridge, y test)
         Ridge Error
Out[12]: 519771.8129989745
```

Out[14]:

	index	Price	Predicted	ld
0	676	10250	10045.347779	0
1	215	9790	9989.171535	1
2	146	5500	4769.099603	2
3	1319	9900	10048.683238	3
4	1041	8900	9813.944798	4
357	757	6000	5640.378648	357
358	167	10950	10431.681162	358
359	156	8000	8765.506865	359
360	1145	10700	10384.884273	360
361	1393	9400	9929.721685	361

362 rows × 4 columns

```
In [16]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Price',data=Results.head(50))
sns.lineplot(x='Id',y='Predicted',data=Results.head(50))# keep # and see
plt.plot()
```

Out[16]: []

In []: