Application No.: 10/577.614 3 Docket No.: 65487(50533)

Amendments to the Claims

1-38. (Cancelled)

39. (Currently Amended) A compound of the general formula 1

$$(Y^{1})_{m}$$
 - $Ax^{2}(X^{1})$ - $C(=0)$ - $CH=C(1)$ - $VAx^{2}(X^{2})$ - $(Y^{2})_{p}$

wherein

V-designates---ck--ck--

Ar' and Ar' independently are selected from ary); m is an integer selected from the group consisting of 0, 1, and 2. p is an integer selected from the group consisting of 0, 1, and 2.

wherein the sum of m and p is at least 1;

each Y^1 and Y' independently represents a substituent selected from A. B. and C

wherein Z is $-(CR_2)_{n-1}$, wherein n is 1-4;

 R^1 , R^2 and R^3 independently are selected from optionally substituted C_{1-12} -alkyl, optionally substituted C_{2-12} -alkenyl, optionally substituted C_{2-12} -alkenyl, optionally substituted C_{2-12} -alkenyl, optionally substituted C_{2-12} -alkoxycarbonyl, optionally substituted C_{2-12} -alkynyl, optionally substituted aryl, optionally substituted aryl optionally substituted aryl optionally substituted arylearbonyl, optionally substituted arylearbonyl, optionally substituted heteroarylearbonyl, substituted heteroarylearbonyl, aminocarbonyl, mono- and di(C_{1-p} -alkyl)aminocarbonyl, amino- C_{1-p} -alkyl)aminocarbonyl, aminocarbonyl; or R^1 and R^2 together with the nitrogen atom to which they are attached ($-N(R^1)R^2$) form an optionally substituted nitrogen-containing heterocyclic ring:

 R^3 is selected from hydrogen, $C_{1,6}$ -alkyl, and $C_{1,6}$ -alkylcarbonyl, said alkyl and alkylcarbonyl optionally carrying substituent(s) selected from halogen, hydroxy, $C_{1,6}$ -alkoxy, carboxy, $C_{1,6}$ -alkoxycarbonyl, $C_{1,6}$ -alkylcarbonyl, amino, mono- and di($C_{1,6}$ -alkyl)amino, and aryl optionally substituted 1-3 times with $C_{1,6}$ -alkyl, $C_{1,4}$ -alkoxy, nitro, cyano, amino or halogen; or R^1 and R^4 together form a biradical Z^2 which is as defined for Z_3

Q is an amion;

 \mathbf{X}^1 and \mathbf{X}^2 independently designate a substituent present 0-5 times on $\mathbf{A}\mathbf{r}^1$ and $\mathbf{A}\mathbf{r}^2$, respectively, each \mathbf{X}^1 and \mathbf{X}^2 independently being selected from the group consisting of optionally substituted \mathbf{C}_{1-12} -alkyl, optionally substituted \mathbf{C}_{2-12} -alkadienyl, optionally substituted \mathbf{C}_{4-12} -alkadienyl, optionally substituted \mathbf{C}_{4-12} -alkatrienyl, optionally substituted \mathbf{C}_{2-12} -alkynyl, hydroxy, optionally substituted \mathbf{C}_{2-12} -alkenyloxy, carboxy, optionally substituted \mathbf{C}_{1-12} -alkoxycarbonyl, optionally substituted \mathbf{C}_{1-12} -alkylcarbonyl, tormyl, \mathbf{C}_{1-4} -alkylcarbonyl, tormyl, \mathbf{C}_{1-4} -alkylcarbonyl, substituted

BOS2 718168.1

Application No.: 10/577,614 4 Docket No.: 65487(50533)

aryl, optionally substituted aryloxycarbonyl, optionally substituted aryloxy. optionally substituted arylcarbonyl, optionally substituted arylamino, arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroaryloxy, optionally substituted heteroarylearbonyl, optionally substituted heteroarylamino, heteroarylsulphonylamino, optionally substituted heterocyclyl, optionally substituted heterocyclyloxycarbonyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylearbonyl, optionally substituted heterocyclylamino, heterocyclylaulphonylamino, amino, meno- and $\operatorname{di}(C_{1/6})$ alkyl)amino, carbamoyl, mono- and $\operatorname{di}(C_{1,6}-\operatorname{alkyl})$ aminocarbonyl, amino- $C_{1-6}-\operatorname{alkyl}$ alkyl-aminocarbonyl, mono- and di $(C_{1,0}$ -alkyl)amino $(C_{1,0}$ -alkyl-aminocarbonyl, C_{1-6} -alkylearbonylamino, amino- C_{1-6} -alkyl-carbonylamino, mono- and di $\{C_{1-6}$ alkyl)amino-C₁₋₅-alkyl-carbonylamino, cyano, guanidino, carbamido, C₁₋₆-alka $noyloxy, \ C_{1+b}-alkylsulphonyl, \ C_{1+b}-alkylsulphonyloxy,$ aminesulfonyl, mono- and di(C1-6-alkyl)aminesultenyl, nitro, optionally substituted $C_{1,6}$ -alkylthio, and balogen, where any nitrogen-bound $C_{1,6}$ -alkyl is optionally substituted with hydroxy, $C_{1,6}$ -alkoxy, C_{2-6} -alkenyloxy, amino, monoand $di(C_{1,\epsilon}-alkyl)$ amino, carboxy. $C_{1,\epsilon}-alkyl$ carbonylamino, hatogen, $C_{1,\epsilon}-alkyl$ alkylthio, C: 6-alkyl-sulphonyl-amino, or guanidino; and salts thereof.

- 40. (Original) The compound according to claim 39, wherein R^{1} , R^{2} and R^{3} independently are selected from optionally substituted C_{1+12} -alkyl, optionally substituted C_{2+12} -alkynyl, optionally substituted C_{2+12} -alkynyl, optionally substituted C_{1+12} -alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, aminocarbonyl, mono- and $di(C_{1+6}$ -alkyl)aminocarbonyl, amino C_{1+6} -alkyl-aminocarbonyl, and mono- and $di(C_{1+6}$ -alkyl)amino- C_{1+6} -alkyl-aminocarbonyl.
- 41. (Original) The compound according to claim 39, wherein \mathbb{R}^1 is selected from hydrogen and methyl.
- 42. (Currently Amended) The compound according to claim 39, wherein X^1 and X^2 independently designates 0-4 substituents, where such optional substituents independently are selected from optionally substituted C_{1 tot}alkyl, hydroxy, optionally substituted $C_{1-12}=a1koxyC_{1-6}=a1koxy$, optionally substituted $C_{2-12}=a1koxyC_{1-6}$ alkenyloxy, carboxy, optionally substituted $C_{1/2}$ -alkylcarbonyl, formyl, C_{1-6} alkylsulphonylumino, optionally substituted axyl, optionally substituted aryloxycarbonyl, optionally substituted aryloxy, optionally substituted arylcarbonyl, optionally substituted arylamino, arylsulphonylamino, optionally substituted heteroary!, optionally substituted heteroarylamino, optionally substituted heteroarylearbonyl, optionally substituted heteroaryloxy, heteroarylsulphonylamino, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylamino, amino, meno- and di(C;-6-alkyl)amino, carbamoyl, mono- and $\text{di}(C_{1.6}\text{-alkyl})$ aminocarbonyl, amino- $C_{1.6}$ alkyl aminocarbonyl, mono- and $\text{di}(C_{1.6}\text{-}$ $alkyl) amino * C_{1:6} - alkyl - aminocarbonyl, \ C_{1:6} - alkyl carbonyl amino, \ amino - C_{1:6} - alkyl + aminocarbonyl aminocar$ carbonylamino, mono- and di(C1-6-alkyl)amino-C1-6-alkyl-carbonylamino, guanidino, carbamido, C₁₋₆-alkylsulphonyl, C₁₋₆-alkylsulphinyl, C₁₋₆alkylsulphonyloxy, optionally substituted $C_{1-\delta}$ -alkylthjo, aminosulfonyl, monoand $\operatorname{di}(C_{1/6}-\operatorname{alkyl})$ aminosulfonyl, and halogen, where any nitrogen-bound $C_{1-6}-\operatorname{alkyl}$ alkyl may be substituted with a substituent selected from the group consisting of hydroxy, C1-6-alkoxy, and halogen.
- 43. (Original) The compound according to claim 39, wherein R^1 , R^2 and R^4 independently are selected from optionally substituted $C_{1.6}$ -alkyl, optionally substituted $C_{1.6}$ -alkylcarbonyl, heteroarylcarbonyl, aminocarbonyl, mono- and $\operatorname{di}(C_{1.6}$ -alkyl)aminocarbonyl, amino- $C_{1.6}$ -alkyl-aminocarbonyl, and mono- and $\operatorname{di}(C_{1.6}$ -alkyl)amino- $C_{1.6}$ -alkyl-aminocarbonyl,

BOS2 71816S.1

Application No.: 10/577,614 5 Docket No.: 65487(50533)

44. (Original) The compound according to claim 39, wherein \mathbf{X}^1 and \mathbf{X}^2 independently designate 0-3 substituents, such optional substituents independently being selected from optionally substituted C_{1-6} -alkyl, hydroxy, optionally substituted C_{1-6} -alkylsulphonylamino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylamino, arylsulphonylamino, optionally substituted arylamino, arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, heteroarylsulphonylamine, amino, mono- and di(C_{1-6} -alkyl)amine, carbamoyl, C_{1-6} -alkyltahio, optionally substituted heterocyclyl, optionally substituted C_{1-6} -alkylthio, optionally substituted heterocyclyloxy, optionally

45. (Cancelled)

- 46. (Original) The compound according to claim 39, wherein at least one of ${\rm Ar}^1$ and ${\rm Ar}^2$ is phenyl.
- 47. (Original) The compound according to claim 46, wherein both of ${\rm Ar}^1$ and ${\rm Ar}^2$ are phenyl, m is 1 or 2, and p is 0, 1 or 2.
- 48. (Original) The compound according to claim 39, wherein X^2 represents at least one substituent selected from $C_{1.6}$ -alkyl, $C_{1.6}$ -alkoxy, $C_{1.6}$ alkylearbonyl, optionally substituted arylamino, optionally substituted arylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, mono- and $\operatorname{di}(C_{1.6}$ -alkyl)amino, $C_{1.6}$ -alkylearbonylamino, optionally substituted $C_{1.6}$ -alkylthio, optionally substituted beterocyclyl, optionally substituted heterocyclyl, optionally substituted heterocyclylamino and halogen.
- 49_{\odot} (Original) The compound according to claim 39, wherein X^2 represents at least two balogen atoms.

50.-51. (Cancelled)

52. (Original) The compound according to claim 39, wherein one of Y^i and Y^2 represents a substituent of the formula λ

$$-CH_2-N^4(R^1)(R^2)R^4Q$$
. (A)

wherein $R^1,\ R^2$ and R^4 are independently $C_{1-6}\text{--alkyl}\,.$

- 53. (Original) The compound according to claim 51, wherein Y^1 represents a substituent of the formula $-CH_2-N^2(R^1)(R^2)R^4$ Q^2 .
- 54. (Original) The compound according to claim 39, wherein one of Y^1 and Y^2 represents a substituent of the formula B

$$-NR^{2}-(CH_{5})_{5/3}-N'(E^{1})(R^{2})R^{4}Q^{5}$$
 (8)

wherein R^4 is selected from hydrogen and methyl, and R^4 , R^2 and R^4 are independently $C_{1-6}{\rm -}{\rm alkyl}$.

55. (Original) The compound according to claim 39, wherein one of Y^{1} and Y^{2} represents a substituent of the formula C

BOS2 718165.1

Application No.: 10/577,614 6 Docket No.: 65487(50533)

$$-O + (CH_2)_{2+1} - N'(R^1)(R^2)R^4 Q$$
 (C)

wherein R1, R2 and R2 are independently C1 chalkyl.

56. (Currently Amended) The compound according to claim 5239, wherein ${\rm Ar}^1$ and ${\rm Ar}^2$ both are phenyl.

57. (Original) The compound according to claim 39, which is selected from the group consisting of:

(2-(3-(3-(2-Chloro 4-methoxy-phenyl)-3-oxo-propenyl)-3',5'-dimethyl-biphenyl-

4-yloxy)-ethyl)-trimethyl-ammonium, iodide;
(2-(3-(3-(4-Amino-phenyl)-3-oxo-propenyl)-3',5'-dimethyl-biphenyl-4-yloxy)-

ttyl)-trimethy! ammonium, iodide;

(2-(3-(3-(3-(2-Amino-phenyl)-3-oxo-propenyl)-3',5'-dimethyl-biphenyl-4-yloxy)-ethyl)-trimethyl-ammonium, iodide;

4-(3-(3-(2-Fluoro-4-methoxy-phenyl)-3-oxo-propenyl)-2'-methoxy-biphenyl-4-

yl)-1,1-dimethyl piperazin 1-ium, iedide;

 $(3-\{3-(4-Dibutylamino-phenyl)-acryloyl\}-benzyl)-trimethyl-ammonium, iodide; <math>3-\{4-(2-Trimethylammonium-ethoxy\}-biphenyl-3-yl\}-1$ (3 trimethylammonium-phenyl)-propenone, di-iodide; and

3 = [4 + (2 + trimethylammonium + ethoxy) + 3 + 5 + dimethyl-biphenyl + 3 + y1] + 1 + (2 + trimethylammonium + 4 + methoxy-phenyl) - propenone, disiodide.

58. (Currently Amended) A method for treating bacterial infections caused by any one of Staphylococcus aureus; Staphylococcus intermidius; Enterococcus faecalis; Enterococcus faecium; Streptococcus pneumoniae; Streptococcus pyogenes; Streptococcus agalactiae; and Eschericia coli in a mammal comprising administration of a compound of the general formula I

$$(Y^{1})_{\sigma} - Ar^{1}(X^{1}) - C(+O) - CH + CH + VAr^{2}(X^{2}) - (Y^{2})_{\sigma}$$

wherein

 \forall -derrignation -CH₂-CH₃- γ -CH+CH- ϕ r--e=C- γ

 Ar^{i} and Ar^{2} independently are selected from ary);

m is an integer selected from the group consisting of 0, 1, and 2,

p is an integer selected from the group consisting of 0, 1, and 2, wherein the sum of m and p is at least 1;

each \mathbf{Y}^1 and \mathbf{Y}^2 independently represents a substituent selected from A, B, and σ

$$-Z-N^{*}(R^{2})(R^{2})R^{4}Q$$
, (A)
 $-NR^{2}-Z-N^{*}(R^{1})(R^{2})R^{2}Q^{2}$, and (B)

$$-O-Z-N^*(R^1)(R^2)E^4Q^*;$$
 (C)

wherein Z is a biradical $-(C(R^n)_2)_{n^n}$, wherein n is an integer in the range of 1-6 and each R^n is independently selected from hydrogen and $C_{1,6}$ -alky), or wherein $(R^n)_2$ is =0;

 R^1 , R^2 and R^3 independently are selected from optionally substituted C_{1+12} -alkyl, optionally substituted C_{2+12} -alkenyl, optionally substituted C_{3+12} -alkadienyl, optionally substituted C_{3-12} -alkatrienyl, optionally substituted C_{3-12} -alkoxycarbonyl, optionally substituted C_{3-12} -alkoxycarbonyl, optionally substituted C_{1-12} -alkylcarbonyl, optionally substituted aryl, optionally

BOS2 718165.1

Application No.: 10/577,614 7 Docket No.: 65487(50533)

substituted aryloxycarbonyl, optionally substituted arylcarbenyl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroarylcarbonyl, aminocarbonyl, mono- and di($C_{1.6}$ -alkyl)aminocarbonyl, amino- $C_{1.6}$ -alkyl-aminocarbonyl, mono- and di($C_{1.6}$ -alkyl)amino- $C_{1.6}$ -alkyl-aminocarbonyl; or R^1 and R^2 together with the nitrogen atom to which they are attached (-N(R^1) R^3) form an optionally substituted nitrogen-containing heterocyclic ring:

 \mathbb{R}^3 is selected from hydrogen, $C_{i,6}$ -alkyl, and C_{i+6} -alkylcarbonyl, said alkyl and alkylcarbonyl optionally carrying substituent(s) selected from halogen, hydroxy, C_{i+6} -alkoxy, carboxy, C_{i+6} -alkoxycarbonyl, C_{i+6} -alkylcarbonyl, amino, monor and di(C_{i+6} -alkyl)amino, and aryl optionally substituted I-3 times with C_{i+4} -alkyl, C_{i+4} -alkoxy, nitro, cyano, amino or halogen; or \mathbb{R}^1 and \mathbb{R}^3 together form a biradical 2° which is as defined for Z;

O is an anion:

 X^1 and X^2 independently designate a substituent present 0-5 times on Ar^4 and Ar2, respectively, each X4 and X4 independently being selected from the group consisting of optionally substituted $C_{1/12} \cap a \} ky \}$, optionally substituted $C_{2+12} \cap a \} ky \}$ alkenyl, optionally substituted C_{4-12} -alkadienyl, optionally substituted C_{6-42} alkatrienyl, optionally substituted C_{2-12} -alkynyl, hydroxy, optionally substituted $C_{1/12}$ -alkoxy, optionally substituted C_{2-12} -alkoxyloxy, carboxy, optionally substituted C_{1-12} -alkoxycarbonyl, optionally substituted C_{1-12} alkylcarbonyl, formyl, C1.6-alkylculphonylamino, optionally substituted aryl. optionally substituted aryloxycarbonyl, optionally substituted aryloxy, optionally substituted arylearbonyl, optionally substituted arylamino. arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroaryloxy, optionally substituted heteroarylcarbonyl, optionally substituted heteroarylamino, heteroarylsulphonylamino, optionally substituted heterocyclyl, optionally substituted beterocyclyloxycarbonyl, optionally substituted beterocyclyloxy, optionally substituted heterocyclylcarbonyl, optionally substituted heterocyclylamino, heterocyclylaulphonylamino, amino, mono- and di(C1-aalkyl)amino, carbamoyl, mono- and $di(C_{1-6}-alkyl)$ aminocarbonyl, amino C_{1-6} alkyl-aminocarbonyl, mono- and di $\{C_{1-6},alkyl\}$ amino $\{C_{3-6},alkyl-aminocarbonyl\}$ $C_{1-\delta}$ -alkylearbonylamino, amino- $C_{1-\delta}$ -alkyl-carbonylamino, mono- and di $(C_{1-\delta}$ alkyl)amino- C_{1-5} -alkyl-carbonylamino, cyano, guanidino, carbamido, C_{1-6} -alkanoyloxy, $C_{i,b}$ -alkylsulphonyl, $C_{i,b}$ -alkylsulphonyloxy. aminosulfonyl, mono- and $di(C_{1-6}-alkyl)$ aminosulfonyl, nitro, optionally substituted C1.0-alkylthio, and halogen, where any nitrogen-bound C1.0-alkyl is optionally substituted with hydroxy, $C_{1,k}$ -alkoxy, C_{2-6} -alkenyloxy, amino, monoand di(C: $_{\kappa}$ -a(ky))amino, carboxy, $C_{1+\delta}$ -alkylcarbonylamino, halogen, $C_{1+\delta}$ alkylthio, C.,,-alkyl-culphonyl-amino, or guanidino; and salts thereot,

59. (Previously Presented) The compound according to claim 39, wherein one of Y^1 and Y^2 represents a substituent of the formula λ

$$-CH_2-N^4(R^1)(R^2)R^4$$
 Or (A)

wherein R^1 , R^2 and R^4 are independently C_{1-6} -alkyl.

60. (Previously Presented) The method according to claim 58, wherein one of Y^1 and Y^2 represents a substituent of the formula B

$$-NR^3 - (CH_2)_{2-3} - N'(R^1)(R^2)R^4 Q^2$$
 (B)

BOS2 718165.1

Application No.: 10/577,614

8

Docket No.: 65487(50533)

wherein R^3 is solveted from hydrogen and methyl, and R^2 , R^2 and R^4 are independently $C_{1,6}\text{--}alkyl$.

61. (Previously Presented) The method according to claim 58, wherein one of \mathbf{y}^{z} and \mathbf{Y}^{z} represents a substituent of the formula C

$$-O = (CH_2)_{\geq -3} - N^+(R^1)(R^2)R^4 Q$$
 (C)