Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2020-21

Πράξεις με δυαδικούς αριθμούς

(λογικές πράξεις)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

- Εισαγωγή
- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις (δυαδικής λογικής)
 - Αριθμητικές πράξεις
- Οι πράξεις εκτελούνται
 - Σε ομάδες bits: «δυαδικούς αριθμούς»

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Εκτέλεση πράξεων

Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική

- ΕισαγωγήΔυαδική λογική
- Η δυαδική λογική ταιριάζει με την τεχνολογία του τρανζίστορ
 - 2 καταστάσεις: ON-OFF, 1-0
 - Ψηφιακά ηλεκτρονικά (2 στάθμες)
- Δυαδική άλγεβρα Boole
 - Λογική άλγεβρα
 - Συσχέτιση με διακοπτικά κυκλώματα
 - Η εργασία του Shannon (1938)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ποσότητες Δυαδικής Λογικής

- Εισαγωγή
- Δυαδική λογική
- Στη δυαδική λογική άλγεβρα
 - Υπάρχουν 2 «ποσότητες» (σύμβολα):
 - Αληθές ή 1 ή ΝΑΙ
 - Ψευδές ή 0 ή ΟΧΙ
 - Ένα δυαδικό ψηφίο (bit) έχει τιμή 0 ή 1
- Στα ψηφιακά ηλεκτρονικά κυκλώματα:
 - 0 ή «χαμηλή τάση» ή «η μια φορά ρεύματος»
 - 1 ή «υψηλή τάση» ή «η άλλη φορά ρεύματος»
 - Ανάλογα με την τεχνολογία, ένα bit αναπαρίσταται με αντίστοιχη κατάσταση σε ένα ηλεκτρονικό κύκλωμα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Bits & Bytes

• Εισαγωγή

• Δυαδική λογική

Bit

 Η μικρότερη λογική ποσότητα - η μικρότερη μονάδα δεδομένων - 0 ή 1.

• Byte

- Ομάδα 8 bits
- Η ελάχιστη ποσότητα που μπορεί να χειριστεί ο υπολογιστής κατά την εκτέλεση μιας πράξης
- Μια σειρά από bytes αναπαριστά έναν δυαδικό «αριθμό»
 - Αποθήκευση: σε καταχωρητές ή στη μνήμη

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Πράξεις Δυαδικής Λογικής

• Εισαγωγή

• Δυαδική λογική

• Στη δυαδική λογική άλγεβρα

- Καθορίζονται λογικές πράξεις μεταξύ των λογικών ποσοτήτων 0 και 1 (bits)
- Στα ψηφιακά ηλεκτρονικά κυκλώματα:
 - Κύκλωμα δέχεται ως είσοδο την ηλεκτρική αναπαράσταση των 0 και 1
 - Και παράγει στην έξοδό του την ηλεκτρική αναπαράσταση του αποτελέσματος μιας λογικής πράξης
 - Το κύκλωμα υλοποίησης της λογικής πράξης ονομάζεται πύλη (gate).

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Αογικές πράξεις με bits • Εισαγωγή • Δυαδική λογική • ΝΟΤ (αντιστροφή) • Διμελείς λογικές πράξεις • ΑΝD (λογικό-ΚΑΙ) • ΟR (λογικό-Η) • ΧΟR (αποκλειστικό-Η) • κ.λ.π.

Βασικές Λογικές Πράξεις

- Εισαγωγή
- Δυαδική Λογική
- Αποκλειστικό Ή (XOR)
 - το αποτέλεσμα είναι 1, όταν μόνο το Χ ή μόνο
 - 1 XOR X = X XOR 1 = NOT X
 - 0 XOR X = X XOR 0 = X
 - $XXOR\ Y = A \cdot B' + A' \cdot B$

Πίνακας Αλήθειας

X	Y	XOR
0	0	0
0	1	1
1	0	1
1	1	0

X XOR Y σύμβολο πύλης ΧΟΡ

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

21

Λογικές πράξεις σε ομάδες bits

- Λογικές Πράξεις Ο υπολογιστής μπορεί να εφαρμόσει λογικές πράξεις στα δεδομένα μας
 - Δεδομένα = σειρές από 0 και 1
 - Όχι όμως σε μεμονωμένα bits!!
 - Αλλά: σε ομάδες των 8, 16, 32 ή 64 bits ταυτόχρονα

$$A_{n} ... A_{i} ... A_{2} A_{1} A_{0} \quad \text{op} \quad (=\text{AND, OR, XOR})$$

$$B_{n} ... B_{i} ... B_{2} B_{1} B_{0}$$

$$Y_{n} ... Y_{i} ... Y_{2} Y_{1} Y_{0}$$

$$Y_{i} = A_{i} \text{ op } B_{i}$$

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

23

Βασικές Λογικές Πράξεις

- Εισαγωγή
- Δυαδική Λογική
- ΧΝΟΚ: Η συμπληρωματική συνάρτηση της ΧΟΡ
 - το αποτέλεσμα είναι 1, όταν τα Χ και Υ είναι
 - συνάρτηση «ισοδυναμίας»

Πίνακας Αλήθειας

!
Υλοποίηση πύλης XNOR:
χρησιμοποιώντας συνδυασμούς άλλων πυλών
X xnor Y = XY + X'Y'

X	Y	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

22

Ο τελεστής ΝΟΤ σε δυαδικούς αριθμούς

• Λογικές πράξεις

Η "μέθοδος" του υλικού (hardware): πολλαπλές ίδιες μονάδες εκτελούν την ίδια λειτουργία παράλληλα

10011000 NOT 01100111

• Η έξοδος Υ εξαρτάται μόνο από την είσοδο Α

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

• Λογικές πράξεις

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

25

Μάσκες

• Λογικές Πράξεις

- Για να αλλάξουμε την τιμή μεμονωμένων bits μέσα σε μια ομάδα
 - Για να θέσουμε επιλεγμένα bits σε 1
 - Για να θέσουμε επιλεγμένα bits σε 0
 - Για να αντιστρέψουμε επιλεγμένα bits
 - Χωρίς να επηρεάζουμε τα υπόλοιπα!
 - αυτά διατηρούν την τιμή τους, είτε 0 είτε 1
- Μάσκα: σειρά bits, επιλεγμένη ώστε:

Bits Εισόδου op Μάσκα → Νέα ομάδα bits

- op = AND, OR $\dot{\eta}$ XOR
- Νέα ομάδα περιέχει το επιθυμητό αποτέλεσμα

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Ο τελεστής ΟR σε δυαδικούς αριθμούς

• Λογικές πράξεις

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Μάσκα AND: για να θέσουμε bits στο 0

• Λογικές πράξεις

0 AND X = 01 AND X = X

 Ζητούμενο: σε λέξη των 8 bits να τεθούν σε 0 τα 3 λιγότερο σημαντικά bits.

Λέξη: 1 0 0 1 1 0 1 0 AND Μάσκα: 1 1 1 1 1 0 0 0

Νέα: 1001100

• Η ΑΝΟ μάσκα περιέχει:

• 0 στα bits που θα γίνουν 0

• 1 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Μάσκα OR: για να θέσουμε bits στο 1

• Λογικές πράξεις

 Ζητούμενο: σε λέξη των 8 bits να τεθούν σε 1 τα bits 0,4 και 5.

Λέξη:

10011000 OR

Μάσκα:

 $0\;0\;1\;1\;0\;0\;0\;1$

Νέα:

10111001

- Η ΟΚ μάσκα περιέχει:
 - 1 στα bits που θα γίνουν 1

0 OR X = X1 OR X = 1

• 0 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

20

Μάσκα XOR: για να αντιστρέψουμε bits

• Λογικές πράξεις

 Ζητούμενο: σε λέξη των 8 bits να αντιστραφούν τα bits 3,6 και 7.

Λέξη: $1\ 0\ 0\ 1\ 1\ 0\ 0\$ XOR

Μάσκα: <u>11001000</u>

Nέα: 01010000

- Η XOR μάσκα περιέχει:
 - 1 στα bits που θα αντιστραφούν
 - 0 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"