

Motivation

Background - huge international tourism market

- Billions of international tourist every year
- 6 million overseas tourist in SBM, Shanghai

Address customer (international tourist) needs

- Time saving on searching right information
- Energy saving on entire shopping time
- Unique experience in shopping

Potential benefits to society

- Differentiate mall in competition
- Improve city image in global tourism
- Attract more international tourists

International tourist arrivals by world region

Purpose of the system

Provide an easy method for international tourists to save their time on searching right information and physical energy during shopping in a big mall like Super Brand Mall, Shanghai, hence to provide them an unique shopping experience.

When you are lost at the big mall and someone ask who you are looking for ?

Requirements Analysis

Customer Requirements		System Requirements		Design Requirements	
CR1	The system shall be easy for international end-users to	SR1	The system shall provide language service for interaction and translation.	DR1	The system shall provide interaction with English, Chinese, German, Japanese and Korean.
	interacted with.			DR2	The system shall be able to translate English, German, Japanese and Korean to Chinese and Chinese to English, German, Japanese and Korean.
CR3	The system shall be able to carry shopping bags.	SR6	The system shall provide space to place certain amount weight shopping bags.		The system payload shall be at least 20 kg.
CR4	of searching availability, price and		SR7 The system shall provide an application for end-users to search information of		The system shall provide a product/service search application.
	user comments of products and services.	ts and products and services in the mall.		DR12	The system shall provide a searching application that will give a recommendation based on end-users' search criteria.
CR5	The system shall provide capability of navigation.	SR8	The system shall provide an application for navigating end-users to the store or spot where they want to go based on latest facility information.		The system shall provide an indoor navigation application.
CR6	The system shall be cheap to use.	SR9	The system shall be cost effective.	DR14	The system total cost should not exceed 1000\$/per device.
CR7	The system shall be able to be used for single purpose.	SR10	The system shall be able to operated at least 12 hours a day.		The system shall provide a long-hour battery to support 12 hours operation.
		SR11	The system shall provide detachable parts for different usages.	DR16	The system shall consist of a payload device and a detachable controller.

Functional Analysis

Conceptual Design

To address customer needs for carrying bags, navigation, translation, and information searching, existing technologies and devices were investigated.

Shopping Cart

Translation

Information Searching

Conceptual Design

Combine all translation, navigation and information searching in one Software App Develop a light-weight, autonomously moveable cart which fits in mall

Risk Management Matrix

	Marginal	Critical	Catastrophic
Probable		1	
Infrequent		2,3	
Remote		4	
Improbable		5,6	

Risk and mitigation plan

Key Activities

- Robotic cart design, build and test
- Software Application design, develop and test
- Information system design, develop and test
- Recharge system design, build and test
- Payment system design, develop and test
- System integration and test
- Robotic cart manufacturing
- System deployment
- Personnel training

Risk#	Description	Severity	Likelihood	Risk Value	Mitigation
1	Software development fall behind schedule	Critical	Probable	8	Include 20% more time in the project timeline to account for the delays
2	Fail to develop translation service	Critical	Infrequent	6	Integrate online translation service for back up plan
3	Fail to develop autonomous move	Critical	Infrequent	6	Include manually control mode of the robotic cart in design
4	Navigation failure	Critical	Remote	4	Include the floor plan in the app
5	Battery dead	Critical	Improbable	2	Include manually control mode of the robotic cart in design
6	Unable to operate the system	Critical	Improbable	2	Design a help button on the cart for asking personnel support

Work 5% 1.1.1 **Gantt Chart** CAD modeling Cart design 1.0 Work 20% & design present Year 2020 Year 2021 Robotic Cart design, 1.2 Work 14% Work 1% FINISH 1.1.2 Task Name START 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 build and test Material tradeoff study Prototype build 1.0 Robotic cart design, build & test Jan '20 Aug '20 1.1 Cart design Feb '20 Jan '20 Work 1% 1.3 Work 1% 1.1.3 1.1.1 CAD modeling & design present Jan '20 Feb '20 Wireless connection 1.1.2 Material tradeoff study Jan '20 Jan '20 Prototype test tradeoff study 2.0 Work 50% 1.1.3 Wireless connection tradeoff study Jan '20 Jan '20 Work 35% 1.2.1 Work 3% 1.2 Prototype build Feb '20 Jul '20 Software design, Mobile App design and Work 100% 1.2.1 Machnical part build Mar '20 Mar '20 Mechanical part build develop and test develop Mar '20 1.2.2 Driving system build Feb '20 System Jul '20 1.2.3 Auto-driving develop Feb '20 2.2 Work 8% Work 3% 1.2.2 Payment system Jul '20 Aug '20 1.3 Prototype test Driving system build design and develop 2.0 Software design, develop & test Mar '21 Jan '20 3.0 Work 10% 2.1 Mobile App design & develop Jan '20 Mar '21 Work 7% Work 8% 1.2.3 Jan '20 2.1.1 Navigation service design & develop Mar '21 Information system Hardware system ssistant Auto- driving develop 2.1.2 Translation service design & develop | Jan '20 Mar '21 design and develop build and test 2.1.3 Searching service design & develop Jan '20 Mar '21 Work 8% Work 2% 2.1.4 Interaction Interface design & develop Jan '20 Mar '21 Recharge System build Navigation service 2.2 Payment system design & develop Jan '20 Jun '20 design and develop and test 2.3 Information system design and develop Jan '20 Dec '20 Ï 3.2 4.0 Work 4% Work 3% 2.1.2 Work 10% 2.3.1 Database design, develop and build Jan '20 Dec '20 Security system build Translation service Shopping 2.3.2 Online service tradeoff study Jan '20 Mar '20 System integration and test design and develop 3.0 Hardware system build & test Mar '20 Dec '20 and test Work 5% 3.3 2.1.3 Work 8% 3.1 Recharge system build & test Aug '20 Mar '20 Searching service design BLE network build and 3.2 Security system build & test Aug '20 Jun '20 and develop test 3.3 BLE network build & test Jul '20 Dec '20 Work 13% Apr '21 Work 7% 4.0 System integration & test 5.1 2.1.4 Jun '21 5.0 Work 15% Cart Mechanical Part Interaction design and 4.1 Hardware system integration Apr '21 Jun '21 Robotic cart fabrication develop Apr '21 4.1.1 BLW network installation May '21 fabrication and 4.1.2 Security system installation Apr '21 May '21 5.2 Work 2% 2.3.1 Work 5% assembly 4.1.3 Recharge system installation Apr '21 May '21 Database design and **Cart Assembly** develop and build Jun '21 Jun '21 4.2 System test 5.0 Robotic Cart fabrication & assembly Jul '21 Oct '21 Work 2% Work 0.5% 2.3.2 5.1 Cart mechanical part fabrication Sep '21 Jul '21 Online service tradeoff 6.0 Work 1% Equipment deploy Oct '21 study 5.2 Cart assembly Oct '21 6.0 System Deployment Nov '21 Nov '21 System deployment Work 0.5% 6.1 Equipment deploy Nov '21 Nov '21 Personnel training 6.2 Personnel training Nov '21 Nov '21

Critical Path: A:D:E:F:G

With 20 months project time

Z = (20-20.07)/sqrt(1.78)=-0.05

The probability of meeting the schedule: 48%

With 20% more time in Software App develop

Z = (22.4-20.07)/ sqrt(1.78)=1.75

The probability of meeting the schedule: 96%

Activity	Predecessor	To(mo)	Tn(mo)	Tp(mo)	Te(mo)	Variance
Α						
В	А	1	2	4	2.17	0.25
С	В	4	6	8	6	0.44
D	A,B,C	8	12	15	11.83	1.36
Е	D	2	3	4	3	0.11
F	E	3	4	6	4.16	0.25
G	F	0.5	1	2	1.08	0.06

	Items		Unit Price	Quantity	Cost (\$)
		Manager	100,690 \$/yr	1*1.5 yr	151,035
		Architect	100,690 \$/yr	1*1.5 yr	151,035
		Quality Team	100,690 \$/yr	2*1.5 yr	302,070
		Robotic Cart Team	100,690 \$/yr	2*0.5 yr	100,690
		Mahila Anglication	100,690 \$/yr	1*1 E vr	604 140
	Software	Mobile Application	· · · · ·	4*1.5 yr	604,140
	Dev Team	Payment system	100,690 \$/yr	1*0.5 yr	50,345
Research &		Information System	100,690 \$/yr	1*1 yr	100,690
Development	Hardware Develop	Recharge system	6,000 \$/set	5 sets	30,000
		Sacurity system	10,000 \$/set	1 set	10,000
		BLE network	50 \$/unit	3000 units	150,000
	Material & Equipment	Cart prototype	2,000 \$/unit	1 unit	2,000
			80,000 \$/yr	5 yr	400,000
	System Integration & Test	Hardware inctallation	20,000 \$/event	1 event	20,000
		System test	10,000 \$/event	2 events	20,000
Manufacturing		Tablet	150 \$/unit	100 units	15,000
Manaraccamig		Robotic Cart	500 \$/unit	150 units	75,000
Operation &		Software update	50,000 \$/yr	5 yr	250,000
Maintenance		Personnel training	2,000 \$/event	2 events	4,000
		General Maintenance	100,000 \$/yr	5 yr	500,000
				Total Cost(\$)	2,936,005

Engineering Economics

Assumptions:

- Average annual salary: 100,690 \$
- SAS rent rate: 2 \$ per hour
- 70% usage for each unit

Cost & Profit vs Time

Questions?

References

- https://en.wikipedia.org/wiki/Program evaluation and review technique
- https://en.wikipedia.org/wiki/Super Brand Mall
- https://en.wikipedia.org/wiki/Indoor positioning system
- https://senion.com/indoor-positioning-system/
- https://iamili.com/us/

Requirements Analysis

The system shall be easy to maneuver in the mall.	SR2	The system shall be able to accept voice input and text input.		The system shall be able to accept text input and recognize voice input and translate voice input to text.
			DR4	The system shall be able to accept credit card payment and mobile payment.
			DR5	The system shall be able to be returned in any appropriate spot in the mall.
	SR3	I ne system shall be easy to pay for use and		The system shall be able to display remaining time for using.
				The system shall be able to track the end-user and be able to follow the end-user autonomously.
			DR8	The system shall be able to switch between autonomous control and manually control.
	SR4 SR5	The system shall be able be controlled autonomously and manually. The system shall be lightweight and in appropriate small size.	DR9	The system shall weigh no more than 8 pounds in total and system size shall not exceed 10 inches width, 20 inches length and 30 inches height.
		sR3	sr3 The system shall be easy to pay for use and easy to return. SR4 The system shall be able be controlled autonomously and manually. The system shall be lightweight and in	mall. input and text input. DR4 DR5 SR3 The system shall be easy to pay for use and easy to return. DR6 DR7 DR8 SR4 The system shall be able be controlled autonomously and manually. The system shall be lightweight and in

Design Options and Tradeoffs

	Shopping Cart	Navigation	Translation	Information Searching
Design Option1	 Existing cart: Existing shopping cart, just take too big and unwieldy to move not fashion enough 	IPS: (based on Wi-fi or BLE)We can use Indoor Position System to navigate inside mall	 Translation device: Existing translation device on the market. Expensive as the price is at least above 120 \$ each 	Develop searching service like online shopping searching: • Need database • Cost time and money in developing
Design Option2	 Design new cart Cost more time and Money Specific shape to fit in mall 	 GPS: It can not be used indoor as there usually no GPS signal inside the building. 	 Existing Translation API: Develop translation based on the existing API Cost a little time and money in developing Pay for using the translation based on words count 	 Specific Brand Searching: Good to find product of specific brand Not specific to the product in the mall Two many brands and no comparison

Design Options and Tradeoffs

Indoor Positioning System

	Wi-Fi	Bluetooth Low energy
Speed	< 1.3 Gps, ideal for bigger files and data	1 Mbps, small data
Accuracy	Use ISM radio band to communication, does not rely solely on the proximity of the user.	Location accuracy ensured by a unique UID number
Transmission Range	160 ft indoor, depending on frequency and power	50 feet ~ 1500 feet
Power Consumption	10 times more than BLE	Lower power consumption, can run single battery for over 2 years
Deployment Costs	Needs router configuration and power source	Less costly, no configuration is required

WBS

WBS in operation

Motivation

Challenges

 The software service development is the biggest challenge in this project as it leverage new technologies such as indoor positioning with BLE, translation with voice input, navigation path planning in a multiple floors building and autonomously moving robot.