Lecture 5: Regularized Regression and Double Machine Learning

Isaiah Hull^{1,2}

¹BI Norwegian Business School ²CogniFrame

November 21, 2023

Unsupervised Learning

Unsupervised Learning

Lecture 5: Overview

- 1. Regularized Regression.
- 2. Double Machine Learning.
- 3. Applications.

Unsupervised Learning 2/57

Unsupervised Learning

Overview

- ► Based on James et al. (2023).
 - ► https://hastie.su.domains/ISLP/ISLP_website.pdf

Unsupervised Learning 3/57

Introduction

► Linear model fit with least squares:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon \tag{1}$$

- ► Extend linear model: accommodate non-linear (but additive) relationships.
- ► Linear model advantages: inference and real-world competitiveness.
- ► Improve linear model and use alternative fitting procedures.

Unsupervised Learning 4/57

Advantage of Alternative Procedures

- ► Least squares: low bias when true relation is linear.
- ▶ If $n \gg p$: low variance, good test performance.
- ▶ If p > n: overfitting, poor test performance.
- ► Solution: constrain or shrink estimated coefficients.

Unsupervised Learning 5/57

Alternative Procedures

- ► Irrelevant variables add unnecessary complexity.
- ► Remove irrelevant variables by assigning zero coefficient estimates.

Unsupervised Learning 6/57

Alternatives to Least Squares

- ► <u>Subset Selection:</u>
 - ► Identify related predictors.
 - ► Fit model using least squares on reduced set.
- Shrinkage:
 - ► Fit with all predictors.
 - Coefficients shrunken towards zero.

Unsupervised Learning 7/57

Alternatives to Least Squares

- ► Subset Selection:
 - ► Identify related predictors.
 - ► Fit model using least squares on reduced set.
- Shrinkage:
 - ► Fit with all predictors.
 - ► Coefficients shrunken towards zero.

Unsupervised Learning 8/57

Alternatives to Least Squares

- ► Dimensionality Reduction:
 - ▶ Project p predictors into M-dimensional subspace (M < p).
 - ► Use *M* projections as predictors.

Unsupervised Learning 9/57

Subset Selection

- ► Best subset selection.
 - ► Fit least squares for each combination of *p* predictors.
 - ► Identify best model among 2^p possibilities.

Unsupervised Learning 10/57

Algorithm: Best Subset Selection

- 1. Null model \mathcal{M}_0 : Predict sample mean.
- 2. For k = 1, 2, ..., p:
 - Fit all $\binom{p}{k}$ models with k predictors.
 - ▶ Best model: smallest RSS (or largest R^2).
- 3. Select best model from $\mathcal{M}_0, \dots, \mathcal{M}_p$ using validation, C_p , BIC, or cross-validation.

Unsupervised Learning 11/57

► Fit improves with more variables, but little improvement after 3 variables.

Source: James et al. (2023).

Unsupervised Learning 12/57

Best Subset Selection

- ► Applies to least squares regression, and others.
- ightharpoonup Computationally intensive: 2^p models.
- ► Infeasible for large *p*.

Unsupervised Learning 13/57

Computational Considerations:

- ▶ p = 20 gives 1, 048, 576 models for best subset.
- ► Alternative: forward stepwise algorithms only gives 211 models.

Unsupervised Learning 14/57

Choosing the Optimal Model

- ► Model with all predictors:
 - ► Smallest RSS and largest R²
 - ► Training error \neq Test error
- ► Need to estimate test error:
 - 1. Adjust training error for overfitting.
 - 2. Directly estimate test error (validation set or cross-validation).

Unsupervised Learning 15/57

Adjustment Methods

- ► Training set MSE: underestimate of test MSE.
- Can't use training set RSS and R² for models with different numbers of predictors.
- ► Adjusting techniques: AIC, BIC, and Adjusted R^2 .

Unsupervised Learning 16/57

Source: James et al. (2023).

Unsupervised Learning 17/57

Shrinkage Methods vs. Subset Selection

- ► Subset selection uses least squares to fit a model with a subset of predictors.
- ► Shrinkage methods use all *p* predictors but shrinks coefficients towards zero.
- ► This reduces coefficient variance.
- ► Ridge regression and lasso.

Unsupervised Learning 18/57

Ridge Regression

- ► Extends least squares fitting.
- ► Minimizes:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Unsupervised Learning 19/57

Ridge Regression Formula

► Ridge regression minimizes:

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

- ► Where:
 - $ightharpoonup \lambda \geq 0$ is a tuning parameter.
 - $ightharpoonup \lambda \sum_j \beta_j^2$ is the shrinkage penalty.

Role of the Tuning Parameter

- ▶ When $\lambda = 0$, ridge regression yields least squares estimates.
- ► As $\lambda \to \infty$, coefficient estimates approach zero.
- ▶ Different coefficient estimates for each λ .
- $ightharpoonup \lambda$ selection is critical.

Unsupervised Learning 21/57

Shrinkage Penalty in Ridge Regression

- ▶ Applied to β_1, \ldots, β_p , not to β_0 (intercept).
- ► Shrink variable-response associations but not the intercept.
- ▶ If variables are centered (mean zero): $\hat{\beta}_0 = \bar{y} = \sum_{i=1}^n y_i/n$.

Unsupervised Learning 22/57

Visualization of Ridge Regression

Source: James et al. (2023).

Unsupervised Learning 23/57

Application to Credit Data

- ► Figure shows ridge regression coefficients for credit data.
- ▶ Coefficients plotted as function of λ .
- ► At $\lambda = 0$, ridge coefficients = least squares estimates.

Unsupervised Learning 24/57

Application to Credit Data

- ightharpoonup As λ increases, coefficients shrink towards zero.
- ► Variables with largest estimates: income, limit, rating, student.
- ▶ Right panel: same coefficients but with normalized ℓ_2 norm on the *X*-axis.

Unsupervised Learning 25/57

Application to the Credit Data

- ► Ridge regression coefficients depend on scaling of predictors.
- ► For interpretation: standardize predictors for ridge regression.
- ► Formula for standardization:

$$ilde{x}_{ij} = rac{x_{ij}}{\sqrt{rac{1}{n}\sum_{i=1}^{n}\left(x_{ij} - ar{x}_{j}
ight)^{2}}}$$

Unsupervised Learning 26/57

Ridge Regression Advantages

- ► Rooted in bias-variance trade-off.
- ▶ Increased λ leads to decreased variance but increased bias.

Unsupervised Learning 27/57

Why Does Ridge Regression Work?

- ► Ridge regression advantages:
 - ► Computationally efficient.
 - ▶ Performs well even if p > n.

Unsupervised Learning 28/57

<u>Lasso</u>

► Alternative to ridge regression. Lasso coefficients:

$$RSS + \lambda \sum_{j=1}^{p} \left| \beta_j \right|$$

- ℓ_1 penalty forces coefficients to be exactly zero for large λ .
- ► Lasso performs variable selection, yielding sparse models.

Unsupervised Learning 29/57

Lasso

- ightharpoonup At $\lambda = 0$, lasso gives least squares fit.
- ightharpoonup At large λ , lasso gives null model.
- ► Ridge regression always includes all variables.
- ► Lasso model varies with λ value.

Unsupervised Learning 30/57

Lasso Formulation

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \text{ subject to } \sum_{j=1}^{p} \left| \beta_j \right| \leq s$$

► Relationship between λ and s.

Unsupervised Learning 31/57

Ridge Regression

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\}$$
 subject to $\sum_{j=1}^{p} \left| \beta_j \right| \leq s$

▶ Relationship between λ and s.

Variable Selection with Lasso

- ► Lasso gives coefficient estimates equal to zero.
- ► In higher dimensions, lasso leads to feature selection.

Unsupervised Learning 33/57

Comparing Lasso and Ridge

- ► Lasso is simpler and more interpretable.
- ► Ridge shrinks each coefficient estimate proportionally.
- ▶ Lasso performs soft thresholding, shrinking coefficients toward zero by $\lambda/2$.
- ► Neither dominates universally; depends on data.
- Cross-validation can help decide the better approach.

Unsupervised Learning 34/57

Selecting the Tuning Parameter

- ▶ Need a method to select λ for ridge regression and the lasso.
- ▶ Use cross-validation: grid of λ values and compute CV error for each.
- ▶ Choose λ with smallest CV error.
- ▶ Refit model with all observations and selected λ .

Unsupervised Learning 35/57

Regularized Regression

Considerations in High Dimensions

- ▶ Traditional statistical techniques mostly for $n \gg p$.
- ▶ Most historical problems in statistics were low-dimensional.
- ► New technologies changed data collection methods.
- ► High-dimensional data: p > n or $p \approx n$.

Unsupervised Learning 36/57

Regularized Regression

Why High Dimensions Matter

- ightharpoonup Classical approaches like least squares not appropriate for p > n.
- ► High bias-variance trade-off; overfitting risks.
- ► Even when p < n, considerations apply.

Unsupervised Learning 37/57

Regularized Regression

What Goes Wrong in High Dimensions?

- ► Applying techniques not for high dimensions can be problematic.
- ► E.g., least squares: perfect fit with zero residuals when $p \ge n$.
- ► Perfect fits usually result in overfitting.
- Overfit models perform poorly on test sets.

Unsupervised Learning 38/57

Unsupervised Learning 39/57

Overview

- ▶ Based on Chernozhukov et al. (2018).
 - ► https://academic.oup.com/ectj/article-pdf/21/1/C1/27684918/ectj00c1.pdf

Unsupervised Learning 40/57

Introduction

- ightharpoonup Semiparametric problem of inference on a low-dimensional parameter θ_0 .
- ► High-dimensional nuisance parameters η_0 .
- ► Traditional assumptions (like Donsker properties) break down.
- ▶ Solution: Machine Learning (ML) methods for estimating η_0 .

Unsupervised Learning 41/57

Machine Learning in High Dimensions

- ► ML performs well in very high-dimensional problems.
- ► Regularization reduces variance.
- ▶ Regularization bias and overfitting cause bias in θ_0 .
- ► Naive estimators fail to be $N^{-1/2}$ consistent.

Unsupervised Learning 42/57

Addressing Bias

- ► Address bias by:
 - ► Using Neyman-orthogonal moments/scores.
 - ► Cross-fitting: an efficient data-splitting method.
- ► Result: Double or Debiased ML (DML).
- ▶ DML provides unbiased and approximately normally distributed estimators.

Unsupervised Learning 43/57

Theoretical Basis of DML

- ► Elementary and requires weak theoretical prerequisites.
- ► Supports various ML methods for estimating nuisance parameters.
 - ► E.g., Random forests, lasso, ridge, neural nets, boosted trees.

Unsupervised Learning 44/57

DML Applications

- ► Regression parameters in partially linear regression.
- ► Coefficients on endogenous variables.
- ► Average treatment effects.
- ► Local average treatment effect in IV settings.

Unsupervised Learning 45/57

Partially Linear Regression (PLR)

$$Y = D\theta_0 + g_0(X) + U,$$
 $Ep[U|X, D] = 0,$ $D = m_0(X) + V,$ $Ep[V|X] = 0,$

- ➤ *Y*: outcome, *D*: policy/treatment, *X*: controls.
- ▶ Infer θ_0 , the treatment effect parameter.
- ► Treatment variable dependence on controls.
- ightharpoonup High dimensional X.

Regularization Bias

- ► Naive approach: ML estimator $D\hat{\theta}_0 + \hat{g}_0(X)$ for $D\theta_0 + g_0(X)$.
- ► Sample split: Main sample (size n) and auxiliary sample (size N n).
- ► Estimator $\hat{\theta}_0$ often slower than $1/\sqrt{n}$ rate.
- ► Bias in learning g_0 .

Unsupervised Learning 47/57

Overcoming Regularization Biases using Orthogonalization

- ▶ Use orthogonalized formulation: $\hat{V} = D \hat{m}_0(X)$.
- ► Concept: Double prediction or "double machine learning."
- ▶ Debiased ML estimator for θ_0 :

$$\check{\theta}_0 = \left(\frac{1}{n} \sum_{i \in I} \hat{V}_i D_i\right)^{-1} \frac{1}{n} \sum_{i \in I} \hat{V}_i (Y_i - \hat{g}_0(X_i)).$$

- ► Benefit: Removes regularization bias.
- ▶ Links to classical econometric literature and debiased lasso.

Unsupervised Learning 48/57

Source: Chernozhukov et al. (2018).

- ► Left Panel: Non-orthogonal ML estimator.
- ► Right Panel: Orthogonal, DML estimator.

Unsupervised Learning 49/57

Removing Bias with Sample Splitting

- ▶ Uses sample-splitting to ensure remainder terms vanish in probability.
- ► In the partially linear model, remainder contains terms like:

$$\frac{1}{\sqrt{n}} \sum_{i \in I} V_i(\hat{g}_0(X_i) - g_0(X_i)) \tag{2}$$

Unsupervised Learning 50/57

Removing Bias with Sample Splitting

- ► Sample splitting provides tight control of terms.
- ► Observations assumed to be independent.
- ► Variance of the term is of order:

$$rac{1}{n}\sum_{i\in I}(\hat{g}_0(X_i)-g_0(X_i))^2 o_P 0$$

(3)

Term vanishes in probability by Chebyshev's inequality.

Unsupervised Learning 51/57

Efficiency and Cross-fitting

- ▶ Direct application of sample splitting may lose efficiency.
- ► Swapping roles of main and auxiliary samples can regain efficiency.
- ► This procedure is known as *cross-fitting*.
- ► Cross-fitting offers an efficient averaging procedure.

Unsupervised Learning 52/57

Potential Issues Without Sample Splitting

- ► Without sample splitting, terms may not vanish leading to poor estimator performance.
- ► Issues arise when data used in forming estimator.
- ► Poor performance even with favorable convergence rates.
- ► Overfitting example:

$$rac{1}{\sqrt{N}}\sum_{i=1}^N V_i(\hat{g}_0(X_i)-g_0(X_i)) \propto N^\epsilon
ightarrow \infty$$

Unsupervised Learning 53/57

Bias without sample splitting.

Source: Chernozhukov et al. (2018): Bias from overfitting in nuisance function estimation.

Unsupervised Learning 54/57

3. Applications

Introduction to TensorFlow

Colab Tutorial

- ► Regularized Regression
- Double Machine Learning

References I

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins (2018) "Double/debiased machine learning for treatment and structural parameters," *The Econometrics Journal*, 21 (1), C1–C68, 10.1111/ectj.12097.

James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan Taylor (2023) *An Introduction to Statistical Learning: with Applications in Python*, Springer Texts in Statistics: Springer Cham, 1st edition, XV, 60, https://doi.org/10.1007/978-3-031-38747-0, eBook ISBN: 978-3-031-38747-0; Softcover ISBN: 978-3-031-39189-7; Series ISSN: 1431-875X; Series E-ISSN: 2197-4136.

Unsupervised Learning 57/57