Figures Calculus III

Felix Claeys, Brecht Verbeken, Simon Verbruggen

October 9, 2025

1.2.3 Example evolute cycloid

Figure 1: The cycloid $P(t) = [R(t - \sin t), R(1 - \cos t)]$ and its evolute $Q(t) = [R(t + \sin t), R(\cos t - 1)]$, which is a translation of P(t).

1.2.4 Example evolute catenary

Figure 2: The catenary $P(x) = [x, a \cosh(x/a)]$ and its evolute $Q(x) = [x - \frac{a}{2} \sinh(2x/a), 2a \cosh(x/a)]$.

1.2.5 Example involute catenary (tractrix)

Figure 3: The catenary $P(x) = [x, a \cosh(x/a)]$ and its involute: the tractrix $Q(x) = \left[x - a \tanh(x/a), \frac{a}{\cosh(x/a)}\right]$. For a point Q on the tractrix, the intersection of the tangent to Q with the X-axis coincides with the orthogonal projection of the corresponding point on the catenary P.

1.2.8 Example envelope family of straight lines

Figure 4: Some examples from the family of lines $F(x,y,a)=\frac{x}{\cos(a)}+\frac{y}{\sin(a)}=1$, and the corresponding astroid: $x^{2/3}+y^{2/3}=1$.

2.3 Gradient of scalar field

Figure 5:

3.1 Line integral of a scalar field

Figure 6: The line integral of a scalar field ϕ over a smooth curve P(t) is given by: $\int_{\mathcal{C}} \phi \ ds := \int_a^b \phi \left(P(t)\right) \left\| \frac{\overrightarrow{dP}}{dt} \right\| dt$. In the figure, the displacement between different points along the curve, $P(t_{i+1}) - P(t_i)$, is shown. This relates to the infinitesimal displacement $\left\| \frac{\overrightarrow{dP}}{dt} \right\| dt$.

3.2 Line integral of a vector field

Figure 7: The line integral of a vector field \overrightarrow{F} over a smooth curve P(t) is given by: $\int_{\mathcal{C}} \overrightarrow{F} \cdot \overrightarrow{dP} := \int_a^b \overrightarrow{F} (P(t)) \cdot \frac{\overrightarrow{dP}}{dt} \ dt$. In the figure, the displacement between different points along the curve, $P(t_{i+1}) - P(t_i)$, is shown. This relates to the infinitesimal displacement vector $\frac{\overrightarrow{dP}}{dt} dt$.

3.4.2 Conservative field along a curve

Figure 8: The points A and B lie on a closed curve C. We can choose two arbitrary paths, C_1 and C_2 , from A to B. If we evaluate the line integral of a conservative field ϕ along both paths, the result will be the same, since the line integral of a conservative field is independent of the travelled path.

3.4.3 Proof conservative field

Figure 9: Proof that path-independence implies conservativeness in fields. Consider a path-independent vector field \overrightarrow{F} in an open, connected region Ω . A potential function $\phi(P_0)$ is constructed by integrating \overrightarrow{F} along an arbitrary curve $\widehat{AP_0}$ from a fixed point A to P_0 . The path independence ensures that ϕ is well-defined, and its gradient reproduces \overrightarrow{F} .

3.5.1 Proof Greens theorem

Figure 10: The normal region G can be projected onto the x-axis, with its upper and lower boundaries parametrized by $y = \alpha(x)$ and $y = \beta(x)$.

3.5.2 Union of normal spaces

Figure 11: (Left) The annulus G is not a normal region, as it cannot be projected onto the X- or Y-axis. (Right) However, G is a union of normal regions: it can be split into four regions (D_i) each of which can be projected onto the X- and Y-axis.

3.5.4 Alternative formulation Greens theorem

Figure 12: The alternative representation of Green's theorem: $\int_{\partial G^+} \overrightarrow{F} \cdot \overrightarrow{N}^u ds = \int_G \overrightarrow{\nabla} \cdot \overrightarrow{F} dA$, where \overrightarrow{T} is the tangent unit vector and \overrightarrow{N}^u the outward normal vector.

4.1 Surface integral of a scalar field

Figure 13: Construction of the surface integral of a scalar field ϕ over a smooth surface S = P(u,v): $\int_S \phi \ d\sigma := \int_D \phi \left(P(u,v)\right) \|\overrightarrow{\partial_u P} \times \overrightarrow{\partial_v P}\| \ du \ dv$ (Below) An infinitesimal rectangle on D with area $du_i \ dv_j$ is projected onto a curvilinear quadrilateral on S, which we can approximate by a parallelogram, with area: $|(P(u_{i+1},v_j)-P(u_i,v_j))(P(u_i,v_{j+1})-P(u_i,v_j))| = \|\overrightarrow{\partial_u P(u_i,v_j)} \times \overrightarrow{\partial_v P(u_i,v_j)}\| \ du_i \ dv_j$. This is represented in the integral by the absolute value of the Jacobian determinant associated with the parameterization: $\|\overrightarrow{\partial_u P} \times \overrightarrow{\partial_v P}\|$.

4.4.1 The divergence theorem

Figure 14: Proof of the divergence theorem. The normal region V is projected onto the XY-plane, with projection V_{xy} . The upper and lower boundaries of V are represented by a parametrization.

4.6.0 The corkscrew rule

Figure 15: The unit vector along the surface normal, \overrightarrow{n}^k , is oriented such that its direction agrees with the orientation of ∂S according to the corkscrew rule (or right-hand rule).

4.6.1 Stokes theorem

Figure 16: Proof Stokes' theorem. S is a smooth surface that can be projected onto the XY-plane, with projection D.

5.1 Inverse function

Figure 17:

5.1 Complex function

Figure 18:

5.2 Complex line integral

Figure 19:

6.2.1 Complex derivative

Figure 20: The complex derivative in a point $z_0 = x_0 + iy_0$ for a complex function is: $f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$. For $f'(z_0)$ to exist, this limit must be the same regardless of the direction in which $h \to 0$. In the figure, the limit is approached along the real and imaginary axes; equating the results of both approaches yields the Cauchy–Riemann conditions.

6.3 Cauchy Goursat theorem for multiply connected domains

Figure 21:

6.3 Contour non simply connected

Figure 22:

6.3 Contour simply connected

Figure 23:

6.3.3 Proof integral formula Cauchy

Figure 24: \mathcal{C} is a bounded contour in Ω which encloses a compact set K lying completely within Ω . For a point $a \in \mathcal{C} \setminus K$, we parametrize the circle $\partial B(a, \epsilon)$, which lies entirely in the interior of \mathcal{C} .

7.2.4 Theorem convergence regions positive and negative power series

Figure 25: (Left) Region of convergence of a positive power series. (Right) Region of convergence of a negative power series.

8.2.1 Proof theorem Laurent series

Figure 26: The region of convergence of the Laurent series is the annular region $B(0,R)\setminus \overline{B(0,r)}$. For every point z, it is possible to find R' and r' such that 0 < r < r' < |z| < R' < R.

8.5.6 Residue theorem for region with multiple singularities

Figure 27: The contour C passes through none of the singularities a_i of the complex function f and encloses a compact set that lies entirely within Ω . C contains a finite number of singularities of f.

9.3 Estimation lemmas

Figure 28: Small limit theorem: The circular arc C^t_ε with center a, radius $\varepsilon>0$, and central angle α can be described by the parametric equation $z(t)=a+\varepsilon e^{i(t+\beta)},\,t:0\to\alpha.$

9.5 Summation of series

Figure 29: The function $g(z) = \cot(\pi z)$ has simple poles at $z = 0, \pm 1, \pm 2, \ldots$ If we consider the square V_N with center at the origin and side length 2N+1, where $N \in \mathbb{N}$, then we can compute the contour integral over ∂V_N^+ using the residue theorem.