

Class: CV

Name: Loyd Flores

Project: Real Time Programming Exam – Question 1

Project Name: Deepest Concavity for automatic threshold selection

Language: Java

Due Date: 10/29/2024 Submit Date: 10/29/2024

```
mport java.io.FileReader;
import java.io.FileWriter;
public class FloresL_Q1_Main {
   class Concavity{
       private int numRows;
      private int numCols;
       private int minVal;
       private int maxVal;
      private int x1;
       private int y1;
       private int y2;
       private double b; // intercept
       private int bestThrVal; // auto selected
       private int histHeight; // Largest hist[i]
       // ARRAYS
      private String[][] graphAry; // 2D Char array ([maxVal + 1][histHeight + 1]) = blank
          this.numRows = rows;
           this.numCols = cols;
          this.maxVal = max;
          this.bestThrVal = 0;
          this.histHeight = 0;
           this.histAry = new int[maxVal + 1];
          this.lineAry = new int[maxVal + 1];
          this.histAry = new int[maxVal + 1];
           this.lineAry = new int[maxVal + 1];
           this.graphAry = new String[maxVal + 1][histHeight + 1];
       public int loadHist(String inFile) {
           int maxHistVal = 0;
              BufferedReader readInfile = new BufferedReader(new FileReader(inFile));
              String[] header_inFile = readInfile.readLine().trim().split("\\s+");
              numRows = Integer.parseInt(header_inFile[0]);
              numCols = Integer.parseInt(header_inFile[1]);
              minVal = Integer.parseInt(header_inFile[2]);
              maxVal = Integer.parseInt(header_inFile[3]);
              String line;
               while ((line = readInfile.readLine()) != null) {
                  String[] parts = line.trim().split("\\s+");
                  int index = Integer.parseInt(parts[0]);
                  int value = Integer.parseInt(parts[1]);
                  if (index >= 0 && index <= maxVal) {</pre>
                      histAry[index] = value;
                      if (value > maxHistVal) {
                  } else {
```

```
System.err.println("ERROR: " + e.getMessage());
    this.histHeight = maxHistVal;
    this.graphAry = new String[maxVal + 1][histHeight + 1];
    return maxHistVal;
public void printHist(int[] Histary, String logFileName) {
    try (BufferedWriter logFile = new BufferedWriter(new FileWriter(logFileName))) {
        logFile.write("** Below is the input histogram **\n");
         for (int i = 0; i <= maxVal; i++) {
            logFile.write(i + " " + Histary[i] + "\n");
        System.err.println("Error writing to file: " + e.getMessage());
public void dispHist(String histGraphFileName) {
    try (BufferedWriter histGraphFile = new BufferedWriter(new FileWriter(histGraphFileName, true));) {
        \label{limits}  \begin{tabular}{ll} histGraphFile.write("** Below is the graphic display with + of the input histogram ** \n"); \\ histGraphFile.write(numRows + " " + numCols + " " + minVal + " " + maxVal + " \n"); \\ \end{tabular}
         for (int i = 0; i <= maxVal; i++) {
            histGraphFile.write(i + " (" + histAry[i] + "): ");
    } catch (IOException e) {
        System.err.println("Error writing to file: " + e.getMessage());
public int deepestConcavity(int x1, int y1, int x2, int y2, int[] histAry, int[] lineAry) {
    double thr = 0;
    this.m = (double) (y2-y1) / (double) (x2 - x1);
    int maxGap = 0;
    double first = x1;
    double second = x2;
        lineAry[(int)x] = y;
        int gap = Math.abs(histAry[(int)x] - y);
        if (gap > maxGap) {
             maxGap = gap;
    this.bestThrVal = (int)thr;
```

```
public void zerolDarray(int[] ary, int nRows){
   for (int i = 0; i < nRows; i++) {
public void print1Darray(int[] ary, int nRows){
   for (int i = 0; i < nRows; i++) {
       System.out.print(ary[i] + " ");
public void blank2DAry(String[][] ary, int nRows, int nCols){
   for (int i = 0; i < ary.length; i++) {</pre>
       ary[i][j] = "_";
}
public void print2Darray(String[][] ary, int nRows, int nCols){
       System.out.printf("%2d ", j);
        System.out.println();
public void printLine(int[] lineAry, String concavityFileName) {
   try (BufferedWriter concavityFile = new BufferedWriter(new FileWriter(concavityFileName))) {
        for (int i = 0; i <= maxVal; i++) {
           concavityFile.write(i + " " + lineAry[i] + "\n");
       System.err.println("Error writing to file: " + e.getMessage());
public void plotGapGraph(int[] histAry, int[] lineAry, String[][] graphAry) {
   while (index <= maxVal) {</pre>
       for (int i = 0; i < histAry[index]; i++) {</pre>
           graphAry[index][i] = "+";
        if (lineAry[index] > 0) {
           plotOneRowGap(index, histAry, lineAry, graphAry);
       index++;
public void plotOneRowGap(int index, int[] histAry, int[] lineAry, String[][] graphAry) {
   int j = histAry[index];
    while (j < lineAry[index]) {</pre>
       graphAry[index][j] = "=";
   if (lineAry[index] > 0 && lineAry[index] - 1 < graphAry[index].length) {</pre>
```

```
graphArv[index][lineArv[index] - 1] = "@":
        if (index == bestThrVal) {
               if (lineAry[index] + k < graphAry[index].length) {</pre>
                    graphAry[index][lineAry[index] + k] = "<";</pre>
    public void outputGraphAry(String[][] graphAry, String concavityFileName) {
        try (BufferedWriter concavityFile = new BufferedWriter(new FileWriter(concavityFileName, true))) { // true for append mode
             \textbf{concavityFile.write("} \\ \textbf{n**} \  \, \textbf{Below is the graphic display of histAry with + on the gaps with = and line pts with @**\\ \textbf{n");} 
            for (int j = 0; j < graphAry[0].length; j++) {</pre>
                concavityFile.write(String.format("%2d ", j));
            concavityFile.write("\n");
            for (int i = 0; i < graphAry.length; i++) {</pre>
                concavityFile.write(String.format("%2d ", i));
                 for (int j = 0; j < graphAry[i].length; j++) {</pre>
                    concavityFile.write(String.format("%2s ", graphAry[i][j]));
            concavityFile.write("\n");
            System.err.println("Error writing to file: " + e.getMessage());
public static void main(String[] args) {
    // STEP 0
    String inputHist = args[0];
    String twoPoints = args[1];
    String histFile = args[2];
    String concavityFile = args[3];
    int numRows = 0;
    int numCols = 0;
    int minVal = 0;
    int maxVal = 0;
    int x1 = 0;
    int y2 = 0;
    int histHeigh = 0;
    int bestThrVal;
        BufferedReader hist = new BufferedReader(new FileReader(inputHist));
        String[] header_hist = hist.readLine().trim().split("\\s+");
        numRows = Integer.parseInt(header_hist[0]);
        numCols = Integer.parseInt(header_hist[1]);
        minVal = Integer.parseInt(header_hist[2]);
        maxVal = Integer.parseInt(header hist[3]);
        BufferedReader twopts = new BufferedReader(new FileReader(twoPoints));
        String[] header_twopts = twopts.readLine().trim().split("\\s+");
        x1 = Integer.parseInt(header_twopts[0]);
        y1 = Integer.parseInt(header_twopts[1]);
        x2 = Integer.parseInt(header_twopts[2]);
        y2 = Integer.parseInt(header_twopts[3]);
    }catch (IOException e) {
        System.err.println("ERROR: " + e.getMessage());
```

```
System.out.println("Histogram Header: " + numRows + " " + numCols + " " + minVal + " " + maxVal );
                         Concavity concavity = new FloresL_Q1_Main().new Concavity(numRows, numCols, minVal, maxVal);
                         System.out.println("Zeroed out histAry");
                         // Instantiate Histary
                         System.out.println("Zeroed out lineAry");
                         concavity.zerolDarray(concavity.lineAry, numRows);
                         histHeigh = concavity.loadHist(inputHist);
                         System.out.println();System.out.println();
                         System.out.println("Hist height: " + histHeigh);
                         concavity.blank2DAry(concavity.graphAry, numRows, numCols);
                         concavity.printHist(concavity.histAry, histFile);
                         concavity.dispHist(histFile);
                        // Step 3
                        bestThrVal = concavity. \\ \frac{deepestConcavity}{2}, \\ \frac{1}{2}, \\ \frac
                         System.out.println("Best Thr: " + bestThrVal);
                         concavity.printLine(concavity.lineAry, concavityFile);
                       try (BufferedWriter concavityOutFile = new BufferedWriter(new FileWriter(concavityFile, true))) {
                                    concavityOutFile.write("** Below is the best threshold produced by the deepest concavity method **\n" + bestThrVal + "\n");
                                    System.err.println("Error writing to file: " + e.getMessage());
                         \verb|concavity.plotGapGraph| (\verb|concavity.histAry|, concavity.lineAry|, concavity.graphAry)|;\\
                         concavity.outputGraphAry(concavity.graphAry, concavityFile);
}//end-FloresL_Q1_Main
```

** Below is the computed line array **
00
10
20
30
40
50
60
70
80 90
10 0
110
120
13 0
14 0
15 210
16 209
17 208
18 208
19 207
20 207
21 206 22 205
23 205
24 204
25 204
26 203
27 202
28 202
29 201
30 201
31 200
32 200
33 199
34 198
35 198 36 197
37 197
38 196
39 195
40 195
41 194
42 194
43 193
44 192
45 192
46 191 47 101
47 191 48 190
49 190
500
51 0
52 0
53 0
54 0
55 0
56 0
57 0 50 0
58 0 59 0
60 0
61 0
62 0
630

** Below is the graphic display of histAry with + on the gaps with = and line pts with $@^{**}$

157 188 139 200 200 200 200 200 200 200 200 200 20
111111111111111111111111111111111111111
300000000000000000000000000000000000000
900000000000000000000000000000000000000
999999999999999999999999999999999999999

#11111111111111111111111111111111111111
\$111115

±
#
Ψ
9.555
#1111111111111111111111111111111111111
20
#
2
я
3
3
7
3
3

77
р.
· · · · · · · · · · · · · · · · · · ·
4

4
S
4

#
8
*
30
8
#44444444
83333333

Output on the doc is unreadable but I verified with the professor and she said I should get credit. I'll also attach a screenshot copy of the output

