Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

1.

2.

3.

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HAHR I U
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น AHHIRU
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HAIU RH

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

8.

9.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HHI หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น HHI หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น JHH

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
0.
      BST tree2;
      tree2.insert('G');
1.
      tree2.insert('0');
2.
3.
      tree2.insert('I');
4.
      tree2.insert('N');
5.
      tree2.insert('G');
      tree2.insert('M');
7.
      tree2.insert('E');
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```

```
หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น GFOIG NMRTY
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EGMNIYIROG
```


E

8

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	GEOLGNMRTY
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	EGGIMNORTY
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	EGMNIYTROG

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


14

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น GEOMGR
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EGMROR
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น EGMROG

5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
      tree3.insert('A');
2.
      tree3.insert('B');
3.
      tree3.insert('C');
4.
5.
      tree3.insert('D');
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
8.
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	ABCDEFGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	ABC DEFOH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	HAFEDCBA

3

4

ડ

L

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


[3

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น EFGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EFGH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HGFE

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน
	เนื่องจากอะไร (ขอสั้นๆ)
	ไล่ Balance ลัคาดับสังมากราว่า เลื่อง Ain แบบ Balance a= ทำใน
	สมาชิก เรียงกัณ ดาเกว่า ชั้นขั้นคะเข็ม แต่แบบ balance จะเชียง
	แขนใดก็ได้ พราขใจคา้ข้ออยู่ใน BST rule
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัน
	อย่างไร (ขอสั้นๆ)
	แขน Balance เพราะ เมื่อ Balance สมเจิก จะทำให้ มี คำกับส์ผู้หมังแลง
	เรื่อง Ain การ search a= search เป็นสัญ ๆ ไป (พ้อนกล่าไปสาน , มากกล่าไปของ)
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
	Balance
	v v
10.	ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ
	unbalance เนื่องจากอะไร (ขอยาวๆ)
	แขาBalance เฉื่องตาก เขื่อ สร้าง tree เป็นแบบ Balance กะคำใน
	ลำลับสัมสอง trea คลอง เลื่อเลาตำกาง Search โดย ใช้ BST rule
	ละ ๒๐ ๒๔๐ ๑๖๐๐๑ ๙๖๐ ๙๑๐๐๑ ๑๐๑ ๑๖๒๑ เฃกาจุ ฃ๚๚ (๑ เออาห้อกบอ, า
	Angerin 119191 18 Balance az Search Talizórin mila
	ใช้เอลาลากกล่า เฉราะ อ้า ซังบ ลีซึ้ง มากกล่า ขอา กัละเรียเอลา Search
	27 61204 1225 U