

PRESSUPOSTOS CLÁSSICOS DOS MODELOS DE REGRESSÃO LINEAR E SUAS IMPLICAÇÕES SOBRE AS AVALIAÇÕES EM MASSA

Willian Zonato | SPU/SC | will.zonato@gmail.com Luiz Fernando Palin Droubi | SPU/SC | Ifpdroubi@gmail.com Norberto Hochheim | UFSC | hochheim@gmail.com

Os modelos de avaliação em massa geralmente apresentam grandes amplitudes de domínio. Neste cenário, considerandose os pressupostos para modelos de regressão linear definidos na NBR 14653-2, o problema da heteroscedasticidade parece ser o mais comum.

1) HETEROCEDASTICIDADE

A NBR suprarreferenciada preconiza que a detecção da heteroscedasticidade pode ser feita através de testes formais e não formais, conforme seu item A.2.1.3, in verbis:

"A.2.1.3 Homocedasticidade. A verificação da homcedasticidade pode ser feita, entre outros, por meio dos seguintes processos:

a) análise gráfica dos resíduos versus valores ajustados, que devem aprsentar pontos dispostos aleatóriamente, sem nenhum padrão definido; b) pelos testes de Park e de White." (ABNT-NBR 14653-2, 2011, p. nº 36)

1.2) IC dos regressores:

São calculados pela seguinte expressão (FARAWAY, 2004, p. 38):

$$\hat{\beta} \pm t_{n-p}^{(\alpha/2)} \hat{\sigma} \sqrt{(X^T X)_{ii}^{-1}}$$

onde estarão comprometidos quando $\sigma^* \neq cte$.

2) Contorno da heterocedasticidade 2.1) Transformação de variaveis

Umas das formas tradicionais de contorno da heterocedasticidade nos modelos de regressão é o da transformação de variáveis. A NBR 14653-2 (2011) aponta que existem formas estatísticas de se buscar a transformação mais adequada, como os procedimentos de Box e Cox por exemplo.

residuals

√lStandardized

0

0

		Modelo 1 (sqrt)	Modelo 2 (ln)	
	BP	10,346	12,934	
	df	6	6	
	p-valor	0,1108	0,04409	
		Tabela 1: Resultados Breush-Pagan.		

FONTE: Autor, 2018.

Figura 1 - Diagrama de Box-Cox FONTE: Autor, 2018.

Scale-Location

Fitted values (sqrt(VU)

Figuras 2 - Residuos com as transformações raiz-quadrada e logarítinica da var.iável dependente. FONTE: Autor, 2018.

120

2.2) Uso do método de Eicker-White alternativa a forma tradicional Segundo Matloff (2015), a teoria de Eicker-White desenvolve

Foram comparados dois modelos de regressão com

transformações distintas para a variável dependente.

Aplicamos os testes estatisticos preconizados em Norma. A

aplicação do teste formal comprovou a existência da

heterocedasticidade no modelo com transformação log.

uma inferência assintótica válida para dados heteroscedásticos. O método realiza o cômputo da matriz de covariância e permite calcular erros robustos para a regressão linear, viabilizando o cálculo dos intervalos de confiança.

3) Estudo de caso

Foi aplicado o método de Eicker-White ao modelo log. Os erros calculados de acordo com este método são ditos erros robustos, ou seja, os erros são calculados corretamente, mesmo na presença de heteroscedasticidade. A aplicação do método se revelou uma possível alternativa para o contorno da heterocedasticidade.

	Sqrt(Vu)	Log(Vu)	Log c/Eickert		
Andar	0.701 (-0.310, 1.711) t = 1.359 p = 0.179	-	-		
Vagas	3.726 (1.950, 5.502) t = 4.113 p = 0.0002	0.082 (0.042, 0.122) t = 3.995 p = 0.0002	0.082 (0.038, 0.126) t = 3.646 p = 0.0003		
Padrão	10.270 (1.603,18.938) t = 2.322 p = 0.0024	0.281 (0.096, 0.465) t = 2.985 p = 0.004	0.281 (0.091, 0.470) t = 2.906 p = 0.004		
Idade	-0.695 (-1.062, -0.327) t = -3.705 p = 0.0005	-0.016 (-0.024, -0.008) t = -3.849 p = 0.0003	-0.016 (-0.025, -0.007) t = -3.530 p = 0.0005		
Loja	-0.242 (-0.369, -0.116) t = -3.764 p = 0.0004	-0.007 (-0.009, -0.004) t = -5.378 p = 0.0000	-0.007 (-0.010, -0.004) t = -4.126 p = 0.0004		
Sala	-0.135 (-0.178, -0.092) t = -6.126 p = 0.0000	-0.003 (-0.004, -0.002) t = -6.421 p = 0.000	-0.003 (-0.004, -0.002) t = -5.718 p = 0.000		
Const	108.230 (96.187,120.27) t = 17.614 p = 0.000	9.446 (9.229, 9.662) t = 85.438 p = 0.000	9.446 (9.210, 9.681) t = 78.702 p = 0.000		
Obs	75	75	75		
R^2	0.646	0.635	0.635		
Adjust R2	0.614	0.608	0.608		
Residual. Std. Error	13.413(df=68)	0.304 (df = 69)	0.304 (df = 69)		
F Statistic	20.639 (df=668)	23.968(df=569)	23.968(df=569)		
Tabala 2. Comparativa antre as madalas sem transformação e a mátada da Fielvar White					

Tabela 2 - Comparativo entre os modelos com transformação e o método de Eicker-White.

FONTE: Autor, 2018.

Referências

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14.653 -Avaliação de bens: Parte2 – Imóveis Urbanos. Rio de Janeiro, 2011.

FARAWAY, J. Linear models with R. Taylor & Francis, 2004.

KOENKER, R. et al. Robust tests of heteroscedasticity based on regression quantiles. Econometrica, v.50, p.43–61, 1982

MATLOFF, N. S. Can you say "heteroscedasticity" 3 times fast?, 2015. Disponível em: https://matloff.wordpress.com/2015/09/18/can-you-say- heteroscedasticity-3times-fast/>.