最优化理论与算法作业

1 第一次作业

1.1 证明保凸运算

- 1. 凸集的交集仍为凸集
- 2. C 是凸集,则 aC+b 是凸集
- 3. C 是凸集, f(x) = Ax + b, 则反射项 f(C) 是凸集
- 4. D 是凸集, f(x) = Ax + b, 则原项 $f^{-1}(D)$ 是凸集
- 1.2 证明无穷范数满足三性质: 正定性, 齐次性和次可加性
- 1.3 证明向量范数均是凸函数
- 1.4 log-sum-exp 函数的凸性

Log-sum-exp 函数形式如下: $f(x) = log(\sum_{i=1}^{k} e^{x_i})$.

- 1.5 如果 f 是严格凸的,那么其解集唯一,即解集 X_{opt} 只包含一个元素
- 1.6 假设 f 在全空间 \mathbb{R}^n 可微, 如果 x^* 是一个局部极小点, 那么:

$$\nabla f(x^*) = 0$$

2 第二次作业

- 2.1 完成强凸函数相互间等价性的证明
- 2.2 证明 ℓ_2 范数的对偶范数为 ℓ_2 范数
- 2.3 完成如下邻近算子的证明
 - 1. 二次函数

$$h(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$$
, $prox_{th}(x) = (I + tA)^{-1}(x - tb)$

2. 负自然对数的和

$$h(x) = -\sum_{i=1}^{n} \ln x_i$$
, $\operatorname{prox}_{th}(x)_i = \frac{x_i + \sqrt{x_i^2 + 4t}}{2}$, $i = 1, 2, ..., n$

2 第二次作业

2

2.4 近似点算子基本运算规则证明

完成以下近似点算子基本运算规则的证明。

2.4.1 Affine Transformation

若
$$f(x) = ag(x) + b$$
, 其中 $a > 0$, 有:

$$\operatorname{prox}_{f}(x) = \operatorname{prox}_{ag}(x)$$

2.4.2 Affine Addition

若
$$f(x) = g(x) + a^T x + b$$
, 有:

$$prox_f(x) = prox_g(x - a)$$

2.4.3 Quadratic Addition

若
$$f(x) = g(x) + \frac{\rho}{2} \|x - a\|_2^2$$
, 有:

$$\operatorname{prox}_{f}(x) = \operatorname{prox}_{\frac{1}{1+\rho}g}(\frac{1}{1+\rho}x + \frac{1}{1+\rho}a)$$

2.4.4 Scaling And Translation

若
$$f(x) = g(ax + b)$$
, 其中 $a \neq 0$, 则有:

$$\operatorname{prox}_f(x) = \frac{1}{a}(\operatorname{prox}_{a^2g}(ax+b) - b)$$

2.5 对所有已经学过的迭代算法的收敛速度进行整理

2.6 共轭函数的凸性证明

函数 f 的共轭函数为:

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

证明共轭函数总是为一凸函数。

2.7 试证明 ℓ_2 范数 $f_0 = ||x||_2$ 的共轭函数为:

$$f_0^*(y) = \begin{cases} 0 & \|y\|_* \le 1\\ \infty & otherwise \end{cases}$$

2.8 Lagrange 对偶问题的凸性证明

证明: Lagrange 对偶问题总是为一凸优化问题:

$$\max g(\lambda, \nu)$$

s.t.
$$\lambda \succeq 0$$

第二次作业 3

2.9 写出岭回归的对偶问题

2.10 自和谐函数计算

2.10.1 自和谐性质一的证明

若 f 是自和谐的, $a \ge 0$, 则 af 也是自和谐的。

2.10.2 自和谐性质二的证明

自和谐函数之和仍为自和谐函数。

2.10.3 自和谐性质三的证明

仿射复合: preserved under composition with affine function.

2.10.4 示例一的证明

若函数 $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$ on $\{x | a_i^T x - b_i < 0\}$, 证明该函数是自和谐函数。

2.10.5 示例二的证明

若函数 $f(x) = -\log \det X$ on S_{++}^n , 证明该函数是自和谐函数。

2.10.6 示例三的证明

若函数 $f(x) = \log(y^2 - x^T x)$ on $\{(x,y) \mid ||x||_2 < y\}$, 证明该函数是自和谐函数。

2.11 (选做)次微分基本运算规则

- scaling: $\partial(\alpha f) = \alpha \partial f$ (for $\alpha > 0$)
- summation: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$
- affine transformation: if h(x) = f(Ax + b), then

$$\partial h(x) = A^T \partial f(Ax + b)$$

• chain rule: suppose f is convex, and g is differentiable, nondecreasing, and convex. Let $h = g \circ f$, then

$$\partial h(x) = g'(f(x))\partial f(x)$$

2.12 (选做)

- 证明 ℓ_{∞} 范数的对偶范数是 ℓ_1 范数。
- 证明任意 ℓ_p 范数 $\ell_p: ||x||_p = \sqrt[q]{\sum_1^n |x_i|^p}$ 满足范数三条性质(正定性,齐次性,三角性)。
- 进一步证明任意 ℓ_p 范数的对偶范数为 ℓ_q 范数, 当且仅当 $\frac{1}{p} + \frac{1}{q} = 1, p \ge 1, q \ge 1$ 时成立。