BrainHubs

December 5, 2024

```
[2]: # To find the Markov matrix
     import numpy as np
     import pandas as pd
     # Load the neurons and connections data
     neurons_df = pd.read_csv('/Users/aj/Downloads/exported-traced-adjacencies-v1.2/
      ⇔traced-neurons.csv')
     conn_df = pd.read_csv('/Users/aj/Downloads/exported-traced-adjacencies-v1.2/
      ⇔traced-total-connections.csv')
     # Create a dictionary mapping body IDs to neuron indices
     bodyid_to_idx = {bodyid: idx for idx, bodyid in enumerate(neurons_df['bodyId'])}
     # Compute the outdegree of each neuron
     outdegree_dict = {bodyid: 0 for bodyid in bodyid_to_idx.keys()}
     for from_bodyid in conn_df['bodyId_pre']:
         outdegree_dict[from_bodyid] += 1
     # Create the markov matrix
     n = len(bodyid_to_idx)
     markov = np.zeros((n, n), dtype=np.float64)
     for from_bodyid, to_bodyid in zip(conn_df['bodyId_pre'],__
      ⇔conn_df['bodyId_post']):
         from_idx, to_idx = bodyid_to_idx[from_bodyid], bodyid_to_idx[to_bodyid]
         markov[from_idx, to_idx] = 1/outdegree_dict[from_bodyid]
     # Set the row and column labels
     markov_df = pd.DataFrame(markov, columns=neurons_df['bodyId'],__
      ⇔index=neurons_df['bodyId'])
     # Print the markov matrix
     markov_df
```

[2]:	bodyId bodyId	200326126	202916528	203253072	203253253	203257652	\	
	200326126	0.0	0.000000	0.0	0.000000	0.000000		
	202916528	0.0	0.000000	0.0	0.021739	0.021739		
	203253072	0.0	0.000000	0.0	0.016393	0.000000		
	203253072	0.0	0.000000	0.0	0.000000	0.000000		
	203253253	0.0	0.000000	0.0	0.000000	0.000000		
		0.0				0.000000		
	 7112579856	0.0	0.000000	0.0	0.000000	0.000000		
	7112615127	0.0	0.000000	0.0	0.000000	0.000000		
			0.000000		0.000000			
	7112617294	0.0		0.0		0.000000		
	7112622044	0.0	0.000000	0.0	0.001908	0.000000		
	7112622236	0.0	0.000000	0.0	0.000000	0.000000		
	bodyId	203594169	203594175	203598499	203598504	203598542		\
	bodyId						•••	
	200326126	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	202916528	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	203253072	0.000000	0.016393	0.000000	0.016393	0.000000	•••	
	203253253	0.004651	0.000000	0.004651	0.000000	0.000000	•••	
	203257652	0.000000	0.029412	0.000000	0.000000	0.029412	•••	
	•••	•••	•••	•••		•••		
	7112579856	0.000000	0.000000	0.000000	0.000000	0.00000	•••	
	7112615127	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	7112617294	0.000000	0.000000	0.000000	0.000000	0.000000		
	7112622044	0.000000	0.000000	0.000000	0.000000	0.000000		
	7112622236	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	bodyId	5901231246	5901231325	5901232053	6400000773	7112579848	\	
	bodyId							
	200326126	0.0	0.0	0.0	0.0	0.0		
	202916528	0.0	0.0	0.0	0.0	0.0		
	203253072	0.0	0.0	0.0	0.0	0.0		
	203253253	0.0	0.0	0.0	0.0	0.0		
	203257652	0.0	0.0	0.0	0.0	0.0		
	•••		•••					
	7112579856	0.0	0.0	0.0	0.0	0.0		
	7112615127	0.0	0.0	0.0	0.0	0.0		
	7112617294	0.0	0.0	0.0	0.0	0.0		
	7112622044	0.0	0.0	0.0	0.0	0.0		
	7112622236	0.0	0.0	0.0	0.0	0.0		
	bodyId	7112579856	7112615127	7112617294	7112622044	7112622236		
	bodyId							
	200326126	0.0	0.0	0.000000	0.0	0.0		
	202916528	0.0	0.0	0.000000	0.0	0.0		
	203253072	0.0	0.0	0.000000	0.0	0.0		

203253253	0.0	0.0	0.000000	0.0	0.0
203257652	0.0	0.0	0.000000	0.0	0.0
•••	•••	•••		•••	
7112579856	0.0	0.0	0.000000	0.0	0.0
7112615127	0.0	0.0	0.006623	0.0	0.0
7112617294	0.0	0.0	0.000000	0.0	0.0
7112622044	0.0	0.0	0.000000	0.0	0.0
7112622236	0.0	0.0	0.000000	0.0	0.0

[21739 rows x 21739 columns]

```
[]: # To find the Adjacency matrix
    import numpy as np
    import pandas as pd
    import networkx as nx
    import matplotlib.pyplot as plt
    from scipy.sparse import csr_matrix
    # Load the neurons and connections data
    neurons_df = pd.read_csv('/Users/aj/Downloads/exported-traced-adjacencies-v1.2/
      ⇔traced-neurons.csv')
    conn_df = pd.read_csv('/Users/aj/Downloads/exported-traced-adjacencies-v1.2/
     ⇔traced-total-connections.csv')
     # Create a dictionary mapping body IDs to neuron indices
    bodyid_to_id = {bodyid: idx for idx, bodyid in enumerate(neurons_df['bodyId'])}
    # Create the adj matrix
    n = len(bodyid_to_id)
    adj = np.zeros((n, n), dtype=np.int32)
    for from_bodyid, to_bodyid in zip(conn_df['bodyId_pre'],__
      from_idx, to_idx = bodyid_to_id[from_bodyid], bodyid_to_id[to_bodyid]
        adj[from_idx, to_idx] = 1
    # Set the row and column labels
    adj_df = pd.DataFrame(adj, columns=neurons_df['bodyId'],__
      →index=neurons_df['bodyId'])
    # Print the adj matrix
    adj_df
```

```
[3]: #To find the stationary distribution
     import numpy as np
     import pandas as pd
     from scipy.sparse.linalg import eigs
     # Create the Markov matrix
     markov = np.array(markov_df)
     n = len(markov)
     # Compute the eigenvectors and eigenvalues of the transpose of the Markov matrix
     eigenvalues, eigenvectors = eigs(markov.T)
     # Find the eigenvector corresponding to the eigenvalue closest to 1
     idx = np.abs(eigenvalues - 1).argmin()
     stationary = np.real(eigenvectors[:, idx].T / np.sum(eigenvectors[:, idx]))
     # Convert the stationary distribution to a Pandas Series
     stationary_df = pd.Series(stationary, index=markov_df.columns)
     # Print the stationary distribution
     print(stationary_df)
    bodvId
                  0.000040
    200326126
    202916528
                  0.000069
    203253072
                 0.000054
    203253253
                 0.000204
    203257652
                 0.000046
    7112579856 0.000014
    7112615127 0.000021
    7112617294 0.000023
    7112622044 0.000179
                  0.000006
    7112622236
    Length: 21739, dtype: float64
[5]: # Find the top 2500 nodes with highest probabilities in the stationary.
     \hookrightarrow distribution
     top_nodes = stationary_df.nlargest(2500)
     # Print the top nodes
     print("Nodes with highest probabilities in stationary distribution:")
     print(top_nodes)
```

Nodes with highest probabilities in stationary distribution: bodyId

```
329566174
             0.000864
423101189
             0.000832
425790257
             0.000778
5813105172
             0.000706
393766777
             0.000698
5812982924
             0.000099
800618162
             0.000099
             0.000099
1068302710
5813040190
             0.000099
1072874511
             0.000099
Length: 2500, dtype: float64
```

[]: