MATH 500 Problem Set 10 Anthony D'Arienzo apd6@illinois.edu

4 April 2022

Exercise 1 (DF 12.1.6): Let R be an integral domain and M any non-principal ideal of R such that M \neq (0), considered as an R-module. Show that (i) M is torsion free and (ii) rankM=1, but (iii) M is not a free module.

Proof of (i). Let x be an element of M. Suppose rx = 0, where $r \neq 0$. Since R is an integral domain, this implies x = 0 (M is an ideal of R, so x is an element of R). Thus, if $x \in M$ is torsion, then x = 0: $M_{tors} = \{0\}$.

Proof of (ii). Let x,y be any two elements of M. Then yx and xy are elements of M. Integral domains are commutative, so yx - xy = yx - yx = 0, so x and y are linearly dependent. Since x and y are arbitrary, this shows that rankM < 2. Since M \neq (0), rankM > 0, so rankM=1.

Proof of (iii). Suppose, for the purpose of deriving a contradiction, that M were a free module. Since the basis of a free module is always linearly independent, and rankM = 1, the basis of M must be a single element $x_0 \in M$. That is, every element y of M is uniquely equal to an expression of the form rx_0 for some $r \in R$. M is an ideal of R, so this implies M = (x_0) . Since M is not principal, we have a contradiction. Therefore M is not free.

* * * * *

Exercise 2 (DF 12.1.7): Let R be any ring, A_1, \ldots, A_m be R-modules, and $B_k \subseteq A_k$ submodules. Show that there is an isomorphism $(A_1 \oplus \ldots \oplus A_m)/(B_1 \oplus \ldots \oplus B_m) \cong (A_1/B_1) \oplus \ldots \oplus (A_m/B_m)$ of modules.

Proof. Let $M \stackrel{\text{def}}{=} (A_1 \oplus \ldots \oplus A_m)/(B_1 \oplus \ldots \oplus B_m)$ and $N \stackrel{\text{def}}{=} (A_1/B_1) \oplus \ldots \oplus (A_m/B_m)$. Then N is the coproduct of the modules A_i/B_i . Therefore it suffices to show that M satisfies the universal property of this coproduct. Suppose we have a family of morphishms $f_i: A_i/B_i \to X$ for $i \in \{1,\ldots,m\}$, where X is some R-module. Let $\pi_i: A_i \to A_i/B_i$ be the quotient morphism. Then $f_i \circ \pi_i: A_i \to X$ is a morphism of R-modules. The universal property of $A_1 \oplus \ldots \oplus A_m$ tells us that there exists a unique morphism $\hat{f}: A_1 \oplus \ldots \oplus A_m \to X$ such that the following diagram

commutes for all $i \in \{1, ..., m\}$.

$$\begin{array}{c}
A_{1} & \xrightarrow{\pi_{1}} & A_{1}/B_{1} & \xrightarrow{f_{1}} & X \\
& & & \\
A_{1} \oplus \dots \oplus A_{m}
\end{array} (2.1)$$

where $\iota_i:A_i\to A_1\oplus ...\oplus A_m$ is the canonical inclusion morphism. Furthermore $\iota_i(B_i)$ is contained in the kernel of the map $A_i\to A_1\oplus ...\oplus A_m\to M$ since $\iota_i(B_i)$ is a submodule of $B_1\oplus ...\oplus B_m$. Therefore the universal property of the quotient gives us a unique map $\rho_i:A_i/B_i\to M$ fitting into the following diagram.

Lastly, we show that $B_1 \oplus \ldots \oplus B_m$ is contained in the kernel of \hat{f} . Note that it suffices to show that $\iota_i(B_i)$ is contained in the kernel of \hat{f} , because (by definition) $B_1 \oplus \ldots \oplus B_m = \iota_1(B_1) \oplus \ldots \oplus \iota_m(B_m)$. Since B_i is contained in $\ker \pi_i \circ f_i$, Diagram 2.1 shows that $\iota_i(B_i)$ is contained in $\ker \hat{f}$, as desired. Therefore $B_1 \oplus \ldots \oplus B_m \leqslant \ker \hat{f}$; hence \hat{f} itself induces a unique morphism $\tilde{f}: M \to X$ making the following diagram commute.

Using Diagram 2.2, we can replace the left side with ρ_i :

$$A_{i}/B_{i} \xrightarrow{f_{i}} X$$

$$\rho_{i} \downarrow \qquad \exists ! \tilde{f}$$

This is the universal property for the coproduct N. Therefore $\mathtt{M} \cong \mathtt{N}$.

* * * * *

Exercise 3 (DF 12.1.8): Let R be a PID, B a torsion R-module, and p a prime element in R. Prove that if pb = 0 for some $b \in B, b \neq 0$, then $Ann(B) \subseteq (p)$. (Recall that $Ann(B) \stackrel{\text{def}}{=} \{r \in R \mid rB = 0\}$).

Proof. Rb is a submodule of B, so it is a module in its own right. Since pb = 0, $p \in Ann(Rb)$; hence $Ann(Rb) \neq (0)$. Since $b \neq 0$, $1 \cdot b \neq 0$, so Ann(Rb) is not the unit ideal.

Therefore Ann(Rb) is a nontrivial ideal in the PID R, so Ann(Rb) is a principal ideal. Since p is prime, (p) is maximal amoung principal ideals, therefore Ann(Rb) = (p). Any element $r \in R$ which annihilates all of B will annihilate b in particular. Thus $Ann(B) \subseteq Ann(Rb)$; hence $Ann(B) \subseteq (p)$.

* * * * *

Exercise 4: Let R be a ring with 1, not necessarily commutative. Show that if I,J \subseteq R are left ideals such that J=Ia for some $a \in R^{\times}$, then $R/I \cong R/J$ as modules.

Proof. We will show that R/I satisfies the universal property of R/J. Let $\varphi: R \to N$ be a morphism of R-modules such that $J \subseteq \ker \varphi$. We define a new morphism $\overline{\varphi}: R/I \to N$ of R-modules by setting:

$$\overline{\varphi}(\overline{x}) \stackrel{\text{def}}{=} \varphi(xa)$$
.

To show that this is well-defined, suppose $y \in I$, so there exists an element $z \in J$ such that $y = za^{-1}$. Then $ya) = \varphi(z) = 0$ since $z \in \ker \varphi$; hence $\overline{\varphi}$ is a well-defined (set)-function from R/I to N. We now show that $\overline{\varphi}$ is linear:

$$\overline{\phi}(r\overline{x}+s\overline{y})=\phi((rx+sy)a)=\phi(rxa+sya)=r\phi(xa)+s\phi(ya)=r\overline{\phi}(\overline{x})+s\overline{\phi}(\overline{y}).$$

Furthermore we can define an R-module morphism $\pi': R \to R/I$ by setting $\pi'(x) \stackrel{\text{def}}{=} \overline{xa^{-1}}$. Since J = Ia, $\ker \pi'$ contains J (in fact, J = Ia implies $\ker \pi' = J$). Moreover, $\overline{\varphi}(\pi'(x)) = \varphi(xa^{-1}a) = \varphi(x)$, so the following triangle commutes.

$$\begin{array}{ccc}
R & \xrightarrow{\varphi} & N \\
\pi' \downarrow & \overline{\varphi} \\
R/I
\end{array}$$

All that is left to check is that $\overline{\varphi}$ is unique. Since π' is surjective, the requirement that $\overline{\varphi} \circ \pi' = \varphi$ forces a unique definition for $\overline{\varphi}$.

Thus $\pi': R \to R/I$ satisfies the universal property of the quotient R/J. Since quotients are unique up to isomorphism, $R/I \cong R/J$.

* * * * *

Exercise 5 : Let R $\stackrel{\text{def}}{=}$ $M_{2\times 2}(F)$ with F a field. Find examples of left ideals I,J \subseteq R such that R/I \cong R/J as modules but I \neq J.

Proof. Let I denote the collection of all matrices $A \in R$ such that $A\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$, and let J denote the collection of all matrices $B \in R$ such that $B\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$.

I is a left-ideal: for any $M_1, M_2 \in R$ and $A_1, A_2 \in I$,

$$(M_1 A_1 - M_2 A_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = M_1 \begin{pmatrix} A_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} - M_2 \begin{pmatrix} A_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0.$$

A similar argument shows that J is also a left-ideal. Furthermore, the matrix

$$\sigma \stackrel{\text{def}}{=} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

is an element of R^{\times} (it is its own inverse). Since $I\sigma = J$, Exercise 4 implies $R/I \cong R/J$. However, $I \neq J$: $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is an element of I but not an element of J.

* * * * *

Exercise 6 (DF 12.2.10): Find all similarity classes of 6 \times 6 matrices over \mathbb{Q} with minimal polynomial $(x+2)^2(x-1)$.

It suffices to give all lists of invariant factors and write out some of their corresponding matrices.

Proof. Let $P \stackrel{\text{def}}{=} (x+2)^2 (x-1)$. Let $V \stackrel{\text{def}}{=} \mathbb{Q}^6$ and $T: V \to V$ be a matrix with minimal polynomial P. Then V_T decomposes into a sum

$$V_T \cong \mathbb{Q}[x]/(f_1) \oplus ... \oplus \mathbb{Q}[x]/(f_k),$$

where $f_1 \mid f_2 \mid ... \mid f_k$ are all monic polynomials. Since the minimal polynomial is the largest invariant factor, $f_k = P$. Furthermore $\dim_F V_T = \deg f_1 + ... + \deg f_k$. $\deg f_k = 3$, so $\deg f_1 + ... + \deg f_{k-1} = 3$, leaving the following possibilities:

- k=4 and $degf_1 = degf_2 = degf_3 = 1$,
- k=3 and $degf_1=1$ and $degf_2=2$,
- k=2 and $degf_1=3$.

Since the invariant factors must divide P, this yields six classes.

- 1. $f_1 = f_2 = P$;
- 2. $f_1 = f_2 = f_3 = x 1$ and $f_4 = P$;
- 3. $f_1 = f_2 = f_3 = x + 2$ and $f_4 = P$;
- 4. $f_1 = x+2$, $f_2 = (x+2)^2$, and $f_3 = P$;
- 5. $f_1 = x+2$, $f_2 = (x+2)(x-1)$, and $f_3 = P$;
- 6. $f_1 = x 1$ and $f_2 = (x + 2)(x 1)$, and $f_3 = P$.

Any matrix is similar to its rational canonical form, so these six classes correspond bijectively to the collection of similarity classes of $M_{6\times 6}(\mathbb{Q})$. The invariant factors determine the rational canonical form of the representative of each similarity class. In the order enumerated above, the following six matrices represent the six similarity classes.

* * * * *

Exercise 7 (DF 12.3.5): Compute the Jordan canonical form (over $\mathbb C$) of the matrix

$$A \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}.$$

Solution. The characteristic polynomial $\det(\lambda I - A)$ is $\lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1)$, so the eigenvalues of A are 2 and 1. We can directly solve the system A - 2I = 0 and A - I = 0 to find an eigenbasis

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Therefore these three vectors form a basis of V_A ; hence the Jordan canonical form of A is

$$J(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

* * * * *

Exercise 8 : Let $R \stackrel{\text{def}}{=} \mathbb{Z}[i]$. Classify all finitely generated R-modules M with the property that 5M = 0.

Proof. R is a PID, so due to the elementary divisor composition, any finitely generated R-module M is isomorphic to a direct sum of the form:

$$\mathtt{M} \cong \mathtt{R}/\Bigl(\mathtt{p}_1^{k_1}\Bigr) \oplus \ldots \oplus \mathtt{R}/\Bigl(\mathtt{p}_m^{k_m}\Bigr)$$
 ,

where each p_i is a prime element of R. This decomposition is unique in the sense that m is unique and the $p_i^{k_i}$ are unique up to reordering and multiplication by units. Therefore it suffices to classify R-modules M' of the form $R/(p^k)$, where p is a prime element of R such that 5M'=0. Since R is a PID, $Ann(M')=(r_0)$ for some $r_0\in R$. Since (p^k) is an ideal, (p^k) is contained in Ann(M'), so r_0 divides p^k . That is, r_0 is a power of p. On the other hand 5M'=0, so $5\in Ann(M')=(r_0)$. This shows that r_0 is a nontrivial power of p. Furthermore, 5=(2+i)(2-i); both of these factors are prime (they are irreducible in a PID). So we have $(2+i)(2-i)=p^da$, where $0< d \le k$ and $a \in R$. Thus d=1 and p=2+i or p=2-i. In other words, $M'\cong R/(2+i)$ or $M'\cong R/(2-i)$.

Returning to the direct sum M, this tells us that M is a direct sum of copies of $M_1 \stackrel{\text{def}}{=} R/(2+i)$ and $M_2 \stackrel{\text{def}}{=} R/(2-i)$. This proves the following classification.

Proposition 8.1. For any finitely generated $\mathbb{Z}[i]$ -module M such that 5M = 0, there exist $d_1, d_2 \in \mathbb{Z}_{\geqslant 0}$ such that

$$\mathtt{M} \cong \mathtt{M}_1^{d_1} \oplus \mathtt{M}_2^{d_2} \; .$$