ECUACIONES ALGEBRAICAS, CURSO 2016-2017

José F. Fernando y José Manuel Gamboa

Polinomios en varias variables

- 1. Calcular la suma de los cubos de las raíces en \mathbb{C} del polinomio $f(t) := t^3 2t^2 + 3t 4$?
- 2. Sean $r \in \mathbb{C}$ y $f(t) := 3t^2 + 3rt + r^2 1 \in \mathbb{C}[t]$ cuyas raíces $u, v \in \mathbb{C}$ no son necesariamente distintas. Probar que $f(u^3) = f(v^3)$.
- 3. Encontrar las soluciones reales del sistema de ecuaciones

$$\begin{cases} xyz &= 8\\ xz^2 + yx^2 + zy^2 &= 73\\ x(y-z)^2 + y(x-z)^2 + z(x-y)^2 &= 98 \end{cases}$$

4. Se consideran los polinomios

$$f(x, y) := x^2 - 5y^2 - 2xy - 3x + 3y + 2$$
 & $g(x, y) := x^2 - 7y^2 - 3x - 5y + 2$.

Encontrar todos los puntos de corte de las cónicas afines

$$C_1 := \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$$
 & $C_2 := \{(x, y) \in \mathbb{C}^2 : g(x, y) = 0\}.$

5. Consideremos la aplicación

$$\varphi: \mathbb{C}^3 \to \mathbb{C}^3, (x, y, z) \mapsto (x + y + z, xy + xz + yz, xyz)$$

v el conjunto $M:=\{(x,y,z)\in\mathbb{C}^3: f(x,y,z)=0\}$, donde f es el polinomio

$$f(x, y, z) := x^2(y - z) + x(z^2 - y^2) + yz(y - z).$$

- (1) Demostrar que φ es sobreyectiva y calcular la fibra del punto p:=(1,1,1). ¿Qué grado tiene la aplicación φ , esto es, cuántos elementos tiene la fibra que más elementos tiene? Encontrar un punto $q \in \mathbb{C}^3$ cuya fibra conste de menos puntos que el grado de φ .
- (2) Factorizar f en producto de polinomios irreducibles en $\mathbb{C}[x, y, z]$.
- (3) Encontrar un polinomio $\Delta \in \mathbb{Z}[\mathsf{u},\mathsf{v},\mathsf{w}]$ tal que

$$\varphi(\mathbb{C}^3 \setminus M) = \{(u, v, w) \in \mathbb{C}^3 : \Delta(u, v, w) \neq 0\}.$$

¿Contiene $\varphi(\mathbb{C}^3 \setminus M)$ al punto (0, -3, 2)?

Generalidades sobre cuerpos

6. Para los siguientes valores de $\alpha \in \mathbb{C}$ encontrar el polinomio mínimo de α sobre \mathbb{Q} y el grado de la extensión $\mathbb{Q}(\alpha)|\mathbb{Q}$:

$$\alpha := (\sqrt{3} - 1)/2, \quad \alpha := (i + 2)\sqrt{3}/5 \quad \& \quad \alpha := \sqrt{1 - \sqrt{11}}.$$

- 7. (i) Sean L|K una extensión finita y $f \in K[t]$ un polinomio irreducible. Probar que si f tiene alguna raíz en L entonces el grado de f divide al grado [L:K] de la extensión.
 - (ii) Supongamos que [L:K] es un número primo. Demostrar que cada elemento $\alpha \in L \setminus K$ cumple que $L = K(\alpha)$.
- 8. Sean $a := \sqrt{5} + \sqrt{-5}$ y $b := \sqrt[4]{5}$. Calcular el grado de la extensión $\mathbb{Q}(a,b)|\mathbb{Q}(b)$.
- 9. Sean K un cuerpo y $f(t) := t^n a \in K[t]$. Supongamos que f es irreducible en K[t]. Dados un divisor m de n y una raíz α de f, calcular el polinomio mínimo de α^m sobre K.

- 10. Hallar los polinomios mínimos de $\alpha := \sqrt[3]{5}$ sobre los cuerpos \mathbb{Q} y $K := \mathbb{Q}(\sqrt{3}, \sqrt{5})$.
- 11. Dados $k \in \mathbb{Z} \setminus 7\mathbb{Z}$ y $\alpha_k := 2k\pi/7$ calcular el polinomio mínimo de $u := 2\cos\alpha_k$ sobre \mathbb{Q} .
- 12. Sean K un cuerpo, E := K(t) y $L := K(t^3(1+t)^{-1})$, donde t es una indeterminada. Probar que E|L es una extensión algebraica simple y calcular [E:L].
- 13. (i) Demostrar que el polinomio $f(t) := t^5 t 1$ es irreducible en $\mathbb{Q}[t]$.
 - (ii) Sean $a,b\in\mathbb{Q}$. ¿Tienen los polinomios $\mathsf{t}^5-\mathsf{t}-1$ y $\mathsf{t}^3+a\mathsf{t}+b$ alguna raíz compleja común?
 - (iii) Sea $\alpha := [t]$ la clase de t en $\mathbb{Q}[t]/(t^5 t 1)$. Escribir el elemento $1/(1 + \alpha + \alpha^3)$ como expresión polinómica en α con coeficientes en \mathbb{Q} .

Cuerpo de descomposición de un polinomio

- 14. Sean K un cuerpo, $a \in K$ y m y n enteros positivos primos entre sí. Demostrar que el polinomio $f(t) := t^{mn} a$ es irreducible en K[t] si y sólo si los polinomios $g(t) := t^m a$ y $h(t) := t^n a$ son irreducibles en K[t].
- 15. Sean $f(t) := t^6 1$, $i := \sqrt{-1}$ y $\omega \neq 1$ tal que $\omega^3 = 1$. Hallar el grado de la extensión $L_f|L$, donde L_f denota un cuerpo de descomposición de f sobre cada uno de los siguientes cuerpos $L: \mathbb{Q}, \mathbb{Q}(i)$ y $\mathbb{Q}(\omega)$.
- 16. Sean $p \in \mathbb{Z}$ un número primo y L un cuerpo de descomposición del polinomio $f(t) := t^p 3$ sobre \mathbb{Q} . Calcular el grado $[L : \mathbb{Q}]$.
- 17. Probar que $u := \operatorname{tg}(2\pi/5)$ es un número algebraico sobre \mathbb{Q} y hallar su polinomio mínimo. ¿Es $\mathbb{Q}(u)$ un cuerpo de descomposición sobre \mathbb{Q} de algún polinomio irreducible en $\mathbb{Q}[t]$?
- 18. Sean K un cuerpo en el que el polinomio $f(t) := t^2 + 1$ no tiene ninguna raíz, y denotemos i una raíz de f en un cuerpo de descomposición de f sobre K. Supongamos que todo elemento de K(i) es el cuadrado de un elemento de K(i). Probar que toda suma de cuadrados en K es un cuadrado en K y calcular la característica de K.
- 19. Hallar un elemento primitivo u de la extensión $L|\mathbb{Q}$, donde L es un cuerpo de descomposición sobre \mathbb{Q} de $f(t) := t^3 7$. Hallar el polinomio mínimo de u sobre \mathbb{Q} .
- 20. Sea L|K una extensión de cuerpos de característica 0. Supongamos que existe un entero positivo n tal que $[K(u):K] \leq n$ para cada $u \in L$. Demostrar que la extensión L|K es finita, de grado menor o igual que n.
- 21. Sean K un cuerpo, $a \in K \setminus \{0\}$, p un número primo, $f(t) := t^p a$, $h(t) := t^p 1$ y L un cuerpo de descomposición de $f \cdot h$ sobre K.
 - (1) Demostrar que si u es una raíz de f en L toda raíz de f en L es de la forma ζu para cierta raíz $\zeta \in L$ del polinomio h.
 - (2) Demostrar que si f es reducible en K[t], entonces f tiene alguna raíz en K.
- 22. (i) Dado un primo $p \in \mathbb{Z}$, ¿cuál es el polinomio mínimo de $\sqrt[3]{p}$ sobre \mathbb{Q} ?
 - (ii) Demostrar que $\sqrt[3]{3} \notin \mathbb{Q}(\sqrt[3]{2})$.
 - (iii) Calcular el grado de la extensión $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3})|\mathbb{Q}$.
 - (iv) Calcular el polinomio mínimo de $\sqrt[3]{2} + \sqrt[3]{3}$ sobre \mathbb{Q} .

Grupo de automorfismos de una extensión

23. Sea α la raíz séptima real de 5. ¿Cuáles de las siguientes extensiones son de Galois?

$$\mathbb{Q}(\alpha)|\mathbb{Q}, \quad \mathbb{Q}(\sqrt{5},\alpha)|\mathbb{Q}(\alpha), \quad \mathbb{Q}(\sqrt{-5})|\mathbb{Q} \quad \& \quad \mathbb{R}(\sqrt{-7})|\mathbb{R}.$$

24. Sea $E := \mathbb{Q}(r)$, donde $r := \sqrt[4]{2}$ es el único número real positivo cuya potencia cuarta vale 2. ¿Existen números reales α y β tales que

$$\mathbb{Q}(\alpha) \neq E \neq \mathbb{Q}(\beta)$$
 & $E = \mathbb{Q}(\alpha, \beta)$?

- 25. Sean L|K una extensión algebraica y $\phi: L \to L$ un homomorfismo de cuerpos tal que $\phi|_K = \mathrm{id}_K$. Demostrar que $\phi \in G(L:K)$, esto es, que ϕ es un automorfismo.
- 26. Sean $\alpha := e^{\pi i/3}$ y β una raíz del polinomio $f(\mathsf{t}) := \mathsf{t}^4 6\mathsf{t}^2 + 6$. Encontrar generadores de la clausura de Galois $L|\mathbb{Q}$ de las siguientes extensiones y calcular en cada caso el grado de la extensión $L|\mathbb{Q}$:

$$\mathbb{Q}(\sqrt[4]{3})|\mathbb{Q}, \quad \mathbb{Q}(\alpha)|\mathbb{Q}, \quad \mathbb{Q}(\beta)|\mathbb{Q} \quad \& \quad \mathbb{Q}(\sqrt[5]{2})|\mathbb{Q}.$$

- 27. Sean K un cuerpo, $f \in K[t]$ un polinomio de grado n y E un cuerpo de descomposición de f sobre K en el que f posee n raíces distintas ξ_1, \ldots, ξ_n . Probar que para cada polinomio $p \in K[t]$ existe otro $g \in K[t]$ de grado n del que son raíces $\{p(\xi_i): 1 \le i \le n\}$.
- 28. (i) Probar que los polinomios $g(t) := t^2 + 4$, $h(t) := t^3 + 4$ y $f(t) := t^6 + 4$ son irreducibles en $\mathbb{Q}[t]$.
 - (ii) Demostrar que $L := \mathbb{Q}(\sqrt{3}, i, \sqrt[3]{2})$ es un cuerpo de descomposición de f sobre \mathbb{Q} .
 - (iii) Calcular el grado de la extensión $L|\mathbb{Q}$.
 - (iv) ¿Cuál es el orden del grupo de Galois $G(L:\mathbb{Q})$? Probar que es un grupo diedral.
 - (v) Encontrar generadores de todas las subextensiones no triviales de $L|\mathbb{Q}$ y determinar cuáles son de Galois.
- 29. (i) Sea G un grupo abeliano de orden ocho tal que el orden máximo de los elementos de G es cuatro. Demostrar que G es isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_4$ y calcular cuántos subgrupos tiene de cada orden.
 - (ii) Sean $\xi := e^{\pi i/10}$, $\eta := \xi^4$, $i := \sqrt{-1}$ y $u := \eta + \eta^{-1}$. Calcular el polinomio mínimo de u sobre \mathbb{Q} y decidir si el cuerpo $\mathbb{Q}(u)$ contiene a i.
 - (iii) Demostrar que $\mathbb{Q}(\xi) = \mathbb{Q}(i, \eta)$, que $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{5})$ y que $[\mathbb{Q}(\xi) : \mathbb{Q}] = 8$. Calcular el polinomio mínimo de ξ sobre \mathbb{Q} .
 - (iv) Probar que el grupo de Galois $G(\mathbb{Q}(\xi):\mathbb{Q})$ es abeliano y encontrar generadores sobre \mathbb{Q} de las subextensiones de $\mathbb{Q}(\xi)|\mathbb{Q}$.
 - (v) Sea E el cuerpo de descomposición sobre $\mathbb{Q}(\xi)$ del polinomio $f(t) := t^4 5$. Probar que la extensión $E|\mathbb{Q}$ es de Galois, calcular su grado y decidir si $G(E:\mathbb{Q})$ es o no abeliano.
- 30. (i) Probar que $h(t) := t^4 + 1$ es un polinomio irreducible en $\mathbb{Q}[t]$.
 - (ii) Sea L un cuerpo de descomposición de h sobre $\mathbb Q.$ Encontrar un elemento primitivo de la extensión $L|\mathbb Q.$
 - (iii) ¿Cuál es el orden del grupo de Galois $G(L:\mathbb{Q})$? Demostrar que es abeliano y calcular sus coeficientes de torsión.
 - (iv) Encontrar elementos primitivos de todas las subextensiones no triviales de $L|\mathbb{Q}$ y determinar cuáles son de Galois.

Grupo de Galois de algunos polinomios

- 31. Sean $K := \mathbb{Q}(\sqrt{-3})$ y $f(t) := (t^3 2)(t^2 5)$. Hallar el grupo de Galois $G_K(f)$.
- 32. (i) Hallar el polinomio ciclotómico Φ_9 y su grupo de Galois $G_{\mathbb{Q}}(\Phi_9)$.
 - (ii) Sea $L \subset \mathbb{C}$ un cuerpo de descomposición de Φ_9 sobre \mathbb{Q} . Expresar como extensiones simples las subextensiones de $L|\mathbb{Q}$ y en cada caso encontrar el polinomio mínimo sobre \mathbb{Q} de un elemento primitivo.
- 33. Sea $L \subset \mathbb{C}$ un cuerpo de descomposición sobre \mathbb{Q} de un polinomio irreducible $f \in \mathbb{Q}[t]$. Demostrar que si $[L : \mathbb{Q}]$ es impar entonces $L \subset \mathbb{R}$.
- 34. Sean u, v y w las raíces en \mathbb{C} del polinomio $f(t) := t^3 3t + 1$. Sean $a := u^2v^2$, $b := u^2w^2$ y $c := v^2w^2$.
 - (i) Calcular los coeficientes del polinomio g(t) := (t a)(t b)(t c). ¿Es g irreducible en $\mathbb{Q}[t]$?
 - (ii) Calcular el discriminante de g y el grupo de Galois $G_{\mathbb{Q}}(g)$.
- 35. Sean p un número primo y supongamos que el grupo de Galois $G_{\mathbb{Q}}(f)$ es cíclico, donde $f(t) := t^3 pt + p$. Demostrar que $p \equiv 1 \mod 3$.
- 36. Sean $K \subset \mathbb{R}$ un cuerpo y $f \in K[t]$ un polinomio irreducible de grado 4 que tiene, exactamente, dos raíces reales. Demostrar que su grupo de Galois $G_K(f)$ es \mathcal{D}_4 o \mathcal{S}_4 .
- 37. Sean K un cuerpo de característica 0 y $a, b \in K$ tales que el polinomio $f(t) := t^4 + at^2 + b$ es irreducible en K[t]. Hallar, en función de los valores de a y b, el grupo de Galois de f sobre K.
- 38. Calcular el grupo de Galois $G_{\mathbb{Q}}(f_i)$ para i=1,2, donde

$$f_1(t) := t^4 + 3t^3 - 3t - 2$$
 & $f_2(t) := t^4 + t^2 - 2t + 1$.

- 39. Sean p > 5 un número primo y $f_p(t) := t^4 + pt + p \in \mathbb{Q}[t]$. Determinar el grupo de Galois $G_{\mathbb{Q}}(f_p)$.
- 40. Sea E|K una extensión de cuerpos de grado 4. Demostrar que las siguientes afirmaciones son equivalentes:
 - (i) E|K es de Galois y $G(E:K) = \mathbb{Z}_2 \times \mathbb{Z}_2$.
 - (ii) Existen un elemento primitivo α de la extensión E|K y $s,u\in K$ tales que

$$P_{K,\alpha}(t) = t^4 - 2(s+u)t^2 + (s-u)^2.$$

- 41. Sean $f_1(t) := t^4 2t^2 + 2$, $f_2(t) := t^3 + 9t + 18$, L_i el cuerpo de descomposición de f_i sobre \mathbb{Q} y L el menor subcuerpo de \mathbb{C} que contiene a L_1 y L_2 .
 - (i) Probar que el grupo de Galois $G_{\mathbb{Q}}(f_1)$ es isomorfo al grupo diedral \mathcal{D}_4 de orden 8.
 - (ii) Sean v y w dos raíces de f_1 en L_1 que no son opuestas. Calcular el polinomio mínimo de w sobre $\mathbb{Q}(v)$.
 - (iii) Probar que f_2 tiene tres raíces distintas u_1, u_2 y u_3 en L_2 , que el grupo de Galois $G_{\mathbb{Q}}(f_2) \cong \mathcal{S}_3$ y que $G_{L_1}(f_2)$ es isomorfo a \mathbb{Z}_3 .
 - (iv) Demostrar que $[L:\mathbb{Q}]=24$.
 - (v) Probar que $L_1|\mathbb{Q}$ es la única subextensión de $L|\mathbb{Q}$ de grado 8.
 - (vi) Demostrar que $\mathbb{Q}(u_i)|\mathbb{Q}$, con i=1,2,3 son todas las subextensiones de grado 3 de la extensión $L|\mathbb{Q}$.
 - (vii) Demostrar que existe un único automorfismo $\rho \in G(L : \mathbb{Q})$ tal que $\rho(v) = w$, $\rho(w) = -v$ y $\rho(u_1) = u_2$. Calcular el grado $[F : \mathbb{Q}]$, donde $F = \text{Fix}(\rho)$ es el cuerpo fijo de ρ .
 - (viii) Hallar un elemento primitivo θ de la extensión $F|\mathbb{Q}$ y el polinomio mínimo $P_{\mathbb{Q},\theta}$ de θ sobre \mathbb{Q} .

Aplicaciones de la teoría de Galois

42. Sean K un cuerpo y los polinomios de K[t] de grado n

$$f(\mathsf{t}) := \sum_{i=0}^n a_i \mathsf{t}^i$$
 & $g(\mathsf{t}) := \sum_{i=0}^n a_{n-i} \mathsf{t}^i$.

Demostrar que f es resoluble por radicales sobre K si y sólo si g lo es.

- 43. Sean $f, g \in \mathbb{Q}[t]$ dos polinomios resolubles por radicales.
 - (i) ¿Se puede asegurar que también f + g es resoluble por radicales?
 - (ii) ¿Se puede asegurar que fg es resoluble por radicales?
- 44. (i) Estudiar si el polinomio $f(t) := t^6 3t^4 + 6t^2 3$ es resoluble por radicales.
 - (ii) Sea $\alpha \in \mathbb{C}$ una raíz de f. Calcular el polinomio mínimo de $\alpha^2 1$ sobre \mathbb{Q} .
- 45. Sean $\xi := e^{2\pi i/7}$ y $L := \mathbb{Q}(\xi)$.
 - (i) ¿Cuántas subextensiones de grado dos posee la extensión $L|\mathbb{Q}$? Obtener elementos primitivos de dichas subextensiones y los polinomios mínimos sobre \mathbb{Q} de dichas elementos.
 - (ii) ¿Contiene L a $i := \sqrt{-1}$? Sea $\gamma := e^{\pi i/7}$. Demostrar que $\mathbb{Q}(\xi) = \mathbb{Q}(\gamma)$.
 - (iii) ¿Es resoluble por radicales sobre $\mathbb Q$ el polinomio

$$h(t) := t^6 - t^5 + t^4 - t^3 + t^2 - t + 1?$$

46. Sean K un cuerpo de característica 0 y $a,b,c,d\in K$. ¿Es resoluble por radicales sobre K el polinomio

$$f(t) := t^8 + at^7 + bt^6 + ct^5 + dt^4 + ct^3 + bt^2 + at + 1?$$

- 47. (i) Sea $f \in \mathbb{Q}[t]$ un polinomio irreducible cuyo grado es un número primo. Supongamos que f posee al menos dos raíces reales y alguna raíz en $\mathbb{C} \setminus \mathbb{R}$. ¿Es f resoluble por radicales sobre \mathbb{Q} ?
 - (ii) Sean $p \equiv 1 \mod 4$ un número primo y $f \in \mathbb{Q}[t]$ un polinomio irreducible de grado p cuyo discriminante es negativo. Probar que f no es resoluble por radicales sobre \mathbb{Q} .
- 48. Sean K un cuerpo de característica 0 y t, x_1, \ldots, x_n indeterminadas sobre K. Denotamos s_1, \ldots, s_n las formas simétricas elementales en las indeterminadas x_1, \ldots, x_n y consideramos el polinomio

$$f(\mathtt{t}) := \mathtt{t}^n + \sum_{j=0}^{n-1} (-1)^{n-j} \mathtt{s}_{n-j} \mathtt{t}^j = \prod_{k=1}^n (\mathtt{t} - \mathtt{x}_k)$$

y el cuerpo $L := K(\mathbf{x}_1, \dots, \mathbf{x}_n)$. Demostrar que si c_1, \dots, c_n son elementos de K distintos dos a dos y $E := K(\mathbf{x}_1, \dots, \mathbf{x}_n)$, entonces $u := \sum_{k=1}^n c_k \mathbf{x}_k$ es un elemento primitivo de la extensión E|L.

- 49. Sean $f := \mathbf{t}^7 7$ y L un cuerpo de descomposición de f sobre \mathbb{Q} .
 - (i) Calcular el grado de la extensión $L|\mathbb{Q}$ y encontrar generadores suyos.
 - (ii) Describir los \mathbb{Q} -automorfismos de L.
 - (iii) ¿Es abeliano el grupo de Galois $G := G(L : \mathbb{Q})$? ¿Es resoluble?
 - (iv) ¿Qué números enteros son órdenes de elementos de G. ¿Cuántos elementos tiene G de cada orden?
 - (v) Demostrar que todos los subgrupos de G cuyo orden divide a 6 son cíclicos.
 - (vi) Encontrar un sistema generador de G formado por dos elementos. Exhibir una torre normal con factores cíclicos para el grupo G y una torre de resolución para la extensión $L|\mathbb{Q}$.

- (vii) Para cada divisor positivo d del orden de G calcular el número de subgrupos de G de orden d.
- (viii) ¿Cuántos subgrupos normales tiene G? ¿De qué órdenes?
- (ix) Para cada divisor positivo d del grado $[L:\mathbb{Q}]$ calcular cuántas subextensiones tiene $L|\mathbb{Q}|$ de grado d. ¿Cuántas de estas subextensiones son de Galois?
- (x) Encontrar generadores de cada subextensión de $L|\mathbb{Q}$.
- 50. Sean G un grupo y K un cuerpo. Un carácter de G a valores en K es un homomorfismo de grupos $\chi:G\to K^*$.
 - (i) Probar que cualesquiera caracteres χ_1, \ldots, χ_n de G a valores en K distintos dos a dos son linealmente independientes sobre K, o sea, para cada n-upla $(a_1, \ldots, a_n) \in K^n$ donde algún $a_i \neq 0$ existe $g \in G$ tal que

$$\sum_{k=1}^{n} a_k \chi_k(g) \neq 0.$$

(ii) Sean $\alpha_1, \ldots, \alpha_\ell \in K$ no nulos y distintos dos a dos y $a_1, \ldots, a_\ell \in K$ tales que

$$\sum_{k=1}^{\ell} a_k \alpha_k^n = 0 \quad \forall \, n \in \mathbb{Z}.$$

Demostrar que $a_k = 0$ para $1 \le k \le \ell$.

51. (Ternas pitagóricas) Emplear el Teorema 90 de Hilbert para demostrar que una terna (x, y, z) de números enteros no nulos primos dos a dos cumple $x^2 + y^2 = z^2$ si y sólo si existen $s, m, n \in \mathbb{Z}$ tales que $s \neq 0$ y

$$(sx, sy, sz) = (m^2 - n^2, 2mn, m^2 + n^2).$$

52. (Forma aditiva del Teorema 90 de Hilbert) (i) Sean L|K una extensión de Galois y $x \in L$. Se llama traza de x a

$$\mathsf{T}(x) := \sum_{\sigma \in G(L:K)} \sigma(x).$$

Demostrar que $T(x) \in K$.

- (ii) Supongamos que K tiene característica 0 y que el grupo de Galois $G(L:K) := \langle \sigma \rangle$ es cíclico. Demostrar que la traza de un elemento $x \in L$ es nula si y sólo si existe $\alpha \in L$ tal que $x = \alpha \sigma(\alpha)$.
- 53. (Teorema de la base normal) Sean K un cuerpo de característica 0 y L|K una extensión de Galois cuyo grupo de Galois es $G(L:K) := \{\sigma_1, \ldots, \sigma_n\}$.
 - (i) Probar que existe $u \in L$ tal que la matriz $A := (a_{ij}) \in \mathcal{M}_n(L)$ cuyos coeficientes son $a_{ij} := \sigma_i(\sigma_i^{-1}(u))$ tiene determinante no nulo.
 - (ii) Demostrar que el conjunto $\mathcal{B} := \{\sigma_j(u) : 1 \leq j \leq n\}$ es una base de L como K-espacio vectorial.

Cuerpos finitos

- 54. (i) Sea $A := \mathbb{Z}[i]$ el anillo de los enteros de Gauss. Demostrar que el cociente E := A/7A es un cuerpo finito y calcular cuántos elementos tiene.
 - (ii) Determinar el cuerpo primo K de E y un elemento primitivo ξ de la extensión E|K. Calcular el polinomio mínimo de ξ sobre K.
- 55. Sea K un cuerpo finito con q elementos. Determinar el número de polinomios mónicos e irreducibles de grado 3 en K[t]. Deducir que para cada número primo p y cada entero positivo n existe un cuerpo con p^{3^n} elementos.

- 56. (i) Factorizar $t^{16} t$ como producto de polinomios irreducibles en $\mathbb{F}_2[t]$.
 - (ii) Factorizar como producto de polinomios irreducibles en el anillo $\mathbb{F}_3[t]$ el polinomio $t^9 t$.
- 57. Escribir las tablas de sumar y multiplicar del cuerpo de 9 elementos.
- 58. Sean K un cuerpo con 2^{10} elementos y $\alpha \in K^*$ un generador del grupo multiplicativo $K^* := K \setminus \{0\}$. Encontrar un elemento primitivo de cada subextensión de $K|\mathbb{F}_2$.
- 59. Demostrar que $f(t) := t^4 + 1$ es irreducible como polinomio en $\mathbb{Z}[t]$ pero es reducible en $\mathbb{F}_p[t]$ para cada primo p.
- 60. ¿Tiene el polinomio $f(t) := t^2 [2002]_{97} \in \mathbb{F}_{97}[t]$ alguna raíz en el cuerpo \mathbb{F}_{97} ?
- 61. ¿Existe algún número entero x tal que $x^2 + 4x + 3 \equiv 7 \mod 11$?
- 62. Sean $K := \mathbb{F}_{31}$ y $f(x,y) := 317x^2 151xy + 40y^2$. Decidir si existe algún punto $(a,b) \in K^2$ con alguna coordenada no nula en el que se anula la forma cuadrática f.
- 63. (i) Sea p un primo tal que q:=2p+1 es primo y $p\equiv 3 \mod 4$. Demostrar que $2^p\equiv 1 \mod q$. (ii) ¿Es primo el número $2^{59}-1$?

Extensiones transcendentes

- 64. Sean F := K(t) y $L := K(t^2/(1+t^3))$, donde K es un cuerpo y t es una indeterminada. Demostrar que la extensión F|L es algebraica y simple y calcular su grado [F:L].
- 65. Sean E|K una extensión de cuerpos y $u \in E \setminus K$.
 - (i) Demostrar que existe una subextensión L|K de E|K maximal entre las que no contienen a u.
 - (ii) Demostrar que u es algebraico sobre L y que la extensión E|L es algebraica.
- 66. Sea $\{u,v\}$ una base de transcendencia de la extensión de cuerpos L|K. Calcular el grado de transcendencia de la extensión $K(u^2,uv)|K$.
- 67. Sean E|K una extensión de cuerpos y $x,y\in E$. Determinar razonadamente la veracidad o falsedad de las siguientes afirmaciones.
 - (i) Si x o y es transcendente sobre K entonces x + y o xy es transcendente sobre K.
 - (ii) Si x es transcendente sobre K pero y es algebraico sobre K, entonces x+y es transcendente sobre K.
 - (iii) Si x es transcendente sobre K mientras que y es algebraico sobre K, entonces xy es transcendente sobre el cuerpo K.
 - (iv) Si tanto x como y son elementos transcendentes sobre K entonces, x,y son algebraicamente independientes sobre K.
 - (v) Si x es transcendente sobre K e y es transcendente sobre K(x), entonces x, y son algebraicamente independientes sobre K.
- 68. Sean p un número primo, \mathbf{x} e \mathbf{y} indeterminadas sobre \mathbb{Z}_p y consideremos los cuerpos $E = \mathbb{Z}_p(\mathbf{x}, \mathbf{y})$ y $K = \mathbb{Z}_p(\mathbf{x}^p, \mathbf{y}^p)$. Demostrar que la extensión E|K es finita y calcular su grado. ¿Cuál es el grado de transcendencia de la extensión $K|\mathbb{Z}_p$? Demostrar que E|K no es una extensión simple.
- 69. Utilizar el Teorema de Lindemann-Weierstrass para demostrar que para cada número algebraico $\alpha \in \mathbb{R} \setminus \{0\}$ los números senh α , cosh α y tgh α son transcendentes.
- 70. Emplear el Teorema de Gelfond-Schneider para probar que $e^{-\pi/2}$ es un número transcendente. ¿Es transcendente e^{π} ?