Rascunho de Notas de Estudo sobre

Hashing Perfeita

Leandro Zatesko Orientador: Prof. Dr. Jair Donadelli Jr.

http://www.inf.ufpr.br/{leandro,jair}

Algorithms Research Group

Universidade Federal do Paraná

Mestrado em Ciência da Computação

Sumário

1	Introdução	1
	1.1 Básico	1
	1.2 FKS	1
	1.3 FKS um pouco melhorado	2
	1.4 Mais um melhoramento	3
	1.5 Schmidt e Siegel	4
2	2 Hashing perfeita probabilística	7
	2.1 O melhoramento do FKS de Dietzfelbinger	7
	2.2 Dietzfelbinger e Meyer auf der Heide	
	2.3 FKS com grafos aleatórios	
	2.4 Métodos com hipergrafos	10
	2.5 Modificações	19

1 Introdução

1.1 Básico

DEFINIÇÃO 1. Uma <u>hash</u> é uma função $h\colon U\to M$. $S\subseteq U,\ U=[0..u-1]$ finito, chamado de <u>universo</u>. M=[0..m-1] finito. $|U|=u,\ |M|=m,\ |S|=n.\ x\in S$ é chamado de <u>chave</u>. Cada $t\in M$ é chamado de <u>endereço</u>. Uma tabela hash é uma área de armazenamento para as imagens dos elementos de S por S0. Se S1 h(S2), dizemos que S3 e injetiva para os elementos de S5. Se S3 fe perfeita e S4 e injetiva para os elementos de S5. Se S5 fe perfeita e S6 mínima. Particionamos S6 em S6, ..., S6 node

$$S_i = \left\{x \colon x \in S \to h(x) = i\right\}.$$

1.2 FKS

TEOREMA 2. $m \ge n$. Então existe um $a \in [1..u-1]$ tal que, para $h: x \mapsto (ax \mod u) \mod m$,

$$\sum_{i=0}^{m-1} { \left| \left| S_i \right| \choose 2 \right| = \frac{n(n-1)}{m}}.$$

DEMONSTRAÇÃO. $\binom{S_i}{2}=\{(x,y)\colon x,y\in S, x\neq y, h(x)=h(y)=i\}$. Se $x\neq y$ mas h(x)=h(y)=i, então

 $(ax \bmod u) \bmod m = (ay \bmod u) \bmod m.$

Logo, $a(x - y) \mod u \in X = \{m, 2m, 3m, ..., u - m, u - 2m, u - 3m, ...\}$. Portanto,

$$\bigcup_{a} \bigcup_{i} {S_i \choose 2} \simeq \bigcup_{x,y \in Sx \neq y} \{a \colon a(x-y) \bmod u \in X\},\,$$

e

$$\sum_{a} \sum_{i} {|S_{i}| \choose 2} = \sum_{\substack{x,y \in S \\ x \neq y}} |\{a \colon a(x-y) \bmod u \in X\}|$$
$$= |\{a \colon \exists (x,y), x \neq y, a(x-y) \bmod u \in X\}|.$$

Como para todo $x, y, x \neq y, |\{a : h(x) = h(y)\}| < \frac{2u}{m},$

$$\sum_{n} \sum_{i} \binom{|S_i|}{2} < \binom{n}{2} \frac{2u}{m} = \frac{un(n-1)}{m}.$$

Logo, existe ao menos um a tal que $\sum_i {|S_i| \choose 2} < \frac{n(n-1)}{m}$.

Corolário 3. Existe um a tal que, para $h: x \mapsto (ax \operatorname{mod} u) \operatorname{mod} n$, $\sum_i |S_i|^2 < 3n$.

Demonstração. Tomemos m=n, então $\sum_{i} {|S_i| \choose 2} < n-1$. Como

$$|S_i|^2 = 2\binom{|S_i|}{2} + |S_i|$$

 $e \sum_{i} |S_{i}| = n$,

$$|S_i|^2 = 2(n-1) + n < 3n.$$

Corolário 4. Existe a tal que se m = n(n-1) + 1, h é injetiva para S.

DEMONSTRAÇÃO. Existe um a tal que

$$\sum |S_i|^2 < \frac{2n(n-1)}{n(n-1)+1} + n < n+2.$$

Como $|S_i| \in \mathbb{N}$ e como $|S_i| \le 1$ — supondo existir um S_i tal que $|S_i| \ge 2$, temos que $\sum |S_i|^2 \not< n+2$. Logo, h injetiva para S.

DEFINIÇÃO 5 (Esquema <u>FKS</u>). Função de *hashing* primária: $h: x \mapsto (ax \bmod u) \bmod n$, onde a é tal que $\sum |S_i|^2 < 3n$. A função primária fornece, para cada x, o índice i para achar a_i e c_i . As funções secundárias são as $h_1: x \mapsto (a_i x \bmod u) \bmod (|S_i|) (|S_1| - 1) + 1$. $|S_i| (|S_1| - 1) + 1$ é o c_i , que é o tamanho da tabela *hash* para h_i . As chaves

x são armazenadas na tabela D em $C_i + h_i(x)$, onde os $C_i = \sum_{j=0}^{i=1} c_j$ são também previamente armazenados numa tabela C, assim como os a_i em A e os c_i em c. A hashing é feita por $h_i \circ h$. Note que $(h_i \circ h)(x) = C_i + h_i(x)$. $h_i \circ h$ requer a, u, n, A[0..n-1], c[0..n-1], C[0..n-1]. Total de 3n + O(1) locações, ou $(3n + O(1))\log u$ bits. Assim D também requer $3n\log u$ bits. Porém, gostaríamos de $\Omega(n+\log\log u)$ bits. Ademais, construir a representação de S pode ser O(nu) no pior caso — para encontrar a, podemos ter de fazer uma busca exaustiva que custaria O(nu): u possibilidades testado os n elementos de S cada.

1.3 FKS um pouco melhorado

Corolário 6. Para pelo menos metade dos valores $a \in [1..u-1]$, $\sum_{i=0}^{n-1} |S_i|^2 < 5n$.

DEMONSTRAÇÃO. Como

$$\sum_{n=1}^{u-1} \sum_{i=0}^{m-1} \binom{|S_i|}{2} < \frac{un(n-1)}{m},$$

Se m=n,

$$\sum_{n=1}^{u-1} \sum_{i=0}^{m-1} \binom{|S_i|}{2} < u(n-1) = u(m-1).$$

Logo,

$$\sum_{a=1}^{u-1} \left(\sum_{i=0}^{m-1} |S_i|^2 - n \right) < 2u(n-1).$$

Já que, para todo a, $\sum_{i=0}^{m-1} |S_i|^2 - n \ge 0$, portanto só para no máximo metade dos a pode ocorrer

$$\sum_{i=0}^{m-1} |S_i|^2 - n \geqslant 2(2(n-1));$$

ou seja, só para no máximo metade dos a pode ocorrer de a soma exceder o dobro da média. Logo, para no mínimo metade dos a,

$$\sum_{i=0}^{m-1} |S_i|^2 - n < 4(n-1).$$

COROLÁRIO 7. Para no mínimo metade dos $a, h: x \mapsto (ax \mod u) \mod (2n(n-1)+1)$ opera injetivamente em S.

Demonstração. m = 2n(n-1) + 1,

$$\sum \left(\sum |S_i| - n\right) < \frac{2un(n-1)}{2n(n-1) + 1} < u.$$

Logo, para no máximo metade dos a a soma pode exceder 2. Logo, para no mínimo metade dos a a soma é menor que 2.

DEFINIÇÃO 8 (FKS melhorado). Agora, a e a_i são escolhidos aleatoriamente até serem apropriados. Como a probabilidade de a ou de algum a_i tomado aleatoriamente ser apropriado é maior que $\frac{1}{2}$, o número esperado de sorteios para se encontrar um a ou um a_i apropriado é no máximo 2. Assim, para achar a e todos os a_i em [0, n-1], gasta-se O(n). Para a tabela D, precisamos de $\sum_{i=0}^{n-1} (2 |S_i| (|S_i| - 1) + 1) = 2 \sum_{i=0}^{n-1} |S_i|^2 - n = 9n \log u$ bits.

1.4 Mais um melhoramento

TEOREMA 9. Existe um primo $q < n^2 \log u$ tal que $\zeta : x \mapsto x \mod q$ é perfeita para S.

DEMONSTRAÇÃO. $S = \{x_1, \dots, x_n\}$. Note que $i \neq j$ implica $x_i \neq x_j$ e $x_i - x_j \neq 0$. Seja $t = \prod_{i < j} (x_i - x_j) \prod_i x_i$. É claro que $|t| \leqslant u^{\binom{n+1}{2}}$ e, portanto, $\log |t| \leqslant \binom{n+1}{2} \log u$. Do teorema dos números primos, para um x,

$$\log\left(\prod_{\substack{q < x \\ q \text{ primo}}} q\right) = x + o(x).$$

Supondo que q divide t para todo primo $q < n^2 \log u$, temos

$$n^2 \log u + o(n^2 \log u) < \binom{n+1}{2} \log u,$$

o que é um absurdo. Logo, existe um $q < n^2 \log u$ tal que q não divide t. Portanto, para esse q, ζ é perfeita.

DEFINIÇÃO 10 (Melhoramento do esquema FKS). Como o pior caso para representar S é O(nu), se $u < n^2 \log u$, $O(nu) = O(n^2 \log u)$. Se $u \geqslant n^2 \log u$, computamos um primo q que dá ζ perfeita. Encontrar o primo é $O(nq) = O(n^3 \log u)$. Agora, não usamos mais x, mas $\zeta(x)$ no lugar. Trocamos o universo [0, u-1] por [0, q-1], para $q < n^2 \log u$. Representar S leva tempo de construção $O(n^3 \log u)$ deterministicamente. Dessa vez, a função hash é $h_i \circ h \circ \zeta$. O esquema, cujo espaço de representação queremos que seja $O(n \log n + \log \log u)$, é o seguinte:

- 1. $\rho: S \to [0..n^2 1]$, $\rho: x \mapsto (a_{\rho}x \mod q) \mod n^2$ tal que $a_{\rho} < q < n^2 \log u$ e $S' = \rho(S)$.
- 2. A hashing primária é $h \colon S' \to [0..n-1]$, $h \colon x \mapsto (ax \mod p) \mod n$, que conseguimos por causa do corolário 3. $p > n^2 1$, $a \in [1, p-1]$, $\sum |S_i|^2 < 3n$.
- 3. $h_i \colon S_i \to [0..c_i-1]$, $c_i = |S_i| (|S_i|-1)+1$. $h_i \colon x \mapsto (a_i x \bmod p) \bmod c_i$, $a_i \in [1..p-1]$, do corolário 4. O esquema é $x \in S$ ir para $t_i = C_i + h_i(\rho(x))$ numa tabela de chaves de tamanho $3n \log u$ bits P[0..3n-1], ou melhor, $3n \log n$ bits. t_i fornece o índice para a tabela D[0..n-1], que requer só $n \log u$.

 a_{ρ} e q requeremm $2\log n + \log\log u$ bits cada. Para a função h, a e p requerem $4\log n$ bits. Para as h_i , precisamos de tabelas A[0..n-1] para os a_i , c[0..n-1] para os c_i e C[0..n-1] para os C_i : total $3n\log n$. P também precisa de $3n\log n$. O total é $6n\log n + 8\log n + 2\log\log u = O(n\log n + \log\log u)$, além dos $n\log u$ bits de D. O tempo e construção do esquema é $O(n^3\log u)$, mas a busca é O(1).

EXEMPLO 11. Seja $S_X = \{\text{JAN}, \text{FEB}, \text{MAR}, \text{APR}, \dots, \text{DEC}\}$ e

$$S = \{217 = 'J' + 'A' + 'N', \dots, 204 = 'D' + 'E' + 'C'\}$$

(considerando a codificação ASCII). $\rho: x \mapsto (14x \mod 167) \mod 144$. $S \mapsto S' = \{14, \dots, 120\}$. $h: x \mapsto (4x \mod 149) \mod 12$ particiona S' em S_0, \dots, S_{11} . Encontramos os $h_i: x \mapsto (a_i x \mod 149) \mod c_i$. Note que $S_3 = S_6 = \emptyset$.

1.5 Schmidt e Siegel

LEMA 12. Sejam S_j , $j \in [t]$, subconjuntos disjuntos de U, |U| = u e $t \le u$. Então, existe um $a \in U$ para o qual qualquer $h_j \colon U \to M$, $h_j \colon x \mapsto (ax \operatorname{mod} u) \operatorname{mod} c_j$, $c_j = 2 |S_i| (|S_i| - 1) + 1$, opera injetivamente em metade dos S_j .

DEMONSTRAÇÃO. Dado um a, existe colisão entre x e y se $x \neq y$ mas $h_j(x) = h_j(y) = k$, para algum $k \in [0..c_j - 1]$, ou seja, se

$$(ax \bmod u) \bmod c_i = (ay \bmod u) \bmod c_i.$$

Portanto, $a(x - y) \mod u \in X_1 = \{c_i, 2c_i, 3c_i, \dots, u - c_i, u - 2c_i, u - 3c_i, \dots\}$. Assim,

$$\sum_{a=1}^{u-1} \sum_{j=1}^{t} \sum_{k=0}^{c_j-1} |\{(x,y) \colon x, y \in S_j, x \neq y, h_j(x) = h_j(y) = k\}|$$

$$= \sum_{j=1}^{t} \sum_{a=1}^{u-1} \sum_{k=0}^{c_j-1} |\{(x,y) \colon x, y \in S_j, x \neq y, h_j(x) = h_j(y) = k\}|$$

$$= \sum_{j=1}^{t} \sum_{\substack{x,y \in S_j \\ x \neq y}} |\{a \colon a(x-y) \bmod u \in X_1\}|$$

$$< \frac{2u\binom{|S_j|}{2}}{2|S_j|(|S_j|-1)+1} < \frac{ut}{2}.$$

Logo, para pelo menos um dos u-1 possíveis a é preciso não haver colisões para menos $\frac{t}{2}$ conjuntos S_j .

DEFINIÇÃO 13 (Esquema FKS de Schmidt e Siegel). Usa uma função *hash* composta $h_z \circ h \circ \rho$ como descrita anteriormente, mas:

- (a) o espaço para cada *bucket* de colisão S_i é $c_i = 2 |S_i| (|S_i| 1) + 1$;
- (b) são guardados apenas $\lfloor \log n \rfloor + 1$ multiplicadores a_z para a função *hashing* secundária isso porque, do lema 12, existe um a_0 para o qual h_{i0} opera injetivamente para pelo menos metade dos S_i . Para a metade restante, existe um a_1 para o qual h_{i1} opera injetivamente para pelo menos metade dessa metade restante. E, assim por diante, até um a_z que serve cerca de $\frac{1}{2^{z+1}}$ dos S_i .

A grande sacada agora é como representar as tabelas A, c, C e P em espaço O(n) e ainda manter a busca O(1).

Para montar C contendo os $C_i = \sum_{j=0}^{i-1} c_j = \sum_j j = 0^{i-1} (2 \left| S_j^h \right| (\left| S_j^h \right| - 1) + 1)$, seja χ_j a *string* unária de c_j l's que codificamm c_j . As *strings* χ_j são guardadas numa tabela T_0 , com um 0 separando duas *strings* consecutivas. Como cada χ_j requer exatamente c_j bits, temos, pelo corolário 3, que o tamanho de T_0 é

$$\sum_{j=0}^{n-1} (|\chi_j| + 1) = \sum_{j=0}^{n-1} c_j + n \le 4n$$

bits. Assumamos então que T_0 é guardado como uma sequencia de palavras de tamanho $\lceil \log(4n) \rceil$ bits. Sabemos que extrair uma subsequencia de bits de uma palavra de tamanho $O(\log n)$ bits é algo que pode ser executado em tempo constante, assim como concatenar duas *strings* de tamanhos $O(\log n)$ bits. Logo, cada bit em T_0 é endereçável.

Dividimos as n strings codificadas em T_0 em $\left\lceil \frac{n}{\lceil \log n \rceil} \right\rceil$ grupos de $\lceil \log n \rceil$ strings cada, com a possível exceção do último grupo. Seja $\lambda_i, \ 0 \leqslant \lambda_i < 4n$, o endereço (índice) do bit inicial da primeira string do i-ésimo grupo, ou seja, a string $\chi_{i \lceil \log n \rceil}$, sendo $i \in [0.. \left\lceil \frac{n}{\lceil \log n \rceil} \right\rceil - 1$.

Analogamente, construímos uma tabela T_1 contendo os λ_i , sendo $i \in [1.. \left \lceil \frac{n}{\lceil \log n \rceil} \right \rceil]$, em binário, armazenados como palavras de $\lceil \log(4n) \rceil$ bits. Note que $\lambda_0 = 0$ não é armazenado. O tamanho da tabela T_1 é $\left \lceil \frac{n}{\lceil \log n \rceil} \right \rceil \lceil \log(4n) \rceil = O(n)$ bits. Notemos ainda que

$$\lambda_i = C_{i\lceil \log n \rceil} + i \lceil \log n \rceil.$$

Logo, podemos utilizar λ_i para obter $C_{i\lceil \log n \rceil}$. Assim como extrair uma subsequência de bits de uma palavra de tamanho $O(\log n)$ bits pode ser feito em tempo constante, acessar algumas (um número constante de) constantes de uma palavra de tamanho $O(\log n)$ também pode ser feito em tempo constante. Se $\lambda_{i+1} - \lambda_i \leqslant 2 \lceil \log(4n) \rceil$, os endereços dos c_j intermediários, para $i \lceil \log n \rceil \leqslant j < (i+1) \lceil \log n \rceil$, que nos permitem computar os C_j correspondentes, podem ser codificados em tempo O(1) através de acessos às tabelas T_0 e T_1 . Se, entretanto, $\lambda_{i+1} - \lambda_i > \lceil \log(4n) \rceil^2$, usamos a tabela T_2 .

A tabela T_2 armazena, começando no bit inicial pertinente a λ_i , $\lceil \log n \rceil - 1$ índices binários para os pontos iniciais dos χ_i em T_0 , sendo $i \lceil \log n \rceil < j < (i+1) \lceil \log n \rceil$.

Agora, se $2\lceil \log(4n)\rceil < \lambda_{i+1} - \lambda_i \leqslant \lceil \log(4n)\rceil^2$, procedemos da seguinte maneira. Especialmente, cada grupo de *strings* é dividido em $\left\lceil \frac{\lceil \log n \rceil}{\lceil \log \log n \rceil} \right\rceil$ subgrupos, cada um com $\lceil \log \log n \rceil$ *strings*. Denote por $\eta_{i,j}$ o endereço de T_0 do ponto inicial de $\chi_{i\lceil \log n \rceil + j\lceil \log \log n \rceil}$, para $j \in [1... \left\lceil \frac{\lceil \log n \rceil}{\lceil \log \log n \rceil} \right\rceil - 1]$. Assim, $\lambda_i < \eta_{i,j} < \lambda_{i+1}$. Os *offsets* binários $\eta_{i,1} - \lambda_i$, $\eta_{i,2} - \lambda_i$ etc. são armazenados em T_2 como números de $2\lceil \log \log(4n) \rceil$ bits começando pelo local λ_i . Se $\eta_{i,j+1} - \eta_{i,j} \leqslant 2\lceil \log(4n) \rceil$, a informação para o c_k intermediário, $i\lceil \log n \rceil + j\lceil \log \log n \rceil < k < i\lceil \log n \rceil + (j+1)\lceil \log \log n \rceil$, pode ser facilmente decodificada da tabela T_0 . Caso contrário, os *offsets* de tamanho $2\lceil \log \log(4n) \rceil$ de todos os c_k intermediários são armazenados numa tabela T_3 de 4n bits, começando com o ponto pertinente a $\eta_{i,j}$. Essa última codificação requer $(\lceil \log \log n \rceil - 1) \cdot 2\lceil \log \log(4n) \rceil \leqslant 2\lceil \log(4n) \rceil$ bits.

EXEMPLO 14. Para $S = \{2, 4, 5, 15, 18, 30\}$, n = 6, u = 31, codificamos a tabela C da seguinte maneira. Os valores $c_0 = 1$, $c_1 = 0$, $c_2 = 1$, $c_3 = 0$, $c_4 = 3$ e $c_5 = 3$ são armazenados em unário na tabela T_0 de tamanho 4n = 24 bits. As strings de codificação são divididas em $\left\lceil \frac{n}{\lceil \log n \rceil} \right\rceil = \left\lceil \frac{6}{\lceil \log 6 \rceil} \right\rceil = 2$ grupos de $\lceil \log n \rceil = \lceil \log 6 \rceil = 3$ strings cada. A tabela T_i contém os índices λ_i , $i \in \{1,2\}$, para os pontos iniciais das strings χ_3 e χ_6 em T_0 . Já que tanto $\lambda_1 - \lambda_0$ quanto $\lambda_2 - \lambda_1$ são no máximo $2 \lceil \log(24) \rceil = 10$, nenhum nível adicional é necessário.

É fácil ver que não é mais necessário guardar os valores c_i , pois eles podem ser encontrados em tempo constante através da representação de C como descrita acima.

As tabelas P e A podem ser codificadas de uma maneira similar. Em particular, os $a_0, a_1, \ldots, a_{\lfloor \log n \rfloor}$ (lembrar do lema 12) são guardados em um array de $\lfloor \log n \rfloor + 1$ palavras. Total: $O((\log n)^2)$ bits. A tabela A_0 contém n strings em unário que codificam os índices dos multiplicadores associados a cada bucket de colisão. A i-ésima sequência de bits codifica o inteiro $j_i \leqslant \lceil \log n \rceil$ se a_{j_i} é o multiplicador associado ao bucket S_i . O primeiro multiplicador codificado pela string 0 é usável para pelo menos metade dos buckets. O segundo multiplicador, codificado pela string 10 é usável para pelo menos $\frac{1}{4}$ dos buckets etc. Desse modo, a sequência de bits em A_0 contempla no máximo $\frac{n}{2}$ 0's, $\frac{n}{4}$ 10's etc. Total do tamanho da string é no máximo 2n bits. Logo, pode-se encontrar o multiplicador associado a cada bucket em tempo O(1).

Finalmente, a complexidade do espaço do esquema de Schmidt e Siegel é $O(n + \log \log u)$. O esquema requer O(n) bits para codificar os offsets C_i , a tabela P e os multiplicadores a_j , além de $O(2\log n + \log \log u)$ bits para armazenar os parâmetros a_ρ e q da função de pré-processamento. Assim, temos o seguinte teorema.

TEOREMA 15 (Schmidt e Siegel). ¹ Para um conjunto S de n elementos de um universo $U = \{0, \ldots, u-1\}$, existe uma função hash perfeita de tempo constante com complexidade de espaço $\Theta(n + \log \log u)$.

2 Hashing perfeita probabilística

2.1 O melhoramento do FKS de Dietzfelbinger

Definição 16 (Dietzfelbinger). Seja $\mathscr{H}^d=\left\{h_a\colon a=(a_0,a_1\dots,a_d)\in U^{d+1}\right\}$ em que

$$h_a \colon x \mapsto \left(\sum_{i=0}^d a_i x^i\right) \bmod u.$$

Seja $\zeta \colon U \to M$, $\zeta \colon x \mapsto x \operatorname{mod} m$. $\mathscr{H}_m^d = \left\{ \zeta \circ g \colon g \in \mathscr{H}^d \right\}$. Para todo $h \in \mathscr{H}_m^d$ definimos $S_i^h = h^{-1}(i) \cap S$, $i \in M$, e $B_k^h = \sum_{i \in M} {|S_i^h| \choose i}$.

¹Nota: a prova deste teorema não está escrita explicitamente, embora muito dela tenha sido feito nos comentários anteriores. Depois eu pretendo arrumar isso.

TEOREMA 17. ² Para um $S \subseteq U$ fixo e um $h \in \mathcal{H}_m^d$ aleatório, $d \geqslant 3$, $B_2^h < \frac{3|S|^2}{m}$ com probabilidade $1 - O(\left(\frac{|S|^2}{m}\right)^{-\epsilon})$ para algum $\epsilon > 0$.

O teorema acima é usado para mostrar como o FKS pode ser rodado em tempo linear com probabilidade alta.

- 1. Tome uma h aleatoriamente de \mathscr{H}_m^3 , com m=n=|S|. Do teorema 17, h é boa com probabilidade $1-O(\left(\frac{|S|^2}{m}\right)^{-\epsilon})=1-O(n^{-1})$. Portanto, este primeiro passo termina em tempo O(n) com probabilidade $1-O(n^{-1})$.
- 2. Para cada bucket S_i^h tome aleatoriamente uma função h_i de $\mathscr{H}_{2|S_i|^2}^{1,1}$. Seja t_i a variável aleatória que representa o número de tentativas necessárias para ser enncontrada uma h_i apropriada. Do corolário 7, $\mathbb{P}[t_i=1]\geqslant \frac{1}{2}$ e, consequentemente, $\mathbb{E}(t_i)\leqslant 2$ e $\mathrm{Var}(t_i)\leqslant 2$. Se T_i é o número de operação necessárias para encontrar h_i apropriada, então $T_i=O(t_i\,|S_i\,|)$, $\mathbb{E}(T_i)=O(|S_i\,|)$ e $\mathrm{Var}(T_i)=O(|S_i\,|^2)$. Tomemos $T=\sum_{i\in M}T_i$. Como as escolhas h_i são independentes, $E(T)=\sum_{i\in M}O(|S_i\,|)=O(n)$ —como queríamos e $\mathrm{Var}(T)=\sum_{i\in M}O(|S_i\,|^2)=O(n)$. Portanto, da desigualdade de Chebyshev segue que este segundo passo também termina com T=O(n) com probabilidade $1-O(n^{-1})$.

2.2 Dietzfelbinger e Meyer auf der Heide

DEFINIÇÃO 18. Sendo $r, m \geqslant 1$, $d_1, d_2 \geqslant 1$, $f \in \mathscr{H}_r^{d_1}$, $g \in \mathscr{H}_m^{d_2}$, $a_1, \ldots, a_r \in [m]$ e $h = h(f, g, a_1, \ldots, a_r)$ definida como, para $x \in U$,

$$h(x) = (g(x) + a_{f(x)}) \bmod m,$$

definimos

$$\mathcal{R}(r, m, d_1, d_2) = \{h : U \to [m] \mid h = h(f, q, a_1, \dots, a_r) \}.$$

Convencionamos que $h(f,g,a_1,\ldots,a_r)$ e $h(f',g',a'_1,\ldots,a'_r)$ são diferentes quando (f,g,a_1,\ldots,a_r) e (f',g',a'_1,\ldots,a'_r) são diferentes, mesmo que sejam extensionalmente iguais $h(f,g,a_1,\ldots,a_r)$ e $h(f',g',a'_1,\ldots,a'_r)$.

Se $m=n,\ r=n^{1-\delta}$ para algum $\delta>0,\ \mathscr{R}(r,m,d_1,d_2)$ pode ser explicada como a seguir. A função $f\in\mathscr{H}^{d_1}_r$ particiona S em r buckets $S_i^f=f^{-1}(i)\cap S,\ 0\leqslant i< r.$ Entretanto, ao invés de, como no esquema FKS, mapear as chaves do bucket S_i^f em um único espaço de tamanho $2|S_i^f|^2$, aplicaremos uma segunda função hash: $g(x)+a_i$, com todos os buckets compartilhando o alcance comum [1,m].

TEOREMA 19 (Dietzfelbinger e Meyer auf der Heide). ³ Tomando um $0 < \delta < 1$ fixo e $r = n^{1-\delta}$ e escolhendo aleatoriamente $f \in \mathcal{H}_r^d$,

$$\mathbb{P}[|S_i^f| \leqslant 2n^{\delta} \text{ para todo } i] \geqslant 1 - O(n^{1 - \delta - \frac{\delta d}{2}}).$$

²Nota: a prova deste teorema não é apresentada no artigo, apenas referenciada. Eu pretendo, no futuro, buscá-la nas referências e acompanhá-la. Mas, ainda não o fiz.

³Nota: a prova deste teorema não é apresentada no artigo, apenas referenciada. Eu pretendo, no futuro, buscá-la nas referências e acompanhá-la. Mas, ainda não o fiz.

Isso significa que com $r=n^{1-\delta}$ e $d_1>\frac{2(1-\delta)}{\delta}$ temos alta probabilidade de todos os buckets terem tamanho próximo da média, que é n^{δ} . Para um d_2 suficientemente grande e m=O(n), a segunda função hash G mapeia cada $x\in S_i^f$ para um único endereço, novamente com alta probabilidade.

2.3 FKS com grafos aleatórios

Podemos enxergar o método FKS como um mapeamento de S para uma floresta de estrelas de núcleos "pequenos". Uma estrela é uma árvore onde todos os vértices, com exceção do núcleo, têm grau 1. A função primária h mapeia cada x no núcleo de uma estrela do grafo (a floresta de estrelas). A função secundária h_i mapeia o núcleo para um de seus vizinhos.

PROBLEMA 20 (Problema da associação perfeita (Czech)). Dado um G=(V,E), $|V|=\nu$ e $|E|=\mu$, encontrar uma função $g\colon V\to [0..\mu-1]$ tal que $h\colon E\to [0..\mu-1]$ definida como

$$h(e=\{a,b\})=(g(a)+g(b))\operatorname{mod}\mu$$

é uma bijeção.

Para um grafo acíclico, a solução para esse problema é um procedimento simples em tempo ótimo:

- 1. Distribua os $h(e) = 0, \dots, \mu 1$ para as arestas e em qualquer ordem.
- 2. Para cada componente conexa de G escolha um vértice v e atribua g(v)=0 e:
 - (a) Faça uma busca em profundida no grafo.
 - (b) Para cada vértice b alcançado por um vértice a (tal que o valor associado a $e = \{a, b\}$ é h(e)), atribua $g(b) = (h(e) g(a)) \mod \mu$.

Agora, para encontrar a f que associa os x às estrelas, procedemos do seguinte modo (chamado de "fase de mapeamento"):

- 1. Escolha duas funções hash independentes aleatoriamente, f_1 e f_2 , de domínio U e contradomínio $[0..\nu-1]$.
- 2. Para cada $x \in S$, se $f_1(x) = f_2(x)$, modifique $f_2(x)$ acrescentando um número aleatório em $[1..\nu 1]$ (isso para evitar *loops*);
- 3. S agora está correspondido com um grafo

$$G = (V = [0..\nu], E = \{\{f_1(x), f_2(x)\} : x \in S\}).$$

Então, testa se G é acíclico. Senão, joga fora f_1 e f_2 e pega outras até ter G acíclico.

Observe que sortear as f_1 e f_2 é rápido. Testar se G é acíclico também é rápido. Ademais, a quantidade de grafos acíclicos é grande no espaço amostral. Se f_1 e f_2 são computáveis em tempo O(1), gerar o grafo G correspondente é $O(\mu)$ (busca) e verificar se ele é acíclico é $O(\nu + \mu)$.

Estratégia: precisamos ter $\mu = n = |S|$ e $\nu = O(\mu)$. Verificar essas duas condições leva tempo similar. Porém, para $\nu = c\mu$, para alguma constante c, a probabilidade um grafo aleatório ser acíclico continua grande o suficiente? Nessas novas condições, os grafos acíclicos dominam o espaço de todos os grafos aleatórios?

TEOREMA 21 (Havas). Seja G um grafo aleatório com ν vértices e μ arestas obtido escolhendo aleatória e independentemente as μ arestas com repetição. Então, se $\nu = c\mu$ para c > 2, a probabilidade de G ser acíclico, quando $\nu \to \infty$, é

$$p = e^{\frac{1}{c}} \sqrt{\frac{c-2}{c}}.$$

DEMONSTRAÇÃO. Erdös e Rényi mostraram⁴ que a probabilidade de um grafo aleatório não ter ciclos, à medida que $\nu = c\mu$ tende ao infinito, é

$$e^{\frac{1}{c} + \frac{1}{c^2}} \sqrt{\frac{c-2}{c}}$$
.

Porém, em nosso caso, os grafos gerados no passo de mapeamento podem ter arestas múltiplas (não loops). A probabilidade procurada p, então, é a probabilidade calculada por Erdös e Rényi vezes a probabilidade de não haverem arestas múltiplas. Sabemos que a j-ésima aresta é única com probabilidade

$$\frac{\binom{\nu}{2}-j+1}{\binom{\nu}{2}}.$$

Logo, a probabilidade de todas as arestas serem únicas é

$$\prod_{i=1}^{\mu} \frac{\binom{\nu}{2} - j + 1}{\binom{\nu}{2}} = e^{-\frac{-1}{c^2} + o(1)}$$

Finalmente,
$$p = \left(e^{\frac{1}{c} + \frac{1}{c^2}} \sqrt{\frac{c-2}{c}}\right) \left(e^{-\frac{-1}{c^2} + o(1)}\right) = e^{\frac{1}{c}} \sqrt{\frac{c-2}{c}}.$$

O algoritmo é realmente bem eficiente. Para uma constante c tão pequena quanto 2,09, por exemplo, o número esperado de execuções (de tentativas para G) é menor (estritamente) que 3.

Exemplo 22. $S = \{53, 59, 61, 67, 71, 73, 79, 83, 89, 97\}$ o conjunto de todos os primos maiores que 50 e menores que 100. Encontramos o acíclico G com as funções:

$$f_1(x) = ((34x + 11) \mod 101) \mod 21;$$

 $f_2(x) = ((29x + 18) \mod 101) \mod 21.$

Sortear uma função dessas é sortear os coeficientes a_1 e a_0 no conjunto [1..101-1]. Assim, a correspondência entre S e G fica como na tabela abaixo:

 $^{^4}$ No futuro, também esta é uma demonstração que eu pretendo acompanhar.

Decidimos armazenar o i-ésimo primo na (i-1)-ésima posição. Ex: 83, o 8° primo, recebe endereço 7. Ou seja, $h(\{5,1\})=7$. No segundo passo, considerando uma componente conexa de cada vez, resolvemos o problema da associação perfeita valorando os g. Para checar se 59 é primo, computamos $f_1(59)=14$ e $f_2(59)=12$. Depois, $h(\{14,12\})=1$. Checando o endereço 1 na tabela, confirmamos que 59 é primo.

2.4 Métodos com hipergrafos

PROBLEMA 23 (Problema da associação perfeita para hipergrafos). Dado um r-hipergrafo G=(V,E) em que $E\subseteq \binom{V}{r}$ e $|V|=\nu$ e $|E|=\mu$, encontrar uma função $g\colon V\to [0..\mu-1]$ tal que, para $h\colon E\to [0..\mu-1]$ definida como

$$h(e = \{v_1, \dots, v_r\}) = (g(v_1) + \dots + g(v_r)) \mod \mu$$

é uma bijeção.

Do mesmo modo que com 2-hipergrafos, somente r-hipergrafos acíclicos têm a garantia de ter uma solução em tempo linear para o problema da associação perfeita.

DEFINIÇÃO 24. Um r-hipergrafo é <u>acíclico</u> se não contém subgrafo com grau mínimo 2.

Outra definição equivalente:

DEFINIÇÃO 25. Um r-hipergrafo é <u>acíclico</u> se e só se há algum modo de retirar sucessivamente arestas contendo vértices de grau 1 e, no final, ficar com um grafo sem arestas.

Então, para verificarmos se um hipergrafo é acíclico, faremos o seguinte:

- 1. Inicialmente, marque todas as arestas como "não removidas".
- 2. Visite todos os vértices do grafo, cada vértice apenas uma vez:
 - (a) Se v tem grau 1, remova do grafo a aresta e que levou a v.
 - (b) Cheque se algum dos outros vértices da aresta removida possui grau 1. Se sim para algum vértice v', remova a única aresta e' para a qual v' pertence.
 - (c) Repita isso recursivamente até que não sejam mais possíveis deleções de arestas. Para tanto, utilize uma pilha.
- 3. Se o grafo ainda contém arestas, então ele não é acíclico. Senão, é acíclio.

TEOREMA 26. O teste apresentado acima leva tempo $O(r\mu + \nu)$.

Demonstração. Seja o r-grafo G=(V,E) e seja o 2-grafo bipartido $H=(V_1\cup V_2,E')$ tal que $V_1\cap V_2=\emptyset,\ V_1=V,\ V_2=E$ e

$$E' = \{ \{a, b\} : a \in V, b \in E, a \in b \}.$$

O teste para verificar se G é acíclico pode ser visto como um passeio em H. Cada vértice de V_1 é testado no mínimo uma vez. Uma vez que um vértice de V_2 é deletado, vamos para um outro vértice de H através de uma aresta $\{e,u\}$, onde $e \in V_2$ e $u \in V_1$ — e nunca mais $\{e,u\}$ vai ser usada. Assim, o número de testas executados sobre vértices de V_1 é no máximo $\sum_{v \in V_1} \mathrm{d}_H(v)$. Como acessamos vértices em V_2 apenas uma vez, todo o processo toma no máximo

$$|V_1| + |V_2| + \sum_{v \in V_1} d(v) = \nu + \mu + 2\frac{\mu r}{2} = \nu + \mu(r+1).$$

Procedimento para obter uma solução genérica para o problema da associação para hipergrafos acíclicos:

- 1. Atribua um único número $h(e) \in \{0,\dots,\mu-1\}$ para as arestas $e \in E$ em qualquer ordem, sem repetição.
- 2. Considere as arestas e na ordem inversa à ordem de deleção no teste do grafo acíclico:
 - (a) Seja $\{v_1, \ldots, v_j\}$ o conjunto dos vértices de e que ainda não receberam g e que são exclusivos daquela aresta naquele momento (grau 1).
 - (b) Atribua 0 para $g(v_2), \ldots, g(v_j)$.
 - (c) Atribua

$$g(v_1) = \left(h(e) - \sum_{i=2}^r g(v_i)\right) \bmod \mu.$$

TEOREMA 27. G r-hipergrafo aleatório com $r \geqslant 1$. Se $\mu \leqslant \frac{\nu}{c_r}$, onde

$$c_r = egin{cases} \Omega(\mu) & ext{para } r = 1, \ 2 + \epsilon, \epsilon > 0 & ext{para } r = 2, \ rigg(\max_{y>0} \left\{ rac{y}{(1-\mathrm{e}^{-y})^{r-1}}
ight\} igg)^{-1} & ext{caso contrário.} \end{cases}$$

então o espaço amostral dos r-hipergrafos aleatórios se torna dominado de r-hipergrafos acíclicos.

DEMONSTRAÇÃO. Para r=2 já provamos. Para r=1, como f_1 é totalmente aleatório, a i-ésima chave é mapeada para um local único com probabilidade $\frac{\nu-i+1}{\nu}$. Assim, a probabilidade de todas as μ chaves serem mapeadas para locais únicos é

$$p_1 = \nu^{-\mu} \prod_{i=1}^{\mu} (\nu - i + 1) \sim e^{-\frac{\mu^2}{2\nu} - \frac{\mu^3}{6\nu^2}}.$$

Se $\nu = O(\mu^2)$, o expoente de e é O(1), e, daí, p_1 se torna uma constante não nula.

Para $r\geqslant 3$, seja H um r-grafo escolhido aleatoriamente. $V_0=V(H)$. Para $j\geqslant 0$, V_{j+1} é o conjunto dos vértices de V_j que têm grau no mínimo 2 em H_j , que é o grafo definido pela restrição de H a V_j . Esse processo termina quando $V_{j+1}=V_j=V_\infty$ para algum j. H tem um subgrafo de grau mínimo no mínimo 2

se e só se $V_{\infty} \neq \emptyset$. Suponha que H foi selecionado escolhendo-se aleatoriamente as arestas independentemente com probabilidade $\frac{\alpha(r-1)!}{\nu^{r-1}}$ para alguma constante α . Defina

$$p_{i+1} = (1 - e^{-\alpha p_i})^{r-1}$$

 $q_{i+1} = (1 - e^{-\alpha p_i})^r$.

Pittel⁵ mostrou que quase certamente $|V_j| \sim q_j \nu$ à medida que $\nu \to \infty$ com j fixo. Então, se $\lim_{j\to\infty}q_j=0$ então para todo $\epsilon>0$ temos quase certamente $|V_j|<\epsilon\nu$ para j suficientemente grande. Uma outra demonstração⁶ mostra que, nesse caso, é quase certeza que não há subgrafo algum de no mínimo grau 2.

Quando $p_i = p_{i+1} = p$, $p = (1 - e^{-\alpha p})^{r-1}$. Assim,

$$\alpha = \frac{\alpha p}{(1 - e^{-\alpha p})^{r-1}} = \frac{y}{(1 - e^{-y})^{r-1}}$$

para algum y>0. O menor valor para essa fração é o menor α para o qual $\lim_{j\to\infty}q_j\neq 0$.

Curiosidade (valores aproximados):

Note o valor mínimo (pico) para r=3.

Clareando um pouco melhor as coisas: Na fase de mapeamento queremos corresponder S a um r-grafo G = (V, E) onde $V = [0..\nu - 1]$,

$$E = \{ \{ f_1(x), f_2(x), \dots, f_r(x) \} : x \in S \}$$

e $f_i \colon U \to [0..\nu-1]$. $\mu = n = |S|$. $\nu = c_r \mu = c_r n$. O passo é repetido até que G seja acíclico. Daí, é executado o passo de mapeamento, que consiste em gerar uma hash perfeita mínima. Para tanto, associamos h(e) = i-1 se x é a i-ésima chave de S, já que cada aresta $e = \{v_1, \ldots, v_r\}$ corresponde unicamente a alguma chave x, pois $f_i(x) = v_i, 1 \leqslant i \leqslant r$. Os valores para g são computados pelo passo de associação, que resolve o problema da associação para G.

Sortear verdadeiramente aleatoriamente todas as f_i pode não ser uma boa ideia. Ao invés disso, tomamos a classe \mathscr{H} de funções hash tal que \mathscr{H} é abundante com funções hash "de boa qualidade", que podem ser selecionadas rapidamente. Assim, ao invés de fixar uma função hash e usá-la para todas as possíveis entradas, selecionaremos um elemento aleatório de \mathscr{H} antes de cada rodada. Assim, o tempo de execução médio sobre muitas rodadas é esperado ser perto de ótimo. Cada "rodada" é uma iteração da fase de mapeamento. Para 8 $S \subseteq \mathbb{Z}$, $f_i \in \mathscr{H}_v^d$ para qualquer d. Ou $f_i \in \mathscr{R}(r,s,d_1,d_2)$.

 $^{^5 \}mbox{Outra}$ demonstração que no futuro eu vou acompanhar... :P

⁶Nem preciso falar nada... :P

⁷Preciso arranjar traduções boas para essas coisas, para eliminar algumas ambiguidades.

 $^{^8\}mathrm{O}$ artigo ainda traz algumas considerações especiais sobre chaves que são cadeias de caracteres.

2.5 Modificações

TEOREMA 28. G r-grafo acíclico, $|V| = \nu$, $|E| = \mu$, $h \colon E \to M = [0..m-1]$ não necessariamente injetiva mais. Então existe ao mesmos uma $g \colon V \to M$ tal que, para toda aresta $e = \{v_1, \dots, v_r\}$,

$$h(e) \equiv \left(\sum_{v_i \in e} g(v_i)\right) \mod m.$$

Note que, segundo esse teorema, não precisamos mais da restrição de $h(e_1) \neq h(e_2)$ para resolver o problema da associação perfeita. Assim, h pode ser encontrado através de g em tempo ótimo.

Depois do aqui o autor entre numa série de casos e exemplos específicos. Acho que seria exaustivo esboçá-los aqui. Um dos casos é a utilização de *hashing* para implementar conjuntos (com operações clássicas como união, interseção etc.) e operações sobre conjuntos. Para este último caso, ele enuncia o seguinte teorema, de fácil demonstração:

TEOREMA 29. Sendo M um conjunto e * uma operação binária sobre M, * é apropriada para uma função hash $h: M^r \to M$, r inteiro positivo, se (M, *) é um grupo.

A seção 6 do capítulo é sobre aplicações avançadas de *hashing* e como cada técnica discutida no capítulo se aplicaria para cada caso. Uma interessante leitura.