### PDE Notes

# Notes on Inequalities and Embeddings

Kiyuob Jung

(in progress)



Department of Mathematics, Kyungpook National University

# Contents

| 1 | Definitions and notations 3 |         |                         |     |  |
|---|-----------------------------|---------|-------------------------|-----|--|
|   | 1.1                         | Definit | tions                   | . 3 |  |
|   |                             | 1.1.1   | Integration             | . 3 |  |
|   |                             | 1.1.2   | Convex functions        | . 4 |  |
| 2 | Basic properties            |         |                         |     |  |
|   | 2.1                         | Chang   | ge of variable          | . 5 |  |
|   | 2.2                         | Coord   | linates                 | . 5 |  |
|   |                             | 2.2.1   | Polar coordinates       | . 5 |  |
| 3 | Inequalities                |         |                         |     |  |
|   | 3.1                         | Scalar  |                         | . 6 |  |
|   |                             | 3.1.1   | Power inequalities      | . 6 |  |
|   |                             | 3.1.2   | product type            |     |  |
|   |                             | 3.1.3   | summation type          |     |  |
|   | 3.2                         | Functi  | ion                     |     |  |
|   |                             | 3.2.1   | Convex functions        | . 7 |  |
|   |                             | 3.2.2   | Sobolev space           |     |  |
| 4 | Embeddings 8                |         |                         |     |  |
|   | 4.1                         | Sobole  | ev Embedding            | . 8 |  |
|   |                             | 4.1.1   | The case $1 \leq p < n$ |     |  |
|   |                             | 4.1.2   | The case $p = n$        |     |  |
|   |                             | 4.1.3   | The case $n $           |     |  |
|   |                             | 4.1.4   | The case $p = \infty$   |     |  |
|   |                             |         | Summary                 | 0   |  |

#### Preface

Todo.

#### Abbreviation

Since these notes is not for formal research, we almost always employ the following abbreviations:

 $\diamond$  TFAE : The following are equivalent

#### Notation

Let a set X. We employ the following notations:

 $\diamond \mathbb{R}^n$ : n-dimensional real Euclidean space,  $\mathbb{R} = \mathbb{R}^1$  $\diamond \mathbb{C}^n$ : n-dimensional complex space,  $\mathbb{C} = \mathbb{C}^1$ 

 $\diamond \mathbb{K}$ : either  $\mathbb{R}$  or  $\mathbb{C}$ .  $\diamond \partial X$ : boundary of X.

 $\diamond \ \forall$  : for all.

## Definitions and notations

In this note, we always denote  $x = (x_1, x_2, \dots, x_n)$  to be a point in  $\mathbb{R}^n$ .

#### 1.1 Definitions

#### 1.1.1 Integration

Here, we collect definitions for averages of a function.

**Definition 1.1.1.** Let  $f \in L^1(\Omega)$  with an open set  $\Omega \subset \mathbb{R}^n$ .

(a) An average of f over set E is

$$\oint_E f dx := \frac{1}{\text{meas}(E)} \int_E f(x) dx.$$

(b) An average of f over the ball  $B_r(x_0)$  is

$$\oint_{B_r(x_0)} f dx := \frac{1}{\alpha(n)r^n} \int_{B_r(x_0)} f(x) dx.$$

(c) An average of f over the sphere  $\partial B_r(x_0)$  is

$$\oint_{\partial B_r(x_0)} f dS := \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B_r(x_0)} f(x) dS.$$

When it comes to integrability, the following definition plays an important role.

**Definition 1.1.2.** Let p > 1 and define  $p' \in \mathbb{R}$  by

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Then p and p' are called *conjugate exponents*.

Even if some authors use q instead of p', we stick to using p' in order to save letters and will use q to stand for other integrability.

3

**Remark 1.1.3.** A simple calculation shows the following:

- (i) pp' = p + p',
- (ii)  $1 = \frac{p + p'}{pp'},$
- (iii) (p-1)(p'-1) = 1,
- (iv)  $p' = \frac{p}{p-1}$ .

### 1.1.2 Convex functions

**Definition 1.1.4.** A function  $f: \mathbb{R}^n \to \mathbb{R}$  is *convex* if

$$f(\lambda x + (1 - \lambda)y) \le \tau f(x) + (1 - \lambda)f(y)$$

for all  $x, y \in \mathbb{R}^n$  and each  $0 \le \lambda \le 1$ .

**Remark 1.1.5.** If f is  $C^2$ , then f is convex if and only if  $D^2 f \geq 0$ .

**Definition 1.1.6.** A  $C^2$  function  $f: \mathbb{R}^n \to \mathbb{R}$  is uniformly convex if  $D^2g \geq \theta I$  for some constant  $\theta > 0$ , that is,

$$\sum_{i,j=1}^{n} f_{x_i x_j}(x) \xi_i \xi_j \ge \theta |\xi|^2$$

for all  $x, \xi \in \mathbb{R}^n$ .

## Basic properties

### 2.1 Change of variable

**Proposition 2.1.1.** Let  $f: \Omega \to \mathbb{R}$  with an open set  $\Omega \subset \mathbb{R}^n$ .

(a) 
$$\int_{B_r(x_0)} f(ax+b)dx = \frac{1}{r^n} \int_{B_{ar}(x_0+b)} f(x)dx$$
.

(b) 
$$f_{B_r(x_0)} f(ax+b)dx = f_{B_{ar}(x_0+b)} f(x)dx$$
.

Proof. TODO

To show (b), let  $\tilde{x} := ax + b$ . Then  $d\tilde{x} = r^n dx$ . Also, since  $|\tilde{x} - b| = |ax| < |a| r$ , we get  $\tilde{x} \in B_{|a|r}(x_0 + b)$ . Hence,

$$\int_{B_r(x_0)} f(ax+b)dx = \frac{1}{\alpha(n)r^n} \int_{B_r(x_0)} f(x)dx$$

$$= \int_{B_{ar}(x_0+b)} f(\tilde{x})d\tilde{x}$$

$$= \int_{B_{ar}(x_0+b)} f(\tilde{x})d\tilde{x}.$$

Remark 2.1.2. Convolution. TODO

#### 2.2 Coordinates

#### 2.2.1 Polar coordinates

**Proposition 2.2.1.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be continuous and summable. Then

(a) 
$$\int_{\mathbb{R}^n} f(x)dx = \int_0^\infty \left( \int_{\partial B_r(x_0)} f(x)d\mathcal{S} \right) dr \quad \forall x_0 \in \mathbb{R}^n.$$

(b) 
$$\frac{d}{dr} \left( \int_{B_r(x_0)} f(x) dx \right) = \int_{\partial B_r(x_0)} f(x) d\mathcal{S} \quad \forall r > 0.$$

**Proposition 2.2.2.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be continuous and summable. Then

(a) 
$$\int_{B_{\varepsilon}(0)} f(x)dx = \int_{0}^{\varepsilon} \left( \int_{\partial B_{r}(0)} f(x)d\mathcal{S}(x) \right) dr \quad \forall \varepsilon > 0.$$

# Inequalities

#### 3.1 Scalar

#### 3.1.1 Power inequalities

**Theorem 3.1.1.** The following statements hold.

(a)  $1 + x \le e^x \quad \forall x \in \mathbb{R}$ .

(b) 
$$e^{(x+y)/2} < \frac{e^y - e^x}{y - x} \quad \forall x, y \in \mathbb{R} \text{ with } x \neq y.$$

**Theorem 3.1.2.** The following statements hold.

(a) 
$$\left(\frac{1}{e}\right)^{\frac{1}{e}} \le x^x \quad \forall x > 0.$$

(b) 
$$x \le x^{x^x} \quad \forall x > 0$$
.

(c) 
$$1 < x^y + y^x \quad \forall x, y > 0.$$

(d) 
$$x^y + y^x < x^x + y^y \quad \forall x, y > 0.$$

(e) 
$$x^{ey} + y^{ex} \le x^{ex} + y^{ey} \quad \forall x, y > 0.$$

(f) 
$$\frac{1-\frac{1}{x^y}}{y} \le \ln(x) \le \frac{x^y-1}{y}$$
  $\forall x,y>0$ . The upper and lower bounds converge to  $\ln(x)$  as  $y\to 0$ .

(g) 
$$2 < (x+y)^z + (x+z)^y + (y+z)^x \quad \forall x, y, z > 0.$$

(h) 
$$x^{2y} + y^{2z} + z^{2x} \le x^{2x} + y^{2y} + z^{2z} \quad \forall x, y, z > 0.$$

(i) 
$$(xyz)^{(x+y+z)/3} \le x^x y^y z^z \quad \forall x, y, z > 0.$$

#### 3.1.2 product type

**Theorem 3.1.3.** The following statements hold.

(a) (Cauchy's inequality)

$$xy \le \frac{x^2}{2} + \frac{y^2}{2} \quad \forall x, y \in \mathbb{R}.$$

(b) (Cauchy's inequality with  $\varepsilon$ )

$$xy \le \varepsilon x^2 + \frac{y^2}{4\varepsilon} \quad \forall x, y > 0, \quad \forall \varepsilon > 0.$$

(c) (Young's inequality)

$$xy \le \frac{x^p}{p} + \frac{y^{p'}}{p'} \quad \forall x, y > 0, \quad \forall 1 < p, p' < \infty,$$

where p and p' are conjugate exponents.

#### 3.1.3 summation type

**Theorem 3.1.4.** The following statements hold.

(a) 
$$(x+y)^p < x^p + y^p \quad \forall x, y > 0, \forall p \in (0,1).$$

(b) 
$$(x+y)^p \le 2^{p-1} (x^p + y^p) \quad \forall x, y \ge 0, \forall p \in [1, \infty).$$

#### 3.2 Function

#### 3.2.1 Convex functions

**Theorem 3.2.1.** (Jensen's inequality)

Assume  $f: \mathbb{R}^m \to \mathbb{R}$  is convex and  $\Omega \subset \mathbb{R}^n$  is open and bounded. Let  $\mathbf{u}: \Omega \to \mathbb{R}^m$  be summable. Then

$$f\left(\int_{\Omega} \mathbf{u} dx\right) \le \int_{\Omega} f(\mathbf{u}) dx.$$

#### 3.2.2 Sobolev space

**Theorem 3.2.2.** Let  $\Omega$  be an open set in  $\mathbb{R}^n$ . The following statements hold.

(a) (Hölder's inequality)

$$\int_{\Omega} |uv| dx \le ||u||_{L^p(\Omega)} ||v||_{L^{p'}(\Omega)}.$$

If  $u \in L^p(\Omega)$ ,  $v \in L^{p'}(\Omega)$  with  $1 \leq p, p' \leq \infty$ , where p and p' are conjugate exponents, then

(b) (General version of Hölder's inequality)

If  $u_i \in L^{p_i}(\Omega)$  for  $i = 1, 2, \dots, m$  with  $1 \le p_1, p_2, \dots, p_m \le \infty$  satisfying  $\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_m} = 1$ , then

$$\int_{\Omega} |u_1 u_2 \cdots u_m| dx \leq \prod_{i=1}^m ||u_i||_{L^{p_i}(\Omega)}.$$

(c) (Minkowski's inequality)

If  $u, v \in L^p(\Omega)$  with  $1 \le p \le \infty$ , then

$$||u+v||_{L^p(\Omega)} \le ||u||_{L^p(\Omega)} + ||v||_{L^p(\Omega)}.$$

(d) (Interpolation inequality)

Let  $1 \le p \le r \le q \le \infty$ , with

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$$

for some  $\theta \in [0,1]$ . If  $u \in L^p(\Omega) \cap L^q(\Omega)$ , then we also have  $u \in L^r(\Omega)$  and

$$||u||_{L^{r}(\Omega)} \le ||u||_{L^{p}(\Omega)}^{\theta} ||u||_{L^{q}(\Omega)}^{1-\theta}$$

7

# **Embeddings**

### 4.1 Sobolev Embedding

In this section, we deal with embeddings of diverse Sobolev spaces into others. Given a Sobolev space, it automatically belongs to certain other space, depending on the relationship between the integrability p and the dimension n.<sup>1</sup> There are three cases:

$$p \in [1, n),$$
  
 $p = n,$   
 $p \in (n, \infty].$ 

In particular, the second case p=n is called the *borderline case*. What are we trying to obtain from the Sobolev embedding theory? Broadly speaking, given a Sobolev space  $W^{k,p}$ , imbeddings of  $W^{k,p}$  target two types of Banach spaces: either another Sobolev space  $W^{j,q}$  or Hölder spaces  $C^{j,\alpha}$  for some constants  $j \leq k, q \geq p$ , and  $0 \leq \alpha \leq 1$ .

### **4.1.1** The case $1 \le p < n$

**Definition 4.1.1.** If  $1 \le p < n$ , the Sobolev conjugate  $p^*$  of p is defined by

$$p^* := \frac{np}{n-p}.$$

**Remark 4.1.2.** A simple calculation shows the following:

- (i)  $p^* > p$ ,
- (ii)  $\frac{1}{p^*} = \frac{1}{p} \frac{1}{n}$ ,
- (iii)  $p^* \to \infty$  as  $p \to n$ .

**Theorem 4.1.3.** (Gagliardo-Nirenberg-Sobolev inequality, [1])

If  $1 \le p < n$ , then there exists a constant C, depending only on p and n, such that

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)},$$

for all  $u \in C_c^1(\mathbb{R}^n)$ .

**Theorem 4.1.4.** (Estimates for  $W^{1,p}, 1 \le p < n, [1]$ )

Let U be a bounded, open subset of  $\mathbb{R}^n$ , and suppose  $\partial U$  is  $C^1$ . Assume  $1 \leq p < n$  and  $u \in W^{1,p}(U)$ . Then  $u \in L^{p^*}(U)$ , with the estimate

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

the constant C depending only on p, n, and U.

<sup>&</sup>lt;sup>1</sup>The regularity of domains also affects the inclusion.

#### **4.1.2** The case p = n

#### **4.1.3** The case n

For convenience as in the notation for Hölder exponents, we write

$$\gamma := 1 - \frac{n}{p},$$

whenever n .

#### **Theorem 4.1.5.** (Morrey's inequality, [1])

If n , then there exists a constant C, depending only on p and n, such that

$$||u||_{C^{0,\gamma}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)}$$

for all  $u \in C^1(\mathbb{R}^n)$ .

### **Theorem 4.1.6.** (Estimates for $W^{1,p}$ , n , [1])

Let U be a bounded, open subset of  $\mathbb{R}^n$ , and suppose  $\partial U$  is  $C^1$ . Assume  $n and <math>u \in W^{1,p}(U)$ . Then u has a version  $u^* \in C^{0,\gamma}(\overline{U})$  with with the estimate

$$||u^*||_{C^{0,\gamma}(\bar{U})} \le C||u||_{W^{1,p}(U)},$$

the constant C depending only on p, n and U.

#### 4.1.4 The case $p = \infty$

#### **Theorem 4.1.7.** (Characterization of $W^{1,\infty}$ , [1])

Let U be open and bounded, with  $\partial U$  of class  $C^1$ . Then  $u: U \to \mathbb{R}$  is Lipschitz continuous if and only if  $u \in W^{1,\infty}(U)$ 

#### 4.1.5 Summary

#### **Theorem 4.1.8.** (Sobolev, [2, Theorem 7.29])

Let  $u \in W_0^{1,p}(B_R(0))$ , where  $B_R(0) \subset \mathbb{R}^n$ . Then there are universal constants  $c_1, c_2, c_3$  and  $c_4$ , depending on n, such that

(a) if 
$$1 then$$

$$||u||_{L^{p^*}} \le c_1 ||Du||_{L^p},$$

(b) if 
$$p = n$$
 then

$$\oint_{B_R(0)} \exp\left(c_2 \frac{|u|}{\|Du\|_{L^n}}\right)^{\frac{n}{n-1}} dx \le c_3,$$

(c) if 
$$p > n$$
 then

$$||u||_{L^{\infty}} \le c_4 R^{1-\frac{n}{p}} ||Du||_{L^p}.$$

The Riesz potential of a function f with respect to a positive integer  $\alpha$  is defined as

$$I_{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha}}, dy$$

where  $\Gamma$  is the gamma function. In your case, the value of  $\alpha$  is 1, so the Riesz potential becomes

$$I_1 f(x) = \frac{1}{\Gamma(1)} \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-1}}, dy$$

Since  $\Gamma(1) = 1$ , the Riesz potential reduces to

$$I_1 f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-1}}, dy$$

This is the general formula for the Riesz potential with  $\alpha=1$ . Note that the value of n (the dimension of the space) can be any positive integer. To compute the Riesz potential for a specific function f, you will need to specify the value of n and evaluate the integral for each value of x where the potential is desired.

# Bibliography

- [1] L. C. Evans. *Partial differential equations*. American Mathematical Society, Providence, RI, second edition, 2010.
- [2] M. Giaquinta and L. Martinazzi. An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Edizioni della Normale, Pisa, second edition, 2012.