

Naïve Bayes

Noa Lubin & Lior Sidi

Agenda

- Motivation
- Theory
- Practical Example
- Naive Bayes Language Model
- Code
- Summary

Motivation

Guess what's in the box dogs or cats?

Problem: Guess what's in the box dogs or cats?

we cannot open the box.

we can only weight the box.

We Know That

Dogs - 471M (56%) Cats - 373M (44%)

 $p(weight|Cat) \sim N(5,1)$

 $p(weight|Dog) \sim N(10,4)$

A box weighs 6.5kg, is it a Dog or a Cat?

Theory

Reminder:

Independence assumption

Independent events:

E and F are independent if $P(EF) = P(E)P(F) \Leftrightarrow P(E|F) = P(E)$

Reminder:

Chain Rule

Conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
 or $P(EF) = P(E|F)P(F)$

Chaining rule:

$$P(\bigcap_{i=1}^{n} A_i) = P(A_1 A_2 \dots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \dots P(A_n | A_1 A_2 \dots A_{n-1})$$

Reminder:

Bayes Rule

Bayes' formula:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Estimation

We are interested in:

- Classification Ex: Decide the topic of a sentence.
- Regression Ex: Weather
- Generation = Ex: Generate text

We'll look at the generative behavior that causes something. What we formally call: maximum likelihood estimation

Intuition Behind MLE

Let say we have a coin with bernoulli distribution for heads = ?

We can toss the coin 100 times. Let's say that it landed on heads 68 times.

What do you think the probability for heads is?

Intuition Behind MLE

Let say we have a coin with bernoulli distribution for heads = ?

We can toss the coin 100 times. Let's say that it landed on heads 68 times.

What do you think the probability for heads is?

0.68!

MLE - Maximum Likelihood Estimation

We can also prove that MLE converges to the true parameters when the observation number goes to infinity

Think about the coin example.

If you toss it n=3 times and get 2 heads: pMLE = 0.66

If you make n=1000 and get 705 heads: pMLE = 0.705

Let's Go Back to Bayesian Law

Let's Go Back to Bayesian Law

Let's Go Back to Bayesian Law

MLE - Maximum Likelihood Estimation

If I know the outcome, what is the probability of a certain observation?

Ex: for Dogs and Cats: P(Dogs) = # dogs / (# dogs + # cats)
P(Weight|Dog) = We make a gaussian assumption and Mu and Sigma
are calculated based on all observed dogs in the world

Max A-Posterior (MAP) classifier

Formulate Dog vs Cat Problem with MAP

Y - category {Dog, Cat}

x - weight

Which is larger:

P(y=Dog|x=6.5) or P(y=Cat|x=6.5)?

Max A-Posterior (MAP) classifier

$$egin{align} \hat{y}_{MAP} &= argmax_y P(y|x) \ &= argmax_y rac{P(x|y)P(y)}{P(x)} \ &= argmax_y P(x|y)P(y) \ \end{aligned}$$

Probability of weight x given category y {Cat, Dog}

Probability of category y {Cat, Dog}

What is the most probable category y {Cat, Dog} given weight x?

Formulate Dog vs Cat Problem with MAP

We'll transform the problem with Bayesian Rule to observed data:

Which is larger:

p(x=6.5|y=Dog)*p(y=Dog) or p(x=6.5|y=Cat)*p(y=Cat)?

Reminder: We Know That

Dogs - 471M (56%)

Cats - 373M (44%)

 $p(weight|Cat) \sim N(5,1)$

 $p(weight|Dog) \sim N(10,4)$

Gaussian Naive Bayes with MLE

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

$$\Pr(y) = \frac{Ny}{N}$$

```
p(x=6.5|y=dog) = 0.68
p(y=dog) = 0.56
```

$$p(x=6.5|y=cat) = 0.13$$

 $p(y=cat) = 0.44$

 $0.68*0.56 > 0.13*0.44 \rightarrow$ It's a dog!

MLE is a specific case of MAP

In the special case when prior follows a uniform distribution, MAP can be written as:

$$egin{aligned} \hat{y}_{MAP} &= argmax_y P(y|x) \ &= argmax_y rac{P(x|y)P(y)}{P(x)} \ &= argmax_y P(x|y)P(y) \ &= argmax_y P(x|y). \end{aligned}$$

Types of Naive Bayes Classifiers

- Gaussian Naive Bayes Used when we are dealing with continuous data and uses Gaussian distribution.
- Bernoulli Naive Bayes Used for discrete data, where features are only in binary form.
- Multinomial Naive Bayes Widely used classifier for document classification which keeps the count of frequent words present in the documents.
- Complement Naive Bayes Used for imbalanced data

Generative vs Discriminative Models

	Discriminative model	Generative model
Goal	Directly estimate $P(y x)$	Estimate $P(\boldsymbol{x} \boldsymbol{y})$ to then deduce $P(\boldsymbol{y} \boldsymbol{x})$
What's learned	Decision boundary	Probability distributions of the data
Illustration		
Examples	Regressions, SVMs	GDA, Naive Bayes

Practical Example

Boy or Girl?

Pregnant woman at week 20. Task: Boy or Girl

Measurements:

1. Weight gain (Kg)

2. Avg amount of chocolate eaten weekly (gra

Collect training data

Weight Gain	Chocol	ate Craving	Gender
	10	4	Воу
	7	5	Воу
	13	1	Воу
	11	1	Воу
	10	6	Воу
	9	0	Воу
	6	5	Воу
	9	3	Воу
	15	5	Воу
	1	1	Воу
	4	0	Girl
	5	1	Girl
	10	3	Girl
	7	0	Girl
	3	1	Girl
	7	1.5	Girl
	5	1	Girl
	3	0	Girl
	5	0	Girl
	3	0.5	Girl

Data Processing: Discretization

Pregnant woman at week 20.

Task: Boy or Girl ?: Gender (G)

Weight gain: Weight Gain (W)

- 1. Low if less than 9Kg
- 2. High if more than 9kg

Data Processing: Discretization

Pregnant woman at week 20

Task: Boy or Girl ?: Gender (G)

Avg amount of chocolate eaten weekly (bars): Chocolate Craving (CC)

- 1. Low if less than 2 bars
- 2. High if more than 2 bars

We Have Observed Labeled Data

W = Weight Gain	CC = Chocolate Craving	G = Gender
_	_	1Boy
		1Boy
		0Boy
	1	OBoy OBOY
	1	1Boy
	1 (OBoy Control of the C
	0	1Boy
	1	1Boy
	1	1Boy
	0	0Boy
	0	0Girl
	0 (0Girl
	1	1Girl
	0 (0Girl
	0	0Girl
	0	0Girl

Let's Predict The Outcome

Pregnant Woman:

Weight Gain: 10 kg → 1

Chocolate Craving: 1 bar → 0

Argmax gender p(gender|w=1, cc=0) ?

Mathematical Formulation

Argmax_G p(G | W, CC)

```
4
```

= Argmax_G $p(W, CC \mid G) * P(G) / P(W, CC)$

```
= Argmax<sub>G</sub> p(W, CC | G) * P(G) * Assuming independence
```

= Argmax_G p(W|G) * P(CC | G) * P(G)

	W = 0	W = 1
G = Boy	0.3	0.7
G = Girl	0.9	0.1

	CC = 0	CC = 1
G = Boy	0.4	0.6
G = Girl	0.9	0.1

G = Boy	0.5
G = Girl	0.5

Weight Gain	Cho	ocolate Craving Gender
	1	1Boy
	0	1Boy
	1	0Boy
	1	0Boy
	1	1Boy
	1	0Boy
	0	1Boy
	1	1Boy
	1	1Boy
	0	0Boy
	0	0 <mark>Girl</mark>
	0	0 <mark>Girl</mark>
	1	1 <mark>Girl</mark>
	0	0 <mark>Girl</mark>
	0	0Girl

	W = 0	W = 1
G = Boy	0.3	0.7
G = Girl	0.9	0.1

	CC = 0	CC = 1
G = Boy	0.4	0.6
G = Girl	0.9	0.1

G = Boy	0.5
G = Girl	0.5

Let's Go Back to Our Woman: w=1, cc=0

Argmax G P(W|G) * P(CC | G) * P(G)

 $Boy \rightarrow$

P(W=1|G=boy) * P(CC=0 | G=boy) * P(G=boy)=

0.7*0.4*0.5 = 0.14

 $Girl \rightarrow$

P(W=1|G=girl) * P(CC=0|G=girl) * P(G=girl)=

0.1*0.9*0.5= 0.045

 $0.14 > 0.045 \rightarrow$ It's a boy!

	W = 0	W = 1
G = Boy	0.3	0.7
G = Girl	0.9	0.1

	CC = 0	CC = 1
G = Boy	0.4	0.6
G = Girl	0.9	0.1

G = Boy	0.5
G = Girl	0.5

	W = 0	W = 1
G = Boy	0.3	0.7
G = Girl	0.9	0.1

	CC = 0	CC = 1
G = Boy	0.4	0.6
G = Girl	0.9	0.1

Let's Go Back to Our Woman: w=1, cc=0

This is not P(boy|W,CC)!!! What do Boy \rightarrow we need to add to calculate it? P(W=1|G=boy) * P(CC = 0 | G=boy) * P(G=boy)= 0.7*0.4*0.5 = 0.14

$$\begin{array}{c} \text{Girl} \rightarrow \\ \text{P(W=1|G=girl) * P(CC=0 | G=girl) * P(G=girl)=} \\ 0.1*0.9*0.5=0.045 & \textbf{Since} \\ \text{Probabili} \\ 0.14 > 0.045 \rightarrow \textbf{It's a boy!} & \textbf{ties are} \\ \text{equal} \end{array}$$

Are Wand CC Independent? Or Could We be Naive?

Conditional independence:

$$P(W, CC \mid G) = P(W \mid G) * P(CC \mid G)$$

W and CC are independent given G

Each feature has its own conditional probability table:

Question: P(W=0|G=Girl) * P(CC=0|G=Girl) = ? P(W=0,CC=0|G=Girl)

Are W and CC Independent?

	W = 0	W = 1
G = Boy	0.3	0.7
G = Girl	0.9	0.1

	CC = 0	CC = 1
G = Boy	0.4	0.6
G = Girl	0.9	0.1

Weight Gain	Chocolate Craving	Gender
1	. 1	Boy
O	1	Boy
1	0	Boy
1	. 0	Воу
1	1	Boy
1	0	Boy
O	1	Boy
1	. 1	Boy
1	. 1	Boy
0	0	Boy
0	0	Girl
O	0	Girl
1	. 1	Girl
0	0	Girl
O	0	Girl
0	0	Girl
O	0	Girl

	W=0, CC=0	W=0, CC=1	W=1, CC=0	W=1, CC=1
G= Boy	0.1	0.2	0.3	0.4
G= Girl	0.9	0	0	0.1

P(W=0|G=Girl) * P(CC=0|G=Girl) ? P(W=0,CC=0|G=Girl)

Are W and CC Independent?

	W = 0	W = 1
G = Boy	0.3	0.7
G = Girl	0.9	0.1

	CC = 0	CC = 1
G = Boy	0.4	0.6
G = Girl	0.9	0.1

Chocolate Craving	Gender
. 1	.Boy
) 1	.Boy
. 0	Boy
. 0	Boy
. 1	.Boy
. 0	Boy
	.Boy
. 1	.Boy
. 1	.Boy
0	Воу
0	Girl
0	Girl
. 1	.Girl
0	Girl
) 0	Girl
0	Girl
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	W=0, CC=0	W=0, CC=1	W=1, CC=0	W=1, CC=1
G= Boy	0.1	0.2	0.3	0.4
G= Girl	0.9	0	0	0.1

0.9* 0.9 != 0.9 → Weight and Chocolate Consumption are Dependant

Let's Repeat Without Naive Assumption

	W=0, CC=0	W=0, CC=1	W=1, CC=0	W=1, CC=1
G= Boy	0.1	0.2	0.3	0.4
G= Girl	0.9	0	0	0.1

Let's Go Back to Our Woman: w=1, cc=0

Argmax G P(W, CC | G) * P(G)

Boy \rightarrow

 $P(W=1,CC=0 \mid G=boy) * P(G=boy)=$

0.3*0.5 = 0.15

 $\mathsf{Girl} \to$

 $P(W=1,CC=0 \mid G=girl) * P(G=girl)=$

0*0.5=0

 $0.15 > 0 \rightarrow$ Still a boy (but could have changed

Naive Bayes Language Model

Based on: CIS 391 – Introduction to Artificial Intelligence

Example: Classifying Spam Mails

- Desired output 'Label' an article to one of three categories (multiclass)
 - Spam
 - Second Property 1
 - O Work

Data

- Collection of 1.5M emails (documents) where
 - 500K labeled as spam
 - 500K labeled as family
 - 500K labeled as work

Hi,
How are you?
You must buy the new nike shoes
Here is a link:

http://www.nike.com/bla

Multinomial Naive Bayes for Text Classification

- $P(w_i|c)$ is the conditional probability of word w_i occurring in document of class c
- P(c) is the prior probability of a document occurring in class c
- n_d is the number of such tokens in d
- P(c|d) is the probability of class given document

The model: Argmax_c
$$P(c|d) = Argmax_c p(d|c) * p(c) | p(d) = Argmax_c p(c)*p(d|c)$$

$$p(d|c) = p(w1,w2,w3,w4....wn|c)$$

$$= p(w1|c)*p(w1|w2,c)*p(w3|w1,w2,c)....p(wn|w1,...wn-1, c)$$
Assuming independence = $p(w1|c)*p(w2|c)*p(w3|c)...(wn|c)$

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(w_{i} \mid c_{j})$$

Multinomial Naive Bayes for Text Classification

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(w_{i} | c_{j})$$

Instead of multiplication of probabilities, use sum of logs to avoid underflow

- From training corpus, extract *Vocabulary*
- Calculate required $P(c_i)$ and $P(w_i | c_i)$ terms
 - For each c_i in C do :

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

In our case?

- From training corpus, extract *Vocabulary*
- Calculate required $P(c_i)$ and $P(w_k | c_i)$ terms
 - For each c_i in C do :

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

In our case: P(spam) = P(family) = p(work) = 1/3

• For each word w_{k} in *Vocabulary*

$$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

What happens if a word didn't appear in any document?

Discounting - Handling Missing Data

Example: Lidstone discounting

$$p_{Lid}\left(x\right) = \frac{C\left(x\right) + \lambda}{|S| + \lambda \left|X\right|}$$
 Vocabulary size

For lambda=1 it's called laplace discounting

Bonus: We can prove that **pLid(x)> pMLE(x)**

• For each word w_{k} in *Vocabulary*

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} \left(count(w, c) + 1 \right)}$$

$$= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c) + |V| \right)}$$

Naive Bayes as a Generative Model

Notice that we can use the model we build to classify if an email is spam or not in order to build a generative model! This model is called "Language Model"

 $P(c_i)$

Llow2

How?

We pick a class by tossing a bernoulli coin with Let's say we got c=spam

Generative Story

Now we generate the text accordingly.

We pick the first word by sampling p(w|c=spam)

Code

Let's Think About This Together

- 1. What are the main hyper-parameters?
- 2. Can it work for Multi-class data?
- 3. Does it handle Categorical data?
- 4. Does it handle missing data?
- 5. Is it sensitive to outliers?
- 6. What if some features are correlated?
- 7. Is it Interpretable?
- 8. Can it be parallelized?
- 9. Speed of training
- 10. Speed of prediction

Let's Think About This Together

- 1. What are the main hyper-parameters? Distribution type, smoothing parameter
- 2. Can it work for Multi-class data? Yes
- 3. Does it handle Categorical data? Yes
- 4. Does it handle missing data? Yes
- 5. Is it sensitive to outliers? No
- 6. What if some features are correlated? Naive assumptions don't work
- 7. Is it Interpretable? Yes
- 8. Can it be parallelized? Yes
- 9. Speed of training Fast (Linear Time)
- 10. Speed of prediction Fast (Linear Time)

Non-Naive Bayesian Methods

Bayesian Networks

Deep Bayesian Networks

VESPA Exoplanet

The generative category includes models such as vespa (Morton & Johnson 2011; Morton 2012; Morton et al. 2016) that require the class priors p(y=1) and p(y=0) and likelihoods P(X|y=1) and P(X|y=0) to estimate the posterior P(y=1|X) according to the Bayes' theorem:

$$p(y = 1|X) = \frac{p(X|y = 1)p(y = 1)}{\sum_{y} p(X|y)p(y)}$$
(1)

where y = 1 represents an exoplanet, y = 0 represents a false positive, and X is a representation of the transit signal. Such generative approaches require the detailed knowledge of the likelihood, P(X|y), and prior, P(y), for each class (exoplanet vs false positive), and class scenario (e.g., BEB). While in general both the likelihood and priors can be learned in a data-driven approach (using ML), vespa estimates them by sim-

Summary

Naive Bayes

- Is a generative probabilistic model (the only one we'll see in SL class)
- Can be used for classification, regression and generation
- Uses MLE and MAP principals

Pros and Cons

Pros	Cons
 Very fast Good for big data with big velocity Ignores interactions and therefore needs less data Works well with multiclass problems Works with missing data Can be used as a generative model (e.g. generate text) 	 Small dataset leads to instability (probabilities can be 0 or 1 with high variance) Doesn't perform well for imbalanced datasets Continuous features require binning or assumption of a distribution