Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиоэлектронных технологий и экологического мониторинга (РЭТЭМ)

Расследование и учет несчастных случаев на производстве

Отчет по лабораторной работе №4 по дисциплине «Безопасность жизнедеятельности»

Выполнил:
студент гр. 439-3
Пахмурин М.Д.
Проверил:
ассистент каф. РЭТЭМ
Хомяков А.Ю.

Оглавление

1. Цель работы	3
' 1 2. План работы	
3. Ход работы	
Задание 1	
Задание 2	
4. Вывол	

1. Цель работы

Цель работы: Ознакомиться с нормативными требованиями к производственным шумам, определить эффективность некоторых мероприятий по уменьшению шума

2. План работы

План работы:

- Рассчитать требуемую эффективность и звукоизолирующую способность стенок кожуха, по вариантам таблицы 3, где l,b,h длина, ширина и высота машины, м.
- Результаты расчетов свести в таблицу 2.
- Сделать выводы.

3. Ход работы

Вариант 5 (15)

Задание 1

Дано:

l(длина) = 2 м

b (ширина) = 2 м

h (высота) = 3 M

Требуемую звукоизолирующую способность стенок кожуха можно вычислить по формуле:

$$R_{\text{K.Tp}} = \Delta L_{\text{эф.Tp}} + 10lg \frac{S_k}{S_{\text{NCT}}},$$

где $L_{\mbox{\tiny 3}\phi,\mbox{\tiny Tp.}}$ - требуема эффективность звукоизолирующего кожуха, дБ и определяется по формуле:

$$\Delta L_{\rm 9\varphi,Tp} = L_p - 10 lgS - L_{\rm ДОП} + 5$$

площадь воображаемой поверхности, вплотную окружающий источник шума ($S_{\text{ист}}$) можно вычислить как (l*h + b*h + l*b)*2 = (2*3 + 2*3 + 2*2)*2 = 32 м²

Площадь поверхности кожуха (S_{κ}) можно вычислить как ((l+2)*(h+1) + (b+2)*(h+1) + (l+2)*(b+2))*2 = (4*4+4*4+4*4) * 2 = 96м²

Далее исходные данные из таблицы 1 и полученные S_k и $S_{\text{ист}}$ подставляются в формулы. Вычисленные значения записаны в таблицу 1

Полученные данные приведены в таблице 1.

Величина	Единица	63	125	250	500	1000	2000	4000	8000
	измерения								
$L_{\rm p}$	дБ	95	110	116	125	130	126	118	120
$L_{ extsf{ iny dom}}$	дБ	99	92	86	83	80	78	76	74
$\Delta L_{\text{эф.тр}}$	дБ	-18,8	3,2	15,2	27,2	35,2	33,2	27,2	31,2
$R_{\kappa, Tp}$	дБ	-14,1	7,9	19,9	31,9	39,9	37,9	31,9	35,9
$\Delta L_{\text{глуш}}$	дБ	18	18	20	25	33	38	40	34

Задание 2

Рассчитать уровень звукового давления на рабочем месте, определить соответствует ли этот уровень нормативным требованиям.

$$f = 1000$$

 $h = 0.5$
 $L = 90$
 $\delta = a + b - d = 1.12 + 0.78 - 1.6 = 0.3$
 $\lambda = c/f = 344/1000 = 0.344$
 $N = 2*\delta/\lambda = 2*0.3/0.344 = 1.74$
 L $= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $$= 10$ $$= 10$ $$= 10$ $= 10$ $$= 10$ $= 10$ $$= 10$ $= 10$ $$= 10$ $= 10$ $= 10$ $= 10$ $$= 10$ $=$$

Экран обеспечивает защиту на постоянных рабочих местах.

4. Вывод

Я ознакомился с нормативными требованиями к производственным шумам и определил эффективность некоторых мероприятий по уменьшению шума.