

Deep Learning the City Quantifying Urban Perception at a Global Scale

Abhimanyu Dubey, Nikhil Naik, Devi Parikh, Ramesh Raskar, Cesar A Hidalgo

naik@mit edu

Key Contributions

- Place Pulse 2.0 Dataset: Contains 1.17 million pairwise comparisons for 110,988 images from 56 cities, provided by 81,630 online volunteers
- Six perceptual attributes: Safe, Lively, Boring, Wealthy, Depressing, and Beautiful
- Deep network that minimizes a joint classification + ranking loss to accurately predict perception of urban attributes

The Place Pulse 2.0 Dataset

Figure 1: User Interface for Crowdsourced Online Game

- Goal: Quantify the perception of urban environments
- Helps study the relationship between a city's physical appearance and the behavior and health of its residents
- A global dataset of human judgments in the form of pairwise comparisons of urban appearance
- Siamese-like networks, Streetscore-CNN (SS-CNN) and Ranking SS-CNN, to predict pairwise comparisons

Predicting Human Judgments

Figure 2: SS-CNN and RSS-CNN (with additional layers in light blue)

Our dataset contains a set of m images $I = \{x_i\}_{i=1}^m$ and set of N comparison triplets $P = \{(i_k, j_k, y_k)\}_{k=1}^N$, $i, j \in \{1, ..., m\}$, $y \in \{+1, -1\}$. We want to learn a ranking function $f_r(x)$ that satisfies the maximum # of constraints [1, 3]

$$y \cdot (f_r(\mathbf{x}_i) - f_r(\mathbf{x}_j)) > 0 \quad \forall \ (i, j, y) \in P$$

To solve this problem, we construct networks (1) SS-CNN that minimizes a classification loss L_c and (2) RSS-CNN that minimizes a ranking loss L_r in addition to L_c

$$\begin{split} L_c &= \sum_{(i,j,y) \in P} \sum_k^K -\mathbb{1}[y=k] \log(g_k(\mathbf{x}_i,\mathbf{x}_j)) \quad L_r = \sum_{(i,j,y) \in P} \left(\max(0,y \cdot (f_r(\mathbf{x}_j) - f_r(\mathbf{x}_i)))^2 \right) \\ & \text{k= 2, } g \text{ softmax of final layer} \end{split}$$

RSS-CNN is trained with a joint loss $L = L_c + \lambda L_r$, where λ is set using grid-search to maximize classification accuracy

Performance Analysis

- **SS-CNN**: We calculate the % of pairwise comparisons in test set predicted correctly by
 - (1) Softmax of output neurons in final layer
 - (2) comparing **TrueSkill** scores [2] obtained from *synthetic* pairwise comparisons from the CNN
 - (3) extracting features from penultimate layer of CNN and feeding pairwise feature representations to a RankSVM [3]
- RSS-CNN: We compare the ranking function outputs for both images in a test pair to decide which image wins, and calculate the binary prediction accuracy.

(a) SS-CNN

(b) RSS-CNN

Network	Ranking Method			
INCLWOLK	Softmax	TrueSkill	RankSVM	
AlexNet	53.0%	55.7%	58.4%	
SS-CNN (AlexNet)	60.3%	62.6%	65.5%	
PlacesNet	56.4%	58.8%	61.6%	
SS-CNN (PlacesNet)	62.2%	64.7%	68.1%	
VGGNet	60.9%	62.7%	63.5%	
SS-CNN (VGGNet)	65.3%	67.8%	72.4%	

M	Model	Prediction Acc.		
	AlexNet	64.1%		
	PlacesNet	68.8%		
	VGGNet	73.5%		

Table 1 : Pairwise comparison prediction accuracy for standard networks fine-tuned with the Place Pulse 2.0 dataset. RSS-CNN (VGGNet) obtains the best performance

Prediction Performance Across Attributes

Test	Safe	Lively	Beautiful	Wealthy	Boring	Depressing
Safe	73.5%	67.7%	66.3%	60.3%	47.2%	42.3%
Lively	63.8%	70.3%	65.8%	61.3%	58.9%	53.7%
Beautiful	61.2%	67.1%	70.2%	53.5%	50.2%	51.4%
Wealthy	60.7%	54.6%	52.7%	65.7%	52.8%	55.9%
Boring	48.6%	55.6%	52.3%	53.1%	66.1%	59.8%
Depressing	54.5%	54.2%	43.2%	49.7%	57.2%	$\boldsymbol{62.8\%}$

Table 2: Prediction performance of a network trained on one attribute is transferable to similar attributes. Prediction performance is correlated with the number of pairwise comparisons used for training

Visualizations

Figure 3: Example results from Place Pulse 2.0 dataset.

References

[1] Parikh, D., Grauman, K.: Relative attributes. ICCV (2011) 503–510 [2]Herbrich, R., Minka, T., Graepel, T.: TrueSkill: A Bayesian skill rating system. Advances in Neural Information Processing Systems (2006) 569–576 [3] Joachims, T.: Optimizing search engines using clickthrough data. KDD (2002) 133–142

[4] Naik, N., Philipoom, J., Raskar, R., Hidalgo, C.: Streetscore–Predicting the perceived safety of one million streetscapes. CVPR Workshops (2014) 793–799