Functions

Previous Lecture

- Equivalence relations
- Partitions
- Partial orders
- Diagrams of partial orders

Functions

- In many instances we assign to each element of a set a particular element of a second set.
- For example, assign rooms to people in a hotel

- Or we may assign a grade to each student from a class
- What we get is a set of pairs (Person, Door) or (Student, Grade), that is, a relation, but a very particular one

Functions (cntd)

A relation R from A to B is called a function from A to B, if for every a ∈ A there is exactly one b ∈ B such that (a,b) ∈ R. (Also mappings, transformations)

We use f,g,h to denote functions

$$f: A \rightarrow B$$
 $f(a) = b$

f(Rodriguez) = A

Example

Consider the function from the set People to People:

f(a) = b if b is the father of a.

(http://www.royal.gov.uk)

Domain and Codomain

Let f: A → B be a function from A to B. Then A is called the domain of f, and B is called the codomain of f.

- If f(a) = b, then b is called the image of a, and a is called the preimage of b.
- Also we say that f maps A to B

Domain and Codomain (cntd)

The range of f is the set of all images of elements of A range(f) = { b ∈ B | ∃a ∈ A f(a) = b }

In our example:

```
domain = { Adams, Chou, Goodfriend, Rodriguez, Stevens }
codomain = { A, B, C, D, F }
range = { A, B, C, F }
```

Restrictions and Extensions

- Let f: A → B be a function and C ⊆ A. The set f(C) = { b ∈ B | b = f(a) for some a ∈ C } is called the image of C.
- Example: f({Adams, Rodriguez}) = {A} f({Chou, Goodfriend, Stevens}) = {B,C,F}
- Let $f: A \to B$ be a function and $C \subseteq A$. A function $f|_C: C \to B$ is called a restriction of f to C if $f|_C(a) = f(a)$ for all $a \in C$
- Example: Let C = {Chou, Goodfriend, Stevens}. Then the function

Restrictions and Extensions (cntd)

- Let $C \subseteq A$ and $f: C \to B$. Any function $g: A \to B$ such that g(a) = f(a) for all $a \in C$ is called an **extension** of f.
- Let $A = \mathbb{R}$, $B = \mathbb{Z}$, $C = \mathbb{Z}$, and $f: \mathbb{Z} \to \mathbb{Z}$ is defined as follows: f(a) = a

Let g be the floor function:

 $g(x) = \lfloor x \rfloor =$ the greatest integer less than or equal to x. Clearly, $g: \mathbb{R} \to \mathbb{Z}$, and g(a) = a = f(a) for any integer a. Thus, g is an extension of f

Describing Functions

 Function is a relation, therefore we can use all methods of describing relations. Although the graph and the matrix are not very economical.

{ (Adams,A), (Chou,C), (Goodfriend,B), (Rodriguez,A), (Stevens,F)}

Function table

Student	Grade
Adams	А
Chou	С
Goodfriend	В
Rodriguez	А
Stevens	F

Describing Functions (cntd)

Numerical functions can be computed using a formula

$$f(x) = x^2$$

range(f) = $\{0, 4, 9, ...\}$ – non-negative integers that are perfect squares

The most general way is to use some algorithm to compute a function

'The letter grade is A, if the numerical mark is in between 100 and 85; the letter grade is B, if ...

Functions in programming languages:

int **floor**(float real) {...} in Java

function floor(x: real): integer in Pascal

One-to-One Functions

A function f is said to be one-to-one, or injective, if and only if f(a) = f(b) implies a = b.

In other words no two elements are mapped into the same image.

Contrapositive: if $a \neq b$ then $f(a) \neq f(b)$.

Symbolically: $\forall a \ \forall b \ (f(a) = f(b) \rightarrow a = b)$

Is this function injective?

No!

One-to-One Functions (cntd)

Let's consider the function $f(x) = x^2$ on \mathbb{Z} Is it injective?

Onto Functions

A function f from A to B is called onto, or surjective, if and only if for every element b∈ B there is an element a∈ A with f(a) = b. A function is called a surjection if it is onto.

Symbolically: $\forall b \exists a (f(a) = b)$

- Examples:
 - f(x) = x + 1

Yes, because for any $b \in \mathbb{Z}$ there is $a \in \mathbb{Z}$ such that a + 1 = b

- $f(x) = x^2$ on \mathbb{Z}

No, because $\sqrt{2}$ is not an integer

- What about the same function on \mathbb{R}^+ Yes, the square root of a real number is a real number

Onto Functions (cntd)

More examples

f(a) = b if b is the father of a

This mapping was onto!

Bijections

A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

If there is a bijection from a set A to a set B, then these sets in a certain sense are equal or identical.

Bijections (cntd)

- Numerical functions:
 - f(x) = x + 1 is a bijection on \mathbb{Z} , \mathbb{Q} , \mathbb{R} , but not on \mathbb{N}
 - $f(x) = x^2$ is a bijection on \mathbb{R}^+ , but is not on any other numerical set
- A bijection from a set A to the same set A is called a permutation of A

The identity function on a set A is the function $i_A: A \rightarrow A$, where $i_A(x) = x$

Functions and Properties

Examples of different types of correspondences

Composition of Functions

Let g be a function from A to B and let f be a function from B to C. The composition of the functions f and g, denoted by f ○ g, is the function from A to C defined by

Composition of Functions (cntd)

Suppose that the students first get numerical grades from 0 to
 100 that are later converted into letter grade.

Adams — A
Chou B
Goodfriend C
Rodriguez D
Stevens — F

Let f(a) = b mean `b is the father of a'.
What is f o f?

Composition of Numerical Functions

- Let $g(x) = x^2$ and f(x) = x + 1. Then $(f \circ g)(x) = f(g(x)) = g(x) + 1 = x^2 + 1$
- Thus, to find the composition of numerical functions f and g given by formulas we have to substitute g(x) instead of x in f(x).

Inverse Functions

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b.

The inverse function is denoted by f^{-1} .

Thus, $f^{-1}(b) = a$ if and only if f(a) = b

Note! f^{-1} does not mean $\frac{1}{f(x)}$

$$f \circ f^{-1} = i_{B}$$

$$f^{-1} \circ f = i_{A}$$

Inverse Functions (cntd)

- If a function f is not a bijection, the inverse function does not exist.
 Why?
- If f is not a bijection, it is either not one-to-one, or not onto

one-to-one, not onto

$$f^{-1}(2) = ?$$

$$2 \bullet \longrightarrow ? \bullet b$$

Homework

Exercises from the Book:

No. 1, 2, 6a, 15, 16ace, 18 (page 258)