Disclaimer: This is a machine generated PDF of selected content from our products. This functionality is provided solely for your convenience and is in no way intended to replace original scanned PDF. Neither Cengage Learning nor its licensors make any representations or warranties with respect to the machine generated PDF. The PDF is automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. CENGAGE LEARNING AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the machine generated PDF is subject to all use restrictions contained in The Cengage Learning Subscription and License Agreement and/or the Gale Academic OneFile Terms and Conditions and by using the machine generated PDF functionality you agree to forgo any and all claims against Cengage Learning or its licensors for your use of the machine generated PDF functionality and any output derived therefrom.

Sustainable Internet-of-Things-based Manufacturing Systems: Industry 4.0 Wireless Networks, Advanced Digitalization, and Big Data-driven Smart Production.

Author: Clive Lafferty **Date:** Dec. 2019

From: Economics, Management, and Financial Markets(Vol. 14, Issue 4)

Publisher: Addleton Academic Publishers

Document Type: Article **Length:** 1,511 words

DOI: http://dx.doi.org/10.22381/EMFM14420192

1. Introduction

Cutting-edge Industry 4.0 technologies enable companies to diminish the volume of resources misdirected and the emissions, bringing forth a prevailing low-carbon upside in addition to a decrease of the marginal production expense. (Liu and De Giovanni, 2019) The transformative capacity that functions within Industry 4.0, digitalization, and digital twins is instrumental in enhancing operational performance and cutting down process safety accidents. (Lee et al., 2019) Industry 4.0 can offer cost benefits of mass manufacturing with the adjustability of a small-batch producer. (Dachs et al., 2019)

2. Conceptual Framework and Literature Review

The socially impacted undertakings in Industry 4.0 entail collection investment and dimension of the customer market that regulates the product returns, shaping the competitive reverse logistics system. (Dev et al., 2020) Integrated high tech and networks supervise via sensors and coordinate via actuators the physical operations (Andrei et al., 2016; Mengoli et al., 2017; Nica, 2018a, b; Sandal and Krupka, 2018), commonly with input loops where physical operations and data processing shape each other. (Delicato et al., 2019) The production tools can make decisions in real time and clarify with the end user the alterations that can be implemented, in conformity with the assigned work streaming through the manufacturing system. (Rossit et al., 2019) Assimilating industrial automation systems leads to significant and groundbreaking characteristics via networking with team members (Ionescu, 2018; Nica, 2015; Popescu et al., 2017a, b; Valaskova et al., 2018), and assists in generating links between the cyber and physical realms. (Buchi et al., 2020) Repetitive and physically challenging tasks are handled by assistance systems, resulting in growing demands in respect of human resources' mental processes and performance. (Veile et al., 2019) Becoming competent at a distinct level is not instrumental as a mediator in the influence of Industry 4.0-based technologies on operational effectiveness. (Tortorella et al., 2020)

3. Methodology and Empirical Analysis

Using and replicating data from Capgemini, DAA, IoT Analytics GmbH, The Manufacturer, McKinsey, Oracle, PwC, US BLS, and WEF, I performed analyses and made estimates regarding smart factory transformation approach taken by players in

different categories (%) and drivers of technological change and time to impact on employee skills (%). Data were analyzed using structural equation modeling.

4. Results and Discussion

With the swift advancement of Industry 4.0, cutting-edge technologies (e.g., big data, Internet of Things, and cloud computing) are progressively being applied, while established industrial production technologies will steadily develop or be replaced. (Lu et al., 2019) Industry 4.0 facilitates the monitoring of manufacturing operations by supplying instantaneous integration of flows and by furthering the fashioning of distinctive and custom-tailored commodities. (Moeuf et al., 2019) A digital production company is networked and interacts, assesses and harness data to more thoroughly handle smart operations back into the physical realm. (Hofmann et al., 2019) (Tables 1-7)

5. Conclusions and Implications

Table 1 Drivers of technological change and time to impact on	
Mobile Internet, cloud technology	82
Processing power, big data	76
New energy supplies and technologies	69
Internet of Things	62
Sharing economy, crowdsourcing	54
Robotics, autonomous transport	48
Artificial intelligence	36
Advanced manufacturing, 3D printing	22
Advanced materials, biotechnology	19
Sources: WEF; my survey among 4,200 individuals conducted June 20	019.

Wireless technologies driven by the Internet of Things will remodel the industry as presently designed. (Garrido-Hidalgo et al., 2019) Human resource determinants are pivotal causal agents and constraints of Industry 4.0. (Horvath and Szabo, 2019) Organizations can harness Industry 4.0 technologies to catalyze economic, sustainable, and social value by fashioning the logistics role as a competitive mechanism, a social value producer, and a driving force for performance. (Tang and Veelenturf, 2019) The advancement of leandigitized manufacturing system constitutes a feasible business approach for corporate longevity in the Industry 4.0 environment. (Ghobakhloo and Fathi, 2019)

Note

The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau's American Community Survey to reflect reliably and accurately the demographic composition of the United States. The precision of the online polls was measured using a Bayesian credibility interval.

Funding

This paper was supported by Grant GE-1707348 from the Artificially Intelligent Algorithmic Systems Research Unit, Westminster, CO.

Author Contributions

The author confirms being the sole contributor of this work and approved it for publication.

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Table 2 How important are the following data analytics skills and how well are they integrated in your company? (%) Important/Very important | All skills on board Data science Project management and 69 implementation Machine learning techniques and algorithms Industrial process know-how Cloud/Data storage Computer engineering/ 74 38 programming IoT/M2M infrastructure Business intelligence 46 29 Enterprise system integration 66 Sources: DAA; IoT Analytics GmbH; my survey among 4,200 individ

REFERENCES

Andrei, J.-V., R. A. Ion, G. H. Popescu, E. Nica, and M. Zaharia (2016). "Implications of Agricultural Bioenergy Crop Production and Prices in Changing the Land Use Paradigm--The Case of Romania," Land Use Policy 50: 399-407.

Buchi, G., M. Cugno, and R. Castagnoli (2020). "Smart Factory Performance and Industry 4.0," Technological Forecasting & Social Change 150: 119790.

Dachs, B., S. Kinkel, and A. Jager (2019). "Bringing It All Back Home? Backshoring of Manufacturing Activities and the Adoption of Industry 4.0 Technologies," Journal of World Business 54(6): 101017.

Dev, N. K., R. Shankar, and F. H. Qaiser (2020). "Industry 4.0 and Circular Economy: Operational Excellence for Sustainable Reverse Supply Chain Performance," Resources, Conservation and Recycling 153: 104583.

Delicato, F. C., A. Al-Anbuky, and K. I.-K. Wang (2019). "Smart Cyber-Physical Systems: Toward Pervasive Intelligence Systems," Future Generation Computer Systems. doi: 10.1016/j.future.2019.06.031

Garrido-Hidalgo, C., T. Olivares, F. J. Ramirez, and L. Roda-Sanchez (2019). "An End-to-End Internet of Things Solution for Reverse Supply Chain Management in Industry 4.0," Computers in Industry 112: 103127.

Ghobakhloo, M. and Fathi, M. (2019). "Corporate Survival in Industry 4.0 Era: The Enabling Role of Lean-Digitized Manufacturing," Journal of Manufacturing Technology Management. doi.org/10.1108/JMTM-11-2018-0417

Hofmann, E., H. Sternberg, H. Chen, A. Pflaum, and G. Prockl (2019). "Supply Chain Management and Industry 4.0: Conducting Research in the Digital Age," International Journal of Physical Distribution & Logistics Management 49(10): 945-955.

Horvath, D., and R. Z. Szabo (2019). "Driving Forces and Barriers of Industry 4.0: Do Multinational and Small and Medium-Sized Companies Have Equal Opportunities?," Technological Forecasting and Social Change 146: 119-132.

Ionescu, L. (2018). "Does Xi Jinping's Anti-corruption Campaign Really Support Clean and Transparent Government and Market Efficiency?," Geopolitics, History, and International Relations 10(1): 167-173.

Lee, J., I. Cameron, and M. Hassall (2019). "Improving Process Safety: What Roles for Digitalization and Industry 4.0?," Process Safety and Environmental Protection 132: 325-339.

Liu, B., and P. De Giovanni (2019). "Green Process Innovation through Industry 4.0 Technologies and Supply Chain Coordination," Annals of Operations Research. doi: 10.1007/s10479-019-03498-3

Lu, H., L. Guo, M. Azimi, and K. Huang (2019). "Oil and Gas 4.0 Era: A Systematic Review and Outlook," Computers in Industry 111: 68-90.

Mengoli, S., V. Odorici, and S. Gudjonsson (2017). "The Scorpion Who Stings the Dog Who Bites: The Effect of Women's Different Job Positions on Gender Discrimination in Microfinance," Journal of Research in Gender Studies 7(1): 137-165.

Moeuf, A., S. Lamouri, R. Pellerin, S. Tamayo-Giraldo, E. Tobon-Valencia, and R. Eburdy (2019). "Identification of Critical Success Factors, Risks and Opportunities of Industry 4.0 in SMEs," International Journal of Production Research. doi: 10.1080/00207543.2019.1636323

Nica, E. (2015). "Labor Market Determinants of Migration Flows in Europe," Sustainability 7(1): 634-647.

Nica, E. (2018a). "The Social Concretisation of Educational Postmodernism," Educational Philosophy and Theory 50(14): 1659-1660.

Nica, E. (2018b). "Will Robots Take the Jobs of Human Workers? Disruptive Technologies that May Bring About Jobless Growth and Enduring Mass Unemployment," Psychosociological Issues in Human Resource Management 6(2): 56-61.

Popescu, G. H., N. Istudor, E. Nica, J.-V. Andrei, and R. A. Ion (2017a). "The Influence of Land-use Change Paradigm on Romania's Agro-food Trade Competitiveness--An Overview," Land Use Policy 61: 293-301.

Popescu, G. H., V. Sima, E. Nica, and I. G. Gheorghe (2017b). "Measuring Sustainable Competitiveness in Contemporary Economies--Insights from European Economy," Sustainability 9(7): 1230.

Rossit, D. A., F. Tohme, and M. Frutos (2019). "An Industry 4.0 Approach to Assembly Line Resequencing," The International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-019-03804-0

Sandal, M., and J. Krupka (2018). "Quality of Life Evaluation as Decision Support in Public Administration for Innovation and Regions' Development," Administratie si Management Public 30: 51-66.

Tang, C. S., and L. P. Veelenturf (2019). "The Strategic Role of Logistics in the Industry 4.0 Era," Transportation Research Part E: Logistics and Transportation Review 129: 1-11.

Tortorella, G. L., A. M. C. Vergara, J. A. Garza-Reyes, and R. Sawhney (2020). "Organizational Learning Paths Based upon Industry 4.0 Adoption: An Empirical Study with Brazilian Manufacturers," International Journal of Production Economics 219: 284-294.

Valaskova, K., T. Kliestik, and M. Kovacova (2018). "Management of Financial Risks in Slovak Enterprises Using Regression Analysis," Oeconomia Copernicana 9(1): 105-121.

Veile, J., D. Kiel, J. Muller, and K. Voigt (2019). "Lessons Learned from Industry 4.0 Implementation in the German Manufacturing Industry," Journal of Manufacturing Technology Management. doi: 10.1108/JMTM-08-2018-0270

	ent categories (%) Digital Masters	Conservatives	Beginne
	88	67	46
Focused transformation such as operating model transformation, people transformation, and infrastructure transformation etc.	72	40	19
Partnership with tech providers for feasibility study	70	58	33
	67	49	15
	58	52	34

Clive Lafferty

at AAER, Manchester, England

Received 19 August 2019 * Received in revised form 7 December 2019

Accepted 8 December 2019 * Available online 15 December 2019

doi:10.22381/EMFM14420192

Mobile Internet, cloud technology	82
Processing power, big data	76
New energy supplies and technologies	69
Internet of Things	62
Sharing economy, crowdsourcing	54
Robotics, autonomous transport	48
Artificial intelligence	36
Advanced manufacturing, 3D printing	22
Advanced materials, biotechnology	19

Sources: WEF; my survey among 4,200 individuals conducted June 2019.

Table 2 How important are the following data analytics skills and how well are they integrated in your company? (%)

	Important/Very important	All skills on board
Data science	94	26
Project management and	91	69
implementation		
Machine learning techniques	86	37
and algorithms		
Industrial process know-how	77	42
Cloud/Data storage	76	41
Computer engineering/	74	38
programming		
IoT/M2M infrastructure	72	21
Business intelligence	67	46
Enterprise system integration	66	29

Sources: DAA; IoT Analytics GmbH; my survey among 4,200 individuals conducted June 2019.

Table 6 What area(s) do you plan on investing in Industry 4.0? (%)	
Finance	6
R&D	48
Logistics	37
Production	76
Maintenance	42
Sales	28
IT	46
Don't know	2
Other (please specify)	3
Sources: The Manufacturer; Oracle; my survey among 4,200 individuals cond	lucted June 2019.

Table 3 Which statement best describes your supply chain integration by digital maturity level? (%)

Digital Digital Digital Digital Novice Follower Innovator Champion

Isolated solutions and optimization of individual processes	34	36	25	5
Internal functions are integrated\and close	29	36	12	23
collaboration Digitally connected with external partners, integrated platforms for collaboration	2	10	59	29
Near-real-time end-to-end integration and planning platforms across external network	2	3	35	60

Sources: PwC; my survey among 4,200 individuals conducted June 2019.

Table 4 Which role do the following technologies play in your industrial data analysis? (%)

Spreadsheets	57
Advanced analytics platforms	52
Business intelligence tools	44
Predictive analytics tools	36
Simulation tools	35
Statistical package	34
Artificial intelligence	29
Event/Streaming analytics tools	27
Cognitive analytics	22
Edge/Fog Analytics	17

Sources: DAA; IoT Analytics GmbH; my survey among 4,200 individuals conducted June 2019.

Table 5 Smart factory transformation approach taken by players in different categories (%)

	Digital Mas	sters Conservative	es
Business case and	88	67	
roadmap definition by			
consulting firms			
Focused transformation such as	72	40	
operating model transformation,			
people transformation, and			
infrastructure transformation etc.			
Partnership with	70	58	
tech providers for			
feasibility study			
End-to-end technology	67	49	
solutions (e.g. Industrial			
IoT connecting all key			
manufacturing process etc.)			

Business case and 46 roadmap definition by consulting firms Focused transformation such as 19 operating model transformation, people transformation, and infrastructure transformation etc. Partnership with 33 tech providers for feasibility study		Beginners
consulting firms Focused transformation such as 19 operating model transformation, people transformation, and infrastructure transformation etc. Partnership with 33 tech providers for		46
operating model transformation, people transformation, and infrastructure transformation etc. Partnership with 33 tech providers for		
infrastructure transformation etc. Partnership with 33 tech providers for		19
Partnership with 33 tech providers for		
feasibility study	Partnership with	33
	feasibility study	

End-to-end technology solutions (e.g. Industrial IoT connecting all key manufacturing process etc.)

Sources: Capgemini; my survey among 4,200 individuals conducted June 2019.

Table 6 What area(s) do you plan on investing in Industry 4.0? (%)

Finance	6
R&D	48
Logistics	37
Production	76
Maintenance	42
Sales	28
IT	46
Don't know	2
Other (please specify)	3

Sources: The Manufacturer; Oracle; my survey among 4,200 individuals conducted June 2019.

Table 7 Net growth in work involving more application of expertise, interaction, and management (total work hours by activity type):

	Displaced	Added	Net change
	hours	hours	in hours
Applying expertise	569	2,293	1,724
Interacting with stakeholders	756	1,658	902
Managing and developing people	152	977	824
Unpredictable physical activities	1,054	1,198	144
Processing data	2,678	1,411	1,267
Collecting data	3,413	1,906	1,507
Predictable physical	3,097	1,521	1,576

Sources: ONET skill classification, US BLS; McKinsey Global Institute analysis; my 2019 data.

Abstract:

Empirical evidence on sustainable Internet-of-Things-based manufacturing systems has been scarcely documented in the literature. Using and replicating data from Capgemini, DAA, IoT Analytics GmbH, The Manufacturer, McKinsey, Oracle, PwC, US BLS, and WEF, I performed analyses and made estimates regarding smart factory transformation approach taken by players in different categories (%) and drivers of technological change and time to impact on employee skills (%). Data were analyzed using structural equation modeling.

JEL codes: E24; J21; J54; J64

Keywords: Internet of Things; manufacturing system; big data; smart production

Lafferty, Clive

	Displaced hours	Added hours	Net change in hours
Applying expertise	569	2,293	1,724
Interacting with stakeholders	756	1,658	902
Managing and developing people	152	977	824
Unpredictable physical activities	1,054	1,198	144
Processing data	2,678	1,411	1,267
Collecting data	3,413	1,906	1,507
Predictable physical	3,097	1,521	1,576

Copyright: COPYRIGHT 2019 Addleton Academic Publishers

http://www.addletonacademicpublishers.com/economics-management-and-financial-markets/journals/emfm/about-the-journal.html

Source Citation

Lafferty, Clive. "Sustainable Internet-of-Things-based Manufacturing Systems: Industry 4.0 Wireless Networks, Advanced Digitalization, and Big Data-driven Smart Production." *Economics, Management, and Financial Markets*, vol. 14, no. 4, Dec. 2019, pp. 16+. *Gale Academic OneFile*, link.gale.com/apps/doc/A611435438/AONE?u=fub&sid=bookmark-AONE&xid=2b86f0bd. Accessed 4 May 2022.

Gale Document Number: GALE|A611435438