

2015 (I) गणित विज्ञान प्रश्न पत्र

पूर्णांक : 200 अंक

समय : 3:00 घंटे

अनुदेश

- 1. आपने हिन्दी को माध्यम चुना है । इस परीक्षा पुरितका में एक सौ बीस (20 भाग 'A' में + 40 भाग 'B' + 60 भाग 'C' में) बहुल विकल्प प्रश्न (MCQ)दिए गए हैं । आपको भाग 'A' में से अधिकतम 15 और भाग 'B' में 25 प्रश्नों तथा भाग 'C' में से 20 प्रश्नों के उत्तर देने हैं । यदि निर्धारित से अधिक प्रश्नों के उत्तर दिए गए तब केवल पहले भाग 'A' से 15, भाग 'B' से 25 तथा भाग 'C' से 20 उत्तरों की जांच की जाएगी ।
- 2. औ॰ एम॰ आर॰ उत्तर पत्रक अलग से दिया गया है। अपना रोल नम्बर और केन्द्र का नाम लिखने से पहले यह जांच लीजिए कि पुस्तिका में पृष्ठ पूरे और सही हैं तथा कहीं से कटे-फटे नहीं हैं। यदि ऐसा है तो आप इन्विजीलेटर से उसी कोड़ की पुस्तिका बदलने का निवेदन कर सकते हैं। इसी तरह से औ॰ एम॰ आर॰ उत्तर पत्रक को भी जांच लें। इस पुस्तिका में रफ काम करने के लिए अतिरिक्त पन्ने संलग्न हैं।
- 3. ओ. एम. आर. उत्तर पत्रक कें पृष्ठ 1 में दिए गए स्थान पर अपना रोल नम्बर, नाम तथा इस परीक्षा पुस्तिका का क्रमांक लिखिए, साथ ही अपना हस्ताक्षर भी अवश्य करें ।
- 4. आप अपनी ओ॰एम॰आर॰ उत्तर पत्रक में रोल नंबर, विषय कोड, पुस्तिका कोड और केन्द्र कोड से संबंधित समुचित वृतों को काले वॉल पेन से अवश्य काला करें। यह एक मात्र परीक्षार्थी की जिम्मेदारी है कि वह ओ॰एम॰आर॰ उत्तर पत्रक में दिए गए निर्देशों का पूरी सावधानी से पालन करें, ऐसा न करने पर कम्प्यूटर विवरणों का सही तरीके से अकूटित नहीं कर पाएगा, जिससे अंततः आपको हानि, जिससे आपकी ओ॰एम॰आर॰ उत्तर पत्रक की अस्वीकृति भी शामिल, हो सकती है।
- 5. भाग 'A' में प्रत्येक प्रश्न 2 अंक , भाग 'B' में प्रत्येक प्रश्न के 3 अंक तथा भाग 'C' में प्रत्येक प्रश्न 4.75 अंक का है । प्रत्येक गलत उत्तर का ऋणात्मक मूल्यांकन भाग 'A' में @ 0.5 अंक तथा भाग 'B' में @ 0.75 अंक से किया जाएगा । भाग 'C' के उत्तरों के लिए ऋणात्मक मूल्यांकन नहीं है ।
- 6. भाग 'A' तथा भाग 'B' के प्रत्येक प्रश्न के नीचे चार विकल्प दिए गए हैं । इनमें से केवल एक विकल्प ही "सही" अथवा "सर्वोत्तम हल" है । आपको प्रत्येक प्रश्न का सही अथवा सर्वोत्तम हल बूंढना है । भाग 'C' में प्रत्येक प्रश्न का "एक" या "एक से अधिक" विकल्प सही हो सकते हैं । भाग 'C' में प्रत्येक प्रश्न के सभी विकल्पों का सही चयन करने पर ही क्रेडिट प्राप्त होगा । सब सही विकल्पों का चयन नहीं करने पर कोइ आंशिक क्रेडिट नहीं दिया जाएगा ।
- 7. नकल करते हुए या अनुचित तरीकों का प्रयोग करते हुए पाए जाने वाले परीक्षार्थियों का इस और अन्य भावी परीक्षाओं के लिए अयोग्य ठहराया जा सकता है ।
- 8. परीक्षार्थी को उत्तर या रफ पन्नों के अतिरिक्त कहीं और कुछ भी नहीं लिखना चाहिए ।
- 9. केलकूलेटर का उपयोग करने की अनुमित नहीं है ।
- 10. परीक्षा समाप्ति पर छिद्र बिन्दु चिन्हित स्थान से OMR उत्तर पत्रक को विभाजित करें। इन्चिजीलेटर को मूल OMR उत्तर पत्रक सौंपने के पश्चात आप इसकी कॉर्बनलैस प्रतिलिपि ले जा सकते हैं।
- 11. हिन्दी माध्यम/संस्करण के प्रश्न में विसंगति होने/पाये जाने पर अंग्रेजी संस्करण प्रमाणिक होगा ।
- 12. केवल परीक्षा की पूरी अवधि तक बैठने वाले परीक्षार्थी को ही परीक्षा पुस्तिका साथ ले जाने की अनमति दी जाएगी ।

रोल	नंबर :		٠.													
नाम	:															
OMI	र जल	7 4	79	5	7	6/	7		 				•		2	Ī

अभ्यर्थी द्वारा भरी गई जानकारी को मैं सत्यापित करता हूँ । रफ कार्य/ROUGH WORK

भाग /PART 'A'

1. निम्न दिये गये व्यवस्थात्मक चित्र में कोण x का क्या मान है?

- 1. 60
- 2. 50
- 3. 40
- 4. 30
- 1. What is angle *x* in the schematic diagram given below?

- 1. 60
- 2. 50
- 3. 40
- 4. 30
- 2. रास्ते पर विराम करते हुए एक 4 मीटर लंबे ट्रक को एक 3 मीटर लंबी कार पार करती है। कार की गति 7 m/s है। पार करने का समय है
 - 1. 4/7 s
- 2. 1 s
- 3. 7/4 s
- 4. 10/7 s
- 2. A 3 m long car goes past a 4 m long truck at rest on the road. The speed of the car is 7 m/s. The time taken to go past is
 - 1. 4/7 s
- 2. 1 s
- 3. 7/4 s
- 4. 10/7 s

3. तीन व्यक्तियों A, B तथा C में एक हमेशा झूठ बोलता है तथा बाकी हमेशा सच। C ने A से पूछा, "क्या तुम हमेशा सच बोलते हो, हां या ना?" A ने कुछ कहा परंतु C उत्तर को सुन नहीं पाया। तो C ने B से पूछा, "A ने क्या उत्तर दिया?"

B ने जवाब दिया, "A ने कहा ना" तो झूठा कौन है?

- 1. A
- 2. B
- 3. C
- 4. अनिर्धारित
- 3. Of three persons A, B and C, one always lies while the others always speak the truth. C asked A, "Do you always speak the truth, yes or no?" He said something that C could not hear. So, C asked B, "what did A say?" B replied, "A said No".

 So, who is the liar?
 - 1. A
- 2. B
- 3. C
- 4. cannot be determined
- 4. पृथ्वी के गिर्द, भूमध्यरेखा के समांतर लपेटी गयी 10 मीटर चौड़ी तीन समांतर पहियों के बारे में विचारें: भूमध्यरेखा पर A₁, कर्क रेखा पर A₂ तथा आर्कटिक वृत्त पर A₃ । पट्टियों के क्षेत्रफलों का क्रम है
 - 1. $A_1 \le A_2 \le A_3$
- 2. $A_1 = A_2 > A_3$
- 3. $A_1 > A_2 = A_3$
- 4. $A_1 > A_2 > A_3$
- 4. Consider 3 parallel strips of 10 m width running around the Earth, parallel to the equator; A₁ at the Equator, A₂ at the Tropic of Cancer and A₃ at the Arctic Circle. The order of the areas of the strips is
 - 1. $A_1 < A_2 < A_3$
- 2. $A_1 = A_2 > A_3$
- 3. $A_1 > A_2 = A_3$
- 4. $A_1 > A_2 > A_3$
- 5. एक पिरामिइ आकार वाला खिलौना 1 × 1 × 1 cm³ वाले घन खण्डों को कसकर व्यवस्थित करके बनाया जाता है। खिलौने एक की पेंदा 4 × 4 cm² का एक वर्ग है। हर सीढ़ी की चौड़ाई 0.5 cm है। खिलौना बनाने कितने खण्डों की आवश्यकता है?
 - 1. 30

2. 34

3. 36

4. 40

5.	A pyramid shaped toy is made by tightly
	placing cubic blocks of $1 \times 1 \times 1$ cm ³ . The
	base of the toy is a square 4×4 cm ² . The
	width of each step is 0.5 cm. How many
	blocks are required to make the toy?

1. 30

2. 34

3. 36

4. 40

एक एक-कोशिकायी गोल जीव आयतन में 70% जल से बना है। यदि उसके जल अंतर्विष्टि में 10% का नुकसान होता है, तो उसके क्षेत्रफल में लगभग कितना परिवर्तन होगा?

1. 3%

2. 5%

3. 6%

4. 7%

6. A single celled spherical organism contains 70% water by volume. If it loses 10% of its water content, how much would its surface area change by approximately?

1. 3%

2. 5%

3. 6%

4. 7%

 आमने सामने स्थित दो समतल दर्पण आपस में 60° कोण पर रखे जाते हैं। कोण अर्धक पर बिंदु A स्थित है। बिंदु के प्रतिबिंबों की संख्या है:

1. 6

2.

3. 5

4. अनंत

 Two plane mirrors facing each other are kept at 60° to each other. A point is located on the angle bisector. The number of images of the point is

1. 6

2.

3. 5

Infinite

8. मानें कि

(1) x = 4

(2) तो $x - 4 = x^2 - 4^2$ (क्योंकि दोनों पथ शून्य हैं)

(3) 3π : (x-4) = (x-4)(x+4)दोनों पथों में (x-4) को हटाकर,

(4) 1 = (x + 4)

(5) तो x = -3

कौन सा कदम गलत है?

1. 1 社 2

2. 2 社 3

3. 3 से 4

4. 4 社 5

8. Suppose

(1) x = 4

(2) Then $x - 4 = x^2 - 4^2$ (as both sides are zero)

(3) Therefore (x-4) = (x-4)(x+4)Cancelling (x-4) from both sides

 $(4) \quad 1 = (x+4)$

(5) Then x = -3 Which is the wrong step?

1. 1 to 2

2. 2 to 3

3. 3 to 4

4. 4 to 5

9. मानें कि m तथा n दो धन पूर्णांक हैं ताकि m+n+mn=118 तो m+n का मान है

1. अद्वितीयतः निर्धारित नहीं होगा

2. 18

3. 20

4. 22

9. Let m and n be two positive integers such that m + n + mn = 118Then the value of m + n is

1. not uniquely determined

2. 18

3. 20

4. 22

10. 40 खिलाडियों के एक समूह से 11 खिलाडियों का एक क्रिकेट टीम को चुनना है। फिर उनमें से एक को टीम के कप्तान के रूप में चुनना है। इसको करने के तरीक़ों की कुल संख्या है: [निम्न में $\binom{m}{n}$ का मतलब है, m चीजों से n चीजों को चुनने के कुल तरीके]

1. $\binom{40}{11}$

 $2. \quad 11 \binom{40}{11}$

3. $29\binom{40}{11}$

4. $\binom{39}{10}$

10. From a group of 40 players, a cricket team of 11 players is chosen. Then, one of the eleven is chosen as the captain of the team. The total number of ways this can be done is

	below means the number of ways n
objects	s can be chosen from m objects]

1. $\binom{40}{11}$

2. $11\binom{40}{11}$

3. $29\binom{40}{11}$

4. $\binom{39}{10}$

11. मैंने एक कमीज 10% छूट पर खरीदी तथा उसे एक दोस्त को 10% नुकसान पर बेच दी। कमीज के लिए यदि दोस्त ने मुझे Rs. 729.00 दिए, तो कमीज़ का बिना कोई छूट का क्या मूल्य था?

1. Rs. 900

2. Rs. 800

. Rs. 1000

4. Rs. 911.25

11. I bought a shirt at 10% discount and sold it to a friend at a loss of 10%. If the friend paid me Rs. 729.00 for the shirt, what was the undiscounted price of the shirt?

1. Rs. 900

2. Rs. 800

3. Rs. 1000

4. Rs. 911.25

12. मर्तबान 'स' में 40 सफेद गोलियां हैं तथा मर्तबान 'क' में 40 काली गोलियां हैं। 'क' से दस काली गोलियों को 'स' में स्थानांतरित करके उसे पूरी तरह मिलाया जाता है। अब 'स' से यादच्छिकत: चुनी गयी दस गोलियों को 'क' में वापस किया जाता है ताकि हर मर्तबान में चालीस गोलियां हैं। 'स' में काली गोलियों की संख्या है

- 1. 'क' में सफेद गोलियों की संख्या के समान
- 2. 'क' में सफेद गोलियों की संख्या से अधिक
- 3. 'क' में सफेद गोलियों की संख्या से कम
- 4. दी गयी सूचना से अनिर्धारित

12. Jar W contains 40 white marbles and jar B contains 40 black marbles. Ten black marbles from B are transferred to W and mixed thoroughly. Now, ten randomly selected marbles from W are put back in Jar B to make 40 marbles in each jar. The number of black marbles in W

- would be equal to the number of white marbles in B
- would be more than the number of white marbles in B

would be less than the number of white marbles in B

 cannot be determined from the information given

13. 10,000 से कम ऐसी कितनी अऋण संख्यायें हैं ताकि उनके हर एक के अंकों का योगफल तीन से विभाजनीय है?

1. 1112

2. 2213

3. 2223

4. 3334

13. How many non-negative integers less than 10,000 are there such that the sum of the digits of the number is divisible by three?

1. 1112

2. 2213

3. 2223

4. 3334

14. ਧਿੱਟ $aN \Rightarrow S$ $eF \Rightarrow I$ $gH \Rightarrow M$

हैं, तो nS ⇒ ?

1. T

2. A

3. L

4. K

14. If $aN \Rightarrow S$ $eF \Rightarrow I$ $gH \Rightarrow M$ then $nS \Rightarrow ?$

1. T

2. A

3. L

4. K

15. निम्न शब्दों के समूहों में, हर एक में एक संख्या छिपी हुई है, जिसके आधार पर आपको उन्हें आरोही क्रम में व्यवस्थित करना है। सही उत्तर को पहचानें:

A. प्रतिज्ञा रहती है

B. चुनौती अस्वीकार करो

C. कछुआ, ठप्पा आकार का

D. पद समारोह

1. A, B, C, D

2. C, B, D, A

3. A, C, D, B

4. C, D, B, A

- 15. In each of the following groups of words is a hidden number, based on which you should arrange them in ascending order. Pick the right answer:
 - A. Tinsel event
 - B. Man in England
 - C. Good height
 - D. Last encounter
 - 1. A, B, C, D
- 2. C, B, D, A
- 3. A, C, D, B
- 4. C, D, B, A

16.

त्रिज्या R के एक वृत्तीय वलय में दो व्यासत: उल्टी बिंदुओं A तथा B पर स्थित दो चींटियां एक दूसरे की और रेंगना शुरू करती हैं। A पर स्थित चींटी की गति, B पर स्थित चींटी की गति की तुलना में आधा है। वह बिंदु जहां वे मिलेंगी, सरल रेखीय दूरी

- 1. A से R पर है 2. A से $\frac{3R}{2}$ पर है 3. B से R पर है 4. B से $\frac{3R}{2}$ पर है

16.

Two ants, initially at diametrically opposite points A and B on a circular ring of radius R, start crawling towards each other. The speed of the one at A is half of that of the one at B. The point at which they meet is at a straight line distance of

- 1. R from A
- 3. R from B
- 2. $\frac{3R}{2}$ from A 4. $\frac{3R}{2}$ from B

- 17. बिंदु A से शुरू करते हुये आप एक मील दक्षिण की तरफ उडते हैं, फिर एक मील पूर्व की ओर, और एक मील उत्तर दिशा में, जो आपको बिन्दु A पर वापस ला देता है। बिंदु A उत्तरी धुव नहीं है। निम्न में से क्या आवश्यकतः सच है?
 - 1. आप उत्तरी गोलार्ध में हैं।
 - 2. आप पूर्वी गोलार्ध में हैं।
 - 3. आप पश्चिमी गोलार्ध में हैं।
 - आप दक्षिणी गोलार्ध में हैं।
- 17. Starting from a point A you fly one mile south, then one mile east, then one mile north which brings you back to point A. Point A is NOT the north pole. Which of the following MUST be
 - 1. You are in the Northern Hemisphere
 - 2. You are in the Eastern Hemisphere
 - 3. You are in the Western Hemisphere
 - 4. You are in the Southern Hemisphere
- 18. DNA में स्चना 4 क्षारकों, अर्थात् A, T, G तथा C के अनुक्रम के रूप में है। G तथा C के अनुपात समान हैं, तथा A एवं T के अनुपात भी समान हैं। निम्न DNA रज्जुकों में से किसकी संभवत: उच्चतम विविधता होगी (अर्थात् हर क्षारक के लिए उच्चतम सचना अंतर्विष्टि)?
 - लंबाई 1000 वाले क्षारक, 10% G युक्त
 - लंबाई 2000 वाले क्षारक, 10% A युक्त
 - लंबाई 2000 वाले क्षारक, 40% T युक्त
 - लंबाई 1000 वाले क्षारक, 25% C युक्त
- Information in DNA is in the form of sequence of 4 bases namely A, T, G and C. The proportion of G is the same as that of C, and that of A is the same as that of T. Which of the following strands of DNA will potentially have maximum diversity (i.e., maximum information content per base)?
 - length 1000 bases with 10% G
 - length 2000 bases with 10% A
 - length 2000 bases with 40% T
 - length 1000 bases with 25% C

19. AB एक वृत्त का व्यास है। जीवा CD, AB से लंब है तथा उसे P पर प्रतिच्छेद करता है। यदि CP = 2 तथा PB = 1 है, तो वृत्त की त्रिज्या है

- 1. 1
- 2. 2.5
- 4.
- 19. AB is the diameter of a circle. The chord CD is perpendicular to AB intersecting it at P. If CP = 2 and PB = 1, the radius of the circle is

- 1. 1
- 2. 2.5
- 3. 2
- 2.
 4.
 5

20

रेखाचित्र के आधार पर तय करें कि निम्न कथनों में से कौन-सा सही नहीं है?

- जभी पदकों की कुल संख्या में वृद्धि हुई, स्वर्ण पदकों की संख्या बढी।
- 2006 की तुलना में स्वर्ण पदकों में 2010 में हुई प्रतिशत वृद्धि, कुल पदकों में हुई संगत वृद्धि से अधिक है।
- हर बार स्वर्णतर पदकों की संख्या, कुल पदकों की संख्या के 50% से ऊपर का हिसाब रखती है।
- 4. 2006 की तुलना में 2010 में स्वर्ण पदकों में हुई प्रतिशत वृद्धि, 1998 की तुलना में 2002 में हुई संगत वृद्धि से अधिक है।

20.

Based on the graph, which of the following statements is NOT true?

- Number of gold medals increased whenever total number of medals increased
- Percentage increase in gold medals in 2010 over 2006 is more than the corresponding increase in total medals
- Every time non-gold medals together account for more than 50% of the total medals
- 4. Percentage increase in gold medals in 2010 over 2006 is more than the corresponding increase in 2002 over 1998

भाग \PART 'B'

UNIT - 1

- श्रेणी $\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \cdots$ का योगफल इस समान है:
 - 1. e

- The sum of the series $\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \cdots$ equals

2. $\frac{e}{2}$ 4. $1 + \frac{e}{2}$

22. सीमांत

$$\lim_{x\to 0} \frac{1}{x} \int_{x}^{2x} e^{-t^2} dt$$

- 1. का अस्तित्व नहीं है।
- 2. अनंत है।
- 3. का अस्तित्व है तथा 1 के समान है।
- 4. का अस्तित्व है तथा 0 के समान है।
- 22. The limit

$$\lim_{x\to 0}\frac{1}{x}\int\limits_{-\infty}^{2x}e^{-t^2}\,dt$$

- 1. does not exist.
- 2. is infinite.
- exists and equals 1.
- exists and equals 0.
- 23. \mathbb{R}^n के निम्न उपसम्चियों में से कौन-सा संहत है? $(\mathbb{R}^n$ की सामान्य सांस्थितिकी के संदर्भ में)
 - 1. $\{(x_1, x_2, ..., x_n): |x_i| < 1, 1 \le i \le n\}$
 - 2. $\{(x_1, x_2, ..., x_n): x_1 + x_2 + \cdots + x_n = 0\}$
 - 3. $\{(x_1, x_2, ..., x_n) : x_i \ge 0, 1 \le i \le n\}$
 - $\{(x_1, x_2, \dots, x_n): 1 \le x_i \le 2^i, 1 \le i \le n\}$
- Which of the following subsets of \mathbb{R}^n is compact (with respect to the usual topology of \mathbb{R}^n)?

- 1. $\{(x_1, x_2, ..., x_n): |x_i| < 1, 1 \le i \le n\}$
- 2. $\{(x_1, x_2, ..., x_n): x_1 + x_2 + \cdots + x_n = 0\}$
- 3. $\{(x_1, x_2, ..., x_n): x_i \ge 0, 1 \le i \le n\}$
- 4. $\{(x_1, x_2, ..., x_n): 1 \le x_i \le 2^i,$ $1 \le i \le n$
- 24. मार्ने कि $f: X \to X$ ताकि सभी $x \in X$ के लिए f(f(x)) = x है। तो
 - f एकैकी तथा आच्छादक है
 - 2. f एकैकी है, परंत् आच्छादक नहीं।
 - 3. f आच्छादक है परंतु एकैकी नहीं।
 - 4. यह जरूरी नहीं है कि f आच्छादक या एकैकी हो।
- 24. Let $f: X \to X$ such that f(f(x)) = x for all $x \in X$. Then
 - 1. *f* is one-to-one and onto.
 - 2. *f* is one-to-one, but not onto.
 - 3. *f* is onto but not one-to-one.
 - f need not be either one-to-one or onto.
- 25. वास्तविक गुणांकों वाले विषम घात के एक बह्पद का होना चाहिए
 - कम-से-कम एक वास्तविक मुल।
 - 2. कोई वास्तविक मूल नहीं।
 - 3. केवल वास्तविक मूल।
 - 4. कम-से-कम एक मूल जो वास्तविक नहीं है।
- 25. A polynomial of odd degree with real coefficients must have
 - 1. at least one real root.
 - no real root.
 - only real roots.
 - at least one root which is not real.
- **26**. मानें कि \mathbb{R} पर f'' 2f' + f = 0 का समाधान करते ह्ये दो बार अवकलनीय फलनों की समष्टि । है। परिभाषित करें कि $T: V \to \mathbb{R}^2$,
 - T(f) = (f'(0), f(0)) के दवारा। तो T है
 - एकैकी तथा आच्छादक।
 - 2. एकैकी परंत् आच्छादक नहीं।
 - 3. आच्छादक परंत् एकैकी नहीं।
 - 4. न तो आच्छादक, न एकैकी।

- 26. Let V be the space of twice differentiable functions on \mathbb{R} satisfying f'' - 2f' + f = 0. Define $T: V \to \mathbb{R}^2$ by T(f) = (f'(0), f(0)). Then T is
 - one-to-one and onto.
 - 2. one-to-one but not onto.
 - onto but not one-to-one.
 - 4. neither one-to-one nor onto.
- **27**. 20 × 50 आव्यूह A की पंक्ति समष्टि की विमा 13 है। Ax=0 के हलों की समष्टि की विमा क्या है?
 - 1. 7

2. 13

3. 33

- 4. 37
- 27. The row space of a 20×50 matrix A has dimension 13. What is the dimension of the space of solutions of Ax = 0?
 - 1. 7

2. 13

3. 33

- 4. 37
- 28. मार्ने कि A,B $n \times n$ आव्यूह हैं। निम्न में से कौन-सा (A²B²) के अनुरेख के समान है?
 - 1. $(trace(AB))^2$
- 2. $trace(AB^2A)$
- $trace((AB)^2)$
- 4. trace(BABA)
- 28. Let A, B be $n \times n$ matrices. Which of the following equals trace(A^2B^2)?
 - 1. $(\operatorname{trace}(AB))^2$
- 2. $trace(AB^2A)$
- 3. $trace((AB)^2)$
- 4. trace(BABA)
- 29. एक 4×4 वास्तविक आव्यूह A के दिये जाने पर, मानें कि $T: \mathbb{R}^4 \to \mathbb{R}^4$, Tv = Av, से परिभाषित एक रैखिक रूपांतरण है, जहां हम ℝ⁴ को 4×1 वास्तविक आव्यूहों का समुच्चय मानते हैं। A के लिए निम्न दिये गये विकल्पों में किसके लिए Image(T) तथा $Image(T^2)$ की विमार्थे क्रमशः 2 तथा । हैं? (* एक शून्येतर प्रविष्टि को निर्दिष्ट करता है)

Given a 4×4 real matrix A, let $T: \mathbb{R}^4 \to \mathbb{R}^4$ 29. be the linear transformation defined by Tv = Av, where we think of \mathbb{R}^4 as the set of real 4×1 matrices. For which choices of A given below, do Image(T) and $Image(T^2)$ have respective dimensions 2 and 1? (* denotes a nonzero entry)

मानें कि T एक 4×4 वास्तविक आव्यूह है ताकि 30. $T^4=0$ है। मानें कि $1\leq i\leq 4$ के लिए $k_i \coloneqq \dim \operatorname{Ker} T^i$ है। अनुक्रम $k_1 \le k_2 \le k_3 \le k_4$ के लिए निम्न में से कौन-सी एक संभावना नहीं 青?

- 1. $3 \le 4 \le 4 \le 4$. 2. $1 \le 3 \le 4 \le 4$.
- 4. $2 \le 3 \le 4 \le 4$.
- Let T be a 4×4 real matrix such that $T^4 = 0$. 30. Let $k_i := \dim Ker T^i$ for $1 \le i \le 4$. Which of the following is NOT a possibility for the sequence $k_1 \le k_2 \le k_3 \le k_4$?

- 1. $3 \le 4 \le 4 \le 4$. 2. $1 \le 3 \le 4 \le 4$. 3. $2 \le 4 \le 4 \le 4$. 4. $2 \le 3 \le 4 \le 4$.
- 31. निम्न में से कौन-सा \mathbb{R}^3 से \mathbb{R}^2 तक का एक रैखिक रूपांतरण है?
 - a. $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x+y \end{pmatrix}$ b. $g\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$
 - c. $h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z x \\ x + y \end{pmatrix}$
 - 1.
 - मात्र व

 - सभी रूपांतरण f,g तथा h

31. Which of the following is a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 ?

a.
$$f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x + y \end{pmatrix}$$

b.
$$g \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$$

c.
$$h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z - x \\ x + y \end{pmatrix}$$

- 1. only f.
- 2. only g.
- 3. only h.
- 4. all the transformations f, g and h.
- 32. मार्ने कि A , वास्तविक प्रविष्टियों वाला जाति n का $m \times n$ आव्यूह है। सही कथन को चुनें:
 - 1. किसी भी b के लिए Ax = b का एक हल है।
 - 2. Ax = 0 का कोई हल नहीं है।
 - 3. यदि Ax = b का एक हल है, तो वह अदितीय है।
 - 4. y'A = 0 किसी शून्येतर y के लिए, जहां y', सदिश y के परिवर्त को निर्दिष्ट करता है।
- 32. Let A be an $m \times n$ matrix of rank n with real entries. Choose the correct statement.
 - 1. Ax = b has a solution for any b.
 - 2. Ax = 0 does not have a solution.
 - 3. If Ax = b has a solution, then it is unique.
 - 4. y'A = 0 for some nonzero y, where y' denotes the transpose of the vector y.

UNIT - 2

33.

$$\int_{|z+1|=2} \frac{z^2}{4-z^2} dz =$$

1. 0.

- 2. $-2\pi i$.
- 3. $2\pi i$.
- 4. 1.

33.

$$\int_{|z+1|=2} \frac{z^2}{4-z^2} \, dz =$$

1. 0.

- 2. $-2\pi i$.
- 3. $2\pi i$.
- 4. 1.

34. समुच्चय

 $\{z \in \mathbb{C} \mid z^{60} = -1, z^k \neq -1 \text{ सभी } 0 < k < 60$ के लिए} के कितने अवयव हैं?

1. 24.

2. 30.

3. 32.

- 4. 45.
- 34. How many elements does the set $\{z \in \mathbb{C} \mid z^{60} = -1, z^k \neq -1 \text{ for } 0 < k < 60\}$ have?
 - 1. 24.
- 2. 30.

3. 32.

- 4. 45.
- 35. मानें कि, हर $n \ge 1$ के लिए, \mathbb{R}^2 पर C_n एक विवृत चक्रिका है, जिसका केन्द्र बिन्दु (n,0) तथा त्रिज्या n के समान है। तो

$$C = \bigcup_{n \ge 1} C_n$$

- 1. $\{(x,y)\in\mathbb{R}^2: x>0$ तथा $|y|< x\}$.
- 2. $\{(x,y)\in\mathbb{R}^2: x>0$ तथा $|y|<2x\}$.
- 3. $\{(x,y)\in\mathbb{R}^2: x>0$ तथा $|y|<3x\}$.
- $4. \quad \{(x,y)\in\mathbb{R}^2: x>0\}.$
- 35. Let, for each $n \ge 1$, C_n be the open disc in \mathbb{R}^2 , with centre at the point (n, 0) and radius equal to n. Then

$$C = \bigcup_{n \ge 1} C_n$$
 is

- 1. $\{(x,y)\in\mathbb{R}^2: x>0 \text{ and } |y|< x\}$.
- 2. $\{(x,y)\in\mathbb{R}^2: x>0 \text{ and } |y|<2x\}.$
- 3. $\{(x,y)\in\mathbb{R}^2: x>0 \text{ and } |y|<3x\}.$
- 4. $\{(x,y)\in\mathbb{R}^2: x>0\}.$
- 36. मानें कि $\mathbb C$ पर f एक वास्तविक मूल्यवाला प्रसंवादी फलन है, अर्थात्, f समीकरण $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ का समाधान करता है। फलनों

$$g = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}$$
$$h = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}$$

को परिभाषित करें। तो

- g तथा h, दोनों होलोमार्फिक फलन हैं।
- g होलोमार्फिक है, परंतु h के होलोमार्फिक होने की आवश्यकता नहीं है।
- h होलोमार्फिक है, परंतु g के होलोमार्फिक होने की आवश्यकता नहीं है।
- 4. दोनों g तथा h शून्य फलन के सर्वथासम हैं।
- **36**. Let f be a real valued harmonic function on \mathbb{C} , that is, f satisfies the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. Define the functions

$$g = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}$$
$$h = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}$$

Then

- g and h are both holomorphic functions.
- g is holomorphic, but h need not be holomorphic.
- 3. h is holomorphic, but g need not be holomorphic.
- 4. both g and h are identically equal to the zero function.
- 37. तुल्याकारिता तक, कोटि 108 के आबेली समूहों की संख्या है:
 - 1. 12.

2. 9.

5.

- 37. Up to isomorphism, the number of abelian groups of order 108 is:
 - 1. 12.

9. 2.

3. 6.

4. 5.

38. मार्ने कि D टूपिल्स् $(w_1,...,w_{10})$ का एक समुच्चय है, जहां $w_i \in \{1,2,3\}, 1 \le i \le 10$ तथा $w_i + w_{i+1}$ हर $i, 1 \le i \le 9$ के लिए एक सम संख्या है। तो D में अवयवों की संख्या है

1. $2^{11} + 1$.

 $2. \quad 2^{10} + 1.$

 $3. \quad 3^{10} + 1.$

4. $3^{11} + 1$.

38. Let D be the set of tuples $(w_1, ..., w_{10})$, where $w_i \in \{1,2,3\}, \ 1 \le i \le 10 \text{ and } w_i + w_{i+1} \text{ is an}$ even number for each i with $1 \le i \le 9$. Then the number of elements in D is

1. $2^{11} + 1$.

 $2. \quad 2^{10} + 1.$

 $3. \quad 3^{10} + 1.$

4. $3^{11} + 1$.

39. गणनसांख्यिकी 2100 युक्त एक क्षेत्र के उपक्षेत्रों की संख्या है:

1. 2.

2. 4.

4. 100.

39. The number of subfields of a field of cardinality 2100 is

1. 2.

2. 4.

3. 9. 100.

40. मार्ने कि R, वलय $\mathbb{Z}[x]/((x^2+x+1)(x^3+x+$ 1)) है तथा R में 2 से जनित ग्णजावली I है। वलय R की गणनसांख्यिकी क्या है?

1. 27.

3. 64. 4. अनंत

40. Let *R* be the ring $\mathbb{Z}[x]/((x^2 + x + 1)(x^3 + x^3))$ (x + 1)) and I be the ideal generated by 2 in R. What is the cardinality of the ring R?

27. 1.

32.

64.

4. Infinite.

UNIT - 3

41. दो भारहीन अवितान्य छड़ों AB तथा BC पर विचारें, जो A पर से टंगे हैं तथा B पर एक नम्य जोड़ से जुड़े हैं। तो निकाय की स्वातंत्र्य कोटि क्या 書?

1. 3

2. 4

3.

4.

- 41. Consider two weightless, inextensible rods AB and BC, suspended at A and joined by a flexible joint at B. Then the degrees of freedom of the system is
 - 1. 3

3. 5

- **42.** समाकल समीकरण $y(x) = \lambda \int_0^1 (3x 2)t \ y(t) dt$, एक प्राचल λ के साथ की
 - केवल एक अभिलक्षणिक संख्या है।
 - दो अभिलक्षणिक संख्यायें हैं।
 - दो से अधिक अभिलक्षणिक संख्यायें हैं।
 - कोई अभिलक्षणिक संख्या नहीं है।
- 42. The integral equation $y(x) = \lambda \int_0^1 (3x - 2)t \ y(t)dt$, with λ as a parameter, has
 - only one characteristic number
 - two characteristic numbers
 - more than two characteristic numbers
 - no characteristic number
- 43. प्रांरभिक मान समस्या $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(0, y) = 4e^{-2y}$ पर विचारें। तो u(1,1) का मान है:
 - 1. $4e^{-2}$

2. $4e^2$

- 4. 4e4
- 43. Consider the initial value problem $\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$, $u(0, y) = 4e^{-2y}$. Then the value of u(1,1) is
 - 1. $4e^{-2}$

2. 4e²

- 3. $2e^{-4}$
- 4. 4e4
- 44. मार्ने कि $f: \mathbb{R} \to \mathbb{R}, f(x) = a_0 + a_1 x + a_2 x^2$ रूपी एक बहुपद है, $a_0, a_1, a_2 \in \mathbb{R}$ तथा $a_2 \neq 0$ । यदि $E_1 = \int_{-1}^{1} f(x)dx - [f(-1) + f(1)],$ $E_2 = \int_{-1}^{1} f(x)dx - \frac{1}{2} (f(-1) + 2f(0) + f(1)) \stackrel{\text{H}}{\epsilon},$ तथा $|x|, x \in \mathbb{R}$ का निरपेक्ष मान है तो

 - 1. $|E_1| < |E_2|$ 2. $|E_1| = 2|E_2|$ 3. $|E_1| = 4|E_2|$ 4. $|E_1| = 8|E_2|$

44. Let $f: \mathbb{R} \to \mathbb{R}$ be a polynomial of the form $f(x) = a_0 + a_1 x + a_2 x^2$ with $a_0, a_1, a_2 \in \mathbb{R}$ and $a_2 \neq 0$. If

 $E_1 = \int_{-1}^1 f(x)dx - [f(-1) + f(1)],$

 $E_2 = \int_{-1}^{1} f(x)dx - \frac{1}{2} (f(-1) + 2f(0) + f(1))$

and |x| is the absolute value of $x \in \mathbb{R}$, then

- 1. $|E_1| < |E_2|$ $|E_1| \leq |E_2|$ $|E_1| = 4|E_2|$
- 2. $|E_1| = 2|E_2|$ 4. $|E_1| = 8|E_2|$

- **45.** प्रारंभिक मान समस्या $y' = 2\sqrt{y}, \ y(0) = a$
 - 1. का एक अद्वितीय हल है यदि a < 0
 - 2. का कोई हल नहीं है यदि a > 0
 - 3. के अनंतत: कई हल हैं यदि a = 0
 - 4. का एक अद्वितीय हल है यदि $a \ge 0$
- 45. The initial value problem $y' = 2\sqrt{y}$, y(0) =
 - 1. a unique solution if a < 0
 - 2. no solution if a > 0
 - 3. infinitely many solutions if a = 0
 - 4. a unique solution if $a \ge 0$
- 46. मार्ने कि $a,b \in \mathbb{R}$ ताकि $a^2 + b^2 \neq 0$. तो कौशी

$$a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} = 1; x, y \in \mathbb{R}$$

u(x,y)=x, ax+by=1 पर, का

- 1. एक से अधिक हल हैं यदि a या b शून्य है।
- 2. कोई हल नहीं है।
- 3. एक अद्वितीय हल है।
- 4. अनंततः कई हल हैं।
- **46.** Let $a, b \in \mathbb{R}$ be such that $a^2 + b^2 \neq 0$. Then the Cauchy problem

$$a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} = 1; \ x, y \in \mathbb{R}$$

 $u(x, y) = x \text{ on } ax + by = 1$

- 1. has more than one solution if either a or b is zero
- 2. has no solution
- has a unique solution
- 4. has infinitely many solutions

- 47. मानें कि प्रांरभिक मान समस्या $y' + 2y = f(x), \quad y(0) = 0, \text{ जहां}$ $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$ का एक संतत हल y(x) है। तो $y\left(\frac{3}{2}\right)$ इसके समान है:

47. Let y(x) be a continuous solution of the initial value problem

 $y' + 2y = f(x), \quad y(0) = 0,$

where $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$.

Then $y\left(\frac{3}{2}\right)$ is equal to

sinh (1)

48. ODE

 $(xy'-y)^2 = x^2(x^2-y^2)$ का विचित्र समाकल है:

- 1. $y = x \sin x$
- $2. y = x \sin(x + \frac{\pi}{4})$
- 3. y = x4. $y = x + \frac{\pi}{4}$
- 48. The singular integral of the ODE $(xy'-y)^2 = x^2(x^2-y^2)$ is
 - 1. $y = x \sin x$
 - $y = x \sin(x + \frac{\pi}{4})$
 - y = x
 - $y = x + \frac{\pi}{4}$

UNIT - 4

49. $\{N(t): t \ge 0\}$ एक प्वासों प्रक्रिया है, गति $\lambda > 0$ युक्त। मार्ने कि $X_n=N(n),\, n=0,1,2,\cdots$ । निम्न में से कौन सा सही है?

- $\{X_n\}$ एक क्षणिक मॉर्कीव शृंखला है।
- {Xn} एक पुनरावर्ती मार्कोव शृंखला है, परंत् उसका कोई स्तब्ध बंटन नहीं है।
- $\{X_n\}$ का एक स्तब्ध बंटन है।
- $\{X_n\}$ एक अलघुकरणीय मार्कोव शृंखला है।
- **49**. $\{N(t): t \ge 0\}$ is a Poisson process with rate $\lambda > 0$. Let $X_n = N(n)$, $n = 0,1,2,\cdots$ Which of the following is correct?
 - $\{X_n\}$ is a transient Markov chain.
 - $\{X_n\}$ is a recurrent Markov chain, but has no stationary distribution.
 - 3. $\{X_n\}$ has a stationary distribution.
 - $\{X_n\}$ is an irreducible Markov chain.
- 50. 6 छिद्रों में दस गेंद याद्दिछकत: डाले जाते हैं। तो दो अग्रांत छिद्रों पर गेंदों की कुल प्रत्याशित संख्या 考:
 - 1. 10/6.

2. 10/3.

3. 1/6.

4. 6/10.

- 50. Ten balls are put in 6 slots at random. Then the expected total number of balls in the two extreme slots is
 - 1. 10/6.

2. 10/3.

3. 1/6.

4. 6/10.

- 51. मार्ने कि X_n, X यचाहच्छिक चर हैं तथा X_n बंटन में X पर तथा $(-1)^n X_n$ भी बंटन में X पर अभिसारित होते हैं। तो
 - X का एक सममित बंटन होना चाहिए।
 - X को शून्य होना चाहिए।
 - X का कुछ घनत्व होना चाहिए।
 - X2 को अचर होना चाहिए।
- 51. Suppose X_n, X are random variables such that X_n converges in distribution to X and $(-1)^n X_n$ also converges in distribution to X. Then
 - X must have a symmetric distribution. 1.
 - 2. *X* must be 0.
 - 3. X must have a density.
 - X^2 must be a constant.

- 52. मार्ने कि कुछ $n \ge 1$ तथा $0 के लिए <math>X \sim$ द्विपद (n,p) है तथा $Y \sim$ प्वासों (λ) , कुछ $\lambda > 0$ के लिए। मार्ने कि E[X] = E[Y] । तो
 - 1. Var(X) = Var(Y)
 - 2. Var(X) < Var(Y)
 - 3. Var(Y) < Var(X)
 - n,p तथा λ के मानों पर निर्भर, Var(X) , Var(Y) से अधिक या कम हो सकता है।
- 52. Assume that $X \sim \text{Binomial } (n, p)$ for some $n \geq 1$ and $0 and <math>Y \sim \text{Poisson } (\lambda)$ for some $\lambda > 0$. Suppose E[X] = E[Y]. Then
 - 1. Var(X) = Var(Y)
 - 2. Var(X) < Var(Y)
 - 3. Var(Y) < Var(X)
 - 4. Var(X) may be larger or smaller than Var(Y) depending on the values of n, p and λ .
- 53. मार्ने कि X,Y स्वतंत्र यादिछक चर हैं तथा $Z = \frac{X-Y}{2} + 3$ है। यदि X का अभिलक्षणिक फलन φ है तथा Y का अभिलक्षणिक फलन ψ है, तो Z का अभिलक्षणिक फलन θ है, जहां
 - 1. $\theta(t) = e^{-i3t} \varphi(2t) \psi(-2t)$.
 - 2. $\theta(t) = e^{i3t} \varphi\left(\frac{t}{2}\right) \psi\left(-\frac{t}{2}\right)$.
 - 3. $\theta(t) = e^{-i3t} \varphi\left(\frac{t}{2}\right) \psi\left(\frac{t}{2}\right)$.
 - 4. $\theta(t) = e^{-i3t} \varphi\left(\frac{t}{2}\right) \psi\left(\frac{-t}{2}\right)$.
- 53. Let X, Y be independent random variables and let $Z = \frac{X-Y}{2} + 3$. If X has characteristic function φ and Y has characteristic function ψ , then Z has characteristic function θ where
 - 1. $\theta(t) = e^{-i3t} \varphi(2t) \psi(-2t)$.
 - 2. $\theta(t) = e^{i3t} \varphi\left(\frac{t}{2}\right) \psi\left(-\frac{t}{2}\right)$.
 - 3. $\theta(t) = e^{-i3t} \varphi\left(\frac{t}{2}\right) \psi\left(\frac{t}{2}\right)$.
 - 4. $\theta(t) = e^{-i3t} \varphi\left(\frac{t}{2}\right) \psi\left(\frac{-t}{2}\right)$.
- 54. मार्ने कि X_1, X_2, \cdots, X_7 $N(\mu, \sigma^2)$ से निकाला गया एक याद्दिछक प्रतिदर्श है, जहां μ तथा σ^2 अज्ञात हैं। $H_0: \mu = 2$ बनाम $H_1: \mu > 2$ परीक्षण समस्या के बारे में विचारें । माने कि x_1, x_2, \cdots, x_7 के प्रेक्षित मान 1.2, 1.3, 1.7, 1.8, 2.1, 2.3, 2.7 हैं। यदि हम

एकसमानतः शक्ततम परीक्षण का उपयोग करें, तो निम्न में से कौन सा सही है?

- 5% तथा 1% दोनों सार्थकता स्तरों पर H₀ स्वीकार किया जाता है।
- 5% तथा 1% दोनों सार्थकता स्तरों पर H₀ अस्वीकार किया जाता है।
- 5% सार्थकता स्तर पर H₀ अस्वीकार किया जाता है, परंतु 1% सार्थकता स्तर पर स्वीकार किया जाता है।
- 1% सार्थकता स्तर पर H₀ अस्वीकार किया जाता है, परंतु 5% सार्थकता स्तर पर स्वीकार किया जाता है।
- 54. Let X_1, X_2, \dots, X_7 be a random sample from $N(\mu, \sigma^2)$ where μ and σ^2 are unknown. Consider the problem of testing $H_0: \mu = 2$ against $H_1: \mu > 2$. Suppose the observed values of x_1, x_2, \dots, x_7 are 1.2, 1.3, 1.7, 1.8, 2.1, 2.3, 2.7. If we use the Uniformly Most Powerful test, which of the following is true?
 - H₀ is accepted both at 5% and 1% levels of significance.
 - H₀ is rejected both at 5% and 1% levels of significance.
 - H₀ is rejected at 5% level of significance, but accepted at 1% level of significance.
 - H₀ is rejected at 1% level of significance, but accepted at 5% level of significance.
- 55. निदर्श $Y_i = i\beta + \epsilon_i, i = 1,2,3$, जहां $\epsilon_1, \epsilon_2, \epsilon_3$ क्रमश: माध्य 0 तथा प्रसरण $\sigma^2, 2\sigma^2, 3\sigma^2$ के साथ स्वतंत्रत: बंटित हैं, पर विचारें। निम्न में से कौन-सा β का श्रेष्ठतम रैखिक अनिभेनत आकल है ?
 - 1. $\frac{y_1+2y_2+3y_3}{6}$
- 2. $\frac{6}{11} \left(y_1 + \frac{y_2}{2} + \frac{y_3}{3} \right)$.
- 3. $\frac{y_1+y_2+y_3}{6}$
- 4. $\frac{3y_1 + 2y_2 + y_3}{10}$
- 55. Consider the model $Y_i = i\beta + \epsilon_i$, i = 1,2,3 where ϵ_1 , ϵ_2 , ϵ_3 are independent with mean 0 and variance σ^2 , $2\sigma^2$, $3\sigma^2$ respectively. Which of the following is the best linear unbiased estimate of β ?

1.
$$\frac{y_1 + 2y_2 + 3y_3}{6}$$
.

2.
$$\frac{6}{11} \left(y_1 + \frac{y_2}{2} + \frac{y_3}{3} \right)$$
.

3.
$$\frac{y_1+y_2+y_3}{6}$$
.

4.
$$\frac{3y_1 + 2y_2 + y_3}{10}$$
.

- **56**. मानें कि $X_i \mid \theta_i \sim N(\theta_i, \sigma^2), i = 1,2$ स्वतंत्रत: बंटित हैं। पूर्व बंटन के अंदर θ_1 तथा θ_2 स्वतंत्रतः सर्वथासमानतः बंटित $N(\mu, \tau^2)$ हैं, जहां σ^2, μ तथा au^2 ज्ञात है। तो निम्न में से कौन-सा; X_1 तथा X_2 के उपांत बंटन बारे में सही हैं?
 - X1 तथा X2 स्वतंत्रतः एवं सर्वथासमानतः $N(\mu, \tau^2 + \sigma^2)$ बंटित हैं।
 - X_1 तथा X_2 प्रसामन्यतः बंटित नहीं हैं।
 - X_1 तथा X_2 , $N(\mu, \tau^2 + \sigma^2)$ हैं परंतु वे स्वतंत्र
 - X_1 तथा X_2 प्रसामन्यतः बंटित हैं परंत् सर्वथासमानतः बंटित नहीं हैं।
- **56.** Suppose $X_i \mid \theta_i \sim N(\theta_i, \sigma^2), i = 1,2$ are independently distributed. Under the prior distribution, θ_1 and θ_2 are i.i.d $N(\mu, \tau^2)$, where σ^2 , μ and τ^2 are known. Then which of the following is true about the marginal distributions of X_1 and X_2 ?
 - X_1 and X_2 are i.i.d $N(\mu, \tau^2 + \sigma^2)$.
 - X_1 and X_2 are not normally distributed.
 - X_1 and X_2 are $N(\mu, \tau^2 + \sigma^2)$ but they are not independent.
 - X_1 and X_2 are normally distributed but are not identically distributed.
- 57. मार्ने कि $Y=(Y_1,\cdots,Y_n)'$ बहुचर प्रसामान्य बंटन $N_n(0,1)$ रखते हैं।

$$\sum_{i=1}^{n} Y_i$$

के दिये जाने पर Y के सप्रतिबंध बंटन का सहप्रसरण आव्यूह निम्न में से कौन-सा है?(1 n imes 1 सदिश को निर्दिष्ट करता है, जिसके सभी अवयव

1.
$$I$$
.
2. $I + \frac{11'}{n}$.
3. $I - \frac{11'}{n}$.
4. $\frac{11'}{n}$.

2.
$$1 + \frac{1}{n}$$

57. Let $Y = (Y_1, \dots, Y_n)'$ have the multivariate normal distribution $N_n(0, I)$. Which of the following is the covariance matrix of the

conditional distribution of Y given
$$\sum_{i=1}^{n} Y_{i}?$$

(1 denotes the $n \times 1$ vector with all elements 1.)

2.
$$I + \frac{11'}{}$$

1.
$$I$$
.
3. $I - \frac{11'}{n}$.

4.
$$\frac{11'}{n}$$
.

58. मार्ने कि X_1, X_2, \cdots, X_n स्वतंत्रतः तथा सर्वथासमानतः बंटित याद्दच्छिक चर हैं जिनका माध्य 🗓 के साथ एक चरघातांकी बंटन है मानें कि $S_n = X_1 + X_2 + \cdots + X_n$ तथा

 $N = \inf\{n \ge 1: S_n > 1\}$ हैं। तो Var(N)इस समान है:

3.
$$\lambda^2$$
.

58. Let X_1, X_2, \dots, X_n be independent and identically distributed random variables having an exponential distribution with mean $\frac{1}{4}$. Let $S_n = X_1 + X_2 + \dots + X_n$ and $N = \inf \{ n \ge n \}$ 1: $S_n > 1$ }. Then Var(N) equals

1. 1.

3. λ^2 .

- 59. मानें कि k स्तिरियां हैं, हर एक N=kM ईकाइयों के साथ, आमाप M का। i^{th} स्तरी से अमाप n_i का एक प्रतिदर्श निकालें, प्रतिस्थापन के साथ तथा iवीं $(i = 1, 2, \dots, k)$ स्तरी से चूने गये प्रतिदर्श के अध्ययन चर के माध्य को \bar{y}_i से निर्दिष्ट करें। परिभाषित करें कि

$$ar{y}_s = rac{1}{k} \sum_{i=1}^k ar{y}_i$$
 तथा $ar{y}_w = rac{\sum_{i=1}^k n_i ar{y}_i}{n}$ है।

निम्न में से कौन-सा आवश्यकतः सही है?

- समष्टि माध्य के लिए ए, अनभिनत है परंतु ए... अनिभनत नहीं है।
- समष्टि माध्य के लिए ए, अनिभनत नहीं है 2. परंत् 🗓 अनभिनत है।
- \bar{y}_s तथा \bar{y}_w , दोनों समष्टि माध्य के लिए अनभिनत है।
- समष्टि माध्य के लिए \bar{y}_s या \bar{y}_w , दोनों में से कोई भी अनभिनत नहीं है।
- **59.** Suppose there are k strata of N = kM units each with size M. Draw a sample of size n_i with replacement from the ith stratum and denote by \bar{y}_i the sample mean of the study variable selected in the i^{th} stratum, i = $1,2,\cdots,k$. Define

$$\overline{y}_s = \frac{1}{k} \sum_{i=1}^k \overline{y}_i$$
 and $\overline{y}_w = \frac{\sum_{i=1}^k n_i \overline{y}_i}{n}$.

Which of the following is necessarily true?

- \bar{y}_s is unbiased but \bar{y}_w is not unbiased for the population mean.
- \bar{y}_s is not unbiased but \bar{y}_w is unbiased for 2. the population mean.
- Both \bar{y}_s and \bar{y}_w are unbiased for the 3. population mean.
- 4. Neither \bar{y}_s nor \bar{y}_w is unbiased for the population mean.
- 60. प्राचल (b,k,v,r,λ) युक्त संत्लित अपूर्ण खण्ड अभिकलप (BIBD) के बारे में विचारें । BIBD के संभावित प्राचल निम्न में से कौन-से नहीं हो सकते?
 - $(b-1,k-\lambda,b-k,k,\lambda).$
 - $(b, v k, v, b r, b 2r + \lambda).$ $\left(\frac{v(v-1)}{2}, 2, v, v 1, 1\right).$ $(k, b, r, v, \lambda 1).$
- 60. Consider a Balanced Incomplete Block Design (BIBD) with parameters (b, k, v, r, λ) . Which of the following cannot possibly be the parameters of a BIBD?

- $(b-1,k-\lambda,b-k,k,\lambda).$
- $(b, v-k, v, b-r, b-2r+\lambda).$
- $\left(\frac{v(v-1)}{2}, 2, v, v 1, 1\right).$ $(k, b, r, v, \lambda 1).$

भाग \PART 'C'

UNIT - 1

- 61. मानें कि a एक धन वास्तविक संख्या है। निम्न समाकलों में से कौन सा अभिसारी है?
- 61. Let a be a positive real number. Which of the following integrals are convergent?

 - $\int_0^a \frac{1}{x^4} dx.$ $\int_0^a \frac{1}{\sqrt{x}} dx.$
- 62. $n \ge 1$ के लिए, मार्ने कि $g_n(x) = \sin^2\left(x + \frac{1}{n}\right), x \in [0, \infty)$ तथा $f_n(x) = \int_0^x g_n(t)dt$ हैं। तो
 - $[0,\infty)$ पर बिन्द्वत एक फलन f तक $\{f_n\}$ अभिसारित होता है, परंत् [0,∞) पर एकसमानतः अभिसारित नहीं होता।
 - [0,∞) पर बिन्द्वत किसी भी फलन तक $\{f_n\}$ अभिसारित नहीं होता।
 - 3. [0,1] पर $\{f_n\}$ एकसमानतः अभिसारित होता है।
 - [0,∞) पर {f_n} एकसमानत: अभिसारित होता है।
- 62. For $n \ge 1$, let $g_n(x) = \sin^2\left(x + \frac{1}{n}\right), x \in [0, \infty)$ and $f_n(x) = \int_0^x g_n(t) dt$. Then

- $\{f_n\}$ converges pointwise to a function f1. on $[0, \infty)$, but does not converge uniformly on $[0, \infty)$.
- $\{f_n\}$ does not converge pointwise to any 2. function on $[0, \infty)$.
- 3. $\{f_n\}$ converges uniformly on [0,1].
- $\{f_n\}$ converges uniformly on $[0, \infty)$. 4.
- 63. ℝ² में निम्न समुच्चयों में से किसका धन लेबेग माप है? $\begin{bmatrix} \vec{a} \end{bmatrix}$ समुच्चयों $A, B \subseteq \mathbb{R}^2$ के लिए, $A + B = \{a + b \mid a \in A, b \in B\}$
 - $S = \{(x, y) \mid x^2 + y^2 = 1\}$
 - $S = \{(x, y) \mid x^2 + y^2 < 1\}$
 - $S = \{(x,y)|x=y\} + \{(x,y) \mid x=-y\}$ 3.
 - $S = \{(x,y)|x=y\} + \{(x,y) \mid x=y\}$
- 63. Which of the following sets in \mathbb{R}^2 have positive Lebesgue measure?

For two sets $A, B \subseteq \mathbb{R}^2, A + B$ $= \{a + b \mid a \in A, b \in B\}$

- 1. $S = \{(x, y) | x^2 + y^2 = 1\}$
- 2. $S = \{(x, y) | x^2 + y^2 < 1\}$
- 3. $S = \{(x,y)|x=y\} + \{(x,y) | x=-y\}$
- $S = \{(x, y) | x = y\} + \{(x, y) | x = y\}$
- 64. मार्ने कि \mathbb{R} पर एक परिबद्ध फलन f है, तथा $a \in \mathbb{R}. \delta > 0$ के लिए

मानें कि, $\omega(a, \delta) = \sup |f(x) - f(a)|$,

- $x \in [a \delta, a + \delta]$. तो
- $\omega(a, \delta_1) \le \omega(a, \delta_2) \text{ if } \delta_1 \le \delta_2.$
- $\lim_{\delta \to 0+} \omega(a,\delta) = 0$ सभी $a \in \mathbb{R}$ के लिए।
- $\lim_{\delta o 0+} \omega(a,\delta)$ के अस्तित्व की आवश्यकता नहीं है।
- 4. $\lim_{\delta \to 0+} \omega(a, \delta) = 0$ यदि तथा केवल यदि aपर f संतत है।
- **64.** Let f be a bounded function on \mathbb{R} and $a \in \mathbb{R}$. For $\delta > 0$,

let $\omega(a, \delta) = \sup |f(x) - f(a)|,$ $x \in [a - \delta, a + \delta]$. Then

- 1. $\omega(a, \delta_1) \le \omega(a, \delta_2)$ if $\delta_1 \le \delta_2$.
- 2. $\lim_{\delta \to 0+} \omega(a, \delta) = 0$ for all $a \in \mathbb{R}$.
- $\lim_{\delta\to 0+} \omega(a,\delta)$ need not exist.
- $\lim_{\delta \to 0+} \omega(a, \delta) = 0$ if and only if f is continuous at a.

- 65. $n \ge 2$ के लिए, मार्ने कि $a_n = \frac{1}{n \log n}$ है। तो
 - अनुक्रम $\{a_n\}_{n=2}^{\infty}$ अभिसारी है।
 - श्रेणी $\sum_{n=2}^{\infty} a_n$ अभिसारी है।
 - श्रेणी $\sum_{n=2}^{\infty} a_n^2$ अभिसारी है।
 - श्रेणी $\sum_{n=2}^{\infty} (-1)^n a_n$ अभिसारी है।
- 65. For $n \ge 2$, let $a_n = \frac{1}{n \log n}$. Then
 - The sequence $\{a_n\}_{n=2}^{\infty}$ is convergent.

 - 3.
 - The series $\sum_{n=2}^{\infty} a_n$ is convergent. The series $\sum_{n=2}^{\infty} a_n^2$ is convergent. The series $\sum_{n=2}^{\infty} (-1)^n a_n$ is convergent.
- 66. निम्न फलनों के समुच्चयों में से कौन-सा अगणनीय है ? (№ धनपूर्ण संख्याओं की सम्च्यय को निर्दिष्ट करता है)
 - $\{f|f\colon\mathbb{N}\to\{1,2\}\}.$
 - 2. ${f|f:\{1,2\}\rightarrow\mathbb{N}}.$
 - $\{f \mid f \colon \{1,2\} \to \mathbb{N}, \ f(1) \le f(2)\}.$
 - $\{f \mid f \colon \mathbb{N} \to \{1,2\}, f(1) \le f(2)\}.$
- 66. Which of the following sets of functions are uncountable? (N stands for the set of natural numbers.)
 - ${f|f\colon\mathbb{N}\to\{1,2\}}.$
 - 2. $\{f|f:\{1,2\}\to\mathbb{N}\}.$
 - 3. $\{f \mid f \colon \{1,2\} \to \mathbb{N}, \ f(1) \le f(2)\}.$
 - $\{f \mid f: \mathbb{N} \to \{1,2\}, f(1) \le f(2)\}.$
- 67. मार्ने कि $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ फलन $F(x,y) = \langle Ax,y \rangle$ है जहां \langle , \rangle \mathbb{R}^n का मानक आंतर गुणनफल है, तथा A एक $n \times n$ वास्तविक आव्यूह है। यहां D संपूर्ण अवकलज को निर्दिष्ट करता है। निम्न कथनों में कौन-से सही हैं?
 - $(DF(x,y))(u,v) = \langle Au, y \rangle + \langle Ax, v \rangle.$
 - (DF(x,y))(0,0)=0.
 - कुछ $(x,y)\in\mathbb{R}^n \times \mathbb{R}^n$ के लिए DF(x,y)अस्तित्व नहीं रखता।
 - DF(x,y), (x,y) = (0,0) पर अस्तित्व नहीं रखता।

- 67. Let $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the $F(x,y) = \langle Ax, y \rangle$, where \langle , \rangle is the standard inner product of \mathbb{R}^n and A is a $n \times n$ real matrix. Here D denotes the total derivative. Which of the following statements are correct?
 - $(DF(x,y))(u,v) = \langle Au, y \rangle + \langle Ax, v \rangle.$
 - (DF(x,y))(0,0) = 0.
 - DF(x, y) may not exist for some $(x,y)\in\mathbb{R}^n\times\mathbb{R}^n$.
 - DF(x, y) does not exist at (x, y) = (0,0).
- 68. मार्ने कि $\{a_0, a_1, a_2, ...\}$ वास्तविक संख्याओं का एक अनुक्रम है। किसी भी $k\geq 1$ के लिए, मार्ने कि $s_n = \sum_{k=0}^n a_{2k}$ है। निम्न कथनों में से कौन सा सही है?
 - यदि $\lim_{n \to \infty} s_n$ का अस्तित्व है, तो $\sum_{m=0}^{\infty} a_m$ का अस्तित्व है।
 - यदि $\lim_{n\to\infty} s_n$ का अस्तित्व है, तो $\sum_{m=0}^{\infty} a_m$ 2. के अस्तित्व होने की आवश्यकता नहीं है।
 - यदि $\sum_{m=0}^{\infty} a_m$ का अस्तित्व है, तो $\lim_{n\to\infty} s_n$ का अस्तित्व है।
 - यदि $\sum_{m=0}^{\infty} a_m$ का अस्तित्व है, तो $\lim_{n\to\infty} s_n$ के अस्तित्व होने की आवश्यकता नहीं है।
- 68. Let $\{a_0, a_1, a_2, ...\}$ be a sequence of real numbers.

For any $k \ge 1$, let $s_n = \sum_{k=0}^n a_{2k}$. Which of the following statements are correct?

- If $\lim_{n\to\infty} s_n$ exists, then $\sum_{m=0}^{\infty} a_m$
- If $\lim_{n\to\infty} s_n$ exists, then $\sum_{m=0}^{\infty} a_m$ need not exist.
- If $\sum_{m=0}^{\infty} a_m$ exists, then $\lim_{n\to\infty} s_n$ 3.
- If $\sum_{m=0}^{\infty} a_m$ exists, then $\lim_{n\to\infty} s_n$ need 4. not exist.
- 69. मानें कि $f: \mathbb{R}^n \to \mathbb{R}^n$ एक संतत फलन है ताकि $\int_{\mathbb{R}^n} |f(x)| dx < \infty$ है। मानें कि A एक वास्तविक $n \times n$ व्युत्करणीय आव्यूह है तथा $x, y \in \mathbb{R}^n$ के लिए मार्ने कि (x, y), \mathbb{R}^n पर मानक आंतर गुणनफल को निर्दिष्ट करता है। तो

$$\int_{\mathbb{R}^n} f(Ax)e^{i\langle y,x\rangle}dx =$$

- 1. $\int_{\mathbb{R}^n} f(x)e^{i((A^{-1})^T y,x)} \frac{dx}{|\det A|}$ 2. $\int_{\mathbb{R}^n} f(x)e^{i(A^T y,x)} \frac{dx}{|\det A|}.$
- 3. $\int_{\mathbb{R}^n} f(x)e^{i\langle (A^T)^{-1}y,x\rangle}dx.$
- 4. $\int_{\mathbb{R}^n} f(x)e^{i(A^{-1}y,x)} \frac{dx}{|\det A|}$
- 69. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that $\int_{\mathbb{R}^n} |f(x)| dx < \infty$. Let A be a real $n \times n$ invertible matrix and for $x, y \in \mathbb{R}^n$, let $\langle x, y \rangle$ denote the standard inner product in \mathbb{R}^n . Then $\int_{\mathbb{R}^n} f(Ax)e^{i(y,x)}dx =$
 - 1. $\int_{\mathbb{R}^n} f(x)e^{i((A^{-1})^T y,x)} \frac{dx}{|\det A|}$
 - 2. $\int_{\mathbb{R}^n} f(x)e^{i\langle A^T y, x\rangle} \frac{dx}{|\det A|}$
 - 3. $\int_{\mathbb{R}^n} f(x)e^{i((A^T)^{-1}y,x)}dx.$
 - 4. $\int_{\mathbb{R}^n} f(x)e^{i\langle A^{-1}y,x\rangle} \frac{dx}{|\det A|}$
- 70. मानें कि 3 × 3 वास्तविक आव्यूहों A का समुच्चय S है, $A^T A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ के साथ। तो समुच्चय Sअंतिविष्ट करता है
 - एक श्रृन्यंभावी आव्यूह
 - 2. जाति 1 का एक आव्यूह
 - जाति 2 का एक आव्युह
 - एक शून्येतर विषम सममित आव्यूह
- 70. Let S be the set of 3×3 real matrices A with $A^T A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ Then the set S contains
 - a nilpotent matrix.
 - a matrix of rank one.
 - a matrix of rank two.
 - a non-zero skew-symmetric matrix.
- 71. एक $n \times n$ सम्मिश्र आव्यूह A, $A^k = l_n$, $(n \times n)$ तत्समक आव्यूह, जहां k एक घन पूर्णीक > 1 है) का समाधान करता है। मानें कि A का एक अभिलक्षणिक मान 1 नहीं है। तो निम्न कथनों में से कौन-से आवश्यकतः सही हैं?

- A विकर्णनीय है।
- 2. $A + A^2 + \dots + A^{k-1} = 0, n \times n$ शून्य आव्यूह
- 3. $tr(A) + tr(A^2) + \dots + tr(A^{k-1}) = -n$. 4. $A^{-1} + A^{-2} + \dots + A^{-(k-1)} = -l_n$.
- 71. An $n \times n$ complex matrix A satisfies $A^k = I_n$, the $n \times n$ identity matrix, where k is a positive integer > 1. Suppose 1 is not an eigenvalue of A. Then which of the following statements are necessarily true?
 - A is diagonalizable.
 - $A + A^2 + \dots + A^{k-1} = 0$, the $n \times n$ zero
 - 3. $tr(A) + tr(A^2) + \dots + tr(A^{k-1}) = -n$. 4. $A^{-1} + A^{-2} + \dots + A^{-(k-1)} = -I_n$.
- 72. मार्ने कि $S: \mathbb{R}^n \to \mathbb{R}^n$, एक स्थिर $\alpha \in \mathbb{R}, \alpha \neq 0$ के लिए $S(\nu) = \alpha \nu$ दिया जाता है। मानें कि $T: \mathbb{R}^n \to \mathbb{R}^n$ एक रैखिक रूपांतरण है ताकि T के रैखिकत: स्वतंत्र अभिलक्षणिक सदिशों का एक समुच्चय $B = \{v_1, ..., v_n\}$ है। तो
 - B के सापेक्ष T का आव्यूह विकर्ण है।
 - B के सापेक्ष (T-S) का आव्यूह विकर्ण है।
 - B के सापेक्ष T का आव्यूह आवश्यकतः विकर्ण नहीं है, परंतु उपरी त्रिभुज है।
 - 4. B के सापेक्ष T का आव्यूह विकर्ण है, परंतु Bके सापेक्ष (T-S) का आव्यूह विकर्ण नहीं है।
- 72. Let $S: \mathbb{R}^n \to \mathbb{R}^n$ be given by $S(\nu) = \alpha \nu$ for a fixed $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $B = \{v_1, \dots, v_n\}$ is a set of linearly

independent eigenvectors of T. Then 1. The matrix of T with respect to B is diagonal.

- The matrix of (T S) with respect to B is diagonal.
- The matrix of T with respect to B is not necessarily diagonal, but is upper triangular.
- 4. The matrix of T with respect to B is diagonal but the matrix of (T - S) with respect to B is not diagonal.

- 73. $x \in \mathbb{R}$ के लिए मार्ने कि $p_n(x) = x^n$ तथा $\wp = span\{p_0, p_1, p_2, ...\}$ हैं। तो
 - ℝ पर सभी वास्तविक मान संतत फलनों की सदिश समष्टि 🕫 है।
 - ℝ पर सभी वास्तविक मान संतत फलनों की उपसमिष्ट हा है।
 - R पर सभी संतत फलनों की सदिश समष्टि में एक रैखिकतः स्वतंत्र सम्च्यय $\{p_0, p_1, p_2, ...\}$ है।
 - विकोणमितीय फलन 👂 से संबंध रखते हैं।
- 73. Let $p_n(x) = x^n$ for $x \in \mathbb{R}$ and let $\emptyset =$ $span\{p_0, p_1, p_2, \dots\}$. Then
 - so is the vector space of all real valued continuous functions on R.
 - p is a subspace of all real valued continuous functions on R.
 - $\{p_0, p_1, p_2, ...\}$ is a linearly independent set in the vector space of all continuous functions on \mathbb{R} .
 - Trigonometric functions belong to Θ.
- 74. मानें कि $A = \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}$ एक 3×3 आव्यूह है, जहां a,b,c,d पूर्णांक हैं। तो हमें पाना चाहिये:
 - यदि $a \neq 0$, तो एक बहुपद $p \in \mathbb{Q}[x]$ है ताकि A का व्युत्क्रम p(A) है।
 - हर बहुपद $q \in \mathbb{Z}[x]$ के लिए, आव्यूह $q(A) = \begin{pmatrix} q(a) & q(b) & q(c) \\ 0 & q(a) & q(d) \\ 0 & 0 & q(a) \end{pmatrix}$ है।
 - 3. किसी धन पूर्णांक n के लिए यदि $A^n=0$ है, तो $A^3 = 0$ है।
 - 4. $A \ \text{रूप} \begin{pmatrix} a' & 0 & c' \\ 0 & a' & 0 \\ 0 & 0 & a' \end{pmatrix}$ के हर आव्यूह के साथ क्रमविनिमय करता है।
- 74. Let $A = \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}$ be a 3 × 3 matrix where a, b, c, d are integers. Then, we must have:

- If $a \neq 0$, there is a polynomial $p \in \mathbb{Q}[x]$ such that p(A) is the inverse of A.
- For each polynomial $q \in \mathbb{Z}[x]$, the matrix

$$q(A) = \begin{pmatrix} q(a) & q(b) & q(c) \\ 0 & q(a) & q(d) \\ 0 & 0 & q(a) \end{pmatrix}.$$

- If $A^n = 0$ for some positive integer n, then $A^3 = 0$.
- A commutes with every matrix of the form $\begin{pmatrix} a' & 0 & c' \\ 0 & a' & 0 \\ 0 & 0 & a' \end{pmatrix}$.
- सिदश समिष्ट

 ⁸ की उपसमिष्टियां निम्न में से कौन-से हैं?
 - 1. $\{(x, y, z): x + y = 0\}.$
 - 2. $\{(x,y,z): x-y=0\}.$
 - 3. $\{(x,y,z): x+y=1\}.$
 - 4. $\{(x, y, z): x y = 1\}.$
- 75. Which of the following are subspaces of the vector space R3?
 - 1. $\{(x,y,z): x+y=0\}.$
 - 2. $\{(x, y, z): x y = 0\}.$
 - 3. $\{(x, y, z): x + y = 1\}.$
 - 4. $\{(x, y, z): x y = 1\}.$
- 76. शून्येतर सदिश समष्टियों V_1, V_2, V_3, V_4 तथा रैंखिक रूपांतरणों $\phi_1: V_1 \to V_2, \ \phi_2: V_2 \to V_3, \ \phi_3: V_3 \to V_4$ ताकि Ker $(\phi_1) = \{0\}$, Range $(\phi_1) = \text{Ker } (\phi_2)$, Range $(\phi_2)= \text{Ker } (\phi_3), \text{ Range } (\phi_3)=V_4$ पर
 - 1. $\sum_{\substack{i=1\\4}}^{7} (-1)^i \dim V_i = 0$

 - 2. $\sum_{i=2}^{4} (-1)^{i} \dim V_{i} > 0.$ 3. $\sum_{i=1}^{4} (-1)^{i} \dim V_{i} < 0.$ 4. $\sum_{i=1}^{4} (-1)^{i} \dim V_{i} \neq 0.$

- 76. Consider non-zero vector spaces V_1, V_2, V_3, V_4 and linear transformations $\phi_1: V_1 \to V_2$, $\phi_2: V_2 \to V_3, \ \phi_3: V_3 \to V_4$ such that Ker $(\phi_1) = \{0\}$, Range $(\phi_1) = \text{Ker } (\phi_2)$, Range $(\phi_2) = \text{Ker } (\phi_3), \text{ Range } (\phi_3) = V_4. \text{ Then }$
 - 1. $\sum_{i=1}^{\infty} (-1)^i \dim V_i = 0$

 - 2. $\sum_{i=2}^{4} (-1)^{i} \dim V_{i} > 0.$ 3. $\sum_{i=1}^{4} (-1)^{i} \dim V_{i} < 0.$
 - $4. \quad \sum^{4} (-1)^{i} \dim V_{i} \neq 0.$
- 77. मार्ने कि A एक व्युत्क्रमणीय 4×4 वास्तविक आव्यूह है। निम्न में से कौन-से सही नहीं हैं?
 - जाति A = 4
 - हर सिदश $b \in \mathbb{R}^4$ के लिए, Ax = b का ठीक-ठीक एक हल है।
 - $\dim (\text{nullspace } A) \geq 1.$
 - A का एक अभिलक्षणिक मान 0 है।
- 77. Let A be an invertible 4×4 real matrix. Which of the following are NOT true?
 - Rank A = 4.
 - For every vector $b \in \mathbb{R}^4$, Ax = b has exactly one solution.
 - $\dim (\operatorname{nullspace} A) \geq 1.$ 3.
 - 0 is an eigenvalue of A.
- 78. मार्ने कि \underline{u} एक वास्तविक $n \times 1$ सदिश है जो $\underline{u}'\underline{u} = 1$ का समाधान करता है, जहां $\underline{u}',\underline{u}$ का परिवर्त है। परिभाषित करें कि $A = I - 2 \underline{u} \underline{u}'$, जहां I, कोटि n का तत्समक आव्यूह है। निम्न कथनों में से कौन-सा सही है?
 - A विचित्र है।
- $2. \quad A^2 = A.$
- 3. Trace (A) = n 2. 4. $A^2 = 1$.

- 78. Let \underline{u} be a real $n \times 1$ vector satisfying $\underline{u'}\underline{u} = 1$, where $\underline{u'}$ is the transpose of \underline{u} . Define $A = I 2\underline{u}\underline{u'}$ where I is the n^{th} order identity matrix. Which of the following statements are true?
 - A is singular.
- 2. $A^2 = A$.
- 3. Trace (A) = n 2.
- 4. $A^2 = I$.

UNIT - 2

- 79. पूर्णांक गुणांकों के साथ एक-चर वाले बहुपदों के वलय $\mathbb{Z}[x]$ में निम्न बहुपदों में से कौन-से अलघुकरणीय हैं?
 - 1. $x^2 5$.
 - 2. $1 + (x + 1) + (x + 1)^2 + (x + 1)^3 + (x + 1)^4$.
 - 3. $1+x+x^2+x^3+x^4$.
 - 4. $1 + x + x^2 + x^3$.
- 79. Which of the following polynomials are irreducible in the ring $\mathbb{Z}[x]$ of polynomials in one variable with integer coefficients?
 - 1. $x^2 5$.
 - 2. $1 + (x + 1) + (x + 1)^2 + (x + 1)^3 + (x + 1)^4$.
 - 3. $1+x+x^2+x^3+x^4$.
 - 4. $1+x+x^2+x^3$.
- 80. पूर्णांकों के समुच्चय Z पर विचारें, सांस्थितिकी र के साथ, जिसमें एक उपसमुच्चय संवृत है यदि तथा मात्र यदि वह रिक्त है, या Z, या परिमित है। निम्न कथनों में से कौन-से सही हैं?

 - सांस्थितिकी τ में ℤ संहत है।
 - 3. सांस्थितिकी τ में \mathbb{Z} हाऊस्डोर्फ है।
 - सांस्थितिकी τ में ℤ का हर अपरिमित उपसमुच्चय सघन है।
- 80. Consider the set \mathbb{Z} of integers, with the topology τ in which a subset is closed if and only if it is empty, or \mathbb{Z} , or finite. Which of the following statements are true?

- 1. τ is the subspace topology induced from the usual topology on \mathbb{R} .
- 2. \mathbb{Z} is compact in the topology τ .
- 3. \mathbb{Z} is Hausdorff in the topology τ .
- Every infinite subset of Z is dense in the topology τ.
- 81. मानें कि f एक सर्वत्र वैश्तेषिक फलन है। निम्न कथनों में से कौन से सही हैं?
 - f अचर है यदि f का परिसर एक सीधी रेखा में अंतर्विष्टित है।
 - f अचर है यदि f के अगणनीयत: कई शून्यक हैं।
 - f अचर है यदि f, {zeC: Re(z) ≤ 0} पर परिवद्ध है।
 - 4. f अचर है यदि f का वास्तविक भाग परिबद्ध है।
- **81.** Let *f* be an entire function. Which of the following statements are correct?
 - 1. f is constant if the range of f is contained in a straight line.
 - f is constant if f has uncountably many zeros.
 - 3. f is constant if f is bounded on $\{z \in \mathbb{C}: \text{Re}(z) \leq 0\}$
 - 4. f is constant if the real part of f is bounded.
- 82. निर्धारित करें कि निम्न बहुपदों में से कौन से सूचित वलयों पर अलधुकरणीय हैं।
 - 1. $x^5 3x^4 + 2x^3 5x + 8$ over \mathbb{R} .
 - 2. $x^3 + 2x^2 + x + 1$ over \mathbb{Q} .
 - 3. $x^3 + 3x^2 6x + 3$ over \mathbb{Z} .
 - 4. $x^4 + x^2 + 1$ over $\mathbb{Z}/2\mathbb{Z}$.
- Determine which of the following polynomials are irreducible over the indicated rings.
 - 1. $x^5 3x^4 + 2x^3 5x + 8$ over \mathbb{R} .
 - 2. $x^3 + 2x^2 + x + 1$ over \mathbb{Q} .
 - 3. $x^3 + 3x^2 6x + 3$ over \mathbb{Z} .
 - 4. $x^4 + x^2 + 1$ over $\mathbb{Z}/2\mathbb{Z}$.

83. सम्मिश्र तल के निम्न उपस्च्चयों के बारे में विचारें:

$$\Omega_1 = \{ C \in \mathbb{C} : \begin{bmatrix} 1 & C \\ \bar{C} & 1 \end{bmatrix}$$
.
अऋण निश्चित (या तुल्यत: धन सामिनिश्चित) $\}$

$$\Omega_2 = \begin{cases} C \epsilon \mathbb{C} : \begin{bmatrix} 1 & C & C \\ \bar{C} & 1 & C \\ \bar{C} & \bar{C} & 1 \end{bmatrix} \end{cases}$$

अऋण निश्चित (या तुल्यतः धन सामिनिश्चित).

मानें कि
$$\overline{D}=\left\{z\epsilon\mathbb{C}\ \middle|\ |z|\leq 1\right\}$$
 । तो

- $\Omega_1 = \overline{D}, \Omega_2 = \overline{D}.$
- $\Omega_1 \neq \overline{D}, \Omega_2 = \overline{D}.$
- $\Omega_1 = \overline{D}, \Omega_2 \neq \overline{D}.$
- $\Omega_1 \neq \overline{D} \Omega_2 \neq \overline{D}$.
- 83. Consider the following subsets of the complex plane:

$$\Omega_1 = \begin{cases} C \epsilon \mathbb{C} : \begin{bmatrix} \frac{1}{C} & C \\ \overline{C} & 1 \end{bmatrix} \end{cases}$$

is non-negative definite

(or equivalently positive semi - definite)

$$\Omega_2 = \begin{cases} C \in \mathbb{C} : \begin{bmatrix} 1 & C & C \\ \bar{C} & 1 & C \\ \bar{C} & \bar{C} & 1 \end{bmatrix} \\ \text{is non negative definite} \end{cases}$$

(or equivalently positive semi - definite) \}.

Let
$$\overline{D} = \{z \in \mathbb{C} \mid |z| \le 1\}$$
. Then

- 1. $\Omega_1 = \overline{D}, \Omega_2 = \overline{D}$.
- 2. $\Omega_1 \neq \overline{D}, \Omega_2 = \overline{D}$.
- 3. $\Omega_1 = \overline{D}, \Omega_2 \neq \overline{D}$.
- 4. $\Omega_1 \neq \overline{D} \Omega_2 \neq \overline{D}$.
- 84. मार्ने कि f एक वैश्लेषिक फलन है जो C विवृत इकाई चक्रिका पर परिभाषित है। तो f अचर है यदि

- 1. $f\left(\frac{1}{n}\right) = 0$ for all $n \ge 1$.
- 2. f(z) = 0 for all $|z| = \frac{1}{2}$.
- 3. $f\left(\frac{1}{n^2}\right) = 0$ for all $n \ge 1$.
- 4. f(z) = 0 for all $z \in (-1, 1)$.
- 84. Let f be an analytic function defined on the open unit disc in \mathbb{C} . Then f is constant if
 - 1. $f\left(\frac{1}{n}\right) = 0$ for all $n \ge 1$.
 - 2. f(z) = 0 for all $|z| = \frac{1}{2}$.
 - 3. $f\left(\frac{1}{n^2}\right) = 0$ for all $n \ge 1$.
 - 4. f(z) = 0 for all $z \in (-1, 1)$.
- 85. मानें कि 1-सम्मिश्र चर में एक बहुपद p है। मानें कि p के सभी शून्यक उपरि अर्धतल $H = \{z \in \mathbb{C} \mid Im(z) > 0\}$ में हैं। तो

 - Im ^{p'(z)}/_{p(z)} > 0 for z∈ℝ.
 Re i ^{p'(z)}/_{p(z)} < 0 for z∈ℝ.
 Im ^{p'(z)}/_{p(z)} > 0 for z∈ℂ, with Im z < 0.
 - 4. $\lim \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{C}$, with $\lim z > 0$.
- 85. Let p be a polynomial in 1-complex variable. Suppose all zeroes of p are in the upper half plane $H = \{z \in \mathbb{C} \mid Im(z) > 0\}$. Then
 - 1. $Im \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{R}$.
 - 2. Re $i \frac{p'(z)}{p(z)} < 0$ for $z \in \mathbb{R}$.
 - 3. $Im \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{C}$, with Im z < 0.
 - 4. $Im \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{C}$, with Im z > 0.
- 86. मार्ने कि σ: {1,2,3,4,5} → {1,2,3,4,5} एक क्रमचय (एकैकी तथा आच्छादक फलन) है ताकि $\sigma^{-1}(i) \leq \sigma(i) \quad \forall i, 1 \leq i \leq 5 \$ तो निम्न में से कौन-से सही हैं?
 - सभी j, $1 \le j \le 5$ के लिए $\sigma \circ \sigma(j) = j$ है।
 - सभी j, $1 \le j \le 5$ के लिए $\sigma^{-1}(j) = \sigma(j)$ है।

- समुच्चय {k: σ(k) ≠ k} के सम संख्या के अवयव हैं।
- समुच्चय {k: σ(k) = k} के विषम संख्या के अवयव हैं।
- 86. Let $\sigma: \{1,2,3,4,5\} \to \{1,2,3,4,5\}$ be a permutation (one-to-one and onto function) such that $\sigma^{-1}(j) \le \sigma(j) \quad \forall j, 1 \le j \le 5$. Then which of the following are true?
 - 1. $\sigma \circ \sigma(j) = j$ for all j, $1 \le j \le 5$.
 - 2. $\sigma^{-1}(j) = \sigma(j)$ for all j, $1 \le j \le 5$.
 - 3. The set $\{k: \sigma(k) \neq k\}$ has an even number of elements.
 - 4. The set $\{k: \sigma(k) = k\}$ has an odd number of elements.
- 87. यदि x, y तथा z एक समूह के अवयव हैं तथा xyz = 1, तो
 - 1. yzx = 1.
- 2. yxz = 1.
- 3. zxy = 1.
- 4. zyx = 1.
- 87. If x, y and z are elements of a group such that xyz = 1, then
 - $1. \quad yzx = 1.$
- 2. yxz = 1.
- $3. \quad zxy = 1.$
- $4. \quad zyx = 1.$
- 88. निम्न अभाज्यों में से कौन-से समशेषता $a^{24} \equiv 6a + 2 \mod 13$ का समाधान करते हैं?
 - 1. 41

2. 47

3. 67

- 4. 83
- Which of the following primes satisfy the congruence
 - $a^{24} \equiv 6a + 2 \mod 13?$
 - 1. 41
- 2. 47

3. 67

- 4. 83
- 89. मानें कि [0,1] पर सभी वास्तविक मान संतत फलनों का वलय C([0,1]) है। निम्न कथनों में से कौन-से सही हैं?
 - C([0,1]) एक पूर्णांकीय प्रांत है।

- 0 पर लुप्त होते सभी फलनों का समुच्चय एक उच्चिष्ठ गुणजावली है।
- 0 तथा 1 दोनों पर लुप्त होते सभी फलनों का समुच्चय एक अभाज्य ग्णजावली है।
- 4. यदि $f \in C([0,1])$ है ताकि सभी $x \in [0,1]$ तथा कुछ n > 1 के लिए $(f(x))^n = 0$ है, तो सभी $x \in [0,1]$ के लिए f(x) = 0 है।
- 89. Let C([0,1]) be the ring of all real valued continuous functions on [0,1]. Which of the following statements are true?
 - 1. C([0,1]) is an integral domain.
 - The set of all functions vanishing at 0 is a maximal ideal.
 - 3. The set of all functions vanishing at both 0 and 1 is a prime ideal.
 - 4. If $f \in C([0,1])$ is such that $(f(x))^n = 0$ for all $x \in [0,1]$ for some n > 1, then f(x) = 0 for all $x \in [0,1]$.
- 90. कोटि 10 के एक समूह का वर्ग समीकरण निम्न में से कौन-सा/से नहीं हो सकता/सकते?
 - 1. 1+1+1+2+5=10.
 - $2. \quad 1 + 2 + 3 + 4 = 10.$
 - 3. 1+2+2+5=10.
 - 4. 1+1+2+2+2+2=10.
- 90. Which of the following cannot be the class equation of a group of order 10?
 - 1. 1+1+1+2+5=10.
 - 2. 1+2+3+4=10.
 - 3. 1+2+2+5=10.
 - 4. 1+1+2+2+2+2=10.

UNIT - 3

91. द्रव्यमान m का एक कण, एक सिलिंडर $x^2 + y^2 = a^2$ की सतह पर, एक बल जो निर्देश मूल बिन्दु की तरफ दिशित है तथा कण के मूल बिन्दु से दूरी की अनुपात में है, के अधीन गतिशील होने के लिए ध्य है। तो

- z-अक्ष के गिर्द कोणीय संवेग अचर है।
- z-अक्ष के गिर्द कोणीय संवेग अचर नहीं है।
- z-दिशा में गतिशीलता सरल संनादी है।
- z- दिशा में गतिशीलता सरल संनादी नहीं है।
- 91. A particle of mass m is constrained to move on the surface of a cylinder $x^2 + y^2 = a^2$ under the influence of a force directed towards the origin and proportional to the distance of the particle from the origin. Then
 - the angular momentum about z-axis is constant
 - the angular momentum about z-axis is not
 - the motion is simple harmonic in z-
 - the motion is not simple harmonic in zdirection
- 92. फलन $G(x,\zeta) = \begin{cases} a+b\log\zeta, & 0 < x \le \zeta \\ c+d\log x, & \zeta \le x \le 1 \end{cases}$ xy'' + y' = 0 के लिए ग्रीन फलन है, इन प्रतिबंधों पर कि जब $x \to 0$, y परिबद्ध है, तथा y(1) = y'(1), यदि
 - 1. a = 1, b = 1, c = 1, d = 1
 - 2. a = 1, b = 0, c = 1, d = 0
 - 3. a = 0, b = 1, c = 0, d = 1
 - a = 0, b = 0, c = 0, d = 0
- 92. The function

$$G(x,\zeta) = \begin{cases} a+b\log\zeta, & 0 < x \le \zeta \\ c+d\log x, & \zeta \le x \le 1 \end{cases}$$
 is a Green's function for $xy''+y'=0$, subject to y being bounded as $x \to 0$ and $y(1) = y'(1)$, if

- 1. a = 1, b = 1, c = 1, d = 1
- 2. a=1, b=0, c=1, d=0
- 3. a = 0, b = 1, c = 0, d = 1
- 4. a = 0, b = 0, c = 0, d = 0
- 93. निकाय $\frac{dx}{dt} = -4x y$, $\frac{dy}{dt} = x 2y$ की क्रांतिक बिन्द् है एक
 - 1. उपगामित: स्थिर आसंधि
 - 2. अस्थिर आसंधि
 - 3. उपगामित: स्थिर सर्पिल
 - 4. अस्थिर सर्पिल

- 93. The critical point of the system $\frac{dx}{dt} = -4x - y$, $\frac{dy}{dt} = x - 2y$ is an
 - asymptotically stable node
 - unstable node
 - 3. asymptotically stable spiral
 - unstable spiral
- 94. समाकल समीकरण

$$y(x) = 1 + x^3 + \int_0^x K(x,t)y(t)dt$$
, अष्टि $K(x,t) = 2^{x-t}$ के साथ, के लिए पुनरावृत्त अष्टि $K_3(x,t)$ है

- 1. $2^{x-t}(x-t)^2$ 2. $2^{x-t}(x-t)^3$ 3. $2^{x-t-1}(x-t)^2$ 4. $2^{x-t-1}(x-t)^3$
- 94. For the integral equation $y(x) = 1 + x^3 +$ $\int_0^x K(x,t)y(t)dt \text{ with kernel } K(x,t) = 2^{x-t},$ the iterated kernel $K_3(x,t)$ is

 - 1. $2^{x-t}(x-t)^2$ 2. $2^{x-t}(x-t)^3$ 3. $2^{x-t-1}(x-t)^2$ 4. $2^{x-t-1}(x-t)^3$
- फलनक $\int_0^{\alpha} (y'^2 y^2) dx$ का चरमक जो (0,0)तथा $(\alpha,0)$ से गुजरता है, का एक
 - 1. दुर्बल न्यूनतम है यदि $\alpha < \pi$
 - 2. प्रबल न्यूनतम है यदि $\alpha < \pi$
 - 3. दुर्बल न्यूनतम है यदि $\alpha > \pi$
 - 4. प्रबल न्युनतम है यदि $\alpha > \pi$
- 95. The extremal of the functional $\int_0^{\alpha} (y'^2 - y^2) dx$ that passes through (0,0) and $(\alpha,0)$ has a
 - 1. weak minimum if $\alpha < \pi$
 - strong minimum if $\alpha < \pi$
 - 3. weak minimum if $\alpha > \pi$
 - strong minimum if $\alpha > \pi$
- **96.** फलनक $I = \int_0^{x_1} y^2 (y')^2 dx$ का चरमक जो (0,0) तथा (x1, y1) से ग्जरता है,
 - 1. एक अचर फलन है
 - 2. x का एक रैखिक फलन है

- 3. परवलय का एक अंश है
- दीर्घवृत्त का एक अंश है
- 96. The extremal of the functional $I = \int_0^{x_1} y^2 (y')^2 dx$ that passes through (0,0) and (x_1, y_1) is
 - a constant function
 - a linear function of x
 - 3. part of a parabola
 - part of an ellipse
- 97. द्वितीय घात आंशिक अवकल समीकरण $u_{xx} + x u_{yy} = 0$ ह
 - $1. \quad x > 0$ के लिए दीर्घवृत्तीय
 - 2. x > 0 के लिए अतिपरवलियक
 - x < 0 के लिए दीर्घवृत्तीय
 - $4. \quad x < 0$ के लिए अतिपरवलयिक
- 97. The second order partial differential equation $u_{xx} + x u_{yy} = 0$ is
 - 1. elliptic for x > 0
 - 2. hyperbolic for x > 0
 - 3. elliptic for x < 0
 - 4. hyperbolic for x < 0
- प्रारंभिक मान समस्या 98.

$$\frac{dy}{dx} = y^2 + \cos^2 x \,, \quad x > 0$$

y(0) = 0, के लिए पिकार्ड प्रमेय से पूर्वानुमानित हल के अस्तित्व का उच्चतम अंतराल है

- 1. [0, 1]
- 2. [0, 1/2]
- 3. [0, 1/3]
- [0, 1/4]
- 98. For the initial value problem

$$\frac{dy}{dx} = y^2 + \cos^2 x, \qquad x > 0$$
$$y(0) = 0,$$

The largest interval of existence of the solution predicted by Picard's theorem is:

- 1. [0, 1]
- [0, 1/2]
- [0, 1/3]
- 4. [0, 1/4]

- 99. निम्न में से कौन-से आंशिक अवकल समीकरण $pqx + yq^2 = 1$ के संपूर्ण समाकल हैं?
 - $1. z = \frac{x}{a} + \frac{ay}{x} + b$
 - 2. $z = \frac{x}{b} + \frac{ay}{x} + b$
 - 3. $z^2 = 4(ax + y) + b$
 - 4. $(z-b)^2 = 4(ax + y)$
- 99. Which of the following are complete integrals of the partial differential equation

$$pqx + yq^2 = 1$$
?
1. $z = \frac{x}{a} + \frac{ay}{x} + b$

- 2. $z = \frac{x}{b} + \frac{ay}{x} + b$
- 3. $z^2 = 4(ax + y) + b$
- 4. $(z-b)^2 = 4(ax + y)$
- 100. किसी स्वेच्छ संतत: अवकलनीय फलन f के लिए. निम्न में से कौन-सा, $z(px - qy) = y^2 - x^2$ का एक सामान्य हल है?
 - 1. $x^2 + y^2 + z^2 = f(xy)$

 - 2. $(x + y)^2 + z^2 = f(xy)$ 3. $x^2 + y^2 + z^2 = f(y x)$ 4. $x^2 + y^2 + z^2 = f((x + y)^2 + z^2)$
- 100. For an arbitrary continuously differentiable function f, which of the following is a general solution of $z(px - qy) = y^2 - x^2$
 - 1. $x^2 + y^2 + z^2 = f(xy)$

 - 2. $(x + y)^2 + z^2 = f(xy)$ 3. $x^2 + y^2 + z^2 = f(y x)$ 4. $x^2 + y^2 + z^2 = f((x + y)^2 + z^2)$
- 101. निम्न संख्यात्मक समाकलन सूत्र घात 3 या उससे कम घात के सभी बह्पदों के लिए यथातथ है:
 - समलंब नियम
 - 2. सिम्प्सन का तिहाई नियम
 - 3. सिम्प्सन का त्रयष्टक्रम नियम
 - गाउस लेजान्ड्रे 2 बिन्द् सूत्र

- 101. The following numerical integration formula is exact for all polynomials of degree less than or equal to 3
 - Trapezoidal rule
 - Simpson's $\frac{1}{2}rd$ rule
 - Simpson's $\frac{3}{8}th$ rule
 - Gauss-Legendre 2 point formula
- सा.अ.स. $\frac{d^2y}{dx^2} + (1+x^2)\frac{dy}{dx} + P(x)y = 0, x \in \mathbb{R}$ के दो रैखिकत: स्वतंत्र हलों का रांसिकयन W है। मानें कि W(1) = a, W(2) = b and W(3) = c, तो
 - a < 0 and b > 0
 - 2. a < b < c or a > b > c
 - 3. $\frac{a}{|a|} = \frac{b}{|b|} = \frac{c}{|c|}$
 - 4. 0 < a < b and b > c > 0
- 102. Let P be a continuous function on \mathbb{R} and W the Wronskian of two linearly independent solutions y_1 and y_2 of the ODE:

$$\frac{d^2y}{dx^2} + (1+x^2)\frac{dy}{dx} + P(x)y = 0, x \in \mathbb{R}.$$
Let $W(1) = a$, $W(2) = b$ and $W(3) = c$, then

- 1. a < 0 and b > 0
- a < b < c or a > b > c
- $3. \quad \frac{a}{|a|} = \frac{b}{|b|} = \frac{c}{|c|}$
- 4. 0 < a < b and b > c > 0

UNIT - 4

- 103. मानें कि (X,Y) के संयुक्त असंतत बंटन हैं ताकि $X \mid Y = y \sim$ द्विपद (y, 0.5) तथा $(\lambda), \lambda > 0$, जहां λ एक अज्ञात प्राचल है। मानें कि λ का कोई अनिभनत आकलक T = T(X,Y) है। तो
 - 1. $Var(T) \leq Var(Y)$ for all λ .
 - $Var(T) \ge Var(Y)$ for all λ . 2.
 - 3. $Var(T) \ge \lambda$ for all λ .
 - Var(T) = Var(Y) for all λ .

- 103. Let (X,Y) have the joint discrete distribution such that $X \mid Y = y \sim$ Binomial (y, 0.5) and $Y \sim Poisson(\lambda), \lambda > 0$, where λ is an unknown parameter. Let T = T(X, Y) be any unbiased estimator of λ . Then
 - $Var(T) \leq Var(Y)$ for all λ .
 - $Var(T) \ge Var(Y)$ for all λ .
 - 3. $Var(T) \ge \lambda$ for all λ .
 - Var(T) = Var(Y) for all λ .
- 104. मार्ने कि X_1 तथा X_2 स्वतंत्र तथा सर्वथासमानतः बंटित प्रसामान्य याद्दिङक चर है, माध्य 0 तथा प्रसरण 1 के साथ। मानें कि U_1 तथा U_2 स्वतंत्र तथा सर्वथासमानत: बंटित U(0,1) यादच्छिक चर हैं, X_1, X_2 से स्वतंत्र। परिभाषित करें कि

- E(Z)=0.1.
- 2. Var(Z) = 1.
- Z मानक कौशी है। 3.
- $Z \sim N(0,1)$
- 104. Let X_1 and X_2 be independent and identically distributed normal random variables with mean 0 and variance 1. Let U_1 and U_2 be independent and identically distributed U(0,1)random variables, independent of X_1, X_2 . Define $Z = \frac{X_1U_1 + X_2U_2}{\sqrt{U_1^2 + U_2^2}}$. Then,
 - 1. E(Z) = 0.
 - 2. Var(Z) = 1.
 - Z is standard Cauchy.
 - 4. $Z \sim N(0,1)$

तो

समिष्ट $S = \{0, 1, 2, 3\}$ तथा 105. स्थिति प्रायिकता आव्यूह P युक्त एक मार्कोव श्रृंखला पर विचारें। दिया गया है कि

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 2/3 & 0 & 1/3 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & 1/2 & 0 & 1/2 & 0 \\ 3 & 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

- 1 एक प्नरावर्तक स्थिति है।
- 0 एक पुनरावर्तक स्थिति है।
- 3 एक पुनरावर्तक स्थिति है।
- 2 एक प्नरावर्तक स्थिति है।
- Consider a Markov Chain with state space $S = \{0, 1, 2, 3\}$ and with transition probability matrix P given by

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 2/3 & 0 & 1/3 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 1/2 & 0 & 1/2 & 0 \\ 3 & 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

Then

- 1. I is a recurrent state.
- 0 is a recurrent state.
- 3. 3 is a recurrent state.
- 2 is a recurrent state.
- आमाप एक के एक प्रतिदर्श, मार्ने कि X, पर 106. विचारें, जो एक समष्टि जिसका प्रायिकता घनत्व फलन है

$$f_{\theta}(x) = \frac{2}{\theta^2}(x - \theta)$$
 $\theta \le x \le 2\theta, \theta > 0$
= 0 अन्यथा

निम्न में से कौन-सा/से θ के विश्वास्यता अंतराल है/हैं, विश्वास्यता गुणांक $1-\alpha$ के साथ?

- 1. $\left[\frac{x}{2}, \frac{x}{1+\sqrt{\alpha}}\right]$. 2. $\left[\frac{x}{1+\sqrt{1-\frac{\alpha}{2}}}, \frac{x}{1+\sqrt{\frac{\alpha}{2}}}\right]$.
- 3. $\left[\frac{X}{1+\sqrt{1-\alpha}}, X\right]$. 4. $\left[\frac{X}{1+\sqrt{1-\frac{\alpha}{2}}}, \frac{X}{1+\sqrt{\frac{3\alpha}{2}}}\right]$
- Consider a sample of size one, say X, from a 106. population with pdf

$$f_{\theta}(x) = \frac{2}{\theta^2}(x - \theta)$$
 $\theta \le x \le 2\theta, \theta > 0$
= 0 otherwise

Which of the following is/are confidence interval(s) for θ with confidence coefficient $1-\alpha$?

1.
$$\left[\frac{X}{2}, \frac{X}{1+\sqrt{\alpha}}\right]$$
. 2. $\left[\frac{X}{1+\sqrt{1-\frac{\alpha}{2}}}, \frac{X}{1+\sqrt{\frac{\alpha}{2}}}\right]$

3.
$$\left[\frac{X}{1+\sqrt{1-\alpha}}, X\right]$$
. 4. $\left[\frac{X}{1+\sqrt{1-\frac{\alpha}{4}}}, \frac{X}{1+\sqrt{\frac{3\alpha}{4}}}\right]$.

- 107. मार्ने कि X तथा Y यादच्छिक चर हैं, संयुक्त संचयी बंटन फलन F(x,y) के साथ। तो निम्न प्रतिबंधों में से कौन-से, $(x,y) \in \mathbb{R}^2$ को F के सांतत्य का एक बिंदू होने के लिए उपयुक्त हैं?
 - 1. P(X = x, Y = y) = 0.
 - 2. Either P(X = x) = 0 or P(Y = y) = 0.
 - 3. P(X = x) = 0 and P(Y = y) = 0.
 - 4. $P(X = x, Y \le y) = 0$ and $P(X \le x, Y = y) = 0$.
- 107. Let X and Y be random variables with joint cumulative distribution function F(x, y). Then which of the following conditions are sufficient for $(x,y)\in\mathbb{R}^2$ to be a point of continuity of F?
 - 1. P(X = x, Y = y) = 0.
 - 2. Either P(X = x) = 0 or P(Y = y) = 0.
 - 3. P(X = x) = 0 and P(Y = y) = 0.
 - 4. $P(X = x, Y \le y) = 0$ and $P(X \le x, Y = y) = 0.$
- 108. मार्ने कि X तथा Y स्वतंत्र प्रसामान्य याद्दिछक चर हैं, माध्य 0 तथा प्रसरण 1 है। मानें कि XY का अभिलक्षणिक फलन φ से निर्दिष्ट किया जाता है। तो
 - $\varphi(2) = 1/2.$
 - φ एक सम फलन है
 - 3. $\varphi(t)\varphi\left(\frac{1}{t}\right) = |t| \text{ for all } t \neq 0.$
- 108. Let X and Y be independent normal random variables with mean 0 and variance 1. Let the characteristic function of XY be denoted by φ . Then
 - $\varphi(2) = 1/2$.
 - 2. φ is an even function.
 - 3. $\varphi(t)\varphi\left(\frac{1}{t}\right) = |t| \text{ for all } t \neq 0.$
 - 4. $\varphi(t) = E(e^{-t^2Y^2/2}).$

- 109. मानें कि X_1, X_2, \cdots स्वतंत्र याद्दिछक चर हैं। माने कि X_1, X_3, \cdots सर्वथासमानत: बंटित हैं, माध्य μ_1 तथा प्रसरण σ_1^2 के साथ, जबकि X_2, X_4, \cdots सवर्थासमानतः बंटित हैं माध्य μ_2 तथा प्रसरण σ_2^2 के साथ। मार्ने कि $S_n = X_1 + X_2 + \cdots + X_n$ है। तो $\frac{S_n-a_n}{b_n}$ बंटन में N(0,1) तक अभिसारित होता है,
 - 1. $a_n = \frac{n(\mu_1 + \mu_2)}{2}$ and $b_n = \sqrt{n} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$.
 - 2. $a_n = \frac{n(\mu_1 + \mu_2)}{2}$ and $b_n = \frac{n(\sigma_1 + \sigma_2)}{2}$
 - 3. $a_n = n(\mu_1 + \mu_2)$ and $b_n = \sqrt{n} \frac{(\sigma_1 + \sigma_2)}{2}$
 - 4. $a_n = n(\mu_1 + \mu_2)$ and $b_n = \sqrt{n} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$.
- Suppose X_1, X_2, \cdots are independent random variables. Assume that X_1, X_3, \cdots are identically distributed with mean μ_1 and variance σ_1^2 , while X_2, X_4, \cdots are identically distributed with mean μ_2 variance σ_2^2 . Let $S_n = X_1 + X_2 + \cdots + X_n$. Then $\frac{S_n - a_n}{b_n}$ converges in distribution to N(0,1) if
 - 1. $a_n = \frac{n(\mu_1 + \mu_2)}{2}$ and $b_n = \sqrt{n} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$.
 - 2. $a_n = \frac{n(\mu_1 + \mu_2)}{2}$ and $b_n = \frac{n(\sigma_1 + \sigma_2)}{2}$.
 - 3. $a_n = n(\mu_1 + \mu_2)$ and $b_n = \sqrt{n} \frac{(\sigma_1 + \sigma_2)}{2}$
 - 4. $a_n = n(\mu_1 + \mu_2)$ and $b_n = \sqrt{n} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$.
- 110. मार्ने कि X का घनत्व $f(x|\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0$ है, जहां $\theta > 0$ अज्ञात है। Y की परिभाषा निम्नवत करें:

Y = k यदि $k \le X < k + 1$, $k = 0, 1, 2, \cdots$ तो Y का बंटन है

- 1. प्रसामान्य
- प्वासों
- 4. ज्यामितीय
- 110. Suppose X has density $f(x|\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0$ 0 where $\theta > 0$ is unknown. Define Y as follows: $Y = k \text{ if } k \le X < k + 1, \quad k = 0, 1, 2, \dots$

Then the distribution of Y is

- 1. normal.
- 2. binomial.
- Poisson.
- 4. geometric.
- यह शोध करने के लिए कि क्या पैट्रोल का एक अधिमुल्य रूपांतर श्रेष्ठतर इंधन क्षमता प्रदान करता है, एक ही मॉडल के 10 कारों के एक यादच्छिक प्रतिदर्श का परीक्षण किया गया, अधिमुल्य एवं मानक पैट्रोल के साथ। मानें कि पाये गये माईलेज $(X_1, Y_1), \dots, (X_{10}, Y_{10})$ से निर्दिष्ट किये जाते हैं, जहां X_i मानक पैट्रोल से तथा Y_i अधिमूल्य पैट्रोल से i^{th} कार से पाये गये माईलेज़ हैं। हम यह परीक्षण करना चाहते हैं कि

Ho: पैट्रोल के दोनों रूपांतरों में इंधन क्षमता का कोई भेद नहीं है।

बनाम

H1: अधिमूल्य पैट्रोल बेहतर इंधन क्षमता रखता है। मानें कि $D_i = Y_i - X_i$, $\overline{D} = \overline{Y} - \overline{X}$, $S_i = D_i$ की जाति जब |Di| क्रमित हैं। यह महसूस किया जाता है कि इंधन क्षमता मापन प्रसामान्यत: बंटित नहीं हैं, अत: एक अप्राचलिक परीक्षण का प्रस्ताव रखना है। तो इस ध्येय के लिए निम्न में से कौन-सा/से उपयुक्त प्रतिदर्शज माना जा सकता है/मानें जा सकते हैं?

- 1. $\bar{Y} \bar{X}$.
- 2. धन D's की संख्यायें
- 3. धन D_i से संगत S_i का योगफल 4. $\frac{\bar{D}}{\sqrt{\Sigma(D_i-\bar{D})^2}}$.
- 111. To check whether a premium version of petrol gives better fuel efficiency, a random sample of 10 cars of a single model were tested with both premium and standard petrol. Let the mileages obtained be denoted by $(X_1, Y_1), \dots,$ (X_{10}, Y_{10}) , where X_i denotes the mileage from standard and Y_i from the premium for the i^{th} car. We want to test

 H_0 : There is no difference in fuel efficiency between the two versions of petrol

Versus

 H_1 : Premium petrol gives better fuel efficiency

Let $D_i = Y_i - X_i$, $\overline{D} = \overline{Y} - \overline{X}$, $S_i = Rank$ of D_i when $|D_i|$ are ordered. It is felt that fuel efficiency measurements are not normally distributed and hence a nonparametric test is to be proposed. Then which of the following can be considered suitable statistics for this purpose?

- $\bar{Y} \bar{X}$. 1.
- Numbers of positive $D_i's$.
- Sum of S_i corresponding to positive D_i .
- 4. $\sqrt{\Sigma(D_I - \overline{D})^2}$
- 112. प्रायिकता बंटन फलन

 $f(x; \theta, \sigma) = \frac{0.9}{\sigma} \varphi\left(\frac{x-\theta}{\sigma}\right) + 0.1 \varphi(x-\theta),$ $-\infty < \theta < \infty$ तथा $\sigma > 0$ अज्ञात प्राचल हैं तथा φ , N(0,1)के प्रायिकता घनत्व फलन को निर्दिष्ट करता है। मार्ने कि X_1, X_2, \cdots, X_n इस प्रायिकता बंटन से निकाला गया एक यादच्छिक प्रतिदर्श है। तो निम्न में से कौन-सा/से सही है/हैं?

- यह प्रतिमान प्राचलीय नहीं है।
- θ तथा σ के लिए आघुर्ण विधि के आकलज अस्तित्व रखते हैं।
- θ के एक अनिभनत आकलज का अस्तिव है।
- θ के अविरोधी आकलज अस्तित्व नहीं रखते।
- 112. Consider the pdf

 $f(x;\theta,\sigma) = \frac{0.9}{\sigma} \varphi\left(\frac{x-\theta}{\sigma}\right) + 0.1 \varphi(x-\theta),$ where $-\infty < \theta < \infty$ and $\sigma > 0$ are unknown parameters and φ denotes the pdf of N(0,1). Let X_1, X_2, \dots, X_n be a random sample from this probability distribution. Then which of the following is (are) correct?

- This model is not parametric.
- Method of moments estimators for θ and σ exist.
- An unbiased estimator of θ exists.
- Consistent estimators of θ do not exist.
- 113. मार्ने कि X का घनत्व $f(x|\theta)$ है जहां θ , 0 या 1 है। और

f(x|0) = 1 यदि 0 < x < 1, तथा 0 अन्यथा, $f(x|1) = \frac{1}{2\sqrt{x}}$ यदि 0 < x < 1 तथा 0 अन्यथा, स्तर α पर H_0 : $\theta = 0$ बनाम H_1 : $\theta = 1$ के परीक्षण के लिए.0 < α < 1, शक्कतम परीक्षण

- यदि $X>1-\alpha$, H_0 को अस्वीकार करता है।
- यदि $X < \alpha$, H_0 को अस्वीकार करता है।
- यदि $X < \sqrt{\alpha}$, H_0 को अस्वीकार करता है।
- की शक्ति है √α।
- Suppose X has density $f(x \mid \theta)$ where θ is 0 or 113. f(x|0) = 1 if 0 < x < 1, and 0 otherwise, $f(x|1) = \frac{1}{2\sqrt{x}}$ if 0 < x < 1 and 0 otherwise. To test H_0 : $\theta = 0$ versus H_1 : $\theta = 1$ at level α , $0 < \alpha < 1$, the Most Powerful test
 - rejects H_0 if $X > 1 \alpha$.
 - rejects H_0 if $X < \alpha$.
 - rejects H_0 if $X < \sqrt{\alpha}$.
 - has power $\sqrt{\alpha}$.
- 114. रैखिक प्रतिमान $Y \sim N_n(X\beta, \sigma^2 I)$ पर विचारें, जहां Xजाति k+1 < n का $n \times (k+1)$ आव्यूह है। मानें कि β तथा σ² के उच्चतम प्रायकिता आकलज क्रमश: β तथा σ² हैं। तो निम्न कथनों में से कौन से सही 青?
 - $cov(\hat{\beta}) = \sigma^2 X' X$ 1.
 - β तथा θ² स्वतंत्रत: बंटित हैं।
 - $\hat{\sigma}^2$. σ^2 के लिए पर्याप्त है।
 - 4. $\hat{\sigma}^2 = Y'AY$ जहां A जाति (n-k-1) का एक उपयुक्त आव्यूह है।
- 114. Consider the linear model $Y \sim N_n(X\beta, \sigma^2 I)$, where X is a $n \times (k+1)$ matrix of rank k+1 < n. Let $\hat{\beta}$ and $\hat{\sigma}^2$ be the maximum likelihood estimators of β and σ^2 respectively. Then which of the following statements are true?
 - $cov(\hat{\beta}) = \sigma^2 X' X$
 - $\hat{\beta}$ and $\hat{\sigma}^2$ are independently distributed $\hat{\sigma}^2$ is sufficient for σ^2

 - $\hat{\sigma}^2 = Y'AY$ where A is a suitable matrix of rank (n-k-1).

- 115. मार्ने कि Y1, Y2, Y3 असहसंबंधित प्रेक्षण हैं, सार्व उपादन प्रसारण σ^2 तथा प्रत्याशाओं $E(Y_1) = \theta_0 +$ θ_1 , $E(Y_2) = \theta_0 + \theta_2$, $E(Y_3) = \theta_0 + \theta_3$, $\exists \vec{\epsilon} i \ \theta_i' \vec{s}$ अज्ञात प्राचल हैं, के साथ । रैखिक प्रतिमान के ढांचे में निम्न कथनों में से कौन-सा/से सही है/हैं?
 - 1. $\theta_0, \theta_1, \theta_2$ तथा θ_3 में से प्रत्येक आकलनीय है।
 - 2. $\sum_{i=0}^{3} \theta_i$ आकलनीय है।
 - 3. $\theta_1 \theta_2$, $\theta_1 \theta_3$ तथा $\theta_2 \theta_3$ में से प्रत्येक आकलनीय है।
 - 4. त्रृटि वर्गों का योगफल शून्य है।
- 115. Let Y_1, Y_2, Y_3 be uncorrelated observations with common variance σ^2 and expectations given by $E(Y_1) = \theta_0 + \theta_1$, $E(Y_2) = \theta_0 + \theta_2$, $E(Y_3) = \theta_0 + \theta_3$, where θ_i 's are unknown parameters. In the framework of the linear model which of the following statement(s) is
 - Each of θ_0 , θ_1 , θ_2 and θ_3 is individually estimable.
 - $\sum_{i=0}^{3} \theta_i$ is estimable.
 - $\theta_1 \theta_2$, $\theta_1 \theta_3$ and $\theta_2 \theta_3$ are each estimable.
 - The error sum of squares is zero.
- 116. सभी i के लिए $E(X_i) = \mu = E(Y_i)$, $Var(X_i) =$ $\sigma^2 = Var(Y_i)$ तथा $Cov(X_i, Y_i) = \rho \sigma^2$ युक्त एक द्विचर प्रसामान्य बंटन से प्राप्त एक याहच्छिक प्रतिदर्श $(X_1, Y_1), ..., (X_n, Y_n)$ पर विचारें। मानें कि $\hat{\mu}, \hat{\sigma}^2$ तथा $\hat{\rho}$ क्रमश: μ, σ^2 तथा ρ के उच्चतम प्रायिकता आकलकों को निर्दिष्ट करते हैं। और $S_X^2 = \sum_{i=1}^n (X_i - \bar{X})^2$, $S_Y^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2$ तथा

$$S_{XY} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$
 हैं। तो

- 1. $X_1 Y_1$ तथा $X_1 + Y_1$ स्वतंत्र हैं।
- 2. $\hat{\mu} = \frac{1}{2}(\bar{X} + \bar{Y}), \hat{\sigma}^2 = \frac{1}{2n}(S_X^2 + S_Y^2), \hat{\rho} = \frac{2S_{XY}}{S_Y^2 + S_Y^2}$
- 3. $\hat{\sigma}^2(1+\hat{\rho}) = \frac{1}{2n} (S_X^2 + S_Y^2 + 2S_{XY}).$
- 4. $\hat{\sigma}^2(1-\hat{\rho}) = \frac{1}{2\pi} (S_X^2 + S_Y^2 2 S_{XY}).$
- 116. Consider a random sample $(X_1, Y_1), \dots, (X_n, Y_n)$ from the bivariate normal distribution with $E(X_i) = \mu = E(Y_i)$,

- $Var(X_i) = \sigma^2 = Var(Y_i)$ and $Cov(X_i, Y_i) =$ $\rho\sigma^2$ for all i. Let $\hat{\mu}$, $\hat{\sigma}^2$ and $\hat{\rho}$ denote the maximum likelikhood estimators of μ , σ^2 and ρ respectively. Also, $S_X^2 = \sum_{i=1}^n (X_i - \bar{X})^2$, $S_Y^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2$ $S_{XY} = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}).$
- 1. $X_1 Y_1$ and $X_1 + Y_1$ are independent.
- 2. $\hat{\mu} = \frac{1}{2}(\bar{X} + \bar{Y}), \hat{\sigma}^2 = \frac{1}{2n}(S_X^2 + S_Y^2), \hat{\rho} = \frac{2S_{XY}}{S_X^2 + S_Y^2}$
- 3. $\hat{\sigma}^2(1+\hat{\rho}) = \frac{1}{2n} (S_X^2 + S_Y^2 + 2S_{XY}).$ 4. $\hat{\sigma}^2(1-\hat{\rho}) = \frac{1}{2n} (S_X^2 + S_Y^2 2S_{XY}).$
- 117. रैखिक प्रतिमान

$$Y_1 = \mu_1 - \mu_2 + \epsilon_1$$
 $Y_2 = \mu_2 - \mu_3 + \epsilon_2$: $Y_{n-1} = \mu_{n-1} - \mu_n + \epsilon_{n-1}$ $Y_n = \mu_n - \mu_1 + \epsilon_n$ जहां μ_1, \dots, μ_n अज्ञात प्राचल हैं तथा $\epsilon_1, \dots, \epsilon_n$ माध्य 0 एवं सार्व उपादान प्रसारण के साथ असहसंबंधित हैं, पर विचारें। मानें कि $(Y_1, Y_2, \cdots, Y_n)'$ एक स्तंभ सदिश और $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ है। निम्न में से कौन-से सही हैं?

- 1. यदि E(c'Y) = 0, तो c' के सभी अवयव समान हैं।
- 2. $μ_1 μ_3$ का श्रेष्ठतम रैखिक अनिभनत आकलज Y1 + Y2 81
- 3. $\mu_2 \mu_3$ का श्रेष्ठतम रैखिक अनिभनत आकलज Y2- 京村
- 4. सभी रैखिक फलन $d_1\mu_1 + \cdots + d_n\mu_n$ आकलनीय हैं।
- 117. Consider the linear model

$$Y_1 = \mu_1 - \mu_2 + \epsilon_1$$

 $Y_2 = \mu_2 - \mu_3 + \epsilon_2$
:
 $Y_{n-1} = \mu_{n-1} - \mu_n + \epsilon_{n-1}$
 $Y_n = \mu_n - \mu_1 + \epsilon_n$
where μ_1, \dots, μ_n are unknown parameters and $\epsilon_1, \dots, \epsilon_n$ are uncorrelated with mean 0 and common variance. Let Y be the column vector $(Y_1, Y_2, \dots, Y_n)'$ and $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$. Which of the following are correct?

- 1. If E(c'Y) = 0, then all elements of c' are equal.
- 2. The best linear unbiased estimator of $\mu_1 \mu_3$ is $Y_1 + Y_2$.
- 3. The best linear unbiased estimator of $\mu_2 \mu_3$ is $Y_2 \overline{Y}$.
- 4. All linear functions $d_1\mu_1 + \cdots + d_n\mu_n$ are estimable.
- 118. एक M/M/C कतार प्रतिमान में समय t पर तंत्र में ग्राहकों की संख्या X(t) है, C=3, आगमन गति $\lambda>0$ तथा सेवा गति $\mu>0$ के साथ। निम्न में से कौन-सा/से सही है/हैं?
 - {X(t)} एक जनन एवं मरण प्रक्रिया है, अचर जनन एवं मरण गतियों के साथ।
 - 2. यदि $\{X(t)\}$ का एक स्तब्ध बंटन है, तो $\lambda < 3\mu$ है।
 - 3. यदि $\lambda < 3\mu$, है, तो स्तब्ध बंटन प्राचल $\frac{\lambda}{3\mu}$ के साथ एक ज्यामितीय बंटन है।
 - समय t पर सेवा पाने वाले ग्राहकों की संख्या न्यून {X(t),3} है।
- 118. Let X(t) = number of customers in the system at time t in an M/M/C queueing model, with C = 3, arrival rate $\lambda > 0$ and service rate $\mu > 0$. Which of the following is/are true?
 - {X(t)} is a birth and death process with constant birth and death rates.
 - 2. If $\{X(t)\}$ has a stationary distribution, then $\lambda < 3\mu$.
 - 3. If $\lambda < 3\mu$, then the stationary distribution is a geometric distribution with parameter $\frac{\lambda}{3\mu}$.
 - 4. The number of customers undergoing service at time t is min $\{X(t), 3\}$.
- 119. मार्ने कि $\Sigma = \left((\sigma_{ij}) \right)$ एक $n \times n$ सममित एवं धन निश्चित आव्यूह है ताकि $\sigma_{ij} \neq 0$ सभी i,j के लिए। निम्न आव्यूहों में से कौन-सा/से हमेशा एक बहुचर प्रसामान्य याद्दिछक सदिश का सहप्रसरण आव्यूह होगा/होंगे?
 - Σ
 - 2. हर i,j के लिए σ_{ij}^2 के (ij)वां अवयव वाला आव्यूह

- 3. हर i,j के लिए $\frac{1}{\sigma_{ij}}$ के (ij)वां अवयव वाला आव्यह
- 4. Σ^{-1} .
- 119. Let $\Sigma = ((\sigma_{ij}))$ be an $n \times n$ symmetric and positive definite matrix such that $\sigma_{ij} \neq 0$ for all i, j. Which of the following matrices will always be the covariance matrix of a multivariate normal random vector?
 - 1. Σ
 - 2. The matrix with the (ij) th element σ_{ij}^2 for each i, j.
 - 3. The matrix with (ij)th element $\frac{1}{\sigma_{ij}}$ for each i, j.
 - 4. Σ^{-1} .
- 120. मार्ने कि Y₁, Y₂, Y₃, Y₄ स्वतंत्रतः एवं सर्वर्थासमानतः बंटित मानक प्रसामान्य चर हैं। निम्न में से किसका स्वातंत्र्य कोटि 2 का विशार्ट बंटन है?

1.
$$\begin{bmatrix} Y_1^2 + Y_2^2 & Y_2^2 + Y_3^2 \\ Y_2^2 + Y_3^2 & Y_3^2 + Y_4^2 \end{bmatrix}$$

- 2. $\begin{bmatrix} Y_1^2 & Y_2^2 \\ Y_3^2 & Y_4^2 \end{bmatrix}$.
- 3. $\begin{bmatrix} Y_1^2 + Y_2^2 & 0 \\ 0 & Y_3^2 + Y_4^2 \end{bmatrix}$
- 4. $\begin{bmatrix} Y_1^2 + Y_2^2 & Y_1Y_3 + Y_2Y_4 \\ Y_1Y_3 + Y_2Y_4 & Y_3^2 + Y_4^2 \end{bmatrix}$
- 120. Let Y_1, Y_2, Y_3, Y_4 be i.i.d standard normal variables. Which of the following has Wishart distribution with 2 d.f.?

1.
$$\begin{bmatrix} Y_1^2 + Y_2^2 & Y_2^2 + Y_3^2 \\ Y_2^2 + Y_3^2 & Y_3^2 + Y_4^2 \end{bmatrix}$$

- 2. $\begin{bmatrix} Y_1^2 & Y_2^2 \\ Y_3^2 & Y_4^2 \end{bmatrix}$.
- 3. $\begin{bmatrix} Y_1^2 + Y_2^2 & 0 \\ 0 & Y_3^2 + Y_4^2 \end{bmatrix}$
- 4. $\begin{bmatrix} Y_1^2 + Y_2^2 & Y_1Y_3 + Y_2Y_4 \\ Y_1Y_3 + Y_2Y_4 & Y_3^2 + Y_4^2 \end{bmatrix}.$

रफ कार्य/ROUGH WORK