

Algorithms 演算法

Graphs (4) Maximum Flow

Professor Chien-Mo James Li 李建模 Graduate Institute of Electronics Engineering National Taiwan University

Algorithms NTUEE 1

Outline

- Elementary Graph Algorithms, CH22
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26*
 - Flow Networks, 26.1
 - Ford-Fulkerson Method 26.2
 - Edmond-Karp Algorithm
 - Maximum Bipartite Matching 26.3

*CH 26 is different from 2nd edition

Flow Networks

- Flow Network G = (V,E) is a directed graph
 - Each edge (u,v) has a capacity $c(u,v) \ge 0$
 - If $(u,v) \notin E$, then c(u,v) = 0.
 - If $(u,v) \in E$, then reverse edge $(v,u) \notin E$
- Two special vertices: source vertex s, sink vertex t,
 - each vertex lies on a path from source to sink
 - $s \sim v \sim t$ for all $v \in V$
- Imagine: vertices are junctions; edges are conduit of different sizes
 - capacity is an upper bound on the flow rate = units/time

33

Flow* different from 2nd ed.

- Flow $f: V \times V \rightarrow \Re$, must satisfy
 - Capacity constraint: For all $u,v \in V$, $0 \le f(u,v) \le c(u,v)$
 - Flow conservation: For all $u \in V \{s, t\}$
 - * total flow into u = total flow out of u

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$
total flow into u
total flow out of u

• Value of flow |f| = net flow out of source

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

- Maximum flow problem
 - Given G, s, t, and c, find a flow whose value is maximum
- Example: Fig 26.1 flow/capacity; value of flow= |f| = 19

Antiparallel Edges

- $(v_1, v_2) (v_2, v_1)$ are antiparallel edges
 - violate our assumption
- how to model this ?
 - choose one edge, say (v₁, v₂)
 - create v'
 - replace (v_1, v_2) by two new edges (v_1, v_2) and (v_1, v_2)
- Example Fig 26.2

Multiple Sources and Sinks

- What if more than one sources and sinks?
 - Add a supersource s, add a supersink t
 - Capacity from supersource to source are ∞
 - Capacity from sinks to supersink are ∞

Outline

- Elementary Graph Algorithms, CH22
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26
 - Flow Networks, 26.1
 - Ford-Fulkerson Method 26.2
 - Edmond-Karp Algorithm
 - Maximum Bipartite Matching 26.3

Algorithms NTUEE 7

Ford-Fulkerson Method

- FF method contains three concepts
 - Residual Network
 - Augment Path
 - Cut

FORD-FULKERSON-METHOD(G, s, t)

- 1 initialize flow f to 0
- 2 **while** there exists an augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

Residual Capacity

- Given a flow f in network G = (V, E). Consider a pair of vertices $u, v \in V$
- Residual capacity = additional flow we can push directly from u to v
 - sending flow back is equivalent to decreasing the flow

$$c_{f}(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

- Example: Fig 26.4
 - $c_t(v_3, v_2) = 9-4=5$
 - $c_f(v_2, v_3) = 4$, why?
 - No (v₁, v₃), why?

Residual Network

- Residual network $G_f = (V, E_f)$ $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$
- Similar to a flow network,
 - except that it may contain antiparallel edges (u, v) and (v, u)
- Every edge $(u, v) \in E_f$ corresponds to
 - an edge $(u, v) \in E$, or an edge $(v, u) \in E$, or both
 - therefore $|E_f| \le 2|E|$
- Example: Fig. 26.4
 - |*E*| = 9
 - |E_f|= 15

Augmentation of Flow, $f \uparrow f'$

- Given a flow f in G and a flow f' in G_f
 - $(f \uparrow f')$ = augmentation of f by f'

$$(f \mid f') = augmentation of f by f' equation
$$(f \uparrow f')(u,v) = \begin{cases} f(u,v) + \underbrace{f'(u,v)}_{\text{increase}} - \underbrace{f'(v,u)}_{\text{cancellation}} &, \text{if } (u,v) \in E \\ \text{otherwise} \end{cases}$$$$

equation 26.4

- Cancellation :
 - pushing flow on the reverse edge in G, decreases the flow in G

Value of $|f \uparrow f|$

- (Lemma 26.1) Given a flow network G and a flow f. Let f be a flow in G_f . Then $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$
- Example: Fig 26.4
 - |f| = 19
 - f' from $s \rightarrow v_2 \rightarrow v_3 \rightarrow t$, |f'| = 4
 - $|f \uparrow f| = 19+4 = 23$

12

Proof of Lemma 26.1(1)

• prove $f \uparrow f$ is a flow so it obeys the capacity constraint

$$(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u) \text{ (by equation (26.4))}$$

$$\geq f(u,v) + f'(u,v) - f(u,v) \text{ (because } f'(v,u) \leq f(u,v), \text{ why?)}$$

$$= f'(u,v)$$

$$\geq 0.$$

$$(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u) \text{ (by equation (26.4))}$$

$$\leq f(u,v) + f'(u,v) \text{ (because flows are nonnegative)}$$

$$\leq f(u,v) + c_f(u,v) \text{ (capacity constraint)}$$

$$= f(u,v) + c(u,v) - f(u,v) \text{ (definition of } c_f)$$

Algorithms NTUEE 13

Proof of Lemma 26.1(2)

prove f\(^{f}\) is a flow so it obeys the flow conservation

= c(u,v)

$$\sum_{v \in V} (f \uparrow f')(u, v) = \sum_{v \in V} (f(u, v) + f'(u, v) - f'(v, u))$$

$$= \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) - \sum_{v \in V} f'(v, u)$$

$$= \sum_{v \in V} f(v, u) + \sum_{v \in V} f'(v, u) - \sum_{v \in V} f'(u, v)$$

$$= \sum_{v \in V} (f(v, u) + f'(v, u) - f'(u, v))$$

$$= \sum_{v \in V} (f \uparrow f')(v, u)$$

Proof of Lemma 26.1(3)

• prove $|f \uparrow f| = |f| + |f|$

$$\begin{split} \left| f \uparrow f \right| &= \sum_{v \in V_{1}} (f \uparrow f')(s, v) - \sum_{v \in V_{2}} (f \uparrow f')(v, s) \\ &= \sum_{v \in V_{1}} (f \uparrow f')(s, v) - \sum_{v \in V_{2}} (f \uparrow f')(v, s) \\ &= \sum_{v \in V_{1}} (f(s, v) + f'(s, v) - f'(v, s)) - \sum_{v \in V_{2}} (f(v, s) + f'(v, s) - f'(s, v)) \\ &= \sum_{v \in V_{1}} f(s, v) + \sum_{v \in V_{1}} f'(s, v) - \sum_{v \in V_{1}} f'(v, s) \\ &- \sum_{v \in V_{1}} f(v, s) - \sum_{v \in V_{2}} f'(v, s) + \sum_{v \in V_{2}} f'(s, v) \\ &= \sum_{v \in V_{1}} f(s, v) - \sum_{v \in V_{2}} f(v, s) \\ &+ \sum_{v \in V_{1}} f'(s, v) + \sum_{v \in V_{2}} f'(s, v) - \sum_{v \in V_{1}} f'(v, s) \\ &= \sum_{v \in V_{1}} f(s, v) - \sum_{v \in V_{2}} f(v, s) + \sum_{v \in V_{1} \cup V_{2}} f'(s, v) - \sum_{v \in V_{1} \cup V_{2}} f'(v, s) \end{split}$$

Algorithms NTUEE 15

Cont'd

exercise 26.2-1

$$|f \uparrow f'| = \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1 \cup V_2} f'(s, v) - \sum_{v \in V_1 \cup V_2} f'(v, s)$$

$$= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{v \in V} f'(s, v) - \sum_{v \in V} f'(v, s)$$

$$= |f| + |f'|$$

Augmenting Path

- Augmenting path p is a simple path from s ~> t in G_t
 - p admits more flow along each edge
 - * a sequence of pipes through which we can push more flow
 - How much more flow can we push from s to t along p?
 - * residual capacity of p $c_f(p) = \min\{c_f(u,v):(u,v) \text{ is on } p\}$
 - * smallest residual capacity of all edges on this path
- Example: Fig 26.4
 - Augmenting Path $p = \langle s, v_2, v_3, t \rangle$
 - $c_t(p) = 4$
- (u, v) is called critical on augmenting path p if c_i(u, v) = c_i(p)

• (Lemma 26.2)Given flow network G and flow f. Let p be an augmenting path in G_f , f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$

$$f_p(u,v) = \begin{cases} c_f(p) & \text{if } (u,v) \text{ is on } p, \\ 0 & \text{otherwise} \end{cases}$$
 eq. 26.8

• (Corollary 26.3) Given flow network G and flow f, and augmenting path p in G_f . Then $f \uparrow f_p$ is a flow in G with value $|f \uparrow f_p| = |f| + |f_p| > |f|$

CUT

- Cut (S, T) of flow network G =(V,E) is a partition of V into S and T
 - T = V-S such that $s \in S$ and $t \in T$
- Net flow across cut (S, T) is $f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) \sum_{u \in S} \sum_{v \in T} f(v,u)$
- Capacity of cut (S,T) is $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$
- Minimum cut of G is a cut whose capacity is minimum over all cuts
- Example: Fig 26.5 cut {s, v₁, v₂} {v₃, v₄, t}
 - capacity of cut = 12+14 = 26; net flow cross cut = 12+11-4=19
 - what is the minimum cut of G? what is the capacity of the cut?

Algorithms

19

Lemma 26.4

- For any cut (S, T), the net flow across cut f(S, T) = |f|
 - Proof

$$\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) = 0$$
 flow conservation, $u \in V - \{s, t\}$

$$|f| = \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s) + \sum_{u \in S - \{s\}} \left[\sum_{v \in V} f(u,v) - \sum_{v \in V} f(v,u) \right]$$

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \sum_{v \in V} f(u, v) - \sum_{u \in S - \{s\}} \sum_{v \in V} f(v, u)$$

$$= \sum_{v \in V} \left(f(s, v) + \sum_{u \in S - \{s\}} f(u, v) \right) - \sum_{v \in V} \left(f(v, s) + \sum_{u \in S - \{s\}} f(v, u) \right)$$

$$= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u)$$

Lemma 26.4 (2)

- Proof (cont'd)
- because $V = S \cup T$, and $S \cap T = \emptyset$
 - split summation over V into summation over S and T

$$|f| = \sum_{v \in S} \sum_{u \in S} f(u,v) + \sum_{v \in T} \sum_{u \in S} f(u,v) - \sum_{v \in S} \sum_{u \in S} f(v,u) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$

$$= \sum_{v \in T} \sum_{u \in S} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) + \left(\sum_{v \in S} \sum_{u \in S} f(u,v) - \sum_{v \in S} \sum_{u \in S} f(v,u)\right)$$

$$= \sum_{v \in T} \sum_{u \in S} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) + \left(\sum_{v \in S} \sum_{u \in S} f(u,v) - \sum_{v \in S} \sum_{u \in S} f(v,u)\right)$$

$$|f| = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$
$$= f(S, T)$$

Algorithms NTUEE 21

Corollary 26.5

- The value of any flow ≤ capacity of any cut
 - Proof

$$|f| = f(S,T)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

$$\leq \sum_{u \in S} \sum_{v \in T} f(u,v)$$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u,v)$$

$$= c(S,T)$$

Therefore, maximum flow ≤ capacity of minimum cut

Max-flow Min-Cut Theorem (1)

- (Theorem 26.6) The following are equivalent:
 - 1. f is a maximum flow
 - 2. G, has no augmenting path
 - 3. |f| = c(S, T) for some cut (S, T)
 - Proof: 1→2 contrapositive
 - * assume G_f has an augmenting path, and f is a maximum flow
 - * by corollary 26.3, $f \uparrow f_p$ is a flow in G with value $|f| + |f_p| > |f|$
 - so f is not a maximum flow, conflict!
 - Proof: 3→1
 - * (corollary 26.5) $|f| \le c(S, T)$
 - * so |f| = c(S, T) means f is a max flow

Algorithms NTUEE

Max-flow Min-Cut Theorem (2)

- Proof 2→3
 - Suppose G_t has no augmenting path
 - Let $S = \{v \in V : \text{ there exists a path } s \sim v \text{ in } G_d\}, T = V S$
 - * Must have $t \in T$; otherwise there is an augmenting path
 - Therefore, (S, T) is a cut
 - Consider $u \in S$ and $v \in T$
 - * If $(v,u) \in E$, then $c_i(u,v) = f(v,u) = 0$
 - otherwise, $c_f(u,v)=f(v,u)>0 \rightarrow (u,v)\in E_f \rightarrow v\in S$
 - * If $(u,v) \in E$, then $c_i(u,v) = 0 \implies f(u,v) = c(u,v)$
 - otherwise, $(u,v) \in E_f \rightarrow v \in S$
 - * If both (u,v) $(v,u) \notin E$, must have f(u,v)=f(v,u)=0

• therefore
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$
$$= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0$$
$$= c(S,T)$$

Basic Ford Fulkerson

- Keep augmenting flow along an augmenting path
 - until there is no augmenting path

```
FORD-FULKERSON(G,s,t)

1 for each edge (u,v) \in G.E // initialize

2 (u,v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min \{c_f(u,v) : (u,v) \text{ is in } p\}

5 for each edge (u,v) in p

6 if (u,v) \in E

7 (u,v).f = (u,v).f + c_f(p) // increase

8 else (v,u).f = (v,u).f - c_f(p) // cancellation
```

Algorithms NTUEE 25

Example

Example (cont'd)

- Fig 26.6 (cont'd) Q1: maximum flow =?
- Q2: can you find the min CUT?

Algorithms NTUEE 27

Time Complexity

```
FORD-FULKERSON(G,s,t)

1 for each edge (u,v) \in G.E

2 (u,v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min \{c_f(u,v) : (u,v) \text{ is in } p\}

5 for each edge (u,v) in p

6 if (u,v) \in E

7 (u,v).f = (u,v).f + c_f(p)

8 else (v,u).f = (v,u).f - c_f(p)
```

- line 3: finding G_f using BFS or DFS
 - O(V+E') = O(E)
 - $E' = \{(u,v): (u,v) \in E \text{ or } (v,u) \in E\}$
- line 3~8: while loop
 - Assume capacities are integers. Assume max flow is f*
 - each iteration increase flow by at least 1
 - * needs |f*| iterations
- Time complexity = O(E |f*|)

Algorithms NTUEE 28

Disadvantage

- FF running time is NOT polynomial in input size.
 - It depends on |f*|, which is not a function of V and E
- worst case example: Fig 26.7
 - need 2,000,000 times augmentations!

can we do better?

Algorithms NTUEE 29

Outline

- Elementary Graph Algorithms, CH22
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26
 - Flow Networks, 26.1
 - Ford-Fulkerson Method 26.2
 - Edmond-Karp Algorithm 26.2
 - Maximum Bipartite Matching 26.3

Edmonds-Karp Algorithm

- Do FORD-FULKERSON, but compute augmenting paths by BFS
 - AP are shortest paths $s \sim t$ in G_t , with unit edge weights
 - time complexity O(VE2) (Theorem 26.8)
- push-relabel algorithm is even better O(V³)
 - 26.4 26.5 *not in exam
- Exercise 1
 - show Edmonds-Karp is better than Ford-Fulkerson

Algorithms NTUEE 31

Exercise 2

- Use Edmonds-Karp to find max flow
 - Q1: how many iterations do we need? Q2: what is the max flow?

Lemma 26.7 (1)

- Let $\delta_i(u, v)$ = shortest path distance from u to v in G_i
 - · assume unit edge weights
- For all v∈ V- {s, t}, δ_f(u, v) increases monotonically with each flow augmentation.
 - Proof by contradiction
 - Suppose there exists $v \in V$ $\{s, t\}$ such that some flow augmentation causes shortest path distance $s \sim v$ to decrease
 - Let f = flow before the first augmentation that causes a shortestpath distance to decrease. Let f' = the flow afterward
 - Let v be a vertex with minimum $\delta_f(s, v)$ whose distance was decreased by the augmentation $\delta_{f'}(s, v) < \delta_f(s, v)$
 - Let a shortest path s to v in $G_{t'}$ be $s \sim u \rightarrow v$

* so
$$(u, v) \in E_{f'}$$
 $\delta_{f'}(s, u) = \delta_{f'}(s, v) - 1$ (26.12)

• Because of how we chose v, we know the distance from s to u does not decrease $\delta_{f'}(s,u) \geq \delta_f(s,u)$ (26.13)

Algorithms NTUEE 33

Lemma 26.7 (2)

• Claim $(u, v) \notin E_f$ why? if $(u, v) \in E_f$ then

$$\delta_f(s,v) \le \delta_f(s,u) + 1$$
 (by Lemma 24.10, the triangle inequality)
 $\le \delta_{f'}(s,u) + 1$ (by inequality (26.13))
 $= \delta_{f'}(s,v)$ (by equation (26.12)) E_f

contradict assumption

*
$$\delta_{f'}(s, v) < \delta_{f}(s, v)$$

- How can $(u, v) \notin E_f$ but $(u, v) \in E_f$?
 - The augmentation must have increased flow v to u
 - Since Edmonds-Karp augments along shortest paths, the shortest path s to u in G_t has (v, u) as its last edge

$$\delta_f(s,v) = \delta_f(s,u) - 1$$
 (v,u) is last edge on shortest path in $G_f(s,v) = \delta_f(s,u) - 1$ (by inequality (26.13))
 $\delta_f(s,v) = \delta_f(s,v) - 2$ (by equation (26.12))

- contradict assumption $\delta_{f'}(s, v) < \delta_{f}(s, v)$
- Therefore no v exist such that $\delta_t(s, v)$ decreases

Theorem 26.8 (1)

- Edmonds-Karp performs O(VE) augmentations
 - Proof:
 - Let p be an augmenting path and (u, v) is critical
 - * it disappears from residual network after augmenting along p
 - claim: each of the |E| edges can become critical ≤ |V|/2 times
 - Consider $u,v \in V$ such that either $(u, v) \in E$ or $(v, u) \in E$ or both
 - when (*u*, *v*) becomes critical first time $\delta_f(s,v) = \delta_f(s,u) + 1$
 - After augmentation, (u, v) disappears from residual network
 - (u, v) won't reappear in G_f until flow from u to v decreases, which happens only if (v, u) is on an augmenting path in G_f

Algorithms

NTUEE

Theorem 26.8 (2)

• by Lemma 26.7 $\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1$

$$\geq \delta_f(s, v) + 1$$
$$= \delta_f(s, u) + 2$$

 $\delta_r(s,u)$

 δ_{l} (s,v)

- Each time, $\delta_f(s, u)$ increases by at least 2
- Initially, $\delta_f(s, u) = 0$,
- eventually, $\delta_f(s, u) \le |V|-2$
 - augmenting path can't have s, and t as intermediate vertices
 - u can become critical less than (|V|-2) /2 =|V|/2 1 times
 - totally, u can become critical less than |V|/2 times
- Since O(E) pairs of vertices have an edge between them in G_f
 - Each AP has at least 1 critical edge
 - total O(VE) augmentations
- Use BFS to find each AP in O(E) time
 - Edmons-Karp is O(VE2)

Outline

- **Elementary Graph Algorithms, CH22**
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- **Maximum Flow, CH26**
 - Flow Networks, 26.1
 - Ford-Fulkerson Method 26.2
 - Edmond-Karp Algorithm
 - Maximum Bipartite Matching 26.3

37 **Algorithms** NTUEE

Bipartite Matching

- Undirected G = (V, E) is bipartite if we can
 - partition $V = L \cup R$ such that all edges go between L and R
- A matching is a subset of edges M ⊆ E such that
 - for all $v \in V$, one edge of M is incident on v
 - ◆ cardinality = size of M = |M|
- Vertex v is matched if an edge of M is incident on it
 - otherwise unmatched
- Example:
 - Fig 26.8
 - (a) cardinality =2
 - (b) cardinality =3

Maximum Bipartite Matching

- Maximum bipartite matching: a matching of maximum cardinality
 - M is a maximum matching if $|M| \ge |M'|$ for all matching M'
- Applications: machine-task matching
 - ⋆ L = machines, R = tasks
 - edge (u, v) means machine u is capable of performing a task v
 - MBM find maximum number of tasks
- Example
 - (b) is MBM

Algorithms

39

Corresponding Flow Network

- Corresponding flow network G'=(V', E')
 - $V = V \cup \{s, t\}$ $E' = \{(s,u) : u \in L\} \cup \{(u,v) : (u,v) \in E\} \cup \{(v,t) : v \in R\}$
 - c(u,v) = 1 for all $(u, v) \in E'$
 - |E'| = |E|+|V|
- Each vertex in V has at least one incident edge, |E|≥ |V|/2
 - $|E'| = |E| + |V| \le 3|E|$. therefore, $|E'| = \Theta|E|$
- Idea: a flow in G' correspond to a matching in G
 - solve MBM using Ford-Fi
- Example Fig 26.8c
 - max flow = 3
 - MBM cardinality =3

Lemma 26.9

- Assume integer-valued flow: f(u,v) is integer are for all edges (u, v)
- If M is a matching in G, then there is an f in G' with value |f| = |M|
- Conversely, if f is a flow in G', then there is a matching with |M| = |f|
 - Proof 1: M corresponds to f
 - * if $f(u,v) \in M$, then f(s,u) = f(u,v) = f(v,t) = 1
 - other edges, f(u,v) = 0
 - * $(u,v) \in M$ corresponds to one unit of flow in G' $s \rightarrow u \rightarrow v \rightarrow t$
 - * net flow across cut $(L \cup \{S\}, R \cup \{T\}) = |M|$
 - * by Lemma 26.4, the value of the flow is |f|=|M|
 - Proof 2: f corresponds to M
 - * Let $M = \{(u, v) : u \in L, v \in R, \text{ and } f(u, v) > 0\}$
 - * for each $u \in L$, one unit flow enters u if and only if one vertex $v \in R$ such that f(u,v) = 1
 - * for every matched vertex $u \in L$, we have f(u,v) = 1
 - * net flow across cut $(L \cup \{S\}, R \cup \{T\}) = |M|$
- * by Lemma 26.4, the value of the flow is |M|=|f|

- (Theorem 26.10) If the capacity function c takes on only integral values, then maximum flow f produced by FF method |f| is integer. Moreover, for all vertices u and v, f(u,v) is integer
 - exercise: 26.3-2
- (corollary 26.11) The cardinality of maximum matching *M* in a bipartite graph *G* equals the value of a maximum flow *f* in its corresponding flow network *G*'

Conclusion

- How to solve MBM?
 - create corresponding flow network G'
 - run FF method, O(|f*| E') time
 - obtain the MBM
- MBM Time complexity
 - $|f^*| = O(V)$
 - $|E'| = \Theta(E)$
 - ◆ totally, O(VE)

Algorithms NTUEE 43

Reading

• CH 26.1-26.3