전기전자 실험

4주차 BJT I-V Characteristics (BJT I-V 특성)

목차

- 실험 목적
- 관련 이론
- 실험
- 결과 보고서 양식

실험 목적

1

BJT의 I-V 특성을 이론적으로 이해하고 실험을 통해 확인한다. 2

BJT에서 V_{BE} , V_{CE} 에 따른 I_c 특성을 이해하고 실험을 통해 이를 직접 측정해본다.

3

Resistive Divider Biasing 회로를 이해하고 직접 설계하여 이를 BJT I-V 특성 측정 실험에 사용한다.

BJT Structure

BJT Symbol

<u> 관련 이론</u>

Forward active region: $V_{BE} > 0$, $V_{BC} < 0$

$$I_C = I_S \exp \frac{V_{BE}}{V_T}$$
 $I_S = \frac{A_E q D_n n_i}{N_E W_B}$

$$I_C = \beta I_B$$
 $I_E = I_C + I_C = I_C (1 + \frac{1}{\beta})$

NPN BJT Datashhet (2N3904)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vсво	Collector-Base Voltage (I _E = 0)	60		
VCEO	Collector-Emitter Voltage (I _B = 0)	40	V	
VEBO	Emitter-Base Voltage (I _C = 0)	6	V mA mW	
Ic	Collector Current	200		
Ptot	Total Dissipation at T _C = 25 °C	625		
Tstg	Storage Temperature	-65 to 150		
Tj	Max. Operating Junction Temperature	150	°C	

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions V _{CE} = 30 V		Min.	Тур.	Max.	Unit
ICEX	Collector Cut-off Current (V _{BE} = -3 V)					50	nA
I _{BEX}	Base Cut-off Current (VBE = -3 V)	V _{CE} = 30 V			50	nA	
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	Ic = 1 mA		40			٧
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 10 μA		60			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (Ic = 0)	I _E = 10 μA		6			٧
VCE(sat)*	Collector-Emitter Saturation Voltage	I _C = 10 mA I _C = 50 mA	I _B = 1 mA I _B = 5 mA			0.2	V
VBE(sat)*	Base-Emitter Saturation Voltage	I _C = 10 mA I _C = 50 mA	I _B = 1 mA I _B = 5 mA	0.65		0.85 0.95	V
β	DC Current Gain	I _C = 0.1 mA I _C = 1 mA I _C = 10 mA I _C = 50 mA I _C = 100 mA	V _{CE} = 1 V V _{CE} = 1 V V _{CE} = 1 V V _{CE} = 1 V V _{CE} = 1 V	60 80 100 60 30		300	

실험 1 : BJT V_{BE} $-I_C$ 특성

- 1) 왼쪽의 회로 구현 (R 값은 멀티미터로 실측값 확인)
- 2) $V_{cc} = 10$ V로 고정하고 V_{BB} 전압을 $0 \sim 6$ V(전류가 급격히 변하는 구간에서 촘촘한 간격으로)로 바꾸면서 V_{BE} , V_{CE} , V_{CB} , I_{B} , I_{C} 를 측정하고 표로 정리
- 3) 2)에서 정리한 표를 토대로 β값 계산 → 데이터시트에 제공된 값과 비교

<결과보고서 작성>

- V_{BE} $I_{\mathcal{C}}$ 그래프를 그리고 이를 BJT의 동작특성과 연계하여 설명
- 정리한 표에서 측정한 값들의 동작영역을 각각 Cutoff, Saturation, Forward-Active로 구분

실험 2: BJT V_{CE} - I_C 특성

- 1) Lab 1의 회로 그대로 활용
- 2) $V_{BB} = 0.7$ V로 고정하고 V_{CC} 전압을 $0 \sim 10$ V(전류가 급격히 변하는 구간에서 촘촘한 간격으로) 로 바꾸면서 V_{BE} , V_{CE} , V_{CB} , I_B , I_C 를 측정하고 표로 정리
- 3) V_{BB} = 1.4V로 바꾸고 2) 반복
- 4) 두 V_{BB} 조건에 대해 V_{CE} I_C 그래프를 대략적으로 그리고 V_A 추출

<결과보고서 작성>

- V_{CE} I_C 그래프에서 V_A , r_O 을 추출 \rightarrow 서로 다른 V_{BE} 에 대해 어떤 특성을 보이는지 논의
- 정리한 표에서 측정한 값들의 동작영역을 각각 Cutoff, Saturation, Forward-Active로 구분

실험 3: Resistive Divider Biasing

- 1) $(R_1 = 22k\Omega, R_2 = \sim 10k\Omega)$ 가변저항, $R_C = 1k\Omega$ 왼쪽의 회로 구현
- (R **값은 멀티미터로 실측값 확인**)
- 2) $V_{CC} = 10 \ \forall \mathbf{z}$ 고정하고 가변저항을 조절하며 (전류가 급격히 변하는 구간에서 촘촘한 간격으로) R_2 , V_{BE} , V_{CE} , V_{CB} , I_B , I_C 를 측정하고 표로 정리

<결과보고서 작성>

- Resistive divider biasing 회로의 동작 원리 설명, Lab 1의 결과와 비교/논의
- 정리한 표에서 측정한 값들의 동작영역을 각각 Cutoff,Saturation, Forward-Active로 구분

결과 보고서 양식

- 1.실험 목적
- 2.관련 이론
- 3.실험 순서
- 4.실험 결과
- 5.분석 및 고찰
- 6.결론

