2023-2024 学年高等代数与解析几何 2-1 第三次月考

回忆:zwj

$$-.$$
求所有与 $A = \begin{pmatrix} 1919 & 10 \\ 0 & 17 \end{pmatrix}$ 可交换的矩阵.

二.设
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
.(1)求 A 的秩;(2)解矩阵方程 $AX = A + 2X$.

三.设A是秩为r的 $m \times n$ 矩阵.证明:存在可逆方阵P,使PA的后m - r行全为0.

四.设A为n阶方阵使得 $A^2 = E_n$.证明: $rank(A + E_n) + rank(A - E_n) = n$.

五.设
$$C$$
, $D \in \mathbb{P}^{n \times n}$,证明: $\begin{vmatrix} D & C \\ C & D \end{vmatrix} = |D + C||D - C|$.

六.设
$$A = \left(a_{ij}\right)_{n \times n}$$
 为实矩阵,且满足:(i) $i \neq j$ 时, $a_{ij} \leq 0$;(2)
$$\begin{vmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \dots & a_{kk} \end{vmatrix} > 0$$
 , $1 \leq k \leq n$.证明:

 A^{-1} 的所有元素非负.

七.设 $D \in \mathbb{P}^{n \times n}$ 且 D 可逆; α , $\beta \in \mathbb{P}^{n \times 1}$,且 $c = 1 + \beta^T D^{-1} \alpha \neq 0$.(1)证明:矩阵 $D + \alpha \beta^T$ 可逆;(2) 试求矩阵 $D + \alpha \beta^T$ 的逆矩阵.