Practice Problems Date: 20-01-2023

Course: PH30204/ PH41014 - Condensed Matter Physics

(Take standard fundamental constant values and the rest mass of an electron)

Q1. The density of silver is 10.5×10^3 kg/m³. Assuming that each silver atom provides one conduction electron. Mean free time τ is 2.84×10^{-14} sec. Calculate the density of electrons, conductivity and mobility of silver.

- **Q2.** Evaluate the temperature at which there is one percent probability that a state, with an energy 0.5eV above the Fermi energy, will be occupied by an electron.
- **Q3.** Calculate the mean free path of Potassium (K) if its Fermi energy is 2.1eV and the electrical conductivity is 1.5×10^7 ohm⁻¹m⁻¹.
- **Q4.** The Hall coefficient of a rod of silver of length 1 meter and diameter 1 cm is -1.25×10^{-10} m³/C. If you apply 1 milli-Volt voltage drop between its ends, what should be the current flowing through it.

(Take τ of silver to be 2.84×10^{-14} seconds)