Introduction to Proofs

CSC165 Week 3 - Part 1

How do I write a proof?

There is a difference between:

Am I expressing the correct idea?

and

Am I expressing the idea in a way that will be understood?

To avoid confusion in CS, write logical expressions so that:

- There are commas after each "x ∈ S" statement.
- You do not use "such that" or "s.t."
- Each logical operator has the correct number of inputs without overlap. For example: $(x > 0) \land (x < 1)$ instead of 0 < x < 1.
- You can use as much English as you'd like in your proof.
 However do NOT use words in your translation of the problem into logical symbols.

What goes into a proof:

- The header
 - what we want to show,
 - "let" statements,
 - any assumptions we can make
- The body of the proof is an argument that relies on:
 - definitions
 - assumptions that were made in the proof header
 - previous deductions from something that already appeared in the proof body
 - external true statements that we already know

Prove or disprove:

Note: I will use W.T.S for "want to show" in these slides to save space. Please do not do that in your solutions.

$$\forall$$
 n \in \mathbb{N} , n $>$ 20 \Rightarrow 1.5n - 4 \geq 3

$$\forall$$
 n \in N, n > 20 \land 1.5n - 4 \ge 3

∃
$$n \in \mathbb{N}$$
, $n > 20 \land 1.5n - 4 ≥ 3$

$$\exists n \in \mathbb{N}, n > 20 \Rightarrow 1.5n - 4 \geq 3$$

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

р	q	p⇒q	
Т	Т	Т	
Т	F	F	
F	Т	Т	
ц	F	Т	

A typical proof of an existential.

Given statement to prove: $\exists x \in S, P(x)$.

Proof. Let $x = \underline{\hspace{1cm}}$.

[Proof that $P(\underline{})$ is True.]

A typical proof of a universal.

Given statement to prove: $\forall x \in S, P(x)$.

Proof. Let $x \in S$. (That is, let x be an arbitrary element of S.)

[Proof that P(x) is True].

A typical proof of an implication (direct).

Given statement to prove: $p \Rightarrow q$.

Proof. Assume *p*.

[Proof that *q* is True.]

Prove or disprove:

Note: I will use W.T.S for "want to show" in these slides to save space. Please do not do that in your solutions.

$$\forall$$
 n \in \mathbb{N} , n $>$ 20 \Rightarrow 1.5n - 4 \geq 3

$$\forall$$
 n \in N, n > 20 \land 1.5n - 4 \ge 3

∃
$$n \in \mathbb{N}$$
, $n > 20 \land 1.5n - 4 ≥ 3$

$$\exists n \in \mathbb{N}, n > 20 \Rightarrow 1.5n - 4 \geq 3$$

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

р	q	p⇒q	
Т	Т	Т	
Т	F	F	
F	Т	Т	
ц	F	Т	

Proof:

We want to show that: \forall $n \in \mathbb{N}$, $n > 20 \Rightarrow 1.5n - 4 \ge 3$

Rough work:

Proof:

We want to show that: \forall $n \in \mathbb{N}$, $n > 20 \Rightarrow 1.5n - 4 \ge 3$

Let $n \in \mathbb{N}$. Assume that n > 20.

Example: $\forall x \in \mathbb{Z}, x \mid (x+5) \Rightarrow x \mid 5$.

Rough Work:

Proof: We want to show that

$$\forall x \in \mathbb{Z}, x \mid (x+5) \Rightarrow x \mid 5$$

Let $x \in \mathbb{Z}$. Assume $x \mid (x+5)$.

$$\forall x \in \mathbb{Z}, x \mid (x+5) \Rightarrow x \mid 5$$

Could 5 be replaced by a different prime number in the proof?

$$\forall x \in \mathbb{Z}, x \mid (x+5) \Rightarrow x \mid 5$$

Could 5 be replaced by a non-prime number?

$$\forall x \in \mathbb{Z}, x \mid (x+5) \Rightarrow x \mid 5$$

Which definitions did we use?

$$\forall x \in \mathbb{Z}, x \mid (x+5) \Rightarrow x \mid 5$$

What was the overall proof structure?

Example: $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x = y+1$

We want to show that $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x \neq y+1$