16.5 EXERCISES

- **I–8** Find (a) the curl and (b) the divergence of the vector field.
- **2.** $\mathbf{F}(x, y, z) = x^2 yz \, \mathbf{i} + xy^2 z \, \mathbf{j} + xyz^2 \, \mathbf{k}$
- 3. $\mathbf{F}(x, y, z) = \mathbf{i} + (x + yz)\mathbf{j} + (xy \sqrt{z})\mathbf{k}$
- 4. $\mathbf{F}(x, y, z) = \cos xz \mathbf{j} \sin xy \mathbf{k}$
- **5.** $\mathbf{F}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x \mathbf{i} + y \mathbf{j} + z \mathbf{k})$
- **6.** $\mathbf{F}(x, y, z) = e^{xy} \sin z \, \mathbf{j} + y \tan^{-1}(x/z) \, \mathbf{k}$
- 7. $\mathbf{F}(x, y, z) = \langle \ln x, \ln(xy), \ln(xyz) \rangle$
- **8.** $\mathbf{F}(x, y, z) = \langle e^x, e^{xy}, e^{xyz} \rangle$
- **9–11** The vector field \mathbf{F} is shown in the *xy*-plane and looks the same in all other horizontal planes. (In other words, \mathbf{F} is independent of z and its z-component is 0.)
- (a) Is div F positive, negative, or zero? Explain.
- (b) Determine whether curl F=0. If not, in which direction does curl F point?

9.

10

11.

- **12.** Let *f* be a scalar field and **F** a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.
 - (a) $\operatorname{curl} f$
- (b) $\operatorname{grad} f$
- (c) div F
- (d) $\operatorname{curl}(\operatorname{grad} f)$
- (e) grad F
- (f) grad(div F)
- (g) div(grad f)
- (h) grad(div f)
- (i) curl(curl **F**)
- (j) $div(div \mathbf{F})$
- (k) $(\text{grad } f) \times (\text{div } \mathbf{F})$
- (1) div(curl(grad f))

- **13–18** Determine whether or not the vector field is conservative. If it is conservative, find a function f such that $\mathbf{F} = \nabla f$.
- 13. $\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$
- **14.** $\mathbf{F}(x, y, z) = xyz^2 \mathbf{i} + x^2yz^2 \mathbf{j} + x^2y^2z \mathbf{k}$
- **15.** $\mathbf{F}(x, y, z) = 2xy\mathbf{i} + (x^2 + 2yz)\mathbf{j} + y^2\mathbf{k}$
- **16.** $\mathbf{F}(x, y, z) = e^z \mathbf{i} + \mathbf{j} + xe^z \mathbf{k}$
- 17. $\mathbf{F}(x, y, z) = ye^{-x}\mathbf{i} + e^{-x}\mathbf{j} + 2z\mathbf{k}$
- 18. $\mathbf{F}(x, y, z) = y \cos xy \mathbf{i} + x \cos xy \mathbf{j} \sin z \mathbf{k}$
- **19.** Is there a vector field **G** on \mathbb{R}^3 such that curl $\mathbf{G} = \langle x \sin y, \cos y, z xy \rangle$? Explain.
- **20.** Is there a vector field **G** on \mathbb{R}^3 such that curl $\mathbf{G} = \langle xyz, -y^2z, yz^2 \rangle$? Explain.
- **21.** Show that any vector field of the form

$$\mathbf{F}(x, y, z) = f(x)\mathbf{i} + g(y)\mathbf{j} + h(z)\mathbf{k}$$

where f, g, h are differentiable functions, is irrotational.

22. Show that any vector field of the form

$$\mathbf{F}(x, y, z) = f(y, z) \mathbf{i} + g(x, z) \mathbf{j} + h(x, y) \mathbf{k}$$

is incompressible.

23–29 Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and \mathbf{F} , \mathbf{G} are vector fields, then $f\mathbf{F}$, $\mathbf{F} \cdot \mathbf{G}$, and $\mathbf{F} \times \mathbf{G}$ are defined by

$$(f\mathbf{F})(x, y, z) = f(x, y, z) \mathbf{F}(x, y, z)$$

$$(\mathbf{F} \cdot \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z)$$

$$(\mathbf{F} \times \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z)$$

- 23. $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$
- 24. $\operatorname{curl}(F + G) = \operatorname{curl} F + \operatorname{curl} G$
- **25.** $\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$
- **26.** curl(f **F**) = f curl **F** + (∇f) \times **F**
- **27.** $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$
- **28.** $\operatorname{div}(\nabla f \times \nabla g) = 0$
- **29.** curl(curl \mathbf{F}) = grad(div \mathbf{F}) $-\nabla^2 \mathbf{F}$
- **30–32** Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $r = |\mathbf{r}|$.
- **30.** Verify each identity.
 - (a) $\nabla \cdot \mathbf{r} = 3$
- (b) $\nabla \cdot (r\mathbf{r}) = 4r$
- (c) $\nabla^2 r^3 = 12r$

- **31.** Verify each identity.
 - (a) $\nabla r = \mathbf{r}/r$
- (b) $\nabla \times \mathbf{r} = \mathbf{0}$
- (c) $\nabla(1/r) = -\mathbf{r}/r^3$
- (d) $\nabla \ln r = \mathbf{r}/r^2$
- **32.** If $\mathbf{F} = \mathbf{r}/r^p$, find div \mathbf{F} . Is there a value of p for which $\operatorname{div} \mathbf{F} = 0$?
- **33.** Use Green's Theorem in the form of Equation 13 to prove Green's first identity:

$$\iint\limits_{D} f \nabla^{2} g \ dA = \oint_{C} f(\nabla g) \cdot \mathbf{n} \ ds - \iint\limits_{D} \nabla f \cdot \nabla g \ dA$$

where *D* and *C* satisfy the hypotheses of Green's Theorem and the appropriate partial derivatives of f and g exist and are continuous. (The quantity $\nabla g \cdot \mathbf{n} = D_{\mathbf{n}} g$ occurs in the line integral. This is the directional derivative in the direction of the normal vector \mathbf{n} and is called the **normal derivative** of g.)

34. Use Green's first identity (Exercise 33) to prove **Green's** second identity:

$$\iint\limits_{D} (f\nabla^{2}g - g\nabla^{2}f) dA = \oint_{C} (f\nabla g - g\nabla f) \cdot \mathbf{n} ds$$

where *D* and *C* satisfy the hypotheses of Green's Theorem and the appropriate partial derivatives of f and g exist and are continuous.

- **35.** Recall from Section 14.3 that a function *q* is called *harmonic* on D if it satisfies Laplace's equation, that is, $\nabla^2 q = 0$ on D. Use Green's first identity (with the same hypotheses as in Exercise 33) to show that if g is harmonic on D, then $\oint_C D_{\mathbf{n}} g \, ds = 0$. Here $D_n g$ is the normal derivative of g defined in Exercise 33.
- **36.** Use Green's first identity to show that if f is harmonic on D, and if f(x, y) = 0 on the boundary curve C, then $\iint_D |\nabla f|^2 dA = 0$. (Assume the same hypotheses as in
- 37. This exercise demonstrates a connection between the curl vector and rotations. Let B be a rigid body rotating about the z-axis. The rotation can be described by the vector $\mathbf{w} = \omega \mathbf{k}$, where ω is the angular speed of B. that is, the tangential speed of any point P in B divided by the distance d from the axis of rotation. Let $\mathbf{r} = \langle x, y, z \rangle$ be the position vector of P.
 - (a) By considering the angle θ in the figure, show that the velocity field of B is given by $\mathbf{v} = \mathbf{w} \times \mathbf{r}$.
 - (b) Show that $\mathbf{v} = -\omega y \mathbf{i} + \omega x \mathbf{j}$.
 - (c) Show that $\operatorname{curl} \mathbf{v} = 2\mathbf{w}$.

38. Maxwell's equations relating the electric field **E** and magnetic field **H** as they vary with time in a region containing no charge and no current can be stated as follows:

$$\begin{aligned} \operatorname{div} \mathbf{E} &= 0 & \operatorname{div} \mathbf{H} &= 0 \\ \operatorname{curl} \mathbf{E} &= -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} & \operatorname{curl} \mathbf{H} &= \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \end{aligned}$$

where *c* is the speed of light. Use these equations to prove the following:

(a)
$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

(b)
$$\nabla \times (\nabla \times \mathbf{H}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$$

(c)
$$\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
 [*Hint:* Use Exercise 29.]

(d)
$$\nabla^2 \mathbf{H} = \frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$$

39. We have seen that all vector fields of the form $\mathbf{F} = \nabla g$ satisfy the equation curl $\mathbf{F} = \mathbf{0}$ and that all vector fields of the form $\mathbf{F} = \text{curl } \mathbf{G}$ satisfy the equation div $\mathbf{F} = 0$ (assuming continuity of the appropriate partial derivatives). This suggests the question: Are there any equations that all functions of the form $f = \text{div } \mathbf{G}$ must satisfy? Show that the answer to this question is "No" by proving that *every* continuous function *f* on \mathbb{R}^3 is the divergence of some vector field. [*Hint:* Let $G(x, y, z) = \langle g(x, y, z), 0, 0 \rangle$, where $g(x, y, z) = \int_0^x f(t, y, z) dt$.