Inteligência Artificial Segunda Lista de Exercícios – Gabarito

Prof. Norton Trevisan Roman

15 de março de 2019

1. (a) Lembre que
$$P_i = \frac{f_i}{\sum_{i=1}^{N} f_j}$$
, então $p_4 = \frac{f_4}{f_1 + f_2 + f_3 + f_4 + f_5} = \frac{10}{45} \approx 0,222$, ou 22,2%

(b) No torneio (k-way), selecionamos aleatoriamente, de uma distribuição uniforme, k indivíduos para o torneio (nesse caso, k=2. Então vence aquele que tiver maior valor de adaptação. Esse então comporá o conjunto de selecionados para cruzamento (nesse caso, o conjunto é ele mesmo, já que apenas 1 é selecionado).

Assim, para que um indivíduo seja selecionado, ele precisa (i) ser selecionado em pelo menos $1 \text{ dos } k = 2 \text{ sorteios, e (ii) ser melhor que seu oponente. Uma vez que ser o melhor independe$ de ser sorteado para participar no torneio, temos que:

$$p_i^{sel} = p_i^{torneio} \times p_i^{melhor}$$

onde $p_i^{torneio}$ é a probabilidade do indivíduo i participar no torneio, p_i^{melhor} a probabilidade dele ser melhor que seus oponentes, e p_i^{sel} a probabilidade do indivíduo i ser selecionado para

No caso de i_4 , $p_i^{melhor}=\frac{4}{5}=0,8$ pois, dos 5 possíveis participantes, ele é melhor que 3 e empata com 1 (ele mesmo, caso em que seria escolhido de qualquer maneira).

E qual a probabilidade dele participar do torneio? Será a probabilidade de ser escolhido como primeiro participante, como segundo, ou como ambos, ou seja:

$$p_i^{torneio} = p_i^{sort} + p_i^{sort} - (p_i^{sort})^2$$

onde p_i^{sort} é a probabilidade de i ser escolhido em um sorteio para o torneio. Como esse sorteio é feito a partir de uma distribuição uniforme, todos os 5 participantes têm a mesma chance, e $p_i^{sort} = \frac{1}{5} = 0, 2$, levando a $p_i^{torneio} = 0, 2 + 0, 2 - (0, 2)^2 = 0, 36$. Então, $p_i^{sel} = p_i^{torneio} \times p_i^{melhor} = 0, 36 * 0, 8 = 0, 288$, ou 28,8%.

Então,
$$p_i^{sel} = p_i^{torneio} \times p_i^{melhor} = 0,36 * 0,8 = 0,288$$
, ou 28,8%.

Com poucos indivíduos esse método gera uma pressão evolutiva ainda maior em direção ao indivíduo de maior adaptação, justamente por escolher sempre o melhor em um tornejo que ele tem grande chance de participar. Aumentando-se a população, aí sua chance reduz, aumentando a diversidade.

(c) A ordem dos cromossomos será f_2, f_1, f_3, f_4, f_5 , levando a novos valores de fitness:

Cromossomo	ntness
i_1	2
i_2	1
i_3	3
i_4	4
i_5	5
Soma	15

Seguindo o procedimento do item (a), temos que $p_4 = \frac{4}{15} \approx 0,267$ ou 26,7%

2. (a) Lembre que
$$P_i = \frac{f_i}{\sum_{j=1}^{N} f_j}$$
, então $p_4 = \frac{f_4}{f_1 + f_2 + f_3 + f_4 + f_5 + f_6} = \frac{4}{21} \approx 0,190$, ou 19,0%

Se vamos escolher aleatoriamente um par, qual a chance de escolhermos o indivíduo i_4 ? Será a chance de escolhermos na primeira, na segunda, ou em ambas as vezes. Então:

$$p = p_4 + p_4 - p_4^2 \approx 0,190 + 0,190 - 0,190^2 \approx 0,344.$$

Assim, a chance de i_4 ser selecionado para participar do par para cruzamento é de aproximadamente 34,4%. Se fazemos 6 escolhas dessas, em que esperamos que i_4 seja selecionado em 34,4% delas, então esperamos que ele seja selecionado em aproximadamente 2,06 delas, ou seja, em pelo menos 2 delas.

- (b) $p_6 = \frac{f_6}{f_1 + f_2 + f_3 + f_4 + f_5 + f_6} = \frac{6}{21} \approx 0,286$, e $p = 0,286 \times 2 0,286^2 \approx 0,490$. E, em 6 repetições, esperamos que aproximadamente 3 delas (2,94) selecionem i_6
- (c) O indivíduo melhor adaptado irá dominar a população, reduzindo a diversidade e, assim, a chance de escapar de máximos locais.
- 3. (a) 000010 e 101111
 - (b) 00001010 e 11011110
 - (c) 1101 e 0010
- 4. (a) 001011 e 100110
 - (b) 00001110 e 11011010
 - (c) 1100 e 0011
- 5. Em vez de pensar na chance de haver mutação, é mais fácil pensar na chance de um gene não ser mudado. Nesse caso, como $0{,}002$ é a probabilidade de um gene mudar, a probabilidade de não mudar será $p=1-0{,}002=0{,}998$. E a probabilidade de nenhum gene mudar será a probabilidade do 1º não mudar E do 2º não mudar E do 3º ... Ou seja:

$$P = p \cdot p \cdot p \cdot p \cdot p \dots = p^{20} = 0,998^{20} = 0,960751 \approx 0,961$$
, ou 96,10%.

6. Essa tem infinitas possibilidades...