30. Positive half-cycle of v_i :

Negative half-cycle of v_i :

 $V_{dc} = 0.636V_m = 0.636 (50 \text{ V})$ $V_{dc} = 0.636V_m = 0.636 (50 \text{ V})$ $V_{dc} = 31.8 \text{ V}$

Voltage-divider rule:

$$V_{o_{\text{max}}} = \frac{2.2 \text{ k}\Omega(V_{i_{\text{max}}})}{2.2 \text{ k}\Omega + 2.2 \text{ k}\Omega}$$
$$= \frac{1}{2}(V_{i_{\text{max}}})$$
$$= \frac{1}{2}(100 \text{ V})$$
$$= 50 \text{ V}$$

Polarity of v_0 across the 2.2 k Ω resistor acting as a load is the same.

Voltage-divider rule:

$$V_{o_{\text{max}}} = \frac{2.2 \text{ k}\Omega(V_{i_{\text{max}}})}{2.2 \text{ k}\Omega + 2.2 \text{ k}\Omega}$$
$$= \frac{1}{2}(V_{i_{\text{max}}})$$
$$= \frac{1}{2}(100 \text{ V})$$
$$= 50 \text{ V}$$

31. Positive pulse of v_i :

Top left diode "off", bottom left diode "on"

$$2.2 \text{ k}\Omega \parallel 2.2 \text{ k}\Omega = 1.1 \text{ k}\Omega$$

$$V_{o_{\text{peak}}} = \frac{1.1 \text{ k}\Omega(170 \text{ V})}{1.1 \text{ k}\Omega + 2.2 \text{ k}\Omega} = 56.67 \text{ V}$$

Negative pulse of v_i :

Top left diode "on", bottom left diode "off"

$$V_{o_{\text{peak}}} = \frac{1.1 \text{ k}\Omega(170 \text{ V})}{1.1 \text{ k}\Omega + 2.2 \text{ k}\Omega} = 56.67 \text{ V}$$
$$V_{\text{dc}} = 0.636(56.67 \text{ V}) = 36.04 \text{ V}$$

32. (a) Si diode open for positive pulse of v_i and $v_o = \mathbf{0} \mathbf{V}$ For $-20 \mathbf{V} < v_i \le -0.7 \mathbf{V}$ diode "on" and $v_o = v_i + 0.7 \mathbf{V}$. For $v_i = -20 \mathbf{V}$, $v_o = -20 \mathbf{V} + 0.7 \mathbf{V} = -19.3 \mathbf{V}$ For $v_i = -0.7 \mathbf{V}$, $v_o = -0.7 \mathbf{V} + 0.7 \mathbf{V} = \mathbf{0} \mathbf{V}$

(b) For $v_i \le 8$ V the 8 V battery will ensure the diode is forward-biased and $v_o = v_i - 8$ V.

At
$$v_i = 8 \text{ V}$$

$$v_o = 8 \text{ V} - 8 \text{ V} = 0 \text{ V}$$

At
$$v_i = -20 \text{ V}$$

$$v_o = -20 \text{ V} - 8 \text{ V} = -28 \text{ V}$$

For $v_i > 8$ V the diode is reverse-biased and $v_o = 0$ V.

33. (a) Positive pulse of v_i :

$$V_o = \frac{1.8 \text{ k}\Omega(12 \text{ V} - 0.7 \text{ V})}{1.8 \text{ k}\Omega + 2.2 \text{ k}\Omega} = 5.09 \text{ V}$$

Negative pulse of v_i :

diode "open", $v_o = 0 \text{ V}$

(b) Positive pulse of v_i :

$$V_o = 12 \text{ V} - 0.7 \text{ V} + 4 \text{ V} = 15.3 \text{ V}$$

Negative pulse of v_i :

diode "open", $v_o = 0 \text{ V}$

34. (a) For $v_i = 20$ V the diode is reverse-biased and $v_o = 0$ V. For $v_i = -5$ V, v_i overpowers the 4 V battery and the diode is "on".

Applying Kirchhoff's voltage law in the clockwise direction:

$$-5 \text{ V} + 4 \text{ V} - v_o = 0$$
$$v_o = -1 \text{ V}$$

(b) For $v_i = 20$ V the 20 V level overpowers the 5 V supply and the diode is "on". Using the short-circuit equivalent for the diode we find $v_o = v_i = 20$ V.

For $v_i = -5$ V, both v_i and the 5 V supply reverse-bias the diode and separate v_i from v_o . However, v_o is connected directly through the 2.2 k Ω resistor to the 5 V supply and $v_o = 5$ V.

- 35. (a) Diode "on" for $v_i \ge 4.7 \text{ V}$ For $v_i > 4.7 \text{ V}$, $V_o = 4 \text{ V} + 0.7 \text{ V} = 4.7 \text{ V}$ For $v_i < 4.7 \text{ V}$, diode "off" and $v_o = v_i$
- 0 4.7 V
- (b) Again, diode "on" for $v_i \ge 3.7 \text{ V}$ but v_o now defined as the voltage across the diode

For
$$v_i \ge 3.7 \text{ V}$$
, $v_o = 0.7 \text{ V}$

For $v_i < 3.7 \text{ V}$, diode "off", $I_D = I_R = 0 \text{ mA}$ and $V_{2.2 \text{ k}\Omega} = IR = (0 \text{ mA})R = 0 \text{ V}$

Therefore,
$$v_o = v_i - 3 \text{ V}$$

At $v_i = 0 \text{ V}$, $v_o = -3 \text{ V}$
 $v_i = -8 \text{ V}$, $v_o = -8 \text{ V} - 3 \text{ V} = -11 \text{ V}$

36. For the positive region of v_i :

The right Si diode is reverse-biased.

The left Si diode is "on" for levels of v_i greater than

5.3 V + 0.7 V = 6 V. In fact,
$$v_0 = 6$$
 V for $v_i \ge 6$ V.

For $v_i < 6$ V both diodes are reverse-biased and $v_o = v_i$.

For the negative region of v_i :

The left Si diode is reverse-biased.

The right Si diode is "on" for levels of v_i more negative than 7.3 V + 0.7 V = 8 V. In fact, $v_o = -8$ V for $v_i \le -8$ V.

For $v_i > -8$ V both diodes are reverse-biased and $v_o = v_i$.

 i_R : For $-8 \text{ V} < v_i < 6 \text{ V}$ there is no conduction through the $10 \text{ k}\Omega$ resistor due to the lack of a complete circuit. Therefore, $i_R = 0 \text{ mA}$.

For
$$v_i \ge 6 \text{ V}$$

$$v_R = v_i - v_o = v_i - 6 \text{ V}$$

For
$$v_i = 10 \text{ V}$$
, $v_R = 10 \text{ V} - 6 \text{ V} = 4 \text{ V}$

and
$$i_R = \frac{4 \text{ V}}{10 \text{ k}\Omega} = \textbf{0.4 mA}$$

For
$$v_i \le -8 \text{ V}$$

$$v_R = v_i - v_o = v_i + 8 \text{ V}$$

For $v_i = -10 \text{ V}$ $v_R = -10 \text{ V} + 8 \text{ V} = -2 \text{ V}$ and $i_R = \frac{-2 \text{ V}}{10 \text{ k}\Omega} = -0.2 \text{ mA}$

37. (a) Starting with $v_i = -20 \text{ V}$, the diode is in the "on" state and the capacitor quickly charges to -20 V+. During this interval of time v_o is across the "on" diode (short-current equivalent) and $v_o = 0 \text{ V}$.

When v_i switches to the +20 V level the diode enters the "off" state (open-circuit equivalent) and $v_o = v_i + v_C = 20 \text{ V} + 20 \text{ V} = +40 \text{ V}$

(b) Starting with $v_i = -20$ V, the diode is in the "on" state and the capacitor quickly charges up to -15 V+. Note that $v_i = +20$ V and the 5 V supply are additive across the capacitor. During this time interval v_o is across "on" diode and 5 V supply and $v_o = -5$ V.

When v_i switches to the +20 V level the diode enters the "off" state and $v_o = v_i + v_C = 20 \text{ V} + 15 \text{ V} = 35 \text{ V}$.

38. (a) For negative half cycle capacitor charges to peak value of 120 V = 120 V with polarity $(-\frac{1}{2})$. The output v_o is directly across the "on" diode resulting in $v_o = \mathbf{0}$ V as a negative peak value.

For next positive half cycle $v_o = v_i + 120 \text{ V}$ with peak value of $v_o = 120 \text{ V} + 120 \text{ V} = 240 \text{ V}$.

(b) For positive half cycle capacitor charges to peak value of 120 V - 20 V = 100 V with polarity $(+ - \frac{1}{2000} - \frac{1}{2000})$. The output $v_o = 20 \text{ V} = 20 \text{ V}$

For next negative half cycle $v_o = v_i - 100 \text{ V}$ with negative peak value of $v_o = -120 \text{ V} - 100 \text{ V} = -220 \text{ V}$.

- 39. (a) $\tau = RC = (56 \text{ k}\Omega)(0.1 \mu\text{F}) = 5.6 \text{ ms}$ $5\tau = 28 \text{ ms}$
 - (b) $5\tau = 28 \text{ ms} \gg \frac{T}{2} = \frac{1 \text{ ms}}{2} = 0.5 \text{ ms}, 56:1$
 - (c) Positive pulse of v_i :

Diode "on" and $v_o = -2 \text{ V} + 0.7 \text{ V} = -1.3 \text{ V}$ Capacitor charges to 12 V + 2 V - 0.7 V = 13.3 V

Negative pulse of v_i :

Diode "off" and $v_o = -12 \text{ V} - 13.3 \text{ V} = -25.3 \text{ V}$

40. Solution is network of Fig. 2.181(b) using a 10 V supply in place of the 5 V source.

41. Network of Fig. 2.178 with 2 V battery reversed.

42. (a) In the absence of the Zener diode

$$V_L = \frac{180 \,\Omega(20 \,\mathrm{V})}{180 \,\Omega + 220 \,\Omega} = 9 \,\mathrm{V}$$

 $V_L = 9 \text{ V} < V_Z = 10 \text{ V}$ and diode non-conducting

Therefore,
$$I_L = I_R = \frac{20 \text{ V}}{220 \Omega + 180 \Omega} = 50 \text{ mA}$$

with
$$I_Z = \mathbf{0} \mathbf{mA}$$

and $V_L = \mathbf{9} \mathbf{V}$

(b) In the absence of the Zener diode

$$V_L = \frac{470 \Omega(20 \text{ V})}{470 \Omega + 220 \Omega} = 13.62 \text{ V}$$

 $V_L = 13.62 \text{ V} > V_Z = 10 \text{ V}$ and Zener diode "on"

Therefore,
$$V_L = 10 \text{ V}$$
 and $V_{R_s} = 10 \text{ V}$
 $I_{R_s} = V_{R_s} / R_s = 10 \text{ V}/220 \Omega = 45.45 \text{ mA}$
 $I_L = V_L / R_L = 10 \text{ V}/470 \Omega = 21.28 \text{ mA}$

and $I_Z = I_{R_s} - I_L = 45.45 \text{ mA} - 21.28 \text{ mA} = 24.17 \text{ mA}$

(c)
$$P_{Z_{\text{max}}} = 400 \text{ mW} = V_{Z}I_{Z} = (10 \text{ V})(I_{Z})$$

$$I_{Z} = \frac{400 \text{ mW}}{10 \text{ V}} = 40 \text{ mA}$$

$$I_{L_{\text{min}}} = I_{R_{s}} - I_{Z_{\text{max}}} = 45.45 \text{ mA} - 40 \text{ mA} = 5.45 \text{ mA}$$

$$R_{L} = \frac{V_{L}}{I_{L_{\text{min}}}} = \frac{10 \text{ V}}{5.45 \text{ mA}} = 1,834.86 \Omega$$

Large R_L reduces I_L and forces more of I_{R_s} to pass through Zener diode.

(d) In the absence of the Zener diode

$$V_L = 10 \text{ V} = \frac{R_L (20 \text{ V})}{R_L + 220 \Omega}$$

$$10R_L + 2200 = 20R_L$$

$$10R_L = 2200$$

$$R_L = 220 \Omega$$