Problems on Open Set and Closed set

- 1. Let E be a non-empty bounded above set. Show that $\sup(E)$ is a limit point of E.
- **2.** We denote E' as the set of all the limit points of E. We define the closure of E is the set $\overline{E} = E \cup E'$. Show that
 - i. Show that \overline{E} is closed.
 - ii. Show that E is closed iff $E = \overline{E}$.
 - iii. Show that $\overline{E} \subset F$ for every closed set F, such that $E \subset F$. Thus \overline{E} is the smallest closed set containing E.
- **3**. Let E^o denote the set of all interior points of E.
 - i. Show that E^o is open.
 - ii. Show that E is open iff $E = E^o$.
 - iii. Show that $G \subset E^o$ for every open set G and $G \subset E$. Thus E^o is the largest open set contained in E.
- 4. Find the E' of the following sets
 - i. $\left\{\frac{1}{n} + \frac{1}{m} : n, m \in \mathbb{N}\right\}$
 - ii. $\{x \in \mathbb{Q} : x^2 + 5x 6 < 0\}$
- **5.** A point $x \in \mathbb{R}$ is said to be a boundary point of $A \subset \mathbb{R}$ if every neighbourhood of x contains points in A and points in A^c . Let ∂A denote the collection of all boundary points of A. Show that
 - i. $\partial A = \partial A^c$,
 - ii. A is open iff $\partial A = \Phi$,
 - iii. A is closed iff $\partial A \subset A$.