Структура на компютърните системи

Любомир Чорбаджиев¹ lchorbadjiev@elsys-bg.org

¹ Технологическо училище "Електронни системи" Технически университет, София

8 октомври 2019 г.

Съдържание

- 🕕 Въведение
 - Структура на компютърна система
- Основни елементи на компютърната система
- 3 Централен процесор
- Входно/изходни устройства
 - Управление на периферните устройства
 - Обработка на прекъсванията
- **5** Памет
- Кардуерна поддръжка на операционната система

Дефиниция за операционна система

- Няма общоприета дефиниция за операционна система.
- Операционната система може да се разглежда като:
 - програма, която управлява и разпределя ресурсите на компютърната система;
 - слой, който предоставя абстрактен интерфейс към хардуерните компоненти на компютъра.

Продължение на хардуера

- Операционната система може да се разглежда като продължение на хардуера
 - скрива от програмиста детайлите по управлението на конкретния хардуер;
 - предоставя на потребителя виртуална машина, която може да се използва значително по-лесно;
 - предоставя улекотен абстрактен програмен интерфейс за работа с конкретните хардуерни устройства.

Управление на ресурсите на компютъра

- Управлява всички ресурси на компютъра:
 - хардуер процесор, памет, входно/изходни устройства;
 - софтуерни приложения.
- Всяка изпълняваща се програма получава възможност за използване на ресурсите на компютъра.
- Работи като посредник между приложния софтуер и хардуера на компютъра.
- Разрешава конфликтни заявки за използване на ресурсите на компютъра.
- Контролира изпълнението на приложните програми за да предотвратява грешки или неправилно използване на ресурсите на компютъра.

Структура на компютърната система

- Компютърната система може да бъде разделена на четири основни компоненти:
 - Хардуер предоставя основните изчислителни ресурси: процесор, памет, входно/изходни устройства.
 - Операционна система контролира и координира използването на хардуера между различните приложения и потребители.
 - Приложни програми предоставят средства за използване на изчислителните ресурси на компютъра за решаване на конкретни изчислителни проблеми.

Структура на компютърната система

Фигура: Обща структура на компютърна система

4日 → 4日 → 4 目 → 4目 → 9 へ ○

Основни елементи на компютърна система

- Централен процесор.
- Оперативна памет.
 - Енергозависима.
- Входно/изходни устройства.
 - Външни запаметяващи устройства.
 - Комуникационни и мрежови устройства.
 - Терминали.
- Системна шина.
 - Осъществява връзката между процесора, паметта и входно/изходните устройства.

Структура на компютърна система

Фигура: Структура на компютърна система

Централен процесор

- Процесорът изпълнява инструкциите на програмата.
- Инструкциите на програмата и данните се съхраняват в оперативната памет.
- Регистрите на процесора са високоскоростна памет, разположена в самия процесор.
- Данните трябва да са в регистрите на процесора, за да може аритметико-логическия блок да ги обработва.
- За да се изпълни дадена инструкция тя първо трябва да се извлече (fetch) и декодира (decode).

Централен процесор

Фигура: Структура на компютърна система

Регистри на процесора

- Регистри с общо предназначение.
 - Достъпни са за всички програми.
- Контролни регистри.
 - Използват се от процесора за да контролират работата му.
 - Използват се от операционната система за да контролират изпълнението на приложните програми.

Регистри с общо предназначение

- Достъпни са за всички програми.
- Могат да се адресират като се използва асемблер.
- Има два типа:
 - Регистри за данни.
 - Адресни регистри:
 - Използват се за реализация на различни схеми за адресация.
 - Индексен, сегментен, указател на стека.

Контролни регистри

- Не са достъпни директно.
- Програмен брояч (Program Counter PC).
 - Съдържа адреса на следващата инструкция, която трябва да бъде извлечена.
- Регистър за инструкция (Instruction Register IR).
 - Съдържа последната извлечена от паметта инструкция.
- Регистър на състоянието (Program Status Word PSW).
 - Резултат от сравнения.
 - Разрешаване и забрана на прекъсванията.
 - Потребителски режим и защитен режим на процесора.

Извличане и изпълнение на инструкции

- Процесорът извлича инструкции от оперативната памет.
- Програмният брояч (РС) съдържа адреса на инструкцията, която трябва да бъде извлечена.
- След всяко извличане на инструкция, програмния брояч се увеличава.
- Извлечената инструкция се съхранява в регистъра за инструкции.

Фигура: Основен цикъл за изпълнение на инструкции

Управление на периферните устройства

- Има няколко начина за управление на входно/изходните устройства от процесора:
 - Синхронно изпълнение на входно/изходните операции (Programmed IO).
 - Асинхронно изпълнение на входно/изходните операции (Interrupt-Driven IO).
 - Пряк достъп до паметта (Direct Memory Access).

Синхронно изпълнение на 10

- Процесорът се обръща към контролера на входно/изходното устройство и подава заявка за извършване на операцията.
- Входно/изходната операция се извършва от контролера на устройството.
- Процесора трябва постоянно проверява за състоянието на операцията, докато тя завърши.

Асинхронно изпълнение на 10

- Процесорът се обръща към контролера на входно/изходното устройство и подава заявка за извършване на операцията.
- След подаване на заявката, процесорът е свободен да се занимава с други задачи.
- Когато изпълнението на операцията завърши, контролерът на входно/изходното устройство прекъсва работата на процесора.
- Процесорът трябва да прехвърли данните от буферите на контролера в оперативната памет или регистрите си.

Пряк достъп до паметта

- Чете блокове от данни директно в оперативната памет.
- Работата на процесора се прекъсва когато целият блок от данни е прочетен и копиран в оперативната памет.
- Процесорът не се занимава с копиране на данните от буфера на устройството в оперативната памет.

Обработка на прекъсванията

- Прекъсват нормалната последователност на изпълнение на команди от процесора.
- Прекъсването предава управлението на функцията за обработване на прекъсването.
- Прекъсването на обработваното задание става по такъв начин, че да е възможно възстановяване на неговата обработка.
- Операционната система запазва състоянието на процесора като запазва регистрите, програмния брояч и т.н.
- Определя какъв е видът на прекъсването и къде точно трябва да се предаде управлението за да се обработи възникналото прекъсване.

Цикъл за обработка на прекъсванията

Фигура: Цикъл за обработка на прекъсванията

Видове прекъсвания

- Софтуерни прекъсвания (trap):
 - препълване при аритметични операции;
 - делене на нула;
 - изпълнение на неправилна инструкция;
 - опит за достъп до защитена част от паметта.
- Прекъсвания от таймера.
- Прекъсвания от входно/изходните устройства.
- Прекъсвания предизвикани от повреди в хардуера.

Обработка на много прекъсвания

- Последователна обработка на множество прекъсвания:
 - Прекъсванията се забраняват докато процесорът не завърши обработката на текущото прекъсване.
 - Възникналите нови прекъсвания чакат процесора да разреши обработката на прекъсвания.
 - След като функцията за обработка на прекъсването завърши, процесорът проверява за нови прекъсвания.
- Обработка на множество прекъсвания с приоритети.
 - Прекъсванията с по-висок приоритет могат да предизвикат прекъсване на функцията за обработка на прекъсвания с по-нисък приоритет.

Пряк достъп до паметта (DMA)

- Прекият достъп до паметта съществено подобрява скоростта на трансфер на данни между входно/изходните устройства и оперативната памет.
- Типично прекият достъп до паметта (DMA) се използва от бързи входно изходни устройства твърди дискове, мрежови контролери и т.н.
- Контролерът на устройството прехвърля блок от данни директно в/от оперативната памет без намеса на централния процесор.
- Генерира се само едно прекъсване за целия блок от данни.

Памет

- Оперативна памет.
 - Процесора може да работи директно с оперативната памет.
 - Типично оперативната памет е енергозависима.
 - Процесорът има достъп до клетките на паметта в произволен ред.
- Външни запомнящи устройства.
 - Може да съхраняват по-големи обеми от данни при по-ниска цена.
 - Енергонезависима памет.
 - Скоростта на достъп до данните типично е с порядъци по-малка.

Йерархия на паметта

Фигура: Йерархия на паметта

Кеширане

- Важен принцип, който се реализира на различни нива в компютърната система (на хардуерно ниво, в операционната система, в приложните програми).
- Използваната информация временно се копира от по-бавно в по-бързо запомнящо устройство.
- Когато има нужда от дадена информация, първо се проверява кеша.
 - Ако нужната информация е налична в кеша, то директно се използва тя.
 - Ако не, информацията първо се копира в кеша, и след това се чете от там
- Кешът е по-малък от паметта, която се кешира.
 - Политика за управление на кеша.
 - Политика за обновяване на кеша.

Хардуерна поддръжка на ОС

- Компютърните системи съдържат хардуерни механизми, които:
 - позволяват на операционната система да изпълнява основните си функции бързо;
 - позволяват на операционната система стриктно да прилага механизми за защита на информацията.
- Основните механизми за защита, използвани в компютърните системи са:
 - Два режима на работа на процесора.
 - Защита на входно/изходните операции.
 - Защита на паметта.
 - Защита на централния процесор.
- Механизмите за защита използвани от операционната система типично се реализират в централния процесор.

Два режима на процесора

- Поделянето на ресурсите на операционната система изисква изграждането на механизми, които да не позволяват на некоректно работеща програма да наруши правилната работа на другите програми.
- Хардуерно в централния процесор типично се реализират поне два режима на работа:
 - Потребителски режим в този режим може да се изпълнява само подмножество от инструкции на процесора, които се считат за безопасни. Режимът в който работят потребителските програми.
 - Режим на ядрото (привилегирован режим, защитен режим) могат да се изпълняват всички инструкции на процесора. Режимът в който работи операционната система.
- В регистъра за състоянието на процесора (PSW) се добавя бит, който да показва какъв е режимът на работа на процесора.
- При възникване на прекъсване процесорът преминава в защитен режим.

Защита на входно/изходните операции и прекъсвания

- Не бива да позволява на потребителската програма да получи контрол върху процесора в привилегирован режим.
- Всички инструкции за изпълнение на входно/изходни операции се изпълняват само в привилегирован режим на процесора.
- Прекъсвания
 - Повечето входно/изходни устройства изпращат прекъсване на процесора в случай, че настъпи някакво събитие – приключване на входно/изходна операция или хардуерна грешка.
 - При обработване на прекъсване процесорът се превключва в привилегирован (защитен) режим.
 - Обработването на прекъсването е работа на операционната система.

Защита и управление на паметта

- Не позволява на процесите достъп до участъците от паметта, които не принадлежат на тях.
- Задължително е да се предостави защита на паметта за вектора на прекъсванията и функциите за обработка на прекъсванията.
- Реализира се чрез регистри на процесора, които могат да се променят само в защитен режим (привилегирован режим).
- Добавят се два регистъра, които определят областта от паметта, която програмата може да използва:
 - Базов регистър (base register) съдържа най-малкия адрес в паметта, който е достъпен (разрешен).
 - Граничен регистър (limit register) съдържа размера на разрешения за използване участък от паметта.
- Паметта, която е извън така дефинирания участък е защитена докато е в потребителски режим процесорът няма достъп до нея.

Защита на паметта

Защита на паметта

Защита на процесора: таймери

- Таймерите генерират прекъсване към процесора след изтичането на определен период от време.
- Операционната система използва таймерите за да се защитава от процеси, които монополизират използването на процесора.
- Таймерите се използват при реализация на времеделене.
- Задаването на таймер е привилегирована инструкция.