

Quantifying Uncertainty Propagation For The District Energy Demand Using Realistic Variations On Input Data

- Focus on simulation time and efficiency (IBPSA Project 1 WP3)

Speaker:

Ina De Jaeger EnergyVille / KU Leuven / VITO Authors:

Ina De Jaeger, EnergyVille / KU Leuven / VITO

Glenn Reynders, EnergyVille / VITO

Dirk Saelens, EnergyVille / KU Leuven

BUILDING DESCRIPTION: input data for building energy simulation

general

location construction year

renewable energy system

presence characteristics (production, ...)

building geometry

heated volume compactness glazing (orientation, slope, ...)

HVAC system

presence efficiency (production, distribution, supply, ...)

building envelope

insulation quality air tightness thermal mass glazing (area, size, ...)

user beha<mark>vior</mark>

occupancy activities heating preferences ventilation preferences

building appliances / cooking / lighting

presence characteristics

Introduction

Research questions

- How does uncertainty for the energy demand propagate from building level to district level as a result of the uncertainty on the inputs?
 - ~ uncertainty analysis
- What are the main driving parameters?
 - ~ sensitivity analysis

Content

Introduction

Methodology

Results

Conclusion

- Studied district
 - Boxbergheide district, Genk, Belgium (350 single-family dwellings)

[Boxbergheide district] [Genk] [Belgium]

- Studied district
 - Boxbergheide district, Genk, Belgium (350 single-family dwellings)
- Available data
 - CityGML LOD2
 - Construction year per dwelling (based on visual survey)

- Input variations and sampling
- 2. Generation and simulation of building energy models
- Aggregation from building to district level
- 4. Uncertainty quantification
- 5. Sensitivity quantification

- 1. Input variations and sampling
 - Quasi-Monte Carlo Simulations
 - Sobol' sequence
 - 14 considered parameters
 - 99 samples per building

2. Generation and simulation of building energy models

Building Energy Simulations

All buildings are simulated separately

Building Energy Simulations

- Each building has
 - A stochastic occupant (StROBe)
 - An ideal heating system
 - An in-home electrical grid
 - No ventilation system
 - A structure

Building Energy Simulations

The latest simulations ...

- 240 buildings of the Boxbergheide district & 100 samples per building
- → 22 000 (simulations are not finished)
- Simulations for 1 year + 1 month initialization
- Currently running for 212 hours (8+ days)
- = 103 sims / h (in total, 15 in parallel)
- * Computer:

Suggestions? Questions? Thank you!

