AKADEMIA GÓRNICZO-HUTNICZA

GŁĘBOKIE UCZENIE I INTELIGENCJA OBLICZENIOWA ${\rm Automatyka~i~Robotyka~II~Stopie\acute{n}}$ 2019/2020

Optymalizacja fabryki z wykorzystaniem algorytmu immunologicznego (selekcji klonalnej)

Skład zespołu:

Artur Bauer Kamil Szostek Sławomir Goździewski Wiktor Filipiak

Opiekun:

dr hab. inż. Joanna Kwiecień

Złożono: 10 kwietnia 2020

Spis treści

1	Wst	\mathbf{W} stęp				
	1.1	Model	fabryki			
		1.1.1	Funkcja celu fabryki:			
		1.1.2	Kara			
		1.1.3	Liczba pracowników			
		1.1.4	Maksymalna ilość elementów			
		1.1.5	Rzeczywisty czas pracy maszyny na 1 produkt			
	1.2	Param	etry modelu			
2			r oblem ąd literatury			
3	Dia	gram J	UML fabryki			

1 Wstęp

1.1 Model fabryki

Rysunek 1: Schemat fabryki

1.1.1 Funkcja celu fabryki:

$$Income = \sum_{i=1}^{n_p} (p_i * (v_i - m_i * m_p)) - (1 + b_i) * \sum_{i=1}^{n_w} (w_i * s_i * t_{wi}) - m_r * m_p - punish$$

Gdzie:

- n_p ilość rodzajów części
- $p_i(n_m)$ ilość wyprodukowanych części i-tego typu
- $v_i(v_{bi}, t_{wi}, t_{bi}, w_q)$ wartość części i-tego typu
- \bullet m_i liczba surowca potrzebna do wytworzenia elementu i-tego typu
- m_p cena surowca
- n_w liczba rodzajów pracowników
- w_i liczba pracowników i-tego rodzaju
- $\bullet \;\; s_i$ wypłata pracownika i-tego rodzaju
- \bullet b premia pracownicza
- $m_r(p_i, n_m)$ pozostały materiał
- $p_{i_{min}}$ minimalna ilość elementów do wytworzenia i uniknięcia kary
- $p_{i_{max}}$ maksymalna ilość wytworzonych elementów
- $\bullet \ n_m$ liczba surowca na początek dnia

1.1.2 Kara

$$\begin{aligned} punish &= p_{un} * \sum_{i=1}^{n_p} (p_{num_i}) * v_i \\ p_{num_i} &= \begin{cases} 0 & \text{if} \quad p_{i_{min}} - p_i \leqslant 0 \\ p_{i_{min}} - p_i & \text{if} \quad p_{i_{min}} - p_i > 0 \end{cases} \\ \text{Gdzie:} \end{aligned}$$

- p_{un} współczynnik kary
- $p_{num_i}(p_{i_{min}}, p_i)$ liczba elementów i-tego typu dla których naliczana jest kara

1.1.3 Liczba pracowników

Liczba pracowników i-tego typu jest równa ilości maszyn i-tego typu: $n_p=n_w\,$

1.1.4 Maksymalna ilość elementów

Niezbędna ilość elementów i-tego typu: $\textstyle \sum_{i=1}^{n_p} p_{i_{max}} * m_i < n_m$

1.1.5 Rzeczywisty czas pracy maszyny na 1 produkt

 $t_{wi} = t_{pi} + p_i * t_{bi}$

1.2 Parametry modelu

Parametr	oznaczenie	wartość
Ilość surowców	n_m	[x - 100]
Koszt surowca	m_p	15
Czas pracy	t_f	[1 - 16]
Minimalna ilość dużych części	$p_{0_{min}}$	[0 - 10]
Minimalna ilość małych części	$p_{1_{min}}$	[0 - 10]
Wypłata operatora dużej maszyny	s_0	70
Wymagana ilość materiału na duży element	m_0	4
Czas przygotowania dużej maszyny	t_{p0}	$30 \min$
Wartość dużego elementu	v_{b0}	50
Podstawowy czas pracy na duży element	t_{b0}	$1\mathrm{h}$
Liczba dużych maszyn	c_0	[0 - 10]
Wypłata operatora małej maszyny	s_1	60
Ilość surowca na mały element	m_1	3
Czas przygotowania małej maszyny	t_{p1}	$45 \mathrm{min}$
Wartość małego elementu	v_{b1}	35
Czas wytworzenia małego elementu	t_{b1}	$45 \mathrm{min}$
Ilość małych maszyn	c_1	[0 - 10]
Maksymalny czas pracy pracownika	t_w	8h
Bonus pracowniczy	b	[0.0 - 0.2]
Współczynnik kary	p_{un}	1.5

Gdzie:

- \bullet x ilość wymaganych elementów * koszt części
- Parametry wejściowe podane są w kwadratowych nawiasach
- Pracownik jest zatrudniony na pełen etat (8h płacone z góry)
- Pierwsza i druga zmiana są identyczne w ilość i rodzaj maszyn i pracowników
- Rezerwujemy surowce na wymagane elementy
- Wszystkie elementy ponad wymaganą liczbę są czystym dochodem

2 Badany problem

2.1 Przegląd literatury

Artykuł dotyczy algorytmu selekcji klonalnej stosowanej do optymalizacji w elektromagnetyce. Autorzy prezentują ich własną koncepcję kodowanego algorytmu selekcji klonalnej, który może zostać użyty w elektromagnetycznej optymalizacji projektu, a także sposób działania algorytmu dla problemu "The TEAM Workshop problem 22".[1].

Artykuł przedstawia użycie algorytmów sztucznych systemów immunologicznych w przemyśle. Porównuje on algorytmy sztucznej inteligencji z algorytmem klonowania do algorytmu z mechanizmem uczenia społecznego. Zmieniając wzmocnienie, czas zdwojenia oraz czas wyprzedzenia dobierają one nastawy regulatora PID [6].

Artykuł przedstawia zastosowanie sztucznego systemu immunologicznego w aplikacji przemysłowej. Na postawie parametrów obróbki (siła, moment, itp.) oraz zakłócenia (wibracje, itp.) autorzy wykrywają uszkodzenie narzędzia. Wykorzystywany jest algorytm sztucznego systemu immunologicznego wykorzystuje do działania algorytm selekcji negatywnej [2].

Artykuł przedstawia użycie algorytmów sztucznych systemów immunologicznych w przemyśle. Porównuje on algorytmy sztucznej inteligencji z algorytmem klonowania do algorytmu z mechanizmem uczenia społecznego. Zmieniając wzmocnienie, czas zdwojenia oraz czas wyprzedzenia dobierają one nastawy regulatora PID [6].

Artykuł przedstawia działanie sztucznego systemu immunologicznego (AIS) w przypadku rozwiązania pojemnościowego problemu marszrutyzacji. Celem było znalezienie odpowiedniego zestawienia parametrów algorytmu selekcji klonalnej w celu rozwiązania problemu poprzez podejście eksperymentalne. W artykule oprócz działania AIS, opisano także działanie innych metod rozwiązujących dwadzieścia instancji problemu i przedstawiono wyniki pod względem jakości rozwiązań oraz wykorzystanego czasu obliczeniowego [5].

Artykuł przedstawia użycie Algorytmu Selekcji Klonalnej w zastosowaniach inżynierskich. Opisane w nim jest działanie algorytmu od strony teoretycznej, a także działanie zaimplementowanego przez autorów algorytmu przy rozwiązywaniu trzech różnych problemów: binarnego rozpoznawania znaków, wielomodalnej optymalizacji funkcji - $f(x,y) = x \cdot \sin 4\pi x - y \cdot \sin 4\pi y + \pi + 1$ i problemu komiwojażera dla 30 miast [3].

Artykuł przedstawia użycie Algorytmu Selekcji Klonalnej do optymalizacji ułożenia terenu budowy. Zaprezentowany algorytm minimalizuje koszty produkcji i dystans przebyty pomiędzy n obiektami zaprezentowanymi za pomocą macierzy permutacji o wymiarach n x n [7].

Artykuł dotyczy zastosowania algorytmu selekcji klonalnej w celu określenia optymalnych punktów pracy w niskonapięciowych, hybrydowych mikrosieciach AC/DC. Celem było zminimalizowanie strat mocy czynnej, kosztów eksploatacji oraz optymalizacja napięcia węzłowego [4].

3 Diagram UML fabryki

Rysunek 2: Diagram UML

Bibliografia

- [1] F. Campelo i in. "A clonal selection algorithm for optimization in electromagnetics". W: *IEEE Transactions on Magnetics* 41.5 (2005), s. 1736–1739.
- [2] Dipankar Dasgupta i Stephanie Forrest. "Artificial immune systems in industrial applications". W: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No. 99EX296). T. 1. IEEE. 1999, s. 257–267.
- [3] Leandro De Castro i Fernando Von Zuben. "The Clonal Selection Algorithm with Engineering Applications 1". W: (sty. 2000).
- [4] Łukasz Rokicki. "The application of the CLONALG algorithm in the process of optimal operation control of hybrid AC/DC low voltage microgrid". W: *E3S Web of Conferences* 84 (sty. 2019), s. 02011. DOI: 10.1051/e3sconf/20198402011.
- [5] Warattapop Thapatsuwan, Pupong Pongcharoen i Peeraya Thapatsuwan. "Clonal Selection of Artificial Immune System for Solving the Capacitated Vehicle Routing Problem". W: Journal of Next Generation Information Technology 4 (maj 2013), s. 167–179. DOI: 10.4156/jnit.vol4.issue3.20.
- [6] Mingan Wang i in. "An Artificial Immune System Algorithm with Social Learning and Its Application in Industrial PID Controller Design". en. W: Mathematical Problems in Engineering 2017 (2017), s. 1–13. ISSN: 1024-123X, 1563-5147. DOI: 10.1155/2017/3959474. URL: https://www.hindawi.com/journals/mpe/2017/3959474/ (term. wiz. 25.03.2020).
- [7] Xi Wang i in. "Application of Clonal Selection Algorithm in Construction Site Utilization Planning Optimization". W: Procedia Engineering 145 (2016). ICSDEC 2016 Integrating Data Science, Construction and Sustainability, s. 267—273. ISSN: 1877-7058. DOI: https://doi.org/10.1016/j.proeng.2016.04.073. URL: http://www.sciencedirect.com/science/article/pii/S1877705816300789.