SOLUCIONES

- **1. a)** 5i
- **b**) 9i
- **d)** 12i
- c) 6i2. a) -i
- **b)** 24i
- **a)** -2 + 3i
- b) 241b) 1 + i
- a) -2 + 3ic) -6 + 2i
- **d**) i
- **4. a)** 7 3i
 - **b)** 5 5i
 - **b**) 3 3
 - **c)** 4 + 3i
 - **d**) 6
 - **e)** 6 5i
 - f) -2 5ig) -8 + 2i
 - **h)** –2i
- 5. a) 5 14i
 - **b)** 7 32i
 - **c)** 17 17i
 - **d)** 15 16i
 - **e)** 7 i
 - **f)** 5 + 5i
 - **g)** 22 6i
 - **h)** 23 + 11i
- **6. a)** 13
 - **b)** 26
 - **c)** 37
 - **d**) 25
 - **e)** 2
 - **f)** 34
 - g) 1h) 4
 - --,
- 7. **a)** $\frac{-4}{13} + \frac{19}{13}$
 - **b)** $\frac{7}{20} \frac{11}{20}$
 - c) $\frac{1}{2} \frac{5}{2}$

- **d)** $\frac{3}{10} + \frac{1}{10}$ i
- **e)** $\frac{9}{13} + \frac{7}{13}$ i
- f) $\frac{3}{5} + \frac{4}{5}i$
- **g**) 1 + i
- **h)** 2 6i
- **8. a)** $\frac{1}{5} + \frac{2}{5}$ i
 - **b)** $-\frac{1}{5} \frac{2}{5}$ i
 - c) $\frac{4}{17} + \frac{1}{17}$ i
 - **d)** $\frac{3}{10} \frac{1}{10}$ i
 - **e**) i
 - f) $-\frac{1}{2}i$
- **9.** a) -i
 - **b)** -1
 - c)
 - d)
 - **e**) –i
 - **f**) -1
 - g)
 - **h)** 1
 - i) -
 - **j**) –1
- **10. a)** 5 + 12i
 - **b)** 16 30i
 - **c**) 2i
 - **d)** 3 4i
 - **e)** 2i
 - **f)** –8i
- **11. a)** 64
 - **b**) 16

- **c)** 2i
- **d)** $-\frac{1}{4}$
- **12.** Aplicamos directamente la fórmula para resolver la ecuación cuadrática a $x^2 6x + 10 = 0$

$$x = \frac{6 \pm \sqrt{36 - 40}}{2} = \frac{6 \pm \sqrt{-4}}{2} = \frac{6 \pm 2i}{2} = 3 \pm i$$

También podemos formar la ecuación cuadrática a partir de las soluciones.

- **13. a)** 0
 - **b)** 0
- **14. a)** (8, 1)
 - **b)** (1, 12)
 - **c)** (-4, 12)
 - **d)** (-25, -21)
 - **e)** $\left(\frac{23}{65}, \frac{11}{65}\right)$
 - $\left(\frac{-2}{5}, -\frac{7}{5}\right)$
 - **g)** $\left(\frac{3}{65}, \frac{41}{65}\right)$
 - **h)** $\left(\frac{1}{4'} 2\right)$
- **15.** a) -3 i
 - **b)** 19 40i
 - **c)** -264 + 12i
 - **d)** -89 114i
 - **e)** -19 + 33i
 - **f)** 270 + 570i
 - **g)** $\frac{213}{1.258} + \frac{84}{629}$ i
 - **h)** $\frac{99}{485} \frac{67}{97}$ i

16. a)
$$_{12} + \sqrt{3} - (2\sqrt{2} + 3\sqrt{6})$$

b)
$$\frac{10}{11} + \frac{3\sqrt{6}}{11}$$
 i

17.

18. a)
$$x = 1$$
, $y = -1$

d)
$$x = 2, y = 3$$

b)
$$x = \frac{5}{6}$$
, $y = \frac{1}{2}$

$$x = \frac{3}{4}, y = 8$$

c)
$$x = 2$$
, $y = -1$
 $x = \frac{1}{3}$, $y = -6$

20.
$$x = \frac{1}{2}$$

21. No existe, porque no cumple la condición pedida.

22.
$$x = -\frac{5}{2}$$

23.
$$x = \pm 3$$
 $y = \pm 5$

d)
$$-1 - 2i$$

25.a)

٦/

d)

e)

En todos los casos se observa que el giro es de 90°.

En general (a + bi) i = -b + ai

26.
$$(a + bi)i = ai + bi^2 = ai - b = -b + ai$$

27. a)
$$-3 + 2i$$

b)
$$-2 - i$$

28.

2+i -2-i -1

Se observa un giro de 180°.

29.
$$a = \frac{-3}{10}$$

31.
$$x = 1$$
; $y = 0$

35. a)
$$z = \frac{1}{2} + \frac{3}{2} i$$

b)
$$z = -\frac{8}{13} - \frac{1}{13}$$
 i

c)
$$z = \frac{2}{3} + i$$

$$d) \quad z = -$$

e)
$$-\frac{9}{5} + \frac{13}{5}$$
 i

36.
$$\frac{7}{625}$$

37. a)
$$\pm (2 + i)$$

b)
$$\pm$$
 (5 + 2i)

c)
$$\pm$$
 (1 + 4i)

d)
$$\pm$$
 (3 + 2i)

e)
$$\pm$$
 (2 + 2i)

$$f) \pm (1 + i)$$

38.
$$z = -1 + 2i$$

39.
$$w = \frac{1}{10} - \frac{9}{10}i$$
; $z = \frac{7}{10} + \frac{1}{2}i$

40.
$$z = \pm i$$

43. Sea
$$z = a + ib$$
 y sea $w = c + id$ Re $\left(\frac{w}{z + w}\right)$

Entonces debemos demostrar:

$$Re\left(\frac{a+ib}{a+ib+c+id}\right) + Re\left(\frac{c+id}{a+ib+c+id}\right) = 1$$

Calculemos primero el cociente:

$$\frac{a+ib}{(a+ib)+(c+id)} \text{ para determinar } \text{Re}\Big(\frac{z}{z+w}\Big)$$

$$\frac{a+ib}{(a+ib)+(c+id)} = \frac{a+ib}{(a+c)+i(b+d)}$$

$$= \frac{(a+ib)}{(a+c)+i(b+d)} \cdot \frac{(a+c)-i(b+d)}{(a+c)-i(b+d)}$$

$$= \frac{(a+ib)\cdot(a+c)-i(a+ib)(b+d)}{(a+c)^2+(b+d)^2}$$

$$= \frac{a^2+ac+iab+ibc-i(ab+ad+ib^2+ibd)}{(a+c)^2+(b+d)^2}$$

$$= \frac{a^2+ac+b^2+bd+i(bc-ad)}{(a+c)^2+(b+d)^2}$$

En la misma forma se obtiene:

Así, Re $\left(\frac{z}{z+w}\right) = \frac{a^2 + ac + b^2 + bd}{(a+c)^2 + (b+d)^2}$

$$Re\left(\frac{w}{z+w}\right) = \frac{ac+c^2+bd+d^2}{(a+c^2)+(b+d)^2}$$

Sumando ambas expresiones (* y **) se obtiene:

$$Re\left(\frac{z}{z+w}\right) + Re\left(\frac{w}{z+w}\right) = \frac{a^2 + ac + b^2 + bd}{(a+c)^2 + (b+d)^2} + \frac{ac + c^2 + bd + d^2}{(a+c)^2 + (b+d)^2}$$
$$= \frac{a^2 + 2ac + c^2 + b^2 + 2bd + d^2}{(a+c)^2 + (b+d)^2}$$
$$= \frac{(a+c)^2 + (c+d)^2}{(a+c)^2 + (c+d)^2}$$
$$= 1$$

44. Sea
$$z = a + ib y w = c + id$$

$$\rightarrow$$
 Re(z) = a; Re(w) = c; Im(z) = b; Im(w) = d *

Calculemos el producto (z·w)

$$(z \cdot w) = (a + ib) (c - id)$$

$$= ac + iad + ibc + i2bd$$

$$= ac - bd + i (ad + bc)$$

Determinamos la parte real del producto (z • w)

$$Re(z \cdot w) = ac-bd$$

Reemplazamos según * y obtenemos:

$$Re(z \cdot w) = Re(z) \cdot Re(w) - Im(z) \cdot Im(w)$$

45. Sea
$$z = a + ib y w = c + id$$

Calculemos el producto y agrupemos parte real e imaginaria:

$$(z \cdot w) = ac - bd + i (ad + bc)$$

$$Im(z \cdot w) = ad + bc$$

Pero tenemos que:

$$Re(z) = a; Re(w) = c; Im(z) = b; Im(w) = d$$

Por lo tanto:

$$Im(z \cdot w) = Re(z) \cdot Im(w) + Im(z) \cdot Re(w)$$