

TSV991, TSV992, TSV994 TSV991A TSV992A, TSV994A

Datasheet

Rail-to-rail input/output 20 MHz GBP operational amplifiers

Pin connections (top view) DFN8 2x2 SOT23-5 51vcc+ 4 IN DFN6 1.3x1.6x0.55 MiniSO8, SO8, DFN8 2x2 IN1+3 SO14, TSSOP14 14 OUT4 OUT1 1 13 IN4-VCC+ 4 11 VCC-IN2+ 5 10 IN3+ IN2- 6 9 IN3-OUT2F ■ OUT3

Features

- Low input offset voltage: 1.5 mV max. (A grade)
- · Rail-to-rail input and output
- Wide bandwidth 20 MHz
- Stable for gain ≥ 4 or ≤ -3
- Low power consumption: 820 μA typ.
- · High output current: 35 mA
- Operating from 2.5 V to 5.5 V
- Low input bias current, 1 pA typ.
- ESD internal protection ≥ 5 kV

Applications

- · Battery-powered applications
- Portable devices
- · Signal conditioning and active filtering
- Medical instrumentation
- · Automotive applications

Description

The TSV99x and TSV99xA family of single, dual, and quad operational amplifiers offers low voltage operation and rail-to-rail input and output. These devices feature an excellent speed/power consumption ratio, offering a 20 MHz gain-bandwidth, stable for gains above 4 (100 pF capacitive load), while consuming only 1.1 mA maximum at 5 V. They also feature an ultra-low input bias current. These characteristics make the TSV99x family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering. These characteristics make the TSV99x, TSV99xA family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

Product status link

TSV991, TSV992, TSV994, TSV991A, TSV992A, TSV994A

Related products

See TSV911, TSV912, TSV914, TSV911A, TSV912A, TSV914A

For unity-gain stable amplifiers

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter		Value	Unit	
V_{CC}	Supply voltage (1)		6		
V _{id}	Differential input voltage (2)		±V _{CC}	V	
V _{in}	Input voltage (3)		(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2		
l _{in}	Input current (4)		10	mA	
T _{stg}	Storage temperature		-65 to 150	80	
Tj	Maximum junction temperature		150	°C	
		DFN8 2x2	57		
		DFN6 1.3x1.6x0.55	230		
		SOT23-5	250		
R _{thja}	Thermal resistance junction to ambient (5) (6)	SO8	125		
		MiniSO8	190		
		SO14	103		
		TSSOP14	100		
		SOT23-5	81		
		SO8	40	°C/W	
R_{thjc}	Thermal resistance junction to case	MiniSO8	39		
		SO14	31		
		TSSOP14	32		
	HBM: human body model (7)		5	kV	
	MM: machine model (8)		400		
ESD		SOT23-5, SO8, MiniSO8, DFN8 2x2	1500	V	
	CDM: charged device model (9)	DFN6 1.3x1.6x0.55	TBD		
		TSSOP14	750		
		SO14	500		
	Latch-up immunity	<u> </u>	200	mA	

- 1. Value is with respect to the V_{CC} pin.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} V_{IN} must not exceed 6 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. Rth are typical values.
- Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: 200 pF charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $< 5 \Omega$), done for all couples of pin combinations with other pins floating.
- 9. Charged device model: all pins plus packages are charged together to the specified voltage and then discharged directly to the ground.

DS4975 - Rev 14 page 2/28

Absolute maximum ratings and operating conditions

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5 to 5.5	V
V _{icm}	Common mode input voltage range	(V _{CC-}) - 0.1 to (V _{CC+}) + 0.1	V
T _{op}	Operating free air temperature range	-40 to 125	°C

DS4975 - Rev 14 page 3/28

2 Electrical characteristics

Note: In the electrical characteristic tables below, all parameter limits at temperatures other than 25 °C are guaranteed by correlation.

Table 3. Electrical characteristics at $V_{CC+} = 2.5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, with R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC performance		,			
	Officet voltage TSV/00v	T _{op} = 25 °C		0.1	4.5		
V	Offset voltage, TSV99x	$T_{min} < T_{op} < T_{max}$			7.5		
V_{io}	Office trade TOVOWA	T _{op} = 25 °C			1.5	– mv	
	Offset voltage, TSV99xA	T _{min} < T _{op} < T _{max}			3		
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C	
	Input offset current,	T _{op} = 25 °C		1	10		
l _{io}	$V_{out} = V_{CC}/2$ (1)	T _{min} < T _{op} < T _{max}			100		
	Input bias current, V _{out} = V _{CC} /2	T _{op} = 25 °C		1	10	pA	
l _{ib}	Section 2 (1)	T _{min} < T _{op} < T _{max}			100		
0115	Common mode rejection ratio,	0 V to 2.5 V, V _{out} = 1.25 V, T _{op} = 25 °C	58	75			
CMR	$20 \log (\Delta V_{ic}/\Delta V_{io})$	T _{min} < T _{op} < T _{max}	53				
		$R_L = 10 \text{ k}\Omega$, $V_{out} = 0.5 \text{ V to 2 V}$,		00		dB	
A_{vd}	Large signal voltage gain	T _{op} = 25 °C	80	0 89			
		$T_{min} < T_{op} < T_{max}$	75				
V V		$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40		
V _{CC} - V _{OH}	High-level output voltage	$R_L = 600 \Omega$, $T_{min} < T_{op} < T_{max}$		45	150		
V	llaval autout valla	$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40	– mv	
V_{OL}	Low-level output voltage	$R_L = 600 \Omega$, $T_{min} < T_{op} < T_{max}$		45	150	pA	
		V _o = 2.5 V, T _{op} = 25 °C	18	32			
	l _{sink}	T _{min} < T _{op} < T _{max}	16				
l _{out}		V _o = 0 V, T _{op} = 25 °C	18	35		mA	
	I _{source}	T _{min} < T _{op} < T _{max}	16				
Icc	Supply current (per channel)	No load, $V_{out} = V_{CC}/2$, $T_{min} < T_{op} < T_{max}$		0.78	1.1		
		AC performance					
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF, f} = 100 \text{ kHz,}$ $T_{op} = 25 \text{ °C}$		20		MHz	
Gain	Minimum gain for stability	Phase margin = 45 °, R_f = 10 k Ω , R_L = 2 k Ω , C_L = 100 pF, T_{op} = 25 °C, positive gain configuration		4		V/V	

DS4975 - Rev 14 page 4/28

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Gain	Minimum gain for stability	Phase margin = 45 °, R_f = 10 $k\Omega$, R_L = 2 $k\Omega$, C_L = 100 pF, T_{op} = 25 °C, negative gain configuration		V/V		
SR	Slew rate	R_L = 2 k Ω , C_L = 100 pF, T_{op} = 25 °C		10		V/µs
e _n	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25 °C		21		nV/√Hz
THD+N	Total harmonic distortion	$G = -3$, $f = 1$ kHz, $R_L = 2$ k Ω , Bw = 22 kHz, $V_{icm} = V_{CC}/2$, $V_{out} = 2$ V_{pp} , $T_{op} = 25$ °C		0.0025		%

^{1.} Guaranteed by design

Table 4. Electrical characteristics at $V_{CC+} = 3.3 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, with R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance				
	Officet violations TOV/00v	T _{op} = 25 °C		0.1	4.5	
V	Offset voltage, TSV99x	T _{min} < T _{op} < T _{max}			7.5	m)/
V_{io}	Officet voltage TCV/00vA	T _{op} = 25 °C			1.5	mV μV/°C pA dB mV
	Offset voltage, TSV99xA	T _{min} < T _{op} < T _{max}			3	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
ı.	Input offset current,	T _{op} = 25 °C		1	10	
l _{io}	$V_{out} = V_{CC}/2$ (1)	T _{min} < T _{op} < T _{max}			100	
I	Input bias current, V _{out} = V _{CC} /2	T _{op} = 25 °C		1	10	- pA
l _{ib}	Section 2 (1)	T _{min} < T _{op} < T _{max}			100	
CMR	Common mode rejection ratio,	0 V to 3.3 V, V _{out} = 1.65 V, T _{op} = 25 °C	60	78		dB
	20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	55			
		$R_L = 10 \text{ k}\Omega$, $V_{out} = 0.5 \text{ V to } 2.8 \text{ V}$,	80	89		dB
A_{vd}	Large signal voltage gain	T _{op} = 25 °C	80	69		
		$T_{min} < T_{op} < T_{max}$	75			
V _{CC} - V _{OH}	High-level output voltage	$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40	
*CC *OH	riigii-iever output voitage	$R_L = 600 \Omega$, $T_{min} < T_{op} < T_{max}$		45	150	m\/
V_{OL}	Low-level output voltage	$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40	IIIV
VOL	Low-level output voltage	$R_L = 600 \Omega$, $T_{min} < T_{op} < T_{max}$		45	150	
	I _{sink}	$V_0 = 3.3 \text{ V}, T_{op} = 25 ^{\circ}\text{C}$	18	32		
Loa	'SINK	$T_{min} < T_{op} < T_{max}$	16			
l _{out} -	1	V _o = 0 V, T _{op} = 25 °C	18	35		mA
	I _{source}	T _{min} < T _{op} < T _{max}	16			
I _{CC}	Supply current (per channel)	No load, $V_{out} = V_{CC}/2$, $T_{min} < T_{op} < T_{max}$		0.8	1.1	
		AC performance				!

DS4975 - Rev 14 page 5/28

Symbol	Parameter	Conditions Min		Тур.	Max.	Unit
GBP	Gain bandwidth product	$R_L = 2 k\Omega$, $C_L = 100 pF$, $f = 100 kHz$, $T_{op} = 25 °C$		20		MHz
Coin	Minimum gain for atability	Phase margin = 45 °, R_f = 10 k Ω , R_L = 2 k Ω , C_L = 100 pF, T_{op} = 25 °C, positive gain configuration		4		V/V
Gaill	Gain Minimum gain for stability	Phase margin = 45 °, R_f = 10 k Ω , R_L = 2 k Ω , C_L = 100 pF, T_{op} = 25 °C, negative gain configuration		-3		V/V
SR	Slew rate	$R_L = 2 k\Omega$, $C_L = 100 pF$, $f = 100 kHz$, $T_{op} = 25 °C$		10		V/µs
e _n	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25 °C		21		nV/√Hz
THD+N	Total harmonic distortion	$G = -3$, $f = 1$ kHz, $R_L = 2$ k Ω , $Bw = 22$ kHz, $V_{icm} = V_{CC}/2$, $V_{out} = 2.8$ V_{pp} , $V_{op} = 25$ °C		0.0018		%

^{1.} Guaranteed by design.

Table 5. Electrical characteristics at $V_{CC+} = 5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, with R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance			,	
	Offset voltage TSV/00v	T _{op} = 25 °C		0.1	4.5	
W	Offset voltage, TSV99x	$T_{min} < T_{op} < T_{max}$			7.5	
V_{io}	Office to the real TOV (00) A	T _{op} = 25 °C			1.5	mV μV/°C pA dB
	Offset voltage, TSV99xA	$T_{min} < T_{op} < T_{max}$			3	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	I_{io} Input offset current, $V_{out} = V_{CC}/2$ (1)	T _{op} = 25 °C		1	10	
l _{io}		$T_{min} < T_{op} < T_{max}$			100	
	Input bias current, V _{out} = V _{CC} /2	T _{op} = 25 °C		1	10	pA
l _{ib}	Section 2 (1)	$T_{min} < T_{op} < T_{max}$			100	μV/°C pA
		0 V to 5 V, $V_{out} = 2.5 V$,				
CMR	Common mode rejection ratio, 20 log ($\Delta V_{ic}/\Delta V_{jo}$)	T _{op} = 25 °C	62	82		
		$T_{min} < T_{op} < T_{max}$	57			
SVR	Supply voltage rejection ratio, 20 log (ΔV _{cc} /ΔV _{io})	V _{CC} = 2.5 V to 5 V	70	86		dB
A _{vd}	Large signal voltage gain	R_L = 10 k Ω , V_{out} = 0.5 V to 4.5 V, T_{op} = 25 °C	80	91		
		$T_{min} < T_{op} < T_{max}$	75			
., .,		$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40	
V _{CC} - V _{OH}	High-level output voltage	$R_L = 600 \Omega$, $T_{min} < T_{op} < T_{max}$		45	150	
		$R_L = 10 \text{ k}\Omega$, $T_{min} < T_{op} < T_{max}$		15	40	mV
V _{OL}	Low-level output voltage	$R_L = 600 \Omega$, $T_{min} < T_{op} < T_{max}$		45	150	

DS4975 - Rev 14 page 6/28

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	1	V _o = 5 V, T _{op} = 25 °C	18	32		
1 .	I _{sink}	$T_{min} < T_{op} < T_{max}$	16			
l _{out}		V _o = 0 V, T _{op} = 25 °C	18	35		mA
	I _{source}	$T_{min} < T_{op} < T_{max}$	16			
I _{CC}	Supply current (per channel)	No load, V_{out} = 2.5 V, T_{min} < T_{op} < T_{max}		0.82	1.1	
		AC performance				
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$, $T_{op} = 25 ^{\circ}\text{C}$		20		MHz
Oatra	Minimum and Constability	Phase margin = 45 °, R_f = 10 $k\Omega$, R_L = 2 $k\Omega$, C_L = 100 pF, T_{op} = 25 °C, positive gain configuration		4		2/0/
Gain	Minimum gain for stability	Phase margin = 45 °, R_f = 10 $k\Omega$, R_L = 2 $k\Omega$, C_L = 100 pF, T_{op} =25 °C, negative gain configuration		-3	V/V	
SR	Slew rate	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF, f} = 100 \text{ kHz,}$ $T_{op} = 25 \text{ °C}$		10		V/µs
e _n	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25 °C	21			nV/√Hz
THD+N	Total harmonic distortion	$G = -3$, $f = 1$ kHz, $R_L = 2$ kΩ, $Bw = 22$ kHz, $V_{icm} = V_{CC}/2$, $V_{out} = 4.4$ V_{pp} , $T_{op} = 25$ °C		0.0014		%

^{1.} Guaranteed by design.

DS4975 - Rev 14 page 7/28

3 Electrical characteristic curves

Figure 3. Supply current vs. input common-mode voltage at $V_{CC} = 2.5 V$ 1.0 T=25°C 0.8 Supply Current (mA) 0.7 T=-40°C T=125°C 0.5 Vcc=2.5V 0.2 0.0 0.0 0.5 1.0 1.5 2.0 Input Common Mode Voltage (V) 2.5

DS4975 - Rev 14 page 8/28

Figure 7. Voltage gain and phase vs. frequency at $V_{CC} = 5$ | Figure 8. Voltage gain and phase vs. frequency at $V_{CC} = 5$ V and V_{icm} = 0.5 V 160 Gain 30 120 Phase 20 80 40 Gain (dB) 0 40 -20 -80 Vcc=5V, Vicm=0.5V CI=100pF, RI=2KOhm, VrI=Vcc/2 Tamb=25°C -30 -120 -160 10⁶ Frequency (Hz)

V and V_{icm} = 2.5 V 40 160 Gain 30 120 20 80 10 40 Gain (dB) 0 0 -10 40 -20 -80 Vcc=5V, Vicm=2.5V CI=100pF, RI=2KOhm, VrI=Vcc/2 -30 -120 Tamb=25°C Frequency (Hz)

DS4975 - Rev 14 page 9/28

DS4975 - Rev 14 page 10/28

4 Application information

4.1 Driving resistive and capacitive loads

These products are low-voltage, low-power operational amplifiers optimized to drive rather large resistive loads above $2 \text{ k}\Omega$.

The TSV99x products are not unity gain stable. To ensure proper stability they must be used in a gain configuration, with a minimum gain of -3 or 4.

However, they can be used in a "follower" configuration by adding a small, in-series resistor at the output, which drastically improves the stability of the device (Figure 15. In-series resistor vs. capacitive load when TSV99x is used in follower configuration shows the recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on the bench and simulated with the simulation model.

Another way to improve stability and reduce peaking is to add a capacitor in parallel with the feedback resistor. As shown in Figure 16. Peaking versus capacitive load, with or without feedback capacitor in inverting gain configuration, the feedback capacitor drastically reduces the peaking versus capacitive load (inverting gain configuration, gain = -2).

4.2 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.3 Macromodel

An accurate macromodel of the TSV99x is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV99x operational amplifiers. It emulates the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, however, it does not replace on-board measurements.

DS4975 - Rev 14 page 11/28

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS4975 - Rev 14 page 12/28

5.1 SOT23-5 package information

Figure 17. SOT23-5 package outline

Table 6. SOT23-5 mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.90	1.20	1.45	0.035	0.047	0.057
A1			0.15			0.006
A2	0.90	1.05	1.30	0.035	0.041	0.051
В	0.35	0.40	0.50	0.014	0.016	0.020
С	0.09	0.15	0.20	0.004	0.006	0.008
D	2.80	2.90	3.00	0.110	0.114	0.118
D1		1.90			0.075	
е		0.95			0.037	
E	2.60	2.80	3.00	0.102	0.110	0.118
F	1.50	1.60	1.75	0.059	0.063	0.069
L	0.10	0.35	0.60	0.004	0.014	0.024
K	0 degrees		10 degrees	0 degrees		10 degrees

DS4975 - Rev 14 page 13/28

5.2 DFN8 2 x 2 package information

SEATING PLANE

C

D

PIN#1 ID

e

1 2 3 4

1 1 2 3 4

1 1 2 3 4

1 1 2 3 4

1 1 2 3 4

Figure 18. DFN8 2 x 2 package outline

Table 7. DFN8 2 x 2 mechanical data

BOTTOM VIEW

 $\bigcirc \oplus$

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.51	0.55	0.60	0.020	0.022	0.024
A1			0.05			0.002
A3		0.15			0.006	
b	0.18	0.25	0.30	0.007	0.010	0.012
D	1.85	2.00	2.15	0.073	0.079	0.085
D2	1.45	1.60	1.70	0.057	0.063	0.067
E	1.85	2.00	2.15	0.073	0.079	0.085
E2	0.75	0.90	1.00	0.030	0.035	0.039
е		0.50			0.020	
L			0.425			0.017
ddd			0.08			0.003

DS4975 - Rev 14 page 14/28

Figure 19. DFN8 2 x 2 recommended footprint

Note: The exposed pad of the DFN8 2x2 package is not internally connected. It can be set to ground or left floating.

DS4975 - Rev 14 page 15/28

5.3 DFN6 1.3 x 1.6 x 0.55 package information

D PIN #1 INDEX AREA ia) ge (△ aaa C 2x TOP VIEW // ccc C PLANE eee C SIDE VIEW PIN #1 III 3 bbb(M) C ddd(M) Terminal BOTTOM VIEW Tip

Figure 20. DFN6 1.3 x 1.6 x 0.55 package outline

DS4975 - Rev 14 page 16/28

Table 8. DFN6 1.3 x 1.6 x 0.55 mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.50	0.55	0.60	0.020	0.022	0.024
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3		0.15			0.006	
В	0.15	0.20	0.25	0.006	0.008	0.010
D		1.30			0.051	
E		1.60			0.063	
е		0.40			0.016	
L	0.453	0.553	0.653	0.018	0.022	0.026
N		6			0.236	
aaa		0.05			0.002	
bbb		0.07			0.003	
ccc		0.10			0.004	
ddd		0.05			0.002	
eee		0.08			0.003	

Figure 21. DFN6 1.3 x 1.6 x 0.55 recommended footprint

DS4975 - Rev 14 page 17/28

5.4 MiniSO8 package information

Figure 22. MiniSO8 package outline

Table 9. MiniSO8 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.1			0.043
A1	0		0.15	0		0.0006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	0°		8°
ccc			0.10			0.004

DS4975 - Rev 14 page 18/28

5.5 SO8 package information

Figure 23. SO8 package outline

Table 10. SO8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
L1		1.04			0.040		
k	0°		8°	0°		8°	
CCC			0.10			0.004	

DS4975 - Rev 14 page 19/28

5.6 SO14 package information

Figure 24. SO14 package outline

Table 11. SO14 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
			1.75			0.069
А	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
E	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k	8° (max.)					
ddd			0.10			0.004

DS4975 - Rev 14 page 20/28

5.7 TSSOP14 package information

Figure 25. TSSOP14 package outline

Table 12. TSSOP14 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.20			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

DS4975 - Rev 14 page 21/28

6 Ordering information

Table 13. Order code

Order code	Temperature range	Package	Packing	Marking
TSV991ILT		SOT23-5		K130
TSV991AILT		30123-3		K129
TSV991IQ2T		DFN8 2x2		K1F
TSV991AIQ2T		DFINO 2X2		K1E
TSV991AIQ1T		DFN6 1.3x1.6x0.55		K5
TSV992IST		MiniSO8		K132
TSV992AIST	-40 °C to 125 °C	WIIIIISO6		K135
TSV992IDT	-40 C to 125 C	200		V992I
TSV992AIDT		SO8		V992AI
TSV992IQ2T		DFN8 2x2		K38
TSV994IPT		TSSOP14		V994I
TSV994AIPT		1550P14	Tape and reel	V994AI
TSV994IDT		SO14		V994I
TSV994AIDT		3014		V994AI
TSV991IYLT (1)		0.0700		K149
TSV991AIYLT (1)		SOT23-5		K150
TSV992IYDT (1)				V992IY
TSV992AIYDT (1)		SO8		V992AY
TSV992IYST (1)	-40 °C to 125 °C			K149
TSV992AIYST (1)	automotive grade	MiniSO8		K150
TSV994IYDT (1)				V994IY
TSV994AIYDT (1)		SO14		V994AY
TSV994IYPT (1)		TCCOD44		V994IY
TSV994AIYPT (1)		TSSOP14		V994AY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

Note: In the table above, all packages except the SO14 are "moisture sensitivity level 1" as per JEDEC J-STD-020-C. SO14 is JEDEC level 3.

DS4975 - Rev 14 page 22/28

Revision history

Table 14. Document revision history

Date	Revision	Changes
31-Jul-2006	1	Preliminary data release for product under development.
07-Nov-2006	2	Final version of datasheet.
12-Dec-2006	3	Noise and distortion figures added.
		ESD tolerance modified for SO14, CDM in Table 1: "Absolute maximum ratings (AMR)".
07-Jun-2007	4	Automotive grade commercial products added in Table 13: "Order codes".
		Note about SO14 added in Table 13: "Order codes".
		Limits in temperature added in Section 2: "Electrical characteristics".
		Corrected MiniSO8 package information.
11-Feb-2008	5	Corrected footnote for automotive grade order codes in order code table.
		Improved presentation of package information.
		Added input current information in Table 1: "Absolute maximum ratings (AMR)".
		Added Section 3: "Application information".
25-May-2009	6	Updated all packages in Section 4: "Package information".
		Added new order codes: TSV991IYLT, TSV991AIYLT, TSV992IYST, TSV992AIYST, TSV994IYPT, TSV994AIYPT in Table 13: "Order codes".
		Added A versions of devices in title on cover page.
		Added parameters for full temperature range in Table 3, Table 4, and Table 5.
19-Oct-2009	7	Removed gain margin and phase margin parameters in Table 3, Table 4, and Table 5. These parameters have been replaced by the gain parameter (minimum gain for stability).
		Added Figure 14 and Figure 16.
44 1 0040	0	Added parameters for full temperature range in Table 3, Table 4, and Table 5.
14-Jan-2010	8	Modified note relative to automotive grade in Table 13: "Order codes".
		Document status changed to production data.
		Modified gain value in Features and Description.
		Added DFN8 2x2 pin connection diagram.
22-Oct-2012	9	Table 1: "Absolute maximum ratings (AMR)": added package DFN8 2x2 to rows R_{thja} and ESD.
		Table 3, Table 4, and Table 5: replaced "DV $_{io}$ " with $\Delta V_{io}/\Delta T$; modified "Gain" and "THD +N" conditions and typical values.
		Figure 7 and Figure 8: added arrows indicating "Gain" and 'Phase".
		Figure 11 and Figure 12: updated.
22-Oct-2012	9 cont'd	Added Figure 18: "DFN8 2 x 2 mm (NB) package outline" and Figure 19: "DFN8 2 x 2 mm (NB) recommended footprint".
		Table 13: "Order codes": updated automotive grade qualification and added order code of DFN8 package.
10-Mar-2014	10	Table 13: "Order codes": added new commercial product TSV991AIQ2T; corrected "Marking" error for TSV991IQ2T from K1E to K1F.
		Added DFN6 1.3 x 1.6 x 0.55 package for new order code TSV991AIQ1T.
12-Jun-2015	11	Updated "L" dimension of Section 4: "DFN8 2 x 2 mm (NB) package information".
		Updated min "k" value of Section 4.5: "SO8 package information".

DS4975 - Rev 14 page 23/28

Date	Revision	Changes
		Table 3, Table 4, and Table 5: modified that R _L = 600 Ω (not 600 k Ω) for the high-level and low-level output voltage parameters.
27-Nov-2015	12	Section 5.2: updated name of package and titles of drawings and table; added note about exposed pad.
		Section 5.3: updated name of package.
03-Apr-2018	13	Updated cover image and Table 13. Order code.
19-Jun-2019	14	Updated the related product table in cover page.

DS4975 - Rev 14 page 24/28

Contents

1	Abs	olute maximum ratings and operating conditions	2			
2	Elec	ctrical characteristics	4			
3	Elec	Electrical characteristic curves				
4	Арр	lication information	11			
	4.1	Driving resistive and capacitive loads	11			
	4.2	PCB layouts	11			
	4.3	Macromodel	11			
5	Pac	kage information	12			
	5.1	SOT23-5 package information	13			
	5.2	DFN8 2 x 2 package information	14			
	5.3	DFN6 1.3 x 1.6 x 0.55 package information	15			
	5.4	MiniSO8 package information	17			
	5.5	SO8 package information	19			
	5.6	SO14 package information	20			
	5.7	TSSOP14 package information	21			
6	Ord	ering information	22			
Rev	/ision	history	23			
@N	A		28			

List of tables

Table 1.	Absolute maximum ratings (AMR)	. 2
Table 2.	Operating conditions	
Table 3.	Electrical characteristics at V_{CC^+} = 2.5 V, V_{CC^-} = 0 V, V_{icm} = $V_{CC}/2$, with R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)	. 4
Table 4.	Electrical characteristics at V_{CC+} = 3.3 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, with R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)	. 5
Table 5.	Electrical characteristics at V_{CC+} = 5 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, with R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)	. 6
Table 6.	SOT23-5 mechanical data	13
Table 7.	DFN8 2 x 2 mechanical data	14
Table 8.	DFN6 1.3 x 1.6 x 0.55 mechanical data	17
Table 9.	MiniSO8 package mechanical data	18
Table 10.	SO8 package mechanical data	19
Table 11.	SO14 package mechanical data	20
Table 12.	TSSOP14 package mechanical data	21
Table 13.	Order code	22
Table 14.	Document revision history	23

DS4975 - Rev 14 page 26/28

List of figures

Figure 1.	Input offset voltage distribution at 1 = 25 °C	. 8
Figure 2.	Input offset voltage distribution at T = 125 °C	. 8
Figure 3.	Supply current vs. input common-mode voltage at V _{CC} = 2.5 V	. 8
Figure 4.	Supply current vs. input common-mode voltage at V _{CC} = 5 V	. 8
Figure 5.	Output current vs. output voltage at V _{CC} = 2.5 V	. 8
Figure 6.	Output current vs. output voltage at V _{CC} = 5 V	. 8
Figure 7.	Voltage gain and phase vs. frequency at V _{CC} = 5 V and V _{icm} = 0.5 V	. 9
Figure 8.	Voltage gain and phase vs. frequency at V _{CC} = 5 V and V _{icm} = 2.5 V	. 9
Figure 9.	Positive slew rate	. 9
Figure 10.	Negative slew rate	. 9
Figure 11.	Distortion + noise vs. frequency	. 9
Figure 12.	Distortion + noise vs. output voltage	. 9
Figure 13.	Noise vs. frequency	10
Figure 14.	Supply current vs. supply voltage	10
Figure 15.	In-series resistor vs. capacitive load when TSV99x is used in follower configuration	11
Figure 16.	Peaking versus capacitive load, with or without feedback capacitor in inverting gain configuration	11
Figure 17.	SOT23-5 package outline	13
Figure 18.	DFN8 2 x 2 package outline	14
Figure 19.	DFN8 2 x 2 recommended footprint	15
Figure 20.	DFN6 1.3 x 1.6 x 0.55 package outline	16
Figure 21.	DFN6 1.3 x 1.6 x 0.55 recommended footprint	17
Figure 22.	MiniSO8 package outline	18
Figure 23.	SO8 package outline	19
Figure 24.	SO14 package outline	20
Figure 25.	TSSOP14 package outline	21

DS4975 - Rev 14 page 27/28

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS4975 - Rev 14 page 28/28