9. Přílohy

9.1. Příloha I

Substráty

(Rogers, Arlon, Polyflon)

RT/duroid® and TMM® Microwave Laminates

PROPER	TY LINGS	Solve			© 0,00 00 00 00 00 00 00 00 00 00 00 00 0	80 80 00 00 00 00 00 00 00 00 00 00 00 0	00000 , W 7000°	/ Temperatu		M [®] Microwave L	.aminates
Dielectric constant and tolerance @10 GHz	2.20±0.02	2.33±0.02	2.4±2.6 0.04	2.94±0.04	6.15±0.15	10.2±0.25	3.27 ±0.030	4.50 ±0.045	6.00 ±0.080	9.20 ±0.230	9.80 ±0.245
Dissipation factor (Loss tangent) @10 GHz. Typ.	0.0009	0.0012	0.0019	0.0012	0.0019	0.0023	⁽¹⁾ 0.0016	⁽¹⁾ 0.0017	⁽¹⁾ 0.0018	⁽¹⁾ 0.0017	¹ 0.0015
Thermal coeff. of ɛ, 0° to100°C ppm/ °C (Typical)	-129	-115	-100	+16	-450	-390	⁽⁵⁾ + 39	_	(5)	⁽⁵⁾ -38	⁽⁵⁾ -43
Volume resistivity Mohm•cm (Minimum)	2x10 ⁷	2x10 ⁷	2x10 ⁷	10°	2x10 ⁷	5×10⁵	3x10 ⁹	6x10³	1x10 ⁸	2x10 ⁷	_
Surface resistivity Mohm (Minimum)	3x10 ^a	2x10³	4x10 ⁷	107	7x10 ⁷	5x10°	>9x10°	1x10 ^e	1x10 ⁹	4x10 ⁷	-
Tensile modulus kpsi X	156 (1076)	189 (1340)	1700(11730)	120 (828)	74 (511)	135 (932)	⁽²⁾ 1916	⁽²⁾ 2000*	2200*	⁽²⁾ 2400	
(MPa) Y (Typical)	125 (863)	185 (1277)	1300 (8970)	120 (828)	91 (628)	81(559)	1916	2000*	2200*	2400	
Compressive modulus Z axis kpsi (MPa) (Typical)	136 (938)	120 (828)	_	360*	155 (1070)	311 (2146)	742	752	736	575	_
Moisture absorption D23/24 % (Maximum)	0.015	0.015	0.03	0.1	0.05	0.6 (LM 0.05)	⁽³⁾ 0.04	⁽³⁾ 0.010	0.06	0.09	⁽³⁾ 0.16
Thermal ⁽⁶⁾ conductivity W/m/K (Typical)	0.20	0.22	0.24	0.60	0.49	0.78	0.70	0.70	0.72	0.76	0.76
Coefficient X of thermal	31	22	15	16	47	24	16	14	16	16	16*
expansion y 0°to 100°C	48	28	15	16	34	24	16	14	16	16	16*
Z (Typica!)	237	173	200	24	117	24	20	20	20	20	20*
Specific Gravity (Typical)	2.2	2.2	2.2	2.1	2.7	2.9	1.78	2.07	2.37	2.77	2.77

Tested by ASTM D25200 3GHz waveguide perturbation, maximum values Young's Modulus.

Testing conditions: 50°C, 48 hours, 0.50° (12.7mm) thick samples.

Values represent a linear approximation of CTE for the temperature ranges given, except for RT/duroid 6002 and TMM, which do have a linear behavior. Tested by IPC-TM-550 method 2.5.5.5.

Tested by ASTM C518

FEATURES AND BENEFITS:

Low dielectric loss for high frequency performance (RO3003).

Can be used in applications up to 30-40 GHz.

Excellent mechanical properties versus temperature.

Reliable stripline and multilayer board constructions.

Uniform mechanical properties for a range of dielectric constants.

- Ideal for multilayer board designs with a range of dielectric constants.
- Suitable for use with epoxy glass multilayer board hybrid designs.

Stable dielectric constant versus temperature and frequency for RO3003.

 Ideal for band pass filters, microstrip patch antennas, and voltage controlled oscillators.

Low in-plane expansion coefficient (matched to copper).

- Allows for more reliable surface mounted assemblies.
- Ideal for applications sensitive to temperature change.
- Excellent dimensional stability.

Volume manufacturing process.

Economical laminate pricing.

Typical Applications:

- Automotive Collision Avoidance Systems
- Automotive Global Positioning Satellite Antenna
- Cellular and Pager
 Telecommunications Systems
- Patch Antennas for Wireless Communications
- Direct Broadcast Satellite
- Datalink on Cable Systems
- Remote Meter Readers
- Power Backplanes

ROGERS

SINCE 1832

PROPERTY	Тур RO3003	Units		
Dielectric Constant @ 10 GHz Thermal Coefficient of ε, @ 0 to 100°C Dissipation Factor @ 10 GHz	3.0±0.04 13 0.0013	RO3006 6.15±0.15 -160 0.0025	RO3010 10.2± 0.30 -280 0.0035	ppm/°C
Youngs Modulus X Y Volume Resistivity Surface Resistivity Moisture Absorption Dimensional Stability Specific Gravity Peel Strength	300 (2068) 300 (2068) 10° 107 <0.1 0.5 2.1 3.1 (17.6)	300 (2068) 300 (2068) 10 ³ 10 ³ <0.1 0.5 2.6 2.1 (12.2)	300 (2068) 300 (2068) 10 ³ 10 ³ <0.1 0.5 3.0 2.4 (13.4)	kpsi (MPa) Mohm•cm Mohm % mm/m(mils/in) N/mm (pli)
Thermal Conductivity Coefficient of Thermal Expansion 0 to 100°C X Y Z	0.50 17 17 24	0.61 17 17 24	0.66 17 17 24	W/m/°K ppm/°C
UL Flammability Rating	94-VO	94-VO	94-VO	

Availability:

Standard Thicknesses:

RO3003: 0.005" (0.127mm), 0.010" (0.254mm), 0.020" (0.508mm), 0.030" (0.762), 0.060" (1.524mm)

RO3006, RO3010: 0.005" (0.127mm), 0.010" (0.254mm), 0.025" (0.635mm), 0.050" (1.27mm)

Standard Sheet: 24"X18" (610 x 457mm)

Standard Copper Cladding: 1/2 oz. (17μm), 1 oz. (35μm), 2 oz. (70μm), electrodeposited copper.

Rogers laminates can be purchased by contacting your U.S. customer service representative or one of our overseas offices. Telephone numbers listed below.

RO3003, RO3006 and RO3010, are licensed trademarks of Rogers Corporation for their microwave laminates.

The above data represents typical values, not statistical minimums. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose. The relative merits of materials for a specific application should be determined by your evaluation.

ROGERS

SINCE 1832

Rogers Corporation
Microwave Materials Division

100 S. Roosevelt Avenue Chandler, AZ 85226-3415 602-961-1382 FAX: 602-961-4533

Website: http://www.rogers-corp.com

ISO 9002 CERTIFIED

© 1997, 1998 Rogers Corporation

In Japan:

Rogers Japan Inc., 7th Floor, ST Bldg, 2-26-9 Nishi-nippori,

Arakawa-ku, Tokyo 116 Japan 03-3807-6430 FAX: 03-3807-6319

In Hong Kong:

Rogers Southeast Asia, 21st Floor, Unit 2 118 Connaught Road West, Sheung Wan Hong Kong

852-2549-7806 FAX: 852-2549-8615

In Europe:

Rogers N.V., Afrikalaan 188, B-9000 Gent, Belgium

32-9-2353611 FAX: 32-9-2353658

Printed in U.S.A. Revised 5/98 1277-058-2.5-ON

MICROWAVE DIELECTRICS

The following is a quick reference guide which highlights those characteristic that are critical when making a material selection. All of Polyflon's microwave materials are fully isotropic, uniform in construction in all three axis. Polyflon does not use any bonding or adhesive materials in the manufacture of its substrates.

For additional information on these or any of our other products please contact Polyflon or visit our web site at http://www.polyflon.com.

Comparison of Polyflon's Microwave Laminates

TRADE NAME		CuFlon	POLYGUIDE	NorCLAD	Clad ULTEM®	
PROPERTY	Units					
Dielectric Material		Virgin PTFE	Irradiated Polyolefin	Polyphenylene Oxide	ULTEM 1000	
Dielectric Constant, 3 GHz	-	2.1	2.32	2.55	3.05	
Dissipation Factor, 3 GHz		0.00010	0.00031	0.00110	.00300	
Dielectric Breakdown	V/mil	1000	500	500	830	
Operating Temperature Range	°C	-55 to 175 °C	-55 to 85 °C	-55 to 125 °C	-55 to 175 °C	
Volume Resistivity	Ω-cm	1016	10 ¹⁶	1011	6.7 x 10 ¹	
Peel Strength, 25 °C	lb/in	8	8	8	8	
Moisture Absorption	%	<.01%	<.01%	0.06	.25	
Specific Gravity		2.2	0.95	1.1	1.27	
CTE X, dielectric only	ppm/°C	129	108	53	56	
CTE Y, dielectric only	ppm/°C	129	108	53	56	
CTE Z, dielectric only	ppm/°C	129	108	53	56	
Availability, Dielectric Thickness	inches	.00025 thru .125	0.020, 0.062 & 0.125	.030, .060, .090, & .125	.030, .060, .090, & .125	
Panel Size	inches	.005" and less	.020"	all thicknesses	all thicknesses	
		9" x 9"	16" x 30"	20" x 22"	20" x 22"	
Panel Size	inches	.010" and	.062" & .125"			
		greater 12" x 18"	22.5" _. x 32.5"			

ULTEM® is a registered trademark of General Electric

MICMATL 30SEP97

CRANE_®

POLVELON

Polyfon Company, One Willard Road, Norwalk, CT 06851 • Tel: (203) 840-7555 • Fax: (203) 840-7565 Modem: (203) 840-7564 • Email: info@polyflon.com • http://www.polyflon.com

Microwave Materials

Product Listing and Typical Properties

	Woven Fiberglass Reinforced PTFE - Unidirectional						
	Dielectric Constant	Dissipation Factor	MIL/IPC-L-125	CTEz	Comments		
DiClad® 522	2.40 - 2.60 ± 0.05	0.001	GT/01	173	Tested at 1 MHz		
DiClad® 527	2.40 - 2.60 ± 0.04	0.0022	GX/02	182	Tested at 10 GHz		
DiClad® 870	2.33 ± 0.02	0.0013	GY/05	217	Tested at 10 GHz		
DiClad® 880	2.17, 2.20 ± 0.02	0.0009	GY/05	252	Tested at 10 GHz		
	Woven Fiberglas	ss Reinforced PTFI	E - Crossplied				
CuClad® 250GT	2.40 - 2.60 ± 0.05	0.001	G1/01	177	Tested at 1 MHz, in plane isotropy		
CuClad® 250GX	2.40 - 2.60 ± 0.04	0.0022	GX/02	177	Tested at 10 GHz, in plane isotropy		
CuClad® 233LX	2.33 ± 0.02	0.0013	GY/05	194	Tested at 10 GHz, in plane isotropy		
CuCiad® 217LX	2.17, 2.20 ± 0.02	0.0009	GY/05	246	Tested at 10 GHz, in plane isotropy		
	Nonwoven Fiber	glass Reinforced P	TFE				
IsoClad® 933	2.33 ± 0.04	0.0016	GP/03	203	Tested at 10 GHz, Conformal		
IsoClad® 917	2.17, 2.20 ± 0.04	0.0013	GP, GR/03,04	236	Tested at 10 GHz, Conformal		
	Commercial Gra	ides PTFE					
AR 320"	3.20 ± 0.10	0.003	N/A / N/A	71	Tested at 10 GHz		
AD Series"	2.50 - 3.60 ± 0.05	0.002 - 0.003	N/A / N/A	175 - 65	Tested at 10 GHz		
	Ceramic Filled I	TFE					
CLTE "	2.94 Nominal	0.0025	N/A / N/A	35	Er Stable Over Temperature		
AR 350 -	3.5 Nominal	0.0026	N/A / N/A	107	Er Replacement for BT, CE		
AR 450"	4.5 Nominal	0.0035	N/A / N/A	102	Er Replacement for FR-4		
AR 600 "	6.0 Nominal	0.0035	N/A / N/A	62	Er Design Flexibility		
AR 1000 "	10.0 Nominal	0.0035	N/A / N/A	37	Er Varies with Thickness		
	Non-PTFE Resid	n Systems, Er Stabl	le Over Temperat	ure			
25N	3.25 ± .07	0.004	N/A / N/A	60	Tested at 10 GHz		
25FR	3.48 ± .07	0.005	N/A / N/A	60	Tested at 10 GHz, UL94V-0		
	Thermoplastic B	onding Material		Melt °F/°C	Supplied Thickness		
CuClad® 6250	2.32 ± 0.10	0.0013	N/A / N/A	213/101	.0015*		
CuClad® 6700	2.35 ± 0.10	0.0025	N/A / N/A	379/193	.0015", .003"		
CLTE-P"	2.94	0.0025	N/A / N/A	510/265	.0032*		

Master sheet sizes are 36" x 36", 36" x 48", 48" x 54" and 36" x 72". Check for availability by product line.

DiClad[®], CuClad[®], IsoClad[®] and CLTE™ are Arlon Registered Trademarks

MATERIALS FOR ELECTRONICS

1100 Governor Lea Road, Bear, DE 19701 • Telephone: (302) 834-2100, (800) 635-9333 • Fax: (302) 834-2574
9433 Hyssop Drive, Rancho Cucamonga, CA 91730 • Telephone: (909) 987-9533 • Fax: (909) 987-8541
37 Rue Collange, 92300 LeVallois, Perret, France • Telephone: (33) 1-427-02642 • Fax: (33) 1-427-02798
44 Wilby Avenue, Little Lever, Bolton, Lancashire, BL31QE, U.K. • Telephone: (44) 120-457-6068 • Fax: (44) 120-479-6463
E-mail: substrates@arlonmed.com • Website: www.arlonmed.com

Arlon is an ISO 9002 Registered Company

9.2. Příloha II

Dielektrické rezonátory

(Trans-Tech)

D8700 Series - Disc Type

Mechanical Configuration

Test Set-up

Dimensions and Frequency

Units (inches)

Part Number	n	L,	Frequency Range (MHz)
FartiAdilibei	D,	Sets Lowest Frequency	Trequency Range (W112)
D87()-0405-()-182-()	0.405 <u>+</u> .001	.182 <u>+</u> .001	>5550 to 6010
D87()-0375-()-169-()	$0.375 \pm .001$.169 <u>+</u> .001	>6010 to 6470
D87()-0350-()-158-()	$0.350 \pm .001$.158 <u>+</u> .001	>6470 to 6945
D87()-0325-()-146-()	0.325 <u>+</u> .001	.146 <u>+</u> .001	>6945 to 7440
D87()-0305-()-137-()	0.305 + .001	.137 +.001	>7440 to 7945
D87()-0385-()-128-()	0.285 <u>+</u> .001	.128 +.001	>7945 to 8525
D87()-0265-()-119-()	0.265 <u>+</u> .001	.119 +.001	>8525 to 9195
D87()-0245-()-110-()	0.245 <u>+</u> .001	.110 +.001	>9195 to 9870
D87()-0230-()-104-()	0.230 <u>+</u> .001	.104 <u>+</u> .001	>9870 to 10535
D87()-0215-()-097-()	0.215 +.001	.097 +.001	> 10535 to 11300
D87()-0213-()-090-B	0.213 <u>+</u> .001	.090 <u>+</u> .001	> 10333 to 11300 > 11300 to 12020
D87()-0200-()-030-B	$0.190 \pm .0005$.086 <u>+</u> .0005	> 12020 to 12670
D87()-0180-()-081-B	0.180 +.0005	.081 <u>+</u> .0005	> 12670 to 13395
D87()-0170-()-077-B	0.170 <u>+</u> .0005	.077 <u>+</u> .0005	> 13395 to 14205
Doz() 0160 () 070 D	0.460 0005	070 0005	14005 - 45400
D87()-0160-()-072-B	0.160 <u>+</u> .0005	.072 <u>+</u> .0005	>14205 to 15120
D87()-0150-()-068-B	0.150 <u>+</u> .0005	.068 <u>+</u> .0005	> 15120 to 16165
D87()-0140-()-063-B	0.140 <u>+</u> .0005	.063 <u>+</u> .0005	> 16165 to 17360
D87()-0130-()-059-B	0.130 <u>+</u> .0005	.059 <u>+</u> .0005	> 17360 to 18750
D87()-0120-()-054-B	0.120 <u>+</u> .0005	.054 <u>+</u> .0005	> 18750 to 20205
D87()-0112-()-050-B	0.112 <u>+</u> .0005	.050 <u>+</u> .0005	>20205 to 21705
D87()-0104-()-047-B	0.104 <u>+</u> .0005	.047 <u>+.</u> 0005	>21705 to 23440
D87()-0096-()-043-B	0.096 <u>+</u> .0005	.043 <u>+</u> .0005	>23440 to 25345
D87()-0089-()-040-B	0.089 <u>+</u> .0005	.040 <u>+</u> .0005	>25345 to 27420
D87()-0082-()-037-B	0.082 <u>+</u> .0005	.037 <u>+</u> .0005	>27420 to 29675
D87()-0076-()-034-B	0.076 <u>+</u> .0005	.034 <u>+</u> .0005	>29675 to 32150

Notes: Frequency is measured under the condition $L_r/L_o = .33$. Worst case tolerance unit to unit, lot to lot, is $< \pm 2.5\%$. Optional marking is available for this resonator type. Other shapes and sizes are available on request. Please contact factory. L_r can be varied between .45 D_r to .35 D_r .

C8600 Series - Cylinder Type

Mechanical Configuration

Features

Benefits

Disc Type with Cylindrical Hole

- Further Separates f_o from first spurious mode
- Screw mountable
- Provides flexibility in tuning
- Repeatability of design

Dimensions and Frequency

Units (inches)

Part Number	D,	d, + .004	L, Sets Lowest Frequency	Frequency Range (MHz)
C86()-1400-()-630-B-162	1.400 <u>+</u> .002	.162	.630 <u>+</u> .002	>967 to 1045
C86()-1300-()-585-B-162	1.300 <u>+</u> .002	.162	.585 <u>+</u> .002	>1045 to 1124
C86()-1210-()-545-B-162	1.210 <u>+</u> .002	.162	.545 <u>+</u> .002	>1124 to 1208
C86()-1125-()-506-B-162	1.125 <u>+</u> .002	.162	.506 <u>+</u> .002	> 1208 to 1301
C86()-1045-()-470-B-162	1.045 <u>+</u> .002	.162	.470 <u>+</u> .002	> 1301 to 1397
C86()-0975-()-439-B-162	0.975 <u>+</u> .002	.162	.439 ±.002	> 1397 to 1501
C86()-0905-()-407-B-162	0.905 <u>+</u> .001	.162	.407 ±.001	> 1501 to 1618
C86()-0840-()-378-B-162	0.840 <u>+</u> .001	.162	.378 ±.001	> 1618 to 1737
C86()-0785-()-353-B-162	0.785 <u>+</u> .001	.162	.353 ±.001	> 1737 to 1863
C86()-0730-()-329-B-122	0.730 <u>+</u> .001	.122	.329 ±.001	> 1863 to 2010
C86()-0675-()-304-B-122	0.675 ±.001	.122	.304 ±.001	>2010 to 2163
C86()-0630-()-284-B-122	0.630 ±.001	.122	.284 ±.001	>2163 to 2323
C86()-0585-()-263-B-122	0.585 ±.001	.122	.263 ±.001	>2323 to 2498
C86()-0545-()-245-B-083	0.545 ±.001	.083	.245 ±.001	>2498 to 2689
C86()-0505-()-227-B-083	0.505 ±.001	.083	.227 ±.001	>2689 to 2895
C86()-0470-()-212-B-083	0.470 <u>+</u> .001	.083	.212 <u>+</u> .001	>2895 to 3119
C86()-0435-()-196-B-083	0.435 <u>+</u> .001	.083	.196 <u>+</u> .001	>3119 to 3360
C86()-0405-()-182-B-083	0.405 <u>+</u> .001	.083	.182 <u>+</u> .001	>3360 to 3618

Notes: Frequency is measured under the condition $L_r/L_o = .33$. Worst case tolerance unit to unit, lot to lot, is $< \pm 2.5\%$. Optional marking is not available for this resonator type. L_r can be varied between .45 D_r to .35 D_r . For material characteristics of screws and supports see page 39 for details.