CS420

Introduction to the Theory of Computation

Lecture: Module 1 recap

Tiago Cogumbreiro

Mini-test 1

Location: University Hall

2nd floor, Classroom 2330

5:30pm~7:30pm

What you will need to know for mini-test 1

- Operators for DFAs (union, char, empty, nil)
- Convert an NFA into a DFA
- Convert a REGEX into an NFA
- Convert an NFA into a REGEX
- Design an DFA/NFA/REGEX that recognizes a language
- Prove that a language is not regular (Pumping Lemma)
- Design a CFG that recognizes a language
- The algorithm that returns the Chomsky Normal Form

Today we will recap...

- Drawing a state diagram systematically
- The union operator
- Converting an NFA into a DFA
- Converting an NFA into a REGEX
- Removing unit-rules

Tip 1

- 1. Derive the transitions
- 2. Draw the state diagram

(If you do both at once, you might forget transitions)

q_3	0,1
start $\rightarrow q_1$ q_2 q_4	0,1
$\operatorname{start} \longrightarrow q_1 \qquad q_2 \qquad 1$	q_3

Source	Edge	Target	Done
(q_1,q_1)	0		
(q_1,q_1)	1		

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	
(q_1,q_1)	1	(q_2,q_1)	
(q_4,q_2)	0		
(q_4,q_2)	1		
(q_2,q_1)	0		
(q_2,q_1)	1		

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	
(q_1,q_1)	1	(q_2,q_1)	
(q_4,q_2)	0		
(q_4,q_2)	1		
(q_2,q_1)	0		
(q_2,q_1)	1		

Source	Edge	Target	Done
$\overline{(q_1,q_1)}$	0	(q_4,q_2)	Х
(q_1,q_1)	1	(q_2,q_1)	
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	
(q_2,q_1)	0		
(q_2,q_1)	1		
(q_4,q_3)	0		
(q_4,q_3)	1		

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	Х
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	
(q_2,q_1)	0	(q_3,q_2)	
(q_2,q_1)	1	(q_4,q_1)	
(q_4,q_3)	0		
(q_4,q_3)	1		
(q_3,q_2)	0		
(q_3,q_2)	1		
(q_4,q_1)	0		
(q_4,q_1)	1		

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	
(q_2,q_1)	1	(q_4,q_1)	
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	
(q_3,q_2)	0		
(q_3,q_2)	1		
(q_4,q_1)	0		
(q_4,q_1)	1		

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	
(q_4,q_1)	0		
(q_4,q_1)	1		
(q_3,q_3)	0		
(q_3,q_3)	1		

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	Х
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0		
(q_3,q_3)	1		

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Start with the initial state $q_{1,1}$ and draw its outgoing edges. Lookup the edges in the transition table.

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Pick one state without outgoing edges, say $q_{2,1}$, and draw its outgoing edges. Lookup the edges in the transition table.

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Pick one state without outgoing edges, say $q_{4,2}$, and draw its outgoing edges. Lookup the edges in the transition table.

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Pick one state without outgoing edges, say $q_{3,2}$, and draw its outgoing edges. Lookup the edges in the transition table.

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Pick one state without outgoing edges, say $q_{3,3}$, and draw its outgoing edges. Lookup the edges in the transition table.

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Pick one state without outgoing edges, say $q_{3,1}$, and draw its outgoing edges. Lookup the edges in the transition table.

Source	Edge	Target	Done
(q_1,q_1)	0	(q_4,q_2)	X
(q_1,q_1)	1	(q_2,q_1)	X
(q_4,q_2)	0	(q_4,q_2)	X
(q_4,q_2)	1	(q_4,q_3)	X
(q_2,q_1)	0	(q_3,q_2)	X
(q_2,q_1)	1	(q_4,q_1)	X
(q_4,q_3)	0	(q_4,q_2)	X
(q_4,q_3)	1	(q_4,q_1)	X
(q_3,q_2)	0	(q_3,q_2)	X
(q_3,q_2)	1	(q_3,q_3)	X
(q_4,q_1)	0	(q_4,q_2)	X
(q_4,q_1)	1	(q_4,q_1)	X
(q_3,q_3)	0	(q_3,q_2)	X
(q_3,q_3)	1	(q_3,q_1)	X
(q_3,q_1)	0	(q_3,q_2)	X
(q_3,q_1)	1	(q_3,q_1)	X

Source	Edge	Target	Done
$\{q_1,q_2\}$	а		
$\{q_1,q_2\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	
$\{q_1,q_2\}$	b		

Source	Edge	Target	Done
$\overline{\{q_1,q_2\}}$	а	$\{q_2\}$	
$\{q_1,q_2\}$	b	$\{q_3\}$	
$\{q_2\}$	а		
$\{q_2\}$	b		
$\{q_3\}$	а		
$\{q_3\}$	b		

			_
Source	Edge	Target	Done
$\overline{\{q_1,q_2\}}$	а	$\{q_2\}$	
$\{q_1,q_2\}$	b	$\{q_3\}$	
$\{q_2\}$	а		
$\{q_2\}$	b		
$\{q_3\}$	а		
$\{q_3\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	
$\{q_2\}$	а	{}	
$\{q_2\}$	b	{}	
$\{q_3\}$	а		
$\{q_3\}$	b		
{}	а		
{}	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	Х
$\{q_1,q_2\}$	b	$\{q_3\}$	
$\{q_2\}$	а	{}	
$\{q_2\}$	b	{}	
$\{q_3\}$	а		
$\{q_3\}$	b		
{}	а		
{}	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	
$\{q_2\}$	а	{}	
$\{q_2\}$	b	{}	
$\{q_3\}$	а		
$\{q_3\}$	b		
{}	а		
{}	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	
$\{q_2\}$	b	{}	
$\{q_3\}$	а	$\{q_2,q_3\}$	
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	
{}	а		
{}	b		
$\{q_2,q_3\}$	а		
$\{q_2,q_3\}$	b		
$\{q_1,q_2,q_4\}$	а		
$\{q_1,q_2,q_4\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	
$\{q_2\}$	b	{}	
$\{q_3\}$	а	$\{q_2,q_3\}$	
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	
{}	а	{}	X
{}	b	{}	X
$\{q_2,q_3\}$	а		
$\{q_2,q_3\}$	b		
$\{q_1,q_2,q_4\}$	а		
$\{q_1,q_2,q_4\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	
$\{q_2\}$	b	{}	
$\{q_3\}$	а	$\{q_2,q_3\}$	
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	
{}	а	{}	X
{}	b	{}	X
$\{q_2,q_3\}$	а		
$\{q_2,q_3\}$	b		
$\{q_1,q_2,q_4\}$	а		
$\{q_1,q_2,q_4\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	
$\{q_2\}$	b	{}	
$\{q_3\}$	а	$\{q_2,q_3\}$	
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	
{}	а	{}	X
{}	b	{}	X
$\{q_2,q_3\}$	а		
$\{q_2,q_3\}$	b		
$\{q_1,q_2,q_4\}$	а		
$=\{q_1,q_2,q_4\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	X
$\{q_2\}$	b	{}	X
$\{q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	
{}	а	{}	X
{}	b	{}	X
$\{q_2,q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_2,q_3\}$	b	$\{q_1,q_2,q_4\}$	
$\{q_1,q_2,q_4\}$	а		
$\{q_1,q_2,q_4\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	X
$\{q_2\}$	b	{}	X
$\{q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	
{}	а	{}	X
{}	b	{}	X
$\{q_2,q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_2,q_3\}$	b	$\{q_1,q_2,q_4\}$	
$\{q_1,q_2,q_4\}$	а		
$\{q_1,q_2,q_4\}$	b		

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	X
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	X
$\{q_2\}$	b	{}	X
$\{q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	X
{}	а	{}	X
{}	b	{}	X
$\{q_2,q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_2,q_3\}$	b	$\{q_1,q_2,q_4\}$	X
$\{q_1,q_2,q_4\}$	а	$\{q_2\}$	X
$\{q_1,q_2,q_4\}$	b	$\{q_3\}$	Х

Source	Edge	Target	Done
$\{q_1,q_2\}$	а	$\{q_2\}$	Х
$\{q_1,q_2\}$	b	$\{q_3\}$	X
$\{q_2\}$	а	{}	X
$\{q_2\}$	b	{}	X
$\{q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_3\}$	b	$\{q_1,q_2,q_4\}$	$oldsymbol{X}$
{}	а	{}	X
{}	b	{}	X
$\{q_2,q_3\}$	а	$\{q_2,q_3\}$	X
$\{q_2,q_3\}$	b	$\{q_1,q_2,q_4\}$	X
$\{q_1,q_2,q_4\}$	а	$\{q_2\}$	X
$\{q_1,q_2,q_4\}$	b	$\{q_3\}$	X

The simplest example.

Before

The simplest example.

Before

When there are existing edges, the two overlapping edges are joined with +.

Before

When there are existing edges, the two overlapping edges are joined with +.

Before

When there is a self loop we convert it to *.

Before

When there is a self loop we convert it to * .

Before

When there are existing edges, the two overlapping edges are joined with +.

Before

When there are existing edges, the two overlapping edges are joined with +.

Before

Every incoming state becomes connected to every outgoing state.

Before

After

Every incoming state becomes connected to every outgoing state.

Before

Every incoming state becomes connected to every outgoing state.

Before

Every incoming state becomes connected to every outgoing state.

Before

Pumping lemma for regular languages

Any proofs showing that a language is not regular should show:

- Assumption 1: *p* is the pumping length
- ullet Goal 1: $w\in L$
- Goal 2: $|w| \leq p$
- Assumption 2: w = xyz
- Assumption 3: $|xy| \leq p$
- Assumption 4: |y| > 0
- Goal 3: $\exists i, xy^iz
 otin L$

Theorem $L_1 = \{0^n 1^n \mid \forall n \colon n \geq 0\}$ is not regular.

We prove that the language above does not satisfy the pumping property, thus the language is not regular.

Let p be the pumping length, we pick string $w=0^p1^p$.

We must show that

- (Goal 1) $w \in 0^n 1^n \mid \forall n \colon n \ge 0$ Proof: holds by replacing n by p.
- (Goal 2) $|w| \geq p$ Proof: holds since $|w| = 2p \geq p$.

Theorem $L_1 = \{0^n 1^n \mid \forall n \colon n \geq 0\}$ is not regular.

Given some x, y, z, our assumptions are:

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

We must show (Goal 3) that

$$\exists i, xy^iz
otin L_1$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

 $\exists i, xy^iz
otin L_1$

Recall that $(H_2)|xy|\leq p$, thus let a+b=p and a=|xy| We can rewrite assumption $(H_1)\,w=xyz$ such that, since for any w,n, and m we have that $w^{n+m}=w^nw^m$

$$(H_1) \quad w = \underbrace{0^p 1^p}_{xyz} = \underbrace{0^a}_{xy} \underbrace{0^b 1^{a+b}}_{z}$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

 $\exists i, xy^iz
otin L_1$

Recall that $(H_2)|xy|\leq p$, thus let a+b=p and a=|xy| We can rewrite assumption $(H_1)\,w=xyz$ such that, since for any w,n, and m we have that $w^{n+m}=w^nw^m$

$$(H_1) \quad w = \underbrace{0^p 1^p}_{xyz} = \underbrace{0^a \underbrace{0^b 1^{a+b}}_z}$$

Or, simply,

$$(H_1) \quad \underbrace{0^a}_{xy} \underbrace{0^b 1^{a+b}}_z = \underbrace{0^{|xy|}}_{xy} \underbrace{0^b 1^{|xy|+b}}_z$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

 $\exists i, xy^iz
otin L_1$

Recall that $(H_2)|xy|\leq p$, thus let a+b=p and a=|xy| We can rewrite assumption $(H_1)\,w=xyz$ such that, since for any w,n, and m we have that $w^{n+m}=w^nw^m$

$$(H_1) \quad w = \underbrace{0^p 1^p}_{xyz} = \underbrace{0^a \ 0^b 1^{a+b}}_{zy}$$

Or, simply,

$$(H_1)$$
 $\underbrace{0^a \underbrace{0^b 1^{a+b}}_{xy}} = \underbrace{0^{|xy|} \underbrace{0^b 1^{|xy|+b}}_{z}}$

We note that

$$xy^2z=\underbrace{0^{|xy|}}_{xy}\underbrace{0^{|y|}}_{y}\underbrace{0^{b}1^{|xy|+b}}_{z}=0^{|xyy|+b}1^{|xy|+b}$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- H_3 : |y| > 0

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

 $\exists i, xy^iz
otin L_1$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

We restate our goal (Goal 3)

$$\exists i, xy^iz
otin L_1$$

We pick i=2, so our goal is to show that

$$0^{|xyy|+b}1^{|xy|+b}
otin\{0^n1^n\mid orall n\colon n\geq 0\}$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

We restate our goal (Goal 3)

$$\exists i, xy^iz
otin L_1$$

We pick i=2, so our goal is to show that

$$0^{|xyy|+b}1^{|xy|+b}
otin\{0^n1^n\mid orall n\colon n\geq 0\}$$

By unfolding the definition of \notin we have

$$eg(0^{|xyy|+b}1^{|xy|+b}\in\{0^n1^n\mid orall n\colon n\geq 0\})$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

We restate our goal (Goal 3)

$$\exists i, xy^iz
otin L_1$$

We pick i=2, so our goal is to show that

$$0^{|xyy|+b}1^{|xy|+b}
otin\{0^n1^n\mid orall n\colon n\geq 0\}$$

By unfolding the definition of \notin we have

$$eg \left(0^{|xyy|+b}1^{|xy|+b} \in \{0^n1^n \mid orall n \colon n \geq 0\}
ight)$$

We apply the definition of set membership:

$$aggregation (0^{|xyy|+b}1^{|xy|+b}=0^n1^n)$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

(Continuation... restate Goal 3)

$$aggle (0^{|xyy|+b}1^{|xy|+b}=0^n1^n)$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

(Continuation... restate Goal 3)

$$eg(0^{|xyy|+b}1^{|xy|+b}=0^n1^n)$$

We isolate each exponent:

$$eg(|xyy|+b=n \wedge |xy|+b=n)$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

(Continuation... restate Goal 3)

$$aggregation (0^{|xyy|+b}1^{|xy|+b}=0^n1^n)$$

We isolate each exponent:

$$eg (|xyy| + b = n \wedge |xy| + b = n)$$

We replace the left-hand side on the right-hand side of \wedge .

$$eg(|xyy|+b=|xy|+b)$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

(Continuation... restate Goal 3)

$$aggregation (0^{|xyy|+b}1^{|xy|+b}=0^n1^n)$$

We isolate each exponent:

$$eg (|xyy| + b = n \wedge |xy| + b = n)$$

We replace the left-hand side on the right-hand side of \wedge .

$$eg ig(|xyy|+b=|xy|+big)$$

We now apply the negation operator and simplify the equation:

$$|xyy| + b \neq |xy| + b \iff |y| \neq 0$$

- H_1 : w = xyz
- H_2 : $|xy| \leq p$
- $H_3: |y| > 0$

Goals

$$0^{|xyy|+b}1^{|xy|+b}
otin L_1$$

(Continuation... restate Goal 3)

$$aggregation (0^{|xyy|+b}1^{|xy|+b}=0^n1^n)$$

We isolate each exponent:

$$eg (|xyy| + b = n \wedge |xy| + b = n)$$

We replace the left-hand side on the right-hand side of \wedge .

$$eg ig(|xyy|+b=|xy|+big)$$

We now apply the negation operator and simplify the equation:

$$|xyy| + b \neq |xy| + b \iff |y| \neq 0$$

Which holds since $(H_3) |y| > 0$.

Chomsky Normal Form

On unit transitions and transitivity

Example 2

What do you think is the resulting grammar?

On unit transitions and transitivity

Example 2 (S_0)

On unit transitions and transitivity

Example 2 (S_0)

On unit transitions and transitivity

Example 2 (S)

On unit transitions and transitivity

Example 2 (S)

On unit transitions and transitivity

Example 2 (A)

On unit transitions and transitivity

Example 2 (A)

On unit transitions and transitivity

Example 2 (B)

On unit transitions and transitivity

Example 2 (B)

We must take into consideration all possible paths via unit-edges.

On unit transitions with loops

Example 3

$$egin{aligned} S_0 &
ightarrow S \ S &
ightarrow A \mid bB \ A &
ightarrow B \mid a \ B &
ightarrow b \mid C \ C &
ightarrow abB \mid S \end{aligned}$$

What do you think is the resulting grammar?

On unit transitions with loops

Example 3 (S_0)

On unit transitions with loops

Example 3 (S_0)

On unit transitions with loops

Example 3 (C)

On unit transitions with loops

Example 3 (C)

Note that we musth handle loops. All variables in the loop have the same productions.