Figures

1.1	Main metabolic pathways	2
1.2	Metabolic pathways of glycolysis	4
1.3	Structure of ATP	5
1.4	Structure of NADH and NADPH	5
1.5	(a) Pentose phosphate pathway, and (b) the change	
	in carbon numbers	11
1.6	Entner Doudoroff pathway	15
1.7	PDH and TCA cycle	16
1.8	Acetate producing pathways	21
1.9	Anaplerotic pathways	22
1.10	Gluconeogenetic pathways	24
1.11	Modularity of respiratory chains	26
1.12	Proton translocating values per electron in the	
	respiratory chain	26
1.13	Schematic illustration for the electron transfer	
	and proton translocation	28
1.14	Chemical structure of quinones	28
1.15	Pathway of UQ biosynthesis in E. coli	30
1.16	Anaerobic pathways	31
1.17	Nitrate respiration	33
1.18	Calvin-Benson cycle	35
1.19	Amino acid synthesis from their precursors	37
1.20	Alanine synthesis from PYR	38
1.21	Valine, leusine, and isoleusine biosynthesis	39
1.22	Glutamate and glutamine synthesis as well as	
	aspartate and asparagine synthesis	39
1.23	Proline biosynthesis from glutamate	40
1.24	Arginine, ornitine, and citorline synthesis pathway	40
1.25	Lysine, threonine, and methionine biosynthesis	41
	Aromatic amino acid synthesis pathways	43
1.27	Several control schemes for aromatic amino	
	acid biosynthesis	44

1.28	Serine, glycine, and cystein synthesis pathways	44
1.29	Histisine synthesis pathways	45
1.30	Nucleic acids synthesis pathways	46
1.31	β oxidation and biosynthesis of fatty acid	47
1.32	Phosphotransferase system (PTS)	49
1.33	Fructose metabolism	50
1.34	Xylose metabolism	51
1.35	ATP balance for aerobic and anaerobic conditions	52
2.1	Batch cultivations of E. coli K12 using different DO	
	levels and different carbon sources	58
2.2	2-DE gel maps of the total lysate of <i>E. coli</i> cells	63
2.3	The relative expression levels of <i>E. coli</i> K-12 proteins	
	of central metabolic pathways under different	
	conditions based on 2DE results	66
2.4	Comparison of the logarithmic protein expression	
	ratios based on 2DE and the corresponding enzyme	
	activity ratios	77
2.5	Growth curves of <i>E. coli</i> BW25113, which was grown	
	in minimal media containing 10 g glucose/l as the sole	
	carbon source	78
2.6	Relative gene expression of different global regulators	
	and the metabolic pathway genes known to be regulated	
	by those global regulators during different phases of	
	growth	80
2.7	Concentration of different intracellular metabolites	83
2.8	Total and relative expression of iso-genes of	
	E. coli metabolic pathways	84
2.9	Acetate metabolism	86
3.1	Overall metabolic regulation scheme	96
3.2	Outer and inner membrane and periplasm	98
3.3	Inducer exclusion and the activation of adenylate	
	cyclase in the glucose-lactose system	101
3.4	The multiple regulations by Mlc and cAMP-Crp	103
3.5	Batch cultivation of (a) E. coli BW25113 and	
	(b) its <i>cra</i> mutant	105
3.6	Comparison of enzyme activities of <i>cra</i> mutant	
	as compared to the wild type (BW25113)	110
3.7	The effect of dilution rate on the gene transcript	
2.0	levels	113
3.8	Comparison of gene transcript levels of the wild type,	44 -
	crb knockout mutant, and crb mutant	116

3.9	Glucose PTS and fructose PTS	118
3.10	Central metabolic pathways and NH ₃ -assimilation	
	pathways	121
3.11	Ammonia assimilation under diffferent NH ₄ ⁺	
	concentration	122
3.12	Effect of C/N ratio on the fermentation characteristics	
	for the continuous culture at the dilution rate of 0.2 h ⁻¹	123
3.13	Schematic illustration of the interaction among	
	several metabolic regulations. Comparison of the	
	transcriptional mRNA levels of the wild type <i>E.coli</i> genes	
	cultivated at 100% (C/N = 1.68), 40% (C/N = 4.21), 20%	
	(C/N = 8.42) and 10% $(C/N = 1.68)$ N ⁻ concentration:	
	(a) global regulatory, (b) N ⁻ regulatory, (c) metabolic	
	pathway, (d) respiratory chain	124
3.14	The interaction between nitrogen regulation	
	and catabolite regulation	126
3.15	Overall mechanism of nitrogen assimilation in <i>E. coli</i>	
	under C-limited (N-rich) and N-limited conditions	129
3.16	Molecular mechanism of phosphate regulation	131
	Comparison of the transcript levels of the wild	
	type <i>E.coli</i> cultivated with different P concentrations	
	of the feed (100%, 55%, 10%)	134
3.18	Schematic illustration of the interaction among several	
	metabolic regulation mechanisms	136
3.19	Comparison of some gene expressions for parent E. coli	
	BW25113 and <i>arcB</i> mutant at 4 h of batch cultivation	
	along with the gel picture	141
3.20	Comparison of specific enzyme activities of <i>E. coli</i>	
	BW25113, its arcB and arcA mutant at 4 h of batch	
	cultivation	141
3.21	Comparison of the transcript levels between wild	
	type and <i>fnr</i> mutant under micro-aerobic continuous	
	culture conditions	144
3.22	Comparison of enzymes activities during micro-aerobic	
	batch culture	145
	Metabolic flux distributions of wild type and <i>fnr</i> mutant	
	under micro-aerobic conditions	147
3.24	Comparison of gene expressions	151
	Specific enzyme activities in cell extracts	152
	The role of glutamate decarboxylase for acid resistance	154
	Acid resistance mechanism under acidic conditions	157

3.28	Effect of temperature up-shift on gene expressions in	
	E. coli BW25113 under aerobic continuous culture at the	
	dilution rate of 0.2 h ⁻¹	160
3.29	Effect of heat shock on gene and protein expressions	
	and the fermentation characteristics	163
3.30	Metabolic pathways showing levels of enzymes	
	(or proteins) and intracellular metabolite concentrations	
	in the <i>fadR</i> mutant <i>E. coli</i> relative to those in the parent	
	at the exponential phase grown in glucose minimal	
	medium under aerobic conditions	171
3.31	Different kinds of sigma factor in E. coli	176
3.32	Schematic diagram on the function of sigma factor	
	as a transcription factor	176
3.33	Various levels of σ^s regulation are differentially affected	
	by various stress conditions	177
3.34	Growth curves of: (a) E. coli BW25113 (parent strain);	
	and (b) E. coli JWK 2711 (rpoS mutant)	179
3.35	Intracellular metabolite concentrations of <i>E. coli</i>	
	BW25113 (parent strain) and E. coli JWK 2711 (rpoS	
	mutant)	184
4.1	Central reaction network for microalgae metabolism	221
4.2	Cultivation results of <i>C. pyrenoidosa</i> under autotrophic	
	conditions	228
4.3	Cultivation results of <i>C. pyrenoidosa</i> under mixotrophic	
	conditions	229
4.4	Cultivation results of C. pyrenoidosa under cyclic light-	
	autotrophic/dark-heterotrophic conditions	230
4.5	Metabolic flux distribution of Chlorella cells	233
4.6	Energy conversion efficiency between the energy supplied	
	to the culture, the energy absorbed by the cells, and the	
	high free energy stored in ATP	238
4.7	Theoretical thermodynamic efficiency of ATP formation	
	from the absorbed energy (Y_{ATP}/AE_{max}) as a linear	
	function of the fraction of the absorbed light energy of	
	the total	239
4.8	Conversion efficiency of: (a) total energy; and (b) light	
	energy during the various growth phases of the	
	mixotrophic cultivation	241
4.9	Energy conversion efficiency between the three	
	energy forms during the first light/dark cycle of the	
	cyclic autotrophic/heterotrophic cultivation	242

4.10	General metabolic pathway of <i>E. coli</i> under oxygen-	
	limited conditions	248
4.11	Factors influencing lactate producing flux	252
4.12	Factors influencing flux through Pta–Ack pathway	255
4.13	The effect of Pyk activity on: (a) Pyk flux; and	
	(b) glycolytic flux	257
5.1	Simple examples of flux calculation	267
5.2	IDV and MAV	268
5.3	Schematic illustration of the data NMR and MS,	
	compared to isotopomer distribution	270
5.4	The fate of labeled carbons for when using:	
	(a) glucose; and (b) acetate or pyruvate, as a carbon	
	source	276
5.5	Transformation of IDVs into MDVs and FMDVs	
	for a C ₃ molecule	285
5.6	Schematic illustration of net flux and exchange flux	286
5.7	The relationship between the precursor and amino acid	290
5.8	Derivatization to generate <i>M-57</i> ⁺ and <i>M-159</i> ⁺	291
5.9	Net flux distribution in acetate metabolism of E. coli	
	K12 in chemostat cultures at D of 0.11 and 0.22 h ⁻¹	295
5.10	Net flux distribution in glucose metabolism of <i>E. coli</i>	
	K12 in chemostat cultures at D of 0.11 and 0.22 h ⁻¹	296
5.11	¹³ C isotopomer patterns and NMR multiple spectral	
	patterns	300
	The fate of carbons of precursor metabolites to amino acids	301
	Carbon position and f values	302
	¹³ C- ¹³ C scalor coupling	309
5.15	Metabolic flux distribution of the wild type and <i>pckA</i>	
	mutant	311
	Predicted dependencies of the flux through Pck	316
5.17	Bioreaction network of <i>E. coli</i> central carbon	
	metabolism	320
5.18	¹³ C- ¹³ C scalar coupling multiplets observed for aspartate	
	from glucose-limited chemostat cultures of E. coli	
	W3110 and the <i>pgi</i> mutant	323
5.19	¹³ C- ¹³ C scalar coupling multiplets observed for	
	C-4 of glucose from ammonia-limited chemostat	
	cultures of E. coli W3110 and the pgi mutant	326
5.20	$^{13}\text{C}-^{13}\text{C}$ scalar coupling multiplets observed for Asp- α	
	from ammonia-limited chemostat cultures of <i>E. coli</i>	
	W3110 and the <i>zwf</i> mutant	330

5.21	Metabolic flux distribution in chemostat	
	cultures of E. coli W3110 under glucose-limited	
	conditions	331
5.22	Specific rates of NADPH production and consumption	
	in glucose (C)- and ammonia (N)-limited chemostat	
	cultures of E. coli W3110, the pgi mutant, and the zwf	
	mutant	333
5.23	<i>In vivo</i> flux distributions in the central metabolism	
	of Synechocystis sp. PCC6803 cultivated	
	(a) heterotrophically and (b) mixotrophically	343
5.24	Synthesis of the precursor for histidine (R5P or X5P)	
	via the reactions of Calvin cycle	346
6.1	Metabolic flux distribution in the chemostat culture	
	of the wild type <i>E. coli</i> (a) and ppc mutant (b)	365
6.2	Metabolic flux distributions in chemostat culture of	
	glucose-grown E. coli parent strain (upper values), gnd	
	(middle values), and zwf (lower values) mutants at	
	$D = 0.2 h^{-1}$	372
6.3	Metabolic flux distribution in chemostat culture of	
	pyruvate-grown E. coli parent strain (upper values), gnd	
	(middle values), and zwf (lower values) mutants at	
	$D = 0.2 h^{-1}$	373
6.4	Metabolic flux distribution of wild type (upper value)	
	and pykF mutant (lower value) at dilution rate (D)	
	of 0.1 h ⁻¹	380
6.5	Enzyme activities for the <i>pyk F</i> mutant at two dilution rates	
	(D values)	381
6.6	Comparison of concentrations of intracellular	
	metabolites in the $pykF$ mutant at two D values	381
6.7	Aerobic batch cultivation of (a) <i>E. coli</i> BW25113 and	
	(b) E. coli lpdA mutant using glucose as carbon source	
	in LB medium	383
6.8	Enzyme activities of <i>E. coli</i> BW25113 and <i>E. coli lpdA</i>	000
0.0	mutant under aerobic conditions in LB medium	384
6.9	Comparison of the intracellular metabolite concentrations	001
0.,	of E. coli BW25113 and E. coli lpdA mutant in the batch	
	cultivation	385
6.10	Metabolic flux distributions of wild type (upper values) at	505
5.10	dilution rate of 0.2 h^{-1} and $lpdA$ mutant (lower values,	
	underlined) at dilution rate of 0.22 h ⁻¹	387
		() /

6.11	Comparison of enzyme activities of E. coli BW25113 and	
	E. coli poxB mutant under aerobic conditions using	
	synthetic medium	388
6.12	Aerobic batch cultivation of: (a) E. coli BW25113;	
	(b) E. coli sucA mutant; and (c) E. coli sucC mutant	
	using glucose as carbon source	391
6.13	Comparison of enzyme activities at a dilution rate of	
	0.2 h ⁻¹ in a continuous culture	393
6.14	Intracellular metabolite concentrations of E. coli	
	BW25113, sucA and sucC gene knockout mutants	
	at 0.2 h ⁻¹ specific growth rate in chemostat cultures	394
6.15	Comparison of some gene expression at a dilution rate	
	of 0.2 h ⁻¹ in a continuous culture	395
6.16	Metabolic flux distributions of wild-type (upper	
	values), <i>sucA</i> mutant (lower values) at dilution rate	
	of 0.2 h ⁻¹	396
6.17	Batch cultivation results of: (a) parent E. coli; and (b) icd	
	mutant, grown on glucose under aerobic conditions	399
6.18	Batch cultivation results of: (a) parent <i>E. coli</i> ; and	
	(b) <i>icd mutant</i> , grown on glucose under microaerobic	
	conditions	400
6.19	Batch cultivation results of: (a) parent E. coli; and (b) icd	
	mutant, grown on acetate under aerobic conditions	401
6.20	Relative protein and enzyme levels of <i>icd mutant</i>	
	JW1122 from exponential growth phase in comparison	
	to the parent E. coli BW25113 grown on glucose under	
	aerobic conditions	407
6.21	The cultivation results of: (a) E. coli BW25113, and	
	(b) the <i>pfl</i> B ⁻ mutant, grown on glucose under the aerobic	
	conditions	413
6.22	The cultivation results of: (a) E. coli BW25113; and	
	(b) the <i>pfl</i> B ⁻ mutant, grown on glucose under the	
	microaerobic conditions	414
6.23	The specific glucose uptake rates and the specific product	
	formation rates for: (a) the aerobic conditions; and (b) the	
	microaerobic conditions	415
6.24	Biomass and metabolite yields on glucose for:	
	(a) the aerobic conditions; and (b) the microaerobic	
	conditions	416
6.25	The pyruvate formate lyase activities of <i>E. coli pfl</i> mutants	
	and the parent strain E. coli BW25113	417

6.26	Enzyme activities for strains grown on glucose in the	
	microaerobic conditions	418
6.27	Metabolic regulation mechanisms of lactate production in	
	E. coli pflA and pflB mutants	423
6.28	Fermentative pathways of <i>E. coli</i> grown on glucose	427
6.29	Batch cultivation results of: (a) parent E. coli; and (b) ldhA	
	mutant E. coli, grown on glucose under anaerobic	
	conditions	429
6.30	Intracellular metabolite concentrations in the central	
	metabolic pathways at the exponential growth phase for	
	both <i>ldhA</i> mutant and parent <i>E. coli</i>	432
6.31	Comparison of gene expressions for parent and <i>ldhA</i>	
	mutant E. coli	434
6.32	Anaerobic metabolism of glucose in E. coli	436
6.33	NADH balances in both <i>ldhA</i> mutant and parent <i>E. coli</i>	
	calculated based on the metabolic fluxes	438