

CUDA Quantum Highlights

HPC Focused

Supports GPU Supercomputing with Multi-Node Multi-GPU Circuit Simulation

QPU Integration

- Agnostic to quantum hardware type compatible with superconductor, trapped-ion, etc.
- Integration with several hardware partners such as Quantinuum, IonQ, IQM, etc.

Future of Computing

- Distributed quantum co-processing model (multiple QPUs)
- Integrating quantum computers with classical computers
 - CPU, QPU and GPUs working in tandem

User-Friendly

- Low-level details abstracted away from the user
- Easy to experiment with different backends
- Performant Python API

Algorithmic primitives

- Expectation value
 - To compute the expected values wrt a spin operator, there is the algorithmic primitive, the cudaq::observe function
 - observe()
 - observe_n()
 - observe_async()
 - Multiple QPUs where each GPU acts as the QPU

The CUDA Quantum also provides an asynchronous version of the sampling function.

- 2. Hamiltonian term parallelism
 - The terms in the Hamiltonian are distributed across different QPUs.
- 3. Interoperability and integration with other libraries
 - psycf, openfermion
 - User can leverage the GPU acceleration available in other libraries pytorch (quantum neural net)
- Mid-circuit measurement

