

non-commutative rings of order four

 ${\bf Canonical\ name} \quad {\bf Noncommutative Rings Of Order Four}$

Date of creation 2013-03-22 17:09:24 Last modified on 2013-03-22 17:09:24 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 12

Author Wkbj79 (1863)

Entry type Topic
Classification msc 20-00
Classification msc 16B99
Related topic Klein4Ring
Related topic OppositeRing

Related topic ExampleOfKlein4Ring

Up to isomorphism, there are two non-commutative rings of http://planetmath.org/OrderRingfour. Since all cyclic rings are http://planetmath.org/CommutativeRingcommutative, one can immediately deduce that a ring of order four must have an additive group that is isomorphic to $\mathbb{F}_2 \oplus \mathbb{F}_2$.

One of the two non-commutative rings of order four is the Klein 4-ring, whose multiplication table is given by:

The other is closely related to the Klein 4-ring. In fact, it is antiisomorphic to the Klein 4-ring; that is, its multiplication table is obtained by swapping the of the multiplication table for the Klein 4-ring:

		a		
0	0	0	0	0
a	0	a	b	c
b	0	0	0	0
c	0	0 a 0 a	b	c