Hemimethylation in Breast Cancer Cell Lines

Jazmine Castanon and Noah Ledbetter November 17, 2021

Motivation

43,600 women in the U.S. are expected to die in 2021 from breast cancer.

1 in 8 U.S. women (about 13%) will develop invasive breast cancer over the course of her lifetime.

Breast cancer is the most commonly diagnosed cancer among American women. In 2021, it's estimated that about 30% of newly diagnosed cancers in women will be breast cancers.

Previous Research Conclusions

- Methylation occurring on only one DNA strand of a CpG site but not the other.
- Hemimethylation may be closely related to hypermethylation and hypomethylation patterns found in a cancer genome

Our Process

We ran Wilcoxon tests on Forward and Reverse strands to detect methylation signals. Grouping into Clusters, creating Manhattan plot, and applying a Sliding Window Approach.

Refining Sliding Window, looked at more chromosomes

We cleaned and filtered our data.

Filtered data out by |mean diff| and p value.

Our (Initial) Data

- CHR information
- CpG Site Location
- Position
- 7 breast cancer cell lines

	*Length	CPG Sites	Density	*Reduced Length (excluding sites with 4 or more NAs)
Chromosome 22	50,818,468	578,097	Length/CPG ≈ 87.907	20218
Chromosome X	156,040,895	1,246,401	Length/CPG ≈ 125.193	14875

Wilcoxon Results

	CHR	X	CHR 22		
	No p-value filter	p-value < 0.05	No p-value filter	p-value < 0.05	
Mean difference ≥ 0	14875	640	20218	1190	
Mean difference ≥ 0.4	5666	384	8661	711	
Mean difference ≥ 0.6	4407	319	7113	612	
Mean difference <u>></u> 0.8	2873	226	5127	471	

Manhattan Plot

A Clustering Approach

- Each adjacent cg site is put in a cluster with solo sites put into the label 0
- Filtering is done by lowering the threshold of significance for all cg sites in a cluster

```
grouping <- function(df){
   df$adj <- rownames(df)|
   groupNumber = 1
   df$groupNumber = df$adj
   for (group in (split(rownames(df), cumsum(c(1,diff(as.integer(rownames(df))) != 1)))))
    if (length(group) > 1) {
        df[df$adj %in% group, 'groupNumber'] = groupNumber
        groupNumber = groupNumber + 1
     } else{
        df[df$adj %in% group, 'groupNumber'] = 0
     }
}
return(df)
```

Cluster Length

Cluster Length < 100 BP

Supplemental

Supplemental Table

```
for (i in 1:22){
   print(i)
   fileFor <- read.table(paste0("cancer.hg19.for.chr", i,".txt"), header=TRUE, sep = "")
   fileRev <- read.table(paste0("cancer.hg19.rev.chr", i,".txt"), header=TRUE, sep = "")
   merged <- merge(fileFor, fileRev, by = "POSITION")
   merged <- composite(merged)</pre>
```

```
composite <- function(df){
  print("Removing missing values")
  df <- delete.na(df)
  print("calculating mean dif")
  df <- pval_meandif_calculation(df)
  print("Creating Groups")
  df <- grouping(df)
  print("Making Hist")
  cluster_hist(df)
  cluster_hist_zoomed(df)
  return(df)
}</pre>
```

Old Cluster Criteria

Cluster Criteria with all Chr

Sliding Window Approach

Exploring The CHRX Data Frame-Sliding Window

	400000000000000000000000000000000000000	200	9.000						-
CpGSite	POSITION	pval	meandiff	Forward_Sliding_Mean_Pval	Forward_Sliding_Mean_MeanDiff	Reverse_Sliding_Mean_MeanDiff F	Reverse_Sliding_Mean_Pval	diffCpGX	diffPositionX
<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
52053	2723063	0.562500	0.851570000	0.4375000	0.8854334286	NA	NA	1	16
52054	2723079	0.312500	0.919296857	0.1640625	0.8877843571	0.8854334286	0.4375000	1	4
52055	2723083	0.015625	0.856271857	0.5078125	0.7988842143	0.8877843571	0.1640625	223	18913
52278	2741996	1.000000	0.741496571	1.0000000	0.4540816190	0.7988842143	0.5078125	110	4947
52388	2746943	1.000000	0.166666667	1.0000000	0.166666667	0.4540816190	1.0000000	1	15
52389	2746958	1.000000	0.166666667	1.0000000	0.166666667	0.1666666667	1.0000000	1	9
52390	2746967	1.000000	0.166666667	1.0000000	0.1833333333	0.1666666667	1.0000000	1	12
52391	2746979	1.000000	0.200000000	1.0000000	0.1460638236	0.1833333333	1.0000000	1	3
52392	2746982	1.000000	0.092127647	1.0000000	0.1710638236	0.1460638236	1.0000000	5	66
52397	2747048	1.000000	0.250000000	1.0000000	0.1939484143	0.1710638236	1.0000000	4	37

Rolling Window & Position Differences

→ We filtered on significant p values and mean differences.

CpG Site Length <150

Distance Between CpG Sites on CHR X

CpG Site Length <50

Significant CpG Sites Based on Different Criteria

	a) CpG sites selected based on Mean Difference of 0.4 or higher									
CHR	d ≤ 5	d ≤ 10	d ≤ 15	d ≤ 25	d ≤ 50	d ≤ 100	No filter on Position distance(d)			
X	41	101	154	223	337	344	424			
22	75	197	282	395	600	616	757			
	(b) CpG sites selected based on Mean Difference of 0.6 or higher									
CHR	d ≤ 5	d ≤ 10	d ≤15	d ≤ 25	d ≤ 50	d ≤100	No filter on Position distance(d)			
X	35	83	130	182	275	281	347			
22	65	170	238	337	513	526	641			
	(b) CpG sites selected based on Mean Difference of 0.8 or higher									
CHR	d ≤ 5	d ≤ 10	d ≤ 15	d ≤ 25	d ≤ 50	d ≤100	No filter on Position distance(d)			
X	25	62	93	133	203	206	247			
22	51	131	187	256	395	405	492			

Conclusion

- Cluster length falls off drastically after 50 base pairs.
- Distance between CG Sites is usually less than 50 base pairs.
- For clusters, a cut off p value of .13 and a cut off mean difference of .4 drastically improve sample size without lowering significance by much.
- Continued research in the field:
 - (2002)DNA Methylation Inhibitors 5-azacytidine (5-aza) and 5-aza-deoxycytidine https://www.nature.com/articles/1205699
 - (2010) Breast Cancer Epigenetics research effort to isolate what gene hyper or hypomethylation are unique to breast cancer. https://www.sciencedirect.com/science/article/pii/S1574789110000244
 - (2021) Pediatric T-cell acute lymphoblastic leukemia (T-ALL) research treatment with the DNA demethylating agent, 5-azacytidine (5-aza) and T-ALL is correlated with hypermethylation of the TET2 promoter https://www.pnas.org/content/118/34/e2110758118
 - (2021) Tumor biomarkers are usually proteins measured either in serum, plasma of tumor tissue, and other noninvasive screening methods.
 - Liquid biopsies https://www.aacr.org/blog/2021/04/14/aacr-annual-meeting-2021-facilitating-e arly-cancer-detection-with-liquid-biopsy/
 - Overall methylation method has higher sensitivity due to the presence of multiple methylation sites within a single gene. Still very promising approach.