

DIALOG(R) File 347:JAPIO
(c) 2002 JPO & JAPIO. All rts. reserv.

03678980 **Image available**
HEATING DEVICE

PUB. NO.: 04-044080 [*J*P 4044080 A]
PUBLISHED: February 13, 1992 (19920213)
INVENTOR(s): SETORIYAMA TAKESHI
KURODA AKIRA
APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 02-153607 [JP 90153607]
FILED: June 11, 1990 (19900611)
INTL CLASS: [5] G03G-015/20; G03G-015/20; B65H-005/02
JAPIO CLASS: 29.4 (PRECISION INSTRUMENTS -- Business Machines); 26.9
(TRANSPORTATION -- Other)
JAPIO KEYWORD: R002 (LASERS); R011 (LIQUID CRYSTALS); R119 (CHEMISTRY --
Heat Resistant Resins)
JOURNAL: Section: P, Section No. 1359, Vol. 16, No. 222, Pg. 18, May
25, 1992 (19920525)

ABSTRACT

PURPOSE: To prevent damage to a film width part by providing a member which restricts the film width-directional end part to restricts the width-directional displacement of the film.

CONSTITUTION: After the film 21 is fitted onto a stay 13 including a heating body 19 and a heat insulation member 20, a couple of left and right film end part restriction flange members 22 and 23 are fitted and supported on respective horizontal projection lag parts 17 and 18 of the left and right end parts of the stay 13. Consequently, even if the film 21 is displaced Q or R to have its left end edge pressed against a collar seat internal surface 22a as the film end restriction surface of the left flange member 22 or the right end edge pressed against the collar seat internal surface 23a of the right flange member 23, the film displacing force is small, so the rigidity of the film withstands the displacing force sufficiently, so that any damage such as the buckling and breakage of the film end parts is not caused. Consequently, displacement control over the film is easily performed by the simple means and the film end part is prevented from being damaged.

10235002

Basic Patent (No,Kind,Date): EP 461595 A2 911218 <No. of Patents: 012>

Patent Family:

Patent No	Kind	Date	Applic No	Kind	Date
DE 69117806	C0	960418	DE 69117806	A	910610
DE 69117806	T2	960822	DE 69117806	A	910610
EP 461595	A2	911218	EP 91109513	A	910610 (BASIC)
EP 461595	A3	930929	EP 91109513	A	910610
EP 461595	B1	960313	EP 91109513	A	910610
JP 4044075	A2	920213	JP 90153602	A	900611
JP 4044080	A2	920213	JP 90153607	A	900611
JP 4044081	A2	920213	JP 90153608	A	900611
JP 2884714	B2	990419	JP 90153602	A	900611
JP 2884717	B2	990419	JP 90153607	A	900611
JP 2926904	B2	990728	JP 90153608	A	900611
US 5525775	A	960611	US 347182	A	941122

Priority Data (No,Kind,Date):

JP 90153602	A	900611
JP 90153607	A	900611
JP 90153608	A	900611
US 347182	A	941122
US 52276	B1	930426
US 712532	B1	910610

PATENT FAMILY:

GERMANY (DE)

Patent (No,Kind,Date): DE 69117806 C0 960418
HEIZGERAET MIT ENDLOSFILM (German)
Patent Assignee: CANON KK (JP)
Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
Applic (No,Kind,Date): DE 69117806 A 910610
IPC: * G03G-015/20
Derwent WPI Acc No: * G 91-370609
JAPIO Reference No: * 160222P000016; 160222P000018
Language of Document: German
Patent (No,Kind,Date): DE 69117806 T2 960822
HEIZGERAET MIT ENDLOSFILM (German)
Patent Assignee: CANON KK (JP)
Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
Applic (No,Kind,Date): DE 69117806 A 910610
IPC: * G03G-015/20
Derwent WPI Acc No: * G 91-370609
JAPIO Reference No: * 160222P000016; 160222P000018
Language of Document: German

GERMANY (DE)

Legal Status (No,Type,Date,Code,Text):
DE 69117806 P 960418 DE REF CORRESPONDS TO (ENTSPRICHT)
EP 461595 P 960418
DE 69117806 P 960822 DE 8373 TRANSLATION OF PATENT DOCUMENT
OF EUROPEAN PATENT WAS RECEIVED AND HAS BEEN
PUBLISHED (UEBERSETZUNG DER PATENTSCHRIFT
DES EUROPAEISCHEN PATENTES IST EINGEGANGEN
UND VEROEFFENTLICHT WORDEN)
DE 69117806 P 970410 DE 8364 NO OPPOSITION DURING TERM OF
OPPOSITION (EINSPRUCHSFRIST ABGELAUFEN OHNE
DASS EINSPRUCH ERHOBEN WURDE)

EUROPEAN PATENT OFFICE (EP)

Patent (No,Kind,Date): EP 461595 A2 911218

HEATING APPARATUS USING ENDLESS FILM (English; French; German)
 Patent Assignee: CANON KK (JP)
 Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
 Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
 Aplic (No,Kind,Date): EP 91109513 A 910610
 Designated States: (National) DE; FR; GB; IT
 IPC: * G03G-015/20
 Derwent WPI Acc No: ; G 91-370609
 Language of Document: English
 Patent (No,Kind,Date): EP 461595 A3 930929
 HEATING APPARATUS USING ENDLESS FILM (English; French; German)
 Patent Assignee: CANON KK (JP)
 Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
 Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
 Aplic (No,Kind,Date): EP 91109513 A 910610
 Designated States: (National) DE; FR; GB; IT
 IPC: * G03G-015/20
 Derwent WPI Acc No: * G 91-370609
 JAPIO Reference No: * 160222P000016; 160222P000018
 Language of Document: English
 Patent (No,Kind,Date): EP 461595 B1 960313
 HEATING APPARATUS USING ENDLESS FILM (English; French; German)
 Patent Assignee: CANON KK (JP)
 Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
 Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
 Aplic (No,Kind,Date): EP 91109513 A 910610
 Designated States: (National) DE; FR; GB; IT
 IPC: * G03G-015/20
 Derwent WPI Acc No: * G 91-370609
 JAPIO Reference No: * 160222P000016; 160222P000018
 Language of Document: English

EUROPEAN PATENT OFFICE (EP)

Legal Status (No,Type,Date,Code,Text):			
EP 461595	P	900611	EP AA PRIORITY (PATENT APPLICATION) (PRIORITAET (PATENTANMELDUNG)) JP 90153602 A 900611
EP 461595	P	900611	EP AA PRIORITY (PATENT APPLICATION) (PRIORITAET (PATENTANMELDUNG)) JP 90153607 A 900611
EP 461595	P	900611	EP AA PRIORITY (PATENT APPLICATION) (PRIORITAET (PATENTANMELDUNG)) JP 90153608 A 900611
EP 461595	P	910610	EP AE EP-APPLICATION (EUROPAEISCHE ANMELDUNG) EP 91109513 A 910610
EP 461595	P	911218	EP AK DESIGNATED CONTRACTING STATES IN AN APPLICATION WITHOUT SEARCH REPORT (IN EINER ANMELDUNG OHNE RECHERCHENBERICHT BENANNTE VERTRAGSSTAATEN) DE FR GB IT
EP 461595	P	911218	EP A2 PUBLICATION OF APPLICATION WITHOUT SEARCH REPORT (VEROEFFENTLICHUNG DER ANMELDUNG OHNE RECHERCHENBERICHT)
EP 461595	P	911218	EP 17P REQUEST FOR EXAMINATION FILED (PRUEFUNGSANTRAG GESTELLT) 910710
EP 461595	P	930929	EP AK DESIGNATED CONTRACTING STATES IN A SEARCH REPORT (IN EINEM RECHERCHENBERICHT BENANNTE VERTRAGSSTAATEN) DE FR GB IT
EP 461595	P	930929	EP A3 SEPARATE PUBLICATION OF THE SEARCH REPORT (ART. 93) (GESONDERTE

VEROEFFENTLICHUNG DES RECHTSBERICHTS
(ART. 93))

EP 461595	P	940928	EP 17Q FIRST EXAMINATION REPORT (ERSTER PRUEFUNGSBESCHEID) 940810
EP 461595	P	960313	EP AK DESIGNATED CONTRACTING STATES MENTIONED IN A PATENT SPECIFICATION (IN EINER PATENTSCHRIFT ANGEFUEHRTE BENANNTEN VERTRAGSSTAATEN) DE FR GB IT
EP 461595	P	960313	EP B1 PATENT SPECIFICATION (PATENTSCHRIFT)
EP 461595	P	960418	EP REF CORRESPONDS TO: (ENTSPRICHT) DE 69117806 P 960418
EP 461595	P	960613	EP ITF IT: TRANSLATION FOR A EP PATENT FILED (IT: DEPOSITO TRADUZIONE DI BREVETTO EUROPEO) SOCIETA' ITALIANA BREVETTI S.P.A.
EP 461595	P	960614	EP ET FR: TRANSLATION FILED (FR: TRADUCTION A ETE REMISE)
EP 461595	P	970305	EP 26N NO OPPOSITION FILED (KEIN EINSPRUCH EINGELEGT)

JAPAN (JP)

Patent (No,Kind,Date): JP 4044075 A2 920213
HEATING DEVICE (English)
Patent Assignee: CANON KK
Author (Inventor): SETORIYAMA TAKESHI; KURODA AKIRA; SASAKI SHINICHI
Priority (No,Kind,Date): JP 90153602 A 900611
Applic (No,Kind,Date): JP 90153602 A 900611
IPC: * G03G-015/20; H05B-003/00
JAPIO Reference No: ; 160222P000016
Language of Document: Japanese
Patent (No,Kind,Date): JP 4044080 A2 920213
HEATING DEVICE (English)
Patent Assignee: CANON KK
Author (Inventor): SETORIYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153607 A 900611
Applic (No,Kind,Date): JP 90153607 A 900611
IPC: * G03G-015/20; B65H-005/02
JAPIO Reference No: ; 160222P000018
Language of Document: Japanese
Patent (No,Kind,Date): JP 4044081 A2 920213
HEATING DEVICE (English)
Patent Assignee: CANON KK
Author (Inventor): SETORIYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153608 A 900611
Applic (No,Kind,Date): JP 90153608 A 900611
IPC: * G03G-015/20; B65H-005/02
JAPIO Reference No: ; 160222P000018
Language of Document: Japanese
Patent (No,Kind,Date): JP 2884714 B2 990419
Patent Assignee: CANON KK
Author (Inventor): SETORYAMA TAKESHI; KURODA AKIRA; SASAKI SHINICHI
Priority (No,Kind,Date): JP 90153602 A 900611
Applic (No,Kind,Date): JP 90153602 A 900611
IPC: * G03G-015/20
Language of Document: Japanese
Patent (No,Kind,Date): JP 2884717 B2 990419
Patent Assignee: CANON KK
Author (Inventor): SETORYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153607 A 900611
Applic (No,Kind,Date): JP 90153607 A 900611
IPC: * G03G-015/20
Language of Document: Japanese
Patent (No,Kind,Date): JP 2926904 B2 990728
Patent Assignee: CANON KK
Author (Inventor): SETORYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153608 A 900611

Applic (No,Kind,Date): JP 90153608 A 900611

IPC: * G03G-015/20

Language of Document: Japanese

UNITED STATES OF AMERICA (US)

Patent (No,Kind,Date): US 5525775 A 960611

HEATING APPARATUS USING ENDLESS FILM Heating apparatus using endless
film (English)

Patent Assignee: CANON KK (JP)

Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP);
SASAKI SHINICHI (JP)

Priority (No,Kind,Date): US 347182 A 941122; JP 90153602 A
900611; JP 90153607 A 900611; JP 90153608 A 900611; US 52276
B1 930426; US 712532 B1 910610

Applic (No,Kind,Date): US 347182 A 941122

National Class: * 219216000; 355290000

IPC: * G03G-015/20

Derwent WPI Acc No: * G 91-370609

JAPIO Reference No: * 160222P000016; 160222P000018

Language of Document: English

UNITED STATES OF AMERICA (US)

Legal Status (No,Type,Date,Code,Text):

US 5525775 P 900611 US AA PRIORITY (PATENT)
JP 90153602 A 900611

US 5525775 P 900611 US AA PRIORITY (PATENT)
JP 90153607 A 900611

US 5525775 P 900611 US AA PRIORITY (PATENT)
JP 90153608 A 900611

US 5525775 P 910610 US AA PRIORITY
US 712532 B1 910610

US 5525775 P 930426 US AA PRIORITY
US 52276 B1 930426

US 5525775 P 941122 US AE APPLICATION DATA (PATENT)
(APPL. DATA (PATENT))
US 347182 A 941122

US 5525775 P 960611 US A PATENT

US 5525775 P 961119 US CC CERTIFICATE OF CORRECTION

```
?s pn=jp 4044076
    S2      0  PN=JP 4044076
?t s2/9

2/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044077
    S3      0  PN=JP 4044077
?t s3/9

3/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044078
    S4      0  PN=JP 4044078
?t s4/9

4/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044079
    S5      0  PN=JP 4044079
?t s5/9

5/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044080
    S6      0  PN=JP 4044080
?t s6/9

6/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044081
    S7      0  PN=JP 4044081
?t s7/9

7/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044082
    S8      0  PN=JP 4044082
?t s8/9

8/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044083
    S9      0  PN=JP 4044083
```



```
?s pn=jp 4044076
      S2          0  PN=JP 4044076
?t s2/9

2/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044077
      S3          0  PN=JP 4044077
?t s3/9

3/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044078
      S4          0  PN=JP 4044078
?t s4/9

4/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044079
      S5          0  PN=JP 4044079
?t s5/9

5/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044080
      S6          0  PN=JP 4044080
?t s6/9

6/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044081
      S7          0  PN=JP 4044081
?t s7/9

7/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044082
      S8          0  PN=JP 4044082
?t s8/9

8/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044083
      S9          0  PN=JP 4044083
```


⑫公開特許公報(A) 平4-44080

⑬Int.Cl.⁵

G 03 G 15/20

// B 65 H 5/02

識別記号

101

102

T

序内整理番号

6830-2H

6830-2H

7111-3F

⑭公開 平成4年(1992)2月13日

審査請求 未請求 請求項の数 2 (全20頁)

⑮発明の名称 加熱装置

⑯特 願 平2-153607

⑰出 願 平2(1990)6月11日

⑱発明者 世取山武 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

⑲発明者 黒田明 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

⑳出願人 キヤノン株式会社 東京都大田区下丸子3丁目30番2号

㉑代理人 弁理士 高梨幸雄

明細書

1. 発明の名称

加熱装置

2. 特許請求の範囲

(1) 固定の加熱体と、

この加熱体に内面が対向圧接されて移動駆動されるエンドレスの耐熱性フィルムと、

前記加熱体との間に前記フィルムを挟み込んでニップ部を形成し、そのニップ部におけるフィルム外面との間に導入された、顕微鏡を支持する記録材をフィルムを介して加熱体に圧接させる部材と、

を有し、前記フィルムは非駆動時において前記加熱体と圧接部材とのニップ部に挟まれている部分を除く残余の周長部分がテンションフリーであり、

前記フィルムの移動方向と直交するフィルム幅方向端部を規制してフィルムの幅方向への寄り移動を規制する部材を有する

ことを特徴とする加熱装置。

(2) 前記エンドレスの耐熱性フィルムは、駆動時においては前記ニップ部と、該ニップ部よりもフィルム移動方向上流側であって該ニップ部近傍のフィルム内面ガイド部分と該ニップ部の間の部分のみにおいてテンションが加わる関係構成となっていることを特徴とする請求項1記載の加熱装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、加熱体に圧接させて移動駆動させた耐熱性フィルムの加熱体側とは反対面側に、頭両像を支持する記録材を導入して密着させてフィルムと一緒に加熱体位置を通過させることで加熱体の熱をフィルムを介して導入記録材に与える方式（フィルム加熱方式）の加熱装置に関する。

この装置は、電子写真複写機・プリンタ・ファックス等の画像形成装置における画像加熱定着装置、即ち電子写真・静電記録・磁気記録等の適宜の画像形成プロセス手段により加熱溶融性の樹脂等より成るトナーを用いて記録材（転写材シート・エレクトロファックスシート・静電記録シート・印刷紙など）の面に間接（転写）方式もしくは直接方式で形成した、目的の画像情報に対応した未定着のトナー画像を、該画像を抱持している記録材面に永久固定画像として加熱定着処理する画像加熱定着装置として活用できる。

3

方式・構成の装置を提案し、既に実用にも供している。

より具体的には、幕内の耐熱性フィルム（又はシート）と、該フィルムの移動駆動手段と、該フィルムを中心にしてその一方而側に固定支持して配設されたヒータと、他方面側に該ヒータに對向して配設され該ヒータに対して該フィルムを介して画像定着すべき記録材の頭両像抱持面を密着させる加圧部材を有し、該フィルムは少なくとも画像定着実行時は該フィルムと加圧部材との間に搬送導入される画像定着すべき記録材と順方向に略同速度で走行移動させて該走行移動フィルムを扶んでヒータと加圧部材との圧接で形成される定着部としてのニップ部を通過されることにより該記録材の頭両像抱持面を該フィルムを介して該ヒータで加熱して頭両像（未定着トナー像）に熱エネルギーを付与して軟化・溶融せしめ、次いで定着部通過後のフィルムと記録材を分離点で離間させることを基本とする加熱手段・装置である。

また、例えば、画像を抱持した記録材を加熱して表面性を改質（つや出しなど）する装置、仮定着処置する装置に使用できる。

(背景技術)

従来、例えば画像の加熱定着のための記録材の加熱装置は、所定の温度に維持された加熱ローラと、弹性層を有して該加熱ローラに圧接する加圧ローラとによって、記録材を扶持搬送しつつ加熱する熱ローラ方式が多用されている。

その他、フラッシュ加熱方式、オープン加熱方式、板熱加熱方式、ベルト加熱方式、渦周波加熱方式など種々の方式のものが知られている。

一方、本出願人は例えば特開昭63-313182号公報等において、固定支持された加熱体（以下ヒータと記す）と、該ヒータに對向圧接しつつ搬送（移動駆動）される耐熱性フィルムと、該フィルムを介して記録材をヒータに密着させる加圧部材を有し、ヒータの熱をフィルムを介して記録材へ付与することで記録材面に形成抱持されている未定着画像を記録材面に加熱定着させている

4

この様なフィルム加熱方式の装置においては、昇温の速い加熱体と薄膜のフィルムを用いるためウエイトタイム短縮化（クイックスタート）が可能となる、従来装置の種々の欠点を解決できるなどの利点を有し、効果的なものである。

第13図に耐熱性フィルムとしてエンドレスフィルムを使用したこの種方式の画像加熱定着装置の一例の概略構成を示した。

51はエンドレスベルト状の耐熱性フィルム（以下定着フィルム又はフィルムと記す）であり、左側の駆動ローラ52と、右側の從動ローラ53と、これ等の駆動ローラ52と從動ローラ53間に配置した低熱容量線状加熱体54の互いに並行な該3部材52・53・54間に懸回張設してある。

定着フィルム51は駆動ローラ52の時計方向回転運動に伴ない時計方向に所定の周速度、即ち不図示の画像形成部側から搬送されてくる未定着トナー両像T_aを上面に抱持した被加熱材としての記録材シートPの搬送速度（プロセス

5

—1054—

6

スピード) と略同じ周速度をもって回転運動される。

55は加圧部材としての加圧ローラであり、前記のエンドレスベルト状の定着フィルム51の下行側フィルム部分を挟ませて前記加熱体54の下面に対して不回示の付着手段により圧接させてあり、記録材シートPの搬送方向に順方向の反時計方向に回転する。

加熱体54はフィルム51の面移動方向と交差する方向(フィルムの幅方向)を長手とする低熱容量線状加熱体であり、ヒータ基板(ベース材)56・通電発熱抵抗体(発熱体)57・表面保護層58・検温素子59等よりなり、断熱材60を介して支持体61に取付けて固定支持させてある。

不回示の画像形成部から搬送された未定着のトナー画像Tnを上面に担持した記録材シートPはガイド62に案内されて加熱体54と加圧ローラ55との圧接部Nの定着フィルム51と加圧ローラ55との間に進入して、未定着トナー

画像面が記録材シートPの搬送速度と同一速度で同方向に回転運動状態の定着フィルム51の下面に密着してフィルムと一緒に重なり状態で加熱体54と加圧ローラ55との相互圧接部N間を通過していく。

加熱体54は所定のタイミングで通電加熱され、該加熱体54側の熱エネルギーがフィルム51を介して該フィルムに密着状態の記録材シートP側に伝達され、トナー画像Tnは圧接部Nを通過していく過程において加熱を受けて軟化・溶融像Tbとなる。

回転運動されている定着フィルム51は断熱材60の曲率の大きいエッジ部Sにおいて、急角度で走行方向が転向する。従って、定着フィルム51と重なった状態で圧接部Nを通過して搬送された記録材シートPは、エッジ部Sにおいて定着フィルム51から曲率分離し、挿紙されてゆく。挿紙部へ至る時までにはトナーは十分冷却固化し記録材シートPに完全に定着Tcした状態となっている。

7

(発明が解決しようとする問題点)

このようなフィルム加熱方式の装置は問題点として次のようなことが挙げられている。

(1) フィルム51に常に全周的にテンションを加えてフィルムを張り状態にしてフィルムを搬送運動する系では、フィルムの搬送運動に大きな運動トルクを必要とした。その結果、装置構成部品や運動力伝達手段等の剛性や性能をグレードアップして信頼性を確保する必要があり、装置構成の複雑化、大型化、コストアップ化等の一因となっている。

(2) 駆動ローラ52と從動ローラ53間や、それ等のローラと加熱体54との平行度などアライメントが狂った場合には、これ等の部材52・53・54間に常に全周的にテンションが加えられて巡回強設されているフィルム51には部材52・53・54の長手に沿ってフィルム幅方向の一端側又は他端側への非常に大きな寄り力が働く。

フィルム51としては熱容量を小さくして

8

クイックスタート性をよくするために100μm以下好ましくは40μm以下のものともと剛性の低い(コシが弱い)薄肉のものが使用されており、また該フィルム51が複数の掛け渡し部材52・53・54間に掛け渡るためにフィルムの周長も長く、その結果としてもフィルム51の剛性が低いものであるところ、このようなフィルムに上述のような非常に大きな寄り力が働いて寄り移動することでその寄り移動側のフィルム端部がその側の装置部材に押し当たると、フィルム端部は大きな寄り力に耐え切れずにはずれ・破損等のダメージを生じる結果となる。

またフィルム51の寄り位置によってはフィルムの搬送力のバランスが崩れたり、定着時の加圧力のバランスが均一にならなかったり、加熱体19の温度分布のバランスが崩れる等の問題が生じることもある。

そこでフィルムの寄り移動を光電的に検知するセンサ手段、その検知情報を応じてフィルムを寄り移動方向とは逆方向に反し移動させる手段

例えばソレノイド等を用いてフィルムピンチローラ等の角度を変化させる手段機構等からなるフィルム寄り移動制御機構を附加したり、フィルム端部に耐熱性樹脂によるリブ等を設けたものを使用してリブを規制することで、フィルム寄りを規制する等の処置構成をとると装置構成の複雑化・大型化・コストアップ化等の因となる。

本発明は同じくエンドレスの耐熱性フィルムを用いたフィルム加熱方式に属するものであるが、上述のような問題点を解消した加熱装置を提供することを目的とする。

1-1

また本発明は上記の加熱装置について、前記エンドレスの耐熱性フィルムは、駆動時においては前記ニップ部と、該ニップ部よりもフィルム移動方向上流側であって該ニップ部近傍のフィルム内面ガイド部分と該ニップ部の間の部分のみにおいてテンションが加わる構造となっていることを特徴とする加熱装置である。

(作用)

(1) フィルムを駆動させ、加熱体を発熱させた状態において、フィルムを挟んで加熱体と圧接部材との間に形成させたニップ部のフィルムと圧接部材との間に記録材を顕画像持而側をフィルム側にして導入すると、記録材はフィルム外面に密着してフィルムと一緒にニップ部を移動通過していく、その移動通過過程でニップ部においてフィルム内面に接している加熱体の熱エネルギーがフィルムを介して記録材に付与され、顕画像を支持した記録材がフィルム加熱方式で加熱処理される。

(問題点を解決するための手段)

本発明は、

固定の加熱体と、

この加熱体に内面が対向圧接されて移動駆動されるエンドレスの耐熱性フィルムと、

前記加熱体との間に前記フィルムを挟み込んでニップ部を形成し、そのニップ部におけるフィルム外面との間に導入された、顕画像を支持する記録材をフィルムを介して加熱体に圧接させる部材と、

を有し、前記フィルムは非駆動時において前記加熱体と圧接部材とのニップ部に挟まれている部分を除く残余の周長部分がテンションフリーであり、

前記フィルムの移動方向と直交するフィルム幅方向端部を規制してフィルムの幅方向への寄り移動を規制する部材を行する

ことを特徴とする加熱装置
である。

1-2

(2) フィルムは少なくとも一部は常に脚ちフィルム非駆動時もフィルム駆動時もテンションフリー（テンションが加わらない状態）の部分がある構成（テンションフリータイプ）となすことにより、前述第1-3回例装置のもののように周長の長いフィルムを常に全周的にテンションを加えて張り状態にして駆動させる構成（テンションタイプ）のものに比べてフィルム駆動のための駆動トルクを大幅に低減することが可能となる。

從って装置構成や駆動系構成を簡略化・小型化・低コスト化等すること、装置構成部品や組み立て精度をラフにすることも可能となる。

(3) またフィルム駆動過程でフィルム幅方向の一方側又は他方側への寄り移動を生じたとしてもその寄り力は前述第1-3回例のテンションタイプの装置のもののようにフィルム全周長にテンションが加わっているものよりも大幅に小さいものとなる。

そのためフィルムが寄り移動してその寄り移動側のフィルム端部がその側の装置サイド部材に

1-3

1-4

押し当り状態になつてもフィルム寄り力が小さいのでその寄り力に対しフィルムの剛性（コシの強さ）が十分に打ち勝ちフィルム端部のダメージが防止される。

従ってフィルムの寄り移動を例えば封筒（フランジ部材）のような簡単なフィルム端部規制部材により規制する事が可能となり、フィルムの寄り移動検知手段・戻し移動手段等を含む大掛かりなフィルム寄り移動制御機構の必要性はなく、この点においても装置構成を簡略化・小型化・低コスト化等することが可能となる。

またフィルムとしては寄り力が低下する分、剛性を低下させることができるので、より薄肉で熱容量が小さいものを使用して装置のクイックスタート性を向上させることが可能となる。

(4) フィルムは、昇運動時においては加熱体と圧接部材とのニップ部に挟まれている部分を除く残余の大部分の略全周長部分がテンションフリーであり、フィルム駆動がなされると、該ニップ部と、該ニップ部よりもフィルム駆動方向上流側で

あって該ニップ部近傍のフィルム内面ガイド部分と該ニップ部の間の部分のみにおいてテンションが加わる関係 成とすることで、(2)・(3)項でのべたようにフィルム駆動力が小さく、またフィルム寄り力も小さくなると共に、このフィルム駆動時においては少なくともニップ部の記録材進入側近傍のフィルム部分面及びニップ部のフィルム部分面についてのシワの発生が上記テンションの作用により防止される。

これによりニップ部へ導入される記録材は常にシワのないフィルム面に対応密着してニップ部をフィルムと一緒に移動通過する。従ってシワのあるフィルム面に被加熱材が密着して、浪いはシワのあるフィルムがニップ部を通過する事態を生じることによる加熱ムラ・定着ムラの発生、フィルム面の折れすじの発生等が防止される。

15

(実施例)

図面は本発明の一実施例装置（画像加熱定着装置100）を示したものである。

(1) 装置100の全体的概略構造

第1図は装置100の横断面図、第2図は縦断面図、第3図・第4図は装置の右側面図と左側面図、第5図は要部の分解斜視図である。

1は板金製の横断面上向きチャンネル（溝）形の横長の装置フレーム（底版）、2・3はこの装置フレーム1の左右両端部に該フレーム1に一体に具備させた左側壁板と右側壁板、4は装置の上カバーであり、左右の側壁板2・3の上端部間にめ込んでその左右端部を夾み左右側壁板2・3に対してねじ5で固定される。ねじ5をゆるめ外すことで取り外すことができる。

6・7は左右の各側壁板2・3の略中央部面に対称に形成した縦方向の切欠き長穴、8・9はその各長穴6・7の下端部に底板合せた左右一対の軸受部材である。

10は後述する加熱体との間でフィルムを

16

挟んでニップ部を形成し、フィルムを駆動する回転体としてのフィルム加圧ローラ（圧接ローラ、バックアップローラ）であり、中心軸11と、この軸に外装したシリコンゴム等の離型性のよいゴム弾性体からなるローラ部12とからなり、中心軸11の左右端部を夫々前記左右の軸受部材8・9に回転自由に軸受支持させてある。

13は、板金製の横長のステーであり、後述するフィルム21の内面ガイド部材と、後述する加熱体19・断熱部材20の支持・補強部材を兼ねる。

このステー13は、横長の平な底面部14と、この底面部14の長手両辺から夫々一連に立ち上がりせて具備させた横断面外向き円弧カーブの前壁板15と後壁板16と、底面部14の左右両端部から夫々外方へ突出させた左右一対の水平張り出しラグ部17・18を有している。

19は後述する構造（第6回）を有する横長の低熱容量線状加熱体であり、横長の断熱部材20に取付け支持されており、この断熱部材20を

17

18

加熱体 19 側を下向きにして前記ステー 13 の横長底面部、14 の下面に並行に一体に取付け支持させてある。

21 はエンドレスの耐熱性フィルムであり、加熱体 19・断熱部材 20 を含むステー 13 に外嵌させてある。このエンドレスの耐熱性フィルム 21 の内周長と、加熱体 19・断熱部材 20 を含むステー 13 の外周長はフィルム 21 の方を例えば 3 mmほど大きくしてあり、従ってフィルム 21 は加熱体 19・断熱部材 20 を含むステー 13 に対して周長が余裕をもってルーズに外嵌している。

22・23 はフィルム 21 を加熱体 19・断熱部材 20 を含むステー 13 に外嵌した後にステー 13 の左右端部の各水平張り出しラグ部 17・18 に対して嵌着して取付け支持させた左右一対のフィルム端部規制フランジ部材である。後述するように、この左右一対の各フランジ部材 22・23 の脚座の内面 22a・23a 間の間隔寸法 G (第 8 図) はフィルム 21 の幅寸法 C

19

23 を図のような関係に予め組み立てた中間組立て体を、加熱体 19 側を下向きにして、かつ断熱部材 20 の左右の外方突出端と左右のフランジ部材 22・23 の水平張り出しラグ部 24・25 を夫々左右側壁板 2・3 の裏方向切欠き長穴 6・7 に上端開放部から嵌合させて左右側壁板 2・3 間に入れ込み、下向きの加熱体 19 がフィルム 21 を挟んで先に組み込んである加圧ローラ 10 の上面に当って受け止められるまで下ろす (落し込み式)。

そして左右側壁板 2・3 の外側に長穴 6・7 を通して突出している、左右の各フランジ部材 22・23 のラグ部 24・25 の上に夫々コイルばね 26・27 をラグ部上面に設けた支え凸起で位置決めさせて縦向きにセットし、上カバー 4 を、該上カバー 4 の左右端部側に夫々設けた外方張り出しラグ部 28・29 を上記セットしたコイルばね 26・27 の上端に夫々対応させて各コイルばね 26・27 をラグ部 24・28・25・29 間に押し締めながら、左右の側壁板 2・3 の

(同) よりもやや大きく設定してある。

24・25 はその左右一対の各フランジ部材 22・23 の外側から外方へ突出させた水平張り出しラグ部であり、前記ステー 13 側の外向き水平張り出しラグ部 17・18 は夫々このフランジ部材 22・23 の上記水平張り出しラグ部 24・25 の内厚内に具備させた差し込み用穴部に 1 分に嵌入していて左右の各フランジ部材 22・23 をしっかりと支持している。

装置の組み立ては、左右の側壁板 2・3 間から上カバー 4 を外した状態において、軸 11 の左右端部側に予め左右の軸受部材 8・9 を嵌着したフィルム加圧ローラ 10 のその左右の軸受部材 8・9 を左右側壁板 2・3 の裏方向切欠き長穴 6・7 に上端開放部から嵌合させて加圧ローラ 10 を左右側壁板 2・3 間に入れ込み、左右の軸受部材 8・9 が長穴 6・7 の下端部に受け止められる位置まで下ろす (落し込み式)。

次いで、ステー 13、加熱体 19、断熱部材 20、フィルム 21、左右のフランジ部材 22・23

20

上端部間の所定の位置まで嵌め入れてねじ 5 で左右の側壁板 2・3 間に固定する。

これによりコイルばね 26・27 の押し締め反力で、ステー 13、加熱体 19、断熱部材 20、フィルム 21、左右のフランジ部材 22・23 の全体が下方へ押圧付勢されて加熱体 19 とローラ 10 とがフィルム 21 を挟んで長手各部略均等に例えば総圧 4~7 kg の当接圧をもって圧接した状態に保持される。

30・31 は左右の側壁板 2・3 の外側に長穴 6・7 を通して突出している断熱部材 20 の左右両端部に夫々嵌着した、加熱体 19 に対する電力供給用の給電コネクタである。

32 は装置フレーム 1 の前面壁に取付けて配設した被加熱材入口ガイドであり、装置へ導入される被加熱材としての顕画液 (粉体トナー像) Ta を支持する記録材シート T (第 7 図) をフィルム 21 を挟んで圧接している加熱体 19 と加圧ローラ 10 とのニップ部 (加熱定着部) N のフィルム 21 とローラ 10 との間に向けて室内

21

—1058—

22

する。

3 3 は装置フレーム 1 の後面板に取付けて配置した被加熱材出口ガイド（分離ガイド）であり、上記ニップ部を通過して出た記録材シートを下側の排出ローラ 3 4 と上側のピンチコロ 3 8 とのニップ部に案内する。

排出ローラ 3 4 はその軸 3 5 の左右両端部を左右の側壁板 2・3 に設けた軸受 3 6・3 7 回に回転自由に軸受支持させてある。ピンチコロ 3 8 はその軸 3 9 を上カバー 4 の後面壁の一部を内側に曲げて形成したフック部 4 0 に受け入れさせて自重と押しつぶね 4 1 により排出ローラ 3 4 の上面に当接させてある。このピンチコロ 3 8 は排出ローラ 3 4 の回転駆動に従動回転する。

G 1 は、右側壁板 3 から外方へ突出させたローラ軸 1 1 の右端に固定した第 1 ギア、G 3 はおなじく右側壁板 3 から外方へ突出させた排出ローラ軸 3 5 の右端に固定した第 3 ギア、G 2 は右側壁板 3 の外面に軸着して設けた中継ギアとしての第 2 ギアであり、上記の第 1 ギア G 1 と

第 3 ギア G 3 とに噛み合っている。

第 1 ギア G 1 は不拘束の駆動源機構の駆動ギア G 0 から駆動力を受けて加圧ローラ 1 0 が第 1 図上反時計方向に回転駆動され、それに連動して第 1 ギア G 1 の回転力が第 2 ギア G 2 を介して第 3 ギア G 3 へ伝達されて排出ローラ 3 4 も第 1 図上反時計方向に回転駆動される。

(2) 動 作

エンドレスの耐熱性フィルム 2 1 は非駆動時ににおいては第 6 回の要部部分並大図のように加熱体 1 9 と加圧ローラ 1 0 とのニップ部 N に挟まれている部分を除く残余の大部分の略全周長部分がテンションフリーである。

第 1 ギア G 1 に駆動源機構の駆動ギア G 0 から駆動が伝達されて加圧ローラ 1 0 が所定の周速度で第 7 図上反時計方向へ回転駆動されると、ニップ部 N においてフィルム 2 1 に回転加圧ローラ 1 0 との摩擦力で送り移動力がかかり、エンドレスの耐熱性フィルム 2 1 が加圧ローラ 1 0 の回転周速と略同速度をもってフィルム内面

2 3

が加熱体 1 9 面を摺動しつつ時計方向 A に回動移動駆動される。

このフィルム 2 1 の駆動状態においてはニップ部 N よりもフィルム回動方向上流側のフィルム部分に引き寄せ力 f が作用することで、フィルム 2 1 は第 7 図に実線で示したようにニップ部 N よりもフィルム回動方向上流側であって該ニップ部近傍のフィルム内面ガイド部分、即ちフィルム 2 1 を外嵌したステー 1 3 のフィルム内面ガイドとしての外向き円弧カーブ前面板 1 5 の略下半面部分に対して接触し摺動を生じながら回動する。

その結果、回動フィルム 2 1 には上記の前面板 1 5 との接触摺動部の始点部 O からフィルム回動方向下流側のニップ部 N にかけてのフィルム部分 B にテンションが作用した状態で回動することで、少なくともそのフィルム部分面、即ちニップ部 N の記録材シート進入側近傍のフィルム部分面 B、及びニップ部 N のフィルム部分についてのシワの発生が上記のテンションの作用により防止される。

2 4

そして上記のフィルム駆動と、加熱体 1 9 への通電を行わせた状態において、入口ガイド 3 2 に案内されて被加熱材としての未定着トナー像 T a を担持した記録材シート P がニップ部 N の回動フィルム 2 1 と加圧ローラ 1 0 との間に像担持面上向きで導入されると記録材シート P はフィルム 2 1 の面に密着してフィルム 2 1 と一緒にニップ部 N を移動通過ていき、その移動通過過程でニップ部 N においてフィルム内面に接している加熱体 1 9 の熱エネルギーがフィルムを介して記録材シート P に付与されたトナー画像 T a は軟化溶融像 T b となる。

ニップ部 N を通過した記録材シート P はトナー温度がガラス転移点より大なる状態でフィルム 2 1 面から離れて出口ガイド 3 3 で排出ローラ 3 4 とピンチコロ 3 8 との間に案内されて装置外へ送り出される。記録材シート P がニップ部 N を出てフィルム 2 1 面から離れて排出ローラ 3 4 へ至るまでの間に軟化・溶融トナー像 T b は冷却して固化像 T c として定着する。

2 5

—1059—

2 6

上記においてニップ部Nへ導入された記録材シートPは前述したようにテンションが作用してシワのないフィルム部分面に常に対応密してニップ部Nをフィルム21と一緒に移動するのでシワのあるフィルムがニップ部Nを通過する事態を生じることによる加熱ムラ・定着ムラの発生、フィルム面の折れすじを生じない。

フィルム21は被駆動時も駆動時もその全周長の一部N又はB-Nにしかテンションが加わらないから、即ち非駆動時(第6図)においてはフィルム21はニップ部Nを除く残余の大部分の略全周長部分がテンションフリーであり、駆動時もニップ部Nと、そのニップ部Nの記録材シート導入側近傍部のフィルム部分Bについてのみテンションが作用し残余の大部分の略全周長部分がテンションフリーであるから、また全体に周長の短いフィルムを使用できるから、フィルム駆動のために必要な駆動トルクは小さいものとなり、フィルム装置構成、部品、駆動系構成は簡略化・小型化・低コスト化される。

27

場合のフランジ部材22・23の他にも、例えばフィルム21の端部にエンドレスフィルム周方向に耐熱性樹脂から成るリブを設け、このリブを規制してもよい。

更に、使用フィルム21としては上記のように寄り力が低下する分、剛性を低下させることができるので、より薄内で熱容量が小さいものを使用して装置のクイックスタート性を向上させることができる。

(3) フィルム21について。

フィルム21は熱容量を小さくしてクイックスタート性を向上させるために、フィルム21の膜厚Tは越厚100μm以下、好ましくは40μm以下、20μm以上の耐熱性・難燃性・強度・耐久性等のある単層或は複合層フィルムを使用できる。

例えば、ポリイミド・ポリエーテルイミド(PET)・ポリエーテルサルホン(PES)・4フッ化エチレン-バーフルオロアルキルビニルエーテル共重合体樹脂(PFA)・ポリエーテル

またフィルム21の非駆動時(第6図)も駆動時(第7図)もフィルム21には上記のように全周長の一部N又はB-Nにしかテンションが加わらないので、フィルム駆動時にフィルム21にフィルム幅方向の一方側Q(第2図)、又は他方側Rへの寄り移動を生じても、その寄り力は小さいものである。

そのためフィルム21が寄り移動Q又はRしてその左端縁が左側フランジ部材22のフィルム端部規制面としての跨座内面22a、或は右端縁が右側フランジ部材23の跨座内面23aに押し当り状態になってもフィルム寄り力が小さいからその寄り力に対してフィルムの剛性が十分に打ち崩しフィルム端部が座屈・破損するなどのダメージを生じない。そしてフィルムの寄り規制手段は本実施例装置のように簡単なフランジ部材22・23で足りるので、この点でも装置構成の簡略化・小型化・低コスト化がなされ、安価で信頼性の高い装置を構成できる。

フィルム寄り規制手段としては本実施例装置の

28

エーテルケトン(PEEK)・ポリバラバン酸(PPA)、或いは複合層フィルム例えば20μm厚のポリイミドフィルムの少なくとも両側当接面側にPTFE(4フッ化エチレン樹脂)・PAF・FEP等のフッ素樹脂・シリコン樹脂等、更にはそれに導電材(カーボンブラック・グラファイト・導電性ウイスカなど)を添加した導電性コート層を10μm厚に施したものなどである。

(4) 加熱体19・断熱部材20について。

加熱体19は前述第13回例装置の加熱体54と同様に、ヒータ基板19a(第6図参照)・通電発熱抵抗体(発熱体)19b・表面保護層19c・検温素子19d等よりなる。

ヒータ基板19aは耐熱性・絶縁性・低熱容量・高熱伝導性の部材であり、例えば、厚み1mm・巾10mm・長さ240mmのアルミニナ基板である。

発熱体19bはヒータ基板19aの下面(フィルム21との対面側)の略中央部に長手に沿っ

29

-1060-

30

て、例えば、Ag/Pd（銀パラジウム）、Ta, Ni/RuO_x等の電気抵抗材料を厚み約10μm・巾1~3mmの線状もしくは細帯状にスクリーン印刷等により塗工し、その上に表面保護層19cとして耐熱ガラスを約10μmコートしたものである。検温素子19dは一例としてヒータ基板19aの上面（発熱体19bを設けた面とは反対側の面）の略中央部にスクリーン印刷等により塗工して具備させたPセメント等の低熱容量の測温抵抗体である。低熱容量のサーミスタなども使用できる。

本例の加熱体19の場合は、線状又は細帯状をなす発熱体19bに対し画像形成スタート信号により所定のタイミングにて通電して発熱体19bを略全長にわたって発熱させる。

通電はAC100Vであり、検温素子19cの检测温度に応じてトライアックを含む不図示の通電制御回路により通電する位相角を制御することにより供給電力を制御している。

加熱体19はその発熱体19bへの通電によ

り、ヒータ基板19a・発熱体19b・表面保護層19cの熱容量が小さいので加熱体表面が所要の定着温度（例えば140~200°C）まで急速に温度上昇する。

そしてこの加熱体19に接する耐熱性フィルム21も熱容量が小さく、加熱体19個の熱エネルギーが該フィルム21を介して該フィルムに圧接状態の記録材シートP側に効果的に伝達されて画像の加熱定着が実行される。

上記のように加熱体19と対向するフィルムの表面温度は短時間にトナーの融点（又は記録材シートPへの定着可能温度）に対して十分な高温に昇温するので、クイックスタート性に優れ、加熱体19をあらかじめ昇温させておくいわゆるスタンバイ温調の必要がなく、省エネルギーが実現でき、しかも機内昇温も防止できる。

断熱部材20は加熱体19を断熱して発熱を有効に使うようとするもので、断熱性・高耐熱性を有する、例えばPPS（ポリフェニレンサルファイド）・PAI（ポリアミドイミド）・PI

3 1

（ポリイミド）・PEEK（ポリエーテルエーテルケトン）・液晶ポリマー等の高耐熱性樹脂である。

(5) フィルム幅Cとニップ長Dについて。

第8回の寸法関係図のように、フィルム21の幅寸法をCとし、フィルム21を挟んで加熱体19と回転体としての加压ローラ10の圧接により形成されるニップ長寸法をDとしたとき、C<Dの関係構成に設定するのがよい。

即ち上記とは逆にC>Dの関係構成でローラ10によりフィルム21の搬送を行なうと、ニップ長Dの領域内のフィルム部分が受けるフィルム搬送力（圧接力）と、ニップ長Dの領域外のフィルム部分が受けるフィルム搬送力とが、前者のフィルム部分の内面は加熱体19の面に接して搬動搬送されるのに対して後者のフィルム部分の内面は加熱体19の表面とは材質の異なる断熱部材20の面に接して搬動搬送されるので、大きく異なるためにフィルム21の幅方向両端部分にフィルム搬送過程でシワや折れ

3 2

等の破損を生じるおそれがある。

これに対してC<Dの関係構成に設定することで、フィルム21の幅方向全長域Cの内面が加熱体19の長さ範囲D内の面に接して該加熱体表面を援助して搬送されるのでフィルム幅方向全長域Cにおいてフィルム搬送力が均一化するので上記のようなフィルム端部破損トラブルが回避される。

また回転体として本実施例で使用した加压ローラ10はシリコンゴム等の弾性に優れたゴム材料製であるので、加熱されると表面の摩擦係数が変化する。そのため加熱体19の発熱体19bに関してその長さ範囲EをEとしたとき、その発熱体19bの長さ範囲Eに対応する部分におけるローラ10とフィルム21間の摩擦係数と、発熱体19bの長さ範囲Eの外側に対応する部分におけるローラ10とフィルム21間の摩擦係数は異なる。

しかし、E<C<Dの寸法関係構成に設定することにより、発熱体19bの長さ範囲Eとフィル

3 3

3 4

ム幅 C の差を小さくすることができるため発熱体 19 b の長さ範囲 E の内側でのローラ 10 とフィルム 21 との摩擦係数の違いがフィルムの搬送に与える影響を小さくすることができる。

これによって、ローラ 10 によりフィルム 21 を安定に駆動することが可能となり、フィルム端部の破損を防止することが可能となる。

フィルム端部規制手段としてのフランジ部材 22・23 のフィルム端部規制面 22 a・23 a は加圧ローラ 10 の長さ範囲内であり、フィルムが寄り移動してもフィルム端部のダメージ防止がなされる。

(6) 加圧ローラ 10 について。

加熱体 19 との間にフィルム 21 を挟んでニップ部 N を形成し、またフィルムを駆動する回転体としての加圧ローラ 10 は、例えば、シリコンゴム等の柔軟性のよいゴム弹性体からなるものであり、その形状は長手方向に関してストレート形状ものよりも、第 9 図 (A) 又は (B) の説明模型図のように逆クラウン形状、

3 5

記録材シート P にニップ部搬送通過過程でシワを発生させことがある。

これに対してローラ 10 を逆クラウンの形状にすることによって加熱体 19 とのニップ部 N において該ローラによりフィルム 21 に加えられるフィルム幅方向に関する圧力分布は上記の場合とは逆にフィルムの幅方向端部の方が中央部よりも大きくなり、これによりフィルム 21 には中央部から両端側へ向う力が働いて、即ちシワのはし作川を受けながらフィルム 21 の搬送がなされ、フィルムのシワを防止できると共に、導入記録材シート P のシワ発生を防止することができる。

回転体としての加圧ローラ 10 は本実施例装置のように加熱体 19 との間にフィルム 21 を挟んで加熱体 19 にフィルム 21 を圧接させると共に、フィルム 21 を所定速度で移動駆動し、フィルム 21 との間に被加熱材としての記録材シート P が導入されたときはその記録材シート P をフィルム 21 面に密着させて加熱体 19 に圧接

或いは逆クラウン形状でその逆クラウンの端部をカット 12 a した実質的に逆クラウン形状のもののがよい。

逆クラウンの程度 d はローラ 10 の有効長さ H が例えば 230 mm である場合において

$$d = 100 \sim 200 \mu m$$

に設定するのがよい。

即ち、ストレート形状の場合は部品精度のバラツキ等により加熱体 19 とのニップ部 N において該ローラによりフィルム 21 に加えられるフィルム幅方向に関する圧力分布はフィルムの幅方向端部よりも中央部の方が高くなることがあった。つまり該ローラによるフィルムの搬送力はフィルム幅方向端部よりも中央部の方が大きく、フィルム 21 には搬送に伴ない搬送力の小さいフィルム部分が搬送力の大きいフィルム部分へ寄り向う力が働くので、フィルム端部側のフィルム部分がフィルム中央部分へ寄っていきフィルムにシワを発生せることがあり、更にはニップ部 N に記録材シート P が導入されたときにはその

3 6

させてフィルム 21 と共に所定速度で移動駆動させる駆動部材とすることによりフィルムにかかる寄り力を低減することができると共に、ローラ 10 の位置や該ローラを駆動するためのギアの位置精度を向上させることができる。

即ち、加熱体 19 に対してフィルム 21 又はフィルム 21 と記録材シート P を加圧圧接させる加圧機能と、フィルム 21 を移動駆動させる駆動機能とを大々別々の加圧機能回転体（必要な加圧力はこの回転体を加圧することにより得る）とフィルム駆動機能回転体で行なわせる構成のものとした場合には、加熱体 19 とフィルム駆動機能回転体間のアライメントが狂った場合に薄膜のフィルム 21 には幅方向への大きな寄り力が働き、フィルム 21 の端部は折れやシワ等のダメージを生じるおそれがある。

またフィルムの駆動部材を兼ねる加圧回転体に加熱体 19 との圧接に必要な加圧力をバネ等の押し付けにより加える場合には該回転体の位置や、該回転体を駆動するためのギアの位置精度が

3 7

—1062—

3 8

だしすらい。

これに対して前記したように、加熱体19に定着時に必要な加圧力を加え回転体たる加圧ローラ10により記録材シートPをフィルム21を介して圧接させると共に、記録材シートPとフィルム21の駆動をも同時に行なわせることにより、前記の効果を得ることができると共に、装置の構成が簡略化され、安価で信頼性の高い装置を得ることができる。

なお、回転体としてはローラ10に代えて、第10回のように回転駆動されるエンドレスベルト10Aとすることもできる。

回転体10・10Aにフィルム21を加熱体19に圧接させる機能と、フィルム21を駆動させる機能を持たせる構成は、本実施例装置のようなフィルムテンションフリータイプの装置（フィルム21の少なくとも一部はフィルム非駆動時もフィルム駆動時もテンションが加わらない状態にあるもの）、フィルムテンションタイプの装置（前述第13回例装置のもの）よう

に回転の長いフィルムを常に全周的にテンションを加えて張り状態にして駆動させるもの）にも、またフィルム取り扱い手段がセンサ・ソレノイド方式、リップ制御方式、フィルム端部（両側または片側）規制方式等の何れの場合でも、適用して同様の作用・効果を得ることができるが、殊にテンションフリータイプの装置構成のものに適用して最適である。

(7) 記録材シート排出速度について。

ニップ部Nに導入された被加熱材としての記録材シートPの加圧ローラ10（回転体）による搬送速度、即ち該ローラ10の周速度をV10とし、排出ローラ34の記録材シート排出搬送速度、即ち該排出ローラ34の周速度をV34としたとき、 $V_{10} > V_{34}$ の速度関係に設定するのがよい。その速度差は数%例えば1~3%程度の設定でよい。

装置に導入して使用できる記録材シートPの最大幅寸法をF（第8図参照）としたとき、フィルム21の幅寸法Cとの関係において、

39

40

$F < C$ の条件下では $V_{10} \leq V_{34}$ となる場合にはニップ部Nと排出ローラ34との両者間にまたがって搬送されている状態にある記録材シートPはニップ部Nを通過中のシート部分は排出ローラ34によって引っ張られる。

このとき、表面に離型性の良いPTFE等のコーティングがなされているフィルム21は加圧ローラ10と同一速度で搬送されている。一方記録材シートPには加圧ローラ10による搬送力の他に排出ローラ34による引っ張り搬送力も加わるため、加圧ローラ10の周速よりも速い速度で搬送される。つまりニップ部Nにおいて記録材シートPとフィルム21はスリップする状態を生じ、そのために記録材シートPがニップ部Nを通過している過程で記録材シートP上に未定着トナー像Ta（第7回）もしくは軟化・溶融状態となったトナー像Tbに乱れを生じさせる可能性がある。

そこで前記したように加圧ローラ10の周速度 V_{10} と排出ローラ34の周速度 V_{34} を

 $V_{10} > V_{34}$

の関係に設定することで、記録材シートPとフィルム21にはシートPに排出ローラ34による引っ張り力が作用せず加圧ローラ10の搬送力のみが与えられるので、シートPとフィルム21間のスリップにもとづく上記の画像乱れの発生を防止することができる。

排出ローラ34は本実施例では加熱装置100側に配設具備させてあるが、加熱装置100を組み込む画像形成装置等本機側に具備させてもよい。

(8) フィルム端部規制フランジ間隔について。

フィルム端部規制手段としての左右一対のフランジ部材22・23のフィルム端部規制面としての調節内面22a・23a間の間隔寸法をG（第8図）としたとき、フィルム21の幅寸法Cとの関係において、 $C < G$ の寸法関係に設定するのがよい。例えばCを230mmとしたときGは1~3mm程度大きく設定するのである。

即ち、フィルム21はニップ部Nにおいて

41

—1063—

42

例えば 200℃ 近い加熱体 19 の熱を受けて膨張して寸法 C が増加する。従って常温時におけるフィルム 21 の幅寸法 C とフランジ間隔寸法 G を C = G に設定してフィルム 21 の両端部をフランジ部材 22・23 で規制するようになると、装置稼働時には上述したフィルムの熱膨張により C > G の状態を生じる。フィルム 21 は例えば 50 μm 程度の薄膜フィルムであるために、C > G の状態ではフランジ部材 22・23 のフィルム端部規制面 22a・23a に対するフィルム端部当接圧力（端部圧）が増大してそれに耐え切れずには端部折れ、座屈等のダメージを受けることになると共に、フィルム端部圧の増加によりフィルム 21 の端部とフランジ部材 22・23 のフィルム端部規制面 22a・23a 間での摩擦力も増大するためにフィルムの搬送力が低下してしまうことにもなる。

C < G の寸法関係に設定することによって、加熱によりフィルム 21 が膨張しても、膨張量以上の隙間 (G - C) をフィルム 21 の両端部

4 3

- f. 装置に導入される記録材シート P の搬送方向の最大長さ寸法を μ_1 。
- g. 装置が画像加熱定着装置として転写式画像形成装置に組み込まれている場合において画像転写手段部から画像加熱定着装置としての該装置のニップ部 N までの記録材シート (転写材) P の搬送路長を μ_2 。

とする。

而して、 μ_1 と μ_2 との関係は

$$\mu_1 > \mu_2$$

の関係構成にする。

即ち、この種のフィルム加熱方式の装置では前記 μ_1 と μ_2 との関係は $\mu_1 < \mu_2$ と設定されており、また画像形成装置では前記 μ_1 と μ_2 との関係は $\mu_1 > \mu_2$ となっている。

このとき、 $\mu_1 \leq \mu_2$ では加熱定着手段の断面方向でフィルム 21 と記録材シート P がスリップ (ローラ 10 の周速に対してフィルム 21 の搬送速度が遅れる) して、加熱定着時に記録材シート P 上のトナー画像が乱されてしまう。

とフランジ部材のフィルム端部規制面 22a・23a 同に設けることによりフィルム 21 の両端部が同時にフランジ部材のフィルム端部規制面 22a・23a に当接することはない。

従ってフィルム 21 が熱膨張してもフィルム端部圧接力は増加しないため、フィルム 21 の端部ダメージを防止することが可能になると共に、フィルム駆動力も軽減させることができる。

(9) 各部材間の摩擦係数関係について。

- a. フィルム 21 の外周面に対するローラ (回転体) 10 表面の摩擦係数を μ_1 。
- b. フィルム 21 の内周面に対する加熱体 19 表面の摩擦係数を μ_2 。
- c. 加熱体 19 表面に対するローラ 10 表面の摩擦係数を μ_3 。
- d. 被加熱材としての記録材シート P 表面に対するフィルム 21 の外周面の摩擦係数を μ_4 。
- e. 記録材シート P 表面に対するローラ 10 表面の摩擦係数を μ_5 。

4 4

また、記録材シート P とフィルム 21 が一体でスリップ (ローラ 10 の周速に対してフィルム 21 と記録材シート P の搬送速度が遅れる) した場合には、転写式画像形成装置の場合では画像転写手段部において記録材シート (転写材) 上にトナー画像が転写される際に、やはり記録材上のトナー画像が乱されてしまう。

上記のように $\mu_1 > \mu_2$ とすることにより、断面方向でのローラ 10 に対するフィルム 21 と記録材シート P のスリップを防止することができる。

また、フィルム 21 の幅寸法 C と、回転体としてのローラ 10 の長さ寸法 H と、加熱体 19 の長さ寸法 D に関して、 $C < H$ 、 $C < D$ という条件において、

$$\mu_1 > \mu_3$$

の関係構成にする。

即ち、 $\mu_1 \leq \mu_3$ の関係では加熱定着手段の幅方向で、フィルム 21 とローラ 10 がスリップし、その結果フィルム 21 と記録材シート P が

4 5

—1054—

4 6

スリップし、加熱定着時に記録材シート上のトナー画像が乱されてしまう。

上記のように $\mu_1 > \mu_3$ の関係構成にすることで、幅方向、特に記録材シート P の外側でローラ 10 に対するフィルム 21 のスリップを防止することができる。

このように $\mu_1 > \mu_2$ 、 $\mu_1 > \mu_3$ することにより、フィルム 21 と記録材シート P の搬送速度は常にローラ 10 の周速度と同一にすることが可能となり、定着時または転写時の画像乱れを防止することができ、 $\mu_1 > \mu_2$ 、 $\mu_1 > \mu_3$ を同時に実施することにより、ローラ 10 の周速 (=プロセススピード) と、フィルム 21 及び記録材シート P の搬送速度を常に同一にすることが可能となり、転写式画像形成装置においては安定した定着画像を得ることができる。

4 7

のフィルム端部をその側のフィルム端部の規制部材としてのフランジ部材や、フィルムリブと係合案内部材等の手段で規制する、つまり第11回例装置においてフィルム 21 の寄り側 R の端部のみを規制部材 27 で規制することにより、フィルムの寄り制御を安定に且つ容易に行なうことが可能となる。これにより装置が画像加熱定着装置である場合では常に安定し良好な定着画像を得ることができる。

また、エンドレスフィルム 21 はニップ部 N を形成する加圧ローラ 10 により駆動されているため特別な駆動ローラは必要としない。

このような作業効果はフィルムに全周的にテンションをかけて駆動するテンションタイプの装置構成の場合でも、本実施例装置のようにテンションフリータイプの装置構成の場合でも同様の効果を得ることができるが、該手段構成はテンションフリータイプのものに殊に最適なものである。

(10) フィルムの寄り制御について。

第1～10回の実施例装置のフィルム寄り制御はフィルム 21 を中にしてその幅方向両端側にフィルム端部規制用の左右一対のフランジ部材 22・23 を配設してフィルム 21 の左右両方向の寄り移動 Q・R に対処したものであるが（フィルム両側端部規制式）、フィルム片側端部規制式として次のような構成も有効である。

即ち、フィルムの幅方向への寄り方向は常に左方 Q か右方 R への一方方向となるように、例えば、第11回例装置のように左右の加圧コイルばね 26・27 の駆動側のばね 27 の加圧力 f 27 が非駆動側のばね 26 の加圧力 f 26 に比べて高くなる ($f_{27} > f_{26}$) ように設定することでフィルム 21 を常に駆動側である右方 R へ寄り移動するようしたり、その他、加熱体 19 の形状やローラ 10 の形状を駆動端側と非駆動端側とで変化をつけてフィルムの搬送力をコントロールしてフィルムの寄り方向を常に一方のものとなるようにし、その寄り側

4 8

(11) 画像形成装置例

第12図は第1～10回例の画像加熱定着装置 100 を組み込んだ画像形成装置の一例の概略構成を示している。

本例の画像形成装置は転写式電子写真プロセス利用のレーザービームプリンタである。

60 はプロセスカートリッジであり、回転ドラム型の電子写真感光体（以下、ドラムと記す）61・帶電器 62・現像器 63・クリーニング装置 64 の4つのプロセス機器を包含させてある。このプロセスカートリッジは装置の開閉部 65 を開けて装置内を開放することで装置内の所定の位置に対して容易交換自在である。

両像形成スタート信号によりドラム 61 が矢示の時計方向に回転駆動され、その回転ドラム 61 面が帶電器 62 により所定の極性・電位に一様帶電され、そのドラムの帶電処理面に対してレーザースキャナ 66 から出力される、目的の画像情報の時系列電気デジタル信号に対応して変調されたレーザビーム 67 による走査

露光がなされることで、ドラム 6・1 面に目的の画像情報に対応した静電潜像が順次に形成されていく。その潜像は次いで現像器 6・3 でトナー画像として顕画化される。

一方、給紙カセット 6・8 内の記録材シート P が給紙ローラ 6・9 と分離パッド 7・0 との共機で 1 枚充分離送され、レジストローラ対 7・1 によりドラム 6・1 の回転と同期取りされてドラム 6・1 とそれに対向配置している転写ローラ 7・2 との定着部たる圧接ニップ部 7・3 へ給送され、該給送記録材シート P 面にドラム 6・1 面側のトナー画像が順次に転写されていく。

転写部 7・3 を通った記録材シート P はドラム 6・1 面から分離されて、ガイド 7・4 で定着装置 1・0・0 へ導入され、前述した該装置 1・0・0 の動作・作用で未定着トナー画像の加熱定着が実行されて出口 7・5 から画像形成物（プリント）として出力される。

転写部 7・3 を通って記録材シート P が分離されたドラム 6・1 面はクリーニング装置 6・4 で転写

残りトナー等の付着汚染物の除去を受けて残り送して作像に使用される。

本発明の加熱装置は上述例の画像形成装置の画像加熱定着装置としてだけでなく、その他、画像面加熱装置や出し装置としても効果的に活用することができる。

（発明の効果）

以上のように本発明のフィルム加熱方式の加熱装置はフィルムについてテンションフリー・タイプの構成のものであるから、フィルムの駆動力を低減することが可能となると共に、フィルムの寄り力を小さくできてフランジ部材等の簡単なフィルム端部規制手段でもってフィルムの寄り抑制を良好に行なうことができ、かつフィルム端部ダメージを防止し得、装置部品や組み立て精度をラフにすることも可能で、装置構成を簡略化・小型化・低コスト化でき、しかも安定性・信頼性のある装置となる。

5 1

4. 図面の簡単な説明

第 1 図は一実施例装置の横断面図。

第 2 図は縦断面図。

第 3 図は右側面図。

第 4 図は左側面図。

第 5 図は要部の分解斜視図。

第 6 図は非駆動時のフィルム状態を示した要部の拡大横断面図。

第 7 図は駆動時の同上図。

第 8 図は構成部材の寸法関係図。

第 9 図（A）・（B）は夫々回転体としてのローラ 1・0 の形状例を示した誇張形状図。

第 10 図は回転体として回転ベルトを用いた例を示す図。

第 11 図はフィルム片側端部規制式の装置例の横断面図。

第 12 図は画像形成装置例の概略構成図。

第 13 図はフィルム加熱方式の画像加熱定着装置の公知例の概略構成図。

5 2

1・9 は加熱体、2・1 はエンドレスフィルム、1・3 はステー、1・0 は回転体としてのローラ。

特許出願人 キヤノン株式会社
代理人 高梨幸雄

5 3

—1066—

5 4

第 5 図

第6図

第7図

第 8 図

第 9 図

第 10 図

第 12 図

第 13 図

