305 Lecture 18 - Building Complicated Truth Tables

Brian Weatherson

July 13, 2020

The Example

We are going to work out the truth table for this sentence:

$$(A \lor \neg B) \to (B \to (A \land C))$$

 $\boldsymbol{\cdot}$ How many rows should there be in the truth table?

How Many Rows

- How many rows should there be in the truth table?
- \cdot There are three (3) atomic sentences, so there should be $2^3=8$ rows.

Laying Out the Rows

- · The convention for these is a bit odd.
- · Here's one way to think about it.
- For the left-most column you fill the first half of the rows with T and then the second half of the rows with F.

First Column

4 В С	$(A \lor \neg B) \rightarrow (B \rightarrow (A \land C))$
Τ	
Τ	
Τ	
Τ	
F	
F	
F	
F	

Second Column

- Then the second column has one quarter T, followed by one quarter F, followed by one quarter T, followed by one quarter F.
- $\boldsymbol{\cdot}$ In this case that means we alternate every two rows.

Second Column

Α	В	С	(A	V	\sim	B) $ ightarrow$	(B	\rightarrow (A	&	C))
T	Т									
T	Τ									
T	F									
T	F									
F	Т									
F	Τ									
F	F									
F	F									

Third Column

- · From now on you do half as many rows between changes.
- In this table we did 4 rows with one value then 4 of another for column 1, 2 with one value then 2 with another for column 2, and now alternate every row for column 3.
- It's helpful to know the full algorithm in case you ever have to do this with 5 or more variables.
- · But I won't do that in this course.

Third Column

```
A B C \mid (A \lor \sim B) \rightarrow (B \rightarrow (A \& C))
T T T
TTF
TFT
TFF
F T T
F T F
FFT
FFF
```

Parsing the Sentence

Now we need to go back to our sentence.

$$(A \lor \neg B) \to (B \to (A \land C))$$

What is its main connective?

Parsing the Sentence

Now we need to go back to our sentence.

$$(A \lor \neg B) \to (B \to (A \land C))$$

What is its main connective?

• It's the first \rightarrow . The sentence is of the form $D \rightarrow E$, where D is $(A \lor \neg B)$ and E is $(B \rightarrow (A \land C))$

Building Up

So eventually, we will have the truth value for the whole sentence under the first \rightarrow .

- · But that's some distance away.
- While that's where we want to get to, we have to build from the inside out.
- The first thing to do is to repeat the values for the atomic sentences.

Atomic Replicator

АВС	(A V	¬ B)—	→(B —	→ (A /	(C))
ТТТ	Т	Т	Т	Т	Т
T T F	Т	Т	Т	Т	F
TFT	Т	F	F	Т	Т
T F F	Т	F	F	Т	F
$F^{T}T^{T}$	F	Т	Т	F	Т
FTF	F	Т	Т	F	F
FFT	F	F	F	F	Т
F F F	F	F	F	F	F

What can we fill in immediately?

Next Steps

- We have enough on the table to include the values for $\neg B$.
- And we have enough on the table to include the values for the A \wedge C on the far right.
- · We'll do these in order.

Negation

Everywhere B is T, $\neg B$ is F, so let's include all of those.

Α	В	C	(A	V ¬	В	\rightarrow (B	\rightarrow (A	∧ c))	
Τ	Τ	Т	Т	F	Т	Т	Т	Т	
Τ	Т	F	Т	F	Т	Т	Т	F	
Т	F	Т	Т		F	F	Т	Т	
Τ	F	F	Т		F	F	Т	F	
F	Т	Т	F	F	Т	Т	F	Т	
F	Т	F	F	F	Т	Т	F	F	
F	F	Т	F		F	F	F	Т	
F	F	F	F		F	F	F	F	

Negation (cont)

Everywhere B is F, $\neg B$ is T, so let's include all of those.

Α	В	C	(A	\vee \neg	В	\rightarrow (B	\rightarrow (A	∧ c))	
Т	Τ	Т	Т	F	Τ	Т	Т	Т	
Τ	T	F	Т	F	Т	Т	Т	F	
Τ	F	Т	Т	Т	F	F	Т	Τ	
Τ	F	F	Т	Т	F	F	Т	F	
F	Т	Т	F	F	Т	Т	F	Т	
F	T	F	F	F	Т	Т	F	F	
F	F	Т	F	Т	F	F	F	Т	
F	F	F	F	Т	F	F	F	F	

Conjunction

If A, C are both T, so is $A \wedge C$. So let's include those.

Α	В	С	(A	\vee \neg	В	\rightarrow (B	\rightarrow (A	\land	C))
Τ	Т	Т	Т	F	Τ	Т	Т	Т	Т
Τ	Т	F	Т	F	Τ	Т	Т		F
Т	F	Т	Т	Т	F	F	Т	Т	Т
Т	F	F	Т	Т	F	F	Т		F
F	Т	Т	F	F	Т	Т	F		Т
F	Т	F	F	F	Т	Т	F		F
F	F	Т	F	Т	F	F	F		Т
F	F	F	F	Т	F	F	F		F

Conjunction (cont)

And $A \wedge C$ is false everywhere else.

Α	В	C	(A	\vee \neg	В	$) \rightarrow (B$	$\rightarrow (\;A$	\land	C))
Т	Т	Т	Т	F	Τ	Т	Т	Т	Т
Т	T	F	Т	F	Τ	Т	Т	F	F
Τ	F	Т	Т	Т	F	F	Т	Т	Т
Τ	F	F	Т	Т	F	F	Т	F	F
F	Т	Т	F	F	Т	Т	F	F	Т
F	Т	F	F	F	Τ	Т	F	F	F
F	F	Т	F	Т	F	F	F	F	Т
F	F	F	F	Т	F	F	F	F	F

Complex Disjunction

- The next step is combining the values of A and $\neg B$ to get the value of $A \lor \neg B$.
- The main thing to remember here is what your inputs are.
- In this case it's not too confusing; it's the values immediately to either side of the V.
- · But that won't be the general case.

Disjunction

When A is T, so is $A \lor \neg B$.

Α	В	C	(A	\vee	\neg	B)	\rightarrow (B	$\rightarrow (\;A$	\land	C))
Т	Т	Т	Т	Т	F	Т	Т	Т	Т	Т
Τ	Т	F	Т	Т	F	Т	Т	Т	F	F
Т	F	Т	Т	Т	Т	F	F	Т	Т	Т
Т	F	F	Т	Т	Т	F	F	Т	F	F
F	Т	Т	F		F	Т	Т	F	F	Т
F	Т	F	F		F	Т	Т	F	F	F
F	F	Т	F		Т	F	F	F	F	Т
F	F	F	F		Т	F	F	F	F	F

Disjunction (cont)

And when $\neg B$ is T, so is $A \lor \neg B$.

Disjunction (part III)

Otherwise, $A \lor \neg B$ is **F**.

Α	В	С	(A	\vee	\neg	В)	\rightarrow (B	$\rightarrow \text{(A}$	\wedge	C))
Т	Т	Т	Т	Т	F	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	F	Τ	Т	Т	F	F
Т	F	Т	Т	Т	Τ	F	F	Т	Т	Т
T	F	F	Т	Т	Τ	F	F	Т	F	F
F	Т	Т	F	F	F	Τ	Т	F	F	Т
F	Т	F	F	F	F	Τ	Т	F	F	F
F	F	Т	F	Т	Τ	F	F	F	F	Т
F	F	F	F	Τ	Т	F	F	F	F	F

Conditional

- Now we have to do $B \rightarrow (A \land C)$.
- · We have to remember the table for \rightarrow TFTT.
- And we have to remember that what's on the right-hand side of this conditional is a complex sentence: A ∧ C.

Conditional Terminology

- It's helpful to recall our distinctive terminology for conditionals
- We'll often call the left-hand side of a conditional the antecedent.
 ('Ante' for before, if that helps.)

Conditional Terminology

- It's helpful to recall our distinctive terminology for conditionals
- We'll often call the left-hand side of a conditional the antecedent.
 ('Ante' for before, if that helps.)
- And we'll call the right-hand side the consequent (i.e., what comes after).
- We won't have fancy distinct terminology for the left-hand and right-hand sides of other sentences, because they are symmetric.

B is T, A \wedge C is T, so this is T \rightarrow T, i.e., T.

Α	В	C	(A	\vee	\neg	В	$) \rightarrow (B$	\rightarrow	(A	\land	C))
Т	Т	Т	Т	Т	F	Т	Т	Т	Т	Т	Т
T	Т	F	Т	Т	F	Т	Т		Т	F	F
Т	F	Т	Т	Т	Τ	F	F		Т	Т	Т
Т	F	F	Т	Т	Τ	F	F		Т	F	F
F	Т	Т	F	F	F	Т	Т		F	F	Τ
F	Т	F	F	F	F	Т	Т		F	F	F
F	F	Т	F	Т	Τ	F	F		F	F	Т
F	F	F	F	Т	Т	F	F		F	F	F

B is T, $A \land C \text{ is } F$, so this is $T \rightarrow F$, i.e., F.

Α	В	C	(A	\vee	\neg	B) $ ightarrow$	(B	\rightarrow (Α	\land	C))
Т	Т	Т	Т	Т	F	Т	Т	Τ	Т	Т	Т
Т	Т	F	Т	Т	F	Τ	Т	F	T	F	F
Т	F	Т	Т	Т	Т	F	F		T	Т	Τ
Т	F	F	Т	Т	Т	F	F		T	F	F
F	Т	Т	F	F	F	Τ	Т		F	F	Τ
F	Т	F	F	F	F	Т	Т		F	F	F
F	F	Т	F	Т	Т	F	F		F	F	Τ
F	F	F	F	Т	Т	F	F		F	F	F

B is \mathbf{F} , A \wedge C is \mathbf{T} , so this is $\mathbf{F} \rightarrow \mathbf{T}$, i.e., \mathbf{T} .

Α	В	С	(A	\vee	\neg	$B) \to$	(B	\rightarrow ((Α	\wedge	C))
Т	Τ	Т	Т	Т	F	Т	Т	Т	Т	Т	Т
Τ	Τ	F	Т	Т	F	Τ	Т	F	Т	F	F
Τ	F	Т	Т	Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т	F	F		Т	F	F
F	Τ	Т	F	F	F	Τ	Т		F	F	Т
F	Т	F	F	F	F	Т	Т		F	F	F
F	F	Т	F	Т	Т	F	F		F	F	Т
F	F	F	F	Т	Т	F	F		F	F	F

B is F, A \wedge C is F, so this is F \rightarrow F, i.e., T.

Α	В	C	(A	\vee	\neg	B) $ ightarrow$	(B	\rightarrow ((Α	\land	C))
Т	Т	Т	Т	Т	F	Т	Т	Т	Т	Т	Т
Τ	Т	F	Т	Т	F	Τ	Т	F	Т	F	F
Τ	F	Т	Т	Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Τ	Т		F	F	Т
F	Т	F	F	F	F	Т	Т		F	F	F
F	F	Т	F	Т	Т	F	F		F	F	Т
F	F	F	F	Т	Т	F	F		F	F	F

B is T, $A \land C \text{ is } F$, so this is $T \rightarrow F$, i.e., F.

Α	В	С	(A	V	\neg	B) $ ightarrow$	(B	\rightarrow (Α	\wedge	C))
Т	Т	Т	Т	Т	F	Τ	Т	Т	Τ	Т	Τ
Т	Т	F	Т	Т	F	Τ	Т	F	Τ	F	F
Т	F	Т	Т	Т	Т	F	F	Т	Τ	Т	Τ
Т	F	F	Т	Т	Τ	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Τ	Т	F	F	F	Τ
F	Т	F	F	F	F	Τ	Т		F	F	F
F	F	Т	F	Т	Т	F	F		F	F	Т
F	F	F	F	Т	Т	F	F		F	F	F

B is T, $A \land C \text{ is } F$, so this is $T \rightarrow F$, i.e., F.

Α	В	C	(A	\vee	\neg	B)	\rightarrow (В	\rightarrow	(A	\land	C))
Т	Т	Т	Т	Т	F	Т		Т	Т	Т	Т	Т
Т	Т	F	Т	Т	F	Т		Т	F	Т	F	F
Т	F	Т	Т	Т	Τ	F		F	Т	Т	Т	Т
Т	F	F	Т	Т	Т	F		F	Т	Т	F	F
F	Т	Т	F	F	F	Т		Т	F	F	F	Т
F	Т	F	F	F	F	Т		Т	F	F	F	F
F	F	Т	F	Т	Т	F		F		F	F	Т
F	F	F	F	Т	Т	F		F		F	F	F

Rows 7 and 8

 $B ext{ is } \mathbf{F}, A \wedge C ext{ is } \mathbf{F}, ext{ so this is } \mathbf{F} \rightarrow \mathbf{F}, ext{ i.e., } \mathbf{F}.$

Α	В	С	(A	\vee	\neg	В	$) \rightarrow 0$	(В	\rightarrow ((Α	\wedge	C))
Τ	Τ	Т	Т	Т	F	Т		Т	Т	Т	Т	Т
Τ	Τ	F	Т	Т	F	Т		Т	F	Т	F	F
Т	F	Т	Т	Т	Т	F		F	Т	Т	Т	Т
Т	F	F	Т	T	Т	F		F	Т	Т	F	F
F	Т	Т	F	F	F	T		Т	F	F	F	Т
F	Т	F	F	F	F	Т		Т	F	F	F	F
F	F	Т	F	Т	Т	F		F	Т	F	F	Т
F	F	F	F	Т	Т	F		F	Т	F	F	F

Almost Done

- · Now we just need to put the two parts together.
- We have a conditional whose left-hand side, the antecedent, is A $\vee \neg B$.
- And the right-hand side, the consequent, is $B \to (A \land C)$.
- In each row we've computed the truth values for the antecedent and consequent.
- · Now it's a matter of just looking up how they combine.
- Remember that the truth table for \rightarrow is TFTT.
- To help, I've started by bolding the columns for the antecedent and consequent. (Not actually bold, but something more visible on projector.)

Getting There

Bolding the two relevant columns.

A B C	(A	\vee	\neg	B)	ightarrow (B	\rightarrow	(A	\land	C))
TTT	Т	T	F	Т	Т	T	Т	Т	Т
T T F	Т	\mathbb{T}	F	T	Т	F	Т	F	F
TFT	Т	\mathbb{T}	Т	F	F	T	Τ	Т	Т
T F F	Т	T	Т	F	F	T	Τ	F	F
FTT	F	F	F	T	Т	F	F	F	Т
FTF	F	F	F	Т	Т	F	F	F	F
FFT	F	F	Т	F	F	T	F	F	Т
F F F	F	F	Т	F	F	T	F	F	F

That's $T \rightarrow T$, i.e., T.

A B C
$$(A \lor \neg B) \rightarrow (B \rightarrow (A \land C))$$

T T T T T T T T T T T T T T

T T F T T T F T T T F T F T

T F T T T T T F T T T T T

T F F T T T F T F T F T F T

F T F T F T F T F T F T

F F F T F T F T F T F T

F F F T F T F T F T

That's $T \rightarrow F$, i.e., F.

That's $T \rightarrow T$, i.e., T.

That's also $T \rightarrow T$, i.e., T.

Rows 5 and 6

That's $\mathbf{F} \to \mathbf{F}$, i.e., \mathbf{T} .

Rows 7 and 8

That's $F \rightarrow T$, i.e., T.

Summing Up

It's true everywhere except when A, B are both T, and C is F.

Α	В	C	(A	\vee	\neg	В	\rightarrow (В	\rightarrow	(A	\land	C))
Т	Т	Т	Т	T	F	Т	Т	Τ	T	Т	Т	Т
Τ	Т	F	Т	\mathbb{T}	F	Т	F	T	F	Т	F	F
Τ	F	Т	Т	\mathbb{T}	Т	F	Т	F	T	Т	Т	Т
Τ	F	F	Т	\mathbb{T}	Т	F	Т	F	T	Т	F	F
F	Т	Т	F	F	F	Т	Τ	T	F	F	F	Т
F	Т	F	F	F	F	Т	Т	Т	F	F	F	F
F	F	Т	F	F	Т	F	Т	F	T	F	F	Т
F	F	F	F	F	Т	F	Τ	F	T	F	F	F

