工科数学分析

贺丹 (东南大学)

本节主要内容:

本节主要内容:

• 平面曲线的曲率

本节主要内容:

- 平面曲线的曲率
- 空间曲线的曲率

本节主要内容:

- 平面曲线的曲率
- 空间曲线的曲率
- 曲率半径与曲率圆

曲线弧 \widehat{MN} 两端切线的夹角 $\Delta\alpha$, 可以看作是点M 沿曲线移动到点N时, 切线MT 随着转动到NT' 所转过的角, 故 $\Delta\alpha$ 又称为转角.

曲线弧 \widehat{MN} 两端切线的夹角 $\Delta\alpha$, 可以看作是点M 沿曲线移动到点N时, 切线MT 随着转动到NT' 所转过的角, 故 $\Delta\alpha$ 又称为转角.

决定曲线弯曲程度的两个因素:

曲线弧 \widehat{MN} 两端切线的夹角 $\Delta\alpha$, 可以看作是点M 沿曲线移动到点N时, 切线MT 随着转动到NT' 所转过的角, 故 $\Delta\alpha$ 又称为转角.

决定曲线弯曲程度的两个因素:

(1) 曲线的弧长;

曲线弧 \widehat{MN} 两端切线的夹角 $\Delta\alpha$, 可以看作是点M 沿曲线移动到点N时, 切线MT 随着转动到NT' 所转过的角, 故 $\Delta\alpha$ 又称为转角.

决定曲线弯曲程度的两个因素:

- (1) 曲线的弧长;
- (2) 弧两端切线的转角.

$$\widehat{MN} = \widehat{MN_1}, \, \Delta\alpha_1 < \Delta\alpha,$$

$$\widehat{MN} = \widehat{MN_1}, \, \Delta\alpha_1 < \Delta\alpha,$$

弧长若相等,角大弯度大.

 M_1

M

Δα

$$\widehat{MN} = \widehat{MN}_1, \, \Delta \alpha_1 < \Delta \alpha,$$
 弧长若相等,角大弯度大.

$$\widehat{MN} = \widehat{MN_1}, \, \Delta\alpha_1 < \Delta\alpha,$$

弧长若相等,角大弯度大.

$$\Delta \alpha_1 = \Delta \alpha, \ \widehat{MN} > \widehat{MN_1},$$

$$\widehat{MN} = \widehat{MN}_1, \, \Delta \alpha_1 < \Delta \alpha,$$
 弧长若相等,角大弯度大.

$$\Delta \alpha_1 = \Delta \alpha, \ \widehat{MN} > \widehat{MN_1},$$
转角若相等, 弧长弯度小.

弧长若相等, 角大弯度大.

$$\Delta \alpha_1 = \Delta \alpha, \ \widehat{MN} > \widehat{MN_1},$$
转角若相等, 弧长弯度小.

综上分析可知,弧的弯曲程度可用弧两端切线的转角与弧度之比 $\frac{\Delta \alpha}{\widehat{MN}}$ 来描述,比值越大,弧的弯曲程度就越大,比值越小,弧的弯曲程度就越小.

定义: 设L为平面上的光滑曲线,在L上取定一点 M_0 作为度量弧长的基点.设点M是曲线L上任一点,弧 $\widehat{M_0M}$ 的长为s,点M处曲线的切线的倾角为 α .点M'是曲线L上的另一点,弧 $\widehat{M_0M'}$ 的长

为 $s+\Delta s$,即弧 $\widehat{MM'}$ 的长为 $|\Delta s|$.动点从M沿曲线移动到M'时切线的转角为 $|\Delta lpha|$,称 $\left|\frac{\Delta lpha}{\Delta s}\right|$ 称为弧段 $\widehat{MM'}$ 的平均曲率,记为 \overline{K} .

定义: 设L为平面上的光滑曲线,在L上取定一点 M_0 作为度量弧长的基点.设点M是曲线L上任一点,弧 $\widehat{M_0M}$ 的长为s,点M处曲线的切线的倾角为 α .点M'是曲线L上的另一点,弧 $\widehat{M_0M'}$ 的长

为 $s+\Delta s$,即弧 $\widehat{MM'}$ 的长为 $|\Delta s|$.动点从M沿曲线移动到M'时切线的转角为 $|\Delta lpha|$,称 $\left|\frac{\Delta lpha}{\Delta s}\right|$ 称为弧段 $\widehat{MM'}$ 的平均曲率,记为 \overline{K} .

如果当 $\Delta s \to 0$ 时(即点M'沿曲线L趋向于M时), 平均曲率 \bar{K} 的极限存在, 则称这个极限为曲线L在点M处的曲率, 记为K, 即

定义: 设L为平面上的光滑曲线,在L上取定一点 M_0 作为度量弧长的基点.设点M是曲线L上任一点,弧 $\widehat{M_0M}$ 的长为s,点M处曲线的切线的倾角为 α .点M'是曲线L上的另一点,弧 $\widehat{M_0M'}$ 的长

为 $s+\Delta s$,即弧 $\widehat{MM'}$ 的长为 $|\Delta s|$.动点从M沿曲线移动到M'时切线的转角为 $|\Delta lpha|$,称 $\left|\frac{\Delta lpha}{\Delta s}\right|$ 称为弧段 $\widehat{MM'}$ 的平均曲率,记为 $ar{K}$.

如果当 $\Delta s \to 0$ 时(即点M'沿曲线L趋向于M时), 平均曲率 \bar{K} 的极限存在, 则称这个极限为曲线L在点M处的曲率, 记为K, 即

$$K = \left| \lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} \right|.$$

例1. 求直线 L上各点处的曲率.

例1. 求直线 L上各点处的曲率.

解: 对于直线来说, 切线与直线本身重合, 当点沿直线移动时, 切线的倾角 α 不变, 即 $\Delta \alpha = 0$, 从而

例1. 求直线 L上各点处的曲率.

解: 对于直线来说, 切线与直线本身重合, 当点沿直线移动时, 切线的倾角 α 不变, 即 $\Delta \alpha = 0$, 从而

$$K = \left| \lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} \right| = 0,$$

例1. 求直线L上各点处的曲率.

解: 对于直线来说, 切线与直线本身重合, 当点沿直线移动时, 切线的倾角 α 不变, 即 $\Delta \alpha = 0$, 从而

$$K = \left| \lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} \right| = 0,$$

即直线上各点处的曲率都是零.

解: 在点M, M'处圆的切线 所夹的角 $\Delta \alpha$ 等于 $\angle MDM$ ',

 \mathbf{M} : 在点M, M'处圆的切线 所夹的角 $\Delta \alpha$ 等于 $\angle MDM$ ',

$$\overline{\mathbf{m}} \angle MDM' = \frac{\Delta s}{R},$$

 \mathbf{M} : 在点M, M'处圆的切线 所夹的角 $\Delta \alpha$ 等于 $\angle MDM$ ',

$$\overline{\mathbb{m}} \angle MDM' = \frac{\Delta s}{R},$$

$$\therefore \frac{\Delta \alpha}{\Delta s} = \frac{\frac{\Delta s}{R}}{\Delta s} = \frac{1}{R}$$

解: 在点M, M'处圆的切线 所夹的角 $\Delta \alpha$ 等于 $\angle MDM'$,

$$\overline{m} \angle MDM' = \frac{\Delta s}{R},$$

$$\therefore \frac{\Delta \alpha}{\Delta s} = \frac{\frac{\Delta s}{R}}{\Delta s} = \frac{1}{R},$$

$$K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \frac{1}{R}.$$

解: 在点M, M'处圆的切线 所夹的角 $\Delta \alpha$ 等于 $\angle MDM$ ',

$$\overline{m} \angle MDM' = \frac{\Delta s}{R},$$

$$\therefore \frac{\Delta \alpha}{\Delta s} = \frac{\frac{\Delta s}{R}}{\Delta s} = \frac{1}{R},$$

$$K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \frac{1}{R}.$$

结论:

 \mathbf{M} : 在点M, M'处圆的切线

所夹的角 $\Delta \alpha$ 等于 $\angle MDM'$,

$$\overline{\mathbf{m}} \angle MDM' = \frac{\Delta s}{R},$$

$$\therefore \frac{\Delta \alpha}{\Delta s} = \frac{\frac{\Delta s}{R}}{\Delta s} = \frac{1}{R},$$

$$K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \frac{1}{R}.$$

结论: (1) 圆上各点处的曲率都相等, 且 $K=\frac{1}{R}$.

解: 在点M, M'处圆的切线 所夹的角 $\Delta \alpha$ 等于 $\angle MDM'$,

$$\overline{\mathbb{m}}\angle MDM' = \frac{\Delta s}{R},$$

$$\therefore \frac{\Delta \alpha}{\Delta s} = \frac{\frac{\Delta s}{R}}{\Delta s} = \frac{1}{R},$$

$$K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \frac{1}{R}.$$

- 结论: (1) 圆上各点处的曲率都相等, 且 $K=\frac{1}{R}$.
 - (2) 半径越小, 曲率越大, 圆弧弯曲得越厉害.

曲率的计算公式

曲率的计算公式

设曲线y = f(x), f(x)具有二阶导数,

设曲线
$$y = f(x), f(x)$$
具有二阶导数,

$$\because \tan \alpha = y',$$

设曲线y = f(x), f(x)具有二阶导数,

$$\because \tan \alpha = y',$$

$$\therefore \alpha = \arctan y', \, d\alpha = \frac{y''}{1 + y'^2} dx,$$

设曲线y = f(x), f(x)具有二阶导数,

$$\because \tan \alpha = y',$$

$$\therefore \alpha = \arctan y', \, d\alpha = \frac{y''}{1 + y'^2} dx,$$

$$\overline{\mathbf{m}} \, \mathrm{d} s = \sqrt{1 + y'^2} \, \mathrm{d} x,$$

设曲线y = f(x), f(x)具有二阶导数,

$$\because \tan \alpha = y',$$

$$\therefore \alpha = \arctan y', \, d\alpha = \frac{y''}{1 + y'^2} dx,$$

$$\overline{\mathbf{m}} ds = \sqrt{1 + y'^2} dx,$$

$$\therefore K = \left| \frac{\mathrm{d}\alpha}{\mathrm{d}s} \right| = \left| \frac{y''}{(1 + y'^2)^{3/2}} \right|.$$

解:
$$y = \frac{1}{x}$$
, $y' = -\frac{1}{x^2}$, $y'' = \frac{2}{x^3}$,

解: ∵
$$y = \frac{1}{x}$$
, $y' = -\frac{1}{x^2}$, $y'' = \frac{2}{x^3}$,

$$\therefore y'\big|_{x=1} = -1, \ y''\big|_{x=1} = 2,$$

解: ∵
$$y = \frac{1}{x}$$
, $y' = -\frac{1}{x^2}$, $y'' = \frac{2}{x^3}$,

$$\therefore y'\big|_{x=1} = -1, \ y''\big|_{x=1} = 2,$$

$$\therefore K = \frac{2}{[1 + (-1)^2]^{3/2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

例4. 求椭圆
$$\begin{cases} x = 3\cos t \\ y = 4\sin t \end{cases}$$
 在 $t = \frac{\pi}{4}$ 处的曲率.

例4. 求椭圆 $\begin{cases} x = 3\cos t \\ y = 4\sin t \end{cases}$ 在 $t = \frac{\pi}{4}$ 处的曲率.

解:
$$y'|_{t=\frac{\pi}{4}} = -\frac{4\cos t}{3\sin t}\Big|_{t=\frac{\pi}{4}} = -\frac{4}{3}$$
,

例4. 求椭圆 $\begin{cases} x = 3\cos t \\ y = 4\sin t \end{cases}$ 在 $t = \frac{\pi}{4}$ 处的曲率.

$$\mathbf{H}: \ y'\big|_{t=\frac{\pi}{4}} = -\frac{4\cos t}{3\sin t}\bigg|_{t=\frac{\pi}{4}} = -\frac{4}{3},$$

$$y''|_{t=\frac{\pi}{4}} = \frac{\frac{4}{3}\csc^2 t}{-3\sin t}\Big|_{t=\frac{\pi}{4}} = -\frac{8\sqrt{2}}{3^2},$$

例4. 求椭圆
$$\begin{cases} x = 3\cos t \\ y = 4\sin t \end{cases}$$
 在 $t = \frac{\pi}{4}$ 处的曲率.

$$\mathbf{H}: \ y'\big|_{t=\frac{\pi}{4}} = -\frac{4\cos t}{3\sin t}\bigg|_{t=\frac{\pi}{4}} = -\frac{4}{3},$$

$$y''|_{t=\frac{\pi}{4}} = \frac{\frac{4}{3}\csc^2 t}{-3\sin t}\Big|_{t=\frac{\pi}{4}} = -\frac{8\sqrt{2}}{3^2},$$

$$\therefore K = \left| \frac{-\frac{8\sqrt{2}}{3^2}}{(1 + (-\frac{4}{3})^2)^{\frac{3}{2}}} \right| = \frac{\frac{8\sqrt{2}}{3^2}}{\frac{125}{27}} = \frac{24\sqrt{2}}{125}.$$

$$\mathbf{H}$$: $y = ax^2 + bx + c$, $y' = 2ax + b$, $y'' = 2a$,

$$\mathbf{H}: \ y = ax^2 + bx + c, \ y' = 2ax + b, \ y'' = 2a,$$

$$K = \frac{|2a|}{[1 + (2ax + b)^2]^{3/2}},$$

$$\mathbf{H}$$
: $y = ax^2 + bx + c$, $y' = 2ax + b$, $y'' = 2a$,

$$K = \frac{|2a|}{[1 + (2ax + b)^2]^{3/2}},$$

∵ *K* 的分子是常数|2*a*|,

$$\mathbf{H}$$
: $y = ax^2 + bx + c$, $y' = 2ax + b$, $y'' = 2a$,

$$K = \frac{|2a|}{[1 + (2ax + b)^2]^{3/2}},$$

- :: K 的分子是常数|2a|,
- \therefore 只要分母最小, K就最大,

$$\mathbf{M}$$: $y = ax^2 + bx + c$, $y' = 2ax + b$, $y'' = 2a$,

$$K = \frac{|2a|}{[1 + (2ax + b)^2]^{3/2}},$$

- ·: K 的分子是常数|2a|,
- ∴ 只要分母最小, K就最大,
- \therefore 抛物线在顶点 $(-\frac{b}{2a}, \frac{4ac-b^2}{4a})$ 处的曲率最大.


```
定理7.1
```


定理7.1

设空间光滑曲线 Γ 的方程为 $\mathbf{r}(t)$, 其中t 曲线的参数, $\mathbf{r}(t)$ 二阶可导, 且 $\mathbf{r}'(t) \neq \mathbf{0}$, 则 Γ 在对应点t 处的曲率为

$$K(t) = \frac{\parallel \mathbf{r}'(t) \times \mathbf{r}''(t) \parallel}{\parallel \mathbf{r}'(t) \parallel^3}.$$

定理7.1

设空间光滑曲线 Γ 的方程为 $\mathbf{r}(t)$, 其中t 曲线的参数, $\mathbf{r}(t)$ 二阶可导, 且 $\mathbf{r}'(t) \neq \mathbf{0}$, 则 Γ 在对应点t 处的曲率为

$$K(t) = \frac{\parallel \mathbf{r}'(t) \times \mathbf{r}''(t) \parallel}{\parallel \mathbf{r}'(t) \parallel^3}.$$

例6. 求螺旋线 $r = (a\cos t, a\sin t, kt)$ 的曲率(a > 0).

定理7.1

设空间光滑曲线 Γ 的方程为 $\mathbf{r}(t)$, 其中t 曲线的参数, $\mathbf{r}(t)$ 二阶可导, 且 $\mathbf{r}'(t) \neq \mathbf{0}$, 则 Γ 在对应点t 处的曲率为

$$K(t) = \frac{\parallel \mathbf{r}'(t) \times \mathbf{r}''(t) \parallel}{\parallel \mathbf{r}'(t) \parallel^3}.$$

例6. 求螺旋线 $r = (a \cos t, a \sin t, kt)$ 的曲率(a > 0).

答案:
$$K = \frac{a}{a^2 + k^2}$$
.

定义: 设曲线C点M(x,y)处 的曲率为 $K(K \neq 0)$,作点M处 曲线C的法线,且在曲线凹向 一侧取一点D,使 $|MD|=\frac{1}{K}=\rho$.

定义: 设曲线C点M(x,y)处 的曲率为 $K(K \neq 0)$,作点M处 曲线C的法线,且在曲线凹向 一侧取一点D,使 $|MD|=\frac{1}{K}=\rho$.

以D为圆心, ρ 为半径的圆称为曲线在

点M的曲率圆,圆心D称为曲线在点M的曲率中心,半径 ρ 称为曲线在点M的曲率半径.

