*** 7.4 关系的性质

- □自反性
- □反自反性
- □对称性
- □反对称性
- □ 传递性

** 自反性和反自反性

定义7.11 设R为A上的关系,

(1) 若∀x(x∈A→⟨x, x⟩∈R),则称R在A上是自反(reflexivity)的。

R是非自反的 ⇔ ∃x(x∈A ∧ ¬xRx)

(2) 若∀x(x∈A→⟨x, x>∉R),则称R在A上是反自反 (irreflexivity)的。

R是非反自反的 ⇔ ∃x(x∈A ∧ xRx)

例如 全域关系 E_A ,恒等关系 I_A ,小于等于关系 I_A ,整除关系 I_A ,都是为 I_A 上的自反关系。

包含关系R是给定集合族A上的自反关系。

小于关系和真包含关系都是给定集合或集合族上的反自反关 系

- □命题6: R是自反的
 - $\Leftrightarrow I_A \subseteq R$
 - ⇔ R-1是自反的(关系R的 R-1 的逆关系)
 - ⇔ M(R)主对角线上的元素全为1
 - ⇔ G(R)的每个顶点处均有环. #

ジ 反首反性(irreflexivity)

- □命题7: R是反自反的
 - $\Leftrightarrow I_A \cap R = \emptyset$
 - ⇔ R-1是反自反的
 - ⇔ M(R)主对角线上的元素全为0
 - ⇔ G(R)的每个顶点处均无环. #

:: 自反性(举例)

例 下列为集合A={1,2,3}上两个关系R和S的关系图。

例下列为集合A={1,2,3}上两个关系R₁和R₂的关系矩阵。

$$M_{R_1} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \qquad M_{R_2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$

:: 反自反性(举例)

例下列为集合A={1,2,3}上两个关系R和S的关系图。

例下列为集合A={1,2,3}上两个关系R₁和R₂的关系矩阵。

$$M_{R_1} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad M_{R_2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

:: 自反,自反性(分类)

自反, 反自反? Ø上的空关系

∷ 例7.10

例7. 10 设A={1, 2, 3}, R₁, R₂, R₃是A上的关系, 其中 R₁={<1, 1>, <2, 2>} R₂={<1, 1>, <2, 2>, <3, 3>, <1, 2>} R₃={<1, 3>} 说明R₁, R₂和R₃是否为A上的自反关系和反自反关系。

解答

R₁既不是自反的也不是反自反的,

 R_2 是自反的,

R₃是反自反的。

:: 对称性和反对称性

定义7.12 设R为A上的关系,

(1) 若∀x∀y(x, y∈A∧⟨x, y>∈R→⟨y, x>∈R), 则称R为A上对称 (symmetry)的关系。

R非对称 $\Leftrightarrow \exists x \exists y (x \in A \land y \in A \land x R y \land \neg y R x)$

(2)若∀x∀y(x, y∈A∧<x, y>∈R∧<y, x>∈R→x=y),则称R为A上 的反对称(antisymmetry)关系。

R非反对称⇔∃x∃y(x∈A∧y∈A∧xRy∧yRx∧x≠y)

例如

A上的全域关系E_A,恒等关系I_A和空关系都是A上的对称关系。 恒等关系I_A和空关系也是A上的反对称关系。

但全域关系E_A一般不是A上的反对称关系,除非A为单元集或空集。

··· 对称性(symmetry)

- □命题8: R是对称的
 - $\Leftrightarrow R^{-1}=R$
 - ⇔ R-1是对称的
 - ⇔ M(R)是对称的
 - → G(R)的任何两个顶点之间若有边,则必有两条方向相反的有向边. #

∷ 反对称性(antisymmetry)

- □ 命题9 R是反对称的
 - $\Leftrightarrow R^{-1} \cap R \subseteq I_A$
 - ⇔ R-1是反对称的
 - ⇔ 在M(R)中, $\forall i \forall j (i \neq j \land r_{ij} = 1 \rightarrow r_{ji} = 0)$
 - ⇔ 在**G**(R)中, $\forall x_i \forall x_j (i \neq j)$, 若有有向边 $\langle x_i, x_j \rangle$, 则必没有 $\langle x_i, x_i \rangle$. #

对称性(举例)

$$M_{R_1} = egin{bmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{bmatrix},$$

∵ 反对称性(举例)

∷ 对称,反对称(分类)

:: 例7.11

例7. 11 设A={1, 2, 3}, R_1 , R_2 , R_3 和 R_4 都是A上的关系,其中

$$R_1 = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle\}$$

$$R_2 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$$

$$R_3 = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle\}$$

$$R_A = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 3 \rangle\}$$

说明R₁, R₂, R₃和R₄是否为A上对称和反对称的关系。

解答 R₁既是对称也是反对称的。

R₂是对称的但不是反对称的。

R₃是反对称的但不是对称的。

 R_4 既不是对称的也不是反对称的。

***传递性

定义7.13 设R为A上的关系,若

则称R是A上的传递(transitivity)关系。

例如

A上的全域关系E_A, 恒等关系I_A和空关系都是A上的传递关系。 小于等于关系,整除关系和包含关系也是相应集合上的传递 关系。

小于关系和真包含关系仍旧是相应集合上的传递关系。

*: 传递性(transitivity)

□R非传递⇔

 $\exists x \exists y \exists z (x \in A \land y \in A \land z \in A \land x R y \land y R z \land \neg x R z)$

□ 命题10: R是传递的

⇔ R°R⊂R ⇔ R⁻¹是传递的

⇔ 在M(R°R)中, \forall i \forall j,若 r_{ij} '=1,则M(R)中相应的元素 r_{ii} =1.

⇔ 在G(R)中, $\forall x_i \forall x_j \forall x_k$, 若有有向边 $\langle x_i, x_j \rangle$, $\langle x_j, x_k \rangle$, 则必有有向边 $\langle x_i, x_k \rangle$. #

:: 传递性(举例)

∷ 传递(分类)

传递

… 例7.12

例7. 12 设A={1, 2, 3}, R_1 , R_2 , R_3 是A上的关系,其中 R_1 ={<1, 1>, <2, 2>} R_2 ={<1, 2>, <2, 3>} R_3 ={<1, 3>}

说明R₁, R₂和R₃是否为A上的传递关系。

解答

 R_1 和 R_3 是A上的传递关系, R_2 不是A上的传递关系。

:: 关系性质的等价描述

- 定理7.9 设R为A上的关系,则
 - (1) R在A上自反当且仅当 I_A ⊆ R
 - (2) R在A上反自反当且仅当 R∩I₄=∅
 - (3) R在A上对称当且仅当 R=R-1
 - (4) R在A上反对称当且仅当 R∩R⁻¹ ⊆ I_A
 - (5)R在A上传递当且仅当 R°R⊆R

分析

关系性质的证明方法

□ 利用该定理可以从关系的集合表达式来判断或证明关系的性质。

:: 定理7.9 (1)的证明

(1) R在A上自反当且仅当 $I_A \subseteq R$

必要性。

任取<x,y>,有

 $\langle x, y \rangle \in I_A$

 \Rightarrow x, y \in A \land x = y

 $\Rightarrow \langle x, y \rangle \in \mathbb{R}$

所以 I₄ ⊆ R

充分性。

任取x,有

 $x \in A$

 $\Rightarrow \langle x, x \rangle \in I_A$

 $\Rightarrow \langle x, x \rangle \in \mathbb{R}$

所以 R在A上是自反的。

** 定理7.9 (2)的证明

(2) R在A上反自反当且仅当 R∩I_A=Ø

必要性。用反证法。

假设 $R \cap I_A \neq \emptyset$,

必存在⟨x, y⟩∈R∩I_A。

由于I_A是A上恒等关系,

可知 x∈A且⟨x, x⟩∈R。

这与R在A上是反自反的相矛盾。

充分性。

任取x,有

 $x \in A$

 $\Rightarrow \langle x, x \rangle \in I_A$

 $\Rightarrow \langle x, x \rangle \notin R \quad (R \cap I_A = \emptyset)$

所以 R在A上是反自反的。

** 定理7.9 (3)的证明

(3) R在A上对称当且仅当 R=R-1

必要性。

任取<x, y>,有

 $\langle x, y \rangle \in \mathbb{R}$

 $\Leftrightarrow \langle x, y \rangle \in \mathbb{R}^{-1}$

所以 R=R-1

充分性。

任取<x,y>,

由 R=R⁻¹ 得

 $\langle x, y \rangle \in \mathbb{R}$

 $\Rightarrow \langle y, x \rangle \in \mathbb{R}^{-1}$

 $\Rightarrow \langle y, x \rangle \in \mathbb{R}$

所以 R在A上是对称的。

:: 定理7.9 (4)的证明

(4) R在A上反对称当且仅当 R∩R⁻¹ ⊆ I_A必要性。充分性。

任取<x,y>,有 $\langle x, y \rangle \in R \cap R^{-1}$ $\Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$ $\Rightarrow \langle x, y \rangle \in \mathbb{R} \land \langle y, x \rangle \in \mathbb{R}$ ⇒ x=y (R是反对称的) $\Rightarrow \langle x, y \rangle \in I_{\Lambda}$ 所以 R∩R-1 ⊆I_A

任取<x, y>, 则有 $\langle x, y \rangle \in \mathbb{R} \ \land \ \langle y, x \rangle \in \mathbb{R}$ $\Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$ $\Rightarrow \langle x, y \rangle \in R \cap R^{-1}$ $\Rightarrow \langle x, y \rangle \in I_A \quad (R \cap R^{-1} \subseteq I_A)$ $\Rightarrow x=y$ 所以 R在A上是反对称的。

** 定理7.9 (5)的证明

(5) R在A上传递当且仅当 R°R⊆R 必要性。任取⟨x, y⟩, 有

$$\langle x, y \rangle \in \mathbb{R}^{\circ}\mathbb{R}$$

- $\Rightarrow \exists t (\langle x, t \rangle \in R \land \langle t, y \rangle \in R)$
- ⇒ <x, y>∈R (因为R在A上是传递的)

所以 R°R⊆R。

充分性。任取<x, y>, <y, z>∈R, 则

$$\langle x, y \rangle \in \mathbb{R} \land \langle y, z \rangle \in \mathbb{R}$$

- $\Rightarrow \langle x, z \rangle \in \mathbb{R}^{\circ}\mathbb{R}$
- ⇒ ⟨x, z⟩∈R (因为R°R_R)

所以 R在A上是传递的。

… 例7.13

例7.13 设A是集合, R_1 和 R_2 是A上的关系,证明:

- (1) 若R₁, R₂是自反的和对称的,则R₁UR₂也是自反的和对称的。
- (2) 若R₁和R₂是传递的,则R₁∩R₂也是传递的。
- (3) R_1 , R_2 自反 \Rightarrow R_1 ° R_2 自反.
- (4) R_1 , R_2 反自反 \Rightarrow $R_1 \cap R_2$ 反自反.
- (6) R₁对称 ⇒ ~R₁对称.
- (7) R_1 反对称 $\Rightarrow R_1^{-1}$ 反对称.

:: 例7.13 (1)的证明

(1) 若R₁, R₂是自反的和对称的,则R₁UR₂也是自反的和对称的。

由于R₁和R₂是A上的自反关系,故有

$$I_A \subseteq R_1 \land I_A \subseteq R_2$$

从而得到 $I_A \subseteq R_1 \cup R_2$ 。

根据定理7.9可知 R₁UR₂在A上是自反的。

再由R₁和R₂的对称性有

$$R_1 = R_1^{-1} \text{ in } R_2 = R_2^{-1}$$

根据练习七第18题的结果有

$$(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1} = R_1 \cup R_2$$

从而证明了R₁UR₂也是A上对称的关系。

:: 例7.13 (2)的证明

(2) 若R₁和R₂是传递的,则R₁∩R₂也是传递的。

由R₁和R₂的传递性有

$$R_1 \circ R_1 \subseteq R_1 \Rightarrow R_2 \circ R_2 \subseteq R_2$$

再使用定理7.4得

$$(R_1 \cap R_2) \circ (R_1 \cap R_2)$$

$$\subseteq R_1 \circ R_1 \cap R_1 \circ R_2 \cap R_2 \circ R_1 \cap R_2 \circ R_2$$

$$\subseteq R_1 \cap R_2$$

从而证明了R₁ ∩ R₂也是A上的传递关系。

** 例7.13 (3)的证明

- \square (3) R_1, R_2 自反 $\Rightarrow R_1 \circ R_2$ 自反.
- □ 证明:∀x,

$$\Rightarrow xR_1x \wedge xR_2x$$

$$\Rightarrow xR_1 \circ R_2x$$

 $\therefore R_1, R_2$ 自反 $\Rightarrow R_1 \circ R_2$ 自反.

··· 例7.13 (4)的证明

- □ (4) R_1 , R_2 反自反 \Rightarrow R_1 ∩ R_2 反自反.
- □ 证明: (反证) 若 $R_1 \cap R_2$ 非反自反,则 $\exists x \in A$, $x(R_1 \cap R_2)x$

 $\Leftrightarrow xR_1x \wedge xR_2x$

与R₁, R₂反自反矛盾!

∴ R_1 , R_2 反自反 \Rightarrow $R_1 \cap R_2$ 反自反. #

··· 例7.13 (5)的证明

- □ (5) R_1, R_2 对称 $\Rightarrow R_1 R_2$ 对称.
- □ 证明: ∀x, y∈A,

$$x(R_1-R_2)y$$

$$\Leftrightarrow xR_1y \wedge \neg xR_2y$$

$$\Leftrightarrow$$
 yR₁x $\land \neg yR_2x$ (R₁, R₂对称)

$$\Leftrightarrow$$
 y (R₁-R₂) x

$$\therefore$$
 R₁, R₂对称 \Rightarrow R₁-R₂对称.

··· 例7.13 (6)的证明

- □ (6) R₁对称 ⇒ ~R₁对称.
- □ 证明: ∀x, y∈A,

$$x(^R_1)y \Leftrightarrow x(E_A-R_1)y$$

$$\Leftrightarrow xE_Ay \wedge \neg xR_1y$$

$$\Leftrightarrow$$
 y (E_A-R₁) x \Leftrightarrow y ($^{\sim}$ R₁) x

∴ R₁对称 ⇒ ~R₁对称.

:: 例7.13 (6)的证明

- □ (7) R_1 反对称 \Rightarrow R_1^{-1} 反对称.
- \square 证明: (反证) 若 R_1 -1非反对称,则 $\exists x, y \in A$,

 $xR_1^{-1}y \wedge yR_1^{-1}x \wedge x\neq y$

 \Leftrightarrow yR₁x \wedge xR₁y \wedge x \neq y

与R₁反对称矛盾!

∴ R_1 反对称 \Rightarrow R_1^{-1} 反对称. #

:: 关系性质的特点

	自反性	反自反性	对称性	反对称性	传递性
集合表达式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	R=R ⁻¹	$R\capR^{-1}\subseteqI_A$	R°R <u>⊂</u> R
关系矩阵	主对角线 元素全是1	主对角线 元素全是0	矩阵是对 称矩阵	若r _{ij} =1, 且i≠j,则 r _{ji} =0	对M ² 中1所 在位置,M 中相应的位 置都是1
关系图	每个顶点 都有环	每个顶点 都没有环	如果两个 顶点之, 有边,一 定是向相 方向边(无单 边)	如果两点之间有边,一定是一条有向边(无双向边)	如果顶点x _i 到x _j 有边, x _j 到x _k 有边 ,则从x _i 到 x _k 也有边

:: 例7.14

例7.14 判断下图中关系的性质,并说明理由。

- (1) 对称的,不是自反的,不是反自反的,不是反对称的, 不是传递的。
- (2) 是反自反的,不是自反的,是反对称的,不是对称的, 是传递的。
- (3) 是自反的,不是反自反的,是反对称的,不是对称的,不是传递的。

:: 关系的性质和运算之间的关系

	自反性	反自反性	对称性	反对称性	传递性
R ₁ ⁻¹	√	✓	✓	✓	✓
$R_1 \cap R_2$	1	√	✓	√	✓
$R_1 \cup R_2$	√	√	√	X	X
$R_1 - R_2$	X	✓	√	√	X
$R_1 \circ R_2$	√	X	X	X	X

- □ 如果存在一条从数据中心a到b的电话线, <a, b>就属于关系R。
- □ 如何确定从一个中心是否有一条电话线(可能不直接)链接到另一个中心?
- □ 通过构造包含R的最小的传递关系来找出每一对有着联系的数据中心,这个关系叫做R的传递闭包。