Lista Exercício 08 - Soluções - Diluição das Soluções - Química Itamar Barbosa

Versão 0.1

1. (UFPI) Qual será o volume de água que deve ser acrescentado a 300 ml de uma solução 1,5 mol/L de ácido clorídrico (HCl) para torná-la 0,3 mol/L?
 a) 1000 mL b) 1500 mL c) 1200 mL d) 1800 mL e) 500 mL
2. Ao adicionar uma quantia de 75mL de água diretamente em 25mL de uma solução 0,20M de cloreto de sódio (NaCl), obtemos uma solução de concentração molar igual a:
a) 0,010 b) 0,025 c) 0,035 d) 0,040 e) 0,050
3. (VUNESP) Na preparação de 750 mL de solução aquosa de $\rm H_2SO_4$ de concentração igual a 3,00 mol/L a partir de uma solução-estoque de concentração igual a 18,0 mol/L, é necessário utilizar um volume da solução-estoque expresso, em mL, igual a:
 a) 100 b) 125 c) 250 d) 375 e) 500
 4. (Fund. Oswaldo Cruz - SP) Que volume de água devemos adicionar a 10 mL de solução 2 M para torná-la 0,25 M? a) 80 mL b) 70 mL c) 40 mL d) 250 mL e) depende do soluto
 5. Determine a molaridade de uma solução que apresentava 400 mL de volume e, após receber 800 mL de solvente, teve sua molaridade diminuída para 5 mol/L. a) 13 mol/L b) 16 mol/L c) 14 mol/L d) 12 mol/L e) 15 mol/L
 6. Uma solução 0,3 mol/L apresentava 500 mL de solvente, mas houve uma evaporação de 200 mL do volume desse solvente. Qual será a nova concentração dessa solução? a) 0,4 mol/L b) 0,5 mol/L c) 0,1 mol/L d) 0,2 mol/L

e) 0,6 mol/L

	 a) 250 mL b) 500 mL c) 600 mL d) 750 mL e) 1800 mL
8.	(Mack-SP) 200 mL de solução 24,0 g/L de hidróxido de sódio são misturados a 1,3 L de solução 2,08 g/L de mesmo soluto. A solução obtida é então diluída até um volume final de 2,5 L. A concentração em g/L da solução, após a diluição, é aproximadamente igual a:
	 a) 26,0 b) 13,0 c) 3,0 d) 5,0 e) 4,0
9.	Uma solução estoque de hidróxido de potássio (KOH) foi preparada pela dissolução de 5,6 g do soluto em água, obtendo-se, ao final, 200 mL. Posteriormente, um certo volume dessa solução foi diluído em 400 mL, obtendo-se uma nova solução de concentração igual a $0,30~{\rm mol.L^{-1}}$. Determine o valor desse volume da solução estoque que foi diluído em 400 mL.
	 a) 255 b) 250 c) 240 d) 245 e) 300
10.	Assinale a alternativa que corresponde ao volume de água que foi adicionado a 800 mL de uma solução aquosa de sulfito de lítio, com $0.80~\rm mol/L$, para obter uma solução de $0.34~\rm mol/L$ desse sal.
	 a) 1282 mL b) 1182 mL c) 1100 mL d) 1082 mL e) 1200 mL
11.	(FMJ-SP) 400 mL de uma solução com 0,4 mol/L de cloreto de cálcio são aquecidos até que fiquem no recipiente 200 mL de solução. A concentração, em mol/L, de íons cálcio na solução resultante é:
	 a) 0,2. b) 0,4. c) 0,8. d) 1,0. e) 1,6.
12.	(FPS-PE) A cefalotina, $C_{16}H_{16}N_2O_6S_2$, é um antibiótico que possui ação bactericida e é utilizada em infecções variadas, incluindo a meningite. Um auxiliar de enfermagem precisa administrar 50,0 mL de uma solução de cefalotina 6,0 cot 10^{-2} mol· L^{-1} em um paciente, e a enfermaria só dispõe de ampolas de 20 mL com concentração igual a 0,25 mol· L^{-1} de cefalotina. Calcule o volume de cefalotina 0,25 mol· L^{-1} que deve ser aspirado da ampola para administrar a dosagem prescrita.
	a) 10 mL b) 12 mL c) 14 mL d) 16 mL e) 18 mL

7. Qual é o volume de solução aquosa de sulfato de sódio, Na2SO4, a 60 g/L, que deve ser diluído por adição de água $\,$

para se obter um volume de 750 mL de solução a 40 g/L?