International Rectifier

V _{DSS}	40	٧
V _{GS Max}	± 16	V
R _{DS(on) max} (@V _{GS} = 10V)	56	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	78	mΩ

IRLML0040TRPbF

HEXFET® Power MOSFET

Application(s)

- Load/ System Switch
- DC Motor Drive

Features and Benefits

Features

Low $R_{DS(on)}$ ($\leq 56m\Omega$)
Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer qualification

Benefits

results in

Lower switching losses
Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol Parameter		Max.	Units	
V _{DS}	Drain-Source Voltage	40	V	
_D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	3.6		
_D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	2.9	Α	
DM	Pulsed Drain Current	15		
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	14/	
P _D @T _A = 70°C	Maximum Power Dissipation	0.8	W	
Linear Derating Factor		0.01	W/°C	
GS Gate-to-Source Voltage		± 16	V	
T _J , T _{STG} Junction and Storage Temperature Range		-55 to + 150	°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s)		99	O/ VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.04		V/°C	Reference to 25°C, I _D = 1mA
В	Static Drain-to-Source On-Resistance		44	56	0	V _{GS} = 10V, I _D = 3.6A ②
R _{DS(on)}	Static Dialif-to-Source Off-nesistatice		62	78	mΩ	V _{GS} = 4.5V, I _D = 2.9A ②
$V_{GS(th)}$	Gate Threshold Voltage	1.0	1.8	2.5	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20		$V_{DS} = 40V, V_{GS} = 0V$
	Diani-to-Source Leakage Current			250	μA	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	ΠA	V _{GS} = -16V
R_{G}	Internal Gate Resistance		1.1		Ω	
gfs	Forward Transconductance	6.2			S	$V_{DS} = 10V, I_{D} = 3.6A$
Q_g	Total Gate Charge		2.6	3.9		$I_D = 3.6A$
Q_{gs}	Gate-to-Source Charge		0.7		nC	$V_{DS} = 20V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.4			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		5.1			$V_{DD} = 20V$
t _r	Rise Time		5.4			$I_D = 1.0A$
t _{d(off)}	Turn-Off Delay Time		6.4		ns	$R_G = 6.8 \Omega$
t _f	Fall Time		4.3			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		266			$V_{GS} = 0V$
C _{oss}	Output Capacitance	_	49		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	_	29			f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Tvp.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	_		1.3		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			15		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		10		ns	$T_J = 25^{\circ}C$, $V_R = 32V$, $I_F = 1.3$ A
Q _{rr}	Reverse Recovery Charge		9.3		nC	di/dt = 100A/µs ②

International TOR Rectifier

IRLML0040TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML0040TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

 $R_{\mbox{\footnotesize DS}}(\mbox{on}), \mbox{ Drain-to -Source On Resistance } (\mbox{$\mathfrak{m}\Omega$})$ 250 200 150 100 Vgs = 4.5VVgs = 10V 50 0 5 20 25 35 0 15 30 I_D, Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14b. Gate Charge Test Circuit

International IOR Rectifier

IRLML0040TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIMETERS		INCH	HES		
STWIDOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
Е	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
Ð	0	8	0	8		

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 CONTROLLING DIMENSION: MILLIMETER.
- A CONTROLLING DIMENSION MILLIMETER.

 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

 ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMENSIONS D AND E1 ARE MEASUPED AT DATUM PLANE H. DIMENSIONS DOES NOT INCLIDE MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 ADMENSION LIS THE LEAD LEWISH FOR SOLDEFINIO TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 228 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

Note: Aline above the work week (as shown here) indicates Lead-Free.

DATE CO	DDE N	ИAR	KING IN	STRU	CTIONS
WW = (1-26) IF F	PREŒD	ED BY	LAST DIGIT	OF CALE	ENDAR YEA
YE,	AR	Υ	WORK WEEK	W	
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020	2001 2002 2003 2004 2005 2006 2007 2008 2009 2010	1 2 3 4 5 6 7 8 9	01 02 03 04 24 25 26	A B C D X Y Z	
	(27-52) AR) IF PR Y	ECEDED BY WORK WEEK	ALETTE W	R
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020	2001 2002 2003 2004 2005 2006 2007 2008 2009 2010	A B C D E F G H J K	27 28 29 30	A B C D	

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ (SOT-23) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Orderable part number	Package Type	Standard	Note	
Orderable part number	Package Type	Form	Quantity	
IRLML0040TRPbF	Micro3 (SOT-23)	Tape and Reel	3000	

Qualification information[†]

Qualification level	Cons umer ^{††}			
	(per JEDECJESD47F ††† guidelines)			
	M:- ::- 0 (OOT 00)	MSL1		
Moisture Sensitivity Level	Micro3 (SOT-23)	(per IPC/JEDECJ-STD-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/2012