

DERIVED DISTROS

PMF function of discrete RV
$$p_Y(y) = P(g(x) = y) = \sum_{}^{}^{} p_X(x)$$

Linear Functions Y = aX + b

$$I = aA + b$$

$$p_Y(y) = p_X\left(rac{y-b}{a}
ight)$$

$$f_Y(y) = rac{1}{|a|} f_Xigg(rac{y-b}{a}igg)$$

g is monotonic

$$\left|f_Y(y)=f_X(h(y))
ight|rac{dh}{fy}(y)
ight|$$

general case

1) find CDF: $F_Y(y) = P(g(x) \leq y)$ 2) derive CDF for PDF

CONVOLUTIONS

$$Z = X + Y$$

$$n_Z(z) = \sum n_X$$

$$egin{aligned} p_Z(z) &= \sum_x p_X(x) p_Y(z-x) \ f_Z(z) &= \int_{-\infty}^\infty f_X(x) f_Y(z-x) dx \end{aligned}$$

COVARIANCE

Cov(X,Y) = E[(X - E[X])(Y - E[Y])Direction

Cov(X,Y)>0 same sign

If Indie

Cov(X,Y) = 0

△ inverse not usually true but true for Gaussians: $Cov(X,Y)=0 \rightarrow X,Y \sim N \text{ indie}$

Properties

Cov(X, X) = Var(X)

|Cov(X,Y) = E[XY] - E[X]E[Y]

Cov(aX + b, Y) = aCov(X, Y)Cov(X, Y + Z) = Cov(X, Y) + Cov(Y, Z)

CORRELATION COEF.

$$ho(X,Y) = rac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

FRESH START/MEMORYLESSNESS

Exponential

 $ig|f_{X\mid X>t}(x\mid x>t)=f_X(x)$

Bernouilli/Poisson

 $P(A \mid B) = P(A)$

i.e. prob of two arrivals (A)

after 1 arrival (B) = prob of2 arrivals (A)

BERNOUILLI PROCESS

requires indie, time homogen.

Properties

$$\begin{vmatrix} S = X_1 + \dots + X_n \\ P(S = K) = \binom{n}{k} p^k (1-p)^{n-k} \end{vmatrix}$$

Var(S) = np(1-p)Time until 1st success

 $T_1 = \min \{i : X_i = 1\}$ $P(T_1 = k) = (1-p)^{k-1}p$

$$egin{aligned} p_{Y_k}(t) = inom{t-1}{k-1} p^k (1-p)^{t-k} \end{aligned}$$

$$E[Y_k] = rac{k}{p}$$

$$Var(Y_k) = rac{k(1-p)}{n^2}$$

Merging

 $Z_t = q(X_t, Y_t) \sim Ber(p+q-pq)$ ⇒ prob either or both have arrival at time t

Splitting

flip a coin with prob q

 $A \sim Ber(qp)$

 $B \sim Ber((1-q)p)$ A these streams are not indie

INTER-ARRIVAL TIMES / R.INCIDENCE

we arrive at t* u,v are each $Exp(\lambda)$ away from t*

 \Rightarrow E[V-U] is twice the expectation of $\operatorname{Exp}(\lambda)$

TREE

POISSON PROCESS

indie, time homogen, seg of exp λ : arrival rate $P(k, au) = rac{\left(\lambda au\right)^k e^{-\lambda au}}{k!}$ $E[N_{\tau}] = \lambda \tau$ $Var(N_{ au}) = \lambda au$

Time of kth arrival / Erlang

$$f_{Y_k} = rac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}$$

 $E[N_{\tau}]$

= Erlang(k)

 $=Erlang\left(rac{k}{2}
ight)+Erlang\left(rac{k}{2}
ight)$

∆ must be indie

 $M: Poisson(\mu) N: Poisson(v)$

M+N: $Poisson(\mu + v)$

Merging

A: λ_A B: λ_B $\lambda = \lambda_A + \lambda_B$

 $P(k^{th} \text{arrival is A}) = \frac{\lambda_A}{\lambda_A + \lambda_B}$

 $P(k \text{ arrivals are A}) \text{ is Binomial} \left(\frac{\lambda_A}{\lambda_A}\right)$

Splitting

flip a coin with prob q△ these streams are indie

A: $\lambda_A = \lambda q$

B: $\lambda_B = \lambda(1-q)$

Multiple Engine Example

3 engines with death rate λ_e rate until 1st dies is $\lambda=3\lambda_e$ then rate until 2nd dies $\lambda=2\lambda_c$

= P(X > t, Y > t, Z > t) \Rightarrow have 3 merged Poissons and want to know first arrival \Rightarrow min $\{X, Y, Z\}$ is $\text{Exp}(3\lambda)$

 $E[\min \{X, Y, Z\}] = \frac{1}{2N}$

 $P(\min \{X, Y, Z\} > t)$

$$egin{aligned} P(\max{(T_1,T_2,T_3)} &\leq t) \ &= P(T_1 \leq t)P(T_2 \leq t)P(T_3 \leq t) \ &= \left(1-e^{-\lambda t}
ight)^3 \ & ext{then derive this to get PDF} \end{aligned}$$

Cov Matrix and MV Stuff

$$\Sigma = egin{pmatrix} Cov(X,X) & Cov(X,Y) \ Cov(Y,X) & Cov(Y,Y) \end{pmatrix}$$

$$=E\Big[(X-E[X])(Y-E[Y])^T\Big]$$

$$Var(\mathbf{X}) = Cov(\mathbf{X})$$

$$Cov(\mathbf{AX} + \mathbf{B}) = Cov(\mathbf{AX}) = \mathbf{A}Cov(\mathbf{X})\mathbf{A}^T = \mathbf{A}\Sigma\mathbf{A}^T$$

Gaussian vector

defined by ${m \mu}$ and Σ , $x\in R^d$ $f_X(x) = rac{1}{\sqrt{\left(2\pi
ight)^d ext{det}\Sigma}} ext{exp}igg(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-oldsymbol{\mu})igg)$

MV CLT

$$X_i \sim R^d E[\mathbf{X}_i] = \boldsymbol{\mu} Cov(\mathbf{X}_i) = \Sigma$$

MV Delta

$$\sqrt{n}(g(T_n) - g(heta))
ightarrow \ N\Big(0, \
abla(heta)^T \Sigma \,
abla(heta)\Big)$$

MISC	IDENTIFIABILITY	TESTS					LIKELIHOODS	Fisher Information
$\sum_{k=0}^{\infty} rac{\lambda^k}{k!} = \exp(\lambda)$	θ identifiable iff mapping				does not		Bernouilli $p^{\sum^n X_i} (1-p)^{n-\sum^n X_i}$	△ use ONE observation
$\sum_{k=0}^{\infty} k!$		mean accepting H_0					Poisson $rac{\lambda^{\sum X_i}}{x_1!x_n!} ext{exp}(-n\lambda)$	not well defined if support depends on unknown (shifted
e limits			toot			- 1	1 · · · · · · · · · · · · · · · · · ·	evnl
$(t)^n$	ESTIMATORS Asym. normal if		test reality	H_0	H_1		Gaussian $\dfrac{1}{(2\pi\sigma^2)^{\dfrac{n}{2}}} \mathrm{exp}igg(-\dfrac{1}{2\sigma^2}\sum \left(x_i-\mu ight)^2igg)$	$A \ l^{\prime\prime}(heta)$ must exist $I(heta) = Var(l^{\prime}(heta)) = -E[l^{\prime\prime}(heta)]$
\ '/	Asym. Hormal if $\sqrt{n} ig(\widehat{ heta_n} - hetaig) o N(0, \sigma^2)$		TT		type 1 error		Exponential $\lambda^n \exp \Big(-\lambda \sum X_i \Big)$	
$\lim (1 + -) = e^{i}$	$\sqrt{n(0_n-b)} \rightarrow N(0,b)$ Consistency		H_0	/	(reject when		, ,	Method of Moments
(")	$\widehat{ heta_n} o heta$ as $n o \infty$		H_1	type 2 error (fail to reject		ŀ	Uniform $rac{1}{b^n} 1 \{ ext{ max } X_i \leq b \}$	$\widehat{m}_k = \overline{X_n^k} = rac{1}{n} \sum X_i^k$
$ \begin{array}{c} \mathbf{MIN/MAX} \\ P(max > x) = 1 & P(max < x) \end{array} $	Bias		111	when should)		-		LLN $\widehat{m}_k o m_k(heta) = E_ hetaig[X_1^kig]$
$F(\operatorname{max} > x) = 1 - [P(X_i < x)]^n$	$biasig(\widehat{ heta_n}ig) = Eig[\widehat{ heta_n}ig] - heta$	level	α				MAXIMIZATION global extremes on range	Delta $\sqrt{n} \Big(\hat{ heta} - heta \Big) o N(0, \Gamma(heta))$
$P(ext{ min } > x) = \left[P(X_i > x) ight]^n$	Quadratic Risk	max ty	ype 1 err	or rate			toot exitical points and and naints	$\Gamma(heta) = \left\lceil rac{\delta M^{-1}}{\delta heta} ight ceil^T \Sigma(heta) \left\lceil rac{\delta M^{-1}}{\delta heta} ight ceil$
$= \left[1 - P(X_i < x)\right]^n$	$R\Big(\widehat{ heta_n}\Big) = E\Big[\Big \widehat{ heta_n} - heta\Big ^2\Big]$	higher H_0	r $lpha ightarrow$ mo	re likel	y to rejec			[00]
LiLiN	Confidence Interval level $1-lpha$	power	β				$h^{\prime\prime}(x)\leq 0 ightarrow$ concave, maximum $h^{\prime\prime}(x)< 0 ightarrow$ global max	finding θ
req. II and $E[A_i] < -\infty$			$\inf_{\theta \in \Theta n} (1 - \beta)$				$h^{\prime\prime}(x)\geq 0 o$ convexe, minimum	write θ as function $E[X]$, $E[X^2]$ then sub for $\overline{X_n}$, $\overline{X_n^2}$
$\overline{X_n} = \frac{1}{m} \sum_{i=1}^{m} X_i$	$P \mid X = a_0 = x \mid x \mid x = x = x = x = x = x = x = x$	examp.	le 2 side $H_0\!:\!p=rac{1}{2}$, 1	- 1	MV min/max V ^T Uh(0) V < 0 concesso most	
<i>n</i> —		COIN I	. 4		_∠	- 1	$X^T Hh(heta)X \leq 0$ concave, max +1 top diag: convexe, minimum	!
	UNBIASED ESTIMATOR		$\sqrt{n} \frac{\left \overline{X_n}\right }{\sqrt{\frac{1}{2}\left(1\right)}}$. <u>1</u>			(, 7 , 9)	!
$Var(X_i) < \infty$	we want $E\left[\widehat{ heta_n} ight]=0$	$\psi=1\Big\{$	\sqrt{n}	$\frac{2}{}$ $> q$	$\left(\frac{\alpha}{2}\right)$		$\begin{pmatrix} +1 & ? \\ ? & ? \end{pmatrix}$!
			$\sqrt{\frac{1}{2}} \left(1 - \frac{1}{2}\right)$	$-\frac{1}{2}$)	<i>-</i>		(/	!
	of expectations to create a new estimator such that		diff bet				MLE	1
_ - (2)	[<u></u>] 1 [<u></u>]	`	(μ_1,σ_1^2) and (μ_1,σ_1^2)	,	$,\sigma_2^2)$		minimizes KL divergence	!
	$E[b_n] = \frac{1}{c}E[b_n] = 0$		$= rac{\mu_2}{\overline{Y_n}} ext{and} H_1 \ - \overline{Y_n} \sim N$				${\hat{ heta}}_n^{MLE} = arg \max_{ heta \in \Theta} \log(L)$	'
Quantiles	1D DELTA METHOD	\sqrt{n}	$\frac{n}{\sigma_1^2 \sigma_2^2} \sim N$	(0, 1)		- 1	A function must be cont. diff. to use derivative to find extremums.	'
(_ ==-/	g: cont. differentiable $\sqrt{n}(Z_n- heta) o N(0,\sigma^2)$	V	71 2				use a plot and think if not	!
P(Z >1.96)=0.05			OTAL VAR				Gaussian check Wikipedia	!
α 2.5% 5% 7.5% 10%	$\sqrt{n}(g(Z_n)-g(heta)) o N\Big(0,(g'(heta))^2\cdot\sigma^2\Big)$		ist betwe		istros lues of R		Consistency and Asym. Norm. if:	'
	P-VALUE		$P_{ heta'}) = rac{1}{2} \sum$			٠.		!
1 a. 196 165 144 128 1	$ t \Delta$ is a level $lpha$ what is the probability of	1 , (1 0,	$2\frac{\angle}{x\in}$	$P\theta(\omega)$ F E	θ (ω)		• param is identifiable • support of P_{θ} does not depend on	!
	observing a result more extreme	$TV(P_{\theta},$	$P_{\theta'}) = \frac{1}{2} \int$	$\overset{\infty}{=} f_{ heta}(x)- $	$f_{ heta'}(x) dx$		$ heta$ • $ heta^*$ is not at boundary	!
	than this one under H_0 ? $ riangle$ low p-value is bad $ ightarrow$ H 0 is		2 J =	-∞			• $I(heta)$ is invertible	'
	unlikely	Proper		(D D)	TV(D D)		• more stuff	!
	i.e. $P(\widehat{a} \geq \widehat{a}_{ m obs})$		tric: TV		$IV(P_{\theta'}, P_{\theta})$		${\hat heta}_n^{MLE} o heta^\star$!
$egin{aligned} T_n + U_n & o T_u \ T_n U_n & o T_u \end{aligned}$	KL DIVERGENCE	defini	ite: if 7		=0 then		$\sqrt{n} \Big(\hat{ heta}_n^{MLE} - heta^\star \Big) ightarrow N \Big(0, I(heta^\star)^{-1} \Big)$!
	\sim / $\mathcal{D}_{\theta}(x)$	$P_{ heta}=P_{ heta}$	β΄ gle ineq:					'
		$TV(P_{\theta},$	$P_{ heta'}) \leq T V($	$(P_{ heta},P_{ heta^{\prime\prime}})+2$	$TV(P_{ heta}$ '', $P_{ heta'})$)	Process to find extremum	!
Continuous Mapping Th.			sjoint: $TV=$				$ullet$ get l_n	1
$I_n o T$ then $f(I_n) o f(T)$	Properties			0			• find crits with $l_n{}'(heta)=0$!
Statistical Model	<u>not</u> symmetric		imation re 12, ta	ıb 2			 check if crits are local min/max 	1
(-, (- u) b ∈ b)	not negative definite		-, 00				• check values at endpoints	
e. campro space o. raram see	definite triangle ineq							1
.ell specifica if v c o								