Tarea 3

• Fecha máxima de entrega: Martes 15 de noviembre @ 19:00h.

Estimadores insesgados de varianza mínima

Considere X_1, \ldots, X_n una muestra aleatoria de una distribución Poisson de media λ . Encuentre el estimador insesgado de mínima varianza de $p_0 = P(N=0) = e^{-\lambda}$.

Con este fin note que

$$\hat{\lambda} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

es el estimador por el método de momentos y de máxima verosimilitud del parámetro λ . Claramente, el estimador es insesgado y se puede mostrar que es de varianza mínima pues, por ejemplo, su varianza, $var(\bar{X}) = \lambda/n$ alcanza la **cota de inferior de Cramér-Rao**. Sin embargo, el estimador

$$\hat{p}_0 = e^{-\hat{\lambda}}$$

es un estimador sesgado de p_0 . De hecho, puesto que $n\hat{\lambda} \sim \text{Po}(n\lambda)$, se puede emplear la función generadora de momentos y sus propiedades para mostrar que

$$\theta = \mathbb{E}[\hat{p}_0] = \exp\left\{n\lambda(e^{-1/n} - 1)\right\}$$

Por otro lado, si define $Y_i = \mathbbm{1}_{\{0\}}(X_i)$, para $i = 1, \dots, n$, entonces las Y_i son v.a.i.i.d. distribuidas $Ber(p_0)$ y

$$\check{p}_0 = \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$$

es un estimador insesgado de p_0 con varianza $e^{-\lambda}(1-e^{-\lambda})/n$.

Ahora bien, note que $T = \sum_{i=1}^{n} X_i$ es un estadístico suficiente para λ y $Y_1 = \mathbb{1}_{\{0\}}(X_1)$ es un estimador insesgado de $p_0 = e^{-\lambda}$. Se sigue entonces del **Teorema de Rao-Blackwell** que

$$\tilde{p}_0 = \mathbb{E}[Y_1|T] = \left(\frac{n-1}{n}\right)^T$$

es un estimador insesgado de menor varianza (¿cuál?) que \check{p}_0 .

Finalmente, puesto que la distribución Poisson es miembro de la familia exponencial de un parámetro, el estadístico T es un estadístico completo suficiente minimal. Se concluye por el Teorema de Lehmann-Scheffé que \tilde{p}_0 es entonces un estimador insesgado de varianza mínima.

Para ilustrar lo anterior realice un ejercicio de simulación para completar la siguiente tabla:

λ	p_0	θ	n	\hat{p}_0	$ee(\hat{p}_0)$	\check{p}_0	$ee(\check{p}_0)$	\tilde{p}_0	$ee(\tilde{p}_0)$
			25						
1.0	0.3679	0.3770	50						
			80						
			25						
0.5	0.6065	0.6140	50						
			80						
			25						
2.0	0.1353	0.1422	50						
			80						

donde λ es el parámetro de la distribución Poisson; p_0 y θ definidos arriba; el promedio de los \hat{p}_0 , \check{p}_0 y \tilde{p}_0 ; ee(·) los correspondientes errores estándar.

Simule N=3000 ensayos para cada pareja λ y n. Concluya comentando el ejercicio.

Tarea 3 2

Amplitud de los intervalos de probabilidad

Sea X una población que es modelada razonablemente por una distribución normal centrada en cero y con desviación estándar σ . Complete la siguiente tabla donde q_i y q_s denotan los límites inferior y superior del intervalo de probabilidad $1-\alpha$ y $w=q_s-q_i$ es la amplitud del intervalo, para los distintos valores de σ . Se construirán dos intervalos bajo criterios distintos: a) **colas del mismo peso** - cada una de las colas tiene $\alpha/2$ de probabilidad; b) **amplitud mínima** - los límites se escogen de manera que w sea lo más pequeño posible, manteniendo el nivel $1-\alpha$ de probabilidad.

De manera similar si Y denota una población que es modelada por una distribución χ^2 con n grados de libertad, complete la parte correspondiente de la tabla para los distintos grados de libertad.

$\overline{X} \sim$	$X \sim N(0, \sigma)$		as del	mismo p	amplitud mínima			
σ	$1-\alpha$	q_i	q_s	w		q_i	q_s	w
	0.90							
1.0	0.95							
	0.99							
	0.90							
2.0	0.95							
	0.99							
	0.90							
5.0	0.95							
	0.99							
\overline{Y}	$\sim \chi_n^2$	cola	as del	mismo p	oeso	am	plituo	d mínima
$\frac{Y}{n}$	$\frac{\sim \chi_n^2}{1 - \alpha}$	q_i	as del q_s	mismo p	oeso	q_i	plituo q_s	d mínima w
					oeso			
	$1-\alpha$				oeso			
n	$\frac{1-\alpha}{0.90}$				oeso			
n	$1 - \alpha$ 0.90 0.95				oeso			
n	$1 - \alpha$ 0.90 0.95 0.99				oeso			
5	$1 - \alpha$ 0.90 0.95 0.99 0.90				Deso			
5	$ \begin{array}{c} 1 - \alpha \\ 0.90 \\ 0.95 \\ 0.99 \\ 0.90 \\ 0.95 \end{array} $				Deso			
5	$ \begin{array}{r} 1 - \alpha \\ 0.90 \\ 0.95 \\ 0.99 \\ 0.90 \\ 0.95 \\ 0.99 \\ \end{array} $				Deso			

Tarea 3 3

Comparación de medias y varianzas de poblaciones normales

Para la solución de un problema mediante procedimientos numéricos se disponen de dos algoritmos que compiten en eficiencia. La siguiente tabla muestra los tiempos de procesamiento (en segundos) que se llevan ambos algoritmos en 25 distintas computadoras (diferentes CPU's, RAM, discos de almacenamiento y versiones del sistema operativos Linux). Responda los siguientes incisos, suponiendo que el tiempo de procesamiento entre las distintas computadoras es independiente y razonablemente modelado por la distribución normal.

	Algoritmo			Algoritmo	
Computadora	1	2	Computadora	1	2
1	10.53	11.24	14	11.12	11.85
2	12.22	11.53	15	9.84	10.58
3	9.01	8.82	16	11.47	11.23
4	11.31	11.20	17	10.89	8.99
5	9.90	10.00	18	10.53	12.50
6	8.17	9.07	19	9.54	8.02
7	9.92	9.21	20	11.03	13.87
8	9.61	9.88	21	10.43	13.18
9	9.68	9.00	22	10.93	12.31
10	8.86	9.84	23	11.70	12.61
11	10.85	11.40	24	10.58	12.19
12	7.97	8.41	25	9.96	10.50
13	8.77	9.70			

- 1. Construya un intervalo del 90 % de confianza para el tiempo medio de procesamiento μ_1 del algoritmo 1 si sabe que su desviación estándar es de 1 segundo.
- 2. Construya el correspondiente intervalo para el tiempo medio μ_2 del algoritmo 2, con un nivel de 0.95 de confianza reconociendo que no conoce su desviación estándar.
- 3. ¿Podría suponer que la variabilidad del tiempo de procesamiento es la misma para los dos algoritmos? Para esto, construya un intervalo de confianza del 95 % para la desviación estándar σ_i de cada uno de los algoritmos y concluya.
- 4. Responda el inciso anterior pero con base a un intervalo del 95% de confianza para el cociente de varianzas $\theta = \sigma_1^2/\sigma_2^2$.

Bibliografía

Mood, Graybill and Boes (1974). Introduction to the Theory of Statistics. 3rd. Ed. McGraw-Hill.