Simulations de l'hydrodynamique des trous noirs en rotations

Antoine Boulet

Magistère de physique fondamentale

Univerité Paris-Sud

Superviseur : Dr Silke Weinfurtner, Univerité de Nottingham

Plan de la présentation

Introduction

- 1. Hydrodynamique des trous noirs
 - 1. Gravité analogue : qu'est-ce que c'est?
 - 2. Effet Hawking
 - 3. Analogie espace-temps / fluide classique
 - 4. Présentation de l'experience
- 2. Profilométrie par transformé de Fourier
 - 1. Principe de la methode
 - 2. Construction des images
 - 3. Simulation et analyse
 - 4. Résultats et conclusion

Conclusion

000000

Introduction

Relativité Générale

Albert Einstein

Mécanique Quantique

Max Planck, Albert Einstein, Niels Bohr, Louis de Broglie, Max Born, Paul Dirac, Werner Heisenberg, Wolfgang Pauli, Erwin Schrödinger, etc.

Gravité analogue : qu'est-ce que c'est?

•0000

- Condensat de Bose-Einstein
- Helium liquide
- Ressaut hydraulique
- Etranglement fluide
- Fluide convergent (avec ou sans vortex)
- etc.

••000 000000

Effet Hawking (i)

S. Hawking, "Particle creation by black holes," (1975)

• 0 000000

Effet Hawking (ii)

$$J_a - J_b \propto \left(\exp\frac{\hbar\omega}{k_B T_H} - 1\right)$$

$$k_B T_H = \frac{\hbar c^3}{8\pi GM}$$

Analogie espace-temps / fluide classique

Equation de Navier-Stokes pour les phonons :

$$\left(\frac{1}{\sqrt{-g}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}\right)\delta\psi = 0$$

W. G. Unruh, "Experimental black-hole evaporation?," (1981)

Présentation de l'expérience

Objectif

 Détecter l'amplification de vagues d'amplitude 0.1 mm

Solution

 Profilométrie par transformée de Fourier

Principe de la methode

$$I_0 = \sum A_n \exp inkx$$

$$\hat{I}_0 = A_1 \exp ikx$$

$$\operatorname{Im}\left(\log \hat{I}\hat{I_0}^*\right) = \phi$$

$$s(x,y) = -\frac{L_X}{L_Z} \frac{\phi(x,y)}{k}$$

$$I = \sum A_n \exp in (kx + \phi)$$

$$\hat{I} = A_1 \exp i (kx + \phi)$$

M. Takeda, "FTP for the automatic measurement of 3-D object shapes," (1983)

Construction des images

Simulation et analyse

Paramètres à tester

- Fréquence (spatiale) de la grille, k
- Distance camera / surface, Z
- Distance camera / projecteur, X

Comment faire?

- Signal sinusoïdal : $s(x,y) = A \sin(px)$
- Pixellisation de la camera (taille des pixels, nombre par période)
- Varier k (X,Z constants), etc.

Résultats et conclusions (i)

Résultats et conclusions (ii)

Résultats et conclusions (iii)

Conclusion

Explosion des trous noirs

- Relativité général + mécanique quantique
- Radiation thermale : émission de photons

Gravité analogue

- Analogie espace-temps / fluide
- Analogie photons / phonons

Profilométrie par transformé de Fourier

- Grille périodique sur une surface + analyse de Fourier
- Relation avec l'amplitude de la déformation
- Efficace aux grandes fréquence et aux grandes distances camera / surface