

BIOL3110 Conservation & Ecological Genetics

LECTURE 8: MUTATION, MIGRATION & SELECTION

DEFINITIONS wrt GENETICS

Mutation: Copying errors – rare (beneficial mutations even rarer). Nevertheless, mutation is the core generator of V_G for Darwinian evolution.

Migration: among populations – brings new genes in or takes genes out.

Selection: Different forms of selection. Can either reduce or increase V_G under different circumstances.

MORE DETAIL NEXT WEEK:

The critical importance of (effective) population size for these parameters.

TYPES OF SELECTION (I)

Stabilizing

Before selection:

After selection:

Distribution of phenotypes in the population

TYPES OF SELECTION (II)

Distribution of phenotypes in the population

TYPES OF SELECTION (III)

Distribution of phenotypes in the population

STABILIZING SELECTION

Fitness is under directional selection, BUT:

Most individual traits in wild populations are subject to **NET stabilizing selection**.

Frequency Phenotypes

E.g. Birth weight in humans

E.g. Size at maturity in insects

DIRECTIONAL SELECTION E.g., Cranial capacity in Hominids Crainal capacity Homo sapiens sapiens 1500 cm³ Homo sapiens sapiens. Homo sapiens neandertalensis Homo sapiens neandertalensis Homo erectus Frequency 1000 cm³ Homo erectus Homo habilis Homo habilis Australopithecus africanus Australopithecus Lukeino (Baringo) Anthropoide Ancêtre du millénaire 500 cm³ Singe Anthropoïde **Primates Prehominids** Hominids Phenotypes -10 -6 -5 Millions of years

DIRECTIONAL SELECTION

E.g. Sexual selection

DISRUPTIVE SELECTION

Often maintains V_G. May also favour dimorphism or poly-morphism or phenotypic plasticity.

Sexual dimorphism (e.g. *Eclectus*)

E.g. Dimorphism in Rhino beetles

Precis octavia

DISRUPTIVE SELECTION

Example:
Horn polyphenism in male
Onthophagus taurus

MIGRATION

In whole populations:

Among-populations:

Inter-pop migration = **gene flow**

20 individuals contain 95% of V_G

Little gene flow needed to maintain substantial $V_{\rm G}$

Higher levels required to maintain rare alleles

MIGRATION versus SELECTION

Geographic gradient of phenotypes

Arises as the balance between selection for localized adaptation and/or drift versus

e.g. Ensatina salamander "ring species" in California

MIGRATION versus SELECTION

Platycercus elegans

Joseph et al. (2008) Proc. R. Soc. Lond. (B)

Heliconius cydno

Brower (2012) *Proc. R. Soc. Lond. (B)*

MUTATION

Copying errors in germ-line replication

At the genomic level:

- Single-Nucleotide Polymorphisms (SNPs)
- Additions, deletions & duplications (e.g., microsats)
- Insertion of transposable or "mobile" elements

Rates of point mutation:

1 mutation per locus per 100,000 gametes per generation

= 10 mutations/individual (typical eukaryote ~1M loci)

Mutation among microsatellites ~10x higher rate

MUTATION

Rates of point mutation (1 mutation/locus/100,000 gametes/generation)

Corroboree frog:

250 individuals16-40 eggs per clutch

250 x 1M loci = 250,000,000 loci 125 pairs x 40 gametes = 5,000 gametes 1 generation per year

 $= 50,000 (5 \times 10^4)$ mutations per year

Bufo marinus:

200,000,000 individuals 30,000 eggs per clutch

2 x 10¹⁴ loci 3 x 10¹² gametes

~4 clutches per year

= 1×10^{14} mutations per year

A spatial analogy:

MUTATION

Generates V_G in the long term

Most mutations deleterious

Eliminated quickly by selection

unless recessive...

MUTATIONAL LOAD

- 1. Low frequency (<1% per locus) of deleterious mutations
- 2. Exist as recessives (rarely exposed)
- 3. Thought to occur in most species & loci

Sum for population called

"Mutational load"

Fitness effects experimentally revealed using inbred lines (=increased homozygotes):

MUTATIONAL LOAD

Mutational load is increasingly revealed as populations become smaller

Via the increased chance of deleterious recessives pairing together, and being expressed

This is the mechanism of inbreeding depression

Size reduction

Paris et al. 2022 Nat com

LG1 (Mb)

Chromosome 1 (autosome) and 12 (Y chromosome) sig differentiated – cr 1 more so

MORE ON THIS NEXT WEEK...

V_G is a **balance** between selection, drift, migration & mutation;

Increasingly **stable** with increasing N.

Long-term accumulated negative mutations revealed by small N.