Variables aleatorias discretas

Christian Limbert Paredes Aguilera

Definición de variable aleatoria

Una variable aleatoria es una aplicación que toma valores numéricos determinados por el resultado de un experimento aleatorio.

Tipos de variables aleatorias

Variables aleatorias discretas, continua y mixtas.

Función de probabilidad para varibales discretas

La función de probabilidad de una variable aleatoria discreta X es la que denotamos por

$$P_X(x) = P(X = x)$$

Dominio de una variable aleatoria discreta

$$D_X = \{ x \in \mathbb{R} \mid P_X(x) > 0 \}$$

en el caso discreto lo mas habitual es que

$$X(\Omega) = D_X$$

Propiedades de la función de probabilidad

Sea X una v.a. discreta $X: \Omega :\Rightarrow \mathbb{R}$ con dominio D_X . Su función de probabilidad P_X verifica las siguientes propiedades:

- $0 \le P_X(x) \le 1$ para todo $x \in \mathbb{R}$
- $\sum_{x \in D_X} P_X(x) = 1$

$$P_X(x) = \begin{cases} \frac{1}{8} & si \quad x = 0, 3 \\ \frac{3}{8} & si \quad x = 1, 2 \\ 0 & en \ otro \ caso \end{cases}$$

Efectivamente los valores de la función de distribución suman 1

$$\sum_{x=0}^{3} P_X(x) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$$

Función de distribución de variables aleatorias

La función de distribución de probabilidad (acumulada) de la v.a. X ya sea discreta o continua $F_X(x)$ representa la probabilidad de que X toem un menor o igual que x es decir

$$F_X(x) = P(X \le x)$$

Sea X una v.a. y F_X su función de distribución

1.
$$P(X > x) = 1 - P(X \le x) = 1 - F_X(x)$$

Demostración.- Tenemos que el complementario de X mayor que x es $\overline{\{X>x\}}=\{X>x\}^c=\{X\leq x\}$. Además

$$P(X > x) = 1 - P(\overline{\{X > x\}}) = 1 - P(X \le x) = 1 - F_X(x)$$

2. Sea a y b tales que a < b,

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

Demostración.- Por otro lado, que X se encuentre entre dos valores a y b es $\{a < X \le b\} = \{X \le b\} - \{X \le a\}$ ahora podemos hacer

$$\begin{array}{rcl} P(a < X \leq b) & = & P(\{X \leq \{-\{X \leq a\}) \\ & = & P(\{X \leq b\}) - P(\{X \leq a\}) \\ & = & F_X(b) - F_X(a) \end{array}$$

propiedadades de la función de distribución

Sea F_X la función de distribución de un v.a. X entonces:

- $0 \le F_X(x) \le 1$
- La función F_x es no decreciente.
- Si denotamos por $F_X(x_o^-) = \lim_{x \to x_o^-} F(x)$, entonces se cumple que

$$P(X < x_0) = F_X(x_0^-)$$
 y que $P(X = x_0) = F_X(x_0) - F_X(x_0^-)$

- Se cumple que $\lim_{x\to\infty} F_X(x) = 1$; $\lim_{x\to-\infty} F_X(x) = 0$
- ullet Toda función F verificando las propiedades anteriores es función de distribución de alguna v.a. X.
- $P(X > x) = 1 F_X(x)$
- Dado $a, b \in \mathbb{R}$ con a < b

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Desigualdades estrictas

- $P(X = x) = F_X(x) F_X(x^-)$
- $P(a < X < b) = F_X(b^-) F_X(a)$
- $P(a \le X < b) = F_X(b^-) F_X(a^-)$
- $P(X < a) = F_X(a^-)$

Más propiedades de la función de distribución

• Si F_x es continua en x se tiene que P(X=x)=0 y por lo tanto $P(X\leq a)=P(X< a)+P(X=a)=P(X< a)$.

Demostración.- Si X es continua entonces,

$$P(X = x) = F(a) - F(a^{-}) = F(a) - F(a) = 0$$

por lo tanto

$$P(X \le a) = P(X < a) + P(X = x) = P(X < a) + 0 = P(X < a)$$

• Sea X una v-a- discreta con dominio D_X y que tiene por función de probabilidad $P_X(x)$ entonces su función de distribución $F_X(x_0)$ es

$$F_X(x_0) = \sum_{x \le x_0} P_X(x)$$

donde $\sum_{x \leq x_0}$ indica que sumamos todos los $x \in D_X$ tales que $x \leq x_0$

Demostración.-

$$F_X(x_0) = P(X \le x_0) P\left(\bigcup_{x \le x_0; x \in D_X} \{x\}\right) = \sum_{x \le x_0} P(X = x) = \sum_{x \le x_0} P_X(x)$$

Valor esperado

$$E(X) = \sum_{x \in X(\Omega)} x P_X(x)$$

En ocasiones se le denomina media poblacional o simplemente media y muy frecuentemente se la denota por

$$\mu_X = E(X)$$
 o $\mu = E(X)$

Si $n \to \infty$ se tiene que $\lim_{n \to \infty} \frac{n_x}{x} = P_X(x)$ por lo tanto $E(X) = \lim_{x \to \infty} \sum_{x=1}^n x \frac{n_x}{n}$ Entonces el valor esperado en una v.a. discreta puede entenderse como el valor promedio que tomaría una v.a. en un número grande de repeticiones.

Esperanza de funciones de variables aleatorias discretas

Sea X una v.a. discreta con función de probabilidad P_X y de distribución F_X . Entonces el valor esperado de una función f(x) es:

$$E(g(x)) = \sum_{x} g(x) P_X(x)$$

Propiedades de los valores esperados

• E(k) = k para cualquier constante k.

Demostración.- Se tiene que

$$E(k) = \sum_{x=1}^{n} k \cdot P(X = k) = k \cdot P(X = k) + \dots + k \cdot P(X = k) = k \left[P(X = k) + \dots + P(X = k) \right] = k \cdot 1 = k$$

• Si $a \le X \le b$ entonces $a \le E(X) \le b$

Demostración.- Sea $E(a) \leq E(X) \leq E(b)$ entonces por la anterior propiedad se tiene que

$$a \le E(X) \le b$$

• SI X es una v.a. discreta que toma valores enteros no negativos entonces $E(X) = \sum_{x=0}^{\infty} (1 - F_X(x))$ Demostración.- Sea,

$$E(X) = \sum_{k=0}^{\infty} k \cdot P(X = k)$$

$$= P(X = 1)$$

$$+ P(X = 2) + P(X = 2)$$

$$+ P(X = 3) + P(X = 3) + P(X = 3)$$

$$+ P(X = 4) + P(X = 4) + P(X = 4) + P(X = 4)$$

Luego sumando por columnas se tiene,

$$\sum_{k=1}^{\infty} P(X=k) = P(X>0)$$

$$\sum_{k=2}^{\infty} P(X=k) = P(X>1)$$

$$\sum_{k=3}^{\infty} P(X=k) = P(X>2)$$

$$\sum_{k=3}^{\infty} kP(X=k) = \sum_{k=0}^{\infty} P(X>k)$$

$$E(X) = \sum_{k=0}^{\infty} 1 - F_X(x)$$