Clustering: K-means vs GMM

Liang Liang

K-means Clustering

- N data points $\{x_1, ..., x_N\}, x_n \in \mathcal{R}^M$
- Find K cluster centers $\{\mu_1, \dots, \mu_K\} \in \mathcal{R}^M$ such that the loss is minimized

$$L = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \alpha_{(n,k)} \|x_n - \mu_k\|^2$$

 $\alpha_{(n,k)} = 1$ if and only if x_n is assigned to the cluster-k

a *N*-by-*K* assignment matrix
$$\begin{bmatrix} \alpha_{(1,1)} & \dots & \alpha_{(1,K)} \\ \dots & \dots & \dots \\ \alpha_{(N,1)} & \dots & \alpha_{(N,K)} \end{bmatrix}, \alpha_{(n,k)} = 0 \text{ or } 1$$

 $\sum_{k=1}^{K} \alpha_{(n,k)} = 1$ because x_n is assigned to only one cluster

The k-means algorithm

- Initialization: the user inputs K, and the algorithm initializes random centers $\{\mu_1, \dots, \mu_K\}, \mu_k \in \mathcal{R}^M$
- In each iteration:
 - step-1: assign each data point x_n to its nearest cluster, we get $\alpha_{(n,k)}$

$$cluster_label(x_n) = arg \min_{k \in \{1,...,K\}} ||x_n - \mu_k||^2$$

• step-2: move center μ_k to the average location of data points in cluster-k

$$\mu_k = \frac{1}{N_k} \sum x_n (x_n \text{ in cluster_k})$$

where N_k is the number of data points in the cluster-k

The k-means algorithm

• step-1: assign each data point x_n to its nearest cluster, we get $\alpha_{(n,k)}$

$$cluster_label(x_n) = arg \min_{k \in \{1,...,K\}} ||x_n - \mu_k||^2$$

Example: Let's assume there are three clusters (K=3)

Data Point	Cluster 1	Cluster 2	Cluster 3
x_1	$\alpha_{(1,1)}=1$	$\alpha_{(1,2)}=0$	$\alpha_{(1,3)}=0$
x_2	$\alpha_{(2,1)}=0$	$\alpha_{(2,2)}=1$	$\alpha_{(2,3)}=0$
x_3	$\alpha_{(3,1)} = 0$	$\alpha_{(3,2)}=1$	$\alpha_{(3,3)} = 0$

 x_1 is assigned to cluster 1 x_2 and x_3 are assigned to cluster 2

"hard" assignment matrix $[\alpha_{(n,k)}]$

Visualize 2D clusters from K-means

The smallest circle that contains all of the points in the cluster-k

The radius of the circle

$$r = \max\{d(x_1, \mu_k), d(x_2, \mu_k), ..., d(x_{N_k}, \mu_k)\}\$$

 $x_1, x_2, ..., x_{N_k}$ are in cluster-k

Gaussian Mixture Model (GMM)

• Mixture of K Gaussians in M-dim: $x, \mu \in \mathbb{R}^M$, $\Sigma \in \mathbb{R}^{M \times M}$

$$f_X(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

- $\pi_k = P(\{X \in cluster_k\})$, prior probability, and $\sum_{k=1}^K \pi_k = 1$
- π_k is called the weight of a Gaussian component in sk-learn

Visualize a 2D GMM that has 2 Gaussians

- Input: data samples
 - K, the number of Gaussian components/clusters
- Initialization: initial values of μ_k , Σ_k , π_k for k=1 to K two methods for initialization (available in sk-learn):
 - (1) random
 - (2) use k-means to get K clusters for cluster-k, compute μ_k , Σ_k only use $\{x_n\}$ in cluster-k

$$\mu_{k} = \frac{1}{N_{k}} \sum x_{n}$$

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N_{k}} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}$$

•E-step: compute $\gamma_{(n,k)}$, probability of x_n belonging to cluster-k

$$\gamma_{(n,k)} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

where $\sum_{k=1}^{K} \gamma_{(n,k)} = 1$

the soft assignment matrix $[\gamma_{(n,k)}]$ can be used for clustering

• **E-step**: compute $\gamma_{(n,k)}$, the probability of x_n belonging to cluster-k

$$\gamma_{(n,k)} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)} \text{ where } \sum_{k=1}^K \gamma_{(n,k)} = 1$$

the soft assignment matrix $[\gamma_{(n,k)}]$ can be used for clustering

Example: Let's assume there are three Gaussians in a GMM

Data Point	Cluster 1	Cluster 2	Cluster 3
x_1	$\gamma_{(1,1)}=0.9$	$\gamma_{(1,2)} = 0.06$	$\gamma_{(1,3)} = 0.04$
x_2	$\gamma_{(2,1)} = 0.03$	$\gamma_{(2,2)}=0.9$	$\gamma_{(2,3)} = 0.07$
x_3	$\gamma_{(3,1)}=0.5$	$\gamma_{(3,2)}=0.2$	$\gamma_{(3,3)}=0.3$

 x_1 and x_3 are assigned to cluster 1 x_2 is assigned to cluster 2

soft assignment matrix $[\gamma_{(n,k)}]$

After E-step, we obtain the soft assignment matrix $[\gamma_{(n,k)}]$

• M-step: update the parameters μ_k , Σ_k , π_k for k=1 to K $\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{(n,k)} x_n \text{ weighted average of all data points}$ $\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{(n,k)} (x_n - \mu_k) (x_n - \mu_k)^T$

$$\pi_k = \frac{N_k}{N}$$

$$N_k = \sum_{n=1}^{N} \gamma_{(n,k)}$$

 $\gamma_{(n,k)}$ is also called membership of x_n in cluster-k

```
See Kmeans_2D_sim.ipynb
GMM_2D_sim.ipynb
GMM_DE_Generative_Model.ipynb
```


K-means Clustering

GMM Clustering

GMM is a probability density function (PDF) to model data distribution to estimate PDF of data assuming data samples come from some unknown PDF

Input Data

Use a GMM to do clustering

Input Data

Use a GMM as an estimation of the "true" PDF of the data

Input Data

Generated data

Combine GMM and K-means:

- => modified k-means for clustering: faster than GMM
- E-step (GMM): compute the soft assignment $\gamma_{(n,k)}$, the probability of sample x_n belonging to cluster-k

$$\gamma_{(n,k)} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)} \text{ where } \sum_{k=1}^K \gamma_{(n,k)} = 1$$

• E-step (modified k-means): compute the soft assignment $\gamma_{(n,k)}$, and convert it to hard assignment $\alpha_{(n,k)}$.

e.g. K=2 soft
$$\gamma_{(n,1)} = 0.1$$
, $\gamma_{(n,2)} = 0.9$
=> hard $\alpha_{(n,1)} = 0$, $\alpha_{(n,2)} = 1$

Combine GMM and K-means:

- => modified k-means for clustering: faster than GMM
- M-step (modified k-means): update the parameters for each cluster-k, we only use the data points in cluster-k to update the parameters of the cluster-k: μ_k , Σ_k , π_k (for k=1 to K)

$$\mu_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \alpha_{(n,k)} x_{n}$$

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \alpha_{(n,k)} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}$$

$$\pi_{k} = \frac{N_{k}}{N}, \text{ where } N_{k} = \sum_{n=1}^{N} \alpha_{(n,k)}$$

 $\alpha_{(n,k)} = 1$ if and only if x_n is assigned to the cluster-k $\alpha_{(n,k)} = 0$ otherwise

The distance function of the modified k-means

The distance function is

$$d_k(x_n, \mu_k) = \sqrt{(x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)}$$

a.ka. Mahalanobis distance

