Numerikus módszerek I Gyakorlat jegyzet

Készült Bozsik József előadásai és gyakorlatai alapján

Sárközi Gergő, 2021-22-2. félév Nincsen lektorálva!

Tartalomjegyzék

1.	Gép	oi számábrázolás, hibaszámítás	4					
	1.1.	Gépi számok, lebegőpontos számábrázolás egy modellje	4					
	1.2.	Valós számok ábrázolása gépi számmal	4					
		1.2.1. Hibakorlátok	4					
		1.2.2. Input függvény a gyakorlatban	5					
	1.3.	Gépi számok összeadása	5					
		Hibaszámítás elemei	6					
		1.4.1. Hibák jellemzése	6					
		1.4.2. Alapműveletek hibakorlátai	6					
		1.4.3. Függvényérték hibája, kondíciószáma	6					
2 .	Mátrixokról általánosságban							
		Pozitív definit mátrix definíció	7					
		Ortogonális mátrix, ortonormált rendszer	7					
		Sajátérték számolás	7					
		Determináns számolás	8					
		Invertálás	8					
3.	Gau	ıss-elimináció (GE)	9					
		Főelemkiválasztás	9					
4.	LU	felbontás ($A=LU,$ ahol $L\in\mathcal{L}_1$ és $U\in\mathcal{U})$	10					
	4.1.	Gauss-eliminációval (GE-vel)	10					
		· · · · · · · · · · · · · · · · · · ·						
			10					
5.	LDU	U felbontás ($L \in \mathcal{L}_1, \ U \in \mathcal{U}_1, \ D$ diagonális)	11					
		Szimmetrikus A mátrix, LDL^T felbontás	11					

6.	Cho	$ ext{lesky }(LL^T) ext{ felbont\'as }(L \in \mathcal{L})$	11					
7.	7.1.	felbontás, Gram-Schmidt féle ortogonalizáció Gram-Schmidt féle ortogonalizáció, folyamatos normálás Gram-Schmidt féle ortogonalizáció, normálás utólag	12 12 12					
8.	Householder transzformáció							
	8.1.		13					
	8.2.	LER megoldás Householder transzformációval	13					
		QR felbontás Householder transzformációkkal						
9.	Mát	rixnormák, vektornormák, kondíciószám	14					
	9.1.	Vektornormák	14					
		9.1.1. Axiómák	14					
		9.1.2. Tudnivalók	14					
		9.1.3. Gyakori vektornormák	14					
	9.2.	Mátrixnormák	15					
		9.2.1. Axiómák	15					
		9.2.2. Tudnivalók	15					
		9.2.3. Gyakori mátrixnormák	15					
	9.3.	Mátrixok kondíciószáma	16					
		9.3.1. Tulajdonságok	16					
		9.3.2. Speciális esetek	16					
	9.4.	Reziduumvektor, maradékvektor	16					
10	.Iter	ációs módszerekről általánosságban	17					
	10.1	. Kontrakció	17					
	10.2	. Hibabecslés	17					
11	.Jaco	obi-iteráció	18					
12	.Gau	ıss-Seidel-iteráció	19					
13	.Ricl	nardson-iteráció	20					
	13.1	. Konvergencia	20					
14		zleges LU-felbontás, ILU-iteráció	21					
		. ILU-felbontás	21					
	14.2	. ILU-iteráció	21					
1 5	.Ker	ekítési hibák hatása az iterációkra	22					

16.Maradék tananyag	22
17.ZH2 összefoglalás	23
17.1. Normák, spektrálsugár, kondíciószám	23
17.1.1. Tulajdonságok, egyebek	23
17.1.2. Vektor- és mátrixnormák axiómái	23
17.1.3. Kondíciószám	23
17.2. Iterációkról általánosságban	24
17.3. Jacobi-iteráció	
17.4. Gauss-Seidel-iteráció	24
17.5. Richardson-iteráció	24
17.6. ILU felbontás, ILU-iteráció	25
17.6.1. ILU-felbontás	25
17.6.2. ILU-iteráció	25

1. Gépi számábrázolás, hibaszámítás

1.1. Gépi számok, lebegőpontos számábrázolás egy modellje

- Normalizált lebegőpontos szám: $a = \pm m * 2^k = \pm [m_1...m_t|k]$
 - m: mantissza, hossza $t, m = \sum_{i=1}^{t} m_i * 2^{-i} \quad (m_1 = 1; m_i \in \{0, 1\})$
 - -k: karakterisztika, $k^- < k < k^+$
- Gép számok halmaza: $M=M(t,k^-,k^+) \quad (k^-,k^+\in\mathbb{Z} \text{ és } t\in\mathbb{N})$
 - $M(t, k^-, k^+) = \{\pm 2^k * \sum_{i=1}^t m_i * 2^{-i}\} \cup \{0\}$
 - Gyakran hozzávesszük: $+\infty, -\infty, NaN$
- Gép számok halmazának tulajdonságai:
 - $-\frac{1}{2} \le m < 1$ és M szimmetrikus 0-ra
 - ϵ_0 : legkisebb pozitív elem: $\epsilon_0 = [100...0|k^-] = \frac{1}{2}*2^{k^-} = 2^{k^--1}$
 - $-M_{\infty}$: legnagyobb elem: $M_{\infty} = [111...1|k^{+}] = (1-2^{-t}) * 2^{k^{+}}$
 - -M-ben az 1 után következő gépi szám és az 1 különbsége:
 - $\epsilon_1 = [100...01|1] [100....00|1] = 2^{-t} * 2^1 = 2^{1-t}$
 - |M|: M számossága: |M| = 2 * 2^{t-1} * (k⁺ k⁻ + 1) + 1

1.2. Valós számok ábrázolása gépi számmal

- Ábrázolható számok tartománya: $\mathbb{R}_M = \{x \in \mathbb{R} : |x| \leq M_\infty\}$
- Input függvény, $fl: \mathbb{R}_M \to M$: x-hez \widetilde{x} -et rendel
 - \widetilde{x} az x-hez legközelebbi gépi szám, kerekítés szabályai szerint

$$- fl(x) = \begin{cases} 0 & \text{ha } |x| < \epsilon_0 \\ \widetilde{x} & \text{ha } \epsilon_0 \le |x| \le M_\infty \\ +\infty & \text{ha } |x| > M_\infty \end{cases}$$

1.2.1. Hibakorlátok

- Input hiba: $\forall x \in \mathbb{R}_M : |x fl(x)| \le \begin{cases} \epsilon_0 & \text{ha } |x| < \epsilon_0 \\ 0.5 * |x| * \epsilon_1 & \text{ha } \epsilon \le |x| \le M_{\infty} \end{cases}$
- Abszolút hibakorlát: $\Delta_x = 0.5 * 2^k * 2^{-t}$
- Relatív hibakorlát: $\delta_x = 2^{-t}$

1.2.2. Input függvény a gyakorlatban

- Feladat: M(5, -4, 4)-ben fl(10, 85) = ?
- Első lépés: szám átalakítása 2-es számrendszerbe
 - Táblázatban lehet egyből törtet is átalakítani, pl. 1/6
 - Kezdő nullákat elhagyjuk, a karakterisztikát annyival eltoljuk

10	5	2	1	0	
(: 2)	0	1	0	1	
1010(2)	\leftarrow	\leftarrow	\leftarrow	\leftarrow	

1. táblázat. Egészrész binárisba alakítása

85	70	40	80	60	20	40	80
(*2)	1	1	0	1	1	0	0
$\approx 0.11011_{(2)}$	\rightarrow						

- 2. táblázat. Törtrész binárisba alakítása
- Eredmény: $10,85 \approx 1010.11011_{(2)} = 1010.1|1011_{(2)}$
- Második lépés: kerekítés
 - Eredmény: $fl(10, 85) = [10110|4] = \frac{22}{32} * 2^4 = 11$
- Harmadik lépés: hibaszámolás: |10,85 fl(10,85)| = 0,15

1.3. Gépi számok összeadása

- Azonos karakterisztikájú számok összeadása: mantisszák összeadása, szükség esetén normalizálás (kerekítéssel)
- Eltérő karakterisztikájú számok összeadása: kisebbik karakterisztikát a nagyobbikhoz igazítjuk (kerekítünk, ha kell), majd normál összeadás
- Van rá példa: $b \neq 0 \land a \oplus b = a$
 - -pl. b karakterisztikája $\leq a$ karakterisztikája + mantissza + 1 $[10011|4] \oplus [10010|-2] \implies 0.10010_{(2)}*2^{-2} = 0.00000010010_{(2)}*2^4$
- Van rá példa: asszociativitás nem teljesül
 - pl. (nagy+kicsi)+kicsi vs nagy+(kicsi+kicsi)
- ZH-ban részletesen le kell vezetni pl. a karakterisztika váltást

5

1.4. Hibaszámítás elemei

1.4.1. Hibák jellemzése

- \bullet Legyen Aegy pontos érték, apedig egy közelítő érték
- $\Delta a = A a$: közelítő érték pontos hibája
- $|\Delta a| = |A-a|$: közelítő érték abszolút hibája
- $\Delta_a \geq |\Delta a|$: közelítő érték abszolút hibakorlátja
- $\delta a = \frac{\Delta a}{A} \approx \frac{\Delta a}{a}$: közelítő érték relatív hibája
- $\delta_a \geq |\delta a|$: közelítő érték relatív hibakorlátja
- Kerekítés abszolút hibakorlát: 2 tizedesjegyes kerekítés esetén 0.005

1.4.2. Alapműveletek hibakorlátai

• Tétel: alapműveletek hibakorlátai

$$- \Delta_{a\pm b} = \Delta_a + \Delta_b$$

$$- \Delta_{a*b} = |b|\Delta_a + |a|\Delta_b$$

$$- \Delta_{a/b} = (|b|\Delta_a + |a|\Delta_b) / b^2$$

$$\delta_{a\pm b} = (|a|\delta_a + |b|\delta_b) / |a\pm b|$$

$$\delta_{a*b} = \delta_a + \delta_b$$

$$\delta_{a/b} = \delta_a + \delta_b$$

- Két esetben van nagyságrendileg nagyobb hiba, ezeket érdemes elkerülni:
 - $-\delta_{a\pm b}$: közeli számok kivonása egymásból
 - $-\Delta_{a/b}$: kicsi számmal osztás

1.4.3. Függvényérték hibája, kondíciószáma

- Függvényérték relatív hibája: Ha Δ_a kicsi, akkor $\delta_{f(a)}=\frac{|a||f'(a)|}{|f(a)|}*\delta_a$
- f függvény a-beli kondíciószáma: $c(f,a) = \frac{|a||f'(a)|}{|f(a)|}$

2. Mátrixokról általánosságban

- \bullet a_{ij} jelentése: i. sor, j. oszlop az A mátrixban
- *U*: felső háromszögmátrixok
- \mathcal{L}_1 : alsó háromszögmátrixok; főátlójukban csupa 1-es van
- A^T jelentése: főátlóra tükrözés
- Szimmetrikus mátrix: $A = A^T$
- Sorokra/oszlopokra szigorúan diagonálisan domináns mátrix: főátlóban lévő elemek abszolútértéke szigorúan nagyobb, mint az adott sorban/oszlopban lévő elemek abszolútértékének összege (átlót nem beleszámítva)

2.1. Pozitív definit mátrix definíció

- Legyen szimmetrikus (TODO ebben a tárgyban ez feltétel vagy sem?)
- Ezek közül legyen egy igaz (ha egy igaz, az akkor az összes is):
 - $\langle Ax, x \rangle = x^T Ax > 0$ bármely $0 \neq x \in \mathbb{R}^n$ esetén
 - minden főminorjának determinánsa pozitív
 - minden sajátértéke pozitív
- Példa pozitív definit mátrixra: diagonális és minden eleme pozitív

2.2. Ortogonális mátrix, ortonormált rendszer

- Ortogonális mátrix: $Q^T = Q^{-1}$
 - Oszlopaik, mint vektorok, ortonormált rendszert alkotnak
 - Ortogonális mátrixok szorzata is ortogonális
- Ortonormált rendszer: $\langle q_i, q_j \rangle = \begin{cases} 0 & \text{ha } i \neq j \\ 1 & \text{ha } i = j \end{cases}$
 - Ortogonális rendszer: i=j esetében lehet bármi, nem csak 1

2.3. Sajátérték számolás

• $|A - \lambda I| = 0$, azaz főátlón mindenhol kivonunk λ -t, kiszámoljuk a paraméteres determinánst és megoldunk egy egyenlőséget (det = 0)

2.4. Determináns számolás

- 1 × 1 mátrix: a szám maga
- $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ mátrix: ad bc

•
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 mátrix: $a * \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b * \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c * \begin{vmatrix} d & e \\ g & h \end{vmatrix}$

- Lehet sor helyett oszlop szerint is kibontani
- Determináns tartó műveletek:
 - egy sorhoz hozzáadni egy másik sor konstans-szorosát
- Determináns meg kell szorozni $(-1)^n$ -szer: oszlop, sorcserék száma
- Kapcsolat önmagával:

$$-\det(A^T) = \det(A)$$

$$- \det(AB) = \det(A) \det(B)$$

$$- \det(A^{-1}) = 1/\det(A)$$

$$-n \times n$$
-es mátrix: $\det(cA) = c^n * \det(A)$

- Háromszög mátrix: determináns a főátlón lévő elemek szorzata
- Főminorok: egy mátrix bal felső almátrixjainak a determinánsai
 - D_k a $k\times k$ bal felső részmátrix determinánsa

2.5. Invertálás

• Diagonális mátrix: (főátló) elemeinek reciproka

•
$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\bullet \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}^{-1} = \begin{bmatrix} 1/a & -b/(ad) & (be - cd)/(afd) \\ 0 & 1/d & -e/(fd) \\ 0 & 0 & 1/f \end{bmatrix}$$

Alsó háromszögmátrix: ugyan így

3. Gauss-elimináció (GE)

- Alak: [A|b]
- Első rész: főátló alatt nullázás, balról jobbra
 - Ezután már egyből lehet determinánst számolni
- Második rész: főátló fölött nullázás, jobbról balra, sor osztása magával
 - Kihagyható: egyenletrendszerrel enélkül is megoldható az Ax = b
- Nullázás: a pillanatnyi sor konstans-szorosát hozzáadjuk egy másikhoz
- Inverz számolás: b helyett az identitásmátrix legyen a jobb oldalon. Ekkor amikor bal oldalon identitásmátrix van: jobb oldalon az inverz.
- Sorcsere: nem változik a megoldás
- Oszlopcsere: a megoldás komponensei cserének megfelelően változnak
- Főátlón 0 van, alatta/felette nem: oszlop/sorcsere kell
- Nincs megoldás: ha bal oldalon 0-k vannak a sorban, jobb oldalon nem
- Függő paraméter: ha egy sorban csak 0-k vannak mindkét oldalt

$$\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = \begin{bmatrix}
14/5 - 7/5r - 2/5s \\
-1/5 + 3/5r + 3/5s \\
r \\
s
\end{bmatrix} = \begin{bmatrix}
14/5 \\
-1/5 \\
0 \\
0
\end{bmatrix} + r \cdot \begin{bmatrix}
-7/5 \\
3/5 \\
1 \\
0
\end{bmatrix} + s \cdot \begin{bmatrix}
-2/5 \\
3/5 \\
0 \\
1
\end{bmatrix}$$

3.1. Főelemkiválasztás

- Részleges főelemkiválasztás: adott oszlopban maximális abszolút értékű elem (sor) kiválasztása (ami a főátlón vagy az alatt van), áthelyezése a főátlóra, és a többi sor azzal való eliminálása
- Teljes főelemkiválasztás: részleges főelemkiválasztás, csak bármelyik oszlopból választunk (de mindig csak a jobb alsó részmátrixból)

4. LU felbontás $(A = LU, \text{ ahol } L \in \mathcal{L}_1 \text{ és } U \in \mathcal{U})$

• Felhasználás: Ax = b helyett Ly = b (alsó Δ) és Ux = y (felső Δ)

4.1. Gauss-eliminációval (GE-vel)

- $L_{n-1} * ... * L_2 * L_1 * A = U \implies A = L_1^{-1} * L_2^{-1} * ... * L_{n-1}^{-1} * U = LU$
- Minden GE lépés egy $L_i \in \mathcal{L}_1$, elemei: hányszorost adtunk a sorhoz
- L_i invertálásakor az elemek előjelet cserélnek, ekkor elemek: $\frac{\text{adott sorbeli érték}}{\text{elemináló sor értéke}}$
- Tömör írásmód: nem hozunk létre L_i mátrixokat, hanem a GE-ben használt mátrix alsó részét vastag vonallal leválasztjuk és oda írjuk be a végső L értékeit, folyamatosan, ahogy kiszámoljuk őket

4.2. Létezés (ami \neq LER megoldhatóság)

- \bullet GE végrehajtható sor- és oszlopcsere nélkül \implies létezik LU felbontás
- D_k főminorok $\neq 0 \implies$ létezik LU felbontás (és $u_{kk} \neq 0$)
- $\bullet \ \det(A) \neq 0 \implies \text{az } LU$ felbontás egyértelmű

4.3. LU mátrixok közvetlen kiszámolása (GE nélkül)

- Írjuk fel az L, U mátrixokat változókkal (minden elem 0 vagy egy változó)
 - Segítség: U és A első sora megegyezik
 - Segítség: A első oszlopa leosztva a_{11} -gyel egyezik L első oszlopával
- Egy jó sorrendben (lásd kép) számoljuk ki a változókat: mátrixszorzás eredményét tudjuk, vissza kell fejtenünk a változókat
 - Ellentmondás \implies az LU felbontás nem létezik

$$\begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 4. & 4. & 5. & 5. \\ 6. & 6. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 3. & 5. & 7. \\ 2. & 3. & 5. & 7. \\ 2. & 4. & 5. & 7. \\ 2. & 4. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 2. & 4. & 5. & 5. \\ 2. & 4. & 6. & 7. \end{pmatrix}$$

sorfolytonosan

oszlopfolytonosan

parkettaszerűen

5. LDU felbontás $(L \in \mathcal{L}_1, U \in \mathcal{U}_1, D \text{ diagonális})$

- Előállítás LU felbontásból: $A=L\widetilde{U}=LD*(D^{-1}\widetilde{U})=LDU$
 - \widetilde{U} főátlóját átmásoljuk D-be, helyére 1-esek kerülnek
 - \widetilde{U} minden többi elemét leosztjuk \widetilde{U} azonos sorának főátlóbeli elemével
 - -Így megkaptuk az U mátrixot, L mátrixot pedig békén hagyjuk

5.1. Szimmetrikus A mátrix, LDL^T felbontás

- Szimmetrikus az A mátrix $\implies LDU = LDL^T$
- \bullet GE-vel elég csak a főátlót (D) és az alsó részt (L) tárolni

6. Cholesky (LL^T) felbontás $(L \in \mathcal{L})$

- Felhasználás: Ax = b helyett Ly = b (alsó Δ) és $L^Tx = y$ (felső Δ)
- ullet A szimmetrikus és A pozitív definit \Longrightarrow létezik és egyértelmű
- Előállítás LDU felbontásból: $A = \widetilde{L}D\widetilde{L}^T = \widetilde{L}\sqrt{D}\sqrt{D}\widetilde{L}^T = LL^T$ D minden eleméből gyököt vonunk, ezzel megszorozzuk \widetilde{L} -t: $L = \widetilde{L} * \sqrt{D}$ és $L^T = \sqrt{D} * \widetilde{L}^T$ (L: oszlop; L^T : sor szorzás D elemével)
- $\bullet\,$ Előállítás GE-vel: minden lépésben osztjuk az oszlopot $\sqrt{a_{kk}}\text{-val}$

7. QR felbontás, Gram-Schmidt féle ortogonalizáció

- Q ortogonális mátrix, $R \in \mathcal{U}$
- Felhasználás: $Qy = b \implies y = Q^T b$ és Rx = y (felső Δ)
 - Egybe írva: $Rx = Q^T b$
- $det(A) \neq 0 \implies l$ étezik QR felbontás
 - $\forall r_{ii} > 0 \implies$ egyértelmű a QR felbontás

7.1. Gram-Schmidt féle ortogonalizáció, folyamatos normálás

- a_i jelentése: A mátrix i. oszlopa
- $r_{11} = ||a_1||$ és $q_1 = \frac{1}{r_{11}}a_1$
- k: hányadik lépés van most (k = 2, ..., n); valamint: j = 1, ..., k 1
- $r_{jk} = \langle a_k, q_j \rangle$ és $s_k = a_k \sum_{j=1}^{k-1} r_{jk} * q_j$ és $r_{kk} = ||s_k||$ és $q_k = \frac{1}{r_{kk}} s_k$

7.2. Gram-Schmidt féle ortogonalizáció, normálás utólag

- $\widetilde{r}_{11} = \widetilde{r}_{kk} = 1$ és $\widetilde{q}_1 = a_1$
- $\widetilde{r}_{jk} = \langle a_k, \widetilde{q}_j \rangle / \langle \widetilde{q}_j, \widetilde{q}_j \rangle$ és $\widetilde{q}_k = a_k \sum_{j=1}^{k-1} \widetilde{r}_{jk} * \widetilde{q}_j$
- Ilyenkor már $A=\widetilde{Q}\widetilde{R},$ de Q nem ortonormált
- $\bullet \ Q$ elkészítése: \widetilde{Q} oszlopait (\widetilde{q}_i) le kell osztani $||\widetilde{q}_i||\text{-vel}$
- R elkészítése: \widetilde{R} sorait meg kell szorozni $||\widetilde{q}_i||$ -vel (A legfelső sort a leg bal oldalibb oszloppal kell szorozni.)

8. Householder transzformáció

- Householder mátrix: $H(v) = I 2vv^T$ ahol ||v|| = 1
 - -H(v) tükröző mátrix, v normálvektorú, n-1 dim. altérre tükröz
 - Szimmetrikus $(H^T = H)$, ortogonális $(H^{-1} = H \text{ és } ||x|| = ||H(v)x||)$
 - $-H(v)*v = -v \text{ és } \forall y \perp v : H(v)*y = y$
 - Nem kell előállítani, a Householder transzformáció anélkül is alkalmazható: $H(v)x = (I-2vv^T)x = x-2v(v^Tx)$ ahol $v^Tx \in \mathbb{R}$ és $x \in R^n$ $y^TH(v) = y^T(I-2vv^T) = y^T-2(y^Tv)v^T$ ahol $y^Tv \in \mathbb{R}$ és $y \in R^n$
- Tükrözés: $v=\pm \frac{a-b}{||a-b||},\; a\neq b,\; ||a||=||b||\neq 0$ esetén: H(v)a=b

8.1. Egy a vektor $b = k * e_1$ alakúra hozása

- $k = -1 * signum(a_1) * ||a||$ és $v = \frac{a ke_1}{||a ke_1||}$
- Ekkor: $H(v) * a = a 2v(v^T a) = a 2(v^T a)v = ke_1 \quad (2(v^T a) \in \mathbb{R})$

8.2. LER megoldás Householder transzformációval

- Cél: felső háromszög alakra hozás
- Minden lépésben egy oszlopot $k * e_1$ alakúra hozunk
- A transzformációt a többi oszlopon és b-n is elvégezzük: $c := c 2(v^T c)v$ ahol c egy tetszőleges oszlop (vagy b)
 - Ha c az az oszlop, amivel létrehoztuk v-t: az eredmény $k*e_1$
- Következő lépésben eggyel kisebb mátrixon folytatjuk

8.3. QR felbontás Householder transzformációkkal

• TODO nem sikerült felfognom/megértenem, de minta ZH-ban sem volt

9. Mátrixnormák, vektornormák, kondíciószám

9.1. Vektornormák

9.1.1. Axiómák

- Az alábbi tulajdonságok mindegyikével bíró függvények a vektornormák
- $||x|| \ge 0$
- $||x|| = 0 \Leftrightarrow x = 0$
- $\bullet ||\lambda * x|| = |\lambda| * ||x||$
- $||x + y|| \le ||x|| + ||y||$

9.1.2. Tudnivalók

- $||x||_{\infty} \le ||x||_2 \le ||x||_1$ de $\exists c_1, c_2 : c_1 * ||x||_b \le ||x||_a \le c_2 * ||x||_b$
 - Azaz ekvivalensek a normák

9.1.3. Gyakori vektornormák

- Manhattan norma: $||x||_1 = \sum_{i=1}^n |x_i|$
- Euklideszi norma: $||x||_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$
- Csebisev norma: $||x||_{\infty} = \max |x_i|$
- p-norma: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ $(1 \le p < \infty)$

9.2. Mátrixnormák

9.2.1. Axiómák

- Vektorok axiómái
- És egy extra: $||A * B|| \le ||A|| * ||B||$

9.2.2. Tudnivalók

- Indukált norma, természetes mátrixnorma: $||A|| = \sup \frac{||Ax||_v}{||x||_v} \quad (x \neq 0)$
- Illeszkedő norma: $||Ax||_v \leq ||A|| * ||x||_v$
- Természetes mátrixnormák illeszkednek az őket indukáló vektornormákhoz

9.2.3. Gyakori mátrixnormák

- Frobenius-norma (nem indukált): $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$
 - Illeszkedik a kettes vektornormához
- Oszlopnorma: $||A||_1 = \max_{j=1}^n \sum_{i=1}^n |a_{ij}|$ (oszlop szummák maximuma)
- Sornorma: $||A||_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|$ (sor szummák maximuma)
 - Szimmetrikus mátrix esetén megegyezik az oszlopnormával
- Spektrálnorma: $||A||_2 = \sqrt{\max_{i=1}^n \lambda_i(A^T A)} = \sqrt{\varrho(A^T A)}$
 - $\lambda_i(A^TA)$ az A^TA mátrix különböző sajátértékeket jelenti
 - Spektrálsugár: $\varrho(A) = \max_{i=1}^n |\lambda_i(A)|$
 - Szimmetrikus mátrix esetén: $||A||_2 = \varrho(A)$

9.3. Mátrixok kondíciószáma

- $\bullet \ \kappa(A)=cond(A)=||A||*||A^{-1}||$
- Csak invertálható mátrixokra értelmes
- Értéke függ a választott normától
- Jellemzi LER feladat érzékenységét a (bemeneti, számábrázolási) hibára
 - Minél nagyobb a kondíciószám, annál rosszabb

9.3.1. Tulajdonságok

- Indukált norma esetén: $cond(A) \ge 1$
- $\bullet \ c \neq 0 \implies cond(c*A) = cond(A)$

9.3.2. Speciális esetek

- Ha Q ortogonális: $cond_2(Q) = 1$
- Ha A szimmetrikus: $cond_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$
- Ha A invertálható: $cond(A) \geq \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$

9.4. Reziduumvektor, maradékvektor

- \bullet Legyen \widetilde{x} az Ax=b LER egy közelítő megoldása
- Ekkor $r=b-A\widetilde{x}$ a reziduum- vagy maradékvektor
- Jellemzi megoldó módszer érzékenységét (bemeneti/számábrázolási) hibára
 - Kondíciószám a feladat érzékenységét jellemzi, ez a megoldás módszerét
- Relatív maradék: $\eta = \frac{||r||}{||A||*||\widetilde{x}||}$
 - HaAinvertálható, akkor illeszkedő normában: $\eta \leq \frac{||\Delta A||}{||A||}$
 - Egyenlőség áll fenn kettes norma esetén

10. Iterációs módszerekről általánosságban

- $\varphi(x) = Bx + c$
 - B: átmenet mátrix
 - $-x^{(0)}$ tetszőleges, $x^{(k+1)} = \varphi(x^{(k)})$
- Vektorsorozat akkor konvergens, ha $\exists x^* \in \mathbb{R}^n: \forall \epsilon > 0: \exists N \in \mathbb{N}: \forall k > N: ||x^{(k)} x^*|| < \epsilon$
- Iteráció és LER: $x^* = Bx^* + c \Leftrightarrow (I B)x^* = c \Leftrightarrow Ax = b$
- Fixponttétel: x^* az φ leképezés fixpontja, ha $x^* = \varphi(x^*)$

10.1. Kontrakció

- φ kontrakció, ha $\exists q \in [0,1) : ||\varphi(x) \varphi(y)|| \leq q * ||x y|| \quad (\forall x, y \in \mathbb{R}^n)$
- q neve: kontrakciós együttható (minél kisebb, annál gyorsabb a kontrakció)
- Kontrakció esetén létezik egyértelmű fixpont
- Nézzük a $\varphi(x) = Bx + c$ leképezést (ekkor q = ||B||, azonos normában)
 - Elégséges feltétel kontrakcióra bármilyen kezdőértékkel: ||B|| < 1
 - Szükséges és elégséges feltétel, bármilyen kezdőérték: $\rho(B) < 1$
 - Ha a fenti állítások igazak, akkor $\forall x^{(0)}$ esetén kontrakció
 - Ha nem igazak, akkor is létezhez $x^{(0)}$, amire kontrakció

10.2. Hibabecslés

- Ugyan azt a normát használjuk, mint a kontrakciós együtthatóhoz
- $||x^{(k)} x^*|| \le q^k * ||x^{(0)} x^*||$
- $||x^{(k)} x^*|| \le \frac{q^k}{1-q} * ||x^{(1)} x^{(0)}||$
- Hány (k) lépést kell tenni adott (α) pontossághoz adott x_0 esetén?
 - $-||x^{(k)} x^*|| \le \frac{q^k}{1-q} * ||x^{(1)} x^{(0)}|| \le \alpha \quad \text{(itt } q, x^{(1)}, x^{(0)}, \alpha \text{ ismert)}$
 - Rendezve: $||x^{(k)} x^*|| \le q^k \le \dots * \alpha \implies k \ge \log_q(\dots * \alpha)$
 - * Reláció megfordult, mert q < 1

11. Jacobi-iteráció

- Eredeti feladat: Ax = b
- Legyen A = L + D + U (semmi köze az LDU-felbontáshoz)
- Iteráció: $x^{(k+1)} = -D^{-1}(L+U)x^{(k)} + D^{-1}b = B_J * x^{(k)} + c_J$
- Koordinátás, komponensenkénti alak

$$- x_i^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} - b_i \right)$$
$$- \text{pl. } x_2^{(1)} = \frac{-1}{a_{22}} \left(a_{21} x_1^{(0)} + a_{23} x_3^{(0)} - b_2 \right)$$

• Reziduum vektoros alak

$$-r^{(0)} = b - Ax^{(0)} \text{ \'es } k = 1, ...$$

$$-s^{(k)} = D^{-1}r^{(k)}$$

$$-x^{(k+1)} = x^{(k)} + s^{(k)} \text{ \'es } r^{(k+1)} = r^{(k)} - As^{(k)}$$

- ullet Ha A szig. diag. dom. a soraira, akkor az iteráció mindig konvergens
- Relaxált, csillapított Jacobi-iteráció: nem szokott lenni ZH-ban

12. Gauss-Seidel-iteráció

- Eredeti feladat: Ax = b
- Legyen A = L + D + U (semmi köze az LDU-felbontáshoz)
- Iteráció: $x^{(k+1)} = -(L+D)^{-1}Ux^{(k)} + (L+D)^{-1}b = B_S * x^{(k)} + c_S$
- Koordinátás, komponensenkénti alak

$$- x_i^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^n a_{ij} x_j^{(k)} - b_i \right)$$
$$- pl. x_2^{(1)} = \frac{-1}{a_{22}} \left(a_{21} x_1^{(1)} + a_{23} x_3^{(0)} - b_2 \right)$$

• Reziduum vektoros alak

$$- r^{(0)} = b - Ax^{(0)} \text{ és } k = 1, ...$$

$$- s^{(k)} = (D + L)^{-1} r^{(k)}$$

$$- x^{(k+1)} = x^{(k)} + s^{(k)} \text{ és } r^{(k+1)} = r^{(k)} - As^{(k)}$$

- $\bullet\,$ Az iteráció minden $x^{(0)}$ esetén konvergens, ha
 - ha A szigorúan diagonális domináns a soraira
 - vagy ha A pozitív definit mátrix
- Csillapított, relaxált Gauss-Seidel-iteráció: nem szokott lenni ZH-ban

13. Richardson-iteráció

- Legyen A egy pozitív definit mátrix és $p \in \mathbb{R}$
 - Pozitív definit \Leftrightarrow minden sajátértéke pozitív
- Eredeti feladat: $Ax = b \implies p * Ax = p * b$
- Iteráció: $x^{(k+1)} = (I pA)x^{(k)} + pb = B_{R(p)} * x^{(k)} + c_{R(p)}$
- Reziduum vektoros alak

$$-r^{(0)} = b - Ax^{(0)} \text{ és } k = 1, ...$$

$$-s^{(k)} = pr^{(k)}$$

$$-x^{(k+1)} = x^{(k)} + s^{(k)} \text{ és } r^{(k+1)} = r^{(k)} - As^{(k)}$$

13.1. Konvergencia

- Legyenek Asajátértékei $m=\lambda_1\leq \ldots \leq \lambda_n=M$
- R(p) pontosan $p \in (0; \frac{2}{M})$ esetén konvergens $(\forall x^{(0)})$
- Optimális paraméter: $p_0 = \frac{2}{M+m}$
 - Ekkor $q = \frac{M-m}{M+m} = ||B_{R(p_0)}||_2 = \varrho(B_{R(p_0)})$

14. Részleges LU-felbontás, ILU-iteráció

14.1. ILU-felbontás

- J: (mátrix) pozícióhalmaz, $(i, i) \notin J$
- $(i,j) \in J \implies l_{ij} = u_{ij} = 0$ valamint $(i,j) \notin J \implies a_{ij} = (LU)_{ij}$
 - Azaz rendes A=LU felbontás, de pár elem0
- Felbontás algoritmusa (L, U és Q kiszámolása)

$$-k = 1, ..., n-1 \text{ \'es } \widetilde{A}_1 = A$$

$$-\widetilde{A}_k = P_k - Q_k$$

- * k-adik sor/oszlop van J-ben: Q-ba beletesszük A azon pozíciójának -1-szeresét és P-ban 0-ra állítjuk az értéket
- $-\widetilde{A}_{k+1} = L_k P_k$
 - * GE-vel elimináljuk P k-adik oszlopát, "lépést" L_k^{-1} -be mentjük
 - * Gyakorlatilag LU-felbontás: $\widetilde{A}_n \sim U$
 - $\ast\,$ Tömör írásmódra is van lehetőség: $A,\,L,\,P$ egyben
- Felbontás befejezése (cél: A = LU Q)

$$-U = \widetilde{A}_n$$

–
$$L = L_1^{-1} * \dots * L_{n-1}^{-1}$$
 (összepakolás)

$$-Q = Q_1 + ... + Q_{n-1}$$
 (összepakolás)

14.2. ILU-iteráció

- Eredeti feladat: Ax = b
- Legyen A = P Q és P = LU
- Iteráció: $x^{(k+1)} = P^{-1}Qx^{(k)} + P^{-1}b = B_{ILU} * x^{(k)} + c_{ILU}$
- Koordinátás, komponensenkénti alak: nem volt a dián
- Reziduum vektoros alak

$$- r^{(0)} = b - Ax^{(0)}$$
 és $k = 1, ...$

$$- s^{(k)} = P^{-1}r^{(k)}$$

$$-x^{(k+1)} = x^{(k)} + s^{(k)}$$
 és $r^{(k+1)} = r^{(k)} - As^{(k)}$

15. Kerekítési hibák hatása az iterációkra

- Legyen ϵ a lépésenkénti hiba felső korlátja: $||\epsilon^{(k)}|| \leq \epsilon$
- Ekkor $\lim_{k \to \infty} ||z^{(k)}|| \le \frac{\epsilon}{1 ||B||}$

16. Maradék tananyag

• Nemlineáris dolgok és 12. előadás anyaga: rendes ZH-n nem lesz, de javító ZH-n és vizsgán lesz

17. ZH2 összefoglalás

17.1. Normák, spektrálsugár, kondíciószám

- Manhattan norma: $||x||_1 = \sum_{i=1}^n |x_i|$
- Euklideszi norma: $||x||_2 = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$
- Csebisev norma: $||x||_{\infty} = \max |x_i|$
- p-norma: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ $(1 \le p < \infty)$
- Frobenius-norma (nem indukált, 2-höz illeszkedő): $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$
- Oszlopnorma: $||A||_1 = \max_{j=1}^n \sum_{i=1}^n |a_{ij}|$ (oszlop szummák maximuma)
- Sornorma: $||A||_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|$ (sor szummák maximuma)
- Spektrálnorma: $||A||_2 = \sqrt{\max_{i=1}^n \lambda_i(A^T A)} = \sqrt{\varrho(A^T A)}$
 - Spektrálsugár: $\varrho(A) = \max_{i=1}^n |\lambda_i(A)|$
 - Szimmetrikus mátrix esetén: $||A||_2 = \varrho(A)$

17.1.1. Tulajdonságok, egyebek

- Normák ekvivalensek: $\exists c_1, c_2: \ c_1*||x||_b \leq ||x||_a \leq c_2*||x||_b$
- Indukált norma, természetes mátrix
norma: $||A|| = \sup \frac{||Ax||_v}{||x||_v} \quad (x \neq 0)$
- Illeszkedő norma: $||Ax||_v \leq ||A|| * ||x||_v$

17.1.2. Vektor- és mátrixnormák axiómái

- $\bullet ||x|| \ge 0 \qquad \qquad \circ ||x|| = 0 \Leftrightarrow x = 0$
- $||\lambda * x|| = |\lambda| * ||x||$ $\circ ||x + y|| \le ||x|| + ||y||$
- Csak mátrixnormákhoz: $||A*B|| \leq ||A||*||B||$

17.1.3. Kondíciószám

- $\kappa(A) = cond(A) = ||A|| * ||A^{-1}||$
- A szimmetrikus $\implies cond_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$

17.2. Iterációkról általánosságban

- $x^{(k+1)} = \varphi(x^{(k)}) = Bx^{(k)} + c$ ahol B az átmenet mátrix és $x^{(0)}$ tetszőleges
- $Ax = b \Leftrightarrow (I B)x = c \Leftrightarrow x = Bx + c$
- $q \in [0,1)$ esetén φ kontrakció, !
 ! fixpont $(x=\varphi(x)),$ minden $x^{(0)}$ jó
- Szükséges és elégséges feltétel: $q = \varrho(B) < 1$
- Hibabecslés: $||x^{(k)}-x^*|| \leq \frac{q^k}{1-q} * ||x^{(1)}-x^{(0)}|| \quad \text{(illeszkedő normában)}$

17.3. Jacobi-iteráció

- A = L + D + U (nem LDU-felbontás)
- Vektoros alak: $x^{(k+1)} = -D^{-1}(L+U)x^{(k)} + D^{-1}b = B_J * x^{(k)} + c_J$
- Koordinátás alak: $x_i^{(k+1)} = \frac{-1}{a_{ii}} (\sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} b_i)$
- \bullet A szig. diag. dom. soraira \implies mindig konvergens

17.4. Gauss-Seidel-iteráció

- A = L + D + U (nem LDU-felbontás)
- Vektoros alak: $x^{(k+1)} = -(L+D)^{-1}Ux^{(k)} + (L+D)^{-1}b = B_S * x^{(k)} + c_S$
- Koordinátás alak: $x_i^{(k+1)} = \frac{-1}{a_{ii}} (\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^n a_{ij} x_j^{(k)} b_i)$
- \bullet A szig. diag. dom. soraira vagy A poz. definit \implies mindig konvergens

17.5. Richardson-iteráció

- Feltétel: A pozitív definit mátrix: $0 < m = \lambda_1 \le ... \le \lambda_n = M$
- $Ax = b \implies p * Ax = p * b \quad (p \in \mathbb{R})$
- Vektoros alak: $x^{(k+1)} = (I pA)x^{(k)} + pb = B_{R(p)} * x^{(k)} + c_{R(p)}$
- R(p) konvergens minden $x^{(0)}$ -ra $\Leftrightarrow p \in (0; \frac{2}{M})$
- Optimális p: $p_0 = \frac{2}{M+m} \implies q = \frac{M-m}{M+m} = ||B_{R(p_0)}||_2 = \varrho(B_{R(p_0)})$

17.6. ILU felbontás, ILU-iteráció

17.6.1. ILU-felbontás

- J pozícióhalmaz, $(i, i) \notin J$
- k = 1, ..., n
- $\bullet \ A \implies \widetilde{A}_1 = A$
- $\widetilde{A}_k \implies \widetilde{A}_k = P_k Q_k$ hogy ha J-ben van k-adik oszlop/sor pozíció:
 - Q-ba beletesszük az érték -1-szeresét
 - P-ben 0-ra állítjuk azon értéket
- $\bullet\,$ GE-vel Pk-adik oszlopának eliminációja: $\widetilde{A}_{k+1} = L_k P_k$
 - Gyakorlatilag LU-felbontás, tömör írásmódra is van lehetőség
- Felbontás befejezése (cél: A = LU Q)

$$-U = \widetilde{A}_n$$

–
$$L = L_1^{-1} * \dots * L_{n-1}^{-1}$$
 (összepakolás)

$$-Q = Q_1 + ... + Q_{n-1}$$
 (összepakolás)

17.6.2. ILU-iteráció

•
$$A = P - Q$$
 és $P = LU$

• Vektoros alak:
$$x^{(k+1)} = P^{-1}Qx^{(k)} + P^{-1}b = B_{ILU} * x^{(k)} + c_{ILU}$$