THIẾT KẾ BỘ LỌC SỐ FIR

ĐÁP ỨNG BIÊN ĐỘ CỦA BỘ LỌC SỐ THÔNG THẤP

≻Các phương pháp tổng hợp lọc số FIR:

Phương pháp cửa số Phương pháp lấy mẫu tần số Phương pháp lặp (tối ưu)

ĐÁP ỨNG BIÊN ĐỘ CÁC LỌC SỐ LÝ TƯỞNG

Ký hiệu:

: Dải thông

: Dải chắn

Ví dụ: Tìm h(n) của lọc thông thấp lý tưởng, biết:

$$H(\omega) = \begin{cases} 1 : -\omega_c \le \omega \le \omega_c = \frac{\pi}{2} \\ 0 : \omega \text{ khác} \end{cases}$$

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{1}{2\pi} \frac{\sin \omega_c n}{\omega_c n}$$

Đáp ứng xung của lọc số lý tưởng:

- Có độ dài vô hạn
- Không nhân quả

CÁC TÍNH CHẤT TỔNG QUÁT LỌC SỐ FIR

a. Bộ lọc số FIR luôn ổn định do độ dài L[h(n)]=N:

$$\sum_{n=-\infty}^{-\infty} |h(n)| = \sum_{n=0}^{N-1} |h(n)| < \infty$$

b. Nếu h(n) không nhân quả, dịch h(n) sang phải n₀ đơn vị thành h(n-n₀), nhưng đáp ứng biên độ vẫn không đổi:

$$h(n) \stackrel{F}{\longleftrightarrow} H(\omega) = |H(\omega)| e^{j \arg H(\omega)}$$

$$h(n-n_0) \stackrel{F}{\longleftrightarrow} e^{-jn_0\omega} H(\omega) = |H(\omega)| e^{j[\arg H(\omega)-n_0\omega]}$$

CÁC ĐẶC TRƯNG CỦA BỘ LỌC SỐ FIR CÓ PHA TUYẾN TÍNH

- Đáp ứng tần số của bộ lọc: $H(\omega) = A(\omega)e^{j\theta(\omega)}$

$$H(\omega) = A(\omega)e^{j\theta(\omega)}$$

- Thời gian lan truyền tín hiệu:
$$au = rac{-digl[heta(\omega)igr]}{d\omega} = lpha$$

- Để thời gian lan truyền τ không phụ thuộc vào Ω thì:

$$\theta(\omega) = -\alpha\omega + \beta$$

Trường hợp 1: $\beta = 0$, $\theta(\omega) = -\alpha\omega$

Đáp ứng tần số của bộ lọc:

$$\mathbf{H}(\omega) = \mathbf{A}(\omega)\mathbf{e}^{\mathbf{j}\theta(\omega)} = \mathbf{A}(\omega)\mathbf{e}^{-\mathbf{j}\alpha\omega} = \sum_{\mathbf{n}=0}^{N-1} \mathbf{h}(\mathbf{n})\mathbf{e}^{-\mathbf{j}\omega\mathbf{n}}$$

$$\mathbf{A}(\boldsymbol{\omega}) \left[\cos \alpha \boldsymbol{\omega} - \mathbf{j} \sin \alpha \boldsymbol{\omega} \right] = \sum_{\mathbf{n}=0}^{\mathbf{N}-1} \mathbf{h}(\mathbf{n}) \left[\cos \boldsymbol{\omega} \mathbf{n} - \mathbf{j} \sin \boldsymbol{\omega} \mathbf{n} \right]$$

$$\frac{\sin\alpha\omega}{\cos\alpha\omega} = \frac{\sum_{n=0}^{N-1} h(n)\sin\omega n}{\sum_{n=0}^{N-1} h(n)\cos\omega n}$$

$$\sin\alpha\omega\sum_{n=0}^{N-1}h(n)\cos\omega n = \cos\alpha\omega\sum_{n=0}^{N-1}h(n)\sin\omega n$$

$$\sum_{\mathbf{n}=0}^{\mathbf{N}-1} \mathbf{h}(\mathbf{n}) \left[\sin \alpha \omega \cos \omega \mathbf{n} - \cos \alpha \omega \sin \omega \mathbf{n} \right] = 0$$

$$\sum_{\mathbf{n}=0}^{\mathbf{N}-1} \mathbf{h}(\mathbf{n}) \sin[(\alpha - \mathbf{n})\omega] = 0$$

$$\begin{cases} \alpha = \frac{\mathbf{N}-1}{2} \\ \mathbf{h}(\mathbf{n}) = \mathbf{h}(\mathbf{N}-1-\mathbf{n}) \end{cases}$$

- •<u>Ví dụ</u>: Hãy vẽ đồ thị h(n) của lọc số FIR có pha tuyến tính $\varphi(\omega) = -\alpha\omega$:
- a) N=7; h(0)=1; h(1)=2; h(2)=3; h(3)=4
- b) N=6; h(0)=1; h(1)=2; h(2)=3
- Tâm đối xứng: α=(N-1)/2=3
- h(n) = h(6-n)
 h(0)=h(6)=1; h(1)=h(5)= 2
 h(2)=h(4)=3
- Tâm đối xứng: α=(N-1)/2=2.5
- h(n) = h(5-n)
 h(0)=h(5)=1; h(1)=h(4)=2;
 h(2)=h(3)=3

Trường hợp 2:
$$\beta \neq 0$$
, $\theta(\omega) = -\alpha\omega + \beta$

Tương tự trường hợp 1, ta được:

$$\sum_{\mathbf{n}=0}^{\mathbf{N}-1} \mathbf{h}(\mathbf{n}) \sin[\beta + (\alpha - \mathbf{n})\omega] = 0$$

$$\begin{cases} \alpha = \frac{N-1}{2} \\ \mathbf{h}(\mathbf{n}) = -\mathbf{h}(N-1-\mathbf{n}) \end{cases}$$

Bộ lọc loại 1: h(n) đối xứng, N lẽ

Bộ lọc loại 2: h(n) đối xứng, N chẵn

Bộ lọc loại 3: h(n) phản đối xứng, N lẽ

Bộ lọc loại 4: h(n) phản đối xứng, N chẵn

PHƯƠNG PHÁP CỬA SỐ

Khái niệm

- Đáp ứng xung h(n) của lọc số lý tưởng là không nhân quả và có độ dài vô hạn ⇒ không thể thực hiện được về mặt vật lý.
- Để bộ lọc thiết kế được thì đáp ứng xung h_d(n) phải là nhân quả và hệ ổn định, bằng cách:
 - Dịch h(n) đi n₀ đơn vị -> h(n-n₀): nhân quả
 - Giới hạn số mẫu của h(n): h_d(n)= h(n). w(n)_N
 -> hệ ổn định.

MỘT SỐ HÀM CỬA SỐ

Cửa sổ chữ nhật:

$$W_R(n) = \begin{cases} 1: N-1 \ge n \ge 0 \\ 0: n \text{ còn lại} \end{cases}$$

Cửa sổ tam giác (Bartlett):

$$W_{T}(n) = \begin{cases} \frac{2n}{N-1} : & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1} : \frac{N-1}{2} \le n \le N-1 \\ 0 : & \text{còn lại} \end{cases}$$

Cửa sổ Hanning:

$$W_{Han}(n) = \begin{cases} 0.5 - 0.5\cos\left(\frac{2\pi n}{N - 1}\right) : 0 \le n \le N - 1 \\ 0 : n \text{ còn lại} \end{cases}$$

Cửa sổ Hamming:

$$W_{Ham}(n) = \begin{cases} 0,54 - 0,46\cos\left(\frac{2\pi n}{N-1}\right) : 0 \le n \le N-1 \\ 0 & : n \text{ còn lại} \end{cases}$$

❖ Cửa sổ Blackman:

$$W_{B}(n) = \begin{cases} 0,42 - 0,5\cos\left(\frac{2\pi n}{N - 1}\right) + 0,08\cos\left(\frac{4\pi n}{N - 1}\right) : 0 \le n \le N - 1 \\ 0 & : n \text{ còn lại} \end{cases}$$

CÁC BƯỚC THIẾT KẾ LỌC FIR CÓ PHA TUYẾN TÍNH BẰNG PP CỬA SỐ

- Chọn 4 chỉ tiêu kỹ thuật: δ_1 , δ_2 , ω_P , ω_S
- Chọn hàm cửa sổ w(n)_N và độ dài N
- Chọn đáp ứng xung h(n) của lọc số lý tưởng có tâm đối xứng $\alpha = \frac{N-1}{2}$ và dịch h(n) đi $n_0 = \frac{N-1}{2}$ đơn vị để được h'(n)=h(n-n₀) nhân quả.
- Nhân hàm cửa sổ **w(n)_N với h(n): h_d(n)= h(n- n₀). w(n)_N**
- Kiểm tra lại các chỉ tiêu kỹ thuật có thỏa mãn không, nếu không thì tăng N.

Ví dụ: Thiết kế bộ lọc thông thấp FIR có pha tuyến tính $\varphi(\omega) = -\alpha \omega = -\omega(N-1)/2$ với các chỉ tiêu kỹ thuật:

$$\delta_1 = \delta_{10}$$
 ; $\delta_2 = \delta_{20}$; $\omega_p = \omega_{p0}$; $\omega_s = \omega_{s0}$; $\omega_c = (\omega_{p0} + \omega_{s0})/2 = \pi/2$ và vẽ sơ đồ bộ lọc.

- Chọn 4 chỉ tiêu kỹ thuật: $\delta_1 = \delta_{10}$; $\delta_2 = \delta_{20}$; $\omega_p = \omega_{p0}$; $\omega_s = \omega_{s0}$
- Chọn hàm cửa số w(n)_N với độ dài N=9:

$$W_R(n) = \begin{cases} 1: 8 \ge n \ge 0 \\ 0: n \text{ còn lại} \end{cases}$$

Chọn bộ lọc thông thấp lý tưởng có tần số cắt $\omega_c = \pi/2$ và đáp ứng xung h(n) có tâm đối xứng tại $\alpha = (N-1)/2 = 4$.

Do h(n) của lọc thông thấp lý tưởng có tâm đối xứng n=0 và $h(n) = \frac{1}{2} \frac{\sin \pi n / 2}{\pi n / 2}$

Do pha tuyến tính $\varphi(\omega)$ = $-\alpha\omega$ = $-\omega(N-1)/2$ nên h(n) sẽ có tâm đối xứng tại α = (N-1)/2=4, bằng cách dịch h(n) sang phải n₀=4 đơn vị: $h'(n) = h(n-4) = \frac{1}{2} \frac{\sin \pi (n-4)/2}{\pi (n-4)/2}$

Nhân cửa sổ chữ nhật W₉(n) với h(n-4) ta được:
 h_d(n)=h(n-4) W₉(n)

Thử lại xem H_d(ω) có thỏa các chỉ tiêu kỹ thuật không?

$$\mathbf{H_d}(\mathbf{\Omega}) = \mathbf{H'}(\mathbf{\omega}) * \mathbf{W_R}(\mathbf{\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{H'}(\mathbf{\omega'}) \mathbf{W_R}(\mathbf{\omega} - \mathbf{\omega'}) d\mathbf{\omega'}$$

- Nếu không, ta cần tăng N và làm lại các bước từ đầu.
- Giả sử với N=9, các chỉ tiêu kỹ thật đã thỏa mãn, ta có:

$$h_d(n) = \frac{-1}{3\pi}\delta(n-1) + \frac{1}{\pi}\delta(n-3) + \frac{1}{2}\delta(n-4) + \frac{1}{\pi}\delta(n-5) + \frac{-1}{3\pi}\delta(n-7)$$

$$y(n) = \frac{-1}{3\pi}x(n-1) + \frac{1}{\pi}x(n-3) + \frac{1}{2}x(n-4) + \frac{1}{\pi}x(n-5) + \frac{-1}{3\pi}x(n-7)$$

$$y(n) = \frac{-1}{3\pi}x(n-1) + \frac{1}{\pi}x(n-3) + \frac{1}{2}x(n-4) + \frac{1}{\pi}x(n-5) + \frac{-1}{3\pi}x(n-7)$$

Đáp ứng biên độ của bộ lọc thông thấp thiết kế

SO SÁNH CÁC HÀM CỬA SỐ CÁC THÔNG SỐ ĐẶC TRƯNG CHO PHỔ CÁC HÀM CỬA SỐ

- Bề rộng đỉnh trung tâm của phổ cửa sổ ∆∞:
 tỷ lệ với bề rộng dải quá độ
- Tỷ số biên độ đỉnh thứ cấp đầu tiên và đỉnh trung tâm: tỷ lệ với độ gợn sóng dải thông và dải chắn.

$$\lambda = 20 \log_{10} \left| \frac{\mathbf{W}(\mathbf{\omega}_1)}{\mathbf{W}(0)} \right|, dB$$

 \checkmark Xét với cửa sổ chữ nhật: $W_R(n) = \begin{cases} 1: N-1 \ge n \ge 0 \\ 0:n \end{cases}$ còn lại

$$\mathbf{w_{R}(n)} \overset{\mathbf{F}}{\longleftrightarrow} \mathbf{W_{R}(\omega)} = \frac{\sin \frac{\omega N}{2}}{\sin \frac{\omega}{2}} e^{-\mathbf{j}\omega \frac{N-1}{2}}$$

