Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 9F Environment Maps

Environment Mapping

SolidWorks 2000 (from NVIDIA web site)

Environment Mapping

- Environment mapping refers to the process of reflecting the surrounding environment in a shiny object
 - Texture mapping technique where the pattern mapped onto an object depends on the view vector
 - Simplification of ray tracing where only the reflected ray is traced
 - Process is terminated once it intersects texture
- Reflect the view ray from the object surface

• Intersect this ray with a sphere containing the image of the environment to be reflected (called an environment map)

Steps in Environment Mapping

- Generate or load a 2D image of the environment
 - Environment maps are usually prefiltered
- For each pixel containing a reflective object, compute its normal
- Compute the reflection vector from the view vector and the normal $R = 2(N \cdot V)N V$
- Use the reflection vector to index into the environment map
- Use texel data from the environment map to color the pixel
- Several projection functions are available
 - Blinn and Newell's method
 - Sphere map
 - Improves on Blinn and Newell
 - Used in many early OpenGL demos
 - Cubic environment mapping
 - Other environment mapping methods

Flat Surfaces

- Note on Environment Mapping
 - Large flat surfaces do not work as well
 - Reflected rays do not vary as much as off curved surfaces
 - Small part of environment map is mapped onto a relatively large surface
 - Individual texels of environment map become visible

Blinn and Newell's Method

- Use the reflected view vector to index into latitude, longitude environment map
 - Rather than a globe viewed from the outside it is like a map of constellations in the sky
 - Single equirectangular texture map can be created from real world environments using photography techniques
 - 360-degree camera
- Conversion of the reflected ray $r=(r_x, r_y, r_z)$ into latitude-longitude
 - Latitude varies from 0 to π radians
 - Lat = $arccos(-r_z)$
 - Longitude varies from 0 to 2*π radians
 - Lng = atan2(r_v , r_x)
- Problems
 - Non-uniform density more texels near the poles
 - Singularities
 - Poles
 - Issues where left and right edges meet

Spherical Environment Mapping

- 1st Environment mapping technique supported in hardware
- OpenGL Programming Guide gives a method for creating an environment map
 - Take a photograph of a large silvered sphere in a surrounding environment
 - Camera located infinite distance away, lens with infinite focal length
 - Scan the photograph
 - Alternatively: use an extremely wide angle (fish-eye) lens
- With OpenGL use GL_SPHERE_MAP texgen mode
- Disadvantage valid only for a single view direction
 - Can map other views but can get artifacts where parts of the sphere map become magnified
- Good Resources
 - Section 10.4.2 (8.4.2 in 3rd Edition)
 - http://www.debevec.org/ReflectionMapping/
 - http://www.ozone3d.net/tutorials/glsl_texturing_p04.php#part_41

Cubic Environment Mapping

- Many graphics accelerators offer cubic environment mapping support
 - Support in OpenGL and other graphics APIs
- Environment map is 6 maps that form the faces of a cube
 - View point is fixed at the center, 6 views are rendered
 - View independent
- For a single reflection vector (normalized)
 - Find the face it intersects (which map)
 - Reflection vector with the largest magnitude selects the face
 - E.g. (-0.2, 0.5, -0.84) selects the -z face
 - Map the components of the reflected vector into (u,v)
 - Example of intersection with negative z axis:
 - $u = r_x + 0.5$
 - $v = -r_z + 0.5$

Cubic Environment Mapping

- Advantages
 - Environment maps can be rendered in real-time
 - Place camera at center of cube
 - Project the scene onto the 6 faces of a cube
 - More uniform sampling than spherical methods
 - Spherical methods have more texels near poles than equator

http://www.ocworkbench.com/hardware/ati/radeon/radeonp3.htm [link inactive]

Using Cube Maps with GLSL

- Sampler function: samplerCube
- Texture access function: textureCube
 - Provide the cubeMap and the reflection vector
- OpenGL setup

```
glEnable(GL TEXTURE CUBE MAP);
glGenTextures(1, &cubemap texture);
glBindTexture(GL TEXTURE CUBE MAP, cubemap texture);
glTexParameteri(GL TEXTURE CUBE MAP, GL TEXTURE WRAP S, GL REPEAT);
glTexParameteri(GL TEXTURE CUBE MAP, GL TEXTURE WRAP T, GL REPEAT);
glTexParameteri(GL TEXTURE CUBE MAP, GL TEXTURE WRAP R, GL REPEAT);
glTexParameteri(GL TEXTURE CUBE MAP, GL TEXTURE MAG FILTER, GL LINEAR);
glTexImage2D(GL TEXTURE CUBE MAP POSITIVE X, 0, GL RGBA, 256,
                      256,0, GL RGBA, GL UNSIGNED BYTE, image1);
glTexImage2D(GL TEXTURE CUBE MAP NEGATIVE X, 0, GL RGBA, 256,
                      256,0, GL RGBA, GL UNSIGNED BYTE, image2);
glTexImage2D(GL TEXTURE CUBE MAP POSITIVE Y, 0, GL RGBA, 256,
                      256,0, GL RGBA, GL UNSIGNED BYTE, image3);
glTexImage2D(GL TEXTURE CUBE MAP NEGATIVE Y, 0, GL RGBA, 256,
                      256,0, GL RGBA, GL_UNSIGNED_BYTE, image4);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA, 256,
                      256,0, GL RGBA, GL UNSIGNED BYTE, image5);
glTexImage2D(GL TEXTURE CUBE MAP NEGATIVE Z, 0, GL RGBA, 256,
                      256,0, GL RGBA, GL UNSIGNED BYTE, image6);
```


Cube Maps

- Downloadable cube maps:
 - https://www.cleanpng.com/free/cube-mapping.html
- Dynamic cube map generation
 - Can generate cube maps for your scene by drawing all objects except reflecting object with camera placed in center of reflecting object
 - Single pass to render all 6 different views
 - Possible in Direct X Shader Model 4 and some OpenGL extensions
 - https://registry.khronos.org/OpenGL/extensions/ARB/
 ARB_geometry_shader4.txt
 - http://stackoverflow.com/questions/462721/rendering-to-cube-map
- Tutorial
 - http://www.ozone3d.net/tutorials/glsl_texturing_p05.php#part_51

Other Environment Mapping

- Dual Parabaloid Mapping
 - Similar to spherical mapping but uses parabaloid
 - More uniform texel sampling than other methods
- Octahedral Mapping
 - Similar to cube mapping
 - Projects onto octahedron
 - Can easily be unfolded to fit in one image file

Bump Environment Mapping

- Combination of bump mapping and environment mapping
- Perturbs environment mapping coordinates by the normal differentials found in the bump map
 - Effect is to perturb the reflection vector
- Requires 2 additional maps: bump map and an environment map

http://developer.nvidia.com/view.asp?IO=ogl_dynamic_bumpreflection [link inactive]

