Logarithm Notes

By Mike Rapp September 26, 2018

Log Arrangement

https://www.mathsisfun.com/algebra/logarithms.html
http://tutorial.math.lamar.edu/Classes/Alg/LogFunctions.aspx

This usually read as "log base b of x":

$$\log_b(x)$$

Provided that:

$$b > 0$$
 and $b \neq 1$ and $x > 0$

$$Log_2(X) = 8 == 2^3 = X$$

$$X == 2^3 == 8$$

$$2^3 = 8$$
 $10g_2(8) = 3$

$$2^{3} = 8 \iff \log_{2}(8) = 3$$
base

Logarithm Facts

https://www.vitutor.com/alg/log/antilogarithm.html https://www.mathsisfun.com/algebra/logarithms.html

(1) A logarithm, positive or negative, corresponds to every positive number.

$$\log_b(x) = y <==> b^y = x$$

Provided that:

$$b > 0$$
 and $b \neq 1$ and $x > 0$

(2) Cologarithm

The cologarithm of a number is the logarithm of its inverse, that is to say, the cologarithm of a number is the opposite of its logarithm.

$$colog N = \log \frac{1}{N} = -\log N$$

$$colog 200 = -\log 200 = -2.3010$$

(3) Negative Logarithms

A negative logarithm means how many times **to divide** by the number.

Example-1:

What is
$$log_8(0.125) ... ?$$
Well, $1 \div 8 = 0.125$,
So $log_8(0.125) = -1$

Example-2:

What is
$$log_5(0.008)$$
 ... ?
$$1 \div 5 \div 5 \div 5 = 5^{-3},$$
 So $log_5(0.008) = -3$

(4) Logarithm - Origins

"Logarithm" is a word made up by Scottish mathematician John Napier (1550-1617), from the Greek word *logos* meaning "proportion, ratio or word" and *arithmos* meaning "number", ... which together makes "rationumber"

Common Logarithm

https://www.mathsisfun.com/algebra/logarithms.html

Sometimes a logarithm is written **without** a base, like this:

This *usually* means that the base is really **10**.

Engineers love to use it.

On a calculator it is the "log" button.

It is how many times we need to use **10** in a multiplication, to get our desired number.

Example:

$$\log(1000) = \log_{10}(1000) = 3$$

Log To Base e

https://en.wikipedia.org/wiki/Natural logarithm

https://www.mathsisfun.com/algebra/logarithms.html

$$log_e = ?$$

is equivalent to:

$$ln = ?$$

For Natural Logarithms log_e and ln expressions denote natural logarithms.

Natural Logarithms: Base "e"

Another base that is often used is <u>e (Euler's Number)</u> which is about 2.71828.

This is called a "natural logarithm". Mathematicians use this one a lot.

On a calculator it is the "ln" button.

Example:

$$ln(7.389) = log_e(7.389) \approx 2$$

Because $2.71828^2 \approx 7.389$

Logarithm Calculator

http://rapidtables.com/calc/math/Log Calculator.htm

Calculate logarithm of a number to any base:

Description:

* Use e for scientific notation. E.g: 5e3, 4e-8, 1.45e12 When:

$$b^{y} = x$$

Then the base *b* logarithm of a number *x*:

$$\log_b(x) = y$$
Or
$$\log_b x$$

Antilogarithm

https://www.vitutor.com/alg/log/antilogarithm.html

https://www.rapidtables.com/math/algebra/Logarithm.html

The inverse logarithm (or anti logarithm) is calculated by raising the base \boldsymbol{b} to the logarithm \boldsymbol{y} :

If:

$$Y = log_b(X)$$

Then the antilog is:

$$X = log^{-1}(y) == b^{y}$$

To find the antilog of a number in a given base, raise the base to the number result.

$$\log_2(8) = 3$$
Anti $\log_2 3 = 2^3 = 8$

Antilog = Inverse Log

Define an antilogarithm in terms of a logarithm. The antilogarithm is the inverse function of a logarithm, so $\log_b(x) = y$ means that $anti\log_b(y) = x$. You write this with exponential notation such that $antilog_b(y) = x$ implies $b^y = x$.

Examine Antilog Notation

Examine a specific example of antilog notation. Because log_{10} (100) = 2, antilog₁₀ (2) = 100 or 10^2 = 100.

Calculate an Antilog

Solve a specific antilog problem. Given log (2) 32 = 5, what is antilog (2) $5? 2^5 = 32$, so antilog (2) 5 = 32.

Anti-logarithm calculator

To calculate $\log^{-1}(y)$ on the calculator, enter the base b (10 is the default value, enter e for e constant), enter the logarithm value y and press the = or calculate button:

Result:

When

$$y = \log_b(x)$$

The antilogarithm (or inverse logarithm) is calculated by raising the base \boldsymbol{b} to the logarithm \boldsymbol{y} :

$$x = \log_b^{-1}(y) = b^y$$

If the logarithm is known, a calculator can be used to find the antilog by pressing the 10^x key or e^x . This is usually the second function of the \log key.

$$\log_{10}(x) = 2.4572$$

$$x = 10^{2.4572} = 286.55$$

Logarithm Rules

https://www.youtube.com/watch?v=AAW7WRFBKdw&t=6s https://en.wikipedia.org/wiki/Logarithm

Logarithm Product Rule

$$\log_b(j * k) = \log_b(j) + \log_b(k)$$

Logarithm Quotient Rule

$$\log_b \frac{j}{k} = \log_b(j) - \log_b(k)$$

Logarithm Power Rule

$$\log_b(j^k) = k * \log_b(j)$$

Logarithm Base Switch Rule

$$\log_b(k) = \frac{1}{\log_k(b)}$$

Logarithm Base Change Rule

$$\log_b(x) = \frac{\log_j(x)}{\log_j(b)}$$

Logarithm Root Rule

$$\log_b \sqrt[p]{x} = \frac{\log_b x}{p}$$

Logarithm Equality Rule

$$\log_b(m) = \log_b(n) == (m == n)$$

Inverse Properties

http://www.mathwords.com/l/logarithm rules.htm

$$\log_b b^x = x$$
$$b^{\log_b x} = x$$

Watch Out

http://www.mathwords.com/l/logarithm rules.htm

$$\log_b(x+y) \neq \log_b(x) + \log_b(y)$$

$$\log_b(x - y) \neq \log_b(x) - \log_b(y)$$

Logarithm Rule Examples

Product

$$\log_b(x * y) = \log_b x + \log_b y$$
$$\log_3(243) = \log_3(9 * 27) = \log_3(9) + \log_3 27 = 2 + 3 = 5$$

Quotient

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_2 16 = \log_2 \frac{64}{4} = \log_2 64 - \log_2 4 = 6 - 2 = 4$$

$$\log_2 16 = \log_2 \frac{64}{4} = \log_2 64 - \log_2 4 = 6 - 2 = 4$$

Power

$$\log_b(x^p) = p \log_b x$$

$$\log_2(64) = \log_2(2^6) = 6\log_2 2 = 6$$

Root

$$\log_b \sqrt[p]{x} = \frac{\log_b x}{p}$$

$$\log_{10} \sqrt{1000} = \frac{\log_{10}(1000)}{2} = \frac{3}{2} = 1.5$$

Change of Base

The logarithm $\log_b(x)$ can be computed from the logarithms of x and b with respect to an arbitrary base k using the following formula:

$$\log_b(x) = \frac{\log_k(x)}{\log_k(b)}$$

https://en.wikipedia.org/wiki/Logarithm

Derivation of the conversion factor between logarithms of arbitrary base:

Typical scientific calculators calculate the logarithms to bases 10 and e. Logarithms with respect to any base b can be determined using either of these two logarithms by the previous formula:

$$\log_b(x) = \frac{\log_{10}(x)}{\log_{10}(b)} = \frac{\log_e(x)}{\log_e(b)}$$

Given a number x and its logarithm $\log_b(x)$ to an unknown base b, the base is given by:

$$b = x^{\frac{1}{\log_b(x)}}$$

which can be seen from taking the defining equation

$$x = b^{\log_b(x)}$$

to the power of

$$\frac{1}{\log_b(x)}$$

Properties of Logarithms

https://www.youtube.com/watch?v=AAW7WRFBKdw&t=6s

$$log_b(X) = y$$

 $b^y = X$
 $log_{10}(1000) = y$
 $10^y = 1000$
 $log_{10}(1000) = y = 3$
 $10^3 = 1000$
 $log_b(X) = y$
 $b = \sqrt[y]{X}$
 $10 = \sqrt[3]{1000}$
 $b = x^{\frac{1}{\log_b(x)}}$
 $10 = 1000^{\frac{1}{3}}$

Examples

https://en.wikipedia.org/wiki/Logarithm#Power series

https://www.codeproject.com/tips/311714/natural-logarithms-and-exponent

https://www.youtube.com/watch?v=AAW7WRFBKdw&t=6s

Example - 1

$$\log_5\left(\frac{1}{25}\right) = X = -2$$

$$5^X = \frac{1}{25} = \frac{1}{5^2} = 5^{-2}$$

Example - 2

$$log_{10}(X) = Y$$
 $log_{10}(X) = 3$
 $X = 0.477121254719662$
 $10^{0.477121254719662} = 3$
 $\frac{.4777121254719662}{\sqrt{3}} = 10$
 $3^{1/0.4777121254719662} = 10$
 $\frac{x}{\sqrt{3}} = 10$
 $3^{\frac{1}{x}} = 10$

Exponent Relationships

$$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$$

$$a^{\frac{m}{n}} = (a^m)^{\frac{1}{n}}$$

$$a^{-m} = \left(\frac{1}{a}\right)^m$$

$$a^{-m} = \frac{1}{a^m}$$

$$a^m = a^n => m == n$$