Limitations Controlling Uncertain MIMO Beyond the Classical Performance Systems: UAV Applications

2nd Session

Mario Garcia-Sanz

Automatic Control & Computer Science Department
Public University of Navarra
31006 Pamplona, Spain
(Email: mgsanz@unavarra.es)

NATO. RTO-LS-SCI-195, May-June 2008

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE MAY 2008		2. REPORT TYPE		3. DATES COVERED 00-00-2008 to 00-00-2008		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Beyond the Classical Performance Limitations Controlling Uncertain MIMO Systems: UAV Applications				5b. GRANT NUN	MBER	
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) 5d. PROJECT NUMBER					UMBER	
5e. TASK NUMBER						
5f. WORK U					NIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Public University of Navarra, Automatic Control & Computer Science Department, 31006 Pamplona Spain, 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
Series SCI-195 on A	OTES 23. Presented at the Advanced Autonom AV Applications held	ous Formation Con	trol and Trajecto	ry Managem	ent Techniques for	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT b. ABSTRACT c. THIS PAGE Same as				OF PAGES 86	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- 1.- OFT Controller Design Technique Fundamentals
- 2.- Real-world OFT control applications and examples
- 3.- Non-diagonal MIMO QFT controller design methodologies
- 4.- Application: Robust QFT control for a MIMO Spacecraft with flexible sunshield
- 5.- Switching robust control: Beyond the linear limitations.
- 6.- Example: Switching control for Unmanned Vehicles

Hubble: a telescope in space (1990)

(Hubble Space Telescope, HST):

- Refractor telescope. Aperture of 2.4 m.
- Magnification power much higher than the one allowed on Earth.
- Orbit: 600 km above Earth's surface.

Discoveries of First Magnitude

4.2.- Control of Darwin-type Spacecraft with Large Flexible Appendages.

Non-diagonal MIMO QFT Controller Design for a Darwin-type Spacecraft with large flimsy appendages.

ESA-ESTEC

Noordwijk (Holland)

Ref:

M. Garcia-Sanz, I. Eguinoa, M. Barreras, S. Bennani "Non-diagonal MIMO QFT Controller Design for Darwin-type Spacecraft with large flimsy appendages". Journal of Dynamic Systems, Measurement and Control, **ASME**, USA.

Vol. 130, January 2008.

OBJECTIVE

To study exo-planets and life It is necessary

Infrared analysis

temperature near zero Kelvin Instruments that work at

Atmosphere absorbs infrared

Limitation of Earth based

Telescopes

Constellation

of 3 to 6 Darwin-type satellites

Darwin Mission Description (I)

- ESA cornerstone mission
- Scheduled launch in 2015
- Objectives:
- ➤ Find Earth-like Exo-planets
- Analyse their atmosphere to detect signs of life
- · Nulling interferometry:
- the light collected by the flying telescopes is recombined inside a
- central hub

 From the star interfere destructively
- ➤ from the planet interfere constructively

• Exo-planets

- ➤ The first one was discovered by Latham et al. in 1989.
- > and Mayor and Queloz (1995), Butler y Marcy (1996).
- ➤ Nowadays (2007) we know more than 200 exo-planets in 140 external systems.

exo-planents with signs or Currently we do not know possibilities of life. Destructive Interferometry

The near stars hides the Ver difficult to observe. exo-planets.

Darwin Mission Description (II)

telescopes

In the Hub

time (hrs + JD 2451751.0)

Thrusters and micro-actuators 6D (FEEPS)

-micro Newton ion thrusters + Magnetic field thrusters

OPD (Optical
Pathlength
Difference) Fringe
Tracker for fine
position measures

Darwin Satellite (III)

Satellite Description (I)

- The large sun-shield protect the instruments from the sun-light
- Sun-shield characteristics:
- Parallel to (X,Y) plan
- Modelled with 6 large flexible
 beams attached to the rigid structure
 ⇒ FLIMSY APPENDAGES

Satellite Description (II)

2 m

• Satellite dimensions

- body mass : 500 kg

- cylinder with Zcont as revolution axis. 2 m diameter and 2 m height

- beam mass: 7 kg * 6 beams = 42 kg

- length of simple beam: 4 m

2 m 1 m Nomit CoM 4 m 1 m

Flexible modes

- Validated with finite elements methods

1st flexible mode has been considered for each beam and along its X and Y axes

SYS The cert					
Uncertainty range	$[0.05, 0.5]\mathrm{Hz}$	[0.1 , 1]%	5 %	1 %	
Parameter	Frequency	Damping	Mass	Inertia	

SYSTEM DYNAMICS UNCERTAINTY
 The satellite parameters vary within a certain range of uncertainty

Satellite Modeling (I)

 $p_{23}(s)$

 $p_{24}(s)$

 $p_{13}(s)$ $p_{14}(s)$ $p_{15}(s)$ $p_{25}(s)$

 $p_{16}(s) \rceil \lceil F_x(s) \rceil$

 $\begin{array}{c|c} p_{26}(s) & F_{y}(s) \\ \hline p_{36}(s) & F_{z}(s) \end{array} \longleftarrow$

Force

 $p_{35}(s)$ $p_{45}(s)$

 $p_{34}(s)$ $p_{44}(s)$

 $p_{33}(s)$ $p_{43}(s)$ $p_{53}(s)$

 $p_{42}(s)$

 $p_{52}(s)$

 $\begin{array}{c|c} p_{46}(s) & T_{\varphi}(s) \\ \hline p_{56}(s) & T_{\theta}(s) \end{array} \longleftarrow$ $p_{55}(s)$

Torque

 $p_{54}(s)$

 $p_{63}(s)$ $p_{64}(s)$ $p_{65}(s)$ $p_{66}(s) \rfloor \lfloor T_{\psi}(s) \rfloor \blacktriangleleft$

2 m

where every $p_{ii}(s)$, i, j = 1, 2, ... 6, is a **50 order** L'aplace transfer function with uncertainty.

Satellite Modeling (II)

6DOF Dynamics

plots of the plant

Bode

elements

matrix

Darwin Flyer

		Objective	Numerical Requirement
Specificacions	10		Maximum absolute value:
		Dogition goontoox	1 μm for all axes
Darwin-type Flyer	•	rosiuon accuracy	Standard deviation: 0.33 um for all axes
	Astronomical Requirements		Maximim absolute value:
4		· .	25.5 mas for all axes (3 σ)
		Folnung accuracy	Standard deviation: 8.5 mas for all axes (1 σ)
		Bandwidth	~ 0.01 Hz for all axes
	Engineering	Saturation limits	Maximum force: 150 μN Maximum torque: 150 μNm
		Rejection of high frequency noises (from measurement and actuation)	High roll-off after the bandwidth
		Stability margins	$\max_{\omega} \boldsymbol{T}(j\omega) < 2$ $\max_{\omega} \boldsymbol{S}(j\omega) < 2$
	Control Requirements	Loop interaction	Minimum
		Rejection of flexible modes	Maximum
		Controller complexity and order	Minimum

Project Objetives

Analysis of the new methodology: non-diagonal MIMO QFT robust control design:

García-Sanz M., Egaña I. (2002).

Quantitative Non-diagonal Controller Design for Multivariable Systems with Uncertainty.

Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 321-333.

García-Sanz M., Egaña I., Barreras M. (2005).

Design of quantitative feedback theory non-diagonal controllers for use IEE Control Theory and Applications. Vol. 152, N. 02, pp. 177-187. in uncertain multiple-input multiple-output systems.

García-Sanz M., Barreras M. (2006).

Non-diagonal QFT controller design for a 3-input 3-output industrial

J. of Dynamic Systems, Measurement & Control, ASME, Vol. 128, pp. 319-329. UŠA.

Garcia-Sanz M., Eguinoa I., Barreras M., Bennani S. (2008).

Non-diagonal MIMO QFT Controller Design for Darwin-type Spacecraft with large flimsy appendages.

J. Dynamic Systems, Measurement & Control, ASME, USA. Vol. 130, January.

• Application: Control of Position + Attitude of a Darwin spacecraft with flexible appendages **Comparison** with previous studies (H-infinity and diagonal MIMO QFT)

2.19

BENCHMARK SIMULATOR

2.20

COUPLING ANALYSIS AND CONTROLLER STRUCTURE (I)

COUPLING ANALYSIS AND CONTROLLER STRUCTURE (II)

Mario Garcia-Sanz

COUPLING ANALYSIS AND CONTROLLER STRUCTURE (III)

Fir	First choice	RGA	$\begin{vmatrix} RGA & (o=6.28\cdot10^{-4} \text{ rad/sec}) \end{vmatrix} = \begin{vmatrix} 0.0064 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	1.0064 0.0064	0 0.0064 0 0.0064 1 0 0 1.0064 0 0	0.0064 0 0 1.0064	0 0 0 0
Control Subsystem	Controller Element	Corresponding Plant Description	0	0	0 0	0	I
SISO: loop 3	833	Force $_{\rm Z} \rightarrow {\rm Position}_{\rm Z}$		•			
SISO: loop 6	866	$Torque_{Z} \to Attitude_{Z}$			•		
	811	Force $_{\rm X} \rightarrow$ Position $_{\rm X}$	$0 ((s)^{1/s})$	0	0	$S_{15}(S)$	
2x2 MIMO:	855	$Torque_{ \gamma} \to Attitude_{ \gamma}$	0 (822(S)	0	824(5)		
loops 1 and 5	851	Force $_{\rm X} \rightarrow$ Attitude $_{\rm Y}$	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	(833(5)))	0	
	815	Torque $_{\mathrm{Y}} ightarrow \mathrm{Position}_{\mathrm{X}}$	$0 \frac{(3)^{-}}{842(5)}$	0	844(S)	0	<u> </u>
	822	Force $_{\rm Y}$ \rightarrow Position $_{\rm Y}$	(851(s))	0	0	855(s) (
2x2 MIMO:	844	$Torque_{X} \to Attitude_{X}$	0 0]	0	0	0	(s)
loops 2 and 4	842	Force $_{\rm Y} \rightarrow {\rm Attitude}_{\rm X}$					
	824	$Torque_{X} \to Position_{Y}$					

COUPLING ANALYSIS AND CONTROLLER STRUCTURE (IV)

perturbations

ROBUST SPECIFICATIONS (I)

Description	Robust stabilitySensor noise attenuationAttenuation of external perturbations and flexible modes	Robust sensitivitySensor noise attenuation	- Robust disturbance rejection at plant input	- Robust control effort attenuation of actuator noise, sensor noise and external
Туре		2	m	4
Transfer functions and specification models	$\left T_{1}(j\omega)\right = \left rac{L(j\omega)}{1 + L(j\omega)} ight = \left rac{V(j\omega)}{V(j\omega)} ight = \left rac{Y(j\omega)}{N(j\omega)} ight \leq \delta_{1}(\omega), \omega \in \mathbf{\Omega}_{1}$	$\left T_2(j\omega) \right = \left \frac{1}{1 + L(j\omega)} \right = \left \frac{Y(j\omega)}{D(j\omega)} \right = \left \frac{E(j\omega)}{N(j\omega)} \right \le \delta_2(\omega), \ \ \omega \in \Omega_2$	$\left T_3(j\omega) \right = \left \frac{P(j\omega)}{1 + L(j\omega)} \right = \left \frac{Y(j\omega)}{V(j\omega)} \right = \left \frac{E(j\omega)}{V(j\omega)} \right \le \delta_3(\omega), \ \ \omega \in \Omega_3$	$\left \boldsymbol{T}_{4}(j\omega) \right = \left \frac{\boldsymbol{G}(j\omega)}{1 + \boldsymbol{L}(j\omega)} \right = \left \frac{\boldsymbol{U}(j\omega)}{\boldsymbol{D}(j\omega)} \right = \left \frac{\boldsymbol{U}(j\omega)}{\boldsymbol{W}(j\omega)} \right = \left \frac{\boldsymbol{U}(j\omega)}{\boldsymbol{W}(j\omega)} \right = \left \frac{\boldsymbol{U}(j\omega)}{\boldsymbol{R}(j\omega)\boldsymbol{F}(j\omega)} \right \leq \delta_{4}(\omega), \omega \in \boldsymbol{\Omega}_{4}$

ROBUST SPECIFICATIONS (II)

Bode P₃₃

 $10^{-4} = 0.0001 \text{ Hz} = 0.00062 \text{ rad/s}$

Robust Performance Specifications

Step 1a): design of the diagonal controller $g_{33}(s)$

SISO DESIGNS Step 1b) : d

Step 1b) : design of the diagonal controller g₆₆(s)

Robust disturbance rejection at plant input (Type 3)

SISO DESIGNS

Step 1b) : design of the diagonal controller $g_{66}(s)$

(view RGA plots) (view plant bode plots) my_RGA_plots.m OZ OZ - QFT design of the compensator element g_{ii} - QFT design of the compensator element $\mathbf{g}_{\,ji}$ - QFT design of the compensator element $g_{\,ij}$ compensator element g ii (Compare design to specifications) (Compare design to YES MIMO_ Step1.m - QFT design of the specifications) Checking.m Spc. fulfilled? [YES Checking.m MIMO_Step2.m MIMO_Step3.m MIMO_Step4.m Spc. fulfilled? MIMO Toolbox Flow Chart Compute different plants generated due to - Create frequency response data: (Pcomputeij.m & inverse_computation.m) (RGA Analysis) my_RGA.m 0 Z - Define frequencies (myfrequency.m) Type of controller to be designed? YES FINAL VERIFICATION • generate_alldata.m 1ccess? End get_plant300.m uncertainty 0 N - QFT design of the compensator element g ii OSIS (Compare design to specifications) Checking.m Spc. Spc. SISO_Design.m YES & Define controller structure Analyse Data Problem Define problem data Design and Evaluation Steps 2 a and 2 b - Loops 1 and 5 Loops 2 and 4 MIMO DESIGNS Non-diagonal MIMO MIMO subsystems:

methodology for

QFT design

MIMO DESIGNS

Step 2a): MIMO subsystem loops 1 and 5

Design of the diagonal controller g₁₁(s)

MIMO DESIGNS

Step 2a): MIMO subsystem loops 1 and 5

Design of the diagonal controller $g_{11}(s)$

MIMO DESIGNS

Step 2a): MIMO subsystem loops 1 and 5

Design the off-diagonal controller $g_{51}(s)$

Calculated according to the expression:

Step 2a): MIMO subsystem loops 1 and 5

Design the diagonal controller $g_{55}(s)$

Controller element designed for the equivalent plant computed with:

$$[p_{55}^{*e}(s)]_{2} = [p_{55}^{*e}(s)]_{1} - \frac{([p_{51}^{*e}(s)]_{1} + [g_{51}(s)]_{1})([p_{15}^{*e}(s)]_{1})}{[p_{11}^{*e}(s)]_{1} + [g_{11}(s)]_{1}}$$

Robust Performance Specifications

Robust stability (Type 1)

Robust sensitivity (Type 2)

$$\left| \frac{1}{1 + P(s) G(s)} \right| = |S(s)| \le 2$$

Step 2a): MIMO subsystem loops 1 and 5

Design the diagonal controller $g_{55}(s)$

Step 2a): MIMO subsystem loops 1 and 5

Design the diagonal controller $g_{55}(s)$

Step 2a): MIMO subsystem loops 1 and 5

Design the off-diagonal controller $g_{15}(s)$

- Element designed to reduce the coupling
- $g_{15}^{opt}(s) = -p_{15}^{*N}(s)$ Calculated according to the expression:

minimum controller complexity But due to requirement of and order

 $g_{15}(s) = 0$

The 2x2 MIMO subsystem is found to be stable according to the sufficient stability conditions (c and d). Finally, it is also checked that no additional RHP zeros have been introduced by the compensator

Step 2b): MIMO subsystem loops 2 and 4

Design of the diagonal controller $g_{22}(s)$

$G = \begin{bmatrix} g_{22} \\ g_{42} \end{bmatrix} \stackrel{0}{\circ} \Rightarrow \begin{bmatrix} g_{22} \\ g_{42} \end{bmatrix} \stackrel{g_{24}}{\circ}$

MIMO DESIGNS

Step 2b): MIMO subsystem loops 2 and 4

Design of the diagonal controller $g_{22}(s)$

Step 2b): MIMO subsystem loops 2 and 4

Design the off-diagonal controller g₄₂(s)

 $g_{42}^{opt}(s) = -p_{42}^{*N}(s)$ Calculated according to the expression:

$G = \begin{bmatrix} g_{22} \\ g_{42} \end{bmatrix} 0 \Rightarrow \begin{bmatrix} g_{22} \\ g_{42} \end{bmatrix} \begin{pmatrix} g_{24} \\ g_{44} \end{bmatrix}$

MIMO DESIGNS

Step 2b): MIMO subsystem loops 2 and 4

Design of the diagonal controller g₄₄(s)

Controller element designed for the equivalent plant computed with:

$$\left[p_{44}^{\text{*e}}(s) \right]_2 = \left[p_{44}^{\text{*e}}(s) \right]_1 - \frac{\left(\left[p_{42}^{\text{*e}}(s) \right]_1 + \left[g_{42}(s) \right]_1 \right) \left(\left[p_{24}^{\text{*e}}(s) \right]_1 \right)}{\left[p_{22}^{\text{*e}}(s) \right]_1 + \left[g_{22}(s) \right]_1}$$

Robust Performance Specifications

Robust stability (Type 1)

Robust sensitivity (Type 2)

$$\left| \frac{1}{1 + P(s) G(s)} \right| = |S(s)| \le 2$$

Step 2b): MIMO subsystem loops 2 and 4

Design of the diagonal controller $g_{44}(s)$

Step 2b): MIMO subsystem loops 2 and 4

Design of the diagonal controller $g_{44}(s)$

Step 2b): MIMO subsystem loops 2 and 4

Design the off-diagonal controller $g_{24}(s)$

- Element designed to reduce the coupling
- $g_{24}^{opt}(s) = -p_{24}^{*N}(s)$ Calculated according to the expression:

minimum controller complexity But due to requirement of and order

 $g_{24}(s) = 0$

The 2x2 MIMO subsystem is found to be stable according to the sufficient stability conditions (c and d). Finally, it is also checked that no additional RHP zeros have been introduced by the compensator

Mario Garcia-Sanz

Controller evaluation and comparison (I)

- Non-diagonal MIMO QFT (introduced here)
- H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

Controller evaluation and comparison (II)

911(S) Darwin Controllers Comparison : G(1,1)

- Non-diagonal MIMO QFT (introduced here) H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

Non-diagonal MIMO QFT in solid line [also diagonal MIMO QFT for g11(s) and g55(s)], H-infinity in dashed line.

- (a) g11(s), (b) g15(s), (c) g51(s), (d) g55(s)

2.48

Controller evaluation and comparison (III)

- Non-diagonal MIMO QFT (introduced here)
 - H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

Compensators: **Bode Diagram**

Non-diagonal MIMO QFT in solid line [also diagonal MIMO QFT for *g*22(s) and g44(s)], H-infinity in dashed line.

- (a) g22(s), (b) g24(s), (c) g42(s), (d) g44(s)

Controller evaluation and comparison (IV)

- Non-diagonal MIMO QFT (introduced here)
- H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

Element (5,1) of the coupling matrix C2:

non-diagonal MIMO QFT in solid line

diagonal MIMO QFT in dotted line

H-infinity in dashed line

$$\begin{vmatrix} \mathbf{c}_{2ij} \end{vmatrix}_{g_{ij} = g_{ij}^{opt}} = \begin{vmatrix} \psi_{ij} \Delta_{ij} \end{vmatrix}$$
$$\psi_{ij} = \frac{\mathbf{p}_{ij}^{*N}}{(1 + \Delta_{ij})\mathbf{p}_{ij}^{*N} + g_{ij}}$$

For $\omega \in [0, 0.1]$ rad/sec: $C_2(5,1)_{ ext{non-diag QFT}} < C_2(5,1)_{ ext{diag QFT}} < C_2(5,1)_{ ext{H-infinity}},$

which explains results under low frequency external disturbances

Mario Garcia-Sanz

Controller evaluation and comparison (V)

- Non-diagonal MIMO QFT (introduced here)
- H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

0	0	0	0	0	$\left[(s)^{99}\right]$		
0	0	0	0	(2)	8 0		
0	0	0	344(s)	8 0	0		
0	0	$g_{33}(s)$	0	0	0		
0	$g_{22}(s)$	0	$g_{42}(s)$	0	0		
$g_{11}(s)$	0	0	0	$g_{51}(s)$	0		
$\mathbf{G}(s) = \begin{bmatrix} & & & & & & & & & & & & \\ & & & & & &$							
†							

H-infinity expressed as transfer functions has

36 elements

of order 42.

$g_{16}(s)$	$g_{26}(s)$	$g_{36}(s)$	$g_{46}(s)$	$g_{56}(s)$	$g_{66}(s)$		
$g_{15}(s)$	$g_{25}(s)$	$g_{35}(s)$	$g_{45}(s)$	$g_{55}(s)$	$g_{65}(s)$		
$g_{11}(s)$ $g_{12}(s)$ $g_{13}(s)$ $g_{14}(s)$ $g_{15}(s)$ $g_{16}(s)$	$g_{21}(s)$ $g_{22}(s)$ $g_{23}(s)$ $g_{24}(s)$ $g_{25}(s)$ $g_{26}(s)$	$g_{34}(s)$	$g_{41}(s)$ $g_{42}(s)$ $g_{43}(s)$ $g_{44}(s)$ $g_{45}(s)$ $g_{46}(s)$	$g_{51}(s)$ $g_{52}(s)$ $g_{53}(s)$ $g_{54}(s)$ $g_{55}(s)$ $g_{56}(s)$	$\begin{bmatrix} g_{61}(s) & g_{62}(s) & g_{63}(s) & g_{64}(s) & g_{65}(s) & g_{66}(s) \end{bmatrix}$		
$g_{13}(s)$	$g_{23}(s)$	$g_{33}(s)$	$g_{43}(s)$	$g_{53}(s)$	$g_{63}(s)$		
$g_{12}(s)$	$g_{22}(s)$	$g_{32}(s)$	$g_{42}(s)$	$g_{52}(s)$	$g_{62}(s)$		
$g_{11}(s)$	$g_{21}(s)$	$g_{31}(s)$	$g_{41}(s)$	$g_{51}(s)$	$g_{61}(s)$		
$\mathbf{G}(s) = \begin{pmatrix} g_{11}(s) & g_{12}(s) & g_{13}(s) & g_{14}(s) & g_{15}(s) & g_{16}(s) \\ g_{21}(s) & g_{22}(s) & g_{23}(s) & g_{24}(s) & g_{25}(s) & g_{26}(s) \\ g_{31}(s) & g_{32}(s) & g_{33}(s) & g_{34}(s) & g_{35}(s) & g_{36}(s) \\ g_{41}(s) & g_{42}(s) & g_{43}(s) & g_{44}(s) & g_{45}(s) & g_{46}(s) \\ g_{51}(s) & g_{52}(s) & g_{53}(s) & g_{54}(s) & g_{55}(s) & g_{56}(s) \\ g_{61}(s) & g_{62}(s) & g_{63}(s) & g_{64}(s) & g_{65}(s) & g_{66}(s) \end{bmatrix}$							

Diagonal MIMO QFT has **6 elements**

6 elements $G(s) = \begin{cases} G(s) = \begin{cases} G(s) = \\ G(s) = \\ G(s) = \end{cases}$ of order: from 5 to 14.

`		
	•	

Number of Sums	124	2988	110
Number of Multiplications	130	2994	116
Controller	Non-diagonal MIMO QFT	H-infinity	Diagonal MIMO QFT

Benchmark Simulator (I)

- Non-diagonal MIMO QFT (introduced here)
 - H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

B1.- Developed by Astrium Space for **ESA-ESTEC**

Monte-Carlo analysis to uncertainty.

Sampling frequency: 1 Hz

B2.- B1 + Low freq. disturbances

Benchmark Simulator (II)

Position and attitude sensors

- Non-diagonal MIMO QFT (introduced here)
- H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

Benchmark Simulator (III)

FEEP Thrusters Actuators

- Non-diagonal MIMO QFT (introduced here)
 - H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

Benchmark Simulator (IV)

External Perturbations at the plant input

Non-diagonal MIMO QFT (introduced here)

- H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

Mario Garcia-Sanz

Time-domain Analysis. Results (I)

Position and attitude responses

- Non-diagonal MIMO QFT (introduced here)
- H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

2.56

Mario Garcia-Sanz

Time-domain Analysis. Results (II)

- H-infinity (provided by ESA)
- Diagonal MIMO QFT (for comparision)

For each controller:

Evaluation Criteria

the greatest value over the 300 uncertain cases is shown for:

- Position errors: the maximum

the standard deviation

- Attitude errors: the maximum

the standard deviation

- Actuator commands: the maximum

in all axes.

< 1 μm
B1 0.0288 0.0288 B2 0.0288 0.0288 B1 25.27 25.31 B2 25.27 25.31 B1 22.91 22.99 B2 22.55 23.75 B1 21.15 21.15 B2 21.15 21.15
B1 22.91 22.99 B2 22.55 23.75 B1 21.15 21.15 B2 21.15 21.15
B1 21.15 21.15 B2 21.15 21.15

al MIMO OFT Controller Controller 0.00276 0.00266 0.00266 0.00668 0.00668 5.57 5.57 5.85 4.83 4.83	Ξ	Time-domain Analysis.		Results (IV)	Non-		
Std. Deviation of Position Error X (μm) < 0.33 μm		Specification	Requirement	Benchmark	diagonal MIMO QFT Controller	Diagonal MIMO QFT Controller	H-infinity Controller
Std. Deviation of Position of Position of Position < 0.03 μm bz B1 0.00265 0.00266 Std. Deviation of Position of Position of Position of Attitude Error Z (μm) std. Deviation of Attitude of Attitude of Attitude std. Deviation std. Deviation of Attitude std. Deviation std. Devia	7	Std. Deviation of Position Error X (µm)		B1 B2	0.00275 0.0511	0.00276 0.0511	0.00686
Std. Deviation of Position of Position of Position < 0.33 μm B1 0.00668 0.00668 Std. Deviation of Attitude Error X (mas) < 8.5 mas	∞	Std. Deviation of Position Error Y (µm)		B1 B2	0.00265 0.00265	0.00266	0.00722
Std. Deviation of Attitude 81 5.57 5.57 of Attitude browniation of Attitude Error Y (mas) of Attitude	6	Std. Deviation of Position Error Z (µm)		B1 B2	0.00668	89900'0	0.00691
Std. Deviation of Attitude Stror Y (mas) < 8.5 mas of Attitude	10	Std. Deviation of Attitude Error X (mass	< 8.5	B1 B2	5.57 5.57	5.57 5.57	5.68
Std. Deviation of Attitude Error Z (mas) Std. Deviation at the standard of Attitude and the standard at the stan	111	Std. Deviation of Attitude Error Y (mass	< 8.5	B1 B2	5.76	5.76 5.85	6.01
	12	Std. Deviation of Attitude Error Z (mas)	< 8.5	B1 B2	4.83	4.83	5.00

								Mario Garcia-Sanz
	H-infinity Controller	7.42e-7 3.31e-6	6.68e-7	5.61e-7 5.61e-7	1.03e-6 1.03e-6	1.15e-6 1.16e-6	1.27e-6 1.27e-6	Mario Ga
	Diagonal MIMO QFT Controller	1.94e-6 3.94e-6	1.86e-6 1.86e-6	5.94e-7 5.94e-7	8.71e-7 8.71e-7	1.05e-6 1.06e-6	1.08e-6 1.08e-6	
	Non- diagonal MIMO QFT Controller	1.94e-6 3.94e-6	1.86e-6 1.86e-6	5.94e-7 5.94e-7	8.68e-7 8.68e-7	1.05e-6 1.06e-6	1.08e-6 1.08e-6	
	Benchmark	B1 B2	B1 B2	B1 B2	B1 B2	B1 B2	B1 B2	2.60
	Requirement Benc	< 1.5e-4 N	< 1.5e-4 N	< 1.5e-4 N	< 1.5e-4 N m	< 1.5e-4 N m	< 1.5e-4 N m	
	Specification Require	Max. Actuator Force Command X (N)	Max. Actuator Force Command Y (N)	Max. Actuator Force Command Z (N)	Max. Actuator Torque Command X (Nm)	Max. Actuator Torque Command Y (Nm)	Max. Actuator Torque Command Z (Nm)	
F		13	41	15	16	17	18	

4.3.- Conclusions

A Non-diagonal MIMO QFT Controller Design methodology

to design fully populated matrix controllers

to solve:

the reference tracking problem

the external disturbance rejection problem at both, plant input and output,

in the presence of model plant uncertainty,

has been presented.

The technique has been validated with a Darwin-type spacecraft

with flexible appendages

4.4.- Some References

ESA-ESTEC Noordwijk (Holland)

- □ Demanding Spec.
- Diagonal MIMO QFT, Non-diagonal MIMO QFT

Ref:

M. Barreras, S. Bennani M. Garcia-Sanz, I. Eguinoa,

"Non-diagonal MIMO QFT Controller Design for Darwin-type Spacecraft with large flimsy appendages". Journal of Dynamic Systems, Measurement and Control, ASME, USA. Vol. 130, January 2008.

Special Issue: COOPERATIVE CONTROL OF MULTIPLE SPACECRAFT FLYING IN FORMATION

M. Garcia-Sanz (Guest Editor)

IET Control Theory and Applications, Vol. 1, Issue 2, March 2007, UK.

& Applications

Formerly IEE Proceedings Control Theory & Applications

LOAD-SHARING ROBUST CONTROL OF

M. Garcia-Sanz, F. Y. Hadaegh

IET Control Theory and Applications, Vol. 1, Issue 2, pp. 475-484, March 2007, UK

Outline

- 1.- OFT Controller Design Technique Fundamentals
- 2.- Real-world QFT control applications and examples
- 3.- Non-diagonal MIMO OFT controller design methodologies
- 4.- Application: Robust QFT control for a MIMO Spacecraft with flexible sunshield
- 5.- Switching robust control: Beyond the linear limitations.
- 6.- Example: Switching control for Unmanned Vehicles

5.- Switching robust control:

Beyond the linear limitations

ерпцибеју бол

cation

Serious Design

Classical linear limitations of feedback systems

- Bode integrals 1945,
- Freudenberg, Looze 80...

0.1

$T(s) = 1 - S(s) = \frac{C(s)P(s)}{1 + C(s)P(s)}$

Complementary Sensitivity

where $K_{\nu} = \lim_{s \to 0} \{sC(s)P(s)\}$ is the system velocity constant,

 $\frac{1}{\pi} \int_{0}^{\frac{1}{2}} \log_{e} \left| T\left(j\omega\right) \right| d\omega = -\frac{1}{2} K_{v}^{-1} + \frac{1}{2}\tau + \sum_{z_{i} \in CRHP} \frac{1}{Z_{i}}$

 τ is the time delay in the loop, and z_i are the zeros in the loop.

 $\int_{\omega=0}^{\omega=\infty} \log_e |S(j\omega)| d\omega = \pi \left(\sum_{p_i \in CRHP} p_i \right) - \frac{\pi}{2} k_{HF}$

where $p_i \in CRHP$ are the poles of L(s)=C(s)P(s) in the closed right half plane (with units of radians/sec), and $k_{HF} = \lim_{s \to \infty} \{sL(s)\}$

Sensitivity "waterbed effect"

$$S(s) = \frac{1}{1 + C(s) P(s)}$$

Mario Garcia-Sanz

2.65

Example: X-29

Unstable (pole RHP)

Non-minimum phase

(zero RHP)

Linear limitations

In practice:

-Objective Phase Margin = 45°

- Result ONLY Phase Margin = 390

AASA Photo: EC87-0182 Date July 24, 1987 Photo by NASA X-29 in Banked Flight

To go beyond the linear limitations:

García-Sanz M., Elso J. (2008). **Beyond the linear** limitations by combining switching and QFT: Application to wind turbines pitch control systems. *Int. J. Robust Nonlinear Control*, Vol. 18, N.12.

even if the switching is made between stable controllers system stability is not assured a priori,

System stability analysis (I)

it has been proved that a system

$$\dot{x}(t) = \mathbf{A}(t)x(t), \ \mathbf{A}(t) \in \mathcal{A} = \left\{\mathbf{A}_1, ..., \mathbf{A}_m\right\}, \ \mathbf{A}_i \text{ Hurwitz,}$$

with arbitrary switching within the set of matrices A

is exponentially stable

if there exists a Common Lyapunov Function (CLF) for all $A_i \in \mathcal{A}$

It has also been proved that the existence of a

Common Quadratic Lyapunov Function (CQLF) for all $\mathbf{A}_i \in \mathcal{A}$

is a sufficient condition for exponential stability

SWITCHING

System stability analysis (II)

it has been proved that the circle criterion provides

necessary and sufficient conditions

for the existence of a CQLF for two systems in companion form

In particular the systems $\dot{x}(t) = \mathbf{A}x(t)$

 $\dot{x}(t) = (\mathbf{A} - \mathbf{g} \mathbf{\Delta}^T) x(t)$

0 ...

· · · ·

0 0 ...

A =

both Hurwitz, with

Ţ

have a CQLF if and only if

 $s = j\omega$, for all frequency ω $1 + \operatorname{Re}\{\Delta^{T} (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{g}\} > 0,$

System stability analysis (III)

Y(s)

P(s)

E(s)

Supervisor

Controllers

↓ *G*₁(*s*)

SWITCHING

switching between two closed-loop systems Now we consider stability for arbitrary with transfer functions

$$T_1(s) = \frac{L_1(s)}{1 + L_1(s)} = \frac{N(s)}{D(s) + N(s)}$$

are proper, have the same number

 $L_1(s) = P(s)G_1(s)$ and $L_2(s) = P(s)G_2(s)$

where:

H(s)

 $G_{\rm n}(s)$

of poles, and the same number of

zeros.

$$T_2(s) = \frac{L_2(s)}{1 + L_2(s)} = \frac{N(s) + \Delta N(s)}{D(s) + \Delta D(s) + N(s) + \Delta N(s)},$$

 $L_1(s) = \frac{b_{n-1}s^{n-1} + ... + b_0}{1 + ... + b_0} = \frac{N(s)}{1 + ... + b_0}$ $s^n + a_{n-1}s^{n-1} + ... + a_0$ D(s)

$$L_2(s) = \frac{(b_{n-1} + \Delta b_{n-1})s^{n-1} + \dots + (b_0 + \Delta b_0)}{s^n + (a_{n-1} + \Delta a_{n-1})s^{n-1} + \dots + (a_0 + \Delta a_0)} =$$

$$= \frac{N(s) + \Delta N(s)}{D(s) + \Delta D(s)}$$

where the characteristic

equations are
$$D(s) + N(s) =$$

$$\begin{vmatrix} e_i = a_i + b_i \\ \Delta e_i = \Delta a_i + \Delta b_i. \end{vmatrix}$$

$$= s^{n} + e_{n-1}s^{n-1} + ... + e_{1}s + e_{0}$$

$$D(s) + \Delta D(s) + N(s) + \Delta N(s) =$$

$$= c^{n} + (e^{-s} + Ae^{-s})c^{n-1} + c^{n} + (e^{s} + Ae^{-s})c^{n-1} + c^{n} + c$$

$$= s^{n} + (e_{n-1} + \Delta e_{n-1})s^{n-1} + \dots + (e_{0} + \Delta e_{0}),$$

SWITCHING

System stability analysis (IV)

Now, the previous stability condition

$$1 + \text{Re}\{\Delta^T (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{g}\} > 0, \quad s = j\omega, \text{ for all frequency } \omega$$

becomes

$$1 + \text{Re} \left\{ \frac{\Delta e_{n-1} s^{n-1} + ... + \Delta e_1 s + \Delta e_0}{s^n + e_{n-1} s^{n-1} + ... + e_1 s + e_0} \right\} > 0, \ s = j\omega, \text{ for all frequency } \omega$$

and then

$$\operatorname{Re}\left\{\frac{1+L_2(s)}{1+L_1(s)}\left(\frac{D(s)+\Delta D(s)}{D(s)}\right)\right\} > 0, \ s = j\omega, \text{ for all frequency } \omega$$

which, due to symmetry, is

$$\left|\arg\{1+L_2(j\omega)\}-\arg\{1+L_1(j\omega)\}+\arg\left\{\frac{D(j\omega)+\Delta D(j\omega)}{D(j\omega)}\right\}\right|<\frac{\pi}{2} \text{ for all } \omega>0$$

SWITCHING

Y(s)Supervisor Controllers $G_{\rm n}(s)$ **♦** *G*₁(*s*) $G_2(s)$ E(s)

$$\arg\{1+L_2(j\omega)\}-\arg\{1+L_1(j\omega)\}+\arg\left\{\frac{D(j\omega)+\Delta D(j\omega)}{D(j\omega)}\right\}\bigg|<\frac{\pi}{2}\ \text{for all } \ \omega>0$$

denoting

$$\varphi_{12}(\omega)[\deg] = |\arg\{1 + L_2(j\omega)\} - \arg\{1 + L_1(j\omega)\}|,$$

$$\alpha(\omega)[\deg] = \left| \arg \left\{ \frac{D(j\omega) + \Delta D(j\omega)}{D(j\omega)} \right\} \right|$$

and applying the triangle inequality

$$\varphi_{12}(\omega) < 90 - \alpha(\omega) \text{ deg for all } \omega \ge 0$$

System stability analysis (VI)

The criterion can be applied graphically in the

Nyquist diagram

Im

 $\phi_{12}(\omega) < 90 - \alpha(\omega) \text{ deg for all } \omega \ge 0$

$$\phi_{12}(\omega)[\deg] = \left| \arg\{1 + L_2(j\omega)\} - \arg\{1 + L_1(j\omega)\} \right|,$$

$$\alpha(\omega)[\deg] = \left| \arg\left\{ \frac{D(j\omega) + \Delta D(j\omega)}{D(j\omega)} \right\} \right|.$$

For stable switching:

 $L_1(j\omega)$ and $L_2(j\omega)$

must be **inside** of an arc of $[90 - \alpha(\omega)]$ deg

around the point (-1,0) at each frequency

System stability analysis (VII)

The criterion can be applied graphically in the

Nichols diagram

$\varphi_{12}(\omega) < 90 - \alpha(\omega) \text{ deg for all } \omega \ge 0$

$$\varphi_{12}(\omega)[\deg] = \left| \arg\{1 + L_2(j\omega)\} - \arg\{1 + L_1(j\omega)\} \right|,$$

$$\alpha(\omega)[\deg] = \left| \arg\left\{ \frac{D(j\omega) + \Delta D(j\omega)}{D(j\omega)} \right\} \right|.$$

For stable switching:

plot $[1 + L_1(j\omega)]$ and $[1 + L_2(j\omega)]$,

the distance $\phi_{12}(\omega)$ on the horizontal axis at each frequency

must be less than $[90 - \alpha(\omega)]$ deg

System stability analysis (VIII)

 $\alpha(\omega)$ may be considered as a measurement of

the controller poles change

 $\varphi_{12}(\omega) < 90 - \alpha(\omega) \deg \text{ for all } \omega \ge 0$

 $\varphi_{12}(\omega)[\deg] = |\arg\{1 + L_2(j\omega)\} - \arg\{1 + L_1(j\omega)\}|,$

 $\mathbf{\alpha}(\omega)[\deg] = \left| \arg \left\{ \frac{D(j\omega) + \Delta D(j\omega)}{\Sigma} \right\} \right|$ $D(j\omega)$

Щ

 $|\alpha(\omega)| = |\arg \left\{ \frac{D(j\omega) + \Delta D(j\omega)}{|\alpha|} \right\}|$

 $\prod (j\omega + p_j + \Delta p_j)$

 $\prod_{j=1} (j\omega + p_j)$

 $D(j\omega)$

 $= \left| \sum_{j=1}^{n} \arg\{j\omega + p_j + \Delta p_j\} - \arg\{j\omega + p_j\} \right|$

 \Rightarrow If there aren't moving poles, the angle $\alpha(\omega)$ is null.

System stability analysis (IX)

Note 1: Switching among an infinite number of systems (LPV)

Easy if we only move gain and zeros $\Rightarrow \alpha(\omega) = 0$

System stability analysis (X)

Note 2: To deal with Uncertainty

switching = modifies position and shape of templates of $[1 + L_i(j\omega)]$

$\phi_{12}(\omega) < 90 - \alpha(\omega) \text{ deg for all } \omega \ge 0$

 $\varphi_{12}(\omega)[\deg] = \left| \arg\{1 + L_2(j\omega)\} - \arg\{1 + L_1(j\omega)\} \right|,$ $\alpha(\omega)[\deg] = \left| \arg\left\{ \frac{D(j\omega) + \Delta D(j\omega)}{D(j\omega)} \right\} \right|.$

criterion applied to

.switching

 $max\{\phi_{12}(\omega)\}<90$

фB

path from each point of the

departure template to

its corresponding point in the arrival template

 \deg

uncertainty

Step 1: Preliminary QFT linear controller design

- parametric and/or non-parametric uncertainty,
- stability and performance specifications,
- Templates and QFT-bounds
- design a linear controller by loop-shaping

Design two extreme controllers with the same structure.

- Gain and zeros vary freely, but poles stand still.
- Their characteristics must be related with the *error amplitude*:
- i) Large error: large bandwidth (speed), loop gain not very high
- ii) Small errors: reduced bandwidth (noise), increased low freq.gain (jitter, tracking error)

Step 3: Check Stability.

- robust stability of extreme designs guaranteed by QFT.
- stability with switching is assured by new graphical criterion.

tep 4: Design the Switching function.

- Simulations of the system governed by each extreme controller.
- Design the function that relates the error amplitude with the controller parameters.

6.- Example: Switching control for Unmanned Vehicles

Remotely Controlled Reconnaissance Vehicle

(Dorf)

Plant & parametric uncertainty

$$P(s) = \frac{1}{\left(s^2 + a_1 \ s + a_0\right)}$$

where $a_1 \in [1.8, 2.2]$, and $a_0 \in [3.6, 4.4]$

Step 1: Preliminary linear controller design
$$G_0(s) = \frac{10(s+2)}{(s+1)}$$

(Designed by Dorf)

$$G_0(s) = \frac{10(s+2)}{(s+1)}$$

Design two extreme controllers with the same structure. Step 2:

- Gain and zeros vary freely, but poles stand still.
- Their characteristics must be related with the error amplitude:

$$G_1(s) = \frac{15(s+2.3)}{(s+1)}$$

$$G_2(s) = \frac{8(s+0.5)}{(s+1)}$$

Step 3: Check Stability.

- robust stability of extreme designs guaranteed by QFT.
- stability with switching is assured by new graphical criterion.

UNCERTAINTY

in the path from each point of the first template to its corresponding point of the second template, the maximum horizontal distance between two points is not higher than 90 deg

$$G_1(s) = \frac{15(s+2.3)}{(s+1)}$$
 $G_2(s) = \frac{8(s+0.5)}{(s+1)}$

itep 4: Design the Switching function.

- Simulations of the system governed by each extreme controller.
- Design the function that relates the error amplitude with the controller parameters.

The switching controller is
$$G_{swi}(s) = \frac{(15-7k)(s+2.3-1.8k)}{(s+1)}$$

k is given by a function $\mathbb{R} \to [0, 1]$ of the error signal.

$$k = 1 - \exp\left(-\frac{e(t)^2}{0.15}\right)$$

smooth function (instead of a relay-type or saturation-type function) to reduce impulse effects

Results

time response to a step input reference tracking (t = 1 sec) and a step disturbance (t = 15 sec)

Suitable to be applied to other systems

Wind Turbines control

linear limitations by combining switching and García-Sanz M., Elso J. (2008). Beyond the QFT: Application to wind turbines pitch **control systems**. *Int. J. Robust Nonlinear Control*, Vol. 18, N.12.

UAV control

Spacecraft control

