

Herausgeber:

Deutsches Kupferinstitut Auskunfts- und Beratungsstelle für die Verwendung von Kupfer und Kupferlegierungen.

Am Bonneshof 5 40474 Düsseldorf Telefon: (0211) 4 79 63 00

Telefax: (0211) 4 79 63 00 Telefax: (0211) 4 79 63 10 info@kupferinstitut.de www.kupferinstitut.de

Alle Rechte, auch die des auszugsweisen Nachdrucks und der photomechanischen oder elektronischen Wiedergabe, vorbehalten.

Auflage 09/2006

Kupferrohre in der Kälte-Klimatechnik, für technische und medizinische Gase

Inhalt:

•	Einleitung	2
•	Werkstoff Kupfer	2
•	Kälte– und Klimatechnik	3
.1	Bauteile für die Kälte- und Klimatechnik	
.2	Verbindungstechnik	
.3	Planungs- und Verlegehinweise	
.4	Offene Wasser-Kühlkreisläufe	
١.	Medizinische Gase und Vakuum	5
.1	Bauteile für Medizinalgas- und Vakuumanlagen	
.2	Verbindungstechnik	
.3	Planungs- und Verlegehinweise	
.4	Vakuumleitungen	
	Druckluft	7
.1	Bauteile in Druckluftanlagen	
.2	Verbindungstechnik	
.3	Planungs- und Verlegehinweise	
i.	Industrie- und Laborgase	9
.1	Verwendete Bauteile	
.2	Reinst- und Laborgase	
.3	Verbindungstechnik	
.4	Planungs- und Verlegehinweise	
•	Allgemeine Hinweise	11
.1	Druckbelastbarkeit von Bauteilen	
.2	Druckgeräterichtlinie	
.3	Prüfzeugnisse	
3.	Tabellen und Diagramme	12
).	Normen, Regelwerke und Literatur	18
0.	Adressen	19
1.	Verlagsprogramm	20

1. Einleitung

2. Werkstoff Kupfer

Kupferrohre werden schon längere Zeit in verstärktem Maße auch in Bereichen der Versorgungstechnik eingesetzt, die nicht dem "klassischen" Bild der Hausinstallation entsprechen.

Neben dem mit dem Werkstoff Kupfer aufgrund seiner Eigenschaften stets eng verknüpften Bereich der Installation von Rohren für die Kälteund Klimatechnik treten zunehmend weitere Anwendungsgebiete wie die Versorgung mit medizinischen oder technischen Gasen in den Vordergrund.

Mit der vorliegenden Druckschrift soll dem Planer und dem Fachinstallateur ein Überblick über die Einsatzmöglichkeiten von Rohren und Fittings aus Kupfer, über Besonderheiten in den spezifischen Einsatzbereichen und über die zu beachtenden Regelwerke verschafft werden.

Da eine Druckschrift wie diese unmöglich alle speziellen oder anlagenspezifischen Besonderheiten beschreiben kann, sei schon an dieser Stelle auf die im Anhang aufgeführten kostenlosen Beratungsangebote der verschiedenen Institutionen hingewiesen.

In unserem täglichen Leben ist Kupfer überall präsent. Wir finden es, um nur einige Beispiele zu nennen, als Draht in elektrischen Leitungen, als Rohr in haustechnischen Anlagen oder als Blech für Dachdeckungen. Auch alltägliche Dinge wie Wasserarmaturen und unser Münzgeld bestehen aus Kupferlegierungen.

Kupfer ist außerdem ein lebensnotwendiges Spurenelement für Pflanzen, Tiere und Menschen und ist in den meisten natürlichen Nahrungsmitteln in Spuren enthalten.

Im menschlichen Körper wird es unter anderem für den Sauerstofftransport und für die Immunabwehr täglich aufs Neue benötigt.

Kupfer und die überwiegende Zahl seiner Legierungen sind - im Unterschied zu verschiedenen Stahlsorten - nicht warm aushärtbar. Bei Kupfer und seinen Legierungen wird eine Festigkeitssteigerung durch Kaltumformen des Werkstoffs (z. B. Ziehen von nahtlosen Rohren) erreicht. Diese Festigkeitssteigerung kann durch eine entsprechende Wärmebehandlung (Rekristallisationsglühen) jederzeit wieder auf das Ausgangsniveau zurückgesetzt werden, so dass nahezu unbegrenzt viele Umformungsvorgänge erreichbar sind.

In allen Bereichen der Installationstechnik, also auch in den im Folgenden behandelten speziellen Einsatzbereichen, kommt ausschließlich sauerstofffreies phosphor-desoxidiertes Kupfer "Cu-DHP" (Werkstoffnummer CW024A) zum Finsatz.

Es zeichnet sich durch eine sehr gute Löt- und Schweißbarkeit bei unverändert guter Kalt- und Warmumformbarkeit aus. Im Vergleich zu den in der Elektrotechnik verwendeten, sauerstoffhaltigen Kupfersorten ist die elektrische Leitfähigkeit von Cu-DHP geringfügig verringert. Die in der Installationstechnik ver-

wendeten Legierungen sind in der Regel Kupfer-Zink- (Messing) und Kupfer-Zinn-Zink-Legierungen (Rotguss).

Bild 1: Anlage zur Verteilung von medizinischen Gasen (Bild Drägerwerke)

3. Kälte- und Klimatechnik

Die hervorragenden, vielfältigen Eigenschaften der Kupferwerkstoffe haben diese speziell für den Einsatz in der Kälte- und Klimatechnik prädestiniert. Ihre Verwendung ist dort bereits seit Jahrzehnten Stand der Technik und in den entsprechenden Regelwerken verankert.

Zu beachten ist, dass nur Rohre entsprechend den Regelwerken der Kälte- und Klimatechnik (s. Tabellen in Kapitel 8) eingesetzt werden, um im Bedarfsfall technische und rechtliche Gewährleistungsanforderungen geltend machen zu können.

Kupfer ist ein ausgesprochener Tieftemperaturwerkstoff und daher besonders für Bauteile in Kälteanlagen geeignet. Kupfer weist bei abnehmender Temperatur steigende Festigkeit und Dehnung auf. Dies unterscheidet Kupferwerkstoffe grundsätzlich und entscheidend von allen anderen technischen Werkstoffen; Erscheinungen wie Tieftemperaturversprödung gibt es bei Kupferwerkstoffen demnach nicht. Daher ist z. B. der Werkstoff Cu-DHP nach AD2000-Merkblatt W 6/2 für Temperaturen von -269°C bis +250°C verwendbar.

Kupfer ist gegenüber fast allen üblicherweise verwendeten Kältemitteln sowie den entsprechenden Mischungen beständig. Dies sind insbesondere:

- H-FCKW
- (z. B. R22; Nicht für Neuanlagen! Gesetzliche Vorgaben beachten)
- H-FKW
- (z. B. R134a, R404A, R407C, R410A)
- · Brennbare Kältemittel
- (z. B. Propan, Butan, Isobutan)

Kupfer ist für die folgenden Kältemittel nur bedingt verwendbar:

- R-717 Ammoniak Die Verwendung ist technisch möglich, aber derzeit nicht zugelassen. (Stand 06/2004).
- R-744 Kohlendioxid Nur in trockenem Zustand verwendbar (Betriebsdruck beachten).
- · R-764 Schwefeldioxid Nur in trockenem Zustand verwendhar

Die Verwendungsmöglichkeit von Kupferwerkstoffen für das genormte wasserreduzierte Ammoniak-Kältemittel für Kleinkälteanlagen ist zwar nachgewiesen und somit Stand von Wissenschaft und Technik (s. Literaturhinweis in Kapitel 9). Eine entsprechende Änderung in einschlägigen Regelwerken hat jedoch bisher nicht stattgefunden.

3.1 Bauteile für die Kälte- und Klimatechnik

Die in Kältemittelkreisläufen zu installierenden Kupferrohre müssen DIN EN 12735-1 (Kupfer und Kupferlegierungen; Nahtlose Rundrohre aus Kupfer für die Kälteund Klimatechnik, Teil 1: Rohre für Leitungssysteme) entsprechen.

Die Anforderungen an die Beschaffenheit der Rohre beziehen sich insbesondere auf:

- · Qualität der Innenoberflächen
- · Verschlossene Rohrenden
- · Rohrmarkierung
- · Prüfung
- Druckbeständigkeit Weitere Hinweise sind Kapitel 8 zu entnehmen.

Für einzelne Abmessungen sind auch werkseitig vorummantelte Kupferrohre

Das betrifft sowohl Massivummantelungen z. B. für Erdwärmekollektoren, als auch wärmedämmende, geschäumte Ummantelungen. Eignung und Verarbeitungshinweise für Kälte- und Klimaanwendungen sind beim jeweiligen Hersteller zu erfragen.

Für Rohrverbindungen in Kältemittelleitungen ist das Hartlöten unter Verwendung von Kapillarlötfittings die übliche Verbindungstechnik. Nach DIN EN 378-2 (Kälteanlagen und Wärmepumpen – Sicherheitstechnische und umweltrelevante Anforderungen -Teil 2: Konstruktion, Herstellung, Prüfung, Kennzeichnung und Dokumentation) ist auch das Schweißen gestattet.

Verwendet werden Kapillarlötfittings nach DIN EN 1254-1 (bis einschließlich 108 mm Nenndurchmesser), Fittings für Gewindeverbindungen nach DIN EN 1254-4 (in der Regel aus Rotguss) und Fittings mit geringer Einstecktiefe für Hartlötverbindungen nach DIN EN 1254-5. Des Weiteren kommen Einschweißfittings aus Kupfer nach DIN 2607 zum Einsatz.

Fittings der oben genannten Normen werden ab Werk mit einer Beschaffenheit der Innenoberfläche geliefert, die den Anforderungen an Kältemittelkreisläufe entsprechen. Dies gilt allerdings nur für den Fall, dass die Fittings in der Originalverpackung verbleiben. Nach Öffnen der Originalverpackung liegt die Verantwortlichkeit für die erforderliche Reinheit der Innenoberflächen naturgemäß beim Verarbeiter.

Bild 2: Kupferrohre für die Kältetechnik nach DIN EN 12735-1 (DKI 6023)

3.2 Verbindungstechnik

Das Hartlöten als die empfohlene Verbindungstechnik erfolgt unter Verwendung von Hartloten nach DIN EN 1044. Gegebenenfalls sind Flussmittel nach DIN EN 1045 anzuwenden.

Hartlötverbindungen dürfen nur durch fachkundige Personen erstellt werden, wie z. B. Handwerker mit entsprechendem Fachkundenachweis.

Vor und während des Verbindungsvorgangs durch Hartlöten oder Schweißen sind die Rohrleitungen zur Vermeidung von Zunderbildung auf den Innenoberflächen mit einem trockenen Schutzgas zu spülen (s. Bild).

Schutzgase sind z. B. Inertgase (Edelgase, Stickstoff und deren Mischungen) oder Formiergase wie beispielsweise handelsübliche Schutzgasmischungen (z. B. Stickstoff-Wasserstoff, Stickstoff-Argon, etc.). Der Wasserstoffanteil darf aus Sicherheitsgründen einen Maximalwert von 4 Vol.-% nicht überschreiten.

Weitere Hinweise zu Fittings, Loten und Flussmitteln können ebenfalls Kapitel 8 entnommen werden.

Moderne Kältemittel führen in der Regel zu höheren Betriebstemperaturen und Betriebsdrücken als die früher verwendeten. Beim Einsatz von Kapillarlötfittings ist der jeweilige Fittinghersteller zu den möglichen Einsatzbereichen, insbesondere zu den maximal zulässigen Betriebsdrücken, zu befragen.

3.3 Planungs- und Verlegehinweise

Rohrleitungen in Kälte- und Klimaanlagen sind gegen Einwirkung durch Wärmeguellen zu schützen. Eine fachgerechte Wärmedämmung der Rohrleitungen ist also vorzusehen. Ergänzend sind Brandschutzanforderungen und der Schutz vor Kondensatbildung zu beachten.

Bild 3: Lötung unter Schutzgas (DKI 6027)

Frei verlegte Kupferrohre benötigen in der Regel keinen zusätzlichen Korrosionsschutz. In besonderen Fällen können jedoch Schutzmaßnahmen erforderlich sein. Im Zweifelsfall sind hierzu die im Abschnitt 10 aufgeführten Institutionen oder die Hersteller zu befragen.

Ebenso sind temperaturbedingte Längenänderungen bei der Leitungsplanung und -verlegung selbstverständlich zu berücksichtigen.

Weitere Hinweise zur fachgerechten Verlegung von Kältemittelleitungen sind der DIN EN 378-2 zu entnehmen. Zum Beispiel sind nach dieser Norm Rohre mit unterschiedlichen Durchmessern nur mit fabrikmäßig hergestellten Übergangsstücken zu verbinden und mögliche Schwingungseinflüsse sind zu berücksichtigen.

3.4 Offene Wasser-Kühlkreisläufe

Bei dem seltenen Anwendungsfall "offener Kühlkreislauf mit sauerstoffhaltigen Wässern" (z. B. Brunnenwässer) ist zu beachten. dass in diesen Systemen aus korrosionstechnischen Gründen Kupfer-Installationsrohre nach DIN EN 1057 und DVGW-Arbeitsblatt GW 392 verwendet werden müssen. Derartige Rohre weisen für diesen Einsatzbereich geeignete Innenoberflächen auf, die sich von Rohren für Kältemittelleitungen nach DIN EN 12735-1 unterscheiden.

Für Rohrverbindungen sind in diesem Fall die üblicherweise in der Trinkwasser-Installation verwendeten Bauteile und Verbindungstechniken nach DVGW-Arbeitsblatt GW 2 anzuwenden. Hierzu sind Hinweise im Informationsdruck "i.158-Die fachgerechte Kupferrohr-Installation" des Deutschen Kupferinstituts enthalten.

4. Medizinische Gase und Vakuum

Die Verwendung von Kupferleitungen in zentralen medizinischen und technischen Gasversorgungsanlagen in Krankenhäusern oder Kliniken ist die Regel.

Kupfer erfüllt in besonderem Maße die hohen Ansprüche, die an Werkstoffe in diesem Einsatzbereich gestellt werden. Die bakteriostatischen Eigenschaften des Kupfers in Verbindung mit der rationellen und bewährten Installationstechnik begründen den bevorzugten Einsatz.

Die Verwendung von Kupferrohren in medizinischen Versorgungseinheiten wird außerdem in DIN EN 737-3 (Rohrleitungssysteme für medizinische Gase) und DIN EN ISO 11197 (Medizinische Versorgungseinheiten) dringend empfohlen.

4.1 Bauteile für Medizinalgas- und Vakuumanlagen

In Anlagen zur Verteilung von Gasen für medizinische Zwecke, zur Verteilung von Druckluft zum Antrieb von chirurgischen Instrumenten und für Vakuumleitungen sind Kupferrohre nach DIN EN 13348 einzusetzen. Die Betriebsdrücke bewegen sich hier in Bereichen von bis zu 2 MPa (20 bar).

Als Fittings sind in diesen Anlagen Kapillarlötfittings nach DIN EN 1254-1, -4 und -5 zu verwenden.

Fittings dieser Normen werden ab Werk mit einer Beschaffenheit der Innenoberfläche geliefert, die den Anforderungen an medizinische Gasversorgungsanlagen und Vakuumleitungen entsprechen. Dies gilt allerdings nur für den Fall, dass die Fittings in der Originalverpackung verbleiben. Nach Öffnung des Originalverschlussbeutels liegt die Verantwortung für die erforderliche Reinheit der Innenoberflächen beim Verarbeiter.

4.2 Verbindungstechnik

Für Rohrleitungen aus Kupfer in medizinischen Gasversorgungsanlagen und für Vakuumleitungen in medizinischen Anlagen sind nach DIN EN 737 als Verbindungstechniken derzeit nur das Hartlöten oder Schweißen unter Schutzgas aufgeführt.

Durch Verbinden unter Schutzgas wird eine Zunderbildung auf der Innenoberfläche der Rohrverbindung verhindert. Ansonsten könnten Zunderpartikel zu Störungen in den angeschlossenen Armaturen und Geräten führen (s. Bild 3 in Kapitel 3)

Üblicherweise werden die phosphorhaltigen Lote CP105 (alte Bezeichnung: L-Ag 2P) oder CP203 (alte Bezeichnung: L-CuP6) nach DIN EN 1044 zum Hartlöten ohne Flussmittel verwendet.

Wenn der Einsatz von Flussmitteln für den Lötvorgang nicht vermeidbar ist - z.B. wenn Fittings aus Messing oder Rotguss gelötet werden oder wenn hoch silberhaltige Lote verarbeitet werden – dann ist dafür Sorge zu tragen, dass kein Flussmittel in das Rohrinnere gelangt. Für den vorab skizzierten, notwendigen Einsatz sind Flussmittel nach DIN EN 1045 vom Typ FH10 einzusetzen.

Vergleich der Rohrinnenoberflächen nach dem Hartlöten. Oben: unter Schutzgas aelötet. Unten: Hartlötung ohne Schutzgas. (DKI 4983)

4.3 Planungs- und Verlegehinweise

Bei sorgfältig verlegten und unter Schutzgas verbundenen Kupferrohren ist eine Reinigung der fertigen Rohrleitung mit Flüssigkeiten weder erforderlich, noch zu empfehlen. Reinigungsflüssigkeiten hinterlassen Rückstände, welche dann erneut die Reinheit der Rohrinnenoberflächen in Frage stellen können.

Bei der Montage der Rohrleitungen ist stets dafür zu sorgen, dass kein Partikeleintrag stattfindet. Vor der Montage der Entnahmearmaturen müssen die Leitungen dann in jedem Fall mit medizinischer Druckluft (Definition ISO 7396) ausgeblasen werden. Ebenso geeignet ist Stickstoff aus Druckflaschen.

Es empfiehlt sich, das Ausblasen mit der notwendigen Gasartenkontrolle zu verbinden. Mit dieser Kontrolle wird geprüft, ob an der Entnahmestelle das vorgesehene Gas in der vorgeschriebenen Reinheit austritt.

Durch den Gasartentest wird zudem sichergestellt, dass an jeder einzelnen Gasentnahmestelle das jeweils spezifische Gas austritt, also keine falschen Rohrverbindungen vorliegen.

Ein Verfahren, um nachträglich Kupferrohre entfetten zu können, ist auf der Baustelle unter Einhaltung der einschlägigen Unfallverhütungsvorschriften nicht praktikabel (Chemikalieneinsatz!).

Vielmehr erscheint es sinnvoll, sich bei Rohr- und Fittingherstellern über die verfügbaren Qualitäten zu erkundigen. Die Erfahrung zeigt immer wieder, dass eine ungeprüfte Auswahl aufgrund bestehender Gewohnheit und Ungenauigkeiten bei der Bestellung sich nur mit sehr hohem Aufwand nachträglich korrigieren lassen. Daher spielt der Bestellvorgang in solchen Fällen eine zentrale Rolle. Idealerweise wird bereits bei der Bestellung der Verwendungszweck (Rohre für Medizinalgase) angegeben.

Es sind weiterhin nur solche Kapillarlötfittings einzusetzen, bei denen das RAL-Gütezeichen der Gütegemeinschaft Kupferrohr e.V. dauerhaft aufgebracht ist (s. Bild).

Bild 5: Kapillarlötfitting mit vereinfachtem RAL-Gütezeichen (Kreis mit zentriertem Punkt) (DKI 3502)

Für die Reinheit des aus der Entnahmestelle austretenden Gases bestehen unterschiedliche Forderungen. In diesem Zusammenhang seien beispielhaft die ISO 7396 (Rohrleitungssysteme für medizinische Gase - Teil 1: Rohrleitungen für medizinische Druckgase und Vakuum) und das Arzneimittelgesetz genannt. Die Gase Sauerstoff und Lachgas sind per Definition des Gesetzes Arzneimittel und unterliegen damit in der Bundesrepublik Deutschland besonderen Anforderungen. In ISO 7396 wird an jeder Entnahmestelle eine Prüfung auf die mit dem Gasstrom austretenden sichtbaren Partikel gefordert.

Bild 6: Medizinische Gasversorgungsanlage mit Kennzeichnung der Rohre (Bild Drägerwerke)

Die im Lieferzustand metallisch blanken Rohrleitungen müssen nach der Installation in medizinischen Gasversorgungsanlagen dauerhaft mit der Bezeichnung der Gasart und/oder dem zugehörigen Symbol beschriftet werden. Die Kennzeichnungen können aus Metallschildern oder Aufklebern bestehen oder dürfen gestanzt oder gestempelt sein.

Weitere Details zur Kennzeichnung können der Norm DIN EN 737-3 entnommen werden.

Oberirdische Leitungen sollten an gut zugänglichen Stellen verlegt sein. Bei Parallelführungen und Kreuzungen muss der Rohrabstand so gewählt werden, dass Reparatur- und Wartungsarbeiten ohne Gefährdung der Leitungen möglich sind. Alle Leitungen müssen in jedem Stockwerk gefahrlos absperrbar sein.

Die gasführenden Rohre müssen über wasserführende Rohre, Rohre für leichtere Gase sollten über denen für schwerere Gase angeordnet werden.

Sie müssen nach ISO 7396 in sicherer Entfernung zu elektrischen Kabeln mit mindestens 50 mm Abstand verlegt sein und dürfen nicht zum Erden elektrischer Anlagen benutzt werden. Selbstverständlich müssen die Rohrleitungen jedoch in den Potentialausgleich nach VDE-Regelwerk eingebunden werden.

le nach Rohrdurchmesser sind in DIN EN 737 Befestigungsabstände für medizinische Gasversorgungsanlagen festgelegt (s. Tabelle in Kapitel 8).

4.4 Vakuumleitungen

Vakuumleitungen werden teilweise ohne Absperrung, aber stets mit Gefälle zur Vakuumpumpe verlegt. Um Druckverluste gering zu halten, sollte der Umfang des gesamten Vakuumrohrnetzes möglichst gering gehalten werden.

Verbindungen und Abzweige sind auch hier mit Fittings nach DIN EN 1254-1, -4 oder -5 herzustellen.

5. Druckluft

Kupfer hat sich als Leitungsmaterial zur Verteilung von technischer Druckluft im industriellen und handwerklichen Bereich z. B. zum Antrieb von Maschinen und Geräten, aber auch als Drucksteuerleitungen in der Mess-, Steuer- und Regelungstechnik besonders bewährt.

Die gute Korrosionsbeständigkeit, dauerhaft dichte Verbindungstechniken und ein kostengünstiger Betrieb (strömungsgünstige Fittings) ermöglichen es, mit Kupfer vorteilhafte Druckluftinstallationen zu erstellen.

Hinsichtlich der Anforderungen an Druckluft und der damit verbundenen Anforderungen an Bauteile muss unterschieden werden:

a) So genannte "betriebliche Druckluft", z. B. zur Versorgung von druckluftbetriebenen Werkzeugen, kann beispielsweise einen bestimmten Drucktaupunkt erreichen oder muss einen vorgeschriebenen maximalen Ölgehalt einhalten. Darüber hinaus werden an betriebliche Druckluft in der Regel keine weitergehenden Anforderungen gestellt. Weiterhin werden für betriebliche Druckluft in der Regel keine Filter eingesetzt, da die Anforderungen an die Reinheit meist gering sind und Filter aufgrund der hohen Druckverluste nur dort eingesetzt werden sollten, wo die dadurch erzeugte hohe Druckluftqualität auch tatsächlich benötigt wird. **b)** Im Gegensatz zu betrieblicher Druckluft müssen für Steueroder Prozessluftleitungen und im Lebensmittelbereich je nach Einsatz zusätzlich zu weiteren Rahmenbedingungen z. B. Partikelfilter, Aktivkohlefilter, Aktivkohleabsorber oder Sterilfilter eingesetzt werden, um hier die notwendige Druckluftqualität zu garantieren.

Für diese Anwendungsbereiche können bestimmte Reinheitsklassen nach ISO 8573-1 (Druckluft; Teil 1: Verunreinigungen und Reinheitsklassen; 2001-02 / Klassen 1 bis 7) definiert werden.

Diagramm 1: Äquivalente Rohrlänge von Formstücken, trockene Druckluft 8 bar (DKI 6054)

Derartige Druckluftqualitäten sind nur durch die Kombination von Filtern und Trocknern zu erreichen.
Auch hinsichtlich der Verbindungstechnik und der einzusetzenden Komponenten sind bei Druckluft mit Reinheitsanforderungen Besonderheiten zu beachten.

Daher kann je nach Verwendungszweck in gewöhnliche betriebliche Druckluft und in Druckluft mit speziellen Reinheitsanforderungen unterschieden werden.

5.1 Bauteile in Druckluftanlagen

In Anlagen zur Verteilung von **betrieb- licher** Druckluft kommen vorwiegend
Kupfer-Installationsrohre nach
DIN EN 1057 in Verbindung mit
Kapillarlötfittings nach DIN EN 1254-1,
-4 und -5 zum Einsatz.
Des Weiteren sind als Verbinder
Klemmringverschraubungen nach
DIN EN 1254-2 und Pressfittings
nach DIN EN 1254-7 und den DVGWArbeitsblättern W 534 oder VP 614 sowie
nach besonderen Herstellerspezifikationen einsetzbar.

Für letztere ist eine Freigabe des Herstellers hinsichtlich der Eignung bzw. Beständigkeit des Dichtelements für die jeweilige Druckluftbeschaffenheit anzufordern.

In Anlagen zur Verteilung von **Druckluft mit speziellen Reinheitsanforderungen** nach ISO 8573–1 (Klassen 1 bis 7) kommen in der Regel Kupferrohre nach DIN EN 12735–1 oder auch DIN EN 13348 zum Einsatz.

Bei der Verbindung durch Hartlöten sind Besonderheiten zu beachten (s. a. Kapitel 3.2). Hinsichtlich des Einsatzes von Klemmring-verschraubungen und Pressfittings gelten die unter betrieblicher Druckluft angeführten Aussagen.

Im Bereich medizinischer Druckluft, z. B. zum Antrieb von chirurgischen Instrumenten, kommen ausschließlich Kupferrohre nach DIN EN 13348 zum Einsatz. Hinsichtlich der Verbindungstechnik Hartlöten sind auch hier Besonderheiten zu beachten (s. 3.2). Für weitere Verbindungstechniken wie Klemmringverschraubungen und Pressverbindungen gelten ebenfalls die oben angeführten Aussagen.

5.2 Verbindungstechnik

In Druckluftanlagen sind die durch die Drucklufterzeugung mittels Kompressoren erzeugten Schwingungen in der Regel kaum vermeidbar.

Eine Übertragung auf das nachgeschaltete Rohrnetz kann nicht ausgeschlossen werden, jedoch kann durch den Einsatz von Kompensatoren in der Regel eine Dämpfung erreicht werden.

Aufgrund der höheren Beständigkeit gegenüber Schwingungsbeanspruchung sind die Verbindungstechniken Pressen und Hartlöten gegenüber dem Weichlöten in Druckluftanlagen vorzuziehen. Für betriebliche Druckluft können Verbindungen in üblicher Weise ausgeführt werden.

Für Druckluft mit speziellen Reinheitsanforderungen und für medizinische Druckluft sind bei der Hartlötung besondere Maßnahmen zur Vermeidung von Zunderbildung vorzusehen. Dies bedeutet, dass Hartlötstellen in solchen Anlagen unter Schutzgas auszuführen sind. Gleiches gilt für Schweißverbindungen (s. 3.2).

Bild 7: Anlaae zur Erzeuauna hochreiner Druckluft (Bild Drägerwerke)

5.3 Planungs- und Verlegehinweise

Generell ist zu beachten, dass Druckluftinstallationen großzügig zu dimensionieren sind.

Leistungsreserven von 50 % und mehr sind die Regel in Betrieben, in denen mit einer späteren Erweiterung des Druckluftnetzes zu rechnen ist.

Die Erzeugung von Druckluft kann energie- und damit kostenintensiv sein. Für einen wirtschaftlichen Betrieb ist daher die Verwendung von strömungsgünstigen Bauteilen sinnvoll und unumgänglich (siehe auch ZVSHK-Fachinformation "Druckluftversorgungsleitungen").

In Bezug auf Rohrleitungen bedeutet dies, dass Verbindungsstellen möglichst ohne Querschnittsverengungen auszuführen sind. Bei Verwendung von Kupferpress- und Lötfittings ist dieser Umstand gegeben, da bei Kupferverbindern die Dichtfläche außerhalb des Rohrquerschnittes liegt ("außen dichtende" Verbindungselemente).

Technisch zeigt sich dies in sehr geringen Strömungswiderstandsbeiwerten (Zeta-Wert), so dass Rohrdimensionierungszuschläge bei Kupferleitungen geringer ausfallen können als bei Systemen mit querschnittsverengenden Fittings.

Die erhebliche Auswirkung einer strömungsgünstigen Formgebung für Rohrverbinder kann Diagramm 1 entnommen werden. Ausgehend vom tabellarischen Zeta-Wert eines Fittings kann je nach Innendurchmesser der Rohrleitung der Strömungswiderstand des Fittings

Für Rohrleitungen mit anderen Innendurchmessern sind Zwischenwerte entsprechend zu interpolieren.

in Form der äquivalenten Rohrlänge

abgelesen werden.

Aufgrund der hohen Beständigkeit von Kupfer gegenüber den meisten Ölen, der hohen Beständigkeit gegenüber Druckstößen und aufgrund des kostengünstigen Betriebes (strömungsgünstige Fittings) lassen sich mit Kupferleitungen vorteilhafte Druckluftinstallationen erstellen und betreiben. Spätere Erweiterungen lassen sich sehr einfach z. B. durch Aushalsen bestehender Leitungen durchführen.

6. Industrie- und Laborgase

Rohrleitungen für die hier behandelten technischen Gase dürfen nur aus metallenen Werkstoffen bestehen. Gleichzeitig bestehen die unterschiedlichsten Anforderungen hinsichtlich der Gasarten, deren Verwendung oder deren Reinheit.

Da keine eigenständige Norm für Kupferrohre für Industrie- oder Laborgase existiert und eine Erstellung in absehbarer Zeit auch nicht geplant ist, werden hier die Normen verwandter Einsatzgebiete angewendet, um Bestell- und Lieferanforderungen festzulegen. Diese Vorgehensweise hat sich seit Jahren bewährt.

Sofern die verwendeten Laborgase z. B. als Transportmittel für dampf- oder gasförmige Proben in hochgenauen Analyse-Messgeräten zum Einsatz kommen, muss die Eignung der verwendeten Rohre durch den Hersteller gesondert bestätigt werden. Eine solche Situation ist aber nur in den seltensten Fällen gegeben.

6.1 Verwendete Bauteile

In Anlagen zur Durchleitung und Verteilung von Industrie- und Laborgasen kommen ebenfalls Kupferrohre für die Kältetechnik nach DIN EN 12735–1 zum Einsatz, alternativ sind auch Kupferrohre für medizinische Gase und Vakuum nach DIN EN 13348 geeignet.

Als Rohrverbinder werden meist Kapillarlötfittings nach DIN EN 1254–1, –4 und –5 verwendet. Desweiteren können Klemmringverschraubungen nach DIN EN 1254–2 eingesetzt werden.

Der Einsatz von Pressfittings ist dann zulässig, wenn die Eignung bzw. Beständigkeit des Dichtelements gegenüber der jeweiligen Gasart gegeben ist. Klärung kann hier durch Rückfrage beim jeweiligen Hersteller oder durch Beachtung der zum Fitting zugehörigen technischen Dokumentation geschaffen werden.

6.2 Reinst- und Laborgase

Bei Reinst- und Laborgasen wird auch in Ausschreibungstexten vielfach auf die Stoffreinheit des durchzuleitenden Gases Bezug genommen.

Die Stoffreinheit wird durch Zahlenwerte ausgedrückt, wobei die erste Ziffer die Anzahl der 'Neuner', die zweite die tatsächlich letzte Stelle hinter dem 'Komma' bezeichnet.

Beispiele:

- 'Sauerstoff 6.0' Reinheit 99,99990 Vol.-%
- 'Sauerstoff 3.5' Reinheit 99,95 Vol.-%

Mit Blick auf die hohe Reinheitsqualität der durchzuleitenden Gase wird gelegentlich nach sogenannten "Rohren und Verbindungselementen für Reinstgase und/oder besondere Laboranwendungen" gefragt. Genormte Bauteile für diesen Anwendungszweck sind derzeit nicht verfügbar.

Dies ist, neben dem verschwindend geringen Bedarf für derartige Bauteile, vor allem dadurch verursacht, dass die Anforderungen an diese Bauteile sehr unterschiedlich sind und vorab immer eine Einzelfallprüfung erfordern. Klärung muss also unbedingt bereits in der Planungsphase des Projekts erfolgen. Nur dann kann in speziellen Fällen eine sachgerechte Projektausführung gewährleistet werden.

6.3 Verbindungstechnik

Rohrleitungen aus Kupfer für Industrie- oder Laborgase sind in der Regel durch Hartlöten oder Schweißen zu verbinden.

Alternativ ist der Einsatz von Pressfittings dann möglich, wenn der Hersteller für den jeweiligen Anwendungsfall die Freigabe erteilt.

Bei besonderen Anforderungen an die Gasreinheit ist beim Hartlöten stets das Löten unter Schutzgas anzuwenden (s. vorherige Kapitel).

Auch hier werden die phosphorhaltigen Lote CP105 (alte Bezeichnung: L-Ag 2P) oder CP203 (alte Bezeichnung: L-CuP6) nach DIN EN 1044 zum Hartlöten ohne Flussmittel verwendet.

Wenn der Einsatz von Flussmitteln für den Lötvorgang nicht vermeidbar ist – z.B. wenn Fittings aus Messing oder Rotguss gelötet werden oder wenn hoch silberhaltige Lote verarbeitet werden – dann ist dafür Sorge zu tragen, dass kein Flussmittel in das Rohrinnere gelangt. Für den vorab skizzierten, notwendigen Einsatz sind Flussmittel nach DIN EN 1045 vom Typ FH10 einzusetzen.

Bild 8: Verteilanlage für technische Gase, erstellt mit Pressfittings (DKI 6025)

6.4 Planungs- und Verlegehinweise

Oberirdische Leitungen sollten an gut zugänglichen Stellen verlegt sein. Bei Parallelführungen und Kreuzungen muss der Rohrabstand so gewählt werden, dass Reparatur- und Wartungsarbeiten ohne Gefährdung der Leitungen möglich sind.

Die Leitungsanlagen sind vor Erschütterungen und Verlagerung zu schützen. Gasführende Rohre müssen über wasserführende Rohre, Rohre für leichtere Gase sollen über denen für schwerere Gase angeordnet werden.

Nachfolgend sind zusätzlich einige Kurzinformationen über die in diesem Einsatzfeld am häufigsten verwendeten Gase aufgeführt. Weitere Hinweise sind auch Kapitel 8 zu entnehmen.

Sauerstoff

Alle mit Sauerstoff in Berührung kommende Teile müssen aufgrund der Explosionsgefahr frei von Öl, Fett, Glycerin oder anderen kohlenstoffhaltigen Schmiermitteln sein. Als Werkstoff für Sauerstoffleitungen ist Kupfer aufgrund seiner spezifischen Eigenschaften besonders gut geeignet.

· Edelgase (Helium, Argon, Krypton, Xenon, Radon) und Stickstoff

Edelgase, Stickstoff und deren Gemische sind unbrennbar, farb- und geruchlos und reagieren chemisch nicht oder nur sehr träge mit ihrer Umgebung, d. h. sie verhalten sich inert ("Inertgase"). Auch hier sind Kupferrohre seit langer Zeit der bewährte Standard.

Wasserstoff

Wasserstoff ist ein farb- und geruchloses, brennbares Gas. Ebenso wie für andere Brenngase können für Wasserstoffleitungen problemlos Kupferrohre eingesetzt werden. Die Druckprobe in Wasserstoffleitungen hat aufgrund der geringen Dichte des Wasserstoffs mit Wasserstoff selbst oder mit Helium zu erfolgen.

· Flüssiggase, Erdgase

Zu Flüssiggasen und Erdgasen werden u.a. auch Propan und Butan und deren Gemische gezählt.

Bei Verwendung dieser Gase ist genau auf den Anwendungszweck zu achten:

a) Werden sie als Brenngase (z. B. als Hausbrennstoffe) eingesetzt, dann sind für Installationsarbeiten die entsprechenden Regelwerke wie die TRF zu beachten.

Als Komponenten werden in diesem Fall Rohre nach DIN EN 1057 eingesetzt. Nähere Hinweise sind dem einschlägigen Regelwerk und dem Informationsdruck "i.158 - Die fachgerechte Kupferrohr-Installation" des Deutschen Kupferinstituts zu entnehmen.

b) Werden die Gase hingegen als Kältemittel eingesetzt, dann sind Rohre nach DIN EN 12735-1 einzusetzen. Dieser Unterschied ist begründet in verschiedenen rechtlichen und technischen Anforderungen der jeweiligen Anwendung.

Kohlendioxid

Kohlendioxid ist ein farb- und geruchloses, nicht brennbares Gas. Als trockenes Gas reagiert es nicht mit den für Rohrleitungen verwendeten Werkstoffen. Es muss allerdings sichergestellt sein, dass technisch trockenes Kohlendioxid vorliegt und ein Zutritt von Feuchtigkeit zum Leitungssystem verhindert wird. Als Rohrleitungen kommen insbesondere kältebeständige Werkstoffe wie Kupfer zum Einsatz.

Acetylen

Für Acetylenleitungen ist die Verwendung von Kupfer verboten!

Bei der Reaktion von Acetylen mit Kupfer kann sich das hoch explosible Kupferacetylid bilden. Armaturen aus Kupferlegierungen können nur dann verwendet werden, wenn der Werkstoff maximal 70% Kupfer enthält.

Bild 9: Rohrleitungen für Laborgase, hart gelötet (Bild Drägerwerke)

7. Allgemeine Hinweise

7.1 Druckbelastbarkeit von **Bauteilen**

Die Werte des max. zulässigen Betriebsdruckes von Kupferleitungen werden durch die Rohrhersteller bereitgestellt. Die Tabellen im Kapitel 8 zeigen hierzu eine Übersicht.

Die Berechnung erfolgt nach anerkannten Formeln. Die Festigkeitsstufen der Rohre (weich/halbhart/hart) haben keinen Einfluss auf die max. zulässige Druckbelastbarkeit, da aus Sicherheitsgründen alle Berechnungen auf den weichen Werkstoffzustand bezogen werden müssen. Die zu erwartende Verringerung der Festigkeit durch Wärmebehandlungen (Löten, Schweißen) wird damit im Voraus berücksichtigt und bleibt so ergebnisneutral.

Der max. zulässige Betriebsdruck für Fittings kann der Tabelle in Kapitel 8 entnommen werden. Die Verwendung von Fittings bei höheren Drücken und Temperaturen erfordert stets die Freigabe durch den Fittinghersteller.

7.2 Druckgeräterichtlinie

Die EU-Direktive 97/23/EG (Druckgeräterichtlinie, kurz "PED" oder auch "DGRL" genannt) ist in der EU spätestens seit dem 29. Mai 2002 in jedem Mitgliedsland gültig und in das nationale Gesetzeswerk eingeflossen.

Die Druckgeräterichtlinie bestimmt lediglich die Anforderungen an die Beschaffenheit der Druckgeräte und deren Bauteile. Beim Betrieb und in Verkehr bringen von Druckgeräten sind weitere Vorschriften wie z. B. die Druckgeräteverordnung und die Betriebssicherheitsverordnung zu beachten.

Durch die DGRL entstehen zunächst keine Forderungen, die auf eine CE-Kennzeichnungspflicht der hier besprochenen Bauteile wie Kupferfittings und/oder -Installationsrohre für Druckgase oder Kältemittel hinauslaufen.

Eine Entscheidung über die Anbringung des CE-Kennzeichens an fertig installierten Rohrsystemen ist in der Planungsphase oder spätestens in der Vorbereitung der Systemabnahme zu

Es besteht allerdings eine ausdrückliche Pflicht zur Rückverfolgbarkeit und Identifikationsfähigkeit der im Rohrleitungssystem verwendeten Bauteile wie z.B. Rohre und Fittings. Dementsprechend sind diese Bauteile mit einer Prägestempelung des Herstellers versehen.

Die Kupferrohre und -fittings der bekannten westeuropäischen Hersteller tragen eine unverlierbar eingeprägte Herstellerkennzeichnung. Nicht gekennzeichnete Produkte erfordern einen deutlich erhöhten Klärungsaufwand zur Absicherung der Rückverfolgbarkeit.

Weitere Informationen zum Thema Druckgeräterichtlinie werden dem Interessenten in den Internetseiten der europäischen Kommission angeboten.

7.3 Prüfzeugnisse

Für die einzelnen Bauteile einer Rohrleitung ist durch den Errichter unter Umständen ein Nachweis über Materialkennwerte zu führen. Diese Kennwerte werden durch Abnahmeprüfzeugnisse des Herstellers dokumentiert und mitgeteilt.

Abnahmeprüfzeugnisse vom Typ 2.2 nach DIN EN 10204 werden von den Herstellern überwiegend ohne Kostenberechnung für den Kunden bereitgestellt. Das wichtige Kürzel "2.2" bedeutet, dass es sich um eine Zusicherung von Werkstoffeigenschaften handelt, die abmessungsbezogen, aber ohne direkte Zuordnung zu einem dem Kunden mitgeteilten Fertigungslos erfasst wurden.

Bei Anwendungen im Bereich Kältetechnik und für Industrieund Laborgase ist dieser Typ des Prüfzeugnisses völlig ausreichend. Auch bei Anwendungen im Bereich Medizinalgase und Vakuum wird dieser Typ des Prüfzeugnisses wegen seiner einfachen Beschaffbarkeit zunehmend angewendet.

Gemäß gängiger Praxis entstehen jedoch für das Ausstellen eines Abnahmeprüfzeugnisses 3.1, wegen des damit verbundenen erheblichen Mehraufwandes, zusätzliche Kosten. Die Bereitstellung eines Prüfzeugnisses 3.1 ist nur möglich, wenn dies bereits bei der Auftragserteilung für die Bauteilherstellung vereinbart wurde.

Ursache hierfür ist der Umstand, dass bei einem Prüfzeugnis 3.1 die Werkstoffeigenschaften auch abmessungsbezogen, aber mit direkter Zuordnung zu einem dem Besteller mitgeteilten Fertigungslos erfasst werden. Die Notwendigkeit der Vorlage eines solchen Prüfzeugnisses vom Typ 3.1 bleibt aber überwiegend auf Sonderfälle beschränkt.

7.4 Rohrabmessungen außerhalb der Norm

Die in den oben genannten Normen aufgeführten Rohrabmessungen sind Empfehlungen im Sinne einer Abmessungsstandardisierung. Über diese Maßangaben hinausgehend enthaltene Anforderungen an Rohre gelten auch für alle anderen, dort nicht aufgeführten Abmessungen. Bezugsquellen für derartige Rohre können beim Deutschen Kupferinstitut (siehe auch Kapitel 10) erfragt werden.

Im Bestelltext muss hierzu die Abmessung und die zugehörige Normspezifikation (z. B. "nach DIN EN 12735-1") genannt werden. Begriffe wie die häufig verwendete Formulierung "in Anlehnung an EN...." sind unzureichend.

8. Tabellen und Diagramme

8.1 Physikalische Eigenschaften von Kupfer "Cu-DHP"

Schmelzpunkt	1083 °C
Dichte	8,9 kg/dm³
Wärmeleitfähigkeit bei 20 °C	> 385 W/mK
Wärmedehnung bei Erwärmung um 100 °C	1,7 mm/m

8.2 Kupferrohre nach DIN EN 1057 und DVGW-Arbeitsblatt GW 392 mit RAL-Gütezeichen

Abmessungen in Ringen, Lieferlänge 25 oder 50 m

Abmessung	Metergewicht	Zul. Betriebsdruck	Werkstoffzustand
mm	kg/m	bar	R _m (MPa)
12 x 1	0,31	91	R220 (weich)
15 x 1	0,39	71	R220 (weich)
18 x 1	0,48	59	R220 (weich)
22 x 1	0,59	48	R220 (weich)

Abmessungen in geraden Längen, Lieferlänge 5 m

Abmessung	Metergewicht	Zul. Betriebsdruck	Werkstoffzustand
mm	kg/m	bar	R _m (MPa)
12 x 1	0,31	91	R250 (halbhart)
15 x 1	0,39	71	R250 (halbhart)
18 x 1	0,48	59	R250 (halbhart)
22 x 1	0,59	48	R250 (halbhart)
28 x 1,5	1,11	57	R250 (halbhart)
35 x 1,5	1,40	45	R290 (hart)
42 x 1,5	1,70	37	R290 (hart)
54 x 2	2,91	38	R290 (hart)
64 x 2	3,47	32	R290 (hart)
76,1 x 2	4,14	27	R290 (hart)
88,9 x 2	4,86	23	R290 (hart)
108 x 2,5	7,37	24	R290 (hart)
133 x 3	10,90	23	R290 (hart)
159 x 3	13,09	19	R290 (hart)
219 x 3	18,12	14	R290 (hart)
267 x 3	22,14	11	R290 (hart)

Die Werte des maximal zulässigen Betriebsdrucks beziehen sich immer auf den Werkstoffzustand R200 (ausgeglüht) und die jeweilige Abmessung, berechnet mit 4-facher Sicherheit nach AD2000-Merkblatt B0/B1.

8.3 Kupferrohre für die Kältetechnik nach DIN EN 12735-1

Abmessungen in Ringen und Schnecken, Lieferlänge 25 oder 35 m

Abmessung	Metergewicht	Zul. Betriebsdruck	Werkstoffzustand		
mm	kg/m	bar	R _m (MPa)		
6 x 1	0,14	200	R220 (weich)		
8 x 1	0,20	143	R220 (weich)		
10 x 1	0,25	111	R220 (weich)		
12 x 1	0,31	91	R220 (weich)		
15 x 1	0,39	71	R220 (weich)		
16 x 1	0,42	66	R220 (weich)		
18 x 1	0,48	59	R220 (weich)		
22 x 1	0,59	48	R220 (weich)		
Weitere Abmessungen auf Anfrage beim Hersteller oder Händler					

Abmessungen in geraden Längen, Lieferlänge 5 m

Abmessung	Metergewicht	Zul. Betriebsdruck	Werkstoffzustand	
mm	kg/m	bar	R _m (MPa)	
6 x 1	0,14	200	R290 (hart)	
8 x 1	0,20	143	R290 (hart)	
10 x 1	0,25	111	R290 (hart)	
12 x 1	0,31	91	R290 (hart)	
15 x 1	0,39	71	R290 (hart)	
16 x 1	0,42	67	R290 (hart)	
18 x 1	0,48	59	R290 (hart)	
22 x 1	0,59	48	R290 (hart)	
28 x 1	0,76	37	R290 (hart)	
28 x 1,5	1,11	57	R290 (hart)	
35 x 1,5	1,40	45	R290 (hart)	
42 x 1,5	1,70	37	R290 (hart)	
54 x 2	2,91	38	R290 (hart)	
64 x 2	3,47	32	R290 (hart)	
76,1 x 2	4,14	27	R290 (hart)	
88,9 x 2	4,86	23	R290 (hart)	
108 x 2,5	7,37	24	R290 (hart)	
133 x 3	10,90	23	R290 (hart)	
Weitere Abmessungen auf Anfrage beim Hersteller oder Händler				

Die Werte des maximal zulässigen Betriebsdrucks beziehen sich immer auf den Werkstoff-zustand R200 (ausgeglüht) und die jeweilige Abmessung, berechnet mit 4–facher Sicherheit nach AD2000-Merkblatt B0/B1.

8.4 Kupferrohre für medizinische Gase und Vakuum nach DIN EN 13348

Abmessungen in geraden Längen, Lieferlänge 5 m

Abmessung	Metergewicht	Zul. Betriebsdruck	Werkstoffzustand		
mm	kg/m	bar	R _m (MPa)		
6 x 1	0,14	200	R290 (hart)		
8 x 1	0,20	143	R290 (hart)		
10 x 1	0,25	111	R290 (hart)		
12 x 1	0,31	91	R290 (hart)		
15 x 1	0,39	71	R290 (hart)		
18 x 1	0,48	59	R290 (hart)		
22 x 1	0,59	48	R290 (hart)		
28 x 1	0,76	37	R290 (hart)		
28 x 1,5	1,11	57	R290 (hart)		
35 x 1,5	1,40	45	R290 (hart)		
42 x 1,5	1,70	37	R290 (hart)		
54 x 2	2,91	38	R290 (hart)		
Weitere Abmessungen auf Anfrage beim Hersteller oder Händler					

Die Werte des maximal zulässigen Betriebsdrucks beziehen sich immer auf den Werkstoffzustand R200 (ausgeglüht) und die jeweilige Abmessung, berechnet mit 4-facher Sicherheit nach AD2000-Merkblatt B0/B1.

8.5 Berechnung von Betriebsdrücken und Wanddicken

Die Berechnung von Betriebsdrücken und Wanddicken erfolgt nach dem AD 2000-Merkblättern BO "Berechnung von Druckbehältern" und B1 "Zylinder und Kugelschalen unter innerem Überdruck"

Der zulässige Betriebsdruck eines Rohres berechnet sich nach der folgenden Gleichung:

$$p_B = \frac{20 \times R_m \times s}{(d_a - s) \times S}$$

Entsprechend umgeformt berechnet sich die Wanddicke:

$$s = \frac{d_a \times p_B}{\left(20 \times \frac{R_m}{S}\right) + p_B}$$

Erläuterung der Formelzeichen:

p _R hö	chstzulässiger	Betriebso	Iruck i	n bar
-------------------	----------------	-----------	---------	-------

da Außendurchmesser in mm

Zugfestigkeit/Werkstoffzustand des Rohres in N/mm² R_{m}

Wanddicke in mm

Berechnungskonstante mit der Einheit (bar x mm²)/N 20

Sicherheitsbeiwert,

bei hartgelöteten Verbindungen ist nach AD 2000-Merkblatt BO mit der Sicherheit S=4 zu rechnen

8.6 Lote und Flussmittel mit RAL-Gütezeichen

Rohrleitungssysteme für die Kälte- und Klimatechnik, für Industrie-, Labor- und Medizinalgase werden üblicherweise hartgelötet. Flussmittel bzw. Flussmittelreste können – soweit sie auch nur in geringen Mengen in das Rohrinnere gelangen – korrosionsfördernd wirken, weshalb sauber erstellte Lötverbindungen ohne Verwendung von Flussmitteln als Optimum anzusehen sind.

Soweit dies nicht umsetzbar ist, sollte so gearbeitet werden, dass ein Eindringen von Flussmitteln in das Rohrinnere bzw. in das durchfließende Medium beim späteren Betrieb der Rohrleitung nicht erfolgt.

Hartlote für die Kupferrohr-Installation nach DIN EN 1044 und ihre Eigenschaften (Elementangaben in Gewichts-Prozent)

Hartlot	Cu	Ag	Zn	Sn	Р	Schmelzbereich °C
CP 203	Rest	-	-	-	5,9-6,5	710-890
CP 105	Rest	1,5-2,5	-	-	5,9-6,7	645-825
AG 106	35-37	33-35	Rest	2,5-3,5	-	630-730
AG 104	26-28	44-46	Rest	2,5-3,5	-	640-680
AG 203	29-31	43-45	Rest	-	-	675-735

Flussmittel für alle Lote: FH 10 (DIN EN 1045) Hinweise:

- · Bei der Verwendung von Kupfer–Phosphor–Loten (,CP') sind für Verbindungen Kupfer–Kupfer keine Flussmittel erforderlich.
- · Verbindungen Kupfer–Messing oder Kupfer–Rotguss sind immer unter Verwendung eines Flussmittels (FH 10) herzustellen.

Weichlote für die Kupferrohr-Installation nach DIN EN 29453 und ihre Eigenschaften (Elementangaben in Gewichts-Prozent)

Weichlot	Sn	Cu	Ag	Schmelzbereich °C
S-Sn97Cu3	Rest	2,5 - 3,5	-	230-250
S-Sn97Ag3	Rest	-	3,0 - 3,5	220-230

Flussmittel für alle Lote: 3.1.1, 3.1.2 oder 2.1.2 (DIN EN 29454-1)

8.7 Zulässige Betriebsdrücke für Kapillarlötfittings nach DIN EN 1254

Angaben aus DIN EN 1254

Die Verwendbarkeit von Lötfittings bei höheren Innendrücken und/oder Temperaturen muss unter Angabe des durchfließenden Mediums, der Min./Max.-Temperatur und des Druckes erfragt und vom jeweiligen Fittinghersteller freigegeben werden.

Lötverbindung	Betriebstemperatur maximal	Betriebsdruck in bar für zugehörigen Rohraußendurchmesser (mm)			
	°C	6 bis 28	35 bis 54	64 bis 108	
	30	25	25	16	
Weichlöten/ Hartlöten	65	25	16	16	
Hartiotell	110	16	10	10	

Zusätzlich zu DIN EN 1254 gilt: Bei davon abweichenden Drücken und Temperaturen ist eine Freigabe durch den Fittinghersteller erforderlich

Hinweise

- $\cdot \ \text{In K\"{a}ltem ittelle itungen und in gasf\"uhrenden Rohrle itungen ist nur das Hartl\"{o}ten \ anzuwenden.}$
- · Weichlötungen sind nur bis zu einer maximalen Betriebstemperatur von 110 °C zugelassen (z. B. Wasser-Kühlkreisläufe).

8.8 Auswahl des zu verwendenden Rohrtyps nach Einsatzbereich und Medium für typische Anwendungen

Anwendung und Medium	Kupferrohrnorn		
Kälte- und Klimatechnik	Zeichen		
Sicherheitskältemittel			
H-FCKW (s. Hinweis Kap. 3)			
H-FKW		DIN FN 42725 4	
Brennbare Kältemittel	C_nH_n	DIN EN 12735-1	
Andere			
Kohlendioxid*	CO2		
Ammoniak	NH ₃	Kupfer nicht gestattet!	
Industrie- und Laborgase			
Edelgase			
Helium	Не		
Neon	Ne		
Argon	Ar		
Krypton	Kr		
Xenon	Xe		
Radon	Rn		
Inertgase			
Stickstoff	N ₂		
Kohlendioxid*	CO ₂	DIN EN 12735-1 oder DIN EN 13348	
Schwefelhexafluorid	SF ₆	DIN EN 13340	
Luft			
Druckluft			
Vakuum			
Brenngase			
Wasserstoff	H ₂		
Methan	CH ₄		
Flüssiggase	CnHn		
Kokereigas			
Acetylen**	C ₂ H ₂	Kupfer nicht gestattet!	

	Kupferrohrnorm
Zeichen	
02	DIN EN 13348
N ₂	
co ₂	
N ₂ 0	
Ar	
Не	
Xe	
(CH ₄)	
CnHn	DIN EN 1057
	DIN EN 1057
NH ₃	Alle: Verwendung von Kupfer nicht gestattet!
CI ₂	
HCI	
cocl ₂	
so ₂	
H ₂ S	
	O2 N2 CO2 N2O Ar He Xe (CH4) CnHn NH3 Cl2 HCl COCl2 SO2

- * Das Gas muss in absolut trockenem Zustand vorliegen, was z.B. bei Entnahme aus Druckgasflaschen der Fall ist.
- ** Bildung des hochexplosiblen Kupferacetylids möglich! Zu beachtende Vorschriften:

"Betriebssicherheitsverordnung" (BetrSichV) und "Technische Regeln für Acetylenanlagen und Kalziumkarbidlager" (TRAC).

8.9 Empfohlene Rohrhalterungsabstände für Kupferrohre in medizinischen Gasversorgungsanlagen

Angaben nach DIN EN 737-3

Rohraußendurchmesser mm	Maximaler Befestigungsabstand m
bis 15	1,5
22 bis 28	2,0
35 bis 54	2,5
> 54	3,0

8.10 Druckverluste - Kupferrohre für technische und medizinische Gase

Der Druckverlust in Rohrleitungen für technische und medizinische Gase inklusive der Druckverluste durch Einzelwiderstände wird mit maximal 0,1 x pB (Betriebsdruck) angenommen. Dabei ist ein Anteil von ca. 20% für Druckverluste durch Einzelwiderstände technisch vertretbar. Eine gesonderte Berechnung der Druckverluste durch Einzelwiderstände zur Ermittlung der Rohrabmessungen mittels unten aufgeführtem Diagramm ist also nicht notwendig.

Das Nomogramm liefert für die Gase Sauerstoff, Lachgas, Kohlendioxid Stickstoff, Wasserstoff und Druckluft trotz unterschiedlicher Stoffwerte in der Regel ausreichend genaue Druckverluste.

Weitere Informationen sind auf Anfrage gegebenenfalls bei den Herstellern und beim Deutschen Kupferinstitut erhältlich.

Gas-Zustand: Betriebsdruck 5 bar, Temperatur 20 °C (DKI 4809)

9. Normen, Regelwerke und Literatur

DIN 2607

Rohrbogen aus Kupfer zum Einschweißen; 2002-05

DIN EN 378-1

Kälteanlagen und Wärmepumpen, Sicherheitstechnische und umweltrelevante Anforderungen -Teil 1: Grundlegende Anforderungen, Definitionen, Klassifikationen und Auswahlkriterien; 2000-09

DIN EN 378-2

Kälteanlagen und Wärmepumpen, Sicherheitstechnische und umweltrelevante Anforderungen -Teil 2: Konstruktion, Herstellung, Prüfung, Kennzeichnung und Dokumentation; 2000-09

DIN EN 737-1

Rohrleitungssysteme für medizinische Gase - Teil 1: Entnahmestellen für medizinische Druckgase und Vakuum; 1998-02

DIN EN 737-3

Rohrleitungssysteme für medizinische Gase - Teil 3: Rohrleitungen für medizinische Druckgase und Vakuum; 2000-01

DIN EN 737-4

Rohrleitungssysteme für medizinische Gase - Teil 4: Entnahmestellen für Anästhesiegas-Fortleitungssysteme; 1998-02

DIN EN 1044

Hartlöten, Lotzusätze; 1999-05

DIN EN 1045

Hartlöten, Flussmittel zum Hartlöten, Einteilung und technische Lieferbedingungen; 1997-08

DIN EN 1057

Kupfer und Kupferlegierungen - Nahtlose Rundrohre aus Kupfer für Wasser- und Gasleitungen für Sanitärinstallationen und Heizungsanlagen; 1996-05/2006-08

DIN EN 1254-1

Kupfer und Kupferlegierungen, Fittings, Kapillarlötfittings für Kupferrohre (Weich- und Hartlöten); 1998-03

DIN EN 1254-2

Kupfer und Kupferlegierungen, Fittings, Klemmverbindungen für Kupferrohre; 1998-03

DIN EN 1254-4

Kupfer und Kupferlegierungen, Fittings, Fittings zum Verbinden anderer Ausführungen von Rohrenden mit Kapillarlötverbindungen oder Klemmverbindungen; 1998-03

DIN EN 1254-5

Kupfer und Kupferlegierungen, Fittings, Fittings mit geringer Einstecktiefe zum Verbinden mit Kupferrohren durch Kapillar-Hartlöten; 1998-03

prEN 1254-7

Kupfer und Kupferlegierungen, Fittings, Pressfittings für metallische Rohre; Entwurf 2004-05

DIN EN 10204

Metallische Erzeugnisse – Arten von Prüfbescheinigungen; 2005-01

DIN EN 12735-1

Kupfer- und Kupferlegierungen, Nahtlose Rundrohre aus Kupfer für die Kälte- und Klimatechnik, Rohre für Leitungssysteme; 2005-06

DIN EN 13348

Kupfer und Kupferlegierungen, Nahtlose Rundrohre aus Kupfer für medizinische Gase oder Vakuum; 2005-06

DIN EN 29453

Weichlote, Chemische Zusammensetzung und Lieferformen; 1994-02

DIN EN 29454-1

Flussmittel zum Weichlöten, Einteilung und Anforderungen – 1.: Einteilung, Kennzeichnung und Verpackung; 1994-02

ISO 7396-1

Rohrleitungssysteme für medizinische Gase - Teil 1: Rohrleitungen für medizinische Druckgase und Vakuum; 2002-09

ISO 8573-1

Druckluft - Teil 1: Verunreinigungen und Reinheitsklassen; 2001-02

DIN EN ISO 11197 (VDE 0750-211)

Medizinische Versorgungseinheiten; 2005-05

AD 2000-Merkblatt B 0

Berechnung von Druckbehältern; 2003-01

AD 2000-Merkblatt B 1

Zylinder- und Kugelschalen unter innerem Überdruck: 2000-10

AD 2000-Merkblatt W 6/2

Werkstoffe für Druckbehälter, Kupfer und Kupferknetlegierungen; 2000-10

RAL-RG 641/1

Güte- und Prüfbestimmungen für das Gütezeichen "Kupferrohr/RAL" der Gütegemeinschaft Kupferrohr e.V.; 2000-04

RAL-RG 641/4

Gütesicherung Kupferrohr; Erweiterung auf Kapillarlötfittings aus Kupferrohren; Güte- und Prüfbestimmungen; 2001-04

DVGW GW 2

Verbinden von Kupferrohren für die Gas- und Wasserinstallation innerhalb von Grundstücken und Gebäuden; 2002-06

DVGW GW 392

Nahtlosgezogene Rohre aus Kupfer für Gas- und Trinkwasser-Installationen und nahtlosgezogene, innenverzinnte Rohre aus Kupfer für Trinkwasser-Installationen; Anforderungen und Prüfungen; 2002-06

DVGW VP 614

Unlösbare Rohrverbindungen für metallene Gasleitungen; Pressverbinder; 2005-05

DVGW W 534

Rohrverbinder und Rohrverbindungen; 2004-05

i.158 – Die fachgerechte **Kupferrohr-Installation**

Informationsdruck, **Deutsches Kupferinstitut**

s.210 - Ammoniakanlagen und **Kupferwerkstoffe**

Sonderdruck, Deutsches Kupferinstitut

s.211 - Kupferwerkstoffe in Ammoniakkälteanlagen

Sonderdruck, Deutsches Kupferinstitut

Fachinformation

"Druckluftversorgungsleitungen"

ZVSHK Zentralverband Sanitär – Heizung – Klima

Druckgeräterichtlinie 97/23/EG

(siehe auch im Internet unter http://ped.eurodyn.com)

Druckgeräteverordnung

Vierzehnte Verordnung zum Geräte- und Produktsicherheitsgesetz (14. GPSGV)

Betriebssicherheitsverordnung (RetrSichV)

Technischen Regeln für Acetylenanlagen und Calciumcarbidlager (TRAC)

10. Adressen

"BIV Kälte"

Bundesinnungsverband des deutschen Kälteanlagenbauerhandwerks Kaiser-Friedrich-Straße 7 D-53113 Bonn

Telefon: +49 (0)228 24989-60 Telefax: +49 (0)228 24989-62 Email: info@biv-kaelte.de

Email: info@biv-kaelte.de Internet: www.biv-kaelte.de

"VDKF"

Verband deutscher Kälte-Klima-Fachbetriebe e.V. Kaiser-Friedrich-Straße 7

D-53113 Bonn

Telefon: +49 (0)228 24989-0 Telefax: +49 (0)228 24989-40 Email: info@vdkf.com Internet: www.vdkf.com

"BHKS"

Bundesindustrieverband Heizungs-, Klima-, Sanitärtechnik / Technische Gebäudesysteme e.V.

Weberstraße 33 D-53113 Bonn

Telefon: +49 (0)228 94917-0 Telefax: +49 (0)228 94917-17 Email: info@bhks.de Internet: www.bhks.de

Aktuelle Liefernachweise

mit Angaben zu den Herstellern der hier beschriebenen Bauteile können beim Deutschen Kupferinstitut kostenlos telefonisch, schriftlich oder per Email angefordert werden.

11. Verlagsprogramm

Dach und Wand

Verhalten von Kupferoberflächen an der Atmosphäre; Bestell-Nr. s. 131

Dachdeckung und Außenwandbekleidung mit Kupfer; Bestell-Nr. i. 30

Ausschreibungsunterlagen für Klempnerarbeiten an Dach und Fassade

Blau-Lila-Färbungen an Kupferbauteilen

Sanitärinstallation

Kupfer in Regenwassernutzungsanlagen; Bestell-Nr. s. 174

Metallene Werkstoffe in der Trinkwasser-Installation; Bestell-Nr. i. 156

Kupferrohre - Rohrverarbeitung und Rohrverbindungen; Bestell-Nr. i. 157

Die fachgerechte Kupferrohrinstallation; Bestell-Nr. i. 158

Werkstoffe

Schwermetall-Schleuder- und Strangguss technische und wirtschaftliche Möglichkeiten; Bestell-Nr. s. 165

Zeitstandeigenschaften und Bemessungskennwerte von Kupfer und Kupferlegierungen für den Apparatebau; Bestell-Nr. s. 178

Ergänzende Zeitstandversuche an den beiden Apparatewerkstoffen SF-Cu und CuZn20AI2; Bestell-Nr. s. 191

Einsatz CuNi10Fe1Mn plattierter Bleche für Schiffs- und Bootskörper Use of Copper-Nickel Cladding on Ship and

Boat Hulls; Bestell-Nr. s. 201

Kupfer-Nickel-Bekleidung für Offshore-Plattformen

Copper-Nickel Cladding for Offshore Structures;

Bestell-Nr. s. 202

Werkstoffe für Seewasser-Rohrleitungs-

Materials for Seawater Pipeline Systems; Bestell-Nr. s. 203

Niedriglegierte Kupferwerkstoffe; Bestell-Nr. i. 8

Kupfer-Zink-Legierungen (Messing und Sondermessing); Bestell-Nr. i. 5

Rohre aus Kupfer-Zink-Legierungen; Bestell-Nr. i. 21

Bänder, Bleche, Streifen aus Kupfer-Zink-Legierungen; Bestell-Nr. i. 22

Kupfer-Nickel-Zink-Legierungen (Neusilber); Bestell-Nr. i. 13

Kupfer-Zinn-Knetlegierungen (Zinnbronzen); Bestell-Nr. i. 15

Kupfer-Zinn- und Kupfer-Zinn-Zink-Gusslegierungen (Zinnbronzen); Bestell-Nr. i. 25

Kupfer-Nickel-Legierungen; Bestell-Nr. i. 14

Kupfer-Aluminium-Legierungen; Bestell-Nr. i. 6

Dekorativer Innenausbau mit Kupferwerkstoffen

Messing - Ein moderner Werkstoff mit langer Tradition

Von Messing profitieren - Drehteile im Kostenvergleich

Von Messing profitieren - Mit Messing installieren

Messing ja - Spannungsrisskorrosio muss nicht sein!

Messing ja - Entzinkung muss nicht sein!

Bronze - unverzichtbarer Werkstoff der Moderne

Kupfer - Das rote Metall

Kupfer - Werkstoff der Menschheit

Verarbeitung

Konstruktive Gestaltung von Formgussstücken aus Kupferwerkstoffen; Bestell-Nr. s. 133

Kupfer-Zink-Legierungen für die Herstellung von Gesenkschmiedestücken; Bestell-Nr. s. 194

Kleben von Kupfer und Kupferlegierungen; Bestell-Nr. i. 7

Trennen und Verbinden von Kupfer und Kupferlegierungen; Bestell-Nr. i. 16

Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen;

Bestell-Nr. i. 18

Elektrotechnik

Drehstrom, Gleichstrom, Supraleitung -Energie-Übertragung heute und morgen; Bestell-Nr. s. 180

Brandsichere Kabel und Leitungen; Bestell-Nr. s. 181

Energiesparen mit Spartransformatoren; Bestell-Nr. s. 183

Fehlauslösungen von Fehlerstrom-Schutzeinrichtungen; Bestell-Nr. s. 184

Wechselwirkungen von Blindstrom-Kompensationsanlagen mit Oberschwingungen; Bestell-Nr. s. 185

Vom Umgang mit Blitzschäden und anderen Betriebsstörungen; Bestell-Nr. s. 186

Sparen mit dem Sparmotor; Bestell-Nr. s. 192

Bedarfsgerechte Auswahl von Kleintransformatoren; Bestell-Nr. s. 193

Energiesparpotentiale bei Motoren und

Transformatoren; Bestell-Nr. i. 1

Kupferwerkstoffe in der Elektrotechnik und

Elektronik; Bestell-Nr. i. 10

Kupfer in der Elektrotechnik - Kabel und Leitungen

Kupfer spart Energie

Geld sparen mit Hochwirkungsgrad-Motoren

Umwelt/Gesundheit

Versickerung von Dachablaufwasser; Bestell-Nr. s. 195

Kupfer in kommunalen Abwässern und Klärschlämmen; Bestell-Nr. s. 197

Sachbilanz einer Ökobilanz der Kupfererzeugung und -verarbeitung; Bestell-Nr. s. 198

Sachbilanz zur Kupfererzeugung unter Berücksichtigung der Endenergien; Bestell-Nr. s. 199

Untersuchung zur Bleiabgabe der Messinglegierung CuZn39PB3 an Trinkwasser -Testverfahren nach British Standards BS 7766 and NSF Standard 61; Bestell-Nr. s. 200

Kupfer - Lebensmittel - Gesundheit; Bestell-Nr. i. 19

Recycling von Kupferwerkstoffen; Bestell-Nr. i. 27

Kupfer und Kupferwerkstoffe ein Beitrag zur öffentlichen Gesundheitsvorsorge;

Bestell-Nr. i. 28

Kupfer - der Nachhaltigkeit verpflichtet

Kupfer in unserer Umwelt

Natürlich Kupfer - Kupfer ökologisch gesehen Doorknobs: a source of nosocomial infection?

Wie viel Blei gelangt ins Trinkwasser?

Kupfer - Hygienischer Werkstoff

Kupfer - Lebenswichtiges Spurenelement

Spezielle Themen

Kupferwerkstoffe im Kraftfahrzeugbau; Bestell-Nr. s. 160

Die Korrosionsbeständigkeit metallischer Automobilbremsleitungen - Mängelhäufigkeit in Deutschland und Schweden; Bestell-Nr. s. 161

Kupfer - Naturwissenschaften im Unterricht Chemie; Bestell-Nr. s. 166

Ammoniakanlagen und Kupfer-Werkstoffe?; Bestell-Nr. s. 210

Kupferwerkstoffe in Ammoniakkälteanlagen; Bestell-Nr. s. 211

Kupfer - Ein Metall mit Zukunft; Bestell-Nr. i. 75

Kupferrohre in der Kälte-Klimatechnik, für technische und medizinische Gase Bestell-Nr. i. 164

DKI-Fachbücher*

Kupfer

Schweißen von Kupfer und Kupferlegierungen

Chemische Färbungen von Kupfer und Kupferlegierungen **EUR 5,00**

.....

Kupfer als Werkstoff für Wasserleitungen EUR 5,00

Kupfer in der Landwirtschaft EUR 5,00

Kupfer im Hochbau EUR 10,00****

Planungsleitfaden Kupfer - Messing - Bronze EUR 10,00***

Architektur und Solarthermie Dokumentation zum Architekturpreis EUR 10,00

CD-ROM des Deutschen Kupferinstituts

Werkstoffdatenblätter

EUR 10,00

Kupferschlüssel EUR 10,00

Solares Heizen EUR 10.00

Faltmuster für Falzarbeiten mit Kupfer Muster für Ausbildungsvorlagen in der Klempnertechnik EUR 10,00

Was heißt hier schon "harmonisch"? EUR 10.00

Lehrhilfe

Werkstofftechnik - Herstellungsverfahren EUR 10,00

Lernprogramm

Die fachgerechte Kupferrohr-Installation EUR 10,00 ***

Filmdienst des DKI

Das Deutsche Kupferinstitut verleiht kostenlos die nachstehend aufgeführten Filme und Videos:

"Kupfer in unserem Leben" Videokassette, 20 Min. Schutzgebühr EUR 10,00 Verleih kostenlos

"Fachgerechtes Verbinden von Kupferrohren" Lehrfilm, Videokassette, 15 Min. Schutzgebühr EUR 10,00 Verleih kostenlos

"Kupfer in der Klempnertechnik" Lehrfilm, Videokassette, 15 Min. Schutzgebühr EUR 10,00 Verleih kostenlos

*Fachbücher des DKI sind über den Fachbuchhandel zu beziehen oder ebenso wie Sonderdrucke, Informationsdrucke und Informationsbroschüren direkt vom Deutschen Kupferinstitut, Am Bonneshof 5, 40474 Düsseldorf.

- **Dozenten im Fach Werkstofftechnik an Hochschulen erhalten die Mappen kostenlos
- ***Sonderkonditionen für Berufsschulen
- ****Sonderkonditionen für Dozenten und Studenten

Fordern Sie bitte unverbindlich das Dienstleistungs- und Verlagsverzeichnis des DKI an.

Auskunfts- und Beratungsstelle für die Verwendung von Kupfer und Kupferlegierungen

Am Bonneshof 5 40474 Düsseldorf Telefon: (0211) 4 79 63 00 Telefax: (0211) 4 79 63 10

Telefax: (0211) 4 79 63 10 info@kupferinstitut.de

www.kupferinstitut.de

7