Taller 2: Agentes Inteligentes en el Mundo del Wumpus (NetLogo)

Curso: Fundamentos de Inteligencia Artificial

Entrega: Viernes _____

Objetivos de Aprendizaje

- Modelar el Mundo del Wumpus en NetLogo como entorno de prueba para agentes inteligentes.
- Diseñar e implementar **tres estrategias diferentes de agente** y analizar sus resultados.
- Comparar el desempeño mediante **métricas y gráficos experimentales**.
- Exponer resultados en una **presentación técnica breve** fundamentada en datos.

Descripción General

En este taller, los estudiantes desarrollarán una simulación completa del **Wumpus World** en NetLogo, donde un agente debe explorar un entorno desconocido, recolectar oro y salir con vida, evitando pozos y al Wumpus.

Cada grupo (máximo 4 integrantes) deberá implementar tres estrategias de agente diferentes, correr experimentos y graficar resultados para determinar cuál es la más efectiva en distintas condiciones del entorno.

Tareas Principales

- 1. Construir el entorno del Wumpus World con parámetros configurables:
 - Tamaño del mundo: 4×4 , 6×6 , 8×8 .
 - Probabilidad de pozos: 0,1, 0,15, 0,2.
 - Wumpus estático o móvil.
 - Semilla aleatoria (random-seed).
- 2. Desarrollar tres estrategias de agente:
 - a) Agente Reactivo Aleatorio (baseline): evita riesgos de forma básica.

- b) Agente Reactivo Heurístico: prioriza celdas seguras y usa heurísticas de riesgo.
- c) Agente con Modelo Interno (lógico o probabilístico): mantiene creencias sobre el entorno y planifica movimientos (por ejemplo con A* o inferencias de conocimiento).

3. Diseñar un experimento comparativo:

- Ejecutar al menos 300 episodios por estrategia, variando tamaño del entorno y probabilidad de pozos.
- Medir las siguientes métricas:
 - Tasa de éxito (% de veces que logra salir con oro).
 - Recompensa promedio.
 - Pasos promedio.
 - % de muertes por pozo / Wumpus.
 - Flechas usadas y cobertura de celdas seguras.

4. Analizar resultados:

- Graficar métricas por estrategia (barras, líneas o boxplots).
- Determinar cuál estrategia rinde mejor y en qué condiciones.

5. Exponer resultados:

- Presentación grupal de 6–8 minutos mostrando modelo, gráficos y conclusiones.
- Todos los integrantes deben participar.

Estructura del Proyecto en NetLogo

Interfaz

- Sliders: grid-size, pit-prob, seed.
- Checkboxes: wumpus-movil, percepcion-ruidosa (opcional).
- Botones: setup, go, go-forever, reset-metrics.
- Plots: "Tasa de éxito", "Recompensa promedio", "Pasos promedio".

Código sugerido

```
to decide-and-act
  if current-agent-strategy = "reactivo-baseline" [ reactive-baseline ]
  if current-agent-strategy = "reactivo-heuristico" [ reactive-heuristic ]
  if current-agent-strategy = "modelo-interno" [ model-based-step ]
end
```

Entregables

- 1. Archivo .nlogo con interfaz, código y documentación en la pestaña "Info".
- 2. Reporte en PDF (5–7 páginas):
 - Introducción y objetivos.
 - Descripción del entorno y estrategias.
 - Diseño experimental y métricas.
 - Resultados (tablas y gráficos).
 - Conclusiones y trabajo futuro.
- 3. Presentación en diapositivas (8–12 slides):
 - Resumen del modelo.
 - Ejemplo visual o demo.
 - Resultados clave y conclusiones.
- 4. Archivo README con instrucciones de ejecución y lista de integrantes.

Cronograma sugerido

Día	Tarea	Responsable
Lunes-Martes	Modelar entorno y baseline reactivo	Integrantes 1–2
Miércoles	Estrategias heurística y modelo interno	Integrantes 2–3
Jueves	Corridas experimentales y análisis	Integrantes 3–4
Viernes	Presentación grupal	Todos

Rúbrica de Evaluación (100 pts)

Criterio	Descripción	Puntaje
Modelo y entorno	Interfaz funcional, entorno reproducible, uso	15
	de sliders y plots	
Estrategias de agente	Diseño e implementación correcta de cada es-	30
(3)	trategia	
Diseño experimental y	Corridas múltiples, control de variables, re-	20
métricas	gistro de datos	
Análisis y visualiza-	Gráficos claros, interpretación y tablas bien	15
ción	presentadas	
Conclusiones y discu-	Reflexión crítica sobre desempeño y condi-	10
sión	ciones de éxito	
Presentación grupal	Claridad, participación y dominio del tema	10
Bonus	Código limpio, comentarios, extras (Wumpus	+5
	móvil, ruido, A*)	

Recomendaciones Finales

- Comenten y estructuren adecuadamente el código.
- Prueben versiones con ruido o Wumpus móvil para explorar robustez.
- Usen distintas semillas para obtener resultados comparables.
- Las gráficas y conclusiones son tan relevantes como la implementación.
- La presentación debe explicar el razonamiento del agente, no sólo los resultados.

"El objetivo no es construir un agente perfecto, sino comprender cómo distintos modelos de razonamiento afectan su desempeño en entornos inciertos."