TD 6

Exercice 1 Soit (E, d) un espace métrique.

- 1) Soient (a_n) et (b_n) deux suites de Cauchy de E. Montrer que la suite $(d(a_n,b_n))$ est convergente dans \mathbb{R} .
 - 2) Soit (a_n) une suite de E telle que $\sum d(a_n, a_{n+1}) < \infty$. Montrer que (a_n) est de Cauchy.

Exercice 2 Soit $E = \mathbb{R}[X]$ muni de la norme définie par $||\sum a_k X^k|| = \max(|a_k|, k \in \mathbb{N})$. On note $P_n = 1 + X + \dots + \frac{X^n}{n}$. Montrer que la suite (P_n) est de Cauchy, mais ne converge pas.

Exercice 3 Soit δ la distance sur $\overline{\mathbb{R}}$ définie par $\delta(x,y) = |\arctan(x) - \arctan(y)|$ où $\arctan(+\infty) = -1$ $\pi/2$ et $\arctan(-\infty) = -\pi/2$. Montrer que (\mathbb{R}, δ) n'est pas complet mais que $(\overline{\mathbb{R}}, \delta)$ l'est.

Exercice 4 Soit E l'espace vectoriel des fonctions C^1 de [0,1] dans \mathbb{R} .

- 1) E est-il complet pour la norme $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$?
- 2) pour la norme $||f||_{\infty} + ||f'||_{\infty}$?

Exercice 5 À l'aide du théorème de Baire, montrer qu'un fermé dénombrable non vide X de \mathbb{R} a au moins un point isolé. *Indication*: on pourra considérer $\omega_x = X \setminus \{x\}$.

Exercice 6 (Une application du théorème de Baire : le théorème de la limite simple) Soit f une limite simple d'applications continues $f_n:(E,d)\to(F,\delta)$, où (E,d) est un espace métrique complet.

- 1. Pour des entiers p, q, n, on note $E_{p,q,n} = \{x \in E \mid \delta(f_p(x), f_q(x)) \leq 1/n\}$, et $E_{p,n} = \bigcap_{q>n} E_{p,q,n}$. Montrer $E = \bigcup_{p \in \mathbb{N}} E_{p,n}$. 2. Pour tout n, on pose $O_n = \bigcup_{p \in \mathbb{N}} \mathring{E}_{p,n}$. Montrer que O_n est un ouvert dense dans E. 3. On pose $G = \bigcap_{n \in \mathbb{N}} O_n$. Montrer que f est continue en x, pour tout x dans G.

- 4. En déduire que f est continue sur une partie dense de E.
- 5. Application : soit f une fontion réelle dérivable sur \mathbb{R} . Alors f' est continue sur une partie dense de \mathbb{R} . (Considérer $f_n(x) = n(f(x+1/n) - f(x))$).

Exercice 7 Trouver

$$\inf_{(a,b,c)\in\mathbb{R}^3} \int_{-1}^1 (x^3 + ax^2 + bx + c)^2 dx.$$

Exercice 8 (Théorème de Picard) Soit (E,d) un espace métrique complet, $f:E\to E$ ayant une itérée f^p contractante. Montrer que

- 1. f possède un point fixe et un seul a.
- 2. Pour tout $x_0 \in E$, la suite (x_n) définie par $x_{n+1} = f(x_n)$ converge vers a.

Exercice 9 Soit $\varphi:[0,1]\to[0,1]$ continue non identique à 1 et $\alpha\in\mathbb{R}$. On va montrer qu'il existe une unique $f \in C^1([0,1],\mathbb{R})$ solution de l'équation fonctionnelle

$$f(0) = \alpha, \quad f'(x) = f(\varphi(x)).$$

Soit $E = C([0,1], \mathbb{R})$ muni de $|| \quad ||_{\infty}$ et $T : E \to E$ définie par T(f) = g, où

$$g(x) = \alpha + \int_0^x f(\varphi(t)) dt.$$

Montrer que T^2 est contractante. Utiliser l'exercice 8 et conclure.

Exercice 10 Soit $E = C([0,1],\mathbb{R})$ muni de $||\cdot||_{\infty}$. On définit pour toute f de E, T(f) par

$$\forall t \in [0,1], T(f)(t) = \int_0^t \left(\int_0^x u f(u) du \right) dx.$$

Montrer que T est bien définie, puis qu'elle est contractante. En déduire que l'équation différentielle f''(t) - tf(t) = 0 admet une unique solution f telle que f'(0) = f(0) = 0, la fonction nulle.

Exercice 11 (Continuité uniforme)

- 1. Déterminer parmi les fonctions suivantes celles qui sont uniformément continues sur leur intervalle de définition :
 - i) exp. ii) \ln . iii) $\sqrt{.}$ iv) $x \mapsto \frac{1}{x}$. v) $x \mapsto x^2$. vi) $x \mapsto \sin(x^2)$. vii) $x \mapsto x\sin(\ln(x))$.
- 2. Montrer qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ continue, admettant des limites finies en $+\infty$ et en $-\infty$, est uniformément continue sur \mathbb{R} . (indication : utiliser le théorème de Heine).
- 3. Soit δ la distance sur \mathbb{R} définie par $\delta(x,y) = \left| \frac{x}{1+|x|} \frac{y}{1+|y|} \right|$. Montrer à l'aide du théorème de prolongement des applications uniformément continues que l'identité $(\mathbb{R}, \delta) \to (\mathbb{R}, |\cdot|)$ n'est pas uniformément continue.

Exercice 12 (Complété d'un espace métrique) Soit (E, d) un espace métrique.

1. On dit que deux suites de Cauchy (a_n) et (b_n) sont équivalentes si

$$\lim_{n \to \infty} d(a_n, b_n) = 0$$

Montrer que c'est une relation d'équivalence sur l'ensemble des suites de Cauchy de (E, d).

2. On note E^* l'ensemble des classes d'équivalence. On pose, si $A \in E^*$ est représenté par (a_n) et $B \in E^*$ par (b_n) , (cf Ex 1)

$$\Delta(A,B) = \lim_{n \to \infty} d(a_n, b_n).$$

Montrer que Δ définit une distance sur E^* .

- 3. Montrer que (E^*, Δ) est complet. *Indication*: utiliser un procédé diagonal.
- 4. Pour $a \in E$, on note A_a l'élément de E^* représenté par $(a_n) = (a)$. Montrer que $\varphi(a) = A_a$ définit une isométrie de (E, d) dans (E^*, Δ) .
- 5. Montrer que $\varphi(E)$ est dense dans E^* . On identifie E à $\varphi(E)$ et on appelle E^* le complété de E.