Mines MP 2009. Epreuve de Mathématiques 2 Jean-Pierre Roudneff, lycée louis-le-Grand

A) Déterminants de Cauchy

- 1°) Une manière rapide de prouver le résultat consiste à considérer l'endomorphisme de $E = \mathcal{C}^{\infty}([0,1])$ qui, à toute fonction f de E, fait correspondre la fonction $x \longmapsto xf'(x)$. En observant que ϕ_{λ} en est un vecteur propre relatif à la valeur propre λ , la famille $(\phi_{\lambda})_{\lambda \geqslant 0}$ est alors libre dans E, donc dans $\mathcal{C}([0,1])$, en tant que famille de vecteurs propres relatifs à des valeurs propres deux à deux distinctes.
- 2°) Soit D'_n le déterminant obtenu à partir de D_n en remplaçant la dernière colonne comme il est suggéré. Par la transformation élémentaire $C_n := C_n - \sum_{k=1}^{n-1} A_k C_k$, sur les colonnes de D'_n , il vient $D'_n = A_n D_n$. D'autre part, comme $R(a_1) = R(a_2) = \cdots = R(a_{n-1}) = 0$, on a $D'_n = R(a_n)D_{n-1}$ en développant D'_n par rapport à sa dernière colonne, ce qui conduit à l'égalité demandée.
- 3°) Le coefficient A_n de la décomposition en éléments simples de R s'obtient en substituant à X la valeur

$$D_n' \text{ par rapport à sa dernière colonne, ce qui conduit à l'égalité demandée.}$$
Le coefficient A_n de la décomposition en éléments simples de R s'obtient en substituant à X la value
$$-b_n \text{ dans la fraction } (X+b_n)R(X). \text{ On trouve } A_n = \frac{\prod\limits_{k=1}^{n-1}(-a_k-b_n)}{\prod\limits_{k=1}^{n-1}(b_k-b_n)} \text{ et comme } A_n \neq 0, \text{ il vient } \frac{R(a_n)}{\prod\limits_{k=1}^{n}(a_n-a_k) \times \prod\limits_{k=1}^{n-1}(b_n-b_k)}{\prod\limits_{k=1}^{n}(a_n+b_k) \times \prod\limits_{k=1}^{n-1}(a_k+b_n)}.$$
La formule $D_n = \frac{\prod\limits_{1 \leq i < j \leq n}(a_j-a_i)(b_j-b_i)}{\prod\limits_{1 \leq i,j \leq n}(a_i+b_j)}$ résulte alors d'une simple récurrence sur l'entier n .

B) Distance d'un point à une partie dans un espace vectoriel normé

- $\mathbf{4}^{\circ}$) Par définition de la borne inférieure, pour tout $n \in \mathbb{N}^{*}$, il existe $y_{n} \in A$ tel que $d(x, A) \leq ||x y_{n}|| \leq a$ $d(x,A) + \frac{1}{n}$. En particulier, si d(x,A) = 0, alors $\lim_{n \to +\infty} y_n = x$, donc $x \in \overline{A}$ par caractérisation séquentielle de l'adhérence. Inversement, si $x \in \overline{A}$, alors il existe une suite $(y_n)_{n \in \mathbb{N}}$ à valeurs dans A telle que $\lim_{n \to +\infty} ||x - y_n|| = 0$, ce qui conduit immédiatement à d(x, A) = 0.
- $\mathbf{5}^{\circ}$) La croissance de la suite $(A_n)_{n\in\mathbb{N}}$ (au sens de l'inclusion) entraîne la décroissance de la suite numérique de terme général $d(x, A_n)$. Etant minorée par 0, cette suite converge vers un certain réel d et on a $d(x,A) \leq d$ étant donné que l'inclusion $A \supset A_n$ entraı̂ne $d(x,A) \leq d(x,A_n)$ pour tout $n \in \mathbb{N}$. Si l'inégalité stricte avait lieu, il existerait $y \in A$ tel que $\forall n \in \mathbb{N}, \|x-y\| < d(x,A_n)$, d'où une contradiction en choisissant pour n un entier tel que $y \in A_n$. On peut ainsi conclure que $d(x, A) = \lim_{n \to +\infty} d(x, A_n)$.
- 6°) $B \cap V$ est une boule fermée (et en particulier un fermé borné) de l'espace vectoriel V muni de la norme induite par $\|.\|$. Comme V est de dimension finie, $B \cap V$ est un compact de V donc de E (en effet, de toute suite à valeurs dans $B \cap V$, on peut extraire une sous-suite qui converge dans $B \cap V$, que l'on travaille dans V ou dans E). De plus, $d(x, V) = \min (d(B \cap V), d(x, V \setminus B))$. Or, pour tout $y \in V \setminus B$, ||x - y|| > ||x - 0|| > $d(x, V \cap B)$, si bien que $d(x, V \setminus B) \geqslant d(B \cap V)$, et ainsi $d(x, V) = d(B \cap V)$.
- 7°) L'application $y \longmapsto ||x-y||$ est continue (car 1-lipschitzienne) sur le compact $V \cap B$ donc atteint sa borne inférieure d'après le théorème des bornes : d'après la question 6°), il existe ainsi $y \in V$ tel que d(x,V) = ||x - y||.

1

C) Distance d'un point à un s-e-v de dimension finie dans un espace euclidien

8°) lorsque V est un sous-espace vectoriel de dimension finie de E, le projeté orthogonal y de x sur V est bien défini, et est caractérisé par le fait que x-y est orthogonal à tout vecteur z de V. D'après le théorème de Pythagore, on a alors

$$\forall z \in V, \quad \|x - z\|^2 = \|(x - y) + (y - z)\|^2 = \|x - y\|^2 + \|y - z\|^2 \geqslant \|x - y\|^2$$

avec égalité si et seulement si y = z. On a donc d(x, V) = ||x - y|| et y est l'unique élément de V réalisant cette égalité.

- 9°) Si la famille $(x_1, x_2, ..., x_n)$ est liée, il existe des scalaires $\lambda_1, \lambda_2, ..., \lambda_n$ non tous nuls tels que $\sum_{i=1}^n \lambda_i x_i = 0, \text{ d'où } \forall j \in [\![1, n]\!], \quad \sum_{i=1}^n \lambda_i (x_i \mid x_j) = 0. \text{ Les lignes de } M(x_1, x_2, ..., x_n) \text{ vérifient alors la relation de liaison } \sum_{i=1}^n \lambda_i L_i = 0 \text{ donc } G(x_1, x_2, ..., x_n) = 0.$
 - Si la famille (x_1, x_2, \ldots, x_n) est libre, considérons une base orthonormale (e_1, e_2, \ldots, e_n) de l'espace vectoriel V qu'ils engendrent. En appelant $P = (p_{ij})_{1 \leq i,j \leq n}$ la matrice de passage de (e_1, e_2, \ldots, e_n) à (x_1, x_2, \ldots, x_n) , on a alors $\forall i, j \in [1, n]$, $(x_i \mid x_j) = \sum_{k=1}^n p_{ki} p_{kj}$, ce qui se traduit par l'égalité $M(x_1, x_2, \ldots, x_n) = {}^tP \times P$. Il vient ainsi $G(x_1, x_2, \ldots, x_n) = (\det P)^2 > 0$.
- 10°) Soit $y = \sum_{i=1}^{n} \lambda_i x_i$ le projeté orthogonal de x sur V.

Par les transformations élémentaires $C_{n+1} := C_{n+1} - \sum_{i=1}^{n} \lambda_i C_i$ puis $L_{n+1} := L_{n+1} - \sum_{i=1}^{n} \lambda_i L_i$, on constate que $G(x_1, x_2, \dots, x_n, x) = G(x_1, x_2, \dots, x_n, x-y)$, et comme $(x_i \mid x-y) = 0$ pour tout $i \leq n$, ce déterminant vaut encore $G(x_1, x_2, \dots, x_n) \times ||x-y||^2$.

D'après 8°) et 9°), on peut alors conclure que $d(x,V)^2 = \frac{G(x_1,x_2,\ldots,x_n,x)}{G(x_1,x_2,\ldots,x_n)}$.

D) Comparaison des normes N_{∞} et N_2

 $\mathbf{11}^{\circ}\big) \ - \ \mathrm{Clairement}, \ N_2(f) \leqslant \Big(\int_0^1 (N_{\infty}(f))^2 \, \mathrm{d}x\Big)^{1/2}, \ \mathrm{soit} \ N_2(f) \leqslant N_{\infty}(f) \ \mathrm{pour \ tout} \ f \in \mathcal{C}([0,1]).$

– Tout élément f de \overline{A}^{∞} est la limite au sens de N_{∞} d'une suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de A, c'est-à-dire $\lim_{n\to+\infty}N_{\infty}(f-f_n)=0$. L'inégalité précédente montre qu'on a aussi $\lim_{n\to+\infty}N_2(f-f_n)=0$, d'où $f\in\overline{A}^2$, ce qui établit l'inclusion demandée.

- 12°) Soit h_n la fonction affine par morceaux définie par $h_n(x) = nx$ sur $[0, \frac{1}{n}]$ et $h_n(x) = 1$ sur $[\frac{1}{n}, 1]$. Alors $h_n \in V_0$ et $N_2(\phi_0 - h_n) = \left(\int_0^{1/n} (nx)^2 dx\right)^{1/2} = \sqrt{\frac{1}{3n}}$ tend vers 0 lorsque n tend vers $+\infty$. On a ainsi $\phi_0 \in \overline{V_0}^2$.
- 13°) Soit f un élément donné de $\mathcal{C}([0,1])$. Alors $N_2(f-fh_n)^2 = \int_{[0,1]} f^2(\phi_0 h_n)^2 \leqslant \int_{[0,1]} N_\infty(f)^2(\phi_0 h_n)^2$ $\leqslant \frac{N_\infty(f)^2}{3n}$. On en déduit que $\lim_{n \to +\infty} N_2(f-fh_n) = 0$: l'application f est donc limite, au sens de la norme N_2 , de la suite de fonctions $(fh_n)_{n \in \mathbb{N}^*}$ de V_0 . En conclusion, V_0 est dense dans $\mathcal{C}([0,1])$ au sens de la norme N_2 , mais ne l'est pas en revanche pour la norme N_∞ car la limite uniforme (ou même simple) d'une suite de fonctions s'annulant en 0 s'annule également en ce point.
- 14°) Soit V un sous-espace vectoriel de l'espace vectoriel normé $(E, \|.\|)$. Pour tous $x, y \in \overline{V}$, il existe des suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ à valeurs dans V telles que $\lim_{n \to +\infty} \|x x_n\| = \lim_{n \to +\infty} \|y y_n\| = 0$. Alors, $\forall \lambda, \mu \in \mathbb{R}$, $\lim_{n \to +\infty} \|(\lambda x + \mu y) (\lambda x_n + \mu y_n)\| = 0$, d'où $\lambda x + \mu y \in \overline{V}$. Par suite, \overline{V} est un sous-espace vectoriel de E.

- 15°) Si V est dense dans $\mathcal{C}([0,1])$ pour la norme N_{∞} , alors $\overline{V}^{\infty} = \mathcal{C}([0,1])$, donc \overline{V}^{∞} contient en particulier toutes les fonctions ϕ_m avec $m \in \mathbb{N}$.
 - Réciproquement, si \overline{V}^{∞} contient tous les monômes ϕ_m avec $m \in \mathbb{N}$, alors il contient aussi toutes les fonctions polynômes vu que c'est un sous-espace vectoriel de $\mathcal{C}([0,1])$. Or toute fonction de $\mathcal{C}([0,1])$ est limite uniforme d'une suite de telles fonctions d'après le théorème de Weierstrass, si bien que $\overline{V}^{\infty} = \mathcal{C}([0,1])$.
- 16°) Si V est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 , alors \overline{V}^2 contient de même toutes les fonctions ϕ_m avec $m \in \mathbb{N}$.
 - Réciproquement, si \overline{V}^2 contient tous les ϕ_m avec $m \in \mathbb{N}$, alors il contient aussi toutes les fonctions polynômes. En utilisant à nouveau le théorème de Weierstrass, tout $f \in \mathcal{C}([0,1])$ est limite d'une suite d'éléments de \overline{V}^2 au sens de la norme N_{∞} , donc également au sens de N_2 vu que $\overline{A}^{\infty} \subset \overline{A}^2$ (avec ici $A = \overline{V}^2$). Par suite, on a bien $\overline{V}^2 = \mathcal{C}([0,1])$, ce qui établit la caractérisation souhaitée.

E) Un critère de densité de W pour la norme N_2

- 17°) Remarquons tout d'abord que $(W_n)_{n\in\mathbb{N}}$ est une suite croissante de parties de $\mathcal{C}([0,1])$ telle que $W = \bigcup_{n\geqslant 0} W_n$. D'après le 5°), on sait alors que $d(f,W) = \lim_{n\to +\infty} d(f,W_n)$ pour tout $f\in\mathcal{C}([0,1])$.
 - Si W est dense dans $\mathcal{C}([0,1])$ au sens de la norme N_2 , on a en particulier $d(\phi_{\mu},W)=0$ pour tout entier naturel μ , donc $\lim_{n\to+\infty}d(\phi_{\mu},W_n)=0$.
 - Inversement, si $\lim_{n\to+\infty} d(\phi_{\mu}, W_n) = 0$ pour tout $\mu \in \mathbb{N}$, alors $d(\phi_{\mu}, W) = 0$ donc $\phi_{\mu} \in \overline{W}^2$. D'après la question $\mathbf{16}^{\circ}$), on a ainsi $\overline{W}^2 = \mathcal{C}([0,1])$.
- 18°) En appliquant le 8°) à $V = W_n$ et $x = \phi_\mu$, il vient : $d(\phi_\mu, W_n)^2 = \frac{G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n}, \phi_\mu)}{G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n})}$. Comme $(\phi_\alpha \mid \phi_\beta) = \int_0^1 x^\alpha x^\beta \, \mathrm{d}x = \frac{1}{\alpha + \beta + 1}$, on reconnaît dans $G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n})$ le déterminant de Cauchy relatif aux suites $(a_k)_{0 \leqslant k \leqslant n}$ et $(b_k)_{0 \leqslant k \leqslant n}$ définies par $a_k = b_k = \lambda_k + \frac{1}{2}$. En appliquant la formule du 3°), on obtient (modulo une renumérotation évidente) :

$$G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n}) = \frac{\prod\limits_{0 \leq i < j \leq n} (\lambda_j - \lambda_i)^2}{\prod\limits_{0 \leq i, j \leq n} (\lambda_i + \lambda_j + 1)}.$$

On procède de même pour $G(\phi_{\lambda_0},\phi_{\lambda_1},\ldots,\phi_{\lambda_n},\phi_{\mu})$ et, en simplifiant le rapport, il reste :

$$d(\phi_{\mu}, W_n)^2 = \frac{\prod_{i=0}^{n} (\mu - \lambda_i)^2}{(2\mu + 1) \prod_{i=0}^{n} (\lambda_i + \mu + 1)^2}$$

d'où, en réindexant :

$$d(\phi_{\mu}, W_n) = \frac{1}{\sqrt{2\mu + 1}} \prod_{k=0}^{n} \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}.$$

- 19°) Si la suite $(\lambda_k)_{k\in\mathbb{N}}$ tend vers $+\infty$, on a clairement $\lim_{k\to+\infty}\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}=1$.
 - La fonction homographique $x \longmapsto \frac{\mu x}{x + \mu + 1}$ est décroissante sur $[0, \mu]$ et prend les valeurs $\frac{\mu}{\mu + 1}$ en 0 et 0 en μ . Comme $\frac{\mu}{\mu + 1} < 1$, la condition $\lim_{k \to +\infty} \frac{|\lambda_k \mu|}{\lambda_k + \mu + 1} = 1$ impose d'avoir $\lambda_k \geqslant \mu$ à partir d'un certain rang. Or l'application $x \longmapsto \frac{x \mu}{x + \mu + 1}$ est strictement croissante sur $[\mu, +\infty[$ et

de limite 1 en $+\infty$, donc $\lim_{k\to+\infty}\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}=1$ nécessite réciproquement d'avoir $\lim_{k\to+\infty}\lambda_k=+\infty$.

20°) D'après les questions précédentes, $\overline{W}^2 = \mathcal{C}([0,1])$ si et seulement si on a $\lim_{n \to +\infty} \prod_{k=0}^n \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} = 0$ pour tout entier $\mu \geqslant 0$, ce qui équivaut à ce que la série de terme général négatif $\ln \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}$ diverge vers $-\infty$ pour tout $\mu \in \mathbb{N} \setminus \{\lambda_k, k \geqslant 0\}$. Cette condition est remplie si $\frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}$ ne tend pas vers 1 lorsque k tend vers $+\infty$, la série divergeant alors grossièrement. Si $\lim_{k \to +\infty} \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} = 1$, alors $\ln \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} = \ln \frac{\lambda_k - \mu}{\lambda_k + \mu + 1}$ pour k assez grand et son terme général est équivalent à $-\frac{2\mu + 1}{\lambda_k}$ lorsque k tend vers $+\infty$. S'agissant d'une série à termes négatifs, sa divergence équivaut à celle de $\sum \frac{1}{\lambda_k}$.

En conclusion, W est dense dans $\mathcal{C}([0,1])$ si et seulement si la série $\sum \frac{1}{\lambda_k}$ diverge.

- F) Un critère de densité de W pour la norme N_{∞}
- **21**°) Si $\sum \frac{1}{\lambda_k}$ était convergente, alors \overline{W}^2 serait strictement inclus dans $\mathcal{C}([0,1])$, donc \overline{W}^{∞} également vu que $\overline{W}^{\infty} \subset \overline{W}^2$, ce qui n'est pas possible si W est dense dans $\mathcal{C}([0,1])$ au sens de la norme \mathbb{N}_{∞} .
- 22°) Comme μ et les λ_k sont $\geqslant 1$, l'application $f = \phi_{\mu} \psi$ est de classe \mathcal{C}^1 sur [0,1] et s'annule en 0. D'après le théorème des bornes, il existe $c \in [0,1]$ tel que $N_{\infty}(f) = |f(c)|$. Or $f(c) = f(c) f(0) = \int_0^c f'(x) \, \mathrm{d}x$ et, d'après l'inégalité de Schwarz, $\left| \int_0^c f'(x) \, \mathrm{d}x \right| \leqslant \left(\int_0^c f'^2(x) \, \mathrm{d}x \right)^{1/2} \times \left(\int_0^c 1^2 \, \mathrm{d}x \right)^{1/2}$, quantité qui est encore majorée par $N_2(f')$ étant donné que $c \in [0,1]$. L'inégalité $N_{\infty}(f) \leqslant N_2(f')$ en résulte, ce qui est précisément le résultat demandé.
- 23°) On observe que la série de terme général $\frac{1}{\lambda_k-1}$ (défini à partir d'un certain rang) est divergente. En effet, si $\lim_{k\to+\infty}\lambda_k=+\infty$, alors $\frac{1}{\lambda_k-1}\sim\frac{1}{\lambda_k}$ et on peut utiliser la règle de comparaison des séries à termes positifs, et sinon, la série $\sum\frac{1}{\lambda_k-1}$ diverge grossièrement. D'après 20°), l'espace vectoriel engendré par les fonctions ϕ_{λ_k-1} , $k\geqslant 1$ est dense dans $\mathcal{C}([0,1])$ pour

la norme N_2 . Par conséquent, pour tout $\mu \in \mathbb{N}^*$ et tout $\varepsilon > 0$, il existe un entier n et une suite de réels $(b_k)_{1 \leqslant k \leqslant n}$ tels que $N_2(\mu \phi_{\mu-1} - \sum_{k=1}^n b_k \phi_{\lambda_k-1}) \leqslant \varepsilon$, et l'inégalité du $\mathbf{22}^\circ$) entraîne $N_\infty(\phi_\mu - \psi) \leqslant \varepsilon$ en possent $\psi = \sum_{k=1}^n b_k \in W$

en posant $\psi = \sum_{k=1}^{n} \frac{b_k}{\lambda_k} \in W$.

Toutes les fonctions ϕ_{μ} avec $\mu \in \mathbb{N}^*$ appartiennent ainsi à \overline{W}^{∞} , de même que ϕ_0 puisque $\lambda_0 = 0$. Il en résulte que toutes les fonctions polynomiales sont dans \overline{W}^{∞} et, en appliquant comme précédemment le théorème de Weierstrass, on peut conclure que $\overline{W}^{\infty} = \mathcal{C}([0,1])$.

24°) Soit $m = \inf\{\lambda_k, k \ge 1\}$. Alors la suite définie par $\lambda_0' = 1$ et $\forall k \ge 1, \lambda_k' = m\lambda_k$ satisfait les conditions de la question **23**°).

Soit $f \in \mathcal{C}([0,1])$: l'application $g: x \longmapsto f(x^m)$ est alors également continue sur [0,1].

Par conséquent, pour tout $\varepsilon > 0$, il existe un entier n et une suite de réels $(b_k)_{1 \leqslant k \leqslant n}$ tels que $N_{\infty} \left(g - \sum_{k=0}^{n} a_k \phi_{\lambda'_k} \right) \leqslant \varepsilon$. Comme $g(x) - \sum_{k=0}^{n} a_k \phi_{\lambda'_k}(x) = f(x^m) - \sum_{k=0}^{n} a_k \phi_{\lambda_k}(x^m)$ et que $x \mapsto x^m$

définit une bijection de [0,1] dans lui-même, on a ainsi $N_{\infty}(f-\sum_{k=0}^{n}a_{k}\phi_{\lambda_{k}})\leqslant \varepsilon$, ce qui permet de conclure sur la densité de W dans $\mathcal{C}([0,1])$ pour la norme N_{∞} .