Diretoria de Tecnologia e Inovação

ROBÓTICA

Módulo 1

Controle Motor DC AULAG

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Andrea da Silva Castagini Padilha Cleiton Rosa Simone Sinara de Souza

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker

2021

Este trabalho está licenciado com uma Licença Creative Commons Atribuição NãoComercial - Compartilhalgual 4.0 Internacional

Sumário

Introdução	2
Objetivos desta Aula	2
Competências Gerais Previstas na BNCC	3
Habilidades do Século XXI a Serem Desenvolvidas	4
Lista de Materiais	4
Roteiro da Aula	5
1. Contextualização	5
2. Montagem e Programação	6
3. Feedback e Finalização	10
Videotutorial	11

AULA 31 CONTROLE MOTOR DC

Introdução

Nesta aula, você utilizará o Motor Shield L293D para controlar dois motores DC (*Direct Current*). Com este componente é possível controlar até 4 motores DC, 2 Servos ou 2 Motores de Passo. Este Motor Shield atua como controle de quatro canais que possibilita interface com motores que operem com tensão de até 36V e corrente elétrica de até 600mA.

Objetivos desta Aula

- Controlar Motores DC a partir da programação com placa Motor Shield L293D;
- Entender a programação destes componentes para o controle Motor DC;
- Planejar aplicações práticas com o uso destes componentes.

Robótica

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.

Lista de Materiais

- 01 Placa Arduino Uno R3;
- 01 Cabo USB;
- 01 Motor Shield Arduino L293D;
- 02 Motores DC;
- 01 Notebook;
- Software mBlock ou Arduino IDE.

Roteiro da Aula

1. Contextualização (15min):

Nesta aula, você utilizará um *Motor Shield* L293D. Este componente é um *Shield*, placa de circuito impresso com conectores (figura 1) que você encaixa na parte superior da placa Arduino, com a função de aumentar a funcionalidade, facilitando as conexões. No caso, o *Motor Shield* L293D é usado para efetuar o controle de motores DC, de passo ou servomotores, podendo ser utilizados na construção de pequenos robôs ou veículos robotizados.

Figura 1 - Placa de Motor Shield Arduino L293D

Motor DC (*Direct Current*) é um motor com alimentação de corrente contínua (que pode ser pilhas, baterias ou outras formas de fornecimento de energia). Os de pequeno porte são encontrados em brinquedos e equipamentos portáteis. Mas há, também, motores desse tipo de grande porte, que são utilizados para tração elétrica de trens e metrôs por permitir a variação da velocidade de forma simples e precisa.

O princípio de funcionamento destes motores é que quando há passagem de corrente elétrica, ele experimenta força eletromagnética gerando torque, e consequentemente, o giro do motor. A velocidade de giro do motor pode ser controlada, variando sua tensão.

Observe em volta e liste os equipamentos que usam esse tipo de motor.

AULA 31

Montagem e Programação (60min):

Iniciamos a montagem acoplando o Motor Shield Arduino L293D sobre a placa Arduino, fique atento à posição correta do encaixe. Em seguida, conecte os dois motores nas portas M2 e M3 da placa Motor Shield, como indicado na figura 2.

Agora, vamos programar!

Com os componentes eletrônicos montados, vamos programar, por códigos e por blocos, o projeto de controle dos motores DC.

i. Linguagem de programação por código

Para esta programação, será necessário a biblioteca **Adafruit Motor Shield Library** instalada no Software Arduino IDE, para realizar a instalação, consulte a **Aula 05 - Softwares Arduino IDE e mBlock**.

Para iniciar a programação, conecte a placa Arduino ao computador, através de um cabo USB, para que ocorra a comunicação entre a placa microcontroladora e o software Arduino IDE.

No software IDE, escreva ou copie e cole o código-fonte de programação, conforme apresentado no quadro 1.

Robótica

Quadro 1 - Código-fonte da programação na linguagem do Arduino (Wiring)

```
/* Inclui a Biblioteca AFMotor.h */
#include <AFMotor.h>
AF DCMotor motor2(2);
                        /* Define motor2 como posição 2 de
controle para motor */
AF DCMotor motor3(3);
                        /* Define motor3 como posição 3 de
controle para motor */
void setup() {
                          /* Inicia com os motores parados
 motor2.run(RELEASE);
 motor3.run(RELEASE);
void loop() {
  motor2.setSpeed(255);
                           /* Define as velocidades dos
motores (0-255). */
 motor3.setSpeed(255);
  motor2.run(FORWARD);
                           /* Liga os Motores para frente */
  motor3.run(FORWARD);
                           /* Espera 3 segundos */
  delay(3000);
                           /* Desliga os motores */
  motor2.run(RELEASE);
  motor3.run(RELEASE);
  delay(500);
                            /* Espera 0,5 segundos */
                           /* Liga os Motores para trás */
  motor3.run (BACKWARD);
  motor3.run (BACKWARD);
                           /* Espera 3 segundos */
  delay(3000);
  motor2.run(RELEASE);
                           /* Desliga os motores */
  motor3.run(RELEASE);
  delay(500);
                           /* Espera 0,5 segundos */
  motor2.setSpeed(200);
                           /* Reduz as velocidades para 200
  motor3.setSpeed(200);
  motor2.run (FORWARD);
                           /* Liga os Motores para frente */
  motor3.run(FORWARD);
                           /* Espera 3 segundos */
  delay(3000);
                           /* Desliga os motores */
  motor2.run (RELEASE);
  motor3.run (RELEASE);
  motor2.run (BACKWARD);
                           /* Liga o Motor para trás */
  motor3.run (BACKWARD);
  delay(3000);
                           /* Espera 3 segundos */
  motor2.run (RELEASE);
                           /* Desliga os motores */
  motor3.run(RELEASE);
                           /* Espera 0,5 segundos */
  delay(500);
```

Com o código-fonte inserido no Arduino IDE, compile o programa pressionando o botão **Verify** (botão com sinal de tique) para verificar se não há erros de sintaxe. Estando o código correto, o próximo passo é realizar a transferência do programa para o Arduino. Para tal, pressione o botão **Upload** (botão com uma seta apontando para a direita).

Após a transferência do programa para o Arduino, os motores executarão a sequência controlada de movimentos: giram para frente, com velocidade máxima por 3 segundos, giram para trás, com velocidade máxima por 3 segundos, giram para frente com velocidade média por 3 segundos e giram para trás com velocidade média por 3 segundos.

ii. Linguagem de programação por blocos

Outra forma de programar o controle dos motores DC, é por meio da linguagem de programação que utiliza blocos de funções prontas, os quais representam comandos de programação. Vamos utilizar o software mBlock.

Para conectar o mBlock ao Arduino, você deve clicar no ícone **Adicionar**, localizado no campo **Dispositivos**, e selecionar o Arduino, na biblioteca de dispositivos do mBlock, clicando, na sequência, no botão **OK**.

Uma vez selecionado, o Arduino Uno é visualizado no campo Dispositivos do mBlock e já é possível iniciar a programação em blocos.

Nesta programação, utilizaremos a extensão **Motor Shield L293D**, que auxiliará na estrutura do nosso programa (para recordar como instalar uma extensão no mBlock, consulte a **Aula 05 - Softwares Arduino IDE e mBlock**).

Monte os blocos, arrastando e soltando, de acordo com a programação de funcionamento do sensor LDR, como mostra a figura 3.

Figura 3 - Programação em blocos para controle dos motores DC

```
repetir para sempre

A ▲ Move forwad motor M2 ▼ and M3 ▼ at power 100 % for 3 secs

▼ ▼ Move backward motor M2 ▼ and M3 ▼ at power 100 % for 3 secs

A ▲ Move forwad motor M2 ▼ and M3 ▼ at power 50 % for 3 secs

▼ ▼ Move backward motor M2 ▼ and M3 ▼ at power 50 % for 3 secs

▼ ▼ Move backward motor M2 ▼ and M3 ▼ at power 50 % for 3 secs
```

Assim que os blocos estiverem montados, clique no botão **Conectar** para iniciar a comunicação entre o software mBlock com a placa de Arduino Uno. Ao clicar sobre o botão **Conectar**, aparecerá um *Tooltip* solicitando a confirmação da conexão entre os dois dispositivos.

Uma vez realizada a conexão entre os dispositivos, será ativado, na interface do mBlock, o botão **Upload**, o qual ao ser clicado, o software verificará se não há erros na estrutura do programa e, então, compilará para enviar o programa à placa Arduino.

Com a transferência do código para o dispositivo Arduino Uno, os motores executarão a sequência controlada de movimentos, de acordo com o tempo definido na programação em blocos.

- i. Neste projeto você utilizou dois motores DC. Quais aplicações práticas você faria com esse projeto?
- **ii.** Faça as alterações necessárias para controlar os motores de forma independente.
- iii. Que tal alterar essa programação para que os motores girem com uma aceleração e na sequência desaceleração?

AULA 31

- i. O projeto não funcionar, se atente a alguns dos possíveis erros:
 - **1.** Confira se a Motor Shield foi conectada corretamente sobre a placa Arduino;
 - **2.** Verifique se os motores estão conectados nas mesmas portas da Motor Shield (M1, M2, M3 ou M4) que foram utilizadas na programação.

3. Feedback e Finalização (15min):

- **a.** Você e seus colegas conseguiram realizar o desafio? Compartilhem suas impressões e as novas ideias.
- **b.** Reúna todos os componentes utilizados nesta aula e os organize novamente, junto aos demais, no kit de robótica.

Com o intuito de auxiliar na montagem e na programação desta aula, apresentamos um videotutorial, disponível em:

https://rebrand.ly/a31robotica

Acesse, também, pelo QRCode:

