Лабораторная работа №8

Модель конкуренции двух фирм

Евдокимова Юлия, НПИбд-01-18

Содержание

1	Цель работы												5					
2	Зада	ание																6
3			е лабораторной работы	•														
	3.1	Teope	тические сведения															8
		3.1.1	Модель одной фирмы															8
		3.1.2	Конкуренция двух фирм	I														9
	3.2		аботы															
4	Выв	оды																16

List of Tables

List of Figures

3.1	График изменения оборотных средств фирмы 1 и фирмы 2. По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безраз-	
3.2	мерное время)	12
	ординат значения $M_{1,2}$, по оси абсцисс значения $ heta=rac{t}{c_1}$ (безраз-	
	мерное время)	14

1 Цель работы

Цель работы — построение модели конкуренции двух фирм.

2 Задание

Вариант 8

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. В рамках этой модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты не могут прямо вмешиваться в ситуацию на рынке и каким-либо способом влиять на потребителей. Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 Nq}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 Nq}$, $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 Nq}$, $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$, $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$. Также введена нормировка $t=c_1\theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния, используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы

2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.0017)M_1M_2 - \frac{a_1}{c_1}M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2Nq}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2Nq}$, $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2Nq}$, $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$, $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$.

Также введена нормировка $t = c_1 \theta$.

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами: $M_{1_0}=2.5, M_{2_0}=1.8, p_c r=20, N=23, q=1, au_1=16, au_2=19, ilde p_1=13, ilde p_2=11.$

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N - число потребителей производимого продукта.

au - длительность производственного цикла.

p - рыночная цена товара.

 $ilde{p}$ - себестоимость продукта, то есть переменные издержки на производство единицы продукции.

q - максимальная потребность одного человека в продукте в единицу времени. $\theta = \frac{t}{c_1}$ - безразмерное время.

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

3.1.1 Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия.
- au длительность производственного цикла.
- p рыночная цена товара \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.

q - максимальная потребность одного человека в продукте в единицу времени Q(S/p) - функция спроса, зависящая от отношения дохода S к цене р. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} - Nq(1 - \frac{p}{p_{cr}})p - \kappa$$

Равновесное значение цены p равно

$$p=p_{cr}(1-\frac{M\delta}{\tau\tilde{p}Nq})$$

Тогда уравнение динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr}}{Nq} - \kappa$$

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

3.1.2 Конкуренция двух фирм

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борь-

ба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом.) Уравнения динамики оборотных средств запишем в виде

$$\frac{dM_1}{dt}=-\frac{M_1}{\tau_1}-N_1q(1-\frac{p}{p_{cr}})p-\kappa_1$$

$$\frac{dM_2}{dt}=-\frac{M_2}{\tau_2}-N_2q(1-\frac{p}{p_{cr}})p-\kappa_2$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N_1 и N_2 – числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1}(1 - \frac{p}{\tilde{p}_1}) - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2}{\tau_2}(1 - \frac{p}{\tilde{p}_2}) - \kappa_2$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, имеем

$$\frac{dM_1}{dt} = c_1 M_1 - bM_1 M_2 - a_1 M_1^2 - \kappa_1$$

$$\frac{dM_2}{dt} = c_2 M_2 - bM_1 M_2 - a_2 M_2^2 - \kappa_2$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2Nq}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2Nq}$, $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2Nq}$, $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$, $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$.

Исследуем систему в случае, когда постоянные издержки (κ_1, κ_2) пренебрежи-

мо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 M_2$ будет отличаться.

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - (\frac{b}{c_1} + 0.0017) M_1 M_2 - \frac{a_1}{c_1} M_1^2, \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

3.2 Ход работы

Заданы начальные условия

$$M_{1_0} = 2.5, M_{2_0} = 1.8$$

и параметры:

$$p_cr=20, N=23, q=1, \tau_1=16, \tau_2=19, \tilde{p}_1=13, \tilde{p}_2=11$$

1. Случай 1: Построение графиков изменения оборотных средств фирм при влиянии только экономического фактора:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Построим график изменения оборотных средств фирм для этого случая (рис. 3.1):

Figure 3.1: График изменения оборотных средств фирмы 1 и фирмы 2. По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время).

По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. В математической модели этот факт отражается в коэффициенте, стоящим перед членом M_1M_2 : в рассматриваемой задаче он одинаковый в обоих уравнениях $(\frac{b}{c_1})$. Это было обозначено в условиях задачи.

Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Код программы в Modelica: model lab08 parameter Real p_cr(unit="тыс.ед.")=20; parameter Real N(unit="тыс.ед.")=23; parameter Real q=1; parameter Real tau1=16; parameter Real tau2=19;

```
parameter Real p1(unit="тыс.ед.")=13;
parameter Real p2(unit="тыс.ед.")=11;
Real M1(unit="млн.ед.", start=2.5);
Real M2(unit="млн.ед.", start=1.8);
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
parameter Real b = p_cr/(tau1*tau1*p1*p1*tau2*tau2*p2*p2*N*q);
parameter Real c1 = (p_cr-p1)/(tau1*p1);
parameter Real c2 = (p_cr-p2)/(tau2*p2);
equation
der(M1)=M1-(b/c1)*M1*M2-(a1/c1)*M1*M1;
der(M2)=(c2/c1)*M2-(b/c1)*M1*M2-(a2/c1)*M2*M2;
end lab08;
```

2. Случай 2: Построение графиков изменения оборотных средств фирм при влиянии помимо экономического фактора еще и еще и социальнопсихологических факторов:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - (\frac{b}{c_1} + 0.0017) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Построим график изменения оборотных средств фирм для этого случая (рис. 3.2):

Figure 3.2: График изменения оборотных средств фирмы 1 и фирмы 2. По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время).

По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

Код программы в Modelica:

```
model lab08_2
parameter Real p_cr(unit="тыс.ед.")=20;
parameter Real N(unit="тыс.ед.")=23;
parameter Real q=1;
parameter Real tau1=16;
parameter Real tau2=19;
parameter Real p1(unit="тыс.ед.")=13;
parameter Real p2(unit="тыс.ед.")=11;
Real M1(unit="млн.ед.", start=2.5);
Real M2(unit="млн.ед.", start=1.8);
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
parameter Real b = p_cr/(tau1*tau1*p1*p1*tau2*tau2*p2*p2*N*q);
```

```
\begin{array}{l} parameter \ Real \ c1 = (p\_cr-p1)/(tau1^*p1); \\ parameter \ Real \ c2 = (p\_cr-p2)/(tau2^*p2); \\ equation \\ der(M1) = M1 - ((b/c1) + 0.0017)^*M1^*M2 - (a1/c1)^*M1^*M1; \\ der(M2) = (c2/c1)^*M2 - (b/c1)^*M1^*M2 - (a2/c1)^*M2^*M2; \\ end \ lab08\_2; \end{array}
```

4 Выводы

В ходе выполнения данной лабораторной работы я изучила модель конкуренции двух фирм, построила графики изменения оборотных средств фирм для двух случаев с влиянием различных факторов и изучила их.