Uklady aksonometryczne

Definicje

☐ Definition

Skrót aksonometryczny opisuje zmianę długości (wydłużenie lub skrócenie) nie tylko odcinków jednostkowych ale wszystkich odcinków równoległych do odpowiednich osi układu współrzędnych

☐ Definition

Aksonometryczny układ osi wraz ze skrótami aksonometrycznymi tworzą tzw. **układ aksonometryczny**

Definition

Aksonometrią nazywa się metodę rzutowania równoległego, w której korzysta się ze współrzednych rzutowanych punktów

Definition

Aksonometryczny układ osi - rzut osi x,y,z wraz z przypisanymi do nich odcinkami jednostkowymi $O'X',\ O'Y',\ O'Z'$ na rzutnię π

Definition

Skrót aksonometryczny - zmiana długości odcinków jednostkowych wyrażona liczbami:

$$\lambda_x = rac{|O'X'|}{|OX|}, \; \lambda_y = rac{|O'Y'|}{|OY|}, \; \lambda_z = rac{|O'Z'|}{|OZ|}$$

Dimetria kawalerska - prawo i lewoskretna

- W dimetrii kawalerskiej osie x' i z' są względem siebie prostopadle, a skróty aksonometryczne wynoszą $\lambda_x=\lambda_z=1:1, \lambda_y=2:3\lor\lambda_y=1:2$
- Kat między x' i y' wynosi $135\degree$.

• Dimetria kawalerska zachowuje metryki elementów w płaszczyźnie xz i płaszczyznach do niej równoległych (rzuty kola).

Izometria wojskowa

- W izometrii wojskowej osie x' i y' są względem siebie prostopadle, a skróty aksonometryczne wynoszą $\lambda_x=\lambda_y=\lambda_z=1:1.$
- Kat miedzy x' i z' przyjmujemy w zakresie 120° 150° (zwykle 135°).
- Izometria wojskowa zachowuje metryki elementów w płaszczyźnie xy i płaszczyznach do niej równoległych (rzuty kola).

Dimetria prawie prostokatna

- Dimetria prawie prostokątna należy do grupy aksonometrii ukośnych.
- Stosujemy $\lambda_x=\lambda_z=1:1,\ \lambda_y=2:3\ \lor\ \lambda_y=1:2.$
- W dimetrii prawie prostokątnej osie x' i y' tworzą z kierunkiem prostopadłym do osi z' katy o tangensach $\frac{1}{8}$ i $\frac{7}{8}$.

Izometria równokątna

- Izometria równokątna należy do grupy aksonometrii prostokątnych.
- Stosujemy $\lambda_x = \lambda_y = \lambda_z = 1:1.$
- Osie układu aksonometrycznego rozstawione są co $120\,^\circ$.
- Podane wartości wynikają z zastosowania równania charakterystycznego aksonometrii prostokątnej.