Electromagnetic (I) Second Examination

2001 / 12 / 5

1. Given a scalar field Φ and a vector field \bar{A} , derive the expressions of $\nabla\Phi$

$$\nabla \cdot \bar{A}$$

$$\nabla^2 \Phi$$

in cylindrical coordinates. (Note:
$$\nabla \cdot \vec{A} = \lim_{\Delta \nu \to 0} \frac{\oint_{\vec{x}} \vec{A} \cdot d\vec{s}}{\Delta \nu}$$
) (15 %)

2. Use the Maxwell's equations to show the electric field \vec{E} and magnetic field \vec{H} in the free space without any sources satisfy the following equations: (15 %)

$$\nabla^{2}\vec{E} - \mu_{0}\varepsilon_{0}\frac{\partial^{2}}{\partial t^{2}}\vec{E} = 0$$

$$\nabla^{2}\vec{H} - \mu_{0}\varepsilon_{0}\frac{\partial^{2}}{\partial t^{2}}\vec{H} = 0$$

3. An infinitely extended positive line charge ρ_i is distributed over the axis of an infinitely extended cylindrical dielectric shell of an inner radius R_i and outer radius R_0 , as shown in Fig. 1. The dielectric constant of the shell is ε_i . Determine the electric field \vec{E} , electric flux density \vec{D} , polarization vector \vec{P} , and potential function V as functions of the radial distance r for $0 < r < \infty$. Assume $V(R_i) = 0$. (15%)

4. A Current I flows along a straight wire from a point charge $Q_1(t)$ located at (0,0,0) to a point charge $Q_2(t)$ at $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ as shown in Fig. 2. Find the absolute value of the line integral of \bar{H} around the closed loop in terms of I.

5. Two dielectric media with permittivities ε_1 and ε_2 are separated by a boundary with no free charge as shown in Fig. 3. The electric field intensity in medium 1 at the point P_1 has a magnitude E_1 and makes an angle α_1 with the normal. Determine the magnitude and direction of the electric field intensity E_2 at point P_2 in media 2. in terms of α_1 and E_1 .

- 6. A volume charge is distributed throughout a sphere of radius a(m), and centered at the origin, with uniform density $\rho_0(C/m^3)$. Find the energy stored in the electric field of this charge distribution. (15%)
- 7. What is the displacement current? Compare and contrast the displacement current with the current due to flow of charges. (10%)