תקציר פתרון בחינה קיץ 2011 מועד 92

שאלה 1

- א. S אינו טרנזיטיבי (הוא כן רפלקסיבי וסימטרי).
 - ב. לגבי T: רפלקסיבי וסימטרי קל להראות.

. $1 \notin Y \oplus Z$ וגם $1 \notin X \oplus Y$ נניח נניח טרנזיטיבי:

(מדועי:) $1\in X\cap Y$ או $1\notin X\cup Y$ פירושה: $1\notin X\oplus Y$ ההנחה $1\notin X\oplus Z$ ההנחה נפרק את ההנחה $1\notin Y\oplus Z$

הנתון $X \oplus X \oplus Z$ וגם $1 \notin X \oplus Z$ מתפרק אפוא ל- 4 אפשרויות.

(השלימו). $1 \notin X \oplus Z$ אחת מהן בנפרד, ונגלה שבכל אחת מהן אחת מהן בנפרד, ונגלה שבכל אחת מהן אחת מהן ב

לפיכך T טרנזיטיבי.

ג. בדיוק שתי מחלקות: במחלקה אחת נמצאות כל הקבוצות של מספרים טבעיים ש- 1 הואאבר שלהן ובמחלקה השניה כל הקבוצות של מספרים טבעיים ש- 1 לא אבר שלהן.

שאלה 2

- א. מתקבל מיידית מתוך משפט 5.13ב בחוברת "פרק 5 בתורת הקבוצות".
 - . (לכל מספר טבעי יש שני שורשים ריבועיים ושורש שלישי יחיד). א $lpha_0$

שאלה 3

- . א. לכל משימה שי 10 4 ברכים לבחור צוות. דרכים לבחור $\binom{5}{2} = 10$ שי המשימות: א. לכל משימה אי
 - ב. קבוצת הבחירות של צוותים בהן אדם i מתחמק מעבודה. ב. A_i

$$\binom{5}{2}^4 - 5 \cdot \binom{4}{2}^4 + \binom{5}{2} \cdot \binom{3}{2}^4 - \binom{5}{3} \cdot \binom{2}{2}^4$$
 : הכלה והפרדה

שאלה 4

- 5⁵ .N
- ב. $2^5 1 = 31$ (קבוצות חלקיות ללא הקבוצה הריקה)
 - 5! .:
- aaaaa באופן בלתי תלוי , פרט לסדרה ממממם באופן בלתי תלוי , פרט לסדרה בחירות האפשריות עבור $2^5-2=30$. (bbbbb
 - ה. $\frac{5!}{2!}$ סידורים. לכל בחירה כזו האות שתופיע פעמיים. לכל בחירה כזו לבחירת האות שתופיע פעמיים.

שאלה 5

. (שאלה 4 בפרק 1 בתורת הגרפים). אינו קשיר , לכן \overline{G} קשיר (שאלה 4 בפרק 1 הגרפים).

מהנתון, ב-Gיש בדיוק n-2 צמתים בעלי דרגה אי-זוגית.

מספר הצמתים בעלי דרגה אי-זוגית בגרף הוא זוגי (שאלה 1 בפרק 1 בתורת הגרפים).

לכן n-2 הוא זוגי.

לפיכך n-1 הוא אי-זוגי.

. $\deg_G(v) + \deg_{\overline{G}}(v) = n-1$, עומת , לכל צומת בכל גרף, לכל אומת

של הפוכה מהזוגיוּת ב- G הפוכה ההזוגיוּת היזוגי, נקבל שהזוגיוּת אי-זוגי, הפוכה הוא הי-זוגי, מכאן מכאן מכאן הוא אי

. ולהיפך). \overline{G} בלומר אם האחד אוגי השני אי-אוגי ולהיפך).

. יש בדיוק שני צמתים בעלי דרגה אי-זוגית לכן ב- \overline{G}

הראינו ש- \overline{G} מקיים את תנאי שאלה 1 בפרק 3 בתורת הגרפים, לכן יש בו מסלול אוילר לא סגור.