CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence

Lect https://eduassistpro.github.io/bility
Add WeChat edu_assist_pro

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder

- Project 3: Reinforcement Learning
 - Deadline: Nov 10th, 2020

Assignment Project Exam Help

https://eduassistpro.github.io/

- Homework 3: MDPs And dw Reinst edu_assist to rearning
 - Deadline: Nov 10th, 2020

Thanh H. Nguyen 11/9/20

Today

- Probability
 - Random Variables
 - Joint and Margina Abistribuction Project Exam Help
 - Conditional Distributi
 - Product Rule, Chain R https://eduassistpro.github.io/
 - Inference

- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g. Exam Help sensor readings or symptoms)

0.10

0.17

0.09

0.10

0.17

0.17

< 0.01

- Unobserved variables: https://eduassistpro.github.io/ other aspects (e.g. where is present)
 Add WeChat edu_assist_pro
- **Model**: Agent knows something about how the known variables relate to the unknown variables

Random Variables

• A random variable is some aspect of the world about which we (may) have uncertainty

• R = Is it raining?

• T = Is it hot or cold? Assignment Project Exam Help

• D = How long will it take to dr

• L = Where is the ghost?
https://eduassistpro.github.

We denote random variables Avoith War Chaleedu_assist_pro

- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

Assignment Project Examether

https://eduassistpro.github.io/

P(T) dd WeChat edu_assist_pro

\mathbf{T}	P
hot	0.5
cold	0.5

P(W)

W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions

P(W)

Assig	nmer 0.6	nt Project E
rain fog	ittps:/	/eduassist
meteor A	Add V	VeChat edu

Shorthand notation:

xam
$$\text{Hel}_{P}^{P}(hot) = P(T = hot),$$
pro.github.io/
$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$
I_assist_pro

OK if all domain entries are unique

• A probability (lower case value) is a single number

A distribution is a TABLE of probabilities of values

$$P(W = rain) = 0.1$$

• Must have: $\forall x \ P(X=x) \ge 0$ and $\sum_{x} P(X=x) = 1$

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$$
Assignment Project Exam Help

$$P(x_1,x_2,\ldots x_n)$$

 $P(x_1, x_2, \dots x_n)$ https://eduassistpro.github.io/

• Must obey:

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P	T	7	W	1
1	(,	VV	J

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

 A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

Assignment Proj

- (Random) variables with domains
- Assignments are called outcomes https://edua
- Joint distributions: say whether a (outcomes) are likely
- *Normalized:* sum to 1.0
- Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

	${f T}$	W	P
ignment Proj	hot	sun	$10^{0.4}$
igiiiiciit i ioj	hot	rain	$^{1}P_{0.1}$
https://edua	ssistpr	o.githu	16 <mark>98/</mark>
	-		0.3
Add WeCha	it edu_	assist	_pro

Constraint over T,W

T	W	P
hot	sun	${f T}$
hot	rain	\mathbf{F}
cold	sun	\mathbf{F}
cold	rain	${f T}$

Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n) \in E} P(x_1...x_n)$$

$$(x_1...x_n) \in E \text{ Assignment Project Exam Help}$$

• From a joint distribution, a https://eduassistpro.github.io/ P(T,W) calculate the probability o

Probability that it's hot AND sunny Add WeChat edu_assist_

- Probability that it's hot?
- Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(+x, +y)?

P(X,Y)

■ P(+x) ?

Assignment Project Exam Help

https://eduassistpro.github

Add WeChat edu_assist_p

	3 7	3 7	D
	X	Y	P
p	+x	+y	0.2
	+x	-y	0.3
b.	IO/ -X	+y	0.4
p	ro -x	-y	0.1

• P(-y OR +x) ?

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Assignment Project Exam Help

https://eduassistpro.github.vo/

 $P(t) = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1$

W	P	
sun	0.6	
rain	0.4	

Quiz: Marginal Distributions

P(X,Y)

X	Y	P
+ _X	+y	0.2
+ _X	-y	0.3
-X	+ y	0.4
-X	-y	0.1

P(X)

https://eduassistpro.github.io/

Y	P
+y	
-y	

Conditional Probabilities

- A simple relation between joint and marginal probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Assignment Project Exam Help

https://eduassistpro.github.io/
Add WeChat edu_assist_pro

${f T}$	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

$$P(+x | +y)$$
?

P(X,Y)

X	Y	P
+ _X	+y	0.2
+ _X	-y	0.3
-X	+y	0.4
-X	-y	0.1

Assignment Project Exam Help

https://eduassistpro.github.io/

•
$$P(-y \mid +x)$$
?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distribution Assignment Project Exam Help

Joint Distribution

P(W	T =	hot)
-----	-----	------

W	P	
sun	0.8	
rain	0.2	

$$P(W|T = cold)$$

W	P
sun	0.4
rain	0.6

https://eduassistpro.github.io/ P(T,W)

Т	W	P
$_{ m hot}$	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

${f T}$	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$
Assignment Project P(W = s, T = c)
$$P(W = s, T = c)$$

$$P(W = s, T = c)$$

https://eduassistpro.github.io/

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

P(W|T=c)

W	P	
sun	0.4	
rain	0.6	

Normalization Trick

\mathbf{T}	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(W = s T = c) = \frac{P(W = s, T = c)}{P(T = c)}$
$=\frac{P(W=s,T=c)}{P(W,s,T=c)}$
P(W = s, T = c) + P(W = r, T = c)

Assignment Project Exam Help

SELECT t NORMALIZE the

matchi https://eduassistpro.githubelection ake it sum to one)

evidence du_assist_pro

coldsun0.2coldrain0.3

P(W)	T =	= c
------	------	-----

W	P
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

${f T}$	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint

P(W|T=c)

W	P
sun	0.4
rain	0.6

• Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

 $P(X \mid Y=-y)$?

P(X,Y)

X	Y	P
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	- y	0.1

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint) Assignment Project Exam Help
- We generally compute condit https://eduassistpro.github.io/

 - P(on time | no reported accidents) = 0.90
 These represent the agent's beliefs given the evided u_assist_pro
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

• General case:

Evidence variables:

Hidden variables:

• Query* variable:

 $E_1 \dots E_k = e_1 \dots e_k$ Q $H_1 \dots H_r$ Assignment ProjecteExam Help

Step 1: Select the entries consistent with the evidence

https://eduassistpro.githu	ıb.io/
Add WeChat edu assist	pro

We want:

 $P(Q|e_1 \dots e_k)$

* Works fine with multiple query variables,

Step 3: Normalize

$$\times \frac{1}{Z}$$

0.05

0.25

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

Inference by Enumeration

• P(W)?

Assignment Project Exam H

P(W | winter)?

https://eduassistpro.gitl

Add WeChat edu_assis

	S	${f T}$	W	P
	summer	hot	sun	0.30
4	summer	hot	rain	0.05
	summer	cold	sun	0.10
h	usbijer	cold	rain	0.05
	winter	hot	sun	0.10
S	t_pher	hot	rain	0.05
	winter	cold	sun	0.15
	winter	cold	rain	0.20

• P(W | winter, hot)?

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dn)
 - Assignment Project Exam Help
 Space complexity O(dn) to store the joint distribution

https://eduassistpro.github.io/

The Product Rule

 Sometimes have conditional distributions but want the joint

Assignment Project Exam Help $P(x|y) = \frac{P(x,y)}{P(u)}$

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

https://eduassistpro.github.io/

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Assignment Project Exam Help

• Example:

https://eduassistpro.github.io/P(D,W)

P(W)

\mathbf{R}	P
sun	0.8
rain	0.2

D	Aga	Mec
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

C	Chat edu_as	sist_p	ro _W	P
L		wet	sun	
)		dry	sun	
7		wet	rain	
3		dry	rain	

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

• Why is this always true?

Bayes Rule

Assignment Project Exam Help

https://eduassistpro.github.io/

Bayes Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$
Assignment Project Exam Help

• Dividing, we get:

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple

• In the running for most important AI equation!

Quiz

•Given:

•What is P(W | dry)?

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$
Assignment Project Exam Help

- Example:
 - M: meningitis, S: stiff neck

https://eduassistpro.github.io/

$$\begin{array}{c} \text{AdP(We|Chat edu_assistemple} \\ P(+s|-m) = 0.01 \end{array}$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?