Semantic Compression: Streamlining Text Transmission with Large Language Models

Luning Yang, Yacun Wang Group: 10

December 2024

Text Compression

- Massive Data: Efficient Transmission, Reduced Storage
- Examples
 - Cached Knowledge Bases
 - IoT Devices
 - Limited LLM context window (Gilbert et al., 2023, Fei et al., 2024)
 - •

Traditional Algorithms (Lossless)

NYT	Algorithm	Compression Ratio	Information Retained
gzip	DEFLATE (LZ77 + Huffman)	52.08%	100%
bzip2	RLE, BWT,	52.24%	100%

- Algorithm Base: String Pattern
- Compression Ratio (CR) = 1 Compressed Size / Original Size

Compression vs. Embedding

- Compression: Minimize Size, Preserve Integrity
- Embedding: One-Way Latent Mapping

- Size Comparison:
 - Original: 2 bytes (avg) x 2000 characters \approx 4KB
 - Embedding: 8 bytes (float64) x 500 dimensions \approx 4KB
 - Lossless Compression: 2 bytes (avg) x ~1000 characters \approx 2KB

Motivation

- Lossless vs. Lossy: Lossy sometimes acceptable
 - → Semantic Compression
- Examples
 - Cached Knowledge Bases
 - IoT Devices
 - Limited LLM context window
- LLM Capability: Natural Language Understanding

Related Literature

- Gilbert et al., 2023:
 - Semantic Compression using LLMs on short stories (~76%) and code generation
 - Aim to fit in LLM input token limit

Related Literature

- Gilbert et al., 2023
- Fei et al., 2024
 - Extend LLM context window
 - Improved performance on end tasks

Long Input

There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there. The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. ... The sun is yellow. Here we go. There and back again. The pass key is 0000 Remember it. 0000 is the pass key. The sun is yellow. Here we go. There and back again ... The grass is green. The sky is blue. The sun is yellow. Here we go.

Compressed Input

There is an important info hidden

bellow and I will quiz you. The grass

is green. The sky is blue. The sun is

yellow. Here we go. The pass key is

0000.

Approach

Objectives

Baseline Approach

Baseline Results (GPT-40-mini)

Decompressed Similarity: SBERT Embeddings + Cosine Similarity

NYT	Compression Ratio	SBERT Embeddings
gzip/bzip2	Around 52%	1.000
Prompting	67.7%	0.777

Baseline Results (GPT-40)

Decompressed Similarity: GPT Embeddings + Cosine Similarity

NYT	Compression Ratio	Decompressed Similarity
gzip/bzip2	Around 52%	1.000
Prompting		0.881
Finetuned Decompressor	67.7%	0.940

Baseline Limitations

- Lack of guidance
- Decompression Failure Rate: 35.8%

Example Compressed Text:

Multi-Stage Compression

Design Choices

- Intermediate Format: Note-like bullet points
- Prompt Hint: Include Text Genre

Multi-Stage Results (GPT-40-mini)

Computational Limitation: Randomly Sampled 1000 documents

NIVT	Compression Rate	Decompressed Cosine Similarity	
NYT		GPT Embeddings	SBERT Embeddings
gzip/bzip2	~52%	1.000	1.000
Prompt Baseline	67.7%	-	0.777
Prompt Formatted (Intermediate Stage, After 1)	56.5%	0.754	0.791
Prompt Short (Fully Compressed, After 2)	85.3%	0.783	0.826

Multi-Stage Results (GPT-40-mini, Downstream Task)

Topic Classification Accuracy: Direct Prompting

NYT	Coarse (6-Class)	Fine (26-Class)
Original	0.966	0.895
After Compressor 1	0.963	0.909
After Compressor 2	0.960	0.890

Case Study

Original Text:

despite earlier fears of a rainstorm, the weather was clear and breezy, if muggy, on wednesday night for the new york philharmonic 's concert in prospect park, the "most beautiful park in these united states," in the effusive words of marty markowitz, the brooklyn borough president, who addressed the estimated crowd of ,000 people. alan gilbert, the philharmonic's music director, ... (Length: 4494)

Compressed Text:

NY Phil Concert, Wed Night, Prospect Park, ~10K attend, Alan Gilbert cond, Carter Brey solo, Dvořák Cello Concerto , Tchaikovsky 5th , 14M park concerts, tours , past: Bocelli, Mahler , Gilbert's e-mail , outdoor sound , upcoming: indoor brass @ Staten Island, charity for Sandy Mariah , Dvořák: intimate , Tchaikovsky: fresh , fireworks , Gilbert: all summer (Length: 374)

Decompressed Text:

On a beautiful Wednesday night, the New York Philharmonic brought music to life in Prospect Park, attracting an impressive crowd of approximately 10,000 people. Under the direction of acclaimed conductor Alan Gilbert, the summer concert series continued to delight audiences with a captivating program that featured renowned cellist Carter Brey performing Dvořák's beloved Cello Concerto, alongside Tchaikovsky's powerful Symphony No. 5... (Length: 2270)

Semantic Compression via LLMs

CR: 91.67%

SBERT Similarity:

0.824

Future Work

- Effects of Model Scale
 - Capabilities of Smaller Model Compression
 - Reduced Computational Cost
- Effects of Intermediate Format
- Effects of Text Genre
- Challenges
 - Controlling LLM output format/length
 - New Data Less Likely to be Pretrained On
 - Style Lost

19

References

- Weizhi Fei, Xueyan Niu, Pingyi Zhou, Lu Hou, Bo Bai, Lei Deng, and Wei Han. 2024. Extending context window of large language models via semantic com-pression. In *Findings of the Association for Computational Linguistics: ACL 2024*, pages 5169–5181, Bangkok, Thailand. Association for Computational Linguistics.
- Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. 2024. In-context autoencoder for context compression in a large language model. In *The Twelfth International Conference on Learning Representations*.
- Henry Gilbert, Michael Sandborn, Douglas C. Schmidt, Jesse Spencer-Smith, and Jules White. 2023. Semantic compression with large language models. In *2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS)*, pages 1–8.

Credit

- Page 2: compression by Funtasticon from Noun Project (CC BY 3.0)
- Compression by Funtasticon from Noun Project (CC BY 3.0)
- Neural Network by Cécile Lanza Parker from Noun Project (CC BY 3.0)