Problema K-minimum spanning tree

Roberto Juan Cayro Cuadros, Gabriel Alexander Valdivia Medina, Giulia Alexa Naval Fernández, Rodrigo Alonso Torres Sotomayor

Universidad Católica San Pablo

Resumen

El presente trabajo presenta una breve investigación del problema *k-minimun* spanning tree, explicando su funcionamiento, demostrando que pertenece al conjunto de los problemas NP-completos, y dando opciones de algoritmos para su resolución.

1. Introducción al problema

Según múltiples fuentes [2][4], el k-MST o k-minnimum spanning tree problem, árbol de expansión de péso mínimo k en español es un problema computacional que pide un árbol de mínimo costo con exactamente k vértices que forme un subgrafo del grafo original.

Figura 1: 6-MST del grafo G. Fuente: Wikipedia Commons

2. Demostración NP-completo

No es posible suponer la naturaleza del problema, y establecer que es NP-hard o NP-completo, sin la evidencia correspondiente, para probrarlo este debe pertenecer a NP, ademas que un problema NP-completo pueda reducirse al mismo.

2.1. Demostrar que k- $MST \in NP$

Para demostrar que un problema pertenece a la clase NP, se debe crear un algoritmo no deterministico que resuelva el problema en tiempo polinomial:

k-MST(G,k)

5.

```
    x ← árbol.
    for t ← 0, to k
    do u ←ESCOGER(G)
    if u is not in x
```

2.2. Transformación NP-completo α k-MST

 $\mathbf{do} \mathbf{x} \cdot \mathbf{add}(\mathbf{u})$

El segundo paso para demostrar que un problema pertenece a los NP-completos, es transformar un problema NP-completo conocido para que pueda ser resuelto por el algoritmo del k-MST. Una transformación sencilla es la que se puede hacer dese el problema de Steiner.

2.2.1. Steiner problem

Según el artículo de Shivam Gupta[1], el Steiner problem es un problema NP-completo de los 21 problemas de Karp, usado en problemas de optimización y mayormente enfocado en estructuras de grafos aunque tambien visto en aplicaciones de modelación de redes con más de 2 terminales. El problema consiste en que, dado un grafo no-dirigido de aristas con peso, generar un arbol dado un Sub-set de vertices los cuales formarán este arbol. Además, pueden añadirse nuevos vertices del grafo al sub-set para lograr las conexiones entre estos, llamados Steiner-vertices.

La decisión asociada al problema será averiguar si existe un árbol que una todos los vértices de un $sub\text{-}set\ R$, usando máximo M aristas. Los vertices deberán ser exactamente los dados en el Sub-set. Esta decisión es conocida por ser del grupo de los NP-completos. La principal diferencia con el k-MST es que aquí recibimos un conjunto específico de vectores para conformar nuestro árbol, pudiendo usar vértices fuera de la relación para conectarlos. El k-MST no recibe esta relación, sólo el número de vértices exactos que necesita.

2.3. Entradas y salidas

Steiner-problem

Entrada:

- *Grafo no-dirigido G con aristas de peso.
- *Sub-set de vertices R.
- *Número M.

Salida:

*Arbol de menor peso con los vertices de S y los Steiner-vertices si fueran necesarios.

k-MST

k-MST

Entrada:

- *Grafo no-dirigido G con aristas de peso.
- *Número k de vértices.

Salida:

*Arbol de menor peso con k-vertices y k-1, aristas.

2.3.1. Transformación

Una primera aproximación será que dada la entrada G para Steiner, se puede tomar el mismo grafo para k-MST, puesto que tiene las aristas pesadas y un número determinado de vertices. De esta forma aseguramos la transformación y no afectara la salida porque siempre busaremos el arbol de menor peso, se usará el tamaño del sub-set de vertices siendo este igual a k.

Pero no podemos asegurar que esta transformación pudiera también resolver al Steiner tree, siendo esta una de las propiedades en una transformación polinómica. Como tenemos de entrada un G, y k, podriamos calcular todas las permutaciones de G en k. Y necesariamente una de ellas corresponderia a la solución para Steiner:

Total de permutaciones (Tn) =
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.
 $S \subseteq Tn$.

Sin embargo, calcular todas las permutaciones de una cantidad n de elementos es un proceso con una complejidad O(!n), que no entra dentro de complejidad polinomial, además que esta reducción planteada no resolverá el problema de k-MST, ya que este necesitaría solo 1 árbol de menor peso. Es necesario entonces otro tratamiento para que el k-MST opere con los vértices que el algoritmo Steiner pide. Siguiendo la transformación de R. Ravi [3], otra idea es añadir un árbol con aristas de peso 0 en cada vértice que pertenezca a R, y transformar k como k = |R|(X+1), siendo X la cantidad de vértices que tendrán cada uno de estos árboles, denotado como X = |V(G)| - |R| De esta forma, el k-MST utilizará los vértices de R sí o sí como parte de su solución.

En este nuevo grafo G', las aristas que unen los nuevos vértices de X tendrán un peso de 0, las aristas correspondientes a las aristas originales de G tendrán un peso de 1, y el resto de pares del grafo tendrán un peso de ∞ . De este modo, el algoritmo del k-MST encontrará el árbol de menor peso con el parámetro k en G', y verificará si es de igual o menor peso que M, satisfaciendo el requisito de las M aristas debido a que estas tendrán peso 1.

Por otra parte cumpliremos la propiedad de la transformación polinomial, en donde redujimos el problema de Steiner a k-MST, por ello la solución a k-MST mediante otra transformación polinómica podra ser la solución a Steiner-tree, gracias al valor de la transformación de k= a (X+1)—R—, puesto que las aristas de los árboles agregados son de peso 0, estos serán agregados

Figura 2: Transformación de la entrada de Steiner a entrda de k-MST. Fuente: www.contrib.andrew.cmu.edu

a la solución y por el k se confirma que en la solución de k-MST estarán los vértices de R.

3. Algoritmo de fuerza bruta

Para el algoritmo de fuerza bruta, es suficiente una modificación al algoritmo Prim convencional, limitando su avance a k nodos y haciendo que se repita con cada nodo del grafo G como origen. Finalmente, decidir qué arbol de todos los obtenidos ha sido el más corto.

```
#include <iostream>
#include <queue>
3 #include <vector>
4 using namespace std;
5 typedef vector <int> valNode;
6 typedef vector < valNode > adyacencias;
8 int PrimsMST(int sourceNode, vector<adyacencias>& graph, int
     K)
9 {
      //Guardar detalles del nodo.
      priority_queue < valNode , vector < valNode > , greater < valNode</pre>
11
     >> k;
      int count = 0;
12
      vector<int> aux = { 0,sourceNode };
13
      k.push(aux);
14
      bool* nodesAdded = new bool[graph.size()];
15
      memset(nodesAdded, false, sizeof(bool) * graph.size());
16
      int mst_tree_cost = 0;
17
18
      while (count != K)
      {
20
           // Nodo con m nimo costo
21
           valNode itemNode;
22
          itemNode = k.top();
          k.pop();
24
          int Node = itemNode[1];
          int Cost = itemNode[0];
26
          //Checar si el nodo ya se
                                        a adi
          if (!nodesAdded[Node])
29
          {
               mst_tree_cost += Cost;
31
               count++;
32
               if (count == K)
33
                   break;
               nodesAdded[Node] = true;
35
               //Nodos vecinos quitados de priority queque
37
               for (auto& node_cost : graph[Node])
               {
39
40
                   int adjacency_node = node_cost[1];
                   if (nodesAdded[adjacency_node] == false)
41
42
                       k.push(node_cost);
43
```

```
44
               }
45
           }
46
47
      delete[] nodesAdded;
48
      return mst_tree_cost;
49
50 }
51
52
53 int main()
54 {
      adyacencias from Node _0 in _g raph _1 = { \{1,1\}, \{2,2\},
55
      {1,3}, {1,4}, {2,5}, {1,6} };
      adyacencias from Node_1_in_graph_1 = { \{1,0\}, \{2,2\}, \{2,6\}
56
      };
      adyacencias from Node_2_in_graph_1 = { \{2,0\}, \{2,1\}, \{1,3\}
57
      advacencias from Node_3_in_graph_1 = { \{1,0\}, \{1,2\}, \{2,4\}
58
      adyacencias from Node _4 in _g raph _1 = { {1,0}, {2,3}, {2,5}
59
      };
      advacencias from Node_5_in_graph_1 = { \{2,0\}, \{2,4\}, \{1,6\}
60
      adyacencias from Node_6_in_graph_1 = \{1,0\}, \{2,2\}, \{1,5\}
61
      };
62
      int num_of_nodes = 7; // Total Nodes (0 to 6)
63
      vector < adyacencias > primsgraph;
64
      primsgraph.resize(num_of_nodes);
      primsgraph[0] = fromNode_0_in_graph_1;
66
      primsgraph[1] = fromNode_1_in_graph_1;
67
      primsgraph[2] = fromNode_2_in_graph_1;
68
      primsgraph[3] = fromNode_3_in_graph_1;
69
      primsgraph[4] = fromNode_4_in_graph_1;
70
      primsgraph[5] = fromNode_5_in_graph_1;
71
      primsgraph[6] = fromNode_6_in_graph_1;
72
73
      // As we already know, we have to choose the source
74
     vertex,
      // so we start from the vertex 0 node.
75
      cout << "k-mst : " "" << PrimsMST(3, primsgraph, 3) <<
76
      std::endl;
      return 0;
77
78 }
```

4. Algoritmo aproximado

Bibliography

Referencias

- [1] Gupta, S. (Junio de 2022). geeksforgeeks. Obtenido de https://www.geeksforgeeks.org/steiner-tree/
- [2] Matt Elder, S. C. (2007). CS880: Approximation Algorithms. Obtenido de https://pages.cs.wisc.edu/shuchi/courses/880-S07/scribenotes/lecture26-2.pdf
- [3] R. Ravi, R. S. (12 de Julio de 2006). Spanning Trees—Short or Small. Obtenido de SIAM (Society for Industrial and Applied Mathematics: https://epubs.siam.org/doi/pdf/10.1137/S0895480194266331
- [4] Wikipedia. (Junio de 2022). Wikipedia. Obtenido de https://en.wikipedia.org/wiki/K-minimumspanningtree