# A Dependently-Typed Zipper over GADT-Embedded ASTs

Donovan Crichton

November 2018

#### **Preliminaries**

- ► Slides and examples available at: https://github.com/donovancrichton/talkdepzip.git
- ► About me:
  - Honours 'year' student at Griffith University.
  - Working towards a type-correct genetic program through dependently-typed functional programming.
  - About 18 months experience in FP, just under 12 with dependent types.

## Acknowledgements

#### A sincere thank you to..:

- Mr Isaac Elliot (LightAndLight)
- Mr Alex Gryzlov (clayrat)
- ► The kind people from the Idris channel on the discord functional programming server!

## A refresher on dependent types 1.

#### A note on types and values.

- Types can be functions and functions can be types!
- This takes some getting used to!

```
-- n is a value in the type signature

-- n is also used as an argument to refer to that value.

len : {a : Type} -> {n : Nat} -> Vec n a -> Nat

len xs {n} = n
```

# A refresher on dependent types 2.

### A note on totality

- Functions can be types.
- Functions need to be evaluated.
- We need a guarantee that our type-checker will eventually stop and give us a type.
- Any functions that are used as a type must be **total!**
- ► Total functions are defined for all cases and are guaranteed to terminate in some finite time.

## A refresher on dependent types 3.

- ► The most basic definition is a dependent data type (GADT in Haskell).
- Dependent data types (DDT) depend on being parameterised over a type for their construction.
- Distinguished from parameterised ADTs by the ability to specify the return type parameter of each data constructor.

# A vector dependent on a length value.

```
data Nat = Z | S Nat

data Vec : (n : Nat) -> (e : Type) -> Type where
  Nil : Vec Z e
  (::) : (x : e) -> (xs : Vec n e) -> Vec (S n) e
```

## A refresher on dependent types 4.

#### Why is this 'good'?

If our length forms part of our type, we gain the ability to write correct functions with respect to vector length, without having to explicitly check.

#### Adding some vectors.

```
-- Is this total? Defined for all cases and terminating?

(+): Num a => Vec n a -> Vec n a -> Vec n a

(+) [] [] = []

(+) (x :: xs) (y :: ys) = x + y :: xs + ys
```

# A refresher on dependent types 5.

## Π types.

- The Π type is a family of types that are indexed by a value (hence type families in Haskell).
- Π types are used to calculate correct return types when given a specified value.
- In Idris Π types only evaluate if the functions requiring them are marked as total.
- In Idris functions that return Π types don't always evaluate in function composition, recursive calls or let bindings.

## A refresher on dependent types 6.

An example of using  $\Pi$  types in Idris.

```
Age: Type
Age = Nat
Name: Type
Name = String
data Material = Plastic | Wood | Metal | Cheese
data Person = P Name Age
data Object = O Material
IsPerson : Bool -> Type
IsPerson True = Person
IsPerson False = Object
isPerson : (x : Bool) -> IsPerson x
isPerson True = P "Donovan Crichton" 33
isPerson False = 0 Cheese
```

# A refresher on dependent types 7.

### $\Sigma$ types.

- $ightharpoonup \Sigma$  types are a pairing of a value, and a type that depends on that value (They are also called dependent pairs).
- Σ types are useful when you want some basic type calculation around dependent types!
- Idris defines two functions for Σ types: fst and snd for extracting the first and second elements of the pair. Similar to an ordinary product type (tuple).

## A refresher on dependent types 8.

An example using  $\Sigma$  types in Idris.

```
data DPair : (a : Type) -> (P : a -> Type) -> Type where
  MkDPair : (x : a) \rightarrow (pf : P x) \rightarrow DPair a P
-- also has some syntactic sugar in Idris.
f : (x : Bool ** IsPerson x)
f = (_ ** isPerson True)
g : Num a \Rightarrow (n : Nat ** Vec n a)
g = (_* ** [1, 2, 3])
-- this is particularly useful if we are passing a vector
-- of unknown length in as an argument.
len : Num a \Rightarrow Vec n a \Rightarrow (x : Nat ** Vec x a)
len x = ( ** x)
-- len [1, 2, 3] returns
-- (3 ** [1, 2, 3]) : (x : Nat ** Vec x Integer)
```

## A refresher on dependent types 9.

#### The Curry-Howard Isomorphsim.

The CH Isomorphsim shows the relationship between mathematical proofs under logic, and computer programs. In Idris this relationship can be expressed as follows:

| Logic Term  | Logic Symbol    | Idris Symbol | Idris Type     |
|-------------|-----------------|--------------|----------------|
| Implication | $p\Rightarrowq$ | p -> q       | Function Arrow |
| Conjunction | p ∧ q           | (p, q)       | Pair (Product) |
| Disjunction | p∨q             | Either p q   | Enum (Sum)     |
| Negation    | p               | p -> Void    | Void Type      |
| Equivalence | $p \equiv q$    | p = q        | Equality Type  |
| Universal   | ∀x.Px           | p -> Type    | П Туре         |
| Existential | ∃ x. P x        | (x ** P x)   | Σ Type         |
|             |                 |              |                |

## A refresher on dependent types 9.

## Why are $\Sigma$ and $\Pi$ 'good'?

- Π types let us map types to values.
- ▶ We can now be more precise about function values.
- Σ types let us specify properties of types, even when we may not know the exact return type at compile time.
- 'properties' includes both Π types, and types that are parameterised over other types.
- This will become much clearer later!

#### Motivation

- Came from a research project on the automatic generation of well-typed functions to solve a given problem.
- We'd like to substitute values at specific positions on the expression tree.
- We may not know the value at the position during run-time (but we may know its type).
- ► A zipper allows the specification of a position in a tree via a path of transformations or rotations.
- We'd like to exchange values of the same type at different positions between two trees.

# Dependent data type embedded DSLs 1.

#### A quick review of DSLs

- Short for Domain Specific Language.
- ► Used in lots of places, salary calculations, query and markup languages, business logic, etc.

## A DDT (or GADT) embedded DSL

```
data Expr : (a : Type) -> Type where
  Lit : a -> Expr a
Add : Num a => Expr a -> Expr a -> Expr a
Const : Expr a -> Expr b -> Expr a
```

## Dependent data type embedded DSLs 2.

An embedded DSL and it's interpreter.

```
data Expr : (a : Type) -> Type where
  Lit : a -> Expr a
  Add : Num a => Expr a -> Expr a -> Expr a
  Const : Expr a -> Expr b -> Expr a

interp : Expr a -> a
interp (Lit x) = x
interp (Add x y) = (interp x) + (interp y)
interp (Const x y) = const (interp x) (interp y)
```

### Why is an embedded DSL 'good'?

- lt was very easy to write that interpreter.
- ► The type checker over the meta language takes care of type checking the DSL.
- The meta language also takes care of variable binding.

## Dependent data type embedded DSLs 3.

Expressions as Trees Const (Add (Lit 2) (Lit 3)) (Lit "Test")) Const "Test" 3

# Zipping over embedded DSLs LYAH style (Naive).

```
data Expr : Type -> Type where
 Lit : a -> Expr a
 Add : Num a => Expr a -> Expr a -> Expr a
 Const : Expr a -> Expr b -> Expr a
data Context = Root
  | L (Expr a) Context
 | R (Expr a) Context
left : (Expr a, Context) -> (Expr a, Context)
left (Lit x, c) = (Lit x, c)
left (Add x y, c) = (x, L (Add x y) c)
left (Const x y, c) = (x, L (Const x y) c)
-- the problem comes when trying to write right
right : (Expr a, Context) -> (Expr a, Context)
right (Lit x, c) = (Lit x, c)
right (Add x y, c) = (y, R (Add x y) c)
right (Const x y, c) = (y, R (Const x y) c)
```

# Zipper over embedded DSLs LYAH style 2 (Naive).

#### Why doesn't this work?

- ► 'left' works fine because the compiler can see that all instances of left result in an 'Expr a'.
- 'right' cannot type-check because the compiler sees that it returns an 'Expr b' in the 'Const' case.

#### Where to from here?

- There is nothing stopping us from writing a nonsensical context and pairing it up with some expression. We'd like some stronger guarantees here.
- Lets see where we can get using some dependent types!

#### Some Intuition.

Going right down the expression tree.

Const (Add (Lit 2) (Lit 3)) (Lit "Test")

Let C represent Const. Let T represent "Test".

#### Integer





#### More Intuition.

Going left down the expression tree.

Const (Add (Lit 2) (Lit 3)) (Lit "Test") Let C represent Const. Let T represent "Test".

#### Integer





## A dependently typed zipper 1.

#### Let's start with $\Pi$ types.

- These Π types will allow us to calculate the correct type of the context, and keep us honest when developing the zipper.
- ► Have a look at the 'Maybe Type'. It doesn't make sense for us to build a type from going left or right on the 'Lit x' case.

```
GoLeft: Expr a -> Maybe Type
GoLeft (Lit x) = Nothing
GoLeft (Add {a} x y) = Just a
GoLeft (Const {a} x y) = Just a

GoRight: Expr a -> Maybe Type
GoRight (Lit x) = Nothing
GoRight (Add {a} x y) = Just a

GoRight (Const {b} x y) = Just b
```

## A dependently typed zipper 2.

#### Let's re-define the context.

- By parameterising the context over our Π types, we ensure that the type checker will fail when we try to build invalid contexts.
- Moving from an ADT to a DDT (GADT) gives us a lot more expressivity here! This is also a strong example of the dependence relationship in the type parameter.

```
data Context : Maybe Type -> Type where
Root : Context (Just a)
L : (x : Expr a) -> Context (Just a) -> Context (GoLeft x)
R : (x : Expr a) -> Context (Just a) -> Context (GoRight x)
```

## A dependently typed zipper 3.

#### Let's re-define the zipper.

- We'd like to parameterise the zipper so that we can perform operations on zippers that have holes (or focii) of the same type.
- 'wrap' is provided to give us an easy way of creating a Σ type from a zipper, we wrap all this up in a 'Maybe' as some zipping operations may fail.

```
data Zipper : Type -> Type where
   Zip : Expr a -> Context (Just a) -> Zipper a
wrap : Zipper a -> Maybe (a : Type ** Zipper a)
wrap x = Just (_ ** x)
```

## A dependently typed zipper 4.

Re-defining the direction functions.

```
left : Maybe (a : Type ** Zipper a)
    -> Maybe (b : Type ** Zipper b)
left Nothing = Nothing
left (Just (x ** pf)) =
  case pf of
    (Zip p@(Lit x) c) => Nothing
    (Zip p@(Add x y) c) \Rightarrow Just (_ ** Zip x (L p c))
    (Zip p@(Const x y) c) \Rightarrow Just (_ ** Zip x (L p c))
right : Maybe (a : Type ** Zipper a)
     -> Maybe (b : Type ** Zipper b)
right Nothing = Nothing
right (Just (x ** pf)) =
  case pf of
    (Zip p@(Lit x) c) \Rightarrow Nothing
    (Zip p@(Add x y) c) \Rightarrow Just (_ ** Zip y (R p c))
    (Zip p@(Const x y) c) \Rightarrow Just (_ ** Zip y (R p c))
```

## A dependently typed zipper 5.

#### Notes on the left and right directions.

- Thanks to the 'GoLeft' and 'GoRight' Π types we defined earlier. It's not possible to accidentally produce a focus of the incorrect type when implementing 'left' and 'right'.
- ▶ We can say that the type is now correct by construction.

## A dependently typed zipper 6.

#### Gotchas in the context?

- ▶ Do we need to store the full parent expression?
- Can we get away with returning a partially applied function?
- ▶ What would we gain or lose? There is more to think about!
- ► The left and right constructors are used in the next direction case.

## A dependently typed zipper 7.

#### More direction functions.

```
up : Maybe (a : Type ** Zipper a)
  -> Maybe (b : Type ** Zipper b)
up Nothing = Nothing
up (Just (x ** pf)) =
 case pf of
  (Zip e Root) => Just (_ ** Zip e Root)
  (Zip e (R (Lit x) pc)) impossible
  (Zip e (R (Add x y) pc)) \Rightarrow Just (_ ** Zip (Add x e) pc)
  (Zip e (R (Const x y) pc)) => Just (_ ** Zip (Const x e) pc)
  (Zip e (L (Lit x) pc)) impossible
  (Zip e (L (Add x y) pc)) \Rightarrow Just (_ ** Zip (Add e y) pc)
  (Zip e (L (Const x y) pc)) => Just (_ ** Zip (Const e y) pc)
```

## A dependently typed zipper 8.

## up and $\Sigma$ types.

- Remember, we say a function is total when it is defined for all cases and is guaranteed to terminate in finite time.
- $ightharpoonup \Pi$  and  $\Sigma$  types do not refine if used to define non-total functions in Idris.
- ► To make 'up' total, we must list all the cases!
- Some cases are clearly nonsense though!
- We can mark those as impossible in Idris to keep the function total.

## A dependently typed zipper 9.

#### A graphical representation of 'subst'

Const (Add (Lit 2) (Lit 3)) (Lit "Test") Let C represent Const. Let T represent "Test'. Let H represent "Hello".





## A dependently typed zipper 9.

Substitution and evaluation.

```
subst : (x : (a : Type ** Zipper a))
       -> Expr (fst x)
       -> Maybe (b : Type ** Zipper b)
subst (x ** (Zip x' c)) e = Just (_ ** Zip e c)
data NotNothing : Maybe a -> Type where
  IsNotNothing : NotNothing (Just x)
fromMaybe : (input : Maybe (a : Type ** Zipper a))
           -> {auto prf : NotNothing input}
           -> (a : Type ** Zipper a)
fromMaybe (Just z) = z
interp : (x : (a : Type ** Zipper a)) -> (fst x)
interp (x ** (Zip e c)) = eval e
```

## But...does it actually work?

```
ex1 : Num a => Zipper a
ex1 = Zip (Const (Lit 2) (Lit "Test")) Root
-- Zip (Const (Lit 2) (Lit "Test")) Root
ex2 : Maybe (a : Type ** Zipper a)
ex2 = wrap ex1
-- Just (Integer ** Zip (Const (Lit 2) (Lit "Test")) Root)
ex3 : Maybe (a : Type ** Zipper a)
ex3 = right ex2
-- Just (String **
-- Zip (Lit "Test") (R (Const (Lit 2) (Lit "Test")) Root))
ex4 : Maybe (a : Type ** Zipper a)
ex4 = up (subst (fromMaybe ex3) (Lit "Hello"))
-- Just (Integer ** Zip (Const (Lit 2) (Lit "Hello")) Root)
ex5 : (DPair.fst (fromMaybe Main.ex4))
ex5 = interp (fromMaybe ex4)
-- 2
```

# Gotchas! (Further work).

- ► The Σ type Maybe (a : Type \*\* Zipper a) is not really idiomatic.
- ▶ It's more correct to have
   (a : Type \*\* Zipper a \*\* Maybe (Zipper a))
- This is more cumbersome in some ways to work with, and harder to grasp if unfamiliar with  $\Sigma$  types.
- How necessary is it to parameterise the context over a 'Maybe Type'?
- ➤ This is in no way generic! Our zipping functions, and our context are both tightly coupled to the structure of our DSL.

## In summary.

- We've shown the implementation of a method to correctly traverse a DDT-embedded DSL, where the types can be calculated at run-time.
- This is working towards the automated generation of well-typed expressions.
- Dependent types allow us to use our type-checker as a proof-checker.
- Dependent types also allow us to reduce the number of invalid programs.

#### Resources.

#### Dependent Types

- B-trees with GADTS by Matthew Brecknel: https://www.youtube.com/watch?v=VleZW4TSSHg (Talk)
- Type-Driven Development with Idris Edwin Brady (Book).
- ► The Little Typer Daniel P. Friedman and David Thrane Christiansen (Book).

#### Curry Howard Isomorphsim

Propositions as Types - Phillip Wadler (Paper).

### Theorem Proving with Dependent Types

Software Foundations
 https://softwarefoundations.cis.upenn.edu/ (Book Series)