Métodos Numéricos II

Laura Lázaro Soraluce 2022-2023

Tema 1

- 1. Si s es una raíz de multiplicidad m>1 del polinomio p, entonces también es raíz de p' pero con multiplicidad:
 - m-1
- 2. Si g es derivable y aplica [a, b] en [a, b]. Entonces:
 - Si existe la derivada segunda de g y se verifica que g(s) = s y g'(s) = g''(s) = 0, la convergencia local del método de iteración funcional es al menos cúbica
 - Si g(s) = s y g'(s) = 0, existe un entorno de s en cual la convergencia a s del método de iteración funcional asociado a g es al menos cuadrática
 - Si existe la derivada segunda de g y se verifica g(s) = s y g'(s) = g''(s) = 0, la convergencia local del método de iteración funcional es al menos cuadrática
- 3. Sea f
 de clase 1. $s \in \mathbb{R}$ es una raíz simple de f si y solo si:
 - f(s) = 0 y $f'(0) \neq 0$
- 4. Sea g una función real continua en un intervalo [a, b]:
 - \bullet Si g toma valores en [a,b] entonces tiene al menos un punto fijo en [a,b]
 - \bullet Si g toma valores en [a,b] y es contráctil, entonces tiene un único punto fijo en [a,b]
 - $\bullet\,$ Si g toma valores en $[\frac{a+b}{2},b]$
- 5. Un algoritmo eficiente y estable para la evaluación de polinomios es:
 - El de Horner
- 6. Si tiene que resolver un sistema no lineal de dos ecuaciones:

- Lo más recomendable sería intentar resolverlo por el método de Newton-Raphson para sistemas, pero también se puede intentar escribir el sistema como X = G(X), que sea equivalente, y analizar si la correspondiente iteración funcional va a ser convergente
- Si existe la matriz Jacobiana de orden 2×2 , asociada a F, con determinante no nulo, aplicaría Newton-Raphson para sistemas
- Necesitaría dos semillas, una para cada componente
- 7. Si la función f(x) no es derivable, pero es continua y f(a)f(b) < 0, entonces puedo aplicar los métodos de:
 - Bisección, Secante y Regula Falsi
 - Bisección
- 8. Sea g una función real continua en un intervalo [a, b]:
 - Si g toma valores en [a, b] y es contráctil, entonces tiene un único punto fijo en [a, b].
 - Si g toma valores en [a, b] entonces tiene al menos un punto fijo en [a, b].
 - Si g toma valores en $\left[\frac{a+b}{2}, b\right]$ entonces tiene al menos un punto fijo en [a, b].
- 9. Sobre la sucesión de Sturm:
 - En un cero de la primera función, la derivada de esa función es no nula.
 - En un cero de la primera función, la derivada de dicha función tiene el mismo signo que la siguiente función.
 - Si la sucesión consta de cuatro funciones y la tercera se anula en un punto r, la segunda no se anula y su signo es el contrario que el de la cuarta en r.
 - Permite separar las raíces reales de una ecuación polinómica en intervalos disjuntos.
 - Permite saber si una ecuación polinómica tiene raíces múltiples.
 - Para obtener la tercera función de una sucesión de Sturm correspondiente a un polinomio cuyos ceros reales sean simples debemos dividir el polinomio entre su derivada y quedarnos con el resto cambiado de signo.
- 10. Marque las afirmaciones que sean ciertas sobre el método de Bisección:
 - Permite calcular el número necesario de iteraciones para alcanzar una precisión dada, antes de realizarlas.
 - La sucesión de cotas de errores en el método de bisección es monótona decreciente.

11. Sobre la sucesión de Sturm:

- Todas las funciones son continuas, al menos, y la primera debe ser como mínimo derivable.
- Permite saber cuántas raíces complejas tiene una ecuación polinómica cuyas raíces reales son simples.
- La última función no cambia de signo en el intervalo que estemos considerando.
- La primera de las funciones debe ser derivable en todo el intervalo que estemos considerando.

12. Sobre las iteraciones:

- Cuando las aproximaciones están ya muy próximas a la solución, el método de la Secante puede incurrir en división por cero al computar.
- El método de la Secante obtiene cada aproximación a partir de las dos anteriores.
- Si la raíz es simple, entonces el método de Newton-Raphson tiene una convergencia local al menos cuadrática.
- El método de Newton-Raphson requiere una semilla.
- El método de iteración funcional requiere una semilla.
- 13. Sea la ecuación x = g(x). Entonces, si g aplica el intervalo [a, b] en [a, b]:
 - Si g es derivable y su derivada es positiva pero menos que $\frac{1}{2}$, entonces el método de iteración funcional genera una sucesión de aproximaciones monótona hacia la raíz de la ecuación x = g(x).
 - Si g es de clase 2 y en un punto fijo s verifica g'(s) = 0, entonces partiendo de un valor suficientemente próximo a s el método de iteración funcional converge con orden de convergencia al menos cuadrático.
 - Si g es derivable y su derivada está acotada en valor absoluto por $\frac{1}{2}$ en todo el intervalo, entonces el método de iteración funcional asociado comete tras n iteraciones un error menos que $\frac{b-a}{2^n}$.
 - El método de iteración funcional asociado es localmente convergente a toda raíz s de dicha ecuación que verifique -1 < q'(s) < 1.
- 14. La sucesión x_n converge a s linealmente con constante asintótica del error $L = \frac{1}{\sqrt{100000}}$. Entonces, a largo plazo...:
 - Se ganan al menos 10 dígitos de precisión cada 5 términos.
 - Se ganan 5 dígitos de precisión cada 2 términos.
- 15. Sea f
 una función continua en [a,b] con valores en \mathbb{R} , tal que f(a)f(b)<0:
 - La ecuación f(x) = 0 tiene al menos una raíz en el intervalo abierto a, b.

- El método de la secante es aplicable pero no tiene garantías de convergencia a ninguna de las posibles raíces de la ecuación f(x) = 0.
- Tanto el método de bisección como el de Regula Falsi son convergentes, pero pueden converger a dos raíces diferentes de la ecuación f(x) = 0.
- Si f es suficientemente diferenciable y en todo el intervalo abierto su primera derivada es negativa, entonces el método de NR converge a la única raíz de f(x) = 0, partiendo de cualquier punto de algún subintervalo que contiene a la raíz.
- Si la derivada de f existe y en todo el intervalo abierto es negativa, entonces hay solo una raíz de f(x) = 0 en el intervalo.
- 16. El método de bisección:
 - Exige las mismas condiciones que el teorema de Bolzano.
 - Tiene orden de convergencia lineal.
- 17. Toda función de iteración g(x) definida en [0, 10]...:
 - Continua y con valores en el intervalo [5, 7] tiene al menos un punto fijo.
 - Con valores en el intervalo [5, 7] y derivada en el valor absoluto menor que 1 en [0, 10] ha de tener un único punto fijo.
- 18. Para poder aplicar el método de Newton-Raphson, la función f(x) tiene que ser:
 - Derivable
- 19. Para poder aplicar el método de la secante, la función f(x) ha de ser necesariamente:
 - Continua
- 20. Ecuaciones polinómicas:
 - $7x^7 + 12x^5 + 3x^3 + 1 = 0$ no tiene raíces positivas.
 - $x^7 12x^5 + 3x^3 + 1 = 0$ no tiene raíces positivas.
 - La ecuación $7x^7 + 2x^5 3x^3 + 1 = 0$ no puede tener raíces con módulo mayor que 1.5.
 - \bullet La ecuación $6x^7-2x^5-3x^3+1=0$ tiene sus raíces reales en [-1.5,1.5].
 - $x^7 12x^5 + 3x^3 1 = 0$ tiene sus raíces reales en [-13, 13].
- 21. Sea f una función real definida en un intervalo cerrado [a, b]. Entonces:

- No hay garantía de convergencia del método de la secante a una raíz de la ecuación f(x) = 0, partiendo de las semillas a y b como valores iniciales.
- 22. Tiene orden de convergencia local al menos cuadrático...:
 - El método de Newton-Raphson cuando la raíz es simple.
 - La iteración funcional cuando $g \in C^2$ y |g'(s)| = 0

Tema 2

- 1. Toda fórmula de derivación numérica de tipo interpolatorio clásico para aproximar una derivada k-ésima en a...:
 - Tiene unos coeficientes que pueden obtenerse resolviendo un sistema lineal del mismo orden que el número de nodos
 - Tiene al menos un coeficiente positivo y al menos otro negativo
 - \bullet Tiene unos coeficientes que son las derivadas k-ésimas, en a, de los polinomios de Lagrange correspondientes a los nodos
 - Tiene unos coeficientes que suman cero
- 2. La fórmula $f'(0) \approx 0$:
 - Es exacta para las funciones: 1, cos(x)
 - Es exacta para $1, x^2, x^3, x^4$
 - Es una fórmula de tipo interpolatorio con un solo nodo que puede ser el que se quiera
 - Es exacta para todo polinomio que sea una función par
- 3. Sobre el error:
 - El error de una fórmula de derivación numérica de tipo interpolatorio clásico, para aproximar f'(a), puede obtenerse desarrollado por Taylor el valor de f en los diferentes nodos en torno al nodo a
 - El error de una fórmula de derivación numérica de tipo interpolatorio, para aproximar f''(a), es la derivada segunda del error de interpolación correspondiente, evaluada en a
 - El error de una fórmula de derivación numérica de tipo interpolatorio, para aproximar f''(a), es la derivada del error de interpolación correspondiente, evaluada en a
 - El error de una fórmula de derivación numérica de tipo interpolatorio clásico, para aproximar f'(a), puede obtenerse derivando $f[x_0, x_1, ..., x_n, x](x-x_0) \cdots (x-x_n)$ y evaluando en a
 - La derivada de $f[x_0,x_1,...,x_n,x]$ es $f[x_0,x_1,...,x_n,x,x]$ y la derivada segunda es $2f[x_0,x_1,...,x_n,x,x]$

- 4. La fórmula $\frac{1}{5}(3\frac{f(a+h)-f(a)}{h}+2\frac{f(a)-f(a-h)}{h})$ para aproximar f'(a):
 - \bullet Es una combinación de una fórmula progresiva y otra regresiva para aproximar f'(a)
 - No es una de las fórmulas habituales usadas en la derivación numérica
 - $\bullet\,$ Puede tener un error de truncatura tan pequeño como se desee, si f
 es de clase 2
- 5. Sobre las funciones lineales:
 - Las fórmulas de derivación numérica sirven para aproximar el valor de un funcional lineal, tales como: L(f) = f'(a), L(f) = f''(a), L(f) = f'''(a), etc.
 - El funcional L(f) = f'(a) + 2'' f(a) es lineal.
 - Si a > 0, el funcional $L(f) = f(\sqrt{a})$ es lineal.
- 6. Sobre las fórmulas de derivación numérica de tipo interpolatorio:
 - Una de las fórmulas de derivación numérica para aproximar f'(a) es $\frac{(f(a+h)-f(a-h))}{(2h)}$.
 - Una de las fórmulas de derivación numérica para aproximar f'(a) es $\frac{(f(a)-f(a+h))}{(-h)}$.
 - Al aplicar una fórmula de derivación numérica, basada en los valores de la función en los puntos a y a + h, el valor de h no puede ser nulo.
- 7. La fórmula $f'(3) \approx f'(-1) + f(0) + f(2)$:
 - No es de tipo interpolatorio clásico.
 - Tiene por término de error R(f) = f'(3) f(-1) f(0) f(2).
- 8. Las fórmulas de tipo interpolatorio...:
 - Algunas de ellas sirven para aproximar la integral definida de una función en un intervalo.
 - Algunas de ellas sirven para aproximar la derivada de una función en un punto.
 - Sirven para aproximar un funcional lineal, como cierta derivada de una función en un punto, o el valor de la integral definida de una función en un intervalo.
 - Son exactas en un cierto espacio de funciones.
- 9. Una función periódica de periodo 2π , se aproxima interpolando con funciones de espacios trigonométricas, es decir, generados por: 1, sin(x), cos(x), sin(2x), cos(2x), sin(3x), ... Se quiere aprovechar esos interpolantes para obtener una fórmula de derivación numérica, efectuando la derivada correspondiente del interolante. En tal caso:

- Para obtener la fórmula que aproxime $f'(\frac{\pi}{2})$ usando como nodos: $0, \frac{\pi}{2}, \pi$, se puede exigir exactitud en 1, sin(x), cos(x) y resolvver el sistema correspondiente.
- Una fórmula de tipo interpolatorio clásico para aproximar la derivada késima de f en un punto a...:
 - Que use n nodos, puede tener como máximo orden de exactitud k+n-1.
 - Debe tener al menos k+1 nodos, para que tenga algún interés.
 - No tiene interés si el número de nodos es menor o igual que k.
- 11. El funcional lineal f'(a) puede aproximarse por la fórmula $P(h) = \frac{f(a+h)-f(a-h)}{2h}$ de tal forma que si f es suficientemente regular, desarrollando por Taylor se tiene $f'(a) = P(h) + c_2h^2 + c_4h^4 + \dots$ que escrita para $\frac{h}{2}$ es $f'(a) = P(\frac{h}{2}) + c_2\frac{h^2}{4} + c_4\frac{h^4}{16} + \dots$ Este proceso es el de extrapolación de Richardson aplicado a una fórmula de derivación numérica. Entonces:
 - $\frac{1}{1}(4P(\frac{h}{2})-P(h))$ aumenta la exactitud con respecto a P(h) al menos en una unidad.
 - P(h) es la aproximación f'(a) con la fórmula centrada.
- 12. Si se calcula el polinomio p(x) de grado 2 que interpola a una función f en a, a + h y a + 2h...:
 - p'(a) es una aproximación de f'(a), exacta para $1, x, x^2$.
 - A partir de p(x) se puede obtener una fórmula para aproximar f'(a) y otra para obtener f''(a) y ambas son exactas para $1, x, x^2$.
 - A partir de p(x) se puede obtener una fórmula para aproximar f'(1) a partir de f(1), f(0.9) y f(0.8).
- 13. Para obtener tres fórmulas para aproximar respectivamente f'(a), f''(a) y f'''(a) se han elegido cinco abscisas diferentes, se ha calculado el polinomio p(x) de grado cuatro que interpola en ellas los valores de la función f, y se han derivado sucesivamente p(x) para obtenerlas:
 - Las tres fórmulas de derivación numérica obtenidas son exactas para las funciones x³, x⁴.
 - Si las abscisas de interpolación están igualmente espaciadas con un paso h y uno de los cinco nodos es a, la fórmula que aproxima f'(a) tendrá h en el denominador, la que aproxima f''(a) tendrá h^2 y la tercera tendrá h^3 .
 - Las tres fórmulas de derivación numérica obtenidas tienen unos pesos que suman cero.

- 14. El funcional lineal f'(a) puede aproximarse por la fórmula progresiva $P(h) = \frac{f(a+h)-f(a)}{h}$ de tal forma que si f es suficientemente regular, desarrollando por Taylor se tiene $f'(a) = P(h) \frac{h}{2}f''(a) \frac{h^2}{6}f'''(a) \dots$ $= P(h) + c_1h + c_2h^2 + \dots$ Si ahora se escribe para $\frac{h}{2}$ resulta $f'(a) = P(\frac{h}{2}) + c_1\frac{h}{2} + c_2\frac{h^2}{4} + \dots$ Entonces:
 - La combinación $2P(\frac{h}{2}) P(h)$ aumenta en una unidad el orden de exactitud.
 - La combinación $\frac{1}{3}(2P(\frac{h}{2})+P(h))$ no aumenta en una unidad el orden de exactitud, pero es convergente a f'(a) cuando $h \to 0$.
 - No es posible establecer una combinación de P(h) y $P(\frac{h}{2})$ que aumente la exactitud en 2 unidades.
- 15. Una fórmula de derivación numérica de tipo interpolatorio clásico (en los polinomios), para aproximar f'(a), que tenga dos nodos...:
 - Es exacta en \mathbb{P}_1 .
- 16. Una fórmula de derivación numérica de tipo interpolatorio clásico para aproximar f'(a)...:
 - Con n nodos, podría ser exacta en \mathbb{P}_n .
 - Con dos nodos, puede obtenerse imponiendo exactitud para las funciones 1, x.
 - Con dos nodos, podría ser exacta en \mathbb{P}_2 .
- 17. La fórmula $\frac{1}{5}(3\frac{f(a+h)-f(a)}{h}+2\frac{f(a)-f(a-h)}{h})$ para aproximar f'(a)...:
 - Puede tener un error de truncatura tan pequeño como se desee, si f es de clase 2.
 - No es una de las fórmulas habituales usadas en la derivación numérica.
 - Es una combinación de una fórmula progresiva y otra regresiva para aproximar f'(a).
- 18. Sobre las fórmulas:
 - Si la función f es suficientemente regular, siempre es posible aproximar el valor f'(a) con un error |R(f)| < 0.1, tomando un valor de h suficientemente pequeño en una fórmula de tipo interpolatorio clásico que use dos nodos.
 - Para aplicar una fórmula de derivación numérica para aproximar f'(a) se necesita poder obtener los valores de f en puntos cercanos al a.
- 19. Se desea aproximar f'''(0) mediante una fórmula de tipo interpolatorio clásico que use f'(-1), f(0), f(1):

- El término de error será R(f) = f'''(0).
- La fórmula será $f'''(0) \approx 0$.

20. Sobre los grados de exactitud...:

- El grado de exactitud de una fórmula de tipo interpolatorio clásico depende exclusivamente de quiénes sean sus nodos.
- Dos fórmulas de derivación numérica, para aproximar f''(a), con igual número de nodos, pueden tener diferentes pesos.
- Dos fórmulas de derivación numérica, para aproximar f''(a), con diferente número de nodos, pueden tener el mismo grado de exactitud.