Simulazione numerica del modello di Ising 2D

Rocco Francesco Basta

1 Introduzione

Il modello di Ising 2D consiste in un reticolo di spin, ognuno dei quali può assumere un valore discreto $s_i = \pm 1$ ed interagisce con i suoi primi vicini e, eventualmente, con un campo magnetico esterno.

L'Hamiltoniana del sistema è data da

$$H = -J\sum_{\langle ij\rangle} s_i s_j - h\sum_i s_i \tag{1}$$

dove J>0 è la costante di accoppiamento fra primi vicini, mentre h è un campo magnetico esterno.

Possiamo definire la densità di magnetizzazione M, la densità di energia ϵ , la suscettività magnetica χ e il calore specifico C del sistema: sia V il volume del reticolo,

$$M \equiv \frac{1}{V} \sum_{i} s_{i}$$
 (2a) $\chi \equiv \frac{\partial \langle M \rangle}{\partial h} \propto V(\langle M^{2} \rangle - \langle M \rangle^{2})$ (2c)

$$\epsilon \equiv \frac{E}{V}$$
(2b)
$$C \equiv \frac{\partial \langle \epsilon \rangle}{\partial T} \propto V(\langle \epsilon^2 \rangle - \langle \epsilon \rangle^2)$$
(2d)

Il modello presenta una transizione di fase del secondo ordine per $\beta_c \equiv 1/T_c \simeq 0.4407$. Attorno al punto critico, la lunghezza di correlazione ξ diverge, e il comportamento del sistema è descritto dagli esponenti critici $\alpha, \beta, \gamma, \nu$. Definendo la temperatura ridotta $t \equiv \beta - \beta_c$,

$$\xi \sim |t|^{-\nu}$$
 (3a) $\chi \sim |t|^{-\gamma}$

$$\xi \sim |t|^{-\nu}$$
 (3a) $\chi \sim |t|^{-\gamma}$ (3c) $\langle M \rangle \sim |t|^{\beta}$ ($T < T_c$) (3b) $C \sim |t|^{-\alpha}$ (3d)

Gli esponenti critici sono noti esattamente: $\nu = 1$, $\beta = 1/8$, $\gamma = 7/4$, $\alpha = 0$.

Le simulazioni sono effettuate a volume finito. Di conseguenza, $\langle M \rangle$ non è un buon parametro d'ordine, perché per simulazioni abbastanza lunghe si deve annullare. Al suo posto, si deve studiare $\langle |M| \rangle$, e anche χ va misurata calcolando la varianza di |M|.

Per non appesantire la scrittura, d'ora in poi indicheremo semplicemente con M, ϵ le quantità $\langle |M| \rangle, \langle \epsilon \rangle$.

Per volumi finiti, ξ non può divergere e diventa confrontabile con L. Assumendo che nell'intorno della transizione il sistema perda memoria del comportamento microscopico (e quindi della spaziatura del reticolo), si ottengono delle relazioni di scaling per M, χ e C:

$$\chi(\beta, L) = L^{\gamma/\nu} f_{\chi}(tL^{1/\nu})$$
(4a)
$$C(\beta, L) = L^{\alpha/\nu} f_{C}(tL^{1/\nu})$$
(4b)
$$M(\beta, L) = L^{\beta/\nu} f_{M}(tL^{1/\nu})$$
(4c)

2 Simulazioni numeriche

La transizione è stata studiata attraverso un algoritmo Metropolis locale per reticoli di dimensione N=20,30,40,50,60, con β compreso tra 0.3 e 0.505. Per ogni coppia (N,β) , sono state prese 10^5 misure, ognuna ogni spazzata di update, partendo da un reticolo di spin orientati casualmente.

Il numero di misure scartate per termalizzazione è stato determinato confrontando con simulazioni analoghe fatte partendo da un reticolo di spin paralleli fra loro.

La simulazione è stata effettuata in assenza di campo magnetico esterno (h = 0), e fissando J = 1.

Gli errori su ϵ e M sono stati stimati attraverso un processo di blocking, mentre gli errori su χ e C sono stati stimati attraverso un algoritmo Bootstrap.

Il generatore di numeri casuali utilizzato è RAN2, tratto dalle Numerical Recipes for C.

2.1 Misure effettuate

Sono riportati in figura 1 i grafici di M, ϵ in funzione di β ottenuti nelle simulazioni. In figura 2 invece è riportato l'andamento di χ e di C.

Possiamo utilizzare i valori teorici degli indici critici per verificare le relazioni di scaling (eq. 4). Il risultato è riportato in figura 3. Per ottenere il collasso per il calore specifico, è stato necessario sottrarre un termine di fondo che non diverge attorno al punto critico. Per semplicità, questo è stato fatto sottraendo a C il suo massimo, per ogni N, prima di applicare la relazione di scaling.

2.2 Temperatura critica

Figura 1: Magnetizzazione e densità di energia in funzione di β .

A N finito, il massimo di χ non corrisponde a β_c , ma a un valore inferiore, detto β_{pc} (β pseudocritico). Lo stesso avviene per C, ad una diversa temperatura β'_{pc} .

Dalle equazioni (3) e (4) è facile dimostrare che β_{pc} soddisfa una relazione analoga

$$\beta_{pc} = \beta_c + x N^{-1/\nu} \tag{5}$$

da cui possiamo ricavare β_c e ν .

Alle misure di β_{pc} ottenute considerando il massimo della suscettività, è stato associato un errore $\Delta\beta_{pc}$ pari a metà della distanza tra due misure consecutive ($\Delta\beta_{pc} = 0.0025$). Queste misure sono riportate in tabella 1.

Non è stato possibile effettuare un fit numerico alla fun-
zione (5) lasciando liberi tutti e tre i parametri β_c , x e ν ,
per problemi di convergenza del fit.

Ν	eta_{pc}
20	0.4250(25)
30	0.4250(25)
40	0.4300(25)
50	0.4350(25)
60	0.4350(25)

Tabella 1: Misure di $\beta_{pc}(N)$.

β_c	0.4395(29)
X	-0.33(9)
corr.	-0.925
χ^2/ndof	1.24

Tabella 2: Misura di β_c dal fit analitico di $\beta_{pc}(N)$ all'eq. (5).

Tuttavia, un fit con $\nu=1$ fissato fornisce $\beta_c=0.4395(29)$, che è compatibile con il valore teorico, con un $\chi^2/\text{ndof} \simeq 1.24$. Il grafico è riportato nella figura 4, mentre i dettagli del fit sono in tabella 2.

2.3 Scaling rispetto alla temperatura

Si è tentato di estrarre gli indici critici α, β, γ da un fit analitico di χ, C, M in funzione di t, vicino alla transizione. Il fatto che $\alpha = 0$ implica $C \sim \log(t)$ nella regione scalante. I dati sono quindi stati fittati alle equazioni

Figura 2: Suscettività magnetica e calore specifico in funzione di β .

	γ	c	corr.	χ^2/ndof	regione scalante
$\beta > \beta_c$	1.783(53)	-5.31(17)	-0.996	1.77	0.01 < t < 0.05
$\beta < \beta_c$	1.743(45)	-2.48(13)	-0.997	0.76	0.03 < t < 0.08

Tabella 3: Fit analitico di χ nella regione scalante.

	a	b	corr.	χ^2/ndof	regione scalante
$\beta > \beta_c$	-2.683(45)	-4.73(14)	0.996	1.23	0.09 < t < 0.06
$\beta < \beta_c$	-1.839(40)	-0.49(11)	0.995	1.34	0.03 < t < 0.1

Tabella 4: Fit analitico di C nella regione scalante.

$$\log \chi = -\gamma \log t + c \tag{6a}$$

$$C = a \log t + c \tag{6b}$$

$$\log M = \beta \log t + c \tag{6c}$$

I fit sono stati effettuati con le misure ottenute dal reticolo più grande (N=60), e sono stati eseguiti sia per t>0 che per t<0 (tranne nel caso di M, perché la relazione di scaling vale solo per $T< T_c$).

I fit per χ e C sono riportati nelle figure 5 e 6. In tabella 3 sono riportati i valori ottenuti per γ , insieme al χ^2 /ndof e all'intervallo di temperature considerato per il fit. Il risultato è in buon accordo col valore teorico. In tabella 4 sono invece riportati i valori ottenuti dal fit del calore specifico. Anch'esso è in buon accordo con il modello.

Il fit di M con questo metodo non ha restituito un valore di β compatibile con il valore teorico $\beta = 0.125$. Il risultato, riportato in tabella 5 e in figura 7, è fuori di più di 10σ rispetto al

valore teorico. Questo è probabilmente dovuto alla difficoltà di individuare la giusta regione di scaling. L'errore, inoltre, non include il contributo dovuto proprio all'arbitrarietà della scelta della regione in cui eseguire il fit, e quindi è sicuramente sottostimato.

β	c	corr.	χ^2/ndof	regione scalante
0.1086(18)	0.223(6)	0.998	0.699	0.008 < t < 0.035

Tabella 5: Fit analitico di C nella regione scalante.

2.4 Analisi di size finito per $\beta = \beta_c$

Dato il risultato insoddisfacente dell'ultimo fit, si è provato a misurare gli indici critici del modello studiando gli effetti di size finito. Sono state effettuate nuove simulazioni con $\beta=0.440687\simeq\beta_c$, N = 20, 25, 30, 25, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100. Per ogni simulazione sono state prese 125000 misure, una ogni 10 spazzate, e il numero di misure scartate per termalizzazione è stato determinato nello stesso modo.

L'idea è di sfruttare le equazioni (4) per ottenere da un fit i rapporti β/ν , α/ν , γ/ν .

	c	corr.	χ^2/ndof
1.739(31)	-2.57(11)	0.993	1.67
a	b	corr.	χ^2/ndof
2.554(78)	0.66(27)	-0.992	1.12
β/ν	c	corr.	χ^2/ndof
0.1220(39)	-0.002(13)	0.992	0.68

Tabella 6: Fit analitico di $\chi_c(N)$, $C_c(N)$ e $M_c(N)$.

I dati raccolti sono stati quindi fittati con le seguenti funzioni:

$$\log \chi_c = -\frac{\gamma}{\nu} \log N + c \tag{7a}$$

$$C_c = a \log N + c \tag{7b}$$

$$\log M_c = \frac{\beta}{\nu} \log N + c \tag{7c}$$

I risultati dei fit sono riportati in figura 8 e nella tabella 6. In tutti e tre i casi, si ha un ottimo accordo con la previsione teorica. In particolare, la stima di β/ν ottenuta con questo metodo è compatibile con il valore teorico $\beta/\nu=1/8$, a differenza della stima di β ottenuta studiando lo scaling rispetto a t.

Figura 3: Verifica dello scaling di size finito per $M,\,\chi,\,C$ utilizzando i valori teorici degli indici critici.

Figura 4: Misura di β_c dal fit di $\beta_{pc}(N)$.

Figura 5: Fit della suscettività magnetica χ nella regione scalante. Nella parte inferiore del grafico, sono riportati i residui normalizzati $R \equiv (\chi_{\rm misura} - \chi_{\rm fit})/d\chi_{\rm misura}$.

Figura 6: Fit del calore specifico C nella regione scalante.

Figura 7: Fit della magnetizzazione M nella regione scalante.

Figura 8: Finite size scaling: Fit analitico di $\chi_c(N), C_c(N)$ e $M_c(N)$.