# NOISE POLLUTION MONITORING

PRESENTED BY:

S.ABINAYA

A.ANANDHI

K.ANITHA

B.J.DHIVYA DHARSHNI

## Contents:

- ► PROJECT OBJECTIVES
- ► IOT SENSOR DESIGN
- ► REAL TIME TRANSIT INFORMATION PLATFORM
- ► INTEGRATION APPROACH



### **OBJECTIVES:**

- ▶ **Real-time Noise Monitoring**: Develop a system that can continuously monitor noise levels in specific areas and provide real-time data.
- Data Collection and Storage: Create a data acquisition system to collect and store noise data over time for analysis and historical references
- Noise Mapping: Generate noise maps to visualize noise pollution levels across different areas, helping identify high-noise zones.
- Noise Alerts: Implement an alerting system that notifies relevant authorities or residents when noise levels exceed acceptable limits.

- Anomaly Detection: Develop algorithms to detect unusual or sudden spikes in noise levels, which might indicate emergencies or disturbances.
- ▶ **Long-term Trends Analysis:** Analyze collected data to identify long-term noise trends, seasonal variations, and patterns.
- **Environmental Impact Assessment:** Use noise data to assess the environmental impact of noise pollution on wildlife and nearby ecosystems.
- Community Engagement: Create a platform for community members to access noise data and report noise complaints.

# **IOT SENSOR DESIGN:**

Designing and deploying IOT sensors to monitor noise pollution in public places:

- Define Objectives and Scope:
- Determine the specific public places you want to monitor.
- Define the goals of your noise pollution monitoring system, such as real-time data collection, historical data analysis, or public awareness.

• Sensor Selection:

- Choose appropriate noise sensors capable of measuring sound levels accurately.
- Consider factors like sensitivity, frequency range, and power consumption.
- Ensure sensors are weather-resistant for outdoor use.

Data Transmission:

- Select a communication protocol (e.g., Wi-Fi, cellular, LoRa, NB-IoT) to transmit data from sensors to a central server.
- Ensure the chosen protocol can cover the required range for your deployment.

#### Data Processing and Storage:

- Set up a central server or cloud platform to receive and process sensor data.
- Implement data storage solutions (databases) to store historical data for analysis.

#### Power Supply:

- Plan for a reliable power source for the sensors, such as batteries or solar panels.
- Implement power management to optimize sensor lifespan.

#### Sensor Placement:

- **Strategically place sensors in public places to ensure adequate coverage.**
- Consider factors like height, distance between sensors, and potential sources of noise pollution.

#### Data Visualization and Analysis:

- Develop a user-friendly dashboard for real-time noise level monitoring.
- Implement data analytics to identify noise trends and patterns.

#### Alerting Mechanism:

Set up alerts to notify relevant authorities or the public when noise levels exceed predefined thresholds.

#### Privacy and Compliance:

- ▶ Ensure compliance with privacy regulations when collecting data in public spaces.
- Implement data encryption and access controls.

#### Maintenance and Calibration:

- **Establish** a maintenance schedule for sensor calibration and battery replacement.
- Monitor sensor performance regularly.

- Public Awareness:
- **Consider sharing noise** pollution data with the public to raise awareness and encourage noise reduction efforts.
- Testing and Validation:
- ▶ Conduct thorough testing of the entire system before full deployment.
- Validate sensor accuracy and data integrity.
- Deployment:
- Install sensors in selected public places according to your plan.
- Monitor system performance during the initial deployment phase.
- Data Management:
- Implement data retention policies and archive historical data for long-term analysis.
- Scaling and Expansion:
- ▶ Plan for future expansion by adding more sensors or monitoring new areas as needed.
- Feedback and Improvement:
- Continuously gather feedback from users and stakeholders to improve the system's effectiveness.

# REAL TIME TRANSIT INFORMATION PLATFORM:

We present the design, implementation, evaluation, and user experiences of the Noise Spy application, our sound sensing system that turns the mobile phone into a low-cost data logger for monitoring environ-mental noise. It allows users to explore a city area while collaboratively visualizing noise levels in real-time. These software combines the sound levels with GPS data in order to generate a map of sound levels that were encountered during a journey. We report early findings from the trials which have been carried out by cycling couriers who were given Nokia mobile phones equipped with the Noise Spy software to collect noise data around Cambridge city. Indications are that, not only is the functionality of this personal environmental sensing tool engaging for users, but aspects such as personalization of data, contextual information, and reflection upon both the data and its collection, are important factors in obtaining and retaining their interest

# LOGICAL ARCHITECTURE FOR NOISESPYSOUND MEASUREMENT:



### **INTEGRATION APPROACH:**

- Data Collection: The IOT noise sensors are strategically placed in the target area to monitor noise pollution. These sensors have built-in microphones or other noise-sensing equipment to capture sound levels.
- **Data Processing:** The sensors process the raw audio data into digital format and often include algorithms to filter out background noise and focus on relevant noise pollution data.
- Data Storage: Processed data is temporarily stored on the sensor device. Some sensors may have limited onboard storage, while others may transmit data in real-time without local storage.
- ▶ **Data Transmission**: Sensors transmit the processed data using various communication protocols. Common options include Wi-Fi, cellular networks (3G/4G/5G), LORA(Long Range), or other low-power wide-area networks (LPWAN). The choice of protocol depends on factors like data volume, range, and power consumption.
- ▶ **Gateway or Hub:** In some cases, data from multiple sensors is sent to a local gateway or hub, which aggregates the data and forwards it to the data sharing platform. This gateway might use more robust communication methods, like Ethernet or a stable internet connection.
- Data Encryption: To ensure data security and privacy, the data is often encrypted during transmission. Encryption protocols like HTTPS or MQTT with TLS (Transport Layer Security) are commonly used.

- Data Sharing Platform: The data is received by the data sharing platform, which can be cloud-based or hosted locally. This platform serves as a central repository for all incoming sensor data.
- ▶ **Data Ingestion**: The platform ingests the incoming data, validates it, and stores it in a database or data storage system. It may also perform further data processing, aggregation, or analysis.
- User Access: Users, including government agencies, researchers, or the public, can access the data through web interfaces or APIs provided by the data sharing platform.
- Data Visualization: The platform often offers data visualization tools to display noise pollution data in real-time or historical formats, using charts, maps, or other graphical representations.
- Alerts and Notifications: Depending on the platform's capabilities, it may send alerts or notifications when noise pollution levels exceed predefined thresholds.
- ▶ **Data Sharing:** Data can be shared with relevant stakeholders, including local authorities, environmental agencies, or the public, depending on the project's goals and policies. This process ensures that noise pollution data collected by IOT sensors is efficiently transmitted, securely stored, and made accessible for monitoring and analysis through a data sharing platform.

