WE CLAIM:

5

10

15

20

- 1. A formulation comprising:
 - (a) a phospholipid; and
 - (b) a quinazoline compound of the formula:

$$\begin{array}{c|c} R^{1}O & HN & R^{a} \\ R^{b})_{n} & \\ R^{1}O & N & \\ \end{array}$$

wherein:

 R^a is hydrogen, halo, hydroxy, mercapto, (C_1-C_4) hydroxyalkyl, methylenedioxy, ethylenedioxy, benzyloxy,OCF₃, SCF₃, SO₃H, SO₂F, SO₂NR²R³ in which R² is hydrogen or (C_1-C_4) alkyl and R³ is hydrogen, (C_1-C_4) alkyl, or phenyl, NR²R⁴ in which R² is as defined above and R⁴ is phenyl, or R^a a group of the formula:

in which R⁵ and R⁶ are each, independently, hydrogen, (C₁-C₄)alkyl, or (C₁-C₄)perfluoroalkyl, and R⁷ is hydrogen, halo, hydroxy, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₁-C₄)hydroxyalkyl, or N(R²)₂ in which R² is as defined above; n is an integer of 1-4;

R^b is each, independently, hydrogen, halo, hydroxy, mercapto, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₁-C₄)thioalkyl, (C₁-C₄)hydroxyalkyl, nitro, cyano, methylenedioxy, ethylenedioxy, COCH₃, CF₃, OCF₃, SCF₃, COOH, SO₃H, SO₂F, phenyl or phenyl substituted by a group selected from halo, hydroxy, mercapto, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₁-C₄)thioalkyl, (C₁-C₄)hydroxyalkyl,

10

25

amino, nitro, cyano, CF_3 , COOH, SO_3H , $SO_2NR^2R^3$ in which R^2 and R^3 are as defined below, and SO_2F ;

 R^a is also benzyloxy substituted on the phenyl portion by a group defined above, NR^2R^3 in which R^2 is H or (C_1-C_4) alkyl and R^3 is H, (C_1-C_4) alkyl, phenyl or phenyl substituted by a group as defined above;

 R^1 is $(C_1$ - $C_4)$ alkyl, or a pharmaceutically acceptable salt thereof.

- 2. The formulation of claim 1, wherein the quinazoline compound is an acid addition salt.
- 3. The formulation of claim 1, wherein R^1 is methyl.
- 4. The formulation of claim 1, wherein the quinazoline compound is selected from:
 - 4-(3',5'-dibromo-4'-methylphenyl)amino-6,7-dimethoxyquinazoline,
- 4-(2',4',6'-tribromophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2',3',5',6'-tetrafluoro-4'-bromophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline,
 - $\hbox{$4$-(3'-fluorophenyl)amino-6,7-dimethoxyquinazoline,}\\$
 - 4-(2'-fluorophenyl)amino-6,7-dimethoxyquinazoline,
- 20 4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, and
 - 4-(3'-chloro-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.
 - 5. The formulation of claim 1, wherein the quinazoline compound is selected from: 4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,

- 4-(3'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,
- 4-(2'-hydroxy-naphthyl-3')-amino-6,7-dimethoxyquinazoline,
- 4-{4'-[2"-(4"'-aminophenyl)-hexafluoropropyl]phenyl}-amino-6,7-dimethoxyquinazoline, and
- 5 4-(3'-trifluoromethoxylphenyl)-amino-6,7-dimethoxyquinazoline.
 - 6. The formulation of claim 1, wherein the phospholipid is an unsaturated phospholipid.
- 7. The formulation of claim 1, wherein the phospholipid is an anionic phospholipid.
 - 8. The formulation of claim 1, wherein the phospholipid is a polyethylene glycol phosholipid.
 - 9. The formulation of claim 1, wherein the phospholipid is a polyethylene glycol phosphatidylethanolamine.
- 10. The formulation of claim 1, wherein the phosholipid is 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol)5000].
 - 11. The formulation of claim 1, wherein the phosholipid is 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol)2000].
- 25 12. The formulation of claim 1, further comprising a surfactant.
 - 13. The formulation of claim 11, wherein the surfactant is a block copolymer of ethyleneoxide and propyleneoxide.

15

- 14. The formulation of claim 1, further comprising propylene glycol.
- 15. The formulation of claim 1, further comprising:
 - (c) a surfactant
 - (d) propylene glycol and
 - (e) water.
- 16. The formulation of claim 15, wherein the phospholipid is polyethylene glycol phosphatidylethanolamine and the surfactant is a block copolymer of ethyleneoxide and propyleneoxide.
 - 17. The formulation of claim 15, wherein the phospholipid is an anionic phospholipid and the quinazoline compound is a cationic quinazoline compound.
 - 18. The formulation of claim 15, wherein:
 - (a) the phospholipid concentration is about 0.2 to 2.5 w/v%;
 - (b) the quinazoline concentration is less than about 0.2 w/v%;
 - (c) the surfactant concentration is about 0.05-2 w/v%;
- 20 (d) the propylene glycol concentration is about 5-20 w/v%; and
 - (e) the balance is water.
 - 19. The formulation of claim 18, wherein:
 - (a) the phospholipid concentration is about 1.84 w/v%;
 - (b) the quinazoline concentration is about 0.2 w/v%;
 - (c) the surfactant concentration is about 0.42 w/v%;
 - (d) the propylene glycol concentration is about 9.33 w/v%; and
 - (e) the water concentration is 88.21.

15

- 20. The formulation of claim 1, wherein the phospholipid and quinazoline compound form a micellar formulation with a mean particle size less than about 10 nm.
- 5 21. The formulation of claim 15, wherein the phospholipid and quinazoline compound form a micellar formulation with a mean particle size less than about 10 nm.
 - 22. A formulation comprising:
 - (a) a low hydrophylicity lipophylicity balance portion comprising:
 - (i) a block copolymer of ethylene oxide and propylene oxide;
 - (ii) an ethoxylated castor oil;
 - (iii) propylene glycol;
 - (b) a high hydrophylicity lipophylicity balance portion comprising:
 - (i) lecithin;
 - (ii) a triglyceride of caprylic acid;
 - (c) water; and
 - (d) a quinazoline compound of the formula:

wherein:

20

 R^a is hydrogen, halo, hydroxy, mercapto, (C_1-C_4) hydroxyalkyl, methylenedioxy, ethylenedioxy, benzyloxy,OCF₃, SCF₃, SO₃H, SO₂F, SO₂NR²R³ in which R² is hydrogen or (C_1-C_4) alkyl and R³ is hydrogen, (C_1-C_4) alkyl, or phenyl, NR²R⁴ in which R² is as defined above and R⁴ is phenyl, or R^a a group of the formula:

$$-\overset{R^5}{\underset{R^6}{\cup}} -\overset{R^7}{\underset{R^6}{\bigcirc}}$$

in which R^5 and R^6 are each, independently, hydrogen, (C_1-C_4) alkyl, or (C_1-C_4) perfluoroalkyl, and R^7 is hydrogen, halo, hydroxy, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) hydroxyalkyl, or $N(R^2)_2$ in which R^2 is as defined above; n is an integer of 1-4;

 R^b is each, independently, hydrogen, halo, hydroxy, mercapto, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) thioalkyl, (C_1-C_4) hydroxyalkyl, nitro, cyano, methylenedioxy, ethylenedioxy, COCH₃, CF₃, OCF₃, SCF₃, COOH, SO₃H, SO₂F, phenyl or phenyl substituted by a group selected from halo, hydroxy, mercapto, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) thioalkyl, (C_1-C_4) hydroxyalkyl, amino, nitro, cyano, CF₃, COOH, SO₃H, SO₂NR²R³ in which R² and R³ are as defined below, and SO₂F;

 R^a is also benzyloxy substituted on the phenyl portion by a group defined above, NR^2R^3 in which R^2 is H or (C_1-C_4) alkyl and R^3 is H, (C_1-C_4) alkyl, phenyl or phenyl substituted by a group as defined above; R^1 is (C_1-C_4) alkyl, or a pharmaceutically acceptable salt thereof.

- 23. The formulation of claim 22, wherein the low hydrophylicity lipophylicity balance portion, the high hydrophylicity lipophylicity balance portion, the water and the quinazoline compound form a microemulsion with a mean particle size of about 10-25 nm.
- 24. The formulation of claim 22, wherein the low hydrophylicity lipophylicity balance portion comprises:
 - (i) about 2 w/v% of the block copolymer of ethylene oxide and propylene oxide;

10

5

15

25

- (ii) about 18 w/v% of the ethoxylated castor oil; and
- (iii) about 80 w/v% of the propylene glycol.
- 25. The formulation of claim 22, wherein the high hydrophylicity lipophylicity balance portion comprises:
 - (i) about 40 w/v% of the lecithin; and
 - (ii) about 60 w/v% of the triglyceride of caprylic acid.
- 26. The formulation of claim 22, wherein the low hydrophylicity lipophylicity balance portion comprises:
 - (i) about 2 w/v% of the block copolymer of ethylene oxide and propylene oxide;
 - (ii) about 18 w/v% of the ethoxylated castor oil;
 - (iii) about 80 w/v% of the propylene glycol; and
- the high hydrophylicity lipophylicity balance portion comprises:
 - (i) about 40 w/v% of the lecithin;
 - (ii) about 60 w/v% of the triglyceride of caprylic acid; the water and the quinazoline compound form a microemulsion with a mean particle size of about 10-25 nm.
 - 27. The formulation of claim 22, wherein the quinazoline compound is an acid addition salt.
- 28. The formulation of claim 22, wherein the quinazoline compound is selected from:
 - $\hbox{$4$-(3',5'$-dibromo-4'-methylphenyl)} amino-6,7-dimethoxy quinazoline,$
 - 4-(2',4',6'-tribromophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2',3',5',6'-tetrafluoro-4'-bromophenyl)amino-6,7-dimethoxyquinazoline,

4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

4-(3'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

4-(2'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,

4-(2'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,

4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,

4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, and

4-(3'-chloro-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.

10 29. The formulation of claim 22, wherein the quinazoline compound is selected from:

4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,

4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,

4-(3'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,

4-(2'-hydroxy-naphthyl-3')-amino-6,7-dimethoxyquinazoline,

dimethoxyquinazoline, and

 $\hbox{$4$-(3'-trifluoromethoxylphenyl)-amino-6,7-dimethoxyquinazoline.}$

- 20 30. A method of making a formulation comprising:
 - (a) providing a quinazoline compound of the formula:

$$R^{1}O$$
 $R^{1}O$
 R

wherein:

25

R^a is hydrogen, halo, hydroxy, mercapto, (C₁-C₄)hydroxyalkyl, methylenedioxy, ethylenedioxy, benzyloxy,OCF₃, SCF₃, SO₃H, SO₂F,

10

15

25

 $SO_2NR^2R^3$ in which R^2 is hydrogen or (C_1-C_4) alkyl and R^3 is hydrogen, (C_1-C_4) alkyl, or phenyl, NR^2R^4 in which R^2 is as defined above and R^4 is phenyl, or R^2 a group of the formula:

$$\begin{array}{c}
R^{5} \\
-C \\
R^{6}
\end{array}$$

in which R⁵ and R⁶ are each, independently, hydrogen, (C₁-C₄)alkyl, or (C₁-C₄)perfluoroalkyl, and R⁷ is hydrogen, halo, hydroxy, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₁-C₄)hydroxyalkyl, or N(R²)₂ in which R² is as defined above; n is an integer of 1-4;

 R^b is each, independently, hydrogen, halo, hydroxy, mercapto, (C_1 - C_4)alkyl, (C_1 - C_4)alkoxy, (C_1 - C_4)thioalkyl, (C_1 - C_4)hydroxyalkyl, nitro, cyano, methylenedioxy, ethylenedioxy, COCH₃, CF₃, OCF₃, SCF₃, COOH, SO₃H, SO₂F, phenyl or phenyl substituted by a group selected from halo, hydroxy, mercapto, (C_1 - C_4)alkyl, (C_1 - C_4)alkoxy, (C_1 - C_4)thioalkyl, (C_1 - C_4)hydroxyalkyl, amino, nitro, cyano, CF₃, COOH, SO₃H, SO₂NR²R³ in which R² and R³ are as defined below, and SO₂F;

 R^a is also benzyloxy substituted on the phenyl portion by a group defined above, NR^2R^3 in which R^2 is H or (C_1-C_4) alkyl and R^3 is H, (C_1-C_4) alkyl, phenyl or phenyl substituted by a group as defined above;

 R^1 is (C_1-C_4) alkyl, or a pharmaceutically acceptable salt thereof;

- 20 the quinazoline compounding having a first solubility in water;
 - (b) converting the quinazoline compound to an acid addition salt of the quinazoline compound having a second solubility in water greater than the first solubility in water;
 - (c) combining polyethylene glycol with the acid addition salt of the quinazoline compound to form a first mixture, the first mixture having a third solubility of quinazoline compound in water/polyethylene glycol greater than the second solubility in water;

- (d) combining a phospholipid with the first mixture to form a second mixture, the second mixture having a fourth solubility of quinazoline compound in water/polyethylene glycol/phospholipid greater than the third solubility in water/polyethylene glycol.
- 31. The method of claim 30, wherein the second solubility is at least about 50 times greater than the first solubility.
- 32. The method of claim 30, wherein the third solubility is at least about 90 times greater than the first solubility.
 - 33. The method of claim 30, wherein the fourth solubility is at least about 190 times greater than the first solubility.
- The method of claim 30, wherein the quinazoline compound is selected from:

 4-(3',5'-dibromo-4'-methylphenyl)amino-6,7-dimethoxyquinazoline,

 4-(2',4',6'-tribromophenyl)amino-6,7-dimethoxyquinazoline,

 4-(2',3',5',6'-tetrafluoro-4'-bromophenyl)amino-6,7-dimethoxyquinazoline,

 4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

 4-(3'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

 4-(2'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

 4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline, 4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline, 4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, and
 - 4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, and 4-(3'-chloro-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.
 - 35. The method of claim 30, wherein the quinazoline compound is selected from:

- 4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,
- 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,
- 4-(3'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,
- 4-(2'-hydroxy-naphthyl-3')-amino-6,7-dimethoxyquinazoline,
- 5 4-{4'-[2"-(4"'-aminophenyl)-hexafluoropropyl]phenyl}-amino-6,7-dimethoxyquinazoline, and
 - 4-(3'-trifluoromethoxylphenyl)-amino-6,7-dimethoxyquinazoline.
- 36. The method of claim 30, wherein the phospholipid is an unsaturated phospholipid.
 - 37. The method of claim 30, wherein the phospholipid is an anionic phospholipid.
- 38. The method of claim 30, wherein the phospholipid is a polyethylene glycol phosholipid.
 - 39. The method of claim 30, wherein the phospholipid is a polyethylene glycol phosphatidylethanolamine.
- 20 40. The method of claim 30, wherein the phosholipid is 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol)5000].
 - 41. The method of claim 30, wherein the phosholipid is 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol)2000].
 - 42. A product produced by the method of claim 30.
 - 43. A method comprising, administering to a mammal a formulation comprising:

- (a) a phospholipid; and
- (b) a mast cell inhibiting amount of 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.
- 5 44. The method of claim 43, wherein the phospholipid is an unsaturated phospholipid.
 - 45. The method of claim 43, wherein the phospholipid is an anionic phospholipid.
- 10 46. The method of claim 43, wherein the phospholipid is a polyethylene glycol phosholipid.
 - 47. The method of claim 43, wherein the phospholipid is a polyethylene glycol phosphatidylethanolamine.
 - 48. The method of claim 43, wherein the phosholipid is 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol)5000].
- 49. The method of claim 43, wherein the phosholipid is 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol)2000].
 - 50. The method of claim 43, further comprising a surfactant.
- 51. The method of claim 43, wherein the surfactant is a block copolymer of ethyleneoxide and propyleneoxide.
 - 52. The method of claim 43, further comprising propylene glycol.

- 53. The method of claim 43, further comprising:
 - (c) a surfactant
 - (d) propylene glycol and
 - (e) water.

15

- 54. The method of claim 43, wherein the phospholipid is polyethylene glycol phosphatidylethanolamine and the surfactant is a block copolymer of ethyleneoxide and propyleneoxide.
- The method of claim 43, wherein the phospholipid is an anionic phospholipid and the 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline compound is a chloride salt of 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.
 - 56. The method of claim 43, wherein:
 - (a) the phospholipid concentration is about 0.2 to 2.5 w/v%;
 - (b) the 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline concentration is less than about 0.2 w/v%;
 - (c) the surfactant concentration is about 0.05-2 w/v%;
 - (d) the propylene glycol concentration is about 5-20 w/v%; and
- 20 (e) the balance is water.
 - 57. The method of claim 43, wherein:
 - (a) the phospholipid concentration is about 1.84 w/v%;
 - (b) the 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline concentration is about 0.2 w/v%;
 - (c) the surfactant concentration is about 0.42 w/v%;
 - (d) the propylene glycol concentration is about 9.33 w/v%; and
 - (e) the water concentration is 88.21.

15

20

- 58. The method of claim 43, wherein the phospholipid and 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline form a micellar formulation with a mean particle size less than about 10 nm.
- 59. The method of claim 53, wherein the phospholipid and 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline form a micellar formulation with a mean particle size less than about 10 nm.
- 10 60. A method comprising, administering to a mammal a formulation comprising:
 - (a) a low hydrophylicity lipophylicity balance portion comprising:
 - (i) a block copolymer of ethylene oxide and propylene oxide;
 - (ii) an ethoxylated castor oil;
 - (iii) propylene glycol;
 - (b) a high hydrophylicity lipophylicity balance portion comprising:
 - (i) lecithin;
 - (ii) a triglyceride of caprylic acid;
 - (c) water; and
 - (d) a mast cell inhibiting amount of 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.
 - 61. The method of claim 60, wherein the low hydrophylicity lipophylicity balance portion, the high hydrophylicity lipophylicity balance portion, the water and the mast cell inhibiting amount of 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline form a microemulsion with a mean particle size of about 10-25 nm.
 - 62. The method of claim 60, wherein the low hydrophylicity lipophylicity balance portion comprises:

- (i) about 2 w/v% of the block copolymer of ethylene oxide and propylene oxide;
- (ii) about 18 w/v% of the ethoxylated castor oil; and
- (iii) about 80 w/v% of the propylene glycol.

- 63. The method of claim 60, wherein the high hydrophylicity lipophylicity balance portion comprises:
 - (i) about 40 w/v% of the lecithin; and
 - (ii) about 60 w/v% of the triglyceride of caprylic acid.

10

15

25

- 64. The method of claim 60, wherein the low hydrophylicity lipophylicity balance portion comprises:
 - (i) about 2 w/v% of the block copolymer of ethylene oxide and propylene oxide;
 - (ii) about 18 w/v% of the ethoxylated castor oil;
- (iii) about 80 w/v% of the propylene glycol; and the high hydrophylicity lipophylicity balance portion comprises:
 - (i) about 40 w/v% of the lecithin;
 - (ii) about 60 w/v% of the triglyceride of caprylic acid;
- the water and the quinazoline compound form a microemulsion with a mean particle size of about 10-25 nm.
 - 65. The method of claim 60, wherein the mast cell inhibiting amount of 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline is an acid addition salt of 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.

a contribit tite of