

delta Hyperbolic Metric Space

Hyperbolic metric space is a <u>metric space</u> satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points.

Definition

A metric space is said to be (Gromov-) hyperbolic if it is δ -hyperbolic for some $\delta > 0$

Definition using Gromov Product

Let (X,d) be a metric space. The Gromov product of two points $y,z\in X$ with respect to a third one $x\in X$ is defined by the formula: $(y,z)_x=rac{1}{2}\left(d(x,y)+d(x,z)-d(y,z)\right)$.

Gromov's definition of a hyperbolic metric space is then as follows: X is δ -hyperbolic if and only if all $x,y,z,w\in X$ satisfy the four-point condition $(x,z)_w\geq \min\left((x,y)_w,(y,z)_w\right)-\delta$

Note that if this condition is satisfied for all $x, y, z \in X$ and one fixed base point w_0 , then it is satisfied for all with a constant $2\delta^{[1]}$. Thus the hyperbolicity condition only needs to be verified for one fixed base point; for this reason, the subscript for the base point is often dropped from the Gromov product.

Definition using Triangles

Hyperbolic triangle

Hyperbolic triangle

The $\delta\text{-slim}$ triangle condition

 δ -Hyperbolicity captures the basic common features of "negatively curved" spaces like the classical real-hyperbolic space \mathbb{D}^n and of discrete spaces like trees.