3. AVL Trees

2018年9月25日

Dictionary (ADT) set of objects with keys **Operations** insert(e), delete(k), find(k)

17:18

Data structure BST, AVL Tree, Red Black Tree, 2-3 Tree, Hash Tables

Problems with BST insert, delete, find in a BST runs in WC O(log n) while a BST can be unbalanced

AVT Tree

Height height(u) = length of the longest path from*u*to leaf.

height(T) = height(root)

define base cases

height(one-node-BST) = 0

 $height(\emptyset) = -1$

Balance Factor $BF(u) = height(T_2) - height(T_1)$

AVT Tree a BST in which every node u, has $BF(u) \in \{-1,0,1\}$

f(h) the smallest #nodes in a AVL tree of height h

Claim
$$f(h) = f(h-1) + f(h-2) + 1$$

Proof the left subtree and the right subtree can defer height by 1, hence one tree to increase height, another not. And adding one more node for root.

Note Fibonacci series
$$F(0) = 0$$
, $F(1) = 1$, $F(x) = F(x - 1) + F(x - 2)$

$$f(0) = 1, f(1) = 2, f(x) = f(x-1) + f(x-2) + 1$$

Claim f(h) = F(h+3) - 1

Proof
$$f(0) = F(3) - 1 = 2 - 1 = 1, f(1) = F(4) - 1 = 3 - 1 = 2$$

$$f(h) = f(h-2) + f(h-1) + 1 = F(h+1) - 1 + F(h+2) - 1 + 1 = F(h+3) - 1$$

Since
$$F(n) \ge \frac{\phi^h}{\sqrt{5}-1}$$
, $\phi = \frac{1+\sqrt{5}}{2}$, $\# nodes = n \ge f(h) \ge \frac{\phi^h}{\sqrt{5}-1}$

Insert(e)

General procedure

- 1. Insert as in any BST
- 2. Go up through the path from the new node to the root and update BFs
- 3. Look at the BFs
 - a. If BF goes from $\pm 1 \rightarrow 0$, stop
 - b. If |BF| > 1, stop and do rotations

Claim BF(b) = 0 before insertion \Leftrightarrow height(T_2) = height(T_3)

Proof Suppose BF(b) = 1, then inserting x will cause BF(b) = 2, then go to 3b before reach node a

Suppose BF(b) = -1, then go to 3a, the program will stop

left ratote

case 2

zoom in

first rotation

second rotation

