Anno Accademico 2019-2020

Corso di Laurea in Informatica (L-31)

Prova scritta di Elementi di Analisi Matematica 1 (6 CFU) [A-L]

19 Febbraio 2020

Tempo a disposizione. 120 minuti.

1 Sia dato il numero complesso

$$z = \frac{1}{2} i \operatorname{Im} \left[(1+i) \overline{(1-i)} \right] - |e^{i4\pi}|.$$

- (a) Scrivere z in forma esponenziale e determinare il coniugato di z.
- (b) Calcolare le radici quadrate di z.
- 2 Calcolare il seguente limite:

$$\lim_{x \to 0} \frac{e^x - \cos^4 \frac{x}{3}}{\ln \sqrt[4]{x^2 + x + 1} - 2 \arctan x}.$$

3 Sia data la funzione reale di variabile reale definita dalla legge

$$f(x) = \sqrt[3]{(x-2)^2} + \sqrt[3]{(x-4)^2}.$$

Studiare f e tracciarne un grafico qualitativo.

Risultati degli esercizi

- 1 (a) $z = -1 + i = \sqrt{2}e^{i\frac{3}{4}\pi}; \overline{z} = -1 i.$
 - (b) Le radici quadrate di z sono i numeri complessi $X_0=\sqrt[4]{2}\mathrm{e}^{i\frac{3}{8}\pi}$ e $X_1=\sqrt[4]{2}\mathrm{e}^{i\frac{11}{8}\pi}$.
- **2** Il limite presenta la forma indeterminata $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Applicando il Teorema di De L'Hôpital, si ha

$$\lim_{x \to 0} \frac{e^x + \frac{4}{3}\cos^3\frac{x}{3}\sin\frac{x}{3}}{\frac{1}{\sqrt[4]{x^2 + x + 1}} \cdot \frac{1}{4\sqrt[4]{(x^2 + x + 1)^3}} \cdot (2x + 1) - \frac{2}{1 + x^2}} = -\frac{4}{7}$$

Dunque, per il Teorema di De L'Hôpital, il limite proposto vale pure $-\frac{4}{7}$.

3 L'insieme di definizione di f è $\mathscr{D}_f = \mathbb{R}$ ed f è continua in \mathbb{R} . Si ha f(x) > 0 per ogni $x \in \mathbb{R}$. Si ha

$$\lim_{x \to \pm \infty} f(x) = \pm \infty, \qquad \lim_{x \to \pm \infty} \frac{f(x)}{x} = 0.$$

Dunque si conclude che f non ammette asintoti di alcun tipo. Inoltre, per ogni $x \in \mathbb{R} \setminus \{2,4\}$ si ha:

$$f'(x) = \frac{2}{3} \cdot \frac{\sqrt[3]{x-4} + \sqrt[3]{x-2}}{\sqrt[3]{x-4} \cdot \sqrt[3]{x-2}}.$$

Risulta f'(x) = 0 se e solo se $x = \pm 3$. Dallo studio del segno di f' si deduce che f è decrescente in $]-\infty,2]$ e in [3,4] ed è crescente in [2,3] e in $[4,+\infty[$. Ne viene che i punti del grafico di f aventi ascisse x=2 e x=4 sono punti di minimo locale e il punto di ascissa x=3 è un punto di massimo locale (non assoluto). Poiché $f(2) = f(4) = \sqrt[3]{4}$, si deduce che i punti di ascisse x=2 e x=4 sono punti di minimo assoluto. Infine, per ogni $x\in\mathbb{R}\setminus\{2,4\}$ si ha:

$$f''(x) = -\frac{2}{9} \cdot \frac{\sqrt[3]{(x-4)^4} + \sqrt[3]{(x-2)^4}}{\sqrt[3]{(x-4)^4} \cdot \sqrt[3]{(x-2)^4}}.$$

Studiando il segno di f'' si deduce che f è concava in \mathbb{R} .

Avvalendosi del Teorema sul limite della derivata si vede subito che f presenta in x=2 e in x=4 due punti di cuspide poiché

$$\lim_{x \to 2^{\pm}} f'(x) = \pm \infty, \qquad \lim_{x \to 4^{\pm}} f'(x) = \pm \infty.$$

