

(19) BUNDESREPUBLIK **DEUTSCHLAND**

PATENT- UND MARKENAMT

Offenlegungsschrift

_® DE 101 05 383 A 1

(21) Aktenzeichen: 101 05 383.5 22) Anmeldetag: 6. 2.2001 (43) Offenlegungstag: 8. 8. 2002

⑤ Int. CI.⁷: A 61 F 5/56 A 61 M 16/00

(71) Anmelder:

HepTec GmbH, 06847 Dessau, DE

(74) Vertreter:

Hellmich, W., Dipl.-Phys.Univ. Dr.-Ing., Pat.-Anw., 80538 München

(72) Erfinder:

Genger, Harald, 82319 Starnberg, DE; Schneider, Hartmut, Priv.-Doz. Dr.med., Lutherville, Md., US

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 198 49 571 A1 DE 198 25 290 A1 US 56 49 533 US 55 95 174 FΡ 07 22 747 A2 WO 88 10 108 A1 WO 82 03 548 A1

Chest. Vol.110, S.1077-1088; Sleep, Vol., No.19, S.184-188;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Antischnarchgerät, Verfahren zur Verringerung des Schnarchens sowie Luftbrille
- Die Anmeldung betrifft ein Antischnarchgerät mit einem Kompressor und einer Luftbrille, bei dem die durch den Kompressor komprimierte Luft durch die Luftbrille in die Nase eines Schlafenden geblasen wird. Darüber hinaus betrifft die Erfindung eine optimierte Luftbrille für das Antischnarchgerät.

1

Beschreibung

[0001] Die Erfindung bezieht sich auf ein preiswertes Gerät sowie ein Verfahren zur Verringerung des Schnarchens und eine Luftbrille.

[0002] Obstruktive Atmungsstörungen führen zu Apnoen (Atemstillstand), durch die der Schlafende erwacht. Häufige Apnoen verhindern, dass der Schlafende in den erholsamen Tiefschlaf fällt. Menschen, die Apnoen während des Schlafens erleiden, sind deshalb tagsüber unausgeschlafen, was 10 zu sozialen Problemen am Arbeitsplatz und im schlimmsten Fall zu tödlichen Unfällen, beispielsweise bei Berufskraftfahrern, führen kann.

[0003] Im Stand der Technik sind Geräte zur Durchführung der CPAP (continuous positive airway pressure)-Therapie bekannt. Die CPAP-Therapie wird in Chest. Vol. 110, Scitcn 1077 bis 1088, Oktober 1996 und Sleep, Vol. No. 19, Seiten 184 bis 188 näher beschrieben.

[0004] In der CPAP-Therapie wird einem Patienten ein konstanter positiver Druck über eine Nasenmaske zugeführt. Bei richtiger Wahl des Überdrucks gewährleistet dieser, dass die oberen Atemwege während der gesamten Nacht vollständig geöffnet bleiben und somit keine obstruktiven Atemstörungen auftreten. Der erforderliche Druck hängt unter anderem von dem Schlafstadium und der Körperposition 25 des Schlafenden ab. Aus der DE 198 49 571 A1 ist ein Therapiegerät (AutoCPAP) bekannt, das den Beatmungsdruck automatisch einstellt und damit an das Schlafstadium und die Körpersituation anpasst.

[0005] Ferner sind aus dem Stand der Technik Sauerstoff- 30 brillen für die Sauerstoffbehandlung bekannt. Mit der Sauerstoffbrille wird dem Patienten Luft mit einem erhöhten Sauerstoffpatialdruck (> 210 mBar) oder reiner Sauerstoff in die Nase appliziert. Eine Sauerstoffbehandlung findet zum Beispiel bei akuter oder chronischer Hypoxämie infolge 35 Atem- oder Herz-Kreislaufstörung (Myokardinfarkt, Schock) oder bestimmten Vergiftungen, zum Beispiel durch Kohlenmonoxid, Kohlendioxid, Leuchtgas oder Rauch statt. [0006] Schließlich ist bekannt, Rennpferde nach dem Rennen mit befeuchteter Luft zu behandeln. Dabei wird die 40 befeuchtete Luft durch eine einer Sauerstoffbrille ähnelnden Vorrichtung, die allerdings an die Form des Pferdekopfes angepasst ist, in die Nüstern des Pferdes geleitet. Aufgrund des hohen Atemzugvolumens während eines Rennens ist die Nasenschleimhaut des Pferdes nicht in der Lage, ausrei- 45 chend Feuchtigkeit abzusondern, so dass die Nasenschleimhaut austrocknet.

[0007] Aufgabe der Erfindung ist es, ein preisgünstiges und komfortables Gerät und ein Verfahren zur Verminderung des Schnarchens sowie eine Luftbrille anzugeben.

[0008] Diese Aufgabe wird durch ein Antischnarchgerät nach Anspruch 1, ein Verfahren nach Anspruch 12 sowie eine Luftbrille nach Anspruch 14 gelöst.

[0009] Vorteilhaft an einem Einsatz eines Antischnarchgeräts nach Anspruch 1 bei Personen, die zwar schnarchen, 55 aber nicht an pathologischen Apnoen leiden, ist, dass das Antischnarchgerät, verglichen mit Geräten für die CPAP-Therapie, mit einem geringeren Fluss auskommt und somit ein kleinerer Kompressor verwendet werden kann. Darüber hinaus bietet die Luftbrille, verglichen mit den bei der 60 CPAP-Therapie üblichen Masken, einen erhöhten Tragekomfort und einen erhöhten Sicherheitsstandard, da aufgrund des lediglich partiellen Verschlusses der Nase eine normale Λtmung durch die Nase auch bei Λusfall der Turbine im Kompressor gegeben ist.

[0010] Ein Luftbefeuchter verhindert, dass die Nasenschleimhäute des Schlafenden austrocknen und erhöht so den Komfort. Um den Partner des Schlafenden nicht durch

2

Kompressorgeräusche anstelle der Schnarchgeräusche zu stören, ist der Kompressor akustikoptimiert. Um die Geräuschbelastung durch den Kompressor weiter zu verringern, wird das Antischnarchgerät vorzugsweise mit einem langen Schleush ausgerütett so dess der Kompressor in eine

langen Schlauch ausgerüstet, so dass der Kompressor in einem Nachbarraum aufgestellt werden kann.

[0011] Der Luftfluss kann in vorteilhafter Weise an drei Stellen gesteuert werden: durch die Turbinendrehzahl, durch ein Drosselventil und/oder durch ein Bypass-Ventil, Vorteilhaft an der Steuerung der Turbinendrehzahl ist, dass der Kompressor bei geringer Drehzahl und geringem Druckunterschied weniger Geräusch verursacht. Somit führt eine Steuerung des Luftflusses über die Turbinendrehzahl bei geöffnetem oder nicht vorhandenem Drosselventil und geschlossenem oder nicht vorhandenem Bypass-Ventil zur geringsten Geräuschentwicklung durch den Kompressor, Ist der Kompressor allerdings in einem Nebenraum angeordnet, so kommen als preiswerte Möglichkeiten zur Regelung des Luftflusses in der Nähe des Schlafenden lediglich ein Drosselventil oder ein Bypass-Ventil in Frage. Vorteilhaft an einem Drosselventil ist, dass es den Luftfluss durch den Kompressor und damit die Leistungsaufnahme des Kompressors reduziert. Nicht regelbare Bypass-Ventile sind aus der CPAP-Therapie bekannt. Dort sind sie notwendig, um dem Patienten das Ausatmen trotz aufgesetzter Gesichtsmaske zu ermöglichen.

[0012] Vorteilhaft an der Verwendung eines Schlauchs mit geringem Innendurchmesser und geringem Außendurchmesser von vorzugsweise 4 bzw. 6 mm ist die häufige Verwendung und somit die preiswerte Beschaffung solcher Schläuche. Vorteilhaft an der Verwendung eines Schlauchstücks mit einem größeren Innendurchmesser ist der geringere Druckabfall.

[0013] Vorteilhaft an der Anordnung des Luftbefeuchters in der Nähe des Schlafenden ist die Möglichkeit, die Temperatur des Wasserbads vom Bett aus einzustellen sowie das Wasser vom Bett aus nachzufüllen. Ein Luftbefeuchter erzeugt im Gegensatz zum Kompressor keine Laufgeräusche, so dass eine Anordnung neben dem Bett unproblematisch ist

[0014] Eine Integration von Kompressor und Luftbefeuchter in einem Gerät führt zu Preisvorteilen.

[0015] Vorteilhaft an einer Luftbrille, die mit der Nase des Schlafenden weitgehend dicht abschließt, ist, dass der Luftwiderstand des Bypasses nicht von der verbleibenden Öffnung zwischen Nase und Luftbrille abhängt, sondern durch die definierte Größe von Öffnungen in der Luftbrille genau eingestellt werden kann.

[0016] Im folgenden werden bevorzugte Ausführungsformen unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Dabei zeigen:

[0017] Fig. 1 das erfindungsgemäße Antischnarchgerät mit seitlichem Blick auf den Kopf des Schnarchenden und [0018] Fig. 2 den Blick auf das Gesicht des Schlafenden mit Luftbrille.

[0019] Das Schnarchen entsteht während des Schlafens durch stoßweise Schwingungen des schlaff herunterhängenden Gaumensegels, wenn infolge eines Spannungsverlusts der Kiefer- und Zungenmuskulatur der Unterkiefer nach unten und die Zungen nach hinten gesunken sind. Dies wird als Hindernisschnarchen bezeichnet. Daneben kann Schnarchen auch als Folge von Gewohnheitsbildung (gemeines Schnarchen) entstehen.

[0020] Die Gegenstände der Erfindung sind für Personen bestimmt, die zwar schnarchen, aber nicht an pathologischen Apnoen leiden.

[0021] Fig. 1 zeigt einen Schlafenden 14, in dessen Nase über eine Luftbrille 1 Luft appliziert wird. Diese Luft sorgt

3

für einen leicht – also um 2 bis 20 mBar – erhöhten Luftdruck in den Atemwegen des Schlafenden. Dieser leichte Überdruck führt zu einer Erweiterung der Atemwege. Damit wird dem nach unten Sinken des Unterkiefers und dem nach hinten Sinken der Zunge entgegengewirkt.

[0022] Die Luftbrille besteht im Wesentlichen aus zwei Schläuchen, die über die Ohren nach hinten geführt werden. Beide Schläuche werden in einer Y-Weiche 12 zu einem Schlauch zusammengeführt. Ferner ist ein verschiebbarer Ring 13 vorgesehen, um die Luftbrille an die Kopfgröße des 10 Schlafenden anzupassen. Alternativ zu der in Fig. 1 dargestellten Trageweise können die beiden Schläuche nicht über die Ohren nach hinten, sondern um die Ohren herum und dann unterhalb des Unterkiefers zusammengeführt werden, wie es in Fig. 1 gestrichelt dargestellt ist.

[0023] Die Auslässe der Luftbrille können – wie bei Sauerstoffbrillen üblich – kleiner als die Nasenöffnungen des Schlafenden sein. In diesem Fall kann der Schlafende durch den Spalt zwischen den Auslässen und der Nasenbrille ausatmen. Dieser Spalt bildet sozusagen einen nicht regelbaren 20 Bypass.

[0024] Andererseits können die Auslässe der Luftbrille an die Form der Nascnlöcher angepasst sein, so dass sie weitgehend dicht mit den Nasenlöchern abschließen. In diesem Fall können in der Luftbrille Öffnungen 15 zum Ausatmen 25 vorgesehen sein, die durch Schiebe- oder Drehelemente zu einem regelbaren Ventil ergänzt werden können.

[0025] Die komprimierte Luft wird durch einen Kompressor 2 erzeugt. Um die Schnarchgeräusche nicht durch andere unangenehme Geräusche zu ersetzen, ist der Kompressor 2 30 akustikoptimiert. Daneben verfügt er über eine Schalldämmung 4. Damit die Turbine 3 im Kompressor mit möglichst geringer Drehzahl läuft, ist ein Turbinenregler 5 vorgesehen. Dabei wird nicht nur die Geräuscherzeugung durch die Turbine minimiert, sondern auch die Stromaufnahme durch den 35 Kompressor.

[0026] In einer bevorzugten Ausführungsform der Erfindung wird die durch den Kompressor komprimierte Luft zunächst durch einen Luftbefeuchter 6 geleitet, bevor sie der Luftbrille zugeführt wird. Im Luftbefeuchter wird die Luft 40 über ein Wasserbad 7 geleitet. Die Temperatur des Wasserbads kann über einen Temperaturregler 8 eingestellt werden. Je höher die Temperatur des Wasserbads ist, desto stärker wird die Luft im Luftbefeuchter befeuchtet.

[0027] Zusätzlich oder alternativ zum Turbinenregler 5 45 kann im Schlauch 11 noch ein Drosselventil 9 und/oder ein Bypass-Ventil 10 vorgesehen sein, um den Luftfluss zu steuern. Beide Ventile sind vorzugsweise in der Nähe des Schlafenden angeordnet, so dass er den Luftfluss vom Bett aus steuern kann, auch wenn der Kompressor in einem Neben- 50 raum steht und der Schlafende deshalb den Turbinenregler 5 vom Bett aus nicht bedienen kann. Wenn die Luftbrille nicht weitgehend dicht mit den Nasenlöchern des Schlafenden abschließt, wird zur Regelung des Flusses einem Drosselventil 9 der Vorzug vor einem Bypass-Ventil 10 gegeben. Einer- 55 seits führt das Drosselventil nicht zu einem zusätzlichen Luftfluss und andererseits wirkt die Undichtigkeit zwischen der Luftbrille und der Nase wie ein Bypass, durch den der Schlafende ausatmen kann. Schließt andererseits die Luftbrille mit den Nasenlöchern des Schlafenden weitgehend 60 dicht ab, so muss ein Bypass vorgesehen werden, durch den der Schlafende ausatmen kann.

[0028] In einer weiteren bevorzugten Ausführungsform können als Luftbrillen bereits am Markt verfügbare Sauerstoffbrillen verwendet werden. In einer weiteren bevorzugten Ausführungsform kann anstelle der Luftbrille auch eine die Nase und evtl. zusätzlich den Mund abdeckende Maske verwendet werden.

BEZUGSZEICHENLISTE

- 1 Luftbrille
- 2 Kompressor
- 5 3 Turbine
 - 4 Schalldämmung
 - **5** Turbinenregler
 - 6 Luftbefeuchter
 - 7 Wasserbad
- 0 8 Temperaturregler
 - 9 Drosselventil
 - 10 Bypass-Ventil
 - 11 Schlauch
 - 12 Y-Weiche
- 15 13 Ring
 - 14 Schlafende
 - 15 Bypass-Öffnungen

Patentansprüche

- 1. Antischnarchgerät mit einem Kompressor (2) und einem daran angeschlossenen Schlauch (11), dadurch gekennzeichnet, dass der Kompressor (2) komprimierte Luft über den Schlauch (11) an eine Luftbrille (1) liefert, die wiederum einem Schlafenden die komprimierte Luft in die Nase appliziert.
- 2. Antischnarchgerät nach Anspruch 1, dadurch gekennzeichnet, dass die durch den Kompressor (2) komprimierte Luft durch einen Luftbefeuchter (6) appliziert wird, bevor die Luft zur Luftbrille (1) gelangt.
- 3. Antischnarchgerät nach Anspruch 2, dadurch gekennzeichnet, dass der Luftbefeuchter (6) einen Temperaturregler aufweist, der die Temperatur des Wasserbades (7) und damit den Grad der Luftbefeuchtung steuert.
- 4. Antischnarchgerät nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Schlauch (11) so lang ist, dass der Kompressor nicht im Schlafzimmer, sondern in einem Nebenraum stehen kann.
- 5. Antischnarchgerät nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass am Kompressor (2) ein Drehregler (5) zur Steuerung der Drehzahl der Turbine (3) des Kompressors (2) vorgesehen ist, so dass mit dem Drehregler (5) der Luftfluss durch die Luftbrille (1) gesteuert werden kann.
- 6. Antischnarchgerät nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass im Schlauch (11) ein Drosselventil (9) zur Steuerung des Druckabfalls am Schlauch und damit des Luftflusses durch den Schlauch (11) vorgesehen ist.
- 7. Antischnarchgerät nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass ein Bypass-Ventil (10) vorgesehen ist, das vom Schlauch (11) ins Freie führt, so dass durch das Bypass-Ventil (10) ebenfalls der Luftfluss durch die Luftbrille gesteuert werden kann.
- 8. Antischnarchgerät nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Schlauch (11) einen Innendurchmesser von 4 mm und einen Außendurchmesser von 6 mm aufweist.
- 9. Antischnarchgerät nach Anspruch 4, dadurch gekennzeichnet, dass der Schlauch (11) einen längeren Teil mit einem erweiterten Durchmesser von 10 bis 20 mm aufweist.
- 10. Antischnarchgerät nach Anspruch 4 oder 9, so weit sie sich mittelbar oder unmittelbar auf Anspruch 2 rückbeziehen, dadurch gekennzeichnet, dass der Luftbefeuchter (6) in der Nähe des Schlafenden angeordnet

5

ist.

11. Antischnarchgerät nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass der Kompressor (2) und der Luftbefeuchter (6) in einem Gerät integriert sind.

12. Verfahren zur Verringerung des Schnarchens, dadurch gekennzeichnet, dass dem Schlafenden (14) Luft mit einer Luftbrille in die Nase appliziert wird.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Luft vorher angefeuchtet wird.

14. Luftbrille zur Reduzierung des Schnarchens, dadurch gekennzeichnet, dass die Auslässe der Luftbrille weitgehend dicht mit den Nasenlöchern des Schlafenden abschließen.

15. Luftbrille nach Anspruch 14, dadurch gekenn- 15 zeichnet, dass die Luftbrille Bypass-Öffnungen (15) vorzugsweise in der Nähe der Auslassöffnungen für die Nase aufweist.

Hierzu 2 Seite(n) Zeichnungen 20

۷,

25

30

35

40

45

50

55

60

65

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 101 05 383 A1 A 61 F 5/56**8. August 2002

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 101 05 383 A1 A 61 F 5/56**8. August 2002

Fig. 2