Math189R SU17 Homework 1 Wednesday, May 17, 2017

Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though. The starter code for problem 2 part c and d can be found under the Resource tab on course website.

Note: You need to create a Github account for submission of the coding part of the homework. Please create a repository on Github to hold all your code and include your Github account username as part of the answer to problem 2.

1 (Linear Transformation) Let y = Ax + b be a random vector. show that expectation is linear:

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[A\mathbf{x} + \mathbf{b}] = A\mathbb{E}[\mathbf{x}] + \mathbf{b}.$$

Also show that

$$\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[A\mathbf{x} + \mathbf{b}] = A\operatorname{cov}[\mathbf{x}]A^{\top} = A\Sigma A^{\top}.$$

First show for expectation value

E[Ax+b] = S(Ax+b) S(x) dx = SAx8(x) dx + 6 SE(x) dx = AE[x]+6
where S(x) is the probability density function for X
and b is a constant vector

Nex+ show for covariance

COU [Ax+b] = E[(Ax+b-E(Ax+b)) (Ax+b-E[Ax+b])]

=E[(Ax+b-AE[x]-b)(Ax+b-AE[x]-b)]

= AE[(x-E[x])(x-E(x))]AT

= A \(\) AT

where \(\xi = cou(x) \) and A is a constant matrix

- **2** Given the dataset $\mathcal{D} = \{(x,y)\} = \{(0,1),(2,3),(3,6),(4,8)\}$
 - (a) Find the least squares estimate $y = \theta^{\top} x$ by hand using Cramer's Rule.
 - (b) Use the normal equations to find the same solution and verify it is the same as part (a).
 - (c) Plot the data and the optimal linear fit you found.
 - (d) Find randomly generate 100 points near the line with white Gaussian noise and then compute the least squares estimate (using a computer). Verify that this new line is close to the original and plot the new dataset, the old line, and the new line.

bd) see attached code

hw1pr2

June 9, 2020

b) Perform the linear regression using the normal equation

[26]: [<matplotlib.lines.Line2D at 0x1121b0320>]

```
[9]: import numpy as np
      X = np.array([[0,1],
                     [2,1],
                     [3,1],
                     [4,1]])
      Y = np.array([1,3,6,8])
[16]: theta = np.linalg.inv(X.T@X)@X.T@Y
      print(theta)
     [1.77142857 0.51428571]
     Now let's verify that's the same as on paper
[18]: 62/35
[18]: 1.7714285714285714
[19]: 18/35
[19]: 0.5142857142857142
     yayyyyy!
       c) Plot the data and the linear fit
[20]: import matplotlib.pyplot as plt
[26]: plt.scatter(X[:,0],Y,c='r')
      x = np.linspace(0,4,100)
      y = 62*x/35 + 18/35
      plt.plot(x,y)
```


Looks decent to me.

d) generate 100 points with white gaussian noise and get a new least squares estimate. I'm using a variance of 1

```
[36]: noise = np.random.normal(0,1,100)
    X_noise = np.hstack((x.reshape(100,1),np.ones(100).reshape(100,1)))
    Y_noise = y+noise
    theta_noise = np.linalg.inv(X_noise.T@X_noise)@X_noise.T@Y_noise

[39]: plt.scatter(x,Y_noise,c='r')
    y_pred_noise = x*theta_noise[0]+theta_noise[1]
    plt.plot(x,y)
    plt.plot(x,y_pred_noise)
    plt.legend(('old','new'))
```

[39]: <matplotlib.legend.Legend at 0x112114518>

Indeed it does look close to the original fit