Дисперсійний аналіз даних ANOVA analysis of variance ГРАФОВІ ЙМОВІРНІСНІ МОДЕЛІ

Сумський державний університет

Дисперсійний аналіз (англ. analysis of variance ANOVA)

явля ϵ собою статистичний метод аналізу результатів, які залежать від якісних ознак.

Дисперсійний аналіз (англ. analysis of variance ANOVA)

явля ϵ собою статистичний метод аналізу результатів, які залежать від якісних ознак.

0

Кожен фактор може бути дискретною чи неперервною випадковою змінною, яку розділяють на декілька сталих рівнів (градацій, інтервалів).

•

Figure 2: ANOVA : No fit

Figure 1: ANOVA : Fair fit

Figure 3: ANOVA: very good fit

В будь-якому експерименті середні значення досліджуваних величин змінюються у зв'язку зі зміною основних факторів (кількісних та якісних), що визначають умови досліду, а також і випадкових факторів. Дослідження впливу тих чи інших факторів на мінливість середніх є задачею дисперсійного аналізу.

В будь-якому експерименті середні значення досліджуваних величин змінюються у зв'язку зі зміною основних факторів (кількісних та якісних), що визначають умови досліду, а також і випадкових факторів. Дослідження впливу тих чи інших факторів на мінливість середніх є задачею дисперсійного аналізу.

0

Дисперсійний аналіз використовує властивість адитивності дисперсії випадкової величини, що обумовлено дією незалежних факторів. В залежності від числа джерел дисперсії розрізняють однофакторний та багатофакторний дисперсійний аналіз.

0

Дисперсійний аналіз полягає у виділенні і оцінці окремих факторів, що викликають зміну досліджуваної випадкової величини.

При цьому проводиться розклад сумарної вибіркової дисперсії на складові, обумовлені незалежними факторами.

Кожна з цих складових є оцінкою дисперсії генеральної сукупності.

Щоб вирішити, чи дієвий вплив даного фактору, необхідно оцінити значимість відповідної вибіркової дисперсії у порівнянні з дисперсією відтворення, обумовленою випадковими факторами.

Перевірка значимості оцінок дисперсії проводять по критерію Фішера.

Коли розрахункове значення критерію Фішера виявиться меншим табличного, то вплив досліджуваного фактору немає підстав вважати значимим. Коли ж розрахункове значення критерію Фішера виявиться більшим табличного, то цей фактор впливає на зміни середніх.

Методи дисперсійного аналізу були розроблені сером Рональдом Фішером (1890-1962), професором генетики Каліфорнійського університету, одним із провідних світових статистиків і біологів свого часу.

Методи дисперсійного аналізу були розроблені сером Рональдом Фішером (1890-1962), професором генетики Каліфорнійського університету, одним із провідних світових статистиків і біологів свого часу.

Він був першим, хто запропонував використовувати латинські та греко-латинські квадрати для дисперсійного аналізу даних.

Латинський квадрат n-го порядку — це таблиця розміру $n \times n$, заповнена n елементами множини M таким чином, що в кожному рядку і в кожному стовпці таблиці кожен елемент зустріча ϵ ться в точності один раз

Латинський квадрат n-го порядку — це таблиця розміру $n \times n$, заповнена n елементами множини M таким чином, що в кожному рядку і в кожному стовпці таблиці кожен елемент зустріча ϵ ться в точності один раз

Леонард Ейлер (1707 — 1783)

"Меланхолія" — різцева гравюра на міді німецького художника Альбрехта Дюрера, закінчена в 1514 році. Дюрер склав перший в європейському мистецтві магічний квадрат, 4х4. Сума чисел в будь-якому рядку, стовпці, діагоналі, а також в кожній чверті (в тому числі в центральному квадраті) і сума кутових чисел дорівнює 34. Два середніх числа в нижньому ряду вказують дату створення картини (1514). Два крайніх числа в нижньому ряду відповідають ініціалами художника. У середніх квадратах першого стовпчика внесені виправлення— цифри деформовані.

a₁ a₂ a₁

a_1	a ₂	a 3
a ₂	аз	a ₁
аз	a_1	a2

a_1	a ₂	аз	a4
a ₂	a ₃	a4	a ₁
аз	a4	a_1	a ₂
a4	a ₁	a ₂	a 3

a ₁	a ₂	аз	a4
a4	a_1	a ₂	аз
a 3	a4	a_1	a ₂
a ₂	аз	a4	a_1

a ₁	a2	аз	a4	a ₅
a ₂	аз	a4	a ₅	a_1
a 3	a4	a5	a ₁	a2
a4	a5	a ₁	a ₂	a 3
a ₅	a ₁	a ₂	аз	a4

a ₁	a ₂	аз	a4	a5	a ₁	a ₂	аз	a4	a5
аз	a4	a ₅	a ₁	a ₂	a4	a ₅	a_1	a ₂	аз
a5	a_1	a ₂	a 3	a4	a ₂	a ₃	a4	a ₅	a ₁
a2	a ₃	a4	a ₅	a ₁	a ₅	a ₁	a ₂	аз	a4
a4	a ₅	a ₁	a ₂	a 3	аз	a4	a ₅	a ₁	a ₂

a ₁	a ₂	a 3	a4	a5	a ₆	a ₁
a ₂	a 3	a4	a5	a ₆	a_1	a ₆
a ₃	a4	a5	a ₆	a ₁	a ₂	a5
a4	a5	a ₆	a ₁	a ₂	аз	a4
a5	a ₆	a ₁	a ₂	аз	a4	a 3
a ₆	a_1	a ₂	аз	a4	a5	a ₂

a ₁	a ₂	a ₃	a4	a5	a ₆
a ₆	a_1	a ₂	аз	a4	a5
a5	a ₆	a_1	a2	аз	a4
a4	a5	a ₆	a ₁	a ₂	аз
аз	a4	a ₅	a ₆	a ₁	a ₂
a ₂	аз	a4	a5	a ₆	a_1

 a2
 a3
 a4
 a5

 a1
 a2
 a3
 a4

a₅ | a₁ | a₂ | a₃

 a3
 a4
 a5
 a1
 a2

 a2
 a3
 a4
 a5
 a1

0	1	2	3	4	5
1	0	3	2	5	4
2	3	4	5	0	1
3	2	5	4	1	0
4	5	0	1	2	3
5	4	1	0	3	2

Вітраж з латинським квадратом 7-го порядку в одному з коледжів Кембриджу, присвячений Р.Фішеру

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

0	1	2	3	4
3	4	0	1	2
1	2	3	4	0
4	0	1	2	3
2	3	4	0	1

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

0	1	2	3	4
3	4	0	1	2
1	2	3	4	0
4	0	1	2	3
2	3	4	0	1

0	1	2	3	4
2	3	4	0	1
4	0	1	2	3
1	2	3	4	0
3	4	0	1	2

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

0	1	2	3	4
3	4	0	1	2
1	2	3	4	0
4	0	1	2	3
2	3	4	0	1

0	1	2	3	4
2	3	4	0	1
4	0	1	2	3
1	2	3	4	0
3	4	0	1	2

0	1	2	3	4
4	0	1	2	3
3	4	0	1	2
2	3	4	0	1
1	2	3	4	0

а	Ь	с	d
Ь	а	d	с
с	d	а	ь
d	с	Ь	а

а	β	γ	δ
γ	δ	а	β
δ	γ	β	а
β	а	δ	γ

aа	Ьβ	сγ	dδ
Ьγ	аδ	dα	сβ
сδ	dγ	аβ	bа
$d\beta$	c a	Ьδ	ау

$$n = 4k + 2$$

00	47	18	76	29	93	85	34	61	52
86	11	57	28	70	39	94	45	02	63
95	80	22	67	38	71	49	56	13	04
59	96	81	33	07	48	72	60	24	15
73	69	90	82	44	17	58	01	35	26
68	74	09	91	83	55	27	12	46	30
37	08	75	19	92	84	66	23	50	41
14	25	36	40	51	62	03	77	88	99
21	32	43	54	65	06	10	89	97	78
42	53	64	05	16	20	31	98	79	87

The New-York Times

SCIENTIFIC AMERICAN • PERADOD-LATIN' SQUARE FIFTY CENTS

Застосовуючи латинські квадрати, за звичай, виходять з того, що ефекти взаємодії між факторами незначні. Тоді результати експерименту можна представити у вигляді лінійної моделі.

Латинський квадрат 3 х 3

A	В					Разом	
	ŀ	01		b_2		b ₃	2 (130).2
a_1	c_1		c_2		C ₃		A_1
		y_1		\mathbf{y}_2		y_3	1 21
a_2	c_2		c_1		c_1		A_2
442		y_4		y_5		У6	2
a ₃	c_1		c_1		c_2		A_3
		y ₇		У8		У9	- 45
Разом	F	31]	B_2]	B ₃	

Задача Фішера

Припустимо, що необхідно випробувати при мінімальних витратах часу і коштів вплив на зростання пшениці семи сільськогосподарських хімікатів.

Задача Фішера

Припустимо, що необхідно випробувати при мінімальних витратах часу і коштів вплив на зростання пшениці семи сільськогосподарських хімікатів.

Одні ϵ ю з істотних труднощів при випробуваннях такого роду ϵ те, що родючість різних ділянок грунту зазвичай залежить від випадкових факторів.

Задача Фішера

Припустимо, що необхідно випробувати при мінімальних витратах часу і коштів вплив на зростання пшениці семи сільськогосподарських хімікатів.

Одні ϵ ю з істотних труднощів при випробуваннях такого роду ϵ те, що родючість різних ділянок грунту зазвичай залежить від випадкових факторів.

Яким чином можна спланувати експеримент, який дозволить випробувати одночасно всі сім хімікатів і в той же самий час обмежити будь-які сторонні впливи, обумовлені випадковими чинниками?

Відповідь

поділіть пшеничне поле на ділянки, які представлятимуть осередки квадрата зі стороною в сім осередків, потім застосуйте сім "обробок" за моделлю випадково обраного латинського квадрата.

Відповідь

поділіть пшеничне поле на ділянки, які представлятимуть осередки квадрата зі стороною в сім осередків, потім застосуйте сім "обробок"за моделлю випадково обраного латинського квадрата.

Завдяки наявності моделі, простий статистичний аналіз результатів обмежить будь-які помилки, обумовлені випадковими змінами родючості грунту.

Чи можна спланувати такий експеримент, який дозволить врахувати ці чотири змінних? (Інші три змінних відображаються родючістю рядів, родючістю колонок і видом обробки.)

Чи можна спланувати такий експеримент, який дозволить врахувати ці чотири змінних? (Інші три змінних відображаються родючістю рядів, родючістю колонок і видом обробки.)

Тепер для отримання відповіді використову ϵ ться греко-латинський квадрат.

Чи можна спланувати такий експеримент, який дозволить врахувати ці чотири змінних? (Інші три змінних відображаються родючістю рядів, родючістю колонок і видом обробки.)

Тепер для отримання відповіді використову ϵ ться греко-латинський квадрат.

Грецькі літери покажуть, де розмістити сім сортів пшениці, а латинські букви - де застосувати сім різних хімікатів.

Чи можна спланувати такий експеримент, який дозволить врахувати ці чотири змінних? (Інші три змінних відображаються родючістю рядів, родючістю колонок і видом обробки.)

Тепер для отримання відповіді використову ϵ ться греко-латинський квадрат.

Грецькі літери покажуть, де розмістити сім сортів пшениці, а латинські букви - де застосувати сім різних хімікатів.

І в цьому випадку статистичний аналіз результатів не буде представляти складності.

$$x - \bar{x} = A + e$$

$$x - \bar{x} = A + e$$

х — конкретне значенні змінної величини,

$$x - \bar{x} = A + e$$

х – конкретне значенні змінної величини,

 \bar{x} — середн ϵ значення,

$$x - \bar{x} = A + e$$

х – конкретне значенні змінної величини,

 \bar{x} — середн ϵ значення,

A — частина відхилення змінної, пов'язана з впливом даного фактора,

$$x - \bar{x} = A + e$$

х – конкретне значенні змінної величини,

 \bar{x} — середн ϵ значення,

A — частина відхилення змінної, пов'язана з впливом даного фактора,

e — залишкова частина відхилення, що не поясню ϵ ться впливом даного фактора, а зада ϵ ться випадковим впливом.

для цього треба знайти загальну дисперсію

для цього треба знайти загальну дисперсію

$$\sigma_0^2 = \sigma_A^2 + \sigma_e^2$$

для цього треба знайти загальну дисперсію

$$\sigma_0^2 = \sigma_A^2 + \sigma_e^2$$

3а аналогі ϵ ю можна розглянути вплив різної кількості факторів

$$x - \bar{x} = A + B + AB + e$$

$$x - \bar{x} = A + B + AB + e$$

$$\sigma_0^2 = \sigma_A^2 + \sigma_B^2 + \sigma_{AB}^2 + \sigma_e^2$$

$$x - \bar{x} = A + B + AB + e$$

$$\sigma_0^2 = \sigma_A^2 + \sigma_B^2 + \sigma_{AB}^2 + \sigma_e^2$$

$$x - \bar{x} = A + B + AB + e$$

$$\sigma_0^2 = \sigma_A^2 + \sigma_B^2 + \sigma_{AB}^2 + \sigma_e^2$$

$$x - \bar{x} = A + B + C + AB + AC + BC + ABC + e$$

$$x - \bar{x} = A + B + AB + e$$

$$\sigma_0^2 = \sigma_A^2 + \sigma_B^2 + \sigma_{AB}^2 + \sigma_e^2$$

$$x - \bar{x} = A + B + C + AB + AC + BC + ABC + e$$

$$\sigma_0^2 = \sigma_A^2 + \sigma_B^2 + \sigma_C^2 + \sigma_{AB}^2 + \sigma_{AC}^2 + \sigma_{BC}^2 + \sigma_{ABC}^2 + \sigma_e^2$$

$$x - \bar{x} = A + B + AB + e$$

$$\sigma_0^2 = \sigma_A^2 + \sigma_B^2 + \sigma_{AB}^2 + \sigma_e^2$$

$$x - \bar{x} = A + B + C + AB + AC + BC + ABC + e$$

$$\sigma_0^2 = \sigma_A^2 + \sigma_B^2 + \sigma_C^2 + \sigma_{AB}^2 + \sigma_{AC}^2 + \sigma_{BC}^2 + \sigma_{ABC}^2 + \sigma_e^2$$

Зазвичай кожен із досліджених факторів ма ϵ не одне, а декілька значень, які називають рівнями або градаціями

Зазвичай кожен із досліджених факторів ма ϵ не одне, а декілька значень, які називають рівнями або градаціями

Таким чином досліджувані дані можуть бути розбиті на декілька груп, що розрізняються не лише за факторами, а і за їх градаціями

Зазвичай кожен із досліджених факторів ма ϵ не одне, а декілька значень, які називають рівнями або градаціями

Таким чином досліджувані дані можуть бути розбиті на декілька груп, що розрізняються не лише за факторами, а і за їх градаціями

Дослідження методами дисперсійного аналізу всередені груп, між групами і дисперсії всіх даних вцілому да ϵ можливість встановити вплив даних факторів на мінливість даних

Розглянемо найпростішу схему, коли аналізується вплив лише одного фактора

який може мати декілька рівнів (градацій)

Розглянемо найпростішу схему, коли аналізується вплив лише одного фактора

який може мати декілька рівнів (градацій)

Окремі спостереження розбиваються на групи

Розглянемо найпростішу схему, коли аналізується вплив лише одного фактора

який може мати декілька рівнів (градацій)

Окремі спостереження розбиваються на групи

Розподіл даних за групами представляють у вигляді таблиці

Группы по одно- му фак- тору	Отдельные варианты (наблюдения) x_{ij}							Суммы по	Средние по
	1	2	3		j		n	группам T_i	группам x_i
1	x ₁₁	x ₁₂	x ₁₃		x_{1j}		x_{1n}	$\sum x_1 = T_1$	x_1
2	· x ₂₁	x ₂₂	x23		x_{2j}		x_{2n}	$\Sigma x_2 = T_2$	x_2
:									
: 1									
:			· .						ļ
i	x_{i1}	x_{i2}	x_{i3}		x_{ij}		x_{in}	$\Sigma x_i = T_i$	$\overline{x_i}$
:									
:									
: 1									
a	x_{a1}	x_{a2}	x_{a3}	1	x_{aj}	j	xan	$\Sigma x_a = T_a$	x_a

• Загальна зміна всіх даних x_{ij} (незалежно від того, до якої групи вони відносяться) відносно загальної середньої \bar{x}

- Загальна зміна всіх даних x_{ij} (незалежно від того, до якої групи вони відносяться) відносно загальної середньої \bar{x}
- Зміна середніх значень за кожною групою x_i відносно загальної середньої \bar{x}

- Загальна зміна всіх даних x_{ij} (незалежно від того, до якої групи вони відносяться) відносно загальної середньої \bar{x}
- Зміна середніх значень за кожною групою x_i відносно загальної середньої \bar{x}
- Зміна всіх даних x_{ij} всередені кожної відносно середнього значення за групою $\bar{x_i}$ (x_i)

- Загальна зміна всіх даних x_{ij} (незалежно від того, до якої групи вони відносяться) відносно загальної середньої \bar{x}
- Зміна середніх значень за кожною групою x_i відносно загальної середньої \bar{x}
- Зміна всіх даних x_{ij} всередені кожної відносно середнього значення за групою $\bar{x_i}$ (x_i)

Для цього треба знайти суму квадратів

Суми квадратів

Суми квадратів

Загальна сума квадратів

$$\sum_{ij}(x_{ij}-\bar{x})^2$$

Суми квадратів

Загальна сума квадратів

$$\sum_{ij}(x_{ij}-\bar{x})^2$$

Сумма квадратів для середніх по групам

$$\sum_{i} n_i (\bar{x}_i - \bar{x})^2 \qquad n \sum_{i} (\bar{x}_i - \bar{x})^2$$

Суми квадратів

Загальна сума квадратів

$$\sum_{ij}(x_{ij}-\bar{x})^2$$

Сумма квадратів для середніх по групам

$$\sum_{i} n_i (\bar{x}_i - \bar{x})^2 \qquad n \sum_{i} (\bar{x}_i - \bar{x})^2$$

Сумма квадратів відхилень від групових середніх

$$\sum_{i} \left[\sum_{j} (x_{ij} - \bar{x_i})^2 \right]$$

для загальної дисперсії

$$df = N - 1$$
 $N = an$

для загальної дисперсії

$$df = N - 1$$

$$N = an$$

для дисперсії групових середніх

$$df = a - 1$$

для загальної дисперсії

$$df = N - 1$$

$$N = an$$

для дисперсії групових середніх

$$df = a - 1$$

для зміни значень всередені групи

$$df = (n-1)a = na - a = N - a$$

для загальної дисперсії

$$df = N - 1$$

$$N = an$$

для дисперсії групових середніх

$$df = a - 1$$

для зміни значень всередені групи

$$df = (n-1)a = na - a = N - a$$

$$(N-a) + (a-1) = N-a+a-1 = N-1$$

Схема однофакторного дисперсійного аналізу

Схема однофакторного дисперсійного аналізу

Сумма квадратов ss	Число степеней свободы df	Средний квадрат <i>ms</i>
$\sum_{ij} (x_{ij} - \overline{x})^2$	N — 1	$\frac{1}{N-1}\sum_{ij}(x_{ij}-\overline{x})^2$
$\sum_{i} n_{i} (\overline{x_{i}} - \overline{x})^{2}$	a — 1	$\frac{1}{a-1}\sum_{i}n_{i}(\overline{x_{i}}-\overline{x})^{2}$
$\sum_{i} \left[\sum_{j} (x_{ij} - \overline{x_i})^2 \right]$	N a	$\frac{1}{N-a}\sum_{i}\left[\sum_{j}x_{ij}-\overline{x_{i}}\right]^{2}$

Головне в дисперсійному аналізі — це порівняння двох останніх квадратів (другий і третій) з критерієм Фішера

$$F = \frac{\sigma_1^2}{\sigma_2^2}$$

df_1 df_2	1	2	3	4	5	6	7	8	9	10
1	161	200	216	225	230	234	237	239	241	242
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,94
5	6,61	5,79	5,41	5,19	5,05	4,95	4 88	4,82	4,77	4,74
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14
10	4,96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98

df_1 df_2	1	2	3	4	5	6	7	8	9	10
1	4052	4999	5403	5625	5764	5859	5928	5982	6022	6056
2	98,50	99,00	99,17	99,25	99,30	99,33	99,36	99,37	99,39	99,40
3	34,12	30,82	29,46	28,71	28,42	27,91	27,67	27,49	27,35	27,23
4	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14,66	14,55
5	16,26	13,27	12,06	11,39	10,97	10,67	10,46	10,29	10,16	10,05
6	13,75	10,92	9,78	9,15	8,75	8,47	8,26	8,10	7,98	7,87
7	12,25	9,55	8,47	7,85	7,46	7,19	6,99	6,84	6,72	6,62
8	11,26	8,65	7,59	7,01	6,63	6,37	6,18	6,03	5,91	5,81
9	10,56	8,02	6,99	6,42	6,06	5,80	5,61	5,47	5,35	5,26
10	10,04	7,56	6,55	5,99	5,64	5,39	5,20	5,06	4,94	4,85

Робочі формули для сум квадратів

Загальна сума квадратів

$$ms = \sigma^2 = rac{1}{N-1} \left(\sum_{ij} x_{ij}^2 - rac{T^2}{N}
ight)$$

Робочі формули для сум квадратів

Загальна сума квадратів

$$ms = \sigma^2 = rac{1}{N-1} \left(\sum_{ij} x_{ij}^2 - rac{T^2}{N}
ight)$$

Сумма квадратів для середніх по групам

$$ms = \sigma^2 = \frac{1}{a-1} \left(\sum_i \frac{T_i^2}{n_i} - \frac{T^2}{N} \right)$$

Робочі формули для сум квадратів

Загальна сума квадратів

$$ms = \sigma^2 = rac{1}{N-1} \left(\sum_{ij} x_{ij}^2 - rac{T^2}{N}
ight)$$

Сумма квадратів для середніх по групам

$$ms = \sigma^2 = \frac{1}{a-1} \left(\sum_i \frac{T_i^2}{n_i} - \frac{T^2}{N} \right)$$

Сумма квадратів випадкових відхилень

$$ms = \sigma^2 = rac{1}{N-a} \left(\sum_{ij} x_{ij}^2 - \sum_i rac{T_i^2}{n_i}
ight)$$

Приклад дисперсійного аналізу для одно факторної схеми та однакової кількості даних у кожній групі

Приклад дисперсійного аналізу для одно факторної схеми та однакової кількості даних у кожній групі

	0	предел	ение x_{i}	i					
Часы суток	1	2	3	4	T_{i}	n_i	\overline{x}_i	T_i^2	
15	1,41	0,95	1,00	0,93	4,29	4	1,07	18,4041	
18	1,17	1,10	0 84	1,01	4,12	4	1,03	16,9744	
21	1,38	1,38	0,91	1,36	5,03	4	1,26	25,3009	
24	0,62	0,48	0,43	0,62	2,15	4	0,54	4,6225	
6	0,74	0,41	0,41	0,43	1,96	4	0,50	3,9601	
9	0,76	0,59	0,74	0,46	2,55	4	0,64	6 5025	
12	0,64	1,02	1,04	0,98	3,68	4	0,92	13,5422	
					T = 23,81 $T^2 = 566,9161$	N=28		$\Sigma T_i^2 = 89,3069$	

$$\sum x_{ij}^2 = 22,7316$$

$$\sum x_{ij}^2 = 22,7316$$

$$\sum_{ij} x_{ij}^2 - \frac{T^2}{N} = 22,7316 - \frac{566,9161}{28} =$$

$$\sum x_{ij}^2 = 22,7316$$

$$\sum_{ij} x_{ij}^2 - \frac{T^2}{N} = 22,7316 - \frac{566,9161}{28} =$$

$$= 22,7316 - 20,2470 = 2,4846.$$

$$\sum x_{ij}^2 = 22,7316$$

$$\sum_{ij} x_{ij}^2 - \frac{T^2}{N} = 22,7316 - \frac{566,9161}{28} =$$

$$= 22,7316 - 20,2470 = 2,4846.$$

$$\sum_{i} \frac{T_{i}^{2}}{n_{i}} - \frac{T^{2}}{N}$$

$$\sum_{i} \frac{T_{i}^{2}}{n_{i}} - \frac{T^{2}}{N} = \frac{1}{n} \sum T_{i}^{2} - \frac{T^{2}}{N} =$$

$$\sum_{i} \frac{T_{i}^{2}}{n_{i}} - \frac{T^{2}}{N} = \frac{1}{n} \sum T_{i}^{2} - \frac{T^{2}}{N} =$$

$$=\frac{1}{4} \cdot 89,3069 - 20,2470 =$$

$$\sum_{i} \frac{T_{i}^{2}}{n_{i}} - \frac{T^{2}}{N} = \frac{1}{n} \sum T_{i}^{2} - \frac{T^{2}}{N} =$$

$$=\frac{1}{4} \cdot 89,3069 - 20,2470 =$$

$$= 22,3267 - 20,2470 = 2,0797.$$

$$\sum_{i} \frac{T_{i}^{2}}{n_{i}} - \frac{T^{2}}{N} = \frac{1}{n} \sum T_{i}^{2} - \frac{T^{2}}{N} =$$

$$= \frac{1}{4} \cdot 89,3069 - 20,2470 =$$

$$= 22,3267 - 20,2470 = 2,0797.$$

$$\sum_{i} x_{ij}^2 - \sum_{i} \frac{T_i^2}{n_i} = 22,7316 - 22,3267 = 0,4049.$$

$$df = N - 1 = 28 - 1 = 27;$$

 $df = a - 1 = 7 - 1 = 6;$
 $df = N - a = 28 - 7 = 21.$

$$df = N - 1 = 28 - 1 = 27;$$

 $df = a - 1 = 7 - 1 = 6;$
 $df = N - a = 28 - 7 = 21.$

•		IImama			F табличное		
Источник варьирования	Сумма квадратов ss	Число степеней свободы df	Средний квадрат ms	F факти- ческое	при P=0,05	при P=0,01	
Общее	2,4846	27	_				
Фактор <i>A</i> (вре- мя суток)	2,0797	6	0,3466	$\frac{0,3466}{0,0193} =$	2,57	3,81	
Случайные от- клонения	0,4049	21	0,0193	= 18,0			