Vectors, Mixed exercise 12

1 Coordinates of M are (3,5,4)

Distance from *M* to *C*
=
$$\sqrt{(5-3)^2 + (8-5)^2 + (7-4)^2}$$

= $\sqrt{4+9+9} = \sqrt{22}$

2 Distance from P to Q $\sqrt{((2)^2)^2 + ((2)^2)^2}$

$$= \sqrt{((a-2)-2)^2 + (6-3)^2 + (7-a)^2}$$

$$= \sqrt{a^2 - 8a + 16 + 9 + 49 - 14a + a^2}$$

$$= \sqrt{2a^2 - 22a + 74} = \sqrt{14}$$

$$2a^{2}-22a+74=14$$
$$a^{2}-11a+30=0$$
$$(a-5)(a-6)=0$$

$$a = 5 \text{ or } a = 6$$

3
$$|\overrightarrow{AB}| = \sqrt{3^2 + t^2 + 5^2} = \sqrt{t^2 + 34}$$

 $\sqrt{t^2 + 34} = 5\sqrt{2}$
 $t^2 + 34 = 50$
 $t^2 = 16$
 $t = 4$ (since $t > 0$)

So
$$\overrightarrow{AB} = -3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$$

$$6\mathbf{i} - 8\mathbf{j} - \frac{5}{2}t\mathbf{k} = 6\mathbf{i} - 8\mathbf{j} - 10\mathbf{k}$$
$$= 2\overline{AB}$$

So \overrightarrow{AB} is parallel to $6\mathbf{i} - 8\mathbf{j} - \frac{5}{2}t\mathbf{k}$

4 a Let *O* be the fixed origin.

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = -3\mathbf{i} - 8\mathbf{j} + 3\mathbf{k}$$

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = -3\mathbf{i} - 9\mathbf{j} + 8\mathbf{k}$$

$$\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ} = -\mathbf{j} + 5\mathbf{k}$$

$$\mathbf{b} \quad |\overrightarrow{PQ}| = \sqrt{9 + 64 + 9} = \sqrt{82}$$
$$|\overrightarrow{PR}| = \sqrt{9 + 81 + 64} = \sqrt{154}$$
$$|\overrightarrow{QR}| = \sqrt{1 + 25} = \sqrt{26}$$

$$\cos \angle QPR = \frac{82 + 154 - 26}{2 \times \sqrt{82} \times \sqrt{154}} = 0.9343...$$
$$\angle QPR = 20.87...^{\circ}$$

Area of triangle = $\frac{1}{2} \times \sqrt{82} \times \sqrt{154} \sin 20.87...^{\circ}$ = 20.0 (1 d.p.)

5 a
$$\overrightarrow{DE} = \overrightarrow{OE} - \overrightarrow{OD} = 4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$$

 $\overrightarrow{EF} = \overrightarrow{OF} - \overrightarrow{OE} = -3\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$
 $\overrightarrow{FD} = \overrightarrow{OD} - \overrightarrow{OF} = -\mathbf{i} + \mathbf{j} - 8\mathbf{k}$

$$\mathbf{b} \quad |\overrightarrow{DE}| = \sqrt{16 + 9 + 16} = \sqrt{41}$$
$$|\overrightarrow{EF}| = \sqrt{9 + 16 + 16} = \sqrt{41}$$
$$|\overrightarrow{FD}| = \sqrt{1 + 1 + 64} = \sqrt{66}$$

c Two sides are equal in length so the triangle is isosceles.

6 a
$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = 9\mathbf{i} - 4\mathbf{j}$$

 $\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = 7\mathbf{i} + \mathbf{j} - 3\mathbf{k}$
 $\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ} = -2\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$

b
$$|\overrightarrow{PQ}| = \sqrt{81+16} = \sqrt{97}$$

 $|\overrightarrow{PR}| = \sqrt{49+1+9} = \sqrt{59}$
 $|\overrightarrow{QR}| = \sqrt{4+25+9} = \sqrt{38}$

c $\angle QRP = 90^{\circ}$ so PQ is the hypotenuse.

$$\sin \angle PQR = \frac{|\overrightarrow{PR}|}{|\overrightarrow{PQ}|} = \sqrt{\frac{59}{97}} = 0.7799...$$

$$\angle PQR = 51.3^{\circ}$$

7
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = -2\mathbf{j} + \mathbf{k}$$

$$\left| \overrightarrow{AB} \right| = \sqrt{1+1} = \sqrt{2}$$

$$\left| \overrightarrow{AB} \right| = \sqrt{1+1} = \sqrt{2}$$

$$\left| \overrightarrow{BC} \right| = \sqrt{1+9+1} = \sqrt{11}$$

$$\left| \overrightarrow{AC} \right| = \sqrt{4+1} = \sqrt{5}$$

$$\left| \overrightarrow{AC} \right| = \sqrt{4+1} = \sqrt{5}$$

$$\cos \angle ABC = \frac{2+11-5}{2\times\sqrt{2}\times\sqrt{11}} = 0.8528...$$

$$\angle ABC = 31.5^{\circ}$$

8
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} \Rightarrow \overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$$

So $\overrightarrow{BC} = \begin{pmatrix} 9 \\ 10 \\ -6 \end{pmatrix}$

$$|\overrightarrow{AB}| = \sqrt{36 + 4 + 121} = \sqrt{161}$$

$$|\overrightarrow{AC}| = \sqrt{225 + 64 + 25} = \sqrt{314}$$

$$\left|\overrightarrow{BC}\right| = \sqrt{81 + 100 + 36} = \sqrt{217}$$

$$\cos \angle ABC = \frac{161 + 217 - 314}{2 \times \sqrt{161} \times \sqrt{217}} = 0.1712...$$

$$\angle ABC = 80.14...$$

Area of triangle ABC

$$= \frac{1}{2} \times \sqrt{161} \times \sqrt{217} \times \sin \angle ABC$$

Area of parallelogram ABCD

$$= \sqrt{161} \times \sqrt{217} \times \sin \angle ABC$$

$$= \sqrt{161} \times \sqrt{217} \times \sin 80.14...^{\circ}$$

$$=184 (3 \text{ s.f.})$$

9 a
$$|\overrightarrow{AB}| = \sqrt{4+25+9} = \sqrt{38}$$

 $|\overrightarrow{AC}| = \sqrt{4+25+9} = \sqrt{38}$

$$\left| \overrightarrow{AC} \right| = \sqrt{4 + 25 + 9} = \sqrt{38}$$

So ABC is an isosceles triangle. Therefore *DBC* is an isosceles triangle.

So \overrightarrow{AB} is parallel to \overrightarrow{CD} and \overline{AC} is parallel to \overline{BD} .

Let *O* be the fixed origin.

$$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{CD}$$

$$= \overrightarrow{OC} + \overrightarrow{AB}$$

$$= \overrightarrow{OC} + \overrightarrow{OB} - \overrightarrow{OA}$$

$$= \begin{pmatrix} 4 \\ -2 \\ -5 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ -7 \\ -2 \end{pmatrix}$$

Coordinates of D are (2, -7, -2)

b ABCD is a parallelogram with four sides of equal length. It is a rhombus.

$$\mathbf{c} \quad |\overrightarrow{BC}| = \sqrt{16 + 36} = \sqrt{52}$$

$$\cos \angle BAC = \frac{38 + 38 - 52}{2 \times \sqrt{38} \times \sqrt{38}} = 0.3157...$$

$$\angle BAC = 71.59...^{\circ}$$

Area of triangle ABC

$$= \frac{1}{2} \times \sqrt{38} \times \sqrt{38} \times \sin \angle ABC$$

Area of parallelogram ABCD

$$= \sqrt{38} \times \sqrt{38} \times \sin \angle ABC$$

$$= \sqrt{38} \times \sqrt{38} \times \sin 71.59...^{\circ}$$

$$=36.1 (3 \text{ s.f.})$$

10
$$\overrightarrow{OP} = \frac{1}{2} \overrightarrow{OC} = \frac{1}{2} \mathbf{c}$$

 $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$
 $\overrightarrow{OQ} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB} = \mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$
 $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \frac{1}{2} (\mathbf{a} + \mathbf{b} - \mathbf{c})$
 $\overrightarrow{OR} = \frac{1}{2} \overrightarrow{OA} = \frac{1}{2} \mathbf{a}$
 $\overrightarrow{BC} = \mathbf{c} - \mathbf{b}$
 $\overrightarrow{OS} = \overrightarrow{OB} + \frac{1}{2} \overrightarrow{BC} = \mathbf{b} + \frac{1}{2} (\mathbf{c} - \mathbf{b})$
 $\overrightarrow{RS} = \overrightarrow{OS} - \overrightarrow{OR} = \frac{1}{2} (-\mathbf{a} + \mathbf{b} + \mathbf{c})$
 $\overrightarrow{OT} = \frac{1}{2} \overrightarrow{OB} = \frac{1}{2} \mathbf{b}$
 $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$
 $\overrightarrow{OU} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AC} = \mathbf{a} + \frac{1}{2} (\mathbf{c} - \mathbf{a})$
 $\overrightarrow{TU} = \overrightarrow{OU} - \overrightarrow{OT} = \frac{1}{2} (\mathbf{a} - \mathbf{b} + \mathbf{c})$

Suppose there is a point of intersection, X, of PQ, RS and TU.

$$\overrightarrow{PX} = r\overrightarrow{PQ} = \frac{r}{2}(\mathbf{a} + \mathbf{b} - \mathbf{c})$$

$$\overrightarrow{RX} = s\overrightarrow{RS} = \frac{s}{2}(-\mathbf{a} + \mathbf{b} + \mathbf{c})$$

$$\overrightarrow{TX} = t\overrightarrow{TU} = \frac{t}{2}(\mathbf{a} - \mathbf{b} + \mathbf{c})$$

for scalars r, s and t.

But
$$\overrightarrow{RX} = \overrightarrow{RO} + \overrightarrow{OP} + \overrightarrow{PX}$$

$$= -\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} + \frac{r}{2}(\mathbf{a} + \mathbf{b} - \mathbf{c})$$
so $\frac{s}{2}(-\mathbf{a} + \mathbf{b} + \mathbf{c}) = -\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} + \frac{r}{2}(\mathbf{a} + \mathbf{b} - \mathbf{c})$

$$s(-\mathbf{a} + \mathbf{b} + \mathbf{c}) = (r - 1)\mathbf{a} + r\mathbf{b} + (1 - r)\mathbf{c}$$

Comparing coefficients of **b** and **c**: s = r and s = 1 - r

Hence
$$r = s = \frac{1}{2}$$

Also
$$\overrightarrow{TX} = \overrightarrow{TO} + \overrightarrow{OP} + \overrightarrow{PX}$$

$$= -\frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c} + \frac{1}{4}(\mathbf{a} + \mathbf{b} - \mathbf{c})$$
so $\frac{t}{2}(\mathbf{a} - \mathbf{b} + \mathbf{c}) = -\frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c} + \frac{1}{4}(\mathbf{a} + \mathbf{b} - \mathbf{c})$

$$t(\mathbf{a} - \mathbf{b} + \mathbf{c}) = \frac{1}{2}(\mathbf{a} - \mathbf{b} + \mathbf{c})$$
Hence $t = \frac{1}{2}$

So the point X is the midpoint of all three line segments PQ, RS and TU. Therefore the line segments do meet at a point and bisect each other.

11 Total force on particle = $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ = $((b+1)\mathbf{i} + (4-b)\mathbf{j} + (7-b)\mathbf{k})\mathbf{N}$

$$|\mathbf{F}| = \sqrt{(b+1)^2 + (4-b)^2 + (7-b)^2}$$

$$= \sqrt{b^2 + 2b + 1 + 16 - 8b + b^2 + 49 - 14b + b^2}$$

$$= \sqrt{3b^2 - 20b + 66}$$

$$|\mathbf{F}| = m|\mathbf{a}|$$

$$\Rightarrow \sqrt{3b^2 - 20b + 66} = 2 \times 3.5 = 7$$

$$3b^2 - 20b + 66 = 49$$

$$3b^2 - 20b + 17 = 0$$

$$(b-1)(3b-17) = 0$$

$$b = 1 \text{ or } b = \frac{17}{3}$$

- 12 a Air resistance acts in opposition to the motion of the BASE jumper. The motion downwards will be greater than the motion in the other directions.
 - **b** Gravitational force downwards $= 50 \times 9.8 = 490 \text{ N}$

Total force on BASE jumper = $\mathbf{W} + \mathbf{F} - 490\mathbf{k}$ = $(16\mathbf{i} + 13\mathbf{j} - 40\mathbf{k})$ N

12 c
$$|16\mathbf{i} + 13\mathbf{j} - 40\mathbf{k}| = \sqrt{256 + 169 + 1600}$$

= $\sqrt{2025} = 45 \text{ N}$
Acceleration = $\frac{45}{50} = \frac{9}{10} \text{ ms}^{-2}$

Using
$$s = ut + \frac{1}{2}at^2$$
:

$$180 = 0 + \frac{1}{2} \times \frac{9}{10}t^2$$

$$t^2 = 400$$

$$t = 20$$

The descent took 20 seconds.

Challenge

For example, if $\mathbf{a} = (1, 0, 0)$, $\mathbf{b} = (0, 1, 0)$ and $\mathbf{c} = (1, 1, 0)$ then p = q = r = 1 gives

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 2\mathbf{a} + 2\mathbf{b}$$

So $s = 2 \neq p$, $t = 2 \neq q$ and $u = 0 \neq r$, and the result does not hold.

The statement is also untrue if any of the scalars p, q and r is zero. For example, with \mathbf{a} , \mathbf{b} and \mathbf{c} as above, if p = 0 and q = r = 1, then $s = 1 \neq p$, $t = 2 \neq q$ and $u = 0 \neq r$.