P\$28/2 CHEMISTRY PAPER 2 (Theory) HH-V/AUG/2024 J-Vcheme

ABBITTI ABKOLE JOHET MOCH SE'KA KEHRATIONS 2024

Uganda Advanced Certificate of Education

CHEMISTRY

PAPER 2

(THEORY)

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Answer five questions including three questions from section A and any two from section II.

Write the answers in the answer booklets provided

Begin each question on a fresh page.

Mathematical tables and squared papers are provided.

Nilent non-programmable scientific electronic calculators may be used.

Use equations where necessary to illustrate your answers,

Where necessary use the following.

$$(H=1, C=12, O=16, I=127, 8=32, N=14)$$

SECTION A (60 MARKS)

Answer any three questions from this section.

Any additional question(s) answered will not be marked.

- 1. (a) Explain why a 0.2M barium chloride solution has the same freezing point as a 0.6M solution of glucose (2 ½ marks)

 (b)(i) Describe an experiment that
 - (b)(i) Describe an experiment that can be carried out in the laboratory to determine the formula mass of sulphur in naphthalene. (6 marks)
 - (ii) 3.5g of Sulphur in 100g of naphthalene lowered the melting point of the later by 0.87°C, while 3.2g of iodine in 100g of same solvent lowered the melting point by 0.80°C. Calculate the freezing point constant for naphthalene and hence determine the molecular formula of sulphur in naphthalene.

(c) The table below shows the freezing points of different concentrations of solute T in water

Concentration of T(gdm ³)	0	30	60	90	120	150
Freezing point (⁰ C)	0	-0.16	-0.32	-0.49	-0.65	-0.81

- i) Plot a graph of freezing point depression against concentration of T

 (4 marks)
- ii) Use the graph you have drawn to determine the relative molecular mass of T (The cryoscopic constant for water is 1.86°C per 1000g per mole) (2 ½ marks)
- 2. (a) An organic compound W contains 58.9% of carbon, 9.8% of hydrogen and the rest being oxygen. Determine the
 - Empirical formula of W.

(2 marks)

ii) Molecular fermula of W. The vapour density of W is 51.

(1 mark)

- (b) When W was heated with dilute sulphuric acid compounds X, C₃H₈O and Y, C₂H₄O₂ were formed. X reacts with sodium metal to liberate hydrogen gas but has no effect on litmus.
- i) Write the structural formulae of all isomers of X (2 marks

- ii) Name a reagent that can be used to distinguish between the isomers of X and state what is observed if the isomers are separately treated with the reagent. (2 marks)
- (c) X reacts with acidified potassium manganate(VII) solution on heating to give compound Z, which forms a pale yellow precipitate with alkaline iodine solution.
 - i) Identify substances X, Z and yellow precipitate (3 marks)
 - ii) Write equation for the reaction leading to the formation of the pale yellow precipitate. (1 mark)
- (d) Write a mechanism for the reaction that would take place between;
 - i) X and ethanoyl chloride

(3 marks)

ii) Z and 2, 4 – dinitrophenyl hydrazine

(4 marks)

- (e) Compound Y reacts with magnesium powder with effervescence of a colourless gas.
 - i) Name the functional group in Y

(1 mark)

ii) Write the structural formula of W

(1 mark)

- 3. (a) Define the following terms
 - i) PH

(1 mark)

ii) Molar conductivity

(1 mark)

- (b)25cm³ of 0.1M ammonia solution was titrated with hydrochloric acid from the burette and 12.5cm³ of 0.2M hydrochloric acid was used for complete neutralization.
- i) Calculate the pH of the resultant solution formed (Kw = 1.0×10^{-14} and Kb = 1.75×10^{-5}) (5 marks)
- ii) Sketch a graph to show the change in pH when 0.2M hydrochloric acid was added to 25cm³ of 0.1M ammonia solution until the end point.

 (3 marks)
- iii) Explain the shape of your sketch graph in b(ii) above. (4 marks)
- (c) State Kohlrauch's law of independent migration of ions (1 mark)
- (d) A 298K, a solution containing 3.3g per litre of ammonium sulphate has an electrolytic conductivity of $7.675 \times 10^{-3} \Omega^{-1} \text{ cm}^{-1}$. Determine the molar concentration of ammonium ions in the solution. (The molar conductivity of sulphate ions at infinite dilution is $160 \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$, (N = 14, S = 32, O = 16, H = 1)

- 4. Beryllium, calcium and barium are some of the elements that belong to group(II) of the periodic table
 - a) (i) Write the electronic configuration of beryllium ions and barium ions in +2 oxidation state. (1 mark)
 - (ii) Explain why beryllium chloride is more soluble in ethanol than water while barium chloride is more soluble in water than ethanol. (4 marks)
 - b) Describe the reactions of beryllium and barium with;
 - i) Oxygen

(3 marks)

ii) Dilute sulphuric acid

(4 marks)

- c) Briefly explain the reactions that take place during the manufacture of cement. (3 ½ marks)
- d) Potassium chromate (VI) solution was added to barium nitrate solution followed by dilute nitric acid. Explain what was observed.

(4 ½ marks)

SECTION B (40 MARKS)

Answer any two questions from this section Any additional question(s) answered will not be marked

- 5. Write equations to show how each of the following compounds can be synthesized. Indicate reagents and conditions for the reactions in each case.
 - a) Propanone from bromoethane

(4 marks)

(3 marks)

from chlorobenzene

c) CH₃CONH₂ from butan-2-ol

(5 marks)

e) CHO NH₂ (4 marks)

e) OH (4 marks)

- 6. (a) The first and the third ionization energies of element R are 845 and 7780 KJmol⁻¹ respectively.
 - i) Define the term first ionization energy. (1 mark)
 - ii) The frequency of element R at the point of second ionization is 3.58×10^{15} Hz. Calculate the value of the second ionization energy of element R(Planck's constant = 6.626×10^{-34} Js and Avogadro's number NA = 6.02×10^{23}) (3 marks)
 - iii) State the group in the periodic Table to which R belongs and give a reason for your answer. (3 marks)
 - (b) The mass spectrum of bromine shows peaks at mass to charge ratios of 158, 160 and 162 and bromine has two isotopes, Br − 79 and bromine − 81.
 - i) Briefly describe how the mass spectrum of bromine can be obtained (6 marks)
 - ii) Write the formulae of the ions corresponding to the peaks.

 (3 marks)
 - iii) Calculate the percentage abundance of each isotope of bromine and hence sketch the mass spectrum of bromine. (The relative atomic mass of bromine is 79.91) (4marks)
- 7. (a) State the difference between soap and a non-soapy detergent.

(1 mark)

- (b)(i) Write equations to show how a non-soapy detergent can be prepared from benzene and but-1-ene. (4 marks)
 - (ii) Explain the cleansing action of the non-soapy detergent formed in b(i) above. (4 marks)
 - (iii) State two advantages of using non-soapy detergents over soap.

(2 marks)

(c) Distinguish between addition and condensation polymerization.

(2 marks)

 $(1 \frac{1}{2} marks)$

- (d) Write equations to show how each of the following polymers is formed.
 - i) Perspex

ii) Nylon -6, 10 (1 ½ marks)

(e) Polytetrafluoroethene is formed by addition polymerization. In an experiment, the osmotic pressure of a 3.0% solution of polytetrafluoro ethene in toulene was found to be 46.77mmHg at 27° C. Determine the number of monomer units in the polymer. (R = 8.31, C = 12, F = 19)

- 8. In the extraction of zinc from zinc blende, the ore is first concentrated and then extraction follows.
 - a) Name the;
 - Method by which the ore of zinc is concentrated (1 mark) i)
 - Two main impurities present in the ore of zinc named above. ii) (1 mark)
 - b) Describe how zinc is extracted from the concentrated ore.

(5 marks)

- c) Explain the reactions of zinc and the following substances.
 - Potassium hydroxide i)

(2 ½ marks)

Concentrated sulphuric acid. ii)

(2 ½ marks)

- d) Zinc ethanoate dissolves in water to form a colourless solution and decomposes on heating to give a gas which forms a yellow precipitate with 2, 4-dinitrophenyl hydrazine solution. Explain;
 - What is observed when sodium hydrogen carbonate solution is (4 marks) added to the colourless solution.
 - What happened when zinc ethanoate is neater dith use gas ii) passed through 2, 4-dinitro phenylhydrazine solution. (4 marks)

END