### import Libraries

```
In [96]: import numpy as np
import pandas as pd

In [97]: import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

## **Loading The Dataset**

```
In [98]: df=sns.load_dataset('mpg')
```

In [99]: df.head()

Out[99]:

|   | mpg  | cylinders | displacement | horsepower | weight | acceleration | model_year | origin | name                      |
|---|------|-----------|--------------|------------|--------|--------------|------------|--------|---------------------------|
| 0 | 18.0 | 8         | 307.0        | 130.0      | 3504   | 12.0         | 70         | usa    | chevrolet chevelle malibu |
| 1 | 15.0 | 8         | 350.0        | 165.0      | 3693   | 11.5         | 70         | usa    | buick skylark 320         |
| 2 | 18.0 | 8         | 318.0        | 150.0      | 3436   | 11.0         | 70         | usa    | plymouth satellite        |
| 3 | 16.0 | 8         | 304.0        | 150.0      | 3433   | 12.0         | 70         | usa    | amc rebel sst             |
| 4 | 17.0 | 8         | 302.0        | 140.0      | 3449   | 10.5         | 70         | usa    | ford torino               |

```
In [100]: df.shape
```

Out[100]: (398, 9)

```
In [101]: df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 398 entries, 0 to 397
           Data columns (total 9 columns):
                Column
                               Non-Null Count Dtype
            0
                mpg
                               398 non-null
                                                float64
                cylinders
                               398 non-null
                                                int64
                displacement 398 non-null
                                                float64
                horsepower
                               392 non-null
                                                float64
                weight
                               398 non-null
                                                int64
                                                float64
                acceleration 398 non-null
                               398 non-null
                                                int64
                model vear
                origin
                               398 non-null
                                                object
                name
                               398 non-null
                                                object
           dtypes: float64(4), int64(3), object(2)
           memory usage: 28.1+ KB
In [102]: df.drop(['name'] , axis = 1, inplace = True)
In [103]: df.head()
Out[103]:
              mpg cylinders displacement horsepower weight acceleration model_year origin
                                                     3504
                                                                 12.0
            0 18.0
                          8
                                   307.0
                                              130.0
                                                                             70
                                                                                   usa
            1 15.0
                          8
                                   350.0
                                                     3693
                                                                 11.5
                                                                             70
                                              165.0
                                                                                   usa
                                              150.0
            2 18.0
                          8
                                   318.0
                                                     3436
                                                                             70
                                                                 11.0
                                                                                   usa
            3 16.0
                          8
                                   304.0
                                              150.0
                                                     3433
                                                                 12.0
                                                                             70
                                                                                   usa
            4 17.0
                          8
                                   302.0
                                              140.0
                                                     3449
                                                                 10.5
                                                                             70
                                                                                   usa
```

```
In [104]: df.describe()
```

### Out[104]:

|       | mpg        | cylinders  | displacement | horsepower | weight      | acceleration | model_year |
|-------|------------|------------|--------------|------------|-------------|--------------|------------|
| count | 398.000000 | 398.000000 | 398.000000   | 392.000000 | 398.000000  | 398.000000   | 398.000000 |
| mean  | 23.514573  | 5.454774   | 193.425879   | 104.469388 | 2970.424623 | 15.568090    | 76.010050  |
| std   | 7.815984   | 1.701004   | 104.269838   | 38.491160  | 846.841774  | 2.757689     | 3.697627   |
| min   | 9.000000   | 3.000000   | 68.000000    | 46.000000  | 1613.000000 | 8.000000     | 70.000000  |
| 25%   | 17.500000  | 4.000000   | 104.250000   | 75.000000  | 2223.750000 | 13.825000    | 73.000000  |
| 50%   | 23.000000  | 4.000000   | 148.500000   | 93.500000  | 2803.500000 | 15.500000    | 76.000000  |
| 75%   | 29.000000  | 8.000000   | 262.000000   | 126.000000 | 3608.000000 | 17.175000    | 79.000000  |
| max   | 46.600000  | 8.000000   | 455.000000   | 230.000000 | 5140.000000 | 24.800000    | 82.000000  |

## **Data Preprocessing**

```
In [105]: df.isnull().sum()
Out[105]: mpg
                           0
          cylinders
                           0
          displacement
                           0
          horsepower
                           6
          weight
                           0
          acceleration
                           0
          model_year
                           0
          origin
                           0
          dtype: int64
In [106]: df.dropna(inplace=True)
```

```
In [107]: df.head()
```

Out[107]:

|   | mpg  | cylinders | displacement | horsepower | weight | acceleration | model_year | origin |
|---|------|-----------|--------------|------------|--------|--------------|------------|--------|
| 0 | 18.0 | 8         | 307.0        | 130.0      | 3504   | 12.0         | 70         | usa    |
| 1 | 15.0 | 8         | 350.0        | 165.0      | 3693   | 11.5         | 70         | usa    |
| 2 | 18.0 | 8         | 318.0        | 150.0      | 3436   | 11.0         | 70         | usa    |
| 3 | 16.0 | 8         | 304.0        | 150.0      | 3433   | 12.0         | 70         | usa    |
| 4 | 17.0 | 8         | 302.0        | 140.0      | 3449   | 10.5         | 70         | usa    |

```
In [108]: df.isnull().sum().any()
```

Out[108]: False

In [109]: df.shape

Out[109]: (392, 8)

## **Explorataory Data Analysis**

**Univariate Data Analysis** 

```
In [110]: plt.figure(figsize = (15, 8))
    sns.countplot(x=df["cylinders"], data = df, palette='cubehelix')
    plt.show()
```



```
In [111]: plt.figure(figsize = (15, 8))
    sns.countplot(x=df["origin"], data = df, palette='cubehelix')
    plt.show()
```



In [112]: df['model\_year'] = 1900 + df['model\_year']

In [113]: df.head()

Out[113]:

|   | mpg  | cylinders | displacement | horsepower | weight | acceleration | model_year | origin |
|---|------|-----------|--------------|------------|--------|--------------|------------|--------|
| 0 | 18.0 | 8         | 307.0        | 130.0      | 3504   | 12.0         | 1970       | usa    |
| 1 | 15.0 | 8         | 350.0        | 165.0      | 3693   | 11.5         | 1970       | usa    |
| 2 | 18.0 | 8         | 318.0        | 150.0      | 3436   | 11.0         | 1970       | usa    |
| 3 | 16.0 | 8         | 304.0        | 150.0      | 3433   | 12.0         | 1970       | usa    |
| 4 | 17.0 | 8         | 302.0        | 140.0      | 3449   | 10.5         | 1970       | usa    |

```
In [114]: plt.figure(figsize = (15, 8))
    sns.countplot(x=df["model_year"], data = df, palette='rainbow')
    plt.show()
```



```
In [115]: sns.distplot(df['horsepower'])
    plt.show()
```



```
In [116]: sns.distplot(df['displacement'])
    plt.show()
```



**Bivariate Analysis** 

```
In [117]: plt.figure(figsize=(15,8))
    sns.boxplot(x='cylinders', y = 'mpg', data = df , palette='rainbow')
    plt.show()
```



```
In [118]: plt.figure(figsize=(15,8))
    sns.boxplot(x='model_year', y = 'mpg', data = df , palette='rainbow')
    plt.show()
```



# **Multivariate Data Analysis**

```
In [119]: graph = sns.lmplot(x = "horsepower", y = "mpg", hue = "origin", data = df, palette = "rainbow")
    graph.set(xlim = (0, 250))
    graph.set(ylim = (0, 50))
    plt.show()
```



```
In [120]: graph = sns.lmplot(x = "acceleration", y = "mpg", hue = "origin", data = df, palette = "rainbow")
    graph.set(xlim = (5, 25))
    graph.set(ylim = (0, 50))
    plt.show()
```



```
In [121]: graph = sns.lmplot(x = "displacement", y = "mpg", hue = "origin", data = df, palette = "rainbow")
    graph.set(xlim = (0,500))
    graph.set(ylim = (0, 50))
    plt.show()
```



```
In [122]: graph = sns.lmplot(x = "weight", y = "mpg", hue = "origin", data = df, palette = "rainbow")
    graph.set(ylim = (0, 50))
    graph.set(xlim = (1500, 5500))
    plt.show()
```



### Heat map of correlation matrix

```
In [123]: plt.figure(figsize = (15, 9))
    sns.heatmap(df.corr(), annot = True, linewidth = 0.5, cmap = "Spectral")
    plt.show()
```



```
In [124]: df.drop(['acceleration','displacement'],axis=1,inplace=True)
```

In [125]: df.head()

### Out[125]:

| _ |   | mpg  | cylinders | horsepower | weight | model_year | origin |
|---|---|------|-----------|------------|--------|------------|--------|
| _ | 0 | 18.0 | 8         | 130.0      | 3504   | 1970       | usa    |
|   | 1 | 15.0 | 8         | 165.0      | 3693   | 1970       | usa    |
|   | 2 | 18.0 | 8         | 150.0      | 3436   | 1970       | usa    |
|   | 3 | 16.0 | 8         | 150.0      | 3433   | 1970       | usa    |
|   | 4 | 17.0 | 8         | 140.0      | 3449   | 1970       | usa    |

```
In [126]: | df = pd.get_dummies(df, drop_first = True)
```

In [127]: df.head()

### Out[127]:

|   | mpg  | cylinders | horsepower | weight | model_year | origin_japan | origin_usa |
|---|------|-----------|------------|--------|------------|--------------|------------|
| 0 | 18.0 | 8         | 130.0      | 3504   | 1970       | 0            | 1          |
| 1 | 15.0 | 8         | 165.0      | 3693   | 1970       | 0            | 1          |
| 2 | 18.0 | 8         | 150.0      | 3436   | 1970       | 0            | 1          |
| 3 | 16.0 | 8         | 150.0      | 3433   | 1970       | 0            | 1          |
| 4 | 17.0 | 8         | 140.0      | 3449   | 1970       | 0            | 1          |

## Modeling

In [129]: from sklearn.model\_selection import train\_test\_split

In [130]: X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size = 0.2, random\_state = 42)

In [131]: X\_train

Out[131]:

|     | cylinders | horsepower | weight | model_year | origin_japan | origin_usa |
|-----|-----------|------------|--------|------------|--------------|------------|
| 260 | 6         | 110.0      | 3620   | 1978       | 0            | 1          |
| 184 | 4         | 92.0       | 2572   | 1976       | 0            | 1          |
| 174 | 6         | 97.0       | 2984   | 1975       | 0            | 1          |
| 64  | 8         | 150.0      | 4135   | 1972       | 0            | 1          |
| 344 | 4         | 64.0       | 1875   | 1981       | 0            | 1          |
|     |           |            |        |            |              |            |
| 72  | 8         | 150.0      | 3892   | 1972       | 0            | 1          |
| 107 | 6         | 100.0      | 2789   | 1973       | 0            | 1          |
| 272 | 4         | 85.0       | 2855   | 1978       | 0            | 1          |
| 352 | 4         | 65.0       | 2380   | 1981       | 0            | 1          |
| 103 | 8         | 150.0      | 4997   | 1973       | 0            | 1          |

313 rows × 6 columns

```
In [132]: y_train
Out[132]: 260
                 18.6
          184
                 25.0
          174
                 18.0
          64
                 15.0
                 39.0
          344
                 . . .
          72
                 15.0
          107
                 18.0
          272
                 23.8
          352
                 29.9
          103
                 11.0
          Name: mpg, Length: 313, dtype: float64
In [133]: from sklearn.linear_model import LinearRegression
In [135]: reg=LinearRegression()
          reg.fit(X_train, y_train)
Out[135]:
           ▼ LinearRegression
           LinearRegression()
In [136]: reg.intercept_
Out[136]: -1498.7218785122882
```

```
In [137]: coef_param = pd.DataFrame(reg.coef_, index = X.columns, columns = ["Coefficient"])
           coef_param
Out[137]:
                       Coefficient
                         0.203056
              cylinders
            horsepower
                        -0.014143
                weight
                        -0.005729
            model_year
                        0.779904
                        0.401853
            origin_japan
             origin_usa
                        -2.385047
In [139]: y_pred = reg.predict(X_test)
In [140]: my_dict = {"Actual" : y_test, "Pred" : y_pred}
           compare = pd.DataFrame(my_dict)
```

```
In [141]: compare.sample(10)
```

#### Out[141]:

|     | Actual | Pred      |
|-----|--------|-----------|
| 205 | 28.0   | 30.176571 |
| 241 | 22.0   | 27.270363 |
| 79  | 26.0   | 26.545174 |
| 40  | 14.0   | 11.747138 |
| 43  | 13.0   | 8.115192  |
| 270 | 21.1   | 29.391116 |
| 115 | 15.0   | 13.832570 |
| 83  | 28.0   | 24.147781 |
| 47  | 19.0   | 17.086203 |
| 291 | 19.2   | 21.527543 |

```
In [142]: from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

```
In [144]: evaluation_metrics(y_test, y_pred)
```

r2\_score: 0.7798249880881908 mae: 2.5188281576150886 mse: 11.237861022823058 rmse: 3.35229190596867 In [ ]: