Interactive data visualisation in Python

A Workshop

Instructor: Thomas Bury¹

¹Dept. Physiology, McGill University

Software checklist

- Installed the necessary software:
 - Python 3
 - JupyterLab
 - numpy, pandas, plotly, dash, jupyter-dash

- Forked and cloned the github <u>repository</u>
- Ran the Jupyter notebook test.ipynb successfully.

Why bother with *interactive* visualisations?

- Big data: lots of variables (dimensions), lots of entries.
- Can be difficult adequately represent it on a 2D static plot
- Having interactivity allows us to
 - 1. Navigate through different sections of data
 - 2. Vary the scale of the axes
 - 3. View all variable values with a tooltip
 - 4. Compute statistics on the fly

Icentia CardioSTAT

Dashboard demonstration

Learning objectives

By the end of this workshop, you will know how to

- Import public datasets into Python
- Use basic pandas functionality for manipulating data frames.
- Create basic interactive plots (e.g. scatter, histogram, box) as html files
- Visualise higher dimensions using grid, 3D and heat plots
- Create a slider to view a fourth dimension

Agenda

Introduction 2.35pm Demonstration (me) [15 mins]Participation (you) [15 mins] Notebook #1 – basic Plotly functionality 2.45pm Notebook #2 – visualisation with higher dimensions [30 mins] 3.15pm Break [5 mins] 3.45pm Notebook #3 - sliders and buttons [45 mins] 3.50pm Closing remarks 4.20pm 4.25pm Fin

Notebook #1

Plotly fundamentals

Visualising additional dimensions

What attributes can you add to a plot to view a higher dimension?

Brainstorm!

Possible approaches

- Static visualisation methods:
 - Colour of data points
 - Size of datapoints
 - Grid of plots
 - Contour plots / Heat maps
- Interactive visualisation methods
 - Navigation through 3D plots
 - Hover data
 - Buttons, sliders and drop-down boxes

Possible approaches

- Static visualisation methods:
 - Colour of data points
 - Size of datapoints
 - Grid of plots
 - Contour plots / Heat maps
- Interactive visualisation methods
 - Navigation through 3D plots
 - Hover data
 - Buttons, sliders and drop-down boxes

Notebook #2

Visualising higher dimensions

Notebook #3

Sliders and buttons

Resources for Dash app deployment

 Read through the Plotly tutorial on deployment <u>https://dash.plotly.com/deployment</u>

 You can deploy several applications with Heroku for free (easiest option, though memory restrictions apply)

https://devcenter.heroku.com/articles/getting-started-with-python

 Alternatively, your institution may provide cloud services where you can host Dash apps. E.g with Compute Canada.

https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud/

[&]quot;Users of the cloud service should ideally have at least an intermediate technical knowledge in systems management"

Resources for further Plotly/Dash tutorials

- Youtube channel 'Charming data'
 https://www.youtube.com/channel/UCqBFsuAz41sqWcFjZkqmJqQ
- Plotly tutorial for beginners: Kaggle
 https://www.kaggle.com/kanncaa1/plotly-tutorial-for-beginners

Tips for fast improvement

- Design and create your own visualisations and look up the documentation as required.
 https://plotly.com/python/
- Get ideas from other Dash apps (e.g. Dash app gallery https://dash-gallery.plotly.host/Portal/), get the source code, and experiment with it.