CT/EP98/U3597

BUNDE REPUBLIK DEUTSCHLAND

30. Juhi 🐒.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 1 1 AUG 1998 WIPO PCT

Bescheinigung

Die ASAT AG Applied Science & Technology in Zug/Schweiz hat eine Patentanmeldung unter der Bezeichnung

"Rekombinante Antikörper"

am 12. Dezember 1997 beim Deutschen Patentamt eingereicht und erklärt, daß sie dafür die Innere Priorität der Anmeldung in der Bundesrepublik Deutschland vom 6. Juni 1997, Aktenzeichen 197 23 904.8, in Anspruch nimmt.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole C 12 N, C 07 H und C 07 K der Internationalen Patentklassifikation erhalten.

München, den 15. Juni 1998

Der Präsident des Deutschen Patentamts

Im Auftrag

rünet

nzeichen: <u>197 55 227.7</u>

PATENTANWÄLTE

DIPL.-ING. H. WEICKMAIN
DIPL.-ING. F. A. WEICKMANN
DIPL.-CHEM. B. HUBER
DR.-ING. H. LISKA
DIPL.-PHYS. DR. J. PRECHTEL
DIPL.-CHEM. DR. B. BÖHM
DIPL.-CHEM. DR. W. WEISS
DIPL.-PHYS. DR. J. TIESMEYER
DIPL.-PHYS. DR. M. HERZOG

POSTFACE 860 820 81635 MÜNCHEN

KOPERNIKUSSTRASSE 9 81679 MÜNCHEN

TELEFON (089) 4 55 63-0
TELEX 5 22 621
TELEFAX (089) 4 70 50 68
eMail weickmann@compuserve.com

12. Dez. 1997

Unser Zeichen: 16824P DE-1/WWvo

Anmelder:
ASAT AG
Applied Science & Technology

6302 Zug Schweiz

Baarerstrasse 77

suiforicht

Rekombinante	: Antikörper
--------------	--------------

R kombinante Antikörper

Beschreibung

5

10

15

20

25

30

Die Erfindung betrifft neue Nukleinsäuresequenzen, die für humane Autoantikörper gegen Blutplättchen-Membranproteine und für antiidiotypische Antikörper kodieren, neue Aminosäuresequenzen von humanen Antikörpern und deren Verwendung für die Diagnostik und Therapie von Krankheiten.

Autoimmun-thrombozytopenische Purpura (AITP) ist eine Immunkrankheit, die durch eine geringe Blutplättchenzahl bei normaler oder gesteigerter Megakaryozytopoiese definiert ist. Aufgrund des Vorhandenseins von Anti-Plättchen-Autoantikörpern findet eine verstärkte Zerstörung von Plättchen im reticuloendothelialen System (Milz, Leber, Knochenmark) statt. Diese Autoantikörper, die in etwa 75% der AITP Patienten nachgewiesen werden können, sind überwiegend gegen die Plättchenmembran-Glykoproteine (GP) IIb/IIIa und Ib/IX gerichtet. In einem einzigen Patienten können mehrere verschiedene Auto-Antikörper-Spezifitäten gefunden werden (vgl. z.B. Berchtold und Wenger, Blood 81 (1993), 1246-1250; Kiefel et al., Br. J. Haematol. 79 (1991), 256-262; McMillan et al., Blood 70 (1987), 1040 und Fujisawa et al., Blood 79 (1991); 1441). Die Charakterisierung von Bindeepitopen und die Ermittlung der pathogenetischen Signifikanz der Autoantikörper bleibt jedoch schwierig aufgrund der beschränkten Menge an Autoantikörpern, die aus AITP Patienten erhältlich sind. Unter Verwendung der Hybridomatechnik konnten nur wenige humane monoklonale Antikörper aus Lymphozyten von AITP Patienten erhalten werden, die mit GPIIb/IIIa reagieren (Kunicki et al., Hum. Antibodies Hybridomas 1 (1990), 83-95).

Auch bei gesunden Personen wurde das Auftreten natürlicher Autoantikörper gegen verschiedene Selbstantigene berichtet, beispielsweise
gegen intrazelluläre und zytoskelettale Komponenten humaner Plättchen
(Guilbert et al., J. Immunol. 128 (1982), 2779-2787; Hurez et al., Eur. J.
Immunol. 23 (1993), 783-789 und Pfueller et al., Clin. Exp. Immunol. 79
(1990), 367-373). Einige dieser im Serum gesunder Personen beobachteten
Autoantikörper können auch gegen Plättchenmembranproteine gerichtet sein
(Souberbielle, Eur. J. Haematol. 56 (1996), 178-180). Die Rolle dieser
natürlichen Autoantikörper sowie ihre Beziehung zu Krankheits-assoziierten
Autoantikörpern ist jedoch noch unbekannt.

5

10

15

20

25

30

Zur Behandlung von AITP können Corticosteroide eingesetzt werden. Etwa die Hälfte der Patienten reagiert auf eine Verabreichung von Prednison innerhalb von 4 Wochen, Langzeitremissionen werden jedoch nur selten gefunden. Bei Patienten, die starke Blutungen oder extrem geringe Plättchenzahlen aufweisen, wird als Notfallbehandlung die Verabreichung hoher Dosen von intravenösem Immunglubolin (IVIgG) empfohlen. Nach dieser Behandlung folgt ein schneller, aber üblicherweise nur vorübergehender Anstieg der Plättchenzahl bei den meisten Patienten. Die Wirkmechanismen von Corticosteroiden sowie von IVIgG bei der Behandlung der AITP sind noch unbekannt. Durch Untersuchungen von Berchtold et al., (Blood 74 (1989), 2414-2417 und Berchtold und Wenger, Blood 81 (1993), 1246-1250) ist bekannt, daß die Bindung von Autoantikörpern an Plättchen-Glykoproteine durch antiidiotypische Antikörper in IVIgG gehemmt werden kann.

Das der vorliegenden Anmeldung zugrundeliegende Problem besteht darin, neue DNA Sequenzen zu identifizieren, welche für die Bindung von Auto-antikörpern an GPIIb/IIIa verantwortlich sind. Auf diese Weise können neue pharmazeutische Präparate bereitgestellt werden, welche zur Verbesserung der Diagnose und Therapie von AITP eingesetzt werden können.

Die Identifizierung von Bindesequenzen aus Autoantikörpern gelang überraschenderweise nach Herstellung einer kombinatorischen Phagemid-Displaybibliothek von schweren und leichten Ketten humaner Antikörper unter Verwendung peripherer zirkulierender B-Zellen eines gesunden humanen Spenders. Nach Präsentation humaner schwerer und leichter Antikörper Fab-Fragmente an der Oberfläche des filamentösen Phagen M13 konnten Phagen-Klone identifiziert werden, welche eine spezifische Bindung an GPIIb/IIIa zeigen.

5

15

20

25

30

Hierzu wurde die Phagemid-Bibliothek aufeinanderfolgend mit thrombasthenischen Plättchen ohne GPIIb/IIIa (negative Selektion) und normalen Plättchen (positive Selektion) in Kontakt gebracht. Nach mehreren Runden der Selektion und Amplifikation durch Infektion von E.coli wurden 23 Klone erhalten, die an den GPIIb/IIIa Komplex binden können. Inhibierungsstudien unter Verwendung Pools monoklonaler Antikörper gegen GPIIb/IIIa ergaben zwei Gruppen von Klonen: Beide Gruppen wurden durch monoklonale Antikörper, die spezifisch für den GPIIb/IIIa Komplex waren, inhibiert, und eine Gruppe auch durch einen GPIIb spezifischen monoklonalen Antikörper. Diese Befunde wurden durch DNA-Analyse der Klone bestätigt, die das Vorhandensein von 2 unterschiedlichen Anti-GPIIb/IIIa Phagen-Klonen ergab. Diese Ergebnisse zeigen, daß 2 GPIIb/IIIa spezifische Phagen-Klone, d.h. Autoantikörper, aus dem Genom einer gesunden Person kloniert werden können und daß diese Klone Konformationsepitope des GPIIb/IIIa Komplexes erkennen können. Durch Inhibierungsstudien wurde weiterhin festgestellt, daß beide Phagen-Klone die Bindung von Plättchen-assoziierten Autoantikörpern aus Patienten mit AITP an gereinigtes GPIIb/IIIa hemmen und somit vermutlich AITP-assoziierte Epitope von GPIIb/IIIa erkennen. Da die Phagen-Klone die Antigenbindesequenzen natürlicher Autoantikörper enthalten, die aus dem Genom einer gesunden Person stammen, kann dieser Befund zu neuen Erkenntnissen über den Ursprung Plättchen-assoziierter Autoantikörper in AITP führen.

Darüber hinaus ist es unter Verwendung der erfindungsgemäßen Phagen-Klone möglich, rekombinante antiidiotypische Antikörper gegen Anti-GPIIb/IIIa Autoantikörper zu erzeugen, wobei die Anti-GPIIb/IIIa Phagen-Klone als Antigen verwendet werden. Die auf diese Weise erhältlichen rekombinanten antiidiotypischen Antikörper stellen eine interessante klinische Alternative zur Verwendung von IVIgG dar.

Die Nukleotid- und davon abgeleitete Aminosäuresequenzen der identifizierten Phagen-Klone sind in den Sequenzprotokollen SEQ ID No.1 bis 8 (Autoantikörper) bzw. SEQ ID No. 9 bis 18 (antiidiotypische Antikörper) dargestellt.

I. Autoantikörper

5

10

15

20

25

30

Ein erster Aspekt der vorliegenden Erfindung betrifft Nukleinsäuren, die für Autoantikörper kodieren. Ein Gegenstand der Erfindung ist somit eine Nukleinsäure, die für die schwere Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus:

(a) einer für die Aminosäuresequenz:

V L P F D P I S M D V (I) kodierenden Nukleotidsequenz,

(b) einer für die Aminosäuresequenz:

A L G S W G G W D H Y M D V (II)

kodierenden Nukleotidsequenz,

- (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert und
- (d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an GPIIb/IIIa kodiert.

Die erfindungsgemäße Nukleinsäure umfaßt weiterhin vorzugsweise eine CDR1-Region ausgewählt aus

(a) einer für die Aminosäuresequenz:

GYSWR (III)

kodierenden Nukleotidsequenz,

(b) einer für die Aminosäuresequenz:

5

10

15

20

25

30

SYAMH (M)

kodierenden Nukleotidsequenz und

(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.

Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR2-Region ausgewählt:

(a) einer für die Aminosäuresequenz:

DISYSGSTKYKPSLRS (V) kodierenden Nukleotidsequenz,

(b) einer für die Aminosäuresequenz:

VISYDGSNKYYADSVKG (M) kodierenden Nukleotidsequenz und

(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.

Ein zweiter Aspekt der vorliegenden Erfindung ist eine Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus:

(a) einer für die Aminosäuresequenz:

ATWDDGLNGPV

(VII)

kodierenden Nukleotidsequenz,

(b) einer für die Aminosäuresequenz:

AAWDDSLNGWV

5

10

15

20

30

(VIII)

kodierenden Nukleotidsequenz,

- (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert und
- (d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an GPIIb/IIIa kodiert.

Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR1-Region ausgewählt aus:

(a) einer für die Aminosäuresequenz:

SGSSSNIRSNPVS

(DX)

kodierenden Nukleotidsequenz,

(b) einer für die Aminosäuresequenz:

SGSSSNIGSNTVN

(X)

kodierenden Nukleotidsequenz und

einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.

- Darüber hinaus umfaßt die erfindungsgemäße Nukleinsäure vorzugsweise weiterhin eine CDR2-Region ausgewählt aus:
 - (a) einer für die Aminosäuresequenz:

GSHQRPS

(XI)

kodierenden Nukleotidsequenz,

(b) einer für die Aminosäuresequenz:

SNNQRPS

(XII)

kodierenden Nukleotidsequenz und

(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90 % zu einer Aminosäuresequenz aus (a) oder (b) kodiert.

5

10

15

20

25

30

II. Antiidiotypische Antikörper

Ein zweiter Aspekt der vorliegenden Erfindung betrifft Nukleinsäuren, die für antiidiotypische Antikörper kodieren. Ein Gegenstand der Erfindung ist somit eine Nukleinsäure, die für die schwere Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert, und eine CDR3-Region umfaßt, ausgewählt aus:

- (a) einer für die Aminosäuresequenz:

 VRDLGYRVLSTFTFDI

 kodierenden Nukleotidsequenz,

 (XIII)
- (b) einer für die Aminosäuresequenz:

 D G R S G S Y A R F D G M D V (XIV)

 kodierenden Nukleotidsequenz,
- (c) einer für die Aminosäuresequenz:

 M G S S V V A T Y N A F D I (XV)

 kodierenden Nukleotidsequenz,
- (d) einer für die Aminosäuresequenz:

 D A D G D G F S P Y Y F P Y (XVI)

 kodierenden Nukleotidsequenz,
- (e) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a), (b), (c) oder (d) kodiert und
- (f) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an Autoantikörper gegen GPIIb/IIIa kodiert.

Die erfindungsgemäße Nukleinsäure umfaßt weiterhin vorzugsweise eine CDR1-Region ausgewählt aus: einer für die in Tab. 7 gezeigten Aminosäuresequenzen N F A M S, S Y T M H oder D Y A L H, S H Y W S kodierenden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer der zuvor genannten Aminosäuresequenzen kodiert.

5

10

15

20

25

30

Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR2-Region ausgewählt aus einer für die in Tab. 7 gezeigten Aminosäuresequenzen G I S G G L L T H Y A (D/N) S V K G, L I S Y D G S N K Y Y A D S V K G, G I S W D S T S I G Y A D S V K G oder F I Y D G A R T R F N P S L R S kodierenden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer der zuvor genannten Aminosäuresequenzen kodiert.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus:

(a) einer für die Aminosäuresequenz
CSYVHSSTN (XVII)
kodierenden Nukleotidsequenz,

- (b) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer Aminosäuresequenz aus (a) kodiert und
- (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an Autoantikörper gegen GPIIb/IIIa kodiert.

Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR1-Region ausgewählt aus einer für die in Tab. 7 gezeigte Aminosäuresequenz T G T S S A I G N Y N F V P kodierenden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zur der zuvor genannten Aminosäuresequenz kodiert.

Darüber hinaus umfaßt die erfindungsgemäße Nukleinsäure vorzugsweise weiterhin eine CDR2-Region ausgewählt aus einer für die in Tab. 7 gezeigte Aminosäuresequenz E G S K R P S kodi- renden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu der zuvor genannten Aminosäuresequenz kodiert.

Unter dem Begriff "funktionelles Derivat einer Kette eines humanen Antikörpers" im Sinne der vorliegenden Erfindung ist ein Polypeptid zu verstehen, das mindestens eine CDR3-Region der schweren oder/und leichten Kette wie vorstehend definiert umfaßt und zusammen mit der jeweiligen komplementären Kette des humanen Antikörpers (oder einem Derivat einer solchen Kette) ein Antikörperderivat bilden kann, das eine äquivalente Erkennungsspezifität für ein Antigen wie der nicht derivatisierte Antikörper besitzt. Vorzugsweise weist ein derartiges Antikörperderivat eine Bindungskonstante von mindestens 10-6 l/mol, vorzugsweise von mindestens 10-8 l/mol für das jeweilige Antigen auf.

25

5

10

15

20

Die Herstellung funktioneller Derivate von Ketten eines humanen Antikörpers kann beispielsweise durch Deletion, Substitution oder/und Insertion von Abschnitten des für das jeweilige Polypeptid kodierenden Gens durch rekombinante DNA-Techniken erfolgen.

30

Besonders bevorzugte funktionelle Derivate von Antikörperketten oder Antikörper sind Einzelkettenantikörper, die beispielsweise aus den variablen Domänen der H- und L-Kette sowie gegebenenfalls einer konstanten Domäne zusammengesetzt sein können. Die Herstellung solcher Konstrukte ist bei Hoogenboom et al., Immunol. Rev. 130 (1992), 41-68; Barbas III, Methods: Companion Methods Enzymol. 2 (1991), 119 und Plückthun, Immunochemistry (1994), Marcel Dekker Inc., Kapitel 9, 210-235 beschrieben.

5

15

20

25

30

Unter dem Begriff "äquivalente Bindefähigkeit" im Sinne der vorliegenden Erfindung ist eine gleiche Bindeaffinität oder/und Spezifität, d.h. Epitoperkennung wie in den konkret offenbarten Sequenzen zu verstehen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Vektor, der mindestens eine Kopie einer erfindungsgemäßen Nukleinsäure enthält. Dieser Vektor kann ein prokaryontischer Vektor oder ein eukaryontischer Vektor sein. Beispiele für prokaryontische Vektoren sind Plasmide, Cosmide und Bakteriophagen. Derartige Vektoren sind beispielsweise bei Sambrook et al., Molecular Cloning. A Laboratory Manual, 2nd Eddition (1989), Cold Spring Harbor Laboratory Press, in den Kapiteln 1 bis 4 ausführlich beschrieben. Vorzugsweise ist ein prokaryontischer Vektor ein Plasmid oder ein Phage.

Andererseits kann der Vektor auch ein eukaryontischer Vektor sein, z.B. ein Hefevektor, ein Insektenvektor (Baculovirus) oder ein Säugervektor (Plasmidvektor oder viraler Vektor). Beispiele für eukaryontische Vektoren sind bei Sambrook et al., supra, Kapitel 16 und Winnacker, Gene und Klone, Eine Einführung für die Gentechnologie (1985), VCH Verlagsgesellschaft insbesondere Kapitel 5, 8 und 10, beschrieben.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Zelle, die eine erfindungsgemäße Nukleinsäure exprimiert, oder eine Zelle, die mit einer erfindungsgemäßen Nukleinsäure oder mit einem erfindungsgemäßen Vektor transformiert ist. Die Zelle kann eine prokaryontische Zelle (z.B. eine

gram-negative Bakterienzelle, insbesondere E.coli) oder eine eukaryontische Zelle (z.B. eine Hefe-, Pflanzen- oder Säugerzelle) sein. Beispiele für geeignete Zellen und Verfahren zum Einführen der erfindungsgemäßen Nukleinsäure in derartige Zellen finden sich den obigen Literaturstellen.

5

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Polypeptid, das von einer erfindungsgemäßen Nukleinsäure kodiert ist, insbesondere ein rekombinantes Polypeptid. Besonders bevorzugt enthält das Polypeptid die variable Domäne der H- oder/und L-Kette eines humanen Antikörpers.

10

Besonders bevorzugt ist ein Polypeptid, das Antikörpereigenschaften aufweist und aus einer schweren Kette oder einem funktionellen Derivat davon sowie aus einer leichten Kette oder einem funktionellen Derivat davon als Untereinheiten aufgebaut ist. Das Polypeptid kann aus zwei separaten Ketten zusammengesetzt sein oder als Einzelkettenpolypeptid vorliegen.

15

20

25

30

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein Antikörper gegen ein erfindungsgemäßes Polypeptid, der gegen ein für die Erkennung des Antigens verantwortliche Region des Polypeptids gerichtet ist. Dieser Antikörper kann ein polyklonales Antiserum, ein monoklonaler Antikörper oder ein Fragment eines polyklonalen oder monoklonalen Antikörpers (z.B. ein Fab-, F(ab)₂-, Fab'- oder F(ab')₂ Fragment) sein. Vorzugsweise ist der Antikörper gegen die CDR3-Region der schweren oder/und leichten Antikörperkette des erfindungsgemäßen Polypeptids oder einen Bereich davon gerichtet. Derartige Antikörper können nach an sich bekannten Methoden durch Immunisierung eines Versuchstiers mit einem Peptid oder Polypeptid, welches eine erfindungsgemäße CDR3-Region enthält, und Gewinnung der resultierenden polyklonalen Antikörper aus dem Versuchstier erhalten werden. Weiterhin können monoklonale Antikörper durch Fusion einer Antikörper-produzierenden B-Zelle des Versuchstiers mit einer Leukämiezelle nach der Methode von Köhler und Milstein oder einer Weiterentwicklung davon erhalten werden. Darüber hinaus können

rekombinante Antikörper, die gegen die CDR3-Region des erfindungsgemäßen Polypeptids gerichtet sind, auch durch Musterung einer geeigneten Phagemid-Bibliothek, z.B. einer Phageirnid-Bibliothek aus einem gesunden humanen Spender, erhalten werden, wobei als Antigen ein erfindungsgemäßes Polypeptid verwendet wird.

5

10

15

20

25

30

Die Erfindung betrifft auch eine pharmazeutische Zusammensetzung, die eine Nukleinsäure, einen Vektor, ein Polypeptid, einen Antikörper oder eine Zelle wie zuvor genannt, als aktive Komponente, gegebenenfalls zusammen mit anderen aktiven Komponenten sowie pharmazeutisch üblichen Hilfs-, Zusatz- oder Trägerstoffe enthält.

Die pharmazeutische Zusammensetzung kann zur Herstellung eines diagnostischen oder therapeutischen Mittels eingesetzt werden. Beispiele für diagnostischen Anwendungen sind die Diagnose von AITP oder einer Prädisposition für AITP. Eine weitere bevorzugte diagnostische Anwendung ist die Überwachung des Krankheitsverlaufs bei AITP.

Der Einsatz der pharmazeutischen Zusammensetzung als diagnostisches Mittel kann beispielsweise den Nachweis einer B-Zellsubpopulation umfassen, welche ein erfindungsgemäßen Polypeptid als Antikörper exprimiert. Der Nachweis dieses Antikörpers kann beispielsweise auf Nukleinsäureebene, z.B. durch einen Nukleinsäure-Hybridisierungs-Assay gegebenenfalls mit vorgeschalteter Amplifikation erfolgen. Andererseits kann der Nachweis auch auf Proteinebene durch einen Immunoassay unter Verwendung von spezifisch mit dem Polypeptid reagierenden Antigenen oder Antikörpern erfolgen.

Weiterhin kann die erfindungsgemäße pharmazeutische Zusammensetzung auch auf therapeutischem Gebiet angewandt werden, insbesondere zur Prävention oder Therapie von AITP. Diese therapeutische Anwendung kann beispielsweise darauf beruhen, daß eine Stimulierung der Produktion von

Anti-Autoantikörpern erfolgt. Hierzu kann beispielsweise das erfindur gsgemäße Autoantikörper-Polypeptid einem Patienten verabreicht werden, wodurch die Bildung von antiidiotypischen Antikörpern hervorgerufen oder/und stimuliert wird. Diese Verabreichung kann dabei nach üblichen Immunisierungsprotokollen (Fox et al., J. Pharmacol. Exp. Ther. 279 (1996), 1000-1008; Whittum-Hudson et al., Nat. Med. 2 (1996), 1116-1121; Jardieu, Curr. Opin. Immunol. 7 (1995), 779-782) erfolgen. Andererseits kann die Expression von Antikörpergenen spezifisch durch Verabreichung geeigneter Antisense-Nukleinsäuren gehemmt werden. Das erfindungsgemäße antiidiotypische Antikörper-Polypeptid kann einem Patienten verabreicht werden, um eine direkte Hemmung der Autoantikörper-Aktivität zu erreichen.

Weiterhin wird die Erfindung durch nachfolgende Beispiele, Figuren und Sequenzprotokolle erläutert. Es zeigen:

SEQ ID No. 1 Die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Antikörpers (Phagemidklon PDG7), wobei Framework-Region (FR)1 von bp 1-90, Komplementbestimmende Region (CDR)1 von bp 91-105, FR2 von bp 106-147, CDR2 von bp 148-195, FR3 von bp 196-291, CDR3 von bp 292-324 und FR4 von bp 325-357 reicht.

SEQ ID No. 2 die Aminosäuresequenz zu der in SEQ ID No. 1 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1-30, CDR1 von A.S. 31-35, FR2 von A.S. 36-49, CDR2 von A.S. 50-65, FR3 von A.S. 66-97, CDR3 von A.S. 98-108 und FR4 von A.S. 109-119 reicht,

SEQ ID No. 3 die Nukleotidsequenz der L-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon PDG7), wobei FR1

30

5

10

15

20

von bp 1-60, CDR1 von bp 61-99, FR2 von bp 100-144, CDR2 von bp 145-165, FR3 von bp 166-261, CDR3 von bp 262-294 und FR4 von bp 295-333 reicht,

SEQ ID No. 4 5

die Aminosäuresequenz zu der in SEQ ID No. 3 angegebenen Nukleotidsequenz, wobei FR1 von A.S. 1-20, CDR1 von A.S. 21-33, FR2 von A.S. 34-48, CDR2 von A.S. 49-55, FR3 von A.S. 56-87, CDR3 von A.S. 88-98 und FR4 von A.S. 99-11 reicht,

10

SEQ ID No. 5

die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon PDG13), wobei FR1 von bp 1-90, CDR1 von bp 91-109, FR2 von bp 106-147, CDR2 von bp 148-198, FR3 von bp 199-294, CDR3 von bp 295-336 und FR4 von bp 337-369 reicht,

15

SEQ ID No. 6

die Aminosäuresequenz der in SEQ ID No. 5 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1-30, CDR1 von A.S. 31-35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99-112 und FR4 von A.S. 113-123 reicht,

20

25

SEQ ID No. 7

die Nukleotidsequenz der L-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon PGD13), wobei FR1 von bp 1-60, CDR1 von bp 61-99, FR2 von bp 100-144, CDR2 von bp 145-165, FR3 von bp 166-261, CDR3 von bp 262-294 und FR4 von bp 295-333 reicht,

30

SEQ ID No. 8

die Aminosäureseguenz der in SEQ ID No. 7 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1-20, CDR1 von A.S. 21-33, FR2 von A.S. 34-48, CDR2 von A.S. 49-55, FR3 von A.S. 56-87, CDR3 von A.S. 88-98 und FR4 von A.S. 99-111 reicht,

SEQ ID No. 9

die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-X16), wobei FR1 von bp 1-90, CDR1 von bp 91-105, FR2 von bp 106-147, CDR2 von bp 148-198, FR3 von bp 199-288, CDR3 von bp 289-336 und FR4 von bp 337-369 reicht,

10 SEQ ID No. 10

die Aminosäuresequenz der in SEQ ID No. 9 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1-30, CDR1 von A.S. 31-35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-96, CDR3 von A.S. 97-112 und FR4 von A.S. 113-123 reicht,

15

5

SEQ ID No. 11 die Nukleotidsequenz der L-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-X16), wobei FR1 von bp 1 bis 60, CDR1 von bp 61-102, FR2 von bp 103-147, CDR2 von 148-168, FR3 von bp 169-264, CDR3 von 265-291 und FR4 von bp 292-375 reicht,

20

SEQ ID No. 12 die Aminosäuresequenz der in SEQ ID No. 11 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1-20,
CDR1 von A.S. 21-34, FR2 von A.S. 35-49, CDR2 von
A.S. 50-56, FR3 von A.S. 57-88, CDR3 von A.S. 89-97
und FR4 von A.S. 89-125 reicht,

25

SEQ ID No. 13 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon Al-X20), wobei FR1 von bp 1-90, CDR1 von bp 91-105, FR2 von bp 106-147, CDR2 von bp 148-195, FR3 von bp 196-291,

30

CDR3 von von bp 292-333 und FR4 von bp 334-366 reicht,

SEQ ID No. 14

die Aminosäuresequenz der in SEQ ID No. 13 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1-30, CDR1 von A.S. 31-35, FR2 von A.S. 36-49, CDR2 von A.S. 50-65, FR3 von A.S. 66-97, CDR3 von A.S. 98-111 und FR4 von A.S. 112-122 reicht,

10 SEQ ID No. 15

die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon Al-X39), wobei FR1 von bp 1-90, CDR1 von bp 91-105, FR2 von bp 106-147, CDR2 von pb 148-198, FR3 von bp 199-294, CDR3 von bp 295-339 und FR4 von 340-372 reicht,

15

5

SEQ ID No. 16 die Aminosäuresequenz der in SEQ ID No. 15 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1-30, CDR1 von A.S. 31-35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99-113 und FR4 von A.S. 114-124 reicht,

20

SEQ ID No. 17 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon Al-X40), wobei FR1 von bp 1-90, CDR1 von bp 91-105, FR2 von bp 106-147, CDR2 von bp 148-198, FR3 von bp 199-297, CDR3 von bp 298-339 und FR4 von bp 340-372 reicht und

25

30

SEQ ID No. 18 die Aminosäuresequenz der in SEQ ID No. 17 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 30, CDR1 von A.S. 31-35, FR2 von A.S. 36-49, CDR2 von

A.S. 50-66, FR3 von A.S. 67-99, CDR3 von A.S. 100-113 und FR4 von A.S. 114-124 reicht,

Figur 1 die Hemmung der Bindung von Autoantikörper-Phabs (PDG-X) an GPIIb/IIIa durch Zusatz des antiidiotypischen Antikörper-Phab Al-X17.

Beispiele

5

10

15

20

25

30

1

1. Identifizierung von Autoantikörpersequenzen

1.1. Gewinnung von Autoantikörpern

Autoantikörper von 12 Patienten mit AITP (8 mit primärer AITP, 3 mit AITP assoziiert mit SLE, 1 mit AITP assoziiert mit Sjögren's Syndrom) wurden durch Inkubation von Patientenplasma über Nacht mit gereinigtem GPIIb/IIIa bei 4°C und anschließende Elution in 0,2 mol/I Glycin und 0,15 mol/I NaCl pH 2,5 für 15 min bei Raumtemperatur erhalten. Nach Zentrifugation für 30 min bei 100.000 g wurde der Überstand mit 1 mol/I Tris-HCl neutralisiert und über Nacht gegen Tris-gepufferte Salzlösung (TBS) dialysiert.

Zum Zeitpunkt der Plasmaentnahme waren alle Patienten thrombozytopenisch (Plättchenzahl $< 150 \times 10^9$ /l) und hatten normale oder vergrößerte Megakaryozyten im Knochenmark und waren frei von anderen nachweisbaren Formen der Immunthrombozytopenie.

1.2. Gewinnung gereinigter Antigene

Als Antigene wurden gereinigtes GPIIb/IIIa, ein zytoplasmatisches Fragment von GPIIIa (Aminosäuren 721-744) und ein extrazelluläres Fragment von GPIIIa (Aminosäuren 468-690) verwendet (Beardsley, Blut 59 (1989), 47-51 und Phillips et al., Methods Enzymol. 215 (1992), 244-263).

1.3. Gewinnung von Plättchen zum Panning und Immunoblotting

Aus EDTA-antikoagulierten Blutproben gesunder humander Spender wurde Plättchen-angereichertes Plasma durch differenzielle Zentrifugation hergestellt. Die Plättchen wurden durch Zentrifugation bei 2000 g für 15 min isoliert, sechsmal in Zitronensäurepuffer (pH 6,2) mit 50 mmol/l Natriumcitrat, 100 mmol/l NaCl und 125 mmol/l Dextrose gewaschen und schließlich im gleichen Puffer resuspendiert.

Thrombasthenische Plättchen wurden aus einem 14 Jahre alten an Thrombasthenie Glanzmann Typ I erkrankten Jungen unter Verwendung des gleichen Anreicherungsprotokolls erhalten.

1.4. Monoklonale Antikörper

5

10

15

20

25

30

Es wurden murine monoklonale Antikörper verwendet, welche die komplexierte Form von GPIIb/IIIa erkennen, sowie Antikörper, die selektiv GPIIb oder GPIIIa erkennen. Diese Antikörper wurden mit üblichen Immunisierungsprotokollen unter Verwendung der entsprechenden Antigene gewonnen und sind nicht AITP-assoziiert. Die Gewinnung solcher Antikörper ist bei Kouns et al. (J. Biol. Chem. 267 (1992), 18844-18851), Steiner et al. (Biochim. Biophys. Acta 1119 (1992), 12-21) und Häring et al. (Proc. Natl. Acad. Sci. USA 82 (1985), 4837-4841) beschrieben.

1.5. Phagemid-Bibliothek

Eine kombinatorische Fab-Bibliothek wurde nach der von Vogel et al. (Eur. J. Immunol. 24 (1994), 1200-1207) beschriebenen Methode hergestellt, wobei periphere Blutlymphozyten aus einem gesunden präimmunisierten humanen Spender verwendet wurden. Alle Enzyme und Oligonukleotide wurden von Boehringer Mannheim GmbH (Mannheim, Deutschland) mit Ausnahme der Taq Polymerase (Perkin Elmer, NJ, USA) bezogen. Die Primer

für die PCR-Amplifikation der H-und L-Ketten der Fab-Moleküle, der VCSM13 Helferphage und der Escherichia coli Stamm XL-Blue wurden von Stratacyte (La Jolla, CA, USA) bezogen. Das Phagemid pComb3 wurde vom Scripps Research Institute (La Jolla, CA, USA) bezogen. Die Klonierung, die Transformation in XL-Blue-Zellen und die Herstellung von Phabs erfolgte wie von Barbas III und Lerner, Methods: Companion Methods Enzymol. 2 (1991), 119) beschrieben. Die Phabs wurden mit 4% (w/v) Polyethylenglykol 8000 und 3% (w/v) NaCl präzipitiert und in PBS pH 7,4 resuspendiert. Die resultierende Expressionsbibliothek enthält 1 x 10⁷ Spezifitäten.

10

15

20

5

1.6. Isolierung von GPIIb/IIIa-spezifischen Phabs

GPIIb/IIIa-spezifische Phabs wurden durch insgesamt 5 Runden einer Affinitätsselektion ("Panning") hergestellt. Nach Präabsorption (negative Selektion) mit 5 x 10⁷ thrombasthenischen Plättchen wurden die Phabs mit 10⁸ normalen Plättchen für 45 min inkubiert (positive Selektion). Gebundene Phabs wurden dann mit 0,05 mol/I Natriumcitrat pH 2,5 eluiert und mit 1 mol/I Tris-Puffer neutralisiert. Nach jeder "Panning"-Runde wurde die Anreicherung von GPIIb/IIIa spezifischen Phabs durch Titration der Phagenkolonie-bildenden Einheiten verfolgt. Nach fünf Selektionsrunden wurde eine Anreicherung der eluierten Phabs um den Faktor von mehr als 100 gefunden.

25

30

Der nach der vierten Selektionsrunde erhaltene Pool von Phabs wurde näher auf seine GPIIb/IIIa Spezifität analysiert. Hierzu wurden 40 Phab-Klone zufällig ausgewählt und ihre Bindespezifität in einem Immunodot-Assay ermittelt. 1 µl normale und thrombasthenische Plättchen (10° ml) sowie gereinigtes GPIIb/IIIa (500 µg/ml) wurden auf Nitrozellulosestreifen (Millipore Corporation, Bedford, MA, USA) getropft. Die Streifen wurden in TBS mit 0,15% Casein (TBS-Casein) blockiert und dann über Nacht mit den in TBS-Casein verdünnten Phabs inkubiert. Nach drei Waschungen mit TBS-0,1% Tween 20 (TBS-Tween) wurden die gebundenen Phabs mit 4-Chlor-1- α -

naphthol (Merck, Darmstadt, Deutschland) nach Inkubation mit Meerettichperoxidase-konjugiertem polyklonalem Kaninchen-Anti-Phage-Antikörper (Vogel et al., supra) verdünnt 1:1000 in TBS-Casein nachgewiesen.

5

Die Bindung von Phabs an Plättchen und gereinigtes GPIIb/IIIa wurde auch nach Denaturierung der Proteine durch Erhitzen (70°C) oder durch Säurebehandlung (pH 2 mit 0,5 N HCI) vor dem Auftropfen getestet.

Von den 40 zufällig ausgewählten Klonen reagierten 23 (57,5%) mit GPIIb/IIIa, während 17 keine Bindung zeigten. Nach Denaturierung des Antigens durch Hitze oder pH 2 vor der Inkubation wurde keine Bindung von Anti-GPIIb/IIIa an Phabs beobachtet, wodurch gezeigt wird, daß intaktes GPIIb/IIIa für die Phab-Bindung notwendig ist. Fab-Bestimmung an negativen Phabs zeigte keine Fab-Moleküle bei 15 Klonen (88 %). Die zwei Fab-positiven Klone ohne Bindung an GPIIb/IIIa könnten eine geringe Bindeaffinität für GPIIb/IIIa aufweisen.

1.7. Fab Analyse

20

25

30

Zum Test der positiven Phabs auf kappa (κ), lambda (λ) und Fd-Ketten wurden die Anti-GPIIb/IIIa Phabs auf Nitrozellulose getropft. Die Filter wurden 4 Stunden lang mit Peroxidase-markiertem Maus-anti-Human- λ -, - κ -(The Binding Site Limited, Birmingham, England) und -Fd-Antikörper (aus der Myelomazellinie HP6045, ATCC1757, Rockville, MD, USA) verdünnt 1:1000 in TBS-Casein inkubiert und mit Chemielumineszenz (ECL, Amersham, Schweiz, Zürich, Schweiz) entwickelt. Ein Test von 15 zufällig ausgewählten Anti-GPIIb/IIIa Fab-Klonen auf κ , λ und Fd-Ketten ergab das Vorhandensein einer Fd-Kette in 12 Klonen (80%) und der λ -Kette in allen Klonen.

Eine quantitative Bestimmung der Fab-Bindung an GPIIb/IIIa auf Plättchen erfolgt durch Präinkubation gepoolter Phabs mit Plättchen in verschiedenen Konzentrationen. Der Überstand wurde dann durch ein Immunodotverfahren analysiert. Dabei wurde festgestellt, daß 1 bis 3 x 10⁴ Phabs pro Plättchen binden. Dies weist darauf hin, daß ungefähr 10 bis 50 % der GPIIb/IIIa Moleküle pro Plättchen durch Phabs besetzt werden können.

1.8. Charakterisierung der Phab-Bindeepitope

5

10

15

20

25

30

Die Epitopspezifität von Phabs wurde durch einen Inhibitiontest unter Verwendung verschiedener monoklonaler Antikörper (siehe Punkt 4) bestimmt. 1 μ l aufgetaute normale und thrombasthenische Plättchen (10 9 /ml), gereinigtes GPIIb/IIIa (500 μ g/ml), ein Peptidfragment von GPIIIa (Aminosäuren 468-690, 500 μ g/ml) und der cytoplasmatische Abschnitt von GPIIb/IIIa (500 μ g/ml) wurden jeweils in Doppelansätzen auf Nitrozellulosestreifen aufgetropft. Nach der Blockierung wurden die Phab-Klone (0,4 μ g/ml Fab) über Nacht mit oder ohne monoklonalen Antikörper (1 μ g/ml) inkubiert. Die gebundenen Phabs wurden durch Peroxidasemarkierten Anti-PHage-Antikörper und 4-Chlor-1- α -naphthol nachgewiesen.

Bei diesen Untersuchungen wurden 2 Gruppen von Phabklonen identifiziert. Gruppe A (5 Klone) wurde mäßig durch einen Pool aller Antikörper, aber stark durch GPIIb/IIIa-Komplex-spezifische Antikörper inhibiert. Anti-GPIIb Antikörper hatten keinen Effekt. Gruppe B (10 Klone) wurde vollständig durch den Pool aller Antikörper, aber weniger durch den komplexspezifischen Antikörper und auch durch den IIb spezifischen Antikörper inhibiert. Keine Gruppe zeigte Reaktion mit GPIIIa spezifischen Antikörpern. Gleiche Ergebnisse wurden bei Verwendung von Plättchen oder gereinigtem GPIIb/IIIa als Antigen erhalten. Es wurde keine Phab-Bindung an das cytoplasmatische Peptid oder das extrazelluläre Fragment von GPIIIa gefunden.

Eine Zusammenfassung dieser Ergebnisse ist in Tabelle 1 gezeigt.

Tabelle 1

	Hemmung der Phab	ung der Phab-Bindung (Mittelwert \pm SD in %)	SD in %)	
Pools monoklonaler	Gruppe A	Gruppe A Phab Klone	Gruppe E	Gruppe B Phab Klone
Antikörper für	u)	. (2 = u)	u)	(n = 10)
Inhibition	Plättchen	Gereinigtes GPIIb/IIIa	Plättchen	Gereinigtes GPIIb/IIIa
(1) Anti-GPIIB	0	0	49,1 ± 5,9	49,4 ± 9,2
(2) Anti-GPIIIa	0	0	0	0.
(3) Anti GPIIb/IIIa- Komplex	77,8 ± 2,9	43,6 ± 2,1	58,6 ± 4,4	45,5 ± 8,0
Pool aller Antikörper (1)-(3)	47,6 ± 7,7	33,0 ± 10,8	95,9 ± 2,7	97,5 ± 7,5

1.9. Inhibierungsuntersuchungen

5

10

15

Die Blockierung der Bindung von Autoantikörpern aus Patienten an GPIIb/IIIa durch die gefundenen anti-GPIIb/IIIa Phabs wurde durch Inhibierungsuntersuchungen ermittelt. Hierzu wurden zwei der wie zuvor beschrieben identifizierten Phabklone (PDG16, PDG31) verwendet.

Serielle Verdünnungen von 1:3 bis 1:1000 der eluierten Autoantikörper aus Patienten wurden auf die Bindung an gereinigtes GPIIb/IIIa analysiert. Hierzu wurde ein Immunodotassay durchgeführt. 100 ng gereinigtes GPIIb/IIIa wurde in jeweils dreifachen Ansätzen auf Nitrozellulosestreifen getropft und die Filter mit TBS-Casein blockiert. Zur Blockierung der AITP Autoantikörper-Bindung an GPIIb/IIIa durch Phabs wurden die Streifen 1 h lang mit 10¹¹ Phabs und anschließend 4 h lang mit AITP Autoantikörpern in variablen Verdünnungen inkubiert. Gebundene Autoantikörper wurden durch Peroxidase-markierten Anti-human-IgG-Fc Antikörper und ECL nachgewiesen.

Die Bindung von Autoantikörpern aus 8 AITP Patienten wurde durch Anti-GPIIb/IIIa Phabs inhibiert. Der Inhibierungsbereich war 10 bis 46 %, 32 bis 60 % und 20 bis 67 % für PTG16, PTG31 bzw. den Pool der beiden Phabs. Die Bindung von Autoantikörpern aus 4 AITP Patienten wurde durch diese Phabs nicht verändert. In beiden Gruppen waren Autoantikörper von Patienten mit primärer und krankheitsassoziierter AITP.

Eine Zusammenfassung der erhaltenen Ergebnisse ist in Tabelle 2 gezeigt.

Tabelle 2

5

10

	Hemmung der E	Bindung an gereinig durch (%)	gtes GPIIb/IIIa
AITP-Patient	Phab-Klon PDG16	Phab-Klon PDG31	Pool beider Phab Klone
WS16	13	19	40
WS37	14	20	36
КС	24	22	28
КК	22	22	40
KP	10	36	60
WS2	25	55	6●
KS	60	55	64
KL .	0	15	10
KG	0	0	0
КМ	0	0	0
KE	0	0	0
KR	0	0	0

1.10. DNA Sequenzanalyse

Plasmid DNA wurde aus vier Phabklonen der Gruppe A und 4 Klonen der Gruppe mit dem Nukleobond® AX Reinigungskit PC 20 (Macherey-Nagel AG, Oensingen, Schweiz) gereinigt.

Die Nukleinsäuresequenzierung erfolgte auf einen ABI373A Sequenziersystem unter Verwendung eines PRISM Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit. Die Primer wurden von Microsynth, Balgach, Schweiz bezogen. Zur Sequenzierung der H Kette wurden folgende Primer verwendet: Chy1 (5'-CGC TGT GCC CCC AGA GGT-3') und PCH (5'-GGC CGC AAA TTC TAT TTC AAG G-3'). Zur Sequenzierung der L-Kette wurden folgende Primer verwendet: Cl (5'-GAG ACA CAC CAG TGT GGC-3'), Ck (5'-CAC AAC AGA GGC AGT TCC-3') und PCL(5'-CTA AAC TAG CTA GTC TCC-3'). Die von der DNA Sequenz abgeleiteten Aminosäuresequenzen wurden mit der GenEMBL-Genbank verglichen und Stammlinien VH und Vl Familien zugeordnet.

5

10

15

20

25

30

Die VH und VA Nukleotidsequenzen der 4 Phabklone jeder Gruppe (Gruppe A: PDG7, PDG8, PDG10, PDG16; Gruppe B: PDG13, PDG17, PDG31, PTG37) wurden durch automatisierte Sequenzierung analysiert und mit bekannten Stammlinien-Gensequenzen verglichen (Tabellen 3 und 4). Innerhalb jeder Gruppe war 100 % Homologie in den abgeleiteten Aminosäuresequenzen der H- und L-Ketten. Im Gegensatz dazu war die Homologie zwischen Gruppe A und B nur 36,9 % für die H-Kette und 81,9% für die L-Ketten-Aminosäurensequenzen.

In der H-Kette zeigen Klone der Gruppe A den höchsten Grad an Sequenzidentität mit dem Stammliniengen VH4.11 der V_H4 Familie (Sanz, et al. EMBO J. 8 (1989), 3741-3748). Es gab 7 Aminosäureunterschiede in der Frameworkregion (FR) und 8 in der Komplement-bestimmenden Region (CDR). Klone der Gruppe B unterschieden sich von der am meisten homologen Stammliniensequenz 1.9III der V_H3 -Familie (Berman et al., EMBO J. 7 (1988), 727-738) durch vier Aminosäuren in FR und eine in CDR.

In der L-Kette zeigten die Klone der Gruppe A und B die höchste Homologie zu der Stammliniengensequenz der DPL2 der V_A I Familie (Williams und Winter, Eur. J. Immunol. 323 (1993), 1456). Es gab neun Aminosäureun-

terschiede in FR und zehn in CDR für Klone der Gruppe A und einen in FR und zwei in CDR für Klone der Gruppe B. Die erhaltenen Ergebnisse sind in den Tabellen 3 und 4 zusammengefaßt.

Tabelle 3

				, , , ,	3 2 3
FR4	MGKGTTVTVSS MGKGTTVTVSS MGKGTTVTVSS MGKGTTVTVS	MGKGTTVTVSS MGKGTTVTVSS MGKGTTVTVSS MGKGTTVTVSS MGQGTTVTVSS	FR4	FGGGTKLTVLSQ° FGGGTKLTVLSQ?	LTVLGQP LTVLGQP LTVLGQP LTVLGQP
CDR3	VLPFDPISMDV VLPFDPISMDV VLPFDPISMDV VLPFDPISMDV	ALGSWGGWDIIYMDV ALGSWGGWDIIYHDV ALGSWGGWDIIYHDV ALGSWGGWDIIYMDV DRPIARWTYGGMDV	CDR3	AAMDDSLNG -TGPV	AAWDDSLNG
FR3	RVT I SVDTSKNQFSLKLSSVTAADTAVYYCAR	RFT I SRDNSKNTLY LØ4NSLRAEDTAVYYCAK	FR3	GVPDRFSGSKSGTSASLAISGLQSEDEADYYC	PAPKLLIY SNNQRPS GVPDRFSGSKSGTSASLAISGLQSEDEADYYC AAMDDSLNG FGGGTKI FG
CDR2	YIYYSGSTNYNPSLKS D-SK-KR-	VI SYDGSNKYYADSVKG	CDR2 E	SNNORPS	Y SNNQRPS G
FR2	WIRQPPGKGLEWIG	WVRQAPGKGLEWVA	FR2	MYQQLPGTAPKLLIYH-VF	WYQQLPGTAPKLLIY
CDR1	SGS1S SYYMS G-S-R G-S-R G-S-R	STTFS SYGMH	CDR1	SG99SNIGSNTVN	SGSSSNIGSNTVN
Schwere Ketten FR1	QVQLQESGPGLVKPSETLSLTCTVSGGSIS	QVQLVESGGGVVQPGRSLRLSCAASGFTFSK-L		VLTQPPSASGTPGQRVTISC	VLTQPPSASGTPGQRVTISC SGSSSNIGSNTVN WYQQLPGT
A. Schw Klone - ER1	VH4.11 PDG7 PDG8 PDG10 PDG16	1.9111 PDG13 PDG17 PDG31 PDG31 HB5255	one	DPL2 PDG7 PDG8 PDG10	DPL2 PDG13 PDG17 PDG31 PDG31

angegeben und stellen die abgeleitete Aminosäurensequenz für die am nächsten verwandte veröffentlichte Stammlinien-Gensequenz dar. Striche bedeuten Identität. M85255 bezieht sich auf die EMPL/GenBank Kennzeichnungsnummer und bedeutet die abgeleitete Aminosäurensequenz des FR: framework-Region; CDR: Komplement-bestimmende Region. Die oberen Sequenzen (VH4.11; 1.9III; DPL2) sind zu Vergleichszweck

humanen Anti-GPIIb-Autoantikörpers 2E7 (Kunicki et al., J. Autoimmun. 4 (1991), 433-446). Für die schwere Kette sind die ersten drei

Aminosäuren (QVK) durch die Vektorsequenz von pComb3 bestimmt.

20

Tabelle 4 zeigt die Zuordnung von Klonen der Gruppe A und B zu bekannten Stammlinien V-Gensequenzen nach der Aminosäurehomologie

	5	Schwere Ke	tte	L	eichte Kette	•
PDG- Phab- Klone	V _H Familie	Stamm- liniengen	Homo- logie (%)	V _⊿ Fa- milie	Stamm- liniengen	Homo- logie (5)
Gruppe A: 7,8, 10, 16	V _H 4	V _{H4} .11	84.3	V _A I	DPL2	81,4
Gruppe B: 13, 17,31, 37	V _H 3	1,9111	95,1	V _A I	DPL2	97,1

2. Identifizierung von antiidiotypischen Antikörpersequenzen

- Nach der in Beispiel 1 angegebenen Methode wurden durch die Phagemid-20 technik Sequenzen für antiidiotypische Antikörper identifiziert. Dabei wurde der in Beispiel 1 selektionierte Klon PDG16 als Antigen verwendet. Eine negative Vorselektion fand nicht statt.
- Es wurde ein Pool von kombinatorischen Phab-Bibliotheken, die Spezifitäten 25 einer nichtimmunen und einer mit roten Blutzellen immobilisierten Bibliothek peripherer B-Lymphozyten und einer nichtimmunen Bibliothek von B-Lymphozyten aus Tonsillen verwendet.
- Der nach der vierten Panningrunde erhaltene Pool von Phabs wurde 30 analysiert. Hierzu wurden 40 Phab-Klone zufällig ausgewählt und ihre

Bindespezifität ermittelt. 25 der ausgewählten Klone reagierten mit Anti-GPIIb/IIIa-Phab. Diese antiidiotypischen Phab-Klone gehörten zu zwei Gruppen: Gruppe I (drei Klone) zeigte eine Reaktion ausschließlich mit Autoantikörper-Phab-Klonen der Gruppe A (PDG 7, 8, 10 und 16), während die Phab-Klone der Gruppe II (insgesamt 22 Klone) sowohl mit Phab-Klonen der Gruppen A und B, mit murinen monoklonalen Anti-GPIIb/IIIa-Antikörpern, mit gereinigtem Serumimmunglobulin (IVIgG) oder F(ab')₂ Fragmenten davon und mit Anti-IgE-Fab reagieren. 14 Phab-Klone (Gruppe III) reagierten mit keiner der genannten Substanzen. Ein Phab-Klon der Gruppe IV reagierte nur mit Anti-GPIIb/IIIa Antikörpern. Die Ergebnisse dieser Spezifitätsuntersuchungen sind in Tabelle 5 zusammengefaßt.

5

10

15

20

Eine DNA-Sequenzanalyse von Phab-Klonen der Gruppe I (AI-X16, 17 und 24) zeigte in den für die schwere Kette kodierenden Sequenzen eine bis auf eine Aminosäure in der CDR2 Region vollständige Identität und in den für die leichte Kette kodierenden Sequenzen eine vollständige Identität. Ein Vergleich mit bekannten Stammlinien-Gensequenzen zeigte ca. 85% Homologie zur H-Ketten-Sequenz VH3 und ca. 90% Homologie zur Sequenz der L-Kettenfamilie V-AII. Von den Phab-Klonen der Gruppen II, III und IV wurde eine DNA-Sequenzanalyse des H-Kettengens jeweils an einem Vertreter durchgeführt. Die Ergebnisse dieser Sequenzanalyse und des Vergleichs mit bekannten Stammlinien-Gensequenzen ist in den Tabellen 6 und 7 zusammengefaßt.

Das Ergebnis einer Inhibitionsuntersuchung ist in Fig. 1 dargestellt. Es wurde gefunden, daß der Phab Al-X17 (Gruppe I) die Bindung von Auto-antikörper-Phabs der Gruppe A (PDG-X) an das Glykoprotein IIb/IIIa hemmen kann.

Bindung an

Tabelle 5

AIX Phab-Klone		PDG A P	PDGB		anti-IgE-Fab anti-GPIIb/IIIa mAb SG F(ab') ₂	SG	F(ab') ₂
Gruppe I 16,17,24	က	+	I	I	I	1	1
1,2,3,4,5,6,7,9, 1,1,13,14,23,26, 27,28,29,33,35, 36,37,38,40	22	+	+	+	+	+ "	**************************************
Gruppe III 8,10,12,15,18, 19,21,22,25,30, 31,32,34,39	4	I	I		Ĩ	I	1
Gruppe IV 20	~	I	I	i	+	i	1

Tabelle 7

A. Schwere Ketten

Klone FR1	FR1	CDR1	FR2	CDR2	FR3	CDR3	FR4
DP47 AIX16 AIX24 AIX17	EVQLLESGGGLVQPGGSLRLSCAASGFTFS Q-KD	SYAMS NF	WVRQAPGKGLEWVS	AISGSGGSTYYADSVKG GG-LL-H	RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK NR-V	VRDLGYRVLSTFTFDI MGQGTKVTVSS	WGQGTKVTVSS
DP49 AIX39	QVQLVESGGGVVQPGRSLRLSCÄASGFTFS K-LH	SYGMH T	WVRQAPGKGLEWVA	VISYDGSNKYYADSVKG	RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK AK	DGRSGSYARFDGMDV	WGQGTTVTVSS
DP31 AIX40	EVQLVESGGGLVQPGRSLRLSCAASGFTFD Q-K-L	DYAMH	WVRQAPGKGLEWVS	GISWNSGSIGYADSVKG	RFTISRDNAKNSLYLQMNSLRAEDTALYYCAKD	MGSSVVATYNAFDI	MGQGTMVTVSS
DP71 AIX20	QVQLQESGPGLVKPSETLSLTCTVSGGSIS K-LDVR	SYYWS -H	WIRQPPGKGLEWIG -L	YIYYSGSTNYNPSLKS FDGAR-RFR-	RVTI SVDTSKNQFSLKLSSVTAADTAVYYCAR SL-M-P-KGS	DADGDGESPYYFPY	WGQGIPVSVSS

B. Leichte Ketten

FR4	CSYAGSSTF VHN WVFGGGTKLTVLGOPKAAPSVTLFPPSS			
CDR3	CSYAGSSTF			
	GVSNRFSGSKSGNTASLTISGLQAEDEADYYC			
CDR2 FR3	EVSKRPS -G	1	1	
FR2	TGTSSDVGSYNLVS WYQQHPGKAPKIMIY			
CDR1	TGTSSDVGSYNLVS			
FR1	DPL10 QSALTQPASVSGSPGQSITISC AIX16 VV	1		
Klone FR1	DPL10 AIX16	AIX24	AIXI/	

FR: Framework-Region-; CDK: Komplement-bestimmende Region. Die oberen Sequenzen (DP47, DP49, DP31, DP71 und DPL10) sind zu Vergleichszwecken angegeben und stellen die am nächsten verwandte bekannte Stammliniensequenz dar. Striche bedeuten Identität. Für die schwere Kette sind die ersten drei Aminosäuren (QVD) durch die Vektorsequenz von pComb3 bestimmt. i

Tabelle 6

		H-Kette			L-Kette	
AIX Phab-Klone	V _H Familie	Stammlinien- gen	Homologie (%)	V _A Familie	Stammlinien- gen	Homologie (%)
16, 24	۲ _H 3	DP47	%88	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	DPL10	88%
17	ک _۳	DP47	%28	ر م م	DPL10	%88
20	У 4 ^н	DP71	81%		n.d.	
39	٧ 8	DP49	94%		n.d.	
40	۲ ۲	DP31	%56		n.d.	

Ansprüche

Nukleinsäure, die für die schwere Kette eines humanen Antikörpers,
 ein funktionelles Derivat oder ein Fragment davon kodiert und eine
 CDR3-Region umfaßt, ausgewählt aus:

10

15

20

25

- (a) einer für die Aminosäuresequenz:

 V L P F D P I S M D V

 kodierenden Nukleotidsequenz,
- (b) einer für die Aminosäuresequenz:

 A L G S W G G W D H Y M D V

 kodierenden Nukleotidsequenz,
- (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert und
- (d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an GPIIb/IIIa kodiert.
 - Nukleinsäure nach Anspruch 1, weiterhin umfassend eine CDR1-Region ausgewählt aus:
 - (a) einer für die Aminosäuresequenz:
 GYSWR (III)
 kodierenden Nukleotidsequenz,
- 30 (b) einer für die Aminosäuresequenz:

 S Y A M H

 kodierenden Nukleotidsequenz, und

3.

10

15

20

- (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a), oder (b) kodiert. Nukleinsäure nach einem der Ansprüche 1 oder 2, weiterhin umfassend eine CDR2-Region, ausgewählt aus einer für die Aminosäuresequenz: (a) DISYSGSTKYKPSLRS **(V)** kodierenden Nukleotidseguenz, einer für die Aminosäuresequenz: (b) VISYDGSNKYYADSVKG (M)kodierenden Nukleotidseguenz und (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert. Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR 3-Region umfaßt, ausgewählt aus: einer für die Aminosäuresequenz: (a) ATWDDGLNGPV (VII)
- 25 kodierenden Nukleotidsequenz,
- (b) einer für die Aminosäuresequenz: AAWDDSLNGWV (VIII) 30 kodierenden Nukleotidsequenz,

10

15

20

25

30

6.

5.

einer Nukleotidseguenz, die für eine Aminosäureseguenz mit (c) einer Homologie von mindestens 80 % zu einer Aminosäuresequenz aus (a) oder (b) kodiert, und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit (d) einer äquivalenten Bindefähigkeit an GPIIb/IIIa kodiert. Nukleinsäure nach Anspruch 4, weiterhin umfassend eine CDR1-Region ausgewählt aus: einer für die Aminosäuresequenz: (a) SGSSSNIRSNPVS (X) kodierenden Nukleotidsequenz, (b) einer für die Aminosäuresequenz: (X) SGSSSNIGSNTVN kodierenden Nukleotidsequenz, und einer Nukleotidseguenz, die für eine Aminosäureseguenz mit (c) einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert. Nukleinsäure nach einem der Ansprüche 4 oder 5, weiterhin umfassend eine CDR2-Region ausgewählt aus: (a) einer für die Aminosäuresequenz: GSHQRPS (XI) kodierenden Nukleotidsequenz, (b) einer für die Aminosäuresequenz: (XIII) SNNQRPS

kodierenden Nukleotidsequenz, und

- (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
- 7. Nukleinsäure, die für die schwere Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus:
 - (a) einer für die Aminosäuresequenz:

 VRDLGYRVLSTFTFDI (XIV)

 kodierenden Nukleotidsequenz,

15

- (b) einer für die Aminosäuresequenz:D G R S G S Y A R F D G M D V (XV)kodierenden Nukleotidsequenz,
- (c) einer für die Aminosäuresequenz:

 M G S S V V A T Y N A F D I (XVI)

 kodierenden Nukleotidsequenz,
- (d) einer für die Aminosäuresequenz:

 DADGDGFSPYYFPY (XVII)

 kodierenden Nukleotidsequenz,
- einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a), (b), (c) oder (d) kodiert und
- (f) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit
 einer äquivalenten Bindefähigkeit an Autoantikörper gegen
 GPIIb/IIIa kodiert.

- 8. Nukleinsäure nach Anspruch 7, weiterhin umfassend eine CDR1oder/und CDR2-Region ausgewählt aus einer für die in Tab. 7
 gezeigten Aminosäuresequenzen oder dazu mindestens 80% homologen Aminosäuresequenz kodierenden Nukleotidsequenz.
- Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR 3-Region umfaßt, ausgewählt aus:
- 10 (a) einer für die Aminosäuresequenz:

 CSYVHSSTN (XVIII)

 kodierenden Nukleotidsequenz,

15

20

- (b) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) kodiert, und
- (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an Autoantikörper gegen GPIIb/IIIa kodiert.
- 10. Nukleinsäure aus Anspruch 9, weiterhin umfassend eine CDR1oder/und CDR2-Region ausgewählt aus einer für die in Tab. 7 gezeigten Aminosäuresequenzen oder dazu mindestens 80% homologen Aminosäuresequenz kodierenden Nukleotidsequenz.
- 11. Vektor,dadurch gekennzeichnet,daß er
- 30 (a) mindestens eine Kopie einer Nukleinsäure nach einem der Ansprüche 1 bis 3 oder/und mindestens eine Kopie einer Nukleinsäure nach einem der Ansprüche 4 bis 6 enthält oder

(b) mindestens eine Kopie einer Nukleinsäure nach Anspruch 7 oder 8 oder/und mindestens eine Kopie einer Nukleinsäure nach Anspruch 9 oder 10 enthält.

5 12. Zelle,

10

15

20

25

30

dadurch gekennzeichnet,

daß sie

- (a) eine Nukleinsäure nach einem der Ansprüche 1 bis 3 oder/und eine Nukleinsäure nach einem der Ansprüche 4 bis 6 oder
- (b) eine Nukleinsäure nach Anspruch 7 oder 8 oder/und eine Nukleinsäure nach Anspruch 9 oder 10 exprimiert.
- 13. Polypeptid,

dadurch gekennzeichnet,

daß es

- (a) von einer Nukleinsäure nach einem der Ansprüche 1 bis 3
 oder/und einer Nukleinsäure nach einem der Ansprüche 4 bis
 6 oder
- (b) von einer Nukleinsäure nach Anspruch 7 oder 8 oder/und einer Nukleinsäure nach Anspruch 9 oder 10 kodiert ist.
- 14. Polypeptid nach Anspruch 13,

dadurch gekennzeichnet,

daß es die variable Domäne der H-Kette oder/und die variable Domäne der L-Kette eines humanen Antikörpers umfaßt.

15. Polypeptid nach Anspruch 14,

dadurch gekennzeichnet,

daß es sowohl die variable Domäne der H-Kette als auch die variable Domäne der L-Kette umfaßt.

- 16. Polypeptid nach einem der Ansprüche 13 bis 15,dadurch gekennzeichn t,daß es mit einer Markierungsgruppe oder einem Toxin gekoppelt ist.
- 5 17. Antikörper gegen ein Polypeptid nach einem der Ansprüche 13 bis 16.
 - 18. Antikörper nach Anspruch 17,
 dadurch gekennzeichnet,
 daß er gegen die CDR3-Region der schweren oder/und leichten
 Antikörperkette des Polypeptids gerichtet ist.

15

20

25

- 19. Pharmazeutische Zusammensetzung, die als aktive Komponente eine Nukleinsäure nach einem der Ansprüche 1 bis 10, einen Vektor nach Ansprüch 11, eine Zelle nach Ansprüch 12, ein Polypeptid nach einem der Ansprüche 13 bis 16 oder einen Antikörper nach einem der Ansprüche 17 oder 18, gegebenenfalls zusammen mit anderen aktiven Komponenten sowie pharmazeutisch üblichen Hilfs-, Zusatzoder Trägerstoffen enthält.
- 20. Verwendung einer Nukleinsäure nach einem der Ansprüche 1 bis 10 eines Vektors nach Anspruch 11, einer Zelle nach Anspruch 12, eines Polypeptids nach einem der Ansprüche 13 bis 16, eines Antikörpers nach Anspruch 17 oder 18 oder einer pharmazeutischen Zusammensetzung nach Anspruch 19 zur Herstellung eines Mittels für die Diagnose oder für die Behandlung oder Prävention von AITP.

Zusammenfassung

Die Erfindung betrifft neue Nukleinsäuresequenzen, die für humane Autoantikörper und antiidiotypische Antikörper gegen Blutplättchen-Membranproteine kodieren, neue Aminosäuresequenzen von humanen Antikörpern und deren Verwendung für die Diagnostik und Therapie von Krankheiten.

10

5

vo 11.12.97 12:53

H mmung in % der Bindung

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:

- (i) ANMELDER:
 - (A) NAME: ASAT AG Applied Science & Technology
 - (B) STRASSE: Baarerstrasse 77
 - (C) ORT: Zug
 - (E) LAND: CH
 - (F) POSTLEITZAHL: 6302
- (ii) BEZEICHNUNG DER ERFINDUNG: Rekombinante Antikoerper
- (iii) ANZAHL DER SEQUENZEN: 18
 - (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTR*GER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

(2) ANGABEN ZU SEQ ID NO: 1:

- (i) SEQUENZKENNZEICHEN:
 - (A) L\mathbb{X}NGE: 357 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHL#SSEL: CDS
- (B) LAGE:1..357
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GTO Gln Val	AAA Lys	CTG Leu	CTC Leu 5	GAG Glu	TCG Ser	GGC Gly	CCA Pro	GGA Gly 10	CTG Leu	GTG Val	AAG Lys	CCT Pro	TCG Ser 15	GAG Glu	48
ACC CTO	TCC Ser	CTC Leu 20	AAC Asn	TGC Cys	ACT Thr	GTC Val	TCT Ser 25	GGT Gly	CGC Arg	TCC Ser	ATC Ile	AGT Ser 30	GGT Gly	TAC Tyr	96
TCT TGG Ser Tr	AGA Arg 35	TGG Trp	ATC Ile	CGG Arg	CAG Gln	TCT Ser 40	CCA Pro	GGG Gly	AAG Lys	GGA Gly	CTA Leu 45	GAG Glu	TGG Trp	ATT Ile	144
GGG GAT Gly Asp 50	Ile														192
AGT CGA															240

80

(2) ANGABEN ZU SEQ ID NO: 2:

115

65

- (i) SEQUENZKENNZEICHEN:
 - (A) L\(\text{M}\) I\(\text{M}\) Aminos\(\text{w}\) uren

70

- (B) ART: Aminos≋ure
- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK#LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Gln Val Lys Leu Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15

Thr Leu Ser Leu Asn Cys Thr Val Ser Gly Arg Ser Ile Ser Gly Tyr 20 25 30

Ser Trp Arg Trp Ile Arg Gln Ser Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45

Gly Asp Ile Ser Tyr Ser Gly Ser Thr Lys Tyr Lys Pro Ser Leu Arg
50 55 60

r Arg Val Thr Leu Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
70 75 80

Leu Asn Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Arg Val Leu Pro Phe Asp Pro Ile Ser Met Asp Val Trp Gly Lys Gly
100 105 110

Thr Thr Val Thr Val Ser Ser 115

- (2) ANGABEN ZU SEQ ID NO: 3:
 - (i) SEQUENZKENNZEICHEN:
 - (A) L#NGE: 333 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHL#SSEL: CDS
- (B) LAGE:1..333

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

					CCC Pro			48
					AGA Arg			96
					AAA Lys			144
					CGA Arg			192
					GGG Gly 195			240
					GAC Asp			288
					CTA Leu			333

ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 - (A) L*NGE: 111 Aminos*uren
 - (B) ART: Aminos≋ure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK*LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Val Val Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Trp Val 1 5 10 15

Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Arg Ser Asn Pro Val 20 25 30

Ser Trp Tyr His Gln Val Pro Gly Thr Ala Pro Lys Leu Leu Ile Phe 35 40 45

Gly Ser His Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser 50 55 60

Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Arg Gly Leu Gln Ser Gly

Asp Ala Gly Asp Tyr Tyr Cys Ala Thr Trp Asp Asp Gly Leu Asn Gly

Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Gln Pro 105

(2) ANGABEN ZU SEQ ID NO: 5:

(i) SEQUENZKENNZEICHEN:

- (A) L#NGE: 369 Basenpaare
- (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHL*SSEL: CDS
- (B) LAGE:1..369

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

						GTC Val			48
	 		 	 	 	 ACC Thr	 		 96
	His					GGG Gly 155			144
A 160						TAC Tyr			192
	 		 	 	 	 AAG Lys	 	. –	240
						GCT Ala			288
						CAC His			336
		GGG Gly							369

(2) ANGABEN ZU SEQ ID NO: 6:

- (i) SEQUENZKENNZEICHEN:
 - (A) L#NGE: 123 Aminos#uren
 - (B) ART: Aminos wure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK*LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

Gln Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

a Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Ala Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Ala Leu Gly Ser Trp Gly Gly Trp Asp His Tyr Met Asp Val 100 105 110

Trp Gly Lys Gly Thr Thr Val Thr Val Ser Ser 115 120

`) ANGABEN ZU SEQ ID NO: 7:

- (i) SEQUENZKENNZEICHEN:
 - (A) L\(\mathbb{X}\)NGE: 333 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHL*SSEL: CDS
- (B) LAGE:1..333
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

GTG GTG ACT CAG CCA CCC TCA GCG TCT GGG ACC CCC GGG CAG AGG GTC Val Val Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg Val 125 130 135

ACC ATC TCT TGT TCT GGA AGC AGC TCC AAC ATC GGA AGT AAT ACT GTA

48

Thr 140	Ile	Ser	Cys	Ser	Gly 145	Ser	Ser	Ser	Asn	Ile 150	Gly	Ser	Asn	Thr	Val 155	
	TGG Trp															144
	AAT Asn															192
	TCT Ser															240
	GAG Glu 205															288
											CTA Leu					333

(2) ANGABEN ZU SEQ ID NO: 8:

- (i) SEQUENZKENNZEICHEN:
 - (A) L\(\bar{x}\)NGE: 111 Aminos\(\bar{x}\)uren
 - (B) ART: Aminos wure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK#LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:
- Val Val Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg Val 1 5 10 15
 - · Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Thr Val 20 25 30
 - Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr 35 40 45
- Ser Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser 50 60
- Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gln Ser Glu 65 70 75 80
- Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu Asn Gly 85 90 95
- Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 100 105 110
- (2) ANGABEN ZU SEQ ID NO: 9:
 - (i) SEQUENZKENNZEICHEN:

- (A) L#NGE: 369 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: beides
- (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHL#SSEL: CDS
- (B) LAGE:1..369

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

CAG Gln	GTG Val	AAA Lys	CTG Leu 115	CTC Leu	GAG Glu	TCT Ser	GGG Gly	GGA Gly 120	GGC Gly	TTG Leu	GTT Val	CAC His	CCC Pro 125	GGG Gly	GGG Gly	48
`C	CTG Leu	AGA Arg 130	CTC Leu	TCT Ser	TGT Cys	GCA Ala	GCC Ala 135	TCT Ser	GGA Gly	TTT Phe	ACG Thr	TTT Phe 140	GAC Asp	AAC Asn	TTT Phe	96
GCC Ala	ATG Met 145	AGC Ser	TGG Trp	GTC Val	CGC Arg	CAG Gln 150	GCT Ala	CCA Pro	GGG Gly	AAG Lys	GGG Gly 155	CTG Leu	GAG Glu	TGG Trp	GTC Val	144
TCA Ser 160	GGC Gly	ATT Ile	AGT Ser	GGT Gly	GGT Gly 165	GGT Gly	CTT Leu	TTG Leu	ACA Thr	CAC His 170	TAC Tyr	GCA Ala	GAC Asp	TCC Ser	GTG Val 175	192
AAG Lys	GGC Gly	CGG Arg	TTC Phe	ACC Thr 180	ATC Ile	TCC Ser	AGA Arg	AAC Asn	AAT Asn 185	TCC Ser	AGG Arg	AAC Asn	ACT Thr	GTA Val 190	TAC Tyr	240
CTA Leu	CAA Gln	ATG Met	AAC Asn 195	AGC Ser	CTG Leu	AGA Arg	GCC Ala	GAA Glu 200	GAC Asp	ACG Thr	GCC Ala	GTG Val	TAT Tyr 205	TAT Tyr	TGT Cys	288
۰ نامسین	AGA Arg	GAT Asp 210	CTG Leu	GGC Gly	TAT Tyr	AGA Arg	GTA Val 215	CTT Leu	TCG Ser	ACT Thr	TTT Phe	ACT Thr 220	TTT Phe	GAT Asp	ATC Ile	336
TGG Trp	GGC Gly 225	CAG Gln	GGG Gly	ACA Thr	AAG Lys	GTC Val 230	ACC Thr	GTC Val	TCT Ser	TCA Ser						369

(2) ANGABEN ZU SEQ ID NO: 10:

- (i) SEQUENZKENNZEICHEN:
 - (A) L#NGE: 123 Aminos wuren
 - (B) ART: Aminos wre
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK#LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Gln Val Lys Leu Glu Ser Gly Gly Gly Leu Val His Pro Gly Gly

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asn Phe 20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Ser Gly Gly Gly Leu Leu Thr His Tyr Ala Asp Ser Val
50 60

Lys Gly Arg Phe Thr Ile Ser Arg Asn Asn Ser Arg Asn Thr Val Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

`al Arg Asp Leu Gly Tyr Arg Val Leu Ser Thr Phe Thr Phe Asp Ile 100 105 110

Gly Gln Gly Thr Lys Val Thr Val Ser Ser 115 120

(2) ANGABEN ZU SEQ ID NO: 11:

- (i) SEQUENZKENNZEICHEN:
 - (A) L#NGE: 375 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHL SSEL: CDS
- (B) LAGE: 1..375

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

•																
														TCG Ser		48
														AAC Asn		96
														ATG Met 170		144
														TCT Ser		192
TCC	AAG	TCT	GGC	AAC	ACG	GCC	TCC	CTG	ACA	ATC	TCT	GGG	CTC	CAG	GCT	240

Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu Gln Ala

190 195 200

			TGC Cys					288
			ACC Thr					336
			CTG Leu				·	375

(2) ANGABEN ZU SEQ ID NO: 12:

- (i) SEQUENZKENNZEICHEN:
 - (A) L*NGE: 125 Aminos*uren
 - (B) ART: Aminos wre
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK*LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

Val Val Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln Ser Ile 1 5 10 15

Thr Ile Ser Cys Thr Gly Thr Ser Ser Ala Ile Gly Asn Tyr Asn Phe 20 25 30

Val Pro Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu Met Ile 35 40 45

Tyr Glu Gly Ser Lys Arg Pro Ser Gly Val Ser Asn Arg Phe Ser Gly
50 55 60

Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu Gln Ala

Gra Asp Glu Ala Glu Tyr Tyr Cys Cys Ser Tyr Val His Ser Ser Thr 85 90 95

Asn Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro 100 105 110

Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 115 120 125

(2) ANGABEN ZU SEQ ID NO: 13:

- (i) SEQUENZKENNZEICHEN:
 - (A) L#NGE: 366 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHL#SSEL: CDS
- (B) LAGE:1..366

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

CAG Gln	GTG Val	AAA Lys	CTG Leu	CTC Leu 130	GAG Glu	TCA Ser	GGA Gly	CCA Pro	GGA Gly 135	CTG Leu	GTG Val	AAG Lys	CCC Pro	TCG Ser 140	GAG Glu	4 8	3
ACC Thr	CTG Leu	TCT	CTC Leu 145	ACC Thr	TGC Cys	ACT Thr	GTC Val	TCT Ser 150	GAT Asp	GTC Val	TCC Ser	ATC Ile	AGA Arg 155	AGT Ser	CAT His	96	5
TAC Tyr	TGG Trp	AGT Ser 160	TGG Trp	CTC Leu	CGG Arg	CAG Gln	CCC Pro 165	CCA Pro	GGG Gly	AAG Lys	GGA Gly	CTG Leu 170	GAG Glu	TGG Trp	ATT Ile	144	1
	TTT Phe 175	ATC Ile	TAT Tyr	GAC Asp	GGT Gly	GCG Ala 180	AGA Arg	ACC Thr	AGG Arg	TTC Phe	AAC Asn 185	CCC Pro	TCC Ser	CTC Leu	AGG Arg	192	2
AGT Ser 190	CGA Arg	GTC Val	TCC Ser	CTT Leu	TCA Ser 195	ATG Met	GAC Asp	CCA Pro	TCC Ser	AAG Lys 200	AAG Lys	CAG Gln	TTT Phe	TCC Ser	CTG Leu 205	240)
AAA Lys	CTG Leu	GGG Gly	TCT Ser	GTG Val 210	ACC Thr	GCT Ala	GCG Ala	GAC Asp	TCG Ser 215	GCC Ala	GTC Val	TAC Tyr	TAC Tyr	TGT Cys 220	GCG Ala	288	3
AGA Arg	GAC Asp	GCG Ala	GAT Asp 225	GGA Gly	GAT Asp	GGC Gly	TTC Phe	AGC Ser 230	CCA Pro	TAC Tyr	TAC Tyr	TTT Phe	CCC Pro 235	TAC Tyr	TGG Trp	336	5
							GTC Val 245									366	5

(2) ANGABEN ZU SEQ ID NO: 14:

- (i) SEQUENZKENNZEICHEN:
 - (A) L\mathbb{X}NGE: 122 Aminos\mathbb{X}uren
 - (B) ART: Aminos≋ure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK*LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

Gln Val Lys Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Asp Val Ser Ile Arg Ser His 20 25 30

Tyr Trp Ser Trp Leu Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile

35

Gly Phe Ile Tyr Asp Gly Ala Arg Thr Arg Phe Asn Pro Ser Leu Arg 50 55 60

Ser Arg Val Ser Leu Ser Met Asp Pro Ser Lys Lys Gln Phe Ser Leu 65 70 75 80

Lys Leu Gly Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Asp Ala Asp Gly Asp Gly Phe Ser Pro Tyr Tyr Phe Pro Tyr Trp
100 105 110

Gly Gln Gly Ile Pro Val Ser Val Ser Ser 115 120

(2) ANGABEN ZU SEQ ID NO: 15:

- (i) SEQUENZKENNZEICHEN:
 - (A) L\(\mathbb{X}\)NGE: 372 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: linear

(ix) MERKMAL:

205

- (A) NAME/SCHL#SSEL: CDS
- (B) LAGE:1..372

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

		AAA Lys 125												48
\. <u>`</u>	Leu	AGA Arg												96
		CAC His											:	L44
		ATA Ile											:	192
		CGA Arg											2	240
		ATG Met	Asn	Ser	Leu	Arg	Glu	Asp	Thr	Ala	Val		2	288

215

GCG AAA GAT GGC CGG AGT GGG AGC TAC GCC AGG TTC GAC GGT ATG GAC Ala Lys Asp Gly Arg Ser Gly Ser Tyr Ala Arg Phe Asp Gly Met Asp 220 225 230

336

GTC TGG GGC CAA GGG ACC ACG GTC ACC GTC TCA Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 235 240 245

372

(2) ANGABEN ZU SEQ ID NO: 16:

- (i) SEQUENZKENNZEICHEN:
 - (A) L#NGE: 124 Aminos wuren
 - (B) ART: Aminos ure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEK*LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val His Pro Gly Arg
5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Leu Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Ala Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Lys Asp Gly Arg Ser Gly Ser Tyr Ala Arg Phe Asp Gly Met Asp 100 105 110

Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser

(2) ANGABEN ZU SEQ ID NO: 17:

- (i) SEQUENZKENNZEICHEN:
 - (A) L%NGE: 372 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: linear

(ix) MERKMAL:

- (A) NAME/SCHLESSEL: CDS
- (B) LAGE:1..372

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

CAG Gln 125	GTG Val	AAA Lys	CTG Leu	CTC Leu	GAG Glu 130	TCT Ser	GGG Gly	GGA Gly	GGC Gly	TTG Leu 135	GTA Val	CAG Gln	CCT Pro	GGC Gly	AGG Arg 140	48
TCC Ser	CTG Leu	AGA Arg	CTC Leu	TCC Ser 145	TGT Cys	GCA Ala	GCC Ala	TCT Ser	GGA Gly 150	TTC Phe	ACC Thr	TTT Phe	GAT Asp	GAT Asp 155	TAT Tyr	96
GCC Ala	CTG Leu	CAC His	TGG Trp 160	GTC Val	CGT Arg	CAA Gln	GCT Ala	CCA Pro 165	GGG Gly	AAG Lys	GGC Gly	CTG Leu	GAG Glu 170	TGG Trp	GTC Val	144
TCA Ser	GGT Gly	ATT Ile 175	AGT Ser	TGG Trp	GAT Asp	AGT Ser	GGT Gly 180	ACC Thr	ATA Ile	GGC Gly	TAT Tyr	GCG Ala 185	GAC Asp	TCT Ser	GTG Val	192
 G	GGC Gly 190	CGA Arg	TTC Phe	ACC Thr	ATC Ile	TCC Ser 195	AGA Arg	GAC Asp	AAC Asn	GCC Ala	AAG Lys 200	AAC Asn	TCC Ser	CTG Leu	TAT Tyr	240
CTG Leu 205	CAA Gln	ATG Met	AAC Asn	AGT Ser	CTG Leu 210	AGA Arg	GCT Ala	GAG Glu	GAC Asp	ACG Thr 215	GCC Ala	TTG Leu	TAT Tyr	TAC Tyr	TGT Cys 220	288
GTA Val	AAA Lys	GAT Asp	ATG Met	GGG Gly 225	TCT Ser	TCG Ser	GTA Val	GTG Val	GCT Ala 230	ACG Thr	TAC Tyr	AAT Asn	GCT Ala	TTT Phe 235	GAT Asp	336
ATC Ile	TGG Trp	GGC Gly	CAA Gln 240	GGG Gly	ACA Thr	ATG Met	GTC Val	ACC Thr 245	GTC Val	TCT Ser	TCA Ser					372

(2) ANGABEN ZU SEQ ID NO: 18:

- (i) SEQUENZKENNZEICHEN:
 - (A) L*NGE: 124 Aminos*uren
 - (B) ART: Aminos≋ure
 - (D) TOPOLOGIF: linear
- (ii) ART DES MOLEK*LS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

Gln Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr 20 25 30

Ala Leu His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Ser Trp Asp Ser Gly Thr Ile Gly Tyr Ala Asp Ser Val
50 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 85 90 95

Val Lys Asp Met Gly Ser Ser Val Val Ala Thr Tyr Asn Ala Phe Asp 100 105 110

Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 120

		T.		
6				
	¥)			