Devoir à la maison n° 1

À rendre le 10 septembre

Dans tout le problème, (\mathscr{C}) désigne la courbe d'équation $y = \ln x$ représentant la fonction logarithme népérien dans le plan rapporté à un repère orthonormal d'origine O et d'unité graphique 4 cm.

Dans ce problème, on s'autorisera à utiliser librement le résultat suivant :

Soit g une fonction continue sur un segment $[a,b] \subset \mathbb{R}$. S'il existe $k \in \mathbb{R}$ tel que $\forall t \in [a,b], |g(t)| \leq k$, alors $\left| \int_a^b g(t) \, dt \right| \leq k(b-a)$.

On traitera ce problème sans utiliser la calculatrice. Seul l'usage de Python sera autorisé, et uniquement aux questions 4)c) et 10)f). On pourra toutefois utiliser sans justification l'encadrement suivant :

$$0.69 < \ln(2) < 0.7$$
.

Question préliminaire: Tracer avec soin mais sans étude de la fonction, la courbe (\mathscr{C}) et la droite (\mathscr{D}) d'équation y = x.

Partie A

- 1) a) Déterminer une équation de la tangente (Δ) à (\mathscr{C}) au point I, point de l'axe (Ox) d'abscisse 1.
 - b) Étudier les variations de la fonction f définie sur l'intervalle $]0, +\infty[$ par

$$f(x) = x - 1 - \ln x.$$

- c) En déduire la position de (\mathscr{C}) par rapport à Δ .
- 2) a) Déduire de la question précédente la valeur minimale prise par $x \ln x$ sur l'intervalle $]0, +\infty[$.
 - **b)** Soit $x \in]0, +\infty[$ et M et N les points de même abscisse x des courbes (\mathscr{C}) et (\mathscr{D}) respectivement.

Déterminer la plus petite valeur (exprimée en cm) prise par la distance MN lorsque x décrit l'intervalle $]0, +\infty[$.

Partie B

- 3) Soit $x \in]0, +\infty[$ et M le point d'abscisse x de la courbe (\mathscr{C}) . Exprimer la distance OM de l'origine à M en fonction de x.
- 4) Étude de la fonction auxiliaire u définie sur $]0, +\infty[$ par $u(x) = x^2 + \ln x :$
 - a) Justifier les limites de u en 0 et en $+\infty$ ainsi que le sens de variations de u.
 - **b)** Montrer qu'il existe un réel α et un seul tel que $u(\alpha) = 0$. Montrer que α est compris entre 0,5 et 1.
 - c) En utilisant le logiciel Python et en explicitant la démarche utilisée, donner un encadrement de α d'amplitude 10^{-2} .
 - d) Déterminer le signe de u(x) lorsque x parcourt $]0, +\infty[$.
- 5) Étude de la fonction g définie sur $]0, +\infty[$ par $g(x) = x^2 + (\ln x)^2 :$ Calculer g' et vérifier que $g'(x) = \frac{2}{x}u(x)$. En déduire le tableau de variations de g.
- 6) Déduire des questions précédentes la valeur exacte de la plus courte distance de l'origine aux points de la courbe (\mathscr{C}) .
- 7) A étant le point d'abscisse α de (\mathscr{C}) , démontrer que la tangente à (\mathscr{C}) en A est perpendiculaire à la droite (OA).

Partie C - Étude d'une suite

8) Montrer que le réel α défini dans la partie **B** est solution de l'équation h(x) = x, où h est la fonction définie sur $]0, +\infty[$ par

$$h(x) = x - \frac{1}{4} (x^2 + \ln x).$$

- 9) a) Calculer h' et étudier son signe sur l'intervalle $\left[\frac{1}{2},1\right]$.
 - **b)** Prouver que $h\left(\left[\frac{1}{2},1\right]\right) \subset \left[\frac{1}{2},1\right]$.
 - c) Calculer h'' et étudier son signe sur l'intervalle $\left[\frac{1}{2},1\right]$.
 - d) En déduire que, pour tout x appartenant à l'intervalle $\left[\frac{1}{2},1\right]$, on a

$$0 \leqslant h'(x) \leqslant \frac{3}{10}.$$

10) On définit la suite (u_n) par : $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1}=h\left(u_{n}\right) .$$

- a) Montrer que, pour tout entier naturel $n, \frac{1}{2} \leq u_n \leq 1$, et que la suite (u_n) est décroissante.
- b) Soit $a, b \in \left[\frac{1}{2}, 1\right]$ tels que a < b. Grâce à une intégration, montrer que

$$h(b) - h(a) \leqslant \frac{3}{10}(b - a)$$

c) Soit $a, b \in \left[\frac{1}{2}, 1\right]$. Montrer que

$$|h(b) - h(a)| \leqslant \frac{3}{10}|b - a|$$

d) Montrer que l'on a pour tout entier naturel n,

$$|u_{n+1} - \alpha| \leqslant \frac{3}{10}|u_n - \alpha|.$$

- e) En déduire une majoration de $|u_n \alpha|$ ne dépendant que de n et montrer que la suite (u_n) converge vers α .
- f) Déterminer un entier n_0 tel que u_{n_0} soit une valeur approchée de α à 10^{-5} près. On pourra ensuite utiliser Python pour donner une valeur explicite de cet entier ainsi qu'une valeur de u_{n_0} .

