

# Introduction to Machine Learning [Fall 2022]

## Support Vector Machines (Part 3)

September 29, 2022

Lerrel Pinto

## Topics for today

- Diving a little deeper into solving SVMs
- Kernel SVMs
- Evaluating a classifier

## Recap: SVMs



Credits: R. Berwick (<a href="https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf">https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf</a>)

## Recap: SVMs



- Goal: Maximize margin / Minimize  $||w||^2$ 
  - Also need to satisfy  $y^i f(x^i) \ge 1$  for all datapoints  $(x^i, y^i)$ .

$$\min_{w} ||w||^2 \text{ subject to } y^i(w^Tx^i + b) \ge 1$$

• Can be solved as a quadratic optimization problem with linear constraints.

## Recap: How do we address data errors?







Credits: A. Zisserman (<a href="https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf">https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf</a>)

## Recap: Handling margin violations

#### • Goal:



$$\min_{w \in \mathbb{R}^d, \xi_i \in \mathbb{R}} ||w||^2 + C \sum_{i}^{m} \xi_i$$

subject to 
$$y^i(w^Tx^i+b) \ge 1-\xi_i$$

and 
$$\xi_i \geq 0$$

• Can be solved as a quadratic optimization problem with linear constraints.

Credits: A. Zisserman (<a href="https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf">https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf</a>)

## Interpretation through Loss function



Credits: A. Zisserman (<a href="https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf">https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf</a>)

What does the SVM math look like?

Original Goal: Maximize margin / Minimize  $||w||^2$ 

• Also need to satisfy  $y^i f(x^i) \ge 1$  for all datapoints  $(x^i, y^i)$ .

$$\min_{w} ||w||^2 \text{ subject to } y^i(w^Tx^i + b) \ge 1$$

Original Goal: Maximize margin / Minimize  $||w||^2$ 

• Also need to satisfy  $y^i f(x^i) \ge 1$  for all datapoints  $(x^i, y^i)$ .

$$\min_{w} ||w||^2 \text{ subject to } y^i(w^Tx^i + b) \ge 1$$

Combined objective (aka Lagrangian):

$$L(w, \alpha) = ||w||^2 - \sum_{i} \alpha_i [y^i(w^T x^i + b) - 1]; \ \alpha_i \ge 0, \forall i$$

Original Goal: Maximize margin / Minimize  $||w||^2$ 

• Also need to satisfy  $y^i f(x^i) \ge 1$  for all datapoints  $(x^i, y^i)$ .

$$\min_{w} ||w||^2 \text{ subject to } y^i(w^Tx^i + b) \ge 1$$

Combined objective (aka Lagrangian):

$$L(w, \alpha) = ||w||^2 - \sum_{i} \alpha_i [y^i(w^T x^i + b) - 1]; \ \alpha_i \ge 0, \forall i$$

New goal:  $\min \max_{w,b} L(w,a)$ 

#### Primal and Dual

$$L(w, \alpha) = ||w||^2 - \sum_{i} \alpha_i [y^i(w^T x^i + b) - 1]; \ \alpha_i \ge 0, \forall i$$

New goal:  $\min \max_{w,b} L(w,a)$  – Primal w,b  $\alpha_i \forall i$ 

#### Primal and Dual

$$L(w, \alpha) = ||w||^2 - \sum_{i} \alpha_i [y^i(w^T x^i + b) - 1]; \ \alpha_i \ge 0, \forall i$$

New goal:  $\min \max_{w,b} L(w,a)$  – Primal w,b  $\alpha_i \forall i$ 

Equivalent goal:  $\max_{\alpha_i \forall i} \min_{w,b} L(w,a)$  — Dual

#### Primal and Dual

$$L(w, \alpha) = ||w||^2 - \sum_{i} \alpha_i [y^i(w^T x^i + b) - 1]; \ \alpha_i \ge 0, \forall i$$

New goal:  $\min \max_{w,b} L(w,a)$  – Primal w,b  $\alpha_i \forall i$ 

Equivalent goal:  $\max_{\alpha_i \forall i} \min_{w,b} L(w,a)$  — Dual

Solution from setting derivatives to zero:

• 
$$w=\sum_i \alpha_i y_i x_i$$
 and  $\sum_i \alpha_i y_i=0$  – one step of math 
$$b=y^k-w^Tx^k$$
 For any  $k$  where  $\alpha_k>0$  – several steps of math

## Looking back SVMs



Credits: R. Berwick (<a href="https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf">https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf</a>)

## Looking back SVMs



$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$
 
$$b = y^{k} - w^{T} x^{k}$$
 For any  $k$  where  $\alpha_{k} > 0$ 

Credits: R. Berwick (<a href="https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf">https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf</a>)

## Looking back SVMs



$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$
 
$$b = y^{k} - w^{T} x^{k}$$
 For any  $k$  where  $\alpha_{k} > 0$ 

$$f(x) = \sum_{i} \alpha_{i} y^{i}(x^{i}.x) + b$$

$$\hat{y} = sign(f(x))$$

Credits: R. Berwick (https://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf)



Credits: https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f



Credits: https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f



Credits: https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f



Credits: https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d



Credits: https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d

#### Cool math trick – Kernels

$$\hat{y} = sign(\sum_{i} \alpha_{i} y^{i}(x^{i}.x) + b)$$

Linear case

$$\hat{y} = sign(\sum_{i} \alpha_{i} y^{i} (\phi(x)^{i} \cdot \phi(x)) + b)$$

Non-linear case

$$\hat{y} = sign(\sum_{i} \alpha_{i} y^{i}(K(x^{i}, x)) + b)$$

Non-linear with kernels

#### Cool math trick – Kernels

$$k(x, x') = x^T x'$$

Linear kernel

$$k(x, x') = (1 + x^T x')^d$$

Polynomial kernel

$$k(x, x') = exp(-\|x - x'\|^2/2\sigma^2)$$

Gaussian kernel

#### Online demo

https://jgreitemann.github.io/svm-demo

## Additional Reading

- Original paper: <a href="http://image.diku.dk/imagecanon/material/cortes\_vapnik95.pdf">http://image.diku.dk/imagecanon/material/cortes\_vapnik95.pdf</a>
- http://pyml.sourceforge.net/doc/howto.pdf
- Quadratic Programming: <a href="https://scaron.info/blog/quadratic-programming-in-python.html">https://scaron.info/blog/quadratic-programming-in-python.html</a>
- Lecture notes: <a href="https://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf">https://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf</a>
- Lecture notes: <a href="http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf">http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf</a>

Questions?