Ackermann's formula, 360 Algorithm(s) for controllability, 174 constrained Sylvester equation, 497 distance to uncontrollability, 186, 189	stability radius, 390 Sylvester equations, 270–1 Sylvester-observer equation,488, 492, 497 subspace identification, 327, 330, 333
distance to uncontrollability, 186, 189 distance to continuous-time unstable system, 225–6 distance to discrete-time unstable system, 229–30 eigenvalue assignment, 411–12, 417–18, 423–4, 425–8, 430–2, 437–8, 447–8 eigenvalue computations, 84–6 eigenvector computations, 90 frequency response matrix, 144 generalized eigenvectors, 99 Hankel-norm approximation, 626–7 H2-norm, 212 H∞ norm, 376, 379 integral involving matrix exponential, 137 inertia and stability, 219 internal balancing, 604, 607 Kalman filter, 501 large-scale computations in control, 653, 654, 655, 656, 657, 658, 659, 660, 661 linear algebraic systems, 48, 53–4 linear least-squares solution, 65–6, 72–3 LQG design, 507 LQR design, 366 Lyapunov equations, 265–9, 274 matrix exponential, 132, 135 model reduction, 614, 616–7 observer design, 472–3, 476–7, 479–80 realization, 317, 322 Riccati equations, 542–3, 553, 556–7, 558–9, 560–1, 563, 566, 568, 572, 574–5, 577	Back substitution, 38 Backward error in numerical linear algebra, 39 Schur and Hessenberg-Schur methods, 276–8 Backward stability, 39 and accuracy, 42 Balancing, 87 using controllability and observability Grammians, 603 Balancing a stick: example, 113 Bass-Gura formula, 360 Bauer-Fike theorem, 44 Bidiagonalization using Householder method, 91–2 Bilinear transformation, 643 Bisection method for distance to instability, 225–6 distance to uncontrollability, 187 H-infinity norm, 376 stability radius, 390–1 Block Hessenberg form, 173 Block diagonal matrix, 26 Block matrix, 26 Bode diagram, 146 CARE, 365 Cancellation, 37 Cart with inverted pendulum: example, 113 CASE STUDY: Ammonia Reactor, 678 Cauchy-Schwartz inequality, 28 Characteristic polynomial, 20
singular value decomposition, 91, 92	Cholesky factorization, 51

Closed-loop	DARE, 519
matrix, 345	Deadbeat control, 463
system, 345	Damping ratio, 355
Companion form, 25	Deflating subspace
lower, 25	methods for CARE, 556
upper, 25	methods for DARE, 550
Conditioning and sensitivity of	of a matrix pencil, 100
eigenvalue assignment, 443	Defective matrix, 21
eigenvalue problem, 44	Detectability, 353–4
feedback problem, 439-43	Diagonal matrix, 23
linear system, 41	Discrete-time
Lyapunov equation, 253-8	balancing, 609
matrix exponential, 127	controllability, 164
Riccati equations, 530-8	detectability, 354
stable Lyapunov equation, 253-7	distance to instability, 228
Sylvester equation, 249–2	-
Continuous-time	distance to uncontrollability, 183–4
controllability, 160	LQG design, 508
detectability, 343, 353	LQR design, 372
distance to instability, 223	stability, 213
distance to uncontrollability, 183	stabilizability, 347
Kalman filter, 499	Discrete-time Lyapunov equations
LQG design, 505	solution of, 274–6, 289–91
LQR design, 363	Discrete-time Riccati equations
model reduction, 614–23	solution of, 541, 545, 558, 565, 574, 577
stability, 203	Distance to
stabilizability, 345	uncontrollability, 183-4
stabilization, 345	instability, 223
constrained Sylvester-observer equation,	rank-deficient matrices, 70-1
496–7	unstable system, 223
Continuous-time Lyapunov equations	Dynamical systems, 1
solution of, 262–9, 284–6	
Continuous-time Riccati equations	
solution of, 542, 556, 563, 568, 572	Efficiency of an algorithm, 38
Continuous-time Sylvester equations	Eigenvalues
solution of, 269–71, 278–9	QR iteration method for finding, 83–9
Continuous-time Sylvester-observer equations	QZ iteration for generalized, 94–7
solution of, 485–96	Eigenvectors
Controllability	inverse iteration for, 90
criteria of, 160, 164-5	Eigenvalue assignment
Grammian, 210	comparison of different methods for, 453-4
index using controller-Hessenberg form, 181	conditioning of, 439–45
Popov-Belevich-Hautus test of, 163	existence and uniqueness theorem for, 358-60
test using controller-Hessenberg form, 173–6	explicit QR algorithms for, 416-19, 420, 423,
test using controllability Grammian, 210	425–7
Controller-canonical form, 170	implicit QR algorithm for, 420
Controller-Hessenberg form, 174	partial, 436–8
Control Systems Professional-Advanced	robust, 445–8
Numerical Methods, 670	RQ algorithm for, 417–8
Covariance matrix, 500	recursive algorithms for, 411–12, 423–4

Schur method for, 431–2	state feedback, 381-2
via controller-companion form, 407	output feedback, 383–5
Eigenstructure assignment, 361–3	H-infinity norm, 373
	bounds for, 377–8
	bisection method for, 376
Feedback	two-step method for, 378–9
conditioning of, 439	Hessenberg matrix
explicit formula for, 414	LU factorization of, 52
stabilization using Lyapunov equations,	reduction to, 81–2
348–53	Hessenberg-triangular form
stabilization using Riccati equations, 364	reduction to, 95–7
Floating-point number, 34	QZ algorithm and, 99
Flop, 38	Householder
Frequency response matrix	matrix, 57
Hessenberg algorithm for, 144	QR factorization, 58
Misra-Patel method for, 145	reduction to Hessenberg form, 81, 82
Functional observer(estimator), 513, 515	bidiognalization, 91, 92
Gain margins, 370	Identification
Gaussian elimination	frequency domain, 332–4
for LU factorization, 45-9	subspace stochastic, 329–31
Gaussian zero-mean, 500	Ill-conditioned problem, 42
Generalized eigenvalues, 94	IEEE standard for
Generalized eigenvectors, 94	floating point arithmetic, 34
Generalized eigenvector method for Riccati	Implicit QR algorithm for
equations, 550	eigenvalue computation, 85–6
Generalized Schur decomposition, 94	Implicit QR theorem, 82
Generalized Schur methods for Riccati	Impulse response matrix, 123
equations, 550	Inertia computation, 219–20
Givens	Inertia theorems, 217–18
matrix, 60	Integrals involving matrix exponentials, 137–9
QR factorization, 62	Internal balancing, 602
Grammian	Invariant subspace, 20
Balancing and, 603	and real-Schur form, 88
Controllability, 210	methods for Riccati equations, 540-66
H_2 norm using, 211	Inverse
Observability, 210	of a matrix, 22
Lyapunov equations and, 210	Inverse-free
Growth factor in Gaussian elimination, 50	generalized Schur methods for Riccati equations, 555–9
	Inverse iteration, 90
Hamiltonian matrix, 366	Internal balancing of
Hamiltonian Schur form, 546	minimal realization using SVD, 603
Hankel matrix of Markov parameters, 310	nonminimal realization using square-root
system identification using, 316-24	algorithm, 606–7
Hankel norm approximation, 623	Iterative refinement
Hankel singular values, 377	for linear system solution, 56
H_2 norm	men ojotem colution, co
using Lyapunov equation, 211–12	
H-infinity control	Jordan canonical form, 25

Kalman decomposition, 168–9 Kalman filter, 499	MATLAB Control system toolbox, 669
gain, 501	$MATRIX_X$, 671
guaranteed stability of, 502	Matrix exponential
guaranteed robustness of, 502	comparison of different methods for
Kronecker product, 31	computing, 150
Krylov subspace methods for Lyapunov equations, 653–4	computing integrals involving, 137–8 conditioning of, 127
model reduction, 659-62	eigenvalue-eigenvector method for, 129
partial eigenvalue assignment, 659	ordinary differential equation methods for,
Riccati equation, 658-9	134
Sylvester equations, 654-6	Pade' approximation method for, 131-3
Sylvester-observer equation, 657	Schur method for, 135
	series method, 130
*	Matrix Sign-Function
Large-scale computations, see Krylov subspace	computation of, 560
methods	solving CARE using, 561–3
Least-squares solution	solving DARE using, 565-6
minimum-norm, 73	Minimal realization
using normal equations, 65	SVD algorithm for, 317
using QR factorization, 65–6	modified SVD algorithm for, 322
using singular value decomposition(SVD),	Model reduction
72–3	balanced-truncation method for, 614
List of	comparison of different methods
algorithms, xxxiii-xxxv	for, 635–6
MATCONTROL functions, 674–7	frequency weighted, 633
LQG design	H-infinity error bound for, 612
separation property of, 506	Hankel-norm approximation for, 623-32
LQR design	Schur method for, 615–21
guaranteed stability and robustness of, 368–72	singular perturbation approximation for, 644
LU factorization, 45	square-root method for, 621-2
Luenberger	Motion of a satellite: example, 116
canonical form, 171	-
Observer, 471	
Lyapunov equation	Natural frequency, 355
analytical methods, 262–3	Newton's method
Arnoldi methods	for CARE, 567
for, 653–4	for DARE, 574
Cholesky factor solutions of, 284–6, 289–91	for distance to uncontrollability,
conditioning of, 253	186
integral representation of solution	with line search for CARE, 572
of, 207	with line search for DARE, 577
Schur method for, 265–7, 274–5	Nonderogatory matrix, 25
uniqueness of solution for, 248	Norms 27, 28
Lyapunov stability theorem, 205	equivalence property of matrix, 29–30 equivalence property of vector, 28
Machine epsilon,(precision), 36	Normal equations
MATCOM, 78, 103	for least-squares solution, 65
MATCONTROL, 669	Nullspace, 21

Numerical rank, 72	and Least-squares solution, 65-6
Numerical stability, 39	and orthogonal projections, 63-4
·	with column pivoting, 64
	QR iteration, 84–6
Observability	QZ iteration, 94–9
and observer-Hessenberg form, 183	•
of continuous-time system, 165	
of discrete-time system, 167	Range of a matrix, 21
Observability Grammian, 210	Rank, 21
Observability test using block	Rank-deficient matrix, 21
Hessenberg form, 183	Reachability, 164
Observer-canonical form,170	Realization
Observer design via	controllable, 309
eigenvalue assignment, 470, 474-8	minimal, 310–11
Sylvester-observer equation, 472, 479–82	observable, 310
Observer theorem, 471	SVD method for, 316–18
Optimal control of	modified SVD method for, 319-22
continuous-time systems, 364	Real-Schur form, 83
discrete-time systems, 372	Recursive algorithm for
Ordered real-Schur decomposition, 543	single-input eigenvalue assignment, 411
Orthogonal matrix, 23	multi-input eigenvalue assignment, 423
Orthogonal projections, 22	Sylvester-observer equation, 486, 490
using QR decomposition, 63–4	Reduced-order
using SVD, 69	observer design via eigenvalue assignment,
Orthogonal transformation: importance and	474–7
significance, 79–80	observer design via Sylvester-observer
Orthonormal bases, 20	equation, 479–80
QR factorization and, 63–4	Relative errors in matrix computations, 35
SVD and, 69	Riccati equations
Output feedback, 361	•
Overflow, 35	comparison of different methods for solving, 581–2
	complex stability radius and, 386-8
Padé approximation, 131	conditioning of, 530–9
p-norm, 27	descriptor, 579–81
Partial eigenvalue assignment	eigenvector methods for, 540-1
using Sylvester equation, 436-7	generalized eigenvector methods for, 550–1
using projection technique, 659	generalized Schur methods for, 552–5
using Schur method, 431–2	H-infinity Control and, 381-4
Permutation matrix, 24	inverse-free methods for, 555-9
Phase margins, 371	Kalman filter and, 499-504
Pivoting in Gaussian elimination, 47–8	LQG design and, 505
Poles, 141	LQR design and, 363–7
Pole placement, see eigenvalue assignment	matrix sign-function methods for, 560-6
Positive definite matrix, 26	Newton methods for, 566–77
Toblico de mano, 20	Schur methods for, 541–9
	stabilizing solution of, 366
QR factorization	RLC circuit: example, 109
complex, 60	Robust eigenvalue assignment, 445-50
using Householder matrices, 58	Robust stability
using Givens matrices, 62	Lyapunov equation methods for, 230-1

Relative errors, 35	bounded-input bounded-state, 204
Rounding errors, 35	computation of, 218
	implicit matrix equation method for, 219-20
	Lyapunov, 205
Scaling of Riccati equations, 544–5	marginal, 203
Schur decomposition, ordered	numerical, 39
software for, 543	Stabilizability of
Schur method for	continuous-time system, 346
eigenvalue assignment, 431	discrete-time system, 347
Lyapunov equations, 265-9	Stabilization via
matrix exponential, 135	Lyapunov equations, 348–52
model reduction, 616-17	Riccati equations, 364
Riccati equations, 541-9	Stable eigenvalues, 203
Separation of matrices, 249	Stable matrix, 203
Separation property of	Stability radius
feedback design with observer, 483	bisection method for, 390–1
LQG design, 506	complex, 233, 386
sep estimation, 261	computation of, 390–1
Shifts in QR iteration, 86	real, 233
Singular values, 67	Staircase algorithm, 174
and rank of a matrix, 67	State estimation via
computation of, 91	eigenvalue assignment, 470
and distance to instability, 225	Sylvester-observer equation, 471
and distance to uncontrollability, 184	
least-squares solution using, 72–3	State-space representation of nonlinear systems, 112–13
insensitivity of, 68	
Singular value plot, 146	spring-mass system, 111–12
SLICOT, 670	systems modeled by partial differential
Software for control problems, 669–72	equations, 118–19
Software (selected) for	State-space solutions of,
controllability and Observability, 192–3	continuous-time system, 122–3
distance to instability, 235	discrete-time system, 139–40
	State-space model, 108–9
distance to uncontrollability, 192	State-transition matrix, 122
eigenvalue assignment, 455–6	Step response of a system, 124
feedback stabilization, 391–2	Stochastic System
LQG design, 509–10	state estimation of, 500
LQR design, 391	Structured stability radius, 232
Lyapunov equations, 293–5	Subspace system identification, 324–32
model reduction, 636–7	Sylvester equation
Riccati equations, 583–4	characterization of nonsingularity of, 483-5
state estimation, 509–10	conditioning of, 249–52
Sylvester equations, 293–5	Hessenberg method for, 278-80
system identification, 334–5	Hessenberg-Schur methods for, 269–71
Spring-mass system: example, 111	uniqueness of solution of, 247
Square-root method for	Sylvester-observer equation
internal balancing, 607	constrained, 496
model reduction, 621	recursive block triangular algorithm for,
Stability	490–4
asymptotic, 203	recursive methods for, 486-90
bounded-input bounded-output, 204	Sylvester law of inertia, 216-17

Symplectic matrix, 529

System identification

in frequency domain, 332–4

in time domain, 324–2

System responses, 123–4

Uncontrollability

distance to, 183

Underflow, 35

Unit step response, 124

Unreduced

Hessenberg matrix, 24

Time response, 123–4
Transfer functions, 141, 142
Triangular matrix, 23
vec operation, 31

Uncontrollable White-noise, 211 wilkinson matrix, 45