Ciência de Dados Aplicada

Aula 11: Máquinas de Vetores de Suporte (Support Vector Machines)

Regressão Linear

Características

$$\hat{y} = \hat{b} + \widehat{w}_1 \cdot x_1 + \cdots + \widehat{w}_n \cdot x_n$$

Características

$$\hat{y} = \hat{b} + \hat{w}_1 \cdot x_1 + \cdots + \hat{w}_n \cdot x_n \qquad \hat{y} = \frac{1}{1 + \exp\left[-\left(\hat{b} + \hat{w}_1 \cdot x_1 + \cdots + \hat{w}_n \cdot x_n\right)\right]}$$

Vetores de Suporte

Vetores de Suporte

Kernelização

Kernelização em 1 dimensão

Kernelização – adicionando mais uma dimensão

Kernelização – adicionando mais uma dimensão

Kernelização

Espaço Original

Espaço de Características

Kernelização em 2 dimensões

$$x_i = (x_0, x_1)$$

Kernelização – adicionando mais uma dimensão

Espaço de Características

Kernelização

Vetores de Suporte

Espaço Original

Espaço de Características

RBF – Parâmetro gamma

largura do kernel

Espaço de

características

Original

Observações

Variedadede conjuntos de dados

Versátil: funções de kernel diferentes podem ser especificadas "RBF" e "poly"

Funciona bem para dados com baixa e alta dimensões

Velocidade de execução e uso de memória, i.e., a eficiência diminui conforme o tamanho do conjunto de treinamento aumenta

Precisa de cuidadosa normalização de dados de entrada e ajuste de parâmetros

Difícil de interpretar por que um previsão foi feita