LOGIC CIRCUITS

Individual homework – Cîrstea Andrei Daniel

THEORY ASPECTS

Basic Gates

Gate	Symbol
AND	
OR	
NOT	

Derived Gates

Gate	Symbol	Boolean Function
XOR		$A \oplus B = \bar{A}B \vee A\bar{B}$
NAND		$A \uparrow B = \overline{AB} = \overline{A} \vee \overline{B}$
NOR		$A \downarrow B = \overline{A \lor B} = \overline{A} \overline{B}$
NXOR		$A \otimes B = \overline{AB} \vee AB$ $= (\overline{A} \vee B)(\overline{B} \vee A)$

Solution

Problem statement

Exercise 3.

Draw a logic circuit having 3 input wires and containing all basic and derived gates. Write the corresponding Boolean function, simplify it and then draw a simplified circuit equivalent to the initial one.

Chosen Circuit

Corresponding Boolean formula

$$f(x,y,z) = (\bar{x} \uparrow y) \land (\bar{x} \otimes y) \land [(y \oplus z) \downarrow (y \lor z)]$$

Simplification

$$f(x,y,z) = (\bar{x} \uparrow y) \land (\bar{x} \otimes y) \land [(y \oplus z) \downarrow (y \vee z)] =$$

$$= (x \vee \bar{y}) \land (\bar{x} \vee \bar{y}) \land (x \vee y) \land [((\bar{y} \land z) \vee (y \wedge \bar{z})) \downarrow (y \vee z)]$$

$$= (x \vee \bar{y}) \land (\bar{x} \vee \bar{y}) \land (x \vee y) \land (y \vee \bar{z}) \land (\bar{y} \vee z) \land \bar{y} \land \bar{z}$$

$$= (\text{absorption laws for } \bar{y} \text{ and } \bar{z}) =$$

$$= (x \vee y) \land \bar{y} \land \bar{z} = (x \vee y) \land (\bar{y} \land \bar{z}) = (x \land \bar{y} \land \bar{z}) \lor (y \land \bar{y} \land \bar{z}) \text{ (the last parenthesis is always false because of } y \land \neg y)$$

$$= x \land \bar{y} \land \bar{z}$$

So,
$$f(x, y, z) = x \wedge \overline{y} \wedge \overline{z}$$

Simplified circuit

