Memory hierarchy

Processors, cores, memory and PCle

Caches (load)

Cache-coherence (store)

Cache-coherence (load of modified)

Latencies: load from local L1

Latencies: load from local L2

Latencies: load from local L3

Latencies: load from local memory

Latencies: load from same die core's L2

Latencies: load from same die core's L1

Latencies: load from remote L3

Latencies: load from remote memory

Latencies: load from remote L2

Latencies: load from remote L2

Latencies: PCle round-trip

Device I/O

- Essentially just sending data to and from external devices
- Modern devices communicate over PCIe
 - Well there are other popular buses, e.g., USB, SATA (disks), etc.
 - Conceptually they are similar
- Devices can
 - Read memory
 - Send interrupts to the CPU

Direct memory access

Interrupts

Device I/O

- Write incoming data in memory, e.g.,
 - Network packets
 - Disk requests, etc.
- Then raise an interrupt to notify the CPU
 - CPU starts executing interrupt handler
 - Then reads incoming packets form memory

Device I/O (polling mode)

- Alternatively the CPU has to check for incoming data in memory periodically
 - Or poll
- Rationale
 - Interrupts are expensive

Thank you!