Sprawozdanie 2

Rozważamy testy na poziomie istotności $\alpha = 0.05$ do testowania

- H_0 : $\mu = 1$, przeciwko
- $H_1: \mu \neq 1$.

Będziemy wykonywać sprawdzenie tej hipotezy, stosując wprost trzy testy:

- 1. **testu z** przy założeniu $\sigma = 2$,
- 2. testu t-Studenta,
- 3. testu rang znakowanych Wilcoxona.

Zadanie 1

Rozważmy próbę (X_1, \ldots, X_{100}) z rozkładu normalnego $\mathcal{N}(\mu, 2^2)$. Korzystając z symulacji Monte Carlo wykonaj wykres funkcji mocy w zależności od μ na przedziale (-1,3) dla wszystkich trzech testów. Czy istnieje test jednostajnie najmocniejszy spośród nich?

Zadanie 2

Rozważmy próbę (X_1, \ldots, X_{100}) z rozkładu normalnego $\mathcal{N}(\mu, 4^2)$. Wykonaj wykres funkcji mocy na wybranym przedziale zawierającym przynajmniej po jednym punkcie z hipotezy zerowej i alternatywnej. Jak zmieniła się funkcja mocy testów? Czy w tym przypadku istnieje test jednostajnie najmocniejszy spośród nich?

Zadanie 3

Rozważmy próbę (X_1, \ldots, X_{100}) z rozkładu wykładniczego $\mathcal{E}(^1/_{\mu})$. Wykonaj wykres funkcji mocy na wybranym przedziale zawierającym przynajmniej po jednym punkcie z hipotezy zerowej i alternatywnej. Jak zmieniła się funkcja mocy testów? Czy w tym przypadku istnieje test jednostajnie najmocniejszy spośród nich?