Interrogation écrite n°08

NOM: Prénom: Note:

1. Soit G un groupe dont l'élément neutre sera noté e. On pose $Z = \{a \in G, \ \forall x \in G, \ ax = xa\}$. Montrer que Z est un sous-groupe de G.

- Tout d'abord, pour tout $x \in G$, ex = xe = x donc $e \in Z$.
- Soient $(a, b) \in \mathbb{Z}^2$ et $x \in \mathbb{G}$. Alors

$$(ab)x = a(bx)$$
 par associativité
 $= a(xb)$ car $b \in Z$
 $= (ax)b$ par associativité
 $= (xa)b$ car $a \in Z$
 $= x(ab)$ par associativité

Ainsi $ab \in Z$ de sorte que Z est stable par produit.

• Soient $a \in \mathbb{Z}$ et $x \in \mathbb{G}$. Alors ax = xa, puis $a^{-1}ax = a^{-1}xa$ i.e. $x = a^{-1}xa$. Enfin $xa^{-1} = a^{-1}xaa^{-1} = a^{-1}x$ de sorte que $a^{-1} \in \mathbb{Z}$. \mathbb{Z} est donc stable par inversion.

Ainsi Z est un sous-groupe de G.

2. On pose $\mathbb{Q}[i] = \{a + ib, (a, b) \in \mathbb{Q}^2\}$. Montrer que $(\mathbb{Q}[i], +\times)$ est un corps.

On va montrer que $\mathbb{Q}[i]$ est un sous-corps du corps $(\mathbb{C}, +\times)$.

- $1 = 1 + 0i \in \mathbb{Q}[i] \operatorname{car}(1, 0) \in \mathbb{Q}^2$.
- Soit $(x,y) \in \mathbb{Q}[i]^2$. Il existe donc $(a,b,c,d) \in \mathbb{Z}^4$ tel que x=a+ib et y=c+id. Alors $x-y=(a-c)+i(b-d) \in \mathbb{Q}[i]$ car $(a-c,b-d) \in \mathbb{Q}^2$.
- Supposons $y \neq 0$ i.e. $(c, d) \neq (0, 0)$. Alors

$$xy^{-1} = \frac{x}{y} = \frac{a+ib}{c+id} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2} \in \mathbb{Q}[i]$$

$$\operatorname{car}\left(\frac{ac+bd}{c^2+d^2}, \frac{bc-ad}{c^2+d^2}\right) \in \mathbb{Q}^2.$$

On en déduit que $\mathbb{Q}[i]$ est un sous-corps du corps $(\mathbb{C}, +\times)$. $(\mathbb{Q}[i], +, \times)$ est donc un corps.

3. Montrer que la suite de terme général $u_n = \frac{n}{2} - \left| \frac{n}{2} \right|$ n'admet pas de limite.

Pour tout $n \in \mathbb{N}$, $u_{2n} = 0$ et $u_{2n+1} = \frac{1}{2}$. (u_{2n}) et (u_{2n+1}) sont donc deux suites extraites de la suite (u_n) convergeant vers deux limites distinctes $(0 \text{ et } \frac{1}{2})$. La suite (u_n) ne converge donc pas.

4. Déterminer le reste de la division euclidienne de 3²⁰²¹ par 10.

 $3^2 = 9 \text{ donc } 3^2 \equiv -1[10] \text{ puis } 3^4 \equiv 1[10]. 2020 \text{ est clairement divisible par 4 donc } 2021 \equiv 1[4]. Il existe donc <math>n \in \mathbb{N}$ tel que 2021 = 4n + 1. Alors $3^{2021} = (3^4)^n \times 3 \text{ donc } 3^{2021} \equiv 1^n \times 3[10]$ i.e. $3^{2021} \equiv 3[10]$. Comme $0 \le 3 < 10$, 3 est le reste de la division euclidienne de 3^{2021} par 10.

5. Soit $(a, b, q, r) \in \mathbb{Z}^4$ tel que a = bq + r. Montrer que $a \wedge b = b \wedge r$.

Posons $d_1 = a \wedge b$ et $d_2 = b \wedge r$.

- d_1 divise a et b donc d_1 divise a bq = r. d_1 divise b et r donc d_1 divise leur PGCD d_2 .
- d_2 divise b et r donc d_2 divise bq + r = a. d_2 divise a et b donc d_2 divise leur PGCD d_1

 $d_1 \mid d_2$ et $d_2 \mid d_1$ donc $d_1 = d_2$ car d_1 et d_2 sont positifs.