

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT -V Taylor's & Laurent' series, Singularity,
Poles and Residue
Tutorial Sheet -2

		Tutorial Sheet -2	
Sl.No.		Questions	Answer
Part – A			
1	1 State Taylor's and Laurent's Theorem.		
2	Obtain the Taylor's series of $f(z) = \frac{z-1}{z^2}$ in powers of $z-1$.		
3	z(z-1)		$f(z) = \left(-\frac{1}{z}\right)^n - \sum_{0}^{\infty} z^n \text{ for } \mathbf{z} <$
	z >1.		1,
			$f(z) = \left(-\frac{1}{z}\right) + \frac{1}{z} \sum_{0}^{\infty} \left(\frac{1}{z}\right)^{n}$ for
			z > 1.
4		$\mathbf{due} \mathbf{at} \mathbf{z} = 0 \mathbf{of}$	i. 1
	i. $f(z)$		ii. $\frac{1}{-1}/6$
	ii. $f(z)$:	,	11. 1/6
5	Find the resid	due of $\frac{e^z}{-8}$.	$=\frac{1}{7!}$
		Z ^c	7!
Part – B			
6		lor's expansion of $f(z) = \frac{2z^3+1}{z^2+z}$ about the point	
	z = i	1	
7	Expand $f(z)$	$=\frac{1}{(z-1)(z-2)}$ in the region i) $ z < 1$, ii) $1 < z < 2$	
	iii) $ z > 2$, if	$\mathbf{v}) \ \mathbf{\hat{0}} < \mathbf{z} - 1 < 1$	
8	Find the resid	v) $0 < z-1 < 1$ dues of $f(z) = \frac{z^3}{(z-1)^2(z-2)(z-3)}$ and its poles	$\frac{101}{16}$, -8 , $\frac{27}{16}$
		$(z-1)^2(z-2)(z-3)$	16 ' ',16
9	Find residues	s of $f(z) = \frac{e^z}{\cos \pi z}$ and hence evaluate $\oint_C f(z) dz$	
	where C is th	e unit circle $ z = 1$	
10	Find the natu	re and location of the singularities of the functions	(i) $z = 0$ is a removable
	i) $\frac{z-\sin z}{z^2}$ ii) $(z+1)\sin\frac{1}{z-2}$ iii) $\frac{1}{(\cos z-\sin z)}$		singularity.
	Z -	z-2 (tusz-stitz)	(ii) $z = 2$ is an essential
			singularity. $T = T / T$
			(iii) $z = \pi/4$ is a simple pole

Coordinators: Dr.N.Parvathi