Relációs adatmodell

Adatbázisok használata

Mi is az adatmodell?

- Az adatmodell információ vagy adatok leírására szolgáló jelölés. A leírás részei:
 - az adatok struktúrája.
 - Az adatokon végezhető műveletek. Az ABKR esetében általában kevesebb műveletet hajthatunk végre, mint egy általános célú programnyelv esetében. Itt azonban a kevesebb, több. A műveletek egyedi hatékony megvalósításán túl, több művelet - egy lekérdezés együttes optimalizációja is lehetővé válik.
 - Az adatra vonatkozó megszorítások. Pl. egy személyigazolvány-számhoz nem tartozhat két különböző személy.
 - Legfontosabb adatmodellek: relációs és féligstrukturált (XML).

Példa féligstrukturált adatra (XML)

```
<?xml version="1.0" encoding="UTF-8"?>
<bar>típus="étterem"></br>
   <név>Makk 7-es</név>
   <város>Budapest</város>
   <tulaj>Géza</tulaj>
   <telefon>+36-70-123-2345</telefon>
   <telefon>+36-70-123-2346</telefon>
</bár>
<bar>típus="kocsma"></br>
   <név>Lórúgás</név>
   <város>Eger</város>
   <telefon>+36-30-451-1894</telefon>
</bár>
</xml>
```

Relációs adatmodell

Egy reláció sémája: Sör (név, ország).

Az adatbázis sémája: Sör (név, ország), Bár (név, város, tulaj), Felszolgál (sör, bár, ár).

Relációs adatmodell I.

- (Ismétlés: adott $X_1,...,X_n$ alaphalmazok esetén a $\rho \subset X_1 \times ... \times X_n$ részhalmazt relációnak nevezzük.)
- A relációs adatmodellben az adatokat kétdimenziós táblákban (relációkban) tároljuk.
- A reláció fejrészében találhatók az attribútumok.
- Minden attribútumhoz hozzátartozik egy értékkészlet.
- A reláció neve és a reláció-attribútumok halmaza együtt alkotják a relációsémát.
- A séma egy adatmodellben általánosságban azt adja meg, hogy egy-egy adatelem milyen "formájú" adatokat tárol.
- Egy-egy reláció soroknak egy halmaza.
- Halmaz: tehát nem számít a sorrend, valamint egy elem csak egyszer szerepelhet.

Relációs adatmodell II.

- A reláció sorainak halmazát előfordulásnak nevezzük.
- $\rho \subset X_1 \times ... \times X_n$ esetén az attribútumok értékkészlete adja az X_i alaphalmazokat ($1 \le i \le n$), egy-egy előfordulás pedig egy-egy relációnak "feleltethető meg".
- Az attribútumok sorrendje tehát nem rögzített a relációsémában. Egy-egy előfordulás ábrázolása esetén viszont rögzítésre kerül.

Relációs adatmodell II.

- Az adatbázis tulajdonképpen relációk halmaza. A megfelelő relációsémák halmaza adja az adatbázissémát, a hozzá tartozó előfordulások pedig az adatbázis-előfordulást.
- Egy sor elemeit mezőnek (komponens) nevezzük. Minden mező csak atomi értéket vehet fel. Léteznek bonyolultabb adatmodellek is, ahol egy mező értéke lehet halmaz, lista, tömb, rekord, referencia stb.
- Megjegyzés: a gyakorlatban sokszor megengedik a sorok ismétlődését, hiszen az ismétlődések megszüntetése nagyon időigényes.

Mire kell odafigyelni?

Példa 1

Mivel attribútumok halmazáról van szó, a Példa 1 és Példa 2 relációk nevüktől eltekintve azonosak.

Α	В	С
а	b	С
d	а	а
С	b	d

	_
В	С
b	С

Példa 2

В	C	Α
b	С	а
а	а	d
b	d	С

Mivel sorok halmazáról van szó, a Példa 1 és Példa 3 relációk nevüktől eltekintve azonosak.

A	В	С
С	b	d
d	а	а
а	b	С

Példa 4

Α	В	С
С	b	d
С	b	d
а	b	С

Ebben a modellben Példa 4 nem reláció.

Példa megszorításra

- Az attribútumok egy halmaza egy kulcsot alkot egy relációra nézve, ha a reláció bármely előfordulásában nincs két olyan sor, amelyek a kulcs összes attribútumának értékein megegyeznének.
- Ilyen egy attribútumú kulcs például a személyiigazolvány-szám vagy a TAJ szám.
- Megjegyzés: egy kulcs nem feltétlenül egy attribútumból áll.
 Például a bár táblában valószínűleg az a jó, ha a név és a város együtt alkotják a kulcsot.
- A kulcsot aláhúzás jelöli:
 - Bár (<u>név</u>, <u>város</u>, tulaj).

Vigyázat!

Ennél a konkrét előfordulásnál választhatnánk a nevet kulcsnak, sok esetben viszont ez nem megfelelő, hiszen több különböző ember is él ugyanazzal a névvel.

név	telefon
Grasshaus Ignác	20-234-4567
Menyhért Lipót	20-564-2345
Bereg Anna	20-345-1231

Feladat

 Hány különböző módon reprezentálható egy relációelőfordulás (az attribútumok és sorok sorrendjét figyelembe véve), ha az előfordulásnak 4 attribútuma és 5 sora van?

Mit nevezünk algebrának?

- Egy algebra általában műveleteket és atomi operandusokat tartalmaz.
- Az algebra lehetővé teszi kifejezések megfogalmazását az atomi operandusokon és az algebrai kifejezéseken végzett műveletek alkalmazásával kapott relációkon.
- Fontos tehát, hogy minden művelet végeredménye reláció, amelyen további műveletek adhatók meg.
- A relációs algebra atomi operandusai a következők:
 - a relációkhoz reprezentáló változók
 - konstansok, amelyek véges relációt fejeznek ki

Relációs algebra (műveletek) I.

 Projekció (vetítés). Adott relációt vetít le az alsó indexben szereplő attribútumokra. Példa: Π_{A, B} (R)

Α	В	С	Α	В
а	b	С	а	b
С	d	е	С	d
g	а	d	g	a

Relációs algebra (műveletek) II.

- Szelekció (kiválasztás). Kiválasztja az argumentumban szereplő reláció azon sorait, amelyek eleget tesznek az alsó indexben szereplő feltételnek.
- R(A₁, ..., A_n) reláció esetén a σ_F kiválasztás F feltétele a következőképpen épül fel:
 - atomi feltétel: $A_i \theta A_i$, $A_i \theta c$, ahol c konstans, $\theta \in \{=, <, >\}$,
 - − ha B_1 , B_2 feltételek, akkor \neg B_1 , $B_1 \land B_2$, $B_1 \lor B_2$ is feltételek.
- Példa: $\sigma_{A=a \vee C=d}$ (R) (a \neq , \leq , \geq műveleteket ezentúl értelemszerűen használjuk)

Α	В	С	Α	В	С
а	b	С	а	b	С
С	d	е	g	а	d
g	a	d			

Relációs adatmodell (műveletek) III.

 Mivel sorok halmazáról van szó, így értelmezhetők a szokásos halmazműveletek: az unió, a metszet és a különbség. A műveletek alkalmazásának feltétele, hogy az operandusok attribútumai megegyezzenek és azonos sorrendben szerepeljenek. Példa: R – S:

R S A B C В C B A d b b a C a C a d d C e C е d f d g a

Relációs algebra (műveletek) IV.

 A Descartes-szorzat is értelmezhető. Itt természetesen nem fontos az attribútumok egyenlősége. A két vagy több reláció azonos nevű attribútumait azonban meg kell különböztetni egymástól. Példa: R × S.

1 \		
Α	В	С
а	b	С
С	d	е
g	a	d

R

Α	R.B	С	S.B	D
а	b	С	b	r
а	b	С	q	S
С	d	е	b	r
С	d	е	q	S
g	а	d	b	r
g	а	d	q	S

Relációs algebra (műveletek) V.

- Egyes esetekben szükség lehet egy adott reláció
 attribútumainak átnevezésére. A ρ_{S(C, D, E)} (R) az R(A, B, C)
 reláció helyett veszi az S relációt, melynek sorai megegyeznek
 R soraival, az attribútumai pedig rendre C, D, E.
- Ha az attribútumokat nem szeretnénk átnevezni, csak a relációt, ezt $\rho_s(R)$ -rel jelöljük.

Feladatok I.

- A feladatokat a Szeret (név, gyümölcs) relációssémájú tábla fölött értelmezzük.
- 1. Melyek azok a gyümölcsök, amiket Micimackó szeret?
- 2. Melyek azok a gyümölcsök, amiket Micimackó nem szeret?
- Kik azok, akik szeretik az almát, de nem szeretik a körtét?
- 4. Kik azok, akik vagy az almát, vagy a körtét szeretik?
- 5. Kik szeretnek legalább két gyümölcsöt?
- 6. Kik szeretnek legfeljebb két gyümölcsöt?
- 7. Kik szeretnek pontosan két gyümölcsöt?
- 8. Kik szeretnek minden gyümölcsöt?

Feladatok II.

- 9. Kik szeretik legalább azokat a gyümölcsöket, mint Anna?
- 10. Kik szeretik legfeljebb azokat a gyümölcsöket, mint Anna?
- 11. Kik azok a személy-személy párok, akik pontosan ugyanazokat a gyümölcsöket szeretik?
- Másik séma: Borivók (név, mennyiség)
- 12. Kik fogyasztják a legtöbb bort?

Théta-összekapcsolás I.

- A gyakorlatban szinte kizárólag valamilyen összekapcsolásra visszavezethető műveletet használnak abban az esetben, amikor a lekérdezés megválaszolásához több táblából kell kigyűjteni az adatokat.
- Théta-összekapcsolás: R(A₁,...,A_n), S(B₁,...,B_m) sémájú táblák esetén:
 - R | X | $_{E}$ S = σ_{E} (R \times S) teljesül, itt F
 - elemi feltétel Ai Θ Bj, Ai Θ c, ahol Θ ∈ { =,<, >} és c konstans,
 - vagy összetett feltétel, azaz: ha B₁, B₂ feltétel, akkor
 ¬ B₁, B₁∧B₂, B₁∨ B₂ is feltétel.

Théta-összekapcsolás II.

Α	В	С				D		Е
а	b	С		. 1		b		е
d	d	g		 X _{A = D}				r
е	f	r						
		Α	В	С	D		E	
		d	d	g	d		r	

 Egyen-összekapcsolás (equi join): ha a théta-összekapcsolásban a Θ helyén = szerepel.

Természetes összekapcsolás

- Természetes összekapcsolás: $R(A_1,...,A_n)$, $S(B_1,...,B_m)$ sémájú táblák esetén $R \mid X \mid S$ azon sorpárokat tartalmazza R-ből illetve S-ből, amelyek R és S azonos attribútumain megegyeznek.
- A természetes összekapcsolás asszociatív, azaz:
 (R₁ | X | R₂) | X | R₃ = R₁ | X | (R₂ | X | R₃), és kommutatív, azaz:
 R₁ | X | R₂ = R₂ | X | R₁.
- A théta-összekapcsolás nem mindig asszociatív. Miért?

Α	В	С		В	D		Α	В	С	D
а	b	С	IVI	b	е		а	b	С	е
d	d	g	^	d	r	ŕ	d	d	g	r
е	f	r								

Miért olyan gyakori?

Felszolgál

kocsma	sör
Makk 7-es	Dreher
Lórúgás	Kozel
Lórúgás	Gösser

Látogat

név	kocsma
Péter	Makk 7-es
Feri	Lórúgás

|X|

kocsma	sör	név	
Makk 7-es	Dreher	Péter	
Lórúgás	Kozel	Feri	
Lórúgás	Gösser	Feri	

A természetes összekapcsolás kifejezhető a többi alapművelettel:

$$R |X| S \equiv \Pi_L(\sigma_C (R \times S)),$$

itt: C a közös attribútumok egyenlőségét írja elő, L pedig csak egyszer veszi a közös attribútumokat.

Feladatok I.

A feladatokat a következő táblák fölött kell végrehajtani:

```
Látogat(név, kocsma)
Felszolgál(kocsma, sör)
Szeret(név, sör)
Fogyasztás(kocsma, dátum, sör, liter).
```

- Kik azok, akik szeretik a Drehert és járnak olyan kocsmába, ahol Borsodit is felszolgálnak?
- Kik járnak legalább egy olyan kocsmába, ahol van legalább egy kedvenc sörüket felszolgálják?

Feladatok II.

- 3. Kik járnak olyan kocsmába, ahol nem szolgálnak fel Borsodit?
- 4. Milyen kocsmákba járnak azok, akik legalább kétféle sört szeretnek?
- 5. Kik járnak olyan kocsmába, ahol egyetlen kedvenc sörüket sem szolgálják fel?
- 6. Kik járnak olyan kocsmába, ahol az összes kedvenc italát felszolgálják?
- 7. Kik azok, akik járnak abba a kocsmába, ahol eddig a legkevesebb Borsodi fogyott egy adott napon?

További feladatok

Termék (gyártó, modell, típus)
PC (modell, sebesség, memória, merevlemez, cd, ár)
Laptop (modell, sebesség, memória, merevlemez, képernyő, ár)
Nyomtató (modell, színes, típus, ár)

- Melyek azok a PC modellek, amelyek sebessége legalább 150?
- 2. Mely gyártók készítenek legalább egy gigabájt méretű merevlemezzel rendelkező laptopot?
- 3. Adjuk meg a B gyártó által gyártott összes termék modellszámát és árát típustól függetlenül!

További feladatok II.

- 4. Melyek azok a gyártók, amelyek gyártanak legalább két egymástól különböző, legalább 1,2 gigaherzen működő számítógépet (PC-t vagy laptopot)?
- 5. Melyik gyártó gyárt legalább három különböző sebességű laptopot?
- 6. Melyik gyártó gyártja a leggyorsabb számítógépet (PC-t vagy laptopot)?

Relációkra vonatkozó megszorítások

- A megszorításokat kétféleképpen fejezhetjük ki (legyenek R és S relációs algebrai kifejezések):
 - R = Ø, azaz R-nek üresnek kell lennie,
 - R ⊆ S, azaz R eredményének minden sorának benne kell lennie S eredményében.
- A két megszorítás kifejezőerő szempontjából azonos:
 - $R \subseteq S$ így is kifejezhető: $R S \subseteq \emptyset$,
 - míg R = \emptyset , R $\subseteq \emptyset$ alakban is írható.

Hivatkozási épség megszorítás

- Hivatkozási épség megszorítás: ha egy érték megjelenik valahol egy környezetben, akkor ugyanez az érték egy másik, az előzővel összefüggő környezetben is meg kell, hogy jelenjen.
- Példa: a Sör(név, ország), Felszolgál(sör, bár, ár) táblák esetén megköveteljük, hogy csak olyan sörök szerepeljenek a Felszolgál táblában, amelyek a Sör táblában is szerepelnek.
- A megszorítás: $\Pi_{\text{sör}}$ (Felszolgál) $\subseteq \Pi_{\text{név}}$ (Sör).
- Általában: $\Pi_A(R) \subseteq \Pi_B(S)$.

Kulcs és egyéb megszorítások

 Példa: a Bár(név, város, tulaj) relációban a (név, város) attribútumhalmaz kulcs.

$$\sigma_{B1.\text{n\'ev}=B2.\text{n\'ev} \land B1.\text{v\'aros}=B2.\text{v\'aros} \land B1.\text{tulaj} \neq B2.\text{tulaj}} (B_1 \times B_2) = \emptyset$$

 Tegyük fel, hogy csak a budapesti vagy madridi bárokkal szeretnénk foglalkozni. Ennek kifejezése:

$$\sigma_{\text{(város} \neq \text{'Budapest')} \land (\text{város} \neq \text{'Madrid'})} (B) = \emptyset.$$

Feladatok

Termék (gyártó, modell, típus)
PC (modell, sebesség, memória, merevlemez, cd, ár)
Laptop (modell, sebesség, memória, merevlemez,képernyő, ár)
Nyomtató (modell, színes, típus, ár)

- 1. Az olyan PC-ket, amelyek processzorának sebessége kisebb, mint 2.00, nem árulhatjuk drágábban, mint 12000 Ft.
- 2. A PC-gyártók nem gyárthatnak laptopokat.
- Ha egy gyártó készít PC-t, akkor készítenie kell olyan laptopot is, amelynek a sebessége legalább akkora, mint a PC sebessége.