Hyperbolicity and log pairs

Roberto Svaldi

University of Cambridge

AMS Summer Institute in Algebraic Geometry, Salt Lake City July 27 2015

Hyperbolicity

We will work over the field of complex numbers.

Definition (Kobayashi, Brody)

Let X be a complex manifold. We say that X is hyperbolic if there exists no holomorphic map $f: \mathbb{C} \to X$.

The original definition of hyperbolicity, due to Kobayashi, is slightly different. For time reason, we will use the equivalent definition above, due to Brody.

Hyperbolicity

We will work over the field of complex numbers.

Definition (Kobayashi, Brody)

Let X be a complex manifold. We say that X is hyperbolic if there exists no holomorphic map $f \colon \mathbb{C} \to X$.

The original definition of hyperbolicity, due to Kobayashi, is slightly different. For time reason, we will use the equivalent definition above, due to Brody.

Hyperbolicity

We will work over the field of complex numbers.

Definition (Kobayashi, Brody)

Let X be a complex manifold. We say that X is hyperbolic if there exists no holomorphic map $f\colon \mathbb{C} \to X$.

The original definition of hyperbolicity, due to Kobayashi, is slightly different. For time reason, we will use the equivalent definition above, due to Brody.

Three classical conjectures

Conjecture (Green-Griffiths)

Let X be a projective manifold of general type. Then, no entire curve $f: \mathbb{C} \to X$ is Zariski dense.

Conjecture (Lang)

Let X be a projective manifold. Then, X is hyperbolic if and only if all subvarieties of X are general type.

Conjecture (Kobayashi)

Let X be a projective manifold. If X is hyperbolic then K_X is ample

Three classical conjectures

Conjecture (Green-Griffiths)

Let X be a projective manifold of general type. Then, no entire curve $f: \mathbb{C} \to X$ is Zariski dense.

Conjecture (Lang)

Let X be a projective manifold. Then, X is hyperbolic if and only if all subvarieties of X are general type.

Conjecture (Kobayashi)

Let X be a projective manifold. If X is hyperbolic then K_X is ample

Three classical conjectures

Conjecture (Green-Griffiths)

Let X be a projective manifold of general type. Then, no entire curve $f \colon \mathbb{C} \to X$ is Zariski dense.

Conjecture (Lang)

Let X be a projective manifold. Then, X is hyperbolic if and only if all subvarieties of X are general type.

Conjecture (Kobayashi)

Let X be a projective manifold. If X is hyperbolic then K_X is ample.

Hyperbolicity and positivity

Moral of the conjectures

Hyperbolicity should correspond to (or at least imply) positivity properties of X (Ω^1_X , K_X).

From the point of view of birational geometry, we can see a first realization of this principle in the Cone Theorem.

Cone Theorem (Mori, Kawamata, Kollár, Shokurov, Ambro, Fujino)

Let X be a smooth projective variety.

There exist (countably many) K_X -negative rational curves R_i on X such that

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}(X)_{K_X \ge 0} + \sum_i \mathbb{R}_{>0}[R_i].$$

Hyperbolicity and positivity

Moral of the conjectures

Hyperbolicity should correspond to (or at least imply) positivity properties of X (Ω^1_X , K_X).

From the point of view of birational geometry, we can see a first realization of this principle in the Cone Theorem.

Cone Theorem (Mori, Kawamata, Kollár, Shokurov, Ambro, Fujino)

Let X be a smooth projective variety.

There exist (countably many) K_X -negative rational curves R_i on X such that

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}(X)_{K_X \ge 0} + \sum_i \mathbb{R}_{>0}[R_i].$$

Hyperbolicity and positivity, II

One can immediately recover the following corollary.

Corollary

Let X be a smooth projective variety. Assume that X contains no rational curves.

Then K_Y is nef. i.e. $K_Y \cdot C \ge 0$ for any irreducible curve $C \subset X$.

Hyperbolicity and positivity, II

One can immediately recover the following corollary.

Corollary

Let X be a smooth projective variety. Assume that X contains no rational curves.

Then K_X is nef, i.e. $K_X \cdot C > 0$ for any irreducible curve $C \subset X$.

Hyperbolicity is a very strong property for a complex manifold.

In fact, on a complex manifold X, hyperbolicity forbids the presence of rational curves and complex tori, for example.

Question :

What are weaker conditions of hyperbolic type that one can impose on a complex manifold that still implies positivity properties of the cotangent bundle (or a suitable modification)?

Question 2

Hyperbolicity is a very strong property for a complex manifold. In fact, on a complex manifold X, hyperbolicity forbids the presence of rational curves and complex tori, for example.

Question :

What are weaker conditions of hyperbolic type that one can impose on a complex manifold that still implies positivity properties of the cotangent bundle (or a suitable modification)?

Question 2

Hyperbolicity is a very strong property for a complex manifold. In fact, on a complex manifold X, hyperbolicity forbids the presence of rational curves and complex tori, for example.

Question 1

What are weaker conditions of hyperbolic type that one can impose on a complex manifold that still implies positivity properties of the cotangent bundle (or a suitable modification)?

Question 2

Hyperbolicity is a very strong property for a complex manifold. In fact, on a complex manifold X, hyperbolicity forbids the presence of rational curves and complex tori, for example.

Question 1

What are weaker conditions of hyperbolic type that one can impose on a complex manifold that still implies positivity properties of the cotangent bundle (or a suitable modification)?

Question 2

Log smooth pairs and quasi projective varieties

A pair (X,D) is said to be log smooth if X is a smooth proper variety and $D=\sum_i D_i$ is a snc divisor on X.

Strategy

We will use log smooth pairs to give some answers to the previous questions.

If U is a smooth quasi-projective variety, by Hironaka's desingularization theorem, we can always compactify U to a smooth projective variety X and the pair $(X, X \setminus U)$ is log smooth.

Log smooth pairs and quasi projective varieties

A pair (X,D) is said to be log smooth if X is a smooth proper variety and $D=\sum_i D_i$ is a snc divisor on X.

Strategy

We will use log smooth pairs to give some answers to the previous questions.

If U is a smooth quasi-projective variety, by Hironaka's desingularization theorem, we can always compactify U to a smooth projective variety X and the pair $(X,X\setminus U)$ is log smooth.

Log smooth pairs and quasi projective varieties

A pair (X,D) is said to be log smooth if X is a smooth proper variety and $D=\sum_i D_i$ is a snc divisor on X.

Strategy

We will use log smooth pairs to give some answers to the previous questions.

If U is a smooth quasi-projective variety, by Hironaka's desingularization theorem, we can always compactify U to a smooth projective variety X and the pair $(X,X\setminus U)$ is log smooth.

Log smooth pairs and quasi projective varieties, II

Given a log smooth pair (X,D), we can induce a natural stratification of the variety X.

The closed strata will be X itself, the components of $D,\ D_i,\ i=1,\ldots,k$, and then the irreducible components of the intersections of the D_i . The open strata will be the closed strata minus the intersections with all other strata not containing them. That is, $X\setminus D,\ D_i\setminus (\cup_{j\neq i}D_j)$ and more in general

$$\bigcap_{i \in I} D_i \setminus (\bigcup_{j \in \{1, \dots, k\} \setminus I} D_j) \text{ for } I \subset \{1, \dots, k\}$$

Log smooth pairs and quasi projective varieties, II

Given a log smooth pair (X,D), we can induce a natural stratification of the variety X.

The closed strata will be X itself, the components of D, D_i , i = 1, ..., k, and then the irreducible components of the intersections of the D_i .

The open strata will be the closed strata minus the intersections with all other strata not containing them. That is, $X \setminus D$, $D_i \setminus (\cup_{j \neq i} D_j)$ and more in general

$$\bigcap_{i \in I} D_i \setminus (\bigcup_{j \in \{1, \dots, k\} \setminus I} D_j)$$
 for $I \subset \{1, \dots, k\}$

Log smooth pairs and quasi projective varieties, II

Given a log smooth pair (X,D), we can induce a natural stratification of the variety X.

The closed strata will be X itself, the components of D, D_i , i = 1, ..., k, and then the irreducible components of the intersections of the D_i .

The open strata will be the closed strata minus the intersections with all other strata not containing them. That is, $X \setminus D$, $D_i \setminus (\cup_{j \neq i} D_j)$ and more in general

$$\cap_{i \in I} D_i \setminus (\cup_{j \in \{1, \dots, k\} \setminus I} D_j)$$
 for $I \subset \{1, \dots, k\}$

From now on, we will focus on log smooth pair (X, D).

Theorem (Lu-Zhang, -)

Let (X, D) be a projective log smooth pair

If $K_X + D$ is not nef, there exists a non-constant morphism $f : \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the strata of (X,D).

Definition (1-7)

From now on, we will focus on log smooth pair (X, D).

Theorem (Lu-Zhang, -)

Let (X, D) be a projective log smooth pair.

If $K_X + D$ is not nef, there exists a non-constant morphism $f : \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the strata of (X,D).

Definition (L-Z)

From now on, we will focus on log smooth pair (X, D).

Theorem (Lu-Zhang, -)

Let (X, D) be a projective log smooth pair.

If $K_X + D$ is not nef, there exists a non-constant morphism $f : \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the strata of (X, D).

Definition (L-Z)

From now on, we will focus on log smooth pair (X, D).

Theorem (Lu-Zhang, -)

Let (X, D) be a projective log smooth pair.

If $K_X + D$ is not nef, there exists a non-constant morphism $f : \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the strata of (X, D).

Definition (L-Z)

Ingredients for a proof

- Adjunction: we can restrict to the strata of (X,D) and work inductively. Hence we can assume that K_X+D is nef when restricted to the components of D.
- Cone Theorem: If K_X+D is not nef along a stratum W, by the Cone Thm there exists a K_X -negative rational curve R. We will use R to obtain a morphism $f:\mathbb{A}^1\to X$ intersecting D in at most one point. We can actually assume even more, i.e., that there exists a morphism

$$\pi\colon X\to Y$$

that contracts all curves whose class is a multiple of the class of R.

Ingredients for a proof

- Adjunction: we can restrict to the strata of (X, D) and work inductively. Hence we can assume that $K_X + D$ is nef when restricted to the components of D.
- Cone Theorem: If K_X+D is not nef along a stratum W, by the Cone Thm there exists a K_X -negative rational curve R. We will use R to obtain a morphism $f:\mathbb{A}^1\to X$ intersecting D in at most one point. We can actually assume even more, i.e., that there exists a morphism

$$\pi\colon X\to Y$$

that contracts all curves whose class is a multiple of the class of R.

Ingredients for a proof, II

- KV-vanishing: Fibers for π are either 0- or 1-dimensional. When they are 1-dimensional, Kawamata-Viehweg vanishing implies that the generic one is a smoothly embedded copy of \mathbb{P}^1 .
- For a rational curve R in the (positive-dimensional) fibers of π , it is enough to show now that the intersection with D is supported in just one point.

Connectedness Theorem (Shokurov, Kollár

Let $\pi\colon X\to Y$ a morphism. Assume that $-(K_X+D)$ is ample along every fiber of π .

Then D is connected in an analytic neighborhood of every fiber of π .

Ingredients for a proof, II

- KV-vanishing: Fibers for π are either 0- or 1-dimensional. When they are 1-dimensional, Kawamata-Viehweg vanishing implies that the generic one is a smoothly embedded copy of \mathbb{P}^1 .
- For a rational curve R in the (positive-dimensional) fibers of π , it is enough to show now that the intersection with D is supported in just one point.

Connectedness Theorem (Shokurov, Kollár)

Let $\pi\colon X\to Y$ a morphism. Assume that $-(K_X+D)$ is ample along every fiber of π .

Then D is connected in an analytic neighborhood of every fiber of π .

Cone Theorem and hyperbolicity

Theorem (-)

Let (X, D) be a log smooth pair. There exist countalby many $(K_X + D)$ -negative curves C_i s.t.

$$\overline{NE}(X) = \overline{NE}(X)_{K_X + \Delta \ge 0} + \sum_{i \in I} \mathbb{R}_{\ge 0}[C_i].$$

Moreover, one of the two following conditions holds:

- ullet $C_i\cap (X\setminus D)$ contains the image of a non-constant map $f\colon \mathbb{A}^1 o X$;
- there exists an open stratum W of D such that $C_i \cap W$ contains the image of a non-constant map $f: \mathbb{A}^1 \to W$.

Theorem (Kleiman, Nakai, Moishezon)

Let X be a proper variety and D a Cartier divisor on X. D is ample iff $D^{\dim V} \cdot V > 0$, $\forall V \subset X$ irreducible subvariety.

Theorem (-)

Let (X,D) be a log-smooth pair.

Assume that the pair is Mori hyperbolic (X, D).

Then $K_X + D$ is ample iff $(K_X + D)^{\dim W} \cdot W > 0$, $\forall W \subset X$ stratum of (X, D).

Theorem (Kleiman, Nakai, Moishezon)

Let X be a proper variety and D a Cartier divisor on X. D is ample iff $D^{\dim V} \cdot V > 0$, $\forall V \subset X$ irreducible subvariety.

Theorem (-)

Let (X, D) be a log-smooth pair.

Assume that the pair is Mori hyperbolic (X,D). Then K_X+D is ample iff $(K_X+D)^{\dim W}\cdot W>0, \ \forall W\subset X$ stratum of (X,D).

Theorem (Kleiman, Nakai, Moishezon)

Let X be a proper variety and D a Cartier divisor on X. D is ample iff $D^{\dim V} \cdot V > 0$, $\forall V \subset X$ irreducible subvariety.

Theorem (-)

Let (X, D) be a log-smooth pair.

Assume that the pair is Mori hyperbolic (X, D).

Theorem (Kleiman, Nakai, Moishezon)

Let X be a proper variety and D a Cartier divisor on X.

D is ample iff $D^{\dim V} \cdot V > 0$, $\forall V \subset X$ irreducible subvariety.

Theorem (-)

Let (X, D) be a log-smooth pair.

Assume that the pair is Mori hyperbolic (X, D).

Then $K_X + D$ is ample iff $(K_X + D)^{\dim W} \cdot W > 0$, $\forall W \subset X$ stratum of (X, D).

Log canonical pairs

Let (X,Δ) be a pair of a normal variety X and en effective \mathbb{R} -divisor $\Delta=\sum d_i\Delta_i,\ d_i\in(0,1]$ s.t. $K_X+\Delta$ is \mathbb{R} -Cartier.

Given a log-resolution $\psi \colon Z \to X$, we can write

$$K_Z + \widetilde{\Delta} = \psi^*(K_X + \Delta) + \sum a_i E_i$$

Definition

The pair (X, Δ) is a log canonical pair if $a_i \geq -1$, $\forall i$.

Log canonical pairs

Let (X,Δ) be a pair of a normal variety X and en effective \mathbb{R} -divisor $\Delta = \sum d_i \Delta_i, \ d_i \in (0,1]$ s.t. $K_X + \Delta$ is \mathbb{R} -Cartier. Given a log-resolution $\psi \colon Z \to X$, we can write

$$K_Z + \widetilde{\Delta} = \psi^*(K_X + \Delta) + \sum a_i E_i$$

Definition

The pair (X, Δ) is a log canonical pair if $a_i \geq -1$, $\forall i$.

Log canonical pairs

Let (X,Δ) be a pair of a normal variety X and en effective \mathbb{R} -divisor $\Delta = \sum d_i \Delta_i, \ d_i \in (0,1]$ s.t. $K_X + \Delta$ is \mathbb{R} -Cartier. Given a log-resolution $\psi \colon Z \to X$, we can write

$$K_Z + \widetilde{\Delta} = \psi^*(K_X + \Delta) + \sum a_i E_i$$

Definition

The pair (X, Δ) is a log canonical pair if $a_i \geq -1$, $\forall i$.

Non-klt locus

In the previous equation, the components E_i of coefficient -1 are very important.

Their image via ψ on X is called the non-klt locus of the pair (X, Δ) , $Nklt(X, \Delta)$.

 $\operatorname{Nklt}(X, \Delta)$ comes equipped with a stratification analogous to the one defined in the log smooth case and in fact induced by the one on $(Z \mid \widetilde{\Delta} = \sum a_i E_i \mid)$

Non-klt locus

In the previous equation, the components E_i of coefficient -1 are very important.

Their image via ψ on X is called the non-klt locus of the pair (X, Δ) , $\mathrm{Nklt}(X, \Delta)$.

 $\operatorname{Nklt}(X,\Delta)$ comes equipped with a stratification analogous to the one defined in the log smooth case and in fact induced by the one on $(Z, \lfloor \widetilde{\Delta} - \sum a_i E_i \rfloor)$.

Non-klt locus

In the previous equation, the components E_i of coefficient -1 are very important.

Their image via ψ on X is called the non-klt locus of the pair (X, Δ) , $\mathrm{Nklt}(X, \Delta)$.

 $\operatorname{Nklt}(X,\Delta)$ comes equipped with a stratification analogous to the one defined in the log smooth case and in fact induced by the one on $(Z,\lfloor\widetilde{\Delta}-\sum a_iE_i\rfloor)$.

The main theorems

Theorem (-)

Let (X, Δ) be a projective log canonical pair.

If $K_X + \Delta$ is not nef, there exists a non-constant morphism $f \colon \mathbb{A}^1 \to X$ and $f(\mathbb{A}^1)$ is contained in one of the strata of the non-klt locus of (X, Δ) .

The main theorems

Theorem (-)

Let (X, Δ) be a projective log canonical pair.

If $K_X + \Delta$ is not nef, there exists a non-constant morphism $f : \mathbb{A}^1 \to X$ and $f(\mathbb{A}^1)$ is contained in one of the strata of the non-klt locus of (X, Δ) .

The main theorems, II

Theorem (-)

Let (X, Δ) be a projective log canonical pair. Then there exist countably many $(K_X + \Delta)$ -negative rational curves C_i such that

$$\overline{NE}(X) = \overline{NE}(X)_{K_X + \Delta \ge 0} + \sum_{i \in I} \mathbb{R}_{\ge 0}[C_i].$$

Moreover, one of the two following conditions holds:

- $C_i \cap (X \setminus Nklt(\Delta))$ contains the image of a non-constant map $f \colon \mathbb{A}^1 \to X$;
- there exists an open stratum W of $Nklt(\Delta)$ such that $C_i \cap W$ contains the image of a non-constant map $f : \mathbb{A}^1 \to W$.

 Adjunction: log canonical pairs are much more general and singular then log smooth ones.

Hence, one needs a better theory of adjunction in order to apply the previous strategy of proof.

Theorem (-)

Let (X, Δ) be log canonical pair. Let W be a Ic center and let W^{ν} be the normalization.

On W^{ν} there exists a divisor $\Delta_{W^{\nu}}$ such that $(W^{\nu}, \Delta_{W^{\nu}})$ is a log pair,

$$K_{W^{\nu}} + \Delta_{W^{\nu}} \sim (K_X + \Delta)|_{W^{\nu}}$$

and $Nklt(W^nu, \Delta_{W^{\nu}}) = Nklt(X, \Delta)|_{W^{\nu}}$

- Adjunction: log canonical pairs are much more general and singular then log smooth ones.
 - Hence, one needs a better theory of adjunction in order to apply the previous strategy of proof.

Theorem (-)

Let (X, Δ) be log canonical pair. Let W be a Ic center and let W^{ν} be the normalization.

On W^{ν} there exists a divisor $\Delta_{W^{\nu}}$ such that $(W^{\nu}, \Delta_{W^{\nu}})$ is a log pair,

$$K_{W^{\nu}} + \Delta_{W^{\nu}} \sim (K_X + \Delta)|_{W^{\nu}}$$

and $Nklt(W^n u, \Delta_{W^{\nu}}) = Nklt(X, \Delta)|_{W^{\nu}}$

 Adjunction: log canonical pairs are much more general and singular then log smooth ones.

Hence, one needs a better theory of adjunction in order to apply the previous strategy of proof.

Theorem (-)

Let (X, Δ) be log canonical pair. Let W be a lc center and let W^{ν} be the normalization.

On W^{ν} there exists a divisor $\Delta_{W^{\nu}}$ such that $(W^{\nu}, \Delta_{W^{\nu}})$ is a log pair,

$$K_{W^{\nu}} + \Delta_{W^{\nu}} \sim (K_X + \Delta)|_{W^{\nu}}$$

and $Nklt(W^nu, \Delta_{W^{\nu}}) = Nklt(X, \Delta)|_{W^{\nu}}$

 Adjunction: log canonical pairs are much more general and singular then log smooth ones.

Hence, one needs a better theory of adjunction in order to apply the previous strategy of proof.

Theorem (-)

Let (X, Δ) be log canonical pair. Let W be a lc center and let W^{ν} be the normalization.

On W^{ν} there exists a divisor $\Delta_{W^{\nu}}$ such that $(W^{\nu}, \Delta_{W^{\nu}})$ is a log pair,

$$K_{W^{\nu}} + \Delta_{W^{\nu}} \sim (K_X + \Delta)|_{W^{\nu}}$$

and $Nklt(W^n u, \Delta_{W^{\nu}}) = Nklt(X, \Delta)|_{W^{\nu}}$

 Adjunction: log canonical pairs are much more general and singular then log smooth ones.

Hence, one needs a better theory of adjunction in order to apply the previous strategy of proof.

Theorem (-)

Let (X, Δ) be log canonical pair. Let W be a lc center and let W^{ν} be the normalization.

On W^{ν} there exists a divisor $\Delta_{W^{\nu}}$ such that $(W^{\nu}, \Delta_{W^{\nu}})$ is a log pair,

$$K_{W^{\nu}} + \Delta_{W^{\nu}} \sim (K_X + \Delta)|_{W^{\nu}}$$

and $Nklt(W^n u, \Delta_{W^{\nu}}) = Nklt(X, \Delta)|_{W^{\nu}}$

 Adjunction: log canonical pairs are much more general and singular then log smooth ones.

Hence, one needs a better theory of adjunction in order to apply the previous strategy of proof.

Theorem (-)

Let (X, Δ) be log canonical pair. Let W be a lc center and let W^{ν} be the normalization.

On W^{ν} there exists a divisor $\Delta_{W^{\nu}}$ such that $(W^{\nu}, \Delta_{W^{\nu}})$ is a log pair,

$$K_{W^{\nu}} + \Delta_{W^{\nu}} \sim (K_X + \Delta)|_{W^{\nu}}$$

and $\mathrm{Nklt}(W^n u, \Delta_{W^{\nu}}) = \mathrm{Nklt}(X, \Delta)|_{W^{\nu}}$

Theorem (-)

Let (X, Δ) be a dlt pair.

Assume that there is no non-constant morphism $f: \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the open strata of (X, Δ) .

The following are equivalent:

- ullet $K_X+\Delta$ is ample
- $(K_X + \Delta)^{\dim W} \cdot W > 0$, $\forall W \subset X$ stratum of (X, D)
- $K_X + \Delta$ is big and its restriction along $|\Delta|$ is ample

Theorem (-)

Let (X, Δ) be a dlt pair.

Assume that there is no non-constant morphism $f \colon \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the open strata of (X, Δ) .

The following are equivalent.

- $K_X + \Delta$ is ample
- $(K_X + \Delta)^{\dim W} \cdot W > 0$, $\forall W \subset X$ stratum of (X, D)
- $K_X + \Delta$ is big and its restriction along $|\Delta|$ is ample

Theorem (-)

Let (X, Δ) be a dlt pair.

Assume that there is no non-constant morphism $f \colon \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the open strata of (X, Δ) .

The following are equivalent:

- $K_X + \Delta$ is ample
- $(K_X + \Delta)^{\dim W} \cdot W > 0$, $\forall W \subset X$ stratum of (X, D)
- \bullet $K_X + \Delta$ is big and its restriction along $|\Delta|$ is ample

Theorem (-)

Let (X, Δ) be a dlt pair.

Assume that there is no non-constant morphism $f: \mathbb{A}^1 \to X$ such that $f(\mathbb{A}^1)$ is contained in one of the open strata of (X, Δ) .

The following are equivalent:

- $K_X + \Delta$ is ample
- $(K_X + \Delta)^{\dim W} \cdot W > 0$, $\forall W \subset X$ stratum of (X, D)
- $K_X + \Delta$ is big and its restriction along $|\Delta|$ is ample.

Thanks for your attention!!