MUNKRES TOPOLOGY SOLUTIONS

JACK CERONI

Contents

1.	Topological Groups	2
2.	Section 30	2
2.1.	. Problem 16a	2
2.2.	. Problem 16b	2
2.3.	. Problem 17	3

Date: December 2021.

1. Topological Groups

2. Section 30

2.1. Problem 16a. Show that the product space \mathbb{R}^I with I the unit interval has a countable dense subset

We let S be the set of all points that are rational for finitely many coordinates, and 0 at all other coordinates. Clearly, such a set is countable, as the rationals are countable, and:

$$S = \bigcup_{n \in \mathbb{N}} S_n$$

where S_n is the set of all points such that n coordinates are rational, and the rest are 0. It is easy to check that this is a dense set: given some $\boldsymbol{x} \in \mathbb{R}^I$, and some basis element $U = \prod_{\alpha \in I} U_{\alpha}$, with U_{α} open in \mathbb{R} , we will have $U_{\alpha} = \mathbb{R}$ except for finitely many $\alpha \in \{\alpha_1, ..., \alpha_n\}$.

We then pick a rational point in each U_{α_j} for $\alpha_j \in \{\alpha_1, ..., \alpha_n\}$, and let \boldsymbol{y} be equal to these rational points at the corresponding coordinates, and 0 otherwise. Clearly, $\boldsymbol{y} \in S$ and $\boldsymbol{y} \in U$. Thus, $\boldsymbol{x} \in \overline{S}$, so S is dense.

2.2. **Problem 16b.** Show that if J has cardinality greater than $\mathcal{P}(\mathbb{Z}^+)$, then \mathbb{R}^J does not have a countable dense subset as a product space.

Our strategy is to show that if \mathbb{R}^J has a countable dense subset, then there exists some injection of J into $\mathcal{P}(\mathbb{Z}^+)$.

Let A be the countable dense subset of \mathbb{R}^J . It follows that for every $\boldsymbol{x} \in \mathbb{R}^J$, and every neighbourhood U of \boldsymbol{x} , U intersects A. We define a map $g: J \to \mathcal{P}(A)$ as:

$$g(\alpha) = A \cap \pi_{\alpha}^{-1}((a,b))$$

where $(a, b) \in \mathbb{R}$ is chosen arbitrarily. Clearly, $g(\alpha) \in \mathcal{P}(A)$, for each α , as $g(\alpha)$ is a subset of A. We show that g is an injection. Suppose:

$$A\cap\pi_\alpha^{-1}((a,b))=A\cap\pi_\beta^{-1}((a,b))$$

Suppose $\alpha \neq \beta$. Let $B = A \cap \pi_{\alpha}^{-1}((a,b)) \cap \pi_{\beta}^{-1}((c,d))$, where $(c,d) \cap (a,b) = \emptyset$. Clearly, B is non-empty as A is dense. Thus, there exists some $\mathbf{y} \in A$ such that $y_{\alpha} \in (a,b)$, but $y_{\beta} \notin (a,b)$, contradicting the above. It follows that $\alpha = \beta$, so our map is injective.

Finally, since A is countable, there is a bijection $h: A \to \mathbb{Z}^+$. Hence, there is a bijection $h': \mathcal{P}(A) \to \mathcal{P}(\mathbb{Z}^+)$. Thus, letting $f = h' \circ g$, and we have our desired injection.

2.3. Problem 17. Give \mathbb{R}^{ω} the box topology, and let \mathbb{Q}^{∞} be the set of all rational sequences which end in a string of 0s. Which of the four countability axioms does this space satisfy?

Note that \mathbb{Q}^{∞} is itself countable. Thus, it has a countable dense subset (itself), and is clearly Lindelof.

However, this space is **not** first-countable, and is therefore not second-countable. Let x be an arbitrary point, and let \mathcal{B} be a countable collection of non-empty open neighbourhoods of x. We claim that this set is not a basis at x.

Clearly, we will have $B_n = V_n \cap \mathbb{Q}^{\infty}$, for V_n open in \mathbb{R}^{ω} , for each n. Clearly, we then have:

$$\prod_{k\in\mathbb{N}}(a_k^n,b_k^n)\subset V_n$$

by definition of the box topology. We define U open in \mathbb{Q}^{∞} as follows:

$$U = \prod_{n \in \mathbb{N}} U_n \cap \mathbb{Q}^{\infty}$$

 $U=\prod_{n\in\mathbb{N}}U_n\cap\mathbb{Q}^\infty$ where U_n is chosen such that U_n is an interval strictly contained in (a_n^n,b_n^n) (which was defined above). We can guarantee strict containment, as we are working in the box topology.

We claim that U contains no B_n . Indeed, suppose we have $B_N \subset U$. Then, from above, we must have $(a_k^N, b_k^N) \subset U_k$ for all k. But this is not true for k = N. Thus, U cannot contain any element

~	~	~ -
.7	SECTION	-71

3.1. **Problem 9a.**