

Deeper the network more are the chances of the gradients becoming smaller and smaller or keep growing...

5/21/2024 **pra-sâmi**

Weight multiplied

- □ We know that :
 - z = X * W + b
 - $\hat{\mathbf{y}} = a = \sigma(z)$
 - $a_1 = σ (a_0.W_1)$
- ☐ That in multilayer network
 - $\label{eq:continuous_problem} \mbox{$\boldsymbol{\dot{\gamma}}$} \ = \ \sigma \left(\alpha_0 \ . \ W_1 \right) . \ W_2 \right) . \ W_3 \ \right) . \ W_4 \right) \$
 - For explanation purpose assume $\sigma(z) = z$ (say ReLU)
 - $v = W_1.W_2.W_3.W_4$
 - so any change in y will result in $W_1 * W_2 * W_3 * W_4$ times y in layer 1
 - * Longer the chain, more W_s will be multiplied.

5/21/2024

5

More Layers... More problems

- ☐ Assume we have 150 layers
- ☐ Also assume our weight is say 1.1

$$\Rightarrow$$
 1.1¹⁵⁰ = 1.6 million

□ On the other hand assume our weight is 0.9

$$=> 0.9^{150} = 1.4 e^{-7}$$

5/21/2024

pra-sâmi

6

It's a Severe Problem...

- □ No silver bullet solution....
- ☐ There is multi-prong approach to it...
- ☐ First, Initialise your weights as close to 1 as possible (not 1)
- □ It is found that for tanh activation function
 - \star Divide by $\sqrt{number\ of\ nodes\ in\ the\ previous\ layer}$
 - for Gaussian distribution it normalises the data with var =1
- $\Box \text{ Some cases} : \frac{2}{\sqrt{number\ of\ nodes\ in\ the\ previous\ layer}}$
- \square In ReLU , : $\frac{2}{\sqrt{number\ of\ nodes\ in\ the\ previous\ layer+numbe}\ of\ nodes\ in\ current\ layer}}$
- \square Some literature, even $\frac{K}{\sqrt{number\ of\ nodes\ in\ the\ previous\ layer}}$; κ is a another parameter to tune

5/21/2024

Loss Function and its Derivative

 \Box The loss for our prediction \hat{y} with respect to the true labels y is given by:

$$L(\hat{y}, y) = -y \cdot \log \hat{y} - (1 - y) \cdot \log (1 - \hat{y})$$

□ For all samples:

$$J(\hat{y}, y) = -\frac{1}{m} \sum_{i \in m} y_i \log \hat{y}_i - (1 - y_i) \cdot \log(1 - \hat{y}_i)$$
Where $\hat{y} = \sigma$ (a. W + b)

☐ Therefore, we can say that:

$$J(\hat{y}, y) = J(W, b) = J(W_1, W_2, W_3, \dots, W_n, b_1, b_2, b_3, \dots, b_n)$$

5/21/2024

Calculation of derivative

- □ Use the centered formula
 - The formula you may have seen for the finite difference approximation when evaluating the numerical gradient is not as good as centered formula

5/21/2024 pra-sâmi

Gradient Checking

- □ Also called "Grad Check"
- □ Do it to verify the model's math(Debug) only
 - * Too heavy for training, switch off once the model is verified.
- ☐ For all values of Ws and Bs, we can calculate:

$$\delta\theta_{approx} = \mathsf{J}(W_1, ..., W_i + \varepsilon, W_n, b_1, b_2, b_3, b_n) - \mathsf{J}(W_1, ..., W_i - \varepsilon, W_n, b_1, b_2, b_3, b_n) / (2 * \varepsilon)$$

 $\ \square$ To check if $\delta\theta_{approx}$ and δ θ are close

$$\frac{\|\delta\theta_{approx} - \delta\;\theta\|_2}{\|\delta\theta_{approx}\,\|_2 + \|\;\delta\;\theta\|_2}\;\text{is very small}$$

- \Box For ε = 1e-7
 - * Relative error > 1e-2 usually means the gradient is probably wrong
 - 1e-2 > relative error > 1e-4 should make you feel uncomfortable
 - 1e-4 > relative error is usually okay for objectives with kinks. But if there are no kinks (e.g. use of tanh nonlinearities and softmax), then 1e-4 is too high.
 - 1e-7 and less you should be happy

5/21/2024 **pra-sâmi**

13

Grad Check Steps

- □ Recall: Our model has all weights and biases stored
 - * Model ={ " W_1 ": ..., " b_1 ": ..., " W_2 ": ..., " b_2 ": ..., " W_n ": ..., " b_n ": ...}
 - We have implemented our forward prop and back prop
- $\hfill \square$ Step 1 : Pick model and convert all weights and biases into a vector θ
- \Box Step 2: Similarly pick δW and δb and convert to a vector $\delta \theta$
- \Box Step 3: for each of the value in the vector θ
 - * Make copy of θ and $\delta\theta$
 - * Increase θ_i to θ_i + ϵ
 - ❖ Calculate J + (Cost with increased θ)
 - * Similarly calculate J- (Cost with decreased θ)
 - Use J+ and J- to calculate if $\delta \theta_{approx}$
 - ${\boldsymbol \star}$ Calculate $\delta\theta$ as usual
 - · Find error

5/21/2024

pra-sâmi

14

Grad Check

- □ Phew... too lengthy calculations....
- □ Good News!
 - Both Tensorflow and Torch have autograd implementation for us. So in real implementation we will be using those functions for gradient checking
- □ Caution!
 - This check is resource hungry
 - Once the verification is done, comment/switch off the code
- □ Deeper the network → the higher the relative errors
 - For the input data for a 10-layer network, a relative error of 1e-2 might be okay because the errors build up on the way
 - * Conversely, an error of 1e-2 for a single differentiable function likely indicates incorrect gradient

5/21/2024

pra-sâmi

Learning

So far, we've discussed the static parts of a Neural Networks:

How we can set up the network connectivity,

The data

The loss function

Time to look at the dynamics:

The process of learning the parameters

Finding good hyper-parameters

5/21/2024

