Cannabis Data Science

Meetup

March 10, 2021

Leafly.

By the numbers

There are now more American cannabis workers than electrical engineers

Cannabis Data Science Meetup March 10, 2021 2 / 11

Table 1. Sample Firm Size of Cannabis Businesses

		Percentage of Sample (%)
1–10	Employees	25.4
11-20	Employees	29.3
21-30	Employees	18.2
31-40	Employees	4.4
41-50	Employees	6.6
51+	Employees	16.0

Notes: Organization size in 2014 as reported by survey participants, N=181.

Source: Work and Well-Being in the Colorado Cannabis Industry.

Growth of Occupational Licenses

Data Source: MED 2014-2016 Annual/Mid-Year Updates.

Suppose that the total amount of flowers produced in a given period, y_t , is a simple function of the number of plants cultivated that period, k_t ,

$$y_t = Ak_t^{\alpha} e^{\varepsilon_t},$$

where A represents the state of cultivation technology and ε_t is a random production shock. Economic theory suggests that the production function should have diminishing marginal returns, such that $0 \le \alpha < 1$. The function can be estimated after a linear transformation

$$\ln y_t = \ln A + \alpha \ln k_t + \varepsilon_t.$$

I will use the approximated area of cannabis cultivation as a proxy for the amount of capital, k_t , in any given month.

Now suppose that each producer, $i=1,2,\ldots,I$, in the Colorado cannabis markets have neoclassical production functions that depend on capital, $k_{t,i}$, and labor, $l_{t,i}$. Assuming that there is an aggregate production function and a Cobb–Douglas specification for production, then

$$Y_t = F(K_t, L_t) = A_t K_t^{\alpha} (X_t L_t)^{\beta},$$

where $K_t = \sum_{i=1}^I k_{t,i}$ is the sum of all capital, $L_t = \sum_{i=1}^I l_{t,i}$ is the sum of all labor, and $Y_t = \sum_{i=1}^I y_{t,i}$ is the sum of all cannabis output of all producers in the cannabis market in a given month. There is labor augmenting technology, X_t , and a component for random variability, Z_t .

Theoretically, the competitive average wage for labor in the production of cannabis in Colorado should be equal to the marginal product of labor

$$w = \beta \frac{Y_t}{L_t}.$$

For calculations, it is assumed that each employee of a cannabis business works 40 hours per week.

Table 2. Sample Job Types of Cannabis Employees

	Percentage of Sample (%)
Worker: Growing/Cultivation/Trimming	21.5
Worker: Dispensary/Retail	35.5
Manager: Growing/Cultivation/Trimming	5.1
Manager: Dispensary/Retail	14.0
Manager: Other Departments	7.0
Upper-Level Management	6.5
Ancillary	10.3

Notes: Job types held in 2014 reported by survey participants, N=214.

Source: Work and Well-Being in the Colorado Cannabis Industry.

Thank you for coming.