PIDs and UFDs, III: GCD in UFDs and The Chinese Remainder Theorem for PIDs

Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Morday Jan 27, 2025 Thursday Feb 6, 2025

Outline

In this file: §1.2.5-1.2.6.

Greatest common divisors in UFDs;

2 The Chinese Remainder Theorem for PIDs

Monday
Jan 27, 2028

Thursday Fef 6

Greatest common divisors in UFDs

<u>Definition.</u> Given an integral domain R and a non-empty $B \subset R \setminus \{0\}$, a greatest common divisor (gcd) of B is an element $a \in R$ such that

- $\mathbf{0}$ a|b for all $b \in B$;
- 2 If a'|b for all $b \in B$, then a'|a.

Remarks.

- Definition does not guarantee greatest common divisors for a given $B \subset R \setminus \{0\}$ always exist;
- Greatest common divisors for a given $B \subset R \setminus \{0\}$, if exist, are unique only up to associates (exercise).
- ullet For \mathbb{Z} , we always pick the positive number as the gcd.

An example of non-existence of gcd 五:(Z[Js])={a+Jsib: 9,66~~}

a = 9, $b = 6 + 3\sqrt{5}i$ $\mathbb{D}(a) = \{ 3, 9, X, 2 \pm \sqrt{5}i \}$ $D(4) \cap D(b) = \{ 3, 2 + \sqrt{5}i \}$ Recall that & [F] is not a UFD

 $\mathcal{D}(b) = \{ 1, 3, 2 + \sqrt{5}i, b \}$

Proposition. If R is a UFD, then gcd exist for any non-empty $B \subset R \setminus \{0\}$.

Proof. Let *D* be the set of all common divisors of *B*.

- $D \neq \emptyset$ because $1 \in D$;
- The map $D \to \mathbb{Z}$, $d \vdash I(d)$, is bounded from above by $I(b_0)$ for any $b_0 \in B$;
- Let $a \in D$ be such that $I(a) = \max\{I(d) : d \in D\}$.
- We now prove that a is a gcd of B.
- Only need to show that for any $a' \in D$, one has a'|a.

Proof cont'd:

- Suppose not. Then there exists $a' \in D$ such that $a' \nmid a$.
- Then there exists a prime element $p \in R$ and positive integer m such that $p^m|a'$ and $p^m \nmid a$.
- Let $b \in B$. Then $p^m|a'|b$, so $p^m|b$.
- As a|b, have b = ax for some $x \in R$. So $p^m|ax$.
- Since $p^m \nmid a$ and p is prime, we have $p \mid x$. Thus $ap \mid b$.
- Since $b \in B$ is arbitrary, we see that $ap \in D$.
- Since I(ap) = I(a) + 1, we get a contradiction to the definition of a.
- We conclude that a is a gcd of B.

Q.E.D.

An explicit way of finding a gcd: Let $B \subset R \setminus \{0\}$, non-empty.

- Let $P(B) = \{ p \in R : p \text{ irreducible and is a common divisor of } B \}$.
- Consider $P'(B) = P(B)/R^{\times}$, i.e., elements counted up to associates.
- For each $p \in P'(B)$, let $m(p) = \max\{m \in \mathbb{Z}_{\geq 0}: p^m | b, \ \forall \ b \in B\}.$
- Note that $|P'(B)| \le I(b_0)$ for any $b_0 \in B$, so P'(B) is a finite set.
- A gcd of B is given by $\prod_{p \in P'(B)} p^{m(p)}.$ 2³ 5² 11⁹ 13⁷ 7² 5³

An example from \mathbb{Z} .

To continue on Thursday, Feb 6, 2025.

<u>Definition</u>: Two non-zero elements b_1 and b_2 in a UFD are said to be co-prime or relatively prime if $gcd(b_1, b_2) = 1$.

Lemma. Assume that b_1 and b_2 are co-prime, and suppose that $a \in R$ is such that $b_1|a$ and $b_2|a$. Then $(b_1b_2)|a$.

Proof. Write $a = b_1 x$ for $x \in R$, so $b_2 | b_1 x$.

- Let p be any prime element such that $p|b_2$ and let m be the highest power such that $p^m|b_2$.
- Since b_1 does not contains any power of p in its prime factorization, we have $p^m|x$.
- Thus $b_2|x$, so $(b_1b_2)|a$.

Q.E.D.

Greatest common divisors in a PID. 主理想整环中最大公约数生成和理想,欧几里得整环中这个最大公约数In a PID, gcds have special properties 及其生成方法还有求取的算法

Proposition. Let R be a PID, the gcds for a non-empty $B \subset R \setminus \{0\}$ are precisely the generators of the ideal I_B generated by B. In particular,

$$\gcd(B)=r_1b_1+\cdots+r_nb_n$$

for some $r_1, \ldots, r_n \in R$ and $b_1, \ldots, b_n \in B$.

Proof. Let $a \in R$ be a generator of the ideal I_B generated by B.

- For every $b \in B$, we have $b \in I_B = aR$, so a|b.
- $a \in I_B$ implies that $a = r_1b_1 + \cdots + r_nb_n$ for some $r_i \in R$ and $b_i \in B$.
- If a' is a common divisor of B, then $a'|b_i$ for each i, so a'|a.
- We conclude the a is a gcd of B.

Q.E.D.

The fact that a gcd of B lies in I_B is not true for arbitrary UFDs:

Example: Let $R = \mathbb{Q}[x, y]$. Will show that R is a UFD. Have

$$\gcd(x,y) = 1,$$
but $R \neq xR + yR$.
$$\gcd(x,y) = 1$$

$$\gcd(x,y) = 1$$

$$\gcd(x,y) = 1$$

§1.2.6: The Chinese Remainder Theorem

§1.2.6: The Chinese Remainder Theorem.

The Chinese Remainder Theorem. Let b_1, \ldots, b_n be positive integers and pairwise co-prime. Let $0 \le r_i < b_i$ for $i = 1, \ldots, n$. Then the system

$$\begin{cases} x \equiv r_1 \pmod{b_1}, \\ \dots \\ x \equiv r_n \pmod{b_n} \end{cases}$$

has a solution in \mathbb{Z} , and any two solutions x and x' satisfies

$$x - x' = 0 \equiv \pmod{b_1 b_2 \cdots b_n}.$$

§1.2.6: The Chinese Remainder Theorem

Proof of the Chinese Remainder Theorem for n = 2:

- It follows from $gcd(b_1, b_2) = 1$ that there exists $\alpha, \beta \in \mathbb{Z}$ such that $1 = \alpha b_1 + \beta b_2$.
- Then $r_1-r_2=(r_1-r_2)\alpha b_1+(r_1-r_2)\beta b_2$, so have a solution $x=r_1-(r_1-r_2)\alpha b_1=r_2+(r_1-r_2)\beta b_2.$
- Suppose that x and x' are two solutions.
- Then $b_1|(x-x')$ and $b_2|(x-x')$.
- As b_1 and b_2 are co-prime, we have $b_1b_2|(x-x')$. $b_2|(x-x')$ $b_2|(x-x')$ $b_2|(x-x')$

$$= \frac{1}{2} |k_2| b_2 + \frac{1}{2} |k_1| b_2$$

$$= \frac{1}{2} |k_2| b_2 + \frac{1}{2} |k_1| b_1$$

The Chinese Remainder Theorem for PIDs.

Theorem. Let R be a PID, and let q_1, q_2, \ldots, q_k be elements in R that are pair-wise co-prime, i.e. $gcd(q_i, q_j) = 1$ for all $i \neq j$. Then the map

$$R/\langle q_1q_2\cdots q_k\rangle \longrightarrow (R/\langle q_1\rangle)\times (R/\langle q_2\rangle)\times \cdots \times (R/\langle q_k\rangle)$$

given by $r + \langle q_1 q_2 \cdots q_k \rangle \mapsto (r + \langle q_1 \rangle, r + \langle q_2 \rangle, \ldots, r + \langle q_k \rangle)$ is a ring isomorphism.

Proof. For k = 2 the proof is the same as for \mathbb{Z} . Genera case follows from the case of k = 2.

Corollary: Let p_1, p_2, \ldots, p_k be distinct prime numbers, and let n_1, n_2, \ldots, n_k be positive integers. Then

$$\mathbb{Z}/\langle p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}\rangle\cong \left(\mathbb{Z}/\langle p_1^{n_1}\rangle\right)\times \left(\mathbb{Z}/\langle p_2^{n_2}\rangle\right)\times\cdots\times \left(\mathbb{Z}/\langle p_k^{n_k}\rangle\right).$$