Chương 2:

BIỂU DIỄN TÍN HIỆU VÀ HỆ THỐNG RỜI RẠC TRONG MIỀN PHỰC Z

- 2.0 MỞ ĐẦU
- 2.1 BIẾN ĐỔI Z
- 2.2 CÁC TÍNH CHẤT BIẾN ĐỔI Z
- 2.3 BIẾN ĐỔI Z NGƯỢC
- 2.4 BIỂU DIỄN HỆ THỐNG TRONG MIỀN Z

2.0 MỞ ĐẦU

- Hệ thống liên tục:
- Biến đổi Fourier:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} x(t)e^{-(j\omega)t}dt$$

$$j\omega \Rightarrow s = \sigma + j\omega$$

Biến đổi Laplace:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

- Hệ thống rời rạc:
- Biến đổi Fourier:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)(e^{j\omega})^{-n}$$

$$e^{j\omega} \Rightarrow z = re^{j\omega}$$

Biến đổi Z:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

2.1 BIẾN ĐỔI Z

2.1.1 ĐỊNH NGHĨA BIẾN ĐỔI Z:

Biến đổi Z của dãy x(n):

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (*)

Trong đó z – biến số phức

Biểu thức (*) còn gọi là biến đổi Z hai phía

Biến đổi Z 1 phía dãy x(n):

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n} \qquad (**)$$

- Nếu x(n) nhân quả $[x(n)=0 \ v\acute{o}i \ n<0]$ thì: (*) \equiv (**)
- Ký hiệu:

$$x(n) \leftarrow \frac{ZT}{\longrightarrow} X(z)$$
 hay $X(z) = ZT \{x(n)\}$
 $X(z) \leftarrow \frac{ZT^{-1}}{\longrightarrow} x(n)$ hay $x(n) = ZT^{-1}\{X(z)\}$

2.1.2 MIỀN HỘI TỤ CỦA BIẾN ĐỔI Z (ROC)

Miền hội tụ của biến đổi Z - ROC (Region Of Convergence)
 là tập hợp tất cả các giá trị Z nằm trong mặt phẳng phức sao cho X(z) hội tụ.

Re(z)

- Để tìm ROC của X(z) ta áp dụng tiêu chuẩn Cauchy
- Tiêu chuẩn Cauchy:

Một chuỗi có dạng:
$$\sum_{n=0}^{\infty} x(n) = x(0) + x(1) + x(2) + \cdots$$
hội tụ khi:
$$\lim_{n \to \infty} |x(n)|^{\frac{1}{n}} < 1$$

Ví dụ 2.1.1: Tìm biến đổi Z & ROC của x(n)=anu(n)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[a^n u(n) \right] z^{-n} = \sum_{n=0}^{\infty} a^n . z^{-n} = \sum_{n=0}^{\infty} \left(az^{-1} \right)^n$$

Theo tiêu chuẩn Cauchy,

X(z) sẽ hội tụ:

$$X(z) = \frac{1}{1 - az^{-1}}$$

Nếu:
$$\lim_{n\to\infty} \left(\left| az^{-1} \right|^n \right)^{1/n} < 1 \Leftrightarrow |z| > |a|$$

Vậy:
$$X(z) = \frac{1}{1 - az^{-1}}; ROC: |z| > |a|$$

Ví dụ 2.1.2: Tìm biến đổi Z & ROC của x(n)=-aⁿu(-n-1)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[-a^n u(-n-1) \right] z^{-n} = -\sum_{n=-\infty}^{-1} \left(a^{-1}z \right)^{-n} = -n$$

$$= -\sum_{m=1}^{\infty} (a^{-1}z)^m = -\sum_{m=0}^{\infty} (a^{-1}z)^m + 1$$

Theo tiêu chuẩn Cauchy, X(z) sẽ hội tụ:

$$X(z) = -\sum_{m=0}^{\infty} (a^{-1}z)^{n} + 1 = \frac{1}{1 - az^{-1}}$$

Nếu:
$$\lim_{n\to\infty} \left(\left| a^{-1}z \right|^n \right)^{1/n} < 1 \iff |z| < |a|$$

2.2 CÁC TÍNH CHẤT BIẾN ĐỔI Z

2.2.1 Tuyến tính

• Nếu:
$$\begin{cases} x_1(n) \leftarrow \overline{Z} \to X_1(z) : ROC = R_1 \\ x_2(n) \leftarrow \overline{Z} \to X_2(z) : ROC = R_2 \end{cases}$$

• Thì:
$$a_1x_1(n) + a_2x_2(n) \stackrel{Z}{\longleftarrow} a_1X_1(z) + a_2X_2(z)$$

ROC chứa $\mathbf{R}_1 \cap \mathbf{R}_2$

<u>Ví dụ 2.2.1</u>: Tìm biến đổi Z & ROC của x(n)=aⁿu(n) - bⁿu(-n-1) với /a/</b/ Theo ví dụ 2.1.1 và 2.1.2, ta có:

$$a^n u(n) \leftarrow \frac{z}{1 - az^{-1}}$$

$$R_1: |z| > |a|$$

-
$$b^n u(-n-1) \leftarrow \frac{z}{1-bz^{-1}}$$
 $R_2: |z| < |b|$

$$R_2: |z| < |b|$$

Áp dụng tính chất tuyến tính, ta được:

$$a^{n}u(n)-b^{n}u(-n-1) \leftarrow \frac{z}{1-az^{-1}} + \frac{1}{1-bz^{-1}}$$

$$R = R_1 \cap R_2 : |a| < |z| < |b|$$

2.2.2 Dịch theo thời gian

Nếu:
$$\chi(n) \leftarrow \xrightarrow{Z} X(z)$$
: ROC = R

Thi:
$$x(n-n_0) \leftarrow \xrightarrow{Z} z^{-n_0} X(z)$$
: ROC =R'

Với:
$$R' = \begin{cases} R \text{ trừ giá trị } z=0, & \text{khi } n_0>0 \\ R \text{ trừ giá trị } z=\infty, & \text{khi } n_0<0 \end{cases}$$

Ví dụ 2.2.2: Tìm biến đổi Z & ROC của x(n)=anu(n-1)

Theo ví dụ 2.1.1:
$$a^n u(n) \leftarrow \frac{z}{1 - az^{-1}}$$
; ROC: $|z| > |a|$

$$x(n)=a^{n}u(n-1) = a.a^{n-1}u(n-1) \quad \longleftrightarrow \frac{az^{-1}}{1-az^{-1}}:|z|>|a|$$

2.2.3 Nhân với hàm mũ an

Nếu: $x(n) \stackrel{Z}{\longleftarrow} X(z)$:ROC =R

Thi: $a^n x(n) \leftarrow Z \rightarrow X(a^{-1}z)$:ROC = |a|R

Ví dụ 2.2.3: Xét biến đổi Z & ROC của $x_1(n)=u(n)$ và $x_2(n)=a^nu(n)$

$$x(n) = u(n) \leftarrow Z \to X(z) = \sum_{n=-\infty}^{\infty} u(n)z^{-1} = \frac{1}{1-z^{-1}}; R: |z| > 1$$

2.2.4 Đạo hàm X(z) theo z

Nếu: $x(n) \stackrel{Z}{\longleftarrow} X(z)$:ROC =R

Thi:
$$nx(n) \leftarrow Z \rightarrow -z \frac{dX(z)}{dz}$$
 : ROC = R

Ví dụ 2.2.4: Tìm biến đổi Z & ROC của $g(n)=na^nu(n)$

$$x(n) = a^n u(n) \stackrel{Z}{\longleftarrow} X(z) = \frac{1}{1 - az^{-1}}; ROC: |z| > |a|$$

2.2.5 Đảo biến số

Nếu: $x(n) \stackrel{Z}{\longleftarrow} X(z)$:ROC =R

Thi: $x(-n) \leftarrow Z \rightarrow X(z^{-1}) : ROC = 1/R$

<u>Ví dụ 2.2.5</u>: Tìm biến đổi Z & ROC của *y(n)=(1/a)ⁿu(-n)*

$$x(n) = a^n u(n) \stackrel{Z}{\longleftarrow} X(z) = \frac{1}{1 - az^{-1}}; ROC: |z| > |a|$$

$$\Rightarrow y(n) = (1/a)^n u(-n) = a^{-n} u(-n) = x(-n)$$

Áp dụng tính chất đảo biến số:

$$Y(z) = X(z^{-1}) = \frac{1}{1 - a(z^{-1})^{1}} = \frac{1}{1 - az}; ROC: |z| < 1/|a|$$

2.2.6 Liên hiệp phức

Nếu: $x(n) \stackrel{Z}{\longleftarrow} X(z) : ROC = R$ Thì: $x^*(n) \stackrel{Z}{\longleftarrow} X^*(z^*) : ROC = R$

2.2.7 <u>Tích 2 dãy</u>

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thi:
$$x_1(n)x_2(n) \stackrel{Z}{\longleftarrow} \frac{1}{2\pi} \oint_c X_1(v)X_1\left(\frac{z}{v}\right)v^{-1} dv : ROC = R_1 \cap R_2$$

2.2.8 Đinh lý giá tri đầu

Nếu x(n) nhân quả thì: $x(0) = \lim_{z \to \infty} X(z)$

Ví dụ 2.2.6: Tìm x(0), biết $X(z)=e^{1/z}$ và x(n) nhân quả

Theo định lý giá trị đầu:

$$x(0) = \lim_{Z \to \infty} X(z) = \lim_{Z \to \infty} e^{1/z} = 1$$

2.2.9 Tổng chập 2 dãy

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thì: $x_1(n) * x_2(n) \leftarrow^{\mathbb{Z}} \rightarrow X_1(z) X_2(z)$:ROC có chứa $R_1 \cap R_2$

Ví dụ 2.2.7: Tìm y(n) = x(n)*h(n), biết $x(n)=(0.5)^n u(n)$ và $h(n)=-2^n u(-n-1)$

$$x(n) = (0.5)^n u(n) \leftarrow Z \rightarrow X(z) = \frac{1}{1 - 0.5z^{-1}}; ROC: |z| > 0.5$$

$$h(n) = -2^{n}u(-n-1) \leftarrow \frac{z}{1} \rightarrow H(z) = \frac{1}{1-2z^{-1}}; ROC: |z| < 2$$

$$Y(z) = X(z)H(z) = \frac{1}{(1-0.5z^{-1})} \cdot \frac{1}{(1-2z^{-1})}; ROC: 0,5 < |z| < 2$$

$$\mathbf{Z}^{-1} = -\frac{1}{3} \cdot \frac{1}{(1 - 0.5z^{-1})} + \frac{4}{3} \cdot \frac{1}{(1 - 2z^{-1})}; ROC: 0,5 < |z| < 2$$

$$y(n) = x(n) * h(n) = -\frac{1}{3} (0.5)^n u(n) - \frac{4}{3} 2^n u(-n-1)$$

TỔNG KẾT CÁC TÍNH CHẤT BIẾN ĐỔI Z

x(n)	X(z)	R
$a_1x_1(n)+a_2x_2(n)$	$a_{1}X_{1}(z)+a_{2}X_{2}(z)$	Chứa $R_1 \cap R_2$
x(n-n ₀)	Z-n0 X(z)	R'
a ⁿ x(n)	X(a ⁻¹ z)	R
nx(n)	-z dX(z)/dz	R
x(-n)	X(z ⁻¹)	1/R
x*(n)	X*(z*)	R
$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_{\mathbb{R}} X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	$R_1 \cap R_2$
x(n) nhân quả	$x(0)=\lim X(z\rightarrow \infty)$	
x ₁ (n)*x ₂ (n)	$X_1(z)X_2(z)$	Chứa $R_1 \cap R_2$

BIẾN ĐỔI Z MỘT SỐ DÃY THÔNG DỤNG

x(n)	X(z)	ROC
δ(n)	1	∀z
u(n)	1	/z/ >1
-u(-n-1)	$1 - z^{-1}$	/z/ <1
a ⁿ u(n)	1	/z/ > /a/
-a ⁿ u(-n-1)	$\overline{1-az^{-1}}$	/z/ < /a/
na ⁿ u(n)	az^{-1}	/z/ > /a/
-na ⁿ u(-n-1)	$(1 - az^{-1})^2$	/z/ < /a/
$cos(\omega_o n)u(n)$	$(1-z^{-1}\cos\omega_{o})/(1-2z^{-1}\cos\omega_{o}+z^{-2})$	/z/ >1
$sin(\omega_o n)u(n)$	$(z^{-1}\sin\omega_{o})/(1-2z^{-1}\cos\omega_{o}+z^{-2})$	/z/ >1

2.3 BIẾN ĐỔI Z NGƯỢC

2.3.1 CÔNG THỰC BIẾN ĐỔI Z NGƯỢC

$$x(n) = \frac{1}{2\pi j} \int_C X(z) z^{n-1} dz$$
 (*)

Với **C** - đường cong khép kín bao quanh gốc tọa độ trong mặt phẳng phức, nằm trong miền hội tụ của X(z), theo chiều (+) ngược chiều kim đồng hồ

- ✓ Trên thực tế, biểu thức (*) ít được sử dụng do tính chất phức tạp của phép lấy tích phân vòng
- Các phương pháp biến đổi Z ngược:
- Thặng dư
- Khai triển thành chuỗi luỹ thừa
- Phân tích thành tổng các phân thức tối giản

2.3.2 PHƯƠNG PHÁP THẶNG DƯ

a) Khái niệm thặng dư của 1 hàm tại điểm cực:

• Thặng dư tại điểm cực \mathbf{Z}_{pi} bội \mathbf{r} của $\mathbf{F}(\mathbf{z})$ được định nghĩa:

$$Res[F(z)]_{z=z_{pi}} = \frac{1}{(r-1)!} \frac{d^{(r-1)}}{dz^{(r-1)}} [F(z)(z-z_{pi})^r]_{z=z_{pi}}$$

• Thặng dư tại điểm cực đơn Z_{pi} của F(z) được định nghĩa:

$$Res[F(z)]_{z=z_{pi}} = [F(z)(z-z_{pi})]_{z=z_{pi}}$$

b) Phương pháp:

 Theo lý thuyết thặng dư, biểu thức biến đổi Z ngược theo tích phân vòng (*) được xác định bằng tổng các thặng dư tại tất cả các điểm cực của hàm X(z)zⁿ⁻¹:

$$x(n) = \frac{1}{2\pi j} \int_{C} X(z) z^{n-1} dz = \sum_{i} Res \left[X(z) z^{n-1} \right]_{z=z_{pi}} (*)$$

Trong đó:

- \mathbf{Z}_{pi} các điểm cực của $X(z)z^{n-1}$ nằm trong đường cong C
- $\operatorname{Res}[X(z)z^{n-1}]_{z=z_{pi}}$ thặng dư của $X(z)z^{n-1}$ tại điểm cực z_{pi}
- Tổng cộng các thặng dư tại tất cả các điểm cực, ta được x(n)

Ví dụ 2.3.1: Tìm biến đổi Z ngược của
$$X(z) = \frac{z}{(z-2)}$$

Thay X(z) vào (*), ta được

$$x(n) = \frac{1}{2\pi j} \int_C X(z) z^{n-1} dz = \frac{1}{2\pi j} \int_C \frac{z}{(z-2)} z^{n-1} dz = \sum_{i=1}^n \operatorname{Res} \left[\frac{z^n}{(z-2)} \right]$$

Chọn C là đường cong khép kín nằm bên ngoài vòng tròn có bán kính là 2

•
$$n \ge 0$$
: $X(z)z^{n-1} = \frac{z^n}{(z-2)}$ có 1 điểm cực đơn $Z_{p1} = 2$

Thặng dư tại $Z_{n1}=2$:

Res
$$\left[\frac{z^n}{(z-2)}\right]_{z=2} = \left[\frac{z^n}{(z-2)}(z-2)\right]_{z=2} = 2^n$$

• **n<0**:
$$X(z)z^{n-1} = \frac{1}{(z-2)z^{-n}} = \frac{1}{(z-2)z^m}$$

$$Z_{p1}$$
=2 đơn,
 Z_{p2} =0 bội m

Với:
$$Z_{p1}=2$$
: Res $\left[\frac{1}{(z-2)z^m}\right]_{z=2}=\left[\frac{1}{(z-2)z^m}(z-2)\right]_{z=2}=\frac{1}{2^m}$

Với: Z_{p2}=0 bội m:

$$\operatorname{Res}\left[\frac{1}{(z-2)z^{m}}\right]_{z=0} = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[\frac{1}{(z-2)z^{m}} z^{m}\right]_{z=0}$$
$$= \frac{1}{(m-1)!} \left[\frac{(m-1)!(-1)^{m-1}}{(-2)^{m}}\right] = -\frac{1}{2^{m}}$$

Vậy, với **n<0**:
$$\sum \text{Res} \left[\frac{z^n}{(z-2)} \right] = \frac{1}{2^m} - \frac{1}{2^m} = 0$$

suy ra
$$x(n) = 2^n : n \ge 0$$
 hay $x(n) = 2^n u(n)$

2.3.3 PHƯƠNG PHÁP KHAI TRIỂN CHUỐI LUỸ THỪA

Giả thiết **X(z)** có thể khai triển: $X(z) = \sum_{n=0}^{\infty} a_n z^{-n}$

Theo định nghĩa biến đổi Z

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

Đồng nhất 2 biểu thức:

$$x(n) = a_n$$

Ví du 2.3.2:

Tìm x(n), $X(z) = z^2 + 2z + 3 - 4z^{-1} - 5z^{-2}$ ROC: $0 < |z| < \infty$

$$X(z) = \sum_{n=2}^{2} x(n)z^{-n} = x(-2)z^{2} + x(-1)z^{1} + x(0)z^{0} + x(1)z^{-1} + x(2)z^{-2}$$

Suy ra: $x(n) = \{1,2,3,-4,-5\}$

Ví dụ 2.3.3: Tìm x(n) biết:
$$X(z) = \frac{1}{1 - 2z^{-1}} : |z| > 2$$

Do ROC của X(z) là *IzI*>2, nên **x(n)** sẽ là dãy nhân quả và sẽ được khai triển thành chuỗi có dạng:

$$X(z) = \sum_{n=0}^{\infty} a_n z^{-n} = a_0 + a_1 z^{-1} + a_2 z^{-2} + \cdots$$
 (*)

Để có dạng (*), thực hiện phép chia đa thức dưới đây:

$$+2z^{-1} + 2^{2}z^{-2} + \cdots$$

$$\Rightarrow X(z) = \sum_{n=0}^{\infty} 2^{n}z^{-n}$$

$$\Rightarrow x(n) = 2^n : n \ge 0 \equiv 2^n u(n)$$

Ví dụ 2.3.4: Tìm x(n) biết:
$$X(z) = \frac{1}{1 - 2z^{-1}} : |z| < 2$$

Do ROC của X(z) là *IzI*<2, nên **x(n)** sẽ là dãy phản nhân quả và sẽ được khai triển thành chuỗi có dạng:

$$X(z) = \sum_{n=1}^{\infty} a_n z^{-n} = a_{-1} z^1 + a_{-2} z^2 + a_{-3} z^3 + \cdots$$
 (**)

Để có dạng (**), thực hiện phép chia đa thức dưới đây:

$$-2^{-2}z^{2} - 2^{-3}z^{3} + \cdots$$

$$\Rightarrow X(z) = \sum_{n=1}^{\infty} -2^{n}z^{-n}$$

$$\Rightarrow x(n) = -2^n : n < 0 \equiv -2^n u(-n-1)$$

2.3.4 PHƯƠNG PHÁP PHÂN TÍCH THÀNH TỔNG CÁC PHÂN THỰC TỐI GIẢN

Xét X(z) là phân thức hữu tỉ có dạng:

$$X(z) = \frac{D(z)}{B(z)} = \frac{d_K z^K + d_{K-1} z^{K-1} + \dots + d_1 z + d_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$
 với: K, N >0

•Nếu K>N, thực hiện phép chia đa thức:

$$X(z) = \frac{D(z)}{B(z)} = C(z) + \frac{A(z)}{B(z)} = C(z) + \frac{a_M z^M + a_{M-1} z^{M-1} \dots + a_1 z + a_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$

Ta được C(z) là đa thức và phân thức A(z)/B(z) có bậc M≤N

•Nếu $K \le N$, thì X(z) có dạng giống phân thức A(z)/B(z)

Việc lấy biến đổi Z ngược đa thức C(z) là đơn giản, vấn đề phức tạp là tìm biến đổi Z ngược A(z)/B(z) có bậc $M \leq N$

Xét **X(z)/z** là phân thức hữu tỉ có bậc **M≤N**:

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{a_M z^M + a_{M-1} z^{M-1} \dots + a_1 z + a_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$

Xét đến các điểm cực của X(z)/z, hay nghiệm của B(z) là đơn, bội và phức liên hiệp

a) Xét X(z)/z có các điểm cực đơn: Z_{p1} , Z_{p2} , Z_{p3} ,.... Z_{pN}

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{p1})(z - z_{p2})\cdots(z - z_{pN})}$$

Theo lý thuyết hàm hữu tỉ, X(z)/z phân tích thành:

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{K_1}{(z - z_{p1})} + \frac{K_2}{(z - z_{p2})} + \dots + \frac{K_N}{(z - z_{pN})} = \sum_{i=1}^{N} \frac{K_i}{(z - z_{pi})}$$

Với hệ số \mathbf{K}_{i} xác định bởi:

$$K_i = \frac{X(z)}{z} (z - z_{pi}) \Big|_{z = z_{pi}} \quad \text{hay} \quad K_i = \frac{A(z)}{B'(z)} \Big|_{z = z_{pi}}$$

Suy ra X(z) có biểu thức:

$$X(z) = \frac{K_1}{(1 - z_{p1}z^{-1})} + \frac{K_2}{(1 - z_{p2}z^{-1})} + \dots + \frac{K_N}{(1 - z_{pN}z^{-1})} = \sum_{i=1}^{N} \frac{K_i}{(1 - z_{pi}z^{-1})}$$

Xét:
$$X_i(z) = \frac{K_i}{(1 - z_{pi}z^{-1})}$$

- Nếu ROC: $|z| > |z_{pi}| \Rightarrow x_i(n) = K_i(z_{pi})^n u(n)$
- Nếu ROC: $|\mathbf{z}| < |\mathbf{z}_{pi}| \Rightarrow x_i(n) = -K_i(z_{pi})^n u(-n-1)$

•Vậy:
$$x(n) = \sum_{i=1}^{N} x_i(n)$$

Ví dụ 2.3.5: Tìm x(n) biết
$$X(z) = \frac{2z^2 - 5z}{z^2 - 5z + 6}$$

ROC : a) $|z| > 3$. b) $|z| < 2$. c) $2 < |z| < 3$

ROC: a) /z/>3, b) /z/<2, c) 2</z/>

$$\frac{X(z)}{z} = \frac{2z-5}{z^2-5z+6} = \frac{2z-5}{(z-2)(z-3)} = \frac{K_1}{(z-2)} + \frac{K_2}{(z-3)}$$

Với các hệ số được tính bởi:

$$K_1 = \frac{X(z)}{z}(z-2)\Big|_{z=2} = \frac{2z-5}{(z-3)}\Big|_{z=2} = 1$$

$$K_2 = \frac{X(z)}{z}(z-3)\Big|_{z=3} = \frac{2z-5}{(z-2)}\Big|_{z=3} = 1$$

$$\frac{X(z)}{z} = \frac{1}{(z-2)} + \frac{1}{(z-3)} \Rightarrow X(z) = \frac{1}{(1-2z^{-1})} + \frac{1}{(1-3z^{-1})}$$

$$X(z) = \frac{1}{(1-2z^{-1})} + \frac{1}{(1-3z^{-1})}$$

Với các miền hội tụ:

a)
$$|z| > 3 > 2$$
: $x(n) = 2^n u(n) + 3^n u(n)$

b)
$$|z| < 2 < 3$$
: $x(n) = -2^n u(-n-1) - 3^n u(-n-1)$

c) 2|
$$x(n) = 2^n u(n) - 3^n u(-n-1)$$

b) Xét X(z)/z có điểm cực Z_{p1} bội r và các điểm cực đơn: $Z_{p(r+1)}, \ldots, Z_{pN}$

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{p1})^r (z - z_{p(r+1)}) \cdots (z - z_{pN})}$$

Theo lý thuyết hàm hữu tỉ, **X(z)/z** phân tích thành:

$$\frac{X(z)}{z} = \frac{K_1}{(z - z_{p1})} + \frac{K_2}{(z - z_{p1})^2} + \dots + \frac{K_r}{(z - z_{p1})^r} + \frac{K_{r+1}}{(z - z_{p(r+1)})} + \dots + \frac{K_N}{(z - z_{pN})} = \sum_{i=1}^r \frac{K_i}{(z - z_{p1})^i} + \sum_{l=r+1}^N \frac{K_l}{(z - z_{pl})^l}$$

Với hệ số **K**_i xác định bởi:

$$K_{i} = \frac{1}{(r-i)!} \frac{d^{(r-i)}}{dz^{(r-i)}} \left[\frac{X(z)}{z} (z-z_{c1})^{r} \right]_{z=z_{p1}} K_{l} = \frac{X(z)}{z} (z-z_{pl})_{z=z_{pl}}$$

$$\left| K_{l} = \frac{X(z)}{Z} (z - z_{pl}) \right|_{Z = Z_{pl}}$$

Với giả thiết ROC của X(z): $|z| > \max\{|z_{pi}|\}$: $i=1 \div N$, biến đổi Z ngược của thành phần $K_i/(z-z_{pi})^r$ sẽ là:

$$\frac{z}{(z-a)^{i}} \leftarrow \frac{z^{-1}}{(z-a)^{i}} \to \frac{n(n-1)...(n-i+2)a^{n-i+1}}{(i-1)!}u(n)$$

Vậy ta có biểu thức biến đổi Z ngược là:

$$|x(n)| = \sum_{i=1}^{r} K_i \frac{n(n-1)...(n-i+2)a^{n-i+1}}{(i-1)!} u(n) + \sum_{l=r+1}^{N} K_l(z_{pl})^n u(n)$$

Ví dụ 2.3.6: Tìm x(n) biết
$$X(z) = \frac{2z^3 - 5z^2 + 4z}{(z-2)^2(z-1)}$$
, ROC: $|z| > 2$

$$\frac{X(z)}{z} = \frac{2z^2 - 5z + 4}{(z - 2)^2(z - 1)} = \frac{K_1}{(z - 2)} + \frac{K_2}{(z - 2)^2} + \frac{K_3}{(z - 1)}$$

Với các hệ số được tính bởi:

$$K_{1} = \frac{1}{(2-1)!} \frac{d^{(2-1)}}{dz^{(2-1)}} \left[\frac{X(z)}{z} (z-2)^{2} \right]_{z=2} = \frac{d}{dz} \left[\frac{2z^{2}-5z+4}{(z-1)} \right]_{z=2} = 1$$

$$K_{2} = \frac{1}{(2-2)!} \frac{d^{(2-2)}}{dz^{(2-2)}} \left[\frac{X(z)}{z} (z-2)^{2} \right]_{z=2} = \frac{2z^{2}-5z+4}{(z-1)} \Big|_{z=2} = 2$$

$$K_3 = \frac{X(z)}{z}(z-1)\Big|_{z=1} = \frac{2z^2-5z+4}{(z-2)^2}\Big|_{z=1} = 1$$

Vậy X(z)/z có biểu thức là:

$$\frac{X(z)}{z} = \frac{1}{(z-2)} + \frac{2}{(z-2)^2} + \frac{1}{(z-1)}$$

$$\Rightarrow X(z) = \frac{1}{(1-2z^{-1})} + \frac{2z^{-1}}{(1-2z^{-1})^2} + \frac{1}{(1-z^{-1})} \qquad ROC: |z| > 2$$

$$\Rightarrow x(n) = 2^n u(n) + n2^n u(n) + u(n)$$

c) Xét X(z)/z có cặp điểm cực Z_{p1} và Z^*_{p1} phức liên hiệp, các điểm cực còn lại đơn: $Z_{p3},...,Z_{pN}$

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{p1})(z - z_{p1}^*)(z - z_{p3})\cdots(z - z_{pN})}$$

X(z)/z được phân tích thành:

$$\frac{X(z)}{z} = \frac{K_1}{(z-z_{p1})} + \frac{K_2}{(z-z_{p1}^*)} + \frac{K_3}{(z-z_{p3})} + \dots + \frac{K_N}{(z-z_{pN})}$$

$$\frac{X(z)}{z} = \frac{K_1}{(z-z_{n1})} + \frac{K_2}{(z-z_{n1}^*)} + \sum_{i=3}^{N} \frac{K_i}{(z-z_{ni})}$$

Với các hệ số K_1 , K_i được tính giống điểm cực đơn:

$$K_{i} = \frac{X(z)}{z} (z - z_{pi}) \Big|_{z=z_{pi}} : i = 1 \div N$$

Do các hệ số A(z), B(z) là thực, nên $K_2=K_1^*$

Và giả thiết ROC: /z/>max{/z_{ni}/}:

$$\Rightarrow x_1(n) = \left[K_1(z_{p1})^n + K_1^*(z_{p1}^*)^n \right] u(n)$$
$$= 2|K_1||z_{p1}|^n \cos(n\alpha + \beta)u(n)$$

Vậy:
$$x(n) = \left\{ 2|K_1||z_{p1}|^n \cos(n\alpha + \beta) + \sum_{i=3}^N K_i(z_{pi})^n \right\} u(n)$$

Ví dụ 2.3.7: Tìm x(n) biết:
$$X(z) = \frac{-z}{(z^2 - 2z + 2)(z - 1)} : |z| > \sqrt{2}$$

$$\frac{X(z)}{z} = \frac{-1}{(z^2 - 2z + 2)(z - 1)} = \frac{-1}{[z - (1 + j)][z - (1 - j)](z - 1)}$$

$$= \frac{K_1}{[z - (1+j)]} + \frac{K_1^*}{[z - (1-j)]} + \frac{K_3}{(z-1)}$$

$$K_{1} = \frac{-1}{[z - (1 - j)](z - 1)} \Big|_{z = 1 + j} = \frac{1}{2} \quad K_{3} = \frac{-1}{(z^{2} - 2z + 2)} \Big|_{z = 1} = -1$$

$$\Rightarrow X(z) = \frac{1/2}{\left[1 - (1+j)z^{-1}\right]} + \frac{1/2}{\left[1 - (1-j)z^{-1}\right]} + \frac{-1}{(1-z^{-1})} \quad |z| > \sqrt{2}$$

$$\Rightarrow x(n) = (\sqrt{2})^n \cos(n\frac{\pi}{4})u(n) - u(n)$$

2.4 BIỂU DIỄN HỆ THỐNG TRONG MIỀN Z

2.4.1 ĐỊNH NGHĨA HÀM TRUYỀN ĐẠT

Miền n:
$$x(n) \longrightarrow h(n) \longrightarrow y(n)=x(n)*h(n)$$

Miền Z: $X(z) \longrightarrow H(z) \longrightarrow Y(z)=X(z)H(z)$

$$h(n) \stackrel{ZT}{\longleftrightarrow} H(z)$$
: gọi là hàm truyền đạt $H(z)=Y(z)/X(z)$

Trong miền phức Z, H(z) đặc trưng hoàn toàn cho hệ thống

2.4.2 HÀM TRUYỀN ĐẠT ĐƯỢC BIỂU DIỄN THEO CÁC HỆ SỐ PHƯƠNG TRÌNH SAI PHÂN

Phương trình sai phân TTHSH có dạng:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_k x(n-r)$$

Lấy biến đổi Z 2 vế PTSP & áp dụng tính chất dịch theo t/g:

$$Y(z)\sum_{k=0}^{N}a_{k}z^{-k} = X(z)\sum_{r=0}^{M}b_{k}z^{-r}$$

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{M} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Ví dụ 2.4.1: Tìm H(z) và h(n) của hệ thống nhân quả cho bởi: y(n) - 5y(n-1) + 6y(n-2) = 2x(n) - 5x(n-1)

Lấy biến đổi Z hai vế PTSP và áp dụng tính chất dịch theo t/g:

$$Y(z)[1-5z^{-1}+6z^{-2}]=X(z)[2-5z^{-1}]$$

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{2 - 5z^{-1}}{1 - 5z^{-1} + 6z^{-2}} = \frac{2z^2 - 5z}{z^2 - 5z + 6}$$

$$\frac{H(z)}{z} = \frac{2z-5}{(z-2)(z-3)} = \frac{K_1}{(z-2)} + \frac{K_2}{(z-3)}$$

$$K_1 = \frac{2z - 5}{(z - 3)} \Big|_{z = 2} = 1$$
 $K_2 = \frac{2z - 5}{(z - 2)} \Big|_{z = 3} = 1$

$$\Rightarrow H(z) = \frac{1}{(1-2z^{-1})} + \frac{1}{(1-3z^{-1})}$$

Do hệ thống nhân quả nên: $h(n) = (2^n + 3^n) u(n)$

2.4.3 ĐIỂM CỰC & ĐIỂM KHÔNG CỦA HÀM TRUYỀN ĐẠT

Xét hàm truyền đạt H(z) có dạng:

$$H(z) = \frac{A(z)}{B(z)} = \frac{a_m z^m + a_{m-1} z^{m-1} + ... + a_1 z + a_0}{b_n z^n + b_{n-1} z^{n-1} + ... + b_1 z + b_0} = K \frac{(z - z_{01})(z - z_{02})...(z - z_{0m})}{(z - z_{p1})(z - z_{p2})...(z - z_{pn})}$$

- z_{0i} là điểm không của $H(z) \Leftrightarrow H(z)|_{z=z_{0i}} = 0$
- z_{pi} là điểm cực của $H(z) \Leftrightarrow H(z)|_{z=z_{pi}} = \infty$

$$z_{01}, z_{02},...,z_{0m}$$
: là các điểm không của $H(z)$ $z_{p1}, z_{p2},..., z_{pn}$: là các điểm cực của $H(z)$

Ví dụ 2.4.2: Cho hệ thống nhân quả có các điểm 0 & cực: z_{01} =-1; z_{02} =-1/2 và z_{p1} =1/2; z_{p2} =1/3.

- a)Biểu diễn các điểm không & cực trên mặt phẳng phức
- b)Viết biểu thức H(z), biết H(0)=6
- c)Viết phương trình sai phân mô tả hệ thống
- d)Vẽ SĐ thực hiện HT, chuyển sơ đồ sang dạng chuẩn tắc
- a) Biểu diễn các điểm cực & không:
- b) Biểu thức H(z) có dạng:

$$H(z) = K \frac{(z+1)(z+1/2)}{(z-1/2)(z-1/3)}$$

$$H(0) = K \frac{1/2}{(-1/2)(-1/3)} = 6 \Rightarrow K = 2$$

 $\Lambda Im(z)$

$$\Rightarrow H(z) = 2 \frac{(z+1)(z+1/2)}{(z-1/2)(z-1/3)}$$

c) Phương trình sai phân:

$$H(z) = \frac{Y(z)}{X(z)} = 2\frac{(z+1)(z+\frac{1}{2})}{(z-\frac{1}{2})(z-\frac{1}{3})} = 2\frac{(z^2+\frac{3}{2}z+\frac{1}{2})}{(z^2-\frac{5}{6}z+\frac{1}{6})}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{2(1 + \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2})}{(1 - \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2})}$$

$$\Leftrightarrow Y(z)(1-\frac{5}{6}z^{-1}+\frac{1}{6}z^{-2})=2X(z)(1+\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2})$$

Áp dụng tính chất dịch theo thời gian, lấy biến đổi Z ngược:

$$y(n) - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = 2x(n) + 3x(n-1) + x(n-2)$$

d) Sơ đồ thực hiện hệ thống:

$$y(n) = 2x(n) + 3x(n-1) + x(n-2) + \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2)$$

$$x(n) \xrightarrow{Z^{-1}} \xrightarrow{3} + \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2)$$

2.4.4 HÀM TRUYỀN ĐẠT CÁC HỆ THỐNG GHÉP NỐI

a. Ghép nối tiếp

■ Miền n:
$$\begin{cases} x(n) \longrightarrow h_1(n) \longrightarrow h_2(n) \longrightarrow y(n) \\ \parallel \parallel \\ x(n) \longrightarrow h(n) = h_1(n) * h_2(n) \longrightarrow y(n) \end{cases}$$

Theo tính chất tổng chập: $h_1(n)*h_2(n) \xrightarrow{Z} H_1(z)H_2(z)$

■ Miền Z:
$$X(z) \longrightarrow H_1(z) \longrightarrow H_2(z) \longrightarrow Y(z)$$

$$X(z) \longrightarrow H(z) = H_1(z)H_2(z) \longrightarrow Y(z)$$

b. Ghép song song

$$X(z) \longrightarrow H_1(z) \longrightarrow Y(z)$$

$$H_2(z) \longrightarrow H_2(z) \longrightarrow Y(z)$$

$$X(z) \longrightarrow H_1(z) + H_2(z) \longrightarrow Y(z)$$

 $\underline{Vi \ du \ 2.4.3}$: Tìm H(z) của hệ thống, biết h₁, h₂, h₃, h₄

Giải:
$$H(z) = H_1(z) \cdot [H_2(z) + H_3(z)H_4(z)]$$

2.4.5 TÍNH NHÂN QUẢ & ỔN ĐỊNH CỦA HỆ THỐNG

a. Tính nhân quả

■ Miền n: Hệ thống TTBB là nhân quả \iff h(n) = 0 : n<0

Miền Z:
$$H(z) = \frac{A(z)}{b_N(z-z_{p1})(z-z_{p2})\cdots(z-z_{pN})}$$

Do h(n) là tín hiệu nhân quả, nên miền hội tụ H(z) sẽ là:

$$|z| > |z_p|^{max} = max\{|z_{p1}|, |z_{p2}|, \dots, |z_{pN}|\}$$

Hệ thống TTBB là nhân quả

ROC của H(z) là:

$$|z| > |z_p|^{max} = max\{|z_{p1}|, |z_{p2}|, \cdots, |z_{pN}|\}$$

b. Tính ổn định

- Miền n: Hệ thống TTBB là ổn định $\iff \sum |h(n)| < \infty$ (*) $n=\infty$
- Miền Z:

$$|H(z)| = \left| \sum_{n=-\infty}^{\infty} h(n) z^{-n} \right| \leq \sum_{n=-\infty}^{\infty} |h(n) z^{-n}| = \left| \sum_{n=-\infty}^{\infty} h(n) |z^{-n}| \right|$$

$$\Rightarrow |H(z)| \leq \left| \sum_{n=-\infty}^{\infty} h(n) \right| : \text{khi} |z| = 1$$

Theo đ/k ổn định (*), nhận thấy **H(z)** cũng sẽ hội tụ với **/z/=1**

Hệ thống TTBB Ià ổn định ROC của H(z) có chứa /z/=1

c. Tính nhân quả và ổn định

Hệ thống TTBB là nhân quả

ROC của H(z) là:

$$|z| > |z_p|^{max} = max\{|z_{p1}|, |z_{p2}|, \dots, |z_{pN}|\}$$

Hệ thống TTBB là ổn định

ROC của H(z) có chứa /z/=1

Hệ thống TTBB nhân quả là ổn định

ROC của H(z) là:

$$|z| > |z_p|^{max}$$
 và $|z_p|^{max} < 1$

Ví dụ 2.4.4: Tìm h(n) của hệ thống, biết $H(z) = \frac{4z^2 - 5z}{2z^2 - 5z + 2}$

- a. Để hệ thống là nhân quả
- b. Để hệ thống là ổn định
- c. Để hệ thống là nhân quả và ổn định

$$\frac{H(z)}{z} = \frac{4z - 5}{2(z - 1/2)(z - 2)} = \frac{K_1}{(z - 1/2)} + \frac{K_2}{(z - 2)} = \frac{1}{(z - 1/2)} + \frac{1}{(z - 2)}$$

$$\Rightarrow H(z) = \frac{1}{\left[1 - (1/2)z^{-1}\right]} + \frac{1}{(1 - 2z^{-1})}$$

- a. Hệ thống nhân quả (|z|>2): $h(n)=[(1/2)^n + 2^n] u(n)$
- b. Hệ thống ổn định (1/2</z/<2): h(n)=(1/2)ⁿ u(n) 2ⁿ u(-n-1)
- c. Hệ thống nhân quả và ổn định:
 ROC: /z/>2 không thể chứa /z/=1 ⇒ không tồn tại h(n)

2.4.5 GIẢI PTSP DÙNG BIẾN ĐỔI Z 1 PHÍA

$$y(n-1) \rightleftharpoons \sum_{n=0}^{\infty} y(n-1)z^{-n} = y(-1) + y(0)z^{-1} + y(1)z^{-2} + \cdots$$

$$= y(-1) + z^{-1} [y(0) + y(1)z^{-1} + \cdots]$$

$$= y(-1) + z^{-1}Y(z)$$

$$y(n-2) \rightleftharpoons \sum_{n=0}^{\infty} y(n-2)z^{-n} = y(-2) + y(-1)z^{-1} + y(0)z^{-2} + \cdots$$

$$= y(-2) + y(-1)z^{-1} + z^{-2} [y(0) + y(1)z^{-1} + \cdots]$$

$$= y(-2) + y(-1)z^{-1} + z^{-2}Y(z)$$

$$y(n-k) \rightleftharpoons \sum_{n=0}^{\infty} z^{-k}Y(z) + \sum_{n=0}^{\infty} y(-n)z^{-n}$$

Ví dụ 2.4.5: Hãy giải PTSP dùng biến đổi Z 1 phía

$$y(n) - 3y(n-1) + 2 y(n-2) = x(n) : n \ge 0$$

biết: $x(n)=3^{n-2}u(n)$ và y(-1)=-1/3; y(-2)=-4/9

Lấy biến đổi Z 1 phía hai vế PTSP:

$$Y(z) - 3[y(-1)+z^{-1}Y(z)] + 2[y(-2)+y(-1)z^{-1}+z^{-2}Y(z)] = X(z)$$
 (*)

Thay y(-1)=-1/3; y(-2)=-4/9 và $X(z)=3^{-2}/(1-3z^{-1})$ vào (*), rút ra:

$$\frac{Y(z)}{z} = \frac{1}{(z-1)(z-3)} = -\frac{1}{2} \cdot \frac{1}{(z-1)} + \frac{1}{2} \cdot \frac{1}{(z-3)}$$

$$\Rightarrow Y(z) = -\frac{1}{2} \cdot \frac{1}{(1-z^{-1})} + \frac{1}{2} \cdot \frac{1}{(1-3z^{-1})}$$

$$\Rightarrow y(n) = \frac{1}{2} \left[3^n - 1^n \right] u(n)$$