Math 337 - Elementary Differential Equations Lecture Notes - Direction Fields and Phase Portraits - 1D

Joseph M. Mahaffy, \(\square\) jmahaffy@sdsu.edu \(\)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2020

Outline

- Mathematical Modeling
 - Solution of Linear Growth and Decay Models
 - Mathematical Modeling
 - Newton's Law of Cooling
 - Murder Investigation
 - Linear Differential Equation
- 2 Introduction to MatLab
- 3 Qualitative Behavior of Differential Equations
 - Example: Logistic Growth
 - Example: Sine Function
- 4 More Examples
 - Left Snail Model
 - Allee Effect
- Maple Direction Fields

Solution of Linear Growth and Decay Models Mathematical Modeling Newton's Law of Cooling Murder Investigation Linear Differential Equation

Solution of Linear Growth and Decay Models

Previously showed that for Malthusian growth or Radioactive decay the *linear differential equation*:

$$\frac{dy}{dt} = ay$$
 with $y(0) = y_0$,

has the solution:

$$y(t) = y_0 e^{at}$$
.

More generally, we have the following solution:

Method (General Solution to Linear Growth and Decay Models)

Consider

$$\frac{dy}{dt} = ay$$
 with $y(t_0) = y_0$.

The solution is

$$y(t) = y_0 e^{a(t-t_0)}.$$

Solution of Linear Growth and Decay Models Mathematical Modeling Newton's Law of Cooling Murder Investigation Linear Differential Equation

Example: Linear Decay Model

Example: Linear Decay Model: Consider

$$\frac{dy}{dt} = -0.3y \qquad \text{with} \qquad y(4) = 12$$

The solution is

$$y(t) = 12e^{-0.3(t-4)}$$

This solution shows a substance decaying at a rate k = 0.3 starting with 12 units of substance y.

However, the solution is *shifted* (*horizontally*) by 4 units of time.

Solution of Linear Growth and Decay Models Mathematical Modeling Murder Investigation Linear Differential Equation

Mathematical Modeling

A diagram of the Modeling Process

Newton's Law of Cooling:

- After a murder (or death by other causes), the forensic scientist takes the temperature of the body
- Later the temperature of the body is taken again to find the rate at which the body is cooling
- Two (or more) data points are used to extrapolate back to when the murder occurred
- This property is known as **Newton's Law of Cooling**

Newton's Law of Cooling

Newton's Law of Cooling states that the rate of change in temperature of a cooling body is proportional to the difference between the temperature of the body and the surrounding environmental temperature

• If T(t) is the temperature of the body, then it satisfies the differential equation

$$\frac{dT}{dt} = -k(T(t) - T_e) \quad \text{with} \quad T(0) = T_0$$

- The parameter k is dependent on the specific properties of the particular object (body in this case)
- \bullet T_e is the environmental temperature
- T_0 is the initial temperature of the object

Ł

Murder Example

- Suppose that a murder victim is found at 8:30 am
- The temperature of the body at that time is 30°C
- Assume that the room in which the murder victim lay was a constant 22°C
- Suppose that an hour later the temperature of the body is 28°C
- Normal temperature of a human body when it is alive is 37°C
- Use this information to determine the approximate time that the murder occurred

Solution: From the model for Newton's Law of Cooling and the information that is given, if we set t = 0 to be 8:30 am, then we solve the initial value problem

$$\frac{dT}{dt} = -k(T(t) - 22) \quad \text{with} \quad T(0) = 30$$

- Make a change of variables z(t) = T(t) 22
- Then z'(t) = T'(t), so the differential equation above becomes

$$\frac{dz}{dt} = -kz(t)$$
, with $z(0) = T(0) - 22 = 8$

- This is the radioactive decay problem that we solved
- The solution is

$$z(t) = 8 e^{-kt}$$

Solution (cont): From the solution $z(t) = 8e^{-kt}$, we have

$$z(t) = T(t) - 22$$
, so $T(t) = z(t) + 22$
 $T(t) = 22 + 8e^{-kt}$

• One hour later the body temperature is 28°C

$$T(1) = 28 = 22 + 8e^{-k}$$

Solving

$$6 = 8e^{-k}$$
 or $e^k = \frac{4}{3}$

• Thus, $k = \ln\left(\frac{4}{3}\right) = 0.2877$

Solution (cont): It only remains to find out when the murder occurred

• At the time of death, t_d , the body temperature is 37°C

$$T(t_d) = 37 = 22 + 8e^{-kt_d}$$

• Thus,

$$8e^{-kt_d} = 37 - 22 = 15$$
 or $e^{-kt_d} = \frac{15}{8} = 1.875$

• This gives $-kt_d = \ln(1.875)$ or

$$t_d = -\frac{\ln(1.875)}{k} = -2.19$$

• The murder occurred about 2 hours 11 minutes before the body was found, which places the time of death around 6:19 am

Graph of Body Temperature over time

Solution of General Linear Model

Solution of General Linear Model: Consider the Linear Model

$$\frac{dy}{dt} = ay + b$$
 with $y(t_0) = y_0$

Rewrite equation as

$$\frac{dy}{dt} = a\left(y + \frac{b}{a}\right)$$

Make the substitution $z(t) = y(t) + \frac{b}{a}$, so $\frac{dz}{dt} = \frac{dy}{dt}$ and $z(t_0) = y_0 + \frac{b}{a}$

It follows that

$$\frac{dz}{dt} = az$$
 with $z(t_0) = y_0 + \frac{b}{a}$

Solution of General Linear Model

The *linear growth model* given by

$$\frac{dz}{dt} = az$$
 with $z(t_0) = y_0 + \frac{b}{a}$,

has been solved by our previous method.

The solution is:

$$z(t) = \left(y_0 + \frac{b}{a}\right)e^{a(t-t_0)} = y(t) + \frac{b}{a}.$$

It follows that the solution, y(t) is

$$y(t) = \left(y_0 + \frac{b}{a}\right) e^{a(t-t_0)} - \frac{b}{a}.$$

Solution of General Linear Model

The linear differential equation satisfies:

$$\frac{dy}{dt} = ay + b = a\left(y + \frac{b}{a}\right)$$

Method (Solution of General Linear Differential Equation)

Consider the linear differential equation

$$\frac{dy}{dt} = a\left(y + \frac{b}{a}\right)$$
 with $y(t_0) = y_0$.

With the substitution $z(t) = y(t) + \frac{b}{a}$, we obtain the solution:

$$y(t) = \left(y_0 + \frac{b}{a}\right)e^{a(t-t_0)} - \frac{b}{a}.$$

This method produces a *vertical shift* of the solution.

J

Example of Linear Model

Example of Linear Model Consider the Linear Model

$$\frac{dy}{dt} = 5 - 0.2y \qquad \text{with} \qquad y(3) = 7$$

Rewrite equation as

$$\frac{dy}{dt} = -0.2(y - 25)$$

Make the substitution z(t) = y(t) - 25, so $\frac{dz}{dt} = \frac{dy}{dt}$ and z(3) = -18

$$\frac{dz}{dt} = -0.2z \qquad \text{with} \qquad z(3) = -18$$

Example of Linear Model

Example of Linear Model The substituted model is

$$\frac{dz}{dt} = -0.2z \qquad \text{with} \qquad z(3) = -18$$

Thus,

$$z(t) = -18e^{-0.2(t-3)} = y(t) - 25$$

The solution is

$$y(t) = 25 - 18e^{-0.2(t-3)}$$

Example of Linear Model

The linear differential equation was transformed into the IVP:

$$\frac{dy}{dt} = -0.2(y - 25),$$
 with $y(3) = 7$

The graph is given by

Introduction to MatLab

How do we make the previous graph?

MatLab is a powerful software for mathematics, engineering, and the sciences

- MatLab stands for Matrix Laboratory
- Designed for easy managing of vectors, matrices, and graphics
- Valuable subroutines and packages for specialty applications
- It is a necessary tool for anyone in Applied Mathematics
- Introduction to MatLab

Autonomous Differential Equation

The general first order differential equation satisfies

$$\frac{dy}{dt} = f(t, y).$$

A very important set of DEs that we study are called **Autonomous Differential Equations**

Definition (Autonomous Differential Equation)

A first order **autonomous** differential equation has the form

$$\frac{dy}{dt} = f(y).$$

The function, f, depends only on the dependent variable.

Qualitative Behavior of Differential Equations

The first step of any qualitative analysis is finding equilibrium solutions

Definition (Equilibrium Solutions)

Consider autonomous DE

$$\frac{dy}{dt} = f(y).$$

If y(t) = c is a constant solution or **equilibrium solution** to this DE, then $\frac{dy}{dt} = 0$. Therefore the constant c is a solution of the algebraic equation

$$f(y) = 0.$$

Equilibrium solutions are also referred to as fixed points, stationary points, or critical points.

Classification of Equilibria

There are a variety of local behaviors near an equilibrium, y_e

- An asymptotically stable equilibrium, often referred to as an attractor or sink has any nearby solution approach y_e as $t \to \infty$
- 2 An unstable equilibrium, often referred to as a repeller or **source** has any nearby solution leave a region about y_e as $t \to \infty$
- **a** A **neutrally stable equilibrium** has any solution stay nearby the equilibrium, but not approach the equilibrium y_e as $t \to \infty$
- A semi-stable equilibrium (in 1D) has solutions on one side of y_e approach y_e as $t \to \infty$, while solutions on the other side of y_e diverge away from y_e

Taylor's Theorem

Let y_e be an **equilibrium solution** of the DE

$$\frac{dy}{dt} = f(y),$$

so $f(y_e) = 0$.

Theorem (Taylor Series)

If for a range about y_e , the function, f, has infinitely many derivatives at y_e , then f(y) satisfies the **Taylor Series**

$$f(y) = f(y_e) + f'(y_e)(y - y_e) + \frac{f''(y_e)}{2!}(y - y_e)^2 + \dots$$

Since $f(y_e) = 0$, then the dominate term near y_e is the linear term $f'(y_e)(y - y_e)$.

Linearization

The next step is finding the **local behavior** near each of the **equilibrium solutions** of the DE

$$\frac{dy}{dt} = f(y).$$

Theorem (Linearization about an Equilibrium Point)

Let y_e be an equilibrium point of the DE above and assume that f has a continuous derivative near y_e .

- If $f'(y_e) < 0$, then y_e is an asymptotically stable equilibrium.
- If $f'(y_e) > 0$, then y_e is an unstable equilibrium.
- If $f'(y_e) = 0$, then more information is needed to classify y_e .

Example: Logistic Growth Model

Consider the logistic growth equation:

$$\frac{dP}{dt} = f(P) = 0.05P \left(1 - \frac{P}{2000}\right)$$

- Equilibria satisfy $f(P_e) = 0$, so
 - $P_e = 0$, the extinction equilibrium
 - $P_e = 2000$, the carrying capacity
- It is easy to compute $f'(P) = 0.05 \frac{0.1P}{2000}$
- Since f'(0) = 0.05 > 0, $P_e = 0$ is an unstable equilibrium or repeller
- Since f'(2000) = -0.05 < 0, $P_e = 2000$ is a stable equilibrium or attractor

Geometric Local Analysis: Equilibria are $P_e = 0$ and $P_e = 2000$

- The graph of f(P) gives more information
- To the left of $P_e = 0$, f(P) < 0
 - Since $\frac{dP}{dt} = f(P) < 0$, P(t) is decreasing
 - Note that this region is outside the region of biological significance
- For 0 < P < 2000, f(P) > 0
 - Since $\frac{dP}{dt} = f(P) > 0$, P(t) is increasing
 - Population monotonically growing in this area
- For P > 2000, f(P) < 0
 - Since $\frac{dP}{dt} = f(P) < 0$, P(t) is decreasing
 - Population monotonically decreasing in this region

Phase Portrait

- Use the above information to draw a **Phase Portrait** of the behavior of this differential equation along the *P*-axis
- The behavior of the differential equation is denoted by arrows along the *P*-axis
 - When f(P) < 0, P(t) is decreasing and we draw an **arrow** to the left
 - When f(P) > 0, P(t) is increasing and we draw an **arrow** to the right

Equilibria

- A **solid dot** represents an equilibrium that solutions approach or **stable equilibrium**
- An **open dot** represents an equilibrium that solutions go away from or **unstable equilibrium**

Phase Portrait: Consists of *P*-axis, arrows, and equilibria.

Diagram of Solutions for Logistic Growth Model

Summary of Qualitative Analysis

- Graph shows solutions either moving away from the equilibrium at $P_e = 0$ or moving toward $P_e = 2000$
- Solutions are increasing most rapidly where f(P) is at a maximum
- Phase portrait shows direction of flow of the solutions without solving the differential equation
- \bullet Solutions cannot cross in the tP-plane
- Phase Portrait analysis
 - Behavior of a scalar DE found by just graphing function
 - Equilibria are zeros of function
 - Direction of flow/arrows from sign of function
 - Stability of equilibria from whether arrows point toward or away from the equilibria

Example: Sine Function

Example: Sine Function

Consider the differential equation:

$$\frac{dx}{dt} = 2\sin(\pi x)$$

- Find all equilibria
- Determine the stability of the equilibria
- Sketch the phase portrait
- Show typical solutions

Example: Sine Function

For the sine function below:

$$\frac{dx}{dt} = 2\sin(\pi x)$$

• The equilibria satisfy

$$2\sin(\pi x_e) = 0$$

- Thus, $x_e = n$, where n is any integer
- The sine function passes from negative to positive through $x_e = 0$, so solutions move away from this equilibrium
- The sine function passes from positive to negative through $x_e = 1$, so solutions move toward this equilibrium
- From the function behavior near equilibria
 - All equilibria with $x_e = 2n$ (even integer) are **unstable**
 - All equilibria with $x_e = 2n + 1$ (odd integer) are **stable**

Example: Sine Function

Phase Portrait: Since $2 \sin(\pi x)$ alternates sign between integers, the phase portrait follows below:

Diagram of Solutions for Sine Model

Left Snail Model: Introduction

- The shell of a snail exhibits **chirality**, left-handed (sinistral) or right-handed (dextral) coil relative to the central axis
- The Indian conch shell, *Turbinella pyrum*, is primarily a right-handed gastropod [1]
- The left-handed shells are "exceedingly rare"
- The Indians view the rare shells as very holy
 - The Hindu god "Vishnu, in the form of his most celebrated avatar, Krishna, blows this sacred conch shell to call the army of Arjuna into battle"
- So why does nature favor snails with one particular handedness?
- Gould notes that the vast majority of snails grow the dextral form.

- Clifford Henry Taubes [2] gives a simple mathematical model to predict the bias of either the dextral or sinistral forms for a given species
 - Assume that the probability of a dextral snail breeding with a sinistral snail is proportional to the product of the number of dextral snails times sinistral snails
 - Assume that two sinistral snails always produce a sinistral snail and two dextral snails produce a dextral snail
 - Assume that a dextral-sinistral pair produce dextral and sinistral offspring with equal probability
- By the first assumption, a dextral snail is twice as likely to choose a dextral snail than a sinistral snail
- Could use real experimental verification of the assumptions

Left Snail Model

Taubes Snail Model

- Let p(t) be the probability that a snail is dextral
- A model that qualitatively exhibits the behavior described on previous slide:

$$\frac{dp}{dt} = \alpha p(1-p)\left(p - \frac{1}{2}\right), \qquad 0 \le p \le 1,$$

where α is some positive constant

- What is the behavior of this differential equation?
- What does its solutions predict about the chirality of populations of snails?

Left Snail Model

Taubes Snail Model

- This differential equation is not easy to solve exactly
- Qualitative analysis techniques for this differential equation are relatively easily to show why snails are likely to be in either the dextral or sinistral forms
- The snail model:

$$\frac{dp}{dt} = f(p) = \alpha p(1-p)\left(p - \frac{1}{2}\right), \qquad 0 \le p \le 1,$$

- Equilibria are $p_e = 0, \frac{1}{2}, 1$
- f(p) < 0 for 0 , so solutions decrease
- f(p) > 0 for $\frac{1}{2} , so solutions increase$
- The equilibrium at $p_e = \frac{1}{2}$ is unstable
- The equilibria at $p_e = 0$ and 1 are **stable**

Left Snail Model

Phase Portrait:
$$\frac{dp}{dt} = \alpha p(1-p)\left(p-\frac{1}{2}\right)$$

Diagram of Solutions for Snail Model

Snail Model - Summary

- Figures show the solutions tend toward one of the **stable** equilibria, $p_e = 0$ or 1
- When the solution tends toward $p_e = 0$, then the probability of a dextral snail being found drops to zero, so the population of snails all have the sinistral form
- When the solution tends toward $p_e = 1$, then the population of snails virtually all have the dextral form
- This is what is observed in nature suggesting that this model exhibits the behavior of the evolution of snails
- This does not mean that the model is a good model!
- It simply means that the model exhibits the basic behavior observed experimentally from the biological experiments

Thick-Billed Parrot: Rhynchopsitta pachyrhycha

Thick-Billed Parrot: Rhynchopsitta pachyrhycha

- A gregarious montane bird that feeds largely on conifer seeds, using its large beak to break open pine cones for the seeds
- These birds used to fly in huge flocks in the mountainous regions of Mexico and Southwestern U. S.
- Largely because of habitat loss, these birds have lost much of their original range and have dropped to only about 1500 breeding pairs in a few large colonies in the mountains of Mexico
- The pressures to log their habitat puts this population at extreme risk for extinction

Thick-Billed Parrot: Rhynchopsitta pachyrhycha

- The populations of these birds appear to exhibit a property known in ecology as the **Allee effect**
- These parrots congregate in large social groups for almost all of their activities
- The large group allows the birds many more eyes to watch out for predators
- When the population drops below a certain number, then these birds become easy targets for predators, primarily hawks, which adversely affects their ability to sustain a breeding colony

Allee Effect:

• Suppose that a population study on thick-billed parrots in a particular region finds that the population, N(t), of the parrots satisfies the differential equation:

$$\frac{dN}{dt} = N\left(r - a(N - b)^2\right),\,$$

where r = 0.04, $a = 10^{-8}$, and b = 2200

- Find the equilibria for this differential equation
- Determine the stability of the equilibria
- Draw a phase portrait for the behavior of this model
- Describe what happens to various starting populations of the parrots as predicted by this model

Equilibria:

• Set the right side of the differential equation equal to zero:

$$N_e \left(r - a(N_e - b)^2 \right) = 0$$

- One solution is the **trivial** or **extinction** equilibrium, $N_{\rm o}=0$
- When $(r a(N_e b)^2) = 0$, then

$$(N_e - b)^2 = \frac{r}{a}$$
 or $N_e = b \pm \sqrt{\frac{r}{a}}$

- Three distinct equilibria unless r=0 or $b=\sqrt{r/a}$
- With the parameters r = 0.04, $a = 10^{-8}$, and b = 2200, the equilibria are

$$N_e = 0$$

$$N_e = 0$$
 $N_e = 200$

Phase Portrait: Graph of right hand side of differential equation showing equilibria and their stability

Solutions: For

$$\frac{dN}{dt} = N\left(r - a(N - b)^2\right)$$

Interpretation: Model of Allee Effect

- From the phase portrait, the equilibria at 4200 and 0 are stable
- The threshold equilibrium at 200 is unstable
 - If the population is above 200, it approaches the **carrying capacity** of this region with the stable population of 4200
 - If the population falls below 200, the model predicts extinction, $N_e = 0$
- This agrees with the description for these social birds, which require a critical number of birds to avoid predation
- Below this critical number, the predation increases above reproduction, and the population of parrots goes to extinction
- If the parrot population is larger than 4200, then their numbers will be reduced by starvation (and predation) to the carrying capacity, $N_e = 4200$

Maple Commands for Direction Fields

- \bullet with (DE tools):
- $de := diff(P(t), t) = 0.05 \cdot P(t) \cdot \left(1 \frac{1}{2000}P(t)\right);$
- DEplot(de, P(t), t = 0..100, P = 0..2500,[[P(0) = 0], [P(0) = 100], [P(0) = 2000], [P(0) = 2500]], color = blue, linecolor = t);

