## Discrete Choice and Count Models

## Antonio Jurlina

**Problem 1.** Recall that the choice probability under the nested logit model takes the form,

$$P_{ij} = P_{iB_k} \times P_{ij|B_k}$$

where  $P_{iB_k}$  denotes the probability of person i choosing nest k

$$P_{iB_k} = \frac{e^{W_{ik} + \lambda_k \Phi_{ik}}}{\sum_{l=1}^K e^{W_{il} + \lambda_l \Phi_{il}}}$$

where the *inclusive value* takes the form

$$\Phi_{ik} = \ln \sum_{m \in B_k} e^{\frac{Y_{im}}{\lambda_k}}$$

and  $P_{ij|B_k}$  denotes the probability of person i choosing alternative j conditioned on choosing nest k

$$P_{ij|B_k} = \frac{e^{\frac{Y_{ij}}{\lambda_k}}}{\sum_{m \in B_k} e^{\frac{Y_{im}}{\lambda_k}}}$$

a) Here, I use algebra to demonstrate that the nested logit model reduces to the multinomial logit model if  $\lambda_k = 1$  for all k - the alternatives within every nest are independent of each other. We start with the nested logit choice probability:

$$\begin{split} P_{ij} &= P_{iB_k} \times P_{ij|B_k} \\ P_{ij} &= \frac{e^{W_{ik} + \lambda_k \Phi_{ik}}}{\sum_{l=1}^K e^{W_{il} + \lambda_l \Phi_{il}}} \times \frac{e^{\frac{Y_{ij}}{\lambda_k}}}{\sum_{m \epsilon B_k} e^{\frac{Y_{im}}{\lambda_k}}} \\ P_{ij} &= \frac{e^{W_{ik} + \lambda_k ln \sum_{m \epsilon B_k} e^{\frac{Y_{im}}{\lambda_k}}}}{\sum_{l=1}^K e^{W_{il} + \lambda_l ln \sum_{m \epsilon B_k} e^{\frac{Y_{im}}{\lambda_k}}}} \times \frac{e^{\frac{Y_{ij}}{\lambda_k}}}{\sum_{m \epsilon B_k} e^{\frac{Y_{im}}{\lambda_k}}} \end{split}$$

Note:  $e^{x+cln(b)} = e^x e^{cln(b)} = e^x e^{lnb^c} = e^x b^c$ 

$$P_{ij} = \frac{e^{W_{ik}} \left[ \sum_{m \in B_k} e^{\frac{Y_{im}}{\lambda_k}} \right]^{\lambda_k}}{\sum_{l=1}^k e^{W_{il}} \left[ \sum_{m \in B_k} e^{\frac{Y_{im}}{\lambda_l}} \right]^{\lambda_l}} \times \frac{e^{\frac{Y_{ij}}{\lambda_k}}}{\sum_{m \in B_k} e^{\frac{Y_{im}}{\lambda_k}}} \times \frac{e^{\frac{W_{ik}}{\lambda_k}}}{e^{\frac{W_{ik}}{\lambda_k}}}$$

$$P_{ij} = \frac{\left[\sum_{m \in B_k} e^{\frac{W_{ik} + Y_{im}}{\lambda_k}}\right]^{\lambda_k}}{\sum_{l=1}^k \left[\sum_{m \in B_k} e^{\frac{W_{il} + Y_{im}}{\lambda_l}}\right]^{\lambda_l}} \times \frac{e^{\frac{W_{ik} + Y_{ij}}{\lambda_k}}}{\sum_{m \in B_k} e^{\frac{W_{ik} + Y_{im}}{\lambda_k}}}$$

Note:  $W_{ik} + Y_{ij} = V_{ik}$ 

$$P_{ij} = \frac{\left[\sum_{m \in B_k} e^{\frac{V_{im}}{\lambda_k}}\right]^{\lambda_k}}{\sum_{l=1}^{k} \left[\sum_{m \in B_k} e^{\frac{V_{im}}{\lambda_l}}\right]^{\lambda_l}} \times \frac{e^{\frac{V_{ik}}{\lambda_k}}}{\sum_{m \in B_k} e^{\frac{V_{im}}{\lambda_k}}}$$

$$P_{ij} = \frac{e^{\frac{V_{ik}}{\lambda_k}} \left[\sum_{m \in B_k} e^{\frac{V_{im}}{\lambda_k}}\right]^{\lambda_k - 1}}{\sum_{l=1}^{k} \left[\sum_{m \in B_k} e^{\frac{V_{im}}{\lambda_l}}\right]^{\lambda_l}}$$

If we set  $\lambda_k = 1$ , we get

$$P_{im} = \frac{e^{V_{ik}}}{\sum_{m} e^{V_{im}}}$$

which is the choice probability for the multinomial logit.

b) Then, I show that the nested logit model also reduces to the multinomial logit model if all the nests  $B_k$  ( $\forall k$ ) are singletons, i.e., each choice alternative is contained in its own nest.



Figure 1: Reduction to singleton nests

Consider a discrete choice model in which each nest contains one choice (Figure 1). This means that when looking at  $P_{ij}$  as derived in part a), we can see that the within-nest summation,  $\sum_{m \in B_k}$ , is actually only summing over one variable, rendering the summation symbol unnecessary. That is,

$$P_{ij} = \frac{e^{\frac{V_{ik}}{\lambda_k}} \left[ \sum_{m \in B_k} e^{\frac{V_{im}}{\lambda_k}} \right]^{\lambda_k - 1}}{\sum_{l=1}^k \left[ \sum_{m \in B_k} e^{\frac{V_{im}}{\lambda_l}} \right]^{\lambda_l}}$$

reduces to

$$P_{ij} = \frac{e^{\frac{V_{ik}}{\lambda_k}} \left[ e^{\frac{V_{im}}{\lambda_k}} \right]^{\lambda_k - 1}}{\sum_{l=1}^k \left[ e^{\frac{V_{il}}{\lambda_l}} \right]^{\lambda_l}}$$

$$P_{ij} = \frac{e^{\frac{V_{ik}}{\lambda_k}} \left[ e^{\frac{V_{ik}\lambda_k - V_{ik}}{\lambda_k}} \right]}{\sum_{l=1}^k e^{V_{il}}}$$

$$P_{ij} = \frac{e^{\frac{V_{ik}}{\lambda_k}} e^{V_{ik}} e^{-\frac{V_{ik}}{\lambda_k}}}{\sum_{l=1}^k e^{V_{il}}}$$

$$P_{ik} = \frac{e^{V_{ik}}}{\sum_{l=1}^k e^{V_{il}}}$$

which is the choice probability for the multinomial logit.

**Problem 2.** The file **count.dta**, which is taken from Gurmu (1997), contains data for 485 household heads who may or may not have visited a doctor during a certain period of time. The variables in the model are:

Table 1: Estimates

|        | Poisson   | NB1      | NB2       |
|--------|-----------|----------|-----------|
| nkids  | -0.176*** | -0.108** | -0.171*** |
|        | (0.032)   | (0.050)  | (0.058)   |
| access | 0.937***  | 0.537    | 0.420     |
|        | (0.193)   | (0.332)  | (0.373)   |
| status | 0.290***  | 0.264*** | 0.315***  |
|        | (0.018)   | (0.033)  | (0.052)   |
| cons   | 0.375***  | 0.417**  | 0.561***  |
|        | (0.110)   | (0.186)  | (0.212)   |

Table 2: Marginal Effects

|        | Poisson   | NB1      | NB2       |
|--------|-----------|----------|-----------|
| nkids  | -0.283*** | -0.174** | -0.278*** |
|        | (0.052)   | (0.082)  | (0.100)   |
| access | 1.509***  | 0.865    | 0.685     |
|        | (0.315)   | (0.538)  | (0.608)   |
| status | 0.467***  | 0.426*** | 0.515***  |
|        | (0.034)   | (0.061)  | (0.112)   |

Table 3: Overdispersion Test Results

| value | std. error              | statistic                             | distribution                                                         | p. value                                                                                                                                     |
|-------|-------------------------|---------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 6.956 | -                       | -                                     | -                                                                    | -                                                                                                                                            |
| 2.175 | 0.597                   | 3.64                                  | Student's t                                                          | 0.000                                                                                                                                        |
| 3.088 | 0.404                   | 601.24                                | Chi-square                                                           | 0.000                                                                                                                                        |
| 1.810 | 0.201                   | 599.61                                | Chi-square                                                           | 0.000                                                                                                                                        |
|       | 6.956<br>2.175<br>3.088 | 6.956 -<br>2.175 0.597<br>3.088 0.404 | 6.956     -       2.175     0.597       3.088     0.404       601.24 | 6.956       -       -       -         2.175       0.597       3.64       Student's t         3.088       0.404       601.24       Chi-square |

```
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                               datasets methods
                                                                    base
##
## other attached packages:
## [1] knitr_1.31
                        forcats_0.5.0
                                        stringr_1.4.0
                                                         dplyr_1.0.3
## [5] purrr_0.3.4
                        readr_1.4.0
                                        tidyr_1.1.2
                                                         tibble_3.0.5
## [9] ggplot2_3.3.3
                        tidyverse_1.3.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.6
                          highr_0.8
                                            cellranger_1.1.0 pillar_1.4.7
## [5] compiler_4.0.3
                          dbplyr_2.0.0
                                            tools 4.0.3
                                                               digest 0.6.27
## [9] lubridate_1.7.9.2 jsonlite_1.7.2
                                            evaluate_0.14
                                                               lifecycle_1.0.0
## [13] gtable 0.3.0
                          pkgconfig_2.0.3
                                            rlang 0.4.10
                                                               reprex 0.3.0
## [17] cli 2.2.0
                          rstudioapi_0.13
                                            DBI 1.1.1
                                                               yaml_2.2.1
## [21] haven 2.3.1
                          xfun 0.20
                                            withr 2.4.1
                                                               xml2 1.3.2
## [25] httr_1.4.2
                          fs_{1.5.0}
                                            hms_1.0.0
                                                               generics_0.1.0
## [29] vctrs_0.3.6
                          grid_4.0.3
                                            tidyselect_1.1.0
                                                              glue_1.4.2
## [33] R6_2.5.0
                          fansi_0.4.2
                                                               rmarkdown_2.6
                                            readxl_1.3.1
## [37] modelr_0.1.8
                                            backports_1.2.1
                                                               scales 1.1.1
                          magrittr_2.0.1
                          htmltools_0.5.1.1 rvest_0.3.6
## [41] ellipsis_0.3.1
                                                               assertthat_0.2.1
## [45] colorspace_2.0-0 stringi_1.5.3
                                            munsell_0.5.0
                                                               broom_0.7.5
## [49] crayon_1.4.1
```