Test di Calcolo Numerico

Ingegneria Elettronica, Informatica, Nucleare... 26/07/2011

\mathbf{C}	OGNOME		NOM	E			
MATRICOLA							
RISPOSTE							
1)							
2)							
3)							
4)							
5)							

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Elettronica, Informatica, Nucleare... 26/07/2011

- 1) Dire, giustificando le risposte, se le seguenti affermazioni sono vere o false.
 - a) $\rho(A) = 1 \Longrightarrow ||A||_1 > 1$;
 - b) $\rho(A) = 0 \Longrightarrow ||A||_2 = 0;$
 - c) $||A||_2 = 0 \Longrightarrow \rho(A) = 0$;
 - d) $\rho(A) < 1 \Longrightarrow \rho(A^{-1}) < 1 \text{ (se } A^{-1} \text{ esiste)}.$
- $\mathbf{2}$) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -3 & -5 \end{array}\right) .$$

3) Determinare il numero di radici reali dell'equazione

$$e^{-x^2} - x^2 + 2x - 1 = 0$$

indicando, per ciascuna di esse, un intervallo di separazione.

4) Risolvere, nel senso dei minimi quadrati, il sistema lineare

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

5) Qual è il grado di precisione della formula di quadratura

$$J_2(f) = f(1) + f(-1) - \frac{1}{6}f''(0)$$

che approssima l'integrale $\int_{-1}^{1} f(x)dx$?

SOLUZIONE

- 1) a) NON è vera $(\rho(I) = 1 = ||I||_1)$;
 - b) NON è vera (basta pensare ad A triangolare inferiore in senso stretto);
 - c) VERA (norma nulla implica $A = \mathbf{O}$ che ha raggio spettrale nullo);
 - d) NON è vera $(\rho(A) < 1$ implica tutti autovalori di modulo minore di 1 per cui gli autovalori di A^{-1} sono tutti di modulo maggiore di 1).
- 2) La fattorizzazione LR è data da

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} .$$

- 3) Da una semplice separazione grafica si ricava che l'equazione proposta ha due radici reali $\alpha_1 = 0$ e $\alpha_2 \in [1, 2]$.
- 4) Il sistema delle equazioni normali $A^TAx = A^Tb$ legato al sistema dato è

$$\left(\begin{array}{cc} 6 & 2 \\ 2 & 3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right) .$$

La soluzione è $x = \frac{1}{7}(5, -1)^T$.

5) La formula proposta risulta esatta per f(x) = 1 e f(x) = x ma non per $f(x) = x^2$ per cui il grado di precisione è uguale a 1.