PAKDD 2019: the 4th AutoML Challenge AutoML for Lifelong Machine Learning

Wei-Wei Tu, Hugo Jair Escalante, Ling Yue, Xiawei Guo, Isabelle Guyon, Daniel L. Silver, Evelyne Viegas, Yuqiang Chen, Wenyuan Dai, Qiang Yang

Schedule

14:10	~	14:25
14.10	, •	14.20

14:25 ~ 14:35

14:35 ~ 14:45

14:45 ~ 14:55

14:55 ~ 15:05

15:05 ~ 15:10

Overview and Award Ceremony

4th Place Solution Presentation

3rd Place Solution Presentation

2nd Place Solution Presentation

1st Place Solution Presentation

Photo Time

Machine Learning Applications

Challenges in Real World Applications

Solution: AutoML

The AutoML Challenges

Brief History of AutoML Challenges

Competition	Year	Lasts	Collocated Events	#Participants	Prizes	Providers & Sponsors
AutoML1	2015-2016	2 Years	NIPS, ICML, IJCNN	600+	30,000 USD	Microsoft and ChaLearn
AutoML2	2018	4 Months	PAKDD 2018	250+	10,000 USD	4Paradigm and ChaLearn
AutoML3	2018	3 Months	NeurIPS 2018	300+	15,000 USD	4Paradigm, Microsoft and ChaLearn
AutoML4 (AutoML3+)	2019	3 Months	PAKDD 2019	130+ Teams	6,500 USD	4Paradigm, ChaLearn, Microsoft and Amazon
AutoML5	2019	3 Months Ongoing!	KDD Cup 2019	~500 Teams (growing)	33,500 USD	4Paradigm, ChaLearn, Microsoft and Amazon
AutoML6 (AutoCV)	2019	Coming Soon			10,000 USD	ChaLearn, 4Paradigm and Google
AutoML7 (AutoDL)	2019	Coming Soon	NeurIPS 2019		15,000 USD	ChaLearn, 4Paradigm and Google

AutoML4 at PAKDD 2019

- A rematch of AutoML3 @ NeurIPS 2018
- AutoML challenged by:
 - Scalability. Data sets larger than ever will be considered (Up to 10M instances)
 - Concept drift. Dependency between instances, concept changing through time.
 - LifeLong setting. Evaluation of the lifelong capabilities of learning machines.

COMPARASION OF DIFFERENT STRATEGIES

An Overview

- Lasts 3 months
- About 130 teams, 27 teams qualified for the final ranking
- 550+ submissions!
- +50% more Time Budget than NeurIPS 2018
- Much Better Performance than Champion@NeurIPS

Great Improvement vs. Champion@NeurIPS!

Feedback Phase: PAKDD Top3 vs. Champion@NeurIPS

Winners!

Champion: DeepBlueAI

- Zhipeng Luo, Jianqiang Huang, Mingjian Chen
- DeepBlue Technology (Shanghai) Co., Ltd

• Second Place: ML Intelligence

- Mengjiao Bao, Hui Xue, Yihuan Mao, Yujing Wang
- Microsoft Research Asia, Beihang University

Third Place: Meta_Learners

- Zheng Xiong, Jiyan Jiang, Wenpeng Zhang
- Tsinghua University

Following Activities

KDD Cup 2019 AutoML Competition

AutoML Workshop @ ICML 2019

AutoML Special Issue at TPAMI

AutoDL Competition at NeurIPS 2019

6th ICML Workshop on Automated Machine Learning

Call for papers - Special Issue Automation in AI and Machine Learning

Help Automating Deep Learning

We're Hiring!

第四范式公众号

Let's begin!

PAKDD 2019 Challenge The 4th AutoML Challenge (AutoML3+): AutoML for Lifelong Machine Learning

LightGBM for Lifelong Machine Learning

Yikang Zheng¹, Chunhui Bao²

¹Beijing Institute of Technology, ²Sichuan University

Agenda

- Problem Overview
- Existing Approaches
- Data Preprocessing
- LightGBM Algorithm
- Experiments & Results
- Conclusion

Problem Overview

- Large datasets and varied feature types
- Drifting concepts [1]

getting away from the simpler i.i.d. cases, data distributions are changing relatively slowly over time.

Data stream

Real-world data arrives as streams/batches ordered in time.

- AutoML [2] system combined with Lifelong Machine Learning.
- Resource constraints

Effective algorithmic design under resource constraints

Existing Approaches

Neural Architecture Search (NAS) [3]

Merit: Automatically search and optimize the structures of neural networks.

Defect: Slow convergence speed and huge resource consumption.

Auto sklearn [4]

Automatically search and optimize the hyperparameters of models.

Data Preprocessing

There are four types of data. For different data types, we adopt different preprocessing methods.

1. Categorical Feature: an integer describing which category the instance belongs to.

preprocessing methods: Hash coding and frequency coding

Feature1	Feature2	•••	Feature1	Feature2
1 Male	Alabama		0.6	0.2
2 Female	Missouri	Frequency Encoding →	0.4	0.2
3 Male	Texas		0.6	0.4
4 Male	Hawaii		0.6	0.2
5 Female	Texas		0.4	0.4

2. Numerical Feature: a real value.

preprocessing methods: standardization

For a random variable X, standardization means converting X to its standardized random variable X^*

$$X^* = \frac{X - E(X)}{\sqrt{D(X)}}$$

Where E(X) denotes the mean value of X and D(X) denotes the variance of X.

3. Multi-value Categorical Feature: a set of integers, split by the comma.

preprocessing methods: Hash coding and frequency coding

4. Time Feature: an integer describing time information. preprocessing methods: Using second-order features

LightGBM Algorithm

LightGBM [5]

Gradient boosting decision tree (GBDT) combined with Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) is called LightGBM.

LightGBM = GBDT + GOSS + EFB

Merits:

High computational speed

Small memory consumption

High rate of Accuracy

Algorithm 1: Histogram-based Algorithm

Input: I: training data, d: max depth Input: m: feature dimension $nodeSet \leftarrow \{0\} \triangleright$ tree nodes in current level $rowSet \leftarrow \{\{0,1,2,...\}\} \triangleright$ data indices in tree nodes for i=1 to d do

```
for node in nodeSet do
```

usedRows $\leftarrow rowSet[node]$ for k = 1 to m do

 $H \leftarrow \text{new Histogram}()$

for *j* **in** usedRows **do**

bin $\leftarrow I$.f[k][j].bin

 $H[bin].y \leftarrow H[bin].y + I.y[j]$

 $H[bin].n \leftarrow H[bin].n + 1$

Find the best split on histogram H.

...

Update rowSet and nodeSet according to the best split points.

•••

Algorithm 2: Gradient-based One-Side Sampling

Input: I: training data, d: iterations

Input: a: sampling ratio of large gradient data

Input: *b*: sampling ratio of small gradient data

Input: loss: loss function, L: weak learner

models $\leftarrow \{\}$, fact $\leftarrow \frac{1-a}{b}$

 $topN \leftarrow a \times len(I)$, $randN \leftarrow b \times len(I)$

for i = 1 to d do

 $preds \leftarrow models.predict(I)$

 $g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}$

 $sorted \leftarrow GetSortedIndices(abs(g))$

 $topSet \leftarrow sorted[1:topN]$

 $randSet \leftarrow RandomPick(sorted[topN:len(I)],$

randN)

 $usedSet \leftarrow topSet + randSet$

w[randSet] \times = fact \triangleright Assign weight fact to the

small gradient data.

 $newModel \leftarrow L(I[usedSet], -g[usedSet],$

w[usedSet])

models.append(newModel)

Algorithm 3: Greedy Bundling

Output: bundles

```
Input: F: features, K: max conflict count Construct graph G searchOrder \leftarrow G.sortByDegree() bundles \leftarrow \{\}, bundlesConflict \leftarrow \{\} for i in searchOrder do

| needNew \leftarrow True | for j=1 to len(bundles) do | cnt \leftarrow ConflictCnt(bundles[j],F[i]) | if cnt + bundlesConflict[i] \leq K then | bundles[j].add(F[i]), needNew \leftarrow False | break | if needNew then | Add F[i] as a new bundle to bundles
```

Input: numData: number of data Input: F: One bundle of exclusive features

Algorithm 4: Merge Exclusive Features

 $binRanges \leftarrow \{0\}, totalBin \leftarrow 0$

for f in F do | totalBin += f.numBin

binRanges.append(totalBin)

 $newBin \leftarrow new Bin(numData)$

for i = 1 to numData do

newBin[i] $\leftarrow 0$ for j = 1 to len(F) do | if $F[j].bin[i] \neq 0$ then

 $\lfloor \text{newBin[i]} \leftarrow F[j].\text{bin[i]} + \text{binRanges[j]}$

Output: newBin, binRanges

Experiments & Results

Method	Α	В	С	D	E	Score
LightGBM	0.5262	0.3103	0.5115	0.4761	0.7357	0.5262

Dataset	Hyperparameters
A	{'bagging_fraction': 0.6429102033075881, 'bagging_freq': 1, 'boosting_type':
В	{'bagging_fraction': 0.6801121812229166, 'bagging_freq': 2, 'boosting_type': 'gbdt', 'feature_fraction': 0.5651806829109673, 'learning_rate': 0.016275184165815373, 'metric': 'auc', 'n_estimators': 600, 'num_leaves': 80, 'objective': 'binary', 'verbose': -1}
С	{'bagging_fraction': 0.5677632211211332, 'bagging_freq': 1, 'boosting_type': 'gbdt', 'feature_fraction': 0.6674443293907164, 'learning_rate': 0.014287195835157099, 'metric': 'auc', 'n_estimators': 650, 'num_leaves': 90, 'objective': 'binary', 'verbose': -1}
D	{'bagging_fraction': 0.6920539291952178, 'bagging_freq': 2, 'boosting_type': 'gbdt', 'feature_fraction': 0.5268466436777197, 'learning_rate': 0.016886243904186683, 'metric': 'auc', 'n_estimators': 600, 'num_leaves': 110, 'objective': 'binary', 'verbose': -1}
E	'bagging_fraction': 0.6558659725219756, 'bagging_freq': 3, 'boosting_type': 'gbdt', 'feature_fraction': 0.6058620454195228, 'learning_rate': 0.01436197593104331, 'metric': 'auc', 'n_estimators': 650, 'num_leaves': 110, 'objective': 'binary', 'verbose': -1

Conclusion

- LightGBM can effectively solve this problem.
- Second-order feature processing for time feature is effective for this problem.

References

- [1] P. B. Dongre and L. G. Malik, "A review on real time data stream classification and adapting to various concept drift scenarios," in *2014 IEEE International Advance Computing Conference (IACC)*, 2014, pp. 533-537.
- [2] J. Madrid, H. J. Escalante, E. Morales, W.-W. Tu, Y. Yu, L. Sun-Hosoya, et al., "Towards AutoML in the presence of Drift: first results," in Workshop AutoML 2018@ ICML/IJCAI-ECAI, 2018
- [3] B. Zoph and Q. V. Le, "Neural architecture search with reinforcement learning," arXiv preprint arXiv:1611.01578, 2016.
- [4] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, "Efficient and robust automated machine learning," in Advances in neural information processing systems, 2015, pp. 2962-2970.
- [5] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., "Lightgbm: A highly efficient gradient boosting decision tree," in Advances in Neural Information Processing Systems, 2017, pp. 3146-3154.

Thank you

A Boosting Tree Based AutoML System with Concept Drift Adaptation

Meta_Learners:

Zheng Xiong, Jiyan Jiang, Wenpeng Zhang

Advisor: Prof. Wenwu Zhu

Department of Computer Science, Tsinghua University, Beijing

Outline

- Problem Statement
- System Framework
- Automated Feature Engineering
- Concept Drift Adaptation
- Conclusion

Problem Statement

AutoML: the final submission of the feedback phase is blindly tested on 5 unseen new datasets without human intervention

Concept drift: data comes in stream with data distribution changing between batches

System Framework

- Use gradient boosting tree (GBT) as the classifier across different datasets
- Perform automated feature engineering to improve model performance
- Tackle concept drift by retraining and streaming co-encoding
- Optimize hyperparameters hierarchically to improve the efficiency and robustness of the system

System Framework

Automated Feature Engineering

• First-order feature engineering

Frequency encoding of categorical features

• High-order feature engineering

- Predefine a set of binary transformations based on prior knowledge
- Apply each type of transformation on the original feature set to generate new features in an expansion-reduction fashion

Automated Feature Engineering

High-order feature engineering

- Predefined binary transformations:
 - Numerical-numerical: +, -,×,÷
 - Categorical-numerical: num_mean_groupby_cat
 - Categorical-categorical: cat_cat_combine, cat_nunique_groupby_cat
 - Categorical-temporal: time_difference_groupby_cat
- Key steps in the expansion-reduction strategy:
 - **Pre-selection**: select features used for feature generation based on prior knowledge
 - **Feature generation**: generate new feature with all feasible pairs of the pre-selected features
 - **Post-selection**: select generated features based on the performance and feature importance of a coarsely trained GBT model

Concept Drift Adaptation

Concept drift in categorical features

- ➤ Many unseen new categories may appear in the test batch
- The frequency of existing categories may change significantly between batches

Concept Drift Adaptation

Different strategies for concept drift adaptation

- Data-based: retrain a new model with historical data
- Model-based: create an ensemble with models trained on previous batches

Concept Drift Adaptation

Our solution:

- Retrain a GBT model with the last N batches for each test batch
- Apply streaming co-encoding to achieve a consistent representation between training set and test set
- Strategies to improve space and time efficiency:
 - Data subsampling
 - Streaming statistics

Conclusion

- Propose a boosting tree based AutoML system with concept drift adaptation
- Design an efficient automated feature engineering strategy which significantly improves model performance
- Adapt to concept drift by retraining and streaming co-encoding
- Future work:
 - Explicit concept drift detection and adaptation
 - Generalization and scalability of automated feature engineering

Thank You!

AutoML Challenge @ PAKDD 2019 Team: ML Intelligence

Mengjiao Bao^{1,2}, Huixue¹, Yihuan Mao¹, Yujing Wang¹ Microsoft Research Asia¹, Beihang University²

Content

- Overview
- Key Challenge
- Pipeline
- Concept Drift
- Auto Part

Overview

Difficulties

- **Algorithm scalability:** large datasets(10^7)
- Varied feature types: continuous, binary, ordinal, categorical, multi-value categorical, temporal
- Concept drift: Distribution change over time
- **Lifelong setting:** Datasets chronologically -> 10 batches, test -> labels reveal.

Pipline

Auto Model Config

Performance

- 1.More Feature
- 2.More Data
- 3.More Parameter

Budget

1.Time Limit

2.RAM Limit

$$Estimate = len(Data) * (\alpha + \beta + \gamma) * len(Cat_{feature})$$

Auto Feature Selection

- Rank methods(for selection and beam search)
 - Naive feature importance generated by LightGBM
 - Bagging methods: 5-kflods Feature importance average / Bagging with different LightGBM models
 - Feature selection with null importance
- Drop methods
 - time accumulation LightGBM importance

Feature Encoding Methods for HD cat

AutoGBT	Hash encode	0.46	0.18	0.45	0.33	0.68
	Incremental encode	0.503	0.278	0.535	0.451	0.732
	Hash + incremental	0.506	0.277	0.505	0.450	0.729
Our	Hash encode	0.491	0.281	0.480	0.451	0.730
method						
	Count encode	0.513	0.328	0.484	0.569	0.737
	Encode based on	0.533	0.333	0.490	0.571	0.740
	first batch					
	Incremental	0.540	0.338	0.555	0.575	0.775
	(slide window)					

Auto hyper parameter tuning (fix Ir)

- a. Hyperband
- b. Tree of Parzen Estimators(implements by hyperopt)
- c. metis

	Α	В	С	D	Е
metis	0.812	0.666	0.848	0.780	0.885
TPE	0.808	0.669	0.884	0.784	0.883
Hand min	0.812	0.661	0.822	0.774	0.885
Had max	0.814	0.672	0.826	0.782	0.886

Handle Concept Drift Overview

Detection and Handle

Detection

handle

Detection and Handle

Algorithm 2 Concept Detection and Handle

```
Input: TrainSet D_{train}, TestSet D_{test}
 1: Set TrainSet D_{train} as positive, TestSet D_{test} as negative;
 2: Train a binary classifier by GBDT to split train and test.
 3: get the auc score in training procedure.
 4: Calculate the feature importance and train set auc score.
 5: if auc > 0.65, get the most n largest gain feature as F_{drift}.
 6: get concept drift feature set F_{drift}
 7: for f \in F_{drift}: do
       if f \notin F_{highorder}: then
          delete f from F_{drift}.
 9:
       end if
 10:
 11: end for
12:
13: return Out put F'_{drift}
```

Conclusion

https://github.com/Microsoft/nni

Solution to PAKDD Cup 2019

The 4th AutoML Challenge (3+)

DeepBlue Technology (Shanghai) Co., Ltd 深兰科技

Team members

Zhipeng Luo
DeepBlue Technology(Shanghai) Co., Ltd
Peking University

Jianqiang Huang
Peking University

Mingjian Chen
DeepBlue Technology(Shanghai) Co., Ltd
Peking University

PAKDD 2019 AutoML

1st place

NeurIPS 2018 AutoML (Phase 1)

1st place

CIKM Cup 2018

1st place

KDD Cup2018(Second 24- Hour Prediction Track)1st place

KDD Cup 2018(Last 10-Day Prediction Track) 1st place

WSDM Cup2019(Task 3,LB) 1st place

Shanghai BOT Big Data Application Competition 1st place

Daguan text Classification 1st place

CONTENTS

PART 01

Introduction

Challenge of this track

Direction 1: Class im-balance

The rate of positive against negative examples is 1 to 100

Direction 4: Concept drift

the data distribution is slowly changing over time.

Direction 2:

Various feature types

continuous binary categorical multi-value categorical temporal.

Direction 3: Lifelong setting

successive test batches chronologically ordered.

PART 02

Solution

1: Framework

2: Data Processing

3: Feature Engineering

4: Feature Selection

5: Modeling

6: Model Ensemble

O1 Framework

Data Processing

Duplicate data and constant data

Massive data analysis

leverage prior knowledge

Other strategies

such as random sampling for computational efficiency

Feature Engineering& Feature Selection

O4 Feature Engineering &

Generate Feature Iteration Selection

1:Base Model : LightGBM

2:Address class-imbalance issue

3:Address concept drift issue

- 06 - Address concept drift

1:Data merge

O7 Address concept drift

2:Anti concept drift feature

E.g. batch id, batch numerical drift, etc.

3:Feature Embedding

Train

DNN Embedding Data: Data: Data: Data:

Batch 3

Model Hyper-parameter Search

- Leverge some prior knowledge to reduce the search range of the parameters.
- Compromise between grid search and random search.

10 Modeling Ensemble

Model parameter diversity

Data diversity

Feature diversity

PART 03

Summary

O1 Summary

- extend to various feature types.
- data merge method
- pre-training feature embedding
- multiple down-sampling for model boosting
- time and space optimization

