Science Data

February 10, 2023 Process of data science

Dr. Roland Molontay

Schedule of the semester

	Monday midnight	Tuesday class	Friday class
W1 (02/06)			
W2 (02/13)		HW1 out	
W3 (02/20)			
W4 (02/27)	HW1 deadline	HW2 out	
W5 (03/06)	PROJECT PLAN		
W6 (03/13)	HW2 deadline	HW3 out	
W7 (03/20)			MIDTERM
SPRING BREAK		SPRING BREAK	SPRING BREAK
W8 (04/03)	HW3 deadline	HW4 out	GOOD FRIDAY
W9 (04/10)	MILESTONE 1		
W10 (04/17)	HW4 deadline		
W11 (04/24)			
W12 (05/01)	MILESTONE 2		
W13 (05/08)			
W14 (05/15)		FINAL	PROJECT presentations
W15 (05/22)		PROJECT presentations	

Hey!! Don't forget to...

Reminder

- Please refresh Python and download Jupyter Ipython notebook with Anaconda distribution
 - See the last slides of Lecture 01

Process for data mining / data science

- CRISP-DM: <u>CR</u>oss-<u>I</u>ndustry <u>S</u>tandard
 <u>P</u>rocess for <u>D</u>ata <u>M</u>ining
 - A technical standard with is own limitations but worth following
 - Back and forth effect
 - Cyclic

BU - Business understanding

What is the aim of the project?

What is its business relevance?

What is the research question?

How can it be translated to a data science question?

DU - Data understanding

What data do we have?

Can we collect more data?

What is the quality of the data?

What do the features mean?

Dataset

- Everything that carries information, and we would like to extract insights from
- In the simplest case the data is structured, i.e., it is like a table / data frame
 - Rows: records, observations, data points, instances
 - Columns: attributes, features
 - A record is described by the values of the attributes in its row
- The data can be inherently unstructured but in many cases we pursue to make it structured

Representation of data

- Rows: record, object, data point, observation, entity, representative, item
- Columns: attribute, feature, dimension
 - Regarding regression, also called: explanatory variable, independent variable
- Target variable/output (for supervised learning):
 - For classification problems: label, class
 - For regression problems: response variable, dependent variable

Attribute types

- Continuous: real-valued (in most cases it is also considered to be "continuous" if it can take countably infinitely many values)
 - E.g.: temperature, height, weight
- Discrete: can take finitely many vales (sometimes variables with countably infinitely many possible values also)
 - Usually represented with integer values or category names
 - E.g.: ZIP code, marital status, (quantity)
- Binary: a special discrete attribute possible values 0 and 1
 - Sometimes has asymmetric meaning: 0 may mean that something is not true, something is missing
 - Sometimes they can be found in sparse data matrices where the vast majority of the elements are 0
 - E.g.document-term matrices
 - Sparse data structures need special methods

Attribute types – another partition

- Categorical / nominal variables
 - E.g. gender, marital status, place of birth, got treatment?, is overweight?
 - Reasonable operations: frequencies, mode
- Ordinal variables
 - May seem to be categorial, but can be ordered in a quantitative manner
 - E.g. stages (inchoative, advanced), military ranks (admiral, captain, commander), letter grades
 - Reasonable operations: median (but average is not), percentile, rank-correlation
- Quantitative (numerical) variables
 - Interval variables
 - The numerical values show both the ordinal relationship and the extent of deviation
 - E.g.: temperature (°C, °F), IQ score
 - Reasonable operations: average, difference, variance, correlation
 - Ratio variables
 - They have all the properties of an interval variable, and also have a clear definition of 0.0 (none of that variable)
 - E.g.: temperature (°K), height, weight, pieces
 - Reasonable operations: any operations that are defined for real numbers

What to compute?

OK to compute	Nominal	Ordinal	Interval	Ratio
frequency distribution.	Yes	Yes	Yes	Yes
median and percentiles.	No	Yes	Yes	Yes
add or subtract.	No	No	Yes	Yes
mean, standard deviation	No	No	Yes	Yes
ratio,	No	No	No	Yes

Determine the type of the following attributes in two ways:

1: Continuous, discrete, binary? 2: Nominal, ordinal, quantitative (interval, ratio)?

- 1. Altitude
- 2. Total number of rooms in a hotel
- 3. Military ranks
- 4. Distance from the center of Heroes Square
- 5. International Standard Book Number (ISBN)
- 6. Degree: measurement of plain angle (between 0 and 360)

- 7. Degree of transparency: transparent, translucent, opaque
- 8. Cloakroom ticket numbers
- 9. Grades (from F to A+)
- 10. Medals (bronze, silver, gold)
- 11. Sex (male, female)
- 12. Age (in years)
- 13. pH (acidity or basicity of an aqueous solution)

Data exploration

- What are the important features? Are there any interesting relations or redundancy?
- Are there any apparent problems with the data that need action?
 - Scaling, missing data, outliers
- Are there patterns that can be recognized using data visualization?
- Methods:
 - Summary statistics / descriptive statistics
 - Simple data viszalization, plots

Summary statistics

- Purpose: to summarize the variables with numerical values
 - Easy to compute and informative
 - What are the typical values, how scattered are they, what are the frequencies?
 - They can be queried by a simple command in any programs
- Categorical variables: frequencies
- Numerical variables:
 - Percentiles: indicating the value below which a given percentage of observations in a group of observations (e.g. values in a column) falls, e.g. p-percentile denotes the x_p value below which p% of the observations may be found
 - Usually considered values: min, 25, 50, 75, max
 - Mean: arithmetical average of the values: $mean(x) = \bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$
 - Sensitive to outliers median is more robust
 - Median: the value separating the higher half from the lower half of a data sample
 - Similar to the 50-percentile but not the same

$$median(x) = \begin{cases} x_{r+1} & \text{if } m = 2r + 1\\ \frac{1}{2}(x_r + x_{r+1}) & \text{if } m = 2r \end{cases}$$

Values describing deviation

- Range: what is the range of the possible values: max min
- Sample variance:
 - Sensitive to outliers

$$S_X^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \overline{X})^2$$

- Standard deviation: root of the variance
- Average absolute deviation:

$$\frac{1}{m} \sum_{i=1}^{m} |X_i - \overline{X}|$$

Covariance and correlation

• Sample covariance between values of jth and kth columns (attributes)

$$q_{jk} = \frac{1}{m-1} \sum_{i=1}^{m} (X_{ij} - \overline{X_j})(X_{ik} - \overline{X_k})$$

- We can form a matrix: sample covariance matrix (symmetric)
- Sample correlation: $r_{jk} = \frac{q_{jk}}{s_j s_k}$
 - A sample correlation matrix can be formed
- Sensitive (not robust) against outliers
- Measure the strength of the linear relationship between variables

Scatterplot

- The objects correspond to points on the plane / in the space
- The coordinates of the points correspond to the values of two/three attributes of the object
- Beyond the (max) three dimensions the point can also have color/shape/size
 - So we can visualize 5-6 dimension all together
 - It is hard to interpret above 4 dimensions

Histogram

- Representation of the distribution of numerical data
- It is an estimate of the probability distribution of a continuous variable
 - Empirical distribution
- Binning the range of values: dividing the entire range of values into a series of intervals
- Counting how many values fall into each interval
 - A rectangle is erected over the bin with height proportional to the frequency

Two-dimensional histogram

• It estimates the joint distribution of two variables

Boxplot

- Another method to visualize distribution
 - Attributed to J. Tukey

DP – Data preparation

The process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for analytics.

We can estimate that 70% of resources (time, technology, personnel) used in the whole data science project are committed to DU + DP phases.

Data preparation

Values

Rows

Columns

Identifying and correcting errors

Imputing missing values

Remove duplicates

Detect outliers

Feature selection / dimension reduction

Introducing new features

Transforming features

Scaling attributes

Discretization

One-hotencoding

Common problems with values and rows

- Measurement errors
- Inconsistency (mile, m, km; Budapest, Bpest)
- Not plausible data
 - Everybody has a six-figure salary
 - Everybody gets an A+ from Data Science at AIT ©
- No header
- Missing apostrophe from text fields
- Missing data
- Duplicates (recurring rows)
 - Sometimes not completely identical, e.g. same person with more very similar addresses
- Outliers: point that is distant from other observations
 - Not a problem by itself, but may be

How can the problems be fixed?

- Measurement error: can't be fixed but can be excluded from data if it is detected
- Missing values (data imputation):
 - Not necessarily a problem (perhaps that attribute is not interpreted/defined for every row)
 - We can remove the entire row of the missing value (not a good solution if we have many missing values)
 - We introduce a new global constant, e.g. an "unknown" label
 - We substitute the missing value with the column average (global column average or average with a given label)
 - We impute the missing value with a smart guess based on a machine learning model
- Duplicates: to detect the (nearly) identical observations
- Outlier:
 - Detecting the outlier can be the aim of the project (e.g. freud detection)
 - Sometimes outliers should be excluded Sometimes outliers are organic part of the data and they should remain in the data

Data preparation

Values

Rows

Columns

Identifying and correcting errors

Imputing missing values

Remove duplicates

Detect outliers

Feature selection / dimension reduction

Introducing new features

Transforming features

Scaling attributes

Discretization

One-hotencoding

Reducing the number of attributes

Aim: to have fewer columns

Why?

- Achieve faster running time
- Need less storage capacity
- Easier to visualize
- The results are easier to interpret
- In high dimension most of the models perform poorly (due to curse of dimensionality)

How?

- Omit redundant columns
- Merging columns
- Introducing new (better) attributes and omitting the old ones
- Advanced dimension reduction methods (such as PCA)

Methods for reducing the dimensionality

- Finding redundant columns
 - E.g. Column A: price of the product, Column B: paid VAT
- Finding irrelevant columns
 - E.g. the phone number of a person regarding their creditworthiness (are you sure?)
- Automatic filtering
 - If the correlation of two columns is too high, we omit one of them
- Embedded methods
 - The used machine learning method chooses the relevant variables itself (later)
- Advanced dimension reduction methods (such as PCA)

Introducing new attributes

- Sometimes we don't necessarily want to reduce the number of attributes but we want better, more expressive attributes
- Sometimes domain knowledge is needed
- Examples:
 - To extract features from pixel series of images
 - Number of "on" pixels, average of the horizontal coordinates of the "on" pixels, variance of the vertical coordinates, correlation between the horizontal and vertical positions of "on" pixels
 - Combining attributes based on domain knowledge
 - Introducing density instead of volume and mass

Scaling attributes

- Feature scaling: sometimes it is necessary to standardize/normalize the range of independent variables (e.g. for visualization, for some machine learning algorithms)
 - Rescaling the range in [0, 1] (min-max normalization): $x' = \frac{x \min(x)}{\max(x) \min(x)}$
 - Affected by outliers
 - Useful when we don't know about the distribution
 - Standardization (zero-mean, unit-variance): $x' = \frac{x x}{S_x}$
 - Much less affected by outliers
 - Useful when the feature distribution is Normal

Other transformations – logarithmic transformation

- In some application we can take the logarithm of the attribute
 - Especially salary/income/wealth-related
 - It makes more sense to measure "percent" changes in wage rather than absolute changes
 - It is usually more normally distributed)
 - "Diminishing marginal utility"
- Other (bijective) mappings of the attributes might also be useful

$$egin{aligned} \log_b(MN) &= \log_b(M) + \log_b(N) \ \log_b\left(rac{M}{N}
ight) &= \log_b(M) - \log_b(N) \ \log_b(M^p) &= p \log_b(M) \end{aligned}$$

Discretization

- Goal: transferring continuous variables into discrete counterparts
- Why?
 - Some algorithms need discrete variables
 - We need to store less values, for some algorithms the running time is much faster
 - Sometimes a rougher scale is sufficient, e.g. high, medium, low values, the data could be more clear-out
- How to partition the data? What are the discretization cut points?
 - Divide the range of the continuous variable into intervals of the same length (equidistant division)
 - Dividing the range into intervals with the same number of observations (along quantile values) equal frequency
 - Dividing along quantile values creating groups with differing size, e.g. along quantiles 10, 30, 70, 90
 - If there are some natural cut points where the data is rare, it is reasonable to choose these cut points

From categorial to binary: one-hot-encoding

- If a nominal attribute has k
 possible values, it is replaced
 by k synthetic binary attributes
 (one attribute-per-value
 approach or one-hot encoding)
 - The *i*th being 1 if and only if the original value corresponds to the *i*th group

One Hot Encoding

id	color	
1	red	
2	blue	
3	green	
4	blue	

id	color_red	color_blue	color_green
1	1	0	0
2	0	1	0
3	0	0	1
4	0	1	0

M-Modeling

Finding the best performing model, fitting the parameters

Supervised / unsupervised learning

Supervised learning

- We have a training set where the value of the target variable is known
- Aim: based on the attributes predict the target when it is not known
- Example: classification, regression

Unsupervised learning

- The target (label) is not known for any records (latent labels)
- Aim: to associate useful labels to the records based on the attributes
- In many cases our aim is to gain better understanding of the data or visualize the data
- Example: clustering

Regression

- We try to predict continuous valued output based on the values of other variables (via supervised learning)
- Examples:

Explanatory (input) variables	Target (output)
Number of rooms, size, location (ZIP code),	Market value of a house
Movie budget, film genre, popularity of the actors (based on their IMDB pages)	Box office result of a movie
Major, admission point score, gender, age, GMAT scores,	GPA

 Challenges: finding the right explanatory variables, the most suitable functional form/modelling approach

Classification

- We try to predict discrete (sometimes binary) valued output based on the values of other variables (via supervised learning)
- It is also possible to do "classification via regression"
- Challenges: finding the right explanatory variables, the most suitable modeling approach, fitting the parameters of the model

Classification - examples

Input variables (features)	Target variable
Purchase history, age, gender	Should we send a targeted advertisement message to a customer? (0/1)
Number of "on" pixels, average of the horizontal coordinates of the "on" pixels, variance of the horizontal coordinates, correlation between the horizontal and vertical positions of "on" pixels, …	Handwritten digit recognition (0/1/2/3/4/5/6/7/8/9)
Salary, marital status, address, profession, qualification,	Is the customer creditworthy? (0/1)
Words/n-grams appearing in the e-mail, subject of the mail, sender, number of receivers,	Is the email spam? (0/1)
Age, gender, profession, qualification, contents liked on Facebook,	Psychological profiles/ temperaments (e.g.: sanguine, phlegmatic, choleric, and melancholic)

Fundamental task of regression

Let $X = (X_1, X_2, ..., X_p)$ be the feature vector and Y is the target variable.

Regression: we suppose that there is a relationship between X and Y, in general: $Y = f(X) + \epsilon$, where ϵ (the random error) is independent from X and has zero mean

Aim: giving prediction: $\hat{Y} = \hat{f}(X)$

In reality \hat{f} is sometimes considered to be a black-box, we are not interested in the functional form, but in giving accurate enough prediction for Y

Learning: On the labeled data of the training set we estimate the function f, minimizing the "prediction error" on the training set

Prediction: using \hat{f} for data that we have not seen before $\hat{Y} = \hat{f}(X)$

Fundamental task for classification

Let $X = (X_1, X_2, ..., X_p)$ be the feature vector and Y is the target variable.

For classification problems: $Y \in \{c_1, c_2, ..., c_k\}$

The real p(X,Y) joint distribution (background distribution) is not known

Aim: finding f such that P(Y = f(X)) is maximal.

Learning: On the labeled data of the training set (independent identically distributed sample from the p(X,Y)) we estimate the function f, minimizing the "classification error" on the training set

Generalization ability

- Purpose: to build a model that predicts the target variable well in general not just on the available data set → good generalization ability
- Dataset is divided into two (or later three) parts
- Cross validation: later
- To evaluate models, a numerical "goodness" notion is needed

Training and test set

Spliting the data set into two parts

- Training set: fitting the model (i.e. optimizing its parameters) on the training set in such a way that it has a good performance on the training set and has a good generalization ability
- Test set: we test the model performance on data that were not seen by the model before
 - We choose the model that has the best performance on the test set

Training Data

Test Data

E -Evaluation

 Evaluating the model. How does it perform? Is it good enough to achieve our goal?

D -Deployment

 Implementing the model, embedding it to the system. Communicating the results. Writing the report/research paper.

Requirements for successful data science projects

- Having domain knowledge or consulting with domain experts
- Big data (many observations)
 - Less likely to retrieve connections that is just in the data due to chance
 - (It can be computationally expensive!)
- Many features
 - Simple analytics bears with few features
- Clean data
 - Bad data encumber data analysis or leads to false results
 - GIGO: garbage in, garbage out

Requirements for successful data science projects II.

- Unbiased data
 - The data (the sample) should be representative to the population itself
 - BIBO: bias in, bias out
- The capacity of act
 - Sometimes the knowledge is discovered, but it will not go into action (high costs, too rigid system)
- Measurability of Return of Investment (ROI)
 - It defines the success of a project

Case study – customer churn detection in the telecommunication sector

- Churn: occurs when customers unsubscribed or cancel their service contract
- A telecommunication company approached our (imaginary) data science consulting company to predict which customers are at risk of leaving our business
 - Customer retention campaign targeted on at-risk customers
 - Offering coupons or discounts to those most likely to churn
 - 1. How would you formulate the task as a data science problem?
 - 2. Plan the analysis based on the CRISP-DM methodolgy!
 - 3. Do you think that the requirements of a successful data science project are met?

CHURN RATE PREDICTION WITH MACHINE LEARNING

Customer churn prediction

- BU
 - business objective is reducing customer churn by identifying potential churn candidates beforehand, and take proactive actions to make them stay
- DU
 - Personal data about the customers (age, address, ...)
 - Information about their subscription plan
 - Call/text/data logs (who?, when? how much? etc.)
- DP
 - Feature engineering, transforming features etc.

- M
 - Binary classification problem (supervised learning)
- Test the performance of the model. Is it good enough to deploy?
- D
- Design a retention campaign (probably with A/B testing)

What about the success requirements?

Acknowledgement

- András Benczúr, Róbert Pálovics, SZTAKI-AIT, DM1-2
- Krisztián Buza, MTA-BME, VISZJV68
- Bálint Daróczy, SZTAKI-BME, VISZAMA01
- Judit Csima, BME, VISZM185
- Gábor Horváth, Péter Antal, BME, VIMMD294, VIMIA313
- Lukács András, ELTE, MM1C1AB6E
- Tim Kraska, Brown University, CS195
- Dan Potter, Carsten Binnig, Eli Upfal, Brown University, CS1951A
- Erik Sudderth, Brown University, CS142
- Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau, Harvard University, CS109
- Rajan Patel, Stanford University, STAT202
- Andrew Ng, John Duchi, Stanford University, CS229

