1

Assignment 19

Mtech in AI Department Priya Bhatia AI20MTECH14015

Abstract

This document illustrates the concept of orthonormal basis.

Download the latex-tikz codes from

https://github.com/priya6971/matrix theory EE5609/tree/master/Assignment19

1 Problem

Let $\{u_1, u_2, ..., u_n\}$ be an orthonormal basis of C^n as column vectors. Let $M = \{u_1, u_2, ..., u_k\}$ and $N = \{u_{k+1}, u_{k+2}, ..., u_n\}$ and P be the diagonal $k \times k$ matrix with diagonal entries $\alpha_1, \alpha_2, ..., \alpha_k \in R$. Then which of the following is true?

- 1. Rank(**MPM***) = **k** whenever $\alpha_i \neq \alpha_j$, $1 \leq i$, $j \leq k$
- 2. Trace(**MPM***) = $\sum_{i=1}^{k} \alpha_i$
- 3. $\operatorname{Rank}(\mathbf{M}^*\mathbf{N}) = \min(k, n k)$
- 4. $\operatorname{Rank}(\mathbf{MM}^* + \mathbf{NN}^*) < n$

2 **DEFINITIONS**

Orthonormal Basis	$B = \{u_1, u_2,, u_n\}$ is the Orthonormal basis for C^n if it generates every vector C^n and the inner product $\langle u_i, u_j \rangle = 0$ if $i \neq j$. That is the vectors are mutually perpendicular and $\langle u_i, u_j \rangle = 1$ otherwise.
Trace	Trace of a square matrix A , denoted by $\mathbf{tr}(\mathbf{A})$ is defined to be the sum of elements on the main diagonal(from the upper left to lower right) of A Some useful properties of Trace: $\mathbf{tr}(\mathbf{AB}) = \mathbf{tr}(\mathbf{BA})$, where A is the $m \times n$ matrix and B is the $n \times m$ matrix
Basis Theorem	A nonempty subset of nonzero vectors in \mathbb{R}^n is called an orthogonal set if every pair of distinct vectors in the set is orthogonal. Any Orthogonal sets of vectors are automatically linearly independent and if A matrix columns are linearly independent, then it is invertible.

TABLE 1: Definitions

3 Solution

 $Rank(\mathbf{MPM}^*) = \mathbf{k}$

M and M^* vectors are linearly independent and thus it is invertible (Since the elementary matrices are invertible, such multiplication does not change the rank of a matrix)

 \implies Rank(**MPM***) = Rank(**P**)

Now **P** be the diagonal $k \times k$ matrix with diagonal entries $\alpha_1, \alpha_2, ..., \alpha_k \in R$. Rank(**P**) is not always k.

It can be less than k if any of the entries in $\alpha_1, \alpha_2, ..., \alpha_k$ is 0.

Thus, $Rank(MPM^*) \neq k$

Thus, the given statement is false

Trace(**MPM***) = $\sum_{i=1}^{k} \alpha_i$

Consider MP = A and $M^* = B$

Using Properties, Trace(AB) = Trace(BA)

We can say, $Trace(\mathbf{MPM}^*) = Trace(\mathbf{M}^*\mathbf{MP})$

$$\mathbf{M} = \begin{pmatrix} u_1 & u_2 & u_3 & \dots & u_k \end{pmatrix}$$

$$\mathbf{M}^* = \begin{pmatrix} u_1 \\ \bar{u}_2 \\ \bar{u}_3 \\ \vdots \\ \vdots \\ \bar{u}_k \end{pmatrix}$$

$$\mathbf{M}^*\mathbf{M} = \begin{pmatrix} \bar{u_1}u_1 & 0 & 0 & \dots & 0 \\ 0 & \bar{u_2}u_2 & 0 & \dots & 0 \\ 0 & 0 & \bar{u_3}u_3 & \dots & 0 \\ \vdots & \vdots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \bar{u_k}u_k \end{pmatrix}$$
(Refer to Properties mentioned in Orth

(Refer to Properties mentioned in Orthonormal Basis in Definition section that is $\langle u_i, u_i \rangle = 0$ if $i \neq j$)

$$\mathbf{M}^*\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

(Refer to Properties mentioned in Orthonormal Basis in Definition section that is $\langle u_i, u_j \rangle = 1$ if i = j)

$$M^*M = I^k$$

$$\mathbf{M}^*\mathbf{M}\mathbf{P} = \mathbf{I}^k\mathbf{P} = \mathbf{P}$$

 $\operatorname{Trace}(\mathbf{M}^*\mathbf{MP}) = \operatorname{Trace}(\mathbf{I}^k\mathbf{P}) = \operatorname{Trace}(\mathbf{P}) = \sum_{i=1}^k \alpha_i$

(Refer Definition section of Trace, it is sum of elements on the main diagonal) So, the given statement is true

 $Rank(\mathbf{M}^*\mathbf{N}) = \min(k, n - k)$

 $M = \{u_1, u_2, ..., u_k\}$ and $N = \{u_{k+1}, u_{k+2}, ..., u_n\}$ Consider orthogonal vectors,

$$u_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}; u_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
$$u_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}; u_{4} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Consider k = 2, then

Consider
$$k = 2$$
, then
$$M = \begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$M^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$N = \begin{pmatrix} u_3 & u_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$M^*N = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$Rank(M^*N) = 0$$

$$M^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$N = \begin{pmatrix} u_3 & u_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$M^*N = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $Rank(M^*N) = 0$

But, $\min(k, n - k) = (2, 2) = 2$

And, this is clear from above that $Rank(\mathbf{M}^*\mathbf{N}) \neq min(k, n - k)$

Thus, above statement is false

 $Rank(\mathbf{MM}^* + \mathbf{NN}^*) < n$

 $Rank(\mathbf{M}) = Rank(\mathbf{M}^*)$

 $Rank(N) = Rank(N^*)$

 $Rank(M+N) \leq Rank(M) + Rank(N)$

 $M = \{u_1, u_2, ..., u_k\}$ and $N = \{u_{k+1}, u_{k+2}, ..., u_n\}$

Consider orthogonal vectors,

$$u_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}; u_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$u_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}; u_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Consider k = 2, then

$$M = \begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$Rank(\mathbf{M}) = 2 = k$$

$$N = \begin{pmatrix} u_3 & u_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Rank(
$$\mathbf{N}$$
) = 2 = $n - k$
Thus, Rank($\mathbf{M}\mathbf{M}^* + \mathbf{N}\mathbf{N}^*$) = Rank($\mathbf{M} + \mathbf{N}$) = 4 = n
Thus, above statement is false

TABLE 2: Finding of True and False Statements

4 Conclusion

$Rank(\mathbf{MPM}^*) = \mathbf{k}$	False
Trace(MPM *) = $\sum_{i=1}^{k} \alpha_i$	True
$Rank(\mathbf{M}^*\mathbf{N}) = \min(k, n - k)$	False
$Rank(\mathbf{MM}^* + \mathbf{NN}^*) < n$	False

TABLE 3: Conclusion of above Solutions