Steffen Haug

Øving 3 Diskret Matematikk TMA4140

1 Oppgåver til seksjon 3.1

Oppgåve 53

Bruker grådig algoritme for myntveksling (Algoritme 6). I staden for å jobbe gjennom algoritma "for hand" brukar eg eit program:

```
1
   def change(C, n):
2
        D = []
3
        for c in C:
4
              t = 0
5
              while n \ge c:
6
                   t += 1
7
                   n -= c
8
              D.append(t)
9
        return tuple(D)
   a: 51 cents vekslast til 2 quarters og 1 cent
   b: 69 cents vekslast til 2 quarters, 1 dime, 1 nickel og 4 cents
   c: 76 cents vekslast til 3 quarters og 1 cent
   d: 60 cents vekslast til 2 quarters og 1 dime
```

Oppgåve 55

Brukar same algoritme, $utan\ nickels$, med same mangde cents som i 53. Brukar same programmet som i 53, med forskjellig C (C = [25,10,1]).

```
a: 51 cents vekslast til 2 quarters og 1 cent
b: 69 cents vekslast til 2 quarters, 1 dime, og 9 cents
c: 76 cents vekslast til 3 quarters og 1 cent
d: 60 cents vekslast til 2 quarters og 1 dime
```

Oppgåve 56

Viser med eksempel. Ønsker å konstruere eit tal slik at å veksle til ein 12-cent mynt etterlét oss med eit tal som ikkje kan fordelast "fint" på dei gjenverande tala. Eit eksempel på eit slikt tal er 4 – det kan ikkje delast på 10 eller 5.

Vi prøver å rekne gjennom algoritma for n = 16, fordi vi veit at dette gjev 4 i rest etter å veksle til ein 12-cent.

```
 \begin{array}{ll} (i) & {\tt change}(\{25,12,10,5,1\},16) \to \{0,1,0,0,4\}, & \Sigma=5 \\ (ii) & {\tt change}(\{25,10,5,1\},16) \to \{0,1,1,1\}, & \Sigma=3 \\ \end{array}
```

Sidan algoritma er grådig finn den ikkje den beste løyinga. Same fordeling som i (ii) er gyldig i (i), men algoritma finn den ikkje.

2 Oppgåver til seksjon 3.2

Oppgåve 27

a:

$$(n^3 + n^2 \log n)(\log n + 1) + (17 \log n)(n^3 + 2)$$

$$\approx (n^3 + n^2 \log n)(\log n) + (\log n)(n^3)$$

$$\approx 2n^3 \log n$$

$$\approx n^3 \log n$$

b:

$$(2^n + n^2)(n^3 + 3^n)$$

$$\approx (2^n)(3^n)$$

$$\approx 3^n$$

Oppgåve 30

Skal vise at funksjonane er av same orden.

c:
$$|x + 1/2| \log x$$

Konstantar er irrellevante, $\lfloor x \rfloor$ kan maksimalt variere frå x med ± 0.5 , som og er irrelevant når x aukar.

e: $\log_{10} x$ og $\log_2 x$

Brukar L'Hopital til å vise $\lim_{x\to\infty}=K,$ altso at uttrykka ikkje er polynomisk forskjellige.

$$\lim_{x\to\infty}\frac{\log_{10}x}{\log_2x}\stackrel{\text{L'Hop}}{=}\lim_{x\to\infty}\frac{\frac{1}{x\ln10}}{\frac{1}{x\ln2}}=\frac{\ln2}{\ln10}=K$$

Oppgåve 34

a: Skal vise at $3x^2+x+1$ er $\Theta(3x^2)$ ved å finne konstantar C_1,C_2 og k. Ein kan (relativt) enkelt finne konstantar til polynom ved å gjette. Til dømes kan ein gjette at $4x^2>3x^2+x+1$ fordi $x^2>x+1$, og dermed $3x^2+x^2>3x^2+(x+1)$, når x er stor nok.

Når ein løyser oppgåver på denne måten finn ein antageleg ikkje dei minste moglege verdiane for C_1, C_2 og k, men det er tidsparande.

Fann ved "gjetting" $C_1=\frac{1}{3}, C_2=\frac{4}{3}$. Løyste $3x^2+x+1=4x^2$ og fann $k=\frac{1}{2}+\sqrt{5}$.

b:

Oppgåve 42

Skal undersøkje om f(x) er $O(g(x)) \implies 2^{f(x)}$ er $O(2^{g(x)})$. Prøver med moteksempel.

$$\frac{2^{x^2+x+1}}{C2^{x^2}} = \frac{2^{x^2}2^{x}2}{C2^{x^2}} = \frac{2^{x+1}}{C} \xrightarrow{x \to \infty} \infty$$

Påstanden held ikkje.

3 Oppgåver til seksjon 4.1

Oppgåve 11

a: 11:00 + 80 timar = 07:00

b: 12:00 - 40 timar = 08:00

 \mathbf{c} : 06:00 + 100 timar = 10:00