Rcpp Portfolio

Rachel Wood

2023-03-27

For this portfolio, we use Rcpp to fit an adaptive kernel smoothing regression model.

We first generate data according to the model

$$y_i = \sin(\alpha \pi x^3) + z_i$$
 with $z_i \sim \mathcal{N}(0, \sigma^2)$

In this case we take $\alpha = 4$ and $\sigma = 0.2$.

geom_point(color = "steelblue")

```
library(dplyr)
```

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
  The following objects are masked from 'package:base':
##
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
n <- 400
alpha <- 4
sigma <- 0.2
x <- runif(n)
y \leftarrow sin(alpha * pi * x^3) + rnorm(n, sd = sigma)
data <- tibble(x = x, y = y)
ggplot(data = data, aes(x, y))+
```


The Kernel Smoother

We model $\mu(x) = \mathbb{E}(y|x)$ by

$$\hat{\mu}(x) = \frac{\sum_{i=1}^{n} \kappa_{\lambda}(x, x_i) y_i}{\sum_{i=1}^{n} \kappa_{\lambda}(x, x_i)}$$

where we take κ_{λ} to be a Gaussian kernel with variance $\lambda^{2}.$

We implement this with the following function:

```
meanKRS <- function(y, x, xnew, lambda){
    n <- length(x)
    nnew <- length(xnew)

mu <- numeric(nnew)

for (i in 1:nnew){
    }
}</pre>
```