第3章 信息编码与数据表示 作业参考题解

3.1 求下列各数的十进制数值:

参考答案:

- (1) $(267. 3)_{8} = (2 \times 8^{2} + 6 \times 8^{1} + 7 \times 8^{0} + 3 \times 8^{-1})_{10} = (183.375)_{10}$
- (2) (BD. C) $_{16} = (11 \times 16^{1} + 13 \times 16^{0} + 12 \times 16^{-1})$ $_{10} = (189.75)$ $_{10}$
- (3) 1011011. 101) $_2 = (1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-1} + 0 \times 2^{-1} +$ 1×2^{-3}) ₁₀ = (91.625) ₁₀
- 3.2 将下列十进制数转化为二进制、八进制和十六进制数据(小数取四位二进制有效数 据):
 - (1) -282. 75 (2) 123. 46 (3) -115/512 (4) 44. 9375

参考答案:

十进制	二进制	八进制	十六进制
(1) -282.75	-100011010.11B	-432.6Q	—11A.CH
(2) 123.46	1111011.0111B	173.34Q	7B.7H
(3) -115/512	-0.001110011	−0.163Q	−0.398H
(4) 44.9375	101100.1111	54. 74Q	2C.FH

- 3.3 写出下列各数的原码、反码和补码,机器数长度为8位:

- (1) 0 (2) -127 (3) -0.5 (4) -19/128 (5) 100 (6) 23/64

参考答案:

真值	二进制真值	原码	反码	补码
(1) 0	0000000	0, 0000000	0, 0000000	0, 0000000
		1, 0000000	1, 1111111	
(2) -127	-1111111	1, 1111111	1, 0000000	1, 0000001
(3) -0.5	-0.1000000	1.1000000	1.0111111	1.1000000
(4) -19/128	-0.0010011	1.0010011	1.1101100	1.1101101
(5) 100	1100100	0, 1100100	0, 1100100	0, 1100100
(6) 23/64	0.010111	0.0101110	0.0101110	0.0101110

3.4 写出下列各机器数的二进制真值 X:

参考答案:

- (1) $[X]_{*}=0.1001$ X=0.1001
- (2) $[X]_{i}=1.1001$ X=-0.0111
- (3) [X]_原=0.1101 X=0.1101
- (4) $[X]_{\mathbb{R}}=1.1101$ X=-0.1101
- (5) $[X]_{\mathbb{Z}} = 0.1011$ X = 0.1011

```
(6) [X]<sub>辰</sub>=1.1011 X=-0.0100
(7) [X]<sub>移</sub>=0,1001 X=-0111
(8) [X]<sub>移</sub>=1,1001 X=+1001
(9) [X]<sub>补</sub>=1,0000000 X=-10000000, X=-128
(10) [X]<sub>辰</sub>=1,0000000 X=-11111111, X=-127
(11) [X]<sub>辰</sub>=1,0000000 X=-0
(12) [X]<sub>移</sub>=1,0000000 X=0
3.5 设某机器数字长为8位,有两个数的16进制表示形式为9CH和FFH,问: 若它们分别表示为下列格式的机器数时,其对应的十进制真值是多少?
参考答案:
```

		9CH	FFH
(1)	无符号整数;	156	255
(2)	原码表示的定点整数;	-28	-127
(3)	原码表示的定点小数;	-28/128=-0.21875	-127/128=-0.9921875
(4)	补码表示的定点整数;	-100	-1
(5)	补码表示的定点小数;	-100/128=-0.78125	-1/128=0.0078125
(6)	反码表示的定点整数;	-99	-0
(7)	移码表示的定点整数。	+28	+127

- 3.6 假设某规格化浮点数的尾数表示形式为 M0.M1......Mn, 选择正确的答案写在横线上:
 - (1) 若尾数用原码表示,则尾数必须满足____D_。
 - (2) 若尾数用补码表示,则尾数必须满足 G、H。
 - A. $M_0=0$ B. $M_0=1$ C. $M_1=0$ D. $M_1=1$ E. $M_0.M_1=0.0$ F. $M_0.M_1=1.1$ G. $M_0.M_1=0.1$ H. $M_0.M_1=1.0$
- 3.7 浮点数的表示范围取决于 $_{\bf D}$ 的位数,浮点数的表示精度取决于 $_{\bf C}$ 的位数,浮点数的正负取决于 $_{\bf A}$, $_{\bf E}$ 在浮点数的表示中是隐含规定的。
- 3.8 设某浮点数格式为:字长12位,阶码6位,用移码表示,尾数6位,用原码表示, 阶码在前,尾数(包括数符)在后,则按照该格式:
 - (1) 已知 X=-25/64, Y=2.875, 求数据 X、Y 的规格化的浮点数形式。
- 参考答案: X=-0.011001 $X=-0.11001\times 2^{-1}$ $E_X=-00001$ $M_X=-0.11001$ $[E_X]_{\cite{R}}=0$, 11111 $[M_X]_{\cite{R}}=1.11001$ 所以[X] $_{\cite{R}}=0,11111$ 1.11001 Y=10.111 $Y=0.10111\times 2^{10}$ $E_Y=00010$ $M_Y=0.10111$ $[E_Y]_{\cite{R}}=1$, 00010 $[M_Y]_{\cite{R}}=0.10111$ 所以[Y] $_{\cite{R}}=1,00010$ 0.10111
 - (2) 已知 Z 的浮点数以十六进制表示为 9F4H,则求 Z 的十进制真值。
- 参考答案: $[Z]_{\mathbb{F}}=1,00111\ 1.10100\ [E_Z]_{\mathbb{F}}=1,\ 00111[M_Y]_{\mathbb{F}}=1.10100$ $E_Z=00111\ M_Z=-0.10100$ $Z=-0.10100\times 2^{+7}\ Z=-1010000\ Z=-80$

3.9 设某机器数字长16位,求下列各机器数的表示范围:

参考答案:

- (1) 无符号整数: $0\sim2^{16}-1$ 即 $0\sim65535$
- 原码表示的定点整数: $-(2^{15}-1) \sim 2^{15}-1$ 即 $-32767\sim +32767$
- $^{(3)}$ 补码表示的定点整数: $-2^{15}\sim 2^{15}-1$ 即 $-32768\sim +32767$
- $^{(4)}$ 补码表示的定点小数; $-1\sim 1-2^{-15}$
- (5) 非规格化浮点表示,格式为:阶码8位,用移码表示,尾数8位,用补码表示 (要求写出最大数、最小数、最大负数、最小正数);
 - ◆ 最大数: (1-2⁻⁷) ×2¹²⁷
 - ◆ 最小数: -1×2¹²⁷= -2¹²⁷
 - ◆ 最小正数: 2⁻⁷×2⁻¹²⁸=2⁻¹³⁵
 - ◆ 最大负数: -2-7×2-128= -2-135
- (6) 上述浮点格式的规格化浮点表示范围(要求写出最大数、最小数、最大负数、最 小正数)。
 - ◆ 最大数: (1-2⁻⁷) ×2¹²⁷
 - ◆ 最小数: -1×2¹²⁷= -2¹²⁷
 - ◆ 最小正数: 2⁻¹×2⁻¹²⁸ = 2⁻¹²⁹
 - ◆ 最大负数: (2⁻⁷+2⁻¹) ×2⁻¹²⁸
- 3.10 将下列十进制数转换为 IEEE754 单精度浮点数格式:
 - (1) +36.75
- (2) -35/256

参考答案:

(1) $(+36.75)_{10} = (100100.11)_{2} = (1.0010011)_{2} \times 2^{+5}$ = $(-1)^{0} \times (1.0010011)_{2} \times 2^{132-127}$

所以: Ms=0, $E=(132)_{10}=(10000100)_{10}$, $M=001\ 0011\ 0000\ 0000\ 0000\ 0000$;单精度浮点数表示形式为 $0\ 10000100\ 001\ 0011\ 0000\ 0000\ 0000\ 0000B=42130000H$

(2)
$$(-35/256)_{10} = (-0.00100011)_2 = (-1.00011)_2 \times 2^{-3}$$

= $(-1)^{-1} \times (1.00011)_2 \times 2^{124-127}$

- 3.11 求下列各 IEEE754 单精度浮点数的十进制真值:
 - (1) 43990000H
- (2) 00000000H

参考答案:

- (1) $43990000H=0100\ 0011\ 1001\ 1001\ 0000\ 0000\ 0000\ 0000B$ Ms=0; E=1000 0111B=135D; M=1. 001 1001 0000 0000 0000 0000

 N= (-1) $^{0}\times1$. 001 1001 0000 0000 0000 $^{0}\times2^{135-127}$ =1. 001 1001×2 8 =100110010B=306D
- (2) $00000000H = 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$ $Ms = 0;\ E = 0000\ 0000B = 0;\ M = 1.\ 000\ 0000\ 0000\ 0000\ 0000\ 0000$ $N = (-1)\ ^{0} \times 1.\ 000\ 0000\ 0000\ 0000\ 0000\ 0000 \times 2^{0-127}$ $= 1 \times 2^{-127} = 2^{-127}$
- 3.12 在汉字系统中,有哪几种编码?它们各自有什么作用?

参考答案: 在汉字系统中,有4种编码:

- ◆ 汉字输入码: 也称外码, 用于将汉字通过西文键盘输入计算机。
- ◆ 汉字交换码:用于在具有不同汉字处理功能的计算机系统之间进行汉字信息交换。
- ◆ 汉字内码:汉字的机内代码,用于汉字信息的存储、交换、检索等操作,一般采用 两个字节表示。
- ◆ 汉字字形码:又称字模码,是将汉字字形经过点阵数字化后形成的一串二进制数, 用于汉字的显示和打印。
- 3.13 汉字库中存放的是汉字的哪一种编码?汉字库的容量如何计算?

参考答案: 汉字库中存放的是汉字字形码,汉字库的容量=汉字库中容纳的汉字个数×汉 字字形码位数。

3.14 在一个应用系统中,需要构造一个包含了100个汉字的汉字库,假设采用16×16的汉 字字形,问:该汉字库所占存储容量是多少字节?一篇由50个汉字构成的短文,需 要占用多少字节的存储容量来存储其纯文本?

参考答案:

- 因为汉字库中存放的是字模码,每个字模码占用存储空间=16×16 位: 所以该汉字 库所占存储容量是 100×16×16 位=3200 字节
- 纯文本文件中存放的是汉字的机内码,每个汉字机内码是2字节,因此需要占用 50×2=100字节的存储容量来存储50个汉字的纯文本。
- 3.15 汉字系统的几种编码中,对于某个汉字来说,___C_是惟一的。

A. 输入码

- B. 字模码
- C. 机内码
- 3.16 若下面的奇偶校验码均正确,请指出哪些是奇校验码,哪些是偶校验码。
 - (1) 10110110 (2) 01111110 (3) 11011000 (4) 10100001
- 参考答案: (1) 奇校验码 (2) 偶校验码 (3) 偶校验码 (4) 奇校验码

- 3.17 在 7 位的 ASCII 码的最高位前面添加一位奇 (偶) 校验位后,即可构成 8 位的 ASCII 码的奇(偶)校验码。假设字符"A"的这样的奇(偶)校验码为41H,则它是(1); 字符 "C"的这样的(1)是(2)。
 - (1):A. 奇校验码 B. 偶校验码
 - (2): A. 43H B. 87H C. C3H D. 86H

参考答案: (1) B(2) C

3.18 对于 3.6.2 节所介绍的 k=8, r=4 的能纠错一位的海明码, 若编码为 100110111100, 试 判断该海明码是否有误,若有,请纠正,并写出其8位正确的有效信息。

参考答案: k=8, r=4 的海明码分组如下表:

序号	H ₁₂	H_{11}	H ₁₀	H ₉	H_8	H ₇	H ₆	H_5	H_4	H ₃	H_2	H_1
分组	D_8	\mathbf{D}_7	D_6	D_5	P_4	D_4	D_3	D_2	P_3	\mathbf{D}_1	P_2	\mathbf{P}_1
P_4	√	√	√	√	√							
P ₃	√					√	√	√	√			

P ₂	√	√		√	√		√	√	
\mathbf{P}_1	√		√	√		√	√		√

 H_{12} ~ H_{1} = 1001 1011 1100,计算得 P_{4} P_{3} P_{2} P_{1} = 1001,表明 H_{9} 出错,将其取反得正确的海明码为 1000 1011 1100,则 8 位正确的有效信息为: 1000 011 1。

3.19 试设计有效信息为 10 位的能纠错一位的海明码的编码和译码方案,并写出有效信息 0110111001 的海明码。

参考答案: k=10, r=4 的海明码分组如下表:

序号	H_{14}	H_{13}	H_{12}	H_{11}	H_{10}	H ₉	H_8	H_7	H ₆	H_5	H_4	H_3	H_2	H_1
分组	D_{10}	D_9	D_8	D_7	D_6	D_5	P_4	D_4	D_3	D_2	P_3	D_1	P ₂	\mathbf{P}_1
P_4	√	√	√	√	√	√	√							
P_3	√	√	√					√	√	√	√			
P ₂	√			√	√			√	√			√	√	
P ₁		√		√		√		√		√		√		√
	0	1	1	0	1	1	0	1	0	0	1	1	1	0

有效信息 0110111001 的海明码为: 01 1011 0100 1110

3.20 在 3.6.2 节所介绍有效信息为 8 位的能纠错一位的海明码基础上,思考如何改进,使 其能够达到检错两位并能纠错一位的校验能力。

参考答案:

在最高位添加一个 P_5 位,用以实现对所有海明码位的校验,来区分两位出错和一位出错两种情况。

$$\begin{split} P_5 &= P_1 \oplus P_2 \oplus P_3 \oplus P_4 \oplus D_8 \oplus D_7 \oplus D_6 \oplus D_5 \oplus D_4 \oplus D_3 \oplus D_2 \oplus D_1 \\ S_5 &= P_1 \oplus P_2 \oplus P_3 \oplus P_4 \oplus P_5 \oplus D_8 \oplus D_7 \oplus D_6 \oplus D_5 \oplus D_4 \oplus D_3 \oplus D_2 \oplus D_1 \end{split}$$

- ◆ S₅S₄ S₃ S₂ S₁=00000: 海明码正确;
- ◆ S₅S₄S₃S₂S₁=10000: 海明码有一位出错,即 P₅(H₁₃)本身出错;
- ◆ $S_5=1$ 且 S_4 S_3 S_2 $S_1 \neq 0000$: 海明码有一位出错,出错的海明位号由 S_4 S_3 S_2 S_1 指出;
- ◆ 当 $S_5=0$ 且 S_4 S_3 S_2 $S_1 \neq 0000$ 时,海明码有两位出错,出错的海明位号无法确定。

3.21 设生成多项式为 X³+X+1(即 1011B),请计算有效数据 10101的 CRC 编码。

参考答案:

构成 CRC (8, 5) 码, r=3, k=5, n=8。用有效信息扩展成的编码 10101000 模 2 除以 1011, 得冗余码 101,则 CRC 编码为 10101 101。

 3.22 试分析 3.3 节介绍的奇偶校验、海明校验和 CRC 校验三种校验码的检错纠错能力,它们的码距各为多少?

参考答案:

- ◆ 奇偶校验的码距: d=2, 具有检查出奇数个错误的能力;
- ◆ 海明校验(k=8,r=4): d=3, 具有纠错1位错误的能力, 或者用来检错2位。
- ◆ CRC 校验: d=3, 具有纠错 1 位错误的能力,或者用来检错 2 位。
- 3.23 在 Motorola 系列的微处理器中,数据存放在内存的规则是高位字节存放在低地址单元的,对照图 3.10 写出各数据在这种情况下的存储方式。

参考答案:

