Some matrix operations in R

```
A \leftarrow \text{matrix}(c(4,1,-2,3,-1,0,2,2,-1), \text{nrow=3}) # creates 3-by-3 matrix column-wise
B \leftarrow \text{matrix}(c(4,1,-2,3,-1,0,2,2,-1), \text{nrow=3, byrow=TRUE}) # creates 3-by-3 matrix row-wise
     # takes the transpose of matrix A
            # numerically computes inverse of A; A^(-1) DOES NOT WORK!
solve(A)
            # computes matrix product of A (left-hand factor) and B (right-hand factor)
A \%*\% c(3,-1,2)
                   # computes matrix-vector product; note conversion of vector to 3-by-1
u = c(3,-1,1)
v = c(2,2,8)
dot(u, v)
                  # takes dot product of u and v
u %*% v
                  # also takes dot product of u and v
length(u)
                  # tells how many components are in u
vlength(u)
                  # computes the magnitude of u, i.e., sqrt(dot(u,u))
```

Projections

Recall, from either MATH 231 or MATH 255, that

• The **span** of a collection **S** of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is the set of all possible sums of rescalings—all **linear combinations**— of those vectors. That is,

$$V = \operatorname{span}(S) := \left\{ c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \,\middle|\, c_1, \dots, c_k \in \mathbb{R} \right\}.$$

In relation to *V*, the set *S* is called a **spanning set**. A linear combination

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k$$

can be thought of as a trek through \mathbb{R}^n , appending tail-to-head the rescaled vectors $c_j \mathbf{v}_j$ one by one until a destination is reached. V consists of all destinations reachable this way.

S is hardly the only spanning set for V; you can easily make another from the first:

- a superset of $S: S \cup \{\mathbf{v}\} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}\}$, where $\mathbf{v} \in V \setminus S$. - a set the size of $S: \{\mathbf{v}_1 - \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_3 \dots, \mathbf{v}_k\}$,
- A collection $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_\ell\}$ is said to be **linearly independent** if the only way a linear combination

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_\ell\mathbf{u}_\ell$$

produces the destination **0** is by taking each $c_1 = c_2 = \cdots = c_\ell = 0$.

- A basis of a vector space V is a linearly independent spanning set for V. There are generally
 many bases of V, but all consist of the same number of vectors, a number known as the
 dimension of V.
- \mathbb{R}^n is an *n*-dimensional vector space.

- For any collection $S \subset \mathbb{R}^n$, span(S) is a subspace of \mathbb{R}^n , a vector space in its own right living inside \mathbb{R}^n .
- There are vector subspaces of all dimensions d = 0, 1, 2, ..., n in \mathbb{R}^n . The (only) 0-dimensional subspace consists of the single point at the origin, $\{\mathbf{0}\}$. The one-dimensional subspaces consist of rescalings $\{c_1\mathbf{v}_1 \mid c_1 \in \mathbb{R}\}$ of a single nonzero vector $\mathbf{v}_1 \in \mathbb{R}^n$, lines through the origin. The two-dimensional subspaces have the form $\{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 \mid c_1, c_2 \in \mathbb{R}\}$ and consist of linear combinations of two linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n$, planes through the origin. And so it goes, right up until you reach \mathbb{R}^n itself, the only n-dimensional subspace of \mathbb{R}^n . This description comprises all subspaces of \mathbb{R}^n .
- Vectors have magnitude (length) and direction. We denote the magnitude of \mathbf{v} by $|\mathbf{v}|$, and compute it as the square root

$$|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}}.$$

The **direction** of a nonzero **v** is a vector of length 1 obtained by rescaling **v**:

$$\frac{1}{|\mathbf{v}|}\mathbf{v}.$$

• Given a subspace W of \mathbb{R}^n and a vector $\mathbf{u} \in \mathbb{R}^n$, there exists a single vector in W closest to \mathbf{u} . We call this vector the **projection of u onto** W, or $\operatorname{proj}(\mathbf{u} \to W)$. This vector can and will be \mathbf{u} itself if \mathbf{u} comes from W in the first place. The more interesting case, where $\mathbf{u} \in \mathbb{R}^n \setminus \mathbf{W}$, is the focus for the rest of these notes.

When W is a line through the origin, we let \mathbf{v} be a basis vector. Then, $\operatorname{proj}(\mathbf{u} \to W)$, or $\operatorname{proj}(\mathbf{u} \to \mathbf{v})$, is given by

$$\operatorname{proj}(\mathbf{u} \to \mathbf{v}) \ = \ \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}. \ \approx \ \frac{\vec{\mathsf{u}} \cdot \vec{\mathsf{v}}}{|\vec{\mathsf{v}}|} \cdot \frac{\vec{\mathsf{v}}}{|\vec{\mathsf{v}}|}$$

Complications arise when the dimension of W reaches two or more.

(a) Find $\underline{\text{proj}}(\mathbf{u} \to \langle 3, 4, 0 \rangle)$ and $\underline{\text{proj}}(\mathbf{u} \to \langle 2, -2, 1 \rangle)$. These are projections onto 1-dimensional spaces (lines).

$$\operatorname{proj}(\vec{u} \rightarrow \vec{v}_{1}) = \frac{\vec{u} \cdot \vec{v}_{1}}{|\vec{v}_{1}|^{2}} \vec{v}_{1} = \frac{13}{25} \langle 3, 4, 0 \rangle = \langle \frac{39}{25}, \frac{52}{25}, 0 \rangle$$

$$\operatorname{proj}(\vec{u} \rightarrow \vec{v}_{2}) = \langle \frac{9}{9}, -\frac{4}{9}, \frac{2}{9} \rangle$$

(b) Show that $proj(\mathbf{u} \to W)$ is *not* what one gets by adding $proj(\mathbf{u} \to \langle 3, 4, 1 \rangle) + proj(\mathbf{u} \to \langle 2, -2, 1 \rangle)$.

$$(2,-2,1)$$
). 7
 $proj(\vec{n} \rightarrow w) = proj(\vec{u} \rightarrow \vec{v}_1) + proj(\vec{u} \rightarrow \vec{v}_1)$
 $\vec{z} = \langle 2.004, 1.636, 0.222 \rangle$

They are not in this case, and usually won't be!

Prescription for finding $\text{proj}(\widehat{\mathbf{u}}) \rightarrow \widehat{[W]}$:

- Find a basis of $W: \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ We have $(\dot{\mathbf{v}}, \dot{\mathbf{v}}_1)$ already
- Form a matrix **A** from the the \mathbf{w}_j . Make \mathbf{w}_1 the first column of **A**, \mathbf{w}_2 the second column, etc.
- Compute one or both of the following, as desired
 - $-\mathbf{x} \neq (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{u}$

The vector \mathbf{x} will have k components, specifying weights x_1, \ldots, x_k such that the linear combination

$$x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \cdots + x_k\mathbf{w}_k$$

is $proj(\mathbf{u} \to W)$, the closest vector in W to \mathbf{u} .

 $- \mathbf{w} = \mathbf{A} (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{u}$

The vector **w** is $proj(\mathbf{u} \to W)$, the closest vector in W to **u**.

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & -2 \\ 6 & 1 \end{bmatrix}$$

Example 2:

Let $W = \text{span}(\{\langle 3, 4, 0 \rangle, \langle 2, -2, 1 \rangle\})$, and $\mathbf{u} = \langle 3, 1, -2 \rangle$. Find $\text{proj}(\mathbf{u} \to W)$.

```
A = matrix( c(3,4,0,2,-2,1), nrow=3 )
u = c(3, 1, -2)
w = A %*% solve( t(A) %*% A ) %*% t(A) %*% u

[,1]
[1,] 2.3303167
[2,] 1.5022624
[3,] 0.3438914
```

To see that, indeed, $\mathbf{w} = \langle 2.330, 1.502, 1.344 \rangle$ is a vector in W:

```
v1 <- c(3,4,0)

v2 <- c(2,-2,1)

x <- solve( t(A) %*% A ) %*% t(A) %*% u  # weights for linear comb

x[1] * v1 + x[2] * v2  # linear combination of v1 and v2 yields w

[1] 2.3303167 1.5022624 0.3438914
```

To see that \mathbf{w} is as close as possible, we show that \mathbf{w} and $(\mathbf{u} - \mathbf{w})$ are orthogonal. Their dot product is

```
dot(u-w, w)
[1] 9.992007e-16
```

which, numerically speaking, is zero.