James McAllister – CV

PhD Researcher – Mathematical Neuroscience Website: https://jajmcallister.github.io/

Intelligent Systems Research Centre, Magee College

EDUCATION

PhD, Mathematical & Computational Neuroscience Intelligent Systems Research Centre, Magee College, University of Ulster	2023 – present
Analysis & modelling of network structure in reservoir computing, circuit formation, MRes (Masters of Research), Queen's University, Belfast Distinction	& synaptic plasticity 2022–2023
PGCE (Mathematics), Queen's University, Belfast GTCNI Star Award and E. Fulton Prize for Mathematics	2018–2019
MA (Dubl) Mathematics, Trinity College Dublin First Class Honours with Gold Medal	2014-2018
EXPERIENCE	
Visiting Researcher: University of Bristol Applied Mathematics, Intelligent Systems Research Lab	February 2024 – present
Postgraduate Teaching Assistant: University of Ulster Mathematics and algorithms modules	September 2023 – present
Teacher of Mathematics: Wellington College Belfast Mathematics, Further Mathematics, and Physics	2019-2022
RESEARCH PROJECTS AND PUBLICATIONS	
Topological and simplicial features in reservoir computing Paper: submitted to United Kingdom Computational Intelligence, Belfast	Due Sep 2024
Brain connectome connectivity-inspired reservoir networks Poster: Neural Computation Conference, Sheffield	July 2024
Heterosynaptic plasticity rules induce small-world network top Poster: International Conference of Mathematical Neuroscience, Dublin	oologies June 2024
Graph-theory perspectives on network structure in reservoir congoing research collaboration with University of Bristol	omputing 2024 –
Mathematical modelling of synaptic maturation & circuit form Ongoing research collaboration with University of Bristol	nation 2024 –
The capacity and accuracy of a triple-well Hopfield model Research Project & Presentation: Intelligent Systems Research Centre	October 2023
A discrete attractor model of decision making Research Project & Presentation: Using dynamical systems to model decision-	July 2023 -making processes
A multilevel analysis of high-stakes examination results in material Cantley, I., & McAllister, J. https://doi.org/10.1007/s11199-021-01234-5	chematics 2021

Cambridge University: Talk at British Society for Research into Learning Mathematics (BSRLM) 2020

Trigonometric series and the emergence of transfinite set theory	2018
Final Year Research Dissertation & Poster. First class (distinction). Trinity College Dublin	
Complex numbers in mathematics education	2018
Mathematics Education Research Project. First class (distinction). Trinity College Dublin	

Talks, Presentations, and Seminars

Topological and simplicial features of reservoir networks Submitted Paper: UK Computational Intelligence, UKCI 2024	September 2024
Network structure in reservoir computing and brain connectomes Seminar: Intelligent Systems Research Centre	May 2024
Algebraic topology, simplicial complexes, and Hopfield networks Seminar: Intelligent Systems Research Centre COIN Club	May 2024

SKILLS AND INTERESTS

Languages: English, German, French, British Sign Language Programming Languages: Python, Julia, MATLAB, SPSS Other Developer Tools: LaTeX, Microsoft, Google Suite

Areas of Interest: Graph & network theory, mathematical modelling of synaptic plasticity, applications of topology & topological data analysis, functional analysis, assessment theory

ACHIEVEMENTS AND AWARDS

Visiting Scholarship, University of Bristol	2024 -
Gold Medal, Trinity College Dublin	2018
Naughton Foundation Scholarship	2014-2018
Exhibition Award, Trinity College Dublin	2014
Trinity College Dublin Sizarship	2014-2018
Trinity College Dublin First Class Prize	2015, 2016, 2017
E. Fulton Prize for Mathematics, QUB	2019

Courses and Training

Deep Learning Neuromatch Academy Summer School

Computational Neuroscience Autumn School, Intelligent Systems Research Centre, Ulster University Computational Neuroscience Neuromatch Academy Summer School

INCF (International Neuroinformatics Coordinating Facility): Python-based modelling course British Sign Language Level 1

REFEREES

References available on request.