General Relativity Fall 2019 Lecture 5: manifolds and tangent vectors

Yacine Ali-Haïmoud September 17th 2019

MANIFOLDS

In simple words, a manifold is a **set that locally "looks like"** \mathbb{R}^n . A little more precisely, it is a set made of patches that look like \mathbb{R}^n , smoothly sewn together. Before giving the formal mathematical definition, we need to define a few preliminary concepts:

- An open ball of \mathbb{R}^n around a point $y \in \mathbb{R}^n$, with radius r, is the set $\mathcal{O}(y;r) \equiv \{x \in \mathbb{R}^n \text{ such that } |x-y| < r\}$.
- An open set of \mathbb{R}^n is the union of an arbitrary number of open balls: $U \subset \mathbb{R}^n$ is open if $\forall y \in U, \exists r > 0$ such that $\mathcal{O}(y;r) \subset U$.
- A map $\phi: A \to B$ is said to be **one-to-one** or **injective** (these are interchangeable) is no two elements of A have the same image: $\phi(x) = \phi(y)$ if and only if x = y.
- A map $\phi: A \to B$ is said to be **onto** or **surjective** if all the elements of B can be written as the image of (at least) one element of $A: \forall y \in B, \exists x \in A$ such that $y = \phi(x)$.
- A map $\phi: A \to B$ is **bijective** if it is both **injective and surjective**, in other words, if it is **invertible**. We denote the inverse map $\phi^{-1}: B \to A$. Note that an injective map $\phi: A \to B$ is always bijective when viewing it as a map from A to $\phi(A) = \{\phi(x) \text{ such that } x \in A\}$.

Let us now consider a general set \mathcal{M} which is not \mathbb{R}^n .

- A chart or coordinate system on a subset $U \subset \mathcal{M}$ is a one-to-one map $\phi : U \to \mathbb{R}^n$ such that the image set, $\phi(U) \subset \mathbb{R}^n$ is open. The restricted map $\phi : U \to \phi(U)$ is thus bijective, and we call $\phi^{-1} : \phi(U) \subset \mathbb{R}^n \to \mathcal{M}$ its inverse..
- An atlas on a set \mathcal{M} is a collection of charts and associated domains, $\{(U_i, \phi_i)\}$, such that:
 - (i) The domains U_i cover \mathcal{M} , i.e. Union $(U_i) = \mathcal{M}$,
- (ii) Overlapping charts are compatible, i.e. if two charts have overlapping domains $U_1 \cap U_2 \neq \emptyset$, then the maps $\phi_2 \circ \phi_1^{-1}$ and $\phi_1 \circ \phi_2^{-1}$, both from \mathbb{R}^n to \mathbb{R}^n , are **infinitely differentiable** (symbol: \mathcal{C}^{∞}), see Fig. 1.

This allows us to finally define a manifold, as a set \mathcal{M} with a maximal atlas, i.e. one that contains every possible compatible chart. Note that n (the dimension of \mathbb{R}^n) must be the same everywhere on the manifold.

Examples of sets which are not manifolds (see Fig. 2): a 1-dimensional line attached to a 2-dimensional surface, as this would require 2 different dimensions. A self-intersecting line, which would not "look like \mathbb{R}^n at the intersection point.

You can think of manifolds as smooth n-dimensional surfaces of \mathbb{R}^p , with p > n. Indeed, Whitney's embedding theorem states that a manifold can always be mapped to a smooth n-dimensional surface of \mathbb{R}^{2n} ("embedded" in \mathbb{R}^{2n}). This is not necessarily helpful, however, unless you have good visualisation skills in 4 dimensions or higher. Moreover, a manifold has well-defined intrinsic properties regardless of its embedding.

In general, a manifold cannot be covered with a single chart. Consider for instance a circle: you can describe all of it except for a point by an angle $\theta \in (0, 2\pi)$. To cover the full circle, you need at least 2 charts. Note that you cannot just use $[0, 2\pi)$, as this would not be an open set of \mathbb{R} . The same holds for a shpere.

We know what a \mathcal{C}^{∞} function of $\mathbb{R}^n \to \mathbb{R}$, but it is not a priori obvious how to define this notion for functions $f: \mathcal{M} \to \mathbb{R}$. We can do so as follows: at any given point $p \in \mathcal{M}$, find a chart $\{(U, \phi)\}$ such that $p \in U$ – such a chart must exist from condition (i). We can then define the function $f \circ \phi^{-1} : \mathbb{R}^n \to \mathbb{R}$, see Fig. 3. The function f is said to be \mathcal{C}^{∞} (or **smooth**) if these functions are all smooth – because of property (ii), the choice of ϕ does not matter in the definition.

I will denote by \mathcal{F} the set of all smooth functions from $\mathcal{M} \to \mathbb{R}$ (or, more generally, form a subset of \mathcal{M} to \mathbb{R}):

$$\mathcal{F} \equiv \{ f : \mathcal{M} \to \mathbb{R} \text{ such that } f \text{ is } \mathcal{C}^{\infty} \}$$

FIG. 1. Domains of various maps used to defined compatiblity of overlapping charts.

FIG. 2. Example of sets which are not manifolds: a line attached to a sphere, or a self-intersecting line.

TANGENT VECTORS

When we think of \mathbb{R}^n , we often blur the line between points and vectors: after all, vectors are differences between two points, so we can identify a point and a vector attached to the origin of coordinates.

On a general manifold \mathcal{M} , there is no such notion of addition or subtraction of points. Intuitively, we can easily visualize that vectors live in a space **tangent** to \mathcal{M} , at any given point $p \in \mathcal{M}$. In \mathbb{R}^n , the tangent spaces at each point are unambiguously mapped onto one another, and onto the original space \mathbb{R}^n itself. On a general curved surface, tangent spaces at each point are not parallel, and there is **no obvious mapping between tangent spaces at distant points** – consider for instance the tangent plane at the pole of a sphere, and that at one point on the equator.

FIG. 3. Domains of different maps used to defined a smooth function on \mathcal{M} .

Tangent vectors convey the notion of **infinitesimal displacements along a given direction**, at a given point p. For instance, you are probably familiar with the unit vectors \hat{e}_r , \hat{e}_θ , \hat{e}_φ in spherical polar coordinates: they indicate the direction towards which a point $p(r, \theta, \varphi)$ would move upon an infinitesimal increase of a given coordinate. This infinitesimal business means that vectors have something to do with derivatives, and indeed, their formal definition should remind you of derivatives.

Definition: a tangent vector \overline{V} at a point $p \in \mathcal{M}$ is a an operator $\overline{V}: \mathcal{F} \to \mathbb{R}$ which (i) is **linear**: for any two smooth functions f, g, and any two real numbers $\alpha, \beta, \overline{V}(\alpha f + \beta g) = \alpha \overline{V}(f) + \beta \overline{V}(g)$, (ii) satisfies **Leibniz' rule**: $\overline{V}(f \times g) = f(p) \times \overline{V}(g) + g(p) \times \overline{V}(f)$. I will denote by \mathcal{V}_p the set of all tangent vectors at a point $p \in \mathcal{M}$. This forms a vector space in the mathematical sense of the term.

In the homework, you will show that any vector \overline{V} acting on a constant function gives zero: \overline{V} (constant) = 0.

A simple (and important) example of a vector at p is as follows: pick a coordinate system at p, i.e. a map $\phi: U \subset \mathcal{M} \to \mathbb{R}^n$. For any point $q \in u$, $\phi(q) = \{x^1, ..., x^n\} \in \mathbb{R}^n$, where the n real numbers $\{x^{\mu}\}$ are the **coordinates** of q. Then define the following operator on \mathcal{F} :

$$\partial_{(\mu)}|_p: \begin{cases} \mathcal{F} & \to \mathbb{R} \\ f & \mapsto \frac{\partial (f \circ \phi^{-1})}{\partial x^{\mu}} (\phi(p)). \end{cases}$$

This operator is linear, and satisfies Leibniz' rule, hence is a tangent vector at p. From now on I will just write $\partial_{(\mu)}$ rather than $\partial_{(\mu)}|_p$, but it should be implicit that this is defined at a specific point p. Rather than writing all the ϕ 's, we will often write, for short,

$$\partial_{(\mu)}f = \frac{\partial f}{\partial x^{\mu}}.$$

COORDINATE BASES

Let us now show that the *n* vectors $\partial_{(\mu)}$ form a **basis** of the tangent space \mathcal{V}_p , meaning that (i) they are linearly independent and (ii) they span \mathcal{V}_p , i.e. any vector \overline{V} can be written as $\overline{V} = V^{\mu} \partial_{(\mu)}$.

As a preiminary, let's define the n functions $\phi^{\mu}(q) \equiv x^{\mu}$, for q in the neighborhood of a point $p \in \mathcal{M}$. These functions are clearly smooth, and by construction, they are such that $\partial_{(\mu)}\phi^{\nu} = \delta^{\nu}_{\mu}$.

Let us start by proving the linear independence of the $\partial_{(\mu)}$'s. Suppose there exist n coefficients $\{\alpha^{\mu}\}$ such that $\alpha^{\mu}\partial_{(\mu)}=0$, meaning that, for any function $f\in\mathcal{F}, \alpha^{\mu}\partial_{(\mu)}f=0$. Applying this to any of the f^{ν} functions, we see that all coefficients α^{ν} must be zero, which proves linear independence.

Now, given a function $f \in \mathcal{F}$, consider the function $F(x) \equiv f \circ \phi^{-1} : \mathbb{R}^n \to \mathbb{R}$. This function is \mathcal{C}^{∞} , thus there exists \mathcal{C}^{∞} functions $H_{\mu}(x)$ such that

$$F(x) = constant + (x^{\mu} - a^{\mu})H_{\mu}(x).$$

If we wanted, we could explicitly write the full function $H_{\mu}(x)$ in terms of the derivatives of F, but that's not needed. All we need to know is that $H_{\mu}(a) = \frac{\partial F}{\partial x^{\mu}}(a)$. Let's apply this at $a = \phi(p)$ and $x = \phi(q)$, define $h_{\mu}(q) \equiv H_{\mu}(\phi(q))$, and recall that $x^{\mu} = \phi^{\mu}(q)$: we get

$$f(q) = constant + (\phi^{\mu}(q) - \phi^{\mu}(p)) \times h_{\mu}(q),$$

which we can also write as an equality between functions:

$$f = \text{constant} + (\phi^{\mu} - \phi^{\mu}(p)) \times h_{\mu}.$$

Let us now apply a vector $\overline{V} \in \mathcal{V}_p$ to this function, using linearity and Leibniz' rule:

$$\overline{V}(f) = \overline{V}(\text{constant}) + (\phi^{\mu}(p) - \phi^{\mu}(p)) \times \overline{V}(h_{\mu}) + h_{\mu}(p) \times \overline{V}(f^{\mu}) = h_{\mu}(p) \times \overline{V}(\phi^{\mu}).$$

On the other hand, we have

$$h_{\mu}(p) = H_{\mu}(a) = \frac{\partial (f \circ \phi^{-1})}{\partial x^{\mu}}(\phi(p)) = \partial_{(\mu)}|_{p}f.$$

Thus we found that

$$\overline{V}(f) = V^{\mu} \partial_{\mu} f, \quad V^{\mu} \equiv \overline{V}(\phi^{\mu}) = \overline{V}(x^{\mu}) \quad \Rightarrow \overline{V} = V^{\mu} \partial_{(\mu)}.$$

In other words, we have showed that any tangent vector can be written as a linear combination of the partial derivative operators. The components V^{μ} are obtained by applying \overline{V} to the coordinate functions x^{μ} .

In summary, we have exhibited a basis of \mathcal{V}_p : the *n* vectors $\{\partial_{(\mu)}\}$. This is called a **coordinate basis** of the tangent space. The fact that these n vectors form a basis implies that the tangent space is n-dimensional.