Actuators

Control system

Causes of errors in physical robotic systems

- inaccuracies in the model of the robot,
- tolerances in the work piece,
- static friction in joints,
- mechanical compliance in linkages,
- limitations in the precision of computation

Steady state error

Open loop control system

computes its input into a system using only the current state and its model of the system

Where it is applicable

Used for "well-defined systems" which have a proper relationship between input and resultant state

Advantage: simplicity and low cost

Disadvantage: High SSE (steady state error)

A typical example of an open loop control system can be the voltage being fed to a motor driving a constant load to achieve a constant speed.

Closed Loop control system

Basic closed loop system

The inverse flowing information is called "feedback"

Velocity control loop

Position control loop

Electric Motors

- An electric motor is an electromechanical device that converts electrical energy into mechanical energy.
 - –DC Motors
 - –Stepper Motors
 - -Servo Motors
 - –Linear Motors

DC Motor

Designed to work on DC power.

- Mainly of three types :
 - Permanent Magnet Type
 - Brushed DC Motors
 - Brushless DC Motors

Permanent Magnet Motor

Advantages of Brushless over Brushed:

- Better Speed Vs. Torque
- High Efficiency
- Long operating life (No brushes)
- Noiseless Operation
- Higher Ratio of Torque wrt Size

Theory of Servomechanisms

- Closed loop control whose output is some mechanical position or velocity set by a reference input(required output).
- Two types
 - Positional Control

- Velocity Control
 - Instead of Position sensor, Hall Sensors are used.

Servo Motor

The basic behind Servo Control is *Pulse Width Modulation*.

Pulse Parameters:

- Minimum Pulse
- Maximum Pulse
- Repetition Rate

- All servos have three wires:
 Black or Brown is for ground.
 Red is for power (~4.8-6V).
 Yellow, Orange, or White is the signal wire (3-5V).
- The general concept is to simply send an ordinary logic square wave to your servo at a specific wave length, and your servo goes to a particular angle (or velocity if your servo is modified). The wavelength directly maps to servo angle.

Stepper Motors

Steppers are used when incremental motion is required.

A stepper motor possesses the ability to move a specified number of revolutions or fraction of a revolution in order to achieve a fixed and consistent angular movement.

Movement is achieved when power is applied for short periods to successive magnets

Advantages

- High accuracy of motion possible
- Cheaper and effective in open loop systems
- Brushless construction

Disadvantages

- Low torque capacity compared to DC motors
- Limited speed
- High vibrational levels
- Large errors and vibrations if a pulse is missed

Motor Drivers

a device or group of devices that serves to govern in some predetermined manner the performance of an *electric motor*.

Mainly used Motor Drivers:

- •L293/L293D
- •L298
- •L297
- Stepper Motor Controllers
- Servo Motor Controllers

H-Bridge

 An electronic circuit that enables a voltage to be applied across a load in either direction.

S1	S2	S 3	S4	Result	
1	0	0	1	Motor moves right	
0	1	1	0	Motor moves left	
0	0	0	0	Motor free runs	
0	1	0	1	Motor brakes	
1	0	1	0	Motor brakes	

How to run motors through an MCU?

- Never connect the MCU pins directly to the motors.
- The Atmega16 has a current rating of 5-10 mA.
- The normal DC motor's current ratings start from 150 mA and above which arises a need for a Motor and MCU interface.
- So the motor cannot be directly attached to the ATmega, hence a motor-driver is used... (eg: L293/L293D, L298, etc...)

Piezoelectric actuators

Piezoelectric effect is the generation of electric charge resulting from an applied mechanical force.

Applications

Used both as a sensor and actuator

A piezo disc in an electric buzzer

A piezo disc in a guitar pick up

Chain And Sprocket

Rack And Pinion

Can convert rotational motion into linear motion

Pneumatic principle

Why Pneumatics?

- Weight
 - Much lighter than motors (as long as several used)
- Simple
 - Much easier to mount than motors
 - Much simpler and more durable than rack and pinion
- More rugged
 - Cylinders can be stalled indefinitely without damage
 - Resistant to impacts
- Disadvantage: All the way in or all the way out

Linear Motion

- Much simpler, easier, more durable than rack and pinion
- Can maintain constant force

Applications

Short Rotation

- Arm Joints
- Grabbers

SMA's, or Shape Memory Alloys

materials that change shape when energy is applied to, or

removed from, them.

The most commonly used alloy is NiTinol.

- Have a shape memory.
- Tries to achieve the memorized energized.
- A restoring force(spring action) is needed.

SMA Robotic Hand

Applications

Estimating load torque

Hoisting application

SI units

$$\mathbf{T} = \frac{1}{2} \mathbf{D} \cdot \mathbf{W} (\mathbf{N} \cdot \mathbf{m})$$

D : Diameter of drum (m)

W:Load (N)

Flywheel application

SI units

$$T = \frac{J}{9.55 \times 10^4} \cdot \frac{N}{t} (N \cdot m)$$

N : Rotating speed (r/min)

J : Inertia (kg·cm²)

t : Time (s)

Belt conveyor application

SI units

$$T = \frac{1}{2} D (F + \mu Wg) (N \cdot m)$$

D : Diameter of roll (m)

W: Mass of load (kg)

g : Gravitational acceleration

μ : Friction coefficientF : External force (N)

Horizontal travel on contact face

SI units

$$T = \frac{1}{2} D \cdot \mu Wg (N \cdot m)$$

D : Diameter of drum (m)

W: Mass (kg)

μ : Friction coefficient

Ball screw drive

SI units

$$T = \frac{1}{2\pi} P (F + \mu Wg) (N \cdot m)$$

F : External force (N)

W: Mass of load (kg)

 μ : Friction coefficient of sliding surfaces (approx. 0.05 to 0.2)

g : Gravitational acceleration (m/s2)

P : Lead of ball screw (m)

Determination of the driving mechanism Calculation of motor speed and load Selection of motor model Temporary selection of the motor Final determination of motor & gear head

Linear actuator selection

Parameter	Spring	Pneumatic	Rack and Pinion	Solenoid	Shape Memory Alloy
Speed	+	-	0	+	+
Accuracy	+	-	-	+	+
Weight	-	=	=	+	++
Space required	-	-	+	+	++
Simplicity	-	+	+	+	+
Power	-	+	0	+	+
Safety	+	-	+	-	++
Time between	+	-	+	+	+
shots					
Cost	-	+	-	+	0

Inside some famous robot (how do they actuate)

- MagLev:

Autumn concept MagLev

MagLev in Shanghai

A MagLev can be called a glorified linear motor

One with the track extended as the rails of a train and the carriage transported being the train itself

Mowgli – pneumatic air muscles

 Pneumatic artificial muscles (PAMs) are contractile or extensional devices operated by pressurized air filling a pneumatic bladder

Mowgli

The shadow hand developed by CMU uses PAMs to mimic nearly all the degrees of freedom of a human hand using 40 muscle fibres and 80 valves to control the flow to them

