FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2014. május 19. 8:00

Az írásbeli vizsga időtartama: 120 perc

Pótlapok száma		
Tisztázati		
Piszkozati		

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika — középszint Név: osztály:

Fontos tudnivalók

A feladatlap megoldásához 120 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap végén található üres oldalakon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

Fizika — középszint	Név:	osztály:

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükséges, számításokkal ellenőrizze az eredményt!)

- 1. Egy fonál végére rögzített súlyos testet pörgetünk vízszintes síkú körpályán É-Ny-D-K körüljárási irányban. Amikor a test a pálya legészakibb pontján van, a kötél hirtelen elszakad. Merre mozog a test abban a pillanatban, amikor a kötél elszakad?
 - A) Észak felé.
 - B) Nyugat felé.
 - C) Függőlegesen lefelé.

- 2. Az alábbiak közül melyik nem a nyomás mértékegysége?
 - A) $\frac{N}{m}$
 - $\mathbf{B)} \qquad \frac{\mathbf{J}}{\mathbf{m}^3}$
 - C) $\frac{\text{kg}}{\text{m} \cdot \text{s}^2}$

- 3. Egy gépjárművekbe szánt akkumulátoron a "12 V , 55 Ah" jelzés szerepel. Mit jelent az 55 Ah?
 - A) Azt jelenti, hogy az akkumulátor belső ellenállása 55 Ah, azaz 55 Ω .
 - **B)** Azt jelenti, hogy a teljesen feltöltött akkumulátor maximális teljesítménye 55 Ah, azaz 55 watt
 - C) Azt jelenti, hogy ha a teljesen feltöltött akkumulátorra egy olyan fogyasztót kötnénk, melyen állandó, 5,5 amper erősségű áram folyik át, akkor az akkumulátor 10 óra alatt merülne le.

2 pont	

Fizika — középszint	Név:	osztály:

4. Az ábrán látható két, különböző hosszúságú fonálinga nehezékét a felső szaggatott vonallal jelölt szintről engedjük el, és az alsó szaggatott vonal jelzi a legalsó szintjüket. Melyik nehezéknek nagyobb a maximális sebessége? (A közegellenállást hanyagoljuk el!)

- A) A rövidebb inga nehezékének.
- **B)** A hosszabb inga nehezékének.
- C) Azonos a két nehezék maximális sebessége.

5. A mellékelt ábrán látható áramkörben a kapcsolók mely állásánál világít a zseblámpaizzó?

- A) Ha K1 és K2 is zárva van.
- **B)** Ha K1 nyitva és K2 zárva van.
- C) Ha K1 zárva és K2 nyitva van.

6. Mi az elnyelt dózis fogalma?

- A) Az adott test által elnyelt összes részecske száma.
- B) Az adott test által időegység alatt elnyelt energia mennyisége.
- C) Az adott test 1 kg tömegére eső elnyelt energia mennyisége.

írásbeli vizsga 1413 4 / 16 2014. május 19.

Fiz	ika —	- középszint	Név:	osztály:
7.	kara	ácsonykor nem kelne	logjában a következőt olvashatjuk: "Æ ek fel és nyugszanak le, hanem a horiz gen." Hol írta a feljegyzéseit a kutató	zonttal párhuzamosan,
	A) B) C)	Az Egyenlítőn. A Déli-sarkon. Az Északi-sarkon.		
				2 pont
8.		adott elemből radio: énhetett?	aktív bomlás során új elem keletkezet	tt. Milyen bomlás
	A) B) C)	Csak α-bomlás. Vagy α-, vagy β-bor Csak γ-bomlás.	mlás.	
				2 pont
9.		_	űrsikló egy apró porszemmel ütközöt ik test lendületváltozásának abszolút	•
	A) B) C)	Az űrsikló lendületv	változásának abszolút értéke a nagyobb változásának abszolút értéke a nagyobb. lületváltozás abszolút értéke.	
				2 pont
10.	-	yen jelenség húzódik etevőire bontja?	meg annak hátterében, hogy az üveg	prizma a fehér fényt
	A) B) C)	Diszperzió. Diffrakció. Disszociáció.		
				2 pont

Fizika — középszint	Név:	osztály:
1		

11. Egy ember kétféle módon (A és B) végez húzódzkodásokat. Legalsó helyzetében pihenve melyik esetben kell a karjaival nagyobb erőt kifejtenie?

- A) Az A esetben.
- **B)** A B esetben.
- C) Azonos erőt kell kifejtenie mindkét esetben.

12. Egy mindkét végén zárt üvegcső két végében higany található, amely egy kevés levegőt zár el. A cső végein bezárt levegő mennyisége megegyezik, az azokat elzáró higany mennyisége szintén, a köztük levő térrészben is levegő van. A csövet a közepénél felfüggesztjük, így vízszintesen egyensúlyi állapotba kerül. Ezután a cső bal oldali végét Bunsen-égővel melegíteni kezdjük. Mi történik a csővel?

- A) A cső bal oldala felemelkedik.
- **B)** A cső bal oldala lesüllyed.
- C) A cső vízszintes marad.

2 pont	

13. Nagyságrendileg milyen messze járhat most a Földtől a legtávolabbi, ember által készített űreszköz?

- **A)** Körülbelül a Naprendszer határának tájékán (azaz nagyságrendileg 10¹⁰ km-re).
- **B)** Körülbelül a Naphoz legközelebbi csillag felé félúton (azaz nagyságrendileg 10¹³ km-re).
- C) Körülbelül a galaxisunk magja felé félúton (azaz nagyságrendileg 10^{17} km-re).

2 pont	

írásbeli vizsga 1413 6 / 16 2014. május 19.

14. Egy pontszerű Q töltés körül az ábra szerint először 2r, azután pedig 3r távolságban mozgatunk egyenletesen egy szintén pontszerű q töltést. Melyik esetben kell nagyobb munkát végeznünk?

- A) Amikor 2r távolságban mozgatjuk a q töltést.
- **B)** Amikor 3r távolságban mozgatjuk a q töltést.
- C) Mindkét esetben ugyanannyi a munkavégzés.

15. Egy egyenes vonalú mozgást végző test sebesség-idő grafikonját láthatjuk az ábrán. Mikor volt a test a legmesszebb a kiindulási helyétől?

- A) Az A pillanatban.
- **B)** A **B** pillanatban.
- C) A C pillanatban.

2 pont	

- 16. Melyik anyag sűrűsége a legkisebb az alábbiak közül?
 - A) Az 1 °C-os desztillált vízé.
 - **B)** A 3 °C-os desztillált vízé.
 - C) Az 5 °C-os desztillált vízé.

		ı

2 pont

Fizik	a —	középszint	Név:	osztály:
		et-e két, különböző felezési idej t időpontban azonos az aktivitá		azó mintának egy
]	A) B) C)	Igen, ha az egyes minták tömeg Igen, de a két mintában lévő rad lehet azonos. Nem, mert az aktivitás fordított	dioaktív atommagok száma ekko	
		dugattyúval elzárt hengerben l giájának megváltozása nagyob	_	net-e a gáz belső
]	A) B) C)	Nem, mivel $\Delta E = Q - p \cdot \Delta V$, t Igen, ha a gázt a hőközlés közbe Csak abban az esetben, ha fázis	en össze is nyomjuk.	emegy.
h s	ielyo szeri A, B	om rúdmágnest egymás mellé f ezett üveglapra vasport szórtur nti vonalak mentén rendeződö , C, D, E, F betűkkel jelöltük. I póluséval megegyező polaritás	nk. A vaspor az ábra tt el. A mágnesek pólusait Melyik betűk jelölnek	E F
]	A) B) C)	A D és az F. A C és az E. A D és az E.		
		nergia kvantáltságára, illetve a l melyik igaz?	h Planck-állandóra vonatkoz	ó alábbi állítások
]	A) B) C)	Bármilyen elektromágneses sug keletkezik, illetve nyelődik el. A <i>f</i> frekvenciájú fény <i>hf</i> energiá nyelődik el. Egy atom csak akkor bocsáthat ionizálásához pontosan <i>hf</i> energiányelődik el.	ijú csomagokban keletkezik, ille ki f frekvenciájú fényt, ha az ato	etve
				= P - 224

Fizika — középszint	Név:	osztály:

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Egy száraz levegőjű szaunában a levegő 100 °C-os. Az izzadás segítségével azonban szervezetünk belső hőmérsékletét gyakorlatilag állandó, 37 °C-os értéken tudjuk tartani. Egy hosszabb szaunázás közben egy 80 kg tömegű ember teste kb. 200 g 37 °C-os vizet párologtatott el.
 - a) Mennyivel emelkedne a fent említett szaunázó ember átlagos testhőmérséklete, ha nem izzadna?

Sokszor úgy növelik a hőérzetet, hogy emelik a levegő páratartalmát. Ehhez vizet locsolnak forró lávakövekre.

b) Tegyük fel, hogy egy edényben 5 kg 500 °C-os lávakő van. Átlagosan mennyivel hűl le a kő, ha negyed liter 40 °C-os vizet öntünk rá, ami mind elforr? (A kőre öntött víz nagyon gyorsan felmelegszik és elforr, a melegedés közbeni párolgása elhanyagolható. A levegőt tekintsük eközben végig 100 °C hőmérsékletűnek.)

Számításainkhoz használjuk a következő kerekített értékeket: Az emberi test átlagos fajhője 3000 $\frac{J}{kg\cdot K}$, a testhőmérsékletű víz párolgáshője 2420 kJ/kg, a víz forráshője 100 °C-on 2260 kJ/kg.

A lávakő fajhője 870
$$\frac{J}{kg\cdot K}$$
, a víz fajhője 4180 $\frac{J}{kg\cdot K}$, a víz sűrűsége $1\frac{kg}{liter}$.

a)	b)	Összesen
7 pont	8 pont	15 pont

2. Egy gömb alakú, gömbszimmetrikus anyageloszlású, 9000 km sugarú bolygó körül két űrszonda kering körpályán.

Az egyik szonda sebessége 4800 m/s, a pályájának sugara 50 000 km. A másik szonda pályájának sugara 30 000 km.

- a) Mekkora a bolygó átlagsűrűsége?
- b) Mekkora a második szonda sebessége?

A gravitációs állandó:
$$\gamma = 6,67 \cdot 10^{-11} \frac{N \cdot m^2}{kg^2}$$
.

a)	b)	Összesen
9 pont	6 pont	15 pont

Fizika — középszint	Név:	osztály:
---------------------	------	----------

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A Két rugalmas gumilabdánk van, egy nagy és egy kicsi. A nagyobbiknak a tömege sokszorta nagyobb a kisebbik tömegénél. Ha a labdákat egyenként sima, kemény talajra ejtjük h magasságból, azt tapasztaljuk, hogy a talajról visszapattanva csaknem ugyanilyen magasságig emelkednek. A kísérletünkben a labdákat úgy fogjuk meg, hogy a kisebbet pontosan a nagyobbik legtetejére illesztjük, és a két labdát egyszerre engedjük el. Azt tapasztaljuk, hogy a kisebbik labda most az eredeti h magasságnál jóval magasabbra emelkedett.

Értelmezze a jelenséget! Tételezze fel, hogy egy labda *h* magasságból ejtve *v* sebességgel ér a talajra!

Mi történik akkor, amikor a labdákat egyenként ejtjük le? Körülbelül mekkora sebességgel indulnak felfelé az ütközés után?

Hogyan értelmezhetjük a jelenséget abban az esetben, amikor egymásra helyezve ejtjük el a labdákat?

Magyarázata során az alábbiakra térjen ki:

- Melyik labda mivel ütközik?
- Mekkora az ütköző testek egymáshoz viszonyított sebessége ezen ütközésekben az ütközések előtt?
- Hogyan alakul az egyes testek sebessége az ütközés során?
- Hogyan következik mindebből, hogy a kislabda magasabbra pattan, mint amilyen magasról elengedtük?

Az ütközéseket tekintsük minden elemében tökéletesen rugalmasnak! A labdák átmérője elhanyagolható a *h* magassághoz képest! A közegellenállástól eltekintünk.

Fizika — középszint	Név:	osztály:
		2

Összesen

20 pont

Fizika — középszint Név: osztál	y:
---------------------------------	----

- 3/B Egy kísérlet alkalmával egy zseblámpaizzón átfolyó áram erősségét mértük, miközben az izzóra jutó feszültséget változtattuk. A mért adatokat az alábbi táblázat tartalmazza.
 - a) Határozza meg az izzó ellenállását a különböző feszültségek esetén, és írja be a táblázatba!
 - b) Határozza meg az izzó teljesítményét a különböző feszültségek esetén, és írja be a táblázatba!
 - c) Ábrázolja grafikonon az izzó teljesítményét az ellenállás függvényében!
 - d) A grafikon alapján becsülje meg, hogy mekkora az izzó ellenállása akkor, amikor 1,2 W teljesítménnyel működik! Írja le, hogyan járt el a becslés során!

U (V)	I (A)	$R(\Omega)$	P (W)
0,200	0,066		
0,491	0,080		
0,755	0,094		
1,015	0,107		
1,530	0,131		
2,093	0,153		
3,018	0,183		
3,506	0,200		
4,090	0,216		
4,610	0,230		
5,630	0,255		

a)	b)	c)	d)	Összesen
5 pont	5 pont	6 pont	4 pont	20 pont

Fizika — középszint Nev Osztaly	Fizika — közér	oszint	Név:		osztály:
---------------------------------	----------------	--------	------	--	----------

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	

Dátum:

	elért	
	pontszám	programba
	egész	beírt egész
	számra	pontszám
	kerekítve	
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		

javító tanár	jegyző

Dátum: Dátum: