MEU301 - Analyse TD1

Rappel de cours

MEU301 - Analyse TD1

Exercice 1

$$f_n(x) = 1/n1_{[0,n]} = \begin{cases} 1/n & x \in [0,n] \\ 0 & sinon \end{cases}$$

Pour un x donné, prenons $\epsilon > 0$ et un n_0 arbitraire, pour tout $n > n_0$, on a $f_n(x) > f_{n_0}(x)$ sur la partie $x \in [n_0, n]$ car par définition $f_{n_0}(x) = 0$ pour $x > n_0$. Donc pour chaque ϵ on peut trouver un n tel que $f_n(x) > \epsilon$, la fonction ne converge pas simplement.

Exercice 2

$$f_n(x) = n1_{[0,1/n]} = \begin{cases} n & x \in [0,1/n] \\ 0 & sinon \end{cases}$$

Pour un x donné, prenons $\epsilon > 0$ et un n_0 tel que $n_0 > 1/\epsilon$. Pour tout $n > n_0$ on a $f_n(x) < \epsilon$ car sur [0, 1/n] $f_n(x) = f_{n_0}(x)$ et sur $[1/n, 1/n_0]$ on a $f_n(x) = 0$. Donc la fonction converge simplement.

Exercice 3

Convergence simple. Pour un x donne, prenons $\epsilon > 0$ et n_0 tel que $\frac{1}{1+n_0x^2+x^4}$ $< \epsilon$ donc $n_0 > \frac{1/\epsilon-1-x^4}{x^2}$. Dans ce cas, $\forall n \geq n_0, f_n(x) < \epsilon$ donc la serie de fonction converge simplement. $\lim_{n\to\infty} f_n(x) = 0$ donc $f_n(x)$ tend vers 0.

Convergence uniforme. Calculons $\sup(\lim_{n\to\infty}|f_x(x)-0||)=\sup(\lim_{n\to\infty}f_n(x))=1$ lorsque x=0. Donc la série ne converge pas uniformément.

Prenons $g_n(x) = \frac{1}{1+nx^2}$ on a $\forall x, n, f_n(x) < g_n(x)$. Donc si la fonction $g_n(x)$ converge uniformément alors $f_n(x)$ converge également. Calculons $\int \frac{1}{1+nx^2} dx$ avec $u = \sqrt{n}x$, donc $\frac{du}{dx} = \sqrt{n}$ et $dx = \frac{1}{\sqrt{n}} du$

$$\int \frac{1}{1+nx^2} dx = \int \frac{1}{1+u^2} \frac{1}{\sqrt{n}} du = \frac{1}{\sqrt{n}} \int \frac{1}{1+u^2} du = \frac{1}{\sqrt{n}} \arctan(u) = \frac{\arctan(\sqrt{n}x)}{\sqrt{n}}$$

On a $\forall x, n \sup(\arctan(\sqrt{n}x))) = \frac{\pi}{2}$ donc $\lim_{n\to n} \forall x \sup(g_n(x)) = 0$. Donc l'intégrale de $g_n(x)$ converge uniformément et par conséquent l'intégrale de $f_n(x)$ converge également uniformément.