Data Mining Cluster Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 7

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Clustering

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

What is not Cluster Analysis?

- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification
 - Clustering is a grouping of objects based on the data
- Supervised classification
 - Have class label information
- Association Analysis
 - Local vs. global connections

Notion of a Cluster can be Ambiguous

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters

- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

Clustering Algorithms

- K-means
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat

02/14/2018

- Form K clusters by assigning all points to the closest centroid. 3:
- Recompute the centroid of each cluster. 4:
- 5: **until** The centroids don't change

Example of K-means Clustering

Example of K-means Clustering

K-means Clustering — Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - \bullet can show that m_i corresponds to the center (mean) of the cluster
- Given two sets of clusters, we prefer the one with the smallest error

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)

Agglomerative Clustering Algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

	C 1	C2	С3	C4	C 5
C 1					
C2					
C3					
<u>C4</u>					
C 5					

Proximity Matrix

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and update

C1

C1

C2

C3

the proximity matrix.

C5

C4

After Merging

The question is "How do we update the proximity matrix?"

How to Define Inter-Cluster Distance

	р1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						
						_

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	рЗ	p4	p5	<u>.</u>
p1						
p2						
рЗ						
p4						_
р5						_
_						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	р5	<u> </u>
р1						
p2						
рЗ						
p 4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						_

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN or Single Link

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph
- Example:

Distance Matrix:

	p1	p2	р3	р4	р5	p6
p1	0.00					
p2	0.24	0.00				
p3	0.22	0.15	0.00			
p4	0.37	0.20	0.15	0.00		
p5	0.34	0.14	0.28	0.29	0.00	
р6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Can handle non-elliptical shapes

Limitations of MIN

MAX or Complete Linkage

- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two clusters

Distance Matrix:

	p1	p2	р3	n4	p5	p6
p1	0.00					
p2	0.24	0.00				
p3	0.22	0.15	0.00			
p4	0.37	0.20	0.15	0.00		
p5	0.34	0.14	0.28	0.29	0.00	
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Less susceptible to noise and outliers

Limitations of MAX

- Tends to break large clusters
- Biased towards globular clusters

Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(Cluster_{i}, Cluster_{j})}{|Cluster_{i}| \times |Cluster_{j}|}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

Distance Matrix:

	p1	p2	р3	p4	p5	_p6
p1	0.00					
p2	0.24	0.00				
р3	0.22	0.15	0.00	Γ		1
p4	0.37	0.20	0.15	0.00		D
p5	0.34	0.14	0.28	0.29	0.00	
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling clusters of different sizes and non-globular shapes
 - Breaking large clusters

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has at least a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - Counts the point itself
 - A border point is not a core point, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
    current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label current_cluster_label
    end if
  end for
end for
```

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

- Widely Varying densities
- High-dimensional data