Sorting

Data Structures

Ching-Fang Hsu

Department of Computer Science and Information Engineering

National Cheng Kung University

Sequential Search

- The efficiency of a searching strategy depends on the arrangement of records in the list.
 - ☐ Very efficient if the records are ordered
- What is "sequential search"?
 - ☐ The search examines the list of records in left-to-right or right-to-left order.
 - □ p. 334, Program 7.1

```
int segSearch(element a[], int k, int n)
(/* search a[1:n]; return the least i such that
   a[i].key = k; return 0, if k is not in the array */
  int i;
  for (i = 1; i <= n && a[i].key != k; i++)
  if (i > n) return 0;
  return i;
```

Program 7.1 Sequential search

Sequential Search (contd.)

- ☐ An unsuccessful search requires *n* key comparisons.
 - lacktriangle The worst case time complexity: O(n)
- ☐ The # of comparisons made in a successful search depends on the position in the array.
 - ♦ The average case: O(n)

$$\left(\sum_{1 \le i \le n} i\right) / n = (n+1)/2$$

Binary Search

Record必須為排序好的,才能用中位數作排序

- ❖ After a comparison, either the search ends successfully or the size of the unsearched portion of the list is reduced by about one half.
 - \square After j key comparisons, the unsearched part is at most $\lceil n/2^j \rceil$.
 - \bullet O(log *n*) comparisons are required in the worst case.

Definitions

- Two important uses of sorting
 - ☐ As an aid to searching
 - ☐ As a means for matching entries in lists
 - ☐ Applications in areas such as optimization, graph theory, and job scheduling as well
- ❖ What is "sorting"?
 - □ Givens
 - iglaup A list of records $(R_1, R_2, ..., R_n)$, in which each record, R_i , has key value K_i . 由小排到大
 - □ Finding a permutation σ , such that $K_{\sigma(i)} \leq K_{\sigma(i+1)}$, 1 < $i \leq n$ -1. The desired ordering is $(R_{\sigma(1)}, R_{\sigma(2)}, \ldots, R_{\sigma(n)})$.

Definitions (contd.)

排列不唯一:不同record, key值相同

- ☐ The permutation may not be unique since a list could have several identical key values.
- \Box A sorting method is stable if the generated permutation σ_s is unique and has the following properties
 - $igspace K_{\sigma_e(i)} \le K_{\sigma_e(i+1)} \text{for } 0 < i \le n 1$
- ◆ If i < j and $K_i == K_i$ in the input list, then R_i precedes R_i in the sorted list. 就key值相同的record,排序只與輸入先後順序有關(不更動key值一樣的record),不額外花時間在重新排序key值相同的record

 We characterize sorting methods into two broad categories.
- - ◆ Internal methods 所有資料全部存部存放在記憶體內
 - ➡ Used when the list to be sorted is small enough so that the entire sort can be carried out in main memory
 - ◆ External methods 資料量較大
 - ⇒ Used on larger lists

Definitions (contd.)

- → An internal sort -- the list is small enough to sort entirely in main memory
- ➡ An external sort is used when there is too much information to fit into main memory.
 - ★ The file must be brought into the main memory in pieces until the entire file is sorted.

Insertion Sort

- ❖ The basic step 每次讀一個新record和原排序好的record作安插
 - ☐ Inserting a new record into a sorted sequence of *i* records in such a way that the resulting sequence of size *i*+1 is also ordered.
 - □ p. 338, Program 7.4
- ❖ Begin with the ordered sequence a[1] and successively insert the records a[2], a[3], ..., a[n]. a[n].
 - ☐ Complete by making *n*-1 insertions for a *n*-record list
 - □ p. 338, Program 7.5

Insertion Sort (contd.)

- ❖ Analysis 適用於資料數目不多(處理較簡單)
 - \Box In the worst case, *insert* (*e*, *a*, *i*) makes *i* comparisons before making the insertion.
 - ◆ The computing time for inserting one record into the ordered list is O(i). record間隔,包含頭尾,總共有i+Ⅰ個間隔
 - ☐ The total worst case time is $O(\sum_{i=1}^{n-1} (\underline{i+1})) = O(n^2)$
 - ☐ Left out of order (LOO)
 - $igspace R_i$ is LOO iff $R_i < \max_{1 \le i \le i} \{R_j\}$ 第i個record的key恒小於最大一個 record的key
 - ◆ The insertion step is executed only for those records LOO. 需做data movement (一定要往前插入)
 - **□** Stable
 - ♦ Very desirable when only a very few records are LOO (i.e., k << n) **k**: LOO個數

```
void insert (element e, element a[], int 1) 從a[I]開始存
(/* insert e into the ordered list a[1:i] such that the
   resulting list a[1:i+1] is also ordered, the array a
   must have space allocated for at least i+2 elements */
  讀入的暫存在[0]
  加加 從已排好的record往前比
                       (若key比排好的最後一個小(第i個)
                       插在i之前)
     all i往後退
     i往下遞減
  當e.key >= a[i].key跳出while,插在i之後
```

```
void insertionSort(element a[], int n)
{/* sort a[1:n] into nondecreasing order */
   int j; 從a [2] 開始
   for (j = 2; j <= n; j++) {
      element temp = a[j];
      insert(temp, a, j-1);
   }
}</pre>
```

Program 7.5: Insertion sort

Insertion Sort (contd.)

Variations

- □ Binary Insertion Sort 減少比較次數,用binary取代sequential
 - ◆ Reduce the number of comparisons by replacing the sequential searching technique with binary search
 - ◆ The number of record moves remains unchanged.
- ☐ Linked Insertion Sort
 - Using linked list representation rather than an array
 - ◆ No record moves
 - ◆ Retain sequential search

Quick Sort

使用recursion

- The best in average behavior among all the sorting methods we shall be studying
- ❖ The pivot key 控制record分邊
 - ☐ The key currently controlling the insertion
- Step 1: Select a pivot record from among the records to be sorted.
- ❖ Step 2: Reorder the records to be sorted. 和pivot key比較,分邊
- Step 3: The records to the left of the pivot and those to its right are sorted independently.
 - □ Recursion!

- ⇒ Recursion!
- ❖ p. 341, Program 7.6
 - ☐ Ex. p. 340, Example 7.3
- Analysis
 - \square The time to position a record in a file of size n is O(n).

Let T(n) be the time taken to sort a file of n records. Also assume that the file splits roughly into two equal parts each time a record is positioned correctly.

 \square The worst-case behavior is $O(n^2)$.

- The best of the internal sorting methods as far as average computing time is concerned
- ❖ Lemma 7.1 (The average computing time for quick sort)
 - \Box Let $T_{avg}(n)$ be the expected time for quicksort to sort a file with n records. Then there exists a constant k such that $T_{avg}(n) \le kn \log_e n$ for $n \ge 2$.
 - $\Box T_{avg}(n) \le cn + \frac{1}{n} \sum_{j=0}^{n-1} (T_{avg}(j) + T_{avg}(n-j-1)) = cn + \frac{2}{n} \sum_{j=0}^{n-1} T_{avg}(j), n \ge 2$ $\Box \text{ By induction on } n$

- Variation
 - ☐ Quick sort using a median-of-three
 - ◆ A better choice for this pivot is the median of the first, middle, and last keys in the current list.

Merge Sort

- How to merge two sorted lists to get a single sorted list?
 - □ p. 346, Program 7.7
 - \square O(n) additional space
 - \Box Time complexity: O(n)
- Iterative merge sort
 - □ *n* sorted lists, each of length 1
 - \square Merge sublists pairwise to obtain n/2 lists of size 2
 - \square Then merge the n/2 lists pairwise, and so on, until a we are left with only one sublist.

```
void merge(element initList[], element mergedList[],
             int i, int m, int n)
(/* the sorted lists initList[i:m] and initList[m+1:n] are
       merged to obtain the sorted list mergedList[i:n] */
     int j,k,t;
                /* index for the second sublist */
     i = m+1;
                    /* index for the merged list */
     k = i;
     while (i <= m && j <= n) (
       if (initList[i].key <= initList[j].key)
          mergedList[k++] = initList[i++];
       else
        mergedList[k++] = initList[j++];
     if (i > m)
     /* mergedList[k:n] = initList[j:n] */
        for (t = j; t <= n; t++)
          mergedList[t] = initList[t];
        else
        /* mergedList[k:n] = initList[i:m] */
          for (t = i; t <= m; t++)
             mergedList[k+t-i] = initList[t];
```

Merge Sort (contd.)

- Based on a single merge pass
 - ◆ Merge adjacent pairs of sorted segments
 - ◆p. 348, Program 7.8
- □ p. 348, Program 7.9
- □ p. 349, Fig. 7.5
- □ Analysis
 - ◆ Several passes over the input
 - ◆ The *i*th pass merges segments of size 2^{*i*-1}
 - ♦ The total # of passes: $\lceil \log_2 n \rceil$
 - \Rightarrow Each pass takes O(n) time.
 - \Rightarrow Total computing time: $O(n \log n)$
 - ◆ Stable

Merge Sort (contd.)

- Recursive merge sort
 - □ Associate an integer pointer with each record to eliminate the record copying that takes place when Program 7.7 is used
 - ◆ link[1:n]; link[i] gives the record that follows record I in the sorted sublist
 - □ p. 350, Program 7.10
 - ◆ Based on *listMerge* (p. 351, Program 7.11)
 - ◆ Return the first position of the resulting chain
 - Analysis
 - ◆ Stable
 - ♦ Time complexity: $O(n \log n)$

Merge Sort (contd.)

- Summary
 - $\square O(n \log n)$ computing time both in the worst case and the average case
 - □ Additional storage requirement
- Variation
 - Natural Merge Sort
 - Make an initial pass over the data to determine the sequences of records that are in order
 - ◆Ex. p. 351, Fig. 7.6

Heap Sort

- Only a fixed amount of additional storage requirement
- ❖ O(n log n) computing time both in the worst case and the average case
- Slightly slower than merge sort
- Utilize the max heap structure
 - ☐ Step 1: Insert the *n* records into an initially empty max heap
 - ☐ Step 2: Extract records from the max heap one at a time

Heap Sort (contd.)

- How to adjust a binary tree to establish the heap?
 - □ p. 353, Program 7.12
 - \square Time complexity: O(d) if the tree depth is d
- ❖ The swap, decrement heap size, readjust heap process is repeated *n* - 1 times to sort the entire array.
 - ☐ On each pass, swap the first an last records in the heap
 - \square Place the record with the *i*th highest key in position n i + 1

Heap Sort (contd.)

- ❖ p. 354, Program 7.13
 - ☐ Suppose $2^{k-1} \le n < 2^k$ so that the tree has k levels
 - ☐ In the first for loop, adjust is called once for each node that has a child
 - ◆ The time required for this loop is the sum, over each level, of the # of nodes on a level times the maximum distance the node can move.

$$\sum_{i=1}^{k} 2^{i-1}(k-i) = \sum_{i=0}^{k-1} 2^{k-i-1}i \le n \sum_{i=0}^{k-1} \frac{i}{2^i} < 2n = O(n)$$

Heap Sort (contd.)

- ☐ In the second for loop, adjust is called n-1 times with maximum depth: $\lceil \log_2(n+1) \rceil$
 - ♦ Time complexity: $O(n \log n)$
- \Box The total computing time: $O(n \log n)$
- ❖ Ex. p. 352, Example 7.7
 - □ p. 354, Fig. 7.7(a)
 - ☐ p. 354, Fig. 7.7(b) (max heap following the first for loop of *heapsort*)
 - □ p. 355, Fig. 7.8

Sorting on Several Keys

- Sorting records that have several keys
 - ☐ Key labeling: K^0 , K^1 , ..., K^{r_1} with K^0 being the most significant key and K^{r_1} the least
 - $\square K_i^j$: key K^j of record R_i 第i個record中第j個key
 - \square A list of records, R_1, \dots, R_n , is lexically sorted with respect to the keys K^0, K^1, \dots, K^{r-1} iff for every pair of records i and j, i < j and $(K_i^1, K_i^2, \dots, K_i^r) \le (K_j^1, K_j^2, \dots, K_j^r)$
 - ◆ (x_1, x_2, \dots, x_r) ≤ (y_1, y_2, \dots, y_r) iff ⇒ $x_i = y_i$, 1 ≤ $i \le j$ and $x_{j+1} < y_{j+1}$ for some j < r, or ⇒ $x_i = y_i$, 1 ≤ $i \le r$ record i, j比大小: 先從 most significant key 開始比,比r個 若在第n個key比出大小,就不用繼續比下去

Radix Sort (contd.)

- Ex. Sorting a deck of poker cards
 - \square Two keys: K^0 [Suit] and K^1 [Face value]
 - □ MSD (Most Significant Digit) sort vs. LSD (Least Significant Digit) sort 不管以LSD或MSD排序,只是看先以哪種 key分疊(排序過程不相同),但不影響
 - ◆Ex. p. 356 最終排序結果
 - ◆ MSD or LSD indicate only the order in which the keys are sorted instead of how each key is to be sorted.
- ❖ In a radix sort, the sort key is decomposed into digits using radix r. radix (在十進位中) 有10種值: 0-9
 - □ r bins are needed to sort on each digit

Radix Sort (contd.)

- ❖ Ex. An LSD radix-r sort
 - \square *n* records (R_1, \dots, R_n)
 - \Box Each key has d digits in the range 0 through r-1.
 - □ p. 358, Program 7.14
 - ◆ The bins are implemented as queues.
 - ☐ Ex. p. 359, Example 7.8 and Fig. 7.9

- 1. 先依個位數分群
- 2. index由小到大輸出
- 3. 再拿個位數輸出結果以十位數分群
- 4. index由小到大輸出
- 5. 再拿十位數輸出結果以位百數分群
- 6. index由小到大輸出

- Analysis
 - \Box d passes over the data and each pass takes O(n + r) time.
 - \Box Time complexity: O(d(n+r))
 - \Box The value of d depends on the choice of the radix r and the largest key.

Summary of Internal Sorting

- ❖ Insertion sort is the best sorting method for small n. 適用record數較少
- Merge sort has the best worst case behavior.
 - ☐ More storage requirement than heap sort
- Quick sort has the best average behavior.
 - ☐ But its worst case behavior is O(n²) 分堆不平均
- ❖ P. 370, Fig. 7.15

External Sorting

- Assume that the file to be sorted resides on a disk.
- The applied overheads when reading/writing from/to a disk
 - ☐ Seek time: time taken to position the read/write head to the correct cylinder. 移動到正確的磁軌上所花的時間
 - □ Latency time: time until the right sector of the track is under the read/write head. 移動到正確的磁頭上所花的時間
 - ☐ Transmission time: time to transmit the data to/from the disk 移動到正確的磁碟上所花的時間

- ❖ A block is the unit of data that is read from or written to the disk at one time.最小的資料交流量,包含多個record
 □ Will usually contain several records
- ❖ Runs -- the segments of the input file sorted using internal sort □經排序好的一部分內容
- The most popular method for sorting on external storage devices is merge sort.
 - ☐ It requires only the leading records of the two runs being merged to be present in memory at one time, so it is possible to merge large runs together.

- □ Phase 1: Segments of the input file are sorted using a good internal sort method and then written onto external storage as they are generated.
- □ Phase 2: The runs generated in phase 1 are merged together following the merge-tree pattern of Fig. 7.4 until only one run is left.
- **❖** Ex. p. 377
 - □ Assumptions
 - ◆ A block length of 250 records
 - ◆ The input file contains 4500 records (i.e., 18 blocks).

- ◆ An internal memory capable of sorting at most 750 records (i.e., 3 blocks)
- Another available disk as a scratch pad
- ☐ Phase 1: Internally sort 3 blocks at a time
 - iglaus Six runs $R_1 \sim R_6$ are obtained and written out to the scratch disk. (p. 377, Fig. 7.19) 可使用內部排序處理完成,暫存到磁碟
- ☐ Phase 2: Two blocks of memory are used as input buffers and the third as an output buffer.
 - ◆ Blocks of runs are merged from the input buffers into the output buffer. (p. 377, Fig. 7.20)
 - ⇒ The output buffer is written out onto disk when getting full.
 - The input buffer is refilled with another block from the same run when getting empty.

- ♣ The time required by the external sort $\frac{\text{$\mathbb{Z}_{IO}$}}{t_{IO}}$ = time to input or output one block $=t_s+t_l+t_{rw}$

 - ϕ_{t_1} = maximum latency time
 - $\phi_{t_{max}}$ = time to read or write one block of 250 records
 - $\Box t_{IS}$ = time to internally sort 750 records
 - $\square nt_m$ = time to merge *n* records from input buffers to the output buffer

operation	time
read 18 blocks of input, $18t_{IO}$, internally sort, $6t_{IS}$, write 18 blocks, $18t_{IO}$	$36t_{IO} + 6t_{IS}$
merge runs 1-6 in pairs	$36t_{IO} + 4500t_m$
merge two runs of 1500 records each, 12 blocks	$\frac{24t_{IQ}}{12}$ + $3000t_m$ 12個blocks read和12個blocks write
merge one run of 3000 records with one run of 1500 records	36t _{IO} + 4500t _m
total time	$132t_{IO} + 12000t_m + 6t_{IS}$

External Sorting -- k-way Merging

- **☆** The # of passes over m runs can be reduced by using a higher-order merge, i.e., k-way merge for $k \geq 2$. 3@run merge, k k-weight k-weigh
 - \Box Simultaneously merge k runs together
 - ☐ The I/O time may be reduced by using a higher-order merge. 改善I/O處理時間 (因為merge tree高度降低)
 - \Box Ex. k = 4 and m = 16 (p. 380, Fig. 7.22)
 - □ At most log, m passes Time complexity 會隨著k值增加而增加

External Sorting -- k-way Merging (contd.)

- ❖ The most direct way to determine the next record to output in k-merge is making k-1 comparisons.
 - ☐ Time complexity: $O((k-1)\sum_{i=1}^{k} s_i)$, where s_i is the size of the i-th run, $1 \le i \le k$
 - ☐ With *n* being the # of records in the file, the total # of key comparisons is

```
n(k-1)\log_k m = n(k-1)\log_2 m/\log_2 k k值固定,complexity:O(nlogn)
```

♦ The factor $(k-1)/\log_2 k$