

Task History

Initiating Search

February 23, 2025, 7:19 PM

Substances:

Filtered By:

Structure Match: Substructure

Search Tasks

Task		Search Type	View
Returned Substance Results + Filters (12,936)		Substances	View Results
Exported: Retr	ieved Related Reaction Results + Filters (587)	Reactions	View Results
Filtered By:			
Substance Role:	Reactant, Reagent, Solvent		
Catalyst:	[(1,2,3,4,5-η)-1,2,3,4,5-Pentamethyl-2,4-cyclopentadien-1-yl][[2,2'-(phenylphosphinidene-κ/βbis[benzenethiolato-κS]](2-)]ruthenium, [(1,2,3,4,5,6-η)-1-Methyl-4-(1-methylethyl)benzene](2,4,6-trimethylbenzoato-κ <i>O</i>)(2,4,6-trimethylbenzoato-κ <i>O</i>)(2,4,6-trimethylbenzoato-κ <i>O</i>)(2,4,6-trimethylbenzoato-κ <i>O</i>)(2,4,6-trimethylbenzoato-κ <i>O</i>)(2,5,6-η)-1,5-Cyclooctadiene][(1,2,3,4,a,8a-η)-naphthalene]ruthenium, [1,3-Bis[4-methylphenyl)-1-triazenato-κ <i>N</i> ¹ ,κ <i>N</i> ³]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, (2, <i>R</i> ,2', <i>R</i>)-1,1'-Bis[(4,5)-4-(1,1-dimethylethyl)-4,5-dihydro-2-oxazoly]-2,2'-bis(diphenylphosphino)ruthenocene, [μ-[(2, <i>R</i> ,2', <i>R</i>)-1,1'-Bis[(4,5)-4-(1,1-dimethylethyl)-4,5-dihydro-2-oxazolyl-κ <i>N</i> ³]-2,2'-bis(diphenylphosphino-κ/βruthenocene][tetrachlorobis(triphenylphosphine)diruthenium, [μ-[(2, <i>R</i> ,2',5)-1,1'-Bis[(4,5)-4-(1,1-dimethylethyl)-4,5-dihydro-2-oxazolyl-κ <i>N</i> ³]-2,2'-bis(diphenylphosphino-κ/βruthenocene][tetrachlorobis(triphenylphosphine)diruthenium, [4-Methyl- <i>N</i> -[(1, <i>R</i> ,2,8)-2-(methylamino-κ/N)-1,2-diphenylethyl]benzenesulfonamidato-κ/β[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene](1,1,1-trifluoromethanesulfonato-κ/βruthenium, [4-Methyl- <i>N</i> -[(1, <i>R</i> ,2,R)-2-(methylamino-κ/N)-1,2-diphenylethyl]benzenesulfonamidato-κ/β[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene][tetrafluoroborato(1-)-κ/βruthenium, (η ⁶ -Benzene)carbonylhydro(tricyclohexylphosphine)ruthenium(1+), (Acetato-κ/β)(acetato-κ/β)([1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, Bis(acetato-κ/β)((1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, Bis(acetato-κ/β)((1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, Bis(dichloro(η ⁶ -ρ-		

cymene)ruthenium), Bromotricarbonyl(n³-2-propenyl)ruthenium,

Carbonylchloro[2-(diphenylphosphino-kP)-N-[2-(diphenylphosphinoκP)ethyl]ethanamine-κN]hydroruthenium, Carbonylchlorohydro(triphenylphosphine)ruthenium, Carbonylchlorohydrotris(triphenylphosphine)ruthenium, Carbonyldihydrotris(triphenylphosphine)ruthenium, Chloro[(1,2,3,4,5,6-n)-1-methyl-4-(1-methylethyl)benzene][2-[3-(4methylphenyl)-1-triazen-1-yl- κN^1 , κN^3] benzenemethanolato] ruthenium, Chloro[(1,2,5,6- η)-1,5cyclooctadiene][(1,2,3,4,5-n)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]ruthenium, Chloro[2-(diphenylphosphino-κ*P*)benzenesulfonato- κO][(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, Chloro(η⁵-cyclopentadienyl)bis(triphenylphosphine)ruthenium, Dichloro[1,1'-(oxydi-2,1-phenylene)bis[1,1-diphenylphosphine-κ*P*]] (triphenylphosphine)ruthenium, Dichloro[(1,2,3,4,5,6-η)-1-methyl-4-(1methylethyl)benzene]ruthenium, Dichloro[(1,2,5,6-η)-1,5cyclooctadiene]ruthenium, Dichloro(1,3-dibutyl-1,3-dihydro-2Himidazol-2-ylidene)[(1,2,3,4,5,6-n)-1-methyl-4-(1methylethyl)benzene]ruthenium, Dichloro[1,3-dihydro-1,3-bis(1methylethyl)-2*H*-imidazol-2-ylidene][(1,2,3,4,5,6-η)-1-methyl-4-(1methylethyl)benzene]ruthenium, Dichlorotris(triphenylphosphine)ruthenium, (HB-8-11-222'2'33)-Bis(dihydrogen- κH^1 , κH^2)dihydrobis(tricyclohexylphosphine)ruthenium, [N-[(1 R,2R)-2-(Amino-κN)-1,2-diphenylethyl]-4methylbenzenesulfonamidato-κ//][(1,2,3,4,5,6-η)-1-methyl-4-(1methylethyl)benzene](1,1,1-trifluoromethanesulfonato-κ*O*)ruthenium, [N-[(1 R,2R)-2-(Amino-κN)-1,2-diphenylethyl]-4methylbenzenesulfonamidato-κ/V]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1methylethyl)benzene]ruthenium, [N-[(15,25)-2-(Amino-κΛ)-1,2diphenylethyl]-4-methylbenzenesulfonamidato-κ/l]chloro[(1,2,3,4,5,6η)-1,2,3,4,5,6-hexamethylbenzene]ruthenium, (*OC*-6-12)-Dichloro(1,3dihydro-1,3-dimethyl-2H-imidazol-2-ylidene)[2-(diphenylphosphinoκP)-N-[2-(diphenylphosphino-κP)ethyl]ethanamine-κN]ruthenium, (OC-6-12)-Dichloro[4-[[(S)-ethylthio-κS]methyl]acridine-κM] (triphenylphosphine)ruthenium, (OC-6-13)-Carbonyl[2-(diphenylphosphino-кP)-N-[2-(diphenylphosphinoκP)ethyl]ethanamine-κN][tetrahydroborato(1-)-κH]ruthenium, (OC-6-13)-Dichloro[rel-2-[(R)-ethylthio-κS]-N-[2-[(S)-ethylthioκS]ethyl]ethanamine-κN](triphenylphosphine)ruthenium, (OC-6-14)-[1,1'-(15)-[1,1'-Binaphthalene]-2,2'-diylbis[1,1-bis(4methylphenyl)phosphine- κP]dichloro[(1R)- N^2 , N^2 -dibutyl-1-phenyl-1,2ethanediamine- κN^1 , κN^2] ruthenium, (OC-6-14)-[1,3-Bis(2,4,6trimethylphenyl)-2imidazolidinylidene]dichloro(phenylmethylene)bis(pyridine)ruthenium, (OC-6-14)-Carbonyl[1,3-dihydro-1,3-bis(1-methylethyl)-2 H-imidazol-2ylidene]dihydrobis(triphenylphosphine)ruthenium, (OC-6-22-Δ)-Bis(acetato-κ*O*,κ*O*')[1,1'-(1*R*)-[1,1'-binaphthalene]-2,2'-diylbis[1,1diphenylphosphine-κ*P*]]ruthenium, (*OC*-6-22-Λ)-Bis(acetato-κ*O*,κ*O*') [1,1'-(15)-[1,1'-binaphthalene]-2,2'-diylbis[1,1-diphenylphosphineκP]]ruthenium, (OC-6-22)-Bis(acetato-κO,κO')[(1R)-[1,1'binaphthalene]-2,2'-diylbis[diphenylphosphine-κP]]ruthenium, (OC-6-23)-[2-[6-[(Amino- κ /)methyl]-2-pyridinyl- κ /]-5-methylphenyl- κ /][1,1'-(1,4-butanediyl)bis[1,1-diphenylphosphine-κ*P*]]chlororuthenium, (*OC*-6-34)-Carbonylchlorohydro-d-tris(triphenylphosphine)ruthenium, (OC-6-34)-Carbonylchlorohydrotris(triphenylphosphine)ruthenium, (OC-6-52)-[2-[6-[(Amino-κΛ)methyl]-2-pyridinyl-κΛ]-5-methylphenyl-κC][1,1'-(1,4-butanediyl)bis[1,1-diphenylphosphine-κP]]hydroruthenium, (OC-6-52)-Carbonylchloro[2-(2-pyridinyl-κ/)phenylκC]bis(triphenylphosphine)ruthenium, (OC-6-52)-Carbonylchloro[2-(diphenylphosphino-κP)-N-[2-(diphenylphosphinoκP)ethyl]ethanamine-κN]hydroruthenium, Platinum ruthenium alloy, Ruthenate(4-), di-u-chlorodichlorotetrakis[3-(diphenylphosphinoκ*P*)benzenesulfonato]di-, sodium (1:4), Ruthenate(5-), (η⁶-

benzene)chlorobis[[3,3',3"-(phosphinidyne-kP)tris[benzenesulfonato]] (3-)]-, sodium chloride (1:6:1), Ruthenium, Ruthenium(1+), [1,1'-(1.5)-[1,1'-binaphthalene]-2,2'-diylbis[1,1-bis(4-methylphenyl)phosphineκ*P*]]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]-, chloride (1:1), Ruthenium(1+), [1,1'-(45)-[4,4'-bi-1,3-benzodioxole]-5,5'diylbis[1,1-bis[3,5-bis(1,1-dimethylethyl)-4-methoxyphenyl]phosphineκP]]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]-, chloride (1:1), Ruthenium(1+), [1,3-bis(2,4,6-trimethylphenyl)-2imidazolidinylidene][3-[[(4-bromo-2,6-dimethylphenyl)iminoк//]methyl]-4-(hydroxy-к//)- N,N,Ntrimethylbenzenaminiumato]chloro(phenylmethylene)-, chloride (1:1), (TB-5-12)-, Ruthenium(1+), [1,3-bis(2,4,6-trimethylphenyl)-2imidazolidinylidene]dichloro[[4-(diethylmethylammonio)-2-(1methylethoxy-κ*O*)phenyl]methylene-κ*C*]-, iodide (1:1), (*SP*-5-41)-, Ruthenium(1+), [(1R)-1,1'-[1,1'-binaphthalene]-2,2'-diylbis[1,1-bis(4methylphenyl)phosphine-κP]]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1methylethyl)benzene]-, chloride, Ruthenium(1+), (2,2'-bi-1Hbenzimidazole- κN^3 , κN^3)chloro[(1,2,3,4,5,6- η)-1-methyl-4-(1methylethyl)benzene]-, hexafluorophosphate(1-) (1:1), Ruthenium, [(1,2,5,6-η)-1,5-cyclooctadiene]bis[(1,2,3-η)-2-methyl-2-propenyl]-, Ruthenium(1+), $(\eta^5-2,4-cyclopentadien-1-yl)(\eta^3-2-propen-1-yl)(2$ quinolinecarboxylato- κN^1 , κO^2)-, hexafluorophosphate(1-) (1:1), Ruthenium(1+), $(\eta^5-2,4-cyclopentadien-1-yl)(\eta^3-2-propen-1-yl)[4-[[[5-$ (trihydroxysilyl)pentyl]amino]carbonyl]-2-pyridinecarboxylato- κN^1 , κO^2]-, hexafluorophosphate(1-) (1:1), Ruthenium(1+), (η⁵-2,4cyclopentadien-1-yl)(4-methoxy-2-quinolinecarboxylato- κN^1 , κO^2)(η^3 -2propen-1-yl)-, hexafluorophosphate(1-) (1:1), Ruthenium(1+), bis(acetonitrile)(n⁵-2,4-cyclopentadien-1-yl)(triphenylphosphine)-, hexafluorophosphate(1-) (1:1), Ruthenium(1+), bis(acetonitrile)chloro[6-(1,10-phenanthrolin-2-yl- κN^1 , κN^{10})-2pyridinol- κN^1]-, chloride (1:1), (*OC*-6-45)-, Ruthenium(1+), carbonylhydro(η⁶-benzene)(tricyclohexylphosphine)-, tetrafluoroborate(1-) (1:1), Ruthenium(1+), chloro[2-(2-pyridinylκ//)phenyl-κ//](2,2':6',2"-terpyridine-κ//1,κ//1")-, (*OC*-6-54)-, hexafluorophosphate(1-) (1:1), Ruthenium(1+), chloro[2,4-dimethoxy-6-(2-pyridinyl- κ N)phenyl- κ C](2,2':6',2"-terpyridine- κ N¹, κ N^{1'}, κ N^{1''})-, (OC-6-54)-, hexafluorophosphate(1-) (1:1), Ruthenium(1+), chloro[2-(6methyl-2-pyridinyl-κ/N)-1,10-phenanthroline- κN^1 , κN^{10}] bis(triphenylphosphine)-, (*OC*-6-42)-, Ruthenium(1+), [[[N(Z)]ethaniminato]hydrobis(1*H*-pyrazolato- κN^1)borato(1-)- κN , κN^2 , κN^2 '] [(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]-, 1,1,1trifluoromethanesulfonato (1:1), Ruthenium(1+), rel-aquachloro[µ-[[S(R)]-methanethiolato]][μ -[[S(S)]-methanethiolato]]bis[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, (Ru-Ru), stereoisomer, 1,1,1-trifluoromethanesulfonate (1:1), Ruthenium(1+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, hexafluorophosphate(1-) (1:1), Ruthenium(1+), tris(acetonitrile) $(\eta^5-2,4-cyclopentadien-1-yl)$ -, hexafluorophosphate(1-) (1:1), Ruthenium, [2,6-bis[(4R)-4,5-dihydro-4-phenyl-2-oxazolyl- κN^3]pyridineκ//Jdichloro(trimethyl phosphite-κ/P)-, (OC-6-14)-, Ruthenium(2+), trichlorobis[(1,2,3,4,5,6- η)-1,2,3,4,5,6-hexamethylbenzene][μ 3-[*N*-[6-[[[[6-[[(1,10-phenanthrolin-4-yl- κN^1 , κN^{10})carbonyl]amino]-2-pyridinyl- $\kappa \textit{N}] methyl] \textbf{[(2-pyridinyl-}\kappa \textit{N}) methyl] amino-}\kappa \textit{N}] methyl] \textbf{-2-pyridinyl-}\kappa \textit{N}] \textbf{-2-pyridinyl-}\kappa \textit{N}] \textbf$ 1,10-phenanthroline-4-carboxamidato-κ N^1 ,κ N^{10} :κ O^4]]tri-, stereoisomer, hexafluorophosphate(1-) (1:2), Ruthenium(2+), trichlorobis[(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene][μ_3 -[N-[6-[[[6-[[(1,10-phenanthrolin-4-yl- κN^1 , κN^{10})carbonyl]amino]-2pyridinyl-κ//]methyl][(2-pyridinyl-κ//)methyl]amino-κ//]methyl]-2pyridinyl- κN]-1,10-phenanthroline-4-carboxamidato- κN^1 , κN^{10} : κO^4]]tri-, stereoisomer, hexafluorophosphate(1-) (1:2), Ruthenium(2+), tris(2,2'bipyrazine- κN^1 , κN^1 ')-, (*OC*-6-11)-, hexafluorophosphate(1-) (1:2), Ruthenium, (η⁶benzene)dichloro[(pentafluorophenyl)diphenylphosphine-κP]-,

CAS SciFinder® Page 4

Ruthenium, aqua[[2,2'-bipyridine]-6,6'(1 H,1'H)-dionato(2-)- κN^1 , κN^1] [(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]-, Ruthenium, (benzo[h]quinolin-10-yl- C^{10} , N^{1})carbonylchlorobis(triphenylphosphine)-, (OC-6-52)-, Ruthenium, bis(acetato-κ O,κ O)[(45)-[4,4'-bi-1,3benzodioxole]-5,5'-diylbis[diphenylphosphine-κP]]-, (OC-6-22)-, Ruthenium, carbonylbis(trifluoroacetato-O)tris(triphenylphosphine)-, Ruthenium, carbonylchloro[1-(2-pyridinyl-ĸ/N)-2-naphthalenylκClbis(triphenylphosphine)-, (OC-6-52)-, Ruthenium, dicarbonylchloro[2-(5-methoxy-2-pyridinyl-κ/N)-N-[2-(5-methoxy-2pyridinyl-κ/Nphenyl]benzenaminato-κ/NJ-, (OC-6-34)-, Ruthenium, di-μcarbonyldicarbonylbis(n⁵-2,4-cyclopentadien-1-yl)di-, (*Ru-Ru*), Ruthenium, dichloro[2-[2-(4-chlorophenyl)diazenyl- κN^2]-1,10phenanthroline- κN^1 , κN^{10}](triphenylphosphine)-, (OC-6-42)-, Ruthenium, dichlorobis[μ-(methanethiolato)]bis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-, (Ru-Ru), stereoisomer, Ruthenium dioxide, Ruthenium oxide, Ruthenium trichloride, Ruthenium trichloride hydrate, (SP-5-41)-[1,3-Bis(2,4,6trimethylphenyl)-2-imidazolidinylidene]dichloro[[2-(1-methylethoxyκO)phenyl]methylene-κC|ruthenium, (SP-5-43)-[1,3-Bis(2,4,6trimethylphenyl)-2-imidazolidinylidene]dichloro[[2-(2naphthalenylthio-κ*S*)phenyl]methylene-κ*C*]ruthenium, (*TB*-5-12)-[1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][2-[[(4-bromo-2,6dimethylphenyl)imino-κ//Jmethyl]-4-nitrophenolatoκO]chloro(phenylmethylene)ruthenium, Tetracarbonyl-μhydro[(1,2,3,4,5-η)-1-hydroxylato-2,3,4,5-tetraphenyl-2,4cyclopentadien-1-yl][(1,2,3,4,5-η)-1-hydroxy-2,3,4,5-tetraphenyl-2,4cyclopentadien-1-yl]diruthenium, Tricarbonyl[(4a,5,7,7a-η)-1,2,3,4tetrahydro-1,4-dimethyl-5,7-diphenyl-6H-cyclopentapyrazin-6one]ruthenium, Triruthenium dodecacarbonyl, Tris(2,2'bipyridine)ruthenium(2+) bis(hexafluorophosphate), Tris(2,2'bipyridyl)dichlororuthenium(II) hexahydrate, Tris(2,2'bipyridyl)ruthenium(II) chloride, Tris(4,7-diphenyl-1,10-

Document Type:

phenanthroline)ruthenium dichloride, Tris(acetylacetonato)ruthenium

Language: English

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (207)

View in CAS SciFinder

Steps: 1 Yield: 95-100%

Steps: 1 Yield: 98%

Steps: 1 Yield: 100%

Steps: 1 Yield: 95%

Steps: 1 Yield: 98%

31-478-CAS-7907406

1.1 Reagents: Potassium carbonate, Oxygen
 Catalysts: Ruthenium(1+), chloro[2-(2-pyridinyl-κΛ)phenyl-κC]
 (2,2':6',2"-terpyridine-κΛ¹,κΛ¹',κΛ¹")-, (*OC*-6-54)-, hexafluoro phosphate(1-) (1:1)

Solvents: Methanol-d4; 8 h, 55 °C

Aerobic Oxidative Dehydrogenation of 2-Substituted Imidaz olines Promoted by a Cyclometalated Ruthenium Catalyst

By: Taketoshi, Ayako; et al

ChemCatChem (2010), 2(1), 58-60.

31-478-CAS-10831217

Reagents: Potassium carbonate, Oxygen Catalysts: Ruthenium(1+), chloro[2,4-dimethoxy-6-(2-pyridinyl- κ //)phenyl- κ /](2,2':6',2"-terpyridine- κ //, κ //, κ //, κ //")-, (*OC*-6-54)-, hexafluorophosphate(1-) (1:1) Solvents: Methanol- d_4 ; 18 h, 1 atm, 25 °C

Experimental Protocols

Ligand Modification of Cyclometalated Ruthenium Complexes in the Aerobic Oxidative Dehydrogenation of Imidazolines

By: Aiki, Shota; et al

ACS Catalysis (2013), 3(5), 812-816.

Scheme 2 (1 Reaction)

31-614-CAS-35668657

Reagents: Methanol- d_4 , Tempo Catalysts: Silver tetrafluoroborate, Cobalt iodide (Col₂), Bis (dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 30 min, 110 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Sterically Hindered C-H Acyloxylation to Synthesize Biaryl Isoquinoline Derivatives via Peresters

By: Liu, Hao; et al

Journal of Organic Chemistry (2023), 88(5), 3148-3158.

Steps: 1 Yield: 97%

Scheme 3 (1 Reaction)

 $NH_2 +$ $NH_2 +$ $NH_2 +$

≒ Suppliers (84)

Suppliers (84)

31-614-CAS-41472469

Steps: 1 Yield: 97%

Tandem Protocol for Diversified Deuteration of Secondary Aliphatic Amines under Mild Conditions

1.1 **Reagents:** Deuterium

Catalysts: Platinum ruthenium alloy Solvents: Hexane, Methanol-*d*₄; 4 h, 40 °C

Experimental Protocols

By: Zhu, Feng-Yuan; et al

Journal of Organic Chemistry (2024), 89(16), 11414-11420.

Scheme 4 (2 Reactions)

Steps: **1** Yield: **84-97%**

31-116-CAS-20873272

Steps: 1 Yield: 97%

A ruthenium(II)-catalyzed C-H allenylation-based approach to allenoic acids

.1 Reagents: Potassium carbonate, Methanol- d_4 , Water- d_2 Catalysts: Bis(dichloro(η^6 - ρ -cymene)ruthenium); 28 h, 50 °C

By: Wu, Xiaoyan; et al

Chemical Science (2019), 10(25), 6316-6321.

31-614-CAS-41178152

Steps: 1 Yield: 84%

Stereo-selective synthesis of complex dienes and eneynes by sequential hydroarylation and olefinic C-H functionalization

Steps: 1 Yield: 97%

1.1 Reagents: Potassium carbonate, Methanol-d, Water- d_2 Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium); 28 h, 50 °C

By: Zhu, Yuhang; et al

Organic Chemistry Frontiers (2024), 11(16), 4456-4463.

Experimental Protocols

Scheme 5 (1 Reaction)

31-614-CAS-26420361

Steps: 1 Yield: 97%

C7-Indole Amidations and Alkenylations by Ruthenium(II) Catalysis

Catalysts: Silver hexafluoroantimonate, Bis(acetato-κ*O*)[(1,2,3, 4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium
 Solvents: 2,2,2-Trifluoroethanol-*d*; 16 h, 40 °C

By: Choi, Isaac; et al

Experimental Protocols

Angewandte Chemie, International Edition (2020), 59(30), 12534-12540.

Steps: 1 Yield: 96%

Steps: 1 Yield: 65-95%

Scheme 6 (1 Reaction)

Suppliers (67)

31-116-CAS-16794403

1.1 Reagents: Formaldehyde, Methanol-d, Zinc bromide
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)

Solvents: Dichloroethane; 2 h, 60 °C

Experimental Protocols

Ru-Catalyzed Regioselective Direct Hydroxymethylation of (Hetero)Arenes via C-H Activation

By: Zhang, Guo-Fu; et al

Organic Letters (2017), 19(5), 1216-1219.

Scheme 7 (3 Reactions)

31-116-CAS-19356817

1.1 Reagents: Methanol-d₄

Catalysts: Carbonylchlorohydrotris(triphenylphosphine)

ruthenium

Experimental Protocols

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

RuHCl(CO)(PPh₃)₃-Catalyzed Direct Amidation of Arene C-H Bond with Azides

By: Xiao, Xinsheng; et al

Journal of Organic Chemistry (2018), 83(22), 13811-13820.

 $(\eta^6\text{-Arene})$ ruthenium(N-heterocyclic carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyr

31-116-CAS-3726892

1.1 **Reagents:** Methanol- d_4

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2H-imidazol-2-ylidene)[(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene]

ruthenium; 7 h, 120 °C

Steps: 1 Yield: 89%

Steps: 1 Yield: 95%

Steps: 1 Yield: 96%

By: Prades, Amparo; et al

Advanced Synthesis & Catalysis (2010), 352(7), 1155-1162.

idines: Catalytic Studies and Mechanistic Insights

Experimental Protocols

31-116-CAS-20676690

Steps: 1 Yield: 65%

1.1 **Reagents:** Sodium bicarbonate, Oxygen, 2-Propan-*2-d*-ol-*d*, 1, 1,1,3,3,3-hexafluoro-

Catalysts: Silver acetate, Bis(dichloro(η^6 -p-cymene)ruthenium) ; 4 h, 90 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-H Acylmethylation between (Hetero)arenes and α-Cl Ketones/Sulfoxonium Ylides

By: Li, Huihui; et al

Journal of Organic Chemistry (2019), 84(21), 13262-13275.

Steps: 1 Yield: 95%

Steps: 1 Yield: 95%

Steps: 1 Yield: 94%

Scheme 8 (1 Reaction)

31-116-CAS-7397006

Steps: 1 Yield: 95%

Reagents: Methanol-d4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: m-Xylene; 96 h, 110 °C

Suppliers (9)

Experimental Protocols

Ruthenium(II)-Catalyzed Direct Addition of Indole/Pyrrole C2-H Bonds to Alkynes

By: Liang, Libo; et al

Journal of Organic Chemistry (2014), 79(20), 9472-9480.

Scheme 9 (1 Reaction)

31-116-CAS-16305631

Steps: 1 Yield: 95%

Reagents: Potassium acetate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄; 6 h, 70 °C

Ruthenium(II)-Catalyzed Traceless C-H Functionalization Using N-N Bond as an Internal Oxidant

By: Zhou, Shuguang; et al

Chemistry - A European Journal (2016), 22(41), 14508-14512.

Scheme 10 (1 Reaction)

31-116-CAS-14932055

Steps: 1 Yield: 94% Catalysts: Potassium carbonate, (OC-6-52)-Carbonylchloro[2-

(diphenylphosphino-κ*P*)-*N*-[2-(diphenylphosphino-κ*P*)ethyl] ethanamine-к//Jhydroruthenium

Solvents: 2-Propan-*1,1,1,2,3,3,3-d*₇-ol-*d*; 3 h, rt → 140 °C; 1.5 h, 140 °C → 0 °C

Experimental Protocols

Transfer Hydrogenation of Organic Formates and Cyclic Carbonates: An Alternative Route to Methanol from Carbon Dioxide

By: Kim, Seung Hyo; et al

ACS Catalysis (2014), 4(10), 3630-3636.

Steps: 1 Yield: 94%

Steps: 1 Yield: 93%

Steps: 1 Yield: 93%

Scheme 11 (1 Reaction)

31-614-CAS-26693103

Steps: 1 Yield: 94%

1.1 Reagents: Methanol-d₄, 1-Adamantanecarboxylic acid, Trifluor omethanesulfonic acid, Propanoic acid, 2,2-dimethyl-, silver (1+) salt (1:1)

Catalysts: Silver triflate, Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethanol; 16 h, 100 °C

1.2 Solvents: Water; rt

Ruthenium Catalyzed C-H Selenylations of Aryl Acetic Amides and Esters via Weak Coordination

By: Weng, Zhengyun; et al

Organic Letters (2019), 21(16), 6310-6314.

Scheme 12 (1 Reaction)

31-116-CAS-12584786

Steps: 1 Yield: 93%

1.1 **Reagents:** *tert*-Butyl alcohol-*d*

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 13 (1 Reaction)

Suppliers (4)

31-614-CAS-37448826

Steps: 1 Yield: 93%

1.1 Reagents: Sodium formate, Methanol- d₄
Catalysts: Ruthenium (complexes with trimethylbenzene, Cl and copolymer of EGDMA-NIPMAM-viny...), 2973383-97-8 (ruthenium complexes with trimethylbenzene and Cl)
Solvents: Water- d₂; 18 h, 40 °C

Experimental Protocols

Harmonization of an incompatible aqueous aldol condensat ion/oxa-Michael addition/reduction cascade process over a core-shell-structured thermoresponsive catalyst

By: Su, Yu; et al

Green Chemistry (2023), 25(17), 6859-6868.

Steps: 1 Yield: 83%

Steps: 1 Yield: 83-93%

Steps: 1 Yield: 92%

Scheme 14 (2 Reactions)

31-614-CAS-37547226

Steps: 1 Yield: 93%

Reagents: Methanol-d4

Catalysts: Cesium acetate, Bis(dichloro(η^6 -p-cymene)

ruthenium); 16 h, 90 °C

Suppliers (49)

Experimental Protocols

Ruthenium-Catalyzed Synthesis of Macrocyclic Isoquinolines and Isoquinolones via a C-H/N-H Annulations Reaction

By: Gurumurthy, Palanivelu; et al

ChemistrySelect (2023), 8(32), e202301735.

31-116-CAS-16390822

1.1 Reagents: Sodium acetate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄; 24 h, 80 °C

Carbonyl-assisted reverse regiose lective cascade annulation of 2-acetylenic ketones triggered by Ru-catalyzed C-H activation

By: Gollapelli, Krishna Kumar; et al

Chemical Science (2016), 7(7), 4748-4753.

Scheme 15 (1 Reaction)

31-116-CAS-10124349

Steps: 1 Yield: 92%

Reagents: Methanol- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 96 h, 100 °C

Experimental Protocols

Highly Stereoselective Ruthenium(II)-Catalyzed Direct C2-syn-Alkenylation of Indoles with Alkynes

By: Zhang, Wei; et al

Organic Letters (2015), 17(6), 1349-1352.

Scheme 16 (1 Reaction)

31-614-CAS-24277173

Steps: 1 Yield: 92%

Reagents: Methanol-d4 1.1

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium), Zinc triflate

Solvents: 1,2-Dichloroethane; 10 min, 100 °C

Experimental Protocols

Ru(II)-Catalyzed C-H activation/annulation reactions of N-arylpyrazolidinones with sulfoxonium ylides: synthesis of cinnoline-fused pyrazolidinones

By: Jin, Hai-Shan; et al

Organic Chemistry Frontiers (2021), 8(22), 6350-6355.

Steps: 1 Yield: 78-92%

Scheme 17 (2 Reactions)

$$\rightarrow \bigvee_{(Z)}^{0}$$

Suppliers (20)

Double bond geometry shown

31-614-CAS-36010335

Reagents: Silver acetate, Methanol- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,4-Dioxane; 5 min, rt; 24 h, 120 °C

Experimental Protocols

Synthesis of Selenoflavones via Ruthenium-Catalyzed Seleny lation of Unsaturated Acids

By: Logeswaran, Ravichandran; et al

Journal of Organic Chemistry (2023), 88(7), 4554-4568.

31-116-CAS-23869487

Steps: 1 Yield: 78%

Steps: 1 Yield: 92%

Reagents: Methanol- d_4 , Copper diacetate monohydrate Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -pcymene)ruthenium)

Solvents: 1,2-Dichloroethane; 24 h, 120 °C

Experimental Protocols

Effect of Transition Metals on Chemodivergent Cross-Coupling of Acrylamides with Vinyl Acetate via C-H Activation

By: Logeswaran, Ravichandran; et al

Organic Letters (2021), 23(15), 5679-5683.

Scheme 18 (1 Reaction)

31-116-CAS-23016004

Steps: 1 Yield: 91%

Ruthenium catalyzed α-methylation of sulfones with methanol as a sustainable C1 source

Reagents: Potassium hydroxide

Catalysts: 1,2-Bis(diphenylphosphino)ethane, Dichloro[(1,2,5,

6-η)-1,5-cyclooctadiene]ruthenium Solvents: Methanol-d₄; 24 h, 120 °C By: Song, Dingguo; et al

Organic Chemistry Frontiers (2021), 8(1), 120-126.

Steps: 1 Yield: 91%

Scheme 19 (1 Reaction)

> Suppliers (71)

31-614-CAS-29881543

Steps: 1 Yield: 91%

1.1 Reagents: Potassium carbonate, Methanol- d₄

Catalysts: 2,4,6-Trimethylbenzoic acid, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: o-Xylene; 16 h, 120 °C

Experimental Protocols

Regiodivergent C-H and Decarboxylative C-C Alkylation by Ruthenium Catalysis: ortho versus meta Position-Selectivity

By: Korvorapun, Korkit; et al

Angewandte Chemie, International Edition (2020), 59(42), 18795-18803.

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

HO

📜 Suppliers (3)

31-116-CAS-20589898

Steps: 1 Yield: 90%

1.1 Reagents: Potassium carbonate

➤ Suppliers (91)

Catalysts: Sodium carbonate, Bis(dichloro(η^6 -p-cymene)

ruthenium)

Solvents: 2-Propan-*2-d*-ol-*d*, 1,1,1,3,3,3-hexafluoro-; 24 h, 55

°C; cooled

1.2 Reagents: Hydrochloric acid

Solvents: Water

Ring-Opening Ortho-C-H Allylation of Benzoic Acids with Vinylcyclopropanes: Merging Catalytic C-H and C-C Activation Concepts

By: Hu, Zhiyong; et al

Organic Letters (2019), 21(17), 6770-6773.

Scheme 21 (1 Reaction)

Suppliers (116)

Suppliers (10)

31-116-CAS-4766149

Steps: 1 Yield: 90%

1.1 Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 22 (1 Reaction)

Suppliers (57)

Supplier (1)

31-116-CAS-6633931 Steps: 1 Yield: 90%

Reagents: Methanol-d₄

Catalysts: Triruthenium dodecacarbonyl, Tricyclo[3.3.1.1^{3,7}]

decane-1-carboxylic acid, silver(1+) salt (1:1) Solvents: 1,2-Dichloroethane; 16 h, 100 °C

Experimental Protocols

Ruthenium-catalyzed ortho-C-H halogenations of benzamides

By: Wang, Lianhui; et al

Chemical Communications (Cambridge, United Kingdom)

(2014), 50(9), 1083-1085.

Scheme 23 (1 Reaction) Steps: 1 Yield: 89%

$$\rightarrow \bigcirc$$

31-116-CAS-1345186

Steps: 1 Yield: 89%

Reagents: tert-Butyl alcohol-d

Suppliers (11)

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Steps: 1 Yield: 73-88%

Scheme 24 (3 Reactions)

31-116-CAS-16199144

Steps: 1 Yield: 88%

Reagents: Sodium acetate, Methanol-d

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 20 h, 60 °C

Experimental Protocols

Ruthenium(II)- or Rhodium(III)-Catalyzed Grignard-Type Addition of Indolines and Indoles to Activated Carbonyl Compounds

By: Jo, Hyeim; et al

Advanced Synthesis & Catalysis (2016), 358(17), 2714-2720.

31-614-CAS-42086613

Steps: 1 Yield: 73%

Reagents: Acetic acid-d₄

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethan-*1,1-d*₂-ol-*d*; 3 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed C7 trifluoro methylthiolation and thioarylation of indolines using bench-stable reagents

By: Sumit; et al

Journal of Organic Chemistry (2024), 89(21), 15893-15900.

Steps: 1

31-614-CAS-41582343

Reagents: Silver acetate, Methanol- d_4 **Catalysts:** Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 5 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed sustainable C-H methylation of indolines with organoboranes in ethanol

By: Sumit; et al

Journal of Organic Chemistry (2024), 89(20), 14880-14886.

Steps: 1 Yield: 88%

Steps: 1 Yield: 88%

Steps: 1 Yield: 88%

Steps: 1 Yield: 88%

Scheme 25 (1 Reaction)

31-614-CAS-35261544

Suppliers (2)

1.1 Reagents: Sodium acetate, Methanol- d₄
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: 2,2,2-Trifluoroethanol; 30 min, rt

Experimental Protocols

Annulation of Indole-2-Carboxamides with Bicycloalkenes Catalyzed by Ru(II) at Room Temperature: An Easy Access to β -Carboline-1-one Derivatives under Mild Conditions

By: Das Adhikari, Gopal Krushna; et al Journal of Organic Chemistry (2023), 88(2), 952-959.

Scheme 26 (1 Reaction)

> Suppliers (2)

31-614-CAS-34646247

1.1

Reagents: Methanol- d_4 Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-cymene)ruthenium), (1.5)-2'-[[Bis(1-methylethyl)amino] carbonyl][1,1'-binaphthalene]-2-carboxylic acid

Solvents: 2-Methyl-2-butanol, Chlorobenzene; 12 h, 50 °C

Experimental Protocols

Steps: 1 Yield: 88% Ru(II)/Chiral Carboxylic Acid-Catalyzed Asymmetric [4 + 3] Annulation of Sulfoximines with α,β-Unsaturated Ketones

By: Qian, Pu-Fan; et al

ACS Catalysis (2022), 12(22), 13876-13883.

Scheme 27 (1 Reaction)

31-116-CAS-19225357

Steps: 1 Yield: 88%

1.1 **Reagents:** Water- d_2 , 2-Propan-1, 1, 1, 2, 3, 3, 4, ol-d **Catalysts:** Sodium acetate, Potassium hexafluorophosphate, Bis(dichloro(n^6 -p-cymene)ruthenium); 2 h, rt

Experimental Protocols

Ruthenium-Catalyzed Electrochemical Dehydrogenative Alkyne Annulation

By: Xu, Fan; et al

ACS Catalysis (2018), 8(5), 3820-3824.

Steps: 1 Yield: 88%

Steps: 1 Yield: 82-88%

Steps: 1 Yield: 87%

Scheme 28 (1 Reaction)

$\longrightarrow \bigvee_{N} \bigvee_{N} \bigvee_{D}$

Suppliers (16)

31-116-CAS-3493492

Steps: 1 Yield: 88%

1.1 **Reagents:** *tert*-Butyl alcohol-*d*

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 29 (2 Reactions)

Suppliers (83)

31-614-CAS-35771584

Steps: 1 Yield: 88%

.1 **Reagents:** Methanol-*d*₄, Propanoic acid, 2,2-dimethyl-, sodium salt (1:1)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium); 10 h, 70 °C

Experimental Protocols

Unlocking Regiodivergence in Pd^{II}- and Rh^{III}-Mediated Site-Selective C-H Bond Alkynylation of Imidazopyridines

By: Zhang, Qiang; et al

Organic Letters (2023), 25(9), 1447-1452.

31-116-CAS-23057916

Steps: 1 Yield: 82%

1.1 Catalysts: Propanoic acid, 2,2-dimethyl-, sodium salt (1:1), Bis (dichloro(η⁶-*p*-cymene)ruthenium)
 Solvents: Methanol-d₄; 8 h, 70 °C

Experimental Protocols

Ruthenium-Catalyzed C(sp²)-H Bond Bisallylation with Imidazopyridines as Directing Groups

By: Liu, Shuang; et al

Journal of Organic Chemistry (2020), 85(23), 15167-15182.

Scheme 30 (1 Reaction)

Suppliers (100)

31-116-CAS-15069784

Steps: 1 Yield: 87%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

.1 Reagents: *tert*-Butyl alcohol-*d*

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Steps: 1 Yield: 87%

Steps: 1 Yield: 87%

Steps: 1 Yield: 86%

Scheme 31 (1 Reaction)

$$\begin{array}{c|c}
 & F \\
 & F \\
 & F
\end{array}$$

Suppliers (8)

📜 Suppliers (57)

31-478-CAS-14296507

Steps: 1 Yield: 87%

Aerobic Oxidative Dehydrogenation of 2-Substituted Imidaz olines Promoted by a Cyclometalated Ruthenium Catalyst

Reagents: Potassium carbonate, Oxygen

Catalysts: Ruthenium(1+), chloro[2-(2-pyridinyl-κΛ)phenyl-κC] $(2,2':6',2''-terpyridine-\kappa N^1,\kappa N^{1'},\kappa N^{1''})-, (OC-6-54)-, hexafluoro$

phosphate(1-) (1:1)

Solvents: Methanol-d4; 8 h, 55 °C

By: Taketoshi, Ayako; et al

ChemCatChem (2010), 2(1), 58-60.

Scheme 32 (1 Reaction)

31-116-CAS-5608140

Steps: 1 Yield: 87%

Reagents: tert-Butyl alcohol-d Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 33 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

■ Suppliers (84)

31-116-CAS-15147692

Steps: 1 Yield: 86%

Synthesis of Tri- and Tetrasubstituted Pyrazoles via Ru(II) Catalysis: Intramolecular Aerobic Oxidative C-N Coupling

Catalysts: Triruthenium dodecacarbonyl

Solvents: Methanol-d₄; 12 h, 110 °C

By: Hu, Jiantao; et al

Experimental Protocols

Organic Letters (2012), 14(19), 5030-5033.

Steps: 1 Yield: 86%

Steps: 1 Yield: 86%

Steps: 1 Yield: 85%

Scheme 34 (1 Reaction)

31-116-CAS-1678749

Steps: 1 Yield: 86%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

1.1 Reagents: tert-Butyl alcohol-d

□ Suppliers (88)

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 35 (1 Reaction)

$$H_2N$$
 \longrightarrow H_2N \longrightarrow D \longrightarrow D \longrightarrow D \longrightarrow O \longrightarrow

31-116-CAS-16305632

Steps: 1 Yield: 86%

Ruthenium(II)-Catalyzed Traceless C-H Functionalization Using N-N Bond as an Internal Oxidant

I.1 Reagents: Zinc triflate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄; 6 h, 60 °C

By: Zhou, Shuguang; et al

Chemistry - A European Journal (2016), 22(41), 14508-14512.

Scheme 36 (1 Reaction)

31-116-CAS-12938911

Steps: 1 Yield: 85%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

1.1 Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

By: Groell, Birgit; et al

Experimental Protocols

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Steps: 1 Yield: 85%

Steps: 1 Yield: 84%

Steps: 1 Yield: 84%

Scheme 37 (1 Reaction)

31-116-CAS-3809463

Steps: 1 Yield: 85%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Reagents: tert-Butyl alcohol-d

📜 Suppliers (106)

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

Scheme 38 (1 Reaction)

31-116-CAS-5045363

Steps: 1 Yield: 84%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 39 (1 Reaction)

Suppliers (65)

📜 Supplier (1)

31-116-CAS-1079235

Steps: 1 Yield: 84%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Steps: 1 Yield: 83%

Steps: 1 Yield: 82%

Steps: 1 Yield: 82%

Steps: 1 Yield: 83%

Steps: 1 Yield: 82%

Steps: 1 Yield: 82%

Scheme 40 (1 Reaction)

Suppliers (108)

31-614-CAS-28620282

1 **Reagents:** Silver acetate, Methanol- d_4

Catalysts: Silver tetrafluoroborate, Copper(II) triflate, Bis

(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** Toluene; 24 h, 100 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-H Chalcogenation of Anilides

By: Ma, Wenbo; et al

Advanced Synthesis & Catalysis (2018), 360(4), 704-710.

Scheme 41 (1 Reaction)

31-116-CAS-5872987

1.1 Reagents: Methanol-d4

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2*H*-imidazol-2-ylidene)[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]

ruthenium; 5 h, 120 °C

Experimental Protocols

 $(\eta^6\text{-Arene})$ ruthenium(N-heterocyclic carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyr idines: Catalytic Studies and Mechanistic Insights

By: Prades, Amparo; et al

Advanced Synthesis & Catalysis (2010), 352(7), 1155-1162.

Scheme 42 (1 Reaction)

31-116-CAS-10788828

1.1 Reagents: Cesium acetate

📜 Suppliers (7)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄; 24 h, 70 °C

Experimental Protocols

Ruthenium-Catalyzed Oxidative Annulation of 6-Anilino purines with Alkynes via C-H Activation: Synthesis of Indole-Substituted Purines/Purine Nucleosides

By: Allu, Srinivasarao; et al

Advanced Synthesis & Catalysis (2015), 357(12), 2665-2680.

Scheme 43 (1 Reaction)

Suppliers (36)

📜 Suppliers (23)

31-478-CAS-12167474

Steps: 1 Yield: 81%

Aerobic Oxidative Dehydrogenation of 2-Substituted Imidaz olines Promoted by a Cyclometalated Ruthenium Catalyst

Steps: 1 Yield: 81%

Steps: 1 Yield: 80%

Steps: 1 Yield: 80%

Reagents: Potassium carbonate, Oxygen

Catalysts: Ruthenium(1+), chloro[2-(2-pyridinyl-κΛ)phenyl-κC] $(2,2':6',2''-terpyridine-\kappa N^1,\kappa N^{1''},\kappa N^{1''})-, (OC-6-54)-, hexafluoro$

phosphate(1-) (1:1)

Solvents: Methanol-d4; 8 h, 55 °C

By: Taketoshi, Ayako; et al

ChemCatChem (2010), 2(1), 58-60.

Scheme 44 (1 Reaction)

Suppliers (79)

31-614-CAS-41279972

Steps: 1 Yield: 80%

Reagents: Sodium acetate, Silver acetate, Potassium

carbonate, Methanol-d4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium), [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]methanesulfona

midato-κ*O*]silver

Solvents: 1,2-Dichloroethane; 4 h, 120 °C

Experimental Protocols

Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions

By: Zhou, Pengfei; et al

Journal of Organic Chemistry (2024), 89(15), 10953-10964.

Scheme 45 (1 Reaction)

Suppliers (123)

31-116-CAS-8077787

Steps: 1 Yield: 80%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Steps: 1 Yield: 80%

Steps: 1 Yield: 80%

Steps: 1 Yield: 80%

Scheme 46 (1 Reaction)

$$NH_2$$
 \rightarrow H_2N

31-116-CAS-10482140

Steps: 1 Yield: 80%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

1.1 Reagents: tert-Butyl alcohol-d

Suppliers (101)

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 47 (1 Reaction)

31-478-CAS-10042061

Steps: 1 Yield: 80%

Aerobic Oxidative Dehydrogenation of 2-Substituted Imidaz olines Promoted by a Cyclometalated Ruthenium Catalyst

1.1 Reagents: Potassium carbonate, Oxygen

Catalysts: Ruthenium(1+), chloro[2-(2-pyridinyl- κ /)phenyl- κ C] (2,2':6',2''-terpyridine- κ / 1 , κ / 1 ', κ / 1 '')-, (*OC*-6-54)-, hexafluoro

phosphate(1-) (1:1)

Solvents: Methanol-d₄; 8 h, 55 °C

By: Taketoshi, Ayako; et al

ChemCatChem (2010), 2(1), 58-60.

Scheme 48 (2 Reactions)

31-614-CAS-24277168

Steps: 1 Yield: 80%

1.1 **Reagents:** Methanol- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium), Zinc triflate

Solvents: 1,2-Dichloroethane; 3 min, 100 °C

Experimental Protocols

Ru(II)-Catalyzed C-H activation/annulation reactions of N-arylpyrazolidinones with sulfoxonium ylides: synthesis of cinnoline-fused pyrazolidinones

By: Jin, Hai-Shan; et al

Organic Chemistry Frontiers (2021), 8(22), 6350-6355.

Steps: 1 Yield: 79%

31-614-CAS-40475269

Steps: 1

1.1 Reagents: Sodium carbonate, Methanol- d₄
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 3 h, 55 °C

Experimental Protocols

Annulation with Allenes

Pyrazolidinone-Aided Ru(II)-Catalyzed Regioselective C-H

By: Sontakke, Geetanjali S.; et al

Organic Letters (2024), 26(21), 4480-4485.

Scheme 49 (1 Reaction)

➤ Suppliers (221)

 \rightarrow D N D

Suppliers (24)

31-116-CAS-14468964

Steps: 1 Yield: 79%

Reagents: tert-Butyl alcohol-d
 Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 50 (1 Reaction)

Suppliers (123)

Steps: 1 Yield: 78%

Steps: 1 Yield: 77%

31-116-CAS-10209268

Steps: 1 Yield: 78%

1.1 **Reagents:** *tert*-Butyl alcohol-*d*

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 51 (1 Reaction)

➤ Suppliers (19)

Steps: 1 Yield: 76%

Steps: 1 Yield: 75%

Steps: 1 Yield: 72%

31-614-CAS-27573889

Steps: 1 Yield: 77%

:ps. 1 Heid. 7770

1.1 **Reagents:** Silver acetate, Methanol- d_4

Catalysts: Silver triflate, Silver hexafluoroantimonate, Bis

(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethanol; 24 h, 100 °C

1.2 **Reagents:** Water; rt

Experimental Protocols

Ruthenium-Catalyzed C-H Selenylations of Benzamides

By: Ma, Wenbo; et al

European Journal of Organic Chemistry (2019), 2019(1), 41-45.

Scheme 52 (1 Reaction)

Suppliers (246)

Suppliers (82)

31-116-CAS-23856650

Steps: 1 Yield: 76%

1.1 Reagents: Potassium *tert*-butoxideCatalysts: (*OC*-6-12)-Dichloro[4-[[(*S*)-ethylthio-κ*S*]methyl] acridine-κ*N*](triphenylphosphine)ruthenium; 36 h, 135 °C

Experimental Protocols

Ru-Catalyzed Selective Catalytic Methyl ation and Methyle nation Reaction Employing Methanol as the C1 Source

By: Biswas, Nandita; et al

Journal of Organic Chemistry (2021), 86(15), 10544-10554.

Scheme 53 (1 Reaction)

31-614-CAS-30037596

Steps: **1** Yield: **75%**

.1 Reagents: Zinc acetate, Vinylene carbonate, Methanol- d Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dimethoxyethane; 24 h, 80 °C

Suppliers (28)

1.2 **Solvents:** Water; rt

Experimental Protocols

Ruthenium-Catalyzed Vinylene Carbonate Annulation by C-H/N-H Functionalizations: Step-Economical Access to Indoles

By: Yu, Yao; et al

Advanced Synthesis & Catalysis (2022), 364(4), 838-844.

Scheme 54 (1 Reaction)

Suppliers (5)

Steps: 1 Yield: 71%

Steps: 1 Yield: 70%

31-116-CAS-21885893 Steps: 1 Yield: 72%

Reagents: Methyl acrylate, Potassium acetate, Methanol- d_4 , Oxygen

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium); overnight, 110 °C

Experimental Protocols

Ruthenium-catalyzed selectively oxidative C-H alkenylation of N-acylated aryl sulfonamides by using molecular oxygen as an oxidant

By: Li, Xueyuan; et al

Journal of Organic Chemistry (2020), 85(9), 5916-5926.

Scheme 55 (1 Reaction)

Steps: 1 Yield: 71%

31-116-CAS-12339711

Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 56 (1 Reaction)

31-116-CAS-5967262

Steps: 1 Yield: 70%

Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 57 (1 Reaction)

Steps: 1 Yield: 65%

Steps: 1 Yield: 60%

Steps: 1 Yield: 58%

Steps: 1 Yield: 58%

31-116-CAS-20330746

Steps: 1 Yield: 65%

Allylic Acetals as Acrolein Oxonium Precursors in Tandem C-H Allylation and [3+2] Dipolar Cycloaddition

Reagents: Lithium acetate, Methanol-d4, 3,3-Dimethoxy-1-

propene

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 12 h, 40 °C; 40 °C

→ rt

By: Lee, Heeyoung; et al

Angewandte Chemie, International Edition (2019), 58(28),

9470-9474.

Scheme 58 (1 Reaction)

31-116-CAS-9178188

Steps: 1 Yield: 60%

1.1 Reagents: Cupric acetate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d4; 18 h, 80 °C

Experimental Protocols

Versatile Pyrrole Synthesis through Ruthenium(II)-Catalyzed Alkene C-H Bond Functionalization on Enamines

By: Wang, Lianhui; et al

Organic Letters (2013), 15(1), 176-179.

Scheme 59 (1 Reaction)

31-116-CAS-14737654

Steps: 1 Yield: 58%

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

Reagents: tert-Butyl alcohol-d

Catalysts: Triruthenium dodecacarbonyl; 3 h, rt \rightarrow 115 °C

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 60 (1 Reaction)

Experimental Protocols

> Suppliers (30)

Steps: 1 Yield: 50%

Steps: 1 Yield: 49%

Steps: 1 Yield: 43%

31-614-CAS-39285268

Steps: 1 Yield: 58%

Reagents: Silver carbonate, Methanol-d

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 12 h, 120 °C

1.2 **Reagents:** Water; rt

Experimental Protocols

Ruthenium(II)-Catalyzed Selective C(sp²)-H Acyloxylation of 2-Aroyl-Pyridine Derivatives with Sodium Carboxylate

By: Ma, Wenbo; et al

Advanced Synthesis & Catalysis (2024), 366(3), 518-525.

Scheme 61 (1 Reaction)

📜 Suppliers (99)

31-116-CAS-3059510

Steps: 1 Yield: 50%

1.1 **Reagents:** *tert*-Butyl alcohol-*d*

Catalysts: Triruthenium dodecacarbonyl; 15 min, rt → 115 °C

Experimental Protocols

Selective Ru(0)-catalyzed deuteration of electron-rich and electron-poor nitrogen-containing heterocycles

By: Groell, Birgit; et al

Journal of Organic Chemistry (2012), 77(9), 4432-4437.

Scheme 62 (1 Reaction)

Suppliers (63)

Suppliers (119)

31-478-CAS-918796

Steps: 1 Yield: 49%

Aerobic Oxidative Dehydrogenation of 2-Substituted Imidaz olines Promoted by a Cyclometalated Ruthenium Catalyst

1.1 Reagents: Potassium carbonate, Oxygen

Catalysts: Ruthenium(1+), chloro[2-(2-pyridinyl-κΛ)phenyl-κC] (2,2':6',2"-terpyridine-κN¹,κN¹',κN¹')-, (OC-6-54)-, hexafluoro

phosphate(1-) (1:1)

Solvents: Methanol-d₄; 8 h, 55 °C

By: Taketoshi, Ayako; et al

ChemCatChem (2010), 2(1), 58-60.

Scheme 63 (1 Reaction)

➤ Suppliers (93)

Steps: 1 Yield: 30%

Steps: 1 Yield: 21%

31-614-CAS-26579183

Steps: 1 Yield: 43%

1.1 Reagents: Cupric acetate, Methanol- d_4 **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium), 1-Butyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide, [1,1,1- $Trifluoro-\textit{N-}[(trifluoromethyl)sulfonyl-\kappa\textit{O}] methanesulfona$ midato-κO]silver; 4 h, rt

The C-H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature

By: Du, Kaifeng; et al

RSC Advances (2020), 10(6), 3203-3211.

Scheme 64 (1 Reaction)

31-116-CAS-22269785

Steps: 1 Yield: 30%

Reagents: Water-d₂

Catalysts: Cesium acetate, Bis(dichloro(η⁶-*p*-cymene)

ruthenium)

Solvents: Methanol-d₄; 16 h, 65 °C

Ruthenium(II)-Catalyzed Ortho-C-H Alkylation of Naphthy lamines with Diazo Compounds for Synthesis of 2, 2-Disubst ituted π -Extended 3-Oxindoles in Water

By: Wang, Xiaogang; et al

Organic Letters (2020), 22(13), 5187-5192.

Scheme 65 (1 Reaction)

31-116-CAS-23837760

Steps: 1 Yield: 30%

Reagents: Methanol-d4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 30 min, 60 °C

Experimental Protocols

Synthesis of tetracyclic indenopyrazolopyrazolones through cascade reactions of aryl azomethine imines with propargyl alcohols

By: Zhang, Linghua; et al

Organic Chemistry Frontiers (2021), 8(14), 3734-3739.

Scheme 66 (1 Reaction)

Steps: 1 Yield: 20%

Steps: 1 Yield: 15%

31-108-CAS-17049677

Steps: 1 Yield: 21%

1.1 Reagents: Potassium carbonate

Catalysts: 2,4,6-Trimethylbenzoic acid, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: o-Xylene, Methanol-d₄; 16 h, 120 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-C Arylations and Alkylations: Decarbamoylative C-C Functionalizations

By: Moselage, Marc; et al

Angewandte Chemie, International Edition (2017), 56(19),

5341-5344.

Scheme 67 (1 Reaction)

31-116-CAS-22001855

1.1 Reagents: Cesium carbonate, Methanol-d Catalysts: Ruthenium; 24 h, 2 bar, 55 °C

Steps: **1** Yield: **20%**

Steps: 1 Yield: 15%

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 68 (1 Reaction)

31-614-CAS-41757792

1.1 Reagents: Methanol-d₄

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium), [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl- κO]methanesulfona

midato-κ*O*]silver

Solvents: 1,2-Dichloroethane; 1 min, rt 1.2 Catalysts: Silver carbonate; 30 min, 60 °C

Experimental Protocols

Ru(II)-Catalyzed Skeletal Editing of Oxindole with Internal Alkyne To Synthesize C7-Alkylated Indole Derivatives

By: Das, Sarbojit; et al

Organic Letters (2024), 26(38), 8051-8056.

Scheme 69 (2 Reactions)

Steps: 1 Yield: 13%

31-116-CAS-20966837

Steps: 1 Yield: 13%

1.1 Reagents: Methanol-d₄, Acetic acid-d₄

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 5 h, 120 °C

Experimental Protocols

Ru(II)/Rh(III)-Catalyzed C(sp³)-C(sp³) Bond Formation through C(sp³)-H Activation: Selective Linear Alkylation of 8- Methylqu inolines and Ketoximes with Olefins

By: Kumar, Rohit; et al

Journal of Organic Chemistry (2020), 85(2), 1181-1192.

31-116-CAS-6152503

Steps: 1

1.1 Reagents: Methanol-d₄

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2H-imidazol-2-ylidene)[(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene]

ruthenium; 10 h, 120 °C

Experimental Protocols

 $(\eta^6\text{-Arene})$ ruthenium(N-heterocyclic carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyr idines: Catalytic Studies and Mechanistic Insights

By: Prades, Amparo; et al

Advanced Synthesis & Catalysis (2010), 352(7), 1155-1162.

Scheme 70 (1 Reaction)

Steps: 1

Suppliers (179)

Suppliers (33)

31-116-CAS-14321096

Steps: 1

1.1 **Catalysts:** Potassium carbonate, (*OC*-6-52)-Carbonylchloro[2-(diphenylphosphino-κ*P*)-*N*-[2-(diphenylphosphino-κ*P*)ethyl] ethanamine-κ*N*]hydroruthenium

Solvents: 2-Propan-*1*, *1*, *1*, *2*, *3*, *3*, *3*-ol-*d*; 3 h, rt \rightarrow 140 °C; 1.5 h, 140 °C \rightarrow 0 °C

Experimental Protocols

Transfer Hydrogenation of Organic Formates and Cyclic Carbonates: An Alternative Route to Methanol from Carbon Dioxide

By: Kim, Seung Hyo; et al

ACS Catalysis (2014), 4(10), 3630-3636.

Scheme 71 (1 Reaction)

Steps: 1

31-085-CAS-20676691

Steps: 1

1.1 **Reagents:** Sodium bicarbonate, Oxygen, 2-Propan-*2-d*-ol-*d*, 1, 1,1,3,3,3-hexafluoro-

Catalysts: Silver acetate, Bis(dichloro(η^6 -p-cymene)ruthenium) ; 4 h, 90 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-H Acylmethylation between (Hetero)arenes and α-Cl Ketones/Sulfoxonium Ylides

By: Li, Huihui; et al

Journal of Organic Chemistry (2019), 84(21), 13262-13275.

Scheme 72 (1 Reaction)

Steps: 1

Suppliers (93)

> Suppliers (6)

31-614-CAS-41866321

Steps: 1

Reagents: Methanol- d_4 , Sodium iodide, 2-Phenyl-1-tosylaz

Catalysts: 2-Ethylbutanoic acid, Dichlorotris(triphenyl

phosphine)ruthenium

Solvents: 1,4-Dioxane; 8 h, 80 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Remote C-H Alkylation of Arenes Using Diverse N-Directing Groups through Aziridine Ring Opening

By: Lan, Hongyan; et al

Organic Letters (2024), 26(38), 7993-7998.

Scheme 73 (2 Reactions)

Steps: 1

Suppliers (72)

31-614-CAS-24079398

Steps: 1

Reagents: Methanol- d_4 , 1-Adamantanecarboxylic acid, Silver hexafluoroantimonate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 12 h, 130 °C

Experimental Protocols

Divergent Construction of Diverse Scaffolds through Catalyst-Controlled C-H Activation Cascades of Quinazolinones and Cyclopropenones

By: Shi, Yuesen; et al

Chemistry - A European Journal (2021), 27(53), 13346-13351.

31-614-CAS-29191701

Steps: 1

Reagents: Sodium acetate, Methanol-d4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 12 h, 80 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-C/C-N Coupling of 2-Arylquina zolinones with Vinylene Carbonate: Access to Fused Quinazo linones

By: Wang, Zhao-Hui; et al

Organic Letters (2021), 23(3), 995-999.

Scheme 74 (1 Reaction)

Absolute stereochemistry shown, Rotation (+)

Absolute stereochemistry shown, Rotation (+)

📜 Supplier (1)

Steps: 1

31-478-CAS-14830715

Steps: 1

1.1 Reagents: Oxygen

Catalysts: [N-[(1R,2R)-2-(Amino-κN)-1,2-diphenylethyl]-4-methylbenzenesulfonamidato-κN][(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene](1,1,1-trifluoromethanesulfonato-κO) ruthenium

Solvents: Methanol-d₄; 12 h, 25 °C

Asymmetric Ruthenium-Catalyzed Hydrogenation of 2- and 2, 9-Substituted 1,10-Phenanthrolines

By: Wang, Tianli; et al

Angewandte Chemie, International Edition (2013), 52(28), 7172-7176.

Scheme 75 (1 Reaction)

Steps: 1

Suppliers (88)

≒ Suppliers (88)

Suppliers (63)

31-614-CAS-35734688

Steps: 1

1.1 **Reagents:** Cesium carbonate, Titania

 $\label{lem:catalysts:magnesium} \textbf{Catalysts:} \ \ \text{Magnesium acetate, Benzyltributylammonium} \\ \text{chloride, Dichloro[(1,2,5,6-\eta)-1,5-cyclooctadiene]ruthenium} \\$

Solvents: Methanol-d; 11 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed One-pot Synthesis of 1,2-Hydropyridines via a Three-component Reaction

By: Yang, Juntao; et al

Organic Letters (2023), 25(9), 1476-1480.

Scheme 76 (1 Reaction)

Steps: 1

31-116-CAS-16786890

Steps: 1

1.1 **Reagents:** 2-Propan-*1*, *1*, *1*, *2*, *3*, *3*, *3*-*d*₇-ol-*d*

Catalysts: (OC-6-52)-[2-[6-[(Amino- κ /\))methyl]-2-pyridinyl- κ /\]-5-methylphenyl- κ /\][1,1'-(1,4-butanediyl)bis[1,1-diphenylp

hosphine-κ*P*]]hydroruthenium Solvents: THF-*d*₈; 6 min, 25 °C Electrocatalytic Alcohol Oxidation with Ruthenium Transfer Hydrogenation Catalysts

By: Waldie, Kate M.; et al

Journal of the American Chemical Society (2017), 139(2), 738-748.

Scheme 77 (1 Reaction)

Suppliers (4)

31-614-CAS-29438493

Steps: 1

Reagents: Hydrogen, Methanol- d
 Catalysts: Ruthenium(1+), [(1R)-1,1'-[1,1'-binaphthalene]-2,2'-diylbis[1,1-bis(4-methylphenyl)phosphine-κP]]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]-, chloride; 30 min, 20 psi, 25 °C

Ru-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes and Substrate-Mediated H/D Exchange

By: Hao, Wei; et al

ACS Catalysis (2022), 12(2), 1150-1160.

Experimental Protocols

Scheme 78 (1 Reaction)

` Suppliers (90)

31-116-CAS-1890264

Steps: 1

1.1 **Reagents:** Methanol-*d*₄

 $\label{lem:catalysts: Dichloro} \textbf{Catalysts: } Dichloro(1,3-dibutyl-1,3-dibydro-2\textit{H-}imidazol-2-ylidene)[(1,2,3,4,5,6-\eta)-1-methyl-4-(1-methylethyl)benzene]$

ruthenium; 10 h, 120 °C

Experimental Protocols

 $(\eta^6\text{-Arene})$ ruthenium(N-heterocyclic carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyr idines: Catalytic Studies and Mechanistic Insights

By: Prades, Amparo; et al

Advanced Synthesis & Catalysis (2010), 352(7), 1155-1162.

Scheme 79 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

31-614-CAS-34388328

Steps: 1

1.1 Reagents: Sodium acetate, Methanol-d₄
 Catalysts: Silver tetrafluoroborate, Bis(dichloro(η⁶-p-cymene) ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 3 h, 100 °C

Experimental Protocols

Synthesis of alpha-pyrones and chromen-2-ones by transi tion-metal catalyzed annulations of sulfoxonium and iodonium ylides with cis-stilbene acids

By: John, Stephy Elza; et al

New Journal of Chemistry (2022), 46(41), 19722-19730.

Steps: 1

Steps: 1

Steps: 1

Scheme 80 (1 Reaction)

Suppliers (34)

31-614-CAS-31487799

Steps: 1

Reagents: Methanol-d4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium), Antimonate (3-), hexafluoro-, silver(1+) hydrogen (1:1:2), (OC-6-11)-

Solvents: 1,2-Dichloroethane; 6 h, 100 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Ru-Catalyzed C-H alkenylation on the arene ring of pirfen idone using pyridone as a directing group

By: Raziullah; et al

Chemical Communications (Cambridge, United Kingdom) (2022), 58(21), 3481-3484.

Scheme 81 (1 Reaction)

31-614-CAS-28214306

Steps: 1

CI

Reagents: Cupric acetate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Methanol-d₄; 12 h, 130 °C

• CI

Experimental Protocols

Ruthenium(II)-Catalyzed Oxidative Annulation Reactions of Arylimidazolium Salts via N-Heterocyclic Carbene-Directed C-**H** Activation

By: Li, Renhe; et al

Advanced Synthesis & Catalysis (2015), 357(18), 3885-3892.

Scheme 82 (1 Reaction)

Suppliers (68)

Suppliers (76)

31-614-CAS-25589872

Steps: 1

Reagents: Methanol- d_4 , Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 5 h, 120 °C

Experimental Protocols

Ru(II)/Rh(III)-Catalyzed C(sp³)-C(sp³) Bond Formation through C(sp³)-H Activation: Selective Linear Alkylation of 8- Methylqu inolines and Ketoximes with Olefins

By: Kumar, Rohit; et al

Journal of Organic Chemistry (2020), 85(2), 1181-1192.

Scheme 83 (1 Reaction)

Steps: 1

Suppliers (41)

31-116-CAS-8006826

Steps: 1

1.1 Reagents: Methanol-d₄

 $\label{lem:catalysts:} \begin{tabular}{ll} Catalysts: Dichloro (1,3-dibutyl-1,3-dihydro-2\emph{H}-imidazol-2-ylidene) [(1,2,3,4,5,6-\eta)-1-methyl-4-(1-methylethyl)benzene] \end{tabular}$

ruthenium; 10 h, 120 °C

Experimental Protocols

 $(\eta^6$ -Arene)ruthenium(N-heterocyclic carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyr idines: Catalytic Studies and Mechanistic Insights

By: Prades, Amparo; et al

Advanced Synthesis & Catalysis (2010), 352(7), 1155-1162.

Scheme 84 (1 Reaction)

Steps: 1

31-614-CAS-38966808

Steps: 1

1.1 **Reagents:** Acetic acid, Methanol- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 0.5 h, 80 °C; 80 °C \rightarrow rt

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Synthesis of 1,7-Fused Indolines Tethered with Spiroind olinone Based on C-H Activation Strategy with Air as Sustai nable Oxidant

By: He, Xing; et al

Journal of Organic Chemistry (2024), 89(3), 1880-1897.

Scheme 85 (1 Reaction)

Steps: 1

31-614-CAS-39593993

Steps: 1

1.1 **Reagents:** Sodium bicarbonate, Methanol- d_4

 $\textbf{Catalysts:} \ \, \textbf{Silver tetrafluoroborate, Bis(dichloro(} \eta^6\text{-}\textit{p-}\text{cymene)}$

ruthenium)

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed regioselective [4 + 1] redox-neutral spirocyc lization of aryl amidines with diazopyra zolones: direct access to spiro[indole-3,4'-pyrazol]-5'-ones

By: Cui, Bo; et al

Organic Chemistry Frontiers (2024), 11(6), 1811-1816.

Steps: 1

Steps: 1

Steps: 1

Scheme 86 (1 Reaction)

Steps: 1

Suppliers (63)

31-614-CAS-35898041

Reagents: Methanol-d4, Monopotassium phosphate, Silver hexafluoroantimonate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Toluene; 10 min, 80 °C

Experimental Protocols

One-Pot Synthesis of Benzodiazepines through Rull-Catalyzed Regioselective [5+2] Annulation of N-Aryl Amidines with **Alkynyl Cyclobutyl Acetates**

By: Shen, Jian; et al

European Journal of Organic Chemistry (2023), 26(13), e202300064.

Scheme 87 (2 Reactions)

📜 Supplier (1)

31-614-CAS-37732068

Steps: 1

Reagents: Cupric acetate, Methanol-d₄, 1-[4-(Trifluoromethyl) phenyl]cyclopropanol

Catalysts: 1-Adamantanecarboxylic acid, Bis(dichloro(η⁶-*p*cymene)ruthenium); 3 min, 80 °C

Experimental Protocols

Regiocontrol via Electronics: Insights into a Ru- Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C **Bond Activation of Cyclopropanols**

By: Jha, Neha; et al

Chemistry - A European Journal (2023), 29(55), e202301551.

31-614-CAS-37732075

Steps: 1

Reagents: Cupric acetate, Methanol- d_4 Catalysts: 1-Adamantanecarboxylic acid, Bis(dichloro(η^6 -pcymene)ruthenium); 30 min, 80 °C

Experimental Protocols

Regiocontrol via Electronics: Insights into a Ru- Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C **Bond Activation of Cyclopropanols**

By: Jha, Neha; et al

Chemistry - A European Journal (2023), 29(55), e202301551.

Scheme 88 (1 Reaction)

` Supplier (1)

31-614-CAS-37732069

Steps: 1

Reagents: Cupric acetate, Methanol-d4, 1-(3,4-Dimethox yphenyl)cyclopropanol

Catalysts: 1-Adamantanecarboxylic acid, Bis(dichloro(η⁶-*p*cymene)ruthenium); 6 min, 80 °C

Experimental Protocols

Regiocontrol via Electronics: Insights into a Ru- Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C **Bond Activation of Cyclopropanols**

By: Jha, Neha; et al

Chemistry - A European Journal (2023), 29(55), e202301551.

Scheme 89 (1 Reaction)

Steps: 1

31-116-CAS-20727314

Steps: 1

Reagents: Cupric acetate, Methanol-d4 Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -pcymene)ruthenium)

Solvents: 1,2-Dichloroethane; 5 min, rt; 16 h, 100 °C

Experimental Protocols

Ru(II)- or Rh(III)-Catalyzed Difunctionalization of Alkenes by Tandem Cyclization of N-Aryl Acrylamides with Alkenes

By: Manoharan, Ramasamy; et al

Journal of Organic Chemistry (2019), 84(22), 14830-14843.

Scheme 90 (1 Reaction)

Steps: 1

31-116-CAS-19085642

Steps: 1

Reagents: Pivalic acid, Methanol-d

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 2 h, 100 °C

Ru (II)-Catalyzed Coupling-Cyclization of Sulfoximines with alpha-Carbonyl Sulfoxonium Ylides as an Approach to 1,2-Benzothiazines

By: Xie, Haisheng; et al

Advanced Synthesis & Catalysis (2018), 360(18), 3534-3543.

Scheme 91 (1 Reaction)

Steps: 1

Cl

Steps: 1

1.1 Reagents: Cupric acetate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Methanol-d₄; 24 h, 130 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Oxidative Annulation Reactions of Arylimidazolium Salts via N-Heterocyclic Carbene-Directed C-H Activation

By: Li, Renhe; et al

Advanced Synthesis & Catalysis (2015), 357(18), 3885-3892.

Scheme 92 (1 Reaction)

Steps: 1

$$\rightarrow$$

31-614-CAS-33409740

Suppliers (21)

Steps: 1

Reagents: Methanol-d₄, Silver hexafluoroantimonate Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 2 h, 70 °C

Experimental Protocols

Ru(II)-Catalyzed regioselective carbene insertion into $\beta\text{-}$ carbolines and isoquinolines

By: John, Stephy Elza; et al

Organic & Biomolecular Chemistry (2022), 20(29), 5852-5860.

Scheme 93 (1 Reaction)

31-614-CAS-41965079

Steps: 1

Reagents: Methanol-d₄, [1,1,1-Trifluoro-N-[(trifluoromethyl) sulfonyl-κO]methanesulfonamidato-κO]silver
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: 1,2-Dichloroethane; 0.5 h, 80 °C

Experimental Protocols

Rh(III)- or Ru(II)-Catalyzed C-H Annulation with Vinylene Carbonate and an Unexpected Aerobic Oxidation/Depro tection Cascade to Yield Cinnolin-4(1H)-ones

By: Wang, Yuqin; et al

Journal of Organic Chemistry (2024), 89(19), 14233-14241.

Scheme 94 (1 Reaction)

📜 Suppliers (10)

Steps: 1

31-116-CAS-23618178

Steps: 1

Reagents: Pivalic acid, Methanol-d4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 6 h, 100 °C

Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Ru(II)-Catalyzed Regioselective Hydroarylative Coupling of Indolines with Internal Alkynes by C-H Activation

By: Raziullah; et al

European Journal of Organic Chemistry (2021), 2021(14),

Scheme 95 (1 Reaction)

Steps: 1

31-116-CAS-19042416

Steps: 1

Reagents: Methanol- d_4 , Cesium acetate, Water- d_2 Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 90 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Dearomatized C-H Activation and Annulation Reaction of Vinylnaphthols with Alkynes: Access to Spiro-Pentacyclic Naphthalenones

By: Duarah, Gauri; et al

Chemistry - A European Journal (2018), 24(40), 10196-10200.

Scheme 96 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

31-117-CAS-5360407

Steps: 1

Catalysts: Tris(2,2'-bipyridine)ruthenium(2+) bis(hexafluoro

phosphate)

Solvents: Methanol-d₄; 24 h, rt

Experimental Protocols

Cross-Coupling of Meyer-Schuster Intermediates under Dual Gold-Photoredox Catalysis

By: Um, Jiwon; et al

Organic Letters (2016), 18(3), 484-487.

Scheme 97 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

31-117-CAS-7502258

Steps: 1

Catalysts: Tris(2,2'-bipyridine)ruthenium(2+) bis(hexafluoro phosphate)

Solvents: Methanol-d₄; 2 h, rt

Experimental Protocols

Cross-Coupling of Meyer-Schuster Intermediates under Dual Gold-Photoredox Catalysis

By: Um, Jiwon; et al

Organic Letters (2016), 18(3), 484-487.

Scheme 98 (1 Reaction)

Steps: 1

$$\xrightarrow{\mathbb{N}} \mathbb{N}$$

Suppliers (36)

31-614-CAS-24450146

Steps: 1

Ru(II)-Catalyzed C-H Activation Reaction between 2-Phenylquinazolinone and Vinylene Carbonate

1.1 **Reagents:** Methanol- d_4

Catalysts: Silver triflate, Silver sulfate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 2 h, 110 °C

Experimental Protocols

Synlett (2021), 32(19), 1963-1968.

By: Chen, Yuncan; et al

Scheme 99 (1 Reaction)

Steps: 1

Multi-component structure image available in CAS SciFinder

Suppliers (38)

31-116-CAS-23613467

Steps: 1

1.1 **Reagents:** Sodium acetate, Water- d₂

Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium)

Solvents: Ethanol-d₆; 10 h, 120 °C

Experimental Protocols

Ruthenium-catalyzed coupling of α -carbonyl phosphoniums with sulfoxonium ylides via C-H activation/Wittig reaction sequences

By: Chen, Tian; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(21), 2665-2668.

Scheme 100 (1 Reaction)

Steps: 1

31-614-CAS-28578657

Steps: 1

1.1 Reagents: Cupric acetate, Silver hexafluoroantimonate Catalysts: Bis(dichloro(n⁶-p-cymene)ruthenium)

Solvents: Methanol- d_4 , Acetic acid- d_4 ; 6 h, rt

Ruthenium-Catalyzed Hydroarylation and One-Pot Twofold Unsymmetrical C-H Functionalization of Arenes

By: Ghosh, Koushik; et al

Angewandte Chemie, International Edition (2016), 55(27), 7821-7825.

Steps: 1

Scheme 101 (1 Reaction)

31-116-CAS-22577818

Steps: 1

1.1 Reagents: Methanol- d_4 , Cesium acetate

Suppliers (2)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium); 8 h, 80 °C

Experimental Protocols

Ru(II)-Catalyzed and acidity-controlled tunable [5+1]/[5+2] annulation for building ring-fused quinazolines and 1,3benzodiazepines

By: Yang, Yurong; et al

Chemical Communications (Cambridge, United Kingdom) (2020), 56(76), 11315-11318.

Scheme 102 (1 Reaction)

Steps: 1

31-087-CAS-20311751

Suppliers (65)

Steps: 1

Reagents: Methanol-d4, Propanoic acid, 2,2-dimethyl-, sodium salt (1:1), Water-d2

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 70 °C

Decarboxylative [4+2] annulation of arylglyoxylic acids with internal alkynes using the anodic ruthenium catalysis

By: Luo, Mu-Jia; et al

Chemical Communications (Cambridge, United Kingdom) (2019), 55(50), 7251-7254.

Scheme 103 (1 Reaction)

Steps: 1

Supplier (1)

31-614-CAS-25192282

Steps: 1

Reagents: Cesium carbonate, Methanol-d4 **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Dichloromethane; rt; 2 h, 60 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Redox-Neutral [3+2] Annulation of Indoles with Internal Alkynes via C-H Bond Activation: Accessing a Pyrroloindolone Scaffold

By: Xie, Yanan; et al

Journal of Organic Chemistry (2017), 82(10), 5263-5273.

Scheme 104 (1 Reaction)

Steps: 1

📜 Supplier (1)

31-116-CAS-18701277

Steps: 1

Ruthenium(II)-Catalyzed Regio- and Stereose lective C-H Allylation of Indoles with Allyl Alcohols

Reagents: Sodium acetate, Methanol- d4 **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 6 h, 45 °C; 45 °C → rt

Experimental Protocols

By: Wu, Xiaowei; et al

Organic Letters (2018), 20(8), 2224-2227.

Scheme 105 (1 Reaction)

Steps: 1

Suppliers (38)

Suppliers (76)

31-116-CAS-22742754

Steps: 1

Reagents: Benzoic acid, Water- d2

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Ethanol-d₆; 20 h, 120 °C

Experimental Protocols

Ruthenium-catalyzed α-carbonyl sulfoxonium ylide annula tions with aryl substituted pyrazoles via C-H/N-H bond functionalizations

By: Chen, Zhangpei; et al

Organic & Biomolecular Chemistry (2020), 18(41), 8486-8490.

Scheme 106 (1 Reaction)

Steps: 1

31-116-CAS-19085641

Steps: 1

Suppliers (49)

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Suppliers (38)

Reagents: Pivalic acid, Methanol-d

Solvents: 1,2-Dichloroethane; 2 h, 100 °C

Ru (II)-Catalyzed Coupling-Cyclization of Sulfoximines with alpha-Carbonyl Sulfoxonium Ylides as an Approach to 1,2-Benzothiazines

By: Xie, Haisheng; et al

Advanced Synthesis & Catalysis (2018), 360(18), 3534-3543.

Steps: 1

Scheme 107 (1 Reaction)

📜 Suppliers (8)

📜 Suppliers (38)

31-116-CAS-20237782

Steps: 1

Reagents: Ethanol-d Catalysts: Zinc acetate, Silver hexafluoroantimonate, Bis (dichloro(η^6 -p-cymene)ruthenium); < 1 s, rt

1.2 8 h, 90 °C

Ruthenium(II)-catalyzed selective C-H bond activation of imidamides and coupling with sulfoxonium ylides: an efficient approach for the synthesis of highly functional 3-ketoindoles

By: Wu, Chenglin; et al

Organic Chemistry Frontiers (2019), 6(8), 1183-1188.

Scheme 108 (1 Reaction)

Steps: 1

31-116-CAS-18971168

Steps: 1

Reagents: Cupric acetate, Methanol-d4 Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -pcymene)ruthenium)

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Ru(II)-Catalyzed Regiospecific C-H/O-H Oxidative Annulation to Access Isochromeno[8,1-ab]phenazines: Far-Red Fluore scence and Live Cancer Cell Imaging

By: Mayakrishnan, Sivakalai; et al ACS Omega (2017), 2(6), 2694-2705.

Scheme 109 (1 Reaction)

Steps: 1

31-116-CAS-20876999

Steps: 1

Reagents: 2,4,6-Trimethylbenzoic acid, Methanol- d4,

Trisodium phosphate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 24 h, rt → 110 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Construction of Isocoumarins via Dual C-H/C-C Activation of Sulfoxonium Ylides

By: Wen, Si; et al

Journal of Organic Chemistry (2020), 85(2), 1216-1223.

Steps: 1

Steps: 1

Steps: 1

Steps: 1

Scheme 110 (1 Reaction)

31-614-CAS-29224648

1.1 Reagents: 2,4,6-Trimethylbenzoic acid, Methanol- d₄,

Trisodium phosphate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 24 h, rt \rightarrow 110 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Construction of Isocoumarins via Dual C-H/C-C Activation of Sulfoxonium Ylides

By: Wen, Si; et al

Journal of Organic Chemistry (2020), 85(2), 1216-1223.

Scheme 111 (1 Reaction)

31-614-CAS-33544217

1.1 Reagents: Methanol-d₄

Catalysts: 1-Adamantanecarboxylic acid, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: Ethanol; 12 h, 100 °C

Experimental Protocols

Steps: 1

Ru(II)-catalyzed P(III)-assisted C8-alkylation of naphthph osphines

By: Ma, Wen-Tao; et al

Chemical Communications (Cambridge, United Kingdom)

(2022), 58(51), 7152-7155.

Scheme 112 (1 Reaction)

31-116-CAS-23162707

Steps: 1

1.1 **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium) **Solvents:** Methanol- d_4 , Water- d_2 ; 48 h, 50 °C

Experimental Protocols

Nickel-catalyzed C-O/N-H, C-S/N-H, and C-CN/N-H annulation of aromatic amides with alkynes: C-O, C-S, and C-CN activation

By: Iyori, Yasuaki; et al

Chemical Science (2021), 12(5), 1772-1777.

Absolute stereochemistry shown

Steps: 1

Scheme 113 (1 Reaction)

Steps: 1

$$\begin{array}{c} O \\ O \\ O \\ O \\ O \\ \end{array}$$

Absolute stereochemistry shown, Rotation (+)

> Supplier (1)

Ru-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated y-Lactams

By: Ding, Zhengdong; et al

Journal of the American Chemical Society (2024), 146(36), 25312-25320.

31-614-CAS-41544026

Reagents: Sodium hydroxide, Hydrogen, 2-Propan-1,1,1,2,3,3, *3-d*₇-ol-*d*

Catalysts: $[\mu - [(2R,2'R)-1,1'-Bis[(4S)-4-(1,1-dimethylethyl)-4,5$ dihydro-2-oxazolyl-κ N^3]-2,2'-bis(diphenylphosphino-κP)ruthen ocene]]tetrachlorobis(triphenylphosphine)diruthenium; 48 h, 50 atm, 35 °C

1.2 Reagents: Hydrochloric acid Solvents: Water; < pH 7

Experimental Protocols

Scheme 114 (1 Reaction)

Steps: 1

31-614-CAS-41630874

Steps: 1

📜 Suppliers (192)

Reagents: Methanol- d_4 , Tripotassium phosphate **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 3 h, 60 °C

Experimental Protocols

Ru(II)-Catalyzed Decarboxylative (4 + 2)-Annulation of Benzoic Acids and Benzamides with Propargyl Cyclic Carbonates

By: Jana, Debasish; et al

Organic Letters (2024), 26(36), 7590-7595.

Scheme 115 (1 Reaction)

Steps: 1

31-116-CAS-4598249

Steps: 1

Ruthenium-Catalyzed Isoquinolone Synthesis through C-H Activation Using an Oxidizing Directing Group

By: Li, Bin; et al

Chemistry - A European Journal (2011), 17(45), 12573-12577, S12573/1-S12573/126.

Reagents: Methanol-d

Catalysts: Sodium acetate, Bis(dichloro(η^6 -p-cymene)

ruthenium); 8 h, rt

Experimental Protocols

Steps: 1

Steps: 1

Steps: 1

Scheme 116 (1 Reaction)

Double bond geometry shown

→ F

📜 Suppliers (91)

Steps: 1

31-614-CAS-32979096

1.1 **Reagents:** Triethylamine, Methanol- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Acetonitrile; 24 h, 100 °C

Experimental Protocols

Ruthenium(II)-catalyzed synthesis of CF₃-isoquinolinones via C-H activation/annulation of benzoic acids and CF₃-imidoyl sulfoxonium ylides

By: Wen, Si; et al

Organic Chemistry Frontiers (2022), 9(16), 4388-4393.

Scheme 117 (1 Reaction)

Suppliers (25)

31-614-CAS-35261295 St

.1 **Reagents:** Zinc acetate, Methanol- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 30 min, 100 °C

Experimental Protocols

Steps: 1 Se

Selective Construction of Spiro or Fused Hetero cyclic Scaffolds via One-pot Cascade Reactions of 1-Arylpyrazo lidinones with Maleimides

By: Li, Na; et al

Journal of Organic Chemistry (2023), 88(1), 60-74.

Scheme 118 (1 Reaction)

31-614-CAS-29438491

Steps: 1

Ru-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes and Substrate-Mediated H/D Exchange

1.1 **Reagents:** Methanol-*d*₄, Hydrogen

Catalysts: Ruthenium(1+), [1,1'-(4S)-[4,4'-bi-1,3-benzodioxole]-5,5'-diylbis[1,1-bis[3,5-bis(1,1-dimethylethyl)-4-methoxy phenyl]phosphine-κP]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]-, chloride (1:1); 20 psi, 25 °C

Experimental Protocols

By: Hao, Wei; et al

ACS Catalysis (2022), 12(2), 1150-1160.

Scheme 119 (1 Reaction)

Steps: 1

31-614-CAS-29438488

Steps: 1

Reagents: Methanol-*d*₄, Hydrogen
Catalysts: Ruthenium(1+), [1,1'-(4*S*)-[4,4'-bi-1,3-benzodioxole]-5,5'-diylbis[1,1-bis[3,5-bis(1,1-dimethylethyl)-4-methoxy phenyl]phosphine-κ*P*]]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]-, chloride (1:1); 20 psi, 25 °C

Ru-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes and Substrate-Mediated H/D Exchange

By: Hao, Wei; et al

ACS Catalysis (2022), 12(2), 1150-1160.

Experimental Protocols

Scheme 120 (1 Reaction)

Steps: 1

31-614-CAS-31460471

Steps: 1

1.1 Reagents: Silver acetate, Acetic acid-d₄, Oxygen
 Catalysts: Silver hexafluoroantimonate, Dichloro[(1,2,3,4,5,6-η)
 -1-methyl-4-(1-methylethyl)benzene]ruthenium
 Solvents: 1,2-Dichloroethane, Methanol-d₄; 30 min, 150 °C

By: Li, Xue-Hong; et al

with Alkynes

Chemistry - An Asian Journal (2022), 17(2), e202101158.

Microwave-Assisted Ruthenium- and Rhodium-Catalyzed

Couplings of α-Amino Acid Ester-Derived Phosphinamides

Experimental Protocols

Scheme 121 (1 Reaction)

Steps: 1

31-614-CAS-37448821

Steps: 1

1.1 Reagents: Sodium formate, Methanol- d₄ Catalysts: Ruthenium (complexes with trimethylbenzene, Cl and copolymer of EGDMA-NIPMAM-viny...), 2973383-97-8 (ruthenium complexes with trimethylbenzene and Cl) Solvents: Water- d₇; 40 °C Harmonization of an incompatible aqueous aldol condensat ion/oxa-Michael addition/reduction cascade process over a core-shell-structured thermoresponsive catalyst

By: Su, Yu; et al

Green Chemistry (2023), 25(17), 6859-6868.

Experimental Protocols

Steps: 1

Steps: 1

Steps: 1

Scheme 122 (1 Reaction)

31-614-CAS-27186958

.1 Reagents: Methanol-d₄

Suppliers (5)

Catalysts: Benzoic acid, Silver hexafluoroantimonate, Bis $(dichloro(\eta^6-p-cymene)ruthenium)$, Zinc triflate

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Steps: 1 Ruthenium(II)-Catalyzed Regioselective [3 + 2] Spiroann ulation of 2H-Imidazoles with 2-Alkynoates

By: Song, Zhenyu; et al

Organic Letters (2020), 22(16), 6272-6276.

Scheme 123 (1 Reaction)

31-116-CAS-22738333

1.1 Reagents: Benzoic acid, Water- d₂

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Ethanol-d₆; 20 h, 120 °C

Experimental Protocols

Steps: 1 Ruthenium-catalyzed α-carbonyl sulfoxonium ylide annula tions with aryl substituted pyrazoles via C-H/N-H bond functionalizations

By: Chen, Zhangpei; et al

Organic & Biomolecular Chemistry (2020), 18(41), 8486-8490.

Scheme 124 (1 Reaction)

31-614-CAS-34216392

1.1 Reagents: Quinone, Cupric acetate, Methanol- d₄, Silver hexafluoroantimonate

Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 1 h, 100 °C

Experimental Protocols

Synthesis of 2-arylethenesulfonyl fluorides and isoindol inones: Ru-catalyzed C-H activation of nitrones with ethenes ulfonyl fluoride

By: Wang, Tong-Tong; et al

Steps: 1

Chemical Communications (Cambridge, United Kingdom) (2022), 58(79), 11099-11102.

Scheme 125 (1 Reaction)

Steps: 1

Suppliers (17)

31-116-CAS-17188542

Steps: 1

1.1 Reagents: Methanol-d₄, Copper diacetate monohydrate Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium), [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl-κO]methanesulfona midato-κO]silver; 30 h, 70 °C

Experimental Protocols

Ruthenium-Catalyzed Oxidative Annulation and Hydroar ylation of Chromene-3-carboxamides with Alkynes via Double C-H Functionalization

By: Tulichala, R. N. Prasad; et al

Journal of Organic Chemistry (2017), 82(10), 5068-5079.

Scheme 126 (1 Reaction)

Steps: 1

Suppliers (8)

31-116-CAS-21619170

Steps: 1

1.1 Reagents: Methanol-d₄

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 24 h, 60 °C

Ru(II)-catalyzed C6-selective C-H acylmethylation of pyridones using sulfoxonium ylides as carbene precursors

By: Fu, Yangjie; et al

RSC Advances (2020), 10(11), 6351-6355.

Scheme 127 (1 Reaction)

31-116-CAS-19085640

Steps: 1

1.1 Reagents: Pivalic acid, Methanol-d

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Ru (II)-Catalyzed Coupling-Cyclization of Sulfoximines with alpha-Carbonyl Sulfoxonium Ylides as an Approach to 1,2-Benzothiazines

By: Xie, Haisheng; et al

Advanced Synthesis & Catalysis (2018), 360(18), 3534-3543.

Steps: 1

Steps: 1

Steps: 1

Scheme 128 (1 Reaction)

$$D$$
 NH_2

Steps: 1

=

➤ Suppliers (63)

31-614-CAS-35205436

1.1 **Reagents:** Methanol- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Acetonitrile; 5 h, 100 °C

Experimental Protocols

Selective Synthesis of Pyrazolonyl Spirodihydroquinolines or Pyrazolonyl Spiroindolines under Aerobic or Anaerobic Conditions

By: Yu, Caiyun; et al

Organic Letters (2022), 24(51), 9473-9478.

Scheme 129 (1 Reaction)

➤ Suppliers (62)

Supplier (1)

31-116-CAS-1482567

1.1 **Reagents:** 2-Propan-*1*,*1*,*1*,*2*,*3*,*3*,*3*-*d*₇-ol-*d*

Catalysts: Ruthenium, Carbon, Ruthenium dioxide

Solvents: Toluene; 5 h, 300 psi, 140 °C

Experimental Protocols

Steps: 1

Ring Activation of Furanic Compounds on Ruthenium-Based Catalysts

By: Mironenko, Alexander V.; et al

Journal of Physical Chemistry C (2015), 119(11), 6075-6085.

Scheme 130 (1 Reaction)

— (

Suppliers (83)

31-116-CAS-14459573

Steps: 1

Pincer Ru and Os complexes as efficient catalysts for racemi zation and deuteration of alcohols

1.1 **Reagents:** 2-Propan-*1*,*1*,*1*,*2*,*3*,*3*,*3*-*d*₇-ol-*d*

Catalysts: Potassium *tert*-butoxide, (*OC*-6-23)-[2-[6-[(Amino-κΛ)methyl]-2-pyridinyl-κΛ]-5-methylphenyl-κC][1,1'-(1,4-butanediyl)bis[1,1-diphenylphosphine-κP]chlororuthenium

Solvents: 2-Propan-*1,1,1,2,3,3,3-d*₇-ol-*d*; 4 h, 70 °C

Experimental Protocols

By: Bossi, Gianluca; et al

Dalton Transactions (2011), 40(35), 8986-8995.

Scheme 131 (1 Reaction)

Steps: 1

$$\begin{array}{c} H \\ \hline \\ N^{\dagger} \\ \hline \\ N \\ \hline \end{array}$$

Suppliers (3)

31-614-CAS-37788093

Steps: 1

1.1 **Reagents:** Methanol- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 20 min, rt

Experimental Protocols

Ru(II)-catalyzed synthesis of indolo [2,3-c]isoquinolines via [3+3] annulation of N,N'-cyclic azomethine ylides and 3-diazoindolin-2-imines

By: Valapil, Durgesh Gurukkala; et al

New Journal of Chemistry (2023), 47(37), 17586-17591.

Scheme 132 (2 Reactions)

Steps: 1

Suppliers (59)

31-116-CAS-21788661

Steps: 1

1.1 Catalysts: Potassium hexafluorophosphate, Bis(dichloro(η⁶-*p*-cymene)ruthenium)

Solvents: Methanol-d4; 5 h, 90 °C

Experimental Protocols

Ru(II)-Catalyzed C-H Functionalization of N-Hydroxyoximes with 1,3-Diynes Unveils a Regioselective Disparity

By: Kumar, Shreemoyee; et al

Organic Letters (2020), 22(6), 2141-2146.

31-116-CAS-3372179

Steps: 1

1.1 Catalysts: Potassium hexafluorophosphate, Bis(dichloro(η⁶-*p*-cymene)ruthenium)

Solvents: Methanol-d; 24 h, 60 °C

Experimental Protocols

Cationic Ruthenium Catalysts for Alkyne Annulations with Oximes by C-H/N-O Functionalizations

By: Kornhaass, Christoph; et al

Journal of Organic Chemistry (2012), 77(20), 9190-9198.

Scheme 133 (1 Reaction)

Steps: 1

Suppliers (59)

31-116-CAS-4012553

Steps: 1

Reagents: Methanol-d4

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2H-imidazol-2ylidene)[(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene]

ruthenium; 10 h, 120 °C

Experimental Protocols

(η⁶-Arene)ruthenium(N-heterocyclic carbene) Complexes for the Chelation-Assisted Arylation and Deuteration of Arylpyr idines: Catalytic Studies and Mechanistic Insights

By: Prades, Amparo; et al

Advanced Synthesis & Catalysis (2010), 352(7), 1155-1162.

Scheme 134 (1 Reaction)

Steps: 1

📜 Suppliers (192)

31-614-CAS-41630873

Steps: 1

Reagents: Methanol-d4, Tripotassium phosphate **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 3 h, 60 °C

Experimental Protocols

Ru(II)-Catalyzed Decarboxylative (4 + 2)-Annulation of Benzoic Acids and Benzamides with Propargyl Cyclic Carbonates

By: Jana, Debasish; et al

Organic Letters (2024), 26(36), 7590-7595.

Scheme 135 (1 Reaction)

Steps: 1

Suppliers (130)

31-614-CAS-35498688

Steps: 1

Reagents: Ethanol-d₆

Catalysts: (OC-6-13)-Carbonyl[2-(diphenylphosphino-кР)-N-[2-(diphenylphosphino-κ*P*)ethyl]ethanamine-κ*M*][tetrahyd

roborato(1-)-κ*H*]ruthenium; 24 h, 80 °C

Experimental Protocols

Catalytic Base-Free Transfer Hydroge nation of Biomass Derived Furanic Aldehydes with Bioalcohols and PNP Pincer Complexes

By: Padilla, Rosa; et al

ChemCatChem (2023), 15(2), e202200819.

Scheme 136 (1 Reaction)

Steps: 1

Suppliers (10)

Steps: 1

1.1 **Reagents:** 2-Propan-*1,1,1,2,3,3,3-d*₇-ol-*d*

Catalysts: Ruthenium(1+), carbonylhydro(η^6 -benzene)(tricyclo

hexylphosphine)-, tetrafluoroborate(1-) (1:1) Solvents: 1,2-Dichloroethane; 12 h, 120 °C

Experimental Protocols

Experimental and Computational Studies on the Ruthenium-Catalyzed Dehydrative C-H Coupling of Phenols with Aldehydes for the Synthesis of 2-Alkylphenol, Benzofuran and Xanthene Derivatives

By: Pannilawithana, Nuwan; et al

Journal of the American Chemical Society (2021), 143(33), 13428-13440.

Scheme 137 (1 Reaction)

Steps: 1

$$\xrightarrow{\mathbb{N}} \xrightarrow{\mathbb{N}} \xrightarrow{\mathbb{$$

📜 Suppliers (50)

31-116-CAS-23644211

Steps: 1

1.1 Reagents: Sodium acetate, Methanol- d_4

Catalysts: Potassium hexafluorophosphate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 3 h, 70 °C

Experimental Protocols

Ru(II)-catalyzed allenylation and sequential annulation of Ntosylbenzamides with propargyl alcohols

By: Kumar, Shreemoyee; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(51), 6280-6283.

Scheme 138 (1 Reaction)

> Suppliers (8)

31-116-CAS-23185189

Steps: 1

Ruthenium(II)-Catalyzed Direct C7-Selective Amidation of Indoles with Dioxazolones at Room Temper ature

1.1 Reagents: Pivalic acid, 2-Propan-2-d-ol-d, 1,1,1,3,3,3-hexafl uoro-

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 25 °C

Experimental Protocols

By: Sheng, Yaoguang; et al

Journal of Organic Chemistry (2021), 86(3), 2827-2839.

Scheme 139 (1 Reaction)

Suppliers (3)

Steps: 1

1.1 Reagents: 2,4,6-Trimethylbenzoic acid, Methanol- d₄
 Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶- p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 6 h, 80 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Ru(II)-Catalyzed Weak Chelation-Assisted Regioselective C4-H Aminomethyl Alkenylation of Indole

By: Raziullah; et al

Advanced Synthesis & Catalysis (2025), 367(1), e202400863.

Scheme 140 (1 Reaction)

Steps: 1

Suppliers (169)

31-116-CAS-5532996

Steps: 1

.1 Reagents: 2-Propan-*1*,*1*,*1*,*2*,*3*,*3*,*3*-*d*₇-ol-*d* Catalysts: Potassium *tert*-butoxide, (*OC*-6-23)-[2-[6-[(Amino-κΛ)methyl]-2-pyridinyl-κΛ]-5-methylphenyl-κΔ][1,1'-(1,4-butanediyl)bis[1,1-diphenylphosphine-κP]chlororuthenium Solvents: 2-Propan-*1*,*1*,*1*,*2*,*3*,*3*,*3*-*d*₇-ol-*d*; 1 h, 50 °C

Experimental Protocols

Pincer Ru and Os complexes as efficient catalysts for racemi zation and deuteration of alcohols

By: Bossi, Gianluca; et al

Dalton Transactions (2011), 40(35), 8986-8995.

Scheme 141 (1 Reaction)

Steps: 1

📜 Suppliers (78)

31-614-CAS-34645544

Steps: 1

1.1 **Reagents:** Methanol- d_4 , Propanoic acid, 2,2-dimethyl-, cesium salt (1:1)

Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 2,2,2-Trifluoroethanol; 1 h, 65 °C

Experimental Protocols

Ru(II)-Catalyzed C-H Functionalization of 2-Arylbenzimidazoles with Iodonium Ylides: A Straightforward Access to Bridgehead Polycyclic N-Heterocycles

By: Nunewar, Saiprasad; et al

Journal of Organic Chemistry (2022), 87(21), 13757-13762.

Scheme 142 (1 Reaction)

Steps: 1

> Suppliers (4)

Steps: 1

1.1 Reagents: Cupric acetate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 5 min, rt

1.2 **Reagents:** Methanol-d₄

Solvents: 1,2-Dichloroethane; 4 h, 60 °C

Experimental Protocols

Benzocyclobutenone synthesis exploiting acylsilanes as photofunctional directing groups

By: Pilkington, Rowan L.; et al

Chemical Science (2024), 15(46), 19328-19335.

Scheme 143 (1 Reaction)

Steps: 1

$$\longrightarrow \bigcup_{D} \bigcup_{N}$$

➤ Suppliers (48)

31-614-CAS-35215256

Steps: 1

1.1 **Reagents:** Methanol- d_4

Catalysts: Zirconium dioxide, Ruthenium; 4 h, 120 °C

Experimental Protocols

Switching Amine Oxidation from Imines to Nitriles by Carbon-Hydrogen Bond Activation via Strong Base Modified Strategy

By: Zhu, Guozhi; et al

ACS Applied Materials & Interfaces (2022), 14(47), 52758-52765.

Scheme 144 (1 Reaction)

Steps: 1

—

Suppliers (77)

31-614-CAS-40258837

Steps: 1

1.1 **Reagents:** Methanol- d_4

Catalysts: Pivalic acid, Silver hexafluoroantimonate, Bis

(dichloro(η^6 -p-cymene)ruthenium) **Solvents:** Water; 1 min, 140 °C

Experimental Protocols

Microwave-Assisted Ru(II)-Catalyzed Regioselective Methyl Acylation of 2-Arylbenzoazoles: Synthesis of Benzofuran Conjugates via C-H Activation/Annulation

By: Dastari, Sowmya; et al

Journal of Organic Chemistry (2024), 89(10), 7027-7035.

Scheme 145 (1 Reaction)

Steps: 1

➤ Suppliers (131)

31-116-CAS-18947318

Steps: 1

1.1 Reagents: Cupric acetate

Catalysts: (±)-1,1'-Binaphthyl-2,2'-diamine, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Methanol-d₄; 24 h, 64 °C

Experimental Protocols

Ru(II)-Catalyzed and Ligand-Controlled C-H Activation and Annulation via 1,2-Phenyl Shift: Synthesis of Quaternary Carbon-Centered Pyrimidoindolones

By: Baruah, Swagata; et al

Organic Letters (2018), 20(13), 3753-3757.

Scheme 146 (1 Reaction)

Steps: 1

31-116-CAS-23873778

📜 Suppliers (132)

Steps: 1

1.1 Reagents: Potassium acetate, Cupric acetate
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: Dichloromethane, Methanol-d; 16 h, 100 °C

1.2 Solvents: Water; rt

Experimental Protocols

Hydroxyl-Directed Ruthenium-Catalyzed peri-Selective C-H Acylmethylation and Annulation of Naphthols with Sulfox onium Ylides

By: Ma, Wenbo; et al

Organic Letters (2021), 23(16), 6200-6205.

Scheme 147 (1 Reaction)

31-614-CAS-34405507

Steps: 1

.1 **Reagents:** Methanol-*d*₄, Propanoic acid, 2,2-dimethyl-, potassium salt (1:1)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 16 h, 100 °C

Ruthenium-Catalyzed Hydroxyl-Directed peri-Selective C-H Activation and Annulation of 1-Naphthols with CF₃-Imidoyl Sulfoxonium Ylides for the Synthesis of 2- (Trifluoromethyl)-2, 3-dihydrobenzo[de]chromen-2-amines

By: Yang, Zuguang; et al

Organic Letters (2022), 24(40), 7288-7293.

Suppliers (70)

Steps: 1

Reagents: Acetic acid, Methanol-d4

Catalysts: Silver triflate, Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Tetrahydrofuran; 2 h, 60 °C

Reagents: Sodium bicarbonate

Solvents: Water

Selective Synthesis of Dihydro phenanthridine and Phenant hridine Derivatives from the Cascade Reactions of o-Arylan ilines with Alkynoates through C-H/N-H/C-C Bond Cleavage

By: Xu, Yuanshuang; et al

Journal of Organic Chemistry (2021), 86(8), 5805-5819.

Scheme 149 (1 Reaction)

Steps: 1

Suppliers (10)

31-614-CAS-39366732

Steps: 1

Reagents: 2-Propan-*1*, *1*, *1*, *2*, *3*, *3*, *d*₇-ol-*d*

Catalysts: o-Chloranil, Ruthenium(1+), carbonylhydro(η^6 benzene)(tricyclohexylphosphine)-, tetrafluoroborate(1-) (1:1)

Solvents: 1,4-Dioxane; 20 h, 135 °C

Experimental Protocols

Scope and Mechanism of the Ruthenium-Catalyzed Deamin ative Coupling Reaction of Enones with Amines via Regiose lective C_{α} - C_{β} Bond Cleavage

By: Thennakoon, Dulanjali S.; et al

Organometallics (2023), 42(19), 2867-2880.

Scheme 150 (1 Reaction)

Steps: 1

Suppliers (92)

31-614-CAS-34386271

Steps: 1

Reagents: Methanol- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Chlorobenzene; 30 min, 100 °C

Experimental Protocols

Regioselective Dichotomy in Ru(II)-Catalyzed C-H Annulation of Aryl Pyrazolidinones with 1,3-Diynes

By: Sontakke, Geetanjali S.; et al

Journal of Organic Chemistry (2022), 87(21), 14103-14114.

Scheme 151 (1 Reaction)

Steps: 1

📜 Suppliers (109)

📜 Supplier (1)

31-116-CAS-14366935

Steps: 1

1.1 Catalysts: Dichlorotris(triphenylphosphine)ruthenium, (2*R*,2'*R*)
 -1,1'-Bis[(4*S*)-4-(1,1-dimethylethyl)-4,5-dihydro-2-oxazolyl]-2,
 2'-bis(diphenylphosphino)ruthenocene
 Solvents: Isopropanol; 1 h, reflux; reflux → 0 °C

1.2 **Reagents:** Potassium *tert*-butoxide, Hydrogen **Solvents:** 2-Propan-*1*, *1*, *1*, *2*, *3*, *3*, *3*-*d*₇-ol-*d*; 10 atm, 0 °C

Experimental Protocols

Efficient Ru(II)-catalyzed asymmetric hydrogenation of simple ketones with C₂-symmetric planar chiral metallocenyl phosphinooxazoline ligands

By: Guo, Hui; et al

Tetrahedron (2012), 68(16), 3295-3299.

Scheme 152 (1 Reaction)

Steps: 1

Steps: 1 Yield: 90%

31-614-CAS-32979104

Steps: 1

1.1 **Reagents:** Triethylamine, Methanol- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: Acetonitrile; 24 h, 100 °C

Experimental Protocols

Ruthenium(II)-catalyzed synthesis of CF₃-isoquinolinones via C-H activation/annulation of benzoic acids and CF₃-imidoyl sulfoxonium ylides

By: Wen, Si; et al

Organic Chemistry Frontiers (2022), 9(16), 4388-4393.

Scheme 153 (1 Reaction)

HO

 \rightarrow

F

Suppliers (132)

31-614-CAS-34405505

Steps: 1 Yield: 90%

1.1 Reagents: Methanol- d_4 , Propanoic acid, 2,2-dimethyl-,

potassium salt (1:1)

Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 16 h, 100 °C

Ruthenium-Catalyzed Hydroxyl-Directed peri-Selective C-H Activation and Annulation of 1-Naphthols with CF₃-Imidoyl Sulfoxonium Ylides for the Synthesis of 2- (Trifluoromethyl)-2, 3-dihydrobenzo[de]chromen-2-amines

By: Yang, Zuguang; et al

Organic Letters (2022), 24(40), 7288-7293.

Steps: 1 Yield: 78%

Scheme 154 (1 Reaction)

Suppliers (88)

Double bond geometry shown Suppliers (163)

Double bond geometry shown

Suppliers (5)

31-116-CAS-2558522

Reagents: Cupric acetate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄; 20 h, 64 °C

Experimental Protocols

Steps: 1 Yield: 78% Ruthenium(II)-Catalyzed Alkene C-H Bond Functionalization on Cinnamic Acids: A Facile Synthesis of Versatile $\alpha ext{-Pyrones}$

By: Prakash, Rashmi; et al

Organic Letters (2015), 17(21), 5264-5267.

Scheme 155 (1 Reaction)

Steps: 1 Yield: 77%

31-614-CAS-30037593

Reagents: Zinc acetate, Methanol-d

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dimethoxyethane; 24 h, 80 °C

1.2 Solvents: Water; rt

Experimental Protocols

Ruthenium-Catalyzed Vinylene Carbonate Annulation by C-H/N-H Functionalizations: Step-Economical Access to Indoles

By: Yu, Yao; et al

Advanced Synthesis & Catalysis (2022), 364(4), 838-844.

Steps: 1 Yield: 71%

Scheme 156 (1 Reaction)

Br.

📜 Suppliers (6)

➤ Suppliers (94)

31-085-CAS-22785776

Steps: 1 Yield: 71%

Recyclable Ruthenium Catalyst for Distal meta- C-H Activation

Reagents: Potassium acetate, Methanol- d_4 Catalysts: Triphenylphosphine, Polystyrene (catalyst support), Bis(dichloro(η^6 -p-cymene)ruthenium) (polymer-supported) Solvents: 2-Methyltetrahydrofuran; 24 h, 60 °C

Chemistry - A European Journal (2020), 26(66), 15290-15297.

By: Choi, Isaac; et al

Experimental Protocols

Scheme 157 (1 Reaction)

📜 Supplier (1)

📜 Suppliers (91)

Steps: 1 Yield: 65%

31-116-CAS-19732601

Steps: 1 Yield: 65%

Reagents: Triethylamine, Methanol- d_4

Suppliers (3)

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 2 h, 100 °C

Experimental Protocols

Ruthenium(IV) Intermediates in C-H Activation/Annulation by Weak O-Coordination

By: Liang, Yu-Feng; et al

Chemistry - A European Journal (2018), 24(62), 16548-16552.

Steps: 1 Yield: 65%

Steps: 1 Yield: 64%

Scheme 158 (1 Reaction)

$$\rightarrow \qquad \qquad \qquad +$$

> Suppliers (49)

Steps: 1 Yield: 65%

Supplier (1)

31-116-CAS-8063143

1.1 **Reagents:** Methanol- d_4

Catalysts: Sodium acetate, Bis(dichloro(η^6 -p-cymene)

ruthenium); 18 h, 22 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-H Functionalizations with Allenes: Versatile Allenylations and Allylations

By: Nakanowatari, Sachiyo; et al

Chemistry - A European Journal (2015), 21(45), 16246-16251.

Scheme 159 (1 Reaction)

➤ Suppliers (103)

📜 Suppliers (75)

☐ Suppliers (94)

Double bond geometry shown

31-017-CAS-20448565 Steps: 1 Yield: 64%

1.1 Reagents: Oxygen

Catalysts: Cupric acetate, Bis(dichloro(η^6 -p-cymene)

ruthenium)

Solvents: Methanol; 24 h, 100 °C; 100 °C → rt

1.2 **Reagents:** Methanol-*d*₄

Catalysts: Cupric acetate; 8 h, 100 °C

1.3 **Reagents:** Potassium carbonate **Solvents:** Acetonitrile; 4 h, rt

Streamlined Ruthenium(II) Catalysis for One-Pot 2-fold Unsymmetrical C-H Olefination of (Hetero)Arenes

By: Mandal, Anup; et al

Organic Letters (2019), 21(15), 5879-5883.

Steps: 1 Yield: 60%

Scheme 160 (1 Reaction)

≒ Suppliers (63)

📜 Suppliers (88)

31-116-CAS-19225358

Steps: 1 Yield: 60%

Ruthenium-Catalyzed Electrochemical Dehydrogenative Alkyne Annulation

1.1 **Reagents:** 2-Propan-*1*, *1*, *1*, *2*, *3*, *3*, *3*-*d*₇-ol-*d*

Catalysts: Sodium acetate, Potassium hexafluorophosphate,

Bis(dichloro(η^6 -p-cymene)ruthenium) **Solvents:** Water- d_2 ; 30 min, reflux

By: Xu, Fan; et al

ACS Catalysis (2018), 8(5), 3820-3824.

Experimental Protocols

Scheme 161 (1 Reaction)

Suppliers (10)

Suppliers (44)

Steps: **1** Yield: **58%**

31-614-CAS-42086605

Steps: **1** Yield: **58%**

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethan-*1,1-d*₂-ol-*d*; 3 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed C7 trifluoromethylthiolation and thioarylation of indolines using bench-stable reagents

By: Sumit; et al

Journal of Organic Chemistry (2024), 89(21), 15893-15900.

Steps: 1 Yield: 53%

Scheme 162 (1 Reaction)

➤ Suppliers (132)

31-116-CAS-23873286

Steps: 1 Yield: 53%

- 1.1 Reagents: Potassium acetate, Cupric acetate
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: Dichloromethane, Methanol-d; 16 h, 100 °C
- 1.2 Reagents: Trifluoromethanesulfonic anhydride; 2 h, rt
- 1.3 Solvents: Water; rt

Experimental Protocols

Hydroxyl-Directed Ruthenium-Catalyzed peri-Selective C-H Acylmethylation and Annulation of Naphthols with Sulfox onium Ylides

By: Ma, Wenbo; et al

Organic Letters (2021), 23(16), 6200-6205.

Scheme 163 (1 Reaction)

Steps: 1 Yield: 53%

☐ Suppliers (68)

Suppliers (73)

31-614-CAS-26574156

Steps: 1 Yield: 53%

Rut

- 1.1 Reagents: Potassium carbonate, Methanol- d₄ Catalysts: Triphenylphosphine, [(1,2,3,4,5,6-η)-1-Methyl-4-(1-methylethyl)benzene](2,4,6-trimethylbenzoato-κ*O*)(2,4,6-trimethylbenzoato-κ*O*,κ*O*')ruthenium
 - Solvents: 1,4-Dioxane; 4 h, 60 °C

Experimental Protocols

Sequential meta-/ortho-C-H Functionalizations by One-Pot Ruthenium(II/III) Catalysis

By: Korvorapun, Korkit; et al

ACS Catalysis (2018), 8(2), 886-892.

Steps: 1 Yield: 52%

Steps: 1 Yield: 52%

Scheme 164 (1 Reaction)

□ Suppliers (100)

$\longrightarrow \longrightarrow$

Suppliers (70)

D H₂N

31-614-CAS-30681514

Steps: 1 Yield: 52%

1.1 **Reagents:** Acetic acid, 1-Adamantanecarboxylic acid, Methanol-*d*

 $\textbf{Catalysts:} \ \, \textbf{Silver hexafluoroantimonate, Bis(dichloro(} \eta^6\text{-}\textit{p-}$

cymene)ruthenium)

Solvents: Tetrahydrofuran; 36 h, 80 °C

Ruthenium-Catalyzed Site-Selective C-H Bond Activation/Ann ulation Cascade toward Dibenzoazepinone Skeletons

By: Chowdhury, Deepan; et al

Organic Letters (2020), 22(17), 6760-6764.

Scheme 165 (1 Reaction)

Suppliers (67)

+

Suppliers (88)

31-614-CAS-24707611

Steps: **1** Yield: **52%**

1.1 **Reagents:** Ammonium acetate, Methanol- d_4

Catalysts: Bis(acetato-κ*O*)[(1,2,3,4,5,6-η)-1-methyl-4-(1-methyl

ethyl)benzene]ruthenium

Solvents: 2,2,2-Trifluoroethanol; 12 h, 110 °C

Experimental Protocols

Ruthenaelectro-Catalyzed Domino Three-Component Alkyne Annulation Expedient Isoquinoline Assembly

By: Tan, Xuefeng; et al

Angewandte Chemie, International Edition (2021), 60(9), 4619-4624.

Steps: 1 Yield: 51%

Scheme 166 (1 Reaction)

➤ Suppliers (93)

□ Suppliers (71)

Relative stereochemistry shown

► Supplier (1)

Steps: **1** Yield: **51%**

1.1 Reagents: Oxygen

31-085-CAS-13623240

Catalysts: Bis(dichloro(η^6 - ρ -cymene)ruthenium) Solvents: Toluene, Methanol- d_4 ; 3 h, 120 °C

Experimental Protocols

Ruthenium-Catalyzed Hydroarylations of Oxa- and Azabicyclic Alkenes

By: Cheng, Hanchao; et al

ACS Catalysis (2015), 5(5), 2770-2773.

Scheme 167 (1 Reaction)

➤ Suppliers (49)

+ 0

📜 Suppliers (53)

H₂N +

Steps: 1 Yield: 51%

D D D

31-614-CAS-24607045

Steps: 1 Yield: 51%

1.1 Reagents: *p*-Toluenesulfonic acid, Sodium carbonate Catalysts: Chloro[2-(diphenylphosphino-κ*P*)benzenesulfonato-κ*O*][(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene] ruthenium

Solvents: Toluene; 12 h, 150 °C

Experimental Protocols

Ruthenium-catalyzed chemoselective alkylation of nitroa renes with alkanols

By: Ma, Shuang-Shuang; et al

Organic Chemistry Frontiers (2021), 8(23), 6710-6719.

Steps: 1 Yield: 50%

Scheme 168 (1 Reaction)

$$+$$
 N
 $+$
 Br
 F
 O
 O

📜 Suppliers (7)

📜 Suppliers (93)

Double bond geometry shown

Supplier (1)

31-614-CAS-40035001

Steps: 1 Yield: 50%

Reagents: Potassium carbonate, Methanol- d4 Catalysts: Tris(2-furyl)phosphine, [(1,2,3,4,5,6-η)-1-Methyl-4-(1-methylethyl)benzene](2,4,6-trimethylbenzoato-κ*O*)(2,4,6-

trimethylbenzoato-κ*O*,κ*O*')ruthenium Solvents: 1,4-Dioxane; 16 h, 70 °C

Experimental Protocols

Ruthenium-Catalyzed Difunctionalization of Vinyl Cyclopr opanes for Double m-C(sp²)-H/C-5(sp³)-H Functionalization

📜 Suppliers (86)

By: Luan, Yu-Yong; et al

Organic Letters (2024), 26(15), 3213-3217.

Scheme 169 (1 Reaction)

31-614-CAS-29446722

Steps: 1 Yield: 49%

1.1 Catalysts: Silver hexafluoroantimonate, Bis(acetato-κ*O*)[(1,2,3, 4,5,6-n)-1-methyl-4-(1-methylethyl)benzene]ruthenium Solvents: 2,2,2-Trifluoroethanol-d; 6 h, 40 °C

Experimental Protocols

C7-Indole Amidations and Alkenylations by Ruthenium(II) Catalysis

By: Choi, Isaac; et al

Angewandte Chemie, International Edition (2020), 59(30), 12534-12540.

Steps: 1 Yield: 48%

Scheme 170 (1 Reaction)

 $+ \longrightarrow \bigvee_{(E)} \bigvee_{(E)}$

Double bond geometry shown

> Suppliers (88)

Double bond geometry shown

31-116-CAS-22058834

Steps: 1 Yield: 48%

Azaruthena(II)-bicyclo[3.2.0]heptadiene: Key Intermediate for Ruthenaelectro(II/III/I)-catalyzed Alkyne Annulations

.1 Reagents: Methanol-d₄, Potassium hexafluorophosphate Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: Dimethylformamide; 2 h, 100 °C

By: Yang, Long; et al

Experimental Protocols

Angewandte Chemie, International Edition (2020), 59(27), 11130-11135.

Scheme 171 (1 Reaction)

Steps: 1 Yield: 48%

➤ Suppliers (5)

➤ Suppliers (12)

Suppliers (65)

Double bond geometry shown

NH O

Double bond geometry shown

➤ Supplier (1)

31-614-CAS-25335486

Steps: 1 Yield: 48%

Ruthenium(II)-Catalyzed Traceless C-H Functionalization Using N-N Bond as an Internal Oxidant

1.1 Reagents: Dimethyl sulfone, Potassium acetate Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium)

Solvents: Methanol-d4; 2 h, 70 °C

By: Zhou, Shuguang; et al

Chemistry - A European Journal (2016), 22(41), 14508-14512.

Steps: 1 Yield: 47%

Scheme 172 (1 Reaction)

Steps: 1 Yield: 47%

➤ Suppliers (22)

31-076-CAS-22251051

Reagents: Bis(trifluoroacetoxy)iodobenzene, Cupric nitrate Catalysts: Triphenylphosphine, Triruthenium dodecacarbonyl Solvents: Methanol-d₄, 1,1,1,3,3,3-Hexafluoro-2-propanol; 24 h, 100 °C

Experimental Protocols

Ruthenium-Catalyzed meta-Selective C-H Nitration of Biolog ically Important Aryltetrazoles

By: Chen, Jian; et al

Advanced Synthesis & Catalysis (2020), 362(14), 2984-2989.

Scheme 173 (1 Reaction)

Steps: 1 Yield: 46%

31-614-CAS-24401200

Reagents: Sodium acetate, Methanol-d4 **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,4-Dioxane; 24 h, 30 - 33 °C

Photo-Induced Ruthenium-Catalyzed C-H Benzylations and Allylations at Room Temperature

By: Struwe, Julia; et al

Chemistry - A European Journal (2021), 27(65), 16237-16241.

Steps: 1 Yield: 46%

Scheme 174 (1 Reaction)

31-116-CAS-15585868

Steps: 1 Yield: 46%

1.1 Reagents: Cupric acetate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,4-Dioxane, Methanol-d₄; 24 h, 100 °C

Ketone-Assisted Ruthenium(II)-Catalyzed C-H Imidation: Access to Primary Aminoketones by Weak Coordination

By: Raghuvanshi, Keshav; et al

ACS Catalysis (2016), 6(5), 3172-3175.

Scheme 175 (1 Reaction)

Steps: 1 Yield: 45%

Steps: 1 Yield: 43%

Suppliers (88)

31-614-CAS-31154750

Steps: 1 Yield: 45%

.1 Reagents: Sodium carbonate, Methanol- d₄
Catalysts: Sodium acetate, Tris(4-chlorophenyl)phosphine, Bis (dichloro(n⁶-p-cymene)ruthenium)

Solvents: tert-Butyl methyl ether; 15 min, rt; 12 h, 120 °C

Experimental Protocols

Three-Component Ruthenium-Catalyzed meta-C-H Alkylation of Phenol Derivatives

By: Luan, Yu-Yong; et al

Organic Letters (2022), 24(5), 1136-1140.

Scheme 176 (1 Reaction)

Suppliers (25)

Suppliers (88)

📜 Suppliers (246)

Suppliers (60)

📜 Suppliers (86)

31-116-CAS-22769548

Steps: 1 Yield: 43%

1.1 Reagents: *N*-Acetylvaline, Propanoic acid, 2,2-dimethyl-, potassium salt (1:1)

Catalysts: Tris[4-(trifluoromethyl)phenyl]phosphine, Bis

(dichloro(η^6 -p-cymene)ruthenium) Solvents: Chlorobenzene; 24 h, 105 °C

Experimental Protocols

Three-component ruthenium-catalyzed remote C-H functiona lization of 8-aminoquinoline amides

By: Shi, Wei-Yu; et al

Chemical Communications (Cambridge, United Kingdom) (2020), 56(84), 12729-12732.

Steps: 1 Yield: 43%

Steps: 1 Yield: 38%

Scheme 177 (1 Reaction)

Suppliers (88)

Suppliers (96)

Suppliers (91)

Suppliers (3)

31-614-CAS-30299990

Steps: 1 Yield: 43%

1.1 Reagents: Propanoic acid, 2,2-dimethyl-, sodium salt, hydrate (1:1:?)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄; 16 h, 60 °C

Experimental Protocols

Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination

By: Qiu, Youai; et al

Angewandte Chemie, International Edition (2018), 57(20),

Scheme 178 (1 Reaction)

► Suppliers (2)

Suppliers (246)

31-614-CAS-41757795

Steps: 1 Yield: 38%

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium), [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]methanesulfona midato-κ*O*]silver

Solvents: 1,2-Dichloroethane; 1 min, rt

1.2 Catalysts: Silver carbonate; 5 h, 60 °C

Experimental Protocols

Ru(II)-Catalyzed Skeletal Editing of Oxindole with Internal Alkyne To Synthesize C7-Alkylated Indole Derivatives

By: Das, Sarbojit; et al

Organic Letters (2024), 26(38), 8051-8056.

Scheme 179 (1 Reaction)

Steps: 1 Yield: 37%

+

` Suppliers (47)

➤ Suppliers (103)

31-614-CAS-29499453

Steps: 1 Yield: 37%

1.1 **Reagents:** Propanoic acid, 2,2-dimethyl-, sodium salt, hydrate (1:1:?)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄; 16 h, 60 °C

Experimental Protocols

Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination

By: Qiu, Youai; et al

Angewandte Chemie, International Edition (2018), 57(20), 5818-5822.

Scheme 180 (1 Reaction)

Steps: **1** Yield: **27%**

➤ Suppliers (78)

31-614-CAS-36993220

Steps: **1** Yield: **27%**

1.1 Reagents: Potassium acetate, 2,2,2-Trifluoroethanol-*d*Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium); 3 h, 100 °C

Experimental Protocols

Cascade C-H Activation and Defluorinative Annulation of 2-Arylbenzimidazoles with α -Trifluoromethyl- α -diazoketones: Modular Assembly of 6-Fluorobenzimidazo[2,1-a]isoquin olines

By: Dong, Zhongkang; et al

Organic Letters (2023), 25(26), 4770-4775.

Steps: 1 Yield: 22%

Scheme 181 (1 Reaction)

Suppliers (4)

31-614-CAS-29438475

Reagents: Hydrogen, Methanol-d Catalysts: Ruthenium(1+), [(1R)-1,1'-[1,1'-binaphthalene]-2,2'diylbis[1,1-bis(4-methylphenyl)phosphine-κ*P*]]chloro[(1,2,3,4,5, 6-η)-1-methyl-4-(1-methylethyl)benzene]-, chloride; 23 min, 25 psi, 50 °C

Reagents: Water 1.2

Experimental Protocols

Steps: 1 Yield: 22% Ru-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes and Substrate-Mediated H/D Exchange

By: Hao, Wei; et al

ACS Catalysis (2022), 12(2), 1150-1160.

Scheme 182 (1 Reaction)

31-116-CAS-6263828

Steps: 1 Yield: 21%

Reagents: 2-Propan-*1*, *1*, *1*, *2*, *3*, *3*, *3*-*d*₇-ol-*d* **Catalysts:** (η⁶-Benzene)carbonylhydro(tricyclohexylphosphine)

ruthenium(1+)

Solvents: Toluene-d₈; 1 h, 25 °C

Selective Catalytic C-H Alkylation of Alkenes with Alcohols

By: Lee, Dong-Hwan; et al

Science (Washington, DC, United States) (2011), 333(6049), 1613-1616.

Scheme 183 (1 Reaction)

Steps: 1 Yield: 15%

31-614-CAS-25630552

Steps: 1 Yield: 20%

Reagents: Potassium carbonate, Methanol-d4

Catalysts: 2,4,6-Trimethylbenzoic acid, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: o-Xylene; 16 h, 120 °C

Suppliers (10)

Experimental Protocols

Regiodivergent C-H and Decarboxylative C-C Alkylation by Ruthenium Catalysis: ortho versus meta Position-Selectivity

By: Korvorapun, Korkit; et al

Angewandte Chemie, International Edition (2020), 59(42),

18795-18803.

Scheme 184 (1 Reaction)

> Suppliers (70)

31-614-CAS-41582355

Steps: 1 Yield: 15%

Reagents: Silver acetate, Methanol- d_4 1.1

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Ethanol; 5 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed sustainable C-H methylation of indolines with organoboranes in ethanol

By: Sumit; et al

Journal of Organic Chemistry (2024), 89(20), 14880-14886.

Scheme 185 (1 Reaction)

Br

HO

Steps: 1 Yield: 10%

Suppliers (79)

Suppliers (192)

Suppliers (94)

` Suppliers (18)

31-017-CAS-16254652

Steps: 1 Yield: 10%

1.1 Reagents: Potassium carbonate, Methanol- d4 Catalysts: Tricyclohexylphosphine, [(1,2,3,4,5,6-η)-1-Methyl-4- $(1-methylethyl)benzene](2,4,6-trimethylbenzoato-\kappa O)(2,4,6-trimethylbenzoato-\kappa O)(2,4,6-trimethylbenz$ trimethylbenzoato- $\kappa \textit{O}, \kappa \textit{O}'$)ruthenium

Solvents: N-Methyl-2-pyrrolidone; 16 h, 120 °C

1.2 Reagents: Potassium carbonate Solvents: Acetonitrile; 2 h, 50 °C

Experimental Protocols

Ruthenium(II)-catalyzed C-H functionalizations of benzoic acids with aryl, alkenyl and alkynyl halides by weak O-coordi nation

By: Mei, Ruhuai; et al

Chemical Communications (Cambridge, United Kingdom) (2016), 52(89), 13171-13174.

Scheme 186 (1 Reaction)

Steps: 1

📜 Suppliers (8)

Suppliers (60)

31-614-CAS-31847182

Steps: 1

Remote C5-Selective Functionalization of Naphthalene Enabled by P-Ru-C Bond-Directed δ-Activation

Reagents: Sodium acetate, Methanol-d4 **Catalysts:** 1-Adamantanecarboxylic acid, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: (Trifluoromethyl)benzene; 12 h, 50 °C

Experimental Protocols

By: Fu, Yueliuting; et al

ACS Catalysis (2022), 12(9), 5036-5047.

Scheme 187 (1 Reaction)

Steps: 1

Suppliers (53)

📜 Supplier (1)

Steps: 1

1.1 Reagents: Cupric acetate, Methanol-d₄
 Catalysts: 1-Adamantanecarboxylic acid, Bis(dichloro(η⁶-p-cymene)ruthenium); 2 h, 80 °C

By: Jha, Neha; et al

Bond Activation of Cyclopropanols

Experimental Protocols

Chemistry - A European Journal (2023), 29(55), e202301551.

Regiocontrol via Electronics: Insights into a Ru- Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C

Scheme 188 (1 Reaction)

Steps: 1

31-614-CAS-28603506

📜 Suppliers (38)

Steps: 1

1.1 Reagents: Acetic acid, Methanol-d₄
 Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-p-cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethanol; 5 min, 100 °C

Ruthenium(II)-Catalyzed Homocoupling of Weakly Coordi nating Sulfoxonium Ylides via C-H Activation/Annulations: Synthesis of Functionalized Isocoumarins

By: Zhou, Ming-Dong; et al

Advanced Synthesis & Catalysis (2019), 361(22), 5191-5197.

Scheme 189 (1 Reaction)

Steps: 1

31-614-CAS-26052525

Steps: 1

Reagents: Bis(trifluoroacetoxy)iodobenzene
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: 1,2-Dichloroethane, Methanol-d₄; 16 h, 100 °C

1.2 Solvents: Water

Experimental Protocols

Insights into Ruthenium(II/IV)-Catalyzed Distal C-H Oxygen ation by Weak Coordination

By: Bu, Qingqing; et al

Chemistry - A European Journal (2020), 26(69), 16450-16454.

Steps: 1

> Supplier (1)

➤ Suppliers (2)

> Suppliers (51)

Double bond geometry shown

Double bond geometry shown

31-614-CAS-34216391

1.1 Reagents: Quinone, Cupric acetate, Methanol- d₄, Silver

hexafluoroantimonate

Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 1 h, 100 °C

Experimental Protocols

Steps: 1 Synthesis of 2-arylethenesulfonyl fluorides and isoindol inones: Ru-catalyzed C-H activation of nitrones with ethenes ulfonyl fluoride

By: Wang, Tong-Tong; et al

Chemical Communications (Cambridge, United Kingdom) (2022), 58(79), 11099-11102.

Scheme 191 (1 Reaction)

Steps: 1

➤ Suppliers (109)

Supplier (1)

■ Suppliers (41)

31-614-CAS-39583517

.1 Reagents: Ethanol-d

Catalysts: Potassium carbonate, Ruthenium, (benzo [*h*] quinolin-10-yl-*C*¹⁰,*N*¹)carbonylchlorobis(triphenylphosphine)-,

(*OC*-6-52)-; 5 h, 120 °C

Experimental Protocols

Steps: 1 Bidentate Ru(II)-NC Complexes as Catalysts for Transfer
Hydrogenation of Ketones with Ethanol

By: Li, Yufei; et al

Asian Journal of Organic Chemistry (2024), 13(3), e202300496.

Steps: 1 Yield: 17%

Scheme 192 (1 Reaction)

O N D

Suppliers (34)

➤ Suppliers (88)

Double bond geometry shown

Double bond geometry shown

Steps: 1 Yield: 17%

31-614-CAS-31487792

1.1 **Reagents:** Methanol- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium), Antimonate (3-), hexafluoro-, silver(1+) hydrogen (1:1:2), (OC-6-11)-

Solvents: 1,2-Dichloroethane; 12 h, 110 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Ru-Catalyzed C-H alkenylation on the arene ring of pirfen idone using pyridone as a directing group

By: Raziullah; et al

Chemical Communications (Cambridge, United Kingdom) (2022), 58(21), 3481-3484.

Scheme 193 (1 Reaction)

Steps: 1 Yield: 15%

Suppliers (10)

☐ Suppliers (88)

Double bond geometry shown

Double bond geometry shown

31-116-CAS-23618305

Steps: **1** Yield: **15%**

1.1 Reagents: Pivalic acid, Methanol-d4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 6 h, 100 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Ru(II)-Catalyzed Regioselective Hydroarylative Coupling of Indolines with Internal Alkynes by C-H Activation

By: Raziullah; et al

European Journal of Organic Chemistry (2021), 2021(14), 2107-2113.

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.