# Review for Test 2

### November 24, 2019

### 1

Compute the indefinite integrals.

(a) 
$$\int \left(\sqrt[7]{x} - \frac{2}{\sqrt{1-x^2}}\right) dx$$
.

(b) 
$$\int \frac{\sin^2(\ln(x))\cos(\ln(x))}{x} dx.$$

(c) 
$$\int \frac{x+\sqrt{x}}{x^3} dx$$
.

(d) 
$$\int \tan^6(x)\sec^6(x) dx$$
.

(e) 
$$\int \frac{2x^3 + 4x^2 - 5}{x + 3} dx$$
.

$$(f) \int \pi^{-x} dx.$$

- (g) Make sure to get this question 'completely squared away' before moving on to the next question.  $\int \frac{dx}{\sqrt{8x-x^2}}$ .
  - (h) Hold on, this is the last 'part' of question 1:  $\int x^2 e^{2x} dx$ .

## $\mathbf{2}$

Recall Hookes law, which says that the force required to compress or stretch a spring from its natural length by some distance is proportional to that distance.

A spring (of negligible mass) is suspended from the ceiling and has a natural length of 3.6 feet. When a 0.4-pound tomato is attached to the end



Mass.png

of the spring, it stretches to a length of 4.1 feet.

Compute the work required to stretch this same spring from a length of 5 feet to 6 feet.

(Express your answer in foot-pounds.)

3

Let  $\mathcal{R}$  be the region in the x-y plane below  $y=\sec(x)\tan(x)$  and above y=-2 from x=0 to  $x=\pi/4$ .

- (a) Write an integral to compute the volume of the solid formed by revolving  $\mathcal{R}$  around the line y=-2.
  - (b) Evaluate the integral from part (a).

4

Determine the surface area of the solid obtained by rotating  $x=y^3,$   $0 \le y \le 2$  about the y-axis.

**5** 

Determine the center of mass for the plate of constant density  $\delta$  on the region bounded by  $y=x^3$  and  $y=\sqrt{x}$ .

6

A tank is formed by revolving the line  $y = \frac{15}{4}x$ ,  $0 \le x \le 4$  about the y-axis (assume the x and y axis are measured in meters). If the tank is filled with water with density 1000 kg/m<sup>3</sup>, find the work done in pumping all of the water to the top of the tank.

#### Answers

$$\begin{array}{l} \text{1a. } \frac{7}{8}x^{8/7} - 2\text{arcsin}(x) + C. \\ \text{1b. } \frac{\sin(\ln(x))}{3} + C. \\ \text{1c. } -x^{-1} - \frac{2}{3}x^{-\frac{3}{2}} + C. \\ \text{1d. } \frac{1}{11}\tan^{11}(x) + \frac{2}{9}\tan^{9}(x) + \frac{1}{7}\tan^{7}(x) + C. \\ \text{1e. } \frac{2}{3}x^{3} - x^{2} + 6x + 13\ln|x + 3| + C. \\ \text{1f. } -\frac{\pi^{-x}}{\ln(\pi)} + C. \\ \text{1g. } \arcsin(\frac{x-4}{4}) + C. \\ \text{1h. } \frac{1}{2}x^{2}e^{2x} - \frac{1}{2}xe^{2x} + \frac{1}{4}e^{2x} + C. \end{array}$$

- 2) 1.52 ft-lbs
- 3)  $\pi \left(-11/3 + 4\sqrt{2} + \pi\right)$ .
- 4)  $\frac{\pi}{27} \left(145^{3/2} 1\right)$ .
- 5)  $(\overline{x}, \overline{y}) = (\frac{12}{25}, \frac{3}{7}).$
- 6)  $W = \int_{y_0}^{y_1} \rho g A(y) d \, dy = \int_0^{15} (1000)(9.8) [\pi(\frac{4}{15}y)^2](15-y) \, dy \approx 9.23628 \times 10^6 \text{J}$ , where  $\rho$  is the density of the water, g is gravitational acceleration, A(y) is the area of an arbitrary horizontal cross section, d is the distance an arbitrary cross section is pumped, and  $y_0, y_1$  are the lowest and highest cross sectional elevations respectively.