产品规格说明书

(电动轻便摩托车)

目录

1	1 概述	4
2	2 主要功能	4
	2.1 硬件架构图	4
	2.2 软件方案系统图	5
	2.3 芯片资源分配	6
	2.4 功能框图	8
	2.5 功能列表	8
3	3 功能详述	9
	3.1 速度控制	9
	3.1.1 换相及调压	9
	3.1.2 电机霍尔信号检测	9
	3.1.3 转把无级调速	10
	3.2 保护控制	11
	3.2.1 欠压保护	11
	3.2.2 短路保护	11
	3.2.3 限流控制	12
	3.2.4 堵转保护	12
	3.3 刹车断电	13
	3.4 故障检测	13
	3.4.1 MOS 上电自检	13
	3.4.2 电机霍尔故障检测	14
	3.4.3 转把故障检测	14
	3.5 核心功能	15
	3.5.1 防飞车	15
	3.5.2 档位	15
	3.5.3 防盗	16
	3.5.4 电压等级选择	18
	3.5.5 一键修复	18
	3.5.6 LED 运行和故障指示	19
	3.6 辅助功能	20
	3.6.1 童锁	20

	3.6.2 倒推车	20
3	.7 数据通讯	21
	3.7.1 一线液晶显示	21
	3.7.2 一线语音	22
	3.7.3 上位机调试	23
3	.8 产品规格	24
3	.9 产品接线图	25
附件	‡ 1	26

1 概述

本说明书介绍一款电动轻便摩托车控制器,其设计时速不大于 50km/h。符合国标电动摩托车和电动轻便摩托车通用技术条件(GB24158-2018)

2 主要功能

2.1 硬件架构图

电动轻便摩托车控制器方案硬件架构如图 2-1 所示:

图 2-1 电动轻便摩托车控制器方案硬件架构图

该硬件框图描述电动车控制器主控 MCU 与外围硬件功能电路的连接拓扑,主控 MCU 芯片仅列出涉及的部分资源。

2.2 软件方案系统图

电动车控制器控制软件算法图如下:

图 2-2 软件方案系统图

2.3 芯片资源分配

电动轻便摩托车控制器方案 MCU 资源分配如表 2-1 所示:

表 2-1 芯片资源分布

引脚	引脚名字	功能	使用类型	描述
1	VBAT			VDDA
	PC13-TAMPER-	10	可复用	童锁/驻车/单撑断电
2	RTC	IO		TS
3	PC14-OSC32_IN	IO	可复用	倒推车 RB
4	PC15-OSC32_OUT	IO	可复用	刹车 SH/SL
5	PD0-OSC_IN	IO	可复用	防盗 FS
6	PD1-OSC_OUT	IO	可复用	一键修复 RE
7	NRST	复位		复位
8	VSSA			GND
9	VDDA			VDDA
10	PA0-WKUP	ADC_IN0	独占使用	U 相反电动势
11	PA1	ADC_IN1	独占使用	母线电压
12	PA2	ADC_IN2	独占使用	转把调速
12	DA 2	IO		电压等级选择
13	PA3	IO		ST(48V/60V)
14	PA4	ADC_IN4	独占使用	W 相反电动势
15	PA5	ADC_IN5	独占使用	V相反电动势
16	PA6	ADC_IN6	独占使用	母线电流
17	PA7	ADC_IN7	独占使用	U相电流
18	PB0	ADC_IN8	独占使用	V相电流
19	PB1	ADC_IN9	独占使用	W相电流
20	PB2	IO		低档选择 GL
21	PB10	TIM2_CH3	独占使用	W相电机霍尔
22	PB11	IO	可复用	高档显示 HS
23	VSS_1			GND
24	VDD_1			VDDA

引脚	引脚名字	功能	使用类型	描述
25	PB12	TIM1_BKIN	独占使用	PWM_BK(过流保护)
26	PB13	TIM1_CH1N	独占使用	PWM_UL(U 相下管)
27	PB14	TIM1_CH2N	独占使用	PWM_VL(V 相下管)
28	PB15	TIM1_CH3N	独占使用	PWM_WL(W 相下管)
29	PA8	TIM1_CH1	独占使用	PWM_UH(U 相上管)
30	PA9	TIM1_CH2	独占使用	PWM_VH(V 相上管)
31	PA10	TIM1_CH3	独占使用	PWM_WH(W 相上管)
32	PA11	IO	可复用	高档选择 GH
33	PA12	IO	可复用	低档显示 LS
34	PA13	SWDIO	独占使用	4 线烧录数据口
35	VSS_1			GND
36	VDD_1			VDDA
37	PA14	SWCLK	独占使用	4 线烧录时钟口
38	PA15	TIM2_CH2	独占使用	V相电机霍尔
39	PB3	TIM2_CH1	独占使用	U相电机霍尔
40	PB4	IO	可复用	LED 运行和故障指示
41	PB5	IO	可复用	中档显示 MS
42	PB6	IO	可复用	预留功能口 YL1
43	PB7	IO	可复用	预留功能口 YL2
44	BOOT0			GND
45	PB8	IO	可复用	一线液晶显示 SC
46	PB9	IO	可复用	一线语音 TK
47	VSS_3			GND
48	VDD_3			VDDA

备注:

- (1)独占使用:指引脚被占用为该功能,不可修改
- (2)可复用: 指该引脚可修改, 可做其它功能使用

2.4 功能框图

电动轻便摩托车控制器方案功能框图如下:

图 2-3 控制器功能图

2.5 功能列表

电动轻便摩托车控制器主要功能列表如下:

表 2-2 电动轻便摩托车控制器功能列表

序号	功能	序号	功能
1	速度控制	12	档位
2	欠压保护	13	防盗
3	短路保护	14	电压等级选择
4	限流控制	15	一键修复
5	堵转保护	16	LED 运行和故障指示
6	刹车断电	17	童锁/驻车
7	电压等级选择	18	倒推车
8	MOS 管上电自检	19	一线液晶显示
9	电机霍尔故障检测	20	一线语音
10	转把故障检测	21	上位机调试
11	防飞车		

3 功能详述

3.1 速度控制

3.1.1 换相及调压

电动车用轮毂电机为无刷直流电机,其具有和有刷电机类似的机械特性和调速性能。为实现换向和调节电压大小,通常采用逆变电路,依据 SVPWM 理论,确定开关管何时导通和导通时间。逆变电路由 6 个开关管组合而成,每个开关管的开通关断需要单独控制,因此需要 6 路信号,矢量控制时,通过扇区确定需要开通的开关管,来实现换相的目的;通过调节开关管的开通时间确定提供给电机的电压大小,实现调速。逆变电路如图 3-1 所示:

图 3-1 逆变电路

方案中采用 MOSFET 构建逆变电路,相比与 N 沟道的 MOSFET,P 沟道的 MOSFET 价格偏贵。为降低成本,一般全部采用 N 沟道 MOSFET,但 N 沟道 MOSFET,导通时其栅极 G 的电压必须比源极 S 高出 10V 以上,才能保证可靠导通,MCU 不足以驱动 MOSFET 开通,因此,需要在 MCU 和逆变桥之间加入一级栅极驱动器来驱动 MOSFET。其结构拓扑如图 3-2 所示:

图 3-2 电机控制结构拓扑

3.1.2 电机霍尔信号检测

电机在换相时需要根据扇区来确定导通的 MOSFET,扇区通过电机的 3 路霍尔信号来确定。在电机矢量控制算法中,需要电机转过的角度来实现坐标变换,角度是电机控制方案中至关重要的一个参数。通过 MCU 的捕获功能,计

算电机在发生一个扇区变化时需要的时间,由于一个扇区变化电机转过 60 度,进一步通过软件算法确定电机当前的位置角度。电机霍尔接口如图 3-3 所示。

图 3-3 电机霍尔接口

3.1.3 转把无级调速

电动车控制器采用转把调速,转把由线性霍尔和两个相对的磁极 (N、S)组成。利用霍尔效应,转把转动时霍尔元件检测磁场线性变化,而输出 1.1V-4.2V 左右,连续、线性变化的电压信号。利用 MCU 的 ADC 通道采集该电压,与电机速度对应,实现无级调速。其连接拓扑如图 3-4 所示:

图 3-4 转把与 MCU 连接拓扑

转把接口引出 3 根线,分别为电源、调速信号、地。调速信号输出 1.1V-4.2V,为了匹配 MCU 的供电电压,将转把输出信号经电阻分压网络后,接入ADC 模块的 1 路通道。

3.2 保护控制

3.2.1 欠压保护

欠压保护: 通过处理 ADC 采样的母线电压值实现。

当电动车的电量低于低压阀值时,将不允许启动,当电量恢复电压阀值以上时允许电动车运行。根据电池特性,在不供电时电量会回升,为了防止电量在欠压阀值临界点时,频繁的允许和不允许启动问题的出现,设置回升电压。

根据不同电压等级,设置的欠压阀值不同,可参照下表 3-1 设置:

序号	供电电压等级	欠压阀值	回升电压
1	24V	20.5V±1V	20.5V±1V +1.3V
2	36V	31.5V±1V	31.5V±1V+1.3V
3	48V	41.5V±1V	41.5V±1V+1.3V
4	60V	51.5V±1V	51.5V±1V+1.3V
5	72V	62.5V±1V	62.5V±1V+1.3V
6	可根据客户需求而定		

表 3-1 控制欠压值设置

3.2.2 短路保护

当电流突然由于某种原因大大超过允许值(比如 MOS 管击穿或误导通),此时限流控制程序往往来不及响应。所以,把短路信号检测出来,直接去触发中断,让单片机能够快速关断驱动,从而避免 MOS 管及控制受到更大伤害。

ST 系列 MCU 有禁烟功能(BRK 功能),当相应信号引脚电平发生变化后,MCU 会迅速关断 PWM 输出,从而保护 MOS 管和电路,短路保护电路如下图 3-5 所示。

图 3-5 短路保护电路

3.2.3 限流控制

限流控制:通过处理 ADC 采样的母线电流值实现。

电动车控制器采用双闭环控制策略,速度环 + 电流环,电流环是保证电机以最大的允许力矩运行。电流环作用主要是: (1)启动过程的加速,(2)对反拉时的电流保护,(3)对电压波动的抗干扰。(4)在大负载或堵转时,保证电流恒定。

母线电流一般通过**康铜丝**来采集,然后经过运放放大,送到 MCU 的 ADC 采样通道,软件算法进行滤波处理后,提供最终控制的电流数据。母线电流存在 正负之分,通过在检测**康铜丝**的电压上叠加一个 1.62V 的电压量,将电压提升,保证 MCU 能够采集正确的母线电流。其电路原理图如下所示:

图 3-6 母线电流采样电路

所采用运放型号: SD06 或 C81662, 可依据改运放参数进行集成设计。

3.2.4 堵转保护

堵转是指电机超载时,或在电流过大,或阻力过大时,导致电机停止转动。 为了防止电机发生堵转时电流始终通过同一组 MOSFET 而造成永久损害,因此, 在堵转发生之后数秒钟(一般时间是 2 秒)之内切断电机的供电。要注意的是有 时电机虽然发生堵转,但刚好在换相的临界点,此时会产生频繁的换相动作,这 对 MOSFET 也是有害的,此种情况也应当做堵转处理。

堵转识别:

采用每 100ms 检测一次堵转条件, 当满足以下条件时, 视为堵转:

- (1)电机处于 RUN 状态
- (2)电流检测值: >=600(母线电流约 1.3A)
- (3)实测速度: <= 5(例如轮毂电机 23 对极,转速 <= 20RPM)

当连续 0.5s 检测到堵转时,降低限流值为设置值的一半,当连续 1s 检测到 堵转时,设置堵转标志,关闭电机。当调速转把归零后撤销堵转保护。

3.3 刹车断电

电动车可选高电平或低电平刹车,在按下刹车键后,在机械刹车的同时辅助电子刹车(EABS),保证电动车可靠停车。刹车通过检测刹车 IO 的电平,当电平处于低电平时处于刹车状态。

图 3-7 刹车连接图

电磁刹车即 EABS 防抱死技术,引入 EABS 达到刹车静音、柔和的效果,减少机械制动力和机械刹车的压力,降低机械刹车带来的噪声,增加整车制动的安全性,EABS 刹车不损伤电机;并且刹车、减速或下坡滑行时将 EABS 产生的能量反馈给电池,起到反充电的效果,从而对电池进行维护,延长电池寿命,增加续行里程。用户可根据自己的骑行习惯自行调整 EABS 刹车深度。

3.4 故障检测

3.4.1 MOS 上电自检

为了避免生产过程中由于连锡或虚焊导致 MOSFET 烧毁,在开机时,用极短的时间(大概 10-20us)全部开启一下上桥,关闭;然后再开启一下下桥,关闭,来检测 MOS 管是否存在故障。

如果其中有 MOSFET 短路就会产生较大的电流,大电流可以用 MCU 在开启 MOSFET 的同时检测到,并且在大电流下会进入过流保护中断,TIM1_BKIN引脚使能,通过在保护中断设置过流使能位判断 MOS 管故障与否,并通过 LED 将故障指示出。而在这么短的时间内即使某个 MOSFET 短路,也不至于把另外一个烧掉。

3.4.2 电机霍尔故障检测

电机霍尔安装方式有120°与60°两种,不同安装方式下对应确定的霍尔状态, 当出现异常的霍尔状态时即判断霍尔故障。

霍尔信号检测由 3.1.2 节电路采集, 其具有的霍尔状态如下表所示。

	120°电机霍尔信号				60°电机霍尔信号			
序号	U	V	W	(WVU)	U	V	W	(WVU)
1	1	0	0	1	1	0	0	1
2	1	1	0	3	1	1	0	3
3	0	1	0	2	1	1	1	7
4	0	1	1	6	0	1	1	6
5	0	0	1	4	0	0	1	4
6	1	0	1	5	0	0	0	0

表 3-2 霍尔传感器信号状态

表 3-3 霍尔传感器状态分类

序号	霍尔状态	120°(H3H2H1)	60°(H3H2H1)			
1	正常霍尔状态	5, 1, 3, 2, 6, 4	0, 1, 3, 7, 6, 4			
2	异常霍尔状态	0, 7	2, 5			

3.4.3 转把故障检测

霍尔转把的电压输出为: 1.1V-4.2V, 当检测到电压不在该范围内, 标记转把故障。特殊的在上电时, 如果把手位置未处于关闭位置, 则关闭输出; 调速把手复位后撤销保护。下图为转把电压采样电路:

图 3-8 转把电压采样电路

3.5 核心功能

3.5.1 防飞车

电动车飞车,是指一打开电门锁电动机就高速运转,即电动车的速度不受转 把和制动把控制,而使电动车高速行驶。

在转把负极断路时,造成 MCU 直接接收到高电平信号,从而导通功率管,造成飞车。在程序上,采用在转把信号上设计超电压保护,解决电动车飞车导致的人身安全。如图 3-9 为软件飞车处理流程。

图 3-9 飞车判断流程

3.5.2 档位

(1)档位选择

档位增加了用户在使用电动车时的骑行感受,根据不同路况不同用户,通过档位的切换来满足骑行者对速度的要求。一般档位分为三档:高档、中档、低档,默认状态下为中档。按其档位选择的方式分为按键和拨档。

按键三速:通过按键可切换不同的速度,低速(55%),中速(75%),高速(100%); 拨档三速:空置时为中速,拨到不同档位对应不同档位速度,低速(55%), 中速(75%),高速(100%); 超三速:空置时为中速,拨到不同档位对应不同档位速度,低速(60%),中速(80%),高速(115%);超三速也叫竞速,通过弱磁控制实现速度提升。

按键档位切换需要一个 IO 脚,而拨档档位切换需要两个 IO 脚,根据不同的客户需求,硬件上一般做兼容处理。通过短接插头选择档位选择模式,插上接头为拨档开关三速,断开为按键三速。

(2)档位显示

档位显示一方面根据档位显示 IO 引脚电平状态来表示不同档位,也可以由一键液晶显示中的档位数据来表示不同档位。通过 IO 引脚的方式需要占用 3 路 IO 引脚,当引脚为高电平时表示电动车处于该档位状态(高档(100)、中档(010)、低档(001))。一键液晶显示的档位是依托一线通协议来显示档位节省硬件资源。

其电路连接如图 3-10 所示:

图 3-10 档位选择和显示连接图

3.5.3 防盗

电动车防盗,通过检测防盗信号线电平,使控制器工作在防盗模式。防盗模式下,向前推动电动车时,出现越推越堵的现象,使得在无钥匙插入时,电车无法移动,实现防盗。

电动车的防盗功能需要借助防盗器,根据防盗器的类型分为传统型防盗和蓝牙防盗,蓝牙防盗结合手机 APP 可以实现更丰富的功能。

电动车控制器和防盗器的接线如图 3-11 所示。

图 3-11 控制器与防盗器接线示意图

其工作原理如下:

当钥匙从电门锁拔出后,电门锁断开电瓶和控制器回路,控制器处于不供电状态。一旦电动车被推动,接到控制器相线的轮动检测线上产生电压,该电压由电磁感应产生。此时,防盗器检测到电动车被推动,将电瓶电压通过防盗器接入控制器,同时通过电平信号输出线发出防盗使能信号,通知电动车控制器需要工作在防盗模式,在防盗模式下控制器将电机锁住,避免被推动。

类似地,当电动车震动时,防盗器亦接通控制器与电瓶之间的通路,发出防盗信号,配合喇叭,进行报警。

在防盗控制中,引入防盗报警的电平信号输出线到 MCU,用于提供防盗进入使能信号,其与电路连接如图 3-12 所示:

图 3-12 防盗连接图

3.5.4 电压等级选择

为了更好的兼容电机和电池供电电压等级,电动车控制器一般做成兼容不同电压等级的一体机,通过选择接口,选择合适的电压等级。电压等级一般分为: 24V、36V、48V、60V、72V。比如 48V/60V,表示控制器兼容这两个电压等级,以下均以该电压等级作为论述,其电路连接如图 3-13 所示:

图 3-13 电压等级选择连接图

默认状态下, 电压等级选择 IO 为高电平, 选择 48V 电压等级, 当插上 ST 接口时, IO 为低电平, 选择 60V 电压等级。

3.5.5 一键修复

一键修复就是电动车利用一个"附加电机",越过复杂的电路,在短时间内,暂时保证车辆以低速行驶至最近的维修点或家中。一键修复为临时紧急处理方案,只能低速行驶。值得注意的是,电动车"修复"按钮并非万能修复按键,它只能临时处理紧急状况,如转把问题、刹车问题、电机霍尔问题(电池故障和爆胎故障无法修复)。

一键修复通过检测修复键的状态,来修复相应的故障,其连接图如下:

图 3-14 修复连接图

修复操作方式如下:

- (1)当电动车刹车线路故障时,语音提示为警告音(高音1声),刹车线路故障,请按住修复键低速行驶。
- (2)当电动车转把故障时,语音提示为警告音(高音 2 声),调速把线路故障,请按住修复键低速行驶。
- (3)当电动车刹车、转把或电机霍尔共同有故障时,语音提示为警告音(高音 6 声),综合故障,请连按三次修复键,再按住修复键,低速行驶。
- (4)当电动车的电机出现霍尔故障时,语音提示为警告音(高音 3 声),电机霍尔线路故障,请连按两次修复键,正常行驶。

3.5.6 LED 运行和故障指示

当控制器出现故障时,为了快速锁定故障类型,采用 1 路 LED,通过不同的闪烁频率和次数来指示控制器状态和故障类型。表 3-4 列出了不同状态和故障下的 LED 闪烁频率和次数。

表 3-4 故障类型和显示

序号	故障类型	LED 现象	备注
1	系统正常	慢闪,0.5s 闪烁一次	
2	MOS 管上管故障	快闪,连续2次,停一下	闪烁次数可设置
3	MOS 管下管故障	快闪,连续4次,停一下	
4	转把故障	快闪,连续6次,停一下	
5	电机霍尔故障	快闪,连续8次,停一下	
6	母线电压异常	快闪,连续 10 次,停一下	
7	采样电路故障	快闪,连续 12 次,停一下	

3.6 辅助功能

3.6.1 童锁

当电动车处于停车状态下,电门锁未关闭,转把转动会使电动车启动,该过程存在严重的安全隐患。比如,当电动车停车后,存在孩童坐在车上转动转把的现象。为了避免人生和财产安全,童锁/驻车/单撑功能必不可少。MCU 通过检测接入的信号的高低电平判断电动车的状态。当电平为低电平时,电动车处于驻车停止状态,这时转把输入设置无效。其与电路连接如图 3-15 所示:

图 3-15 童锁/驻车连接图

3.6.2 倒推车

倒推车可分为倒车和推车。

倒车功能,在对接倒推车线进入倒车模式,断开退出倒车模式,倒车速度可选: 30%,40%,70%,100%。必须在电机停止后,倒车使能才有效。

推车功能,在对接倒推车线进入推车模式,断开退出推车模式,推车时车速和步行速度一致。其连接图如下:

图 3-16 倒推车连接图

3.7 数据通讯

一线液晶显示器和一线语音提示器均采用主从方式单线单向传输,即只需要一根传输线路,电动车控制器为发送方,多功能显示器或语音提示器为接收方,建议传输线与电动车控制故障运行灯共用 I/O 口,不占用额外资源。

此协议具有的通用特点如下:

- (1) 采用国际标准 SIF 通信协议,接口通用方便。
- (2) 主从方式采用单线单向传输,即只需要一根传输线路,电动车控制器为 发送方,多功能提示器为接收方,建议传输线与电动车控制故障运行灯 共用 I/O 口,不占用额外资源
- (3) 传输波特率自适应范围宽, 主机可以利用空闲时间发送数据。
- (4) 32us <Tosc<320us
- (5) 数据的电平遵守 TTL 规范

3.7.1 一线液晶显示

- 一线液晶显示传输电机运行状态、档位、速度、故障状态、电池电量等数据, 一次传输一帧数据, 共包含 65 个 bit: 一个起始位, 8x8 个数据位, 传输结束后 要求线路的空闲状态为低电平。
 - 一线液晶显示的数据编码格式如下:

表 3-5 一线液晶显示数据编码格式(一帧)

O.	同步	DATA0	DATA1	DATA2	DATA3—DATA10	DATA11
信号	低高电平	8BIT 低高电平	8BIT 低高电平	8BIT 低高电平	8BIT 低高电平	8BIT 低高电平
内容	无意义	设备编码 8BIT	流水号 8BIT	流水号 4BIT + 数据 4BIT	数据 8BIT	校验和 8BIT
命名		Device_code	SEQ_CODE_L	SEQ_CODE_H		Checksum

图 3-17 一线液晶显示同步信号和数据信号

按照上述通讯协议,其硬件连接示意图如图 x-x。MCU 的 IO 脚输出通讯协议定义的电平,相应的 SC 与其保持一致的电平。

图 3-18 一线液晶显示硬件接口

3.7.2 一线语音

一线语音用于智能语音播报,可播报防盗己设定、防盗已解除、品牌提示等;可与控制器配套播放电动车故障的语音内容。一次传输一帧数据,共包含17个bit:一个起始位,8个数据位,8个重复数据位(用作校验),一个数据传输结束后要求线路空闲状态为低电平。

一线语音的数据编码格式如下:

表 3-6 一线语音数据编码格式(一帧)

同步	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0
同步	数据(DATA))								重复	校验数	枚据(D	ATA)		

图 3-19 一线语音同步信号和数据信号

按照上述通讯协议,其硬件连接示意图如图 3-20。MCU 的 IO 脚输出通讯协议定义的电平,相应的 TK 与其保持一致的电平。

图 3-20 一线语音硬件接口

3.7.3 上位机调试

通过串口将电机运行中的数据输出到上位机调试平台,实时监测电机运行状态,协议自定。

3.8 产品规格

电动轻便摩托车控制器规格参数如下表所示:

表 3-7 控制器规格参数

功能	参数	功能	参数					
功率	450W-600W	输出电压	48V/60V					
输出电流	22A-32A	转把电压	1.1V-4.2V					
刹车电平	高/低电平	相位角	120 度					
产品功能	E-ABS、蓝牙防盗、流	E-ABS、蓝牙防盗、液晶显示、三速、一键修复						

表 3-8 控制器及方案板卡对比

	——————————————————————————————————————			
	无线束	有线束		
方				
案				
板				
卡				
控制器				

3.9 产品接线图

附件1

电动车功能列表

序号	项目	功能	功能说明
1	速度控制	转把无级调速	● 霍尔电子无级调速系统,调速范围
			0-100%
1			● 启动方式:转把控制启动快慢,控
			制灵活
		欠压保护	● 20.5V±1V, 24V 供电
			● 31.5V±1V, 36V 供电
2			● 41.5V±1V, 48V 供电
2			● 51.5V±1V, 60V 供电
			● 62.5V±1V, 72V 供电
			● 可根据客户需求设定
3			● 短路后,切断 PWM 输出
3	促拍妳割	短路保护	● 故障消除后,转把归零
	· 保护控制	限流控制	● 350W ≤ 18A
			● 450W ≤ 24A
4			● 500W ≤ 32A
			● 500W-1000W ≤ 40A
			● 可根据客户需求设定
		堵转保护	● 自动判断电机在过流时,是处于完
5			全堵转状态还是运行状态
			● 堵转 1.5s 或 2s 切断 PWM 输出
	刹车断电	高电平刹车	● 机械刹:高/低电平可选
		低电平刹车	● 电磁刹车:引入汽车级 EABS 防抱
6		EABS	死技术,减少机械制动力和机械刹
			车的压力,降低刹车噪音,增加整
			车制动的安全性

序号	项目	功能	功能说明
		MOS 上电自 检	● 解决生产过程中由于连锡或虚焊导
			致 MOSFET 烧毁的问题
7			● 在开机时用极短的时间(大概 10-
/			20us)全部开启一下上桥,关闭;
			然后再开启一下下桥,关闭,来检
			测 MOS 管是否存在故障
	1.1 p->c 1.4 Np.1		● 电机霍尔安装方式有 120°与 60°两
	故障检测	电扣索欠损降	种
8		电机霍尔故障 检测	● 不同安装方式对应确定的霍尔状
			态,当出现异常的霍尔状态时即判
			断霍尔故障
			● 霍尔转把的电压输出为: 1.1V-4.2V
9		转把故障检测	● 当检测到电压不在该范围内,标记
			转把故障
		防飞车	● 解决无刷控制器由于转把或线路故
10			障引起的飞车现象,同时具有启动
			防飞车功能,提高系统安全性
		档位 (三速)	● 按键三速:按键切换速度,低速
	核心功能		(55%)、中速(75%)、高速(100%)
			● 拨档三速:空置为中速,拨至低
			速、高速端口分别为低速、高速,
11			低速(55%) 中速(75%) 高速(100%)
			● 拨档超三速:空置为中速,拨至低
			速、高速端口分别为低速、高速,
			低速(70%) 中速(100%) 高速
			(115%)

序号	项目	功能	功能说明
12	核心功能	防盗	● 在关闭电门锁的情况下,控制器能自动将电机锁紧,实现部件级的防盗功能,解决防盗型控制器在警戒状态下控制器还必须工作,工作电流大的不利因素● 蓝牙防盗和普通防盗
13		电压等级选择	 可选输入电源 24V 或 36V 可选输入电源 36V 或 48V 可选输入电源 48V 或 60V 可选输入电源 60V 或 72V
14		一键修复	在转把、刹车、故障后,按下一键修复,电动车按定速运行在电机霍尔故障时,按下一键修复电机切换到无霍尔模式,电动车运行在无霍尔方波下
15		LED 运行和 故障指示	 系统正常,慢闪,0.5s 闪烁一次 MOS 上管故障,快闪,连续 2 次,停一下 MOS 下管故障,快闪,连续 3 次,停一下 转把故障,快闪,连续 4 次,停一下 刹把故障,快闪,连续 6 次,停一下 电机霍尔故障,快闪,连续 8 次,停一下 母线电压异常,快闪,连续 10 次,停一下 采样电路故障,快闪,连续 12 次,停一下

序号	项目	功能	功能说明
16		童锁	● 童锁/单撑/驻车
			● 在车撑未打开时,电门锁上电,转
			动转把无效
			● 适合电动三轮车使用,对接倒车线
		倒推车	进入倒车模式,断开退出倒车模
17			式,
1 /			● 倒车速度可选: 30%, 40%,
			70%, 100%
			● 推车时,速度步调一致
			● 手动巡航:按键进入巡航,转动手
	辅助功能		把或刹车可解除巡航状态
18	福助 切形	巡航	● 自动巡航: 匀速行驶8秒进入巡
			航,转动手把或刹车可解除巡航状
			态
			● 根据骑车者脚踏力的大小(速度快
19		1:1 助力	慢),给出相应比例的电机动力
19			● 在骑行中辅以动力,让骑行者感觉
			更轻松
		限速	● 限速后车速为全速的 35%(最高车
20			速可达 35km/h-45km/h(根据电机
20			而定),限速行驶速度控制在
			20km/h 以内)
	数据通讯	一线液晶显示	● 传输电机运行状态、档位、速度、
			故障状态、电池电量等数据
21			● 采用国际标准 SIF 通信协议,接口
21			通信方便
			● 主从方式采用单线单向传输,即只
			需要一根传输线路

序号	项目	功能	功能说明
	数据通讯	一线液晶显示	● 传输电机运行状态、档位、速度、
			故障状态、电池电量等数据
21			● 采用国际标准 SIF 通信协议,接口
21			通信方便
			● 主从方式采用单线单向传输,即只
			需要一根传输线路
		一线通语音	● 播报电动车运行状态,提示故障
			● 采用国际标准 SIF 通信协议,接口
22			通信方便。
			● 主从方式采用单线单向传输,即只
			需要一根传输线路
23		上位机调试	● 采用串口输出运行 LOG
24		CAN 通讯	● 适用于高速电摩