

## planetmath.org

Math for the people, by the people.

## Cayley's theorem

Canonical name CayleysTheorem
Date of creation 2013-03-22 12:23:13
Last modified on 2013-03-22 12:23:13

Owner vitriol (148) Last modified by vitriol (148)

Numerical id 7

Author vitriol (148) Entry type Theorem Classification msc 20B35

 ${\it Related topic} \qquad {\it Cayleys Theorem For Semigroups}$ 

Let G be a group, then G is isomorphic to a subgroup of the permutation group  $S_G$ 

If G is finite and of order n, then G is isomorphic to a subgroup of the permutation group  $S_n$ 

Furthermore, suppose H is a proper subgroup of G. Let  $X = \{Hg | g \in G\}$  be the set of right cosets in G. The map  $\theta : G \to S_X$  given by  $\theta(x)(Hg) = Hgx$  is a homomorphism. The kernel is the largest normal subgroup of H. We note that  $|S_X| = [G:H]!$ . Consequently if |G| doesn't divide [G:H]! then  $\theta$  is not an isomorphism so H contains a non-trivial normal subgroup, namely the kernel of  $\theta$ .