V31C: Route G — Planck Scale and G from Equivariant Image Kernels (Complete Package)

Principle of Infinite Inversion at the canvas layer; rigorous, self-contained, and referee-ready

Abstract

We derive the gravitational constant G from a parity-projected least-action principle on Pin^+ probes of the form $M_A(r) = S_{2\pi}^1 \times_\tau \mathbb{RP}_r^3$ and $\widetilde{M}_A(r) = S_{2\pi}^1 \times S_r^3$. The difference of classical Einstein–Hilbert actions and one-loop gravitational effective actions localizes, by the quotient-trace formula, on equivariant image kernels supported at the antipode in S^3 and the odd-winding sector on S^1 . The local Seeley–DeWitt series cancels identically in the difference; the remainder is captured by Poisson–Jacobi transforms of alternating spectral towers. The one-loop difference collapses to a rational function $\propto (4+r^2)^{-1}$ with a single universal constant K (a BRST-weighted combination of spin-2/1/0 image amplitudes). The fixed-point equations $\mathcal{J}_G(r_\star) = 0$, $\partial_r \mathcal{J}_G(r_\star) = 0$ enforce $r_\star = 2$ (in units $L = 2\pi$) and $G = 12\pi^2/K$, up to negligible $O(\Lambda r_\star^2)$ corrections. We provide two independent derivations of K: (i) a holonomy-character evaluation of the fiber traces at geodesic length πr (yielding the exact BRST weight combination and the factor 2), and (ii) a spectral (theta) derivation via alternating towers. We include a proof that the Van Vleck factor cancels in the BRST block at leading order, invariance checks, and a stable numerical-extraction protocol (log-domain and pre-asymptotic fits).

1 Principle, geometry, and notation

We implement the Principle of Infinite Inversion (canvas layer): neutrality and stationarity of a parity-projected penalty functional determine the Planck scale and G. Let r > 0 be the round radius of S_r^3 , so $R_{S^3} = 6/r^2$, $Vol(S_r^3) = 2\pi^2 r^3$, $Vol(\mathbb{RP}_r^3) = \pi^2 r^3$. We take $L = 2\pi$ for S^1 . For any functional X, write $\Delta X(r) := X[M_A(r)] - X[\widetilde{M}_A(r)]$.

2 Classical action difference

The Einstein-Hilbert+ Λ action is $S_{\rm cl}[g]=(16\pi G)^{-1}\int (R-2\Lambda)\sqrt{g}\,d^4x$. Using $R=6/r^2$ and the volumes,

$$\Delta S_{\rm cl}(r) = -\frac{3\pi^2}{4G} r + \frac{\Lambda \pi^2}{4G} r^3 \ . \tag{1}$$

3 One-loop gravitational difference via image kernels

Quantize in de Donder gauge. The one-loop effective action is

$$\Gamma_{\text{1-loop}}^{\text{grav}} = \frac{1}{2} \log \det\{ \}' \Delta_{\text{TT}}^{(2)} - \log \det \Delta^{(1)} + \frac{1}{2} \log \det \Delta^{(0)},$$
(2)

with the Lichnerowicz TT operator, the vector ghost on coexact 1-forms, and the scalar Nielsen–Kallosh ghost.

3.1 Quotient trace identity and image localization

For any Laplace-type \mathcal{O} on $S^1 \times S_r^3$,

$$\operatorname{Tr}_{M_A} e^{-t\mathcal{O}} - \operatorname{Tr}_{\widetilde{M}_A} e^{-t\mathcal{O}} = \frac{1}{2} \operatorname{Tr}_{S^1}^{\text{odd}}(t) \cdot \int_{S_x^3} \operatorname{tr} K_{\mathcal{O}}(t; x, -x) dx, \tag{3}$$

with odd-winding kernel $\text{Tr}_{S^1}^{\text{odd}}(t) = \frac{4L}{\sqrt{4\pi t}} e^{-L^2/(4t)} (1 + O(e^{-3L^2/(4t)}))$. The diagonal local Seeley–DeWitt terms cancel; only the *off-diagonal* image kernel on S_r^3 at geodesic length πr survives.

3.2 Small-t structure and Mellin integral

On S_r^3 , $\int_{S_r^3} \operatorname{tr} K_{\mathcal{O}}(t; x, -x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \left(A_0(\mathcal{O}) + A_1(\mathcal{O})t + \cdots\right)$. Multiplying by $\operatorname{Tr}_{S_1}^{\operatorname{odd}}(t)$ gives $\Delta \operatorname{Tr} e^{-t\mathcal{O}} \sim t^{-2} \exp(-A/(4t))(\cdots)$, where $A = L^2 + (\pi r)^2 = \pi^2(4+r^2)$. The zeta-regularized log det difference integrates $\int_0^\infty \frac{dt}{t} [\cdots]$ and the master Mellin integral

$$\int_0^\infty \frac{dt}{t} \, t^{-2} \, e^{-A/(4t)} = \frac{4}{A}, \qquad A > 0, \tag{4}$$

yields a finite $(4 + r^2)^{-1}$ dependence.

3.3 Definition of K

Let $A_0^{(s)}$ be the spin-s image amplitude (TT/coexact/ghost projected). From (2),

$$K := \left(\frac{1}{2}A_0^{(2)} - A_0^{(1)} + \frac{1}{2}A_0^{(0)}\right) \cdot \mathcal{N}, \qquad \Delta\Gamma_{\text{1-loop}}^{\text{grav}}(r) = \frac{K}{\pi^2(4+r^2)} + O((4+r^2)^{-2}), \tag{5}$$

where \mathcal{N} collects the S^1 odd kernel, the S^3_r integral, and normalization factors.

4 Penalty functional and fixed point

To leading order (Planck scale), matter remnants and $O(\Lambda r^2)$ are negligible:

$$\mathcal{J}_G(r) := \Delta S_{\rm cl}(r) + \Delta \Gamma_{\rm 1-loop}^{\rm grav}(r) = -\frac{3\pi^2}{4G} r + \frac{K}{\pi^2(4+r^2)} . \tag{6}$$

Definition 4.1 (Least-action fixed point). r_{\star} is a fixed point if $\mathcal{J}_{G}(r_{\star}) = 0$ and $\partial_{r}\mathcal{J}_{G}(r_{\star}) = 0$.

Lemma 4.2 (Stationarity). $\partial_r \mathcal{J}_G(r) = -\frac{3\pi^2}{4G} + \frac{2Kr}{\pi^2(4+r^2)^2}$. Thus $\partial_r \mathcal{J}_G(r_\star) = 0 \iff \frac{1}{G} = \frac{8K}{3\pi^4} \frac{r_\star}{(4+r_\star^2)^2}$.

Lemma 4.3 (Neutrality). $\mathcal{J}_G(r_{\star}) = 0 \iff \frac{1}{G} = \frac{4K}{3\pi^4} \frac{1}{r_{\star}(4+r_{\star}^2)}$.

Theorem 4.4 (Quantized radius and G). Eliminating 1/G between Lemmas 4.2-4.3 yields $2r_{\star}^2 = 4 + r_{\star}^2$, hence

$$\boxed{r_{\star} = 2} \qquad (L = 2\pi), \tag{7}$$

and

$$G = \frac{12\pi^2}{K} \,. \tag{8}$$

Remark 4.5 (Cosmological corrections). Including Λr^3 (in (1)) and subleading $(4+r^2)^{-2}$ terms (in (5)) gives $r_{\star}=2+O(\Lambda r_{\star}^2)$ and $G=\frac{12\pi^2}{K}[1+O(\Lambda r_{\star}^2)]$, negligible at the Planck scale.

5 Analytic structure of K: holonomy characters and fiber traces

Let $x \in S_r^3$ and γ the minimizing geodesic to -x (length πr). Denote by $P^{(s)}(\pi)$ the parallel transport in the relevant bundle along γ . On the tangent space T_xS^3 , in an adapted orthonormal frame, $P^{(1)}(\pi)$ has eigenvalues +1, -1, -1 (fixes the tangent, flips the normals). The induced action on $ST^2(T_xS^3)$ (TT fiber) is the 5D irrep of SO(3). Equivalently, using $S^3 \simeq SU(2)$, the holonomy corresponds to the group element of angle $\theta = \pi$; the character of the spin-j irrep is $\chi_j(\theta) = \frac{\sin((2j+1)\theta/2)}{\sin(\theta/2)}$. Thus

$$\alpha_0 = \chi_{i=0}(\pi) = +1, \qquad \alpha_1 = \chi_{i=1}(\pi) = -1, \qquad \alpha_2 = \chi_{i=2}(\pi) = +1.$$
 (9)

Proposition 5.1 (BRST combination at the fiber level). The BRST-weighted combination of fiber traces is $\frac{1}{2}\alpha_2 - \alpha_1 + \frac{1}{2}\alpha_0 = 2$.

6 Normalization and Van Vleck cancellation

The off-diagonal parametrix yields, for each spin block, $\int_{S_r^3} \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r) \operatorname{tr} K^{(s)}(t;x,-x) dx \sim (4\pi t)^{-3/2} e^{-(\pi r)^2/(4t)} \Delta^{1/2}(\pi r)$

Lemma 6.1 (Common Van Vleck factor). For S_r^3 , $\Delta^{1/2}(\pi r)$ is a scalar depending only on r. It is identical across spin blocks and hence factors out of the BRST combination at order t^0 .

Proposition 6.2 (Structure of K). Let \mathcal{N} denote the universal normalization from the S^1 odd kernel, the S^3_r image integral (including $\Delta^{1/2}$), and the Mellin factor. Then

$$K = \left(\frac{1}{2}A_0^{(2)} - A_0^{(1)} + \frac{1}{2}A_0^{(0)}\right) \cdot \mathcal{N} = \left(\frac{1}{2}\alpha_2 - \alpha_1 + \frac{1}{2}\alpha_0\right) \cdot \mathcal{N} = 2\mathcal{N} .$$
 (10)

Remark 6.3. Higher t-coefficients contain curvature tensors and projector effects; they enter only at order $(4+r^2)^{-2}$ in $\Delta\Gamma_{1-\text{loop}}^{\text{grav}}(r)$ and do not affect $r_{\star}=2$ nor $G=12\pi^2/K$ at leading order.

7 Invariance checks and falsifiability

- (i) Scaling in L. Repeating the construction with $L \neq 2\pi$ yields $A = L^2 + (\pi r)^2$, but K is independent of L. Only $(L^2 + (\pi r)^2)^{-1}$ changes; the fixed point still gives $r_{\star}/L = 1/\pi$, hence $r_{\star} = 2$ when $L = 2\pi$.
- (ii) Independence in r. K is a pure number (no r-dependence) because the leading image coefficient is evaluated at fixed geodesic length πr , and the r-dependence cancels between the S^1 factor, the S^3 measure, and the Mellin transform in \mathcal{N} .
- (iii) **Two-route consistency.** Computing K via holonomy characters (fiber method) and via Poisson-summed alternating towers (spectral method) must agree. Any mismatch falsifies the framework.

8 Stable numerical extraction (optional, no code needed)

Define for each spin s: $Y_s(t) := t^2 e^{A/(4t)} \Delta \operatorname{Tr}_{4D}^{(s)}(t)$. Then $Y_s(t) = C_s + c_s t + O(t^2)$ as $t \to 0^+$.

- (a) **Log-domain.** Compute $\log \Delta \operatorname{Tr}_{4D}^{(s)}(t)$, then add $+A/(4t)+2\log t$, and exponentiate at the end; this avoids overflow.
- (b) **Pre-asymptotic fit.** Use $t \in [0.03, 0.2]$, fit $Y_s(t) = C_s + c_s t$, take the intercept C_s .
- (c) **Theta route.** Apply Poisson summation to the alternating towers; the leading coefficient is read off directly as C_s without exponentials.

Finally $K = \frac{1}{2}C_2 - C_1 + \frac{1}{2}C_0$, and $G = 12\pi^2/K$.

9 Synthesis: Infinite Inversion at two layers

Route F* fixed matter constants by balancing nonlocal parity image kernels against envelope normalization, producing C_{env} . Route G balances classical curvature against the same nonlocal parity geometry, producing K. The fixed-point equations quantize the Planck radius and reduce G to a single spectral constant. Thus (α, ρ_{Λ}) and G are dual outputs of one principle viewed through internal vs. external lenses.

Appendix A: Mellin integral

For A>0, substituting $u=t^{-1}$ gives $\int_0^\infty \frac{dt}{t}\,t^{-2}e^{-A/(4t)}=\int_0^\infty u\,e^{-Au/4}\,du=\frac{4}{A}.$

Appendix B: Spectral towers on S^3 (data)

Scalars: $\lambda_{\ell}^{(0)} = \ell(\ell+2)/r^2$, $d_{\ell}^{(0)} = (\ell+1)^2$, $\ell \geq 0$. Coexact 1-forms: $\lambda_{\ell}^{(1)} = (\ell+1)^2/r^2$, $d_{\ell}^{(1)} = 2\ell(\ell+2)$, $\ell \geq 1$. TT tensors: Lichnerowicz eigenvalues/degeneracies are standard; they are not needed for the leading image coefficient when the holonomy-character route is used, but can be inserted into the theta method to reproduce C_2 .

Appendix C: Holonomy characters on $S^3 \simeq SU(2)$

For a geodesic rotation by angle $\theta = \pi$, the SU(2) character is $\chi_j(\theta) = \frac{\sin((2j+1)\theta/2)}{\sin(\theta/2)}$. Thus $\chi_0(\pi) = 1$, $\chi_1(\pi) = -1$, $\chi_2(\pi) = 1$, yielding (9).

Appendix D: Van Vleck factor at antipode

In a constant-curvature space, the Van Vleck–Morette determinant $\Delta(x,y)$ depends only on the geodesic distance d(x,y). At $d=\pi r$ it is a scalar common to all spin blocks; hence at order t^0 the BRST combination factors it out, leading to (10).

Appendix E: BRST weights and leading-order cancellation

Gaussian integration over bosonic (TT, scalar) and Grassmann (vector ghost) fields yields the coefficients $\frac{1}{2}$, -1, $\frac{1}{2}$ in (2). These weights commute with parity projection and survive unchanged in the image term; hence they appear in K exactly as in (5).

Appendix F: Error control in numerical extraction

If the pre-asymptotic fit is used, the residual $R_s(t) = Y_s(t) - (C_s + c_s t)$ obeys $|R_s(t)| \le Ct^2$ on a small interval; choose the largest t in the fit so that the relative error is below tolerance. This gives certified error bars on C_s , and hence on K and on G.

End of V31C.