Creado por:

Isabel Maniega

Pandas

- 1. Vista de los datos(4.1.1)
- 2. Selección(4.1.2)
- 3. Setting(4.1.1))
- 4. Missing values(4.1.1)
- 5. Operaciones (4.2.1)
- 6. Unión de dataframe (4.1.1)
- 7. Grouping (4.1.1 / 4.1.4)
- 8. Reshaping (4.1.1)
- 9. Time Series
- 10. Categoricals
- 11. Plotting

Contiene dos tipos de estructuras:

- **Series**: una matriz etiquetada unidimensional que contiene datos de cualquier tipo como números enteros, cadenas, objetos Python, etc.
- **Dataframe**: una estructura de datos bidimensional que contiene datos como una matriz bidimensional o una tabla con filas y columnas.

```
In [1]: # pip install pandas
In [2]: from IPython import display
In [3]:
        import pandas as pd
        import numpy as np
      /tmp/ipykernel 7159/2162656668.py:1: DeprecationWarning:
      Pyarrow will become a required dependency of pandas in the next major rele
      ase of pandas (pandas 3.0),
      (to allow more performant data types, such as the Arrow string type, and b
      etter interoperability with other libraries)
      but was not found to be installed on your system.
      If this would cause problems for you,
      please provide us feedback at https://github.com/pandas-dev/pandas/issues/
      54466
        import pandas as pd
In [4]: lista = [1, 2, 5, 9, None, 47, 20]
        lista
```

Out[4]: [1, 2, 5, 9, None, 47, 20]

```
In [5]: # Series:
        s = pd.Series(lista)
Out[5]: 0
             1.0
        1
             2.0
        2
             5.0
        3
             9.0
        4
             NaN
        5
             47.0
             20.0
        dtype: float64
In [6]: # Series:
        s = pd.Series([1, 3, 5, np.nan, 6, 8])
Out[6]: 0
             1.0
             3.0
        1
        2
             5.0
        3
             NaN
             6.0
        5
             8.0
        dtype: float64
In [7]: # date_range(genera un rango de fecha apartir de un valor, marcando el nú
        dates = pd.date range("20130101", periods=6)
        dates
dtype='datetime64[ns]', freq='D')
In [8]:
       df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"
        df
Out[8]:
                                          С
                                 В
        2013-01-01 -0.711362  0.825269 -0.532520 -2.232001
        2013-01-02
                 1.530446 -1.099274 -0.275519 -0.607721
        2013-01-03 -2.434541 -1.111805
                                    2.101658
                                            1.161692
        2013-01-04 -0.323204 -0.416781
                                    0.613086 -0.251889
        2013-01-05 -1.008649 -1.469483
                                    0.297839 -0.798676
        2013-01-06 0.035385 -1.806611
                                    0.660986 -0.421329
In [9]: # dtypes nos muestra de que tipo son los datos:
        df.dtypes
```

Out[9]: A float64 B float64 C float64 D float64 dtype: object

Vista de los datos

In [10]:	<pre># Muestra df.head()</pre>	las prime	eras filas	del data	nframe, por	defecto	las 5	primeras
Out[10]:		А	В	С	D			
	2013-01-01	-0.711362	0.825269	-0.532520	-2.232001			
	2013-01-02	1.530446	-1.099274	-0.275519	-0.607721			
	2013-01-03	-2.434541	-1.111805	2.101658	1.161692			
	2013-01-04	-0.323204	-0.416781	0.613086	-0.251889			
	2013-01-05	-1.008649	-1.469483	0.297839	-0.798676			
In [11]:	df.head(2))						
Out[11]:		Α	В	С	D			
	2013-01-01	-0.711362	0.825269	-0.532520	-2.232001			
	2013-01-02	1.530446	-1.099274	-0.275519	-0.607721			
In [12]:	<pre># Muestra df.tail()</pre>	las últin	nas filas	de un dat	raframe, po	or defecto	o las .	5 últimas:
Out[12]:		А	В	С	D			
	2013-01-02	1.530446	-1.099274	-0.275519	-0.607721			
	2013-01-03	-2.434541	-1.111805	2.101658	1.161692			
	2013-01-04	-0.323204	-0.416781	0.613086	-0.251889			
	2013-01-05	-1.008649	-1.469483	0.297839	-0.798676			
	2013-01-06	0.035385	-1.806611	0.660986	-0.421329			
In [13]:	df.tail(2))						
Out[13]:		Α	В	С	D			
	2013-01-05	-1.008649	-1.469483	0.297839	-0.798676			
	2013-01-06	0.035385	-1.806611	0.660986	-0.421329			
In [14]:	# Muestra	el valor	de la pri	mera colu	ımna que su	uele ser u	ın val	or único (ia
	df.index							

```
Out[14]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                        '2013-01-05', '2013-01-06'],
                       dtype='datetime64[ns]', freq='D')
In [15]: # Muestra el nombre de las columnas:
         df.columns
Out[15]: Index(['A', 'B', 'C', 'D'], dtype='object')
In [16]: # Podemos convertir un dataframe en una matriz de numpy con:
         df.to numpy()
Out[16]: array([[-0.71136247, 0.82526885, -0.53251966, -2.23200059],
                [ 1.530446 , -1.09927375, -0.27551884, -0.60772076],
                [-2.43454111, -1.1118055 , 2.10165828, 1.16169221],
                [-0.32320382, -0.4167814, 0.61308623, -0.25188882],
                [-1.00864866, -1.46948307, 0.2978386, -0.79867647],
                [ 0.03538463, -1.80661127, 0.66098596, -0.4213287311)
In [17]: # Podemos convertir un dataframe en una matriz de numpy con:
         print(df.to numpy())
        [[-0.71136247  0.82526885  -0.53251966  -2.23200059]
         [ 1.530446
                    -1.09927375 -0.27551884 -0.60772076]
         [-2.43454111 -1.1118055 2.10165828 1.16169221]
         [-0.32320382 -0.4167814  0.61308623 -0.25188882]
         [-1.00864866 -1.46948307 0.2978386 -0.79867647]
         [ 0.03538463 -1.80661127  0.66098596 -0.42132873]]
In [18]: # Para obtener los estadísticos más representativos usamos:
         df.describe()
                                        C
Out[18]:
                      Α
                               В
                                                  D
         count 6.000000
                         6.000000
                                  6.000000
                                           6.000000
         mean -0.485321 -0.846448 0.477588 -0.524987
           std
               1.302702 0.940603 0.928375 1.088656
           min -2.434541 -1.806611 -0.532520 -2.232001
           25%
               -0.934327 -1.380064 -0.132179 -0.750938
           50%
               -0.517283 -1.105540 0.455462 -0.514525
           75% -0.054262 -0.587404 0.649011 -0.294249
           max 1.530446 0.825269 2.101658 1.161692
In [19]: # Podemos dar la vuelta a la tabla y poner lo que esta en filas en column
         df.T
```

```
Out[19]:
            2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
             -0.711362
                      1.530446
                                 -2.434541
                                           -0.323204
                                                     -1.008649
                                                                0.035385
         Α
         В
             0.825269
                      -1.099274
                                 -1.111805
                                           -0.416781
                                                     -1.469483
                                                                -1.806611
         C
             -0.532520
                       -0.275519
                                  2.101658
                                            0.613086
                                                      0.297839
                                                                0.660986
             -2.232001
                       -0.607721
                                  1.161692
                                            -0.251889
                                                      -0.798676
                                                                -0.421329
In [20]: # Colocar los valores según el indice:
         df.sort index(axis=1, ascending=False)
Out[20]:
                          D
                                   C
                                            В
                                                     Α
         2013-01-01 -2.232001 -0.532520
                                      0.825269 -0.711362
         2013-01-02 -0.607721 -0.275519 -1.099274 1.530446
         2013-01-03 1.161692 2.101658 -1.111805 -2.434541
         2013-01-05 -0.798676  0.297839 -1.469483 -1.008649
         In [21]: # Ordenar los datos según una columna:
         df.sort values(by="B")
                                            С
Out[21]:
                                   В
                                                     D
                          Α
         2013-01-06
                    0.035385 -1.806611
                                      0.660986 -0.421329
         2013-01-05 -1.008649 -1.469483
                                      0.297839 -0.798676
         2013-01-03 -2.434541 -1.111805
                                      2.101658 1.161692
         2013-01-02 1.530446 -1.099274 -0.275519 -0.607721
         2013-01-04 -0.323204 -0.416781
                                      0.613086 -0.251889
         2013-01-01 -0.711362  0.825269 -0.532520 -2.232001
```

Seleccion

GetItem()

Selección de columna. Existen 3 formas de seleccionar una columna:

```
In [22]: df['A']
```

```
Out[22]: 2013-01-01
                        -0.711362
          2013-01-02
                        1.530446
          2013-01-03
                        -2.434541
          2013-01-04
                        -0.323204
          2013-01-05
                        -1.008649
                         0.035385
          2013-01-06
          Freq: D, Name: A, dtype: float64
In [23]: df.A
Out[23]: 2013-01-01
                        -0.711362
          2013-01-02
                        1.530446
          2013-01-03
                        -2.434541
          2013-01-04
                        -0.323204
          2013-01-05
                        -1.008649
          2013-01-06
                         0.035385
          Freq: D, Name: A, dtype: float64
In [24]:
         df[['A']]
Out[24]:
                            Α
          2013-01-01 -0.711362
          2013-01-02 1.530446
          2013-01-03 -2.434541
          2013-01-04 -0.323204
          2013-01-05 -1.008649
          2013-01-06
                     0.035385
          Selección de filas mediante slicing(:)
In [25]:
                                               С
Out[25]:
                            Α
                                      В
                                                         D
          2013-01-01 -0.711362  0.825269 -0.532520 -2.232001
                    1.530446 -1.099274 -0.275519 -0.607721
          2013-01-02
          2013-01-03 -2.434541 -1.111805
                                         2.101658
                                                  1.161692
          2013-01-04 -0.323204 -0.416781
                                         0.613086 -0.251889
          2013-01-05 -1.008649 -1.469483
                                         0.297839
                                                   -0.798676
          2013-01-06
                     0.035385
                               -1.806611
                                         0.660986 -0.421329
In [26]:
          df[0:2]
Out[26]:
                                               С
                            Α
                                      В
                                                         D
          2013-01-01 -0.711362
                               0.825269 -0.532520 -2.232001
          2013-01-02 1.530446 -1.099274 -0.275519 -0.607721
In [27]: df["20130103":"20130105"]
```

```
Out[27]:
                                             С
                                                       D
                           Α
                                    В
          2013-01-03 -2.434541 -1.111805 2.101658 1.161692
          2013-01-04 -0.323204 -0.416781 0.613086 -0.251889
          2013-01-05 -1.008649 -1.469483 0.297839 -0.798676
         Selección con la función loc[] y at[]
In [28]: # Filas que coinciden con una etiqueta, selección de la primera fila:
         df.loc[dates[0]]
Out[28]: A -0.711362
              0.825269
         C
             -0.532520
             -2.232001
         Name: 2013-01-01 00:00:00, dtype: float64
In [29]: # Seleccionar todas las filas de una determinada columna:
         df.loc[:, ['B', 'C']]
Out[29]:
                           В
                                    С
          2013-01-01 0.825269 -0.532520
          2013-01-02 -1.099274 -0.275519
          2013-01-03 -1.111805 2.101658
          2013-01-04 -0.416781 0.613086
          2013-01-05 -1.469483 0.297839
          2013-01-06 -1.806611 0.660986
In [30]: # Seleccionar por filas y columnas:
         df.loc["20130103":"20130105", ['B', 'C']]
Out[30]:
          2013-01-03 -1.111805 2.101658
          2013-01-04 -0.416781 0.613086
          2013-01-05 -1.469483 0.297839
In [31]: # Seleccionar para un valor determinado -0.891699 (20130103, B):
         df.loc[dates[2], 'B']
Out[31]: -1.1118054961800448
In [32]: df.at[dates[2], 'B']
Out[32]: -1.1118054961800448
```

Selección por posicion: método iloc[] y iat[]

```
In [33]: # Selección de una fila en posición 3:
         df.iloc[3]
Out[33]: A
            -0.323204
             -0.416781
         C
              0.613086
             -0.251889
         Name: 2013-01-04 00:00:00, dtype: float64
In [34]: # Selección de una fila y columna por slicing:
         df.iloc[3:5, 1:3]
                                   С
Out[34]:
          2013-01-04 -0.416781 0.613086
          2013-01-05 -1.469483 0.297839
In [43]: # Selección por lista de posiciones:
         # Filas: 1, 2, 4
         # Columnas: 0(A), 2(C)
         df.iloc[[1, 2, 4], [0, 2]]
Out[43]:
                                    С
          2013-01-02 1.530446 -0.275519
          2013-01-03 -2.434541 2.101658
          2013-01-05 -1.008649 0.297839
In [36]: # Selección por filas o columnas:
         df.iloc[1:3, :]
                                             С
Out[36]:
                          Α
                                    В
                                                       D
          2013-01-02 1.530446 -1.099274 -0.275519 -0.607721
          2013-01-03 -2.434541 -1.111805 2.101658 1.161692
In [37]: df.iloc[:, 1:3]
```

```
Out[37]:
                                    С
                           В
          2013-01-01 0.825269 -0.532520
          2013-01-02 -1.099274 -0.275519
          2013-01-03 -1.111805 2.101658
          2013-01-04 -0.416781 0.613086
          2013-01-05 -1.469483 0.297839
          2013-01-06 -1.806611 0.660986
In [38]: # Seleccionar un valor concreto por posición (2013-01-03, 'B'):
         df.iloc[2, 1]
Out[38]: -1.1118054961800448
In [39]: df.iat[2, 1]
Out[39]: -1.1118054961800448
         Boolean indexing
In [40]: # Selección por comparativa:
         df[df['A'] >= 0.2]
Out[40]:
                                                       D
          2013-01-02 1.530446 -1.099274 -0.275519 -0.607721
In [41]: df[df > 0]
                                            С
Out[41]:
                          Α
                                                     D
                                                   NaN
          2013-01-01
                        NaN 0.825269
                                          NaN
          2013-01-02 1.530446
                                 NaN
                                          NaN
                                                   NaN
                                 NaN 2.101658 1.161692
          2013-01-03
                        NaN
          2013-01-04
                        NaN
                                 NaN 0.613086
                                                   NaN
          2013-01-05
                                 NaN 0.297839
                        NaN
                                                   NaN
          2013-01-06 0.035385
                                 NaN 0.660986
                                                   NaN
```

Método isin()

```
In [42]: # Selección según una coincidencia (filtrado):

df2 = pd.DataFrame(["one", "one", "two", "three", "four", "three"], colum

df2[df2["E"].isin(["one", "four"])]
```

Setting (Modificacion del dataframe)

```
In [44]: # Añadir Valores nuevo
          serie = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date range("20130101", per
          serie
Out[44]: 2013-01-01
                         2
          2013-01-02
          2013-01-03
                         3
          2013-01-04
                        4
          2013-01-05
                        5
          2013-01-06
          Freq: D, dtype: int64
         df['E'] = serie
In [45]:
          df
Out[45]:
                           Α
                                     В
                                               C
                                                         D
                                                           Ε
          2013-01-01 -0.711362 0.825269 -0.532520 -2.232001
          2013-01-02
                    1.530446 -1.099274 -0.275519 -0.607721 2
          2013-01-03 -2.434541 -1.111805
                                                  1.161692 3
                                         2.101658
          2013-01-04 -0.323204 -0.416781
                                         0.613086 -0.251889 4
                                         0.297839
          2013-01-05 -1.008649 -1.469483
                                                 -0.798676 5
          2013-01-06
                    0.035385 -1.806611
                                         0.660986 -0.421329 6
In [46]:
         # Modificar valor por etiqueta
          # Se modifica el primer valor de df por 0 en la columna A:
          df.at[dates[0], "A"] = 0
          df
Out[46]:
                                     В
                                               C
                                                         D E
          2013-01-01
                     0.000000
                               0.825269 -0.532520 -2.232001 1
          2013-01-02
                    1.530446 -1.099274 -0.275519 -0.607721 2
          2013-01-03 -2.434541 -1.111805
                                         2.101658
                                                  1.161692 3
          2013-01-04 -0.323204 -0.416781
                                         0.613086 -0.251889 4
          2013-01-05 -1.008649 -1.469483
                                         0.297839 -0.798676 5
          2013-01-06 0.035385 -1.806611
                                         0.660986 -0.421329 6
```

```
In [47]: # Modificación de valor por posición
          # Se modifica el primer valor de la columna B:
          df.iat[0, 1] = 0
          df
                                               С
Out[47]:
                            Α
                                                         D E
          2013-01-01
                     0.000000
                               0.000000 -0.532520
                                                  -2.232001
          2013-01-02
                     1.530446 -1.099274 -0.275519 -0.607721 2
          2013-01-03 -2.434541 -1.111805
                                         2.101658
                                                   1.161692
          2013-01-04 -0.323204 -0.416781
                                         0.613086 -0.251889 4
          2013-01-05 -1.008649 -1.469483
                                         0.297839
                                                  -0.798676 5
          2013-01-06 0.035385 -1.806611
                                         0.660986 -0.421329 6
In [48]: # Modificación asignada por Numpy usando array:
          df.loc[:, "D"] = np.array([5] * len(df))
Out[48]:
                                      В
                                                С
                                                    D E
          2013-01-01
                     0.000000
                               0.000000 -0.532520 5.0
                                                       1
          2013-01-02
                     1.530446 -1.099274 -0.275519 5.0
                                         2.101658 5.0
          2013-01-03 -2.434541 -1.111805
                                                       3
          2013-01-04 -0.323204 -0.416781
                                         0.613086 5.0
          2013-01-05 -1.008649 -1.469483
                                         0.297839 5.0
                                                      5
          2013-01-06
                    0.035385 -1.806611
                                         0.660986 5.0
In [49]: # Modificar según una condición (where):
          df2 = df.copy() # Realización de una copia del df
          df2[df2 > 0.1] = -df2
          df2
Out[49]:
                                               C
                            Α
                                      В
                                                    D
                                                       Ε
                     0.000000 0.000000 -0.532520 -5.0 -1
          2013-01-01
          2013-01-02 -1.530446 -1.099274 -0.275519 -5.0 -2
          2013-01-03 -2.434541 -1.111805 -2.101658 -5.0 -3
          2013-01-04 -0.323204 -0.416781 -0.613086
                                                  -5.0 -4
          2013-01-05 -1.008649 -1.469483 -0.297839
                                                  -5.0 -5
          2013-01-06 0.035385 -1.806611 -0.660986 -5.0 -6
```

Missing values

```
In [50]: # Creamos una columna nueva con valores nulos:
         df1 = df.reindex(index=dates[0:4], columns=list(df.columns))
         df1.loc[dates[2]:dates[3], "E"] = np.nan
         df1.at[dates[0], "D"] = np.nan
         print(df1)
                                      В
                                                C
                                                          F
        2013-01-01 0.000000 0.000000 -0.532520
                                                        1.0
                                                   NaN
        2013-01-02 1.530446 -1.099274 -0.275519
                                                   5.0
                                                        2.0
        2013-01-03 -2.434541 -1.111805 2.101658
                                                   5.0
                                                        NaN
        2013-01-04 -0.323204 -0.416781 0.613086
                                                   5.0
                                                        NaN
In [51]: # Eliminamos los valores nulos con la función dropna(): eliminando cualqu
         df_1 = df1.dropna(how="any")
         df 1
Out[51]:
                          Α
                                                 D
                                                     Ε
          2013-01-02 1.530446 -1.099274 -0.275519 5.0 2.0
In [52]: # Rellenar valores nulos:
         df 1 = df1.fillna(value=5)
         df 1
Out[52]:
                                    В
                                             С
                                                 D
                                                      Ε
          2013-01-01 0.000000 0.000000 -0.532520 5.0 1.0
          2013-01-02 1.530446 -1.099274 -0.275519 5.0 2.0
          2013-01-03 -2.434541 -1.111805
                                       2.101658 5.0 5.0
          2013-01-04 -0.323204 -0.416781
                                       0.613086 5.0 5.0
In [53]: # isna() nos muestra si en el df hay valores nulo o no, sustituyendo por
         pd.isna(df1)
Out[53]:
                                   С
                             В
                                         D
                                               Ε
          2013-01-01 False False False
                                     True False
          2013-01-02 False False False False
          2013-01-03 False False False False
                                            True
          2013-01-04 False False False False
                                            True
In [54]: # isnull() nos muestra si en el df hay valores nulo o no, sustituyendo po
         df1.isnull().sum()
```

```
Out[54]: A 0
B 0
C 0
D 1
E 2
dtype: int64
```

Operaciones

En estos casos no tiene en cuenta los valores nulos.

Out[55]:		notas_1	notas_2	notas_3
	0	15	16	17
	1	16	21	22
	2	15	16	15
	3	17	16	22
	4	14	13	14

Tendencia Central

Media

Como calcular la media de las distintas notas:

```
In [56]: media_1 = df["notas_1"].mean()
    media_1

Out[56]: 15.5

In [57]: media_2 = df["notas_2"].mean()
    media_2

Out[57]: 16.8

In [58]: media_3 = df["notas_3"].mean()
    media_3

Out[58]: 17.6
```

Mediana

Como calcular la mediana de las distintas notas:

```
In [59]: mediana_1 = df["notas_1"].median()
    mediana_1
```

```
Out[59]: 15.0
In [60]: mediana 2 = df["notas 2"].median()
         mediana 2
Out[60]: 16.0
In [61]: mediana_3 = df["notas_3"].median()
         mediana 3
Out[61]: 16.0
         Moda
         Como calcular la moda de las distintas notas:
In [62]: moda 1 = df["notas 1"].mode()
         moda 1
Out[62]: 0
              14
         1
              15
         Name: notas 1, dtype: int64
         moda 2 = df["notas 2"].mode()
In [63]:
         moda 2
Out[63]: 0
              15
              16
         Name: notas 2, dtype: int64
In [64]: moda 3 = df["notas 3"].mode()
         moda 3
Out[64]: 0
         Name: notas 3, dtype: int64
In [65]: df.notas_3.value_counts()
Out[65]: notas_3
         15
               3
         22
               2
         16
               2
         17
               1
         14
               1
         24
         Name: count, dtype: int64
         Resultados Nota_1:
In [66]: print(f"Media: {media_1}, Mediana: {mediana_1}, Moda: \n{moda_1}")
        Media: 15.5, Mediana: 15.0, Moda:
             14
        0
        Name: notas 1, dtype: int64
         Resultados Nota_2:
```

```
In [67]: print(f"Media: {media 2}, Mediana: {mediana 2}, Moda: \n{moda 2}")
        Media: 16.8, Mediana: 16.0, Moda:
             15
        1
             16
        Name: notas_2, dtype: int64
          Resultados Nota_3:
In [68]: print(f"Media: {media 3}, Mediana: {mediana 3}, Moda: \n{moda 3}")
        Media: 17.6, Mediana: 16.0, Moda:
        Name: notas_3, dtype: int64
          Varianza
          Se calcula la cuasi-varianza:
          S^2 = \frac{\sum_{i=1}^n \{i=1\}(x_i-X)^2}{n-1} 
In [69]: var 1 = df["notas 1"].var()
          var_1
Out[69]: 14.5
In [70]: var 2 = df["notas 2"].var()
          var 2
In [71]: var_3 = df["notas_3"].var()
          var_3
Out[71]: 13.1555555555555
          Si queremos calcular la varianza, utilizamos el argumento ddof=0. El denominador en la
          fórmula será entonces n-ddof=0:
In [72]: var_1 = df["notas_1"].var(ddof=0)
          var_1
Out[72]: 13.05
          Desviación típica
          En python, utilizamos el método .std() para calcular la cuasi-desviación típica. Para
          calcular la desviación típica, nuevamente utilizamos ddof=0. $$ S^=\sqrt{S^2} $$
In [73]:
         std_1 = df["notas_1"].std()
          std_1
Out[73]: 3.8078865529319543
In [74]: std_2 = df["notas_2"].std()
          std_2
```

```
Out[74]: 2.8982753492378874
```

```
In [75]: std_3 = df["notas_3"].std()
std_3
```

Out[75]: 3.6270588023294517

Si queremos calcular la varianza, utilizamos el argumento ddof=0. El denominador en la fórmula será entonces n-ddof=0:

```
In [76]: std_1 = df["notas_1"].std(ddof=0)
std_1
```

Out[76]: 3.6124783736376886

RESUMEN

Notas 1 Notas 2 Notas 3Media 15.5 16.8 17.6Mediana 15.0 16.0 16.0Moda 14/15 15/16 15.0std 3.807 2.90 3.63

<pre>df.describe()</pre>							
	notas_1	notas_2	notas_3				
count	10.000000	10.000000	10.000000				
mean	15.500000	16.800000	17.600000				
std	3.807887	2.898275	3.627059				
min	10.000000	13.000000	14.000000				
25%	14.000000	15.000000	15.000000				
50%	15.000000	16.000000	16.000000				
75%	15.750000	18.250000	20.750000				
max	25.000000	22.000000	24.000000				
	count mean std min 25% 50% 75%	notas_1 count 10.000000 mean 15.500000 std 3.807887 min 10.000000 25% 14.000000 50% 15.000000 75% 15.750000	notas_1 notas_2 count 10.000000 10.000000 mean 15.500000 16.800000 std 3.807887 2.898275 min 10.000000 13.000000 25% 14.000000 15.000000 50% 15.000000 16.000000				

Union de dataframe

```
In [78]: iris = pd.read_csv('Iris.csv')
    iris = iris.drop(['Id'], axis=1)
    iris_setosa = iris[0:50]
    iris_setosa
```

The history saving thread hit an unexpected error (OperationalError('attem pt to write a readonly database')). History will not be written to the data base.

Out[78]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
_	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	5	5.4	3.9	1.7	0.4	Iris-setosa
	6	4.6	3.4	1.4	0.3	Iris-setosa
	7	5.0	3.4	1.5	0.2	Iris-setosa
	8	4.4	2.9	1.4	0.2	Iris-setosa
	9	4.9	3.1	1.5	0.1	Iris-setosa
	10	5.4	3.7	1.5	0.2	Iris-setosa
	11	4.8	3.4	1.6	0.2	Iris-setosa
	12	4.8	3.0	1.4	0.1	Iris-setosa
	13	4.3	3.0	1.1	0.1	Iris-setosa
	14	5.8	4.0	1.2	0.2	Iris-setosa
	15	5.7	4.4	1.5	0.4	Iris-setosa
	16	5.4	3.9	1.3	0.4	Iris-setosa
	17	5.1	3.5	1.4	0.3	Iris-setosa
	18	5.7	3.8	1.7	0.3	Iris-setosa
	19	5.1	3.8	1.5	0.3	Iris-setosa
	20	5.4	3.4	1.7	0.2	Iris-setosa
	21	5.1	3.7	1.5	0.4	Iris-setosa
	22	4.6	3.6	1.0	0.2	Iris-setosa
	23	5.1	3.3	1.7	0.5	Iris-setosa
	24	4.8	3.4	1.9	0.2	Iris-setosa
	25	5.0	3.0	1.6	0.2	Iris-setosa
	26	5.0	3.4	1.6	0.4	Iris-setosa
	27	5.2	3.5	1.5	0.2	Iris-setosa
	28	5.2	3.4	1.4	0.2	Iris-setosa
	29	4.7	3.2	1.6	0.2	Iris-setosa
	30	4.8	3.1	1.6	0.2	Iris-setosa
	31	5.4	3.4	1.5	0.4	Iris-setosa
	32	5.2	4.1	1.5	0.1	Iris-setosa
	33	5.5	4.2	1.4	0.2	Iris-setosa
	34	4.9	3.1	1.5	0.1	Iris-setosa

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
35	5.0	3.2	1.2	0.2	Iris-setosa
36	5.5	3.5	1.3	0.2	Iris-setosa
37	4.9	3.1	1.5	0.1	Iris-setosa
38	4.4	3.0	1.3	0.2	Iris-setosa
39	5.1	3.4	1.5	0.2	Iris-setosa
40	5.0	3.5	1.3	0.3	Iris-setosa
41	4.5	2.3	1.3	0.3	Iris-setosa
42	4.4	3.2	1.3	0.2	Iris-setosa
43	5.0	3.5	1.6	0.6	Iris-setosa
44	5.1	3.8	1.9	0.4	Iris-setosa
45	4.8	3.0	1.4	0.3	Iris-setosa
46	5.1	3.8	1.6	0.2	Iris-setosa
47	4.6	3.2	1.4	0.2	Iris-setosa
48	5.3	3.7	1.5	0.2	Iris-setosa
49	5.0	3.3	1.4	0.2	Iris-setosa

In [79]: iris_virginica = iris[100:]
 iris_virginica

Out[79]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
100	6.3	3.3	6.0	2.5	Iris-virginica
101	5.8	2.7	5.1	1.9	Iris-virginica
102	7.1	3.0	5.9	2.1	Iris-virginica
103	6.3	2.9	5.6	1.8	Iris-virginica
104	6.5	3.0	5.8	2.2	Iris-virginica
105	7.6	3.0	6.6	2.1	Iris-virginica
106	4.9	2.5	4.5	1.7	Iris-virginica
107	7.3	2.9	6.3	1.8	Iris-virginica
108	6.7	2.5	5.8	1.8	Iris-virginica
109	7.2	3.6	6.1	2.5	Iris-virginica
110	6.5	3.2	5.1	2.0	Iris-virginica
111	6.4	2.7	5.3	1.9	Iris-virginica
112	6.8	3.0	5.5	2.1	Iris-virginica
113	5.7	2.5	5.0	2.0	Iris-virginica
114	5.8	2.8	5.1	2.4	Iris-virginica
115	6.4	3.2	5.3	2.3	Iris-virginica
116	6.5	3.0	5.5	1.8	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
118	7.7	2.6	6.9	2.3	Iris-virginica
119	6.0	2.2	5.0	1.5	Iris-virginica
120	6.9	3.2	5.7	2.3	Iris-virginica
121	5.6	2.8	4.9	2.0	Iris-virginica
122	7.7	2.8	6.7	2.0	Iris-virginica
123	6.3	2.7	4.9	1.8	Iris-virginica
124	6.7	3.3	5.7	2.1	Iris-virginica
125	7.2	3.2	6.0	1.8	Iris-virginica
126	6.2	2.8	4.8	1.8	Iris-virginica
127	6.1	3.0	4.9	1.8	Iris-virginica
128	6.4	2.8	5.6	2.1	Iris-virginica
129	7.2	3.0	5.8	1.6	Iris-virginica
130	7.4	2.8	6.1	1.9	Iris-virginica
131	7.9	3.8	6.4	2.0	Iris-virginica
132	6.4	2.8	5.6	2.2	Iris-virginica
133	6.3	2.8	5.1	1.5	Iris-virginica
134	6.1	2.6	5.6	1.4	Iris-virginica

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
135	7.7	3.0	6.1	2.3	Iris-virginica
136	6.3	3.4	5.6	2.4	Iris-virginica
137	6.4	3.1	5.5	1.8	Iris-virginica
138	6.0	3.0	4.8	1.8	Iris-virginica
139	6.9	3.1	5.4	2.1	Iris-virginica
140	6.7	3.1	5.6	2.4	Iris-virginica
141	6.9	3.1	5.1	2.3	Iris-virginica
142	5.8	2.7	5.1	1.9	Iris-virginica
143	6.8	3.2	5.9	2.3	Iris-virginica
144	6.7	3.3	5.7	2.5	Iris-virginica
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

In [80]: iris_versicolor = pd.read_json('iris_versicolor.json')
 iris_versicolor

Out[80]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	7.0	3.2	4.7	1.4	Iris-versicolor
	1	6.4	3.2	4.5	1.5	Iris-versicolor
	2	6.9	3.1	4.9	1.5	Iris-versicolor
	3	5.5	2.3	4.0	1.3	Iris-versicolor
	4	6.5	2.8	4.6	1.5	Iris-versicolor
	5	5.7	2.8	4.5	1.3	Iris-versicolor
	6	6.3	3.3	4.7	1.6	Iris-versicolor
	7	4.9	2.4	3.3	1.0	Iris-versicolor
	8	6.6	2.9	4.6	1.3	Iris-versicolor
	9	5.2	2.7	3.9	1.4	Iris-versicolor
	10	5.0	2.0	3.5	1.0	Iris-versicolor
	11	5.9	3.0	4.2	1.5	Iris-versicolor
	12	6.0	2.2	4.0	1.0	Iris-versicolor
	13	6.1	2.9	4.7	1.4	Iris-versicolor
	14	5.6	2.9	3.6	1.3	Iris-versicolor
	15	6.7	3.1	4.4	1.4	Iris-versicolor
	16	5.6	3.0	4.5	1.5	Iris-versicolor
	17	5.8	2.7	4.1	1.0	Iris-versicolor
	18	6.2	2.2	4.5	1.5	Iris-versicolor
	19	5.6	2.5	3.9	1.1	Iris-versicolor
	20	5.9	3.2	4.8	1.8	Iris-versicolor
	21	6.1	2.8	4.0	1.3	Iris-versicolor
	22	6.3	2.5	4.9	1.5	Iris-versicolor
	23	6.1	2.8	4.7	1.2	Iris-versicolor
	24	6.4	2.9	4.3	1.3	Iris-versicolor
	25	6.6	3.0	4.4	1.4	Iris-versicolor
	26	6.8	2.8	4.8	1.4	Iris-versicolor
	27	6.7	3.0	5.0	1.7	Iris-versicolor
	28	6.0	2.9	4.5	1.5	Iris-versicolor
	29	5.7	2.6	3.5	1.0	Iris-versicolor
	30	5.5	2.4	3.8	1.1	Iris-versicolor
	31	5.5	2.4	3.7	1.0	Iris-versicolor
	32	5.8	2.7	3.9	1.2	Iris-versicolor
	33	6.0	2.7	5.1	1.6	Iris-versicolor
	34	5.4	3.0	4.5	1.5	Iris-versicolor

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
35	6.0	3.4	4.5	1.6	Iris-versicolor
36	6.7	3.1	4.7	1.5	Iris-versicolor
37	6.3	2.3	4.4	1.3	Iris-versicolor
38	5.6	3.0	4.1	1.3	Iris-versicolor
39	5.5	2.5	4.0	1.3	Iris-versicolor
40	5.5	2.6	4.4	1.2	Iris-versicolor
41	6.1	3.0	4.6	1.4	Iris-versicolor
42	5.8	2.6	4.0	1.2	Iris-versicolor
43	5.0	2.3	3.3	1.0	Iris-versicolor
44	5.6	2.7	4.2	1.3	Iris-versicolor
45	5.7	3.0	4.2	1.2	Iris-versicolor
46	5.7	2.9	4.2	1.3	Iris-versicolor
47	6.2	2.9	4.3	1.3	Iris-versicolor
48	5.1	2.5	3.0	1.1	Iris-versicolor
49	5.7	2.8	4.1	1.3	Iris-versicolor

concat()

In [81]: # Unión de varios dataframe por nombre de columna, los apendiza al final:
 dfs = [iris_setosa, iris_virginica, iris_versicolor]
 iris_concat = pd.concat(dfs)
 iris_concat

Out[81]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	45	5.7	3.0	4.2	1.2	Iris-versicolor
	46	5.7	2.9	4.2	1.3	Iris-versicolor
	47	6.2	2.9	4.3	1.3	Iris-versicolor
	48	5.1	2.5	3.0	1.1	Iris-versicolor
	49	5.7	2.8	4.1	1.3	Iris-versicolor

150 rows × 5 columns

In [82]: display.Image('./images/merging_concat_basic.png')

Out[82]:

		df1					Result		
	А	В	С	D					
0	AD	В0	8	D0		Α	В	U	D
1	Al	B1	П	D1	0	AD	BO	8	DO
2	A2	B2	U	D2	1	A1	B1	п	D1
3	А3	B3	З	D3	2	A2	B2	Q	D2
df2					3	A3	B3	в	D3
	А	В	С	D		Α3	53		LI3
4	A4	B4	C4	D4	4	A4	B4	C4	D4
5	A5	B5	G	D5	5	A5	B5	O	D5
6	Aß	Bő	В	D6	6	Aß	B6	C6	D6
7	A7	B7	C7	D7	7	A7	В7	a	D7
		df3			8	AB	B8	СВ	D8
	А	В	С	D	0	AG.		9	Lo
8	AB	B8	СВ	D8	9	A9	B9	C9	D9
9	A9	B9	ß	D9	10	A10	B10	Ф.	D10
10	A10	B10	C10	D10	11	A11	B11	αı	D11
11	A11	B11	αı	D11					

```
In [85]: iris = pd.read_csv('Iris.csv')
   iris_medidas = iris.iloc[:, 0:5]
   iris_medidas
```

Out[85]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	0	1	5.1	3.5	1.4	0.2
	1	2	4.9	3.0	1.4	0.2
	2	3	4.7	3.2	1.3	0.2
	3	4	4.6	3.1	1.5	0.2
	4	5	5.0	3.6	1.4	0.2
	145	146	6.7	3.0	5.2	2.3
	146	147	6.3	2.5	5.0	1.9
	147	148	6.5	3.0	5.2	2.0
	148	149	6.2	3.4	5.4	2.3
	149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

```
In [86]: iris_especies = iris[['Species']]
   iris_especies
```

```
Out[86]:
                      Species
               0
                    Iris-setosa
               1
                    Iris-setosa
               2
                    Iris-setosa
               3
                    Iris-setosa
               4
                    Iris-setosa
             145 Iris-virginica
             146 Iris-virginica
             147 Iris-virginica
             148 Iris-virginica
             149 Iris-virginica
```

Out[87]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica

merge()

many-to-many: El método merge une dos dataframe por el ld de cada una de las filas

```
In [89]: new_species = iris.loc[:, ['Id', 'Species']]
   new_species
```

Out[89]:		Id	Species
	0	1	Iris-setosa
	1	2	Iris-setosa
	2	3	Iris-setosa
	3	4	Iris-setosa
	4	5	Iris-setosa
	145	146	Iris-virginica
	146	147	Iris-virginica
	147	148	Iris-virginica
	148	149	Iris-virginica
	149	150	Iris-virginica

In [90]: new_setosa = pd.merge(iris_medidas, new_species, on='Id')
 new_setosa

Out[90]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica

150 rows × 6 columns

Se puede añadir un parámetro que se llama how , donde se especifica el tipo de unión de los dataframes, para ello, nos basamos en la siguiente tabla para relacionarlos con los comandos SQL:

Merge method	SQL Join Name	Description
left	LEFT OUTER JOIN	Use keys from left frame only
right	RIGHT OUTER JOIN	Use keys from right frame only
outer	FULL OUTER JOIN	Use union of keys from both frames
inner	INNER JOIN	Use intersection of keys from both frames
cross	CROSS JOIN	Create the cartesian product of rows of both frames

```
In [92]: new_setosa = pd.merge(iris_medidas, new_species, how='left', on='Id')
    new_setosa
```

Out[92]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa

	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica

In [93]: new_setosa = pd.merge(iris_medidas, new_species, how='right', on='Id')
 new_setosa

Out[93]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica

In [94]: new_setosa = pd.merge(iris_medidas, new_species, how='inner', on='Id')
 new_setosa

Out[94]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica

In [95]: new_setosa = pd.merge(iris_medidas, new_species, how='outer', on='Id')
 new_setosa

Out[95]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica

```
In [96]: #
    new_setosa = pd.merge(iris_medidas, new_species, how='cross')
    new_setosa
```

Out[96]:		ld_x	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	ld_y	Sp
	0	1	5.1	3.5	1.4	0.2	1	S
	1	1	5.1	3.5	1.4	0.2	2	S
	2	1	5.1	3.5	1.4	0.2	3	s
	3	1	5.1	3.5	1.4	0.2	4	S
	4	1	5.1	3.5	1.4	0.2	5	s
	22495	150	5.9	3.0	5.1	1.8	146	vir
	22496	150	5.9	3.0	5.1	1.8	147	vir
	22497	150	5.9	3.0	5.1	1.8	148	vir
	22498	150	5.9	3.0	5.1	1.8	149	vir
	22499	150	5.9	3.0	5.1	1.8	150	vir

join()

In [99]: iris_medidas

Out[99]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	0	1	5.1	3.5	1.4	0.2
	1	2	4.9	3.0	1.4	0.2
	2	3	4.7	3.2	1.3	0.2
	3	4	4.6	3.1	1.5	0.2
	4	5	5.0	3.6	1.4	0.2
	145	146	6.7	3.0	5.2	2.3
	146	147	6.3	2.5	5.0	1.9
	147	148	6.5	3.0	5.2	2.0
	148	149	6.2	3.4	5.4	2.3
	149	150	5.9	3.0	5.1	1.8

In [100 iris_espe	cies
-------------------	------

TII	[100	TIT2	_eshecies
Out	[100]:		Species
		0	Iris-setosa
		1	Iris-setosa
		2	Iris-setosa
		3	Iris-setosa
		4	Iris-setosa
		145	Iris-virginica
		146	Iris-virginica
		147	Iris-virginica
		148	Iris-virginica
		149	Iris-virginica

150 rows × 1 columns

```
In [101... iris_2 = iris_medidas.join(iris_especies)
    iris_2
```

Out[101]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica
	150 r	ows ×	6 columns				

También se le puede añadir los parámetros de how y on, igual que se hace con el método merge()

Grouping

By "group by" we are referring to a process involving one or more of the following steps:

- Splitting the data into groups based on some criteria
- Applying a function to each group independently
- Combining the results into a data structure

iris In [102...

Out[102]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica
	150 r	ows ×	6 columns				
4							
In [103	iris_	_sepa	l = iris.grouph	oy('Species')[
In [103		_sepa		oy(' <mark>Species'</mark>)[["SepalLengtho "SepalWidthCr		
In [103 Out[103]:			l	oy('Species')[Cm SepalWidth	"SepalWidthCr		
			L SepalLength		"SepalWidthCr		
	iris_	_sepa	SepalLength Sies	Cm SepalWidth	"SepalWidthCr		
	iris_	sepa	SepalLength Sies osa 5.	Cm SepalWidth	"SepalWidthCr nCm		
	iris_	_sepa Spec	SepalLength Sies osa 5. Olor 5.	Cm SepalWidth 006 3. 936 2.	"SepalWidthCr nCm 418		
Out[103]:	iris_ lı Iris-\	_sepa Spec ris-set versice -virgir	SepalLength Sies osa 5. Olor 5.	Cm SepalWidth 006 3. 936 2. 588 2.	"SepalWidthCr nCm 418 770 974	n"]].mean()	
Out[103]:	iris_ Iris-\ Iris iris_	_sepa Spec ris-set versice -virgir	SepalLength cies osa 5. olor 5. nica 6.	Cm SepalWidth 006 3. 936 2. 588 2.	"SepalWidthCr Cm 418 770 974	n"]].mean()	
Out[103]:	iris_ Iris-\ Iris iris_	_sepa Spec ris-set rersicc -virgir _peta	SepalLength cies osa 5. olor 5. nica 6. l = iris.grouph	Cm SepalWidth 006 3. 936 2. 588 2.	"SepalWidthCr ACM 418 770 974 ["PetalLengthous "PetalWidthCr	n"]].mean()	
Out[103]:	iris_ Iris-\ Iris iris_	_sepa Spec ris-set rersicc -virgir _peta	SepalLength cies osa 5. olor 5. nica 6. l = iris.grouph	Cm SepalWidth 006 3. 936 2. 588 2. by ('Species') ["SepalWidthCr ACM 418 770 974 ["PetalLengthous "PetalWidthCr	n"]].mean()	
Out[103]:	lris-\ Iris- iris_	Spectis-sett/ersicor-virgin_peta	SepalLength cies osa 5. olor 5. nica 6. l = iris.grouph l PetalLength cies	Cm SepalWidth 006 3. 936 2. 588 2. by ('Species') ["SepalWidthCr Cm 418 770 974 ["PetalLength("PetalWidthCr	n"]].mean()	
Out[103]:	lris_ lris_ iris_ iris_	Species set of the set	SepalLength cies osa 5. olor 5. nica 6. l = iris.grouph l PetalLength cies osa 1.4	Cm SepalWidth 006 3. 936 2. 588 2. by ('Species') [Cm PetalWidthC	"SepalWidthCr ACM 418 770 974 ["PetalLength("PetalWidthCr	n"]].mean()	

Crosstab

```
In [146... pd.crosstab(iris.PetalWidthCm, iris.Species).plot(kind='bar')
```

Out[146]: <Axes: xlabel='PetalWidthCm'>


```
In [300... pd.crosstab(index=iris["Species"], columns="count")
```

Out[300]: col_0 count

Species	
setosa	50
versicolor	50
virginica	50

Reshaping

stack()

```
In [106... # Ponemos como columna de index la de especies, asi aplicaremos los datos
# especie sean:

reiris = iris.set_index('Species', append=True)
reiris
```

Out[106]:			Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
		Species					
	0	Iris- setosa	1	5.1	3.5	1.4	0.2
	1	Iris- setosa	2	4.9	3.0	1.4	0.2
	2	Iris- setosa	3	4.7	3.2	1.3	0.2
	3	Iris- setosa	4	4.6	3.1	1.5	0.2
	4	Iris- setosa	5	5.0	3.6	1.4	0.2
	145	Iris- virginica	146	6.7	3.0	5.2	2.3
	146	Iris- virginica	147	6.3	2.5	5.0	1.9
	147	Iris- virginica	148	6.5	3.0	5.2	2.0
	148	Iris- virginica	149	6.2	3.4	5.4	2.3
	149	Iris- virginica	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

```
stack_iris = reiris.stack(future_stack=True)
In [107...
         stack iris
               Species
Out[107]:
               Iris-setosa
                                Ιd
                                                   1.0
                                SepalLengthCm
                                                   5.1
                                SepalWidthCm
                                                   3.5
                                PetalLengthCm
                                                   1.4
                                PetalWidthCm
                                                   0.2
                                                 150.0
          149 Iris-virginica
                               Ιd
                                SepalLengthCm
                                                   5.9
                                SepalWidthCm
                                                   3.0
                                PetalLengthCm
                                                   5.1
                                PetalWidthCm
                                                   1.8
          Length: 750, dtype: float64
```

Nos muestra los datos apilados según la especie y las longitudes de los pétalos y sépalos.

Para desapilar usaremos el método unstack.

```
In [108... unstack_iris = reiris.unstack()
unstack_iris
```

Out[108]:				Id		Sepall	_engthCm		Sel
	Species	Iris- setosa	Iris- versicolor	lris- virginica	Iris- setosa	Iris- versicolor	Iris- virginica	Iris- setosa	lris versicolo
	0	1.0	NaN	NaN	5.1	NaN	NaN	3.5	Nai
	1	2.0	NaN	NaN	4.9	NaN	NaN	3.0	Nal
	2	3.0	NaN	NaN	4.7	NaN	NaN	3.2	Nai
	3	4.0	NaN	NaN	4.6	NaN	NaN	3.1	Nal
	4	5.0	NaN	NaN	5.0	NaN	NaN	3.6	Nai
	145	NaN	NaN	146.0	NaN	NaN	6.7	NaN	Nai
	146	NaN	NaN	147.0	NaN	NaN	6.3	NaN	Nal
	147	NaN	NaN	148.0	NaN	NaN	6.5	NaN	Nai
	148	NaN	NaN	149.0	NaN	NaN	6.2	NaN	Nal
	149	NaN	NaN	150.0	NaN	NaN	5.9	NaN	Nai

150 rows × 15 columns

pivot_table()

```
In [109... # Agrupación de datos de especie por media:
    # Podemos añadir: df, values="D", index=["A", "B"], columns=["C"]

iris_pivot = pd.pivot_table(iris, index='Species')
iris_pivot
```

Out[109]: Id PetalLengthCm PetalWidthCm SepalLengthCm SepalWidthCm

Species					
Iris-setosa	25.5	1.464	0.244	5.006	3.418
Iris- versicolor	75.5	4.260	1.326	5.936	2.770
Iris- virginica	125.5	5.552	2.026	6.588	2.974

```
In [110... # Agrupación de datos de especie por media:
    iris_pivot2 = pd.pivot_table(iris, index='Species', aggfunc="sum")
    iris_pivot2
```

Out[110]:		Id	PetalLengthCm	PetalWidthCm	SepalLengthCm	SepalWidthCm
	Species					
	Iris-setosa	1275	73.2	12.2	250.3	170.9
	lris- versicolor	3775	213.0	66.3	296.8	138.5
	Iris- virginica	6275	277.6	101.3	329.4	148.7

```
In [111... # el parametro values nos ayuda a seleccionar las columnas concretas:
    iris_pivot = pd.pivot_table(iris, values="PetalLengthCm", index='Species'
    iris_pivot
```

Out [111]: PetalLengthCm

Species	
Iris-setosa	1.464
Iris-versicolor	4.260
Iris-virginica	5.552

Time Series

```
2024-06-03
             0.031042
2024-06-04
            1.270237
2024-06-05
            1.052303
2024-06-06
             0.919944
2024-06-07
            -0.463178
2024-06-08
           0.521568
2024-06-09
            -1.929001
2024-06-10
            -1.912312
2024-06-11
           -0.139794
2024-06-12
             0.263261
2024-06-13
            -1.394229
2024-06-14
             1.274259
2024-06-15
             0.174525
Freq: D, dtype: float64
```

tz_localize()

```
In [113... # añadimos la hora al dataframe creado:
         ts utc = ts.tz localize("UTC")
         ts utc
Out[113]: 2024-06-01 00:00:00+00:00
                                        0.346906
          2024-06-02 00:00:00+00:00
                                        0.288451
          2024-06-03 00:00:00+00:00
                                        0.031042
          2024-06-04 00:00:00+00:00
                                        1.270237
          2024-06-05 00:00:00+00:00
                                        1.052303
          2024-06-06 00:00:00+00:00
                                        0.919944
          2024-06-07 00:00:00+00:00
                                       -0.463178
          2024-06-08 00:00:00+00:00
                                        0.521568
          2024-06-09 00:00:00+00:00
                                       -1.929001
          2024-06-10 00:00:00+00:00
                                       -1.912312
          2024-06-11 00:00:00+00:00
                                       -0.139794
          2024-06-12 00:00:00+00:00
                                        0.263261
          2024-06-13 00:00:00+00:00
                                       -1.394229
          2024-06-14 00:00:00+00:00
                                        1.274259
          2024-06-15 00:00:00+00:00
                                        0.174525
          Freq: D, dtype: float64
```

tz_convert()

```
In [114... # Ponemos la franja horaria a la cual nos encontramos:
         ts utc.tz convert("Europe/Madrid")
Out[114]: 2024-06-01 02:00:00+02:00
                                        0.346906
          2024-06-02 02:00:00+02:00
                                        0.288451
          2024-06-03 02:00:00+02:00
                                        0.031042
          2024-06-04 02:00:00+02:00
                                        1.270237
          2024-06-05 02:00:00+02:00
                                        1.052303
          2024-06-06 02:00:00+02:00
                                        0.919944
          2024-06-07 02:00:00+02:00
                                       -0.463178
          2024-06-08 02:00:00+02:00
                                       0.521568
          2024-06-09 02:00:00+02:00
                                       -1.929001
          2024-06-10 02:00:00+02:00
                                       -1.912312
          2024-06-11 02:00:00+02:00
                                       -0.139794
          2024-06-12 02:00:00+02:00
                                        0.263261
          2024-06-13 02:00:00+02:00
                                       -1.394229
          2024-06-14 02:00:00+02:00
                                        1.274259
          2024-06-15 02:00:00+02:00
                                        0.174525
          Freq: D, dtype: float64
```

offsets.BusinessDay()

Escogemos de ese periodo de tiempo los que sean laborables, ayuda de offset.BusinnesDay():

```
In [115... rng
```

```
Out[115]: DatetimeIndex(['2024-06-01', '2024-06-02', '2024-06-03', '2024-06-04',
                          '2024-06-05', '2024-06-06', '2024-06-07', '2024-06-08',
                          '2024-06-09', '2024-06-10', '2024-06-11', '2024-06-12',
                          '2024-06-13', '2024-06-14', '2024-06-15'],
                         dtype='datetime64[ns]', freq='D')
In [116... # se añade 5 como número de días a representar:
          rng = rng + pd.offsets.BusinessDay(5)
Out[116]: DatetimeIndex(['2024-06-07', '2024-06-07', '2024-06-10', '2024-06-11',
                          '2024-06-12', '2024-06-13', '2024-06-14', '2024-06-14', '2024-06-14', '2024-06-17', '2024-06-18', '2024-06-19',
                          '2024-06-20', '2024-06-21', '2024-06-21'],
                         dtype='datetime64[ns]', freq=None)
In [117... | ts = pd.Series(np.random.randn(len(rng)), rng).tz localize("UTC")
         ts
                                        -0.495060
Out[117]: 2024-06-07 00:00:00+00:00
          2024-06-07 00:00:00+00:00
                                         0.788531
          2024-06-10 00:00:00+00:00
                                        -1.938738
          2024-06-11 00:00:00+00:00
                                        -1.249571
          2024-06-12 00:00:00+00:00
                                         1.566901
          2024-06-13 00:00:00+00:00
                                        -0.111340
          2024-06-14 00:00:00+00:00
                                         1.495749
          2024-06-14 00:00:00+00:00
                                         0.437409
          2024-06-14 00:00:00+00:00
                                         0.052301
          2024-06-17 00:00:00+00:00
                                         0.477631
          2024-06-18 00:00:00+00:00
                                         0.497986
          2024-06-19 00:00:00+00:00
                                         0.068289
          2024-06-20 00:00:00+00:00
                                         0.649090
          2024-06-21 00:00:00+00:00
                                        -0.799040
          2024-06-21 00:00:00+00:00
                                        -0.434084
          dtype: float64
In [118... ts.tz convert("Europe/Madrid")
Out[118]: 2024-06-07 02:00:00+02:00
                                        -0.495060
          2024-06-07 02:00:00+02:00
                                         0.788531
          2024-06-10 02:00:00+02:00
                                        -1.938738
          2024-06-11 02:00:00+02:00
                                        -1.249571
          2024-06-12 02:00:00+02:00
                                         1.566901
          2024-06-13 02:00:00+02:00
                                        -0.111340
          2024-06-14 02:00:00+02:00
                                         1.495749
          2024-06-14 02:00:00+02:00
                                         0.437409
          2024-06-14 02:00:00+02:00
                                         0.052301
          2024-06-17 02:00:00+02:00
                                         0.477631
          2024-06-18 02:00:00+02:00
                                         0.497986
          2024-06-19 02:00:00+02:00
                                         0.068289
          2024-06-20 02:00:00+02:00
                                         0.649090
          2024-06-21 02:00:00+02:00
                                        -0.799040
          2024-06-21 02:00:00+02:00
                                        -0.434084
          dtype: float64
In [120... # pip install matplotlib
         import matplotlib.pyplot as plt
In [121...
```


Categoricals

In [123... iris

Out[123]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	145	146	6.7	3.0	5.2	2.3	Iris- virginica
	146	147	6.3	2.5	5.0	1.9	Iris- virginica
	147	148	6.5	3.0	5.2	2.0	Iris- virginica
	148	149	6.2	3.4	5.4	2.3	Iris- virginica
	149	150	5.9	3.0	5.1	1.8	Iris- virginica
	150 r	ows ×	6 columns				
4)
In [124	iris	dtyp	es				
Out[124]:	Sepa Sepa Peta Peta Spec	alWid alLen alWid cies	gthCm float@	54 54 54 54			
In [125	<pre># Convertimos la columna Species en categoricas: iris["Species"] = iris["Species"].astype("category") iris.dtypes</pre>						
Out[125]:	Sepa Sepa Peta Peta Spec	alWid alLen alWid cies	gthCm float thCm float gthCm float	t64 t64 t64			

rename_categories()

```
In [126... # Renombrar la columna especie con solo la especie que es:
    new_categories = ["setosa", "versicolor", "virginica"]
    iris["Species"] = iris["Species"].cat.rename_categories(new_categories)
    iris
```

Out[126]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	setosa
	1	2	4.9	3.0	1.4	0.2	setosa
	2	3	4.7	3.2	1.3	0.2	setosa
	3	4	4.6	3.1	1.5	0.2	setosa
	4	5	5.0	3.6	1.4	0.2	setosa
	145	146	6.7	3.0	5.2	2.3	virginica
	146	147	6.3	2.5	5.0	1.9	virginica
	147	148	6.5	3.0	5.2	2.0	virginica
	148	149	6.2	3.4	5.4	2.3	virginica
	149	150	5.9	3.0	5.1	1.8	virginica

150 rows × 6 columns

set_categories()

Out[127]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	s
	0	1	5.1	3.5	1.4	0.2	setosa	
	1	2	4.9	3.0	1.4	0.2	setosa	
	2	3	4.7	3.2	1.3	0.2	setosa	
	3	4	4.6	3.1	1.5	0.2	setosa	
	4	5	5.0	3.6	1.4	0.2	setosa	
	145	146	6.7	3.0	5.2	2.3	virginica	
	146	147	6.3	2.5	5.0	1.9	virginica	
	147	148	6.5	3.0	5.2	2.0	virginica	
	148	149	6.2	3.4	5.4	2.3	virginica	
	149	150	5.9	3.0	5.1	1.8	virginica	

150 rows × 7 columns

sort_values()

In [129... # Colocar las filas según los valores de una columna, en este caso ordena
iris.sort_values(by="spc", ascending=False)

Out[129]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	s
	149	150	5.9	3.0	5.1	1.8	virginica	
	111	112	6.4	2.7	5.3	1.9	virginica	
	122	123	7.7	2.8	6.7	2.0	virginica	
	121	122	5.6	2.8	4.9	2.0	virginica	
	120	121	6.9	3.2	5.7	2.3	virginica	
	31	32	5.4	3.4	1.5	0.4	setosa	
	30	31	4.8	3.1	1.6	0.2	setosa	
	29	30	4.7	3.2	1.6	0.2	setosa	
	28	29	5.2	3.4	1.4	0.2	setosa	
	0	1	5.1	3.5	1.4	0.2	setosa	

150 rows × 7 columns

In [130... # Agrupamos para que nos muestre cuantos valores tenemos de cada uno, par # Incluyen categorias vacias si las hubiera:

```
iris.groupby("spc", observed=False).size()
```

```
Out[130]: spc

0 50

1 50

2 50

dtype: int64
```

Plotting

Pandas usa de manera interna matplotlib, simplemente importando la librería y pasando el dataframe a .plot() te genera el gráfico:

```
Out[131]: <Axes: >
```



```
In [134... # c: variable categorica
# cmap: escala de color
# s: tamaño de los puntos

iris.plot.scatter(x='SepalLengthCm', y='SepalWidthCm', c='Species', cmap=
```

Out[134]: <Axes: xlabel='SepalLengthCm', ylabel='SepalWidthCm'>

Out[135]: <matplotlib.legend.Legend at 0x7feec83fb610> <Figure size 640x480 with 0 Axes>

Numpy

- 1. Método array() (4.1.3))
- 2. Método arange())
- 3. Matrices básicas en numpy
- 4. Métodos random() / indices()-/-indices())
- 5. Réplicas o copias con numpy
- 6. Leer un archivo csv con el método loadtxt())
- 7. Modificación de matrices
- 8. Slicing
- 9. Comparacion entre Arrays
- 10. Operaciones (4.1.3)
- 11. Matematical functions (4.1.3)

```
In [155... # pip install numpy

In [156... import numpy as np
```

Método array()

Un array puede formarse apartir de otras estructuras de Python como son listas o tuplas:

```
In [157... e = np.array([
       [1, 2],
       [3, 4],
```

```
[5, 6]
          ])
          е
Out[157]: array([[1, 2],
                   [3, 4],
                   [5, 6]])
In [158... len(e)
Out[158]: 3
In [159... e.shape
Out[159]: (3, 2)
In [160... e.size
Out[160]: 6
In [164... e[0]
Out[164]: array([1, 2])
In [165... for i in range(len(e)):
              # print(e[i])
              for j in range(len(e[i])):
                   print(e[i][j])
        1
        2
        3
        4
        5
In [166...
          ald = np.array((1, 5, 6))
          a1d
Out[166]: array([1, 5, 6])
          Se puede añadir otro atributo que es dtype indicando de cuantos bytes consta el
          array:
In [167... | np.array([127, 128, 129], dtype=np.int8)
```

```
/tmp/ipykernel_7159/2745257341.py:1: DeprecationWarning: NumPy will stop a
llowing conversion of out-of-bound Python integers to integer arrays. The
conversion of 128 to int8 will fail in the future.
For the old behavior, usually:
    np.array(value).astype(dtype)
will give the desired result (the cast overflows).
    np.array([127, 128, 129], dtype=np.int8)
/tmp/ipykernel_7159/2745257341.py:1: DeprecationWarning: NumPy will stop a
llowing conversion of out-of-bound Python integers to integer arrays. The
conversion of 129 to int8 will fail in the future.
For the old behavior, usually:
    np.array(value).astype(dtype)
will give the desired result (the cast overflows).
    np.array([127, 128, 129], dtype=np.int8)
```

Out[167]: array([127, -128, -127], dtype=int8)

Representa enteros desde -128 a 127, arroja un error de fuera de rango.

Lo normal es que se formen arrays entre 32 o 64-bit de valores enteros o decimales:

```
In [168... a = np.array([2, 3, 4], dtype=np.uint32)
    print(a)
    b = np.array([5, 6, 7], dtype=np.uint32)
    print(b)
    c = a - b
    print(c)

[2 3 4]
    [5 6 7]
    [4294967293 4294967293 4294967293]

In [169... c_32 = a - b.astype(np.int32)
    c_32

Out[169]: array([-3, -3, -3])
```

El método .astype() convierte el array b en int32, en vez en uint32.

Podemos saber de que tipo de datos son mediante la función issubdtype():

```
In [170... d = np.dtype(np.int64)
    print(d)

# 1º Atributo es el array a testear y 2º Atributo el tipo que queremos co
    print(np.issubdtype(d, np.integer))
    print(np.issubdtype(d, np.floating))

int64
```

True False

Los tipos de datos pueden ser: boleanos (bool), enteros (int), enteros sin signo (uint), decimales (float) y complejos (complex).

También pueden ser: string numpy.str_ dtype (U character code), secuencia de bytes numpy.bytes_ (S character code), and arbitrary byte sequences, via numpy.void (V character code).

```
In [171... np.array(["hello", "world"], dtype="S7").tobytes()
Out[171]: b'hello\x00\x00world\x00\x00'
```

Método arange().

Numeros dentro de un rango:

Generación de números con numpy en un rango

```
In [172... a = np.arange(6)
a

Out[172]: array([0, 1, 2, 3, 4, 5])

In [173... type(a)

Out[173]: numpy.ndarray
```

Formas de imprimir la información

```
In [174... print(a)
      [0 1 2 3 4 5]
In [175... for i in a:
          print(i)

0
      1
      2
      3
      4
      5
```

Longitud, forma, tamaño

```
In [176... a
Out[176]: array([0, 1, 2, 3, 4, 5])
In [177... len(a)
Out[177]: 6
In [178... a.shape
Out[178]: (6,)
In [179... a.size
Out[179]: 6
```

Máximos y mínimos

```
In [180... a
Out[180]: array([0, 1, 2, 3, 4, 5])
In [181... max(a)
Out[181]: 5
In [182... min(a)
Out[182]: 0
          Comprobación de elementos en el array
In [183... a
Out[183]: array([0, 1, 2, 3, 4, 5])
In [184... 25 in a
Out[184]: False
In [185... 0 in a
Out[185]: True
In [186... 25 not in a
Out[186]: True
In [187... 0 not in a
Out[187]: False
          Redefinir el tamaño
In [188... a
Out[188]: array([0, 1, 2, 3, 4, 5])
In [189...] a1 = a.reshape(2, 3)
Out[189]: array([[0, 1, 2],
                  [3, 4, 5]])
          Generar números en un intervalo
In [190... # sin especificar va de 1 en 1
          b = np.arange(2,7) # 2, 3, 4, 5, 6
Out[190]: array([2, 3, 4, 5, 6])
```

Generar números en un intervalo con salto

```
In [191... c = np.arange(10, 40, 5)]
Out[191]: array([10, 15, 20, 25, 30, 35])
In [192... d = np.arange(10, 41, 5)]
Out[192]: array([10, 15, 20, 25, 30, 35, 40])
         También tenemos el atributo dtype para definir de que tipo son los valores que forman
         el array:
In [193... # Definimos un array que empice en 2 y acabe en 9 y sean decimales:
         np.arange(2, 10, dtype=float)
Out[193]: array([2., 3., 4., 5., 6., 7., 8., 9.])
         linspace()
 In [ ]: # Recogemos una muestra de los datos, especificamos: min, max, y cada tan
In [194... f = np.linspace(10, 20, 2) # de 10 a 20 con 2 elementos
Out[194]: array([10., 20.])
In [195... g = np.linspace(10, 20, 5) # de 10 a 20 muestra 5
Out[195]: array([10. , 12.5, 15. , 17.5, 20. ])
In [196... g1 = np.linspace(10, 20, 3) # de 10 a 20 muestra 3
Out[196]: array([10., 15., 20.])
         Matrices basicas en numpy
         2D: Método eye(), diag() / vander()
         Matriz Identidad: Diagonal principal llena de 1, resto 0
         eye(n, m)
```

In [197... h = np.eye(3) # de 3 filas y 3 columnas --> matriz identidad

```
Out[197]: array([[1., 0., 0.],
                 [0., 1., 0.],
                 [0., 0., 1.]])
In [198... i = np.eye(5) # Matriz de 5 filas y 5 columnas
Out[198]: array([[1., 0., 0., 0., 0.],
                 [0., 1., 0., 0., 0.],
                 [0., 0., 1., 0., 0.]
                 [0., 0., 0., 1., 0.],
                 [0., 0., 0., 0., 1.]]
In [199... \# n = filas, m = columnas, el resto que no son de la diagonal las rellena
         np.eye(3, 5)
Out[199]: array([[1., 0., 0., 0., 0.],
                 [0., 1., 0., 0., 0.]
                 [0., 0., 1., 0., 0.]
          diag()
In [200... # Los elementos estan en la diagonal principal:
         a2D = np.diag([1, 2, 3])
         a2D
Out[200]: array([[1, 0, 0],
                 [0, 2, 0],
                 [0, 0, 3]]
In [201... # El segundo parámetro es agregar un fila y columna de 0:
         np.diag([1, 2, 3], 1)
Out[201]: array([[0, 1, 0, 0],
                 [0, 0, 2, 0],
                 [0, 0, 0, 3],
                 [0, 0, 0, 0]]
          vander(x, n)
In [202... \# x = array 1d, la lista o tupla de valores, n = al número de columnas:
         np.vander([1, 2, 3, 4], 2)
Out[202]: array([[1, 1],
                 [2, 1],
                 [3, 1],
                 [4, 1]
In [203... # Se crea una matriz decreciente de los valores 1, 2, 3, 4, que contiene
         # así, la primera columna decrece 64, 27, 8, 1
         # segunda columna: 16, 9, 4, 1.
         np.vander((1, 2, 3, 4), 4)
```

Matriz identidad multiplicada por un valor

Métodos zeros() / ones()

Matriz de todo 1

Matriz de todo 0

```
In [209...] 12 = np.zeros((6, 2))
         12
Out[209]: array([[0., 0.],
                  [0., 0.],
                  [0., 0.],
                  [0., 0.],
                  [0., 0.],
                  [0., 0.]])
In [210... | np.zeros((2, 3, 2)) # Idem: a ones()
Out[210]: array([[[0., 0.],
                   [0., 0.],
                   [0., 0.]],
                  [[0., 0.],
                   [0., 0.],
                   [0., 0.]]])
         Metodos random() / indices()
         random() genera valores pseudoaletarios entre 0 y 1:
In [211... from numpy.random import default rng
         # 42: corresponde a seed
         # array de 2 filas x 3 columnas
         default rng(42). random((2,3))
Out[211]: array([[0.77395605, 0.43887844, 0.85859792],
                  [0.69736803, 0.09417735, 0.97562235]])
In [212...] default rng(42).random((2,3,2)) # idem a ones()
Out[212]: array([[[0.77395605, 0.43887844],
                   [0.85859792, 0.69736803],
                   [0.09417735, 0.97562235]],
                  [[0.7611397 , 0.78606431],
                   [0.12811363, 0.45038594],
                   [0.37079802, 0.92676499]]])
         indices () : genera una matriz de un conjunto de matrices:
In [213... # Matriz de 3 filas por 3 columnas:
         np.indices((3,3))
Out[213]: array([[[0, 0, 0],
                   [1, 1, 1],
                   [2, 2, 2]],
                  [[0, 1, 2],
                   [0, 1, 2],
                   [0, 1, 2]]])
```

Replicas o copias con numpy

```
In [214... a = np.array([1, 2, 3, 4, 5, 6])
b = a[:2]
b += 1
print('a =', a, '; b =', b)
a = [2 3 3 4 5 6]; b = [2 3]
```

El cambio realizado a b afecta en a en este caso es una réplica de a, pero b sólo escoge valortes de de 0 has 2 no incluido

Ahora veamos que ocurre si usamos numpy.copy()

```
In [215... a = np.array([1, 2, 3, 4])
b = a[:2].copy()
b += 1
print('a = ', a, 'b = ', b)

a = [1 2 3 4] b = [2 3]
```

En este caso, a no se ve afectado por los cambios de b, ya que b es una copia de a.

```
In [216... | A = np.ones((2, 2))]
         print('A: \n', A)
         B = np.eye(2, 2)
         print('B: \n', B)
         C = np.zeros((2, 2))
         print('C: \n', C)
         D = np.diag((-3, -4))
         print('D: \n', D)
         a4d = np.block([[A, B], [C, D]])
         print('4D: \n', a4d)
        Α:
         [[1. 1.]
         [1. 1.]
        B:
         [[1. 0.]]
         [0. 1.]]
        C:
         [[0. 0.]
         [0. 0.]]
        D:
         [[-3 0]
         [ 0 -4]]
        4D:
         [[1. 1. 1. 0.]
         [ 1. 1. 0. 1.]
         [ 0. 0. -3. 0.]
         [0. 0. 0. -4.]
```

np.block : crea la matriz resultante de: [[A, B], [C, D]]

Leer un archivo csv con el metodo loadtxt()

Modificacion de matrices

Transpuesta de una matriz: transpose() & .T

Intercambio de filas por columnas

Logic functions: Metodos all() & any()

```
Out[223]: False
In [224... # ANY --> ¿Algún elemento son mayores de 2?
         np.any(n>2)
Out[224]: True
         Si queremos declarar un array con valores nulos usaremos: np.nan y lo
         comprobaremos mediante la función np.isnan()
In [225... | x = np.array([[1., 2.], [np.nan, 3.], [np.nan, np.nan]])
         Χ
Out[225]: array([[ 1., 2.],
                  [nan, 3.],
                  [nan, nan]])
In [226... # isnan nos muestra el array resultante con salida de True si es un valor
         np.isnan(x)
Out[226]: array([[False, False],
                  [ True, False],
                  [ True, True]])
         Función ravel()
 In [ ]: # Pone en una sola dimensión una matriz
In [227... | p = np.array([[1, 2, 3],
                       [4, 5, 6]])
         p
Out[227]: array([[1, 2, 3],
                  [4, 5, 6]])
In [228... # np.ravel(matriz a modificar)
         np.ravel(p)
Out[228]: array([1, 2, 3, 4, 5, 6])
In [229... p1 = np.array([[1, 2, 3],
                         [4, 5, 6],
                         [7, 8, 9]])
         p1
Out[229]: array([[1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9]])
In [230... | np.ravel(p1)
Out[230]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])
          flatten()
```

localhost:8888/doc/tree/temario/4_Tema_ Pandas y Numpy.ipynb

```
In []: # Es una copia del array pero en 1 sola dimensión
In [231... matriz = np.array([[1, 2, 3],
                           [4, 5, 6],
                           [7, 8, 9]])
         matriz
Out[231]: array([[1, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9]])
In [232... # nombre matriz + flatten()
         matriz.flatten()
Out[232]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [233... m = matriz.flatten()
In [234... m.shape
Out[234]: (9,)
          roll()
 In [ ]: # np.roll(array, desplazamiento, eje)
         # Desplaza los elementos de manera circular a través de una dimensión
In [235... b = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12]])
         b
Out[235]: array([[ 1, 2, 3, 4],
                 [5, 6, 7, 8],
                 [ 9, 10, 11, 12]])
In [236... # Desplazamiento= 1 y eje horizontal
         np.roll(b, 1, axis=0)
Out[236]: array([[ 9, 10, 11, 12],
                 [ 1, 2, 3, 4],
                 [5, 6, 7, 8]])
In [237... # Desplazamiento = 1 y eje vertical
         np.roll(b, 1, axis=1)
Out[237]: array([[ 4, 1, 2, 3],
                 [8, 5, 6, 7],
                 [12, 9, 10, 11]])
In [238... # Desplazamiento= -1 y eje horizontal
         np.roll(b, -1, axis=0)
Out[238]: array([[ 5, 6, 7, 8],
                 [ 9, 10, 11, 12],
                 [1, 2, 3, 4]])
```

logspace()

Slicing

Acceso a un elemento de un array:

[4, 5, 6], [7, 8, 9]])

Out[244]: array([[1, 2, 3],

```
In [245... # Opción 1
          q[2][1] # --> fila 2 y columna 1 (listas 0, 1, 2)
Out[245]: 8
In [246... q[0][2]
Out[246]: 3
In [247... # Opción 2
          q[2, 1]
Out[247]: 8
In [248... # dos primeras filas (: --> todas)
          q[:2]
Out[248]: array([[1, 2, 3],
                  [4, 5, 6]])
In [249... q[2:]
Out[249]: array([[7, 8, 9]])
In [250... # Filtrar por columnas
          q[:,[0]]
Out[250]: array([[1],
                  [4],
                  [7]])
In [251... # Filtrar por columnas
          q[:,[0,1]]
Out[251]: array([[1, 2],
                  [4, 5],
                  [7, 8]])
In [252... # También sigue como las listas [start:stop:step]
          x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
          x[1:12:2]
Out[252]: array([1, 3, 5, 7, 9])
         Array de 5 x 5
```

Imprimir desde la 3^a columna hasta el final

```
In [254... print(a) # mostrar la información de la matriz
        [[1 2 3 4 5]
         [678910]
         [11 12 13 14 15]
         [16 17 18 19 20]
         [21 22 23 24 25]]
In [255... # ojo, empezamos contando 0...(0-1-2) hasta la columna 2 (la tercera)
         # : antes del iqual indica todas las filas
         # todas las filas, las columnas de 0 hasta 2 (2 no incluída)
         a[:, :2]
Out[255]: array([[ 1, 2],
                 [6, 7],
                 [11, 12],
                 [16, 17],
                 [21, 22]])
In [256... # todas las columnas de las 2 primeras filas
         a[:2]
Out[256]: array([[ 1, 2,
                          3,
                 [6, 7, 8, 9, 10]])
In [257... a[:2, :]
Out[257]: array([[ 1, 2,
                           3,
                               4, 5],
                 [ 6,
                       7, 8,
                               9, 10]])
In [258... a[:, 1:2]
Out[258]: array([[ 2],
                 [7],
                 [12],
                 [17],
                 [22]])
 In [ ]: # NOTA: esta parte será importante para el tema de visualización de los d
         # ver el tema de df.loc o df.iloc
         Type...
In [259... type(a[:,2:])
Out[259]: numpy.ndarray
```

Imprimo desde la primera hasta la 2ª columna (incluida)

```
In [260... a
Out[260]: array([[ 1, 2, 3, 4, 5],
                 [6, 7, 8, 9, 10],
                 [11, 12, 13, 14, 15],
                 [16, 17, 18, 19, 20],
                 [21, 22, 23, 24, 25]])
In [261... # Opción 1
         a[:, :2]
Out[261]: array([[ 1,
                       2],
                 [6, 7],
                 [11, 12],
                 [16, 17],
                 [21, 22]])
In [262... # Opción 2
         a[:, 0:2]
Out[262]: array([[ 1,
                       2],
                 [6, 7],
                 [11, 12],
                 [16, 17],
                 [21, 22]])
         Imprimo las pares
In [263... a
Out[263]: array([[ 1, 2,
                          3, 4, 5],
                 [6, 7, 8, 9, 10],
                 [11, 12, 13, 14, 15],
                 [16, 17, 18, 19, 20],
                 [21, 22, 23, 24, 25]])
 In [ ]: # ":" antes de la coma equivale a todas las filas
         # inicio:final:incremento (si añades un segundo ":" es poner el increment
         # en el final si no ponemos nada es el final
In [264... a[:, 1::2]
Out[264]: array([[ 2, 4],
                 [7, 9],
                 [12, 14],
                 [17, 19],
                 [22, 24]])
In [265... a[:, 1::3]
Out[265]: array([[ 2, 5],
                 [7, 10],
                 [12, 15],
                 [17, 20],
                 [22, 25]])
```

Imprimir las impares

```
In [266... a
                           3,
                                   5],
Out[266]: array([[ 1, 2,
                                4,
                  [6, 7, 8, 9, 10],
                  [11, 12, 13, 14, 15],
                  [16, 17, 18, 19, 20],
                  [21, 22, 23, 24, 25]])
In [267... a[:, 0::2]
                       3, 5],
Out[267]: array([[ 1,
                  [6, 8, 10],
                  [11, 13, 15],
                  [16, 18, 20],
                  [21, 23, 25]])
In [268... a[:, 0:2:2]
Out[268]: array([[ 1],
                  [ 6],
                  [11],
                  [16],
                  [21]])
In [269... a[:, 0:3:2]
Out[269]: array([[ 1,
                       3],
                  [6, 8],
                  [11, 13],
                  [16, 18],
                  [21, 23]])
```

Comparacion entre Arrays

```
In [ ]: # Creamos los arrays
In [270... s = np.array([
              [1, 2, 3],
              [4, 5, 6]
          ])
          S
Out[270]: array([[1, 2, 3],
                  [4, 5, 6]])
In [271... | t = np.array([
              [100, 200, 3],
              [400, 5, 6]
          ])
Out[271]: array([[100, 200,
                                3],
                                6]])
                  [400, 5,
```

Los comparo

np.where(condicion, si es cierto, si es falso)

Concatenación de arrays

Crear los arrays

Concatenación por filas

Concatenación por colunmas

Operaciones

```
In []: # Potencias

In [280... r = np.array([1, 2, 3, 4]) r

Out[280]: array([1, 2, 3, 4])

In []: # Método 1

In [281... r**2 # 1^1, 2^2, 3^3, 4^4

Out[281]: array([ 1, 4, 9, 16])

In []: # Método 2

In [282... pow(r, 2)

Out[282]: array([ 1, 4, 9, 16])

Producto escalar y producto vectorial de 2 vectores
```

```
In [283... w = np.array([1, 2, 3])

Out[283]: array([1, 2, 3])

In [284... x = np.array([2, 5, -4])
    x

Out[284]: array([ 2, 5, -4])
```

Producto escalar:

Producto Vectorial:

```
In []: ## Producto Vectorial

# i j k
# 1 2 3
# 2 5 -4

# y se opera:
# -8i+5K+6j - (-4k-4j+15i) = -23i+10j+1k --> (-23, 10, 1)
```

```
In [286... np.cross(w, x)

Out[286]: array([-23, 10, 1])
```

Matriz con "matrix"

```
In [288... # 1 fila y 4 columnas
v = np.matrix([4, 9, 1, 3])
v
```

Out[288]: matrix([[4, 9, 1, 3]])

Suma

Resta

Producto

```
In [291... u * v
```

```
ValueError
                                                   Traceback (most recent call las
        t)
        Cell In[291], line 1
        ----> 1 u * v
        File ~/.local/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py:21
        9, in matrix.__mul__(self, other)
            216 def mul (self, other):
                    if isinstance(other, (N.ndarray, list, tuple)) :
            217
            218
                        # This promotes 1-D vectors to row vectors
        --> 219
                        return N.dot(self, asmatrix(other))
            220
                    if isscalar(other) or not hasattr(other, ' rmul ') :
            221
                        return N.dot(self, other)
       ValueError: shapes (4,4) and (1,4) not aligned: 4 (dim 1) != 1 (dim 0)
         # ValueError --> es necesario realizar la transpuesta para este caso, ya
         Opción 1:
In [292... u*v.transpose()
Out[292]: matrix([[ 3],
                  [114],
                   [ 42],
                  [ 15]])
         Opción 2:
         u*v.T
In [293...
Out[293]: matrix([[ 3],
                  [114],
                  [ 42],
                  [ 15]])
         Opción 3:
In [294... | np.dot(u, v.T)
Out[294]: matrix([[ 3],
                  [114],
                   [ 42],
                   [ 15]])
         Traza de una matriz
         (suma de los elementos de la diagonal principal)
In [295...
         u -v
Out[295]: matrix([[ 0, -12, 10, -2],
                  [ 1,
                         0, 6, -1],
                  [ -2,
                               3, -2],
                         -6,
                              -6, -12]])
                  [1, -6,
```

```
In [296... type(u-v)
Out[296]: numpy.matrix
In [297... np.trace(u-v) # 0 + 0 + 3 + (-12) = -9 (suma de los elementos de la diago
Out[297]: -9
```

Matematical functions

Trigonometric functions

Description
Trigonometric sine, element-wise.
Cosine element-wise.
Compute tangent element-wise.
Inverse sine, element-wise.
Inverse sine, element-wise.
Trigonometric inverse cosine, element-wise.
Trigonometric inverse cosine, element-wise.
Trigonometric inverse tangent, element-wise.
Trigonometric inverse tangent, element-wise.
Given the "legs" of a right triangle, return its hypotenuse.
Convert angles from radians to degrees.
Convert angles from degrees to radians.

Rounding

Functions	Description
round(a[, decimals, out])	Evenly round to the given number of decimals.
around(a[, decimals, out])	Round an array to the given number of decimals.
rint(x, /[, out, where, casting, order,])	Round elements of the array to the nearest integer.
fix(x[, out])	Round to nearest integer towards zero.
floor(x, /[, out, where, casting, order,])	Return the floor of the input, element-wise.
ceil(x, /[, out, where, casting, order,])	Return the ceiling of the input, element-wise.

Functions	Description
trunc(x, /[, out, where, casting, order,])	Return the truncated value of the input, elementwise.

Sums, products, differences

Functions	Description
prod(a[, axis, dtype, out, keepdims,])	Return the product of array elements over a given axis.
sum(a[, axis, dtype, out, keepdims,])	Sum of array elements over a given axis.
nanprod(a[, axis, dtype, out, keepdims,])	Return the product of array elements over a given axis treating Not a Numbers (NaNs) as ones.
nansum(a[, axis, dtype, out, keepdims,])	Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.
cumprod(a[, axis, dtype, out])	Return the cumulative product of elements along a given axis.
cumsum(a[, axis, dtype, out])	Return the cumulative sum of the elements along a given axis.
gradient(f, *varargs[, axis, edge_order])	Return the gradient of an N-dimensional array.
cross(a, b[, axisa, axisb, axisc, axis])	Return the cross product of two (arrays of) vectors.

Arithmetic operations

Functions	Description
add(x1, x2, /[, out, where, casting, order,])	Add arguments element-wise.
$ \begin{array}{l} \text{reciprocal(x, /[, out, where, casting,} \\ \ldots]) \end{array} $	Return the reciprocal of the argument, element-wise.
positive(x, /[, out, where, casting, order,])	Numerical positive, element-wise.
negative(x, $/[$, out, where, casting, order,])	Numerical negative, element-wise.
multiply(x1, x2, /[, out, where, casting,])	Multiply arguments element-wise.
divide(x1, x2, /[, out, where, casting,])	Divide arguments element-wise.
power(x1, x2, /[, out, where, casting,])	First array elements raised to powers from second array, element-wise.
pow(x1, x2, /[, out, where, casting, order,])	First array elements raised to powers from second array, element-wise.
subtract(x1, x2, $/[$, out, where, casting,])	Subtract arguments, element-wise.

Functions	Description
true_divide(x1, x2, /[, out, where,])	Divide arguments element-wise.
floor_divide(x1, x2, /[, out, where,])	Return the largest integer smaller or equal to the division of the inputs.
float_power(x1, x2, /[, out, where,])	First array elements raised to powers from second array, element-wise.
fmod(x1, x2, /[, out, where, casting,])	Returns the element-wise remainder of division.
mod(x1, x2, /[, out, where, casting, order,])	Returns the element-wise remainder of division.

Extrema finding

Functions	Description
maximum(x1, x2, /[, out, where, casting,])	Element-wise maximum of array elements.
max(a[, axis, out, keepdims, initial, where])	Return the maximum of an array or maximum along an axis.
minimum(x1, x2, /[, out, where, casting,])	Element-wise minimum of array elements.
min(a[, axis, out, keepdims, initial, where])	Return the minimum of an array or minimum along an axis.

Creado por:

Isabel Maniega