

CSE 151A Intro to Machine Learning

Lecture 18 – Part 01 Ending the Quarter

Final Exam

Section of Final Exam covering Weeks 09 and 10 is cancelled.

(Optional) Redemption Sections will still be given.

Grades

Midterm 02 grades will be posted tonight or tomorrow.

► All HWs (except for HW 08) will be posted soon.

CSE 151A Intro to Machine Learning

Recap: Principal Components

- ▶ **Goal**: Find unit vector \vec{u} maximizing $\vec{u}^T C \vec{u}$.
 - I.e., find unit vector in direction of maximum variance.
- Any solution must satisfy $2C\vec{u} = \lambda \vec{u}$
 - I.e., it must be an eigenvector of *C*.

► The **top eigenvector** of the covariance matrix points in direction of maximum variance.

Principal Component Analysis

- ▶ **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- **Map**: each data point $\vec{x}^{(i)}$ to a single feature, z_i .
- **PCA**: Let $z_i = \vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix.

- We lose a lot of information when we project from \mathbb{R}^d to a single number.
- Instead of a single number, represent $\vec{x}^{(i)} \in \mathbb{R}^d$ as a smaller vector, $\vec{z}^{(i)} \in \mathbb{R}^{d'}$.

- First PCA feature: project $\vec{x}^{(i)}$ onto principal component, $\vec{u}^{(1)}$
 - $ightharpoonup \vec{u}^{(1)}$ is vector maximizing $\vec{u}^T C \vec{u}$.
- Second PCA feature: project $\vec{x}^{(i)}$ onto ???
- Third PCA feature: project $\vec{x}^{(i)}$ onto ???

...

- Second PCA feature: project $\vec{x}^{(i)}$ onto $\vec{u}^{(2)}$.
 - $\vec{u}^{(2)}$ is the second principal component
 - Found by maximizing $\vec{u}^T C \vec{u}$ subject to constraint that $\vec{u}^{(2)}$ is orthogonal to $\vec{u}^{(1)}$

- ► Third PCA feature: project $\vec{x}^{(i)}$ onto $\vec{u}^{(3)}$.
 - $\vec{u}^{(3)}$ is the third principal component
 - Found by maximizing $\vec{u}^T C \vec{u}$ subject to constraint that $\vec{u}^{(3)}$ is orthogonal to $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$

- ► **Goal**: find k unit vectors $\vec{u}^{(1)}, ..., \vec{u}^{(k)}$ such that:
 - $\triangleright (\vec{u}^{(1)})^T C \vec{u}^{(1)}$ is maximized
 - $(\vec{u}^{(2)})^T C \vec{u}^{(2)}$ is maximized s.t. $\vec{u}^{(2)} \perp \vec{u}^{(1)}$
 - **...**
 - $(\vec{u}^{(k)})^T C \vec{u}^{(k)}$ is maximized s.t. $\vec{u}^{(k)} \perp \vec{u}^{(1)}, ..., \vec{u}^{(k-1)}$

The New Features

- Suppose we have found $\vec{u}^{(1)}, ..., \vec{u}^{(k)}$.
- The new feature vector for $\vec{x}^{(i)}$ is:

$$\vec{z}^{(i)} = (\vec{x}^{(i)} \cdot \vec{u}^{(1)}, \, \vec{x}^{(i)} \cdot \vec{u}^{(2)}, \, \dots, \, \vec{x}^{(i)} \cdot \vec{u}^{(k)})^T$$

The New Features

Equivalently, define:

$$U = \begin{pmatrix} \leftarrow & \vec{u}^{(1)} & \rightarrow \\ \leftarrow & \vec{u}^{(2)} & \rightarrow \\ & \cdots & \\ \leftarrow & \vec{u}^{(k)} & \rightarrow \end{pmatrix}$$

► Then $\vec{z}^{(i)} = U\vec{x}^{(i)}$

The Solution

- ► How do we find $\vec{u}^{(1)}, ..., \vec{u}^{(k)}$?
- ► We know $\vec{u}^{(1)}$ is the top eigenvector of C.
- ► Claim: $\vec{u}^{(i)}$ is the *i*th eigenvector of *C*.

Spectral Theorem

- Let C be the $d \times d$ covariance matrix of X.
- ► In *O*(*d*³) time, we can compute its eigendecomposition, consisting of
 - ► real **eigenvalues** $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d$
 - corresponding **eigenvectors** $\vec{u}^{(1)}, ..., \vec{u}^{(d)} \in \mathbb{R}^d$ that are orthonormal (unit length and at right angles to each other)

PCA

Suppose we wish to map a data set $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ to k dimensions while retaining as much variance as possible.

Solution:

- Compute top k eigenvectors of covariance.
- Place them row-wise into a matrix *U*.
- $\vec{x}^{(i)} \mapsto U\vec{x}^{(i)}$.

PCA Revisited

- ▶ We have seen PCA as an optimization problem.
- Another (equivalent) view: decorrelation.

Decorrelation

- ► **Goal**: find orthonormal basis in which data is decorrelated
 - Covariance matrix of new features is diagonal.
- ► **Solution**: use as basis the eigenvectors of covariance matrix.

Reconstruction

- The whole goal of PCA is to reduce dimensionality.
 - Example: turn a 784-dimensional image vector into 200-dimensional feature vector.

- ▶ But sometimes it is fun to go the other direction:
 - ► Take result of PCA and reconstruct the original image.

Reconstruction

- Suppose original data is d dimensional.
- Project onto k eigenvectors $\vec{u}^{(1)}, ..., \vec{u}^{(k)} \in \mathbb{R}^d$.
 - $\vec{z}^{(i)} = (\vec{x}^{(i)} \cdot \vec{u}^{(1)}, \dots, \vec{x}^{(i)} \cdot \vec{u}^{(k)})^T$
- ► Reconstruction of $\vec{x}^{(i)}$ from $\vec{z}^{(i)}$:

$$\vec{x}^{(i)} \approx \vec{z}_1^{(i)} \vec{u}^{(1)} + \vec{z}_2^{(i)} \vec{u}^{(2)} + \dots + \vec{z}_k^{(i)} \vec{u}^{(k)}$$

PCA in Practice

- PCA is often used in preprocessing before classifier is trained, etc.
- Must choose number of dimensions, k.
- One way: cross-validation.
- Another way: the elbow method.

CSE 151A Intro to Machine Kearning

Lecture 18 – Part 04 Demos https://go.ucsd.edu/3exnmrw