A Projection-based Approach for Spatial Generalized Linear Mixed Models

Based on joint work with Yawen Guan, SAMSI/NC State John Hughes, U Colorado-Denver

Department of Statistics, Duke University
October 2017

Murali Haran

Department of Statistics, Penn State University

▶ Benjamin Disraeli

"Talk to a man about himself and he'll listen to you for hours."

- Benjamin Disraeli
 - "Talk to a man about himself and he'll listen to you for hours."
- My academic version "Cite the work of academics, and they might listen to you for 50 minutes."

- Benjamin Disraeli
 - "Talk to a man about himself and he'll listen to you for hours."
- My academic version "Cite the work of academics, and they might listen to you for 50 minutes."
 - Banerjee, A. Tokdar, Dunson (2013) Efficient Gaussian process regression for large datasets

- Benjamin Disraeli
 - "Talk to a man about himself and he'll listen to you for hours."
- My academic version "Cite the work of academics, and they might listen to you for 50 minutes."
 - Banerjee, A. Tokdar, Dunson (2013) Efficient Gaussian process regression for large datasets
 - Banerjee, Gelfand, Finley, Sang (2008) Gaussian predictive process models for large spatial data sets
 - Datta, A., Banerjee, S., Finley, A. O., Gelfand (2015)
 Hierarchical nearest neighbor Gaussian process models for large geostatistical datasets

- Benjamin Disraeli"Talk to a man about himself and he'll listen to you for
- My academic version "Cite the work of academics, and they might listen to you for 50 minutes."
 - Banerjee, A. Tokdar, Dunson (2013) Efficient Gaussian process regression for large datasets
 - Banerjee, Gelfand, Finley, Sang (2008) Gaussian predictive process models for large spatial data sets
 - Datta, A., Banerjee, S., Finley, A. O., Gelfand (2015)
 Hierarchical nearest neighbor Gaussian process models for large geostatistical datasets
 - Berger, Liseo, Wolpert (1999) Integrated likelihood methods

hours."

Talk Summary

- Gaussian and non-Gaussian spatial data are common: disease modeling, ecology, climate science, sociology
- Spatial generalized linear mixed models (SGLMMs)
 - ▶ Popular for lattice or areal data Besag, York, Mollie (1991) ≈ 3,000 citations
 - ▶ and continuous-domain data
 Diggle et al. (1998) ≈ 2,000 citations
- Shortcomings of SGLMMs:
 - Inference presents difficult computational issues, especially with large data sets
 - 2. Regression parameter interpretation is unreliable
- I will describe projection-based methods that simultaneously resolve both these issues

US Infant Mortality Data by County

Ratio of deaths to births, each averaged over 2002-2004.

Darker indicates higher rate. n = 3071

Question: what factors impact infant mortality?

Greenland Ice Sheet Thickness

Bamber et al. (2001)

Question: How to interpolate this surface?

How to calibrate (infer parameters for) ice sheet model based on these data?

House Finch Abundances

Pardieck et al. 2015. North American Breeding Bird Survey Dataset 1966 - 2014

Question: Abundance at unsampled location?

Models for these Data

- Spatial linear mixed models (SLMMs): for Gaussian data
- Spatial generalized linear mixed models (SGLMMs): for non-Gaussian data
- What are these models used for?
 - interpolation (continuous-domain) or smoothing the spatial field (lattice-domain)
 - 2. regression while adjusting for residual spatial dependence

Spatial Linear Mixed Models (SLMMs)

▶ Spatial process at location $\mathbf{s} \in D \subset \mathbb{R}^d$ is

$$Z(\mathbf{s}) = X(\mathbf{s})\beta + W(\mathbf{s})$$

- \blacktriangleright $X(\mathbf{s})$ is covariate at \mathbf{s} , and β is a vector of coefficients
- Model dependence among spatial random variables by imposing it on W(s), the random effects
- Same framework works for both lattice data and continuous-domain data. Model for W(s)
 - Continuous domain: Gaussian process (GP)
 - Lattice data: Gaussian Markov Random field (GMRF)

Gaussian Processes

Infinite dimensional process $\{W(\mathbf{s}) : \mathbf{s} \in D\}$ such that

$$(W(\mathbf{s}_1), \dots W(\mathbf{s}_n))^T \mid \Theta \sim N(\mathbf{0}, \Sigma(\Theta))$$

- ► Covariance often specified via a positive definite covariance function with parameters Θ
- E.g. (stationary) exponential covariance function
- $ightharpoonup \Theta = (\sigma^2, \phi)$

$$\Sigma_{ij}(\Theta) = \text{Cov}(W(\mathbf{s}_i), W(\mathbf{s}_i)) = \sigma^2 \exp(-|\mathbf{s}_i - \mathbf{s}_i|/\phi)$$

Gaussian Markov Random Fields

$$(W(\mathbf{s}_1), \dots W(\mathbf{s}_n))^T \mid \Theta \sim N(\mathbf{0}, Q(\Theta)^{-1})$$

 $Q(\Theta)$ is a precision matrix based on a graph that describes a neighborhood structure: adjacencies specify dependence (skip details....)

Inference for Spatial Linear Mixed Models

MLE involves low-dimensional optimization

$$\underset{\Theta,\beta}{\operatorname{arg\,max}} \ \mathcal{L}(\Theta,\boldsymbol{\beta};\mathbf{Z})$$

- Bayesian inference:
 - ▶ Priors for Θ , β
 - ▶ Inference based on $\pi(\Theta, \beta \mid \mathbf{Z}) \propto \mathcal{L}(\Theta, \beta; \mathbf{Z}) p(\Theta) p(\beta)$
- Markov chain Monte Carlo with low-dimensional posterior

Literature on Computing for Spatial Linear Models

- ▶ Likelihood: high-dimensional matrices, $\mathcal{O}(n^3)$ operations
- ► Lots of excellent approaches that scale very well
 - Multiresolution methods, with parallelizations (Katzfuss, 2017; Katzfuss and Hammerling, 2014)
 - Nearest neighbor process (Datta et al., 2016)
 - Random projections (Banerjee, A., Tokdar, Dunson, 2013)
 - Stochastic PDEs (Lindgren et al., 2011)
 - Lattice kriging (Nychka et al., 2010)
 - Predictive process (Banerjee, Gelfand, Finley, Sang 2008)

Largely a "solved" problem

Spatial Generalized Linear Mixed Models (SGLMMs)

Model for Z at location \mathbf{s}_i

- 1. $Z(\mathbf{s}_i)|\beta, \Theta, W(\mathbf{s}_i), i = 1, ..., n$, conditionally independent E.g. $Z(\mathbf{s}_i) \mid \beta, W(\mathbf{s}_i) \sim \text{Poisson}(\mu(\mathbf{s}_i))$
- 2. Link function $g(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$ E.g. $\log(\mu_i) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$
- 3. $\mathbf{W} = (W(\mathbf{s}_1), \dots, W(\mathbf{s}_n))^T$ modeled as
 - Gaussian Markov random field model (Besag et al., 1991)
 - Gaussian processes (Diggle et al., 1998)
- **4.** Priors for Θ , β

Commonly embedded within hierarchical models (cf. Banerjee, Carlin, Gelfand, 2014)

Challenges

Challenges posed by spatial generalized linear mixed models (SGLMMs):

- Computational challenges
 Rue and Held (2002, 2005), Haran (2011)
- (2) Confounding between spatial random effects and fixed effects (covariates) Reich, Hodges, Zadnik (2006), Paciorek (2010)

Problem 1. Computational Challenge

MLE: low-dimensional optimization of integrated likelihood

$$\operatorname*{arg\,max}_{\Theta,\beta}\int\mathcal{L}(\Theta,\boldsymbol{\beta},\mathbf{W};\mathbf{Z})d\mathbf{W}$$

(Nice study of integrated likelihood methods: Berger, Liseo, Wolpert, 1999)

High-dimensional integration (**W** is high-dimensional) MCMC-EM or MCMC-MLE: slow, challenging to implement (Zhang, 2002, 2003; Christensen, 2004)

Bayesian inference based on

$$\pi(\Theta, \boldsymbol{\beta}, \mathbf{W} \mid \mathbf{Z})$$

Computing for SGLMMs

Bayes approach:

- Handle missing data easily
- Combine multiple data sets
- Inference with MCMC is easier (than for MLE)
- ▶ But... MCMC algorithms are not easy/scalable
 - MCMC is slow per iteration due to high-dimensional

$$\pi(\Theta, \boldsymbol{\beta}, \mathbf{W} \mid \mathbf{Z})$$

- Markov chain is slow mixing (need longer chain) due to strong cross-correlations among W
- Can become impractical for large N

MCMC for SGLMMs

- Markov chain is slow mixing (need longer Markov chain) due to strong cross-correlations among W
- Block updating schemes may help. E.g. blocks:

$$\boxed{\pi(\mathbf{W}\mid\Theta,\beta,\mathbf{Z})} \boxed{\pi(\Theta\mid\beta,\mathbf{W},\mathbf{Z})} \boxed{\pi(\beta\mid\Theta,\mathbf{W},\mathbf{Z})}$$

- Challenging to obtain good proposals for W, especially for high-dimensions
- Computationally expensive per update

Attempts to address these issues: Rue and Held (2005), Christensen et al. (2006), Haran and Tierney (2012) They do not scale well (problem for N > 1000)

Problem 2. Spatial Confounding

▶ Let
$$P = X(X^TX)^{-1}X^T$$
, and $P^{\perp} = I - P$

$$g\{E(\mathbf{Z} \mid \beta, \mathbf{W}, \Theta) = X\beta + \mathbf{W} = X\beta + P\mathbf{W} + P^{\perp}\mathbf{W}$$

- PW is in span of X
- Basic regression issue: multicollinearity

Leads to variance inflation, unstable estimates of β (Hodges and Reich 2010; Paciorek, 2010) Hints of the symptom, without diagnosis, by others (e.g. Diggle, 1994)

Sketch of Our Solution

- Culprit: W is cause of confounding as well as computational challenges
- ▶ W: just a device to induce dependence
- Idea: project **W** on random effects δ such that
 - Preserve spatial dependence implied by original W
 - δ is low-dimensional
 - lacktriangle is less dependent ("cross-correlated")
 - Project orthogonal to space spanned by X
- Applies to both Gaussian process and GMRF models
 - GMRF models: projection based on Moran operator which uses neighborhood structure (Hughes and Haran, 2013)
 - GPs and GMRFs: general approach using eigendecomposition (Guan and Haran, 2017)

Murali Haran, Penn State

Sparse Reparameterization for GMRFs

- Regular approach implies unintended/undesirable dependence structure (cf. Wall, 2004)
- Our approach
 - Deletes non-meaningful spatial dependence (weak or negative): "data-based" approach to reduce dimensions
 - ► Faster inference and a better model
- Regression coefficients are easier to interpret
- Automated MCMC is computationally efficient, allowing for routine analysis of large data sets
- Approach takes advantage of the underlying graph

What should we do in continuous-domain settings (in the absence of a graph)?

Murali Haran, Penn State 20

SGLMMs with Latent Gaussian Processes

Recall: example model for count data $Z(\mathbf{s}), s \in \mathcal{D} \subset \mathcal{R}^d$.

1. Data model:

$$Z(\mathbf{s}_i) \mid eta, W(\mathbf{s}_i) \stackrel{Indep.}{\sim} \mathsf{Poisson}(\mu(\mathbf{s}_i)), i = 1, \dots, n$$

$$\log (\mu(\mathbf{s}_i)) = X(\mathbf{s}_i) \beta + W(\mathbf{s}_i),$$

2. Process model: impose dependence via Gaussian process

$$\mathbf{W} \mid \sigma^2, \phi \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \Sigma_{\phi}\right)$$

3. Priors for β , σ^2 , ϕ

MCMC Inference based on posterior, $\pi(\beta, \sigma^2, \phi, \mathbf{W} \mid \mathbf{Z})$

Posterior Distribution

$$\pi(\boldsymbol{\beta}, \sigma^{2}, \phi, \mathbf{W} \mid \mathbf{Z}) \propto \prod_{i}^{n} f(\boldsymbol{Z}(\mathbf{s}_{i}) \mid \boldsymbol{\beta}, \boldsymbol{W}(\mathbf{s}_{i})) | \sigma^{2} \Sigma_{\phi}|^{-\frac{1}{2}} \exp\left(-\frac{\mathbf{W}' \Sigma_{\phi}^{-1} \mathbf{W}}{2\sigma^{2}}\right) p(\boldsymbol{\beta}, \sigma^{2}, \phi),$$

where the covariance matrix is specified by the covariance function, for example the i, jth element

$$\Sigma_{ij} = \exp(-|\mathbf{s}_i - \mathbf{s}_j|/\phi)$$

for an exponential covariance function.

Outline of Projection-based Approach

- 1. Fast approximation to the principal components of Σ_{ϕ}
 - ▶ Approximate first m eigenvectors $U = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ and eigenvalues $D_m = \text{diag}(\lambda_1, \dots, \lambda_m)$
- 2. Replace n-dimensional W with $UD_m^{1/2}\delta$
 - $\pmb{\delta}$: lower dimensional and pprox independent

faster and better mixing MCMC algorithm

- 3. Project $UD_m^{1/2}\delta$ to $C^{\perp}(X)$ Makes random effects orthogonal to fixed effects handles confounding issues
- 4. Fit the reduced model under Bayesian framework

Step 1: Eigendecomposition

For speed we use a fast approximate eigendecomposition

Left: deterministic approximation Center: **random approximation** Right: exact eigendecomposition

 Random projections used in Banerjee, Tokdar, Dunson (2013); also Sarlos (2006), Halko et al. (2009)

Step 2: Reducing Dimensions via Projection

- Approximates the leading m eigencomponents of the covariance matrix Σ_{ϕ}
- ► Replace W with $UD_m^{1/2}\delta$

Step 3: Projection to Handle Confounding

- ▶ Let $P = X(X^TX)^{-1}X^T$, and $P^{\perp} = I P$
- Recall: PW is in span of X, causes confounding
- Solution: Remove it

$$g\{E(\mathbf{Z} \mid \beta, \mathbf{W}, \sigma^2, \phi)\} = X\beta + \mathbf{W} = X\beta + P\mathbf{W} + P^{\perp}\mathbf{W}$$

[Reich et al., 2006]

- ► High-dimensional $P^{\perp}\mathbf{W} \sim N(\mathbf{0}, P^{\perp}\Sigma P^{\perp})$ If X is nxp input matrix, then $P^{\perp}\Sigma P^{\perp}$ has rank n-p
- ▶ Only reduces dimensions from n to n − p
- ▶ Instead: Reduce dimension **and** confounding by $P^{\perp}UD_m^{1/2}\delta$

Step 4: Inference Based on Reparameterizaion

- Spatial generalized linear mixed models
 Usual: inference based on π(β, σ², φ, W | Z)
- ▶ Obtain U, D_m of Σ_{ϕ}
- ▶ D_m is m-dim diagonal matrix with $D_{ii} = i^{th}$ eigenvalue
- ► FRP: replace **W** with $UD_m^{1/2}\delta$ to approximate SGLMM or RRP: replace **W** with $P^{\perp}UD_m^{1/2}\delta$ to approximate restricted spatial model
- Reduced Model:

$$g\left\{E(Z_i \mid \beta, U, D_m, \delta)\right\} = X_i \beta + (P^{\perp} U D_m^{1/2})_i \delta$$
$$\delta \mid \dots \stackrel{approx}{\sim} N_m(\mathbf{0}, \sigma^2 I)$$

Now: inference based on $\pi(\beta, \sigma^2, \phi, \delta \mid \mathbf{Z})$

Computational Advantages: Improved MCMC Mixing

- Alleviate confounding between fixed and random effects
- Reparameterized δ are approximately independent
- ▶ De-correlating random effects: better MCMC mixing

Plots of sample cross-correlations

Computational Advantages: Reduced Random Effects

- ► Can reduce dimension of random effects, δ to m << n e.g. m = 50, n = 1000.
- ► Computational complexity: O(n²m) versus O(n³) + mixing improvement (harder to quantify)

Poisson Model Simulation Study: Point Estimation

► Simulate: $\beta = (1, 1)^T$, and Matérn $(\nu, \phi, \sigma^2) = (2.5, 0.2, 1)$

FRP: full model

RRP: restricted model (orthogonalized random effects)

A-RRP: adjusted inference

Poisson Model Prediction Performance

- ► Simulate n = 1000 spatial count data
- Prediction on 20 x 20 grid using rank = 50

FRP: full model

RRP: restricted model (orthogonalized random effects)

31

Summary

- Projection-based approach for spatial data
 - 1. reduces dimensions + better MCMC mixing
 - 2. adjusts for spatial confounding
 - simple to implement, mostly "automated"
 - 4. good inference and prediction performance
 - other approaches (nn-GP, random-proj, Multi-Re) are better than ours for basic linear model; we are better for SGLMMs
 - extends easily to more complex hierarchical settings (not true for multiresolution-type methods even in the spatial linear model case)
- ► Caveat: Have not studied method for *n* > 10,000
 - For fixed m, computational cost grows with n (mostly) due to eigendecomposition. Address via (i) discretization of space/pre-computing and (ii) new algorithms

Murali Haran, Penn State 32

Acknowledgments

- ► Yawen Guan, SAMSI/NC State
- John Hughes, U of Colorado-Denver
- SAMSI: discussions with
 - ▶ Bo Li (Purdue U.)
 - Doug Nychka (NCAR)
 - Dorit Hammerling (NCAR)
- ► Support from NSF-CDSE/DMS-1418090

Key References

- Guan and Haran (2017), A Computationally Efficient
 Projection-Based Approach for Spatial Generalized Linear
 Mixed Models, arxiv.org
- Hughes and Haran (2013), Dimension reduction and alleviation... Journal of the Royal Statistical Society (B)
- Banerjee A, Tokdar, S., Dunson, D. (2013) Efficient
 Gaussian process regression for large datasets, *Biometrika*
- ► Reich et al. (2006), Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models Biometrics
- Haran (2011) Gaussian random field models for spatial data, Handbook of MCMC

Frequently Asked Questions (FAQs)

- Q. Why not use nearest neighbor Gaussian processes? (Datta et al., 2016)
 - ► Effective way to reduce matrix calculations via composite likelihood. But does not reduce number of random effects
 - Works well for spatial linear mixed models
 - Random effects are of dimension N so not clear how to extend to SGLMMs
- Q. How does your approach compare to the Gaussian predictive process (Banerjee et al., 2008)?
 - Applicable to SGLMMs, involves dimension-reduction
 - Have to choose "knots" for low-dimensional representation.
 Non-trivial, far from automated
 - Does not address spatial confounding
 - In simulated examples, we do better with prediction

Murali Haran, Penn State 35

FAQs

- ▶ Q. Is this necessary when we have the Integrated Nested Laplace Approximation (INLA) (Rue et al., 2008)?
 - ► INLA is very fast
 - Does not handle spatial confounding
 - No obvious way to handle complications additional hierarchy, complicated mean structure (e.g. physical model); accuracy of approximation may also be suspect
- Q. Relationship to fixed rank approaches?
 - If we fixed covariance parameters, this is a fixed rank approach with fixed eigenvectors/eigenfunctions as basis
 - Eliminating small scale variations can impact SLMMs (Stein, 2014), but less impact in SGLMMs

APPENDIX

Gaussian Process for Dependence and Interpolation

- A Gaussian process is an infinite-dimensional random process, any finite-dimension of which is a multivariate normal.
- Matérn covariance function describes dependence, e.g.

$$\begin{array}{ll} \nu=0.5, & \textit{C(h)}=\sigma^2\exp(-\frac{|h|}{\phi}) \text{ (Exponential)} \\ \nu=2.5, & \textit{C(h)}=\sigma^2\left(1+\frac{\sqrt{5}|h|}{\phi}+\frac{5|h|^2}{3\phi^2}\right)\exp(-\frac{\sqrt{5}|h|}{\phi}) \\ \nu=\infty, & \textit{C(h)}=\sigma^2\exp(-\frac{|h|^2}{2\phi^2}) \text{ (Square exponential)} \end{array}$$

Our Sparse Reparameterization

- Represent graph G = (V, E) using A, n × n adjacency matrix with entries diag(A) = 0 and
 A_{ij} = 1{(i,j) ∈ E, i ≠ j}, with 1{·} an indicator function
- Basic idea inspired by Griffith (2003): augment a generalized linear model with selected eigenvectors of (I – 11'/n)A(I – 11'/n). This appears in Moran's / statistic (nonparametric measure of spatial dependence),

$$I(\mathbf{A}) \propto rac{\mathbf{Z}'(\mathbf{I} - \mathbf{11}'/n)\mathbf{A}(\mathbf{I} - \mathbf{11}'/n)\mathbf{Z}}{\mathbf{Z}'(\mathbf{I} - \mathbf{11}'/n)\mathbf{Z}},$$

Background for Sparse Reparameterization

- ► Griffith's goal: reveal the structure of missing spatial covariates. Our goal: smoothing orthogonal to **X**
- ▶ Hence, we replace I 11'/n with P^{\perp}
- ▶ $\mathbf{M}_{\mathbf{X}}(\mathbf{A}) = \mathbf{P}^{\perp} \mathbf{A} \mathbf{P}^{\perp}$, Moran operator for \mathbf{X} with respect to the graph G, appears in numerator of generalized Moran's I:

$$\emph{I}_{X}(A) \propto \frac{Z'P^{\perp}AP^{\perp}Z}{Z'P^{\perp}Z}.$$

Applying the Sparse Reparameterization

Replacing L with M in the RHZ model gives

$$g(\mathbb{E}(Z_i | \beta, \delta)) = \mathbf{X}_i \beta + \mathbf{M}_i \delta.$$

And the prior for the random effects is now

$$\label{eq:posterior} p(\boldsymbol{\delta} \,|\, \boldsymbol{\tau}) \propto \boldsymbol{\tau}^{q/2} \exp\left(-\frac{\tau}{2} \boldsymbol{\delta}' \mathbf{Q}^{**} \boldsymbol{\delta}\right),$$

where $\mathbf{Q}^{**} = \mathbf{M}'\mathbf{Q}\mathbf{M}$.

- Corrects issues due to confounding
- ▶ Dimension reduction: if M_i reduced to q dimensions # parameters q + p + 1 << n + p + 1 if q is small

Study: Inference for Spatial Binary

 30×30 lattice simulated from RHZ model with $\beta_1 = \beta_2 = 1$. Predictors are the coordinates of unit square.

Model	\hat{eta}_1 CI(eta_1)	$\hat{eta}_2 \; CI(eta_2)$
Sparse	1.080 (0.613, 1.556)	1.130 (0.644, 1.635)
RHZ	1.120 (0.637, 1.606)	1.192 (0.679, 1.713)
Traditional	0.500 (-2.655, 3.616)	-0.605 (-3.698, 2.577)

- Point and interval estimates for Traditional are very poor:
 95% interval includes 0
- Sparse and RHZ produce similar (good) results
 Similar results for Gaussian (linear) and Poisson

De-correlated Random Effects

Greatly improves efficiency of simple MCMC. No need for elaborate proposals (cf. Held and Rue (2005), Haran et al. (2003), Haran and Tierney (2010)).

Spatial Binary: Computational Efficiency

Model	Dimension	Running Time
Sparse	228	2.5 hours
RHZ	901	18.5 hours
Traditional	903	38.5 hours

- MCMC algorithm is
 - faster per iteration (far fewer random effects)
 - mixes faster (random effects are "decorrelated")
- ► Far greater speed-ups with much smaller *q*, e.g. 25-50 is adequate for our examples (we are also being *extremely* careful by running very long chains!)

Real data example: 14 days (traditional) versus 2-8 hours

Interpolated Bird Counts

- Approximate the SGLMM with only the intercept term.
- Computation time is about 7 hours,
- Small bird counts in the center and most of the East Coast
- Large counts centered near New York area and the West

Pardieck et al. 2015. North American Breeding Bird Survey Dataset 1966 - 2014

Outline of Projection-based Approach

- 1. Fast (approximate) eigendecomposition of Σ_{ϕ} :
 - 1.1 Low-distortion embedding of Σ_{ϕ} ,
 - 1.2 Approximate first m eigenvectors $U = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ and eigenvalues $D_m = \operatorname{diag}(\lambda_1, \dots, \lambda_m)$ via Nyström method. [Banerjee et al., 2012] used a similar algorithm to approximate Σ_{ϕ} in Gaussian process regression
- 2. Replace n-dimensional **W** with $UD_m^{1/2}\delta$
 - δ : lower dimensional, components pprox independent
- 3. Project $UD_m^{1/2}\delta$ to $C^{\perp}(X)$
 - Makes random effects orthogonal to fixed effects
- 4. Fit the reduced model under Bayesian framework.

Gaussian Markov Random Fields

$$W(\mathbf{s}_i) \mid W(\mathbf{s}_{-i}) \sim N\left(\frac{\sum_{j:j\sim i} W(\mathbf{s}_j)}{n_i}, \frac{1}{n_i \tau}\right)$$

where n_i is number of neighbors of ith region and $j \sim i$ means i, j are neighboring regions

▶ This specifies $Q(\tau)$, a precision matrix

$$(W(\mathbf{s}_1), \dots W(\mathbf{s}_n))^T \sim N(0, Q^{-1}(\tau))$$

Q = diag(A1) - A, where adjacency matrix A is such that $A_{ij} = 1$ if locations i and j are neighbors, 0 else

Spatial Confounding: Reparameterization Solution

- ► Since **K** is collinear, delete it from model
- ▶ $g(\mathbb{E}(Z_i | \beta, \delta)) = \mathbf{X}_i \beta + \mathbf{L}_i \delta$. Random effects distribution δ

$$\label{eq:posterior} \textit{p}(\boldsymbol{\delta} \,|\, \boldsymbol{\tau}) \propto \boldsymbol{\tau}^{(n-\textit{p})/2} \exp\left(-\frac{\tau}{2} \boldsymbol{\delta}' \mathbf{Q}^* \boldsymbol{\delta}\right),$$

where $\mathbf{Q}^* = \mathbf{L}'\mathbf{Q}\mathbf{L}$.

- Corrects issues due to confounding
- # of parameters reduced (only slightly) from n + p + 1 to n + 1. Computational challenge remains.

Reich, Hodges, Zadnik (2006)

Sketch for Gaussian Markov Random Fields

"Tailored" to X and G: eigenvectors comprise all possible patterns of clustering residual to X and accounting for G

Some selected basis vectors for the 30 \times 30 lattice.

Interpretation: Standardized eigenvalues

- Positive (negative) eigenvalues correspond to degrees of positive (negative) dependence (Boots and Tiefelsdorf, 2000)
- Idea: Remove eigenvectors corresponding to negative (unwanted dependence) or small eigenvalues (noise)

Spatial Count Data: Simulation Results

