Mathématique - Devoir Maison n°15

Exercice 1

- 1. On pose $f: x \longmapsto \frac{\sin(x) \ln(1+x)}{x^2}$
 - (a) Quel est l'ensemble de définition de *f* ?
 - (b) Prouver que f est prolongeable par continuité en x=0, puis, ainsi prolongée, que f est dérivable en x=0. Tracer l'allure du graphe de f au voisinage de f0.
- 2. (a) Déterminer le développement limité de $f(x) = x^2 \operatorname{ch}(x) \cos(x)$ au voisinage de x = 0 à l'ordre 4.
 - (b) Soit $g(x) = \frac{1}{x} \operatorname{ch}\left(\frac{1}{x}\right) x \cos\left(\frac{1}{x}\right)$. On pose $h = \frac{1}{x}$. Exprimer g(x) à l'aide de f(h). Que peut-on en conclure concernant le graphe de g au voisinage de $+\infty$?
- 3. A l'aide d'un développement limité calculer $\lim_{n\to+\infty} \left(n \operatorname{sh}\left(\frac{1}{n}\right) \right)^n$
- 4. Justifier la convergence et calculer la somme de la série $\left(\sum \frac{1}{(3n+1)(3n+4)}\right)$.

Exercice 2

- 1. Soit une application $f \in C^1([a, b])$ et un réel $\lambda > 0$.
 - (a) Montrer que $\int_{a}^{b} f(t)\cos(\lambda t)dt = \frac{f(b)\sin(\lambda b)}{\lambda} \frac{f(a)\sin(\lambda a)}{\lambda} \frac{1}{\lambda}\int_{a}^{b} f'(t)\sin(\lambda t)dt$
 - (b) En déduire que $\lim_{\lambda \to +\infty} \int_a^b f(t) \cos(\lambda t) dt = 0$
- 2. Exprimer, pour tout $t \in \mathbb{R}$ et tout $k \in \mathbb{N}$, $\cos(\frac{t}{2})\cos(kt)$ en fonction de $\cos(\frac{2k+1}{2}t)$ et $\cos(\frac{2k-1}{2}t)$.
- 3. En déduire que pour tout $t \in [0,1]$, et pour tout $n \in \mathbb{N}^*$,

$$\cos\left(\frac{t}{2}\right) \sum_{k=1}^{n} (-1)^{k} \cos(kt) = \frac{1}{2} \left((-1)^{n} \cos\left(\frac{2n+1}{2}t\right) - \cos\left(\frac{t}{2}\right) \right)$$

- 4. Montrer alors que, pour tout $n \in \mathbb{N}^*$: $\sum_{k=1}^n \frac{(-1)^k \sin(k)}{k} = (-1)^n \int_0^1 \frac{\cos(\frac{2n+1}{2}t)}{2\cos(\frac{t}{2})} dt \frac{1}{2}$
- 5. En déduire que la série de terme général $u_n = \frac{(-1)^n \sin(n)}{n}$ converge et que : $\sum_{n=1}^{+\infty} u_n = -\frac{1}{2}$

Exercice 3

1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Montrer que si la série $\sum x_n$ converge, alors la série $\sum x_n^2$ converge aussi. On pourra, par exemple, commencer par montrer qu'il existe un entier naturel N tel que $\forall n \ge N$, $x_n^2 \le x_n$.

On considère maintenant la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=1$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=\frac{u_n}{\operatorname{ch}(u_n)}$.

- 2. Donner le développement limité de la fonction ch au voisinage de 0 à l'ordre 2.
- 3. (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement positive et strictement décroissante.
 - (b) En déduire que $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.
- 4. On pose pour tout $n \in \mathbb{N}$ $v_n = \frac{u_{n+1}}{u_n} 1$.
 - (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.
 - (b) Pour tout $n \ge 1$, simplifier $\sum_{k=0}^{n-1} \ln(1+\nu_k)$. En déduire que la série $\sum \nu_n$ est divergente.
- 5. (a) Montrer que $v_n \sim -\frac{u_n^2}{2}$.
 - (b) En déduire que la série $\sum u_n^2$ est divergente.
 - (c) Conclure sur la nature de la série $\sum u_n$.