[4]

OR iii. Find minimum spanning tree of the following graph using Prim's 7 algorithm. (start vertex=a)

Q.5	i.	Write a brief note on NP-completeness and the classes-P, NP and NPC.	4
	ii.	Discuss any example of NP-Complete problem	6
OR	iii.	Elaborate an example of an intractable problem.	6
Q.6	i.	Attempt any two: Give the features and performance ratios for approximation	5
		algorithms.	
	ii.	How to analyse randomized algorithm? Explain	5
	iii.	What is the relation between P and NP class problems? Is P=NP?	5
		If no, then what will happen if P becomes equal to NP?	

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2022

CB3CO09 Design & Analysis of Algorithms

Programme: B.Tech. Branch/Specialisation: CSBS

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	An algorithm is-	1
		(a) A piece of code to be executed	
		(b) A loosely written code to make final code	
		(c) A step by step procedure to solve a problem	
		(d) All of these	
	ii.	Two main measures for the efficiency of an algorithm are-	1
		(a) Processor and memory (b) Complexity and capacity	
		(c) Time and space (d) Data and space	
	iii.	Which one of the following is an application of the backtracking algorithm?	1
		(a) Finding the efficient quantity to shop	
		(b) Finding the shortest path	
		(c) Ludo	
		(d) Crossword	
	iv.	Prim's algorithm for minimum spanning tree follows strategies:	1
		(a) Backtracking (b) Greedy method	
		(c) Dynamic programming (d) Divide and conquer	
	v.	In an unweighted, undirected connected graph, the shortest path	1
		from a node S to every other node is computed most efficiently, in	
		terms of time complexity, by-	
		(a) Dijkstra's algorithm starting from S	
		(b) Warshall's algorithm	
		(c) Performing a DFS starting from S	
		(d) Performing a BFS starting from S	
		P.T.	O.

- vi. In what manner is a state-space tree for a backtracking algorithm 1 constructed?
 - (a) Depth-first search
- (b) Breadth-first search
- (c) Twice around the tree
- (d) Nearest neighbour first
- vii. _____ is the class of decision problems that can be solved by non-deterministic polynomial algorithms?
 - (a) NP
- (b) P
- (c) Hard (d) Complete
- viii. Let X be a problem that belongs to the class NP. Then which one 1 of the following is TRUE?
 - (a) There is no polynomial time algorithm for X.
 - (b) If X can be solved deterministically in polynomial time, then P = NP.
 - (c) If X is NP-hard, then it is NP-complete.
 - (d) X may be undecidable.
- ix. A randomized algorithm uses random bits as input inorder to achieve a ______ good performance over all possible choice of random bits.
 - (a) Worst case
- (b) Best case
- (c) Average case
- (d) None of these
- x. All set of polynomial questions which can be solved by a turing 1 machine using a polynomial amount of space:
 - (a) PSPACE

- (b) NPSPACE
- (c) EXPSPACE
- (d) None of these
- Q.2 i. Evaluate the time, space complexity of following code:

```
int a = 0, b = 0;
```

for
$$(i = 0; i < N; i++)$$

$$a = a + rand();$$

for
$$(j = 0; j < M; j++)$$

$$b = b + rand();$$

ii. How space complexity plays a vital role in deciding the efficiency of an algorithm?

- iii. Why do we use asymptotic notations in the study of algorithms? 5
 Briefly describe the commonly used asymptotic notations with examples
- OR iv. Solve the following recurrence using back substitution and 5 recursion tree method

T(n)=4T(n/2)+c if n>1

T(1)=1 if n=1

T(n)=2T(n/2)+n

T(1)=1 if n=1

Give a bound for each one of them.

- Q.3 i. List down the limitations of greedy technique. What are the 4 advantages of dynamic programming over greedy technique?
 - ii. You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack problem? Explain.
- OR iii. Solve sum of subsets problem for the given set S [] = $\{1, 3, 9, 2\}$ using backtracking technique. Also find out the time complexity of the approach
- Q.4 i. How topological sorting is different from depth first traversal of a graph?
 - ii. Suppose we run Dijkstra's single source shortest-path algorithm on the following edge weighted directed graph with vertex P as the source. In what order do the nodes get included into the set of vertices for which the shortest path distances are finalized? Explain.

Marking Scheme CB3CO09 Design and Analysis of Algorithm

Q.1	i)	An algorithm is:	1
		a. A piece of code to be executed	
		b. A loosely written code to make final code	
		c. A step by step procedure to solve a problem	
		d. All of the above.	
	ii)	Two main measures for the efficiency of an algorithm are:	1
		a. Processor and memory	
		b. Complexity and capacity	
		c. Time and space.	
		d. Data and space.	
	iii)	Which one of the following is an application of the backtracking	1
		algorithm?	
		a. Finding the efficient quantity to shop	
		b. Finding the shortest path	
		c. Ludo	
	iv)	d. Crossword Drim's algorithm for minimum spanning tree follows	1
	10)	Prim's algorithm for minimum spanning tree follow	1
		strategies:	
		a. Backtrackingb. Greedy method	
		c. Dynamic programming	
		d. Divide and conquer	
	v)	In an unweighted, undirected connected graph, the shortest path	1
		from a node S to every other node is computed most efficiently, in	
		terms of time complexity, by	
		a. Dijkstra's algorithm starting from S.	
		b. Warshall's algorithm	
		c. Performing a DFS starting from S	
		d. Performing a BFS starting from S	
	vi)	In what manner is a state-space tree for a backtracking algorithm	1
		constructed?	
		a. Depth-first search	
		b. Breadth-first search	
		c. Twice around the tree	
		d. Nearest neighbour first	

	vii)	is the class of decision problems that can be solved by	1
		non-deterministic polynomial algorithms?	
		a. NP	
		b. P	
		c. Hard	
		d. Complete	
	viii)	Let X be a problem that belongs to the class NP. Then which one	1
		of the following is TRUE?	
		a. There is no polynomial time algorithm for X.	
		b. If X can be solved deterministically in polynomial time, then P =	
		NP.	
		c. If X is NP-hard, then it is NP-complete.	
		d. X may be undecidable.	4
	ix)	A randomized algorithm uses random bits as input inorder to	1
		achieve a good performance over all possible	
		choice of random bits.	
		a. worst case	
		b. best case	
		c. average case	
		d. none of the mentioned	1
	x)	All set of polynomial questions which can be solved by a turing	1
		machine using a polynomial amount of space: a. PSPACE	
		b. NPSPACE	
		c. EXPSPACE	
		d. None of the mentioned	
Q.2	i.	Evaluate the time, space complexity of following code:	2
		int $a = 0, b = 0;$	
		for $(i = 0; i < N; i++)$	
		{	
		a = a + rand();	
		a - a + rand(),	
		for $(j = 0; j < M; j++)$	
		{	
		b = b + rand();	
		}	
	ii.	How Space Complexity plays a vital role in deciding the efficiency	3
		of an algorithm?	

	iii.	Why do we use asymptotic notations in the study of algorithms?	2
		Briefly describe the commonly used asymptotic notations with	
		examples	3
OR	iv.	Solve the following recurrence using back substitution method	5
		T(n)=4T(n/2)+c if n>1	
		T(1)=1 if n=1	
		T(n)=2T(n/2)+n	
		T(1)=1 if n=1	
		Give a bound for each one of them.	
Q.3	i.	List down the limitations of Greedy technique. 1 mark for each	2
		What are the advantages of Dynamic programming over Greedy	
		technique? 1 mark for each	2
	ii.	What is the maximum value of the items you can carry using the	6
		knapsack problem?	
		Explanation 4 marks	
		Answer 2 marks	
OR	iii.	Solve sum of subsets problem for the given set S [] = $\{1, 3, 9, 2\}$	
		using backtracking technique.	4
		Also find out the time complexity of the approach	2
Q.4	i.	How topological sorting is different from Depth First Traversal of	3
		a graph? 1 mark for each difference	
	ii.	In what order do the nodes get included into the set of vertices for	7
		which the shortest path distances are finalized?	
		Explanation 5 marks	
		Answer 2 marks	
OR	iii.	Find minimum spanning tree of the following graph using Prim's	7
		algorithm.(start vertex=a)	
		Algorithm 4 marks	
		Solution 3 marks	
Q.5	i.	Write a brief note on NP-completeness and the classes-P, NP and	4
		NPC.1 mark for each	
	ii.	Discuss any example of NP-Complete problem	6
OR	iii.	Elaborate an example of an intractable problem.	6

Q.6		Attempt any two:	
	i.	Features and Performance Ratios for approximation algorithms.	5
		At least three points	
	ii.	How to analyse Randomized Algorithm 2 marks	5
		Explanation 3 marks	
	iii.	What is the relation between P and NP class problems?	2
		Is P=NP?	1
		If No, then what will happen if P will become equal to NP?	2
