Math 310 Homework 6

Jacob Shiohira

February 26, 2017

Note: This homework took a total of 6 hours. I initially did it alone, but I did review with Jacob Warner.

Problem 1. Section 2.2 #13

Proposition: Prove or disprove: If $[a] \odot [b] = [a] \odot [c]$ and $[a] \neq [0]$ in \mathbb{Z}_n , then [b] = [c].

Problem 2. Section 2.3 # 1,2

Proposition: Find all the units and zero divisors in (Do both together):

- (a) \mathbb{Z}_7 Hello
- (b) \mathbb{Z}_8 Hello
- (c) \mathbb{Z}_9 Hello
- (d) \mathbb{Z}_10

Problem 3. Section 2.3 #8

Proposition:

- (a) Give three examples of equations of the form ax = b in $\mathbb{Z}_1 2$ that have no nonzero solutions.
- (b) For each of the equations in part (a), does the equation ax = 0 have a nonzero solution?

Problem 4. Section 2.3 #11

Proposition: Without using Exercises 13 and 14, prove: If $a, b \in \mathbb{Z}_n$ and a is a unit, then the equation ax = b has a unique solution in \mathbb{Z}_n . [Note: You must find a solution for the equation and show that this solution is the only one.]

Problem 5. Section 2.3 #13

Proposition: Let a, b, n be integers with n > 1. Let d = (a, n) and assume d|b. Prove that the equation [a]x = [b] has a solution in Z_n as follows

- (a) Explain why there are integers u, v, a_1, b_1, n_1 such that $au_nv = d, a = da_1, b = db_1$, and $n = dn_1$.
- (b) Show that each of

$$[ub_1],[ub_1+n_1],[ub_1+2n_1],[ub_1+3n_1],\cdots,[ub_1+(d-1)n_1]$$

is a solution of [a]x = [b].

Problem 6. Section 2.3 # 14

Proposition: Let a, b, n be integers with n > 1. Let d = (a, n) and assume d|b. Prove that the equation [a]x = [b] has d unique solutions in Z_n as follows

- (a) Show that the solutions listed in Exercise 13(b) are all distinct. [Hint: [r] = [s] if and only if n|(r-s).]
- (b) If x = [r] is any solution of [a]x = [b], show that $[r] = [ub_1 + kn_1]$ for some integer k with $0 \le k \le d 1$. $[Hint: [ar] [aub_1] = [0]$ (Why?), so that $n|(a(r ub_1))$. Show that $n_1|(a_1(r ub_1))$ and use Theorem 1.4 to show that $n_1|(r ub_1)$.

Problem 7. Section 2.3 #17

Proposition: Prove that the product of two units in \mathbb{Z}_n is also a unit.