Fully Deep Blind Image Quality Predictor

Guozemin 2018.04.11

IEEE Journal of Selected Topics in Signal Processing (JSTSP), 2017.

- > Introduction
- The facing problems
- > Methods
- > Framework

Introduction

RN-IQA

Fig. 1. Flow chart comparison of FR-IQA, NR-IQA, and fully deep NR-IQA. Gray boxes indicate learned processes.

The facing problems

- Lack of Training Data
- Absence of Local Ground Truth Targets
- Different Purposes of Feature Learning

Methods

- Patch-based method
- FR-IQA metrics
- A deep-learning-based NR-IQA

Framework

BIECON

Fig. 2. Overall training process of proposed NR-IQA framework. Step 1: CNN model is regressed onto local metric score derived using FR-IQA metric. Step 2: pooled features are regressed onto subjective score.

Fig. 3. Architecture of CNN-based local metric score training model.

Image Normalization

$$I'(i,j) = \frac{I(i,j) - \mu(i,j)}{\sigma(i,j) + C} \tag{1}$$

$$\mu(i,j) = \sum_{i'j'} \omega_{i'j'} I_{i'j'}(i,j) \tag{2}$$

$$\sigma(i,j) = \sqrt{\sum_{i'j'} \omega_{i'j'} (I_{i'j'}(i,j) - \mu(i,j))^2}$$
 (3)

Local Metric Score Regression

$$M_{FSIM_C}(i,j) = \frac{S_{PC}(i,j)S_G(i,j)(S_C(i,j))^{\lambda}PC_m(i,j)}{1/HW \cdot \sum_{i=1}^{H} \sum_{j=1}^{W} PC_m(i,j)}$$
(4)

$$M_{VSI}(i,j) = \frac{S_{VS}(i,j)(S_G(i,j))^{\alpha}(S_C(i,j))^{\beta}VS_m(i,j)}{1/HW \cdot \sum_{i=1}^{H} \sum_{j=1}^{W} VS_m(i,j)}.$$
(5)

$$s_n = \frac{1}{32 \cdot 32} \sum_{i,j \in \mathbf{p}_n} M_{metric}(i,j)$$
 (6)

 $M_{metric} (metric \in \{SSIM, GMS, FSIM_C, VSI\})$

Loss:

$$\mathcal{L}_{1}(\mathbf{p}_{n}, s_{n}; \theta, \phi_{1}) = \frac{1}{N} \sum_{n=1}^{N} \|g_{\phi_{1}}(f_{\theta}(\mathbf{p}_{n})) - s_{n}\|_{F}^{2}.$$
 (7)

Result

 $\begin{array}{c} \text{TABLE I} \\ \text{SROCC Comparison on the LIVE IQA Database} \end{array}$

Metrics	JP2K	JPEG	WN	BLUR	FF	ALL
PSNR	0.895	0.881	0.985	0.782	0.891	0.876
SSIM	0.961	0.972	0.969	0.952	0.956	0.948
GMSD	0.968	0.973	0.974	0.957	0.942	0.958
FSIMc	0.972	0.979	0.971	0.968	0.950	0.963
VSI	0.960	0.973	0.984	0.951	0.943	0.951
BLIINDS II	0.932	0.933	0.946	0.891	0.852	0.912
DIIVINE	0.912	0.921	0.982	0.937	0.869	0.925
BRISQUE	0.914	0.965	0.977	0.951	0.877	0.939
NIQE	0.917	0.938	0.967	0.934	0.859	0.914
BIECON	0.952	0.974	0.980	0.956	0.923	0.961

TABLE II
LCC COMPARISON ON THE LIVE IQA DATABASE

Metrics	JP2K	JPEG	WN	BLUR	FF	ALL
PSNR	0.876	0.903	0.917	0.780	0.880	0.872
SSIM	0.941	0.946	0.982	0.900	0.951	0.945
GMSD	0.963	0.979	0.977	0.954	0.939	0.956
FSIMc	0.910	0.985	0.976	0.979	0.922	0.960
VSI	0.914	0.967	0.981	0.965	0.915	0.948
BLIINDS II	0.939	0.943	0.964	0.899	0.879	0.916
DIIVINE	0.923	0.935	0.987	0.937	0.891	0.923
BRISQUE	0.923	0.973	0.985	0.951	0.903	0.942
NIQE	0.937	0.956	0.977	0.952	0.913	0.915
BIECON	0.965	0.987	0.970	0.945	0.931	0.962