One model in production is worth two in the notebook

Ivan Marin

The task

Detect anomalies in CDR data in VOIP/SIP to identify and block attacks and fraud

The data

gateway	MOS	duration	trunk_group	ip	record_type	callednum	callingnum	
PM6wtCwaCuH5t9	3.951128	30.042124	4IUz1b10L33fG	219.245.183.194	1	785879295	193303371	2015-07-01 00:00:00
Sr6HibmQl0B	3.954967	92.967500	quXEtDXaK2	10.126.24.188	1	122111267	842294305	2015-07-01 01:00:00
Y6HWS1B0Qg9Vt4r	3.785789	80.563725	taHigBvViXJ2	210.63.7.55	1	527913027	291759817	2015-07-01 02:00:00
KST6XwU2c7uJM	3.499770	52.071217	Tv3zqzYmzurRD	17.122.205.13	1	926158872	309013819	2015-07-01 03:00:00
QJmiSZtxdu1UDQ	3.961631	61.975864	Pm3TnCThN9	7.207.194.242	1	203758568	157320309	2015-07-01 04:00:00
p4s79l5qD2zHOUx	3.992199	143.047730	4IUz1b10L33fG	246.3.250.158	1	269439711	977804131	2015-07-01 05:00:00
KO15HluQHo	3.947686	272.676990	oMUv3mZn7uMUXn	13.101.27.59	1	196609304	687866301	2015-07-01 06:00:00
0XqlQ6Em4Om4n	3.993461	140.243935	N0y2NQsOuCQeLa	253.169.82.113	1	703244667	098428369	2015-07-01 07:00:00
0DzRGMEKXgcaS	3.996015	200.851378	N0y2NQsOuCQeLa	253.169.82.113	1	507158133	557868839	2015-07-01 08:00:00
Sr6HibmQl0B	3.999703	259.480745	eMFOlieV5HeXpy	253.169.82.113	1	172132628	254369388	2015-07-01 09:00:00

The data

- unsupervised (no labeled data)
- flexible (different customers with different behaviors)

The layout

Daitan GROUP Accelerating:

Developing models

The first model: One Class SVM

The first model: One Class SVM

The One Class SVM approach failed.

- Low accuracy (less than 60%)
- Feature engineering didn't help (and boy we tried)

To make matters worse, there is no implemented parallel version of OCSVM.

The KPI approach

Instead of going first with raw data, we decided to go then with some KPIs:

- Average Call Duration
- Bids
- MOS (Mean Opinion Score)
- ACHT (Average Call Holding Time)
- Post Dial Delay

Box-Jenkins approach for Arima model:

- Check for stationarity
- Autocorrelation plots
- Partial autocorrelation plots
- Differentiate the series
- Fit the model

The ARIMA approach didn't perform well:

- High RMSE and MAE
- Small forecast horizon
- Not useful as baseline for anomaly detection

The third model: KPI frequency based model

Hypothesis: Normal traffic has different frequency distribution from anormal traffic

- Decompose each KPI into the frequency domain
- Analyse the spectral signature
- Apply a threshold that separates anomalies from normal data

The third model: KPI frequency based model

The third model: KPI frequency based model

Well, it failed again.

The Nth model

We continued testing other modeling approaches for detecting anomalies:

- Using more than one KPI at the same time
- Deep Learning (Feed forward)
- Entropy based methods

They all were not acceptable.

NEVER GIVE UP

NEVER SURRENDER

Going simple

What if we are going in the wrong direction?

All models that we tested for anomaly detection so far are

- (relatively) complex
- possibly slow
- depend on external tools and frameworks (Spark, SkLearn, TensorFlow)

Going simple: rolling average model

We reverted back to simple statistics: the rolling average.

Going simple: rolling average model

The threshold was determined by a combination of sensitivity and deviation from the mean:

- Count the number of anomalies given a threshold
- Sum the difference between the anomalies and the rolling average
- Adjust the threshold to a customer comfort level

Going simple: rolling average model

Yes!

- But the rolling mean was not very sensitive to long tail events
- We need to take into account events that have a longer time window

Going simple: Exponential moving average

Exponential moving average

$$EM_m = \alpha * y[m] + (1 - \alpha) * S_{m-1}$$

$$\delta = y_i - EM_{i-1}$$

$$EM_i = EM_{i-1} + \alpha * \delta$$

$$S_i = (1 - \alpha) * (S_{i-1} + \alpha * \delta^2)$$

Daitan GROUP Accelerating:

Going simple: Exponential moving average

It works.

- Acceptable number of false positives and false negatives
- two parameters to calibrate: alpha and number of deviations
- Simple to implement

Going simple: Exponential moving average

The question

Should we invest more time in refining the working models or keep searching for a better one?

And how should we implement the chosen model?

The decision

We decided to go with the simple model:

- We had a short time to get the model out of the notebooks
- Another team would handle the transition to production
- There were several constraints in how we could deploy any model

So, how should we implement it?

Or, going from the notebook to production. How?

Constraints:

- Quick to be implemented by the Dev team
- Had to read and write to PostgreSQL
- Would be called multiple times
- No new services

The solution:

Java application and **PostgreSQL stored procedures**

- The Java application keeps track of the anomalies and the alert flow
- The EMA/EMV algorithms are implemented in PSQL and called using JDBC
- The input tables and anomaly profile tables were written directly on PostgreSQL

Yes, we implemented the online EMA/EMV algorithms in stored procedures.

- Satisfied all requirements
- This is the system currently being in use in production
- Used the skills already available on the team

- It's important to test your hypothesis and models

- It's important to test your hypothesis and models

- Careful with what tools you use to develop your model - they may be not available in production!

- It's important to test your hypothesis and models

- Careful with what tools you use to develop your model - they may be not available in production!

- Even the best model may not enter in production

- It's important to test your hypothesis and models

- Careful with what tools you use to develop your model - they may be not available in production!

- Even the best model may not enter in production

- Think of the developers.

So, to finish, a simple question:

How do you get your models out of the notebooks and into production?

Extra

The data

One trunk group

EMA/EMV algorithm

