Programming languages — ProLog

Prolog homework (2024/25)

T. Goluch

1. Implement a sort(list, sorted) predicate, that returns a not ascending sorted list. Apply the chosen one sorting algorithm e.g. selection¹, insertion², buble³, merge⁴, quick⁵ etc ... (2 pkt.).

Please do not use built-in predicates: reverse, permutation and append.

2. Implement is_graphic(list,response) predicate, stating whether the list creates a graphic sequence⁶. Use the sort predicate from the previous task. (**3 pkt.**).

Helpful Resources:

- http://szhorvat.net/pelican/hh-connected-graphs.html?fbclid=IwAR3E1PiPcxK5ShLKNJNqy1rLmbRQrkqD7G7F7mdps6JVxlv3-jlu9nnLEgA A simple algorithm for realizing a degree sequence as a connected graph
- https://supremus.sk/math/is a degree sequence graphic/index_en.php Online Calculator Can a degree sequence form a simple graph?
- 3. Implement is_connected(list, response) predicate, stating whether the list of vertex degrees creates a graphic sequence from which a connected graph can be created. Use the predicate from the previous task to check whether a graph can be created from vertex degrees list. (2 pkt.).

¹ https://en.wikipedia.org/wiki/Selection sort

² https://en.wikipedia.org/wiki/Insertion_sort

³ https://en.wikipedia.org/wiki/Bubble_sort

⁴ https://en.wikipedia.org/wiki/Merge_sort

⁵ https://en.wikipedia.org/wiki/Quicksort

⁶ https://mrpandey.github.io/d3graphTheory/unit.html?graphic-sequence

In the penultimate case, we can create a path P_5 or a complete cycle/graph C_3 / and a path/complete graph P_2/K_2 . Thus, a connected graph can be created.

The last case is an example of a disconnected graph in which the number of edges is greater than the number of vertices.

Helpful Resources:

- https://math.stackexchange.com/questions/732303/degree-sequence-of-connected-graphs Degree sequence of connected graphs,
- http://szhorvat.net/pelican/hh-connected-graphs.html A simple algorithm for realizing a degree sequence as a connected graph,
- https://arxiv.org/pdf/2009.03747.pdf Connectedness matters: Construction and exact random sampling of connected networks, rozdział: Building a single connected realization of a degree sequence.