Zadatak 3: Implementacija algoritama grupiranja

U ovom zadatku potrebno je implementirati algoritam k-srednjih vrijednosti i algoritam maksimizacije očekivanja te ih isprobati na vlastitom skupu podataka. *Napomena:* implementaciju (u bilo kojem programskom jeziku) priložite uz izvještaj.

a)

Slika 1. Generirani primjeri

b)

Slika 2. Grupirani primjeri, k-means

Početna središta sam uzimao nasumične primjere.

Algoritam konvergirao u 7 iteracija.

Kriterijska funkcija J = 172225.298973

c)	Pomoću	$K^* = \underset{K}{\operatorname{argmin}} (J(K) + 2nK)$	dobio sam K* = 9
----	--------	--	------------------

K	AIC
1	9.91e+05
2	4.35e+05
3	2.77e+05
4	2.33e+05
5	1.72e+05

K	AIC
6	1.55e+05
7	1.31e+05
8	1.21e+05
9	1.03e+05
10	1.05e+05

d) Algoritam nije konvergirao, zaustavljen je nakon 101 iteracije. Log-izglednost: -4.6554e+03

Želim reći da nije konvergirala Log-izglednost, niti parametri, čini mi se da su se vrtili oko nekih istih vrijednosti, ili su vrlo sporo konvergirali.

e) Za k-means R=0.8370 Za EM R = 0.8123 Po rezultatima oba algoritma mi se čine podjednako dobra. Čak bih više preferirao k-means jer brže konvergira.