```
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
arquivo = "dados.csv"
try:
   df = pd.read_csv(arquivo, encoding='latin-1', error_bad_lines=False, delimiter=';')
except pd.errors.ParserError as e:
    print(f"Erro na leitura do arquivo CSV: {e}")
if 'df' in locals():
   df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 66 entries, 0 to 65
    Data columns (total 15 columns):
     # Column
                                         Non-Null Count Dtype
     ___
     0
         ID
                                         66 non-null
                                                         int64
     1
         Nome
                                         66 non-null
                                                         object
      2
         Idade
                                         66 non-null
                                                         int64
                                         66 non-null
                                                         object
         Estado
      4
         Escolaridade
                                         66 non-null
                                                         object
         Tamanho_Propriedade (hectares) 66 non-null
                                                         int64
         Producao_Anual (toneladas)
                                         66 non-null
                                                         int64
         Faturamento_Anual (BRL)
                                         66 non-null
                                                         int64
         Margem_Lucros (%)
      8
                                         66 non-null
                                                         object
         Cultura
                                         66 non-null
                                                         object
      10 Score_Credito
                                         66 non-null
                                                         int64
                                         66 non-null
                                                         int64
      11 Maquinario
      12 Funcionarios
                                         66 non-null
                                                         int64
      13 Caixa
                                         66 non-null
                                                         int64
     14 Tipo credito
                                         66 non-null
                                                         object
    dtypes: int64(9), object(6)
    memory usage: 7.9+ KB
```

df.head()

	ID	Nome	Idade	Estado	Escolaridade	Tamanho_Propriedade (hectares)	Producao_Anual (toneladas)	Ī
0	1	João Silva	35	São Paulo	Ensino Médio	100	500	
1	2	Maria Santos	42	Minas Gerais	Ensino Superior	200	800	
2	3	José Oliveira	28	Bahia	Ensino Médio	150	300	
3	4	Ana Pereira	55	Rio Grande do Sul	Ensino Fundamental	80	200	
4	5	Ricardo	48	Paraná	Ensino	300	1200	>

import pandas as pd

```
# Selecionar os atributos para o modelo
atributos = ['Faturamento_Anual (BRL)', 'Margem_Lucros (%)', 'Score_Credito', 'Caixa', 'Funcionarios']

# Remover o símbolo "%" da coluna "Margem_Lucros (%)"

df['Margem_Lucros (%)'] = df['Margem_Lucros (%)'].str.rstrip('%').astype(float)

# Calcular o Score de Crédito Agro (usando um exemplo simples)

df['Score_Credito_Agro'] = (
    df['Faturamento_Anual (BRL)'] * 0.2 +
    df['Margem_Lucros (%)'] * 0.15 +
    df['Score_Credito'] * 0.3 +
    df['Caixa'] * 0.1 -
    df['Funcionarios'] * 0.05
)
```

Exibir o DataFrame com o Score de Crédito Agro calculado
print(df[['ID', 'Nome', 'Score_Credito_Agro']])

0	ID 1 2	Nome João Silva Maria Santos	Score_Credito_Agro 454506.70 823808.15
2	3 4	José Oliveira Ana Pereira	375870.05 278683.75
4	5	Ricardo Almeida	632178.35
61	62	Patricia Santos	898715.00
62	63	Andréa Silva	302553.35
63	64	Rafaela Mendes	1546975.55
64	65	Marcos Santos	176371.10
65	66	Carolina Almeida	559686.15

[66 rows x 3 columns]

df.head()

	ID	Nome	Idade	Estado	Escolaridade	Tamanho_Propriedade (hectares)	Producao_Anual (toneladas)	F
0	1	João Silva	35	São Paulo	Ensino Médio	100	500	
1	2	Maria Santos	42	Minas Gerais	Ensino Superior	200	800	
2	3	José Oliveira	28	Bahia	Ensino Médio	150	300	
3	4	Ana Pereira	55	Rio Grande do Sul	Ensino Fundamental	80	200	
4	5	Ricardo Almeida	48	Paraná	Ensino Superior	300	1200	
4								Þ

Ordenar o DataFrame por uma coluna
df = df.sort_values(by='Score_Credito_Agro')

df.head()

	ID	Nome	Idade	Estado	Escolaridade	Tamanho_Propriedade (hectares)	Producao_Anua (toneladas
2	1 22	Paula Costa	29	Rondônia	Ensino Superior	160	28
6	4 65	Marcos Santos	32	Mato Grosso	Ensino Superior	390	69
5	0 51	Eduardo Lima	57	Maranhão	Ensino Médio	80	5
3	4 35	Bruno Rocha	59	Rio de Janeiro	Ensino Superior	310	6
1	3 14	Lúcia Silva	47	Minas Gerais	Ensino Fundamental	70	18
4							>

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(df)

Ordenar o DataFrame por Score em ordem decrescente
df_ordenado = df.sort_values(by='Score_Credito_Agro', ascending=False)

Selecionar os 10 primeiros registros
top_10 = df_ordenado.head(10)

```
# Criar o gráfico de barras
plt.figure(figsize=(10, 6))
plt.bar(top_10['Nome'], top_10['Score_Credito_Agro'])
plt.xlabel('Nome')
plt.ylabel('Score_Credito_Agro')
plt.title('Top 10 Scores por Nome')
plt.xticks(rotation=45)  # Rotacionar os nomes no eixo x para melhor legibilidade
plt.show()
```



```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(df)
# Definir os intervalos de idades
intervalos = [20, 30, 40, 50, 60, 70, 80]
# Criar rótulos para os intervalos
\verb"rotulos" = [f'\{i\}-\{i+19\}' \ \textit{for} \ i \ \textit{in intervalos}[:-1]] \ \# \ \textit{Remove o \'ultimo intervalo}
# Criar uma coluna 'Grupo_Idade' com base nos intervalos
df['Grupo_Idade'] = pd.cut(df['Idade'], bins=intervalos, labels=rotulos, right=False)
\# Calcular a média de score por grupo de idade
media_scores = df.groupby('Grupo_Idade')['Score_Credito_Agro'].mean().reset_index()
# Criar o gráfico de barras
plt.figure(figsize=(10, 6))
plt.bar(media_scores['Grupo_Idade'], media_scores['Score_Credito_Agro'])
plt.xlabel('Grupo de Idade')
plt.ylabel('Média de Score')
plt.title('Média de Score por Grupo de Idade')
plt.xticks(rotation=45)
plt.show()
```


O código fornecido realiza o cálculo do "Score_Credito_Agro" com base em uma combinação linear dos atributos fornecidos. O código seleciona os atributos relevantes que serão usados para calcular o "Score_Credito_Agro". Esses atributos são: faturamento anual, margem de lucros, score de crédito, caixa e número de funcionários.

Cada atributo é multiplicado por um peso específico e, em seguida, esses valores ponderados são somados para obter o score final.

O faturamento anual contribui com 20% para o score. A margem de lucros contribui com 15%. O score de crédito contribui com 30%. O caixa contribui com 10%. O número de funcionários é subtraído com um peso de -5%. Esses pesos são valores fictícios e podem ser ajustados conforme necessário, dependendo da lógica de cálculo real do score de crédito agro. A ideia geral é que atributos positivos (como faturamento, margem e score) aumentem o score, enquanto atributos negativos o diminuam.

```
import pandas as pd
df = pd.DataFrame(df)
# Calcule alguns dados estatísticos
media_idade = df['Idade'].mean()
media_faturamento = df['Faturamento_Anual (BRL)'].mean()
maior score = df['Score Credito'].max()
menor_score = df['Score_Credito'].min()
# Exiba os resultados
print(f'Média de Idade: {media_idade}')
print(f'Média de Faturamento Anual: {media_faturamento}')
print(f'Maior Score de Crédito: {maior_score}')
print(f'Menor Score de Crédito: {menor_score}')
     Média de Idade: 45.257575757576
     Média de Faturamento Anual: 3972129.5454545454
     Maior Score de Crédito: 946
     Menor Score de Crédito: 500
import pandas as pd
df = pd.DataFrame(df)
# 1. Resumo Estatístico Geral
resumo_geral = df.describe()
# 2. Correlação entre Variáveis
correlacao = df.corr()
# 3. Histogramas e Gráficos de Boxplot
import matplotlib.pyplot as plt
#Histograma do Score de Crédito
```

```
plt.figure(figsize=(8, 6))
plt.hist(df['Score_Credito'], bins=20, color='skyblue', edgecolor='black')
plt.xlabel('Score de Crédito')
plt.ylabel('Frequência')
plt.title('Distribuição do Score de Crédito')
plt.show()
```



```
#Gráfico de Boxplot da Margem de Lucros (%)
plt.figure(figsize=(8, 6))
plt.boxplot(df['Margem_Lucros (%)'], vert=False)
plt.xlabel('Margem de Lucros (%)')
plt.title('Boxplot da Margem de Lucros (%)')
plt.show()
```



```
import pandas as pd
# Criar a matriz de correlação entre "Faturamento_Anual (BRL)" e "Caixa"
matriz_correlacao = df[['Faturamento_Anual (BRL)', 'Caixa']].corr()
# Exibir a matriz de correlação
print(matriz_correlacao)
                              Faturamento_Anual (BRL)
                                                           Caixa
     Faturamento_Anual (BRL)
                                             1.000000 -0.313149
                                             -0.313149 1.000000
     Caixa
import pandas as pd
import matplotlib.pyplot as plt
# Criar a matriz de correlação entre "Faturamento_Anual (BRL)" e "Caixa"
matriz_correlacao = df[['Faturamento_Anual (BRL)', 'Caixa']].corr()
# Criar o gráfico de matriz de correlação
plt.figure(figsize=(8, 6))
plt.imshow(matriz_correlacao, cmap='coolwarm', interpolation='nearest')
plt.colorbar(label='Correlação')
plt.xticks(range(len(matriz_correlacao.columns)), matriz_correlacao.columns, rotation=45)
\verb|plt.yticks(range(len(matriz\_correlacao.columns))|, matriz\_correlacao.columns)||
plt.title('Matriz de Correlação entre Faturamento e Caixa')
plt.show()
```



```
import pandas as pd
import matplotlib.pyplot as plt
# Selecione os IDs que deseja comparar (por exemplo, IDs 1 e 2)
ids_desejados = [1, 2]
dados_dos_ids = df[df['ID'].isin(ids_desejados)]
# Realize análises específicas com base nos dados dos IDs selecionados
# Por exemplo, você pode criar um gráfico de barras para comparar o faturamento anual dos dois IDs com os nomes correspondentes:
nomes_dos_ids = dados_dos_ids['Nome'].tolist()
faturamento_anual = dados_dos_ids['Faturamento_Anual (BRL)'].tolist()
plt.figure(figsize=(10, 6))
plt.bar(nomes_dos_ids, faturamento_anual, width=0.4, label='Faturamento Anual')
plt.xlabel('Nome')
plt.ylabel('Faturamento Anual (BRL)')
plt.title('Comparação de Faturamento Anual para IDs 1 e 2')
plt.legend()
plt.show()
```

Você pode realizar outras análises e visualizações com base nos dados dos IDs selecionados.


```
import matplotlib.pyplot as plt

df = pd.DataFrame(df)

# Contar o número de ocorrências de cada tipo de crédito
contagem_tipos_credito = df['Tipo_credito '].value_counts()

# Criar um gráfico de pizza
plt.figure(figsize=(8, 8))
plt.pie(contagem_tipos_credito, labels=contagem_tipos_credito.index, autopct='%1.1f%%', startangle=140)
plt.title('Distribuição de Tipos de Crédito')
plt.show()
```

Distribuição de Tipos de Crédito

✓ 0s completed at 11:59 PM

×