Predictive Maintenance for HEMM Using Thermal Imaging & Machine Learning

Problem Statement

HEMM components such as dump trucks and excavators are prone to overheating due to friction, excessive load, or lubrication failures. HEMM failures cause **production delays & high costs**.

Current maintenance is reactive – failure is detected after damage is done. Traditional sensors (e.g., vibration, pressure) may not detect latent heat buildup.

Solution

A predictive maintenance system that detects early warning signs using **thermal imaging** and **sensor data analysis**. Thermal imaging combined with machine learning enables proactive failure detection and maintenance scheduling.

How Our Project Works

Key Components:

- 1. Thermal Cameras & IoT Sensors Capture real-time machine heat signatures.
- 2. Al-based Image Processing Classify normal vs. faulty conditions.
- 3. **Edge & Cloud Deployment** Real-time decision-making & dashboard monitoring.
- 4. Real-Time Monitoring: Displaying results on a dashboard.

Q Goal: Identify early signs of failure (engine overheating, hydraulic leaks, worn bearings, etc.).

Data Collection and Preprocessing

- Thermal Imaging (FLIR Cameras)
- Infrared cameras detect temperature variations.
- Faulty parts heat up abnormally, indicating failure risk.
- Sensor Data (IoT-based Monitoring)
- Temperature, vibration, pressure sensors continuously track machine health.
- Stored in CSV files for real-time analysis.
- Data Preprocessing Techniques
- ✓ Image Enhancement Apply colormap (Jet/Hot) for better fault visibility.
- ✓ Noise Reduction Smooth images to remove sensor inaccuracies.
- ✓ Data Cleaning Handle missing sensor values & outliers.

Al Model – CNN-Based Fault Detection

Why CNN (Convolutional Neural Networks)?

- Best for image classification.
- Learns heat patterns and detects anomalies automatically.

Model Training Process

★ Dataset:

- Labeled as "Normal" and "Anomaly".
- Stored in dataset/normal/ and dataset/anomaly/.

CNN Architecture:

- Conv2D layers extract heat features.
- Fully connected layers classify images.

A Output:

- Normal Condition

Model Training & Accuracy

- Training Steps:
- 1 Data Augmentation (rotation, scaling) to improve robustness.
- Training CNN on thermal images.
- 3 Validation on unseen test images.

- Accuracy: 90-95% on test images.
- Precision & Recall: High for anomaly detection.

Real-Time Deployment (Edge + Cloud + Dashboard)

Solution Edge Al Deployment

- Model runs on NVIDIA Jetson or Raspberry Pi near the equipment.
- Low latency Faults detected in real time.

Cloud Integration (Flask API)

- Data sent to central cloud storage.
- API allows real-time access to predictions.

| | Streamlit Dashboard

• Shows latest thermal images, sensor readings, and fault alerts.

DEMO – Streamlit Dashboard Walkthrough

Dashboard

Timestamp	HEMM_ID	Sensor_Location	Temperature	Vibration	Condition	Thumbnail
2025-04-04 01:18:09	HEMM_04	Transmission	73.48	3.20	Anomaly (99.64%)	
2025-04-04 01:18:04	HEMM_04	Brakes	61.34	3.42	Anomaly (99.64%)	
2025-04-04 01:17:59	HEMM_04	Brakes	91.79	3.63	V Normal (100.00%)	•
2025-04-04 01:17:54	HEMM_04	Cooling System	69.40	1.17	(99.64%)	
2025-04-04 01:17:49	HEMM_01	Transmission	67.15	1.31	Anomaly (99.64%)	
2025-04-04 01:17:44	НЕММ_03	Transmission	66.50	4.68	√ Normal (100.00%)	•
2025-04-04 01:17:39	HEMM_02	Cooling System	87.36	3.75	√ Normal (100.00%)	
2025-04-04 01:17:34	HEMM_03	Cooling System	84.25	1.97	√ Normal (100.00%)	•
2025-04-04 01:17:29	HEMM_01	Hydraulics	77.36	1.25	Anomaly (99.64%)	
2025-04-04 01:17:24	HEMM_01	Transmission	97.07	1.53	√ Normal (100.00%)	•

Latest Captured Thermal Image

Latest Thermal Image (Colorized)

Automatic Classification Result

✓ Normal Condition (1.00)

\(\) Heatmap of Anomalies by Sensor Location

Fault Prediction Trends

Key Features of the Dashboard

- ✓ Real-Time Thermal Image Processing Auto-updates every 5 seconds.
- ✓ Sensor Data Table with Color Highlights
 - Normal (Green)
 - • Manage Anomaly (Red)
- ✓ Automatic Fault Classification.
- ✓ Download Sensor Data (CSV Format).

Future Enhancements

- **Next Steps:**
- Live HEMM Tracking GPS + thermal data for fleet-wide monitoring.
- 2 SCADA/CMMS Integration Automated maintenance scheduling.
- More Advanced Al Models Vision Transformers for better accuracy.

Expected Outcomes

- 20–30% reduction in unplanned downtime.
- Early fault detection (48+ hours before failure).
- Seamless integration with SCADA/CMMS systems.

THANK YOU

Presenting Team Members:

- Yasir Momin Syed (22JE1107)
- Kundan Kumar (22JE0512)
- Shambhavi Kumar (22JE0891)
- Kole Sanika (22JE0481)
- Shravani Sudarshan (22JE0544)
- Manish Kumar (22JE0541)
- Sevak Kumar (22JE0888)
- Sawan Raj Bharti (22JE0884)
- Koushik Mandal (22JE0494)
- Md Affan Ahmad (22JE0553)
- Lalchhanhima (22JE0519)

Under the guidance of:

Prof. Radhakanta Koner

Special thanks to:

Mr. Amit Mankar (TA)