

Norm Space

CE282: Linear Algebra

Computer Engineering Department Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

□ p-norm:

$$||x||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p)^{\frac{1}{p}}$$

subject to $p \ge 1$

- \square What is the shape of $||x||_p = 1$?
- □Properties?

 \square 1-norm(l_1):

$$||x||_1 = (|x_1| + |x_2| + ... + |x_n|)$$

- \square What is the shape of $||x||_1 = 1$?
- \Box The distance between two vectors under the l_1 norm is also referred to as the Manhattan Distance.
- □Properties?

Example

 l_1 distance between (0, 1) and (1, 0)?

 $\square \infty$ -norm (l_{∞}) (max norm):

$$l_{\infty} = \max(|x_1|, |x_2|, ..., |x_n|)$$

- \square What is the shape of $|x|_{\infty} = 1$?
- □Properties?

 $\square \frac{1}{2}\text{-norm}(l_{\frac{1}{2}})$

- \square What is the shape of $|x|_{\frac{1}{2}} = 1$?
- □Properties?

 \square 0-norm(l_0):

$$||x||_{0} = \lim_{\alpha \to 0^{+}} ||x||_{\alpha} = \left(\sum_{k=1}^{n} |x|^{\alpha}\right)^{\frac{1}{\alpha}} = \sum_{k=1}^{n} 1_{(0,\infty)}(|x|)$$

□ 0-norm, defined as **the number of non-zero elements in a vector**, is an ideal quantity for feature selection. However, minimization of 0-norm is generally regarded as a combinatorially difficult optimization

$$\square \|x\|_0 = \sum_{x_i \neq 0} 1$$

☐ Is 0-norm a norm?

 \square What is the shape of $||x||_0 = 1$?

Examples

- l_0 distance between (0,0) and (0,5)?
- l_0 distance between (1,1) and (2,2)?
- (username, password)

Class Activity

- l_0 distance between (0,0) and (0,5)?
- l_0 distance between (1,1) and (2,2)?
- (username, password)

Or go to the below link https://forms.gle/xFHSDKJDq1KoL4Kx6

Timer: (2:30 minutes)

Examples

- l_0 distance between (0,0) and (0,5)?
- l_0 distance between (1,1) and (2,2)?
- (username, password)

Solution

- **1**
- **2**
- When l_0 is 0, then we can infere that username and password is a match and we can authenticate the user.

Vector Norms Shapes

Norms and Convexity

 \square For $p \ge 1$, l_p norm is convex

Norm Derivations

\square Square of l_2

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

$$||x||_2^2 = x_1^2 + x_2^2 + \dots + x_n^2$$

$$\begin{cases} \frac{d\|x\|_2^2}{dx_1} = 2x_1 \\ \frac{d\|x\|_2^2}{dx_2} = 2x_2 \end{cases}$$

$$\Rightarrow \begin{cases} \frac{d\|x\|_2^2}{dx_2} = 2x_1 \\ \dots \end{cases}$$

$$\frac{d\|x\|_2^2}{dx_n} = 2x_n$$

Norm Derivations

$$\square$$
 l_2

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \qquad ||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = (x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}$$

$$\frac{d||x||_{2}}{dx_{1}} = \frac{1}{2} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2} - 1} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2} - 1} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \right)^{\frac{1}{2}} \cdot \frac{d}{dx_{1}} \left($$

$$\frac{\left|\frac{d\|x\|_{2}^{2}}{dx_{1}}\right|}{\left|\frac{d\|x\|_{2}^{2}}{dx_{2}}\right|} = \frac{x_{1}}{\left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}\right)^{\frac{1}{2}}} \\
\frac{d\|x\|_{2}^{2}}{dx_{2}} = \frac{x_{2}}{\left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}\right)^{\frac{1}{2}}} \\
\dots$$

$$\frac{d\|x\|_{2}^{2}}{dx_{n}} = \frac{x_{n}}{\left(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}\right)^{\frac{1}{2}}}$$

Norm Comparisons

 l_2 norm

Square l_2 norm

 l_1 norm

Convex Relaxation

Sparse Applications

☐ **Alternative viewpoint:** We try to find the sparsest solution which explains our noisy measurements

$$\min_{x} \|x\|_{0}, \quad subject\ to\ \|Ax - b\|_{2} < \epsilon$$

 \square Here, the l_0 -norm is a shorthand notation for counting the number of non-zero elements in x.

Sparse Solution

- \square l_0 optimization is np-hard.
- □Convex relaxation for solving the problem.

$$\min_{1} ||x||_{1}$$

subject to
$$||Ax - b||_2 < \epsilon$$

$$\min_{1} ||x||_{0}$$

subject to
$$||Ax - b||_2 < \epsilon$$

Why is l_1 supposed to lead to sparsity than l_2 ?

 l_1 regularization

 l_2 regularization

L1-L2 norm inequality

Theorem

For all $x \in \mathbb{R}^d$:

$$\left| \left| x \right| \right|_2 \le \left| \left| x \right| \right|_1 \le \sqrt{d} \left| \left| x \right| \right|_2$$

Proof

Max norm inequality

Theorem

For all $x \in \mathbb{R}^d$:

$$\begin{aligned} \big| |x| \big|_{\infty} &\leq \big| |x| \big|_{1} \leq d \big| |x| \big|_{\infty} \\ \big| |x| \big|_{\infty} &\leq \big| |x| \big|_{2} \leq \sqrt{d} \big| |x| \big|_{\infty} \end{aligned}$$

Proof

Conclusion

□ By a normed linear space (briefly normed space) is meant a real or complex vector space E in which every vector x is associated with a real number |x|, called its absolute value or norm, in such a manner **that the properties** (a') - (c') holds. That is, for any vectors $x, y \subset E$ and scalar α we have:

i.
$$|x| \geq 0$$

ii.
$$|x| = 0$$
 iif $x = \vec{0}$

iii.
$$|\alpha x| = |\alpha||x|$$

iv.
$$|x + y| \le |x| + |y|$$

Inner product and norm

Theorem

Take any inner product $\langle \cdot, \cdot \rangle$ and define $f(x) = \sqrt{\langle x, x \rangle}$. Then f is a norm.

Proof

Note

Every inner product gives rise to a norm, but not every norm comes from an inner product. (Think about norm 2 and norm max)

References

- ☐ Linear Algebra and Its Applications, David C. Lay
- ☐ Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
- □ https://www.youtube.com/watch?v=76B5cMEZA4Y