

WQD7005 Data Mining Group 2

Alternative Assessment 1

Name	Low Boon Kiat
Matric Number	17138399
Submission Date	7 th January 2024

Table of Contents

1.0	Introduction	3
	1.1 Project Overview	3
	1.2 Dataset Description	3
2.0	Data Pre-processing using Talend Data Preparation	4
	2.1 Handling Inconsistent Data	4
	2.2 Handling Outliers	5
2.0	Data Integration using Talend Data Integration	6
3.0	Data Import and Pre-processing using SAS Enterprise Miner	8
	3.1 Importing Data	8
	3.2 Handling Missing Data	9
	3.3 Imputing Missing Data	10
	3.4 Assessing Impact of Imputation	10
4.0	Decision Tree Modelling using SAS Enterprise Miner	11
	4.1 Data Partition	11
	4.2 Maximal Decision Tree	12
	4.3 Pruned Decision Tree	13
5.0	Ensemble Methods using SAS Enterprise Miner	16
	5.1 Bagging	16
	5.2 Boosting	17
	5.3 Model Comparison	18
6.0	Insights into Customer Behaviour and Suggestions for Business Strategy	20
	6.1 Insights into Customer Behaviour	20
	6.2 Suggestions for Business Strategy	21
7.0	Conclusion	22
8.0	GitHub Repository	22

1.0 Introduction

1.1 Project Overview

The project involves working with a dataset of customer transactions from an e-commerce website, encompassing various customer attributes and purchase history. The project aims to assess students' ability to apply decision tree and ensemble methods in a practical context, demonstrating their understanding of the concepts and their ability to derive meaningful business insights from data analysis. Three tools used in this project include Talend Data Preparation, Talend Data Integration and SAS Enterprise Miner. The role of Talend Data Preparation is to perform basic data preprocessing. The role of Talend Data Integration is to combine several datasets into one. The role of SAS Enterprise Miner is to perform data mining, data preprocessing and predictive modelling.

1.2 Dataset Description

The dataset is downloaded from <u>Kaggle</u>, containing information about customers of an e-commerce company. It consists of 20 columns stored in 2 sheets with a total of 5630 records. Table below summarizes the variables names and description in the dataset (Sheet 01).

Variables	Description
CustomerID	Unique customer ID
Churn	Churn Flag (1 for churned, 0 for active)
Tenure	Tenure of customer in organization
PreferredLoginDevice	Preferred login device of customer
CityTier	City tier
WarehouseToHome	Distance in between warehouse to home of customer
PreferredPaymentMode	Preferred payment method of customer
Gender	Gender of customer
HourSpendOnApp	Number of hours spend on mobile application or website
NumberOfDeviceRegistered	Total number of deceives is registered on customer
PreferedOrderCat	Preferred order category of customer in last month
SatisfactionScore	Satisfactory score of customers on service
MaritalStatus	Marital status of customer
NumberOfAddress	Total number of addresses added on customer
Complain	Any complaint has been raised in last month
OrderAmountHikeFromlastYear	Percentage increases in order from last year
CouponUsed	Total number of coupons has been used in last month
OrderCount	Total number of orders has been places in last month
DaySinceLastOrder	Day Since last order by customer
CashbackAmount	Average cashback in last month

Table below summarizes the variables names and description in the dataset (Sheet 02). Marital status information was collected from customers at a later time.

Variables	Description
CustomerID	Unique customer ID
MaritalStatus	Marital status of customer

2.0 Data Pre-processing using Talend Data Preparation

2.1 Handling Inconsistent Data

In the "PreferredLoginDevice" column, "Phone" and "Mobile Phone" referred to the same type of device. To ensure data consistency, "Phone" was replaced with "Mobile Phone".

In the "PreferredPaymentMode" column, "Credit Card" and "CC" referred to the same type of payment mode whereas "Cash on Delivery" and "COD" referred to the same type of payment mode. To ensure data consistency, "CC" was replaced with "Credit Card" whereas "COD" was replaced with "Cash on Delivery". In addition, "UPI" was replaced with "Unified Payments Interface".

In the "PreferedOrderCat" column, "Mobile Phone" should be a subset of "Mobile". To ensure data consistency, "Mobile Phone" was replaced with "Mobile".

2.2 Handling Outliers

In the "WarehouseToHome" column, there were 2 records with values 126 and 127. These two values were far from majority records as shown in the data distribution chart. To handle outliers, 126 and 127 were adjusted to 26 and 27 respectively to align them within the appropriate range for this column.

Figure below illustrates all the data pre-processing steps performed in Talend Data Preparation.

2.0 Data Integration using Talend Data Integration

Use "tFileInputDelimited" to import both each dataset.

Use "tMap" to join two datasets. Drag the "CustomerID" column in the first dataset to join with the "CustomerID" column in the second dataset.

Use "tFileOutputDelimited" to export the joined dataset.

Display the CSV output from Talend Data Integration.

3.0 Data Import and Pre-processing using SAS Enterprise Miner

3.1 Importing Data

Import the CSV file using "File Import" node. Save it as a SAS file.

Specify the column metadata using "Metadata" node.

The roles and measurement levels of some variables were re-assigned to correctly define the column metadata. For instance, "customerID" should be assigned the role of ID instead of input because it serves as an identifier for individual customers rather than being used as an input feature for modelling. "CityTier" and "SatisfactionScore" should be considered as ordinal variables. "City Tier" ranks cities into different tiers, typically based on their economic development and other similar factors, making it an ordinal variable. For "SatisfactionScore", the numbers represent a respondent's level of satisfaction with a product or service, making it an ordinal variable. "Complain" taking values of 0 or 1 should be considered as nominal variable because it indicates the presence or absence of a complaint without any inherent order or ranking, hence it should be treated as a nominal variable.

3.2 Handling Missing Data

Check for missing values using StatExplore Node.

Figure below shows variables summary after specifying the metadata.

Variable	Summary	
Role	Measurement Level	Frequency Count
ID	INTERVAL	1
INPUT	INTERVAL	10
INPUT	NOMINAL	6
INPUT	ORDINAL	2
TARGET	NOMINAL	1

Figure below shows class variables summary. None of the class variables have missing values.

	ariable Summary Statisti m 500 observations print							
Data Ro	le=TRAIN							
			Number					
Data			of			Mode		Mode2
Role	Variable Name	Role	Levels	Missing	Mode	Percentage	Mode2	Percentage
TRAIN	CityTier	INPUT	3	0	1	65.12	3	30.59
TRAIN	Complain	INPUT	2	0	0	71.51	1	28.49
TRAIN	Gender	INPUT	2	0	Male	60.11	Female	39.89
TRAIN	MaritalStatus	INPUT	3	0	Married	53.04	Single	31.90
TRAIN	PreferedOrderCat	INPUT	5	0	Mobile	36.94	Laptop & Accessory	36.41
TRAIN	PreferredLoginDevice	INPUT	2	0	Mobile Phone	70.98	Computer	29.02
TRAIN	PreferredPaymentMode	INPUT	5	0	Debit Card	41.10	Credit Card	31.51
TRAIN	SatisfactionScore	INPUT	5	0	3	30.16	1	20.67
TRAIN	Churn	TARGET	2	0	0	83.16	1	16.84

Figure below shows interval variables summary. Seven variables namely "CouponUsed", "DaySinceaLastOrder", "HourSpendOnApp", "OrderAmountHikeFromLastYear", "OrderCount", "Tenure" and "WarehouseToHome" have missing values.

Interval Variable Summary Statistics (maximum 500 observations printed)

Data Role=TRAIN

			Standard	Non						
Variable	Role	Mean	Deviation	Missing	Missing	Minimum	Median	Maximum	Skewness	Kurtosis
CashbackAmount	INPUT	177.2215	49.19387	5630	0	0	163	325	1.149595	0.973546
CouponUsed	INPUT	1.751023	1.894621	5374	256	0	1	16	2.545653	9.132281
DaySinceLastOrder	INPUT	4.543491	3.654433	5323	307	0	3	46	1.191	4.023964
HourSpendOnApp	INPUT	2.931535	0.721926	5375	255	0	3	5	-0.02721	-0.66708
NumberOfAddress	INPUT	4.214032	2.583586	5630	0	1	3	22	1.088639	0.959229
NumberOfDeviceRegistered	INPUT	3.688988	1.023999	5630	0	1	4	6	-0.39697	0.582849
OrderAmountHikeFromlastYear	INPUT	15.70792	3.675485	5365	265	11	15	26	0.790785	-0.28038
OrderCount	INPUT	3.008004	2.93968	5372	258	1	2	16	2.196414	4.718466
Tenure	INPUT	10.1899	8.557241	5366	264	0	9	61	0.736513	-0.00737
WarehouseToHome	INPUT	15.60271	8.261845	5379	251	5	14	36	0.898406	-0.28639

3.3 Imputing Missing Data

Impute missing values using "Impute" node

The missing values of interval variables were imputed using the mean values. Imputing missing values with the mean assumes that the missing data is missing completely at random (MCAR) or missing at random (MAR) and does not introduce bias.

3.4 Assessing Impact of Imputation

Assess the impact of imputation using "StatExplore" node.

Figure below shows interval variables summary before imputation.

Interval Variable Summary Statistics (maximum 500 observations printed)

Data Role=TRAIN

			Standard	Non						
Variable	Role	Mean	Deviation	Missing	Missing	Minimum	Median	Maximum	Skewness	Kurtosis
CashbackAmount	INPUT	177,2215	49.19387	5630	0	0	163	325	1.149595	0.973546
						=	103			
CouponUsed	INPUT	1.751023	1.894621	5374	256	0	1	16	2.545653	9.132281
DaySinceLastOrder	INPUT	4.543491	3.654433	5323	307	0	3	46	1.191	4.023964
HourSpendOnApp	INPUT	2.931535	0.721926	5375	255	0	3	5	-0.02721	-0.66708
Number0fAddress	INPUT	4.214032	2.583586	5630	0	1	3	22	1.088639	0.959229
NumberOfDeviceRegistered	INPUT	3.688988	1.023999	5630	0	1	4	6	-0.39697	0.582849
OrderAmountHikeFromlastYear	INPUT	15.70792	3.675485	5365	265	11	15	26	0.790785	-0.28038
OrderCount	INPUT	3.008004	2.93968	5372	258	1	2	16	2.196414	4.718466
Tenure	INPUT	10.1899	8.557241	5366	264	0	9	61	0.736513	-0.00737
WarehouseToHome	INPUT	15.60271	8.261845	5379	251	5	14	36	0.898406	-0.28639

Figure below shows interval variables summary after imputation. The imputation did not significantly alter the distribution or central tendencies of the variables.

Interval Variable Summary Statistics (maximum 500 observations printed)

Data Role=TRAIN

			Standard	Non						
Variable	Role	Mean	Deviation	Missing	Missing	Minimum	Median	Maximum	Skewness	Kurtosis
CashbackAmount	INPUT	177.2215	49.19387	5630	0	0	163	325	1.149595	0.973546
IMP_CouponUsed	INPUT	1.751023	1.851038	5630	0	0	1	16	2.605547	9.709842
IMP_DaySinceLastOrder	INPUT	4.543491	3.553382	5630	0	0	4	46	1.224844	4.428875
IMP_HourSpendOnApp	INPUT	2.931535	0.705384	5630	0	0	3	5	-0.02785	-0.55635
IMP_OrderAmountHikeFromlastYear	INPUT	15.70792	3.587926	5630	0	11	15	26	0.810069	-0.14601
IMP_OrderCount	INPUT	3.008004	2.871521	5630	0	1	2	16	2.24851	5.088971
IMP_Tenure	INPUT	10.1899	8.354164	5630	0	0	9	61	0.754404	0.139888
IMP_WarehouseToHome	INPUT	15.60271	8.075545	5630	0	5	14	36	0.919117	-0.15973
NumberOfAddress	INPUT	4.214032	2.583586	5630	0	1	3	22	1.088639	0.959229
NumberOfDeviceRegistered	INPUT	3.688988	1.023999	5630	0	1	4	6	-0.39697	0.582849

4.0 Decision Tree Modelling using SAS Enterprise Miner

4.1 Data Partition

Specify the ratio of training/validation data using "Data Partition" node.

The ratio of training and validation data is 70/30.

. Property	Value
General	
Node ID	Part
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Output Type	Data
Partitioning Method	Default
Random Seed	12345
■Data Set Allocations	
Training	70.0
-Validation	30.0
Test	0.0
Report	
Interval Targets	Yes
Class Targets	Yes
Status	
Create Time	1/6/24 4:11 PM
Run ID	efb9ef80-6514-9e4d-bffd-c
Last Error	
Last Status	Complete
Last Run Time	1/7/24 5:27 AM
Run Duration	0 Hr. 0 Min. 3.46 Sec.
Grid Host	
User-Added Node	No

4.2 Maximal Decision Tree

Create the maximal tree using "Decision Tree" node.

Click on the "..." button at "Interactive" row to open the Interactive Decision Tree tool.

Right click on the root node of the tree and select Train Node. This will grow the tree until stopping rules prohibited further growth. Figure below shows the maximal tree with 38 leaves.

Based on the Subtree Assessment Plot, it appears that the maximal, 38-leaf tree gives a lower misclassification rate than any of its simpler predecessors. However, it is misleading because it applies to training data only. Further optimization is therefore required.

Based on Fit Statistics, misclassification rate is 0.0957 for training dataset and 0.1099 for validation dataset.

Fit Statistics						- C X
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Churn		NOBS	Sum of Frequencies	3939	1691	
Churn		MISC	Misclassification Rate	0.09571	0.109994	
Churn		MAX	Maximum Absolute Error	0.986111	1	
Churn		SSE	Sum of Squared Errors	555.5301	267.5079	
Churn		ASE	Average Squared Error	0.070517	0.079098	
Churn		RASE	Root Average Squared Error	0.26555	0.281243	
Churn		DIV	Divisor for ASE	7878	3382	
Churn		DFT	Total Degrees of Freedom	3939		

4.3 Pruned Decision Tree

Create a decision tree using "Decision Tree" node.

Go to the "Subtree" section of the properties table to specify the tree pruning properties. The method used to prune the maximal tree is Assessment. This means that the algorithms choose the best tree based on the optimality measure specificized by the Assessment Measure. By setting Assessment Measure as Decision, the algorithms will choose a tree that is optimized for making the best decisions (as opposed to best rankings or best probability estimates). Keep other settings as default.

Figure below shows the pruned decision tree with 14 leaves.

Based on the Subtree Assessment Plot, it appears that misclassification rate is most optimized when the number of leaves equals 14. The validation misclassification rate plateaued out at 0.097 when number of leaves increased from 15 to 31. Beyond 31, validation misclassification rate increases. Therefore, 14 leaves give the most optimized misclassification rate.

Based on Fit Statistics, misclassification rate is 0.1109 for training dataset and 0.09698 for validation dataset.

The Variable Importance Plot displays the importance of each predictor variable in the model. Only 10 out of 18 input variables are important to the pruned decision tree model.

5.0 Ensemble Methods using SAS Enterprise Miner

5.1 Bagging

Create a model for Bagging using "HP Forest" node. Keep default settings.

Based on Iteration Plot, misclassification rate plateaued out when number of trees reaches 20.

Based on Fit Statistics, misclassification rate is 0.09952 for training dataset and 0.1070 for validation dataset.

5.2 Boosting

Create a model for Boosting using "Gradient Boosting" node. Keep default settings.

Property	Value
General	
Node ID	Boost
Imported Data	D003t
Exported Data	Ö
Notes	i iii
Train	-
Variables	
☐Series Options ☐	
N Iterations	50
Seed	12345
Shrinkage	0.1
Train Proportion	60
■Splitting Rule	
Huber M-Regression	No
-Maximum Branch	2
-Maximum Depth	2 5
-Minimum Categorical Size	
Reuse Variable	1
-Categorical Bins	30
Interval Bins	100
-Missing Values	Use in search
- Performance	Disk
■Node	
Leaf Fraction	0.001
Number of Surrogate Rules	0
-Split Size	
□Split Search	
Exhaustive	5000
Node Sample	20000
□Subtree	
Assessment Measure	Decision
Score	
Subseries	Best Assessment Value
Number of Iterations	1
Create H Statistic	No
Variable Selection	Yes
Report	NI -
Observation Based Importance	
Number Sinale Var Importance	D

Based on Iteration Plot, misclassification rate plateaued out at 48th iteration.

Based on Fit Statistics, misclassification rate is 0.1056 for training dataset and 0.1064 for validation dataset.

5.3 Model Comparison

Compare model performance using "Model Comparison" node.

Figure below shows the Fit Statistics for model comparison.

Fit Statis Model Sele		Valid: Misclassifica	tion Rate (_VMISC_)			
Selected Model	Model Node	Model Description	Valid: Misclassification Rate	Train: Average Squared Error	Train: Misclassification Rate	Valid: Average Squared Error
Y	Tree2 Boost HPDMForest Tree	Decision Tree Gradient Boosting HP Forest Maximal Tree	0.09698 0.10645 0.10704 0.10999	0.089704 0.078212 0.073619 0.070517	0.11094 0.10561 0.09952 0.09571	0.082430 0.074786 0.074995 0.079098

The selected model is pruned Decision Tree (Tree2 in the figure) with a validation misclassification rate of 0.09698 or 9.698%. Although the two ensemble methods helped reduce the training misclassification rate, ensemble methods resulted in higher validation misclassification rate than the pruned Decision Tree. This outcome is not uncommon and can be due to various reasons:

1. Overfitting in Ensemble Methods:

• While ensemble methods (such as Random Forest or Gradient Boosting) aim to reduce overfitting, improper tuning or inadequate control over model complexity might lead to overfitting the training data. This can result in poorer performance on unseen validation data.

2. Sensitivity to Hyperparameters:

• Ensemble methods often have multiple hyperparameters to tune (e.g., number of trees in Random Forest, learning rate in Gradient Boosting). Suboptimal hyperparameters can negatively affect model performance on validation data.

Nevertheless, the resulting difference is not significant (1 - 2%). It is fair to conclude that all the models including pruned Decision Tree, Random Forest and Gradient Boosting managed to deliver good classification accuracy, with small misclassification rate of 9.6 - 10.7%.

6.0 Insights into Customer Behaviour and Suggestions for Business Strategy

6.1 Insights into Customer Behaviour

The data shows that customers using cash on delivery and e-wallet have higher-than-average churn rates. This suggests potential issues with these payment methods.

Tier 3 has a higher churn rate than Tier 2 and Tier 1. Also, both Tier 1 and Tier 2 cities still have a significant level of customer churn, which means that targeted strategies will be needed for each tier.

It is observed that customers who prefer to log in on a computer are more likely to churn than those who prefer to use a phone.

Single customers seem to show a higher churn rate than customers who are either married or divorced.

6.2 Suggestions for Business Strategy

Based on the extracted insights, below are some recommendations for business strategy.

- Investigate the reasons why COD, E-wallet and UPI customers are churning, evaluate the payment process and make improvements where needed. Explore new payment options and methods that may be more appealing to customers.
- The city tiers of their customers should be considered when developing strategies to reduce churn. Business should consider the demographics and purchasing power of their customers in different city tier to determine the optimal approach for reducing churn. Finally, it's important to consider the product categories being sold, as some products may be more likely to drive customer loyalty than others.

- Enhance the features and functionality available on the desktop version of the website. Also, improve the general user experience, usability and speed of both mobile phone and computer, to ensure that users have a seamless experience using their website.
- Offer personalized deals, services, or products to single customers based on their preferences and behaviour. Tailoring offerings to their interests can increase engagement and loyalty. Create loyalty programs or exclusive benefits to incentivize single customers to continue using the company's products or services.

7.0 Conclusion

In summary, Talend Data Preparation, Talend Data Integration and SAS Enterprise Miner were used to work with a dataset of customer transactions from an e-commerce website, encompassing various customer attributes and purchase history. Decision tree and ensemble methods were used to model the customer churn. Based on the results, it is concluded that all the models including pruned Decision Tree, Random Forest and Gradient Boosting managed to deliver good classification accuracy, with small misclassification rate of 9.6 – 10.7%. The selected model is pruned Decision Tree with a validation misclassification rate of 0.09698 or 9.698%. The two ensemble methods namely Random Forest and Gradient Boosting helped reduce the training misclassification rate but resulted in higher validation misclassification rate likely due to overfitting the training data. This can result in poorer performance on unseen validation data. Several insights were extracted through data mining, from which the company can tailor their business strategies to reduce customer churn rate.

8.0 GitHub Repository

Link: https://github.com/boon-kiat/customerchurn.git