Decompositions of Graphs

Hengfeng Wei

hfwei@nju.edu.cn

June 12, 2018

John Hopcroft

Robert Tarjan

John Hopcroft

Robert Tarjan

"For fundamental achievements in the design and analysis of algorithms and data structures."

— Turing Award, 1986

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"Depth-First Search And Linear Graph Algorithms" by Robert Tarjan.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"DFS is a powerful technique with many applications."

▶ "Depth-First Search And Linear Graph Algorithms" by Robert Tarjan.

Power of DFS:

Graph Traversal ⇒ Graph Decomposition

Power of DFS:

Graph Traversal ⇒ Graph Decomposition

Structure! Structure! Structure!

Graph *structure* induced by DFS:

states of v

Graph structure induced by DFS:

states of v

types of \underbrace{u} \underbrace{v}

life time of v:

 $v:\mathsf{d}[v],\mathsf{f}[v]$

f[v]: DAG, SCC

d[v]: biconnectivity

Definition (Classifying edges)

Given a DFS traversal \implies DFS tree:

Tree edge: \rightarrow child

Back edge: \rightarrow ancestor

Forward edge: → *nonchild* descendant

Cross edge: \rightarrow (\neg ancestor) \land (\neg descendant)

Definition (Classifying edges)

Given a DFS traversal \implies DFS tree:

Tree edge: \rightarrow child

Back edge: \rightarrow ancestor

Forward edge: → *nonchild* descendant

Cross edge: \rightarrow (\neg ancestor) \land (\neg descendant)

- also applicable to BFS
- w.r.t. DFS/BFS trees

DFS on directed graph

DFS on directed graph

DFS on undirected graph

BFS on directed graph

BFS on directed graph

BFS on undirected graph

Undirected connected graph $G = (V, E), v \in V$

DFS tree T from $v \equiv$ BFS tree T' from v

Undirected connected graph $G = (V, E), v \in V$

DFS tree T from $v \equiv BFS$ tree T' from v

$$G\equiv T$$

Undirected connected graph $G=(V,E),v\in V$

DFS tree T from $v \equiv$ BFS tree T' from v

$$G\equiv T$$

Proof.

$$G_{\mathsf{DFS}}$$
: tree + back vs. G_{BFS} : tree + cross

Undirected connected graph $G = (V, E), v \in V$

DFS tree T from $v \equiv$ BFS tree T' from v

$$G \equiv T$$

Proof.

$$G_{\mathsf{DFS}}$$
: tree + back vs. G_{BFS} : tree + cross

Q: What if G is a digraph?

Lift time of vertices in DFS

Theorem (Disjoint or Contained (Problem 4.2: (1) & (2)))

$$\forall u,v: [_u\]_u\cap [_v\]_v=\emptyset\bigvee\left([_u\]_u\subsetneqq [_v\]_v\vee [_v\]_v\subsetneqq [_u\]_u\right)$$

Theorem (Disjoint or Contained (Problem 4.2: (1) & (2)))

$$\forall u,v: [_u\]_u\cap [_v\]_v=\emptyset\bigvee \Big([_u\]_u\subsetneqq [_v\]_v\vee [_v\]_v\subsetneqq [_u\]_u\Big)$$

Proof.

Preprocessing for ancestor/descendant relation (Problem 5.23)

Q : Is u an ancestor of v? O(1)

Preprocessing for ancestor/descendant relation (Problem 5.23)

Q : Is u an ancestor of v? O(1)

 $v:\mathsf{d}[v],\mathsf{f}[v]$

Preprocessing for ancestor/descendant relation (Problem 5.23)

Q: Is u an ancestor of v? O(1)

 $v : \mathsf{d}[v], \mathsf{f}[v]$

Q: # of descendants of any v?

$$\forall u \rightarrow v:$$

- ▶ tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\forall u \to v$$
:

- ▶ tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_{v}$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $[v]_v [u]_u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \qquad \mathsf{edge}$$

$$\forall u \rightarrow v$$
:

- ▶ tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$\forall u \rightarrow v$$
:

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$f[u] < f[v] \iff$$

$$\forall u \rightarrow v:$$

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$f[u] < f[v] \iff \mathsf{back} \; \mathsf{edge}$$

$$\forall u \rightarrow v:$$

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge: $[v]_v [u]_u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross} \; \mathsf{edge}$$

$$f[u] < f[v] \iff \mathsf{back} \; \mathsf{edge}$$

$$\nexists \mathsf{ cycle } \implies \boxed{u \to v \iff \mathsf{ f}[v] < \mathsf{ f}[u]}$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\begin{cases} H(T) = \max(H(L_T), H(R_T)) + 1, \end{cases}$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

$$\left\{ \begin{array}{ll} D(T)=0, & T \text{ is a leave} \\ D(T)=\max\Big(D(L_T),D(R_T), & \Big), & \text{o.w.} \end{array} \right.$$

Binary tree T = (V, E) with |V| = n and the root r:

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

$$\left\{ \begin{array}{ll} D(T)=0, & T \text{ is a leave} \\ D(T)=\max\left(D(L_T),D(R_T),\underbrace{H(L_T)+H(R_T)+2}_{\text{through the root}}\right), & \text{o.w.} \end{array} \right.$$

4□ > 4□ > 4 = > 4 = > = 90

Binary tree T=(V,E) with |V|=n and the root r

Binary tree T = (V, E) with |V| = n and the root r

Q: Diameter of a *tree without* a designated root

Binary tree T = (V, E) with |V| = n and the root r

Q: Diameter of a *tree without* a designated root

Q: Diameter of a $\it tree \ without$ a designated root

Q: Diameter of a $\it tree \ without$ a designated root

Q: Diameter of a $tree\ without$ a designated root

Your Job: Prove it!

Counting shortest paths (Problem 5.26)

Counting # of shortest paths in (un)directed graphs using BFS.

Counting shortest paths (Problem 5.26)

Counting # of shortest paths in (un)directed graphs using BFS.

Maybe in the next class...

	Digraph	Undirected graph
DFS		
BFS		

	Digraph	Undirected graph
DFS	back edge \iff cycle	
BFS		

	Digraph	Undirected graph
DFS	back edge \iff cycle	back edge \iff cycle
BFS		

	Digraph	Undirected graph
DFS	back edge \iff cycle	back edge \iff cycle
BFS		cross edge ←⇒ cycle

	Digraph	Undirected graph
DFS	back edge \iff cycle	back edge \iff cycle
BFS	back edge \implies cycle	cross edge ←⇒ cycle
ыэ	$\begin{array}{c} back \; edge \; \Longrightarrow \; cycle \\ cycle \; \not\Longrightarrow \; back \; edge \end{array}$	cross edge \longleftrightarrow cycle

	Digraph	Undirected graph
DFS	back edge \iff cycle	back edge \iff cycle
BFS	back edge \implies cycle cycle \implies back edge	$cross\;edge\;\Longleftrightarrow\;cycle$
	cycle → back edge	cross edge \longleftrightarrow cycle

$$\mathsf{Evasiveness} \ \triangleq \ \mathsf{check} \ \binom{n}{2} \ \mathsf{edges} \ (\mathsf{adjacency} \ \mathsf{matrix})$$

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Adversary A:

Algorithm \mathbb{A} :

CHECKEDGE(u, v)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Adversary A:

Algorithm A:

CHECKEDGE(u, v)

Hint: Kruskal

Q: Why adjacency matrix?

After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is connectivity evasive?

After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is connectivity evasive?

Hint: Anti-Kruskal

- ▶ undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

- ▶ undirected (connected) graph G
- edges oriented s.t.

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation $\iff \exists$ cycle C

- ▶ undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation
$$\iff \exists$$
 cycle C

DFS from
$$v \in C$$

- ▶ undirected (connected) graph G
- ▶ edges oriented s.t.

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation $\iff \exists$ cycle C

DFS from $v \in C$

Shortest cycle of undirected graph (Problem 4.12)

A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$

Back edge $u \to v$: level[u] - level[v] + 1

Shortest cycle of undirected graph (Problem 4.12)

A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$

Back edge $u \to v$: level[u] - level[v] + 1

Shortest cycle of digraph (Problem 4.12)

A DFS-based algorithm:

$$\forall v : \mathsf{level}[v]$$

$$\mathsf{Back}\ \mathsf{edge}\ u \to v : \mathsf{level}[u] - \mathsf{level}[v] + 1$$

Shortest cycle of digraph (Problem 4.12)

A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$

Back edge $u \to v$: level[u] - level[v] + 1

