

Convolutions

How We Detect Features in Images

The Convolution Operation

- Mathematical term to describe the process of combining two functions to produce a third
- In our situation, the output is called a Feature Map
- We use a matrix, called a Filter or Kernel that is applied to our Image
- So the first 'Function' is the image that is combined with the Kernel or Filter which produces a Feature Map

Image × Kernel = Feature Map

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

4

0	1	0
1	0	-1
0	1	0

2	1	-1
-1	1	3
2	1	1

Recall grayscale images are just intensity values ranging from black to white

$$(1 \times 0) + (0 \times 1) + (1 \times 0) + (1 \times 1) + (0 \times 0) + (0 \times -1) + (0 \times 0) + (1 \times 1) + (1 \times 0) = 2$$

1x0	0x1	1 k0	0	1
1x1	0x0	0x-1	1	1
0)(0	1x1	1k0	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	

$$(0 \times 0) + (1 \times 1) + (0 \times 0) + (0 \times 1) + (0 \times 0) + (1 \times -1) + (1 \times 0) + (1 \times 1) + (0 \times 0) = 1$$

1	0x0	1x1	0x0	1
1	0x1	0x0	1x-1	1
0	1x0	1x1	0x0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

=

2	1	-1

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	7
-1		

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

_

2	1	-1
-1	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	-1
-1	1	3

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	-1
-1	1	3
2		

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	-1
-1	1	3
2	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	-1
-1	1	3
2	1	1

Image Features

- Our feature maps are actually Feature Detectors
- Why did we do this?
- Because Convolution Filters or Kernels detect features in images

Our Convolution Filter as an Edge Detector

1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0

Convolution Filters Detect Many Features

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Convolution Filters Detect Many Features

Example filters learned by Krizhevsky et al.

Convolution Filters Detect Many Features

Source – Deep Learning Methods for Vision https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

Calculating Feature Map Size

Feature Map Size =
$$n - f + 1 = m$$

Feature Map Size = $5 - 3 + 1 = 3$

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

-1 2

$$5 \times 5$$
 $n \times n$

$$3 \times 3$$
 $f \times f$

Next...

Feature Detectors

