

기본 개념부터 최신 모바일 응용 예까지

2장. 영상 처리

각 절에서 다루는 내용

- 1. 디지털 영상이란?
- 2. 히스토그램
- 3. 이진 영상
- 4. 영상 처리의 세 가지 기본 연산
- 5. 다해상도
- 6. 모폴로지
- 7. 컬러

PREVIEW

- Eye and Camera
- Image formation
- Camera model
 - Pinhole camera model
 - Perspective projections
 - Focal length and filed of view

2.1 디지털 영상이란?

2.1.1 디지털 영상의 태동

2.1.2 획득과 표현

- 사람의 눈과 카메라
 - 수정체는 렌즈, 망막은 CCD 센서 (필름)에 해당

(b) 카메라의 구조

Digital Camera

The Eye

그림 2-3 사람의 눈과 카메라의 구조

망막(Retina)

Light

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Electromagnetic spectrum

Human Luminance Sensitivity Function

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

카메라의 색상은 여기에 해당

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- **■** Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

(Specular Interreflection)

Image formation

Fundamental radiometric relation

- L: Radiance emitted from P toward P
- **E**: Irradiance falling on **P** from the lens

What is the relationship between *E* and *L*?

Fundamental radiometric relation

$$E = \left[\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha\right] L$$

- Image irradiance is linearly related to scene radiance
- Irradiance is proportional to the area of the lens and inversely proportional to the squared distance between the lens and the image plane
- The irradiance falls off as the angle between the viewing ray and the optical axis increases

From light rays to pixel values

- Camera response function: the mapping f from irra diance to pixel values
 - Useful if we want to estimate material properties
 - Enables us to create high dynamic range images
 - For more info: P. E. Debevec and J. Malik, <u>Recovering High Dyna</u> <u>mic Range Radiance Maps from Photographs</u>, SIGGRAPH 97

Perspective projection

Point of observation

Modeling projection

- 3차원 공간상에서의 P는 2차원 영상 평명(image plane)에서 P'으로 투영됨
- P와 P'의 상관관계를 나타낼 수 있는 방법 필요
 - Optical center (O) 가 3차원 공간상의 원점
 - Projection equations

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Perspective projection matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \implies (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third co ordinate

Projection of a line

■ The horizon

The perspective cues

- 샘플링과 양자화
 - 2차원 영상 공간을 *M*N*으로 샘플링 (*M*N*을 해상도라 부름)
 - 명암을 *L* 단계로 양자화 (*L*을 명암 단계라 부름, 즉 명암은 [0,*L*-1] 사이 분포)
 - 아래 예) *M*=12, *N*=12, *L*=10인 경우

_	_	_	_		_
٦.	T II I		_		1-1
u	\sim n $=$			OF A	POF
,,		_	-		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
0 0 3 7 8 8 8 7 6 3 0 0 0 0 4 8 9 9 9 8 7 5 1 0 0 0 4 7 8 9 9 8 7 5 0 0 0 0 3 6 7 8 8 7 7 3 0 0 0 0 0 0 2 4 7 8 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	_	0	_	_	_	_	0	0
0 0 4 8 9 9 9 8 7 5 1 0 0 0 4 7 8 9 9 8 7 5 0 0 0 0 3 6 7 8 8 7 7 3 0 0 0 0 0 0 2 4 7 8 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	3	4	2	3	4	3	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	3	7	_	_	_	7	6	3	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0		8	9		_	8	7	5	1	0
0 0 0 2 4 7 8 4 3 0 0 0 0 <td>0</td> <td>0</td> <td>4</td> <td>7</td> <td>8</td> <td>9</td> <td>9</td> <td>8</td> <td>7</td> <td>5</td> <td>0</td> <td>0</td>	0	0	4	7	8	9	9	8	7	5	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	3			8	8	7	7	3	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	2	4	7	8	4	3	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	4	7	0	0	0	0	0
0000000000000	0	0	0	0	0	5	6	0	0	0	0	0
	0	0	0	0	2	3	4	2	1	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0

(c) 디지털 영상

그림 2-4 디지털 영상 획득

- 영상 좌표계
 - 화소 위치는 **x**=(*j,i*) 또는 **x**=(*y,x*)로 표기
 - 영상은 f(**x**) 또는 f(j,i), 0≤j≤M-1, 0≤j≤N-1로 표기

그림 2-5 디지털 영상의 좌표계

컬러 영상은 fr(x), fg(x), fb(x)의 세 채널로 구성

■ 영상 표시 방법

(b) 숫자 배열

(a) 영상

그림 2-6 디지털 영상 표시 방법