Unidad I: Lógica proposicional

Lógica proposicional: Satisfacibilidad

Clase 03 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Fórmulas satisfacibles

Definición:

Una fórmula φ es satisfacible si existe una valuación σ tal que $\sigma(\varphi) = 1$.

Ejercicio:

¿Cuáles de las siguientes fórmulas son satisfacibles?

$$p \land (p \rightarrow q)$$

$$p \wedge (p \rightarrow q) \wedge \neg q$$

$$(x \vee \neg y) \wedge (y \vee \neg z) \wedge (z \vee \neg x)$$

$$(x \wedge \neg z \wedge z) \vee (y \wedge \neg x \wedge \neg z)$$

¿Cómo se ve la tabla de verdad de una fórmula satisfacible?

El problema de satisfacibilidad

Problema:

Dada una fórmula proposicional φ , verificar que φ es satisfacible.

¿Puede dar un algoritmo para resolver este problema?

- ¿Cuántas operaciones realiza su algoritmo para una fórmula con n variables?
- Puede dar un algoritmo que realice n^k operaciones, donde k es una constante?
 - A esto se le llama un algoritmo de tiempo polinomial.

El problema de satisfacibilidad

No se sabe si existe un algoritmo polinomial para este problema.

- Este problema es considerado el problema abierto más importante en ciencia de la computación.
 - También es llamado el problema P vs NP.
- Este problema también es fundamental en matemáticas.

https://www.claymath.org/millennium-problems/

El problema de satisfacibilidad y el poder expresivo de la lógica proposicional

¿Por qué es tan importante el problema de satisfacibilidad?

Muchos problemas en ciencia de la computación y otras disciplinas se pueden resolver utilizando del problema de satisfacibilidad.

La lógica proposicional es un lenguaje muy expresivo!

Considere el siguiente problema:

- Debemos repartir a un grupo de alumnos entre 3 salas.
- Algunas parejas de alumnos no se llevan muy bien, luego, deben ir a salas distintas.
 - Hay una lista con las parejas prohibidas, es decir, parejas de alumnos que deben ir a salas distintas.
- ¿Existe alguna forma de asignarle salas a todos los alumnos?

¿Puede dar un algoritmo para este problema? ¿Cuántas operaciones hace su algoritmo para un problema con n alumnos?

Un ejemplo con 10 alumnos:

Los links entre alumnos representan la lista de parejas prohibidas.

¿Existe una solución? ¿Cómo expresamos esto en lógica proposicional?

Variables proposicionales:

- $p_{i,j}$: los alumnos i y j están en la lista de parejas prohibidas, donde $0 \le i < j \le 9$.
- $x_{i,c}$: el alumno i va a la sala c, donde $0 \le i \le 9$ y $1 \le c \le 3$.

Usamos fórmulas para modelar las restricciones de nuestro problema:

A cada alumno *i* se le debe asignar una sala:

$$x_{i,1} \vee x_{i,2} \vee x_{i,3}$$

■ No se le puede asignar más de una sala a un alumno i:

$$\neg(x_{i,1} \land x_{i,2}) \land \neg(x_{i,1} \land x_{i,3}) \land \neg(x_{i,2} \land x_{i,3})$$

Usamos fórmulas para modelar las restricciones de nuestro problema:

Si los alumnos i y j están en la lista de parejas prohibidas, entonces se les asigna salas distintas:

$$(p_{i,j} \rightarrow \neg(x_{i,1} \land x_{j,1})) \land (p_{i,j} \rightarrow \neg(x_{i,2} \land x_{j,2})) \land (p_{i,j} \rightarrow \neg(x_{i,3} \land x_{j,3}))$$

Si los alumnos i y j están en la lista de parejas prohibidas, entonces p_{i,j} debe ser verdadero:

$$\bigwedge_{i < j} p_{i,j}$$
 i y j están en la lista prohibida

La fórmula completa para nuestro ejemplo sería:

$$\bigwedge_{i=0}^{9} (x_{i,1} \lor x_{i,2} \lor x_{i,3}) \land$$

$$\bigwedge_{j=0}^{9} (\neg (x_{i,1} \land x_{i,2}) \land \neg (x_{i,1} \land x_{i,3}) \land \neg (x_{i,2} \land x_{i,3})) \land$$

$$\bigwedge_{0 \le i < j \le 9} ((p_{i,j} \to \neg (x_{i,1} \land x_{j,1})) \land (p_{i,j} \to \neg (x_{i,2} \land x_{j,2})) \land (p_{i,j} \to \neg (x_{i,3} \land x_{j,3}))) \land$$

$$(p_{0,1} \land p_{0,5} \land p_{0,6} \land p_{0,7} \land p_{1,3} \land p_{1,4} \land p_{1,6} \land p_{2,5} \land p_{2,7} \land p_{2,8} \land p_{2,9} \land p_{3,6} \land$$

$$p_{4,5} \land p_{4,6} \land p_{5,8} \land p_{8,9})$$

¿Y ahora qué hacemos con esta fórmula?

SAT solvers

Podemos usar un SAT solver:

- Un programa para verificar si una fórmula proposicional es satisfacible.
- Esta tecnología funciona muy bien en la práctica!

Usemos el SAT solver Z3 para buscar una solución a nuestro problema.

La solución que nos entrega el SAT solver:

Paréntesis: producto cartesiano

Dado dos conjuntos A y B, se define:

$$A \times B = \{(a, b) \mid a \in A \text{ y } b \in B\}$$

Ejemplo:

Si
$$A = \{1, 2\}$$
 y $B = \{1, 2, 4\}$, entonces:

$$A \times B = \{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4)\}$$

Grafos

Un **grafo** es un par G = (V, E), donde:

- V es el conjunto de nodos.
- $E \subseteq V \times V$ es el conjunto de arcos.

Ejemplo:

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (3, 2), (4, 1), (4, 2)\}$$

Grafos

Un grafo G = (V, E) es un grafo no dirigido si para cada $(u, v) \in E$, se tiene que $(v, u) \in E$.

Ejemplo:

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (2, 1), (1, 3), (3, 1), (3, 2), (2, 3), (4, 1), (1, 4), (4, 2), (2, 4)\}$$

Coloración en grafos

Un grafo no dirigido G = (V, E) es k-coloreable si existe una función $c: V \to \{1, \dots, n\}$ tal que:

para cada
$$(u, v) \in E$$
, se tiene que $c(u) \neq c(v)$.

Es decir: nodos adyacentes recibe colores distintos.

Ejemplo: ¿Cuáles de estos grafos tienen un 3-coloreo?

Coloración en grafos

¿En qué se parece el problema de coloración en grafos al problema anterior?

■ El problema anterior se puede escribir como un problema de 3-coloreo en grafos (¿cierto?)

Veamos como expresar en general el problema de k-coloreo en lógica proposicional.

Coloración en grafos y lógica proposicional

Supongamos que G = (V, E), donde $V = \{1, ..., n\}$.

Variables proposicionales:

- $a_{i,j}$: hay un arco entre i y j, donde $1 \le i < j \le n$.
- $x_{i,c}$: el nodo i recibe el color c, donde $1 \le i \le n$ y $1 \le c \le k$.

Coloración en grafos y lógica proposicional

Usamos las siguientes fórmulas para expresar el problema de k-coloreo:

Cada nodo i recibe un único color:

$$\bigwedge_{i=1}^{n} \bigvee_{c=1}^{k} \left(x_{i,c} \wedge \bigwedge_{d \neq c} \neg x_{i,d} \right)$$

 \blacksquare Si hay un arco entre los nodos i y j, entonces reciben colores distintos:

$$\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{n} \bigwedge_{c=1}^{k} \left(\left(a_{i,j} \wedge x_{i,c} \right) \rightarrow \neg x_{j,c} \right)$$

■ Las variables $a_{i,j}$ se deben hacer verdaderas cuando (i,j) es un arco:

$$\bigwedge_{(i,j)\in E}a_{i,j}$$

La fórmula final φ es la conjunción de las fórmulas anteriores.

G es k-coloreable si y sólo si φ es satisfacible.

Ejercicio propuesto

Un **clique** de un grafo no dirigido G = (V, E) es un subconjunto de nodos $C \subseteq V$ tal que:

para cada par de nodos
$$u \neq v$$
 en C , se tiene que $(u, v) \in E$

Es decir: Todos los pares de nodos en C están conectados por un arco.

Problema:

Dado un grafo no dirigido G = (V, E) y un número $k \ge 0$, verificar si G tiene un clique C con k nodos.

¿Cómo representaría este problema en lógica proposicional?