Química

Formulario

Contents

Convers	ones 2
	Peso
	Longitud
	Gases
	Termodinámica
Propied	ndes intensivas
Estequi	metría 3
•	Unidades de cantidad
	Isótopo
	Composición porcentual
	Fórmulas químicas
Reaccio	nes 3
	Rendimiento
Solucio	es 3
	Molaridad (M)
	Molalidad $(\eta)^{'}$
	Fracción molar (X)
	Porcentaje en volumen ($V_{\%}$)
	Porcentaje en masa $(m_{\%})$
	Partes por millón (ppm)
Gases	4
	Ley de los gases ideales
	Ecuación de estado
	Densidad de un gas
	Ley de Dalton
	Volumen molar de un gas
Termod	námica 5

Conversiones

Peso

$$1 \text{ lb} = 453,6 \text{ g}$$

$$1 \text{ kg} = 2.2 \text{ lb}$$

$$1 \text{ oz} = 28,35 \text{ g}$$

Longitud

1 mi = 1,61 km

1 m = 3,28 ft

1 m = 39, 4"

1'' = 2,54 cm

Gases

1 atm = 760 mmHg

1 atm = 101,33 kPa

1 atm = 14,696 psi

1 torr = 1 mmHg

1 torr = 133,32 Pa

 $1 \text{ bar} = 10^5 \text{ Pa}$

Termodinámica

$$1 \text{ cal} = 4,18 \text{ J}$$

$$1 \text{ atmL} = 101,3 \text{ J}$$

Propiedades intensivas

$$m = dv$$

(s), (l) =
$$g/cm^3$$
; (g) = g/m^3

$${}^{\circ}C = (F - 32)\frac{5}{9}$$

$$F = \frac{9}{5} C + 32$$

$$K = {}^{\circ}C + 273,15$$

Estequiometría

Unidades de cantidad

$$1uma = \frac{g}{mol}$$

El peso atómico se mide en uma's.

$$1g = 6,022 \cdot 10^{23} uma$$

$$N_A/L = 6,022 \cdot 10^{23}$$
 partículas

Isótopo

$$\bar{m} = m_1 A b_1 + \dots + m_n A b_n$$

Composición porcentual

$$Mr = \Sigma Ar$$

$$\%X = \frac{nAr}{Mr} 100\%$$

Fórmulas químicas

$$FM = nFE$$

$$m = nMr$$

Reacciones

Rendimiento

$$%r = \frac{\text{real}}{\text{teórico}} 100\%$$

Soluciones

$$C_1V_1=C_2V_2$$

$$m_{\rm soluci\'on} = m_{soluto} + m_{solvente}$$

$$V_{\text{solución}} = V_{soluto} + V_{solvente}$$

$\mathbf{Molaridad}\ (M)$

$$M = \frac{n_{soluto}}{V_{\text{solución}}}$$

volumen =
$$dm^3$$

Molalidad (η)

$$\eta = \frac{n_{soluto}}{m_{solvente}}$$

$$masa = kg$$

Fracción molar (X)

$$X_A = \frac{n_A}{n_{
m solución}}$$

$$X_B = \frac{n_B}{n_{\text{solución}}}$$

$$X_A + X_B = 1$$

Porcentaje en volumen $(V_{\%})$

$$V_{\%} = \frac{V_{soluto}}{V_{solución}} \cdot 100\%$$

volumen =
$$cm^3$$

Porcentaje en masa $(m_{\%})$

$$m_{\%} = \frac{m_{soluto}}{m_{solución}} \cdot 100\%$$

$$masa = g$$

Partes por millón (ppm)

$$m_{\%} = \frac{m_{soluto}}{m_{solución}} \cdot 10^6$$

$$masa = g$$

Gases

$$R = 8,314 \frac{J}{K \cdot mol} R = 0,0821 \frac{atm \cdot L}{K \cdot mol}$$

Ley de los gases ideales

$$PV = nRT$$

Ecuación de estado

$$\frac{p_1V_1}{n_1T_1} = \frac{p_2V_2}{n_2T_2}$$
Gay-combined Lussac Boyle $\frac{P}{T} \frac{V}{N} = k_{\rm B}$
Charles Avogadro

Densidad de un gas

$$\rho = \frac{MrP}{RT}$$

Ley de Dalton

$$P_A = X_A P_T$$

$$P_A = \frac{n_A RT}{V}$$

Volumen molar de un gas

$$1mol = 22,7dm^3$$

Posible a a 273K y 1 atmósfera. Esto se conoce como condiciones normales de temperatura y presión (CNTP).

Termodinámica

$$\Delta H = H_{productos} - H_{reactivos}$$

$$W = \pm P\Delta V$$

$$\Delta E = \pm Q \pm W$$

 ΔH = +endotérmico, -exotérmico

W, Q = +compresión, -expansión