A brief introduction to mixed models

Alencar Xavier

Quantitative Geneticist, DowDuPont

http://alenxav.wix.com/home

Part 1 – Concepts

- Mixed models in plant breeding
- Fixed and Random terms
- History of mixed models
- Model notation
- Henderson's equation
- Variance decomposition

Part 2 – Applications

- Phenotypic selection
- Practical example
 - Cunningham & Henderson (1986)
 - Robinson (1991)
 - Xavier et al. (2016)
- Models with genomic data
 - G-BLUP and RR-BLUP
 - GWAS

References

Outline

PART I - Concepts

Mixed models in plant breeding

- Variance components and heritability
- Genetic correlations
- Estimation of genetic values
- Estimation of breeding values
- Prediction of breeding values (unphenotyped material)
- Selection indexes
- Association analysis

Fixed and Random terms

Fixed effect

- Assumed to be invariable (you can't recollect the data)
- Inferences are made upon the parameters
- Results can not be extrapolated to other datasets
- Example: Overall mean and environmental effects

Random effects

- You may not have all the levels available
- Inference are made on variance components
- Prior assumption coefficients are normally distributed
- Results can not be extrapolated to other datasets
- Regularized (shrinkage)
- Example: Genetic effects

Robinson (1991) reciting Searle

... when inferences are going to be confined to the effects in the model the effects are considered fixed; and when inferences will be made about a population of effects from which those in the data are considered to be a random sample then the effects are considered as random.

History of mixed models

- Francis Galton
 - 1988 Regression and h^2
- Ronald Fisher
 - 1918 Infinitesimal model (P = G + E)
- Sewall Wright
 - **1922** Pedigree matrix (A)
- Charles Henderson
 - **1950** BLUP $(u \sim A\sigma_a^2)$

Model notation

$$y = 1\mu + g + e$$
$$\sigma_y^2 = \sigma_g^2 + \sigma_e^2$$

$$\mu = 50$$

$$\sigma_y^2 = 9$$

$$\sigma_g^2 = 4$$

$$\sigma_e^2 = 5$$

$$cov(g, e) = 0$$

Model notation

$$y = \mu + g + e$$

Model notation

$$y = Xb + Zu + e$$

$$\begin{cases} y \sim N(Xb, V) \\ y \sim N(Xb, ZAZ'\sigma_a^2 + R\sigma_e^2) \\ y \sim N(Xb + Zu, R\sigma_e^2) \end{cases}$$

$$u \sim N(0, A\sigma_a^2)$$

$$e \sim N(0, R\sigma_e^2)$$

$$cov(u, e) = 0$$

```
p = number of parameters
            q = number of individuals
y = vector of observations (n)
X = design matrix of fixed effects (n \times p)
b = \text{vector of fixed effect coefficients (p)}
Z = \text{incidence matrix of random effects } (n \times q)
u = \text{vec. of random effects } - \text{genetics values } (q)
e = \text{vector of residuals (n)}
\sigma_a^2 = random effect variance (1)
\sigma_e^2 = residual variance (1)
A = \text{random effect correlation matrix } (q \times q)
R = residual correlation matrix (n \times n)
\lambda = \sigma_e^2: \sigma_a^2 = regularization parameter (1)
```

n = number of observations

Henderson's equation

Model statement $y = X\beta + Zu + e$ $y \sim N(Xb, V)$ v = zDz' + R $D = A\sigma_a^2$ $R = I\sigma_e^2$

Generalized Mixed
Linear Model Equation

$$\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{D}^{-1} + \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{\beta}} \\ \tilde{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$$

BLUE & BLUP solutions

$$\tilde{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{\top}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}, \quad \text{with} \quad \mathrm{BLUE}(\mathbf{X}\boldsymbol{\beta}) = \mathbf{X}\tilde{\boldsymbol{\beta}}$$

$$\tilde{\mathbf{u}} = \mathbf{D}\mathbf{Z}'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}}) = \mathrm{BLUP}(\mathbf{u})$$

Reduce Model (R = I)

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \left\{_{d} \lambda_{i} \mathbf{I}_{q_{i}}\right\}_{i=1}^{r} \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{\beta}} \\ \tilde{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

Variance decomposition: Multiple random effects

PART II - Applications

Phenotypic selection

- 1. Genetic values (image on right)
 - From BLUP or BLUE
 - Non-additive
 - Require replicated trials
- 2. Breeding values
 - Use pedigree information
 - Additive genetics
 - Not necessarily replicated
- 3. Genomic Breeding values
 - Genotypes replace pedigree
 - Not necessarily additive

BLUP/BLUE/True value

Fig. 4 Plot of simulated BLUP (black circles), BLUE (grey dots), and true genetic values (solid line) versus true values

Piepho et al. 2008

Practical examples

Example from **Cunningham & Henderson 1968**

$$y = u + Xa + Zb + e$$

	Data	AND	INCIDENCE	MATI	RICES	
y	μ	a_1	a_2	b_1	b_2	b_3
3	1	1	0	1	0	0
2	1	1	0	0	1	0
3	1	1.	0	0	0	1.
2	1	1	0	1	0	0
3	1	1	0	0	1	0
5	1	1.	0	0	1	0
6	1.	1	0	0	1.	0
7	1	1	0	0	1	0
2	1	0	1	1	0	0
8	1	()	1	0	1	0
4.	1	0	1	0	0	1.
3	1	0	1	1	0	0
8	1	0	1	0	1	0
4	1	0	1	0	0	1
9	1	0	1	0	1	0
3	1	0	1	0	0	1
2	1	0	1	0	0	1
5	1	0	1	0	0	1

$$y = Xa + Zb + e$$

$$\lambda = 0.5721$$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{I}k \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

Example from Robinson 1991

Data

Herd	Sire	Yield
1	Α	110
1	D	100
2	В	110
2	D	100
2	\mathbf{D}	100
3	\mathbf{c}	. 110
3	\mathbf{c}	110
3	D	100
3	D	100

Design matrices

MME

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{Z}'\mathbf{X} \\ \mathbf{X}'\mathbf{Z} & \mathbf{Z}'\mathbf{Z} + \lambda \mathbf{K}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$
$$(\lambda = \sigma_{\mathbf{e}}^2 / \sigma_{\mathbf{a}}^2)$$

Solving

$$\begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 4 & 0 & 0 & 2 & 2 \\ \hline 1 & 0 & 0 & 11 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 11 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 12 & 0 \\ 1 & 2 & 2 & 0 & 0 & 0 & 15 \end{bmatrix} \begin{bmatrix} \hat{h}_1 \\ \hat{h}_2 \\ \hat{h}_3 \\ \hat{s}_A \\ \hat{s}_B \\ \hat{s}_C \\ \hat{s}_D \end{bmatrix} = \begin{bmatrix} 210 \\ 310 \\ 420 \\ 110 \\ 110 \\ 220 \\ 500 \end{bmatrix}$$

which has solution

(1.4)
$$\hat{\beta} = (105.64, 104.28, 105.46)^T, \\ \hat{u} = (0.40, 0.52, 0.76, -1.67)^T.$$

Example from Xavier et al. 2016

Field map (line and its yield)					
A = 27 Missing		E = 21			
E = 27	C = 20	B = 27			
B = 21	A = 25	Missing			

INPUT

Yield

$$\mathbf{Z} = \begin{bmatrix} A & B & C & D & E \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} C \\ D \\ D \\ E \\ \end{bmatrix}$$

$$-1.291$$
 $\sigma_a^2 = 4.004$ $\sigma_e^2 = 6.987$

Models with genomic data

G-BLUP and RR-BLUP

- Purpose: Estimate or predict breeding values using genomic data
- Method 1 (G-BLUP): MME using genomic relationship matrix (K=G)
- Method 2 (RR-BLUP): MME using centralized markers as the random design matrix (Z=M)

- Environment
- Block effect
- Covariates

- Breeding values (1): $\mathbf{u} \sim N(0, \mathbf{G}\sigma_a^2)$
- Breeding values (2): $\mathbf{u} = \mathbf{M}\alpha, \alpha \sim N(0, \mathbf{I}\sigma_u^2)$

$$\sigma_a^2 = \sigma_u^2 \, 2 \sum_{j=1}^P p_j (1 - p_j)$$

Genome-Wide Association Studies (GWAS)

- Purpose: Identify markers associated to the trait of interest
- Method: Likelihood Ration Test (LRT) between of model with and without markers

$$y = Xb + Zu + e$$

- Intercept
- Sub-population (Q)
- Covariates
- Marker (with vs. without)

• Breeding values: $\mathbf{u} \sim N(0, \mathbf{K}\sigma_a^2)$

REFERENCES

- 1. Cunningham, E. P., & Henderson, C. R. (1968). An iterative procedure for estimating fixed effects and variance components in mixed model situations. *Biometrics*, 13-25.
- 2. Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random effects. *Statistical science*, 15-32.
- 3. Searle, S. R. (1997). The matrix handling of BLUE and BLUP in the mixed linear model. *Linear algebra and its applications*, 264, 291-311.
- 4. Piepho, H. P., Möhring, J., Melchinger, A. E., & Büchse, A. (2008). BLUP for phenotypic selection in plant breeding and variety testing. *Euphytica*, 161(1-2), 209-228.
- 5. Xavier, A., Muir, W. M., Craig, B., & Rainey, K. M. (2016). Walking through the statistical black boxes of plant breeding. *Theoretical and Applied Genetics*, 129(10), 1933-1949.