Person Identity Verification Using Wi-Fi Based Handwritten Signature Signals on a Triplet Network

Young-Woong Kwon

The Graduate School Yonsei University School of Electrical and Electronic Engineering

Person Identity Verification Using Wi-Fi Based Handwritten Signature Signals on a Triplet Network

A Masters Thesis
Submitted to the School of Electrical and Electronic
Engineering
and the Graduate School of Yonsei University
in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical and Electronic Engineering

Young-Woong Kwon

September 2019

This certifies that the masters thesis of Young-Woong Kwon is approved.

Thesis S	Supervisor:	Prof.	Kar-Ann	Toh
----------	-------------	-------	---------	-----

Thesis Committee Member: Prof. Kwanghoon Sohn

Thesis Committee Member: Prof. Andrew Beng Jin Teoh

The Graduate School Yonsei University September 2019

ACKNOWLEDGEMENT

..

April 2018

Han-Cheol Moon

Contents

\mathbf{L}	ist o	f Figures	4
\mathbf{L}	ist o	f Tables	5
A	bstr	act	6
1	Intr	roduction	7
	1.1	Background	7
	1.2	Motivation and Contributions	7
	1.3	Organization of Thesis	8
2	Lite	erature Survey	9
	2.1	In-Air Signature Recognition	9
	2.2	Wi-Fi Signal based Human Activity Recognition	9
		2.2.1 Wi-Fi based Human Gesture Recognition Works	9
		2.2.2 Wi-Fi based Person Identification Works	9
3	\mathbf{Pre}	liminaries	10
	3.1	Biometric Identification System	10
	3.2	Evaluation metrics	10
	3.3	Received Signal Strength Indicator	10
	2 1	Channel State Information	10

		3.4.1	Multiple-Input and Multiple-Output	10
	3.5	Shift I	Matrix	11
	3.6	Metric	Learning	11
4	\mathbf{Pro}	\mathbf{posed}	System	12
	4.1	Overv	iew of the Proposed System	12
	4.2	Prepro	ocessing	12
	4.3	Propo	sed Methodology	12
		4.3.1	Triplet loss	13
		4.3.2	Triplet Mining based on the Kernel and the Range space	
			learning	15
		4.3.3	The ConvNet structures	16
5	Exp	erime	nts	18
5	Exp 5.1		nts set	18 18
5	_	Data s		
5	5.1	Data s	set	18
5	5.1	Data s	set	18 18
5	5.1	Data s Exper	imental Settings	18 18 18
5	5.1	Data s Exper 5.2.1 5.2.2 5.2.3	imental Settings	18 18 18
5	5.1 5.2	Data s Exper 5.2.1 5.2.2 5.2.3	imental Settings	18 18 18 18
5	5.1 5.2	Data s Experience 5.2.1 5.2.2 5.2.3 Experience	imental Settings	18 18 18 18 19
5	5.1 5.2	Data s Exper 5.2.1 5.2.2 5.2.3 Exper 5.3.1	imental Settings Evaluation Scenarios Evaluation Protocols Parameter Settings imental Results Effect of the DC Component	18 18 18 18 19 19

6	Conclusions and Future Works				
	6.1	Conclusions	20		
	6.2	Future Works	20		
Bibliography		20			
Summary (in Korean)					

List of Figures

4.1	An overview of the proposed methodology	13
4.2	ConvNet structure	17

List of Tables

Abstract

An In-Air Signature Identification System using Commercial Wi-Fi Devices

Han-Cheol Moon

School of Electrical and Electronic Engineering

The Graduate School

Yonsei University

...

Key words: Biometrics, Identification, In-Air Signature, Channel State Information, and Wi-Fi

Introduction

1.1 Background

...

1.2 Motivation and Contributions

... ..

1.3 Organization of Thesis

..

Literature Survey

2.1 In-Air Signature Recognition

...

- 2.2 Wi-Fi Signal based Human Activity Recognition
- .. sec:identification.
- 2.2.1 Wi-Fi based Human Gesture Recognition Works

. .

2.2.2 Wi-Fi based Person Identification Works

••

Preliminaries

..

3.1 Biometric Identification System

..

3.2 Evaluation metrics

..

3.3 Received Signal Strength Indicator

..

3.4 Channel State Information

..

3.4.1 Multiple-Input and Multiple-Output

..

3.5 Shift Matrix

..

3.6 Metric Learning

Proposed System

4.1 Overview of the Proposed System

.. [1]

4.2 Preprocessing

4.3 Proposed Methodology

In this paper, we propose person identity verification system based on the inair handwritten Wi-Fi signature signals (which will be called Wi-Fi signature hereafter). In order to learn the direction-invariant deep representations for inair signature, we used the triplet network[] which utilizes ConvNet[] as a feature extractor. Moreover, to achieve a faster loss convergence, we adopt the kernel and the range (KAR) space learning[] for mining the triplet input. Figure 4.1 shows an overview of the proposed system. Essentially, the KAR space projection learning is applied to mine the hard samples from the training dataset for making the triplet input (see item (a) in Fig. 4.1). The anchor sample is randomly selected from the training dataset as the reference data. The hard samples refer

Figure 4.1: An overview of the proposed methodology.

to which likely to be misclassified by the triplet network for given anchor sample. Subsequently, the ConvNet structure that forms triplet network (see item (b) in Fig. 4.1) is trained based on a triplet loss function based on the distance comparison for network output vector (see item (c) in Fig. 4.1). In the following subsections, we introduce the triplet network architecture, triplet loss, and triplet mining using KAR space learning in detail.

4.3.1 Triplet loss

The purpose of the triplet loss [] is training the ConvNet structure to learn discriminative features that allocates the samples of the same class closer and the samples of the different class far away in the feature space. The triplet input is made up of a combination of three samples, anchor sample x_0 , positive sample x_+ and negative sample x_- . The anchor sample, which is the reference for the triplet input, is selected from the training data set. For selected anchor sample x_0 , positive sample is selected from same identity with that of the anchor while negative sample is selected from different identity from that of the anchor. To make the discriminative feature vectors, we need $dist\{f(x_0), f(x_+)\}$, the distance between feature vectors of anchor $f(x_0)$ and positive sample $f(x_+)$ is larger than $dist\{f(x_0), f(x_-)\}$, distance between feature vectors of anchor and negative sample plus preset margin α . Distance measurement function is shown below:

$$dist\{f(x_0), f(x_-)\} - dist\{f(x_0), f(x_+)\} \ge \alpha$$
 (4.1)

By using L2 distance as distance function, triplet loss is calculated as below:

$$triplet_loss = \sum_{i}^{N} max \left(\left[\|f(x_0) - f(x_+)\|_2^2 - \|f(x_0) - f(x_-)\|_2^2 + \alpha \right], 0 \right),$$

$$(4.2)$$

Note that if $dist\{f(x_0), f(x_-)\}$ is much larger than $dist\{f(x_0), f(x_+)\} + \alpha$, the output of the loss function would be zero. In this case, it may slow down the convergence speed of the training of deep network. However, it is likely to fall into this condition if we randomly select training samples to make a triplet input. For fast loss convergence, we need to mine the triplet input that make the output of our network satisfy the condition 4.1 to ensure that the output of the loss function is non-zero.

4.3.2 Triplet Mining based on the Kernel and the Range space learning

In order to train the network faster, we propose training a sub-network for minining the hard positive and the hard negative sample from the training dataset.

The hard positive sample is the samples which is likely to be misclassified as a negative sample by the triplet network. In other words, the distance between feature vectors of anchor and hard positive sample is larger than other positive samples. On the other hand, the hard negative sample is likely to be misclassified as a positive sample since the distance between feature vectors of anchor and this hard negative sample is smaller than other negative samples. Hard triplet input is made by combining hard positive and hard negative samples for selected anchor samples. By using hard triplet as input to the triplet network, it is easier to satisfy the conditions of 4.1. However, we don't know which sample is the hard sample before training the triplet network.

To make the hard triplet input before training the triplet network, we propose training a small sub-network before triplet network. This small sub-network is made of Multi Layer Perceptron (MLP) and we adopt the Kernel And the Range (KAR) space learning to train the MLP sub-network. As the KAR space learning has no backpropagation and no iterative learning process, we can train this sub-network with the single shot utilizing the entire training dataset X. Given entire training dataset X, the sub-network output is given as:

$$KAR\left(\mathbf{X}\right) = \sigma\left(\left[\mathbf{1}, \sigma\left(\dots \left[\mathbf{1}, \sigma\left(\mathbf{X} \cdot \mathbf{W}_{1}\right)\right] \mathbf{W}_{2}\right)\right] \dots \mathbf{W}_{(n-1)}\right)\right] \mathbf{W}_{n}\right). \quad (4.3)$$

After training the sub-network, we can mine the hard sample by measuring the L2 distance between every output vector of the sub-network and output vector of anchor sample. The sub-network output of a given anchor sample x_0 is $KAR(x_0)$, To mine hard-positive sample, select one sample among the sub-network output which distance to anchor feature vector $KAR(x_0)$ is larger than threshold t_+ . For hard-negative sample, choose one among the sub-network output which distance to anchor feature vector is smaller than threshold t_- . Selected hard-positive and hard-negative sample satisfies this property:

$$||KAR(\mathbf{x}_0) - KAR(\mathbf{x}_+)||_2^2 \ge t_+,$$
 (4.4)

$$||KAR(\mathbf{x}_0) - KAR(\mathbf{x}_-)||_2^2 \le t_-,$$
 (4.5)

If the hardest sample, it is known that the outlier data is likely to be selected and there is a risk of overfishing[]. To avoid this problem, threshold for the hard-positive and the hard-negative samples are empirically chosen as 25 and 75 percentiles of the distance between anchor and sub-network outputs.

4.3.3 The ConvNet structures

Since the three-dimensional formats of our input signature signal can be considerd as an image data, we utilized deep ConvNet structure as a feature extractor. This ConvNet structure are made of three layers of ConvNet with triplet loss. Each layers of ConvNet shares their weights. Our ConvNet model is consists of three filters and output fully-connected (FC) layer as seen in (item (b) in Fig. 4.1). The depth of 3x3 sized ConvNet filters are empirically chosen as (64,128,256)

Figure 4.2: ConvNet structure.

with stride 1 and ReLU activation function. The size of FC layer is 16. Output FC layers are go through sigmoid activation function and normalized using L2 distance.

Experiments

..

5.1 Data set

..

5.2 Experimental Settings

..

5.2.1 Evaluation Scenarios

..

5.2.2 Evaluation Protocols

..

5.2.3 Parameter Settings

..

5.3 Experimental Results

..

5.3.1 Effect of the DC Component

..

5.3.2 Effect of the Weighting Scheme

..

5.3.3 Effect of the Facing Direction and the Position of the Subject

..

5.3.4 Comparison with the ConvNet

..

Conclusions and Future Works

6.1 Conclusions

...

6.2 Future Works

...

- 1. Recognizing the in-air signature written along non-LOS.
- 2. Repeating the same data acquisition experiments in a different place
- 3. Studying identification performances when multiple people are staying in the same room.
- 4. To secure a reliable identification system, spoofing attack scenario should be investigated.

Bibliography

[1] L. Leal-Taixe, C. Canton-Ferrer, and K. Schindler, "Learning by tracking: Siamese cnn for robust target association," in *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, June 2016.

국문요약

와이파이 신호를 이용한 공중 서명 인식 시스템

...

핵심되는 말: ...