コンパクト距離空間のバナッハ埋め込み定理

1

命題 1.1. 任意のコンパクト距離空間に対して、カントール集合からの全射連続写像が存在する.

命題 1.2. 任意のコンパクト距離空間は, C([0,1]) に等長に埋め込める.

証明。コンパクト距離空間を K で表すことにする。K は可分であるので,K の可算稠密部分集合を K' とする。フレシェ埋め込みにより, $l^\infty:=\{\lambda:K'\to\mathbb{R}\}$ に \sup ノルムを備えた空間に等長に埋め込める。K' の生成する自由 \mathbb{Q} 加群 $\mathbb{Q}\langle K'\rangle\subset l^\infty$ を考えると,

$$K' \subset \mathbb{Q}\langle K' \rangle \subset l^{\infty}$$

$$K = \overline{K'} \subset \overline{\mathbb{Q}\langle K' \rangle} \subset l^{\infty}$$

が成り立つ. $X := \overline{\mathbb{Q}\langle K' \rangle}$ とおくと, X^* の単位閉球を B で表すと, B は弱 * 位相に関してコンパクトであり, X が可分であることから, この位相に関して距離化可能である. カントール集合 C から B への全射連続写像 $f: \mathcal{C} \to B \subset X^*$ がとれる.

$$F: X \to C(\mathcal{C}); x \mapsto \langle f(\cdot), x \rangle$$

と定めると, $x,y \in X$ に対して

$$\|Fx - Fy\|_{\infty} = \sup_{c \in \mathcal{C}} \langle f(c), x - y \rangle \le \sup_{c \in \mathcal{C}} \|fc\| \|x - y\| \le \|x - y\|_X$$

が成り立つ. また、ハーンバナッハの定理より、 $x-y \in X$ に対して、 $T \in B$ で

$$\langle T, x - y \rangle = \|x - y\|_X$$

を満たすものが存在する. f は $\mathcal C$ から B への全射であるので, 適当な $c\in\mathcal C$ で

$$\langle fc, x - y \rangle = ||x - y||$$

を満たすものが存在するので,

$$||Fx - Fy||_{\infty} = \sup_{c \in \mathcal{C}} \langle f(c), x - y \rangle \ge ||x - y||_X$$

が成り立つ. 故に,

$$||Fx - Fy||_{\infty} = ||x - y||_X$$

が成り立つ. 故に $F:X\to C(\mathcal{C})$ は等長埋め込みである. \mathcal{C} は [0,1] の閉集合であり, [0,1] は閉集合同士を分離できるので, Tietze の拡張定理より一様ノルムを保った連続拡張 ι が存在する. 包含写像 $K\subset\overline{\mathbb{Q}\langle K'\rangle}$ を $i:K\to\overline{\mathbb{Q}\langle K'\rangle}$ で表すと $\iota\circ F\circ i:K\to C(\mathcal{C})$ は等長埋め込みである.