Statistical Learning

Bùi Tiến Lên

01/09/2019

Contents

1. Probability And Statistics

2. Statiscal Learning Learning

3. Linear Regression Revisited

4. Naive Bayes

5. Bayesian Networks

Introduction

Bayesian Network Representation

Learning Bayesian Networks

Parameter Learning

Structure Learning

More Representation

Bayesian Network

Networks

Structure Learning

More Representation

Notation

symbol	meaning		
$a, b, c, N \dots$	scalar number		
$\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}, \boldsymbol{y} \dots$	column vector		
$\boldsymbol{X},\boldsymbol{Y}\dots$	matrix	operator	meaning
\mathbb{R}	set of real numbers	w^{\intercal}	transpose
$\mathbb Z$	set of integer numbers	XY	matrix multiplication
\mathbb{N}	set of natural numbers	$oldsymbol{\mathcal{X}}^{-1}$	inverse
\mathbb{R}^D	set of vectors		
$\mathcal{X},\mathcal{Y},\dots$	set		
$\mathcal A$	algorithm		

Probability And Statistics

Probability And **Statistics**

Bayes Theorem

$$P(h \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid h)P(h)}{P(\mathcal{D})} \tag{1}$$

- P(h) = **prior probability** of hypothesis h
- $P(\mathcal{D}) = \text{prior probability of training data } \mathcal{D}$
- $P(h \mid \mathcal{D}) = \text{probability of } h \text{ given } \mathcal{D} \text{ (called)}$ posterior probability)
- $P(\mathcal{D} \mid h) = \text{probability of } \mathcal{D} \text{ given } h \text{ (called)}$ likelihood)

Basic Formulas for Probabilities

• Product Rule: probability $P(A \wedge B)$ of a conjunction of two events A and B:

$$P(A \wedge B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Sum Rule: probability of a disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

• Theorem of total probability: if events A_1, \ldots, A_n are mutually exclusive with $\sum_{i=1}^{n} P(A_i) = 1$, then

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

Probability And Statistics

Example 1

• We have the joint distribution of three random variables P(Toothache, Cavity, Catch)

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576
<u> </u>				

Probability And Statistics

Statisca Learning

Learnin

Regression

Naive Baye

Bayesian

Introducti

Introducti

Representation

Learning Baye

Networks

Parameter Learnii

Structure Learnin

iviore Representation

Example 1 (cont.)

	tooi	thache	¬ too	thache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064$$

= 0.2

Probability And Statistics

Example 1 (cont.)

toothache \neg toothache catch \neg catch catch \neg catch .012 .108 .072 .008 cavity .016 .064 .144 .576 $\neg cavity$

$P(\textit{cavity} \lor \textit{toothache}) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064$	ache) = 0.108 + 0.012 + 0.072 + 0.008	68 + 0.016 + 0.064
= 0.28	= 0.28	

Probability And Statistics

Statisca

Learn

. .

Regression

Naive Baye

Networ

Introducti

Bayesian No

Laurelau David

Networks

Networks

Structure Learnin

Structure Learnin

More Representation

Example 1 (cont.)

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$P(\neg \textit{cavity} \mid \textit{toothache}) = \frac{P(\neg \textit{cavity} \land \textit{toothache})}{P(\textit{toothache})}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064}$$
$$= 0.4$$

Example 1 (cont.)

Problem

Let x be all the variables. We want the posterior joint distribution of the query variables y given specific values v_e for the evidence variables e

Solution

- General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables
- Let the **hidden variables** be h = x y e and denominator can be viewed as a normalization constant α

$$P(\mathbf{y} \mid \mathbf{e} = \mathbf{v}_e) = \alpha P(\mathbf{y}, \mathbf{e} = \mathbf{v}_e) = \alpha \sum_{\mathbf{h}} P(\mathbf{y}, \mathbf{e} = \mathbf{v}_e, \mathbf{h} = \mathbf{v}_h)$$

Probability And Statistics

Statiscal Learning

Learn

Linear

Naive Bave

rearre Baye

Networ

Bayesian Net

Representatio

Networks

Networks

Structure Learnin

Structure Learnin

Example 1 (cont.)

	toothache		¬ toothache	
	catch	\neg catch	catch	¬ catch
cavity			.072	.008
¬ cavity	.016	.064	.144	.576

- *P*(*Cavity* | *toothache*)
- $= \alpha P(Cavity, toothache)$
- $= \alpha [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$
- $= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$
- $= \alpha \langle 0.12, 0.08 \rangle$
- $= \langle 0.6, 0.4 \rangle$

Parameter Learnin

More Representat

Example 2

Does patient have cancer or not?

"A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer."

Solution

Probability And Statistics

Statiscal Learning

Linear

Regression

Naive Baye

Bayesian

Network

Introductio

Representation

Learning Bayesia

Networks

Parameter Learning

Structure Learning

wore representation

Example 3

- Suppose there are five kinds of bags of candies:
 - 10% are h_1 : 100% cherry candies
 - 20% are h_2 : 75% cherry candies + 25% lime candies
 - 40% are h_3 : 50% cherry candies + 50% lime candies
 - 20% are h_4 : 25% cherry candies + 75% lime candies
 - 10% are h_5 : 100% lime candies

Experiment

- Select one bag
- Candies drawn from the bag: $\mathcal{D} = \{ \bullet \}$

Question

- 1. What kind of bag is it?
- 2. What flavour will the next candy be?

Statiscal Learning

robability And

Statiscal Learning

. .

Linear Regressio

Naive Bave

runive Buy

INCLWOIN

Introductio

D

Representation

Learning Bay

Networks

Parameter Learn

Structure Learning

Structure Learnin

More Representation

Components of Learning

Probabilistic Approach

Concept 1

Learning is an estimation of joint *probability density* functions given observed data \mathcal{D} .

Classification and Regression: conditional density estimation

$$p(y \mid \mathbf{x}) \tag{2}$$

• Unsupervised Learning: density estimation

$$p(\mathbf{x}) \tag{3}$$

• Inductive bias is expressed as prior assumptions about these joint distributions.

obability And

Statiscal Learning

1 -----

Linear Regressio

Naive Bave

Bayesian

Introduction

Representatio

Learning Bay

Parameter Lear

Structure Learnin

More Representation

Probabilistic Approach (cont.)

Statiscal Learning

Networks

More Representation

Type of Supervised Model

	Discriminative model	Generative model
Goal	• Directly estimate $P(y \mid x)$	• Estimate $P(\mathbf{x} \mid \mathbf{y})$ to then deduce $P(\mathbf{y} \mid \mathbf{x})$
What's learned	Decision boundary	 Probability distributions of the data

Bayesian Learning Fundamentals

Concept 2

Bayesian learning is a process that updates of a probability distribution over the **hypothesis space** $\mathcal{H} = \{h_1, h_2, ...\}$ given samples \mathcal{D} .

Prior probability of each hypothesis h;

$$P(h_i) \tag{4}$$

• Given the data \mathcal{D} , each hypothesis has a posterior probability (update)

$$P(h_i \mid \mathcal{D}) = \alpha P(\mathcal{D} \mid h_i) P(h_i)$$
 (5)

• Predictions use a average over the hypotheses

$$P(y) = \sum_{i} P(y \mid h_i) P(h_i)$$
 (6)

Evolution of Posterior Probabilities

• Changes of a probability distribution P(h) after observing the data D_1 and D_2

Statiscal Learning

Learr

Linear Regressio

Naive Bave

Motworl

Introductio

Representation

Learning Bay

Networks

Parameter Learnin

Structure Learning

More Representation

Example 3 Revisited

What kind of bag is it?
 Posterior probability of hypotheses

Statiscal Learning

Example 3 Revisited (cont.)

2. What flavour will the next candy be? Prediction probability

Statiscal Learning

Exercise

 Suppose we have a box of dice that contains a 4-sided die, a 6-sided die, an 8-sided die, a 12-sided die, and a 20-sided die

Experiment

- We select one die
- We roll the die a few more times and get $\mathcal{D} = \{6, 8, 7, 7, 5, 4\}$

Question

1. What die is selected?

Statisca Learning

Learning

Linear Regression Revisited

Naive Baye

Bayesian

Introductio

Representati

Learning Bayesia

Networks

Structure Learning

More Representation

Learning Strategy

- **Updating** or **summing** over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)
- Alternative strategies:
 - Maximum a posteriori (MAP) learning
 - Maximum likelihood (ML) learning

ivalve ваус

Network

Introduction

Bayesian N

Learning Bayesi

Networks

Parameter Learn

Structure Learnin

More Representation

Learning Strategy (cont.)

Maximum a posteriori learning

Given data \mathcal{D}

- choose hypothesis h (called h_{MAP}) maximizing $P(h \mid \mathcal{D})$
- i.e., maximize $P(\mathcal{D} \mid h)P(h)$ or $\log P(\mathcal{D} \mid h) + \log P(h)$

Learning Strategy (cont.)

For large data sets, prior becomes weak or irrelevant, maximum likelihood learning

Given data \mathcal{D}

• choose hypothesis h (called h_{ML}) maximizing $P(\mathcal{D} \mid h)$ or $\log P(\mathcal{D} \mid h)$

Learning

Linear Regression

Naive Baye

Bayesian

......

Introducti

Representatio

Learning Bayes

Networks

Parameter Learnin

Structure Learning

More Representation

Example 4

• A bag has a fraction θ of cherry candies?

Experiment

• Candies drawn from the bag: $\mathcal{D} = \{ \bullet \}$

Question

1. What θ is it?

Example 4 (cont.)

ML learning solution

• Bayes net with one parameter θ

- Any θ is possible: continuum of hypotheses h_{θ}
- θ is a parameter for this simple (binomial) family of models
- Suppose we unwrap N candies, c cherries and $\ell = N c$ limes. These are i.i.d. (independent, identically distributed) observations, so

$$P(\mathcal{D} \mid h_{\theta}) = \prod_{j=1}^{N} P(d_j \mid h_{\theta}) = \theta^{c} \cdot (1 - \theta)^{\ell}$$

meroducer

Representatio

Learning Bayes

Networks

Parameter Learn

Structure Learnin

More Representation

Example 4 (cont.)

• Maximize this w.r.t. θ —which is easier for the **log-likelihood**:

$$L(\mathcal{D} \mid h_{\theta}) = \log P(\mathcal{D} \mid h_{\theta})$$

$$= \sum_{j=1}^{N} \log P(d_{j} \mid h_{\theta})$$

$$= c \log \theta + \ell \log(1 - \theta)$$

$$\frac{dL(\mathcal{D} \mid h_{\theta})}{d\theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0$$

$$\implies \theta = \frac{c}{c + \ell} = \frac{c}{N}$$

- Seems sensible, but causes problems with 0 counts!

Learning

Linear Regression Revisited

Naive Baye

_

Merwor

Introducti

Representatio

Learning Bayes

Networks

Parameter Learnin

Structure Learnin

More Representation

Example 5

• A bag has a fraction θ of cherry candies, red/green wrapper depends probabilistically θ_1, θ_2 on flavor?

Experiment

• Candies drawn from some bag: $\mathcal{D} = \{ \bullet \}$

Question

1. What θ , θ ₁, θ ₂ are they?

Learning

Linear Regression Revisited

Naive Baye

. .

Network

Introduction

Bayesian No

1 D

Notworks

Darameter Lear

Structure Learning

More Representation

Example 5 (cont.)

ML learning solution

• Bayes net with one parameter $\theta, \theta_1, \theta_2$

Example 5 (cont.)

• Likelihood for, e.g., cherry candy in green wrapper:

$$P(F = \textit{cherry}, W = \textit{green} \mid h_{\theta,\theta_1,\theta_2}) \\ = P(F = \textit{cherry} \mid h_{\theta,\theta_1,\theta_2}) P(W = \textit{green} \mid F = \textit{cherry}, h_{\theta,\theta_1,\theta_2}) \\ = \theta \cdot (1 - \theta_1)$$

• N candies, r_c red-wrapped cherry candies, etc.:

$$P(\mathcal{D} \mid h_{\theta,\theta_1,\theta_2}) = \theta^{\mathsf{c}} (1-\theta)^{\ell} \cdot \theta_1^{\mathsf{r}_{\mathsf{c}}} (1-\theta_1)^{\mathsf{g}_{\mathsf{c}}} \cdot \theta_2^{\mathsf{r}_{\ell}} (1-\theta_2)^{\mathsf{g}_{\ell}}$$

$$L = [c \log \theta + \ell \log(1 - \theta)]$$
$$+ [r_c \log \theta_1 + g_c \log(1 - \theta_1)]$$
$$+ [r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$$

Representatio

Learning Bayesi

Networks
Parameter Learn

Structure Learning

More Representation

Example 5 (cont.)

• Derivatives of *L* contain only the relevant parameter:

$$\frac{\partial L}{\partial \theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0 \implies \theta = \frac{c}{c + \ell}$$

$$\frac{\partial L}{\partial \theta_1} = \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0 \implies \theta_1 = \frac{r_c}{r_c + g_c}$$

$$\frac{\partial L}{\partial \theta_2} = \frac{r_\ell}{\theta_2} - \frac{g_\ell}{1 - \theta_2} = 0 \implies \theta_2 = \frac{r_\ell}{r_\ell + g_\ell}$$

• With **complete data**, parameters can be learned separately

34

Linear Regression Revisited

Linear Regression

• Unknown function f is modeled by the hypothesis $h_{\mathbf{w}}$

$$y = h_{\mathbf{w}}(x) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + e \tag{7}$$

where y is noisy target value, e is random variable (noise) drawn independently according to a Gaussian distribution with mean equal to 0 and variance equal to σ ($\mathcal{N}(0, \sigma^2)$)

Probability language

$$p(y \mid \mathbf{x}, \mathbf{w}) = \mathcal{N}(y \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}, \sigma^{2})$$
 (8)

• Given data $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$, the likelihood of \mathcal{D} given h_w and noise

$$p(\mathcal{D} \mid h_{\mathbf{w}}, e) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}) = \prod_{i=1}^{N} \mathcal{N}(y_i \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}, \sigma^2)$$

ML Learning

Choose hypothesis h maximizing the likelihood

$$\arg \max_{\mathbf{w}, \sigma} p(\mathcal{D} \mid h_{\mathbf{w}}, e)
\Leftrightarrow \arg \max_{\mathbf{w}, \sigma} \prod_{i=1}^{N} \mathcal{N}(y_i \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}_i, \sigma^2)
\Leftrightarrow \arg \max_{\mathbf{w}, \sigma} \log \left(\prod_{i=1}^{N} \mathcal{N}(y_i \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}_i, \sigma^2) \right)
\Leftrightarrow \arg \min_{\mathbf{w}, \sigma} \frac{1}{2\sigma^2} MSE + \frac{N}{2} \log(\sigma^2) + \frac{N}{2} \log(2\pi)$$
(9)

Solving (9), we have

$$\mathbf{w}_{ML} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}_{ML}^{\mathsf{T}} \mathbf{x}_i - y_i)^2$$

obability And atistics

Statiscal Learning

Learning

Linear Regression Revisited

Naive Baye

.....

Network

.....

Representation

Learning Baye

Networks

Parameter Learn

Structure Learnin

More Representation

Example

Figure 1: The red curve denotes the regression curve and the red region corresponds to $\pm \sigma$ standard deviation

Network

Introduction

Bayesian N

Learning Bayes

Networks

Parameter Learnin

Structure Learning

More Representation

When to use

Along with decision trees, neural networks, nearest neighbour, one of the most practical learning methods.

- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification

Successful applications

- Diagnosis
- Classifying text documents

Assume target function for classification problem

$$f: \mathcal{X} \to \mathcal{Y}$$

where each instance \boldsymbol{x} described by attributes $(x_1, x_2 \dots x_D)$ and y is a corresponding class.

Naive Bayes assumption

$$P(x_1, x_2 \dots x_D \mid y) = \prod_{i=1}^{D} P(x_i \mid y)$$
 (10)

Naive Bayes classifier

$$y_{NB} = \arg\max_{y} \hat{P}(y) \prod_{i=1}^{D} \hat{P}(x_i \mid y)$$
 (11)

Naive Bayes classifiers

The form of the class-conditional density depends on the type of each feature.

1. In the case of real-valued features, we can use the **Gaussian distribution**:

$$p(\mathbf{x} \mid y = c) \sim \prod_{j=1}^{D} \mathcal{N}(x_j \mid \mu_{jc}, \sigma_{jc}^2)$$

where μ_{jc} is the mean of feature j in objects of class c, and σ_{jc}^2 is its variance.

2. In the case of binary features, $x_j \in \{0, 1\}$, we can use the **Bernoulli distribution**:

$$p(\mathbf{x} \mid y = c) \sim \prod_{i=1}^{D} \operatorname{Ber}(x_j \mid \mu_{jc})$$

where μ_{jc} is the probability that feature j occurs in class c.

Naive Bayes classifiers (cont.)

3. In the case of categorical features, $x_i \in \{v_{i_1}, v_{i_2}, \cdots, v_{i_K}\}$, we can use the multinoulli distribution:

$$p(\mathbf{x} \mid y = c) \sim \prod_{j=1}^{D} \mathsf{Cat}(x_j \mid \boldsymbol{\mu_{jc}})$$

where μ_{ic} is a histogram over the K possible values for x_i in class c.

Bayesian

1400000

Introductio

Bayesian N

Kepresentatio

Networks

Parameter Lea

Structure Learnin

Structure Learnin

Naive Bayes Algorithm


```
NaiveBayesLearn(\mathcal{D})

For each target value (class) y_j

\hat{P}(y_j) \leftarrow \text{estimate } P(y_j) \text{ given data } \mathcal{D}

For each attribute x_i

\hat{P}(x_i \mid y_j) \leftarrow \text{estimate } P(x_i \mid y_j) \text{ given data } \mathcal{D}
```

```
CLASSIFYNEWINSTANCE(x)
y = \arg\max_{y} \hat{P}(y) \prod_{i=1}^{D} \hat{P}(x_i \mid y)
return y
```

Naive Bayes Algorithm (cont.)

Maximum likelihood learning for $\hat{P}(y=c)$ and $\hat{P}(x_i=a\mid y=c)$

$$\hat{P}(y=c) \leftarrow \frac{n_c}{n} \tag{12}$$

$$\hat{P}(x_i = a \mid y = c) \leftarrow \frac{n_a}{n_c} \tag{13}$$

where

- n is number of training examples
- n_c is number of training examples for which y = c
- n_a is number of examples for which y = c and $x_i = a$

obability And

Statiscal Learning

Linear Regression

Naive Bayes

Bayesia

Introductio

Representation

Networks

Parameter Learn

Structure Learning

More Representation

Example

• Consider PlayTennis again

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
$\mathcal{D} =$	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

Example (cont.)

P(PlayTennis)

()	,
Yes	9/14
No	5/14

 $\hat{P}(Outlook \mid PlayTennis)$

		Outlook			
		Overcast	Rain	Sunny	
PlayTennis	Yes	4/9	3/9	2/9	
Flay Fellins	No	0/5	2/5	3/5	

 $\hat{P}(Humidity \mid PlayTennis)$

		Humidity	
		High	Normal
PlayTennis	Yes	3/9	6/9
i lay i ellilis	No	4/5	1/5

 $\hat{P}(Temperature \mid PlayTennis)$

		Te	mperat	ure
		Cool	Hot	Mild
PlayTennis	Yes	3/9	2/9	4/9
Flay Fellilis	No	1/5	2/5	2/5

P(Wind | PlayTennis)

		Wind	
		Strong	Weak
PlayTennis	Yes	3/9	6/9
T lay Tellilis	No	3/5	2/5

Example (cont.)

Get new instance

$$\mathbf{x} = (Outlk = sun, Temp = cool, Humid = high, Wind = strong)$$

Compute

$$\hat{P}(\textit{Yes}) \times \hat{P}(\textit{sun} \mid \textit{Yes}) \times \hat{P}(\textit{cool} \mid \textit{Yes}) \times \hat{P}(\textit{high} \mid \textit{Yes}) \times \hat{P}(\textit{strong} \mid \textit{Yes}) = .005 \\ \hat{P}(\textit{No}) \times \hat{P}(\textit{sun} \mid \textit{No}) \times \hat{P}(\textit{cool} \mid \textit{No}) \times \hat{P}(\textit{high} \mid \textit{No}) \times \hat{P}(\textit{strong} \mid \textit{No}) = .021$$

Make decison

v = No

obability And atistics

Statiscal Learning

Linear

Linear Regression

Naive Bayes

Network

......

Introduction

Raunsian I

Representatio

Networks

rectworks

Character I amount

Structure Learnin

More Representation

Word Example

#	Vį	Màu	Vỏ	Độc tính
1	Ngọt	Đỏ	Nhẵn	Không
2	Cay	Đỏ	Nhẵn	Không
3	Chua	Vàng	Có gai	Không
4	Cay	Vàng	Có gai	Có
5	Ngọt	Tím	Có gai	Không
6	Chua	Vàng	Nhẵn	Không
7	Ngọt	Tím	Nhẵn	Không
8	Cay	Tím	Có gai	Có
9	Cay	Vàng	Có gai	Không

Network

Introductio

Davasias N

Representation

Networks

Parameter Learn

Structure Learnin

More Representation

Avoiding the zero-probability problem

- Conditional independence assumption is often violated but it works surprisingly well anyway
- 2. Suppose that none of the training instances with target value y have attribute value $x_i = v$? then $\hat{P}(x_i = v \mid y) = 0$, and $\hat{P}(y) \dots \hat{P}(x_i = v \mid y) \dots = 0$ (not good in probability language)

Avoiding the zero-probability problem (cont.)

Typical solution is **Bayesian estimate** for $\hat{P}(y=c)$ and $\hat{P}(x_i=a\mid y=c)$

$$\hat{P}(y=c) \leftarrow \frac{n_c + 1}{n + C} \tag{14}$$

$$\hat{P}(x_i = a \mid y = c) \leftarrow \frac{n_a + 1}{n_c + r} \tag{15}$$

where

- n is number of training examples
- n_c is number of training examples for which y = c
- C is the number of classes
- n_a is number of examples for which y = c and $x_i = a$
- r is the number of values of attribute x_i

Bayesian Networks

obability And

Statiscal Learning

Linear Regression

Naive Bayes

D

Introduction

Representation

Networks
Parameter Learnin

Structure Learning

More Representatio

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax

- A set of nodes, one per variable
- A directed, acyclic graph (DAG) (link \approx "directly influences")
- A conditional distribution for each node given its parents:

$$P(X_i \mid parents(X_i))$$

 In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

Introduction

• Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Introduction

Example (cont.)

Problem

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

• Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Marv to call
- The alarm can cause John to call

obability And atistics

Statiscal Learning

Learnii

Linear Regression

Naive Baye

Rayosian

INCLWOIF

Bayesian Network

Representation

Networks

Parameter Learni

Structure Learning

More Representation

Graphical Model

obability And

Statiscal Learning

Learning

Linear Regressio Revisited

Naive Baye

Bayesian

Introduction

Bayesian Network

Representation

Networks

Parameter Learnin

Structure Learning

rning

Type of Variables

- X, Y are random or not
- X, Y are observed or hidden
- X, Y are continuous or discrete (boolean, category)

CPT Representation

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

- If each variable has no more than k parents, the complete network requires $O(n \times 2^k)$ numbers
 - I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For **burglary net**, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5 - 1 = 31$

Bayesian Network Representation

Global semantics and Inference

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i\mid parents(X_i))$$

For example,

$$P(j \land m \land a \land \neg b \land \neg e) = P(j \mid a)P(m \mid a)P(a \mid \neg b, \neg e)P(\neg b)P(\neg e)$$
$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$
$$\approx 0.00063$$

bability And

Statiscal Learning

Learning Learning

Linear Regression Revisited

Naive Baye

Network

Introduction

Bayesian N

Learning Bayesian

Networks

Structure Learnin

Man December

The Learning Problem

	Known Structure	Unknown Structure
Complete Data	Statistical parametric estimation (closed-form)	Discrete optimization over structures (discrete search)
Incomplete Data	Parametric optimization (EM, gradient descent)	Combined (Structural EM, mixture models)

Learning problem includes

- Parameter learning
- Structure learning

Known Structure and Complete Data

• Given a training data \mathcal{D} , find the best parameter θ s for multinomial variables

$$P_{\theta}(X_i \mid pa_i) \tag{16}$$

where $pa_i = parents(X_i)$ (pa_i can be \emptyset)

 Estimate parameter Maximum likelihood

$$\hat{\theta}_{ML} = \frac{count(x_i, pa_i)}{count(pa_i)} \tag{17}$$

Maximum a posteriori

$$\hat{\theta}_{MAP} = \frac{\alpha(x_i, pa_i) + count(x_i, pa_i)}{\alpha(pa_i) + count(pa_i)}$$
(18)

where *Count(.)* is the number of instances

robability And

Statisca Learning

Linear

Linear Regression Revisited

Naive Baye

Networks

Introduction

Introduction

Representation

Networks

Parameter Learning

Structure Learning

More Representation

Example

ullet Find the best parameter heta given the following training data $\mathcal D$

#	Rain	Sprinkler	Grass Wet
1	Т	Т	Т
2	Т	Т	F
3	Т	F	Т
4	Т	F	F
1 2 3 4 5	F	Т	Т
6 7	F F F	Т	F
	F	F	Т
8 9	F	F	F
9	Т	Т	Т
10	F	Т	Т
11	Т	T F F	Т
12	F F	F	Т
13	F	Т	Т
14	Т	Т	Т

Unknown Structure and Complete Data

- Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics
- **1.** Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n add X_i to the network select parents from X_1, \ldots, X_{i-1} such that

$$P(X_i \mid parents(X_i)) = P(X_i \mid X_1, \dots, X_{i-1})$$

This choice of parents guarantees the global semantics:

$$\begin{array}{lcl} \boldsymbol{P}(X_1,\ldots,X_n) & = & \prod_{i=1}^n \boldsymbol{P}(X_i \mid X_1,\ldots,X_{i-1}) & \text{(chain rule)} \\ & = & \prod_{i=1}^n \boldsymbol{P}(X_i \mid parents(X_i)) & \text{(by construction)} \end{array}$$

Example: Burglary alarm

• Suppose we choose the ordering M, J, A, B, E $P(J \mid M) = P(J)$?

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$?

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No $P(A \mid J, M) = P(A)$? No $P(B \mid A, J, M) = P(B \mid A)$? $P(B \mid A, J, M) = P(B)$?

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No $P(A \mid J, M) = P(A)$? No $P(B \mid A, J, M) = P(B \mid A)$? Yes $P(B \mid A, J, M) = P(B)$? No $P(E \mid B, A, J, M) = P(E \mid A)$? $P(E \mid B, A, J, M) = P(E \mid A, B)$?

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No
 $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$? No
 $P(B \mid A, J, M) = P(B \mid A)$? Yes
 $P(B \mid A, J, M) = P(B)$? No
 $P(E \mid B, A, J, M) = P(E \mid A)$? No
 $P(E \mid B, A, J, M) = P(E \mid A, B)$? Yes

. . .

Representation

Learning Bayesia Networks

Parameter Learnin

Structure Learning

More Representation

Example: Burglary alarm (cont.)

- Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!)
- Assessing conditional probabilities is hard in noncausal directions
- Network is less compact: 1+2+4+2+4=13 numbers needed

bability And

Statiscal Learning

Learning

Linear Regression

Naive Baye

Ivalve Daye

Network

Introducti

Bayesian Net

Representatio

Metworks

Networks

- ------

Structure Learning

Example: Car diagnosis

- Initial evidence (red): car won't start
- Testable variables (green), "broken, so fix it" variables (orange)
- Hidden variables (gray) ensure sparse structure, reduce parameters

bability And

Statiscal Learning

Learni

Linear

Naivo Bay

Ivalve Daye

Network

Introducti

Representatio

Learning Baye

Structure Learning

Example: Car insurance

Compact conditional distributions

Problem

- CPT grows exponentially with number of parents
- CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

• **Deterministic** nodes are the simplest case:

$$X = f(parents(X))$$
 for some function f

Boolean functions

$$NorthAmerican \equiv Canadian \lor US \lor Mexican$$

Numerical relationships among continuous variables

$$\frac{\partial Level}{\partial t} = \text{inflow} + \text{precipitation} - \text{outflow} - \text{evaporation}$$

Compact conditional distributions (cont.)

- Noisy-OR distributions model multiple noninteracting causes
 - **1.** Parents $U_1 \dots U_k$ include all causes (can add **leak node**)
 - 2. Independent failure probability q_i for each cause alone

$$P(X \mid U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^J q_i$$

Number of parameters *linear* in number of parents

Compact conditional distributions (cont.)

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	Т	0.94	$0.06 = 0.6 \times 0.1$
T	Τ	F	0.88	$0.12 = 0.6 \times 0.2$
Т	T	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Bayesian nets with continuous variables

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

- Option 1: discretization possibly large errors, large CPTs
- Option 2: finitely parameterized canonical families
 - 1. Continuous variable, discrete+continuous parents (e.g., Cost)
 - 2. Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

- Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents
- Most common is the linear Gaussian (LG) model, e.g.,:

$$P(\textit{Cost} = c \mid \textit{Harvest} = h, \textit{Subsidy}? = \textit{true})$$
 $= N(a_t h + b_t, \sigma_t)(c) = \frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2\right)$

- Mean Cost varies linearly with Harvest, variance is fixed
- Linear variation is unreasonable over the full range but works OK if the likely range of *Harvest* is narrow

pability And

Statiscal Learning

Linear

Regression

Naive Bave

Bayesian

Network

Introduction

Representation

Learning Daysels

Networks

Parameter Learning

Structure Learning

More Representation

Continuous child variables (cont.)

- Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Figure 2: The graphs in (1) and (2) show the probability distribution over *Cost* as a function of *Harvest* size, with *Subsidy* true and false, respectively. Graph (3) shows the distribution $P(Cost \mid Harvest)$, obtained by summing over the two subsidy cases.

Discrete variable given continuous parents

• Probability of *Buys*? given *Cost* should be a "soft" threshold:

• **Probit** distribution uses integral of Gaussian:

$$\Phi(x) = \int_{-\infty}^{x} N(0,1)(x) dx$$

$$P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma)$$

Parameter Learni

Structure Learnin

More Representation

Discrete variable given continuous parents

• **Sigmoid** (or **logit**) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c+\mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:

Ivalve Bay

Network

Introduction

Bayesian N

representation

Networks

Parameter Learnin

Structure Learning

More Representation

Why the probit?

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning.

MIT press.

Lê, B. and Tô, V. (2014).
Cở sở trí tuệ nhân tạo.
Nhà xuất bản Khoa học và Kỹ thuật.

Nguyen, T. (2018).
Artificial intelligence slides.
Technical report, HCMC University of Sciences.

Russell, S. and Norvig, P. (2016).

Artificial intelligence: a modern approach.

Pearson Education Limited.