Ткачев С.Б.

каф. Математического моделирования МГТУ им. Н.Э. Баумана

ДИСКРЕТНАЯ МАТЕМАТИКА

ИУ5 — 4 семестр, 2015 г.

Семинар 10. КОЛЬЦА. ПОЛЯ. РЕШЕНИЕ СЛАУ

1. Кольца.

Определение 10.1. Кольцо — это алгебра с двумя бинарными и двумя нульарными операциями

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

- 1) алгебра (R, +, 0) коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид;
- 3) имеет место дистрибутивность операции · (умножения кольца) относительно операции + (сложения кольца):

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

Операцию + называют сложением кольца, \cdot — умножением кольца, элемент 0 — нулем кольца, элемент 1 — единицей кольца.

Определение 10.2. Кольцо называют коммутативным, если операция умножения в нем коммутативна.

Пример 1.

- а) Алгебра $(\mathbb{Z}, +, \cdot, 0, 1)$ есть коммутативное кольцо.
- б) Алгебра $(\mathbb{N} \cup \{0\}, +, \cdot, 0, 1)$ кольцом не будет, поскольку $(\mathbb{N} \cup \{0\}, +)$ коммутативный моноид, но не группа.
- б) Алгебра

$$\mathbb{Z}_k = (\{0, 1, 2, \dots, k-1\}, \oplus_k, \odot_k, 0, 1)$$

(при $k \ge 1$), есть коммутативное кольцо.

Его называют кольцом вычетов по модулю $\,k\,$.

Аддитивная группа кольца есть аддитивная группа вычетов по модулю k ,

Определение 10.3. Ненулевые элементы a и b кольца \mathcal{R} называют делителями нуля, если $a \cdot b = 0$.

Задача 4. Существуют ли делители нуля в кольце вычетов по модулю 4 \mathbb{Z}_4 .

В кольце Z_5 ?

При каких n Z_n не содержит делителей нуля?

2. Поля

Определение 10.4. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**.

Коммутативное тело называют полем.

Группу ненулевых элементов поля по умножению называют мультипликативной группой этого поля.

Пример 2.

- а) Алгебра $(\mathbb{Q},+,\cdot,0,1)$ есть поле, называемое **полем** рациональных чисел.
- б) Алгебра $(\mathbb{R}, +, \cdot, 0, 1)$ есть поле, называемое полем вещественных чисел.

Задача 6.1. Какие из числовых множеств образуют кольцо относительно обычных операций умножения и сложения:

- (а) множество неотрицательных целых чисел;
- (б) множество чисел вида $x + \sqrt{2}y$, $x, y \in \mathbb{Q}$? Какие из указанных колец являются полями?

Задача 6.2. Какие из множеств матриц образуют кольцо относительно матричных операций умножения и сложения? Какие из колец являются полями?

- (a) множество матриц вида $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $a,b,c \in \mathbb{R}$?
- (б) множество матриц вида $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $a,b \in \mathbb{R}$?

Теорема 1. В любом кольце выполняются следующие тождества

- 1) $a \cdot 0 = 0 \cdot a = 0$.
- 2) $(a-b) \cdot c = a \cdot c b \cdot c$,

 $c\cdot(a-b)=x\cdot a-c\cdot b$, где разность a-b есть по определению a-b=a+(-b) .

Следствие 10.1. В любом кольце справедливы тождества:

$$a \cdot (-b) = (-a) \cdot b = -a \cdot b$$

(в частности, $(-1) \cdot x = x \cdot (-1) = -x$).

Таким образом, производя вычисления в любом кольце (поле), можно раскрывать скобки и менять знаки так же, как в обычной школьной алгебре.

Задача 6.3.

Решить в поле \mathbb{Z}_3 и в поле \mathbb{Z}_5 систему уравнений:

$$\begin{cases} x + 2y = 1, \\ y + 2z = 2, \\ 2x + z = 1. \end{cases}$$

Задача 6.4.

Решить в поле \mathbb{Z}_5 и в поле \mathbb{Z}_7 систему уравнений:

$$\begin{cases} 2x + 3y = 1, \\ 3x - 4y = 2. \end{cases}$$

Задача 6.5.

Решить в поле \mathbb{Z}_7 систему уравнений:

$$\begin{cases} 3x + 4y + 5z = 2\\ 3x + 2y + 3z = 4,\\ x + y + 4z = 2. \end{cases}$$

Задача 6.6. Установить, имеет ли решение в поле \mathbb{Z}_{11} система уравнений:

$$\begin{cases} 3x + 7y + 10z = 2\\ 5x + 2y + 8z = 4,\\ 9x + 3y + 7z = 6. \end{cases}$$

Домашнее задание

Задача Д6.1.

Разрешима ли в кольце \mathbb{Z}_{21} система уравнений:

$$\begin{cases} 5x + 2y = 1, \\ y - 11x = 13? \end{cases}$$

Задача Д**6.2.** Установить, имеет ли решение в поле \mathbb{Z}_{11} система уравнений:

$$\begin{cases} 3x + 7y + 10z = 2\\ 5x + 2y + 8z = 4,\\ 9x + 3y + 7z = 6. \end{cases}$$

Если решение не единственно, описать множество решений.

Задача Д**6.3.** Установить, имеет ли решение в поле \mathbb{Z}_{11} система уравнений:

$$\begin{cases} 3x + 4y + 5z = 6 \\ 6x + 2y + 8z = 2, \\ 9x + 1y + 4z = 7. \end{cases}$$

Если решение не единственно, описать множество решений.

▶ First ▶ Prev ▶ Next ▶ Last ▶ Go Back ▶ Full Screen ▶ Close ▶ Quit

Дополнительные задачи

- **10.1.** Кольцо R называется булевым, если $\forall x \in R$ $x^2 = x$. Доказать:
- (a) в любом булевом кольце $\forall x \in R \ \ \, x + x = 0$;
- (б) любое булево кольцо коммутативно;
- (в) в любом булевом кольце мощности больше 2 есть делители нуля.
- **10.2.** Доказать, что $(2^M, \triangle, \cap, \varnothing, M)$ булево кольцо. Доказать, что оно изоморфно \mathbb{Z}_2 при |M|=1.
- **10.3.** Будет ли любое кольцо \mathbb{Z}_{2^n} , $n \geq 1$, булевым?