

CATHOLIC UNIVERSITY OF LOUVAIN

Project 3: Search

LINGI2365 - Constraint Programming

Auteurs:

Vanwelde Romain (3143-10-00) Crochelet Martin (2236-10-00) Superviseurs: Pr. Yves Deville François Aubry

Groupe 7

22 mars 2014

Table of Contents

Table des matières

1	The	Bruss	sels airport problem	2
	1.1	Explai	in the given model	2
	1.2	Design	a 2 different variable and/or value ordering heuristics for this problem.	2
	ŭ 1 0		on criteria are meaningful for comparing different search strategies? on your criteria, compare your heuristics with the labelFF heuristic	2
	1.1		ting them on the instance on iCampus	2
	1.5		der the following strategy Give an example with three planes	_
	1.0		this strategy is wrong	2
2	The	Knap	sack Problem	2
	2.1	A Branch & Bound approach		2
		2.1.1	Model the knapsack problem as Constraint Optimization	2
		2.1.2	Describe your model in the report	2
		2.1.3	Design 3 different heuristics for variable selection	2
		2.1.4	Test your heuristics and the labelFF heuristic on the knapsack-A	
			instances	2
		2.1.5	Present and discuss the results in your report	2
	2.2	Optimization over iterations		2
		2.2.1	Model the knapsack problem as a Constraint Satisfaction Problem.	2
		2.2.2	In order to implement the optimization over iterations	2
		2.2.3	Which of these points (i., ii., iii.) do you need to execute on which	_
		2.2.4	events?	2
		2.2.4	How do you modify the value of ub to be sure to find the optimal	0
		2.2.5	solution?	2
		2.2.3	Can you explain why we initialize ub with an upper bound instead of any other value?	2
		2.2.6	Experiment this program on the instances knapsack-A, -B	$\frac{2}{2}$
		2.2.0 $2.2.7$	Present and discuss the results in your report	$\frac{2}{2}$
	V I		nization via divide and conquer	$\frac{2}{2}$
	2.0	2.3.1	In order to implement the optimization via divide and conquer you	
		2.0.1	will have to	2
		2.3.2	Which of these points (i., ii., iii., iv.) do you need to execute on	
		<u>.</u>	which events?	2
		2.3.3	Experiment this version on the instances knapsack-A,-B,-C	2
		2.3.4	Present and discuss the results in your report	2

Table of Contents

Table of Contents 2

1 The Brussels airport problem

- 1.1 Explain the given model
- 1.2 Design 2 different variable and/or value ordering heuristics for this problem.
- 1.3 Which criteria are meaningful for comparing different search strategies?
- 1.4 Based on your criteria, compare your heuristics with the labelFF heuristic by testing them on the instance on iCampus.
- 1.5 Consider the following strategy. . . . Give an example with three planes where this strategy is wrong

2 The Knapsack Problem

2.1 A Branch & Bound approach

- 2.1.1 Model the knapsack problem as Constraint Optimization
- 2.1.2 Describe your model in the report.
- 2.1.3 Design 3 different heuristics for variable selection.
- 2.1.4 Test your heuristics and the labelFF heuristic on the knapsack-A instances.
- 2.1.5 Present and discuss the results in your report

2.2 Optimization over iterations

- 2.2.1 Model the knapsack problem as a Constraint Satisfaction Problem.
- 2.2.2 In order to implement the optimization over iterations ...
- 2.2.3 Which of these points (i., ii., iii.) do you need to execute on which events?
- 2.2.4 How do you modify the value of ub to be sure to find the optimal solution?
- 2.2.5 Can you explain why we initialize ub with an upper bound instead of any other value?
- 2.2.6 Experiment this program on the instances knapsack-A, -B.
- 2.2.7 Present and discuss the results in your report.

2.3 Optimization via divide and conquer

- 2.3.1 In order to implement the optimization via divide and conquer you will have to ...
- 2.3.2 Which of these points (i., ii., iii., iv.) do you need to execute on which events?
- 2.3.3 Experiment this version on the instances knapsack-A,-B,-C