111 學年度第一學期五專(資工二乙)數學期中考

一、單一選擇題(共70分,每題10分)

1. (D) 解(
$$\frac{3}{4}$$
)^{x+2} = ($\frac{4}{3}$)^{2x-5} ,得 x 之值為 (A)-1 (B)-2 (C)2 (D)1

解析:
$$(\frac{3}{4})^{x+2} = (\frac{4}{3})^{2x-5} \Rightarrow (\frac{3}{4})^{x+2} = (\frac{3}{4})^{-2x+5}$$

$$\therefore x + 2 = -2x + 5 \Rightarrow 3x = 3 \Rightarrow x = 1$$

2. (C) 設
$$\sin \theta + \cos \theta = -\frac{3}{4}$$
,則 $\sin 2\theta$ 之值為 (A) $\frac{7}{4}$ (B) $\frac{7}{8}$ (C) $\frac{-7}{16}$ (D) $\frac{-7}{8}$

解析:
$$(\sin \theta + \cos \theta)^2 = 1 + 2\sin \theta \cdot \cos \theta$$

$$\iiint (-\frac{3}{4})^2 = 1 + 2\sin\theta \cdot \cos\theta$$

$$\therefore 2\sin\theta \cdot \cos\theta = \frac{-7}{16}$$

ix sin 2
$$\theta$$
 = $-\frac{7}{16}$

3. (B)
$$Z = -\sqrt{3} + 3i$$
 ,則 Z 的主幅角為何? (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) π (D) $\frac{4}{3}\pi$

解析:
$$|Z| = \sqrt{\left(-\sqrt{3}\right)^2 + 3^2} = 2\sqrt{3},$$

$$Z = -\sqrt{3} + 3i$$

$$= 2\sqrt{3}\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$

$$= 2\sqrt{3}\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

$$Z 的主幅角為 \frac{2\pi}{3}$$

=i

4. (C) 化簡
$$\frac{(\cos 12^{\circ} + i \sin 12^{\circ})^{12} \times (\cos 2^{\circ} + i \sin 2^{\circ})^{5}}{(\cos 10^{\circ} + i \sin 10^{\circ})^{4} \times (\cos 3^{\circ} + i \sin 3^{\circ})^{8}} =$$
 (A)1 (B) -1 (C) i (D) $-i$ 解析: 原式 = $\frac{(\cos 144^{\circ} + i \sin 144^{\circ}) \times (\cos 10^{\circ} + i \sin 10^{\circ})}{(\cos 40^{\circ} + i \sin 40^{\circ}) \times (\cos 24^{\circ} + i \sin 24^{\circ})}$ = $\frac{\cos 154^{\circ} + i \sin 154^{\circ}}{\cos 64^{\circ} + i \sin 64^{\circ}}$ = $\cos (154^{\circ} - 64^{\circ}) + i \sin (154^{\circ} - 64^{\circ})$ = $\cos 90^{\circ} + i \sin 90^{\circ}$

5. (C) 設
$$0 < \alpha < \frac{\pi}{2}, \frac{\pi}{2} < \beta < \pi$$
 ,且 $\sin \alpha = \frac{3}{5}, \sin \beta = \frac{7}{25}$,則 $\cos(\alpha + \beta)$ 之值 (A) $\frac{-4}{5}$ (B) $\frac{-3}{5}$ (C) $\frac{-117}{125}$ (D) $\frac{-44}{125}$

解析: 利用餘弦和角公式知

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta = \frac{4}{5} \cdot \frac{-24}{25} - \frac{3}{5} \cdot \frac{7}{25} = \frac{-117}{125}$$

6. (B)
$$f(x) = \sin \theta - \sqrt{3} \cos \theta - 5$$
 之最大值 M ,最小值 m ,則 $3M - m = ?$ (A) -1 (B) -2 (C) -3 (D) -4

7. (
$$^{\mathbf{C}}$$
) $5^{a-b} \cdot 5^{b-c} \cdot 5^{c-a} =$ (A) 5^{a+b+c} (B)0 (C)1 (D)5 解析:原式= $5^{(a-b)+(b-c)+(c-a)} = 5^0 = 1$

二、計算與證明題(共30分,每題10分)

1. 設
$$z_1 = (2+i)^2(1+3i)^2$$
、 $z_2 = (1-i)^4(6-8i)$,試求 $\left|\frac{z_1}{z_2}\right|$ 之值。

2. 甲、乙兩人在塔的正東方 A 點與正南方 B 點,分別測得塔頂的仰角為 45° 、 30° ,已知 $\overline{AB} = 200$ 公尺,試求塔高為多少公尺?

答案:如圖所示

令塔高 $\overline{OC} = x$

由 $\triangle OAC$ 可得 $\overline{AC} = x$

$$\overline{AB}^2 = \overline{BC}^2 + \overline{AC}^2$$

$$\Rightarrow (\sqrt{3}x)^2 + x^2 = 200^2$$

$$\Rightarrow x = 100$$
 \triangle \triangleright

3.
$$2^{2x} - 3 \times 2^{x-1} - 1 = 0$$
 , 試求 x 之值。

答案: $\Rightarrow y = 2^x$, $2^{2x} - 3 \times 2^{x-1} - 1 = 0$

$$\Rightarrow (2^x)^2 - \frac{3}{2} \times 2^x - 1 = 0 \Rightarrow y^2 - \frac{3}{2} y - 1 = 0$$

$$\Rightarrow 2y^2 - 3y - 2 = 0 \Rightarrow (2y+1)(y-2) = 0$$

$$\Rightarrow y = 2 \cdot -\frac{1}{2} ($$
 不合 $) \Rightarrow 2^x = 2 \Rightarrow x = 1$