Derivatives of Vector-Valued Functions

Outline

1. Components

Consider a function general vector-valued function $\mathbf{f} \colon \mathbb{R}^m \to \mathbb{R}^n$. Such a function can be written as

$$\mathbf{f}(x_1,\ldots,x_m) = (f_1(x_1,\ldots,x_m),\ldots,f_n(x_1,\ldots,x_m)),$$

where each $f_i : \mathbb{R}^m \to \mathbb{R}$. The real-valued functions f_1, \ldots, f_n are called the **components** of **f**.

For example, if $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ is the function

$$\mathbf{f}(x,y) = (x^2 + y^2, x^2 - y^2, 2xy)$$

then **f** has components $f_1(x, y) = x^2 + y^2$, $f_2(x, y) = x^2 - y^2$, and $f_3(x, y) = 2xy$.

2. Partial Derivatives

If $\mathbf{f} \colon \mathbb{R}^m \to \mathbb{R}^n$, the **partial derivative** of \mathbf{f} with respect to x_i is the vector

$$\frac{\partial \mathbf{f}}{\partial x_i} = \left(\frac{\partial f_1}{\partial x_i}, \dots, \frac{\partial f_n}{\partial x_i}\right).$$

We sometimes use subscripts to denote partial derivatives. For example, if $\mathbf{f}(x, y, z)$ is vector-valued function on \mathbb{R}^3 , then \mathbf{f}_y would denote the partial derivative of \mathbf{f} with respect to y.

3. Parameter Curves

Given a function $\mathbf{f} \colon \mathbb{R}^m \to \mathbb{R}^n$, a parameter curve for \mathbf{f} is a curve $\gamma \colon \mathbb{R} \to \mathbb{R}^n$ of the form

$$\mathbf{\gamma}(t) = \mathbf{f}(\mathbf{p} + t\mathbf{e}_i)$$

= $\mathbf{f}(p_1, \dots, p_{i-1}, p_i + t, p_{i+1}, \dots, p_m).$

where **p** is a point in \mathbb{R}^m , and **e**_i is a unit vector in the x_i direction. Note that γ is obtained obtained from $\mathbf{f}(x_1, \ldots, x_m)$ by varying x_i and holding the other x's constant. Thus parameter curves can be thought of as the images of the "gridlines" under the function \mathbf{f} .

The partial derivatives of a function \mathbf{f} at a point \mathbf{p} can be interpreted as the tangent vectors to the parameter curves through $\mathbf{f}(\mathbf{p})$. Specifically, if $\boldsymbol{\gamma}$ is the parameter curve defined above, then

$$\dot{\mathbf{\gamma}}(0) = \frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{p}).$$

4. The Derivative Matrix

If $\mathbf{f} \colon \mathbb{R}^m \to \mathbb{R}^n$ the **derivative** of \mathbf{f} at a point \mathbf{p} is the matrix

$$D_{\mathbf{p}}\mathbf{f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{p}) & \cdots & \frac{\partial f_1}{\partial x_m}(\mathbf{p}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{p}) & \cdots & \frac{\partial f_n}{\partial x_m}(\mathbf{p}) \end{bmatrix}$$

That is, $D_{\mathbf{p}}\mathbf{f}$ is the matrix whose columns are the partial derivatives $\frac{\partial \mathbf{f}}{\partial x_1}(\mathbf{p}), \dots, \frac{\partial \mathbf{f}}{\partial x_m}(\mathbf{p})$. For example, if $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ is the function $\mathbf{f}(x,y) = (x^2 + y^2, x^2 - y^2, 2xy)$, then

$$D_{(x,y)}\mathbf{f} = \begin{bmatrix} 2x & 2y \\ 2x & -2y \\ 2y & 2x \end{bmatrix}$$

Note that the derivative is actually a function that takes a point (x, y) as input and outputs a matrix of numbers.

In some books, the derivative $D_{\mathbf{p}}\mathbf{f}$ is denoted $D\mathbf{f}_{\mathbf{p}}$, $D\mathbf{f}(\mathbf{p})$, $d\mathbf{f}_{\mathbf{p}}$, or $\mathbf{f}'(\mathbf{p})$. In addition, the derivative is sometimes referred to as the **Jacobian**, in which case it may be denoted with a J instead of a D. We will use the notation $D_{\mathbf{p}}\mathbf{f}$ to mean the derivative of \mathbf{f} at \mathbf{p} , and $D_{\mathbf{p}}\mathbf{f}(\mathbf{v})$ to mean the product of the matrix $D_{\mathbf{p}}\mathbf{f}$ with a vector \mathbf{v} .

5. Special Cases of the Derivative

For a parametric curve $\gamma \colon \mathbb{R} \to \mathbb{R}^n$, the derivative of γ is the same as the tangent vector $\dot{\gamma}$:

$$D_t \mathbf{\gamma} = \dot{\mathbf{\gamma}}(t) = \begin{bmatrix} \dot{\gamma}_1(t) \\ \vdots \\ \dot{\gamma}_n(t) \end{bmatrix}.$$

For a real-valued function $f: \mathbb{R}^m \to \mathbb{R}$, the derivative $D_{\mathbf{p}}f$ is the *transpose* of the gradient vector ∇f :

$$D_{\mathbf{p}}f = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{p}) & \cdots & \frac{\partial f}{\partial x_m}(\mathbf{p}) \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{p}) \\ \vdots \\ \frac{\partial f}{\partial x_m}(\mathbf{p}) \end{bmatrix}^T = \nabla f(\mathbf{p})^T.$$

6. Directional Derivatives

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable function, and let \mathbf{e}_i be a unit vector in the x_i direction. Then:

$$D_{\mathbf{p}}\mathbf{f}(\mathbf{e}_i) = \frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{p}).$$

That is, the i'th column of $D_{\mathbf{p}}\mathbf{f}$ is the partial derivative on the right.

More generally, if **v** is any vector in \mathbb{R}^m , then the product

$$D_{\mathbf{p}}\mathbf{f}(\mathbf{v})$$

is called the **directional derivative** of \mathbf{f} in the direction of \mathbf{v} . This is something like a "partial derivative" in the direction of the vector \mathbf{v} .

The directional derivative $D_{\mathbf{p}}(\mathbf{v})$ can be interpreted as a tangent vector to a certain parametric curve. Specifically, let $\mathbf{\gamma} \colon \mathbb{R} \to \mathbb{R}^n$ be the curve

$$\gamma(t) = \mathbf{f}(\mathbf{p} + t\mathbf{v}).$$

That is, γ is the image under f of a straight line in the direction of v. Then

$$\dot{\mathbf{\gamma}}(0) = D_{\mathbf{p}}\mathbf{f}(\mathbf{v}).$$

7. Differentials

The derivative of a function $\mathbf{f} : \mathbb{R}^m \to \mathbb{R}^n$ can also be thought of in terms of **differentials**. Specifically, let \mathbf{p} be a point in \mathbb{R}^m , with corresponding value $\mathbf{f}(\mathbf{p})$. Now, suppose we move from \mathbf{p} to a nearby point $\mathbf{p} + \mathbf{dp}$, and let \mathbf{df} denote the corresponding change in the value of \mathbf{f}

$$\mathbf{df} = \mathbf{f}(\mathbf{p} + \mathbf{dp}) - \mathbf{f}(\mathbf{p}).$$

Then the vectors **df** and **dp** are related by the formula

$$\mathbf{df} \approx D_{\mathbf{p}} \mathbf{f}(\mathbf{dp}).$$

That is, the change in \mathbf{f} is roughly the product of the matrix $D_{\mathbf{p}}\mathbf{f}$ with the vector \mathbf{dp} . Note that, since we cannot divide vectors, we cannot interpret $D_{\mathbf{p}}\mathbf{f}$ as the "ratio" of \mathbf{df} to \mathbf{dp} .

8. The Chain Rule

Suppose we have a pair of differentiable functions $\mathbf{f} \colon \mathbb{R}^m \to \mathbb{R}^n$ and $\mathbf{g} \colon \mathbb{R}^k \to \mathbb{R}^m$. Since the codomain of \mathbf{g} is the same as the domain of \mathbf{f} , we can form the composition $\mathbf{f} \circ \mathbf{g} \colon \mathbb{R}^k \to \mathbb{R}^n$.

In this case, the **Chain Rule** gives us a formula for the derivative of $\mathbf{f} \circ \mathbf{g}$. According to the rule, if $\mathbf{p} \in \mathbb{R}^k$ and $\mathbf{q} = \mathbf{g}(\mathbf{p})$, then

$$D_{\mathbf{p}}(\mathbf{f} \circ \mathbf{g}) = (D_{\mathbf{q}}\mathbf{f})(D_{\mathbf{p}}\mathbf{g}).$$

That is, the derivative matrix for $\mathbf{f} \circ \mathbf{g}$ at \mathbf{p} is the product of the derivative matrix for \mathbf{f} at \mathbf{q} and the derivative matrix for \mathbf{g} at \mathbf{p} . This is simply a matrix form of the Chain Rule for partial derivatives.

As a special case, let $\mathbf{f} \colon \mathbb{R}^m \to \mathbb{R}^n$, let $\mathbf{\gamma} \colon \mathbb{R} \to \mathbb{R}^m$ is a parametric curve in \mathbb{R}^m , and let $\mathbf{p} = \mathbf{\gamma}(0)$. Then the composition $\tilde{\mathbf{\gamma}} = \mathbf{f} \circ \mathbf{\gamma}$ is a parametric curve in \mathbb{R}^n , and

$$\dot{\tilde{\mathbf{\gamma}}}(0) = D_{\mathbf{p}}\mathbf{f}(\dot{\mathbf{\gamma}}(0))$$

That is, the tangent vector to $\tilde{\boldsymbol{\gamma}}$ is the product of the derivative matrix $D_{\mathbf{p}}\mathbf{f}$ with the tangent vector to $\boldsymbol{\gamma}$.

Practice Problems

- 1. Let $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the polar coordinates transformation $\mathbf{f}(r,\theta) = (r\cos\theta, r\sin\theta)$.
 - (a) Make a drawing showing the parameter curves $\theta = C$ for $C \in \{0, \pi/4, \pi/2, 3\pi/4, \pi\}$, as well as the curves r = C for $C \in \{1, 2, 3\}$.
 - (b) Compute $D_{(2,3\pi/4)}\mathbf{f}$. Add the the vectors $\mathbf{f}_r(2,3\pi/4)$ and $\mathbf{f}_{\theta}(2,3\pi/4)$ to your drawing as tangent vectors to parameter curves.
 - (c) Let $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ be a regular curve, and suppose that $\gamma(0) = (2, 3\pi/4)$ and $\dot{\gamma}(0) = (3, 1)$. Find the tangent vector to the curve $\mathbf{f} \circ \gamma$ at the point $(\mathbf{f} \circ \gamma)(0)$.
- 2. Let $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ be a differentiable function, and suppose that $\mathbf{f}(3,9) = (5,3,1)$ and

$$D_{(3,9)}\mathbf{f} = \begin{bmatrix} 2 & 1 \\ 3 & 5 \\ 1 & 2 \end{bmatrix}.$$

- (a) Estimate $\mathbf{f}(3.02, 9.05)$.
- (b) Compute the directional derivative of \mathbf{f} in the direction of the vector (1,1).
- (c) Let $\gamma \colon \mathbb{R} \to \mathbb{R}^3$ be the curve $\gamma(t) = \mathbf{f}(t, t^2)$. Compute $\dot{\gamma}(3)$.
- 3. Let $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ be the map $f(\theta, \phi) = (\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi)$.
 - (a) Compute the matrix $D_{(\theta,\phi)}\mathbf{f}$.
 - (b) At each point on the unit sphere, let $\widehat{\boldsymbol{\theta}}$ be a unit tangent vector pointing in the direction of increasing θ , and let $\widehat{\boldsymbol{\phi}}$ be a unit tangent vector pointing in the direction of increasing ϕ . Use your answer to part (a) to find formulas for $\widehat{\boldsymbol{\theta}}$ and $\widehat{\boldsymbol{\phi}}$.
- 4. Let $\psi \colon \mathbb{R}^3 \to \mathbb{R}$, and suppose that $\psi(1,2,5) = 3$ and $\nabla \psi(1,2,5) = (1,3,2)$. Let $\gamma \colon \mathbb{R} \to \mathbb{R}^3$ be a regular curve, and suppose that $\gamma(3) = (1,2,5)$ and $\dot{\gamma}(3) = (4,5,2)$.
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(t) = \psi(\gamma(t))$. Compute f'(3).
 - (b) Let $\mathbf{g} \colon \mathbb{R}^3 \to \mathbb{R}^3$ be the function $\mathbf{g}(x, y, z) = \boldsymbol{\gamma}(\psi(x, y, z))$. Compute $D_{(1,2,5)}\mathbf{g}$.