Лабораторная работа №2.2.6

«Определение энергии активации по температурной зависимости вязкости жидкости»

Сирый Р. А.

12 февраля 2023 г.

Цель работы

Измерить скорости падения шариков при разной температуре жидкости, вычислить вязкость жидкости по закону Стокса и расчитать энергию активации.

Оборудование

- Стеклянный цилиндр с исследуемой жидкостью (глицерин)
- Термостат
- Секундомер
- Горизонтальный компаратор
- Микроскоп
- Мелкие шарики

1 Теоретическая часть

1.1 Энергия активации

Двойственнный характер свойств жидкостей связан с особенностями дважения их молекул. В газах молекулы движутся хаотично, в их расположении отсутствует порядок. В кристаллических твёрдых телах частицы колеблются около определённых положений равновесия — узлов кристаллической решётки. В жидкостях, как и в кристаллах, каждая молекула находится в потенциальной яме электрического поля. создаваемого окружающими молекулами. Молекулы колеблются со средней частотой, близкой к частоте колебаний атомов в кристаллических телах ($\sim 10^{12}~\Gamma$ ц), и с амплитудой, определяемой размерами объёма, предоставленного ей соседними молекулами. Глубина потенциальной ямы в жидкостях больше средней кинетической энергии колеблюцейся молекулы, поэтому молекулы колеблются вокруг более или менее стабильных положений равновесия. Однако у жидкостей различие между этими двумя энергиями невелико, так что молекулы нередко

выскакивают из «своей» потенциальной ямы и занимают место в другой. Таким образом, молекулы медленно перемещаются внутри жидкости, пребывая часть времени около определённых мест равновесия и образуя картину меняющейся со временем пространственной решётки, т.е. в жидкости присутствует ближний, но не дальний порядок.

Для того чтобы перейти в новое состояние, молекула должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться величину энергии активации W/. Температурная зависимость вязкости жидкости выражается следующей формулой:

$$\eta \sim Ae^{\frac{W}{kT}}.$$
(1)

1.2 Рассчетная формула вязкости

На всякое тело, двигающееся в вязкой жидкости, действует сила сопротивления. Для ламинарно обтекаемого шарика, движущегося с малой скоростью в безграничной жидкости сила сопротивления F определяется формулой

$$F = 6\pi \eta r v, \tag{2}$$

где η — вязкость жидкости, v — скорость шарика, r - его радиус.

Рассмотрим свободное падение шарика в вязкой жидкости. На шарик действуют три силы: сила тяжести, архимедова сила и сила вязкого трения, зависящая от скорости. По второму закону Ньютона:

$$Vg(\rho - \rho_{\kappa}) - 6\pi \eta r v = V \rho \frac{\mathrm{d}v}{\mathrm{d}t},\tag{3}$$

где V — объем шарика, ρ — его плотность, $\rho_{\tt ж}$ — плотность жидкости, g — ускорение свободного падения. Решая это уравнение, найдём

$$v(t) = v_{ycr} - [v_{ycr} - v(0)] e^{-\frac{t}{\tau}},$$
(4)

где v(0) — скорость шарика в момент начала его дважения в жидкости, $v_{\text{уст}}$ — установив-шаяся скорость, au — время релаксации:

$$v_{\text{ycr}} = \frac{Vg(\rho - \rho_{\text{xc}})}{6\pi\eta r} = \frac{2}{36}gd^{2}\frac{\rho - \rho_{\text{xc}}}{\eta}, \quad \tau = \frac{V\rho}{6\pi\eta r} = \frac{2}{36}\frac{d^{2}\rho}{\eta} = \frac{\rho}{\rho - \rho_{\text{xc}}}\frac{v}{g}.$$
 (5)

Как видно из (4), скорость шарика экспоненциально приближается к установившейся скорости $v_{\text{уст}}$. Если время падения в несколько раз больше времени релаксации, процесс установления скорости можно считать закончившимся.

Измеряя на опыте установившуюся скорость падения шариков $v_{\text{уст}}$ и величины $r, \rho, \rho_{\text{ж}}$, можно определить вязкость жидкости по формуле, следующей из (5):

$$\eta = \frac{2}{36}gd^2\frac{\rho - \rho_{\mathsf{K}}}{v_{\mathsf{ycr}}}.\tag{6}$$

Рис. 1: Установка

2 Ход работы

Результаты измерений и расчета вязкости приведены в **таб.** 1, результаты расчета $Re, \, \tau, \, S$ для оценки справедливости формулы Стокса приведены в **таб.** 2. Формулы для расчета погрешностей отдельных величин:

$$\sigma_v = v \sqrt{\left(\frac{\sigma_t}{t}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}, \quad \sigma_\eta \approx \eta \sqrt{\left(\frac{\sigma_\rho}{\rho - \rho_{\text{sc}}}\right)^2 + 2\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_v}{v}\right)^2}, \tag{7}$$

$$\sigma_{\frac{1}{T}} = \frac{\sigma_T}{T^2}, \quad \sigma_{\ln \eta} = \frac{\sigma_{\eta}}{\eta}.$$
 (8)

Наилучшее значение:

$$\langle \eta \rangle = \frac{1}{n} \sum_{i=1}^{n} \eta_i, \quad \sigma_{\text{случ}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\eta_i - \langle \eta \rangle)^2}.$$
 (9)

Полную погрешность буду считать следующим образом:

$$\sigma_{\langle \eta \rangle} = \sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} \sigma_{\eta_i}\right)^2 + \sigma_{\text{случ}}^2}.$$
 (10)

Результаты расчета величин для построения графика $\ln \eta(1/T)$ приведены в **таб. 3**, сам график — на **рис. 2**. Из (1):

$$\ln \eta \sim \frac{W}{k} \frac{1}{T} + C,\tag{11}$$

где C — некоторая константа, откуда находим W по коэффициенту наклона графика ξ :

$$W = \xi k. \tag{12}$$

Итоговое значение:

$$W = (8, 89 \pm 0.18) \cdot 10^{-20} \, \text{Дж}, \quad \varepsilon_W = 2\%$$
 (13)

Рис. 2: График $\ln \eta(\frac{1}{T})$

Вывод

Значения величины Re не превышало допустимого, при котором течение нельзя считать ламинарным. Значения τ и S достаточно малы для расчета скорости, как $v_{\text{уст}} = \frac{l}{t}$. Полученное значение W примерно совпадает с табличным $W_0 = 8.7 \cdot 10^{-20}$.

№	T, K	$\rho_{\rm sc}, \ \Gamma/{\rm cm}^3$	d^2 , mm	t, c	$v_{\rm ycr}, { m MM/c}$	η , Па · с		
1	$293, 2 \pm 0, 1$	$1,26 \pm 0,01$	$2, 10 \pm 0, 02$	$81, 2 \pm 0, 4$	$2,758 \pm 0,018$	1080 ± 90		
2	$293, 2 \pm 0, 1$	$1,26 \pm 0,01$	$2,12 \pm 0,02$	$81,9 \pm 0,4$	$2,735 \pm 0,018$	1110 ± 90		
3	$293, 2 \pm 0, 1$	$1,26 \pm 0,01$	$2,06 \pm 0,02$	$81, 8 \pm 0, 4$	$2,738 \pm 0,018$	1050 ± 90		
4	$293, 2 \pm 0, 1$	$1,26 \pm 0,01$	$0,86 \pm 0,02$	$90, 1 \pm 0, 4$	$2,486 \pm 0,016$	1060 ± 40		
5	$293, 2 \pm 0, 1$	$1,26 \pm 0,01$	$0,86 \pm 0,02$	$88,6 \pm 0,4$	$2,528 \pm 0,016$	1040 ± 40		
6	$303, 2 \pm 0, 1$	$1,26 \pm 0,01$	$2,08 \pm 0,02$	$38,0 \pm 0,4$	$5,90 \pm 0,07$	500 ± 40		
7	$303, 2 \pm 0, 1$	$1,26 \pm 0,01$	$2,08 \pm 0,02$	$37,8 \pm 0,4$	$5,93 \pm 0,07$	490 ± 40		
8	$303, 2 \pm 0, 1$	$1,26 \pm 0,01$	$2,08 \pm 0,02$	$37, 3 \pm 0, 4$	$6,01 \pm 0,07$	490 ± 40		
9	$303, 2 \pm 0, 1$	$1,26 \pm 0,01$	$0,74 \pm 0,02$	$54,7\pm0,4$	$4,10 \pm 0,04$	478 ± 20		
10	$303, 2 \pm 0, 1$	$1,26 \pm 0,01$	$0,74 \pm 0,02$	$61,0 \pm 0,4$	$3,67 \pm 0,03$	532 ± 22		
11	$313, 2 \pm 0, 1$	$1,25 \pm 0,01$	$2,06 \pm 0,02$	$19,7 \pm 0,4$	$11,37 \pm 0,24$	252 ± 23		
12	$313, 2 \pm 0, 1$	$1,25 \pm 0,01$	$2,10 \pm 0,02$	$19,7 \pm 0,4$	$11,37 \pm 0,24$	262 ± 22		
13	$313, 2 \pm 0, 1$	$1,25 \pm 0,01$	$2,10 \pm 0,02$	$18,8 \pm 0,4$	$11,91 \pm 0,26$	250 ± 21		
14	$313, 2 \pm 0, 1$	$1,25 \pm 0,01$	$0,62 \pm 0,02$	$39, 3 \pm 0, 4$	$5,70 \pm 0,06$	241 ± 12		
15	$313, 2 \pm 0, 1$	$1,25 \pm 0,01$	$0,88 \pm 0,02$	$20, 2 \pm 0, 4$	$11,09 \pm 0,23$	249 ± 10		
16	$323, 2 \pm 0, 1$	$1,25 \pm 0,01$	$2,10 \pm 0,02$	$10, 1 \pm 0, 4$	$22, 2 \pm 0, 9$	134 ± 12		
17	$323, 2 \pm 0, 1$	$1,25 \pm 0,01$	$2,08 \pm 0,02$	$10, 1 \pm 0, 4$	$22, 2 \pm 0, 9$	133 ± 12		
18	$323, 2 \pm 0, 1$	$1,25 \pm 0,01$	$2,06 \pm 0,02$	$9,9 \pm 0,4$	$22,6 \pm 0,9$	127 ± 12		
19	$323, 2 \pm 0, 1$	$1,25 \pm 0,01$	$0,86 \pm 0,02$	$11, 4 \pm 0, 4$	$19,7 \pm 0,7$	134 ± 7		
20	$323, 2 \pm 0, 1$	$1,25 \pm 0,01$	$0,58 \pm 0,02$	$21, 4 \pm 0, 4$	$10,47 \pm 0,20$	115 ± 6		
21	$333, 2 \pm 0, 1$	$1,24 \pm 0,01$	$2,04 \pm 0,02$	$6,0 \pm 0,4$	$37, 3 \pm 2, 5$	75 ± 8		
22	$333, 2 \pm 0, 1$	$1,24 \pm 0,01$	$2,06 \pm 0,02$	$6,1 \pm 0,4$	$36,7 \pm 2,4$	78 ± 8		
23	$333, 2 \pm 0, 1$	$1,24 \pm 0,01$	$2,12 \pm 0,02$	$6,1 \pm 0,4$	$36,7 \pm 2,4$	83 ± 8		
24	$333, 2 \pm 0, 1$	$1,24 \pm 0,01$	$0,78 \pm 0,02$	$7,8 \pm 0,4$	$28,7 \pm 1,5$	76 ± 5		
25	$333, 2 \pm 0, 1$	$1,24 \pm 0,01$	$0,76 \pm 0,02$	$8,3 \pm 0,4$	$27,0 \pm 1,3$	76 ± 5		
	$l=224\pm1$ mm							

Таблица 1: Результаты измерений и расчета величины вязкости жидкости

№	Re	τ , c	S, mm	
1	0,003	0,0006	0,002	
2	0,003	0,0006	0,002	
3	0,003	0,0005	0,002	
4	0,001	0,0003	0,001	
5	0,001	0,0003	0,001	
6	0,02	0,001	0,007	
7	0,02	0,001	0,007	
8	0,02	0,001	0,007	
9	0,04	0,0005	0,002	
10	0,03	0,0004	0,002	
11	0,06	0,002	0,03	
12	0,06	0,002	0,03	
13	0,06	0,002	0,03	
14	0,009	0,0007	0,004	
15	0,03	0,001	0,02	
16	0, 2	0,005	0, 1	
17	0, 2	0,005	0, 1	
18	0, 2	0,005	0, 1	
19	0,08	0,002	0,05	
20	0,03	0,001	0,01	
21	0,6	0,008	0,3	
22	0,6	0,008	0, 3	
23	0,6	0,008	0,3	
24	0, 2	0,003	0, 1	
25	0, 2	0,003	0, 1	

Таблица 2: Расчет величин для проверки справедливости формулы Стокса

№	1	2	3	4	5
$\ln \eta, [\eta] = \Pi \mathbf{a} \cdot \mathbf{c}$	6.97 ± 0.07	6.21 ± 0.07	5.52 ± 0.07	4.86 ± 0.07	4.35 ± 0.07
$\frac{1}{T}$, K ⁻¹	3.411 ± 0.002	3.298 ± 0.002	3.193 ± 0.002	3.094 ± 0.002	3.001 ± 0.002

Таблица 3: Величины для графика