

Poisson's Ratio for Hexagonal Crystals

Arthur Ballato

ARL-TR-424 March 1995

19950421 092

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and inminiatining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan		3. REPORT TYPE AN	
	March 1995	Technical	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
POISSON'S RATIO FOR I	HEXAGONAL CRYSTALS		
6. AUTHOR(S)			
Arthur Ballato			
III WIIWIT WARTER	•		
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
US Army Research Lab	REPORT NUMBER		
Electronics and Power	ARL-TR-424		
ATTN: AMSRL-EP			
Fort Monmouth, NJ 0	7703-5601		
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS((ES)	10. SPONSORING / MONITORING
			AGENCY REPORT NUMBER
			·
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public 1	release; distributio	n is unlimited.	
13. ABSTRACT (Maximum 200 word	(a)		
		1 1 5 1 5	
General expressions to simplified forms are	for Poisson's ratio	are derived for he	xagonal crystals;
Simplified forms are	given for cases my	orving symmetry ar	rections.
14. SUBJECT TERMS			15. NUMBER OF PAGES
Piezoelectric wurtzite structure; hexagonal			16. PRICE CODE
17. SECURITY CLASSIFICATION 1 OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	1 111

TABLE OF CONTENTS

Section	Page
Abstract	1
Introduction	1
Expressions Relating Hexagonal Stiffnesses and Compliances	2
Definition of Poisson's Ratio for Crystals	3
Relations for Rotated Hexagonal Compliances - General	3
Transformation Matrix for General Rotations	3
Poisson's Ratios for Specific Orientations	4
Conclusions	6
Bibliography	6

POISSON'S RATIO FOR HEXAGONAL CRYSTALS

Abstract

General expressions for Poisson's ratio are derived for hexagonal crystals; simplified forms are given for cases involving symmetry directions.

Introduction

Poisson's ratio, ν , is defined for isotropic media as the quotient of lateral contraction to longitudinal extension arising from application of a simple tensile stress; in most materials, this dimensionless number is positive. In crystals, ν takes on different values, depending on the directions of stress and strain chosen. The ratio finds application in a variety of areas of applied elasticity and solid mechanics, for example, as indication of the mechanical coupling between various vibrational modes of motion.

The maximum value of $\nu=+1/2$ is obtained in the incompressible medium limit, where volume is preserved; for ordinary materials, values of +1/4 to +1/3 are typical, but in crystals ν may vanish, or take on negative values. Analytical formulas for Poisson's ratio are expressed in terms of elastic constants. For the case of crystals of general anisotropy, these expressions are quite unwieldy, but for hexagonal crystals the symmetry elements reduce the complexity considerably.

Crystals of hexagonal symmetry include a number of the binary semiconductor systems with the piezoelectric wurtzite structure, such as GaN and AIN. These are becoming increasingly important for high technology applications. One of the most important representatives of this class is the family of poled electroceramics, including BaTiO₃, PZT, and related alloys. All hexagonal classes have the same elastic matrix scheme, so for our purposes it is not necessary to distinguish between the different point groups; the presence of piezoelectricity is neglected.

Expressions Relating Hexagonal Stiffnesses and Compliances

Relations for Poisson's ratio are most simply expressed in terms of the elastic compliances $[s_{\lambda\mu}]$. It is often the case, however, that the most accurate determinations of the elastic constants (resonator and transit-time methods) yield values for the stiffnesses $[c_{\lambda\mu}]$ directly; the conversion relations are given below. For the hexagonal system, the elastic stiffness and compliance matrices have identical form. Referred to the x_k axes as defined in the IEEE Standard, the matrices are:

C11	C ₁₂	C13	0	0	0	\$11	S 12	S 13	0	0	0
C12	C 11	C13	0	0	0	\$12	S 11	S 13	0	0	0
C 13	C13	C33	0	0	0	S 13	S 13	S 33	0	0	0
0	0	0	C44	0	0	0	0	0	S 44	0	0
0	0	0	0	C44	0	0	0	0	0	S 44	0
0	0	0	0	0	C66	0	0	0	0	0	S66

Stiffness and compliance are matrix reciprocals; the four independent components of each are related by:

$$(C_{11} + C_{12}) = s_{33} / S;$$
 $(C_{11} - C_{12}) = 1 / (s_{11} - s_{12})$
 $C_{13} = -s_{13} / S;$ $C_{33} = (s_{11} + s_{12}) / S$
 $C_{44} = 1 / s_{44};$ $S = s_{33} (s_{11} + s_{12}) - 2 s_{13}^{2}$

In addition, one has the relation $s_{66} = 2(s_{11} - s_{12})$. The compliances are given in terms of the stiffnesses by:

$$(s_{11} + s_{12}) = c_{33} / C$$
; $(s_{11} - s_{12}) = 1 / (c_{11} - c_{12})$
 $s_{13} = -c_{13} / C$; $s_{33} = (c_{11} + c_{12}) / C$
 $s_{44} = 1 / c_{44}$; $c_{13} = c_{13} / c_{11} + c_{12} - c_{13} / c_{13}$

and $c_{66} = (c_{11} - c_{12})/2$. The equality of the 11 and 22 components together with the given relations between the 66, 11 and 12 components imply transverse isotropy; that is, all directions perpendicular to the unique 6-fold axis (i.e., in the basal plane), are elastically equivalent.

Definition of Poisson's Ratio for Crystals

Poisson's ratio for crystals is defined in general as $v_{ji} = s_{ij}' / s_{jj}'$, where x_j is the direction of the longitudinal extension, x_i is the direction of the accompanying lateral contraction, and the s_{ij}' and s_{ij}' are the appropriate elastic compliances referred to this right-handed axial set. It suffices to take x_1 as the direction of the longitudinal extension; then two Poisson's ratios are defined by the orientations of the lateral axes x_2 and x_3 : $v_{21} = s_{12}' / s_{11}'$ and $v_{31} = s_{13}' / s_{11}'$. Application of the definition requires specification of the orientation of the x_k coordinate set with respect to the crystallographic directions, and transformation of the compliances accordingly.

Relations for Rotated Hexagonal Compliances - General

The unprimed compliances are referred to a set of right-handed orthogonal axes related to the crystallographic axes in the manner defined by the IEEE standard. Direction cosines a_{mn} relate the transformation from these axes to the set specifying the directions of the applied longitudinal extension (x_1) , and the resulting lateral contractions $(x_2$ and $x_3)$. General expressions for the transformed hexagonal compliances that enter the formulas for v_{21} and v_{31} are:

```
\begin{split} s_{11}' &= s_{11} \left[ a_{11}^2 + a_{12}^2 \right]^2 + s_{33} \left[ a_{13}^4 \right] + \left( s_{44} + 2 \; s_{13} \right) \left[ a_{13}^2 \right] \left[ a_{11}^2 + a_{12}^2 \right] \\ s_{12}' &= s_{11} \left[ a_{11} \; a_{21} + a_{12} \; a_{22} \right]^2 + s_{33} \left[ a_{13}^2 \; a_{23}^2 \right] + \\ s_{44} \left[ a_{13} \; a_{23} \right] \left[ a_{11} \; a_{21} + a_{12} \; a_{22} \right] + s_{12} \left[ a_{11} \; a_{22} - a_{12} \; a_{21} \right]^2 + \\ s_{13} \left[ a_{23}^2 \left[ a_{11}^2 + a_{12}^2 \right] + a_{13}^2 \left[ a_{21}^2 + a_{22}^2 \right] \right] \\ s_{13}' &= s_{11} \left[ a_{11} \; a_{31} + a_{12} \; a_{32} \right]^2 + s_{33} \left[ a_{13}^2 \; a_{33}^2 \right] + \\ s_{44} \left[ a_{13} \; a_{33} \right] \left[ a_{11} \; a_{31} + a_{12} \; a_{32} \right] + s_{12} \left[ a_{11} \; a_{32} - a_{12} \; a_{31} \right]^2 + \\ s_{13} \left[ a_{33}^2 \left[ a_{11}^2 + a_{12}^2 \right] + a_{13}^2 \left[ a_{31}^2 + a_{32}^2 \right] \right] \end{split}
```

Transformation Matrix for General Rotations

Poisson's ratio for the most general case may be derived by considering the transformation matrix for a combination of three coordinate rotations: a first rotation about x_3 by angle ϕ , a second rotation about the new x_1 by angle θ , and a third rotation about the resulting x_2 by angle ψ . When these angles are set to zero, the x_1 , x_2 , x_3 axes coincide

respectively with the reference crystallographic directions. For nonzero angles, the direction cosines a_{mn} are as follows:

Substitution of these a_{mn} into the expressions for s_{11} ', s_{12} ', and s_{13} ', and thence into the formulas $v_{21}=s_{12}$ ' / s_{11} ' and $v_{31}=s_{13}$ ' / s_{11} ' formally solves the problem for specified values of φ , θ , and ψ .

<u>Poisson's Ratios for Specific Orientations</u>

1) Longitudinal extension in the basal plane: ψ = 0 ; ϕ and θ arbitrary. Direction cosines are:

[c(φ)]	[s(φ)]	[0]
$[-s(\varphi)c(\theta)]$	[c(φ)c(θ)]	[s(θ)]
[s(φ)s(θ)]	[- c(φ)s(θ)]	[c(θ)]

Rotated compliances are independent of angle $\boldsymbol{\phi},$ as required by transverse isotropy:

$$s_{11}' = s_{11}$$

 $s_{12}' = s_{12} \cos^2(\theta) + s_{13} \sin^2(\theta) = s_{12} + (s_{13} - s_{12}) \sin^2(\theta)$
 $s_{13}' = s_{12} \sin^2(\theta) + s_{13} \cos^2(\theta) = s_{13} - (s_{13} - s_{12}) \sin^2(\theta)$

Poisson's ratios are:

$$v_{21} = [s_{12} + (s_{13} - s_{12}) \sin^2(\theta)] / s_{11}$$

 $v_{31} = [s_{13} - (s_{13} - s_{12}) \sin^2(\theta)] / s_{11}$

2) Longitudinal extension at an angle ψ from the basal plane; the x_2 axis in the basal plane: θ = 0; ϕ and ψ arbitrary. Direction cosines are:

[c(φ)c(ψ)]	[s(φ)c(ψ)]	[-s(ψ)]
[- s(φ)]	[c(φ)]	[0]
[c(φ)s(ψ)]	[s(φ)s(ψ)]	[c(ψ)]

Rotated compliances are:

$$\begin{split} s_{11}' &= s_{11} \left[c^4(\psi) \right] + \ s_{33} \left[s^4(\psi) \right] + \left(s_{44} + 2 \ s_{13} \right) \left[c^2(\psi) \ s^2(\psi) \right] \\ s_{12}' &= s_{12} \left[c^2(\psi) \right] + s_{13} \left[s^2(\psi) \right] = s_{12} + \left(s_{13} - s_{12} \right) \left[s^2(\psi) \right] \\ s_{13}' &= s_{13} \left[c^4(\psi) + s^4(\psi) \right] + \left(s_{11} + s_{33} - s_{44} \right) \left[c^2(\psi) \ s^2(\psi) \right] \end{split}$$

The Poisson's ratios are: $v_{21} = s_{12}' / s_{11}'$; $v_{31} = s_{13}' / s_{11}'$.

3) Longitudinal extension out of the basal plane: φ , θ , and ψ arbitrary. Direction cosines are:

Rotated compliances are:

$$\begin{split} s_{11}' &= s_{11} \left[s^2(\theta) s^2(\psi) + c^2(\psi) \right]^2 + s_{33} \left[c^4(\theta) s^4(\psi) \right] + \\ & \left(s_{44} + 2 \ s_{13} \right) \left[c^2(\theta) s^2(\psi) \right] \left[s^2(\theta) s^2(\psi) + c^2(\psi) \right] \\ s_{12}' &= \left(s_{11} + s_{33} - s_{44} \right) \left[c^2(\theta) s^2(\theta) s^2(\psi) \right] + s_{12} \left[c^2(\theta) c^2(\psi) \right] + \\ & s_{13} \left[s^2(\theta) c^2(\psi) + s^2(\psi) (c^4(\theta) + s^4(\theta)) \right] \\ s_{13}' &= \left(s_{11} + s_{33} - s_{44} \right) \left[c^4(\theta) c^2(\psi) s^2(\psi) \right] + s_{12} \left[s^2(\theta) \right] + \\ & s_{13} \left[c^2(\theta) \right] \left[c^4(\psi) + s^4(\psi) + 2 \ s^2(\theta) c^2(\psi) s^2(\psi) \right] \end{split}$$

The Poisson's ratios are: $v_{21} = s_{12}' / s_{11}'$; $v_{31} = s_{13}' / s_{11}'$. These results reduce to those of Case 1) when $\psi = 0$, and to those of Case 2) when $\theta = 0$.

4) Longitudinal extension at an angle ψ from the basal plane: results are independent of angle ϕ ; first rotation about x_2 by angle ψ , followed by a second rotation about x_1 by angle χ . Direction cosines are:

Rotated compliances are:

$$s_{11}' = s_{11} [C^4(\psi)] + s_{33} [s^4(\psi)] + (s_{44} + 2 s_{13}) [C^2(\psi)s^2(\psi)]$$

$$s_{12}' = (s_{11} + s_{33} - s_{44} - 2 s_{13})[c^2(\psi)s^2(\psi)s^2(\chi)] + s_{12}[c^2(\psi)c^2(\chi)] + s_{13}[s^2(\chi) + s^2(\psi)c^2(\chi)]$$

$$s_{13}' = (s_{11} + s_{33} - s_{44} - 2 s_{13})[c^2(\psi)s^2(\psi)c^2(\chi)] + s_{12}[c^2(\psi)s^2(\chi)] + s_{13}[c^2(\chi) + s^2(\psi)s^2(\chi)]$$

The Poisson's ratios are: $v_{21} = s_{12}' / s_{11}'$; $v_{31} = s_{13}' / s_{11}'$. These results reduce to those of Case 1) when $\psi = 0$, and to those of Case 2) when $\gamma = 0$.

Conclusions

Poisson's ratio, with respect to rotated coordinate axes for hexagonal materials, has been obtained. All results are independent of rotations about the 6-fold axis (angle φ). Two cases are of particular interest:

For longitudinal extension in the basal plane:

$$v_{21} = s_{12} / s_{11}; v_{31} = s_{13} / s_{11}$$

• For longitudinal extension along the 6-fold axis:

$$v_{21} = v_{31} = s_{13} / s_{33}$$

Bibliography

- [1] W G Cady, <u>Piezoelectricity</u>, McGraw-Hill, New York, 1946; Dover, New York, 1964.
- [2] J F Nye, <u>Physical Properties of Crystals</u>, Clarendon Press, Oxford, 1957; Oxford University Press, 1985.
- [3] R F S Hearmon, <u>An Introduction to Applied Anisotropic Elasticity</u>, Oxford University Press, 1961.

- [4] M J P Musgrave, <u>Crystal Acoustics</u>, Holden-Day, San Francisco, 1970.
- [5] "IEEE Standard on Piezoelectricity," ANSI/IEEE Standard 176-1987, The Institute of Electrical and Electronics Engineers, New York, 10017.

ARMY RESEARCH LABORATORY ELECTRONICS AND POWER SOURCES DIRECTORATE CONTRACT OR IN-HOUSE TECHNICAL REPORTS MANDATORY DISTRIBUTION LIST

February 1995 Page 1 of 2

Defense Technical Information Center* ATTN: DTIC-OCC Cameron Station (Bldg 5) Alexandria, VA 22304-6145 (*Note: Two copies will be sent from STINFO office. Fort Monmouth, NJ)

Director US Army Material Systems Analysis Actv ATTN: DRXSY-MP

(1) Aberdeen Proving Ground, MD 21005

Commander, AMC ATTN: AMCDE-SC 5001 Eisenhower Ave.

(1) Alexandria, VA 22333-0001

Director Army Research Laboratory ATTN: AMSRL-D (John W. Lyons) 2800 Powder Mill Road

(1) Adelphi, MD 20783-1145

Director Army Research Laboratory ATTN: AMSRL-DD (COL Thomas A. Dunn) 2800 Powder Mill Road

(1) Adelphi, MD 20783-1145

Director Army Research Laboratory 2800 Powder Mill Road Adelphi, MD 20783-1145

- (1) AMSRL-OP-SD-TA (ARL Records Mgt)
- (1) AMSRL-OP-SD-TL (ARL Tech Library)
 (1) AMSRL-OP-SD-TP (ARL Tech Publ Br)

Directorate Executive Army Research Laboratory Electronics and Power Sources Directorate

Fort Monmouth, NJ 07703-5601 (1) AMSRL-EP

- (1) AMSRL-EP-T (M. Hayes) (1) AMSRL-OP-RM-FM
- (22) Originating Office

Advisory Group on Electron Devices ATTN: Documents 2011 Crystal Drive, Suite 307

(2) Arlington, VA 22202

Commander, CECOM R&D Technical Library Fort Monmouth, NJ 07703-5703 (1) AMSEL-IM-BM-I-L-R (Tech Library) (3) AMSEL-IM-BM-I-L-R (STINFO ofc)

Director, Army Research Laboratory 2800 Powder Mill Road Adelphi, MD 20783-1145 AMSRL-OP-SD-TP (Debbie Lehtinen)

ARMY RESEARCH LABORATORY ELECTRONICS AND POWER SOURCES DIRECTORATE SUPPLEMENTAL DISTRIBUTION LIST (ELECTIVE)

February 1995 Page 2 of 2

Cdr, Marine Corps Liaison Office

Deputy for Science & Technology Office, Asst Sec Army (R&D)

(1) Washington, DC 20310

(1) Fort Monmouth, NJ 07703-5033

ATTN: AMSEL-LN-MC

HQDA (DAMA-ARZ-D/ Dr. F.D. Verderame)

(1) Washington, DC 20310

Director Naval Research Laboratory ATTN: Code 2627

(1) Washington, DC 20375-5000

USAF Rome Laboratory Technical Library, FL2810 ATTN: Documents Library Corridor W, STE 262, RL/SUL 26 Electronics Parkway, Bldg 106 Griffiss Air Force Base

(1) NY 13441-4514

Dir, ARL Battlefield Environment Directorate ATTN: AMSRL-BE White Sands Missile Range

(1) NM 88002-5501

Dir, ARL Sensors, Signatures, Signal & Information Processing Directorate (S3I) ATTN: AMSRL-SS 2800 Powder Mill Road

(1) Adelphi, MD 20783-1145

Dir, CECOM Night Vision/ Electronic Sensors Directorate ATTN: AMSEL-RD-NV-D

(1) Fort Belvoir, VA 22060-5677

Dir, CECOM Intelligence and Electronic Warfare Directorate ATTN: AMSEL-RD-IEW-D Vint Hill Farms Station

(1) Warrenton, VA 22186-5100