

When to Learn: Conformal Scores as Online Update Criteria

Ben Gao^{1,2} Jordan Patracone^{1,2} Stéphane Chrétien³ Olivier Alata¹

¹Université Jean Monnet, Laboratoire Hubert Curien ²Inria ³Université Lyon 2, Laboratoire ERIC

Key Elements

We introduce a lightweight and novel framework designed for adaptive model updates in streaming environments: **Conformal Online Learning (COL)**, inspired by conformal prediction but repurposed for learning. We demonstrate the effectiveness of COL through its application to online learning of Koopman linear embeddings for non-linear dynamical systems

Koopman Operator [1]

Instead of directly modeling the nonlinear dynamics $x_{t+1} = Tx_t$, Koopman operator theory considers the evolution of lifted states through a linear operator:

$$\Phi_{\theta}(x_{t+1}) \approx K \Phi_{\theta}(x_t).$$

This approach enables the use of linear spectral analysis tools.

Conformal Online Learning of Koopman embeddings

The goal is to incrementally Φ_{θ} and K from sequentially observed dynamics. At each time step t, the parameters (θ_t, K_t) are updated by minimizing the multi-step prediction loss within $\mathcal{D}_t = \{x_{t-w}, \dots, x_t\}$. The score function at time step t is defined as

$$s_t(x_t, (\theta_t, K_t)) := \sum_{\tau=1}^{w} \|\Phi_{\theta_t}(x_t) - K_t^{\tau} \Phi_{\theta_t}(x_{t-\tau})\|^2$$

to evaluate the consistency of (θ_t, K_t) .

Prediction Score Set

Given a newly observed state x_t and a conformity threshold $q_t > 0$, the *prediction score set* at time t is defined as

$$S_t = s_t(x_t, Param_t),$$

where $Param_t = \{(\theta, K) \text{ such that } s = s_t(x_t, (\theta, K)) \leq q_t\}$. This set contains all prediction scores attainable at x_t by Koopman models that satisfy the current calibration constraint.

Dynamic threshold by Conformal PI Control [2]

Rather than fixing the quantile threshold q_t in advance, the method updates it online in response to conformity violations. After observing whether $s_t \in S_t$, a binary error signal $e_t = \mathbf{1}\{s_t \notin S_t\}$ is computed, and the threshold q_t is adjusted via:

$$q_{t+1} = q_t + \gamma(e_t - \alpha) + r_t \left(\sum_{i=1}^t (e_i - \alpha)\right)$$
Proportional term (P) Integral term (I)

Dynamic Regret Theorem

Let (θ_t, K_t) be the parameters produced by COL and let $(\theta_t^*, K_t^*) \in \operatorname{argmin}_{(\theta, K)} \mathcal{L}_t(\theta, K)$ denote any time-dependent optimal model minimizing the loss at step t. Further assume:

(A1) Each \mathcal{L}_t is L-smooth with $\|\nabla \mathcal{L}_t(\theta, K)\| \leq B$;

(A2) Bounded total variation and squared variation for oracle path: $V_T := \sum_{t=1}^{T} \|(\theta_{t+1}^*, K_{t+1}^*) - (\theta_t^*, K_t^*)\| < \infty$, $S_T := \sum_{t=1}^{T} \|(\theta_{t+1}^*, K_{t+1}^*) - (\theta_t^*, K_t^*)\|^2 < \infty$;

(A3) $\sum_{t=1}^{T} q_t \leq \mathcal{O}(\alpha h(T))$ for some sublinear, nonnegative, nondecreasing function h;

Then the dynamic regret satisfies:

$$\sum_{t=1}^{\infty} \left[\mathcal{L}_t(\theta_t, K_t) - \mathcal{L}_t(\theta_t^*, K_t^*) \right] \leq \mathcal{O}\left(\alpha h(T) + V_T + S_T\right).$$

Shifting from producing conformal prediction sets to assessing the model's consistency on new observations, model updates are triggered only when its conformal score $s_t(\text{model}_t)$ is greater than a dynamic threshold q_t , and continue until $s_t(\text{model}_t) \leq q_t$.

Compare to baselines

Models are trained using the training trajectories while computing the online prediction error. After the training, models are evaluated on the held-out trajectories to compute generalization error. We report averages across five splits, along with the standard deviation of the averages.

	ODMD	OEDMD	${\bf Online AE}$	OLoKe	COLoKe
Single attractor	$ \begin{array}{c} 1.1 \cdot 10^{-3} \\ (\pm 3.6 \cdot 10^{-5}) \\ 4.6 \cdot 10^{-5} \\ (\pm 7.3 \cdot 10^{-7}) \end{array} $	$ 2.5 \cdot 10^{-2} (\pm 2.8 \cdot 10^{-4}) 1.5 \cdot 10^{-2} (\pm 4.7 \cdot 10^{-4}) $	$ \begin{array}{c} 1.0 \cdot 10^{-2} \\ (\pm 7.7 \cdot 10^{-4}) \\ 7.4 \cdot 10^{-5} \\ (\pm 2.8 \cdot 10^{-5}) \end{array} $	$ 2.1 \cdot 10^{-6} (\pm 6.6 \cdot 10^{-7}) 7.5 \cdot 10^{-6} (\pm 2.5 \cdot 10^{-6}) $	$egin{array}{c} 2.4\cdot 10^{-7} \ (\pm 3.6\cdot 10^{-8}) \ 7.6\cdot 10^{-7} \ (\pm 9.6\cdot 10^{-8}) \end{array}$
Duffing oscillator	$2.5 \cdot 10^{-4} (\pm 7.8 \cdot 10^{-6}) 1.9 \cdot 10^{-4} (\pm 1.5 \cdot 10^{-6})$	$6.8 \cdot 10^{-3} (\pm 4.5 \cdot 10^{-3}) 3.8 \cdot 10^{-3} (\pm 3.3 \cdot 10^{-4})$	$8.7 \cdot 10^{-3} (\pm 2.5 \cdot 10^{-3}) 2.0 \cdot 10^{-3} (\pm 6.2 \cdot 10^{-4})$	$5.5 \cdot 10^{-5} (\pm 1.0 \cdot 10^{-5}) 2.3 \cdot 10^{-4} (\pm 4.0 \cdot 10^{-5})$	$egin{array}{c} 3.1\cdot 10^{-6} \ (\pm 2.3\cdot 10^{-7}) \ 7.3\cdot 10^{-5} \ (\pm 1.9\cdot 10^{-5}) \end{array}$
VdP oscillator	$2.1 \cdot 10^{-3} (\pm 3.6 \cdot 10^{-5}) 1.1 \cdot 10^{-3} (\pm 4.7 \cdot 10^{-6})$	$2.1 \cdot 10^{-3} (\pm 3.2 \cdot 10^{-5}) 1.1 \cdot 10^{-3} (\pm 7.8 \cdot 10^{-6})$	$ 1.7 \cdot 10^{-2} (\pm 3.0 \cdot 10^{-3}) 3.8 \cdot 10^{-3} (\pm 1.0 \cdot 10^{-3}) $	$6.6 \cdot 10^{-4} (\pm 1.5 \cdot 10^{-4}) 9.2 \cdot 10^{-4} (\pm 3.0 \cdot 10^{-4})$	$egin{array}{c} 3.8 \cdot 10^{-4} \ (\pm 1.2 \cdot 10^{-5}) \ 6.0 \cdot 10^{-4} \ (\pm 1.4 \cdot 10^{-4}) \end{array}$
Lorenz system	$2.7 \cdot 10^{-1} (\pm 1.3 \cdot 10^{-3}) 1.0 \cdot 10^{-1} (\pm 5.8 \cdot 10^{-4})$	$5.5 \cdot 10^{-1} (\pm 2.2 \cdot 10^{-2}) 2.7 \cdot 10^{-1} (\pm 3.1 \cdot 10^{-2})$	$5.9 \cdot 10^{-1} (\pm 8.4 \cdot 10^{-2}) 3.8 \cdot 10^{-2} (\pm 2.6 \cdot 10^{-3})$	$7.6 \cdot 10^{-3} (\pm 1.8 \cdot 10^{-4}) 4.7 \cdot 10^{-3} (\pm 3.0 \cdot 10^{-4})$	$6.5 \cdot 10^{-3} \ (\pm 1.0 \cdot 10^{-4}) \ 3.3 \cdot 10^{-3} \ (\pm 1.1 \cdot 10^{-4})$
ETD *	$1.4 \cdot 10^{-1} (\pm 2.9 \cdot 10^{-1}) 1.2 \cdot 10^{-1} (\pm 2.9 \cdot 10^{-1})$	$2.7 \cdot 10^{-1} (\pm 3.0 \cdot 10^{-1}) 1.5 \cdot 10^{-1} (\pm 2.6 \cdot 10^{-1})$	$2.1 \cdot 10^{-1} (\pm 3.4 \cdot 10^{-1}) 7.9 \cdot 10^{-2} (\pm 7.3 \cdot 10^{-2})$	$2.1 \cdot 10^{-1} (\pm 3.4 \cdot 10^{-2}) 9.7 \cdot 10^{-2} (\pm 8.5 \cdot 10^{-2})$	$2.1 \cdot 10^{-1}$ $(\pm 8.6 \cdot 10 - 2)$ $7.3 \cdot 10^{-2}$ $(\pm 6.3 \cdot 10^{-2})$

Adaptive update behavior

Learning efficiency

Convergence of eigen-properties

Acknowledgements

This work was sponsored by a public grant overseen by Auvergne-Rhône-Alpes region, Grenoble Alpes Metropole and BPIFrance, as part of project I-Démo Région "Green Al".

References

- 1. S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, "Modern Koopman Theory for Dynamical Systems," *SIAM Review*, vol. 64, no. 2, pp. 229–340, 2022.
- 2. A. Angelopoulos, E. Candès, and R. J. Tibshirani, "Conformal PID Control for Time Series Prediction," *Advances in Neural Information Processing Systems*, vol. 36, pp. 23047–23074, 2023.