

Scaling Analysis of a Hierarchical Parallelization of Large Inverse Multiple-Scattering Solutions

Mert Hidayetoğlu, Carl Pearson, Izzat El Hajj, Weng Cho Chew, Levent Gürel, and Wen-Mei Hwu Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

ECE ILLINOIS Department of Electrical and Computer Engineering

Inverse-Scattering Problems

Multiple-scattering reconstructions does not make any fundamental approximation.

Single-scattering

Reconstruction

Multiple-scattering Single-scattering Reconstruction Reconstruction

Original Object Imaged

with Limited View

Multiple-scattering

Reconstruction

Nonlinear Optimization

There is not a single way to do this, however, we found out nonlinear conjugate-gradient method is efficient for this algorithm.

Newton-Type Methods $[\mu^2 \mathbf{I} + \mathbf{F}^H \mathbf{F}] \delta \mathbf{0} = \nabla \Phi$

F: Functional Derivative Operator

Multilevel Fast Multipole Algorithm (MLFMA) Schematic

MLFMA Provides fast solutions of forward-scattering problems with O(N) computational complexity.

Distorted-Born Approximation

Scattering Equation: $\phi = \phi_0 + \mathcal{G}_0 \mathcal{O} \phi$ Variational Equation: $\delta \phi = \mathcal{G}_b \delta \mathcal{O} \phi_b + \mathcal{G}_b \delta \mathcal{O} \delta \phi$

Distorted-Born approximation provides a semi-analytical way to find functional derivatives.

Higher-order Variations (neglected)

$$\delta\phi \approx \delta\phi^{(1)} = \mathcal{G}_b\delta\mathcal{O}\phi_b = \mathcal{G}_b\phi_b\delta\mathcal{O}$$

 G_0 : Dense, $N \times N$

 \boldsymbol{G}_T : Dense, $N \times T$

 G_R : Dense, $R \times N$

 \boldsymbol{O}_b : Diagonal, $N \times N$ *I*: Diagonal, $N \times N$

Hierarchical Parallelization

- Hierarchical parallelization provides high granularity for out-scaling.
- Each MPI process summons a set of sharedmemory OpenMP threads to utilize the multi-core **CPUs for up-scaling.**

Large Reconstruction

Strong Scaling 95% Parallelizing Illuminations 2048 16384 8192 **Number of CPU cores**

Parallelizing illuminations is almost perfectly efficient due to the independent nature of forward solutions.

MLFMA scaling is not perfect due to the MPI communications in each matrix-vector multiplication.

Conclusions

- A hierarchical parallelization strategy to improve the scalability of inverse multiple-scattering solutions is proposed.
- An inverse problem involving a large Shepp-Logan phantom is solved on up to 1,024 CPU nodes of the Blue Waters supercomputer in order to demonstrate the strong-scaling efficiency of the proposed parallelization scheme.

See More Results & Animations:

Future Plans

- GPU nodes will be employed for massivelyparallel solutions (done & submitted: 4k GPUs. Approx. 4x speedup over CPUs).
- Real-life problems will be solved with real measurement data. Not trivial because of noise, calibration, etc.