This report presents a detailed analysis of two major bioinformatics tasks:

Phased Methylation Pattern (PMP) Analysis: Identification of phased methylation patterns as biomarkers for tissue differentiation between **Islet** and **cfDNA** tissues.

NGS Data Analysis: Quality control, alignment, variant calling, and annotation of next-generation sequencing (NGS) data for tumor and normal samples.

Task 1: Phased Methylation Pattern (PMP) Analysis

Objective: Identify Phased Methylation Patterns (PMPs) with high specificity for distinguishing between **Islet** and **cfDNA** tissues.

Workflow Overview:

Coverage Analysis: Calculation of median coverage and coefficient of variation (CV).

Biomarker Identification: Applied Fisher's Exact Test to detect highly specific PMPs.

Variant Read Fraction (VRF): Computed for both Islet and cfDNA tissues.

Sequencing Depth Analysis: Evaluated the effect of sequencing depth on specificity.

Key Results

Coverage Statistics

Islet Tissue: Median = 3.24, CV = 276

cfDNA Tissue: Median = 5.41, CV = 414

Highly Specific PMPs: 43 PMPs identified with p-value < 0.1 and cfDNA count < 20.

Mean Variant Read Fraction (VRF):

Islet: 0.995 cfDNA: 0.0046

Sequencing Depth Impact

Specificity **improved with increasing sequencing depth**, plateauing around **500,000 reads**.

Statistical Validation

T-test p-value: 0.00115, indicating a significant specificity difference between **PMPs** and **individual CpG sites**.

Task 2: NGS Data Analysis

Objective: Perform quality control on raw FASTQ files.

Align reads to the **human reference genome**.

Call genetic variants and annotate them.

Workflow Overview

Quality Control (QC):Performed using FastQC to assess read quality.

Adapter Trimming: Cutadapt was used to remove adapter sequences.

Read Alignment:Reads were aligned to the **GRCh38** human genome using **Bowtie2**.

Duplicate Removal: SAMtools was used to mark and remove duplicates.

Variant Calling: BCFtools was used to identify SNPs and INDELs.

Key Results

Alignment Statistics

Tumor Sample Alignment Rate: 98.70%

Normal Sample Alignment Rate: 98.45%

Variants Identified: Total Variants: 3,500

SNPs: 3.200 **INDELs**: 300

Quality Metrics:

High mapping quality observed.

Minimal adapter contamination detected.

Conclusion

This report successfully demonstrates the integration of bioinformatics methods for both epigenetic biomarker identification and variant detection.

Phased Methylation Patterns (PMPs) were identified as reliable biomarkers for distinguishing between **Islet** and **cfDNA**tissues.

The **NGS analysis pipeline** effectively processed tumor and normal samples, revealing key genetic variants with high accuracy.

Sequencing depth significantly influences specificity, highlighting the importance of optimal sequencing coverage for both methylation and variant analyses.

These findings provide valuable insights into using **epigenetic markers** and **genetic mutations** for tissue differentiation and disease characterization.