UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea		

Numărul legitimației de bancă Numele Prenumele tatălui Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Fizică FI

VARIANTA ${f D}$

- 1. Să se calculeze temperatura unei cantități m = 2g de oxigen care ocupă volumul V = 4,15 litri la presiunea $p = 10^5$ Pa. (R = 8,3 J/mol K, $\mu = 32$ g/mol) (4 pct.)
 - a) 500°C; b) 538°C; c) 800K; d) 780K; e) 750K; f) 775K.
- 2. Unitatea de măsură în SI a constantei elastice a unui resort este (4 pct.)
 - a) kg/m; b) $\frac{Nm^2}{s}$; c) N/m; d) $N \cdot m$; e) $kg \cdot m$; f) J/m.
- 3. Două surse cu tensiunile electromotoare $E_1 = 6 \,\mathrm{V}$, $E_2 = 8 \,\mathrm{V}$ și rezistențe interne egale sunt conectate în paralel. Tensiunea la bornele lor este (4 pct.)
 - a) 14V; b) 0V; c) 7V; d) nu se poate calcula; e) 1V; f) 2V.
- 4. Un corp parcurge, mișcându-se uniform pe o suprafață orizontală, distanța de 2m sub acțiunea unei forțe orizontale de 10 N . Lucrul mecanic efectuat de forță este (4 pct.)
 - a) 5J; b) 10J; c) -5J; d) 20J; e) 30J; f) -10 J.
- 5. Trei rezistori cu rezistențele de 2Ω , 4Ω și 8Ω sunt legați în paralel. Rezistenta echivalentă a montajului este (4 pct.)
 - a) 14Ω ; b) $7/8\Omega$; c) 7Ω ; d) $8/7\Omega$; e) $4/7\Omega$; f) $7/4\Omega$.
- 6. Un mobil cu masa de 50 kg care se deplasează cu viteza de 18 km/h are energia cinetică egală cu (4 pct.)
 a) 550 J; b) 240 J; c) 625 J; d) 6825 J; e) 100 J; f) 700 J.
- 7. Un motor termic primește căldura $Q_1 = 5 \text{ kJ}$ de la sursa caldă și cedează sursei reci căldura $Q_2 = 3 \text{ kJ}$. Randamentul motorului termic este (8 pct.)
 - a) 10%; b) 20%; c) 0,6; d) 80%; e) 0,4; f) 30%.
- 8. O macara ridică uniform un corp cu greutatea de 50kN la înălțimea de 5m, în 5s. Puterea motorului macaralei este(8 pct.)
 - a) 580W; b) 2500W; c) 480W; d) 50kW; e) 10kW; f) 250kW.
- 9. Știind că pe un rezistor cu $R = 5\Omega$ se disipă o putere de 80W, curentul care trece prin acesta este (8 pct.)
 - a) 8A; b) 5A; c) 400A; d) 4A; e) 16A; f) 40A.

- 10. Să se afle capacitatea calorică a unui corp care își mărește temperatura cu $\Delta T = 20 \,\mathrm{K}$ dacă primește căldura $Q = 6 \,\mathrm{kJ}$ (6 pct.)
 - a) 300 J/K; b) 120 J/K; c) 200 J/K; d) 100 J/K; e) 150 J/K; f) 0,3 J/K.
- 11. Un mobil care se mișcă uniform încetinit are la un moment dat viteza de 60 m/s. Accelerația sa de frânare este 6 m/s². Mobilul se oprește după un timp egal cu (6 pct.)
 - a) 10s; b) 120s; c) 8s; d) 360s; e) 60s; f) 5s.
- 12. Două generatoare electrice identice cu tensiunea electromotoare E = 10 V și rezistenta internă $r = 1\Omega$ sunt legate în serie la bornele unui rezistor cu $R = 3\Omega$. Tensiunea la bornele rezistorului este (6 pct.)
 - a) 14V; b) 12V; c) 8V; d) 10V; e) 16V; f) 18V.
- 13. Expresia legii lui Ohm pentru un circuit simplu este (4 pct.)

a)
$$I = \frac{U}{R} + \frac{E}{r}$$
; b) $I = \frac{E}{R+r}$; c) $I = \frac{E}{R}$; d) $I = \frac{E}{r}$; e) $I = \frac{U}{R+r}$; f) $I = \frac{E}{R-r}$.

- 14. Un mol de gaz ideal suferă un proces descris prin relația $p = p_0 aV$, cu $p_0 = 10^5 \,\mathrm{Pa}$, $a = \frac{10^6}{8.3} \,\mathrm{Pa/m^3}$. Se cunoaște R = 8.3 J/molK. Temperatura maximă atinsă în cursul acestui proces este(4 pct.)
 - a) 2450 K; b) 2500 K; c) nu se poate calcula; d) 2480 K; e) 2490 K; f) 2460 K.
- 15. Un gaz ideal suferă o transformare în care căldura primită este egală cu variația energiei interne. Transformarea este (4 pct.)
 - a) imposibilă; b) ciclică; c) adiabată; d) izocoră; e) izobară; f) izotermă.
- 16. Un corp cu masa de 2kg se deplasează pe o suprafață orizontală sub acțiunea unei forțe orizontale de 8 N, coeficientul de frecare dintre corp și suprafață fiind $\mu = 0,1$. Știind că $g = 10 \text{m/s}^2$, accelerația corpului este (4 pct.)
 - a) 0.5 m/s^2 ; b) 1.5 m/s^2 ; c) 3 m/s^2 ; d) 0.25 m/s^2 ; e) 2 m/s^2 ; f) 1 m/s^2 .
- 17. O cantitate de gaz ideal se află la presiunea $p_1 = 3 \times 10^5 \,\mathrm{N/m^2}$, volumul V_1 și temperatura T_1 . Când gazul este încălzit izobar până la temperatura $T_2 = 2T_1$, acesta absoarbe căldura $Q_1 = 300 \,\mathrm{J}$. Când gazul este încălzit izocor între aceleași temperaturi, acesta absoarbe căldura $Q_2 = 90 \,\mathrm{J}$. Volumul V_1 este (4 pct.)
 - a) 750 cm³; b) 100 cm³; c) 700 cm³; d) 120 cm³; e) 360 cm³; f) 200 cm³.
- 18. Un conductor cu aria secțiunii transversale de 2mm^2 este confecționat dintr-un material cu rezistivitatea egală cu $10^{-8}\Omega$ m. Alimentat la o tensiune de 2V, conductorul este parcurs de un curent de 2A. Lungimea conductorului este (4 pct.)
 - a) 200m; b) 50m; c) 100m; d) 150m; e) 250m; f) 125m.