CPUs

- □ Performance do CPU
- ☐ Consumo de energia/potência do CPU

15

15

Elementos da performance do CPU

- Tempo de ciclo
- Pipeline do CPU
- Sistema de memória

Pipelining

- Várias instruções são executadas simultaneamente em diferentes estágios do ciclo
- Várias condições podem causar pipeline bubbles que reduzem a utilização:
 - branches (saltos);
 - atrasos do sistema de memória;
 - etc.

17

17

Medidas da Performance

- Latência: tempo que uma instrução leva a entrar no *pipeline*.
- Throughput: número de instruções executadas por período de tempo
- O pipelining aumenta o throughput sem reduzir a latência

Pipeline do ARM7

- ☐ O ARM 7 possui um *pipe* de 3 estágios:
 - fetch instrução da memória;
 - decode código da operação e operandos;
 - □ execute.

19

19

Execução de pipeline no ARM

20

Exemplo: tempo de execução do ARM

 Determinar o tempo de execução do filtro FIR (Finite Impulse Response):

```
for (i=0; i< N; i++)

f = f + c[i]*x[i];
```

- Apenas a instrução de branch (BLT) no teste do loop pode durar mais do que 1 ciclo
 - □ BLT loop ocupa 1 ciclo no melhor caso, 3 no pior caso

BLT - Branch on Lower Than

21

Código do filtro FIR no ARM

; loop initiation code

MOV r0,#0 ; use r0 for i, set to 0 MOV r8,#0 ; use a separate index for arrays

ADR r2,N; get address for N LDR r1,[r2]; get value of N MOV r2,#0; use r2 for f, set to 0

ADR r3,c; load r3 with address of base of c ADR r5,x; load r5 with address of base of x

; loop body

loop LDR r4,[r3,r8]; get value of c[i] LDR r6,[r5,r8]; get value of x[i] MUL r4,r4,r6; compute c[i]*x[i] ADD r2,r2,r4; add into running sum

; update loop counter and array index

ADD r8,r8,#4; add one to array index ADD r0,r0,#1; add 1 to i

; test for exit

CMP r0,r1 BLT loop if i < N, continue

 $\label{eq:continue} \mbox{if } i < N, \mbox{ continue loop} \\ \mbox{loopend} & \dots \\ \mbox{}$

21

Performance do filtro FIR por bloco

Block	Variable	# instructions	# cycles
Initialization	t _{init}	7	7
Body	t _{body}	4	4
Update	t _{update}	2	2
Test	t _{test}	2	[2,4]

23

Consumo de energia do CPU

- Os CPUs modernos são desenhados considerando o impacto do consumo de energia
- Potência vs. energia:
 - Calor depende do consumo de potência;
 - ☐ Tempo de vida da bateria depende do consumo de energia.

Estratégias de redução de potência do CPU

- Reduzir a tensão da fonte
- Executar a uma frequência de relógio mais baixa;
- Desativar unidades de função com sinais de controlo, quando não estão em uso.
- Desligar componentes da fonte de alimentação quando não estão em uso

25

25

Estilos de Gestão de Potência

- Gestão de potência estática: não depende da atividade do CPU
 - Exemplo: o utilizador ativa o modo de *power-down*
- Gestão de potência dinâmica: baseada na atividade do CPU
 - Exemplo: desativar unidades de funções

Custos do modo power-down

- Ativar o modo power-down custa:
 - Tempo;
 - Energia.
- □ Deve determinar-se se o modo *power-down* é realmente vantajoso.
- Pode modelar-se os estados de potência do CPU com uma máquina de estados...

27

27

Ex: Máquina de estados de potência do Strong Arm-1100

 $P_{idle} = 50 \text{ mW}$

 $P_{\text{sleep}} = 0.16 \text{ mW}$

Sistemas Embebidos

Exercício 1

Determine o tempo médio de acesso à memória cache, com uma taxa de 35% .

 $t_{cache} = 5ns$

 $t_{\text{main}} = 80 \text{ns}$

29

29

Sistemas Embebidos

Exercício 2

Determine o tempo médio de acesso à memória multinível, com um taxa de cache hit L1 de 25% e L2 35%:

 t_{cache} L1=2ns

 t_{cache} L2=10ns

 $t_{main} = 70 ns$

Sistemas Embebidos

Exercício 3

Determine o tempo médio de acesso à memória, onde num total de 500 acessos sequenciais ocorreram 100 cache miss:

 $t_{cache} = 4ns$

 t_{main} =60ns

31

31

Sistemas Embebidos

Exercício 4

Determine o tempo médio de acesso à memória multinível, com uma taxa de cache hit L1 de 10% e 60% cache miss:

 t_{cache} L1=3 ns

 t_{cache} L2=20ns

 $t_{main} = 90 ns$

Sistemas Embebidos

Exercício 5

Determine a performance de um Filtro *FIR* de N=20 numa *arquitetura ARM,* com o seguinte numero de instruções por bloco:

- Inicialização = 8
- Corpo = 5
- Atualização = 2
- Teste = 2-4

33

33

Sistemas Embebidos

Resolução da FT4