

Lumbago Edge Bank

Investigating Fraud Utilising Advanced Analytical Techniques

NBS BAC Hackathon

VSLAM

Ananya Balehithlu | Bai Shun Yao | Max Tan Zheyuan Tan Kit Hon, Luke | Vinay Krishnaa Vinod

Scope Risk Profiles

Analysis Process

Outcomes & Insights

Situational Analysis & Our Interpretation

Situation:

Whistleblower Fraud Accusation

Unsatisfactory current salaries

- Alleged <u>'Defrauding'</u>
- Involving accounts payable, employee expenses and the use of corporate credit cards.

Interpretation

Due to financial constraints and ease of defrauding, employees might engage in fraudulent activities in order to ease their financial struggles

Approach

Utilising advanced analytics techniques, comb through accounts payable, expenses and credit card transaction data to identify suspicious activities that render financial advantages to employees

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

O2Risk Profiles

Scope Risk Profiles

Analysis Process

Outcomes & Insights

Risk Profiles

Disruptive Actors

Invalid entries

Ghost Actors

Fake employees/vendors

Insiders with malicious intent

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

People who make invalid entries. Entries do not agree with data context

Examples of invalid entries include:

- Leaving transaction date empty
- Phone number contains alphabets
- Numeric names

Actors that have valid entries, but are not part of the organisation. This occurs mainly due to a lack of proper access control. Examples of such fraud are:

- Bank's money is flowing out to outsiders
- Outsiders are initiating transactions without the proper authority
- Expenses are being incurred without valid tax codes

Actors that are part of the company but have abused their authority to embezzle funds from the bank. Examples of such fraud includes:

- Setting negative value transactions to cover up the previous transactions
- Making transactions during leave
- Making transactions after leaving the company

Malicious actors will always be <u>switching up their methods</u> to cover up for their illegal activities

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

03 Analysis Process

Scope Risk Profiles

Analysis Process

Outcomes & Insights

Normalising Data

Original Data

How data was originally organised:

Transaction Data					
PK	employee_number				
	company				
	vendor_location				
	vendor_name				
	custom_merchant_category				
	creditor_merchant_category				
	comment				
	expense_date				
	status				
	tax_code				
	expense_amount				
	net_amount				
	tax_amount				
	authorised_by				
	transaction_id				
	country				

	Leave				
PK	employee_number				
	position				
	dept				
	dept_description				
	proj_division				
	BU				
	annual_leave_entitlement				
	leave_code				
	leave_type				
	leave_type_description				
	from				
	to				
	days				
	total_no_of_leave_days				
	remarks				
	BU_entry_date				
	employee_type				

payment					
	document_number varchar(16) NOT NULL				
	payment_date DATE NOT NULL				
	remarks varchar(256) NOT NULL				
	total_amount DEC NOT NULL				
	bank_number varchar(16) NOT NULL				
	vendor_id varchar(8) NOT NULL				
	invoice_id varchar(16) NOT NULL				
	source varchar(16) NOT NULL				
	'				

Income					
PK	Employee Master No. INT NO NULL				
	Date DATE				
	Division TEXT				
	Grade TEXT				
	Description TEXT				
	Amount \$INT				
	Payment_Type(Deduction, Earning, Pension				
	Payment_Sub_Type TEXT				
	Relevant Income (Yes/No) TEXT				
	Emplyoment Type(Daily/Monthly) NO NULL				

vendor						
PK	K ven_id varchar(16) NOT NULL					
	vendor_name varchar(32) NOT NULL					
	vendor_source varchar(16)					
	classification varchar(64) NOT NULL					
	purchasing_department varchar(128)					
	supplier_receiving_bank_account varchar(32)					
	shipping_days int NOT NULL					
	contact_details varchar(64)					
	address varchar(64)					
	country varchar(16)					

invoice						
PK	document_number varchar(16) NOT NULL					
	document_type varchar (64) NOT NULL					
	payment_provider varchar(8) NOT NULL					
	invoice_date DATE NOT NULL					
	document_status varchar(16) NOT NULL					
	payment_due_date DATE NOT NULL					
	department_name varchar(128) NOT NULL					
	currency varchar(4)					
	account_provider varchar(16)					
	source varchar(16)					
	line_of_payable_list BIGINT NOT NULL					
	amount_payable_taxed DEC NOT NULL					
	amount_payable_untaxed DEC NOT NULL					
	product_name varchar(128) NOT NULL					
	document_number varchar(16) NOT NULL					
	remarks varchar(256)					

There is a need to re-organise data for efficient analysis

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Normalising Data

Decomposing Data (Normalisation)

Process

- Identify important attributes
- Remove redundant data

Allows us to:

- Conduct <u>multi-faceted analysis</u> on the same set of data
- Flag out <u>invalid entries</u> (Good starting point for analysis)
- Explicitly present <u>association</u> → decomposition of data does not mean we will lose association

Many columns, Messy

Normalisation

Clean, organised data

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Normalising Data

Normalised Data (Re-organised)

Now analysis can be performed on the respective tables.

payment	
document_number varchar(16) NOT NULL	
payment_date DATE NOT NULL	
remarks varchar(256) NOT NULL	
total_amount DEC NOT NULL	
bank_number varchar(16) NOT NULL	
vendor_id varchar(8) NOT NULL	
invoice_id varchar(16) NOT NULL	
source varchar(16) NOT NULL	

products

FK part_no_varchar(15) NOT NULL,

document_number varchar(16) NOT NULL,

product_name varchar(128) NOT NULL,

amount_payable_untaxed DEC NOT NULL,

amount_payable_laxed DEC NOT NULL,

line_of_payable_list BIGINT NOT NULL,

remarks_varchar(256)

source_varchar(16)

Invoice

PK document_number varchar(16) NOT NULL

document_type varchar (64) NOT NULL

payment_provider varchar(8) NOT NULL

invoice_date DATE NOT NULL

document_status varchar(16) NOT NULL

payment_due_date DATE NOT NULL

department_name varchar(128) NOT NULL

currency varchar(4)

account_provider varchar(16)

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Disruptive Actors

Rule 1: Invalid Transaction IDs

Invalid transaction IDs are:

Non-numeric

Zero/NA

Flagged

Example: "NA", "Q1",

"inv2976"

Invalid Transaction IDs found: 11,342

Total amount lost: \$ 4,715,186.84

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Disruptive Actors

Rule 2: Invalid Employee Numbers

Invalid employee numbers are:

Non-numeric

Flagged Example: "02186A"

Zero/NA

3 instances of invalid Employee Numbers

Total amount lost: **\$ 1978.28**

employee_number	vendor_name	custom_merchant_category
020186A	DATAWORLD PTY LTD	Telephones and Fax Office
020186A	FINSBURY GREEN PRNTING	Stationery
020186A	FINSBURY GREEN PRNTING	Stationery

Examples of invalid employee numbers from Credit Card Dataset

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Disruptive Actors

Rule 3: Invalid Tax Codes

Nature of valid tax codes

- P0, P1 or P2
- Tax code can be left blank if transaction status is "UNSUBMITTED"

No Invalid Tax Codes Found

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Ghost Actors

Rule 1: Duplicate rows

Rows that are 100% alike in all attributes are indicative of invalid/unauthorised transactions.

The same transactions are <u>charged multiple times</u>. This could indicate <u>cash flow to dummy actors</u>

Total Amount Lost: \$ 205,786.48

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Rule 2: Unlikely Vendor Bank Accounts

Some vendor have unlikely bank accounts listed, suggesting that money could have been siphoned away as false payments.

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Ghost Actors

Rule 3: Sharing of Bank Accounts

<u>4 Employees</u> have been found to share <u>2 bank accounts</u>. The Employee IDs are:

20186/20186A

- Sharing Employee POC details
- Continuity in work terms between 2
 IDs
- Country field from Singapore to Hong Kong
- \$776.09 spending as '186' and \$1978.28 spending as '186A' \rightarrow spread out

Conclusion: Inter-company transfer - Ghost Employee ID

Total Amount Lost: \$ 2744.37

33876/454690

- Sharing Employee POC details
- No continuity in work terms
- No credit card records as '454690'
- Bank account and mobile number are same
- Country field Singapore while address is US

Conclusion: <u>Suspicious Employee</u> with credit card transactions

Total Amount Lost: \$ 11,011.99

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

- 2. Negative amounts (Credit Card Data)
- 3. Amounts should tally with each other (Credit Card Data)
- 4. Payments to discontinued/deactivated vendors (Accounts Payable)
- 5. Overpayments to vendors (Accounts Payable)
- 6. Embezzlement by employees who have already left Lumbargo

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Rule 1: Employees making transactions during leave

Credit card transactions are being recorded <u>while employees are on annual leave</u>. <u>Represents a misappropriation</u> of corporate credit card funds for <u>personal expenses</u>

Invalid transaction if:

- Employee on leave
- Employee makes transaction during leave period
- Duplicated records are aggregated to 1 record loss

	employee_number	expense_date	from	to	expense_amount
199403	0226757	2021-11-23	2021-11-19	2021-11-25	226.35
199494	0037076	2021-11-11	2021-11-10	2021-11-13	71.93
199593	0226757	2021-10-11	2021-10-10	2021-10-13	431
199681	0036627	2021-11-12	2021-11-08	2021-11-15	31.29
199737	0037140	2021-09-18	2021-09-17	2021-09-20	622

Examples of employees making transactions during leave

Total Amount Lost: \$ 530,097.97

*Rules performed on datasets with disruptive and ghost actors removed

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Rule 2: Negative Transaction Amounts

Some transactions have been recorded with <u>negative expense amounts</u>.

These are dangerous as they can <u>hide fraudulent transactions</u> to be viewed as accounting errors.

Identified as negative if:

- Expense amount is negative
- Sum of net and tax amount is negative

Total Amount Lost: \$ 158,065.98

expense_amount	net_amount	tax_amount	authorised_by
-886.049988	-805.500000	-80.550003	77778648
-537.000000	-488.179993	-48.820000	12374278
-3281.000000	-2982.729980	-298.269989	12362948
-3281.000000	-2982.729980	-298.269989	12359648

Examples of negative amounts

*Rules performed on datasets with disruptive and ghost actors removed

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Rule 3: Amounts should tally with each other

Checking the validity of transactions through accounting formula check.

Valid transactions should adhere to this formula if its status is anything but "UNSUBMITTED":

<u>Expense amount = net amount + tax amount</u>

Transactions that do not adhere are flagged out

No findings*

*Rules performed on datasets with disruptive and ghost actors removed

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Rule 4: Payments to discontinued/deactivated vendors

Some vendors have received payments even though they are listed as discontinued or deactivated.

Total Amount Lost: \$ 14,445,195.10

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Rule 5: Overpayments to vendors

Some amounts that were under Accounts Payable Payments did not tally with the amounts that were owed to those vendors.

Fraud can occur if the bank is paying more than what is owed to the vendors.

Total Amount Lost: \$ 2,066,166.93

Rule 6: Embezzlement by employees who have left

Employees are still making transactions despite having already left the company as determined by either the date term specified in the dataset or the contractual end term, if they are hired on the contractual basis.

Total Amount Lost: \$358,596.62

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Machine Learning in Fraud Detection

DBSCAN: Density Based Spatial Clustering of Applications with Noise

Preliminary Stage

Data Loading and Cleaning

- DBSCAN limitations in text analysis removal of string prevalent columns
- Changing string to int/float data type

Data Processing

 Standard Scaling & Gaussian Normalisation to make cross-variable comparisons

Snapshot of credit card dataset

Machine Learning in Fraud Detection

Model Building - Bivariate Analysis

Model Building Stage

Model Generation on normalised data

 2 Optimisation Hyperparameters introduced

Minimum Samples

Unoptimized Model Generation - Expense Amount against EmployeeID

Machine Learning in Fraud Detection

Model Building - Multivariate Analysis

Model Building Stage

Model Generation on normalised data

- 2 optimisation hyperparameters created
- Sklearn.decomposition is used to find the SVD of multiple variables
- Plotting of decomposed points in a 2D space for clustering

Unoptimized Model Generation -Analysis of all variables

Machine Learning in Fraud Detection

Model Optimisation - Bivariate Analysis

Model Optimisation Stage

<u>Iterative Approach of reducing cost of</u>
Model

- Optimisation of Epsilon Hyperparameter
- No optimisation of min. samples required for bivariate analysis
- Finding Epsilon at steepest gradient of K-Means Clustering

Finding Optimised Epsilon -Analysis of all variables

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Machine Learning in Fraud Detection

Model Optimisation - Bivariate Analysis

Model Optimisation Stage

<u>Iterative Approach of reducing</u> cost of Model

- Finding optimised Epsilon through
 3 Parameters
- Model Completeness
- Model Homogeneity
- Number of Clusters

Comparison of all three Model Optimisation Parameters

Machine Learning in Fraud Detection

Optimised DBSCAN Model for Bivariate Analysis

Conclusion: Optimized Model Creation

- Optimized Epsilon: 300
- Optimized min. samples: 2

Steps Forward:

 Identification of anomalies through pycaret anomaly detection: prescriptive analysis of fraudulent behaviour

Creation of Model with best clustering parameters

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Outcomes & Insights

Scope Risk Profiles

Analysis Process

Outcomes & Insights

\$22,494,831

Suspected Fraud Valuation

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Outcomes

Which rules are the most effective?

The rule which has the highest financial impact identified was the invalid transaction IDs under the Credit Card data set, with a total potential loss of 4,715,186.84.

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

Outcomes

Which risk profile is the most prolific?

The Malicious Actor risk profile is the most prolific, as such actors have the highest number of possible rules. We also observe the highest number of observations where employees are committing fraud by exploiting difficult to notice loopholes such as crediting the company for their transactions even after they have left the company, as well as having their fraudulent transactions being approved by a small group of "fraudulent authorisers."

These risk profiles address the danger of system administrators - such as identified authorisers - for approving large numbers of fraudulent transactions. By taking a identity agnostic approach using Machine Learning models such as DBSCAN, credit card transactions are flagged as fraud by their natural characteristics rather than the approval of other parties.

Scope

Risk Profiles

Analysis Process

Outcomes & Insights

05 Recommendations

Scope Risk Profiles

Analysis Process

Outcomes & Insights

Recommendation

Handling Disruptive Actors

- Disruptive actors exist due to the lack of input control
- **Input control** can be implemented in the following ways:
 - User interface restricts type of input e.g. no alphabets in transaction ID input
 - User interface requires certain inputs to be keyed in for a transaction to be recorded
 - Normalised database implementation will restrict duplicate primary keys e.g. duplicate transaction IDs

Recommendation

Handling Ghost Actors

Strong internal controls

- Stringent access controls to authorise and verify employees
- Multiple user access levels i.e. do not give access to employees that they do not need
 Aim: Prevents ghost actors from accessing system

<u>Decentralised processes</u>

Actor making transaction should not be able to authorise his/her own transactions
 Aim: Prevents ghost actors from being able to make transactions from one point of access

White-listing

List of pre-approved vendors should be updated on a regular basis
 Aim: Prevents money from flowing out to fake/outdated vendors

Recommendation

Handling Malicious Actors

- After sieving out disruptive actors and ghost actors, a more complex approach must be taken to detect malicious actors
- Rules developed in this case will be useful in flagging out future similar occurrences
- Increasing sophistication of malicious actors require an <u>adaptive & constantly evolving</u> <u>approach to fraud detection</u>
- Regular data mining & analytics is required to pick up on new trends and develop new rules
- A <u>strong whistleblower program</u> generates good starting points for data exploration and analytics

Thank You

Investigating Fraud Utilising Advanced Analytical Techniques

NBS BAC Hackathon

VSLAM

Ananya Balehithlu | Bai Shun Yao | Max Tan Zheyuan Tan Kit Hon, Luke | Vinay Krishnaa Vinod