Examen de Física II (Primera Part) Juny 2009

Cognoms: Nom:

DNI:

	1	2	3	4	5	6
A						
В						
C						
D						

Instruccions

- No oblideu escriure el vostre nom, cognoms i DNI en aquest full
- Feu una creu a les respostes que considereu correctes
- Només es tindran en compte les respostes registrades a la taula anterior
- Respostes correctes 1p, errònies -1/3p, no contestades 0p
- Penseu que hi ha diferents versions del test entre els vostres companys

- 1. Si el potencial elèctric $V = x^2y^2 z^2$, el camp elèctric \vec{E} és igual a
 - (a) (2xy, 2xy, -2z)
 - (b) 2xy 2z
 - (c) (-2xy, -2xy, 2z)
 - (d) cap de les anteriors
- Una font de so s'allunya de nosaltres amb velocitat 10% de la del so. La freqüència rebuda, en relació a la freqüència pròpia,
 - (a) augmenta en un 10%
 - (b) disminueix en un 10%
 - (c) no canvia
 - (d) cap de les anteriors
- 3. Considera dues càrregues de signe idèntic separades per una distància a. El camp elèctric a una distància $r\gg a$ és
 - (a) inversament proporcional a r^2
 - (b) inversament proporcional a r^3
 - (c) inversament proporcional a r
 - (d) constant
- 4. Una ona unidimensional té una funció d'ona $y(x,t)=A\cos(\alpha x+\beta t).$ La velocitat de propagació de l'ona és
 - (a) $-\alpha/\beta$
 - (b) $-\beta/\alpha$
 - (c) $-A\beta\sin(\alpha x + \beta t)$
 - (d) cap de les anteriors
- 5. El flux de camp elèctric a través d'una superficie elemental
 - (a) és proporcional al mòdul del camp a la superfície
 - (b) és sempre diferent de zero
 - (c) és sempre igual a zero
 - (d) cap de les anteriors

- 1. Dues ambulàncies es mouen a 80 km/h per un carrer recte, una en sentit contrari a l'altra. La sirena de cada ambulància funciona a 500 Hz.
 - a) El conductor de cada ambulància escolta la sirena de l'altra ambulància i la pulsació que es produeix quan interfereixen les dues sirenes. Quina és la freqüència de pulsació?
 - b) Una persona es troba aturada a igual distància de les dues ambulàncies. Quina és la freqüència de pulsació que sent?
 - c) Una de les ambulàncies es mou a la mateixa velocitat en direcció a una de les parets de l'hospital, que reflexa el so de la sirena. Quina és la longitud de l'ona estacionària causada per la sirena i la seva reflexió?
 - d) Un metge que està aturat entre la paret i l'ambulància nota que el so de la sirena augmenta i disminueix alternativament. Per què?
- 2. Tres escorces concèntriques conductores tenen radis a, b i c, amb a
b<c. Inicialment, l'escorça interna està descarregada, la del mig té una càrrega positiva Q, i l'exterior una càrrega negativa –Q.
 - a) Determinar el potencial elèctric de les tres escorces.
 - b) Si es connecten les escorces interna i externa amb un cable, que està aïllat quan passa per l'escorça del mig, quin és el potencial elèctric de cada escorça? Quina és la càrrega final de cada escorça?

Examen Física II. Enginyeria Química

- 1. (4 PUNTS) Tenim tres condensadors, connectats tal com mostra la figura. L'extrem A del circuit es connecta a una font de 200V, mentre que l'extrem C es connecta a terra (0 V).
 - a) Determineu la caiguda de potencial entre els punts A i B.
 - b) Determineu l'energia emmagatzemada al condensador 1.

- 2. (2 PUNTS) Per un toroide de radi interior a de 5 cm i radi exterior b de 10 cm, en el que s'han enrollat uniformement 300 espires de fil conductor, hi circula una intensitat de 2 A.
 - a) Trobeu l'expressió del Camp Magnètic en funció de r, per a < r < b.
 - b) Quin és el valor del camp al centre de qualsevol espira?
 - c) Verifiqueu la llei d'Ampere a la circumferència de radiR>b i R< a. Per què son iguals?

3. (1 PUNT) Expliqueu que farà aquest circuit: contraure's encara més, o expandir-se formant un cercle?

4. (3 PUNTS) Sabent que el moment lineal d'una ona EM és $|\vec{p}| = \frac{E}{c}$, on E és l'energia d'aquesta ona i c la velocitat de la llum, calculeu la força que fa una ona EM amb un flux d'energia de 50 $\frac{W}{m^2}$ quan s'absorbeix a través d'una cartulina quadrada negra de 3 cm de costat. És aquesta més gran o més petita que el teu pes?