1. True or False?

If λ is a repeated eigenvalue of a square matrix, it must be deficient.

2. True or False?

If λ is a repeated eigenvalue of a 2 \times 2 matrix of the form

$$A = \begin{bmatrix} 0 & 1 \\ b & a \end{bmatrix},$$

it must be deficient.

More salt-water tanks! Hooray! In the diagram below, the inputs to both tanks A and B are pure water.

- 3. If *A* is the matrix such that $\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = A \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$, which of the following is true?
- (A) A has a repeated deficient eigenvalue.
- (B) A has a repeated complete eigenvalue.
- (C) A has two distinct real eigenvalues.
- (D) A has two distinct complex eigenvalues.

Here's a phase portrait for the previous problem.

If an object of mass m=1 kg is attached to a wall by a spring of stiffness k=20 kg/s² and slides around on a surface with coefficient of friction b=4 kg/s, the displacement x of the object from its equilibrium position is described by the ODE

$$x'' + 4x' + 20x = 0.$$

4. True or False?

$$\lim_{t\to\infty}x(t)=0.$$

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$$

The characteristic polynomial of A is $-(\lambda-2)^3$. Two linearly independent eigenvectors corresponding to the eigenvalue $\lambda=2$ are $\vec{v}_1=(1,0,1)$ and $\vec{v}_2=(0,1,0)$.

- 5. Which of the following statements is true?
- (A) There exists a third eigenvector \vec{v}_3 corresponding to the eigenvalue $\lambda = 2$.
- (B) There exists a generalized eigenvector \vec{v}_3 such that $(A-2I)\vec{v}_3 = \vec{v}_1$.
- (C) There exists a generalized eigenvector \vec{v}_3 such that $(A-2I)\vec{v}_3 = \vec{v}_2$.
- (D) None of the above.

6. For which matrix A does $\vec{x}' = A\vec{x}$ have the depicted phase portrait?

$$(A) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$(\mathsf{B}) \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(D) None of the above

