Domande d'esame

giovedì 28 gennaio 2021 14:38

DIROSTRARE IL TEOREMA DI THEVENIN

- IL TEOROTA DI THEVENIN SI PUO APPLICARE A OVALSIASI CIRCUITO LINEARE, ESSO PUO ESSERE RESO EQUIVALENTE 2 SUOI PUNTI AD UN LATO THEVENIN DOVE IL GENERATORE DI TENSIONE É UGUALE ALLA TENSIONE A VUOTO TRA I DUE PONTI ELA RESISTENZA É UGUALE ALLA REG DEL CIRVITO PASSIVIZZATO (OVVERO DOVE TUTTI I SUOI GENERATORI INDIPENDENTI SONO STATI SPENTI)
- INTRODURRE IL 126 TO DO DEI FASONI EVIDENZIANDONE L'UTIL STUDIO NELLE RETI E CETTRICHE. DESCRIVERE INOLTRE LA POTENZA CL
 - IL ME TO DO DEI FASORI É UNA TECNICA CHE PERRETTE DI . GLI BTESSI STRUZENTI NATI PER LA SOLUZIONE DEI CIRCUITI IN CONTINUA ANCHE A QUELLI IN CORRENTE ALTERNATA/REGIRE IL METODO E APPLICABILE SE VENGONO VORIFICATE 3 DIVE compidioni, Li O & SE TUTTI I GENERATORI PRESENTI SOND SINUSOIDAUI, ISOPREGUENZIALI ED (CORPONENTI PASSIVI PRE LINGAM (RESISTENZE, CONDEMSATORI ED INDUTTORI IDEALI) GRANDEZZE ELETTRICHE VENGONO COM LA STESSA PULSAZIONE NEL RISPETTIVO FASORE, SOSTITUENDO DEM ELERENTO CIRCU L'IMPEDENZA COMPISPONDENTE.
 - LA POTENZA CORPLESSA E LA POTENZA ASSORBITA DE con FORRUM: P= 1/1/1 cos (B) + 1 2 / In SEN (B) = P+ 56 $P=\frac{1}{2}V_nI_n\cos(\phi)=R_e[P]$ E $Q=\frac{1}{2}V_nI_n\sin(\phi)=I_n$ POSGNZA ATTIVA POTENZA REATTIVA

LA PARTE ATTIM DELA POTENZA (PA) E LA POTENZA REDI

DA UN GENERATORE VERSO UN CARICO. E L'UNICA POTENSA REA USATA OBSIA DI SBIPATA DAI CARICHI.

LA POTÈNZA REATTIVA Q E UNA MISUM DELL'ENGRGIA SU

IL CENERATORE E LA PAME MEATTIVA DEL CAMICO.

3) DiMOSTRARE IL TEOREMA DI UNICITÀ DEL CENTROSTELM L'UTILIZZO.

UN GENERATORE TRIFASE PUO ESSENE STUDIATO CORE COSTITUITO DA 3 GENERATORI RONDFASI COLLEGATI A S A TRIANCOLO. SE IL SISTERA TRIFASE E SIRRETRICO ED E SEPARANDO LE LINEG DEL CINCUITO POSSO STUDIARNE UNA SI

POICHÉ LA DIFFERENZA DI PPTENZIALE PNA I DUE CENTRIS É UCUALE A ZERO ALLONA POSSO DENI LINGA CONTOCIRCO. USANDO IL RETODO DEI NODI K CALCOLARE VAO I O È IL NODO DI BALDO OFTERRERO!

$$\begin{bmatrix} \dot{y}_1 + \dot{y}_2 + \dot{y}_3 \end{bmatrix} \begin{bmatrix} \bar{V}_A \end{bmatrix} = \begin{bmatrix} \dot{y}_1 \bar{E}_1 + \dot{y}_2 \bar{E}_2 + \dot{y}_3 \bar{E}_3 \end{bmatrix}$$

$$\widehat{V}_{A} = \underbrace{\left[\dot{y}_{1} \overline{E}_{1} + \dot{y}_{2} \overline{E}_{2} + \dot{y}_{3} \overline{E}_{3} \right]}_{\left[\dot{y}_{1} + \dot{y}_{2} + \dot{y}_{3} \right]}$$

AVENDO PERO IL SISTEME SI MACTRICO ED GOVILI AVRO:

$$\overline{V}_{A} = \left[\underline{y}_{1} \overline{E}_{1} + \underline{y}_{2} \overline{E}_{2} + \underline{y}_{3} \overline{E}_{3} \right] \qquad \overline{V}_{A} = \underbrace{A \left[\overline{E}_{1} + \overline{E}_{2} + \overline{G}_{3} \right]}_{V_{A}}$$

POTENZA INSTANTANEA E COMPL

LA POTENZA INSTANTANCA PCt) ASSONBITA DA U DELLA TENSIONE INSTANTANDA YLLE PER LA CORRENTE I QUESTO TIPO DI POTENSA TIENE TRACCIA DI OVANTA ELERENTO IN UN PRECISO INSTANTE DI TETTPO (PUO ESSE INSTANTE DI TERPO),

CONSIDERANDO UN CIRCUITO ALIRENTATO DA UN GE CALCOLIATO LA SUA POTENZA INSTANTANGA USANDO TENSIONE E DI CONNEME SINUSPIDALI:

V(t) = Vn cos (wt + yv) $I(t) = I_{\pi} \cos(\omega t + \varphi i)$

Vn & In sono i pispettivi Valoni Di Picco, L'AM, GLI ANGOLI DI SPASAMENTO DI CONNENTE E TENSIONE (ONA MISCHIVIAMO LA FORMULA COME:

P(t)=v(t). i(t)=VnIn cor (ut+qn) cor (ut+ LA GUALE CON LE FORMULE DI EULGNO SI THASFORT $P(t) = \frac{\sqrt{n} \ln \left[\cosh(4m - 4i) + \cosh(2mt + 4m + 4i) \right]}{2}$

- · DA QUESTA FORMULA ERERGE CHE LA POTENSA INS DI DUE POTENZE:
 - LA POTENZA ATTIVA VIIII (9N Gi) CHE RISULTA ESS DEL TERPO E DIPENDE SOLARCIE PALLO SFASARCNIO -LA POTENBA FLUTTUANTE VA In (2 ut + 4m + 4i) E una (

LA CU PREQUENZA E 200 OSIA IL DOPPIO DELLA F E DELA CORRENTE

- LA POTENZA CORPLESSA E LA POTENZA ASSO, CON FORRULA: P = 1/1 In COS. CB) + J = VITA SENC \$ = P==== VnIn con(p)=Re[F] E Q=== VnIn SEN() POSENZA ATTIVA potenza neat

LA PARTE ATTIM DELA POTENZA (PA) E LA POTER DA UN CENETATORE VENSO UN CARICO. E C'UNICA POTE USATA OSSIA DISSIPATA DAI CARICHI.

LA POTENZA REATTIVA Q E UNA MISUM DEU'ENO il coneratore E LA PAME REATTIVA PEL CAMICO.

SISTEM TRIFASE SIRRETRICO ED EQUILIBRATO: PER LA TMSRISSIONE DELLA POTENSA ELETINIA NISPETTO

> · UN SISTEM TRIFASE, NELL' ECETTROTECNICA, E Ovveno The TENSION ALTERNATE SINUSDIDALI. LE E1 E2 E3 HANNO LA STESSA FREQUENZA CISO FREQUE SFASATE THE LPNO DI 120 GMDI. L'UGUA GLIAI GAMAMISCE LA COSTANZA NEL TERPO PELLO

_ Si DEFINISCE SIMMETRICO CM SI STEMA I

- DI TENSIONE SOIDDISFANO LA ROLA ELONE! EL+
- Si DEFINISCE EQUILIBRATO UN SISTEMA TRIF DI CIASCURA FASE SODDISFANO LA RELAZIONE!]
 - I CIRCUITI RONDFASE SONO LASTITUITI DA UN
 2 CONPUTTONI: UNO PEN IL NEUTNO ED UNO PI
 CONVENCONO IN PRESENZA DI POTENZE INFERMIONI
 - · I VANTAGCI DEL TRIPASE DISPETTO AL RUMO FASE.
 - UN CIRCUITO TRIFASE A TRE FILI RISULTA ESE ECONORICO DI UN CIRCUITO RONOFASE A DUE FIL UTILIZZA MENO MATERIALE CONDUTTORE X TRASRET OVANTITA QUANTITA DI ENERGIA ELETTRICA
 - LA DIPPE NEWBA FIR UN' ALITENTAZIONE ROMO!

 CHE QUANDO LA CUNVA DELLA ROMOPASE PASSA ATT

 LA PPTENZA FORNITA É PANÍ AZERO, PENCIÓN

 LI VELLO DI POTENZA FORNITO NEL CONSO DEL TERPO

(6) INSERZIONE DI ARON

ELETTRICA DI UN TRIPASE DIRETTATIENTE SUI CA

(DN L'AUSILIO DELL' INSENZIONE DI ARON SI RIC

POTENZA DEL SISTEM CON SOLI 2 WATTITETRI

PUNTO DELLA LINGA. LA SOTITA DEI PUE WATTITE

ASSONBITA DAL SISTEM TRIFASE.

ANALISI DEL (

DIL WATTORC

INPING LALCO

$$P_{A_2} = Re \left[\frac{1}{2} \overline{V}_{23} \cdot \overline{I}_{3}^{*} \right]$$

$$=\frac{1}{2}V_nI_n\cdot 2\cos\theta\cos\xi=\frac{\sqrt{3}}{2}V_nI_n\cos\theta$$

PAI + PAZ =
$$\frac{\sqrt{3}}{2}V_nI_n$$
 COSO POTENZA ATTIVA DI TUTIA