Аналитическая геометрия и линейная алгебра

abcdw

Упорядоченная система векторов e_1, \ldots, e_n называется базисом линейного пространства, если $\forall x \; \exists ! \xi_1, \dots, \xi_k : x = \xi_1 e_1 + \dots + \xi_k e_k$ Векторы базиса обязательно ЛНЗ.

Пусть e_1, \ldots, e_k - базис V.

Рассмотрим линейнуйю комбинацию $\alpha_1 e_1 + \dots \alpha_k e_k = \theta \Rightarrow \forall i \ \alpha_i = 0$

Лемма. Если f_1, \dots, f_n - система ЛНЗ векторово в ЛП V.

$$x = \sum \alpha_i f_i$$

Если расскладывается, то разложение единственно.

Пусть
$$x=\sum \beta_i f_i$$
 $(\alpha_1-\beta_1)*f_1+\cdots+(\alpha_n-\beta_n)f_n=\theta,$ так как f_i - ЛНЗ, то $\alpha_i-\beta_i=0$

Свойство.

$$\forall \lambda \in F \lambda x = \sum_{i} (\lambda x_i)$$
$$x + y \Rightarrow x_i + y_i$$

Пусть в ЛП V имеется две системы $e:e_1,\ldots,e_k$ и x_1,\ldots,x_n , такие что $x_i = \sum_{l=1}^k \xi_l^{(i)} e_l$, n > k, тогда система x_1, \dots, x_n - ЛЗ.

Доказательство.

По условию.
$$x_i = (e_1, \dots, e_k) \begin{pmatrix} \xi_1^{(i)} \\ \vdots \\ \xi_k^{(i)} \end{pmatrix}$$

Доказать, что $\sum \alpha_i x_i = \theta$

Рамерность - максимальное число ЛНЗ векторов. Основная теорема о связи базиса и размерности. Кол-во векторов в базисе равно размерности.

Если $n = \dim V$, то любая упорядоченная и ЛНЗ система элементов пространства V образует базис.

Если в ЛП V имеется базис e_1, \ldots, e_k , то $k = \dim V$

1) Пусть $n=\dim V$ - по определению это максимальное число ЛНЗ элементов V.

Рассмотрим e_1, \ldots, e_n , докажем, что это базис.

$$\forall x \in V \ x, e_1, \dots, e_n$$
 - $\Pi 3$.

$$\exists \alpha_i, \alpha \neq 0 : \alpha x + \sum \alpha_i x_i = \theta$$

$$x = \sum \frac{\alpha_i}{\alpha} e_i$$

По лемме 1 разложение единственно.

$$e_1,\ldots,e_n$$
 - базис.

2) Пусть e_1, \ldots, e_k - базис V.

Докажема, что $k = \dim V$

Пусть x_1, \ldots, x_n - произвольная система элементов ЛП V.

По определению базиса $x_t = \sum_{i=1}^k \xi_i^t e_i$ по лемме 2 x_1, \dots, x_n - ЛЗ.

Следствие. Пусть V - ЛП, $\dim V = n$ всякий базис V состоит из n элементов.

Примеры:

- 1) Пространство строк F^n
- 2) Пространство многочленов P_n
- 3) Пространство матриц.
- 4) $Ax = \theta$

 $A - m \times n$ матрица.

$$r = Rg A < n$$

$$x^{(1)}, \dots, x^{(n-r)}, \dim = n - r$$

§5 Изоморфизм линейных пространств.

V,W - ЛП. Отображение $\varphi:V\to W$

Называется биективным (взаимнооднозначным). Если $\forall x \in V \exists ! \varphi(x) \in W \forall x' \in W \exists ! x_0 \varphi(x_0) = x'$

W,V над полем F называются изоморфными, если существует биекция $\varphi:V \to W,$ сохраняющая линейные операции.

$$\varphi(x) + \varphi(y) = \varphi(x+y)$$

$$\forall x \in V \forall \lambda \in F\varphi(\lambda x) = \lambda \varphi(x)$$

Свойтсва изоморфизма.

- 1) $\varphi(\theta_V) = \theta_W$ По свойству два 0х.
- 2) Образом ЛНЗ системы элементов является ЛНЗ система. $x_i' = \varphi(x_i)$. Пусть $\exists \alpha_i \in F : \sum \alpha_i x_i' = \theta_W \Rightarrow \varphi(\sum \alpha_i x_i) = \varphi(\theta_W)$

Теорема.

Пусть V,W - два конечномерных линейных пространства над полем F. V и W - изоморфны тогда и только тогда, когда $\dim V = \dim W$ $\sqrt{}$