Санкт-Петербургский государственный университет Saint-Petersburg State University

Кафедра теоретической и прикладной механики

ОТЧЕТ

По лабораторной работе 4

«Крутильные колебания вала с дисками»

По дисциплине «Лабораторный практикум по теоретической механике»

Выполнили:

Баталов С. А. Антонова М. Клюшин М. Хайретдинова Д.

Санкт-Петербург 2021

1. Описание установки

В данной работе рассматриваются колебания механической системы с тремя степенями свободы. Целью работы является экспериментальное определение частот и главных форм собственных колебаний системы, их теоретический расчет и последующее сравнение.

Рис. 1. Схема лабораторной установки.

На рис. 1 изображена схема лабораторной установки. Основной частью установки является упругий вал 8 с тремя жестко укрепленными на нем дисками 1, 2 и 3. Вал может вращаться в подшипниках 4, установленных на станине. К ободу среднего диска 2 прикреплены пружины 5, одна из которых связана со станиной, а другая — с эксцентриком 6, закрепленном на валу электродвигателя 7. На валу электродвигателя укреплены маховик 9 для стабилизации частоты вращения и диск оптоэлектронного тахометрического датчика. Сигнал с тахометрического датчика поступает на вход электронного цифрового тахометра, показания которого соответствуют частоте вращения вала в герцах.

2. Параметры установки

В следующей таблице представлены заранее известные величины: плотность материала дисков – ρ , модуль сдвига материала вала – G, жесткость пружины – c_n .

Таблица 1: Известные константы.

Номер	Величина	Значение	Размерность
1	ρ	$7,85\cdot10^3$	$\kappa\Gamma/M^3$
2	G	$8,33 \cdot 10^{10}$	Па
3	C_{Π}	4900	Н/м

Для расчета частот и форм собственных колебаний системы потребуется измерить некоторые параметры установки. Данные измерений приведены в таблице 2. Здесь r_i – радиусы дисков, d_i – толщины дисков, l_i – расстояния между дисками, r – радиус упругого вала, e – расстояние от точки крепления пружины до центра эксцентрика.

 Таблица 2: Результаты измерений параметров установки.

Номер	Величина	Значение	Погрешность	Размерность
1	r_1	0,150	0,0005	М
2	r_2	0,150	0,0005	М
3	r_3	0,150	0,0005	М
4	d_1	0,025	0,0005	М
5	d_2	0,020	0,0005	М
6	d_3	0,025	0,0005	М
7	l_1	0,445	0,0005	М
8	l_2	0,616	0,0005	М
9	r	0,005	0,00005	M
10	e	0,021	0,0005	М

3. Теоретические исследования

Для начала произведем вспомогательные вычисления и расчитаем моменты инерции дисков. Для этого воспользуемся формулой (1).

$$I_i = \frac{1}{2}m_i r_i^2 = \frac{1}{2}\rho \pi r_i^4 d_i, \quad i = 1, 2, 3.$$
 (1)

Далее определим жесткость на скручивание участков вала. Воспользуемся формулой (2). Здесь $I_p = \frac{1}{2}\pi r^4$ – полярный момент инерции поперечного сечения вала.

$$c_k = \frac{GI_p}{l_k} = \frac{G\pi r^4}{2l_k}, \quad k = 1, 2.$$
 (2)

Для дальнейшей работы составляется система уравнений Лагранжа второго рода для данной задачи и упрощается. В итоге приходим к уравнению (3), решениями которого являются квадраты искомых частот ω_i собственных колебаний системы.

$$a_0 y^3 + a_1 y^2 + a_2 y + a_3 = 0, \quad y = \omega^2.$$
 (3)

Здесь

$$a_0 = I_1 I_2 I_3, \quad a_1 = -c_2 I_1 I_2 - c_3 I_1 I_3 - c_1 I_2 I_3,$$

$$a_2 = c_2 (c_3 - c_2) I_1 + c_1 c_2 I_2 + c_1 (c_3 - c_1) I_3,$$

$$a_3 = -c_1 c_2 (c_3 - c_1 - c_2), \quad c_3 = c_1 + c_2 + 2c_{\scriptscriptstyle \Pi} r_2^2.$$

Для поиска главных форм собственных колебаний воспользуемся формулами (4) и (5). Найти значения амплитуд $\Phi_i(\omega)$ колебаний дисков можно с помощью выражения (5). Отношение амплитуд при резонансе можно расчитать по формуле (6).

$$\Delta(\omega) = \begin{vmatrix} c_1 - \omega^2 I_1 & -c_1 & 0 \\ -c_1 & c_3 - \omega^2 I_2 & -c_2 \\ 0 & -c_2 & c_2 - \omega^2 I_3 \end{vmatrix}, \qquad b = \begin{pmatrix} 0 \\ r_2 c_{\pi} e \\ 0 \end{pmatrix}. \tag{4}$$

Далее используется обозначение $\Delta_i(\omega)$ – определитель, полученный из определителя $\Delta(\omega)$ заменой i-го столбца столбцом свободных членов b.

$$\Phi_i(\omega) = \frac{\Delta_i(\omega)}{\Delta(\omega)}, \quad i = 1, 2, 3.$$
 (5)

$$\frac{\Phi_1(\omega_k)}{\Phi_2(\omega_k)} = \frac{\Delta_1(\omega_k)}{\Delta_2(\omega_k)}, \quad \frac{\Phi_2(\omega_k)}{\Phi_3(\omega_k)} = \frac{\Delta_2(\omega_k)}{\Delta_3(\omega_k)}, \quad k = 1, 2, 3.$$
 (6)

4. Результаты расчетов

Таблица 3: Расчет вспомогательных величин.

Номер	Величина	Значение	Размерность
1	I_1	0,1561	$_{ ext{K}\Gamma \cdot ext{M}^2}$
2	I_2	0,1249	$_{ m K\Gamma \cdot M}^2$
3	I_3	$0,\!1561$	$_{ ext{K}\Gamma \cdot ext{M}^2}$
4	c_1	183,7743	Н · м
5	c_2	132,7591	Н · м
6	c_3	537,0334	Н · м

Таблица 4: Расчет коэффициентов уравнения (3).

Номер	Величина	Значение
1	a_0	0,0030
2	a_1	-19,2574
3	a_2	21559,3348
4	a_3	-5379695,2030

Таблица 5: Расчет определителей.

Номер	Величина	Значение
1	$\Delta_1(\omega_1)$	
2	$\Delta_2(\omega_1)$	
3	$\Delta_3(\omega_1)$	
4	$\Delta_1(\omega_2)$	
5	$\Delta_2(\omega_2)$	
6	$\Delta_3(\omega_2)$	
7	$\Delta_1(\omega_3)$	
8	$\Delta_2(\omega_3)$	
9	$\Delta_3(\omega_3)$	

Таблица 6: Собственные частоты и формы колебаний системы.

Номер	Величина	Значение	Размерность
1	ω_1	18,90	1/c
2	ω_2	31,47	1/c
3	ω_3	71,22	1/c
4	$\Phi_1(\omega_1)$		_
5	$\Phi_2(\omega_1)$		_
6	$\Phi_3(\omega_1)$		_
7	$\Phi_1(\omega_2)$		_
8	$\Phi_2(\omega_2)$		_
9	$\Phi_3(\omega_2)$		_
10	$\Phi_1(\omega_3)$		_
11	$\Phi_2(\omega_3)$ $\Phi_3(\omega_3)$		_
12	$\Phi_3(\omega_3)$		

5. Результаты экспериментов

Таблица 7: Экспериментальные значения частот собственных колебаний системы.

Номер	Величина	Значение		Разморности
		Теория	Эксперимент	Размерность
1	ω_1	18,90		1/c
2	ω_2	31,47		1/c
3	ω_3	71,22		1/c

6. Выводы