09 Logic Blocks Arithmetic

©Department of Computer Science
University of Victoria

Buffer

- A buffer is a gate with the function F = X:
- As a Boolean function, a buffer is the same as a connection!
- · Why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

Hi-Impedance Outputs

- Logic gates introduced thus far
 - output values only 0 or 1
 - no outputs connected together
 - transmit signals in only one direction

 Three-state logic adds a third logic value Hi-Impedance (Hi-Z)

thus 3 outputs: 0, 1, and Hi-Z

Hi-Impedance Outputs (continued)

- What is a Hi-Z value?
 - The Hi-Z value behaves as an open circuit
 - I.e. the output appears to be disconnected
 - It is as if a switch between the internal circuitry and the output has been opened
- Hi-Z may appear on the output of any gate, but we restrict gates to:
 - a 3-state buffer

with one data input and one control input

The 3-State Buffer

- For the symbol and truth table, IN is the data input, and EN the control input
- For EN = 0,
 - → output = Hi-Z
- For EN = 1,
 - →output value = input value

- · Variations:
 - IN or EN can be inverted by addition of "bubbles" to signals

Truth Table

EN	IN	TUO
0	X	Hi-Z
1	0	0
1	1	1

Using tri-state gates to implement an economical multiplexer

When SelectInput is high

→ F = Input1

When **SelectInput** is low

→ f = Input0

This is really a 2:1 Mux

Enabling Function

- Enabling permits an input signal to pass through to an output
- Disabling blocks an input signal from passing through to an output, replacing it with a fixed value
- The value on the output when it is disabled can be Hi-Z, O, or 1

Arithmetic Overview

- Iterative combinational circuits
- Binary adders
 - Half and full adders
 - Ripple carry and carry lookahead adders
- Binary subtraction
- Binary adder-subtractors
 - Signed binary numbers
 - Signed binary addition and subtraction
 - Overflow
- Binary multiplication
- Other arithmetic functions
 - Design by contraction

Iterative Combinational Circuits

- Arithmetic functions
 - Operate on binary vectors
 - Use the same subfunction in each bit position
- Can design functional block for subfunction and repeat to obtain functional block for overall function
- · Cell subfunction block
- Iterative array a array of interconnected cells
- An iterative array can be in a <u>single</u> dimension (1D) or <u>multiple</u> dimensions

Block Diagram of a 1D Iterative Array

- Example: n = 32
 - Number of inputs = ?
 - Truth table rows = ?
 - Equations with up to? input variables
 - Equations with huge number of terms
 - Design impractical!
- Iterative array takes advantage of the regularity to make design feasible

Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - Half-Adder (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

 A 2-input, 1-bit width binary adder that performs the following computations:

- · A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified as a truth table for S and $C \Rightarrow$

X	У	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map! By inspection:

S

$$S = X \cdot \overline{Y} + \overline{X} \cdot Y = X \oplus Y$$

 $S = (X + Y) \cdot (\overline{X} + \overline{Y})$

and

$$C = X \cdot Y$$

$$C = \overline{((X \cdot Y))}$$

These equations lead to several implementations.

Five Implementations: Half-Adder

 We can derive following sets of equations for a half-adder:

(a)
$$S = X \cdot \overline{Y} + \overline{X} \cdot Y$$
 (d) $S = (X + Y) \cdot \overline{C}$
 $C = X \cdot Y$ $\overline{C} = (X + Y)$
(b) $S = (X + Y) \cdot (\overline{X} + \overline{Y})$ (e) $S = X \oplus Y$
 $C = X \cdot Y$ $C = X \cdot Y$
(c) $S = \overline{(C + \overline{X} \cdot \overline{Y})}$
 $C = X \cdot Y$

- (a), (b), and (e) are SOP, POS, and XOR implementations for S.
- In (c), the C function is used as a term in the AND-NOR implementation of S, and in (d), the \overline{C} function is used in a POS term for S.

Implementations: Half-Adder

 The most common half adder implementation is:
 (e)

$$S = X \oplus Y$$

 $C = X \cdot Y$

· A NAND only implementation is:

$$S = (X + Y) \cdot C$$

 $C = ((X \cdot Y))$

Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the halfadder, it computes a sum bit, S and a carry bit, C.
 - For a carry-in (Z) of 0, it is the same as the half-adder:
 - For a carry- in(Z) of 1:

	•			
X	0	0	1	1
+ y	+ 0	+ 1	+ 0	+ 1
C S	00	0 1	0 1	1 0
Z	1	1	1	1
X	0	0	1	1
+ y	+ 0	<u>+ 1</u>	+ 0	+ 1
C S	0 1	1 0	1 0	11

Logic Optimization: Full-Adder

· Full-Adder Truth Table:

X	У	Z	C	5
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-Adder K-Map:

Equations: Full-Adder

From the K-Map, we get:

$$S=X\overline{Y}Z+\overline{X}Y\overline{Z}+\overline{X}\overline{Y}Z+XYZ$$

 $C=XY+XZ+YZ$

 The S function is the three-bit XOR function (Odd Function):

$$S = X \oplus Y \oplus Z$$

The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum is 1 and a carry-in (Z) occurs. Thus C can be re-written as:

$$C = XY + (X \oplus Y)Z$$

- The term X·Y is carry generate.
- The term X⊕Y is carry propagate.

Implementation: Full Adder

- Full Adder Schematic
- Here X, Y, and Z, and C (from the previous pages) are A, B, C_i and C_o , respectively. Also,

G = generate and P = propagate.

• Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for C_o):

(G = Generate) OR (P = Propagate AND
$$C_i$$
 = Carry In)
 $C_0 = G + P \cdot C_i$

Binary Adders

- To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors
- Example: 4-bit ripple carry adder: Adds input vectors
 A(3:0) and B(3:0) to get a sum vector S(3:0)
- Note: carry out of cell i becomes carry in of cell i + 1

Description	Subscript Name 3 2 1 0
Carry In	0 1 1 0 Ci
Augend	1 O 1 1 Ai
Addend	0 0 1 1 Bi
Sum	1 1 1 0 Si
Carry out	0 0 1 1 <i>C</i> i+1

4-bit Ripple-Carry Binary Adder

 A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

Carry Propagation & Delay

 One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.

• The gate-level propagation path for a 4-bit ripple

carry adder of the last example:

• Note: The "long path" is from A_0 or B_0 though the circuit to S3.

Carry Lookahead Adders

 optimize design by looking at equations for the Ci (carry ins) in terms of all the bit inputs

so
$$C(i+1) = function(X0,..., Xi, Y0,..., Yi, C0)$$

rather than $C(i+1) = XiYi + Ci(Xi + Yi)$

IDEA

$$C(i+1)$$

CAN WE DO IT ???

the block calculates C(i+1) in a fixed number of logic levels independent of n

Carry Look Ahead

2's Complement Adder/Subtractor

- Subtraction can be done by addition of the 2's Complement.
 - 1. Complement each bit (1's Complement.)
 - 2. Add 1 to the result.
- The circuit shown computes A + B and A B:
- For S = 1, subtract, the 2's complement of B is formed by using XORs to form the 1's comp and adding the 1 applied to C_0 .
- For S = 0, add, B is passed through unchanged

Arithmetic Logic Unit

Sample ALU: word F

input words A, B and output

control lines M, S1, S0 and carry-in C0

M = 0, Logical Bitwise Operations

	-, -	- grow - romes operano	
S1	S0	Function	Comment
0	0	Fi = Ai	Input Ai transferred to output
0	1	Fi = not Ai	Complement of Ai transferred to outp
1	0	Fi = Ai xor Bi	Compute XOR of Ai, Bi
1	1	Fi = Ai xnor Bi	Compute XNOR of Ai, Bi
M =	= 1, (C0 = 0, Arithmetic Operat	tions
0	0	F = A	Input A passed to output
0	1	F = not A	Complement of A passed to output
1	0	F = Aplus B	Sum of A and B
1	1	F = (not A) plus B	Sum of B and complement of A
M =	: 1, C	0 = 1, Arithmetic Operat	ions
0	0	F = A plus 1	Increment A
0	1	F = (not A) plus 1	Twos complement of A
1	0	F = Aplus B plus 1	Increment sum of A and B

1 F = (not A) plus B plus 1 B minus A