

Escola Politécnica de Pernambuco Especialização em Ciência de Dados e Analytics

Estatística Computacional

Aula 1.1 - Estatística Descritiva - PARTE I

Prof. Dr. Rodrigo Lins Rodrigues

rodrigolins.rodrigues@ufrpe.br

Quem sou?

Rodrigo Lins Rodrigues

- ✓ Professor na UFRPE;
- ✓ Bacharel em Estatística
- ✓ Licenciado em Computação;
- ✓ Doutorado e Mestrado em Ciência da Computação;
- ✓ Pesquiso sobre Mineração de Dados Educacionais.

Contatos:

- ✓ Email: rodrigo.linsrodrigues@ufrpe.br
- ✓ Facebook: /rodrigomuribec

...O que vocês viram até agora?

Estatística Computacional	Rodrigo Lins Rodrigues	30
Internet of Things (IOT)	Kiev Santos da Gama	30
Soluções em Processamento para Big Data	Jairson Barbosa	30
Metodologia Científica	Luis Arturo Goméz	15
Soluções em Mineração de Dados	Germano Crispim	30
Banco de Dados Não Convencionais	Andreza Leite de Alencar	30
Tecnologias em Processo de Negócios	Rômulo César	30
Introdução à Ciência dos Dados	Alexandre Magno	30

Sobre a disciplina...

- ✓ Estatística Descritiva ou Exploratória;
- ✓ Testes de Hipóteses e ANOVA;
- ✓ Modelos de Regressão Linear e Logístico;
- ✓ Análise de Conglomerados e Fatorial.

Conceitos computacionais intercalados

O que veremos nesta aula?

Estatística Descritiva:

- ✓ Conceitos sobre estatística descritiva;
- ✓ Natureza das variáveis;
- ✓ Processos de amostragem;
- ✓ Medidas de tendência central;
- ✓ Medidas de Dispersão;
- ✓ Representações tabulares;
- ✓ Representações gráficas;
- ✓ Correlação;

Como serão as aulas?

- ✓Intersecção entre teoria e prática;
- ✓ Reflexões sobre a estatística no cotidiano;
- ✓ Relação com as outras disciplinas do curso;
- ✓ Exercícios durante todas as aulas.

...e sobre as avaliações?

Avaliações Teóricas:

- ✓ Exercícios em sala de aula 40%
- ✓ Participação em sala 10%

Avaliações Práticas

- ✓ Realização de projetos práticos 25%
- ✓ Apresentação dos resultados 25%

Livros de Referência

Como a estatística é utilizada?

Mercado de Vendas

- ✓ Segmentação de clientes;
- ✓ Recomendação de produtos;
- ✓ Campanhas customizadas para clientes com perfil específico;
- **√**...

Bancos

- ✓ Score de crédito;
- ✓ Probabilidade de inadimplência;
- ✓ Lucratividade por cliente;
- ✓ Clientes potenciais;
- **√**...

Educação

- ✓ Previsão de desempenho;
- ✓ Retenção de estudantes;
- ✓ Identificação de perfil de aprendizagem;
- ✓ Recomendação de conteúdo;
- **√**...

Saúde

- ✓ Modelagem epidemiológica;
- ✓ Previsão de doenças;
- ✓ Relação de fatores de risco;
- **√**...

Marketing

- ✓ Segmentação de clientes;
- √ Campanhas personalizadas;
- ✓ Identificação de perfil de compra;
- **√**...

... Como os dados são gerados, armazenados e coletados?

- Existem diversas formas de coleta de dados
 - ✓ Coletas por instrumentos de coleta do tipo questionários;
 - ✓ Dados de redes sociais;
 - ✓ Dados por sensores;
 - ✓Etc...

- Através de questionários
 - ✓ Dados coletados por CENSO;
 - ✓ Pesquisas de opinião pública;
 - ✓ Pesquisas comportamentais;
 - ✓ Pesquisas políticas.

Através plataformas web

facebook

facebook

√ 968 milhões usuários ativos por dia;

- ← de 40 bilhões de fotos compartilhadas;
- √ 3,5 bilhões de likes por dia;

 ✓ + de 100 milhões de horas de vídeo assistidas por dia;

√ 300 bilhões de mensagens por dia.

Bento XVI 19 de abril de 2005

Francisco 13 de março de 2013

...Para que serve uma amostra

...Vamos refletir!

- É através da **amostra** que podemos **inferir sobre os parâmetros** de uma população;
- A amostra deve ser representativa, para isso existem diversas técnicas de amostragem;
- Se o tamanho dessas amostras cresce na direção do tamanho da população, mais precisas são as conclusões obtidas;
- Experimentos com amostras muito grandes se aproximam de um CENSO.

Valores calulados usando dados da população são chamados de parâmetros.

Valores computados de dados da amostra são chamados estatística.

- Por que fazer amostragem ao invés de censo?
 - ✓ Economia financeira;
 - ✓ Menor tempo;
 - ✓ Maior qualidade nos dados levantados;
 - ✓ População infinita;
 - ✓ Mais fácil, com resultados satisfatórios.

"Um bom tamanho de amostra é 10% da população?"

A amostra deve ser representativa!

- O que devemos evitar no processo de amostragem?
 - ✓ Amostras por conveniência;
 - ✓ Amostra de voluntários;
 - ✓ Amostra intencionais;
 - ✓ Amostra com amigos ou conhecidos.

Amostragem Aleatória Simples

✓ Ex.: selecionar, aleatoriamente, eleitores da população eleitoral do Brasil.

Amostragem Estratificada

✓ Ex.: (1) dividir os eleitores por sexo; (2) Selecionar, aleatoriamente, elementos de cada grupo.

Amostragem de Agrupamentos

✓ Ex.: (1) dividir os eleitores por zona eleitoral; (2) Selecionar, aleatoriamente, 3 zonas eleitorais; (3) Selecionar, aleatoriamente, 300 eleitores de cada zona eleitoral selecionada.

...e como calcular o tamanho de uma amostra representativa?

- Calculo do Tamanho Amostral
- Algumas definições são necessárias para o entendimento:
 - ✓ Parâmetro: característica da população;
 - ✓ Estatística: característica da amostra;
 - ✓ Estimativa: valor que estima o valor de um parâmetro populacional.
 - ✓ Erro amostral: diferença entre o valor que a estatística pode acusar e o verdadeiro valor do parâmetro que se deseja estimar;
 - ✓ Erro amostral tolerável: é o erro admitido na avaliação dos parâmetros de interesse numa população.

- O cálculo amostral é dado pela equação:
 - ✓ N = Tamanho da população
 - ✓ E_0 = erro amostral tolerável
 - $\checkmark n_0$ = primeira aproximação do tamanho da amostra
 - √ n= tamanho da amostra

$$n_0 = \frac{1}{E_0^2} \qquad \qquad \qquad \qquad \qquad \boxed{n = \frac{N \cdot n_0}{N - n_0}}$$

Exemplo:

✓ Imagine uma cidade com 200.000 famílias e queremos fazer uma pesquisa eleitoral onde iremos utilizar a técnica de amostragem aleatória simples. Qual seria o tamanho da amostra?

Resolução

Inicialmente vamos admitir alguns valores

 E_0 = erro amostral tolerável = 0,04 = 4%.

Exemplo:

Calculando a primeira aproximação do tamanho da amostra temos:

$$n_0 = \frac{1}{E_0^2} = \frac{1}{0.04^2} = 625$$

Agora iremos calcular o tamanho da amostra corrigido:

$$\left(n = \frac{N.\,n_0}{N-\,n_0}\right)$$

n = 200.000x625 / 200.000 + 625 = 125000000 / 200625 = 623

Agora é com vocês!

• Qual a diferença entre amostra e CENSO?

- Quais as vantagens em optar por uma amostra ?
- O que é uma amostra representativa ?

• Diga três tipos de técnicas de amostragem.

Conceitos sobre Estatística Descritiva

Qual sua definição sobre Estatística?

... O que é Estatística?

"Estatística é o estudo da coleta, organização, análise, interpretação, e apresentação de dados."

[Oxford Dictionary of Statistical Terms]

... O que é Estatística?

 A utilização da Estatística é cada vez mais acentuada em qualquer atividade profissional da vida moderna;

- A estatística está basicamente dividida em duas partes:
 Estatística Descritiva e Estatística Inferencial:
 - ✓ Descritiva ou Exploratória é relacionada a descrição por tabelas, gráficos e medidas sobre a amostra;
 - ✓ Inferencial tem a capacidade de estimar parâmetros de uma população baseado em uma amostra representativa.

Áreas que utilizam...

- A estatística lida com o planejamento, coleta, análise e interpretação dos dados como ferramentas auxiliares na tomada de decisões e resolução de problemas;
- Áreas da computação que utilizam estatística:
 - ✓ Inteligência Artificial;
 - ✓ Extração de informação;
 - ✓ Mineração de Dados/Texto;
 - **√**

Ramos da Estatística

- Algumas áreas e técnicas da estatística:
 - Estatística descritiva;
 - Planejamento de experimentos;
 - Análise multivariada;
 - Estatística não-paramétrica;
 - Análise de regressão;
 - Modelos lineares;
 - Séries temporais;
 - Tecnologia da amostragem;
 - Controle de qualidade;
 - ...Etc.

Estatística Descritiva

- É o uso de métodos de sumarização e descrição nos dados;
- Métodos pictóricos e tabulares
 - √ Gráficos e tabelas
- Medidas de posição
 - √ Média, mediana, moda, quartil e percentil
- Medidas de variabilidade
 - ✓ Amplitude, variância, desvio padrão e distância interquartil

Natureza das variáveis

- Variável é uma característica da população (amostra), possível de ser medida, contada ou categorizada;
- É importante conhecer a natureza das variáveis antes de pensar em qualquer análise estatística;
- É possível realizar **transformação na natureza** de uma variável:
 - ✓ Ex: Discreta para ordinal

Natureza das variáveis

Variáveis Qualitativas;

- ✓ Podem ser representadas por meio de tabelas de distribuição de frequência;
- ✓ Não podem ser calculadas medidas de posição ou dispersão;
- ✓ A tabela abaixo representa uma variável qualitativa por faixa de renda.

Classe	Salários Mínimos (SM)	Renda Familiar (R\$)
Α	Acima de 20 SM	Acima de R\$ 15.760,00
В	10 a 20 SM	De R\$ 7.880,00 a R\$ 15.760,00
С	4 e 10 SM	De R\$ 3.152,00 a R\$ 7.879,00
D	2 a 4 SM	De R\$ 1.576,00 a R\$ 3.151,00
E	Até 2 SM	Até R\$ 1.575

Natureza das variáveis

Variáveis Quantitativas;

- ✓ Podem ser representadas graficamente (dispersão, histograma, boxplot, etc);
- ✓ Pode ser aplicado medidas de posição e dispersão;
- ✓ São divididas em discretas e contínuas.

Idade (anos)	Peso (kg)	Altura (m)
48	62	1,60
41	56	1,63
54	84	1,76
30	82	1,90
35	76	1,85

Processo de análise

Agora é com vocês!

- ✓ Qual a diferença entre variáveis qualitativas e quantitativas ?
- ✓ Qual a diferença entre variáveis discretas e contínuas ?
- ✓ Qual a diferença entre Estatística Descritiva e Estatística Inferencial ?

Agora é com vocês!

✓ Vamos elaborar uma base de dados contendo as seguintes variáveis:

	Α	В	C	D	E	F	G	Н	1	J	K	L
1	nome	Idade	sexo	altura	peso	estadoCivil	horasTrabalho	renda	transporte	escolaridade	tipoEscola2grau	AreaGraduacao
2	mario	35	m	1,85	85	solteiro	4	3,5	publico	superior	publica	exatas
3	jose	43	m	1,73	78	casado	5	2,1	privado	especializacao	privada	humanas
4					:							
5												

- ✓ Esses dados podem ser fictícios!!!
- ✓ Iremos utilizar essa tabela em vários exemplos.

- São utilizadas para representar a frequência de ocorrência de um conjunto de variáveis quantitativas ou qualitativas
- Para variáveis qualitativas, representa a frequência de ocorrência de cada categoria;
- Para as variáveis quantitativas, pode-se calcular a frequência do valor ou fazer uma distribuição de classes;

TABELA 4. Valor nutricional estimado (análise indireta)1 de pratos tradicionais do Estado de Goiás (Brasil).

	_IIItuio	da Col	una				
Tipo de preparação	333233		Nutrientes (g	/100g) e energ	ia (kcal/100g)		
	Umidade 1	Energia	Proteínas	Livos	Carboidratos	Fibra alimentar	Cinzas
Salgada		Descri	ção das	s Únida	ides	Descrife	80
Arroz com lingüiça	52,98	253,4	37,94	14,39	21,93	المرفقي	رکیک
Arroz com pequi	69,04	138,0	2,28	3,66	23,42	0,54	1,06
Biscoito de queijo	13,68	444,2	12,37	22,15	48,68	0,90	2,22
Empadão goiano	55,34	241,8	12,08	1(7) n	na /&Tup	a / Regis	stro
Frango com açafrão	66,17	153,8	22,48	5,51	2,48	مرقعات داعد	3,04
Galinhada	58,76	174,7	15,24	3,48	19,25	0,58	2,69
Galinhada com pequi	60,42	176,0	14,64	4,73	17,58	0,57	2,06
Guariroba ao molho	83,53	57,9	2,34	3,20	6,13	2,22	2,58
Pão-de-queijo	30,91	378,4	9,86	22,56	34,01	0,63	2,03
Peixe na telha	70,93	120,4	14,25	4,62	6,02	-	2,87
Pequi refogado	81,03	122,6	1,01	10,45	<mark>opad</mark> o	-	0,75
Doce				_			
Ambrosia	44,67	247,7	7,90	6,81	39,43	-	1,19
Ameixa de queijo	41,42	253,6	7,48	5,59	44,52	ി ക്രൂക്കൂർ	0,99
Bolo de arroz	37,60	448,8	10,51	20,43	55,67	المنتفي المنتفي	2,02
Doce de ovos	22,67	243.6	10,52	8,51	57,12		1,18
Mané-pelado	37,96	Colun		14,19	38,07	0,81	1,83

¹Por meio das seguintes tabelas de composição de alimentos: INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA [5] para energia e nutrientes, exceto a fibra alimentar [8, 15].

- Tabela de distribuição de frequência para dados qualitativos:
 - √ É representada por rótulos qualitativos;
 - √ É contabilizado a frequência para cada rótulo.

- Itens para compor uma tabela de distribuição de frequência
 - ✓ Frequência absoluta (Fi): número de ocorrência de cada elemento na amostra;
 - ✓ Frequência relativa (Fri): porcentagem relativa à frequência absoluta;
 - ✓ Frequência acumulada (Fac): soma de todas as ocorrências até o elemento analisado;
 - ✓ Frequência relativa acumulada (Frac): porcentagem relativa à frequência acumulada.

 Exemplo de uma tabela de distribuição de frequência para variável qualitativa

Escolaridade	Fi	Fri (%)	Fac	Frac (%)
Ensino Fundamental	20	25%	20	25%
Ensino Médio	24	30%	44	55%
Graduação	16	20%	60	75%
Especialização	12	15%	72	90%
Mestrado	5	6%	77	96%
Doutorado	3	4%	80	100%
Total	80	100%		

- Tabela de distribuição de frequência para dados quantitativos discretos:
 - ✓ É importante saber a variabilidade (amplitude) da variável;
 - ✓ Caso essa amplitude seja alta é mais interessante categorizar a variável.

Horas de trabalho	Fi	Fri (%)	Fac	Frac (%)
4	12	30%	12	30%
6	8	20%	20	50%
8	20	50%	40	100%
Total	40	100%		

- Tabela de distribuição de frequência para dados quantitativos
 Contínuos:
 - ✓ São variáveis com valores pertencentes a um intervalo de números reais;
 - ✓ Torna-se interessante agrupar os dados em classes ou faixas;
 - ✓ A quantidade de classes pode ser opcional, porém é interessante ter uma visão da representatividade dos dados;
 - ✓ Se o número de classes for muito pequeno pode-se perder informação;

- Passos para a construção da tabela de frequência para dados quantitativos Contínuos:
 - ✓ Passo 1: Ordenar os dados em forma crescente;
 - ✓ Passo 2: Determinar o número de classes (K), utilizando:

$$k=\sqrt{n}$$
, onde n é o tamanho da amostra

✓ Passo 3: Determinar o intervalo entre as classes (h), calculado com a amplitude da amostra (A= máximo – mínimo):

$$h=\frac{A}{k}$$

✓ Passo 4: Construir a tabela de frequência (Fi, Fri, Fac, Frac).

Exemplo

✓ Considere os dados da tabela abaixo. Refere-se às notas de 30 alunos matriculados na disciplina de Estatística Computacional:

4,2	3,9	5,7	6,5	4,6	6,3	8,0	4,4	5,0	5,5
6,0	4,5	5,0	7,2	6,4	7,2	5,0	6,8	4,7	3,5
6,0	7,4	8,8	3,8	5,5	5,0	6,6	7,1	5,3	4,7

✓ Os quatro passos descritos anteriormente serão aplicados para a construção da tabela de distribuição de frequência.

Exemplo

✓ Considere os dados da tabela abaixo. Refere-se às notas de 30 alunos matriculados na disciplina de Estatística Computacional:

4,2	3,9	5,7	6,5	4,6	6,3	8,0	4,4	5,0	5,5
6,0	4,5	5,0	7,2	6,4	7,2	5,0	6,8	4,7	3,5
6,0	7,4	8,8	3,8	5,5	5,0	6,6	7,1	5,3	4,7

✓ Os quatro passos descritos anteriormente serão aplicados para a construção da tabela de distribuição de frequência.

✓ Passo 1: Ordenar os dados em forma crescente:

3,5	3,8	3,9	4,2	4,4	4,5	4,6	4,7	4,7	5
5	5	5	5,3	5,5	5,5	5,7	6	6	6,3
6,4	6,5	6,6	6,8	7,1	7,2	7,2	7,4	8	8,8

✓ Passo 2: Determinar o número de classes (k):

$$k = \sqrt{n} \Rightarrow \sqrt{30} \cong 5.47 \cong 6$$

✓ Passo 3: Determinar o intervalo entre as classes (h):

$$h = \frac{A}{k} = > \frac{(8.8 - 3.5)}{6} \cong 0.88 \cong 1$$

✓ Passo 4: Construir a tabela de distribuição de frequências para cada classe:

Classe	Fi	Fri (%)	Fac	Frac (%)
3,5 4,5	5	16,67	5	16,67
4,5 5,5	9	30,00	14	46,67
5,5 6,5	7	23,33	21	70,00
6,5 7,5	7	23,33	28	93,33
7,5 8,5	1	3,33	29	96,67
8,5 9,5	1	3,33	30	100
Total	30	100		

É possível representar a relação de duas variáveis em uma única tabela?

Tabelas de dupla entrada ou tabelas de contingência:

- √ São simples de serem construídas;
- ✓ São interessantes para mostrar a relação entre duas variáveis;
- √ É possível construir testes estatísticos para provar as relações.

Tino do losão	Uso do	Marginal das	
Tipo de lesão	Sim	Não	linhas
Grave	15	22	37
Leve	45	18	63
Marginal das colunas	60	40	100

Agora é com vocês!

- ✓ O que é necessário para fazer a representação tabular para uma variável numérica contínua ?
- ✓ Quais são os passos para construir uma tabela de distribuição de frequência ?
- ✓ Quais são os itens que compõem uma tabela de distribuição de frequência?
- ✓ Construa uma tabela de frequencia, contendo (*Fi, Fri, Fac, Frac*) para a variável "*horasTrabalho*" coletada na nossa turma.

Imagine o seguinte:

"na sala dos professores da escola, há um cartaz com a frase "Em 2007, eram 734 estudantes matriculados; em 2008, 753; em 2009, 777; em 2010, 794; e, em 2011, 819".

Essa é a representação gráfica:

As imagens são processadas mais rapidamente pelo cérebro

- É cada vez mais importante no cenário de Big Data;
- Faz parte de todo o processo de análise de dados, desde o entendimento dos dados até a fase de apresentação dos resultados;
- É utilizado nas seguintes fases:
 - ✓ Visualização da qualidade dos dados brutos;
 - ✓ Identificação de distribuições das variáveis;
 - ✓ Apresentar relações e correlações entre variáveis;
 - ✓ Representar e verificar a consistência de modelos;

Gráfico de Barras

- ✓ Compara grandezas, por meio de retângulos de igual largura, porém de alturas proporcionais às grandezas;
- ✓ Cada coluna (ou Barra) representa a intensidade uma modalidade do atributo.

Gráfico de Histograma:

- ✓ Representa a distribuição de uma variável quantitativa contínua;
- à ideal para representar uma tabela de distribuição de frequência por classes;
- ✓ São muito utilizados quando queremos ver o comportamento (distribuição dos dados).

Gráfico de Histograma:

Gráfico de Pizza ou Setores:

- √ Forma de representar dados qualitativos;
- √ É possível representar percentuais;
- √ É de fácil compreensão por leigos;

Gráfico de Dispersão:

- √ É representado pela intersecção entre duas variáveis;
- √ É ideal para visualizar a relação entre o comportamento de duas variáveis quantitativas;
- ✓ É muito utilizado em análises de correlação e regressão.

BoxPlot ou Diagrama de Caixas:

- ✓ É uma representação gráfica de cinco medidas: (1) valor mínimo, (2) primeiro quartil, (3) segundo quartil ou mediana, (4) terceiro quartil e (5) valor máximo;
- ✓ Permite verificar a presença de outliers;
- ✓ É interessante pra ter uma noção da distribuição da variável;
- ✓ Muito utilizado na fase de pré-processamento.

Gráfico de Séries Temporais

- ✓São utilizadas em dados temporais históricos;
- ✓ Muito utilizado com dados meteorológicos e financeiros;

- Absorção de Informação
- Visualização de Padrões de Negócios
- Identificação de Tendências
- Manipulação e interação de dados
- Conversão em Linguagem de Negócio

Data Storytelling – Contar história com dados

Os dados possuem uma história e as ferramentas tecnológicas não sabem como contar a história, pelo menos ainda. Exatamente aí que o <u>Cientista de Dados</u> precisa ser um contador de histórias. Precisa ser mais que um analista, precisa ser um comunicador, capaz de dar vida a história e contextualizá-la no mundo real.

 Atualmente existe uma infinidade de ferramentas e bibliotecas para a geração de visualizações:

Agora é com vocês!

- ✓ Qual gráfico deve ser utilizado para verificar a **existência de** *outliers* em uma determinada variável ?
- ✓ Para o gráfico de **barras** e o diagrama de **dispersão**, qual deve ser a **natureza dos dados** a serem utilizados?
- ✓ Quais gráficos são mais adequados para representar dados qualitativos?
- ✓ Sobre a tabela de dados que construímos, diga qual o melhor tipo de gráfico para cada uma das variáveis

Dúvidas

Contatos:

- ✓ Email: rodrigo.linsrodrigues@ufrpe.br
- ✓ Facebook: /rodrigomuribec