Exercise 1:

1. (6 points) Consider some asset value process V_t that solves the SDE $dV_t = \mu V_t dt + \sigma V_t dW_t$ for constants $\mu \in \mathbb{R}$, $\sigma > 0$ and a Brownian motion W on some (Ω, \mathcal{F}, Q) . Suppose that we want to price a dividend stream of the form $D_T = \int_0^T d(V_s) ds$ for a bounded function d(v), that is we want to compute the conditional expectation

$$E_{(t,V_t)}^Q \Big(\int_t^T e^{-r(s-t)} d(V_s) \, ds \Big)$$
 for some $r \ge 0$.

Suppose that the bounded function $F \colon [0,T] \times \mathbb{R}^+ \to \mathbb{R}$ satisfies the PDE

$$F_t(t,v) + \mu v F_v(t,v) + \frac{1}{2}\sigma^2 v^2 F_{vv}(t,v) + d(t,v) = rF(t,v)$$

with terminal condition $F(T, v) \equiv 0$. Show in analogy to the proof of Feynman Kac that

$$F(t, V_t) = E_{(t, V_t)}^Q \left(\int_t^T e^{-r(s-t)} d(V_s) \, ds \right).$$

Exercise 2:

2. MLE for the OU-process. (6 points) Suppose that X follows an Ornstein-Uhlenbeck process with dynamics $dX_t = \kappa(\theta - X_t)dt + dW_t$ for a Brownian motion W and a speed of mean reversion $\kappa > 0$. Use the Girsanov theorem to derive the maximum likelihood estimator for the unknown parameter $\theta \in \mathbb{R}$ (the mean-reversion level), given an observed trajectory \hat{X}_t , $0 \le t \le T$.

Exercise 3:

3. Positive local martingales. (2 points) Consider a strictly positive local martingale Z with continuous trajectories. Show that Z can be written in the form $Z_t = \exp(M_t - \frac{1}{2}[M]_t)$ for a suitable local martingale M.