Lezioni di Termodinamica per LT Informatica Università di Ferrara

Lucia Del Bianco

Dip.to di Fisica e Scienze della Terra

Interpretazione molecolare della pressione di un gas perfetto

$$P = \frac{2N}{3V} \left(\frac{1}{2} m_0 \overline{v^2} \right)$$

$$\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}$$
 (velocità quadratica media)

La P è proporzionale al numero di atomi (o molecole) per unità di volume e alla energia cinetica media traslazionale degli atomi stessi (o molecole).

Interpretazione molecolare della temperatura di un gas perfetto

$$PV = \frac{2}{3}N\left(\frac{1}{2}m_0\overline{v^2}\right)$$

$$PV = Nk_BT$$

Legge dei gas perfetti

$$T = \frac{2}{3k_B} \left(\frac{1}{2} m_0 \overline{v^2} \right)$$

La temperatura è una misura della energia cinetica media traslazionale delle molecole

Teorema di equipartizione della energia

$$T = \frac{2}{3k_B} \left(\frac{1}{2} m_0 \overline{v^2} \right)$$

La temperatura è una misura della energia cinetica media traslazionale delle molecole

$$\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}$$
 (velocità quadratica media)

$$\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$$
 (moto isotropico) \longrightarrow $\overline{v^2} = 3\overline{v_x^2}$

$$\left(\frac{1}{2}m_0\overline{v^2}\right) = \frac{3}{2}k_BT$$

$$\overline{v^2 = 3\overline{v_x^2}}$$

$$\left(\frac{1}{2}m_0\overline{v_x^2}\right) = \frac{1}{2}k_BT$$

Energia cinetica media per molecola (o atomo)

Analogamente per v_y e v_z

Teorema di equipartizione della energia

Teorema di equipartizione della energia

$$\left(\frac{1}{2}m_0\overline{v^2}\right) = \frac{3}{2}k_BT$$

$$\left(\frac{1}{2}m_0\overline{v^2}\right) = \frac{3}{2}k_BT \qquad \overline{v^2} = 3\overline{v_x^2} \qquad \left(\frac{1}{2}m_0\overline{v_x^2}\right) = \frac{1}{2}k_BT$$

Analogamente per v_v e v_z

L'energia di un sistema in equilibrio termico è ugualmente suddivisa fra i suoi gradi di libertà.

Ogni grado di libertà ha una quantità di energia $\frac{1}{2}k_BT$

Energia cinetica traslazionale totale di un sistema di N molecole

$$E_{tot} = N \left(\frac{1}{2} m_0 \overline{v^2}\right) = \frac{3}{2} N k_B T = \frac{3}{2} nRT$$

$$k_B = R/N_A$$

$$n = N / N_A$$

$$E_{\rm int} = \frac{3}{2} nRT$$

Energia interna di un gas monoatomico (per il quale l'energia è solo traslazionale)

L'energia interna è correlata alla T del sistema

▲ Figura 12.25 Rappresentazione simbolica di una molecola biatomica con i suoi moti di traslazione, rotazione e vibrazione.

In molecole biatomiche esistono più gradi di libertà

$$E_{\text{int}} = \frac{3}{2} nRT$$
Cambia il fattore numerico

L'energia interna è correlata alla T del sistema

ESERCIZIO

Un serbatoio utilizzato per riempire palloncini di elio ha volume 0.300 m³ e contiene 2.00 mol di gas elio a 20.0 °C. Si assuma che l'elio si comporti come un gas perfetto.

(A) Qual è l'energia cinetica traslazionale totale delle molecole di gas?

Ricordando che
$$E_{tot} = N \left(\frac{1}{2} m_0 \overline{v^2} \right) = \frac{3}{2} N k_B T = \frac{3}{2} nRT$$
 Energia cinetica traslazionale totale di un sistema di N molecole

$$E_{\text{tot}} = \frac{3}{2}nRT = \frac{3}{2}(2.00 \text{ mol}) (8.31 \text{ J/mol} \cdot \text{K}) (293 \text{ K})$$

= $7.30 \times 10^3 \text{ J}$

(B) Qual è l'energia cinetica media per ogni molecola?

$$\frac{1}{2}m_0\overline{v^2} = \frac{3}{2}k_BT = \frac{3}{2}(1.38 \times 10^{-23} \text{ J/K}) (293 \text{ K})$$
$$= 6.07 \times 10^{-21} \text{ J}$$

Oppure

$$E_{tot}$$
 / N = 7.30 × 10³ J / (2.00 × 6.02 × 10²³ molecole) = 6.06 × 10⁻²¹ J

Radice quadratica media della velocità delle molecole

$$E_{tot} = N \left(\frac{1}{2} m_0 \overline{v^2}\right) = \frac{3}{2} N k_B T = \frac{3}{2} nRT$$

$$k_B = R/N_A$$

$$n = N / N_A$$

$$\sqrt{\overline{v^2}} = \sqrt{3k_B T/m_0} = \sqrt{3RT/N_A m_0} = \sqrt{3RT/M}$$

Radice quadratica media della velocità delle molecole, v_{ram}

Massa molare [kg mol⁻¹]

A T fissata, le molecole più leggere si muovono più velocemente (in media) di quelle più pesanti

Radice quadratica media della velocità delle molecole

L'idrogeno, con una massa molare di $2.0 \times 10^{-3} \text{ kg/mol}$, si muove quattro volte più veloce dell'ossigeno, la cui massa molare è $32 \times 10^{-3} \text{ kg/mol}$.

La velocità quadratica media dell'idrogeno a temperatura ambiente (≈ 300 K) è

$$v_{\text{rqm}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.31 \text{ J/mol} \cdot \text{K})(300 \text{ K})}{2.0 \times 10^{-3} \text{ kg/mol}}} = 1.9 \times 10^{3} \text{ m/s}$$

Energia nelle trasformazioni termodinamiche

La termodinamica studia la fenomenologia che deriva dagli scambi energetici tra i componenti di un sistema e tra un sistema e l'ambiente esterno, con particolare riguardo alle trasformazioni di lavoro in calore e viceversa.

Calore (si indica con Q): Energia trasferita a causa di una differenza di temperatura. Unità di misura è il Joule [J]

Energia nelle trasformazioni termodinamiche

La termodinamica studia la fenomenologia che deriva dagli scambi energetici tra i componenti di un sistema e tra un sistema e l'ambiente esterno, con particolare riguardo alle trasformazioni di lavoro in calore e viceversa.

Energia interna	Calore
Energia meccanica	Lavoro

Fino a circa il 1850 si riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell'energia si riteneva valida solo per i fenomeni meccanici.

Verso il 1850, si cominciò a capire che esiste un forte legame tra il trasferimento di energia sotto forma di calore nei processi termici e trasferimento di energia sotto forma di lavoro nei processi meccanici.

Unità di misura del calore

1 caloria (cal) = quantità di calore necessaria per innalzare la temperatura di 1 g d'acqua da 14.5 °C a 15.5 °C.

1 Cal =1000 cal=1 kcal.

Esperimento di Joule

Se i due blocchi di massa m scendono di un tratto h, perdono una quantità di energia potenziale data da:

$$\Delta U = 2mgh$$

Joule dimostrò che l'energia potenziale gravitazionale si convertiva in energia termica dell'acqua.

Joule dimostrò che **4.186** J di energia meccanica innalzano di 1°C la temperatura di un grammo di acqua.

Quindi:

$$1 \text{ cal} = 4.186 \text{ J}$$

valore noto come equivalente meccanico del calore.

Calore specifico

$$c = \frac{Q}{m\Delta T} \quad \text{[J/kg K]}$$

Calore specifico dell'acqua = 4186 J/kg K

$$Q = mc\Delta T$$

Energia trasferita tra un sistema di massa m e $Q=mc\Delta T$ l'ambiente circostante per una variazione di temperatura ΔT

Quando la **temperatura aumenta** \Rightarrow Q e ΔT **sono positivi** (energia entra nel sistema).

Quando la **temperatura diminuisce** \Rightarrow Q e ΔT **sono negativi** (energia **esce** dal sistema).

Calori specifici di alcune sostanze a 25°C e a pressione atmosferica

Sostanza	Calore specifico c			Calore specifico c	
	J/kg · °C	cal/g·°C	Sostanza	J/kg · °C	cal/g · °C
Elementi solidi			$Altri\ solidi$		
Alluminio	900	0.215	Ghiaccio (−5°C)	2 090	0.50
Argento	234	0.056	Legno	1 700	0.41
Berillio	1 830	0.436	Marmo	860	0.21
Cadmio	230	0.055	Ottone	380	0.092
Ferro	448	0.107	Vetro	837	0.200
Germanio	322	0.077	Liquidi		
Oro	129	0.0308	Acqua (15°C)	4 186	1.00
Piombo	128	0.030 5	Alcool etilico	2 400	0.58
Rame	387	0.092 4	Mercurio	140	0.033
Silicio	703	0.168		110	0.000
			Gas Vapore (100°C)	2 010	0.48

Calore specifico

$$c = \frac{Q}{m\Delta T}$$
 [J/kg K]

Capacità termica

$$C = c \cdot m = \frac{Q}{\Delta T}$$
 [J/K]

Calorimetria

Misura del calore specifico (sostanza solida o liquida): mettere la sostanza in un recipiente con acqua di massa e temperature note e misurare la temperatura dell'insieme all'equilibrio termico.

Si sfrutta il principio di conservazione dell'energia

$$Q_f = -Q_c$$

 m_a , c_a , T_a dell'acqua m_x , c_x , T_x (c_x è la grandezza che vogliamo trovare) T_f = temperatura finale del sistema

$$m_a c_a (T_f - T_a) = -m_x c_x (T_f - T_x)$$

$$c_x = \frac{m_a c_a (T_f - T_a)}{m_x (T_x - T_f)}$$

ESERCIZIO

Un lingotto di metallo di 0.050 kg è riscaldato a 200.0°C e poi introdotto in un calorimetro contenente 0.400 kg di acqua a 20.0°C. La temperatura di equilibrio finale del sistema è di 22.4°C. Trovare il calore specifico del metallo

$$c_{x} = \frac{m_{a}c_{a}(T_{f} - T_{a})}{m_{x}(T_{x} - T_{f})}$$

Sostituiamo i valori numerici:

$$c_x = \frac{(0.400 \text{ kg}) (4 \text{ 186 J/kg} \cdot ^{\circ}\text{C}) (22.4^{\circ}\text{C} - 20.0^{\circ}\text{C})}{(0.050 \text{ 0 kg}) (200.0^{\circ}\text{C} - 22.4^{\circ}\text{C})}$$
$$= 453 \text{ J/kg} \cdot ^{\circ}\text{C}$$

Calore latente

In prossimità dei cambiamenti di fase non vale più la proporzionalità tra Q e ΔT .

Grafico della temperatura in funzione dell'energia fornita quando 1.00 g di ghiaccio inizialmente a – 30.0°C è convertito in vapore a 120.0°C.

Se Q è la quantità di energia necessaria per cambiare la fase di una massa m di sostanza, si definisce il calore latente L mediante la relazione

$$Q = \pm mL$$

$$L = \frac{Q}{m}$$
 [J/kg]

Calore latente di fusione (SOLIDO-LIQUIDO)

Calore latente di vaporizzazione (LIQUIDO-GAS)

Calore latente di sublimazione (SOLIDO-GAS)

Calori latenti di fusione e di vaporizzazione

Sostanza	Punto di fusione (°C)	Calore latente di fusione (J/kg)	Punto di ebollizione (°C)	Calore latente di vaporizzazione (J/kg)
Elio	-269.65	5.23×10^{3}	-268.93	2.09×10^{4}
Azoto	-209.97	2.55×10^{4}	-195.81	2.01×10^{5}
Ossigeno	-218.79	1.38×10^{4}	-182.97	2.13×10^{5}
Alcool etilico	-114	$1.04 imes 10^5$	78	8.54×10^{5}
Acqua	0.00	3.33×10^{5}	100.00	2.26×10^{6}
Zolfo	119	3.81×10^{4}	444.60	3.26×10^{5}
Piombo	327.3	2.45×10^{4}	1 750	8.70×10^{5}
Alluminio	660	3.97×10^{5}	2 450	1.14×10^{7}
Argento	960.80	8.82×10^{4}	2 193	2.33×10^{6}
Oro	1 063.00	6.44×10^{4}	2 660	1.58×10^{6}
Rame	1 083	1.34×10^5	1 187	$5.06 imes 10^6$

Grafico della temperatura in funzione dell'energia fornita quando 1.00 g di ghiaccio inizialmente a – 30.0°C è convertito in vapore a 120.0°C.

Esempio: 1 g di acqua (10⁻³ kg)

- da 0 e 100°C (nessun cambiamento di fase); c (calore specifico acqua) = $4.19 \times 10^3 \text{ J/kg K} \implies \text{Q=mc}\Delta\text{T= 419 J}.$
- passaggio da liquido a vapore (cambiamento di fase); L di vaporizzazione = 2.26×10^6 J/kg \Rightarrow Q=mL= 2260 J.

ESERCIZIO

Un pezzo di ghiaccio di 300 g si trova nel freezer a una temperatura di -20°C. Quanto calore è necessario per trasformarlo in acqua alla temperatura di +20°C? [si consideri che il calore specifico del ghiaccio è pari a 2220 J / (kg · K)].

1) Prima di tutto dobbiamo considerare il passaggio da -20°C a 0°C.

$$Q_1 = c \cdot m \cdot \Delta T = 2220 \text{ J} / (kg \cdot K) \times 0.3 \text{ kg} \times 20 \text{ K} = 13 320 \text{ J}.$$

2) Poi dobbiamo calcolare il calore necessario per fondere il ghiaccio.

Il calore latente di fusione del ghiaccio vale $L_f = 3.34 \cdot 10^5 \text{ J}.$

$$Q_2 = L_f \cdot m = 3.33 \cdot 10^5 \, J \times 0.3 \, kg = 10^5 \, J.$$

3) Infine per portare l'acqua a una temperatura di 20°C dobbiamo ricordare che il calore specifico dell'acqua vale 4186 J / (kg · K).

$$Q_3 = c \cdot m \cdot \Delta T = 4186 \text{ J} / (\text{kg} \cdot \text{K}) \times 0.3 \text{ kg} \times 20 \text{ K} = 25 116 \text{ J}.$$

Il calore totale necessario al processo è $Q = Q_1 + Q_2 + Q_3 = 1.38 \cdot 10^5 \text{ J}.$

Propagazione del calore

Conduzione

Il flusso di calore avviene attraverso un materiale

$$Q = kA \left(\frac{\Delta T}{L}\right) t$$

k = conducibilità termica

Convezione

La propagazione di calore è accompagnata da trasporto di materia

Irraggiamento

La propagazione del calore avviene attraverso onde elettromagnetiche