Introduction to Robotics

Lecture 1

What is a Robot?

What is a Robot?

- Complex Machine
- Decreases human effort.
- Speed and Precision
- Multitasking

Types of Robots

Based on Mechanical Structure -

- Legged
- Wheeled
- Stationary (Manipulators)
- Flying
- Swimming
- Others

Legged Robots

Wheeled Robots

Manipulators

Mechanical Systems

Steps...

- 1. Identification of Problem Statement
- 2. Design and Calculations of the parts to be made
- 3. Manufacturing of Parts
- 4. Selection of Mechanical Components
- 5. Final Assembly
- 6. Testing
- 7. Repeat

Basic Terminology

- Joint A part of machine which is used to join 2 or more parts of the machine.
- Link A link is a rigid body which contains at least 2 end to join other links
- Linkage Assembly of links and joints that provide a desired output in response to a specific input motion.
- Structure- An arrangement of links with no relative motion.
- Kinematic Pair An arrangement of links with relative motion.
- Kinematic Chain When kinematic pairs form a chain to transmit definite motion.
- Mechanism- A kinematic chain in which at least one link is connected to a frame of reference.
- Machine An assemblage of parts that transmit forces, motion and energy in a predetermined manner.

Types of Links - Rigid Links

Types of Links - Flexible Links

Types of Links - Fluid Links

Types of Kinematic Pairs - Lower Pairs

Types of Kinematic Pairs - Higher Pairs

- Line Contact Pair
- Point Contact Pair

Degrees of Freedom

It is the number of independent coordinates required to describe the position of a body in space.

A free body in space has 6 degrees of freedom

Completely Constrained Motion

Incompletely Constrained Motion

Successfully Constrained Motion

Mechanisms

Kinematic Chain

Kutzbach Mobility Criterion

 Kutzbach Criteria is for determining Degree of Freedom of body in Planar Mechanism (2D)

$$DOF = 3(L-1) - 2J - H$$

- Here:
- L = Number of Link
- J = Number Of Lower Pair
- H = Number Of Higher Pair

DOF = 1

Grashof's Law

$$S + L \leq P + Q$$

Where s = length of the shortest link
I = length of the longest link
p,q are length of other two links

Inversions of four bar chain:

Some other basic Mechanisms

Steps...

- 1. Identification of Problem Statement
- 2. Design and Calculations of the parts to be made
- 3. Manufacturing of Parts
- 4. Selection of Mechanical Components
- 5. Final Assembly
- 6. Testing
- 7. Repeat

Manufacturing the First Prototype

Industrial Manufacturing Processes

- Forging
- Casting
- Machining

.... So on

Rapid Prototyping Processes

- 3D Printing
- Laser Cutting
- Plasma Cutting

3D Printing

Laser Cutting

Plasma Cutting

Steps...

- 1. Identification of Problem Statement
- 2. Design and Calculations of the parts to be made
- 3. Manufacturing of Parts
- 4. Selection of Mechanical Components
- 5. Final Assembly
- 6. Testing
- 7. Repeat

Thank You

Tejas Rane (+91) 99208 90738