

SEQUENCE LISTING

<110> Kolesnick, Richard N.
Xing, Hong-Mei R.

<120> Kinase Suppressor of Ras Inactivation
for Therapy of Ras Mediated Tumorigenesis

<130> 1216-1-006CIP

<140> 10/727,358
<141> 2003-12-03

<150> 60/384,228
<151> 2002-05-30

<150> 60/460,023
<151> 2003-04-03

<150> PCT/US03/16961
<151> 2003-05-29

<160> 56

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 120
<212> DNA
<213> Homo sapiens

<400> 1
ctgcagaagg tcatcgatat ctccatcggt agtctggtcg ggctggtcac caagtgtca 60
gtgtctaacg acctcacaca gcaggagatc cggaccctag aggcaaagct ggtgaaatac 120

<210> 2
<211> 41
<212> PRT
<213> Homo sapiens

<400> 2
Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg
1 5 10 15
Thr Lys Cys Ser Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr
20 25 30
Leu Glu Ala Lys Leu Val Lys Tyr Ile
35 40

<210> 3
<211> 19
<212> DNA
<213> Homo sapiens

<400> 3 ggcagtctgc gcgggctgc	19
<210> 4 <211> 18 <212> DNA <213> Homo sapiens	
<400> 4 tcagtgtcta acgacacctc	18
<210> 5 <211> 18 <212> DNA <213> Homo sapiens	
<400> 5 cggaccctag aggcaaag	18
<210> 6 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 6 cagcccgcgca gactgccc	19
<210> 7 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 7 gaggtcgtta gacactga	18
<210> 8 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 8 ctttgcctctt agggtc	16
<210> 9 <211> 873 <212> PRT <213> Mus musculus	

<400> 9

Met Asp Arg Ala Ala Leu Arg Ala Ala Met Gly Glu Lys Lys Glu
1 5 10 15
Gly Gly Gly Gly Ala Ala Ala Asp Gly Gly Ala Gly Ala Ala Val
20 25 30
Ser Arg Ala Leu Gln Gln Cys Gly Gln Leu Gln Lys Leu Ile Asp Ile
35 40 45
Ser Ile Gly Ser Leu Arg Gly Leu Arg Thr Lys Cys Ser Val Ser Asn
50 55 60
Asp Leu Thr Gln Gln Glu Ile Arg Thr Leu Glu Ala Lys Leu Val Lys
65 70 75 80
Tyr Ile Cys Lys Gln Gln Ser Lys Leu Ser Val Thr Pro Ser Asp
85 90 95
Arg Thr Ala Glu Leu Asn Ser Tyr Pro Arg Phe Ser Asp Trp Leu Tyr
100 105 110
Ile Phe Asn Val Arg Pro Glu Val Val Gln Glu Ile Pro Gln Glu Leu
115 120 125
Thr Leu Asp Ala Leu Leu Glu Met Asp Glu Ala Lys Ala Lys Glu Met
130 135 140
Leu Arg Arg Trp Gly Ala Ser Thr Glu Glu Cys Ser Arg Leu Gln Gln
145 150 155 160
Ala Leu Thr Cys Leu Arg Lys Val Thr Gly Leu Gly Gly Glu His Lys
165 170 175
Met Asp Ser Gly Trp Ser Ser Thr Asp Ala Arg Asp Ser Ser Leu Gly
180 185 190
Pro Pro Met Asp Met Leu Ser Ser Leu Gly Arg Ala Gly Ala Ser Thr
195 200 205
Gln Gly Pro Arg Ser Ile Ser Val Ser Ala Leu Pro Ala Ser Asp Ser
210 215 220
Pro Val Pro Gly Leu Ser Glu Gly Leu Ser Asp Ser Cys Ile Pro Leu
225 230 235 240
His Thr Ser Gly Arg Leu Thr Pro Arg Ala Leu His Ser Phe Ile Thr
245 250 255
Pro Pro Thr Thr Pro Gln Leu Arg Arg His Ala Lys Leu Lys Pro Pro
260 265 270
Arg Thr Pro Pro Pro Ser Arg Lys Val Phe Gln Leu Leu Pro Ser
275 280 285
Phe Pro Thr Leu Thr Arg Ser Lys Ser His Glu Ser Gln Leu Gly Asn
290 295 300
Arg Ile Asp Asp Val Thr Pro Met Lys Phe Glu Leu Pro His Gly Ser
305 310 315 320
Pro Gln Leu Val Arg Arg Asp Ile Gly Leu Ser Val Thr His Arg Phe
325 330 335
Ser Thr Lys Ser Trp Leu Ser Gln Val Cys Asn Val Cys Gln Lys Ser
340 345 350
Met Ile Phe Gly Val Lys Cys Lys His Cys Arg Leu Lys Cys His Asn
355 360 365
Lys Cys Thr Lys Glu Ala Pro Ala Cys Arg Ile Thr Phe Leu Pro Leu
370 375 380
Ala Arg Leu Arg Arg Thr Glu Ser Val Pro Ser Asp Ile Asn Asn Pro
385 390 395 400
Val Asp Arg Ala Ala Glu Pro His Phe Gly Thr Leu Pro Lys Ala Leu
405 410 415
Thr Lys Lys Glu His Pro Pro Ala Met Asn Leu Asp Ser Ser Ser Asn
420 425 430
Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser Pro Ala Pro Phe Leu
435 440 445

Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro Pro Asn Pro Ser Pro
 450 455 460
 Gly Gln Arg Asp Ser Arg Phe Ser Phe Pro Asp Ile Ser Ala Cys Ser
 465 470 475 480
 Gln Ala Ala Pro Leu Ser Ser Thr Ala Asp Ser Thr Arg Leu Asp Asp
 485 490 495
 Gln Pro Lys Thr Asp Val Leu Gly Val His Glu Ala Glu Ala Glu Glu
 500 505 510
 Pro Glu Ala Gly Lys Ser Glu Ala Glu Asp Asp Glu Glu Asp Glu Val
 515 520 525
 Asp Asp Leu Pro Ser Ser Arg Arg Pro Trp Arg Gly Pro Ile Ser Arg
 530 535 540
 Lys Ala Ser Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro Phe
 545 550 555 560
 Glu Gln Val Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly Arg
 565 570 575
 Val His Arg Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu Glu
 580 585 590
 Met Asp Gly His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu Val
 595 600 605
 Met Asn Tyr Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met Gly
 610 615 620
 Ala Cys Met Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys Lys
 625 630 635 640
 Gly Arg Thr Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu Asp
 645 650 655
 Ile Asn Lys Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met Gly
 660 665 670
 Tyr Leu His Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys Asn
 675 680 685
 Val Phe Tyr Asp Asn Gly Lys Val Val Ile Thr Asp Phe Gly Leu Phe
 690 695 700
 Gly Ile Ser Gly Val Val Arg Glu Glu Arg Arg Glu Asn Gln Leu Lys
 705 710 715 720
 Leu Ser His Asp Trp Leu Cys Tyr Leu Ala Pro Glu Ile Val Arg Glu
 725 730 735
 Met Ile Pro Gly Arg Asp Glu Asp Gln Leu Pro Phe Ser Lys Ala Ala
 740 745 750
 Asp Val Tyr Ala Phe Gly Thr Val Trp Tyr Glu Leu Gln Ala Arg Asp
 755 760 765
 Trp Pro Phe Lys His Gln Pro Ala Glu Ala Leu Ile Trp Gln Ile Gly
 770 775 780
 Ser Gly Glu Gly Val Arg Arg Val Leu Ala Ser Val Ser Leu Gly Lys
 785 790 795 800
 Glu Val Gly Glu Ile Leu Ser Ala Cys Trp Ala Phe Asp Leu Gln Glu
 805 810 815
 Arg Pro Ser Phe Ser Leu Leu Met Asp Met Leu Glu Arg Leu Pro Lys
 820 825 830
 Leu Asn Arg Arg Leu Ser His Pro Gly His Phe Trp Lys Ser Ala Asp
 835 840 845
 Ile Asn Ser Ser Lys Val Met Pro Arg Phe Glu Arg Phe Gly Leu Gly
 850 855 860
 Thr Leu Glu Ser Gly Asn Pro Lys Met
 865 870

<211> 866
<212> PRT
<213> Homo sapiens

<400> 10
Met Gly Glu Lys Glu Gly Gly Gly Gly Asp Ala Ala Ala Ala Glu
1 5 10 15
Gly Gly Ala Gly Ala Ala Ala Ser Arg Ala Leu Gln Gln Cys Gly Gln
20 25 30
Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg
35 40 45
Thr Lys Cys Ala Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr
50 55 60
Leu Glu Ala Lys Leu Val Arg Tyr Ile Cys Lys Gln Arg Gln Cys Lys
65 70 75 80
Leu Ser Val Ala Pro Gly Glu Arg Thr Pro Glu Leu Asn Ser Tyr Pro
85 90 95
Arg Phe Ser Asp Trp Leu Tyr Thr Phe Asn Val Arg Pro Glu Val Val
100 105 110
Gln Glu Ile Pro Arg Asp Leu Thr Leu Asp Ala Leu Leu Glu Met Asn
115 120 125
Glu Ala Lys Val Lys Glu Thr Leu Arg Arg Cys Gly Ala Ser Gly Asp
130 135 140
Glu Cys Gly Arg Leu Gln Tyr Ala Leu Thr Cys Leu Arg Lys Val Thr
145 150 155 160
Gly Leu Gly Gly Glu His Lys Glu Asp Ser Ser Trp Ser Ser Leu Asp
165 170 175
Ala Arg Arg Glu Ser Gly Ser Gly Pro Ser Thr Asp Thr Leu Ser Ala
180 185 190
Ala Ser Leu Pro Trp Pro Pro Gly Ser Ser Gln Leu Gly Arg Ala Gly
195 200 205
Asn Ser Ala Gln Gly Pro Arg Ser Ile Ser Val Ser Ala Leu Pro Ala
210 215 220
Ser Asp Ser Pro Thr Pro Ser Phe Ser Glu Gly Leu Ser Asp Thr Cys
225 230 235 240
Ile Pro Leu His Ala Ser Gly Arg Leu Thr Pro Arg Ala Leu His Ser
245 250 255
Phe Ile Thr Pro Pro Thr Pro Gln Leu Arg Arg His Thr Lys Leu
260 265 270
Lys Pro Pro Arg Thr Pro Pro Pro Ser Arg Lys Val Phe Gln Leu
275 280 285
Leu Pro Ser Phe Pro Thr Leu Thr Arg Arg Lys Ser His Glu Ser Gln
290 295 300
Leu Gly Asn Arg Ile Asp Asp Val Ser Ser Met Arg Phe Asp Leu Ser
305 310 315 320
His Gly Ser Pro Gln Met Val Arg Arg Asp Ile Gly Leu Ser Val Thr
325 330 335
His Arg Phe Ser Thr Lys Ser Trp Leu Ser Gln Val Cys His Val Cys
340 345 350
Gln Lys Ser Met Ile Phe Gly Val Lys Cys Lys His Cys Arg Leu Lys
355 360 365
Cys His Asn Lys Cys Thr Lys Glu Ala Pro Ala Cys Arg Ile Ser Phe
370 375 380
Leu Pro Leu Thr Arg Leu Arg Arg Thr Glu Ser Val Pro Ser Asp Ile
385 390 395 400
Asn Asn Pro Val Asp Arg Ala Ala Glu Pro His Phe Gly Thr Leu Pro
405 410 415

Lys Ala Leu Thr Lys Lys Glu His Pro Pro Ala Met Asn His Leu Asp
420 425 430
Ser Ser Ser Asn Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser Pro
435 440 445
Ala Pro Phe Pro Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro Pro
450 455 460
Asn Pro Ser Pro Gly Gln Arg Asp Ser Arg Phe Asn Phe Pro Ala Ala
465 470 475 480
Tyr Phe Ile His His Arg Gln Gln Phe Ile Phe Pro Asp Ile Ser Ala
485 490 495
Phe Ala His Ala Ala Pro Leu Pro Glu Ala Ala Asp Gly Thr Arg Leu
500 505 510
Asp Asp Gln Pro Lys Ala Asp Val Leu Glu Ala His Glu Ala Glu Ala
515 520 525
Glu Glu Pro Glu Ala Gly Lys Ser Glu Ala Glu Asp Asp Glu Asp Glu
530 535 540
Val Asp Asp Leu Pro Ser Ser Arg Arg Pro Trp Arg Gly Pro Ile Ser
545 550 555 560
Arg Lys Ala Ser Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro
565 570 575
Phe Glu Gln Val Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly
580 585 590
Arg Val His Arg Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu
595 600 605
Glu Met Asp Gly His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu
610 615 620
Val Met Asn Tyr Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met
625 630 635 640
Gly Ala Cys Met Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys
645 650 655
Lys Gly Arg Thr Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu
660 665 670
Asp Ile Asn Lys Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met
675 680 685
Gly Tyr Leu His Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys
690 695 700
Asn Val Phe Tyr Asp Asn Gly Lys Val Val Ile Thr Asp Phe Gly Leu
705 710 715 720
Phe Gly Ile Ser Gly Val Val Arg Glu Gly Arg Arg Glu Asn Gln Leu
725 730 735
Lys Leu Ser His Asp Trp Leu Cys Tyr Leu Ala Pro Glu Ile Val Arg
740 745 750
Glu Met Thr Pro Gly Lys Asp Glu Asp Gln Leu Pro Phe Ser Lys Ala
755 760 765
Ala Asp Val Tyr Ala Phe Gly Thr Val Trp Tyr Glu Leu Gln Ala Arg
770 775 780
Asp Trp Pro Leu Lys Asn Gln Ala Ala Glu Ala Ser Ile Trp Gln Ile
785 790 795 800
Gly Ser Gly Glu Gly Met Lys Arg Val Leu Thr Ser Val Ser Leu Gly
805 810 815
Lys Glu Val Ser Glu Ile Leu Ser Ala Cys Trp Ala Phe Asp Leu Gln
820 825 830
Glu Arg Pro Ser Phe Ser Leu Leu Met Asp Met Leu Glu Lys Leu Pro
835 840 845
Lys Leu Asn Arg Arg Leu Ser His Pro Gly His Phe Trp Lys Ser Ala
850 855 860
Glu Leu

<210> 11
<211> 4094
<212> DNA
<213> Mus musculus

<400> 11
gaattccctc ggggctttcc tggcgaggcg cccgtgtccc cgggcttcctc gcctcgcccc 60
ccagcggccc cgatgcggag gcatggatag agcggcggtt cgcgcggcag cgatggcga 120
aaaaaaaggag ggcggcggcg ggggcgcgc ggcggacggg ggcgcagggg ccgcgcgtcag 180
ccgggcgtcg cagcagtgcg gccagctgca gaagctcata gatatctcca tcggcagtct 240
gcccggcgtcg cgcaccaagt gctcagtgtc taacgaccta acacagcagg agatccggac 300
cctagaggca aagctggta aatacattt caagcagcag cagagcaagc ttagtgtac 360
cccaagcgcac aggaccgcg agctcaacag ctaccacgc ttcaactgact ggctgtacat 420
cttcaacgtg aggccgtgagg tggtcagga gatccccaa gagctcacac tggatgtct 480
gctggagatg gacgaggcca aagccaagga gatgctgcgg cgctgggggg ccagcacgga 540
ggagtgcagc cgccctacagc aagccctac ctgccttcgg aaggtgactg gcctggggagg 600
ggagcacaaa atggactcag gttggagttt aacagatgct cgagacagta gcttggggcc 660
tcccatggac atgctttcct cgctgggcag agcgggtgcc agcactcagg gacccgttc 720
catctccgtg tccgccttcg ctgcctcaga ctctccgtc cccggcctca gtgagggcct 780
ctcgactcc tgtatccccct tgacacccag cggccggctg accccccggg ccctgcacag 840
cttcatcacg ccccttacca caccctcagct acgacggcac gccaagctga agccaccaag 900
gacaccccca cggccaagcc gcaaggcttt ccagctgtc cccagcttcc ccacactcac 960
acggagcaag tcccacagat cccagctggg aaaccgaatc gacgacgtca ccccgatgaa 1020
gtttgaactc cctcatggat ccccacagct ggtacgaagg gatatcgggc ttcgggtac 1080
gcacaggttc tccacaaagt catggttgtc acaggtgtc aacgtgtgcc agaagagcat 1140
gattttggc gtgaagtgc aacactgcag gttaaaatgc cataacaagt gcacaaagga 1200
agctccgcgc tgcaggatca ctttcctccc actggccagg cttcggagga cagagtctgt 1260
cccgctcagat atcaacaacc cagtggacag agcagcagag ccccattttgaacccttcc 1320
caaggccctg acaaagaagg agcaccctcc agccatgaac ctggactcca gcagcaaccc 1380
atcctccacc acgtcctcca caccctcatc gccggcacct ttccctgaccc catctaattcc 1440
ctccagtgcc accacccctc ccaacccgtc acctggccag cgggacagca gttcagctt 1500
cccagacatt tcagcctgtt ctcaggcagc cccgctgtcc agcacagccc acagtagac 1560
gctcgacgac cagcccaaaa cagatgtct aggtgttcac gaagcagagg ctgaggagcc 1620
tgaggctggc aagttagggc cagaggatga cgaggaggat gaggtggacg acctccccag 1680
ctcccgccgg ccctggaggg gccccatctc tcgaaaggcc agccagacca gcgttaccc 1740
gcaagagtgg gacatccccct ttgaacaggt ggaactggc gagccattt gacagggtcg 1800
ctggggccgg gtgcaccggag gccgttggca tggcgagggt gccattcggc tgctggagat 1860
ggacggccac aatcaggacc acctgaagct gttcaagaaa gaggtgatga actaccggca 1920
gacgcggcat gagaacgtgg tgcttccat gggggcctgc atgaacccac ctcacctggc 1980
cattatcacc agcttctgca agggcggac attgcattca ttctgtgggg accccaagac 2040
gtctctggac atcaataaga cttagcagat cccctcaggat atcatcaagg gcatgggtta 2100
tcttcatgca aaaggcatcg tgacacaaggc cctcaagtcc aagaatgtct tctatgacaa 2160
cgccaaagtg gtcatcacag acttcgggtt gtttggatc tcgggtgtgg tccgagagga 2220
acggcgcgag aaccaactga aactgtcaca tgactggctg tgctacctgg ccccccagat 2280
cgtacgagaa atgatccccgg ggcgggacga ggaccagctg cccttctcca aagcagccga 2340
tgtctatgca ttggggactg tgggttatga actacaggca agagactggc ctttaagca 2400
ccagcctgtt gaggccttga tctggcagat tggaaagtggg gaaggagttac ggcgcgtcct 2460
ggcatccgtc agcctggggaa aggaagtcgg cgagatcctg tctgcctgtt gggctttcga 2520
tctgcaggag agacccagct ttagcctgtt gatggacatg ctggagaggg tgcccaagct 2580
gaaccggcgg ctctcccacc ctggggactt ttggaaagtgc gctgacatta acagcagcaa 2640
agtcatgccc cgctttgaaa ggtttggcct ggggaccctg gagtccggta atccaaagat 2700
gtagccagcc ctgcacgttc atgcagagag tggcttcctt tcgaaaacat gatcacgaaa 2760
catgcagacc accacccatc ggaatcagaa gcatggcata ccaagctgcg gactggggagc 2820
gtgtctccctc ctttccatggac gtgcgtgcgt gcgtgcgtgc gtgcgtgcgt gcgtgcgtca 2880

ccaaggtgtg tggagctcg gatgcagcc atacacgcaa ctccagatga taccactacc 2940
gccagtgtt acacagaggt ttctgcctgg caagcttgg attttacagt aggtgaagat 3000
cattctgcag aagggtgctg gcacagtgg a cccgcacgg tgcgtcccccagc ccccgttctg 3060
gaagacccta cagctgtgag aggcccaggg ttgagccaga taaaagaaaaa gtcgcgtggg 3120
tgtgggctgt accccggaaaaa gggcaggtgg caggaggtt gccttggcct gtgcttggc 3180
cgagaaccac actaaggagc agcagcctga gtttaggaatc tatctggatt acggggatca 3240
gagttcctgg agagtggact cagtttctgc tctgatccag gcctgttgg 3300
ttccccctta aaaaaaaaaaa agtacagaca gaatctcagc ggcttctaga ctgatctgat 3360
ggatcttagc ccggcttcta ctgcgggggg gagggggggg gggatagcca catatctgtg 3420
gagacaccca cttctttatc tgaggcctcc aggttaggcac aaaggcttg 3480
tctatcatca gacacccccc cccaatgcct cattgacccc cttccccccag agccaaggc 3540
tagcccatcg ggtgtgtgt a cttttttttt 3600
agcagtttc agtggcccta gcatcttaaa acccattgtc tgcacacca gaaggttcta 3660
gacctaccac cacttccctt cccatctca tggaaacccctt ttagccctt ctgacccctg 3720
tgtgtctct gagctcagat cgggttatga gaccgcccag gcacatcagt cagggaggct 3780
ctgatgttag cccgagacccctt ctgtgttcat tcctatgagc tggaggggct ggactgggtg 3840
gggtcagatg tgcttggcag gaactgtcag ctgctgagca ggggtggccc tgagcggagg 3900
ataagcagca tcagactcca caaccagagg aagaaagaaa tggggatgga gcggagaccc 3960
acgggcttag tcccgctgtg gagtggcctt gcagctccctt ctca gttttttttt 4020
aagccacagt tctccgagca cccaaatctg ctccagccgt ctcttaaaac aggccactct 4080
ctgagaagga attc 4094

<210> 12
<211> 3772
<212> DNA
<213> Homo sapiens

<400> 12
gcgaagctgg tccgttacat ttgttaagcag aggcagtgc agctgagcgt ggctcccggt 60
gagaggaccc cagagctcaa cagctacccc cgcttcagcg actggctgt a cactttcaac 120
gtgaggccgg aggtggcgtca ggagatcccc cggacacctca cgctggatgc cctgctggag 180
atgaatgagg ccaaggtgaa ggagacgctg cggcgctgt gggccagcgg gatgagtgt 240
ggccgtctgc agtatgcctt cacctgcctg cggaaagggtga caggcctggc ttcatcaccc 300
cgcccaccac accccagctg cgacggcaca ccaagctgaa gccaccacgg acgccccccc 360
caccctggcc caaggtcttc cagctgtgc ccagcttccc cacaactcacc cggagcaagt 420
ccatgagtc tcagctgggg aaccgcattt atgacgtctc ctcgatgagg tgagggttgg 480
gcacgttccct gcacgtggct atgctgtgg gcctctctca tgagtcagag cggagggaga 540
cagctgtgcc tctggagttt gcttttaattt gtctggaaat gcagagatgt ctgggttttg 600
cctgagcaaa ataggagttt attttgcattt tattttgtac tattttgcattt tggctaaggag gatcacgtt 660
gctgtggcg gggcttgggg gatgaggagg ggtacacgcg gcagggacta tgctgaagt 720
gagctggctg taggaacccc agggaggcac agggggagca tgaagaggag ctacacttcc 780
ctcccttagt gcccggcag aaactcccag ggcccttcac agaaccttgg aggaacattc 840
aacacccca tctctaggac agcccccagcc ttgtcatctt ccaattgtcg tggtaacacg 900
gggactggag cagttagattt attaggcctt cagggccagt gtctccatgc agatcagatg 960
gaggcgggtc ttggcacata caccacctca ctgcccattgc ccccaagaagt tggtcagat 1020
cataagggtt cttttggggc taattgattt aagttcaac atagtcgtt tctcttaggc 1080
tggtagctgg caccttggc cccatgtgtt ttttaattt tttttttttt gagacgaaat 1140
ctcgctctat caccctggctt cttttttttt 1200
ctcccggtt caagcaattt tccatgcctca gcctcccgag tagccaggat taaaggtgcc 1260
tgccaccaca catggctaat ttttgcattt ttaatagaga cgggggtttca ccatgttagc 1320
caggctggtc tcaaactcctt gacctcaggat gatcttcctt ctcgcgtcc ccaaagtgc 1380
gggattacag gtgtgagcca ctgcggccag tcatgcccattt gtgtttttttt ggtcttggct 1440
gctgatgggt ggggtgagcc ccaggaggaa gttgggacaa gtcaacctca tggcagatgt 1500
gccaggaga gctgcgggtg agatagattt ttcctatccc ccttcctt atgtgggagg 1560
actcagttacc tccagcacac ccttctctat gagggtttttt atgtggtact tggcctcaag 1620
tgaaccagca cttcatgtat ccagttttgt gctagaccag cacttggat tgagggggc 1680
agtggccacc ctcgggggac cttctgactc agaggacatg agatggccac actcgagcac 1740

tgtttcctg accttctgg gtcacaggc accttgatga ttggatgaaa gtcttagatc 1800
ttcttccag agaaaagtct aacaacattct actgaaccag tccagagggt tcccggaccc 1860
ccgaagccca cccatggct ggctctggga ggcaatggcg ctgagttatgg gggcatctct 1920
cgcatggatc cccacagatg gtacggaggg atatcggct gtcggtgacg cacaggtct 1980
ccaccaagtc ctggctgtcg caggtctgcc acgtgtgccaa gaagagcatg atatttgag 2040
tgaagtgc aa gcattgcagg ttgaagtgtc acaacaaaatg taccaaagaa gcccctgcct 2100
gtagaatatac cttcctgcca ctaactcgcc ttcggaggac agaatctgtc ccctcggaca 2160
tcaacaaccc ggtggacaga gcagccgaac cccatTTGG aaccctcccc aaagcactga 2220
caaagaagga gcacccctccg gccatgaatc acctggactc cagcagcaac cttcctcca 2280
ccacccctcc cacacccctcc tcacccggc ccttcccgc acatccaaac ccattccagcg 2340
ccaccacgccc ccccaacccccc tcacctggcc agcgggacag caggttcaac ttcccagctg 2400
cctacttcat tcatcataga cagcagtttca tctttcaga catttcagcc tttgcacacg 2460
cagccccgtt ccctgaagct gccgacggta cccggctcga tgaccagccg aaagcagatg 2520
tgttggaaagc tcacgaagcg gaggctgagg agccagaggc tggcaagtca gaggcagaag 2580
acgatgagga cgaggtggac gacttgccga gctctcgccg gccctggccg ggccccatct 2640
ctcgcaaggc cagccagacc agcgtgtacc tgcaggagtg ggacatcccc ttgcagcagg 2700
tagagctggg cgagcccatc gggcagggcc gctggggccg ggtgcaccgc ggccgctggc 2760
atggcgaggt ggccattcgc ctgctggaga tggacggcca caaccaggac cacctgaagc 2820
tcttcaagaa agaggtgtatg aactaccggc agacggccga tgagaacgtg gtgctttca 2880
tgggggcctg catgaaccccg ccccacctgg ccattatcac cagttctgc aaggggccga 2940
cgttgcactc gtttgtgagg gaccccaaga cgtctctggaa catcaacaag acgaggcaaa 3000
tcgctcaggaa gatcatcaag ggcattggat atcttcatgc caagggcatc gtacacaaag 3060
atctcaaatac taagaacgtc ttctatgaca acggcaaggt ggtcatcaca gacttcggc 3120
tgtttggat ctcaggcgtg gtccgagagg gacggcgtga gaaccagcta aagctgtccc 3180
acgactggct gtgctatctg gcccctgaga ttgtacgcga gatgacccccc gggaggacg 3240
aggatcagct gccattctcc aaagctgctg atgtctatgc atttggact gtttggatg 3300
agctgcaagc aagagactgg cccttgaaga accaggctgc agaggcatcc atctggcaga 3360
ttggaagcgg ggaaggaatg aagcgtgtcc tgacttctgt cagttgggg aaggaagtca 3420
gtgagatctt gtcggcctgc tggctttcg acctgcagga gagaccgc ttcagcctgc 3480
tgatggacat gctggagaaa ctcccaagc tgaaccggcg gctctccac cctggacact 3540
tcttggaaatgc agctgagttg taggcctggc tgccttgcatac gcaccagggg ctttcttcct 3600
cctaatac aactcagcac cgtgacttct gctaaaatgc aaaatgagat gcgggcacta 3660
accaggggta tgccacccct gctgctccag tcgtctctcg cgaggctact tcttttgctt 3720
tgtttaaaaa actggccctc tgccctctcc acgtggcctg catatgccca ag 3772

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
ggaaccttac ttctgtggtg tgac

24

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14
tagcagacac tctatgcctg tgtg

24

<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> sense oligonucleotide

<400> 15
cggaccctag aggcaaag 18

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> control oligonucleotide

<400> 16
cacgtcacgc gcgcactatt 20

<210> 17
<211> 6
<212> PRT
<213> Homo sapiens

<400> 17
Gly Ser Leu Arg Gly Leu
1 5

<210> 18
<211> 6
<212> PRT
<213> Homo sapiens

<400> 18
Ala Val Ser Asn Asp Leu
1 5

<210> 19
<211> 6
<212> PRT
<213> Homo sapiens

<400> 19
Arg Thr Leu Glu Ala Lys
1 5

<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence

<220>		
<223> primer		
<400> 20		
tatctccatc ggcagtct		18
<210> 21		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 21		
tcgacgctca cacttcaa		18
<210> 22		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 22		
ctgaccgctt cctcggt		17
<210> 23		
<211> 18		
<212> DNA		
<213> Artificial sequence		
<400> 23		
atagagccca ccgcattcc		18
<210> 24		
<211> 2601		
<212> DNA		
<213> Homo sapiens		
<400> 24		
atgggagaga aggagggcgg tggcgaaaa gatgcggcgg cgcggaggg tggcgacgg 60		
gccgcggcca gcccggcgct gcacgcgtgt gggcagctcc agaagctcat cgacatctcc 120		
atccggcagtc tgccgggct ggcaccaag tgccgcgtgt ctaacgcacct cacccaggcag 180		
gagatacggc cccttagaggc aaagctggtc cgttacattt gtaaggcagag gcagtgcaag 240		
ctgagcgtgg ctcccggtga gaggacccca gagctcaaca gctacccccc cttcagcgac 300		
tggctgtaca ctttcaacgt gaggccggag gtgggtgcagg agatcccccc agacctcaccg 360		
ctggatgccc tgctggagat gaatgaggcc aaggtgaagg agacgctgcg gcgctgtggg 420		
gccagcgggg atgagtgtgg ccgtctgcag tatgcctca cctgcctgcg gaagggtgaca 480		
ggcctgggag gggagcacaa ggaggactcc agttggagtt cattggatgc gcggcggaa 540		
agtggctcag ggccttccac ggacaccctc tcagcagcca gcctgcctg gccccccagg 600		
agctcccagc tgggcagagc aggcaacagc gcccaggccc cacgcctccat ctccgtgtca 660		
gctctgcccgc cctcagactc ccccacccccc agcttcagtg agggcctctc agacacctgt 720		
attccccctgc acgccagcgg ccggctgacc ccccggtccc tgccacagctt catcaccccg 780		
cccacccacac cccagctgcg acggcacacc aagctgaagc caccacggac gcccccccca 840		
cccaaggcga aggtcttcca gctgctgccc agttcccca cactcaccgg gagcaagtcc 900		

catgagtctc agctggggaa ccgcatttat gacgtctcct cgatgaggtt tgatctctcg 960
catggatccc cacagatggt acggaggat atcgggctgt cggtgacgca caggttctcc 1020
accaagtctt ggctgtcgca ggtctgccac gtgtgccaga agagcatgtt atttggagtg 1080
aagtgcagaatcatttgcaggta aacaaatgtt ccaaagaagc ccctgcctgt 1140
agaatatcctt tcctgccact aactcggctt cgaggacag aatctgtccc ctcggacatc 1200
aacaaccgg tggacagagc agccgaaccc cattttggaa ccctccccaa agcactgaca 1260
aagaaggagc accctccggc catgaatcac ctggactcca gcagcaaccc ttccctccacc 1320
accccttcca cacccttcca accggcgccc ttcccgacat catccaaccc atccagcgcc 1380
accacgcccc ccaacccttcc acctggccag cgggacagca gttcaactt cccagctgcc 1440
tacttcatttccatcata gca gtttccatcata ttccagaca ttccagcctt tgccacacgca 1500
gccccgttcc ctgaagctgc cgacggtacc cggctcgatg accagccgaa agcagatgtg 1560
tttggaaagctc acgaagcgga ggctgaggag ccagaggctg gcaagtcaga ggcagaagac 1620
gatgaggacg aggtggacga ctggccgagc tctcgccggc cctggcgggg ccccatctct 1680
cgcaaggccca gccagaccag cgtgtacctg caggagtggg acatccccctt cgagcaggta 1740
gagctggcgcc agcccatcggtt gcagggccggc tggggccggg tgccaccgcgg cccgtggcat 1800
ggcgaggtgg ccatttcgcctt gctggagatg gacggccaca accaggacca cctgaagctc 1860
ttcaagaaag aggtgtatgaa ctaccggcag acgcggcatg agaacgttgt gctttcatg 1920
ggggcctgca tgaaccggcc ccacctggcc attatcacca gcttctgcaa ggggcggacg 1980
ttgcactctgt ttgtgaggga ccccaagacg tctctggaca tcaacaagac gaggcaaatc 2040
gctcaggaga tcatcaaggg catggatatttctcatgcca agggcatctg acacaaaagat 2100
ctcaaattcta agaacgtctt ctatgacaac ggcaagggtgg tcatacaga cttcgccgtg 2160
tttggatctt caggcgtggcgtt ccgagaggaa cggcgtgaga accagctaaa gctgtcccac 2220
gactggctgt gctatctggc ccctgagatt gtacgcgaga tgaccccccgg gaaggacgag 2280
gatcagctgc catttccttca agctgctgtat gtctatgcat ttggactgt ttggatgag 2340
ctgcaagcaa gagactggcc ctggaaagac caggctgcag aggcatccat ctggcagatt 2400
ggaagcgggg aaggaatgaa gcgtgtcctg acttctgtca gcttggggaa ggaagtcagt 2460
gagatcctgtt cggcctgctg ggcttcgac ctgcaggaga gaccctgacatc cggcctgctg 2520
atggacatgc tggagaaact tcccaagctg aaccggcgcc tctccaccc tggacacttc 2580
tggaaagtcag ctgagttgtatgaa 2601

<210> 25
<211> 121
<212> DNA
<213> Homo sapiens

<400> 25
ctccagaagc tcatcgacat ctccatcgcc agtctgcgcg ggctgcgcac caagtgcgc 60
gtgtctaacg acctcacccca gcaggagata cggaccctag aggcaaagct ggtccgttac 120
a 121

<210> 26
<211> 40
<212> PRT
<213> Homo sapiens

<400> 26
Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg
1 5 10 15
Thr Lys Cys Ala Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr
20 25 30
Leu Glu Ala Lys Leu Val Arg Tyr
35 40

<210> 27
<211> 18
<212> DNA

<213> Homo sapiens

<400> 27
gcagtgtcta acgacctc 18

<210> 28
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 28
cttgcctct agggtccg 18

<210> 29
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 29
cagcccgcgca gactgcc 18

<210> 30
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 30
gaggtcgtta gacactgc 18

<210> 31
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 31
gccctccttc tctcccat 18

<210> 32
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 32 acaatgtaa cggaccag	18
<210> 33 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 33 ccttcaccg ggagccac	18
<210> 34 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 34 gaaagtgtac agccagtc	18
<210> 35 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 35 tgcaccaacct ccggcctc	18
<210> 36 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 36 tgagggtctcg ggggatct	18
<210> 37 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense oligonucleotide	
<400> 37 caccttggcc tcattcat	18

<210> 38
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 38
atccaatgaa ctccaaact 18

<210> 39
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 39
gagccacttt cccggcgc 18

<210> 40
<211> 13
<212> PRT
<213> Homo sapiens

<400> 40
Thr Pro Pro Pro Pro Ser Arg Lys Val Phe Gln Leu Leu
1 5 10

<210> 41
<211> 46
<212> PRT
<213> Homo sapiens

<400> 41
Val Thr His Arg Phe Ser Thr Lys Ser Trp Leu Ser Gln Val Cys His
1 5 10 15
Val Cys Gln Lys Ser Met Ile Phe Gly Val Lys Cys Lys His Cys Arg
20 25 30
Leu Lys Cys His Asn Lys Cys Thr Lys Glu Ala Pro Ala Cys
35 40 45

<210> 42
<211> 67
<212> PRT
<213> Homo sapiens

<400> 42
Asp Ser Ser Ser Asn Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser
1 5 10 15
Pro Ala Pro Phe Pro Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro
20 25 30

Pro Asn Pro Ser Pro Gly Gln Arg Asp Ser Arg Phe Asn Phe Pro Ala
35 40 45
Ala Tyr Phe Ile His His Arg Gln Gln Phe Ile Phe Pro Asp Ile Ser
50 55 60
Ala Phe Ala
65

<210> 43
<211> 272
<212> PRT
<213> Homo sapiens

<400> 43
Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro Phe Glu Gln Val
1 5 10 15
Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly Arg Val His Arg
20 25 30
Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu Glu Met Asp Gly
35 40 45
His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu Val Met Asn Tyr
50 55 60
Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met Gly Ala Cys Met
65 70 75 80
Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys Lys Gly Arg Thr
85 90 95
Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu Asp Ile Asn Lys
100 105 110
Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met Gly Tyr Leu His
115 120 125
Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys Asn Val Phe Tyr
130 135 140
Asp Asn Gly Lys Val Val Ile Thr Asp Phe Gly Leu Phe Gly Ile Ser
145 150 155 160
Gly Val Val Arg Glu Gly Arg Arg Glu Asn Gln Leu Lys Leu Ser His
165 170 175
Asp Trp Leu Cys Tyr Leu Ala Pro Glu Ile Val Arg Glu Met Thr Pro
180 185 190
Gly Lys Asp Glu Asp Gln Leu Pro Phe Ser Lys Ala Ala Asp Val Tyr
195 200 205
Ala Phe Gly Thr Val Trp Tyr Glu Leu Gln Ala Arg Asp Trp Pro Leu
210 215 220
Lys Asn Gln Ala Ala Glu Ala Ser Ile Trp Gln Ile Gly Ser Gly Glu
225 230 235 240
Gly Met Lys Arg Val Leu Thr Ser Val Ser Leu Gly Lys Glu Val Ser
245 250 255
Glu Ile Leu Ser Ala Cys Trp Ala Phe Asp Leu Gln Glu Arg Pro Ser
260 265 270

<210> 44
<211> 13
<212> PRT
<213> Mus musculus

<400> 44
Thr Pro Pro Pro Ser Arg Lys Val Phe Gln Leu Leu

1

5

10

<210> 45
<211> 46
<212> PRT
<213> Mus musculus

<400> 45
Val Thr His Arg Phe Ser Thr Lys Ser Trp Leu Ser Gln Val Cys Asn
1 5 10 15
Val Cys Gln Lys Ser Met Ile Phe Gly Val Lys Cys Lys His Cys Arg
20 25 30
Leu Lys Cys His Asn Lys Cys Thr Lys Glu Ala Pro Ala Cys
35 40 45

<210> 46
<211> 53
<212> PRT
<213> Mus musculus

<400> 46
Asp Ser Ser Ser Asn Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser
1 5 10 15
Pro Ala Pro Phe Leu Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro
20 25 30
Pro Asn Pro Ser Pro Gly Gln Arg Asp Ser Arg Phe Ser Phe Pro Asp
35 40 45
Ile Ser Ala Cys Ser
50

<210> 47
<211> 272
<212> PRT
<213> Mus musculus

<400> 47
Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro Phe Glu Gln Val
1 5 10 15
Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly Arg Val His Arg
20 25 30
Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu Glu Met Asp Gly
35 40 45
His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu Val Met Asn Tyr
50 55 60
Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met Gly Ala Cys Met
65 70 75 80
Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys Lys Gly Arg Thr
85 90 95
Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu Asp Ile Asn Lys
100 105 110
Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met Gly Tyr Leu His
115 120 125
Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys Asn Val Phe Tyr
130 135 140

Asp	Asn	Gly	Lys	Val	Val	Ile	Thr	Asp	Phe	Gly	Leu	Phe	Gly	Ile	Ser
145				150				155						160	
Gly	Val	Val	Arg	Glu	Glu	Arg	Arg	Glu	Asn	Gln	Leu	Lys	Leu	Ser	His
			165					170					175		
Asp	Trp	Leu	Cys	Tyr	Leu	Ala	Pro	Glu	Ile	Val	Arg	Glu	Met	Ile	Pro
				180				185					190		
Gly	Arg	Asp	Glu	Asp	Gln	Leu	Pro	Phe	Ser	Lys	Ala	Ala	Asp	Val	Tyr
			195			200			205						
Ala	Phe	Gly	Thr	Val	Trp	Tyr	Glu	Leu	Gln	Ala	Arg	Asp	Trp	Pro	Phe
			210			215			220						
Lys	His	Gln	Pro	Ala	Glu	Ala	Leu	Ile	Trp	Gln	Ile	Gly	Ser	Gly	Glu
			225			230			235				240		
Gly	Val	Arg	Arg	Val	Leu	Ala	Ser	Val	Ser	Leu	Gly	Lys	Glu	Val	Gly
			245					250					255		
Glu	Ile	Leu	Ser	Ala	Cys	Trp	Ala	Phe	Asp	Leu	Gln	Glu	Arg	Pro	Ser
			260					265					270		

<210> 48	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 48	
atgggagaga aggagggc	18
<210> 49	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 49	
ctggtccgtt acatttgt	18
<210> 50	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 50	
gtggctcccg gtgagagg	18
<210> 51	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 51	
gactggctgt acactttc	18
<210> 52	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 52	
gaggccggag gtggtgca	18

<210> 53
<211> 18
<212> DNA
<213> Homo sapiens

<400> 53
agatcccccg agacctca 18

<210> 54
<211> 18
<212> DNA
<213> Homo sapiens

<400> 54
atgaatgagg ccaagggtg 18

<210> 55
<211> 18
<212> DNA
<213> Homo sapiens

<400> 55
agttggagtt cattggat 18

<210> 56
<211> 18
<212> DNA
<213> Homo sapiens

<400> 56
gcggcggaa agtggctc 18