~		
Cognome	Nome	Matricola
	1\01110	Wiatiicola

(Ingegneria Civile, Ing. per l'Ambiente e il Territorio)

Prof. F. Bottacin, B. Chiarellotto

1^a Prova di accertamento — 14 maggio 2011

Esercizio 1. Si dica se le seguenti affermazioni sono vere o false:

- $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$ Se r vettori di uno spazio vettoriale V sono linearmente indipendenti, esiste sicuramente una base di V che li contiene.
- [V] Esiste una funzione lineare $f: \mathbb{R}^5 \to \mathbb{R}^5$ tale che Ker(f) = Im(f).
- [V] [F] Se A è una matrice quadrata non nulla tale che $A^2 = 0$, allora A non è invertibile.

Esercizio 2. (a) Si scriva il numero complesso

$$z = \frac{2 + 2i + i^2 + i^3}{(2 - i)^2}$$

nella forma a + ib.

(b) Nel campo dei numeri complessi si trovino tutte le soluzioni dell'equazione $(z-2)^3=1$.

Esercizio 3. Nello spazio vettoriale \mathbb{R}^4 siano U il sottospazio generato dai vettori $u_1=(3,4,-1,1),$ $u_2=(1,-2,-1,-3)$ e W il sottospazio definito dalle equazioni $x_1-2x_2+x_3-x_4=0$ e $2x_1+3x_3+x_4=0$.

- (a) Si stabilisca se la somma di U e W è diretta e si determinino delle basi di U+W e di $U\cap W$.
- (b) Si determini, se possibile, una base di un sottospazio $L \subset \mathbb{R}^4$ tale che $U \oplus L = W \oplus L = \mathbb{R}^4$.
- (c) Dato il vettore v=(0,1,-1,3), si determini l'equazione del più piccolo sottospazio di \mathbb{R}^4 contenente U e v.
- (d) Dato $\bar{v} = (2, -1, 0, 3)$ si consideri l'insieme $S = \bar{v} + U = \{\bar{v} + u \mid u \in U\}$. Si scriva un sistema lineare che abbia S come insieme delle soluzioni.

Esercizio 4. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo f(1,0,0) = (2,1,0,1), f(1,1,0) = (1,4,2,0), f(1,1,1) = (2,4,5,2).

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi del nucleo e dell'immagine di f.
- (b) Sia $U \subset \mathbb{R}^3$ il sottospazio di equazione $2x_1 x_2 + 3x_3 = 0$ e sia $W \subset \mathbb{R}^4$ il sottospazio definito dalle due equazioni $y_1 + y_2 + 7y_4 = 0$ e $5y_1 + 2y_3 + 8y_4 = 0$. Si dimostri che f(U) = W.
- (c) Dato il vettore $v_t = (t, -1, 1, 5) \in \mathbb{R}^4$, si determini il valore di t per cui si ha $f^{-1}(v_t) \neq \emptyset$.

Esercizio 5. Siano dati i vettori $v_1 = (1, -1, 2)$, $v_2 = (-1, 2, 0)$, $v_3 = (0, 1, 1)$ e sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare il cui nucleo è generato da v_1 e tale che $f(v_2) = 2v_2$ e $f(v_3) = v_3$.

- (a) Utilizzando la formula di cambiamento di basi, si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che la funzione composta $g \circ f$ sia invertibile (la risposta deve essere adeguatamente giustificata).

Cognome	Nome	Matricola
508H0HI =====		IIIdIIICOId

(Ingegneria Civile, Ing. per l'Ambiente e il Territorio)

Prof. F. Bottacin, B. Chiarellotto

1^a Prova di accertamento — 14 maggio 2011

Esercizio 1. Si dica se le seguenti affermazioni sono vere o false:

- [V] Esiste una funzione lineare $f: \mathbb{R}^7 \to \mathbb{R}^7$ tale che Ker(f) = Im(f).
- [V] F Se A è una matrice quadrata non nulla tale che $A^3 = 0$, allora A non è invertibile.
- \overline{V} \overline{F} Se r vettori di uno spazio vettoriale V sono linearmente indipendenti, esiste sicuramente una base di V che li contiene.

Esercizio 2. Nello spazio vettoriale \mathbb{R}^4 siano U il sottospazio generato dai vettori $u_1 = (3, -2, 8, 3),$ $u_2 = (-1, 4, 6, 1)$ e W il sottospazio definito dalle equazioni $2x_1 + x_2 - x_3 + 2x_4 = 0$ e $x_1 - 3x_2 + x_4 = 0$.

- (a) Si stabilisca se la somma di $U \in W$ è diretta e si determinino delle basi di U + W e di $U \cap W$.
- (b) Si determini, se possibile, una base di un sottospazio $L \subset \mathbb{R}^4$ tale che $U \oplus L = W \oplus L = \mathbb{R}^4$.
- (c) Dato il vettore v=(1,-1,-1,0), si determini l'equazione del più piccolo sottospazio di \mathbb{R}^4 contenente U e v.
- (d) Dato $\bar{v} = (0, 1, 0, 2)$ si consideri l'insieme $S = \bar{v} + U = \{\bar{v} + u \mid u \in U\}$. Si scriva un sistema lineare che abbia S come insieme delle soluzioni.

Esercizio 3. Siano dati i vettori $v_1=(2,-1,1),\ v_2=(-1,1,0),\ v_3=(0,2,1)$ e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare il cui nucleo è generato da v_1 e tale che $f(v_2)=v_2$ e $f(v_3)=-2v_3$.

- (a) Utilizzando la formula di cambiamento di basi, si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che la funzione composta $g \circ f$ sia invertibile (la risposta deve essere adeguatamente giustificata).

Esercizio 4. (a) Si scriva il numero complesso

$$z = \frac{4 - 2i + 2i^2 - i^3}{(2+i)^2}$$

nella forma a + ib.

(b) Nel campo dei numeri complessi si trovino tutte le soluzioni dell'equazione $(z-1)^3=-1$.

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo f(1,0,0) = (1,0,3,-2), f(1,1,0) = (3,1,2,-1), f(1,1,1) = (2,3,2,2).

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi del nucleo e dell'immagine di f.
- (b) Sia $U \subset \mathbb{R}^3$ il sottospazio di equazione $3x_1 2x_2 x_3 = 0$ e sia $W \subset \mathbb{R}^4$ il sottospazio definito dalle due equazioni $3y_1 + 10y_2 18y_3 = 0$ e $8y_2 9y_3 3y_4 = 0$. Si dimostri che f(U) = W.
- (c) Dato il vettore $v_t = (-1, 1, t, -2) \in \mathbb{R}^4$, si determini il valore di t per cui si ha $f^{-1}(v_t) \neq \emptyset$.

Cognome	Nome	Matricola
508H0HI =====		IIIdIIICOId

(Ingegneria Civile, Ing. per l'Ambiente e il Territorio)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 14 maggio 2011

Esercizio 1. Si dica se le seguenti affermazioni sono vere o false:

- [V] [F] Se A è una matrice quadrata non nulla tale che $A^2 = 0$, allora A non è invertibile.
- $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$ Se r vettori di uno spazio vettoriale V sono linearmente indipendenti, esiste sicuramente una base di V che li contiene.
- [V] Esiste una funzione lineare $f: \mathbb{R}^5 \to \mathbb{R}^5$ tale che Ker(f) = Im(f).

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo f(1,0,0) = (0,2,-1,3), f(1,1,0) = (2,3,1,4), f(1,1,1) = (5,2,2,4).

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi del nucleo e dell'immagine di f.
- (b) Sia $U \subset \mathbb{R}^3$ il sottospazio di equazione $x_1 + 2x_2 x_3 = 0$ e sia $W \subset \mathbb{R}^4$ il sottospazio definito dalle due equazioni $4y_1 12y_2 11y_3 = 0$ e $3y_2 + y_3 y_4 = 0$. Si dimostri che f(U) = W.
- (c) Dato il vettore $v_t = (1, 2, -3, t) \in \mathbb{R}^4$, si determini il valore di t per cui si ha $f^{-1}(v_t) \neq \emptyset$.

Esercizio 3. (a) Si scriva il numero complesso

$$z = \frac{1 + 3i - i^2 + 2i^3}{(3 - i)^2}$$

nella forma a + ib.

(b) Nel campo dei numeri complessi si trovino tutte le soluzioni dell'equazione $(z+3)^3=1$.

Esercizio 4. Siano dati i vettori $v_1=(1,-2,1),\ v_2=(-1,1,0),\ v_3=(0,2,-1)$ e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare il cui nucleo è generato da v_1 e tale che $f(v_2)=3v_2$ e $f(v_3)=-2v_3$.

- (a) Utilizzando la formula di cambiamento di basi, si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che la funzione composta $g \circ f$ sia invertibile (la risposta deve essere adeguatamente giustificata).

Esercizio 5. Nello spazio vettoriale \mathbb{R}^4 siano U il sottospazio generato dai vettori $u_1=(3,1,2,1),$ $u_2=(-1,3,-4,-3)$ e W il sottospazio definito dalle equazioni $3x_1-x_2+2x_3-x_4=0$ e $x_1-x_3+2x_4=0$.

- (a) Si stabilisca se la somma di $U \in W$ è diretta e si determinino delle basi di U + W e di $U \cap W$.
- (b) Si determini, se possibile, una base di un sottospazio $L \subset \mathbb{R}^4$ tale che $U \oplus L = W \oplus L = \mathbb{R}^4$.
- (c) Dato il vettore v=(0,2,1,-1), si determini l'equazione del più piccolo sottospazio di \mathbb{R}^4 contenente U e v.
- (d) Dato $\bar{v} = (1,0,0,2)$ si consideri l'insieme $S = \bar{v} + U = \{\bar{v} + u \mid u \in U\}$. Si scriva un sistema lineare che abbia S come insieme delle soluzioni.

Cognome	Nome	Matricola
0001101110		1/10/17/00/10

(Ingegneria Civile, Ing. per l'Ambiente e il Territorio)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 14 maggio 2011

Esercizio 1. Si dica se le seguenti affermazioni sono vere o false:

- V Esiste una funzione lineare $f: \mathbb{R}^7 \to \mathbb{R}^7$ tale che Ker(f) = Im(f).
- $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$ Se r vettori di uno spazio vettoriale V sono linearmente indipendenti, esiste sicuramente una base di V che li contiene.
- [V] [F] Se A è una matrice quadrata non nulla tale che $A^3 = 0$, allora A non è invertibile.

Esercizio 2. Siano dati i vettori $v_1=(2,1,1),\ v_2=(1,-1,0),\ v_3=(0,2,1)$ e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare il cui nucleo è generato da v_1 e tale che $f(v_2)=2v_2$ e $f(v_3)=3v_3$.

- (a) Utilizzando la formula di cambiamento di basi, si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che la funzione composta $g \circ f$ sia invertibile (la risposta deve essere adequatamente giustificata).

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo f(1,0,0) = (1,3,0,2), f(1,1,0) = (0,4,2,4), f(1,1,1) = (0,6,3,3).

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi del nucleo e dell'immagine di f.
- (b) Sia $U \subset \mathbb{R}^3$ il sottospazio di equazione $3x_1 x_2 + x_3 = 0$ e sia $W \subset \mathbb{R}^4$ il sottospazio definito dalle due equazioni $3y_1 + y_2 = 0$ e $y_2 y_3 = 0$. Si dimostri che f(U) = W.
- (c) Dato il vettore $v_t = (t, 5, -2, -4) \in \mathbb{R}^4$, si determini il valore di t per cui si ha $f^{-1}(v_t) \neq \emptyset$.

Esercizio 4. Nello spazio vettoriale \mathbb{R}^4 siano U il sottospazio generato dai vettori $u_1 = (2, 4, 0, -3)$, $u_2 = (2, 2, -2, -1)$ e W il sottospazio definito dalle equazioni $x_1 + 3x_2 - x_3 + 2x_4 = 0$ e $x_2 - 2x_3 - x_4 = 0$.

- (a) Si stabilisca se la somma di U e W è diretta e si determinino delle basi di U+W e di $U\cap W$.
- (b) Si determini, se possibile, una base di un sottospazio $L \subset \mathbb{R}^4$ tale che $U \oplus L = W \oplus L = \mathbb{R}^4$.
- (c) Dato il vettore v=(1,-2,0,1), si determini l'equazione del più piccolo sottospazio di \mathbb{R}^4 contenente U e v.
- (d) Dato $\bar{v} = (0, 2, 1, -1)$ si consideri l'insieme $S = \bar{v} + U = \{\bar{v} + u \mid u \in U\}$. Si scriva un sistema lineare che abbia S come insieme delle soluzioni.

Esercizio 5. (a) Si scriva il numero complesso

$$z = \frac{3 - 3i + 2i^2 - i^3}{(1 - 2i)^2}$$

nella forma a + ib.

(b) Nel campo dei numeri complessi si trovino tutte le soluzioni dell'equazione $(z+2)^3=-1$.