Seaborn - Visualizing Data Distributions

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set(style="ticks")
```

Univariate Distributions

• distplot() - draw a histogram and file a KDE (kernel density estimate)

```
In [3]: np.random.seed(123)
x = np.random.normal(size=500)
sns.distplot(x);
```


In [5]: sns.distplot(x, bins=20, kde=False, rug=True);

In [6]: sns.distplot(x, bins=20, hist=False, rug=True);


```
In [7]: # kdeplot provides more options
sns.kdeplot(x, shade=True);
```



```
In [8]: sns.kdeplot(x, shade=True)
sns.rugplot(x);
```


Bivariate distributions

• jointplot()

```
In [9]: tips = sns.load_dataset("tips")
```

```
In [10]: tips.head()
```

Out[10]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

```
In [11]: sns.jointplot(x="total_bill", y="tip", data=tips);
```


Pairwise relationships

```
In [14]: iris = sns.load_dataset("iris")
    iris.head()
```

Out[14]:

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
	5.1 4.9 4.7 4.6	5.1 3.5 4.9 3.0 4.7 3.2 4.6 3.1	5.1 3.5 1.4 4.9 3.0 1.4 4.7 3.2 1.3 4.6 3.1 1.5	5.1 3.5 1.4 0.2 4.9 3.0 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2

```
In [15]: iris.species.unique()
```

```
Out[15]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
```


JointGrid

```
In [17]: g = sns.JointGrid(x="total_bill", y="tip", data=tips)
```



```
In [18]: g = sns.JointGrid(x="total_bill", y="tip", data=tips)
g = g.plot(sns.regplot, sns.distplot)
```



```
In [19]: g = sns.JointGrid(x="total_bill", y="tip", data=tips)
g = g.plot_joint(plt.scatter)
g.plot_marginals(sns.distplot, kde=False);
```


In []:
In []: