

15-110 Principles of Computing – F21

LAB 1:

ALGORITHMS!

TEACHER:

GIANNI A. DI CARO

More problems: Navigating out of a maze

Getting out of a maze!

- Describe the step-by-step algorithm (sequence of instructions) to get out of the maze (from the red to the green open accesses)
 - You don't know distances and don't know how measure them, but you have a sensor that let you know when you're hitting a wall
 - You can move straight forward and rotate in place of the desired angle (clockwise or anti-clockwise)

A sorting problem: you know the numbers

Use information about the cards

- You are given a set of cards (covered) as show in the figure
- Cards are uniquely numbered from 1 to 100, but cards aren't necessarily placed in the 1-100 order!
- You must **sort** the cards in the $1 \rightarrow 100$ order using an algorithm that explicitly makes use of the information that card numbers are between 1 and 100

Get statistics about your volunteers

How many people are there? What is the average age?

- You are evaluating a group of volunteers who came to help for a music event.
- The first thing to do is to know how many volunteers are there and what is the average age of the group.
- Write an algorithm that you can use to accomplish the task. The algorithm shall output the total number of volunteers and their average age.

Your age?

How to compute the age of a person?

- You want to know the age of a person. You know the current date and the birth date of the person.
- The first thing to do is to know how many volunteers are there and what is the average age of the group.
- Write an algorithm that you can use to accomplish the task. The algorithm shall output the total number of volunteers and their average age.

Merge sorted piles of cards

Split the job among your friends!

- Still need to sort a pile of n cards, and you don't know their ranges.
- Luckily, you have three friends who can help you in the task. You split the cards in three piles, giving each pile to each one of your friends (what if n is not precisely divisible by 3?)
- Each friend know how to sort a pile of cards, such that he/she will return a sorted pile of cards (e.g., sorted in ascending order).
- Now you need to use / merge the sorted piles to create a single sorted pile of cards, which will be your output

Pair the socks in a heap!

Pair the socks!

- Taking care of organizing clothes at home, sometimes can be a very frustrating job! Image you have an unorganized heap of (many) socks, and you need to pair all the socks and put them aside to bring them to the wardrobe.
- Socks might have different colors, patterns, shape.
- Define two different algorithms that can achieve the task.
- Discuss which one of the two algorithms you think is more efficient (i.e., it would take less time to complete)

