Física II. Grado en Ingeniería Química Industrial. Curso 24/25

Ejercicios simples. Boletín 1. Cargas puntuales

- 1. Tres cargas puntuales están en el eje x: $q_1 = -6 \mu C$ se encuentra en x = -3 m, $q_2 = 4 \mu C$ se encuentra en el origen y $q_3 = -6 \mu C$ está en x = 3 m. Calcular la fuerza electrostática sobre q_1 .
- 2. Una carga puntual de 2 μ C y otra de 4 μ C están separadas una distancia L. ¿Dónde debería colocarse una tercera carga para que la fuerza eléctrica ejercida sobre ella sea cero?
- 3. Las cargas q_1 y q_2 de la figura tienen el mismo valor absoluto. ¿Cuál es el sentido del campo eléctrico en A (punto medio del segmento que une ambas cargas), B y C si
 - (a) ambas cargas son negativas
 - (b) ambas cargas son positivas
 - (c) q_1 es positiva y q_2 es negativa

- 4. Tres cargas puntuales están fijas en tres puntos del eje x. q_1 está en x = 0 m, q_2 está en x = 3 m y q_3 está en x = 6 m. Calcular el vector campo eléctrico y el potencial eléctrico en el punto situado en el eje y con y = 3 m en los siguientes casos:
 - (a) $q_1 = q_2 = q_3 = +2 \mu C$
 - (b) $q_1 = q_2 = +2 \mu \text{C y } q_3 = -2 \mu \text{C}$
 - (c) $q_1 = q_3 = +2 \mu \text{C y } q_2 = -2 \mu \text{C}$
- 5. Cuatro cargas puntuales, cada una de valor absoluto 2 μ C, están fijas en los vértices de un cuadrado de lado 4 m. Calcular el potencial eléctrico en el centro del cuadrado si
 - (a) todas las cargas son positivas
 - (b) tres cargas son positivas y una carga es negativa
 - (c) dos cargas son positivas y dos cargas son negativas
- 6. Como muestra la figura, el punto P está una distancia $d_1 = 4$ m de la carga $q_1 = -2e$ y a una distancia $d_2 = 2$ m de la carga $q_2 = +2e$. Ambas cargas están fijas.
 - (a) Calcular el vector campo eléctrico y el potencial electrostático en el punto ${\cal P}.$

- (b) ¿Qué trabajo se necesita para transportar una carga $q_3 = +e$ desde el infinito hasta P.
- (c) ¿Cuál sería la energía potencial electrostática del sistema formado por las cargas q_1 , q_2 y q_3 ?
- 7. Una carga puntual de 2 μ C está en el punto (2.5,3.2) m. Una segunda carga puntual de $-3.1~\mu$ C está en el punto (-2.1,1.0) m.
 - (a) ¿Cuál es el vector campo eléctrico en el origen?
 - (b) ¿Cuál es el potencial eléctrico en el origen?
 - (c) Si trazamos la línea que une ambas cargas, ¿en qué punto(s) de esta se anula el potencial eléctrico?
- **8**. Tres cargas puntuales q_1 , q_2 y q_3 están fijas en los vértices de un triángulo equilátero de 2.5 metros de lado. Calcular la energía potencial electrostática del sistema de carga para los siguientes casos:
 - (a) $q_1 = q_2 = q_3 = +4.20 \mu C$
 - (b) $q_1 = q_2 = +4.20 \mu \text{C y } q_3 = -4.20 \mu \text{C}$
 - (c) $q_1 = q_2 = -4.20 \mu \text{C y } q_3 = +4.20 \mu \text{C}$
- **9.** La figura muestra siete cargas puntuales fijas que forman un cuadrado de 4 cm de lado. Calcular el trabajo necesario para llevar una carga +6*e* desde el infinito hasta el centro del cuadrado.

