AI Colab Group 1 - Clinical Data Science & Modeling

Yara Yaghi, Naod Dawit, Kareem Aly, & Indira Kuppa

Proposed Research Question

How does kidney function, as measured by creatinine clearance (CCR) and blood urea nitrogen (BUN), relate to β-cell dysfunction and type 2 diabetes risk, and does this relationship differ by smoking status and alcohol consumption among U.S. adults?

Potential Hypothesis

Reduced kidney function, indicated by lower creatinine clearance and higher BUN, is associated with impaired β -cell function and increased risk of type 2 diabetes, especially among current smokers and drinkers.

Research Scope and Objectives

Scope:

Population: U.S. Adults from NHANES

Key Explanatory Variables:

- Kidney function: Creatinine Clearance (CCR), Blood Urea Nitrogen (BUN)
- Behavioral factors: Smoking status, alcohol consumption

Mediating/Target Outcome:

- β -cell dysfunction (estimated via HOMA-B)
- Type 2 diabetes status (diagnosed or based on biomarkers)

Stratification/Interaction: Smoking and alcohol status groups

Objectives:

Primary: Assess how kidney function markers (CCR and BUN) are associated with β -cell dysfunction and type 2 diabetes

Secondary: Support early identification of high-risk groups based on renal-endocrine interactions. Determine whether impaired renal function precedes or parallels endocrine dysfunction in T2D

Research Potential

Clinical Insight

- Improves early diabetes screening by flagging high-risk individuals with both metabolic red flags and family history
- Promotes personalized prevention strategies

Research Contribution

- Explores an under-researched physiological pathway linking kidney and endocrine health
- Moves beyond traditional T2D predictors (e.g., BMI, glucose) toward organ-level systems modeling

<u>Public Health Relevance</u>

- Offers insights for screening and risk stratification based on routine kidney function labs
- Informs prevention strategies for smokers and drinkers, who may be more vulnerable to combined renal and endocrine stress

1.Data Source - National Health and Nutrition Examination Survey)

<u>Source:</u> NHANES (National Health and Nutrition Examination Survey); large, nationally representative U.S. adult sample. Data collected through interviews, physical examinations, and laboratory tests.

• Dataset Size: ~30,000+ participants per combined multi-year cycles.

Target Outcomes → **Binary Variables**

• Diabetes Status: Self-reported diagnosis and laboratory-confirmed diabetes (Fasting Plasma Glucose ≥ 126 mg/dL or HbA1c ≥ 6.5%).

Predictors Included: Kidney Function:

- Blood Urea Nitrogen (BUN)
- Creatinine Clearance Rate (CCR)

β-cell Function:

Fasting Insulin & Fasting Glucose (HOMA-β calculation)

Family History:

• Family history of diabetes (parent, sibling) collected via questionnaire.

Physical Behaviors:

- Smoking status, alcohol use, physical activity levels.
- Link to the Dataset -

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=1999

Machine Learning Potential

Predictive Modeling:

Logistic Regression, Random Forest, XGBoost, LightGBM for type 2 diabetes classification.

Moderation and Interaction Analysis:

Machine learning to detect interactions between metabolic biomarkers, family history, and lifestyle.

Risk Stratification:

Identifying high-risk subgroups using combined NHANES and Kaggle datasets.

Feature Importance & Explainability:

SHAP (SHapley Additive exPlanations), feature ranking, and visualization to improve clinical interpretability.

Unsupervised Learning:

Clustering to explore hidden diabetes phenotypes.

Web Scraping Integration

Supplementary Data Collection:

- Scrape region-specific diabetes prevalence rates, lifestyle trends, and public health reports from CDC, WHO, and other health portals.
- Extract recent research abstracts and news updates from PubMed to track emerging diabetes risk factors.

Added Value:

- Enriches model context with real-time, location-based, and literature-based insights.
- Allows integration of external environmental or policy-level factors.

Tools:

- Python (BeautifulSoup, Requests, Pandas)
- Target websites: CDC Diabetes Atlas, BRFSS, PubMed

Literature Review

Metabolic & Behavioral factors:

- Individuals with high-normal fasting glucose (91–99 mg/dL) have a greater risk of developing diabetes compared to those with lower normal levels (Brambilla et al., 2011)
- Triglycerides are an independent and early predictor of type 2 diabetes (Zhao et al., 2019)
- High BMI amplifies risk across all metabolic risk markers (Zhao et al., 2019)
- Smoking and alcohol use worsen metabolic regulation (Akhuemonkhan & Lazo, 2017)

Literature Review

Beta Cell Dysfunction

- Beta cells located in the pancreas produce and secrete insulin (Dludla et al., 2023).
- Beta cell dysfunction indicates impaired insulin secretion, contributing to T2DM (Dludla et al., 2023).
- The Homeostatic Model Assessment of Beta-cell Function (HOMA-B) and the Insulinogenic Index can be used to indicate beta cell function (Kim et al., 2024; Sung et al., 2009)
 - These indicators can be calculated with fasting and post-load glucose and insulin values.

Literature Review

Type II Diabetes:

- Type II diabetes, also known as adult-onset diabetes, occurs when the body is not able to utilize insulin correctly and sugar builds up in the blood (Mayo Clinic, 2025).
 - Type II diabetes is more common in older adults (hence adult-onset), however, more and more children are being diagnosed with the rise of childhood obesity (Mayo Clinic, 2025).
- As of 2024, more than 38 million Americans have diabetes, with close to 95% of diagnoses being for Type II diabetes (CDC, 2024)
 - Mostly in adults over 45 years old, but more and more children are getting diagnosed.

References

- Akhuemonkhan, E. & Lazo, M. (2017). Association between family history of diabetes and cardiovascular disease and lifestyle risk factors in the U.S. population (NHANES 2009–2012).

 *Preventive Medicine, 96, 129–134. https://doi.org/10.1016/j.ypmed.2016.12.015
- Baliunas, A., Taylor, B., Irving, H., Roerecke, M., Patra, J., Mohapatra, S., & Rehm, J. (2009). Alcohol as a Risk Factor for Type 2 Diabetes. *Diabetes Care, 32*(11), 2123-2132. https://doi.org/10.2337/dc09-0227
- Brambilla, P., La Valle, E., Falbo, R., Limonta, G., Signorini, S., Cappellini, F., & Mocarelli, P. (2011). Normal fasting plasma glucose and risk of type 2 diabetes. *Diabetes Care*, 34(6), 1372–1374. https://doi.org/10.2337/dc10-2263
- CDC. (2024, May 15). About Type 2 Diabetes. Diabetes. https://www.cdc.gov/diabetes/about/about-type-2-diabetes.html
- Dludla, P. V., Mabhida, S. E., Ziqubu, K., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hanser, S., Basson, A. K., Pheiffer, C., & Kengne, A. P. (2023). Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. *World Journal of Diabetes*, 14(3), 130–146. https://doi.org/10.4239/wjd.v14.i3.130
- Kim, J. Y., Lee, J., Kim, S. G., & Kim, N. H. (2024). Recent Glycemia Is a Major Determinant of β-Cell Function in Type 2 Diabetes Mellitus. *Diabetes & Metabolism Journal*, 48(6), 1135-1146. https://doi.org/10.4093/dmj.2023.0359
- Mayo Clinic. (2025, February 27). Type 2 diabetes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/symptoms-causes/syc-20351193
- Sung, K. C., Reaven, G., & Kim, S. (2009). Utility of Homeostasis Model Assessment of β-Cell Function in Predicting Diabetes in 12,924 Healthy Koreans. *Diabetes Care*, *33*(1), 200-202. https://doi.org/10.2337/dc09-1070
- Zhao, J., Zhang, Y., Wei, F., Song, J., Li, W.-D., Chen, C., Zhang, K., & Feng, S. (2019). Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: A prospective study with 8-year follow-ups in two cohorts. *Journal of Translational Medicine*, 17, 354. https://doi.org/10.1186/s12967-019-02156-3

DATA FILES AND SOURCES

https://www.cdc.gov/brfss/annual_data/annual_2015.html

https://www.kaggle.com/datasets/cdc/behavioral-risk-factor-surveillance-system/data

https://www.kaggle.com/datasets/alexteboul/heart-disease-health-indicators-dataset/data