Efficient

Wednesday, January 15, 2025 11:36 AM

Last Time:

- Algorithms
- Examples:
 - Closest Values
 - Long Multiplication
 - Peasant Multiplication
- Describing Algorithms

MikTex

Today

- Remarks about multiplication
- RAM Model
- "Efficient"
 - o Polynomials
- Worst case running time
 - Big-O Notation

Recall: Multiplication of two numbers $X[\dots n], Y[\dots n]$ Lattice malt Peasant not 0 (10gx 10gg) 1950) Kolmogrov's (injecture "There is no algorithm to multiply numbers in subquadratic time RAM model) -- , randorn access machine basic data -> int, floats, booleans.

integers we wasts always.

 $\chi_{i,j} \rightarrow O(m,n) \longrightarrow O(m^2) \rightarrow O(1) \checkmark$ & In the RAM model, arthretic takes contant time. Efficiency "Efficient" 1) What is "efficient"? Brote - force 1) considered "nefficient"! Easy example Given a list of L Hems, put in sorted Birte-force : Try all ordering. One of them s, the sorted order. / () $n! \rightarrow > 2^n$ Exponential time say running time is growth is very Ant. · We want running time to increase by constant

integers use w-bits always.

	. We want running time to increase by constant
	Anction as import size grows. "efficient"
7	Det polynomial time.
	There exists some constant c and d
	where on input size n, the running time)
\	
	In this class: Try to best (brate-dorce.)
	Question: Are there problems which require exp. time?
-	
(2) Wort care analysis.
	Given a list L and a target T, my algorithm
	finds the index of the first occurrence of Tin L.
	(or none).
	DIterate through L and check whether
	the current item in T
	2 Return the index (or none).
	Running time (nose time -) (n) <- n i) L
	(Worst-case time) O(n) < n i) L/ L) pessimistic.
	alternatives -> bost (are -) un realistic.
	average care -> assume some probability on
	the input and then do tuff

(3) Big-D notation

Let T(n) be the running time of an alg.

 $\left(\tau(n) = 5n^2 - 3n + 1\right)$

()"T(n) 1, $O(n^2)$ "

Det we say T(n) is O(f(n)) it there exists (70 and n. 20

> where: Aur all NZNo, we have T(n) < (. f(n)

O upperbound up to constant factor

 $6\times$ $T(n)=5n^2+3n$ (lain T(n) i) $O(n^2)$

0 pick 4(n)= n2

2 pick 2 constants with

for nzno, 5n2+3n < (.1)

Let c = 1000 $and n_0 = 1$ (= 6) n = 1

Then the definition is true!

Clain T(n) 1) O(n) 1 pick and no 5n2 + 3n ≤ C.n (=1000) $5n^2 + 3n \leq (000 \cdot n)$ (lain T(n) 1, O(n)) / T(n) in $O(n^3)$ " Searching a list takes O(n) time" Def we say T(n) is $\Omega(A(n))$ if there exist EDD, no ZO where: for all n=no, we have T(n) = E. A(n) "searching takes sa(n) time" Det we in that T(n) is O(f(n)) If T(n) is O(f(n)) and of (f(n)) 7 c. 4(n) \rightarrow $\tau(n)$

