

FUNCIONS

- Adreçament
- Identificar cada dispositiu de la xarxa amb una adreça única dins aquella xarxa: la IP
- ▶ Enrutament
 - Els paquets travessen diferents dispositius (routers) fins arribar al seu destí, seguint una ruta
 - Se selecciona la millorruta possible

PROTOCOLS IP

- ► IPv6 canvia el format d'IP per incrementar el número d'IP disponibles
 - 2001:0DB8:1234:5678:ABCD:EF00:0000:0009
- ▶ Les IPv4 segueixen sent àmpliament utilitzades
 - 192.168.1.50
 - En un futur, se substituiran per les IPv6 (IoT)
 - Però a les xarxes locals tenen el futur assegurat
- ▶ El protocol IP no és confiable
 - Es delega aquest funció a la capa de transport, si cal
 - D'aquesta manera s'alleugera el trànsit a la xarxa

PROTOCOL IPV4

- ► El protocol IPv4 és independent...
 - De les dades que transporta
 - Ignora l'aplicació que les ha generat o el significat que tenen
 - Del medi
 - Funciona sobre qualsevol tipus de medi (cablejats, sense fils, etc.)
 - + No obstant això, la mida màxima del paquet depèn del medi
 - Aquesta mida màxima es coneix com a MTU (Unitat Màxima de Transmissió):
 - A Ethernet, sol ser de 1500 bytes
 - A les WLAN, de 2304 bytes

DADES MÉS RELLEVANTS A LA CAPÇALERA

- ▶ Adreces IP
 - D'origen (32 bits)
 - Destí (32 bits)
- ▶ TTL
 - Time to Live
 - Número de salts (routers que travessa en la seva ruta) abans de ser descartat
 - A cada salt, el TTL disminueix en 1
- ▶ Versió (4 o 6)
- ▶ Checksum
 - Per comprovar que no hi hagi errors

SWITCH VS ROUTER

- ► Switch
 - Dispositiu de la capa d'accés a la xarxa
 - Treballa amb les MAC
 - Dades que tenen origen i destí dins la mateixa xarxa
- ▶ Router
 - Dispositiu de la capa d'Internet
 - Treballa amb les IP
 - Pot enrutar paquets entre xarxes diferents
 - El router de la nostra xarxa que ens permet sortir a altres xarxes el coneixem com a **gateway**, passarel la o porta d'enllaç

INTERCONNEXIÓ DE DUES XARXES

FUNCIONAMENT

- ► El PC0 vol enviar informació
 - És a la mateixa xarxa? → ho envia directament (MAC)
 - És a una xarxa diferent? → ho envia al seu router (gateway), perquè ho faci arribar a destí
- ▶ Al router li arriba una informació que ha d'enviar
 - És a la mateixa xarxa? → ho envia directament
 - És a una xarxa diferent? > ho envia al següent router que tingui connectat (gateway), perquè ho faci arribar a destí
- ► Com sabem si una IP és de la mateixa xarxa o no?
 - A través de la màscara de xarxa (MX)
 - Són a la mateixa xarxa si tenen la mateix adreça de xarxa (AX)

MÀSCARA DE XARXA

CIDR

- ► CIDR és una altra manera d'expressar les MX
 - Es representa amb un número del 0 al 32, i una barra davant
 - Indica la quantitat d'1 que hi ha a la MX
- ► Exemples:
 - 255.255.255.0 = /24
 - + 1111 1111.1111 1111.1111 1111.0000 0000 (24 uns)
 - 255.255.0.0 = /16
 - + 1111 1111.1111 1111.0000 0000.0000 0000 (16 uns)
 - 255.0.0.0 = /8
 - + 1111 1111. 0000 0000. 0000 0000.0000 0000 (8 uns)

CIDR

- ▶ Es poden expressar
 - De forma decimal
 - En format CIDR
 - De forma binària
 - No totes les combinacions són possibles

MX: 255.255.255.

```
00000000 \equiv 0
10000000 \equiv 128
110000000 \equiv 192
111000000 \equiv 224
11110000 \equiv 240
111111000 \equiv 248
111111100 \equiv 252
111111110 \equiv 254
1111111111 \equiv 255
```

PERTANYEN A LA MATEIXA XARXA?

- ▶ En groc, part de xarxa. En verd, part de host.
- ▶ 192.168.1.20/24 i 192.168.1.128/24
 - Sí, perquè la part de xarxa és igual a les dues adreces

- ► 192.168.1.20/25 i 192.168.1.128/25
 - No, perquè la part de xarxa són diferents a les dues adreces

Consideracions

- ► El gateway d'un dispositiu ha de ser a la mateixa xarxa que el dispositiu
 - Les IP han de coincidir en el rang d'adreces de xarxa
- ► Cada dispositiu ha de saber quin és el seu gateway
 - Manualment
 - A través d'un DHCP
- ▶ Cada router ha de saber com redirigir una IP
 - Són el que coneixem com taules d'enrutament
 - És una configuració bàsica de tot router

COMMUTACIÓ

ALGUNES COMANDES BÀSIQUES

- ▶ \$ip a
 - IP, MX i MAC del PC local
 - Substitueix ifconfig
- ▶ \$ip route
 - taula d'enrutament amb el GW
- ► \$route
 - taula d'enrutament amb el GW

TAULES D'ENRUTAMENT

- ▶ Si el PC0 li envia un missatge al PC1...
 - Com sap el Router0 si li ha d'enviar al Router1 o al Router2?
 - * A través de les taules d'enrutament
 - → Dedicirà en funció de l'adreça IP de destinació

