

# Topic 8 Sorting, Sets, and Selection Lecture 8a - Sorting

**CSCI 240** 

Data Structures and Algorithms

Prof. Dominick Atanasio

## Sorting

- We seek algorithms to arrange items, ai such that a1 ≤ a2 ≤ . . . ≤ an
- Sorting an array is usually easier than sorting a Linke List
- Efficiency of a sorting algorithm is significant

## Selection Sort

 FIGURE 8-1 Before and after exchanging the shortest book and the first book



#### Selection Sort

■ FIGURE 8-2 A selection sort of an array of integers into ascending order





## Selection Sort



#### Iterative Selection Sort

 This pseudocode describes an iterative algorithm for the selection sort

#### Recursive Selection Sort

Recursive selection sort algorithm

```
Algorithm selectionSort(a, first, last)
// Sorts the array entries a[first] through a[last] recursively.
if (first < last)</pre>
   indexOfNextSmallest = the index of the smallest value among
                           a[first], a[first + 1], . . . , a[last]
   Interchange the values of a[first] and a[indexOfNextSmallest]
   // Assertion: a[0] \le a[1] \le ... \le a[first] and these are the smallest
   // of the original array entries. The remaining array entries begin at a[first + 1].
   selectionSort(a, first + 1, last)
```

# Efficiency of Selection Sort?

## Efficiency of Selection Sort

- Selection sort is O(n2) regardless of the initial order of the entries.
  - Requires O(n²) comparisons
  - Does only O(n) swaps

#### **Insertion Sort**

■ FIGURE 8-3 The placement of the third book during an insertion sort





#### **Insertion Sort**

FIGURE 8-4 An insertion sort of books



## Insertion Sort



Iterative algorithm describes an insertion sort of the entries at indices first through last

```
of the
        Algorithm insertionSort(a, first, last)
        // Sorts the array entries a[first] through a[last] iteratively.
        for (unsorted = first + 1 through last)
            nextToInsert = a[unsorted]
            insertInOrder(nextToInsert, a, first, unsorted - 1)
```

 Pseudocode of method, insertInOrder, to perform the insertions.

```
Algorithm insertInOrder(anEntry, a, begin, end)
// Inserts anEntry into the sorted entries a[begin] through a[end].
                            // Index of last entry in the sorted portion
index = end
// Make room, if needed, in sorted portion for another entry
while ( (index >= begin) and (anEntry < a[index]) )</pre>
   a[index + 1] = a[index] // Make room
   index--
// Assertion: a[index + 1] is available.
a[index + 1] = anEntry // Insert
```

 FIGURE 8-5 Inserting the next unsorted entry into its proper location within the sorted portion of an array during an insertion sort



 FIGURE 8-6 An insertion sort of an array of integers into ascending order



This pseudocode describes a recursive insertion sort.

```
Algorithm insertionSort(a, first, last)
// Sorts the array entries a[first] through a[last] recursively.

if (the array contains more than one entry)
{
    Sort the array entries a[first] through a[last - 1]
    Insert the last entry a[last] into its correct sorted position within the rest of the array
}
```

FIGURE 8-8 Inserting the first unsorted entry into the sorted portion of the array. (a)
 The entry is greater than or equal to the last sorted entry



FIGURE 8-8 Inserting the first unsorted entry into the sorted portion of the array. (b)
 the entry is smaller than the last sorted entry



- The algorithm insertInOrder
- Note: insertion sort efficiency (worst case) is O(n²)

```
Algorithm insertInOrder(anEntry, a, begin, end)
// Inserts an Entry into the sorted array entries a [begin] through a [end].
// Revised draft.
if (anEntry >= a[end])
   a[end + 1] = anEntry
   else if (begin < end)</pre>
      a[end + 1] = a[end]
      insertInOrder(anEntry, a, begin, end - 1)
   else // begin == end and anEntry < a[end]</pre>
      a[end + 1] = a[end]
      a[end] = anEntry
```

#### Insertion Sort of a Linked List

■ FIGURE 8-8 A chain of integers sorted into ascending order



#### Insertion Sort of a Linked List

 FIGURE 8-9 During the traversal of a chain to locate the insertion point, save a reference to the node before the current one



#### Insertion Sort of a Linked List

- FIGURE 8-10 Breaking a chain of nodes into two pieces as the first step in an insertion sort:
- (a) the original chain;
  - (b) the two pieces



## Merge Sort



#### Divide-and-Conquer (§ 10.1.1)

- Divide-and conquer is a general algorithm design paradigm:
  - Divide: divide the input data S in two disjoint subsets S1 and S2
  - Recur: solve the subproblems associated with S1 and S2
  - Conquer: combine the solutions for S1 and S2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
  - It uses a comparator
  - It has O(n log n) running time
- Unlike heap-sort
  - It accesses data in a sequential manner (suitable to sort data on a disk)

#### Merge-Sort (§ 10.1)

- Merge-sort on an input sequence S with n elements consists of three steps:
  - Divide: partition S into two sequences S<sub>1</sub> and S<sub>2</sub> of about n/2 elements each
  - Recur: recursively sort S<sub>1</sub> and S<sub>2</sub>
  - Conquer: merge S<sub>1</sub> and S<sub>2</sub> into a unique sorted sequence

```
Algorithm mergeSort(S, C)
Input sequence S with n
elements, comparator C
Output sequence S sorted
according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

#### Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.empty() \land \neg B.empty()
       if A.front() < B.front()
           S.addBack(A.front()); A.eraseFront();
       else
           S.addBack(B.front()); B.eraseFront();
   while \neg A.empty()
       S.addBack(A.front()); A.eraseFront();
   while \neg B.empty()
       S.addBack(B.front()); B.eraseFront();
   return S
```

#### Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
  - each node represents a recursive call of merge-sort and stores
    - unsorted sequence before the execution and its partition
    - sorted sequence at the end of the execution
  - the root is the initial call
  - the leaves are calls on subsequences of size 0 or 1



## **Execution Example**

#### Partition



Recursive call, partition



Recursive call, partition



Recursive call, base case



Recursive call, base case



Merge



Recursive call, ..., base case, merge



Merge



Recursive call, ..., merge, merge



Merge



## Analysis of Merge-Sort

- The height h of the merge-sort tree is O(log n)
  - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is O(n)
  - we partition and merge 2i sequences of size n/2i
  - we make 2i+1 recursive calls
- Thus, the total running time of merge-sort is O(n log n)



# Quick-Sort



### Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-andconquer paradigm:
  - Divide: pick a random element x (called pivot) and partition S into
    - L elements less than x
    - E elements equal x
    - G elements greater than x
  - Recur: sort L and G
  - Conquer: join L, E and G



#### **Partition**

- We partition an input sequence as follows:
  - We remove, in turn, each element y from S and
  - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes
   O(1) time
- Thus, the partition step of quick-sort takes O(n) time

```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G of the
        elements of S less than, equal to,
        or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.erase(p)
    while \neg S.empty()
       y \leftarrow S.eraseFront()
       if y < x
           L.insertBack(y)
       else if y = x
            E.insertBack(y)
       else \{y > x\}
           G.insertBack(y)
    return L, E, G
```

#### Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
  - Each node represents a recursive call of quick-sort and stores
    - Unsorted sequence before the execution and its pivot
    - Sorted sequence at the end of the execution
  - The root is the initial call
  - The leaves are calls on subsequences of size 0 or 1



## **Execution Example**

Pivot selection



Partition, recursive call, pivot selection



Partition, recursive call, base case



Recursive call, ..., base case, join



Recursive call, pivot selection



Partition, ..., recursive call, base case



Join, join



### Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size n 1 and the other has size 0
- The running time is proportional to the sum
- n + (n 1) + ... + 2 + 1
- Thus, the worst-case running time of quick-sort is O(n²)



### Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
  - Good call: the sizes of L and G are each less than 3s/4
  - Bad call: one of L and G has size greater than 3s/4



- A call is good with probability 1/2
  - 1/2 of the possible pivots cause good calls:



**Good call** 



### Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- For a node of depth i, we expect
  - i/2 ancestors are good calls
  - The size of the input sequence for the current call is at most (3/4)i/2n
- Therefore, we have
  - For a node of depth  $2\log_{4/3}n$ , the expected input size is one
  - The expected height of the quick-sort tree is  $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is  $O(n \log n)$



total expected time:  $O(n \log n)$ 

#### In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
  - the elements less than the pivot have rank less than h
  - the elements equal to the pivot have rank between h and k
  - the elements greater than the pivot have rank greater than k
- The recursive calls consider
  - elements with rank less than h
  - elements with rank greater than k

```
Algorithm inPlaceQuickSort(S, l, r)
   Input sequence S, ranks l and r
   Output sequence S with the
       elements of rank between l and r
       rearranged in increasing order
    if l > r
        return
   i \leftarrow a random integer between l and r
   x \leftarrow S.elemAtRank(i)
   (h, k) \leftarrow inPlacePartition(x)
   inPlaceQuickSort(S, l, h-1)
   inPlaceQuickSort(S, k + 1, r)
```

## In-Place Partitioning

 Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).



- Repeat until j and k cross:
  - Scan j to the right until finding an element > x.
  - Scan k to the left until finding an element < x.</p>
  - Swap elements at indices j and k



## **Bucket-Sort and Radix-Sort**



#### **Bucket-Sort**

- Let be S be a sequence of n (key, element) entries with keys in the range [0, N - 1]
- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
  - Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k]
  - Phase 2: For i = 0, ..., N 1, move the entries of bucket B[i] to the end of sequence S
- Analysis:
  - Phase 1 takes O(n) time
  - Phase 2 takes O(n + N) time
- Bucket-sort takes O(n + N) time

```
Algorithm bucketSort(S, N)
   Input sequence S of (key, element)
        items with keys in the range
        [0, N-1]
    Output sequence S sorted by
        increasing keys
   B \leftarrow \text{array of } N \text{ empty sequences}
    while \neg S.empty()
        (k, o) \leftarrow S.front()
        S.eraseFront()
        B[k].insertBack((k, o))
   for i \leftarrow 0 to N-1
        while \neg B[i].empty()
            (k, o) \leftarrow B[i].front()
            B[i].eraseFront()
            S.insertBack((k, o))
```

# Example

Key range [0, 9]



### Properties and Extensions

- Key-type Property
  - The keys are used as indices into an array and cannot be arbitrary objects
  - No external comparator
- Stable Sort Property
  - The relative order of any two items with the same key is preserved after the execution of the algorithm

#### Extensions

- Integer keys in the range [a, b]
  - Put entry (k, o) into bucketB[k a]
- String keys from a set D of possible strings, where D has constant size (e.g., names of the 50 U.S. states)
  - Sort D and compute the rank r(k) of each string k of D in the sorted sequence
  - Put entry (k, o) into bucketB[r(k)]

#### Radix-Sort

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range [0, N - 1]
- Radix-sort runs in time O(d( n + N))

```
Algorithm radixSort(S, N)
Input sequence S of d-tuples such that (0, ..., 0) \le (x_1, ..., x_d) and (x_1, ..., x_d) \le (N-1, ..., N-1) for each tuple (x_1, ..., x_d) in S
Output sequence S sorted in lexicographic order for i \leftarrow d downto 1
bucketSort(S, N)
```

## Radix-Sort for Binary Numbers

- Consider a sequence of n b-bit integers  $x = x^{b-1} ... x^1 x 0$
- We represent each element as a b-tuple of integers in the range [0, 1] and apply radixsort with N = 2
- This application of the radix-sort algorithm runs in O(bn) time
- For example, we can sort a sequence of 32-bit integers in linear time

```
Algorithm binaryRadixSort(S)

Input sequence S of b-bit integers

Output sequence S sorted replace each element x of S with the item (0, x)

for i \leftarrow 0 to b - 1

replace the key k of each item (k, x) of S with bit x_i of x

bucketSort(S, 2)
```

## Example

Sorting a sequence of 4-bit integers

