2021

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

- Nondeterministic Pushdown Automata
- Pushdown Automata and Context-Free Languages
- Deterministic Pushdown Automata and Deterministic CFLs

Formal Definition

Non-Deterministic Pushdown Automaton (NPDA)

Transition Function

The States

Input symbol

Pop symbol

Push symbol

$$\delta(q_1, a, b) = \{(q_2, c)\}$$

NPDA: Non-Deterministic PDA

Example: $L = \{a^n b^n : n \ge 0\}$

Execution Example:

Time 0

Input

 \overline{z}

Stack

current a, λ, a b, a, λ state $\lambda, \lambda, \lambda$ q_1 b, a, λ q_2 λ, z, z q_3

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

Instantaneous Description (ID)

NPDAs Accept Context-Free Languages

Theorem:

Context-Free Languages
Languages
(Grammars)

Languages
Accepted by
NPDAs

Proof - Step 1:

Theorem 7.1

Convert any context-free grammar G to an NPDA M with: L(G) = L(M)

Proof - Step 2:

Theorem 7.2

Convert any NPDA M to a context-free grammar G with: L(G) = L(M)

Proof - step 1

Converting Context-Free Grammars to NPDAs

We will convert any context-free grammar G

to an NPDA automaton M

Such that:

M simulates leftmost derivations of G

Assume G in Greibach normal form

Leftmost derivation

M: Simulation of derivation

Input

Leftmost derivation

$$G$$
:

$$S \Rightarrow \cdots \Rightarrow \sigma_1 \sigma_2 \cdots \sigma_n$$
 string of terminals

M: Simulation of derivation

Stack

Input

Z

Example 7.6

 $S \rightarrow aSA \mid a$ **Greibach Normal Form** $S \rightarrow aSbb \mid a$ $A \rightarrow bB$ a, S, SA $B \rightarrow b$ S a, S, λ b, A, BStack b, B, λ λ, z, z λ, λ, S

Example 7.7

$$S \rightarrow aA$$

$$A \rightarrow aABC \mid bB \mid a$$

$$a, A, \lambda$$

$$B \rightarrow b$$

$$C \rightarrow c$$

$$b, B, \lambda$$

$$\lambda, z, z$$

Yet another approach...

An example grammar:
$$S \to aSTb$$
 $S \to b$ $T \to Ta$

$$T \rightarrow \lambda$$

What is the equivalent NPDA?

Grammar:

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

A leftmost derivation:

$$S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$$

$S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$

Grammar:

NPDA:

$$S \to aSTb \qquad \lambda, S, aSTb$$

$$S \to b \qquad \lambda, S, b$$

$$T \to Ta \qquad \lambda, T, Ta \qquad a, a, \lambda$$

$$T \to \lambda \qquad \lambda, T, \lambda \qquad b, b, \lambda$$

$$T \to \lambda \qquad \lambda, T, \lambda \qquad \lambda, T, \lambda$$

S

 $S \Rightarrow aSTb$

 \boldsymbol{a}

Input

b \boldsymbol{a} \boldsymbol{a} S

h

Z

Time 1

 λ , S, aSTb

 λ, S, b

 λ, T, Ta

 λ, T, λ

 a, a, λ b, b, λ

Stack

 λ, λ, S

 λ , z, z

$$S \Rightarrow aSTb$$

Input

Z

Time 2

$$\lambda$$
, S, aSTb

 (a, a, λ) Stack

$$\lambda, S, b$$

$$\lambda, T, Ta$$

$$\lambda, T, \lambda$$

 b, b, λ

 $S \Rightarrow aSTb \Rightarrow abTb$

Input

h

Time 3

$$\lambda, S, aSTb$$

 λ, S, b

 λ, T, Ta

 λ, T, λ

 a, a, λ b, b, λ

Stack

 λ, λ, S

 λ, z, z

 $S \Rightarrow aSTb \Rightarrow abTb$

Input

Time 4

$$\lambda$$
, S, aSTb

$$\lambda, S, b$$

$$\lambda$$
, T , Ta

$$\lambda, T, \lambda$$

Stack

 λ, λ, S

 a, a, λ

 b, b, λ

$$S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$$

Input

 \boldsymbol{a}

h

Stack

$$\lambda$$
, S , b

 λ , S, aSTb

 a, a, λ b, b, λ

$$\lambda, T, \lambda$$

 λ, T, Ta

 $\lambda, \underline{z, z}$

$S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$

 $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$

Constructing NPDA M from grammar G:

In general:

Given any CFG G

We can construct an NPDA $\,M\,$

With
$$L(G) = L(M)$$

CFG G generates string w

if and only if

NPDA M accepts w

$$L(G) = L(M)$$

Therefore:

For any context-free language there is an NPDA that accepts the same language

Context-Free Languages Accepted by NPDAs

Proof - step 2

Converting
NPDAs
to
Context-Free Grammars

For any NPDA M

we will construct

a context-free grammar G with

$$L(M) = L(G)$$

Intuition: The grammar simulates the moves of machine

A derivation in Grammar G:

terminals variables
$$S \Rightarrow \cdots \Rightarrow abc \dots ABC \dots \Rightarrow abc \dots$$

Processed input

Stack contents

Current configuration in NPDA M

Some Necessary Modifications

Modify (if necessary) the NPDA so that:

- 1) It has a single final state and empties the stack when it accepts a string
- 2) Has transitions in a special form

1) Modify the NPDA so that it empties the stack and has a unique final state

2) modify the NPDA so that transitions have the following forms:

$$(q_i)$$
 a, A, BC (q_j)

Each move either increases or decreases the stack content by a single symbol

Convert:

Convert:

Convert:

$$|y| \ge 2$$

Convert recursively

Example of an NPDA in correct form:

$$L(M) = \{w: n_a = n_b\}$$

z:initial stack symbol

each variable is of the form $(q_i A q_i)$

$$(q_i A q_i) \stackrel{*}{\Rightarrow} v$$

corresponding move in npda:

- erasing A from the stack
- reading v
- going from state qi to state qi

The Grammar Construction

In grammar G: Stack symbol Variables: (q_iAq_j) states

Terminals: Input symbols of NPDA For each transition

$$q_i$$
 a, A, λ q_j

We add production

$$(q_i A q_j) \to a$$

For each transition

$$q_i$$
 a, A, BC q_j

We add productions

$$(q_i A q_k) \rightarrow a(q_j B q_l)(q_l C q_k)$$

for all possible states q_k, q_l in the automaton

Stack bottom symbol

Example 7.8

Consider the NPDA with transitions

$$\delta(q_0, a, z) = \{(q_0, Az)\}$$

$$\delta(q_0, a, A) = \{(q_0, A)\}$$

$$\delta(q_0, b, A) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}$$

$$\delta(q_0, a, z) = \{(q_0, Az)\}\$$

$$\delta(q_3, \lambda, z) = \{(q_0, Az)\}\$$

$$\delta(q_0, a, A) = \{(q_3, \lambda)\}\$$

$$\delta(q_0, b, A) = \{(q_1, \lambda)\}\$$

$$\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}\$$

Example 7.8

$$\delta(q_0, a, z) = \{(q_0, Az)\}$$
 $\delta(q_3, \lambda, z) = \{(q_0, Az)\}$
 $\delta(q_0, a, A) = \{(q_3, \lambda)\}$
 $\delta(q_0, b, A) = \{(q_1, \lambda)\}$
 $\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}$

$$(q_0 A q_3) \rightarrow a$$

$$(q_0 A q_1) \rightarrow b$$

$$(q_1 z q_2) \rightarrow \lambda$$

$$(q_{0}zq_{0}) \rightarrow a(q_{0}Aq_{0})(q_{0}zq_{0}) | a(q_{0}Aq_{1})(q_{1}zq_{0})$$

$$a(q_{0}Aq_{2})(q_{2}zq_{0}) | a(q_{0}Aq_{3})(q_{3}zq_{0})$$

$$(q_{0}zq_{1}) \rightarrow a(q_{0}Aq_{0})(q_{0}zq_{1}) | a(q_{0}Aq_{1})(q_{1}zq_{1})$$

$$a(q_{0}Aq_{2})(q_{2}zq_{1}) | a(q_{0}Aq_{3})(q_{3}zq_{1})$$

$$(q_{0}zq_{2}) \rightarrow a(q_{0}Aq_{0})(q_{0}zq_{2}) | a(q_{0}Aq_{1})(q_{1}zq_{2})$$

$$a(q_{0}Aq_{2})(q_{2}zq_{2}) | a(q_{0}Aq_{3})(q_{3}zq_{2})$$

$$(q_{0}zq_{3}) \rightarrow a(q_{0}Aq_{0})(q_{0}zq_{3}) | a(q_{0}Aq_{1})(q_{1}zq_{3})$$

$$a(q_{0}Aq_{2})(q_{2}zq_{3}) | a(q_{0}Aq_{3})(q_{3}zq_{3})$$

 (q_0Aq_0) and (q_0Aq_2) do not occur on the left side of any production must be useless

no path from q_1 to q_0 , from q_1 to q_1 , from q_1 to q_3 , and from q_2 to q_2 ,

$$(q_{3}zq_{0}) \rightarrow (q_{0}Aq_{0})(q_{0}zq_{0}) | (q_{0}Aq_{1})(q_{1}zq_{0})$$

$$(q_{0}Aq_{2})(q_{2}zq_{0}) | (q_{0}Aq_{3})(q_{3}zq_{0})$$

$$(q_{3}zq_{1}) \rightarrow (q_{0}Aq_{0})(q_{0}zq_{1}) | (q_{0}Aq_{1})(q_{1}zq_{1})$$

$$(q_{0}Aq_{2})(q_{2}zq_{1}) | (q_{0}Aq_{3})(q_{3}zq_{1})$$

$$(q_{3}zq_{2}) \rightarrow (q_{0}Aq_{0})(q_{0}zq_{2}) | (q_{0}Aq_{1})(q_{1}zq_{2})$$

$$(q_{0}Aq_{2})(q_{2}zq_{2}) | (q_{0}Aq_{3})(q_{3}zq_{2})$$

$$(q_{3}zq_{3}) \rightarrow (q_{0}Aq_{0})(q_{0}zq_{3}) | (q_{0}Aq_{1})(q_{1}zq_{3})$$

$$(q_{0}Aq_{2})(q_{2}zq_{3}) | (q_{0}Aq_{3})(q_{3}zq_{3})$$

 (q_0Aq_0) and (q_0Aq_2) do not occur on the left side of any production must be useless

no path from q_1 to q_0 , from q_1 to q_1 , from q_1 to q_3 , and from q_2 to q_2 ,

The final result

with start variable $(q_0 z q_2)$

```
(q_0Aq_3) \rightarrow a
(q_0Aq_1) \rightarrow b
(q_1 z q_2) \rightarrow \lambda
(q_0zq_0) \rightarrow a(q_0Aq_3)(q_3zq_0)
(q_0 z q_1) \to a(q_0 A q_3)(q_3 z q_1)
(q_0zq_2) \rightarrow a(q_0Aq_1)(q_1zq_2) \mid a(q_0Aq_3)(q_3zq_2)
(q_0 z q_3) \to a(q_0 A q_3)(q_3 z q_3)
(q_3 z q_0) \to (q_0 A q_3)(q_3 z q_0)
(q_3zq_1) \to (q_0Aq_3)(q_3zq_1)
(q_3zq_2) \rightarrow (q_0Aq_1)(q_1zq_2) \mid (q_0Aq_3)(q_3zq_2)
(q_3 z q_3) \to (q_0 A q_3)(q_3 z q_3)
```

In general:

 $(q_i A q_j) \Rightarrow w$

if and only if

the NPDA goes from q_i to q_j by reading string w and the stack doesn't change below A and then A is removed from stack

Therefore:

$$(q_0 z q_f) \stackrel{*}{\Longrightarrow} w$$

if and only if

W is accepted by the NPDA

Therefore:

For any NPDA there is a context-free grammar that accepts the same language

Context-Free Languages
Languages
(Grammars)

Languages
Accepted by
NPDAs

Outline

- Nondeterministic Pushdown Automata
- Pushdown Automata and Context-Free Languages
- Deterministic Pushdown Automata and Deterministic CFLs

Deterministic PDA: DPDA

Allowed transitions:

$$(q_1)$$
 λ, b, w q_2

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non deterministic choices)

Deterministic PDA

- δ(q, a, b) contains at most one element
- If $\delta(q, \lambda, b)$ is not empty, then $\delta(q, c, b)$ must be empty for every $c \in \Sigma$

- λ transition is possible
- Some transitions may be to the empty set

At all times at most one possible move

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

The language $L(M) = \{a^n b^n : n \ge 0\}$

is deterministic context-free

Definition:

A language L is deterministic context-free if there exists some DPDA that accepts it

Example of Non-DPDA (NPDA)

$$L(M) = \{ww^R\}$$

Not allowed in DPDAs

NPDAs

Have More Power than

DPDAs

There are context-free languages that are not deterministic

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
(NPDA)

Since every DPDA is also an NPDA

We will actually show:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
(NPDA)

We will show that there exists a context-free language \boldsymbol{L} which is not accepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

- ullet L is context-free
- L is not deterministic context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda$$

$$\{a^nb^{2n}\}$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts $\,L\,$)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA M that accepts L

DPDA M with $L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

DPDA
$$M$$
 with $L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

Such a path exists because of the determinism

Fact 1:

The language is not context-free

$$\{a^nb^nc^n\}$$

(we will prove this using pumping lemma for context-free languages)

Fact 2:

The language is not context-free

$$L \cup \{a^n b^n c^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a NPDA that accepts:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

The NPDA that accepts $L \cup \{a^n b^n c^n\}$

Connect final states of M' with final states of M

Since $L \cup \{a^nb^nc^n\}$ is accepted by a NPDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

Not deterministic context free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

There is no DPDA that accepts it

End of Proof