AMPLIACIÓN DE CÁLCULO Hoja 5 Análisis de Fourier

- **1.-** Sea $f \in L_1(\mathbb{R})$, f par y $f(t) \in \mathbb{R}$ para todo $t \in \mathbb{R}$. Prueba que la transformada de Fourier de la función f, $F[f](\lambda)$, es real. Si si f es impar, comprueba que $F[f](\lambda)$ es imaginario (e.d. ReF[f](λ) = 0).
 - 2.- Calcular las transformadas de Fourier de las siguientes funciones:

a)
$$\chi_{[-\delta,\delta]}(x) = \begin{cases} 1 & \text{si } x \in [-\delta,\delta] \\ 0 & \text{en ot ro caso} \end{cases}$$
 b) $f(x) = \cos(\alpha x)\chi_{[-\pi,\pi]}(x)$

c)
$$f(x) = \cos(2\pi\alpha x)\chi_{[-\delta,\delta]}(x) \quad \text{d)} \ f(x) = \left\{ \begin{array}{ll} x + \pi & \text{si } x \in \ [-\pi,0] \\ \pi - x & \text{si } x \in \ (0,\pi] \\ 0 & \text{en otro caso} \end{array} \right.$$

- **3.-** Sea f_n la función del problema anterior, apartado c), con $\delta_n = n/\alpha$. Dibuja la gráfica de F[fn] y después calcula el límite puntual de la sucesión de functiones (f_n) .
- **4.-** Sea h(t) = $\begin{cases} Ae^{-\Omega t} & \text{si } t \geq 0 \\ 0 & \text{si } t < 0 \end{cases}$ donde A y α son parámetros positivos. Prueba que $F[h](\lambda) = \frac{A}{\alpha + i\lambda}$ (Filtro de Butterworth). Diseña un circuito RC de modo que su función de transferencia sea precisamente $\frac{3}{4+i\lambda}$.
- 5.- Prueba en cada caso que las funciones f y g son las mismas, aunque se escriban de forma distinta:

a)
$$f(x) = sen(x)\chi_{[-\pi,\pi]}(x)$$
 y $f(x) = \frac{2}{\pi} \int_{0}^{\infty} \frac{sens\pi}{1-s^2} sensxds$
b) $g(x) = sen(x)\chi_{[-\pi/2,\pi/2]}(x)$ y $g(x) = \frac{2}{\pi} \int_{0}^{\infty} \frac{scos(s\pi/2)}{1-s^2} sensxds$

b)
$$g(x) = sen(x)\chi_{[-\pi/2,\pi/2]}(x)$$
 $y = g(x) = \frac{2}{\pi} \int_{0}^{\infty} \frac{scos(s\pi/2)}{1-s^2} sensxds$

- **6.-** Sean $f,g \in L_1(\mathbb{R})$ y $b \in \mathbb{C}$. Prueba las siguientes propiedades de la transformada de Fourier y de su inversa.
- a) $F[f + g](\lambda) = F[f](\lambda) + F[g](\lambda)$ b) $F[bf](\lambda) = bF[f](\lambda)$
- c) $F[f(x-b)](\lambda) = e^{-ib\lambda}F[f](\lambda)$ d) $F[f](\lambda) = \overline{F[f](-\lambda)}$
- e) Si b > 0, $F[f(bx)](\lambda) = \frac{1}{b}F[f](\lambda/b)$.

Y de su inversa:

a')
$$F^{-1}[f + g](x) = F^{-1}[f](x) + F^{-1}[g](x)$$
 b') $F^{-1}[bf](x) = bF^{-1}[f](x)$

c')
$$F^{-1}[f(\lambda-b)](x) = e^{ibx}F^{-1}[f](x)$$

d') Si f'
$$\in$$
 L₁(\mathbb{R}) y lim _{$x \to \pm \infty$} $f(\lambda) = 0$, entonces $F^{-1}[f'](x) = -\imath x F^{-1}[f](x)$

7.- Prueba las siguientes propiedades de F y F⁻¹.

a)
$$F^{-1}[f](x) = \frac{1}{2\pi}F[f](-x)$$
 b) $F^{-1}[f*g](x) = 2\pi F^{-1}[f](x)F^{-1}[g](x)$

c)
$$F[fg](\lambda) = \frac{1}{2\pi} F[f] * F[g](\lambda)$$

d)
$$\int_{-\infty}^{\infty} f(t)F[g](ti)dt = \int_{-\infty}^{\infty} F[f](ti)g(t)dt$$

8.- Si f,g,h \in L₁(\mathbb{R}), comprobar que:

a)
$$f*(g + h)(x) = f*g(x) + f*h(x)$$
 b) $f*g(x) = g*f(x)$

- c) Si $g_n \longrightarrow g$ en la norma de $L_1(\mathbb{R})$, entonces $f * g_n$ converge en $L_1(\mathbb{R})$ a f * g.
- 9.- Sean $\delta_n(x)=2n\chi_{[-1/n,1/n]}(x)$ y $h_n(x)=f\star\delta_n(x),$ con $n\in\mathbb{N}.$ Calcula los límites puntuales de las sucesiones de funciones: (δ_n) y (h_n) . Comprueba que la sucesión (δ_n) no es una sucesión de Cauchy en $L_1(\mathbb{R})$.
- **10.-** Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ una señal, la cuál filtramos con el filtro ideal paso bajo $\chi_{r-\delta,\delta_l}(x)$ ¿Quién es la componente en frecuencia f_δ de f acotada en la banda $[-\delta,\delta]$. (**Indicación:** $f_{\delta}(t) = (f*g)(t)$ donde g es el filtro en el dominio del tiempo).

11.- Sea
$$f(t) = e^{-t}\chi_{(0,\infty)}(t)$$

- $\begin{array}{rcl} \textbf{11.-} \ \ \text{Sea} \ f(t) &=& e^{-t}\chi_{[0,\infty)}(t). \\ \text{a) Comprueba que } f(at)*f(bt) &=& \frac{f(at) f(bt)}{b\text{-}a}, \quad a,b \in \ \mathbb{R}. \end{array}$
- b) Deduce que f(at)*f(at) = tf(at)
- **12.-** Si F[f](λ) = 0 si $\lambda \notin [310^2,310^4]$ ¿a que tasa hay que muestrear f para discretizarla sin perder información? ¿Y si pensamos aplicar el algoritmo FFT?
- **13.-** (Algoritmo F.F.T.) Sea $P(x) = \sum_{n=0}^{\infty} a_n x^n$ un polinomio con k par y sea w una raíz k-ésima de la unidad. Probar que $P(w) = P_1(w^2) + wP_2(w^2)$ donde P_1 y P_2 son polinomios de grado (k/2)-1. ¿Es w² una k/2-ésima raíz de la unidad?