

TRABALHO Nº 2 Retificação controlada de meia onda

V2.0, novembro de 2020

Preparação do trabalho

Considere R = 300 Ω , L = 0,8 H e $v_s(\theta)=120\sqrt{2}\sin(\theta)$ com $\theta=2\pi50t$. O tirístor é disparado com $\alpha=\pi/4$ rad.

- Apresente a expressão que descreve a evolução da corrente no circuito usando os valores propostos. Calcule o ângulo de condução (γ) do tirístor.
- Calcule o instante em que o tiristor sai de condução, tomando como referência a passagem por zero da tensão de entrada;
- 3) Calcule o valor médio da tensão de saída.

Neste trabalho pretende-se explorar os conceitos associados a um sistema de controlo de fase e o respetivo modo de comando de um tiristor. No contexto das montagens retificadoras controladas, o controlo de fase baseia-se na comparação de uma tensão de controlo (*Vc*) com uma onda em dente de serra (*Vserra*) sincronizada com a tensão da rede, tal como ilustrado na Figura 1.

O instante correspondente à interseção de Vc com Vserra determina o momento em que o tiristor é disparado através de um impulso de corrente aplicado ao terminal de porta do tiristor (pela aplicação de um impulso de tensão entre a porta e o cátodo). O valor da fase no momento do disparo define aquilo que se designa por **ângulo de disparo** (α) do tiristor.

Note-se (Figura 1) que o ângulo de disparo está sincronizado com a arcada positiva da tensão de alimentação do circuito, que é a **tensão de sincronismo**. Em montagens com vários tiristores, o ângulo de disparo de alguns tiristores poderá estar sincronizado com a arcada negativa de uma dada tensão de sincronismo (montagens com um número par de fases) ou com diferentes tensões de sincronismo (montagens com um número ímpar de fases).

Figura 1 - Controlo de fase

Parte I - Simulação

1) Implemente o circuito de potência e de controlo do retificador como ilustrado na Figura 2. Neste circuito está implementada a lógica de controlo explicada anteriormente (Figura 1). Considere uma resistência de condução do tirístor Ron = $1 \text{m}\Omega$.

Figura 2 – Circuito de controlo de fase num retificador monofásico de meia onda

2) Os resultados esperados estão ilustrados na Figura 3. Confirme que o ângulo de disparo α foi ajustado para 45°.

Figura 3 – Resultados de simulação

3) Repare no sinal de comando do tirístor à saída do comparador. Ao contrário de uma implementação real, este sinal não é impulsional. Para retificadores com mais do que um tirístor o simulador possuí dois elementos específicos para a geração de impulsos de disparo: "2-pulse generator" e "6-pulse generator".

Rui Chibante ISEP/DEE/ELTRP 2/7

- 4) Coloque um condensador de 0,5 nF em paralelo com o tirístor no sentido de simular a natureza capacitiva das junções do tiristor. Em resultado disso, verifique o aparecimento de oscilações na tensão de saída durante a saída de condução. Este fenómeno será visível na parte experimental em laboratório.
- 5) Coloque um díodo de roda livre em anti-paralelo com a carga, como ilustrado na Figura 4. Considere uma resistência de condução do díodo Ron = $1 \text{m}\Omega$. Repare que a entrada em condução do díodo a meio do ciclo, altura em fica diretamente polarizado, impõe tensão nula na carga, eliminando assim as

oscilações anteriormente verificadas.

- 6) Visualize e registe:
 - a) As formas de onda de $v_o(t)$, $i_o(t)$, $v_R(t)$, $v_L(t)$, e da tensão ânodo-cátodo do tiristor $v_T(t)$;
 - b) O tempo de condução do tiristor;
 - c) O valor médio e eficaz da tensão na carga;
 - d) Calcule analiticamente o solicitado nas alíneas b) e c).

Figura 4 – Retificador monofásico de meia onda com díodo de roda livre

Tempo de condução do tiristor: _____

v_o	Valor médio	Valor eficaz

TRABALHO Nº 2 Retificação controlada de meia onda

Parte II - Experiência

Nas bancadas do laboratório o circuito que gera os impulsos de disparo dos tirístores está implementado no módulo MGI120 (Figura 5). Este módulo, que se baseia no circuito integrado TCA785, é composto por 3 blocos idênticos constituídos por:

- a) Uma entrada (V1 a V6) para a tensão com a qual se pretende sincronizar os impulsos (tensão de sincronismo);
- b) Duas saídas (I1 a I6), que geram uma sequência de impulsos desde o ponto de ativação até ao final do semiciclo correspondente. A saída amarela gera uma sequência de impulsos sincronizada com o início do semiciclo positivo da tensão de sincronismo. A saída azul gera uma sequência de impulsos sincronizada com o início do semiciclo negativo da tensão de sincronismo;
- c) Um potenciómetro (botão vermelho) que permite variar o **ângulo de disparo** dos tiristores através do ajuste do nível da tensão Vc entre 0 e 10 V.

Figura 5 - Módulo MGI120

- 1) Efetue as ligações de acordo com a Figura 5, na qual se usa uma das fases (L1) como tensão de sincronismo.
- 2) Ligue o disjuntor do módulo ACM400. Ligue a alimentação (+15/-15 V) do circuito de comando no módulo ALI700.
- 3) Estabeleça as ligações referentes à Figura 6 usando para a alimentação a mesma fase definida como tensão de sincronismo (L1). Ajuste a carga para R = 300 Ω e L = 0,8 H.
- 4) Os sinais de comando do módulo de tirístores (RTC125) são todos independentes, uma vez que as entradas I1 a I6 estão ligadas internamente a transformadores de impulsos, tal como ilustrado no módulo RTC125. Ligue a saída I1 do módulo MGI120 à entrada I1 do módulo RTC125.

Figura 6 - Retificação controlada de meia onda

5) Ligue a alimentação do circuito de comando e de seguida a alimentação do circuito de potência. Varie o ângulo de disparo do tirístor e verifique o correto funcionamento da montagem.

- 6) Regule o potenciómetro de maneira a obter Vc = 2,5 V (use o multímetro). Confirme que o ângulo de disparo está ajustado para 45°.
- 7) Insira um díodo de roda livre conforme a Figura 7. Visualize e registe:
 - a) As formas de onda de $v_s(t)$, $v_o(t)$, $i_o(t)$, $v_L(t)$, e da tensão ânodocátodo do tiristor $v_T(t)$, durante <u>1 ciclo da rede</u>. Como habitual, faça as medições aos pares para garantir a correta correspondência temporal;
 - b) O tempo de condução do tiristor;
 - c) O valor médio e eficaz da tensão na carga;
 - d) O valor médio da corrente na carga;

Figura 7 – Retificação controlada de meia onda com díodo de roda livre

TRABALHO Nº 2

Retificação controlada de meia onda

Parte II - Experiência

Turma:	
Número:	
Nome:	_

			1 T	7	7					
		İ								
 	 		++				 			 -
 	† <u> </u>		††				 			
	<u> </u>									
			1 1	- 1	- 1					
 	ļl		ļļ				 			
 	 		+				 			 -
				- 1						
 	tt		 				 		l	
 	†		†				 			
	T									
 	ļl						 			
 	 		+				 			 -
 	+		+				 			
 	† <u> </u>		† <u>†</u>				 			
			1 1							
	1 1									
<u> </u>										

			†
 		 ļl	ļ
			†
 		ļ	ļ
			1

	Mínimo	Máximo
v_s		
v_o		
v_L		
v_T		
i_o		

Tempo de condução do tiristor:

TRABALHO Nº 2

Retificação controlada de meia onda

Parte II – Experiência

Turma:	
Número:	
Nome:	

Experiência (continuação)

 	 ļ	
 	 ļ	ļļ

	v_o	$i_{ m o}$
Valor médio		
V _{AC_rms}		
Valor eficaz (verdadeiro)		

Registo de ocorrências do professor: