INEAR ALGEBRA

FIRST EDITION

ANTON SUDIRMAN

LINEAR ALGEBRA

FIRST EDITION

Anton Sudirman, dkk

Daftar Isi

1	Ruang Vektor			
	1.1	Lapangan	5	
	1.2	Ruang Vektor	8	
	1.3	Subruang	10	
	1.4	Kombinasi Linier dan Sistem Persamaan Linier	11	
	1.5	Bebas Linier dan Bergantung Linier	13	
	1.6	Basis dan Dimensi	15	
	1.7	Subhimpunan Bebas Linier Maksimal	19	
2	Trai	nsformasi Linier	20	
	2.1	Transformasi Linier, Kernel dan Peta	20	
	2.2	Matriks Representasi dari Pemetaan Linier	27	
	2.3	Komposisi dari Pemetaan Linier	29	
	2.4	Transformasi Balikan dan Isomorfisma	38	
	2.5	Matriks Penyajian dan Perubahan Basis	53	
	2.5			
3	Mat		54	

5	Diag	gonalisasi	57	
	5.1	Nilai Eigen dan Vektor Eigen	57	
	5.2	Diagonalisasi	59	
6	Rua	ng Hasil Kali Dalam	69	
	6.1	Hasil Kali Dalam dan Norm	69	
	6.2	Proses Gram-Schmidt dan Komplemen Ortogonal	73	
	6.3	Adjoin dari Operator Linier	79	
	6.4	Operator Normal dan Self-Adjoin	85	
	6.5	Operator Uniter dan Operator Ortogonal	91	
	6.6	Proyeksi Ortogonal dan Teorema Spektral	95	
Daftar Pustaka				

Bab 1

Ruang Vektor

1.1 Lapangan

Definisi. Lapangan adalah suatu himpunan tak kosong F yang dilengkapi dengan dua operasi, yaitu penjumlahan (+) dan perkalian (\bullet) , $\forall x,y \in F$, terdapat tunggal x+y dan $x\cdot y$ di F, dan $\forall a,b,c\in F$, berlaku :

(a)
$$a + b = b + a \operatorname{dan} a \cdot b = b \cdot a$$

(sifat komutatif penjumlahan dan perkalian)

(b)
$$(a + b) + c = a + (b + c) \ dan \ (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

(sifat asosiatif penjumlahan dan perkalian)

(c) Terdapat $0 \ (nol)$ dan $1 \ (satu)$ di F sedemikian sehingga

$$0 + a = a$$
 and $1 \cdot a = a$

(sifat identitas penjumlahan dan perkalian)

(d) Untuk setiap $a \in F$ dan untuk setiap $b \neq 0 \in F$, terdapat tunggal c dan d di F sedemikian sehingga

$$a+c=0$$
 dan $b \cdot d=1$

(sifat invers penjumlahan dan perkalian)

(e)
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

(sifat distributif penjumlahan dan perkalian)

Elemen x + y dan $x \cdot y$ disebut penjumlahan dan perkalian dari x dan y.

Elemen 0 (nol) dan 1 (satu) pada sifat (c) disebut elemen identitas untuk penjumlahan dan perkalian.

Elemen c dan d pada sifat (d) disebut invers penjumlahan untuk a dan invers perkalian untuk b, dimana c=-a dan $d=\frac{1}{b}$.

Contoh 1. Himpunan bilangan real $\mathbb R$ adalah lapangan.

Contoh 2. Himpunan bilangan rasional $\mathbb{Q}=\left\{\frac{p}{q}:p,q\in\mathbb{Z},q\neq0\right\}$ adalah lapangan.

Contoh 3. Himpunan $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \subset \mathbb{R}$ merupakan lapangan dengan operasi yang sama dengan \mathbb{R} . Himpunan tersebut merupakan subhimpunan dari suatu lapangan \mathbb{R} , yang tertutup terhadap penjumlahan, perkalian dan balikan.

Contoh 4. Himpunan bilangan bulat \mathbb{Z} adalah bukan lapangan.

Contoh 5. Himpunan bilangan bulat dengan modulo p, dengan p prima, dilambangkan dengan \mathbb{Z}_p adalah lapangan, contoh : \mathbb{Z}_2 .

Misalkan F suatu lapangan. Suatu unsur dari F^p dinamakan **p-vektor** atau **vektor**.

Teorema A (Hukum Pembatalan). Untuk sembarang unsur $a, b, c \in F$, berlaku pernyataan berikut.

- (a) Jika a + b = c + b, maka a = c.
- (b) Jika $a \cdot b = c \cdot b$, maka a = c.

Bukti. (a) Misalkan a+b=c+b. Tambahkan kedua ruas dengan -b, sehingga kita dapatkan

$$(a+b) + (-b) = (c+b) + (-b).$$

Dengan menggunakan sifat asosiatif dan sifat invers penjumlahan, kita peroleh

$$a + 0 = c + 0,$$

dan berdasarkan sifat unsur identitas pada penjumlahan, kita sampai pada kesimpulan bahwa a=c.

(b) Menurut sifat (d) lapangan, jika $b \neq 0$ maka terdapat d sedemikian sehingga $b \cdot d = 1$ artinya $d = \frac{1}{h}$.

Kalikan kedua ruas dari persamaan $a \cdot b = c \cdot d$ dengan d diperoleh $(a \cdot b) \cdot d = (c \cdot b) \cdot d$. Pandang

$$(a \cdot b) \cdot d = a \cdot (b \cdot d) = a \cdot 1 = a \ \text{dan} \ (c \cdot b) \cdot d = c \cdot (b \cdot d) = c \cdot 1 = c.$$

Jadi,
$$a = c$$
.

Corollary 1. Unsur $0 \ (nol) \ dan \ 1 \ (satu)$ pada sifat (c) lapangan, dan unsur c dan d pada sifat (d) lapangan, adalah tunggal.

Bukti. Misalkan $0' \in F$ memenuhi 0' + a = a untuk setiap $a \in F$. Karena 0 + a = a untuk setiap $a \in F$, kita peroleh 0' + a = 0 + a untuk setiap $a \in F$. Karena itu, 0' = 0 berdasarkan Teorema A. Serupa dengan itu untuk unsur yang lainnya.

Teorema B. Misalkan a dan b unsur sembarang di F. Maka benar untuk setiap pernyataan berikut.

- (a) $a \cdot 0 = 0$.
- (b) $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$.
- $(c) (-a) \cdot (-b) = a \cdot b.$

Bukti. (a) Karena 0+0=0, maka

$$0 + a \cdot 0 = a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0.$$

Karena itu, $0 = a \cdot 0$ berdasarkan Teorema A.

(b) Berdasarkan definisi, $-(a\cdot b)$ unsur tunggal di F dengan sifat $a\cdot b+[-(a\cdot b)]=0$. Perhatikan bahwa $-a\in F$ juga tunggal sedemikian sehingga a+(-a)=0, maka

$$a \cdot b + (-a) \cdot b = [a + (-a)] \cdot b = 0 \cdot b = b \cdot 0 = 0$$

berdasarkan sifat (e) lapangan dan (a). Karena itu, $(-a)\cdot b=-(a\cdot b)$. Serupa dengan itu untuk $a\cdot (-b)=-(a\cdot b)$.

(c) Berdasarkan (b), kita peroleh

$$(-a) \cdot (-b) = -[a \cdot (-b)] = -[-(a \cdot b)] = a \cdot b.$$

Corollary 1. Identitas penjumlahan pada lapangan tidak memiliki invers perkalian.

Bukti. Latihan

1.2 Ruang Vektor

Definisi. Ruang vektor V atas lapangan F adalah himpunan V yang unsur-unsurnya dinamakan vektor, dilengkapi dengan vektor nol, dan dua operasi yaitu penjumlahan vektor dan perkalian skalar yang memenuhi untuk setiap $x,y\in V$ terdapat tunggal $x+y\in V$ dan untuk setiap $a\in F$ terdapat tunggal $ax\in V$ sedemikian sehingga berlaku :

- 1. $\forall x, y \in V, x + y = y + x$ (komutatif).
- 2. $\forall x, y, z \in V, (x + y) + z = x + (y + z)$ (asosiatif).
- 3. Terdapat vektor $0 \in V$ sedemikian sehingga $x + 0 = x, \forall x \in V$.
- 4. $\forall x \in V$ terdapat $y \in V$ sedemikian sehingga x + y = 0.
- 5. $\forall x \in V, 1x = x$.
- 6. $\forall a, b \in F \text{ dan } \forall x, y \in V, (ab)x = a(bx).$
- 7. $\forall a \in F \text{ dan } \forall x, y \in V, a(x+y) = ax + ay$.
- 8. $\forall a, b \in F \text{ dan } \forall x \in V, (a+b)x = ax + bx.$

Teorema 1.1 (Hukum Pembatalan untuk Penjumlahan Vektor). Misalkan V ruang vektor dan $x, y, z \in V$ sedemikian sehingga x + z = y + z, maka x = y.

Bukti. Untuk setiap $z \in V$ terdapat $v \in V$ sedemikian sehingga z + v = 0 (sifat (4) ruang vektor). Maka, menurut sifat (2) dan (3) ruang vektor, kita peroleh

$$x = x + 0$$

$$= x + (z + v)$$

$$= (x + z) + v$$

$$= (y + z) + v$$

$$= y + (z + v)$$

$$= y + 0$$

$$= y.$$

Corollary 1. Misalkan V ruang vektor dan terdapat $0 \in V$ sedemikian sehingga $x + 0 = x, \forall x \in V$ (sifat (3) ruang vektor). Maka, vektor 0 tunggal.

Bukti. Ambil $0_1, 0_2 \in V$. Maka, berdasarkan Teorema 1.1, kita mempunyai $0_1 + x = x = 0_2 + x$ sehingga $0_1 = 0_2$, untuk suatu vektor sembarang $x \in V$.

Corollary 2. Misalkan V ruang vektor dan $\forall x \in V$ terdapat vektor $y \in V$ sedemikian sehingga x + y = 0 (sifat ke-(4) ruang vektor). Maka, vektor y tunggal.

Bukti. Untuk semua $x \in V$, ambil $y_0, y_1 \in V$. Maka, kita peroleh $x + y_0 = 0 = x + y_1$ sehingga $y_0 = y_1$.

Teorema 1.2. Untuk setiap ruang vektor V, berlaku :

- (a) 0x = 0, $\forall x \in V$.
- (b) (-a)x = -(ax) = a(-x), $\forall a \in F \text{ dan } \forall x \in V$.
- (c) a0 = 0, $\forall a \in F$.

Bukti. (a) Perhatikan bahwa 0x + 0x = (0+0)x = 0x = 0x + 0 = 0 + 0x. Jadi, 0x = 0.

(b) Vektor $-(ax) \in V$ adalah tunggal sedemikian sehingga ax + [-(ax)] = 0. Karena itu,

$$ax + (-a)x = [a + (-a)]x = 0x = 0$$

sehingga (-a)x = -(ax). Pada sisi lain, (-1)x = -x, sehingga

$$a(-x) = a[(-1)x] = [a(-1)x] = (-a)x.$$

Jadi, (-a)x = -(ax) = a(-x), $\forall a \in F$ dan $\forall x \in V$.

(c) Perhatikan bahwa 0a+1a=(0+1)a=1a=0+1a sehingga 0a=a0=0. Jadi, a0=0, $\forall a \in F$.

1.3 Subruang

Definisi. Misalkan V ruang vektor atas lapangan F. Maka W disebut **subruang** dari V jika W adalah ruang vektor atas F dengan operasi penjumlahan dan perkalian skalar di V.

Teorema 1.3. Misalkan V ruang vektor dan W subhimpunan dari V. Maka, W merupakan **subruang** dari V jika dan hanya jika memenuhi :

- (a) $0 \in W$ sehingga $W \neq \emptyset$.
- (b) $x + y \in W, \forall x, y \in W$.
- (c) $cx \in W, \forall c \in F \ dan \ \forall x \in W.$

Bukti. (\Rightarrow) Jika W subruang dari V, maka W adalah ruang vektor dengan operasi penjumlahan dan perkalian skalar yang terdefinisi di V, sehingga (b) dan (c) terbukti, dan terdapat vektor $0' \in W$ sedemikian sehingga $x + 0' = x, \forall x \in W$. Tetapi, x + 0 = x dan karena itu 0 = 0' sehingga (a) terbukti.

(\Leftarrow) Jika (a), (b) dan (c) berlaku, maka W subruang dari V jika invers penjumlahan dari setiap vektor di W berlaku di W. Tetapi, jika $x \in W$, maka berdasarkan (c) diperoleh $(-1)x \in W$, dan berdasarkan Teorema 1.2 diperoleh -x = (-1)x. Jadi, W subruang dari V.

Teorema 1.4. Misalkan V ruang vektor. Setiap perpotongan (irisan) subruang dari ruang vektor V adalah subruang dari V.

Bukti. Misalkan $\mathcal C$ himpunan subruang dari V, dan W merupakan perpotongan dari subruang di $\mathcal C$, sehingga setiap subruang memuat vektor nol, $0 \in W$. Ambil $a \in F$ dan $x,y \in W$. Maka, x dan y termuat di setiap subruang di $\mathcal C$. Karena setiap subruang di $\mathcal C$ tertutup terhadap penjumlahan dan perkalian skalar, maka x+y dan ax termuat di setiap subruang di $\mathcal C$. Karena itu, $x+y \in W$ dan $ax \in W$ maka W merupakan subruang dari V berdasarkan Teorema 1.3.

Definisi. Misalkan V ruang vektor. Jika S_1 dan S_2 subhimpunan tak kosong dari V, maka penjumlahan dari S_1 dan S_2 dilambangkan dengan $S_1 + S_2$ adalah himpunan $\{x + y : x \in S_1, y \in S_2\}$.

Definisi. Misalkan V ruang vektor. Maka, V disebut **tambah langsung** dari W_1 dan W_2 jika W_1 dan W_2 subruang dari V sedemikian sehingga

$$W_1 \cap W_2 = \{0\} \ \ \textit{dan} \ \ W_1 + W_2 = V.$$

Kita lambangkan $V=W_1\oplus W_2$ yang artinya V merupakan tambah langsung dari W_1 dan W_2 .

1.4 Kombinasi Linier dan Sistem Persamaan Linier

Definisi. Misalkan V ruang vektor dan S subhimpunan tak kosong dari V. Maka, vektor $v \in V$ disebut **kombinasi linier** dari vektor-vektor di S jika terdapat vektor-vektor berhingga $u_1, u_2, ..., u_n \in S$ dan skalar $a_1, a_2, ..., a_n \in F$ sedemikian sehingga

$$v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n.$$

Dalam hal ini, kita katakan v adalah kombinasi linier dari $u_1, u_2, ..., u_n$, dan $a_1, a_2, ..., a_n$ adalah **koefisien** dari kombinasi linier.

Definisi. Misalkan V ruang vektor dan S subhimpunan tak kosong dari V. Pembangun dari S dilambangkan dengan **span(S)** adalah himpunan semua kombinasi linier dari vektor-vektor di S. Kita definisikan $span(\emptyset) = \{0\}$.

Teorema 1.5. Pembangun setiap subruang S dari ruang vektor V dilambangkan dengan $\operatorname{span}(S)$ adalah subruang dari V. Selain itu, setiap subruang dari V yang memuat S juga memuat $\operatorname{span}(S)$.

Bukti. Jika $S=\emptyset$, maka $span(\emptyset)=\{0\}$ sehingga $\{0\}$ merupakan subruang yang termuat disetiap subruang dari V.

Jika $S \neq \emptyset$, maka S memuat vektor z sehingga 0z = 0 di span(S).

Ambil $x,y\in span(S)$. Maka terdapat vektor $u_1,u_2,...u_m,v_1,v_2,...,v_n\in S$ dan $a_1,a_2,...,a_m,b_1,b_2,...,b_n\in F$ sedemikian sehingga

$$x = a_1 u_1 + a_2 u_2 + \dots + a_m u_m$$

dan

$$y = b_1 v_1 + b_2 v_2 + \dots + b_n v_n$$
.

Maka

$$x + y = a_1u_1 + a_2u_2 + \dots + a_mu_m + b_1v_1 + b_2v_2 + \dots + b_nv_n$$

dan untuk setiap $c \in F$,

$$cx = (ca_1)u_1 + (ca_2)u_2 + \dots + (ca_m)u_m$$

merupakan kombinasi linier dari vektor-vektor di S sehingga $x+y \in span(S)$ dan $cx \in span(S)$. Karena itu, span(S) adalah subruang dari V.

Misalkan W merupakan semua subruang dari V yang memuat S. Jika $w \in span(S)$, maka w dapat ditulis sebagai

$$w = c_1 w_1 + c_2 w_2 + \dots + c_n w_n$$

untuk suatu vektor $w_1,w_2,...,w_n\in S$ dan $c_1,c_2,...,c_n\in F$. Karena $S\subseteq W$, kita mempunyai $w_1,w_2,...,w_n,w_{n+1},...,w_k\in W$.

Karena itu, $w = c_1w_1 + c_2w_2 + \cdots + c_nw_n \in W$.

Karena w vektor sembarang di span(S), maka $w \in W$. Jadi, $span(S) \subseteq W$.

Definisi. Misalkan V ruang vektor dan S subhimpunan dari V. Maka, S **membangun** V jika **span(S)=V**. Dalam hal ini, kita juga katakan bahwa vektor-vektor dari S membangun V.

1.5 Bebas Linier dan Bergantung Linier

Definisi. Misalkan V ruang vektor atas F, dan S subhimpunan dari V. Maka, S disebut bergantung linier jika terdapat vektor-vektor yang berbeda

 $u_1, u_2, ..., u_n \in S$ dan skalar tidak semuanya nol $a_1, a_2, ..., a_n \in F$ sedemikian sehingga

$$a_1u_1 + a_2u_2 + a_nu_n = 0.$$

Dalam hal ini, kita katakan bahwa vektor-vektor di S juga bergantung linier.

Definisi. Misalkan V ruang vektor atas F, dan S subhimpunan dari V. Maka, S **tidak bergantung linier** disebut **bebas linier**. Dalam hal ini, kita katakan bahwa vektor-vektor di S juga bebas linier.

Teorema 1.6. Misalkan V ruang vektor dan $S_1 \subseteq S_2 \subseteq V$. Jika S_1 bergantung linier, maka S_2 bergantung linier.

Bukti. Karena S_1 bergantung linier, kita mempunyai vektor $x_1,...,x_n \in S_1$ dan $x_1,...,x_n \in S_2$ sedemikian sehingga $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ merupakan kombinasi linier di S_1 dengan skalar tidak semua nol $a_i \in F$, $\forall i = 1,2,...n$. Tetapi, kombinasi linier tersebut juga terdapat di S_2 sehingga S_2 bergantung linier.

Corollary 1. Misalkan V ruang vektor dan $S_1 \subseteq S_2 \subseteq V$. Jika S_2 bebas linier, maka S_1 bebas linier.

Bukti. Kontraposisi dari Teorema 1.6.

Teorema 1.7. Misalkan V ruang vektor, S subhimpunan dari V, dan S bebas linier serta $v \in V$, $v \neq 0 \in S$. Maka $S \cup \{v\}$ bergantung linier jika dan hanya jika $v \in span(S)$.

Bukti. (\Rightarrow)Akan dibuktikan bahwa jika $S \cup \{v\}$ bergantung linier maka $v \in span(S)$. Jika $S \cup \{v\}$ bergantung linier, maka terdapat vektor-vektor $u_1, u_2, ..., u_n$ di $S \cup \{v\}$ sedemikian sehingga

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0$$

untuk suatu skalar tak semuanya nol $a_1, a_2, ..., a_n \in F$. Karena S bebas linier, maka salah satu dari u_i , kita katakan u_1 sama dengan v. Karena itu,

$$a_1v + a_2u_2 + \dots + a_nu_n = 0$$

sehingga

$$v = a_1^{-1}(-a_2u_2 - \dots - a_nu_n) = -(a_1^{-1}a_2)u_2 - \dots - (a_1^{-1}a_nu_n).$$

Karena v merupakan kombinasi linier dari $u_2, ..., u_n$ di S, kita peroleh $v \in span(S)$.

(\Leftarrow) Akan dibuktikan bahwa jika $v \in span(S)$ maka $S \cup \{v\}$ bergantung linier.

Ambil $v \in span(S)$. Maka, terdapat vektor-vektor $v_1, v_2, ..., v_m \in S$ dan $b_1, b_2, ..., b_m \in F$ sedemikian sehingga

$$v = b_1 v_1 + b_2 v_2 + \dots + b_m v_m$$

dan diperoleh

$$0 = b_1 v_1 + b_2 v_2 + \dots + b_m v_m + (-1)v.$$

Karena $v \neq v_i$ untuk i=1,2,...,m, koefisien dari v di kombinasi linier tersebut tidak nol, sehingga $\{v_1,v_2,...,v_m,v\}$ bergantung linier. Karena itu, $S \cup \{v\}$ bergantung linier berdasarkan Teorema 1.6.

1.6 Basis dan Dimensi

Definisi. Misalkan V ruang vektor. Maka, suatu β basis dari V adalah subhimpunan dari V yang membangun V. Jika β adalah basis bagi V, kita katakan bahwa vektor-vektor di β membentuk basis bagi V.

Teorema 1.8. Misalkan V ruang vektor dan $\beta = \{u_1, u_2, ..., u_n\}$ subhimpunan dari V. Maka, β adalah basis bagi V jika dan hanya jika untuk setiap $v \in V$ dapat dituliskan secara tunggal sebagai kombinasi linier dari vektor-vektor di β yaitu

$$v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

untuk suatu $a_1, a_2, ..., a_n \in F$.

Bukti. (\Rightarrow) Misalkan β basis dari V.

Ambil $v \in V$, maka $v \in span(\beta)$ karena $span(\beta) = V$.

Karena itu, v adalah kombinasi linier dari vektor-vektor di β .

Tulis

$$v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

dan

$$v = b_1 u_1 + b_2 u_2 + \cdots + b_n u_n$$

sebagai dua representasi dari v, untuk suatu $a_1,...,a_n,b_1,...,b_n\in F.$ Maka,

$$0 = (a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \dots + (a_n - b_n)u_n.$$

Karena β bebas linier, maka

$$a_1 - b_1 = a_2 - b_2 = \dots = a_n - b_n = 0$$

sehingga

$$a_1 = b_1, a_2 = b_2, ..., a_n = b_n.$$

Jadi, v merupakan representasi tunggal kombinasi linier dari vektor-vektor di β .

 (\Leftarrow) Jika setiap vektor di V dapat dituliskan secara tunggal sebagai kombinasi linier dari vektor-vektor di β , ini artinya setiap vektor di V adalah kombinasi linier dari β . Selanjutnya, jika terdapat representasi nontrivial dari 0, maka kita mempunyai dua representasi, kita katakan trivial dan nontrivial dari 0. Ini kontradiksi. Jadi, β adalah basis bagi V.

Teorema 1.9. Misalkan V ruang vektor dan S subhimpunan berhingga dari V. Jika V dibangun oleh S, maka S adalah basis bagi V. Karena itu, V memiliki basis berhingga.

Bukti. Jika $S=\emptyset$ atau $S=\{0\}$, maka $V=\{0\}$ dan \emptyset adalah subhimpunan dari S sehingga menjadi basis bagi V.

Misalkan S memuat vektor tak nol u_1 .

Maka, $\{u_1\}$ himpunan bebas linier.

Ambil vektor $u_2, u_3, ..., u_k \in S$ sedemikian sehingga $\{u_1, u_2, ..., u_k\}$ bebas linier.

Karena S himpunan berhingga, kita harus mendapatkan suatu $\beta = \{u_1, u_2, ..., u_k\}$ himpunan bebas linier dari S.

Kita asumsikan β basis bagi V.

Karena β basis bagi V maka β membangun V.

Akan ditunjukkan bahwa $S \subseteq span(\beta)$.

Ambil $v \in S$.

Jika $v \in \beta$, jelas bahwa $v \in span(\beta)$.

Selain itu, jika $v \notin \beta$, maka $\beta \cup \{v\}$ bergantung linier sehingga haruslah $v \in span(\beta)$ berdasarkan Teorema 1.7.

Karena itu, $S \subseteq span(\beta)$.

Teorema 1.10 (Replacement Theorem). Misalkan V ruang vektor yang dibangun oleh himpunan G yang memuat n vektor, dan misalkan L subhimpunan bebas linier dari V, dan L memuat m vektor. Maka, $m \leq n$ dan terdapat subhimpunan H dari G yang memuat sebanyak (n-m) vektor sedemikian sehingga $L \cup H$ membangun V.

Bukti. Akan digunakan induksi matematika pada m.

Untuk m=0, dalam hal ini $L=\emptyset$ sehingga jelas bahwa H=G.

Misalkan untuk $m \geq 0$ teorema berlaku.

Akan dibuktikan bahwa teorema berlaku untuk m+1.

Misalkan $L=\{v_1,v_2,...,v_{m+1}\}$ subhimpunan bebas linier dari V yang memuat m+1 vektor. Berdasarkan Corollary dari Teorema 1.6, $\{v_1,v_2,...,v_m\}$ bebas linier dan kita gunakan hipotesis induksi untuk mendapatkan $m\leq n$ dan terdapat subhimpunan

 $\{u_1,u_2,...,u_{n-m}\} \text{ dari } G \text{ sedemikian sehingga } \{v_1,v_2,...,v_m\} \cup \{u_1,u_2,...,u_{n-m}\} \text{ membangun } V$

Karena itu, terdapat $a_1,...,a_m,b_1,...,b_{n-m}\in F$ sedemikian sehingga

$$a_1v_1 + a_2v_2 + \dots + a_mv_m + b_1u_1 + b_2u_2 + \dots + b_{n-m}u_{n-m} = v_{m+1}.$$

Perhatikan bahwa $n-m \geq 0$, padahal v_{m+1} kombinasi linier dari $v_1, v_2, ..., v_m$ sehingga berdasarkan Teorema 1.7 kontradiksi dengan asumsi bahwa L bebas linier.

Karena itu, n > m sehingga $n \ge m + 1$.

Selain itu, untuk suatu b_i , kita katakan b_1 tidak nol, kita peroleh kontradiksi yang sama.

Perhatikan bahwa

$$u_1 = (-b_1^{-1}a_1)v_1 + (-b_1^{-1}a_2)v_2 + \cdots + (-b_1^{-1}a_m)v_m + (b_1^{-1})v_{m+1}$$
$$+ (-b_1^{-1}b_2)u_2 + \cdots + (-b_1^{-1}b_{n-m})u_{n-m}.$$

Misalkan $H = \{u_2, u_3, ..., u_{n-m}\}.$

Maka, $u_1 \in span(L \cup H)$ dan karena $v_1, v_2, ..., v_m, u_2, ..., u_{n-m}$ di $span(L \cup H)$, maka

$$v_1, v_2, ..., v_m, u_1, u_2, ..., u_{n-m} \in span(L \cup H).$$

Karena $\{v_1,v_2,...,v_m,u_1,u_2,...,u_{n-m}\}$ membangun V, maka berdasarkan Teorema 1.5 diperoleh $span(L\cup H)=V$.

Karena H subhimpunan dari G yang memuat (n-m)-1=n-(m+1) vektor, maka untuk m+1 teorema berlaku.

Corollary 1. Misalkan V ruang vektor yang memiliki basis berhingga. Maka, setiap basis dari V memuat vektor-vektor yang jumlahnya sama.

Bukti. Misalkan β basis dari V yang memuat n vektor, dan misalkan γ semua basis lainnya dari V.

Jika γ memuat lebih dari n vektor, maka kita dapat memilih suatu subhimpunan S dari γ yang memuat n+1 vektor.

Karena S bebas linier dan β membangun V, berdasarkan Replacement Theorem diperoleh bahwa $n+1 \leq n$, kontradiksi. Karena itu, γ berhingga dan m vektor di γ memenuhi $m \leq n$. Tukar β dan γ lalu lakukan seperti diatas, kita peroleh $n \leq m$. Jadi, m = n.

Definisi. Suatu ruang vektor disebut **berdimensi hingga** jika ruang vektor tersebut memiliki basis yang memuat vektor-vektor berhingga. Banyaknya vektor dalam setiap basis dari V disebut **dimensi** dari V dan dilambangkan dengan **dim(V)**. Ruang vektor yang tidak berdimensi hingga disebut **berdimensi tak terhingga**.

Corollary 2. Misalkan V ruang vektor yang berdimensi n.

- (a) Setiap himpunan berhingga pembangun dari V yang memuat paling sedikit n vektor, dan himpunan pembangun dari V yang memuat tepat sebanyak n vektor disebut basis bagi V.
- (b) Setiap subhimpunan bebas linier dari V yang memuat n vektor disebut basis bagi V.
- (c) Setiap subhimpunan bebas linier dari V dapat diperluas menjadi basis bagi V.

Bukti. Misalkan β basis bagi V.

(a) Misalkan G himpunan berhingga yang membangun V. Berdasarkan Teorema 1.9, suatu

subhimpunan H dari G adalah basis dari V.

Berdasarkan Corollary 1 menunjukkan bahwa H memuat n vektor.

Karena subhimpunan dari G memiliki n vektor, maka G harus memuat paling sedikit n vektor. Selain itu, jika G memuat tepat sebanyak n vektor, maka kita mempunyai H=G sehingga G basis bagi V.

(b) Misalkan L subhimpunan bebas linier dari V yang memuat n vektor. Berdasarkan Replacement Theorem, terdapat subhimpunan H dari β yang memuat n-n=0 vektor sedemikian sehingga $L\cup H$ membangun V.

Karena itu, $H = \emptyset$, dan L membangun V.

Karena L juga bebas linier, maka L basis bagi V.

(c) Jika L subhimpunan bebas linier dari V yang memuat m vektor, maka berdasarkan Replacement Theorem terdapat subhimpunan H dari β yang memuat n-m vektor sedemikian sehingga $L\cup H$ membangun V. Sekarang, $L\cup H$ memuat tepat paling banyak n vektor, karena itu berdasarkan (a) diperoleh bahwa $L\cup H$ memuat tepat n vektor dan $L\cup H$ basis bagi V.

Teorema 1.11. Misalkan V ruang vektor berdimensi hingga dan W subruang dari V. Maka, W berdimensi hingga dan $dim(W) \leq dim(V)$. Selain itu, jika dim(W) = dim(V) maka V = W.

Bukti. Misalkan dim(V)=n. Jika $W=\{0\}$, maka W berdimensi hingga dan $dim(W)=0 \le n$. Jika $W \ne \{0\}$, maka W memuat vektor tak nol x_1 maka $\{x_1\}$ himpunan bebas linier. Pilih vektor $x_1,x_2,...,x_k \in W$ sedemikian sehingga $\{x_1,x_2,...,x_k\}$ bebas linier. Karena tidak ada subhimpunan bebas linier dari V yang memuat lebih dari n vektor, maka $k \le n$ dan $\{x_1,x_2,...,x_k\}$ bebas linier. Berdasarkan Teorema 1.7 diperoleh $\{x_1,x_2,...,x_k\}$ membangun W. Maka, $\{x_1,x_2,...,x_k\}$ basis bagi W. Karena itu, $dim(W)=k \le n$. Jika dim(W)=n maka suatu basis bagi W adalah subhimpunan bebas linier dari V yang memuat n vektor. Tetapi berdasarkan Corollary dari Replacement Theorem menunjukkan bahwa basis bagi W ini juga basis bagi V sehingga V=W.

Corollary 1. Misalkan V ruang vektor berdimensi hingga dan W subruang dari V, maka setiap basis dari W dapat diperluas menjadi basis bagi V.

Bukti. Misalkan S basis dari W. Karena S subhimpunan bebas linier dari V, maka berdasarkan Corollary 2 dari Replacement Theorem diperoleh bahwa S dapat diperluas menjadi basis bagi V.

1.7 Subhimpunan Bebas Linier Maksimal

Definisi. Misalkan \mathcal{F} adalah ruang semua himpunan. Maka, M anggota dari \mathcal{F} disebut maksimal jika M termuat bukan di anggota lain dari \mathcal{F} melainkan di M itu sendiri.

Definisi. Misalkan V ruang vektor, dan S subhimpunan dari V. Suatu subhimpunan bebas linier maksimal dari S adalah subhimpunan B dari S yang memenuhi kedua pernyataan berikut. (a) B bebas linier.

(b) Subhimpunan dari S yang memuat B adalah B itu sendiri.

Teorema 1.12. Misalkan V ruang vektor dan S subhimpunan yang membangun V. Jika β subhimpunan bebas linier maksimal dari S, maka β basis bagi V.

Bukti. Misalkan β subhimpunan bebas linier dari S. Karena β bebas linier maka cukup menunjukkan bahwa β membangun V. Kita klaim $S \subseteq span(\beta)$, sedangkan selain dari itu untuk $S \nsubseteq span(\beta)$ terdapat vektor $v \in S$ sedemikian sehingga $v \notin span(\beta)$. Berdasarkan Teorema 1.7 kita peroleh bahwa $\beta \cup \{v\}$ bebas linier padahal β subhimpunan bebas linier maksimal, maka kontradiksi. Karena itu, $S \subseteq span(\beta)$. Karena span(S) = V, maka berdasarkan Teorema 1.5 diperoleh $span(\beta) = V$.

Teorema 1.13. Misalkan V ruang vektor dan S subhimpunan bebas linier dari V. Maka, terdapat subhimpunan bebas linier maksimal dari V yang memuat S.

Bukti. Dibuku. ■

Corollary 1. Setiap ruang vektor memiliki basis.

Bukti. Latihan.

Catatan:

Misalkan V ruang vektor atas F, dan $X = \{x_1, x_2, ..., x_n\} \subseteq V, x_i \neq 0, \forall i = 1, 2, ..., n$, maka pernyataan berikut ekivalen artinya $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$, yakni :

- 1. X suatu basis dari V.
- 2. X pembangun minimal.
- 3. X bebas linier maksimal.
- 4. Setiap vektor di V dapat dituliskan secara tunggal sebagai kombinasi linier dari X.

Bab 2

Transformasi Linier

2.1 Transformasi Linier, Kernel dan Peta

Definisi. Misalkan V dan W ruang vektor atas F. Kita katakan $T:V\to W$ sebuah **pemetaan** dari V ke W jika $\forall v_1,v_2\in V$ berlaku $v_1=v_2$ sehingga $T(v_1)=T(v_2)$.

Definisi. Misalkan V dan W ruang vektor atas F. Kita katakan $T:V\to W$ sebuah **pemetaan** linier dari V ke W jika $\forall v_1,v_2\in V$ dan $\alpha\in F$, kita mempunyai

(a)
$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
 dan

(b)
$$T(\alpha x) = \alpha T(x)$$
.

Definisi. Misalkan V dan W ruang vektor atas F. Kita katakan $T:V\to W$ sebuah **pemetaan satu-satu** dari V ke W jika $\forall v_1,v_2\in V$ berlaku $T(v_1)=T(v_2)$ sehingga $v_1=v_2$. Pemetaan satu-satu disebut juga monomorfisma.

Definisi. Misalkan V dan W ruang vektor atas F. Kita katakan $T:V\to W$ sebuah **pemetaan** pada dari V ke W jika $\forall w\in W$ terdapat $v\in V$ sehingga w=T(v). Pemetaan pada disebut juga epimorfisma.

Definisi. Misalkan V dan W ruang vektor atas F. Maka $T:V\to W$ disebut isomorfisma jika T pemetaan linier satu-satu dan pada dari V ke W.

Sifat-sifat $T: V \to W$ adalah sebagai berikut.

- 1. Jika T pemetaan linier, maka T(0) = 0.
- 2. T pemetaan linier jika dan hanya jika $T(ax+by)=aT(x)+bT(y), \forall x,y\in V$ dan $a,b\in F$.

- 3. Jika T pemetaan linier, maka $T(x-y) = T(x) T(y), \forall x, y \in V$.
- 4. T pemetaan linier jika dan hanya jika untuk $x_1,x_2,...,x_n\in V$ dan $a_1,a_2,...,a_n\in F$, kita mempunyai

$$T\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i T(x_i).$$

Misalkan V dan W ruang vektor atas F, kita definisikan **pemetaan identitas** $I_V:V\to V$ dengan $I(x)=x, \forall x\in V$ dan **pemetaan nol** $T_0:V\to W$ dengan $T_0(x)=0, \forall x\in V$. Jelas bahwa kedua pemetaan tersebut adalah pemetaan linier. Kita sering menuliskan I daripada I_V .

Definisi. Misalkan V dan W ruang vektor, dan misalkan $T:V\to W$ pemetaan linier. Kita definisikan **ruang nol** (atau **kernel**) dari T yang dilambangkan dengan $\mathbf{N}(\mathbf{T})$ (atau $\mathbf{Ker}(\mathbf{T})$) adalah himpunan semua vektor $v\in V$ sedemikian sehingga T(v)=0 yaitu $\mathbf{N}(\mathbf{T})=\mathbf{Ker}(\mathbf{T})=\{v\in V:T(v)=0_w\}.$

Kita definisikan peta dari T yang dilambangkan dengan R(T) (atau Peta(T)) adalah sub-himpunan dari W yang terdiri dari semua peta dari vektor-vektor di V yaitu

$$R(T) = Peta(T) = \{w = T(v) : v \in V, w \in W\}.$$

Teorema 2.1. Misalkan V dan W ruang vektor atas F, dan $T:V\to W$ pemetaan linier. Maka, Ker(T) adalah subruang dari V, dan Peta(T) adalah subruang dari W.

Bukti. 1.) Akan dibuktikan bahwa $Ker(T) = \{v \in V : 0_w = T(v)\} \subseteq V$ adalah subruang dari V.

Karena $T(0_v) = 0_w$ maka $0_v \in Ker(T)$ sehingga $Ker(T) \neq \emptyset$.

Ambil $v_1, v_2 \in Ker(T)$ dan $\alpha \in F$ sehingga $T(v_1) = 0_w$ dan $T(v_2) = 0_w$.

Akan ditunjukkan bahwa $v_1 + v_2 \in Ker(T)$ dan $\alpha v_1 \in Ker(T)$.

Karena

$$T(v_1 + v_2) = T(v_1) + T(v_2) = 0_w + 0_w = 0_w$$

dan

$$T(\alpha v_1) = \alpha T(v_1) = \alpha 0_w = 0_w,$$

maka $v_1 + v_2 \in Ker(T)$ dan $\alpha v_1 \in Ker(T)$.

Jadi, Ker(T) adalah subruang dari V.

2.) Akan dibuktikan bahwa $Peta(T)=\{w\in W: w=T(v), v\in V\}\subseteq W$ adalah subruang dari W.

Karena $0_w = T(0_v)$ maka $0_w \in Peta(T)$ sehingga $Peta(T) \neq \emptyset$.

Ambil $w_1, w_2 \in Peta(T)$ dan $\alpha \in F$.

Maka terdapat suatu $v_1, v_2 \in V$ sedemikian sehingga $T(v_1) = w_1$ dan $T(v_2) = w_2$.

Akan ditunjukkan bahwa $w_1+w_2\in Peta(T)$ dan $\alpha w_1\in Peta(T)$. Perhatikan bahwa

$$w_1 + w_2 = T(v_1) + T(v_2) = T(v_1 + v_2)$$

karena $v_1 + v_2 \in V$ maka $w_1 + w_2 \in Peta(T)$ dan

$$\alpha w_1 = \alpha T(v_1) = T(\alpha v_1)$$

karena $\alpha v_1 \in V$ maka $\alpha w_1 \in Peta(T)$. Jadi, Peta(T) adalah subruang dari W.

Teorema 2.2. Misalkan V dan W ruang vektor dan misalkan $T:V\to W$ suatu pemetaan linier. Jika $\beta=\{v_1,v_2,...,v_n\}$ basis bagi V, maka

$$Peta(T) = span(T(\beta)) = span(\{T(v_1), T(v_2), ..., T(v_n)\}).$$

Bukti. Jelas bahwa $T(v_i) \in Peta(T)$ untuk setiap i = 1, 2, ..., n.

Karena Peta(T) adalah subruang dari W, maka berdasarkan Teorema 1.5 diperoleh Peta(T) memuat $span(\{T(v_1), T(v_2), ..., T(v_n)\}) = span(T(\beta))$ artinya $span(T(\beta)) \subseteq Peta(T)$. Ambil $w \in Peta(T)$.

Maka, w = T(v) untuk suatu $v \in V$.

Karena β basis bagi V, kita mempunyai

$$v = \sum_{i=1}^{n} a_i v_i$$

untuk suatu $a_1, a_2, ..., a_n \in F$.

Karena T pemetaan linier, maka

$$w = T(v) = T\left(\sum_{i=1}^{n} a_i v_i\right) = \sum_{i=1}^{n} a_i T(v_i) \in span(T(\beta))$$

sehingga Peta(T) termuat di $span(T(\beta))$ artinya $Peta(T) \subseteq span(T(\beta))$. Jadi, karena $span(T(\beta)) \subseteq Peta(T)$ dan $Peta(T) \subseteq span(T(\beta))$, maka $Peta(T) = span(T(\beta)) = span(\{T(v_1), T(v_2), ..., T(v_n)\})$.

Definisi. Misalkan V dan W ruang vektor, dan $T:V\to W$ pemetaan linier. Jika Ker(T) dan Peta(T) berdimensi hingga, maka kita definisikan **nulitas** dari T dilambangkan dengan **null(T)** adalah **dimensi Ker(T)**, dan **rank** dari T dilambangkan dengan **rank(T)** adalah **dimensi Peta(T)**.

Teorema 2.3 (**Teorema Dimensi**). Misalkan V dan W ruang vektor, dan $T:V\to W$ pemetaan linier. Jika V berdimensi hingga, maka

$$null(T) + rank(T) = dim(V).$$

Bukti. Misalkan dim(V)=n, dim(Ker(T))=k dan $\{v_1,v_2,...,v_k\}$ suatu basis bagi Ker(T). Berdasarkan Corollary dari Teorema 1.11, kita dapat memperluas $\{v_1,v_2,...,v_k\}$ menjadi basis $\beta=\{v_1,v_2,...,v_k,v_{k+1},...,v_n\}$ bagi V.

Kita klaim bahwa $S = \{T(v_{k+1}), T(v_{k+2}), ..., T(v_n)\}$ basis bagi Peta(T).

Akan dibuktikan bahwa S membangun Peta(T). Berdasarkan Teorema 2.2 dan karena $T(v_i)=0, \forall i=1,...,k$, kita peroleh

$$Peta(T) = span(\{T(v_1), T(v_2), ..., T(v_k), T(v_{k+1}), ..., T(v_n)\})$$

= 0 + span(\{T(v_{k+1}), T(v_{k+2}), ..., T(v_n)\}) = span(S).

Akan ditunjukkan bahwa S bebas linier. Perhatikan bahwa

$$\sum_{i=k+1}^{n} b_i T(v_i) = 0$$

untuk setiap $b_{k+1}, b_{k+2}, ..., b_n \in F$.

Karena T linier, kita peroleh

$$T\left(\sum_{i=k+1}^{n} b_i v_i\right) = 0.$$

Jadi

$$\sum_{i=k+1}^{n} b_i v_i \in Ker(T)$$

karena itu terdapat $c_1, c_2, ..., c_k \in F$ sedemikian sehingga

$$\sum_{i=k+1}^{n} b_i v_i = \sum_{i=1}^{k} c_i v_i$$

atau

$$\sum_{i=1}^{k} (-c_i)v_i + \sum_{i=k+1}^{n} b_i v_i = 0.$$

Karena β basis bagi V, maka kita peroleh $b_i=0, \forall i=k+1, k+2, ..., n$ sehingga S bebas linier dan rank(T)=n-k.

$$\mathsf{Jadi},\ null(T) + rank(T) = k + (n - k) = n = dim(V).$$

Pembuktian lain:

Misalkan $\{x_1, x_2, ..., x_k\}$ suatu basis dari Ker(T).

Perluas menjadi $X = \{x_1, x_2, ..., x_k, x_{k+1}, ..., x_n\}$ suatu basis bagi V.

Akan ditunjukkan $\{T(x_{k+1}),...,T(x_n)\}$ basis bagi Peta(T).

Pandang kombinasi linier

$$0_w = \alpha_{k+1} T(x_{k+1}) + \alpha_{k+2} T(x_{k+2}) + \dots + \alpha_n T(x_n)$$

untuk suatu $\alpha_{k+1},...,\alpha_n \in F$. Maka

$$0_w = T(\alpha_{k+1}x_{k+1} + \dots + \alpha_n x_n)$$

artinya $\alpha_{k+1}x_{k+1} + \cdots + \alpha_nx_n \in Ker(T)$.

Tulis

$$\alpha_{k+1}x_{k+1} + \dots + \alpha_n x_n = \alpha_1 x_1 + \dots + \alpha_k x_k$$

maka

$$\alpha_{k+1}x_{k+1} + \dots + \alpha_nx_n - \alpha_1x_1 - \dots - \alpha_kx_k = 0_v.$$

Karena X bebas linier di V, maka kombinasi linier tersebut hanya dipenuhi oleh $\alpha_i=0,$ $\forall i=1,..,k,k+1,...,n.$

Jadi, $\{T(x_{k+1}),...,T(x_n)\}$ bebas linier.

Akan ditunjukkan $\{T(x_{k+1}),...,T(x_n)\}$ membangun Peta(T).

Ambil $w \in Peta(T) \subseteq W$. Maka terdapat $v \in V$ sehingga w = T(v).

Tulis

$$v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \beta_{k+1} x_{k+1} + \dots + \beta_n x_n$$

untuk suatu $\beta_i \in F, \forall i = 1, ..., n$.

Pandang

$$T(v) = T(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \beta_{k+1} x_{k+1} + \dots + \beta_n x_n)$$

$$= \beta_1 T(x_1) + \dots + \beta_k T(x_k)$$

$$+ \beta_{k+1} T(x_{k+1}) + \dots + \beta_n T(x_n)$$

$$= 0 + \beta_{k+1} T(x_{k+1}) + \dots + \beta_n T(x_n)$$

$$= \beta_{k+1} T(x_{k+1}) + \dots + \beta_n T(x_n).$$

Jadi, $\{T(x_{k+1}),...,T(x_n)\}$ membangun Peta(T).

Karena $\{T(x_{k+1}),...,T(x_n)\}$ bebas linier dan membangun Peta(T) maka $\{T(x_{k+1}),...,T(x_n)\}$ basis bagi Peta(T) sehingga rank(T)=n-k=dim(V)-null(T). Jadi, null(T)+rank(T)=dim(V).

Teorema 2.4. Misalkan V dan W ruang vektor, dan $T:V\to W$ pemetaan linier. Maka T satu-satu jika dan hanya jika $Ker(T)=\{0\}$.

Bukti. (\Rightarrow) Misalkan T satu-satu dan $x \in Ker(T)$. Maka, $T(x) = 0_w = T(0_v)$. Karena T satu-satu, maka $x = 0_v$. Jadi, $Ker(T) = \{0\}$.

 (\Leftarrow) Misalkan $Ker(T) = \{0\}$. Ambil $x, y \in V$ sehingga T(x) = T(y).

Maka 0=T(x)-T(y)=T(x-y). Karena itu, $x-y\in Ker(T)=\{0\}$ sehingga x-y=0 atau x=y. Jadi, T satu-satu.

Teorema 2.5. Misalkan V dan W ruang vektor yang berdimensi hingga, dan $T:V\to W$ pemetaan linier. Maka, pernyataan berikut ekivalen.

- (a) T satu-satu.
- (b) T pada.
- (c) rank(T)=dim(V)

Bukti. Di buku.

Catatan tambahan :

Misalkan V dan W ruang vektor, dan $T:V\to W$ pemetaan linier. Maka, T pada jika dan hanya jika Peta(T)=W.

Bukti. Latihan

Teorema 2.6. Misalkan V dan W ruang vektor atas F, dan $\{v_1, v_2, ..., v_n\}$ basis bagi V. Untuk $w_1, w_2, ..., w_n \in W$, terdapat secara tunggal pemetaan linier $T: V \to W$ sedemikian sehingga $T(v_i) = w_i$ untuk i=1,2,...,n.

Bukti. Ambil $x \in V$. Maka

$$x = \sum_{i=1}^{n} a_i v_i,$$

untuk $a_1, a_2, ..., a_n \in F$.

Definisikan

$$T: V \to W$$

$$x \mapsto T(x) = \sum_{i=1}^{n} a_i w_i.$$

Akan ditunjukan T pemetaan linier.

Ambil $u, v \in V$ dan $\alpha, \beta \in F$.

Tulis

$$u = \sum_{i=1}^{n} b_i v_i \quad \text{dan} \quad v = \sum_{i=1}^{n} c_i v_i$$

untuk suatu $b_1, b_2, ..., b_n, c_1, c_2, ..., c_n \in F$.

Maka

$$T(\alpha u + \beta v) = \sum_{i=1}^{n} (\alpha b_i + \beta c_i) w_i = \alpha \sum_{i=1}^{n} b_i w_i + \beta \sum_{i=1}^{n} c_i w_i = \alpha T(u) + \beta T(v).$$

Jadi, T pemetaan linier.

Jelas bahwa

$$T(v_i) = w_i$$

untuk i = 1, 2, ..., n.

Akan ditunjukan bahwa T tunggal.

Misalkan $U: V \to W$ pemetaan linier dan $U(v_i) = w_i$ untuk i = 1, 2, ..., n.

Maka, untuk $x \in V$ dengan

$$x = \sum_{i=1}^{n} a_i v_i$$

kita peroleh

$$U(x) = U\left(\sum_{i=1}^{n} a_i v_i\right) = \sum_{i=1}^{n} a_i U(v_i) = \sum_{i=1}^{n} a_i w_i = T(x).$$

Jadi, U = T artinya T tunggal.

Corollary 1. Misalkan V dan W ruang vektor, dan V memiliki basis $\{v_1, v_2, ..., v_n\}$. Jika $U: V \to W$ dan $T: V \to W$ pemetaan linier serta $U(v_i) = T(v_i)$ untuk i=1,2,...,n, maka U=T.

Bukti. Sudah dibuktikan pada teorema di atas.

Definisi. Misalkan V ruang vektor, dan misalkan W_1 dan W_2 subruang dari V sedemikian sehingga $V = W_1 \oplus W_2$. Pemetaan $T: V \to V$ disebut **proyeksi** pada W_1 **sepanjang** W_2 jika $x = x_1 + x_2$ dengan $x_1 \in W_1$ dan $x_2 \in W_2$, kita mempunyai $T(x) = x_1$.

Definisi. Misalkan V ruang vektor, $T:V\to V$ pemetaan linier, dan W subruang dari V. Maka W disebut **T-invarian** jika $T(x)\in W$ untuk setiap $x\in W$ sehingga $T(W)\subseteq W$. Jika W adalah T-invarian, maka **pemetaan T yang dibatasi oleh W** yaitu $T_W:W\to W$ didefinisikan oleh $T_W(x)=T(x)$ untuk setiap $x\in W$.

2.2 Matriks Representasi dari Pemetaan Linier

Definisi. Misalkan V ruang vektor berdimensi hingga. Suatu basis terurut dari V adalah basis dari V yang diberikan dengan urutan spesifik, maka suatu basis terurut dari V adalah barisan berhingga vektor-vektor yang bebas linier di V sedemikian sehingga membangun V.

Definisi. Misalkan V ruang vektor berdimensi hingga, dan $\beta = \{u_1, u_2, ..., u_n\}$ suatu basis terurut dari V. Untuk $x \in V$, misalkan $a_1, a_2, ..., a_n \in F$ sedemikian sehingga

$$x = \sum_{i=1}^{n} a_i u_i.$$

Kita definisikan vektor koordinat relatif ke β yang dilambangkan dengan $[x]_{\beta}$ yaitu

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}.$$

Definisi. Misalkan V dan W ruang vektor berdimensi hingga dengan basis terurut $X = \{x_1, x_2, ..., x_n\}$ dan $Y = \{y_1, y_2, ..., y_m\}$, dan $T: V \to W$ pemetaan linier. Maka untuk setiap j = 1, 2, ..., n, terdapat $a_{ij} \in F$, $\forall i = 1, 2, ...m$ sedemikian sehingga

$$T(x_j) = \sum_{i=1}^{n} a_{ij} y_i$$

untuk j=1,2,...,n. Matriks A berukuran $n\times n$ didefinisikan dengan $A_{ij}=a_{ij}$ merupakan matriks representasi dari T pada basis terurut X dan Y, dan ditulis $A=[T]_X^Y$. Jika V=W dan X=Y, maka $A=[T]_X^X=[T]_X$.

Definisi. Misalkan V dan W ruang vektor atas F, $T:V\to W$, $U:V\to W$ dan $a\in F$. Kita definisikan $T+U:V\to W$ dengan (T+U)(x)=T(x)+U(x) untuk setiap $x\in V$ dan $aT:V\to W$ dengan (aT)(x)=aT(x) untuk setiap $x\in V$.

Teorema 2.7. Misalkan V dan W ruang vektor atas F, dan $T:V\to W$ pemetaan linier. Maka

- (a) $\forall a \in F$, aT + U pemetaan linier.
- (b) Menggunakan operasi penjumlahan dan perkalian skalar pada definisi diatas, maka himpunan semua pemetaan linier dari V ke W adalah ruang vektor atas F.

Bukti. (a) Ambil $x, y \in V$ dan $c \in F$.

Maka

$$(aT + U)(cx + y) = aT(cx + y) + U(cx + y)$$

$$= a[T(cx + y)] + cU(x) + U(y)$$

$$= a[cT(x) + T(y)] + cU(x) + U(y)$$

$$= acT(x) + cU(x) + aT(y) + U(y)$$

$$= c(aT + U)(x) + (aT + U)(y).$$

(b) Latihan.

Definisi. Misalkan V dan W ruang vektor atas F. Himpunan semua pemetaan linier dari V ke W kita lambangkan dengan $\mathcal{L}(V,W)$ atau $Hom_F(V,W)$. Jika V=W, kita tulis $\mathcal{L}(V)$ atau $End(V) = Hom_F(V,V)$.

Teorema 2.8. Misalkan V dan W ruang vektor berdimensi hingga dengan basis terurut X dan Y, dan misalkan $T, U: V \to W$ pemetaan linier. Maka

$$(a) \,\, [T+U]_X^Y = [T]_X^Y + [U]_X^Y \,\, {\it dan}$$

(b)
$$[cT]_X^Y = c[T]_X^Y$$
, $\forall a \in F$.

Bukti. (a) Misalkan $X=\{x_1,x_2,...,x_n\}$ dan $Y=\{y_1,y_2,...,y_m\}$. Maka, terdapat $a_{ij},b_{ij}\in F$ untuk i=1,2,...,m dan j=1,...,n sedemikian sehingga

$$T(x_j) = \sum_{i=1}^m a_{ij}y_i \quad \mathrm{dan} \quad U(x_j) = \sum_{i=1}^m b_{ij}y_i$$

untuk j = 1, ..., n sehingga

$$(T+U)(x_j) = \sum_{i=1}^{m} (a_{ij} + b_{ij})y_i.$$

Karena itu,

$$([T+U]_X^Y)_{ij} = a_{ij} + b_{ij} = ([T]_X^Y + [U]_X^Y)_{ij}.$$

Jadi, $[T + U]_X^Y = [T]_X^Y + [U]_X^Y$.

(b) Perhatikan bahwa

$$(cT)(x_j) = \sum_{i=1}^{m} ca_{ij}y_i = c\sum_{i=1}^{m} a_{ij}y_i = cT(x_j)$$

untuk j=1,...,n maka $([cT]_X^Y)_{ij}=ca_{ij}=c([T]_X^Y)_{ij}.$

2.3 Komposisi dari Pemetaan Linier

Teorema 2.9. Misalkan V,W, dan Z ruang vektor atas F, dan $T:V\to W$ dan $U:W\to Z$ pemetaan linier. Maka, $UT:V\to Z$ pemetaan linier.

Bukti. Ambil $x, y \in V$ dan $a \in F$. Maka,

$$UT(ax + y) = U(T(ax + y)) = U(aT(x) + T(y))$$

= $aU(T(x)) + U(T(y)) = a(UT)(x) + (UT)(y)$.

Teorema 2.10. Misalkan V ruang vektor atas F, dan misalkan $T, U_1, U_2 : V \rightarrow V$. Maka

- (a) $T(U_1 + U_2) = TU_1 + TU_2$ dan $(U_1 + U_2)T = U_1T + U_2T$.
- (b) $T(U_1U_2) = (TU_1)U_2$.
- (c) TI = IT = T.
- $(d) \ a(U_1U_2) = (aU_1)U_2 = U_1(aU_2), \ \forall a \in F.$

Bukti. Latihan

Definisi. Misalkan A matriks berukuran $m \times n$ dan B matriks berukuran $n \times p$. Kita mendefinisikan **perkalian** dari A dan B yang dilambangkan dengan AB, yaitu matriks berukuran $m \times p$ sedemikian sehingga

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

untuk i = 1, ..., m dan j = 1, ..., p.

Teorema 2.11. Misalkan V,W,U ruang vektor berdimensi hingga dan mempunyai basis terurut X,Y,Z dan misalkan $T_1:V\to W$ dan $T_2:W\to U$ adalah pemetaan linier. Maka

$$[T_2 \circ T_1]_X^Z = [T_2]_Y^Z [T_1]_X^Y.$$

Bukti. Misalkan V, W, U ruang vektor atas F, dan $X = \{x_1, x_2, ..., x_m\}$, $Y = \{y_1, y_2, ..., y_n\}$, $Z = \{z_1, z_2, ..., z_p\}$ basis terurut dari V, W dan U.

Misalkan $T_1:V \to W$ dan $T_2:W \to U$ pemetaan linier.

Akan dibuktikan bahwa

$$[T_2 \circ T_1]_X^Z = [T_2]_Y^Z [T_1]_X^Y.$$

Ambil $v \in V$. Tulis $v = \sum\limits_{i=1}^m \alpha_i x_i$, maka

$$[v]_X = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix}$$

untuk $\alpha_i\in F$, $\forall i=1,...,m$ dan $T_1(x_i)=\sum\limits_{j=1}^n\beta_{ji}y_j$, $T_1(x_i)\in W$, $\beta_{ji}\in F$, $\forall j=1,...,n$. Maka,

$$T_1(v) = T_1(\sum_{i=1}^m \alpha_i x_i)$$

$$= \sum_{i=1}^m \alpha_i T_1(x_i)$$

$$= \sum_{i=1}^m \alpha_i \sum_{j=1}^n \beta_{ji} y_j$$

$$= \sum_{i=1}^m \sum_{j=1}^n \alpha_i \beta_{ji} y_j$$

dan

$$[T_{1}(v)]_{Y} = \begin{pmatrix} \sum_{i=1}^{m} \alpha_{i}\beta_{1i} \\ \sum_{i=1}^{m} \alpha_{i}\beta_{2i} \\ \vdots \\ \sum_{m} \alpha_{i}\beta_{ni} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_{1}\beta_{11} + \alpha_{2}\beta_{12} + \dots + \alpha_{m}\beta_{1m} \\ \alpha_{1}\beta_{21} + \alpha_{2}\beta_{22} + \dots + \alpha_{m}\beta_{2m} \\ \vdots \\ \alpha_{1}\beta_{n1} + \alpha_{2}\beta_{n2} + \dots + \alpha_{m}\beta_{nm} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{11} & \beta_{12} & \dots & \beta_{1m} \\ \beta_{21} & \beta_{22} & \dots & \beta_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{n1} & \beta_{n2} & \dots & \beta_{nm} \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{m} \end{pmatrix}$$

$$= [T_{1}]_{Y}^{Y}[v]_{X}.$$

Kita peroleh

$$[T_1]_X^Y = \begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1m} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{n1} & \beta_{n2} & \cdots & \beta_{nm} \end{pmatrix}$$

Ambil $w \in W$. Tulis $w = \sum\limits_{j=1}^n \beta_j y_j$, $\beta_j \in F$, $\forall j=1,2,...,n$.

Maka
$$[w]_Y=egin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$
 . Perhatikan bahwa $T_2(y_j)\in U$, $\forall j=1,2,...,n$.

Maka, $T_2(y_j)=\sum\limits_{k=1}^{\infty}\gamma_{kj}z_k$, $\forall j=1,...,n$, dan k=1,2,...,p. Maka

$$T_2(w) = T_2(\sum_{j=1}^n \beta_j y_j)$$

$$= \sum_{j=1}^n \beta_j T_2(y_j)$$

$$= \sum_{j=1}^n \beta_j \sum_{k=1}^p \gamma_{kj} z_k$$

$$= \sum_{j=1}^n \sum_{k=1}^p \beta_j \gamma_{kj} z_k$$

sehingga

$$[T_{2}(w)]_{Z} = \begin{pmatrix} \sum_{j=1}^{n} \beta_{j} \gamma_{1j} \\ \sum_{j=1}^{n} \beta_{j} \gamma_{2j} \\ \vdots \\ \sum_{j=1}^{n} \beta_{j} \gamma_{pj} \end{pmatrix} = \begin{pmatrix} \beta_{1} \gamma_{11} + \beta_{2} \gamma_{12} + \dots + \beta_{2} \gamma_{1n} \\ \beta_{1} \gamma_{21} + \beta_{2} \gamma_{22} + \dots + \beta_{2} \gamma_{2n} \\ \vdots \\ \beta_{1} \gamma_{p1} + \beta_{2} \gamma_{p2} + \dots + \beta_{2} \gamma_{pn} \end{pmatrix}$$
$$= \begin{pmatrix} \gamma_{11} & \gamma_{12} & \dots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \dots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{p1} & \gamma_{p2} & \dots & \gamma_{pn} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{pmatrix}$$
$$= [T_{2}]_{Y}^{Z}[w]_{Y}.$$

$$\text{Kita peroleh } [T_2]_Y^Z = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{p1} & \gamma_{p2} & \cdots & \gamma_{pn} \end{pmatrix}.$$

Perhatikan bahwa

$$(T_2 \circ T_1)(v) = T_2(T_1(v))$$

$$= T_2(\sum_{i=1}^m \sum_{j=1}^n \alpha_i \beta_{ji} y_j)$$

$$= \sum_{i=1}^m T_2(\sum_{j=1}^n \alpha_i \beta_{ji} y_j)$$

$$= \sum_{i=1}^m \sum_{j=1}^n T_2(\alpha_i \beta_{ji} y_j)$$

$$= \sum_{i=1}^m \sum_{j=1}^n \alpha_i \beta_{ji} T_2(y_j)$$

$$= \sum_{i=1}^m \sum_{j=1}^n \alpha_i \beta_{ji} \sum_{k=1}^p \gamma_{kj} z_k$$

$$= \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \alpha_i \beta_{ji} \gamma_{kj} z_k$$

$$= \sum_{k=1}^p \sum_{i=1}^m \sum_{j=1}^n \alpha_i \beta_{ji} \gamma_{kj} z_k.$$

Maka

$$[(T_{2} \circ T_{1})(v)]_{Z} = \begin{pmatrix} \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i}\beta_{ji}\gamma_{1j} \\ \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i}\beta_{ji}\gamma_{2j} \\ \vdots \\ \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i}\beta_{ji}\gamma_{pj} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{m} \alpha_{i} \sum_{j=1}^{n} \beta_{ji}\gamma_{1j} \\ \sum_{i=1}^{m} \alpha_{i} \sum_{j=1}^{n} \beta_{ji}\gamma_{2j} \\ \vdots \\ \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{ji}\gamma_{pj} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_{1} \sum_{j=1}^{n} \beta_{j1}\gamma_{1j} + \alpha_{2} \sum_{j=1}^{n} \beta_{j2}\gamma_{1j} + \dots + \alpha_{m} \sum_{j=1}^{n} \beta_{jm}\gamma_{1j} \\ \alpha_{1} \sum_{j=1}^{n} \beta_{j1}\gamma_{2j} + \alpha_{2} \sum_{j=1}^{n} \beta_{j2}\gamma_{2j} + \dots + \alpha_{m} \sum_{j=1}^{n} \beta_{jm}\gamma_{2j} \\ \vdots \\ \alpha_{1} \sum_{j=1}^{n} \beta_{j1}\gamma_{1j} \sum_{j=1}^{n} \beta_{j2}\gamma_{1j} + \dots + \alpha_{m} \sum_{j=1}^{n} \beta_{jm}\gamma_{pj} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j=1}^{n} \beta_{j1}\gamma_{1j} & \sum_{j=1}^{n} \beta_{j2}\gamma_{1j} & \dots & \sum_{j=1}^{n} \beta_{jm}\gamma_{1j} \\ \sum_{j=1}^{n} \beta_{j1}\gamma_{2j} & \sum_{j=1}^{n} \beta_{j2}\gamma_{2j} & \dots & \sum_{j=1}^{n} \beta_{jm}\gamma_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{j=1}^{n} \beta_{j1}\gamma_{pj} & \sum_{j=1}^{n} \beta_{j2}\gamma_{pj} & \dots & \sum_{j=1}^{n} \beta_{jm}\gamma_{pj} \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{m} \end{pmatrix}$$

$$= [T_{2} \circ T_{1}]_{X}^{Z}[v]_{X}.$$

$$\text{Kita peroleh } [T_2 \circ T_1]_X^Z = \begin{pmatrix} \sum_{j=1}^n \beta_{j1} \gamma_{1j} & \sum_{j=1}^n \beta_{j2} \gamma_{1j} & \cdots & \sum_{j=1}^n \beta_{jm} \gamma_{1j} \\ \sum_{j=1}^n \beta_{j1} \gamma_{2j} & \sum_{j=1}^n \beta_{j2} \gamma_{2j} & \cdots & \sum_{j=1}^n \beta_{jm} \gamma_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{j=1}^n \beta_{j1} \gamma_{pj} & \sum_{j=1}^n \beta_{j2} \gamma_{pj} & \cdots & \sum_{j=1}^n \beta_{jm} \gamma_{pj} \end{pmatrix}.$$

Perhatikan bahwa

$$[T_{2}]_{Y}^{Z}[T_{1}]_{X}^{Y} = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{p1} & \gamma_{p2} & \cdots & \gamma_{pn} \end{pmatrix} \begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1m} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{n1} & \beta_{n2} & \cdots & \beta_{nm} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} \beta_{j1} \gamma_{1j} & \sum_{j=1}^{n} \beta_{j2} \gamma_{1j} & \cdots & \sum_{j=1}^{n} \beta_{j2} \gamma_{2j} &$$

Jadi, terbukti bahwa $[T_2\circ T_1]_X^Z=[T_2]_Y^Z[T_1]_X^Y.$

Corollary 1. Misalkan V ruang vektor berdimensi hingga dan X basis terurut dari V. Misalkan $T_1, T_2 : V \to V$. Maka $[T_2T_1]_X = [T_2]_X[T_1]_X$.

Definisi. Kita mendefinisikan **delta Kronecker** (δ_{ij}) dengan $\delta_{ij} = 1$ jika i = j, dan $\delta_{ij} = 0$ jika $i \neq j$. **Matriks identitas** I_n didefinisikan oleh $(I_n)_{ij} = \delta_{ij}$.

Teorema 2.12. Misalkan A matriks $m \times n$, B dan C matriks $n \times p$, D dan E matriks $q \times m$. Maka

- (a) $A(B+C)=AB + AC \operatorname{dan} (D+E)A = DA + EA$.
- (b) a(AB)=(aA)B=A(aB), untuk setiap skalar a.
- (c) $I_m A = A = A I_n$.
- (d) Jika V ruang vektor berdimensi n dengan basis terurut X, maka $[I_V]_X = I_n$.

Bukti. (a)

$$[A(B+C)]_{ij} = \sum_{k=1}^{n} A_{ik}(B+C)_{kj} = \sum_{k=1}^{n} A_{ik}(B_{kj} + C_{kj})$$
$$= \sum_{k=1}^{n} (A_{ik}B_{kj} + A_{ik}C_{kj}) = \sum_{k=1}^{n} A_{ik}B_{kj} + \sum_{k=1}^{n} A_{ik}C_{kj}$$
$$= (AB)_{ij} + (AC)_{ij} = [AB + AC]_{ij}.$$

(b)

$$(a(AB))_{ij} = a \sum_{k=1}^{n} (A_{ik} B_{kj})$$
$$\sum_{k=1}^{n} a A_{ik} B_{kj} = ((aA)B)_{ij}$$
$$\sum_{k=1}^{n} A_{ik} a B_{kj} = (A(aB))_{ij}.$$

(c)
$$(I_m A)_{ij} = \sum_{k=1}^m (I_m)_{ik} A_{kj} = \sum_{k=1}^m \delta_{ik} A_{kj} = A_{ij}$$
.

(d) Misalkan V ruang vektor berdimensi n, $X=\{x_1,x_2,...,x_n\}$ basis terurut dari V, dan $I:V\to V$ pemetaan identitas.

Akan ditunjukkan bahwa $[I_V]_X = I_n$.

Perhatikan bahwa

$$I(x_1) = 1x_1 + 0x_2 + \dots + 0x_n = x_1$$

$$I(x_2) = 0x_1 + 1x_2 + \dots + 0x_n = x_2$$

$$\vdots$$

$$I(x_n) = 0x_1 + 0x_2 + \dots + 1x_n = x_n$$

$$\text{sehingga} \quad [I(x_1)]_X = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad [I(x_2)]_X = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \cdots, \quad [I(x_n)]_X = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \; .$$

Maka

$$[I_V]_X = \begin{pmatrix} [I(x_1)]_X & [I(x_2)]_X & \cdots & [I(x_n)]_X \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & & \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$= I_n$$

Jadi, $[I_V]_X = I_n$.

Corollary 1. Misalkan A matriks $m \times n$, $B_1, B_2, ..., B_k$ matriks $n \times p$, $C_1, C_2, ..., C_k$ matriks $q \times m$, dan $a_1, a_2, ..., a_k$ skalar. Maka

$$A\left(\sum_{i=1}^{k} a_i B_i\right) = \sum_{i=1}^{k} a_i A B_i$$

dan

$$\left(\sum_{i=1}^{k} a_i C_i\right) A = \sum_{i=1}^{k} a_i C_i A.$$

Bukti. Berdasarkan Teorema 2.12

$$A\left(\sum_{i=1}^{k} a_{i} B_{i}\right) = \sum_{i=1}^{k} A(a_{i} B_{i}) = \sum_{i=1}^{k} a_{i} A B_{i}$$

dan

$$\left(\sum_{i=1}^{k} a_i C_i\right) A = \sum_{i=1}^{k} (a_i C_i) A = \sum_{i=1}^{k} a_i C_i A$$

Teorema 2.13. Misalkan A matriks $m \times n$ dan B matriks $n \times p$. Untuk setiap j=1,2,...,p, misalkan u_j dan v_j melambangkan kolom ke-j dari AB dan B. Maka

Anton S.

- (a) $u_i = Av_i$
- $(b) \ v_j = Be_j$, dimana e_j adalah vektor standar ke-j dari F^p .

Bukti. (a) Perhatikan bahwa

$$u_{j} = \begin{pmatrix} (AB)_{1j} \\ (AB)_{2j} \\ \vdots \\ (AB)_{mj} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{n} A_{1k} B_{kj} \\ \sum_{k=1}^{n} A_{2k} B_{kj} \\ \vdots \\ \sum_{k=1}^{n} A_{mk} B_{kj} \end{pmatrix} = A \begin{pmatrix} B_{1j} \\ B_{2j} \\ \vdots \\ B_{nj} \end{pmatrix} = Av_{j}.$$

(b) Karena $(e_j)_i=1$ jika i=j dan 0 lainnya, maka

$$(Be_j)_i = \sum_{k=1}^n B_{ik}(e_j)_i = B_{ij}.$$

Teorema 2.14. Misalkan V dan W ruang vektor berdimensi hingga, $X = \{x_1, x_2, ..., x_n\}$ basis terurut dari V, dan $Y = \{y_1, y_2, ..., y_m\}$ basis terurut dari W, serta misalkan $T: V \to W$ pemetaan linier. Maka, untuk setiap $v \in V$, kita mempunyai

$$[T(v)]_Y = [T]_X^Y [v]_X.$$

Bukti. Ambil $v \in V$.

Tulis

$$v = \sum_{i=1}^{n} \alpha_i x_i$$

untuk $\alpha_i \in F$, $\forall i = 1, 2, ..., n$ dan

$$T(x_i) = \sum_{j=1}^{m} \beta_{ji} y_j$$

untuk $\beta_{ji} \in F$, $\forall i=1,2,...,n.$

Maka

$$T(v) = T\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)$$

$$= \sum_{i=1}^{n} \alpha_{i} T(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} \sum_{j=1}^{m} \beta_{ji} y_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{ji} y_{j}$$

$$= \sum_{i=1}^{n} \alpha_{i} \beta_{1i} y_{1} + \alpha_{i} \beta_{2i} y_{2} + \dots + \alpha_{i} \beta_{mi} y_{m}.$$

sehingga

$$[T(v)]_{Y} = \begin{pmatrix} \sum_{i=1}^{n} \alpha_{i} \beta_{1i} \\ \sum_{i=1}^{n} \alpha_{i} \beta_{2i} \\ \vdots \\ \sum_{i=1}^{n} \alpha_{i} \beta_{mi} \end{pmatrix} = \begin{pmatrix} \alpha_{1} \beta_{11} + \alpha_{2} \beta_{12} + \dots + \alpha_{n} \beta_{1n} \\ \alpha_{1} \beta_{21} + \alpha_{2} \beta_{22} + \dots + \alpha_{n} \beta_{2n} \\ \vdots \\ \alpha_{1} \beta_{m1} + \alpha_{2} \beta_{m2} + \dots + \alpha_{n} \beta_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{11} & \beta_{12} & \dots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \dots & \beta_{2n} \\ \vdots & & \ddots & \vdots \\ \beta_{m1} & \beta_{m2} & \dots & \beta_{mn} \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

$$= [T]_{X}^{Y}[v]_{X}.$$

Teorema 2.15.

Teorema 2.16.

2.4 Transformasi Balikan dan Isomorfisma

Definisi. Misalkan V dan W ruang vektor, dan $T:V\to W$ pemetaan linier. T dikatakan dapat dibalik jika terdapat $S:W\to V$ sehingga

$$T \circ S = I_W$$

dan

$$S \circ T = I_V$$

dengan $I_V:V\to V$ dan $I_W:W\to W$ pemetaan identitas.

Jika T punya invers maka T dapat dibalik.

Jika T dapat dibalik, maka invers dari T tunggal dan dilambangkan dengan T^{-1} .

Catatan:

Misalkan T dan U punya invers, maka :

- 1. $(TU)^{-1} = U^{-1}T^{-1}$.
- 2. $(T^{-1})^{-1} = T$, artinya T^{-1} dapat dibalik.
- 3. Misalkan V dan W ruang vektor berdimensi hingga, dim(V)=dim(W), dan $T:V\to W$ pemetaan linier.

Maka, T dapat dibalik jika dan hanya jika rank(T) = dim(V).

Bukti. 1.) Perhatikan bahwa

$$(TU)(U^{-1}T^{-1}) = T(UU^{-1})T^{-1} = TIT^{-1} = TT^{-1} = I$$

dan

$$(U^{-1}T^{-1})(TU) = U^{-1}(T^{-1}T)U = U^{-1}IU = U^{-1}U = I$$

dengan I pemetaan identitas.

Jadi,
$$(TU)^{-1} = U^{-1}T^{-1}$$
.

- 2.) Perhatikan bahwa $TT^{-1}=I$ dan $T^{-1}T=I$. Jadi, $(T^{-1})^{-1}=T$, artinya T^{-1} dapat dibalik.
- 3.) Latihan.

Misalkan V ruang vektor, dan $T:V\to V$ pemetaan linier. Maka, T dapat dibalik jika dan hanya jika T isomorfisma (satu-satu dan pada).

Bukti. (\Leftarrow) Akan ditunjukkan bahwa jika T isomorfisma maka T dapat dibalik.

Misalkan $T:V\to V$ suatu isomorfisma, maka T pemetaan linier satu-satu dan pada, artinya $ker(T)=\{0\}$ dan Peta(T)=V.

Definisikan suatu pengaitan

$$S: V \to V$$
$$v \mapsto x$$

untuk suatu $v \in V = Peta(T)$ terdapat $x \in V$ sedemikian sehingga v = T(x) dan x = S(T(x)).

Ambil $v_1,v_2\in V$ sehingga $v_1=v_2$. Karena V=Peta(T) maka terdapat $x_1,x_2\in V$ yang memenuhi $v_1=T(x_1)$ dan $v_2=T(x_2)$. Karena $v_1=v_2$ maka $T(x_1)=T(x_2)$. Karena T satu-satu maka $x_1=x_2$. Akibatnya $S(v_1)=x_1=x_2=S(v_2)$.

Jadi, $S:V \to V$ suatu pemetaan.

Ambil $v_1, v_2 \in V = Peta(T)$ dan $\alpha_1, \alpha_2 \in F$. Tulis $v_1 = T(x_1)$ dan $v_2 = T(x_2)$ untuk suatu $x_1, x_2 \in V$.

Maka,

$$S(\alpha_1 v_1 + \alpha_2 v_2) = S(\alpha_1 T(x_1) + \alpha_2 T(x_2))$$

$$= S(T(\alpha_1 x_1) + T(\alpha_2 x_2))$$

$$= S(T(\alpha_1 x_1 + \alpha_2 x_2))$$

$$= \alpha_1 x_1 + \alpha_2 x_2$$

$$= \alpha_1 S(v_1) + \alpha_2 S(v_2).$$

Jadi, $S: V \to V$ suatu pemetaan linier.

Ambil $v \in V = Peta(T)$. Tulis v = T(x) untuk suatu $x \in V$. Maka,

$$(S \circ T)(v) = S(T(v)) = v = I_V(v) = I_V$$

dan

$$(T \circ S)(v) = T(S(v)) = T(x) = v = I_V(v) = I_V$$

Jadi, T dapat dibalik.

 (\Rightarrow) Akan ditunjukkan bahwa jika T dapat dibalik maka T isomorfisma.

Misalkan T dapat dibalik. Misalkan terdapat $S:V\to V$ suatu pemetaan linier dengan $T\circ S=I_V$ dan $S\circ T=I_V$.

Akan dibuktikan bahwa T isomorfisma.

Ambil $v_1, v_2 \in V$ sedemikian sehingga $T(v_1) = T(v_2)$.

Perhatikan bahwa $S(T(v_1)) = S(T(v_2))$ dan karena S pemetaan, haruslah S memetakan

 $T(v_1)$ dan $T(v_2)$ ke peta yang sama. Padahal,

$$S(T(v_1)) = S(T(v_2))$$

$$S \circ T(v_1) = S \circ T(v_2)$$

$$I_V(v_1) = I_V(v_2)$$

$$v_1 = v_2.$$

Jadi, $T(v_1) = T(v_2)$ mengakibatkan $v_1 = v_2$ artinya T satu-satu.

Ambil $w \in V$.

Maka, S(w) = v untuk suatu $v \in V$.

Perhatikan bahwa $T(v) = T(S(w)) = T \circ S(w) = I(w) = w$.

Jadi, terdapat $v \in V$ sehingga T(v) = w. Artinya T pada.

Dengan demikian, karena T satu-satu dan pada maka T isomorfisma.

Teorema 2.17. Misalkan V dan W ruang vektor, dan $T:V\to W$ pemetaan linier dan T dapat dibalik. Maka, $T^{-1}:W\to V$ pemetaan linier.

Bukti. Ambil $y_1,y_2\in W$ dan $\alpha,\beta\in F$. Karena T dapat dibalik artinya T satu-satu dan pada, maka terdapat vektor tunggal x_1 dan x_2 sedemikian sehingga $T(x_1)=y_1$ dan $T(x_2)=y_2$. Karena itu, $x=T^{-1}(y_1)$ dan $x_2=T^{-1}(y_2)$ sehingga

$$T^{-1}(\alpha y_1 + \beta y_2) = T^{-1}[\alpha T(x_1) + \beta T(x_2)] = T^{-1}[T(\alpha x_1 + \beta x_2)]$$
$$= \alpha x_1 + \beta x_2 = \alpha T^{-1}(y_1) + \beta T^{-1}(y_2).$$

Definisi. Misalkan A matriks $n \times n$. Maka, A dapat dibalik jika terdapat B matriks $n \times n$ sedemikian sehingga AB=BA=I.

Lemma. Misalkan $T: V \to W$ dan T dapat dibalik. Maka, V berdimensi hingga jika dan hanya jika W berdimensi hingga. Dalam hal ini, dim(V)=dim(W).

Bukti. Misalkan V berdimensi hingga dan misalkan $\beta = \{x_1, x_2, ..., x_n\}$ basis bagi V. Berdasarkan Teorema 2.2, $T(\beta)$ membangun Peta(T) = W sehingga W berdimensi hingga berdasarkan Teorema 1.9.

Jika W berdimensi hingga, maka V berdimensi hingga karena T dapat dibalik. Sekarang, misalkan V dan W berdimensi hingga. Karena T satu-satu dan pada, maka

$$null(T) = 0$$

dan

$$rank(T) = dim(Peta(T)) = dim(W)$$

berdasarkan Teorema dimensi, diperoleh dim(V) = dim(W).

Teorema 2.18. Misalkan V dan W ruang vektor berdimensi hingga dengan basis terurut $X = \{v_1, v_2, ..., v_n\}$ dan $Y = \{w_1, w_2, ..., w_n\}$. Misalkan $T: V \to W$ pemetaan linier. Maka, T dapat dibalik jika dan hanya jika $[T]_X^Y$ dapat dibalik. Selanjutnya, $[T^{-1}]_X^Y = ([T]_X^Y)^{-1}$.

Bukti. (\Rightarrow) Misalkan T dapat dibalik.

Berdasarkan Lemma, kita mempunyai dim(V)=dim(W). Misalkan dim(V)=n. Maka, $[T]_X^Y$ matriks $n\times n$. Pemetaan $T^{-1}:W\to V$ memenuhi $TT^{-1}=I_W$ dan $T^{-1}T=I_V$. Karena itu,

$$I_n = [I_V]_X = [T^{-1}T]_X = [T^{-1}]_Y^X [T]_X^Y.$$

serupa dengan itu

$$[T]_X^Y[T^{-1}]_Y^X = I_n.$$

Jadi, $[T]_X^Y$ dapat dibalik dan $([T]_X^Y)^{-1} = [T^{-1}]_Y^X$.

(\Leftarrow) Misalkan $A=[T]_X^Y$ dapat dibalik. Maka, terdapat B matriks $n\times n$ sedemikian sehingga $AB=BA=I_n$. Berdasarkan Teorema 2.6, terdapat $U:W\to V$ sedemikian sehingga

$$U(w_j) = \sum_{i=1}^n B_{ij} v_i$$

untuk j=1,2,...,n, diperoleh $[U]_{Y}^{X}=B$. Perhatikan bahwa

$$[UT]_X = [U]_Y^X [T]_X^Y = BA = I_n = [I_V]_X$$

berdasarkan Teorema 2.11. Jadi, $UT=I_V$ dan serupa dengan itu, $TU=I_W$. Jadi, T dapat dibalik.

Corollary 1. Misalkan V ruang vektor berdimensi hingga, X basis terurut dari V, dan T: $V \to V$ pemetaan linier. Maka, T dapat dibalik jika dan hanya jika $[T]_X$ dapat dibalik. Selanjutnya, $[T^{-1}]_X = ([T]_X)^{-1}$.

Bukti. (\Rightarrow) Misalkan T dapat dibalik. Misalkan dim(V)=n. Maka, $[T]_X$ matriks $n\times n$. Pemetaan $T^{-1}:V\to V$ memenuhi $TT^{-1}=I_V$ dan $T^{-1}T=I_V$. Karena itu,

$$I_n = [I_V]_X = [T^{-1} \circ T]_X = [T^{-1}]_X [T]_X.$$

serupa dengan itu

$$[T]_X[T^{-1}]_X = I_n.$$

Jadi, $[T]_X$ dapat dibalik dan $([T]_X)^{-1} = [T^{-1}]_X$.

(\Leftarrow) Misalkan $A=[T]_X$ dapat dibalik. Maka, terdapat B matriks $n\times n$ sedemikian sehingga $AB=BA=I_n$. Berdasarkan Teorema 2.6, terdapat $U:V\to V$ sedemikian sehingga

$$U(w_j) = \sum_{i=1}^n B_{ij} v_i$$

untuk j = 1, 2, ..., n, diperoleh $[U]_X = B$. Perhatikan bahwa

$$[UT]_X = [U]_X [T]_X = BA = I_n = [I_V]_X$$

berdasarkan Teorema 2.11. Jadi, $UT=I_V$ dan serupa dengan itu, $TU=I_V$. Jadi, T dapat dibalik.

Definisi. Misalkan V dan W ruang vektor. Kita katakan bahwa V **isomorfis** ke W jika terdapat pemetaan linier $T:V\to W$ yang dapat dibalik dan T disebut sebagai suatu isomorfisma dari V pada W.

Teorema 2.19. Misalkan V dan W ruang vektor berdimensi hingga atas F, dan $T: V \to W$ pemetaan linier. Maka, T isomorfisma jika dan hanya jika dim(V)=dim(W).

Bukti. (\Rightarrow) Akan ditunjukkan bahwa jika T isomorfisma maka dim(V) = dim(W).

Misalkan V isomorfis ke W dan $T:V\to W$ isomorfisma. Berdasarkan Lemma sebelum Teorema 2.8, kita peroleh dim(V)=dim(W).

Pembuktian lain:

Misalkan $X = \{x_1, x_2, ..., x_n\}$ basis bagi V.

Pandang $Y = \{T(x_1), T(x_2), ..., T(x_n)\} \subseteq W$.

Pandang kombinasi linier

$$0_w = \sum_{i=1}^n \alpha_i T(x_i)$$

untuk suatu $\alpha_i \in F$, $\forall i = 1, ..., n$, maka

$$0_w = T\left(\sum_{i=1}^n \alpha_i x_i\right)$$

sehingga

$$\sum_{i=1}^{n} \alpha_i x_i \in ker(T) = \{0_v\}$$

karena T satu-satu.

Pandang

$$\sum_{i=1}^{n} \alpha_i x_i = 0_v.$$

Karena X basis bagi V, haruslah $\alpha_i=0$, $\forall i=1,2,...,n$.

Dengan demikian, kombinasi linier

$$0_w = T\left(\sum_{i=1}^n \alpha_i x_i\right)$$

hanya dipenuhi oleh $\alpha_i = 0$, $\forall i = 1, 2, ..., n$.

Jadi, Y bebas linier.

Ambil $w \in W$. Karena T pada, maka terdapat $v \in V$ sedemikian sehingga w = T(v).

Tulis

$$v = \sum_{i=1}^{n} \alpha_i x_i$$

untuk suatu $\alpha_i \in F$, $\forall i = 1, 2, ..., n$.

Maka,

$$w = T(v)$$

$$= T(\sum_{i=1}^{n} \alpha_i x_i)$$

$$= \sum_{i=1}^{n} \alpha_i T(x_i)$$

artinya Y membangun W.

 ${\it Karena}\,\,Y\,\,{\it bebas}\,\,{\it linier}\,\,{\it di}\,\,W\,\,{\it dan}\,\,{\it membangun}\,\,W,\,\,{\it maka}\,\,Y\,\,{\it basis}\,\,{\it bagi}\,\,W.$

Jadi, dim(V) = dim(W).

 (\Leftarrow) Akan dibuktikan bahwa jika dim(V) = dim(W) maka T isomorfisma.

Misalkan V dan W ruang vektor, dan dim(V) = dim(W).

Akan dibuktikan terdapat $T:V\to W$ sedemikian sehingga T isomorfisma.

Ambil $T: V \to W$ pemetaan linier dari V ke W.

Karena T pemetaan linier, maka T dapat didefinisikan dengan peta dari basis-basis V.

Misalkan $X=\{x_1,x_2,...,x_n\}$ dan $Y=\{y_1,y_2,...,y_n\}$ masing-masing adalah basis terurut dari V dan W. Maka, didefinisikan $T(x_i)=y_i, \ \forall i=1,2,...,n.$

Akan dibuktikan T isomorfisma.

Ambil $v_1, v_2 \in V$ sedemikian sehingga $T(v_1) = T(v_2)$.

Tulis

$$v_1 = \sum_{i=1}^n \alpha_i x_i \quad \text{dan} \quad v_2 = \sum_{i=1}^n \beta_i x_i$$

untuk $\alpha_i, \beta_i \in F$, $\forall i=1,2,...n$. Maka,

$$T(v_1) = T(v_2)$$

$$T\left(\sum_{i=1}^n \alpha_i x_i\right) = T\left(\sum_{i=1}^n \beta_i x_i\right)$$

$$\sum_{i=1}^n \alpha_i T(x_i) = \sum_{i=1}^n \beta_i T(x_i)$$

$$\sum_{i=1}^n \alpha_i y_i = \sum_{i=1}^n \beta_i y_i$$

$$\sum_{i=1}^n \alpha_i y_i - \sum_{i=1}^n \beta_i y_i = 0_w$$

$$\sum_{i=1}^n (\alpha_i - \beta_i) y_i = 0_w.$$

Padahal $Y=\{y_1,y_2,...,y_n\}$ adalah basis bagi W sehingga $Y=\{y_1,y_2,...,y_n\}$ bebas linier. Akibatnya

$$\sum_{i=1}^{n} (\alpha_i - \beta_i) y_i = 0_w$$

hanya dipenuhi oleh $\alpha_i-\beta_i=0$ sehingga $\alpha_i=\beta_i$, $\forall i=1,2,...,n.$

Artinya

$$v_1 = \sum_{i=1}^n \alpha_i x_i = \sum_{i=1}^n \beta_i x_i = v_2.$$

Jadi, $T(v_1) = T(v_2)$ sehingga $v_1 = v_2$. Artinya T satu-satu.

Ambil sembarang $w \in W$.

Maka,

$$w = \sum_{i=1}^{n} \gamma_i y_i$$

untuk $\gamma_i \in F$, $\forall i = 1, 2, ..., n$.

Perhatikan bahwa untuk setiap i = 1, 2, ..., n,

$$y_i = T(x_i)$$

sedemikian sehingga

$$w = \sum_{i=1}^{n} \gamma_i y_i = \sum_{i=1}^{n} \gamma_i T(x_i) = T(\sum_{i=1}^{n} \gamma_i x_i) = T(v)$$

dengan

$$v = \sum_{i=1}^{n} \gamma_i x_i \text{ di } V.$$

Artinya untuk setiap $w \in W$ terdapat prapeta di V.

Jadi, T pada.

Karena T satu-satu dan pada, maka T isomorfisma.

Corollary 1. Misalkan V ruang vektor atas F. Maka, V isomorfis ke F^n jika dan hanya jika dim(V)=n.

Bukti. Latihan.

Teorema 2.20. Misalkan V dan W ruang vektor berdimensi hingga atas F, $\dim(V)=n$ dan $\dim(W)=m$, dan misalkan X dan Y basis terurut basi V dan W. Maka, φ merupakan suatu isomorfisma dengan $\varphi: Hom_F(V,W) \to M_{m \times n}(F)$ didefinisikan oleh $\varphi(T) = [T]_X^Y$ untuk $T \in Hom_F(V,W)$.

 ${\it Bukti.}\ {\it Misalkan}\ {\it V}\ {\it dan}\ {\it W}\ {\it ruang}\ {\it vektor}\ {\it atas}\ {\it F}.$

Definisikan $Hom_F(V, W) = \{T \text{ pemetaan linier } | T : V \to W\}.$

Misalkan X basis bagi V, dan Y basis bagi W, dim(V) = n, dan dim(W) = m.

Definisikan

$$\varphi: Hom_F(V, W) \to M_{m \times n}(F)$$

$$T \mapsto [T]_X^Y$$

Akan dibuktikan φ merupakan suatu pemetaan.

Ambil $T_1, T_2 \in Hom_F(V, W)$ dengan $T_1 = T_2$.

Artinya untuk setiap $v \in V$, $T_1(v) = T_2(v)$.

Akan dibuktikan $\varphi(T_1) = \varphi(T_2)$.

Perhatikan bahwa $\varphi(T_1) = [T_1]_X^Y$.

Misalkan $X = \{x_1, x_2, ..., x_n\}$,

maka

$$[T_1]_X^Y = ([T_1(x_1)]_Y [T_1(x_2)]_Y \cdots [T_1(x_n)]_Y).$$

Karena $T_1 = T_2$, maka $\forall i = 1, 2, ..., n$, $T_1(x_i) = T_2(x_i)$.

Maka

$$[T_1]_X^Y = ([T_1(x_1)]_Y [T_1(x_2)]_Y \cdots [T_1(x_n)]_Y)$$

$$= ([T_2(x_1)]_Y [T_2(x_2)]_Y \cdots [T_2(x_n)]_Y)$$

$$= [T_2]_Y^Y$$

artinya $\varphi(T_1) = \varphi(T_2)$.

Jadi, $\varphi: Hom_F(V, W) \to M_{m \times n}(F)$ merupakan suatu pemetaan.

Akan dibuktikan bahwa φ merupakan pemetaan linier.

Ambil $T, S \in Hom_F(V, W)$ dan $\alpha, \beta \in F$, maka

$$\varphi(\alpha T + \beta S) = [\alpha T]_X^Y + [\beta S]_X^Y = \alpha [T]_X^Y + \beta [S]_X^Y = \alpha \varphi(T) + \beta \varphi(S).$$

Jadi, $\varphi: Hom_F(V,W) \to M_{m \times n}(F)$ merupakan suatu pemetaan linier.

Akan ditunjukan φ satu-satu.

Akan ditunjukan $ker(\varphi) = \{0\}$. Karena $0 \in Hom_F(V, W)$, maka $\{0\} \subseteq ker(\varphi)$.

Akan ditunjukan $ker(\varphi) \subseteq \{0\}.$

Ambil $T \in ker(\varphi) \subseteq Hom_F(V, W)$.

Maka,

$$0 = \varphi(T) = [T]_X^Y = ([T(x_1)]_Y [T(x_2)]_Y \cdots [T(x_n)]_Y).$$

Tulis

$$T(x_i) = 0 \cdot y_1 + \dots + 0 \cdot y_m = 0, \quad \forall i = 1, \dots, n.$$

Akibatnya, $T:V\to W$ adalah pemetaan nol, T=0. Jadi, φ satu-satu.

Akan ditunjukan bahwa φ pada.

Ambil sembarang $M \in M_{m \times n}(F)$.

Tulis

$$M = \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{m1} & m_{m2} & \cdots & m_{mn} \end{pmatrix}.$$

Misalkan $X=\{x_1,x_2,...,x_n\}$ dan $Y=\{y_1,y_2,...,y_m\}$ basis terurut bagi V dan W. Tinjau suatu $T:V\to W$ pemetaan linier yang didefinisikan dengan peta dari basis V, yakni

$$T(x_i) = \sum_{j=1}^{m} m_{ji} y_i, \quad \forall i = 1, ..., n$$

Maka,

$$[T(x_i)]_Y = \begin{pmatrix} m_{1i} \\ m_{2i} \\ \vdots \\ m_{mi} \end{pmatrix} \quad \forall i = 1, 2, ..., n$$

sehingga

$$M = ([T(x_1)]_Y [T(x_2)]_Y \cdots [T(x_n)]_Y)$$

= $[T]_X^Y$.

Jadi, terdapat $T\in Hom_F(V,W)$ sehingga $M=\varphi(T)=[T]_X^Y.$ Dengan demikian, φ pada.

Catatan:

1. Buktikan bahwa $Hom_F(V, W)$ adalah ruang vektor atas F.

Jawab. Misalkan V dan W ruang vektor atas F.

Akan dibuktikan bahwa $\operatorname{Hom}_F(V,W)$ merupakan ruang vektor atas F.

Ambil $T, U \in Hom_F(V, W)$.

Maka, $\forall x, y \in V$ dan $\alpha \in F$ berlaku :

$$(T+U)(\alpha x + y) = T(\alpha x + y) + U(\alpha x + y)$$

$$= T(\alpha x) + T(y) + U(\alpha x) + U(y)$$

$$= \alpha T(x) + T(y) + \alpha U(x) + U(y)$$

$$= \alpha T(x) + \alpha U(x) + T(y) + U(y)$$

$$= \alpha (T+U)(x) + (T+U)(y)$$

Jadi, $T + U \in Hom_F(V, W)$.

Perhatikan bahwa untuk $\alpha \in F$ berlaku

$$(\alpha T)(x+y) = \alpha T(x+y)$$
$$= \alpha (T(x) + T(y))$$
$$= \alpha T(x) + \alpha T(y)$$

Jadi, $\alpha T \in Hom_F(V, W)$.

Misal T_0 adalah pemetaan nol.

Jelas bahwa $T_0 \in Hom_F(V, W)$.

Ambil $T, U, Z \in Hom_F(V, W)$ dan $\alpha, \beta \in F$.

Untuk setiap $x \in V$ berlaku

1.)

$$(T+U)(x) = T(x) + U(x)$$
$$= U(x) + T(x)$$
$$= (U+T)(x)$$

2.)

$$(T+U)(x) + Z(x) = (T(x) + U(x) + Z(x))$$

= $T(x) + (U(x) + Z(x))$
= $T(x) + (U+Z)(x)$

3.)
$$(T+T_0)(x) = T(x) + T_0(x) = T(x) + 0_w = T(x)$$

4.)

$$(T + (-T))(x) = T(x) + (-T(x)) = T(x) + T(-x) = T(x - x) = T(0_v) = 0_w = T_0.$$

5.) $1 \cdot T(x) = T(1 \cdot x) = T(x).$

6.)
$$(\alpha \beta) T(x) = \alpha(\beta T)(x).$$

7.)
$$\alpha(T+U)(x) = \alpha(T(x)+U(x)) = (\alpha T)(x) + (\alpha U)(x) = (\alpha T + \alpha U)(x).$$

8.)
$$(\alpha + \beta)T(x) = (\alpha + \beta)(T(x)) = \alpha T(x) + \beta T(x) = (\alpha T)(x) + (\beta T)(x).$$

Jadi, $Hom_F(V, W)$ adalah ruang vektor atas F.

2. Misalkan V ruang vektor atas F, dim(V)=n, $X=\{x_1,x_2,...,x_n\}$ basis bagi V, dan $T\in End(V)$ artinya $T:V\to V$. Diketahui $\varphi:End(V)\to M_n(F)$ didefinisikan oleh $T\mapsto [T]_X$ untuk setiap $T\in End(V)$. Tunjukkan bahwa φ satu-satu, dan φ pada. (Catatan $:End(V)=Hom_F(V,V)$).

Jawab. Misalkan V ruang vektor atas F.

Definisikan $End(V) = \{T \text{ pemetaan linier } | T: V \rightarrow V\}.$

Misalkan X basis bagi V, dan dim(V) = n.

Definisikan

$$\varphi: End(V) \to M_n(F)$$

$$T \mapsto [T]_X$$

Akan dibuktikan φ merupakan suatu pemetaan.

Ambil $T_1, T_2 \in End(V)$ dengan $T_1 = T_2$.

Artinya untuk setiap $v \in V$, $T_1(v) = T_2(v)$.

Akan dibuktikan $\varphi(T_1) = \varphi(T_2)$.

Perhatikan bahwa $\varphi(T_1) = [T_1]_X$.

Misalkan $X = \{x_1, x_2, ..., x_n\}$,

maka

$$[T_1]_X = ([T_1(x_1)]_X [T_1(x_2)]_X \cdots [T_1(x_n)]_X).$$

Karena $T_1=T_2$, maka $\forall i=1,2,...,n$, $T_1(x_i)=T_2(x_i)$.

Maka

$$[T_1]_X = ([T_1(x_1)]_X [T_1(x_2)]_X \cdots [T_1(x_n)]_X)$$

$$= ([T_2(x_1)]_X [T_2(x_2)]_X \cdots [T_2(x_n)]_X)$$

$$= [T_2]_X$$

artinya $\varphi(T_1) = \varphi(T_2)$.

Jadi, $\varphi: End(V) \to M_n(F)$ merupakan suatu pemetaan.

Akan dibuktikan bahwa φ merupakan pemetaan linier.

Ambil $T, S \in End(V)$ dan $\alpha, \beta \in F$, maka

$$\varphi(\alpha T + \beta S) = [\alpha T]_X + [\beta S]_X = \alpha [T]_X + \beta [S]_X = \alpha \varphi(T) + \beta \varphi(S).$$

Jadi, $\varphi: End(V) \to M_n(F)$ merupakan suatu pemetaan linier.

Akan ditunjukan φ satu-satu.

Akan ditunjukan $ker(\varphi) = \{0\}$. Karena $0 \in End(V)$, maka $\{0\} \subseteq ker(\varphi)$.

Akan ditunjukan $ker(\varphi) \subseteq \{0\}$.

Ambil $T \in ker(\varphi) \subseteq End(V)$.

Maka,

$$0 = \varphi(T) = [T]_X = ([T(x_1)]_X [T(x_2)]_X \cdots [T(x_n)]_X).$$

Tulis

$$T(x_i) = 0 \cdot x_1 + \dots + 0 \cdot x_n = 0, \quad \forall i = 1, \dots, n.$$

Akibatnya, $T:V\to V$ adalah pemetaan nol, T=0. Jadi, φ satu-satu.

Akan ditunjukan bahwa φ pada.

Ambil sembarang $M \in M_n(F)$.

Tulis

$$M = \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{pmatrix}.$$

Misalkan $X = \{x_1, x_2, ..., x_n\}$ basis terurut bagi V.

Tinjau suatu $T:V\to V$ pemetaan linier yang didefinisikan dengan peta dari basis V, yakni

$$T(x_i) = \sum_{j=1}^{n} m_{ji} x_i, \quad \forall i = 1, ..., n$$

Maka,

$$[T(x_i)]_X = \begin{pmatrix} m_{1i} \\ m_{2i} \\ \vdots \\ m_{ni} \end{pmatrix} \quad \forall i = 1, 2, ..., n$$

sehingga

$$M = ([T(x_1)]_X [T(x_2)]_X \cdots [T(x_n)]_X)$$

= $[T]_X$.

Jadi, terdapat $T\in End(V)$ sehingga $M=\varphi(T)=[T]_X.$ Dengan demikian, φ pada.

Corollary 1. Misalkan V dan W ruang vektor berdimensi hingga, dim(V)=n, dan dim(W)=m. Maka, $Hom_F(V,W)$ berdimensi hingga dan $dim(Hom_F(V,W))=mn$.

Bukti. Latihan.

Definisi. Misalkan V ruang vektor berdimensi hingga atas F, dan X basis terurut dari V. Representasi standar dari V terhadap X adalah pemetaan $f:V\to F^n$ yang didefinisikan oleh $f(v)=[v]_X$ untuk setiap $v\in V$. Ada yang menuliskan f dengan ϕ_X .

Teorema 2.21. Untuk setiap ruang vektor V berdimensi hingga dan $X = \{x_1, x_2, ..., x_n\}$ basis terurut dari V, maka f (atau ϕ_X) suatu isomorfisma.

Bukti. Amvil $v \in V$. Tulis

$$v = \sum_{i=1}^{n} a_i x_i$$

untuk suatu $a_i \in F$, $\forall i = 1, 2, ..., n$. Maka,

$$[v]_X = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}.$$

Definisikan

$$f: V \to F^n$$
$$v \mapsto [v]_X.$$

Ambil $v_1, v_2 \in V$ dan $v_1 = v_2$. Tulis

$$v_1 = \sum_{i=1}^n \alpha_i x_i$$

dan

$$v_2 = \sum_{i=1}^n \beta_i x_i$$

untuk suatu $\alpha_i, \beta_i \in F$, $\forall i=1,2,...,n.$

Haruslah $\alpha_i = \beta_i$.

Maka,

$$[v_1]_X = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = [v_2]_X.$$

 ${\sf Jadi},\ f:V\to F^n\ {\sf suatu\ pemetaan}.$

Ambil $k_1, k_2 \in F$. Maka,

$$f(k_1v_1 + k_2v_2) = [k_1v_1 + k_2v_2]_X$$

$$= [k_1v_1]_X + [k_2v_2]_X$$

$$= k_1[v_1]_X + k_2[v_2]_X$$

$$= k_1f(v_1) + k_2f(v_2).$$

Jadi, $f:V\to F^n$ suatu pemetaan linier.

Ambil $v \in ker(f)$. Tulis

$$v = \sum_{i=1}^{n} \alpha_i x_i$$

untuk suatu $\alpha_i \in F$, $\forall i = 1, 2, ..., n$.

Jelas bahwa $\{0\} \in ker(f)$ sehingga $\{0\} \subseteq ker(f)$.

Perhatikan bahwa

$$0_V = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = f(v) = [v]_X = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

maka $\alpha_i = 0$, $\forall i = 1, 2, ..., n$. sehingga

$$v = \sum_{i=1}^{n} \alpha_i x_i = 0_v.$$

artinya $ker(f) \subseteq \{0\}$. Jadi, $f: V \to F^n$ suatu pemetaan linier satu-satu.

Ambil $w \in F^n$. Tulis

$$w = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Maka, terdapat $v = \sum_{i=1}^{n} \alpha_i x_i \in V$. sedemikian sehingga $w = [v]_X = f(v)$.

Jadi, $f: V \to F^n$ suatu pemetaan linier pada.

Dengan demikian, karena f pemetaan linier satu-satu dan pada maka f suatu isomorfisma.

2.5 Matriks Penyajian dan Perubahan Basis

Teorema 2.22. Misalkan V ruang vektor. Misalkan X dan X' dua basis terurut dari V, dan misalkan $Q = [I_V]_{X'}^X$. Maka

- (a) $Q = [I_V]_{X'}^X$ dapat dibalik.
- (b) Untuk setiap $v \in V$, $[v]_X = Q[v]_{X'} = [I_V]_{X'}^X[v]_{X'}$.

Bukti. (a) Karena I_V dapat dibalik, maka Q dapat dibalik berdasarkan Teorema 2.18. Kita telah mengetahui bahwa $[I_V]_{X'}^X = [I]_{X'}^X$.

Pandang

$$[I]_{X'}^{X}[I]_{X'}^{X'} = [I \circ I]_{X'}^{X'} = [I]_{X'} = I$$

dan

$$[I]_X^{X'}[I]_{X'}^X = [I \circ I]_X^X = [I]_X = I.$$

Jadi, Q dapat dibalik, artinya $([I]_{X'}^X)^{-1} = [I^{-1}]_X^{X'}.$

(b) Untuk setiap $v \in V$,

$$[v]_X = [I_V(v)]_X = [I_V]_{X'}^X [v]_{X'} = Q[v]_{X'}.$$

berdasarkan Teorema 2.14.

Teorema 2.23. Misalkan V ruang vektor, X dan X' basis terurut dari V, dan $T:V\to V$ pemetaan linier. Misalkan Q adalah matriks perubahan dari X' ke X. Maka

$$[T]_{X'} = Q^{-1}[T]_X Q$$

 $\operatorname{dengan}\, Q = [I_V]_{X'}^X \, \operatorname{dan}\, Q^{-1} = [I_V]_X^{X'}.$

Bukti. Misalkan $I: V \to V$. Maka, T = IT = TI sehingga

$$Q[T]_{X'} = [I]_{X'}^{X}[T]_{X'}^{X'} = [I \circ T]_{X'}^{X} = [T \circ I]_{X'}^{X} = [T]_{X}^{X}[I]_{X'}^{X} = [T]_{X}Q.$$

Karena itu,

$$[T]_{X'} = Q^{-1}[T]_X Q$$

dan

$$[T]_X = Q[T]_{X'}Q^{-1}.$$

Definisi. Misalkan $A,B \in M_{n \times n}(F)$. Kita katakan B similar dengan A jika terdapat matriks Q yang dapat dibalik sedemikian sehingga $B = Q^{-1}AQ$.

Bab 3

Matriks

Dipelajari sendiri.

Bab 4

Determinan

Sifat-sifat determinan adalah sebagai berikut.

1. Jika B adalah matriks yang diperoleh dari pertukaran setiap dua baris atau pertukaran setiap dua kolom dari matriks A berukuran $n \times n$, maka

$$det(B) = det(A)$$
.

2. Jika B adalah matriks yang diperoleh dari perkalian tiap entri dari suatu baris atau kolom dari matriks A berukuran $n \times n$ dengan skalar k, maka

$$det(B) = k \cdot det(A)$$
.

3. Jika B adalah matriks yang diperoleh dengan menjumlahkan setiap entri dari suatu baris atau kolom dari matriks A berukuran $n \times n$ dengan skalar k kali entri baris atau kolom lainnya di A, maka

$$det(B) = det(A)$$
.

- 4. Determinan dari matriks segitiga atas adalah perkalian dari entri diagonalnya. Dalam hal ini, $\det(I)=1$.
- 5. Jika dalam suatu matriks terdapat dua baris atau dua kolom yang identik, maka determinan matriks tersebut nol.
- 6. Misalkan A dan B matriks berukuran $n \times n$, maka

$$det(AB) = det(A) \cdot det(B).$$

7. Misalkan A matriks berukuran $n \times n$. Maka, A dapat dibalik (punya invers) jika dan hanya jika $det(A) \neq 0$. Selanjutnya, jika A^{-1} adalah invers dari A, maka

$$det(A^{-1}) = \frac{1}{det(A)}.$$

8. Untuk setiap matriks A berukuran $n \times n$, maka

$$det(A) = det(A^t).$$

9. Jika A dan B similiar, maka

$$det(A) = det(B)$$
.

Bab 5

Diagonalisasi

5.1 Nilai Eigen dan Vektor Eigen

Definisi. Misalkan V ruang vektor, dan $T:V\to V$ pemetaan linier. Maka, T dapat di diagonalkan jika terdapat basis terurut X dari V sedemikian sehingga $[T]_X$ matriks diagonal.

Definisi. Misalkan V ruang vektor, dan $T:V\to V$ pemetaan linier. Suatu vektor tak nol $x\in V$ disebut **vektor eigen** dari T jika terdapat suatu λ sedemikian sehingga $T(x)=\lambda x$ dan λ disebut **nilai eigen** yang berkorespondensi dengan vektor eigen x.

Catatan:

1. Misalkan $A_{n\times n}(F)$. Jika $A(x)=\lambda x$ untuk suatu $x\in F^n$, $x\neq 0$, dan $\lambda\in F$, maka x disebut vektor eigen dari A yang berkorespondensi dengan nilai eigen λ .

Teorema 5.1. Misalkan V ruang vektor berdimensi hingga, dan $T:V\to V$ pemetaan linier. T dapat didiagonalkan jika dan hanya jika terdapat basis terurut X dari V yang terdiri dari vektor-vektor eigen. Selanjutnya, jika T dapat didiagonalkan,

 $X = \{x_1, x_2, ..., x_n\}$ basis terurut yang terdiri dari vektor eigen dari T, dan $A = [T]_X$, maka A adalah matriks diagonal dan A_{ii} adalah nilai eigen yang berkorespondensi dengan v_i untuk i = 1, 2, ..., n.

Bukti. Latihan

Teorema 5.2. Misalkan $A \in M_{n \times n}(F)$. Maka, λ adalah nilai eigen dari A jika dan hanya jika $det(A - \lambda I_n) = 0$.

Bukti. Suatu λ adalah nilai eigen dari A jika dan hanya jika terdapat vektor tak nol $x \in F^n$

sedemikian sehingga $A(x)=\lambda x$ artinya $(A-\lambda I_n)(x)=0$. Berdasarkan Teorema 2.5, $(A-\lambda I_n)(x)=0$ benar jika dan hanya jika $(A-\lambda I_n)$ tidak punya invers sehingga $det(A-\lambda I_n)=0$.

Definisi. Misalkan $A \in M_{n \times n}(F)$. Maka, polinom $f(t) = det(A - \lambda I_n)$ adalah polinom karakteristik dari A.

Definisi. Misalkan V ruang vektor, X basis terurut dari V, dan $T:V\to V$ pemetaan linier. Kita definisikan **polinom karakteristik** f(t) dari T adalah polinom karakteristik dari $A=[T]_X$ sehingga

$$f(t) = \det(A - tI_n).$$

Teorema 5.3. Misalkan $A \in M_{n \times n}(F)$.

- (a) Polinom karakteristik dari A adalah polinom berderajat n dengan diawali koefisien $(-1)^n$.
- (b) A memiliki paling banyak n nilai eigen berbeda.

Bukti. Latihan.

Teorema 5.4. Misalkan V ruang vektor, dan $T:V\to V$ pemetaan linier, dan misalkan λ nilai eigen dari T. Suatu vektor $x\in V$ adalah nilai eigen dari T yang berkorespondensi dengan λ jika dan hanya jika $x\neq 0$ dan $x\in ker(T-\lambda I)$.

Bukti. (\Rightarrow) Berdasarkan definisi, bahwa x adalah vektor eigen dari T yang berkoresponensi dengan λ artinya $T(x) = \lambda x$ dan $x \neq 0$. Kita peroleh

$$T(x) - \lambda(x) = (T - \lambda I)x = 0$$

 $dan v \in ker(T - \lambda I).$

 (\Leftarrow) Jika $x \neq 0$ dan $x \in ker(T - \lambda I)$, berdasarkan definisi kita mempunyai $T(x) = \lambda x$.

Catatan:

- 1. Banyaknya kemunculan nilai eigen dalam polinom karakteristik disebut dengan multiplisitas aljabar dari λ dan dilambangkan dengan $m_a(\lambda)$.
- 2. Dimensi dari ruang eigen disebut multiplisitas geometri dari λ dan dilambangkan dengan $m_g(\lambda)$.
- 3. $p(\lambda)=det(A-\lambda I)$ adalah polinom karakteristik dari A jika dan hanya jika $\lambda\in F$ nilai eigen dari T jika dan hanya jika $p(\lambda)=det(T-\lambda I)$ adalah polinom karakteristik dari T.(Bukti : Latihan).
- 4. Misalkan $T:V\to V$ pemetaan linier. Maka, $\lambda=0$ adalah nilai eigen dari T jika dan hanya jika T tidak satu-satu. (Bukti : Latihan).

5.2 Diagonalisasi

Teorema 5.5. Misalkan V ruang vektor, $T:V\to V$ pemetaan linier, $\lambda_1,\lambda_2,...,\lambda_n$ nilai eigen berbeda dari T, dan $E(\lambda_i)$ ruang eigen dari T. Jika $x_i\in E(\lambda_i)$, $x_i\neq 0$, x_i nilai eigen berbeda dari T sedemikian sehingga λ_i berkorespodensi dengan x_i , $\forall i=1,2,...,n$, maka $\{x_1,x_2,...,x_n\}$ bebas linier.

Bukti. Akan digunakan induksi matematika pada n. Untuk n=1, jelas $\{x_1\}$ bebas linier. Misal benar untuk n=k-1. Akan dibuktikan benar untuk n=k. Pandang kombinasi linier $0_v=\sum\limits_{i=1}^k\alpha_ix_i$ untuk suatu $\alpha_i\in F$, $\forall i=1,2,...,k$. Maka,

$$\begin{aligned} 0_v &= (T - \lambda_k I_V)(0_v) \\ &= (T - \lambda_k I_V) \left(\sum_{i=1}^k \alpha_i x_i \right) \\ &= \sum_{i=1}^k \alpha_i (T - \lambda_k I_V)(x_i) \\ &= \sum_{i=1}^{k-1} \alpha_i (T - \lambda_k I_V)(x_i) + \alpha_k (T - \lambda_k I_V)(x_k) \\ &= \sum_{i=1}^{k-1} \alpha_i (T - \lambda_k I_V)(x_i) + \alpha_k (T(x_k) - \lambda_k I_V(x_k)) \\ &= \sum_{i=1}^{k-1} \alpha_i (T - \lambda_k I_V)(x_i) + \alpha_k (\lambda_k x_k - \lambda_k x_k) \\ &= \sum_{i=1}^{k-1} \alpha_i (T - \lambda_k I_V)(x_i) + 0 \\ &= \sum_{i=1}^{k-1} \alpha_i (T - \lambda_k I_V)(x_i) \\ &= \sum_{i=1}^{k-1} (T - \lambda_k I_V)(\alpha_i x_i) \\ &= \sum_{i=1}^{k-1} T(\alpha_i x_i) - \sum_{i=1}^{k-1} \lambda_k I_V(\alpha_i x_i) \\ &= \sum_{i=1}^{k-1} \alpha_i \lambda_i x_i - \sum_{i=1}^{k-1} \lambda_k \alpha_i x_i \\ &= \sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) x_i. \end{aligned}$$

Menurut hipotesis induksi, $\{x_1,x_2,...,x_{k-1}\}$ bebas linier, karena λ_i semua berbeda maka $(\lambda_i-\lambda_k)\neq 0$ untuk i=1,2,...,k-1, haruslah $\alpha_1=\alpha_2=\cdots=\alpha_{k-1}=0$, kemudian substitusikan pada $0_v=\sum\limits_{i=1}^k\alpha_ix_i$ diperoleh

$$0_v = \sum_{i=1}^k \alpha_i x_i$$

$$= \sum_{i=1}^{k-1} \alpha_i x_i + \alpha_k x_k$$

$$= \sum_{i=1}^{k-1} 0 \cdot x_i + \alpha_k x_k$$

$$= 0 + \alpha_k x_k = \alpha_k x_k.$$

Karena $x_k \neq 0$, haruslah $\alpha_k = 0$. Jadi, $\{x_1, x_2, ..., x_n\}$ bebas linier.

Corollary 1. Misalkan V ruang vektor, dim(V) = n, dan $T: V \to V$ pemetaan linier. Jika T memiliki n buah vektor bebas linier dan n buah nilai eigen yang berbeda, maka T dapat didiagonalkan.

Bukti. Misalkan $X = \{x_1, x_2, ..., x_n\}$ bebas linier.

Karena dim(V) = n, maka X suatu basis bagi V.

Misalkan x_i berkorespondensi dengan nilai eigen λ_i , $\forall i = 1, 2, ..., n$.

Perhatikan bahwa

$$[T]_X = ([T(x_1)]_X [T(x_2)]_X \cdots [T(x_n)]_X)$$

$$= ([\lambda_1 x_1]_X [\lambda_2 x_2]_X \cdots [\lambda_n x_n]_X)$$

$$= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Jadi, T dapat didiagonalkan.

Definisi. Polinom f(t) di P(F) splits (dapat dituliskan menjadi faktor-faktor linier) atas F jika terdapat skalar $c, a_1, a_2, ..., a_n$ (tidak semuanya berbeda) di F sedemikian sehingga

$$f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n).$$

Teorema 5.6. Untuk setiap operator linier yang dapat didiagonalkan, polinom karakteristiknya splits.

Bukti. Misalkan T operator linier yang dapat didiagonalkan pada ruang vektor V berdimensi n, dan misalkan X basis terurut dari V sedemikian sehingga $[T]_X = D$ adalah matriks diagonal.

Perhatikan bahwa

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

dan misalkan f(t) polinom karakteristik dari T. Maka,

$$f(t) = det(D - tI) = det \begin{pmatrix} \lambda_1 - t & 0 & \cdots & 0 \\ 0 & \lambda_2 - t & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n - t \end{pmatrix}$$
$$= (\lambda_1 - t)(\lambda_2 - t) \cdots (\lambda_n - t) = (-1)^n (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n).$$

Definisi. Misalkan λ nilai eigen dari operator linier atau mariks dengan polinom karakteristik f(t). Multiplisitas aljabar dari λ adalah bilangan bulat positif terbesar k dengan $(t - \lambda)^k$ adalah faktor dari dari f(t).

Catatan:

Banyaknya kemunculan nilai eigen dalam polinom karakteristik disebut dengan multiplisitas aljabar dari λ dan dilambangkan dengan $m_a(\lambda)$.

Definisi. Misalkan V ruang vektor, $T:V\to V$ pemetaan linier, dan λ nilai eigen dari T. Didefinisikan $E(\lambda)=\{x\in V:T(x)=\lambda x\}=ker(T-\lambda I_V)$. Himpunan $E(\lambda)$ disebut **ruang eigen** dari T yang berkorespondensi dengan nilai eigen λ .

Catatan:

Misalkan $E(\lambda)=\{x\in V: T(x)=\lambda x \text{ untuk suatu }\lambda\in F\}$ adalah ruang eigen. Buktikan bahwa $E(\lambda)$ subruang dari V.

Bukti. Menurut definisi, jelas bahwa $E(\lambda)\subseteq V$. Karena $T(0_v)=0_v=\lambda 0_v$, maka $0_v\in E(\lambda)$ artinya $E(\lambda)\neq 0$. Ambil $x_1,x_2\in E(\lambda)$ dan $k_1,k_2\in F$, artinya $T(x_1)=\lambda x_1$ dan $T(x_2)=\lambda x_2$.

Akan ditunjukan bahwa $k_1x_1 + k_2x_2 \in E(\lambda)$. Maka,

$$T(k_1x_1 + k_2x_2) = T(k_1x_1) + T(k_2x_2)$$

$$= k_1T(x_1) + k_2T(x_2)$$

$$= k_1\lambda x_1 + k_2\lambda x_2$$

$$= \lambda(k_1x_1 + k_2x_2).$$

Jadi, $k_1x_1 + k_2x_2 \in E(\lambda)$.

Dengan demikian, $E(\lambda)$ merupakan subruang dari V.

Teorema 5.7. Misalkan V ruang vektor, $T:V\to V$ pemetaan linier, dan λ nilai eigen dari T yang memiliki multiplisitas m. Maka, $1\leq dim(E(\lambda))\leq m$.

Bukti. Pilih $\{x_1,x_2,...,x_k\}$ basis dari $E(\lambda)$. Perluas $\{x_1,x_2,...,x_n\}$ menjadi $X=\{x_1,x_2,...,x_k,x_{k+1},...,x_n\}$ basis bagi V, dan misalkan $A=[T]_X$.

Perhatikan bahwa x_i (i=1,2,...,k) adalah vektor eigen dari T yang berkorespondensi dengan λ , dan karena itu,

$$A = \begin{pmatrix} \lambda I_k & B \\ O & C \end{pmatrix}.$$

sehingga polinom karakteristik dari T adalah

$$f(t) = det(A - tI_n) = det \begin{pmatrix} (\lambda - t)I_k & B \\ O & C - tI_{n-k} \end{pmatrix}$$
$$= det((\lambda - t)I_k)det(C - tI_{n-k})$$
$$= (\lambda - t)^k q(t),$$

dimana g(t) adalah polinom. Karena itu, $(\lambda - t)^k$ adalah faktor dari f(t) sehingga multiplisitas dari λ paling sedikit k. Tetapi $dim(E(\lambda)) = k$ sehingga $dim(E(\lambda)) \leq m$.

Lemma. Misalkan V ruang vektor, $T:V\to V$ pemetaan linier, dan misalkan $\lambda_1,\lambda_2,...,\lambda_n$ nilai eigen berbeda dari T. Untuk setiap i=1,2,..,n, misalkan $x_i\in E(\lambda_i)$ yang berkorespondensi dengan nilai eigen λ_i .

Jika

$$x_1 + x_2 + \dots + x_n = 0,$$

maka $x_i = 0$, $\forall i = 1, ..., n$.

Bukti. Misalkan $1 \le m \le n$, kita mempunyai $x_i \ne 0$ untuk i = 1, ..., m, dan $x_i = 0$ untuk i > m. Maka, untuk setiap i = 1, 2, ..., m, kita dapatkan x_i adalah nilai eigen dari T yang

berkorespondensi dengan λ_i , dan

$$x_1 + x_2 + \dots + x_m = 0.$$

Tetapi ini kontradiksi dengan Teorema 5.5 yang mana x_i bebas linier. Karena itu, kita simpulkan bahwa $x_i = 0$ untuk setiap i = 1, ..., n.

Teorema 5.8. Misalkan V ruang vektor, $T:V\to V$ pemetaan linier, $\lambda_1,\lambda_2,...,\lambda_k$ nilai eigen berbeda dari T, dan $E(\lambda_i)$ ruang eigen dari T untuk i=1,...,k. Misalkan pula $S_i\subseteq E(\lambda_i)$, $\forall i=1,...,k$ dengan S_i himpunan bebas linier. Maka, $S=S_1\cup S_2\cup\cdots S_k$ himpunan bebas linier.

Bukti. Misalkan $S_i = \{x_{i1}, x_{i2}, ..., x_{in_i}\}$. Pandang kombinasi linier

$$0_{V} = \alpha_{11}x_{11} + \dots + \alpha_{1n_{1}}x_{1n_{1}} + \alpha_{21}x_{21} + \dots + \alpha_{2n_{2}}x_{2n_{2}}$$

$$\vdots + \alpha_{k1}x_{k1} + \dots + \alpha_{kn_{k}}x_{kn_{k}}.$$

Perhatikan bahwa

$$v_{1} = \alpha_{11}x_{11} + \dots + \alpha_{1n_{1}}x_{1n_{1}}$$

$$v_{2} = +\alpha_{21}x_{21} + \dots + \alpha_{2n_{2}}x_{2n_{2}}$$

$$\vdots$$

$$v_{k} = \alpha_{k1}x_{k1} + \dots + \alpha_{kn_{k}}x_{kn_{k}}.$$

Maka, $0_v = x_1 + x_2 + \cdots + x_k$, $x_i \in E(\lambda_i)$.

Karena $\{v_1, v_2, ..., v_k\}$ bebas linier menurut Teorema 5.5, maka haruslah $x_i = 0$, $\forall i = 1, 2, ..., k$

maka

$$0 = v_i = \alpha_{i1}x_{i1} + \cdots + \alpha_{in_i}x_{in_i}.$$

Karena $\{x_{i1}, x_{i2}, ..., x_{in_i}\}$ bebas linier, maka haruslah $\alpha_{ij} = 0$, $\forall i = 1, ..., n$ dan $j = 1, ..., n_i$.

Jadi, S bebas linier.

Teorema 5.9. Misalkan V ruang vektor, dim(V) = n, $T: V \to V$ pemetaan linier sedemikian sehingga polinom karakteristik T split. Misalkan pula $\lambda_1, \lambda_2, ..., \lambda_k$ nilai eigen berbeda dari T. Maka pernyataan berikut ekivalen artinya $(1) \Rightarrow (2) \Rightarrow (1)$:

- (1.) T dapat didiagonalkan jika $m_a(\lambda_i) = m_q(\lambda_i)$ untuk setiap i.
- (2.) Jika T dapat didiagonalkan dan X_i basis terurut dari $E(\lambda_i)$ untuk setiap i, maka $X = \bigcup_{i=1}^{n} X_i = X_1 \cup X_2 \cup \cdots X_k$ adalah basis terurut bagi V yang memuat vektor-vektor eigen dari T.

Bukti. $(1) \Rightarrow (2)$

Misalkan $m_a(\lambda_i) = m_g(\lambda_i)$ untuk setiap i, dan X_i suatu basis terurut dari $E(\lambda_i)$ dimana $X_i = \{X_{i1}, ..., X_{id_i}\} \text{ dan } |X_i| = d_i.$

Misalkan $m_a(\lambda_i) = m_i$ dan $m_g(\lambda_i) = d_i$ untuk setiap i.

Maka $n=\sum\limits_{i=1}^k m_i=\sum\limits_{i=1}^k d_i$ sehingga kita peroleh $X=\bigcup\limits_{i=1}^k X_i$ bebas linier. Karena dim(V)=n dan |X|=n, maka X suatu basis bagi V.

Pandang

$$[T]_{X} = ([T(x_{11})]_{X} [T(x_{22})]_{X} \cdots [T(x_{kd_{k}})]_{X})$$

$$= ([\lambda_{1}x_{11}]_{X} [\lambda_{2}x_{22}]_{X} \cdots [\lambda_{k}x_{kd_{k}})]_{X})$$

$$= (\lambda_{1}[x_{11}]_{X_{1}} \lambda_{2}[x_{22}]_{X_{2}} \cdots \lambda_{k}[x_{kd_{k}})]_{X_{k}})$$

$$= \begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{k} \end{pmatrix}.$$

$$(2) \Rightarrow (1)$$

Misalkan T dapat didiagonalkan maka terdapat basis terurut β sehingga $|T|_{\beta}$ matriks diagonal artinya $x \in \beta$ adalah vektor-vektor eigen dari T.

Misalkan $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ dengan $\beta_i \in E(\lambda_i)$ basis terurut dari $E(\lambda_i)$.

Misalkan $m_a(\lambda_i)=m_i$ dan $m_g(\lambda_i)=d_i$ untuk setiap i, artinya polinom karakteristik daari T adalah $p(\lambda)=(\lambda-\lambda_1)^{m_1}(\lambda-\lambda_2)^{m_2}\cdots(\lambda-\lambda_k)^{m_k}$ maka $\sum\limits_{i=1}^k m_i=n=\sum\limits_{i=1}^k d_i$ artinya

$$\sum_{i=1}^{k} (m_i - d_i) = 0.$$

Ingat bahwa $m_q(\lambda_i) \leq m_a(\lambda_i)$ maka $d_i \leq m_i$ untuk setiap i.

Andaikan terdapat i sehingga $m_i>d_i$ artinya $m_i-d_i>0$ maka terdapat j sedemikian sehingga $m_i - d_j < 0$ artinya $m_j < d_j$. Kontradiksi, maka haruslah $m_i = d_i$ untuk setiap i. Jadi, $m_a(\lambda_i) = m_q(\lambda_i)$.

Definisi. Misalkan $W_1, W_2, ..., W_k$ subruang dari ruang vektor V. Kita definisikan **jumlah** dari subruang adalah himpunan

$$\{v_1 + v_2 + \dots + v_k \mid v_i \in W_i \text{ untuk } i = 1, 2, \dots, k\},\$$

yang dilambangkan dengan $W_1 + W_2 + \cdots + W_k$ atau $\sum_{i=1}^k W_i$.

Definisi. Misalkan V ruang vektor atas F, dan $W_1, W_2, ..., W_k$ subruang dari V. Kita katakan V adalah **tambah langsung** dari subruang $W_1, W_2, ..., W_k$ dan kita tulis $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$, jika

$$V = \sum_{i=1}^{k} W_i = W_1 + W_2 + \dots + W_k$$

dan

$$W_j \cap \sum_{\substack{i=1\\i\neq j}}^k W_i = \{0\}, \quad \forall j = 1, ..., k.$$

Teorema 5.10. Misalkan $W_1, W_2, ..., W_k$ subruang dari ruang vektor V. Maka pernyataan berikut ekivalen.

$$(a) V = \bigoplus_{i=1}^k W_i = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$$

(b) $V=\sum_{i=1}^k W_i$ dan untuk setiap vektor $v_1,v_2,...,v_k$ sedemikian sehingga $v_i\in W_i$ untuk i=1,2,...,k, jika $\sum_{i=1}^k v_i=0$, maka $v_i=0$ untuk setiap i.

- (c) Untuk setiap $v \in V$, penulisan $v = \sum_{i=1}^k v_i$ tunggal untuk $v_i \in W_i$.
- (d) Jika X_i basis terurut bagi W_i maka $\bigcup_{i=1}^k X_i = X_1 \cup X_2 \cup \cdots \cup X_k$ basis terurut bagi V.
- (e) Untuk setiap i=1,2,...,k, maka terdapat X_i basis terurut dari W_i sedemikian sehingga $\bigcup_{i=1}^k X_i = X_1 \cup X_2 \cup \cdots \cup X_k$ basis terurut bagi V.

Bukti. (a) \Rightarrow (b)

Menurut definisi, tulis $V = \sum_{i=1}^{k} W_i$.

Ambil $v_i \in Wi$ dan misalkan $0 = \sum\limits_{i=1}^k v_i \in \sum\limits_{i=1}^k W_i = V$ artinya untuk setiap j

$$-v_j = \sum_{\substack{i=1\\i \neq j}}^k v_i \in W_j \cap \sum_{\substack{i=1\\i \neq j}}^k W_i = \{0\}$$

 $\begin{aligned} & \text{maka } -v_j = 0. \\ & \text{Jadi, } v_i = 0, \ \forall i = 1, 2, ..., k. \end{aligned}$

$$(b) \Rightarrow (c)$$

Ambil $v \in V = \sum_{i=1}^k W_i$. Menurut hipotesis misalkan

$$v = \sum_{i=1}^{k} v_i,$$

 $\forall v_i \in W_i \text{ dengan } i=1,2,...,k \text{ dan }$

$$v = \sum_{i=1}^{k} v_i',$$

 $\forall v_i^{'} \in W_i \text{ dengan } i=1,2,...,k$ maka

$$0 = \sum_{i=1}^{k} (v_i - v_i')$$

sehingga menurut hipotesis kita peroleh $v_i-v_i^{'}=0$. Jadi, $v_i=v_i^{'}$ artinya penulisan v tunggal.

 $(c) \Rightarrow (d)$

Misalkan X_i suatu basis terurut W_i , $\forall i = 1, 2, ..., k$.

Akan dibuktikan bahwa $\bigcup_{i=1}^k X_i$ basis terurut dari V.

Ambil $v \in V$, menurut hipotesis misalkan $v = \sum_{i=1}^k v_i$ dan $v_i \in W_i$ tunggal $\forall i=1,2,...,k$. Tulis

$$v_i = \sum_{j=1}^{k_i} \alpha_{ij} X_{ij}$$

dengan $\alpha_{ij} \in F$, $k_i = dim(W_i)$, dan $X_i = \{X_{i1}, X_{i2}, ..., X_{ik_i}\}$.

Maka,

$$v = \sum_{i=1}^{k} v_i = \sum_{i=1}^{k} \sum_{j=1}^{k_i} \alpha_{ij} X_{ij}$$

secara tunggal.

 $\mathsf{Jadi}, \ \bigcup_{i=1}^k X_i \ \mathsf{basis} \ \mathsf{terurut} \ \mathsf{dari} \ V.$

 $(d) \Rightarrow (e)$

Jelas (diperoleh dari (d)).

 $(e) \Rightarrow (a)$

Akan dibuktikan bahwa $V=\bigoplus_{i=1}^k W_i=W_1\oplus W_2\oplus \cdots \oplus W_k.$

Langkah pertama adalah menunjukkan bahwa $V = \sum\limits_{i=1}^k W_i$ dan

langkah kedua adalah menunjukkan bahwa $W_j \cap \sum_{i=1}^{\kappa} W_i = \{0\}.$

Akan ditunjukkan bahwa $V = \sum_{i=1}^{k} W_i$.

Jelas bahwa $\sum\limits_{i=1}^k W_i \subseteq V.$ Ambil $v \in V.$

Menurut hipotesis, terdapat $X_1, X_2, ..., X_k$ berturut-turut adalah basis terurut dari $W_1, W_2, ..., W_k$ sehingga $\bigcup_{i=1}^{n} X_i$ basis terurut dari V maka

$$v = \sum_{j=1}^{k_i} \alpha_{ij} X_{ij} \in W_1 + W_2 + \dots + W_k$$

 $\operatorname{dengan} \ \alpha_{ij} \in F \text{, } k_i = \dim(W_i) \text{, } \operatorname{dan} \ X_i = \{X_{i1}, X_{i2}, ..., X_{ik_i}\}.$ Jadi, $V = \sum_{i=1}^{\kappa} W_i$.

Akan dibuktikan bahwa $W_j \cap \sum_{i=1}^k W_i = \{0\}.$

Jelas bahwa $\{0\} \subseteq W_j \cap \sum_{\substack{i=1 \ i \neq i}}^{\kappa} W_i$.

Akan dibuktikan bahwa $W_j \cap \sum_{i=1}^k W_i \subseteq \{0\}.$

Ambil $X \subseteq W_j \cap \sum_{i=1}^k W_i$ artinya $X \in W_j$.

Menurut hipotesis, terdapat $X_1,...,X_k$ berturut-turut basis terurut dari $W_1,W_2,...,W_k$ artinya

$$X = \sum_{j=1}^{k_i} \alpha_{ij} X_{ij} = \sum_{\substack{i=1\\i \neq j}}^{k} \sum_{m=1}^{k_i} \alpha_{ij} X_{im}$$

maka

$$0 = \sum_{\substack{i=1\\i\neq j}}^{k} \sum_{m=1}^{k_i} \alpha_{ij} X_{im}.$$

Karena $X = \bigcup_{i=1}^{\kappa} X_i$ basis terurut dari V, haruslah $\alpha_{ij} = 0$, $\forall i, j$. $\text{sehingga } X \overset{\imath-1}{\in} \{0\}.$

Jadi,
$$W_j \cap \sum_{\substack{i=1\\i\neq j}}^k W_i = \{0\}.$$

Dengan demikian, terbukti bahwa $V=\bigoplus_{i=1}^k W_i=W_1\oplus W_2\oplus \cdots \oplus W_k.$

Teorema 5.11. Misalkan V ruang vektor, dan $T:V\to V$. Maka, T dapat didiagonalkan jika dan hanya jika $V=\bigoplus_{i=1}^k E(\lambda_i)=E(\lambda_1)\oplus E(\lambda_2)\oplus \cdots \oplus E(\lambda_k)$ artinya V adalah tambah langsung dari ruang eigen dari T.

 $\textit{Bukti.}\ (\Rightarrow)$ Karena T dapat didiagonalkan, maka terdapat X_i suatu basis teurut dari $E(\lambda_i)$ sehingga $[T]_{\bigcup\limits_{i=1}^k X_i}$ matriks diagonal maka

menurut Teorema 5.10 kita peroleh $V = \bigoplus_{i=1}^k E(\lambda_i)$.

 $(\Leftarrow) \text{ Karena } V = \bigoplus_{i=1}^k E(\lambda_i). \text{ Menurut Teorema 5.10 terdapat basis terurut dari } V \text{ yaitu } \bigcup_{i=1}^k X_i \text{ yang terdiri dari vektor-vektor eigen dari } T. \text{ Jadi, } T \text{ dapat didiagonalkan.} \blacksquare$

Bab 6

Ruang Hasil Kali Dalam

Dalam bab ini kita asumsikan lapangan F adalah \mathbb{R} (real) atau \mathbb{C} (kompleks).

6.1 Hasil Kali Dalam dan Norm

Definisi. Misalkan V ruang vektor atas F (\mathbb{R} atau \mathbb{C}). Pemetaan $\langle -, - \rangle : V \times V \to F$ disebut hasil kali dalam jika $\forall x, y \in V$ dan $\alpha \in F$ memenuhi :

- 1. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
- 2. $\langle \alpha x, z \rangle = \alpha \langle x, z \rangle$.
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$.
- 4. $\langle x, x \rangle > 0$ jika $x \neq 0$.

Definisi. Misalkan $A \in M_{m \times n}(F)$. Didefinisikan konjugat transpose atau adjoin dari A adalah A^* matriks $n \times m$ sedemikian sehingga $(A^*)_{ij} = \overline{A_{ji}}$.

Catatan : Ruang vektor V atas lapangan F yang memenuhi sifat hasil kali dalam disebut sebagai ruang hasil kali dalam.

Jika $F = \mathbb{R}$, maka V disebut ruang hasil kali dalam real.

Jika $F = \mathbb{C}$, maka V disebut ruang hasil kali dalam kompleks.

Jika V ruang hasil kali dalam dengan $\langle x,y \rangle$ untuk suatu $x,y \in V$, $W \subseteq V$, dan W subruang dari V, maka W juga ruang hasil kali dalam dengan $\langle x,y \rangle$ untuk $x,y \in W$.

Teorema 6.1. Misalkan V ruang hasil kali dalam. Maka, untuk $x,y,z\in V$ dan $c\in F$ berlaku :

- 1. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- 2. $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$.

3.
$$\langle x, 0 \rangle = \langle 0, x \rangle = 0$$
.

4.
$$\langle x, x \rangle = 0$$
 jika dan hanya jika $x = 0$.

5. Jika
$$\langle x, y \rangle = \langle x, z \rangle$$
, $\forall x \in V$, maka $y = z$.

$$\textit{Bukti.} \ \ \textbf{(a)} \ \ \langle \, x+y,z \rangle = \overline{\langle \, z,x+y \rangle} = \overline{\langle \, z,x \rangle + \langle \, z,y \rangle} = \overline{\langle \, z,x \rangle} + \overline{\langle \, z,y \rangle} = \langle \, x,z \rangle + \langle \, y,z \rangle.$$

(b)
$$\langle x, cz \rangle = \overline{\langle cz, x \rangle} = \overline{c\langle z, x \rangle} = \overline{c}\langle x, z \rangle$$
.

(c)
$$\langle 0_v, x \rangle = \langle 0_F \cdot y, x \rangle = 0_F \langle y, x \rangle = 0_F$$
. Jadi, $\langle 0_v, x \rangle = 0_F$, $\forall x \in V$.

$$\langle x, 0_v \rangle = \overline{\langle 0_v, x \rangle} = \overline{\langle 0_F \cdot y, x \rangle} = \overline{0_F \langle y, x \rangle} = 0_F \langle x, y \rangle = 0_F.$$

Jadi, terbukti bahwa $\langle x, 0 \rangle = \langle 0, x \rangle = 0$.

(d) Jika x = 0 maka $\langle x, x \rangle = \langle 0, 0 \rangle = 0$.

Jika $x \neq 0$ maka $\langle x, x \rangle > 0$.

Jadi, terbukti bahwa $\langle x, x \rangle = 0$ jika dan hanya jika x = 0.

(e) Misalkan $\langle x, y \rangle = \langle x, z \rangle$, $\forall x \in V$.

Maka,

$$\langle x, y \rangle - \langle x, z \rangle = 0$$

 $\langle x, y - z \rangle = 0$

sehingga kita peroleh $\langle\, y-z,y-z\rangle=0$ dan karena itu y=z.

Jadi, jika
$$\langle x, y \rangle = \langle x, z \rangle$$
, $\forall x \in V$, maka $y = z$.

Definisi. Misalkan V ruang hasil kali dalam. Untuk suatu $x \in V$, kita mendefinisikan **norm** atau **panjang** dari x dengan $||x|| = \sqrt{\langle x, x \rangle}$.

Teorema 6.2. Misalkan V ruang hasil kali dalam atas F. Maka untuk setiap $x,y \in V$ dan $c \in F$ berlaku :

- 1. $||cx|| = |c| \cdot ||x||$.
- 2. ||x|| = 0 jika dan hanya jika x = 0. Dalam hal ini, $||x|| \ge 0$.
- 3. Ketaksamaan Cauchy Schwarz : $\|\langle x, y \rangle\| \le \|x\| \cdot \|y\|$.
- 4. Ketaksamaan Segitiga : $||x + y|| \le ||x|| + ||y||$.

$$\textit{Bukti.} \ \ 1.) \ \ \|cx\| = \sqrt{\langle \, cx, cx \rangle} = \sqrt{c\overline{c}\langle \, x, x \rangle} = \sqrt{|c|^2\langle \, x, x \rangle} = |c|\sqrt{\langle \, x, x \rangle} = |c| \cdot \|x\|.$$

2.) Jika $x \neq 0$ maka ||x|| > 0.

Jika
$$x=0$$
 maka $||x||=\sqrt{\langle\,x,x\rangle}=\sqrt{\langle\,0,0\rangle}=0.$

3.) Untuk y = 0, $|\langle x, 0 \rangle| \le ||x|| \cdot 0$ sehingga $0 \le 0$.

Untuk $y \neq 0$, $c \in F$,

$$0 \le \|x - cy\|^2 = \langle x - cy, x - cy \rangle$$

$$= \langle x, x - cy \rangle - c \langle y, x - cy \rangle$$

$$= \langle x, x \rangle - \overline{c} \langle x, y \rangle - c \langle y, x \rangle + c\overline{c} \langle y, y \rangle, \quad \text{misalkan } c = \frac{\langle x, y \rangle}{\langle y, y \rangle}$$

$$= \langle x, x \rangle - \frac{\langle y, x \rangle \langle x, y \rangle}{\langle y, y \rangle} - \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle} + \frac{\langle x, y \rangle \langle y, x \rangle \langle y, y \rangle}{\langle y, y \rangle \langle y, y \rangle}$$

$$= \langle x, x \rangle - \frac{\langle y, x \rangle \langle x, y \rangle}{\langle y, y \rangle}$$

$$= \langle x, x \rangle - \frac{\langle y, x \rangle \langle x, y \rangle}{\langle y, y \rangle}$$

sehingga

$$0 \le \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}$$
$$= ||x||^2 - \frac{|\langle x, y \rangle|^2}{||y||^*}$$

Jadi, $\|\langle x, y \rangle\| \le \|x\| \cdot \|y\|$. 4.)

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$$

$$= ||x||^{2} + 2\operatorname{Re}\langle x, y \rangle + ||y||^{2}$$

$$\leq ||x||^{2} + 2|\langle x, y \rangle| + ||y||^{2}$$

$$\leq ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}.$$

Definisi. Misalkan V ruang hasil kali dalam.

Vektor x dan y di V adalah ortogonal (perpendicular) jika $\langle x, y \rangle = 0$.

Subhimpunan S dari V adalah ortogonal jika setiap dua vektor berbeda di S adalah ortogonal. Suatu vektor $x \in V$ adalah **vektor satuan** jika ||x|| = 1.

Suatu subhimpunan S dari V adalah **ortonormal** jika S adalah ortogonal dan terdiri dari vektor-vektor satuan artinya $\|x\|=1$.

Catatan:

Misalkan V ruang hasil kali dalam atas F. Misalkan $X = \{x_1, ..., x_n\} \subseteq V$. Maka

- 1. $x \perp y$ jika $\langle x, y \rangle = 0$.
- 2. $x \perp N$ jika $\langle x, n \rangle$, $\forall n \in N$, N ruang vektor.

- 3. $M \perp N$ jika $\langle x, y \rangle = 0$, $\forall x \in M$, dan $y \in N$, M dan N ruang vektor.
- 4. X disebut himpunan ortogonal jika $\langle x_i, x_j \rangle = 0$, $i \neq j$, $\forall i, j = 1, 2, ..., n$.
- 5. ||x|| = 1, maka x vektor satuan.
- 6. X disebut himpunan ortonormal jika X ortogonal dan $\|x_i\|=1$, $\forall i=1,2,...,n$.

Definisi. Misalkan V ruang vektor atas F (\mathbb{R} atau \mathbb{C}). Misalkan V bukan ruang hasil kali dalam. Maka, suatu norm $\|\cdot\|$ di V memenuhi sifat berikut.

Untuk setiap $x,y \in V$ dan $a \in F$:

- 1. $||x|| \ge 0$, dan ||x|| = 0 jika dan hanya jika x = 0.
- 2. $||ax|| = |a| \cdot ||x||$.
- 3. $||x + y|| \le ||x|| + ||y||$.

6.2 Proses Gram-Schmidt dan Komplemen Ortogonal

Definisi. Misalkan V ruang vektor, dan misalkan W_1 dan W_2 subruang dari V sedemikian sehingga $V = W_1 \oplus W_2$. Pemetaan $T: V \to V$ disebut **proyeksi** pada W_1 **sepanjang** W_2 jika $x = x_1 + x_2$ dengan $x_1 \in W_1$ dan $x_2 \in W_2$, kita mempunyai $T(x) = x_1$.

Definisi. Misalkan V ruang hasil kali dalam. Suatu subhimpunan dari V disebut sebagai basis ortonormal bagi V jika subhimpunan tersebut adalah basis terurut yang ortonormal.

Catatan:

Misalkan V ruang hasil kali dalam, dan $\{x_1, x_2, ..., x_n\}$ suatu basis bagi V.

Pilih $y_1 = x_1$. Tulis $W_1 = span\{y_1\}$.

Pilih $y_2 = x_2 - proj_{w_1}x_2$. Tulis $W_2 = span\{y_1, y_2\}$.

Pilih $y_m = x_m - proj_{w_{m-1}}x_m$ untuk m = 2, 3, ..., n.

Tulis $W_m = span\{y_1, ..., y_m\}$.

Jadi, $\{y_1,...,y_m\}$ adalah suatu basis ortogonal bagi V, dan $\left\{\frac{y_1}{\|y_1\|},...,\frac{y_m}{\|y_m\|}\right\}$ adalah suatu basis ortonormal bagi V.

Teorema 6.3. Misalkan V ruang hasil kali dalam, dan $X = \{x_1, ..., x_n\}$ basis ortogonal dari V. Jika $v \in span(X) = V$, maka

$$v = \sum_{i=1}^{n} \frac{\langle v, x_i \rangle}{\|x_i\|^2} x_i.$$

Bukti. Ambil $v \in V$ maka

$$v = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = \sum_{i=1}^n \alpha_i x_i$$

untuk $\alpha_i \in F$, $\forall i = 1, 2, ..., n$.

Pandang untuk i = 1, 2, ..., n

$$\langle v, x_i \rangle = \left\langle \sum_{j=1}^n \alpha_j x_j, x_i \right\rangle = \sum_{j=1}^n \alpha_j \langle x_j, x_i \rangle = \alpha_i \langle x_i, x_i \rangle$$

sehingga kita peroleh

$$\alpha_i = \frac{\langle v, x_i \rangle}{\langle x_i, x_i \rangle} = \frac{\langle v, x_i \rangle}{\|x_i\|^2}.$$

Jadi,
$$v = \sum_{i=1}^{n} \frac{\langle v, x_i \rangle}{\|x_i\|^2} x_i$$
.

Corollary 1. Misalkan V ruang hasil kali dalam, dan $X = \{x_1, ..., x_n\}$ basis ortonormal dari V. Jika $v \in span(X) = V$, maka

$$v = \sum_{i=1}^{n} \langle v, x_i \rangle x_i.$$

Bukti. Ambil $v \in V$ maka

$$v = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = \sum_{i=1}^n \alpha_i x_i$$

untuk $\alpha_i \in F$, $\forall i = 1, 2, ..., n$.

Pandang untuk i = 1, 2, ..., n

$$\langle v, x_i \rangle = \left\langle \sum_{j=1}^n \alpha_j x_j, x_i \right\rangle = \sum_{j=1}^n \alpha_j \langle x_j, x_i \rangle = \alpha_i \langle x_i, x_i \rangle$$

sehingga kita peroleh

$$\alpha_i = \frac{\langle \, v, x_i \rangle}{\langle \, x_i, x_i \rangle} = \frac{\langle \, v, x_i \rangle}{\|x_i\|^2} = \langle \, v, x_i \rangle x_i \quad \text{karena} \ \|x_i\| = 1.$$

Jadi,
$$v = \sum_{i=1}^{n} \langle v, x_i \rangle x_i$$
.

Corollary 2. Misalkan V ruang hasil kali dalam, dan S himpunan ortogonal di V. Maka, S bebas linier.

Bukti. Misalkan $x_1, x_2, ..., x_n \in S$. Ambil $v \in V$.

Tulis

$$v = \sum_{i=1}^{n} \alpha_i x_i,$$

untuk $\alpha_i \in F$, $\forall i = 1, 2, ..., n$.

Pandang untuk i = 1, 2, ..., n

$$\langle v, x_i \rangle = \left\langle \sum_{j=1}^n \alpha_j x_j, x_i \right\rangle = \sum_{j=1}^n \alpha_j \langle x_j, x_i \rangle = \alpha_i \langle x_i, x_i \rangle$$

sehingga kita peroleh

$$\alpha_i = \frac{\langle v, x_i \rangle}{\langle x_i, x_i \rangle} = \frac{\langle v, x_i \rangle}{\|x_i\|^2}.$$

Untuk v=0 maka $\alpha_i=0$, $\forall i=1,2,...,n$.

Jadi, S bebas linier.

Teorema 6.4 (Proses Gram-Schmidt). Misalkan V ruang hasil kali dalam, dan $S=\{w_1,w_2,...,w_n\}$ himpunan bebas linier di V. Didefinisikan $S'=\{v_1,v_2,...,v_n\}$ dimana $v_1=w_1$ dan

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j \quad \forall k = 2, ..., n.$$

Maka, S' himpunan ortogonal sedemikian sehingga span(S') = span(S).

Bukti. Akan dilakukan induksi matematika pada n, dimana n adalah banyaknya vektor di S.

Misalkan $S_k = \{w_1, ..., w_k\}$ untuk k = 1, 2, ..., n.

Jika n = 1, maka $S_1' = S_1 \text{ dan } v_1 = w_1 \neq 0$.

Misalkan $S'_{k-1} = \{v_1, v_2, ..., v_{k-1}\}$ benar.

Akan ditunjukan bahwa $S_k^{'} = \{v_1, v_2, ..., v_{k-1}, v_k\}$ benar.

Jika $v_k=0$ maka $w_k\in span(S'_{k-1})=span(S_{k-1})$ yang mana kontradiksi dengan asumsi S_k bebas linier.

Untuk $1 \le i \le (k-1)$, pandang

$$\langle v_k, v_i \rangle = \langle w_k, v_i \rangle - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} \langle v_j, v_i \rangle$$

$$= \langle w_k, v_i \rangle - \frac{\langle w_k, v_i \rangle}{\|v_i\|^2} \|v_i\|^2$$

$$= \langle w_k, v_i \rangle - \langle w_k, v_i \rangle$$

$$= 0$$

karena $\langle\,v_j,v_i\rangle=0$ jika $i\neq j$ berdasarkan hipotesis bahwa S_k' ortogonal.

Karena itu, $S_k^{'}$ adalah himpunan ortogonal.

Jadi, kita peroleh $span(S'_k) \subseteq span(S_k)$.

Berdasarkan Corollary 2 dari Teorema 6.3, kita peroleh S_k' bebas linier sehingga $dim(span(S_k')) = dim(span(S_k)) = k$. Karena itu, $span(S_k') = span(S_k)$.

Teorema 6.5. Misalkan V ruang hasil kali dalam. Maka, V memiliki basis ortonormal X. Selanjutnya, jika $X = \{x_1, x_2, ..., x_n\}$ dan $v \in V$, maka

$$v = \sum_{i=1}^{n} \langle v, x_i \rangle x_i.$$

Bukti. Misalkan X_0 basis terurut dari V. Kita terapkan Teorema 6.4 untuk mendapatkan himpunan ortogonal X' dengan $span(X') = span(X_0) = V$. Setelah menormalkan setiap vektor di X', kita peroleh himpunan ortonormal X yang membangun V. Berdasarkan Corollary 2 dari Teorema 6.3, kita peroleh X bebas linier, karena itu X adalah basis ortonormal bagi

V. Berdasarkan Corollary 1 dari Teorema 6.3, kita peroleh $v = \sum_{i=1}^{n} \langle v, x_i \rangle x_i$ untuk suatu $v \in V$.

Corollary 1. Misalkan V ruang hasil kali dalam dengan basis ortonormal $X = \{x_1, x_2, ..., x_n\}$. Misalkan pula $T: V \to V$ pemetaan linier, dan $A = [T]_X$. Maka untuk setiap i dan j

$$A_{ij} = \langle T(x_j), x_i \rangle$$
.

Bukti. Dari Teorema 6.5 kita peroleh

$$T(x_j) = \sum_{i=1}^n \langle T(x_j), x_i \rangle x_i.$$

Jadi, $A_{ij} = \langle T(x_j), x_i \rangle$.

Pembuktian lain:

Ambil $T(x_i) \in V$. Tulis $T(x_i) = \sum_{i=1}^n \alpha_{ij} x_i$ untuk $\alpha_{ij} \in F$, $\forall i,j=1,2,...,n$. Maka,

 $\langle T(x_j), x_i \rangle = \left\langle \sum_{j=1}^n \alpha_{ij} x_j, x_i \right\rangle = \sum_{j=1}^n \alpha_{ij} \langle x_j, x_i \rangle = \alpha_{ij} \langle x_i, x_i \rangle$

sehingga

$$\alpha_{ij} = \frac{\langle T(x_j), x_i \rangle}{\|x_i\|^2} = \langle T(x_j), x_i \rangle.$$

untuk $\alpha_{ij} \in F$, $\forall i, j = 1, 2, ..., n$.

Definisi. Misalkan V ruang hasil kali dalam, β basis ortonormal bagi V, dan $x \in V$. Kita mendefinisikan **koefisien Fourier** dari x relatif terhadap β adalah $\langle x, y \rangle$ dimana $y \in \beta$.

Definisi. Misalkan V ruang hasil kali dalam, dan S subhimpunan tak kosong dari V. Kita mendefinisikan S^{\perp} (baca: "S perp") adalah himpunan semua vektor di V yang ortogonal terhadap setiap vektor di S, kita tulis dengan $S^{\perp} = \{x \in V \mid \langle x,y \rangle = 0, \ \forall y \in S\}$. Himpunan S^{\perp} disebut himpunan ortogonal komplemen dari S.

Catatan:

Buktikan bahwa S^{\perp} adalah subruang dari V.

Bukti. Latihan. ■

Teorema 6.6. Misalkan V ruang hasil kali dalam, W subruang dari V, dan $y \in V$. Maka terdapat vektor tunggal $u \in W$ dan $z \in W^{\perp}$ sedemikian sehingga y = u + z. Selanjutnya,

jika $\{v_1, v_2, ..., v_k\}$ basis ortonormal dari W, maka

$$u = \sum_{i=1}^{n} \langle y, v_i \rangle v_i.$$

Bukti. Misalkan $\{v_1,v_2,...,v_k\}$ basis ortonormal dari W dan misalkan z=y-u. Jelas bahwa $u\in W$ dan y=u+z.

Akan ditunjukan bahwa $z \in W^{\perp}$.

Untuk setiap j, kita mempunyai

$$\langle z, v_i \rangle = \left\langle \left(y - \sum_{i=1}^k \langle y, v_i \rangle v_i \right), v_j \right\rangle$$

$$= \langle y, v_j \rangle - \sum_{i=1}^k \langle y, v_i \rangle \langle v_i, v_j \rangle$$

$$= \langle y, v_j \rangle - \langle y, v_j \rangle$$

$$= 0$$

Jadi, $z \in W^{\perp}$.

Akan ditunjukkan bahwa u dan z, tunggal.

 $\mathsf{Misalkan}\ y = u + z = u' + z',\ \mathsf{dimana}\ u' \in W\ \mathsf{dan}\ z' \in W^{\perp}.$

Maka, $u-u^{'}=z^{'}-z\in W\cap W^{\perp}=\{0\}.$

Karena itu, $u=u^{'}$ dan $z=z^{'}$ artinya u tunggal dan z tunggal.

Corollary 1. Catatan untuk Teorema 6.6 yaitu bahwa vektor tunggal u di W jaraknya lebih dekat dengan y sehingga $\forall x \in W$, $||y-x|| \ge ||y-u||$, dan ketaksamaan ini menjadi persamaan jika dan hanya jika x = u.

Bukti. Berdasarkan Teorema 6.6, kita mempunyai y=u+z, dimana $z\in W^{\perp}$. Ambil $x\in W$. Maka u-x ortogonal terhadap z sehingga

$$||y - x||^{2} \le ||u + z - x||^{2}$$

$$= ||(u - x) + z||^{2}$$

$$\le ||u - x||^{2} + ||z||^{2}$$

$$> ||z||^{2} = ||y - u||^{2}.$$

- $(\Rightarrow) \mbox{ Misalkan } \|y-x\|^2 = \|y-u\|^2. \mbox{ Maka, ketaksamaan diatas menjadi persamaan dan karena itu kita peroleh } \|u-x\|^2 + \|z\|^2 = 0 + \|z\|^2 = \|z\|^2. \mbox{ Jadi, } \|u-x\| = 0 \mbox{ sehingga } x=u.$
- $(\Leftarrow) \ \mathsf{Misalkan} \ x = u. \ \mathsf{Maka} \ \|y x\| = \|u + z x\| = \|(u x) + z\| = \|z\| = \|y u\|. \quad \blacksquare$

Teorema 6.7. Misalkan V ruang hasil kali dalam yang berdimensi n, dan $S = \{v_1, v_2, ..., v_k\}$ himpunan ortonormal di V. Maka

- (a) S dapat diperluas menjadi basis ortonormal $\{v_1,...,v_k,v_{k+1},...,v_n\}$ bagi V.
- (b) Jika W = span(S), maka $S_1 = \{v_{k+1}, ..., v_n\}$ adalah basis ortonormal bagi W^{\perp} .
- (c) Jika W adalah subruang dari V, maka $dim(V) = dim(W) + dim(W^{\perp})$.

Bukti. (a) Berdasarkan Corollary 2 dari replacement theorem, S dapat diperluas menjadi basis terurut $\{v_1,...,v_k,v_{k+1},...,v_n\}$ bagi V. Lalu lakukan Proses Gram-Schmidt.

Catatan:

Misalkan V ruang hasil kali dalam, dan W subruang dari V, maka

$$dim(V) = dim(W) + dim(W^{\perp}).$$

Bukti. Misalkan $X' = \{x_1, x_2, ..., x_n\}$ basis ortonormal bagi W.

Perluas X' menjadi $X = \{x_1, ..., x_k, x_{k+1}, ..., x_n\}$ basis ortonormal bagi V.

Akan dibuktikan bahwa $\{x_{k+1},...,x_n\}$ basis bagi W^{\perp} .

Akan dibuktikan bahwa $x_i \in W$ untuk i = k+1, k+2, ..., n

Ambil $w \in W$ dan tulis $w = \sum\limits_{j=1}^k \langle\, w, x_j \rangle x_j$ maka

$$\langle w, x_i \rangle = \left\langle \sum_{j=1}^k \langle w, x_j \rangle x_j, x_i \right\rangle$$
$$= \sum_{j=1}^k \langle w, x_j \rangle \langle x_j, x_i \rangle$$
$$= 0.$$

Jadi, $x_i \in W^{\perp}$ untuk i = k + 1, k + 2, ..., n.

Karena $\{x_{k+1},...,x_n\}\subseteq X$ ortogonal, maka $\{x_{k+1},...,x_n\}$ bebas linier.

Ambil $y \in W^{\perp}$.

Maka,

$$y = \sum_{i=1}^{k} \langle y, x_i \rangle x_i + \sum_{j=k+1}^{n} \langle y, x_j \rangle x_j = 0 + \sum_{j=k+1}^{n} \langle y, x_j \rangle x_j = \sum_{j=k+1}^{n} \langle y, x_j \rangle x_j.$$

Jadi, karena $\{x_{k+1},...,x_n\}$ bebas linier dan membangun W^{\perp} , maka $\{x_{k+1},...,x_n\}$ basis bagi W^{\perp} .

Dengan demikian,
$$dim(V) = dim(W) + dim(W^{\perp})$$
.

6.3 Adjoin dari Operator Linier

Teorema 6.8. Misalkan V ruang hasil kali dalam atas F, dan misalkan $f:V\to F$ pemetaan linier. Maka, terdapat vektor tunggal $y\in V$ sedemikian sehingga $f(x)=\langle\, x,y\rangle$ untuk setiap $x\in V$.

Bukti. Misalkan $X=\{x_1,...,x_n\}$ basis ortonormal bagi V. Misalkan pula

$$y = \sum_{i=1}^{n} \overline{f(x_i)} x_i.$$

Definisikan

$$g: V \to F$$

$$v \mapsto \langle \, v, y \rangle \ \, \forall v \in V$$

yang mana jelas suatu pemetaan linier.

Maka

$$g(v) = \langle v, y \rangle = \left\langle v, \sum_{i=1}^{n} \overline{f(x_i)} x_i \right\rangle$$

$$= \sum_{i=1}^{n} \langle v, \overline{f(x_i)} x_i \rangle$$

$$= \sum_{i=1}^{n} f(x_i) \langle v, x_i \rangle$$

$$= \sum_{i=1}^{n} \langle v, x_i \rangle f(x_i)$$

$$= \sum_{i=1}^{n} f(\langle v, x_i \rangle x_i)$$

$$= f\left(\sum_{i=1}^{n} \langle v, x_i \rangle x_i \right)$$

$$= f(v).$$

Berdasarkan Teorema 2.6 kita peroleh f = g.

Misalkan $f(x) = \langle x, y' \rangle$ untuk setiap $x \in V$. Maka $\langle x, y \rangle = \langle x, y' \rangle$ untuk setiap $x \in V$ sehingga berdasarkan Teorema 6.1(e) kita peroleh y = y'.

Teorema 6.9. Misalkan V ruang hasil kali dalam, dan $T:V\to V$ pemetaan linier. Maka terdapat pemetaan linier tunggal $T^*:V\to V$ sedemikian sehingga $\langle T(x),y\rangle=\langle x,T^*(y)\rangle$ untuk setiap $x,y\in V$. Selanjutnya, T^* adalah pemetaan linier.

Bukti. Ambil $y \in V$.

Definisikan

$$g: V \to F$$

$$x \mapsto \langle T(x), y \rangle, \quad \forall x \in V.$$

Akan ditunjukkan bahwa g merupakan pemetaan linier.

Ambil $x_1, x_2 \in V$ dan $\alpha_1, \alpha_2 \in F$.

Maka

$$g(\alpha_1 x_1 + \alpha_2 x_2) = \langle T(\alpha_1 x_1 + \alpha_2 x_2), y \rangle$$

$$= \langle T(\alpha_1 x_1) + T(\alpha_2 x_2), y \rangle$$

$$= \langle \alpha_1 T(x_1) + \alpha_2 T(x_2), y \rangle$$

$$= \langle \alpha_1 T(x_1), y \rangle + \langle \alpha_2 T(x_2), y \rangle$$

$$= \alpha_1 \langle T(x_1), y \rangle + \alpha_2 \langle T(x_2), y \rangle$$

$$= \alpha_1 g(x_1) + \alpha_2 g(x_2).$$

Jadi, g pemetaan linier.

Menurut Teorema 6.8, terdapat vektor tunggal $y^{'} \in V$ sedemikian sehingga $g(x) = \langle \, x, y^{'} \rangle$ untuk setiap $x \in V$ maka $\langle \, T(x), y \rangle = \langle \, x, y^{'} \rangle$.

Definisikan

$$T^*: V \to V$$

 $y \mapsto y'$

dengan $T^*(y) = y'$, kita mempunyai $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$.

Akan ditunjukkan bahwa T^* suatu pemetaan linier.

Ambil $x_1, x_2 \in V$ dan $\alpha_1, \alpha_2 \in F$.

 $\mathsf{Maka}\ \forall x \in V$

$$\langle x, T^*(\alpha_1 x_1 + \alpha_2 x_2) \rangle = \langle T(x), \alpha_1 x_1 + \alpha_2 x_2 \rangle$$

$$= \overline{\alpha_1} \langle T(x), x_1 \rangle + \overline{\alpha_2} \langle T(x), x_2 \rangle$$

$$= \overline{\alpha_1} \langle x, T^*(x_1) \rangle + \overline{\alpha_2} \langle x, T^*(x_2) \rangle$$

$$= \langle x, \alpha_1 T^*(x_1) \rangle + \langle x, \alpha_2 T^*(x_2) \rangle$$

$$= \langle x, \alpha_1 T^*(x_1) + \alpha_2 T^*(x_2) \rangle.$$

Karena x sembarang, maka $T^*(\alpha_1x_1+\alpha_2x_2)=\alpha_1T^*(x_1)+\alpha_2T^*(x_2)$ berdasarkan Teorema 6.1(e).

Akan ditunjukan bahwa T^* tunggal.

Misalkan $U:V\to V$ pemetaan linier dan memenuhi $\langle T(x),y\rangle=\langle x,U(y)\rangle$ untuk setiap $x,y\in V.$

Maka, $\langle x, T^*(y) \rangle = \langle x, U(y) \rangle$ untuk setiap $x, y \in V$ sehingga $T^* = U$. Jadi, T^* tunggal.

Catatan:

 T^* pada Teorema 6.9 diatas disebut **adjoin** dari dari T. Lambang T^* dibaca "T bintang".

Teorema 6.10. Misalkan V ruang hasil kali dalam, dan X basis ortonormal dari V, dan $T:V\to V$ pemetaan linier. Maka,

$$[T^*]_X = [T]_X^*.$$

Bukti. Misalkan $A=[T]_X$, $B=[T^*]_X$, dan $X=\{x_1,x_2,...,x_n\}$. Maka menurut Corollary dari Teorema 6.5, kita mempunyai

$$B_{ij} = \langle T^*(x_j), x_i \rangle = \overline{\langle x_i, T^*(x_j) \rangle} = \overline{\langle T(x_i), v_j \rangle} = \overline{A_{ji}} = (A^*)_{ij}$$

sehingga $B = A^*$.

Jadi, $[T^*]_X = [T]_X^*$.

Pembuktian lain:

Misalkan $X = \{x_1, x_2, ..., x_n\}$ basis ortonormal dari V.

Maka

$$[T^*]_X = ([T^*(x_1)]_X [T^*(x_2)]_X \cdots [T^*(x_n)]_X)$$

$$= \begin{pmatrix} \langle T^*(x_1), x_1 \rangle & \langle T^*(x_2), x_1 \rangle & \cdots & \langle T^*(x_n), x_1 \rangle \\ \langle T^*(x_1), x_2 \rangle & \langle T^*(x_2), x_2 \rangle & \cdots & \langle T^*(x_n), x_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle T^*(x_1), x_n \rangle & \langle T^*(x_2), x_n \rangle & \cdots & \langle T^*(x_n), x_n \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \langle x_1, T(x_1) \rangle & \langle x_2, T(x_1) \rangle & \cdots & \langle x_n, T(x_1) \rangle \\ \langle x_1, T(x_2) \rangle & \langle x_2, T(x_2) \rangle & \cdots & \langle x_n, T(x_2) \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle x_1, T(x_n) \rangle & \langle x_2, T(x_n) \rangle & \cdots & \langle x_n, T(x_n) \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \langle T(x_1), x_1 \rangle & \langle T(x_1), x_2 \rangle & \cdots & \langle T(x_1), x_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle T(x_n), x_1 \rangle & \langle T(x_1), x_2 \rangle & \cdots & \langle T(x_1), x_n \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \langle T(x_1), x_1 \rangle & \langle T(x_1), x_2 \rangle & \cdots & \langle T(x_1), x_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle T(x_2), x_1 \rangle & \langle T(x_2), x_2 \rangle & \cdots & \langle T(x_2), x_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle T(x_n), x_1 \rangle & \langle T(x_n), x_2 \rangle & \cdots & \langle T(x_n), x_n \rangle \end{pmatrix}$$

$$= [T]_X^*.$$

Teorema 6.11. Misalkan V ruang hasil kali dalam, dan misalkan $T,U:V\to V$ pemetaan linier. Maka

- 1. $(T+U)^* = T^* + U^*$.
- 2. $(cT)^* = \overline{c}T^*$ untuk setiap $c \in F$.
- 3. $(TU)^* = U^*T^*$.
- 4. $T^{**} = T$.
- 5. $I^* = I$.

Bukti. (a) Ambil $x, y \in V$. Maka

$$\langle x, (T+U)^*(y) \rangle = \langle (T+U)(x), y \rangle$$

$$= \langle T(x) + U(x), y \rangle$$

$$= \langle T(x), y \rangle + \langle U(x), y \rangle$$

$$= \langle x, T^*(y) \rangle + \langle x, U^*(y) \rangle$$

$$= \langle x, (T^* + U^*)(y) \rangle.$$

Jadi, karena x sembarang, maka $(T+U)^* = T^* + U^*$.

(b) Ambil $x, y \in V$ dan $c \in F$. Maka

$$\langle x, (cT)^*(y) \rangle = \langle cT(x), y \rangle$$

$$= c \langle T(x), y \rangle$$

$$= \langle T(x), \overline{c}y \rangle$$

$$= \langle x, T^*(\overline{c}y) \rangle$$

$$= \langle x, \overline{c}T^*(y) \rangle.$$

Jadi, karena x sembarang, maka $(cT)^* = \overline{c}T^*$ untuk setiap $c \in F$.

(c) Ambil $x, y \in V$. Maka

$$\langle x, (TU)^* \rangle = \langle TU(x), y \rangle$$
$$= \langle U(x), T^*(y) \rangle$$
$$= \langle x, U^*T^*(y) \rangle.$$

 $\label{eq:continuous} {\sf Jadi,\ karena}\ x\ {\sf sembarang,\ maka}\ (TU)^* = U^*T^*.$

(d) Ambil $x, y \in V$. Maka

$$\langle x, T(y) \rangle = \langle T^*(x), y \rangle$$

= $\langle x, T^{**}(y) \rangle$.

Jadi, karena x sembarang, maka $T^{**} = T$.

(e) Ambil $x, y \in V$. Maka

$$\langle x, I^*(y) \rangle = \langle I(x), y \rangle$$

= $\langle x, y \rangle$
= $\langle x, I(y) \rangle$.

Jadi, karena x sembarang, maka $I^* = I$.

Corollary 1. Misalkan A dan B matriks berukuran $n \times n$. Maka

- (a) $(A+B)^* = A^* + B^*$.
- (b) $(cA)^* = \overline{c}A^*$ untuk setiap $c \in F$.
- (c) $(AB)^* = B^*A^*$.
- (d) $A^{**} = A$.
- (e) $I^* = I$.

Bukti. Latihan.

Lemma (1). Misalkan $A \in M_{m \times n}(F)$, $x \in F^n$ dan $y \in F^m$. Maka

$$\langle Ax, y \rangle_m = \langle x, A^*y \rangle_n.$$

Bukti.
$$\langle Ax, y \rangle_m = y^*(Ax) = (yA^*)x = (A^*y)^*x = \langle x, A^*y \rangle_n$$
.

Lemma (2). *Misalkan* $A \in M_{m \times n}(F)$. *Maka* $rank(A^*A) = rank(A)$.

Bukti. Menurut teorema dimensi, kita cukup hanya menunjukan bahwa untuk $x \in F^n$ kita mempunyai $A^*Ax = 0$ jika dan hanya jika Ax = 0. Jelas bahwa, Ax = 0 maka A*Ax = 0. Lalu, asumsikan $A^*Ax = 0$. Maka

$$0 = \langle A^*Ax, x \rangle_n = \langle Ax, A^{**}x \rangle_m = \langle Ax, Ax \rangle_m.$$

Corollary 2. Misalkan A matriks $n \times n$ sedemikian sehingga rank(A) = n, maka A^*A punya invers.

Teorema 6.12. Misalkan $A \in M_{m \times n}(F)$ dan $y \in F^m$. Maka terdapat $x_0 \in F^n$ sedemikian sehingga $(A^*A)x_0 = A^*y$ dan $||Ax_0 - y|| \le ||Ax - y||$ untuk setiap $x \in F^n$. Selanjutnya, jika rank(A) = n, maka $x_0 = (A^*A)^{-1}A^*y$.

Definisi. Misalkan $T:V\to W$ pemetaan linier, dimana V dan W ruang hasil kali dalam berdimensi hingga yang didefinisikan dengan hasil kali dalam $\langle\,\cdot\,,\cdot\,\rangle_1$ dan $\langle\,\cdot\,,\cdot\,\rangle_2$. Pemetaan $T^*:W\to V$ disebut **adjoin** dari T jika $\langle\,T(x),y\rangle_2=\langle\,x,T^*(y)\rangle_1$ untuk setiap $x\in V$ dan $y\in W$.

Teorema 6.13.

6.4 Operator Normal dan Self-Adjoin

Lemma. Misalkan V ruang hasil kali dalam berdimensi hingga, dan $T:V\to V$ pemetaan linier. Jika T memiliki vektor eigen, maka begitu juga T^* .

Bukti. Misalkan v adalah vektor eigen dari T yang berkorespondensi dengan nilai eigen λ . Maka $\forall x \in V$,

$$0 = \langle 0, x \rangle = \langle (T - \lambda I), x \rangle = \langle v, (T - \lambda I)^*(x) \rangle = \langle v, (T^* - \overline{\lambda}I)(x) \rangle$$

sehingga v ortogonal terhadap peta dari $T^* - \overline{\lambda}I$ akibatnya $Peta(T^* - \overline{\lambda}I) \neq V$. Jadi, $T^* - \overline{\lambda}I$ tidak pada dan akibatnya tidak satu-satu. Karena itu $T^* - \overline{\lambda}I$ memiliki ruang nol tak kosong dan setiap vektor tak nol di ruang nol tersebut adalah vektor eigen dari T^* yang berkorespondensi dengan nilai eigen $\overline{\lambda}$.

Pembuktian lain:

Ingat bahwa $dim(V)=rank(T^*-\overline{\lambda}I)+null(T^*-\overline{\lambda}I).$ Tetapi, $rank(T^*-\overline{\lambda}I)\neq dim(V)$ sehingga $ker(T^*-\overline{\lambda}I)\neq \{0\}.$ Artinya, untuk $v\in ker(T^*-\overline{\lambda}I), v\neq 0$, jadi v adalah vektor eigen dari T^* yang berkorespondensi dengan nilai eigen $\overline{\lambda}.$

Definisi. Misalkan V ruang vektor, $T:V\to V$ pemetaan linier, dan W subruang dari V. W disebut **T-invarian** jika $T(x)\in W$ untuk setiap $x\in W$ sehingga $T(W)\subseteq W$. Jika W adalah T-invarian, maka **pemetaan T yang dibatasi oleh W** yaitu $T_W:W\to W$ didefinisikan oleh $T_W(x)=T(x)$ untuk setiap $x\in W$.

Teorema 6.14 (Teorema Schur). Misalkan V ruang hasil kali dalam, dan $T:V\to V$ pemetaan linier. Jika polinom karakteristik dari T split (dapat ditulis sebagai faktor-faktor linier), maka terdapat basis ortonormal β bagi V sedemikian sehingga $[T]_{\beta}$ matriks segitiga atas.

Bukti. Akan digunakan induksi matematika pada dim(V) = n.

Untuk n=1, jelas.

Misalkan benar untuk n = k - 1.

Misalkan dim(V) = k, $T: V \to V$ pemetaan linier, dan polinom karakteristik dari T split.

Maka terdapat w vektor eigen dari T sedemikian sehingga ||w|| = 1.

Berdasarkan lemma, kita asumsikan T^* juga memiliki vektor eigen w. Misalkan $T^*(w) = \lambda w$ dan tulis $W = span\{w\}$. Jelas W subruang dari V dan dim(W) = 1. Maka, terdapat W^{\perp} sedemikian sehingga $V = W \oplus W^{\perp}$. Jelas dim(W) = k - 1.

Akan ditunjukkan bhwa W^{\perp} adalah T-invarian.

Ambil $x \in W^{\perp}$. Akan ditunjukkan bahwa $T(x) \in W^{\perp}$.

Ambil $y = cw \in W$, $\forall c \in F$.

Maka

$$\langle T(x), y \rangle = \langle T(x), cw \rangle$$

$$= \overline{c} \langle T(x), w \rangle$$

$$= \overline{c} \langle x, T^*(w) \rangle$$

$$= \overline{c} \langle x, \lambda w \rangle$$

$$= \overline{c\lambda} \langle x, w \rangle$$

$$= 0.$$

Jadi, $T(x) \in W^{\perp}$.

Dengan demikian, $T(W^\perp)=W^\perp$, artinya W^\perp adalah T-invarian sehingga $T_{W^\perp}:W^\perp\to W^\perp$ mempunyai polinom karakteristik split.

Menurut hipotesis, terdapat $\alpha=\{\alpha_1,\alpha_2,...,\alpha_{k-1}\}$ suatu basis ortonormal bagi W^\perp sehingga $[T_{W^\perp}]_\alpha$ adalah matriks segitiga atas, artinya

$$([T_{W^{\perp}}(\alpha_1)]_{\alpha} [T_{W^{\perp}}(\alpha_2)]_{\alpha} \cdots [T_{W^{\perp}}(\alpha_{k-1})]_{\alpha}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

dengan n = k - 1 dan $a_{ij} \in F$, $\forall i, j = 1, 2, ..., k - 1$.

Jelas bahwa $\beta = \alpha \cup \{w\} = \{\alpha_1, \alpha_2, ..., \alpha_{k-1}, w\}$ adalah basis ortonormal bagi V.

Karena $\alpha_i \in W^\perp$, $\forall i=1,2,...,k-1$, dan W^\perp adalah T-invarian, maka

$$T(\alpha_1) = T_{W^{\perp}(\alpha_1)} = a_{11}\alpha_1 + 0 \cdot \alpha_2 + 0 \cdot \alpha_3 + \dots + 0 \cdot \alpha_{k-1} + 0 \cdot w$$

$$T(\alpha_2) = T_{W^{\perp}(\alpha_2)} = a_{12}\alpha_1 + a_{22} \cdot \alpha_2 + 0 \cdot \alpha_3 + \dots + 0 \cdot \alpha_{k-1} + 0 \cdot w$$

$$\vdots$$

$$T(\alpha_{k-1}) = T_{W^{\perp}(\alpha_{k-1})} = a_{1,k-1}\alpha_1 + a_{2,k-1} \cdot \alpha_2 + \dots + a_{k-1,k-1} \cdot \alpha_{k-1} + 0 \cdot w$$

$$T(w) = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + 0 \cdot \alpha_3 + \dots + 0 \cdot \alpha_{k-1} + \delta w.$$

(lanjut di halaman selanjutnya)

Jadi,

$$[T]_{\beta} = ([T(\alpha_{1})]_{\beta} [T(\alpha_{2})]_{\beta} \cdots [T(\alpha_{k-1})]_{\beta} [T(w)]_{\beta})$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1,k-1} & 0 \\ 0 & a_{22} & \cdots & a_{2,k-1} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{k-1,k-1} & 0 \\ 0 & 0 & \cdots & 0 & \delta \end{pmatrix}.$$

Definisi. Misalkan V ruang hasil kali dalam, dan $T:V\to V$ pemetaan linier.

T normal jika $TT^* = T^*T$. Maktriks $A_{n \times n}$ real atau kompleks disebut normal jika $AA^* = A^*A$.

Teorema 6.15. Misalkan V ruang hasil kali dalam, dan T operator **normal** pada V. Maka pernyataan berikut benar.

- (a) $||T(x)|| = ||T^*(x)||$ untuk setiap $x \in V$.
- (b) T cI normal untuk setiap $c \in F$.
- (c) Jika x adalah vektor eigen dari T maka x juga vektor eigen dari T^* . Dalam hal ini, jika $T(x) = \lambda x$, maka $T^* = \overline{\lambda} x$.
- (c) Jika λ_1 dan λ_2 adalah nilai eigen berbeda dari T yang berkorespondensi dengan vektor eigen x_1 dan x_2 , maka x_1 dan x_2 ortogonal.

Bukti. (a) Untuk setiap $x \in V$,

$$||T(x)||^2 = \langle T(x), T(x) \rangle = \langle T^*T(x), x \rangle = \langle TT^*(x), x \rangle = \langle T^*(x), T^*(x) \rangle = ||T^*(x)||^2.$$

(b)

$$(T - cI)(T - cI)^* = (T - cI)(T^* - \overline{c}I^*)$$

$$= (TT^* - T\overline{c}I^* - cIT^* + c\overline{c}I)$$

$$= (T^*T - T^*cI - \overline{c}I^*T + \overline{c}cI)$$

$$= (T^* - \overline{c}I^*)(T - cI)$$

$$= (T - cI)^*(T - cI).$$

(c) Misalkan T normal dan x adalah vektor eigen dari T sedemikian sehingga $T(x) = \lambda x$ untuk suatu $\lambda \in F$.

Tinjau $U = T - \lambda I$, maka

$$U(x) = (T - \lambda I)(x) = T(x) - \lambda I(x) = T(x) - \lambda x = \lambda x - \lambda x = 0.$$

Perhatikan bahwa

$$0 = \|U(x)\| = \|U^*(x)\| = \|(T - \lambda I)^*(x)\| = \|(T^* - \overline{\lambda} I^*)(x)\| = \|T^*(x) - \overline{\lambda} I(x)\| = \|T^* - \overline{\lambda} x\|.$$

Karena itu, $T^*(x) - \overline{\lambda}x = 0$ atau $T^*(x) = \overline{\lambda}x$.

Jadi, x adalah vektor eigen dari T^* .

(d) Misalkan λ_1 dan λ_2 nilai eigen berbeda dari T yang berkorespondensi dengan vektor-vektor eigen x_1 dan x_2 . Tulis $T(x_1) = \lambda_1 x_1$ dan $T(x_2) = \lambda_2 x_2$. Akan dibuktikan bahwa x_1 dan x_2 ortogonal artinya $\langle x_1, x_2 \rangle = 0$.

Perhatikan bahwa

$$\lambda_1 \langle x_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle$$

$$= \langle T(x_1), x_2 \rangle$$

$$= \langle x_1, T^*(x_2) \rangle$$

$$= \langle x_1, \overline{\lambda_2} x_2 \rangle$$

$$= \lambda_2 \langle x_1, x_2 \rangle.$$

Karena $\lambda_1 \neq \lambda_2$ maka $\langle x_1, x_2 \rangle = 0$.

Teorema 6.16. Misalkan V ruang hasil kali dalam kompleks, dan $T:V\to V$ pemetaan linier. Maka T normal jika dan hanya jika terdapat basis ortonormal dari V yang terdiri dari vektor-vektor eigen dari T.

Bukti. (\Rightarrow) Misalkan T normal. Berdasarkan teorema dasar aljabar, polinom karakteristik dari T split. Kita gunakan Teorema Schur untuk memperoleh basis ortonormal $\beta=\{v_1,v_2,...,v_n\}$ dari V sedemikian sehingga $[T]_{\beta}=A$ matriks segitiga atas.

Kita tahu bahwa v_1 vektor eigen dari T karena A matriks segitiga atas.

Asumsikan $v_1, v_2, ..., v_{k-1}$ vektor-vektor eigen dari T.

Akan dibuktikan bahwa v_k juga vektor eigen dari T.

Perhatikan bahwa untuk setiap j < k dan misalkan λ_j nilai eigen dari T yang berkorespondensi dengan v_j untuk j=1,2,...,k-1.

Berdasarkan Teorema 6.15, $T^*(v_i) = \overline{\lambda_i}v_i$.

Karena A matriks segitiga atas, maka

$$T(v_k) = A_{1k}v_1 + A_{2k}v_2 + \dots + A_{jk}v_j + \dots + A_{kk}v_k.$$

Selanjutnya, berdasarkan Corollary dari Teorema 6.5,

$$A_{jk} = \langle T(v_k), v_j \rangle = \langle v_k, T^*(v_j) \rangle = \langle v_k, \overline{\lambda_j} v_j \rangle = \lambda_j \langle v_k, v_j \rangle = 0.$$

Karena itu, $T(v_k) = A_{kk}$ sehingga v_k adalah vektor eigen dari T.

Jadi, menurut induksi matematika, semua vektor di β adalah vektor-vektor eigen dari T.

 (\Leftarrow) Misalkan β basis ortonormal dari V yang terdiri dari vektor-vektor eigen dari T. Maka, $[T]_{\beta}$ adalah matriks diagonal. Akibatnya, $[T^*]_{\beta} = [T]_{\beta}^*$ juga matriks diagonal. Maka

$$[TT^*]_{\beta} = [T]_{\beta}[T]_{\beta}^* = [T^*]_{\beta}[T]_{\beta} = [T^*T]_{\beta}$$

karena matriks diagonal bersifat komutatif.

Jadi, $TT^* = T^*T$ artinya T normal.

Definisi. Misalkan V ruang hasil kali dalam, dan $T:V\to V$ pemetaan linier. Kita katakan T self-adjoin (Hermitian) atau adjoin dengan diri sendiri jika

$$T = T^*$$
.

Matriks real atau kompleks berukuran $n \times n$ disebut self-adjoin (Hermitian) atau adjoin dengan diri sendiri jika

$$A = A^*$$
.

Lemma. Misalkan V ruang hasil kali dalam berdimensi hingga, dan T operator self-adjoin. Maka

- (a) Setiap nilai eigen dari T adalah real.
- (b) Misalkan V ruang hasil kali dalam real. Maka polinom karakteristik dari T splits.

Bukti. (a) Misalkan $T(x)=\lambda x$ untuk $x\neq 0$. Karena operator self-adjoin juga normal, maka menurut Teorema 6.15 kita peroleh

$$\lambda x = T(x) = T^* = \overline{\lambda}x.$$

Karena $x \neq 0$, maka $\lambda = \overline{\lambda}$ yang hanya dipenuhi oleh λ real.

(b) Misalkan dim(V)=n, β basis ortonormal dari V, dan $A=[T]_{\beta}$. Maka A self-adjoin. Misalkan T_A pemetaan linier pada C^n yang didefinisikan dengan $T_A(x)=Ax$ untuk setiap $x\in C^n$. Perhatikan bahwa T_A juga self-adjoin karena $[T_A]_{\gamma}=A$, dimana γ basis terurut dari C^n . Jadi, menurut (a), nilai eigen dari T_A adalah real. Berdasarkan Teorema Dasar Aljabar, polinom karakteristik dari T_A splits menjadi faktor-faktor yang dibentuk oleh $t-\lambda$. Karena setiap λ adalah real, maka polinom karakteristik dari T_A juga splits di \mathbb{R} . Tetapi, T_A memiliki polinom karakteristik yang sama dengan polinom karakteristik T. Karena itu, polinom karakteristik dari T splits.

Teorema 6.17. Misalkan V ruang hasil kali dalam real, dan $T:V\to V$ pemetaan linier. Maka T self-adjoin jika dan hanya jika terdapat basis ortonormal β dari V yang terdiri dari vektor-vektor eigen dari T.

 $Bukti.\ (\Rightarrow)$ Misalkan T self-adjoin. Berdasarkan Lemma, kita gunakan Teorema Schur untuk memperoleh basis ortonormal β bagi V sedemikian sehingga matriks $A=[T]_{\beta}$ adalah matriks segitiga atas. Tetapi

$$A^* = [T]^*_{\beta} = [T^*]_{\beta} = [T]_{\beta} = A.$$

Jadi, A dan A^* keduanya matriks segitiga atas, dan karena itu A matriks diagonal. Maka haruslah β terdiri dari vektor-vektor eigen dari T.

Definisi. Misalkan T operator linier pada ruang hasil kali dalam berdimensi hingga. T disebut **definit positif** [semidefinit positif] jika T self-adjoin dan $\langle T(x), x \rangle > 0$ [$\langle T(x), x \rangle \geq 0$] untuk setiap $x \neq 0$.

6.5 Operator Uniter dan Operator Ortogonal

Definisi. Misalkan V ruang hasil kali dalam berdimensi hingga, dan $T:V\to V$ pemetaan linier. Jika $\|T(x)\|=\|x\|$ untuk setiap $x\in V$, maka T disebut operator uniter jika $F=\mathbb{C}$ dan T disebut operator ortogonal jika $F=\mathbb{R}$.

Lemma. Misalkan V ruang hasil kali dalam berdimensi hingga, dan U operator self-adjoin. Jika $\langle x, U(x) \rangle = 0$ untuk setiap $x \in V$ maka $U = T_0$. (T_0 adalah pemetaan nol)

Bukti. Berdasarkan Teorema 6.16 atau 6.17, kita pilih β suatu basis ortonormal dari V yang terdiri dari vektor-vektor eigen dari T. Jika $x \in \beta$, maka $U(x) = \lambda x$ untuk suatu $\lambda \in F$. Karena itu

$$0 = \langle x, U(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle$$

dan kita peroleh $\overline{\lambda}=0$. Jadi, U(x)=0 untuk setiap $x\in\beta$, artinya $U=T_0$.

Teorema 6.18. Misalkan V ruang hasil kali dalam atas F, dan $T:V\to V$ pemetaan linier. Maka pernyataan berikut ekivalen.

- (a) $TT^* = T^*T = I$.
- (b) $\langle T(x), T(y) \rangle = \langle x, y \rangle, \forall x, y \in V.$
- (c) Jika β basis ortonormal bagi V, maka $T(\beta)$ basis ortonormal bagi V.
- (d) Terdapat β basis ortonormal bagi V sedemikian sehingga $T(\beta)$ basis ortonormal bagi V.
- (e) ||T(x)|| = ||x|| untuk setiap $x \in V$.

Bukti. $(a) \Rightarrow (b)$ Ambil $x, y \in V$. Maka

$$\langle T(x), T(y) \rangle = \langle x, T^*(T(y)) \rangle$$
$$= \langle x, (T^*T)(y) \rangle$$
$$= \langle x, I(y) \rangle$$
$$= \langle x, y \rangle.$$

- $(b)\Rightarrow (c) \text{ Misalkan }\beta=\{x_1,...,x_n\} \text{ basis ortonormal bagi }V. \text{ Akan ditunjukkan }T(\beta)=\{T(x_1),T(x_2),...,T(x_n)\} \text{ basis ortonormal bagi }V. \text{ Karena }dim(V)=n, \text{ maka cukup ditunjukkan bahwa }T(\beta) \text{ bebas linier.} \text{ Akan dibuktikan bahwa }T(\beta) \text{ himpunan ortogonal.} \text{ Ambil }T(x_i) \text{ dan }T(x_j), \ i\neq j, \text{ maka }\langle T(x_i),T(x_j)\rangle=\langle x_i,x_j\rangle=0. \text{ Karena }\beta \text{ himpunan ortogonal, maka }T(\beta) \text{ himpunan ortogonal.} \text{ Untuk setiap }i=1,2,...,n \text{ berlaku }\|T(x_i)\|^2=\langle T(x_i),T(x_i)\rangle=\langle x_i,x_i\rangle=1 \text{ karena }\beta \text{ himpunan ortonormal.} \text{ Jadi, }T(\beta) \text{ himpunan ortonormal maka }T(\beta) \text{ basis ortonormal bagi }V.$
- $(c) \Rightarrow (d)$ Jelas.
- $(d)\Rightarrow (e)$ Ambil $x\in V$. Menurut hipotesis, terdapat $\beta=\{x_1,...,x_n\}$ basis ortonormal

bagi V sedemikian sehingga $T(\beta)$ basis ortonormal bagi V. Misalkan $x=\sum\limits_{i=1}^n\alpha_ix_i,\ \alpha_i\in F$, $\forall i=1,2,...,n.$

Maka

$$T(x) = T\left(\sum_{i=1}^{n} \alpha_i x_i\right) = \sum_{i=1}^{n} \alpha_i T(x_i).$$

dan kita peroleh

$$||T(x)||^2 = \left\| \sum_{i=1}^n \alpha_i T(x_i) \right\|^2$$

$$= \left\langle \sum_{i=1}^n \alpha_i T(x_i), \sum_{j=1}^n \alpha_j T(x_j) \right\rangle$$

$$= \sum_{i=1}^n \alpha_i \sum_{j=1}^n \overline{\alpha_j} \langle T(x_i), T(x_j) \rangle$$

$$= \sum_{i=1}^n |\alpha_i|^2 \langle T(x_i), T(x_i) \rangle$$

$$= \sum_{i=1}^n |\alpha_i|^2.$$

dan

$$||x||^2 = \left|\left|\sum_{i=1}^n \alpha_i x_i\right|\right|^2$$

$$= \left\langle \sum_{i=1}^n \alpha_i x_i, \sum_{j=1}^n \alpha_j x_j \right\rangle$$

$$= \sum_{i=1}^n \alpha_i \sum_{j=1}^n \overline{\alpha_j} \langle x_i, x_j \rangle$$

$$= \sum_{i=1}^n |\alpha_i|^2 \langle x_i, x_i \rangle$$

$$= \sum_{i=1}^n |\alpha_i|^2.$$

 $\mathrm{Jadi,}\ \|T(x)\|=\|x\|\ \mathrm{untuk\ setiap}\ x\in V.$

 $(e)\Rightarrow (a)$ Ambil $x\in V.$ Menurut hipotesis, $\|T(x)\|=\|x\|$, untuk setiap $x\in V.$

Maka

$$\langle T(x), T(x) \rangle = \langle x, x \rangle$$
$$\langle T(x), T(x) \rangle - \langle x, x \rangle = 0$$
$$\langle x, T^*T(x) \rangle - \langle x, x \rangle = 0$$
$$\langle x, T^*T(x) - I(x) \rangle = 0$$
$$\langle x, (T^*T - I)(x) \rangle = 0$$

untuk setiap $x\in V$. Misalkan $U=T^*T-I$, maka U self-adjoin, dan $\langle\,x,U(x)\rangle=0$ untuk setiap $x\in V$. Berdasarkan Lemma, kita mempunyai $U=T^*T-I=T_0$, dan karena itu, $T^*T=I$. Karena V berdimensi hingga, maka $TT^*=I$. Jadi, $T^*T=TT^*=I$.

Corollary 1. Misalkan T operator linier pada ruang hasil kali dalam real V. Maka V memiliki basis ortonormal yang terdiri dari vektor-vektor eigen dari T yang bekorespondensi dengan nilai eigen dengan nilai multak I jika dan hanya jika T self-adjoin dan ortogonal.

Bukti. (\Rightarrow) Misalkan V memiliki basis ortonormal $\{v_1,...,v_n\}$ sedemikian sehingga $T(v_i)=\lambda_i v_i$ dan $|\lambda_i|=1$. Berdasarkan Teorema 6.17, T adalah self-adjoin. Karena itu, $(TT^*)(v_i)=T(\lambda_i v_i)=\lambda_i \lambda_i v_i=\lambda_i^2 v_i=v_i$ untuk setiap i=1,2,...,n. Jadi, $TT^*=I$ dan berdasarkan Teorema 6.18(a) kita peroleh T ortogonal.

 (\Leftarrow) Misalkan T self-adjoin, maka menurut Teorema 6.17, V memiliki basis ortonormal $\{v_1,...,v_n\}$ sedemikian sehingga $T(v_i)=\lambda_i v_i$ untuk setiap i=1,...,n. Jika T juga ortogonal maka

$$|\lambda_i| \cdot ||v_i|| = ||\lambda_i v_i|| = ||T(v_i)|| = ||v_i||$$

artinya $|\lambda_i| = 1$ untuk setiap i = 1, 2, ..., n.

Corollary 2. Misalkan T operator linier pada ruang hasil kali dalam kompleks V. Maka V memiliki basis ortonormal yang terdiri dari vektor-vektor eigen dari T yang berkorespondensi dengan nilai eigen dengan modulus 1 jika dan hanya jika T uniter.

Bukti. (\Rightarrow) Misalkan $\beta=\{v_1,...,v_n\}$ basis ortonormal bagi V sedemikian sehinggga $T(v_i)=\lambda_i v_i$ dan $|\lambda_i|=1$ untuk setiap i=1,2,...,n. Perhatikan bahwa $TT^*(v_i)=T(\overline{\lambda_i}v_i)=\lambda_i\overline{\lambda_i}v_i=\lambda_i^2v_i=v_i$ untuk setiap i=1,2,...,n. Jadi, $TT^*=I$ artinya T normal. Menurut Teorema 6.18(a), T uniter.

(\Leftarrow) Misalkan T uniter. Maka, T normal menurut Teorema 6.18(a). Berdasarkan Teorema 6.16 kita memiliki β basis ortonormal dari V sedemikian sehingga $T(v_i) = \lambda_i v_i$ untuk setiap i=1,2,...,n. Jika T uniter maka $|\lambda_i|\cdot \|x_i\| = \|\lambda_i v_i\| = \|T(v_i)\| = \|v_i\|$. Jadi, $|\lambda_i| = 1$ untuk setiap i=1,2,...,n.

Definisi. Matriks persegi A disebut matriks ortogonal jika $A^tA = AA^t = I$ dan matriks uniter jika $A^*A = AA^* = I$.

Teorema 6.19.

Teorema 6.20.

Teorema 6.21.

Teorema 6.22.

Teorema 6.23.

6.6 Proyeksi Ortogonal dan Teorema Spektral

Definisi. Misalkan V ruang vektor, dan misalkan W_1 dan W_2 subruang dari V sedemikian sehingga $V=W_1\oplus W_2$. Pemetaan $T:V\to V$ disebut **proyeksi** pada W_1 **sepanjang** W_2 jika $x=x_1+x_2$ dengan $x_1\in W_1$ dan $x_2\in W_2$, kita mempunyai $T(x)=x_1$.

Teorema. Misalkan V ruang vektor atas F. Misalkan pula W_1 dan W_2 subruang dari V sedemikian sehingga $V = W_1 \oplus W_2$. Pemetaan linier $T: V \to V$ disebut **proyeksi** jika dan hanya jika $T^2 = T$.

 $\begin{aligned} &\textit{Bukti.} \ (\Rightarrow) \ \mathsf{Ambil} \ x \in V. \ \ \mathsf{Tulis} \ x = x_1 + x_2 \ \mathsf{dengan} \ x_1 \in W_1 \ \mathsf{dan} \ x_2 \in W_2. \ \ \mathsf{Misalkan} \\ &T(x) = x_1. \ \ \mathsf{Maka} \ T^2(x) = T(T(x)) = T(x_1) = x_1 = T(x). \end{aligned}$

Jadi, $T^2 = T$.

 (\Leftarrow) Misalkan $T = T^2$.

Akan ditunjukkan bahwa, $V = Ker(T) \oplus Peta(T)$.

Ambil $u \in Ker(T)$ dan $v \in Peta(T)$.

Maka $u \in V$ dan $v \in V$, karena $Ker(T) \subset V$ dan $Peta(T) \subset V$.

Akibatnya, $V \subset Ker(T) + Peta(T)$.

Sekarang, ambil $x \in V$.

Perhatikan bahwa $Peta(T) = \{x : T(x) = x\}$ karena T(T(x)) = T(x).

Tulis x = (x - T(x)) + T(x).

Perhatikan bahwa $T(x) \in Peta(T)$ dan $(x-T(x)) \in Ker(T)$ karena T(x-T(x)) = T(x) - T(x) = 0.

Artinya $x \in Ker(T) + Peta(T)$ sedemikian sehingga V = Peta(T) + Ker(T).

Selanjutnya, akan ditunjukkan bahwa $Ker(T) \cap Peta(T) = \{0\}.$

Ambil x = 0.

 $\mathsf{Maka}\ x \in Ker(T)\ \mathsf{dan}\ x \in Peta(T)\ \mathsf{karena}\ T(0) = 0\ \mathsf{sehingga}\ \{0\} \subset (Ker(T) \cap Peta(T)).$

Ambil $x \in Ker(T) \cap Peta(T)$.

Artinya T(x) = 0 dan T(x) = x. Akibatnya x = T(x) = 0.

Dengan demikian, $Ker(T) \cap Peta(T) \subset \{0\}$.

Jadi, $V = Ker(T) \oplus Peta(T)$. Artinya $Peta(T) = Ker(T)^{\perp}$.

Ambil sembarang $y \in V$.

Tulis $y = y_1 + y_2$ dengan $y_1 \in Peta(T)$ dan $y_2 \in Ker(T)$.

Maka $T(y) = T(y_1 + y_2) = T(y_1) + T(y_2) = y_1 + 0 = y_1$.

Jadi, T adalah suatu proyeksi.

Definisi. Misalkan V ruang hasil kali dalam, dan $T:V\to V$ suatu proyeksi. Kita katakan T adalah proyeksi ortogonal jika $Peta(T)^\perp=Ker(T)$ dan $Ker(T)^\perp=Peta(T)$.

Teorema 6.24. Misalkan V ruang hasil kali dalam, dan $T:V\to V$ pemetaan linier. Maka T disebut proyeksi ortogonal jika dan hanya jika T memiliki adjoin T^* dan $T^2=T=T^*$.

Bukti. (\Rightarrow) Misalkan T proyeksi ortogonal.

Karena T proyeksi maka $T^2 = T$.

Akan ditunjukkan bahwa $T = T^*$.

Ambil $x, y \in V = W_1 + W_2$.

Maka $x = x_1 + x_2$ dan $y = y_1 + y_2$ dengan $x_1, y_1 \in W_1$ dan $x_2, y_2 \in W_2$.

Perhatikan bahwa

$$\langle x, T(y) \rangle = \langle x_1 + x_2, y_1 \rangle = \langle x_1, y_1 \rangle + \langle x_2, y_1 \rangle = \langle x_1, y_1 \rangle + 0 = \langle x_1, y_1 \rangle$$

dan

$$\langle T(x), y \rangle = \langle x_1, y_1 + y_2 \rangle = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle = \langle x_1, y_1 \rangle + 0 = \langle x_1, y_1 \rangle.$$

 $\mathsf{Jadi},\ \langle\, x,T(y)\rangle=\langle\, T^*(x),y\rangle=\langle\, T(x),y\rangle\ \text{untuk setiap}\ x,y\in V.$

Karena T proyeksi, maka $T^* = T = T^2$.

 (\Leftarrow) Karena $T^2 = T$, jelas bahwa T proyeksi.

Kita mempunyai $T = T^2 = T^*$.

Akan dibuktikan bahwa $Peta(T) = Ker(T)^{\perp}$.

Ambil $x \in Peta(T)$ dan $y \in Ker(T)$.

Maka
$$\langle x, y \rangle = \langle T^*(x), y \rangle = \langle x, T(y) \rangle = \langle x, 0 \rangle = 0.$$

Oleh karena itu, $x \in Ker(T)^{\perp}$ sehingga $Peta(T) \subset Ker(T)^{\perp}$.

Ambil $x \in Ker(T)^{\perp}$.

Akan ditunjukkan bahwa $x \in Peta(T)$ sedemikian sehingga T(x) = x.

Perhatikan bahwa

$$||x - T(x)||^2 = \langle x - T(x), x - T(x) \rangle$$

$$= \langle x, x - T(x) \rangle - \langle T(x), x - T(x) \rangle$$

$$= 0 - \langle x, T^*(x - T(x)) \rangle$$

$$= -\langle x, T(x - T(x)) \rangle$$

$$= -\langle x, T(x) - T(T(x)) \rangle$$

$$= -\langle x, T(x) - T(x) \rangle$$

$$= -\langle x, T(x) - T(x) \rangle$$

$$= 0.$$

Jadi, $x \in Peta(T)$.

Dengan demikian, $Peta(T) = Ker(T)^{\perp}$.

Berdasarkan hasil sebelumnya, kita mempunyai $Ker(T)\subseteq Peta(T)^{\perp}=Ker(T)^{\perp\perp}$. Ambil $x\in Peta(T)^{\perp}$. Untuk setiap $y\in V$, kita mempunyai $\langle T(x),y\rangle=\langle x,T^*(y)\rangle=\langle x,T(y)\rangle=0$. Akibatnya T(x)=0 dan karena itu $x\in Ker(T)$.

Jadi, $Peta(T)^{\perp} = Ker(T)$.

Berdasarkan definisi, T proyeksi ortogonal.

Teorema 6.25 (**Teorema Spektral**). Misalkan V ruang hasil kali dalam dan $T:V\to V$ pemetaan linier dengan $\lambda_1, \lambda_2, ..., \lambda_k$ nilai eigen berbeda dari T. Untuk setiap i = 1, 2, ..., k, misalkan $E(\lambda_i)$ ruang eigen dari T yang berkorespondensi dengan nilai eigen λ_i dan T_i proyeksi ortogonal V pada $E(\lambda_i)$. Jika T normal/hermit, maka pernyataan berikut ekivalen.

(a)
$$V = E(\lambda_1) \oplus E(\lambda_2) \oplus \cdots \oplus E(\lambda_k)$$
.

(b)
$$W_i^{'}=\bigoplus_{\substack{j=1 \ i \neq i}}^k E(\lambda_j)$$
 maka $W_i^{'}=E(\lambda_i)^{\perp}.$

(c)
$$T_i T_j = \delta_{ij} T_i, \forall i, j = 1, 2, ..., k.$$

(d) $I = \sum_{i=1}^{\kappa} T_i$ dengan I disebut sebagai resolusi dari operator identitas.

(e) $T=\sum_{i=1}^k \lambda_i T_i$ yang disebut sebagai dekomposisi spektral dari T. Catatan : $\lambda_1,...,\lambda_k$ disebut sebagai spektrum dari T.

Bukti. (a) Misalkan T normal atau self-adjoin maka terdapat β basis ortonormal bagi Vsedemikian sehingga $[T]_{\beta}$ matriks diagonal artinya T dapat didiagonalkan.

Jadi,
$$V = E(\lambda_1) \oplus E(\lambda_2) \oplus \cdots \oplus E(\lambda_k)$$
.

(b) Ambil $x \in W_i$ dan $y \in E(\lambda_i)$.

Tulis $x = x_1 + x_2 + \dots + x_{i-1} + x_{i+1} + \dots + x_k$ dengan $x_i \in E(\lambda_i)$.

Maka

$$\langle x, y \rangle = \left\langle \sum_{\substack{j=1\\j \neq i}}^{k} x_j, y \right\rangle = \sum_{\substack{j=1\\j \neq i}}^{k} \langle x_j, y \rangle = 0$$

karena $x_i \notin E(\lambda_i)$ dan $y \in E(\lambda_i)$.

Jadi, $W_i' \subseteq E(\lambda_i)^{\perp}$.

Pandang
$$dim(W_i') = \sum_{\substack{j=1 \ j \neq i}}^k dim(E(\lambda_j)) = dim(V) - dim(E(\lambda_i)) = dim(E(\lambda_i)^{\perp}).$$

Jadi, karena V berdimensi hingga, maka $W'_i = E(\lambda_i)^{\perp}$.

(c) Akan dibuktikan bahwa $T_iT_j=\delta_{ij}T_i$, $\forall i,j=1,2,...,k$, dengan T_i dan T_j proyeksi ortogonal V pada $E(\lambda_i)$ dan $E(\lambda_i)$.

Ambil i, j sehingga i = 1, ..., k dan j = 1, 2, ..., k.

Kasus i = j:

$$T_i T_i = T_i T_i = T_i^2 = T_i = 1 \cdot T_i = \delta_{ii} T_i = \delta_{ij} T_i.$$

Kasus $i \neq j$:

Ambil
$$x \in V$$
 dan $x = \sum_{m=1}^{k} x_m$ dan $x_m \in E(\lambda_m)$.

Maka

$$T_j T_j(x) = T_i T_j (\sum_{m=1}^k x_m) = T_i(x_j) = 0 = 0 \cdot T_i(x) = \delta_{ij} T_i(x).$$

Jadi, $T_iT_j = \delta_{ij}T_i$, $\forall i, j = 1, 2, ..., k$.

(d) Akan ditunjukkan bahwa $I = \sum_{i=1}^{k} T_i$.

Ambil $x \in V$. Tulis $x = \sum_{m=1}^{k} x_m \operatorname{dan} x_m \in E(\lambda_m)$.

Maka

$$\left(\sum_{i=1}^{k} T_i\right)(x) = \sum_{i=1}^{k} T_i\left(\sum_{m=1}^{k} x_m\right) = \sum_{i=1}^{k} T_i(x_i) = \sum_{i=1}^{k} x_i = x = I(x).$$

Jadi, $I = \sum_{i=1}^{k} T_i$.

(e) Akan ditunjukkan bahwa $T = \sum_{i=1}^{k} \lambda_i T_i$.

Ambil $x \in V$. Tulis $x = \sum_{m=1}^k x_m \operatorname{dan} x_m \in E(\lambda_m)$.

Maka

$$\sum_{i=1}^{k} \lambda_i T_i(x) = \sum_{i=1}^{k} \lambda_i T_i \left(\sum_{m=1}^{k} x_m\right)$$

$$= \sum_{i=1}^{k} \lambda_i T_i(x_1 + x_2 + \dots + x_k)$$

$$= \sum_{i=1}^{k} \lambda_i x_i$$

$$= \sum_{i=1}^{k} T(x_i)$$

$$= T\left(\sum_{i=1}^{k} x_i\right)$$

$$= T(x).$$

Jadi,
$$T = \sum_{i=1}^{k} \lambda_i T_i$$
.

Corollary 1. Pelajari sendiri.

Corollary 2. Jika $F = \mathbb{C}$, maka T uniter jika dan hanya jika T normal dan $|\lambda| = 1$ untuk setiap nilai eigen λ dari T.

Bukti. (\Rightarrow) Jika T uniter, maka T normal dan setiap nilai eigen dari T memiliki nilai mutlak 1 berdasarkan Corollary 2 dari Teorema 6.18.

(\Leftarrow) Misalkan $T = \lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k$ dekomposisi spektral dari T. Jika $|\lambda| = 1$ untuk setiap nilai eigen λ dari T, maka berdasarkan Teorema Spektral (c),

$$TT^* = (\lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k) (\overline{\lambda_1} T_1 + \overline{\lambda_2} T_2 + \dots + \overline{\lambda_k} T_k)$$

$$= |\lambda_1|^2 T_1 + \dots + |\lambda_k|^2 T_k$$

$$= T_1 + \dots + T_k$$

$$= I.$$

Jadi, T uniter.

Corollary 3. Jika $F = \mathbb{C}$, dan T normal, maka T self-adjoin jika dan hanya jika setiap nilai eigen dari T adalah real.

Bukti. (\Rightarrow) Misalkan $T=\lambda_1T_1+\lambda_2T_2+\cdots+\lambda_kT_k$ dekomposisi spektral dari T. Misalkan pula setiap nilai eigen dari T adalah real. Maka

$$T^* = \overline{\lambda_1}T_1 + \overline{\lambda_2}T_2 + \dots + \overline{\lambda_k}T_k = \lambda_1T_1 + \lambda_2T_2 + \dots + \lambda_kT_k = T.$$

Jadi, T self-adjoin.

(\Leftarrow) Misalkan $T(x) = \lambda x$ untuk $x \neq 0$. Karena T operator self-adjoin yang juga normal, maka kita gunakan Teorema 6.15 (c) sehingga diperoleh

$$\lambda x = T(x) = T^*(x) = \overline{\lambda}x.$$

Jadi, $\lambda = \overline{\lambda}$ artinya λ real.

Corollary 4. Pelajari sendiri.

Daftar Pustaka

- [1] Friedberg, Stephen H., Arnold J. Insel dan Lawrence E. Spence. 2002. Linear Algebra, 4^{th} edition. Prentice Hall.
- [2] Jacob, Bill. 1978. Linear Algebra. W.H Freeman & Company.