Information Geometry Optimisation Algorithms

Phan Trung Hai Nguyen

School of Computer Science University of Birmingham Birmingham B15 2TT http://www.cs.bham.ac.uk/~pxn683/

October 09, 2017

Introduction

- A very general optimisation method, defined for arbitrary search space
- Taking the advantage of natural gradient on Riemannian spaces
- IGO flow viewed as an ordinary differential equation
- \bullet Different ${\rm IGO}$ algorithms derived by approximating the ${\rm IGO}$ flow in different ways

Preliminary

- Search space \mathcal{X} (e.g. binary search space $\{0,1\}^n$)
- ullet $P_{ heta}$ family of probability distribution on ${\mathcal X}$
- Parameter $\theta = (\theta_1, \dots, \theta_K) \in \Theta$, where Θ is space of parameter
- Given a function $L: \Theta \to \mathbb{R}$
- Problem

$$\underset{\theta \in \Theta}{\operatorname{arg max}} L(\theta)$$

Gradient ascent

Basic calculus:

$$\nabla L(\theta)=0.$$

- If analytic solution not exist, resort to numerical methods.
- ullet Gradient ascent: update current $heta^{(t)}$ to a new value $heta^{(t+\delta t)}$ such that

$$L(\theta^{(t)}) \le L(\theta^{(t+\delta t)}).$$

• Update scheme:

$$\theta^{(t+\delta t)} \leftarrow \theta^{(t)} + \gamma \left. \nabla_{\theta} L(\theta) \right|_{\theta=\theta^{(t)}},$$

where γ is learning rate, and vector of gradient

$$\nabla L(\theta) = \left(\frac{\partial L}{\partial \theta_1}, \frac{\partial L}{\partial \theta_2}, \dots, \frac{\partial L}{\partial \theta_K}\right)$$

evaluated at $\theta = \theta^{(t)}$.

Disadvantages

- Changes in parameters and function values measured by the Euclidean distance.
- Distance between $(\theta_1, \dots, \theta_K)$ and $(\theta_1^*, \dots, \theta_K^*)$ is given by

$$\sqrt{(\theta_1 - \theta_1^*)^2 + \ldots + (\theta_K - \theta_K^*)^2}$$

- However, most spaces are not Euclidean, but Riemannian.
- If Euclidean distance between parameters does not reflect the corresponding variation in the function values, then the (vanilla) gradient does not represent the steepest direction.

An example: Gaussian distributions

Consider two following pairs of Gaussian distributions

$$\mathcal{N}(\mu_1, \sigma_1^2)$$
 and $\mathcal{N}(\mu_2, \sigma_1^2)$

$$\mathcal{N}(\mu_1, \sigma_2^2)$$
 and $\mathcal{N}(\mu_2, \sigma_2^2)$

• In both distributions, Euclidean distance between parameters

$$\sqrt{(\mu_1 - \mu_2)^2 + (\sigma_1^2 - \sigma_1^2)^2} = |\mu_1 - \mu_2|.$$

- The left two distributions less overlap compared to the right two distributions.
- Comparing parameters ignores the structure of the probability distributions, not naturally living in Euclidean but Riemannian space.

Fisher Information

Measure distance between two probability distributions:
 Kullback-Leibler Divergence (KL, Kullback & Leibler (1951))

$$\mathrm{KL}(P_{\theta_1}||P_{\theta_2}) = \int_x \ln \frac{P_{\theta_1}(x)}{P_{\theta_2}(x)} P_{\theta_1}(x) dx = \mathbb{E}_{P_{\theta_1}} \left[\ln \frac{P_{\theta_1}(x)}{P_{\theta_2}(x)} \right]$$

• In case θ_1 and θ_2 are close, then

$$\mathrm{KL}(P_{ heta_1}||P_{ heta_2}) pprox rac{1}{2}(heta_1 - heta_2)^{\mathsf{T}} F_{ heta_2}(heta_1 - heta_2)$$

F is the Fisher Information Matrix (Ollivier et al. 2017)

$$F_{\theta_2} = \nabla^2_{\theta_1} \mathrm{KL}(P_{\theta_1}||P_{\theta_2})\big|_{\theta_1 = \theta_2}$$

• Fisher information matrix is a common Riemannian metric.

Natural gradient

• Using Fisher information matrix $F = (F_{ij})$, distance between $(\theta_1, \dots, \theta_K)$ and $(\theta_1^*, \dots, \theta_K^*)$ measured by

$$\sum_{1 \leq i,j \leq K} F_{ij} (\theta_i - \theta_i^*) (\theta_j - \theta_j^*)$$

The vanilla gradient is replaced by natural gradient (Amari 1998)

$$\tilde{\nabla}_{\theta} L(\theta) = F^{-1}(\theta) \ \nabla_{\theta} L(\theta)$$

New update rule for gradient ascent

$$\theta^{(t+\delta t)} \leftarrow \theta^{(t)} + \gamma \tilde{\nabla}_{\theta} L(\theta)|_{\theta=\theta^{(t)}}.$$

IGO flow

- ullet Optimising a function $f:\mathcal{X}
 ightarrow \mathbb{R}$
- Approach
 - Transforming f from search space \mathcal{X} to parameter space Θ ,
 - Defining $L(\theta)$ as the P_{θ} -average of the transformed function f',
 - Performing gradient ascent for $L(\theta)$ in space Θ ,
- ullet heta converges to a point s.t. samples from $P_{ heta}$ yield good values of f.
- Natural Evolution Strategy (NES, Wierstra et al. (2008)) considers

$$L(\theta) := \mathbb{E}_{P_{\theta}} f = \int_{x} f(x) P_{\theta}(x) dx.$$

• Unstable: expected value influenced by extreme values.

IGO flow (cont'd)

- Replacing f with a monotone rewriting $W_{\theta^t}^f$, depending on current parameter θ^t .
- Define $L(\theta) := \mathbb{E}_{P_{\theta}} W_{\theta^t}^f = \int_x P_{\theta}(x) W_{\theta^t}^f(x) dx$
- Continuous-time trajectory of θ

$$\begin{split} \frac{d\theta^t}{dt} &= \tilde{\nabla}_{\theta} L(\theta) \big|_{\theta = \theta^t} = \tilde{\nabla}_{\theta} \int_{x} P_{\theta}(x) W_{\theta^t}^f(x) dx \Big|_{\theta = \theta^t} \\ &= \int_{x} W_{\theta^t}^f(x) \tilde{\nabla}_{\theta} P_{\theta}(x) dx \Big|_{\theta = \theta^t} \\ &= \int_{x} W_{\theta^t}^f(x) F^{-1}(\theta) \nabla_{\theta} (\ln P_{\theta}(x)) P_{\theta}(x) dx \Big|_{\theta = \theta^t} \\ &= F^{-1}(\theta^t) \int_{x} W_{\theta^t}^f(x) \frac{\partial \ln P_{\theta}(x)}{\partial \theta} \Big|_{\theta = \theta^t} P_{\theta^t}(x) dx, \end{split}$$

where $\tilde{\nabla}_{\theta}P_{\theta}=P_{\theta}\tilde{\nabla}_{\theta}\ln P_{\theta}$ (log-likelihood trick)

IGO Algorithms

- Derived by approximating IGO flow in slightly different ways.
- Approximation often involves:
 - Discretising the IGO flow: $\theta^{t+\delta t} \approx \theta^t + \delta t \, \frac{d\theta^t}{dt} \, (\delta t$: learning rate),
 - Sampling $(x_i)_{i=1}^N \sim P_{\theta^t}$, then calculating $(\nabla_{\theta} \ln P_{\theta}(x_i)|_{\theta=\theta^t})$ and $(W_{\theta^t}^f(x_i))$, then

$$\begin{split} G(\theta^t) := \int_x W^f_{\theta^t}(x) \nabla_\theta \ln P_\theta(x) \big|_{\theta = \theta^t} P_{\theta^t}(x) dx \\ &\approx \frac{1}{N} \sum_{i=1}^N W^f_{\theta^t}(x_i) \nabla_\theta \ln P_\theta(x_i) \big|_{\theta = \theta^t} \end{split}$$

• Fisher information matrix, evaluated at $\theta = \theta^t$

$$F(\theta^t) pprox rac{1}{N} \sum_{i=1}^N \left(
abla_{ heta} \ln P_{ heta}(x_i) \right) \left(
abla_{ heta} \ln P_{ heta}(x_i)
ight)^T.$$

• The update scheme becomes

$$\theta^{(t+\delta t)} = \theta^{(t)} + \delta t \ F^{-1}(\theta^t) \ G(\theta^t)$$

References

- Amari, S. (1998), 'Natural gradient works efficiently in learning', *Neural Computation* **10**(2), 251–276.
 - **URL:** https://doi.org/10.1162/089976698300017746
- Kullback, S. & Leibler, R. A. (1951), 'On information and sufficiency', *Ann. Math. Statist.* **22**(1), 79–86.
 - **URL:** https://doi.org/10.1214/aoms/1177729694
- Ollivier, Y., Arnold, L., Auger, A. & Hansen, N. (2017),
 - 'Information-geometric optimization algorithms: A unifying picture via invariance principles', *J. Mach. Learn. Res.* **18**(1), 564–628.
 - **URL:** http://dl.acm.org/citation.cfm?id=3122009.3122027
- Wierstra, D., Schaul, T., Peters, J. & Schmidhuber, J. (2008), Natural evolution strategies, *in* '2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)', pp. 3381–3387.