Genetic Algorithm for Path Planning

Team 12: Ianis Bougdal-Lambert 'ianisbl', Gael Colas 'colasg'

Representation

2D occupancy grid

$$occ [i,j] = \begin{cases} 1 & if obstacle in cell (i,j) \\ 0 & otherwise \end{cases} m = 1 + (n-1)(2+1+1+int(\log_2 n))$$

Monotone Path $bina \in \{0,1\}^m$

$$m = 1 + (n - 1)(2 + 1 + 1 + int(\log_2 n))$$

$$bina[0] = \begin{cases} 0 : x - monotone \ path \\ 1 : y - monotone \ path \end{cases}$$

Table of actions for bina[0] = 0

2 bits	Remaining bits	Movement
00	Nb of cells crossed	Vertical
01	Ignored	Diagonal-Up
10	Ignored	Horizontal
11	Ignored	Diagonal-Down

$$fitness(path) = egin{cases} n^2 - n_{cell} & if \ valid \ n^2 - n_{cell} igg/20 \ n_{coll} & if \ collisions \ 1 & else \end{cases}$$

Strategy

- 0. Initialization : p individuals
- Selection : Roulette Wheel
- 2. Crossover: 1 point CO
- 3. Mutation : 1 Bit Flip mutation
- 4. Repair process (next slide)
- 5. Replacement : Generational
- 6. Loop to 1.

Initial Path

Status: Non-Valid Path

Out of Bounds Repair

Status: Non-Valid Path

End Point Repair

Status: Non-Valid Path

Collision Repair

Status: Valid Path

Results

Set-up : $n_{sim} = 100$; $n_{gen} = 200$; p = 100

Future Work

Multiobjective version

- shortest path: $n_{cell} = \sum_{(i,j) \in path} 1$
- 'easiest' path : $val = \sum_{(i,j) \in path} occ[i,j]$

Where : $0 \le occ[i, j] \le 1$

Comparison with Optimal Control methods

- A*
- Differential Dynamic Programming

