Write your name here Surname	Other nar	nes
Pearson Edexcel International GCSE	Centre Number	Candidate Number
	88 41	
Further Pu	ure Math	ematics
Further Pu	ure Math	
_		Paper Reference 4PM0/02

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 (a) On the axes below, sketch the lines with equations x = 3, y = x + 1 and 2y + x = 5 On your sketch, mark the coordinates of any points where the lines cross the axes.

(3)

(b) Show, by shading on your sketch, the region R defined by the inequalities

$$x \leqslant 3$$
, $y \leqslant x + 1$ and $2y + x \geqslant 5$

(1)

2	(a) Show that the equation $6\cos^2\alpha - \sin\alpha = 5$ can be written as	
	$6\sin^2\alpha + \sin\alpha - 1 = 0$	(2)
		(2)
	(b) Solve, to 1 decimal place where appropriate, for $0 \le \theta \le 90$	
	$6\cos^2(2\theta + 40)^\circ - \sin(2\theta + 40)^\circ = 5$	(5)

3 The radius of a circular pool of oil is increasing at a constant rate of 0.5 cm/s.			
	Find, in cm ² /s to 3 significant figures, the rate at which the area of the pool is increasing when the radius of the pool is 200 cm.		
		(5)	

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

- (a) (i) Write down an expression for tan(2x) in terms of tan x
 - (ii) Hence show that $\tan(3x) = \frac{3\tan x \tan^3 x}{1 3\tan^2 x}$

(6)

Given that α is the acute angle such that $\cos \alpha = \frac{1}{3}$

(b) find the exact value of $\tan \alpha$

(2)

(c) Hence use the identity in part (a) to find the exact value of $tan(3\alpha)$

Give your answer in the form $\frac{a\sqrt{2}}{b}$ where a and b are integers.

1	4	1	
(Z)

Question 4 continued	
	,

- 5 Given that $y = 3x\sqrt{2x-1}$ $x > \frac{1}{2}$
 - (a) show that $\frac{dy}{dx} = \frac{3(3x-1)}{\sqrt{2x-1}}$

(5)

The straight line *l* is the normal to the curve with equation $y = 3x\sqrt{2x-1}$ at the point on the curve where x = 1

(b) Find an equation, with integer coefficients, for l.

(6)

Question 5 continued	

6 The sum of the first 21 terms of an arithmetic series is 987 and the 8th term of the series is 35

The first term of the series is *a* and the common difference is *d*.

- (a) Find the value of
 - (i) a,
 - (ii) d.

(5)

The sum, S_n , of the first *n* terms of the series is given by $S_n = \sum_{r=1}^n (Ar + B)$, where *A* and *B* are integers.

- (b) Find the value of
 - (i) *A*,
 - (ii) B.

(3)

(c) Find the least value of n such that $S_n > 2000$

(5)

Question 6 continued	

7	(a) Given that k is a constant such that $\frac{27^{(x+2)} - 3^{(3x+5)}}{3^x \times 9^{(x+2)}} = k$	
	find the value of k .	(5)
	(b) Find the exact roots of the equation $2\log_2 y + 3\log_y 2 = 7$	(6)

Question 7 continued			

- 8 [In this question, **p** and **q** are non-zero and non-parallel vectors.]
 - O, A, B and C are fixed points such that

$$\overrightarrow{OA} = 5\mathbf{p} - 3\mathbf{q}$$
 $\overrightarrow{OB} = 11\mathbf{p}$ $\overrightarrow{OC} = 13\mathbf{p} + \mathbf{q}$

- (a) (i) Show that the points A, B and C are collinear.
 - (ii) Write down the ratio AB:BC.

(4)

The midpoint of OA is M and the midpoint of OB is N.

(b) Show that the ratio of the area of the quadrilateral *ABNM* to the area of the triangle *OAC* is 9:16

(7)

Question 8 continued			

(Total for Question 8 is 11 marks)

9	The points P and Q have coordinates $(-2, 5)$ and $(2, -3)$ respectively.	
	(a) Find an equation for the line PQ .	(2)
	The point N is such that DNO is a straight line and DN , $NO = 2.1$	(2)
	The point N is such that PNQ is a straight line and $PN:NQ = 3:1$	
	The straight line l passes through N and is perpendicular to PQ .	
	(b) Find	
	(i) the coordinates of N ,	
	(ii) an equation for l .	
		(5)
	The points S and T lie on l and have coordinates $(3, s)$ and $(t, -2)$ respectively.	
	(c) Find	
	(i) the value of s,	
	(ii) the value of t .	(0)
		(2)
	(d) Find the area of the quadrilateral <i>PSQT</i> .	(4)

Question 9 continued	

Figure 1 shows a right prism ABCDEFGHIJ. The base, DEFG, is horizontal and is a rectangle with DG = EF = 10 cm. The midpoint of ED is M.

The planes ABCDE and JIHGF are vertical.

$$AE = CD = GH = FJ = 8$$
 cm

$$AB = BC = HI = IJ = 6$$
 cm

Angle
$$BAC = 30^{\circ}$$

(a) Show that the length of MD is $3\sqrt{3}$ cm.

(2)

(b) Show that the length of BM, the height of the prism, is 11 cm.

(2)

(c) Find, in cm to 3 significant figures, the length BG.

(3)

Find, in degrees to 1 decimal place

(d) the size of the angle between the planes BCHI and CHFE,

(3)

(e) the size of the angle between the planes ABIJ and BEFI.

(5)

Question 10 continued	
	, <u>.</u>

Question 10 continued	
	(Total for Question 10 is 15 marks)
	TOTAL FOR PAPER IS 100 MARKS

