

Chapter Five

Environmental systems: modeling and reactor design

Problem 14, Page 235

Consider the irreversible conversion of a single reactant (A) to a single product (P) for the following reaction: A → P. Evaluate the following data to determine whether the reaction is zero-, first-, or second-order. Also, determine the magnitude of the rate constant k and list the appropriate units.

Time (minutes)	Concentration of A (g/L)	
0	1.00	
11	0.50	
20	0.25	
48	0.10	
105	0.05	

Problem 29, Page 236

- 29 Several reactor configurations are to be considered for reducing the influent substrate concentration from 100 mg/L to 15 mg/L at a design flow rate of 5 million gallons per day (MGD). Assume that substrate removal follows first-order kinetics and the first-order rate constant k is 8.0 d^{-1} . Determine the reactor volume required for the following configurations operating at steady-state:
 - a. One ideal plug flow reactor.
 - b. One ideal complete-mix reactor.
 - c. Three ideal complete-mix reactors in series.
 - d. Ten ideal complete-mix reactors in series.

Problem 30, Page 236

30 A complete-mix flow reactor is designed to treat an influent waste stream containing 130 mg/L of casein at a flow rate of 380 liters per minute (Lpm). Assume that casein removal follows first-order removal kinetics with a rate constant k of $0.5 \, h^{-1}$ and that the effluent should contain 13 mg/L of casein at steady state. Determine:

- a. The detention time in hours.
- b. The volume of the reactor in cubic meters.

Problem 14, Page 235

14 Consider the irreversible conversion of a single reactant (A) to a single product (P) for the following reaction: $A \rightarrow P$. Evaluate the following data to determine whether the reaction is zero-, first-, or second-order. Also, determine the magnitude of the rate constant k and list the appropriate units.

Time (minutes)	Concentration of A (g/L)	
0	1.00	
11	0.50	
20	0.25	
48	0.10	
105	0.05	

Time	C_A	In <i>C_A</i>	1/C _A
min	g/L	In(g/L)	L/g
0	1	0	1
11	0.5	-0.693	2
20	0.25	-1.386	4
48	0.1	-2.303	10
105	0.05	-3.000	20

-3

-3.5

100

120

This reaction is second-order, with the

Problem 29, Page 236

- - a. One ideal plug flow reactor.
 - b. One ideal complete-mix reactor.
 - c. Three ideal complete-mix reactors in series.
 - d. Ten ideal complete-mix reactors in series.

(a) One ideal plug flow reactor

$$Q = 19000 \text{ m}^3/\text{d}$$
 $C_0 = 100 \text{ mg/L}$
 $C_t = 15 \text{ mg/c}$

Plug-flow reactor

Attention

- Substrate removal reaction follows first-order
- At steady-state

$$\tau = \frac{1}{k} \ln \left(\frac{C_0}{C_t} \right) = \frac{1}{8} \ln \left(\frac{100}{15} \right) = 0.237 \text{ d}$$

$$\tau = Q \cdot \tau = 19000 \times 0.237 = 4506 \,\mathrm{m}^3$$

Problem 29, Page 236

- Several reactor configurations are to be considered for reducing the influent substrate concentration from 100 mg/L to 15 mg/L at a design flow rate of 5 million gallons per day (MGD). Assume that substrate removal follows first-order kinetics and the first-order rate constant k is 8.0 d^{-1} . Determine the reactor volume required for the following configurations operating at steady-state:
 - a. One ideal plug flow reactor.
 - b. One ideal complete-mix reactor.
 - c. Three ideal complete-mix reactors in series.
 - d. Ten ideal complete-mix reactors in series.

(b) One ideal complete-mix reactor

Mass balance in this reactor

[accumulation] = [inputs] - [outputs] + [reaction]

At steady-state
$$\ V\left(\frac{dC}{dt}\right)_{accmu} = QC_0 - QC_t + rV = Q(C_0 - C_t) - VkC_t = 0$$

$$V = \frac{Q(C_0 - C_t)}{kC_t} = \frac{19000(0.1 - 0.015)}{8 \times 0.015} = 13458 \text{ m}^3$$

Problem 30, Page 236

- 30 A complete-mix flow reactor is designed to treat an influent waste stream containing 130 mg/L of casein at a flow rate of 380 liters per minute (Lpm). Assume that casein removal follows first-order removal kinetics with a rate constant k of $0.5 \, h^{-1}$ and that the effluent should contain 13 mg/L of casein at steady state. Determine:
 - a. The detention time in hours.
 - b. The volume of the reactor in cubic meters.

Mass balance in this reactor

[accumulation] = [inputs] - [outputs] + [reaction]

At steady-state
$$V\left(\frac{dC}{dt}\right)_{accmu} = QC_0 - QC_t + rV = Q(C_0 - C_t) - VkC_t = 0$$

$$\frac{V}{Q} = \tau = \frac{(C_0 - C_t)}{kC_t} = \frac{0.13 - 0.013}{0.5 \times 0.013} = 18 \text{ h}$$

$$V = Q \cdot \tau = 380 \frac{L}{\min} \times 18 \text{ h} \times 60 \frac{\min}{h} = 410.4 \times 10^3 \text{ L} = 410.4 \text{ m}^3$$

The end

