Analysing eCommerce behavior

From data exploration to modeling

Understanding eCommerce Behavior

Why this analysis is important

- eCommerce is a rapidly growing industry.
- Companies seek insights into user behavior for better decision-making.
- Competitive advantage through data-driven strategies.

What we aim to achieve

- Predict user purchases accurately.
- Understand user interactions and preferences.
- Identify actionable insights for business growth.

Who benefits from our analysis

- eCommerce companies and retailers.
- Marketing and sales teams.
- Data analysts and scientists.
- End-users for improved user experience.

Limitations of our study

- Data availability and quality.
- Resource and time constraints.

Problem formulation

Problem Type

Binary Classification: Predicting Purchases (1) or No Purchases (0).

Objective

 Develop a model to understand and predict user purchase behavior based on user interactions.

Method

Utilize supervised machine learning algorithms for predictive analysis.

Dataset description

Dataset Overview

- Kaggle Dataset: eCommerce Behavior Data from a Multi-Category Store.
- Contains extensive user behavior data.
- Features include event type, time, product details, and more.

Data Size: 67501979 rows, 9 columns.

Data Types: Numeric, Categorical, Datetime.

Data Sources: Acquired from an eCommerce platform.

Data Challenges

Data preprocessing required (e.g., handling missing values, encoding categorical data).

Preparing data for analysis

Data Wrangling Steps

Data Loading

• Importing the dataset using Pandas.

Handling Missing Data

Identifying and dealing with missing values.

Data Cleaning

Removing duplicates.

Feature Engineering

• Creating new features for analysis (e.g., purchases per session, views per session).

Encoding Categorical Data

• Label encoding for categorical variables.

Standardization

Scaling numerical features for consistency.

Data Transformation

Converting datetime features.

Key Takeaways

- Cleaned and prepared dataset for analysis.
- Engineered features to enhance predictive power.
- Ensured data consistency through encoding and scaling.
- Transformed datetime features for analysis.

Exploratory analysis

Sales trend:

purchases (\$) per day of

the month

User activities

Product Categories

Brand preferences

Quantity of items of the most popular brands

	count		
brand			
samsung	198669		
apple	165681		
xiaomi	57908		
huawei	23466		
орро	15080		
lg	11828		
artel	7267		
lenovo	6546		
acer	6402		
bosch	5718		
indesit	5187		
respect	4557		
hp	4002		
midea	3984		

Price Distribution

Modeling process

Data Preprocessing

- Data scaling and transformation.
- Handling categorical variables.

Model Selection

Choosing appropriate algorithms (XGBoost, Logistic regression).

Model Training

- Splitting data into training and testing sets.
- Training models on the dataset.

Performance Metrics

• Metrics used to evaluate model performance (Accuracy).

Reasons to choose XGBoost: Reasons to choose Logistic regression:

Handling Imbalanced Data Interpretability

Accuracy Simplicity

Feature Importance Efficiency

Speed and Efficiency Low Variance

Interpretability Well-Suited for Binary Classification

Performance Metrics

Classification	n Report: precision	recall	f1-score	support
0	0.99	1.00	0.99	1992076
1	0.00	0.00	0.00	29969
accuracy			0.99	2022045
macro avg	0.49	0.50	0.50	2022045
weighted avg	0.97	0.99	0.98	2022045

Confusion Matrix:

[[1992076 0] [29969 0]]

"View" and "Cart" features strongly influenced purchase decisions.

Practical considerations and future work

Scalability: Ensure that systems can handle larger datasets and increased computational demands as the business grows. Probably need to implement distributed computing, or data partitioning.

Real-time Analytics: If real-time insights are critical, invest in streaming data processing and real-time analytics tools. This allows for immediate responses to changing user behavior and market trends.

Cost Management: Keep an eye on the cost of maintaining and running machine learning models. Optimize cloud resources and consider cost-effective alternatives for storing and processing data.

User Experience (UX): Prioritize the user experience when implementing data-driven recommendations or marketing strategies. Ensure that recommendations are relevant and enhance the overall user journey.

Suggestions For Improvement

User Segmentation:

Explore user segmentation techniques to tailor marketing strategies more effectively.
Identifying distinct user groups and customizing marketing approaches can lead to higher conversion rates.

Advanced Analytics:

Investigate advanced analytics methods such as deep learning or time series forecasting,
especially if the dataset grows in complexity or if the business needs evolve.

Data Augmentation:

• If more data is obtainable, consider data augmentation techniques to expand the dataset. Augmenting data can help the model generalize better and improve its predictive power.