Due Date: February 16th, 2019

Instructions

- For all questions, show your work!
- Use a document preparation system such as LaTeX.
- Submit your answers electronically via the course studium page, and via Gradescope.

Question 1. Using the following definition of the derivative and the definition of the Heaviside step function :

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.
- *4. Although the Heaviside step function is not differentiable, we can define its **distributional derivative**. For a function F, consider the functional $F[\phi] = \int_{\mathbb{R}} F(x)\phi(x)dx$, where ϕ is a smooth function (infinitely differentiable) with compact support $(\phi(x) = 0$ whenever $|x| \ge A$, for some A > 0).

Show that whenever F is differentiable, $F'[\phi] = -\int_{\mathbb{R}} F(x)\phi'(x)dx$. Using this formula as a definition in the case of non-differentiable functions, show that $H'[\phi] = \phi(0)$. ($\delta[\phi] \doteq \phi(0)$ is known as the Dirac delta function.)

Answer 1.

1. (a) if x > 0, then $x + \epsilon > 0$ ($\epsilon \to 0$), such that :

$$\frac{d}{dx}g(x) = \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\max\{0, x+\epsilon\} - \max\{0, x\}}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{x+\epsilon - x}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\epsilon}{\epsilon}$$

$$= \lim_{\epsilon \to 0} 1$$

$$= 1$$

$$H(x) = 1$$

(b) if x < 0, then $x + \epsilon < 0 (\epsilon \to 0)$, such that :

$$\frac{d}{dx}g(x) = \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\max\{0, x+\epsilon\} - \max\{0, x\}}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{0 - 0}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{0}{\epsilon}$$

$$= 0$$

$$H(x) = 0$$

(c) if x = 0, then:

$$\lim_{\epsilon \to 0^+} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \lim_{\epsilon \to 0^+} \frac{\max\{0, x+\epsilon\} - \max\{0, x\}}{\epsilon} = \lim_{\epsilon \to 0^+} \frac{\epsilon - 0}{\epsilon} = 1$$

$$\lim_{\epsilon \to 0^-} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \lim_{\epsilon \to 0^-} \frac{\max\{0, x+\epsilon\} - \max\{0, x\}}{\epsilon} = \lim_{\epsilon \to 0^+} \frac{0 - 0}{\epsilon} = 0$$

$$\lim_{\epsilon \to 0^+} \frac{g(x+\epsilon) - g(x)}{\epsilon} \neq \lim_{\epsilon \to 0^-} \frac{g(x+\epsilon) - g(x)}{\epsilon} \Rightarrow \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon} \text{ does not exist.}$$

Therefore, wherever the derivative of $g(x) = \max\{0, x\}$ exists, g(x) = H(x).

2.

$$g(x) = \max\{0, x\} = xH(x)$$

or

$$g(x) = \max\{0, x\} = \int_{-\infty}^{x} H(x)dx$$

3.

$$\lim_{k \to \infty} \frac{1}{1 + e^{-kx}} = \lim_{k \to \infty} \frac{1}{1 + \frac{1}{e^{kx}}}$$

$$= \lim_{k \to \infty} \frac{e^{kx}}{1 + e^{kx}}$$

$$= \lim_{k \to \infty} \left(1 - \frac{1}{1 + e^{kx}}\right)$$

$$= 1 - \lim_{k \to \infty} \frac{1}{1 + e^{kx}}$$

$$= \begin{cases} 1 & \text{if } x > 0 \\ \frac{1}{2} & \text{if } x = 0 \\ 0 & \text{if } x < 0 \end{cases}$$

$$= H(x)$$

*4. Given $F[\phi] = \int_{\mathbb{R}} F(x)\phi(x)dx$, where ϕ is infinitely differentiable, and $\phi(x) = 0$ whenever $|x| \ge A$ for some A > 0. If F is differentiable :

$$\int_{\mathbb{R}} (F(x)\phi(x))'dx = F(x)\phi(x)|_{-\infty}^{+\infty}$$

$$= F(+\infty)\phi(+\infty) - F(-\infty)\phi(-\infty)$$

$$= 0 - 0$$

$$= 0$$

Meanwhile,

$$\int_{\mathbb{R}} (F(x)\phi(x))'dx = \int_{\mathbb{R}} (F'(x)\phi(x) + F(x)\phi'(x))dx$$
$$= \int_{\mathbb{R}} F'(x)\phi(x)dx + \int_{\mathbb{R}} F(x)\phi'(x)dx$$

Therefore,

$$\int_{\mathbb{R}} F'(x)\phi(x)dx = -\int_{\mathbb{R}} F(x)\phi'(x)dx$$

By the definition of $F[\phi]$, we have,

$$F'[\phi] = \int_{\mathbb{R}} F'(x)\phi(x)dx = -\int_{\mathbb{R}} F(x)\phi'(x)dx$$

Let $\epsilon > 0$,

$$H'[\phi] = -\int_{\mathbb{R}} H(x)\phi'(x)dx$$

$$= -\lim_{\epsilon \to 0} \left(\int_{-\infty}^{-\epsilon} H(x)\phi'(x)dx + \int_{-\epsilon}^{\epsilon} H(x)\phi'(x)dx + \int_{\epsilon}^{+\infty} H(x)\phi'(x)dx \right)$$

$$= -\left(\lim_{\epsilon \to 0} \int_{-\infty}^{-\epsilon} H(x)d\phi(x) + \lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} H(x)d\phi(x) + \lim_{\epsilon \to 0} \int_{\epsilon}^{+\infty} H(x)d\phi(x) \right)$$

$$= -\left(\lim_{\epsilon \to 0} \int_{-\infty}^{-\epsilon} 0d\phi(x) + \frac{1}{2}\lim_{\epsilon \to 0} (\phi(\epsilon) - \phi(-\epsilon)) + \lim_{\epsilon \to 0} \int_{\epsilon}^{+\infty} 1d\phi(x) \right)$$

$$= -\left(0 + \frac{1}{2}(\phi(0) - \phi(0)) + (\phi(\infty) - \phi(0)) \right)$$

$$= \phi(0)$$

Question 2. Let x be an n-dimentional vector. Recall the softmax function : $S: \mathbf{x} \in \mathbb{R}^n \mapsto S(\mathbf{x}) \in \mathbb{R}^n$ such that $S(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_j e^{\mathbf{x}_j}}$; the diagonal function : $\operatorname{diag}(\mathbf{x})_{ij} = \mathbf{x}_i$ if i = j and $\operatorname{diag}(\mathbf{x})_{ij} = 0$ if $i \neq j$; and the Kronecker delta function : $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

- 1. Show that the derivative of the softmax function is $\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = S(\boldsymbol{x})_i (\delta_{ij} S(\boldsymbol{x})_j)$.
- 2. Express the Jacobian matrix $\frac{\partial S(x)}{\partial x}$ using matrix-vector notation. Use diag(·).

- 3. Compute the Jacobian of the sigmoid function $\sigma(\mathbf{x}) = 1/(1 + e^{-\mathbf{x}})$.
- 4. Let \boldsymbol{y} and \boldsymbol{x} be n-dimensional vectors related by $\boldsymbol{y} = f(\boldsymbol{x})$, L be an unspecified differentiable loss function. According to the chain rule of calculus, $\nabla_{\boldsymbol{x}} L = (\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L$, which takes up $\mathcal{O}(n^2)$ computational time in general. Show that if $f(\boldsymbol{x}) = \sigma(\boldsymbol{x})$ or $f(\boldsymbol{x}) = S(\boldsymbol{x})$, the above matrix-vector multiplication can be simplified to a $\mathcal{O}(n)$ operation.

Answer 2.

1.

$$\frac{dS(\boldsymbol{x})_{i}}{d\boldsymbol{x}_{j}} = \frac{d\frac{e^{\boldsymbol{x}_{i}}}{\sum_{j}e^{\boldsymbol{x}_{j}}}}{d\boldsymbol{x}_{j}}$$

$$= \begin{cases}
\frac{e^{\boldsymbol{x}_{i}} \sum_{j}e^{\boldsymbol{x}_{j}}-e^{\boldsymbol{x}_{i}}e^{\boldsymbol{x}_{i}}}{(\sum_{j}e^{\boldsymbol{x}_{j}})^{2}} & \text{if } i = j, \left(\text{ recall } : \frac{d\frac{f}{g}}{x} = \frac{df}{x}g - \frac{dg}{x}f}{g^{2}} \right) \\
e^{\boldsymbol{x}_{i}} \frac{-e^{\boldsymbol{x}_{j}}}{(\sum_{j}e^{\boldsymbol{x}_{j}})^{2}} & \text{if } i \neq j, \left(\text{ recall } : \frac{d\frac{c}{f}}{x} = -c\frac{df}{x} \right)
\end{cases}$$

$$= \begin{cases}
S(\boldsymbol{x})_{i} - S(\boldsymbol{x})_{i}^{2} & \text{if } i = j \\
-S(\boldsymbol{x})_{i}S(\boldsymbol{x})_{j} & \text{if } i \neq j
\end{cases}$$

$$= \begin{cases}
S(\boldsymbol{x})_{i}(1 - S(\boldsymbol{x})_{j}) & \text{if } i = j \\
S(\boldsymbol{x})_{i}(0 - S(\boldsymbol{x})_{j}) & \text{if } i \neq j
\end{cases}$$

$$= S(\boldsymbol{x})_{i}(\delta_{ij} - S(\boldsymbol{x})_{j})$$

2. For this question, Jacobian matrix $\frac{\partial S(x)}{\partial x}$ is a $n \times n$ matrix, where the *i*th row, *j*th column element :

$$\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}}_{i,j} = \frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j}$$

$$= S(\boldsymbol{x})_i (\delta_{ij} - S(\boldsymbol{x})_j)$$

$$= \delta_{ij} S(\boldsymbol{x})_i - S(\boldsymbol{x})_i S(\boldsymbol{x})_j$$

$$= \operatorname{diag}(S(\boldsymbol{x}))_{ij} - S(\boldsymbol{x})_i S(\boldsymbol{x})_j$$

By default, $S(\mathbf{x})$ is a column vector; therefore,

$$\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}} = \operatorname{diag}(S(\boldsymbol{x})) - S(\boldsymbol{x})S(\boldsymbol{x})^{\top}$$

3.

$$\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}}_{i,j} = \frac{d\sigma(\boldsymbol{x})_i}{d\boldsymbol{x}_j}
= \frac{d\sigma(\boldsymbol{x}_i)}{d\boldsymbol{x}_j}
= \begin{cases} \sigma(\boldsymbol{x}_i)(1 - \sigma(\boldsymbol{x}_i)), & \text{if } i = j, \text{ recall } : \sigma'(x) = \sigma(x)(1 - \sigma(x)) \\ 0, & \text{if } i \neq j \end{cases}
= \begin{cases} \sigma(\boldsymbol{x})_i(1 - \sigma(\boldsymbol{x})_i), & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Therefore,

$$\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}} = \operatorname{diag}(\sigma(\boldsymbol{x})(1 - \sigma(\boldsymbol{x})))$$

Justification of $\sigma'(x) = \sigma(x)(1 - \sigma(x))$:

$$\sigma'(x) = \frac{d\sigma(x)}{dx}$$

$$= \frac{d\frac{1}{1+e^{-x}}}{dx}$$

$$= -(\frac{1}{1+e^{-x}})^2 \frac{d(1+e^{-x})}{dx}$$

$$= \frac{1}{(1+e^{-x})^2} e^{-x}$$

$$= \frac{1}{1+e^{-x}} \frac{e^{-x}}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \frac{1+e^{-x}-1}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \left(1 - \frac{1}{1+e^{-x}}\right)$$

$$= \sigma(x)(1-\sigma(x))$$

- 4. Denote: \odot represents element-wise matrix(or column vector) multiplication, and $\langle a, b \rangle$ represents the inner-product of two column vectors(or matrices).
 - 1). For the case $\mathbf{y} = f(\mathbf{x}) = \sigma(\mathbf{x})$,

$$\nabla_{\boldsymbol{x}} L = (\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L = (\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L$$
$$= \left(\operatorname{diag} \left(\sigma(\boldsymbol{x}) (1 - \sigma(\boldsymbol{x})) \right) \right)^{\top} \nabla_{\boldsymbol{y}} L$$
$$= \operatorname{diag} \left(\sigma(\boldsymbol{x}) (1 - \sigma(\boldsymbol{x})) \right) \nabla_{\boldsymbol{y}} L$$
$$= \sigma(\boldsymbol{x}) \odot (1 - \sigma(\boldsymbol{x})) \odot \nabla_{\boldsymbol{y}} L$$

which means, the computation of $\nabla_x L$ can be decomposed to one vector minus calculation, and three element-wise vector multiplications. All these calculations can be done in $\mathcal{O}(n)$ time complexity; therefore, the whole time complexity is $\mathcal{O}(4n+C) = \mathcal{O}(n)$.

2). For the case $\mathbf{y} = f(\mathbf{x}) = S(\mathbf{x})$,

$$\nabla_{\boldsymbol{x}} L = (\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L = (\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L$$

$$= (\operatorname{diag}(S(\boldsymbol{x})) - S(\boldsymbol{x}) S(\boldsymbol{x})^{\top})^{\top} \nabla_{\boldsymbol{y}} L$$

$$= (\operatorname{diag}(S(\boldsymbol{x})) - S(\boldsymbol{x}) S(\boldsymbol{x})^{\top}) \nabla_{\boldsymbol{y}} L$$

$$= \operatorname{diag}(S(\boldsymbol{x})) \nabla_{\boldsymbol{y}} L - S(\boldsymbol{x}) S(\boldsymbol{x})^{\top} \nabla_{\boldsymbol{y}} L$$

$$= S(\boldsymbol{x}) \odot \nabla_{\boldsymbol{y}} L - S(\boldsymbol{x}) \langle (S(\boldsymbol{x})^{\top}, \nabla_{\boldsymbol{y}} L) \rangle$$

which means, the computation of $\nabla_x L$ can be decomposed to one inner-product, one matrix and scalar multiplication, one element-wise vector multiplication, and a vector minor operation.

All of this calculations can be done with the time complexity of $\mathcal{O}(n)$, Therefore, the whole calculation has the the complexity of $\mathcal{O}(4n+C) = \mathcal{O}(n)$.

Question 3. Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_j e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: S(x+c) = S(x), where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let \boldsymbol{x} be a 2-dimentional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimentional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

Answer 3.

1. Recall : $(x + c)_i = x_i + c$.

$$S(\boldsymbol{x} + c)_{i} = \frac{e^{(\boldsymbol{x}_{i} + c)}}{\sum_{j} e^{(\boldsymbol{x}_{j} + c)}}$$

$$= \frac{e^{\boldsymbol{x}_{i}} e^{c}}{\sum_{j} (e^{\boldsymbol{x}_{j}} e^{c})}$$

$$= \frac{e^{\boldsymbol{x}_{i}} e^{c}}{e^{c} \sum_{j} e^{\boldsymbol{x}_{j}}}$$

$$= \frac{e^{\boldsymbol{x}_{i}}}{\sum_{j} e^{\boldsymbol{x}_{j}}}$$

$$= S(\boldsymbol{x})_{i}$$

which means that each element in vectors $S(\boldsymbol{x}+c)$ is equal to the element in $S(\boldsymbol{x})$ with the same index. That is to say, the two vectors are same :

$$S(\boldsymbol{x}+c) = S(\boldsymbol{x})$$

2. Recall : $(c\mathbf{x})_i = c\mathbf{x}_i$.

To prove $S(\mathbf{x})$ is not invariant under scalar multiplication, we only need to provide an example where $S(c\mathbf{x}) \neq S(\mathbf{x})$, with $c \geq 0$.

Consider a 2- dimensional vector $\mathbf{x} = [0, \ln 3]^T$, and c = 2, $S(c\mathbf{x}) = S([0, 2 \ln 3]^T) = [0.1, 0.9]^T$, whereas $S(\mathbf{x}) = S([0, \ln 3]^T) = [0.25, 0.75]^T$. Therefore:

$$S(c\boldsymbol{x}) \neq S(\boldsymbol{x})$$

That $S(\mathbf{x})$ is not invariant under scalar multiplication with $c \geq 0$ doesn't means $S(c\mathbf{x})$ has no chance to be equal to $S(\mathbf{x})$. If elements in a *n*-dimensional vector \mathbf{x} are all equal, then: $S(c\mathbf{x}) = S(\mathbf{x})$, and

$$S(c\boldsymbol{x})_i = S(\boldsymbol{x})_i = \frac{1}{n}$$

•

When
$$c = 0$$
, $e^{cx_i} = e^{x_i} = e^0 = 1$,

$$S(c\boldsymbol{x})_i = \frac{1}{\sum_{1}^{n} 1} = \frac{1}{n}$$

meaning that all element of $S(c\mathbf{x})$ are equal. If the element value of $S(c\mathbf{x})$ reflects the probability of several events, then it means all events have the same probability.

Now let's consider the situation when c is arbitrarily large and not all elements of \boldsymbol{x} are equal. Suppose the n-dimensional vector \boldsymbol{x} has $k(0 \le k \le n-1)$ largest elements with the maximal values are all x^* and their indices forming a collection \mathcal{K} :

$$x^* = \boldsymbol{x}_{k,k\in\mathcal{K}} = max\{\boldsymbol{x}_i, \ 0 \le i \le n-1\}$$

then,

$$\lim_{c \to \infty} S(c\boldsymbol{x})_i = \lim_{c \to +\infty} \frac{e^{c\boldsymbol{x}_i}}{\sum_j e^{c\boldsymbol{x}_j}}$$

$$= \lim_{c \to +\infty} \frac{e^{c\boldsymbol{x}_i}/e^{c\boldsymbol{x}^*}}{\left(\sum_j e^{c\boldsymbol{x}_j}\right)/e^{c\boldsymbol{x}^*}}$$

$$= \lim_{c \to +\infty} \frac{e^{c(\boldsymbol{x}_i - \boldsymbol{x}^*)}}{\sum_j e^{c(\boldsymbol{x}_j - \boldsymbol{x}^*)}}$$

$$= \begin{cases} \frac{1}{k} & \text{if } i \in \mathcal{K} \\ 0 & \text{if } i \notin \mathcal{K} \end{cases}$$

To conclude, if c = 0, all elements of $S(c\mathbf{x})_i$ are equal; if c is arbitrarily large, only the largest element(s) has(or equally share) the value 1, other elements have the value 0.

3. If x is a 2-dimensional vector, let scalar:

$$S(\mathbf{x})_0 = \frac{e^{\mathbf{x}_0}}{e^{\mathbf{x}_0} + e^{\mathbf{x}_1}} = \frac{1}{1 + e^{-(\mathbf{x}_0 - \mathbf{x}_1)}} = \sigma(\mathbf{x}_0 - \mathbf{x}_1) = \sigma(z)$$

$$S(\mathbf{x})_1 = \frac{e^{\mathbf{x}_1}}{e^{\mathbf{x}_0} + e^{\mathbf{x}_1}} = 1 - \frac{e^{\mathbf{x}_0}}{e^{\mathbf{x}_0} + e^{\mathbf{x}_1}} = 1 - S(\mathbf{x})_0 = 1 - \sigma(z)$$

 $z = f(\boldsymbol{x}) = \boldsymbol{x}_0 - \boldsymbol{x}_1$

Therefore,

$$S(\boldsymbol{x}) = [S(\boldsymbol{x})_0, S(\boldsymbol{x})_1]^T = [\sigma(z), 1 - \sigma(z)]^T$$

4. If x is a K-dimensional vector, let constant $c = -x_0$, and :

$$y_i = x_i - x_0$$
, where $1 \le i \le K - 1$

As function $S(\mathbf{x})$ is translation-invariant, that is $S(\mathbf{x} + c) = S(\mathbf{x})$, we have :

$$S(\mathbf{x}) = S(\mathbf{x} + c)$$

$$= S(\mathbf{x} - \mathbf{x}_0)$$

$$= S([\mathbf{x}_0 - \mathbf{x}_0, \mathbf{x}_1 - \mathbf{x}_0, \cdots, \mathbf{x}_{K-1} - \mathbf{x}_0)]^T)$$

$$= S([0, y_1, y_2, \cdots, y_{K-1})]^T)$$

Question 4. Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 4. First, we show that $\sigma(x)$ is a function of $\tanh(x)$

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}}$$

$$= \frac{1}{1 + e^{-\frac{1}{2}\mathbf{x} - \frac{1}{2}\mathbf{x}}}$$

$$= \frac{1}{1 + \frac{e^{-\frac{1}{2}\mathbf{x}}}{e^{\frac{1}{2}\mathbf{x}}}}$$

$$= \frac{e^{\frac{1}{2}\mathbf{x}}}{e^{\frac{1}{2}\mathbf{x}}}$$

$$= \frac{e^{\frac{1}{2}\mathbf{x}}}{e^{\frac{1}{2}\mathbf{x}}}$$

$$= \frac{1}{2} \left(\frac{2 e^{\frac{1}{2}\mathbf{x}}}{e^{\frac{1}{2}\mathbf{x}} + e^{-\frac{1}{2}\mathbf{x}}} \right)$$

$$= \frac{1}{2} \left(\frac{e^{\frac{1}{2}\mathbf{x}} - e^{-\frac{1}{2}\mathbf{x}}}{e^{\frac{1}{2}\mathbf{x}} + e^{-\frac{1}{2}\mathbf{x}}} + 1 \right)$$

$$= \frac{1}{2} \left(\tanh(\frac{1}{2}\mathbf{x}) + 1 \right)$$

Then, for the 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$:

$$y(x, \Theta, \sigma)_{k} = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \omega_{kj}^{(2)} \frac{1}{2} \left(\tanh \left(\frac{1}{2} \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) \right) + 1 \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \frac{1}{2} \omega_{kj}^{(2)} \tanh \left(\sum_{i=1}^{D} \frac{1}{2} \omega_{ji}^{(1)} x_{i} + \frac{1}{2} \omega_{j0}^{(1)} \right) + \left(\sum_{j=1}^{M} \frac{1}{2} \omega_{kj}^{(2)} + \omega_{k0}^{(2)} \right)$$

As $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and $\Theta = (\omega^{(1)}, \omega^{(2)})$, let :

$$\tilde{\omega}^{(1)} = \frac{1}{2}\omega^{(1)}$$

and for $1 \le k \le K$,

$$\tilde{\omega}_{kj}^{(2)} = \begin{cases} \frac{1}{2} \omega_{kj}^{(2)} & \text{if } 1 \le j \le M \\ \omega_{kj}^{(2)} + \sum_{i=1}^{M} \frac{1}{2} \omega_{ki}^{(2)} & \text{if } j = 0 \end{cases}$$

$$y(x, \Theta, \sigma)_k = \sum_{j=1}^{M} \tilde{\omega}_{kj}^{(2)} \tanh\left(\sum_{i=1}^{D} \tilde{\omega}_{ji}^{(1)} x_i + \tilde{\omega}_{j0}^{(1)}\right) + \tilde{\omega}_{k0}^{(2)}$$
$$= y(x, \Theta', \tanh)_k$$

Question 5. Given $N \in \mathbb{Z}^+$, we want to show that for any $f : \mathbb{R}^n \to \mathbb{R}^m$ and any sample set $\mathcal{S} \subset \mathbb{R}^n$ of size N, there is a set of parameters for a two-layer network such that the output $y(\boldsymbol{x})$ matches $f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{S}$. That is, we want to interpolate f with g on any finite set of samples \mathcal{S} .

- 1. Write the generic form of the function $y: \mathbb{R}^n \to \mathbb{R}^m$ defined by a 2-layer network with N-1 hidden units, with linear output and activation function ϕ , in terms of its weights and biases $(\boldsymbol{W}^{(1)}, \boldsymbol{b}^{(1)})$ and $(\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)})$.
- 2. In what follows, we will restrict $\mathbf{W}^{(1)}$ to be $\mathbf{W}^{(1)} = [\mathbf{w}, \cdots, \mathbf{w}]^{\top}$ for some $\mathbf{w} \in \mathbb{R}^n$ (so the rows of $\mathbf{W}^{(1)}$ are all the same). Show that the interpolation problem on the sample set $\mathcal{S} = \{\mathbf{x}^{(1)}, \cdots \mathbf{x}^{(N)}\} \subset \mathbb{R}^n$ can be reduced to solving a matrix equation : $\mathbf{M}\tilde{\mathbf{W}}^{(2)} = \mathbf{F}$, where $\tilde{\mathbf{W}}^{(2)}$ and \mathbf{F} are both $N \times m$, given by

$$\tilde{m{W}}^{(2)} = [m{W}^{(2)}, m{b}^{(2)}]^{ op}$$
 $m{F} = [f(m{x}^{(1)}), \cdots, f(m{x}^{(N)})]^{ op}$

Express the $N \times N$ matrix \boldsymbol{M} in terms of \boldsymbol{w} , $\boldsymbol{b}^{(1)}$, ϕ and $\boldsymbol{x}^{(i)}$.

- *3. Proof with Relu activation. Assume $\boldsymbol{x}^{(i)}$ are all distinct. Choose \boldsymbol{w} such that $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$ are also all distinct (Try to prove the existence of such a \boldsymbol{w} , although this is not required for the assignment See Assignment 0). Set $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon$, where $\epsilon > 0$. Find a value of ϵ such that \boldsymbol{M} is triangular with non-zero diagonal elements. Conclude. (Hint: assume an ordering of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$.)
- *4. Proof with sigmoid-like activations. Assume ϕ is continuous, bounded, $\phi(-\infty) = 0$ and $\phi(0) > 0$. Decompose \boldsymbol{w} as $\boldsymbol{w} = \lambda \boldsymbol{u}$. Set $\boldsymbol{b}_j^{(1)} = -\lambda \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}$. Fixing \boldsymbol{u} , show that $\lim_{\lambda \to +\infty} \boldsymbol{M}$ is triangular with non-zero diagonal elements. Conclude. (Note that doing so preserves the distinctness of $\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}$.)

Answer 5.

1. for $0 \le k \le m - 1$,

$$y(\boldsymbol{x})_k = \sum_{j=0}^{N-1} \boldsymbol{W}_{kj}^{(2)} \ \phi\left(\sum_{i=0}^{n-1} \boldsymbol{W}_{ji}^{(1)} \boldsymbol{x}_i + \boldsymbol{b}_j^{(1)}\right) + \boldsymbol{b}_k^2$$

or the matrix form:

$$y(x) = W^{(2)}\phi(W^{(1)}x + b^{(1)}) + b^{(2)}$$

2. Consider the interpolation problem on the sample set $S = \{x^{(1)}, \dots x^{(N)}\} \subset \mathbb{R}^n$ with N samples, let:

$$m{X} = [m{x}^{(1)}, m{x}^{(2)}, \cdots, m{x}^{(N)}]^{ op}$$

and

$$Y = [y(x^{(1)}), y(x^{(2)}), \cdots, y(x^{(N)})]^{\top}$$

That $y(\boldsymbol{x})$ matches $f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{S}$ means:

$$Y = [f(x^{(1)}), f(x^{(2)}), \cdots, f(x^{(N)})]^{\top} = F$$

$$\begin{aligned} \boldsymbol{F} &= \phi \left(\boldsymbol{X} (\boldsymbol{W}^{(1)})^\top + [\boldsymbol{b}^{(1)}, \cdots, \boldsymbol{b}^{(1)}]^\top \right) (\boldsymbol{W}^{(2)})^\top + [\boldsymbol{b}^{(2)}, \cdots, \boldsymbol{b}^{(2)}]^\top \\ &= [\phi([\boldsymbol{X}, 1] \cdot [\boldsymbol{W}^{(1)}, \boldsymbol{b}^{(1)}]^\top), 1] \cdot [\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^\top \end{aligned}$$

As $\tilde{\boldsymbol{W}}^{(2)} = [\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^{\top}$ and $\boldsymbol{W}^{(1)} = [\boldsymbol{w}, \cdots, \boldsymbol{w}]^{\top}, \ \boldsymbol{w} \in \mathbb{R}^{n}$, Let:

$$\boldsymbol{M} = \left[\phi([\boldsymbol{X},1] \cdot [\boldsymbol{W}^{(1)}, \boldsymbol{b}^{(1)}]^{\top}), 1\right]$$

Which means for $0 \le i, j \le N-1$:

$$\boldsymbol{M}_{ij} = \begin{cases} \phi(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} + \boldsymbol{b}_{j}^{(1)}) & \text{for } 0 \leq j < N - 1\\ 1 & \text{for } j = N - 1 \end{cases}$$

Obviously, M is $N \times N$. So we have :

$$oldsymbol{F} = oldsymbol{M} ilde{oldsymbol{W}}^{(2)}$$

*3. As $\boldsymbol{x}^{(i)}$ are distinct, and $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} \in \mathbb{R}$ are also distinct, we can permutate $\boldsymbol{x}^{(i)}$ by sorting $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$, such that for all $0 \leq j < i \leq N-1$:

$$oldsymbol{w}^{ op} oldsymbol{x}^{(j)} > oldsymbol{w}^{ op} oldsymbol{x}^{(i)}$$

Let $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top} \boldsymbol{x}^{(j)} + \epsilon$, where $\epsilon > 0$, we have :

$$\boldsymbol{M}_{ij} = \begin{cases} \phi(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(j)} + \epsilon) & \text{for } 0 \leq j < N - 1\\ 1 & \text{for } j = N - 1 \end{cases}$$

As ϕ is Relu activation function,

$$\phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon) = 0$$

$$\iff \boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon \leq 0$$

$$\iff \epsilon \leq \boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$$

Let,

$$0 < \epsilon \le \min\{ \boldsymbol{w}^{\top} \boldsymbol{x}^{(j)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} \mid 0 \le j < i \le N - 1 \}$$

for $0 \le i$, $j \le N - 1$, we have :

$$\boldsymbol{M}_{ij} = \begin{cases} 0 & 0 \le j < i \le N-1 \\ \epsilon & 0 \le i = j < N-1 \\ \boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(j)} + \epsilon & 0 \le i < j < N-1 \\ 1 & j = N-1 \end{cases}$$

indicating M is a triangular matrix with non-zero diagonal elements.

This proves that, for any $f: \mathbb{R}^n \to \mathbb{R}^m$ and any finite sample set $\mathcal{S} \subset \mathbb{R}^n$ of size N, there always exists a set of parameters for a two-layer network with N-1 neurons in hidden layer(with $\mathbf{W}^{(1)}$ specially chosen) and a ReLU activation function, such that the output $y(\mathbf{x})$ matches $f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{S}$.

*4. Re-use the ordering of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$, which for all $0 \leq j < i \leq N-1$:

$$\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} > \boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$$

Given, $\boldsymbol{w} = \lambda \boldsymbol{u}, \boldsymbol{b}_{j}^{(1)} = -\lambda \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}, \phi(-\infty) = 0$ and $\phi(0) > 0$, for $0 \le i, \ j \le N-1$, we have :

$$\boldsymbol{M}_{ij} = \begin{cases} \phi \left(\lambda (\boldsymbol{u}^{\top} \boldsymbol{x}^{(i)} - \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}) \right) & \text{for } 0 \leq j < N - 1 \\ 1 & \text{for } j = N - 1 \end{cases}$$

Similarly,

$$\lim_{\lambda \to \infty} \mathbf{M} = \begin{cases} \phi(-\infty) = 0 & 0 \le j < i \le N - 1\\ \phi(0) > 0 & 0 \le i = j < N - 1\\ \phi(+\infty) > 0 & 0 \le i < j < N - 1\\ 1 & j = N - 1 \end{cases}$$

indicating it is a triangular matrix with non-zero diagonal elements.

This proves that, for any $f: \mathbb{R}^n \to \mathbb{R}^m$ and any finite sample set $\mathcal{S} \subset \mathbb{R}^n$ of size N, there always exists a set of parameters for a two-layer network with N-1 neurons in hidden layer and a sigmoid-like activation function, such that the output $y(\boldsymbol{x})$ matches $f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{S}$.

Question 6. Compute the *full*, *valid*, and *same* convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 6. To compute the result of a convolution with **kernel flipping** for 1D matrices, we can use the following formula :

$$\boldsymbol{S}(i) = (\boldsymbol{K} * \boldsymbol{X})(i) = \sum_{n=0}^{k-1} \boldsymbol{X}(i+n) \boldsymbol{K}(k-1-n)$$

where the input X, in this question, is variant for different convolution patterns, the kernel K, in this question, is [1,0,2], and k, the size of kernel, is 3.

Let s, i, k, p, o represent the size of stride, input, kernel, zero-padding, and output size respectively, we have :

$$o = \lfloor \frac{i + 2p - k}{s} \rfloor + 1$$

For full, valid and same convolution in this question, i = 4, s = 1 and k = 3 hold.

1. for full convolution: p = k - 1 = 2, o = 6, X = [0, 0, 1, 2, 3, 4, 0, 0], and the convolution result

$$\mathbf{S} = [1, 2, 5, 8, 6, 8]$$

2. for valid convolution: $p = 0, o = 2, \mathbf{X} = [1, 2, 3, 4]$, and the convolution result

$$S = [5, 8]$$

3. for same convolution: $p = 1, o = i = 4, \mathbf{X} = [0, 1, 2, 3, 4, 0]$, and the convolution result

$$S = [2, 5, 8, 6]$$

Question 7. Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 7.

For question1, the dimensionality of the output of the last(third) layer is $128 \times 24 \times 24 = 73728$; for question 2, 131072 parameters are need for the last layer.

In general, a CNN architecture follows the following rules:

- 1. dimensionality of input data are user-defined.
- 2. number of channels(#Channels) of a convolutional layer is free to define.
- 3. pooling downsampling operation has **no** parameters and doesn't change the number of channels.
- 4. the output size per channel of a convolutional layer o is determined by its input size per channel i, kernel size :k, number of zero-padding :p, and strides :s, of the convolutional operation :s

$$o = \lfloor \frac{i + 2p - k}{s} \rfloor + 1$$

5. not including the biases, number of parameters (#Parameters) for a convolutional layer is :

$$\#$$
Parameters = (kernel width) × (kernel height) × $\#$ Channels(input) × $\#$ Channels(output)

6. A squared kernel for a non-overlapping max polling operation means k = sBased on the above rules, we built the table describing the detail of the CNN architecture.

Table 1 – CNN architecture

Layer	Role	#Channels	Size per channel	#Parameters
Input	original data	3	(256, 256)	0
First	convolution(k=8,s=2,p=0)	64	(125,125)	$8 \times 8 \times 3 \times 64 = 12288$
Second	pooling&down sampling(s=5)	64	(25,25)	0
Third	convolution(k=4,s=1,p=1)	128	(24,24)	$4 \times 4 \times 64 \times 128 = 131072$

Question 8. Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide the correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (e.g. same k for both width and height).

- 1. The output shape of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.
 - (b) Assume d = 2, p = 2.
 - (c) Assume p = 1, d = 1.

Answer 8. Using square windows only, the following two formulas define the relationship of following hyper-parameters: input size(i), output size(o), kernel size(k), effective kernel size(k'), zeropaddings(p), strides(s), and dilations(d):

$$o = \lfloor \frac{i + 2p - k'}{s} \rfloor + 1$$

$$k' = k + (k-1)(d-1)$$

where $i, o, s, k, k' \in \mathbb{N}$, and $p \in \mathbb{Z}^{\geq 0}$.

All of the sub-questions can be regarded as finding the possible combinations of some hyperparameters given others. I will first show the relationship between parameters by a formula, then list all possible combinations if there are finite solutions, and some possible combinations followed by \cdots if the solution has infinity combinations, such as by infinitely and meaninglessly increasing the number of zero-padding while still fit the formula. Combination(s) marked with a '*' indicates it is practically usable or preferred to be used in practice.

- 1. i = 64, output shape of (64, 32, 32) means o = 32.
 - (a) Given k = 8, d = 1 (without dilation):

$$k' = 8 + (8 - 1)(1 - 1) = 8$$
$$32 = \lfloor \frac{64 + 2p - 8}{s} \rfloor + 1 \Leftrightarrow \lfloor \frac{56 + 2p}{s} \rfloor = 31$$

s, p could be the following (* indicates the preferred configuration(s) for a CNN network, applied to all the following):

i.
$$s = 2, p = 3 *$$

ii.
$$s = 3, p = 18$$

iii.
$$s = 4, p = 34$$

iv. · · ·

(b) Given d = 7, s = 2, then:

$$\lfloor \frac{64 + 2p - k'}{2} \rfloor = 31$$

$$s' = k + (k - 1)(d - 1) = 7k - 4$$

$$k' = k + (k-1)(d-1) = 7k - 6$$

p, k could be the following:

i.
$$k = 1 (k' = 1), p = 0 *$$

ii.
$$k = 2 (k' = 8), p = 3 *$$

iii.
$$k = 3 \ (k' = 15), p = 7 *$$

iv.
$$k = 4 \ (k' = 22), p = 10$$

2.
$$o = 8, i = 32, p = 0, d = 1$$

(a) For polling with non-overlapping window, it should be k = s,

$$8 = \lfloor \frac{32 - k}{k} \rfloor + 1 \Rightarrow k = 4$$

Therefore:

$$k = 4, s = 4$$

(b) if k = 8(k' = 8, as d = 1), s = 4, the output size should be:

$$o = \lfloor \frac{32 + 2 \times 0 - 8}{4} \rfloor + 1 = 7$$

Therefore, the output shape could be (64, 7, 7) if the number of channels maintains 64.

3. Given i = 8, o = 4

(a) Given p = 0, d = 1(k' = k)

$$4 = \lfloor \frac{8-k}{s} \rfloor + 1 \Rightarrow \lfloor \frac{8-k}{s} \rfloor = 3$$

Here are the following possible configurations:

i.
$$s = 1, k = 5 *$$

ii.
$$s = 2, k = 2 *$$

(b) Given d = 2(k' = 2k - 1), p = 2

$$4 = \lfloor \frac{8+4-(2k-1)}{s} \rfloor + 1 \Rightarrow \lfloor \frac{13-2k}{s} \rfloor = 3$$

Here are the following possible configurations :

i.
$$k = 1(k' = 1), s = 3 *$$

ii.
$$k = 2(k' = 3), s = 3 *$$

iii.
$$k = 3(k' = 5), s = 2 *$$

iv.
$$k = 5(k' = 9), s = 1 *$$

(c) Given p = 1, d = 1(k' = k)

$$4 = \lfloor \frac{8+2-k}{s} \rfloor + 1 \Rightarrow \lfloor \frac{10-k}{s} \rfloor = 3$$

Here are the following possible configurations:

i.
$$s = 1, k = 7 *$$

ii.
$$s = 2, k = 4 *$$

iii.
$$s = 2, k = 3 *$$

iv.
$$s = 3, k = 1$$
 (not often used)