Algorithm 1 PC-SMOTE (versión binaria)

- 1: Entrada: $X \in \mathbb{R}^{n \times d}$, $y \in \{0,1\}$ (1 = minoritaria), k, p_{dist} , p_{ent} (opcional), p_{den} (opcional), r (radio de densidad), $criterio_pureza = entropía o proporción, <math>modo_espacial \in \{2d, 3d\}, max_sint$ (opcional).
- 2: Salida: X', y' (sintéticas etiquetadas como 1).
- 3: Convertir X e y a arreglos; inicializar métricas internas.
- 4: Separar $X_{\min} \leftarrow X[y=1], X_{\max} \leftarrow X[y=0]$. Si $|X_{\min}| < k+1$ entonces return (X,y).
- 5: Ajustar k
NN global sobre X; para cada $x_i \in X_{\min}$ obtener vecinos $\mathcal{N}_i^{\text{all}}$ (excluyendo x_i) y calcular el riesgo local

$$r_i \leftarrow \frac{1}{k} \sum_{x_j \in \mathcal{N}_i^{\text{all}}} \mathbb{1}[y_j = 0].$$

6: Ajustar k
NN sobre X_{\min} ; obtener \mathcal{N}_i^{\min} y la **densidad** por intersección de esferas

$$den_i \leftarrow \frac{1}{k} \sum_{x_j \in \mathcal{N}_i^{\min}} \mathbb{1}\left(\|x_i - x_j\| \le 2r \right),$$

usando sólo las tres primeras coordenadas si $modo_espacial = 3d$; en caso contrario, el vector completo.

7: Pureza: si el criterio es entropía, calcular

$$H_i = \text{entropy} \big(\text{freq}(y_{\mathcal{N}_i^{\text{all}}}) \big),$$

y si p_{ent} está definido, fijar $\tau_{\text{ent}} = \text{percentil}(H, p_{\text{ent}})$; definir $m_i^{\text{pureza}} = \mathbb{1}[H_i \leq \tau_{\text{ent}}]$. Si el criterio es proporción, calcular $\pi_i = \frac{1}{k} \sum_{x_j \in \mathcal{N}_i^{\text{all}}} \mathbb{1}[y_j = 1]$ y definir $m_i^{\text{pureza}} = \mathbb{1}[0.4 \leq \pi_i \leq 0.6]$.

- 8: Densidad: si p_{den} está definido, fijar τ_{den} = percentil(den, p_{den}) y m_i^{dens} = ⊮[den_i ≥ τ_{den}]; en caso contrario, m_i^{dens} = ⊮[den_i > 0].
 9: Filtrado: m_i = m_i^{pureza} ∧ m_i^{dens}; C = {x_i ∈ X_{min} : m_i = 1}. Si |C| < k + 1 return (X, y).
- 10: Cantidad de sintéticas: $n_{\text{sint}} = max_sint$ si fue provisto; en caso contrario $|X_{\text{maj}}| |X_{\text{min}}|$. Si $n_{\text{sint}} \leq 0 \text{ return } (X, y).$
- 11: for t = 1 to n_{sint} do
- Muestrear $x_i \sim C$; recuperar $r_i y \mathcal{N}_i^{\text{all}}$. 12:
- Calcular distancias $D_{ij} = ||x_i x_j||$ para $x_j \in \mathcal{N}_i^{\text{all}}$ y $\theta_i = \text{percentil}(D_i, p_{\text{dist}})$. Definir $V_i = \{x_j \in \mathcal{N}_i^{\text{all}} : D_{ij} \leq \theta_i\}$. Si $|V_i| = 0$, continue. 13:
- 14:
- Muestrear $z \in V_i$. 15:
- **if** $0.4 \le r_i < 0.5$ **then** 16:
- $\delta \leftarrow \text{Uniform}(0.6, 0.8)$ 17:
- else if $0.5 \le r_i \le 0.6$ then 18:
- 19: $\delta \leftarrow \text{Uniform}(0.3, 0.5)$
- 20: else
- 21: $\delta \leftarrow \text{Uniform}(0.4, 0.6)$
- 22: end if
- Generar $\tilde{x} = x_i + \delta (z x_i)$ y apilar a X con etiqueta 1. 23:
- 25: **return** (X', y') con todas las sintéticas concatenadas al final.