In-class Exercises: Properties of Decompositions

1. A lossy join decomposition. Suppose we have a relation with attributes cdf, name, grade. Here is an instance of that relation:

cdf	name	grade
g3tout	Amy	91
g4foobar	David	78
c0zhang	David	85

(a) Suppose we were to decompose this into two new relations: R1(cdf, name) and R2(name, grade). Project the data onto those two new relations.

	cdf	name
R1:		

name grade

R2:

(b) Now compute $R1\bowtie R2$ to rebuild the original table.

cdf	name	grade

(c) What was lost?

Solution: The rebuilt table has 5 rows. New rows are in bold. We have lost the information that the grade of 78 is for g4foobar and the grade of 85 is for c0zhang.

cdf	name	grade
g3tout	Amy	91
g4foobar	David	78
c0zhang	David	85
g4foobar	David	85
c0zhang	David	78

- 2. A decomposition that fails to preserve dependencies [Example 3.25 from the text.] Suppose we have a relation with attributes movie, theatre, city and FDs { theatre \rightarrow city; movie, city \rightarrow theatre }. The FD theatre \rightarrow city violates BCNF, and applying the BCNF decomposition algorithm, we get two new relations:
 - R1(theatre, city) with one FD: theatre \rightarrow city
 - R2(theatre, movie) with no FDs
 - (a) Create small instances of R1 and R2 that satisfy their own FDs, but when natural-joined together, violate one of the original FDs.

Solution: Here is one example answer.

	theatre	city
R1:	Kingsway Theatre Varsity Cinema	Toronto Toronto

	theatre	movie
R2:	Kingsway Theatre Varsity Cinema	The Matrix The Matrix

	theatre	city	movie
R1 ⋈ R2:	Kingsway Theatre Varsity Cinema	Toronto Toronto	The Matrix The Matrix
R1 ⋈ R2:			

(b) In the original relation, with attributes movie, the atre, city, does the functional dependency theatre \rightarrow city violate 3 NF?

Solution:

No, city is part of the key (city, movie).

(c) In the original relation, with attributes movie, the atre, city, does the functional dependency theatre \rightarrow city violate BCNF?

Solution:

Yes, because theatre is not a key. It does not functionally determine movie.