Лекція 4 (продовження).

Перевірка статистичних гіпотез

4.6. Перевірка гіпотез про параметр p біноміального розподілу

При статистичному аналізі даних підпорядкованих схемі Бернуллі, розглядають два типи задач: порівняння ймовірності успіху p в одному випробуванні із заданим значенням p_0 і порівняння ймовірностей успіху у двох серіях випробувань.

1. В першому випадку перевіряємо гіпотезу $H_0: p = p_0$. Нехай в n випробуваннях за схемою Бернуллі «успіх» відбувся μ разів. В якості статистики критерію вибирають відносну частоту $\omega = \frac{\mu}{n}$. При великих n(n > 50) і при виконанні умови $n\omega > 5$, $n(1-\omega) > 5$ розподіл випадкової величини ω з достатньою для практичних розрахуунків точністю апроксимується розподілом $N\left(p; \sqrt{\frac{p(1-p)}{n}}\right)$. Тому при

перевірці
$$H_0: p=p_0$$
 статистика $z=\dfrac{\dfrac{\mu}{n}-p_0}{\sqrt{p_0\left(1-p_0\right)}}\sqrt{n}$ має розподіл $N\left(0;1\right).$

Схема перевірки нульової гіпотези:

1. Нульова гіпотеза H_0 : $p = p_0$.

2. Альтернативна гіпотеза:

a)
$$H_1: p \neq p_0$$
;

б)
$$H_1$$
: $p = p_1 > p_0$;

B)
$$H_1: p = p_1 < p_0$$
.

3. Критерій:
$$z = \frac{\frac{\mu}{n} - p_0}{\sqrt{p_0 \left(1 - p_0\right)}} \sqrt{n}$$
.

- 4. Критичні точки:(залежать від α)
- а) Двостороння критична область: критичні точки симетричні $z_{1\kappa p}=-z_{2\kappa p}$ і знаходяться з формули: $z_{\frac{\alpha}{2}}=\varPhi^{-1}\left(0,5-0,025\right)=1,96$ за таблицею

Лапласа при $\alpha = 0.05$.

- б) Правостороння критична область: $\Phi(z_{\kappa p,\alpha}) = \frac{1-2\alpha}{2}$, $z_{0,05} = 1,645$.
- в) Лівостороння критична область: $-z_{0.05} = -1,645$.
- 5. Правило прийняття рішень: гіпотеза \boldsymbol{H}_0 відхиляється:

a)
$$\left| z_{cnocm} \right| \ge z_{\kappa p, \frac{\alpha}{2}};$$

6)
$$z_{cnocm} \geq z_{\kappa p,\alpha}$$
;

B)
$$Z_{cnocm} \leq -Z_{\kappa p,\alpha}$$
.

Приклад 4.9. Директор великої страхової компанії цікавиться плинністю кадрів страхових агентів у перший рік роботи. Аналіз показав, що 25% страхових агентів серед зарахованих на роботу звільняється, не відпрацювавши року. Для зарахованих на роботу 150 страхових агентів був

проведений інтенсивний тренінг. В кінці року із цих 150 агентів звільнилося 29. Чи можна вважати, що відсоток відсоток агентів, які пройшли тренінг і звільнилися, менше 25% на рівні значущості 0,01?

Розв'язання.

- 1. Нульова гіпотеза H_0 : p < 0.25.
- 2. Критерій: $z = \frac{\frac{\mu}{n} p_0}{\sqrt{p_0 (1 p_0)}} \sqrt{n}$.

$$z_{cnocm} = \frac{0,19-0,25}{\sqrt{0,25\left(1-0,25\right)}} = -1,7$$
, критична область лівостороння.

- 3. Критичні точки:(залежать від α); $\Phi(z_{\kappa p,0,01}) = \frac{1-2\cdot 0,01}{2} = 0,49$; $z_{0,01} = -2,33$.
- 4. Оскільки $z_{cnocm} = -1,7 > z_{\kappa p,0,01} = -2,33$, то немає підстав відхиляти нульову гіпотезу. ▶
- **2.** Для перевірки гіпотези $H_0: p_1 = p_2$ про рівність параметрів біноміально розподілених сукупностей проводиться дві серії випробувань. Нехай деяка подія A в серії n_1 випробувань відбулася μ_1 разів, а в серії n_2 випробувань відбулася μ_2 разів $(n_1, n_2 \ge 100)$. Перевіримо гіпотезу про рівність ймовірностей настання події A в обох серіях випробувань. В якості оцінок невідомих ймовірностей беремо відповідні відносні частоти:

$$p_1 = \omega_1 = \frac{\mu_1}{n_1}$$
 i $p_2 = \omega_2 = \frac{\mu_2}{n_2}$.

Зазначимо, що при значній кількості випробувань $\omega_1 \to N \left(p_1, \frac{p_1 q_1}{n_1} \right)$,

 $\omega_2 o Nigg(p_2, rac{p_2q_2}{n_2}igg)$. Будемо вважати, що при достатньо великих обсягах

вибірок, вирази $\frac{\left(\mu_1 + \mu_2\right)n_1}{n}$, $\frac{\left(\mu_1 + \mu_2\right)n_2}{n}$, $\frac{\left(\kappa_1 + \kappa_2\right)n_1}{n}$, $\frac{\left(\kappa_1 + \kappa_2\right)n_2}{n}$

набуватимуть значень більших за 5;

$$(n = n_1 + n_2; \kappa_1 = n_1 - \mu_1; \kappa_2 = n_2 - \mu_2)$$
.

Правило 1. Для того, щоб при заданому рівні значущості α перевірити нульову гіпотезу $H_0: p_1=p_2$ проти альтернативної $H_1: p_1 \neq p_2$ потрібно обчислити спостережуване значення за формулою:

$$z_{cnocm} = \frac{\frac{\mu_1}{n_1} - \frac{\mu_2}{n_2}}{\sqrt{\frac{\mu_1 + \mu_2}{n_1 + n_2} \left(1 - \frac{\mu_1 + \mu_2}{n_1 + n_2}\right) \left(\frac{1}{n_1} - \frac{1}{n_2}\right)}}$$

і за таблицею Лапласа знайти критичне значення за формулою

$$\Phi\!\left(z_{\kappa p, \alpha}\right) \!=\! rac{1\!-\!\alpha}{2}$$
. Якщо $\left|z_{cnocm}\right| \!\geq z_{\kappa p, rac{lpha}{2}}$ нульова гіпотеза відхиляється.

Правило 2. При альтернативній гіпотезі $H_1: p_1 > p_2$ знаходять критичну точку правосторонньої критичної області із рівності $\Phi \Big(z_{\kappa p, \alpha} \Big) = \frac{1-2\alpha}{2}$. Гіпотеза H_0 відхиляється, якщо $z_{cnocm} \geq z_{\kappa p, \alpha}$.

Правило 3. При альтернативній гіпотезі $H_1: p_1 < p_2$ знаходять критичну точку лівосторонньої критичної області із рівності $\Phi \Big(z_{\kappa p, \alpha} \Big) = \frac{1-2\alpha}{2}$. Гіпотеза H_0 відхиляється, якщо $z_{cnocm} < -z_{\kappa p, \alpha}$.

Приклад 4.10. Досліджувалися дві партії типових виробів. Одержали наступні статистичні розподіли:

№ партії	Кількіст	ь виробів	Сума	
1	браковані	не браковані	J	
1	8	92	100	
2	13	287	300	
сума	21	397	400	

Чи можна стверджувати, що частка браку в обох партіях одна і та сама при рівні значущості 0,05?

Розв'язання.

- 1. Нульова гіпотеза H_0 : $p_1 = p_2$.
- 2. Альтернативна гіпотеза: $H_1: p_1 \neq p_2$.

3.
$$z_{cnocm} = \frac{\frac{\mu_1}{n_1} - \frac{\mu_2}{n_2}}{\sqrt{\frac{\mu_1 + \mu_2}{n_1 + n_2} \left(1 - \frac{\mu_1 + \mu_2}{n_1 + n_2}\right) \left(\frac{1}{n_1} - \frac{1}{n_2}\right)}} = \frac{\frac{8}{100} - \frac{13}{300}}{\sqrt{\frac{8 + 13}{100 + 300} \left(1 - \frac{8 + 13}{100 + 300}\right) \left(\frac{1}{100} - \frac{1}{300}\right)}} = 1,44$$

критична область двостороння.

- 4. Критичні точки:(залежать від α); $\Phi(z_{\kappa p,0,01}) = \frac{1-0,05}{2} = 0,475;$ $|z_{0,05}| = 1,96.$
- 5. Оскільки $|z_{cnocm}| = 1,44 < z_{\kappa p,0,05} = 1,96$, то немає підстав відхиляти нульову гіпотезу. \blacktriangleright

4.7. Перевірка правильності непараметричних статистичних гіпотез. Обчислення теоретичних частот

Всі перевірки параметричних статистичних гіпотез грунтувалися на припущені, що ознака генеральної сукупності має нормальний розподіл ймовірностей і що за іншого розподілу висновки щодо статистичних гіпотез можуть бути хибними. Підгрунтям для висновків про характер гіпотетичного розподілу можуть бути форми полігону або гістограми.

Емпіричними називають частоти, які спостерігаються при реалізації вибірки, а **теоретичними** – які обчислені за формулами.

Дискретні закони розподілу.

Теоретичні частоти обчислюються за формулою $n_i^{meop} = np_i$, де n – обсяг вибірки; p_i - ймовірність спостережуваного значення x_i , яка обчислюється за умови, що відповідна ознака генеральної сукупності має взятий за припущенням закон розподілу ймовірностей.

Біноміальний розподіл.

$$p_i = C_n^i p^i q^{n-i}; \ n_i^{meop} = n p_i = n C_n^i p^i q^{n-i}.$$

Приклад 4.11. Відділ технічного контролю перевірив n=100 партій виробів по m=10 виробів у кожній партії і при цьому одержав такий емпіричний розподіл дискретної ВВ X- числа бракованих деталей:

X_i	0	1	2	3	4	5	6	7
n_{i}	2	3	10	22	26	20	12	5

де x_i - число бракованих виробів в партії; n_i - кількість партій, які мають таку кількість бракованих деталей. Припускаючи, що BB X має біноміальний розподіл, обчислити теоретичні частоти цієї вибірки.

Розв'язання. Знайдемо відносну частоту бракованих виробів і візьмемо її в якості оцінки \hat{p} - ймовірності того, що навмання вибраний виріб буде бракований.

$$\hat{p} = \frac{\sum_{i=0}^{8} n_i x_i}{nm} = \frac{0 \cdot 2 + 1 \cdot 3 + 2 \cdot 10 + 3 \cdot 32 + 4 \cdot 26 + 5 \cdot 20 + 6 \cdot 12 + 7 \cdot 5}{100 \cdot 10} = 0,4$$

Ймовірності за формулою Бернуллі:

$$P_{10}(0) = \hat{q}^{10} = 0,6^{10} = 0,00605;$$

$$P_{10}(1) = C_{10}^1 \hat{p} \hat{q}^9 = 10 \cdot 0, 4 \cdot 0, 6^9 = 0,0403;$$

$$P_{10}(2) = C_{10}^2 \hat{p}^2 \hat{q}^8 = 45 \cdot 0, 4^2 \cdot 0, 6^8 = 0,121;$$

$$P_{10}(3) = C_{10}^3 \hat{p}^3 \hat{q}^7 = 120 \cdot 0, 4^3 \cdot 0, 6^7 = 0, 215;$$

$$P_{10}(4) = C_{10}^4 \hat{p}^4 \hat{q}^6 = 210 \cdot 0, 4^4 \cdot 0, 6^6 = 0,2508;$$

$$P_{10}(5) = C_{10}^5 \hat{p}^5 \hat{q}^5 = 0,2007; P_{10}(6) = 0,1115; P_{10}(7) = 0,0425.$$

Обчислюємо теоретичні частоти:

$$n_0^{meop} = np_0 = 100 \cdot 0,00605 = 0,605 \approx 1;$$

$$\begin{split} n_1^{meop} &= np_1 = 100 \cdot 0,0403 = 4,03 \approx 4 \,; \\ n_2^{meop} &= np_2 = 100 \cdot 0,121 = 12,1 \approx 12 \,; \\ n_3^{meop} &= np_3 = 100 \cdot 0,215 = 21,5 \approx 22 \,; \\ n_4^{meop} &= np_4 = 100 \cdot 0,2508 = 25,08 \approx 25 \,; \\ n_5^{meop} &= np_5 = 100 \cdot 0,2007 = 20,07 \approx 20 \,; \\ n_6^{meop} &= np_6 = 100 \cdot 0,1115 = 11,15 \approx 11 \,; \\ n_7^{meop} &= np_7 = 100 \cdot 0,0425 = 4,25 \approx 4 \,. \end{split}$$

У підсумку маємо:

Емпіричні частоти	2	3	10	22	26	20	12	5
Теоретичні частоти	1	4	12	22	25	20	11	4

Оскільки розбіжність між емпіричними та теоретичними частотами невелика, то можна вважати, що ця ВВ має біноміальний розподіл.

Розподіл Пуассона:
$$n_i^{meop} = np_i = n\frac{\lambda^i \cdot e^{-\lambda}}{i!}$$
, $\lambda = a$.

Оскільки \overline{x}_{B} є незміщеною статистичною оцінкою для математичного

сподівання
$$a$$
, то $n_i^{meop} = n \frac{\left(\overline{x}_B\right)^i \cdot e^{-\overline{x}_B}}{i!}$.

Приклад 4.12. За результатами вибірки, проведеної з генеральної сукупності, озннака якої за припущенням має пуассонівський розподіл, дістали такий статистичний розподіл:

\mathcal{X}_{i}	1	3	5	7	9
n_i	6	10	16	5	3

Знайти теоретичні частоти.

Розв'язання.

Обсяг вибірки: n = 40.

Вибіркове середнє: $\bar{x}_B = 4,45$. Приймаємо $\lambda = 4,45$.

Обчислюємо ймовірності для розподілу Пуассона:

$$P_{40}(1) = \frac{\lambda}{1!} e^{-\lambda} = 4,45 \cdot e^{-2} \cdot e^{-2} \cdot e^{-0.45} = 4,45 \cdot 0,1353^2 \cdot 0,6376 = 0,052.$$

Значення e^{-2} *і* $e^{-0.45}$ знаходимо за таблицею значень функції e^{-x} в додатках підручників або в інтернеті. Аналогічно,

$$P_{40}(3) = 0.1714$$
; $P_{40}(5) = 0.1697$; $P_{40}(7) = 0.080$; $P_{40}(9) = 0.022$.

Теоретичні частоти:

$$n_1^{meop} = nP_{40}(1) = 40.0,052 \approx 2; n_2^{meop} = nP_{40}(3) \approx 7;$$

$$n_3^{meop} = nP_{40}(5) \approx 7$$
; $n_4^{meop} = nP_{40}(7) \approx 3$; $n_5^{meop} = nP_{40}(9) \approx 1$.

У підсумку маємо:

Емпіричні частоти	6	10	16	5	3
Теоретичні частоти	2	7	7	3	1

Оскільки розбіжність між теоретичними і емпіричними частотами велика, то це ставить під сумнів припущення про розподіл Пуассона для генеральної сукупності.

Неперервні закони розподілу.

Якщо ознака X генеоальної сукупності маєнеперервний розподіл ймовірностей, то теоретичні частоти обчислюються за фориулою:

 $n_i^{meop} = np_i$, де n — обсяг вибірки; p_i — ймовірність того, що випадкова величина X потрапить в і-ий частковий інтервал. Вона обчислюється за формулою того закону, який припускаємо за даними вибірки.

Рівномірний розподіл.

- 1) Оцінюємо параметри a,b кінці інтервалу, в якому спостерігалися можливі значення X. Позначимо оцінки: \hat{a},\hat{b} .
- 2) Щільність ймовірності рівномірного позподілу: $\varphi(x) = \frac{1}{\hat{h} \hat{a}}$.

3) Теоретичні частоти:
$$n_1^{meop} = np(x)(x_1 - \hat{a}) = \frac{n}{\hat{b} - \hat{a}}(x_1 - \hat{a}).$$

$$n_2^{meop} = n_3^{meop} = n_4^{meop} = \dots = n_{k-1}^{meop} = \frac{n}{\hat{b} - \hat{a}} (x_i - x_{i-1}).$$

$$n_k^{meop} = \frac{n}{\hat{b} - \hat{a}} \left(\hat{b} - x_{k-1} \right).$$

Приклад 4.13. Проведено n=200 випробувань, при цьому деяка подія A відбулася у різні моменти часу. Результати випробувань звели в емпіричний розподіл:

Інтервал, $(x_{i-1}-x_i)$	Частота, n_i	Інтервал, $(x_{i-1} - x_i)$	Частота, n_i
2-4	21	12-14	14
4-6	16	14-16	21
6-8	15	16-18	22
8-10	26	18-20	18
10-12	22	20-22	25

Обчислити теоретичні частоти, вважаючи, що час настання події A розподілений рівномірно.

Розв'язання.

Знайдемо оцінки параметрів a,b: для рівномірного розподілу

$$M(x) = \frac{a+b}{2} = \overline{x}_B; \ \sigma^2 = \frac{(b-a)^2}{12}; \ \sigma = \frac{b-a}{2\sqrt{3}} = \sigma_B.$$

Маємо систему:

$$\begin{cases} \frac{a+b}{2} = \overline{x}_B \\ \frac{b-a}{2\sqrt{3}} = \sigma_B \end{cases} \Leftrightarrow \begin{cases} \hat{a} = \overline{x}_B - \sqrt{3}\sigma_B \\ \hat{b} = \overline{x}_B + \sqrt{3}\sigma_B \end{cases}.$$
 Для обчислень створимо інтервальний

статистичний розподіл:

Середина інтервала, x_i'	3	5	7	9	11	13	15	17	19	21	Σ
Частота, n_i	21	16	15	26	22	14	21	22	18	25	200

Обчислюємо звичайним чином: $\bar{x}_B = 12,31$; $\sigma_B = 5,81$. Тоді,

$$\begin{cases} \hat{a} = \overline{x}_B - \sqrt{3}\sigma_B = 12,31 - 1,73 \cdot 5,81 = 2,26 \\ \hat{b} = \overline{x}_B + \sqrt{3}\sigma_B = 12,31 + 1,73 \cdot 5,81 = 22,16 \end{cases}.$$

Обчислюємо щільність ймовірностей: $\varphi(x) = \frac{1}{\hat{h} - \hat{a}} = 0.05$.

Теоретичні частоти:
$$n_1^{meop} = np(x)(x_1 - \hat{a}) = 200 \cdot 0,05(4 - 2,26) = 17,4$$
; $n_2^{meop} = 200 \cdot 0,05(x_2 - x_1) = 200 \cdot 0,05(5 - 3) = 20 = n_3^{meop} = \dots = n_9^{meop}$; $n_{10}^{meop} = 200 \cdot 0,05(\hat{b} - 19) = 10(22,36 - 19) = 23,6$. $\sum_i n_i^{meop} = 201$.

Оскільки розбіжності між теоретичними і емпіричними частотами незначні, то можна вважати, що ця ВВ розподілена рівномірно.

Нормальний розподіл.

Теоретичні частоти обчислюємо за формулою:

$$n_i^{meop} = \frac{n \cdot h}{\sigma_B} \phi(x_i) = \frac{n \cdot h}{\sigma_B} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \overline{x}_B)^2}{2\sigma_B^2}}$$
, де де n – обсяг вибірки; h -

довжина часткового інтервалу; \overline{x}_B - вибіркова середня; σ_B - вибіркове середнє квадратичне відхилення; $\phi(x)$ - щільність ймовірностей для загального нормального розподілу. Через функцію Лапласа:

$$n_i^{meop} = n \left(\Phi \left(\frac{x_{i+1} - \overline{x}_B}{\sigma_B} \right) - \Phi \left(\frac{x_i - \overline{x}_B}{\sigma_B} \right) \right).$$

Приклад 4.14. Дана таблиця про розподіл за розміром проданого магазином чоловічого взуття напротязі одгого дня:

Розмір взуття, x_i	37	38	39	40	41	42	43	44
Число проданих пар, n_i	1	4	14	37	35	20	8	3

Обчислити відповідний ряд теоретичних частот в припущені, що ВВ має нормальний розподіл.

Розв'язання.

При розв'язанні вважаємо, що задану вибірку взято в припущені, що ВВ ϵ неперервною, а значення взяті як середини відповідних інтервалів

$$(36,5;37,5)$$
, $(37,5;38,5)$, ..., $(43,5;44,5)$.

Знаходимо $\overline{x}_B = 40,705$; $\sigma_B = 1,322$.

Теоретичні частоти подамо у таблиці:

Інтервали, $\left(\alpha_i,\beta_i\right)$	n_{i}	$ \Phi\left(\frac{\beta_i - \overline{x}_B}{\sigma_B}\right) $	$ \Phi\left(\frac{\alpha_i - \overline{x}_B}{\sigma_B}\right) $	$\left(\mathcal{O}\left(\frac{x_{i+1}-\overline{x}_{B}}{\sigma_{B}}\right)-\mathcal{O}\left(\frac{x_{i}-\overline{x}_{B}}{\sigma_{B}}\right)\right)n$
(36,5;37,5)	1	-0,4923	-0,4992	0,0069 · 122 ≈ 1
(37,5;38,5)	4	-0,4523	-0,4923	$0,0400 \cdot 122 \approx 5$
(38,5;39,5)	14	-0,3188	-0,4523	0,1335 · 122 ≈ 16

(39,5;40,5)	37	-0,0616	-0,3188	0,2572 · 122 ≈ 31
(40,5;41,5)	35	0,2261	-0,0616	0,2877 · 122 ≈ 35
(41,5;42,5)	20	0,4128	0,2261	0,1867 · 122 ≈ 23
(42,5;43,5)	8	0,4828	0,4128	0,0700 ·122 ≈ 9
(43,5;44,5)	3	0,4975	0,4828	0,0152 · 122 ≈ 2
Σ	122			122

Оскільки розбіжність між емпіричними та теоретичними частотами невелика, то можна вважати, що ця ВВ має нормальний розподіл. ▶

Показниковий розподіл.

Нехай задано емпіричний розподіл неперервної випадкової величини X у вигляді послідовності інтервалів $(x_i; x_{i+1})$ і відповідних їм частот n_i .

Теоретичні частоти:
$$n_i^{meop} = nP_i$$
, де $P_i = P(x_i < x < x_{i+1}) = e^{-\lambda x_i} - e^{-\lambda x_{i+1}}$.

$$n_i^{meop} = n \Big(e^{-\lambda x_i} - e^{-\lambda x_{i+1}} \Big)$$
. Числове значення параметра $\lambda = \frac{1}{M\left(X\right)}$.

Оскільки \overline{x}_B є незміщеною оцінкою M(X), то $\lambda = \frac{1}{\overline{x}_B}$. Тоді теоретичні

моменти обчислюємо за формулою
$$n_i^{meop} = n \left(e^{-\frac{x_i}{\overline{x}_B}} - e^{-\frac{x_{i+1}}{\overline{x}_B}} \right)$$
.

Приклад 4.15. Заданий інтервальний статистичний розподіл вибірки:

Інтервал	0-6	6-12	12-18	18-24	24-30	30-36
n_i	45	24	13	9	7	2

Обчислити відповідний ряд теоретичних частот в припущені, що ВВ має показниковий розподіл.

Розв'язання.

Будуємо дискретний розподіл:

Середини інтервалів, x'_i	3	9	15	21	27	33
n_{i}	45	24	13	9	7	2

 $\overline{x}_{B}=9,9;\;\;\hat{\lambda}=0,101.$ Для обчистень теоретичних частот використовуємо таблицю значень функції e^{-x} .

X_i	x_{i+1}	n_{i}	$e^{-\hat{\lambda}x_i}$	$e^{-\hat{\lambda}x_{i+1}}$	$n_i^{meop} = n \left(e^{-\hat{\lambda}x_i} - e^{-\hat{\lambda}x_{i+1}} \right)$
0	6	45	1	0,545	45
6	12	24	0,545	0,2982	25
12	18	13	0,2982	0,1620	14
18	24	9	0,1620	0,0888	7
24	30	7	0,0888	0,0483	4
30	36	2	0,0483	0,0262	2
36	∞	-	0,0262	0	3

Оскільки розбіжність між емпіричними та теоретичними частотами невелика, то гіпотетично можна вважати, що ця ВВ має показниковий розподіл. ▶

4.8. Критерій узгодження Пірсона (χ^2) .

Критерії, за якими перевіряють, узгоджуються чи ні статистичні дані з розглядуваними гіпотезами, називають **критеріями узгодження**. Статистикою критерія Пірсона обирається величина

$$\chi^2 = \sum_{i=1}^{\kappa} \frac{\left(n_i - np_i\right)^2}{np_i} .$$

При заданому рівні значущості α перевірка нульової гіпотези здійснюється за планом:

- 1) Обчислюють теоретичні частоти n_{κ}^{meop} .
- 2) Обчислюють спостережене значення $\chi^2_{cnocm} = \sum_{i=1}^{\kappa} \frac{(n_i np_i)^2}{np_i}$.
- 3) Обчислюють число ступенів свободи: $\kappa = r m 1$, де r -число часткових інтервалів інтервального статистичного розподілу вибірки; т –

число параметрів, яким визначається закон розподілу ймовірностей генеральної сукупності згідно з нульовою гіпотезою.

- 4) За таблицею χ^2 критерію, знаходять критичне значення $\chi^2_{\kappa p}$ яке відповідає заданому рівню значущості і числу степенів свободи.
- 5) Якщо $\chi^2_{cnocm} < \chi^2_{\kappa p}$, то немає підстав відхиляти гіпотезу H_0 . В іншому вирадку, гіпотеза відкидається.

Приклад 4.16. За спостереженнями, наведеними у таблиці, за χ^2 - критерієм перевірити гіпотезу про те, що ВВ X має нормальний розподіл $(\alpha = 0.05, n = 300)$.

X_i	3	5	7	9	11	13	15	17	19
n_{i}	23	39	38	46	37	35	34	39	18

Розв'язання. 1) $\overline{x}_B = 10,56$; $\sigma_B = 4,66$.

2) Теоретичні частоти:

x_i	n_i	$n_i^{meop} = \left(\Phi \left(\frac{x_{i+1} - \overline{x}_B}{\sigma_B} \right) - \Phi \left(\frac{x_i - \overline{x}_B}{\sigma_B} \right) \right) n$
3	23	13,82
5	39	25,30
6	38	38,49
9	46	48,65
11	37	51,16
13	35	44,87
15	33	32,79
17	30	19,0
19	18	9,98

3)
$$\chi_{cnocm}^2 = \sum_{i=1}^{\kappa} \frac{\left(n_i - n_i^{meop}\right)^2}{n_i^{meop}} = 32,76.$$

4) Для $\alpha=0.05$, n=300 і $\kappa=r-m-1=9-2-1=6$ за таблицею знаходимо $\chi^2_{\kappa\rho}=12.6$.

Висновки: $\chi^2_{cnocm} = 32,76 > \chi^2_{\kappa p} = 12,6$, отже, еіпотеза про нормальний розподіл відхиляється.

4.9. Непараметричні критерії

На практиці доводиться мати справу іх випадковими величинами , закон розподілу яких невідомий. В цьому випадку використовують непараметричні критерії, при застосуванні яких не потріюно робити ніяких припущень відносно закону росподілу досліджуваної величини. Слід зауважити, що непараметричні закони є менш ефективними. Розглянемо деякі з них.

Критерій знаків.

Критерій знаків перевіряє гіпотезу про те, що дві вибірки $(x_1,...,x_n)$ і $(y_1,...,y_n)$ однакового обсягу взято з однієї і тієї ж генеральної сукупності. Досліджують знаки різниці спарених результатів і обчислюють число тих знаків, яких менше. Позначимо їх число через ${m r}$. Якщо нульова гіпотеза справедлива, то $P(x-y>0)=P(x-y<0)=\frac{1}{2}$.

Критерій Вілкоксона, Манна, Уітні.

Застосовують критерій для порівняння нгзалежних виюірок обсягами п1 і п2 і перевіряють гіпотезу, яка стверджує, що вибірки одержані із однорідних генеральних сукупностей і мають рівні середні і моди.

Контрольні питання

- 1. В чому полягає загальна схема перевірки статистичної гіпотези?
- 2. Для чого використовують положення теореми Неймана-Пірсона?
- 3. Чи можна провести перевірку гіпотези про рівність середніх двох сукупностей в припущені, що дисперсії невідомі?
- 4. Де зустрічаються гіпотези про числові значення параметрів?
- 5. Для чого бажано проводити побудову теоретичного закону розподілу за результатами дослідних даних?