Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

PATIENT			
Identifier: 鍾芳雄		Patier	nt ID: 39690749
Date of Birth: Oct 16, 1956		Gend	er: Male
Diagnosis: Adrenocortical carcinom	a		
ORDERING PHYSICIAN			
Name: 陳明晃醫師		Tel: 8	86-228712121
Facility: 臺北榮總			
Address: 臺北市北投區石牌路二段	201 號		
SPECIMEN			
Specimen ID: S10926984B	Collection site: Adrenal	Type:	FFPE tissue
Date received: Jan 16, 2023	Lab ID: AA-23-00350	D/ID:	NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	Probable Sensitive in Other		
Alterations/Biomarkers	Sensitive Resistant		Cancer Types	
Not detected				

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
	Not detected	

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
	Not detected	

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr13	ERCC5	Homozygous deletion	0
Chr1	ARID1A, CDKN2C	Heterozygous deletion	1
Chr13	BRCA2, RB1	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1
Chr3	MLH1	Heterozygous deletion	1
Chr9	CDKN2A	Heterozygous deletion	1
Chr5	TERT	Amplification	13

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results	
Tumor Mutational Burden (TMB)	< 1 muts/Mb	
Microsatellite Instability (MSI)	Microsatellite stable (MSS)	

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 54% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 2 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS TARGETED THERAPIES

Not Applicable.

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations		Potential Clinical Effects
	Not detected	

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
ERCC5	Platinum-based	Sensitive	Clinical	Ovarian cancer
Homozygous deletion	regimens	Sensitive	Cililical	Ovarian cancer

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **3** of **30**

Project ID: C23-M001-00166 Report No.: AA-23-00350 ONC

Date Reported: Feb 02, 2023

VARIANT INTERPRETATION

ARID1A Heterozygous deletion

Biological Impact

The AT-rich interactive domain 1A (ARID1A) gene encodes the BAF250A protein, a component of the SWI/SNF chromatin remodeling complex that plays a role in various cellular functions, including DNA repair, DNA synthesis, and transcription[1][2]. Haploinsufficiency of ARID1A is associated with tumor formation in some cancers[3]. Inactivation of ARID1A is commonly observed in ovarian, endometrial, uterine, and, gastric cancers [4][5][6][7][8].

Therapeutic and prognostic relevance

ARID1A is the most frequently mutated genes in ovarian clear cell carcinoma and several synthetic lethality hypothesisbased therapeutic targets in ARID1A mutated cancer are in development. For examples, 1) EZH2 inhibitor[9][10]; 2) AKTinhibitors MK-2206 and perifosine, as well as PI3K-inhibitor buparlisib[11]; 3) multiple kinase inhibitor, dasatinib[12].

Some preclinical evidences suggested that reduced ARID1A expression confers resistance to several HER2/PI3K/mTOR signaling cascade inhibitors such as AZD8055 and trastuzumab, through activation of annexin A1 expression[13]. Loss or decreased expression of ARID1A has been reported to associate with resistance to platinumbased chemotherapies, shorter overall survival and lower complete response rate in ovarian cancer patients[14][15].

Low expression of ARID1A is a significant and independent prognostic factor for poor disease-free and overall survival in breast cancer patients^{[16][17]}. Besides, loss of ARID1A expression was more frequently seen in mismatch repair (MMR)-deficient colorectal cancers, predominantly in tumor with MLH1 promoter hypermethylation[18]. Positive ARID1A expression could independently predict worse overall survival in stage IV CRC patients compared with negative ARID1A expression[19].

ARID1A mutation has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831), and niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), or any malignancy, except prostate cancer (NCT03207347).

The preclinical study discovered that ARID1A deficiency sensitized some tumors to PARP inhibitor drugs, such as olaparib, rucaparib, talazoparib, and veliparib, which block DNA damage repair pathways[20].

BRCA2 Heterozygous deletion

Biological Impact

The BRCA2 gene encodes a tumor suppressor involved in the homologous recombination pathway for double-strand DNA repair^[21]. BRCA2 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions[22]. BRCA2 germline mutations confer an increased lifetime risk of developing breast, ovarian, prostate and pancreatic cancer, limited reports of related gastric cancer, and Fanconi anemia subtype D1-associated risk of brain cancer, medulloblastoma, pharyngeal cancer, chronic lymphocytic leukemia and acute myeloid leukemia[23]. Somatic mutations in BRCA2 are highest in colorectal, non-small cell lung cancer (NSCLC), and ovarian cancers[24].

Therapeutic and prognostic relevance

The U.S. FDA has approved olaparib in advanced ovarian cancer under several settings including (1) first-line maintenance treatment for patients with deleterious or suspected deleterious germline or somatic BRCA mutation who are in complete or partial response to first-line platinum-based chemotherapy[25]; (2) in combination with bevacizumab as first-line maintenance treatment for patients who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD)-positive status^[26]; (3) maintenance treatment for patients with recurrent ovarian cancer who are in complete or partial response to platinum-

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 4 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350 ONC

Date Reported: Feb 02, 2023

ACTOnco® + Report

based chemotherapy[27][28]. In addition, olaparib has also been approved in patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative breast cancer who have been treated with chemotherapy in either neoadjuvant, adjuvant, or metastatic setting[29] and germline BRCA-mutated metastatic pancreatic cancer[30]. Of note, in May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate(NCT02987543)[31].

Rucaparib has been approved for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy[32]. NCCN guidelines recommend rucaparib as recurrence therapy for patients with BRCA-mutated ovarian cancer, who have been treated with two or more lines of chemotherapies [33]. In May 2020, the U.S. FDA also approved rucaparib to treat adult patients with a deleterious BRCA mutation-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (TRITON2, NCT02952534). Moreover, NCCN guidelines recommend rucaparib as maintenance therapy following prior platinumbased therapy for patients with metastatic pancreatic cancer harboring germline or somatic BRCA mutation.

The U.S. FDA has approved niraparib for the maintenance treatment of patients with advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to first-line platinum-based chemotherapy and patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to platinum-based chemotherapy[34][35]. Besides, NCCN guidelines recommend niraparib as maintenance therapy for ovarian cancer patients with BRCA mutations. The U.S. FDA also approved talazoparib for patients with deleterious or suspected deleterious germline BRCA-mutated, HER2 negative locally advanced or metastatic breast cancer[36].

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53[37][38][39]. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions[40]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation[41][42].

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors[43][44]. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments[45][46][47]. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients [48][49][50]. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

The phase II TAPUR trial demonstrated clinical benefits to palbociclib monotherapy in advanced NSCLC or head and neck cancer harboring a CDKN2A mutation or copy number loss. However, pancreatic and biliary cancer patients harboring a CDKN2A mutation or copy number loss did not demonstrate an objective response or stable disease when treated with palbociclib monotherapy for 16 weeks (DOI: 10.1200/JCO.2021.39.15_suppl.6043)[51][52].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 5 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350 ONC

Date Reported: Feb 02, 2023

ACTOnco® + Report

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[44][53][54]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib[46]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models[55].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with nonsmall cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[56].

CDKN2C Heterozygous deletion

Biological Impact

CDKN2C gene encodes for cyclin-dependent kinase inhibitor 2C (CDKN2C) or p18 or INK4C, a member of the INK4 family of cyclin-dependent kinase inhibitors. CDKN2C binds to CDK4 or CDK6 and inhibits the activation of cyclindependent kinases (CDK) to prevent cell cycle progression at the G1 phase[57]. CDKN2C has been implicated as a haploinsufficient tumor suppressor gene^[58] with one copy loss may promote cell cycle progression and induce proliferation in a variety of cancers [59][60][61]. Loss of CDKN2C by gene deletion or inactivating mutation has been reported in multiple cancer types, including myeloma, lymphoma, glioblastoma, meningioma, testicular cancers, melanoma, hepatocellular carcinomas, thyroid, and parathyroid cancer^{[62][63][64][65][66][67][68][69][70]}.

Therapeutic and prognostic relevance

CDKN2C loss has been determined as an inclusion criterion for the trial evaluating abemaciclib and ribociclib efficacies in patients with glioblastoma and myeloma (NCT02981940, NCT04118036, NCT03834740, NCT02933736).

An in vitro study demonstrated that cells expressing CDKN2A/B/C triple deletions activates cyclin-dependent kinases (CDK) and improves the sensitivity to palbociclib in glioblastoma multiforme (GBM) tumor cells[71]. Deletion of CDKN2C was associated with poorer prognosis in myeloma, acute lymphoblastic leukemia, hepatocellular carcinomas, and diffuse large B cell lymphoma (DLBCL)[72][73][69][74].

ERCC5 Homozygous deletion

Biological Impact

ERCC5 (ERCC excision repair 5, also known as XPG) encodes a DNA endonuclease which plays essential roles in DNA excision repair (NER) with its 3' excision activity^[75].

Germline loss-of-function mutations of ERCC5 have been associated with several genetic disorders such as xeroderma pigmentosum, Cockayne syndrome, and arthrogryposis[76][77][78]. Somatic ERCC5 mutations are present in ovarian and non-small cell lung cancer^{[79][80]}.

Therapeutic and prognostic relevance

Loss of heterozygosity (LOH) at ERCC5 locus and reduced expression of ERCC5 have been associated with better prognosis in patients with ovarian cancer patients when treated with surgery followed by platinum-based chemotherapy regimen^[79].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

MLH1 Heterozygous deletion

Biological Impact

The MutL protein homolog 1 (MLH1) gene encodes a tumor suppressor that dimerizes with PMS2 protein to form a component of the DNA mismatch repair (MMR) system^[81]. Deletion of one copy of the MLH1 gene resulted in haploinsufficiency in the correction of small insertions/deletions (indels), and could be a driving force in pancreatic and renal carcinogenesis^[82]. Genetic alterations such as mutation, loss of heterozygosity or epigenetic silencing could lead to inactivation of MLH1 and are associated with a broad spectrum of cancers, including a subset of sporadic colon, gastric and endometrial cancers, as well as the hereditary non-polyposis colon cancer (HNPCC, also known as Lynch syndrome)^{[83][84][85]}.

Therapeutic and prognostic relevance

Currently, there are no FDA-approved medications specifically targeting MLH1. A screening test for microsatellite instability (MSI) is commonly used to identify an MMR-deficient tumor in the clinic^{[86][87]}. Pembrolizumab (KEYTRUDA), an inhibitor targeting programmed cell death 1 (PD-1), has been approved by the U.S. FDA for adult and pediatric patients with unresectable or metastatic, microsatellite instability-high (MSI-H) or mismatch repair-deficient cancer. Down-regulation of genes involved in the MMR pathway such as MLH1, MSH2 and, MSH6 in high-grade serous epithelial ovarian cancer cell lines rendered cells sensitive to PARP inhibitors^[88].

RB1 Heterozygous deletion

Biological Impact

The Retinoblastoma (RB1) gene encodes a tumor suppressor that negatively regulates the cell cycle, cell division, and DNA replication^[89]. Loss-of-function RB1 could lead to unregulated cell division and growth, abrogation of multiple mechanisms that safeguard against cellular transformation, and tumorigenesis^[90]. RB1 has also been implicated as a haploinsufficient tumor suppressor with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[91][92][93]}. Deletion or inactivating mutation of RB1 is found in a number of tumors, including lung, prostate, bladder, breast cancers and sarcomas. RB1 mutations are found in approximately half of all retinoblastoma cases^[94].

Therapeutic and prognostic relevance

A deleterious mutation in one or more of the three DNA repair genes ATM, RB1, and FANCC predicted pathologic response and better overall survival to cisplatin-based chemotherapy for muscle-invasive bladder cancer patients^[95]. High RB loss was found to be associated with improved pathologic clinical response in breast cancer patients treated with 5-fluorouracil/adriamycin/cytoxan (FAC), T/FAC, and Taxane/Adriamycin neoadjuvant therapy^[96].

Clinical and experimental data suggested that a non-functional retinoblastoma pathway is associated with resistance to tamoxifen in breast cancer^{[97][98]}.

Acquired RB1 mutations were found in hormone receptor positive breast cancer patients who developed resistance to palbociclib or ribociclib treatment^[99]. Preclinical data also showed that knockdown of RB1 would impair antitumor activity of CDK4/6 inhibitor, abemaciclib^[100].

Two large-scale genome-sequencing projects have identified a high prevalence of mutations in TP53 and RB1 in small cell lung cancer (SCLC)^{[101][102]}. Analyses of repeat biopsy samples from patients with EGFR-mutant adenocarcinoma that had transformed to the SCLC subtype have revealed that 100% of these patients have loss of RB1 and may be the alteration that induces this non-small-cell to small-cell transformation^{[98][103]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

ocass Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **7** of **30**

Project ID: C23-M001-00166 Report No.: AA-23-00350 ONC Date Reported: Feb 02, 2023

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF-β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF-β-targeted genes[104]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function[105]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)[106][107][108][109]. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer[110], colorectal cancer (CRC)[108][111][112], and less frequently seen in other cancers such as lung adenocarcinoma^[113], head and neck cancer^{[114][115]}, and cutaneous squamous cell carcinoma^[116].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy[117]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells[118].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)[119][120]. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion[121].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis[122][123][124][125][126][127][128][129]. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[130]

TERT Amplification

Biological Impact

The TERT gene encodes the catalytic subunit of telomerase, an enzyme that maintains telomere length and genomic integrity[131]. Upregulation of TERT promotes cancer development and progression via modulation of Wnt-catenin and nuclear factor kappa B signaling[132][133], and mitochondrial RNA processing[134]. Activating mutations in the TERT promoter have been identified in a number of cancer types including melanoma, hepatocellular carcinoma, urothelial carcinoma, medulloblastoma, and glioma whereas TERT gene amplification is implicated in lung cancer, cervical cancer, breast cancer, Merkel cell carcinoma, neuroblastoma and adrenocortical carcinoma^{[135][136][137][138][139]}.

Therapeutic and prognostic relevance

Imetelstat (GRN163L), a telomere inhibitor which has been shown to inhibit cell proliferation in various cancer cell lines and tumor xenografts is currently in clinical trials^[131].

TERT gene amplification is an independent poor prognostic marker for disease-free survival in non-small cell lung cancer (NSCLC) and breast cancer^{[140][141][142]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)
MONARCH E	HR+/HER2-
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36
	months(%): 86.1 vs. 79.0]
MONADOU 2[143]	Breast cancer (Approved on 2018/02/26)
MONARCH 3 ^[143] NCT02246621	HR+/HER2-
	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.
MONADOU 0[54]	Breast cancer (Approved on 2017/09/28)
MONARCH 2 ^[54]	HR+/HER2-
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]
MONAPOU 4[144]	Breast cancer (Approved on 2017/09/28)
MONARCH 1 ^[144]	HR+/HER2-
NCT02102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]

Dasatinib (SPRYCEL)

Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor (inhibits the "Philadelphia chromosome") and Src family tyrosine kinase inhibitor. Dasatinib is produced by Bristol-Myers Squibb and sold under the trade name SPRYCEL.

- FDA Approval Summary of Dasatinib (SPRYCEL)

DASISION ^[145]	Chronic myeloid leukemia (Approved on 2010/10/28)
NCT00481247	-
NG100461247	Dasatinib vs. Imatinib [ORR(%): 76.8 vs. 66.2]
[146]	Chronic myeloid leukemia (Approved on 2007/11/08)
NCT00123474	-
NC100123474	Dasatinib [ORR(%): 63.0]
[147]	Acute lymphocytic leukemia (Approved on 2006/06/28)
NCT00123487	-
	Dasatinib [ORR(%): 38.0]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

DDIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)	
PRIMA NCT02655016		
	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 9 of 30

ACTOnco® + Report

NOVA ^[35]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NCT01847274	-
NC101847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OlympiA	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)					
OlympiA NCT02032823	HER2-/gBRCA mutation					
NC102032823	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]					
.[24]	Prostate cancer (Approved on 2020/05/19)					
PROfound ^[31] NCT02987543	HRR genes mutation					
NC102987543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]					
DA OL A 4[26]	Ovarian cancer (Approved on 2020/05/08)					
PAOLA-1 ^[26]	HRD+					
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
DOI 0[30]	Pancreatic adenocarcinoma (Approved on 2019/12/27)					
POLO ^[30]	gBRCA mutation					
NCT02184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
001 0 4[25]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
SOLO-1 ^[25]	gBRCA mutation or sBRCA mutation					
NCT01844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
Olaman : A D[29]	Breast cancer (Approved on 2018/02/06)					
OlympiAD ^[29]	HER2-/gBRCA mutation					
NCT02000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
001 0 0/FN00T 0: 04 [148]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
SOLO-2/ENGOT-Ov21 ^[148]	gBRCA mutation					
NCT01874353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					
O4I4 O[149]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
Study19 ^[149]	-					
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]					

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

DAL CASA 0[150]	Breast cancer (Approved on 2017/03/31)	
PALOMA-2 ^[150]	ER+/HER2-	
NCT01740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 1	4.5]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 10 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

PALOMA-3 ^[151]	Breast cancer (Approved on 2016/02/19)
NCT01942135	ER+/HER2-
NC101942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONALEECA (153)	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[53]	HR+/HER2-
NCT01958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONO	Prostate cancer (Approved on 2020/05/15)				
TRITON2 NCT02952534	gBRCA mutation or sBRCA mutation				
NC102952554	Rucaparib [ORR(%): 44.0, DOR(M): NE]				
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)				
ARIEL3[32]	-				
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS				
	(tBRCA)(M): 16.6 vs. 5.4]				

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[36]	Breast cancer (Approved on 2018/10/16)
NCT01945775	HER2-/gBRCA mutation
NC101945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **12** of **30**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
			Not D	etected			

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-23-00350

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 30

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Accession COSMIC ID Change Number		COSMIC ID	Allele Frequency	Coverage
APC	S2296N	16	c.6887G>A	NM_000038	COSM1580517	90.1%	385
ARID1B	Splice region	17	c.4854C>T	NM_017519	-	94.5%	253
BLM	L60I	3	c.178T>A	NM_000057	-	52.8%	436
BRIP1	1896V	19	c.2686A>G	NM_032043	-	50.0%	1121
EP300	Splice region	-	c.2379+8T>C	NM_001429	-	49.4%	1076
HIST1H1C	G114A	1	c.341G>C	NM_005319	-	50.1%	2244
KDM5A	R220C	5	c.658C>T	NM_001042603	-	50.9%	956
MUC16	H5418R	3	c.16253A>G	NM_024690	-	46.5%	359
NOTCH3	S696I	13	c.2087G>T	NM_000435	-	56.9%	367
PTCH1	A741V	14	c.2222C>T	NM_000264	-	49.4%	1193
PTPRD	M1123L	27	c.3367A>C	NM_002839	-	84.5%	669
TET2	N1260S	6	c.3779A>G	NM_001127208	NM_001127208 -		1907
USH2A	Splice region	-	c.4251+6G>A	NM_206933	-	32.9%	632

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **30**

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Aug 20, 2020Facility retrieved: 臺北榮總

H&E-stained section No.: S10926984B

Collection site: Adrenal

Examined by: Dr. Yun-An Chen

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 85%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 85%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

Mean Depth: 691x

- Target Base Coverage at 100x: 94%

RNA test

Average unique RNA Start Sites per control GSP2: 28

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic.
 Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(07) page 15 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350 ONC

Date Reported: Feb 02, 2023

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage \geq 20, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \geq 85\%$ with a mean coverage $\geq 500x$.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **16** of **30**

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **17** of **30**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTSS
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	МАРЗК7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	мис6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

AIK	BRAF	TCTD.	CCCD1	FGFR2	ECED2	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
		EGFK	FGFR1		FGFR3							

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 30

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
CDKN2A	Abemaciclib, Palbociclib, Ribociclib	sensitive
ARID1A	Dasatinib, Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
BRCA2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
MLH1	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
RB1	Abemaciclib, Palbociclib, Ribociclib	resistant
SMAD4	Cetuximab	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Abemaciclib, Palbociclib, Ribociclib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **19** of **30**

ACTOnco® + Report

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02. 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 21 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

REFERENCE

- PMID: 10757798; 2000, Mol Cell Biol;20(9):3137-46
 The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
- PMID: 25387058; 2015, Annu Rev Pathol;10():145-71 SWI/SNF chromatin remodeling and human malignancies.
- PMID: 23208470; 2013, Cancer Discov;3(1):35-43
 ARID1A mutations in cancer: another epigenetic tumor suppressor?
- PMID: 20826764; 2010, Science; 330(6001):228-31
 Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.
- PMID: 20942669; 2010, N Engl J Med;363(16):1532-43
 ARID1A mutations in endometriosis-associated ovarian carcinomas.
- PMID: 21590771; 2011, J Pathol;224(3):328-33
 Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas.
- PMID: 21412130; 2011, Am J Surg Pathol;35(5):625-32
 Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma.
- PMID: 22037554; 2011, Nat Genet;43(12):1219-23
 Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer.
- PMID: 26125128; 2015, Expert Opin Ther Targets;19(11):1419-22
 Potential therapeutic targets in ARID1A-mutated cancers.
- PMID: 29093822; 2017, Gynecol Oncol Res Pract;4():17
 EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers.
- PMID: 24979463; 2014, Oncotarget;5(14):5295-303
 Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition.
- PMID: 27364904; 2016, Mol Cancer Ther;15(7):1472-84
 Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.
- PMID: 27172896; 2016, Clin Cancer Res;22(21):5238-5248
 Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance.
- PMID: 22101352; 2012, Mod Pathol;25(2):282-8
 Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma.
- PMID: 24459582; 2014, J Gynecol Oncol;25(1):58-63
 Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer.
- PMID: 26770240; 2015, J Breast Cancer;18(4):339-46
 Loss of Tumor Suppressor ARID1A Protein Expression Correlates with Poor Prognosis in Patients with Primary Breast Cancer.
- PMID: 21889920; 2012, Cancer Epidemiol;36(3):288-93
 Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance.
- 18. PMID: 25311944; 2014, Hum Pathol;45(12):2430-6 Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage.
- PMID: 25561809; 2014, World J Gastroenterol;20(48):18404-12
 Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 22 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

- PMID: 26069190; 2015, Cancer Discov;5(7):752-67
 ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors.
- PMID: 11239455; 2001, Mol Cell;7(2):263-72
 BRCA2 is required for homology-directed repair of chromosomal breaks.
- PMID: 17597348; 2007, Ann Surg Oncol;14(9):2510-8
 Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis.
- PMID: 22193408; 2011, Nat Rev Cancer;12(1):68-78
 BRCA1 and BRCA2: different roles in a common pathway of genome protection.
- 24. PMID: 27283171; 2016, J Natl Compr Canc Netw;14(6):795-806
 The Relevance of Hereditary Cancer Risks to Precision Oncology: What Should Providers Consider When Conducting Tumor Genomic Profiling?
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 28884698; 2017, Lancet Oncol;18(9):e510
 Correction to Lancet Oncol 2017; 18: 1274-84.
- PMID: 22452356; 2012, N Engl J Med;366(15):1382-92
 Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 32. PMID: 28916367; 2017, Lancet; 390(10106):1949-1961 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 33. PMID: 28882436; 2017, Gynecol Oncol;147(2):267-275
 Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.
- PMID: 31562799; 2019, N Engl J Med;381(25):2391-2402
 Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 38. PMID: 8521522; 1995, Cell;83(6):993-1000

 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

- 39. PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 40. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2
 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- 42. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8
 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 43. PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 44. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35

 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 45. PMID: 28283584; 2017, Oncologist;22(4):416-421
 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 46. PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 47. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501
 Does CDKN2A loss predict palbociclib benefit?
- 48. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 49. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 50. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- 51. PMID: 35050752; 2020, JCO Precis Oncol;4():757-766
 Palbociclib in Patients With Non-Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization
- 52. PMID: 35100714; 2019, JCO Precis Oncol;3():1-8
 Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 54. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884

 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 55. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 56. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **24** of **30**

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.

- PMID: 11124804; 2000, Genes Dev;14(24):3115-25
 Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors.
- PMID: 12556487; 2003, Mol Cell Biol;23(4):1269-77
 Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis.
- PMID: 22997239; 2012, J Natl Cancer Inst;104(21):1673-9
 Dual suppression of the cyclin-dependent kinase inhibitors CDKN2C and CDKN1A in human melanoma.
- 60. PMID: 19411068; 2009, Cancer Cell;15(5):389-401
 CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis.
- 61. PMID: 17409423; 2007, Cancer Res;67(7):3162-70 p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers.
- PMID: 25576899; 2015, Hum Mol Genet;24(8):2318-29
 Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing.
- PMID: 16960149; 2007, Blood;109(1):271-80
 Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.
- 64. PMID: 23616356; 2013, J Pathol;230(3):249-60

 Complete genomic landscape of a recurring sporadic parathyroid carcinoma.
- PMID: 22133722; 2011, Sci Transl Med;3(111):111ra121
 Personalized oncology through integrative high-throughput sequencing: a pilot study.
- PMID: 18829482; 2008, Clin Cancer Res;14(19):6033-41
 Deletions of CDKN2C in multiple myeloma: biological and clinical implications.
- PMID: 18381405; 2008, Cancer Res;68(8):2564-9
 Identification of p18 INK4c as a tumor suppressor gene in glioblastoma multiforme.
- 68. PMID: 11485924; 2001, Am J Pathol;159(2):661-9
 Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas.
- PMID: 15349907; 2004, Hepatology;40(3):677-86
 Reduced expression of cell cycle regulator p18(INK4C) in human hepatocellular carcinoma.
- PMID: 10652429; 2000, Int J Cancer;85(3):370-5
 Cell cycle regulators in testicular cancer: loss of p18INK4C marks progression from carcinoma in situ to invasive germ cell tumours.
- 71. PMID: 22711607; 2012, Neuro Oncol;14(7):870-81 p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells.
- 72. PMID: 21994415; 2011, Clin Cancer Res;17(24):7776-84

 Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival.
- PMID: 20303590; 2010, Leuk Res;34(11):1476-82
 Prognostic classification of patients with acute lymphoblastic leukemia by using gene copy number profiles identified from array-based comparative genomic hybridization data.
- 74. PMID: 19455257; 2007, Cancer Inform;3():399-420
 Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival.

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 25 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

- PMID: 8090225; 1994, Nature;371(6496):432-5
 XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair.
- PMID: 8317483; 1993, Am J Hum Genet;53(1):185-92
 Xeroderma pigmentosum complementation group G associated with Cockayne syndrome.
- PMID: 2478446; 1989, Hum Genet;83(4):339-46
 Clinical and biochemical studies in three patients with severe early infantile Cockayne syndrome.
- 78. PMID: 24700531; 2014, Am J Med Genet A;164A(7):1777-83

 A novel homozygous ERCC5 truncating mutation in a family with prenatal arthrogryposis—further evidence of genotype-phenotype correlation.
- PMID: 18565881; 2008, J Clin Oncol;26(18):2952-8
 ERCC5 is a novel biomarker of ovarian cancer prognosis.
- 80. PMID: 19289372; 2009, Clin Lung Cancer;10(1):47-52

 XPG mRNA expression levels modulate prognosis in resected non-small-cell lung cancer in conjunction with BRCA1 and ERCC1 expression.
- 81. PMID: 16873062; 2006, Cell;126(2):297-308
 Endonucleolytic function of MutLalpha in human mismatch repair.
- 82. PMID: 22156295; 2012, Genome Res;22(2):208-19
 Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency.
- 83. PMID: 8484122; 1993, Science;260(5109):816-9
 Microsatellite instability in cancer of the proximal colon.
- PMID: 8040889; 1994, J Natl Cancer Inst;86(16):1216-21
 Microsatellite instability in sporadic endometrial carcinoma.
- 85. PMID: 8261393; 1993, Cancer Res;53(24):5853-5
 Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome.
- 86. PMID: 9823339; 1998, Cancer Res;58(22):5248-57
 A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.
- PMID: 12454837; 2002, Gastroenterology;123(6):1804-11
 Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR.
- 88. PMID: 27374179; 2017, Oncotarget;8(25):40152-40168

 Cumulative defects in DNA repair pathways drive the PARP inhibitor response in high-grade serous epithelial ovarian cancer cell lines.
- PMID: 22293180; 2012, J Clin Invest;122(2):425-34
 Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma.
- 90. PMID: 6320372; 1984, Science;223(4640):1028-33 Retinoblastoma: clues to human oncogenesis.
- 91. PMID: 27308386; 2015, Mol Cell Oncol;2(1):e968069
 Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene.
- 92. PMID: 23687339; 2013, Cancer Res;73(14):4247-55
 Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.
- PMID: 28169375; 2017, Sci Rep;7():42056
 The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 26 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

- 94. PMID: 15884040; 2005, Hum Mutat;25(6):566-74
 Sensitive multistep clinical molecular screening of 180 unrelated individuals with retinoblastoma detects 36 novel mutations in the RB1 gene.
- 95. PMID: 26238431; 2015, Eur Urol;68(6):959-67
 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- PMID: 22811582; 2012, Clin Cancer Res;18(18):5110-22
 RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer.
- 97. PMID: 21358261; 2011, Cell Cycle;10(6):956-62
 A non-functional retinoblastoma tumor suppressor (RB) pathway in premenopausal breast cancer is associated with resistance to tamoxifen.
- PMID: 17160137; 2007, J Clin Invest;117(1):218-28
 The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer.
- 99. PMID: 29236940; 2018, Ann Oncol;29(3):640-645 Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer.
- 100. PMID: 29483214; 2018, Mol Cancer Ther;17(5):897-907
 Preclinical Activity of Abemaciclib Alone or in Combination with Antimitotic and Targeted Therapies in Breast Cancer.
- PMID: 22941188; 2012, Nat Genet;44(10):1104-10
 Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.
- 102. PMID: 22941189; 2012, Nat Genet;44(10):1111-6 Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.
- 103. PMID: 25846096; 2015, Lancet Oncol;16(4):e165-72
 Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.
- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.
- 105. PMID: 19014666; 2008, Pathogenetics;1(1):2 Smad4 haploinsufficiency: a matter of dosage.
- 106. PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- PMID: 8673134; 1996, Nat Genet;13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers
- PMID: 18662538; 2008, Cell;134(2):215-30
 TGFbeta in Cancer.
- PMID: 9135016; 1997, Cancer Res;57(9):1731-4
 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- 112. PMID: 22810696; 2012, Nature;487(7407):330-7 Comprehensive molecular characterization of human colon and rectal cancer.
- PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 27 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 115. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7
 Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.
- PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- 117. PMID: 29703253; 2018, BMC Cancer;18(1):479

 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer
- 118. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.
- PMID: 24384683; 2014, Br J Cancer;110(4):946-57
 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- 121. PMID: 12237773; 2002, Br J Cancer;87(6):630-4 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- 122. PMID: 25749173; 2015, Transl Oncol;8(1):18-24 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 123. PMID: 19478385; 2009, Cell Oncol;31(3):169-78
 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- 124. PMID: 25681512; 2015, J Clin Pathol;68(5):341-5
 Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.
- PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- PMID: 26947875; 2016, Transl Oncol;9(1):1-7
 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- PMID: 25760429; 2015, Pancreas;44(4):660-4
 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- 128. PMID: 22504380; 2012, Pancreas;41(4):541-6 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- 129. PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- 130. PMID: 18425078; 2008, Mod Pathol;21(7):866-75
 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.
- 131. PMID: 21332640; 2011, J Cell Mol Med;15(7):1433-42 Targeting telomerase-expressing cancer cells.
- 132. PMID: 19571879; 2009, Nature;460(7251):66-72Telomerase modulates Wnt signalling by association with target gene chromatin.
- 133. PMID: 23159929; 2012, Nat Cell Biol;14(12):1270-81

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 28 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

Telomerase directly regulates NF-κB-dependent transcription.

- 134. PMID: 19701182; 2009, Nature;461(7261):230-5
 An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA.
- PMID: 23348506; 2013, Science; 339(6122):957-9
 Highly recurrent TERT promoter mutations in human melanoma.
- 136. PMID: 23530248; 2013, Proc Natl Acad Sci U S A;110(15):6021-6
 TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal.
- PMID: 11103775; 2000, Cancer Res;60(22):6230-5
 Frequent amplification of the telomerase reverse transcriptase gene in human tumors.
- PMID: 12007187; 2002, Genes Chromosomes Cancer;34(3):269-75
 Amplification of the telomerase reverse transcriptase (hTERT) gene in cervical carcinomas.
- 139. PMID: 25301727; 2014, Oncotarget;5(20):10048-57
 TERT promoter mutations and gene amplification: promoting TERT expression in Merkel cell carcinoma.
- PMID: 16641908; 2006, Br J Cancer;94(10):1452-9
 Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer.
- 141. PMID: 27982019; 2017, Cancer Gene Ther;24(1):20-27
 The associations of TERT-CLPTM1L variants and TERT mRNA expression with the prognosis of early stage non-small cell lung cancer.
- 142. PMID: 29100407; 2017, Oncotarget;8(44):77540-77551
 TERT promoter status and gene copy number gains: effect on TERT expression and association with prognosis in breast cancer.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 144. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224
 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- 145. PMID: 20525995; 2010, N Engl J Med;362(24):2260-70 Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.
- 146. PMID: 18541900; 2008, J Clin Oncol;26(19):3204-12
 Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia.
- 147. PMID: 17496201; 2007, Blood;110(7):2309-15
 Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.
- 148. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 149. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589
 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 29 of 30

Project ID: C23-M001-00166 Report No.: AA-23-00350_ONC Date Reported: Feb 02, 2023

ACTOnco® + Report

151. PMID: 26030518; 2015, N Engl J Med;373(3):209-19 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 30 of 30