Analyse und Verifikation (185.276, VU 2.0, ECTS 3.0)

Übungsblatt 4

Bernhard Urban

Thomas Reinbacher

Matr.Nr.: 0725771

KNZ: 067 937

Matr.Nr.: 0828472

KNZ: 786 881

lewurm@gmail.com

treinbacher@ecs.tuwien.ac.at

17.05.2011

Aufgabe 2.1:

Es gilt zu zeigen, dass die Ausführungszeit des Programms zur Berechnung der Fakultät in der Größenordnung von $\mathcal{O}(1)$ liegt (wobei x den Wert 3 hat).

$$\{ Pre: x = 3 \}$$

 $y := 1;$
while $x \neq 1$ do
 $y := y * x;$
 $x := x - 1;$
od
 $\{ Post: 1 \Downarrow true \}$

Wir definieren zuerst ein Prädikat p_c , dass die Invariante der while Schleife beschreibt.

$$p_c(z) = (3 \ge x > 0 \land x = z + 1)$$

Wir führen nun die frische logische Variable u_1 ein, die wir für die while Schleife verwenden. Unter Anwendung der [ass_e] Regel erhalten wir:

{
$$(p_c(z) \land x \le u_1)[x - 1/x]$$
 }
 $x := x - 1;$
{ $1 \Downarrow p_c(z) \land x \le u_1$ }

Wir führen nun eine zweite frische logische Variable u_2 ein. Eine weitere Anwendung der [ass_e] Regel für die zweite Zuweisung in der Schleife ergibt:

{
$$((p_c(z) \land x \le u_1)[x - 1/x] \land 1 \le u_2)[y * x/y]$$
 } $y := y * x;$ { $1 \Downarrow (p_c(z) \land x \le u_1)[x - 1/x] \land 1 \le u_2$ }

Die Anwendung der [comp_e] Regel macht es notwendig die Ausdrücke $x \leq u_1$ sowie $1 \leq u_2$ per [cons_e] Regel in die Form e' = u zu bringen (Folie 255). Die Bedingung:

$$\{((p_c(z) \land x \le u_1)[x - 1/x] \land 1 \le u_2)[y * x/y]\}$$

wird gestärkt zu

$$\{p_c(z+1) \wedge x - 1 = u_1 \wedge 1 = u_2\}$$

Nun kann die Kompositionsregel mit $e_1=1$ und $e_2'=1$ angewendet werden:

$$\{ p_c(z+1) \land x - 1 = u_1 \}$$

 $y := y * x;$
 $x := x - 1;$
 $\{ 1 + 1 \Downarrow p_c(z) \land x < u_1 \}$

Für die Anwendung der [while_e] Regel müssen die folgenden Implikationen gezeigt werden (Folie 256), wobei wir e = 3 wählen.

(1)
$$p_c(z+1) \succ (x \neq 1) \land e \geq e_1 + e'$$

$$3 \geq x > 0 \land x = (z+1) + 1 \succ (x \neq 1) \land 3 \geq 1 + (x-1)$$

$$3 \geq x > 0 \land x = z + 2 \succ (x \neq 1) \land 3 \geq x \checkmark$$

(2)
$$p_c(0) \succ (x=1) \land 1 \le e$$

 $3 \ge x > 0 \land x = 0 + 1 \succ (x=1) \land 1 \le 3 \checkmark$

Die eigentliche Anwendung der [while_e] Regel liefert:

$$\left\{ \begin{array}{l} \exists z. \; p_c(z) \, \right\} \\ \text{while} \; x \neq 1 \; \text{do} \\ y := y * x; \\ x := x - 1; \\ \text{od} \\ \left\{ \left. 3 \Downarrow p_c(0) \right. \right\} \\ \end{aligned}$$

Für die Initialisierung y := 1 wenden wir die [ass_e] Regel an und führen eine neue frische logische Variable u_3 ein:

$$\{ (\exists z.p_c(z) \land 1 \le u_3)[1/y] \}$$

$$y := 1;$$

$$\{ 1 \Downarrow \exists z.p_c(z) \land 1 \le u_3 \}$$

Unter Berücksichtigung der Precondition $\{x=3\}$ ergibt sich mit der $[\mathsf{cons}_e]$ Regel:

$$\{ x = 3 \land 1 = u_3 \}$$

 $y := 1;$
 $\{ 1 \Downarrow \exists z. p_c(z) \land 1 \le u_3 \}$

Die Anwendung von $[comp_e]$ auf die Initialisierung und die Schleife liefert:

$$\left\{ \begin{array}{l} x=3 \,\right\} \\ y:=1; \\ \text{while } x\neq 1 \text{ do} \\ y:=y*x; \\ x:=x-1; \\ \text{od} \\ \left\{ 1+3 \Downarrow p_c(0) \,\right\}$$

Mit $p_c(0) \succ true$ und $1+3 \le 4*1$ können wir ein letztes Mal die [cons_e] Regel anwenden und erhalten:

```
 \left\{ \begin{array}{l} x=3 \, \right\} \\ y:=1; \\ \text{while } x \neq 1 \text{ do} \\ y:=y*x; \\ x:=x-1; \\ \text{od} \\ \left\{ 1 \Downarrow true \, \right\} \\ \end{array}
```

Aufgabe 2.2:

Es gilt zu zeigen, dass die Ausführungszeit des Programms zur Berechnung der Fakultät in der Größenordnung von $\mathcal{O}(x)$ liegt.

```
 \left\{ \begin{array}{l} Pre \colon x > 0 \right\} \\ y := 1; \\ \text{while } x \neq 1 \text{ do} \\ y := y * x; \\ x := x - 1; \\ \text{od} \\ \left\{ \begin{array}{l} Post \colon x \Downarrow true \right\} \end{array}
```

Wir definieren zuerst ein Prädikat p_l , dass die Invariante der while Schleife beschreibt.

$$p_l(z) = (x > 0 \land x = z + 1)$$

Wir führen nun die frische logische Variable u_1 ein, die wir für die while Schleife verwenden. Unter Anwendung der [ass_e] Regel erhalten wir:

$$\{ (p_l(z) \land x \le u_1)[x - 1/x] \}$$

 $x := x - 1;$
 $\{ 1 \Downarrow p_l(z) \land x \le u_1 \}$

Wir führen nun eine zweite frische logische Variable u_2 ein. Eine weitere Anwendung der $[ass_e]$ Regel für die zweite Zuweisung in der Schleife ergibt:

$$\{ ((p_l(z) \land x \le u_1)[x - 1/x] \land 1 \le u_2)[y * x/y] \}$$

$$y := y * x;$$

$$\{ 1 \Downarrow (p_l(z) \land x \le u_1)[x - 1/x] \land 1 \le u_2 \}$$

Die Anwendung der [comp_e] Regel macht es notwendig die Ausdrücke $x \leq u_1$ sowie $1 \leq u_2$ per [cons_e] Regel in die Form e' = u zu bringen (Folie 255). Die Bedingung:

$$\{((p_l(z) \land x < u_1)[x - 1/x] \land 1 < u_2)[y * x/y]\}$$

wird gestärkt zu

$$\{p_l(z+1) \wedge x - 1 = u_1 \wedge 1 = u_2\}$$

Nun kann die Kompositionsregel mit $e_1 = 1$ und $e_2' = 1$ angewendet werden:

$$\{ p_l(z+1) \land x - 1 = u_1 \}$$

 $y := y * x;$
 $x := x - 1;$
 $\{ 1 + 1 \Downarrow p_l(z) \land x < u_1 \}$

Für die Anwendung der [while_e] Regel müssen die folgenden Implikationen gezeigt werden (Folie 256), wobei wir e = x wählen.

(1)
$$p_l(z+1) \succ (x \neq 1) \land e \geq e_1 + e'$$

 $x > 0 \land x = (z+1) + 1 \succ (x \neq 1) \land x \geq 1 + (x-1)$
 $x > 0 \land x = z + 2 \succ (x \neq 1) \land x \geq x \checkmark$

(2)
$$p_l(0) \succ (x=1) \land 1 \leq e$$
$$x > 0 \land x = 0 + 1 \succ (x=1) \land 1 \leq x \checkmark$$

Die eigentliche Anwendung der [while_e] Regel liefert:

$$\left\{ \exists z. \ p_l(z) \right\}$$

while $x \neq 1$ do
 $y := y * x;$
 $x := x - 1;$
od
 $\left\{ x \Downarrow p_l(0) \right\}$

Für die Initialisierung y:=1 wenden wir die [ass_e] Regel an und führen eine neue frische logische Variable u_3 ein:

```
\{ (\exists z.p_l(z) \land 1 \le u_3)[1/y] \}

y := 1;

\{ 1 \Downarrow \exists z.p_l(z) \land 1 \le u_3 \}
```

Unter Berücksichtigung der Precondition $\{x>0\}$ ergibt sich mit der $[\mathsf{cons}_e]$ Regel:

$$\{ x > 0 \land 1 = u_3 \}$$

 $y := 1;$
 $\{ 1 \Downarrow \exists z. p_l(z) \land 1 \le u_3 \}$

Die Anwendung von $[\mathsf{comp}_e]$ auf die Initialisierung und die Schleife liefert:

```
 \left\{ \begin{array}{l} x>0 \right\} \\ y:=1; \\ \text{while } x\neq 1 \text{ do} \\ y:=y*x; \\ x:=x-1; \\ \text{od} \\ \left\{ 1+x \Downarrow p_l(0) \right\} \\ \end{array}
```

Mit $p_l(0) \succ true$ und $x > 0 \succ 1 + x \le 2 * x$ können wir ein letztes Mal die [cons_e] Regel anwenden und erhalten:

```
 \left\{ \begin{array}{l} x>0 \, \right\} \\ y:=1; \\ \text{while } x\neq 1 \text{ do} \\ y:=y*x; \\ x:=x-1; \\ \text{od} \\ \left\{ x \Downarrow true \, \right\} \\ \end{array}
```

Aufgabe 1:

Sei $\sigma \in \Sigma$ mit $\sigma(x) = 3$, dann gilt:

$$\langle y := 1; \text{ while } x \neq 1 \text{ do } y := y * x; \ x := x - 1 \text{ od}, \sigma \rangle \rightarrow \sigma[6/y][1/x]$$

$$\frac{\overline{\langle y := y * x, \sigma[3/y][2/x] \rangle} \to^{3} \sigma[6/y][2/x]}{\langle y := y * x, \sigma[3/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{3} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[3/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[3/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][1/x]}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][2/x]}}{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \xrightarrow{[ass]_{tns}} \frac{\overline{\langle x := x - 1, \sigma[6/y][2/x] \rangle} \to^{6} \sigma[6/y][2/x]}}{\langle x := x - 1, \sigma[6/y][2/x] \rangle}$$

$$\frac{\mathbf{V}}{\langle \mathsf{while}\ x \neq 1\ \mathsf{do}\ y := y * x;\ x := x - 1\ \mathsf{od}, \sigma[6/y][1/x] \rangle \to^6 \sigma[6/y][1/x]}}{\mathbf{T} = \langle \mathsf{while}\ x \neq 1\ \mathsf{do}\ y := y * x;\ x := x - 1\ \mathsf{od}, \sigma[3/y][2/x] \rangle \to^{17} \sigma[6/y][1/x]}} \ [\mathsf{while}]_{tns}^{tf} = \langle \mathsf{while}\ x \neq 1\ \mathsf{do}\ y := y * x;\ x := x - 1\ \mathsf{od}, \sigma[3/y][2/x] \rangle \to^{17} \sigma[6/y][1/x]}$$

$$\frac{-\frac{-}{\langle y := y * x, \sigma[1/y] \rangle \to^3 \sigma[3/y]} \text{ [ass]}_{tns}}{-\frac{-}{\langle y := y * x, \sigma[1/y] \rangle \to^3 \sigma[3/y]} \text{ [ass]}_{tns}} \frac{-\frac{-}{\langle x := x - 1, \sigma[3/y] \rangle \to^3 \sigma[3/y][2/x]} \text{ [comp]}_{tns}}{-\frac{-}{\langle y := y * x; \ x := x - 1, \sigma[1/y] \rangle \to^6 \sigma[3/y][2/x]}} \frac{(y := y * x; \ x := x - 1, \sigma[1/y] \rangle \to^6 \sigma[3/y][2/x]}}{\langle \text{while } x \neq 1 \text{ do } y := y * x; \ x := x - 1 \text{ od}, \sigma[1/y] \rangle \to^{28} \sigma[6/y][1/x]}} \frac{\mathbf{T}}{[\text{comp]}_{tns}} \text{ [while]}_{tns}^{tt}}$$

Anmerkung: Anders als beim Beispiel in den Folien, kommen wir auf insgesamt 30 Zeiteinheiten (statt 33). Der Hintergrund ist, dass in den Folien für die Auswertung von der Schleifenbedingung $x \neq 1$ vier Zeiteinheiten bemessen werden, wir jedoch der Meinung sind es sind nur drei nötig:

$$[x \neq 1]_{TB} = [x]_{TA} + [1]_{TA} + 1 = 1 + 1 + 1 = 3$$

Zugegeben, es kommt auf die Definition von \neq an: ist der Operator direkt definiert (unsere Annahme) oder indirekt per \neg und = (Annahme in den Folien?).

6