The Lasso for Linear Models

Isabel Stransky, Camilla Gerboth

24 September 2018

Content

- 1 Introduction
- 2 Lasso estimator
- 3 Ridge Regression
- 4 Comparison of Ridge and Lasso
- 5 Cross-Validation
- 6 Example
- 7 Uniqueness and Consistency
- 8 Introduction Theoretical Part
- 9 Bounds on Lasso ℓ₂- Error
- 10 Bounds on Prediction Error
- 11 Summary

Linear Regression

Given:

- N samples $\{(x_i, y_i)\}_{i=1}^{N}$
- $x_i = (x_{i1}, ..., x_{ip})$ p-dimensional vector of predictors and each $y_i \in \mathbb{R}$ is the associated response variable

Goal:

approximate the response variable y_i using a linear combination of the predictors

Linear Regression

Definition

Linear Regression Model:

$$y_i = \beta_0 + \sum_{j=1}^{p} x_{ij}\beta_j + e_i$$

- β_0 and $\beta = (\beta_1, ..., \beta_p)$: unknown parameters
- *e_i* : error term

Definition:

Method of least-squares:

$$\underset{\beta_0,\beta}{\text{minimize}} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2$$

Remarks:

- if the least-squares estimates will be nonzero and statistically significant ⇒ interpretation difficult if p large
- \blacksquare if $p > N \Longrightarrow$ least-squares estimates are not unique (infinite set of solutions)

Problem:

"We are drowning in information and starving for knowledge."

- \longrightarrow there is a crucial need to sort through this mass of information
- \longrightarrow we need to hope that the complex processes can be described using relatively simple models

Example:

We hope that <u>not</u> all of the approx. 30'000 genes in the human body are directly involved in the process that leads to the development of cancer.

Question

Why do we might want to consider an alternative to the least-squares estimate?

- Prediction accuracy:
 - the least-squares estimate often has low bias but large variance
 - prediction accuracy can sometimes be improved by shrinking the values of the regression coefficients or setting some coefficients to zero
 - then the bias increases but the variance of the predicted values decreases
- Interpretation: with a large number of predictors, we often would like to identify a smaller subset of these predictors that exhibit the strongest effects

Lasso estimator

Definition

given N predictor-response pairs $\{(x_i, y_i)_{i=1}^N$, the lasso finds the solution $(\hat{\beta}_0, \hat{\beta})$ to the optimization problem

$$\underset{\beta_0,\beta}{\text{minimize}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right\}$$

subject to

$$\sum_{i=1}^{p} |\beta_j| \le t$$

rewritten with I1-norm

$$||\beta||_1 \leq t$$

Lasso estimator

Definition

Lagrangian form:

$$\underset{\beta \in \mathbb{R}^p}{\mathsf{minimize}} || \boldsymbol{y} - \boldsymbol{X}\beta ||_2^2 + \lambda ||\beta||_1$$

for some $\lambda > 0$

- | | . | |₂: Euclidean norm
- $\mathbf{y} = (y_1, ..., y_N)$ N-vector of responses
- **X** $N \times p$ matrix with $x_i \in \mathbb{R}^p$ in its i^{th} row
- first term is a measure of the fit of the model to the data
- second term is a penalty term
- Goal: to get the fit as small as possible, and at the same time get the penalty part as small as possible
- in order to get the first part as small as possible, the formula tells us that we should have as many β 's as possible to get a good approximation \Longrightarrow penalty value in the second part will be large

Lasso estimator

Remark:

• if $\lambda = 0$: penalty term has no effect $\hat{\beta}^L = \hat{\beta}^{LS}$

Lasso estimator

1)
$$\underset{\beta_0,\beta}{\mathsf{minimize}} \left\{ \sum_{i=1}^N (y_i - \beta_0 - \sum_{j=1}^\rho x_{ij} \beta_j)^2 \right\}$$

subject to

$$||\beta||_1 \leq t$$

2)
$$\min_{\beta \in \mathbb{R}^p} || \pmb{y} - \pmb{X} \beta ||_2^2 + \lambda ||\beta||_1$$

by Lagrangian duality, there is a one-to-one correspondence between the constrained problem 1) and the Lagrangian form 2):

 \implies for each value of t, there is a corresponding value of λ that yields the same solution from the Lagrangian form and vice versa

Bound

Definition

bound t is kind of a "budget": since a shrunken parameter estimate corresponds to a more heavily-constrained model, this budget limits how well we can fit the data

Remark:

budget must be specified separately (see later)

Ridge estimator

Ridge regression uses a similar criterion but with the *l*₂-norm as constraint

Definition

$$\underset{\beta_0,\beta}{\text{minimize}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right\}$$

subject to

$$\sum_{j=1}^{p} \beta_j^2 \le t$$

Question

What is the difference between the lasso and ridge regression?

Estimation picture for the lasso (left) and ridge regression (right)

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015.

- solid blue areas: constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t$
- red ellipses: contours of the residual sum of squares
- $\hat{\beta}$: usual (unconstrained) least-squares estimate

 \Longrightarrow both methods find the first point where the elliptical contours hit the constraint region

Difference:

unlike the disk, the diamond has corners

 \implies if the solution occurs at a corner, then it has one coefficient β_i equal to zero

Sparsity

Definition

a sparse statistical model is one with only a few nonzero coefficients

⇒ the lasso yields sparse models but ridge regression does not

Bound

Recall:

bound t in the lasso criterion controls complexity of the model

Question:

What happens for larger values of t?

more coefficients are free up and allow the model to adapt more closely to the data

Question:

What happens for smaller values of t?

coefficients are more restricted \Longrightarrow sparser, more interpretable models that fit data less closely

Bound

looking for the value of t that gives the most accurate model for predicting independent test data from the same population

Question

How can we find this best value for *t*?

⇒ can use Cross-Validation

Cross-Validation

Definition

Cross-Validation is used to estimate the test error associated with a given statistical learning method in order to evaluate its performance or to select the appropriate level of flexibility

Cross-Validation

Procedure:

- randomly divide the full dataset into k > 1 folds (typical choices are k = 5 or k = 10)
- fix one fold as test set and remaining k-1 folds as training sets
- apply the lasso to the training data for a range of different t values
- use each fitted model to predict the response in the test set
- determine the mean-squared prediction errors for each value of t Mean-squared error for test fold j:

$$MSE_j = \frac{1}{|F_j|} \sum_{i \in F_j} (y_i - \hat{f}(x_i))^2$$

- \blacksquare repeat process k times such that each fold is once the test set
- obtain k estimates of the prediction error over a range of values of t

Cross-Validation

Source: https://medium.com/@sebastiannorena/some-model-tuning-methods-bfef3e6544f0

Cross-Validation

average k mean-squared errors for each value of t

$$CV_{(k)}(t) = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

- obtain cross-validation error curve
- in order to choose which t is best we take the value of t for which the CV-error $CV_{(k)}(t)$ is smallest

One standard error rule:

we take the simplest (most regularized) model whose error is within one standard error of the minimal CV-error

Example

Setup

Look at baseball data from 1986-1987. The Hitters dataset contains information about 322 baseball players and 20 attributes as follows:

- AtBat: Number of assists in 1986
- Hits: Number of hits in 1986
- HmRun: Number of home runs in 1986

:

target variable of interest: the players' salaries

Uniqueness of the Lasso Solutions

- if the columns of X are in general position (columns $\{x_j\}_{j=1}^p$ are in general position if any affine subspace $\mathbb{L} \subset \mathbb{R}^N$ of dimension k < N contains at most k+1 elements of the set $\{\pm x_1, ..., \pm x_p\}$) \Longrightarrow for $\lambda > 0$ the solution to the lasso problem is unique
- **a** also true for $p \ge N$, although then the number of nonzero coefficients in any lasso solution is at most N
- if the predictor matrix **X** is not of full column rank, then the parameter estimates are not unique

Question

When can the non-full rank case occur?

- \blacksquare if p < N, due to collinearity
- \blacksquare it always occurs if p > N (infinite number of solutions)

Consistency

Assumption: X is fixed

If β^* and $\hat{\beta}$ are the true and the lasso-estimated parameters, it can be shown that as $p,N\to\infty$

$$\frac{||\boldsymbol{X}(\hat{\beta} - \beta^*)||_2^2}{N} \leq C \cdot ||\beta^*||_1 \sqrt{\frac{\log(p)}{N}}$$

with high probability.

Thus if $||\beta^*||_1 = o(\sqrt{\frac{N}{\log(p)}})$ (i.e. the true parameter vector must be sparse relative to the ratio $\frac{N}{\log(p)}$), then the lasso is consistent for prediction in terms of the MSE.

Recap

Recall:

Definition

Standard linear regression model:

$$\mathbf{y} = \mathbf{X}\beta^* + \mathbf{w}$$

where $\textbf{\textit{X}} \in \mathbb{R}^{N \times p}$ (model matrix), $\textbf{\textit{w}} \in \mathbb{R}^{N}$ (vector of noise variables), and $\beta^* \in \mathbb{R}^p$ (unknown coefficient vector)

Definition

Constrained form of the Lasso:

$$\underset{||\beta||_1 \leq R}{\mathsf{minimize}} ||\boldsymbol{y} - \boldsymbol{X}\beta||_2^2$$

Definition

Lagrangian form:

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \{ || \boldsymbol{y} - \boldsymbol{X}\beta ||_2^2 + \lambda_N ||\beta||_1 \}$$

for some $\lambda_N \geq 0$

Loss Functions

Given lasso estimate $\hat{\beta} \in \mathbb{R}^p$ we want to assess it's quality with two loss functions:

Definition

Prediction loss function:

$$\mathcal{L}_{\mathsf{pred}}(\hat{eta},eta^*) = rac{1}{N}||oldsymbol{X}\hat{eta} - oldsymbol{X}eta^*||_2^2$$

- corresponds to mean-squared error of $\hat{\beta}$ over given samples of \boldsymbol{X}
- \blacksquare helpful if interested in predictive performance of $\hat{\beta}$

More appropriate if β^* is of primary interest:

Definition

Parameter estimation loss (ℓ_2 -error):

$$\mathcal{L}_2(\hat{\beta}, \beta^*) = ||\hat{\beta} - \beta^*||_2^2$$

Sparsity Models

- Classical analysis of a method such as lasso would fix number of covariates p, and then take sample size N to infinity.
- Often p of same order or substantially larger than N.
- Want to come up with theory for p >> N.
- Note: If model lacks any additional structure ⇒ not able to recover useful information
- Indeed: $N \le p \implies$ linear model is unidentifiable (i.e. the solution is not unique).
- Thus: add additional constraints on unknown regression vector $\beta^* \in \mathbb{R}^p$

Sparsity Models

Sparsity constraints:

Definition

Hard sparsity: Assume β^* has at most $k \leq p$ nonzero entries.

Can consider prediction and ℓ_2 -norm losses in this case.

Definition

Weak sparsity: Assume β^* can be closely approximated by vectors with few nonzero entries. Formalization:

For a parameter $q \in [0, 1]$ and radius $R_q > 0$, define the set

$$\mathbb{B}(R_q) = \{\beta \in \mathbb{R}^q | \sum_{i=1}^p |\beta_i|^q \le R_q \}$$

Bounds on Lasso ℓ_2 -Error

- Now: Some results on the ℓ_2 -norm loss between a lasso solution $\hat{\beta}$ and the true regression vector β^* .
- Consider β^* k-sparse, i.e. its entries are nonzero on a subset $S(\beta^*) \subset \{1, 2, ..., p\}$ of cardinality k.

Strong Convexity in the Classical Setting

- Want to establish conditions on the model matrix X that are needed to establish bounds on ℓ₂-error.
- For intuition: Consider one route for proving ℓ_2 -consistency where p is fixed, N tends to infinity.
- Suppose we estimate some parameter vector β^* by minimizing a data-dependent objective function $f_N(\beta)$ over some constraint set.
- Suppose the difference in function values $\Delta f_N = |f_N(\hat{\beta}) f_N(\beta^*)|$ converges to zero as sample size N increases.

Question:

What additional conditions are necessary to ensure the ℓ_2 -norm of $\Delta \beta = ||\hat{\beta} - \beta^*||_2$ also converges to zero?

Answer: **Strong convexity**. Because if the function is strongly convex, then $\Delta \beta = ||\hat{\beta} - \beta^*||_2$ also converges to zero.

Strong Convexity in Classical Setting

Definition

Strong convexity:

- $f: \mathbb{R}^p \to \mathbb{R}$ differentiable function, is strongly convex with parameter $\gamma > 0$ at $\theta \in \mathbb{R}^p$ if $\forall \theta' \in \mathbb{R}^p: f(\theta') f(\theta) \ge \nabla f(\theta)^T (\theta' \theta) + \frac{\gamma}{2} ||\theta' \theta||_2^2$.
- If $f: \mathbb{R}^p \to \mathbb{R}$ is twice continuously differentiable, then:

f strongly convex with parameter γ around $\beta^* \in \mathbb{R}^p$

minimum eigenvalue of the Hessian matrix $\nabla^2 f(\beta)$ is at least γ for all vectors β in a neighbourhood of β^*

Strong Convexity in Classical Setting

Figure 11.2 Relation between differences in objective function values and differences in parameter values. Left: the function f_N is relatively "flat" around its optimum $\widehat{\beta}$, so that a small function difference $\Delta f_N = |f_N(\widehat{\beta}) - f_N(\beta^*)|$ does not imply that $\Delta \beta = ||\widehat{\beta} - \beta^*||_2$ is small. Right: the function f_N is strongly curved around its optimum, so that a small difference Δf_N in function values translates into a small difference in parameter values.

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015.

Restricted Eigenvalues for Regression

- Return to high-dimensional setting, i.e. number of parameters p might be larger than sample size N.
- In this setting the least-squares objective function $f_N(\beta) = \frac{1}{2N}||\mathbf{y} \mathbf{X}\beta||_2^2$ is always convex.

Question:

Under what conditions is the objective function $f_N(\beta)$ also strongly convex?

Answer: We can observe $\nabla^2 f(\beta) = \mathbf{X}^T \mathbf{X}/N$ for all $\beta \in \mathbb{R}^p$. Hence, the least-square loss is strongly convex iff eigenvalues of $\mathbf{X}^T \mathbf{X}$ are uniformly bounded away from zero.

Restricted Eigenvalues for Regression

- **Problem:** Any matrix of the form X^TX has rank $\leq \min\{N, p\}$, so it is always rank-deficient, hence not strongly convex, whenever N < p.
- Need to relax our notion of strong convexity.
- Only need to impose a type of strong convexity condition for some subset $C \subset \mathbb{R}^p$ of possible perturbation vectors $\nu \in \mathbb{R}^p$ (as we will see soon).

ntroduction Lasso estimator Ridge Regression Comparison of Ridge and Lasso Cross-Validation Example Uniqueness and Consistency Introductio

Restricted Eigenvalues for Regression

Figure 11.3 A convex loss function in high-dimensional settings (with $p \gg N$) cannot be strongly convex; rather, it will be curved in some directions but flat in others. As shown in Lemma 11.1, the lasso error $\hat{\nu} = \hat{\beta} - \beta^*$ must lie in a restricted subset C of \mathbb{R}^p . For this reason, it is only necessary that the loss function be curved in certain directions of space.

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015.

Restricted Eigenvalues for Regression

Definition

A function f satisfies **restricted strong convexity** at β^* with respect to C if there is a constant $\gamma>0$ such that

$$\frac{\nu^{\mathsf{T}} \nabla^2 \mathit{f}(\beta) \nu}{||\nu||_2^2} \geq \gamma \text{ for all } \nu \in \mathit{C},$$

and for all $\beta \in \mathbb{R}^p$ in a neighbourhood of β^* .

In the specific case of linear regression, this is equivalent to lower bounding the **restricted eigenvalues** of the model matrix, in particular requiring:

$$\frac{\frac{1}{N}\nu \pmb{X}^T \pmb{X}\nu}{||\nu||_2^2} \geq \gamma \text{ for all nonzero } \nu \in \pmb{C}.$$

Introduction Lasso estimator Ridge Regression Comparison of Ridge and Lasso Cross-Validation Example Uniqueness and Consistency Introductic

Restricted Eigenvalues for Regression

Question:

What constraint sets C are relevant?

Answer: $C(S, \alpha) := \{ \nu \in \mathbb{R}^p \mid ||\nu_{S^c}||_1 \leq \alpha ||\nu_S||_1 \}$

Restricted Eigenvalues for Regression

Derivation:

- Suppose the parameter vector β^* is sparse, supported on subset $S = S(\beta^*)$.
- Define the lasso error $\hat{\nu} = \hat{\beta} \beta^*$.
- Let $\hat{\nu_S} \in \mathbb{R}^{|S|}$ denote the subvector indexed by elements of S, with $\hat{\nu}_{S^c}$ defined analogously.

Lemma

For appropriate choices of ℓ_1 -ball radius, or equivalently of the regularization parameter λ_N , the lasso error satisfies a **cone constraint** of the form

$$||\hat{\nu}_{\mathcal{S}^c}||_1 \leq \alpha ||\hat{\nu}_{\mathcal{S}}||_1$$

for some constant $\alpha \geq 1$.

Restricted Eigenvalues for Regression

Conclusion:

In its constrained or regularized form, the lasso error is restricted to a set of the form

$$C(S; \alpha) := \{ \nu \in \mathbb{R}^p \mid ||\nu_{S^c}||_1 \le \alpha ||\nu_S||_1, \}$$

for some parameter $\alpha \geq 1$.

(Which is what we were looking for when asking which constraint sets *S* are relevant.)

Basic Consistency Result

Take a look at a result that provides a bound on the lasso error $||\hat{\beta} - \beta^*||_2$, based on the linear model $\mathbf{y} = \mathbf{X}\beta^* + \mathbf{w}$, where β^* is k-sparse, supported on the subset S.

Theorem 11.1

Suppose the model matrix ${\it X}$ satisfies the restricted eigenvalue bound with parameter $\gamma>0$ over ${\it C}(S;3)$. Then:

(a) Any estimate $\hat{\beta}$ based on the constrained lasso with $R=||\beta^*||_1$ satisfies the bound

$$||\hat{\beta} - \beta^*||_2 \le \frac{4}{\gamma} \sqrt{\frac{k}{N}} \left\| \frac{\mathbf{X}^T \mathbf{w}}{\sqrt{N}} \right\|_{\infty}$$

(b) Given a regularization parameter $\lambda_N \geq 2||\boldsymbol{X}^T\boldsymbol{w}||_{\infty}/N > 0$, any estimate $\hat{\beta}$ from the regularized lasso satisfies the bound

$$||\hat{\beta} - \beta^*||_2 \le \frac{3}{\gamma} \sqrt{\frac{\kappa}{N}} \sqrt{N} \lambda_N$$

Introduction Lasso estimator Ridge Regression Comparison of Ridge and Lasso Cross-Validation Example Uniqueness and Consistency Introduction

Basic Consistency Result

- These results are deterministic.
- They apply to any set of linear regression equations with a given observed noise vector w
- Assumptions on the noise vector \boldsymbol{w} and/or the model matrix affect the rate through the restricted eigenvalue constant γ , and the terms $||\boldsymbol{X}^T\boldsymbol{w}||_{\infty}$ and λ_N in the two bounds.
- The two terms $||\mathbf{X}^T \mathbf{w}||_{\infty}$ and λ_N reflect the interaction of the observation noise \mathbf{w} with the model matrix \mathbf{X} .

Example: Classical Linear Gaussian Model

- Let the observation noise $\mathbf{w} \in \mathbb{R}^N$ be Gaussian, with i.i.d. $N(0, \sigma^2)$ entries.
- Fix the design matrix X, with columns $\{x_1, ..., x_p\}$.
- Then for any given column $j \in \{1, ..., p\}$ the random variable $\mathbf{x}_j^T \mathbf{w}/N$ is distributed as $N(0, \frac{\sigma^2}{N} \cdot \frac{||\mathbf{x}_j||_2^2}{N})$.
- Hence, if the columns of the design matrix \mathbf{X} are normalized, (i.e. $||\mathbf{x}_j||_2/\sqrt{N} = 1 \ \forall j \in \{1,...,p\}$), then the variable $\mathbf{x}_j^T \mathbf{w}/N$ is stochastically dominated by a $N(0,\frac{\sigma^2}{N})$ variable, so that we have the

Gaussian tail bound:

$$\mathbb{P}\left\lceil \frac{|\boldsymbol{x}_j^T \boldsymbol{w}|}{N} \geq t \right\rceil \leq 2e^{-\frac{Nt^2}{2\sigma^2}}$$

Basic Consistency Result

Since $\frac{\|\mathbf{X}^T\mathbf{w}\|_{\infty}}{N}$ corresponds to the maximum over p such variables, the union bound yields

$$\mathbb{P}\bigg[\frac{||\boldsymbol{X}^T\boldsymbol{w}||_{\infty}}{N} \geq t\bigg] \leq 2e^{-\frac{Nt^2}{2\sigma^2} + \log p} = 2e^{-\frac{1}{2}(\tau-2)\log p},$$

when we set $t = \sigma \sqrt{\frac{\tau \log p}{N}}$ for some $\tau > 2$.

Conclusion: The lasso error satisfies the bound

$$||\hat{\beta} - \beta^*||_2 \le \frac{c\sigma}{\gamma} \sqrt{\frac{\tau k \log p}{N}}$$

with probability at least $1 - 2e^{-\frac{1}{2}(\tau - 2)\log p}$.

Gives us a valid choice of regularization parameter λ_N which is valid for Theorem 11.1(b).

(Namely $\lambda_N = 2\sigma\sqrt{\tau\frac{\log p}{N}}$ for some $\tau > 2$ is a valid choice with same high probability.)

Basic Consistency Result

The rate $\frac{c\sigma}{\gamma}\sqrt{\frac{\tau k \log p}{N}}$ is reasonable:

- Suppose $S(\beta^*)$, the support set, would be known.
- Then estimation of β^* would require approximating a total of k parameters, namely the elements β_i^* for all $i \in S(\beta^*)$.
- But even with knowledge of support set, since model has k free parameters, no method can achieve squared ℓ_2 -error that decays more quickly than $\frac{k}{N}$.
 - \implies apart from logarithmic factor, lasso rate matches the best possible one could achieve, even if $S(\beta^*)$ were known a priori.
- In fact, the rate $\frac{c\sigma}{\gamma}\sqrt{\frac{\tau k \log p}{N}}$ cannot be substantially improved by any estimator.

Bounds on Prediction Error

- So far we studied performance of lasso in recovering true regression vector, as assessed by $||\hat{\beta} \beta^*||_2$.
- Now: theoretical guarentees on relatively low (in-sample) prediction error $\mathcal{L}_{pred}(\hat{\beta}, \beta^*) = \frac{1}{N} ||X(\hat{\beta} \beta^*)||_2^2$
- We consider Lagrangian lasso, but analogous results could be derived for other forms of lasso.

Bounds on Prediction Error

Theorem 11.2

Consider the Lagrangian lasso with regularization parameter $\lambda_N \geq \frac{2}{N} || \boldsymbol{X}^T \boldsymbol{w} ||_{\infty}$.

(a) If $||\beta^*||_1 \le R_1$, then any optimal solution $\hat{\beta}$ satisfies

$$\frac{||\boldsymbol{X}(\hat{\beta}-\beta^*)||_2^2}{N} \leq 12R_1\lambda_N$$

(b) If β^* is supported on a subset S, and the design matrix X satisfies the restricted eigenvalue bound over C(S;3), then any optimal solution $\hat{\beta}$ satisfies

$$\frac{||\textbf{\textit{X}}(\hat{\beta}-\beta^*)||_2^2}{N} \leq \frac{144}{\gamma}|\textbf{\textit{S}}|\lambda_N^2.$$

Bounds on Prediction Error

As before, the choice $\lambda_N = c\sigma \sqrt{\frac{\log p}{N}}$ is valid for Theorem 11.2 with high probability, hence the two bounds take the form

$$\frac{||\textbf{\textit{X}}(\hat{\beta} - \beta^*)||_2^2}{N} \leq c_1 \sigma R_1 \sqrt{\frac{\log p}{N}}$$

$$\frac{||\boldsymbol{X}(\hat{\beta}-\beta^*)||_2^2}{N} \leq c_2 \frac{\sigma^2}{\gamma} \frac{|S|\log p}{N}.$$

- The former bound is known as the 'slow rate' for the lasso, since the squared prediction error decays as $1/\sqrt{N}$.
- The latter bound is known as the 'fast rate' since it decays as 1/N.
- The latter is based on much stronger Assumptions:
 - hard sparsity condition: β^* is supported on a small subset S
 - restricted eigenvalue bound on design matrix X

Introduction Lasso estimator Ridge Regression Comparison of Ridge and Lasso Cross-Validation Example Uniqueness and Consistency Introduction

Summary

- Interpretation of the final model: the l₁-penalty provides a natural way to encourage sparsity and simplicity in the solution
- Statistical efficiency: if the true underlying model is sparse, then the lasso works well if the true underlying model is not sparse, then the lasso will not work well
- Computational efficiency: resulting optimization problem is convex & can be solved efficiently for large problems

Introduction Lasso estimator Ridge Regression Comparison of Ridge and Lasso Cross-Validation Example Uniqueness and Consistency Introductio

References

- Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015.
- G. James, D. Witten, T. Hasti, R. Tibshirani: An Introduction to Statistical Learning. With Applications in R. Springer.

troduction Lasso estimator Ridge Regression Comparison of Ridge and Lasso Cross-Validation Example Uniqueness and Consistency Introduction

Questions

