Audio Tagging with Neural Networks

GA DSI Capstone Project Kenny Evans

Project Overview

- Problem Statement
- Data Collection
 - 4,970 curated sound clips
 - ☐ 19,815 noisy sound clips
 - 80 categorical labels
- Computational Resources

Wave Signals

A quick comparison of a curated (top) versus a noisy (bottom) wave signal.

Preprocessing Options

- Amplitudes from raw wave signals
- → Fourier transformations to decompose the signals into their constituent frequencies
- Mel-frequency cepstral coefficients (MFCCs)

MFCCs Explained

- 1. Take the Fourier transform of the signal
- 2. Map powers of the spectrum obtained onto the mel scale
- 3. Take the logs of the powers at each of the mel frequencies
- Take the discrete cosine transform of the list of mel log powers, as if it were a signal
- The MFCCs are the amplitudes of the resulting spectrum

Neural Network Model I

- Sequential Neural Network
- ☐ Single-labelled targets
- Output activation: 'softmax'

Neural Network Model II

- Sequential Neural Network
- → Multi-labelled targets
- Output activation: 'sigmoid'

Neural Network Model III

- Sequential Neural Network
- → Multi-labelled targets
- Output activation: customized 'sigmoid'

Precision -> .055

Baseline precision -> .002

27.5 times better than baseline!

Takeaways

Future Steps

- Improve loss function for neural network
- Apply different transformations to wave signals
- Apply background noise reduction techniques