Planche 1.

Question de cours. Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites réelles. Est-ce que si la série de terme général u_n+v_n converge alors les séries de termes généraux u_n et v_n convergent?

Exercice 1. Donner la convergence de la série de terme général

$$u_n = (-1)^n \left(e - \left(1 + \frac{1}{n} \right)^n \right)$$

Exercice 2. On définit la suite (u_n) par $u_1 > 0$ et $u_{n+1} = u_n + \frac{1}{n^{\alpha}u_n}$ avec $\alpha > 0$. Quand est-ce que la suite u_n converge en fonction de α ?

Planche 2.

Question de cours. Donner la nature de la série de terme général $(u_n)_{n\geq 1}$ défini par

$$u_n = \frac{1}{(1+n)^{1+n}}$$

Exercice 1. Etudier la nature de la série de terme général u_n pour $n \ge 1$ défini par

$$u_n = \frac{E(\sqrt{n+1}) - E(\sqrt{n})}{n}$$

Exercice 2. Soit une suite positive (u_n) . On définit la suite (v_n) par

$$v_n = \frac{1}{1 + n^2 u_n}$$

En fonction de la nature de la série des u_n , quelle est la nature de la série de terme général v_n ?

Solutions - Planche 1.

Question de cours. Non c'est faux, prenons comme contre-exemple $u_n = 1$ et $v_n = -1$.

On utilise la méthode du développement asymptotique.

$$u_n = (-1)^n \left(e - \left(1 + \frac{1}{n} \right)^n \right)$$

$$= (-1)^n \left(e - \exp(n \ln(1 + \frac{1}{n})) \right)$$

$$= (-1)^n \left(e - \exp(n(\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^2}))) \right)$$

$$= (-1)^n \left(e - \exp(1 - \frac{1}{2n} + O(\frac{1}{n^2})) \right)$$

$$= (-1)^n e \left(1 - (1 - \frac{1}{2n} + O(\frac{1}{n^2})) \right)$$

$$= \frac{e(-1)^n}{2n} + O(\frac{1}{n^2})$$

La première série converge d'après le critère des séries alternées. La deuxième aussi car la convergence absolue entraîne la convergence et la série de terme général $1/n^2$ converge. Donc au final, la série de terme général u_n converge.

Exercice 2. La suite converge si et seulement si la série de terme général $u_{n+1} - u_n$ converge.

Or $u_{n+1} - u_n = \frac{1}{n^{\alpha}u_n}$. Donc elle converge si et seulement si la série $\frac{1}{n^{\alpha}u_n}$ converge. Supposons que la suite converge vers une limite l. On voudrait dire que $n^{\alpha}u_n \sim n^{\alpha}l$, mais on ne peut l'affirmer que si l > 0. Or c'est le cas car $u_1 > 0$ et car la suite est croissante. On en déduit que $\alpha > 1$ sinon la série diverge. On a trouvé une condition nécessaire. Montrons qu'elle est suffisante.

Supposons que $\alpha > 1$. Par croissance de (u_n) on a :

$$0 \le \frac{1}{n^{\alpha} u_n} \le \frac{1}{u_1 n^{\alpha}}$$

Or la dernière série converge donc la première aussi. Donc la suite (u_n) converge. Bilan: La suite (u_n) converge ssi $\alpha > 1$.

Solutions - Planche 2.

Question de cours. On a

$$\frac{1}{(1+n)^{1+n}} \le \frac{1}{2^{1+n}}$$

Or la série de terme général 2^{-n} converge donc la série étudiée converge.

Exercice 1. Il faut remarquer que les parties entières vont s'annuler la plupart du temps. Plaçons nous au cas limite : $n = k^2 - 1$. Alors $E(\sqrt{n+1}) = k$. Mais de pls $E(\sqrt{n}) = k - 1$. En effet :

$$k - 1 \le \sqrt{n} < k$$

car $k-1 \le \sqrt{k^2-1}$ et car $\sqrt{k^2-1} < k$ (en passant au carré). Donc :

$$u_{k^2-1} = \frac{k - (k-1)}{k^2 - 1} = \frac{1}{k^2 - 1}$$

Maintenant montrons que $u_n = 0$ si n n'est pas de cette forme. Soit n ainsi, on note k tel que $k^2 - 1 < n < (k+1)^2 - 1$. On montre que $E(\sqrt{n}) = k$ et $E(\sqrt{n+1}) = de$ la même manière. Ainsi $u_n = 0$.

On note S_n la somme partielle de la série des u_n . Alors :

$$S_n = \sum_{p=1}^n u_p = \sum_{k=2}^{E(\sqrt{n+1})} u_{k^2-1} = \sum_{k=2}^{E(\sqrt{n+1})} \frac{1}{k^2 - 1}$$

Or la série des $\frac{1}{k^2-1}$ converge (comparaison à une série de Riemann). On en déduit que S_n converge donc la série des u_n converge.

Calculons cette somme à l'aide d'une somme télescopique :

$$\frac{1}{k^2 - 1} = \frac{1}{2} \left(\frac{1}{k - 1} - \frac{1}{k + 1} \right)$$

Donc:

$$\sum_{k=2}^{N} \frac{1}{k^2 - 1} = \frac{1}{2} \sum_{k=2}^{N} \frac{1}{k - 1} - \frac{1}{2} \sum_{k=2}^{N} \frac{1}{k + 1} = \frac{1}{2} (1 + 1/2 - 1/(N + 1) - 1/N) \to 3/4$$

Exercice 2. Etudions d'abord des cas particuliers pour savoir ce qu'on pourrait montrer.

Exemples dans le cas où $\sum u_n$ diverge. Si $u_n = 1/n$ alors $v_n = \frac{1}{1+n} \sim 1/n$ et $\sum v_n$ diverge. Si $u_n = 1$, alors $v_n \sim 1/n^2$ et $\sum v_n$ converge. Dans ce cas on ne peut donc rien dire.

Exemples dans le cas où $\sum u_n$ converge. Si $u_n = 1/n^2$, alors $v_n = 1/2$ et $\sum v_n$ diverge (grossièrement).

Montrons donc que si $\sum u_n$ converge, alors $\sum v_n$ diverge. Distinguons deux cas. Si $n^2u_n \not \to +\infty$ alors v_n ne tend pas vers 0 et la série diverge grossièrement. Sinon, $n^2u_n \to \infty$ et dans ce cas $v_n \sim \frac{1}{n^2u_n}$. On en déduit que $\sqrt{u_nv_n} \sim 1/n$ qui est une série divergente. Si $\sum v_n$ était convergente, alors par

$$\sqrt{u_n v_n} \le \frac{1}{2} (u_n + v_n)$$

on en déduirait que $\sqrt{u_n v_n}$ convergerait aussi. Mais c'est exclu. Donc dans tous les cas la série de terme général (v_n) diverge.