В ряде приложений оказывается полезной

Теорема

10.8.2.

(О полярном

разложении)

Любой линейный оператор \hat{A} в E^n с $\det \|\hat{A}\| \neq 0$ может быть единственным образом представлен в виде $\hat{A} = \hat{Q}\hat{R}$, где оператор \hat{Q} ортогональный, а оператор \hat{R} - самосопряженный и имеющий положительные собственные значения.

Доказательство:

- 1°. Покажем вначале, что самосопряженный оператор $\hat{A}^+\hat{A}$ (см. пример 10.7.1.) имеет только положительные собственные значения. Действительно, пусть $\hat{A}^+\hat{A}f=\lambda f$, тогда, с одной стороны, $(\hat{A}^+\hat{A}f,f)=(\hat{A}f,\hat{A}f)>0$ при $f\neq o$, а с другой, $(\hat{A}^+\hat{A}f,f)=(\lambda f,f)=\lambda(f,f)$, то есть $(\hat{A}f,\hat{A}f)=\lambda(f,f)$. Но тогда все $\lambda>0$ в силу определения скалярного произведения, поскольку из допущения $\hat{A}f=o$ при $f\neq o$ следует, что $\hat{A}f=0f$ \Leftrightarrow $\det \|\hat{A}\|=0$.
- 2°. Пусть $\{e_1, e_2, ..., e_n\}$ ортонормированный базис, состоящий из собственных векторов $\hat{A}^+\hat{A}$. Рассмотрим множество элементов $\hat{A}e_i$; i=[1,n]. Заметим, что

$$\hat{(A}e_i,\hat{A}e_j) = (\hat{A}^+\hat{A}e_i,e_j) = \lambda_i(e_i,e_j) = \lambda_i\delta_{ij} \; ; i,j=[1,n] \, . \; \text{Но это означает, что}$$

$$\left\{ e_i' = \frac{1}{\sqrt{\lambda_i}}\,\hat{A}e_i \; ; i=[1,n] \, \right\} \; \text{- также базис и притом ортонормированный.}$$

3°. Примем за искомый ортогональный оператор \hat{Q} - оператор, переводящий ортонормированный базис $\{e_1,e_2,...,e_n\}$ в ортонормированный базис $\{e_1',e_2',...,e_n'\}$, и убедимся, что в качестве \hat{R} можно взять оператор $\hat{Q}^{-1}\hat{A}$.

Действительно, во-первых, имеет место равенство $\hat{A}=\hat{Q}\hat{R}$. Во-вторых, из соотношений $\hat{R}e_i=\hat{Q}^{-1}\hat{A}e_i=\hat{Q}^{-1}\sqrt{\lambda_i}~e_i'=\sqrt{\lambda_i}~e_i~;i=[1,n]$ следует, что базисные элементы e_i , i=[1,n] есть собственные векторы оператора \hat{R} , отвечающие положительным собственным значениям $\sqrt{\lambda_i}$, а значит, матрица $\|\hat{R}\|_e$ в базисе $\{e_1,e_2,...,e_n\}$ диагональная и потому симметрическая. Тогда, в силу леммы 10.7.1., оператор \hat{R} самосопряженный.

4°. Покажем, наконец, единственность разложения. Во введенных обозначениях справедливо равенство $\hat{A}^+\hat{A}=\hat{R}^2$, поскольку из $\hat{A}=\hat{Q}\hat{R}$ и $\hat{A}^+=\hat{R}^+\hat{Q}^+$ следует, что

$$\hat{A}^{+}\hat{A} = \hat{R}^{+}\hat{Q}^{+}\hat{Q}\hat{R} = \hat{R}^{+}\hat{Q}^{-1}\hat{Q}\hat{R} = \hat{R}^{+}\hat{R}$$
,

то, в силу самосопряженности \hat{R} , $\hat{A}^+\hat{A}=\hat{R}^2$.

Предположим, что существуют два различных самосопряженных оператора \hat{R}_1 и \hat{R}_2 с положительными собственными значениями такие, что $\hat{A}^+\hat{A}=\hat{R}_1^2$; $\hat{A}^+\hat{A}=\hat{R}_2^2$ и $\hat{R}_1^2-\hat{R}_2^2=\hat{O}$.

Заметим, что \hat{R}_1 и \hat{R}_2 по построению (см. 2°.) имеют общую систему собственных векторов, а потому они коммутируют. Но тогда, согласно §8.2., справедливы равенства

$$\hat{R}_1^2 - \hat{R}_2^2 = \hat{R}_1^2 - \hat{R}_1 \hat{R}_2 + \hat{R}_2 \hat{R}_1 - \hat{R}_2^2 = (\hat{R}_1 - \hat{R}_2)(\hat{R}_1 + \hat{R}_2) = \hat{O}.$$

Из невырожденности и линейности \hat{R}_1 и \hat{R}_2 в силу теоремы 8.6.8. оператор $\hat{R}_1 + \hat{R}_2$ также невырожденный и поэтому из равенства $(\hat{R}_1 - \hat{R}_2)(\hat{R}_1 + \hat{R}_2) = \hat{O}$ следует $\hat{R}_1 - \hat{R}_2 = \hat{O}$. Таким образом, \hat{R} - самосопряженный оператор, определяемый по \hat{A} однозначно. Но $\hat{Q} = \hat{A}\hat{R}^{-1}$ и, значит, также определяется однозначно по \hat{A} .

Теорема доказана.

(Теорема, использованная в доказательстве единственности)

Доказательство:

Докажем необходимость.

Пусть $\hat{A}a=\lambda a$ и $\hat{B}a=\mu a$, тогда $\hat{B}\hat{A}a=\lambda\hat{B}a=\lambda\mu a$; $\hat{A}\hat{B}a=\mu\hat{A}a=\lambda\mu a$ и, вычитая почленно, получим, что $(\hat{A}\hat{B}-\hat{B}\hat{A})a=o$. Поскольку a произвольный собственный вектор, то данное соотношение верно и для всей совокупности собственных векторов, а значит, и для любого элемента в E^n , так как из собственных векторов можно образовать базис. Поэтому $\hat{A}\hat{B}-\hat{B}\hat{A}=\hat{O}$.

Докажем достаточность.

Пусть самосопряженные операторы \hat{A} и \hat{B} коммутируют и пусть, кроме того, $\hat{A}a=\lambda a$. Рассмотрим здесь лишь случай, когда все собственные значения оператора \hat{A} различны.

Покажем, что элемент евклидова пространства $b=\hat{B}a$ является собственным вектором оператора \hat{A} . Действительно, в силу $\hat{A}\hat{B}=\hat{B}\hat{A}$, имеем $\hat{A}b=\hat{A}\hat{B}a=\hat{B}\hat{A}a=\hat{B}\lambda a=\lambda\hat{B}a=\lambda b$.

Поскольку все собственные значения \hat{A} кратности единица, то λ есть его собственное значение, отвечающее a и b одновременно. Поэтому $b = \kappa a$ и, поскольку $b = \hat{B}a$, также $\hat{B}a = \kappa a$. Значит, a - собственный вектор оператора \hat{B} .

Теорема доказана.

- Замечания: 1°. Теорема о полярном разложении является обобщением теоремы 5.5.2. о возможности представления аффинного преобразования плоскости в виде произведения двух операторов, первый из которых ортогональный, а второй сжатие по двум взаимно перпендикулярным направлениям, матрица которого диагональная.
 - 2° . В случае вырожденного оператора \hat{A} разложение, аналогичное указанному в теореме 10.8.2., с неотрицательными собственными значениями самосопряженного оператора \hat{R} существует, но не единственно.

В некотором ортонормированном базисе в E^2 линейный оператор \hat{A} имеет 10.8.1. $\text{матрицу } \|\hat{A}\| = \left\| \begin{array}{cc} \sqrt{2} & -1 \\ 0 & \sqrt{2} \end{array} \right\| \text{. Найти его полярное разложение.}$

Решение:

1°. Выполним искомое разложение по схеме, использованной в доказательстве теоремы 10.8.2. Матрица оператора $\hat{A}^+\hat{A}$ в исходном ортонормированном базисе равна

$$\left\| \hat{A}^{+} \hat{A} \right\| = \left\| \hat{A}^{+} \right\| \left\| \hat{A} \right\| = \left\| \hat{A} \right\|^{T} \left\| \hat{A} \right\| = \left\| \frac{\sqrt{2}}{-1} \quad 0 \\ -1 \quad \sqrt{2} \right\| \left\| \frac{\sqrt{2}}{0} \quad -1 \\ 0 \quad \sqrt{2} \right\| = \left\| \frac{2}{-\sqrt{2}} \quad -\frac{\sqrt{2}}{3} \right\|.$$

Собственные значения и собственные векторы этого оператора равны соответственно

$$\lambda_1 = 1; \quad \lambda_2 = 4; \quad ||f_1|| = \left\| \frac{\sqrt{2}}{1} \right||; \quad ||f_2|| = \left\| \frac{-1}{\sqrt{2}} \right||,$$

поэтому (сохраняя обозначения, использованные в доказательстве теоремы 10.8.2.) получим для элементов, образующих ортонормированные базисы $\{e_1, e_2\}$

$$\|e_1\| = \frac{\|f_1\|}{|f_1|} = \left\| \frac{\sqrt{\frac{2}{3}}}{\frac{1}{\sqrt{3}}} \right\| \quad ; \qquad \|e_2\| = \frac{\|f_2\|}{|f_2|} = \left\| -\frac{1}{\sqrt{3}} \right\|$$

и $\{e_1', e_2'\}$

$$\|e_1'\| = \left\| \frac{1}{\sqrt{\lambda_1}} \hat{A} e_1 \right\| = \left\| \frac{1}{\sqrt{3}} \right\| ; \quad \|e_2'\| = \left\| \frac{1}{\sqrt{\lambda_2}} \hat{A} e_2 \right\| = \frac{1}{2} \left\| \frac{\sqrt{2}}{0} - \frac{1}{\sqrt{2}} \right\| \left\| -\frac{1}{\sqrt{3}} \right\| = \left\| -\sqrt{\frac{2}{3}} \right\|.$$

2°. Обозначив через
$$\|G\| = \begin{pmatrix} \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \sqrt{\frac{2}{3}} \end{pmatrix}$$
 и $\|F\| = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\sqrt{\frac{2}{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$ соответственно

матрицы перехода от исходного базиса к базисам $\{e_1,e_2\}$ и $\{e_1',e_2'\}$, и рассуждая так же, как при решении задачи 7.5.2., получим для матрицы ортогонального оператора \hat{Q} выражение $\|\hat{Q}\| = \|G\|^{-1} \|F\|$.

Учитывая, что матрица $\|G\|$ ортогональная (как матрица перехода, связывающая два ортонормированных базиса), находим матрицу

$$\|\hat{Q}\| = \|G\|^{-1} \|F\| = \|G\|^{T} \|F\| = \left\| \begin{array}{ccc} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & \left\| \frac{1}{\sqrt{3}} & -\sqrt{\frac{2}{3}} \right\| \\ -\frac{1}{\sqrt{3}} & \sqrt{\frac{2}{3}} & \left\| \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \right\| \end{array} \right\| = \left\| \begin{array}{ccc} \frac{2\sqrt{2}}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2\sqrt{2}}{3} \end{array} \right\|,$$

которая в исходном ортонормированном базисе ортогональная.

3°. Поскольку $\hat{R} = \hat{Q}^{-1}\hat{A}$, то

$$\|\hat{R}\| = \|\hat{Q}^{-1}\| \|\hat{A}\| = \|\hat{Q}\|^{-1}\| \|\hat{A}\| = \|\hat{Q}\|^{-1}\| \|\hat{A}\| = \|\hat{Q}\|^{T}\| \|\hat{A}\| = \|\frac{2\sqrt{2}}{3} - \frac{1}{3}\|_{0} \sqrt{2} - \frac{1}{2}\|_{0} = \|\frac{4}{3} - \frac{\sqrt{2}}{3}\|_{0} - \frac{1}{2}\|_{0} = \|\frac{4}{3} - \frac{\sqrt{2}}{3}\|_{0} =$$

и, следовательно, искомое полярное разложение имеет вид

$$\|\hat{A}\| = \|\hat{Q}\| \|\hat{R}\| = \begin{vmatrix} \frac{2\sqrt{2}}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2\sqrt{2}}{3} \end{vmatrix} - \frac{\sqrt{2}}{3} & \frac{5}{3} \end{vmatrix}.$$