	ALU or branch instruction		Data transfer instruction		Clock cycle
Loop:	addi	\$s1,\$s1,-16	1 w	\$t0, 0(\$s1)	1
			lw	\$t1,12(\$s1)	2
	addu	\$t0,\$t0,\$s2	1w	\$t2, 8(\$s1)	3
	addu	\$t1,\$t1,\$s2	1 w	\$t3, 4(\$s1)	4
	addu	\$t2,\$t2,\$s2	SW	\$t0, 16(\$s1)	5
	addu	\$t3,\$t3,\$s2	SW	\$t1,12(\$s1)	6
			SW	\$t2, 8(\$s1)	7
	bne	\$s1,\$zero,Loop	SW	\$t3, 4(\$s1)	8

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static two-issue MIPS pipeline. The empty slots are no-ops. Since the first instruction in the loop decrements \$s1 by 16, the addresses loaded are the original value of \$s1, then that address minus 4, minus 8, and minus 12.