

Pró-Reitoria Acadêmica Diretoria Acadêmica Assessoria Pedagógica da Diretoria Acadêmica

FACULDADE: CENTRO UNIVERSITÁRIO DE BRASÍLIA – UniCEUB

CURSO: ENGENHARIA DE COMPUTAÇÃO

DISCIPLINA: SISTEMAS DE TEMPO REAL E EMBARCADOS

CARGA HORÁRIA: 60 H. A. **ANO/SEMESTRE**: 2020/02

PROFESSOR: ADERBAL BOTELHO HORÁRIOS: SEGUNDAS E QUARTAS

LABORATÓRIO – SENSORES E ATUADORES

RESUMO

Sensores são dispositivos capazes de isolar estímulos externos, enquanto atuadores executam tarefas que interagem com o meio. Sistemas de tempo real embarcados utilizam-se de tais dispositivos para aumentar a eficiência e controlar a execução das tarefas, seja periódicas ou não.

OBJETIVOS

Objetivo Geral

Entender o funcionamento dos sensores e atuadores.

Objetivos Específicos

- 1. Conhecer os componentes eletrônicos presentes no kit arduíno;
- 2. Testar a interação com sensores e atuadores;
- 3. Explorar componentes que poderão ser utilizados no Projeto Final da disciplina.

EXERCÍCIO 01 – SENSORES

Os sensores são dispositivos eletrônicos capazes de isolar estímulos externos, como variações de temperatura, volume, luminosidade, etc. No exercício vamos utilizar o detector de luminosidade presente no Kit Arduíno para disparar a campainha (Buzzer) presente no Kit. No exercício serão utilizados os seguintes componentes:

- Fotocélula LDR 5mm: Sensor de luminosidade.
- Buzzer 5V: Campainha que dispara um som quando ativada.
 - Corrente: \leq 42mA;
 - o Som de saída: ≥ 85DB:
 - Frequência de Resonância: 2300 ± 300HZ;
 - ∘ Temperatura de Operação: -20°C ~ +45°C;
 - ∘ Temperatura de armazenamento: -20°C ~ +60°C;
 - Sinalizador piezoelétrico de 12mm.
- Resistor Filme de Carbono $10k\Omega$
- Resistor Filme de Carbono 390 Ω

EXERCÍCIO 01 – SENSORES

Figura 1: Sensor de Luminosidade

Figura 2: Buzzer

EXERCÍCIO 01 – SENSORES

10K Ω

Figura 3: Resistor 10k

 390Ω

Figura 4: Resistor 390

EXERCÍCIO: Utilize os componentes indicados e construa o circuito esquemático da Figura. O circuito deve disparar um alarme sonoro quando a luminosidade baixar de um valor determinado no experimento. Para ativar a campanha, considere o envio de um sinal para o pino digital número 8.

Figura 5: Esquemático do circuito Arduíno

EXERCÍCIO 01 – SENSORES

EXERCÍCIO: Conecte o LED no circuito da Figura 5 e escreva o valor da luminosidade medido pelo sensor.

BIBLIOGRAFIA

SHAW, Alan C. Sistemas e Software de Tempo Real. Porto Alegre: Bookman, 2003.s

FARINES, Jean-Marie et al. Sistemas de Tempo Real. São Paulo: IME-USP, 2000. v. 1. (http://lattes.cnpq.br/4953705856223870)

IST (2009). Jantar dos filósofos em linux. Dispon vél em http://comp.ist.utl.pt/ec-st/Labs/Jantar-Linux.htm Acessado em 12/01/2011.