Instructions: Please **show all work** (partial credit will be given for correct work, even if your answer is wrong).

- 1. (15 points) Solve the limit.
 - (a) $\lim_{x \to 5} \frac{1}{x 2}$
 - (b) $\lim_{x\to 2} \frac{x^3-8}{x^2-2}$
 - (c) $\lim_{x \to \infty} \frac{\ln(x)}{x}$
- 2. (10 points) Use separation of variables to solve for the general solution to the differential equation $\frac{dy}{dx} 5x^4e^{-y} = 0$.

y = _____

3. (10 points) Solve the differential equation $\frac{dy}{dx} = 2xy$ for the particular solution with initial condition y(1) = 1.

 $y = \underline{\hspace{1cm}}$

- 4. (20 points)
 - (a) Calculate the midpoint sum M_2 which approximates the integral $\int_0^4 x^2 dx$.

$$M_2 =$$

- (b) Is M_2 above **larger** or **smaller** than $\int_0^4 x^2 dx$? (Circle your answer)
- (c) Calculate the trapezoidal sum T_2 which approximates the integral $\int_0^4 x^2 dx$.

$$T_2 = \underline{\hspace{1cm}}$$

(d) Is T_2 above **larger** or **smaller** than $\int_0^4 x^2 dx$? (Circle your answer)

5. (20 points) Draw the slope field for the differential equation $\frac{dy}{dx} = x^2$. Then, draw the solution which has initial condition y(1) = 2.

