总结本节讨论, 对于实可微函数 f,

$$f(z + \Delta z) - f(z) = f_z(z)\Delta z + f_{\overline{z}}(z)\overline{\Delta z} + o(|\Delta z|).$$

特别地, 对全纯函数 f,

$$f(z + \Delta z) - f(z) = A\Delta z + o(|\Delta z|), \quad \text{id} \, \mathbb{E}A = f'(z) = f_z(z).$$

全纯函数即为满足 Cauchy-Riemann 方程的实可微复值函数。

4.3 映射性质

一个实可微复值函数 f = u + iv, 可以视为映射

$$f: \Omega \to \mathbb{R}^2, (x,y) \mapsto (u(x,y), v(x,y)),$$

其 Jacobi 矩阵

$$J_f(z) = \left[\begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right].$$

命题 4.1. 如果 f = u + iv 实可微,则其 Jacobi 行列式

$$\det(J_f(z)) = |f_z(z)|^2 - |f_{\overline{z}}(z)|^2.$$

特别地,如果 f 全纯, $\det(J_f(z)) = |f'(z)|^2$ 。

证明: 将 f_z , $f_{\overline{z}}$ 表示为实形式:

$$f_z = \frac{1}{2}(f_x - if_y) = \frac{1}{2}(u_x + iv_x - i(u_y + iv_y))$$

$$= \frac{1}{2}((u_x + v_y) + i(v_x - u_y)),$$

$$f_{\overline{z}} = \frac{1}{2}(f_x + if_y) = \frac{1}{2}(u_x + iv_x + i(u_y + iv_y))$$

$$= \frac{1}{2}((u_x - v_y) + i(v_x + u_y)).$$

因此有

$$|f_z|^2 - |f_{\overline{z}}|^2$$

$$= \frac{1}{4}((u_x + v_y)^2 + (v_x - u_y)^2 - (u_x - v_y)^2 - (v_x + u_y)^2)$$

$$= u_x v_y - v_x u_y = \det(J_f).$$

4.4 共形性质 35

下面讨论反函数定理。实可微复数函数如果偏导数连续,则称为 C^1 实可微。

回忆实 2 维的反函数定理, 并陈述为复形式

定理 4.3. 假设 $f:\Omega\to\mathbb{C}$ 为 C^1 实可微。如果 Jacobi 矩阵 J_f 在 p 处非退化,则存在 p 的邻域 U, f(p) 的邻域 V, 以及 V 上的实可微映射 $g:V\to U$ 满足

$$f \circ g(w) = w, \ \forall w \in V; \ g \circ f(z) = z, \ \forall z \in U.$$

进一步, g 在 f(p) 处的 Jacobi 矩阵 $J_g(f(p)) = J_f(p)^{-1}$ 。

现由 $f \circ g(w) = w$, $w \in V$ 来导出 g 的进一步性质。两边对 \overline{w} 求偏导,得

$$\frac{\partial f}{\partial z}\frac{\partial g}{\partial \overline{w}} + \frac{\partial f}{\partial \overline{z}}\frac{\partial \overline{g}}{\partial \overline{w}} = \frac{\partial w}{\partial \overline{w}} = 0.$$

如果 f 在 p 点复可微,则有 $\frac{\partial f}{\partial z}(p) = 0$ 。由 $J_f(p)$ 非退化知, $\frac{\partial f}{\partial z}(p) \neq 0$,因此 $\frac{\partial g}{\partial w}(f(p)) = 0$ 。这说明 g 在 f(p) 处复可微。此时 g'(f(p)) = 1/f'(p)。如果 f 全纯且导数在 U 上处处非零,则 g 在 V 上复可微,因此 g 也是全纯函数。

总结上述讨论, 可得全纯函数的反函数定理

定理 4.4. 假设 $f:\Omega\to\mathbb{C}$ 全纯, 并且在 p 的邻域内导数 f' 连续且 $f'(p)\neq 0$ 。则存在 p 的邻域 U, f(p) 的邻域 V, 以及全纯映射 $g:V\to U$, 满足

$$f\circ g(w)=w,\ \forall w\in V;\ g\circ f(z)=z,\ \forall z\in U.$$

进一步, g 的导数满足 $g'(f(z)) = 1/f'(z), \forall z \in U$ 。

注 1: 如果 f'(p) = 0, 此时在 p 邻域中不存在反函数。例: $f(z) = z^2, p = 0$ 。

注 2: 后面将证全纯函数的无穷次可微性。由此可知,"在 p 的邻域内导数 f' 连续"这一条件实数多余。

4.4 共形性质

假设 $f:\Omega\to\mathbb{C}$ 全纯, $z_0\in\Omega$ 并且 $f'(z_0)\neq 0$, 本节将讨论 $f'(z_0)$ 的几何意义。为此,先介绍曲线。

平面曲线指的是连续映射 $\gamma:[a,b]\to\mathbb{C}$, 其中 $\gamma(t)=x(t)+iy(t), x, y$ 都是关于 $t\in[a,b]$ 的连续函数。

如果 x, y 都关于 t 可微, 此时可定义

$$\gamma'(t) = \lim_{\Delta t \to 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t} = x'(t) + iy'(t),$$

其几何意义为曲线在 $\gamma(t)$ 处的切方向 (的复数表示)。

称曲线 $\gamma:[a,b]\to\mathbb{C}$ 是光滑的, 如果 $\gamma'(t)$ 在 [a,b] 上存在且连续, 满足 $\gamma'(t)\neq 0$ 对任意 $t\in[a,b]$ 成立。这里在端点的导数 $\gamma'(a),\gamma'(b)$ 分别按照右, 左导数理解

$$\gamma'(a) = \lim_{t \to 0^+} \frac{\gamma(a+t) - \gamma(a)}{t}, \ \gamma'(b) = \lim_{t \to 0^-} \frac{\gamma(b+t) - \gamma(b)}{t}.$$

称曲线 $\gamma:[a,b]\to\mathbb{C}$ 分段光滑, 如果曲线可分解为有限段光滑曲线之并。即存在 [a,b] 的有限划分 $a=t_0< t_1<\cdots< t_n=b,$ 使得对任意 $1\leq k\leq n$, 曲线段 $\gamma|_{[t_{k-1},t_k]}$ 是光滑的。

此处 γ' 处处非零是必须的, 为说明这一点, 考虑例子

$$\gamma(t) = t^3 + it^2, t \in [-1, 1].$$

显然, $x(t) = t^3$ 与 $y(t) = t^2$ 都是可微函数。另一方面, 在平面坐标下, 曲线的方程为 $y = x^{2/3}, x \in [-1,1]$ 。显然 (0,0) 是曲线的尖点. 这是因为 $\gamma'(0) = 0$ 导致了曲线在 0 处方向消失 (没有辐角, 迷失方向)。此例表明, γ' 非零是一个合理的要求。

现在讨论 f 的保角性质。假设 $f:\Omega\to\mathbb{C}$ 为实可微函数, $p\in\Omega$ 。考虑经过 p 点的光滑曲线: $\gamma:[-\epsilon,\epsilon]\to\Omega$, $\gamma(0)=p$ 。 进一步假设 Jacobi 矩阵 J_f 沿着曲线 γ 非退化。像曲线记为 $\lambda(t)=f(\gamma(t)),t\in[-\epsilon,\epsilon]$ 。

下说明 λ 也是光滑曲线。为此, 注意到 λ 的实部与虚部都是可微的, 只需证明 $\lambda'(t)$ 不为零即可。利用求导的链式法则,

$$\lambda'(t) = f_z(\gamma(t))\gamma'(t) + f_{\overline{z}}(\gamma(t))\overline{\gamma'(t)}.$$

如果对某点 $t_0 \in (-\epsilon, \epsilon)$ 成立 $\lambda'(t_0) = 0$,由 γ 的光滑性可得 $\gamma'(t_0) \neq 0$ 。因此有 $|f_z(\gamma(t_0))| = |f_{\overline{z}}(\gamma(t_0))|$ 。这蕴含

$$\det(J_f(\gamma(t_0))) = |f_z(\gamma(t_0))|^2 - |f_{\overline{z}}(\gamma(t_0))|^2 = 0.$$

这矛盾于 f 的 Jacobi 矩阵 J_f 沿曲线 γ 非退化。

4.4 共形性质 37

假设 f 在 p 点复可微, 则 $f_{\overline{z}}(p) = 0$, $f_z(p) = f'(p)$ 。因此

$$\lambda'(0) = f_z(p)\gamma'(0) = f'(p)\gamma'(0) \Longleftrightarrow f'(p) = \frac{\lambda'(0)}{\gamma'(0)}.$$

由此见,像曲线 λ 在 f(p) 的切方向与原曲线 γ 在 p 的切方向的 角度差即 f'(p) 的辐角,长度比即为 |f'(p)|。这给出了导数的几何解释。

现考虑过 p 点的两条光滑曲线 γ_1, γ_2 , 记像曲线 $\lambda_k = f(\gamma_k)$ 。 类似可得 $\lambda_k'(0) = f'(p)\gamma_k'(0)$ 。因此

$$\frac{\lambda_2'(0)}{\lambda_1'(0)} = \frac{\gamma_2'(0)}{\gamma_1'(0)}.$$

此处 $\frac{\gamma_2'(0)}{\gamma_1'(0)}$ 的辐角表示两曲线 γ_1, γ_2 在 p 的夹角, $\frac{\lambda_2'(0)}{\lambda_1'(0)}$ 的辐角表示像曲线在 f(p) 的夹角。上式说明, f 保持任意两条曲线在 p 处夹角的大小与方向。此时, 称 f 在 p 点保角或者共形 (conformal)。

现考虑反问题。假设 $f:\Omega\to\mathbb{C}$ 实可微, $p\in\Omega$, 且 Jacobi 矩阵 J_f 非退化。如果 f 在 p 点保角, 能否推出 f 在 p 点复可微?

考虑经过 p 点的一族曲线 $\gamma_{\theta}(t) = p + te^{i\theta}, t \in [-\epsilon, \epsilon]$, 其中 $\theta \in [0, 2\pi)$ 是参数。像曲线记为 $\lambda_{\theta}(t) = f(\gamma_{\theta}(t))$,其切方向

$$\lambda_{\theta}'(t) = f_z(\gamma_{\theta}(t))e^{i\theta} + f_{\overline{z}}(\gamma_{\theta}(t))e^{-i\theta}.$$

考虑参数 $0, \theta$ 对应的曲线 λ_0 与 λ_θ 。 f 在 p 处的保角性蕴含

$$\frac{\lambda_{\theta}'(0)}{\lambda_{0}'(0)} = k_{\theta} \frac{\gamma_{\theta}'(0)}{\gamma_{0}'(0)} = k_{\theta} e^{i\theta}, \forall \ \theta \in [0, 2\pi),$$

其中 k_{θ} 是一个正数。上式等价于

$$f_z(p)e^{i\theta} + f_{\overline{z}}(p)e^{-i\theta} = k_\theta e^{i\theta}(f_z(p) + f_{\overline{z}}(p)),$$

$$\iff f_z(p) + f_{\overline{z}}(p)e^{-2i\theta} = k_{\theta}(f_z(p) + f_{\overline{z}}(p)).$$

显然上式右端非零且辐角恒定, 要使左端辐角与 $\theta \in [0, 2\pi)$ 无关, 必然有 $f_{\overline{z}}(p) = 0$ 。这说明 f 在 p 点复可微。

以上讨论, 可总结为

定理 4.5. 设 $f:\Omega\to\mathbb{C}$ 实可微, 其 Jacobi 矩阵 J_f 非退化。则

$$f$$
在 p 点共形 \iff f 在 p 点复可微;

$$f$$
在 $Ω$ 上共形 \Longleftrightarrow f 在 $Ω$ 上全纯.

4.5 习题

- 1. (复可微性) 定义函数 $f: \mathbb{C} \to \mathbb{C}$, $f(z) = x^3y^2 + ix^2y^3$ 。求使 f 复可微的所有点的集合。
- 2. (全纯性) 设 f 在平面区域 Ω 全纯,证明 $g(z)=\overline{f(\overline{z})}$ 在区域 $\Omega^*=\{\overline{z};z\in\Omega\}$ 上全纯。
 - 3. (复可微性) 研究如下函数的复可微性
 - (1). f(z) = Re(z);
 - (2). $f(z) = |z|^3$;
 - (3). f(z) = z(z-1)Re(z);

哪些点导数存在?哪些点导数不存在?证明你的结论。

- 4. (复可微性) 是否存在复平面上的实可微函数, 使其复可微 点的集合恰好是实轴?
 - 5. (偏导数的计算) 令 $f(z) = az^2 + |z|^2$, 求 $\frac{\partial f}{\partial z}$, $\frac{\partial f}{\partial \overline{z}}$, $\frac{\partial f}{\partial \overline{z}}$
 - 6. (微分算子的性质) 利用微分算子的定义证明

$$\frac{\partial z}{\partial z} = \frac{\partial \overline{z}}{\partial \overline{z}} = 1, \ \frac{\partial z}{\partial \overline{z}} = 0.$$

7. (微分算子的性质) 设 $f:\Omega\to\mathbb{C}$ 实可微,证明如下等式

$$\overline{\left(\frac{\partial f}{\partial z}\right)} = \frac{\partial \overline{f}}{\partial \overline{z}}, \ \overline{\left(\frac{\partial f}{\partial \overline{z}}\right)} = \frac{\partial \overline{f}}{\partial z}.$$

(利用微分算子的定义,证明实部虚部相等)

8. (复合函数偏导) 设 $f:D\to\Omega,\ g:\Omega\to\mathbb{C}$ 都是实可微函数,证明

$$\frac{\partial (g \circ f)}{\partial z} = \frac{\partial g}{\partial w} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \overline{w}} \frac{\partial \overline{f}}{\partial z}.$$

- 9. (全纯函数常值性的判别) 假设 $f=u+iv:\Omega\to\mathbb{C}$ 全纯, 满足以下条件之一:
 - (1). u 是常数;
 - (2). |f| 是常数;
 - (3). $u = v^2$;

证明 f 是常数。

4.5 习题 39

10. (Laplace 算子复形式) 证明 Laplace 算子

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}.$$

11. (求导法则) 假设 Ω 为平面区域, $\gamma:[a,b]\to\Omega$ 为光滑曲线, $f:\Omega\to\mathbb{C}$ 实可微。验证

$$(f \circ \gamma)'(t) = f_z(\gamma(t))\gamma'(t) + f_{\bar{z}}(\gamma(t))\overline{\gamma'(t)}.$$

- 13. (正交曲线) 假设 f 在区域 D 上全纯, f' 在 D 上不取零值, 证明
- (1). 对任意的 $u_0 + iv_0 \in f(D)$, 曲线 $Re(f(z)) = u_0$ 和曲线 $Im(f(z)) = v_0$ 正交;
- (2). 对每一个 $r_0e^{i\theta_0}\in f(D)\setminus\{0\}$, 曲线 $|f(z)|=r_0$ 与曲线 $\arg(f(z))=\theta_0$ 正交。
- 14. (极值点的性质) 假设 f 在单位圆盘 $\mathbb{D} = \{|z| < 1\}$ 上全纯, 如果存在 $z_0 \in \mathbb{D} \setminus \{0\}$, 使得 $f(z_0) \neq 0$, $f'(z_0) \neq 0$ 且 $|f(z_0)| = \max_{|z| \leq |z_0|} |f(z)|$, 证明

$$\frac{z_0 f'(z_0)}{f(z_0)} > 0.$$

第五章 分式线性变换

5.1 分式线性变换

本节的主要目的是介绍从复球面到自身的一类双全纯映射: 分式线性变换。

形如

$$f(z) = \frac{az+b}{cz+d}, \ a,b,c,d \in \mathbb{C}, ad-bc \neq 0$$

的函数称为分式线性变换, 或者 Möbius 变换。如果 ad - bc = 0, 容易验证, f 退化为常值映射。

易知: 如果 $c \neq 0$, 则 f 在 $\mathbb{C} \setminus \{-d/c\}$ 上全纯, 且满足

$$f'(z) = \frac{ad - bc}{(cz + d)^2} \neq 0.$$

因此, f 在 $\mathbb{C} \setminus \{-d/c\}$ 上处处共形。同时对任意 $w \in \mathbb{C} \setminus \{a/c\}$, f(z) = w 有唯一解

$$z = g(w) = \frac{b - dw}{cw - a}.$$

此处 g 可视为 f 的逆映射,它也是分式线性变换。这说明 f: $\mathbb{C}\setminus\{-d/c\}\to\mathbb{C}\setminus\{a/c\}$ 为双全纯映射。此时,利用球面拓扑以及连续性,可合理定义 $f(-d/c)=\infty,f(\infty)=a/c$,使得 $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ 为同胚。

如果 c = 0, f(z) = (az + b)/d 为整线性变换。此时, 可定义 $f(\infty) = \infty$ 使 $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ 为同胚。

假设 $\Omega \subset \widehat{\mathbb{C}}$ 为区域 (连通开集), 对于映射 $f: \Omega \to \widehat{\mathbb{C}}$, 我们给出 f 全纯的定义。分四种情况讨论:

• $\Omega \subset \mathbb{C}$, $f(\Omega) \subset \mathbb{C}$. 此时 f 全纯指通常意义的全纯;

- $\infty \in \Omega$, $f(\Omega) \subset \mathbb{C}$. 此时称 $f \in \infty$ 的邻域内全纯, 如果 $g(z) = f(1/z) \in 0$ 的邻域内全纯;
- $\Omega \subset \mathbb{C}$, $f(z_0) = \infty$. 此时称 f 在 z_0 的邻域内全纯, 如果 $g(z) = \frac{1}{f(z)}$ 在 z_0 的邻域内全纯;
- $\infty \in \Omega$, $f(\infty) = \infty$. 此时称 f 在 ∞ 的邻域内全纯, 如果 g(z) = 1/f(1/z) 在 0 的邻域内全纯。

此定义的本质在于: 利用坐标变换 $z\mapsto 1/z$,将定义域或值域的 ∞ 处的局部性质转化为 0 处的局部性质,从而可合理谈论定义于或取值于 ∞ 处的全纯性。

由此定义,可以验证:分式线性变换可以视为从复球面到自身的双全纯映射。

所有分式线性变换全体记为 Aut(Ĉ):

$$\operatorname{Aut}(\widehat{\mathbb{C}}) = \left\{ f(z) = \frac{az+b}{cz+d}, \ a,b,c,d \in \mathbb{C}, ad-bc \neq 0 \right\}$$

它在映射的复合运算下构成一个群, 称为分式线性变换群。单位元素为恒等映射, f 的逆元为其逆映射。

现在考虑矩阵集合

$$\mathrm{SL}(2,\mathbb{C}) = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]; ad-bc = 1, a, b, c, d \in \mathbb{C} \right\}$$

 $SL(2,\mathbb{C})$ 在矩阵的乘法下构成一个群, 称为特殊线性群 (special linear group)。 定义映射 $\Phi: SL(2,\mathbb{C}) \to Aut(\widehat{\mathbb{C}})$ 如下

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \mapsto f(z) = \frac{az+b}{cz+d}.$$

显然 ◆ 是满射。给定两个分式线性变换

$$f(z) = \frac{az+b}{cz+d}, \ g(z) = \frac{\alpha z+\beta}{\gamma z+\omega},$$

容易验证

$$f \circ g(z) = \frac{(a\alpha + b\gamma)z + (a\beta + b\omega)}{(c\alpha + b\gamma)z + (c\beta + b\omega)}.$$

这说明复合映射的系数矩阵对应于两个映射系数矩阵的乘积。即 Φ 是保运算的

$$\Phi(AB) = \Phi(A) \circ \Phi(B).$$

因此 Φ 是一个群同态. 容易验证 $\Phi^{-1}(\Phi(A))=\pm A, \ \mathrm{Ker}(\Phi)=\{\pm I\}.$ 由群同构定理知

$$\mathrm{SL}(2,\mathbb{C})/\{\pm I\}\cong\mathrm{Aut}(\widehat{\mathbb{C}}).$$

我们称 $SL(2,\mathbb{C})/\{\pm I\}$ 为射影特殊线性群 (projective special linear group), 记为 $PSL(2,\mathbb{C})$ 。