Problem 1

Problem Description

In this problem you will create your own neural network to fit a function with two input features \$x_0\$ and \$x_1\$, and predict the output, \$y\$. The structure of your neural network is up to you, but you must describe the structure of your network, training parameters, and report an MSE for your fitted model on the provided data.

Fill out the notebook as instructed, making the requested plots and printing necessary values.

You are welcome to use any of the code provided in the lecture activities.

Summary of deliverables:

- Visualization of provided data
- Visualization of trained model with provided data
- Trained model MSE
- Discussion of model structure and training parameters

Imports and Utility Functions:

```
In [10]: import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch import optim

def dataGen():
    # Set random seed so generated random numbers are always the same
    gen = np.random.RandomState(0)
    # Generate x0 and x1
    x = 2*(gen.rand(200,2)-0.5)
    # Generate y with x0^2 - 0.2*x1^4 + x0*x1 + noise
    y = x[:,0]**2 - 0.2*x[:,1]**4 + x[:,0]*x[:,1] + 0.4*(gen.rand(len(x))-0.5)
```

```
return x, y
def visualizeModel(model):
    # Get data
    x, y = dataGen()
    # Number of data points in mesharid
    n = 25
    # Set up evaluation grid
    x0 = torch.linspace(min(x[:,0]), max(x[:,0]), n)
    x1 = torch.linspace(min(x[:,1]), max(x[:,1]), n)
    X0, X1 = torch.meshgrid(x0, x1, indexing = 'ij')
    Xgrid = torch.vstack((X0.flatten(),X1.flatten())).T
    Ypred = model(Xgrid).reshape(n,n)
    # 3D plot
   fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
    # Plot data
    ax.scatter(x[:,0],x[:,1],y, c = y, cmap = 'viridis')
    # Plot model
    ax.plot_surface(X0.detach().numpy(),X1.detach().numpy(),Ypred.detach().numpy(), color = 'gray', alpha = 0.25)
   ax.plot_wireframe(X0.detach().numpy(),X1.detach().numpy(),Ypred.detach().numpy(),color = 'black', alpha = 0.25)
    ax.set_xlabel('$x_0$')
    ax.set_ylabel('$x_1$')
    ax.set_zlabel('$y$')
    plt.show()
```

Generate and visualize the data

Use the dataGen() function to generate the x and y data, then visualize with a 3D scatter plot.

```
In [11]: # YOUR CODE GOES HERE
    x, y = dataGen()
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(x[:,0], x[:,1], y)
    plt.show()
```


Create and train a neural network using PyTorch

Choice of structure and training parameters are entirely up to you, however you will need to provide reasoning for your choices. An MSE smaller than 0.02 is reasonable.

```
In [25]: # YOUR CODE GOES HERE

x = torch.Tensor(x)
y = torch.Tensor(y)
y = y.reshape(-1,1)
loss_curve =[]

class Net_2_layer(nn.Module):
    def __init__(self, N_hidden= 4, N_in=2, N_out=1, activation = F.relu):
        super().__init__()
```

```
self.lin1 = nn.Linear(N_in, N_hidden)
        self.lin2 = nn.Linear(N_hidden, N_out)
        self.act = activation
    def forward(self,x):
       x = self.lin1(x)
       x = self.act(x)
       x = self.lin2(x)
        return x
model = Net_2_layer(N_hidden = 8, N_in = 2, N_out = 1, activation = F.relu)
1r = 0.005
epochs = 1000
loss_fcn = F.mse_loss
opt = optim.Adam(params = model.parameters(), lr=lr)
for epoch in range(epochs):
   out = model(x)
   loss = loss_fcn(out,y)
   loss_curve.append(loss.item())
   if epoch % int(epochs / 25) == 0:
        print(f"Epoch {epoch} of {epochs}... \tAverage loss: {loss.item()}")
    opt.zero_grad()
   loss.backward()
   opt.step()
plt.figure(dpi=250)
plt.plot(loss_curve)
plt.xlabel('Epoch')
plt.ylabel('Loss (MSE)')
plt.title('Loss Curve')
plt.show()
```

Epoch	0 of	16	900	Average	loss:	0.3554549515247345
Epoch	40 o	f 1	L000	Average	loss:	0.19141222536563873
Epoch	80 o	f 1	L000	Average	loss:	0.12670733034610748
Epoch	120	of	1000	Average	loss:	0.057165950536727905
Epoch	160	of	1000	Average	loss:	0.028676504269242287
Epoch	200	of	1000	Average	loss:	0.02264014631509781
Epoch	240	of	1000	Average	loss:	0.020118260756134987
Epoch	280	of	1000	Average	loss:	0.017450470477342606
Epoch	320	of	1000	Average	loss:	0.016507450491189957
Epoch	360	of	1000	Average	loss:	0.015976298600435257
Epoch	400	of	1000	Average	loss:	0.015547108836472034
Epoch	440	of	1000	Average	loss:	0.015252158977091312
Epoch	480	of	1000	Average	loss:	0.015041529200971127
Epoch	520	of	1000	Average	loss:	0.014879926107823849
Epoch	560	of	1000	Average	loss:	0.014711434952914715
Epoch	600	of	1000	Average	loss:	0.014565806835889816
Epoch	640	of	1000	Average	loss:	0.014451917260885239
Epoch	680	of	1000	Average	loss:	0.01435183547437191
Epoch	720	of	1000	Average	loss:	0.014256665483117104
Epoch	760	of	1000	Average	loss:	0.01417855266481638
Epoch	800	of	1000	Average	loss:	0.01409836020320654
Epoch	840	of	1000	Average	loss:	0.013957083225250244
Epoch	880	of	1000	Average	loss:	0.0137586435303092
Epoch	920	of	1000			0.013619357720017433
Epoch	960	of	1000	Average	loss:	0.013349588960409164

Visualize your trained model

> Use the provided visualizeModel() function by passing in your trained model to see your models predicted function compared to the provided data

In [26]:

YOUR CODE GOES HERE visualizeModel(model)

Discussion

Report the MSE of your trained model on the generated data. Discuss the structure of your network, including the number and size of hidden layers, choice of activation function, loss function, optimizer, learning rate, number of training epochs.

YOUR ANSWER GOES HERE

The MSE is found to be 0.013.

There was two input layer(N_in) and one output layer(N_out) and only one hidden layer was used with 8 layers of preceptron. Smaller preceptron layers were tried i.e., 2,4 before using 8 but 8 gave us the MSE less tahn 0.02.

Along with that the activation function used was Relu. Because it leads to a fast convergence i.e., it is faster to compute and it also helps in overcoming vanishing gradients.

The loss function used was MSE.loss because it is not a classification problem and for regression problems MSE.loss is used. As it is a regression function there was no activation used in the final layer in the forward function.

The optimizer used was Adam as it converges faster than ay other optimizer.

As a smaller learning rate leads to a better fit of the curve. So, the learning rate used was 0.005. A lower and higher learning rates were used too but this provided teh results needed for the problem.

The number of iterations or number of training epochs was kept at 1000. This was the best to use as smaller number of training epoch provided a higher MSE and a larger number of training epochs provided an overfitting curve.