Travail 7 Circuit

Thibault fievez

December 2017

1 Partie LtSpice

1.1 Equations Logique du compteur

Le compteur que j'ai réalisé est un compteur synchrone (pas de propagation du délai, tous les bits sont évalué en même temps) basé sur l'utilisation de T Flip Flop. Le principe du T Flip Flop est qu'il, si T=VDD change la valeur en mémoire par son opposé à chaque Clock montante, si T=0 , est en mode mémoire. Ici on peut donc voir sur la figure 1 la talbe de vérité du compteur complet lorsque le signal Reset vaut 0. L'état où T1=0 est un état qui n'est normalement jamais considéré,il est donné à titre illustratif. De manière générale , T1 vaut toujours VDD.

Figure 1: Table de vérité du compteur

Lorsque Reset vaut VDD , Q1, Q2, et Q3 valent tous 0 , le compteur est donc remis à 0. Lorsque le signal de Reset redevient 0 , le compteur recomence ra à compter à partir de 0 au prochain flanc montant de Clock.

1.2 Schématique LtSpice

Voir figure 2.

Figure 2: Photos du Circuit, Des photos plus grandes sont disponibles à la fin du rapport en Annexe.

Figure 3: Photos des mesures , V(t2) est équivalent à V(Q1). Des photos plus grandes sont disponibles à la fin du rapport en Annexe.

1.3 Résultat de la simulation

Voir figure 3. On remarque l'apparition de glitchs à chaque montée de Clock (évaluation). Cependant j'ignore toujours leur origine.

1.4 Fréquence maximale de fonctionement

La fréquence maximale de fonctionement se trouve au alentour de 1 GHz , sans la fonctionalité de Reset ,il est possible d'augmenter cette fréquence. En effet le Reset impose le passage par une porte logique And ce qui a pour effet de délayer l'information à la sortie du D Flip Flop

2 Partie Mydaq

3 Annexe

