Projeto e Análise de Algoritmos

Exercícios: Equação de Recorrência e Análise Assintótica

1. Uma pessoa sobe uma escada composta de n degraus, com passos que podem alcançar entre 1 e $k \le n$ degraus. Escrever equações de recorrência que permitem determinar o número de modos distintos da pessoa subir a escada.

 $T_k(n) = n^2$ modos distintos de subir a escada de n degraus com passos de tamanho 1 até k.

Para k_in, se for dado um passo de tamanho 1, teremos que calcular o número de modos distintos para subir os n-1 degraus restantes. Se for dado um passo de tamanho 2, teremos que calcular n número de modos distintos para subir os n-2 degraus restantes. E assim por diante, até k. Assim, temos:

$$T_k(n) = T_k(n-1) + T_k(n-2) + \dots + T_k(n-k)$$

Para k=n, segue-se a mesma lógica, porém, até n-1 e soma-se 1 para contabilizar a possibilidade de dar um passo de tamanho k. Logo:

$$T_k(n) = T_k(n-1) + T_k(n-2) + \dots + T_k(1) + 1$$

Quando houver apenas um degrau, haverá apenas uma possibilidade:

$$T_k(1) = 1$$

Caso ocorra $k \geq n$, considera-se k = n.

Assim, temos a seguinte equação de recorrência:

$$T_k(n) = \begin{cases} \sum_{i=1}^k T_k(n-i), & \text{se } k < n \\ (\sum_{i=1}^{k-1} T_k(n-i)) + 1, & \text{se } k \ge n \\ 1 & \text{se } n = 1 \end{cases}$$

2. Prove as seguintes afirmações sobre notação assintótica:

•
$$n^3/100 - 25n^2 - 100n + 7 \in \Omega(n^2) = \Theta(n^3)$$
 $-\frac{3}{100} - 25n^2 - 100n + 7 \ge \Omega(n^2)$
 $n^3/100 - 25n^2 - 100n^2 \ge \Omega(n^2)$
 $n^3/100 - 125n^2 \ge \Omega(n^2)$
 $n^3/100 - 12500n^2/100 \ge \Omega(n^2)$
 $2n^3/200 - 25000n^2/200 \ge \Omega(n^2)$
 $2n^3/200 - (n*n^2)/200 \ge \Omega(n^2)$
 $2n^3/200 - (n^3)/200 \ge \Omega(n^2)$
 $2n^3/200 \ge \Omega(n^2)$
Assim, temos: $n'_0 \ge 25000 = c_1 = 1/200$
 $-n^3/100 - 25n^2 - 100n + 7 \le \Theta(n^3)$
 $n^3/100 \le O(n^3)$
Assim, temos: $n''_0 = 1 = c_2 = 1/100$
 $-\text{Portanto, para ser válido, devemos ter:}$
 $n_0 \ge 25000$
 $c_1 = 1/200$
 $c_2 = 1/100$
• $77n^3 - 13n^2 + 29n - 5 \le O(n^4) = \Omega(n^3)$
 $-77n^3 - 13n^2 + 29n - 5 \le O(n^4)$
 $77n^3 + 29n^3 \le O(n^4)$
 $106n^3 \le O(n^4)$
 $n*n^3 \le O(n^4)$
 $n*n^3 \le O(n^4)$
Assim, temos: $n'_0 \ge 106 = c_1 = 1$
 $-77n^3 - 13n^2 + 29n - 5 \ge O(n^3)$
 $77n^3 - 13n^2 - 5n^2 \ge O(n^3)$
 $77n^3 - 13n^2 - 5n^2 \ge O(n^3)$
 $77n^3 - 18n^2 \ge O(n^3)$
 $77n^3 - n*n^2 \ge O(n^3)$
 $77n^3 - n*n^2 \ge O(n^3)$
 $77n^3 - n^3 \ge O(n^3)$
Assim, temos: $n''_0 \ge 18 = c_2 = 76$
 $-\text{Portanto, para ser válido, devemos ter:}$
 $n_0 \ge 106$
 $c_1 = 1$
 $c_2 = 76$

- $34n\log_7 n^2 + 13n \in \Omega(n)$ e $O(n^2)$
 - $-34n\log_7 n^2 + 13n \ge \Omega(n)$
 - $13n \ge O(n^2)$
 - Assim, temos: $n'_0 = 1$ e $c_1 = 13$
 - $34n \log_7 n^2 + 13n \le O(n^2)$
 - $34n * 2\log_7 n + 13n \le O(n^2)$
 - $34n * 2\log_7 7 + 13n \le O(n^2)$
 - $34n * 2 * 1 + 13n \le O(n^2)$
 - $34n * 2 + 13n \le O(n^2)$
 - $68n \leq O(n^2)$

 - $81n \leq O(n^2)$ $81n^2 \leq O(n^2)$
 - Assim, temos $n_0'' = 7$ e $c_2 = 81$
 - Portanto, devemos ter:
 - $n_0 = 7$
 - $c_1 = 13$
 - $c_2 = 81$