Vizsgakérdések Analízis 2. (BSc)

Programtervező informatikus szak

A, B és C szakirány

2016-2017. tanév 1. félév

• Folytonosság

1. Definiálja egy $f \in \mathbb{R} \to \mathbb{R}$ függvény pontbeli folytonosságát.

Válasz. Egy $f \in \mathbb{R} \to \mathbb{R}$ függvény az $a \in \mathcal{D}_f$ pontban folytonos, ha

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f, |x - a| < \delta: |f(x) - f(a)| < \epsilon.$$

2. Mi a kapcsolat a pontbeli folytonosság és a határérték között?

Válasz. Ha $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, akkor $f \in C\{a\} \iff \exists \lim_a f \text{ és } \lim_a f = f(a).$

3. Milyen tételt ismer hatványsor összegfüggvényének a folytonosságáról?

 ${f V\'alasz}$. Hatványsor összegfüggvénye a konvergenciahalmaz minden belső pontjában folytonos.

4. Hogyan szól a folytonosságra vonatkozó átviteli elv?

Válasz. $f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \lim_{n \to +\infty} x_n = a \text{ eset\'en } \lim_{n \to +\infty} f(x_n) = f(a).$

5. Fogalmazza meg a hányadosfüggvény folytonosságára vonatkozó tételt.

Válasz. Ha $f, g \in C\{a\}$ és $g(a) \neq 0$, akkor $\frac{f}{g} \in C\{a\}$.

6. Milyen tételt ismer az összetett függvény pontbeli folytonosságáról?

Válasz. $g \in C\{a\}, f \in C\{g(a)\} \Longrightarrow f \circ g \in C\{a\}.$

7. Mit tud mondani a korlátos és zárt $[a, b] \subset \mathbb{R}$ intervallumon folytonos függvény értékkészletéről?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b$. Ha az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n, akkor f korlátos [a,b]-n.

8. Hogyan szól a Weierstrass-tétel?

Válasz. Tegyük fel, hogy $[a,b] \subset \mathbb{R}$ korlátos és zárt intervallum és $f:[a,b] \to \mathbb{R}$ folytonos. Ekkor f-nek létezik abszolút maximuma és abszolút minimuma.

9. Mit mond ki a Bolzano-tétel?

Válasz. Tegyük fel, hogy $f:[a,b]\to\mathbb{R}$ folytonos függvény $(a< b,a,b\in\mathbb{R})$. Ha f a két végpontban különböző előjelű értéket vesz fel, vagyis $f(a)\cdot f(b)<0$, akkor van olyan $\xi\in(a,b)$, hogy $f(\xi)=0$.

10. Mit jelent az, hogy egy f függvény Darboux-tulajdonságú?

Válasz. Legyen $I \subset \mathbb{R}$ tetszőleges intervallum. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény Darbouxtulajdonságú I-n, ha minden $a,b \in I$, a < b esetén az f függvény minden f(a) és f(b) közötti értéket felvesz [a,b]-ben.

11. Mit mond ki a Bolzano-Darboux-tétel?

Válasz. Ha az $f:[a,b] \to \mathbb{R}$ függvény folytonos az [a,b] intervallumon, akkor f minden f(a) és f(b) közötti értéket felvesz [a,b]-n, azaz ha f(a) < f(b), akkor $\forall c \in (f(a),f(b))$ -hez $\exists \xi \in (a,b): f(\xi) = c$.

12. Milyen állításokat ismer az inverz függvény folytonosságáról?

Válasz. Legyen az $f : [a, b] \to \mathbb{R}$ $(a < b, a, b \in \mathbb{R})$ függvény folytonos és invertálható. Ekkor f inverze folytonos.

Legyen $I \subset \mathbb{R}$ tetszőleges intervallum. Tegyük fel, hogy az $f: I \to \mathbb{R}$ függvény folytonos és invertálható I-n. Ekkor \mathcal{R}_f intervallum és az f függvény inverze folytonos a $\mathcal{D}_{f^{-1}}$ intervallumon.

13. Legyen az $f:[a,b] \to \mathbb{R}$ $(a < b, a, b \in \mathbb{R})$ függvény folytonos és invertálható. Mit mondhatunk ekkor az f függvényről?

Válasz. Ekkor f szigorúan monoton függvény.

14. Definiálja a megszüntethető szakadási hely fogalmát.

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f$ pontban megszüntethető szakadási helye van, ha

$$\exists \lim_{a} f \text{ \'es ez v\'eges, de } \lim_{a} f \neq f(a).$$

15. Definiálja az elsőfajú szakadási hely fogalmát.

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f$ pontban elsőfajú szakadási helye (vagy ugráshelye) van, ha

$$\exists \, \lim_{a \to 0} f \text{ \'es } \exists \, \lim_{a \to 0} f, \ \, \text{mindkett\'o v\'eges, de} \ \, \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

16. Mit tud mondani *monoton* függvény szakadási helyeiről?

Válasz. Tetszőleges $f:(\alpha,\beta)\to\mathbb{R}$ monoton függvénynek legfeljebb elsőfajú szakadási helyei lehetnek; azaz tetszőleges $a\in(\alpha,\beta)$ pontban az f függvény vagy folytonos vagy pedig elsőfajú szakadási helye (vagy ugráshelye) van.

• Differenciálszámítás

17. Mikor mondja, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvény differenciálható valamely pontban?

Válasz. Ha $a \in \operatorname{int} \mathcal{D}_f$, akkor:

$$f \in D\{a\} \iff \exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \qquad \text{és ez a határérték véges}.$$

18. Milyen ekvivalens átfogalmazást ismer a pontbeli deriválhatóságra a lineáris közelítéssel?

Válasz.
$$f \in D\{a\} \iff \exists A \in \mathbb{R} \text{ és } \exists \varepsilon : \mathcal{D}_f \to \mathbb{R}, \lim_{\varepsilon \to 0} \varepsilon = 0, \text{ hogy}$$

$$f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \qquad (\forall x \in \mathcal{D}_f).$$

19. Mi a kapcsolat a pontbeli differenciálhatóság és a folytonosság között?

Válasz. $f \in D\{a\} \Longrightarrow f \in C\{a\}$, de fordítva nem igaz, pl. $f(x) = |x| \ (x \in \mathbb{R})$ függvényre $f \in C\{0\}$, de $f \notin D\{0\}$.

20. Milyen tételt ismer két függvény szorzatának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz.
$$f, g \in D\{a\} \implies fg \in D\{a\} \text{ és } (fg)'(a) = f'(a)g(a) + f(a)g'(a).$$

21. Milyen tételt ismer két függvény hányadosának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz.
$$f,g\in D\{a\},g(a)\neq 0\implies \frac{f}{g}\in D\{a\}$$
 és $\left(\frac{f}{g}\right)'(a)=\frac{f'(a)g(a)-f(a)g'(a)}{g^2(a)}$.

22. Milyen tételt ismer két függvény kompozíciójának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz. Ha
$$\mathcal{R}_g \subset \mathcal{D}_f$$
, $g \in D\{a\}$ és $f \in D\{g(a)\}$, akkor $f \circ g \in D\{a\}$ és

$$(f \circ q)'(a) = f'(q(a)) \cdot q'(a).$$

23. Milyen tételt tanult az inverz függvény differenciálhatóságáról és a deriváltjáról?

Válasz. Tegyük fel, hogy $f:(\alpha,\beta)\to\mathbb{R}$ szigorúan monoton növő, folytonos függvény (α,β) -n, és egy $a\in(\alpha,\beta)$ pontban $f\in D\{a\}$, továbbá $f'(a)\neq 0$. Ekkor $f^{-1}\in D\{b\}$, ahol b:=f(a) és

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$$

24. Milyen állítást tud mondani hatványsor összegfüggvényének a deriválhatóságáról és a deriváltjáról?

Válasz. Legyen $a \in \mathbb{R}$ és $\alpha_n \in \mathbb{R}$ (n = 0, 1, 2...). Tegyük fel, hogy a $\sum \alpha_n (x - a)^n$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és jelölje f az összegfüggvényét:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in K_R(a)).$$

Ekkor minden $x \in K_R(a)$ pontban az f függvény differenciálható és a deriváltja az eredeti sor tagonkénti deriválásával kapott sor összege:

$$f'(x) = \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1}.$$

Röviden fogalmazva: Hatványsor összegfüggvénye a konvergenciaintervallum belsejében differenciálható és a hatványsor deriválását szabad tagonként végezni.

25. Mi a kétszer deriválható függvény fogalma?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény kétszer deriválható az $a \in \operatorname{int} \mathcal{D}_f$ pontban, ha van olyan $\delta > 0$ szám, hogy $f \in D(K_\delta(a))$ és $f' \in D\{a\}$.

26. Fogalmazza meg a szorzatfüggvény deriváltjaira vonatkozó *Leibniz-tételt*.

Válasz. Legyen $n \in \mathbb{N}$. Ha $f, g \in D^n\{a\}$, akkor $fg \in D^n\{a\}$ és

$$(fg)^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a)g^{(n-k)}(a).$$

27. Mondja ki a Rolle-tételt.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Ha $f \in C[a, b], f \in D(a, b), f(a) = f(b)$, akkor $\exists \xi \in (a, b) : f'(\xi) = 0$.

28. Mondja ki a Cauchy-féle középértéktételt.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Tegyük fel, hogy $f, g \in C[a, b], f, g \in D(a, b)$ és $g'(x) \neq 0$, $(x \in (a, b))$. Ekkor $\exists \xi \in (a, b)$: $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

29. Mondja ki a *Lagrange-féle középértéktételt*.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Ha $f \in C[a, b], f \in D(a, b)$, akkor $\exists \xi \in (a, b) : \frac{f(b) - f(a)}{b - a} = f'(\xi)$.

30. Mit ért azon, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely helyen lokális minimuma van?

Válasz. Az f függvénynek a $c \in \mathcal{D}_f$ pontban lokális minimuma van, ha

$$\exists K(c): f(c) \leq f(x) \qquad (x \in K(c) \cap \mathcal{D}_f).$$

31. Mit ért azon, hogy egy függvény valamely helyen jelet vált?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény a $c \in \mathcal{D}_f$ pontban előjelet vált, ha f(c) = 0 és $\exists \delta > 0$, hogy $K_{\delta}(c) \subset \mathcal{D}_f$, $f(x) < 0 \ \forall x \in (c - \delta, c)$ és $f(x) > 0 \ \forall x \in (c, c + \delta)$ vagy fordítva.

32. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel?

Válasz. Ha $f \in \mathbb{R} \to \mathbb{R}$, $c \in \text{int } \mathcal{D}_f$, $f \in D\{c\}$ és az f függvénynek c-ben lokális szélsőértéke van, akkor f'(c) = 0.

33. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel?

Válasz. Ha $f:(a,b)\to\mathbb{R},\ f\in D(a,b)$ és f' a $c\in(a,b)$ pontban előjelet vált, akkor az f függvénynek c-ben lokális szélsőértéke van.

34. Irja le a lokális minimumra vonatkozó másodrendű elégséges feltételt.

Válasz. Ha $f:(a,b)\to\mathbb{R},\,f\in D^2\{c\},\,(c\in(a,b)),\,f'(c)=0$ és f''(c)>0, akkor az f függvénynek c-ben lokális minimuma van.

35. Milyen *elégséges* feltételt ismer differenciálható függvény *szigorú monoton növekedésével* kapcsolatban?

Válasz. Ha $f \in C[a,b]$, $f \in D(a,b)$ $(a,b \in \mathbb{R}, a < b)$ és f' > 0 az (a,b) intervallumon, akkor f szigorúan monoton növekedő [a,b]-n.

36. Milyen *szükséges és elégséges* feltételt ismer differenciálható függvény *monoton növekedésével* kapcsolatban?

Válasz. Ha $f \in C[a,b]$ és $f \in D(a,b)$ $(a,b \in \mathbb{R}, a < b)$, akkor

f monoton növekedő [a, b]-n $\iff f' \ge 0$ [a, b]-n.

37. Mi a konvex függvény definíciója?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény konvex az $I \subset \mathbb{R}$ intervallumon, ha

$$\forall a, b \in I, \ a < b \ \text{eset\'en}$$

$$f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \quad (\forall x \in (a, b)).$$

38. Jellemezze egy függvény konvexitását egyenlőtlenséggel.

Válasz. Az $I \subset \mathbb{R}$ intervallumon értelmezett $f: I \to \mathbb{R}$ függvény akkor és csak akkor konvex I-n, ha

$$\forall a, b \in I, \ a < b \ \text{ és } \ \forall \lambda \in (0, 1) \ \text{ esetén}$$

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b).$$

39. Jellemezze egy függvény konvexitását a differenciahányados segítségével.

Válasz. Legyen $I \subset \mathbb{R}$ tetszőleges nyílt intervallum, és $f: I \to \mathbb{R}$. Ekkor f konvex I-n $\iff \forall c \in I$ esetén a $\triangle_c f(x) = \frac{f(x) - f(c)}{x - c}$ $(x \in I \setminus \{c\})$ függvény monoton növekedő.

40. Jellemezze egy függvény konvexitását az első derivált segítségével.

Válasz. Legyen $f:(a,b)\to\mathbb{R}$ és $f\in D$. Ekkor

f konvex [a, b]-n \iff f' monoton növekedő [a, b]-n.

41. Jellemezze egy függvény konkávitását a második derivált segítségével.

Válasz. Legyen $f:(a,b)\to\mathbb{R}$ és $f\in D^2$. Ekkor

$$f \operatorname{konk\acute{a}v} [a, b]$$
-n $\iff f'' < 0 [a, b]$ -n.

42. Mi az inflexiós pont definíciója?

Válasz. Legyen $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$, és tegyük fel, hogy $f \in D(\alpha, \beta)$. Azt mondjuk, hogy a $c \in (\alpha, \beta)$ pont az f függvénynek inflexiós pontja, ha

 $\exists \, \delta > 0 : f \text{ konvex } (c - \delta, c]$ -n és konkáv $[c, c + \delta)$ -n vagy fordítva.

43. Írja le a $\frac{0}{0}$ esetre vonatkozó *L'Hospital-szabályt*.

Válasz. Legyen $-\infty \le a < b < +\infty, f, g: (a,b) \to \mathbb{R}, f, g \in D(a,b), g'(x) \ne 0 \quad (x \in (a,b)),$ $\lim_{a \to 0} f = \lim_{a \to 0} g = 0$ és tegyük fel, hogy létezik a $\lim_{a \to 0} \frac{f'}{g'} = A \in \overline{\mathbb{R}}$ határérték. Ekkor $\exists \lim_{a \to 0} \frac{f}{g}$ és $\lim_{a \to 0} \frac{f}{g} = A$.

44. Mi a kapcsolat a hatványsor összegfüggvénye és a hatványsor együtthatói között?

Válasz. Legyen $a \in \mathbb{R}$ és $\alpha_n \in \mathbb{R}$ (n = 0, 1, 2...). Tegyük fel, hogy a $\sum \alpha_n (x - a)^n$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és jelölje f az összegfüggvényét:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in k_R(a)).$$

Ekkor $f \in D^{\infty}(k_R(a))$ és

$$\alpha_n = \frac{f^{(n)}(a)}{n!}$$
 $(n = 0, 1, 2, ...).$

45. Hogyan definiálja egy függvény Taylor-sorát?

Válasz. Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$ és $f \in D^{\infty}\{a\}$. Ekkor a

$$\sum_{n=0} \frac{f^{(n)}(a)}{n!} (x-a)^n \qquad (x \in \mathbb{R})$$

hatványsort az f függvény a-hoz tartozó Taylor-sorának nevezzük.

46. Fogalmazza meg a Taylor-formula Lagrange maradéktaggal néven tanult tételt.

Válasz. Legyen $n \in \mathbb{N}$, $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$ és $f \in D^{n+1}(K(a))$. Ekkor $\forall x \in K(a)$ ponthoz $\exists \xi \in (a, x)$ (ha a < x) vagy $\exists \xi \in (x, a)$ (ha x < a), hogy

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

- Elemi függvények
- 47. Értelmezze az ln függvényt.

Válasz. Az $\mathbb{R} \ni x \mapsto e^x \in (0, +\infty)$ leképezés bijekció. Ennek az inverze az $\ln : (0, +\infty) \to \mathbb{R}$ logaritmus függvény.

48. Mi a definíciója az a^x $(a, x \in \mathbb{R}, a > 0)$ hatványnak?

Válasz. $a^x := \exp(x \ln a)$.

- **49.** Szemléltesse az exp_a függvények grafikonjait.
- **50.** Definiálja az $\alpha \in \mathbb{R}$ kitevőjű hatványfüggvényeket.
- **51.** Szemléltesse az $\alpha \in \mathbb{R}$ kitevőjű hatványfüggvények grafikonjait.

52. Definiálja a π számot.

Válasz. A cos függvénynek a [0,2] intervallumban pontosan egy zérushelye van, azaz [0,2]nek pontosan egy ξ pontjában áll fenn a cos $\xi=0$ egyenlőség. Ennek a ξ számnak a kétszereseként értelmezzük a π számot: $\pi:=2\xi$.

53. Mit tud mondani a sin és a cos függvények periodicitásáról?

Válasz. A sin és a cos függvények 2π -szerint periodikusak függvények, és 2π a legkisebb periódusuk.

- 54. Értelmezze az arc sin függvényt, és vázolja a grafikonját.
- 55. Értelmezze az arc cos függvényt, és vázolja a grafikonját.
- **56.** Értelmezze az arc tg függvényt, és vázolja a grafikonját.
- 57. Értelmezze az arc ctg függvényt, és vázolja a grafikonját.

• A határozatlan integrál (primitív függvények)

58. Definiálja a primitív függvényt.

Válasz. Legyen $I \subset \mathbb{R}$ egy nyílt intervallum. A $F: I \to \mathbb{R}$ függvény a $f: I \to \mathbb{R}$ egy primitív függvénye, ha $F \in D(I)$ és F'(x) = f(x) $(x \in I)$.

59. Milyen *elégséges* feltételt ismer primitív függvény létezésére?

Válasz. Ha $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$ folytonos függvény, akkor f-nek létezik primitív függvénye.

60. Milyen *szükséges* feltételt ismer primitív függvény létezésére?

Válasz. Ha $I \subset \mathbb{R}$ nyílt intervallum és az $f: I \to \mathbb{R}$ függvénynek van primitív függvénye, akkor f Darboux-tulajdonságú az I intervallumon.

61. Adjon meg olyan függvényt, amelyiknek *nincs* primitív függvénye.

Válasz. $f(x) := sign(x) (x \in (-1,1)).$

62. Mit jelent egy függvény határozatlan integrálja?

Válasz. Legyen $I \subset \mathbb{R}$ egy nyílt intervallum és $F: I \to \mathbb{R}$ a $f: I \to \mathbb{R}$ függvény egy primitív függvénye. A f függvény határozatlan integrálja a következő függvényhalmaz:

$$\int f := \{ F + c \mid c \in \mathbb{R} \}.$$

63. Mit ért a határozatlan integrál linearitásán?

Válasz. Legyen $I \subset \mathbb{R}$ nyílt intervallum. Ha az $f, g: I \to \mathbb{R}$ függvényeknek létezik primitív függvénye, akkor tetszőleges $\alpha, \beta \in \mathbb{R}$ mellett $(\alpha f + \beta g)$ -nek is létezik primitív függvénye és

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g.$$

64. Milyen állítást ismer hatványsor összegfüggvényének a primitív függvényéről?

Válasz. Legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in K_R(a), \ R > 0).$$

Ekkor f-nek van primitív függvénye és

$$F(x) := \sum_{n=0}^{+\infty} \frac{\alpha_n}{n+1} (x-a)^{n+1} \qquad (x \in K_R(a))$$

a f függvény egy primitív függvénye.

65. Mit mond ki a primitív függvényekkel kapcsolatos parciális integrálás tétele?

Válasz. Legyen $I \subset \mathbb{R}$ nyílt intervallum. Tegyük fel hogy, $f, g \in D(I)$ és f'g-nek létezik primitív függvénye. Ekkor fg'-nek is van primitív függvénye és

$$\int fg' = fg - \int f'g.$$

66. Hogyan szól a primitív függvényekkel kapcsolatos *első helyettesítési szabály*?

Válasz. Legyenek $I, J \subset \mathbb{R}$ nyílt intervallumok, $g: I \to \mathbb{R}$, $g \in D(I)$, $\mathcal{R}_g \subset J$ és $f: J \to \mathbb{R}$. Ha az f függvénynek van primitív függvénye, akkor $(f \circ g) \cdot g'$ -nek is van primitív függvénye és

$$\int (f \circ g) \cdot g' = \left(\int f \right) \circ g.$$

67. Fogalmazza meg a primitív függvényekkel kapcsolatos *második helyettesítési* szabályt.

Válasz. Legyenek $I,J\subset\mathbb{R}$ nyílt intervallumok. Tegyük fel, hogy $f:I\to\mathbb{R},\ g:J\to I$ bijekció, $g\in D(J)$ és az $f\circ g\cdot g':J\to\mathbb{R}$ függvénynek van primitív függvénye. Ekkor f-nek is van primitív függvénye és

$$\int f(x) dx = \int f(g(t)) \cdot g'(t) dt_{|t=g^{-1}(x)} \qquad (x \in I).$$

• A határozott integrál

68. Definiálja intervallum egy felosztását.

Válasz. Legyen $a, b \in \mathbf{R}$, a < b. Ekkor az [a, b] intervallum felosztásán olyan véges $\tau = \{x_0, \dots, x_n\} \subset [a, b]$ halmazt értünk, amelyre $a = x_0 < x_1 < \dots < x_n = b$.

69. Mit jelent egy felosztás finomítása?

Válasz. Legyen $a,b\in\mathbb{R},\ a< b$ és $\tau_1,\tau_2\subset[a,b]$ egy-egy felosztása [a,b]-nek. Ekkor τ_2 finomítása τ_1 -nek, ha $\tau_1\subset\tau_2$.

70. Mi az alsó közelítő összeg definíciója?

Válasz. Legyen $a, b \in \mathbf{R}$, $a < b, f : [a, b] \to \mathbb{R}$ egy korlátos függvény, $\tau = \{x_0, ..., x_n\} \subset [a, b]$ egy felosztása [a, b]-nek, $m_i := \inf\{f(x) \mid x_i \le x \le x_{i+1}\}$ (i = 0, ..., n-1). Ekkor

$$s(f,\tau) := \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

az f függvény τ -hoz tartozó alsó közelítő összege.

71. Mi a felső közelítő összeg definíciója?

Válasz. Legyen $a, b \in \mathbb{R}, \ a < b, \ f : [a, b] \to \mathbb{R}$ egy korlátos függvény, $\tau = \{x_0, ..., x_n\} \subset [a, b]$ egy felosztása [a, b]-nek, $M_i := \sup\{f(x) \mid x_i \le x \le x_{i+1}\}$ (i = 0, ..., n-1). Ekkor

$$S(f,\tau) := \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i)$$

az f függvény τ -hoz tartozó felső közelítő összege.

72. Mi történik egy alsó közelítő összeggel, ha a neki megfelelő felosztást finomítjuk?

Válasz. Legyen $a,b\in\mathbb{R},\,a< b$ és $f:[a,b]\to\mathbb{R}$ egy korlátos függvény. Ha $\tau_1,\tau_2\subset[a,b]$ egy felosztása [a,b]-nek, $s(f,\tau_1),\,s(f,\tau_2)$ a megfelelő alsó közelítő összegek és τ_2 finomítása τ_1 -nek, akkor $s(f,\tau_1)\leq s(f,\tau_2)$.

73. Mi történik egy felső közelítő összeggel, ha a neki megfelelő felosztást finomítjuk?

Válasz. Legyen $a,b\in\mathbb{R},\,a< b$ és $f:[a,b]\to\mathbb{R}$ egy korlátos függvény. Ha $\tau_1,\tau_2\subset[a,b]$ egy egy felosztása [a,b]-nek, $S(f,\tau_1),\,S(f,\tau_2)$ a megfelelő felső közelítő összegek és τ_2 finomítása τ_1 -nek, akkor $S(f,\tau_1)\geq S(f,\tau_2)$.

74. Milyen viszony van az alsó és a felső közelítő összegek között?

Válasz. Legyen $a, b \in \mathbb{R}$, a < b és $f : [a, b] \to \mathbb{R}$ egy korlátos függvény. Ha $\tau_1, \tau_2 \subset [a, b]$ egy-egy felosztása [a, b]-nek, $s(f, \tau_1)$, $S(f, \tau_2)$ a megfelelő alsó, ill. felső közelítő összeg, akkor $s(f, \tau_1) \leq S(f, \tau_2)$.

75. Mi a Darboux-féle alsó integrál definíciója?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $s(f,\tau)$ az f függvény τ -hoz tartozó alsó közelítő összege. Jelölje $\mathcal{F}[a,b]$ az [a,b] felosztásainak a halmazát. Ekkor az $\{s(f,\tau)\mid \tau\in\mathcal{F}\big([a,b]\big)\}$ halmaz felülről korlátos, ezért létezik a szuprémuma. Az

$$I_*(f) := \sup \{ s(f, \tau) \mid \tau \in \mathcal{F}[a, b] \}$$

számot az f függvény Darboux-féle alsó integráljának nevezzük.

76. Mi a *Darboux-féle felső integrál* definíciója?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $S(f,\tau)$ az f függvény τ -hoz tartozó felső közelítő összege. Jelölje $\mathcal{F}[a,b]$ az [a,b] felosztásainak a halmazát. Ekkor az $\{S(f,\tau)\mid \tau\in\mathcal{F}[a,b]\}$ halmaz alulról korlátos, ezért létezik az infimuma. Az

$$I^*(f) := \inf \{ S(f, \tau) \mid \tau \in \mathcal{F}[a, b] \}$$

9

számot az f függvény Darboux-féle felső integráljának nevezzük.

77. Mikor nevez egy függvényt (Riemann)-integrálhatónak?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b$ és $f:[a,b] \to \mathbb{R}$ egy korlátos függvény, I_*f , ill. I^*f az f függvény Darboux-féle alsó, ill. felső integrálja. Ekkor f Riemann-integrálható az [a,b] intervallumon (jelekkel: $f \in R[a,b]$), ha $I_*f = I^*f$.

78. Hogyan értelmezi egy függvény határozott (vagy Riemann-)integrálját?

Válasz. Legyen $a,b \in \mathbb{R}$, a < b és $f:[a,b] \to \mathbb{R}$ egy korlátos függvény, I_*f , ill. I^*f az f függvény Darboux-féle alsó, ill. felső integrálja. Ha $I_*f = I^*f$, akkor az f függvény határozott (vagy Riemann-)integrálja az $I_*f = I^*f$ valós szám.

79. Adjon meg egy példát nem integrálható függvényre.

Válasz. Legyen

$$f(x) := \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Ekkor $f \notin R[0,1]$.

80. Mi az oszcillációs összeg definíciója?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény, $\tau \subset [a,b]$ egy felosztása [a,b]-nek, $s(f,\tau)$, $S(f,\tau)$ az f függvény τ -hoz tartozó alsó, ill. felső közelítő összege. Ekkor $\Omega(f,\tau):=S(f,\tau)-s(f,\tau)$ az f függvény τ felosztáshoz tartozó oszcillációs összege.

81. Hogyan szól a Riemann-integrálhatósággal kapcsolatban tanult kritérium az oszcillációs összegekkel megfogalmazva?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $\Omega(f,\tau)$ az f függvény τ -hoz tartozó oszcillációs összege. Ekkor

$$f \in R[a,b] \iff \forall \varepsilon > 0 \ \exists \tau \in \mathcal{F}[a,b] : \ \Omega(f,\tau) < \varepsilon.$$

82. Milyen tételt tanult Riemann-integrálható függvény megváltoztatását illetően?

Válasz. Legyen $a,b \in \mathbb{R}$, a < b. Ha az $f \in R[a,b]$ függvény értékét *véges sok* pontban tetszőlegesn megváltoztatjuk, akkor az így kapott \tilde{f} függvény is Riemann-integrálható és $\int\limits_a^b f = \int\limits_a^b \tilde{f}.$

83. Hogyan szól a Riemann-integrálható függvények szorzatával kapcsolatban tanult tétel?

Válasz. Ha $f, g \in R[a, b]$, akkor $fg \in R[a, b]$.

84. Hogyan szól a Riemann-integrálható függvények hányadosával kapcsolatban tanult tétel?

10

Válasz. Legyen $f,g\in R[a,b]$ tetszőleges és tegyük fel, hogy valamilyen m>0 számmal $|g(x)|\geq m$ $(x\in [a,b])$. Ekkor $\frac{f}{g}\in R[a,b]$.

85. Mit ért a Riemann-integrál intervallum szerinti additivitásán?

Válasz. Tegyük fel, hogy $f \in R[a,b]$ és $c \in (a,b)$ egy tetszőleges pont. Ekkor

$$f \in R[a,c], \quad f \in R[c,b],$$
 és $\int_a^b f = \int_c^c f + \int_c^b f.$

- **86.** Mi a kapcsolat a folytonosság és a Riemann-integrálhatóság között? **Válasz.** Legyen $a, b \in \mathbb{R}$, a < b. Ekkor $C[a, b] \subset R[a, b]$, de $C[a, b] \neq R[a, b]$.
- 87. Mi a kapcsolat a monotonitás és a Riemann-integrálhatóság között? Válasz. Legyen $a, b \in \mathbb{R}, \ a < b$. Ha f monoton az [a, b] intervallumon, akkor $f \in R[a, b]$.
- 88. Mit ért azon, hogy a Riemann-integrál az integrandusban monoton?

Válasz. Ha
$$f, g \in R[a, b]$$
 és $f \leq g$, akkor $\int_a^b f \leq \int_a^b g$.

89. Mit lehet mondani Riemann-integrálható függvény abszolút értékéről integrálhatóság szempontjából?

Válasz. Ha
$$f \in R[a,b]$$
, akkor $|f| \in R[a,b]$ és $\left| \int_a^b f \right| \le \int_a^b |f|$.

90. Mi az integrálszámítás első középértéktétele?

Válasz. Legyen $f, g \in R[a, b], g \ge 0, M = \sup \mathcal{R}_f$ és $m = \inf \mathcal{R}_f$. Ekkor

$$m\int_{a}^{b}g \le \int_{a}^{b}fg \le M\int_{a}^{b}g.$$

Ha még $f \in C[a,b]$ is teljesül, akkor $\exists \ \xi \in [a,b]$, hogy

$$\int_{a}^{b} fg = f(\xi) \int_{a}^{b} g.$$

91. Fogalmazza meg a Cauchy–Bunyakovszkij-féle egyenlőtlenséget.

Válasz. Haf és g integrálhatóak [a,b]-n, akkor fg is integrálható[a,b]-n és

$$\int_{a}^{b} |f(x)g(x)| dx \le \sqrt{\int_{a}^{b} f^{2}(x) dx} \cdot \sqrt{\int_{a}^{b} g^{2}(x) dx}.$$

92. Definiálja az [a,b] intervallumon a primitív függvényt.

Válasz. Legyen $[a,b]\subset\mathbb{R}$ korlátos és zárt intervallum. A $F:[a,b]\to\mathbb{R}$ függvény a $f:[a,b]\to\mathbb{R}$ egy primitív függvénye, ha F folytonos [a,b]-n, $F\in D\{x\}$ minden $x\in(a,b)$ esetén és F'(x)=f(x) $(x\in(a,b))$.

93. Hogyan szól a Newton-Leibniz-tétel?

Válasz. Ha $f \in R[a,b]$ és f-nek létezik primitív függvénye az [a,b] intervallumon, akkor $\int_a^b f = F(b) - F(a)$, ahol F a f függvénye egy primitív függvénye.

94. Definiálja az integrálfüggvényt.

Válasz. Legyen $f \in R[a,b]$ és $x_0 \in [a,b]$. Ekkor a $F(x) := \int_{x_0}^x f(t) \, dt \quad (x \in [a,b])$ függvényt a f függvényintegrálfüggvényének nevezzük.

95. Írja le az integrálfüggvénnyel kapcsolatban tanult tételt.

Válasz. Legyen
$$f \in R[a,b], x_0 \in [a,b], F(x) := \int_{x_0}^x f(t) dt \quad (x \in [a,b]).$$
 Ekkor

 $1^o\,$ aFintegrálfüggvény folytonos [a,b]-n;

 2^o ha $d \in (a,b)$ és f folytonos d-ben, akkor F differenciálható d-ben és F'(d) = f(d).

Analízis II. Első ZH tételkidolgozás

A jegyzetet UMANN Kristóf készítette Dr. SZILI László előadása alapján. (2016. október 23.)

Tantárgyi honlap: http://numanal.inf.elte.hu/~szili/0ktatas/An2_BSc_2016/index_An2_2016.htm Általános tudnivalók: http://numanal.inf.elte.hu/~szili/0ktatas/An2_BSc_2016/Zh1-tudni.pdf Követelményrendszer: http://numanal.inf.elte.hu/~szili/0ktatas/An2_BSc_2016/Kov_An2_2016.pdf ZH témakörei: http://numanal.inf.elte.hu/~szili/0ktatas/An2_BSc_2016/An2_1_zh_temakork_2016.pdf

1. Korlátos és zárt intervallumon folytonos függvény korlátos.

Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$ folytonos [a,b]-n \Rightarrow f korlátos.

Bizonyítás: f korlátos, ha

$$\exists K > 0, \quad \forall x \in [a, b] : \quad |f(x)| \le K$$

Indirekt: Tegyük fel, hogy nem korlátos, azaz,

$$\forall K > 0, \quad \exists x \in [a, b] : \quad |f(x)| > K$$

$$\Rightarrow \forall n = 1, 2 \dots \quad \exists x_n \in [a, b], \quad |f(x_n)| \ge n$$
 (1)

Tehát: $(x_n) \subset [a,b]$ korlátos sorozat $\overset{\text{B-W kiv.}}{\Longrightarrow} \exists (x_{n_k})$ konv. részsorozat.

Legyen

$$\alpha := \lim(x_{n_k})$$

Ekkor: $\alpha \in [a, b]$.

(Indirekt: Tegyük fel, hogy $\alpha \notin [a, b] \Rightarrow \exists K(\alpha) \cap [a, b] = \emptyset$.

$$\alpha := \lim(x_{n_k}) \quad \Rightarrow \quad \exists k_0 \in \mathbb{N}, \quad \forall k \geq k_0, \quad x_{n_k} \in K(\alpha). \text{ Ez ellentmondás, ui. } x_{n_k} \in [a, b]).$$

Az f folytonos [a, b]-n \Rightarrow

$$f \in C\{\alpha\}$$
 $\stackrel{\text{átviteli elv}}{\Rightarrow}$ $x_{n_k} \to \alpha$ \Rightarrow $f(x_{n_k}) \to f(\alpha)$ \Rightarrow $(f(x_{n_k}))$ korlátos, mert konv.

Ez ellentmond 1-nek.

2. A Weierstrass-tétel.

Tegyük fel, hogy:

$$\left. \begin{array}{l} f:[a,b] \to \mathbb{R} \\ \text{folytonos} \ [a,b] \end{array} \right\} \Rightarrow \begin{array}{l} f\text{-nek} \ \exists \ \text{absz. szélsőértéke, azaz} & \exists \alpha,\beta, \in [a,b]: \\ f(x) \le f(\alpha) & (x \in [a,b]) \\ f(\beta) \le f(x) & \end{array}$$

Bizonyítás: f folytonos [a, b]-n $\Rightarrow f$ korlátos.

Ekkor:

$$\exists \sup\{f(x) \mid x \in [a, b]\} =: M \in \mathbb{R}$$
$$\exists \inf\{f(x) \mid x \in [a, b]\} =: m \in \mathbb{R}$$

Igazoljuk: $\exists \alpha \in [a, b]: f(\alpha) = M$.

$$M \sup \quad \Rightarrow \quad \forall n \in \mathbb{N}, \quad \exists y_n \in \mathcal{R}_f : \quad M - \frac{1}{n} < y_n \le M$$

Viszont:

$$y_n \in \mathcal{R}_f \quad \Rightarrow \quad \exists x_n \in [a, b] : \quad f(x_n) = y_n, \quad (\forall n \in \mathbb{N})$$

 $\text{Az }(x_n): \mathbb{N} \to [a,b] \text{ korlátos sorozat} \quad \xrightarrow{\text{B-W kiv.}} \quad \exists (x_{n_k}) \text{ konvergens részsorozata}.$

Legyen $\lim(x_{n_k}) =: \alpha \in [a, b]$ (indirekt belátható)

$$f ext{ folyt. } [a,b]-n \Rightarrow f \in C\{\alpha\} \stackrel{\text{átviteli elv}}{\Rightarrow} \lim_{x \to +\infty} (x_{n_k}) = \alpha, \quad \lim_{x \to +\infty} \underbrace{f(x_{n_k})}_{y_{n_k}} = f(\alpha)$$

$$\lim_{n \to +\infty} y_{n_k} = f(\alpha) \quad \Rightarrow \quad M = f(\alpha)$$

Hasonlóan bizonyítható az abszolút minimum létezése.

3. A Bolzano-tétel.

Tegyük fel, hogy $f:[a,b]\to\mathbb{R}$, továbbá

$$\left. \begin{array}{ll} \text{folytonos } [a,b]\text{-n} \\ f(a) \cdot f(b) < 0 \end{array} \right\} \quad \Rightarrow \quad \exists \xi \in [a,b]: \quad f(\xi) = 0.$$

Bizonyítás: (Bolzano-féle felezési eljárás)

Tegyük fel, hogy f(a) < 0, f(b) > 0. Legyen $[x_0, y_0] := [a, b]$.

Felezzük meg az intervallumot! Legyen $z_0 := \frac{a+b}{2}$. 3 eset lehetséges:

- a) $f(z_0) = 0$
- b) $f(z_0) > 0$ esetén $[x_1, y_1] := [a, z_0].$
- c) $f(z_0) < 0$ esetén $[x_1, y_1] := [z_0, b]$.

Megfelezzük $[x_1, y_1]$ -et. Itt is 3 eset lehetséges. (...) Folytatjuk az eljárást.

Az eljárás közben vagy találunk véges sok lépésben olyan ξ -t melyre $f(\xi) = 0$, vagy nem. Amennyiben nem, $\exists [x_n, y_n] \quad (n \in \mathbb{N})$ intervallumsorozat, melyre teljesül hogy

- a) $[x_{n+1}, y_{n+1}] \subset [x_n, y_n] \quad (\forall n \in \mathbb{N})$
- b) $f(x_n) < 0$, $f(y_n) > 0$ $(\forall n \in \mathbb{N})$

$$c) y_n - x_n = \frac{b-a}{2^n}$$

Cantor-féle közösrész tételből következik hogy ezeket az intervallumoknak van közös pontja ha $n \in \mathbb{N}$, azaz:

$$\stackrel{\text{Cantor}}{\underset{\text{tétel}}{\Longrightarrow}} \quad \exists \xi \in \bigcap_{n \in \mathbb{N}} [x_n, y_n], \quad x_n \nearrow \xi, \quad y_n \searrow \xi. \quad \text{(monoton tartanak } \xi\text{-hez)}$$

f folytonos [a,b]-n \Rightarrow $f \in C\{\xi\}$ $\stackrel{\text{átviteli}}{\Longrightarrow}$ $\lim(f(x_n)) = f(\xi) = \lim(f(y_n))$ Ha

- $a) f(x_n) < 0 \implies \lim(f(x_n)) \le 0$
- b) $f(y_n) > 0 \implies \lim(f(x_n)) \ge 0$

Tehát:

$$\underbrace{f(\xi) \leq 0 \quad \text{\'es} \quad f(\xi) \geq 0}_{f(\xi) = 0}$$

Ezzel a tételt bebizonyítottuk.

4. Az inverz függvény folytonosságára vonatkozó tétel

Tegyük fel, hogy $f:[a,b]\to\mathbb{R}$,

folytonos
$$[a, b]$$
-n \Rightarrow az f^{-1} függvény folytonos $\mathcal{D}_{f^{-1}} = \mathcal{R}_f$ -en.

Bizonyítás: Indirekt, tegyük fel hogy $f^{-1}: \mathcal{R}_f \to [a, b]$ nem folytonos, azaz

$$\exists y_0 \in \mathcal{R}_f, : \quad f^{-1} \notin C\{y_0\}.$$

Átviteli elv \Rightarrow $\exists (y_n) \subset \mathcal{R}_f$ $\lim(y_n) = y_0$, DE $\lim_{n \to +\infty} f^{-1}(y_n) \neq f^{-1}(y_0)$.

Legyen

$$x_n:=f^{-1}(y_n),\quad \text{azaz}\quad f(x_n)=y_n\quad \forall n\in\mathbb{N},$$

$$x_0:=f^{-1}(y_0),\quad \text{azaz}\quad f(x_0)=y_0.$$

Így:

$$\lim(x_n) \neq x_0. \tag{2}$$

Ez azt jelenti, hogy:

$$\exists \delta > 0: \{n \in \mathbb{N} : |x_n - x_0| \geq \delta\}$$
 végtelen halmaz.

Az $(x_n) \subset [a,b]$ korlátos sorozat $\stackrel{\text{Bolz-Weier}}{\Longrightarrow}$ $\exists (x_{\nu_n})$ konvergens részsorozata.

Legyen $\overline{x} := \lim(x_{\nu_n}) \in [a, b]$. (indirekt módon lehetett bizonyítani)

$$\begin{cases}
f \in C\{\overline{x}\} \\
x_{\nu_n} \to \overline{x}
\end{cases} \xrightarrow{\text{átviteli}} \underbrace{f(x_{\nu_n})}_{y_{\nu_n}} \longrightarrow f(\overline{x}) \quad \text{(emiatt: 2)}$$

Viszont:

$$y_n \to y_0, \quad y_{\nu_n} \to y_0 (= f(x_0))$$

Ez pedig ellentmondás.

5. A folytonosság és a derivált kapcsolata.

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$.

$$a) \ f \in D\{a\} \quad \Rightarrow \quad f \in C\{a\}.$$

b)
$$f \in D\{a\} \notin f \in C\{a\}.$$

Bizonyítás:

 \Rightarrow

$$f \in D\{a\} \quad \Rightarrow \quad \lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \cdot (x - a) \right) = f'(a) \cdot 0 = 0 \quad \blacksquare$$

 $\not\equiv$ abs $\notin D\{0\}$:

$$\lim_{x \to 0} \frac{|x| - |0|}{x} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases} \Rightarrow \nexists \lim_{x \to 0} \frac{|x| - |0|}{x} \Rightarrow \text{abs } \notin D\{0\}. \blacksquare$$

6. A deriválhatóság ekvivalens átfogalmazása lineáris közelítéssel.

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$

$$f \in D\{a\} \quad \Leftrightarrow \quad \begin{cases} \exists A \in \mathbb{R} & \text{\'es} \quad \exists \varepsilon : \quad \mathcal{D}_f \to \mathbb{R}, \quad \lim_a \varepsilon = 0 \\ f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \quad (x \in \mathcal{D}_f) \end{cases}$$

A = F'(a).

Bizonyítás:

 \Rightarrow

$$f \in D\{a\} \quad \Rightarrow \quad \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \quad \Rightarrow \quad \lim_{x \to a} \underbrace{\left(\frac{f(x) - f(a)}{x - a} - f'(a)\right)}_{=:\sigma(x)} = 0$$

Így: $\lim_{a} \varepsilon = 0$, és

$$f(x) - f(a) = f'(a)(x - a) + \varepsilon(x)(x - a) \quad (x \in \mathcal{D}_f) \checkmark$$

 $\begin{tabular}{ll} \hline \Leftarrow \\ \hline \end{tabular} \begin{tabular}{ll} \hline$

$$f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \qquad \stackrel{x \neq a}{\Rightarrow} \qquad \underbrace{\frac{f(x) - f(a)}{x - a}}_{\stackrel{x \to a}{\Rightarrow} f'(a)} = \underbrace{A + \varepsilon(x)}_{\stackrel{x \to a}{\Rightarrow} A}$$

$$\Rightarrow f'(a) = A \blacksquare$$

7. A szorzatfüggvény deriválása.

Tegyük fel, hogy $f, g : \mathbb{R} \to \mathbb{R}$, $f, g \in D\{a\}$, $a \in \operatorname{int}(\mathcal{D}_f \cap \mathcal{D}_g)$. Ekkor:

$$f, g \in D\{a\}$$
 és $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$

Bizonyítás:

$$\frac{(fg)(x) - (fg)(a)}{x - a} = \frac{f(x)g(x) - f(a)g(a)}{x - a} \quad \xrightarrow{f(a) \cdot g(x)} \quad \underbrace{\frac{f(x) - f(a)}{x - a}}_{\xrightarrow{x \to a} f(a)} \cdot g(x) + f(a) \underbrace{\frac{g(x) - g(a)}{x - a}}_{\xrightarrow{x \to a} g'(a)}$$

$$g(x) \quad \underset{x \to a}{\longrightarrow} \quad g(a) \quad \Rightarrow \quad \text{mivel folytonos, \'es} \quad x \to a, \ \text{Ui.:} \ g \in D\{a\} \quad \Rightarrow \quad g \in C\{a\} \quad \blacksquare$$

8. A hányadosfüggvény deriválása.

Tegyük fel, hogy $f, g : \mathbb{R} \to \mathbb{R}$, $f, g \in D\{a\}$, $a \in \text{int}(\mathcal{D}_f \cap \mathcal{D}_g)$, $g(a) \neq 0$. Ekkor:

$$\frac{f}{g} \in D\{a\} \quad \text{\'es} \quad \left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$$

Bizonyítás: Közös ötlet: $\frac{f(x)-f(a)}{x-a}$ és $\frac{g(x)-g(a)}{x-a}$ -t behozni.

a) Igazoljuk: $a \in \operatorname{int} \mathcal{D}_{\frac{f}{a}}$.

Valóban: $g \in D\{a\} \Rightarrow g \in C\{a\}, \text{ de } g(a) \neq 0 \Rightarrow$

$$\exists K(a): \quad g(x) \neq 0 \quad (\forall x \in K(a))$$

 $\Rightarrow a \in \operatorname{int} \mathcal{D}_{\frac{f}{g}}.$

b)
$$\frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \frac{\left(\frac{f(x)}{g(x)}\right) - \left(\frac{f(a)}{g(a)}\right)}{x - a} = \frac{1}{g(a) \cdot g(x)} \cdot \frac{f(x) \cdot g(a) - f(a) \cdot g(x)}{x - a} \xrightarrow{f(a)g(a) + f(a)g(a)} + f(a)g(a)$$

$$\frac{1}{g(a)g(x)} \cdot \left(\underbrace{\frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \cdot \underbrace{\frac{g(x) - g(a)}{x - a}}_{x \to g(a)}\right)$$

$$g(x) \xrightarrow{x \to a} g(a) \neq 0$$
, mert $g \in C\{a\}$.

9. A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel.

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, és

$$\left.\begin{array}{ccc} f\in D\{a\} & a\in \mathrm{int}\, D_f\\ f\text{-nek a-ban lokális szélső értéke van} \end{array}\right\} \quad \Rightarrow \quad f'(a)=0$$

Bizonyítás: Lokális maximumra: Tekintsük

$$\frac{f(x) - f(a)}{x - a}$$

törtet. Hax > a

$$\underbrace{\frac{\int_{0}^{4}}{f(x)-f(a)}}_{x-a} \le 0 \quad \stackrel{f \in D\{a\}}{\Rightarrow} \quad \lim_{x \to a+0} \frac{f(x)-f(a)}{x-a} = f'_{+}(a) = f'(a) < 0$$

Ha x < a

$$\underbrace{\frac{\int 0}{f(x) - f(a)}}_{\underbrace{x - a}} \ge 0$$

 $f \in D\{a\} \quad \Rightarrow \quad f'(a) \ge 0 \text{ Tehát} \colon f'(a) \le 0 \quad \text{\'es} \quad f'(a) \ge 0 \quad \Rightarrow \quad f'(a) = 0. \quad \blacksquare$

10. A Rolle-féle középértéktétel.

$$\begin{cases}
f: [a,b] \to \mathbb{R} \\
f \in C[a,b] \\
f \in D(a,b) \\
f(a) = f(b)
\end{cases}
\Rightarrow \begin{cases}
\xi \in (a,b) \\
f'(\xi) = 0
\end{cases}$$

 $\textbf{Bizonyítás:} \ f \in C[a,b] \quad \overset{\text{Weier.}}{\underset{\text{tétel}}{\Longrightarrow}} \quad \exists \alpha\beta \in [a,b]:$

$$f(\alpha) := \min_{[a,b]} f := m$$

$$f(\beta) := \max_{[a,b]} f := M$$

a) eset: $f \equiv \text{áll.} (m = M) \implies f' \equiv 0$

b) eset: $f \not\equiv$ áll. $\Rightarrow m \neq M$ és m < M

Ha $m \not\equiv f(a) = f(b) \implies \alpha \in (a,b)$ Ekkor $f(\alpha)$: abszolút minimum és $f(\alpha)$ lokális minimum is.

$$f'(\alpha) = 0, \quad \xi = \alpha$$
 "jó"

Ha m = f(a) = f(b) Lehetséges, hogy itt hiányzik egy kis rész.

11. A Lagrange-féle középértéktétel.

$$\begin{cases}
f: [a,b] \to \mathbb{R} \\
f \in C[a,b] \\
f \in D(a,b)
\end{cases} \Rightarrow \exists \xi \in (a,b) \\
f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Bizonyítás: A szelő egyenlete:

$$y = h_{a,b}(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$

Legyen:

$$F(x) := f(x) - h_{a,b}(x) \quad (x \in [a, b])$$

F-re a Rolle feltételei teljesülnek (ellenőrizni kell!)

$$\Rightarrow \exists \xi \in (a,b): \quad F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0. \quad \blacksquare$$

Analízis II.

2. zh tételkidolgozás

A jegyzetet UMANN Kristóf készítette Dr. Szili László előadása alapján. (2016. december 16.)

1. A konvexitás ekvivalens átfogalmazása egyenlőtlenséggel.

Tétel. Az $I \subset \mathbb{R}$ intervallumon értelmezett $f: I \to \mathbb{R}$ függvény akkor és csak akkor konvex I-n, ha

$$\forall a, b \in I, \ a < b \ és \ \forall \lambda \in (0, 1) \ esetén$$

 $f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b).$

Megjegyzés. Szigorúan konvex, konkáv, illetve szigorúan konkáv függvényekre hasonló állítások érvényesek. ■

Bizonyítás. Legyen $a, b \in I$, a < b és $0 < \lambda < 1$. Ekkor

$$x = \lambda a + (1 - \lambda)b \in (a, b),$$

mert

$$a = \lambda a + (1 - \lambda)a < \lambda a + (1 - \lambda)b = x < \lambda b + (1 - \lambda)b = b.$$

Másrészt az (a,b) intervallum minden eleme előáll
l $\lambda a + (1-\lambda)b$ alakban, ahol $0 < \lambda < 1$. Ha ugyani
s $x \in (a,b)$, akkor a

$$\lambda := \frac{b - x}{b - a}$$

választás megfelelő, mert

$$\frac{b-x}{b-a} \cdot a + \left(1 - \frac{b-x}{b-a}\right) \cdot b = x.$$

A definíció szerint az f függvény konvex az I intervallumon, ha $\forall a,b \in I,\ a < b$ esetén

$$f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \qquad (\forall x \in (a, b)).$$

Ha a < x < b és $x = \lambda a + (1 - \lambda)b$, akkor a fenti egyenlőtlenség azzal ekvivalens, hogy

$$\begin{split} f \left(\lambda a + (1-\lambda)b \right) & \leq \frac{f(b) - f(a)}{b-a} \left(\left[\lambda a + (1-\lambda)b - a \right] \right) + f(a) = \\ & = \frac{f(b) - f(a)}{b-a} \left[(1-\lambda)(b-a) \right] + f(a) = \lambda f(a) + (1-\lambda)f(b), \end{split}$$

és ez az állítás bizonyítását jelenti.

2. A konvexitás jellemzése a deriváltfüggvénnyel.

Tétel. Legyen $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$, és tegyük fel, hogy $f \in D(\alpha, \beta)$.

 1° Az f függvény konvex [szigorúan konvex] (α, β) -n \iff az f' függvény \nearrow [\uparrow].

 $2^o \ Az \ f \ \text{f\"{u}ggv\'{e}ny} \ konk\'{a}v \ [\text{szigor\'{u}an} \ konk\'{a}v] \ (\alpha,\beta) - n \ \Longleftrightarrow \ az \ f' \ f\"{u}ggv\'{e}ny \ \searrow \ [\downarrow].$

Bizonyítás. A bizonyítások hasonlók, ezért csak a konvexitásra vonatkozó rész igazolását részletezzük.

 \implies Tegyük fel, hogy az f függvény konvex az (α, β) intervallumon, azaz

$$\forall a, b \in (\alpha, \beta), a < b \text{ esetén}$$

$$f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \quad (\forall x \in (a, b)).$$

Ebből következik, hogy a $\triangle_a f$ függvény \nearrow az $(\alpha, \beta) \setminus \{a\}$ halmazon, ezért

$$\triangle_a f(x) = \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \quad \forall x < b, \ x \neq a \text{ eset\'en}.$$

1

Mivel $f'(a) = \lim_{x \to a} \triangle_a f(x)$, ezért

$$f'(a) \le \frac{f(b) - f(a)}{b - a}.$$

Hasonlóan, a $\triangle_b f$ függvény \nearrow az $(\alpha, \beta) \setminus \{b\}$ halmazon, ezért

$$\frac{f(b) - f(a)}{b - a} = \frac{f(a) - f(b)}{a - b} = \triangle_b f(a) \le \triangle_b f(x) = \frac{f(x) - f(b)}{x - b} \quad \forall a < x, \ x \ne b \text{ esetén.}$$

Mivel $f'(b) = \lim_{x \to b} \triangle_b f(x)$, ezért

$$\frac{f(b) - f(a)}{b - a} \le f'(b).$$

Így (*) alapján azt kapjuk, hogy $f'(a) \le f'(b)$. Mivel ez minden $a, b \in (\alpha, \beta)$, a < b-re igaz, ezért f' monoton növekedő az (α, β) intervallumon.

Tegyük fel, hogy f' monoton növekedő (α, β) -n. Legyen $a, b \in (\alpha, \beta)$, a < b és $x \in (a, b)$ tetszőleges. f-re a Lagrange-féle középértéktételt először az [a, x], majd az [x, b] intervallumra alkalmazva azt kapjuk, hogy

$$\exists \xi_1 \in (a, x) : f'(\xi_1) = \frac{f(x) - f(a)}{x - a}$$
 és $\exists \xi_2 \in (x, b) : f'(\xi_2) = \frac{f(b) - f(x)}{b - x}$.

Mivel $\xi_1 < \xi_2$ és $f' \nearrow$, ezért $f'(\xi_1) \le f'(\xi_2)$. Így

$$\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(x)}{b-x} = \frac{[f(b)-f(a)]-[f(x)-f(a)]}{b-x} \iff [f(x)-f(a)] \cdot [(b-x)+(x-a)] \leq [f(b)-f(a)] \cdot (x-a) \iff f(x) \leq \frac{f(b)-f(a)}{b-a}(x-a)+f(a).$$

Ez az egyenlőtlenség minden $a, b \in (\alpha, \beta)$, a < b és $x \in (a, b)$ esetén fennáll, ami éppen azt jelenti, hogy az f függvény konvex az (α, β) intervallumon.

3. A π szám bevezetését megalapozó állítás

Tétel. A cos függvénynek a [0,2] intervallumban pontosan egy zérushelye van, azaz [0,2]-nek pontosan egy ξ pontjában áll fenn a cos $\xi = 0$ egyenlőség. Ennek a ξ számnak a kétszereseként **értelmezzük a** π **számot**:

$$\pi := 2\xi$$
.

Bizonyítás. A Bolzano-tételt alkalmazzuk. Világos, hogy $\cos \in C[0,2]$ és $\cos 0 = 1$. Másrészt

$$\begin{aligned} \cos 2 &= 1 - \frac{2^2}{2!} + \frac{2^4}{4!} - \frac{2^6}{6!} + \frac{2^8}{8!} - \frac{2^{10}}{10!} + \frac{2^{12}}{12!} - \dots = 1 - 2 + \frac{2}{3} - \frac{2^6}{6!} \left(1 - \frac{2^2}{7 \cdot 8} \right) - \frac{2^{10}}{10!} \left(1 - \frac{2^2}{11 \cdot 12} \right) - \dots < \\ &< \left(\text{a zárójeleken belüli számok nyilván pozitívak} \right) < -\frac{1}{2} < 0. \end{aligned}$$

A Bolzano-tétel feltételei tehát teljesülnek, ezért $\exists \xi \in [0,2]$: $\cos \xi = 0$.

A ξ pont egyértelműsége következik abból, hogy cos \downarrow a [0,2] intervallumban. Ez az állítás a szigorú monoton csökkenésre vonatkozó elégséges feltétel, a cos' = $-\sin$ képlet, valamint a

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = x \left(1 - \frac{x^2}{2 \cdot 3} \right) + \frac{x^5}{5!} \left(1 - \frac{x^2}{6 \cdot 7} \right) + \dots > 0 \quad \left(x \in (0, 2) \right)$$

egyenlőtlenség következménye.

4. A $\frac{0}{0}$ esetre vonatkozó L'Hospital-szabály.

Tétel. (L'Hospital-szabály a $\frac{0}{0}$ esetben.)

Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$ és

- $f, g \in D(a, b), \ (-\infty \le a < b < +\infty),$ $g(x) \ne 0 \text{ és } g'(x) \ne 0 \ (x \in (a, b)),$ $\lim_{a \to 0} f = \lim_{a \to 0} g = 0,$ $\exists \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}} \text{ határérték.}$

$$\exists \lim_{a \to 0} \frac{f}{g}$$
 és

$$\lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}.$$

Bizonyítás. 1. eset: $a > -\infty$ (véges).

Legyen

$$A := \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}.$$

Azt kell igazolni, hogy

$$(\#) \qquad \forall \, \varepsilon > 0 \ \, \text{számhoz} \ \, \exists \, \delta > 0 : \, \, \forall \, x \in (a,a+\delta) \subset (a,b) \ \, \text{esetén} \ \, \frac{f(x)}{g(x)} \in K_{\varepsilon}(A).$$

Az $A=\lim_{a\to 0}\frac{f'}{a'}\in\overline{\mathbb{R}}$ feltétel azt jelenti, hogy

$$(*) \hspace{1cm} \forall \, \varepsilon > 0 \hspace{0.2cm} \text{számhoz} \hspace{0.2cm} \exists \, \delta > 0 : \hspace{0.2cm} \forall \, y \in (a,a+\delta) \subset (a,b) \hspace{0.2cm} \text{esetén} \hspace{0.2cm} \frac{f'(y)}{g'(y)} \in K_{\varepsilon}(A).$$

Értelmezzük az f és a g függvényt az a pontban úgy, hogy

$$f(a) := 0$$
 és $g(a) := 0$.

A $\lim_{a\to 0} f = \lim_{a\to 0} g = 0$ feltételből következik, hogy ekkor $f,g\in C[a,a+\delta)$.

Legyen most $x \in (a.a + \delta)$ tetszőleges pont. A Cauchy-féle középértéktétel feltételei az f és a g függvényre az [a, x] intervallumon teljesülnek. Így $\exists \xi_x \in (a, x)$, amelyre

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi_x)}{g'(\xi_x)} \text{ (és ez (*) miatt) } \in K_{\varepsilon}(A).$$

A (#) állítást tehát bebizonyítottuk, és az azt jelenti, hogy a $\lim_{a\to 0} \frac{f}{a}$ határérték létezik, és

$$\lim_{a \to 0} \frac{f}{g} = A.$$

2. eset: $a = -\infty$. Nem bizonyítjuk.

5. A Taylor-formula a Lagrange-féle maradéktaggal.

Tétel. (Taylor-formula a Lagrange-féle maradéktaggal.) Legyen $n \in \mathbb{N}$, és tegyük fel, hogy $f \in D^{n+1}(K(a))$. Ekkor

 $\forall x \in K(a) \quad ponthoz \quad \exists \xi \quad a \ \textit{\'es} \ x \ \textit{k\"oz\"{o}tt} :$

$$f(x) - T_{n,a}(f,x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Bizonyítás. A Cauchy-féle középértéktételt fogjuk felhasználni.

Legyen

$$F(x) := f(x) - T_{n,a}(f,x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} =$$

$$= f(x) - \left(f(a) + f'(a)(x-a) + \frac{f^{(2)}(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}\right) \qquad (x \in K(a)).$$

Ekkor

$$F(a) = f(a) - f(a) = 0,$$

$$F'(a) = f'(a) - f'(a) = 0,$$

$$F''(a) = f''(a) - \frac{f^{(2)}(a)}{2!} \cdot 2 \cdot 1 = f''(a) - f''(a) = 0,$$

$$\vdots$$

$$F^{(n)}(a) = 0,$$

Legyen tetszőleges $x \in K(a)$ esetén

$$G(x) := (x - a)^{n+1} \implies G(a) = 0,$$

$$G'(x) = (n+1)(x-a)^{n} \implies G'(a) = 0,$$

$$G''(x) = (n+1)n(x-a)^{n-1} \implies G''(a) = 0,$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$G^{(n)}(x) = (n+1)!(x-a) \implies G^{(n)}(a) = 0,$$

$$G^{(n+1)}(x) = (n+1)!$$

 $F^{(n+1)}(x) = f^{(n+1)}(x) \quad (x \in K(a)).$

Legyen $x \in K(a)$, és tegyük fel, hogy például x > a. (Az x < a eset hasonlóan vizsgálható.) Az F és a G függvényekre az [a, x] intervallumon alkalmazható a Cauchy-féle középértéktétel, következésképpen

$$\exists \, \xi_1 \in (a,x) : \quad \frac{f(x) - T_{n,a}(f,x)}{(x-a)^{n+1}} = \frac{F(x)}{G(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(\xi_1)}{G'(\xi_1)}.$$

Ha a Cauchy-féle középértéktételt az F' és a G' függvényekre az $[a, \xi_1]$ intervallumon alkalmazzuk, azt kapjuk, hogy

$$\exists \, \xi_2 \in (a, \xi_1) : \quad \frac{F'(\xi_1)}{G'(\xi_1)} = \frac{F'(\xi_1) - F'(a)}{G'(\xi_1) - G'(a)} = \frac{F''(\xi_2)}{G''(\xi_2)}.$$

A fenti gondolatmenetet n-szer megismételve adódik, hogy

$$\exists \, \xi_{n+1} \in (a, \xi_n) : \quad \frac{F^{(n)}(\xi_n)}{G^{(n)}(\xi_n)} = \frac{F^{(n)}(\xi_n) - F^{(n)}(a)}{G^{(n)}(\xi_n) - G^{(n)}(a)} = \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})}.$$

A bizonyítás során kapott egyenlőségeket egybevetve azt kapjuk, hogy

$$\frac{f(x) - T_{n,a}(f,x)}{(x-a)^{n+1}} = \frac{F(x)}{G(x)} = \frac{F'(\xi_1)}{G'(\xi_1)} = \frac{F''(\xi_2)}{G''(\xi_2)} = \dots = \frac{F^{(n)}(\xi_n)}{G^{(n)}(\xi_n)} = \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})},$$

ahonnan $F^{(n+1)} = f^{(n+1)} - T_{n,a}^{(n+1)} = f^{(n+1)}$ és $G^{(n+1)} = (n+1)!$ figyelembevételével azt kapjuk, hogy

$$\frac{f(x) - T_{n,a}(f,x)}{(x-a)^{n+1}} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}$$

A $\xi := \xi_{n+1}$ választással a bizonyítandó állítást kapjuk.

6. A $\sqrt{1-x^2}$ $(x \in (-1,1))$ primitív függvényeinek előállítása.

$$\int \sqrt{1-x^2} \, dx = \frac{\arcsin x + x \sqrt{1-x^2}}{2} + c \quad (x \in (-1,1), \quad c \in \mathbb{R})$$

 $Megold\'{a}s:$

Alkalmazzuk az $x = \sin t = g(t)$ $(x \in (-1,1)), t \in (-\frac{\pi}{2}, \frac{\pi}{2})$ helyettesítést:

$$g'(t) = \cos t > 0 \quad \left(|t| < \frac{\pi}{2}\right) \quad \Rightarrow \quad \exists g^{-1}; \quad t := \arcsin x$$

$$\int \sqrt{1 - x^2} \, dx = \int \underbrace{\sqrt{1 - \sin^2 t}}_{=\cos t > 0} \cdot \cos t \, dt \quad \mathop{=}_{\sin^2 t + \cos^2 t = 1}^{\cos 2t - \sin^2 t} \quad \int \frac{1 + \cos 2t}{2} \, dt =$$

$$= \frac{t}{2} + \frac{\sin 2t}{4} + c = \frac{t}{2} + \frac{2 \sin t \cdot \cos t}{4} + c\big|_{t = \arcsin x} = \frac{\arcsin x + x \cdot \cos(\arcsin x)}{2} + c$$

$$\cos(\underbrace{\arcsin x}_{=:\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)}_{\sin \alpha = x}) = \pm \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - x^2}$$

$$\int \sqrt{1 - x^2} \, dx = \frac{\arcsin x + x\sqrt{1 - x^2}}{2} + c. \quad (c \in \mathbb{R}) \quad \blacksquare$$

7. Oszcillációs összegek. Az integrálhatóság jellemzése az oszcillációs összegekkel.

Tegyük fel, hogy $f[a,b] \to \mathbb{R}$ korlátos függvény. Ekkor:

$$f \in R[a,b] \quad \Leftrightarrow \quad \begin{array}{c} \forall \varepsilon > 0 \quad \exists \tau \in \mathcal{F}[a,b], \quad \varOmega(f;\tau) < \varepsilon \\ \text{(az oszcillációs összeg tetszőlegesen kicsi lehet)} \end{array}$$

 $Bizony {\it it\'as}$:

 \Rightarrow :

$$I_*(f) = I^*(f) =: I$$

 $\varepsilon > 0$ tetszőleges, szuprémum definíciójából:

$$\varepsilon > 0$$
-hoz $\exists \tau_1 \in \mathcal{F}[a, b], \quad I - \frac{\varepsilon}{2} < s(f; \tau_1) \le I$ $\varepsilon > 0$ -hoz $\exists \tau_2 \in \mathcal{F}[a, b], \quad I < S(f; \tau_2) \le I + \frac{\varepsilon}{2}$

Legyen $\tau := \tau_1 \cup \tau_2$

$$I - \frac{\varepsilon}{2} < s(f; \tau_1) \le s(f; \tau) \le S(f; \tau) \le S(f; \tau_2) < I + \frac{\varepsilon}{2}$$

 $\Rightarrow \Omega(f; \tau) = S(f; \tau) - s(f; \tau) < \varepsilon.$

 $\Leftarrow: \varepsilon > 0$ -hoz $\exists \tau \in \mathcal{F}[a, b] \quad \Omega(f; \tau) < \varepsilon$:

$$\Omega(f;\tau) = S(f;\tau) - s(f;\tau) \ge I^*(f) - I_*(f) \ge 0$$

$$\Rightarrow \quad 0 \le I^*(f) - I_*(f) < \varepsilon$$

$$\Rightarrow \quad I^*(f) - I_*(f) = 0 \quad \Rightarrow \quad I^*(f) = I_*(f) \Rightarrow \quad f \in R[a,b]. \quad \blacksquare$$

8. Monoton függvény integrálható.

Ha
$$f \in K[a, b]$$
 ÉS monoton \Rightarrow $f \in R[a, b]$.

Bizonyítás: (oszcillációs összegekkel) Legyen f (például) $\nearrow [a,b]$ -n.

$$\tau := \{a = x_0 < x_1 < \dots < x_n = b\} \in \mathcal{F}[a,b] \quad \text{tetsz\"oleges}$$

$$\inf\{f(x) \mid x_i \leq x \leq x_{i+1}\} =: m := f(x_i)$$

$$\sup\{f(x) \mid x_i \leq x \leq x_{i+1}\} =: M := f(x_{i+1})$$

$$\Omega(f,\tau) = S(f,\tau) - s(f,\tau) = \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i) - \sum_{i=0}^{n-1} m_i(x_{i+1} - x_i) =$$

$$= \sum_{i=0}^{n-1} (M_i - m_i)(x_{i+1} - x_i) = \sum_{i=0}^{n-1} \underbrace{(f(x_{i+1}) - f(x_i))}_{(x_{i+1} - x_i)} \leq \max_{0 \leq i \leq n-1} (x_{i+1} - x_i) \cdot \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))$$

$$- \text{teleszk\'opikus!}$$

$$\Rightarrow \Omega(f,\tau) \leq ||\tau|| \cdot (f(b) - f(a))$$

$$\forall \varepsilon > 0 \quad \tau \in \mathcal{F}[a,b] : \quad ||\tau|| < \frac{\varepsilon}{f(b) - f(a)}$$

$$\Rightarrow \Omega(f,\tau) < \varepsilon \quad \Rightarrow \quad f \in R[a,b]. \quad \blacksquare$$

9. A Newton-Leibniz tétel.

Tegyük fel, hogy

$$f \in R[a,b]$$
 f-nek van primitív függvénye $[a,b]$ -n
$$\Rightarrow \int_a^b f = F(b) - F(a) =: [F(x)]_a^b$$

ahol F az f egy primitív függvénye.

Bizonyítás: Legyen $\tau := \{a = x_0 < x_1 < \ldots < x_n = b\} \in \mathcal{F}[a, b]$ tetszőleges.

$$F(b)-F(a) = F(x_n)-F(x_0) \stackrel{\text{TR}\ddot{U}KK}{=} \left(F(x_n)-F(x_{n-1})\right) + \left(F(x_{n-1})-F(x_{n-2})\right) + \ldots + \left(F(x_1)-F(x_0)\right) = \sum_{i=0}^{n-1} F(x_{i+1}) - F(x_i) =$$

Tegyünk egy apróbb megállapítást: F-re $[x_i, x_{i+1}]$ -en a Lagrange középérték tétel:

$$F(x_{i+1}) - F(x_i) = F'(\xi_i)(x_{i+1} - x_i) \stackrel{F'=f}{=} f(\xi_i)(x_{i+1} - x_i)$$

Folytatván a bizonyítást:

$$F(b) - F(a) = \sum_{i=0}^{n-1} f(\xi_i)(x_{i+1} - x_i)$$

$$s(f,\tau) < F(b) - F(a) < S(f,\tau)$$
 inf

 $\forall \tau$ -ra sup \Rightarrow

$$I_*(f) \le F(b) - F(a) \le I^*(f)$$

$$f \in R[a,b] \quad \Rightarrow \quad I_*(f) = I^*(f) = \int^b f = \int^b f = F(b) - F(a). \quad \blacksquare$$

10. Az integrálfüggvény folytonosságára vonatkozó állítás.

Tegyük fel hogy $f \in R[a, b], x_0 \in [a, b],$

$$F(x) := \int_{x_0}^x f(t) dt \quad (x \in [a, b]).$$

Ekkor az F függvény folytonos [a, b]-n.

Bizonyítás: $c \in [a, b]$ tetszőleges, $x \in [a, b]$, és pl. x > c.

$$|F(x) - F(c)| = \left| \int_{x_0}^x f - \int_{x_0}^c f \right| = \left| \int_{x_0}^x f + \int_c^{x_0} f \right| = \left| \int_c^x f(t) dt \right| \quad \stackrel{x>0}{\leq} \quad \int_c^x |f(t)| dt \leq \int_c^x |f(t)| dt \leq$$

11. Az integrálfüggvény differenciálhatóságára vonatkozó állítás.

Tegyük fel hogy $f \in R[a, b], x_0 \in [a, b],$

$$F(x) := \int_{x_0}^x f(t) dt \quad (x \in [a, b]).$$

Ha $f \in C\{d\}$ $(d \in (a,b))$, akkor az $F \in D\{d\}$ és F'(d) = f(d).

Bizonyítás: Tegyük fel hogy $d \in (a, b)$ és $f \in C\{d\}$.

Igazoljuk:

$$F \in D\{d\} \quad \text{\'es} \quad f(d) = F'(d) := \lim_{h \to 0} \frac{F(d+h) - F(d)}{h}$$

$$\Leftrightarrow \quad \lim_{h \to 0} \left(f(d) - \frac{F(d+h) - F(d)}{h} \right) = 0 \quad \Leftrightarrow \quad \lim_{h \to 0} \left| f(d) - \frac{F(d+h) - F(d)}{h} \right| = 0,$$
 azaz
$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall |h| < \delta : \quad \left| f(d) - \frac{F(d+h) - F(d)}{h} \right| < \varepsilon. \quad (*)$$

Legyen $\varepsilon > 0$ adott:

$$\left|f(d) - \frac{F(d+h) - F(d)}{h}\right| = \left|f(d) - \frac{1}{h} \left(\int_{x_0}^{d+h} f - \int_{x_0}^d f\right)\right| = \left|f(d) - \frac{1}{h} \left(\int_{x_0}^{d+h} f + \int_{d}^{x_0} f\right)\right| = \left|f(d) - \frac{1}{h} \left(\int_{x_0}^{d+h} f + \int_{d}^{x_0} f\right)\right| = \left|f(d) - \frac{1}{h} \int_{d}^{d+h} f(t) dt\right| \qquad \left|f(d) - \frac{1}{h} \int_{d}^{d+h} f(d) dt\right| \qquad \left|\frac{1}{h} \int_{d}^{d+h} f(d) - f(t) dt\right| \qquad \leq \qquad \frac{1}{h} \int_{d}^{d+h} |f(d) - f(t)| dt.$$
 Mivel $f \in C\{d\} \implies \varepsilon$ -hoz $\exists \delta > 0 \quad \forall |t - d| < \delta : \quad |f(d) - f(t)| < \varepsilon.$

Ha h > 0, $(0 < h < \delta)$ és $t \in [d, d + h] \Rightarrow$

$$\left| f(d) - \frac{F(d+h) - F(d)}{h} \right| \le \frac{1}{h} \cdot \varepsilon \underbrace{\int_{d}^{d+h} 1 \, dt}_{=h} = \varepsilon \quad \Rightarrow \quad (*). \quad \blacksquare$$