模块三 椭圆与方程

第1节 椭圆的定义、标准方程及简单几何性质 (★★)

强化训练

1. (★★) 椭圆 $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$ 的右顶点为 A(1,0),过其焦点且垂直于长轴的弦长为 1,则椭圆的方 程为____.

答案:
$$\frac{y^2}{4} + x^2 = 1$$

解析: 椭圆的焦点在y轴上, 椭圆的右顶点为 $A(1,0) \Rightarrow b=1$,

椭圆的过焦点且垂直于长轴的弦是通径,可联立通径所在直线和椭圆的方程来求通径长,

如图,设
$$F(0,c)$$
是椭圆的上焦点,联立
$$\begin{cases} y=c \\ \frac{y^2}{a^2} + \frac{x^2}{b^2} = 1 \end{cases}$$
 消去 y 可得 $x^2 = b^2(1 - \frac{c^2}{a^2}) = b^2 \cdot \frac{a^2 - c^2}{a^2} = \frac{b^4}{a^2}$

所以 $x = \pm \frac{b^2}{a}$,故通径长 $|MN| = \frac{2b^2}{a}$,由题意, $\frac{2b^2}{a} = 1$,所以 $a = 2b^2 = 2$,故椭圆的方程为 $\frac{y^2}{4} + x^2 = 1$.

- 2. (2023 湖南模拟 ★★) 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{3} = 1(a > \sqrt{3})$ 的左、右焦点分别为 F_1 , F_2 , A 为上顶点,若 ΔAF_1F_2 的面积为 $\sqrt{3}$,则 ΔAF_1F_2 的周长为()
- (A) 8 (B) 7 (C) 6 (D) 5

答案: C

解析: 涉及 ΔAF_1F_2 的面积, 先画图来看面积怎么算, 如图, 可用 F_1F_2 为底, OA 为高来算,

 $S_{\Delta AF_1F_2} = \frac{1}{2}|F_1F_2| \cdot |OA| = \frac{1}{2} \times 2c \times b = bc = \sqrt{3}$ ①,我们发现 b 已知,故可求得 c,再由 a, b, c 关系求 a,

由题意, $b=\sqrt{3}$,代入①得: c=1,所以 $a=\sqrt{b^2+c^2}=2$,

故 ΔAF_1F_2 的周长 $L = |AF_1| + |AF_2| + |F_1F_2| = 2a + 2c = 6$.

3. $(2023 \cdot 安徽蚌埠三模 \cdot ★★)若椭圆 <math>C: \frac{x^2}{m} + \frac{y^2}{2} = 1$ 的离心率为 $\frac{\sqrt{6}}{3}$,则椭圆 C的长轴长为()

(A) 6 (B)
$$\frac{2\sqrt{6}}{3}$$
 $g_{2\sqrt{6}}$ (C) $2\sqrt{6}$ (D) $2\sqrt{2}$ $g_{2\sqrt{6}}$

答案: D

解析: 椭圆的焦点在哪个坐标轴不确定, 故需讨论,

当椭圆 C 的焦点在 x 轴上时, m>2,且 $a=\sqrt{m}$, $b=\sqrt{2}$, $c=\sqrt{m-2}$, 离心率 $e=\frac{c}{a}=\frac{\sqrt{m-2}}{\sqrt{m}}=\frac{\sqrt{6}}{3}$,

解得: m=6, 满足m>2, 所以椭圆C的长轴长 $2a=2\sqrt{6}$;

当椭圆 C 的焦点在 y 轴上时, 0 < m < 2 ,且 $a = \sqrt{2}$, $b = \sqrt{m}$, $c = \sqrt{2-m}$, 离心率 $e = \frac{c}{a} = \frac{\sqrt{2-m}}{\sqrt{2}} = \frac{\sqrt{6}}{3}$,

解得: $m = \frac{2}{3}$, 满足 0 < m < 2, 椭圆 C 的长轴长 $2a = 2\sqrt{2}$.

4. (2022 •河北衡水中学六调 •★★) 阿基米德 (公元前 287 年至公元前 212 年) 不仅是著名的物理学家,也是著名的数学家,他利用"逼近法"得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.

若椭圆 C 的对称轴为坐标轴,焦点在y 轴上,离心率为 $\frac{\sqrt{7}}{4}$,面积为 12π ,则椭圆 C 的方程为()

(A)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 (B) $\frac{x^2}{3} + \frac{y^2}{4} = 1$ (C) $\frac{x^2}{18} + \frac{y^2}{32} = 1$ (D) $\frac{x^2}{4} + \frac{y^2}{36} = 1$

答案: A

解析:结合题干信息,把面积和离心率翻译成关于 a, b 的方程,求解即可,

由题意,设椭圆 C 的面积为 S,则 $\frac{S}{\pi}=ab$,所以 $S=\pi ab=12\pi$,故 ab=12 ①,

椭圆 *C* 的离心率 $e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \frac{\sqrt{7}}{4}$ ②,

联立①②解得: a=4, b=3, 结合椭圆 C 的焦点在y 轴上可得其方程为 $\frac{x^2}{9}+\frac{y^2}{16}=1$.

5. (★★) 已知 $\triangle ABC$ 的周长是 8,且 B(-1,0), C(1,0),则顶点 A 的轨迹方程是 ()

(A)
$$\frac{x^2}{9} + \frac{y^2}{8} = 1(x \neq \pm 3)$$
 (B) $\frac{x^2}{9} + \frac{y^2}{8} = 1(x \neq 0)$ (C) $\frac{x^2}{4} + \frac{y^2}{3} = 1(y \neq 0)$ (D) $\frac{y^2}{4} + \frac{x^2}{3} = 1(y \neq 0)$

答案: A

解析:因为 ΔABC 的周长为8,所以|AB|+|AC|+|BC|=|AB|+|AC|+2=8,故|AB|+|AC|=6>|BC|①,

点A到定点B,C的距离之和等于定长,所以点A的轨迹是以B,C为焦点的椭圆,

由①知 2a=6, 所以 a=3, 又由焦点 B, C 的坐标知 c=1, 所以 $b^2=a^2-c^2=8$,

故椭圆的方程为 $\frac{x^2}{9} + \frac{y^2}{8} = 1$,如图,A,B,C 要构成三角形,所以点A 不能在x 轴上,故 $x \neq \pm 3$,选 A.

6. (★★) 已知 F_1 , F_2 是椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 的左、右焦点,P 为椭圆上一点,M 为 F_1P 中点, |OM| = 3, 则 $|PF_1|=$ _____·

答案: 4

解析: 涉及中点, 可考虑中位线, 如图, M为 PF_1 中点, O 是 F_1F_2 中点, 所以 $|PF_2| = 2|OM| = 6$, 已知 $|PF_2|$ 求 $|PF_1|$,用椭圆定义即可,由题意,a=5,所以 $|PF_1|+|PF_2|=2a=10$,故 $|PF_1|=10-|PF_2|=4$

【反思】椭圆隐藏的三个中点: $O \in F_1F_2$ 、长轴、短轴的中点.

7. (2023 • 四川模拟 • ★★★)已知椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的两个焦点分别为 F_1 , F_2 , 一条平行于 x 轴的直 线 l 与椭圆 C 交于 A, B 两点,则 $|AF_1| + |BF_1| = ($

$$(\mathbf{A})$$
 4

$$(\mathbf{C})$$
 2

(A) 4 (B) 3 (C) 2 (D)
$$2\sqrt{7}$$

答案: A

解析:如图,涉及椭圆上的A,B两点到焦点的距离,考虑用椭圆定义,但没法用定义直接第 $|AF_1|+|BF_2|$, 观察图形发现可考虑用对称性来转化,

由题意,长半轴长a=2,由图形的对称性, $|BF_1|=|AF_2|$,所以 $|AF_1|+|BF_1|=|AF_1|+|AF_2|=2a=4$ ·

8. $(\star\star\star\star)$ 已知 F_1 , F_2 为椭圆 $\frac{x^2}{25}+\frac{y^2}{9}=1$ 的两个焦点,过 F_1 的直线交椭圆于 A, B 两点,若 $|AF_2|+|BF_2|=12$,

则|AB|=____·

答案: 8

解析: 椭圆上的点到焦点的距离问题都可优先考虑椭圆定义,

由题意,a=5,因为A,B 在椭圆上,所以 $\begin{cases} |AF_1|+|AF_2|=10\\ |BF_1|+|BF_2|=10 \end{cases}$,题干有 $|AF_2|+|BF_2|$,所以把两式相加,

故 $|AF_1| + |BF_1| + |AF_2| + |BF_2| = 20$ ①,由图可知 $|AF_1| + |BF_1| = |AB|$,代入①得: $|AB| + |AF_2| + |BF_2| = 20$,又 $|AF_2| + |BF_2| = 12$,所以 $|AB| = 20 - (|AF_2| + |BF_2|) = 8$ ·

答案: 5

解析:如图,直接观察P在何处时取得最值不易,可用椭圆定义将 $|PF_1|$ 转化为 $|PF_2|$ 再看,

由题意, $|PF_1| + |PF_2| = 4$,所以 $|PF_1| = 4 - |PF_2|$,故 $|PA| + |PF_1| = |PA| + (4 - |PF_2|) = |PA| - |PF_2| + 4$ ①,由三角形两边之差小于第三边知 $|PA| - |PF_2| \le |AF_2|$,结合①可得: $|PA| + |PF_1| \le |AF_2| + 4$ ②,当且仅当点P位于图中 P_0 处时取等号,因为 P_0 人以时取等号,因为 P_0 人以,所以 $|P_0| = 1$,

代入②得: $|PA| + |PF_1| \le 5$, 故 $|PA| + |PF_1|$ 的最大值为 5.

