Intel AI4MFG Project Report: Pill Quality Checker

Project Details

Project : Visual Inspection for QC ad Assurance
Organisation : Veesure Animal Health, Ahmedabad

Category : Industry defined problem

Description : Manual visual inspection in manufacturing often results in inconsistent quality checks and a high error rate.

There is a need for an Al-powered visual inspection system that can automatically detect defects, anomalies, and deviations in real-time, ensuring consistent quality control and reducing human error in quality assurance

processes

1. Project Overview

a. Project Title

Pill Quality Checker using Deep Learning

b. Project Description

This project leverages AI to detect pill defects — specifically classifying pills into *Good*, *Broken*, or *Chipped*. The system uses a MobileNetV2-based model integrated into a user-friendly Streamlit interface for fast, image-based quality assessment. It aims to assist pharmaceutical manufacturers in automating visual inspection processes to reduce human error and improve consistency.

c. Timeline

• Dataset Preparation: 2 days

• Model Training (MobileNetV2): 1 day

• Streamlit App Development: 1 day

• Testing & Deployment: 1 day

Total Duration: ~5 days

d. Benefits

- Reduces manual inspection effort
- Provides real-time, on-site quality control
- Enhances manufacturing reliability and reduces defect rates

e. Team Members

- Smit Patel (Developer & Researcher)
- Model Trainer: Self
- Reviewer: [Prof. Brijesh Bhandari, Intel India]

f. Risks

- Small dataset size may affect accuracy
- Live hosting restrictions (e.g., TensorFlow not working on Streamlit Cloud)
- Device-dependent image quality issues

2. Objectives

a. Primary Objective

To build an AI model that accurately classifies pill images into "Good", "Broken", or "Chipped".

b. Secondary Objectives

- Develop an interactive Streamlit UI
- Provide end-users with real-time classification feedback
- Enable future integration with webcam-based inspection systems

c. Measurable Goals

- Accuracy > 90% on validation data
- Prediction confidence > 80% for clear images
- Deployment on Streamlit for demonstration (local version successful)

3. Methodology

a. Approach

- Used **Transfer Learning** with MobileNetV2
- Built using Python and TensorFlow
- Lightweight model design to ensure quick inference

b. Phases

- 1. Image dataset collection (3 folders: Good, Broken, Chipped)
- 2. Preprocessing and augmentation
- 3. Model training in Google Colab
- 4. Streamlit interface development
- 5. Final model testing

c. Deliverables

- Trained .h5 model
- labels.txt
- Streamlit UI (streamlit_app.py)
- Project GitHub repo

e. Testing and Quality Assurance

- Manual testing with new pill images
- Used argmax + confidence score to validate predictions
- Applied data augmentation for robustness

f. Risk Management

- Used dropout layers to prevent overfitting
- If dataset imbalance exists, class weighting will be applied
- Local deployment as fallback if cloud hosting fails

4. Technologies Used

a. Programming Languages

• Python 3.10

b. Development Frameworks

• TensorFlow (Keras), Streamlit

c. Database Management Systems

• None required (image-based classification)

d. Development Tools

- Google Colab (for training)
- Streamlit (for UI)
- GitHub (version control)

e. Testing Tools

- Manual prediction testing using test set
- Visualization of prediction confidence via softmax output

f. Cloud Services

Google Colab

g. Security

- No user data stored only temporary image processing
- Local model inference ensures data privacy

h. APIs and Web Services

• None currently. Future enhancement may include REST API or webcam integration.

5. Results

a. Key Metrics

- Validation Accuracy: ~92%
- Inference Speed: ~1 sec per image
- Classes Predicted: Good, Broken, Chipped

b. ROI

- Reduces manual visual inspection
- Improves detection consistency
- Can be scaled to production lines with hardware

6. Conclusion

a. Recap the Project

The Pill Quality Checker system combines deep learning with a user interface to automatically classify pill defects with high accuracy and speed.

b. Key Takeaways

- Lightweight models like MobileNetV2 work well for image-based manufacturing problems
- Simple UIs like Streamlit are effective for demonstrating AI models
- TensorFlow requires specific hosting environments (avoid 3.13 on Streamlit)

c. Future Plans

- Integrate real-time webcam capture
- Expand to detect more defects (e.g., color fade, missing print)

• Deploy on Hugging Face or custom server

d. Successes and Challenges

- Successfully trained model and deployed it locally
- Achieved high accuracy
- Faced hosting issues due to Python version conflicts with TensorFlow on Streamlit Cloud

7. Project Specifics

a. Project URL

Not hosted online due to cloud compatibility issues

Run locally using *streamlit run streamlit_app1.py*

https://drive.google.com/file/d/1uP6q0_vCHA9fyn1Jmjy0TtGlWAHWAP1Q/view?usp=sharing

b. GitHub URL

https://github.com/Zam3690/pill-quality-checker

c. Colab URL

https://colab.research.google.com/drive/1Kg82jI7-i3PC6L1HSyqFkLx6E_mZbba4?usp=sharing

d. Dataset URL

https://drive.google.com/drive/folders/1qJ7M4d4whzj3amf4KGGb_RA_vb_i4tV_?usp=sharing

8. Results

