Improving Operational Efficiency & Performance in Public Hospitals

TEAM AMA

Amira, Maruf, Ali

Background in Qatar

Over 1m Patient Admissions/Year

12 Beds for every 10,000 population

Table 34: Average Length of Stay by Public Hospital (2010)

Hospital	Average Length of Stay (days)
Hamad General Hospital	9.3
Rumailah Hospital (includes Rehab &Geriatrics)	29.5
Women's Hospital	2.9
Al Amal Hospital	9
Al Khor Hospital	4.6
Average	11.1
OECD	8.8

Source: HMC 2011, Table 3; OECD 2012.

Problem Statement

Public hospitals are operationally inefficient in treating patients & thus unable to accommodate patients accordingly.

Qatar & GCC in the Context

90% of Qatar is dependent on Public Healthcare.

Qatar has the 3rd highest number of hospital visits in the GCC.

Has the highest rate of patient admissions & it is increasing by 12.5% per year.

Table 37: Visits by Treatment Type in Public Primary Health Care Centres (2010)

	Niconale an affectates	Annual Croudh			
Treatment	Number of visits ('000)	Annual Growth Rate (%)	Total Share (%)		
General Visits					
General	2,677	3.7	78.6		
Well Baby	267	4.8	7.8		
Antenatal	29	33.4	0.9		
Subtotal	2,974	4	87.3		
Specialised Visits					
Dental	291	21.9	8.6		
Diabetic	79	1	2.3		
Eye	39	7.3	1.1		
Ear Nose and Throat	16	23.4	0.5		
Cardiology	9	12.5	0.3		
Subtotal	434	16.3	12.7		
Total	3,408	5.5	100		

Source: SCH 2012, Table 4-26.

Table 33: Bed Occupancy Rate by Public Hospital (2010)

Hospital	Bed Occupancy (%)
Hamad General Hospital	92
Rumailah Hospital (includes Rehab& Geriatrics)	86.2
Women's Hospital	75
Al Amal Hospital	81
Al Khor Hospital	66.6
Average	80.2
OECD	75.2

Source: HMC 2011, Table 24.

Qatar & GCC in the Context

- \bullet 92% of beds at public hospitals are occupied per month
- Optimum bed occupancy is 75%
- Coronary heart diseases & diabetes constitutes of the highest visits per year (>30%)
- Prevention will be more effective than treatment.

Literature Review

Literature Review

What Qatar is Missing in Efficiency?

Optimizing healthcare planning through analytics to create:

Heat Map for Diseases

Disease Occurrence Data

Demographics Data

Integration of EHR with social media to create:

Role of Analytics

The Value of Analytics for Diseases & Hospitals

Allows patterns of diseases to be recorded & correlations to be found

 Allows information regarding diseases to be analyzed thus capable of making predictions

Shows effectiveness/efficiency within processes

Gives a positive future impact

Top Causes of Hospital Visits

 Analysis of most frequent patient diseases in hospitals to use predictive/prescriptive analytics to better the experience and prepare the hospitals accordingly.

Top Internal Causes for visits:

<u>Top External Causes for visits:</u>

Potential Methodologies of Data Analysis

Patterns in Healthcare Reports

Twitter & Instagram Sentiment Analysis

Google Trend Analysis

Surveys

Analyzing Hospital Records

Possible areas of improvement in Hospitals

 Are the hospitals aware of when flu season is approaching? Are they prepared?

Why are patients being readmitted?

 Are there enough supplies (beds, medicines, staff..etc) in hospitals to accommodate to its patients?

The Potential of Analytics

Ease patients' experience

Detecting diseases before symptoms are even shown

Have a "better safe then sorry" approach

Example

Preventing **obesity** in patients by tracking information on:

Food Habits Sleeping Patterns

Daily Work Routine

Case Studies

Social Media in Ebola Outbreak

: Global

: 6 months

Method:

- Infoveillance
 - ✓ Google Trends
 - ✓ ProMed Emailing System
 - ✓ Online news databases

Results:

- Ebola spread in early April 2014
- No international health emergency until late August.

Discussion:

- Gaps in responses to potential global health threats.
- Media reports issued medical evaluation differently.

Infodemiology and Infoveillance of Multiple Sclerosis in Italy

Method:

- Large Scale Monitoring
- Data Mining
- Infoveillance using Google Trends

Analysis:

- Multiple Linear Regression
- Correlation Coefficient
- P-Values
- Cross Validation

Results:

Multiple Sclerosis therapy & symptoms most searched terms by users

Discussion:

Google Trend queries shows users trying to understand the disease & treatments

Internet Search Patterns of HIV and Digital Divide in the Russian Federation: Infoveillance Study

(o) : Russia

: 1 year

Goals:

- 1) Validate Internet search patterns against national HIV prevalence data
- 2) Investigate relationship between search patterns & determinants of **Internet** access

Method:

- Infoveillance using Google Trends & Yandex
- Surveys
- Digital Divide exists
- Obtained HIV prevalence data from Russian AIDS Centre

Data matching the determinants of Internet access with search patterns through multivariate analysis.

- Age
- Education
- Income
- Broadband price
- Urbanization

Principal component analysis (PCA)

Analysis:

- Multivariate Analysis
- Spearman Rank Correlation
- Cross Validation

Discussion:

- Google data not adequate for subnational HIV surveillance in Russia.
- Found strong spatial correlations between official HIV rates & searches for HIV.
- Internet being used effectively by PLHIV because of strong correlations between search patterns & disease prevalence.

Data Sets

Google Search Trends

An example of correlations is shown below between burger searches in relation to cholesterol rates at a specific geographical location.

https://www.google.ie/trends/

Instagram & Twitter Trends

- Instagram and Twitter sentiments can be used to determine patient satisfaction in accordance to healthcare management.
- Relationship of certain lifestyle and diseases.

Future Developments

Future Developments

Adopting more prescriptive analytics over predictive analytics to

Reduce Re-admission (Increase Quality)

Lower Costs Incurred (Decrease Price)

- Transforming from fee-for-service to a value-based system
- Implement Telehealth services for cardiac & diabetic patients to

Monitor Lifestyle
Through App

Look at Food Intake & Habits

Reduce Cost of Medicine & Treatment

Discussion Questions

 How sharing data through EHR will affect hospitals? Will they lose their competitive advantage?

Will a hospitals prescriptive system from given data sets (google, social media trends) be adaptive/reliable to be introduced at different locations and demographics?

Thank you

References

- HOSSAIN, L., KAM, D., KONG, F., WIGAND, R. T., & BOSSOMAIER, T. (2016). Social media in Ebola outbreak. Epidemiology and Infection, 144(10), 2136–2143. doi:10.1017/S095026881600039X
- Bragazzi, N. L. (2013). Infodemiology and Infoveillance of Multiple Sclerosis in Italy. *Multiple Sclerosis International*, 2013, 924029. http://doi.org/10.1155/2013/924029
- Zheluk, A., Quinn, C., Hercz, D., & Gillespie, J. A. (2013). Internet Search Patterns of Human Immunodeficiency Virus and the Digital Divide in the Russian Federation: Infoveillance Study. *Journal of Medical Internet Research*, 15(11), e256. http://doi.org/10.2196/jmir.2936
- Pentland, A., Reid, T. G., & Heibeck, T. (2013). Big Data and Health: Revolutionizing Medicine and Public Health. WISH Big Data and Health Report.
- Supreme Council of Health Annual Report (2014).
 http://www.nhsq.info/app/media/1292