Homework 2

Name: William Sun UID: A16013590

1 Convolutional Neural Networks

Problem A: Convolution

i.

Solution A.i:

8 filters, each with $5 \times 5 \times 3$ weights plus a bias term per filter is equal to $(8 \times 5 \times 5 \times 3) + 8 = 608$ parameters.

ii.

Solution A.ii:

 $W_{out} = H_{out} = (W - F + 2P)/S + 1 = (32 - 5 + 0)/1 + 1 = 28$. Thus, the output tensor has shape (28, 28, 8) where 8 is based on the number of filters.

Problem B: Pooling

i.

Solution B.i:

Calculating average using floating point numbers:

$$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 0.25 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 1 \\ 0.25 & 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 0.25 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.25 \\ 1 & 0.5 \end{bmatrix}$$

ii.

Solution B.ii:

All 4 matrices have the same result:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

2 Recurrent Neural Networks

Problem A: LSTM

i.

Solution A.i:

Use cross-entry loss.
$$l_{12} = -y_{4} \mid 0$$
 \hat{y}_{4}

where $\hat{y}_{4} = c (w_{y} y_{4})$

1) $\delta c_{e} = \frac{3l_{4}}{3c_{4}} = \frac{3l_{4}}{3c_{4}} \cdot \frac{3c_{4}}{3l_{4}} \cdot \frac{3l_{4}}{3c_{4}}$
 $c_{4} = c_{4} = c_{$

ii.

Solution A.ii:

Based on the derivations above, the gradient does not explode if the forget gates are close to 1 and the input/output gates are close to 0. Looking at the gradient of c_t , if the output gate is close to zero, the gradient approaches 0 too, which means the system remains stable and unchanged. Additionally, since the forget gate is close to 1 and input is close to 0, the cell state will keep its previous value, thereby preventing both an exploding gradient and vanishing gradient.

3 Poem Generation

Problem A: Pre-processing

i.

Solution A.i: Your solution here

ii.

Solution A.ii: Your solution here

Problem B: Model Training

i.

Solution B.i: Your solution here

ii.

Solution B.ii: Your solution here

iii.

Solution B.iii: Your solution here