Lista de Exercícios 3 de Álgebra Linear Computacional

Prof.: Fabrício Murai e Letícia Pereira Pinto

Informações importantes:

- $\bullet\,$ Data de entrega: até 23:59 do dia 03/04/2019.
- Questões podem ser discutidas entre até três alunos. Nomes dos colegas precisam ser listados. Contudo, a escrita das soluções e submissão deve ser feita individualmente.
- Submissão deve ser feita em formato PDF através do Moodle, mesmo que tenham sido resolvidas a mão e escaneadas.
- Todas as soluções devem ser justificadas.
- 1. Escreva uma função python que recebe m como entrada e executa os seguintes passos:
 - (i) gera uma matriz aleatória $W_{m\times 4}$ (função numpy.random.randn),
 - (ii) divide cada uma das entradas por \sqrt{m} (salva resultado em \tilde{W}),
 - (iii) calcula $Z = \tilde{W}^{\top} \times \tilde{W}$, (iv) imprime Z,
 - (iv) calcula a norma Frobenius da diferença entre Z e a matriz identidade $I_{4\times 4}$.
 - (a) Na solução deste subitem você deve apenas incluir o código.
 - (b) Qual a norma da diferença obtida para m = 100? E para m = 10000?
 - (c) O que podemos dizer sobre a matriz \tilde{W} ?
- 2. Seja $x = (1, 2, 3)^{\top}$.
 - (a) Calcule a projeção x_u de x em $u = (1,1,0)^{\top}$ e a projeção x_v de x em $v = (1,-1,1)^{\top}$.
 - (b) Por que é que a projeção de x no espaço S gerado por $\{u,v\}$ (ou seja, x_u+x_v) é diferente de x?
- 3. Considere o conjunto de dados abaixo com as notas de 5 estudantes em 4 disciplinas. Calcule a matriz de covariância.

Estudante	GAAL	PDS1	Cálculo 1	ALC
1	90	80	60	95
2	65	75	90	70
3	40	90	60	55
4	80	60	59	75
5	60	100	80	80

- 4. Suponha m > n. Vamos abreviar linearmente independente por LI. Assinale V ou F.
 - () Um conjunto de n vetores ortogonais em \mathbb{R}^m é sempre LI.
 - () Um conjunto de n vetores LI em \mathbb{R}^m é sempre formado por vetores ortogonais.
 - () É possível obter vetores $v_1, v_2, \ldots, v_m \in \mathbb{R}^n$ LI.
 - () Uma base formada pelos vetores LI $v_1, v_2, \dots, v_n \in \mathbb{R}^m$ gera um subespaço de \mathbb{R}^m .
 - () A projeção de um vetor x em um subespaço de \mathbb{R}^m é sempre diferente de x.
 - () Seja x_S a projeção de um vetor unitário $x \in \mathbb{R}^m$ no subespaço vetorial S. É possível que $||x_S|| > ||x||$.
- 5. LEMBRETE: Não deixe de submeter também a lista "Exercícios Práticos 3 (EP3)" pelo Moodle.