MARTINGALES ET TEMPS D'ARRÊT

Exercice 1 (Temps d'arrêt). Soit $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0})$ un espace filtré. Parmi les variable aléatoires suivantes, lesquelles sont des temps d'arrêt?

- 1. Le minimum de deux temps d'arrêt.
- 2. Le maximum de deux temps d'arrêt.
- 3. La somme de deux temps d'arrêt.
- 4. Le premier instant où un $\{\mathcal{F}_t\}_{t\geq 0}$ —mouvement brownien atteint une valeur donnée $a\in\mathbb{R}$.
- 5. Le dernier zéro d'un $\{\mathcal{F}_t\}_{t\geq 0}$ —mouvement brownien sur l'intervalle [0,1].

Exercice 2 (Quelques martingales du mouvement brownien). Soit $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré et soit $\{B_t\}_{t\geq 0}$ un $\{\mathcal{F}_t\}_{t\geq 0}$ —mouvement brownien.

- 1. Montrer que $\{B_t\}_{t\geq 0}$ est une martingale.
- 2. Montrer que $\{B_t^2 t\}_{t>0}$ est une martingale.
- 3. Construire une martingale à partir du processus $\{B_t^3\}_{t\geq 0}$.
- 4. Construire une martingale à partir du processus $\{B_t^4\}_{t\geq 0}$.
- 5. Soit $\lambda \in \mathbb{C}$. Montrer que le processus $\{e^{\lambda B_t \frac{\lambda^2 t}{2}}\}_{t>0}$ est une martingale.
- 6. Construire une martingale à partir du processus $\{\cosh(\lambda B_t)\}_{t\geq 0}$.

Exercice 3 (Loi de temps d'atteinte). Soit $\{B_t\}_{t>0}$ un mouvement brownien et a>0.

- 1. À l'aide de la martingale $\{B_t^2 t\}_{t>0}$, calculer l'espérance de $T_a^* := \inf\{t \geq 0 : |B_t| = a\}$.
- 2. À l'aide d'une martingale bien choisie, calculer la variance de T_a^* .
- 3. À l'aide d'une martingale bien choisie, calculer la transformée de Laplace de T_a^{\star} .
- 4. Calculer la transformée de Laplace de $T_a := \inf\{t \ge 0 \colon B_t = a\}$ et retrouver le fait que T_a a même loi que $(a/B_1)^2$. Que vaut $\mathbb{E}[T_a]$?

Exercice 4 (Maximum du mouvement brownien avec dérive). Soit $\{B_t\}_{t\geq 0}$ un mouvement brownien. On fixe a,b>0 et on pose $\tau:=\inf\{t\geq 0\colon B_t-bt=a\}$.

- 1. Montrer que τ est un temps d'arrêt relativement à la filtration naturelle.
- 2. À l'aide d'une martingale bien choisie, calculer la transformée de Laplace de τ .
- 3. En déduire la probabilité que la courbe du mouvement brownien soit au dessous de la demi-droite $t\mapsto a+bt$. Pouvait-on prévoir que la réponse ne dépendrait que de ab?
- 4. Quelle est la loi de la variable aléatoire $U := \sup_{t>0} B_t bt$?

Exercice 5 (Maximum du pont brownien). Soit $\{Z_t\}_{0 \le t \le 1}$ un pont brownien.

- 1. Pour $t \ge 0$ on pose $B_t = (1+t)Z_{\frac{t}{1+t}}$. Vérifier que $\{B_t\}_{t>0}$ est un mouvement brownien.
- 2. En utilisant l'exercice précédant, déterminer la loi de la variable $V:=\sup_{0\leq t\leq 1} Z_t.$

Exercice 6 (Une preuve du théorème d'arrêt). Sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$, on considère une martingale continue $\{M_t\}_{t\geq 0}$ et un temps d'arrêt T. Le but de cet exercice est de montrer que $\{M_{t\wedge T}\}_{t\geq 0}$ est encore une martingale. Dans tout l'exercice, "discret" signifiera à valeurs dans $\mathcal{D}_n:=\{k2^{-n}\colon k\in\mathbb{N}\}$ pour un certain $n\in\mathbb{N}$.

- 1. Vérifier que la famille $\{M_{\tau} \colon \tau \text{ temps d'arrêt discret} \leq t\}$ est uniformément intégrable.
- 2. Montrer que si s, t et T sont discrets avec $s \le t$ deux réels non aléatoires, alors

$$\mathbb{E}[M_{t\wedge T}|\mathcal{F}_s] = M_{s\wedge T}.$$

3. Exhiber une suite de temps d'arrêt discrets qui décroît vers T, et conclure.

Exercice 7 (Tribu des événements antérieurs à T). Soit T un temps d'arrêt sur un espace filtré $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t>0})$. On rappelle que la tribu des événements antérieurs à T est

$$\mathcal{F}_T := \{ A \in \mathcal{F} \colon \forall t \ge 0, A \cap \{ T \le t \} \in \mathcal{F}_t \}.$$

- 1. Vérifier qu'il s'agit bien d'une sous-tribu de \mathcal{F} .
- 2. Soit S un temps d'arrêt tel que $S \leq T$. Montrer que $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- 3. Soit $\{X_t\}_{t\geq 0}$ un processus continu et adapté. Montrer que $X_T\mathbf{1}_{T<\infty}$ est \mathcal{F}_T -mesurable.

Exercice 8 (Martingale à variation finie). Une fonction $f: \mathbb{R}_+ \to \mathbb{R}$ est à variation finie si

$$V_t(f) := \sup \left\{ \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| \colon n \in \mathbb{N}^*, 0 = t_0 \le \dots \le t_n = t \right\} < +\infty,$$

pour tout $t \ge 0$. On rappelle que si f est continue, alors $t \mapsto V_t(f)$ l'est aussi. Soit $M = \{M_t\}_{t \ge 0}$ une martingale dont les trajectoires sont continues et à variation finie. Montrer que p.s., les trajectoires de M sont constantes. Indication : on pourra supposer que $V_t(M) \in L^{\infty}$.

Exercice 9 (Caractérisation de Lévy). Sur un espace $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$, on considère une martingale continue $\{M_t\}_{t\geq 0}$. On suppose que $M_0=0$ et que $\{M_t^2-t\}_{t\geq 0}$ est une martingale.

- 1. Donner un exemple d'une telle martingale.
- 2. Soit $f \in \mathcal{C}^2(\mathbb{R},\mathbb{C})$ telle que f,f' et f'' sont bornées. Montrer que pour tout $0 \le s \le t$,

$$\mathbb{E}[f(M_t)|\mathcal{F}_s] = f(M_s) + \frac{1}{2} \int_s^t \mathbb{E}[f''(M_u)|\mathcal{F}_s] du.$$

(On pourra subdiviser l'intervalle [s,t] et utiliser le développement de Taylor de f.)

3. En déduire que pour tout $\lambda \in \mathbb{R}$ et tout $0 \le s \le t$,

$$\mathbb{E}\left[e^{i\lambda(M_t - M_s)} \middle| \mathcal{F}_s\right] = 1 - \frac{\lambda^2}{2} \int_s^t \mathbb{E}\left[e^{i\lambda(M_u - M_s)} \middle| \mathcal{F}_s\right] du.$$

- 4. En déduire que $\{e^{i\lambda M_t + \frac{\lambda^2 t}{2}}\}_{t\geq 0}$ est une martingale pour tout $\lambda \in \mathbb{R}$.
- 5. En conclure que $\{M_t\}_{t\geq 0}$ est en fait nécessairement un mouvement brownien!