Vecteurs et géométrie - 1

Calculer un vecteur reliant deux points. A.

On définit $\overrightarrow{AB} =$ Soit deux points $A = (x_A; y_A)$ et $B = (x_B; y_B)$. Définition.

- Le vecteur \overrightarrow{AB} représente la translation qui déplace le point A au point B, car $t_{\overrightarrow{AB}}(A)=B$
- \overrightarrow{AB} est donc souvent représenté par une flèche reliant le point A au point B.

Méthode.

Pour calculer \overrightarrow{AB} on utilise la formule $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Exemple.

Soit
$$A = (1; 1)$$
 et $B = (4; -1)$, calculer \overrightarrow{AB} .

$$\overrightarrow{AB} =$$

Exercice A1.

1) Lire graphiquement les coordonnées des points ci-contre :

$$A =$$

$$B =$$

$$C =$$

$$D = E =$$

2) Déterminer les vecteurs suivants par le calcul, puis vérifier graphiquement :

$$\overrightarrow{DA} =$$

$$\overrightarrow{BD} =$$

$$\overrightarrow{EA} =$$

$$\overrightarrow{CA} =$$

$$\overrightarrow{CE} =$$

Simplifier une expression vectorielle avec la relation de Chasles.

Propriétés.

Soit A, B, C trois points. Alors

- $\bullet \overrightarrow{AA} = \overrightarrow{0}$
- $\bullet -\overrightarrow{AB} = \overrightarrow{BA}$
- Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

- Il faut aussi savoir appliquer la relation de Chasles dans l'autre sens : $\overrightarrow{BC} + \overrightarrow{AB} = \overrightarrow{AC}$
- Attention, guand on parle de distances, on a $AB + BC \ge AC$

Compléter en utilisant la relation de Chasles **Exercice B1.**

$$\overrightarrow{IB} = \overrightarrow{\dots A} + \overrightarrow{A} \overrightarrow{\dots}$$

$$\overrightarrow{E} \overrightarrow{\dots} + \overrightarrow{\dots E} =$$

$$\overrightarrow{HF} = \overrightarrow{HG} \; + \;$$

$$\overrightarrow{A} \cdot \overrightarrow{...} = \overrightarrow{A} \cdot \overrightarrow{...} + \overrightarrow{B} \cdot \overrightarrow{...} + \overrightarrow{CM}$$

$$\overrightarrow{D \dots} + \overrightarrow{C \dots} = \overrightarrow{\dots} \overrightarrow{B}$$

$$\overrightarrow{FE} + = \overrightarrow{0}$$

Méthode. Pour simplifier une expression vectorielle sur des points :

- On change tous les en + en inversant les lettres correspondantes.
- On repère une lettre répétée en fin et en début de vecteur.
- On utilise Chasles pour faire disparaître la lettre répétée.
- On recommence autant de fois que possible.

Simplifier
$$\vec{u} = -\overrightarrow{ED} + \overrightarrow{BD} + \overrightarrow{AB} - \overrightarrow{CE}$$

$$\vec{u} = \overrightarrow{DE} + \overrightarrow{BD} + \overrightarrow{AB} + \overrightarrow{EC}$$

$$= \overrightarrow{DE} + \overrightarrow{BD} + \overrightarrow{AB} + \overrightarrow{EC}$$

$$=\overrightarrow{BE}+\overrightarrow{AB}+\overrightarrow{EC}$$

$$=\overrightarrow{BE}+\overrightarrow{AB}+\overrightarrow{EC}$$

$$=\overrightarrow{AE}+\overrightarrow{EC}$$

$$=\overrightarrow{AE}+\overrightarrow{EC}$$

$$=\overrightarrow{AC}$$

Exercice B2. Simplifier les expressions suivantes :

$$\vec{a} = \overrightarrow{BD} + \overrightarrow{DA} =$$

$$\vec{b} = \overrightarrow{BD} + \overrightarrow{AA} =$$

$$\vec{c} = \overrightarrow{BD} + \overrightarrow{DB} =$$

$$\vec{d} = \overrightarrow{BD} - \overrightarrow{BA} =$$

$$\vec{e} = \overrightarrow{BD} + \overrightarrow{AD} + \overrightarrow{BA}$$

$$\vec{f} = \overrightarrow{BD} - \overrightarrow{BA} + \overrightarrow{DA} - \overrightarrow{DB}$$

a) $\overrightarrow{AB} + \overrightarrow{GF} + \overrightarrow{KL}$

b) HB + HF

d) $\overrightarrow{KI} + \overrightarrow{BD}$

Rappels.

- Deux vecteurs sont identiques s'ils ont même direction, même sens, même longueur.
- La position d'un vecteur n'a pas d'importance.

La figure représente six parallélogrammes de même taille. En vous servant des points de la figure, donner un vecteur égal à :

d) f)

e) EC - CB f) BE - HA

Soit $A = (x_A; y_A), B = (x_B; y_B), C = (x_C; y_C)$ trois points du plan. Exercice B4.

1) Démontrer que $\overrightarrow{AA} = \overrightarrow{0}$.

$$\overrightarrow{AA} =$$

2) Démontrer que $-\overrightarrow{AB} = \overrightarrow{BA}$.

$$-\overrightarrow{AB} =$$

3) Démontrer $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

$$\overrightarrow{AR} + \overrightarrow{RC} =$$

C. <u>Calculer la longueur d'un vecteur.</u>

Définition. La norme (ou longueur) d'un vecteur $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ est $\|\vec{u}\| = \sqrt{x^2 + y^2}$

Exemple. Calculer la norme du vecteur $\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

$$\|\vec{u}\| = \sqrt{(3)^2 + (-4)^2} = \frac{5}{5}$$

Rappel. La longueur d'un segment [AB] est :

$$AB = \|\overrightarrow{AB}\| = \|\binom{x_B - x_A}{y_B - y_A}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Exercice C1. Calculer la norme des vecteurs suivants :

$$\vec{u} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

$$\vec{v} = \begin{pmatrix} -6 \\ 8 \end{pmatrix}$$

$$\vec{w} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$

$$\vec{x} = \begin{pmatrix} -3 \\ -7 \end{pmatrix}$$

D. <u>Tester une égalité de vecteurs</u>

Méthode.

- On commence par simplifier des deux côtés.
- Jusqu'à arriver à une égalité entre deux vecteurs.
- On transforme *une* égalité *vectorielle*, en *deux* égalités *numériques*, regroupées dans une accolade.
- On finit de simplifier chaque égalité séparément.
- On teste chaque égalité.
 - Si une est fausse, l'égalité initiale est fausse
 - Si toutes sont vraies, l'égalité initiale est vraie

Exemple

Soit
$$\vec{u} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\vec{w} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$
Est-ce que $3\vec{u} + 2\vec{v} = 2\vec{w}$?

$$3\vec{u} + 2\vec{v} = 2\vec{w} \Leftrightarrow 3\binom{2}{-4} + 2\binom{-1}{3} = 2\binom{2}{-4}$$

$$\Leftrightarrow \binom{6}{-12} + \binom{-2}{6} = \binom{4}{-8}$$

$$\Leftrightarrow \binom{6+-2}{-12+6} = \binom{4}{-8}$$

$$\Leftrightarrow \binom{6+-2}{-12+6} = 4$$

$$\Leftrightarrow \binom{4-4}{-6-8}$$

$$\Leftrightarrow \binom{4-4}{-6-8}$$

Mais $-6 \neq -8$

Donc $3\vec{u} + 2\vec{v} \neq 2\vec{w}$.

Exercice D1. Soit
$$\vec{u} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} -5 \\ 15 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$.

Tester les égalités suivantes :

Peut-on affirmer que (E): $-5\vec{u} = \vec{v}$?

Peut-on affirmer que $(F): 3\vec{w} - \vec{u} = 2\vec{v}$?

E. Résoudre une équation vectorielle simple.

Méthode.

Pour résoudre une équation vectorielle simple :

- On note les coordonnées du point cherché.
- On commence par simplifier des deux côtés.
- Jusqu'à arriver à une égalité entre deux vecteurs.
- On transforme une équation vectorielle, en deux équation numériques, regroupées dans une accolade.
- On finit de résoudre les deux équations en parallèle.

Exemple. Soit
$$A = (-2; 5)$$
 et $\vec{u} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$.

Trouver le point M tel que $3\overline{AM} = \vec{u}$

On note M = (x; y).

$$3\overrightarrow{AM} = \overrightarrow{u} \Leftrightarrow 3\begin{pmatrix} x_M - x_A \\ y_M - y_A \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix} \Leftrightarrow 3\begin{pmatrix} x+2 \\ y-5 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 3(x+2) \\ 3(y-5) \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3x+6 \\ 3y-15 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 3x+6=9 \\ 3y-15=3 \end{cases} \Leftrightarrow \begin{cases} 3x=9-6 \\ 3y=3+15 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x=3 \\ 3y=18 \end{cases} \Leftrightarrow \begin{cases} x=1 \\ y=6 \end{cases}$$

Le point M tel que $3\overrightarrow{AM} = \overrightarrow{u}$ est M = (1; 6)

B

 \vec{AB}

AM

 $\overrightarrow{AM} = \overrightarrow{MB}$

Exercice E1. Soit
$$A = (-2; 5)$$
 et $\vec{u} = {9 \choose 3}$.

Trouver le point M tel que $2\overrightarrow{AM} = \overrightarrow{u}$:

Trouver le symétrique, ou le milieu, par calcul vectoriel.

Propriété. Pour tout points A, B, M on a :

B est le symétrique de A par rapport à M

 $\overrightarrow{AM} = \overrightarrow{MB}$

Soit le point A = (3, -5) et le point B = (-2, 7)Exemple.

Calculer le symétrique C du point A par rapport à B.

On note (x; y) les coordonnées du point \mathcal{C} cherché.

Soit I = (-5, 2), K = (2, -3).Exercice F1.

- 1) Calculer le symétrique L du point J par rapport à K.
- 2) Calculer le symétrique *I* du point *K* par rapport à *J*.

Vecteurs et géométrie - 5

G. <u>Traduire vectoriellement un parallélogramme</u>.

Propriété. ABCD est un parallélogramme $\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}$

(Attention à l'ordre des lettres).

Exercice G1.

BCDA et BCFE sont deux parallélogrammes.

- 1) Traduire l'énoncé par 2 égalités vectorielles.
- 2) Montrer que *ADFE* est un parallélogramme, avec des égalités vectorielles.

On note G, le symétrique de C par rapport à B.

3) Trouver 3 vecteurs égaux à \overrightarrow{GB} .

$$\overrightarrow{GB} =$$

$$\overrightarrow{GB} =$$

$$\overrightarrow{GB} =$$

4) Donner deux autres parallélogrammes à l'aide des points de la figure.

Exercice G2. Soit E = (-3, 2), F = (1, -2) et G = (-1, -5).

1) Déterminer les coordonnées du point H pour que EFGH soit un parallélogramme.

Exercice G3. ABCD est un rectangle. On note I le point d'intersection de ses diagonales. K et J sont les symétriques respectifs de I et A par rapport à D.

- 1) Faire une figure.
- 2) Montrer que *AIJK* est un parallélogramme.
- 3) Citer tous les vecteurs égaux de cette figure.
- 4) En déduire que *ICJK* est un parallélogramme.