A Course Project for "Computational Pragmatics" in SS 2020 at Osnabrück University

Mastermind

A Pragmatic Model in WebPPL by mpoemsl & rakrueger

Episode I: Game Explanation

How Mastermind Works

Listener
must make
predictions
about the
true state

Example Predictions: [0, 2, 1, 3],

[1, 0, 2, 1], [0, 0, 0, 0]

Speaker
must reply to
predictions
with true
utterances

Example
Utterances:
many, some,
none, ...
(are correct)

An Example Mastermind Match

States
are restricted
to 2 colors and
4 pins in this
example

Round 1:

Listener predicts 1,0,0,0 Speaker says "some"

Round 2:

Listener predicts 0,1,1,0 Speaker says "some"

Round 3:

Listener predicts 0,0,1,1 Speaker says "some"

Round 4:

Listener predicts 1,1,1,1 Speaker says "some"

Round 5:

Listener predicts 0,1,0,1 Speaker says "many"

Round 6:

Listener predicts 1,1,0,1 Speaker says "some"

Round 7:

Listener predicts 0,0,0,1 Speaker says some

Round 8:

Listener predicts 0,1,0,0 Correct! Game finished True State is 0,1,0,0 in this example

Episode II: Model Overview

Rational Speech Act (RSA) Framework

Code Structure 1: Preliminaries

```
var allStates = genStates(numColors, numPins)

var utterances = ["none", "some", "many"]

var utterancePrior = function() {
   return uniformDraw(utterances)
}
```

```
var numColors = 2
var numPins = 4

var speakerStrategy = "stochasticUncoop"
var listenerStrategy = "stochasticCoop"

var trueState = [0, 1, 0, 0]
```

```
var genStates = function(numColors, numPins){
  var states = Infer({model: function(){
    var genDist = repeat(numPins, function(){ uniformDraw(_.range(numColors)) })
    return genDist
  }).support()
  return states
}
```

Strategies:

"greedyUncoop"

"stochasticUncoop"

"stochasticCoop"

"greedyCoop"

where "coop" means "as few rounds as possible"

Code Structure 2: Meaning & Literal Listener

```
var literalMeanings = {
   many: function(state, prediction) { return correctCount(state, prediction) > 2 },
   some: function(state, prediction) { return correctCount(state, prediction) > 0 },
   none: function(state, prediction) { return correctCount(state, prediction) === 0 }
}
```

```
var literalListener = function(utt, prediction, possStates) {
  return Infer({model: function(){
    var state = uniformDraw(possStates)
    var meaning = literalMeanings[utt]
    condition(meaning(state, prediction))
    return state
  }})
}
```

Literal Listener:

What would a non-pragmatic listener believe to be the true state after hearing **utt** in response to **prediction** when the only options left are **possStates**?

Code Structure 3: Pragmatic Speaker & Listener

```
var pragmaticSpeaker = function(state, prediction, possStates) {
  return Infer({model: function(){
    var utt = utterancePrior()
    factor(literalListener(utt, prediction, possStates).score(state))
  return utt
  }})
}
```

Speaker

Which utterance would make a literal listener most likely believe in the given state?

```
var pragmaticListener = function(utt, prediction, prior, possStates) {
  return Infer({model: function(){
    var state = sample(prior)
    observe(pragmaticSpeaker(state, prediction, possStates), utt)
    return state
  }})
}
```

Pragmatic Listener

In which true state would a pragmatic speaker choose the given utterance?

Code Structure 4: Selection Strategies and Beliefs

```
var selectionStrategies = {
  greedyCoop: function(dist) { return argMax(dist) },
  greedyUncoop: function(dist) { return argMax(invert(dist)) },
  stochasticCoop: function(dist) { return sample(dist) },
  stochasticUncoop: function(dist) { return sample(invert(dist)) }
}
```

Selection Strategies
Strategies are used to
determine the actions of
speaker and listener given
their beliefs.
speakfunc and listenfunc are
both selection strategies

```
var play = function(state, speakfunc, listenfunc, listenBeliefs, possStates, round) {
   display("Listener has beliefs over " + listenBeliefs.support().length + " possible states")

   war prediction = listenfunc(listenBeliefs)
   display("Listener predicts " + prediction)

if (arrayEquals(state, prediction)) {
    display("Correct! Game finished")
```

Code Structure 5: Recursive Main Loop

```
} else {
  var newPossStates = remove(prediction, possStates)
  var listenPrior = unify(listenBeliefs, newPossStates)
  var utterance = speakfunc(pragmaticSpeaker(state, prediction, newPossStates))
  display("Speaker says " + utterance)
  var listenPosterior = pragmaticListener(utterance, prediction, listenPrior, newPossStates)
  var newListenBeliefs = listenPosterior
  play(state, speakfunc, listenfunc, newListenBeliefs, newPossStates, round + 1)
```

Main Loop

If prediction is not correct, the predicted state is not possible and listener beliefs are updated. After speaker responds to prediction, listener beliefs are updated again based on utterance.

Code Structure 6: Hyperpragmatic Extensions

```
var hyperPragmaticSpeaker = function(state, prediction, listenPrior, possStates){
   return Infer({model: function(){
     var utt = sample(pragmaticSpeaker(state, prediction, possStates))
     factor(pragmaticListener(utt,prediction, listenPrior, possStates).score(state))
   return utt
   }})
}
```

Hyperpragmatic Speaker

Takes into account what a stochastic-cooperative pragmatic listener would believe to be true think given an utterance

```
var hyperPragmaticListener = function(utt, prediction, listenPrior, possStates){
   return Infer({model: function(){
     var state = sample(pragmaticListener(utt, prediction, listenPrior, possStates))
     observe(hyperPragmaticSpeaker(state, prediction, listenPrior, possStates), utt)
     return state
   }})
}
```

Hyperpragmatic Listener

Takes into account what a stochastic-cooperative hyperpragmatic speaker would say given a prediction

Episode III: Meta-Analysis

Exemplary Listener Beliefs Over Time

Pragmatic Mastermind Mean Utterance Frequencies by Listener Strategy

Hyperpragmatic Mastermind Mean Utterance Frequencies by Listener Strategy

Pragmatic Strategy Comparison

Hyperpragmatic Strategy Comparison

Pragmatic Speaker Frequency "Many"

Hyperpragmatic Speaker Frequency "Many"

Thanks for Watching!

R2D2 and C3PO speak utterance "GOODBYE"

