

Electromagnetic Induction

Magnetic Flux, Faraday's Law of E.M.F.

1. A square loop of side 1 m and resistance 1 Ω is placed in a magnetic field of 0.5T. If the plane of loop of perpendicular to the direction of a magnetic field, the magnetic flux through the loop is: (2022)

a. zero weber

b. 2 weber

c. 0.5 weber

d. 1 weber

2. The magnetic flux linked with a coil (in Wb) is given by the equation

$$\phi = 5t^2 + 3t + 16$$

The magnitude of induced emf in the coil at the fourth second will be (2020-Covid)

a. 43 V

b. 108 V

c. 10 V

d. 33 V

3. A 800 turn coil of effective area 0.05 m^2 is kept perpendicular to a magnetic field of 5×10^{-5} T. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the emf induced in the coil will be: (2019)

a. 2 V

b. 0.2 V

c. $2 \times 10^{-3} \text{ V}$

d. 0.02 V

4. A conducting square frame of side a and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity V. The emf induced in the frame will be proportional to:

(2015)

a. $\frac{1}{(2x-a)^2}$

b. $\frac{1}{(2x-a)(2x+a)}$

c. $\frac{1}{(2x+2a)(2x+a)}$

d. $\frac{1}{x^2}$

Lenz's Law

5. An electron moves on a straight line path XY as shown. The *abcd* is a coil adjacent to the path of electron. What will be the direction of current, if any, induced in the coil? (2015 Pre)

a. No current induced

b. abcd

c. adcd

- d. The current will reverse its direction as the electron goes past the coil
- **6.** A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced e.m.f. is: (2013)

a. Six times per revolution

b. Once per revolution

c. Twice per revolution

d. Four times per revolution

Motional E.M.F.

7. A big circular coil of 100 turns and average radius 10 m is rotating about its horizontal diameter at 2 rad s⁻¹. If the vertical component of earth's magnetic field at that place is 2×10^{-5} T and electrical resistance of the coil is 12.56Ω , then the maximum induced current in the coil will be: (2022)

a. 2A

b. 0.25 A

c. 1.5 A

d. 1 A

8. A wheel with 20 metallic spokes each 1 m long is rotated with a speed of 120 rpm in a plane perpendicular to a magnetic field of 0.4 G. The induced emf between the axle and rim of the wheel will be. (1 G = 10^{-4} T) (2020-Covid)

a. $2.51 \times 10^{-5} \text{ V}$

b. $4.0 \times 10^{-5} \text{ V}$

c. 2.51 V

d. $2.51 \times 10^{-4} \text{ V}$

9. A metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction.

The current flowing in the rod to keep it stationary is (2018)

- a. 14.76 A
- b. 5.98 A
- c. 7.14 A
- d. 11.32 A
- 10. A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time at a rate $\frac{dB}{dt}$

Loop 1 of radius R > r encloses the region r and loop 2 of radius R is outside the region of magnetic field as shown in the figure below. Then the e.m.f generated is: (2016-II)

- a. $-\frac{dB}{dt}\pi R^2$ in loop 1 and zero in loop 2
- b. $-\frac{d\dot{B}}{dt}\pi r^2$ in loop 1 and zero in loop 2
- c. Zero in loop 1 and zero in loop 2

d.
$$-\frac{d\vec{B}}{dt}\pi r^2$$
 in loop 1 and $-\frac{d\vec{B}}{dt}\pi r^2$ in loop 2

11. A thin semicircular conducting ring (PQR) of radius r is falling with its plane vertical in a horizontal magnetic field B, as shown in figure. The potential difference developed across the ring when its speed is v, is: (2014)

- a. Zero
- b. $Bv\pi r^2/2$ and P is at higher potential
- c. $\pi r B v$ and R is at higher potential
- d. 2rBv and R is at higher potential

Eddy Currents

- 12. In which of the following devices, the eddy current effect is not used? (2019)
 - a. Induction furnace
- b. Magnetic braking in train
- c. Electromagnet
- d. Electric heater

Self Induction

- 13. A long solenoid has 1000 turns. When a current of 4 A flows through it, the magnetic flux linked with each turn of the solenoid is 4×10^{-3} Wb. The self inductance of the solenoid (2016-I)
 - a. 4 H

b. 3 H

c. 2 H

d. 1 H

Energy Stored or Work Done in Inductor

- 14. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance: (2018)
 - a. 1.389 H
- b. 138.88 H
- c. 0.138 H
- d. 13.89 H

Mutual Induction

- 15. Two conducting circular loops of radii R₁ and R₂ are placed in the same plane with their centres coinciding. If $R_1 > 1$ R,, the mutual inductance M between them will be directly proportional to: (2021)

- **16.** A long solenoid of diameter 0.1 m has 2×10^4 turns per metre. At the centre of solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to 0 A from 4 A in 0.05 s. If the resistance of the coil is $10\pi^2\Omega$, the total charge flowing through the coil during this time is: (2017-Delhi)
 - a. 16 µC

- b. 32 μC
- c. 16π μC
- d. $32\pi \mu C$

Answer Key

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
c	a	d	b	d	c	d	d	d	b	d	d	d	d	c	b

