Содержание

1	Самый животрепещущий вопрос: как будут считать рейтинг	2
2	Летнее задание	2
3	7 сентября	3
4	14 сентября	4
5	21 сентября	5
6	28 сентября	6
7	5 октября	7
8	12 октября	8
9	19 октября	9
10	26 октября и 2 ноября	10
11	9 ноября	11
12	2 16 ноября	12
13	3 23 ноября	13
14	30 ноября	14
15	7 декабря	14
	Последнее обновление 6 декабря 2020 г. актуальная версия этого файла лежит по адресу http://mathcenter.spb.ru/nikaan/2020/topology3.pdf	

Топология и геометрия-3, практика, СПбГУ 2020, факультет математики и компьютерных наук

Никита Сергеевич Калинин, Нина Дмитриевна Лебедева, Евгений Анатольевич Фоминых

Для всех групп: 201,202,203

1 Самый животрепещущий вопрос: как будут считать рейтинг

Вместо рейтинга каждый предмет номинирует примерно 1/3 студентов как *отмичных* студентов, примерно 1/3 студентов как *хороших* студентов. Быть *отмичным* студентом раза в два-три почётнее, чем быть *хорошим* студентом. И ещё есть какие-то правила, что тройки и двойки на экзаменах получать плохо.

Итого, ваша стратегия, если хочется стипендию: не получать троек на экзаменах, по всем предметам желательно быть хорошим студентом, и по как можно большему числу любимых предметов быть отличным студентом.

На геометрии и топологии, разделение на отличных, хороших и остальных студентов будет основываться на ваших успехах в течение семестра. Нет никакой формулы. Учитывается ваша активность на занятиях, какие задачи вы решили в группе, какие задачи рассказали, какие сделали в дз, насколько сложные задачи решили. Может быть будут контрольные.

Общее правило: чем более сложные задачи вы решаете, тем лучше (тогда мы поверим, что простые задачи вам очевидны). Чем лучше вы их записываете или рассказываете, тем лучше (про плохо записанные/рассказанные задачи мы поставим плюсик, но для себя запишем, что человек не старался). Если вы решаете в группе, то предполагается, что любой участник группы может рассказать решение любой задачи из решённых группой. Мы будем это проверять.

Практика у нас по понедельникам, задачи с конкретного практического занятия можно сдавать в понедельник и на следующих день — вторник. Задачи со звёздочкой можно сдавать в течение недели — до воскресенья. Сдавать задачи нужно либо устно во время занятия, либо присылать письменное решение (там где удобно преподавателю — например, в Slack или в Microsoft teams, по ходу решим). Преподаватель может попросить устно рассказать то, что вы прислали письменно.

Если вы решили задачу в составе группы – пишите состав группы, когда присылаете решение. Никакого штрафа за совместное решение нет (но мы можем попросить кого-то из участников группы рассказать решение, и если человек не справится, то вся группы не получает плюсик за эту задачу).

В целом – занимайтесь, решайте сложные задачи, и всё будет хорошо.

Где-то в октябре мы скажем, каковы были бы рекомендации (кто хороший, а кто отличный) на этот момент, чтобы дать обратную связь.

2 Летнее задание

Задачи из летного задания надо сдавать в **Microsoft Teams до 27 сентября** (включительно), проверяет EA Фоминых.

Задача 9. Докажите, что любое линейно связное трёхточечное пространство односвязно. Задача 10. Рассмотрим топологическое пространство $X = \{a, b, c, d\}$, в котором база топологии состоит из множеств $\{a\}, \{c\}, \{a, b, c\}$ и $\{a, c, d\}$.

- 1. (2 балла) Докажите, что пространство X неодносвязно;
- 2. (3 балла) Найдите $\pi_1(X)$.
- **Задача 11.** Пусть $X \subset \mathbb{R}^4$ множество симметричных (2×2) -матриц с отрицательным определителем. Докажите, что пространство X гомотопически эквивалентно S^1 .
- **Задача 12.** Докажите, что фундаментальная группа любой топологической группы коммутативна. *Топологической группой* называется множество G на котором заданы как топологическая, так и групповая структура. При этом требуется, чтобы отображения $G \times G : (x, y) \to xy$ и $G \to G : x \to x^{-1}$ были непрерывны.
- Задача 13. Пусть ℓ простая замкнутая кривая на стандартно вложенном в \mathbb{R}^3 торе, поднятие которой в универсальное накрытие тора задается уравнением pu=qv, где p и q взаимно простые натуральные числа. Выпишите задание фундаментальной группы пространства $\mathbb{R}^3 \setminus \ell$.

Задача 14. Докажите, что к краю стандартно вложенной в \mathbb{R}^3 ленты Мёбиуса нельзя приклеить диск, который не пересекает эту ленту Мёбиуса.

3 7 сентября

Задача 1. Представьте сферу S^n как клеточное пространство: а) содержащее 2 клетки; б) чтобы его k-остовом для всякого целого неотрицательного k < n была стандартная сфера $S^k \subset S^n$.

Задача 2. Представьте $\mathbb{R}P^n$ как клеточное пространство, состоящее из n+1 клеток. Опишите приклеивающие отображения этих клеток.

Задача 3. Докажите, что $S^2 \times S^2$ — конечное клеточное пространство.

Pasбop: https://youtu.be/DWVg-KQGAC4

Задача 4. а) Если X и Y — локально конечные клеточные пространства (т.е. любая точка в X обладает окрестностью, пересекающейся лишь с конечным числом клеток), то топологическое пространство $X \times Y$ может быть естественным образом наделено структурой клеточного пространства. б)***Останется ли верным это утверждение, если не требовать локальной конечности клеточных пространств X и Y?

Разбор: задача 42.3- 42.4 в книге Виро-Иванов-Нецветаев-Харламов, разобрана на странице 343.

Задача 5. Пусть A — конечное клеточное пространство. Через $c_i(A)$ обозначим число его i-мерных клеток. Эйлеровой характеристикой пространства A называется альтернированная сумма чисел $c_i(A)$:

$$\chi(A) = \sum_{i=0}^{\infty} (-1)^i c_i(A).$$

Докажите, что эйлерова характеристика мультипликативна в следующем смысле. Если X и Y — конечные клеточные пространства, то $\chi(X \times Y) = \chi(X)\chi(Y)$.

Факт (не доказываем, но пользуемся). Эйлерова характеристика является инвариантом клеточного топологического пространства, то есть не зависит от способа представления в виде клеточного пространства.

Задача 6. Какое наименьшее число клеток необходимо для представления в виде клеточного пространства следующих пространств: а) ленты Мёбиуса; б) сферы с р ручками; в) сферы с q пленками?

Pasбop: https://youtu.be/6FbGB-kEdiI и http://mathcenter.spb.ru/nikaan/2020/zadacha6.pdf

Задача 7. Вычислите $\pi_1(\mathbb{R}P^n)$.

Разбор: можно двулистно накрыть S^n , которое односвязно, значит \mathbb{Z}_2 . Ещё можно взять двумерный остов (от которого только и зависит π_1), это $\mathbb{R}P^2$, представить его в виде склейки квадрата, получается группа $< a|a^2 = e>$ то есть \mathbb{Z}_2 .

4 14 сентября

Задачи из летного задания надо сдавать в **Microsoft Teams до 27 сентября** (включительно), проверяет EA Фоминых.

Задача 8. Пространство X получается приклейкой к тору $S^1 \times S^1$ двух дисков: одного вдоль его параллели $S^1 \times \{1\}$, второго вдоль меридиана $\{1\} \times S^1$. а) Вычислите $\pi_1(X)$; б)Докажите, что X гомотопически эквивалентно сфере S^2 .

Задача 9. Пусть $p: X \to B$ — накрытие, причем $x_0 \in X, b_0 \in B, p(x_0) = b_0$ и пространства X, B линейно связны). Постройте естественную биекцию множества $p^{-1}(b_0)$ на множество правых смежных классов фундаментальной группы базы этого накрытия по группе накрытия.

Задача 10. Чему могут равняться числа листов накрытия: а) ленты Мёбиуса кольцом $S^1 \times I$; б) ленты Мёбиуса лентой Мёбиуса?

Задача 11. Чему могут равняться числа листов накрытия бутылки Клейна плоскостью?

Задача 12. Опишите с точностью до эквивалентности все накрытия окружности S^1 .

Задача 13. Накрытие $p: X \to B \ (x_0 \in X, b_0 \in B, p(x_0) = b_0)$, где пространства X, B "хорошие", называется регулярным, если $p_*(\pi_1(X, x_0))$ нормальная подгруппа в $\pi_1(B, b_0)$. Является ли регулярным накрытие $S^1 \to S^1, z \to z^n$?

Задача 14. Докажите, что следующие условия эквивалентны:

- накрытие регулярно;
- все группы $p_*(\pi_1(X,x))$ с $x \in p^{-1}(b_0)$ совпадают;
- ullet группа автоморфизмов накрытия действует в слое $p^{-1}(b_0)$ транзитивно.

Задача 15. Докажите, что любое связное двулистное накрытие: а) обладает нетривиальным автоморфизмом; б) регулярно.

Задача 16. Докажите, что трёхлистное накрытие букета двух окружностей графом с тремя вершинами (см. рис. ниже) не является регулярным.

Задача 17. ***Докажите, что всякое конечное клеточное пространство метризуемо.

5 21 сентября

Задача 18. Вокруг некоторой точки O окружности радиуса a вращается луч. На этом луче по обе стороны от точки A его пересечения с окружностью откладываются отрезки AM_1 и AM_2 длины 2b. Составьте параметрическое уравнение кривой, описываемой точками M_1 и M_2 (улитка Паскаля; в частности, при a=b — кардиоида).

Задача 19. Найдите кривую, образ которой есть пересечение сферы радиуса R и кругового цилиндра диаметра R, одна из образующих которого проходит через центр сферы. Эта кривая называется кривой Вивиани.

Задача 20. а) Выразить производные следующих функций через данную вектор-функцию $\mathbf{r}(t)$ и ее производные: $\mathbf{r}^2(t)$; $\mathbf{r}(t) \times \mathbf{r}'(t)$; $|\mathbf{r}(t)|$; $|\mathbf{r}(t)|$; $|\mathbf{r}(t)|$.

- b) Доказать, что $|\mathbf{r}(t)| = \mathrm{const}$, экви $\mathbf{r}(t) \cdot \mathbf{r}'(t) = 0$.
- с) Доказать, что кривая $\mathbf{r}(t)$ лежит в фиксированной плоскости с нормалью n, экви $\mathbf{r}'(t) \cdot \mathbf{n} = 0$.

Задача 21. Доказать, что: a) если $\mathbf{r}' = \mathrm{const}$, то $\mathbf{r}(t)$ задает прямую,

- b) если $t \in [a,b]$, а $\mathbf{r}(a)$ и $\mathbf{r}(b)$ лежат по разные стороны от данной плоскости, то кривая пересекает эту плоскость,
- c) если $\mathbf{r}(a)$ и $\mathbf{r}(b)$ лежат по одну сторону и на одинаковом расстоянии от данной плоскости, то некоторая касательная этой кривой параллельна данной плоскости.

Задача 22. Вывести из определения эллипса, что вектор $\mathbf{r}_1/|\mathbf{r}_1| + \mathbf{r}_2/|\mathbf{r}_2|$ является нормалью к эллипсу, где $\mathbf{r}_1, \mathbf{r}_2$ — фокальные радиусы-векторы.

Задача 23. Составьте натуральную параметризацию кривой

- а) $y = a \operatorname{ch}(x/a)$ (цепная линия).
- b) $\mathbf{r}(t) = (a\cos t, a\sin t, bt)$ (винтовая линия).

Задача 24. Доказать, что кривая $\gamma(t) = (t, t \sin \pi/t), t \neq 0, \gamma(0) = (0, 0)$ имеет бесконечную длину на интервале [0, 1].

Задача 25. *** Пусть параметризация (не обязательно натуральная) гладкой кривой $\gamma:[a,b]\to\mathbb{R}^2$ такова, что длина хорды $|\gamma(t)-\gamma(s)|$ зависит только от t-s. Доказать, что кривая является подмножеством прямой либо окружности.

6 28 сентября

Эволюта кривой — это кривая, образованная её центрами кривизны.

Задача 26. Составьте уравнения и начертите эволюту эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Задача 27. Найдите точки экстремума кривизны параболы и эллипса. Найдите радиусы кривизны в этих точках.

Задача 28. Для плоской кривой $\gamma(t)$ и фиксированной точки $q \in \mathbb{R}^2$ рассмотрим функцию $S(t) = |\gamma(t) - q|^2$. Докажите, что

- 1. q лежит на нормали к кривой $\gamma(t) \Leftrightarrow S'(t) = 0$;
- 2. q является центром кривизны кривой $\gamma(t) \Leftrightarrow S'(t) = S''(t) = 0;$
- 3. q является центром кривизны кривой, а в точке t производная функции кривизны равна нулю $\Leftrightarrow S'(t) = S''(t) = S'''(t) = 0$.

Задача 29. ***

- 1. Докажите, что если модуль кривизны имеет строгий локальный максимум в t_0 , то для некоторого $\varepsilon > 0$ участок кривой $\gamma[t_0 \varepsilon, t_0 + \varepsilon]$ "лежит между" соприкасающейся окружностью и касательной и имеет с этой окружностью только одну общую точку $\gamma(t_0)$.
- 2. Докажите, что если для некоторого $\varepsilon>0$ участок кривой $\gamma[t_0-\varepsilon,t_0+\varepsilon]$ "лежит между" соприкасающейся окружностью и касательной, то производная кривизны в t_0 равна нулю.

Задача 30. *** Пусть простая замкнутая кривая $\gamma: S^1 \to R^2$ ограничивает замкнутую область F. Будем говорить, что окружность вписана в γ , если она содержится в F и имеет с γ более одной общей точки. Кривизну будем считать положительной, если нормаль направлена внутрь F.

- 1. Доказать, что если для последовательности окружностей, вписанных в кривую, точки касания $p_n, q_n \to \gamma(t_0)$, то эти окружности сходятся к соприкасающейся окружности в точке $\gamma(t_0)$.
- 2. Доказать, что для множества точек касания K_1 и K_2 двух вписанных окружностей множество K_2 лежит в одной компоненте связности множества $\gamma(S^1)\setminus K_1$.

3. Доказать, что для вписанной окружности с множеством точек касания K_1 каждая связная компонента $\gamma(S^1) \setminus K_1$ содержит точку, где производная кривизны равна нулю.

Задача 31. ***Доказать, что если простая замкнутая плоская кривая кривизны |k| < 1 ограничивает фигуру F, то F содержит диск радиуса 1.

(Подсказка: использовать предыдущую задачу.)

Задача 32. ***Срединная ось простой гладкой регулярной замкнутой плоской кривой это замыкание множества центров вписанных окружностей. Пусть у такой кривой конечное число точек, в которых производная кривизны равна нулю. Доказать, что срединная ось этой кривой - конечное дерево.

7 5 октября

Задача 33. Найти длину дуги кривой

$$\begin{cases} x^3 = 3a^2y \\ 2xz = a^2, \end{cases}$$

заключенной между плоскостями y = a/3 и y = 9a.

Задача 34. Докажите, что у кривой

$$x = 3t - t^3$$
, $y = 3t^2$, $z = 3t + t^3$

кривизна и кручение равны.

Задача 35. Найти базис Френе кривой $(2t, \ln t, t^2)$ при t = 1.

Задача 36. (подсказка: нарисуйте картинку)Даны две натурально параметризованные (одним и тем же параметром) кривые $\gamma_i:[0,\varepsilon]\to\mathbb{R}^2$ $\gamma_1(t)=(x_1(t)),y_1(t)),\gamma_2(t)=(x_2(t)),y_2(t))$. Пусть

$$\gamma_i(0) = (0,0), v_1(0) = v_2(0) = (1,0), n_1(0) = n_2(0) = (0,1)$$

Пусть $k_1(t) \geq k_2(t) > 0$ и α_i - непрерывный аргумент для v_i . Тогда для некоторого $0 < \delta \leq \varepsilon$

- 1. $x_i(t), y_i(t)$ возрастают на $[0, \delta]$
- 2. $\alpha_1(t) \geq \alpha_2(t)$ для $t \in [0, \delta]$
- 3. $x_1(t) \le x_2(t)$ и $y_1(t) \ge y_2(t)$ для $t \in [0, \delta]$
- 4. для любого $c \in [0, x_1(\delta)]$ если $x_1(t_1) = x_2(t_2) = c$, то $t_1 \ge t_2$ и $y(t_1) \ge y(t_2)$

Задача 37. Найти поворот кривой $\gamma(t)=(t,\sin t)$ на участке $[0,5\pi/2].$

Задача 38. Две точки движутся в пространстве так, что расстояние между ними остается постоянным. Доказать, что в любой момент времени проекции их скоростей на прямую, соединяющую эти точки, равны.

Задача 39. Простая плоская замкнутая выпуклая кривая называется кривой постоянной ширины μ , если длина ее проекции на любую прямую равна μ . Для плоской гладкой кривой постоянной ширины μ с кривизной отличной от 0 доказать, что

- 1. хорда, соединяющая противоположные точки перпендикулярна кривой (подсказка: нарисуйте опорные прямые данного направления, и отрезок между точками касаний выразите через базис Френе).
- 2. для кривизн в противоположных точках выполнено соотношение $1/k + 1/k^* = \mu$
- 3. *** длина равна $\pi \mu$

8 12 октября

Задача 40.

- а) Кривая на плоскости параметризована натурально и имеет кривизну не больше 1 во всех точках и длину, равную $\pi/2$. Тогда $\langle \gamma(\pi/2) \gamma(0), v(0) \rangle > 1$, где v –вектор скорости.
- б) Кривая на плоскости имеет кривизну не больше 1 во всех точках и длину, равную π . Тогда расстояние между концами не меньше 2.
- в) Кривая в пространстве имеет кривизну не больше 1 во всех точках и длину, равную π . Тогда расстояние между концами не меньше 2.
- Задача 41. Пусть окружность и кривая касаются в некоторой точке. Доказать, что если окружность не является соприкасающейся для кривой в этой точке, то в некоторой окрестности (по параметру) у кривой нет с окружностью других общих точек.
- Задача 42. Найти кривизну пространственной кривой, образованной концами отрезков постоянной длины, отложенных на бинормалях данной кривой от каждой ее точки.
- Задача 43. Обобщенной винтовой линией в \mathbb{R}^3 называется гладкая кривая, касательные которой образуют постоянный угол с фиксированным направлением. Пусть s натуральная параметризация, v, b вектора скорости и бинормали. Доказать, что кривая будет обобщенной винтовой тогда и только тогда, когда выполняется одно из следующих условий:
 - 1. главные нормали перпендикулярны фиксированному направлению;
 - 2. бинормали образуют постоянный угол с фиксированным направлением;
 - 3. отношение кривизны к кручению постоянно;
 - 4. все спрямляющие плоскости кривой параллельны некоторой прямой
 - 5. [v'(s), v''(s), v'''(s)] = 0;
 - 6. [b'(s), b''(s), b'''(s)] = 0;

Задача 44. Пусть $|\gamma(s)| = \text{const.}$ Выразить коэффициенты разложения $\gamma(s)$ по базису Френе этой кривой через ее кривизну и кручение.

Задача 45. Доказать, что если $\gamma(s)$ – натурально параметризованная кривая, и $k(s) \neq \text{const}$ и $1/k^2 + (k'/k^2\tau)^2 = a^2$, то кривая γ лежит на сфере радиуса a.

Задача 46. Рассмотрим пару таких кривых, что главные нормали к одной из них являются и главными нормалями другой кривой. Доказать, что:

- а) расстояние между соответствующими точками этих кривых постоянно;
- b) угол между их касательными в соответствующих точках постоянен;
- c) если у одной из них кручение отлично от нуля, то существуют такие числа a и b, что ak+b au=1.

Задача 47. *** Существует кривая (и в пространстве, и на плоскости), у которой кривизна всюду больше 1, длина равна 1, и расстояние между концами больше 0.999.

9 19 октября

Дорешиваем задачи с предыдущих занятий! Кто всё решил – вот, новые задачи.

Задача 48. Пусть кривая касается изнутри сферы R. Докажите, что в точке касания кривизна кривой не меньше 1/R.

Задача 49. *** Пусть простая гладкая регулярная замкнутая кривая $\gamma: S^1 \to R^2$ ограничивает замкнутую область F. Пусть некоторая окружность содержится в F и является максимальной (не содержится ни в какой другой окружности, содержащейся в F). Доказать, что эта окружность является либо вписанной в γ (имеет с γ более одной общей точки) либо соприкасающейся в некоторой точке кривой (посмотрите задачу 31).

Задача 50. *** Пусть простая гладкая регулярная замкнутая кривая $\gamma: S^1 \to R^2$ параметризована так, что нормаль смотрит внутрь области, которую кривая ограничивает.

- 1. Доказать, что окружность минимального радиуса R, содержащая кривую, имеет покрайней мере две точки касания с кривой и в этих точках кривизна кривой $\geq 1/R$. Доказать что выпуклая оболочка точек касания содержит центр этой окружности.
- 2. Доказать, что между двумя последовательными точками касания есть точка, в которой кривизна (со знаком) $\leq 1/R$.
- 3. Вывести из предыдущего теорему о 4-х вершинах: любая простая гладкая регулярная замкнутая кривая на плоскости имеет по-крайней мере 4 точки локальных экстремумов.

10 26 октября и 2 ноября

Подсказка: читайте лекции 6 и 7.

Задача 51. Предъявите гладкий атлас $\mathbb{R}P^2$ из трёх карт.

Задача 52. Задайте структуру гладкого многообразия на бутылке Клейна.

Задача 53. Опишите касательное расслоение TS^1 с помощью двух карт и функций склейки. Опишите топологию на касательном расслоении.

Задача 54. Постройте гладкое вложение TS^1 в \mathbb{R}^2 .

Задача 55. Пространство $G_{4,2}$ (Грассманиан) — это пространство всех двумерных плоскостей в \mathbb{R}^4 , проходящих через ноль. Покажите, что $G_{4,2}$ — гладкое многообразие. Какова его размерность? (Подсказка: покажите, что линейные отображения $\mathbb{R}^k \to \mathbb{R}^{n-k}$ описываются матрицами $k \times (n-k)$. Покажите, что линейные отображения $\mathbb{R}^k \to \mathbb{R}^{n-k}$ описываются матрицами $k \times (n-k)$ ранга $k \times$

 Φ лаг – это последовательность вложенных друг в друга линейных подпространств \mathbb{R}^n .

Задача 56. Рассмотрим полный флаг

$$0 = F \subset F_{x_1} \subset F_{x_1,x_2} \subset F_{x_1,x_2,x_3} \subset F_{x_1,x_2,x_3,x_4} = \mathbb{R}^4$$

где индекс обозначает какие координаты не нули, например, $F_{x_1,x_2} = \{x \in \mathbb{R}^4 | x_3 = x_4 = 0\}$. Любое двумерное линейное подпространство в \mathbb{R}^4 пересекает элементы флага по линейным пространствам, пусть их размерности $0 = m_0 \le m_1 \le m_2 \le m_3 \le m_4 = 2$.

- а) Опишите множество элементов $G_{4,2}$ для которых $m_1=m_2=0, m_3=1.$
- б) Покажите, что каждая последовательность $0=m_0\leq m_1\leq m_2\leq m_3\leq m_4=2$, с дополнительным условием $m_{i+1}\leq m_i+1$, даёт клетку в $G_{4,2}$. Найдите размерность этой клетки.

По определению, $G_{n,k}$ – Грассманово многообразие k-мерных линейных подпространств в \mathbb{R}^n (например, $\mathbb{R}P^n=G_{n+1,1}$)). Это многообразие, и его клеточная структура кодируется клетками Шуберта, по одной клетке для каждой неубывающей последовательности длины n+1, где $m_0=0, m_n=k, m_{i+1}\leq m_i+1$, то есть диаграммами Юнга. То, как эти клетки друг к другу прилегают, скрывает много комбинаторных тайн.

Задача 57. *** Опишем вложение Плюккера $G_{4,2}$ в $\mathbb{R}P^5$. Зафиксируем стандартный базис \mathbb{R}^4 . Для каждого двумерного линейного подпространства в \mathbb{R}^4 выберем в нём два базисных вектора и запишем их в координатах, получилась матрица 2×4 . Посчитаем у неё все (шесть) миноров 2×2 . Получим шесть координат $(x_1, x_2, x_3, x_4, x_5, x_6)$.

- а) Докажите, что эти координаты определены с точностью до пропорциональности. Тем самым получилось отображение $G_{4,2} \to \mathbb{R} P^5$. Его образ это четырёхмерное в пятимерном. Значит, оно описывается одним уравнением.
 - б)Найдите это уравнение.

Задача 58. *** Постройте субмерсию $f:G_{4,2}\to \mathbb{R}P^2$, такую, что $\forall x,f^{-1}(x)=\mathbb{R}P^2$.

Задача 59. *** Может ли на ленте Мёбиуса существовать такая гладкая функция, что центральная окружность является регулярным прообразом некоторой точки?

11 9 ноября

Задача 60. Пусть $p \in S^1 \times S^1$. Предъявите погружение $S^1 \times S^1 \setminus p \to \mathbb{R}^2$, то есть погружение проколотого тора в плоскость.

Задача 61. Опишите в терминах объемлющего пространства касательное пространство к $S^2=\{x,y,z|x^2+y^2+z^2=1\}$ в точке $P=(\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}}).$

При замене координат $f: U_i \to U_j$ для двух карт на многообразии, автоматические возникает замена координат на касательных расслоениях $f_*: TU_i \to TU_j$. Её мы и будем изучать.

Задача 62. Пусть v — такой касательный вектор в точке P из предыдущей задачи, что его координаты, соответствующие стереографической проекции из северного полюса равны (1,1). Найти координаты этого вектора, соответствующие стереографической проекции из южного полюса.

Задача 63. Рассмотрим точку P и вектор v из предыдущих двух задач. Пусть $f: S^2 \to \mathbb{R}$ ограничение функции x+y+z на сферу. Найдите $\partial_v f$. Напомним, что $\partial_v f = df_P(v)$

Задача 64. Координаты вектора ξ в локальных системах координат $\{x^i\}$ и $\{x^{i'}\}$ связаны формулами:

$$\xi^{i'} = \frac{\partial x^{i'}}{\partial x^i} \xi^i \text{ (суммирование по } i); \tag{1}$$

$$\xi^{i} = \frac{\partial x^{i}}{\partial x^{i'}} \xi^{i'} \text{ (суммирование по } i'). \tag{2}$$

Символами $\frac{\partial x^{i'}}{\partial x^i}$ здесь обозначены значения производных в точке $x_0=(x_0^1,\dots,x_0^n)$, изображающей точку p_0 в системе координат $\{x^i\}$, аналогично $\frac{\partial x^i}{\partial x^{i'}}$ берутся в точке $x_0=(x_0^{1'},\dots,x_0^{n'})$.

Задача 65. На \mathbb{R}^3 заданы декартовы и сферические координаты. В точке p с декартовыми координатами $(-\sqrt{3},-1,-2)$ задан вектор $\xi\in T_p\mathbb{R}^3$, сферические координаты которого равны (0,-1,2). Найдите декартовы координаты этого вектора.

Задача 66. ***Существует ли погружение ленты Мёбиуса в плоскость \mathbb{R}^2 ?

12 16 ноября

Задача 67. В плоскости xOz задана кривая x = f(u), z = g(u), не пересекающая ось Oz. Найдите параметризацию поверхности, полученной при вращении этой линии вокруг оси Oz.

Задача 68. Найдите параметризацию: а) Тора, как поверхности вращения окружности в \mathbb{R}^3 . b)Катеноида, который получается при вращении цепной линии $x = a \operatorname{ch}(u/a), \ y = 0, \ z = u$ вокруг оси Oz.

Задача 69. Напишите параметризацию цилиндрической поверхности, для которой кривая $\gamma(u)$ является направляющей, а образующие параллельны вектору e.

Задача 70. Напишите параметризацию конуса с вершиной в точке M(a,b,c) и с направляющей кривой $\gamma(u)=(f(u),g(u),h(u)).$

Задача 71. Геликоидом называется фигура, образованная некоторой прямой (образующей), вращающейся около оси и одновременно поступательно движущейся в направлении этой оси, причем скорости этих движений пропорциональны. Если образующая пересекает ось вращения, то геликоид называется закрытым; если не пересекает — открытым (или развертывающимся). Если образующая закрытого геликоида пересекает ось вращения под прямым углом, геликоид называется прямым, если под другим углом — то косым. Напишите параметрические уравнения геликоида.

Задача 72. Составить уравнение развертывающегося геликоида, образованного касательными к винтовой линии $x = a \cos v, \ y = a \sin v, \ z = bv.$

Трактриса — плоская трансцендентная кривая, для которой длина отрезка касательной от точки касания до точки пересечения с фиксированной прямой является постоянной величиной.

Открытие и первое исследование трактрисы (1670 год) принадлежит французскому инженеру, врачу и любителю математики Клоду Перро, брату знаменитого сказочника.

Задача 73. ***Найдите параметризацию а) трактрисы, б) псевдосферы (поверхность Бельтрами), которая получается при вращении трактрисы вокруг оси Oz.

Задача 74. ***Единичный квадрат на плоскости внутренне изометричен некоторой части тора, задаваемого в \mathbb{R}^4 уравнениями

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1,$$

$$x_1^2 + x_2^2 = x_3^2 + x_4^2.$$

13 23 ноября

Задача 75. Вычислите первую квадратичную форму а) поверхности вращения из задачи 67, б) стандартного тора в \mathbb{R}^3 (задача 68).

Задача 76. Пусть первая квадратичная форма поверхности имеет вид $ds^2 = du^2 + (u^2 + a^2)dv^2$. а)Найти периметр криволинейного треугольника, образованного пересечением кривых

$$u = \pm \frac{1}{2}av^2, v = 1.$$

б)Найти углы этого криволинейного треугольника.

Задача 77. Вращением окружности вокруг прямой, лежащей в плоскости окружности, образован тор. Радиус окружности r, расстояние от прямой до центра окружности R, R > r. Найти площадь тора в индуцированной метрике.

Задача 78. Докажите, что стереографическая проекция сохраняет углы между кривыми, посчитав первую квадратичную форму.

Задача 79. Докажите, что а) площадь сферического двуугольника с углом α и диаметрально противоположными вершинами равна 2α .

- b) Площадь сферического треугольника с углами α, β, γ равна $\alpha + \beta + \gamma \pi$.
- с) Площадь сферического многоугольника с углами $\alpha_1, \ldots, \alpha_n$ равна $\sum \alpha_n (n-2)\pi$.

Задача 80. Докажите, что площадь круга радиуса R на сфере равна $2\pi(1-\cos R)$.

Задача 81. Показать, что винтовая поверхность (коноид)

$$x = \rho \cos v, y = \rho \sin v, z = \rho + v$$

локально изометрично отображается на гиперболоид вращения

$$x = r\cos\phi, y = r\sin\phi, z = \sqrt{r^2 - 1}$$

если соответствие устанавливается уравнениями

$$\phi = v + arctg \ \rho, r^2 = \rho^2 + 1.$$

Задача 82. *** Показать, что всякая винтовая поверхность

$$x = u\cos v, y = u\sin v, z = F(u) + av$$

локально изометрично отображается на поверхность вращения так, что винтовые линии переходят в параллели.

Задача 83. *** Доказать, что криволинейные четырехугольники, образованные координатными линиями $u=a_1, u=a_2, v=b_1, v=b_2$, являются "параллелограммами" (в смысле равенства соответствующих сторон), равносильно тому, что $E_v=G_u=0$. Показать, что в этом случае существует такая параметризация поверхности, в которой ее первая квадратичная форма имеет вид

$$\mathbf{I}(\mathbf{X}) = X_1^2 + 2\cos\varphi X_1 X_2 + X_2^2.$$

14 30 ноября

Задача 84. ***Найти без вычислений главные кривизны прямого кругового цилиндра.

Задача 85. Вычислите вторую квадратичную форму а) поверхности вращения из задачи 67, б) стандартного тора в \mathbb{R}^3 (задача 68).

Задача 86. Для поверхности (u^2+v^2,u^2-v^2,uv) найти в точке P,(u,v)=(1,1) а) главные кривизны и главные направления, б) кривизну по направлению касательного вектора к кривой $u=v^2$, в) нормальную и геодезическую кривизны кривой $u=v^2$.

Задача 87. *** Воспользовавшись теоремой Менье, то есть без вычисления второй квадратичной формы, найти главные кривизны и главные направления в точке (1,0,1) на поверхности $(2uv, u^2 - v^2, u^2 + v^2)$ (эта поверхность вам очень хорошо знакома).

Задача 88. Классифицируйте точки на торе из задачи 68 по типу гауссовой кривизны (> 0, < 0, = 0).

Задача 89. Докажите, что средняя кривизна геликоида $(u\cos v, u\sin v, v)$ равна нулю.

15 7 декабря

Задача 90. Линейчатая поверхность образована точками прямых, параллельных вектору $\bar{\mathbf{a}}(s)$ и проходящих через точки кривой $\mathbf{r}(s)$, причем $\mathbf{a}(s) \perp \dot{\mathbf{r}}(s)$. Найти условия на функции \mathbf{r} и \mathbf{a} , при выполнении которых на данной поверхности:

- a) K = 0:
- 6) H = 0;
- в) $\mathbf{r}(s)$ линия кривизны;
- г) $\mathbf{r}(s)$ асимптотическая линия.

Задача 91. Найдите линии кривизны у а) геликоида б) тора в \mathbb{R}^3 .

Задача 92. *** Предположим, что поверхности Φ_1 и Φ_2 пересекаются под постоянным углом, а $\ell = \Phi_1 \cap \Phi_2$. Доказать, что если ℓ — это линия кривизны на поверхности Φ_1 , то она является линией кривизны и на второй поверхности. Докажите также обратное утверждение: если линия пересечения двух поверхностей является на обеих этих поверхностях линией кривизны, то поверхности пересекаются под постоянным углом.

Задача 93. Выразите коэффициенты первой и второй квадратичных форм поверхности Φ_* через коэффициенты первой и второй квадратичных форм поверхности Φ (поверхность Φ_* параллельна Φ).

Задача 94. Доказать, что если поверхности Φ и Φ_* "параллельны", то

$$K_*^2(H^2 - 4K) = K^2(H_*^2 - 4K_*).$$

Задача 95. Доказать, что кривая, соответствующая линии кривизны на поверхности, параллельной данной, сама является линией кривизны.

Задача 96. *** Рассмотрим поверхность $S \subset \mathbb{R}^3$ и кривую γ на ней. Покажите, что проекция ускорения кривой на нормаль к поверхности в точке $P = \gamma(0)$ равна второй квадратичной форме от вектора скорости этой кривой в точке P, то есть

$$n \cdot \gamma''(0) = \mathbf{II}_P(\gamma'(0), \gamma'(0))$$

Задача 97. *** Рассмотрим поверхность вращения. Докажите, что функция $r(s)\sin(\alpha)$ постоянна вдоль любой геодезической $\gamma(s)$ (r – расстояние до оси вращения, m – меридиан, α – угол между $\gamma(s)$ и m).