Supervised learning

Aprendizaje Automático para la Robótica Máster Universitario en Ingeniería Industrial

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems
- 3. Introduce Scikit-Learn API for supervised algorithms

Bibliography

- Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python.
 O'Reilly. 2016
- Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. 2nd Edition. O'Reilly. 2019

Most figures have been taken from (A. Müller) and (A. Géron)

Table of Contents

- Generalization, overfitting and underfitting
- 2. k-Nearest Neighbors
 - k-NN classification
 - Scikit-Learn
 - kNN regression
 - Scikit-Learn
 - Summary
- 3. Linear models
 - Ordinary least squares
 - Linear regression
 - Regularized linear models
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Regularized linear models comparison
 - Scikit-Learn
 - Linear models for classification
 - Linear mode
 - Scikit-Learn
 - Summary
- 4. Decision Trees
 - Building decision trees

- Controlling complexity of decision trees
- Analyzing decision trees
- Feature importance in trees
- Decision trees in regression
- Scikit-Learn
- Summary
- 5. Ensembles of Decision Trees
 - Ensembles
 - Random forests
 - Analyzing random forests
 - Scikit-Learn
 - Summary: Random forest
 - Gradient boosted regression trees
 - Scikit-Learn
 - Summary
- 6. Support Vector Machines
 - Linear SVM
 - Linear models and nonlinear features
 - The kernel trick
 - Understanding SVMs
 - Scikit-Learn
 - Scikit-Learn
 - Summary

Generalization, overfitting and underfitting

Generalization: accurate predictions on unseen data

- i.e. there is no overfitting neither underfitting
- Depends on model complexity and data variability

Generalization

k-Nearest Neighbors

k-Nearest Neighbors

k-NN classification (I)

k-NN (k-Nearest Neighbors): Likely, the simplest learner

- Given a data point, it takes its k closests neighbors
- Same prediction than the majority of its neighbors
- k uses to be an odd number (1-NN, 3-NN, 5-NN, ...)

3-NN

training class 0

training class 1

k-NN does not generate a model

• The whole dataset must be stored

k-Nearest Neighbors 00000000

k-NN classification (II)

k determines the model complexity

- Smoother boundaries in larger k values
- Model complexity decreases with k

How to figure out the best k?

k-NN classification (III)

k-Nearest Neighbors classifier

Scikit-learn

sklearn.neighbors.KNeighborsClassifier

Constructor arguments:

- n_neighbors: int, default=5
- metric: string, default='minkowski'
- p: int, default=2 (p = 1 Manhatan distance, p = 2 euclidean distance)

Methods: fit(), predict()

Attributes:

classes_: ndarray (n_samples)

k-Nearest Neighbors

k-Nearest Neighbors 0000**00**00

kNN regression (I)

k-NN regression

Given a data point

- I. Take the k closest data points
- 2. Predict same target value (1-NN) or averaged target value (k-NN)

Performace is measured with a regression metric

k-Nearest Neighbors

k-Nearest Neighbors 00000000

kNN regression (II)

k determines the boundary smoothness

With large k values, fit is smoother

k-Nearest Neighbors regressor

Scikit-learn

Constructor arguments:

Attributes:

- n_neighbors: int, default=5
- metric: string, default='minkowski'
- p: int, default=2 (p = 1 Manhatan distance, p = 2 euclidean distance)

Methods:fit(),predict()

Summary

Hyperparameters	Advantages	Disadvantages
k	Simple	Slow with large datasets
Distance	Baseline	Bad performance with
		hundreds or more attri-
		butes
		No model
		Dataset must be stored
		in memory

Linear model (I)

Linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_n \mathbf{x}_n$$

for a single feature $y = \beta_0 + \beta_1 x_1$, where

- β_0 is the intercept
- β_1 is the slope

Lineal models assume a linear relationship among variables

- This limitation can be easely overcomed
- Surprisingly good results in high dimensional spaces

Intepretable model

Linear regression

Different linear models for regression

• The difference lies in how β_i parameters are learned

Ordinary Least Squares (OLS): Minimizes mean squared error

- OLS does not have any hyperparameter
- No complexity control

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (\gamma_i - \hat{\gamma}_i)^2$$

where m is the number of instances

Regularized linear models

Regularization: Term that penalizes complexity

- Added to the cost function
- Lineal models remain the same
- Train to minimize cost function and penalty
- Intercepts are not part of regularization

Three regularizations

• LI (Lasso regression), L2 (Ridge regression) and ElasticNet (LI and L2)

Lasso (L1)

$$\alpha \sum_{i=1}^{n} |\beta_i|$$

Ridge (L2)

$$\alpha \sum_{j=1}^{n} \beta_{j}^{2}$$

ElasticNet

$$\alpha \left(r \sum_{j=1}^{n} |\beta_j| + (1 - r) \sum_{j=1}^{n} \beta_j^2 \right)$$

Ridge regression

Ridge regression (or L2 regularization) adds a new term to cost function

$$MSE + \alpha \sum_{i=1}^{n} \beta_i^2$$

 α controls the penalty

- If $\alpha = 0$ Ridge becomes a regular linear regression
- Optimal α depends on the problem

Ridge by default

Lasso regression (I)

Lasso regression (or L1 regularization) adds a new term to cost function

$$MSE + \alpha \frac{1}{2} \sum_{i=1}^{n} |\beta_i|$$

 α controls the penalty (and model complexity)

- If $\alpha = 0$ Lasso becomes a regular linear regression
- Optimal α depends on the problem

Some coefficiets may be exactly zero

- Implicit feature selection
- Easier interpretation
- Better with large number of attributes

Linear models

Lasso regression (II)

Dimension Reduction of Feature Space with LASSO

ElasticNet

Lasso and Ridge can be combined

$$MSE + \alpha \left(r \sum_{i=1}^{n} |\beta_i| + (1 - r) \sum_{i=1}^{n} \beta_i^2 \right)$$

Two hyperparameters

- ullet lpha controls the model complexity
- r balances between L1 and L2

ElasticNet is not a neural network!

Nearest Neighbors Linear models Decision Trees Ensembles of Decision Trees Support Vector Mach

Linear models

Regularized linear models comparison

Linear models

Scikit-learn (I)

sklearn.linear model.LinearRegression

Constructor arguments:

• fit_intercept: boolean, default=True

Methods:fit(),predict()

Attributes:

- coef_: ndarray (n_features,)
- intercept_: float, ndarray (n_targets,)

Linear models

Scikit-learn (II)

sklearn.linear model.Ridge

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0

Methods:fit(),predict()

Attributes:

- coef_: ndarray (n_features,)
- intercept_: float, ndarray (n_targets,)

Linear models

Scikit-learn (III)

sklearn.linear model.Lasso

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0

Methods:fit(),predict()

Attributes:

- coef_: ndarray (n_features,)
- intercept_: float, ndarray (n_targets,)
- n_features_in_:int

Scikit-learn (IV)

sklearn.linear model.ElasticNet

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0
- 11_ratio: float, default=0.5

Methods:fit(),predict()

Attributes:

- coef_: ndarray (n_features,)
- intercept_: float, ndarray (n_targets,)

Linear models for classification (I)

A linear regression can be used as classifier

- Just compare the prediction with a threshold (o, for instance)
 - If $\hat{\gamma} > 0$, assign C_1 ; if $\hat{\gamma} \leq 0$, assign C_2
- The decision boundary is a line, plane or hyperplane

A logistic regression is a generalization of a linear regression

• Probabilistic binary classifier

$$\hat{p} = \sigma \left(\beta_0 + \sum_{i=1}^n \beta_i x_i \right), \hat{\gamma} = \begin{cases} C_1, & \text{if } \hat{p} < 0.5 \\ C_2, & \text{if } \hat{p} \geq 0.5 \end{cases}$$

where $\sigma(t)$ is the logistic function, defined as $\sigma(t) = \frac{1}{1+e^-t}$

Linear models for classification (II)

Regularization with L_I, L₂ and ElasticNet

- In Scikit-Learn, regularization strength is given by C
- C is the inverse of regularization strength
- Smaller values of C correspond to stronger regularization

Linear models

Scikit-learn

sklearn.linear_model.LogisticRegression

Constructor arguments:

- penalty: 'lr', 'l2', 'elasticnet', 'none', default='l2'
- fit_intercept: boolean, default=True
- C: float, default=1.0
- 11_ratio: float, default=0.5

Methods: fit(), predict()

Attributes:

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)

Summary

Hyperparameters	Advantages	Disadvantages
	Fast train and predict	Limited in low dimen-
		sional spaces
lpha (L1, L2, ElasticNet)	Scales well to large data-	Limited generalization
	sets	
l1_ratio (ElasticNet)	Better in high dimen-	
	sional spaces	
	Few hyperparameters	
	Interpretable	

Decision trees are a family of algorithms

- Classification, regression and anomaly detection
- They learn a tree data strucure
- Hierarchy of if/else questions (test, or node)
- Decision (terminal node or leaf)

Usually, datasets does not contain binary attributes

- Continous features
- Is feature i larger than value a?

Building decision trees (I)

Tree learning algorithm

- 1. Begin with the root node
- 2. Searches all possible tests (according to a purity measure)
- 3. The most informative test is taken
- 4. Repeat recursively

Prediction of a new data point

- Classification: Majority class in the partition
- Regression: Average value of target values in the partition

Building decision trees (II)

Building decision trees (III)

We need a measure of 'impurity'

- Gini: $G(Q_m) = \sum_k p_{mk} (1 p_{ml})$
- Entropy: $H(Q_{pn}) = -\sum_k p_{mk} log(p_{ml})$

where p_{mk} is the propotion of class k in node $m\!\!$, and Q_{m} the data in node m

Controlling complexity of decision trees

Trees tend to grow until all leaves are pure

- Very big trees in real problems
- Big trees use to be overfitted models

Two strategies to prevent overfitting

- Pre-prunning: Stop the creation of the tree early according to some criteria
 - Maximum depth, number of leaves, minimum number of points in a node, ...

Decision Trees

- Implemented in Scikit-Learn
- Post-prunning: Build the tree and then remove nodes with little information

Decision Trees

Analyzing decision trees

Decision trees are easily explained to nonexperts

- Interpretable models
- Deep trees are overwhelming
- Trick: Observe the path with most data

Analyzing decision trees: Feature importance

Feature importance is a metric that summarizes features

- Number between o (not used at all) and I (perfect prediction)
- Feature importances sum to one
- Useful for feature selection and model interpretation

Some considerations

- It does not inform about the relationship between attribute and target
- It quantifies the importance in the tree

Decision trees in regression

Decision trees are not able to extrapolate

- i. e. to predict outside of the range of the training data
- It is specially important in regression problems

Decision Trees

Scikit-learn

sklearn.tree.DecisionTreeClassifier

Constructor arguments:

- criterion: 'gini', 'entropy', 'log_loss', default='gini'
- max_depth: int, default=None
- max_leaf_nodes: int, default=None
- min_samples_leaf: int or float, default=r

Methods:fit(),predict(),decision_path(),get_depth(),
get_n_leaves()

Attributes:

- classes_: ndarray (n_classes,)
- feature_importances_: ndarray (n_features,)
- tree_: Tree instance

(Scikit-Learn reference) (See also DecisionTreeRegressor)

Decision Trees

Summary

Hyperparameters	Advantages	Disadvantages
max_depth	Visualization	Tend to overfit
max_leaf_nodes	Interpretable by non-	Poor generalization
	experts	
min_samples_leaf	Invariant to scale	
criterion	Mix of categorial and	
	numerical data	

Ensembles

Ensembles, in ML, refers to the combination of several models

For instance, an ensemble of three classifers voting

Two common approaches to build ensembles

- Bagging (or bootstrap) samples the dataset with replacement
 - The ensemble make prediction by aggregating its predictors
- Boosting trains models to correct previous models

(Source)

Random forests

A tree is good doing his job, but does not generalize well

- Different trees could overfit in different ways
- Idea: Use many trees and aggregate their results

Random forest is a popular algorithm based on ensembles of trees

- Classification and regression
- Limits overfitting found in trees

It encourages tree diversity through training set and feature selection

- Selecting data: Bootstrap
- Selecting features in each test
 - It does not look for the best test.
 - It looks for the best test involving a random subset of features
 - The size of the features subset is a critical hyperparameter

Same hyperparameters than decision trees

Analyzing random forests (I)

Random forest with five trees

Ensembles of Decision Trees

Analyzing random forests (II)

Feature importance can be aggregated

- More informative than single trees
- The algorithm must consider many possible explanations

Analyzing random forests (III)

Random forest classifier with MNIST dataset

Ensembles of Decision Trees: Scikit-learn

Same than RandomForestClassifier Constructor arguments:

- n_estimators: int, default=100
- max_features: "sqrt", "log2", None, int or float, default="sqrt"
- bootstrap: bool, default=True
- max_samples: int or float, default=None

Methods: fit(), fit_predict()

Attributes:

- feature importances : ndarray (n_features,)
- estimators_: List of DecisionTreeClassifier

(Scikit-Learn reference) (See also RandomForestRegressor)

Summary: Random forest

Hyperparameters	Advantages	Disadvantages
Same than trees	Same than trees	Interpretation
Number of trees	High performance	High dimensional data
Number of features	Robust	Sparse data
	Widely used	Memory and CPU
	Parallelized	-

Gradient boosted regression trees (I)

Gradient boosting trees is an ensemble of trees

- Based on boosting, builds trees in a serial manner
- One tree corrects the mistakes of the previous one

A set of weak learners is used

- Shallow trees (by default, 3 in Sklearn)
- No data randomization, strong pre-pruning

A new hyperparameter: learning rate

- How strongly each tree tries to correct
- High learning rate makes stronger corrections: More complex models
- More trees also adds more complexity

State of the art results

- Widely adopted by industry
- Comparable in performance with deep neural networks

Ensembles of Decision Trees

Gradient boosted regression trees (II)

Feature importances with cancer dataset

The (XGBoost) package provides a high performance implementation of gradient boosted trees

Ensembles of Decision Trees: Scikit-learn

sklearn.ensemble.GradientBoostingClassifier

Constructor arguments:

- n_estimators: int, default=100
- learning_rate: float, default=0.1
 Same than DecisionTreeClassifier

Methods:fit(),predict()

Attributes:

feature_importances_: ndarray(n_features,)

(Scikit-Learn reference) (See also GradientBoostingRegressor)

Summary: Gradient boosting

Hyperparameters	Advantages	Disadvantages
Same than trees	Very high performance	Slow
Number of trees	Invariant to scale	High dimensional data
Learning rate	Mix of categorial and	Tricky hyperparameter
	numerical data	tuning
		Overfitting

Linear SVM (I)

SVM, or Support Vector Machines, is a popular and flexible learning model

- Classification, regression and outlayer detection
- Linear and non-linear models
- Quite popular with small and medium datasets

Learning SVMs

- It localizes data points in the boundary of the classes
 - They are named support vectors
- 2. Determine an hyperplane that splits them maxizing margin

(Source)

Linear SVM (II)

Two big problems with hard margins

• Most datasets are not linearly separable and outlaiers

We look for a balance between good fit and margin violations: C

- C sets the tolerance to margin violations
- Low $C \rightarrow High tolerance$

Linear models and nonlinear features (I)

Plain SVMs are limited in low-dimensional spaces

- Lines, planes and hyperplanes
- Adding new features is a way to overcome this limitation

 $feature_2 = feature_1^2$

Linear models and nonlinear features (II)

The kernel trick

Adding nonlinear attributes makes linear models much more powerful

- Which features should we add?
- How we compute interations in a 100-dimensional feature space?

Some mathematical magic: The kernel trick

- It computes data distances for expanded feature representation ...
- ... without computing the expansion!

It applies a function named kernel

- Polynomial kernel, up to a certain degree
- Radial basis function (RBF) kernel (Gaussian kernel)
- Linear kernel, no expansion is done

The kernel trick can be used in other techniques like PCA

Understanding SVMs (I)

To predict a new point, the distance to each of the support vector is computed

- Distance is measured by the Gaussian kernel
- Decision is taken based on the distance and learned importance

$$k_{\text{rbf}}(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma ||\mathbf{x}_1 - \mathbf{x}_2||^2)$$

where $||\cdot||$ denotes Euclidean distance and γ is an hyperparameter

- γ determines how far the influence of a single point reaches
- Low γ , lower complexity

Remember, C is a regularization parameter

Understanding SVMs (II)

Understanding SVMs (III)

SVM is very sensitive to scale

Always use standarized or normalized data

Support Vector Machines

Scikit-learn

sklearn.svm.SVC

Constructor arguments:

- C: float, default=1.0
- kernel: 'linear', 'poly', 'rbf', default='rbf'
- degree: int, default=3
- gamma: 'scale', 'auto' or float, default='scale'

Methods: fit(), predict()

Attributes:

(Scikit-Learn reference) (See also SVR) (See also LinearSVC)

Scaling

No interpretable

Summary

Hyperparameters Advantages Disadvantages Powerful Memory and CPU Low and high dimen-Number of samples sional

Flexible

Kernel

