Digital IC Design SPI Slave Interface with Single Port RAM

By:
Youssef Elsaadany
Osama Ayman
Nancy Ewis

Overview

This project demonstrates a custom SPI slave module implemented in Verilog, designed to communicate with a master device using the SPI protocol. The SPI slave is capable of handling read and write commands via serial input (MOSI) and converting it to parallel data for internal RAM access.

A Finite State Machine (FSM) is used to manage the communication process:

1. Simulation Snippet - Questa-Sim

• Automated Simulation - Do File

```
vlib work
vlog SPI_old.v ram.v top.v tb.v
vsim -voptargs=+acc tb
add wave *
add wave -position insertpoint \
sim:/tb/top1/m1/tx_valid \
sim:/tb/top1/m1/tx_data \
sim:/tb/top1/m1/rx_valid \
sim:/tb/top1/m1/rx_data
add wave -position insertpoint /tb/top1/m2/mem
run -all
umunication
```

Waveform

2. Linting - Questa Lint

➤ Lint Checks Result

> Schematic

3. Encoding – Vivado

➤ One - Hot

State	1	New Encoding	I	Previous Encoding
IDLE		00001		000
CHK_CMD	1	00010		001
WRITE		00100	1	010
READ_ADD	1	01000	1	011
READ_DATA	1	10000		100

INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'one-hot' in module 'spi' WARNING: [Synth 8-327] inferring latch for variable 'FSM onehot ns reg' [C:/Users/DELL/Desktop/digital

➤ Gray

State	New Encoding	Previous Encoding
IDLE	000	000
CHK_CMD	001	001
WRITE	011	010
READ_ADD	010	011
READ_DATA	111	100

INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'gray' in module 'spi' WARNING: [Synth 8-327] inferring latch for variable 'FSM_gray_ns_reg' [C:/Users/DELL/Desktop/digital

➤ Sequential

State	New Encoding	Previous Encoding
IDLE	000	000
CHK_CMD	001	001
WRITE	010	010
READ_ADD	011	011
READ_DATA	100	100

INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'sequential' in module 'spi' WARNING: [Synth 8-327] inferring latch for variable 'FSM_sequential_ns_reg' [C:/Users/DELL/Desktop/digital_

4. Elaboration - Vivado

- Schematic
 - 1. One Hot

2. Gray

5. Synthesis - Vivado

> Schematic

1. One Hot

2. Gray

➤ Timing Report

1. One Hot

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.261 ns	Worst Hold Slack (WHS):	0.149 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	94	Total Number of Endpoints:	94	Total Number of Endpoints:	48

2. Gray

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.261 ns	Worst Hold Slack (WHS):	0.149 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	94	Total Number of Endpoints:	94	Total Number of Endpoints:	48
All user specified timing constrai	nts are met				

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS): 6.2	261 ns	Worst Hold Slack (WHS):	0.149 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS): 0.0	000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints: 0		Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints: 94	ļ	Total Number of Endpoints:	94	Total Number of Endpoints:	48
All user specified timing constraints a	are met.				

Critical Path1. One Hot

2. Gray

6. Implementation - Vivado

➤ Utilization Report

1. One Hot

Name	1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)
N top		37	50	1	23	37	14	0.5	5	1
I m1 (spi)		34	41	0	22	34	12	0	0	0
I m2 (ram)		3	9	1	3	3	0	0.5	0	0

2.Gray

Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)
∨ N top	34	46	1	20	34	10	0.5	5	1
I m1 (spi)	31	37	0	19	31	9	0	0	0
I m2 (ram)	3	9	1	3	3	0	0.5	0	0

Name	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)
∨ N top	35	46	1	20	35	12	0.5	5	1
I m1 (spi)	32	37	0	19	32	11	0	0	0
m2 (ram)	3	9	1	4	3	0	0.5	0	0

➤ Timing Report

1. One Hot

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.026 ns	Worst Hold Slack (WHS):	0.070 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	95	Total Number of Endpoints:	95	Total Number of Endpoints:	48

2. Gray

up		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.724 ns	Worst Hold Slack (WHS):	0.071 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	95	Total Number of Endpoints:	95	Total Number of Endpoints:	46

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.052 ns	Worst Hold Slack (WHS):	0.046 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 n
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	95	Total Number of Endpoints:	95	Total Number of Endpoints:	46

➤ Messages

1. One Hot

2. Gray

➢ Bit Stream Generation

1. One Hot

2. Gray

> FPGA Device Snippet (Before Adding Debug Core)

1. One Hot

2. Gray

> FPGA Device Snippet (After Adding Debug Core)

