Unsigned integer multiplication done by shifting and adding

Start with the operands at the top of two columns. Repeatedly divide the left column's value by 2 (integer division) and multiply the right column's value by 2, until the left column's value reaches one. Omit all rows in which the left column's value is even. Then add the remaining rows of the right column. For example (36 * 26):

Here are the columns formed by halving left value and doubling right value until left column reaches 1:

26	36
13	72
6	144
3	288
1	576

Omit all rows where left column is even then add the right column's values:

26	36	
20	30	
13	72	
6	144	
0		
3	288	
1	576	
	936	(36 * 26 = 936)

Why does this work? Here's the same example shown in binary:

	100100	11010
7210	1001000	1101
	10010000	110
28810	100100000	11
57610	1001000000	1
93610	1110101000	

Showing the binary multiplication (it's the same algorithm as for decimal multiplication):

Notice when the appropriate bit of the lower operand is 0, the row in the resulting addition is all zero bits, so it can be omitted. The sum of the non-zero rows is the product.