Math 527 Homework 5

Mathew Houser

CE 5.4.1

Write a function to compute $\int_{a}^{b} f(x) dx$ using formula (8).

```
function int = Quad(f,a,b)
dx = (b-a)/2;
x1 = (1/2).*((b-a)*(-sqrt(3/5))+a+b);
x2 = (1/2).*(a+b+(b-a).*0);
x3 = (1/2).*((b-a).*(sqrt(3/5))+b+a);
f1 = f(x1);
f2 = f(x2);
f3 = f(x3);
sum = (5/9).*(f1)+(8/9).*(f2)+(5/9).*(f3);
int = dx.*sum;
end
```

CE 5.4.2

Use the function above to approximate the integrals:

```
>> Quad('1/sqrt(x)',0,1)
                               \Rightarrow Quad('exp(-(cos(x1)^2))',0,2)
      x1 = 0.1127
                                     x1 = 0.2254
      x2 = 0.5000
                                      x2 = 1
      x3 = 0.8873
                                      x3 = 1.7746
      f1 = 2.9788
                                     f1 = 2.1063
      f2 = 1.4142
                                     f2 = 1
                                     f3 = 0.7507
      f3 = 1.0616
      sum = 3.5017
                                     sum = 2.4761
      int = 1.7509
                                     int = 2.4761
      ans = 1.7509
                                      ans = 2.4761
```

CE 6.2.4

Command Window

```
\begin{array}{l} t = zeros(1,41);\\ y = zeros(1,41);\\ z = zeros(1,41);\\ for i = 1:41\\ &t(i) = -5.25 + (0.25).*i;\\ &y(i) = (t(i).^2 + 1)^(-1);\\ end \end{array}
```

```
Spline3 Coef(t,y);
x = zeros(1, 101);
x(1) = 0;
f = zeros(1,101);
SS = zeros(1,101);
diff=zeros(1,101);
for i = 2:101
   x(i) = ((i-1)./20);
   f(i) = (x(i).^2+1)^(-1);
  SS(i) = Spline3 Eval(t, y, z, x(i));
   diff(i) = SS(i)-f(i);
end
Spline3 Coef(t,y)
function [z] = Spline3 Coef(t,y)
h = zeros (1,40);
b = zeros (1,40);
u = zeros (1,39);
v = zeros (1,39);
for i = 1:40
  h(i) = t(i+1)-t(i);
  b(i) = (y(i+1)-y(i))/h(i);
end
u(1) = 2.*(h(1)+h(2));
v(1) = 6.*(b(2)-b(1));
for i = 2:40
   u(i) = 2.*(h(i)+h(i-1))-((h(i-1)).^2./u(i-1));
   v(i) = 6.*(b(i)-b(i-1))-((h(i-1)).*(v(i-1))./(u(i-1)));
end
z(41) = 0;
for i = 40:-1:1
   z(i) = (v(i)-h(i).*z(i+1))./u(i);
end
z(1)=0;
end
Spline3 Eval(t,y,z,x)
function [S] = Spline3 Eval(t, y, z, x)
for i = 40:-1:1
   if x-t(i) >= 0
       h = t(i+1)-t(i);
       tmp = (z(i)./2)+(x-t(i)).*(z(i+1)-z(1))./(6.*h);
       tmp = -(h./6).*(z(i+1)+2.*z(i))+(y(i+1)-y(i))./h+(x-t(i)).*(tmp);
       S = y(i) + (x-t(i)) \cdot *(tmp);
   end
end
end
```

Answer

diff = S(x) - f(x)

Columns	1	through	22
COLUMNS		through	22

Columns	umns 1 through 22							
0 -0.7673 -0.5420 -0.3409	-0.8787 -0.7377 -0.5100	-0.8705 -0.7064 -0.4790	-0.8576 -0.6740 -0.4490	-0.8403 -0.6410 -0.4201	-0.8192 -0.6077 -0.3925	-0.7946 -0.5746 -0.3660		
Columns	23 through	44						
-0.3169 -0.1812 -0.0892 -0.0256	-0.2942 -0.1658 -0.0786	-0.2727 -0.1512 -0.0686	-0.2523 -0.1374 -0.0592	-0.2330 -0.1243 -0.0501	-0.2148 -0.1120 -0.0416	-0.1975 -0.1003 -0.0334		
Columns	45 through	66						
-0.0182 0.0253 0.0579 0.0833	-0.0111 0.0306 0.0619	-0.0043 0.0356 0.0658	0.0021 0.0404 0.0695	0.0083 0.0450 0.0731	0.0142 0.0495 0.0766	0.0199 0.0538 0.0800		
Columns	67 through	88						
0.0865 0.1063 0.1229 0.1371	0.0895 0.1088 0.1250	0.0925 0.1113 0.1271	0.0954 0.1137 0.1292	0.0983 0.1161 0.1312	0.1010 0.1184 0.1332	0.1037 0.1207 0.1352		
Columns	89 through	101						
0.1389	0.1408	0.1426	0.1444	0.1461	0.1478	0.1495		

```
function [z] = Spline3 Coef(t,y)
h = zeros (1,40);
b = zeros (1,40);
u = zeros (1,39);
v = zeros (1,39);
for i = 1:40
  h(i) = t(i+1)-t(i);
  b(i) = (y(i+1)-y(i))/h(i);
end
u(1) = 2.*(h(1)+h(2));
v(1) = 6.*(b(2)-b(1));
for i = 2:40
  u(i) = 2.*(h(i)+h(i-1))-((h(i-1)).^2./u(i-1));
   v(i) = 6.*(b(i)-b(i-1))-((h(i-1)).*(v(i-1))./(u(i-1)));
end
z(41) = 0;
for i = 40:-1:1
   z(i) = (v(i)-h(i).*z(i+1))./u(i);
end
z(1) = 0
end
function [S] = Spline3 Eval(t, y, z, x)
for i = 40:-1:1
   if x-t(i) >= 0
       h = t(i+1)-t(i);
       tmp = (z(i)./2)+(x-t(i)).*(z(i+1)-z(1))./(6.*h);
       tmp = -(h./6).*(z(i+1)+2.*z(i))+(y(i+1)-y(i))./h+(x-t(i)).*(tmp);
       S = y(i) + (x-t(i)) .* (tmp);
   end
end
end
t = zeros(1,41);
y = zeros(1,41);
z = zeros(1,41);
for i = 1:41
  t(i) = -5.25 + (0.25).*i;
  y(i) = (t(i).^2+1)^(-1);
end
```

```
function [z] = Spline3 Coef(t,y)
h = zeros (1,40);
b = zeros (1,40);
u = zeros (1,39);
v = zeros (1,39);
for i = 1:40
  h(i) = t(i+1)-t(i);
  b(i) = (y(i+1)-y(i))/h(i);
end
u(1) = 2.*(h(1)+h(2));
v(1) = 6.*(b(2)-b(1));
for i = 2:40
   u(i) = 2.*(h(i)+h(i-1))-((h(i-1)).^2./u(i-1));
   v(i) = 6.*(b(i)-b(i-1))-((h(i-1)).*(v(i-1))./(u(i-1)));
end
z(41) = 0;
for i = 40:-1:1
   z(i) = (v(i)-h(i).*z(i+1))./u(i);
end
z(1) = 0
function [S] = Spline3 Eval(t, y, z, x)
for i = 40:-1:1
   if x-t(i) >= 0
       h = t(i+1)-t(i);
       tmp = (z(i)./2) + (x-t(i)).*(z(i+1)-z(1))./(6.*h);
       tmp = -(h./6).*(z(i+1)+2.*z(i))+(y(i+1)-y(i))./h+(x-t(i)).*(tmp);
       S = y(i) + (x-t(i)) .* (tmp);
   end
end
end
x = zeros(1,101);
x(1) = 0;
f = zeros(1,101);
SS = zeros(1,101);
diff=zeros(1,101);
for i = 2:101
   x(i) = ((i-1)./20);
   f(i) = (x(i).^2+1)^(-1);
  SS(i) = Spline3 Eval(t, y, z, x(i));
   diff(i) = f(i) - SS(i);
end
```