偷做分方程工期末表题(2018-01-05)

本成卷中总键处: $\Omega \subset \mathbb{R}^n (n > 3)$ 是有界开区域, $\partial \Omega \in \mathcal{C}^n$, $[\Omega^i]_{n \times n} \in \mathcal{C}(\Omega)$ 是 页上正定、实对称矩阵函数, $\Omega_T = \Omega \times (0, T]$ 。

1. (10=5+5分) 彼 $U, V \in L_{loc}(\Omega)$, $\{U_k\}$ 及它的的弱素数 $\{D^cU_k\}$ 构系于 $L_{loc}(\Omega)$. (1) 如果 $U_k \to U$ in $L_{loc}(\Omega)$, $D^cU_k \to V$ in $L_{loc}(\Omega)$. 对证 U 的引导数 $D^cU_k \to U$ 的有点,且 $D^cU_k \to V$.

(ii) 反之,如果 Du=V,试找出满是山中的一个序列(似),使之具有最好的光滑性。

3.(20分) 诞 $f \in H'(\Omega)$. 试用Lax-Milgram 建理证明: 存在正常发 5>0,当 $\|c\alpha\|\|_{\mathcal{B}(\Omega)} + \|B(\alpha)\|_{\mathcal{L}'(\Omega)} < S$ 时,存在 唯一的 $U \in H'(\Omega)$ 满是 $\int_{\mathbb{T}_{p}}^{\infty} \alpha^{j}(\alpha) \, \mathcal{U}_{x_{j}} \mathcal{V}_{x_{j}} + (B(\alpha) \cdot Du(\alpha) + C(\alpha) \mathcal{U}) \mathcal{V} dx = f, \mathcal{V}_{x_{j}}, \mathcal{V}_{x_{j}} \mathcal{V} \in H'_{b}(\Omega).$

4.(18分) 波 加力排货整数, $x \in (0,1)$, $f \in C^{m,x}(\overline{\Omega})$, $u \in C^{m+2,x}(\overline{\Omega})$ 游是 f(x) $u \in C^{m+2,x}(\overline{\Omega})$ 游是 f(x) $u \in C^{m+2,x}(\overline{\Omega})$ 游是 f(x) f(x

 $\|u\|_{C^{m+2}(\overline{\Omega})} \leq C(n, \alpha, \Omega, m, q^{n}) \cdot \left[\|u\|_{C(\overline{\Omega})} + \|f\|_{C^{m,\alpha}(\overline{\Omega})}\right]$

第1页(共2页)

5.(25=15+10分).酸 φ ∈ H₀(Ω), F的在尺序可等, 且為多數有景。 i) 有 至 U ∈ L'(0, T; H₀(Ω)) η L'(0, T; H²Ω) 使得 U ∈ L'(Ω_T) 且满足

 $|\mathcal{U}_{t}| \leq |\mathcal{U}_{t} - \sum_{i,j=1}^{n} (\alpha^{i} \alpha_{i}) \mathcal{U}_{x_{i}x_{j}} = F(|x|^{2}), \quad \forall \quad a.e. \quad (x,t) \in \Omega_{T}.$ $|\mathcal{U}|_{t=0} = |\mathcal{G}| \quad \text{in } L^{2}(\alpha).$

(ii) 当上述方程中在绑项 F((水)) 接为 F(U) 时,相同的结论 是居成立?的什么?

6.(15分) 放 $U \in L(\Omega, T; H_0(\Omega))$, $U_u \in L(\Omega, T)$, $U_u \in L(0, T; H^1(\Omega))$ 满是 $U|_{k=0} = U_u|_{k=0} = 0$ in $L(\Omega)$, 并且 V a.e $\star \in (0, T)$ 有 $< U_{uv}$, $V > + \int L(\Omega, T) = \alpha^i (\alpha) U_{uv} V_{uv} + F(u) V dx = 0$, $V \in H_0(\Omega)$,

其中 $F \in C(R)$ 且滿是 $|F(t)| \le 2018 | td$, $\forall t \in R$. 证明: U(x,t) = 0, $\forall a.e$ $(x,t) \in \Omega_T$.

[U+]2 < C[U]2.

dt | U | 2 = 1 (M, N+)

 $u_{t} \in L^{2}(0,T)$ $u_{t} \in L^{2}(\Omega)$