

Semester	T.E. Semester V – Computer Engineering
Subject	Computer Network
Subject Professor Incharge	Prof. Amit K. Nerurkar
Assisting Teachers	Prof. Amit K. Nerurkar
Laboratory	M-313-A

Student Name	Deep Salunkhe
Roll Number	21102A0014
TE Division	A

<u>Title</u> : IP Addressing

Theory:

IP (Internet Protocol) addresses are numerical labels assigned to devices on a computer network that uses the Internet Protocol for communication. These addresses serve two primary functions:

- Host Identification: IP addresses uniquely identify devices (hosts) on a network. Each device
 connected to a network, whether it's a computer, smartphone, or server, is assigned a distinct IP
 address.
- Location Addressing: IP addresses also provide information about the device's location on the
 network. This allows routers and switches to determine how to forward data packets from the
 source to the destination.

IP Address Classes

IPv4 addresses are divided into different classes, each with its own range and purpose. The classes are:

- 1. **Class A**: IP addresses in the range 1.0.0.0 to 126.0.0.0 are designated as Class A addresses. They are typically used by large organizations and corporations.
- 2. **Class B**: IP addresses in the range 128.0.0.0 to 191.255.0.0 belong to Class B. These addresses are often assigned to medium-sized networks.
- 3. **Class C**: IP addresses in the range 192.0.0.0 to 223.255.255.0 fall into Class C. These addresses are commonly used for smaller networks.
- 4. **Class D**: Class D addresses (224.0.0.0 to 239.255.255) are reserved for multicast groups, where data is sent to multiple recipients simultaneously.
- 5. **Class E**: Class E addresses (240.0.0.0 to 255.255.255.255) are reserved for experimental and research purposes.

Validating IP Addresses

In your lab, you are tasked with creating a program to validate IP addresses. Valid IP addresses must adhere to the following rules:

- The address must consist of four numerical segments separated by periods (e.g., "192.168.0.1").
- Each segment must be between 0 and 255.
- Leading zeros in each segment are not allowed.
- The first segment must not be 0.
- The last segment must not be 0.

Determining IP Address Class

In addition to validation, your program will determine the class of the IP address based on its first segment:

Class A: 1 to 126

• Class B: 128 to 191

• Class C: 192 to 223

• Class D: 224 to 239

Class E: 240 to 255

Implementation:

```
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
void takeip(vector<int> &ip)
    cout << "enter ip without . :";</pre>
    int n;
    cout << "enter the number of group's':";</pre>
    cin >> n;
    cout << "start entering the input's....." << endl;</pre>
    for (int i = 0; i < n; i++)</pre>
        int t;
        cin >> t;
        ip.push_back(t);
bool isvalid(vector<int> &ip)
    // size
    int sz = ip.size();
    if (sz != 4)
        return false;
    // every group should [0,255]
    for (int i = 0; i < 4; i++)
        int value = ip[i];
        if (!(value >= 0 && value < 256))</pre>
        {
            return false;
    // hex and binary
    return true;
```

```
int findgroup(vector<int> &ip)
   if (ip[0] >= 0 \&\& ip[0] <= 127)
        cout << "Belong to group A" << endl;</pre>
        return 0;
   else if (ip[0] >= 128 \&\& ip[0] <= 191)
        cout << "Belong to group B" << endl;</pre>
        return 1;
   else if (ip[0] >= 192 \&\& ip[0] <= 223)
        cout << "Belong to group C" << endl;</pre>
        return 2;
   else if (ip[0] >= 224 \&\& ip[0] <= 239)
        cout << "Belong to group D" << endl;</pre>
        return 3;
   else if (ip[0] >= 240 \&\& ip[0] <= 255)
        cout << "Belong to group E" << endl;</pre>
       return 4;
   return 0;
void firstip(vector<int> &ip, int gid, vector<vector<int>> &cm)
   vector<int> fip;
   cout << "first ip is:" << endl;</pre>
   for (int i = 0; i < 4; i++)
        int temp = ip[i] & cm[gid][i];
        fip.push_back(temp);
        cout << fip[i] << ".";</pre>
void lastip(vector<int> &ip, int gid, vector<vector<int>> &cm)
```

```
vector<int> lip;
   cout << "last ip is:" << endl;</pre>
   for (int i = 0; i < 4; i++)
   {
       int ones;
       if (cm[gid][i] == 255)
           ones = 0;
           ones = 255;
       int temp = ip[i] | ones;
       lip.push_back(temp);
       cout << lip[i] << ".";</pre>
int main()
   vector<int> ip;
   takeip(ip);
   0}};
   if (isvalid(ip))
   {
       cout << "ip is valid....." << endl;</pre>
       // finding to which group it belong's
       int gid = findgroup(ip);
       if ((gid == 3 || gid == 4))
           cout << "this is reversed class....." << endl;</pre>
       }
       {
           firstip(ip, gid, cm);
           lastip(ip, gid, cm);
       }
   {
       cout << "ip is not valid....." << endl;</pre>
   return 0;
```


Output:

```
PS E:\GIT> cd "e:\GIT\SEM-5\CN\" ; if ($?) { g++ Ipaddresing.cpp -o Ipaddresing } ; if ($?) { .\frac{1}{2}} enter ip without . :enter the number of group's':5 start entering the input's......

12 12 12 12 12

ip is not valid.....

PS E:\GIT\SEM-5\CN> cd "e:\GIT\SEM-5\CN\" ; if ($?) { g++ Ipaddresing.cpp -o Ipaddresing } ; if enter ip without . :enter the number of group's':4 start entering the input's......

12 12 12 12

ip is valid.....

Belong to group A first ip is:

12.0.0.0.last ip is:

12.255.255.255.

PS E:\GIT\SEM-5\CN>
```