Valuing Environmental Goods and Services

An Economic Perspective

Choices

- Choice is fundamental to human existence, ranging from daily individual decisions to major collective choices that shape society
- Individual choices encompass:
 - Routine decisions about time and money management
 - Major life decisions regarding housing, family, and career paths

- Collective choices involve:
 - Creation of laws and regulations
 - Management of public resources
 - Decision-making through voting or representatives
- All choices involve trade-offs:
 - Selecting one option means foregoing others
 - Both individual and collective choices require evaluating alternatives based on preferences

- People's choices reveal their preferences:
 - Choosing an activity shows it was "worth" its cost
 - Observed choices help understand what people value
- Nonmarket valuation focuses on choices not captured by traditional markets:
 - Environmental goods and services (clean air, wilderness)
 - Natural amenities that aren't directly purchased
 - Public resources requiring collective decision-making

- Understanding preferences helps inform policy decisions:
 - Guides allocation of public funds
 - Assists in evaluating environmental preservation
 - Supports cost-benefit analysis of public projects

Market failure and choices

- The "invisible hand" principle has limitations:
 - While individual choices can benefit society, this doesn't always work for environmental goods
 - The principle assumes markets exist for all goods and services people value

- Market failures in environmental goods lead to undersupply:
 - Without markets, providers can't receive payment for environmental benefits
 - Private landowners lack incentives to protect habitat when they can't monetize the benefits
 - The true social value of environmental goods isn't reflected in market transactions

- Environmental externalities create economic inefficiencies:
 - Negative externalities occur when actions harm others without compensation
 - Companies don't pay for environmental damage, leading to excessive pollution
 - Private costs don't include environmental impacts, distorting decision-making
- Two solutions exist for market failures:
 - Create new markets for environmental goods where possible
 - Implement government interventions through regulations or direct provision

- Nonmarket valuation serves crucial roles:
 - Helps quantify environmental benefits that markets don't capture
 - Provides information to address market failures
 - Supports policy decisions about environmental protection

Non-market Valuation

- The evolution of nonmarket valuation spans several decades:
 - Originated in 1950s U.S. for water resource project analysis
 - Gained momentum in 1980s through key federal actions
 - Executive Order 12291 mandated benefit-cost analyses
 - Environmental legislation required damage assessments

- Applications expanded to include:
 - Environmental regulation benefit assessment
 - Natural resource damage compensation
 - Land and water management decisions
 - Ecosystem services valuation

- Growing recognition of ecosystem services drove wider adoption:
 - Non-economists began showing interest
 - Environmental degradation raised awareness
 - Policy decisions often overlooked ecosystem value
 - Need emerged to quantify natural benefits
- Landmark ecosystem valuation studies emerged:
 - 1997 study estimated global ecosystem value at \$33 trillion
 - Generated controversy and critique from economists
 - Sparked important discussions about valuation methods
 - Highlighted need for proper methodology

- Current state of nonmarket valuation:
 - Serves critical role in environmental decision-making
 - Helps quantify previously ignored natural benefits
 - Requires careful understanding of proper techniques
 - Continues to evolve with new applications and methods

Values vs valuation

- Economic valuation differentiates between two types of values:
 - Held values: Core principles like loyalty, freedom, or environmental stewardship
 - Assigned values: Specific valuations, such as how much someone would pay to preserve a local forest or clean up a polluted lake

- Assigned values are influenced by multiple factors:
 - Individual perceptions: A hiker might value wilderness differently than a developer
 - Personal held values: Someone who believes in environmental protection might assign higher value to endangered species preservation
 - Context: The value assigned to clean air might be higher in a heavily polluted city versus a rural area
 - External circumstances: Income levels affect how much people can pay for environmental improvements

- Nonmarket valuation specifically focuses on:
 - Measuring assigned values: Quantifying how much people value improving air quality from level A to B
 - Relative changes: Comparing outcomes like having a protected wetland versus developing it
 - Practical examples: Determining the value of preserving a national park or reducing water pollution in a river
 - Trade-off decisions: Whether to spend \$20 million on forest preservation or a new museum

- Key principles of environmental valuation:
 - Values are relative: Clean air is valued against current pollution levels
 - Specific outcomes: Preserving 1,000 acres of wetland versus abstract environmental protection
 - Practical applications: Assessing damages from oil spills or benefits of emissions regulations
 - Real-world choices: Deciding between expanding a highway or protecting adjacent wildlife habitat

- Economic approach to valuation:
 - Real-world applications: Evaluating compensation for environmental damage from chemical spills
 - Policy decisions: Determining appropriate pollution control standards
 - Project assessment: Analyzing costs and benefits of dam construction
 - Resource management: Deciding optimal harvest levels for fisheries or forests

Concept of value

- Economic theory defines value through trade-offs:
 - Value = Maximum amount one would give up to gain something
 - Example: How much money someone would sacrifice to preserve a local park
 - Negative values exist too: Compensation required to accept pollution

- Two key principles of economic value:
 - Higher willingness to sacrifice indicates higher value
 - Example: If someone would pay ₹100 to save forest A but only ₹50 for forest B, they value A more
 - Values can be compared by measuring sacrifice amounts
 - Example: Choosing between ₹20M for air quality improvement or water cleanup

- Trade-offs can be measured in different ways:
 - Monetary terms (most common): Rupees willing to pay
 - Risk trade-offs: Accepting one risk to reduce another
 - Example: Accepting slightly higher traffic risk to reduce flood risk
 - Time trade-offs: Hours willing to volunteer for environmental cleanup
- Key economic value concepts:
 - Willingness to Pay (WTP): Amount someone would pay for improvement
 - Example: ₹50 monthly for cleaner air
 - Willingness to Accept (WTA): Compensation required to give up something
 - Example: ₹1000 to accept loss of neighborhood green space

- Benefits in economic valuation:
 - Specifically means monetary value assigned
 - Allows comparison across different projects
 - Enables cost-benefit analysis
 - Example: ₹5M benefit from wetland preservation versus ₹3M cost

		_

The Valuation Process

- Six Key Steps in Environmental Valuation:
 - Step 1: Problem Formulation
 - Example: Evaluating dam removal options for river restoration
 - Identify alternatives like full removal, partial removal, fish ladders
 - Step 2: Identify Environmental Changes
 - Example: Changes in water flow, fish population, habitat quality
 - Map out all potential biophysical impacts

- Step 3: Link to Human Well-being
- Example: Improved fishing opportunities (₹5000 annual value)
- Consider both use and passive-use values
- Include cultural and ecological benefits
- Step 4: Quantify Changes
- Example: 40% increase in fish population
- Measure impacts in concrete, measurable terms
- Focus on changes relevant to human welfare

- Step 5: Estimate Economic Values
- Example: Calculate willingness to pay for improvements
- Use appropriate valuation methods
- Consider both direct and indirect benefits
- Step 6: Communicate Results
- Present findings to decision-makers
- Clearly explain methodology and assumptions
- Support informed policy choices

- Important Process Characteristics:
 - Iterative rather than linear
 - Requires interdisciplinary collaboration
 - Must link scientific measures to human values
 - Example: Can't just measure phytoplankton changes without connecting to human benefits
- In moving from conceptualizing the valuation process described above to actually estimating values (benefits) using nonmarket valuation, a number of issues can arise.

Issue 1: Whose value to include

- Defining the Relevant Population:
 - Cannot simply include everyone who values a change
 - Must consider specific context and purpose
 - Population scope affects total valuation significantly
- Compensation Scenarios:
 - Legal entitlement determines relevant population
 - Example: Oil spill compensation
 - Local impacts: Affected fishermen claiming ₹50,000 each
 - Broader impacts: Public claims for wildlife damage
 - Must define "public" local, national, or global

- Policy Evaluation Contexts:
 - Greenhouse gas emission reduction example:
 - National benefits: ₹500M in reduced climate impacts
 - Global benefits: ₹10B in worldwide impact reduction
 - Choice depends on policy objectives
- Key Decision Factors:
 - Policy objectives: Local vs global benefits
 - Cost bearing: Who pays for implementation
 - Example: If country bears ₹1B cost:
 - Local benefits only: May not justify cost
 - Global benefits included: May justify cost

- Important Considerations:
 - Decision-maker perspective matters
 - Geographic scope affects benefit calculations
 - Need clear criteria for population inclusion
 - Balance between costs and beneficiary scope

Issue 2: Aggregating values accross individuals

- Aggregating Individual Values:
 - Standard method: Simple addition across population
 - Example: If 1000 people value a park at ₹500 each = ₹500,000 total
 - Typically uses unweighted summation
 - Alternative: Voting-based preference aggregation
 - Drawback: do not reflect the intensity of individual preferences for one option over another.
 - For example, in a three-person vote, an option that is only slightly preferred by two individuals would win over an option that is strongly preferred by the third individual.

- Maximizing **aggregate net benefits** (or **total income**) is **not always** the same as maximizing **total utility**.
- The two are equivalent **only if** income is redistributed to equalize **marginal utility of income (MUY)** across individuals.

- Let $Y_i(x)$ be income of **Person i**, where i = 1, 2.
- Let $u_i(Y_i(x))$ be the **utility function** of Person i.
- If Person 1 gains while Person 2 loses, then:

$$rac{\partial Y_1}{\partial x} + rac{\partial Y_2}{\partial x} > 0$$

- → Total income increases (benefit > cost).
- However, if marginal utility of income differs:

$$rac{\partial u_1}{\partial Y_1} < rac{\partial u_2}{\partial Y_2}$$

Then:

$$rac{\partial u_1}{\partial Y_1}rac{\partial Y_1}{\partial x}+rac{\partial u_2}{\partial Y_2}rac{\partial Y_2}{\partial x}< 0$$

→ Total utility decreases, despite net income gain.

- Suppose Policy X increases Person 1's income by ₹1000 but decreases Person 2's income by ₹800.
- Net income gain:

$$1000 - 800 = 200 > 0$$

• However, if **Person 1** is **wealthy** and **Person 2** is **poor**, then:

$$MU_{Y_1} < MU_{Y_2}$$

• Loss in utility for Person 2 may exceed the gain for Person 1, leading to an overall reduction in aggregate utility.

- Within a generation, taxes and subsidies can correct disparities.
- Across generations, redistribution is harder, affecting long-term costbenefit analysis.
- Hence, **ignoring marginal utility differences** across individuals is common in static analysis but **crucial** in **intergenerational welfare analysis**.

- Income Effect Challenges:
 - Higher income leads to higher willingness to pay
 - Example:
 - Wealthy person values clean air at ₹10,000
 - Low-income person values same at ₹2,000
 - Same preferences but different ability to pay

- Equal Weighting Issues:
 - Appears fair but has implications
 - Benefits skew toward wealthy populations
 - Example:
 - Two identical parks
 - Wealthy area shows ₹10M total benefit
 - Poor area shows ₹2M total benefit
 - May lead to biased decision-making

- Key Considerations:
 - Need to understand wealth bias in results
 - Consider distributional impacts
 - Provide decision-makers with:
 - Total unweighted benefits
 - Distribution across income groups
 - Social equity implications
- Alternative Approaches:
 - Weighted aggregation possible
 - Can incorporate distributional concerns
 - Must be transparent about methodology
 - Consider generational equity issues

Issue 3:Aggregating Benefits Across Time

- Importance of Time in Benefit Calculation
- Policies (e.g., climate change mitigation) generate benefits over multiple time periods.
- Total benefit = sum of current and future benefits.
- Future benefits must be appropriately **weighted** when compared to present benefits.

- Standard approach: **Discounting** using a **discount factor**.
- Total discounted benefit over time:

$$B = \sum_{t=0}^T rac{B_t}{(1+r)^t}$$

where:

 $-B_t$ = Benefit in period t

-r = Discount rate

-T = Total time horizon

Why Discount Future Benefits?

1. Investment-based rationale:

- Money today can be invested to earn returns.
- Example:
 - ₹100 today at **5**% **interest** → ₹105 next year.
 - Hence, ₹105 next year is worth ₹100 today.
 - Future payments should be discounted to reflect this.

2. Consumption-based rationale:

- Diminishing Marginal Utility of Consumption (MUY)
- Example: If future generations are richer, an extra ₹1000 will be less valuable to them than to us today.

- Intergenerational Equity & Discounting
- Should future generations be valued **equally**?
- If yes: **Equal utility weights** across generations.
- If future generations are **richer**, their benefits may be discounted: Higher consumption \Rightarrow Lower marginal utility \Rightarrow Discounting justified
- Policy decisions should **balance** equity and economic growth.

- Practical Approach to Discounting
- Uncertainty in discount rates → Use a declining discount rate over time.
- Standard practice: Compute benefits for multiple discount rates (e.g., 2%, 4%, 6%) to capture variations.

Issue 4: Uncertainty in Valuing Environmental Changes

- Sources of Uncertainty
- Uncertainty in predicting environmental changes (e.g., climate change impact).
- Uncertainty in assigning values to environmental changes.
- Example: Policy to reduce greenhouse gas emissions → uncertainty in:
 - Emissions reduction effectiveness
 - Climate impact of emission reductions
 - Effects on health, agriculture, and ecosystems

- Role of Models in Predicting Outcomes
- Use of models introduces structural and parameter uncertainty.
- Uncertainty exists in:
 - Future economic conditions (income, preferences).
 - Preferences of future generations.
- Values assigned to outcomes reflect these uncertainties.

- Incorporating Uncertainty in Economic Valuation
- Economic value under uncertainty is based on **expected utility**:

$$EV = \sum P_i U(Y_i)$$

where:

- P_i = Probability of outcome i
- $U(Y_i)$ = Utility from income level Y_i .
- Individuals' risk preferences influence valuation:
 - **Risk-averse:** Higher value on certainty.
 - Risk-neutral: Value based purely on expected return.

- Techniques to Address Uncertainty
- **Sensitivity analysis**: Examining how variations in key parameters affect results.
 - Example: Evaluating a Carbon Tax Policy Suppose the government implements a carbon tax to reduce emissions.
 - Key uncertain factors:
 - Elasticity of demand for fossil fuels (How much will consumption decrease as price increases?).
 - Cost of renewable energy alternatives (How competitive are they?).
 - Economic growth rate (Affects future emissions and policy impact).

Method:

- Run the cost-benefit analysis with different values for each variable.
- Identify how sensitive the net benefits are to changes in

assumptions.

 If small changes in a parameter (e.g., renewable energy cost) drastically alter the policy's net benefits, the policy outcome is highly sensitive to that factor.

- Monte Carlo simulation: Running multiple simulations to estimate probability distributions of outcomes.
 - Example: Predicting Future Economic Losses from Flooding A city wants to estimate economic damages from future floods due to climate change.
 - Key uncertain variables:
 - Future sea level rise (Varies due to climate uncertainty).
 - Storm intensity (More extreme weather events are likely).
 - Property values (Higher values mean greater damages).

o Method:

- Assign probability distributions to these variables (e.g., sea level rise follows a normal distribution).
- Run 10,000 simulations, each time drawing random values for variables.
- Analyze the distribution of projected damages.
- o Instead of predicting one single damage estimate, the city gets a

probability range (e.g., ₹500 crore to ₹2000 crore, with a 70% chance of exceeding ₹1000 crore).

• Surveys: Eliciting public values for uncertain environmental outcomes.

- Valuing Risk Reduction
- Some policies explicitly aim to reduce risk (e.g., air pollution policies).
- Example: Reducing PM2.5 pollution lowers risk of:
 - Asthma
 - Infant mortality
- Economic value of risk reduction estimated via willingness to pay (WTP):

$$WTP = \sum P_i(U(Y_i^*) - U(Y_i))$$

where Y_i^* is improved health outcome due to policy.

- Challenges in Nonmarket Valuation of Uncertainty
- Health risks are easier to value than broad environmental risks.
- Long-term, geographically broad, or **catastrophic risks** (e.g., climate disasters) remain difficult to quantify.
- Need for **advanced valuation methods** to incorporate uncertainty effectively.

Valuation Methods

- Revealed Preference vs. Stated Preference Methods
- Revealed Preference Methods: Infer values from actual market behavior.
- **Stated Preference Methods**: Rely on survey responses to hypothetical scenarios.

Revealed Preference	Stated Preference
Methods	Methods
Travel Cost Method	Contingent Valuation
Hedonic Pricing	Attribute-Based Methods
Defensive Behavior	Hypothetical Substitution

Revealed Preference Methods

1. Travel Cost Method (TCM)

- Used for valuing **recreational sites** by analyzing how much people spend to visit.
- **Example**: Estimating the value of a national park by considering travel costs (fuel, time, entry fees).

2. Hedonic Pricing Method (HPM)

- Estimates the value of environmental attributes based on their impact on **market prices** (e.g., real estate).
- **Example**: Comparing property prices in areas with different air pollution levels to measure the implicit value of clean air.

3. Defensive Behavior Method

- Measures how much people spend to avoid environmental harm.
- **Example**: The cost of water filters in areas with polluted drinking water helps estimate the value of clean water.

Stated Preference Methods

1. Contingent Valuation Method (CVM)

- Uses surveys to directly ask individuals about their willingness to pay (WTP) for an environmental good.
- **Example**: Asking citizens how much they would pay for a program to reduce air pollution in Delhi.

2. Attribute-Based Methods

- Uses hypothetical choices between different scenarios to estimate preferences.
- Example: Presenting people with different combinations of fuel types, vehicle prices, and emission levels to estimate the value of reduced pollution.

- Choosing the Right Method
- Regulatory Needs: Major policies may require more rigorous valuation methods.
- Cost vs. Accuracy: Stated preference methods may be cheaper, but revealed preference methods are often more reliable.
- Combinations of Methods: Sometimes multiple methods are used to get a more complete valuation.