Rotational motion

Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman

March 31, 2015

Announcements

- Homework due Wednesday; next homework due next Wednesday
- Next Mastering Physics assignment will be posted tonight and will be due next Tuesday before class

Ask a Physicist: Dark matter

W. Freeman | Rotational motion | March 31, 2015 | 3 / 19

Rotational motion

- This week we're going to redo everything that we've done so far
- Everything you've learned about linear motion has a rotational equivalent
 - ullet Position, velocity, acceleration \leftrightarrow angle, angular velocity, angular acceleration
 - \bullet Kinematics for coordinates \leftrightarrow kinematics for angles
 - \bullet Newton's second law \leftrightarrow Newton's law for rotation
 - ullet Force \leftrightarrow torque
 - Mass ↔ moment of inertia
 - ... and others

The plan for this week

- I'm going to go over all of the concepts for rotational motion, rather quickly
- These concepts are mostly directly analogous to those you already know
- This will serve as a reference for you: find the slides online, or take notes
- Then we'll stop, slow down, do lots of demos and examples
- This material is historically difficult for students, but it doesn't need to be

The plan for this week

- I'm going to go over all of the concepts for rotational motion, rather quickly
- These concepts are mostly directly analogous to those you already know
- This will serve as a reference for you: find the slides online, or take notes
- Then we'll stop, slow down, do lots of demos and examples
- This material is historically difficult for students, but it doesn't need to be
- Here we go: we're going to recap the entire course!

Our task

- We have so far studied the motion of "pointlike" objects
 - "This object is located at this position"
- Now we're going to consider extended objects
- ullet They can move around, using the physics ($ec{F}=mec{a}$, etc.) that you already know

Our task

- We have so far studied the motion of "pointlike" objects
 - "This object is located at this position"
- Now we're going to consider extended objects
- They can move around, using the physics ($\vec{F} = m\vec{a}$, etc.) that you already know
- ... but they can also rotate

• Rotation is the new thing, so let's study it!

6 / 19

Our task

- We have so far studied the motion of "pointlike" objects
 - "This object is located at this position"
- Now we're going to consider extended objects
- They can move around, using the physics ($\vec{F} = m\vec{a}$, etc.) that you already know
- ... but they can also rotate

- Rotation is the new thing, so let's study it!
- It turns out rotation in many of the same ways as translation: this is really review!

Describing rotation

- In the first section we were concerned about x(t) and y(t) the components of the displacement vector
- Here we're concerned about angle as a function of time: $\theta(t)$
 - In two dimensions angle is a scalar: no funny vectors!
 - By convention: clockwise is negative, counterclockwise is positive
- We gave names to the derivatives of position: "velocity" and "acceleration"
- Likewise, we give names to the derivatives of angle
 - $\omega \equiv \frac{\partial \theta}{\partial t}$: "angular velocity", measured in rad/s (you knew this!)
 - $\alpha \equiv \frac{\partial^2 \theta}{\partial t^2}$: "angular acceleration", measured in rad/s² (new!)

W. Freeman Rotational motion March 31, 2015 7 / 19

Going from rotation to translation

- "If an object is turning at some angular velocity ω , how fast is a piece at radius r moving?"
- We did this before: remember the tangential velocity $v_T = \omega r$, based on the definition of the radian
- This holds true for all of the derivatives of angle and position:
- Arc length: $s = \theta r$
- Tangential velocity: $v_T = \omega r$
- Tangential acceleration: $a_T = \alpha r$

Going from rotation to translation

- "If an object is turning at some angular velocity ω , how fast is a piece at radius r moving?"
- We did this before: remember the tangential velocity $v_T = \omega r$, based on the definition of the radian
- This holds true for all of the derivatives of angle and position:
- Arc length: $s = \theta r$
- Tangential velocity: $v_T = \omega r$
- Tangential acceleration: $a_T = \alpha r$
- To go from rotational descriptions of motion to tangential ones, multiply by the radius

Rotational kinematics

- The constant-acceleration kinematics we learned was really about the relation of a function to its derivatives
- Since the same derivative relationships hold, the exact same kinematics applies:

Translation	Rotation
Position x	Angle θ
Velocity <i>v</i>	Angular velocity ω
Acceleration a	Angular acceleration $lpha$
$v(t) = v_0 + at$	$\omega(t) = \omega_0 + \alpha t$
$x(t) = x_0 + v_0 t + \frac{1}{2} a t^2$	$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
$v_f^2 - v_0^2 = 2a\Delta x$	$\omega_f^2 - \omega_0^2 = 2\alpha\Delta\theta$

Relate θ , ω , α , and t the same way you do x, v, a, and t

Note that one revolution = 360 degrees = 2π radians!

9 / 19

What corresponds to Newton's second law?

The key idea in translational motion is Newton's second law $\vec{F}=m\vec{a}$.

What corresponds to Newton's second law?

The key idea in translational motion is Newton's second law $\vec{F} = m\vec{a}$.

What is the corresponding idea for rotational motion?

- ullet Angular acceleration lpha corresponds to $ec{a}$
- The rotational analogue of force is called torque
- The rotational analogue of mass is called moment of inertia

What corresponds to Newton's second law?

The key idea in translational motion is Newton's second law $\vec{F} = m\vec{a}$.

What is the corresponding idea for rotational motion?

- ullet Angular acceleration lpha corresponds to $ec{a}$
- The rotational analogue of force is called torque
- The rotational analogue of mass is called moment of inertia

Let's look at each of those in turn.

Torque

Torque (τ) is the rotational analogue of force: "rotational push or pull"

- Forces applied to an object result in torques: "push on something to turn it"
- The size of the torque depends on three things:

Torque

Torque (τ) is the rotational analogue of force: "rotational push or pull"

- Forces applied to an object result in torques: "push on something to turn it"
- The size of the torque depends on three things:
- The size of the force
 - Push harder to exert more torque that's easy!

Torque

Torque (τ) is the rotational analogue of force: "rotational push or pull"

- Forces applied to an object result in torques: "push on something to turn it"
- The size of the torque depends on three things:
- The size of the force
 - Push harder to exert more torque that's easy!
- The distance from the force to the pivot point
 - The further from the pivot to the point of force, the greater the torque
 - This is why the door handle is on the outside of the door...
- The angle at which the force is applied
 - Only forces "in the direction of rotation" make something turn
 - The torque depends only on the component of the force perpendicular to the radius

Computing torque

$$au = F_{\perp} r$$

Torque is equal to the distance from the pivot, times the perpendicular component of the force

(There is an equivalent alternative we will see a bit later)

Note that torque has a sign, just like angular velocity: CCW is positive; CW is negative.

12 / 19

Important notes about torque

These are very important: note them somewhere for later reference!

- Torques are in reference to a particular pivot
- This is different from force; if you're talking about torque, you must say what axis it's measured around
- Torque now depends on the *location* of forces, not just their size
 - Your force diagrams now need to show the place where forces act!
 - Weight acts at the center of mass ("the middle"); we'll see what that means later
 - A saimple force diagram might look like this:

13 / 19

What about the mass analogue?

$$\vec{F} = m\vec{a} \ au = ?lpha$$

Mass tells you how hard it is to give something a (linear) acceleration. What determines how hard something is to turn?

We can already look at situations where $\tau=\alpha=0$: "static equilibrium"

W. Freeman Rotational motion March 31, 2015

Moment of inertia

The analogue of mass is called "moment of inertia" (letter I)

- More massive things are harder to turn, but that's only part of it
- The mass distribution matters, too
- The further the mass is from the center, the harder it will be to turn
- The moment of inertia depends on the average squared distance from the center
 - I state this without proof here; if you're interested in why, come see me!

The analogue of mass is called "moment of inertia" (letter I)

- More massive things are harder to turn, but that's only part of it
- The mass distribution matters, too
- The further the mass is from the center, the harder it will be to turn
- The moment of inertia depends on the average squared distance from the center
 - I state this without proof here; if you're interested in why, come see me!

$$I = MR^2$$

(if all the mass is the same distance from the center) (our demo rods; hoops; rings; bike wheels)

Moment of inertia, other things

What about the moment of inertia of other objects? Requires calculus in general; here are some common ones

TABLE 12.2 Moments of inertia of objects with uniform density

Object and axis	Picture	I	Object and axis	Picture	I
Thin rod, about center		$\frac{1}{12}ML^2$	Cylinder or disk, about center	R	$\frac{1}{2}MR^2$
Thin rod, about end		$\frac{1}{3}ML^2$	Cylindrical hoop, about center	R	MR^2
Plane or slab, about center	la la	$\frac{1}{12}Ma^2$	Solid sphere, about diameter	R	$\frac{2}{5}MR^2$
Plane or slab, about edge	a	$\frac{1}{3}Ma^2$	Spherical shell, about diameter	R	$\frac{2}{3}MR^2$

16 / 19

Putting it together: Newton's law for rotation

Translation	Rotation
Force \vec{F}	Torque: $\tau = F_{\perp} r$
Mass m	Moment of Inertia: $I = \lambda MR^2$
Acceleration \vec{a}	Angular acceleration $lpha$
$ec{F}=mec{a}$	$ au = I \alpha$

This last line can be thought of as "Newton's second law for rotation".

Torques give things angular acceleration, just like forces make things accelerate:

$$\tau = I\alpha$$

What about energy?

We saw before that the work-energy theorem was just a consequence of the "third kinematics relation". Is there anything that corresponds to this for rotation?

What about energy?

We saw before that the work-energy theorem was just a consequence of the "third kinematics relation". Is there anything that corresponds to this for rotation?

Yes, and it's exactly what you'd expect!

res, and it's exactly what you a expect.		
Translation	Rotation	
Force \vec{F}	Torque: $\tau = F_{\perp} r$	
Mass m	Moment of Inertia: $I = \lambda MR^2$	
Displacement \vec{s}	Angular displacement $ heta$	
Velocity \vec{v}	Angular velocity ω	
$Work = \vec{F} \cdot \Delta \vec{s}$	$Work = \tau \Delta \theta$	
Kinetic energy $\frac{1}{2}mv^2$	Kinetic energy $\frac{1}{2}I\omega^2$	

There is rotational kinetic energy $\frac{1}{2}I\omega^2$ associated with spinning objects! This is just another term to add to your conservation of energy relations!

What about momentum?

Translation	Rotation
Mass m	Moment of Inertia: $I = \lambda MR^2$
Velocity \vec{v}	Angular velocity ω
Momentum $\vec{p} = m\vec{v}$	Angular momentum $L=I\omega$

Just as momentum is conserved in the absence of external forces, angular momentum is conserved in the absence of external torques.