The goal of this lecture is to complete the proof of the "local stable manifold theorem." Recall the setting:

- (i) $\varphi: \mathbb{R}^n \to \mathbb{R}$ is a Morse function with exactly one critical point at $0 \in \mathbb{R}^n$,
- (ii) g is a Riemannian metric on \mathbb{R}^n ,
- (iii) $\operatorname{grad}_{\varphi,g} =: \operatorname{grad}$ is the gradient vector field associated to g and φ recall that grad is determined by the relation $g(\operatorname{grad},X) = \operatorname{d}\varphi(X)$, for all vector fields X.
- (iv) The stable set S is defined to be the set of all $x \in \mathbb{R}^n$ so that the negative gradient flow line starting at x converges to 0.

Local Stable Manifold Theorem. There is an open neigborhood U around 0 so that $U \cap S$ is a smooth submanifold of U.

Recall the stategy for proving this theorem. We identify S with the set of gradient flow lines $\mathbb{R}_{\geq 0} \to \mathbb{R}^n$ converging to 0, and make the following crucial observation: If $\gamma \in W^{1,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$ satisfies the following equation

$$\gamma'(t) + \operatorname{grad} \circ \gamma = 0,$$

then γ is C^{∞} smooth, and conversely, if γ is a gradient flow line converging to 0, then γ lies in $W^{1,2}(\mathbb{R}_{>0},\mathbb{R}^n)$ and γ satisfies (*). In other words, if we define

$$s: W^{1,2}(\mathbb{R}_{>0}, \mathbb{R}^n) \to L^2(\mathbb{R}_{>0}, \mathbb{R}^n)$$
 by $s(\gamma) = \gamma'(t) + \operatorname{grad} \circ \gamma$,

then $s^{-1}(0) = S$. This was established in the previous lecture. Here are three exercises related to the content of the previous lecture.

Exercise 1 (Rellich Embedding). Let $\gamma \in C_c^{\infty}$. Prove that for $t \geq 0$

$$\gamma(t)e^{-t} = \int_t^\infty \gamma(s)e^{-s} - \gamma'(s)e^{-s} ds,$$

and deduce that

$$|\gamma(t)| \leq \sqrt{2} \, \|\gamma\|_{W^{1,2}([t,\infty),\mathbb{R}^n)}$$

In particular,

$$\left\|\gamma\right\|_{C^{0}} \leq \sqrt{2} \left\|\gamma\right\|_{W^{1,2}}.$$

By density of C_c^{∞} functions in $W^{1,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$, prove that $W^{1,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n) \subset C^0(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$. Moreover, conclude that $|\gamma(t)| \to 0$ as $t \to \infty$. Applying the bound (\star) to the derivatives of γ , conclude that

$$W^{k,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n) \subset C^{k-1}(\mathbb{R}_{\geq 0}, \mathbb{R}^n),$$

and that $\|\gamma\|_{C^{k-1}} \le C \|\gamma\|_{W^{k,2}}$.

Exercise 2. Show that if $X : \mathbb{R}^n \to \mathbb{R}^n$ is a $C^{0,1}$ function (i.e. Lipshitz), and X(0) = 0, then the map $\gamma \mapsto X \circ \gamma$ sends $L^2(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$ to $L^2(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$.

More generally, if X is a $C^{k,1}$ function with X(0) = 0, then $\gamma \mapsto X \circ \gamma$ sends $W^{k,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$ to $W^{k,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$. Hint: for both claims, it suffices to prove it first for smooth γ , and then use the density of smooth functions in $W^{k,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$.

Exercise 3. Conclude that if $\gamma \in W^{k,2}$ satisfies the gradient flow line equation (*), then $\gamma \in W^{k+1,2}$. Conclude that if $\gamma \in W^{1,2}$ satisfies (*), then $\gamma \in W^{k,2}$ for all k. By the Rellich embedding $W^{k,2} \subset C^{k-1}$, conclude that $W^{1,2}$ solutions of (*) are C^{∞} smooth.

Now we turn to some new material. We will show that $s^{-1}(0)$ is a manifold via the inverse function theorem for Banach spaces.

Definition 1. Let $U \subset X$ and $V \subset Y$ be open subspaces of Banach spaces X, Y. A map $A: U \to V$ is **differentiable** at $u \in U$ provided there is a bounded linear transformation $dA_u: X \to Y$ so that

$$\lim_{\xi \to 0} \frac{\|A(u+\xi) - A(u) - dA_u(\xi)\|_Y}{\|\xi\|_X} = 0.$$

While this definition uses the norms on X, Y, it is clear that it only depends on the equivalence classes of the norms.

The map $A: U \to V$ is **continuously differentiable** if $u \mapsto dA_u \in \text{Hom}(X,Y)$ is a continuous function, where the latter is given the topology induced by the "operator norm." The set of continuously differentiable functions is denoted $C^1(U,V)$.

A map A is
$$C^k(U, V)$$
, $k \ge 1$, if dA is $C^{k-1}(U, \operatorname{Hom}(X, Y))$.

In the appendix to this lecture, we define the terms **Banach manifold** and the **tangent** bundle of a Banach manifold.

Inverse Function Theorem. Let X, Y be Banach manifolds, and suppose $A: X \to Y$ is a C^k map so that dA_x is an isomorphism (i.e. is continuous in the natural topologies on TX_x and $TY_{A(x)}$). Then there are neighborhoods $U \ni x$ and $V \ni y$ so that A maps U to V diffeomorphically.

The derivatives of the vector field grad appear in the statement of the next claim. Thinking of grad is a function $\mathbb{R}^n \to \mathbb{R}^n$, it certainly has a derivative $\operatorname{dgrad}_x : \mathbb{R}^n \to \mathbb{R}^n$ at all points $x \in \mathbb{R}^n$ (warning: here we are *not* thinking of grad as a map $\mathbb{R}^n \to T\mathbb{R}^n$ when we take its derivative). Similarly, we will denote the (symmetric) second derivative matrix by

$$\operatorname{ddgrad}_{r}: \mathbb{R}^{n} \otimes \mathbb{R}^{n} \to \mathbb{R}^{n}$$
.

This is not a coordinate invariant notion.

It is clear that if x, y are two points of \mathbb{R}^n , then

$$\operatorname{grad}(x+y)-\operatorname{grad}(x)=\left[\int_0^1\operatorname{dgrad}_{x+sy}ds\right]\cdot y,$$

where we interpret the expression in the braces as a matrix $\mathbb{R}^n \to \mathbb{R}^n$.

Claim 2. The map $s: W^{1,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n) \to L^2(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$ defined by $s(\gamma) = \gamma' + \text{grad} \circ \gamma$ is a C^1 map, and it's derivative is given by

$$ds_{\gamma}(\eta)(t) = \eta'(t) + dgrad_{\gamma(t)} \cdot \eta(t)$$

Proof. We begin by computing

$$s(\gamma+\eta)(t)-s(\gamma)(t)=\eta'(t)+\operatorname{grad}(\gamma(t)+\eta(t))-\operatorname{grad}(\gamma(t))=\eta'(t)+\left[\int_0^1\operatorname{dgrad}_{\gamma(t)+s\eta(t)}ds\right]\cdot\eta(t).$$

Hence,

$$s(\gamma + \eta)(t) - s(\gamma)(t) - ds_{\gamma}(\eta) = \left[\int_0^1 \operatorname{dgrad}_{\gamma(t) + s\eta(t)} - \operatorname{dgrad}_{\gamma(t)} ds \right] \cdot \eta(t).$$

It follows that

$$\|s(\gamma + \eta)(t) - s(\gamma)(t) - ds_{\gamma}(\eta)\|_{L^{2}} \le \left\| \int_{0}^{1} \operatorname{dgrad}_{\gamma(t) + s\eta(t)} - \operatorname{dgrad}_{\gamma(t)} ds \right\|_{C^{0}} \|\eta\|_{L^{2}}.$$

We compute

$$\int_0^1 \operatorname{dgrad}_{\gamma(t)+s\eta(t)} - \operatorname{dgrad}_{\gamma(t)} ds = \left[\int_0^1 \int_0^1 s \operatorname{ddgrad}_{\gamma(t)+rs\eta(t)} dr \, ds \right] \cdot \eta(t),$$

and hence

$$\left\|\int_0^1 \operatorname{dgrad}_{\gamma(t)+s\eta(t)} - \operatorname{dgrad}_{\gamma(t)} \, ds\right\|_{C^0} \leq \left\|\int_0^1 \int_0^1 s \operatorname{ddgrad}_{\gamma(t)+rs\eta(t)} \, dr \, ds\right\|_{C^0} \|\eta\|_{C^0} \, .$$

Since ddgrad is a continous function, and $\gamma(t) + rs\eta(t)$ is a bounded function of t (i.e. for $\|\eta\|_{C^0} \leq 1$, we can suppose that $\|\gamma + rs\eta\|_{C^0} \leq R$ for some large R) we conclude some C independent of t and η , $\|\eta\|_{C^0} \leq 1$, so that

$$\left\| \int_0^1 \int_0^1 s \operatorname{ddgrad}_{\gamma(t) + rs\eta(t)} dr \, ds \right\|_{C^0} \le C,$$

and hence

$$\|s(\gamma + \eta)(t) - s(\gamma)(t) - ds_{\gamma}(\eta)\|_{L^{2}} \le C \|\eta\|_{L_{2}} \|\eta\|_{C^{0}} \le C' \|\eta\|_{W^{1,2}}^{2},$$

where we have used the fact that $\|-\|_{C^0} \le c \|-\|_{W^{1,2}}$ and $\|-\|_{L^2} \le \|-\|_{W^{1,2}}$. It follows that s is differentiable and its derivative at γ is ds_{γ} .

It is easy to show that ds_{γ} is a bounded function $W^{1,2} \to L^2$. Finally we show that $\gamma \to ds_{\gamma}$ is continuous.

Given two curves γ_1, γ_2 , we compute

$$ds_{\gamma_1+\gamma_2}(\eta) - ds_{\gamma_1}(\eta) = dgrad_{\gamma_1(t)+\gamma_2(t)} \cdot \eta(t) - dgrad_{\gamma_1(t)} \cdot \eta(t).$$

Arguing as we did above, we conclude

$$ds_{\gamma_1+\gamma_2}(\eta) - ds_{\gamma_1}(\eta) = \left[\int_0^1 dd\operatorname{grad}_{\gamma_1(t)+s\gamma_2(t)} ds \cdot \gamma_2(t) \right] \cdot \eta(t),$$

and similarly to the computations above we conclude

$$\left\| \mathrm{d} s_{\gamma_1 + \gamma_2}(\eta) - \mathrm{d} s_{\gamma_1}(\eta) \right\|_{L^2} \le \left\| \int_0^1 \mathrm{d} \mathrm{d} \mathrm{grad}_{\gamma_1(t) + s\gamma_2(t)} \, ds \right\|_{C^0} \left\| \gamma_2(t) \right\|_{W^{1,2}} \left\| \eta(t) \right\|_{W^{1,2}}.$$

We thereby obtain an estimate on the operator norm

$$\|\mathrm{d}s_{\gamma_1+\gamma_2}-\mathrm{d}s_{\gamma_1}\| \le C \|\gamma_2(t)\|_{W^{1,2}},$$

where, for γ_2 close to γ_1 , C depends only on $\|\gamma_1\|_{C^0}$ and $\|\mathrm{ddgrad}\|_{C^0(B)}$ for some large ball B. It follows that

$$\lim_{\gamma_2 \to 0} \|\mathrm{d}s_{\gamma_1 + \gamma_2} - \mathrm{d}s_{\gamma_1}\| = 0,$$

and so we have shown that $\gamma \to \mathrm{d} s_\gamma$ is continuous. This completes the proof of the claim. \square

Exercise 4. Prove that $ds_{\gamma}: W^{1,2} \to L^2$ is a bounded linear operator. Hint: if M is a bounded continuous matrix valued function, and η is in L^2 , then $\|M\eta\|_{L^2} \leq \|M\|_{C^0} \|\eta\|_{L^2}$.

Our plan now is to show that the derivative of s at the zero solution $0 \in W^{1,2}$ is a Fredholm operator. In fact, we will be able to show that ds_0 is a surjective operator, and we will be able to explicitly identify the kernel of ds_0 as the finite dimensional space spanned the positive eigenvalues of the Hessian of φ .

Definition 3. The **Hessian** of a function $\varphi : \mathbb{R}^n \to \mathbb{R}$ at x is the bilinear form made of the second partial derivatives $\operatorname{Hess}_x = \partial_i \partial_j \varphi(x) \mathrm{d} x_i \otimes \mathrm{d} x_j$. If x is a critical point, then Hess_x is coordinate independent.

In the presence of the metric g, we can define an endomorphism $\operatorname{Hess}_x^g:\mathbb{R}^n\to\mathbb{R}^n$ by

$$g(-, \operatorname{Hess}_x^g(-)) = \operatorname{Hess}_x(-, -).$$

Lemma 4. Let grad = grad $_{\varphi,g}$ be the gradient vector field of φ , and suppose 0 is a critical point of φ . Then

$$\operatorname{dgrad}_{0} = \operatorname{Hess}_{0}^{g} \in \operatorname{Hom}(\mathbb{R}^{n}, \mathbb{R}^{n}).$$

Proof. Let $g = \sum_{k,j} g_{kj} dx^k \otimes dx^j$, and write grad $= \sum_k a_k \partial_k$. Then

$$\partial_j \varphi = g(\operatorname{grad}, \partial_j) = \sum_k a_k g_{kj} \implies \partial_i \partial_j \varphi = \sum_k g_{kj} \partial_i a_k + \sum_k a_k \partial_i g_{kj}.$$

Evaluating at x = 0, where $a \equiv 0$, we conclude

(1)
$$\partial_i \partial_j \varphi(0) = \sum_k g_{kj} \partial_i a_k = g(\partial_j, \operatorname{dgrad}_0(\partial_i))$$

Now we compute

(2)
$$g(\partial_i, \operatorname{Hess}_0^g(\partial_i)) = \operatorname{Hess}_0(\partial_i, \partial_i) = \partial_i \partial_i \varphi(0),$$

comparing (1) and (2), we conclude that $dgrad_0 = Hess_0^g$, as desired.

Now the fact that φ is a Morse function says precisely that Hess_0 is a non-degenerate bilinear form. It follows that Hess_0^g is a g-self-adjoint operator, and hence has an eigenbasis

 v_1, \dots, v_n , with eigenvalues $\lambda_1, \dots, \lambda_n$, where we suppose that

$$\lambda_1 \le \dots \le \lambda_p < 0 < \lambda_{p+1} \le \dots \le \lambda_n.$$

The number p is precisely the **Morse index** of the critical point (i.e. the index of the bilinear form Hess₀). Let's agree to call H_+ the subspace spanned by v_{p+1}, \dots, v_n .

Define a map $F: W^{1,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n) \to L^2(\mathbb{R}_{\geq 0}, \mathbb{R}^n) \oplus H_+$ by

$$F(\gamma) = (s(\gamma), \pi_+ \gamma(0)).$$

Note that evaluating a curve γ at 0 is a continuous linear map, and hence $\gamma \mapsto \pi_+ \gamma(0)$ is a smooth function $W^{1,2}(\mathbb{R}_{>0},\mathbb{R}^n) \to H_+$.

Proposition 5. dF_0 is an isomorphism $W^{1,2} \to L^2 \oplus H_+$.

Proof. It suffices to prove that dF_0 is a bijection, thanks to the open mapping theorem. The derivative of F at 0 is given by the formula

$$dF_0(\eta) = (\eta' + \text{Hess}_0 \cdot \eta, \pi_+ \eta(0)).$$

This follows from Claim 2, and the fact that $\eta \mapsto \pi_+ \eta(0)$ is linear.

First we prove that dF_0 is injective. It is convenient to write η as $\eta = \sum \eta_i v_i$, where the η_i are now $W^{1,2}$ functions $\mathbb{R}_{>0} \to \mathbb{R}$. Suppose that $dF_0(\eta) = 0$. This is equivalent to

$$\eta'_i(t) = -\lambda_i \eta_i(t)$$
 for $i = 1, \dots, n$ and $\eta_{p+1}(0) = \dots = \eta_n(0)$.

Simple elliptic bootstrapping proves that η_1, \dots, η_n are C^{∞} functions. In fact, it is clear that

$$\eta_i(t) = \eta_i(0)e^{-\lambda_i t}.$$

Since η_i is assumed to be integrable, we must have $\eta_1(0) = \cdots = \eta_p(0) = 0$, otherwise η would blow up exponentially. Since we assume $\eta_{p+1}(0) = \cdots = \eta_n(0) = 0$, we conclude that η is identically 0. It follows that dF_0 is injective.

Now we prove that dF_0 is surjective. Given $\xi \in L^2$ and $c_{p+1}, \dots, c_n \in H_+$, we want to define η so that

$$\eta_i(t) + \lambda_i \eta_i(t) = \xi_i(t),$$

and $\eta_i(0) = c_i$ for i > p. Define

$$\eta_i(t) = -e^{-\lambda_i t} \int_t^\infty e^{\lambda_i s} \xi_i(s) \, ds \text{ for } i = 1, \dots, p,$$

and define

$$\eta_i(t) = e^{-\lambda_i t} c_i + e^{-\lambda_i t} \int_0^t e^{\lambda_i s} \xi_i(s) ds \text{ for } i = p + 1 = \dots = n.$$

We check that this is well-defined, i.e. the resulting η is indeed in $W^{1,2}$. First we will check that η is in L^2 . Let ρ be some test function. Then for $i = 1, \dots, p$, we compute

$$\int_0^\infty \eta_i(t)\rho(t)\,dt = -\int_0^\infty \int_t^\infty e^{\lambda_i(s-t)}\rho(t)\xi_i(s)\,ds\,dt = -\int_0^\infty \int_0^\infty e^{\lambda_i z}\rho(t)\xi_i(z+t)\,dz\,dt.$$

where have made the change of coordinates z = s - t. Now we switch the order of integration:

$$\int_0^\infty \int_0^\infty e^{\lambda_i z} \rho(t) \xi_i(z+t) \, dz \, dt = \int_0^\infty e^{\lambda_i z} \int_0^\infty \rho(t) \xi_i(z+t) \, dt \, dz.$$

We estimate

$$\left| \int_{0}^{\infty} \rho(t) \xi_{i}(z+t) dt \right| \leq \|\rho\|_{L^{2}} \|\xi_{i}\|_{L^{2}},$$

and hence

$$\left| \int_0^\infty \eta_i(t) \rho(t) \, dt \right| = \left| \int_0^\infty e^{\lambda_i z} \int_0^\infty \rho(t) \xi_i(z+t) \, dt \, dz \right| \le \left\| e^{\lambda_i z} \right\|_{L^1} \left\| \rho \right\|_{L^2} \left\| \xi_i \right\|_{L^2} = C \left\| \rho \right\|_{L^2}.$$

Since $\lambda_i < 0$, the L^1 norm of $e^{\lambda_i z}$ is finite. We conclude that η_i is in L^2 since pairing it with test functions defines a bounded transformation $L^2 \to L^2$ (here we use reflexivity of L^2).

Remark. It is easy to show that η is given by a convolution of ξ with an integrable kernel. It follows that η is in L^2 by Young's inequality. Our argument essentially reproves Young's inequality in our specific setting.

Exercise 5. Prove that η_i is in L^2 for $i = p + 1, \dots, n$.

Having established that η is in L^2 , we check that $\eta'_i + \lambda_i \eta_i = \xi_i$ holds weakly in L^2 . Suppose $i = 1, \dots, p$. To check that an equation holds weakly, we pair with a test function ρ . By definition of "weak" we have

$$\int_0^\infty (\eta_i'(t) + \lambda_i \eta_i(t)) \rho(t) dt = \int_0^\infty \eta_i(t) (\lambda_i \rho(t) - \rho'(t)) dt.$$

We write

$$\int_0^\infty \eta_i(t)(\lambda_i \rho(t) - \rho'(t)) dt = \int_0^\infty \int_t^\infty e^{\lambda_i(s-t)} \xi_i(s)(\rho'(t) - \lambda_i \rho(t)) ds dt.$$

Now we change the order of integration:

$$\int_0^\infty \int_t^\infty e^{\lambda_i(s-t)} \xi_i(s) (\rho'(t) - \lambda_i \rho(t)) \, ds \, dt = \int_0^\infty \xi_i(s) e^{\lambda_i s} \left[\int_0^s e^{-\lambda_i t} (\rho'(t) - \lambda_i \rho(t)) \, dt \right] \, ds.$$

We compute

$$\int_0^s e^{-\lambda_i t} (\rho'(t) - \lambda_i \rho(t)) dt = \int_0^s \frac{d}{dt} \left[e^{-\lambda_i t} \rho(t) \right] dt = e^{-\lambda_i s} \rho(s),$$

where we use the fact that ρ is a test function, and hence is compactly supported in $(0, \infty)$. It follows that

$$\int_0^\infty (\eta_i'(t) + \lambda_i \eta_i(t)) \rho(t) \, dt = \int_0^\infty \xi_i(s) e^{\lambda_i s} \left[\int_0^s e^{-\lambda_i t} (\rho'(t) - \lambda_i \rho(t)) \, dt \right] \, ds = \int_0^\infty \xi_i(s) \rho(s) \, ds,$$

which demonstrates that $\eta'_i + \lambda_i \eta = \xi_i$ holds weakly (for $i = 1, \dots, p$).

Exercise 6. Show that $\eta'_i + \lambda_i \eta_i = \xi_i$ holds weakly for $i = p + 1, \dots, n$.

Now since η_i and ξ_i are in L^2 , and $\eta'_i = \xi_i - \lambda_i \eta_i$, we conclude that the weak derivative of η_i is in L^2 and hence η_i is in $W^{1,2}$.

Finally, it is clear that $\eta_i(0) = c_i$ for $i = p + 1, \dots, n$. Thus it follows that $dF_0 \eta = (\xi, c)$, and hence dF_0 is surjective. This completes the proof that dF_0 is an isomorphism.

By the inverse function theorem, it follows that F is a C^1 diffeomorphism in some neighborhood of 0. In fact, one can show without too much additional work that the map s is C^{∞} (because grad is a smooth vector field). For the details involved, the reader is referred to Chris Wendl's "Lectures on Holomorphic Curves," pages 85-87. It then follows that F is a smooth diffeomorphism on some neighborhood of 0.

Consider the composite function

The map Φ is smooth and defined on small some disk $D(r) \subset H_+$. Since $\pi_+\Phi(x) = x$, we conclude that Φ is a section of the orthogonal projection π_+ (over D(r)), and hence Φ defines a smooth submanifold of \mathbb{R}^n (a graph over D(r)).

It is clear that the unique gradient flow line starting at any point $\Phi(x) \in \Phi$ converges to 0 (by our construction). Indeed, the flow line starting at $\Phi(x)$ is $F^{-1}(0,x)$. The next lemma will establish that the graph Φ is precisely the stable set near 0.

Lemma 6. There is a neighborhood U of 0 so that any flow line starting in U and converging to 0 actually starts on $\Phi \cap U$.

Proof. First we claim that any trajectory $\gamma: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ converging to 0 satisfies $\gamma(t) \in \Phi$ for t sufficiently large. We will use the result that any gradient flow line converging to 0 is automatically in $W^{1,2}$ (cf. Exercise 7).

Consider the elements $\gamma_T \in W^{1,2}(\mathbb{R}_{\geq 0}, \mathbb{R}^n)$ given by $\gamma_T(t) = \gamma(t+T)$. It is clear that γ_T is still a gradient flow line, and moreover, that $\|\gamma_T\|_{W^{1,2}} \to 0$ as $T \to \infty$, since

$$\|\gamma_T\|_{W^{1,2}} = \|\gamma|_{[T,\infty)}\|_{W^{1,2}}.$$

Since our map F is a diffeomorphism on a small neighborhood of 0, we conclude that γ_T eventually enters the domain where F is a diffeomorphism, and hence $\gamma_T = F^{-1}(0, x)$ for some x (here x depends on T). Therefore $\gamma_T(0) \in \Phi$, hence $\gamma(T) \in \Phi$. This proves that γ eventually enters Φ .

Next, pick a bounded open set U' of 0 with the property that so that $\overline{\Phi \cap U'} \subset \Phi$. By compactness of $\overline{\Phi \cap U'} \subset \Phi$, it follows that there is $\delta > 0$ so that for every $x \in \Phi \cap U'$, the flow line through x can be defined on $[-\delta, \infty)$, and that this flow line remains on Φ . In other words, we can extend the flow line backwards in time by δ , while remaining on the graph Φ .

To establish the conclusion of the lemma, we will use the following we claim: there is a smaller open set $U \subset U'$ with the following property: every trajectory which starts in U either remains in U' forever, or leaves U' and never comes back inside U (a similar statement

is proved on page 50 of Milnor's notes on the h-cobordism theorem). This claim is proved in Exercise 8.

Assuming this result, we can complete the proof of the lemma. If γ is a gradient flow line starting in U and γ converges to 0, then clearly γ cannot leave U'. Look at the set of times t so that $\gamma(t) \in \Phi$. Since $\gamma \to 0$, we know that $\gamma(t)$ is eventually in Φ , so this set of times is non-empty. Either (case 1) $\gamma(0) \in \Phi$, or (case 2) there is some time $t > \delta$ so $\gamma(t) \in \Phi$ and $\gamma(t - \delta) \notin \Phi$. However, since $\gamma(t) \in \Phi \cap U'$, we conclude that the flow line through $\gamma(t)$ can be extended backwards in time by amount δ while remaining on Φ . Therefore $\gamma(t - \delta) \in \Phi$, and so case 2 cannot happen. It follows that $\gamma(0) \in \Phi$, and since $\gamma(0) \in U$, $\gamma(0) \in \Phi \cap U$. We have shown that every flow line starting in U converging to 0 must start on $\Phi \cap U$, as desired.

Corollary 7. Let S denote the stable set of 0, and let U be the open set furnished by the preceding lemma. Then $S \cap U = \Phi \cap U$, and so we have shown that S is a manifold near 0. The dimension of $S \cap U$ is equal to dim $\Phi = n - p$, where p is the Morse index of the critical point.

Here are the two exercises used in the proof of Lemma 6.

Exercise 7. Let grad : $\mathbb{R}^n \to \mathbb{R}^n$ be the gradient vector field. We will use the fact that $\operatorname{grad}(0) = 0$ and dgrad_0 is an isomorphism. Suppose that $\gamma : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ is a flow line converging to 0.

(a) Prove that γ is in L^2 if and only if grad $\circ \gamma$ is in L^2 . Hint: show that

$$|\gamma(t)| < c |\operatorname{grad} \circ \gamma(t)|$$

for t sufficiently large, for some c > 0.

(b) Prove that grad $\circ \gamma$ is in L^2 using the relation

$$\frac{d}{dt}(\varphi \circ \gamma) = -g(\operatorname{grad} \circ \gamma, \operatorname{grad} \circ \gamma).$$

- (c) Now that we know that γ is in L^2 , conclude that γ' is also in L^2 using the gradient flow line equation.
 - (d) Conclude that any flow line γ converging to 0 is actually in $W^{1,2}$.

Exercise 8. Given a bounded open neighborhood U' of 0, one can always find a smaller open set $U \subset U'$ so that every trajectory γ starting in U either remains in U', or leaves U' and never returns to U.

(a) Pick U'' compactly supported in U' around 0 so that g(grad, grad) > b on $U' \setminus U''$. Pick $U_{\epsilon} \subset U''$ so that $\max_{U_{\epsilon}} \varphi - \min_{U_{\epsilon}} \varphi < \epsilon$. Using the fact that

$$\frac{d}{dt}\varphi(t) = -g(\text{grad}, \text{grad}),$$

conclude that any trajectory starting and ending in U_{ϵ} must spend time less than $b^{-1}\epsilon$ in $U' \setminus U''$.

- (b) Since $\partial U''$ is compact and contained in U', conclude a minimum amount of time needed to flow from $\partial U''$ to $\mathbb{R}^n \setminus U'$.
- (c) Conclude that we can pick ϵ small enough so that any flow starting and ending in U_{ϵ} cannot leave U'. Taking $U = U_{\epsilon}$ proves the claim.

Appendix

Definition 8. For $k \geq 1$, a C^k **Banach manifold** \mathfrak{X} is a topological space covered by open sets homeomorphic to open subsets of Banach spaces, where the transitions functions are C^k maps. More precisely, a Banach manifold comes equipped with a maximal atlas of coordinate charts: $c: U_c \subset \mathfrak{X} \to c(U) \subset X_c$, where X_c is a Banach space, $c: U_c \to c(U)$ is homeomorphism onto an open set, and so that the transition homeomorphism

$$\rho_{21} = c_2 \circ c_1^{-1} : c_1(U_1 \cap U_2) \to c_2(U_1 \cap U_2)$$

is a C^k map.

We define a continuous map $A: \mathcal{X} \to \mathcal{Y}$ between C^k Banach spaces to be C^r $(r \leq k)$ if $c_2 \circ A \circ c_1^{-1}$ is a C^k map, for all choices of coordinates c_1, c_2 around x and A(x) respectively.

Definition 9 (the tangent bundle). For the purposes of this definition, let's agree to say that a Banach space is a topological vector space equipped with an equivalence class of complete metrics defining its topology.

For $k \geq 1$, let BMan_k be the category of C^k Banach manifolds, with C^k maps between them, let BSpace_k be the category of Banach spaces with C^k maps between them, and let Bun_k be the category of Banach space bundles over Banach manifolds. A morphism in Bun_k between bundles $E_1 \to B_1$ and $E_2 \to B_2$ is a pair (f, F) such that $f: B_1 \to B_2$ is a C^k map and F is a C^{k-1} section of the Banach space bundle $\mathrm{Hom}(B_1, f^*E_2) \to B_1$.

There is a functor $\tau: \mathrm{BSpace}_k \to \mathrm{Bun}_k$ sending a Banach space X to the trivial bundle $\tau(X) = X \times X \to X$, and which sends a morphism $f: X \to Y$ to the pair $(f, \mathrm{d}f)$, where $\mathrm{d}f$ is the C^{k-1} section of $\mathrm{Hom}(\tau(X), f^*\tau(Y)) = \mathrm{Hom}(X,Y) \times X \to X$.

The tangent bundle functor $T: \mathrm{BMan}_k \to \mathrm{Bun}_k$, is defined by three axioms:

- (i) We require $T(f: X \to Y) = (f, df)$, i.e. T(f) is a bundle map "over f" (where we abuse notation and use the symbol d for T as well as for τ).
 - (ii) The following diagram should commute up to a natural isomorphism $T \circ j \to \tau$:

$$\begin{array}{ccc}
\operatorname{BSpace}_k & \xrightarrow{\tau} & \operatorname{Bun}_k \\
\downarrow^j & & \\
\operatorname{BMan}_k & & T
\end{array}$$

where j is the obvious inclusion functor $\mathrm{BSpace}_k \to \mathrm{BMan}_k$. This natural isomorphism should be thought of as part of the data of T.

(iii) If $i: U \to M$ is the inclusion of an open set, then the map $di: TU \to i^*TM$ is an isomorphism.

It is not very hard to show that this determines T up to unique natural isomorphism, i.e. if T' is another such functor then there is a unique natural isomorphism $T \to T'$ so that

commutes.