Spatial Voting in US Presidential Election

Quantitative Methods 2020: Final Data Essay

Marie-Lou Sohnius

22 December, 2020

Abstract

The text of your abstract. 150-250 words.

1 adds new page after title

Contents

1	adds new page after title	2
2	Introduction	14
3	Research Design	14
	3.1 Data	14
	3.2 Methods	14
4	Results	14
	4.1 Partisanship under the Spatial Voting Theorem	14
	4.2 The Independent Voter Equilibrium	14
5	Robustness	14
6	Conclusion	14
7	Appendix	15
#	adds table of contents	
\mathbf{L}	ist of Figures	
	1 A caption	4
	2 FDs	4
	3 FDs	5
	4 Cap	5
	5 FDs	6

6	Model fit	6
7	FDs	7
8	cap	14
\mathbf{List}	of Tables	
1	Logit equations predicting the vote	13

Figure 1: A caption

Figure 2: FDs

```
# Scenario (Black)
scenario_ind_hi_r1 <- cbind(1, # Intercept

lr_seq2, # LR Scale

0, # Race = Black

1, # Race = Other/Mixed

1, # Gender = Male</pre>
```


Figure 3: FDs

Party Identification and Spatial Voting

Figure 4: Cap

Figure 5: FDs

Figure 6: Model fit

Party Identification and Spatial Voting

Figure 7: FDs

```
mean(independents_hi*age, na.rm=T), # Age

1, # Religion = Protestant

0, # Religion = Catholic

0, # Religion = Other

1, # Above Median Income

0 # College Degree

)

Xbeta_ind_hi_r1 <- S %*% t(scenario_ind_hi_r1)

p_sim_ind_hi_r1 <- (exp(Xbeta_ind_hi_r1))/ (1 + exp(Xbeta_ind_hi_r1))

p_mean_ind_hi_r1 <- apply(p_sim_ind_hi_r1, 2, mean)

p_qu_ind_hi_r1 <- t(apply(p_sim_ind_hi_r1, 2, quantile, prob = c(0.025, 0.975)))

props_ind_hi_r1 <- as.data.frame(cbind(p_mean_ind_hi_r1, lr_seq2))</pre>
```

```
props_ind_hi_r1$dist <- abs(props_ind_hi_r1$p_mean_ind_hi_r1-0.5)
min_pos <- which.min(props_ind_hi_r1$dist)
props_ind_hi_r1[min_pos,2]</pre>
```

[1] 3.954

```
# Scenario 2 (Female)
scenario_ind_hi_r2 <- cbind(1, # Intercept</pre>
                   lr_seq2, # LR Scale
                   0, # Race = Black
                   0, # Race = Other/Mixed
                   0, # Gender = Male
                   mean(independents_hi$age, na.rm=T), # Age
                   1, # Religion = Protestant
                   0, # Religion = Catholic
                   0, # Religion = Other
                   1, # Above Median Income
                   0 # College Degree
                   )
Xbeta_ind_hi_r2 <- S %*% t(scenario_ind_hi_r2)</pre>
p_sim_ind_hi_r2 <- (exp(Xbeta_ind_hi_r2))/ (1 + exp(Xbeta_ind_hi_r2))</pre>
p_mean_ind_hi_r2 <- apply(p_sim_ind_hi_r2, 2, mean)</pre>
p_qu_ind_hi_r2 \leftarrow t(apply(p_sim_ind_hi_r2, 2, quantile, prob = c(0.025, 0.975)))
props_ind_hi_r2 <- as.data.frame(cbind(p_mean_ind_hi_r2,lr_seq2))</pre>
props_ind_hi_r2$dist <- abs(props_ind_hi_r2$p_mean_ind_hi_r2-0.5)</pre>
min_pos <- which.min(props_ind_hi_r2$dist)</pre>
```

```
props_ind_hi_r2[min_pos,2]
```

[1] 3.173

```
# Scenario 3 (Young)
scenario_ind_hi_r3 <- cbind(1, # Intercept</pre>
                   lr_seq2, # LR Scale
                   0, # Race = Black
                   O, # Race = Other/Mixed
                   1, # Gender = Male
                   quantile(independents_hi$age, na.rm=T, 0.25), # Age
                   1, # Religion = Protestant
                   0, # Religion = Catholic
                   0, # Religion = Other
                   1, # Above Median Income
                   0 # College Degree
                   )
Xbeta_ind_hi_r3 <- S %*% t(scenario_ind_hi_r3)</pre>
p_sim_ind_hi_r3 <- (exp(Xbeta_ind_hi_r3))/ (1 + exp(Xbeta_ind_hi_r3))</pre>
p_mean_ind_hi_r3 <- apply(p_sim_ind_hi_r3, 2, mean)</pre>
p_qu_ind_hi_r3 \leftarrow t(apply(p_sim_ind_hi_r3, 2, quantile, prob = c(0.025, 0.975)))
props_ind_hi_r3 <- as.data.frame(cbind(p_mean_ind_hi_r3,lr_seq2))</pre>
props_ind_hi_r3$dist <- abs(props_ind_hi_r3$p_mean_ind_hi_r3-0.5)</pre>
min_pos <- which.min(props_ind_hi_r3$dist)</pre>
props_ind_hi_r3[min_pos,2]
```

[1] 3.737

```
# Scenario 4 (No Religion)
scenario_ind_hi_r4 <- cbind(1, # Intercept</pre>
                   lr_seq2, # LR Scale
                   0, # Race = Black
                   0, # Race = Other/Mixed
                   1, # Gender = Male
                   mean(independents_hi$age, na.rm=T), # Age
                   0, # Religion = Protestant
                   0, # Religion = Catholic
                   0, # Religion = Other
                   1, # Above Median Income
                   0 # College Degree
                   )
Xbeta_ind_hi_r4 <- S %*% t(scenario_ind_hi_r4)</pre>
p_sim_ind_hi_r4 <- (exp(Xbeta_ind_hi_r4))/ (1 + exp(Xbeta_ind_hi_r4))</pre>
p_mean_ind_hi_r4 <- apply(p_sim_ind_hi_r4, 2, mean)</pre>
p_qu_ind_hi_r4 \leftarrow t(apply(p_sim_ind_hi_r4, 2, quantile, prob = c(0.025, 0.975)))
props_ind_hi_r4 <- as.data.frame(cbind(p_mean_ind_hi_r4,lr_seq2))</pre>
props_ind_hi_r4$dist <- abs(props_ind_hi_r4$p_mean_ind_hi_r4-0.5)</pre>
min_pos <- which.min(props_ind_hi_r4$dist)</pre>
props_ind_hi_r4[min_pos,2]
```

[1] 4.142

```
# Scenario (Low Income)
# scenario_ind_hi_r5 <- cbind(1, # Intercept</pre>
                   lr_seq2, # LR Scale
                   0, # Race = Black
                   O, # Race = Other/Mixed
                   1, # Gender = Male
                   mean(independents_hi$age, na.rm=T), # Age
                   1, # Religion = Protestant
                   O, # Religion = Catholic
                   0, # Religion = Other
                   O, # Above Median Income
                   0 # College Degree
#
\# Xbeta_ind_hi_r5 \leftarrow S \%*\% t(scenario_ind_hi_r5)
# p_mean_ind_hi_r5 <- apply(p_sim_ind_hi_r5, 2, mean)</pre>
\# p_qu_ind_hi_r5 \leftarrow t(apply(p_sim_ind_hi_r5, 2, quantile, prob = c(0.025, 0.975)))
\# props_ind_hi_r5 \leftarrow as.data.frame(cbind(p_mean_ind_hi_r5, lr_seq2))
# props_ind_hi_r5$dist <- abs(props_ind_hi_r5$p_mean_ind_hi_r5-0.5)</pre>
# min_pos <- which.min(props_ind_hi_r5$dist)</pre>
# props_ind_hi_r5[min_pos,2]
# Scenario 6 (College Degree)
# scenario_ind_hi_r6 <- cbind(1, # Intercept</pre>
```

```
#
                      lr_seq2, # LR Scale
                      O, # Race = Black
                      O, # Race = Other/Mixed
                      1, # Gender = Male
                      mean(independents_hi$age, na.rm=T), # Age
                      1, # Religion = Protestant
                      O, # Religion = Catholic
#
                      O, # Religion = Other
                      1, # Above Median Income
                      1 # College Degree
# Xbeta_ind_hi_r6 <- S %*% t(scenario_ind_hi_r6)</pre>
 \# p\_sim\_ind\_hi\_r6 \leftarrow (exp(Xbeta\_ind\_hi\_r6))/ (1 + exp(Xbeta\_ind\_hi\_r6)) 
\# p_{mean_ind_hi_r6} \leftarrow apply(p_sim_ind_hi_r6, 2, mean)
\# p_qu_ind_hi_r6 \leftarrow t(apply(p_sim_ind_hi_r6, 2, quantile, prob = c(0.025, 0.975)))
\# props_ind_hi_r6 \leftarrow as.data.frame(cbind(p_mean_ind_hi_r6, lr_seq2))
 \# \ props\_ind\_hi\_r6\$dist <- \ abs(props\_ind\_hi\_r6\$p\_mean\_ind\_hi\_r6-0.5) 
# min_pos <- which.min(props_ind_hi_r6$dist)</pre>
# props_ind_hi_r6[min_pos,2]
```

Table 1: Logit equations predicting the vote

	Dependent variable:			
		Vote for Obama		
	Model 1 (Base)	Model 1 (with controls)	Model 2	
	(1)	(2)	(3)	
Left-Right	-0.134	-0.248^*	-1.628***	
	(0.110)	(0.128)	(0.412)	
Independent	-0.810	-0.692		
	(0.606)	(0.696)		
Republican	-2.842***	-2.889**		
	(0.988)	(1.147)		
Black/African-American		5.286***	21.565	
		(1.041)	(1,975.579)	
Other/Mixed		1.523***	0.653	
		(0.354)	(1.181)	
Male		0.129	0.615	
		(0.201)	(0.682)	
$_{ m Age}$		-0.017^{***}	-0.022	
		(0.006)	(0.019)	
Protestant		-0.374	-0.966	
		(0.271)	(0.785)	
Catholic		-0.324	-0.398	
		(0.298)	(0.969)	
Other		0.503	-23.450	
		(0.752)	(10,754.010	
Above Median Income		-0.443^{**}	-0.763	
		(0.209)	(0.648)	
College Degree		0.239	1.175*	
		(0.231)	(0.646)	
Left-Right × Independent	-0.316**	-0.263		
	(0.139)	(0.162)		
Left-Right × Republican	-0.442^{**}	-0.302		
-	(0.206)	(0.241)		
Constant	3.291***	4.024***	7.968***	
	(0.471)	(0.641)	(2.262)	
Observations	1,242	1,242	104	
Log Likelihood	-424.972	-339.847	-34.213	
Akaike Inf. Crit.	861.943	709.693	90.427	

Note:

*p<0.1; **p<0.05; ***p<0.01

Party Identification and Spatial Voting

Figure 8: cap

- 2 Introduction
- 3 Research Design
- 3.1 Data
- 3.2 Methods
- 4 Results
- 4.1 Partisanship under the Spatial Voting Theorem
- 4.2 The Independent Voter Equilibrium
- 5 Robustness
- 6 Conclusion

7 Appendix