SHORT HW 4: Cross Sections

Course: Physics 165, Introduction to Particle Physics (2022)

INSTRUCTOR: Prof. Flip Tanedo (flip.tanedo@ucr.edu)

Due by: **Thursday**, April 21

1 Total Momentum Conservation for a $2 \rightarrow 3$ process

The following diagram is one contribution to the process $e^+e^- \rightarrow 3\gamma$:

Using the conservation of four-momentum at each vertex, show that the total four-momentum is conserved. That is, prove:

$$(p_1 + p_2)^{\mu} = (k_1 + k_2 + k_3)^{\mu} . {(1.1)}$$

HINT: Start by writing the conservation of four-momentum at each vertex. Those are three equations with unspecified q_1^{μ} and q_2^{μ} . Use two equations to determine what these virtual momenta are, then plug them into the last equation to prove the above relation.

$\mathbf{2}$ QED+ μ

Here are the Feynman rules for "QED+ μ ," a theory of electrons, photons, and a second type of matter: muons, denoted μ . Muons have the same charge as electrons and so the strength of their vertex with the photon is exactly the same. What are the conserved charges in this theory?

HINT: as you can guess, electric charge is conserved. However, there's a bit more to it than that. For example, $\mu^- \to e^- \gamma$ conserves electric charge. When the muon mass m_μ is larger than the photon mass, then $\mu^- \to e^- \gamma$ is even kinematically allowed. However, this process cannot happen dynamically in the theory QED+ μ .

COMMENT: Professor Tanedo's early Ph.D research focused on this process for theories with extra dimensions.¹

¹https://arxiv.org/abs/1004.2037