Taylor Larrechea Dr. Workman PHYS 342 HW 7

Problem 2

$$\mathcal{O}(r) = \int \frac{(1/r^2) \, dr}{\sqrt{2\mu(E + \frac{k}{2}r - \frac{k^2}{2\mu r^2})}} - \frac{\pi}{2} \qquad d = \frac{1}{2\mu}, \quad \mu = \frac{1}{r} : \frac{d\mu}{dr} = \frac{-1}{r^2} : dr = -r^2 d\mu$$

$$O(r) = \int \frac{l \cdot u^2}{\sqrt{2u(E + \kappa \cdot u - d \cdot u^2)}} dr - \frac{\Omega}{2} \rightarrow \int \frac{l \cdot u^2}{\sqrt{2u(E + \kappa \cdot u - d \cdot u^2)}} \cdot -r^2 du - \frac{\Omega}{2} = \frac{l}{\sqrt{2u}} \int \frac{du}{\sqrt{-du^2 + \kappa u + E}} - \frac{\Omega}{2}$$

$$O(r) = \frac{l^2}{2\mu} \int \frac{1}{\sqrt{-u^2 + \kappa u + E}} du - \frac{\pi}{2} : O(r) = \int \frac{1}{\sqrt{-u^2 + \kappa u + E}} du - \frac{\pi}{2} = \frac{\alpha - 1}{2} \cdot b = \frac{\kappa}{\alpha}, C = \frac{E}{\alpha}$$

Using appendix E):
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = - \int \frac{1}{\sqrt{-a}} \sin^{-1}\left(\frac{aax + b}{\sqrt{b^2 - 4ac}}\right)$$

$$\mathcal{O}(r) = -\frac{1}{\sqrt{-(-1)}} \sin^{-1}\left(\frac{-2u + \frac{\kappa}{2}}{\sqrt{(\frac{\kappa}{2}u)^2 + \frac{4}{5}(\frac{\kappa}{2}u)}}\right) - \frac{\Im r}{2} : -\mathcal{O}(r) - \frac{\Im r}{2} = \sin^{-1}\left(\frac{\frac{\kappa}{2}u - 2u}{\sqrt{(\frac{\kappa}{2}u)^2 + 4(\frac{\kappa}{2}u)}}\right)$$

$$Sin(-O(r)-\frac{\pi}{2}) = \frac{1}{\sqrt{(\frac{1}{2})^2+4(\frac{\pi}{2})}}$$
 : $-cos(o(r)) = \frac{1}{\sqrt{(\frac{1}{2})^2+4(\frac{\pi}{2})}}$

$$Cos(o(r)) = \frac{2u - \frac{1}{2}}{\sqrt{(\frac{1}{2}u)^2 + 4(\frac{1}{2}u)}} : \frac{\frac{2}{r} - \frac{K \cdot 2u}{l^2}}{\sqrt{\frac{K^2 \cdot 4u^2}{l^2} + \frac{4E \cdot 2u}{l^2}}} \left(\frac{l^2}{4uK}\right) \qquad u = \frac{1}{r} : \alpha = \frac{l^2}{2u}$$

$$Cos(OCr)) = \frac{l^2}{2m\kappa} \cdot \frac{g}{r} - 1 = \frac{l^2}{m\kappa r} - 1$$

$$\sqrt{1 + \frac{2El^2}{m\kappa^2}} = \sqrt{1 + \frac{2El^2}{m\kappa^2}}$$
Substitutions: NEW!!! $\chi = l^2$

$$E = \sqrt{1 + \frac{2El^2}{m\kappa^2}}$$

$$Cos(ov) = \frac{\alpha}{\Gamma} - 1 : rE(os(ov)) = \alpha - r : rE(os(ov)) + r = \alpha : E(os(ov)) + 1 = \frac{\alpha}{\Gamma}$$

$$\therefore \frac{2}{3} = 1 + \mathcal{E}(OS(OCr))$$

Problem 3

a.)
$$\frac{d^2u}{do^2} + u = -\frac{u}{l^2} \cdot \frac{1}{u^2} F(1/u)$$
 $F(r) = -\frac{k}{r^3}$ $l^2 = \mu k$, $l^2 > \mu k$, $l^2 < \mu k$

$$\frac{d^2u}{do^2} + u = \frac{m}{l^2} \cdot \frac{1}{l^2} \frac{\kappa \cdot u^2}{l^2} - \frac{m\kappa}{l^2} \cdot u$$

$$\frac{d^{2}u}{do^{2}} + u = \frac{uk}{L^{2}}u : u'' + u - \frac{uk}{L^{2}}u = 0 : u'' + u \left(1 - \frac{uk}{L^{2}}\right) = 0$$

$$\frac{d^2u}{d\sigma^2} + u = -\frac{\kappa}{\kappa} \cdot \frac{1}{\kappa} \cdot (\kappa)u^3 : \quad \frac{d^2u}{d\sigma^2} + u = u \quad \therefore \quad \frac{d^2u}{d\sigma^2} = 0$$

 $w(0) = C_1 + C_2$ Lets take $C_1 = 2$, $C_2 = 5$ through out

ii.)
$$l^2 > \mu \kappa$$
: $v = \mu \kappa$: $u'' + \mu (1 - v) = 0$: $r^2 + (1 - v) = 0$: $r^2 = v - 1$

$$r = \pm \sqrt{v - 1}$$

$$u(o) = c_1 e^{\sqrt{v-1}} o + c_2 e^{-\sqrt{v-1}} o$$

$$u(o) = c_1 e^{\sqrt{v-1}} o + c_2 e^{-\sqrt{v-1}} o$$

$$C_1 = 2$$
, $C_2 = 5$, $\frac{MK}{1^2} = 10$

iii)
$$\ell^2 \leq Mk : V = -\frac{Mk}{\ell^2} : u'' + u(1+V) = 0 : \Gamma^2 + (1+V) = 0 : \Gamma^2 = -(V+1)$$

$$\Gamma = \pm i \sqrt{\nu + 1}$$

$$u(o) = c_1 e^{i\sqrt{\nu+1}} o + c_2 e^{-i\sqrt{\nu+1}} o$$

$$u(o) = c_1 e^{i\sqrt{\nu+1}} o + c_2 e^{-i\sqrt{\nu+1}} o$$

$$C_1 = 2$$
, $C_2 = 5$, $\frac{u\kappa}{L^2} = 8$

Ь.)

Celestial Body	Mass Of Celestial Body	Semi-Major Axis	Big M	Center of Mass
Sun	1.9885E+33			
Mercury	3.3011E+26	57909050000	1.99E+33	9613.454022
Venus	4.8675E+27	1.08208E+11	1.99E+33	264873.5986
Earth	5.97237E+27	1.49598E+11	1.99E+33	449309.5606
Mars	6.471E+26	2.27939E+11	1.99E+33	74176.21741
Jupiter	1.8982E+30	7.7857E+11	1.99E+33	742505481.6
Saturn	5.6834E+29	1.43353E+12	1.99E+33	409605051.7
Uranus	8.681E+28	2.87504E+12	1.99E+33	125507330.7
Neptune	1.02413E+29	4.50439E+12	1.99E+33	231976127.2
All Planets				1509210639

Planet	LOG(C.O.M)				
Sun	0				
Mercury	3.982879454				
Venus	5.423038672				
Earth	5.65254566				
Mars	4.870264683				
Jupiter	8.870699664				
Saturn	8.612365304				
Uranus	8.098669093				
Neptune	8.365443294				
All Planets	9.178749858				

Problem 5

a.)

Celestial Body	Mass of Body	Radius of Body	Distance From Sun	I of Body	W Rotation	W Orbit	Spin L	Orbital L	Spin + Orbital L
Sun	1.9885E+30	695508000	0	3.8476E+47	2.9719E-06	0	1.1435E+42	0	1.14346E+42
Mercury	3.3011E+23	2440000	57909050000	7.86137E+35	1.2396E-06	8.264E-07	9.7448E+29	9.1482E+38	9.14819E+38
Venus	4.8675E+24	6052000	1.08208E+11	7.13122E+37	2.9927E-07	3.232E-07	2.1341E+31	1.8421E+40	1.84208E+40
Earth	5.97237E+24	6371000	1.49598E+11	9.69665E+37	7.2722E-05	1.992E-07	7.0516E+33	2.663E+40	2.663E+40
Mars	6.471E+23	3389000	2.27939E+11	2.97286E+36	6.9813E-05	1.059E-07	2.0754E+32	3.5589E+39	3.55893E+39
Jupiter	1.8982E+27	69911000	7.7857E+11	3.71102E+42	0.00017453	1.66E-08	6.4769E+38	1.9104E+43	1.91049E+43
Saturn	5.6834E+26	58232000	1.43353E+12	7.70889E+41	0.00015867	6.611E-09	1.2231E+38	7.7214E+42	7.72151E+42
Uranus	8.681E+25	25362000	2.87504E+12	2.23356E+40	0.00010267	2.346E-09	2.2931E+36	1.6833E+42	1.6833E+42
Neptune	1.02413E+26	24622000	4.50439E+12	2.48349E+40	0.00010267	1.208E-09	2.5497E+36	2.5101E+42	2.51014E+42
Total							1.1442E+42	3.1069E+43	3.22128E+43

b.)
$$E_{binding} = \frac{3}{5} \cdot \frac{6M^2}{\Gamma}$$
, $T = \frac{L^2}{(2I)}$

Eginting = Kinetic Energy:
$$\frac{3}{5} \cdot \frac{6M^2}{\Gamma} = \frac{L^2}{2I}$$

$$L^2 = \frac{6}{5} \cdot \frac{6M^2I}{c} : L = \sqrt{\frac{6}{5} \cdot \frac{6M^2I}{c}}$$

$$L=\sqrt{\frac{6}{5}}\frac{6m^2I}{\Gamma}$$

The Sun is not in danger of spinning itself out. Even if all the mass was put into the sun, it would not be problematic.

Problem 6

$$E = T + u : T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 , u = -\frac{6M_1M_2}{C}$$

$$E_i = E_f : E_i = \frac{6m_i m_2}{C_0}, E_f = \frac{1}{2}m_i \dot{x}_1^2 + \frac{1}{2}m_2 \dot{x}_2^2 - \frac{6m_i m_2}{C_0}$$

$$P = M\dot{x}$$
: $M_1\dot{x}_1 + M_2\dot{x}_2 = 0$: $M_1\dot{x}_1 = -M_2\dot{x}_2$: $\dot{x}_1 = -\frac{M_2}{M_1}\dot{x}_2$, $\dot{x}_2 = -\frac{M_1}{M_2}\dot{x}_1$
 $M = M_1 + M_2$

×,

$$-\frac{6m_{1}m_{2}}{r_{0}} = \frac{1}{2}m_{1}\dot{x}_{1}^{2} + \frac{1}{2}m_{2}\dot{x}_{2}^{2} - \frac{6m_{1}m_{2}}{r} : \frac{6m_{1}m_{2}}{r} - \frac{6m_{1}m_{2}}{r_{0}} = \frac{1}{2}m_{1}\dot{x}_{1}^{2} + \frac{1}{2}m_{2}\dot{x}_{2}^{2}$$

$$6m_{1}m_{2}\left[\frac{1}{\Gamma}-\frac{1}{\Gamma_{0}}\right]=\frac{1}{2}m_{1}\dot{x}_{1}^{2}+\frac{1}{2}m_{2}\left(\frac{m_{1}^{2}}{m_{2}^{2}}\right)\dot{x}_{1}^{2}:\quad 6m_{1}m_{2}\left[\frac{1}{\Gamma}-\frac{1}{\Gamma_{0}}\right]=\frac{1}{2}m_{1}\dot{x}_{1}^{2}\left[1+\frac{m_{1}}{m_{2}}\right]$$

$$Gm_1m_2^2\left[\frac{1}{r}-\frac{1}{ro}\right]= \pm m_1\dot{x}_1^2\left[m_2+m_1\right] : Gm_2^2\left[\frac{1}{r}-\frac{1}{ro}\right]= \pm \dot{x}_1^2M$$
, let $M=m_1+m_2$

$$\dot{x}_{i}^{2} = \frac{26 m_{2}^{2}}{M} \left[\frac{1}{r} - \frac{1}{r_{0}} \right] \quad \therefore \quad \dot{x}_{i} = m_{2} \sqrt{\frac{26}{M} \left(\frac{1}{r_{0}} - \frac{1}{r_{0}} \right)}$$

 $\dot{\chi}_2$

$$Gm_{1}m_{2}\left[\frac{1}{r}-\frac{1}{r_{0}}\right]=\frac{1}{2}m_{1}\left(\frac{m_{2}^{2}}{m_{1}z}\right)\dot{x}_{2}^{2}+\frac{1}{2}m_{2}\dot{x}_{2}^{2}:Gm_{1}m_{2}\left[\frac{1}{r}-\frac{1}{r_{0}}\right]=\frac{1}{2}\left(\frac{m_{2}^{2}}{m_{1}}\right)\dot{x}_{2}^{2}+\frac{1}{2}m_{2}\dot{x}_{2}^{2}$$

$$Gm_1^2m_2\left[\frac{1}{\Gamma}-\frac{1}{r_0}\right] = \frac{1}{2}(m_2^2)\dot{x}_2^2 + \frac{1}{2}m_2m_1\dot{x}_2^2 : Gm_1^2\left[\frac{1}{\Gamma}-\frac{1}{r_0}\right] = \frac{1}{2}m_2\dot{x}_2^2 + \frac{1}{2}m_1\dot{x}_2^2$$

$$6m_1^2 \left[\frac{1}{\Gamma} - \frac{1}{\Gamma_0} \right] = \frac{1}{2} \dot{x}_2^2 \left[m_2 + m_1 \right] : 6m_1^2 \left[\frac{1}{\Gamma} - \frac{1}{\Gamma_0} \right] = \frac{1}{2} \dot{x}_2^2 M : \dot{x}_2^2 = \frac{26}{M} m_1^2 \left[\frac{1}{\Gamma} - \frac{1}{\Gamma_0} \right]$$

$$\dot{x}_1 = M_2 \sqrt{\frac{36}{M} \left(\frac{1}{\Gamma} - \frac{1}{\Gamma_0}\right)} , \quad \dot{x}_2 = M_1 \sqrt{\frac{36}{M} \left(\frac{1}{\Gamma} - \frac{1}{\Gamma_0}\right)}$$