МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА

Київ

Основи електротехніки

Звіт до лабораторної роботи $\mathbb{N}2$

Роботу виконала: Є.С. Кулинич Група: 5-А Викладачі: Р. Єрмоленко Ю. Мягченко

Київ 2021 БКК 73Ц I-72

Укладач: Є.С. Кулинич

І-72 Звіт. Напівпровідникові діоди/ укл. Є.С. Кулинич.

-K: KHУ ім. Т. Шевченка, 2021. - 18 с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі Ni Multisim $^{\mathsf{TM}}$.

Зміст

1.	Вст	упна частина	4
	1.1.	Об'єкт дослідження	4
	1.2.	Мета	4
	1.3.	Методи дослідження	4
2.	Teo	ретична частина	5
	2.1.	Термінологія	5
3.	Пра	актична частина	6
	3.1.	Вступ до практичної частини	6
	3.2.	Випрямлювальний діод	7
		3.2.1. Схема досліду	7
		3.2.2. Покази приладів	7
	3.3.	Стабілітрон	8
		3.3.1. Схема досліду	8
		3.3.2. Покази приладів	8
	3.4.	Світлодіод	9
		3.4.1. Схема досліду	9
		3.4.2. Покази приладів	9
	3.5.	Висновки	10
4.	Відповіді на контрольні питання		
	4.1.	Напівпровідники п- та р-типу. Основні та неосновні носії заряду в таких напівпровідниках	11
	4.2.	р-п перехід. Власне електричне поле переходу. Контактна різниця потен-	
		ціалів. Дифузійний та дрейфовий струми	12
	4.3.	Пряме та зворотне включення р-п переходу. Рух основних та неосновних	
		носіїв через р-п перехід під дією прямої та зворотної напруги	13
	4.4.	Вольт-амперна характеристика (ВАХ) випрямлювального діода, її зале-	
		жність від температури. Застосування випрямлювальних діодів в техніці	
			14
	4.5.	Оборотний та необоротний електричний пробій p-n переходу. ВАХ стабі-	
		літрона. Застосування стабілітрона	15
	4.6.	Тунельний ефект. Енергетична діаграма та ВАХ тунельного діода. Засто-	
		сування тунельних діодів	16
	4.7.	Випромінювальна рекомбінація носіїв заряду в напівпровідниках. Прин-	
	4.0	цип роботи і застосування світлодіодів	17
	4.8.	Внутрішній фотоефект у напівпровідниках. Принцип роботи і застосува-	10
		ння фотодіодів. Сонячні батареї	18

1. Вступна частина

1.1. Об'єкт дослідження

Діоди: випрямлювальний, стабілітрон, світлодіод.

1.2. Мета

Навчитися одержувати зображення BAX діодів на екрані двоканального осцилографа, дослідити властивості p-n-переходів напівпровідникових діодів різних типів.

1.3. Методи дослідження

Одержання зображення BAX діодів на екрані двоканального осцилографа, який працює в режимі характериографа.

Побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму I_D , що відповідають певним значенням та полярності напруги U_D , і подання результатів вимірів у вигляді графіка.

2. Теоретична частина

2.1. Термінологія

Напівпровідниковий діод — це напівпровідниковий прилад з одним p-n-переходом і двома виводами.

p-n—**перехід** — перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша — провідність p-типу.

Вольт-амперна характеристика (BAX) діода – це залежність сили струму Ід через p-n-перехід діода від величини і полярності прикладеної до діода напруги Uд.

Характериограф – електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму I_D від напруги U_D .

3. Практична частина

3.1. Вступ до практичної частини

В чудовій методичці "вивчення радіоелектронних схем методом комп'ютерного моделювання" від Мягченко я знайшла схему, яку вдало склала. Ця схема дозволяє простим перемиканням ключа змінювати наше робоче тіло.

Спочатку ми досліджуємо діод, потім стабілітрон, і на залишок світлодіод.

Наша схема з незамкненими ключами виглядає наступним чином:

3.2. Випрямлювальний діод

3.2.1. Схема досліду

3.2.2. Покази приладів

3.3. Стабілітрон

3.3.1. Схема досліду

3.3.2. Покази приладів

3.4. Світлодіод

3.4.1. Схема досліду

3.4.2. Покази приладів

3.5. Висновки

За допомогою даної лабораторної роботи вдалось дослідити ВАХ діодів. При дослідження використовувалось спільна схема і три типи напівпровідникових діодів: випрямлювальний, стабілізатор та світлодіод. Їхнє почергове підключення регулювалось замкненням відповідного ключа.

4. Відповіді на контрольні питання

4.1. Напівпровідники п- та р-типу. Основні та неосновні носії заряду в таких напівпровідниках

Домішкова провідність — це провідність, зумовлена домішками.

Напівпровідники n-типу (електронні напівпровідники) — це напівпровідники з домішкою, валентність якої на одиницю більше валентності основних атомів. В даному випадку, наприклад, при заміщенні атома германію п'ятивалентним атомом миш'яку один електрон не може утворити ковалентного зв'язку, він виявляється зайвим і може бути легко при теплових коливаннях грат відщеплений від атома, тобто стати вільним. Оскільки ковалентний зв'язок в даному випадку не порушується, дірка тут не виникає. Надлишковий позитивний заряд, що виникає поблизу атома домішки, зв'язується атомом домішки і тому переміщуватись не може. В даному випадку носії струму — електрони; виникає електронна провідність (провідність n-типу).

Напівпровідники р-типу (діркові провідники) - це напівпровідники з домішкою, валентність якої на одиницю менша валентності основних атомів. Гарним прикладом буде введення в гратку кремнію атом з трьома валентними електронами, наприклад, бор.

Для утворення зв'язків з чотирма найближчими сусідніми атомами кремнію у атома бору не вистачає одного електрона, один із зв'язків залишається неукомплектованим і четвертий електрон може бути захоплений від сусіднього атома основної речовини, де відповідно утворюється дірка. Дірки, що утворюються, послідовно заповнюються електронами, що призводить до еквівалентно руху дірок в напівпровіднику, тобто дірки не залишаються локалізованими, а переміщаються в гратках як вільні позитивні заряди. Надмірний же негативний заряд, що виникає поблизу атома домішки, зв'язується атомом домішки і по гратках переміщатися не може.

Домішки, що є джерелом електронів, називаються донорами, а енергетичні рівні цих домішок – донорними рівнями. В напівпровідниках n-типу спостерігається електронний механізм провідності (основні носії струму – електрони). Домішки, захоплюючі електрони з валентної зони напівпровідника, називаються акцепторами, а енергетичні рівні цих домішок – акцепторними рівнями. В напівпровідниках p-типу спостерігається дірковий механізм провідності (основні носії струму – дірки).

На відміну від власної провідності, що здійснюється одночасно електронами і дірками, домішкова провідність зумовлена в основному носіями одного знаку: у випадку акцепторної домішки — дірками, у разі донорної — електронами.

4.2. р-п перехід. Власне електричне поле переходу. Контактна різниця потенціалів. Дифузійний та дрейфовий струми

p-n-перехід - – перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша – провідність p-типу.

Якщо матеріал n-типу привести в контакт з матеріалом p-типу, то почнеться процес дифузії електронів з матеріалу n-типу (де їх концентрація велика) в матеріал p-типу (де їх концентрація мала). Аналогічно, дірки будуть дифундувати з матеріалу p-типу (де їх концентрація велика) в матеріал n-типу (де їх концентрація мала). Зрозуміло, що при двох вищезгаданих процесах матеріал n-типу буде втрачати негативний заряд і набувати позитивного заряду, а матеріал p-типу, навпаки, буде втрачати позитивний заряд і набувати негативного заряду.

Дрейфовий струм - струм, який утворюється в електричному полі.

Дифузійний струм - струм, який виникає при перенесенні (дифузії) носіїв з області, де їх концентрація підвищена, у напрямку області з нижчою їх концентрацією.

4.3. Пряме та зворотне включення p-n переходу. Рух основних та неосновних носіїв через p-n перехід під дією прямої та зворотної напруги

Якщо до р-п-переходу прикласти зовнішню різницю потенціалів (напругу) U, то вона змінить висоту потенціального порогу. Якщо напрям зовнішнього електричного поля збігається з напрямом електричного поля р-п-переходу, то висота потенціального порогу зростатиме, а якщо ж він буде протилежним, то висота порогу зменшуватиметься. Якщо висота потенціального порогу зменшується, то струм основних носіїв через р-п-перехід збільшується і кажуть, що зовнішня напруга U прикладена в прямому напрямку (при цьому "+" джерела напруги приєднано до р-області, а "-" джерела – до п-області). Зовнішнє поле виштовхує в область р-п-переходу негативно заряджені електрони з побласті та позитивно заряджені дірки з р-області. Струм основних носіїв заряду при прикладанні зовнішньої напруги U до р-п-переходу дорівнює:

$$I_0 = Ae^{\frac{e(U - \varphi_k)}{kT}}$$

Повний струм через p-n-перехід можна записати як алгебраїчну суму струмів основних та неосновних носіїв:

$$I = I_0 \left[e^{\frac{eU}{kT}} - 1 \right]$$

де знак мінус означає, що ці струми течуть у протилежних напрямках.

Якщо до p—n-переходу прикласти зовнішню напругу у зворотному напрямку (U<0) і збільшувати її, то струм основних носіїв прямуватиме до нуля і при достатньо великих значеннях зворотної напруги повний струм I (його ще називають зворотним струмом) буде повністю визначатися струмом неосновних носіїв і перестане залежати від U:

$$I \rightarrow -I_0$$

Якщо ж до p—n-переходу прикласти зовнішню напругу у прямому напрямку (U>0), то через p-n-перехід протікатиме повний струм I, який називають прямим струмом. При eU>> kT можна знехтувати одиницею в (тобто струмом неосновних носіїв) і одержати експоненційну залежність повного струму I від зовнішньої напруги U:

$$I = I_0 e^{\frac{eU}{kT}}$$

Прямий струм знатно перевищує зворотній струм, який обмежений струмом неосновних носіїв. Така властивість p-n переходу пропускати струм в одному напрямку зумовлює широке застосування діодів.

4.4. Вольт-амперна характеристика (ВАХ) випрямлювального діода, її залежність від температури. Застосування випрямлювальних діодів в техніці

Діоди, що описуються формулою нижче, називають випрямлювальними.

$$I = I_0 \left[e^{\frac{eU}{kT}} - 1 \right]$$

Їх використовують у пристроях випрямлення, обмеження, детектування. Найпотужніші з них здатні працювати при значеннях прямого струму до кількох тисяч ампер і витримувати без пробою зворотні напруги в десятки кіловольт.

Вольт-амперні характеристики випрямлювальних діодів, виготовлених з германію і кремнію, мають наступний вигляд:

З графіка вище бачимо, що струм експоненційно залежить від температури, а тому і ВАХ випрямлювального діода теж залежить ескпоненційно від температури.

4.5. Оборотний та необоротний електричний пробій p-n переходу. ВАХ стабілітрона. Застосування стабілітрона

При великих зворотних напругах р-n-перехід "пробивається" і через нього протікає дуже великий струм. Існує три основних механізми пробою: теплова нестійкість (розігрівання р-n-переходу при протіканні зворотного струму), тунельний ефект ("просочування" основних носіїв через р-n-перехід у сильному електричному полі) і лавинне розмноження носіїв (явище, подібне до ударної іонізації газу). Пробій є відновлюваним, доки теплова потужність, розсіювана на р-n-переході, не перевищує припустимої, при якій відбувається його руйнування. Ця ділянка ВАХ, що відповідає зворотній напрузі, використовується на практиці в пристроях стабілізації напруги, а діоди, що мають таку ділянку, називають стабілітронами.

Вольт-амперна характеристика напівпровідникового стабілітрона:

4.6. Тунельний ефект. Енергетична діаграма та ВАХ тунельного діода. Застосування тунельних діодів

Якщо виготовити p—n-перехід з сильнолегованого напівпровідника (з великою концентрацією домішок), то перехід стане тонким і носії заряду зможуть "просочуватися" (тунелювати) через область p—n-переходу при прикладанні невеликої як зворотної, так і прямої напруги. Діоди з таким p—n-переходом називаються тунельними.

Важливою особливістю ВАХ тунельних діодів є наявність на її прямій гілці ділянки з від'ємним диференціальним опором: r = dU/dI < 0, що дозволяє використовувати їх як підсилювачі та генератори електричних коливань надвисокочастотного діапазону (до десятків гігагерц). Такі діоди використовуються також як швидкодійні перемикачі, а також як елементи пам'яті в запам'ятовувальних пристроях з двійковим кодом.

Вольт-амперна характеристика тунельного діода. Пунктирною лінією показано ділянку ВАХ з від'ємним диференціальним опором:

Енергетична діаграма тунельного діода:

4.7. Випромінювальна рекомбінація носіїв заряду в напівпровідниках. Принцип роботи і застосування світлодіодів

Будь-якого носія заряду, електрона чи дірку, народженого в області дії поля контактної різниці потенціалів, буде відразу підхоплено цим електричним полем і виштовхнуто: електрона — в п-область, дірку — в р-область. Якщо такі електрон і дірка виникли під дією кванта світла (фотона) з енергією, більшою за ширину забороненої зони, то з ними відбудеться теж саме. На цьому грунтується принцип дії фотодіода, тобто пристрою, що здійснює пряме перетворення енергії оптичного випромінювання в електричну. При опроміненні фотодіода світлом збільшується струм неосновних носіїв через р—п-перехід і змінюється його ВАХ.

У будь-якому включеному в прямому напрямку р—п-переході при протіканні струму має місце рекомбінація носіїв заряду, в тому числі й випромінювальна, тобто з народженям фотонів. Випромінювально рекомбінує лише частина носіїв. І лише частина фотонів, уникнувши поглинання в самому діоді, може вийти назовні. Для створення практично придатного світловипромінювального діода необхідні матеріали з високою імовірністю випромінювальної рекомбінації.

Сьогодні більш ефективними є світлодіоди, у яких використовуються не р–ппереходи, а так звані гетеропереходи — переходи між двома напівпровідниковими матеріалами з різною шириною забороненої зони. Оскільки енергія фотонів випромінювання (колір свічення) близька до ширини забороненої зони напівпровідника, то на основі перелічених напівпровідникових матеріалів були створені світлодіоди, що випромінюють у всій видимій, інфрачервоній та ближній ультрафіолетовій областях спектра.

Останнім часом у різних системах освітлення все частіше використовуються білі світлодіоди, які за багатьма параметрами (світловіддача, економічність, довговічність, безпечність) переважають лампи розжарення.

Шляхом поєднання гетеропереходів з p—n-переходами були створені напівпровідникові лазери— компактні джерела когерентного оптичного випромінювання з великим коефіцієнтом корисної дії.

4.8. Внутрішній фотоефект у напівпровідниках. Принцип роботи і застосування фотодіодів. Сонячні батареї

Внутрішній фотоефект являє собою процес утворення вільних носіїв заряду всередині речовини при впливі випромінювання.

Якщо випромінювання світлодіода направити на фотодіод, то ми отримаємо оптопару або оптрон. У такій оптопарі здійснюється перетворення електричної енергії в енергію оптичного випромінювання (світлодіод) та перетворення енергії випромінювання знову в електричну енергію (фотодіод). Оптопари використовують для зв'язку окремих частин електронних пристроїв (головним чином, в обчислювальній та вимірювальній техніці й автоматиці), чим одночасно забезпечується електрична розв'язка між ними, а також для безконтактного керування електричними колами.

Сонячне світло, що падає на елемент сонячної батареї, розділяє позитивні і негативні заряди, які акумулюються в зоні контакту між пластинками кремнію Р-типу та N-типу. Це розділення створює напругу, під дією якої відбувається включення елемента в замкнутому колі, через це у колі починає текти електричний струм.