L2 Annexe

ANNEXE I: Datasheet

Circuits intégrés logiques

L2 Annexe

SN74LS283

4-Bit Binary Full Adder with Fast Carry

The SN74LS283 is a high-speed 4-Bit Binary Full Adder with internal carry lookahead. It accepts two 4-bit binary words (A_1-A_4 , B_1-B_4) and a Carry Input (C_0). It generates the binary Sum outputs ($\Sigma_1-\Sigma_4$) and the Carry Output (C_4) from the most significant bit. The LS283 operates with either active HIGH or active LOW operands (positive or negative logic).

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{cc}	Supply Voltage	4.75	5.0	525	٧
TA	Operating Ambient Temperature Range	0	ක	70	ಧ
lан	Output Current - High			-0.4	mA
Ьι	Output Current - Low			8.0	mA

SN74LS283

CONNECTION DIAGRAM DIP (TOP VIEW)

LOADING (Notes)

		· ·
	нюн	LOW
Operand A Inputs	1.0 UL.	05UL.
Operand B Inputs	1.0 U.L.	05UL.
Carry Input	05UL.	0.25 UL.
Sum Outputs	10 UL.	SUL.
Carry Cutput	10 UL.	SUL.
	Operand Biriputs Carry Irput Sum Outputs	Operand A Inputs 1.0UL. Operand B Inputs 1.0UL. Carry Input 0.5UL. Sum Cutputs 10UL.

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 µA H IGH/1.6 mA LOW.

FUNCTIONAL DESCRIPTION

The LS283 adds two +bit binary words (A plus B) plus the incoming carry. The binary sum appears on the sum outputs $(\Sigma_1 - \Sigma_1)$ and outgoing carry (C4) outputs.

 $\begin{array}{l} C_0 + (A_1 + B_1) + 2(A_2 + B_2) + 4(A_3 + B_3) + 8(A_4 + B_4) = \sum_1 + 2 \\ \sum_2 + 4\sum_3 + 8\sum_4 + 16C_4 \end{array}$

Where: (+) = plus

Due to the symmetry of the binary add function the LS283 can be used with either all inputs and outputs active HLGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that with active HLGH inputs, Camy Input can not be left open, but must be held LOW when no carry in is intended.

Example:

	co	Αı	Az	Ą	A ₄	В	Вz	Вз	B ₄	Σ1	Σ_2	Σ_3	Σ4	C ₄
logic levels	١	L	Н	L	Н	Ι	L	L	Н	Н	Н	L	L	Н
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

(10+9=19) (carry+5+6=12)

Interchanging inputs of equal weight does not affect the operation, thus C_0 , A_1 , B_1 , can be arbitrarily assigned to pins 7, 5 or 3.

74H/HC193

Presettable synchronous 4-bit binary Presettable synchronous 4-bit binary, up/down counter

FEATURES

☐ Synchronous reversible 4-bit binary counting	☐ ☐ Asynchronous parallel load
☐ ☐ Asynchronous reset	☐ Expandable without external logic
☐ ☐ Output capability: standard	□ □ICC category: MSI
GENERAL DESCRIPTION	

The 74HC/HCT193 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDECstandard no. 7A. The 74HC/HCT193 are 4-bit synchronous binary up/down counters, Separate up/down clocks, CPU and CPD respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CPU clock is pulsed while CPD is held HIGH, the device will count up. If the CPD clock is pulsed while CPU is held HIGH, the device will count down. Only one clock input can be held HIGH at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input (PL). The "193" contains four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions. Each flip-flop contains JK feedback from slave to master, such that a LOW-to-HIGH transition on the CPD input will decrease the count by one, while a similar transition on the CPU input will advance the count by one. One clock should be held HIGH while counting with the other, otherwise the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW. Applications requiring reversible operation must make the reversing decision while the activating clock is HIGH to avoid erroneous counts. The terminal count up (TCU) and terminal count down (TCD) outputs are normally HIGH. When the circuit has reached the maximum count state of 15, the next HIGH-to-LOW transition of CPU will cause TCU to go LOW. TCU will stay LOW until CPU goes HIGH again, duplicating the count up clock. Likewise, the TCD output will go LOW when the circuit is in the zero state and the CPD goes LOW. The terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added. The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs (Q0 to Q3) regardless of the conditions of the clock inputs when the parallel load (PL) input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs (O0 to O3) LOW. If one of the clock inputs is LOW during and after a reset or load

operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be

PIN DESCRIPTION PIN NO. SYMBOL NAME AND FUNCTION

- 3, 2, 6, 7 Q0 to Q3 flip-flop outputs
- 4 CPD count down clock input(1)
- 5 CPU count up clock input(1)
- 8 GND ground (0 V)

counted.

- 11 PL asynchronous parallel load input (active LOW)
- 12 TCU terminal count up (carry) output (active LOW)
- 13 TCD terminal count down (borrow) output (active LOW)
- MR asynchronous master reset input (active HIGH)
- 15, 1, 10, 9 D0 to D3 data inputs
- 16 VCC positive supply voltage
 - (1) LOW-to-HIGH, edge triggered

Function Table:

OPERATING MODE				INPUTS						OUTPUTS				
OPERATING MODE	MR	PL	СРυ	CP□	D ₀	D ₁	D ₂	D ₃	Qo	Q ₁	Q ₂	Q3	TCυ	TC₀
reset (clear)	Н	X	X	L	Х	Х	X	Х	L	L	L	L	Н	L
, , , , , , , , , , , , , , , , , , , ,	Н	Х	Х	Н	Х	Х	Х	Х	L	L	L	L	Н	Н
	L	L	Х	L	L	L	L	L	L	L	L	L	Н	L
parallel load	L	L	Х	Н	L	L	L	L	L	L	L	L	Н	Н
parallerioad	L	L	L	X	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
	L	L	Н	Х	Н	Н	Н	Н	Н	Н	Н	Н	Ξ	H
count up	L	Н	1	Н	Х	Х	Х	Х		count	up		H ⁽²⁾	Н
count down	L	Н	Н	1	Х	Х	Х	Х		ount o	lown		Н	H(3)

Notes

- H = HIGH voltage level L = LOW voltage level X = don't care
 ★ = LOW-to-HIGH clock transition
 TCU = CPU at terminal count up (HHHH) 3. TCD = CPD at terminal count down (LLLL)

74HC251

TRUTH TABLE

	ı	оит	PUT		
	SELECT		ОИТРИТ		
S2	S 1	S0	CONTROL OE	Y	Y
Х	Х	Х	Н	Z	Z
L	L	L	L	I ₀	Ī ₀
L	L	Н	L	I ₁	Ī ₁
L	Н	L	L	l ₂	Ī ₂
L	Н	Н	L	l ₃	Ī ₃
Н	L	L	L	14	Ī ₄
Н	L	Н	L	I ₅	Ī ₅
Н	Н	L	L	I ₆	ī ₆
Н	Н	Н	L	I ₇	Ī ₇

H = High Voltage Level, L = Low Voltage Level, X = Don't Care, Z = High Impedance (Off), I₀, I₁...I₇ = the level of the respective input.

Philips Semiconductors Product specification

4-bit bidirectional universal shift register

HEF40194B MSI

DESCRIPTION

The HEF40194B is a 4-bit bidirectional shift register with two mode control inputs (S_0 and S_1), a clock input (CP), a serial data shift left input (D_{SL}), a serial data shift right input (D_{SR}), four parallel data inputs (P_0 to P_3), an overriding asynchronous master reset input (\overline{MR}), and four buffered parallel outputs (O_0 to O_3). When LOW, \overline{MR} resets all stages and forces O_0 to O_3 LOW, overriding all other input conditions. When \overline{MR} is HIGH, the operation mode is controlled by S_0 and S_1 as shown in the function table.

Serial and parallel operation are edge-triggered on the LOW to HIGH transition of CP. The inputs at which the data are to be entered and S₀, S₁ must be stable for a set-up time before the LOW to HIGH transition of CP.

HEF40194BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF40194BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF40194BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

S₀, S₁ mode control inputs
P₀ to P₃ parallel data inputs
D_{SR} serial data shift right input
D_{SL} serial data shift left input
CP clock input (LOW to HIGH edge-triggered)

MR master reset input (active LOW)

O₀ to O₃ buffered parallel outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

FUNCTION TABLE

			INPUTS (OUTPUTS AT Tn+1					
OPERATING MODE	S ₁	So	DaR	DaL	Po TO Ps	00	01	02	Os
hold	L	L	Х	Х	X	00	01	02	03
-1.01-0	Н	L	Х	L	Х	01	02	O ₃	L
shift left	Н	L	Х	н	X	0,	02	03	Н
	L	H	L	X.	Х	L	00	01	02
shift right	L	Н	н	Х	x	Н	00	0,	02
ACCOUNT OF THE PARTY OF THE PAR	Н	Н	Х	X	L	L	L	L	L
parallel load	Н	Н	Х	Х	н	H	Н	н	н

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial
- 4. tn+1 = state after next LOW to HIGH transition of CP

AC CHARACTERISTICS

V_{SS} = 0 V; T_{amb} = 25 °C; input transition times ≤ 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 500 f ₁ + Σ (f ₀ C _L) × V _{DD} ²	where
dissipation per	10	6 900 $f_1 + \sum (f_0C_L) \times V_{DD}^2$	f _I = input freq. (MHz)
package (P)	15	18 900 $f_1 + \sum (f_0C_L) \times V_{DD}^2$	fo = output freq. (MHz)
			C _L = load cap. (pF)
			$\sum (f_0C_L)$ = sum of outputs
	J	8	V _{DD} = supply voltage (V)