

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12Q 1/68	A2	(11) International Publication Number: WO 93/03187 (43) International Publication Date: 18 February 1993 (18.02.93)
(21) International Application Number: PCT/US92/06617 (22) International Filing Date: 28 July 1992 (28.07.92)		(74) Agents: LADD, Robert, G. et al.; Amoco Corporation, Patents and Licensing Department, Mail Code 1907, P.O. Box 87703, Chicago, IL 60680-0703 (US).
(30) Priority data: 738,800 31 July 1991 (31.07.91) US		(81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).
(71) Applicant: AMOCO CORPORATION [US/US]; Mail Code 1907, Patents and Licensing Department, P.O. Box 87703, Chicago, IL 60680-0703 (US).		Published <i>Without international search report and to be republished upon receipt of that report.</i>
(72) Inventors: PARODOS, Kyriaki ; 30 Royal Crest Drive, Apartment 9, Marlborough, MA 01752 (US). McCARTY, Janice, Marie ; 10 Donna Terrace, Hyde Park, MA 02136 (US).		
(54) Title: NUCLEIC ACID PROBES FOR THE DETECTION OF SHIGELLA		
(57) Abstract The invention relates to methods of detection of bacteria of the genus Shigella and/or Enteroinvasive <i>E. coli</i> (EIEC) by use of a set of nucleic acid probes. The invention further relates to a set of Shigella specific chromosomal sequences and fragments and to probes derived from the Shigella specific fragments. Additionally, probes were derived from a sequence from the Shigella <i>ompA</i> gene. In particular, a series of probes, each approximately 40 nucleotides in length, were designed having specificity for Shigella or for Shigella and Enteroinvasive <i>E. coli</i> , and having utility in nonisotopic test formats which require amplification to achieve high sensitivity. Specific hybridization probe sets which are capable of detecting substantially all clinically significant serotypes of Shigella, as well as enteroinvasive strains of <i>E. coli</i> , are disclosed.		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MN	Mongolia
AU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Faso	GN	Guinea	NO	Norway
BG	Bulgaria	CR	Greece	NZ	New Zealand
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Ireland	PT	Portugal
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	RU	Russian Federation
CG	Congo	KP	Democratic People's Republic of Korea	SD	Sudan
CH	Switzerland	KR	Republic of Korea	SE	Sweden
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CS	Czechoslovakia	LU	Luxembourg	SU	Soviet Union
CZ	Czech Republic	MC	Monaco	TD	Chad
DE	Germany	MG	Madagascar	TC	Togo
DK	Denmark	ML	Mali	UA	Ukraine
ES	Spain			US	United States of America

NUCLEIC ACID PROBES FOR THE DETECTION OF SHIGELLADescriptionBackground of the Invention

The genus Shigella includes four species (major serogroups): S. dysenteriae (Grp. A), S. flexneri (Grp. B), S. boydii (Grp. C) and S. sonnei (Grp. D) as classified in Bergey's Manual for Systematic Bacteriology (N.R. Krieg, ed., pp. 423-427 (1984)). These serogroups are further subdivided into serotypes (Table 1). The genera Shigella and Escherichia are phylogenetically closely related. Brenner and others have suggested that the two are more correctly considered sibling species based on DNA/DNA reassociation studies (D.J. Brenner, et al., International J. Systematic Bacteriology, 23:1-7 (1973)). These studies showed that Shigella species are on average 80-89% related to E. coli at the DNA level. Also, the degree of relatedness between Shigella species is on average 80-89%. Shigella boydii serotype 13 is atypical in that it is only 65% related to other Shigella serotypes and Escherichia.

The genus Shigella is pathogenic in humans; it causes dysentery at levels of infection of 10 to 100 organisms. By contrast, the majority of E. coli

-2-

(9000 O:H serotypes) are not associated with diarrheal disease. Pathogenic E. coli serotypes are collectively referred to as Enterovirulent E. coli (EVEC) (J.R. Lupski, et al., J. Infectious Diseases, 05 157:1120-1123 (1988); M.M. Levine, J. Infectious Diseases, 155:377-389 (1987); M.A. Karmali, Clinical Microbiology Reviews, 2:15-38 (1989)). This group includes at least 5 subclasses of E. coli, each having a characteristic pathogenesis pathway 10 resulting in diarrheal disease. The subclasses include Enterotoxigenic E. coli (ETEC), Verotoxin-Producing E. coli (VTEC), Enteropathogenic E. coli (EPEC), Enteroadherent E. coli (EAEC) and Enteroinvasive E. coli (EIEC). The VTEC include 15 Enterohemorrhagic E. coli (EHEC) since these produce verotoxins.

The pathogenesis of Enteroinvasive E. coli is very similar to that of Shigella. In both, dysentery results from invasion of the colonic 20 epithelial cells followed by intracellular multiplication which leads to bloody, mucous discharge with scanty diarrhea.

Thus, detection of Shigella and EIEC is important in various medical contexts. For example, 25 the presence of either Shigella or EIEC in stool samples is indicative of gastroenteritis, and the ability to screen for their presence is useful in treating and controlling that disease. Detection of Shigella or EIEC in any possible transmission 30 vehicle such as food is also important to avoid spread of gastroenteritis.

-3-

Currently, presence of Shigella in stool samples is detected by cultivating an appropriately prepared sample on microbiological media under conditions favorable for growth of those bacteria.

- 05 The resulting colonies are then examined for microbiological and biochemical characteristics, a process that typically takes at least three days and does not permit processing large numbers of samples. However, hospitals do not test for the presence of
10 EIEC in stool because of the difficulty of serotyping which is necessary to identify the EIEC among the numerous, non-pathogenic E. coli normally present in stool.

Summary of the Invention

- 15 The present invention relates to methods of detection of bacteria of the genus Shigella and/or Enteroinvasive E. coli (EIEC) by use of a set of nucleic acid probes. The invention further relates to a set of Shigella specific chromosomal sequences
20 and fragments, which were isolated by subtractive hybridization against non-Shigella DNA, and to probes derived from the Shigella specific fragments. Additionally, probes were derived from a sequence from the Shigella *ompA* gene. In particular, a
25 series of probes, each approximately 40 nucleotides in length, were designed having specificity for Shigella or for Shigella and Enteroinvasive E. coli, and having utility in non-isotopic test formats which require amplification to achieve high
30 sensitivity. In addition, specific hybridization

-4-

probe sets were developed which are capable of detecting substantially all clinically significant serotypes of Shigella, including S. sonnei, S. flexneri, S. boydii, and S. dysenteriae, as well as 05 enteroinvasive strains of E. coli.

Probes or probe sets of the present invention can be used in a number of hybridization formats for the detection of Shigella species and/or Enteroinvasive E. coli. For example, the presence 10 of one or more Shigella species and/or one or more species of EIEC in a sample can be determined by lysing the cells in the sample, contacting the sample with a DNA probe set under conditions suitable for hybridization of the probes with 15 Shigella and/or EIEC DNA, capturing the hybrids formed between the probes and the sample DNA, and detecting the hybrid complexes by a suitable method as an indication of the presence of Shigella or EIEC in the sample.

20 Brief Description of the Figures

Figure 1 is a flow chart illustrating a strategy for the isolation of Shigella specific DNA sequences from "target" DNA and of Shigella specific fragments from a library of target DNA clones.

25 Figure 2 illustrates the nucleotide sequence (SEQ ID NO:1) of Shigella specific fragment NT6 and some flanking sequence, and the locations and sequences of probes 1500 (SEQ ID NO:14), 1501 (SEQ ID NO:15) and 1911 (SEQ ID NO:16), which are derived 30 from these sequences.

-5-

Figure 3 illustrates the nucleotide sequence of Shigella specific fragment NT11-2 (SEQ ID NO:2), and the locations and sequences of probes 1682 (SEQ ID NO:17), 1683 (SEQ ID NO:18), 1708 (SEQ ID NO: 19),
05 and 1709 (SEQ ID NO:20), derived from the fragment.

Figure 4 illustrates the nucleotide sequence of Shigella specific fragments NT14 (SEQ ID NO:4) and NT15 (SEQ ID NO:3), comprising a version of the Class III repeat isolated from S. sonnei, and the
10 location and sequence of probes 1864 (SEQ ID NO:22) and 437 (SEQ ID NO:21), derived from these fragments. The sequences of three versions of the Class III repeat isolated from E. coli (E.c. 1; SEQ ID NO:5; and E.c. 2; SEQ ID NO:6 and SEQ ID NO:7)
15 and S. flexneri (S.f.; SEQ ID NO:8 and SEQ ID NO: 9) are also shown.

Figure 5 illustrates the sequence of Shigella specific fragment NT18-1a (SEQ ID NO:10), and the location and sequence of probes 1712 (SEQ ID NO: 23)
20 and 1713 (SEQ ID NO: 24), derived from the fragment.

Figure 6 illustrates the sequence of Shigella specific fragment NT19-2 (SEQ ID NO: 11), and the location and sequence of probes 1684 (SEQ ID NO:
25) and 1685 (SEQ ID NO: 26), derived from the
25 fragment.

Figure 7 illustrates a portion of the sequence of the S. dysenteriae (S.d.) ompA gene (SEQ ID NO: 12), and the location and sequence of probes 1706 (SEQ ID NO: 27) and 1707 (SEQ ID NO: 28), derived
30 from the ompA gene sequence. The E. coli (E.c.)

-6-

ompA gene sequence (SEQ ID NO: 13) corresponding to the same region is shown for comparison.

Detailed Description of the Invention

Previous investigators interested in developing specific probes for Shigella have targeted the virulence plasmid. Both Shigella and EIEC harbor a single copy virulence plasmid approximately 140 MD (215 kilobasepairs) in size which is necessary for invasion (T.L. Hale, Infection and Immunity, 05 40:340-350 (1983)). For example, U.S. Patent No. 4,816,389 (Sansonetti et al.) discloses a 27 kilobasepair (kb) region of the virulence plasmid proven necessary for invasion. These investigators have shown that the virulence plasmid, which exists 10 as one copy per bacterium, is unstable; regions of the plasmid may be deleted. Shigella and EIEC strains, which have been stored or passaged in the laboratory, frequently are found to contain 15 virulence plasmids of reduced size (C. Sasakawa, et al., Infection and Immunity, 51:470-475 (1986); A.T. Maurelli, et al., Infection and Immunity, 20 43:397-401)). The 27 kb region from which the probes of Sansonetti et al. have been derived has been shown to be one of the unstable segments (P.K. Wood, J. Clinical Microbiology, 24:498-500 (1986)). Strains of Shigella or EIEC which do not contain a 25 portion of the 27 kb target region are not detected by the probe and are incorrectly identified as non-Shigella or non-EIEC.

Moreover, the 27 kb probe region contains insertion element 1 (IS1) which is ubiquitous among the Enterobacteriaceae (M. Venkatesan, et al., J. Clinical Microbiology, 26:261-266 (1988)). It also 05 contains at least one copy of insertion element 600 (IS600; S. Matsutani, et al., J. Molecular Biology, 196:445-455 (1987)), which occurs frequently in both pathogenic and non-pathogenic representatives of E. coli, as well as in Shigella and EIEC (unpublished 10 result). The presence of these broadly distributed insertion elements and the large size of the probes designed from the 27 kb region decrease the utility of these probes in non-isotopic test formats which require amplification in order to achieve high 15 sensitivity.

In contrast, the present invention relates to probes and probe sets which are (1) developed from Shigella specific fragments derived from chromosomal sequences of Shigella and (2) moderate in size, each 20 probe being approximately 40 bases in length. The increased stability of the chromosomal sequences detected by the probes compared to sequences of the virulence plasmid can result in increased reliability of detection. Furthermore, moderately 25 sized probes have utility in non-isotopic test formats which require amplification to achieve high sensitivity. Both the Shigella specific fragments and the probes derived from them are also useful as hybridization probes in other formats. Some of the 30 fragments derived from the Shigella chromosome are

-8-

also present in an episomal location on the invasion plasmid or another plasmid.

In one embodiment, the invention features a nucleic acid probe set consisting essentially of
05 nucleic acids with sequences that are:

- a. derived from the chromosomal sequence of representative bacteria of the species Shigella sonnei (ATCC 29930, designated type strain) and Shigella flexneri type 2a (ATCC 29903,
10 designated type strain) but are less than the entire chromosomal sequence of these bacteria;
- b. capable of hybridizing to DNA of members of the four known Shigella species and to Enteroinvasive E. coli (EIEC);
- 15 c. not capable of hybridizing or only weakly hybridizing to DNA of bacteria that are in neither the genus Shigella nor the group EIEC.

As used herein, a sequence fragment or oligonucleotide that is "derived from a chromosomal sequence" is a natural, engineered or synthetic molecule having a sequence which is identical or complementary to a chromosomal sequence or is identical or complementary to a variant of the chromosomal sequence. A sequence fragment or
20 oligonucleotide which is identical or complementary to a variant of a selected chromosomal sequence (i.e., the variant differs in sequence from the
25

-9-

chromosomal sequence) is a homologue of the sequence or oligonucleotide which is identical or complementary, respectively, to the selected chromosomal sequence. This type of homologue will 05 have a nucleotide sequence substantially similar to a chromosomal sequence and will retain the desired function (will be able to hybridize to substantially the same nucleic acids as the sequence fragment or oligonucleotide which is identical or complementary 10 to that chromosomal sequence under similar hybridization conditions) of the fragment or oligonucleotide which is identical to the selected chromosomal sequence. A homologue may differ from the chromosomal sequence in sequence and/or may 15 contain modified nucleotides or nucleotide analogs (e.g., phosphorothioates, methylphosphonates). A homologue must be able to hybridize to the same nucleic acid as the sequence fragment or oligonucleotide which is identical or complementary 20 to that chromosomal sequence under similar hybridization conditions. It is well known to those skilled in the art that either strand of a double-stranded DNA sequence can serve as the target for a complementary probe. The complement of a 25 given probe is expected to have a substantially similar hybridization pattern, under similar hybridization conditions. The probes may be DNA or RNA or modified DNA or RNA.

Nucleic acid fragments or oligonucleotides 30 containing sequences derived from a chromosomal sequence, their homologues, and complements of all

-10-

of the foregoing may be used as probes. For example, the *Shigella* specific fragments, portions thereof and oligonucleotides from the *Shigella* specific fragments may be used as hybridization
05 probes.

In one embodiment, either of two probe sets of synthetically produced nucleic acid probes (each approximately 40 nucleotides long) will detect substantially all clinically significant serotypes 10 of *Shigella*, including *S. sonnei*, *S. flexneri*, *S. boydii* and *S. dysenteriae*. Clinically significant serotypes or isolates are those which are human pathogens. In addition, these probe sets recognize some or all enteroinvasive strains of *E. coli*,
15 exclusive of other enteric bacteria tested, with the exception of *Escherichia fergusonii*.

The invention further relates to methods of detecting *Shigella* species or EIEC in a sample. For example, one or more *Shigella* serotypes and/or EIEC 20 present in a sample can be detected by lysing the cells in the sample; contacting the sample with a nucleic acid probe or probes of the present invention under conditions that allow the probes to hybridize to *Shigella* and EIEC DNA in the sample, thus forming hybrid nucleic acid complexes;
25 isolating hybrid nucleic acid complexes formed between the probes and DNA in the sample, and detecting the hybrid nucleic acid complexes as an indication of *Shigella* or EIEC in the sample. For 30 example, clinical (e.g., stool), environmental (e.g. water), or food specimens may be subjected to such a

-11-

procedure to ascertain the presence of *Shigella* and/or EIEC species in the sample.

- In preferred embodiments of the method, one or more pairs of probes are selected as a capture and detector probe pair for use in a dual probe liquid hybridization format. These probes can be produced synthetically by chemical or enzymatic synthesis methods. They may be produced as part of a larger molecule. For example, the capture probe can be tailed with 150-200 deoxyadenosine triphosphate (dATP) residues using the enzyme terminal deoxynucleotidyl transferase. The detector probe can be incorporated into an amplification/detection system, such as a biotin-streptavidin-alkaline phosphatase system. Both the capture and detector probes are then allowed to hybridize to the target nucleic acid in a background of competitor nucleic acid from the sample. The hybrid products can be captured out of the mixture by magnetic beads complexed with tails of deoxythymidine monophosphate generally 14 residues longer. The captured hybrids (i.e., those affixed to or captured on the magnetic beads) are detected by means of the amplification/detection system selected.
- Isolation of Shigella-Specific Fragments
Shigella-specific genomic sequences were isolated by subtractive hybridization using biotin-streptavidin agarose affinity column chromatography methods described by Langer *et al.* (Langer, P.R. *et al.*, Proc. Natl. Acad. Sci. USA,

-12-

78:6633-6637 (1981) and Welcher et al. (Welcher, A.A. et al., Nucleic Acids Res., 14: 10027-10044 (1986)), each of which is incorporated herein by reference. The method is outlined in Figure 1.

05 For example, a mixture of competing DNAs, such as the complex DNA competitor mix described in Figure 1 can be used. In general, a complex DNA competitor mix will contain an excess of DNA (relative to the target DNA) from one or more
10 Enterohemorrhagic E. coli isolates, one or more Enterotoxigenic E. coli isolates, and one or more non-pathogenic E. coli isolates. The mix may further contain specific sequences already recovered or sequences designed to eliminate non-specific
15 sequences. For example a plasmid containing a 17 kb region of the Shigella virulence plasmid such as pHS4033, Class III repeat DNA, or M13mp18 RF DNA may be included.

The particular complex DNA competitor mix used
20 contained a 6-fold excess by weight of DNA (relative to the target DNA) from each of Enterohemorrhagic E. coli isolate IG 3040, Enterotoxigenic E. coli isolate IG 3060, and non-pathogenic E. coli (YMC). The mix further contained DNA, in amounts equal to
25 the target DNA by weight, from each of the following: a pBR322 clone containing a 17 kb region of the Shigella virulence plasmid (plasmid pHS4033, Boileau, C.R. et al., J. Clin. Microbiol. 20(5): 959-961 (1984)), M13mp18 RF DNA, and the sequence of
30 the Class III repeat (Class IIIR-IG900) cloned into pBR322. (The 1.3 kb Class III repeat and adjacent

chromosomal DNA was cloned into pBR322. The length of the insert was 3.5 kb.) The complete mixture was labelled with biotin-11-dUTP by the nick-translation method. The "target DNA" from which specific 05 sequences were identified was isolated from a single Shigella species, digested with restriction endonuclease Sau3A, and end-labelled with ³²P in an end-filling reaction with DNA polymerase I.

The two DNA pools were combined such that the 10 competing DNAs were at a 20-40 fold molar excess relative to the Shigella DNA. The mixture was denatured and hybridized in liquid at low stringency overnight. The hybridization buffer contained 0.75 M NaCl, 50 mM NaPO₄, 1 mM EDTA, 0.05% SDS and 40% 15 formamide. The hybridization mixture then was passed over the streptavidin agarose column. Shigella DNA sequences that were sufficiently complementary to the competing DNAs to form hybrids under the conditions used were retained on the 20 streptavidin agarose affinity column by virtue of the biotin incorporated into the competitor DNA. In contrast, sequences that were unable to form hybrids under those conditions were enriched in the nucleic acid fraction passing through the column. The 25 latter sequences contain Shigella-specific sequences.

A small aliquot of the DNA enriched for Shigella-specific sequences (previously ³²P-labelled) was used to probe Shigella and E. coli 30 DNAs of interest (0.1 µg of each DNA was spotted in a 3 µl volume on nitrocellulose). Hybridization

-14-

conditions were those described below in Example II for nick-translated fragments. Cross-hybridization to the competitor E. coli provided an indication that further enrichment of the Shigella "target" DNA was required. Typically, four cycles of competition hybridization versus the biotinylated E. coli competitor DNA were necessary to eliminate the cross-hybridization. This was accomplished by repeating the competition hybridization/affinity capture cycle, using the Shigella DNA which passed through the column during the previous cycle, as the starting material for the next cycle. In this way, the labeled Shigella target DNA was progressively enriched for Shigella-specific sequences in each cycle.

The nucleic acid which was enriched for Shigella-specific sequences was then used to probe a Sau3A library of the same Shigella isolate used as the "target DNA" in the subtractive hybridization; the library was constructed in the plasmid vector, pUC18. Inserts (fragments) from positive clones were purified from the vector, labelled with ³²P by nick-translation and used to probe mini-cyto-dot panels of inclusivity and exclusivity organisms as described in Examples I and II. A probe shows inclusivity toward an organism if DNA from the organism hybridizes to the probe, and shows exclusivity toward an organism if the probe does not hybridize (or if hybridization is barely detectable) to DNA from that organism under the particular hybridization conditions used.

-15-

In most cases, hybridization to inclusivity organisms was much stronger than hybridization to competitors or exclusivity organisms. When necessary, subcloning was done to remove the 05 sequences which cross-hybridized to competitors. At this point, the fragments were labelled with ^{32}P by nick-translation and used to probe full inclusivity and exclusivity cyto-dot panels.

The inclusivity panels consisted of bacteria 10 representing all known Shigella serotypes as well as Enteroinvasive E. coli which exhibit the same pathogenesis as Shigella. These organisms are listed in Tables 2 through 6. The exclusivity panels consisted of non-pathogenic E. coli, 15 Enterotoxigenic E. coli, Enteropathogenic E. coli, Enterohemorrhagic E. coli, other Escherichia species and gram negative Enterobacteriaceae. The exclusivity organisms are listed in Tables 6 and 7a/7b.

20 In the Tables, under the conditions used, (-) indicates no signal, (+/-) or (-/+) was barely detectable, (+) indicates a weak but reproducible and readily detectable signal, (++) indicates a moderate signal, (+++) indicates a strong signal, 25 and (++++) indicates a signal comparable to the positive control (DNA from the organism from which the fragment was isolated, or a known sequence identical to the probe being tested). The genomic (chromosomal) DNA fragments identified by the 30 subtractive hybridization and refinement protocols

-16-

described above are referred to as Shigella specific fragments.

1. Shigella specific fragments NT19-2 (SEQ ID NO: 11) and NT18-1a (SEQ ID NO: 10) were isolated
05 from a library of Shigella flexneri (ATCC 29903) genomic clones by probing the library with Shigella specific sequences isolated from S. flexneri (ATCC 22903) ³²P-labeled "target" DNA, using the "complex DNA competitor mix"
10 described above in the subtractive hybridization steps.
2. Shigella specific fragments NT 6 (see SEQ ID NO:1), NT11-2 (SEQ ID NO:2), NT14 (SEQ ID NO: 4) and NT15 (SEQ ID NO:3) were isolated
15 from a library of Shigella sonnei (ATCC 29930) genomic clones by probing the library with Shigella specific sequences isolated from S. sonnei (ATCC 29930) ³²P-labeled "target" DNA and using a single non-pathogenic E. coli (YMC)
20 and 1 µg of pBR322 vector DNA as source of competitor DNA in the subtractive hybridization. In this case, avidin agarose rather than streptavidin agarose was used in the affinity column.
- 25 The hybridization results against inclusivity and exclusivity organisms for these Shigella-specific fragments are recorded in Tables 2-7. In addition, a set of ompA probes were developed from published

data (G. Braun, et al., Nucleic Acids Research, 10:2367-2378 (1982)) by comparison of the outer membrane protein gene sequence (ompA) of Shigella dysenteriae (SEQ ID NO:12) with that of E. coli (SEQ

05 ID NO:13). The regions of ompA gene sequence which appeared most different between the two sequences were selected for the development of test probes. These were synthesized and assayed by hybridization analysis as described above.

10 Isolation of Shigella-Specific Oligonucleotides

The Shigella-specific fragments described above displayed the most marked specificity for inclusivity organisms of the Shigella DNA fragments analyzed. These fragments were sequenced and 15 oligonucleotide probes useful as capture and detector probes were designed from these sequences. Oligonucleotide capture and detector probes were also designed from a fragment of the ompA sequence by comparative sequence analysis. Following

20 synthesis, the oligonucleotides were end-labelled with ³²P and tested by cyto-dot hybridization analysis as described in Example I to ensure that they exhibited the desired inclusivity and exclusivity behavior or pattern. In several cases,

25 an additional exclusivity panel was tested at this point (Table 8). This panel consisted of 4 µg DNA dots of gram positive and gram negative bacteria--including aerobic and anaerobic representatives commonly found in stool. The DNA

30 was isolated by a protocol which makes use of glass

-18-

beads to physically disrupt the cell wall of bacteria. Each DNA was spotted on nitro-cellulose filters in a 3 μ l volume; the DNAs were denatured, neutralized and fixed as described in Example I for 05 the preparation of cyto-dot panels.

Description of Probes and Hybridization Behavior with Respect to Inclusivity and Exclusivity

Oligonucleotide probes were derived from the Shigella-specific fragments identified by affinity chromatography and from the ompA sequence. The sequence of each oligonucleotide probe and the Shigella-specific DNA fragment that each was derived from are listed in Table 9. The inclusivity and exclusivity hybridization behavior of the clones and 15 subclones, and the oligonucleotides designed from these sequences are described below.

Fragment NT6 and Probes 1500, 1501, and 1911

NT6 (see SEQ ID NO:1) is a 124 bp Sau3A Shigella specific fragment. The sequence is 20 repeated 6 times in Shigella sonnei (ATCC 29930) chromosomal DNA. It is also found in one or two copies on the virulence plasmid of other Shigella isolates. The entire fragment was sequenced (Figure 2). The first 124 bp of Figure 2 are from NT6 (see 25 SEQ ID NO:1). The Sau3A site at the 3'-end of the NT-6 sequence is indicated. In this and other Figures, IUPAC conventions for referring to nucleotides and sequence ambiguities are used:

-19-

Unambiguous bases: A, C, G, and T (or U)

Two possible bases: M (A or C)

R (A or G)

W (A or T)

05 S (C or G)
Y (C or T)
K (G or T)

Three possible bases: B (C, G or T)

D (A, G or T)

10 H (A, C or T)
V (A, C or G)

Four possible bases: N (A, C, G or T)

Where there is a weak band on the sequencing gel,
but no other band, the base is indicated by a lower
15 case letter. Regions of ambiguous nucleotide order
due to band compression are enclosed in parentheses.

Two oligonucleotides derived from NT6, each 35
bases long (1500, SEQ ID NO:14) and 1501, SEQ ID NO:
15), were designed and can be used as capture and
20 detection probes (Table 9). A third probe, 40 bases
long (1911, SEQ ID NO:16), was designed from NT6 and
from additional sequence adjacent to the Sau3A NT-6
fragment (38 bp; see SEQ ID NO:1). This additional
sequence was obtained from a clone isolated from an
25 S. sonnei library using the NT-6 124 bp fragment as
a probe. A sequencing primer internal to NT-6 was
used for sequencing. Oligonucleotide 1911 was

-20-

designed and tested. The hybridization pattern of 1911 was identical to that of NT6, suggesting it is part of the repeated element.

- The individual oligonucleotides were tested for
05 hybridization to inclusivity and exclusivity organisms. In cases where all three probes displayed the same hybridization pattern, the results are not listed separately. The individual oligonucleotides, like the parent fragment,
10 hybridized (using a + signal as the lower limit of hybridization) to all S. sonnei isolates tested, many S. dysenteriae and S. boydii, S. flexneri serotypes, including S. flexneri type 6 (Tables 2 through 5 and summary Table 10). The
15 oligonucleotide probes derived from NT6 hybridized to all Enteroinvasive E. coli, but not to other classes of pathogenic E. coli, non-pathogenic E. coli or other organisms commonly found in stool (Tables 6-8).
- 20 Fragment NT11-2 and Probes 1682, 1683, 1708 and 1709
NT11-2 (SEQ ID NO:2) is a 796 bp Hha I subclone of an original Sau3A fragment (NT11) which was 3.5 kb in length. Fragment NT11-2 has been sequenced (Figure 3; SEQ ID NO:2). Two sets of
25 oligonucleotide probes, useful as a capture/detector probe pair were designed from opposite ends of the fragment. Probes 1682 (SEQ ID NO:17) and 1683 (SEQ ID NO:18) are 41 nucleotides long (Table 9). Probes 1708 (SEQ ID NO:19) and 1709 (SEQ ID NO:20) are 35
30 and 36 nucleotides long, respectively. When used as

-21-

capture/detector probes, each capture probe can be synthesized with an additional three nucleotides (TAT) at the 3' end to ensure efficient tailing by the enzyme terminal deoxynucleotidyl transferase.

- 05 Tables 2 through 5 and summary Table 10 show that the two sets of oligonucleotides have different hybridization patterns. The cumulative hybridization pattern using the four probes together is the same as that of the parental fragment, NT
- 10 11-2, which hybridizes to all S. sonnei isolates, and to some S. dysenteriae, S. flexneri and S. boydii isolates. However, when used as capture/detector probe pairs (i.e., 1682 paired with 1683 or 1708 paired with 1709), certain serotypes
- 15 would not be detected because one partner of each probe set does not hybridize to the isolate (e.g., S. dysenteriae types 9 and 10, S. boydii type 17). One of the four Enteroinvasive E. coli is detected strongly with 1708/1709 and weakly with 1682/1683.
- 20 Two pathogenic E. coli isolates would be detected by 1708/1709 while only one of these isolates would be detected with 1682/1683. Apart from these pathogenic isolates, the oligonucleotides do not cross-hybridize to other non-pathogenic E. coli or
- 25 other organisms commonly found in stool (Tables 6 and 7a).

Fragments NT14 and NT15, and Probes 437 and 1864

- NT14 (SEQ ID NO:4) and NT15 (SEQ ID NO:3) are Sau3A fragments which are approximately 800 bp and
- 30 600 bp in size, respectively. The two fragments

-22-

have been sequenced and are portions of a highly repeated element which is 1.3 kb in length. One representative repeat each from S. sonnei (ATCC 29930) and S. flexneri (ATCC 29903) and two repeats 05 from E. coli (IG900) were cloned and sequenced (Figure 4; S. sonnei repeat, SEQ ID NO: 3 and SEQ ID NO:4; E. coli repeat 1, SEQ ID NO:5; E. coli repeat 2, SEQ ID NO:6 and SEQ ID NO:7; S. flexneri repeat, SEQ ID NO:8 and SEQ ID NO:9). The repeat is highly 10 conserved and has characteristics of a transposable element. Over 20 copies of the repeat sequence are present in the chromosome and virulence plasmid of Shigella. The repeat occurs in 1 to 3 copies in 15 some E. coli competitors, but not in other bacterial species.

There are only a few differences between the E. coli and S. sonnei sequences shown in Figure 4. A 17 base oligonucleotide probe (probe 1864, SEQ ID NO: 22) was designed such that a single mismatch is 20 located eight bases from either end of the probe (Table 9). This probe hybridizes strongly to the majority of Shigella and EIEC tested and does not cross-hybridize to competitor bacteria (Tables 2-8 and summary Table 10). A companion detector probe 25 can be designed within the boundaries of the Class III repeat on either side of the specific capture probe, 1864. One such example is the complement of probe 437 (SEQ ID NO:21) (49 bases) for which inclusivity and exclusivity is listed in Tables 2 30 through 8. This probe hybridizes strongly to all serotypes of Shigella except S. boydii serotype 13.

-23-

Probe 437 hybridizes weakly to a number of non-pathogenic and pathogenic strains of E. coli, but does not hybridize to other Enterobacteriaceae tested. The hybridization signal with certain E.
05 coli is due to the low copy number of the Class III repeat in this genus versus the high copy number of the repeat in the genus Shigella.

Two extra bases incorporated into the sequence of probe 437 as a result of sequencing errors in the
10 S. sonnei sequence (a G and a T) have proved useful in decreasing the signal for E. coli isolates relative to Shigella strains. The 437 probe does not hybridize as well as expected to the positive control for S. sonnei or S. flexneri, suggesting
15 that the two nucleotides in question are not present in the S. sonnei sequence. This observation also is likely to be related to copy number differences between the two genera.

Probe 1864 (SEQ ID NO:22) hybridized to all
20 isolates of S. dysenteriae tested except for one isolate of serotype 1 (IG 826). However, serology on this isolate was not confirmed.

Fragment NT18-1a and Probes 1712 and 1713

NT 18-1a (SEQ ID NO:10) was subcloned from the
25 original Sau3A fragment, NT18, in two steps. A PstI/SacI double digest of NT18 (1500 bp) yielded fragment NT18-1 (1250 bp), which was then restricted with HaeIII to generate NT18-1a (630 bp). Sequences related to fragment NT18 are also known to occur on
30 a small multicopy plasmid which is distinct from the

-24-

215 kbp invasion plasmid. The sequence of NT18-1a
is shown in Figure 5 (SEQ ID NO:10).
Oligonucleotide probes 1712 (SEQ ID NO:23) and 1713
(SEQ ID NO:24), suitable as capture/detection
05 probes, both 37 bases long, were designed from the
sequence (Figure 5 and Table 9). The hybridization
pattern (isolates detected) of the oligonucleotide
probes was identical to the parental Shigella
specific fragment NT18-1a with the exception of one
10 S. flexneri isolate (Tables 2-5, 7b). This strain
(IG 711) was detected by oligonucleotide probe 1713,
but not by probe 1712. In a liquid hybridization
assay where the two probes would be used as a
capture/detection probe pair this organism would not
15 be detected. Under the conditions used, the probes
hybridize to 6/8 type 1 S. dysenteriae, to all S.
flexneri isolates with the exceptions of three type
6 isolates, the IG711 isolate mentioned above,
IG872, IG741, and IG709 (Tables 2 through 5 and
20 summary Table 10). The probes do not detect
Enteroinvasive E. coli, but cross-hybridize to one
pathogenic E. coli under the conditions used. They
do not cross-hybridize to non-pathogenic E. coli or
other bacteria commonly found in stool (Tables 6
25 through 8).

Fragment NT19-2 and Probes 1684 and 1685

Fragment NT19-2 (388 bp; SEQ ID NO:11) is an
RsaI subclone of the original Sau3A fragment which
was 1070 bp in length. NT19-2 was sequenced (Figure
30 6; SEQ ID NO:11) and oligonucleotide probes 1684

-25-

(SEQ ID NO:25) and 1685 (SEQ ID NO:26), each 35 nucleotides long, were designed (Table 9). These probes are suitable as capture/detection probes. The hybridization patterns or spectrum of isolates
05 detected by the individual oligonucleotides and the parental fragment are identical. Hybridization to some S. boydii, some S. sonnei and all S. flexneri except type 6 was observed (Tables 2-5, summary Table 10). The probes hybridize to one out of five,
10 Enteroinvasive E. coli, and do not cross-hybridize to other pathogenic E. coli, non-pathogenic E. coli or other bacteria commonly found in stool (Tables 6-8).

ompA Fragment and probes 1706 and 1707

15 Oligonucleotides 1706 (SEQ ID NO:27) and 1707 (SEQ ID NO:28) were designed from the published sequence of the outer membrane protein gene (ompA) of Shigella dysenteriae. Figure 7 shows the S. dysenteriae ompA gene sequence from nucleotide
20 position 893 through 1076, according to the numbering of Braun et al. (Nucl. Acids Res. 10(7):
2367-2378 (1982); SEQ ID NO:12). This region contains significant differences between the E. coli and S. dysenteriae ompA coding sequences. The
25 sequence of the corresponding region of the E. coli ompA gene is shown for comparison (SEQ ID NO:13), and the positions of probes 1706 (SEQ ID NO:27) and 1707 (SEQ ID NO:28) are indicated in Figure 7.

Both oligonucleotides are 35 bases long (Table
30 9). Probe 1706 has 7 differences between the E.

-26-

coli and the S. dysenteriae sequence. The region from which probe 1707 was designed is 15 bases shorter in E. coli. Additionally, there are numerous differences in that probe site between E.
05 coli and S. dysenteriae. These probes hybridize with S. dysenteriae types 1 and 2 and many S. boydii serotypes (Tables 2-5, summary Table 10). When probe 1707 is used as the specific capture probe and 1706 is used as the detector probe in liquid
10 hybridization, no hybridization is anticipated to Enteroinvasive E. coli, other pathogenic E. coli, non-pathogenic E. coli and other bacteria commonly found in stool with the exception of Escherichia fergusonii (Tables 6-8).

15 Description of Probe Sets

Probe Set I

A desired inclusivity/exclusivity pattern may be achieved by use of various combinations of 20 probes. One possible strategy involves pooling one or more combinations of probe pairs to make a probe set. For example, capture/detection oligonucleotides designed from fragments NT 6 (SEQ ID NO:1), NT 19-2 (SEQ ID NO:11) and the ompA gene 25 (SEQ ID NO:12) may be used together as a probe set or combination for detection of substantially all clinically significant Shigella serotypes. One possible probe set comprises three capture/detection probe pairs, including probe pairs 1684/1685, 30 1707/1706, and a pair selected from probes

-27-

1500/1911/1501. This substantially inclusive probe set detects all Shigella serotypes except for S. dysenteriae type 10 and S. boydii type 13 (using a + signal as a lower limit for hybridization). In
05 addition, this probe set does not cross-hybridize under the conditions used to any of the competitors tested except for Escherichia fergusonii.

The two Shigella serotypes that are not detected by probe set I under these conditions, are
10 rarely isolated in the United States, as indicated by records of the Center of Disease Control. For example, out of a total of 167,915 cases of Shigella infection reported by the Center for Disease Control for the years 1976 through 1987, only two cases were
15 identified as S. dysenteriae type 10 and three cases as S. boydii type 13.

In a capture/detection assay format, the more specific oligonucleotide of a capture/detector pair is preferred as the capture probe. In the case of
20 the 1684/1685 probe set, either oligonucleotide may serve as the capture probe with equivalent hybridization results. However, in the case of the 1707/1706 probe set, oligonucleotide 1707 is preferred as the capture probe since it does not
25 cross-hybridize to competitors. (Probe 1706 has (+/-) hybridization signal with certain competitors and a strong signal with an E. blattae isolate (Tables 6, 7b)).

In the case of the 1500/1911/1501
30 oligonucleotide probes, it is best to use either 1500 or 1911 as the capture probe. Probe 1501 has a

-28-

(+/-) hybridization signal with certain competitors (Table 8), but may be used as a detector probe with no adverse effects.

Probe Set II

05 An alternative probe set combines capture/detection oligonucleotide probe pairs from the Class III repeat (fragments 14 and 15; SEQ ID NO:4 and SEQ ID NO:3, respectively) and the *ompA* gene (SEQ ID NO:12). This substantially inclusive
10 probe set 1707/1706 and 1864/437-complement) hybridizes to all *Shigella* except *S. boydii* type 13 and cross-hybridizes weakly to *Escherichia fergusonii*.

In the case of the capture/detector pair
15 1864/437-complement, it is best to use oligonucleotide 1864 as the capture probe since it is the more specific probe of the pair. Oligonucleotide probes designed from sequences to the left or right (in the 5' or 3' direction and
20 from the same strand) of the sequences from which probe 1864 was derived may also serve as detector probes. The complement of probe 437 is one such example, and is expected to substantially retain the hybridization pattern of probe 437.

25 Use of probe combination II requires only four oligonucleotides instead of six, yet gives the desired inclusivity and exclusivity (substantially inclusive, in this case). In addition, the target of probe 1864 is present in multiple copies (20-30
30 copies), and therefore, allows for increased

-29-

sensitivity. However, carefully controlled hybridization conditions are necessary to maintain exclusivity with probe set II, since the specificity of probe 1864 depends on a single mismatch to
05 differentiate between *Shigella* and *E. coli* which harbor the repetitive element (Class III repeat).

Table 12 lists the number of isolates expected to be detected by probe set I and probe set II in a capture/detection format using a (++) hybridization
10 signal as the cut-off for detection. The results for probe sets I and II in a capture/detection format are expected to be the same when a (+) signal is used as the cut-off for detection.

Additional Probes

15 Other probes (double- or single-stranded nucleic acid fragments or oligonucleotides), probe sets or combinations may be derived from the *Shigella* specific fragments. These fragments or oligonucleotides (probes) "derived from the sequence
20 of *Shigella* specific fragments", comprise nucleic acid sequences which are identical or complementary to a portion of the sequence of the *Shigella* specific fragments (and therefore to the *Shigella* chromosome). In some cases, only a portion of the
25 probe may be identical to the sequence of the original *Shigella* specific fragment. Portions of a probe which are identical or complementary to the sequence of a *Shigella* specific fragment can be noncontiguous in the probe.

-30-

- The preferred probes will retain features of the inclusivity, and if desired, the exclusivity of the Shigella specific fragments. A probe derived from a Shigella specific fragment which
- 05 "substantially retains the inclusivity behavior of" a selected Shigella specific fragment hybridizes, under the same conditions, to at least one isolate of 90% or more of the (typed) serotypes to which the original fragment hybridizes. An original Shigella
- 10 specific fragment which hybridizes to at least one isolate of one of the 35 serotypes listed in Table 1 is said to hybridize to that serotype. A probe which "moderately retains the inclusivity behavior of" a selected Shigella specific fragment
- 15 hybridizes, under the same conditions, to at least one isolate of 83% or more, but less than 90%, of the serotypes to which the original fragment hybridizes. A probe which "partially retains the inclusivity behavior of" a selected Shigella
- 20 specific fragment hybridizes, under the same conditions, to at least one isolate of 50% or more, but less than 83%, of the serotypes to which the original fragment hybridizes.
- Exclusivity was determined using two sets of
- 25 exclusivity organisms. The exclusivity organisms screened included 152 non-EIEC strains listed in Tables 6, 7A and 7B, and defined here as non-EIEC Enterobacteriaceae exclusivity organisms. In addition, the 91 strains listed in Table 8, comprise
- 30 a second set of exclusivity organisms defined here as exclusivity organisms commonly found in stool.

-31-

A probe derived from a *Shigella* specific fragment which has "improved" exclusivity behavior for a given set of exclusivity organisms (e.g., non-EIEC Enterobacteriaceae) is one for which all of
05 the exclusivity organisms of that set have been screened in the dot blot format, and which detects (hybridizes with a signal of (+) or better) fewer exclusivity organisms of that set than the *Shigella* specific fragment from which it is derived, under
10 the same hybridization conditions. A probe derived from a *Shigella* specific fragment which, for a given set of exclusivity organisms, "substantially retains" the exclusivity behavior of the fragment from which it is derived, is one for which 90% or
15 more of the exclusivity organisms of that set have been screened in the dot blot format, and which has substantially the same or identical exclusivity behavior under the same hybridization conditions.
In particular, a probe which will detect no more
20 than 13 strains of a set of exclusivity organisms which are not detected by the fragment from which it is derived, and which may or may not detect the exclusivity organisms which are detected by the original fragment, is defined as one which
25 "substantially retains" the exclusivity behavior of that fragment. It will be appreciated that a probe for which exclusivity has been determined for 100% of a given set of exclusivity organisms, but which detects the same number of exclusivity strains or
30 more (but not more than 13 additional strains) of

the exclusivity organisms as the original fragment falls in this latter category.

Furthermore, a probe for which exclusivity has not been determined for 100% of the organisms may be 05 shown to have "improved" exclusivity behavior. For example, probes 1684 (SEQ ID NO:25) and 1685 (SEQ ID NO:26), for which the exclusivity for 4 non-EIEC Enterobacteriaceae has not been determined, do not detect two strains in Table 6 which are detected by 10 NT19-2 (SEQ ID NO:11). If it is determined that these probes do not detect three or four of the strains not tested, then they will have improved exclusivity behavior, although they are presently 15 classified as substantially retaining the exclusivity of NT19-2. Thus, the two classifications are not mutually exclusive.

Homologues of fragments and oligonucleotides derived from Shigella specific fragments, which hybridize to substantially the same serotypes as the 20 fragments and oligonucleotides derived from Shigella specific fragments under the same hybridization conditions, can also be used. Homologues of a sequence fragment or oligonucleotide derived from a Shigella specific sequence will be identical or 25 complementary to all or part of a variant of the sequence of a Shigella specific fragment.

For example, oligonucleotide probes, typically from about 10 nucleotides in length up to about 50 nucleotides in length, comprising sequences 30 identical to a portion of a Shigella specific fragment can be designed. However, an

-33-

oligonucleotide probe may be longer than 50 nucleotides. Larger fragments comprising a sequence identical to a portion of a full length fragment can be prepared by restriction digestion of an isolated 05 clone, exonuclease digestion, by the polymerase chain reaction using selected primers, or other suitable methods, for example.

The additional probes derived from the Shigella specific fragments, complements or homologues 10 thereof, can be screened using a dot blot format (such as the cyto-dot or DNA dot blot formats of the Examples). These additional fragments or oligonucleotide probes can be used alone or in various probe pairs or probe combinations, or in 15 addition to a selected probe, probe pair or combination from Table 9. The additional probes can also be used as alternatives to the probes listed in Table 9. For example, another probe derived from Shigella specific fragment NT11-2 (SEQ ID NO:2) 20 could be used together with probe 1682 (SEQ ID NO:17) in place of probe 1683 (SEQ ID NO:18). For use in a capture/detection format, the probe would be derived from the same strand of the Shigella specific fragments as probe 1682. A probe which 25 substantially retained the inclusivity pattern of NT11-2 could be selected, for example. Furthermore, probes of the present invention can be used in combination with other probes for Shigella, enteroinvasive E. coli, or other organisms (e.g., 30 Salmonella, Campylobacter, etc.).

-34-

It will be appreciated that the signal for the recommended probe sets may be increased by using additional probes. Additional probes may be selected from the probes listed in Table 9,
05 oligonucleotide probes derived from the large Shigella specific fragments disclosed, the homologues and complements of any of the foregoing, or other suitable probes. Although some probes are preferred as detection probes in a capture-detection
10 probe format due to hybridization with exclusivity organisms, each probe may be used as either a capture or detection probe.

Inclusivity and Exclusivity Patterns

Different inclusivity and exclusivity patterns
15 can be obtained using selected combinations of probes. Furthermore, inclusivity and exclusivity behavior may be modulated by hybridization conditions, and/or by taking a specific level of hybridization as the cut-off. For example, in Table
20 10, a (+) signal, which is a weak but reproducible and readily detectable signal, is used as the cut-off for inclusivity or detection in the dot blot format (cyto-dot or DNA dot format).

In Table 11, a (++) cut-off is used. In Table
25 11, the number of isolates of each serotype or untyped isolate to which the probes NT6, NT11-2, NT18-1a, NT19-2, hybridized with a signal of at least (++) is indicated. In addition, the expected number of isolates of each serotype or untyped
30 isolates to which probe pairs selected from

-35-

1911/1500/1501, 1682/1683, 1708/1709, 1712/1713,
1684/1685, or 1706/1707 are expected to hybridize
with a signal of at least (++) in a
capture/detection format are also indicated. (ND
05 indicates that hybridization was not determined for a
particular isolate.)

Unless indicated otherwise herein, a probe
which "detects" or for "the detection" of an isolate
or serotype is one which gives at least a (+) signal.
10 under the hybridization conditions used with the
isolate or with an isolate of a specific serotype.
An individual probe (fragments or oligonucleotides),
probe pair or probe set (a combination of probes
and/or probe pairs) which, under the conditions used
15 in the dot blot format, detects (hybridizes with a
signal of at least +) at least one isolate of 90% or
more of the serotypes listed in Table 1 is defined
as a "substantially inclusive" probe, probe pair, or
probe set. Similarly, a probe, probe pair, or probe
20 set which, under the conditions used in the dot blot
format, detects at least one isolate of 83% or more,
but less than 90%, of the serotypes listed in Table
1 is a moderately inclusive probe, probe pair or
probe set. A probe, probe pair or probe set which,
25 under the conditions used in the dot blot format,
detects at least one isolate of 50% or more, but
less than 83%, of the serotypes listed in Table 1 is
a partially inclusive probe, probe pair or probe
set.

30 For example, probe sets I and II described
above are substantially inclusive probe sets. Based

-36-

on the dot blot data (see summary Table 10), these combinations are expected to detect at least one member of 33 and 34 out of 35 serotypes, respectively in a capture/detection format (94.2% 05 and 97.1%). In fact, each of these probe sets is expected to detect every isolate tested of the serotypes detected.

Individual probes such as oligonucleotides 1900, 1500 or 1501, which detect at least one member 10 of 60% of the serotypes listed in Table 1, or fragment NT-6, which detects approximately 68% of the serotypes listed in Table 1 (see Table 10), would be considered partially inclusive probes. Probe 1864 is a substantially inclusive probe. 15 Partially, moderately and substantially inclusive probes may be combined with each other or with other probes into appropriate pairs or sets to achieve a desired inclusivity pattern.

As stated above, the exclusivity organisms 20 screened include the 152 non-EIEC strains listed in Tables 6, 7A and 7B, and defined here as non-EIEC Enterobacteriaceae exclusivity organisms. In addition, the 91 strains listed in Table 8, define a second set of exclusivity organisms defined here as 25 exclusivity organisms commonly found in stool. An individual probe (fragments or oligonucleotides), probe pair or probe set (a combination of probes and/or probe pairs) which, under the conditions used in the dot blot format, does not detect (hybridizes 30 with a signal less than +) any of the 152 non-EIEC strains listed in Tables 6, 7A and 7B is defined as

an "exclusive" probe, probe pair or probe set with regard to the non-EIEC Enterobacteriaceae exclusivity organisms. A probe, probe pair, or probe set which, under the conditions used in the
05 Tables, detects (hybridizes with a signal of (+) or better) 10% or less of the 152 non-EIEC strains listed in Tables 6 and 7A and B is defined as a "substantially exclusive" probe, probe pair or probe set with regard to these E. coli and
10 Enterobacteriaciae exclusivity organisms, while a probe which detects 20% or less of the 152 non-EIEC strains listed in Tables 6 and 7A and B is defined as "moderately exclusive" of the non-EIEC Enterobacteriaceae exclusivity organisms. A probe
15 which is "exclusive" also meets the criteria for a moderately or substantially exclusive probe.

A probe, probe pair or probe set which, under the conditions used in the dot blot format, does not detect (hybridizes with a signal less than +) any of
20 the 91 strains commonly found in stool and listed in Table 8 is defined as an "exclusive" probe, probe pair or probe set with regard to the exclusivity organisms commonly found in stool. A probe, probe pair, or probe set which, under the conditions used
25 in the Tables, detects (hybridizes with a signal of (+) or better) to 10% or less of the 91 strains listed in Table 8 is defined as "substantially exclusive" of the exclusivity organisms commonly found in stool. Thus, a probe that is exclusive of
30 the organisms in Table 8 is also substantially exclusive of the same organisms.

-38-

For example, probes 1500, 1501 or 1911 are exclusive of the non-EIEC Enterobacteriaceae of Tables 6 and 7, as well as of the strains commonly found in stool. Probes 1684 and 1685 did not detect
05 any of the non-EIEC tested; however, 4 organisms (2.6%) were not tested. Thus, 1684 and 1685 are known to be substantially exclusive. If none of these 4 organisms is detected, then these probes would be exclusive. Probe set I, when used in a
10 capture/detection format, is expected to detect 2 of the strains from Table 7 (Escherichia fergusonii). However, four strains from Table 7 were not tested (ND). Therefore, probe set I detects at most 3.9% (6/152) of the non-EIEC Enterobacteriaceae, and is
15 thus "substantially exclusive" of the non-EIEC Enterobacteriaceae exclusivity organisms. Probe set I is also exclusive of the exclusivity strains commonly found in stool (listed in Table 8).

Probe 437 detects about 9.9% (15) of the
20 non-EIEC organisms; however, 10/152 of the non-EIEC Enterobacteriaceae were not screened. Thus, the exclusivity of this probe for the non-EIEC Enterobacteriaceae is between 16.4% (moderately exclusive) and 9.9% (substantially exclusive).
25 However, in a capture/detection format, probe set II, which may use the complement of 437, is substantially exclusive of the non-EIEC Enterobacteriaceae exclusivity organisms and exclusive of the exclusivity strains commonly found
30 in stool due to the behavior of probe 1864. The expected behaviour of probe pairs of probe sets I

-39-

and II in a capture detection format with respect to EIEC, non-EIEC Enterobacteriaceae, and strains commonly found in stool is summarized in Table 13, in which a (+) signal is used as the cut-off for 05 detection. (In Table 13, as in Tables 11 and 12, any pair selected from probes 1500, 1501 and 1911 displays the behavior indicated.)

Assay Formats for Probes

Probes, probe pairs, and probe sets can be used 10 in a variety of hybridization assay formats. Such hybridization assays include solution hybridization assays in which the sequences to be detected and the probes are free in solution, or assays in which one of the sequence or probe is fixed to a solid 15 support. Shigella specific fragments, portions thereof, oligonucleotide probes derived from the fragments, complements, or homologues can be used in dot blot formats or other appropriate hybridization-based assay formats. For example, the 20 large fragments or portions thereof can be prepared as probes by nick translation or other suitable methods for filter hybridization (see e.g., U.S. Patent 4,358,535, Falkow et al.).

The probes can be used in suitable capture 25 detection assay formats (see e.g., D.V. Morrissey, et al., Analytical Biochemistry, 181:345-359 (1989); W.R. Hunsaker, et al., Analytical Biochemistry, 181:360-370 (1989); H. Lomeli, et al., Clinical Chemistry, 35:1826-1831 (1989); Pritchard, C.G. and 30 J.E. Stefano, Ann. Biol. clin. 48:492-497 (1990)).

-40-

In a capture/detector format, the probe pairs are preferably selected from non-overlapping portions of the same strand (a selected strand) of a Shigella specific fragment or a variant of a Shigella
05 specific fragment. The probes can be separated by a distance consistent with activity in the selected assay. Thus, in a standard capture/detection format, the probes should be close enough that sample preparation does not separate the
10 complementary sequences to the extent that the desired sensitivity of detection is compromised.

RNA probes may also be prepared. For example, probe nucleotide sequences can be incorporated into a full-length MDV cDNA construct, and transcribed from
15 linearized plasmid using T7 RNA polymerase. A detection probe prepared in this way can be used with one or more capture probes and amplified in Q β replicase system (Pritchard, C.G. and J.E. Stefano, Ann. Biol. Clin. 48: 492-497 (1990)).

20 The oligonucleotide probes described or others based on the sequence of the Shigella specific fragments can be used in the polymerase chain reaction. A second oligonucleotide can be prepared from the opposite strand.

25 The present invention will now be illustrated by the following examples, which are not intended to be limiting in any way.

-41-

EXAMPLES

Example 1 Cyto-dot Panels

All cyto-dot panels were prepared by spotting approximately 1×10^8 cells of each bacterial
05 isolate in a 5 μ l volume onto nitrocellulose. The bacteria were lysed and the DNA was denatured by placing the nitrocellulose filters on 3MM paper wetted with 0.5 M NaOH and 1.5 M NaCl for 10 minutes. Following this treatment, the
10 nitrocellulose filters were neutralized by placing them on 3MM paper wetted with 1 M Tris pH 7.5 and 1.5 M NaCl for 10 minutes. The latter neutralization step was repeated, and the DNA was fixed to the filters by baking under vacuum for
15 1-1.5 hours at 80 °C.

Example 2 Hybridization Conditions

The hybridization conditions for all nick-translated fragments were as follows:

Prehybridization--was in 10X Denhardt's, 5X SET, 0.1
20 M phosphate buffer pH 7, 0.1% sodium pyrophosphate, 0.1% SDS for 3 hours at 65 °C. (Note that 20X SET is 3M NaCl, 0.4M Tris-HCl pH 7.5 and 20mM EDTA).
Hybridization--was in 2X Denhardt's, 5X SET, 0.1 M phosphate buffer pH 7, 0.1% sodium pyrophosphate,
25 0.1% SDS and 1×10^6 counts of nick-translated probe per ml of hybridization solution. Hybridizations occurred overnight at 65 °C. The autoradiographs were exposed for 15 hours.

The hybridization conditions for all kinased
30 oligonucleotides (except probe 1864, a 17 base (b) oligonucleotide) were as follows:

-42-

Prehybridization--was in 5X Denhardt's, 6X SET, 0.1 M phosphate buffer pH 7, 0.1% sodium pyrophosphate, 0.1% SDS for 3 hours at 60 °C. Hybridization--was in 1X Denhardt's, 6X SET, 0.1 M phosphate buffer pH 05 7, 0.1% sodium pyrophosphate, 0.1% SDS and 1×10^6 counts per minute of kinased oligonucleotide probe per ml of hybridization solution. Hybridizations occurred overnight at 60 °C. The autoradiographs were exposed for 15 hours or 7 days. The data 10 recorded in Tables 2-8 are from 7 day exposures. The results of the two exposures were similar. The hybridization conditions for probe 1864 (17 b) were identical to those above except that the prehybridization, hybridization and wash temperatures were 50 15 °C rather than 60 °C.

-43-

TABLE 1

SIMPLIFIED OUTLINE OF SHIGELLA CLASSIFICATION

SPECIES	SEROLOGICAL SUBGROUP	SEROLOGICAL TYPE(S)
5 <i>S. dysenteriae</i>	A	1 through 10
	B	1 through 6
<i>S. flexneri</i>	C	1 through 18
<i>S. boydii</i>	D	1
<i>S. sonnei</i>		

-44-

TABLE 2 : HYBRIDIZATION RESULTS FOR SHIGELLA DYSENTERIAE SEROTYPES

Genus species	1911	NT	1500	NT	11-2	1682	1683	1708	1709	18-1a	NT	1712	1713	NT	1684	ompA	CR3
Strain ID, serotype																	
<i>Shigella dysenteriae</i>																	
RF970 ,	1	-	-	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
RF952 ,	1	-	-	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
IG703 ,	1	-	-	-	-	-	-	-	-	-	+++	+++	+++	+/-	-	+++	+++
IG704 ,	1	-	-	-	-	-	-	-	-	-	+++	+++	+++	+/-	-	+++	+++
IG705 ,	1	-	-	-	-	-	-	-	-	-	+++	+++	+++	+/-	-	+++	+++
IG710 ,	1	-	-	-	-	-	-	-	-	-	+++	+++	+++	+/-	-	+++	+++
IG826 ,	1	-	-	-	-	-	-	-	-	-	+++	+++	+++	+/-	-	+++	+++
IG828 ,	1	-	-	-	-	-	-	-	-	-	+++	+++	+++	+/-	-	+++	+++
IG774 ,	2	-	-	-	-	-	-	-	-	-	+++	+++	+++	+/-	-	+++	+++
IG725 ,	2	++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	+/-	-	+++	+++
IG861 ,	3	+++	+++	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
IG940 ,	3	+++	+++	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
IG941 ,	3	+++	+++	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
IG942 ,	4	+++	+++	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
IG824 ,	4	+++	+++	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
IG862 ,	4	+++	+++	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++
IG863 ,	5	+++	+++	-	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++

-45-

TABLE 2 : CONT'D

Genus species	1911			NT			1712			NT			1684			OmpA			CR3		
Strain ID, serotype	NT 6	1500 1501	NT 11-2	1682	1683	1708	1709	18-1a	1713	19-2	1685	1707	1706	437	1864						
<i>Shigella dysenteriae</i>																					
IG864 ,	6	++++	++++	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	
IG865 ,	7	+++	+++	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	
IG866 ,	8a	+++	+++	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	
IG867 ,	9a	++++	++++	+++	+++	++	++	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	
IG943 ,	9	+++	+++	+++	+++	++	++	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	
IG944 ,	9	+++	+++	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	
IG868 ,	10	-	-	+++	+++	++	++	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	
IG706		+++	+++	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	-	+++	+++	

-46-

TABLE 3 : HYBRIDIZATION RESULTS FOR SHIGELLA FLEXNERI SEROTYPES

SUBSTITUTE SHEET

-47-

TABLE 3 : CONT'D

Genus species	1911			NT	1500	NT	11-2	1682	1683	1708	1709	18-1a	NT	1712	1713	NT	1684	ompA	CR3
Strain ID, serotype	NT	6	1501	NT	1501	NT								19-2	1685	1707	1706	437	1864
<i>Shigella flexneri</i>																			
IG949	5	++	++	-	-	-	-	-	-	-	+++	+++	+++	+++	+++	-	-	+++	+++
IG823	6	++	++++	-	-	-	-	-	-	-	/-	-	/-	-	-	-	-	+++	+++
IG871	6	++++	++++	-	-	-	-	-	-	-	/-	-	/-	-	-	-	-	+++	+++
IG950	6	+++	+++	-	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
RF951	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
RF944	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
RF947	-	-	-	-	-	-	-	-	-	-	+++	+++	+++	+++	+++	-	-	+++	+++
RF947	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
RF950	-	-	-	-	-	-	-	-	-	-	+++	+++	+++	+++	+++	-	-	+++	+++
IG763	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
IG764	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
IG765	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
IG766	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
IG767	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
IG768	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
IG770	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++
IG771	++	++	+++	+	-	-	-	++	++	++	++	++	++	++	++	-	-	+++	+++

-48-

TABLE 3 : CONT'D

Genus species	1911				NT				NT				1684				OmpA				CR3			
Strain ID, serotype	NT 6	1500 1501	NT 11-2	1682 1683	1708 1709	1709 18-1a	1708 18-1a	NT 19-2	1685 1707	1706 1707	NT 437	1864 437	1864 437	NT 437	1864 437	1864 437	NT 437	1864 437	1864 437	NT 437	1864 437			
<i>Shigella flexneri</i>																								
IG772	++	++	+++	+	-	++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG773	++	++	+++	+	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG775	-	-	-	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG777	++	++	+++	+	-	++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG778	++	++	+++	+	-	++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG782	-	-	-	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG724	-	-	+++	-	++	++	++	++	++	++	++	++	++	++	++	++	-	+++	+++	+++				
IG743	-	-	+++	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG744	-	-	-	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG737	-	-	-	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG735	-	-	-	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG738	-	-	-	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG736	-	-	-	-	-	-	-	-	++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++				
IG741	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
IG740	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
IG739	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
IG742	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				

-49-

)

TABLE 3 : CONT'D

Genus species	1911	NT	1500	NT	11-2	1682	1683	1708	1709	NT	1712	1713	NT	1684	ompA	CR3
Strain ID, serotype	6	1501	1501							19-2	1685	1707	1706	437	1864	
<i>Shigella flexneri</i>																
IG817	-	-	-	-	-	-	-	-	-	+++	+++	+++	+++	-	+++	+++
IG820	-	-	-	-	-	-	-	-	-	+++	+++	+++	++	-	-	+++
IG822	-	-	-	-	-	-	-	-	-	+++	+++	+++	+++	-	-	+++
IG709	-	-	-	-	-	-	-	-	-	-	-	-	+++	-	-	+++
IG711	-	-	-	-	-	-	-	-	-	+++	+++	+++	+++	-	-	+++
IG726	++	++	+++	++	+/-	++	++	++	++	+++	+++	+++	+++	-	-	+++

-50-

TABLE 4 : HYBRIDIZATION RESULTS FOR SHIGELLA BOYDII SEROTYPES

Genus species		1911	NT	1500	NT	1501	11-2	1682	1683	1708	1709	18-1a	NT	1712	1713	NT	1684	ompA	CR3
Strain ID, serotype																			
<i>Shigella boydii</i>																			
IG832 ,	1	+++	++++	-	-	-	-	-	-	-	-	-	+/-	-	-	-	+++	+++	+++
RF971 ,	2	+++	+++	-	ND	ND	ND	ND	ND	ND	ND	ND	+/-	ND	ND	ND	+++	+++	+++
IG880 ,	3	+++	+++	-	-	-	-	-	-	-	-	-	+/-	-	-	-	+++	+++	+++
IG935 ,	4	+++	+++	-	-	-	-	-	-	-	-	-	+/-	-	-	-	+++	+++	+++
IG882 ,	5	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++	+++	+++	+++
IG936 ,	5	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++	+++	+++	+++
IG883 ,	6	+++	+++	-	-	-	-	-	-	-	-	-	+/-	-	-	-	+++	+++	+++
IG884 ,	7	+	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++	+++	+++	-/+
IG885 ,	8	+++	+++	-	-	-	-	-	-	-	-	-	+	-	-	-	+++	+++	+++
IG829 ,	9	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++	+++	+++	+++
IG886 ,	9	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++	+++	+++	+++
IG887 ,	10	+++	+++	-	-	-	-	-	-	-	-	-	+/-	-	-	-	+++	+++	+++
IG937 ,	10	+++	+++	-	-	-	-	-	-	-	-	-	+/-	-	-	-	+++	+++	+++
IG3231 ,	10	+++	+++	-	-	-	-	-	-	-	-	-	+/-	-	-	-	+++	+++	+++
IG938 ,	11	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++	+++	+++	+++
IG888 ,	11	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	+++	+++	+++	+++	+++	+++
IG889 ,	12	+	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	+++	+++	+++

-51-

TABLE 4 : CONT'D

Genus species	Strain ID, serotype	1911	NT 1500	NT 11-2	1682	1683	1708	1709	18-1a	NT 19-2	1712	1713	NT 1684	OmpA	CR3
<i>Shigella boydii</i>															
RF974 ,	13	-	-	-	-	-	-	-	-	-	+/-	-	-	-	-/+
IG890 ,	13	-	-	-	-	-	-	-	-	-	+/-	-	-	-	-
IG891 ,	14	+++	+++	-	-	-	-	-	-	-	+/-	-	-	+++	+++
IG939 ,	14	++	+++	-	-	-	-	-	-	-	+/-	-	-	+++	+++
IG892 ,	15	-	-	-	-	-	-	-	-	-	+/-	-	+++	+++	+/-
IG700 ,	16	-	-	+++	+++	+++	++	++	-	-	+++	+++	+++	+++	+++
IG701 ,	17	-	-	+++	+	+++	+/-	+++	-	-	+++	+++	++	+++	+++
IG702 ,	18	+++	+++	-	-	-	-	-	-	-	+/-	-	-	+++	+++
RF948		+++	+++	-	-	-	-	-	-	-	+/-	-	-	+++	+++
IG718		+++	+++	-	-	-	-	-	-	-	+/-	-	-	+++	+++

1

-52-

TABLE 5 : HYBRIDIZATION RESULTS FOR SHIGELLA SONNEI SEROTYPES

Genus species	1911	NT	1500	NT	1501	11-2	1682	1683	1708	1709	18-1a	NT	1712	1713	NT	1684	1685	1707	1706	437	1864	CR3
Strain ID																						
<i>S. sonnei</i>																						
IG827	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG821	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG869	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG870	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG929	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+++	+++	-	-	-	+++	+++	
IG930	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG931	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG932	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG933	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG934	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG951	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG952	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+/-	-	-	-	-	+++	+++	
IG953	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+++	+++	-	-	-	+++	+++	
IG954	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+++	+++	-	-	-	+++	+++	
IG955	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+++	+++	-	-	-	+++	+++	
IG956	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+++	+++	-	-	-	+++	+++	
IG957	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	+++	+++	-	-	-	+++	+++	

-53-

TABLE 5 : CONT'D

Genus species	1911				NT				1712				1713				NT				1684				ompA				CR3					
Strain ID	NT	1500	NT	1501	11-2	1682	1683	1708	1709	18-1a	19-2	1685	1707	1706	437	1864	19-2	1685	1707	1706	437	1864	19-2	1685	1707	1706	437	1864	19-2	1685	1707	1706	437	1864
<i>S. sonnei</i>																																		
IG958	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG959	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG960	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG961	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG962	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG963	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG964	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG965	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
RF968	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	++	++	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
RF943	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+/	+/	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
RF949	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+/	+/	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
IG781	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+	+	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG723	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+	+	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG717	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+	+	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG713	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+	+	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG714	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+	+	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			
IG720	+++	+++	+++	+++	+++	+++	+++	++	++	-	-	-	-	-	-	+	+	-	-	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++			

-54-

TABLE 5 : CONT'D

Genus species Strain ID	1911 NT 6	1500 NT 1501	11-2 1682	1683 1708	1709 18-1a	NT 19-2	1685 1707	1684 ompA 1706	CR3 437 1864
<i>S. sonnei</i>									
IG719	+++	+++	+++	+++	+++	++	+++	-	+/-
IG721	+++	+++	+++	+++	+++	++	+++	-	+/-
IG712	+++	+++	+++	+	++	++	+++	-	+/-
IG707	+++	+++	+++	+++	+++	++	+++	-	+/-
IG708	+++	+++	+++	+++	+++	++	+++	-	+/-
IG715	+++	+++	+++	+++	+++	++	+++	-	+/-
IG831	+++	+++	+++	+++	+++	++	+++	-	+/-
IG830	+++	+++	+++	+++	+++	++	+++	-	+/-
IG731	+++	+++	+++	+++	+++	++	+++	-	+/-
IG730	+++	+++	+++	+++	+++	++	+++	-	+/-
IG733	+++	+++	+++	+++	+++	++	+++	-	+/-
IG728	+++	+++	+++	+++	+++	++	+++	-	+/-
IG732	+++	+++	+++	+++	+++	++	+++	-	+/-
IG729	+++	+++	+++	+++	+++	++	+++	-	+/-
IG734	+++	+++	+++	+++	+++	++	+++	-	+/-
IG727	+++	+++	+++	+++	+++	++	+++	-	+/-
IG966	+++	+++	+++	+++	+++	++	+++	-	+/-

-55-

TABLE 5 : CONT'D

Genus species	Strain ID	1911	NT	1500	NT	11-2	1682	1683	1708	1709	NT	1712	1713	NT	19-2	1684	ompA	CR3
		6	1501								18-1a			1907	1706	437	1864	
<i>S. sonnei</i>																		
IG967		+++	+++	+++	++	++	++	++	++	++	++	++	++	++	-	-	+++	+++
IG968		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG969		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG970		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG971		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG972		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG974		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG975		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG976		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG979		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG980A		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG980B		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++
IG982		+++	+++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	+++	+++

-56-

TABLE 6A : HYBRIDIZATION OF SHIGELLA PROBES TO E. COLI

Genus species	Strain ID	1911				NT			
		NT 6	1500 1501	NT 11-2	1682	1683	1708	1709	
Enteroinvasive E. coli									
"	3138	++++	++++	-	-	-	-	-	-
"	3145	++++	++++	+++	+	+/-	+++	++++	
"	3146	++	++++	-	-	-	-	-	-
"	3157	++++	++++	-	-	-	-	-	-
"	3037	++++	++++	-	-	-	-	-	-
Enterotoxigenic E. coli									
"	3118	-	-	-	-	-	-	-	-
"	3119	-	-	-	-	-	-	-	-
"	3120	-	-	-	-	-	-	-	-
"	3123	-	-	-	-	-	-	-	-
"	3127	-	-	-	-	-	-	-	-
"	3129	-	-	-	-	-	-	-	-
"	3132	-	-	-	-	-	-	-	-
"	3134	-	-	-	-	-	-	-	-
"	3136	+	-	-	-	-	-	-	-
"	3142	-	-	-	-	-	-	-	-
"	3147	-	-	-	-	-	-	-	-
"	3151	-	-	-	-	-	-	-	-
"	3154	-	-	-	ND	-	-	-	-
"	3156	-	-	-	-	-	-	-	-
"	3158	+	-	-	-	-	-	-	-
"	3160	-	-	-	-	-	-	-	-

-57-

TABLE 6A : CONT'D

Genus species	Strain ID	1911		NT					
		NT 6	1500 1501	11-2	1682	1683	1708	1709	
Enteropathogenic									
E. coli - O157 serotype									
"	3137	-	-	-	-	-	-	-	-
"	3140	-	-	-	-	-	-	-	-
"	3143	-	-	-	-	-	-	-	-
"	3144	-	-	-	-	-	-	-	-
"	3152	-	-	-	-	-	-	-	-
"	3155	-	-	-	-	-	-	-	-
"	3162	-	-	-	-	-	-	-	-
"	3163	-	-	-	-	-	-	-	-
"	3164	-	-	-	-	-	-	-	-
"	3165	-	-	-	-	-	-	-	-
"	3040	-	-	-	-	-	-	-	-
Enteropathogenic									
E. coli - non O157 serotypes									
"	3038	+	-	+++	+	+++	++	+++	
"	3039	+	-	-	-	-	-	-	
"	3041	+	-	-	-	-	-	-	
"	3042	-	-	-	-	-	-	-	
"	3043	-	-	-	-	-	-	-	
"	839	-	-	-	-	-	-	-	
"	840	+	-	-	-	-	-	-	
"	841	-	-	-	-	-	-	-	
"	842	-	-	-	-	-	-	-	
"	843	-	-	+++	-	-	++	+++	
"	844	-	-	-	-	-	-	-	
"	845	-	-	-	-	-	-	-	

-58-

TABLE 6A : CONT'D

Genus species	Strain ID	1911						
		NT 6	1500 1501	NT 11-2	1682	1683	1708	1709
Enteropathogenic								
E. coli non - O157 serotype								
"	846	++++	-	-	-	-	-	
"	847	-	-	-	-	-	-	
"	848	-	-	-	-	-	-	
"	3149	-	-	-	-	-	-	
Non-pathogenic								
E. coli								
"	3116	-	-	-	-	-	-	
"	3117	-	-	-	-	-	-	
"	3121	-	-	-	-	-	-	
"	3122	-	-	-	-	-	-	
"	3124	-	-	-	-	-	-	
"	3125	-	-	-	-	-	-	
"	3126	-	-	-	-	-	-	
"	3128	-	-	-	-	-	-	
"	3130	-	-	-	-	-	-	
"	3131	-	-	-	-	-	-	
"	3133	-	-	-	-	-	-	
"	3135	-	-	-	-	-	-	
"	3139	-	-	-	-	-	-	
"	3148	-	-	-	-	-	-	
"	3150	-	-	-	-	-	-	
"	3153	-	-	-	-	-	-	
"	3158	-	-	-	-	-	-	
"	3161	-	-	-	-	-	-	

-59-

TABLE 6B : HYBRIDIZATION OF SHIGELLA PROBES TO E. COLI

Genus species	Strain ID	NT 18-1a	1712	1713	NT 19-2	1684 1685	ompA 1707	CR3 1706	437	1864
Enteroinvasive E. coli										
"										
"	3138	-	-	-	+/-	-	-	-	-	++++
"	3145	-	-	-	+/-	-	-	-	+	+++
"	3146	-	-	-	++++	++++	-	-	+	+++
"	3157	-	-	-	+/-	-	-	-	++	+++
"	3037	-	-	-	+/-	-	-	-	++	-/+
Enterotoxigenic E. coli										
"										
"	3118	-	-	-	+/-	-	-	-	-	-
"	3119	-	-	-	+/-	-	-	-	-	-
"	3120	-	-	-	+/-	-	-	-/+	-	-/+
"	3123	-	-	-	+/-	-	-	-/+	-	-
"	3127	-	-	-	+/-	-	-	-/+	-	-
"	3129	-	-	-	+/-	-	-	-/+	++	-/+
"	3132	-	-	-	+/-	-	-	-	+	-
"	3134	-	-	-	+/-	-	-	-	-	-
"	3136	-	-	-	+/-	-	-	-	+	-
"	3142	-	-	-	+/-	-	-	-	-	-
"	3147	-	-	-	+/-	-	-	-/+	-	-
"	3151	-	-	-	+/-	-	-	-	-	-
"	3154	-	ND	ND	+/-	-	-	-	-	-
"	3156	-	-	-	+/-	-	-	-	++	-/+
"	3158	-	-	-	+	-	-	-	++	ND
"	3160	-	-	-	+/-	-	-	-	+	-

-60-

TABLE 6B : CONT'D

Genus species	Strain ID	NT 18-1a	1712	1713	NT 19-2	1684 1685	ompA 1707	CR3 437 1864 1706
Enteropathogenic E. coli - O157 serotype								
"	3137	-	-	-	+/-	-	-	-
"	3140	-	-	-	+/-	-	-	-
"	3143	-	-	-	+/-	-	-	-
"	3144	-	-	-	+/-	-	-	-
"	3152	-	-	-	+/-	-	-	-
"	3155	-	-	ND	+/-	-	-	-
"	3162	-	-	-	+/-	-	-	-
"	3163	-	-	-	+/-	-	-	-
"	3164	-	-	-	+/-	-	-	-
"	3165	-	-	-	+/-	-	-	-
"	3040	-	-	-	+/-	-	-	-
Enteropathogenic E. coli - non O157 serotypes								
"	3038	-	-	-	+/-	-	-	-
"	3039	+++	++++	++++	+/-	-	-	+
"	3041	-	-	-	+	-	-	++ ND
"	3042	-	-	-	+/-	-	-	-
"	3043	-	-	-	+/-	-	-	-
"	839	-	-	-	+/-	-	-	-
"	840	-	-	-	+/-	-	-	++
"	841	-	-	-	+/-	-	-	-
"	842	-	-	-	+/-	-	-/+	-
"	843	-	-	-	+/-	-	-	-
"	844	-	-	-	+/-	-	-	-/+
"	845	-	-	-	+/-	-	-	+

-61-

TABLE 6B : CONT'D

Genus species	Strain ID	NT 18-1a	1712	1713	NT 19-2	1684 1685	ompA 1707	CR3 437	1864
Enteropathogenic									
E. coli non - O157 serotype									
"	846	-	-	-	+/-	-	-	-	-
"	847	-	-	-	+/-	-	-	-	-
"	848	-	-	-	+/-	-	-	-	-
"	3149	-	-	-	+/-	-	-	-	-
Non-pathogenic									
E. coli									
"	3116	-	-	-	+/-	-	-	++	-
"	3117	-	-	-	+/-	-	-	-	-
"	3121	-	-	-	+/-	-	-	-	-
"	3122	-	-	-	+/-	-	-	-	-
"	3124	-	-	-	+/-	-	-	-	-
"	3125	-	-	-	+/-	-	-	-	-
"	3126	-	-	-	+/-	-	-	-	-
"	3128	-	-	-	+/-	-	-	+	-/+
"	3130	-	-	-	+/-	-	-	-	-
"	3131	-	-	-	+/-	-	-	-/+	-
"	3133	-	-	-	+/-	-	-	-	-
"	3135	-	-	-	+/-	-	-	-	-
"	3139	-	-	-	+/-	-	-	-/+	-
"	3148	-	-	-	+/-	-	-	-	-
"	3150	-	-	-	+/-	-	-	+	-
"	3153	-	-	-	+/-	-	-	-/+	-
"	3158	-	ND	ND	+/-	-	-	+	ND
"	3161	-	-	-	+/-	-	-	-/+	+
									ND

SUBSTITUTE SHEET

TABLE 7A : HYBRIDIZATION OF SHIGELLA PROBES TO MISC. ENTEROBACTERIACEAE

	Genus species	GT#	ATCC#	NT	1500	NT	1911	1501	11-2	1682	1683	1708	1709
5	Alteromonas putrefaciens	1495	8071	-	-	-	-	-	-	-	-	-	-
	Acinetobacter calcoaceticus	1972	-	-	-	-	-	-	-	ND	ND	ND	ND
	Citrobacter diversus	1608	-	-	-	-	-	-	-	-	-	-	-
10	" diversus	1475	27156	-	-	-	-	-	-	-	-	-	-
	" amalonaticus	1607	-	-	-	-	-	-	-	-	-	-	-
	" amalonaticus	0689	25406	-	-	-	-	-	-	-	-	-	-
	" amalonaticus	0690	25405	-	-	-	-	-	-	-	-	-	-
	" freundii	0041	-	-	-	-	-	-	-	-	-	-	-
15	" freundii	0031	-	-	-	-	-	-	-	-	-	-	-
	" freundii	1597	-	-	-	-	-	-	-	-	-	-	-
	" freundii	1476	29935	-	-	-	-	-	-	-	-	-	-
	" freundii	1477	33128	-	-	-	-	-	-	-	-	-	-
	" freundii	1491	8090	-	-	-	-	-	-	-	-	-	-
20	" freundii	1591	-	-	-	-	-	-	-	-	-	-	-
	" freundii	1595	-	-	-	-	-	-	-	-	-	-	-
	" freundii	1599	-	-	-	-	-	-	-	-	-	-	-
	" freundii	0685	-	-	-	-	-	-	-	-	-	-	-
	" freundii	3241	-	-	-	-	-	-	-	-	-	-	-

-63-

TABLE 7A : CONT'D

	Genus species	GT#	ATCC#	NT	1500	NT	1911		
			6	1501	11-2	1682	1683	1708	1709
5	citrobacter freundii	0038		-	-	-	-	-	-
	" freundii	0036		-	-	-	ND	ND	ND
	" freundii	0035		-	-	-	-	-	-
	" freundii	0034		-	-	-	-	-	-
	" freundii	0033		-	-	-	-	-	-
	" freundii	0032		-	-	-	-	-	-
10	" freundii	0037		-	-	-	-	-	-
	" freundii	0039		-	-	-	ND	-	-
	" freundii	0040		-	-	-	-	-	-
	Enterobacter aerogenes	1487		29940	-	-	-	-	-
	" aerogenes	0047		13048	-	-	-	-	-
	" agglomerans	0048		-	-	-	-	-	-
15	" agglomerans	0049		-	-	-	-	-	-
	" agglomerans	1467		29917	-	-	-	-	-
	" agglomerans	1468		29918	-	-	-	-	-
	" agglomerans	1469		29919	-	-	-	-	-
	" agglomerans	1470		29920	-	-	-	-	-
	" agglomerans	1471		29921	-	-	-	-	-
20									

SUBSTITUTE SHEET

-64-

TABLE 7A : CONT'D

	Genus species	GT#	ATCC#	NT	1500	NT	1911	1501	11-2	1682	1683	1708	1709
5													
	Enterobacter agglomerans	1472	29922	-	-	-	-	-	-	-	-	-	-
	" agglomerans	1473	29923	-	-	-	-	-	-	-	-	-	-
	" agglomerans	1488	29904	-	-	-	-	-	-	-	-	-	-
10	" agglomerans	1489	29915	-	-	-	-	-	-	-	-	-	-
	" agglomerans	1490	29916	-	-	-	-	-	-	-	-	-	-
	" amnigenus	1474	27998	-	-	-	-	-	-	-	-	-	-
	" cloacae	1482	33072	-	-	-	-	-	-	-	-	-	-
	" cloacae	0052		-	-	-	-	-	-	-	-	-	-
	" cloacae	3042		-	-	-	-	-	-	-	-	-	-
	" cloacae	0050		-	-	-	-	-	-	-	-	-	-
	" cloacae	3041		-	-	-	-	-	-	-	-	-	-
	" cloacae	1159		-	-	-	-	-	-	-	-	-	-
	" cloacae	1337		-	-	-	-	-	-	-	-	-	-
	" cloacae	1481	29941	-	-	-	-	-	-	-	-	-	-
	" cloacae	1492	13047	-	-	-	-	-	-	-	-	-	-
	" cloacae	3043		-	-	-	-	-	-	-	-	-	-
	" gergoviae	1486	33028	-	-	-	-	-	-	-	-	-	-
	" intermedium	0677	33110	-	-	-	-	-	-	-	-	-	-

-65-

TABLE 7A : CONT'D

	Genus species	GT#	ATCC#	NT	1500	NT	1911			
5				6	1501	11-2	1682	1683	1708	1709
	Enterobacter sakazakii	0063		-	-	-	-	-	-	-
	" sakazakii	1483	29544	-	-	-	-	-	-	-
	" taylorae	1497	35317	-	-	-	-	-	-	-
10	" taylorae	0065		-	-	-	-	-	-	-
	Escherichia blattae	1460		-	-	-	-	-	-	-
	" fergusonii	1453		-	-	-	-	-	-	-
	" fergusonii	1459		-	-	-	-	-	-	-
	" hermanii	1216	33650	-	-	-	-	-	-	-
15	" vulneri	1456		-	-	-	-	-	-	-
	" vulneri	1217	33821	-	-	-	-	-	-	-
	Hafnia alvei	0241	29927	-	-	-	-	-	-	-
	" alvei	1153		-	-	-	-	-	-	-
	Klebsiella oxytoca	1606		-	-	-	-	-	-	-
20	" oxytoca	1605		-	-	-	-	-	-	-
	" oxytoca	1503	13182	-	-	-	-	-	-	-
	" ozaenae	1499	11296	-	-	-	-	-	-	-
	" planticola	1478	33531	-	-	-	-	-	-	-
	" pneumoniae	1150		-	-	-	-	-	-	-

-66-

TABLE 7A : CONT'D

	Genus species	GT#	ATCC#	NT 6	1500 1501	NT 11-2	1682	1683	1708	1709
5										
	<i>Klebsiella pneumoniae</i>	1500	13883	+	-	-	-	-	-	-
	" <i>pneumoniae</i>	1502	29939	-	-	-	-	-	-	-
	" <i>pneumoniae</i>	0252	-	-	-	-	-	-	-	-
10	" <i>pneumoniae</i>	1177	-	-	-	-	-	-	-	-
	" <i>terrigena</i>	1479	33257	-	-	-	-	-	-	-
	<i>Morganella morganii</i>	1147	-	-	-	-	-	-	-	-
	<i>Proteus mirabilis</i>	1148	-	-	-	-	ND	-	-	ND
	" <i>mirabilis</i>	1208	-	-	-	-	-	-	-	-
15	" <i>mirabilis</i>	1493	25933	-	-	-	ND	ND	ND	ND
	" <i>mirabilis</i>	1496	29906	-	-	-	-	-	-	-
	" <i>mirabilis</i>	1501	7002	-	-	-	-	-	-	-
	" <i>vulgaris</i>	0370	-	-	-	-	-	-	-	-
	<i>Providencia stuartii</i>	3044	-	-	-	-	-	-	-	-
20	<i>Psuedomonas aeruginosa</i>	3045	-	-	-	-	-	-	-	-
	<i>Salmonella typhimurium</i>	0389	23566	-	-	-	ND	ND	ND	ND
	<i>Serratia marcescens</i>	0392	29937	-	-	-	ND	-	-	-
	" <i>marcescens</i>	1151	-	-	-	-	-	-	-	-
	<i>Yersinia enterocolitica</i>	0424	-	-	-	-	-	-	-	-
25	" <i>enterocolitica</i>	3219	-	-	-	-	-	-	-	-

-67-

TABLE 7B : HYBRIDIZATION OF SHIGELLA PROBES TO MISC. ENTEROBACTERIACEAE

	Genus species	GT#	ATCC#	NT 18-1a	1712	1713	NT 19-2	1684	OmpA	CR3
5										
	Alteromonas putrefaciens	1495	8071	-	-	+/-	-	-	-	-
	Acinetobacter calcoaceticus	1972		-	ND	+/-	-	ND	ND	-
	Citrobacter diversus	1608		-	+/-	-	-	-/+	-	-
10	" diversus	1475	27156	-	-	+/-	-	-/+	-	-
	" amalonaticus	1607		-	-	+/-	-	-/+	-	-
	" amalonaticus	0689	25406	-	-	+/-	-	-/+	-	-
	" amalonaticus	0690	25405	-	-	+/-	-	-/+	-	-
	" freundii	0041		-	-	+/-	-	-	-	-
15	" freundii	0031		-	-	+/-	-	-	-	-
	" freundii	1597		-	ND	+/-	-	-	-	-
	" freundii	1476	29935	-	-	+/-	-	-	-	-
	" freundii	1477	33128	-	-	+/-	-	-	-	-
	" freundii	1491	8090	-	-	+/-	-	-	-	-
20	" freundii	1591		-	-	+/-	-	-	-	-
	" freundii	1595		-	-	+/-	-	-	-	-
	" freundii	1599		-	-	+/-	-	-	-	-
	" freundii	0685		-	-	+/-	-	-	-	-
	" freundii	3241		-	-	+/-	-	-	-	-/+

SUBSTITUTE SHEET

-68-

TABLE 7B : CONT'D

		Genus species	GT#	ATCC#	NT 18-1a	1712	1713	NT 19-2	1684	ompA	CR3
5											
		<i>citrobacter freundii</i>	0038		-	-	+/-	-	-	-	ND
	"	<i>freundii</i>	0036		ND	ND	+/-	ND	ND	ND	-
	"	<i>freundii</i>	0035		-	-	+/-	-	-	-	ND
	"	<i>freundii</i>	0034		-	-	+/-	-	-	-	ND
	"	<i>freundii</i>	0033		-	-	+/-	-	-	-	ND
10	"	<i>freundii</i>	0032		-	-	+/-	-	-	-	ND
	"	<i>freundii</i>	0037		-	-	+/-	-	-	-	ND
	"	<i>freundii</i>	0039		-	ND	+/-	-	-	-	ND
	"	<i>freundii</i>	0040		-	-	+/-	-	-	-	ND
15		<i>Enterobacter aerogenes</i>	1487	29940	-	-	+/-	-	-	-	-
	"	<i>aerogenes</i>	0047	13048	-	-	+/-	-	-	-	-
	"	<i>agglomerans</i>	0048		-	-	+/-	-	-	-	-
	"	<i>agglomerans</i>	0049		-	-	+/-	-	-	-	-
	"	<i>agglomerans</i>	1467	29917	-	-	+/-	-	-	-	-
	"	<i>agglomerans</i>	1468	29918	-	-	+/-	-	-	-	-
20	"	<i>agglomerans</i>	1469	29919	-	-	+/-	-	-	-	-
	"	<i>agglomerans</i>	1470	29920	-	-	+/-	-	-	-	-
	"	<i>agglomerans</i>	1471	29921	-	-	+/-	-	-	-	-

SUBSTITUTE SHEET

-69-

TABLE 7B : CONT'D

Genus species	GT#	ATCC#	NT 18-1a	1712	1713	NT 19-2	1685	1684	ompA	CR3	437	1864
Enterobacter	1472	29922	-	-	+/-	-	-	-	-	-	-	-
"	1473	29923	-	-	+/-	-	-	-	-	-	-	-
"	1488	29904	-	-	+/-	-	-	-	-	-	-	-
"	1489	29915	-	-	+/-	-	-	-	-	-	-	-
10	"	1490	29916	-	+/-	-	-	-	-	-	-	-
"	1474	27998	-	-	+/-	-	-	-	-	-	-	-
"	1482	33072	-	-	+/-	-	-	-	-	-	-	-
"	0052	-	-	-	+/-	-	-	-	-	-	-	-
"	3042	-	-	-	+/-	-	-	-	-	-	-	-
"	0050	-	-	-	+/-	-	-	-	-	-	-	-
15	"	3041	-	-	+/-	-	-	-	-	-	-	-
"	1159	-	-	-	+/-	-	-	-	-	-	-	-
"	1337	-	-	-	+/-	-	-	-	-	-	-	-
"	1481	29941	-	-	+/-	-	-	-	-	-	-	-
"	1492	13047	-	-	+/-	-	-	-	-	-	-	-
20	"	3043	-	-	+/-	-	-	-	-	-	-	-
"	1486	33028	-	-	+/-	-	-	-	-	-	-	-
"	0677	33110	-	-	+/-	-	-	-	-	-	-	-

-70-

TABLE 7B : CONT'D

	Genus species	GT#	ATCC#	NT 18-1a	1712	1713	NT 19-2	1685	1707	ompA	CR3
5	Enterobacter sakazakii	0063		-	-	-	+/-	-	-	-	-
"	sakazakii	1483	29544	-	-	-	+/-	-	-	-	-
"	taylorae	1497	35317	-	-	-	+/-	-	-	-	-
"	taylorae	0065		-	-	-	+/-	-	-	-	-
10	Escherichia blattae	1460		-	-	-	+/-	-	-	+++	-
"	fergusonii	1453		-	-	-	+/-	-	+	+	-
"	fergusonii	1459		-	-	-	+/-	-	++	+++	-
"	hermanii	1216	33650	-	ND	+/-	-	-	-	-	-
"	vulneri	1456		-	-	+/-	-	-	-	-	-
"	vulneri	1217	33821	-	-	+/-	-	-	-	-	-
15	Hafnia alvei	0241	29927	-	-	+/-	-	-	-	-	-
"	alvei	1153		-	-	+/-	-	-	-	-	-
	Klebsiella oxytoca	1606		-	-	-	+/-	-	-	ND	-
	" oxytoca	1605		-	-	-	ND	+/-	-	ND	-
20	" oxytoca	1503	13182	-	-	-	+/-	-	-	-	-
"	ozaenae	1499	11296	-	-	-	+/-	-	-	-	-
"	Faecalibacter	1478	33531	-	-	-	+/-	-	-	-	-
"	pneumoniae	1150		-	-	-	+/-	-	-	-	-

-71-

TABLE 7B : CONT'D

		Genus species	GT#	ATCC#	NT 18-1a	1712	1713	NT 19-2	1684	ompA	1707	1706	CR3	CR3 1864
5														
		<i>Klebsiella pneumoniae</i>	1500	13883	-	-	-	+/-	-	-	-	-	-	-
	"	<i>pneumoniae</i>	1502	29939	-	-	-	+/-	-	-	-	-	-	-
	"	<i>pneumoniae</i>	0252		-	-	-	+/-	-	-	-	-	-	-
	"	<i>pneumoniae</i>	1177		-	-	-	+/-	-	-	-	-	-	-
10	"	<i>terrigena</i>	1479	33257	-	-	-	+/-	-	-	-	-	-	-
		<i>Morganella morganii</i>	1147		-	-	-	+/-	-	-	-	-	-	-
		<i>Proteus mirabilis</i>	1148		-	-	ND	ND	+/-	-	-	-	-	-
	"	<i>mirabilis</i>	1208		-	-	ND	ND	+/-	-	-	-	-	-
	"	<i>mirabilis</i>	1493	25933	-	ND	ND	+/-	-	-	-	-	-	-
15	"	<i>mirabilis</i>	1496	29906	-	-	+/-	-	-	-	-	-	-	-
	"	<i>mirabilis</i>	1501	7002	-	-	+/-	-	-	-	-	-	-	-
	"	<i>vulgaris</i>	0370		-	-	+/-	-	-	-	-	-	-	-
		<i>Providencia stuartii</i>	3044		-	-	+/-	-	-	-	-	-	-	-/+
		<i>Pseudomonas aeruginosa</i>	3045		-	-	+/-	-	-	-	-	-	-	-
20		<i>Salmonella typhimurium</i>	0389	23566	-	ND	ND	+/-	-	-	-	-	-	-
		<i>Serratia marcescens</i>	0392	29937	-	-	+/-	-	-	-	-	-	-	-
	"	<i>marcescens</i>	1151		-	ND	-	+/-	-	-	-	-	-	-
		<i>Yersinia enterocolitica</i>	0424		-	-	+/-	-	-	-	-	-	-	-
	"	<i>enterocolitica</i>	3219		-	-	+/-	-	-	-	-	-	-	-

TABLE 8 : HYBRIDIZATION OF SHIGELLA PROBES TO BACTERIA COMMONLY FOUND IN STOOL

5	Genus/Species	GT#	ATCC#	NT 6			NT 19-2			ompA			CR3
				1500	1501	1911	1684	1685	1706	1707	1864		
	<i>Acinetobacter calcoaceticus</i>	0002	19606	-	-/+	-	-	-	-	-	-	-	
	<i>Acinetobacter lwoffii</i>	0004	9957	-	-	-	-	-	-	-	-	-	
	<i>Aeromonas hydrophila</i>	0006	7965	-	-/+	-	-	-	-	-	-	-	
10	<i>Aeromonas sobria</i>	0007	9071	-	-	-	-	-	-	-	-	-	
	<i>Alteromonas putrefaciens</i>	1495	8071	-	-	-	-	-	-	-	-	-	
	<i>Citrobacter amalonaticus</i>	0690	25405	-	-	-	-	-	-	-	-	-	
	<i>Edwardsiella tarda</i>	0569	15947	-	-	-	-	-	-	-	-	-	
	<i>Haemophilus influenzae</i>	0244	19418	-	+/-	-	-	-	-	+/-	-	-	
	<i>Plesiomonas shigelloides</i>	2197	14029	-	-	-	-	-	-	-	-	-	
	<i>Providencia alcalifaciens</i>	0371	9886	-	-/+	-	-	-	-	-	-	-	
	<i>Providencia rettgeri</i>	0373	9944	-	-	-	-	-	-	-	-	-	
	<i>Providencia stuartii</i>	0375	29914	-	-	-	-	-	-	-	-	-	
	<i>Salmonella arizona</i>	0799	13314	-	-	-	-	-	-	-	-	-	
20	<i>Salmonella typhimurium</i>	0389	23566	-	-	-	+/-	-	-	-	-	-	
	<i>Vibrio parahemolyticus</i>	0568	17802	-	-	-	-	-	-	-	-	-	
	<i>Xanthomonas maltophilia</i>	0417	13637	-	-	-	-	-	-	-	-	-	
	<i>Yersinia enterocolitica</i>	0419	9610	-	-	-	-	-	-	-	-	-	
	<i>Yersinia pseudotuberculosis</i>	0519	29833	-	-	-	-	-	-	-	-	-	

-73-

TABLE 8 : CONT'D

SUBSTITUTE SHEET

-74-

TABLE 8 : CONT'D

Genus/Species	GT#	ATCC#	NT 6	NT 19-2	ompA	CR3	
			1500	1501	1684	1706	1864
Bacteroides gracilis	0716	33236	-	-	-	-	-
Bacteroides ureolyticus	0715	33387	-	-/+	-	-	-
Campylobacter jejuni, type	0022	33560	-	-	-	-	-
Campylobacter coli	0016	33559	-	-/+	-	-	-
Campylobacter laridis	0024	35223	-	-	-	-	-
Wolinella curva	2224	35224	-	-	-	-	-
Wolinella recta	0718	33238	-	-	-	-	-
Wolinella succinogenes	0614	29543	-	-	-	-	-
Bacillus cereus	0008	14579	-	-	-	-	-
Butyrivibrio fibrosolvens	3139	19171	-	-	-	-	-
Clostridium difficile	0043	9689	-	-/+	-	-	-
Clostridium perfringens	0044	3624	-	-/+	-	-	-
Clostridium sordellii	0567	9714	-	-/+	-	-	-
Eubacterium lenthum	2196	25559	-	-	-	-	-
Eubacterium rectale	0236	35183	-	-/+	-	-	-
Lactobacillus acidophilus	0256	4356	-	-	-	-	-
Lactobacillus casei	0805	393	-	-	-	-	-
Lactobacillus minutus	0257	33267	-	-/+	-	-	-

-75-

TABLE 8 : CONT'D

Genus/Species	GT#	ATCC#	NT 6	NT 19-2	ompA	CR3
Lactobacillus plantarum	0258	8014	-	-	-	-
Listeria grayi	0674		+/-	-	-	-
Listeria innocua	0260		+/-	-	-	-
Listeria innocua	0750		-/+	-	-	-
Listeria ivanovii	1037		+/-	-	-	-
Listeria monocytogenes	1016		+/-	-	-	-
Listeria seeligeri	0287		-	-	-	-
Listeria welshrimpi	0291		+/-	-	-	-
Peptococcus asaccharolyticus	0360	29743	-	-	-	-
Peptococcus magnus	0361	29328	-	-	-	-
Peptostreptococcus anaerobius	0359	27337	-	-	-	-
Sarcina maxima	0391	33910	-	-/+	-	-
Staphylococcus aureus	0399	12600	-	-/+	-	-
Staphylococcus epidermidis	0401	14990	-	-/+	-	-
Streptococcus agalactiae	0405	13813	-	-/+	-	-
Streptococcus faecalis	0406	19433	-	-/+	-	-
Streptococcus faecium	0407	6056	-	-/+	-	-
Streptococcus mutans	0412	25175	-	-/+	-	-
streptococcus salivarius	0410	13419	-	-/+	-	-

)

-76-

TABLE 8 : CONT'D

5	Genus/Species	GT#	ATCC#	NT 6		NT 19-2		ompA		CR3	
				1500	1501	1911	1684	1685	1706	1707	1864
	<i>Streptococcus sanguis</i>	0411	10556	-	+/-	-	-	-	-	-	-
	<i>Actinomyces israelii</i>	0005	10049	-	-	-	-	-	-	-	-
	<i>Bifidobacterium dentium</i>	0012	27534	-	-	-	-	-	-	-	-
10	<i>Bifidobacterium bifidum</i>	0571	35914	-	-	-	-	-	-	-	-
	<i>Corynebacterium genitalium</i>	0045	33031	-	-	-	-	-	-	-	-
	<i>Mycobacterium smegmatis</i>	0306	14468	-	-	-	-	-	-	-	-
	<i>Propionibacterium acnes</i>	0363	6919	-	-	-	-	-	-	-	-
	<i>Fusobacterium mortiferum</i>	0573	9817	-	+/-	-	-	-	-	-	-
15	<i>Fusobacterium necrophorum</i>	0238	25286	-	-	-	-	-	-	-	-
	<i>Mobiluncus mulieris</i>	0300	35243	-	-	-	-	-	-	-	-
	<i>Veillonella atypica</i>	0413	14894	-	-	-	-	-	-	-	-
	<i>Bacteroides fragilis</i>	0010	23745	-	+/-	-	-	-	-	-	-
	<i>Bacteroides thetaiotomicron</i>	0572	29741	-	+/-	-	-	-	-	-	-
20	<i>Bacteroides melaninogenicus</i>	0011	25845	-	-	-	-	-	-	-	-
	<i>Flavobacterium meningosepticum</i>	0237	13253	-	+/-	-	-	-	-	-	-
	<i>Candida albicans</i>	0028	18804	-	-	-	-	-	-	+/-	-
	<i>Candida glabrata</i>	0029	2001	-	-	-	-	-	-	-	-
	<i>Candida stellatoidea</i>	0609	36232	-	-	-	-	-	-	-	-
25	<i>Candida tropicalis</i>	0570	750	-	-	-	-	-	-	-	-

TABLE 9
LIST OF OLIGONUCLEOTIDE PROBES DESIGNED FROM SHIGELLA SPECIFIC FRAGMENTS

Parental DNA Fragment	Oligonucleotide Probe No. (SEQ ID NO)	Length of Probes (bases)	Sequence of oligonucleotide probes
NT 6 and adjacent 3' sequence (164 b)	1500 (SEQ ID NO:14)	35	5' TTGCAGGGCCTCTACTACCGGATAACGCCATT 3'
	1501 (SEQ ID NO:15)	35	5' CCTCCCTCAGGGGGATTCCAGCCGTTCACATTGT 3'
	1911 (SEQ ID NO:16)	40	5' CCGATCTTCTATTGTACGGTGTGTCGTCAAAGCTAAT 3'
NT 11-2 (796 b)	1682 (SEQ ID NO:17)	41	5' CTGGTGAAACAACTTACAAGATGGTTCTGGATGGATT 3'
	1683 (SEQ ID NO:18)	41	5' AGTCTTCCGGTGTCTCAGAAATGGGGCAACGTGCAAAA 3'
	1708 (SEQ ID NO:19)	35	5' CCACCGTTGAAGCGTAAACCGTTGACCGATGGAT 3'
	1709 (SEQ ID NO:20)	36	5' GCTGGGGCTACAGGTGCAATAACCACTTAGACGGT 3'
NT 14 (786 b)	437 (SEQ ID NO:21)	48	5' CGATGATGCCATTCTGCCAGCTCCAGCTGGAGGCCGG- GGTTCC 3'
NT 15 (587 b)	1864 (SEQ ID NO:22)	17	5' GGAGCAGTCGGTCTGA 3'
NT 18-1a (630 b)	1712 (SEQ ID NO:23)	37	5' CCTGGGCTCGGTTCTGATGGTATAGCAACTAAAT 3'
	1713 (SEQ ID NO:24)	37	5' CAAGGAAATTCTGGAAATTGAGTGGGAGTTGCGAAAT 3'
NT 19-2 (388 b)	1684 (SEQ ID NO:25)	35	5' CAGGCAATCGAAGCATATCGGGTTCTCACAACT 3'
	1685 (SEQ ID NO:26)	35	5' TGAATGCGCTGACCGAAAACCAGGGCTGGGTATCT 3'
ompA	1706 (SEQ ID NO:27)	35	5' GTGATGGCCCATTCAACACCCTGCGAATACCGG 3'
	1707 (SEQ ID NO:28)	35	5' CTCAGATTACACCTGTCACATTGTTGTGAGCTTTGG 3'

-78-

Table 10
 Summary of Probe Hybridization Results to *Shigella* Serotypes
 (+ signal used as a cut-off for detectability)

SEROTYPE	Tested	NT-6	1911	NT11-2	1682	1683	1708	NT18-1a	1712	1713	NT19-2	1684	1685	1707	1706	437	1864
		1500	1500	1501	1501	1501	1501	1501	1501	1501	1501	1501	1501	1501	1501	1501	1501
<i>S. Dysenteriae</i>																	
1	8	-	-	-	-	-	-	-	-	-	-	-	-	-	8	8	7
2	2	1	1	2	2	2	-	-	-	-	-	-	-	2	2	2	2
3	3	3	3	3	-	-	-	-	-	-	-	-	-	-	3	3	3
4	3	3	3	3	-	-	-	-	-	-	-	-	-	-	3	3	3
5	1	1	1	1	-	-	-	-	-	-	-	-	-	-	1	1	1
6	1	1	1	1	-	-	-	-	-	-	-	-	-	-	1	1	1
7	1	1	1	1	-	-	-	-	-	-	-	-	-	-	1	1	1
8	1	1	1	1	-	-	-	-	-	-	-	-	-	-	1	1	1
9	3	3	3	3	2	2	-	1	-	-	-	-	-	-	3	3	3
10	1	-	-	1	1	1	-	-	-	-	-	-	-	-	1	1	1
untyped	1	25	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>S. flexneri</i>																	
1	5	-	-	-	-	-	-	-	-	-	-	5	5	5	5	5	5
2	2	1	1	1	2	2	3	3	3	3	3	2	2	2	2	2	2
3	5	2	2	2	3	-	-	-	-	-	-	5	5	5	5	5	5
4	4	-	-	-	-	-	-	-	-	-	-	4	4	4	4	4	4
5	2	1	1	1	-	-	-	-	-	-	-	1	1	1	2	2	2
6	3	3	3	3	-	-	-	-	-	-	-	-	-	-	3	3	3
untyped	36	16	16	20	16	2	20	20	34	33	34	36	36	36	36	36	36
	57																

-79-

Table 10 (cont')

SEROTYPE	Tested	NT-6	1911	NT11-2	1682	1683	1708	1709	NT18-1a	1712	1713	NT19-2	1684	1685	1707	1706	437	1864
		1500	1501															
<i>S. boydii</i>																		
1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	1	1
2	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	1	1
3																		
4	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	1	1
5	2	-	-	2	2	2	2	2	-	-	-	-	2	2	2	2	2	2
6	1	1	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	1
7	1	1	1	1	-	1	1	1	1	-	-	-	1	1	1	1	1	1
8	1	1	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	1
9	2	-	-	1	1	1	1	1	-	-	-	-	2	2	2	2	2	1
10	3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	3	3
11	2	-	-	2	2	2	2	2	-	-	-	-	2	2	2	2	1	1
12	1	1	1	1	-	1	1	1	-	-	-	-	-	-	-	-	1	1
13	2	-	-	1	1	1	1	1	-	-	-	-	-	-	-	-	2	2
14	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	1	1
15	1	-	-	1	1	1	1	1	-	-	-	-	-	-	-	-	1	1
16	1	-	-	1	1	1	1	1	-	-	-	-	-	-	-	-	1	1
17	1	-	-	1	1	1	1	1	-	-	-	-	-	-	-	-	1	1
18	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	1	1
untyped	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	2	2
	27																	
<i>S. sonnei</i>																		
1	64	64	64	64	64	64	64	64	64	64	64	64	-	-	33	33	33	64

-80-

TABLE 11 : SUMMARY OF HYBRIDIZATION OF SHIGELLA SPECIFIC FRAGMENTS AND CLIGONUCLEOTIDE CAPTURE/DETECTION PROBES TO SHIGELLA SEROTYPES (+ + SIGNAL USED AS CUT-OFF FOR DETECTABILITY).

-81-

TABLE 11 : CONT'D

5	SEROTYPE	# TESTED	1911	NT6	1500	NT11	1682	1708	NT18	1712	NT19	1684	OmpA	CR3
					1501	-2	1683	1709	-1a	1713	-2	1685	1707	437C
<i>S. flexneri</i>														
	1	5	-	-	-	-	-	-	5	5	5	-	-	5
	2	2	-	-	-	-	-	-	2	2	2	-	-	2
10	3	5	2	2	3	-	3	5	5	5	5	-	-	5
	4	4	-	-	-	-	-	4	4	4	4	-	-	4
	5	2	1	1	-	-	-	1	1	2	2	-	-	2
	6	3	3	3	-	-	-	-	-	-	-	-	-	3
	untyped	36	16	16	20	-	20	34	33	36	36	-	-	36
			57											
<i>S. boydii</i>														
	1	1	1	1	1	-	-	-	-	-	-	-	-	1
	2	1	1	1	1	ND	ND	-	-	ND	-	ND	ND	1
20	3	1	1	1	1	-	-	-	-	-	-	-	-	1
	4	1	1	1	1	-	-	-	-	-	-	-	-	1
	5	2	-	-	2	2	2	-	-	2	2	2	2	2
	6	1	1	1	1	-	-	-	-	-	-	-	-	1
	7	1	-	1	1	1	1	1	-	1	1	1	1	-

-82-

TABLE 11 : CONT'D

5	SEROTYPE	# TESTED	1911			NT11			NT18			NT19			OmpA			CR3
			NT6	1500	NT11	1682	1708	NT18	1712	NT19	1684	-2	1685	1707	1706	437C		
<i>S. boydii</i>																		
	8		1		1		1		1		1		1		1		1	
	9		2		-		1		1		-		2		2		1	
10	10		3		3		-		-		-		-		-		3	
11	11		2		-		2		2		-		2		2		1	
12	12		1		-		1		1		-		-		1		1	
13	13		2		-		-		-		-		-		-		-	
14	14		2		2		-		-		-		-		-		2	
15	15		1		-		-		-		-		-		1		-	
16	16		1		-		1		1		-		1		1		1	
17	17		1		-		1		-		-		1		1		1	
18	18		1		1		-		-		-		-		-		1	
	untyped				2		2		-		-		-		-		2	
20							27											
<i>S. sonnei</i>																		
	1		64		64		64		64		64		-		33	33	-	64

-83-

TABLE 12
 Summary of Inclusivity Hybridization Results of Shigella Specific Fragments and Capture/Detection Oligonucleotide Probes Included in Probe Sets 1 and 1 to Shigella Serotypes (++ SIGNAL USED AS CUT-OFF FOR DETECTABILITY).

5 Probe Set 1 includes oligonucleotides 1911/1500/1501, 1684/1685 and 1706/1707.
 Probe Set 2 includes oligonucleotides 1706/1707 and 1864/437c.

10	SEROTYPE	TESTED	1911			ompA	CR3	probe set I	probe set II
			NT6	1500	NT19				
<i>S. dysenteriae</i>									
	1	8	-	-	-	8	7	8	8
	2	2	1	1	-	2	2	2	2
15	3	3	3	3	-	-	3	3	3
	4	3	3	3	-	-	3	3	3
	5	1	1	1	-	-	1	1	1
	6	1	1	1	-	-	1	1	1
	7	1	1	1	-	-	1	1	1
20	8	1	1	1	-	-	1	1	1
	9	3	3	3	-	-	3	3	3
	10	1	-	-	-	-	1	-	1
	untyped			1	1	-	-	1	1
	TOTAL	25						24	25

TABLE 12 : CONT'D

5 SEROTYPE	TESTED	1911			OM ^a A		CR3		probe set I	probe set II
		NT6	NT19	1684	1706	437C	1864			
<i>S. flexneri</i>										
10	1	5	-	5	5	-	5	5	5	5
	2	2	-	2	2	-	2	2	2	2
	3	5	2	5	5	-	5	5	5	5
	4	4	-	4	4	-	4	4	4	4
	5	2	1	2	2	-	2	2	2	2
	6	3	3	-	-	-	3	3	3	3
	untyped	<u>36</u>	16	36	36	-	36	<u>36</u>	<u>36</u>	
15	TOTAL	57						57	57	
<i>S. boydii</i>										
20	1	1	1	1	-	-	1	1	1	1
	2	1	1	1	-	ND	1	1	1	1
	3	1	1	1	-	-	1	1	1	1
	4	1	1	1	-	-	1	1	1	1
	5	2	-	-	2	2	2	2	2	2
	6	1	1	1	-	-	1	1	1	1
	7	1	-	1	1	1	-	1	1	1

-85-

TABLE 12 : CONT'D

5	SEROTYPE	TESTED	1911			ompA			CR3			probe set I			probe set II		
			NT6	1500	NT19	1684	1706	437C	1501	-2	1685	1707	1864	-	-	-	-
<i>S. boydii</i>																	
8		1		1		-	-	-		1		-	1	1		1	
9		2		-		2	2	2		1		-	2	2		2	
10	10	3	3	3	-	-	-	-		3		-	3	3		3	
11	11	2	-	-	2	2	2	1		1		1	2	2		2	
12	12	1	-	-	-	-	-	1		1		1	1	1		1	
13	13	2	-	-	-	-	-	-		-		-	-	-	-	-	
14	14	2	2	2	-	-	-	-		2		-	2	2		2	
15	15	1	-	-	-	-	-	1		-		-	1	1		1	
16	16	1	-	-	1	1	1	1		1		1	1	1		1	
17	17	1	-	-	1	1	1	1		1		1	1	1		1	
18	18	1	1	1	-	-	-	-		1		1	1	1		1	
untyped		2		2		-	-	-		2		-	2	2		2	
20	TOTAL	27											25	25			
<i>S. sonnei</i>																	
1		64	64	64	64	33	33	-		64		-	64	64		64	

SUBSTITUTE SHEET

-86-

TABLE 13

SUMMARY OF HYBRIDIZATION RESULTS OF SHIGELLA PROBES, WHICH ARE INCLUDED IN PROBE SETS 1 AND 2, TO ENTEROINVASIVE E. COLI AND COMPETITOR ORGANISMS FOUND IN STOOL (+ SIGNAL USED AS CUT-OFF FOR DETECTABILITY).

5	E. COLI (from Table 6)	OTHER ORGANISMS FOUND IN STOOL (from Tables 7, 8)				
		EIEC 5	EVEC 43	Non- EVEC 18	Cyto-dot 91	DNA-dot 91
FRAGMENT (OLIGONUCLEOTIDES)						
10						
	PROBE SET 1					
15	NT6 (1500/1501/1911)	5	-	-	-	-
	NT19-2 (1684/1685)	1	-	-	-	-
	OMP A (1706/1707)	-	-	-	2	-
	PROBE SET 2					
20	OMP A (1706/1707)	-	-	-	2	-
	Class 3R (1864/437C)	3	-	-	-	-

Note: EIEC - Enteroinvasive E. coli.

EVEC - Enterovirulent E. coli includes isolates of Enterotoxigenic E. coli, Enteropathogenic E. coli O157 serotypes and non-O157 serotypes.

Non-EVEC - E. coli isolates not associated with disease.

The two competitor organisms which are weakly detected by the ompA probes are both Escherichia fergusonii.

25

Equivalents

Those skilled in the art will recognize or be able to ascertain, using no more than routine experimentation, many equivalents to the specific 05 embodiments of the invention described herein. Such equivalents are intended to be encompassed within the scope of this invention.

-88-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Parodos, Kyriaki
McCarty, Janice
- (ii) TITLE OF INVENTION: Nucleic Acid Probes for the Detection of
Shigella
- (iii) NUMBER OF SEQUENCES: 30
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Amoco Corporation
 - (B) STREET: 200 East Randolph Drive, P.O. Box 87703
 - (C) CITY: Chicago
 - (D) STATE: Illinois
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 60680
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US92/06617
 - (B) FILING DATE: 28-JUL-92
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/738,800
 - (B) FILING DATE: 31-JUL-1991
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Galloway, Norval B.
 - (B) REGISTRATION NUMBER: 33,595
 - (C) REFERENCE/DOCKET NUMBER: GTR90-04 PCT
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 312-856-7180
 - (B) TELEFAX: 312-856-4972

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AATCCAACCG CAGTAATAAA CTGAATCCCT CGCATGGCTT GCAGGCCCTC TACTACCGGA	60
TACAGCCTCC ATTCCGTAAC NGCCTCCTTG AGGGCGGATT CCAGCCGTTTC ACATTGTGCC	120
TGCCGATCTT CTATTGTACG ACGGTGTTCG TCAAAAGCTA ATTG	164

-89-

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 796 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CATCAGAAAT CTAAGCAGAA GTCTTCCGT GTTTCTCAGA AATGGGGCA ACGTGCAAAA	60
CTTGCCTTG CTGGTGAACA ACGTCTTACA AAGATGGTC CTGGATGGAT TGACCCCTGAG	120
ACTTTAACAC TCAATGAACA CGCTGAGACT GTGAGATTGA TATTCAAACG GCTGCTAGAT	180
GGTGAAAGTC TGCATAACAT TGCACGTCAC CTTCAAAGCA ACGGTATAAA GTCGTTAGT	240
CGCCGTAAAG ATGCTAATGG GTTCTCTGTT CACTCTGTAC GCACATTCTA AGGTCAGAGC	300
AACAATAGGC ACGTTACCAAG CATCACAAACG TAATGACCGC CCCGCTATAC CGAACTACTA	360
CGAAGGTGTT GTAGATATAC CAACGTTCAA TAAAGCTCAA GAGATTCTCG ACAAGAATCG	420
TAAAGGCCGT ACACCTGCAA GTGACAACCC ACTAACGATT AACATCTTCA AAGGTCTGTT	480
TAGGTGTCAG TGTGGGCTA GTGTCCATCC TACCGGAACA AAGAATAAGT ATGCTGGGT	540
CTACAGGTGC AATAACCACT TAGACGGTCG CTGTGATGTT CCACCGTTGA AGCGTAAACC	600
GTTTGACCGA TGGATGATTG ATAATTTCT GGGGATGATT GACGTGGGGA ATGATGGAGA	660
ATCAGAGAGA AAGATTGCAG CGTTACAGCA TGAGGTTGAA ATTGTCACAG CCAGAATCAA	720
GAAACGTACC GCCCTACTTC TTGAGATGGA TGATATTGAT GAACTAAAAA TTCAGCTTAA	780
GGAACGTGAAAC CAGAAG	796

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 587 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GATCTTTCTT CGAAGAAGAG AGCGCACCAA TACCCGCGCC CACGAGAGAG CCCAGACCTG	60
CGCCGATAGC AGATTTGCCT GCTTCGCGTT CGCCGGTGTG AGGGTTAGTT GTGCAGCCAG	120
ATACCGCCAG AGCGCCACTC ACTACGGAGG CAATAAGATA AACACGTTTG TTCATTGTTA	180
ATCCTTCCTA ACCTTTTAT TCTTTGCCAC GGGTCCGTG GCGGGAGATT ATGCCGCGTG	240
AACATGAAGA TGAGGTGTAC TGGCAATAGC GGACACTACC ATTTGTTCTT TTTTTAAGCA	300

-90-

GGCATCTGAT GATATTTTC CCTGAAGGCT GCCGGGGAGA TATTCCCCAG ACGAGAGTGA	360
CGACGCTGAC GATTCTAGAA AATCTCAATG TATTCCCGTA TTACTGAGAT GGCTTCATCC	420
CGGTTATTAA AACGATAAGTG GCTCAGGCTC TCATTTTCA GCGTCCCCA CAAGCTTCC	480
ATCGGAGCGT TGTCGTAACA GTTACCTTTA CGCGACATTG ATGTTTCAG ACCAGACTCC	540
TCCTGTATGA CCCGGTAATC GTATGCGCAG TACTGTGAAC CTCGATC	587

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 786 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GATCAGAGTG GTGGATTAGC CCGGCAGTGG GCGCTGGCTC CTGAGCGCCA TAAACAGGGC	60
TTTACCTGTC AGCTCTTTG TCATGCGCTC TCCCATGGCG TACGACAATT TCGCACGTT	120
AAACATCTT GATGCCAGCG AGGTACAACC ATCCCTCCTG TGTGGCAACA TACGTCAGGT	180
CCGCCACCCA GACCTGATTT GGTGCTGTAG GAGCGAACGT CTGGTTCAAGC AGATTTGGCG	240
CAAATGGCAG ATTGTGGTTC GAGTTCTGTAG TCGCTCTGAA CTTGGTTCT GCTTACAGCG	300
TAGCTTAGCT CCTTACGAAG ACGTGCCAGT CGGTCACGAC CAACGATGAT GCCATTCTCT	360
GCCAGCTCCG TCTGGGAGCC GCGGGTTTC CATATGTTTC GCGAGTGCAG ATATGTGCCA	420
CCTTAATCTC CAGTTTAGC CGCTCATCAC TTTGTTTCT GTCTGAGGGT TCATGCTGTA	480
CCCAGTTGTA ATAACCGCTC CTGGATACAC CAAATACTGA CACATCGCTT CAATGGAAA	540
TTGTTGTCGC CATTGTTGTA TTAACGCGTA TTTTCAGCG ACTCCTGTGC AAAATACGCT	600
GTTGCTTTT TTAATATATC TCGCTCAAGG CGAGCTTCAT TTAACGCCTT ACGCAGTCGC	660
AGAATTCAG ATTCCAGTTC AGCCACCGTG CGGGAACCAAG GAGTACCGAG CCCTTTCTG	720
GCGGCGGTAA CCCATTGTCC TAAAGTGCCT TCAGGAAGAG ATAATCGGGA AGCGCCTTCA	780
CTGATC	786

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1174 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

-91-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AGTTGGACTA TAGGTGTA	CT GGCAATAACGG ACACACCATT TGTTCTTTT TTAAGCAGCA	60
TCTGATGATA TTTTCCTG AAGGCTGCCG GGGAGATATT CCCCAGACGA GAGTGACGAC		120
GCTGACGATT GTAGAAAATC TCAATGTATT CCCGTATTAC TGAGATGGCT TCATCCCGGT		180
TATTAACG ATAGTGGCTC AGGCTCTHAT TTTCAGCGT TCCCCANAAG CTTTCCATCG		240
GAGCGTTGTC GAAACAGTTA CCTTTACCGG ACATTGATGT TTTCAGACCA AACTGCTCCT		300
GTATGACCCG GTAATCGTAT GCGCAGTACT GTGAACCTCG ATCAGAGTGG TGGATTAGCC		360
CGGCAGGNGG CGCCTGGCTC CTGAGCGCCA TAAACAGGGC TTTACCTGTC AGCTCTTTG		420
TCATGCGCTC TCCCATGCGT AGCCGACAAT TTGCGCACGTA TAACATCTT GATGCCAGCG		480
AGGTACACCA TCCCTCCTGT GTGGCANCAT ACGTCAGGTC CGCCACCCAG ACCTGATTG		540
GTGCTGTAGG AGTGAACGTC TGGTCAGCA GATTGGCGC AACTGGCAGA TTGTGGTTCG		600
GGTTCTGAGT CGCTCTGAAC TTGCGTTCT GCTTACAGCG TASCTTAGCT CCTTACGAAG		660
ACGTGCCAGT CGGTACGCC AACGATGATG CCATTCTCTG CCAGCTCCGT CTGGAGCCGC		720
CGGGTTCCAT ATGTTDCGCR AGTGCAGATA TGTGCCACCT TAATCTCCAG TTDAGCCGC		780
TCATCACTTT GTTDTCTGTC TGAGGGTTCA TGCTGTACCC AGTTGTAATA ACCGCTCTG		840
GATACACCAA ATACCTGACA CATCGTTSA ATDDDAAAATT GTTGTGCCA TTGTTCGATT		900
AACCGNNNN NNNCAGCGAC TCCTGTGCAA AATACGCTGT TGCTTTTTT AATATATCTC		960
GCTCAAGGCG AGCTTCATTT AACGCTTAC GCAGTTGCAG AATTTCAGAT TCCAGTTCA		1020
CCACCGTGC GGAACCAGGA GTACCGAGCC CTTTCTGGC GGCGGTAACC CATTGTCCTA		1080
AAAGTGCCTTC AGGAAGAGAT AATCGGAAG CGCCTTCGCT GATCGAAAGT TGATTTCAA		1140
GAACCGTTCT GACAGCTTCG GCTTGAACT CTGT		1174

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 64 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TGTGGCATCA ACAATGGTGC GACCACCGAG CGAGATGAGG TGTACTGGCA ATAGCGGACA	60
CAAC	64

-92-

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1196 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATTGTAGAAA	ATCTCAATGT	ATTCCCGTAT	TACTGAGATG	GCTTCATCCC	GGTTATTA	AAA	60
ACGATA	GTGG	CTCAGGCTCT	HATTTTCAG	CGTTCCCCAN	AAGCTTCCA	TCGGAGCGTT	120
GTCGTAACAG	TTACCTTAC	GCGACATTGA	TGTTTCAGA	CCAAACTGCT	CCTGTATGAC	180	
CCGGTAATCG	TATGCGCAGT	ACTGTGAACC	TCGATCAGAG	TGGTGGATTA	GCCC	GGCAGG	240
NGGGCGCTGG	CTCCTGAGCG	CCATAAACAG	GGCTTACCT	GTCAGCTCTT	TTGT	CATGCG	300
CTCTCCCATG	CGTAGCCGAC	AATTCGCAC	GTATAACATC	TTTGATGCCA	GCGAGGTACA	360	
CCATCCCTCC	TGTGTGGCAN	CATACGTCAG	GTCAGCCACC	CAGACCTGAT	TTGGT	GCTGT	420
AGGAGTGAAC	GTCTGGTTCA	GCAGATTGG	CGAAC	AGATTGTGGT	TCGGG	TTCGT	480
AGTCGCTCTG	AACTTGC	GTGTTACA	GCGTASCTTA	GCTCCTTACG	AAGAC	GTGCC	540
AGTCGGTCAC	GCCAACGATG	ATGCCATTCT	CTGCCAGCTC	CGTCTGGAGC	CGCC	GGGGTTC	600
CATATGTTDN	GCRAGTGC	GGGG	ATATGTGCCA	CCTTAATCTC	CAGTTTDAGC	CGCTCATCAC	660
TTTGTDTCT	GTCTGAGGGT	TCATGCTGTA	CCCAGTTGTA	ATAACCGCTC	CTGGATA	CACAC	720
CAAATACCTG	ACACATCGCT	TNAATGGAA	ATTGTTGT	CCATTGTTCG	ATTAAC	GCACGN	780
ATTTTCAGC	GACTCCTGTG	CAAAATACGC	TGTTGCTTTT	TTTNATATAT	CTCGCTCAAG	840	
GCGAGCTTCA	TTAACGCCT	TACGCAGTTG	CAGAATTCA	GATTCCAGTT	CAGCCACC	GT	900
GCGGGAAACCA	GGAGTACCGA	GCCCTTTCT	GGCGGCGGTA	ACCCATTGTC	CTAAAGT	GCC	960
TTCAGGAAGA	GNTAATCGGG	AAGGCCCTTC	GCTGATCGAA	AGTTGATTTT	CAAGAACCGT	1020	
TCTGACAGCT	TCGGCTTGA	ACTCTT	AGA	GTTG	TTTTCTGC	TCATTATTAG	1080
CTCCTCTGA	TGCCATTCTA	TTTCAGGAAG	GAGTGTCCGT	TAAACTCAGG	CTAC	CTCAAG	1140
ATAAAGTTAT	TAATTCGAA	GATCACATCT	TCAATAGGT	TGCGGTCCAT	ATTATC		1196

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 64 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

-93-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AAAGCACAGA TTTTATAGCT AACTCGATGC TGGTGTGAGG TGTACTGGCA ATAGCGGACA	60
CTAC	64

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1188 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATTGTAGAAA ATCTCAATGT ATTCCCGTAT TACTGAGATG GCTTCATCCC GGTTATTAAA	60
ACGATAGTGG CTCAGGCTCT HATTTTCAG CGTTCCCCAN AAGCTTCGA TCGGAGCGTT	120
GTCGTAACAG TTACCTTAC GCGACATTRA TGTTTCAGA CCAGACTRCT CCTGTATGAC	180
CCGGTAATCG TATGCGCAGT ACTGTGAACC TCGATCAGAG TGGTGGATTA GCCCGGCAGG	240
NGGGCGCTGG CTCCCTGAGCG CCATAAACAG GGCAAATCCT GTCAGCTCTW TTGTCATGCG	300
CTCTCCCATG CGTAGCCGAC TAATTCGCA CGTATAACAT CTTTGATGCC AGCGAGGTAC	360
ACCATCCCTC CTGTGTGGCA NCATACGTCA GGTCCGCCAC CCAGACCTGA TTTGGTGCTG	420
TAGGAGCGAA CGTCTGGTTC ACCAGATTG GCGCAACTGG CAGATTGTGG TTCGAGTTCG	480
TAGTCGCTCT GAACTTGCGT TTCTGCTTAC AGTGTAGCCT TAGCTCCTTA CGAAGACGTG	540
CCAGTCGGTC ACGCCAACGA TGATGCCATT CTCTGCCAGC TCCGCTCTGA GCGGCCGGGT	600
TCCATATGTT NCGCRAGTGC GGATATGTGC CACCTTAATC TCCAGTTDA GCGGCTCATC	660
ACTTTGTTDT CTGTCTGAGG GTTCATGCTG TACCCAGTTG TAATAACCGC TCCTGGATAC	720
ACCAAATACC TGACACATCG CTTSAATGGG AAATTGTTRT CGCCATTGTT CGATTAACGC	780
GACTCCTCTG CAAAATACGC TGTTGCTTT TTNNNATATAT CTCGCTCAAG GCGAGCTTCA	840
TTAACCGCCT TACGCAGTTG CAGAATTCA GATTCCAGTT CAGCCACCGT GCGGGAACCA	900
GGAGTACCGA GCCCTTTCT GGCAGCGGTG ACCCATTGTC CTAAAGTGCC TTCAGGAAGA	960
GATAATCGGG AAGCGCCTTC ACTGATCGAA AGTTGATTTT CAGGAACCGT TCTGACAGCT	1020
TCGGCTTGA ACTCTTKAGA GTAACGTTGG GTTTTCTGC TCATTATTAG CTCCCTTCTGA	1080
TGCCATTCTA TTTCAGGAAG GAGTGTCCGT TAAACTCAGG CTACCTCAGT GTGATCGGCG	1140
ATAAGCCCAG AACTCCGCTC CCAGACCTCC CTGCCAAAAG CAAAACCG	1188

-94-

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 630 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ATCTCCTTAT	GTTATGGAGA	TTATTAAAAA	GAATAACATT	AGCGCTCTCG	AACTGCATCG	60
TGCAATTGTT	GAGTTGAGTA	AAAATATGAA	GTCGATTGAT	GATAATGCCA	GTAAGAAAAA	120
CGACAAGTCA	TCATTGTATG	TATCATGGAC	TCTGAGTTT	ACTGCTCCAA	CAAGTAAAGA	180
AGCTCACGAT	GTGTTGCTG	GGTATATTAA	TTATGTTTCT	TCCCTGTTG	TAAGGGATT	240
GATGGAAGAT	ATAAGAAAATA	AACTAGAAGT	TAAAACATAAT	GTTGAAAAAG	AAATTCTTGC	300
ACTGGATGAG	ATAAAAATTA	GAAACCAGCT	GAATGCAGAT	ATTCGACNCC	TCAATTATTC	360
ACTGGAGGTT	GCTAATGCGG	CTGGAATAAA	AAAACCTGTA	TACAGCAATG	GTCAGATTAT	420
GAAGGATGAC	CCAGATTTC	CTGTGGCTCT	CGGTTCTGAT	GGTATAGCAA	CTAAATTGAA	480
CATCAAAAAAA	TCAATCAAGG	ATGTTTCGGA	ATTGAGTGGG	GAGTTGCGAA	ATCGTCAATA	540
TGTTGTGAAT	CAATTGGTTG	TGGCGAAAGN	GGGGGANGNN	GANNNNANGC	MANNNCAGNA	600
NCAANNGTGC	CCAACGNNAAC	CGGNACAGAAA				630

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 388 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCACCACATT	GATTGTCTGC	CTGAAATAAC	ACGAAAGGCA	CTGCGTGAAC	GCTATGTGGA	60
ACAGCTGGTG	GCTACAGAGA	ACAATGTTTC	TGAAGTGAAA	GCTGTTACCA	GAAAAAACACG	120
CAATCCTGAC	CCTGTCCAGG	CAATCGAAGC	ATATCGCGGT	TCTCCACAAAC	TGATGGAAGA	180
ACGCCTGAAT	GCGCTGACCG	AAAACCAGCG	CTGGGTATCT	GAAGCAAGAG	CTGCGCTGGT	240
GGTGGAAAGTG	CTGAAGCTGG	AAAGCGCCGG	TAACCCCCGGG	CGACTGAAAG	CCATTAACCTT	300
TCTTGTGAA	AAAGCCCCCTA	AAGGTGAGCT	GCCGGAGCGC	CTGCAACAGG	CCGCAGTTAA	360
CGCCAATGCA	AAACGTGGCG	CTAATCGT				388

-95-

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 184 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CTGACGACCT GGACGTGTAC ACTCGTCTGG GTGGTATGGT TTGGCGTGCA GACACCAAAG	60
CTCACAAACAA TGTGACAGGT GAATCTGAGA AAAACCACGA TACCGGCCTT TCTCCGGTAT	120
TCGCAGGTGG TGTTGAATGG GCCATCACTC CTGAAATCGC TACCCGTCTG GAATACCAGT	180
GGAC	184

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 169 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CTGACGACCT GGACATCTAC ACTCGTCTGG GTGGCATGGT ATGGCGTGCA GACACTAAAT	60
CCAACGTTTA TGGTAAAAAC CACGACACCG GCGTTCTCC GGTCTTCGCT GGCGGTGTTG	120
AGTACCGCGAT CACTCCTGAA ATCGCTACCC GTCTGGAATA CCAGTGGAC	169

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TTGCAGCGCC TCTACTACCG GATACAGCCT CCATT	35
--	----

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

-96-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CCTCCTTCAG GGC GGATTCC AGCCGTTCAC ATTGT

35

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CCGATCTTCT ATTGTACGAC GGTGTTCGTC AAAAGCTAAT

40

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CTGGTGAACA ACGTCTTACA AAGATGGTTC CTGGATGGAT T

41

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

AGTCTTCCG TGTTTCTCAG AAATGGGGGC AACGTGCAAA A

41

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CCACCGTTGA ACCGTAACC GTTGACCGA TGGAT

35

-97-

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 36 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GCTGGGGTCT ACAGGTGCAA TAACCACTTA GACGGT

36

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 48 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGATGATGCC ATTCTCTGCC AGCTCCGTCT GGGAGCCGCC GGGTTTCC

48

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 17 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GGAGCAGTCT GGTCTGA

17

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 37 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CCTGTGGCTC TCGGTTCTGA TGGTATAGCA ACTAAAT

37

-98-

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 37 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CAAGGATGTT TCGGAATTGA GTGGGGAGTT GCGAAAT

37

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CAGGCAATCG AAGCATATCG CGGTTCTCCA CAACT

35

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TGAATGCGCT GACCGAAAAC CAGCGCTGGG TATCT

35

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GTGATGGCCC ATTCAACACC ACCTGCGAAT ACCGG

35

-99-

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CTCAGATTCA CCTGTCACAT TGTTGTGAGC TTTGG

35

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

AATCCATCCA GGAACCATCT TTGTAAGACG TTGTTCACCA G

41

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TTTTGCACGT TGCCCCCATT TCTGAGAAC AC GGAAAGAC T

41

-100-

CLAIMS

1. An exclusively chromosomal Shigella specific fragment identified by subtractive hybridization using *S. flexneri* as "target" DNA and a complex DNA competitor mix as competitor DNA.
05
2. A Shigella specific fragment identified by subtractive hybridization using *S. sonnei* as "target" DNA and a mixture of non-pathogenic *E. coli* YMC DNA and pBR322 vector DNA as competitor DNA.
10
3. A Shigella specific fragment derived from a chromosomal sequence of *Shigella sonnei*, the Shigella specific fragment selected from the group consisting of NT-6 (nucleotides 1-124 of SEQ ID NO:1), NT11-2 (SEQ ID NO:2), NT14 (SEQ ID NO:4) and NT15 (SEQ ID NO:3).
15
4. A Shigella specific fragment derived from a chromosomal sequence of *Shigella flexneri*, the Shigella specific fragment selected from the group consisting of NT18-1a (SEQ ID NO:10) and NT19-2 (SEQ ID NO:11).
20
5. A probe for the detection of a member of the genus *Shigella* wherein the probe is capable of detecting at least one untyped isolate or at least one isolate of a serotype of each of the
25

-101-

four species of the genus Shigella selected from the group consisting of:

- a) (SEQ ID NO:1);
- b) probes derived from SEQ ID NO:1;
- c) NT11-2 (SEQ ID NO:2);
- d) probes derived from NT11-2; and
- e) homologues of (a) through (d).

6. A probe of Claim 5 for the detection of a member of the genus Shigella wherein the probe is capable of detecting at least one untyped isolate or at least one isolate of a serotype of each of the four species of the genus Shigella, wherein the probe is selected from the group consisting of:
- a) 1500 (SEQ ID NO:14),
5'-TTGCAGCGCCTCTACTACCGGATACAGCCTCCATT-3' ;
 - b) 1501 (SEQ ID NO:15),
5'-CCTCCTTCAGGGCGGATTCCAGCCGTTCACATTGT-3' ;
 - c) 1911 (SEQ ID NO:16),
5'-CCGATCTTCTATTGTACGACGGTGTTCGTCAAAGA-
AGCTAAT-3' ;
 - d) 1682 (SEQ ID NO:17),
5'-CTGGTGAACAACGTCTTACAAAGATGGTTCCTG-
GATGGATT-3' ;
 - e) 1683 (SEQ ID NO:18),
5'-AGTCTTCCTCGTGTTCAGAAATGGGGCAAC-
GTGCAAAA-3' ;
 - f) 1708 (SEQ ID NO:19),
5'-CCACCGTTGAAGCGTAAACCGTTGACCGATGG-
AT-3' ; and
 - g) complements of (a) through (f).

-102-

7. A probe capable of detecting at least one isolate of each of serotypes 1-5 of *Shigella flexneri* selected from the group consisting of:
- 05 a) NT18-1a (SEQ ID NO:10);
b) probes derived from NT18-1a;
c) homologues of (a) and (b);
d) NT19-2 (SEQ ID NO; 11);
e) probes derived from NT19-2; and
f) homologues of (d) and (e).
- 10 8. A probe of Claim 7 capable of detecting of at least one isolate of each of serotypes 1-5 of *Shigella flexneri* wherein the probe is selected from the group consisting of:
- 15 a) 1712 (SEQ ID NO:23),
5'-CCTGTGGCTCTCGGTTCTGATGGTATAGCAACT-
AAAT-3';
b) 1713 (SEQ ID NO: 24),
5'-CAAGGATGTTCGGAATTGAGTGGGGAGTTGCG-
AAAT-3'; and
20 c) complements of (a) and (b).
9. A probe of Claim 7 (d) through (f) which further detects a member of the genus *Shigella* selected from the group consisting of *S. boydii* serotype 5, *S. boydii* serotype 7, *S. boydii* serotype 9, *S. boydii* serotype 11, *S. boydii* serotype 16, *S. boydii* serotype 17, and *S. sonnei* serotype 1.

-103-

10. A probe of Claim 9 selected from the group consisting of:
 - a) 1684 (SEQ ID NO:25),
5'-CAGGCAATCGAACATATCGCGTTCTCCACAACT-3' ;
 - b) 1685 (SEQ ID NO: 26),
5'-TGAATGCGCTGACCGAAAACCAGCGCTGGGTATCT-3' ;
and
 - c) complements of (a) and (b).
11. An oligonucleotide probe for the detection of
at least one isolate of *Shigella* selected from
the group consisting of *S. dysenteriae*
serotypes 1 and 2, and *S. boydii* serotypes 5,
7, 9, 11, 12, 15, 16, and 17, the
oligonucleotide probe comprising a sequence
selected from the group consisting of:
 - a) 1707 (SEQ ID NO:28),
5'-CTCAGATTCACCTGTCACATTGTTGTGAGCTTG-3' ;
 - b) 1706 (SEQ ID NO:27);
5'-GTGATGCCATTCAACACCACCTGCGAATACCGG-3' ;
 - c) complements of (a) and (b); and
 - d) homologues of (a) through (c).
12. A substantially inclusive oligonucleotide probe
for the detection of a member of the genus
Shigella comprising a sequence selected from
the group consisting of:
 - a) 437 (SEQ ID NO:21),
5'-CGATGATGCCATTCTCTGCCAGCTCCGTCTGG-
GAGCCGCCGGTTCC-3' ;
 - b) 1864 (SEQ ID NO:22),
5'-GGAGCAGTCTGGTCTGA-3' ;

-104-

- c) complements of (a) and (b); and
 - d) homologues of (a) and (b).
13. A substantially inclusive capture/detector probe pair for the detection of a member of the genus *Shigella*, comprising a substantially inclusive capture probe and a detector probe wherein the capture probe is selected from the group consisting of:
- a) 1864 (SEQ ID NO:22); and
 - b) complement of 1864;
- the detector probe having an oligonucleotide sequence derived from the same strand of the *S. sonnei* sequence comprising fragments NT14 (SEQ ID NO:4) and NT15 (SEQ ID NO:3) as the capture probe.
14. A substantially inclusive capture/detector probe pair of Claim 13, the probe pair also being exclusive of exclusivity organisms commonly found in stool and substantially exclusive of non-EIEC Enterobacteriaceae.
15. A capture/detector probe pair of Claim 13 wherein the capture probe is 1864 (SEQ ID NO:22) and the detector probe is the complement of 437.
16. A capture/detector probe pair of Claim 13 wherein the capture probe is the complement of 1864 and the detector probe is probe 437 (SEQ ID NO:21).

-105-

17. A substantially inclusive probe set for the detection of a member of the genus Shigella, which further detects EIEC, comprising at least three capture/detector probe pairs, the first
05 pair of probes selected from the group consisting of oligonucleotides having sequences derived from a selected strand of SEQ ID NO:1 and homologues thereof, the second pair of probes selected from the group consisting of oligonucleotides having sequences derived from a selected strand of fragment NT19-2 (SEQ ID NO:11) and homologues thereof, and the third pair of probes selected from the group consisting of oligonucleotides having sequences derived from a selected strand of the S.
10 dysenteriae ompA sequence which spans nucleotides from position 893 through 1076 (SEQ ID NO:12) and homologues thereof.
- 15
18. A substantially inclusive probe set of Claim
20 17, comprising at least three capture/detector probe pairs, the first pair of probes having oligonucleotide sequences derived from a selected strand of SEQ ID NO:1, the second pair of probes having oligonucleotide sequences derived from a selected strand of fragment NT19-2 (SEQ ID NO: 11), and the third pair of probes having oligonucleotide sequences derived
25

-106-

from a selected strand of the *S. dysenteriae* ompA sequence which spans nucleotides from position 893 through 1076 (SEQ ID NO:12).

19. A substantially inclusive probe set of Claim
05 18, the probe set also being exclusive of exclusivity organisms commonly found in stool and substantially exclusive of non-EIEC Enterobacteriaceae.
20. A substantially inclusive probe set of Claim 19
10 wherein the first pair of probes is selected from the group consisting of probes 1911 (SEQ ID NO:16), 1500 (SEQ ID NO:14) and 1501 (SEQ ID NO:15), the second pair of probes consists of probes 1684 (SEQ ID NO:25) and 1685 (SEQ ID NO:26), and the third pair of probes consists of probes 1706 (SEQ ID NOL:27) and 1707 (SEQ ID NO:28).
21. A substantially inclusive probe set for the detection of a member of the genus *Shigella*,
20 which further detects EIEC, comprising at least three capture/detector probe pairs, the first pair selected from the group consisting of:
 - a) 1911 (SEQ ID NO:16);
 - b) 1500 (SEQ ID NO:14); and
 - c) 1501 (SEQ ID NO:15);the second pair selected from the group consisting of:
 - a) 1684 (SEQ ID NO:25); and

-107-

b) 1685 (SEQ ID NO:26);
the third pair selected from the group
consisting of:
a) 1706 (SEQ ID NO:27); and
05 b) 1707 (SEQ ID NO:28).

22. A substantially inclusive probe set for the
detection of a member of the genus Shigella,
which further detects EIEC, comprising at least
two capture/detector probe pairs, the first
10 pair of probes selected from the group
consisting of oligonucleotides having sequences
derived from a selected strand of the sequence
comprising S. sonnei fragments NT14 (SEQ ID
NO:4) and NT15 (SEQ ID NO:3) and homologues
15 thereof, and the second pair of probes selected
from the group consisting of oligonucleotides
having sequences derived from a selected strand
of the S. dysenteriae ompA sequence which spans
nucleotides from position 893 through 1076 (SEQ
20 ID NO:12) and homologues thereof.

23. A substantially inclusive probe set of Claim
22, comprising at least two capture/detector
probe pairs, the first pair of probes having
oligonucleotide sequences derived from a
25 selected strand of the sequence comprising S.
sonnei fragments NT14 (SEQ ID NO:4) and NT15
(SEQ ID NO:3), and the second pair of probes
having oligonucleotide sequences derived from a
selected strand of the S. dysenteriae ompA
30 sequence which spans nucleotides from position
893 through 1076 (SEQ ID NO:12).

-108-

24. A substantially inclusive probe set of Claim
23, the probe set also being exclusive of
exclusivity organisms commonly found in stool
and substantially exclusive of non-EIEC
05 Enterobacteriaceae.
25. A substantially inclusive probe set of Claim 24
wherein the first pair of probes consists of
probes 1864 (SEQ ID NO:22) and the complement
of 437, and the second pair of probes consists
10 of probes 1706 (SEQ ID NO:27) and 1707 (SEQ ID
NO:28).
26. A substantially inclusive probe set for the
detection of a member of the genus Shigella,
which further detects EIEC, comprising at least
15 two capture/detector probe pairs, wherein the
first pair is 1864 (SEQ ID NO:22) and the
complement of 437 and the second pair is 1706
(SEQ ID NO:27) and 1707 (SEQ ID NO:28).
27. An oligonucleotide probe derived from Shigella
20 specific fragment NT-6 (nucleotides 1-124 of
SEQ ID NO:1) which substantially retains the
inclusivity behavior of NT-6.
28. An oligonucleotide probe of Claim 27 which has
improved exclusivity behavior for non-EIEC
25 Enterobacteriaceae and is exclusive of the
exclusivity organisms commonly found in stool.

-109-

29. An oligonucleotide probe of Claim 28 comprising a sequence selected from the group consisting of:

a) 1911 (SEQ ID NO:16),

05 5'-CCGATCTTCTATTGTACGGTGGTGTCAAA-
AGCTAAT-3';

b) 1500 (SEQ ID NO:14),

5'-TTGCAGCGCCTCTACTACCGGATACAGCCTCCATT-3';

c) 1501 (SEQ ID NO:15),

10 5'-CCTCCTTCAGGGCGGATTCCAGCCGTTCACATTGT-3';

d) complements of (a) through (c); and

e) homologues of (a) through (d).

30. An oligonucleotide probe derived from Shigella specific fragment NT11-2 (SEQ ID NO:2) which substantially retains the inclusivity behavior of NT11-2.

15 31. An oligonucleotide probe of Claim 30 which substantially retains the exclusivity behavior of NT11-2 (SEQ ID NO:2) towards non-EIEC
20 Enterobacteriaceae.

-110-

32. An oligonucleotide probe of Claim 31 comprising a sequence selected from the group consisting of:

a) 1682 (SEQ ID NO:17),

05 5'-CTGGTGAACAAACGTCTTACAAAGATGGTCCTG-
GATGGATT-3';

b) complement of 1682 (SEQ ID NO:29),
5'-AATCCATCCAGGAACCATCTTGTAAGACGTTG-
TTCACCAG-3'; and

10 c) homologues of (a) and (b).

33. An oligonucleotide probe derived from Shigella specific fragment NT11-2 (SEQ ID NO:2) which moderately retains the inclusivity behavior of NT11-2.

15 34. An oligonucleotide probe of Claim 33 which substantially retains the exclusivity behavior of NT11-2 (SEQ ID NO:2) towards non-EIEC Enterobacteriaceae.

20 35. An oligonucleotide probe of Claim 34 comprising a sequence selected from the group consisting of:

a) 1683 (SEQ ID NO:18),
5'-AGTCTTCCTGTTCTCAGAAATGGGGCAAC-
GTGCAAAA-3';

25 b) complement of 1683 (SEQ ID NO:30),
5'-TTTGCACGTTGCCCTCTGAGAACACGG-
AAAGACT-3'; and

c) homologues of (a) and (b).

-111-

36. An oligonucleotide probe derived from Shigella specific fragment NT11-2 (SEQ ID NO:2) which partially retains the inclusivity behavior of NT11-2.
- 05 37. An oligonucleotide probe of Claim 36 which substantially retains the exclusivity behavior of NT11-2 (SEQ ID NO:2) towards non-EIEC Enterobacteriaceae.
- 10 38. An oligonucleotide probe of Claim 37 comprising a sequence selected from the group consisting of:
 - a) 1708 (SEQ ID NO:19),
5'-CCACCGTTGAAGCGTAAACCGTTGACCGATGG-
AT-3'; and
 - b) 1709 (SEQ ID NO:20),
5'-GCTGGGGTCTACAGGTGCAATAACCACCTAGAC-
GGT'-3';
 - c) complements of (a) and (b); and
 - d) homologues of (a) through (c).
- 15 39. An oligonucleotide probe derived from Shigella specific fragment NT18-1a (SEQ ID NO:10) which substantially retains the inclusivity behavior of NT18-1a.
- 20 40. An oligonucleotide probe of Claim 39 which substantially retains the exclusivity behavior of NT18-1a (SEQ ID NO:10) towards non-EIEC Enterobacteriaceae.

-112-

41. An oligonucleotide probe of Claim 40 comprising a sequence selected from the group consisting of:
 - a) 1712 (SEQ ID NO:23),
05 5'-CCTGTGGCTCTCGGTTCTGATGGTATAGCAACT-
AAAT-3';
 - b) 1713 (SEQ ID NO:24),
10 5'-CAAGGATGTTCCGAATTGAGTGGGGAGTTGCG-
AAAT-3';
 - c) complements of (a) and (b); and
 - d) homologues of (a) through (c).
42. An oligonucleotide probe derived from *Shigella* specific fragment NT19-2 (SEQ ID NO:11) which substantially retains the inclusivity behavior
15 of NT19-2.
43. An oligonucleotide probe of Claim 42 which substantially retains the exclusivity behavior of NT19-2 (SEQ ID NO:11) towards non-EIEC *Enterobacteriaceae*.
- 20 44. An oligonucleotide probe of Claim 43 comprising a sequence selected from the group consisting of:
 - a) 1684 (SEQ ID NO:25),
25 5'-CAGGCAATCGAACGCATATCGCGTTCTCCACAACT-3';
 - b) 1685 (SEQ ID NO:26),
5'-TGAATGCGCTGACCGAAAACCAGCGCTGGGTATCT-3';
 - c) complements of (a) and (b); and
 - d) homologues of (a) through (c).

FIG. 1

FIGURE 2

NT6	5'	aaTCCAACCGCAGTAATAAACTGAATCCCTCGCATGGCTTGAGGCCCTACTA	
Probe	1500		
NT6 cont'd		CCGGATAACAGGCCTCCATT CGGTAAACNGCCTCCCTTCAGGGGGATTCCAGCCGTTCC	
1500 cont'd		CCGGATAACAGGCCTCCATT	
Probe 1501		CCTCCTTCAGGGGGATTCCAGCCGTTCC	
NT6 cont'd			Sau3A
1501 cont'd			-----
Probe 1911			ACATTTGTGCCTGCCGATCTTCTTATTGTACGACGGTGTTCGTCAAAAGCTAATTG
			ACATTGT
			CCGATCTTCTATTGTACGACGGTGTTCGTCAAAAGCTAAT

SUBSTITUTE SHEET

FIGURE 3A

NT11-2 Probe 1683	5' CATCAGAAATCTAAGCAGAAGTCCTTTCCGGTCTTCAGAAATGGGGCAACGTGC AGTCTTCCGGTCTTCAGAAATGGGGCAACGTGC
NT11-2 cont'd 1683 cont'd Probe 1682	AAAACTGCCCCCTGCTGGTGAAACAACGTCCTTACAAAGATGGTCTGGATGGATTG AAAA CTGGTGAAACAACCGTCTTACAAAGATGGTCTGGATGGATT
NT11-2 cont'd	ACCCTGAGACTTTAAACTCAATGAAACACCGCTGA'3ACTGTGAGATTGATAATTCAA
NT11-2 cont'd	CTGCTGCTAGATGGTGAAGTCTGCATAACATTGCACCGTCACCTTCAAAGCAACGG
NT11-2 cont'd	TATAAAGTCGTTAGTCGCCGTAAAGATGCTTAATGGGTtCTCTGTTCACTCTGTAC
NT11-2 cont'd	GCACATTCTAAGGTCAAGAGCAACAAATAGGCACCGTTACCCAGCATCACACGTAATGA
NT11-2 cont'd	CCGCCCCGCTATACCGAAACTACTACGAAGGTGTGTAGATATAACCGTTCAATA
NT11-2 cont'd	AAGCTCAAGAGATTCTCGACAAGAATCGTAAAGGCCGTACACCTGCAAGTGACAAC

FIGURE 3B

NT11-2 cont'd	CCACTAACGATTACATTTCAAAGGtCTGTAGGTCAGTGTGGGCTAGTGT	
NT11-2 cont'd Probe 1709	CCATCCTACCGGAACAAAGAATAAGTATGCTGGGTCTACAGGTGCAATAACCACT GCTGGGGTCTACAGGTGCAATAACCACT	
NT11-2 cont'd 1709 cont'd Probe 1708	TAGACGGTCCGCTGTGATGTTCCACCGTGAAGCGTAAACCGTTGACCGATGGATG TAGACGGT CCACCGTTGAAGCGTAAACCGTTGACCGATGGAT	
NT11-2 cont'd	ATTGATAATTCTGGGATGATTGACGTGGGAATGATGGAGAATCAGAGAGAA	
NT11-2 cont'd	AGATTGCAGCGTTACAGCATGAGGTTGAAATTGTCACAGCCAGAATCAAGAAACG)
NT11-2 cont'd	TACCGCCCTACTTCTTGAGATGGATGATTGAAACTAAAATT CAGCTTAAG	
NT11-2 cont'd	GAAC TGAA ACCAGAAG	3'

FIGURE 4A

			5'	GATCTTTCTCGAAGAGAGCCACCAATAACCGGCCACGAGAGCCCCAG		
NT15				ACCTGCCGATAGCAGATTGCCTGCTTCGGCTGTAAGGGTAGTT		
NT15				GTGCAGCCAGATACCGCCAGAGGCCACTACGGAGGAATAAGATAAACAC		
NT15	E. C.	S. f.		GTGGTTCATGGTAATCCTCCTAACCTTTATTCTTGCCACGGTTCCGTG TGTGG AAAGC		
NT15	E. C.	E. C.		GGGGGAGATTATGCCGGTGAACATGAAGATGAGGTGTACTGGCAATAGGGACA AGTTGGACTATAAGTGTACTGGCAATA-CGGACA		
	S. f.			CATCAACAAATGGTGGCACCCGAGATGAGGTGTACTGGCAATAGGGACA ACAGATTATAGCTAACTCGATGCTGGTGTAGGTGTACTGGCAATAGGGACA		

					Left end of repeat.	
NT15	E. C.	E. C.	S. f.	CTACCATTTGTTCTTTAAGCAGCCATCTGATGATATTCTGAAGGCT C-ACCATTGTTCTTTAAGCAG-CATCTGATGATATTCTGAAGGCT CAAC--- CTAC---		

FIGURE 4B

NT15	GCCGGGAGATTCCCCAGACGAGGTGACGACGGCTGACCGATTCTAGAAAATCTC		
E. c.	1	GCCggggAGATTCCCCAGACGAGGTGACGACGGCTGACCGATTCTAGAAAATCTC	
E. c.	2	-----	
S. f.		-----	
NT15	AATGTATTCCCGTATTACTGAGATGGCTTCATCCCCGGTTATTAAACGATACTGGC		
E. c.	1	AATGTATTCCCGTATTACTGAGATGGCTTCATCCCCGGTTATTAAACGATACTGGC	
E. c.	2	-----	
S. f.		-----	
NT15	TCAGGCTCTCATTTTCAGCGTTCCCCACAAGCTTCCATCGGAGCGTTGTGCTAA		
E. c.	1	TCAGGCTCTTHATTTTCAGCGTTCCCCACAAGCTTCCATCGGAGCGTTGTGCTAA	
E. c.	2	-----	
S. f.		-----	
NT15	TCAGGCTCTTHATTTTCAGCGTTCCCCACAAGCTTCCATCGGAGCGTTGTGCTAA		
E. c.	1	TCAGGCTCTTHATTTTCAGCGTTCCCCACAAGCTTCCATCGGAGCGTTGTGCTAA	
E. c.	2	-----	
S. f.		-----	
NT15	CAGTTACCTTACGGGACATTGATGTTTCAGACCAGACTGCTCCTGTATGACCCGG		
E. c.	1	CAGTTACCTTACGGGACATTGATGTTTCAGACCAGACTGCTCCTGTATGACCCGG	
E. c.	2	-----	
S. f.		-----	
Probe 1864	3' AGTCTGGTCTGACCGAGG 5'		

)

7/15

FIGURE 4C

NT15	TAATCGTATGCCAGTACTGTGAACCTCGATC			
NT14	GATCAGAGTGGATTAGCCCCGAG-			
E.C.	1	TAATCGTATGCCAGTACTGTGAACCTCGATCAGAGTGGATTAGCCCCGAGG		
E.C.	2	TAATCGTATGCCAGTACTGTGAACCTCGATCAGAGTGGATTAGCCCCGAGG		
S.f.		TAATCGTATGCCAGTACTGTGAACCTCGATCAGAGTGGATTAGCCCCGAGG		
NT14	TGGCGCTGGCTCCTGAGGCCATAAACAGGGCTTACCTGTCAGCTCTTTGTCA			
E.C.	1	NGGGGCTGGCTCCTGAGGCCATAAACAGGGCTTACCTGTCAGCTCTTTGTCA		
E.C.	2	NGGGGCTGGCTCCTGAGGCCATAAACAGGGCTTACCTGTCAGCTCTTTGTCA		
S.f.		NGGGGCTGGCTCCTGAGGCCATAAACAGGGCAAATCCTGTCAGCTCTTTGTCA		
NT14	TGGGCTCCCATGGGTA--CGAC-AATTTCGCACGTATAAACATCTTGATGCC			
E.C.	1	TGGGCTCCCATG-CGTAGCCGAC-AATTTCGCACGTATAA-CATCTTGATGCC		
E.C.	2	TGGGCTCCCATG-CGTAGCCGAC-AATTTCGCACGTATAA-CATCTTGATGCC		
S.f.		TGGGCTCCCATG-CGTAGCCGACTAAATTTCGCACGTATAA-CATCTTGATGCC		
NT14	AGCGAGGTACAACCATCCCTCCCTGTGTGGCAACATACGTCAGGTCCGCCACCCAGA			
E.C.	1	AGCGAGGTACA-CCATCCCTCCCTGTGTGGCANCATACGTCAGGTCCGCCACCCAGA		
E.C.	2	AGCGAGGTACA-CCATCCCTCCCTGTGTGGCANCATACGTCAGGTCCGCCACCCAGA		
S.f.		AGCGAGGTACA-CCATCCCTCCCTGTGTGGCANCATACGTCAGGTCCGCCACCCAGA		

SUBSTITUTE SHEET

FIGURE 4D

NT14				
E.C.	1	CCTGATTGGTGCCTGTAGGAGCGAACGTCAGGTTCAAGCAGATTGGCGCAACTGGC)
E.C.	2	CCTGATTTGGTGGCTTAGGAGTGAACCGTCTGGTCAAGCAGATTGGCGCAACTGGC)
S.f.		CCTGATTTGGTGGCTTAGGAGTGAACCGTCTGGTCAAGCAGATTGGCGCAACTGGC)
NT14				
E.C.	1	AGATTGTTCGAGTTCGTAGTCGCTCTGAACCTTGCGTT-CTGCTTACAGCGTAG)
E.C.	2	AGATTGTTGGGTTGGGTCTGGTAGTCGCTCTGAACCTTGCGTT-CTGCTTACAGCGTAG)
S.f.		AGATTGTTGGGTTGGGTCTGGTAGTCGCTCTGAACCTTGCGTT-CTGCTTACAGCGTAG)
NT14				
E.C.	1	-CTTAGCTCCCTACGAAGACGTCAGGCCAGTCAGGCCATTCT)
E.C.	2	-CTTAGCTCCCTACGAAGACGTCAGGCCATTCT)
S.f.		CCTTAGCTCCCTACGAAGACGTCAGGCCAGTCAGGCCATTCT)
Probe 437				
NT14				
E.C.	1	CTGCCAGCTCCGGTCTGG-AGCCGCCGGTT-CCATATGTTTCGGGAGTGC GGATAT)
E.C.	2	CTGCCAGCTCCGGTCTGG-AGCCGCCGGTT-CCATATGTTDCGCRAGTGC GGATAT)
S.f.		CTGCCAGCTCCGGTCTGG-AGCCGCCGGTT-CCATATGTTDNGCRAGtGC GGATAT)
437 cont'd	CTGCCAGCTCCGGTCTGGAGCCGCCGGTTCC 3'			

SUBSTITUTE SHEET

FIGURE 4E

NT14								
E. c.	1	GTGCCACCTTAATCTCCAGTTAGCCGCTCATCAC	TTGTTCTGTCTGAGGGT					
E. c.	2	GTGCCACCTTAATCTCCAGTTDAGCCGCTCATC	ACTTTGGTTDTCTGTCTGAGGGT					
S. f.		GTGCCACCTTAATCTCCAGTTDAGCCGCTCATC	ACTTTGGTTDTCTGTCTGAGGGT					
NT14								
E. c.	1	TCATGGCTGTACCCAGTTGTAATAACCGCTC	CTGGATAACCAAATACCTGACACAT					
E. c.	2	TCATGGCTGTACCCAGTTGTAATAACCGCTC	CTGGATAACCAAATACCTGACACAT					
S. f.		TCATGGCTGTACCCAGTTGTAATAACCGCTC	CTGGATAACCAAATACCTGACACAT					
NT14								
E. c.	1	CGCTTCAATGGAAATTGTTGTCGCCATTG	TTCGATTAACGGTATTTCAGCGA					
E. c.	2	CGCTTSAATDDAAATTGTTGTCGCCATTG	TTCGATTAACGGG-----CAGCGA					
S. f.		CGCTTSAATGGAAATTGTTGTCGCCATTG	TTCGATTAACGGG-----CAGCGA					
NT14								
E. c.	1	CTCCTGTGCAAAATAACGCTGTTGCTTT	ttaATATATCTCGCTCAAGGGAGCTT					
E. c.	2	CTCCTGTGCAAAATAACGCTGTTGCTTT	ttaATATATCTCGCTCAAGGGAGCTT					
S. f.		CTCCTGTGCAAAATAACGCTGTTGCTTT	ttaATATATCTCGCTCAAGGGAGCTT					
NT14								
E. c.	1	CATTAAACGCCTTACGCAGATTCCAGATT	TCAGTCAGCCACCGTGGGG					
E. c.	2	CATTAAACGCCTTACGCAGATTCCAGATT	TCAGTCAGCCACCGTGGGG					
S. f.		CATTAAACGCCTTACGCAGATTCCAGATT	TCAGTCAGCCACCGTGGGG					

)

10/15

FIGURE 4F

NT14		GAA C C A G G A G T A C C G A G C C C T T T C T G G C G G G T A A C C C A T T G T C C T A A A G T G C C GAA C C A G G A G T A C C G A G C C C T T T C T G G C G G G T A a C C C A T T G T C C T A A A G T G C C GAA C C A G G A G T A C C G A G C C C T T T C T G G C G G G T A a C C C A T T G T C C T A A A G T G C C GAA C C A G G A G T A C C G A G C C C T T T C T G G C G G G T A a C C C A T T G T C C T A A A G T G C C
E. c.	1	TT C A G G A A G A G A T A A T C G G G A A G G C C T T C A C T G A T C
E. c.	2	TT C A G G A A G A G A T A A T C G G G A A G G C C T T C G C T G A T C G A A A G T G A T T T C A A G A A
S. f.		TT C A G G A A G A G A T A A T C G G G A A G G C C T T C G C T G A T C G A A A G T G A T T T C A A G A A
E. c.	1	C C G T T C T G A C A G G C T T C G G G T T G A A C T C T G T
E. c.	2	C C G T T C T G A C A G G C T T C G G G C T T G A A C T C T G T C C C T T C T G a C A G G C T T C G G G C T T G A A C T C T K A G A G t A A C G T T G G G T T T T C A G G A A
S. f.		
E. c.	1	A T T A T T A G C T C C T T C T G A T G C C A T T C A T T C A G G A A G G A G T G T C C G G T T A A A C T C A
E. c.	2	A T T A T T A G C T C C T T C T G A T G C C A T T C A T T C A G G A A G G A G T G T C C G G T T A A A C T C A
S. f.		
E. c.	2	G G C T A C C T C A A G A T A A A G T T A A T T C G A A G A T C A C A T C T C A A T A G G T T T G C G G G C T A C C T C A G T G T G A T C G G G G A T A A G C C C A G a A C T C C G C T C C C A G A C C T C C C T G C
S. f.		* * *
		Right end of repeat.
E. c.	2	G T C C A T A T T A T C C A A A G C A A A A C C G
S. f.		3'

11/15

FIGURE 5A

NT18-1a	5' ATCTCCTTATGAGATTAAAGAACATTAGGGCTCTCGAACT	
NT18-1a cont'd	GCATCGTGAATTGTTGAGTTGACTAAATATGAAAGTCGATTGATAATGC)
NT18-1a cont'd	CAGTAAGAAAAACGACAAGTCATCATGTATGACTGGACTCTGAGTTTAC	
NT18-1a cont'd	TGCTCCACAAGTAAAGAACGCTCACGATGTGTTGCTGGGTATTTATGT	
NT18-1a cont'd	TTCTTCCCTTGTTGTAAGGGATTGATGAAAGATATAAGAAATAACTAGAAGT	
NT18-1a cont'd	TAAAACTAATGTTGAAAAAGAAATTCTTGCACCTGGATGAGATAAAAATTAGAAA	
NT18-1a cont'd	CCAGCTGAATGCAAGATATTGACNCCTCAATTATTCACTGGAGGTGCTAATGC	
NT18-1a cont'd	GGCTGGATAAAAAACCTGTATACAGCAATGGTCAGATTATGAAGGATGACCC	

FIGURE 5B

NT18-1a cont'd Probe 1712	AGATTTTCCTGGCTCTCGGTTCTGATGGTATAAGCAACTAAATTGAACATCAA CCTGTGGCTCTCGGTTCTGATGGTATAAGCAACTAAAT
NT18-1a cont'd Probe 1713	AAAATCAATCAAGGATGTTTCCGAATTGAGTGGGAGTTGGGAATTCGTCAATA CAAGGATGTTTCCGAATTGAGTGGGAGTTGGGAAT
NT18-1a cont'd	TGTTGTGAATTGTTGTTGGGAAGNGGGGANGNNNGANNNANGCMANN
NT18-1a cont'd	NCAGNANCANNGTGCCTAACGNNAACGGNNCAGaaAA 3'

FIGURE 6A

NT19-2		5' CCACCATTTGATTGTCTGCCCTGAAATAACACGAAAGGCACtGGTGAACCGCTA
NT19-2 cont'd		TGTGGAACAGCTGGCTACAGAGAACAAATGTTCTGAAGTGAAAGCTGTGTAC
NT19-2 cont'd Probe 1684		CAGAAAAACACGCAATCCTGACGCCATTGGCAATTCGAAGCATATCGCGGTTC CAGGCAATCGAAGCATATCGCGGTTC
NT19-2 cont'd 1684 cont'd Probe 1685		TCCACAACTGATGGAAGAACGGCCTGAATGCCCTGACCGAAAACCAGGCTGGT TCCACAACT TGAATGCCCTGACCGAAAACCAGGCGCTGGGT
NT19-2 cont'd 1685 cont'd		ATCTGAAGCAAGAGCTGCCCTGGTGGAAAGTGCTGAAGCTGGAAAGGCCGG ATCT

14/15

FIGURE 6B

NT19-2 cont'd TAACCCGGGCACTGAAAGCCATTAAACTTTCTTGTGAAAAAGCCCTAAAGG
NT19-2 cont'd TGAGCTGCCGGAGCGCCTGCAACAGGCCGCAGTTAACGCCAATGCCAAACGTGG
NT19-2 cont'd CGCTTAATCGT
 3'

15/15

FIGURE 7

S. d.	ompA	cont'd	5'	CTGACGACCTGGACGTGACTCGTCTGGGTGGTATGGTTTGGCGTGCAGA
E. c.	ompA			CTGACGACCTGGACATCTACACTCGTCTGGCATGGTATGGCTGCAGA
S. d.	ompA	cont'd	CACCAAAGCTCACAAACAATGTCAGAGGTGAATCTGAGAAAAAACCAACGATAACC	
E. c.	ompA	cont'd	CACTAAATCC-----AACGTTTATGGT-----AAAAAACCAACGACACC	
Probe 1707		3'	GGTTTCGACTGTTACACTGTCACCTAGACTC 5'	
S. d.	ompA	cont'd	GGCGTTTCTCCGGTATTGCAAGGTGGTGTGAATGGGCCATCACTCCTGAAA	
E. c.	ompA	cont'd	GGCGTTTCTCCGGTCTGGCTGGGTGTGAATACGGATCACTCCTGAAA	
Probe 1706		3'	GGCCATAAGCGTCCACCAACTTACCCGGTAGTG 5'	
S. d.	ompA	cont'd	3'	
E. c.	ompA	cont'd	TCGGCTACCCGTTCTGGAAATACCAAGTGGAC	
			TCGGCTACCCGTTCTGGAAATACCAAGTGGAC	

SUBSTITUTE SHEET

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12Q 1/68	A3	(11) International Publication Number: WO 93/03187 (43) International Publication Date: 18 February 1993 (18.02.93)
(21) International Application Number: PCT/US92/06617		(74) Agents: LADD, Robert, G. et al.; Amoco Corporation, Patents and Licensing Department, Mail Code 1907, P.O. Box 87703, Chicago, IL 60680-0703 (US).
(22) International Filing Date: 28 July 1992 (28.07.92)		
(30) Priority data: 738,800 31 July 1991 (31.07.91) US		(81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).
(71) Applicant: AMOCO CORPORATION [US/US]; Mail Code 1907, Patents and Licensing Department, P.O. Box 87703, Chicago, IL 60680-0703 (US).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>
(72) Inventors: PARODOS, Kyriaki ; 30 Royal Crest Drive, Apartment 9, Marlborough, MA 01752 (US). McCARTY, Janice, Marie ; 10 Donna Terrace, Hyde Park, MA 02136 (US).		(88) Date of publication of the international search report: 1 April 1993 (01.04.93)

(54) Title: NUCLEIC ACID PROBES FOR THE DETECTION OF SHIGELLA

(57) Abstract

The invention relates to methods of detection of bacteria of the genus Shigella and/or Enteroinvasive *E. coli* (EIEC) by use of a set of nucleic acid probes. The invention further relates to a set of Shigella specific chromosomal sequences and fragments and to probes derived from the Shigella specific fragments. Additionally, probes were derived from a sequence from the Shigella *ompA* gene. In particular, a series of probes, each approximately 40 nucleotides in length, were designed having specificity for Shigella or for Shigella and Enteroinvasive *E. coli*, and having utility in nonisotopic test formats which require amplification to achieve high sensitivity. Specific hybridization probe sets which are capable of detecting substantially all clinically significant serotypes of Shigella, as well as enteroinvasive strains of *E. coli*, are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MN	Mongolia
AU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Faso	GN	Guinea	NO	Norway
BG	Bulgaria	GR	Greece	NZ	New Zealand
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Ireland	PT	Portugal
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	RU	Russian Federation
CG	Congo	KP	Democratic People's Republic of Korea	SD	Sudan
CH	Switzerland	KR	Republic of Korea	SE	Sweden
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CS	Czechoslovakia	LU	Luxembourg	SU	Soviet Union
CZ	Czech Republic	MC	Monaco	TD	Chad
DE	Germany	MG	Madagascar	TG	Togo
DK	Denmark	ML	Mali	UA	Ukraine
ES	Spain			US	United States of America

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 92/06617

A. CLASSIFICATION OF SUBJECT MATTER

IPC5: C12Q 1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC5: C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DATA BASE: MEDLINE, BIOTECHNOLOGY ABSTRACTS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Dialog Information Services, File 154, Medline, Dialog accession no. 07171566, Medline accession no. 90078566, Venkatesan MM et al: "Use of Shigella flexneri ipaC and ipaH gene sequences for the gene- ral identification of Shigella spp. and enteroinva- sive Escherichia coli", J Clin Microbiol Dec 1989, 27 (12) p 2687-91 --	1
X	Dialog Information Services, File 154, Medline, Dialog accession no. 07673589, Medline accession no. 91192589, Cleuziat P et al: "Specific detection of Escherichia coli and Shigella species using frag- ments of genes coding for beta-glucuronidase", FEMS Microbiol Lett Nov 1990, 60 (3) p 315-22 --	1

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier document but published on or after the international filing date
- "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same parent family

Date of the actual completion of the international search

2 February 1993

Date of mailing of the international search report

25.02.93

Name and mailing address of the ISA/
 European Patent Office, P.B. 5818 Patentdaan 2
 NL-2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. JI 651 epo nl.
 Fax: (+ 31-70) 340-3016

Authorized officer

MIKAEL G:SON BERGSTRAND

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 92/06617

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP, A2, 0357306 (INTEGRATED GENETICS, INC.), 7 March 1990 (07.03.90) --	1-44
A	US, A, 4816389 (SANSONETTI ET AL), 28 March 1989 (28.03.89) -- -----	1-44

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US92/06617

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

The claimed invention relates to DNA fragments derived from the genus *Shigella* that are useful when detecting *Shigella* and/or *Enteroinvasive E. coli*. Both the problem (Detecting *Shigella* bacteria) and the solution (Detecting *Shigella* bacteria by using DNA probes derived from the *Shigella* chromosome) are known in the art. This leads to the following regrouping:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/USA/

1. Claims 1,4,7-10,17-21, and 39-44: Probes derived from the chromosome of *Shigella flexneri* and probe compositions comprising these probes.
2. Claims 2-3,5-6,12-38: Probes derived from the chromosome of *Shigella sonnei* and probe compositions comprising these probes.
3. Claims 11 and 17-26: Probes derived from the chromosome of *Shigella dysenteriae* and probe compositions comprising these probes.

SA 959

INTERNATIONAL SEARCH REPORT
Information ... patent family members

International application No.

08/01/93

PCT/US 92/06617

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A2- 0357306	07/03/90	JP-A-	2238899	21/09/90
		US-A-	5084565	28/01/92
US-A- 4816389	28/03/89	EP-A,B-	0170584	05/02/86
		FR-A,B-	2567541	17/01/86
		JP-A-	61044000	03/03/86
		US-A-	4992364	12/02/91

Form PCT/ISA/210 (patent family annex) (July 1992)