Software Manual for Model Selection with Genetic Algorithms using ga

Eddie Buehler, Yang Hu & Jin Rou New University of California, Berkeley

Version 1.0, December 9, 2014

1 Introduction

2 Help files for R functions

evaluate

Do evaluation.

Description

Do evaluation for chromosomes in population by calculating model selection criterion.

Usage

```
evaluate(pop, model_data, model = "lm", criterion = "AIC",
   do_parallel = FALSE)
```

Arguments

pop Matrix of population of chromosomes.

do_parallel Logical; Default FALSE; Do in parallel?

model_data; Object of class model_data.

model; Character; "lm" (default) or "glm"; Linear model or generalized linear model.

criterion; "AIC" (default) or "BIC"; Criterion to be minimized.

Value

Numeric vector; Evaluation values for all chromosomes in the current generation.

 $evaluate_once$

Do evaluation once.

Description

Do evaluation for a chromosome by calculating model selection criterion.

Usage

```
evaluate_once(model_data, xvars_select, model = "lm", criterion = "AIC")
```

Arguments

model_data; Object of class model_data.

xvars_select;

Logical vector;

model; Character; "lm" (default) or "glm"; Linear model or generalized linear model.

criterion; "AIC" (default) or "BIC"; AIC or BIC.

Value

Numeric; Value of criterion.

initialize

Initialize first generation of chromosomes.

Description

Initialize first generation of chromosomes completely randomly.

Usage

```
initialize(pop_size, num_vars)
```

Arguments

pop_size Non-negative integer; Number of chromosomes in population.

num_vars Non-negative integer; Number of variables in model under consideration/ num-

ber of genes in each chromosome.

Value

A matrix of size pop_size x num_vars with 1's and 0's.

mutate

Mutate genes in the population.

Description

Mutate each gene in the population at a pre-defined rate.

Usage

```
mutate(pop, prob_mutate = 0.01)
```

Arguments

pop Matrix; Population of chromosomes.

prob_mutate Numeric, between 0 and 1; Default is 0.01; Probability of mutation.

Value

Matrix of population of chromosomes that have undergone mutation.

plot_ga

Plots results from the genetic algorithm.

Description

Plots the best model evaluation criterion in each generation against the generation iteration.

Usage

```
plot_ga(ga, num_view = 3)
```

Arguments

ga Object of class ga.

num_view Number of top models to display.

Value

Prints summary of top models and associated value of model selection criterion.

 $process_data$

Process data for input into genetic algorithm.

Description

Process data for input into genetic algorithm.

Usage

```
process_data(data, yvar, xvars = NULL)
```

Arguments

data Data frame

yvar Character; Name of column containing response variable.

xvars Character vector; Default is all column names that are not yvar; Name(s) of

column(s) containing set of explanatory variables to select on.

Value

A list object named model_data containing:

data Data frame; Processed data with only relevant columns.

yvar Character; Name of column containing response variable.

xvars Character vector; Name(s) of column(s) containing set of explanatory variables to select on.

num_vars Integer; Length of xvars.

recombine Recombine.

Description

Carry out crossover of parent chromosomes in a mating pool.

Usage

```
recombine(pop_mating, pop_size, method = "onepoint", prob_recombine = 0.6,
   do_parallel = FALSE)
```

Arguments

pop_mating Matrix of population of chromosomes that form the mating pool.

pop_size Integer; Number of chromosomes in a generation.

method String; "onepoint" (default), "twopoint", "uniform"; Type of crossover, at one

point, at two points or uniformly (at all possible points).

prob_recombine

Numeric, between 0 and 1; Default is 0.6; Probability of recombination.

do_parallel Logical; Default FALSE; Do in parallel?

Value

Matrix of population of chromosomes resulting from recombination.

recombine_once Recombine once.

Description

Carry out crossover of two parent chromosomes to produce one child chromosome.

Usage

```
recombine_once(parent1, parent2, method = "onepoint")
```

Arguments

parent1 Integer vector of 1st parent chromosome containing 1's and 0's.

parent2 Integer vector of 2nd parent chromosome containing 1's and 0's.

method String; "onepoint" (default), "twopoint", "uniform"; Type of crossover, at one

point, at two points or uniformly (at all possible points).

Value

Integer vector of child chromosome containing 1's and 0's.

reproduce

Wrapper function for reproduction stage.

Description

Wrapper function for reproduction stage.

Usage

```
reproduce(ga, iteration, do_parallel = FALSE)
```

Arguments

ga Object of class ga. iteration Iteration number.

Value

Updated ga list object.

select Select chromosomes for recombination.

20200

Description

Select chromosomes for recombination based on fitness.

Usage

```
select(pop, evaluation, method = "rank", do_parallel = FALSE)
```

Arguments

pop Matrix; Population of chromosomes.

evaluation Numeric vector; Evaluation values of all chromosomes in population.

method String; "rank" (linear rank selection) (default) or "tournament"; Method to

select chromosomes for inclusion in mating pool.

do_parallel Logical; Default FALSE; Do in parallel?

Value

Matrix of population of chromosomes that form the mating pool.

select_model Carry out model selection with a genetic algorithm.

Description

Main function for carrying out model selection with a genetic algorithm.

Usage

```
select_model(data, yvar, xvars = NULL, model = "lm", criterion = "AIC",
   pop_size = 100L, method_select = "rank", method_recombine = "onepoint",
   prob_recombine = 0.6, prob_mutate = 0.01, num_max_iterations = 100L,
   seed = 123, do_parallel = FALSE)
```

Arguments

data Data frame

yvar Character; Name of column containing response variable

xvars Character vector; Default is all column names that are not yvar; Name(s) of

column(s) containing set of explanatory variables to select on.

pop_size Integer; Default is 100; Number of chromosomes per generation.

method_select

String; "rank" (linear rank selection) (default) or "tournament"; Method to

select chromosomes for inclusion in mating pool.

method_recombine

String; "onepoint" (default), "twopoint", "uniform"; Type of crossover, at one

point, at two points or uniformly (at all possible points).

prob_recombine

Numeric, between 0 and 1; Default is 0.6; Probability of recombination.

prob_mutate Numeric, between 0 and 1; Default is 0.01; Probability of mutation.

num_max_iterations

Non-negative integer; Default is 100; Maximum number of iterations before

algorithm is stopped.

seed Non-negative integer; Default is 123; Random seed for reproducibility.

do_parallel Logical; Default is FALSE; Do in parallel?

model; Character; "lm" (default) or "glm"; Linear model or generalized linear model.

criterion; "AIC" (default) or "BIC"; Criterion to be minimized.

summary_ga Display summary of results from the genetic algorithm.

Description

Outputs the top models selected from the genetic algorithm.

Usage

Arguments

ga Object of class ga.

num_view Number of top models to display.

Value

Prints summary of top models and associated value of model selection criterion.