## Machine Learning, Spring 2020

### Regression

Reading Assignment: Chapter 5 & 6

Python tutorial: <a href="http://learnpython.org/">http://learnpython.org/</a>

TensorFlow tutorial: <a href="https://www.tensorflow.org/tutorials/">https://www.tensorflow.org/tutorials/</a>

PyTorch tutorial: <a href="https://pytorch.org/tutorials/">https://pytorch.org/tutorials/</a>

#### Polynomial Linear Regression

Linear Regression:

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression:

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

# Why polynomial regression





# Why still called "Linear"?

Polynomial Linear Regression:

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

The function is expressed as the linear combination of unknowns (i.e. coefficients)?

# Polynomial Regression



$$Y = \theta^T \mathbf{x}$$



$$Y = \sigma(\theta^T \mathbf{x})$$

# Over Fitting



# Regularized logistic regression

# Regularized logistic regression Loss

Loss function:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

**Gradient function:** 

$$egin{align*} rac{\partial}{\partial heta_j} J( heta) &= rac{\partial}{\partial heta_j} iggl[ -rac{1}{m} \sum_{i=1}^m \left( y^{(i)} \, log(h_ heta(x^{(i)}) + (1-y^{(i)}) \, log(1-h_ heta(x^{(i)})) 
ight) + rac{\lambda}{2m} \sum_{j=1}^n heta_j^2 iggr] \ &= rac{1}{m} \sum_{i=1}^m \left( h_ heta(x^{(i)}) - y^{(i)} 
ight) x_j^{(i)} + rac{\lambda}{m} heta_j \end{aligned}$$





# Machine Learning, Spring 2019

Classification

### Overview

#### Problems:

- 1. Spam or Non-spam emails
- 2. Person re-identification (same or different person)





#### Linear Regression or Logistic Regression?



# Hypothesis

 Hypothesis: A hypothesis is a certain function that we believe (or hope) is similar to the true function, the target function that we want to model. In context of email spam classification, it would be the rule we came up with that allows us to separate spam from non-spam emails.

### Classifier

Classifier: A classifier is a special case of a hypothesis (nowadays, often learned by a machine learning algorithm). A classifier is a hypothesis or discrete-valued function that is used to assign (categorical) class labels to particular data points. In the email classification example, this classifier could be a hypothesis for labeling emails as spam or non-spam. However, a hypothesis must not necessarily be synonymous to a classifier. In a different application, our hypothesis could be a function for mapping study time and educational backgrounds of students to their future SAT scores.

# Logistic Regression Hypothesis

$$h_{\theta}(x) = g(\theta^T x) \tag{1}$$

$$g(z) = \frac{1}{1 + e^{-z}} \tag{2}$$

$$z = \theta^T x \tag{3}$$

$$g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} \tag{4}$$



# Hypothesis Function

We have: 
$$h_{\theta}(x) = P(y = 1|x;\theta)$$

$$P(y = 0|x;\theta) + P(y = 1|x;\theta) = 1$$

Then:

$$h_{\theta}(x) = P(y = 1|x;\theta) = 1 - P(y = 0|x;\theta)$$

# **Decision Boundary**



### Classification: Linearly Separable



#### Classification: Non-Linearly Separable



# Machine Learning, Spring 2019

### Classification Cost Function

# Design of Cost Function

**Training Samples:** 

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m),y^{(m)}})\}$$

Hypothesis:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

#### **Engineering Division | NYU Abu Dhabi**

#### Direction Difference function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Where: 
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$





#### Log Likelihood function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Where: 
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

We can write it as one function as:

$$cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) + [-(1-y)log(1-h_{\theta}(x))]$$

## Machine Learning, Spring 2020

One-vs-All Classification

#### Multi-class classification



# Hypothesis

Logistic Regression Model:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

### Cost Function

#### Log Likelihood function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Where: 
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$y \in \{0, 1, ..., n\}$$
  
 $h_{\theta}^{(0)}(x) = P(y = 0 | x; \theta)$   
 $h_{\theta}^{(1)}(x) = P(y = 1 | x; \theta)$   
...  
 $h_{\theta}^{(n)}(x) = P(y = n | x; \theta)$ 

$$Cost(h_{\theta}(x), y) = -log(h_{\theta}(x))$$