

COMPLEXITY

Algorithms and Data Structures 1 Exercise – 2023S Markus Jäger (Computer Science) Florian Beck (Artificial Intelligence) Raja Zafar (Artificial Intelligence)

> Institute of Pervasive Computing Johannes Kepler University Linz

> > markus.jaeger@jku.at florian.beck@jku.at raja.zafar@pervasive.jku.at

JOHANNES KEPLER UNIVERSITÄT LINZ Altenberger Straße 69 4040 Linz, Österreich jku.at

COMPLEXITY (ASYMPTOTIC BEHAVIOUR)

- Motivation
- Definition
- Big-O Notation
 - Rules
 - Examples
- Recurrence Systems
 - Unfolding + Examples
 - Master Theorem + Examples

COMPLEXITY :: MOTIVATION

Algorithm analysis is essential for understanding algorithms well enough, in order to apply them to practical problems:

- Performance of a certain algorithm (worst- / best- / average-case)?
- Runtime behaviour?
- Behaviour in a new environment?

Many algorithms are based on the principle of recursive decomposition:

- A large problem is broken down into several smaller problems, and
- the solutions of the partial problems are used for solving the original problem
- E.g.: QuickSort, MergeSort, binary search, etc.

COMPLEXITY :: O-NOTATION

For describing the asymptotic time complexity we use the **O-notation** (by Landau)

- Rough measure for the runtime of an algorithm
- Variable factors (such as the problem size n) are considered to be aiming towards infinity
- Constant factors, as well as terms whose orders are smaller than the determining term, are neglected, e.g.:

$$O(2n) \rightarrow O(n)$$

 $O(n^2 + n) \rightarrow O(n^2)$

O(f(n))	Growth	
O(1)	constant	excellent
O(log n)	logarithmic	excellerit

O(f(n))	Growth		
O(1)	constant	excellent	
O(log n)	logarithmic	excellerit	
O(n)	linear	acceptable	
O(n * log n)	slightly over linear	αυσεριανίε	

O(f(n))	Growth	
O(1)	constant	excellent
O(log n)	logarithmic	excellerit
O(n)	linear	acceptable
O(n * log n)	slightly over linear	ассеріавіс
O(n²)	quadratic	
O(n³)	cubic	bad
O(n ^k)	polynomial	

O(f(n))	Growth		
O(1)	constant	excellent	
O(log n)	logarithmic	excellerit	
O(n)	linear	acceptable	
O(n * log n)	slightly over linear	ассеріавіс	
O(n²)	quadratic		
O(n³)	cubic	bad	
O(n ^k)	polynomial		
O(2 ⁿ)	exponential	disastrous	

COMPLEXITY :: ... IN COMPUTER SCIENCE

Data Structure	Time Complexity								Space Complexity
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	0(n)	0(n)	0(n)	0(1)	0(n)	0(n)	0(n)	O(n)
Stack	0(n)	0(n)	0(1)	0(1)	O(n)	0(n)	0(1)	0(1)	O(n)
Singly-Linked List	0(n)	O(n)	0(1)	0(1)	O(n)	0(n)	0(1)	0(1)	O(n)
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Skip List	O(log(n))	O(log(n))	0(log(n))	0(log(n))	O(n)	0(n)	0(n)	O(n)	O(n log(n))
Hash Table		0(1)	0(1)	0(1)	-	0(n)	0(n)	O(n)	O(n)
Binary Search Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	O(n)	0(n)	O(n)	O(n)	O(n)
Cartesian Tree	-	O(log(n))	0(log(n))	0(log(n))	-	0(n)	O(n)	O(n)	O(n)
B-Tree	O(log(n))	O(log(n))	O(log(n))	0(log(n))	O(log(n))	O(log(n))	0(log(n))	O(log(n))	O(n)
Red-Black Tree	0(log(n))	O(log(n))	O(log(n))	0(log(n))	0(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Splay Tree	-	0(log(n))	0(log(n))	0(log(n))	-	0(log(n))	O(log(n))	0(log(n))	0(n)
AVL Tree	O(log(n))	O(log(n))	O(log(n))	0(log(n))	O(log(n))	0(log(n))	0(log(n))	O(log(n))	O(n)

Source: http://bigocheatsheet.com/

COMPLEXITY :: ... IN COMPUTER SCIENCE

Source: http://bigocheatsheet.com/

COMPLEXITY :: RULES

1. Constant factors are not considered

$$O(2n) = O(n)$$

2.
$$T_1(n) = O(f(n))$$
 and $T_2(n) = O(g(n))$
 $T_1(n) + T_2(n)$ = $Max(O(f(n)), O(g(n)))$
 $T_1(n) * T_2(n)$ = $O(f(n) * g(n))$

3. T(n) is a polynomial of the order x: T(n) = $(n+1)^x$ T(n) = O(n^x)

COMPLEXITY :: CALCULATION

A low-level analysis resulted in the following expression:

$$T(n) = 4n (-2 + 3n) (n - Id(n)) / n$$

What is the asymptotic time complexity?

$$T(n) = (-8n + 12n^2) (n - Id(n)) / n$$

$$= (-8n^2 + 12 n^3 + 8n Id(n) - 12n^2 Id(n)) / n$$

$$= -8n + 12n^2 + 8 Id(n) - 12n Id(n)$$

$$= 12n^2 + 8 Id(n) - 8n - 12n Id(n)$$

→ asymptotic runtime complexity: O(n²)

COMPLEXITY :: EXAMPLES

for-loops

```
for i in range(n):
    for j in range(n):
        k = k + 1

O(n²)

for i in range(n):
    for j in range(5):
        # do something

O(5n) = O(n)
```


COMPLEXITY :: EXAMPLES

branches (if-then-else)

```
if (condition): # e.g. O(1)
   Statement1 # e.g. O(n)
else:
   Statement2 # e.g. O(n²)
```

$$O(max(O(1), O(n), O(n^2))) = O(n^2)$$

Sequence of statements

COMPLEXITY :: EXAMPLES

Nested for-loops

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = O(n^2)$$

COMPLEXITY :: LOGARITHMIC COMPLEXITY

Logarithmic complexities can be found where the problem size is continuously divided by a certain factor:

- divide & conquer algorithms
- The divisor is the basis of the logarithm

Reason: How often do you have to divide until you reach a single element?

$$n/2^p = 1 \rightarrow n = 2^p \rightarrow p = \log_2(n) \quad \log_2(n) = 1d(n)$$

Hints:
$$log_k(n) = log(n)/log(k)$$

 $log_b(a) = x \Rightarrow a = b^x$

COMPLEXITY :: EXAMPLE

Find the complexities!

Example 1 O(n * log(n))

```
i = 1
while i <= n:
    j = n
    while j > 1:
        j = j / 10
    i = i + 1
```

Example 2 $O(n^2 * log_2(n))$

```
for i in range(n):
    for j in range(n):
        k = n
    while k > 1:
        k = k / 2
```


RECURRENCE SYSTEMS

RECURRENCE SYSTEMS :: IN GENERAL

Recurrence systems describe the runtime behaviour of recursive algorithms (e.g., MergeSort):

- Divide: Reduce problem (the sequence to be sorted is split into partial sequences)
- Conquer: sort the parts (e.g. recursive use of MergeSort)
- Combine: Reading subsequence simultaneously and mixing them, by reading the smallest element of each subsequence and writing it to a new sequence

Pseudocode:

```
algorithm MergeSort(S) \rightarrow S<sub>S</sub>

Input: sequence S

Output: sorted sequence S<sub>S</sub>

if S is only one element

return S

else

divide S in 2 halves S<sub>1</sub> and S<sub>2</sub>; //DIVIDE

S<sub>1</sub> := MergeSort(S<sub>1</sub>); //CONQUER

S<sub>2</sub> := MergeSort(S<sub>2</sub>); //CONQUER

return Merge(S<sub>1</sub>, S<sub>2</sub>); //COMBINE
```

Runtime behaviour of MergeSort:

$$T(n) = 2 * T(n/2) + n, n \ge 2$$

 $T(1) = 1$

RECURRENCE SYSTEMS :: O-NOTATION

Asymptotic runtime complexity

Only the time behaviour of the algorithm for a potentially infinitely large input quantity is of interest

f = O(g)... "f does not grow faster than g" (upper limit)

$$\exists c \in R^+, n_0 \in N_0, \forall n \ge n_0$$
: $f(n) \le c g(n)$

 $f = \Omega(g) \dots$ "f grows at least as fast as g" (lower limit)

$$g = O(f)$$

 $f = \Theta(g) \dots$, f and g are of the same growth order (exactly)

$$f = O(g)$$
 und $g = O(f)$

RECURRENCE SYSTEMS :: ANALYSIS (UNFOLDING)

Principle: Repeated insertion until a regularity is discovered

1) Insertion

```
T(n) = 2T(n/2) + n, n \ge 2
T(1) = 1
T(n) = 2T(n/2) + n = 0
T(n) = 2T(n/2) + n = 0
T(n) = 2T(n/4) + 0
T(n/2^i) + i*n
```

2) Maximum recursion depth

At which i $(n/2^i = 1)$ is the maximum recursion depth reached?

$$\rightarrow$$
 i = Id(n), as for n/2^{ld(n)} = n/n = 1

RECURRENCE SYSTEMS :: ANALYSIS (UNFOLDING)

```
3) Insert i (i = Id(n))

T(n) = 2^{ld(n)} * T(n/2^{ld(n)}) + ld(n) * n =

= n * T(n/n) + ld(n) * n =

= n * T(1) + ld(n) * n =

= n + ld(n) * n
```

4) Asymptotic runtime complexity

f = O(g) ... "f does not grow faster than g" (upper asymptotic limit), if $\exists c \in R^+$, $n_o \in N_o$, $\forall n \ge n_o$: $f(n) \le c g(n)$

Assumption: T(n) = O(n * Id(n))

Proof: It is sufficient to find any c for which an n_0 exists, from which $f(n) = n + n*Id(n) \le c*n*Id(n)$ with increasing n

e.g.:
$$c = 2$$
:
 $n + n * ld(n) \le 2 * n * ld(n) \rightarrow$
 $n \le n * ld(n) \rightarrow$
 $1 \le ld(n) \rightarrow$
 $2 \le n$
 $T(n) = O(n + n * ld(n)) = O(n * ld(n))$

RECURRENCE SYSTEMS :: ANALYSIS (GUESS & PROOF)

Principle: Guess the solution and proof it using induction

1) Guess

$$T(n) = 2T(n/2) + n, n \ge 2$$

 $T(1) = 1$
 $\rightarrow T(n) = O(n + n * ld(n)) \rightarrow O(n * ld(n))$

2) Proof using induction

Induction assumption: T(n) = n + n * Id(n)Induction base: $T(1) = 1 + 1 * Id(1) = 1 \rightarrow OK$ Induction step: insert induction assumption

$$T(n) = 2T(n/2) + n$$

$$= 2(n/2 + (n/2) * ld(n/2)) + n$$

$$= n + n * ld(n/2) + n$$

$$= 2n + n * (ld(n) - ld(2))$$

$$= 2n + n * ld(n) - n$$

$$= n + n * ld(n)$$

RECURRENCE SYSTEMS :: **EXAMPLES** (UNFOLDING + PROOFING)

$$T(1) = 7$$

 $T(n) = T(n/5) + 7 \text{ for } n \ge 2$

Solution (unfolding):

$$T(n) = T(n/5) + 7, n \ge 2$$

 $T(1) = 7$

$$T(n) = T(n/5) + 7 =$$

$$= (T((n/5)/5) + 7) + 7 =$$

$$= T(n/25) + 14 =$$

$$= (T((n/25)/5) + 7) + 14 =$$

$$= T(n/125) + 21 = ... =$$

$$T(n) = T(n/5^{i}) + 7i$$

max. recursion depth at $i = log_5 n$

$$T(n) = T(n/5^{i}) + 7i$$

$$= T(n/5^{\log_5 n}) + 7*\log_5 n$$

$$= T(n/n) + 7*\log_5 n$$

$$= T(1) + 7*\log_5 n$$

$$= 7 + 7*\log_5 n$$

Solution (proofing):

$$T(n) = T(n/5) + 7, n \ge 2$$

 $T(1) = 7$

Induction assumption: $T(n) = 7+7*log_5n$

Induction base: $T(1) = 7+7*log_51 = 7+7*0$ **OK**

Induction step: T(n) = T(n/5) + 7 == $(7+7*log_5(N/5))+7 =$

(we know: $log_5(n/5) = log_5(n) - log_5 = log_5(n) - 1$) = 7+7 ($log_5 n-1$) +7 = = 7+7* $log_5 n-7$ + 7 =

 $= 7 + 7 * \log_5 n$

 $T(n) = O(\log n)$

RECURRENCE SYSTEMS :: ANALYSIS (MASTER THEOREM)

Principle: Approach for recurrence equations of the form: T(n) = a * T(n/b) + f(n) with $a \ge 1$, b > 1 and f(n) asymptotic positive

- If $\exists \ \epsilon > 0$, such that $f(n) = O(n^{(\log_b a) \epsilon})$, then $T(n) = O(n^{(\log_b a)})$
- If $\exists k \ge 0$, such that $f(n) = \Theta(n^{\log_b a} \log^k n)$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- If ∃ ε > 0 and c < 1, such that f(n) = Ω (n^{(log_b a)+ε}) and a f(n/b) ≤ c f(n) for n sufficiently large, then
 T(n) = Θ (f(n))

f = O(g) f does not grow faster than g f = O(g) f and g are of the same order f = O(g) f grows at least as fast as g

RECURRENCE SYSTEMS :: EXAMPLE (MASTER THEOREM)

$$T(n) = 2T(n/2) + n, n \ge 2$$

Solution:

$$a = 2$$

 $b = 2$
 $f(n) = n$
 $n^{\log_b a} = n^{\log_2 2} = n^1 = n$

f(n) compare with
$$n^{\log_b a}$$

f(n) = $\Theta(n^{\log_b a}) = \Theta(n)$
 \rightarrow For k=0, n and n are of the same order \rightarrow case 2

$$T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n \log n)$$

$$T(n) = a T(n/b) + f(n)$$

case 1
$$\exists \ \epsilon > 0$$
: $f(n) = O(n^{(\log_b a) - \epsilon})$
 $T(n) = \Theta(n^{\log_b a})$

case 2
$$\exists k \ge 0$$
: $f(n) = \Theta(n^{(\log_b a)} \log^k n)$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

case 3
$$\exists \ \epsilon > 0$$
, c < 1: $f(n) = \Omega$ ($n^{(\log_b a) + \epsilon}$) and a $f(n/b) \le c$ $f(n)$ for n sufficiently large, then $T(n) = \Theta$ ($f(n)$)

$$f = O(g)$$
 f does not grow faster than g
 $f = O(g)$ f and g are of the same order
 $f = O(g)$ f grows at least as fast as g

RECURRENCE SYSTEMS :: EXAMPLE (MASTER THEOREM)

$$T(n) = 8T(n/2) + 1/n^4$$

Solution:

$$a = 8$$

 $b = 2$
 $f(n) = 1/n^4 = n^{-4}$
 $n^{\log_b a} = n^{\log_2 8} = n^3$

f(n) compare with $n^{\log_b a}$ results in **case 1**:

$$f(n) = O(n^{(log_b a)-ε}) = Θ(n^{3-ε})$$

→ n⁻⁴ does not grow faster than n^{3-ε}

 \rightarrow Is true for a constant $\epsilon > 0$ (e.g.: $\epsilon = 7$)

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^3)$$

$$T(n) = a T(n/b) + f(n)$$

case 1
$$\exists \ \epsilon > 0$$
: $f(n) = O(n^{(\log_b a) - \epsilon})$
 $T(n) = \Theta(n^{\log_b a})$

case 2
$$\exists k \ge 0$$
: $f(n) = \Theta(n^{(\log_b a)} \log^k n)$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

case 3
$$\exists \ \epsilon > 0$$
, c < 1: $f(n) = \Omega$ ($n^{(\log_b a) + \epsilon}$) and a $f(n/b) \le c$ $f(n)$ for n sufficiently large, then $T(n) = \Theta$ ($f(n)$)

$$f = O(g)$$
 f does not grow faster than g
 $f = O(g)$ f and g are of the same order
 $f = O(g)$ f grows at least as fast as g

RECURRENCE SYSTEMS :: EXAMPLE (MASTER THEOREM)

$$T(n) = 16T(n/4) + n^{2.5}$$

Solution:

$$a = 16$$

 $b = 4$
 $f(n) = n^{2.5}$
 $n^{\log_b a} = n^{\log_4 16} = n^2$

f(n) compare with n^{log_ba} results in **case 3**:

Proof of the additional condition:

a *
$$f(n/b) = 16(n/4)^{2.5} = 16n^{2.5}/4^{2.5} =$$

 $n^{2.5}(1/4^{0.5}) = f(n) * (1/4^{0.5}) \rightarrow c = (1/4^{0.5}) < 1$

$$T(N) = \Theta(f(n)) = \underline{\Theta(n^{2.5})}$$

$$T(n) = a T(n/b) + f(n)$$

case 1
$$\exists \ \epsilon > 0$$
: $f(n) = O(n^{(\log_b a) - \epsilon})$
 $T(n) = \Theta(n^{\log_b a})$

case 2
$$\exists k \ge 0$$
: $f(n) = \Theta(n^{(\log_b a)} \log^k n)$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

case 3
$$\exists \ \epsilon > 0$$
, c < 1: $f(n) = \Omega$ ($n^{(\log_b a) + \epsilon}$) and a $f(n/b) \le c$ $f(n)$ for n sufficiently large, then $T(n) = \Theta$ ($f(n)$)

$$f = O(g)$$
 f does not grow faster than g
 $f = O(g)$ f and g are of the same order
 $f = O(g)$ f grows at least as fast as g

COMPLEXITY

Algorithms and Data Structures 1 Exercise – 2023S Markus Jäger (Computer Science) Florian Beck (Artificial Intelligence) Raja Zafar (Artificial Intelligence)

Institute of Pervasive Computing Johannes Kepler University Linz

markus.jaeger@jku.at florian.beck@jku.at raja.zafar@pervasive.jku.at

JOHANNES KEPLER UNIVERSITÄT LINZ Altenberger Straße 69 4040 Linz, Österreich jku.at