Metody obliczeniowe w nauce i technice - laboratorium 0 - ćwiczenie 9

Kacper Klimas

Treść zadania

Niech ciąg
$$x_k$$
 będzie zdefiniowany: $x_{k+1} = 2^{2(k+1)+1} * \frac{\sqrt{\frac{1+x_k^2}{2^{2(k+1)}}}-1}{x_k}$

Zaproponować inną postać tego związku i obliczyć $x_{30}^{}$ dwoma sposobami.

Skomentować i spróbować objaśnić otrzymane wyniki.

Wyniki

Do uzyskania wyników wykorzystano język Python w wersji 3.10.2 oraz bibliotek numpy (oferuje typy danych) oraz pylab (generuje wykresy). Zgodnie ze związkiem podanym w treści zadania policzono x_{30} dla trzech typów zmiennych: float, double i long double. Poniższe tabele oraz wykresy obrazują wyniki dla podanych wyżej typów z początkowego oraz końcowego zakresu indeksu k. Rezultaty dla k w przedziale [7,21] były bardzo zbliżone dlatego nie zostały umieszczone w tabeli.

	Float	Double	Long double
1	4.0	4.0	4.0
2	3.3137085	3.1825978780745294	3.313708498984761
3	3.1825979	3.151724907429258	3.1825978780745294
4	3.1517248	3.1441183852458665	3.151724907429258
5	3.1441183	3.142223629942345	3.1441183852458665
6	3.1422236	3.141750369169704	3.142223629942345
7	3.1417503	3.141632080702249	3.141750369169704
21	3.1414452	3.141445158870801	3.141445158870801
22	3.1409707	3.140970795602487	3.140970795602487
23	3.1339834	3.1339832938853593	3.1339832938853593
24	3.1110568	3.1110567880253206	3.1110567880253206
25	3.0536246	3.0536247478882985	3.0536247478882985
26	2.6198373	2.6198372951792175	2.6198372951792175
27	3.0536249	3.0536247478882985	3.0536247478882985
28	0.0	0.0	0.0
29	nan	nan	nan
30	nan	nan	nan

Tabela nr 1 : Zależność wartości k od wartości \boldsymbol{x}_k dla typów float, double oraz long double

Wykres nr 1: Zależność wartości k od wartości \boldsymbol{x}_{k} dla typów float, double oraz long double

Wnioski

Wartości x_k dla różnych typów danych mają zbliżone wartości co pokazuje wykres. W tabelach natomiast widać różnice precyzji podczas obliczeń typu double oraz long double nad typem float, co przekłada się na odmienne wyniki (mniej precyzyjne) pomiędzy nimi. Dla podanego w zadaniu wyrażenia, natomiast wszystkie typy są za mało dokładne aby określić wyrazy 28, 29, 30. W obliczeniach programu x_{28} wynosi 0.0 co powoduje błędy w dalszych obliczeniach spowodowane tym, że wyrazy x_k są w mianowniku wyrażenia (dzielenie przez 0).

Inna postać związku oraz wyniki

Podany związek możemy zmodyfikować tak, aby wyrazy x_k nie były 'same' w żadnym mianowniku. Mnożymy więc wyrażenie przez sztuczną jedynkę, a następnie dokonujemy kilku skróceń otrzymując:

$$x_{k+1} = 2^{2(k+1)+1} * \frac{\sqrt{\frac{1+x_k^2}{2^{2(k+1)}}} - 1}{x_k} * \frac{\sqrt{\frac{1+x_k^2}{2^{2(k+1)}}} + 1}{\sqrt{\frac{1+x_k^2}{2^{2(k+1)}}} + 1} = \dots$$

	Float	Double	Long double
1	4.0	4.0	4.0
2	3.3137085	3.1825978780745294	3.313708498984761
3	3.1825979	3.151724907429258	3.1825978780745294
4	3.1517248	3.1441183852458665	3.151724907429258
5	3.1441183	3.142223629942345	3.1441183852458665
6	3.1422236	3.141750369169704	3.142223629942345
7	3.1417503	3.141632080702249	3.141750369169704
8	3.141632	3.141632080703183	3.141632080703183
9	3.1416025	3.1416025102568104	3.1416025102568104
10	3.1415951	3.1415951177495907	3.1415951177495907
11	3.1415932	3.1415932696293085	3.1415932696293085
12	3.1415927	3.1415928075996455	3.1415928075996455
26	3.1415927	3.141592653589795	3.141592653589795
27	3.1415927	3.141592653589795	3.141592653589795
28	3.1415927	3.141592653589795	3.141592653589795
29	3.1415927	3.141592653589795	3.141592653589795
30	3.1415927	3.141592653589795	3.141592653589795

Tabela nr 2 : Zależność wartości k od wartości x_k dla typów float, double oraz long double przy zmodyfikowanej zależności

Wykres nr 2: Zależność wartości k od wartości x_k dla typów float, double oraz long double dla zmodyfikowanej zależności

Wnioski

Ponownie, dla wartości k w pominiętym przedziale wartości \boldsymbol{x}_k dawały bardzo zbliżone lub takie same wyniki. Dla zmodyfikowanej postaci wyrażenia, w której sprawiamy aby wyraz \boldsymbol{x}_k nigdy nie był 'sam' w mianowniku program może zakończyć obliczenia i uzyskać wszystkie wyniki, dzięki czemu możemy wyznaczyć \boldsymbol{x}_{30} . Wyniki są różne w zależności, którego rodzaju precyzji używamy do obliczeń, natomiast dla tego wyrażenia każdy typ pozwala na uzyskanie wyniku.

Co więcej, wyraz x_{30} dla typu double / long double jest równy wartości π z dokładnością do 11 miejsc po przecinku!