Package 'statr'

a-
. 2

2 bsearch

Index		10
	tridiag	9
	timeit	8
	tidy	8
	scatter	7
	QDA	7
	predict_QDA	6
	multiplot	6
	LDA	5
	dsearch	5
	diagnostic	4

bsearch Bisection search

Description

Minimizes a univariate strictly pseudoconvex function over the interval [a, b]. This is augmented code from Adam Rothman's STAT 8054 course (2017).

Usage

```
bsearch(dg, a, b, L = 1e-07, quiet = FALSE)
```

Arguments

dg	the derivative of the function to minimize, where $\mbox{\rm dg}(u,)$ is the function evaluated at $u.$
а	left endpoint of the initial interval of uncertainty.
b	right endpoint of the initial interval of uncertainty.
L	the maximum length of the final interval of uncertainty.
quiet	should the function stay quiet?
	additional argument specifications for dg

Value

returns the midpoint of the final interval of uncertainty.

```
bsearch(dg, -10, 10, quiet = T)
```

data_gen 3

data_gen	Normal Linear Data Generator	

Description

True beta values are generated from p independent draws from N(0, 1/p) distribution. X_{-1} are n independent draws from (p - 1) multivariate normal N(0, Sigma) where Sigma has (j, k) entry theta^abs(j - k).

Y is then generated using the $X = (1, X_{-1})$ and true beta values with an iid error term that follows distribution N(0, var). We can specify the desired number of replications (reps).

Usage

```
data_gen(n, p, theta, var = 0.5, reps = 200)
```

Arguments

n desired sample size p desired dimension

theta parameter used to generate covariance matrix

var variance of generated y values

reps number of replications

Value

generated design matrix (X), response values (Y)(matrix if reps > 1), true beta values

Examples

```
data_gen(1000, 10, 0.5)
```

dense

Generate dense matrices

Description

Generate p-dimensional matrices so that its inverse is dense.

Usage

```
dense(p = 8, base = 0.9, n = 100, X = FALSE)
```

Arguments

p desired dimensionbase base multiplier

```
dense(p = 10, base = 0.9)
```

4 diagnostic

derivative

Derivative

Description

Takes the approximate derivative for a given function

Usage

```
derivative(g, x, delta = 1e-07)
```

Arguments

g the derivative of the function to minimize, where dg(u, ...) is the function evalu-

ated at u.

x value to evaluate the derivative at

delta defaults to 10e-8

Examples

```
g = function(x){x^2}
derivative(x, g)
```

diagnostic

Diagnostic

Description

This function simply streamlines the process of creating diagnostic plots with ggplot

Usage

```
diagnostic(data., x., y.)
```

Arguments

data. data frame
x. x-axis
y. y-axis

Value

a residual plot and QQ plot

```
diagnostic(iris, Sepal.Length, Sepal.Width)
```

dsearch 5

dsearch Dichotomous search

Description

Minimizes a univariate strictly quasiconvex function over the interval [a, b]. This is augmented code from Adam Rothman's STAT 8054 course (2017).

Usage

```
dsearch(g, a, b, L = 1e-07, eps = (L/2.1), quiet = FALSE)
```

Arguments

g	the function to minimize, where $g(u,)$ is the function evaluated at u .
а	left endpoint of the initial interval of uncertainty.
b	right endpoint of the initial interval of uncertainty.
L	the maximum length of the final interval of uncertainty.
eps	search parameter, must be less than L/2
quiet	should the function stay quiet?
	additional argument specifications for g

Value

returns the midpoint of the final interval of uncertainty.

Examples

```
dsearch(g, -10, 10, quiet = T)
```

LDA

Linear Discriminant Analysis

Description

this function fit the LDA model

Usage

```
LDA(X, y, method = c("MLE", "diagonal", "ridge"), lam = NULL)
```

Arguments

- x n x p matrix where the ith row is the values of the predictor for the ith case n entry response vector where the ith entry is the response category in 1, ..., C
 - for the ith case

6 predict_QDA

Value

returns a list with the parameter estimates

Examples

```
LDA(X, y, method = 'ridge', lam = seq(0.1, 2, 0.1))
```

multiplot

Multiple Plot

Description

Taken from: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

Usage

```
multiplot(..., plotlist = NULL, file, cols = 1, layout = NULL)
```

Arguments

... object can be passed incols number of columns in layout

layout a matrix specify the layout. If present, 'cols' is ignored

Value

plots

Examples

```
multiplot(p1, p2, cols = 1)
```

predict_QDA

Predict QDA

Description

this function classifies test data using a fitted QDA model

Usage

```
predict_QDA(fit, Xtest)
```

Arguments

fit this is a list with elements pi.hats, mu.hats, and Sigma.hats where pi.hats is a list

of C response category sample proportions, mu.hats is a list of C p-dimensional sample mean proportions, Sigma.hats is a list of C p by p Sample covariance

matrices

Xtest this is a matrix with ntest rows and p column, each row is a test case

QDA 7

Value

returns a vector of ntest entries, where the ith entry is the estimated response category (some value in 1, ..., C) for the ith test case.

Examples

```
predict_QDA(model, Xtest)
```

QDA

Quadratic Discriminant Analysis

Description

this function fit the QDA model

Usage

```
QDA(X, y, method = c("MLE", "diagonal", "ridge"), lam = NULL)
```

Arguments

X n x p matrix where the ith row is the values of the predictor for the ith case

y n entry response vector where the ith entry is the response category in 1, ..., C for the ith case

Value

returns a list with the parameter estimates

Examples

```
QDA(X, y, method = 'ridge', lam = seq(0.1, 2, 0.1))
```

scatter

Scatter

Description

This function simply streamlines the process of creating a scatterplot with ggplot

Usage

```
scatter(data., x., y.)
```

Arguments

data frame
x. x-axis
y. y-axis

8 timeit

Value

a scatterplot

Examples

```
scatter(iris, Sepal.Length, Sepal.Width)
```

tidy

Tidy

Description

tidys package R code and updates package documentation. Directly uses Yihui Xie's 'formatR' package.

Usage

tidy()

Examples

tidy()

timeit

Time-It

Description

Simple function that prints the computation time of a function

Usage

```
timeit(f)
```

Arguments

f

the function to time

Value

returns the elapsed time

```
timeit(lm(dist ~ speed, cars))
```

tridiag 9

tridiag

Generate tri-diagonal matrices

Description

Generate p-dimensional matrices so that its inverse is tri-diagonal.

Usage

```
tridiag(p = 8, base = 0.7, n = 100, X = FALSE)
```

Arguments

p desired dimensionbase base multiplier

```
tridiag(p = 10, base = 0.7)
```

Index

```
bsearch, 2

data_gen, 3
dense, 3
derivative, 4
diagnostic, 4
dsearch, 5

LDA, 5

multiplot, 6
predict_QDA, 6

QDA, 7

scatter, 7

tidy, 8
timeit, 8
tridiag, 9
```