EAU GUIDELINES ON RENAL CELL CARCINOMA

(Limited update March 2021)

B. Liungberg (Chair), L. Albiges, J. Bedke, A. Bex (Vice-chair). U. Capitanio, R.H. Giles (Patient Advocate), M. Hora, T. Klatte, T. Lam, L. Marconi, T. Powles, A. Volpe Guidelines Associates: Y. Abu-Ghanem, S. Dabestani, S. Fernández-Pello Montes, F. Hofmann, T. Kuusk, R. Tahbaz

Epidemiology

The widespread use of imaging techniques such as ultrasound (US) and computed tomography (CT) has increased the detection of asymptomatic renal cell carcinoma (RCC). The peak incidence of RCC occurs between 60 and 70 years of age. with a 3:2 ratio of men to women. Aetiological factors include lifestyle factors, such as smoking, obesity and hypertension. Having a first-degree relative with RCC is associated with a significantly increased risk of RCC.

Staging system

The current UICC 2017 TNM (Tumour Node Metastasis) classification is recommended for the staging of RCC (Table 1).

Table 1: The 2017 TNM staging classification system

T - Primary Tumour			
TX	Primary tumour cannot be assessed		
T0	No evidence of primary tumour		
T1	Tumour ≤ 7 cm or less in greatest dimension, limited to the kidney		
	T1a Tumour ≤ 4 cm or less		
	T1b Tumour > 4 cm but ≤ 7 cm		
T2	Tumour > 7 cm in greatest dimension, limited to the kidney		
	T2a Tumour > 7 cm but ≤ 10 cm		
	T2b Tumours > 10 cm, limited to the kidney		
T3	Tumour extends into major veins or perinephric		
	tissues but not into the ipsilateral adrenal gland and		
	not beyond Gerota fascia		
	T3a Tumour extends into the renal vein or its segmental branches, or invades the pelvicalyceal system or invades perirenal and/or renal sinus fat, but not beyond Gerota fascia*		
	T3b Tumour grossly extends into the vena cava below diaphragm		
	T3c Tumour grossly extends into vena cava above the diaphragm or invades the wall of the vena cava		
T4	Tumour invades beyond Gerota fascia (including		
	contiguous extension into the ipsilateral adrenal gland)		
N-R	Regional Lymph Nodes		
NX	Regional lymph nodes cannot be assessed		
N0	No regional lymph node metastasis		
N1	Metastasis in regional lymph node(s)		

M - Distant metastasis			
M0 Nod	istant metastas	is	
M1 Dista	M1 Distant metastasis		
TNM stage grouping			
Stage I	T1	N0	M0
Stage II	T2	N0	M0
Stage III	T3	N0	M0
	T1, T2, T3	N1	M0
Stage IV	T4	Any N	M0
	Any T	Any N	M1

A help desk for specific questions about TNM classification is available at http://www.uicc.org/tnm.

Clinical Diagnosis

Many renal masses remain asymptomatic until late disease stages. The classic triad of flank pain, visible haematuria, and palpable abdominal mass is rare and correlates with aggressive histology and advanced disease.

Paraneoplastic syndromes are found in approximately 30% of patients with symptomatic RCCs. A few symptomatic patients present with symptoms caused by metastatic disease, such as bone pain or persistent cough.

Imaging

Computed tomography imaging, unenhanced, and during the nephrographic phase after intravenous contrast, can verify the diagnosis and provide information on the function and morphology of the contralateral kidney and assess tumour extension, including extra-renal spread, venous involvement, and enlargement of lymph nodes (LNs) and adrenals.

Abdominal US and magnetic resonance imaging (MRI) are supplementary to CT. Contrast-enhanced US can be helpful

^{*}Adapted based on the American Joint Committee on Cancer (AJCC), 8th Edn. 2017.

in specific cases (e.g., chronic renal failure with a relative contraindication for iodinated or gadolinium-based contrast media, complex cystic masses, and differential diagnosis of peripheral vascular disorders such as infarction and cortical necrosis).

Magnetic resonance imaging can be used in patients with possible venous involvement, or allergy to intravenous contrast. Chest CT is the most accurate for chest staging and is recommended in the primary work-up of patients with suspected RCC.

In younger patients who are worried about the radiation exposure of frequent CT scans, MRI may be offered as alternative for follow-up imaging.

Biopsy

Percutaneous renal tumour biopsies are used:

- to obtain histology of radiologically indeterminate renal masses:
- to select patients with small renal masses for active surveillance;
- to obtain histology before (advantageous), or simultaneously with ablative treatments;
- to select the most suitable form of medical and surgical strategy in the setting of metastatic disease.

In patients with any sign of impaired renal function, a renal scan and total renal function evaluation using estimated glomerular filtration rate should always be undertaken to optimise the treatment decision.

Renal biopsy is not indicated for comorbid and frail patients who can be considered only for conservative management (watchful waiting) regardless of biopsy results.

Recommendations	Strength rating
Use multi-phasic contrast-enhanced computed tomography (CT) of abdomen and chest for the diagnosis and staging of renal tumours.	Strong
Omit chest CT in patients with incidentally noted cT1a disease due to the low risk of lung metastases in this cohort.	Weak
Use magnetic resonance imaging (MRI) to better evaluate venous involvement, reduce radiation or avoid intravenous CT contrast medium.	Weak
Use non-ionising modalities, including MRI and contrast-enhanced ultrasound, for further characterisation of small renal masses, tumour thrombus and differentiation of unclear renal masses, if the results of contrast-enhanced CT are indeterminate.	Strong
Do not routinely use bone scan and/or positron-emission tomography CT for staging of renal cell carcinoma.	Weak
Perform a renal tumour biopsy before ablative therapy and systemic therapy without previous pathology.	Strong
Perform a percutaneous biopsy in select patients who are considering active surveillance.	Weak
Use a coaxial technique when performing a renal tumour biopsy.	Strong
Do not perform a renal tumour biopsy of cystic renal masses.	Strong
Use a core biopsy technique rather than fine needle aspiration for histological characterisation of solid renal tumours.	Strong

Histological diagnosis

A variety of renal tumours exist, and about 15% are benign. All kidney lesions require examination for malignant behaviour.

Histopathological classification

The new WHO/ISUP classification will replace the Fuhrman nuclear grade system but will need validation.

The three most common RCC subtypes, with genetic and histological differences, are: clear-cell RCC (70-85%), papillary RCC (10-15%), and chromophobe RCC (4-5%). The various RCC types have different clinical courses and responses to therapy.

Prognostic factors

In all RCC types, prognosis worsens with stage and histopathological grade. Histological factors include tumour grade, RCC subtype, sarcomatoid features, microvascular invasion, tumour necrosis, and invasion of the peri-renal fat and collecting system. Clinical factors include performance status, local symptoms, cachexia, anaemia, platelet count, neutrophil/lymphocyte ratio, C-reactive protein and albumin (see Tables 6.3 and 6.4 in the 2021 RCC Guidelines publication).

Recommendations	Strength rating
Use the current Tumour, Node, Metastasis	Strong
classification system.	
Use the WHO/ISUP grading system and	Strong
classify renal cell carcinoma type.	
Use prognostic models in localised and	Strong
metastatic disease.	
Do not routinely use molecular markers to	Strong
assess prognosis.	

Disease Management Treatment of localised RCC

Localised RCCs are best managed with partial nephrectomy (PN) rather than radical nephrectomy (RN), irrespective of the surgical approach. Partial nephrectomy is unsuitable in some patients with localised RCC due to:

- locally advanced tumour growth:
- unfavourable tumour location:
- significant health deterioration.

If pre-operative imaging and intra-operative findings are normal, routine adrenalectomy is not indicated.

Lymphadenectomy should be restricted to staging because the survival benefit of extended LN dissection is unclear in patients with localised disease. In patients who have RCCs with tumour thrombus and no metastatic spread, prognosis is improved after nephrectomy and complete thrombectomy.

Nephron-sparing surgery versus radical nephrectomy Based on current available oncological and quality of life outcomes, localised RCC is best managed by nephron-sparing surgery (NSS) rather than RN, irrespective of the surgical approach. Before routine nephrectomy, tumour embolisation has no benefit. In patients unfit for surgery with massive haematuria or flank pain, embolisation can be a beneficial

palliative approach.

Recommendations	Strength rating
Offer surgery to achieve cure in localised	Strong
renal cell cancer.	
Offer partial nephrectomy (PN) to patients	Strong
with T1 tumours.	
Offer PN to patients with T2 tumours and a	Weak
solitary kidney or chronic kidney disease, if	
technically feasible.	
Do not perform ipsilateral adrenalectomy if	Strong
there is no clinical evidence of invasion of	
the adrenal gland.	
Do not offer an extended lymph node	Weak
dissection to patients with organ-confined	
disease.	
Offer embolisation to patients unfit for	Weak
surgery presenting with massive	
haematuria or flank pain.	

Radical- and partial nephrectomy techniques

Summary of evidence	LE
Laparoscopic RN has lower morbidity than open	
nephrectomy.	
Short-term oncological outcomes for T1-T2a tumours	2a
are equivalent for laparoscopic- and open RN.	
Partial nephrectomy can be performed, either by open-,	2b
pure laparoscopic- or robot-assisted approach, based	
on surgeon's expertise and skills.	
Robotic-assisted and laparoscopic PN are associated	2b
with shorter length of hospital stay and lower blood	
loss compared to open PN.	
Partial nephrectomy is associated with a higher percen-	3
tage of positive surgical margins compared to RN.	

Hospital volume in PN might impact on surgical	3
complications, warm ischaemia and surgical margins.	
Radical nephrectomy after positive surgical margins	3
can result in over-treatment in many cases.	

Recommendations	Strength rating
Offer laparoscopic radical nephrectomy	Strong
(RN) to patients with T2 tumours and	
localised masses not treatable by partial	
nephrectomy (PN).	
Do not perform minimally invasive RN in	Strong
patients with T1 tumours for whom a PN is	
feasible by any approach, including open.	
Do not perform minimally invasive	Strong
surgery if this approach may compromise	
oncological-, functional- and peri-operative	
outcomes.	
Intensify follow-up in patients with a	Weak
positive surgical margin.	

Alternatives to surgery Surveillance

Elderly and comorbid patients with incidental small renal masses have a low RCC-specific mortality and significant competing-cause mortality. In selected patients with advanced age and/or comorbidities, active surveillance (AS) is appropriate to initially monitor small renal masses, followed, if required, by treatment for progression. The concept of AS differs from the concept of watchful waiting. Watchful waiting is reserved for patients whose comorbidities contraindicate any subsequent active treatment and who do not require follow-up imaging, unless clinically indicated.

Cryoablation and radiofrequency ablation

Currently there are no data showing oncological benefit of cryoablation or radiofrequency ablation (RFA) techniques over PN.

Recommendations	Strength rating
Offer active surveillance (AS), or thermal	Weak
ablation (TA) to frail and/or comorbid	
patients with small renal masses.	
Perform a percutaneous renal mass biopsy	Strong
prior to, and not concomitantly with TA.	
When TA or AS are offered, discuss with	Strong
patients about the harms/benefits with	
regards to oncological outcomes and	
complications.	
Do not routinely offer TA for tumours > 3 cm	Weak
and cryoablation for tumours > 4 cm.	

Treatment of locally advanced RCC

Management of clinically positive lymph nodes (cN+)

In the presence of clinically positive LNs (cN+), LND is always justified but the extent of LND is still controversial.

Low level data suggest that tumour thrombus in the setting of non-metastatic disease should be excised. Adjunctive procedures such as tumour embolisation or inferior vena cava filter do not appear to offer any benefits in the treatment of tumour thrombus.

In patients unfit for surgery, or with non-resectable disease, embolisation can control symptoms, including visible haematuria or flank pain. At present there is no evidence for the use of adjuvant therapy following surgery.

Treatment of advanced/metastatic RCC Management of RCC with venous tumour thrombus

Recommendations	Strength rating
In patients with clinically enlarged lymph	Weak
nodes (LNs), perform LN dissection to	
guide staging, prognosis and follow-up.	
Remove the renal tumour and thrombus	Strong
in case of venous involvement in non-	
metastatic disease.	
In case of metastatic disease, discuss	Weak
surgery within the context of a	
multidisciplinary team.	

Management of RCC with neoadjuvant and adjuvant therapy

Summary of evidence	LE
Adjuvant therapy does not improve survival after	1b
nephrectomy.	
In one single RCT, in selected high-risk patients,	1b
adjuvant sunitinib improved disease-free survival	
(DFS) but not overall survival (OS).	
Adjuvant sorafenib, pazopanib, everolimus,	1b
girentuximab or axitinib does not improve DFS or OS	
after nephrectomy.	
Adjuvant RCTs are ongoing to evaluate the benefit of	1b
adjuvant immunotherapy after nephrectomy in high-	
risk patients.	

Recommendations	Strength rating
Do not offer adjuvant therapy with	Strong
sorafenib, pazopanib, everolimus,	
girentuximab or axitinib.	
Do not offer adjuvant sunitinib following	Weak
surgically resected high-risk clear-cell renal	
cell carcinoma.	

Cytoreductive nephrectomy

Tumour nephrectomy is curative only if all tumour deposits are excised. This includes patients with the primary tumour in place and single- or oligometastatic resectable disease. For most patients with metastatic disease, cytoreductive nephrectomy (CN) is palliative and systemic treatments are necessary.

Summary of evidence	LE
Deferred CN with pre-surgical sunitinib in intermediaterisk patients with cc-metastatic RCC (mRCC) shows a survival benefit in secondary endpoint analyses and selects out patients with inherent resistance to systemic therapy.	2b
Sunitinib alone is non-inferior compared to immediate CN followed by sunitinib in patients with MSKCC intermediate and poor risk who require systemic therapy with vascular endothelial growth factor receptor (VEGFR)-tyrosine kinase inhibitor (TKI).	1a
Cytoreductive nephrectomy in patients with simultaneous complete resection of a single metastasis or oligometastases may improve survival and delay systemic therapy.	3
Patients with MSKCC or IMDC poor risk (≥ 4 risk factors) do not benefit from local therapy.	1a

Patients with their primary tumour in place treated	2b
with ICI-based combination therapy have better PFS	
and OS in exploratory subgroup analyses compared to	
treatment with sunitinib.	

Recommendations	Strength rating
Do not perform cytoreductive nephrectomy	Strong
(CN) in MSKCC poor-risk patients.	
Do not perform immediate CN in MSKCC	Weak
intermediate-risk patients who have an	
asymptomatic synchronous primary	
tumour and require systemic therapy.	
Start systemic therapy without CN in	Weak
MSKCC intermediate-risk patients who have	
an asymptomatic synchronous primary	
tumour and require systemic therapy.	
Discuss delayed CN with patients who	Weak
derive clinical benefit from systemic therapy.	
Perform immediate CN in patients with	Weak
a good performance status who do not	
require systemic therapy.	
Perform immediate CN in patients with	Weak
oligometastases when complete local	
treatment of the metastases can be	
achieved.	

IMDC = International Metastatic RCC Database Consortium; MSKCC = Memorial Sloan-Kettering Cancer Center.

Local therapy of metastases in metastatic RCC

A systematic review of the local treatment of metastases from RCC in any organ was undertaken. The heterogeneity of the data will only allow for cautious recommendations.

Summary of evidence	LE
All studies included in a Panel systematic review were retrospective, non-randomised comparative studies, resulting in a high risk of bias associated with non-randomisation, attrition, and selective reporting.	3
With the exception of brain and possibly bone metastases, metastasectomy remains by default the only local treatment for most sites.	3
Retrospective comparative studies consistently point towards a benefit of complete metastasectomy in mRCC patients in terms of OS, CSS and delay of systemic therapy.	3
Radiotherapy to bone and brain metastases from RCC can induce significant relief from local symptoms (e.g. pain).	3
Tyrosine kinase inhibitors treatment after metastasectomy in patients with no evidence of disease did not improve RFS when compared to placebo or observation.	1b

Recommendations	Strength rating
To control local symptoms, offer ablative	Weak
therapy, including metastasectomy, to	
patients with metastatic disease and	
favourable disease factors and in whom	
complete resection is achievable.	
Offer stereotactic radiotherapy for clinically	Weak
relevant bone- or brain metastases for local	
control and symptom relief.	
Do not offer tyrosine kinase inhibitor	Strong
treatment to mRCC patients after	
metastasectomy and no evidence of	
disease.	

Systemic therapy for advanced/metastatic RCC Chemotherapy

Recommendation	Strength rating
Do not offer chemotherapy to patients with	Strong
metastatic renal cell carcinoma.	

Immunotherapy

Interferon- α monotherapy and combined with bevacizumab. has been superseded as standard treatment by targeted therapy of advanced cc-mRCC.

Immune checkpoint inhibition of programmed death receptor (PD-1) and ligand (PD-L1) inhibition have been investigated in mRCC. Randomised data support the use of nivolumab (a PD-1 inhibitor) in VEGF-refractory disease. The combination of two immune checkpoint inhibitors; ipilimumab and nivolumab showed superior survival in intermediate- and poor-risk patients while the combination of pembrolizumab and axitinib showed survival advantage for patients in all risk groups.

Summary of evidence	LE
Interferon- α monotherapy is inferior to VEGF-targeted therapy or mammalian target of rapamycin (mTOR) inhibition in mRCC.	1b
Nivolumab leads to superior OS compared to everolimus in patients failing one or two lines of VEGF-targeted therapy.	1b
The combination of nivolumab and ipilimumab in treatment-naive patients with cc-mRCC of IMDC intermediate and poor risk demonstrated OS and ORR benefits compared to sunitinib.	1b

The combination of pembrolizumab plus axitinib, lenvatinib plus pembrolizumab and nivolumab plus cabozantinib in treatment-naive patients with cc-mRCC across all IMDC risk groups demonstrated PFS, OS and ORR benefits compared to sunitinib.	1b
Currently, PD-L1 expression is not used for patient selection.	2b
Axitinib, cabozantinib or lenvatinib can be continued if immune-related adverse events results in cessation of axitinib plus pembrolizumab, cabozantinib plus nivolumab or lenvatinib plus pembrolizumab. Re-challenge with immunotherapy requires expert support.	4
Patients who do not receive the full 4 doses of ipilimumab due to toxicity should continue on single-agent nivolumab, where safe and feasible. Re-challenge with combination therapy requires expert support.	4
Treatment past progression can be justified but requires close scrutiny and the support of an expert multidisciplinary team.	1b
Nivolumab plus ipilimumab, pembrolizumab plus axitinib, nivolumab plus cabozantinib and lenvatinib plus pembrolizumab should be administered in centres with experience of immune combination therapy and appropriate supportive care within the context of a multidisciplinary team.	4
The combination of nivolumab plus ipilimumab in the IMDC intermediate- and poor-risk population of treatment-naive patients with cc-mRCC leads to superior survival compared to sunitinib while OS was higher in IMDC good-risk patients with sunitinib.	2b
Nivolumab plus ipilimumab was associated with 15% grade 3-5 toxicity and 1.5% treatment-related deaths.	1b

Recommendations	Strength rating
Offer pembrolizumab plus axitinib, lenvatinib plus pembrolizumab or nivolumab plus cabozantinib to treatment-naive patients with any IMDC-risk clear-cell metastatic renal cell carcinoma (cc-mRCC).	Strong
Offer ipilimumab plus nivolumab to treatment-naive patients with IMDC intermediate- and poor-risk cc-mRCC.	Strong
Administer nivolumab plus ipilimumab, pembrolizumab plus axitinib, lenvatinib plus pembrolizumab and nivolumab plus cabozantinib in centres with experience of immune combination therapy and appropriate supportive care within the context of a multidisciplinary team.	Weak
Patients who do not receive the full 4 doses of ipilimumab due to toxicity should continue on single-agent nivolumab, where safe and feasible.	Weak
Offer axitinib, cabozantinib or lenvatinib as subsequent treatment to patients who experience treatment-limiting immune-related adverse events after treatment with the combination of axitinib plus pembrolizumab, cabozantinib plus nivolumab or lenvatinib plus pembrolizumab.	Weak
Treatment past progression can be justified but requires close scrutiny and the support of an expert multidisciplinary team.	Weak
Do not re-challenge patients who stopped immune checkpoint inhibitors because of toxicity without expert guidance and support from a multidisciplinary team.	Strong

Offer sunitinib or pazopanib to treatment- naïve patients with IMDC favourable-, intermediate-, and poor-risk cc-mRCC who cannot receive or tolerate immune	Strong
checkpoint inhibition. Offer cabozantinib to treatment-naïve patients with IMDC intermediate- and poor-risk cc-mRCC who cannot receive or tolerate immune checkpoint inhibition.	Strong*

While this is based on a randomised phase II trial, cabozantinib (weak) looks at least as good as sunitinib in this population. This justified the same recommendation under exceptional circumstances.

IMDC = International Metastatic RCC Database Consortium.

Targeted therapies

At present, several targeting drugs have been approved for the treatment of mRCC.

Summary of evidence	LE
Single agent VEGF-targeted therapy has been superseded by immune checkpoint-based combination therapy.	1b
Pazopanib is non-inferior to sunitinib in front-line mRCC.	1b
Cabozantinib in intermediate- and poor-risk treatment- naïve cc-RCC leads to better response rates and PFS but not OS when compared to sunitinib.	2b
Tivozanib has been EMA approved, but the evidence is still considered inferior over existing choices in the front-line setting.	3

Single-agent VEGF-targeted therapies are preferentially recommended after front-line PD-L1-based combinations. Re-challenge with treatments already used should be avoided.	3
Single-agent cabozantinib or nivolumab are superior to everolimus after one or more lines of VEGF-targeted therapy.	1b
Everolimus prolongs PFS after VEGF-targeted therapy when compared to placebo. This is no longer widely recommended before third-line therapy.	1b
Both mTOR inhibitors and VEGF-targeted therapies have limited activity in non-cc-mRCC. There is a non-significant trend for improved oncological outcomes for sunitinib over everolimus.	2a
Lenvatinib in combination with everolimus improved PFS over everolimus alone in VEGF-refractory disease. Its role after immune checkpoint inhibitors is uncertain. There is a lack of robust data on this combination making its recommendation challenging.	2a

Recommendations	Strength rating
Offer nivolumab or cabozantinib for	Strong
immune checkpoint inhibitor-naïve	
vascular endothelial growth factor receptor	
(VEGFR)-refractory clear-cell metastatic	
renal cell carcinoma (cc-mRCC) after one	
or two lines of therapy.	
Sequencing the agent not used as second-	Weak
line therapy (nivolumab or cabozantinib) for	
third-line therapy is recommended.	

Offer VEGF-tyrosine kinase inhibitors as second-line therapy to patients refractory to nivolumab plus ipilimumab or axitinib plus pembrolizumab or cabozantinib plus nivolumab or lenvatinib plus pembrolizumab.	Weak
Offer cabozantinib after VEGF-targeted therapy in cc-mRCC.	Strong
Sequence systemic therapy in treating mRCC.	Strong

IMDC = International Metastatic RCC Database Consortium.

Figure 1: Updated EAU Guidelines recommendations for the first-line treatment of mRCC

IMDC = International Metastatic RCC Database Consortium. *pazopanib for intermediate-risk disease only. [1b] = based on one randomised controlled phase III trial. [2a] = based on one randomised controlled phase II trial.

Figure 2: EAU Guidelines recommendations for later-line therapy

IO = immunotherapy: TKI = tyrosine kinase inhibitors:

VEGF = vascular endothelial arowth factor.

[1b] = based on one randomised controlled phase III trial.

[2b] = subgroup analysis of a randomised controlled phase III trial

[4] = expert opinion.

Recurrent RCC

Locally recurrent disease in the treated kidney can occur either after PN, or ablative therapy. After RN or nephronsparing treatment approaches, recurrence may occur in the renal fossa or regional, e.g. venous tumour thrombi or retroperitoneal LN metastases. Isolated local recurrence in the true renal fossa after RN is rare.

Patients can benefit from a complete surgical resection of local recurrent disease. In cases where complete surgical removal is not feasible due to advanced tumour growth and pain, palliative treatments including radiation treatment can be considered as well as systemic therapy.

Surveillance following surgery for RCC

The aim of surveillance is to detect either local recurrence or metastatic disease while the patient is still surgically curable. Surveillance after treatment for RCC allows the urologist to assess:

- post-operative complications:
- renal function:
- local recurrence:
- recurrence in the contralateral kidney:
- development of metastases.

Depending on the availability of new effective treatments. more intensive follow-up schedules may be required. particularly as there is a higher local recurrence rate after cryotherapy and RFA. At present there is no evidence-based standard for the follow-up of patients with RCC, or for the optimal duration of follow-up. An example of a surveillance algorithm monitoring patients after treatment for RCC that recognises not only the patient's risk profile but also treatment efficacy is provided in Table 2. For patients with metastatic disease, individualised follow-up is indicated.

Table 2: Proposed surveillance schedule following treatment for RCC, taking into account patient risk profile and treatment efficacy (expert opinion [LE: 4])

Risk profile (*)	Oncological follow-up after date of surgery								
	3	6	12	18	24	30	36	> 3 yr	> 5 yr
	mo	mo	mo	mo	mo	mo	mo		(optional)
Low risk of	-	CT	-	CT	-	CT	-	CT every	-
recurrence								two yrs	
Intermediate	-	CT	CT	-	CT	-	CT	CT once	CT every
risk of								yr	two yrs
recurrence									
High risk of	CT	CT	CT	CT	CT	-	CT	CT once	CT every
recurrence								yr	two yrs

*Leibovich Score 0-2 / 3-5 / ≥ 6; for non-ccRCC: pT1NX-0, grade 1-2 / pT1b, grade 3-4 / vs. high risk: pT2-4, grade 1-4, or pT any, N1, grade 1-4.

CT = computed tomography of chest and abdomen, alternatively use magnetic resonance imaging for the abdomen; US = ultrasound of abdomen, kidneys and renal bed.

Summary of evidence and recommendations for surveillance following RN or PN or ablative therapies in RCC

Summary of evidence	LE
Functional follow-up after curative treatment for RCC	4
is useful to prevent renal and cardiovascular	
deterioration.	
Oncological follow-up can detect local recurrence or	4
metastatic disease while the patient may still be	
surgically curable.	

After NSS, there is an increased risk of recurrence for larger (> 7 cm) tumours, or when there is a positive surgical margin.	3
Patients undergoing follow-up have a better OS than patients not undergoing surveillance.	3
Prognostic models provide stratification of RCC risk of recurrence based on TNM and histological features.	3
In competing risk models, risk of non-RCC-related death exceeds that of RCC recurrence or related death in low-risk patients.	3
Life expectancy estimation is feasible and may help in counselling patients on duration of follow-up.	4

Recommendations	Strength rating
Base follow-up after treatment of localised	Strong
RCC on the risk of recurrence.	
Perform functional follow-up (renal	Weak
function assessment and prevention of	
cardiovascular events) both in nephron-	
sparing and radical nephrectomy patients.	
Intensify follow-up in patients after nephron-	Weak
sparing surgery for tumours > 7 cm or in	
patients with a positive surgical margin.	
Consider curtailing follow-up when the risk	Weak
of dying from other causes is double that of	
recurrence risk.	
Base risk of recurrence stratification on	Strong
validated subtype-specific models such	
as the Leibovich Score for ccRCC or the	
University of California Los Angeles	
integrated staging system or the SSIGN	
score.	

SSIGN = (Mayo Clinic) stage, size, grade, and necrosis score.

This short booklet text is based on the more comprehensive EAU Guidelines (ISBN 978-94-92671-13-4), available to all members of the European Association of Urology at their website, http://www.uroweb.org/guidelines/.