Let B be the backbone edge set for multilayer digraph G with weight function $w: E(G) \to \mathcal{W}$ computed using edge aggregation g(a,b) = a + b.

Let \prec be a partial order on the edge weights of G such that there is a zero-element $0 \prec z$ for all $z \neq 0$ and for any $z \neq 0$, $a \lesssim b \implies a \lesssim b+z$ (here, $a \lesssim b$ means $b \not\prec a$).

Proposition 1. Let m be an edge connecting u to v such that a) any edge x_i ending at v satisfies $w(m) \preceq w(x_i)$ or b) any edge y_i starting at u satisfies $w(m) \preceq w(y_i)$. Then $m \in B$, i.e., $w(m) \preceq p$ for any path P of weight p connecting u to v.

Proof. If P is direct, then $w(m) \lesssim p$ by either assumption a or assumption b. Otherwise, P has more than one edge. If assumption a holds, then P contains some x_i ending at v and there exists some weight $z \neq 0$ such that $p = w(x_i) + z$. Because $w(m) \lesssim w(x_i)$, it follows that $w(m) \lesssim w(x_i) + z = p$. Similarly, if assumption b holds, $w(m) \lesssim w(y_i) + z = p$. Thus, $w(m) \lesssim p$, implying $m \in B$.

Proposition 2. Let $\{m_{\alpha}\}$ be any set edges in B beginning at u, and let e_i be the remaining edges beginning at u with $w(e_0) \preceq w(e_i)$ for all i and e_0 ending at v. If i) if any m_{α} connects u to v, then $w(e_0) \simeq w(m_{\alpha})$ and ii) $w(e_0)$ is not longer than the weight of any path of two hops containing an edge in $\{m_{\alpha}\}$, then $e_0 \in B$.

Proof. Consider a path P of weight p that connects u to v. If P is direct, then either $p = w(e_i)$ for some i, in which case e contains some e_i and $w(e_0) \lesssim p$ by assumption, or $p = w(m_\alpha)$ for some alpha, and $w(e_0) \lesssim p$ by condition i). Otherwise, P conains two or more edges. If P does not contain any m_α , then $p = w(e_i) + z$ for some $z \neq 0$, and thus $w(e_0) \lesssim p$. Otherwise, P contains a path of two hops containing an edge in $\{m_\alpha\}$, implying by condition ii) that $w(e_0) \lesssim p$. Thus, $w(e_0) \lesssim p$ and so $e_0 \in B$.