

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Bipolar Junction Transistors - Amplifiers

Reference: Donald Neamen's 'Electronic Circuits Analysis' Chapter 4 (Basic BJT amplifiers)

BJT as Two Port Network:

The model for CE configuration is

$$v_{be} = h_{ie}i_b + h_{re}v_{ce}$$
$$i_c = h_{fe}i_b + h_{oe}v_{ce}$$

h-parameters are not constant for a transistor they depend on base current and temperature.

They give the incremental effects of small changes in base current and collector voltage.

R_{π} Model (CE configuration):

We know using h-parameters,

$$\begin{cases} v_{BE} = f_1(i_B, v_{CE}) \\ i_C = f_2(i_B, v_{CE}) \end{cases}$$

If we limit operation to the region where v_{BE} and i_{C} are independent of v_{CE} . The base-emitter characteristic is that of a theoretical diode and the collector characteristics indicate a constant β and I_{CEO} .

R_{π} Model (CE configuration):

To calculate r_{π} from the input characteristics (resembles with diode char), $i_{B} = I_{s} \left(e^{ev_{BE}/kT} - 1 \right)$

 r_{π} is the dynamic resistance and is directly proportional to absolute temperature T and inversely proportional to the dc current I_{R} .

At room temperature, $kT/e \approx 0.025 \text{ V}$ and

$$r_{\pi} = \frac{0.025}{I_B} = \beta \, \frac{25}{I_C(\text{in mA})} \, \Omega$$

R_{π} Model (CE configuration):

h-parameter analysis for CE transistor:

To form a transistor amplifier it is necessary to connect an external load and signal source and to bias the transistor properly (shown below).

h-parameter analysis for CE transistor:

Consider the two-port network of CE amplifier. R_s is the source resistance and Z_L is the load impedance. The ac equivalent circuit is shown below. Calculate current gain, input impedance, voltage gain, and output admittance.

The h-parameters here are of the circuit without the source or load being connected.

Biasing done.

Current gain:

For the transistor amplifier stage, A_i is defined as the ratio of output to input currents.

$$A_i = \frac{i_L}{i_b} = -\frac{i_c}{i_b}$$

$$i_c = h_{fe}i_b + h_{oe}v_c$$

$$v_c = i_L Z_L = -i_c Z_L$$

$$i_c = h_{fe}i_b - h_{oe}i_c Z_L$$

$$A_i = \frac{i_L}{i_b} = -\frac{i_c}{i_b} = -\frac{h_{fe}}{1 + h_{oe}Z_L}$$

Current gain:

For the transistor amplifier stage, A_i is defined as the ratio of output to input currents.

$$A_i = \frac{i_L}{i_b} = -\frac{i_c}{i_b}$$

$$i_c = h_{fe}i_b + h_{oe}v_c$$
$$v_c = i_L Z_L = -i_c Z_L$$

$$i_c = h_{fe}i_b - h_{oe}i_c Z_L$$

$$A_i = \frac{i_L}{i_b} = -\frac{i_c}{i_b} = -\frac{h_{fe}}{1 + h_{oe}Z_L}$$

$$h_{fe} \rightarrow 20-200$$

 $h_{oe} \rightarrow 1-30 \text{ mu mhos}$
 $Z_L \rightarrow \text{ few K ohms}$
 $A_i \rightarrow \text{ same as } h_{fe}$.

Input Impedance:

The impedance looking into the amplifier in terminals (1,1') is the input impedance Z_i

$$Z_i = \frac{v_b}{i_b}$$

$$v_b = h_{ie}i_b + h_{re}v_c$$

$$\frac{v_b}{i_b} = h_{ie} + h_{re}\frac{v_c}{i_b} = h_{ie} + h_{re}Z_L\frac{i_L}{i_b}$$

$$Z_i = h_{ie} + h_{re}A_iZ_L = h_{ie} - \frac{h_{re}h_{fe}Z_L}{1 + h_{oe}Z_L}$$

$$Z_i = h_{ie} - \frac{h_{re}h_{fe}}{Y_L + h_{oe}}$$
 with $Y_L = \frac{1}{Z_L}$

Input Impedance:

The impedance looking into the amplifier in terminals (1,1') is the input impedance Z_i

$$Z_i = \frac{v_b}{i_b}$$

$$v_b = h_{ie}i_b + h_{re}v_c$$

$$\frac{v_b}{i_b} = h_{ie} + h_{re}\frac{v_c}{i_b} = h_{ie} + h_{re}Z_L\frac{i_L}{i_b}$$

$$Z_i = h_{ie} + h_{re}A_iZ_L = h_{ie} - \frac{h_{re}h_{fe}Z_L}{1 + h_{oe}Z_L}$$

$$Z_i = h_{ie} - \frac{h_{re}h_{fe}}{Y_L + h_{oe}}$$
 with $Y_L = \frac{1}{Z_L}$

 $h_{ie} \rightarrow 1-10 \text{ k ohms}$

 $h_{re} \rightarrow <10^{-3}$

 $h_{fe} \rightarrow 20-200$

 $h_{oe} \rightarrow 1-30 \text{ mu mhos}$

 $Z_1 \rightarrow \text{few K ohms}$

 $Z_i \rightarrow same as h_{ie}$ for low Z_L . But, i. vs v. will have -ve relation for

 i_b vs v_b will have -ve relation for large Z_L .

Voltage gain:

The ratio of output voltage to input voltage gives the gain of the transistors.

$$A_v = \frac{v_c}{v_b} = \frac{i_L}{i_b} \frac{Z_L}{Z_i}$$

$$A_v = \frac{A_i Z_L}{Z_i}$$

If Z_L is more than few tens of ohms, Z_i is negative. A_v is negative. 180 degree phase shift between input and output voltages.

Output Admittance:

$$Y_O = \left. \frac{i_c}{v_c} \right|_{v_s = 0}$$

$$i_c = h_{fe}i_b + h_{oe}v_c$$

$$\frac{i_c}{v_c} = h_{fe}\frac{i_b}{v_c} + h_{oe}$$

When
$$v_s = 0$$
, $i_b(R_s + h_{ie}) + h_{re}v_c = 0$
 $\frac{i_b}{v_c} = -\frac{h_{re}}{R_s + h_{ie}}$

$$Y_O = h_{oe} - \frac{h_{re}h_{fe}}{R_s + h_{ie}}$$

Output Admittance:

$$Y_O = \left. \frac{i_c}{v_c} \right|_{v_s = 0}$$

$$i_c = h_{fe}i_b + h_{oe}v_c$$
$$\frac{i_c}{v_c} = h_{fe}\frac{i_b}{v_c} + h_{oe}$$

When
$$v_s = 0$$
, $i_b(R_s + h_{ie}) + h_{re}v_c = 0$
 $\frac{i_b}{v_c} = -\frac{h_{re}}{R_s + h_{ie}}$

$$Y_O = h_{oe} - \frac{h_{re}h_{fe}}{R_s + h_{ie}}$$

 R_s is typically much less than h_{ie} . And Y_0 is almost same as h_{oe} .

The transistor has the following common-emitter h-parameters: h_{ie} = 2500 Ω , h_{re} = 4*10⁻⁴, h_{fe} = 50, and h_{oe} = 10 μ S.

For $R_L = 5 \ k\Omega$ and $I_o = 0.2 \ mA$ rms, estimate the current gain and voltage gain of the amplifier.

The transistor has the following common-emitter h-parameters: h_{ie} = 2500 Ω , h_{re} = 4*10⁻⁴, h_{fe} = 50, and h_{oe} = 10 μ S.

For $R_L = 5 k\Omega$ and $I_o = 0.2 mA$ rms, estimate the $^{V_i}($ current gain and voltage gain of the amplifier.

Applying the current-divider principle,

$$I_o = -I_c = -\frac{1/R_L}{h_{oe} + 1/R_L} h_{fe} I_b$$

The current gain is

$$\frac{I_o}{I_b} = -\frac{h_{fe}/R_L}{h_{oe} + 1/R_L} = -\frac{50/5000}{(10 + 200)10^{-6}} = -47.6$$

The required input signal is

$$I_b = I_o/(-47.6) = 200/(-47.6) = -4.2 \,\mu\text{A}$$

The required input signal is

$$I_b = I_o/(-47.6) = 200/(-47.6) = -4.2 \,\mu\text{A}$$

Since
$$V_o = I_o R_L = 0.2 \times 10^{-3} \times 5 \times 10^3 = 1 \text{ V}$$
,

In the input loop,

$$V_i = I_b h_{ie} + h_{re} V_o$$

$$= -4.2 \times 10^{-6} \times 2500 + 4 \times 10^{-4} \times 1$$

$$= (-10.5 + 0.4)10^{-3} = -10.1 \text{ mV}$$

$$\frac{V_o}{V_i} = \frac{1}{-0.0101} = -99$$

Generalized One Stage Amplifier

RC-Coupled CE BJT Amplifier

 C_{C1} and C_{C2} isolate the DC bias currents from the AC signal source.

 C_E offers low impedance to AC and prevents undesirable AC voltage across R_F

Assumption:

V_i does not make I_b change enough to move from away from active region.

The I_b lines on o/p characteristics, are evenly spaced.

The total response is

Response to Vcc + Response to Vi.

Response to Vcc = Q point

Response to Vi = Variation about Q-point

CE Amplifier: The load line

General Small Signal r-pi model of CE Amplifier

 C_{π} - Diffusion capacitance of the forward biased base-emitter junction

C_{ic} - Junction capacitance of the reverse biased base-collector junction

C_w - Wiring Capacitance

C_L - Capacitance of the load

All of them have large C values

Refresher: Series RC and Parallel RC Impedance

	Low freq.	Mid Freq.	High freq.
	ωCR<0.1		ωCR>10
Z _{ser}	High, f(R,C)	R	R
Z _{par}	R	R	Low f(R,C)

$$Z_{\text{ser}} = \sqrt{R^2 + (1/\omega C)^2} = R\sqrt{1 + (1/\omega CR)^2}$$

$$Z_{\text{par}} = \frac{1}{\sqrt{(1/R)^2 + (\omega C)^2}} = \frac{R}{\sqrt{1 + (\omega CR)^2}}$$

Small Signal r-pi model for Mid-frequency

In mid frequencies, series capacitors are shorted.

Shunt capacitors are open.

Capacitances internal to the transistors have high impedance (low capacitance) Assuming:

$$r_{\pi} \ll R_B \ll \beta R_E \qquad V_o = -I_c(R_C||R_L) = -\beta I_b R_o = -\beta \frac{R_o}{r_{\pi} + R_s} V_s$$

$$I_b = \frac{V_s}{r_{\pi} + R_s} \qquad A_{VO} = \frac{V_o}{V_s} = -\beta \frac{R_o}{r_{\pi} + R_s}$$

Small Signal r-pi model for Low frequency

In low frequencies, series capacitors are NOT shorted.

Shunt capacitors are open.

Capacitances internal to the transistors have high impedance (low capacitance)

Acts like a high pass filter at both input and output ends.

Only small part of input enters into amplifier. Only small part of amplifier output appears across load.

In effect- Gain reduces as frequency is reduced.

Small Signal r-pi model for High frequency

In high frequencies, series capacitors are shorted.

Shunt capacitors are NOT open.

Capacitances internal to the transistors cannot be ignored.

Acts like a low pass filter at both input and output ends. Only small part of input enters into amplifier. Only small part of amplifier output appears across load.

In effect- Gain reduces as frequency is increased.

Overall Frequency Response Characteristic of a CE Amplifier

