NASA Technical Memorandum

NASA TM- 100376

ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE (STS-29) LAUNCH

By G.L. Jasper and G.W. Batts

Space Science Laboratory

July 1989

(NASA-TM-100376) ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE (STS-29) LAUNCH (NASA) 41 p CSCL 22A

N90-10980

Unclas G3/16 0235456

NASA

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

ACKNOWLEDGMENTS

The authors wish to thank the personnel of NASA Kennedy Space Center, along with those at the Cape Canaveral Air Force Station and their Computer Sciences Raytheon contractors, for the acquisition and distribution of all related KSC atmospheric data received at MSFC.

Thanks are due to Paul Meyer and Deanna Skow of the Earth Science and Applications Division, MSFC, for their help in extracting atmospheric data and satellite cloud photographs that are used in this report. Also, special thanks to Karen Gilliam and Bill Jeffries of Computer Sciences Corporation for their assistance in processing all the upper air data used in producing the STS-29 final atmospheric data tapes. Finally, appreciation is expressed to Rhonda Blocker of Boeing Computer Support Services for the GRA model, and to Ray Sparks and Kimberly Wilkie of NTI for the computer support in attaining pad measurements.

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	SOURCES OF DATA	1
III.	GENERAL SYNOPTIC SITUATION AT LAUNCH TIME	2
IV.	SURFACE OBSERVATIONS AT LAUNCH TIME	2
V.	UPPER AIR MEASUREMENTS DURING LAUNCH	2
	A. Wind Speed B. Wind Direction C. Prelaunch/Launch Wind Profiles D. Thermodynamic Data E. SRB Upper Air and Surface Measurements	2 3 3 3 3
REF	ERENCES	33

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Surface synoptic chart 2 hr 57 min before launch of STS-29	23
2.	500 mb map 2 hr 57 min before launch of STS-29	24
3.	GOES-7 visible imagery of cloud cover at the launch of STS-29 (1501 u.t., March 13, 1989). 500-mb heights (meters) and wind barbs are also included for 1200 u.t.	25
4.	Enlarged view of GOES-7 visible imagery of cloud cover taken at the launch of STS-29 (1501 u.t., March 13, 1989). Surface temperatures, isobaric parameters, and wind barbs for 1500 u.t. are also included	26
5.	Scalar wind speed and direction at launch time of STS-29	27
6.	STS-29 prelaunch/launch Jimsphere-measured wind speeds (FPS)	28
7.	STS-29 prelaunch/launch Jimsphere-measured wind directions (degrees)	29
8.	STS-29 prelaunch/launch Jimsphere-measured in-plane component winds (FPS). Flight azimuth = 90 degrees	30
9.	STS-29 prelaunch/launch Jimsphere-measured out-of-plane component winds (FPS). Reference flight azimuth = 90 degrees	31
10.	STS-29 temperature profiles versus altitude for launch (ascent)	32

LIST OF TABLES

Table	Title	Page
1.	Selected Atmospheric Observations for the Flights of the Space Shuttle Vehicles.	4
2.	Systems Used to Measure Upper Air Wind Data for STS-29 Ascent	6
3.	Surface Observations at STS-29 Launch Time	7
4.	STS-29 Pre-Launch Through Launch KSC Pad 39B Atmospheric Measurements.	8
5.	STS-29 Ascent Atmospheric Data Tape	9

TECHNICAL MEMORANDUM

ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE (STS-29) LAUNCH

I. INTRODUCTION

This report presents an evaluation of the atmospheric environmental data taken during the launch of the Space Shuttle/STS-29 vehicle. This Space Shuttle vehicle was launched from Pad 39B at Kennedy Space Center (KSC), Florida, on a reference bearing of 90-degrees east of North, at 1457 u.t. (957 EST) on March 13, 1989.

This report presents a summary of the atmospheric environment at launch time (L+0) of the STS-29, together with the sequence of prelaunch Jimsphere-measured winds aloft profiles from L-3.83 hr through liftoff. The general atmospheric situation for the launch and flight area is described, and surface and upper level wind/thermodynamic observations near launch time are given. Since the ship Redstone was unavailable for STS-29 duty, the SRB descent/impact atmospheric data were not taken. However, one can use the STS-29 ascent data for SRB studies as the best substitute.

Previous MSFC-related launch vehicle atmospheric environmental conditions have been published as Appendix A of individual MSFC Saturn Flight Evaluation Working Group reports [1]. Office memorandums have been issued for previous flights giving launch pad wind information. A report has also been published [2] which summarizes most launch atmospheric conditions observed for the past 155 MSFC/ABMA-related vehicle launches through SA-208 (Skylab 4). Reports summarizing ASTP, STS-1 through STS-27 launch conditions are presented in References 3 through 23, respectively. Table 1 gives the atmospheric L+0 launch conditions for all the Space Shuttle missions.

II. SOURCES OF DATA

Atmospheric observational data used in this report were taken from synoptic maps made by the National Weather Service, plus all available surface observations and measurements from around the launch area. Upper air observations were taken from balloon-released instruments sent aloft from Cape Canaveral Air Force Station (CCAFS). High-altitude winds and thermodynamic data were generated from the global reference atmospheric model (GRAM) since there was no reliable Super-Loki rocketsonde data available. Table 2 presents a listing of systems used to obtain the upper level wind profiles used in compiling the final ascent atmospheric data tape. Data cutoff altitudes are also given in Table 2.

III. GENERAL SYNOPTIC SITUATION AT LAUNCH TIME

An area of weak high pressure dominated the weather over southern Florida during the launch of STS-29. Southerly winds prevailed over KSC during the countdown. Figure 1 depicts the surface map at 2 hr and 57 min before launch of STS-29. The flow of the wind aloft was from the northwest. Figure 2 shows the winds aloft condition at the 500-mb level 2 hr and 57 min before launch.

Skies were mostly clear over the KSC area prior to the launch of STS-29. Figure 3 shows the GOES-7 visible satellite picture at 1501 u.t. (4 min after launch) with the 500-mb heights and wind barbs superimposed. Figure 4 presents an up-close visible view of the Florida peninsula as recorded by GOES-7, taken also at 1501 u.t. (the exhaust cloud from STS-29 can be seen on this photograph).

The STS-29 mission was delayed 2 hours due to fog and strong winds aloft.

IV. SURFACE OBSERVATIONS AT LAUNCH TIME

Surface observations at launch time for selected KSC locations are given in Table 3. Included are pad 39B, Shuttle runway, and CCAFS balloon release station observations. Neither precipitation nor lightning was observed at launch time.

Table 4 presents pad 39B wind data along with other standard hourly atmospheric measurements and sky observations for the 6-hr period prior to launch of STS-29. Values for wind speed and direction are given for the 18-m (60-ft) pad light pole level.

V. UPPER AIR MEASUREMENTS DURING LAUNCH

The FPS-16 Jimsphere (1512 u.t.) and the MSS Rawinsonde (1500 u.t.) systems were used to measure the upper level wind and thermodynamic parameters for STS-29 launch. The Super-Loki Rocketsonde and Super-Loki Robin were not available for launch of STS-29. At altitudes above the measured data, the GRAM [24] parameters for March KSC conditions were used. A tabulation of the STS-29 final atmospheric data for ascent is presented in Table 5 which lists the wind and thermodynamic parameters versus altitude. A brief summary of parameters is given in the following paragraphs.

A. Wind Speed

At launch time, wind speeds were 16.9 ft/s (10.0 kn) at 60 ft and increased to a maximum of 104.7 ft/s (61.9 kn) at 45,200 ft (13,777 m). The winds remained below this maximum through the 84,000-ft (25,603-m) level which was the altitude of the last measurable wind speed. The left side of Figure 5 shows a plot of wind speed versus altitude.

B. Wind Direction

The 60-ft wind direction was from west-southwest (242 degrees) at launch time and shifted to a consistent northerly component around 10,000 ft (3,048 m). The winds fluctuated from the north to northwest to around the 40,800-ft (12,436-m) level. Above this level winds had a westerly component and became southwesterly near 69,000 ft (21,031 m). Winds remained southwesterly throughout 84,000 ft (25,603 m), which was the last measurable directional height. Figure 5 depicts the complete wind versus altitude profile specifying wind direction on the right side.

C. Prelaunch/Launch Wind Profiles

Prelaunch/launch wind profiles given in Figures 6 through 9 were measured by the Jimsphere FPS-16 system. Data is shown for four measurement periods beginning at L-3.83 hr and extending through L+15 min.

The wind speed and direction profiles for the L-3.83 hr period prior to and including L+15 min are shown in Figures 6 and 7. The in-plane and out-of-plane profiles are shown in Figures 8 and 9. The in-plane component wind speeds were mostly less than the March mean wind values. The out-of-plane wind speeds were generally greater than the March mean values but well within the 95-percent profile envelope.

D. Thermodynamic Data

The thermodynamic data, taken at STS-29 launch time, consisted of atmospheric temperature, dew-point temperature, pressure, and density. These data have been compiled as the STS-29 ascent atmospheric data and are presented in Table 5. The vertical structure of temperature and dew-point temperature for STS-29 ascent are shown graphically versus altitude in Figure 10.

E. SRB Upper Air and Surface Measurements

As has been mentioned in the introduction, since there was no ship available, an SRB descent atmospheric data tape has not been constructed. The tabular values for the ascent atmospheric tape, as presented in Table 5, should be used for SRB descent/impact studies since it is the closest measured data source.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE I. SELECTED ATMOSPHERIC OBSERVATIONS FOR THE FLIGHTS OF THE SPACE SHUTTLE VEHICLES

		Count Down and Launch Comments of Meteorological Significance			Wind directional change observed at Pad just prior to Lo. Onset of					17 min countdown delay due to adverse weather conditions.						I day delay due to excessive wind loads, calculated at high altitudes.
itions	<u>ت</u> و	Dir. (deg)	250	286	250	329	336	27.7	278	349	252	288	289	270	303	272
ght Cond	Max. Wind Below 60,000 ft	Speed (ft/sec)	86	158	119	37	146	155	76	30	111	143	176	\$	78	121
Indi	Bei	Ait. (ft)	44,300	36,300	45,000	47,900	40,600	46, 100	45,900	45, 100	47, 100	38,200	37,700	40,300	40,600	33,100
	٠Ę	Dir. (deg)	125 120	345 355	50° 145°	1338	0.06	53	10e 350e	269	183	, ₹	320 27 5	106	7.3 58	2 4 10
tions	_ф риј м	Speed (ft/sec)	11.8 15.2	27.0	7.0° 8.0°	5.8K	22.0 35.0	12.7	5.9°	8.8 14.0	19.1	0.0 V.0	21.5	9.0	16.5	23.0
Surface Observations	e ₀	Rel. Hum. (1)	zė	19	11	7.0	89	\$	08	97	83	75	99	16	09	59
Surface	Thermodynamic ^a	Temp. (°C)	21	23	24	29	22	23	22	24	7.	11	16	26	23	20
	Therm	Press. N/cm ²	10.234 ^d	10.166	10.160	10.200	10.227	10.183	10.146	10.111	10.153	10.173	10.149	10.172	10-210	10.227
		Time (EST) Nearest Minute	0100	1010	1100	J0011	6110	1330	0733 [£]	0232 [£]	1100	080	0858	0842	0703 [£]	0715
	Vehicle Data	Launch Date	.4/12/81	11/11/81	3/22/82	6/27/82	11/11/82	4/4/83	6/18/83	8/30/83	11/28/83	2/3/84	4/6/84	8/30/84	10/5/84	11/8/84
	Vehic	Vehicle No.	STS-1 Columbia	STS-2 Columbia	STS-3 Columbia	STS-4 Columbia	STS-S Columbia	STS-6 Challenger	STS-7 Challenger	STS-8 Challenger	STS-9 (SL-1) Columbia	ST5-11 (41-B) Challenger	STS-13 (41-C) Challenger	STS-4ID Discovery	STS-41G Challenger	STS-51A Discovery
		Seq.		2	r)	+	v	w	٢	co b	6	01	=	12	2	2

ORIGINAL PAGE IS OF POOR QUALITY

		bra mod tring	Launch Comments of Meteorological Significance	I day delay due to extreme cold surface temperatures.	55-min delay due to a ship in the SRB impact area, and concerns over potential weather related impacts (cloud cover).			(20) 8/24 launch scrub due to	launch area. Rain during	unexceptable weather at TAL sites. 1/10 launch		(25) 1/26 leunch scrub due in-part to potential bad weather associated with fronts insease. 1/27		in-part to cold early morning temperatures.	(26) 1 hr and 37 min delay due to light winds.	27) I day delay due to excessive wind loads, calculated at high altitudes.	(29) 2 hr delay due to fog and strong winds aloft.
	SU		Dir. (deg)	265	265	320 297	298 30 2	035	123	283	218	270	263	264	304	245	283
	Inflight Conditions	Below 60,000 ft	Speed (ft/sec)	199	134	69	55 55	53	£	85 88	81	7.5	221	174	7	187	105
_	Infligh	Below	Alt. (ft)	42,900	42,600	32,900	40,100	48,000	41,000	48,000	43,000	49,300	40.000	42,000	53,100	40,200	45,200
(Concluded)		۔	Dir. (deg)	228 253	8 8 8	337	201 20 6	101	073 070	213	217	165	323	331	058 047	314 352	242
1. (Cor	9113	[™] brid	Speed (ft/sec)	17.1	19.9 22.3	11.5	2.9	14.9	14.2	17.0	12.7	10.1	15.4	20.1	13.7	25.5 22.0	16.9
TABLE	bservation		Rel. Hum. (%)	9}	55	9	16	72	98	79	7.2	18	*	27	26	20	78
1	Surface Observations	Thermodynamic ^a	Temp. (°C)	18	21	27	23	28	24	28	28	23	12		53	14	18
	S	Thermo	Press. ^C N/cm ²	10.173	10.257	10.128	10.201	10.174	10.225	10.185	10.029	10.202	16.206	10.253	10.182	10.270	10.190
			Time (EST) Nearest Minute	1450	1359	1202 ^f	0733 [£]	1700£	J8590	35111	1200	1929	0655	1138	1137 [£]	930	957
		Vehicle Data	Launch Date	1/24/85	4/12/85	4/29/85	6/11/85	7/29/85	8/27/85	10/3/85	10/30/85	11/26/85	1/12/86	1/28/86	9/29/88	12/2/88	3/13/89
		Ve	Vehicle No.	STS-51C Discovery	STS-51D Discovery	STS-51B Challenger	STS-51G Discovery	STS-51F Challenger	STS-511 Discovery	STS-51J Atlantis	STS-61A Challenger	STS-61B Atlantis	STS-81C Columbia	STS-51L ¹ Challenger	STS-26 Discovery	STS-27 Atlantis	STS-29 Discovery

Sed.

13

9

1

13

6

20

21

23

23

24

 25^{j}

<u>;</u>6

 27 j

Pad 39A thermodynamic measurements taken at approximately 1.2 m (4 ft) above natural grade at camera site No. 3. I min average prior to L+0 of 60 ft PLP winds measured above natural grade. FSS wind measurement was not available.

Pressure measurement applicable to 21 ft above MSL unless otherwise indicated.

Pressure measurement applicable to 14 ft above MSL.

Eastern Daylight Time.

30 sec average prior to L+0.

All vehicles launched from LC 39A except where noted.

Shuttle exploded in flight.

Vehicle launched from 39B. ъ. С

 28 j

5

TABLE 2. SYSTEMS USED TO MEASURE UPPER AIR WIND DATA FOR STS-29 ASCENT

	Date: March	March 13, 1989		Portion of Data Used	Data Used	
	Release Time	Гіте	Start		End	
Type of Data	Time (u.t.) (hr:min)	Time After L+0 (min)	Altitude m (ft)	Time After L+0 (min)	Altitude m (ft)	Time After L+0 (min)
FPS-16 Jimsphere	15:12	15	(21)	15	16,154 (53,000)	89
MSS Rawinsonde	15:00	က	16,459 (54,000)	57	25,603 (84,000)	87

TABLE 3. SURFACE OBSERVATIONS AT STS-29 LAUNCH TIME

pu	Direction (deg)	250	240	242
Wind	Speed ft/sec (kt)	11.8	8.4 (5.0)	16.9
	Height of Base Meters (ft)			ı
Sky Cover	Cloud Type	Clear	Clear	,
	Cloud	0	0	ı
	Visibility km (miles)	13 (8)	13 (8)	1
	Relative Humidity (8)	75	81	28
	Dew Point K (°F)	288.7	288.7 (60.0)	287.1 (57.0)
	Temperature K (°F)	293.2 (68.0)	292.0 (66.0)	290.9 (64.0)
	Pressure (MSL) N/cm ² (psia)	10.193 (14.784)	10.191	10.190
	Time After L+0 (min)	0	el	0
	Location ^a	NASA Space Shuttle Runway X68 ^d Winds Measured at 10.4 m (34 ft)	CCAFS XMR ^b Surface Measurements	Pad 39B ^C Lightpole NW 18.3 m (60.0 ft)

a. Altitudes of measurements are above natural grade, except where noted.

Balloon release site.

Pad 39B thermodynamic measurements are taken at camera site No. 3, approximately 6.4 m (21 ft) above MSL.

Official STS-29 sky observational site. . d

TABLE 4. STS-29 PRE-LAUNCH THROUGH LAUNCH KSC PAD 39B ATMOSPHERIC MEASUREMENTS^a

Hou.	Hourly Atmospheric Measurements	Measur	ements			Sky Condition ^b	ition ^b		
9 Door 1000	E	Dew	Relative	60' Level (SE)	evel)		Total	475	
Time u.t.	remperature (°F)	roint (°F)	(%)	WS Kt	MDο	Clouds	Sky	(mi.)	Other Remarks
0060	28	22	86	6	253	Clear	0	7	
1000	58	57	66	10	251	Clear	0	2	
1100	58	28	100	10	251	Clear	0	4	Vision obstructed by fog
1200	56	56	100	11	252	Overcast at 200 ft	10/10 3/4	3/4	Vision obstructed by fog
1300	58	28	100	∞	271	Scattered at 400 and 22,000 ft	5/10	2-1/2	2-1/2 Vision obstructed by fog
1400	61	09	26	11	260	Scattered at 800 ft	4/10	9	Vision obstructed by fog
L+0 ^C 1457	64	57	78	10	242	Clear	0	∞	

a. Hourly pad observations (obtained via MSFC/HOSC) averaged over 5 min, centered on the hour.

b. Sky observations taken at the Shuttle runway site X68.

L+0 PAD wind and thermodynamic parameters obtained from HOSC strip charts. The NW anemometer was used at 60 ft for L+0 wind conditions approximately 5 min average prior to L+0. Pad 39B L+0 sea level pressure was $10.190 \, \text{N/cm}^2$. ٠.

ORIGINAL PAGE IS OF POOR QUALITY

DEW POINT (DEG C) 13.91 13.58 13.16 12.74 12.32		7.09 6.41 6.05 7.05 3.69 2.93 2.93		2.01 1.96 1.85 1.71 1.74 1.37 1.20 0.03 0.035
DENSITY (GRAM/M3) 0.1213E+0.4 0.1210E+0.4 0.120E+0.4 0.1202E+0.4 0.1194E+0.1		1156E 1151E 1146E 1132E 1127E	0.1118E+04 0.1114E+04 0.1105E+04 0.1105E+04 0.1099E+04 0.1096E+04 0.1096E+04 0.1090E+04 0.1097E+04	0 1085E +04 0 1082E +04 0 1077E +04 0 1077E +04 0 1077E +04 0 1068E +04 0 1065E +04 0 1059E +04 0 1050E +04
PRESSURE (MILLIBARS) 0.1019E+04 0.1016E+04 0.1012E+04 0.1009E+04 0.1005E+04			93636 93366 92366 92366 92368 91338 91328	0.9035E+03 0.8970E+03 0.8938E+03 0.8938E+03 0.8875E+03 0.8843E+03 0.8843E+03 0.8749E+03 0.8779E+03 0.8778E+03 0.8748E+03 0.8748E+03 0.8759E+03 0.8622E+03 0.8591E+03
1EMPERATURE (DEG C) 17.77 17.72 17.67 17.61 17.55		8 1 2 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	18.67 18.67 18.25 17.83 17.62 17.10 16.79 16.79	16. 17 16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
WIND DIRECTION (DEG) 242.00 260.00 260.00 260.00 260.00 260.00 260.00		291000 291000 293000 298000 298000 296000	292.00 273.00 293.00 303.00 267.00 258.00 259.00	246.00 223.00 243.00 249.00 245.00 246.00 265.00 205.00 205.00
WIND SPEED (FT/SEC) (6.90 13.45 13.78 13.78				7.2.2 6.2.3 7.2.0 7.0.5 8.8.0 7.1.0 8.3.7
ALTITUDE (FT) 21. 100. 200. 300. 400. 500.	600 8 000 1 1000 1 200 1 300	22 200.	2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

DEW POINT (DEG C) 0.01 -0.37 -0.75 -0.75 -1.13	1.89 2.27 2.65 3.03 3.44	C+ 2 C C C C C C C C C C C C C C C C C C		007000-0000	10.93 10.93 10.93 10.93 10.93 10.93 10.93 10.93 10.93 10.93 10.93
DENSITY (GRAM/M3) 0.1037E+04 0.1034E+04 0.1027E+04 0.1027E+04	1021E 1017E 1014E 1007E	0.1001E +04 0.9974E +03 0.9942E +03 0.9910E +03 0.9877E +03 0.9813E +03 0.9749E +03	2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	the second of the second of the second	0.9156F103 0.90126E103 0.9039E103 0.9071E103 0.9015E103 0.8988E403 0.896CE103 0.8933E103 0.8905E103
PRESSU MILLIB .8529E .8498E .8467E		0.8194E+03 0.815E+03 0.815E+03 0.8105E+03 0.8076E+03 0.9017E+03 0.7088E+03 0.7088E+03	and the second of the second	the second of the second of the second	0.7395E 103 0.734E 103 0.7341E 103 0.7287E 103 0.7287E 103 0.7287E 103 0.7286E 103 0.726E 103 0.7179E 103 0.7179E 103
TEMPERATURE (DEG C) 12.51 12.42 12.33 12.24	12.06 11.97 11.88 11.70 11.70				7.83 7.77 7.133 6.99 6.81 6.33 6.27 6.29
₩ 111	186.00 188.00 204.00 218.00 209.00 205.00				280.00 284.00 298.00 293.00 302.00 311.00 301.00 301.00
	12.80 13.12 10.83 14.11 16.73	A CONTRACT OF THE PARTY OF THE		15.09 16.09 16.09 16.09 16.09 17.13	
ALTITUDE (FT) 5000. 5100. 5200. 5300.	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 2000	79000 8 2000. 8 3000. 8 3000. 8 5000. 8 8000.	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

ORIGINAL PAGE IS OF POOR QUALITY

0000 0100 0200 0300 0500 0500	10.50	340.00	(00.10071	1000	() 51)·
			ν.	٠	. 683	- 10.99
	٦. ١	321.00	5.60	٠, ۱	9	
	ບຸເ	324.00	7 (. 70475	.8805E	0. 0.
	9.51	338.00		0.7021E+03	0.8781E+03	- 10.93
	. 4	339.00	4 36	96696	8735E+O	2
200	. ເນ	336.00			.8713E+0	- 10.87
	ıS.	339.00			.8690E	•
300.	ω.		•	•	.8667E+0	- 10.83
900.	æ	334.00	Τ.	.6866E	.8644E+0	- 10.81
.000	Τ.		∞.	•	.8622E	0.7
1100.	4		•	•	.8597E	- -
200.	14.44		2.33	9	.8572E	= :
. 000.	12.80	345.00				- 11.87
100	14.13	•	. 6.	0.67126+03	8499F	12.23 PF C1 -
. 009	15.09		1.37		.8474E	12
700.	13.78		1.13	O.6661E+03	.8450E	
800.		356.00	0.89		8426E	-13.67
.006	18.70	357.00	•		O.8401E+03	- 14.03
.000	•	•	4.		.8377E	- 14,39
100.	•	1.00	0.18	0.6561E+03	8353	- 14 . 42
200.	•	357.00		0.6536E+03	.8328E	- 14 . 45
. 00 0	14.76	350.00	-0.28	0.6512E+03	0.8304E+03	- 14,48
100.	•	00:00	•	O.8487E+O3	80479F	
	18.04	358.00	-0.97		O.8230E+03	- 14.57
700.	15.42	342.00			9	
.00	13.12	348.00	•	•		-14.63
.006	13.78		-1.66			-14.66
.000	18.04	348.00	- .	0.6341E+03	.8134E+0	9.
	19.69	338.00	. c	0.6317E+03	.8110E	٠. ١
200.	85.71 60.01		2.35 87.62	0.6292E+03	?	-14.7/
400.	21.98		ď			
500.	24.61		ω.	0.6220E+03	.8013E+0	∞.
.009	2	338.00	-3.27		.7989E+0	- 14.93
700.	•	340.00	3.5			寸
800.	4	343.00	-3.73	٠	.7942E+0	5
.006	4	338.00	თ		. 7918E+0	រិ
.000	4	334.00	4.	•	.7894E+0	5
. 200.	~ (336.00	4 4	٠	./8/2E+0	
200.	ט סב	334.00	.4.73 E C I	0.6035E+03	0.7849E+03	- 15.35
	າເ	00.000	טר		707/6+0	. u
) A	333.00	ט נו	O. 5985E+03	7782F+0	15.0
. 009	. ແ	32.23		79625	7760E+0	. π.
. 00.	25.59	321.00	0.9	. 5939E+0	.7738E+0	6.0
800	ന	323.00	•	916E+0	.7716E+O	- 16.13
900.	4	<u>.</u>	6.6	ı.	7694E+0	16.2

• ·				- 17.37		17.7	₹.	_		4.0	<u>-</u>	. .	-22.48	- α	24.50	24.5	S	-24.73	∞.	-24.89		25.	┷-	ď	9	o. ۱	24.6		000 000 000 000 000 000 000 000 000 00	. c	10	IJ	-22.23	21.89	S	r.	α	-23.17	-23.49	-23.81	- 24, 13	.24.45	4 7
DENSIT (GRAM/M .7672E+0 .7648E+0	9		.7530E+0	0.7507E+03	7460F	7437E+0	.7411E+0	.7386[+0	.7361E+0	۲.		0.7285E+03	0.7250E+03		7185F+O	.7163E+O			0.7096[+03				.700AE		0.6964E+03	•	O.6918E+03	. 6835E tO	0.68/36403				O.6759E+03	O.6737E+O3	.6711E+0	.6685E+0	.6660	.6634E+0	8E+0	6583E+0	.6558E	O.6532E103	6507F
PRESSU MILLIB .5870E .5847E	824E 802E	.5775E		0.5712E+03	5667F	9	.5623E+0	.5601E	.5579E+0	īυ:	. 5535E	.5513E		5448F+0	5427E+0						.5299E	0.5278E+03	.5258E+0	.5237E+0	0.5216E+03	.5195E+O	7.10.		0.5133E+03		0.5072E+03	5052		0.5012E+03	.4992E+	. 4972			.4913	4	48	0.4855E+03	1835E4
₹ % ® ÷	-7.31 -7.52 -7.52	` ດ.		-8.36 -8 57	٦.	· ත	-9.11	6	Φ		G) (n o		\circ	-10.41	- 10.63	- 10.85	-11.07			= :	-	7	- 12.39	12	2 :	7 5		2 6	. E		-14.01	-14.19	- 14 . 22	-14.25	-14.28	- 14.31	- 14.34	-14.37	- 14 . 40	-14.43	144 46
WIND DIRECTION (DEG) 320.00 316.00	317.00 323.00 318.00		316.00	320.00	307.00	315.00	313.00				306.00	298.00		293.00			295.00	294.00					301.00		299.00		293.00	238.00		302 00			306.00	308.00	310.00	0		00 · 60£			0	307.00	00 200
2 7	23.95 24.93 25.36) E	*- (0.00	∞	0	σ	19.36	21.98	23.62	74.28 75.50	20:03 58:55	28.87	29.20	31.82	36.09	34.45	37.73	41.99	41.67	\circ	$^{\circ}$. ,	0 7		4-1-01 38-06	00.000	•		38.71	•	თ	Ö	4	ო	42.65	8.5	9.5	Ξ.	ω <u>4</u>	ري کا	4
ALTITUDE (FT) 15000.	15200. 15300.	15500.	15600.	15/00.	15900.	16000.	16100.	16200.	16300.	16400.	16500.	16700	16800	16900.	17000.	17100.	17200.	17300.	17400.	17500.	17600.	17700.	17800.	17900.	18000.	. 000.	18200.	. 0000	18700	18600.	18700.	18800.	18900.	19000.	19100.	19200.	19300.	19400.	19500.	19600.	19700.	19800.	19900

DEW POINT (DEG C) -25.48 -25.48 -25.87 -26.26 -26.26 -27.04 -27.04 -27.43 -27.43 -27.29.39 -29.46 -29.46 -30.52 -30.69 -30.52 -30.95	-31.47 -31.47 -31.73 -32.77 -32.77 -33.03 -33.29 -33.29 -33.55 -33.81 -34.33 -34.33 -35.11 -36.23 -36.23 -36.23 -36.23 -36.23 -36.23 -36.23 -36.23 -36.23 -36.23 -36.23 -36.23 -37.25
DENSITY (GRAM/M3) 0. 6482E+03 0. 6445E+03 0. 6436E+03 0. 6436E+03 0. 6391E+03 0. 6391E+03 0. 6324E+03 0. 6324E+03 0. 6279E+03 0. 60899E+03 0. 60899E+03 0. 60899E+03 0. 60899E+03	0.6013E+03 0.5994E+03 0.5994E+03 0.5995E+03 0.5937E+03 0.5937E+03 0.5938E+03 0.5881E+03 0.5881E+03 0.58807E+03 0.5881E+03
PRESSURE (MILLIBARS) 0.4816E+03 0.4797E+03 0.4777E+03 0.4720E+03 0.4720E+03 0.4720E+03 0.4663E+03 0.4663E+03 0.4663E+03 0.4663E+03 0.4663E+03 0.4659E+03 0.4639E+03 0.4552E+03 0.4532E+03 0.4534E+03 0.4473E+03	0. 4389£+03 0. 4371E+03 0. 4358E+03 0. 4335E+03 0. 4318E+03 0. 4282E+03 0. 4282E+03 0. 4292E+03 0. 4296E+03 0. 4296E+03 0. 4195E+03 0. 4195E+03 0. 4195E+03 0. 4195E+03 0. 4127E+03 0. 4127E+03 0. 4127E+03 0. 4025E+03 0. 4025E+03 0. 4025E+03 0. 4025E+03 0. 4025E+03 0. 4025E+03 0. 4025E+03 0. 4039E+03 0. 4025E+03 0. 39975E+03 0. 39975E+03 0. 39975E+03 0. 39975E+03
TEMPERATURE (DEG C) - (14.64) - (14.64) - (14.97) - (15.09) - (15.09) - (15.09) - (15.95) - (15.95) - (15.95) - (16.21) - (16.	- 18 .98 - 19 .21 - 19 .21 - 19 .67 - 19 .67 - 20 .36 - 20 .36 - 20 .36 - 21 .55 - 21 .55 - 22 .27 - 22 .27 - 22 .27 - 22 .27 - 23 .25 - 23 .25 - 24 .03 - 24 .03 - 24 .03 - 25 .07 - 25 .07 - 27 .25 - 27 .25 - 27 .27 - 27 .27
WIND DIRECTION (DEG) 309.00 309.00 310.00 312.00 314.00 315.00 312.00 315.00 315.00 315.00 315.00 315.00 315.00 315.00 315.00 315.00 315.00	3.16.00 3.16.00 3.16.00 3.16.00 3.16.00 3.14.00 3.11.00
WIND SPEED (FT/SEC) (SG 76 (SG	50
ALTITUDE (FT) (2000) (2	222300 2224000 2224000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000 2226000

DEW POINT (DEG C) -37.59	0.0	r. 1	ro c	48.88			-39.84	-40.09				-41.05	'nΓ		0.0			-42.70		-43, 12	-			13.96		- 44. 38 - 44. 38		15.09			-45.84		46.04 07.04		0 C			-48.14	-48.49	∞.	←.	9.5	თ	-50.24
DENSITY (GRAM/M3) 0.5523E+03				0.5437E+03			.5369E		. 5335E			0.5285E+03		0.5235E+03	52 19E		O.5186E+03	0.5170E+03	0.5153E+03	O.5137E+O3		O.5104E+03			0.5056E F03		0.5006E+03			. 4955E			0.49036+03	70001.	0.4871E+03	4839F	0.4824E+03				₹.	.4747E	32E	O.4717E+03
PRESSURE (MILLIBARS) 0.3926E+03				0.3844E+03	3812E+0						.3/16E+U	0.3700E+03			3638E	.3622E							. 3515E		0.3483E+03	0.3470E+03	0.3455E+03						0.3351E+03	7,000.					.3250E	.3236E	O.3222E+03	.3208	0.3194E+03	O.3180E+O3
TEMPERATURE (DEG C) -25.59	-26.11	-26.37	9.0	-26.89	. 7		-27.93		28	28	82	-29.27		-30.08	-30.35	-30.62	-30.89	-31.16	-31.43	-31.70	-31.97	-32.24	-32.51	-32.78	-33.05	33.32	-33.81	-34.03	- 34 . 25	-34.47	-34.69	-34.91	.do. d	- 35.33 - 36.53	135.37 -35.79	-36.07	-36.35	-36.63	-36.91	₹.	-37.47	-37.75	8	-38.31
WIND DIRECTION (DEG) 304.00	303.00	301.00		303.00	00 80E	30.000	311.00	311.00	311.00	312.00	311.00	309.00	00: 00:	308.00	00.608	310.00	312.00	311.00	312.00	313.00	310.00	310.00	312.00	309.00	313.00	314.00	a 1a . 00	312.00		316.00	314.00	320.00	24.00	00.666		318 00	318.00			316.00		9	21.	316.00
WIND SPEED (FT/SEC) 57.74) 4		4.	56.10	-	57.09	55.45	56.76	55.12	54.13	54. Ja	52.49 56.40	54 46	54:13	55, 12	55.77	56.10	58.40		59.71	59.71	60.37	60.70	58.07	47.70	4.	56.10	_	4	7 .		۲. (r) <		58.40 62.34		- 0			7		0	57.74	
ALTITUDE (FT) 25000.	25200.	25300.	25400.	25500.	25700	25800.	25900.	26000.	26100.	26200.	26300.	26400.	26600	26700	26800.	26900.	27000.	27100.	27200.	27300.	27400.	27500.	27600.	27700.	27800.	27900.	28100.	28200.	28300.	28400.	28500.	28600.	28700.	78800	28900.	20100.) D	29300.	29400.	29500.	29600.	97	0	29900.

B a 0 0 + + + + + 4 4 4 4 6 6 6 4 4 4 4 4 4 4 4	- 54 - 33 - 54 - 57 - 54 - 57 - 55 - 55 - 55 - 59 - 55 - 59 - 56 - 59 - 57 - 59	
DENSITY (GRAM/M3) 0.4702E+03 0.4686E+03 0.4685E+03 0.4640E+03 0.4640E+03 0.4625E+03 0.4594E+03 0.4594E+03 0.4594E+03 0.4596E+03 0.4596E+03 0.450E+03 0.450E+03 0.450E+03 0.450E+03 0.450E+03 0.450E+03 0.450E+03 0.450E+03 0.450E+03	0.4462E+03 0.4447E+03 0.4443E+03 0.4443E+03 0.4405E+03 0.4405E+03 0.435E+03 0.435E+03 0.435E+03 0.4313E+03 0.423E+03 0.428E+03 0.428E+03 0.426E+03	0.4236 +03 0.4216 +03 0.4197E +03 0.4183E +03 0.4169E +03 0.4142E +03 0.4142E +03 0.412E +03 0.412E +03 0.412E +03 0.412E +03 0.412E +03 0.412E +03 0.412E +03 0.412E +03 0.403E +03 0.403E +03 0.403E +03 0.403E +03 0.403E +03 0.4003E +03 0.4003E +03
PRESS 3166 3166 3172 3172 3172 3173 3173 3173 3173 3173	0.2947E+03 0.2934E+03 0.2934E+03 0.2908E+03 0.2869E+03 0.2869E+03 0.2869E+03 0.2856E+03 0.2843E+03 0.2830E+03 0.2830E+03 0.2830E+03 0.2830E+03 0.2805E+03	0.2742E+03 0.2742E+03 0.2742E+03 0.2746E+03 0.2776E+03 0.2631E+03 0.2657E+03 0.2654E+03 0.2654E+03 0.2656E+03 0.2656E+03 0.2656E+03 0.2656E+03 0.2569E+03 0.2569E+03 0.2569E+03
TEMPERATURE (DEG C) - 38.59 - 38.59 - 39.40 - 39.40 - 39.94 - 40.21 - 40.75 - 41.29 - 41.58 - 41.58 - 42.16 - 42.15	- 4 4 3 . 0 3	
WIND DIRECTION (DEG) 316.00 317.00 317.00 318.00	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
WIND SPEED (FT/SEC) 57.74 56.00 56.00 56.00 55.77 55.77 56.43 57.41 56.10 55.77 56.10 55.77	55.45 60.04 60.04 60.37 61.68 63.65 63.98 63.98 63.98 63.98	63.32 65.29 65.29 63.98 63.98 64.30 67.59 67.59 66.24 68.24 69.55 71.19
ALTITUDE (FT) 30000. 30100. 30200. 30200. 30400. 30500. 30500. 30500. 31000. 31100. 31100.	31600 31800 32000 32000 321000 32200 32500 32800 32900	333200 333200 333500 333500 33400 33400 34400 34400 34800 34800

DEW PO	3) (DEG C	73	0.79-	-67.2	-67.	0367.54	53 -67.69	0367.84	67.			6-	6666-	6666-	6666-		00.6666-	6666-	6666-		6666-		6666-	6666-			6666-	6666-	6666-		6666-	6666-	6666-	.6666-	I	6666-	6666-	6666-	. 9999	. 9999- . 6000	6666-	. 99999	ဗ	99999	e	00.8686-		00.6666-
DENSIT		0.31956+0.	.3182E			.3143E	0.3130E+0;	O.3117E+O	0.3104E+03	0.3092E+03		O.3067E+03		0.3044E+03	0.3033E+03	0.302 1E+03	0.3010E+03		O.2987E+O3		O.2964E+O3	0.2951E+03						0.2874E+03	O.2862E+O3	0.2849E+03	O.2836E+O3	•		•		٠		0.2/51E+03				.2703E+0	•	.2679E+0	.2667E+0	•	C 05/1/E+03	•
PRESSURE	(MILLIBAKS)	0. 1963E±03 0. 1975E±03	Ξ.	Τ.	0.1947E+03	Ξ.	₹.	O. 1919E+03	O. 1909E+03	O. 1900E+03	0.1891E+03	Τ.	0.1873E+03	O. 1864E+03	O.1855E+03	₹.	O.1837E+03		0.1819E+03	O. 1811E+03	٠.			٠.	O. 1767E+03	Ξ.		0.1741E+03	O.1733E+03	O.1724E+03	Τ.	Ξ.	_	┷.	T. '	<u> </u>	0.1666E+03	0.1637E+03		- ·	2001.	<u> </u>	-	. 1609	Ξ.	₹.	0 1585F+03	
TEMPERATURE		57.7	-57.91	-58.07	7		נז	-58.71	-58.87	-59.03	-59,19	-59.41	-59.63					-60.73	-60.95	-61.17	-61.39	-61.49	-61.59			ω.	-61.99	-62.09	-62.19	-62.29		ر. س	9	٠ ٦	∞. (ກ.	- 63.	25.00 FC.00		1 L	י פ	`. '	Σ.		0	=	-64.31	
WIND DIRECTION	302.00	304.00	300.00	295.00	295.00	293.00	292.00	292.00	285.00	287.00	287.00	285.00	280.00	278.00	277.00	273.00	274.00	275.00	275.00	274.00	277.00	276.00	275.00	277.00	279.00	281.00	282.00	280.00	283.00	281.00	285.00	286.00	285.00	285.00	289.00	284.00	280.00	00.002	00.872	00.8/2	278.00	27.9.00	277.00	2/9.00	278.00	278.00	280.00	
WIND SPECU		7.4	76.44	ر د ريا	74.80	75.46	75.13	74.15	76.44	73.16	75.46	76.44	78.74	79.72	80.71	83.01	83.99	85.30	86.61	86.94	84.97	87.60	88.58	90.88	91.21	92.52	94.82	93.50	95.14	98.43	91.86	92.52	92.52	90.22	84.32	17.10	90.22 90.52		92.10	0 + C	943	77.10	91.00	94.49	96.78	96. 13	95.47	
ALTITUDE (FT)	. 4	40100.	40200.	40300.	40400.	40500.	40600.	40700.	40800.	40900.	4 1000.	41100.	_	41300.	_	-	41600.	•	-	┯.	0	42100.	42200.	42300.	42400.	42500.	42600.	42700.	42800.	42900.	43000.	43100.	43200.	43300.	44400.	43300.	43700	43800	43900	44000	. 700	. 00.44	7 7	44300.	す 、	ℴ,	44600.	71100

DEW POINT (DEG C) -99999.00 -99999.00 -99999.00 -99999.00 -9999.00 -99999.00		00 00 00 00 00 00 00 00 00 00 00 00 00	· O
DENSIT (GRAM/M (GRAM/M (2598E+0 2598E+0 2553E+0 2553E+0 2539E+0 2539E+0 2539E+0 2539E+0 2539E+0		0.2315E+03 0.2303E+03 0.2291E+03 0.228E+03 0.226E+03 0.2245E+03 0.2245E+03 0.2246E+03 0.2216E+03 0.2216E+03 0.216E+03 0.216E+03 0.219E+03 0.219E+03 0.219E+03 0.219E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03 0.210E+03	. 2062E
PRESSU MILLIB 15546 15396 15396 15316 15246 15096 15096	0. 1486E+03 0. 1479E+03 0. 1472E+03 0. 1457E+03 0. 1436E+03 0. 1436E+03 0. 1436E+03 0. 1428E+03 0. 1428E+03 0. 1421E+03 0. 1407E+03 0. 1407E+03 0. 1407E+03 0. 1407E+03	0. 1379E +03 0. 1373E +03 0. 1359E +03 0. 1359E +03 0. 1339E +03 0. 1339E +03 0. 1339E +03 0. 1339E +03 0. 1296E +03 0. 1296E +03 0. 1279E +03	. 1217E
TEMPERATURE (DEG C) -64.79 -64.86 -64.86 -65.00 -65.07 -65.21 -65.21 -65.23	- 655 - 655		-67.51
WIND DIRECTION (DEG) 284.00 284.00 287.00 287.00 292.00 29	284.00 285.00 279.00 281.00 281.00 282.00 284.00 284.00 285.00	288.00 289.00 289.00 294.00 294.00 294.00 294.00 294.00 274.00 275.00 275.00 275.00 277.00 277.00	279.00
WIND SPEED (FT/SEC) 96.13 97.11 104.66 101.71 101.71 97.77 97.77 98.47	90.88 91.86 92.85 91.54 89.24 99.24 99.08 100.39	100 . 39 100 . 39 100 . 39 99 . 08 96 . 46 91 . 54 83 . 01 77 . 10 77 . 10 74 . 48 75 . 13 75 . 13 83 . 99 85 . 30	9
ALTITUDE (FT) 45000. 45100. 45200. 45300. 45500. 45500. 45600. 45000.	45900 46000 46100 46300 46500 46500 46700 47000 47000 47300	4 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49900.

(FT)	(FT/SEC)	(DEG)	(DEG C)	(MILLIBARS)	(GRAM/M3)	(DEG C)
. 0000	81.69	279.00	-67.59	0.1211E+03	0.2052E+03	
50100.	4	277.00	-67.62	O. 1205E+03	0.2042E+03	00.8666-
50200.	79.40	281.00	-67.65	O.1199E+03	O.2032E+03	00.6666-
50300.	6.7	280.00		O.1193E+03	O.2022E+03	-9999.00
50400.	6.1	278.00	-67.71	O.1187E+03	O.2012E+03	00.8666-
50500.	72.83	284.00	•	O. 1181E+O3	O.2002E+03	-9999.00
50600.	3.8	280.00	-67.77	O.1175E+03	0.1992E+03	00.6666-
50700.		280.00	•	O. 1169E+03	O.1983E+03	00.8666-
50800.		272.00	-67.83	O.1163E+03	O.1973E+03	00.8666-
50900.	•	271.00		O.1157E+03	O. 1963E+03	00.6666-
51000.	77.43	278.00	-67.89	O.1151E+03	O.1953E+03	00.6666-
51100.		280.00		O.1145E+03	Ξ.	00.6666-
51200.	82.68	278.00	-68.23	O.1140E+03	Τ.	00.6666~
300.		282.00	-68.40	O.1134E+03	O.1929E+03	00.6666~
1400.	82.68	283.00	-68.57	O.1128E+03	•	00.6666-
51500.	83.66	285.00	-68.74	O.1123E+03	O. 1913E+03	00.6666-
.009	87.60	282.00	-68.91	O.1117E+03	O. 1905E+03	-9999.00
51700.	81.04	288.00	-69.08	O.1112E+03	O.1897E+03	00.8666-
51800.	81.69	287.00	-69.25		O. 1890E+03	00.8666-
51900.	87.27	285.00	- 69.42	O.1100E+03	O.1882E+03	00.8666-
52000.	86.61	284.00	-69.59	O.1095E+03	O.1874E+03	00.8666-
52100.	80.38	291.00	-69.68	O. 1089E+03	O.1865E+O3	00.6666-
52200.	80.05	294.00	-69.77	O.1084E+03	O.1856E+O3	00.8666-
52300.	76.12	303.00	-69.86	O. 1078E+03	O.1848E+O3'	00.8666~
52400.	82.02	294.00	-69.95		O.1839E+O3	00.6666-
52500.		299.00	-70.04		Τ.	-9999.00
52600.	73.16	294.00			Ξ.	00.8666-
52700.	70.21	305.00	-70.22		Τ.	-9999,00
52800.	66.27	305.00	-70.31		Τ.	-9999.00
.006	61.68	300.00			Τ.	~9999.00
53000.	61.35	290.00	- 70 . 49		Τ.	00.8666-
.000	62.47	283.00			Ξ.	-9999.00
54000.	62.30	283.00	-69.49		-	00.8666-
54500.	62.27	283.00			Τ.	00.8668-
55000.	58.07	282.00	69.69-		₹,	-9999.00
55500.	52.13	282.00	-69.89			00'6666
56000.	46.06	282.00	-70.39		Τ.	00.6666-
56500.	40.52	282.00	-	O.8706E+02	-	00.6696-
57000.	37.80	281.00	•		Τ.	00'6666-
57500.	36.61	280.00		•	Τ.	00.6666-
58000.	36.61	278.00			O.1397E+O3	-9999.00
58500.	7	276.00	Τ.	0.7856E+02	O.1355E+O3	00.8666-
59000.	8				Τ.	00.6666-
59500.	ω.	273.00	•		Ψ.	00.8666-
60000.	38.48	274.00	•		-	00.6666-
60500.	_	276.00		0.7100E+02	Τ.	00.6666-
61000.	න ව	280.00	•	O.6923E+02	Τ.	00.6666
61500.	₹.	282.00	ω -		O.1147E+03	00.6666-
62000.	च		-67.99	0.6582E+02	O.1118E+03	00'6666-
000	77 77	(()				

WIND SPEED	WIND DIRECTION	TEMPERATURE	(MILLIDADE)	DENSI I Y	2 6
- c	(DEG) 283 OO	, r	(MILLIBARS)	(GRAM	(DE
28.51	279.00	-66.79	0.6105E+02	0.1080E+03	00.8888-
7	275.00	9		. 1005E	
26.15	271.00	6	ш	.9794E+0	ი
ດປ	266.00	-66.29	. 5664	.9539E+O	99
6.5 5.5	261.00		5388F	0.9303E+02	00.0000-
6.1	260.00			.8833E	
5.3	258.00	•	.5126E	.8587E+0	
4 .3	253.00	•	. 5000E		ω.
3	244.00	ro.	.4878E	α.	ი
٠. اع	237.00	ლ.	.4759E		
e,	230.00		.4643E	.7715	œ.
24.64	227.00			.7496E+0	<u>.</u>
S	227.00	•			щ.
1 Q	230.00	<u> </u>	0.4315E+02	. 7 102	9999.
~ 0	233.00		•	6957	9999.
28.33	236.00	62.29		.6798E+0	თ. ი
0 1	24.0.00	•	0.4009E+02		99999.
24.72 20.70	244.00			0.64/8E+02	8888 8888
7	251.00	v		0.8308E+02	00.8888-
C	250.00	-60.19	0.3636E+02		9999
0	248.00	-59.79			9999
19.75	244.00	-59.49	0.3464E+02	0.5648E+02	00.6666-
19.06	239.00	-58.49			
œ.	238.00	-57.99			
16.54	239.00	-57.49			
	243.00	-56.69	0.3147E+02	0.5065E+02	9999
12.99	249.00	-55.69			ന
	252.00	-56.09			9999.
	243.00	136.13	0.2331E+UZ		9999
12.14	235 00	- 56.49		0.460ZE F0Z	00.8888-
	229.00		2729E	0.4406E+02	00.6666-
0	228.00	-56.59	0.2664E+02	0.4285E+02	
9.7	229.00	-55.99			
ς.	229.00	ъ.		. 4071	œ.
4.4	229.00	-55.39		O.3969E+02	ω.
9.9	227.00	-54.79	.2423		Ų.
9.	227.00	က	.2367E	•	Ф.
Ö	227.00		. 2312E	•	о О
- 6	228.00		•	.3549E+0	о О
ю. •	229.53	o.	.2118E		о О
۰ د ا –	236.14	8 i	747	. 2704	ი.
	m.	വ	. 1441E	.2205E+0	999.
0 0	•	0	1188E	.1799E+0	999.
<u>ک</u> (0.0	. 9800E	. 1468E	66
17.00	S	0/ -38-	0.8630£+01	0.1282E+02	00.6666-
`	- מר	Ċ	(

TABLE 5. (Continued)

ALTITUDE	WIND SPEED	WIND DIRECTION	TEMPEDATIOE	BBESSIBE	2	2000
(F1	1.00	(DEG)	(DEG C)	(MILLIBADA)	(SPAM (M2)	
106000		295 29	-35 08	O 6700F+01	O SBOARAOT	
1090001	4	291.69	-33 27	0.5900F+01		•
112000.	α.	289.01	-31-13		75115	•
115000.	3	286.84	-28.71	4630F	6599F	
118000.	_	<u>ල</u>	-26.30	0.4100F+01	5786F	•
121000.	29.88		-23.89	O.3640E+O1	.5087E	
124000.	31.59	281.62	-		.4457E	<u></u>
127000.	33.34	280.26	- 19.08			о О
130000.	38.19		-16.83	0.2550E+01		_ n
133000.	43.18				.3058E	
136000.	48.30	270.93	-12.31		0.2698E+01	-9999.00
139000.	53.45	269.02	- 10.05	O. 1800E+01	0.2383E+01	00.6666-
142000.	58.65	267.44	-8.22		0.2104E+01	-9999.00
145000.	63.38	266.35	-6.64	O.1430E+01	O.1869E+01	00'6666-
148000.	67.45	265.68	-5.97		O.1669E+01	00'6666-
151000.	71.49	265.05				-9999.00
154000.	75.58	264 . 52	੍ਹ ਹ	O. 1030E+01	O.1336E+01	-9999,00
157000.	79.66	264.04	-3.97	0.9190E+00	O. 1189E+O1	-9999,00
160000.	83.76	263.59	-3.29	O.8220E+00	O. 1061E+01	-9999.00
163000.	86.03	262.88	-4.41	O.7360E+00	0.9541E+00	-9999.00
166000.	88.13	262.15	-5.75		0.8572E+00	ф.
169000.	90.20	261.47		0.5880E+00	0.7697E+00	
172000.	92.29	260.82	-8.24		0.6917E+00	
175000.	94.40	260.17	-9.47	0.4700E+00	0.6210E+00	
178000.	96.34	259.46			0.5572E+00	
181000.	97.94	258.56	-13.94	O.3720E+00	O. 5000E+00	00.8666-
184000.	09.66	257.69	9.	ლ.	O. 4:196E+00	-9999,00
187000.	101.28	256.85		3	O.4037E+00	00.6666-
190000	102.95	256.02			0.3623E+00	-9999.OO
193000.	104.67	255.24			0.3243E+00	00'6666-
196000.	105.55	256.63	-27.94	0.2040E+00	O.2898E+00	00.6666-
199000.	106.35	258.63	•	Ξ.	0.2589E+00	00.6666-
202000.	107.25				O.2316E+00	00.6666-
205000.	108.27	262.51		O.1400E+00		00.6666-
208000.	109.41	264.41				00.6666-
211000.	108.73	266.25	-42.82	. 1090E	0.1649E+00	00.6666-
214000.	101.30	268.16		.9520E		00.6666-
21/000.	94.03	270.40		.8330E		٠
220000.	86.90	272.99		.7290E		00.6666-
223000.	79.97	276.05		.6370E	. 1002E	-9999.00
226000.	ෆ	279.69		.5570E	O.8853E-01	00.6666-
229000.	64.82	279.44	α.	.4850E	.7774E	-9939.00
232000.	55.39	276.33	4	. 42 10E	.6801E-	
235000.	46.19	271.95		.3660E~	.5959E-	
238000.	۲.		∞.	.3180E-	.5218E	00.6666-
24 1000.	ო თ		•	.2760E	.4565E	
244000.	m [.]	240.61		.2400E-	.4001E-	
	0	ю.	7	.2070E-	.3476E-	-9999.00
ശ			•	. 17	.3024E-	00.6666-
253000.	16.68	235.90	-68.21	0.1550E-01	O.2635E-O1	00.8666-

DEW POTME (DEG C) -9499.00 -9999.00 -9999.00 -9999.00				00 6666 - 00 666
DENSITY (GRAM/M3) 0.2292E-01 0.1996E-01 0.1729E-01 0.1497E-01 0.1293E-01	9677E 9374E 7194E 6203E 5329E 3958E	2874E 2874E 2048E 1765E 1760E 1277E 1086E 9235E	2534 2534 2534 2534 2534 2534 2534 2534	
PRESSURE (MILLIBARS) 0. 1340E-01 0. 1160E-01 0. 9990E-02 0. 8600E-02 0. 7390E-02	. 54706 . 54706 . 47106 . 34606 . 29606 . 25406 . 21806	1590E 1590E 1160E 19900E 18450E 6230E 5350E 3950E	29006 29006 29006 29006 29106 19006 11406 11406	
TEMPERATURE (DEG C) -69.48 -70.74 -71.90 -72.99 -74.08				-11.04 -3.07 -3.07 -3.00 -17.17 -27.34 -37.51 -47.68 -58.81 -70.23 -95.65 -108.59 -121.81 -135.26 -148.91
WIND DIRECTION (DEG) 233.34 230.02 216.84 202.53 193.38 187.43	0-00re+6	- 4 & C C C C C C C C	189.27 189.88 190.74 191.93 197.41 199.68 200.20 201.96	203.67 205.70 198.00 188.52 177.27 164.80 148.21 156.40 159.97 163.05 168.49
ο δ τι 4 ο 12 12 ο 1	29. 15 33. 79 26. 44 19. 21 12. 31 6. 90 6. 84	15.43 30.69 45.91 59.13 67.99 70.84 72.19 71.19 62.94	57.04 58.11 57.77 50.70 42.53 39.27 39.43 36.50	22.1.95 23.04 23.04 23.92 28.29 17.87 19.06 20.41 21.93 23.63 27.46
ALTITUBE (FT) 256000. 259000. 262000. 265000. 271000.	27400. 27700. 280000. 283000. 286000. 289000.	298000. 301000. 304000. 310000. 316000. 318000. 322000.	3288000 334000 34000 34000 34000 348000 35000 35000	36 1000 3 1

ORIGINAL PAGE IS OF POOR QUALITY

Surface Synoptic Map at 1200 u.t. March 13, 1989 - Isobaric, Frontal, and Precipitation Patterns Are Shown in Standard Symbolic Form.

Figure 1. Surface synoptic chart 2 hr 57 min before launch of STS-29.

500 Millibar Height
Contours at 1200 u.t.
March 13, 1989.
Continuous Lines Indicate Height Contours in Feet Above Sea Level.
Dashed Lines Are Isotherms in Degrees Centigrade. Arrows Show Wind Direction and Speed at the 500-mb Level.

Figure 2. 500 mb map 2 hr 57 min before launch of STS-29.

Figure 3. GOES-7 visible imagery of cloud cover at the launch of STS-29 (1501 u.t., March 13, 1989). 500-mb heights (meters) and wind barbs are also included for 1200 u.t.

u.t., March 13, 1989). Surface temperatures, isobaric parameters, and wind barbs for 1500 Figure 4. Enlarged view of GOES-7 visible imagery of cloud cover taken at the launch of STS-29 (1501 u.t. are also included.

Figure 5. Scalar wind speed and direction at launch time of STS-29.

Figure 6. STS-29 prelaunch/launch Jimsphere-measured wind speeds (FPS).

Figure 7. STS-29 prelaunch/launch Jimsphere-measured wind directions (degrees).

Figure 8. STS-29 prelaunch/launch Jimsphere-measured in-plane component winds (FPS). Flight azimuth = 90 deg.

Figure 9. STS-29 prelaunch/launch Jimsphere-measured out-of-plane component winds (FPS).

Reference flight azimuth = 90 deg.

Figure 10. STS-29 temperature profiles versus altitude for launch (ascent).

REFERENCES

- 1. Saturn Flight Evaluation Working Group: Saturn Launch Vehicle Flight Evaluation Report Appendix A Atmosphere (A separate report is prepared for each Saturn vehicle launch operation). George C. Marshall Space Flight Center, Alabama.
- 2. Johnson, D.L.: Summary of Atmospheric Data Observations for 155 Flights of MSFC/ABMA Related Aerospace Vehicles. NASA TM X-64796, December 5, 1973.
- 3. Johnson, D.L.: Atmospheric Environment for ASTP (SA-210) Launch. NASA TM X-64990, February 1976.
- 4. Johnson, D.L., Jasper, G., and Brown, S.C.: Atmospheric Environment for Space Shuttle (STS-1) Launch. NASA TM 82436, July 1981.
- 5. Johnson, D.L. and Brown, S.C.: Atmospheric Environment for Space Shuttle (STS-2) Launch. NASA TM 82463, December 1981.
- 6. Johnson, D.L., Brown, S.C., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-3) Launch. NASA TM 82480, April 1982.
- 7. Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-4) Launch. NASA TM 82498, July 1982.
- 8. Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-5) Launch. NASA TM 82515, March 1983.
- 9. Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-6) Launch. NASA TM 82529, May 1983.
- 10. Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-7) Launch. NASA TM 82542, July 1983.
- 11. Johnson, D.L., Hill, C.K., Turner, R.E., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-8) Launch. NASA TM 82560, October 1983.
- 12. Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-9) Launch. NASA TM 82572, January 1984.
- 13. Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-11) Launch. NASA TM 82580, March 1984.
- 14. Johnson, D.L., Hill, C.K., Jasper, G., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-13) Launch. NASA TM 82588, May 1984.

- 15. Johnson, D.L., Hill, C.K., Jasper, G., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-41D) Launch. NASA TM 86484, October 1984.
- 16. Johnson, D.L., Hill, C.K., Jasper, G., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-41G) Launch. NASA TM 86486, November 1984.
- 17. Johnson, D.L., Jasper, G., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-51A) Launch. NASA TM 84697, December 1984.
- 18. Jasper, G.L., Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-51C) Launch. NASA TM 86508, April 1985.
- 19. Jasper, G.L., Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-51D) Launch. NASA TM 86524, June 1985.
- 20. Jasper, G.L., Johnson, D.L., Hill, C.K., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-51B) Launch. NASA TM 86525, July 1985.
- 21. Jasper, G.L., Johnson, D.L., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-51L) Launch. NASA TM 86577, December 1986.
- 22. Jasper, G.L., Johnson, D.L., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-26) Launch. NASA TM 100359, March 1989.
- 23. Jasper, G.L., Johnson, D.L., and Batts, G.W.: Atmospheric Environment for Space Shuttle (STS-27) Launch. NASA TM-100370, July 1989.
- 24. Justus, C.G., et al.: The NASA/MSFC Global Reference Atmosphere Model Mod 3 (with Spherical Harmonic Wind Model). NASA CR-3256, March 1980.

APPROVAL

ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE (STS-29) LAUNCH

By G.L. Jasper and G.W. Batts

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

TANDBERG-HANSSEN

Director, Space Science Laboratory

		TECHNICAL	REPORT STAND	ARD TITLE PAGE
1. REPORT NO.	2. GOVERNMENT ACCESSION	NO.	3. RECIPIENT'S CAT	ALOG NO.
NASA TM-100376				
4. TITLE AND SUBTITLE			5. REPORT DATE	July 1989
Atmospheric Environment for Spa	ce Shuttle (STS-29)	ŀ	6 PERFORMING ORG	
Launch			ES44	
7. AUTHOR(S)			8. PERFORMING ORGA	NIZATION REPORT #
G.L. Jasper and G.W. Batts*				
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	1	IO. WORK UNIT NO.	
Garge C. Marshell Space Flight	Cantan		·	
George C. Marshall Space Flight		[1	11. CONTRACT OR GR	ANT NO.
Marshall Space Flight Center, Ala	oama 33812	į.	13. TYPE OF REPORT	& BERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS			13. THE UP REPURT	a PERIOD COVERED
12. SPUNSURING AGENCY NAME AND ADDRESS			Technical Me	emorandum
National Aeronautics and Space A	dministration	İ		
Washington, D.C. 20546		<u> </u>	14. SPONSORING AGE	NCY CODE
15. SUPPLEMENTARY NOTES		······································		
Prepared by Space Science Labor	atory, Science and Engi	neering Direc	torate.	
*Commutan Salamana Communation	Huntavilla Alahama			
*Computer Sciences Corporation,	Huntsvine, Alabama.			
16. ABSTRACT				
Shuttle STS-29 launch time on Ma ambient pressure, temperature, mo are included. The sequence of pre report. The final atmospheric tape altitude, for STS-29 vehicle ascent has been constructed by Marshall provide an internally consistent da	isture, ground winds, v-launch Jimsphere-meas which consists of wind has been constructed. Space Flight Center's E	isual observatiured vertical valued thermod The STS-29 aarth Science a	ions (cloud), and wind profiles is gynamic paramete scent atmospheriand Applications	winds aloft given in this rs versus c data tape
17. KEY WORDS	18. DI	STRIBUTION STAT	EMENT	
STS-29 Launch Atmospheric Sun	nmary			
Pressure				
Temperature		Unclass	sified – Unlimite	d
Relative Humidity		Officias	onica – ominine	u
Winds, Winds Aloft, Clouds				
Space Shuttle				
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of	his page)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassifie		40	NTIS