Problem Set 1

Empirical Industrial Organization

Instituto Tecnológico Autónomo de México

Carlos Lezama

This exam is inspired by Luco (2019). Individuals in their working age make savings decisions for retirement. We approach the worker's decision problem in a static manner, i.e., the worker makes a one-time decision.

One Level Decision

The worker must choose one of J pension fund administrators (PFA) to manage her retirement savings. The worker is mandated to save 10% of her salary, y_i . Each PFA charges a percentage fee, p_i , over the worker's salary. PFAs differ in their return on investment, R_i . Finally, ε_{ij} is an i.i.d. Type I Extreme Value preference shock. With all this in hand, we can write down the indirect utility that worker i obtains from enrolling in $\mathsf{PFA}\,j$ as

$$u_{ij} = \alpha_i \left(y_i - 0.1 y_i - p_j y_i \right) + \beta_i R_j + \varepsilon_{ij}, \tag{1}$$

where α_i and β_i denote random coefficients. Moreover, let $\gamma_i = (\alpha_i, \beta_i)$, and $\gamma = (\alpha, \beta)$. We assume,

$$\gamma_i = \gamma + \Gamma D_i + \nu_i, \tag{2}$$

where D_i is a $d \times 1$ vector of demographic variables, Γ is a $2 \times d$ matrix of coefficients that measure how taste varies with demographics, and u_i is a 2 imes 1 vector of unobserved individual characteristics determining taste, where $u_i \sim F_{
u}(\cdot)$, with $F_{
u}(\cdot)$ a distribution function.

Following Train (2009, 3.1), we can write the probability that worker i chooses PFA j, s_{ij} , as follows:

$$s_{ij} = P(u_{ij} \ge u_{ik}, \ \forall j \ne k) \tag{3}$$

$$=P(\varepsilon_{ij}-\varepsilon_{ik}\geq\gamma_{ik}-\gamma_{ij})\tag{4}$$

$$= \frac{\exp(\gamma_{ij})}{\sum_{j \in J} \exp(\gamma_{ik})} \tag{5}$$

where $\gamma_{ij} = \beta_i R_j - \alpha_i p_j y_i$.

Additionally, we can express the price elasticity of the demand for PFA j, $E_{j,p,}$, and the cross return elasticity of the demand for PFA j with respect to the return of PFA k (with $j \neq k$), E_{j,R_k} , like so

$$E_{j,p_j} = \frac{\partial s_{ij}}{\partial p_j} \cdot \frac{p_j}{s_{ij}} \tag{6}$$

$$= \frac{\partial p_j}{\partial p_j} p_j (1 - s_{ij}) \tag{7}$$

$$= -\alpha_i p_j y_i (1 - s_{ij}) \tag{8}$$

$$\partial s :: R_i$$
 (9)

$$E_{j,R_k} = \frac{\partial s_{ij}}{\partial R_k} \cdot \frac{R_k}{s_{ij}}$$

$$= -\frac{\gamma_{ik}}{R_k} R_k s_{ik}$$
(10)

$$= -\frac{\gamma_{ik}}{R_k} R_k s_{ik} \tag{11}$$

$$= -\beta_i R_k s_{ik} \tag{12}$$

as derived in Train (2009, 3.6).

Subsequently, with this setup, we can describe the log-likelihood of the model, $\mathcal{L}(\cdot)$, such that

$$\mathcal{L}(\cdot) = \sum_{i} \sum_{j} \mathbf{1}_{ij} \log(s_{ij}) \tag{13}$$

$$= \sum_{i} \sum_{j} \left(\frac{\exp(\gamma_{ij})}{\sum_{j \in J} \exp(\gamma_{ik})} \right). \tag{14}$$

Two Level Decision

Now, suppose that each PFA offers two portfolios that workers can choose where to invest their savings in: a high-return, high-risk portfolio, h; and low-return, low-risk portfolio, l.

We model the worker's choice of PFA and portfolio as a sequential decision, where individuals first choose the PFA, and then, conditional on the PFA, they choose the portfolio. The following diagram depicts the sequential two-level decision of the worker,

In this context, we model the indirect utility of choosing PFA $j=1,\ldots,J$ and portfolio g=h,l as,

$$u_{ijg} = \alpha \left(y_i - 0.1 y_i - p_j y_i \right) + \beta R_{jg} + \theta C_{jg} + \varepsilon_{ijg}, \tag{15}$$

where now, for simplicity, α and β are not random but homogeneous coefficients across individuals. The variable R_{jg} denotes the return of portfolio g in PFA j and, similarly, C_{jg} denotes the risk of portfolio g in PFA j. Finally, ε_{ijg} is an i.i.d. GEV preference shock such that the model is a two-level nested logit.