

www.vishay.com

Vishay Siliconix

RoHS

COMPLIANT

HALOGEN

FREE GREEN

(5-2008)

E Series Power MOSFET with Fast Body Diode

PRODUCT SUMMARY					
V _{DS} (V) at T _J max.	700				
R _{DS(on)} typ. (Ω) at 25 °C	V _{GS} = 10 V 0.332				
Q _g max. (nC)	70				
Q _{gs} (nC)	8				
Q _{gd} (nC)	15				
Configuration	Single				

FEATURES

- Completely lead (Pb)-free device
- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (C_{iss})
- · Reduced switching and conduction losses
- Ultra low gate charge (Q_q)
- Avalanche energy rated (UIS)
- Kelvin connection for reduced gate noise
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ADDI	ICA	TIO	2N

- · Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Renewable energy
 - Solar (PV inverters)

ORDERING INFORMATION	
Package	PowerPAK 8 x 8
Lead (Pb)-free and Halogen-free	SiHH11N65EF-T1-GE3

ABSOLUTE MAXIMUM RATINGS (T_C	= 25 °C, unless otherwis	se noted)			
PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V_{DS}	650		
Gate-Source Voltage		V_{GS}	± 30	V	
Continuous Drain Current (T, = 150 °C)	V_{GS} at 10 V $T_C = 25 \degree C$ $T_C = 100 \degree C$	I-	11		
Continuous Drain Current (1j = 150 °C)	$T_C = 100 ^{\circ}$ C	Ι _D	7	Α	
Pulsed Drain Current a	I _{DM}	27	1		
Linear Derating Factor		1	W/°C		
Single Pulse Avalanche Energy b	E _{AS}	127	mJ		
Maximum Power Dissipation	P_{D}	130	W		
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C		
Drain-Source Voltage Slope	-1) //-14	70	V/ns		
Reverse Diode dV/dt ^c		dV/dt	26	V/IIS	

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature.
- b. V_{DD} = 140 V, starting T_J = 25 °C, L = 28.2 mH, R_q = 25 Ω , I_{AS} = 3 A.
- c. $I_{SD} \le I_D$, dI/dt = 100 A/ μ s, starting $T_J = 25$ °C.

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER SYMBOL TYP. MAX. UNIT						
Maximum Junction-to-Ambient	R _{thJA}	42	55	°C/W		
Maximum Junction-to-Case (Drain)	R_{thJC}	0.72	0.96	C/VV		

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	: 0 V, I _D = 250 μA	650	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D = 10 mA	-	0.75	-	V/°C
Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	V _{GS} , I _D = 250 μA	2.0	-	4.0	V
0.1. 0		1	V _{GS} = ± 20 V		-	± 100	nA
Gate-Source Leakage	I _{GSS}	1	$I_{GS} = \pm 30 \text{ V}$	-	-	± 1	μΑ
7 0 1 1/1 5 1 0 1		V _{DS} =	520 V, V _{GS} = 0 V	-	-	1	<u> </u>
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 520 V	, V _{GS} = 0 V, T _J = 125 °C	-	-	500	μA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 6 A	-	0.332	0.382	Ω
Forward Transconductance	9 _{fs}	V_{DS}	= 30 V, I _D = 6 A	-	4.6	-	S
Dynamic		1			•		
Input Capacitance	C _{iss}		V _{GS} = 0 V,	-	1243	-	
Output Capacitance	C _{oss}	,	$V_{\rm DS} = 100 \rm V$	-	62	-	_
Reverse Transfer Capacitance	C _{rss}		f = 1 MHz	-	4	-	
Effective Output Capacitance, Energy Related ^a	C _{o(er)}	V _{DS} = 0 V to 520 V, V _{GS} = 0 V		-	44	-	pF
Effective Output Capacitance, Time Related ^b	$C_{o(tr)}$			-	171	-	
Total Gate Charge	Qg			-	35	70	
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	$I_D = 6 A, V_{DS} = 520 V$	-	8	-	nC
Gate-Drain Charge	Q _{gd}			-	15	-	1
Turn-On Delay Time	t _{d(on)}			-	19	38	
Rise Time	t _r	$V_{DD} = 520 \text{ V}, I_D = 6 \text{ A},$		-	26	52	Ī "
Turn-Off Delay Time	t _{d(off)}	V _{GS} =	$10 \text{ V, R}_{g} = 9.1 \Omega$	-	43	86	ns -
Fall Time	t _f			-	25	50	
Gate Input Resistance	R_g	f = 1 MHz, open drain		0.4	0.7	1.4	Ω
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	11	A
Pulsed Diode Forward Current	I _{SM}			-	-	21	7 ^
Diode Forward Voltage	V _{SD}	T _J = 25 °C, I _S = 6 A, V _{GS} = 0 V		-	0.9	1.2	V
Reverse Recovery Time	t _{rr}			-	108	216	ns
Reverse Recovery Charge	Q _{rr}		5 °C, I _F = I _S = 6 A,	-	0.5	1.0	μC
Reverse Recovery Current	I _{RRM}	dl/dt = 100 A/ μ s, V _R = 25 V		_	9.6	-	Α

Notes

- a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} .
- b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} .

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 - Typical Output Characteristics

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 - C_{OSS} and E_{OSS} vs. V_{DS}

Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 8 - Typical Source-Drain Diode Forward Voltage

Fig. 9 - Maximum Safe Operating Area

Fig. 10 - Maximum Drain Current vs. Case Temperature

Fig. 11 - Temperature vs. Drain-to-Source Voltage

Fig. 12 - Normalized Thermal Transient Impedance, Junction-to-Case

Fig. 13 - Normalized Thermal Transient Impedance, Junction-to-Ambient

Fig. 14 - Switching Time Test Circuit

Fig. 15 - Switching Time Waveforms

Fig. 16 - Unclamped Inductive Test Circuit

Fig. 17 - Unclamped Inductive Waveforms

Fig. 18 - Basic Gate Charge Waveform

Fig. 19 - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

Fig. 20 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91786.

Vishay Siliconix

PowerPAK® 8 x 8 Case Outline

DIM	MILLIMETERS			INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.95	1.00	1.05	0.037	0.039	0.041	
A1	0.00	-	0.05	0.000	-	0.002	
A2		020 ref.		0.008 ref.			
b	0.95	1.00	1.05	0.037	0.039	0.041	
D	7.90	8.00	8.10	0.311	0.315	0.319	
D2	7.10	7.20	7.30	0.280	0.283	0.287	
D3	0.40 BSC		0.016 BSC				
е		2.00 BSC		0.079 BSC			
Е	7.90	8.00	8.10	0.311	0.315	0.319	
E2	4.30	4.35	4.40	0.169	0.171	0.173	
E3		0.40 BSC		0.016 BSC			
K	2.75 BSC		0.108 BSC				
L	0.45	0.50	0.55	0.018	0.020	0.022	
N ⁽³⁾	8				8		

Notes

- (1) Use millimeters as the primary measurement
- (2) Dimensioning and tolerances conform to ASME Y14.5 M 1994
- (3) N is the number of terminals
- (4) The pin 1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body
- (5) Exact shape and size of this feature is optional

ECN: E20-0518-Rev. B, 28-Sep-2020

DWG: 6041

Revision: 28-Sep-2020 1 Document Number: 67859

Recommended Minimum PADs for PowerPAK® 8 mm x 8 mm

Dimensions in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.