集成学习

Ensemble Learning

集成学习基础

- 集成学习: 构建并结合多个个体学习器来完成学习任务。
 - 基学习器: 集成的学习器都是同种类型的。
 - 组件学习器:集成的学习器包含不同的类型。
- 强可学习:在概率近似正确 (Probably approximately correct, PAC) 学习的框架汇总,一个概念,如果存在一个多项式的学习算法能够学习它,并且正确率很高,那么就称这个概念是强可学习的
- 弱可学习:一个概念,如果存在一个多项式的学习算法能够学习它,学习的正确率仅比随机猜测略好,那么这个概念是弱可学习的
- 定理:在PAC学习的框架下,一个概念是强可学习的充分必要条件是 这个概念是弱可学习的。
- 集成学习通常研究弱学习器!

• 集成学习的好处:

- 从统计的角度: 学习任务的假设空间很大,可能有多个假设在训练 集上达到同等性能,单个学习器可能因误选导致泛化性能不佳。
- 从计算的角度: 学习算法往往会陷入局部极小,多次运行之后进行 结合,可降低陷入糟糕局部极小点的风险。
- 从表示的角度:某些学习任务的真实假设可能不在当前学习算法的假设空间中,通过结合多个学习器,有可能学得更好的近似。

假设集成包含T个学习器 h_1, h_2, \ldots, h_T , 集成结果是 $H.h_t(\mathbf{x})_c$ 是学习器 $h_t(\mathbf{x})$ 在类别c上的输出.

学习器的结合策略:

- 均匀组合: $H(x) = \frac{1}{T} \sum_{t=1}^{T} h_t(\mathbf{x})$
- 加权平均: $H(\mathbf{x}) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x})$, 其中 $\forall t, \alpha_t \geq 0$ 以及 $\sum_{t=1}^T \alpha_t = 1$
- 绝对多数投票:

$$H(\mathbf{x}) = \left\{ egin{array}{ll} c & \ddot{\Xi} \sum\limits_{t=1}^T h_t(\mathbf{x})_c > rac{1}{2} \sum\limits_{c=1}^C \sum\limits_{t=1}^T h_t(\mathbf{x})_c \\ egin{array}{ll} 拒绝预测 & 否则 \end{array}
ight.$$

- 相对多数投票: $H(\mathbf{x}) = rg \max_{c} \sum_{t=1}^{I} h_t(\mathbf{x})_c$
- 加权投票: $H(\mathbf{x}) = \arg\max_{c} \sum_{t=1}^{T} \alpha_{t} h_{t}(\mathbf{x})_{c}$, 其中 $\forall t, \alpha_{t} \geq 0$ 以及 $\sum_{t=1}^{T} \alpha_{t} = 1$.

Stacking: 通过另一个学习器, 称为次级学习器或元学习器 (metalearner), 对个体学习器 (称为初级学习器)的结果进行结合。

- 利用训练集 $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ 分别训练初级学习器 h_1, h_2, \ldots, h_T .
- 构造次级训练集 $ilde{D}=\{(ilde{\mathbf{x}}_i,y_i)\}_{i=1}^m$,其中 $ilde{x}_i=(h(\mathbf{x}_i)_1,h(\mathbf{x}_i)_2,\ldots,h(\mathbf{x}_i)_T)\in\mathbb{R}^T$
- 利用次级训练集 $ilde{D}$ 训练次级学习器H

Note: 1. 一般使用交叉验证或者留一法,在每一折,用训练初级学习器未使用的样本来产生次级学习器的训练样本。

- 2.初级学习器的输出类概率作为次级学习器的输入属性。
- 3.用多响应回归(Multi-response linear regression,MLR)作为次级学习算法。

多样性

• 定理 假设基分类器的错误率都为e且相互独立,对二分类问题,简单平均集成的错误率随个体分类器数目T指数下降,即:

$$E[\mathbb{I}(H(\mathbf{x})
eq y)] \leq \exp(-rac{1}{2}T(1-2e^2))$$

该定理假设基学习器误差相互独立,但在现实任务中,基学习器是为解决同一个问题训练出来的,它们显然不独立.通过在学习过程引入随机性,可以获得依赖程度没有那么高的学习器.

• 偏差-方差分解(Bias-Variance Decomposition): 假设使用加权平均法 完成回归任务,则:

$$(H(\mathbf{x})-y)^2 = \sum_{t=1}^T lpha_t (h_t(\mathbf{x})-y)^2 - \sum_{t=1}^T lpha_t (h_t(\mathbf{x})-H(\mathbf{x}))^2$$

可以看出个体学习器准确性越高、多样性越大,则集成越好.

11.	测试例1	测试例2	测试例3	须	川试例1	测试例2	测试例3	·····································	引试例1	测试例2	测试例3	
h_1	√	√	X	h_1	√	√	X	h_1	√	X	X	
h_2	X	$\sqrt{}$	\checkmark	h_2	\checkmark	$\sqrt{\cdot}$	X	h_2	X	\checkmark	×	
h_3	\checkmark	X	\checkmark	h_3	$\sqrt{}$	\sqrt{a}	X	h_3	X	×	\checkmark	
集点	į √	V	√	集成	V	V	X	集成	X	X	X	
	(a) 集成提升性能				(b) 集成不起作用				(c) 集成起负作用			

多样性增强方法

- 数据样本扰动:从给定数据集D中采样产生不同的数据子集~D,再利用不同的数据子集训练不同的个体学习器.例如Bagging使用自助采样,AdaBoost 使用序列采样.
- 输入属性扰动:从初始的高维属性空间投影产生低维属性空间,不同的子空间提供了观察数据的不同视角,再利用不同的子空间训练不同的个体学习器.
- 算法参数扰动: 例如改变神经网络的隐层神经元数、初始连接权值等.
- 输出表示扰动: 翻转法(flipping output)随机改变一些训练样本的标记.

Bagging: 从训练集D采样相互有交叠的采样子集,并用不同的子集训练不同的个体学习器.

- 自助法采样(bootstrapsampling): 从D中有放回地采样m次得到数据集 $ilde{D}$
- 引理:D中的某个样本在自助法采样中不被采到的概率约是36.8%. 也就是说,在D中大约有36.8%的样本未出现在采样数据集 \tilde{D} 中.
- 包外验证(out-of-bag estimation): 给定数据集D, 我们可以把自助法采样得到的数据集 \tilde{D} 作为训练集, 用 $D-\tilde{D}$ 作为验证集.

Bagging 的具体过程包括如下三步.

- 1. 从训练集D中由自助法采样得到T个采样集 $\tilde{D}_1, \tilde{D}_2, \ldots, \tilde{D}_T$.
- 2. 基于自助采样集 \tilde{D}_t 训练基学习器 h_t .
- 3. 使用相对多数投票(分类任务) 或简单平均(回归任务)得到H.

在利用Bagging 进行包外估计时, 我们考虑那些未使用x训练的基学习器在x上的预测:

$$H_{oob}(\mathbf{x})$$
: $=rg\max_{c}\sum_{t=1}^{T}\mathbb{I}(\mathbf{x}
otin inde{D}_{t})\mathbb{I}(h_{t}(\mathbf{x}=c))$

那么Bagging的包外误差估计为

$$E_{oob} := rac{1}{m} \sum_{i=1}^m I(H_{oob}(\mathbf{x}_i)
eq y_i)$$

Boosting: 先从初始训练集D训练出一个基学习器, 再根据基学习器的表现对训练样本分布进行调整. 使得先前做错的训练样本在后续受到更多关注, 然后基于调整后的样本分布来训练下一个基学习器,如此重复进行.

AdaBoost(adaptive boosting): 通过给样本加权实现来对训练样本的分布进行调整.

考虑数据集
$$D=(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4)$$

经过bootstrap可得
$$D_t = (x_1,y_1), (x_1,y_1), (x_2,y_2), (x_4,y_4)$$

损失函数为:
$$E(h)=rac{1}{4}\sum_{n=1}^4 u_n^t\cdot \llbracket y_n
eq h(x_n)
rbracket$$

$$u_n^t$$
表示数据出现的次数, $u_1^t=2$, $u_2^t=u_4^t=1$, $u_3^t=0$.

$$g_t = rg\min_h \, \sum_{n=1}^N u_n^t \cdot \llbracket y_n
eq h(x_n)
rbracket$$

$$g_{t+1} = rg\min_h \, \sum_{n=1}^N u_n^{t+1} \cdot \llbracket y_n
eq h(x_n)
rbracket$$

 g_t 是由 u_n^t 得到的, g_{t+1} 是由 u_n^{t+1} 得到的,一般来讲我们希望所有的 g_t 之间具有较大的差异性。

Idea:在 g_t 的预测下, u_n^{t+1} 中错误率为0.5时, g_t 和 g_{t+1} 有较大的差异性。即:

$$rac{\sum_{n=1}^{N} u_n^{t+1} \cdot \llbracket y_n
eq g_t(x_n)
rbracket}{\sum_{n=1}^{N} u_{n+1}^{t}} = 1/2$$

$${\hat {f r}} A_{t+1} = \sum_{n=1}^N u_n^{t+1} \cdot [\![y_n
eq g_t(x_n)]\!]$$

$$B_{t+1} = \sum_{n=1}^{N} u_n^{t+1} \cdot \llbracket y_n = g_t(x_n)
bracket$$

希望: $A_{t+1} = B_{t+1}$

方法:令

$$\epsilon_t = rac{\sum_{n=1}^N u_n^t \cdot \llbracket y_n
eq g_t(x_n)
rbracket}{\sum_{n=1}^N u_n^t}$$

$$\lambda_t = \sqrt{rac{1-\epsilon_t}{\epsilon_t}}$$

则对于在
$$g_t$$
下分类正确的 $x_n, u_n^{t+1} = rac{u_n^t}{\lambda_t}$

对于在 g_t 下分类不正确的 x_n , $u_n^{t+1} = u_n^t \cdot \lambda_t$

$$\lambda_t \geq 1$$
 当且仅当 $\epsilon_t \leq rac{1}{2}$

Boosting (提升法)

$$u^1=[1/N,1/N,\cdots,1/N]$$

For
$$t=1,2,\cdots,T$$

(1)获得
$$g_t = \mathcal{A}(D, u^t)$$

(2)根据下面方法更新 u_t 到 u_{t+1} ,

If
$$\llbracket y_n
eq g_t(x_n)
rbracket$$
, 则 $u_{t+1} = u_t \cdot \lambda_t$,

If
$$\llbracket y_n = g_t(x_n)
rbracket$$
, 则 $u_{t+1} = rac{u_t}{\lambda_t}$,

(3)计算
$$a_t = \ln \lambda_t$$

Return
$$G(x) = sign(\sum_{t=1}^{T} a_t g_t(x))$$