Syntax and Semantics of FuzzyDL

Fernando Bobillo and Umberto Straccia

February 12, 2014

- 1. Comments Any line beginning with # or % is considered a comment.
- **2. Fuzzy operators.** \ominus, \oplus, \ominus and \Rightarrow denote a t-norm, t-conorm, negation function and implication function respectively; $\alpha, \beta \in [0, 1]$.

Łukasiewicz negation	$\ominus_{\mathbf{L}} \alpha$	$1-\alpha$
Gödel t-norm	$\alpha \otimes_G \beta$	$\min\{lpha,eta\}$
Łukasiewicz t-norm	$\alpha \otimes_{\mathbf{L}} \beta$	$\max\{\alpha+\beta-1,0\}$
Gödel t-conorm	$\alpha \oplus_{G}^{-} \beta$	$\max\{\alpha,\beta\}$
Łukasiewicz t-conorm	$\alpha \oplus_{\mathbf{L}} \beta$	$\min\{\alpha+\beta,1\}$
Gödel implication	$\alpha \Rightarrow_G \beta$	$ \begin{cases} 1, & \text{if } \alpha \leq \beta \\ \beta, & \text{if } \alpha > \beta \end{cases} $
Łukasiewicz implication	$\alpha \Rightarrow_{\mathbf{L}} \beta$	$\min\{1, 1 - \alpha + \beta\}$
Kleene-Dienes implication	$\alpha \Rightarrow_{KD}^{-} \beta$	$\max\{1-\alpha,\beta\}$
Zadeh'set inclusion	$\alpha \Rightarrow_Z \beta$	1 iff $\alpha \leq \beta$, 0 otherwise

The reasoner can accept three different semantics, which are used to interpret \ominus , \oplus , \ominus and \Rightarrow .

- Zadeh semantics: Łukasiewicz negation, Gödel t-norm, Gödel t-conorm and Kleene-Dienes implication (except in GCIs and concept implication, where we use Zadeh implication). This semantics is included for compatibility with earlier papers about fuzzy description logics.
- Łukasiewicz semantics: Łukasiewicz negation, Łukasiewicz t-norm, Łukasiewicz t-conorm and Łukasiewicz implication.
- Classical semantics: classical (crisp) conjunction, disjunction, negation and implication.

Syntax to define the semantics of the knowledge base:

- **3.** Truth constants. Truth constants can be defined as follows (and later on, they can be used as the lower bound of a fuzzy axiom): (define-truth-constant constant n), where n is a rational number in [0,1].
- **4.** Concept modifiers. Modifiers change the membership function of a fuzzy concept.

(define-modifier CM linear-modifier(c))	linear hedge with $c > 0$ (Figure 1 (f))
(define-modifier CM triangular-modifier(a,b,c))	triangular function (Figure 1 (d))

5. Concrete Fuzzy Concepts. Concrete Fuzzy Concepts (CFCs) define a name for a fuzzy set with an explicit fuzzy membership function (we assume $a \le b \le c \le d$).

Figure 1: (a) Crisp value; (b) L-function; (c) R-function; (d) (b) Triangular function; (e) Trapezoidal function; (f) Linear hedge

(define-fuzzy-concept CFC crisp(k1,k2,a,b))	crisp interval (Figure 1 (a))
(define-fuzzy-concept CFC left-shoulder(k1,k2,a,b))	left-shoulder function (Figure 1 (b))
(define-fuzzy-concept CFC right-shoulder(k1,k2,a,b))	right-shoulder function (Figure 1 (c))
(define-fuzzy-number CFC triangular(k1,k2,a,b,c))	triangular function (Figure 1 (d))
(define-fuzzy-concept CFC trapezoidal(k1,k2,a,b,c,d))	trapezoidal function (Figure 1 (e))
(define-fuzzy-concept CFC linear(k1,k2,a,b))	linear function (Figure 1 (f))
(define-fuzzy-concept CFC modified(mod,F))	modified datatype

6. Fuzzy Numbers. Firstly, if fuzzy numbers are used, one has to define the range $[k_1, k_2] \subseteq \mathbb{R}$ as follows: (define-fuzzy-number-range k1 k2)

Let fi be a fuzzy number (a_i, b_i, c_i) $(a \le b \le c)$, and $n \in \mathbb{R}$. Valid fuzzy number expressions (see Figure 1 (d)) are:

name	fuzzy number definition	name
(a, b, c)	fuzzy number	(a,b,c)
n	real number	(n, n, n)
$(f+f1 f2 \dots fn)$	addition	$(\sum_{i=1}^{n} a_i, \sum_{i=1}^{n} b_i, \sum_{i=1}^{n} c_i)$
(f- f1 f2)	substraction	$(a_1 - c_2, b_1 - b_2, c_1 - a_2)$
(f* f1 f2fn)	$\operatorname{product}$	$(\prod_{i=1}^{n} a_i, \prod_{i=1}^{n} b_i, \prod_{i=1}^{n} c_i)$
(f/ f1 f2)	division	$(a_1/c_2, b_1/b_2, c_1/a_2)$

Fuzzy numbers can be named as:

(define-fuzzy-number name fuzzyNumberExpression)

7. Features. Features are functional datatype attributes.

(functional F)	Firstly, the feature is defined. Then we set the range
(range F *integer* k1 k2)	The range are integer numbers in $[k_1, k_2]$
(range F *real* k1 k2)	The range are rational number in $[k_1, k_2]$
(range F *string*)	The range are strings
(range F *boolean*)	The range are booleans

8. Datatype restrictions.

(>= F var)	at least datatype restriction	$\sup_{b \in \Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x, b) \otimes (b \ge var)]$
$(>= F f(F_1,\ldots,F_n))$	at least datatype restriction	$\sup_{b \in \Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x, b) \otimes (b \ge f(F_1, \dots, F_n)^{\mathcal{I}})]$
(>= F FN)	at least datatype restriction	$\sup_{b,b'\in\Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x,b)\otimes (b\geq b')\otimes FN^{\mathcal{I}}(b')]$
(<= F var)	at most datatype restriction	$\sup_{b \in \Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x, b) \otimes (b \le var)]$
$(<= F f(F_1,\ldots,F_n))$	at most datatype restriction	$\sup_{b \in \Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x, b) \otimes (b \leq f(F_1, \dots, F_n)^{\mathcal{I}})]$
(<= F FN)	at most datatype restriction	$\sup_{b,b'\in\Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x,b)\otimes (b\leq b')\otimes FN^{\mathcal{I}}(b')]$
(= F var)	exact datatype restriction	$\sup_{b \in \Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x, b) \otimes (b = var)]$
$(= F f(F_1,\ldots,F_n))$	exact datatype restriction	$\sup_{b \in \Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x,b) \otimes (b = f(F_1, \dots, F_n)^{\mathcal{I}})]$
(= F FN)	exact datatype restriction	$\sup_{b \in \Delta_{\mathbf{D}}} [F^{\mathcal{I}}(x,b) \otimes FN^{\mathcal{I}}(b)]$

In datatype restrictions, the variable var may be replaced with a value, i.e., an integer, a real, a string, or a boolean constant (true, false) depending on the range of the feature F, although in the case of booleans, \leq and >= are not allowed.

Furthermore, f is defined as follows:

$$f(F_1, \dots, F_n) \rightarrow F$$

$$real$$

$$(nF) \mid (n * F)$$

$$(F_1 - F_2)$$

$$(F_1 + F_2 + \dots + F_n)$$

9. Constraints. Constraints are of the form (constraints \langle constraint-i \rangle +), where \langle constraint-i \rangle is one of the following (with $OP = \geq | \leq | = .$):

(a1 * var1 + + ak * vark OP number)	linear inequation	$a_1 var_1 + \ldots + a_k * var_k OP number$
(binary var)	binary variable	$var \in \{0, 1\}$
(free var)	binary variable	$var \in (-\infty, \infty)$

10. Show statements.

(show-concrete-fillers F1 Fn)	show value of the fillers of $F_1 \dots F_n$
(show-concrete-fillers-for a F1Fn)	show value of the fillers of $F_1 \dots F_n$ for a
(show-concrete-instance-for a F C1 Cn)	show degrees of being the F filler of a an instance of C_i
(show-abstract-fillers R1Rn)	show fillers of $R_1 \dots R_n$ and membership to any concept
(show-abstract-fillers-for a R1Rn)	show fillers of $R_1 \dots R_n$ for a and membership to any concept
(show-concepts a1an)	show membership of $a_1 \dots a_n$ to any concept
(show-instances C1 Cn)	show value of the instances of the concepts $C_1 \dots C_n$
(show-variables x1xn)	show value of the variables $x_1 \dots x_n$
(show-language)	show language of the KB, from \mathcal{ALC} to $\mathcal{SHIF}(D)$

where C_i is the name of a defined concrete fuzzy concept. We assume that an abstract role R appears in at most one statement of the forms show-abstract-fillers? or show-abstract-fillers-for?.

11. Crisp declarations.

(crisp-concept C1 ... Cn) concepts
$$C_1 ... C_n$$
 are crisp (crisp-role R1 ... Rn) roles $R_1 ... R_n$ are crisp

12. Concept expressions.

top	top concept	1
bottom*	bottom concept	0
A	atomic concept	$A^{\mathcal{I}}(x)$
(and C1 C2)	concept conjunction	$C_1^{\mathcal{I}}(x)\otimes C_2^{\mathcal{I}}(x)$
(g-and C1 C2)	Gödel conjunction	$C_1^{\mathcal{I}}(x) \otimes_G C_2^{\mathcal{I}}(x)$
(l-and C1 C2)	Łukasiewicz conjunction	${C_1}^{\mathcal{I}}(x) \otimes_{\operatorname{L}} {C_2}^{\mathcal{I}}(x)$
(or C1 C2)	concept disjunction	$C_1^{\mathcal{I}}(x) \oplus C_2^{\mathcal{I}}(x)$
(g-or C1 C2)	Gödel disjunction	$C_1^{\mathcal{I}}(x) \oplus_G C_2^{\mathcal{I}}(x)$
(l-or C1 C2)	Łukasiewicz disjunction	$C_1^{\mathcal{I}}(x) \oplus_{\mathbf{L}} C_2^{\mathcal{I}}(x)$
(not C1)	concept negation	$\ominus_{\mathbf{L}}{C_1}^{\mathcal{I}}(x)$
(implies C1 C2)	concept implication	$C_1^{\mathcal{I}}(x) \Rightarrow C_2^{\mathcal{I}}(x)$
(g-implies C1 C2)	Gödel implication	$C_1^{\mathcal{I}}(x) \Rightarrow_G C_2^{\mathcal{I}}(x)$
(l-implies C1 C2)	Łukasiewicz implication	$C_1^{\mathcal{I}}(x) \Rightarrow_{\mathbf{L}} C_2^{\mathcal{I}}(x)$
(kd-implies C1 C2)	Kleene-Dienes implication	$C_1^{\mathcal{I}}(x) \Rightarrow_{KD} C_2^{\mathcal{I}}(x)$
(all R C1)	universal role restriction	$\inf_{y \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(x, y) \Rightarrow C_1^{\mathcal{I}}(y)$
(some R C1)	existential role restriction	$\sup_{y \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(x, y) \otimes C_1^{\mathcal{I}}(y)$
(ua s C1)	upper approximation	$\sup_{y \in \Delta^{\mathcal{I}}} s^{\mathcal{I}}(x, y) \otimes C^{\mathcal{I}}(y)$
(la s C1)	lower approximation	$\inf_{y \in \Delta^{\mathcal{I}}} s^{\mathcal{I}}(x, y) \Rightarrow C^{\mathcal{I}}(y)$
(tua s C1)	tight upper approximation	$\inf_{z \in X} \{ s_i^{\mathcal{I}}(x, z) \Rightarrow \sup_{y \in \Delta^{\mathcal{I}}} \{ s_i^{\mathcal{I}}(y, z) \otimes C^{\mathcal{I}}(y) \} \}$ $\sup_{z \in X} \{ s_i^{\mathcal{I}}(x, z) \otimes \sup_{y \in \Delta^{\mathcal{I}}} \{ s_i^{\mathcal{I}}(y, z) \otimes C^{\mathcal{I}}(y) \} \}$ $\inf_{z \in X} \{ s_i^{\mathcal{I}}(x, z) \Rightarrow \inf_{y \in \Delta^{\mathcal{I}}} \{ s_i^{\mathcal{I}}(y, z) \Rightarrow C^{\mathcal{I}}(y) \} \}$
(lua s C1)	loose upper approximation	$\sup_{z \in X} \{ s_i^{\mathcal{I}}(x, z) \otimes \sup_{y \in \Delta^{\mathcal{I}}} \{ s_i^{\mathcal{I}}(y, z) \otimes C^{\mathcal{I}}(y) \} \}$
(tla s C1)	tight lower approximation	$\inf_{z \in X} \{ s_i^L(x, z) \Rightarrow \inf_{y \in \Delta^L} \{ s_i^L(y, z) \Rightarrow C^L(y) \} \}$
(lla s C1)	loose lower approximation	$\sup_{z \in X} \{ s_i^{\mathcal{I}}(x, z) \otimes \inf_{y \in \Delta^{\mathcal{I}}} \{ s_i^{\mathcal{I}}(y, z) \Rightarrow C^{\mathcal{I}}(y) \} \}$
(self S)	local reflexivity concept	$S^{\mathcal{I}}(x)(x,x)$
(CM C1)	modifier applied to concept	$f_{\mathtt{m}}(C_1^{\mathcal{I}}(x))$
(CFC)	concrete fuzzy concept	$CFC^{\mathcal{I}}(x)$
(FN)	fuzzy number	$FN^{\mathcal{I}}(x)$
([>= var] C1)	threshold concept	$\begin{cases} C_1^{\mathcal{I}}(x) & \text{if } C_1^{\mathcal{I}}(x) \ge w \\ 0, & \text{otherwise} \end{cases}$ $\begin{cases} C_1^{\mathcal{I}}(x), & \text{if } C_1^{\mathcal{I}}(x) \le w \\ 0, & \text{otherwise} \end{cases}$
([<= var] C1)	threshold concept	$\begin{cases} C_1^{\mathcal{I}}(x), & \text{if } C_1^{\mathcal{I}}(x) \leq w \\ 0, & \text{otherwise} \end{cases}$
(n C1)	weighted concept	$nC_1^{\mathcal{I}}(x)$
(w-sum (n1 C1) (nk Ck))	weighted sum	$n_1 C_1^{\dot{\mathcal{I}}}(x) + \ldots + n_k C_k^{\mathcal{I}}(x)$
(w-max (v1 C1) (vk Ck))	weighted maximum	$\max_{i=1}^k \min\{v_i, x_i\}$
(w-min (v1 C1) (vk Ck))	weighted minimum	$\min_{i=1}^k \max\{1 - v_i, x_i\}$
(w-sum-zero (n1 C1)(nk Ck))	weighted sum-zero	$\begin{cases} 0 & \text{if } C_i^{\mathcal{I}}(x) = 0 \text{ for some } i \in \{1, \dots, n\} \\ \text{w-sum} & \text{otherwise} \end{cases}$
$(\text{owa } (\text{w1 } \dots \text{wn}) (\text{C1 } \dots \text{Cn}))$	OWA aggregation operator	$\sum_{i=1}^{n} w_i y_i$ Some as OWA toling as $x_i = x_i = x_i$
(q-owa q C1Cn)	quantifier-guided OWA	Same as OWA taking $w_i = q(i/n) - q((i-1)/n)$
(choquet (w1 wn) (C1 Cn))	Choquet integral	$y_1 \cdot w_1 + \sum_{i=2}^{n} (y_i - y_{i-1}) w_i$
(sugeno (v1 vn) (C1 Cn))	Sugeno integral	$\max_{i=1}^n \{ \min\{y_i, mu_i\} \}$
$(q$ -sugeno $(v1 \dots vn) (C1 \dots Cn))$	Quasi-Sugeno integral	$\max_{i=1}^n \{y_i \otimes_{\mathbf{L}} mu_i\}$
(DR)	datatype restriction	$DR^{\mathcal{I}}(x)$

where:

- $\bullet\,$ a is an individual
- $n_1, \dots, n_k \in [0, 1]$ with $\sum_{i=1}^k n_i \le 1$,
- $w_1, \ldots, w_k \in [0, 1]$ with $\sum_{i=1}^k w_i = 1$,
- $v_1, \ldots, v_k \in [0, 1]$ with $\max_{i=1}^k k_i = 1$,
- $\bullet \ q$ is a quantifier (defined as a right-shoulder or a linear function),

- w is a variable or a real number in [0,1],
- y_i is the *i*-largest of the $C_i^{\mathcal{I}}(x)$,
- mu_i is defined as follows: $mu_1 = ow_1$, $mu_i = ow_i \oplus mu_{i-1}$ for $i \in \{2, ..., n\}$,
- ow_i is the weight v_i of the *i*-largest of the $C_i^{\mathcal{I}}(x)$.
- Fuzzy numbers can only appear in existential, universal and datatype restrictions.
- In threshold concepts var may be replaced with w.
- Fuzzy relations s should be previously defined as fuzzy similarity relation or a fuzzy equivalence relation as (define-fuzzy-similarity s) or (define-fuzzy-equivalence s), respectively.

Important note: The reasoner restricts the calculus to witnessed models.

13. Axioms.

(instance a C1 [d])	concept assertion	$C_1^{\mathcal{I}}(a^{\mathcal{I}}) \ge d$
(related a b R [d])	role assertion	$R^{\mathcal{I}}(a^{\mathcal{I}}, b^{\mathcal{I}}) \ge d$
(implies C1 C2 [d])	GCI	$\inf_{x \in \Delta^{\mathcal{I}}} C_1^{\mathcal{I}}(x) \Rightarrow C_2^{\mathcal{I}}(x) \ge d$
(g-implies C1 C2 [d])	Gödel GCI	$\inf_{x \in \Delta^{\mathcal{I}}} C_1^{\mathcal{I}}(x) \Rightarrow_G C_2^{\mathcal{I}}(x) \ge d$
(kd-implies C1 C2 [d])	Kleene-Dienes GCI	$\inf_{x \in \Delta^{\mathcal{I}}} C_1^{\mathcal{I}}(x) \Rightarrow_{KD} C_2^{\mathcal{I}}(x) \geq d$
(l-implies C1 C2 [d])	Łukasiewicz GCI	$\inf_{x \in \Delta^{\mathcal{I}}} C_1^{\mathcal{I}}(x) \Rightarrow_{\mathbf{I}} C_2^{\mathcal{I}}(x) \geq d$
(z-implies C1 C2 [d])	Zadeh's set inclusion GCI	$\inf_{x \in \Delta^{\mathcal{I}}} C_1^{\mathcal{I}}(x) \Rightarrow_{\mathcal{I}}^{\mathcal{I}} C_2^{\mathcal{I}}(x) \geq d$
(define-concept A C)	concept definition	$\forall_{x \in \Delta^{\mathcal{I}}} A^{\mathcal{I}}(x) = C^{\mathcal{I}}(x)$
(define-primitive-concept A C)	concept subsumption	$\inf_{x \in \Delta^{\mathcal{I}}} A^{\mathcal{I}}(x) \le C^{\mathcal{I}}(x)$
(equivalent-concepts C1 C2)	concept definition	$\forall_{x \in \Delta^{\mathcal{I}}} C_1^{\mathcal{I}}(x) = C_2^{\mathcal{I}}(x)$
(disjoint C1 Ck)	concept disjointness	$\forall_{i,j\in\{1,\dots,k\},i< j}$ (implies (g-and Ci Cj) *bottom*)
(disjoint-union C1 Ck)	disjoint union	(disjoint $C2 \dots Ck$) and $C1 = (or C2 \dots Ck)$
(range R C1)	range restriction	(implies *top* (all RN C))
(domain R C1)	fomain restriction	(implies (some RN *top*) C)
(functional R)	functional role	$R^{\mathcal{I}}(a,b) = R^{\mathcal{I}}(a,c) \to b = c$
(inverse-functional R)	inverse functional role	$R^{\mathcal{I}}(b,a) = R^{\mathcal{I}}(c,a) \to b = c$
(reflexive R)	reflexive role	$\forall a \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(a, a) = 1.$
(symmetric R)	symmetric role	$\forall a, b \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(a, b) = R^{\mathcal{I}}(b, a).$
(transitive R)	transitive role	$\forall_{a,b \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(a,b) \ge \sup_{c \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(a,c) \otimes R^{\mathcal{I}}(c,b).$
(implies-role R1 R2 [d])	RIA	$\inf_{x,y\in\Delta^{\mathcal{I}}} R_1^{\mathcal{I}}(x,y) \Rightarrow_{\mathcal{I}} R_2^{\mathcal{I}}(x,y) \geq d$
(inverse R1 R2)	inverse role	$R_1^{\mathcal{I}} \equiv (R_2^{\mathcal{I}})^-$

where d is the degree and can be: (i) a variable, (ii) an already defined truth constant, (iii) a rational number in [0,1], (iv) a linear expression.

Notes: Transitive roles cannot be functional. In Zadeh logic, \Rightarrow is Zadeh's set inclusion.

14. Queries.

```
Is K consistent?
(sat?)
(max-instance? a C)
                                       \sup\{n \mid \mathcal{K} \models (\text{instance a C n})\}
(min-instance? a C)
                                       \inf\{n \mid \mathcal{K} \models (\text{instance a C n})\}\
(all-instances? C)
                                        (min-instance? a C) for every individual of K
(max-related? a b R)
                                       \sup\{n \mid \mathcal{K} \models (\text{related a b R n})\}
(min-related? a b R)
                                       \inf\{n \mid \mathcal{K} \models (\text{related a b R n})\}\
                                       \sup\{n \mid \mathcal{K} \models (\text{implies D C n})\}\
(max-subs? C D)
(min-subs? C D)
                                       \inf\{n \mid \mathcal{K} \models (\text{implies D C n})\}\
(max-g-subs? C D)
                                       \sup\{n \mid \mathcal{K} \models (g\text{-implies D C n})\}
(min-g-subs? C D)
                                       \inf\{n \mid \mathcal{K} \models (g\text{-implies D C n})\}\
                                       \sup\{n \mid \mathcal{K} \models (\text{l-implies D C n})\}
(max-l-subs? C D)
(min-l-subs? C D)
                                       \inf\{n \mid \mathcal{K} \models (\text{l-implies D C n})\}\
(max-kd-subs? C D)
                                       \sup\{n \mid \mathcal{K} \models (\text{kd-implies D C n})\}
                                       \inf\{n \mid \mathcal{K} \models (\text{kd-implies D C n})\}
(min-kd-subs? C D)
                                       \sup_{\mathcal{I}} \sup_{a \in \Delta^{\mathcal{I}}} C^{\mathcal{I}}(a)
(max-sat? C [a])
                                       \inf_{\mathcal{I}} \sup_{a \in \Delta^{\mathcal{I}}} C^{\mathcal{I}}(a)
(min-sat? C [a])
(max-var? var)
                                       \sup\{var \mid \mathcal{K} \text{ is consistent}\}
(min-var? var)
                                       \inf\{var \mid \mathcal{K} \text{ is consistent}\}\
(defuzzify-lom? C_m a F)
                                       Defuzzify the value of F using largest of the maxima
                                       Defuzzify the value of F using middle of the maxima
(defuzzify-mom? C_m a F)
(defuzzify-som? C_m a F)
                                        Defuzzify the value of F using smallest of the maxima
                                        Computes the Best Non-Fuzzy Performance (BNP) of fuzzy number f
(bnp? f)
```

where concept C_m represents several Mamdani/Rules IF-THEN fuzzy rules expressing how to obtain the value of concrete feature F.