

Medios de Transmisión (MT)

Problemas del tema 5

Representación digital de señales analógicas

Curso 2007-08

27/11/2007

Enunciados

- 1. Una señal de banda limitada x(t) se multiplica por un tren de deltas p(t) en el que se va alternando el signo, tal y como se muestra en la figura 1
 - a) Para $\Delta < \pi/2\omega_M$, dibuje la transformada de Fourier de $x_p(t)$ e y(t).
 - b) Para $\Delta < \pi/2\omega_M$, determine un sistema para recuperar x(t) a partir de $x_p(t)$
 - c) Para $\Delta < \pi/2\omega_M$, determine un sistema para recuperar x(t) a partir de y(t).
 - d) Determine el valor máximo de Δ en términos de ω_M para el cual x(t) puede recuperarse a partir de $x_p(t)$ o de y(t).

Figura 1:

- 2. La señal $x(t) = 10 \cos(2\pi 1000t + \pi/3) + 20\cos(2\pi 2000t + \pi/6)$ se muestrea para su posterior transmisión en forma digital.
 - a) ¿Cual es el periodo de muestreo máximo que asegura la posterior reconstrucción de la señal a partir de sus muestras?
 - b) Si se quiere reproducir 1 hora de esta señal, ¿cuantas muestras necesitan ser almacenadas?
- 3. En el sistema mostrado en la figura 2 se multiplican dos señales contínuas $x_1(t)$ y $x_2(t)$ y el producto resultante, z(t), se muestrea con un tren de deltas

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) \tag{1}$$

 $x_1(t)$ está limitado en banda a ω_1 y $x_2(t)$ está limitado en banda a ω_2 . Determine el periodo de muestreo máximo para que z(t) pueda recuperarse a partir de $z_p(t)$ utilizando un filtro paso bajo ideal.

Figura 2:

- 4. Considere el sistema de muestreo de la figura 3. La señal x(t) es real y paso banda comprendida entre ω_1 y ω_2 . La señal $m(t) = e^{j\omega_0 t}$ es una exponencial compleja de frecuencia $\omega_0 = \frac{1}{2}(\omega_1 + \omega_2)$. El filtro $H_1(\omega)$ es paso bajo con frecuencia de corte $\frac{1}{2}(\omega_2 \omega_1)$. La señal $p(t) = \sum_{n=-\infty}^{\infty} \delta(t nT)$ es un tren de deltas.
 - a) Para la $X(\omega)$ dibujada en la figura 3 dibuje $X_p(\omega)$.
 - b) Determine el periodo de muestreo máximo para poder recuperar x(t) a partir de $x_p(t)$.
 - c) Determine un sistema para recuperar x(t) a partir de $x_p(t)$.

Figura 3:

5. Una seńal paso bajo x(t) con un ancho de banda W se muestrea a la frecuencia de Nyquist multiplicándola por la seńal

$$p(t) = \sum_{n=-\infty}^{\infty} (-1)^n \delta(t - nT_s)$$

siendo T_s el periodo de muestreo.

- a) Encuentre la TF de $x_p(t) = x(t)p(t)$
- b) ¿Puede reconstruirse x(t) a partir de $x_p(t)$ con un sistema LTI? ¿Por qué?

- c) Proponga un sistema para reconstruir x(t) a partir de $x_p(t)$.
- 6. (Marzo 95) Considere la siguiente señal contínua

$$x(t) = \cos 3\pi t + 2 \sin 6\pi t + 3 \cos 12\pi t$$

Esta señal se muestrea multiplicándola por $p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$ donde T es el

periodo de muestreo. Posteriormente, la señal muestreada $x_p(t)$ se hace pasar por un filtro paso bajo ideal, cuya respuesta en frecuencia se puede ver en la figura, para obtener la señal reconstruida $x_r(t)$.

Figura 4:

- a) Calcule la Transformada de Fourier de x(t).
- b) Calcule el periodo de muestreo máximo para que la señal reconstruida sea igual a la señal original.
- c) Considere que el periodo de muestreo es T=0.1 sg. Determine la señal reconstruida.
- 7. (Diciembre 95) Considere la señal paso banda x(t) cuyo espectro $X(\omega)$ se muestra en la figura

Figura 5:

A partir de x(t) se genera la señal

$$y(t) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$
 (2)

- a) Calcule $Y(\omega)$ en función de $X(\omega)$.
- b) Dibuje $Y(\omega)$ para el caso en que $2\pi/T=\omega_s=2\Delta$ y $\omega_0=7\Delta/2$ y discuta la posible recuperación de x(t) a partir de y(t).
- c) Igual que el apartado anterior para el caso en que $2\pi/T = \omega_s = 2\Delta$ y $\omega_0 = 10\Delta/3$.

Soluciones

1. a)
$$\Delta < \frac{\pi}{2\omega_m}$$
 Dibujar: $Xp(\omega), Y(\omega)$

$$p(t) = p_1(t) - p_1(t - \Delta) \text{ donde } p_1(t) = \sum_k \delta(t - k2\Delta)$$

$$P(\omega) = P_1(\omega) - e^{-j\omega\Delta}P_1(\omega) = P_1(\omega)[1 - e^{-j\omega\Delta}]$$

$$X_p(\omega) = \frac{1}{2\pi}[P(\omega) * X(\omega)] \text{ y su dibujo para } \omega_M < \frac{\pi}{2\Delta} \text{ es:}$$

Figura 6:

 $Y(\omega)$ y su dibujo es

Figura 7:

b) Ver figura 8

Figura 8:

c) Ver figura 9

Figura 9:

- d) Δ es maximo cuando $\frac{\pi}{\Delta}$ es minimo. En el apartado a) podemos ver que el .ªliasing.en $X_p(\omega)$ se evita si $\omega_M \leq \frac{\pi}{\Delta}$.Por tanto $\Delta_{min} = \frac{\pi}{\omega_M}$
- 2. $a) T_s = \frac{1}{4000} \text{ seg}$
 - b) n muestras = 14400000 muestras
- 3. $Z(\omega) = \frac{1}{2\pi} [X_1(\omega) * X_2(\omega)]$

Para evitar el aliasing hay que muestrear a la frecuencia de Nyquist $\Rightarrow \frac{2\pi}{T} \geq 2(\omega_1 + \omega_2)$ $T_{max} = \frac{\pi}{(\omega_1 + \omega_2)}$

4. *a*) Ver figura 10

Figura 10:

- b) Frecuencia Nyquist= $\frac{2\pi}{Tmax}$, para $X_2(\omega)=2\frac{\omega_2-\omega_1}{2}=\omega_2-\omega_1$ $Tmax=\frac{2\pi}{(\omega_2-\omega_1)}$
- c) Ver figura 11

Figura 11:

5. a)
$$x(t)p(t) = x_p(t) \Rightarrow X_p(\omega) = \frac{1}{2\pi}[X(\omega) * P(\omega)]$$

Ver figura 12

Figura 12:

donde
$$\frac{\pi}{T_s} \ge W$$

- b) No.
- c) Ver figura 13

Figura 13:

6.
$$x(t) = \cos 3\pi t + 2\sin 6\pi t + 3\cos 12\pi t$$

a)
$$X(\omega) = \pi[\delta(\omega - 3\pi) + \delta(\omega + 3\pi)] + 2\frac{\pi}{j}[\delta(\omega - 6\pi) - \delta(\omega + 6\pi)] + 3\pi[\delta(\omega - 12\pi) + \delta(\omega + 12\pi)]$$

b)
$$T_{s_{max}} = \frac{1}{12,5} \text{ seg}$$

c)
$$T = \frac{1}{10} \Rightarrow \omega_s = 20\pi$$

 $X_p(\omega) = \frac{1}{T} \sum_{K=-\infty}^{\infty} X(\omega - K\omega_s)$

$$x_6(t) = x(t) + 3\cos 8\pi t = \cos 3\pi t + 2\sin 6\pi t + 3\cos 8\pi t + 3\sin 12\pi t$$

7. a)
$$y(t) = x(t)p(t)$$
, donde $p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$

$$Y(\omega) = \frac{1}{2\pi}[X(\omega) * P(\omega)] = \frac{1}{2\pi}X(\omega) * \frac{2\pi}{T} \sum_{K=-\infty}^{\infty} \delta(\omega - K\omega_s) = \frac{1}{T} \sum_{K=-\infty}^{\infty} X(\omega - K\omega_s)$$
b) $\omega_0 = \frac{7}{2}\Delta \Rightarrow$

$$\omega_0 - \frac{\Delta}{2} = 3\Delta$$

$$\omega_0 + \frac{\Delta}{2} = 4\Delta$$

Figura 14:

No hay aliasing.