MS-DIAL FAQ

Hiroshi Tsugawa

How it works for peak detections

- ✓ Differential function
- ✓ Noise estimation

Differential function

$$f(x) = ax^{3} + bx^{2} + cx + d$$

$$\downarrow$$

$$f'(x) = 3ax^{2} + 2bx + c$$
Slope

Differential function for chromatogram

 $f(x) = \{50, 10, 100, 500, 800, 1000, 800, 500, 100, 10, 50\}$

Differential function for chromatogram

$$f(x) = \{50, 10, 100, 500, 800, 1000, 800, 500, 100, 10, 50\}$$

$$f'(x) = \frac{-2x_{-2} - x_{-1} + x_{+1} + 2x_{+2}}{10}$$

Differential function for chromatogram

Back tracing

Noise evaluation

Sort the first derivative array by the absolute values

Noise evaluation

Noise value = Median

f'(x) 0.361563 2.368109 6.641594 9.488878 10.547 11.025 Top 5% 16.82708 17.22223 21.78178 22.57424 23.91914 27.35502 30.6929 31.75519 32.60672 36.23518 40.57042 45.80185 47.27034 55.0006 58.68845 58.71436 61.12281 61.28744 70.8877 73.31488 77.39816 77.75772 77.99117 80.14925 85.77214 86.85782

In MS-DIAL program

Not only first derivatives, But also the amplitude differences and the second derivatives are evaluated.

In MS-DIAL program

In MS-DIAL program

 $smoothed\ value = \\ 1f(x_{-2}) + 2f(x_{-1}) + 3f(x) + 2f(x_{+1}) + 1f(x_{+2})$

How it works in RT & m/z axis

√Slicing method

✓ Peak detection is applied to base peak chromatogram

Slicing method & BPC exctraction

Slicing method & BPC exctraction

Slicing method & BPC exctraction

Retention time

What is 'exclusion mass list'?

What is 'exclusion mass list'?

Retention time and MS1 similarity

$$S_{RT} = \exp\left\{-0.5 \times \left(\frac{RT_{act.} - RT_{lib.}}{\delta}\right)^2\right\} \qquad S_{MS1} = \exp\left\{-0.5 \times \left(\frac{Mass_{act.} - Mass_{lib.}}{\delta}\right)^2\right\}$$

Retention time and MS1 similarity

$$S_{RT} = \exp\left\{-0.5 \times \left(\frac{RT_{act.} - RT_{lib.}}{\delta}\right)^2\right\}$$


```
Peak information
Peak intensity:
               519303
                       RT difference
RT [min]:
               4.38
Mass [Da]:
               758.594
                         0.251 min
Identification information
                                         0.0006 Da
               DGTS(18:2/18:3); [M+H]
Name:
Ref. RT[min]: 4.631 ←
               758.5934 (Isotope: 901) ←
Ref. Mass[Da]:
MS^2 similarity: 936 (Reverse: 999) Mass difference
```

MS/MS similarity

$$dot \ product = \frac{(\sum W_{act.} W_{lib.})^2}{\sum W_{act.}^2 \sum W_{lib.}^2} \quad dot \ product_{reverse} = \frac{(\sum W_{act.} W_{lib.})^2}{\sum W_{act.}^2 \sum W_{lib.}^2} \ ("in \ lib."only)$$

Amplitude(A) is normalized by $1/(1 + \frac{A}{\sum A - 0.5})$

Present fragments ratio = $\frac{\text{The number of mathed fragments}}{\text{The number of reference fragments}}$

BTW, what is the difference?

Dot product

Reverse dot product

Act.: $\mathbf{a} = (0, 400, 1000, 200, 0, 700, 300, 300)$

Act.: $\mathbf{a'} = (0, 1000, 0, 300, 300)$

Presence ratio: $\frac{3}{5} = 0.6$

Lib: $\mathbf{b} = (100, 0, 1000, 0, 100, 0, 400, 300)$

Lib: **b'** = (100, 1000, 100, 400, 300)

Dot product: $\frac{a \cdot b}{|a| \cdot |b|} = 0.637$

Rev. product: $\frac{a' \cdot b'}{|a'| \cdot |b'|} = 0.995$

Isotope ratio similarity

Metoclopramide: C₁₄H₂₂N₃O₂Cl

Similarity: 0.915

Accurate mass [Da]

$$S_{ratio} = 1 - \sum |r_{act.i} - r_{lib.i}| \quad r_i = \frac{I_{M+i}}{I_M}, 1 \le i \le n$$

How it works for peak alignment

- ✓ Making 'master peak list'
- **√** Joint aligner
- √ Filtering of aligned peak list
- √Gap filing

Making 'master peak list'

12.88

1230.412

BTW, what is 'Joint aligner'?

BTW 2, what if there is no master peak?

Making 'master peak list'

a. Making a reference peak table

Joint aligner

Joint aligner

b. Fitting each sample peak table to reference peak table

Reference peak table							Aligned peak table						
Peak no.	RT [min]	m/z	Sample A	ł			Alignment ID	RT Ave	m/z Ave.	Sample A	Sample B	Sample C	
1	0.73	434.5876	Peak no.	RT [min]	m/z		1	0.72	434.5878	2500	1800	4000	
2	0.88	541.9048					2	0.88	541.9050	N.D.	1500	2000	
3	1.26	842.1221					3	1.25	842.1220	53000	62000	40000	
4	1.82	254.1078				,	4	1.81	254.1079	100	50	730	
5	1.99	771.3782	_ k	1.99	771.3761	١	5	1.99	771.3765	N.D.	N.D.	N.D.	
6	2.11	332.0043				二/	6	2.12	332.0049	14500	7800	25000	
7	2.13	659.6631	Joint to matched peak Equation 28			}	7	2.13	659.6631	90000	150000	120000	
8	2.29	111.0078				5/	8	2.28	111.0082	8500	N.D.	N.D.	
n-2	11.35	1050.772	Repeat	for all s	samples		n-2	11.36	1050.775	5000	4500	N.D.	
n-1	12.85	1001.289					n-1	12.85	1001.282	58000	20000	25000	
n	12.88	1230.412					n	12.87	1230.412	10000	12000	9000	

Filtering of aligned peak list

c. Filtering aligned peaks

Aligned peak table

Alignea pea	к гарге								- 2. QC 'at least' filter: ON
Alignment ID	RT Ave.	m/z Ave.	Sample A	Sample B	Sample C	QC 1	QC 2	QC 3	
1	0.72	434.5878	2500	1800	4000	1000	N.D.	2000	← Excluded (Step 3)
2	0.88	541.9050	N.D.	1500	2000	1400	2000	1500	
3	1.25	842.1220	53000	62000	40000	45000	30000	35000	
4	1.81	254.1079	100	50	730	100	50	730	
5	1.99	771.3765	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	← Excluded (Step 1)
6	2.12	332.0049	14500	7800	25000	14500	7800	25000	
7	2.13	659.6631	90000	150000	120000	75000	70000	72000	
8	2.28	111.0082	8500	N.D.	N.D.	8500	8800	9000	Excluded (Step 2)
n	12.87	1230.412	10000	12000	9000	15000	12000	13000	_

Condition

1. Peak count filter: 80%

Gap filing: interpolating missing values

d. Interpolating missing values

The maximum of raw data point within the blue range (equation 29) is interpolated.

								<u> </u>	
Alignment ID	RT Ave.	m/z Ave.	Sample A	Sample B	Sample C	QC 1	QC 2	QC 3	m/z \blacktriangle Sample A raw data
1'	0.88	541.9050	N.D.	1500	2000	1400	2000	1500	T
2'	1.25	842.1220	53000	62000	40000	45000	30000	35000	
3'	1.81	254.1079	100	50	730	100	50	730	541.9050
4'	2.11	332.0049	14500	7800	25000	14500	7800	25000	
5'	2.13	659.6631	90000	150000	120000	75000	70000	72000	
n'	12.87	1230.412	10000	12000	9000	15000	12000	13000	0.88 RT [min]

