USN:

Department of Artificial Intelligence and Machine Learning

Course Code:21AI52 Date:

Sem: V Duration: 90 Minutes

CIE-II Artificial Intelligence and Machine Learning

Answer all Questions

No States: Location (airport) and current time. Initial state: users query Actions: flight from current location, seat class, leaving after the current time, leaving enough time for within airport transfer. Goal test destination arrived? Path cost monetary cost, waiting time, flight time, customs and immigration procedure, seat quality, time of day, type of airplane, frequent flyer mileage, and so on. 9	SL.	Questions	M	BT	CO
Initial state: users query Actions: flight from current location, seat class, leaving after the current time, leaving enough time for within airport transfer. Goal test destination arrived? Path cost monetary cost, waiting time, flight time, customs and immigration procedure, seat quality, time of day, type of airplane, frequent flyer mileage, and so on. b) DFS(G) = 1 4 3 10 9 2 5 6 7 8 2		Questions	171		
DFS(G) = 1 4 3 10 9 2 5 6 7 8 2 a) Solution- Step-01: We start with node A. Node B and Node F can be reached from node A. A* Algorithm calculates f(B) and f(F). • f(B) = 6 + 8 = 14, f(F) = 3 + 6 = 9 Since f(F) < f(B), so it decides to go to node F. Path- A → F Step-02: Node G and Node H can be reached from node F. A* Algorithm calculates f(G) and f(H). f(G) = (3+1) + 5 = 9, f(H) = (3+7) + 3 = 13 Since f(G) < f(H), so it decides to go to node G. Path- A → F → G Step-03: Node I can be reached from node G. A* Algorithm calculates f(I). f(I) = (3+1+3) + 1 = 8 It decides to go to node I. Path- A → F → G → I Step-04: Node E, Node H and Node J can be reached from node I. A* Algorithm calculates f(E), f(H) and f(J). f(E) = (3+1+3+5) + 3 = 15, f(H) = (3+1+3+2) + 3 = 12 f(J) = (3+1+3+3)	1 a)	Initial state: users query Actions: flight from current location, seat class, leaving after the current time, leaving enough time for within airport transfer. Goal test destination arrived? Path cost monetary cost, waiting time, flight time, customs and immigration procedure, seat quality, time of day, type of airplane, frequent flyer mileage, and	05	L4	CO2
2 a) Solution-Step-01: We start with node A. Node B and Node F can be reached from node A. A* Algorithm calculates $f(B)$ and $f(F)$. • $f(B) = 6 + 8 = 14$, $f(F) = 3 + 6 = 9$ Since $f(F) < f(B)$, so it decides to go to node F. Path- A \rightarrow F Step-02: Node G and Node H can be reached from node F. A* Algorithm calculates $f(G)$ and $f(H)$. $f(G) = (3+1) + 5 = 9$, $f(H) = (3+7) + 3 = 13$ Since $f(G) < f(H)$, so it decides to go to node G. Path- A \rightarrow F \rightarrow G Step-03: Node I can be reached from node G. A* Algorithm calculates $f(I)$. $f(I) = (3+1+3) + 1 = 8$ It decides to go to node I. Path- A \rightarrow F \rightarrow G \rightarrow I Step-04: Node E, Node H and Node J can be reached from node I. A* Algorithm calculates $f(E)$, $f(H)$ and $f(J)$. $f(E) = (3+1+3+5) + 3 = 15$, $f(H) = (3+1+3+2) + 3 = 12$ $f(J) = (3+1+3+3)$	b)	7 6 5 2 9 10 3 4 1	05	L3	CO1
	2 a)	Solution-Step-01: We start with node A. Node B and Node F can be reached from node A. A* Algorithm calculates $f(B)$ and $f(F)$. • $f(B) = 6 + 8 = 14$, $f(F) = 3 + 6 = 9$ Since $f(F) < f(B)$, so it decides to go to node F. Path- A → F Step-02: Node G and Node H can be reached from node F. A* Algorithm calculates $f(G)$ and $f(H)$. $f(G) = (3+1) + 5 = 9$, $f(H) = (3+7) + 3 = 13$ Since $f(G) < f(H)$, so it decides to go to node G. Path- A → F → G Step-03: Node I can be reached from node G. A* Algorithm calculates $f(I)$. $f(I) = (3+1+3) + 1 = 8$ It decides to go to node I. Path- A → F → G → I Step-04: Node E, Node H and Node J can be reached from node I. A* Algorithm calculates $f(E)$, $f(H)$ and $f(J)$. $f(E) = (3+1+3+5) + 3 = 15$, $f(H) = (3+1+3+2) + 3 = 12$ $f(J) = (3+1+3+3) + 0 = 10$ Since $f(J)$ is least, so it decides to go to node J.	06	L3	CO2

USN:

Department of Artificial Intelligence and Machine Learning

		1					ı	1	
	b)			7, 8, 9, 10, 11			04	L2	CO2
		DLS (dept							
		IDS:							
		first iteration							
		second iter							
		third iterat							
		fourth itera							
3	a)						6	2	2
		Algorithm:							
		1: Let <i>k</i> be							
		2: for each							
		3: Comp							
		4: Select							
		5: $y' = a$							
		6: end for							
		Solution:							
		BMI	Age	Sugar	Distance				
		33.6	50	1	14.14				
		26.6	30	0	19.72				
		23.4	40	0	20.20				
		43.1	67	0	27.00				
		35.3	23	1	18.92				
		35.9	67	1	28.08				
		36.7	45	1	8.52				
		25.7	46	0	18.88				
		23.3	29	0	23.09				
		31	56	1	20.37				
			130		20.07	1			
		Pseudo cod							
		Solving the							
		Final answ							
		Tost Evens	lo DN41-42 (5 Ago-40 Sug	1				
-	b)			5, Age=40, Sug ics of KNN Al			4	1	1
	U)		e based leari		igoriumi		4	1	1
			ot build glob	-					
			_	ples to make p	redictions on	test			
						similarity or distance between			
		instance		, incusure to a		similarity of distance between			
		Require	s classificat	ion function th	at returns the	e predicted class of a test instance			
		based o	n its proxim	ity to other ins	stances				
						ive because we need to compute the			
		_	-	-		and training examples.			
			-		_	ions based on local information			
				oundaries of a					
				_	•	because they depend on the			
		_		ning examples		_			
	<u> </u>	• Increasi	ing the numl	per of nearest i	neignbors ma	y reduce such variability.			

USN:

Department of Artificial Intelligence and Machine Learning

	Have difficulty handling missing values in both the training and test sets since proximity computations normally require the presence of all attributes			
4	Explanation: 03 marks	10	3	2
	Consider each attribute and class label as random variables	10		
	Given a record with attributes $(X_1, X_2,, X_d)$, the goal is to predict class Y			
	• Specifically, we want to find the value of Y that maximizes $P(Y X_1, X_2,, X_d)$			
	• Can we estimate $P(Y X_1, X_2,, X_d)$ directly from data?			
	• For the purpose of classification, we are interested in computing the probability of			
	observing a class label y for a data instance given its set of attribute values x.			
	• This can be represented as $P(y x)$, which is known as the posterior probability of			
	the target class.			
	 Using the Bayes Theorem, we can represent the posterior probability as 			
	• The first term P(x y) is known as the class-conditional probability of the attributes			
	given the class label.			
	 The second term in the numerator is the prior probability P(y). 			
	 The second term in the humerator is the prior probability I (y). The denominator is the probability of evidence, P(x). 			
	 P(x y) measures the likelihood of observing x from the distribution of instances 			
	belonging to y.			
	 If x indeed belongs to class y, then we should expect P(x y) to be high. 			
	Calculate the probability of the species being M or H in total. – 01 marks			
	P(Species=M)=4/8=0.5			
	P(Species=H)=4/8=0.5			
	Next, we will calculate the conditional probability of each attribute value for each			
	class label. – 03 marks			
	P(Color=White/Species=M)=2/4=0.5			
	P(Color=White/Species=H)=3/4=0.75			
	P(Color=Green/Species=M)=2/4=0.5			
	P(Color=Green/Species=H)=½=0.25			
	P(Legs=2/Species=M)=1/4=0.25			
	P(Legs=2/Species=H)=4/4=1			
	P(Legs=3/Species=M)=3/4=0.75			
	P(Legs=3/Species=H)=0/4=0			
	P(Height=Tall/Species=M)=3/4=0.75			
	P(Height=Tall/Species=H)=2/4=0.5			
	P(Height=Short/Species=M)=1/4=0.25			
	P(Height=Short/Species=H)=2/4=0.5			
	P(Smelly=Yes/Species=M)=3/4=0.75			
	P(Smelly=Yes/Species=H)=1/4=0.25			
	P(Smelly=No/Species=M)=1/4=0.25			
	P(Smelly=No/Species=H)=3/4=0.75			
	The probability of X belonging to Species M will be as follows. – 01 marks			
	P(M/X)=P(Species=M)*P(Color=Green/Species=M)*P(Legs=2/Species=M)*P(Heigh			
	t=Tall/Species=M)*P(Smelly=No/Species=M)			
	=0.5*0.5*0.25*0.75*0.25			
	=0.0117			

USN:

Department of Artificial Intelligence and Machine Learning

		Probability of X belonging to Species H will be calculated as follows. – 01 marks			
		P(H/X)=P(Species=H)*P(Color=Green/Species=H)*P(Legs=2/Species=H)*P(Height =Tall/Species=H)*P(Smelly=No/Species=H) =0.5*0.25*1*0.5*0.75 =0.0468			
		So, the probability of X belonging to Species M is 0.0117 and that to Species H is 0.0468.			
		Hence, we will assign the entity X with attributes			
		{Color=Green, Legs=2, Height=Tall, Smelly=No} to species H 01 Mark			
5	a)	Discuss Logistic regression as generalized linear model?	5	2	1
		➤ Logistic regression belongs to a broader family of statistical regression models,			
		known as generalized linear models (GLM).			
		In these models, the target variable y is considered to be generated from a			
		probability distribution $P(y x)$, whose mean μ can be estimated using a link function			
		g(.) as follows:			
		$g(\mu) = z = \mathbf{w}^T \mathbf{x} + b.$			
		> The parameters of logistic regression, (w, b), are estimated during training using a			
		statistical approach known as the maximum likelihood estimation (MLE) method.			
		➤ This method involves computing the likelihood of observing the training data given			
		(w, b), and then determining the model parameters (w*, b*) that yield maximum			
		likelihood			
	b)	List the characteristics of Logistic Regression?	5	4	2
		Discriminative model for classification.			
		The learned parameters of logistic regression can be analyzed to understand the			
		relationships between attributes and class labels.			
		Can work more robustly even in high-dimensional settings			
		Can handle irrelevant attributes			
		Cannot handle data instances with missing values			

Course	e Outcome
CO1	Understand and apply Information Retrieval principles to extract relevant information from the given problem
CO2	Analyze the different Information Retrieval techniques, retrieval models and search engines appropriate for a given
	problem by engaging in lifelong learning for emerging technology
CO3	Exhibit effective communication to solve open problems using Information Retrieval principles to extract the
	information from different models
CO4	Demonstrate solutions using concepts of Information Retrieval by exhibiting team work and effective communication
CO5	Examine the applications of Information Retrieval principles using modern engineering tools for technological
	change

M-Marks, BT-Blooms Taxonomy Levels, CO-Course Outcomes

Marks Distribution	Particulars	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4	L5	L6
	Max Marks	19	31				8	22	15	5		