Contents

1	Ma	thematical Preliminaries	1
	1.1	Vectors	2
	1.2	Calculus	10
	1.3	Problems	28
2	Kin	ematics	31
	2.1	Position, Velocity and Acceleration	32
	2.2	Ballistic Motion	34
	2.3	Relative Motion	40
	2.4	Angular Motion	44
	2.5	Problems	53
3	For	ces and Dynamics	59
	3.1	Newton's Laws	60
	3.2	Momentum and Newton's Laws	62
	3.3	Force-Induced Motion	64
	3.4	Newton's Laws in Non-Linear Motion	78
	3.5	Problems	86

viii CONTENTS CONTENTS	ix
	1X

4	Ene	ergy and its Conservation	93		6.8	Physical Pendulums	176
	4.1	The Work-Energy Theorem	94		6.9	Examples in Rotational Dynamics	178
	4.2	Conservation of Energy	99		6.10	Problems	182
	4.3	Forces and Potential Energy	106	7	Ana	gular Momentum	187
	4.4	Power	112	•	7.1	The Definition of Angular Momentum	
	4.5	Energy and Oscillation	113		7.1	Kinetic Energy of General Motion	
	4.6	Harmonic Motion in Equilibrium	117		7.3	The Inertia Matrix	
	4.7	Problems	119		7.3 7.4	Angular Impulse	
_	3.5				7.5	Conservation of Angular Momentum	
5		mentum and its Conservation	125		7.6	Non-Constant Angular Momentum	
	5.1	The Center of Mass			7.7	Euler's Rigid Body Equations	
	5.2	Impulse	130		7.8	Infinitesimal Rotations	
	5.3	Conservation of Momentum in Collisions	133				
	5.4	Center of Mass Coordinates	137		7.9	Euler Angles	
	5.5	Mass Flow and Momentum Transport	144		7.10	Problems	226
	5.6	Problems	148	8	Gra	vitation and Central Forces	231
6	Rot	ational Dynamics	155		8.1	Properties of Central Forces	232
_	6.1	Torque			8.2	Gravity as a Central Force	232
		•			8.3	Gravity of Large Bodies	235
	6.2	Moment of Inertia			8.4	Kepler's Laws	242
	6.3	Newton's Second Law for Rotation			8.5	Central Force Scattering	254
	6.4	Rigid Body Equilibrium	165		8.6	Systems of Many Bodies	261
	6.5	Rolling without Slipping	166		8.7	Problems	
	6.6	Rolling with Slipping	170		J.,		_00
	6.7	Rotational Kinetic Energy	173	9	Osci	illations	275

x CONTENTS CONTENTS xi

9.1 Damped Oscillations	276	12.4 d'Alembert's Principle	401	
9.2 Driven Oscillations	280	12.5 Problems	407	
9.3 Coupled Oscillators	286	10 D 1 11 11 12 11	410	
9.4 Many Oscillators	292	13 Relativistic Kinematics	413	
9.5 The Continuous Limit: Wave Equation	297	13.1 The Acoustic Doppler Effect		
9.6 Problems	300	13.2 The Lorentz Transformation		
		13.3 Basic Relativistic Effects		
10 The Wave Equation	305	13.4 Spacetime Diagrams	434	
10.1 Solutions to the Wave Equation	306	13.5 Proper Time	443	
10.2 Wave Phenomena	310	13.6 Problems	446	
10.3 Dispersion Relations	318	14 Relativistic Dynamics	451	
10.4 Energy and Waves	323	14.1 Four-Vectors		
10.5 Attenuation and Impedance	326			
10.6 The Wave Equation in Many Dimensions \dots	335	14.2 Proper Velocity		
10.7 Problems	343	14.3 Momentum and Energy		
		14.4 Conservation of Four-Momentum	458	
11 Further Topics in Waves	349	14.5 Consequences of Four-Momentum Conservation .	462	
11.1 Diffraction	350	14.6 Relativistic Force	469	
11.2 The Fresnel-Kirchhoff Theorem	363	14.7 Relativistic Harmonic Oscillator	476	
11.3 Fermat's Principle of Least Time	372	14.8 Central Forces in Relativity	479	
11.4 Problems	381	14.9 Problems	483	
12 Non-inertial Reference Frames	387	A Multivariable Calculus	489	
12.1 The Galilean Transformation	388	A.1 Vector Functions of Time	490	
12.2 Uniform Acceleration	389	A.2 Scalar Functions of Space	496	
12.3 Uniform Rotation	393	A.3 Vector Functions of Space	517	

xii CONTENTS

	A.4	Problems			
В	B Linear Algebra				
	B.1	Vector Spaces			
	B.2	Matrices and Linear Maps			
	B.3	Eigenvalues and Eigenvectors			
	B.4	Inner Product Spaces			
	B.5	Determinants			
	B.6	Problems			
\mathbf{C}	Diff	erential Equations 575			
	C.1	First Order Equations			
	C.2	Higher Order Equations			
	C.3	Integral Transforms			
	C.4	Problems			
D	Con	ic Sections 617			
	D.1	Circles and Ellipses			
	D.2	Parabolas			
	D.3	Hyperbolas			
	D.4	Polar Coordinates			
	D.5	General Conic Sections			
	D.6	Problems			

"Philosophy is written in this grand book – I mean the universe – which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering about in a dark labyrinth."

Galileo Galilei (1564 – 1642)

1

Mathematical Preliminaries

Like the other sciences, physics depends heavily on the tools of mathematics to model the physical world. In this chapter, we will introduce vectors and single-variable calculus, which are the most important mathematical underpinnings to classical mechanics. Vectors are used throughout the book to represent quantities having some direction, such as velocity. Calculus is used to quantify processes which involve continuous change. In the following chapters, these two topics will serve as the language for all our discussions¹.

1

¹Vectors and calculus are both developed further in Appendix A.