MERGER DI GALASSIE

ESERCIZIO 6. Dicembre 2019

Paolo Stumpo,790358

L'esercizio richiede di studiare l'evoluzione di un sistema formato da due galassie ognuna delle quali con al centro un buco nero.

Condizioni iniziali

Dal file txt distribuito sulla piattaforma elearning, prendo i dati iniziali della singola galassia:

Inizializzazione del sistema

Voglio duplicare la galassia, riponendo entrambe ad una distanza di 20 I.U. dal centro (scelgo lungo l'asse x). Le dó un kick iniziale per farle iniziare a ruotare: cambio le velocitá v_y di +0.3 e -0.3 rispettivamente. Ottengo questa configurazione:

Evoluzione temporale

Inizializzato il sistema, compilo il treecode con i parametri dati, e ottengo un'animazione 3D dell'evoluzione temporale (in allegato).

Posso analizzare come evolve nel tempo la struttura andando a studiare i raggi lagrangiani. Analizzo l'evoluzione dei raggi lagrangiani globalmente (nel sistema di riferimanto con origine (0,0,0) e per

entrambe le galassie) e sia singolarmente per le galassie (nel sistema di riferimento del loro centro di massa). Vedo per prima cosa la situazione globale:

Noto come effettivamente il sistema stia ruotando attorno e avvicinandosi sempre di più all'origine, e una volta raggiunto il merger il disco generatosi tende a stabilizzarsi nuovamente. Noto anche come a causa del merger, i corpi più lontani dal centro dei singoli dischi vengono sparsi nello spazio a grandi distanze:

Faccio la stessa analisi per le singole galassie:

I raggi sono pressoché stabili prima e dopo del merger. Noto come la dimensione effettiva del disco sia aumentata. Anche qui posso direttamente vedere come i corpi piú distanti dal centro sono stati sbalzati a grande distanza:

Ho calcolato anche l'evoluzione della densitá. Per farlo, ho calcolato la densitá dei vari punti attraverso il metodo KDE (Kernel density estimation). Per ogni stella, ho calcolato la densitá locale e ho plottato il tutto con uno scatter plot dove il colore di ogni stella é dato proprio dalla densitá (scala che va dal chiaro =molto denso allo scuro=poco denso). Graficando, ottengo:

