

4주차

전자항법 기초 이론 및 실습 Ⅲ

1. 전자항법 기초 이론

1-1. 측정과 오차

1-2. 센서

1-3. 데이터 처리 기초

2. 전자항법 실습

2-1. 전자항법 실습

1. 전자항법 기초 이론

1-1. 측정과 오차

측정과 오차

측정(Measurement)

어떤 물리량(길이, 시간 등)을 수치로 표현하는 과정

오차(Error)

측정과정에서 발생하는 측정 값과 실제 값의 차이

측정(Measurement)

다양한 측정 방법

어떤 물리량을 수치로 표현하는 과정으로, 기준 단위에 비해 어느 정도인지 나타내는 것

- 상대적 행위: 기준 단위가 반드시 필요
- 한계 존재: 어떤 측정이든 완벽히 정확할 수 없음
- 데이터의 출발점: 모든 분석과 계산은 측정값에서 시작

1. 측정과 오차

그래프 상 오차 예시

측정 값이나 예측 값과 실제 값인 참 값의 차이

- 불가피성: 어떤 측정이든 완전히 참값과 일치할 수 없음
- 다양한 원인 : 측정 한계, 환경, 관찰 실수, 잡음 등
- 정량화 가능 : 통계적 수치로 크기를 표현 가능

오차(Error)의 종류

오차는 다양한 종류가 존재함

- 계통 오차 : 일정 방향 편향 오차
- 우연 오차 : 무작위 발생 오차
- 과실 오차 : 부주의, 경험 부족 등으로 발생
- 표본/비표본 오차 : 통계에서 추출 시 발생

정확도(Accuracy)

측정값이 참값(True Value)에 얼마나 가까운가를 나타내는 정도

정확도 =
$$\left(1 - \frac{\left| \stackrel{\circ}{\rightarrow} \text{정값-참값} \right|}{\text{참값}}\right) \times 100\%$$

정확도 계산 수식

- 참값 기준: 항상 "실제 값"과 비교해서 평가
- 오차와의 관계: 오차가 작을수록 정확도가 높음
- 평가 방법: 평균값과 참값 차이를 계산 → 평균
 오차

정밀도(Precision)

정밀도 예시

여러 번 측정했을 때 측정값들이 서로 얼마나 가까운가를 나타내는 정도로, 측정 결과의 일관성을 나타냄

- 참값과 무관: 참 값과 가까운지는 고려하지 않으며,
 측정값끼리 뭉쳐 있으면 정밀도가 높음
- 변동성과 관계: 측정값의 흩어짐이 작을수록
 정밀도가 높음

1. 전자항법 기초 이론

1-2. 센서

센서 실물 이미지

물리적 현상을 전기적 신호로 변환하여 측정하는 장치

- 실시간 데이터 제공 → 항법 시스템의 입력값
- 노이즈·드리프트 존재 → 오차 누적 가능
- 여러 센서를 융합하면 정확도 향상
- 종류: 가속도계, 자이로스코프, 자기 센서 등

가속도계 실물 이미지

물체의 선형 가속도(직선 방향의 가속도)를 측정하는 센서

- 정지 상태에서도 중력가속도(9.8m/s²)를 감지
- 적분하면 속도, 위치 계산 가능 → 단, 오차가 빠르게 누적됨
- 전자항법에서 위치 추정 보조 역할 수행

자이로스코프

자이로스코프 이미지

물체의 회전 속도(각속도, Angular Velocity)를 측정하는 센서

- 회전 방향과 크기 측정 → 방향 변화 추적 가능
- 적분하면 자세(Orientation) 계산 가능
- 장점: 외부환경 영향 ↓ / 단점: 드리프트 오차 누적
- INS(관성항법)의 핵심 센서

자기 센서

자기 센서 작동 원리

지구 자기장을 측정하여 절대 방위를 제공하는 센서, 전자 나침반 역할

- 지구의 북쪽 방향을 알 수 있음
- GPS가 없어도 기본적인 방향 제공 가능
- 주변 금속, 전자기파 간섭에 취약 → 보정 필요

1. 전자항법 기초 이론

1-3. 데이터 처리 기초

데이터를 효과적으로 분석하기 위해 사전에 값을 처리하는 방법

데이터 처리 예시

- 결측치 처리 : 손실된 값 처리
- 이상치 처리 : 비정상 값 제거 또는 처리
- 데이터 정규화/표준화 : 값의 범위 조정
- 노이즈 제거 : 불규칙 데이터 제거

2. 전자항법 실습

2-1. 전자항법 실습

2. 전자항법 실습

전자항법과 관련된 실습 코드 작성 진행

코랩(Colab) - 파이썬으로 진행

다양한 프로그래밍 실습

실습 코드 다운로드, 코랩 실행

깃허브 코드 다운로드

https://github.com/imyong7/mw_enav_gps

실습 코드 다운로드, 코랩 실행

구글 코랩에서 다운받은 파일 업로드하여 실습 진행

https://colab.research.google.com

감사합니다

