(Chapter – 10) (Practical Geometry)
(Class – VII)

Exercise 10.3

Question 1:

Construct \triangle DEF such that DE = 5 cm, DF = 3 cm and $m\angle$ EDF = 90°.

Answer 1:

To construct: \triangle DEF where DE = 5 cm, DF = 3 cm and $m\angle$ EDF = 90°.

Steps of construction:

- (a) Draw a line segment DF = 3 cm.
- (b) At point D, draw an angle of 90° with the help of compass i.e., \angle XDF = 90° .
- (c) Taking D as centre, draw an arc of radius 5 cm, which cuts DX at the point E.
- (d) Join EF.

It is the required right angled triangle DEF.

Question 2:

Construct an isosceles triangle in which the lengths of each of its equal sides is 6.5 cm and the angle between them is 110° .

Answer 2:

To construct: An isosceles triangle PQR where PQ = RQ = 6.5 cm and \angle Q = 110°.

Steps of construction:

- (a) Draw a line segment QR = 6.5 cm.
- (b) At point Q, draw an angle of 110° with the help of protractor, i.e., $\angle YQR = 110^{\circ}$.
- (c) Taking Q as centre, draw an arc with radius 6.5 cm, which cuts QY at point P.
- (d) Join PR

It is the required isosceles triangle PQR.

Question 3:

Construct \triangle ABC with BC = 7.5 cm, AC = 5 cm and $m \angle$ C = 60°.

Answer 3:

To construct: \triangle ABC where BC = 7.5 cm, AC = 5 cm and $m \angle$ C = 60°.

Steps of construction:

- (a) Draw a line segment BC = 7.5 cm.
- (b) At point C, draw an angle of 60° with the help of protractor, i.e., \angle XCB = 60° .
- (c) Taking C as centre and radius 5 cm, draw an arc, which cuts XC at the point A.
- (d) Join AB

It is the required triangle ABC.

