6. Exercices de TD

Exercice 1

Déterminez l'alphabet de chacun des langages suivants :

- Les nombres binaires;
- Les nombres entiers éventuellement munis d'un signe;
- Les nombres réels en C;
- Les identifiants en C;
- Le langage C;

Exercice 2

Trouvez les langages correspondant aux définitions suivantes :

- Tous les mots sur $\{a, b, c\}$ de longueur 2 ne contenant pas un c;
- Tous les mots sur $\{a,b\}$ contenant au maximum deux a ou bien un b;
- Tous les mots sur $\{a, b\}$ contenant plus de a que de b;
- Le langage L défini comme suit : $\varepsilon \in L$, si $u \in L$ alors $\mathfrak{auab} \in L$

Exercice 3

- Calculez $\varepsilon \coprod a$, $abca \coprod d$, $abca \coprod a$, $a^n \coprod b$.
- Calculez $\{a^n | n \ge 0\} \coprod a, \{a^n b^n | n \ge 0\} \coprod a.$

Exercice 4

On note par Pref(L) l'ensemble suivant : $\{u|\exists w\in L: u \text{ est préfixe de }w\}$. Calculez Pref(L) dans chacun des cas suivants : $L=\{ab,abc,\epsilon\}$, $L=\{a^mb^n|m,n\geqslant 0\}$, $L=\{a^nb^n|n\geqslant 0\}$. On note par Suf(L) l'ensemble suivant : $\{u|\exists w\in L: u \text{ est suffixe de }w\}$. Calculez Suf(L) pour les langages précédents.

Exercice 5

Définissez la fermeture de Kleene (L*) pour chacun des langages suivants :

```
- L = {ε};

- L = {α};
```

- $-L = \{a, ab\};$
- $L = \{aa, ab, ba, bb\};$

Exercice 6

Soit X un alphabet, trouvez les mots $w \in X^*$ qui vérifient :

- $-w^2 = w^3$;
- $--\exists v \in X^* : w^3 = v^2;$

Exercice 7

Donnez, sans démonstration, les langages générés par les grammaires suivantes. Dites, à chaque fois, de quel type s'agit-il? (pour trouver la forme des mots, on commence d'abord par générer quelques mots à partir de la grammaire) :

- $G = (\{\alpha\}, \{S\}, S, \{S \rightarrow \alpha S | \epsilon\});$
- $G = (\{\alpha\}, \{S\}, S, \{S \rightarrow \alpha S \alpha | \epsilon\});$
- $G = (\{a,b\},\{S\},S,\{S \rightarrow aSa|bSb|\epsilon\});$

Exercice 8

Précisez le type de chacune des grammaires suivantes ainsi que les types des langages qui en dérivent :

- $G = (\{a,b\},\{S,T\},S,\{S \rightarrow aabS|aT,T \rightarrow bS|\epsilon\});$
- $G = (\{a, b, c\}, \{S, T, U\}, S, \{S \rightarrow bSTa|aTb, T \rightarrow abS|cU, U \rightarrow S|\epsilon\});$
- $-- G = (\{x, +, *\}, \{S\}, S, \{S \rightarrow S + S | S * S | x\});$
- G = ({0,1,2},{S,T,C,Z,U},S,{S → TZ,T → 0U1,T → 01,U → 0U1C|01C,C1 → 1C, CZ → Z2,1Z → 12})
- G = ({0,1,2},{S,C,Z,T},S,{S → TZ,T → 0T1C|ε,C1 → 1C,CZ → Z2,1Z → 1});
- $-- G = (\{a, b, c\}, \{S, T\}, S, \{S \rightarrow Ta | Sa, T \rightarrow Tb | Sb | \epsilon\})$

Exercice 9

Donnez les grammaires qui génèrent les langages suivants :

- Les nombres binaires;
- Les mots sur $\{a, b\}$ qui contiennent le facteur a

Exercice 10

- Montrez par induction que pour tout $n \in \mathbb{N}$, les entiers s'écrivant de la forme $1.0^{2n}.1$ est multiple de 11 (attention il s'agit de la forme des entiers).
- Montrez par induction que tout entier palindrome de longueur paire est un multiple de 11.

Exercice 11

Soient G et G' deux grammaires qui génèrent respectivement les langages L et L'. Donnez les construction qui permettent de trouver les grammaires de :

- L.L';
- L + L';
- L*;

Appliquez vos constructions proposées pour déduire la grammaire du langage $(\{a^mb^n|m,n\geqslant 0\}+\{c^m|m\geqslant 0\})^*$.