Cluster:

1) Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters:

$$A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).$$

2) Use the k-means algorithm and Euclidean distance into 3 clusters

As a simple illustration of a k-means algorithm, consider the following data set consisting of the scores of two variables on each of seven individuals:

Subject	Α	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Classification:

Draw the Decision tree for the following data:

TID	Refund	Marital	Taxable Income	Class: Cheat
		Status		
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	single	90K	Yes

Then test the following record

Test Data:

Refund	Marital Status	Taxable Income	Class: Cheat
No	Married	80K	?

Class: Cheat = No