About Dataset

As of August 2019, This dataset has around 49,000 observations in it with 16 columns and it is a mix between categorical and numeric values.. The purpose of this task is to **predict the price of NYC Airbnb rentals** based on the data provided and any external dataset(s) with relevant information.

Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Loading Dataset

In [2]:

```
df = pd.read_csv("AB_NYC_2019.csv")
```

In [3]:

```
df.head()
```

Out[3]:

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851
4							•

print dataset info

In [4]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 16 columns):
                                   48895 non-null int64
id
                                   48879 non-null object
name
host_id
                                  48895 non-null int64
host_name
                                  48874 non-null object
neighbourhood_group
                                  48895 non-null object
neighbourhood
                                  48895 non-null object
latitude
                                  48895 non-null float64
longitude
                                  48895 non-null float64
room_type
                                  48895 non-null object
price
                                  48895 non-null int64
minimum_nights
                                  48895 non-null int64
number_of_reviews
                                  48895 non-null int64
last_review
                                   38843 non-null object
                                  38843 non-null float64
reviews_per_month
calculated_host_listings_count
                                  48895 non-null int64
                                   48895 non-null int64
availability_365
dtypes: float64(3), int64(7), object(6)
memory usage: 6.0+ MB
```

Check for the null values in each column

In [151]:

```
df.isnull().sum()
Out[151]:
                                        0
id
                                       16
name
host id
                                        0
                                        21
host_name
neighbourhood group
                                         0
neighbourhood
                                        0
latitude
                                         0
longitude
                                        0
                                         0
room type
                                        0
price
                                         0
minimum_nights
number_of_reviews
                                        a
                                    10052
last_review
reviews_per_month
                                    10052
calculated_host_listings_count
                                        0
                                         0
availability 365
dtype: int64
```

Drop unnecessary columns

```
In [5]:
```

```
df.drop(['id','name','host_id','host_name','last_review'], axis=1, inplace=True)
```

Rreplace the 'reviews per month' by zero

In [6]:

```
df.fillna({'reviews_per_month':0}, inplace=True)
```

Remove the NaN values from the dataset

In [7]:

```
df.dropna(how='any',inplace=True)
```

Again check for null values

In [99]:

```
df.isnull().sum()
```

Out[99]:

neighbourhood_group	0
neighbourhood	0
latitude	0
longitude	0
room_type	0
price	0
minimum_nights	0
number_of_reviews	0
reviews_per_month	0
<pre>calculated_host_listings_count</pre>	0
availability_365	0
dtype: int64	

Examining Changes

In [100]:

df.head()

Out[100]:

	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nigh
0	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	
1	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	
2	Manhattan	Harlem	40.80902	-73.94190	Private room	150	
3	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	
4	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	
4							•

Examine Continous Variables

In [101]:

```
df.describe()
```

Out[101]:

	latitude	longitude	price	minimum_nights	number_of_reviews	reviews_
count	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	48
mean	40.728949	-73.952170	152.720687	7.029962	23.274466	
std	0.054530	0.046157	240.154170	20.510550	44.550582	
min	40.499790	-74.244420	0.000000	1.000000	0.000000	
25%	40.690100	-73.983070	69.000000	1.000000	1.000000	
50%	40.723070	-73.955680	106.000000	3.000000	5.000000	
75%	40.763115	-73.936275	175.000000	5.000000	24.000000	
max	40.913060	-73.712990	10000.000000	1250.000000	629.000000	
4						>

Correlation between different variables

In [102]:

```
corr = df.corr(method='kendall')
plt.figure(figsize=(15,8))
sns.heatmap(corr, annot=True,cmap="viridis")
plt.show()
```


Data Visualization

In [103]:

```
df["neighbourhood_group"].unique()
```

Out[103]:

In [104]:

```
plt.figure(figsize=(8,6))
sns.countplot(df['neighbourhood_group'], palette="plasma")
plt.title('Neighbourhood Group')
plt.show()
```


In [105]:

```
df["neighbourhood"].nunique()
```

Out[105]:

221

In [106]:

from wordcloud import WordCloud

In [107]:

In [108]:

```
df["room_type"].unique()
```

Out[108]:

array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object)

In [109]:

```
plt.figure(figsize=(6,5))
sns.countplot(df['room_type'], palette="plasma")
plt.title('Room Type')
plt.show()
```


In [110]:

```
plt.figure(figsize=(10,6))
sns.scatterplot(data=df,x="latitude",y="longitude",hue="neighbourhood_group")
plt.show()
```


In [111]:

```
plt.figure(figsize=(10,6))
sns.scatterplot(data=df,x="latitude",y="longitude",hue="neighbourhood")
plt.show()
```


In [112]:

```
plt.figure(figsize=(10,6))
sns.scatterplot(data=df,x="latitude",y="longitude",hue="room_type")
plt.show()
```


In [113]:

```
plt.figure(figsize=(10,6))
sns.scatterplot(data=df,x="latitude",y="longitude",hue="availability_365")
plt.show()
```


Scatterplot in url image

In [114]:

```
#creating a sub-dataframe with no extreme values / less than 500
sub_df = df[df.price < 500]</pre>
```

In [115]:

Handling outliers

Relation between neighbporhood_group and price

In [116]:

```
plt.figure(figsize=(15,6))
sns.boxplot(data=df,x="price",y="neighbourhood_group")
plt.xlim(0,1000)
plt.show()
```



```
In [8]:

df.drop(df[(df['neighbourhood_group'] == "Manhattan") & (df['price'] > 450)].index,axis=0,i

In [9]:

df.drop(df[(df['neighbourhood_group'] == "Brooklyn") & (df['price'] > 300)].index,axis=0,ir

In [10]:

df.drop(df[(df['neighbourhood_group'] == "Queens") & (df['price'] > 200)].index,axis=0,inpl

In [11]:

df.drop(df[(df['neighbourhood_group'] == "Staten Island") & (df['price'] > 220)].index,axis

In [12]:

df.drop(df[(df['neighbourhood_group'] == "Bronx") & (df['price'] > 180)].index,axis=0,inple
```

In [122]:

```
plt.figure(figsize=(15,6))
sns.boxplot(data=df,x="price",y="neighbourhood_group")
plt.xlim(0,500)
plt.show()
```


Now, look somewhat cleaned with a few amoumt of outlier in the dataset.

Separate categorical and numerical data

In [13]:

```
df_cat = df.select_dtypes(object)
df_cat.head()
```

Out[13]:

	neighbourhood_group	neighbourhood	room_type
0	Brooklyn	Kensington	Private room
1	Manhattan	Midtown	Entire home/apt
2	Manhattan	Harlem	Private room
3	Brooklyn	Clinton Hill	Entire home/apt
4	Manhattan	East Harlem	Entire home/apt

In [14]:

```
df_num = df.select_dtypes(["float64","int64"])
df_num.head()
```

Out[14]:

	latitude	longitude	price	minimum_nights	number_of_reviews	reviews_per_month	calculat
0	40.64749	-73.97237	149	1	9	0.21	
1	40.75362	-73.98377	225	1	45	0.38	
2	40.80902	-73.94190	150	3	0	0.00	
3	40.68514	-73.95976	89	1	270	4.64	
4	40.79851	-73.94399	80	10	9	0.10	
4							•

Applying label encoding to categorical columns

In [15]:

```
from sklearn.preprocessing import LabelEncoder
```

In [16]:

```
for col in df_cat:
    le = LabelEncoder()
    df_cat[col] = le.fit_transform(df_cat[col])
```

In [17]:

```
# Check for change
df_cat.head()
```

Out[17]:

	neighbourhood_group	neighbourhood	room_type
0	1	107	1
1	2	126	0
2	2	93	1
3	1	41	0
4	2	61	0

Skewness

In [18]:

```
from scipy.stats import skew
```

Get Correlation between different numerical variables

In [167]:

```
corr = df_num.corr(method='kendall')
plt.figure(figsize=(8,6))
sns.heatmap(corr, annot=True,cmap="viridis")
plt.show()
```


In [190]:

```
for col in df_num:
    print("Column: ",col)
    print("Skewness: ",skew(df_num[col]))

plt.figure()
    sns.distplot(df_num[col])
    plt.show()
    print("-----")
```

Column: latitude

Skewness: 0.2490138817984112

In [20]:

```
skew_columns = df_num.columns[[3,4,5,6,7]]
skew_columns
```

Out[20]:

In [21]:

```
skewness = {}
for col in skew_columns:
    skewness[col] = skew(df_num[col])
print("Skewness before skew")
pd.DataFrame(data=list(skewness.values()),index=list(skewness.keys()),columns=["Skewness"])
```

Skewness before skew

Out[21]:

	Skewness
minimum_nights	22.569695
number_of_reviews	3.650308
reviews_per_month	3.318658
calculated_host_listings_count	7.976658
availability_365	0.802924

Reducing skewness all numerical columns excluding latitude, longitude and price columns

In [22]:

```
for col in skew_columns:
    df_num[col] = np.sqrt(df_num[col])
```

In [23]:

```
skewness = {}
for col in skew_columns:
    skewness[col] = skew(df_num[col])
print("Skewness after skewed")
pd.DataFrame(data=list(skewness.values()),index=list(skewness.keys()),columns=["Skewness"])
```

Skewness after skewed

Out[23]:

	Skewness
minimum_nights	3.877927
number_of_reviews	1.476768
reviews_per_month	0.819086
calculated_host_listings_count	5.535107
availability_365	0.309342

Joining both the dataframe

In [24]:

```
df_new = pd.concat([df_num,df_cat],axis=1)
df_new.head()
```

Out[24]:

	latitude	longitude	price	minimum_nights	number_of_reviews	reviews_per_month	calculat
0	40.64749	-73.97237	149	1.000000	3.000000	0.458258	
1	40.75362	-73.98377	225	1.000000	6.708204	0.616441	
2	40.80902	-73.94190	150	1.732051	0.000000	0.000000	
3	40.68514	-73.95976	89	1.000000	16.431677	2.154066	
4	40.79851	-73.94399	80	3.162278	3.000000	0.316228	
4							>

Defining the independent variables and dependent variables

In [25]:

```
from sklearn.model_selection import train_test_split
```

In [26]:

```
X = df_new.drop('price',axis=1)
y = df_new['price']
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=1)
```

Standard scaling of training data

In [27]:

```
from sklearn.preprocessing import StandardScaler
```

In [28]:

```
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

Creating Common model function

In [29]:

```
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
```

```
In [65]:
```

```
a,b,c,d,e = [],[],[],[],[]
def create_model(model):
    model.fit(X_train,y_train)
    y_pred = model.predict(X_test)
    a.append(mean_absolute_error(y_test,y_pred))
    b.append(mean_squared_error(y_test,y_pred))
    c.append(np.sqrt(mean_squared_error(y_test,y_pred)))
    d.append(r2_score(y_test,y_pred))
    e.append(1 - (1-r2_score(y_test,y_pred)) * (len(X_test)-1)/(len(X_test)-len(X.columns)-
```

In [31]:

```
def select_model(model):
    model.fit(X_train,y_train)
    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test,y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test,y_pred)
    print("mse: {},\nrmse: {},\nr2: {}".format(mse,rmse,r2))
    return model
```

Baseline model - Linear Regression

In [32]:

```
from sklearn.linear_model import LinearRegression
```

In [33]:

```
ln = LinearRegression()
select_model(ln)
```

mse: 3379.2571717292126, rmse: 58.13137854660951, r2: 0.42915292159866814

Out[33]:

LinearRegression()

In [66]:

```
create_model(ln)
pd.DataFrame([a,b,c,d,e],index = ['MAE','MSE','RMSE','R2','Adjusted R2'], columns = ['Linea
```

Out[66]:

	Linear Reg
MAE	41.710448
MSE	3379.257172
RMSE	58.131379
R2	0.429153
Adjusted R2	0.428745

In [35]:

```
ln.fit(X_train,y_train)
y_pred = ln.predict(X_test)
residuals = y_test - y_pred
```

In [36]:

```
plt.figure()
sns.scatterplot(y_pred,residuals)
plt.show()
```


This shows clearly no linear relationship

In [37]:

```
plt.figure()
sns.distplot(residuals)
plt.show()
```


This shows positive distribution. Hence we can not appling polynomial regression

Gradient Descent

```
In [38]:
from sklearn import linear_model
In [39]:
gdm = linear_model.SGDRegressor(max_iter=1000, tol=1e-3)
gdm.fit(X_train,y_train)
Out[39]:
SGDRegressor()
In [40]:
y_pred = gdm.predict(X_test)
In [41]:
mse = mean_squared_error(y_test,y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test,y_pred)
print("\nmse: {},\nr2: {}".format(mse,rmse,r2))
mse: 3384.7489838004108,
rmse: 58.17859558119645,
```

rmse: 58.1/859558119645, r2: 0.428225207395026

No major improvement on MSE,RMSE and R2 score

Regularization

```
In [42]:
```

```
print(ln.score(X_train,y_train))
print(ln.score(X_test,y_test))
print("Difference:",(ln.score(X_train,y_train)-ln.score(X_test,y_test)))

0.4400615227304835
0.42915292159866814
Difference: 0.010908601131815354

In [43]:
from sklearn.linear_model import Lasso # Lambda*sum(abs(coef))
from sklearn.linear_model import Ridge # Lambda*sum(square(coef))
```

Finding right lambda

```
In [44]:
```

```
# Ridge
for i in range(1,200,10):
    12 = Ridge(i)
    12.fit(X_train,y_train)
    print(i,":",12.score(X_test,y_test))

1 : 0.4291535557745375
```

11: 0.4291598457492338 21: 0.42916604172866013 31: 0.42917214393729963 41: 0.4291781525989914 51: 0.4291840679369321 61: 0.42918989017367903 71: 0.42919561953115215 81: 0.42920125623063665 91: 0.42920680049278515 101 : 0.4292122525376201 111: 0.4292176125845366 121 : 0.42922288085230387 131 : 0.42922805755906845 141 : 0.4292331429223557 151: 0.4292381371590728 161: 0.42924304048551065 171: 0.42924785311734637 181: 0.42925257526964533 191: 0.4292572071568638

In [45]:

```
# Lasso
for i in range(1,200,20):
    11 = Lasso(i)
    11.fit(X_train,y_train)
    print(i,":",11.score(X_test,y_test))
```

1: 0.42759960859531043
21: 0.26183292366876854
41: 0.05253819655597536
61: -9.433527526581109e-05
81: -9.433527526581109e-05
101: -9.433527526581109e-05
121: -9.433527526581109e-05
141: -9.433527526581109e-05
161: -9.433527526581109e-05

Ridge model

```
In [46]:
```

```
# Ridge - 1
# Lasso - 1
```

```
In [47]:
12 = Ridge(alpha=1)
12.fit(X_train,y_train)
print(12.score(X_test,y_test))
0.4291535557745375
In [48]:
c = -1
for col in X:
    c = c + 1
    print(f"Coef of {col}:",12.coef_[c])
Coef of latitude: 7.028919288372428
Coef of longitude: -20.7536824197843
Coef of minimum_nights: -9.012002992924492
Coef of number_of_reviews: -6.301814766722203
Coef of reviews_per_month: -1.3574347254768941
Coef of calculated host listings count: 5.218134034936023
Coef of availability_365: 11.660911325615176
Coef of neighbourhood_group: 4.9172551446257655
Coef of neighbourhood: 3.546112850165196
Coef of room_type: -41.85533864464062
Lasso model
In [49]:
11 = Lasso(alpha=1)
11.fit(X_train,y_train)
print(l1.score(X_test,y_test))
0.42759960859531043
In [50]:
c = -1
for col in X:
    c = c + 1
    print(f"Coef of {col}:",l1.coef_[c])
Coef of latitude: 6.245796490754709
Coef of longitude: -19.72970820934962
Coef of minimum_nights: -6.5431850875561075
Coef of number_of_reviews: -5.514870634257459
Coef of reviews_per_month: -0.0
Coef of calculated host listings count: 4.479161112259227
```

Droping "review per month" column

Coef of availability_365: 9.658108123466958 Coef of neighbourhood_group: 4.2699500882557615

Coef of neighbourhood: 2.902160881346436 Coef of room_type: -40.748477379046214

```
In [51]:
X.drop('reviews_per_month',axis=1,inplace=True)
In [52]:
X = df_new.drop('price',axis=1)
y = df_new['price']
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=1)
In [53]:
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
Decision Tree model
In [54]:
from sklearn.tree import DecisionTreeRegressor
In [55]:
dt1 = DecisionTreeRegressor()
select_model(dt1)
mse: 4990.8313330475785,
rmse: 70.64581610433542,
r2: 0.15691486605437566
Out[55]:
DecisionTreeRegressor()
Purning Techniques
In [56]:
dt1.get_depth()
Out[56]:
39
In [57]:
dt2 = DecisionTreeRegressor(max_depth=7,random_state=1)
select_model(dt2)
mse: 2799.51376133571,
rmse: 52.91043149829446,
r2: 0.5270871169639194
Out[57]:
DecisionTreeRegressor(max_depth=7, random_state=1)
```

```
In [58]:
```

```
dt3 = DecisionTreeRegressor(min_samples_split=55, random_state=1)
select_model(dt3)
mse: 3108.207314928029,
rmse: 55.75129877346382,
r2: 0.47494050478425875
Out[58]:
DecisionTreeRegressor(min_samples_split=55, random_state=1)
In [59]:
dt4 = DecisionTreeRegressor(min_samples_leaf=75,random_state=1)
select_model(dt4)
mse: 2743.866543724713,
rmse: 52.38192955327928,
r2: 0.5364874230016352
Out[59]:
DecisionTreeRegressor(min_samples_leaf=75, random_state=1)
In [60]:
dt5 = DecisionTreeRegressor(max_features=4,random_state=1)
select_model(dt5)
mse: 5001.184097728247,
rmse: 70.71905045833299,
r2: 0.15516600671310454
Out[60]:
DecisionTreeRegressor(max_features=4, random_state=1)
In [61]:
dt6 = DecisionTreeRegressor(max_leaf_nodes=75,random_state=1)
select model(dt6)
mse: 2765.3575226931202,
rmse: 52.58666677678973,
r2: 0.532857020835522
Out[61]:
DecisionTreeRegressor(max_leaf_nodes=75, random_state=1)
```

```
In [62]:
```

```
dt6.feature_importances_
```

Out[62]:

```
array([0.09960489, 0.18398076, 0.02423603, 0.01230719, 0.01176581, 0.01577025, 0.03057665, 0. , 0.00818132, 0.6135771 ])
```

In [63]:

```
X.columns
```

Out[63]:

In [67]:

```
create_model(dt6)
```

In [255]:

```
pd.DataFrame([a,b,c,d,e],index = ['MAE','MSE','RMSE','R2','Adjusted R2'], columns = ['Linea
Out[255]:
```

	Linear Reg	Decision Tree
MAE	41.710448	36.576407
MSE	3379.257172	2765.357523
RMSE	58.131379	52.586667
R2	0.429153	0.532857
Adjusted R2	0.428745	0.532523

Random Forest model

In [68]:

```
from sklearn.ensemble import RandomForestRegressor
```

Finding best value for max_depth

```
In [256]:
```

```
for i in range(10,15):
   rf1 = RandomForestRegressor(n_estimators=100,max_depth=i,random_state=1)
   print("Max_depth:",i)
   select model(rf1)
   print("----")
Max_depth: 10
mse: 2529.8351203913576,
rmse: 50.29746634166931,
r2: 0.5726430650516317
-----
Max_depth: 11
mse: 2511.3438523417526,
rmse: 50.113310131558386,
r2: 0.575766735670832
-----
Max depth: 12
mse: 2506.5581791103823,
rmse: 50.06553883771134,
r2: 0.5765751641045027
Max_depth: 13
mse: 2503.8955677507556,
rmse: 50.03894051387135,
r2: 0.577024950503797
Max_depth: 14
mse: 2509.3249543517168,
rmse: 50.093162750536294,
```

Applying in model

r2: 0.576107781634674

```
In [86]:
```

```
# max_depth - 13
rf2 = RandomForestRegressor(n_estimators=100, max_depth=13, random_state=1)
select_model(rf2)
```

mse: 2503.8955677507556, rmse: 50.03894051387135, r2: 0.577024950503797

Out[86]:

RandomForestRegressor(max_depth=13, random_state=1)

Compare with previous model performance

In [258]:

```
create_model(rf2)
pd.DataFrame([a,b,c,d,e],index = ['MAE','MSE','RMSE','R2','Adjusted R2'], columns = ['Linea
```

Out[258]:

	Linear Reg	Decision Tree	Random Forest
MAE	41.710448	36.576407	34.499214
MSE	3379.257172	2765.357523	2503.895568
RMSE	58.131379	52.586667	50.038941
R2	0.429153	0.532857	0.577025
Adjusted R2	0.428745	0.532523	0.576723

Look like random forest improve the result

Gradient Boosting Regression model

In [70]:

from sklearn.ensemble import GradientBoostingRegressor

```
In [267]:
```

```
for i in range(5,10):
    gb1 = GradientBoostingRegressor(n_estimators=100, max_depth=i, random_state=1)
    print("Max_depth:",i)
    select_model(gb1)
    print("-----")
Max_depth: 5
mse: 2509.021479183322,
rmse: 50.09013355126259,
r2: 0.5761590467217752
Max depth: 6
mse: 2488.6682026751646,
rmse: 49.88655332527158,
r2: 0.5795972604593317
Max_depth: 7
mse: 2487.6826512219636,
rmse: 49.876674420233385,
r2: 0.5797637465061413
Max_depth: 8
mse: 2501.35428382721,
rmse: 50.01354100468402,
r2: 0.5774542414483514
-----
Max depth: 9
mse: 2505.3663044460855,
rmse: 50.053634278102976,
r2: 0.5767765036697854
In [71]:
# max depth - 7
gb2 = GradientBoostingRegressor(n_estimators=100,max_depth=7,random_state=1)
select_model(gb2)
mse: 2487.6826512219636,
rmse: 49.876674420233385,
r2: 0.5797637465061413
```

Out[71]:

GradientBoostingRegressor(max_depth=7, random_state=1)

```
In [72]:
```

```
create_model(gb2)
pd.DataFrame([a,b,c,d,e],index = ['MAE','MSE','RMSE','R2','Adjusted R2'], columns = ['Linea
```

Out[72]:

	Linear Reg	Decision Tree	Random Forest	Gradient Boosting Reg
MAE	41.710448	36.576407	34.499214	34.471202
MSE	3379.257172	2765.357523	2503.895568	2487.682651
RMSE	58.131379	52.586667	50.038941	49.876674
R2	0.429153	0.532857	0.577025	0.579764
Adjusted R2	0.428745	0.532523	0.576723	0.579463

Looking some improvement from our previous models

SVR model

```
In [73]:
```

```
from sklearn.svm import SVR
```

In [80]:

```
radial_svr = SVR(kernel="rbf")
select_model(radial_svr)
```

mse: 2966.6335228725097, rmse: 54.46681120528822, r2: 0.4988561115185446

Out[80]:

SVR()

In [81]:

```
poly_svr = SVR(kernel="poly")
select_model(poly_svr)
```

mse: 3765.752123033254, rmse: 61.365724333973716, r2: 0.36386356877445614

Out[81]:

SVR(kernel='poly')

Summarizing our findings

In [82]:

```
# Here we go with radial Bais kernel
create_model(radial_svr)
pd.DataFrame([a,b,c,d,e],index = ['MAE','MSE','RMSE','R2','Adjusted R2'], columns = ['Linea
```

Out[82]:

	Linear Reg	Decision Tree	Random Forest	Gradient Boosting Reg	SVR
MAE	41.710448	36.576407	34.499214	34.471202	35.575171
MSE	3379.257172	2765.357523	2503.895568	2487.682651	2966.633523
RMSE	58.131379	52.586667	50.038941	49.876674	54.466811
R2	0.429153	0.532857	0.577025	0.579764	0.498856
Adjusted R2	0.428745	0.532523	0.576723	0.579463	0.498498

Our SVR model cannot get much improvement in validation scores

Cross Validation

In [83]:

```
from sklearn.model_selection import cross_val_score
```

In [85]:

```
def cross_validate(model):
    cross_val = cross_val_score(model,X,y,cv=5)
    print(cross_val)
    print("mean:",cross_val.mean())
```

In [118]:

```
model_list = {"Linear Reg":ln,"Decision Tree":dt6,"Random Forest":rf2,"Gradient Boosting Re
```

```
In [119]:
```

```
for k,v in model list.items():
   print("Model:",k)
   result = cross_validate(v)
   print("-----")
Model: Linear Reg
[0.37709104 0.43207145 0.41145609 0.44482342 0.45133381]
mean: 0.42335516307252163
Model: Decision Tree
[0.44346121 0.50017864 0.51849012 0.54735706 0.51959894]
mean: 0.5058171940968844
Model: Random Forest
[0.48666555 0.54024003 0.56024257 0.58845271 0.56331639]
mean: 0.5477834519312543
-----
Model: Gradient Boosting Reg
[0.47990711 0.54596261 0.56729809 0.59742529 0.5714802 ]
mean: 0.5524146598922576
Model: SVR
mean: -0.03504026362755441
```

Conclusion

As we see in our summary there is linear improve in result. First start with baseline model Linear Regression, Decision Tree with some improvement then check Random Forest which gives more improvement in its scores again check from Gradient Boosting Regression it gives some amount of improveness in scores and then last model used is Support vector Regression it shows not much improvement in evaluation scores. Overall, we discovered a very good number of interesting relationships between features and models, explained each step of the process. This data science is very much mimicked on a higher level on Airbnb Data/Machine Learning team for better business decisions, control over the platform, marketing initiatives, implementation of new features and much more. Therefore, I hope this project helps everyone!

```
In [ ]:
```