#### Lecture 6: Active Portfolio Management



#### Preview of our Goal

- The CAPM suggests that all investors should hold the market index
  - This view is based on assumption that all investors share the same information
- What if you have extra information?
  - How do we combine new information with an otherwise efficient portfolio?
  - (What makes the portfolio "efficient"?)
- In theory, the Markowitz model will do this, but not for the universe of investable assets



#### Preview of our Goal

- Instead, we replace full-blown portfolio optimization (Markowitz) with a single-factor model based on the CAPM
  - Using inputs from the model, we can build an active portfolio
    - This is called the "satellite portfolio"
  - Optimally combine this active portfolio with the market index
    - This is called the "core portfolio"
- This two-part procedure is referred to as Treynor-Black, and gives flexibility to account for added-value estimates of alpha or beta, while still remaining diversified



# Computation costs of full-blown portfolio optimization

- Suppose we wish to perform full Markowitz portfolio optimization for the S&P500, with or without private information
- How many parameters would we need?

|                | General Number                      | S&P Number |
|----------------|-------------------------------------|------------|
| $\sigma_i^2$   | Number of Stocks $(N)$              | 500        |
| $E(r_i)$       | N                                   | 500        |
| $\sigma_{i,j}$ | $\frac{1}{2} \times N \times (N-1)$ | 124,750    |
| Total          | $\frac{1}{2} \times N \times (N+3)$ | 125,750    |

What about the Wilshire 5000 (all stocks)?



## A Single Factor Alternative

- We can use a CAPM/single-factor relation to simplify inputs
- We begin with the CAPM regression (note: BKM call this the "Single Index Model")

$$r_{i,t} - r_f = \alpha_i + \beta_i (r_{m,t} - r_f) + \epsilon_{i,t}$$
$$\epsilon_{i,t} \sim \mathcal{N}(0, \sigma_i^2(\epsilon))$$

- Degree of *idiosyncratic* variance  $\sigma_i^2(\epsilon)$  is allowed to vary for different stocks
- Additionally, we assume that  $Cov(\epsilon_{i,t}, \epsilon_{j,t}) = cov(\epsilon_{i,t}, r_{m,t}) = 0$
- What does this buy us?



# Single Index Model

 To get expected returns, we take expectations of both sides of the return equation, and generate our security market line

$$E(r_i - r_f) = \alpha_i + \beta_i E(r_{m,t} - r_f)$$

• Use betas to get variances and covariances:

$$\sigma_{i,j} = cov(r_i, r_j) = \beta_i \beta_j \sigma_m^2, \ i \neq j$$
$$\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_i^2(\epsilon)$$

• Why is this helpful?



# Single-Index Model

• Now, to construct an efficient frontier, we only need a handful of parameters!

| Parameter    | General Number | S&P Number |
|--------------|----------------|------------|
| $E(r_m)$     | 1              | 1          |
| $r_f$        | 1              | 1          |
| $\sigma_m^2$ | 1              | 1          |
| $lpha_i$     | N              | 500        |
| $eta_i$      | N              | 500        |
| $\sigma_i^2$ | N              | 500        |
| Total        | (N+3)          | 1,503      |

- A lot easier than 125K parameters!
- Pop Quiz: If alphas are all zero, and all assets are included, what portoflio do we choose?



# Modifying inputs with a single-index model

- Single index mocel brings both parsimony and discipline to inputs
- CAPM presents an equilibrium view of expected returns vs. reliance on messy historical returns
- Consider the following exercise (which we will do now):
  - 1. Estimate expected returns and covariances from the data
  - 2. Calculate the optimal market portfolio
  - 3. Construct each stock's beta with the market portfolio
  - 4. Back out the expected returns from the model and compare
- What do we miss by doing this?
- We can effectively take the input from the CAPM
  - Plus or minus alpha...
  - What if we need to adjust betas as well?



## Treynor-Black Model

- This is almost the Treynor-Black Model
- So far, we have looked at a small number of assets for convenience
- In reality, however, even the most diligent analysts will only have valuable views on a handful of assets
- How do we achieve benefits of diversification while still focusing our views on a handful of stocks?



#### Treynor-Black Model

- Treynor-Black model suggests a two-stage, core/satellite approach
  - First stage: build active portfolio based on alpha estimates
  - Second stage: decide how much to contribute to active portfolio and how much to allocate to index
- Portfolio will maximize the Sharpe ratio of the total portfolio



#### Treynor-Black Model

• First, construct the active portfolio (A) using alpha estimates and observed residual variance

$$w_i^0 = \frac{\alpha_i / \sigma_i^2(\epsilon)}{\sum_i \alpha_j / \sigma_i^2(\epsilon)}$$

- $w_i^0$  is the optimal weight to put on stock i within the active portfolio A
- $\alpha_i$  is the expected excess return over the CAPM prediction for stock i
- $\sigma_i^2(\epsilon)$  is the residual (idiosyncratic) variation of stock *i*
- So, how do we interpret this equation?



# How much to allocate to the active portfolio?

- Next decide how much to put in the active portfolio,  $w_A$ ?
- Solving this analytically yields

$$w_A = \frac{\alpha_A/\sigma_A^2(\epsilon)}{E(r_m - r_f)/\sigma_m^2 + (1 - \beta_A)(\alpha_A/\sigma_A^2(\epsilon))}$$

where

$$\beta_A = \sum_{i \in A} w_i \beta_i, \qquad \alpha_A = \sum_{i \in A} w_i \alpha_i, \qquad \sigma_A^2(\epsilon) = \sum_{i \in A} w_i^2 \sigma_i^2(\epsilon)$$

- What happens as  $\alpha_A$  gets large? Or  $\sigma_A^2$  gets small?
  - What about the market's Sharpe ratio?
- Final active portfolio weight on stock *i* is  $w_i^A \times w_A$
- $(1 w_A)$  is invested in the passive index



# Example

- Market returns are 9% with a variance,  $\sigma_m^2$  of 4% and a risk-free rate of 3%
- Combine the index with the following beliefs regarding Facebook and Twitter:

|      | α    | β    | $\sigma_i^2(\varepsilon)$ |
|------|------|------|---------------------------|
| FB   | 0.5% | 2    | 7%                        |
| TWTR | 0.2% | 1.75 | 12%                       |

- What are we assuming about the other stocks?
- Plugging in to get active weights yields:

$$w_{FB}^{0} = \frac{\alpha_{FB} / \sigma_{FB}^{2}(\epsilon)}{\alpha_{FB} / \sigma_{FB}^{2}(\epsilon) + \alpha_{TWTR} / \sigma_{TWTR}^{2}(\epsilon)} = 0.81, \qquad w_{TWTR}^{0} = 0.19$$



#### Example

Based on these weights,

$$\beta_A = 0.81 \times 2 + 0.19 \times 1.75 = 1.95$$
 $\alpha_A = 0.81 \times 0.005 + 0.19 \times 0.002 = 0.0044$ 
 $\sigma_A^2(\epsilon) = 0.81^2 \times 0.07 + 0.19^2 \times 0.12 = 0.05$ 

This gives us the active weight

$$w_A = \frac{\alpha_A/\sigma_A^2(\epsilon)}{E(r_m - r_f)/\sigma_m^2 + (1 - \beta_A)(\alpha_A/\sigma_A^2(\epsilon))} = \frac{0.0044/0.05}{0.06/0.04 + (1 - 1.95)(0.0044/0.05)} = 0.06$$



# Example

- So we invest roughly 6% in an active portfolio, and 94% in the index
- Given the active portfolio weights in FB and TWTR, we get final portfolio weights of 94% for the index, 5% for FB, and 1% TWTR



# Treynor-Black

- Active management tells us to think about our portfolios seperately
  - One active portfolio
  - One passive portfolio
- What does the typical mutual fund represent?
  - Depends on the fund benchmark
  - For example, sector/style funds vs. balanced funds
- For an undiversified fund, passive investing is done "after-market"



# Active Portfolio Management in Practice

- Are funds over-indexing?
  - Bob Litterman says so...



**MANAGEMENT** 

# Active Portfolio Management in Practice



Figure 2. Simulated and actual cumulative density function of three-factor  $t(\alpha)$  for gross returns, 1984–2006.



# Active Portfolio Management in Practice



Figure 1. Simulated and actual cumulative density function of three-factor  $t(\alpha)$  for net returns, 1984–2006.



#### Hot hands?

- Evidence for persistent superior performance is weak
- Malkiel (1995) tracks funds based on above/below median performance

|                  | Next Year |       |                        |  |
|------------------|-----------|-------|------------------------|--|
| Initial Year     | Winner    | Loser | Percent Repeat Winners |  |
| 1971–1979 Winner | 682       | 365   | 65.1                   |  |
| Loser            | 371       | 675   |                        |  |
| 1980–1990 Winner | 1189      | 1111  | 51.7                   |  |
| Loser            | 1087      | 1203  |                        |  |

• Is alpha the right measure? Van Binsbergen and Berk (2011)



# Active & Passive Components of a Portfolio

- How do we observe if funds are active or passive?
  - One idea is tracking error;  $sd(r_{fund} r_{index})$
- Alternatively, the active share (Cremers and Petajisto, 2009)
- Decompose portfolio into two parts:

```
Portfolio = Index + (Portfolio - Index)
```

- Distinguish the truly active funds from those who are not very active, but only advertise themselves as active
  - e.g. Fidelity Magellan in 2003



#### **Active Share**

- Active Share quantifies active portfolio holdings
  - Compare portfolios weights: fund versus its benchmark

Active Share<sub>fund</sub> = 
$$\frac{1}{2} \sum |w_{fund,stock} - w_{index,stock}|$$

- Indicates the size of the active positions as a fraction of the entire portfolio
- Always between 0 and 100% for mutual funds
  - E.g. 34% for Fidelity Magellan at the end of 2003



# Magellan's Period of Closet Indexing



# Magellan's Period of Closet Indexing



**MANAGEMENT** 

#### **Evolution of Active Share over Time**



# Compare Active to Passive Funds





#### Greater Performance Persistence for Active Funds

#### Excess Net Returns (relative to benchmark, after expenses)





#### Greater Performance for Active Funds





#### Black-Litterman

- Treynor-Black addresses the trade-off between diversification and conviction
  - Even ex-ante correct beliefs can be wrong after the fact!
  - i.e. alphq belief is right, but error term  $\epsilon$  went the wrong way
- Black-Litterman admits uncertain beliefs about alpha and other inputs beforehand
  - Think Bayesian!
  - But not this Bayes:





# Or even this Bayes:





- The Black-Litterman approach is much less fluffy.
- Straightforward approach to incorporate three things:
  - 1. optimal portfolio design (mean variance trade-off)
  - 2. active trading (non-zero alpha)
  - 3. uncertainty (Bayesian shrinkage)
- Approach is somewhat technical, so we will first walk through the cookbook



#### Step 1:

- Invert expected returns based on observed portfolio weights and covariances
  - I.e. "What must others believe about E(r) to justify weights?"
  - With the universe of stocks, the CAPM already does this
- This gives rise to a noisy estimate of expected returns from a market equilibrium
- Assign a level of uncertainty to this estimate (tau  $\tau$ )



#### Step 2:

- Come up with an independent estimate of E(r), your "view"
- Assign a level of uncertainty to this estimate (Omega  $\omega$ )



#### Step 3:

- Use Bayes' rule to formulate posterior distribution of E(r) as a weighted average of views + equilibrium estimates, weighted by precision (inverse uncertainty)
- Proceed with MVE based on refined view of expected returns and covariance matrix

