Section 3B. Eigenvalues and Eigenvectors

Statistics for Data Science

Victor M. Preciado. PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Vector Algebra

- ▶ We denote by $\mathbf{x} \in \mathbb{R}^n$ a vector with n real entries (we reserve bold letters for vectors)
 - \triangleright By convention, an *n*-dimensional vector **x** is a matrix with *n* rows and 1 column
 - ▶ The *i*-th element of a vector \mathbf{x} is denoted by x_i
 - ▶ The *inner product* of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is a scalar value defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\mathsf{T} \mathbf{y} = \sum_{k=1}^n x_k y_k = \mathbf{y}^\mathsf{T} \mathbf{x} = \langle \mathbf{y}, \mathbf{x} \rangle \in \mathbb{R}$$

- ► The *outer product* of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is a matrix defined as $\mathbf{x}\mathbf{y}^\intercal \in \mathbb{R}^{n \times n}$; hence, $[\mathbf{x}\mathbf{y}^\intercal]_{ii} = x_i y_i$.
- ▶ Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^n$, their product $\mathbf{y} = A\mathbf{x} \in \mathbb{R}^m$ is a vector defined entry-wise as

$$y_i = \sum_{k=1}^n a_{ik} x_k$$

Eigenvalues and Eigenvectors

Given a $n \times n$ matrix M, we say that the vector $\mathbf{v} \in \mathbb{C}^n$ is an eigenvector of M if there exists a number $\lambda \in \mathbb{C}$, called the eigenvalue of \mathbf{v} , such that the following equation is satisfied:

$$M\mathbf{v} = \lambda \mathbf{v}$$
 (Eigen-equation)

It turns out that for a symmetric matrix $M = M^{T}$, there are n possible choices for eigenvalues and eigenvectors, i.e., we have n equations of the form

$$M\mathbf{v}_i = \lambda_i \mathbf{v}_i$$
 for $i = 1, \dots, n$

where $\lambda_i \in \mathbb{R}$, $\mathbf{v}_i \in \mathbb{R}^n$, and $\mathbf{v}_i^\mathsf{T} \mathbf{v}_j = 0$ for $i \neq j$. In other words, the eigenvalues and eigenvectors are real and the eigenvectors are perpendicular to each other

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.