Continuité

Étude de continuité et prolongement

Exercice 1 (Continue ou pas?)

Étudier la continuité en tout point de $\mathbb R$ des fonctions suivantes :

(a)
$$\forall x \in \mathbb{R}^*, \ f(x) = \frac{x}{|x|}$$
 et $f(0) = 1$.

(b)
$$\forall x \in \mathbb{R}^*, f(x) = \frac{\sin(x)}{x}$$
 et $f(0) = 1$.

(c)
$$\forall x \in \mathbb{R}, \ f(x) = x - |x|$$

Exercice 2 (Prolongeable ou pas?)

- 1. Déterminer le domaine de définition des fonctions suivantes, et justifier qu'elle y sont continues.
- 2. Peut-on prolonger ces fonctions par continuité aux bords du domaine de définition ? Si oui, définir le prolongement.

(a)
$$f(x) = \arctan(x^{-1})$$

(b)
$$f(x) = \frac{\cos(x) - 1}{x}$$
 (c) $f(x) = \frac{\tan(x)}{x}$

Exercice 3 ("Recollement" continu)

Pour tout $x \in \mathbb{R}$, on pose :

$$f(x) = \begin{cases} x^2 & \text{si } x \in [-1, 2] \\ \exp(ax + b) & \text{sinon} \end{cases}$$

Déterminer des constantes a et b pour que f soit continue sur \mathbb{R} .

Exercice 4 (Problème en 0)

On définit, pour tout x > 0, $f(x) = \sin\left(\frac{1}{x}\right)$.

Montrer par l'absurde que f n'est pas prolongeable par continuité en 0.

TVI et Théorème de la bijection

Exercice 5 (Une unique racine)

- 1. Pour tout $n \in \mathbb{N}$, montrer que $P_n = X^n + X 1$ admet une unique racine α_n dans [0, 1].
- 2. (a) Montrer que la suite $(\alpha_n)_{n\in\mathbb{N}}$ est croissante.
- (b) On suppose que $\lim_{n\to+\infty} \alpha_n = \ell < 1$. Montrer que $\lim_{n\to+\infty} (\alpha_n)^n = 0$ et obtenir une contradiction.
- (c) En déduire finalement $\lim_{n\to+\infty} \alpha_n$.

Exercice 6 (Intersection de graphes)

Soient $f, g \in \mathcal{C}([a, b], \mathbb{R})$ satisfaisant

$$(f(a) - g(a))(f(b) - g(b)) < 0$$
.

Montrer qu'il existe $x_0 \in [a, b]$ tel que $f(x_0) = g(x_0)$.

Exercice 7 (Étude d'une suite implicite)

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique réel $x_n \in [1, n]$ tel que $\ln(x_n) + x_n = n$.
- 2. (a) Montrer que la suite $(x_n)_{n\in\mathbb{N}^*}$ est croissante, puis que $\lim_{n\to+\infty}x_n=+\infty$.
- 3. (a) Justifier que $\lim_{n \to +\infty} \frac{\ln(x_n)}{n} = 0$ puis déterminer $\lim_{n \to +\infty} \frac{x_n}{n}$.
- (b) En déduire que $\lim_{n\to+\infty} \frac{x_n}{x_{n-1}} = 1$, puis déterminer $\lim_{n\to+\infty} (x_n x_{n-1})$.

Fonctions continues et bornes

Exercice 8 (Fonction continue périodique)

Montrer qu'une fonction continue et périodique sur \mathbb{R} admet un maximum et un minimum.

Exercice 9 (Limite finie aux bords)

On souhaite montrer que tout fonction continue sur $\mathbb R$ admettant des limites finies en $-\infty$ et $+\infty$ est bornée. Soit donc $f\in\mathcal C(\mathbb R,\mathbb R)$ telle que $a=\lim_{x\to +\infty}f(x)\in\mathbb R$ et $b=\lim_{x\to +\infty}f(x)\in\mathbb R$

- (a) Justifier qu'il existe A<0 et A'>0 tels que $\forall x< A,\ a-1\leqslant f(x)\leqslant a+1$
- et $\forall x > A', b-1 \leqslant f(x) \leqslant b+1.$
- (b) Justifier qu'il existe $m, M \in \mathbb{R}$ tels que $\forall x \in [A', A], \ m \leqslant f(x) \leqslant M.$
- (c) Conclure.
- (d) Donner un exemple d'une telle fonction qui n'atteint pas ses bornes.

Exercice 10 (Graphes sans intersection)

Soient $f, g \in \mathcal{C}([0, 1], \mathbb{R})$ t.q $\forall x \in [0, 1], f(x) \neq g(x)$.

On suppose par exemple que f(0) < g(0).

- (a) Montrer que $\forall x \in [0,1], f(x) < g(x).$
- (b) Plus précisément, montrer qu'il existe $\delta > 0$ fixé tel que $\forall x \in [0,1], f(x) \leq g(x) \delta$.

Problèmes divers

Exercice 11 (Une équation contraignante)

Soit f une fonction continue en 0 satisfaisant : $\forall x \in \mathbb{R}, \ f(2x) = f(x).$

- 1. Montrer: $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f(x) = f\left(\frac{x}{2^n}\right)$.
- 2. En déduire que f est constante.

Exercice 12 (Fonction Lipschitzienne)

Soit $f:[0,1] \to [0,1]$ une fonction. On suppose qu'il existe $k \in]0,1[$ tel que

$$\forall (x, x') \in [0, 1]^2, |f(x) - f(x')| \leqslant k|x - x'|.$$

- 1. Montrer que f est continue sur [0,1].
- 2. Montrer que f a un unique point fixe $\alpha \in [0, 1]$.
- 3. On pose $u_0 \in [0, 1]$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
- (a) Montrer: $\forall n \in \mathbb{N}, |u_n \alpha| \leq |u_0 \alpha| \times k^n$.
- (b) En déduire $\lim_{n\to+\infty} u_n$.

Exercice 13 (Fonctions continues additives)

L'objectif de cet exercice est de déterminer toutes les fonctions continues sur $\mathbb R$ satisfaisant :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

On note \mathcal{A} l'ensemble de ces fonctions.

0. Vérifier que pour tout $a \in \mathbb{R}$, $a \times Id_{\mathbb{R}} \in \mathcal{A}$.

Soit maintenant $f \in \mathcal{A}$. On pose a = f(1).

- 1. Montrer que $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ f(nx) = nf(x)$.
- 2. Montrer que f est impaire, et en déduire que l'égalité précédente reste vraie pour $n \in \mathbb{Z}$.
- 3. Déduire que pour tout $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, $f\left(\frac{1}{q}\right) = a \times \frac{1}{q}$, puis que $f\left(\frac{p}{q}\right) = a \times \frac{p}{q}$.
- 4. On rappelle que tout réel est limite d'une suite de rationnel (par exemple : $x = \lim_{n \to +\infty} \frac{\lfloor 10^n x \rfloor}{10^n}$.) Montrer finalement que $\forall x \in \mathbb{R}, \ f(x) = ax$.
- 5. Décrire explicitement l'ensemble A.