Course 2318 2012

Sheet 1

Due: see www.maths.tcd.ie/~rtange/teaching/algebraic_geometry/algebraic_geometry.html

Exercise 1

Which of the following sets can always be transformed into each other by a euclidean transformation?

- (i) Two lines in the plane.
- (ii) Two pairs of intersecting lines in the plane.
- (iii) Two pairs of intersecting lines in the plane forming the same angles. Justify your answer.

Exercise 2

Determine the type (in the classification: ellipse, hyperbola etc.) of the following quadric:

- (i) xy + x 1 = 0;
- (ii) $x^2 2xy + y^2 + x 1 = 0$;
- (iii) $x^2 2xy + y^2 1 = 0$;
- (iv) $x^2 + y^2 x y + 1 = 0$;

Exercise 3

In \mathbb{R}^3 consider two planes A and B given by Z=1 and X=1 respectively. Consider inhomogeneous coordinates (x,y)=(X/Z,Y/Z) on A and (y',z')=(Y/X,Z/X) on B. Let $L\subset A$ be the line given by y=ax+b.

- (i) Describe by a homogeneous equation the projective line \widetilde{L} in \mathbb{P}^2 induced by L, i.e. containing all the lines passing through 0 and intersecting L.
- (ii) Give an equation for the line induced by \widetilde{L} on the plane B using the coordinates (y', z').
- (iii) What is the "infinity point" of \widetilde{L} , i.e. the point in \mathbb{P}^2 which does not correspond to any point of L?
- (iv) For which a and b, the latter "infinity point" corresponds to a point of B?