3.3 Basis and dimension. ω , subspace of \mathbb{R}^n . Definition 17: A set S is called a basis (基底) of W if (i) S is linearly independent. cii) span (S) = W. 簡單地調, basis 与是其成似的最小集度. Example 18: (1) In IR", 3 e, e2, ... En3 is a basis for IR". ci) <u>Claim</u>: 3 e1. ez, ... enu i linearly independent a, e, + az ez + --- + an en = 0 $\Rightarrow \begin{vmatrix} a_1 \\ a_2 \\ \vdots \end{vmatrix} = 0$ \Rightarrow $a_1 = a_2 = -- = a_0 = 0$ cii) Claim: span } e1. e2,... en3 = 1R" For $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$ x = x1 e1 + x2 e2 + ... + Xn en & span 3 e1. e2, ... en 3. ⇒ R" ≤ span 3 e1. e2, ... en 3. Conversely, since ei e R' + i = 1. 2.... n => a, e, + ases + ··· + anen & R" + a, as, ··. ane iR ⇒ span 3 €1. €, ... end ≤ IR" Thus, span $3 \in [1, e_2, -\cdot\cdot, e_n] = [R^n]$

		Date: / /
	then $W = span(S)$ is a subspace of \mathbb{R}^4	
	Moreover, S is a basis for W, since	
	(i) by Example 12(2), S is linearly independent	
	cii) clearly, span $(S) = W$.	
	[[0] [0]]	
	(3) $\beta = \{ 0 0 \} \subseteq \mathbb{R}^3$	
	then $\omega = \text{span}(S)$ is a subspace of IR^3 .	
	Moreover, S is a basis for W., since	
	ri'i ro'i	
	a o + b o = o	
	→	
	ь	
	$\Rightarrow a = b = 0$	
	⇒ 8 is linearly independent	
	$(4) \beta = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^2$	
	then $W = span(S)$ is a subspace of R^2 , but	S is not a
	basis for W, since S is not linearly independent.	
0		
	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	
	By Remark 13. S is linearly dependent.	
0	9 1	
	$S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ is a basis for W .	

```
Theorem 19: S = 3 U1, U2, ... Uk3: basis for W
   x = 9,0, + 05 02 + --- + 9k 0k
              重真在"唯一
proof: "> " Suppose & is a basis for W
           ⇒ for x & W, 3 a1. a2.... ak € IR s.t.
                    X = a, v, + a= v + ... + a + vk.
          Suppose
           x = a1 v1 + a2 v2 + - · · + ak vk = b1 v1 + b2 v2 + · · · + bk vk
           \Rightarrow (a_1 - b_1) v_1 + (a_2 - b_2) v_2 + ... + (a_k - b_k) v_k = 0
                  a1-b1 = a2-b3 = --= ak-bk = 0
         S: lin. indep.
           ⇒ a1 = b1, a2 = b2, ... ak = bk
           > uniqueness.
    "←"必独分成雨恒部1份朱証明.
        (i) Since o & W. and 3! al. as.... ake IR s.t.
                0 = a, v, + a= v= + ... + ak ok
            ⇒ a1 = a2 = ... = at = 0
        cii) Since for x & W. = a1. az. ... ax & R st.
                  x = 91 01 + 02 02 + ... + 9 KUK
             \Rightarrow x \in span (S)
Theorem 20: Any basis for W consists the same number of elements.
Definitional: The unique number of elements in each basis for W
    is called the <u>dimension</u> (瀚度) of W and is denoted by
    dim(W).
Example 22: (1) dim (103) = 0
```

	Date: / /
	$\dim(\mathbb{R}^n) = n$, since $3e_1, e_2, \dots, e_n 3$ is a basis for \mathbb{R}^n .
(3)	$\omega = span \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix} \right\} \subseteq \mathbb{R}^3$
	then $\dim(w) = a$.
(4)	$S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^{2}$ $W = \operatorname{span}(S),$
	then $\dim(\omega) = \alpha$.