

Monotonia unui poligon

Submit solution

My submissions All submissions Best submissions

✓ Points: 10

② Time limit: 2.0s Python 3: 6.0s

Memory limit: 32M Python 3: 256M

Author: constantin.majeri@s.unibuc.ro

> Problem type

✓ Allowed languages C, C++, Java, Python

Descriere

Implementați un algoritm de complexitate de timp liniară care să verifice dacă un poligon $P_1P_2...P_n$ este monoton în raport cu axa Ox, respectiv Oy, folosind metoda dreptei de baleiere, descrisă în cursul 9.

Date de intrare

Programul va citi de la tastatură un număr natural n, reprezentând numărul de vârfuri ale poligonului, și apoi n perechi de numere întregi separate prin spațiu x_i y_i , pe linii distincte, reprezentând coordonatele vârfului $P_i(x_i, y_i)$ al poligonului.

Date de ieșire

Programul va afișa exact **două** rânduri, pe fiecare aflându-se unul dintre șirurile de caractere YES sau NO.

Primul rând va indica dacă poligonul dat este x-monoton, iar al doilea rând indică dacă este y-monoton.

Restricții și precizări

- $3 \le n \le 1000000$
- \bullet 109 < m a < 109

Exemple

Exemplul 1

Input

Output

Y	/ES	Сору
Y	/ES	

Explicatie

Poligonul dat este atât x-monoton, cât și y-monoton.

Explicație pentru x-monotonie: vârful P_1 , situat cel mai la stânga (cu cel mai mic x) este unit cu vârful P_3 , situat cel mai la dreapta (cu cel mai mare x) prin două lanțuri: $P_1P_2P_3$, respectiv $P_1P_8P_7P_6P_5P_4P_3$. În ambele cazuri parcurgerea se efectuează de la stânga la dreapta (coordonata x crește). Se poate observa că intersecția dintre o dreaptă verticală oarecare și poligon este mulțimea vidă sau un punct sau un segment (de fapt, este o mulțime conexă, formată "dintr-o singură bucată").

Explicație pentru y-monotonie: vârful P_7 , situat cel mai sus (cu cel mai mare y) este unit cu vârful P_2 situat cel mai jos (cu cel mai mic y) prin două lanțuri: $P_7P_8P_1P_2$, respectiv $P_7P_6P_5P_4P_3P_2$. În ambele cazuri parcurgerea se efectuează de sus în jos (coordonata y descrește). Se poate observa că intersecția dintre o dreaptă orizontală oarecare și poligon este mulțimea vidă sau un punct sau un segment.

Exemplul 2

Input

7	Сору
0 5	
2 3	
1 -1	
6 -2	
4 2	
8 6	
3 9	

Output

Explicație

Poligonul nu este x-monoton. Putem observa că pe lanțul $P_1P_2P_3P_4,\ldots$ coordonata x a punctelor crește, apoi scade și crește din nou. Se poate observa că există drepte verticale (de exemplu dreapta de ecuație x=5) pentru care intersecția cu poligonul este reuniunea a două segmente (o astfel de mulțime nu este conexă, ea are două componente conexe).

Poligonul dat este y-monoton. Vârful P_7 , situat cel mai sus (cu cel mai mare y), este unit cu vârful P_4 , situat cel mai jos (cu cel mai mic y), prin două lanțuri: $P_7P_1P_2P_3P_4$, respectiv $P_7P_6P_5P_4$. În ambele cazuri parcurgerea se efectuează de sus în jos (adică y descrește). Se poate observa că intersecția dintre o dreaptă orizontală și poligon este mulțimea vidă sau un punct sau un segment.

Exemplul 3

Input

8	Сору
9 9	
5 5	
6 9	
4 4	
-1 2	
7 1	
3 2	
10 3	

Output

NO	Сору
NO	

Explicație

Poligonul dat nu este nici x-monoton, nici y-monoton. Pe lanțul $P_5P_6P_7P_8$ coordonata x crește, apoi descrește, apoi crește din nou, deci poligonul nu este x-monoton. Un argument analog poate fi utilizat pentru a arăta că poligonul nu este y-monoton (găsiți un lanț care "obstrucționează" y-monotonia).

There are no comments at the moment.

Report an issue