

Mathématiques

Classe: BAC Mathématiques

Session Contrôle 2021

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(5) 36 min

3 pts

Soit $a \in \mathbb{Z}$.

- 1) Déterminer les restes possibles modulo 6 de l'entier a^2 .
- 2) Vérifier que $a^3 \equiv a \pmod{6}$.

3)

- a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $a^{2n+1} \equiv a \pmod{6}$.
- **b)** En déduire que pour tout entier $n \ge 1$, $a^{2n} \equiv a^2 \pmod{6}$.
- 4) Résoudre dans \mathbb{Z}^2 le système $\begin{cases} x^7 y^8 \equiv 0 \pmod{6} \\ x^3 y^2 \equiv 1 \pmod{6} \end{cases}$

Exercice 2:

(5) 60 min

5 pts

Le plan est orienté dans le sens direct. Dans la figure 1 de l'annexe jointe, ABC est un triangle rectangle et isocèle en A de sens direct, le point O est le milieu du segment $\begin{bmatrix} BC \end{bmatrix}$ et les triangles AEB et ACF sont équilatéraux directs.

- 1) Soit r_1 la rotation de centre A et d'angle $\frac{5\pi}{6}$. Montrer que $r_1(B) = F$ et $r_1(E) = C$.
- 2) Soit S la symétrie orthogonale d'axe (OA).
 - a) Montrer que S([BE]) = [CF].
 - **b)** Les droites $\left(BE\right)$ et $\left(CF\right)$ se coupent en un point Ω . Montrer que les points A,O et Ω sont alignés.
- 3) Soit f un déplacement qui envoie le segment BE sur le segment CF .
 - a) Montrer que $f=r_1$ ou f est la rotation r_2 d'angle $-\frac{\pi}{6}$ et de centre Ω .
 - **b)** Construire le point $A' = r_2(A)$ et montrer que ACA'F est un losange.
- 4) Soit g l'antidéplacement qui envoie B sur F et E sur C .
 - a) Montrer que $\,g\,$ est une symétrie glissante.
 - **b)** Montrer que : g(A) = A'.
 - c) Soit I le milieu du segment BE et J=g(I). Montrer que $g=S_{(II)}o\ t_{\overline{II}}$.

Exercice 3:

© 54 min

4,5 pts

Le plan est apporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

1)

- a) Résoudre dans l'ensemble $\mathbb C$ l'équation : $z^2+z+\frac{1}{3}=0$. On note z_1 et z_2 les solutions avec $\mathrm{Im}(z_1)>0$
- **b)** Ecrire z_1 sous forme exponentielle.

Dans la figure 2 de l'annexe jointe, A et B sont les points d'affixes respectives 1 et $e^{i\frac{5\pi}{6}}$, Δ est la droite d'équation $x=-\frac{1}{2}$.

- 2) La droite Δ coupe la droite (OB) au point C . Montrer que l'affixe du point C est égale à z_1 .
- 3) Soit D le point d'affixe $z_D = \frac{1}{3\sqrt{3}}i$.
 - **a)** Vérifier que : $z_D = z_1^3$
 - **b)** Montrer que $\frac{z_D 1}{z_1 1} = \frac{2}{3}$
 - c) Construire le point D .
- 4) Soit $z \in \mathbb{C}$.

Montrer que $(z^2 + z \in \mathbb{R})$ équivaut à $(z \in \mathbb{R} \ ou \ \operatorname{Re}(z) = -\frac{1}{2})$

- **5)** Pour $z \in \mathbb{C} \setminus \{1\}$, on désigne par M et N les points d'affixes respectives z et z^3 .
 - a) Déterminer l'ensemble des points M du plan tels que les vecteurs \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires.
 - **b)** Dans la figure 2 de l'annexe, on a placé un point P de la droite Δ d'affixe α . Construire, en justifiant, le point Q d'affixe α^3 .

Exercice 4:

7,5 pts

Partie A:

Dans la figure 3 de l'annexe jointe, on a tracé dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$, la courbe représentative $\left(C_{g}\right)$ de la fonction g définie sur \mathbb{R} par $g(x)=xe^{x}$.

 α et β sont les réels tels que $g(\alpha) = 1$ et $g(\beta) = \frac{1}{2}$.

- 1) En utilisant le graphique,
 - a) Donner le tableau de signe de la fonction dérivées g de g .
 - **b)** Résoudre dans $\mathbb R$ chacune des inéquations ci-dessous.

$$g(x) < \frac{1}{2}$$
 et $g(x) < 1$

- 2) Montrer que : $\alpha > \frac{1}{2}$
- 3) Soit f la fonction définie sur \mathbb{R} par $f(x) = g(x) \left(g(x)\right)^2$. On désigne par $\left(C_f\right)$ sa courbe représentative dans le repère $\left(O, \vec{i}, \vec{j}\right)$.
 - a) Calculer $f(\alpha)$ et $f(\beta)$.
 - **b)** Calculer $\lim_{x\to -\infty} f(x)$. Interpréter e résultat.

c) Montrer que $\lim_{x\to +\infty} f(x) = -\infty$. Déterminer la branche infinie de $\left(\mathbf{C}_{\!f}\right)$ au voisinage de $+\infty$.

4)

- a) Montrer que pour tout $x \in \mathbb{R}$, $f'(x) = 2g'(x) \left(\frac{1}{2} g(x)\right)$.
- **b)** Dresser le tableau de variation de $\,f\,$
- c) Tracer $\left(\mathbf{C}_{\!\scriptscriptstyle f} \right)$ dans le repère $\left(O, \vec{i}, \vec{j} \right)$.
- 5) Soit \mathcal{A} l'aire en (u.a) de la partie du plan limitée par (C_f) , (C_g) et les droites d'équations respectives x=0 et $x=\alpha$.
 - a) Montrer que $\mathcal{A} = \frac{1}{2} \int_0^\alpha x e^{2x} dx$.
 - **b)** En déduire que $\mathcal{A} = \frac{1}{4} \frac{1}{2\alpha} + \frac{1}{4\alpha^2}$.

Partie B:

Pour tout entier $n \ge 2$, on pose $J_n = \int_0^\alpha \left(g(x) \right)^n dx$.

1)

- a) Montrer que $0 \le J_n \le \frac{\alpha}{n+1}$.
- **b)** En déduire $\lim_{n\to +\infty} J_n$

2)

- a) Montrer que $\int_{\alpha-\frac{1}{n}}^{\alpha} (g(x))^n dx \le J_n$.
- **b)** Montrer que $\frac{1}{n} \left[g \left(\alpha \frac{1}{n} \right) \right]^n \le J_n \le 1$.
- c) Justifier que $\sqrt[n]{n} = e^{\frac{\ln n}{n}}$ puis montrer que $\lim_{x \to +\infty} \sqrt[n]{J_n} = 1$.

Annexe à rendre avec la copie

Figure 1

Figure 2

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000