

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1 (Propeure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1 (Pressure) 1.6	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.04 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.04	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer M11 Outer Location M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 Inner Outer N15 M11 N7 N15 M11 Location Outer Rear Struts M2 Outer Location M8 Inner Rear Reactions N8 Inner Outer M6 Inner Inner N16 N24 Location Outer Bracing Outer M15 Inner M15 Inner

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = F _{ty} =	1.5x0.25 6061-T6 35 ksi
Φ =	0.90
S _v =	0.02 in^3
É =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
M _y =	0.002 k-ft
P _n =	0.156 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>6%</u>

A cross brace kit is required every 35 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>514.21</u>	1469.96	k
Compressive Load =	1332.11	<u>949.61</u>	k
Lateral Load =	<u>19.27</u>	<u>532.81</u>	k
Moment (Weak Axis) =	0.03	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 21613.5 in-lbs Resisting Force Required = 720.45 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1200.75 lbs to resist overturning. Minimum Width = 1903.13 lbs Weight Provided = Sliding 128.09 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 320.23 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 128.09 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 Bearing Pressure

 Ballast Width

 21 in
 22 in
 23 in
 24 in

 P_{ftg} = (145 pcf)(5 ft)(1.5 ft)(1.75 ft) =
 1903 lbs
 1994 lbs
 2084 lbs
 2175 lbs

ASD LC	1.0D + 1.0S					1.0D+	1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W			
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	391 lbs	391 lbs	391 lbs	391 lbs	550 lbs	550 lbs	550 lbs	550 lbs	678 lbs	678 lbs	678 lbs	678 lbs	-246 lbs	-246 lbs	-246 lbs	-246 lbs
FB	278 lbs	278 lbs	278 lbs	278 lbs	393 lbs	393 lbs	393 lbs	393 lbs	482 lbs	482 lbs	482 lbs	482 lbs	-706 lbs	-706 lbs	-706 lbs	-706 lbs
F _V	16 lbs	16 lbs	16 lbs	16 lbs	221 lbs	221 lbs	221 lbs	221 lbs	177 lbs	177 lbs	177 lbs	177 lbs	-256 lbs	-256 lbs	-256 lbs	-256 lbs
P _{total}	2572 lbs	2662 lbs	2753 lbs	2844 lbs	2846 lbs	2936 lbs	3027 lbs	3118 lbs	3063 lbs	3154 lbs	3244 lbs	3335 lbs	190 lbs	245 lbs	299 lbs	353 lbs
M	236 lbs-ft	236 lbs-ft	236 lbs-ft	236 lbs-ft	626 lbs-ft	626 lbs-ft	626 lbs-ft	626 lbs-ft	632 lbs-ft	632 lbs-ft	632 lbs-ft	632 lbs-ft	455 lbs-ft	455 lbs-ft	455 lbs-ft	455 lbs-ft
е	0.09 ft	0.09 ft	0.09 ft	0.08 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	0.21 ft	0.20 ft	0.19 ft	0.19 ft	2.39 ft	1.86 ft	1.52 ft	1.29 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	261.6 psf	259.6 psf	257.8 psf	256.1 psf	239.4 psf	238.4 psf	237.5 psf	236.6 psf	263.5 psf	261.4 psf	259.5 psf	257.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	326.2 psf	321.3 psf	316.8 psf	312.6 psf	411.1 psf	402.3 psf	394.3 psf	386.9 psf	436.7 psf	426.7 psf	417.6 psf	409.3 psf	657.3 psf	138.7 psf	106.2 psf	97.1 psf

Maximum Bearing Pressure = 657 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 314.1 \text{ ft-lbs}$

Resisting Force Required = 359.02 lbs S.F. = 1.67 Weight Required = 598.36 lbs

Minimum Width = 21 in in Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		21 in			21 in			21 in			
Support	Outer Inner Outer			Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	102 lbs	64 lbs	50 lbs	228 lbs	501 lbs	188 lbs	67 lbs	-21 lbs	17 lbs		
F _V	11 lbs	99 lbs	11 lbs	8 lbs	75 lbs	8 lbs	11 lbs	99 lbs	11 lbs		
P _{total}	2458 lbs	2420 lbs	2406 lbs	2471 lbs	2743 lbs	2431 lbs	756 lbs	668 lbs	706 lbs		
M	31 lbs-ft	165 lbs-ft	32 lbs-ft	23 lbs-ft	124 lbs-ft	25 lbs-ft	31 lbs-ft	165 lbs-ft	32 lbs-ft		
е	0.01 ft	0.07 ft	0.01 ft	0.01 ft	0.05 ft	0.01 ft	0.04 ft	0.25 ft	0.04 ft		
L/6	0.29 ft	1.61 ft	1.72 ft	1.73 ft	1.66 ft	1.73 ft	1.67 ft	1.26 ft	1.66 ft		
f _{min}	268.8 sqft	211.9 sqft	262.5 sqft	273.2 sqft	265.0 sqft	268.1 sqft	74.3 sqft	11.7 sqft	68.3 sqft		
f _{max}	293.0 psf	341.2 psf	287.4 psf	291.5 psf	362.1 psf	287.5 psf	98.5 psf	140.9 psf	93.1 psf		

Maximum Bearing Pressure = 362 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
1.025 k	Maximum Axial Load =	1.106 k
5.692 k	M8 Bolt Capacity =	5.692 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>18%</u>	Utilization =	<u>19%</u>
	<u>Bracing</u>	
0.181 k	Maximum Axial Load =	0.156 k
5.692 k	M10 Bolt Capacity =	8.894 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>3%</u>	Utilization =	<u>2%</u>
	5.692 k 7.952 k 18% 0.181 k 5.692 k 7.952 k	1.025 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, } h_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.048 \text{ in} \\ & 0.048 \leq 0.568, \text{ OK.} \end{array}$

reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

The racking structure's

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_{b} = 45.00 \text{ in}$$

$$J = 0.427$$

$$93.8539$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

 $\phi F_L = 30.2 \text{ ksi}$

3.4.16

b/t = 6.6

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.17 \phi \text{yFcy} \end{aligned}$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_{b} = 45.00 \text{ in}$$

$$J = 0.427$$

$$101.986$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2})}]$$

$$\phi F_{L} = 30.1$$

3.4.16

b/t = 37.95

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

h/t = 37.95

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 79.7$$

$$\varphi F_L = 1.3 \varphi \varphi F c \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 30.2 \text{ ksi}$$

$$\phi F_L St = 30.2 \text{ ksi}$$

$$k = 498305 \text{ mm}^4$$

$$1.197 \text{ in}^4$$

$$y = 40.784 \text{ mm}$$

$$Sx = 0.746 \text{ in}^3$$

$$M_{max} St = 1.879 \text{ k-ft}$$

3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max} Wk = 0.838 \text{ k-ft}$$

Compression

3.4.9

 $\begin{array}{lll} b/t = & 6.6 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_C y \\ \phi F_L = & 33.3 \text{ ksi} \\ b/t = & 37.95 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \end{array}$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.42 \text{ ksi}$
 $\phi F_L = 620.02 \text{ mm}^2$
0.96 in²

20.59 kips

 $\phi F_L = (\phi ck2*\sqrt{(BpE)})/(1.6b/t)$

21.4 ksi

 $P_{max} =$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

$\begin{array}{lll} \textbf{3.4.11} & & & \\ \textbf{L}_{b} = & & 33.78 \text{ in} \\ \textbf{ry} = & & 1.374 \\ \textbf{Cb} = & & 1.45 \\ & & & 20.4426 \end{array}$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2*ry^*\sqrt(Cb))]$$

 $\phi F_L = 29.9 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_{b} = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.45 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_{c} \\ S2 = & 79.2 \\ \phi F_{L} = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.9 \text{ ksi}$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Weak Direction

3.4.16

N/A for Strong Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$(- - \theta_{V} - \phi_{V})^{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2 b/t =24.46 2.6 t = 6.05 ds = rs = 3.49 S = 21.70 ρst = 0.22 $F_{UT} =$ 9.37 $F_{ST} =$ 28.24

 $\phi F_L = Fut + (Fst - Fut)pst < Fst$

 $\phi F_L = 13.5 \text{ ksi}$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$M = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.9 \text{ ksi} \\ Ix = & 364470 \text{ mm}^4 \\ & 0.876 \text{ in}^4 \\ y = & 37.77 \text{ mm} \\ Sx = & 0.589 \text{ in}^3 \\ M_{max} St = & 1.469 \text{ k-ft} \end{array}$$

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

 $\begin{array}{rll} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

Compression

3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

SCHLETTER

3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = \left(\phi ck2^* \sqrt{(BpE))/(5.1b/t)}\right. \end{array}$

$\phi F_L = 10.4 \text{ ksi}$

3.4.9

b/t =4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =24.46 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

12.76 kips

28.2 ksi

3.4.10

Rb/t =

 $P_{max} =$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$\phi F_L = 31.2 \text{ ksi}$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 15 \\ Cc = & 15 \\ \end{array}$$

$$\begin{array}{cccc} S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \end{array}$$

$$\begin{array}{cccc} \varphi F_L = & 1.3 \varphi y F c y \\ \varphi F_L = & 43.2 \text{ ksi} \\ \end{array}$$

$$\begin{array}{ccccc} \varphi F_L W k = & 31.2 \text{ ksi} \\ y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ & x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ \end{array}$$

$$\begin{array}{ccccc} M_{\text{max}} W k = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

0.65

15

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

 $M_{max}St = 0.423 \text{ k-ft}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{Fcv/E}$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4
 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$
 $M_{max} St = 0.404 \text{ k-ft}$

Weak Axis:

3.4.14

$$\begin{array}{lll} \mathsf{L_b} = & 46.38 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 121.663 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} = & 29.8 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

x =

 $M_{max}Wk =$

Sy =

0.096 in⁴

0.163 in³

0.450 k-ft

15 mm

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$82^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$\left(Bt - \frac{\theta_y}{\theta_t}Fcy\right)$$

$$S1 = \begin{pmatrix} Dt \\ S1 = 6.87 \end{pmatrix}$$

$$S2 = 131.3$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 29.96 \text{ in}$$

$$J = 0.16$$

$$78.5957$$

$$\left(Bc - \frac{\theta_y}{a}Fcy\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 30.5 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_1 = \varphi y Fcy$$

 $\phi F_1 = 33.3 \text{ ksi}$

Rb/t = 0.0

3.4.16.1 <u>Not Used</u>

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.5 \text{ ksi}$$
 $k = 39958.2 \text{ mm}^4$
 0.096 in^4
 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$

$$Sx = 0.163 \text{ In}^3$$

 $M_{\text{max}}St = 0.413 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_{b} = 29.96 \text{ in}$$

$$J = 0.16$$

$$78.5957$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_L =$

30.5

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.28467 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi \textbf{cc} = & 0.75985 \\ & \phi \textbf{F}_{L} = & (\phi \textbf{cc} \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_{L} = & 16.1143 \text{ ksi} \\ \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 16.11 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 8.09 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL			.8			4		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.248	-63.248	0	0
2	M16	Υ	-63.248	-63.248	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-73.997	-73.997	0	0
2	M16	V	-118.396	-118.396	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	150.955	150.955	0	0
2	M16	V	73.997	73.997	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M16	Ζ	6.693	6.693	0	0
3	M13	Ζ	0	0	0	0
4	M16	Z	0	0	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	.Fa
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	119.135	2	240.89	2	.004	10	0	10	0	1	0	1
2		min	-144.054	3	-369.833	3	-2.141	4	0	3	0	1	0	1
3	N7	max	0	5	339.446	1	.029	10	0	10	0	1	0	1
4		min	124	2	-119.582	3	-14.437	4	023	4	0	1	0	1
5	N15	max	0	15	1024.702	2	.056	9	0	9	0	1	0	1
6		min	942	2	-395.549	3	-14.82	5	023	4	0	1	0	1
7	N16	max	360.459	2	730.467	2	0	11	0	9	0	1	0	1
8		min	-409.857	3	-1130.739	3	-132.926	4	0	3	0	1	0	1
9	N23	max	0	15	339.689	1	.337	1	0	1	0	1	0	1
10		min	124	2	-119.201	3	-13.842	5	021	5	0	1	0	1
11	N24	max	119.135	2	243.082	2	65.221	3	0	4	0	1	0	1
12		min	-144.41	3	-368.972	3	-2.951	5	0	3	0	1	0	1
13	Totals:	max	597.54	2	2912.982	2	0	3						
14		min	-698.662	3	-2503.876	3	-180.771	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	244.634	1	.662	6	.808	4	0	10	0	4	0	1
2			min	-371.209	3	.153	15	135	3	0	4	0	2	0	1
3		2	max	244.73	1	.624	6	.721	4	0	10	0	4	0	15
4			min	-371.137	3	.144	15	135	3	0	4	0	3	0	6
5		3	max	244.827	1	.586	6	.634	4	0	10	0	4	0	15
6			min	-371.064	3	.135	15	135	3	0	4	0	3	0	6
7		4	max	244.923	1	.548	6	.546	4	0	10	0	4	0	15
8			min	-370.992	3	.126	15	135	3	0	4	0	3	0	6
9		5	max	245.02	1	.511	6	.459	4	0	10	0	4	0	15
10			min	-370.92	3	.117	15	135	3	0	4	0	3	0	6
11		6	max	245.116	1	.473	6	.372	4	0	10	0	4	0	15
12			min	-370.848	3	.108	15	135	3	0	4	0	3	0	6
13		7	max	245.212	1	.435	6	.284	4	0	10	0	4	0	15
14			min	-370.775	3	.1	15	135	3	0	4	0	3	0	6
15		8	max	245.309	1	.397	6	.197	4	0	10	0	4	0	15
16			min	-370.703	3	.091	15	135	3	0	4	0	3	0	6
17		9	max	245.405	1	.359	6	.11	4	0	10	0	4	0	15
18			min	-370.631	3	.082	15	135	3	0	4	0	3	0	6
19		10	max	245.501	1	.322	6	.079	9	0	10	0	4	0	15
20			min	-370.558	3	.073	15	135	3	0	4	0	3	0	6
21		11	max	245.598	1	.284	6	.079	9	0	10	0	4	0	15
22			min	-370.486	3	.064	15	135	3	0	4	0	3	0	6
23		12	max	245.694	1	.246	6	.079	9	0	10	0	4	0	15
24			min	-370.414	3	.055	15	178	5	0	4	0	3	0	6
25		13	max	245.79	1	.208	6	.079	9	0	10	0	4	0	15
26			min	-370.342	3	.046	15	265	5	0	4	0	3	0	6
27		14	max	245.887	1	.17	6	.079	9	0	10	0	4	0	15
28			min	-370.269	3	.037	15	352	5	0	4	0	3	0	6

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
29		15	max	245.983	1	.132	6	.079	9	0	10	0	4	0	15
30			min	-370.197	3	.028	15	44	5	0	4	0	3	0	6
31		16	max	246.08	1	.098	2	.079	9	0	10	0	4	0	15
32			min	-370.125	3	.02	15	527	5	0	4	0	3	0	6
33		17	max	246.176	1	.068	2	.079	9	0	10	0	4	0	15
34			min	-370.053	3	.011	15	614	5	0	4	0	3	0	6
35		18	max	246.272	1	.039	2	.079	9	0	10	0	14	0	15
36			min	-369.98	3	.002	15	702	5	0	4	0	3	0	6
37		19	max	246.369	1	.009	10	.079	9	0	10	0	9	0	15
38			min	-369.908	3	022	14	789	5	0	4	0	3	0	6
39	M3	1	max	60.643	2	1.812	6	.008	10	0	5	0	4	0	6
40			min	-46.81	14	.424	15	-1.352	4	0	1	0	10	0	15
41		2	max	60.576	2	1.634	6	.008	10	0	5	0	4	0	6
42			min	-46.876	14	.382	15	-1.218	4	0	1	0	10	0	15
43		3	max	60.509	2	1.456	6	.008	10	0	5	0	1	0	2
44			min	-46.941	14	.341	15	-1.085	4	0	1	0	10	0	15
45		4	max	60.442	2	1.278	6	.008	10	0	5	0	1	0	15
46			min	-47.007	14	.299	15	951	4	0	1	0	5	0	4
47		5	max	60.375	2	1.1	6	.008	10	0	5	0	1	0	15
48			min	-47.073	14	.257	15	818	4	0	1	0	5	0	4
49		6	max	60.308	2	.922	6	.008	10	0	5	0	1	0	15
50			min	-47.139	14	.215	15	684	4	0	1	0	5	0	4
51		7	max	60.241	2	.744	6	.008	10	0	5	0	1	0	15
52			min	-47.205	14	.173	15	551	4	0	1	0	5	0	4
53		8	max	60.173	2	.566	6	.008	10	0	5	0	1	0	15
54			min	-47.271	14	.131	15	417	4	0	1	0	5	0	4
55		9	max	60.106	2	.388	6	.008	10	0	5	0	1	0	15
56			min	-47.337	14	.09	15	284	4	0	1	0	5	001	4
57		10	max	60.039	2	.21	6	.008	10	0	5	0	1	0	15
58			min	-47.403	14	.048	15	15	4	0	1	0	5	001	4
59		11	max	59.972	2	.041	2	.008	5	0	5	0	1	0	15
60			min	-47.469	14	.006	15	111	1	0	1	0	5	001	4
61		12	max	59.905	2	036	15	.141	5	0	5	0	1	0	15
62			min	-47.535	14	146	4	111	1	0	1	0	5	001	4
63		13	max	59.838	2	078	15	.275	5	0	5	0	9	0	15
64			min	-47.601	14	324	4	111	1	0	1	0	5	001	4
65		14	max	59.771	2	12	15	.408	5	0	5	0	3	0	15
66			min	-47.667	14	502	4	111	1	0	1	0	5	001	4
67		15	max	59.704	2	162	15	.542	5	0	5	0	10	0	15
68		1	min	-47.733	14	68	4	111	1	0	1	0	4	0	4
69		16		59.637	2	203	15		5	0	5	0	10	0	15
70			min	-47.798	14	858	4	111	1	0	1	0	4	0	4
71		17	max	59.57	2	245	15	.809	5	0	5	0	10	0	15
72			min		14	-1.036	4	111	1	0	1	0	4	0	4
73		18		59.502	2	287	15	.943	5	0	5	0	10	0	15
74		'	min	-47.93	14	-1.214	4	111	1	0	1	0	4	0	4
75		19		59.435	2	329	15	1.076	5	0	5	0	5	0	1
76		1.0	min		14	-1.392	4	111	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	.03	10	0	1	0	5	0	1
78	1711		min	-120.456	3	0	1	-13.59	4	0	1	0	2	0	1
79		2	max		1	0	1	.03	10	0	1	0	10	0	1
80				-120.407	3	0	1	-13.646	4	0	1	001	4	0	1
81		3		338.41	1	0	1	.03	10	0	1	0	10	0	1
82				-120.359		0	1	-13.702	4	0	1	002	4	0	1
83		4	max		_ <u></u>	0	1	.03	10	0	1	0	10	0	1
84		_	min	-120.31	3	0	1	-13.758	4	0	1	004	4	0	1
85		5	max			0	1	.03	10	0	1	0	10	0	1
UU			шах	JJU.J4				.00	IU	U		U	10	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	4 0 10 0	1
88 min -120 213 3 0 1 -13 87 4 0 1 - 006		1
	4 0	1
	10 0	1
90 min -120.165 3 0 1 -13.926 4 0 1007	4 0	1
	10 0	1
92 min -120.116 3 0 1 -13.982 4 0 1009	4 0	1
	10 0	1
94 min -120.068 3 0 1 -14.038 4 0 101	4 0	1
	10 0 4 0	1
97	10 0 4 0	1
	10 0	1
100 min -119.922 3 0 1 -14.207 4 0 1014	4 0	1
	10 0	1
102 min -119.874 3 0 1 -14.263 4 0 1015	4 0	1
	10 0	1
104 min -119.825 3 0 1 -14.319 4 0 1016	4 0	1
	10 0	1
106 min -119.777 3 0 1 -14.375 4 0 1017	4 0	1
	10 0	1
108 min -119.728 3 0 1 -14.431 4 0 1019	4 0	1
	10 0	1
110 min -119.68 3 0 1 -14.487 4 0 102	4 0	1
	10 0	1
112 min -119.631 3 0 1 -14.543 4 0 1021	4 0	1
113	10 0	1
114 min -119.582 3 0 1 -14.599 4 0 1023	4 0	1
115 M6 1 max 746.373 1 .649 6 .807 4 0 3 0	3 0	1_
116 min -1105.77 3 .15 15291 3 0 5 0	9 0	1
117 2 max 746.469 1 .611 6 .72 4 0 3 0	4 0	15
118 min -1105.698 3 .141 15291 3 0 5 0	1 0	6
119 3 max 746.565 1 .574 6 .632 4 0 3 0	4 0	15
120 min -1105.626 3 .132 15291 3 0 5 0	1 0	6
121 4 max 746.662 1 .536 6 .545 4 0 3 0	4 0	15
122 min -1105.553 3 .123 15291 3 0 5 0	1 0	6
123 5 max 746.758 1 .498 6 .458 4 0 3 0	4 0	15
124 min -1105.481 3 .115 15291 3 0 5 0	3 0	6
125 6 max 746.855 1 .46 6 .37 4 0 3 0 126 min -1105.409 3 .106 15291 3 0 5 0	4 0 3 0	15 6
126 min 1103.495 3 .106 13291 3 0 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 0	15
128 min -1105.337 3 .097 15291 3 0 5 0	3 0	6
129 8 max 747.047 1 .384 6 .196 4 0 3 0	4 0	15
130 min -1105.264 3 .088 15291 3 0 5 0	3 0	6
131 9 max 747.144 1 .347 6 .108 4 0 3 0	4 0	15
132 min -1105.192 3 .079 15291 3 0 5 0	3 0	6
133	4 0	15
134 min -1105.12 3 .07 15291 3 0 5 0	3 0	6
135 11 max 747.336 1 .271 6 .016 9 0 3 0	4 0	15
136 min -1105.048 3 .061 15291 3 0 5 0	3 0	6
137	4 0	15
138 min -1104.975 3 .052 15291 3 0 5 0	3 0	6
139	4 0	15
140 min -1104.903 3 .043 15291 3 0 5 0	3 0	6
141	4 0	15
142 min -1104.831 3 .035 15335 5 0 5 0	3 0	6

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	1	Axial[lb]						Torque[k-ft]		I' ' -		I -	
143		15	max		_1_	.151	2	.016	9	0	3	0	4	0	15
144			min	-1104.758	3	.026	15	423	5	0	5	0	3	0	6
145		16	max		_1_	.122	2	.016	9	0	3	0	4	0	15
146			min	-1104.686	3	.017	15	51	5	0	5	0	3	0	6
147		17	max	747.915	1_	.092	2	.016	9	0	3	0	4	0	15
148			min	-1104.614	3	.003	9	597	5	0	5	0	3	0	6
149		18	max	748.011	1	.063	2	.016	9	0	3	0	4	0	15
150			min	-1104.542	3	022	9	685	5	0	5	0	3	0	6
151		19	max	748.107	1	.033	2	.016	9	0	3	0	4	0	15
152			min	-1104.469	3	046	9	772	5	0	5	0	3	0	6
153	M7	1	max	180.976	2	1.82	4	.007	3	0	9	0	4	0	4
154	1417		min	-88.521	9	.432	15	-1.417	4	0	3	0	3	0	15
155		2	max	180.909	2	1.642	4	.007	3	0	9	0	4	0	4
156			min	-88.577	9	.39	15	-1.283	4	0	3	0	3	0	15
157		3	max	180.842	2	1.464	4	.007	3	0	9	0	4	0	2
158		3	min	-88.633	9	.348	15	-1.149	4	0	3	0	3	0	9
159		4		180.775	2	1.286	4	.007	3	0	9	0	9	0	15
		4	max									_			
160		_	min	-88.688	9	.306	15	-1.016	4	0	3	0	3	0	1_
161		5	max	180.707	2	1.108	4	.007	3	0	9	0	9	0	15
162			min	-88.744	9	.264	15	882	4	0	3	0	3	0	6
163		6	max	180.64	2	.93	4	.007	3	0	9	0	9	0	15
164			min	-88.8	9	.222	15	749	4	0	3	0	5	0	6
165		7	max	180.573	2	.752	4	.007	3	0	9	0	9	0	15
166			min	-88.856	9	.181	15	615	4	0	3	0	5	0	6
167		8	max	180.506	2	.574	4	.007	3	0	9	0	9	0	15
168			min	-88.912	9	.139	15	482	4	0	3	0	5	0	6
169		9	max	180.439	2	.396	4	.007	3	0	9	0	9	0	15
170			min	-88.968	9	.097	15	348	4	0	3	0	5	001	6
171		10	max	180.372	2	.218	4	.007	3	0	9	0	9	0	15
172			min	-89.024	9	.055	15	215	4	0	3	0	5	001	6
173		11	max	180.305	2	.057	2	.007	3	0	9	0	9	0	15
174			min	-89.08	9	.003	9	081	4	0	3	0	5	001	6
175		12	max	180.238	2	029	15	.055	5	0	9	0	9	0	15
176			min	-89.136	9	139	6	006	9	0	3	0	5	001	6
177		13	max	180.171	2	07	15	.189	5	0	9	0	9	0	15
178		13	min	-89.192	9	317	6	006	9	0	3	0	5	001	6
179		14	max	180.104	2	112	15	.322	5	0	9	0	9	0	15
180		14	min	-89.248	9	495	6	006	9	0	3	0	5	001	6
181		15		180.036	2	4 95 154	15	.456	5	0	9	0	_		15
		10	max										9	0	
182		16	min	-89.303	9	673	<u>6</u>	006	9	0	3	0	5	0	6
183		10		179.969	2	196	15	.59	5	0	9	0	9	0	15
184		47	min	-89.359	9	851	6	006	9	0	3	0	5	0	6
185		17		179.902	2	238	15	.723	5	0	9	0	9	0	15
186		40		-89.415	9	-1.029	6	006	9	0	3	0	5	0	6
187		18		179.835	2	28	15	.857	5	0	9	0	9	0	15
188		4.0		-89.471	9	-1.207	6	006	9	0	3	0	5	0	6
189		19		179.768	2	322	15	.99	5	0	9	0	9	0	1
190			min		9	-1.385	6	006	9	0	3	0	3	0	1
191	<u>M8</u>	1		1023.537	2	0	1_	.06	9	0	1_	0	4	0	1
192				-396.423	3	0	1	-13.937	4	0	1	0	3	0	1
193		2		1023.602	2	0	1	.06	9	0	1	0	9	0	1
194			min	-396.374	3	0	1	-13.993	4	0	1	001	4	0	1
195		3		1023.667	2	0	1	.06	9	0	1	0	9	0	1
196				-396.326	3	0	1	-14.049	4	0	1	002	4	0	1
197		4		1023.732	2	0	1	.06	9	0	1	0	9	0	1
198				-396.277	3	0	1	-14.105	4	0	1	004	4	0	1
199		5		1023.796	2	0	1	.06	9	0	1	0	9	0	1
				,							<u> </u>				

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	. LC
200			min	-396.228	3	0	1	-14.161	4	0	1	005	4	0	1
201		6	max	1023.861	2	0	1	.06	9	0	1	0	9	0	1
202			min	-396.18	3	0	1	-14.217	4	0	1	006	4	0	1
203		7	max	1023.926	2	0	1	.06	9	0	1	0	9	0	1
204			min	-396.131	3	0	1	-14.273	4	0	1	008	4	0	1
205		8	max	1023.99	2	0	1	.06	9	0	1	0	9	0	1
206			min	-396.083	3	0	1	-14.329	4	0	1	009	4	0	1
207		9	max	1024.055	2	0	1	.06	9	0	1	0	9	0	1
208			min	-396.034	3	0	1	-14.385	4	0	1	01	4	0	1
209		10	max		2	0	1	.06	9	0	1	0	9	0	1
210			min	-395.986	3	0	1	-14.441	4	0	1	011	4	0	1
211		11		1024.184	2	0	1	.06	9	0	1	0	9	0	1
212			min		3	0	1	-14.497	4	0	1	013	4	0	1
213		12		1024.249	2	0	1	.06	9	0	1	0	9	0	1
214		12	min		3	0	1	-14.553	4	0	1	014	4	0	1
215		13		1024.314	2	0	1	.06	9	0	1	0	9	0	1
216		13	min	-395.84	3	0	1	-14.61	4	0	1	015	4	0	1
217		14		1024.379	2	0	1	.06	9	0	1	0	9	0	1
218		14	min	-395.792	3	0	1	-14.666	4	0	1	017	4	0	1
		15			_		1			•	1				1
219		15		1024.443	2	0	1	.06	9	0	1	0	9	0	1
220		4.0	min	-395.743	3		•	-14.722		0	-	018	_		
221		16		1024.508	2	0	1	.06	9	0	1	0	9	0	1
222		4-	min		3	0	1	-14.778	4	0	1	019	4	0	1
223		17		1024.573	2	0	1	.06	9	0	1	0	9	0	1
224		1.0	min		3	0	1	-14.834	4	0	1	021	4	0	1
225		18		1024.637	2	0	1	.06	9	0	1	0	9	0	1
226			min	-395.598	3	0	1	-14.89	4	0	1	022	4	0	1
227		19		1024.702	2	0	1	.06	9	0	1_	0	9	0	1
228			min	-395.549	3	0	1	-14.946	4	0	1	023	4	0	1
229	M10	1	max	245.83	_1_	.693	4	.922	5	0	1	0	4	0	1
230			min	-327.243	3_	.174	15	089	3	001	5	0	3	0	1
231		2	max		_1_	.655	4	.835	5	0	1	0	4	0	15
232			min	-327.171	3	.165	15	089	3	001	5	0	3	0	4
233		3	max	246.022	_1_	.617	4	.748	5	0	1	0	4	0	15
234			min	-327.098	3	.156	15	089	3	001	5	0	3	0	4
235		4	max	246.119	1	.579	4	.66	5	0	1	0	4	0	15
236			min	-327.026	3	.147	15	089	3	001	5	0	3	0	4
237		5	max	246.215	1	.542	4	.573	5	0	1	0	5	0	15
238			min	-326.954	3	.138	15	089	3	001	5	0	3	0	4
239		6	max	246.312	1	.504	4	.486	5	0	1	0	5	0	15
240			min	-326.882	3	.13	15	089	3	001	5	0	3	0	4
241		7	max		1	.466	4	.398	5	0	1	0	5	0	15
242			min		3	.121	15	089	3	001	5	0	3	0	4
243		8	max		1	.428	4	.311	5	0	1	0	5	0	15
244			min		3	.112	15	089	3	001	5	0	3	0	4
245		9	max		1	.39	4	.224	5	0	1	0	5	0	15
246			min	-326.665	3	.103	15	089	3	001	5	0	3	0	4
247		10		246.697	1	.353	4	.136	5	0	1	0	5	0	15
248			min		3	.094	15	089	3	001	5	0	3	0	4
249		11	max		1	.315	4	.049	5	0	1	0	5	0	15
250			min	-326.52	3	.085	15	089	3	001	5	0	3	0	4
251		12	max		1	.277	4	.003	10	0	1	0	5	0	15
252		14		-326.448	3	.076	15	089	3	001	5	0	3	0	4
253		13	max		<u> </u>	.239	4	.003	10	0	1	0	5	0	15
254		13			3		15	138	4	001	5	0	3	0	4
255		14	min max		<u>ာ</u> 1	.067 .201	4	.003	10	001 0	1	0	5	0	15
		14	_		3	.058	15	225		001	5		3	0	4
256			min	-326.303	3	.000	10	225	4	001	J	0	J	U	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]] LC \	/-y Mome	LC	z-z Mome	. LC
257		15	max	247.179	1	.163	4	.003	10	0	1	0	5	0	15
258			min	-326.231	3	.05	15	312	4	001	5	0	3	0	4
259		16	max	247.275	1	.126	4	.003	10	0	1	0	5	0	15
260			min	-326.159	3	.041	15	4	4	001	5	0	3	0	4
261		17	max	247.372	1	.088	4	.003	10	0	1	0	5	0	15
262			min	-326.087	3	.028	9	487	4	001	5	0	3	0	4
263		18	max	247.468	1	.05	4	.003	10	0	1	0	5	0	15
264			min	-326.014	3	.003	9	574	4	001	5	0	3	0	4
265		19	max	247.564	1	.021	3	.003	10	0	1	0	5	0	15
266			min	-325.942	3	021	9	662	4	001	5	0	3	0	4
267	M11	1	max	60.255	2	1.812	6	.111	1	0	4	0	5	0	6
268			min	-44.053	9	.424	15	-1.267	5	0	10	0	1	0	15
269		2	max	60.188	2	1.634	6	.111	1	0	4	0	5	0	6
270			min	-44.108	9	.382	15	-1.133	5	0	10	0	1	0	15
271		3	max	60.121	2	1.456	6	.111	1	0	4	0	5	0	2
272			min	-44.164	9	.34	15	-1	5	0	10	0	1	0	12
273		4	max	60.054	2	1.278	6	.111	1	0	4	0	3	0	15
274			min	-44.22	9	.299	15	866	5	0	10	0	1	0	4
275		5	max	59.987	2	1.1	6	.111	1	0	4	0	3	0	15
276			min	-44.276	9	.257	15	733	5	0	10	0	1	0	4
277		6	max	59.92	2	.922	6	.111	1	0	4	0	3	0	15
278			min	-44.332	9	.215	15	599	5	0	10	0	1	0	4
279		7	max	59.853	2	.744	6	.111	1	0	4	0	3	0	15
280			min	-44.388	9	.173	15	466	5	0	10	0	4	0	4
281		8	max	59.786	2	.566	6	.111	1	0	4	0	3	0	15
282			min	-44.444	9	.131	15	332	5	0	10	0	4	0	4
283		9	max	59.719	2	.388	6	.111	1	0	4	0	3	0	15
284			min	-44.5	9	.089	15	199	5	0	10	0	4	001	4
285		10	max	59.652	2	.21	6	.111	1	0	4	0	3	0	15
286			min	-44.556	9	.047	15	065	5	0	10	0	4	001	4
287		11	max	59.585	2	.041	2	.111	1	0	4	0	3	0	15
288			min	-44.612	9	.005	12	029	3	0	10	0	4	001	4
289		12	max	59.517	2	036	15	.227	4	0	4	0	3	0	15
290			min	-44.668	9	146	4	029	3	0	10	0	4	001	4
291		13	max	59.45	2	078	15	.361	4	0	4	0	3	0	15
292			min	-44.723	9	324	4	029	3	0	10	0	5	001	4
293		14	max	59.383	2	12	15	.494	4	0	4	0	3	0	15
294			min	-44.779	9	502	4	029	3	0	10	0	5	001	4
295		15	max	59.316	2	162	15	.628	4	0	4	0	3	0	15
296			min	-44.835	9	68	4	029	3	0	10	0	5	0	4
297		16	max	59.249	2	204	15	.761	4	0	4	0	3	0	15
298			min	-44.891	9	858	4	029	3	0	10	0	10	0	4
299		17	max	59.182	2	245	15	.895	4	0	4	0	3	0	15
300			min	-44.947	9	-1.036	4	029	3	0	10	0	10	0	4
301		18	max	59.115	2	287	15	1.028	4	0	4	0	4	0	15
302			min	-45.003	9	-1.214	4	029	3	0	10	0	10	0	4
303		19	max	59.048	2	329	15	1.162	4	0	4	0	4	0	1
304			min	-45.059	9	-1.392	4	029	3	0	10	0	10	0	1
305	M12	1	max	338.525	1	0	1	.357	1	0	1	0	4	0	1
306			min	-120.074	3	0	1	-12.836	5	0	1	0	3	0	1
307		2	max		1	0	1	.357	1	0	1	0	1	0	1
308			min		3	0	1	-12.892	5	0	1	001	5	0	1
309		3		338.654	1	0	1	.357	1	0	1	0	1	0	1
310				-119.977	3	0	1	-12.948	5	0	1	002	5	0	1
311		4	max		1	0	1	.357	1	0	1	0	1	0	1
312			min		3	0	1	-13.004	5	0	1	003	5	0	1
313		5		338.783	1	0	1	.357	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
314			min	-119.88	3	0	1	-13.06	5	0	1	005	5	0	1
315		6	max	338.848	1	0	1	.357	1	0	1	0	1	0	1
316			min	-119.832	3	0	1	-13.116	5	0	1	006	5	0	1
317		7	max	338.913	1	0	1	.357	1	0	1	0	1	0	1
318			min	-119.783	3	0	1	-13.172	5	0	1	007	5	0	1
319		8	max	338.978	1	0	1	.357	1	0	1	0	1	0	1
320			min	-119.735	3	0	1	-13.228	5	0	1	008	5	0	1
321		9	max	339.042	1	0	1	.357	1	0	1	0	1	0	1
322			min	-119.686	3	0	1	-13.285	5	0	1	009	5	0	1
323		10	max	339.107	1	0	1	.357	1	0	1	0	1	0	1
324			min	-119.637	3	0	1	-13.341	5	0	1	011	5	0	1
325		11	max	339.172	1	0	1	.357	1	0	1	0	1	0	1
326			min	-119.589	3	0	1	-13.397	5	0	1	012	5	0	1
327		12	max	339.236	1	0	1	.357	1	0	1	0	1	0	1
328			min	-119.54	3	0	1	-13.453	5	0	1	013	5	0	1
329		13	max	339.301	1	0	1	.357	1	0	1	0	1	0	1
330			min	-119.492	3	0	1	-13.509	5	0	1	014	5	0	1
331		14	max	339.366	1	0	1	.357	1	0	1	0	1	0	1
332			min	-119.443	3	0	1	-13.565	5	0	1	015	5	0	1
333		15	max	339.431	1	0	1	.357	1	0	1	0	1	0	1
334			min	-119.395	3	0	1	-13.621	5	0	1	017	5	0	1
335		16	max		1	0	1	.357	1	0	1	0	1	0	1
336		1	min	-119.346	3	0	1	-13.677	5	0	1	018	5	0	1
337		17	max	339.56	1	0	1	.357	1	0	1	0	1	0	1
338			min	-119.298	3	0	1	-13.733	5	0	1	019	5	0	1
339		18	max	339.625	1	0	1	.357	1	0	1	0	1	0	1
340			min	-119.249	3	0	1	-13.789	5	0	1	02	5	0	1
341		19	max	339.689	1	0	1	.357	1	0	1	0	1	0	1
342		15	min	-119.201	3	0	1	-13.845	5	0	1	021	5	0	1
343	M1	1	max	47.91	1	347.945	3	.652	10	0	1	.026	4	.016	2
344	IVII	<u> </u>	min	2.326	10	-248.727	1	-14.614	4	0	3	001	10	018	3
345		2	max	47.982	1	347.743	3	.652	10	0	1	.023	4	.069	1
346			min	2.386	10	-248.997	1	-14.372	4	0	3	001	10	094	3
347		3	max	57.1	1	4.481	4	.649	10	0	5	.019	4	.122	1
348		-	min	-5.572	3	-23.482	3	-13.323	4	0	1	0	10	167	3
349		4	max	57.172		4.134	4	.649	10	0	5	.016	4	.123	1
350			min	-5.517	3	-23.684	3	-13.081	4	0	1	0	10	162	3
351		5		57.244		3.788	4	.649	10	0	5	.014	4	.125	2
352		5	max min	-5.463	3	-23.887	3	-12.839	4	0	1	0	10	157	3
353		6	max	57.317	_ <u></u>	3.5	14	.649	10	0	5	.011	4	.129	2
354		-		- 100	3	-24.089	3	-12.597	4	0	1	0	10	152	3
355		7	min		<u> </u>	3.235	14	.649	10		<u> </u>	.008		.133	
356			max	-5.355	3	-24.291	3	-12.355	4	0	<u>5</u> 1	.006	10	147	3
357		0	min		_	2.97	_		10	-	5	.005		.137	2
		8	max		<u>1</u> 3	-24.494	14	.649 -12.113		0	<u> </u>	.005	4		
358		0	min	-5.301	_		3		4	0	_	_	10	141	2
359		9	max		1	2.705	14	.649	10	0	5	.003	4	.141	
360		40	min	-5.246	3_	-24.696	3	-11.871	4	0	1	0	10	136	3
361		10	max		1_	2.44	14	.649	10	0	5_	.001	3	.145	2
362		4.4	min	-5.192	3	-24.898	3	-11.629	4	0	1_	0	10	131	3
363		11	max		1	2.175	14	.649	10	0	5_	0	3	.149	2
364		40	min	-5.138	3	-25.1	3	-11.387	4	0	1_	002	4	125	3
365		12	max		1_	1.91	14	.649	10	0	5	0	10	.153	2
366			min	-5.084	3_	-25.303	3	-11.145	4	0	1_	005	4	12	3
367		13	max		_1_	1.645	14	.649	10	0	5	0	10	.157	2
368			min	-5.03	3	-25.505	3	-10.903	4	0	_1_	007	4	114	3
369		14	max		1_	1.412	9	.649	10	0	<u>5</u>	0	10	.162	2
370			min	-4.975	3	-25.707	3	-10.661	4	0	<u> 1</u>	009	4	109	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
371		15	max	57.967	1	1.188	9	.649	10	0	5	0	10	.166	2
372			min	-4.921	3	-25.91	3	-10.419	4	0	1	012	4	103	3
373		16	max	70.915	2	17.956	2	.656	10	0	1	0	10	.17	2
374			min	-34.722	3	-52.863	3	-9.77	1	0	4	014	4	097	3
375		17	max	70.988	2	17.686	2	.656	10	0	1	.001	10	.166	2
376			min	-34.668	3	-53.065	3	-9.77	1	0	4	016	4	086	3
377		18	max	-2.267	12	341.259	2	.685	10	0	5	.001	10	.093	2
378			min	-47.914	1	-169.712	3	-22.065	4	0	2	021	4	049	3
379		19	max	-2.23	12	340.989	2	.685	10	0	5	.001	10	.019	2
380			min	-47.841	1	-169.914	3	-21.823	4	0	2	025	4	013	3
381	M5	1	max	122.793	1	1079.1	3	0	1	0	9	.03	4	.036	3
382			min	-3.483	3	-763.803	1	-58.847	3	0	3	0	11	031	2
383		2	max	122.866	1	1078.897	3	0	1	0	9	.026	4	.135	1
384			min	-3.429	3	-764.072	1	-58.847	3	0	3	003	3	198	3
385		3	max	149.632	1	6.036	9	6.041	3	0	3	.022	4	.298	1
386			min	-43.327	3	-70.904	3	-16.656	4	0	4	015	3	427	3
387		4	max	149.705	1	5.812	9	6.041	3	0	3	.018	4	.302	1
388			min	-43.273	3	-71.106	3	-16.414	4	0	4	014	3	411	3
389		5	max	149.777	1	5.587	9	6.041	3	0	3	.014	4	.306	1
390			min	-43.219	3	-71.309	3	-16.172	4	0	4	012	3	396	3
391		6	max	149.849	1	5.362	9	6.041	3	0	3	.011	4	.314	2
392			min	-43.165	3	-71.511	3	-15.93	4	0	4	011	3	38	3
393		7	max	149.921	1	5.137	9	6.041	3	0	3	.007	4	.325	2
394			min	-43.11	3	-71.713	3	-15.688	4	0	4	01	3	365	3
395		8	max	149.994	1	4.913	9	6.041	3	0	3	.004	4	.336	2
396			min	-43.056	3	-71.915	3	-15.446	4	0	4	009	3	349	3
397		9	max		1	4.688	9	6.041	3	0	3	0	4	.348	2
398			min	-43.002	3	-72.118	3	-15.204	4	0	4	007	3	334	3
399		10	max	150.138	1	4.463	9	6.041	3	0	3	0	1	.359	2
400			min	-42.948	3	-72.32	3	-14.962	4	0	4	006	3	318	3
401		11	max	150.21	1	4.238	9	6.041	3	0	3	0	1	.37	2
402			min	-42.894	3	-72.522	3	-14.72	4	0	4	006	4	302	3
403		12	max	150.283	1	4.014	9	6.041	3	0	3	0	1	.382	2
404			min	-42.839	3	-72.725	3	-14.478	4	0	4	009	4	287	3
405		13	max	150.355	1	3.789	9	6.041	3	0	3	0	1	.393	2
406			min	-42.785	3	-72.927	3	-14.236	4	0	4	012	4	271	3
407		14	max		1	3.564	9	6.041	3	0	3	0	1	.405	2
408			min	-42.731	3	-73.129	3	-13.994	4	0	4	015	4	255	3
409		15	max	150.5	1	3.339	9	6.041	3	0	3	0	3	.416	2
410			min	-42.677	3	-73.332	3	-13.752	4	0	4	018	4	239	3
411		16	max	213.753		64.79	2	6.027	3	0	3	.001	3	.427	2
412				-104.506		-127.305		-12.526	4	0	4	021	4	223	3
413		17		213.825	2	64.52	2	6.027	3	0	3	.003	3	.413	2
414				-104.452		-127.507	3	-12.284	4	0	4	024	4	195	3
415		18	max	-1.509	12	1050.201	2	5.602	3	0	4	.004	3	.189	2
416				-123.002	1	-511.358	3	-25.715	5	0	9	029	4	086	3
417		19	max		12	1049.931	2	5.602	3	0	4	.005	3	.025	3
418			min	-122.93	1	-511.561	3	-25.473	5	0	9	035	4	039	2
419	M9	1	max	47.909	1	347.893	3	107.869	4	0	3	.001	10	.016	2
420	IVIO		min	572	5	-248.727	1	652	10	0	1	019	1	018	3
421		2	max	47.982	1	347.691	3	108.111	4	0	3	.023	5	.069	1
422		_	min	539	5	-248.997	1	652	10	0	1	017	1	094	3
423		3	max		1	3.872	9	9.665	1	0	4	.044	5	.122	1
424			min	-5.932	3	-23.403	3	-21.402	5	0	10	015	1	167	3
425		4	max	57.529	1	3.647	9	9.665	1	0	4	.04	5	.123	1
426		4	min	-5.878	3	-23.605	3	-21.16	5	0	10	013	1	162	3
427		5			1	3.422	9	9.665		0	4	.035	5	.125	2
421		_ ວ	max	37.001	1	3.422	<u> </u>	J.003	1	U	4	.035	_L ວ	.120	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC v	/-v Mome	LC	z-z Mome	. LC
428			min	-5.824	3	-23.807	3	-20.918	5	0	10	011	1	157	3
429		6	max	57.673	1	3.198	9	9.665	1	0	4	.03	5	.129	2
430			min	-5.77	3	-24.01	3	-20.676	5	0	10	009	1	152	3
431		7	max	57.745	1	2.973	9	9.665	1	0	4	.026	5	.133	2
432			min	-5.715	3	-24.212	3	-20.434	5	0	10	006	1	147	3
433		8	max	57.818	1	2.748	9	9.665	1	0	4	.022	5	.137	2
434			min	-5.661	3	-24.414	3	-20.192	5	0	10	004	1	141	3
435		9	max	57.89	1	2.523	9	9.665	1	0	4	.017	5	.141	2
436			min	-5.607	3	-24.617	3	-19.95	5	0	10	002	1	136	3
437		10	max	57.962	1	2.298	9	9.665	1	0	4	.013	4	.145	2
438		10	min	-5.553	3	-24.819	3	-19.708	5	0	10	0	1	131	3
439		11	max	58.035	1	2.074	9	9.665	1	0	4	.009	4	.149	2
440			min	-5.499	3	-25.021	3	-19.466	5	0	10	0	10	125	3
441		12	max	58.107	1	1.849	9	9.665	1	0	4	.006	3	.153	2
442			min	-5.444	3	-25.224	3	-19.224	5	0	10	0	10	12	3
443		13	max	58.179	1	1.624	9	9.665	1	0	4	.006	1	.157	2
444		10	min	-5.39	3	-25.426	3	-18.982	5	0	10	0	10	114	3
445		14	max	58.251	1	1.399	9	9.665	1	0	4	.008	1	.161	2
446		17	min	-5.336	3	-25.628	3	-18.74	5	0	10	004	5	109	3
447		15	max	58.324	1	1.175	9	9.665	1	0	4	.01	1	.166	2
448		10	min	-5.282	3	-25.83	3	-18.498	5	0	10	008	5	103	3
449		16	max	70.979	2	17.721	2	9.769	1	0	10	.013	1	.17	2
450		10	min	-35.577	3	-53.225	3	-17.121	5	0	4	011	5	097	3
451		17	max	71.051	2	17.451	2	9.769	1	0	10	.015	1	.166	2
452		17	min	-35.523	3	-53.428	3	-16.879	5	0	4	015	5	086	3
453		18	max	10.377	5	341.259	2	10.121	1	0	2	.017	1	.093	2
454		10	min	-47.913	1	-169.705	3	-29.467	5	0	3	021	5	049	3
455		19		10.411	5	340.989	2	10.121	1	0	2	.019	1	.019	2
		19	max min	-47.841	1	-169.908	3	-29.225	5	0	3	027	5	013	3
456 457	M13	1					1	.572	5		2	.019	1		1
458	IVIIO		max min	107.868 652	10	248.565 -347.918	3	-47.908	1	.016 018	3	001	10	0	3
459		2			4	178.573		1.147	5	.016	2	.011	3	.124	3
460			max	103.742 652		-249.311	3				3	002	2		1
		2	min		10			-35.763	1	018				089	
461		3	max	99.617	4	108.581	1	1.722	5	.016	2	.009	3	.208	3
462		1	min	652	10	-150.705	3	-23.618	1	018	3	011	1	149	1
463		4	max	95.491	4	38.589	1	2.297	5	.016	2	.007	3	.25	3
464		-	min	652	10	-52.098	3	-11.473	1	018	3	018	1	179	1
465		5	max	91.365	4	46.508	3	2.872	5	.016	2	.005	3	.251	3
466			min	652	10	-31.403	1	-4.108	3	018	3	02	1	181	1
467		6	max	87.24	4	145.115	3	12.818	1	.016	2	.004	5	.211	3
468		-	min	652	10			-3.564	3	018	3	017	-	1 <u>53</u>	1
469		7	max		4	243.721	3	24.963	1	.016	2	.006	5	.13	3
470			min	652	10	-171.387	1	-3.021	3	018	3	009	1	096	1
471		8	max		4	342.328	3	37.108	1	.016	2	.008	4	.008	3
472			min	652	10	-241.379	1	-2.477	3	018	3	0	12	012	2
473		9	max	74.863	4	440.935	3	49.253	1	.016	2	.021	1	.105	1
474		4.0	min	652	10	-311.371	1	-1.933	3	018	3	0	3	1 <u>55</u>	3
475		10	max	70.737	4	11.834	5	61.398	1	.016	2	.044	1	.249	1
476			min	652	10	-539.541	3	1.205	12	018	3	018	5	359	3
477		11	max		4	311.371	1	8.489	5	.018	3	.021	1	.105	1
478			min	652	10	-440.935	3	-49.253	1_	016	2	014	5	155	3
479		12	max		4	241.379	1	9.064	5	.018	3	.004	2	.008	3
480			min	652	10	-342.328	3	-37.108	1	016	2	011	5	012	2
481		13		39.354	4	171.387	1	9.639	5	.018	3	0	10	.13	3
482			min	652	10	-243.721	3	-24.963	1	016	2	009	1	096	1
483		14	max	35.229	4	101.395	1	10.214	5	.018	3	0	10	.211	3
484			min	652	10	-145.115	3	-12.817	1	016	2	017	1	153	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
485		15	max	31.103	4	31.403	1	11.021	4	.018	3	.002	5	.251	3
486			min	652	10	-46.508	3	-2.655	2	016	2	02	1	181	1
487		16	max	26.977	4	52.098	3	13.966	4	.018	3	.006	5	.25	3
488			min	652	10	-38.589	1	754	10	016	2	018	1	179	1
489		17	max	22.852	4	150.705	3	23.618	1	.018	3	.011	5	.208	3
490			min	652	10	-108.581	1	.273	10	016	2	011	1	149	1
491		18	max	18.726	4	249.312	3	35.763	1	.018	3	.017	4	.124	3
492			min	652	10	-178.573	1	1.299	10	016	2	002	2	089	1
493		19	max	14.6	4	347.918	3	47.908	1	.018	3	.026	4	0	1
494			min	652	10	-248.565	1	2.326	10	016	2	001	10	0	3
495	M16	1	max	29.214	5	341.057	2	10.411	5	.013	3	.019	1	0	2
496			min	-10.11	1	-169.923	3	-47.843	1	019	2	027	5	0	3
497		2	max	25.088	5	244.801	2	10.986	5	.013	3	.002	9	.061	3
498			min	-10.11	1	-122.622	3	-35.698	1	019	2	023	5	122	2
499		3	max	20.962	5	148.545	2	11.561	5	.013	3	0	12	.102	3
500			min	-10.11	1	-75.321	3	-23.552	1	019	2	02	4	204	2
501		4	max	16.837	5	52.288	2	12.136	5	.013	3	001	12	.124	3
502			min	-10.11	1	-28.02	3	-11.407	1	019	2	018	1	246	2
503		5	max	12.711	5	19.282	3	12.711	5	.013	3	002	10	.126	3
504			min	-10.11	1	-43.968	2	-2.196	3	019	2	02	1	248	2
505		6	max	8.585	5	66.583	3	15.569	4	.013	3	0	10	.108	3
506			min	-10.11	1	-140.224	2	-1.652	3	019	2	017	1	209	2
507		7	max	4.46	5	113.884	3	25.028	1	.013	3	.003	5	.07	3
508		-	min	-10.11	1	-236.481	2	-1.108	3	019	2	009	1	131	2
509		8	max	2.767	3	161.185	3	37.173	1	.013	3	.009	4	.013	3
510			min	-10.11	1	-332.737	2	564	3	019	2	005	3	012	2
511		9	max	2.767	3	208.487	3	49.318	1	.013	3	.022	1	.147	2
512			min	-10.11	1	-428.993	2	02	3	019	2	005	3	064	3
513		10	max	17.559	5	-7.534	15	61.464	1	.005	14	.045	1	.345	2
514		- 10	min	-10.11	1	-525.25	2	-1.479	3	019	2	005	3	161	3
515		11	max	13.434	5	428.993	2	7.143	5	.019	2	.022	1	.147	2
516			min	-10.11	1	-208.487	3	-49.318	1	013	3	01	5	064	3
517		12	max	9.308	5	332.737	2	7.718	5	.019	2	.004	2	.013	3
518		12	min	-10.11	1	-161.185	3	-37.173	1	013	3	007	5	012	2
519		13	max	5.182	5	236.481	2	8.293	5	.019	2	0	10	.07	3
520		10	min	-10.11	1	-113.884	3	-25.028	1	013	3	009	1	131	2
521		14	max	1.057	5	140.224	2	8.867	5	.019	2	0	12	.108	3
522		17	min	-10.11	1	-66.583	3	-12.883	1	013	3	017	1	209	2
523		15	max	.685	10	43.968	2	9.647	4	.019	2	.003	5	.126	3
524		10	min	-10.11	1	-19.282	3	-2.713	2	013	3	02	1	248	2
525		16	max		10		3	12.592	4	.019	2	.007	5	.124	3
526		10	min	-10.11	1	-52.288	2	783	10	013	3	018	1	246	2
527		17	max	.685	10	75.321	3	23.553	1	.019	2	.012	5	.102	3
528		- 17	min	-13.586	4	-148.545	2	.243	10	013	3	011	1	204	2
529		18	max	.685	10	122.622	3	35.698	1	.019	2	.017	4	.061	3
530		10	min	-17.711	4	-244.801	2	1.27	10	013	3	002	2	122	2
531		19		.685	10	169.923	3	47.843	1	.019	2	.025	4	0	2
532		19	max min	-21.837	4	-341.057	2	2.23	12	013	3	001	10	0	5
	N/1E	1							_		1		1		1
533	M15		max min	0 -78.093	3	.774 0	3	.141	3	0 0	3	0 0	3	0 0	1
534 535		2		-78.093 0	1	.688	3	.141	3	0	1	0	1	0	1
			max	-78.147	_						3		_		
536		3	min	_	3	602	3	0	3	0		0	3	0	3
537		3	max	79 201	1	.602	1	.141	1	0	3	0	1	0	1
538		1	min	-78.201	3	516	•	0		0		0	3	0	3
539		4	max	79.255	3	.516	3	.141	3	0	3	0	3	0	3
540		5	min	-78.255		0	3	_		0		0		0	1
541		<u> </u>	max	0	1	.43	_ პ	.141	3	0	1	0	1	0	

Model Name

: Schletter, Inc. : HCV

. псv :

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
542			min	-78.309	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.344	3	.141	3	0	1	0	1	0	1
544			min	-78.363	3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.258	3	.141	3	0	1	0	3	0	1
546			min	-78.417	3	0	1	0	1	0	3	0	1_	0	3
547		8	max	0	1	.172	3	.141	3	0	1	0	3	0	1
548		_	min	-78.471	3	0	1	0	1	0	3	0	1	0	3
549		9	max	0	1	.086	3	.141	3	0	1	0	3	0	1
550		40	min	-78.525	3	0	1	0	1	0	1	0	1	0	3
551 552		10	max	0 -78.579	3	0	1	.141	3	0	3	0	3	0	3
553		11	min	0	1	0	1	.141	3	0	1	0	3	0	1
554		11	max min	-78.633	3	086	3	0	1	0	3	0	1	0	3
555		12	max	0	1	0	1	.141	3	0	1	0	3	0	1
556		12	min	-78.687	3	172	3	0	1	0	3	0	1	0	3
557		13	max	0	1	0	1	.141	3	0	1	0	3	0	1
558		10	min	-78.741	3	258	3	0	1	0	3	0	1	0	3
559		14	max	0	1	0	1	.141	3	0	1	0	3	0	1
560			min	-78.795	3	344	3	0	1	0	3	0	1	0	3
561		15	max	0	1	0	1	.141	3	0	1	0	3	0	1
562			min	-78.849	3	43	3	0	1	0	3	0	1	0	3
563		16	max	0	1	0	1	.141	3	0	1	0	3	0	1
564			min	-78.903	3	516	3	0	1	0	3	0	1	0	3
565		17	max	0	1	0	1	.141	3	0	1	0	3	0	1
566			min	-78.957	3	602	3	0	1	0	3	0	1	0	3
567		18	max	0	1	0	1	.141	3	0	1	0	3	0	1
568			min	-79.011	3	688	3	0	1	0	3	0	1	0	3
569		19	max	0	1	0	1	.141	3	0	1	0	3	0	1
570			min	-79.065	3	774	3	0	1	0	3	0	1	0	1
571	M16A	1	max	0	1	1.875	4	.242	4	0	3	0	3	0	1
572			min	-155.988	4	0	1	066	3	0	14	0	4	0	1
573		2	max	0	1	1.667	4	.219	4	0	3	0	3	0	1
574			min	-155.993	4	0	1_	066	3	0	14	0	4	0	4
575		3	max	0	1	1.458	4	.197	4	0	3	0	3	0	1
576		4	min	-155.998	4	0	1_	066	3	0	14	0	4	0	4
577		4	max	0	1	1.25	4	.174	4	0	3	0	3	0	1
578		5	min	-156.003	4	1 042	1	066	3	0	3	0	4	001	4
579		5	max	0 -156.008	1	1.042	4	.152	3	0		0	3	0	1
580		6	min		<u>4</u> 1	0		066 .129		0	3	0	9	001 0	1
581 582		6	max	0 -156.013		.833 0	1	066	3	0	14	0	9	002	4
583		7	max	0	1	.625	4	.107	4	0	3	0	3	0	1
584				-156.018		0	1	066	3	0	14	0	9	002	4
585		8	max	0	1	.417	4	.084	4	0	3	0	3	0	1
586			min	-156.024	4	0	1	066	3	0	14	0	9	002	4
587		9	max	0	1	.208	4	.062	4	0	3	0	5	0	1
588			min	-156.029	4	0	1	066	3	0	14	0	9	002	4
589		10	max	0	1	0	1	.039	4	0	3	0	5	0	1
590				-156.034		0	1	066	3	0	14	0	9	002	4
591		11	max	0	1	0	1	.022	14	0	3	0	5	0	1
592				-156.039	4	208	4	066	3	0	14	0	9	002	4
593		12	max	0	1	0	1	.021	9	0	3	0	5	0	1
594				-156.044	4	417	4	066	3	0	14	0	9	002	4
595		13	max	0	1	0	1	.021	9	0	3	0	5	0	1
596			min	-156.049	4	625	4	066	3	0	14	0	9	002	4
597		14	max	0	1	0	1	.021	9	0	3	0	5	0	1
598			min	-156.055	4	833	4	066	3	0	14	0	3	002	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
599		15	max	.031	9	0	1	.021	9	0	3	0	4	0	1
600			min	-156.06	4	-1.042	4	078	5	0	14	0	3	001	4
601		16	max	.091	9	0	1	.021	9	0	3	0	4	0	1
602			min	-156.065	4	-1.25	4	101	5	0	14	0	3	001	4
603		17	max	.151	9	0	1	.021	9	0	3	0	14	0	1
604			min	-156.107	5	-1.458	4	123	5	0	14	0	3	0	4
605		18	max	.211	9	0	1	.021	9	0	3	0	9	0	1
606			min	-156.171	5	-1.667	4	146	5	0	14	0	3	0	4
607		19	max	.271	9	0	1	.021	9	0	3	0	9	0	1
608			min	-156.235	5	-1.875	4	169	5	0	14	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.006	2	.001	1	7.486e-4	5	NC	3	NC	1
2			min	003	3	005	3	008	5	-1.459e-4	1	4764.458	2	NC	1
3		2	max	.002	1	.006	2	.001	1	7.681e-4	5	NC	3	NC	1
4			min	003	3	005	3	007	5	-1.393e-4	1	5159.125	2	NC	1
5		3	max	.002	1	.005	2	.001	1	7.876e-4	5	NC	3	NC	1
6			min	002	3	005	3	007	5	-1.328e-4	1	5621.764	2	NC	1
7		4	max	.002	1	.005	2	0	1	8.072e-4	5	NC	3	NC	1
8			min	002	3	005	3	007	5	-1.263e-4	1	6167.765	2	NC	1
9		5	max	.001	1	.004	2	0	1	8.267e-4	5	NC	1	NC	1
10			min	002	3	004	3	007	5	-1.198e-4	1	6817.356	2	NC	1
11		6	max	.001	1	.004	2	0	1	8.462e-4	5	NC	1	NC	1
12			min	002	3	004	3	006	5	-1.133e-4	1	7597.56	2	NC	1
13		7	max	.001	1	.004	2	0	1	8.658e-4	5	NC	1	NC	1
14		1	min	002	3	004	3	006	5	-1.067e-4	1	8545.157	2	NC	1
15		8	max	.001	1	.003	2	0	1	8.853e-4	5	NC	1	NC	1
16			min	002	3	004	3	005	5	-1.002e-4	1	9711.317	2	NC	1
17		9	max	.001	1	.003	2	0	1	9.048e-4	5	NC	1	NC	1
18			min	002	3	003	3	005	5	-9.371e-5	1	NC	1	NC	1
19		10	max	0	1	.002	2	0	1	9.244e-4	5	NC	1	NC	1
20			min	001	3	003	3	005	5	-8.719e-5	1	NC	1	NC	1
21		11	max	0	1	.002	2	0	1	9.439e-4	5	NC	1	NC	1
22			min	001	3	003	3	004	5	-8.066e-5	1	NC	1	NC	1
23		12	max	0	1	.002	2	0	1	9.634e-4	5	NC	1	NC	1
24			min	001	3	003	3	004	5	-7.414e-5	1	NC	1	NC	1
25		13	max	0	1	.001	2	0	1	9.83e-4	5	NC	1	NC	1
26			min	0	3	002	3	003	5	-6.762e-5	1	NC	1	NC	1
27		14	max	0	1	.001	2	0	1	1.002e-3	5	NC	1	NC	1
28			min	0	3	002	3	003	5	-6.11e-5	1	NC	1	NC	1
29		15	max	0	1	0	2	0	1	1.022e-3	5	NC	1	NC	1
30			min	0	3	002	3	002	5	-5.458e-5	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	1.042e-3	5	NC	1	NC	1
32			min	0	3	001	3	002	5	-4.806e-5	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	1.061e-3	5	NC	1	NC	1
34			min	0	3	0	3	001	5	-4.154e-5	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	1.081e-3	5	NC	1	NC	1
36			min	0	3	0	3	0	5	-3.502e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	1.1e-3	5	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.85e-5	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.304e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1	-5.007e-4	5	NC	1	NC	1
41		2	max	0	14	0	2	.003	5	1.918e-5	1	NC	1	NC	1
42			min	0	2	0	3	0	1	-5.028e-4	5	NC	1	NC	1
			,							0.0200					, ,

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
43		3	max	0	14	0	2	.005	5	2.532e-5	1_	NC	1_	NC	1
44			min	0	2	001	3	0	9	-5.05e-4	5	NC	1_	NC	1
45		4	max	0	14	00	2	.008	4	3.145e-5	_1_	NC	_1_	NC	1
46			min	0	2	002	3	0	9	-5.071e-4	5	NC	1_	NC	1
47		5	max	0	14	0	2	.011	4	3.759e-5	_1_	NC	1_	NC	1
48		_	min	0	2	003	3	0	9	-5.093e-4	5	NC	1_	NC	1
49		6	max	0	14	0	2	.013	4	4.373e-5	_1_	NC	_1_	NC	1
50			min	0	2	004	3	0	9	-5.114e-4	5	NC	1_	NC	1
51		7	max	0	14	0	2	.016	4	4.987e-5	1_	NC	_1_	NC	1
52			min	0	2	004	3	0	9	-5.135e-4	5	NC	1_	NC	1
53		8	max	0	14	.001	2	.019	4	5.601e-5	1	NC	1_	NC	1
54			min	0	2	005	3	0	10	-5.157e-4	5	NC	1_	NC	1
55		9	max	0	14		2	.021	4	6.214e-5	_1_	NC	1_	NC	1
56		10	min	0	2	005	3	0	10	-5.178e-4	5	NC	1_	NC	1
57		10	max	0	14	.002	2	.024	4	6.828e-5	_1_	NC	1_	NC	1
58		4.4	min	0	2	006	3	0	10	-5.2e-4	5	NC NC	1_	NC NC	1
59		11	max	0	14	.002	2	.026	4	7.442e-5	1_	NC	1	NC NC	1
60		40	min	0	2	006	3	0	10	-5.221e-4	5	NC	1_	NC	1
61		12	max	0	14	.003	2	.028	4	8.056e-5	_1_	NC	1_	NC NC	1
62		40	min	0	2	007	3	0	10	-5.243e-4	5	NC NC	1_	NC NC	1
63		13	max	0	14	.004	2	.03	4	8.67e-5	1_	NC NC	1_	NC NC	1
64		4.4	min	0	2	007	3	0	10	-5.264e-4	5	NC NC	1_	NC NC	1
65		14	max	0	14	.004	2	.032	4	9.283e-5	1_	NC NC	1_	NC NC	1
66		4.5	min	0	2	007	3	0	10	-5.285e-4	5	NC NC	1_	NC NC	1
67		15	max	0	14	.005	2	.034	4	9.897e-5	1_	NC	1	NC NC	1
68		4.0	min	0	2	007	3	0	10		5	8821.207	2	NC NC	1
69		16	max	0	14	.006	2	.036	4	1.051e-4	1	NC 7540,467	1	NC NC	1
70		47	min	0	2	008	3	0	10		5	7518.467	2	NC NC	1
71		17	max	0	14	.007	2	.038	4	1.112e-4	1	NC	3	NC NC	1
72 73		18	min	<u> </u>	14	008 .008	2	<u> </u>	1 <u>0</u>	-5.35e-4	<u>5</u> 1	6499.597 NC	3	NC NC	1
74		10	max	0	2	008	3	04 0	10	1.174e-4 -5.371e-4	5	5695.615	2	NC NC	1
		19	min	0	14	.008 .009	2	.042	4	1.235e-4		NC	3	NC NC	1
75 76		19	max	0	2	008	3	<u>.042</u>	10	-5.393e-4	1	5056.749	2	NC NC	1
77	M4	1	min	.002	1	.007	2	0	10	1.734e-3	<u>5</u> 5	NC	1	NC NC	1
78	IVI4		max min	<u>.002</u>	3	00 <i>7</i>	3	044	4	-1.2e-4	1	NC NC	1	438.399	4
79		2	max	.002	1	.007	2	0	10	1.734e-3	5	NC	1	NC	1
80			min	0	3	005	3	04	4	-1.2e-4	1	NC	1	477.845	4
81		3	max	.001	1	.006	2	04	10		5	NC	1	NC	1
82		-	min	0	3	005	3	037	4	-1.2e-4	1	NC	1	524.785	4
83		4	max	.001	1	.006	2	<u>037</u> 0		1.734e-3	5	NC	1	NC	1
84			min	0	3	005	3	033	4	-1.2e-4	1	NC	1	581.192	4
85		5	max	.001	1	.006	2	0		1.734e-3	5	NC	1	NC	1
86		Ť	min	0	3	004	3	03	4	-1.2e-4	1	NC	1	649.754	4
87		6	max	.001	1	.005	2	0	10		5	NC	1	NC	1
88			min	0	3	004	3	026	4	-1.2e-4	1	NC	1	734.209	4
89		7	max	.001	1	.005	2	0	10		5	NC	1	NC	1
90			min	0	3	004	3	023	4	-1.2e-4	1	NC	1	839.881	4
91		8	max	0	1	.004	2	0		1.734e-3	5	NC	1	NC	1
92			min	0	3	003	3	02	4	-1.2e-4	1	NC	1	974.563	4
93		9	max	0	1	.004	2	0	10		5	NC	1	NC	1
94	_	Ť	min	0	3	003	3	017	4	-1.2e-4	1	NC	1	1150.043	
95		10	max	0	1	.004	2	0		1.734e-3	5	NC	1	NC	1
96			min	0	3	003	3	014	4	-1.2e-4	1	NC	1	1384.849	_
97		11	max	0	1	.003	2	0	10		5	NC	1	NC	1
98			min	0	3	003	3	011	4	-1.2e-4	1	NC	1	1709.495	_
99		12	max	0	1	.003	2	0		1.734e-3	5	NC	1	NC	1
	_											_			

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			LC
100			min	0	3	002	3	009	4	-1.2e-4	1	NC	1_	2177.2	4
101		13	max	0	1	.002	2	00	10	1.734e-3	5	NC	1	NC	1
102			min	0	3	002	3	007	4	-1.2e-4	_1_	NC	<u>1</u>	2887.785	4
103		14	max	0	1	.002	2	0	10	1.734e-3	5	NC	1	NC	1
104		45	min	0	3	002	3	005	4	-1.2e-4	1_	NC NC	1_	4047.132	4
105		15	max	0	1	.002	2	0	10	1.734e-3	5	NC	1	NC C400.00	1
106		4.0	min	0	3	001	3	003	4	-1.2e-4	1_	NC NC	1_	6138.89	4
107		16	max	0	3	001	2	0	10	1.734e-3	5	NC	1	NC NC	1
108		17	min	0	1	0	3	002	4	-1.2e-4	1_	NC NC	1	NC NC	1
109		17	max	0	3	<u> </u>	3	<u> </u>	10	1.734e-3 -1.2e-4	<u>5</u> 1	NC NC	1	NC NC	1
111		18	min max	0	1	0	2	0	10	1.734e-3	5	NC NC	+	NC NC	1
112		10	min	0	3	0	3	0	4	-1.2e-4	1	NC	1	NC NC	1
113		19	max	0	1	0	1	0	1	1.734e-3	5	NC	1	NC	1
114		13	min	0	1	0	1	0	1	-1.2e-4	1	NC	1	NC	1
115	M6	1	max	.006	1	.015	2	0	9	7.911e-4	4	NC	3	NC	1
116	IVIO		min	008	3	012	3	008	5	-9.223e-8	1	1956.62	2	7284.908	3
117		2	max	.005	1	.014	2	0	9	8.107e-4	4	NC	3	NC	1
118		Ĺ	min	008	3	011	3	007	5	-8.731e-8	1	2091.9	2	7799.947	3
119		3	max	.005	1	.013	2	0	9	8.304e-4	4	NC	3	NC	1
120			min	007	3	011	3	007	5	-8.239e-8	1	2246.722	2	8403.374	3
121		4	max	.005	1	.012	2	0	9	8.5e-4	4	NC	3	NC	1
122			min	007	3	01	3	007	5	-7.747e-8	1	2425.032	2	9114.949	3
123		5	max	.004	1	.011	2	0	9	8.697e-4	4	NC	3	NC	1
124			min	006	3	009	3	006	5	-9.859e-7	9	2631.919	2	9960.698	3
125		6	max	.004	1	.01	2	0	9	8.893e-4	4	NC	3	NC	1
126			min	006	3	009	3	006	5	-1.908e-6	9	2874.048	2	NC	1
127		7	max	.004	1	.01	2	0	9	9.09e-4	4	NC	3	NC	1
128			min	005	3	008	3	006	5	-2.83e-6	9	3160.322	2	NC	1
129		8	max	.003	1	.009	2	0	9	9.286e-4	4	NC	3	NC	1
130			min	005	3	008	3	005	5	-3.752e-6	9	3502.899	2	NC	1
131		9	max	.003	1	.008	2	00	9	9.483e-4	4	NC	3	NC	1
132			min	005	3	007	3	005	5	-4.673e-6	9	3918.813	2	NC	1
133		10	max	.003	1	.007	2	0	9	9.68e-4	4_	NC	3_	NC	1
134			min	004	3	006	3	<u>005</u>	5	-5.595e-6	9	4432.687	2	NC	1
135		11	max	.002	1	.006	2	0	9	9.876e-4	4_	NC	3	NC	1
136		40	min	004	3	006	3	004	5	-6.517e-6	9	5081.479	2	NC	1
137		12	max	.002	1	.005	2	0	9	1.007e-3	4_	NC	3	NC	1
138		40	min	003	3	005	3	004	5	-7.439e-6	9	5923.283	2	NC NC	1
139		13	max	.002	3	.004	3	0	9	1.027e-3	4	NC 7054.951	2	NC NC	1
140		1.1	min	003		004		003						NC NC	
141		14	max min	.002 002	3	.003 004	3	003	<u>9</u>	1.047e-3 -9.283e-6	4	NC 8650.842	2	NC NC	1
143		15	max	.002	1	.003	2	<u>003</u> 0	9	1.066e-3	4	NC	1	NC NC	1
144		13	min	002	3	003	3	002	5	-1.02e-5	9	NC	1	NC	1
145		16	max	<u>002</u> 0	1	.002	2	<u>002</u> 0	9	1.086e-3	4	NC	1	NC	1
146		10	min	001	3	002	3	002	5	-1.113e-5	9	NC		NC	1
147		17	max	0	1	.002	2	<u>002</u> 0	9	1.106e-3	4	NC	1	NC	1
148		+ 17	min	0	3	002	3	001	5	-1.205e-5		NC	1	NC	1
149		18	max	0	1	0	2	0	9	1.125e-3	4	NC	1	NC	1
150		10	min	0	3	0	3	0	4	-1.297e-5	9	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.145e-3	4	NC	1	NC	1
152		'	min	0	1	0	1	0	1	-1.389e-5		NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	6.301e-6	9	NC	1	NC	1
154	1417		min	0	1	0	1	0	1	-5.21e-4	4	NC	1	NC	1
155		2	max	0	9	0	2	.003	4	5.855e-6	9	NC	<u> </u>	NC	1
156			min	0	2	001	3	0	9	-5.119e-4	_	NC	1	NC	1
			,		_				_	U 100 T			-		

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
157		3	max	0	9	.002	2	.006	4	5.409e-6	9	NC	_1_	NC	1_
158			min	0	2	003	3	0	9	-5.028e-4	4	NC	1_	NC	1
159		4	max	0	9	.003	2	.008	4	4.963e-6	9	NC	1_	NC	1
160			min	0	2	004	3	0	9	-4.938e-4	4	NC	1	NC	1
161		5	max	0	9	.003	2	.011	4	4.517e-6	9	NC	1_	NC	1_
162			min	0	2	005	3	0	9	-4.847e-4	4	NC	1	NC	1
163		6	max	0	9	.004	2	.014	4	4.071e-6	9	NC	1_	NC	1
164			min	0	2	006	3	0	9	-4.757e-4	4	NC	1	NC	1
165		7	max	0	9	.005	2	.017	4	1.984e-5	3	NC	1	NC	1
166			min	0	2	008	3	0	9	-4.666e-4	4	8774.248	2	NC	1
167		8	max	0	9	.006	2	.019	4	3.682e-5	3	NC	1_	NC	1
168			min	0	2	009	3	0	9	-4.575e-4	4	7404.3	2	NC	1
169		9	max	0	9	.007	2	.022	4	5.381e-5	3	NC	3	NC	1
170			min	0	2	01	3	0	9	-4.485e-4	4	6343.694	2	NC	1
171		10	max	0	9	.008	2	.025	4	7.079e-5	3	NC	3	NC	1
172			min	001	2	011	3	0	9	-4.394e-4	4	5497.53	2	NC	1
173		11	max	0	9	.01	2	.027	4	8.777e-5	3	NC	3	NC	1
174			min	001	2	012	3	0	9	-4.303e-4	4	4808.388	2	NC	1
175		12	max	0	9	.011	2	.029	4	1.048e-4	3	NC	3	NC	1
176			min	001	2	013	3	0	9	-4.213e-4	4	4238.975	2	NC	1
177		13	max	0	9	.012	2	.032	4	1.217e-4	3	NC	3	NC	1
178			min	001	2	014	3	0	9	-4.122e-4	4	3763.608	2	NC	1
179		14	max	0	9	.014	2	.034	4	1.387e-4	3	NC	3	NC	1
180			min	001	2	014	3	0	9	-4.032e-4	4	3363.743	2	NC	1
181		15	max	0	9	.015	2	.036	4	1.557e-4	3	NC	3	NC	1
182			min	002	2	015	3	0	9	-3.941e-4	4	3025.48	2	NC	1
183		16	max	0	9	.017	2	.038	4	1.727e-4	3	NC	3	NC	1
184			min	002	2	016	3	0	9	-3.85e-4	4	2738.109	2	NC	1
185		17	max	0	9	.018	2	.04	4	1.897e-4	3	NC	3	NC	1
186			min	002	2	016	3	0	9	-3.76e-4	4	2493.206	2	NC	1
187		18	max	0	9	.02	2	.041	4	2.066e-4	3	NC	3	NC	1
188			min	002	2	017	3	0	9	-3.669e-4	4	2284.056	2	NC	1
189		19	max	.001	9	.022	2	.043	4	2.236e-4	3	NC	3	NC	1
190			min	002	2	018	3	0	9	-3.578e-4	4	2105.255	2	NC	1
191	M8	1	max	.005	2	.018	2	0	9	1.574e-3	4	NC	1	NC	1
192			min	002	3	013	3	045	4	-1.771e-4	3	NC	1	427.785	4
193		2	max	.005	2	.017	2	0	9	1.574e-3	4	NC	1	NC	1
194			min	002	3	012	3	041	4	-1.771e-4	3	NC	1	466.279	4
195		3	max	.004	2	.016	2	0	9	1.574e-3	4	NC	1	NC	1
196			min	002	3	012	3	038	4	-1.771e-4	3	NC	1	512.087	4
197		4	max	.004	2	.015	2	0		1.574e-3	4	NC	1	NC	1
198			min	002	3	011	3	034	4	-1.771e-4	3	NC	1	567.133	4
199		5	max	.004	2	.014	2	0	9	1.574e-3	4	NC	1	NC	1
200			min	001	3	01	3	03	4	-1.771e-4	3	NC	1	634.042	4
201		6	max	.004	2	.013	2	0	9	1.574e-3	4	NC	1	NC	1
202		Ť	min	001	3	01	3	027	4	-1.771e-4	3	NC	1	716.462	4
203		7	max	.003	2	.012	2	0	9	1.574e-3	4	NC	1	NC	1
204			min	001	3	009	3	024	4	-1.771e-4	3	NC	1	819.588	4
205		8	max	.003	2	.011	2	0	9	1.574e-3	4	NC	1	NC	1
206		Ĭ	min	001	3	008	3	02	4	-1.771e-4	3	NC	1	951.026	4
207		9	max	.003	2	.01	2	0	9	1.574e-3	4	NC	1	NC	1
208		<u> </u>	min	001	3	007	3	017	4	-1.771e-4	3	NC	1	1122.281	4
209		10	max	.002	2	.009	2	0	9	1.574e-3	4	NC	1	NC	1
210		1.0	min	0	3	007	3	014	4	-1.771e-4	3	NC	1	1351.435	_
211		11	max	.002	2	.008	2	0	9	1.574e-3	4	NC	1	NC	1
212			min	0	3	006	3	012	4	-1.771e-4	3	NC	1	1668.268	_
213		12	max	.002	2	.007	2	0	9	1.574e-3	4	NC	1	NC	1
213		14	πιαλ	.002		.007	Z	U	J	1.0146-3	+	INC	1	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			LC
214			min	0	3	005	3	009	4	-1.771e-4	3	NC	1_	2124.721	4
215		13	max	.002	2	.006	2	0	9	1.574e-3	4	NC	1_	NC	1
216			min	0	3	004	3	007	4	-1.771e-4	3	NC	1_	2818.217	4
217		14	max	.001	2	.005	2	0	9	1.574e-3	4_	NC		NC	1
218		4.5	min	0	3	004	3	005	4	-1.771e-4	3	NC NC	1_	3949.689	4
219		15	max	.001	3	.004	2	0	9	1.574e-3 -1.771e-4	4	NC NC	1	NC 5991.167	4
220 221		16	min	<u> </u>	2	003 .003	2	003 0	9		3	NC NC	1	NC	1
222		10	max	0	3	002	3	002	4	1.574e-3 -1.771e-4	3	NC NC	1	NC NC	1
223		17	max	0	2	.002	2	<u>002</u> 0	9	1.574e-3	4	NC	1	NC	1
224		11/	min	0	3	001	3	0	4	-1.771e-4	3	NC	1	NC	1
225		18	max	0	2	0	2	0	9	1.574e-3	4	NC		NC	1
226		10	min	0	3	0	3	0	4	-1.771e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	1.574e-3	4	NC	1	NC	1
228		1.0	min	0	1	0	1	0	1	-1.771e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.006	2	0	3	1.457e-4	1	NC	3	NC	1
230			min	002	3	005	3	003	4	-4.036e-4	3	4771.535	2	NC	1
231		2	max	.002	1	.006	2	0	3	1.548e-4	4	NC	3	NC	1
232			min	002	3	005	3	003	4	-3.919e-4	3	5166.914	2	NC	1
233		3	max	.002	1	.005	2	0	3	1.962e-4	4	NC	3	NC	1
234			min	002	3	005	3	003	4	-3.802e-4	3	5630.41	2	NC	1
235		4	max	.002	1	.005	2	0	3	2.376e-4	4	NC	3	NC	1
236			min	002	3	005	3	003	4	-3.686e-4	3	6177.448	2	NC	1
237		5	max	.001	1	.004	2	0	3	2.789e-4	4	NC	1	NC	1
238			min	002	3	004	3	003	4	-3.569e-4	3	6828.306	2	NC	1
239		6	max	.001	1	.004	2	0	3	3.203e-4	4	NC	_1_	NC	1
240			min	002	3	004	3	003	4	-3.452e-4	3	7610.075	2	NC	1
241		7	max	.001	1	.004	2	0	3	3.617e-4	4	NC	_1_	NC	1
242			min	002	3	004	3	003	4	-3.335e-4	3	8559.63	2	NC	1
243		8	max	.001	1	.003	2	0	3	4.031e-4	4	NC	1	NC	1
244			min	001	3	004	3	003	4	-3.218e-4	3	9728.272	2	NC	1
245		9	max	.001	1	.003	2	0	3	4.445e-4	4	NC	1	NC	1
246		40	min	001	3	004	3	003	4	-3.101e-4	3	NC NC	1_	NC NC	1
247		10	max	0	1	.002	2	0	3	4.859e-4	4	NC	1_	NC	1
248		11	min	<u>001</u>	3	003	2	003	4	-2.984e-4	3	NC NC	1_1	NC NC	1
249 250		11	max	0 001	3	.002 003	3	003	3	5.273e-4 -2.867e-4	3	NC NC	1	NC NC	1
251		12	min	<u>001</u> 0	1	003 .002	2	003 0	3	5.687e-4	<u>3</u>	NC NC	1	NC NC	1
252		12	max min	0	3	003	3	002	4	-2.75e-4	3	NC NC	1	NC NC	1
253		13	max	0	1	.003	2	<u>002</u> 0	3	6.101e-4	4	NC	1	NC	1
254		13	min	0	3	002	3	002		-2.633e-4		NC	1	NC	1
255		14	max	0	1	.002	2	0	3	6.515e-4	4	NC	1	NC	1
256		17	min	0	3	002	3	002	4	-2.517e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	0	3	6.929e-4	4	NC	1	NC	1
258		1.0	min	0	3	002	3	002	4	-2.4e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	7.343e-4	4	NC	1	NC	1
260			min	0	3	001	3	001	4	-2.283e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	7.756e-4	4	NC	1	NC	1
262			min	0	3	0	3	0	4	-2.166e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	8.17e-4	4	NC	1	NC	1
264			min	0	3	0	3	0	4	-2.049e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	8.584e-4	4	NC	1	NC	1
266			min	0	1	0	1	0	1	-1.932e-4	3	NC	1	NC	1
267	M11	1_	max	0	1	0	1	0	1	8.819e-5	3	NC	1	NC	1
268			min	0	1	0	1	0	1	-3.91e-4	4	NC	1_	NC	1
269		2	max	0	9	0	2	.002	4	7.145e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-4.259e-4	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
271		3	max	0	9	0	2	.004	4	5.47e-5	3	NC	_1_	NC	1
272			min	0	2	001	3	0	3	-4.608e-4	4	NC	1_	NC	1
273		4	max	0	9	00	2	.006	4	3.796e-5	3_	NC	_1_	NC	1
274			min	0	2	002	3	001	3	-4.956e-4	4	NC	1_	NC	1
275		5	max	0	9	0	2	.009	4	2.121e-5	3	NC	_1_	NC	1
276			min	0	2	003	3	001	3	-5.305e-4	4	NC NC	1_	NC NC	1
277		6	max	0	9	0	2	.011	4	4.465e-6	3	NC	1	NC NC	1
278		7	min	0	2	004	3	002	3	-5.653e-4	4	NC NC	1_	NC NC	1
279		7	max	0	9	0	2	.013	4	3.531e-6	10	NC NC	1_	NC NC	1
280		0	min	0	9	<u>004</u> .001	2	002	3	-6.002e-4	4	NC NC	1	NC NC	1
281 282		8	max	0	2		3	.015 002	3	4.01e-6 -6.351e-4	<u>10</u>	NC NC	<u>1</u> 1	NC NC	1
283		9	min	<u> </u>	9	005 .001	2	002 .018	4	4.49e-6	<u>4</u> 10	NC NC	1	NC NC	1
284		9	max	0	2	006	3	002	3	-6.699e-4	4	NC NC	1	NC NC	1
285		10		0	9	.002	2	002 .02	5	4.97e-6	10	NC NC	1	NC NC	1
286		10	max	0	2	002	3	002	3	-7.048e-4	4	NC NC	1	NC	1
287		11	max	0	9	.002	2	.022	5	5.449e-6	10	NC	1	NC	1
288			min	0	2	006	3	002	3	-7.397e-4	4	NC	1	NC	1
289		12	max	0	9	.003	2	.024	5	5.929e-6	10	NC	1	NC	1
290		12	min	0	2	007	3	002	3	-7.745e-4	4	NC	1	NC	1
291		13	max	0	9	.004	2	.026	5	6.408e-6	10	NC	<u> </u>	NC	1
292			min	0	2	007	3	002	3	-8.094e-4	4	NC	1	NC	1
293		14	max	0	9	.004	2	.028	5	6.888e-6	10	NC	1	NC	1
294			min	0	2	007	3	002	3	-8.442e-4	4	NC	1	NC	1
295		15	max	0	9	.005	2	.03	5	7.367e-6	10	NC	1	NC	1
296			min	0	2	007	3	002	3	-8.791e-4	4	8830.872	2	NC	1
297		16	max	0	9	.006	2	.032	5	7.847e-6	10	NC	1	NC	1
298			min	0	2	008	3	002	3	-9.14e-4	4	7525.807	2	NC	1
299		17	max	0	9	.007	2	.034	5	8.326e-6	10	NC	3	NC	1
300			min	0	2	008	3	002	3	-9.488e-4	4	6505.314	2	NC	1
301		18	max	0	9	.008	2	.036	5	8.806e-6	10	NC	3	NC	1
302			min	0	2	008	3	002	3	-9.837e-4	4	5700.181	2	NC	1
303		19	max	0	9	.009	2	.038	5	9.285e-6	10	NC	3	NC	1
304			min	0	2	008	3	002	3	-1.019e-3	4	5060.484	2	NC	1
305	M12	1	max	.002	1	.007	2	.001	1	2.131e-3	4	NC	_1_	NC_	1
306			min	0	3	006	3	042	5	-9.052e-6	10	NC	1_	463.472	5
307		2	max	.002	1	.007	2	.001	1	2.131e-3	4	NC	1_	NC FOE 405	1
308			min	0	3	005	3	038	5	-9.052e-6	<u>10</u>	NC NC	1_	505.165	5
309		3	max	.001	1	.006	2	0	1	2.131e-3	4	NC NC	1_	NC FF4.777	1
310		4	min	0	3	005	2	035	<u>5</u>	-9.052e-6	10	NC NC	<u>1</u> 1	554.777	5 1
		4	max	.001	3	.006	3	0		2.131e-3		NC NC	1	NC	
312		5	min	<u> </u>	1	005 .006	2	031 0	<u>5</u>	-9.052e-6 2.131e-3		NC NC	1	614.393 NC	<u>5</u>
314		5	max	<u>.001</u>	3	004	3	028	5	-9.052e-6	4	NC NC	1	686.854	5
315		6	max	.001	1	.005	2	<u>028</u> 0	1	2.131e-3	4	NC	1	NC	1
316		0	min	0	3	004	3	025	5	-9.052e-6		NC	1	776.111	5
317		7	max	.001	1	.005	2	0	1	2.131e-3	4	NC	1	NC	1
318			min	0	3	004	3	022	5	-9.052e-6		NC	1	887.789	5
319		8	max	0	1	.004	2	0	1	2.131e-3	4	NC	1	NC	1
320		0	min	0	3	003	3	019	5	-9.052e-6	10	NC	1	1030.123	
321		9	max	0	1	.004	2	0	1	2.131e-3	4	NC	1	NC	1
322			min	0	3	003	3	016	5	-9.052e-6		NC	1	1215.569	5
323		10	max	0	1	.004	2	0	1	2.131e-3	4	NC	1	NC	1
324			min	0	3	003	3	013	5	-9.052e-6		NC	1	1463.708	_
325		11	max	0	1	.003	2	0	1	2.131e-3	4	NC	1	NC	1
326			min	0	3	003	3	011	5	-9.052e-6		NC	1	1806.781	5
327		12	max	0	1	.003	2	0	1	2.131e-3	4	NC	1	NC	1
			,							,	_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
328			min	0	3	002	3	008	5	-9.052e-6	10	NC	1_	2301.025	
329		13	max	0	1	.002	2	0	1	2.131e-3	4_	NC	1_	NC	1
330			min	0	3	002	3	006	5	-9.052e-6	<u>10</u>	NC	1_	3051.917	5
331		14	max	0	1	.002	2	0	1	2.131e-3	4_	NC	_1_	NC	1
332		4.5	min	0	3	002	3	005	5	-9.052e-6	10	NC	1_	4277.005	5
333		15	max	0	1	.002	2	0	1	2.131e-3	4	NC	1	NC 0407.004	1
334		40	min	0	3	001	3	003	5	-9.052e-6	10	NC NC	1_	6487.334	5
335		16	max	0	1	.001	2	0	1	2.131e-3	4	NC	1_	NC NC	1
336		47	min	0	3	0	3	002	5	-9.052e-6	<u>10</u>	NC NC	1_	NC NC	1
337		17	max	0	1	0	2	0	1	2.131e-3	4	NC NC	1_1	NC NC	1
338		40	min	0	3	0	3	0	5	-9.052e-6	<u>10</u>	NC NC	1_	NC NC	1
339		18	max	0	1	0	2	0	1	2.131e-3	4	NC NC	1_	NC NC	1
340		40	min	0	3	0	3	0	5	-9.052e-6	<u>10</u>	NC NC	1_	NC NC	1
341		19	max	0	1	0	1	0	1	2.131e-3	4	NC NC	1_	NC	1
342	N // 4	1	min	.005	1	0	3	0	1 5	-9.052e-6	<u>10</u>	NC NC	1_	NC NC	1
343	<u>M1</u>	1	max		3	.024		.004	5	3.224e-3	1	NC NC	1	NC NC	1
344		2	min	006	3	02	2	0	9	-4.348e-3	3	NC NC	1_1		
345			max	.005		.013	3	.006	5	1.571e-3	1		3	NC NC	1
346		3	min	006	3	01	3	0	9	-2.115e-3	3	4362.51 NC	<u>3</u> 4	NC NC	1
347		3	max min	.005 006	2	.002 002	1	.008 001	5	1.5e-4 -5.123e-5	<u>5</u> 9	2272.905	3	NC NC	1
349		4	max	.005	3	.002	2	.01	5	1.423e-4	5	NC	4	NC	1
350		4	min	005	2	006	3	001	1	-4.11e-5	9	1627.581	3	8536.401	5
351		5	max	.005	3	.014	2	.012	5	1.346e-4	<u>9</u> 5	NC	4	NC	1
352		5	min	006	2	013	3	002	1	-3.098e-5	9	1320.965	3	6017.059	5
353		6	max	.005	3	.02	2	.015	5	1.269e-4	5	NC	4	NC	1
354		0	min	006	2	019	3	001	1	-2.085e-4	9	1131.06	2	4568.275	5
355		7	max	.005	3	.024	2	.017	5	1.192e-4	<u> </u>	NC	5	NC	1
356			min	006	2	023	3	001	1	-1.072e-5	9	1011.137	2	3642.856	
357		8	max	.005	3	.027	2	.02	5	1.124e-4	4	NC	5	NC	1
358			min	006	2	026	3	0	9	-1.026e-6	10	936.518	2	3009.439	
359		9	max	.005	3	.03	2	.023	5	1.079e-4	4	NC	5	NC	1
360			min	006	2	027	3	0	9	-1.953e-6	10	893.051	2	2552.495	
361		10	max	.005	3	.03	2	.026	4	1.034e-4	4	NC	5	NC	1
362		10	min	006	2	027	3	0	9	-2.88e-6	10	874.033	2	2201.731	4
363		11	max	.005	3	.03	2	.028	4	9.884e-5	4	NC	5	NC	1
364			min	006	2	026	3	0	10	-3.807e-6	10	877.124	2	1935.421	4
365		12	max	.005	3	.028	2	.031	4	9.432e-5	4	NC	5	NC	1
366			min	006	2	024	3	0	10	-4.733e-6	10	903.46	2	1728.793	4
367		13	max	.005	3	.025	2	.034	4	8.98e-5	4	NC	5	NC	1
368			min	006	2	021	3	0		-5.66e-6			2	1565.806	4
369		14	max	.005	3	.02	2	.037	4	9.204e-5	1	NC	4	NC	1
370			min	006	2	017	3	0	10				2	1435.692	4
371		15	max	.005	3	.014	2	.039	4	1.049e-4	1	NC	4	NC	1
372			min	006	2	011	3	0	10	-7.514e-6	10	1213.943	2	1331.014	4
373		16	max	.005	3	.006	2	.042	4	2.147e-4	4	NC	4	NC	1
374			min	006	2	005	3	0	10	-8.219e-6	10	1502.581	2	1246.509	4
375		17	max	.005	3	.002	3	.044	4	3.644e-3	4	NC	4	NC	1
376			min	006	2	003	2	0	10	-3.661e-6	10	2111.71	2	1178.476	4
377		18	max	.005	3	.01	3	.046	4	2.168e-3	2	NC	4	NC	1
378			min	006	2	014	2	0	10	-1.139e-3	3	4065.519	2	1123.963	4
379		19	max	.005	3	.018	3	.048	4	4.368e-3	2	NC	1	NC	1
380			min	006	2	026	2	0	9	-2.341e-3	3	NC	1	1082.148	4
381	M5	1	max	.012	3	.06	3	.004	5	1.001e-5	4	NC	1	NC	1
382			min	016	2	051	2	0	9	3.993e-8	9	NC	1	NC	1
383		2	max	.012	3	.033	3	.006	5	7.823e-5	3	NC	4	NC	1
384			min	016	2	027	2	0	9	-6.79e-6	9	1776.389	3	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		(n) L/z Ratio	LC
385		3	max	.012	3	.007	3	.008	5	1.508e-4	3	NC	5_	NC	1
386			min	016	2	005	1	0	9	-1.347e-5	9	920.278	3	NC	1
387		4	max	.012	3	.016	2	.01	5	1.479e-4	3_	NC	5_	NC	1
388			min	016	2	014	3	0	9	-1.245e-5	9	659.692	3	NC	1
389		5	max	.012	3	.033	2	.012	5	1.45e-4	3	NC	5_	NC	1
390			min	016	2	031	3	0	9	-1.142e-5	9	536.365	3_	NC NC	1
391		6	max	.012	3	.047	2	.015	5	1.426e-4	5_	NC 100 011	5	NC NC	1
392		7	min	016	2	045	3	0	9	-1.039e-5	9	460.311	2	NC NC	1
393		7	max	.012	3	.058	2	.018	4	1.469e-4	5	NC	5	NC NC	1
394 395		0	min	016	2	0 <u>55</u>	2	<u> </u>	9	-9.362e-6 1.513e-4	9	410.873 NC	2	NC NC	1
		8	max	.012 016	3	.067 061	3	0	9	-8.334e-6	<u>5</u> 9	380.017	<u>5</u>	NC NC	1
396 397		9	min	.012	3	.072	2	.024	4	1.556e-4	9 5	NC	5	NC NC	1
398		9	max	016	2	065	3	<u>.024</u> 0	9	-7.306e-6	9	361.912	2	NC NC	1
399		10	max	.012	3	.074	2	.027	4	1.599e-4	<u> </u>	NC	5	NC	1
400		10	min	016	2	065	3	0	9	-6.278e-6	9	353.786	2	NC	1
401		11	max	.012	3	.073	2	.03	4	1.646e-4	4	NC	5	NC	1
402			min	016	2	063	3	0	9	-5.25e-6	9	354.656	2	NC	1
403		12	max	.012	3	.069	2	.033	4	1.694e-4	4	NC	5	NC	1
404		12	min	016	2	058	3	0	9	-4.222e-6	9	364.954	2	NC	1
405		13	max	.012	3	.061	2	.036	4	1.743e-4	4	NC	5	NC	1
406			min	016	2	05	3	0	9	-3.194e-6	9	386.752	2	NC	1
407		14	max	.012	3	.049	2	.039	4	1.791e-4	4	NC	5	NC	1
408			min	016	2	04	3	0	9	-2.166e-6	9	424.794	2	NC	1
409		15	max	.012	3	.034	2	.041	4	1.839e-4	4	NC	5	NC	1
410			min	016	2	027	3	0	9	-1.138e-6	9	489.443	2	NC	1
411		16	max	.012	3	.014	2	.043	4	3.243e-4	4	NC	5	NC	1
412			min	016	2	012	3	0	9	-6.998e-7	9	605.83	2	NC	1
413		17	max	.012	3	.005	3	.045	4	3.689e-3	4	NC	5	NC	1
414			min	016	2	009	2	0	9	-1.43e-5	9	852.461	2	NC	1
415		18	max	.012	3	.024	3	.047	4	1.895e-3	4_	NC	4_	NC	1
416			min	016	2	036	2	0	9	-7.378e-6	9	1652.249	2	NC	1
417		19	max	.012	3	.044	3	.048	4	4.452e-6	_5_	NC	1_	NC	1
418			min	016	2	065	2	0	9	-5.541e-7	3	NC	1_	NC	1
419	<u>M9</u>	1	max	.005	3	.023	3	.004	5	4.356e-3	3	NC	_1_	NC	1
420			min	006	2	02	2	0	9	-3.223e-3	1_	NC	1_	NC	1
421		2	max	.005	3	.012	3	.003	4	2.176e-3	3	NC 4004 F0F	4	NC NC	1
422			min	006	2	011	2	0	10	-1.571e-3	1_	4364.535	3	NC NC	1
423		3	max	.005	3	.002	3	.003	4	5.014e-5	1_	NC 0074 000	4	NC NC	1
424 425		4	min	006	3	002	2	0	3	-2.646e-5 3.723e-5	5	2274.026	3	NC NC	1
		4	max	.005		.007	3	.004				NC	4		1
426 427		5	min	006 .005	3	006 .014	2	001 .005	4	-3.997e-5 2.431e-5		1628.403 NC	<u>3</u> 4	NC NC	1
428		- O	max min	006	2		3	002	3	-5.348e-5		1321.619	3	NC NC	1
429		6	max	.005	3	013 .019	2	.002	4	1.14e-5	<u>5</u> 1	NC	5	NC NC	1
430		0	min	006	2	019	3	003	3	-6.853e-5	4	1131.228	2	NC	1
431		7	max	.005	3	.024	2	.009	4	2.467e-7	10	NC	5	NC	1
432			min	006	2	023	3	003	3	-8.455e-5	4	1011.295	2	8875.408	_
433		8	max	.005	3	.027	2	.012	4	1.165e-6	10	NC	5	NC	1
434			min	006	2	026	3	003	3	-1.006e-4	4	936.67	2	6004.603	4
435		9	max	.005	3	.03	2	.014	4	2.083e-6	10	NC	5	NC	1
436			min	006	2	027	3	004	3	-1.166e-4	4	893.202	2	4400.804	4
437		10	max	.005	3	.03	2	.017	4	3.001e-6	10	NC	5	NC	1
438			min	006	2	027	3	004	3	-1.326e-4	4	874.186	2	3407.617	_
439		11	max	.005	3	.03	2	.021	5	3.92e-6	10	NC	5	NC	1
440			min	006	2	026	3	003	3	-1.486e-4	4	877.283	2	2747.587	
441		12	max	.005	3	.028	2	.024	5	4.838e-6	10	NC	5	NC	1
			,							,			_		

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

442	Member	Sec	min	x [in] 006	LC 2	y [in] 024	LC 3	z [in] 003	LC 3	x Rotate [r	LC 4	(n) L/y Ratio	LC 2	(n) L/z Ratio 2285.9	LC 4
443		13	min max	.005	3	.025	2	003 .028	5	5.756e-6	10	NC	5	NC	1
444		13	min	006	2	021	3	003	3	-1.807e-4	4	958.395	2	1947.103	
445		14	max	.005	3	.02	2	.031	5	6.674e-6	10	NC	5	NC	1
446		17	min	006	2	017	3	003	3	-1.967e-4	4	1053.364	2	1694.6	5
447		15	max	.005	3	.014	2	.035	5	7.593e-6	10	NC	4	NC	1
448		10	min	006	2	011	3	002	3	-2.127e-4	4	1214.18	2	1502.83	5
449		16	max	.005	3	.006	2	.038	5	8.283e-6	10	NC	4	NC	1
450		-	min	006	2	005	3	002	3	-1.149e-4	1	1502.87	2	1354.709	
451		17	max	.005	3	.002	3	.042	5	3.564e-3	4	NC	4	NC	1
452			min	006	2	003	2	001	1	-5.557e-5	1	2112.082	2	1238.075	4
453		18	max	.005	3	.01	3	.045	4	1.783e-3	5	NC	4	NC	1
454			min	006	2	014	2	0	9	-2.168e-3	2	4066.202	2	1143.46	4
455		19	max	.005	3	.018	3	.048	4	2.34e-3	3	NC	1_	NC	1
456			min	006	2	026	2	0	9	-4.368e-3	2	NC	1_	1068.727	4
457	M13	1_	max	0	9	.023	3	.005	3	4.203e-3	3_	NC	_1_	NC	1
458			min	004	5	02	2	006	2	-3.771e-3	2	NC	<u>1</u>	NC	1
459		2	max	0	9	.044	3	.004	3	4.874e-3	3	NC	4_	NC	1
460			min	004	5	035	2	006	2	-4.349e-3	2	4270.923	3	NC NC	1
461		3	max	0	9	.062	3	.003	3	5.545e-3	3	NC 0000 040	4_	NC NC	1
462		1	min	004	5	049	1	006	2	-4.928e-3	2	2298.816	3	NC NC	1
463		4	max	0	9	.075	3	.004	9	6.216e-3	3	NC	3	NC NC	1
464		5	min	004		059	3	006	9	-5.506e-3	3	1725.103 NC		NC NC	1
465 466		5	max	004	9	.082 064	1	.005 007	2	6.887e-3 -6.084e-3	2	1523.164	3	NC NC	1
467		6	max	004 0	9	.083	3	.006	3	7.558e-3	3	NC	4	NC NC	1
468			min	004	5	065	1	009	2	-6.662e-3	2	1503.207	3	NC	1
469		7	max	0	9	.079	3	.007	3	8.229e-3	3	NC	4	NC	1
470			min	004	5	063	1	011	2	-7.241e-3	2	1621.263	3	NC	1
471		8	max	0	9	.071	3	.009	3	8.9e-3	3	NC	4	NC	1
472			min	004	5	058	2	013	2	-7.819e-3	2	1874.469	3	NC	1
473		9	max	0	9	.064	3	.01	3	9.571e-3	3	NC	4	NC	1
474			min	004	5	053	2	015	2	-8.397e-3	2	2227.831	3	NC	1
475		10	max	0	9	.06	3	.012	3	1.024e-2	3	NC	4	NC	1
476			min	004	5	051	2	016	2	-8.975e-3	2	2452.002	3	9822.393	2
477		11	max	0	9	.064	3	.013	3	9.572e-3	3	NC	4	NC	1
478			min	004	5	053	2	015	2	-8.397e-3	2	2227.83	3	NC	1
479		12	max	0	9	.071	3	.014	3	8.903e-3	3	NC	4	NC	1
480			min	004	5	058	2	013	2	-7.819e-3	2	1874.468	3	NC	1
481		13	max	0	9	.079	3	.013	3	8.233e-3	3	NC	4_	NC	1
482		1.4	min	004	5	063	1	011		-7.241e-3		1621.262	3	NC	1
483		14		0	9	.083	3	.013	3	7.563e-3	3	NC 4500,007	4	NC NC	1
484		4.5	min	004	5	065	1	009	2	-6.662e-3	2	1503.207	3	NC NC	1
485		15	max	0	9	.083	3	.011	3	6.893e-3	3	NC	4	NC NC	1
486 487		16	min	004 0	5 9	064 .076	3	007 .01	3	-6.084e-3 6.223e-3	3	1523.164 NC	<u>3</u> 4	NC NC	1
488		10	max	004	5	059	1	006	2	-5.506e-3	2	1725.103	3	NC NC	1
489		17	max	0	9	.063	3	.008	3	5.553e-3	3	NC	4	NC	1
490		17	min	004	5	049	1	006	2	-4.928e-3	2	2298.816	3	NC	1
491		18	max	0	9	.045	3	.007	3	4.883e-3	3	NC	4	NC	1
492		10	min	004	5	035	2	006	2	-4.349e-3	2	4270.924	3	NC	1
493		19	max	0	9	.024	3	.005	3	4.214e-3	3	NC	1	NC	1
494			min	004	5	02	2	006	2	-3.771e-3	2	NC	1	NC	1
495	M16	1	max	0	9	.018	3	.005	3	4.524e-3	2	NC	1	NC	1
496			min	048	4	026	2	006	2	-3.234e-3	3	NC	1	NC	1
497		2	max	0	9	.03	3	.007	3	5.24e-3	2	NC	4	NC	1
498			min	048	4	047	2	006	2	-3.702e-3	3	4251.707	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio I	LC		LC
499		3	max	0	9	.04	3	.008	3	5.956e-3	2	NC	4	NC	1
500			min	048	4	065	2	006	2	-4.169e-3	3	2284.398	2	NC	1
501		4	max	0	9	.047	3	.01	3	6.672e-3	2	NC	4	NC	1
502			min	048	4	079	2	006	2	-4.636e-3	3	1709.052	2	NC	1
503		5	max	0	9	.051	3	.011	3	7.388e-3	2		4	NC	1
504			min	048	4	086	2	007	2	-5.104e-3	3		2	NC	1
505		6	max	0	9	.053	3	.012	3	8.104e-3	2		4	NC	1
506			min	048	4	087	2	009	2				2	NC	1
507		7	max	0	9	.051	3	.013	3	8.82e-3	2		4	NC	1
508			min	048	4	083	2	011	2	-6.038e-3	3		2	NC	1
509		8		046 0	9	.048	3	.013	3	9.536e-3	2		4	NC NC	1
		0	max												_
510			min	048	4	076	2	013	2	-6.506e-3	3		2	NC NC	1
511		9	max	0	9	.045	3	.013	3	1.025e-2	2		4_	NC	1
512			min	048	4	069	2	015	2	-6.973e-3	3		2	NC	1
513		10	max	0	9	.044	3	.012	3	1.097e-2	2		4_	NC	1_
514			min	048	4	065	2	016	2	-7.44e-3	3		2	9574.792	2
515		11	max	0	9	.045	3	.011	3	1.025e-2	2	NC	4	NC	1
516			min	048	4	069	2	015	2	-6.972e-3	3	2094.243	2	NC	1
517		12	max	0	9	.048	3	.011	3	9.536e-3	2	NC	4	NC	1
518			min	048	4	076	2	013	2	-6.504e-3	3		2	NC	1
519		13	max	0	9	.051	3	.01	3	8.82e-3	2		4	NC	1
520			min	048	4	083	2	011	2	-6.035e-3	3		2	NC	1
521		14	max	0	9	.053	3	.009	3	8.104e-3	2		4	NC	1
522		17	min	048	4	087	2	009	2	-5.567e-3	3		2	NC	1
523		15		040	9	.051	3	.008	3	7.389e-3	2		4	NC	1
524		15	max	048	4	086	2	007	2	-5.099e-3	3		2	NC NC	1
		4.0	min								_				
525		16	max	0	9	.047	3	.007	3	6.673e-3	2		4_	NC	1
526			min	048	4	<u>079</u>	2	006	2	-4.631e-3	3		2	NC	1
527		17	max	0	9	.04	3	.007	3	5.957e-3	2		4	NC	1
528			min	048	4	065	2	006	2	-4.162e-3	3		2	NC	1
529		18	max	0	9	.03	3	.006	3	5.241e-3	2		4	NC	1_
530			min	048	4	047	2	006	2	-3.694e-3	3		2	NC	1
531		19	max	0	9	.018	3	.005	3	4.526e-3	2	NC	1_	NC	1
532			min	048	4	026	2	006	2	-3.226e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.405e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-4.234e-4	5	NC	1	NC	1
535		2	max	0	3	0	5	.003	4	7.222e-4	3	NC	1	NC	1
536			min	0	4	001	1	0	3	-4.37e-4	2		1	NC	1
537		3	max	0	3	0	5	.006	4	1.104e-3	3	NC	1	NC	1
538			min	0	4	003	1	003	3	-8.074e-4	2		1	9718.326	4
539		4	max	0	3	<u>005</u> 0	5	.008	4	1.486e-3	3		1	NC	9
		-							3	-1.178e-3			-		
540		E	min	001	4	004	1	005					1_	6449.621	4
541		5	max	0	3	.001	5	.011	4	1.867e-3	3		1_	NC	9
542			min	002	4	005	1	009	3	-1.548e-3	2		1_	4603.127	3
543		6	max	0	3	.001	5	.013	4	2.249e-3	3		3	NC	9
544			min	002	4	006	1	012	3	-1.919e-3	2	0000.00.	1_	3324.229	
545		7	max	0	3	.002	5	.015	4	2.631e-3	3		3_	7898.108	
546			min	002	4	007	1	016	3	-2.289e-3	2	8300.952	1_	2583.162	3
547		8	max	0	3	.002	5	.017	1	3.013e-3	3	NC	3	6500.763	9
548			min	003	4	007	1	02	3	-2.66e-3	2	7665.147	1	2120.199	3
549		9	max	0	3	.002	5	.019	1	3.394e-3	3	NC	5	6280.161	
550			min	003	4	008	1	023	3	-3.03e-3	2		1	1818.433	
551		10	max	0	3	.002	5	.022	1	3.776e-3	3		5	6634.49	15
552		T Č	min	003	4	008	1	026	3	-3.401e-3	2		1	1619.589	
553		11	max	<u>005</u>	3	.003	5	.024	1	4.158e-3	3		5	7391.903	
554			min	004	4	008	1	028	3	-3.771e-3	2		1	1493.179	
		10											_		
555		12	max	0	3	.003	5	.024	1	4.54e-3	3	NC	3	8769.001	15

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
556			min	004	4	007	1	029	3	-4.142e-3	2	7665.147	1	1424.003	3
557		13	max	0	3	.003	5	.024	1	4.921e-3	3	NC	3	NC	15
558			min	005	4	007	1	029	3	-4.512e-3	2	8300.952	1	1407.36	3
559		14	max	0	3	.003	5	.023	1	5.303e-3	3	NC	3	NC	5
560			min	005	4	006	1	027	3	-4.882e-3	2	9360.361	1	1448.997	3
561		15	max	0	3	.003	5	.02	1	5.685e-3	3	NC	1	NC	5
562			min	005	4	005	1	023	3	-5.253e-3	2	NC	1	1571.088	3
563		16	max	0	3	.004	5	.015	1	6.067e-3	3	NC	1	NC	4
564			min	006	4	004	1	018	3	-5.623e-3	2	NC	1	1834.307	3
565		17	max	0	3	.004	5	.008	1	6.448e-3	3	NC	1	NC	4
566			min	006	4	003	9	01	3	-5.994e-3	2	NC	1	2429.364	3
567		18	max	.001	3	.004	5	.001	9	6.83e-3	3	NC	1	NC	4
568			min	006	4	002	9	004	2	-6.364e-3	2	NC	1	4321.407	3
569		19	max	.001	3	.004	3	.014	3	7.212e-3	3	NC	1	NC	1
570			min	007	4	001	9	016	2	-6.735e-3	2	NC	1	NC	1
571	M16A	1	max	0	2	0	2	.006	3	2.729e-3	3	NC	1	NC	1
572			min	002	4	002	4	006	2	-2.733e-3	2	NC	1	NC	1
573		2	max	0	2	0	10	0	9	2.605e-3	3	NC	1	NC	1
574			min	002	4	005	4	002	2	-2.598e-3	2	NC	1	9811.451	3
575		3	max	0	2	001	12	.004	1	2.482e-3	3	NC	1	NC	4
576			min	002	4	007	4	005	3	-2.463e-3	2	NC	1	5535.891	3
577		4	max	0	2	002	12	.007	1	2.358e-3	3	NC	1	NC	4
578			min	002	4	009	4	008	3	-2.328e-3	2	7843.418	4	4197.174	3
579		5	max	0	2	002	12	.008	1	2.235e-3	3	NC	1	NC	4
580			min	002	4	011	4	011	3	-2.193e-3	2	6120.298	4	3611.769	3
581		6	max	0	2	003	12	.01	1	2.111e-3	3	NC	3	NC	13
582			min	002	4	012	4	012	3	-2.059e-3	2	5150.878	4	3349.039	
583		7	max	0	2	003	12	.01	1	1.988e-3	3	NC	3	NC	14
584			min	001	4	013	4	013	3	-1.924e-3	2	4567.899	4	3273.114	3
585		8	max	0	2	003	12	01	1	1.864e-3	3	NC	3	NC	14
586			min	001	4	014	4	014	5	-1.789e-3	2	4218.025	4_	3336.066	3
587		9	max	0	2	004	12	.01	1	1.74e-3	3	NC	12	NC OF OF OOA	9
588		40	min	001	4	015	4	016	5	-1.654e-3	2	4029.701	4	3505.004	5
589		10	max	0	2	004	12	.009	1	1.617e-3	3	NC 2070 405	12	NC 2000 000	9
590		11	min	001	4	015	4	017	5	-1.519e-3	2	3970.125 NC	4	3268.062	5
591 592			max	<u> </u>	2	004 014	12	.008 017	5	1.493e-3 -1.385e-3	<u>3</u>	4029.701	<u>12</u> 4	NC 3181.269	5
593		12	min	0	2	003	12	.006	1	1.37e-3	3	NC	3	NC	9
594		12	max min	0	4	003 014	4	017	5	-1.25e-3	2	4218.025	4	3229.756	
595		13		0	2	003	12	.005	1	1.246e-3	3	NC	3	NC	9
596		13	max min	0	4	003	4	016		-1.115e-3		4567.899	4	3426.751	
597		14		0	2	003	12	.003	1	1.122e-3	3	NC	3	NC	1
598		17	min	0	4	011	4	014	5	-9.801e-4	2	5150.878	4	3821.948	
599		15	max	0	2	002	12	.002	1	9.988e-4	3	NC	1	NC	1
600		10	min	0	4	009	4	012	5	-8.453e-4	2	6120.298	4	4534.785	_
601		16	max	0	2	002	12	.001	1	8.752e-4	3	NC	1	NC	1
602			min	0	4	007	4	009	5	-7.105e-4	2	7843.418	4	5862.574	
603		17	max	0	2	001	12	0	9	7.516e-4	3	NC	1	NC	1
604			min	0	4	005	4	006	5	-5.757e-4	2	NC	1	8720.625	
605		18	max	0	2	0	12	0	9	6.82e-4	4	NC	1	NC	1
606			min	0	4	003	4	003	5	-4.409e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	7.404e-4	4	NC	1	NC	1
608			min	0	1	0	1	0	1	-3.061e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.