

3º Grado en Ingeniería Informática

Transmisión de Datos y Redes de Computadores

TEMA 3. CAPA DE ENLACE Y REDES DE ÁREA LOCAL

(2021-2022)

TEMA 3. Índice

- 3.1. Conmutación LAN. (2h)
- 3.2. Spanning-Tree Protocol. (1h)
- 3.3. Virtual LAN. (1h)

TDRC

Tema 3.2. Spanning-Tree Protocol

Antonio M. Mora García

PREGUNTA: Viendo las cabeceras IP y Ethernet, ¿qué mecanismos ofrecen para evitar bucles en una red formada por Routers (Capa 3) y por Switches (Capa 2) respectivamente?

16 31 Tamaño Cabecera IPv4 Versión Tipo de Servicio **Longitud Total** Cabecera Identificador Flags Posición de Fragmento Tiempo de Vida Protocolo Suma de Control de Cabecera Dirección IP de Origen Dirección IP de Destino Opciones Relleno 8 bytes 2 b 46 - 1500 bytes 6 bytes 6 bytes 4 bytes **Cabecera Ethernet** Dirección Dirección Tipo Preámbulo **DATOS** CRC Origen Destino

PREGUNTA: Viendo las cabeceras IP y Ethernet, ¿qué mecanismos ofrecen para evitar bucles en una red formada por Routers (Capa 3) y por Switches (Capa 2) respectivamente?

Tiempo de vida (TTL):

Tiempo que puede estar el paquete en una red.

Cabecera Ethernet

Cabecera IPv4

8 bytes	6 bytes	6 bytes	2 b	46 - 1500 bytes	4 bytes
Preámbulo	Dirección Destino	Dirección Origen	Tipo	DATOS	CRC

¡¡¡NO HAY!!!

- Broadcast storm.
- Se producen bucles a nivel de la Capa 2.
- Se dan en redes formadas integramente por switches Ethernet.
- Por existencia de enlaces redundantes.
- Todo se inicia con un único mensaje de broadcast.
- Se pueden acumular más mensajes de broadcast (de otros hosts).
- Puede llegar a bloquear la red por exceso de tráfico al agotarse sus recursos (ancho de banda).

Spanning Tree Protocol (STP) - Resumen

- Protocolo de Capa 2. Especificado en IEEE 802.1d.
- Busca eliminar bucles en Capa 2 para evitar la tormenta.
- A partir de un switch raíz, STP se encarga de construir un árbol lógico (árbol de expansión)
 que interconecta a todos los switches de la red sin redundancias de caminos.

Spanning Tree Protocol (STP) - Resumen

• En el caso de que haya un cambio de topología, STP también se encarga de levantar enlaces bloqueados.

CONCEPTOS Y TERMINOLOGÍA

- **Root Bridge (RB)**: Es el bridge (switch) raíz a partir del cual se crea el árbol STP.
- Bridge Packet Data Unit (BPDU): Es el mensaje que se intercambian los bridges (switches) para construir el árbol.
- Ports: Son las interfaces que participan del protocolo STP.
- Root Port (RP): Es el puerto de un switch más "cercano" al RB. Siempre está en modo Forwarding ya que es parte del árbol creado por STP.
- Designated Port (DP): Es el puerto dentro de un enlace que está más 'cerca' del RB (según un coste administrativo). Puede transmitir BDPU en ese segmento.
- Non-Designated Port (NDP): Puerto bloqueado.

ROOT BRIDGE (RB)

- Es el origen del árbol STP y desde el que parten todos los mensajes (BPDUs).
- En STP los switches se identifican mediante 8 bytes:
 - **BID** → Prioridad.MAC
 - **Prioridad** → Número por defecto 32768.

El administrador de red puede asignar la que quiera a cada switch (múltiplo de 4096).

Ejemplo BID: 32768.aaaa.bbbb.cccc

- El switch con el identificador (BID) más bajo se convertirá en RB.
- Todos los puertos del RB están siempre en Forwarding (activos).

ELECCIÓN DEL ROOT BRIDGE

- Al arrancar un switch en STP todos los puertos están bloqueados (para envío de datos de usuario, pero habilitados para enviar BPDUs).
- Los switches se mandan BPDUs Hello a la dirección multicast 01-80-c2-00-00-00 cada 2 segs.
- Cada switch asume que él es el RB, por lo que comienza a generar y enviar BPDUs incluyendo su BID.
- Aquellos switches que detectan BPDUs generadas por otros switches con identificación mas baja, dejan de generar sus propias BPDUs y comienzan a retrasmitirla.
 - ** Un BID será más bajo si tiene menor prioridad o la misma prioridad pero una MAC menor **
- Al final <u>SOLO PUEDE QUEDAR UNO</u>, que se convertirá en el RB.

ELECCIÓN DEL ROOT BRIDGE

BPDU

Field Description	Number of Bytes		
Protocol ID (always 0)	2		
Version (always 0)	1		
Message Type (Configuration or TCN BPDU)	1		
Flags	1		
Root Bridge ID	8 ELECCIÓN DEL RB		
Root Path Cost	4		
Sender Bridge ID	8		
Port ID	2		
Message Age (in 256 ^{ths} of a second)	2		
Maximum Age (in 256 ^{ths} of a second)	2		
Hello Time (in 256 ^{ths} of a second)	2		
Forward Delay (in 256 ^{ths} of a second)	2		

PUERTOS: ESTADOS

- **Disabled**: Corresponde a *shutdown* (puerto inactivo).
- **Blocking**: Primer paso después de inicializar los puertos. Recibe BPDU para procesamiento de STP, pero no las reenvía. Tampoco reenvía tramas de usuario. Se decide si es RP, DP o NDP.
- **Listening**: Desde Blocking se pasa a este estado si el switch detecta que ese puerto es candidato a convertirse en RP o DP. Recibe y reenvía BPDUs pero no reenvía tramas de usuarios. Este estado dura el tiempo de *Forward Delay*.
- **Learning**: Similar al estado de Listening sólo que además aprende entradas de la Tabla de Conmutación por conmutación transparente. Este estado dura el tiempo de *Forward Delay*.
- Forwarding: Recibe y reenvía BPDUs y tramas de usuarios. Éste es el estado activo normal.

PUERTOS: ROOT PORT (RP)

- En cada switch, es el puerto más "cercano" al Root Bridge.
- Puerto más cercano: aquel por el cual se reciba la BDPU generada por el RB con el Root Path Cost (RPC) más bajo.
- RPC: la suma de costes hasta llegar al RB. El RB genera BPDUs con el campo RPC a valor 0. El switch que recibe la BPDU, actualiza el valor de RPC sumando el correspondiente al enlace por donde la recibió (ver la tabla).
- Es el puerto por el que cada switch se une al árbol de expansión (spanning tree).
- El RP de un switch siempre está en estado Forwarding (activo).

Link Bandwidth	STP Cost
4 Mbps	250
10 Mbps	100
16 Mbps	62
45 Mbps	39
100 Mbps	19
155 Mbps	14
622 Mbps	6
1 Gbps	4
10 Gbps	2

PUERTOS: DESIGNATED PORT (DP)

- El DP es el puerto que transmite BPDUs con mayor calidad en un segmento de red (enlace).
- Existe un único DP por cada segmento de red. Es el puerto por el que cada segmento se une al árbol de expansión.
- Las reglas para decidir en cada segmento de red cuál es la BPDU de mayor calidad son:
 - 1) Más bajo Root Bridge Id
 - 2) Más bajo Root Path Cost
 - 3) Más bajo Sender Bridge Id (el switch que ha transmitido la BPDU al enlace)
 - 4) Más bajo Sender Port Id (prioridad del puerto.puerto, *Ejemplo: 128.4*)
- Todos los puertos del RB son DP.
- Los puertos **DP** siempre están en **Forwarding** (activo).

PUERTOS: DESIGNATED PORT (DP)

BPDU

Field Description	Number of Bytes	
Protocol ID (always 0)	2	
Version (always 0)	1	
Message Type (Configuration or TCN BPDU)	1	
Flags	1	
Root Bridge ID	8	
Root Path Cost	4 CALIDAD PROLL	
Sender Bridge ID	8 CALIDAD BPDU	
Port ID	2	
Message Age (in 256 ^{ths} of a second)	2	
Maximum Age (in 256 ^{ths} of a second)	2	
Hello Time (in 256 ^{ths} of a second)	2	
Forward Delay (in 256 ^{ths} of a second)	2	

EJEMPLO

Paso 0. Todos los puertos están bloqueados (para datos, no BPDUs).

Paso 1. Elección del RB.

Identificación: Prioridad.MAC*

(*) La MAC del switch es parte de la identificación del switch para operaciones de gestión.
No tiene nada que ver con los puertos.
¡¡Los puertos del switch NO tienen MAC!!

EJEMPLO

Paso 2.
Puertos RP

Link Bandwidth	STP Cost
4 Mbps	250
10 Mbps	100
16 Mbps	62
45 Mbps	39
100 Mbps	19
155 Mbps	14
622 Mbps	6
1 Gbps	4
10 Gbps	2

EJEMPLO

Paso 3.

Puertos DP

- Los del RB
- El puerto del Sender BID más bajo

Al finalizar el proceso todos aquellos puertos que no sean ni RP ni DP seguirán bloqueados.

Los enlaces entre RPs y DPs estarán activos.

Los enlaces con puertos bloqueados quedarán inactivos.

EJEMPLO

FINAL

Árbol de Expansión

TIMERS

DEFINIDOS POR EL RB:

- **Hello Time**: El intervalo de generación de mensajes *Hello* por parte del RB. Por defecto 2 seg.
- Maximum Age: Se usa para detectar cambios de topología en combinación con el contador Message Age. Si una BPDU no se refresca dentro del tiempo permitido se da por perdida y se da por hecho que es debido a un cambio de topología. Activa el mecanismo para que algún puerto pase de Blocking a Forwarding (si es RP o DP). Por defecto 20 seg.
- **Forward Delay**: Tiempo dedicado al estado de *Learning*, para que por *transparent switching*, la Tabla de conmutación (MAC-interfaz) del switch esté lo más actualizada posible, especialmente en lo que afecta al puerto que presumiblemente pasará a *Forwarding*. Por defecto 15 seg. Es también el tiempo que se está en los estados *Listening* y *Learning*.

SE MODIFICA SWITCH A SWITCH:

• **Message Age:** El RB genera la BDPU con Message Age=0. Cada switch lo incrementa en 1 cada vez que se reenvía la BDPU. Se usa en combinación con **Max. Age** para determinar el tiempo de validez de la BPDU.

TIMERS

Field Description	Number of Bytes
Protocol ID (always 0)	2
Version (always 0)	1
Message Type (Configuration or TCN BPDU)	1
Flags	1
Root Bridge ID	8 .
Root Path Cost	4
Sender Bridge ID	8
Port ID	2
Message Age (in 256 ^{ths} of a second)	2
Maximum Age (in 256 ^{ths} of a second)	2 TIMERS
Hello Time (in 256 ^{ths} of a second)	2 TIVIERS
Forward Delay (in 256 ^{ths} of a second)	2

EJEMPLO TIMERS

Ejemplo:

Uso combinado de Max Age - Message Age

- 1) Switches B y C reciben la BPDU con Message Age=0. Para estos switches, la BPDU recibida del RB se hará obsoleta en: Max Age – 0=20 segs
- 2) Switches D y E reciben la BPDU con Message Age=1. Para estos switches, la BPDU recibida del Swich B se hará obsoleta en: Max Age – 1=19 segs
- 3) Switch F recibe la BPDU con Message Age=2. Para este switch, la BPDU recibida de Swich E se hará obsoleta en: Max Age 2=18 segs

CAMBIOS DE TOPOLOGÍA

- Inicialmente, A y B se comunican a través de los switches B1-B2-B3-B4.
- Un cambio de topología entre B2 y B3 (caída del enlace que los une) hace que el puerto del switch B1 a B4 pase de Blocked a Forwarding.
- Problema: La tabla CAM (tabla de conmutación) de B1 contiene entradas que apuntan erróneamente a B2 para llegar a B. Lo mismo ocurre con la tabla CAM de B4 para llegar a A. Típicamente en un switch, una entrada no refrescada dura unos 300" antes de ser eliminada de la tabla CAM.
- **Solución**: Cuando haya un cambio de topología, las tablas CAM deben actualizarse rápidamente, sin esperar a los 300". Para ello se usa la BPDU tipo *Topology Change Notification*.

CAMBIOS DE TOPOLOGÍA

- El switch B conoce el cambio de topología y manda una BPDU del tipo **Topology Change Notification** (TCN) a través de su RP (cada 2 seg). El siguiente switch hace lo propio hasta llegar al RB. Todos los switches envían un **Topology Change ACK** (TCA).
- El RB manda una BPDU con el flag cambio de topología (TC) activado.
- Todos los switchs reducen el tiempo de vaciado de su Tabla de conmutación de 300 seg. a Forward Delay (15 seg). Esto evita que tablas corruptas se mantengan más allá de 15 segs pero a costa de generar inundaciones durante el tiempo del aprendizaje transparente.

CAMBIOS DE TOPOLOGÍA

BPDU

Field Description	Number of Bytes
Protocol ID (always 0)	2
Version (always 0)	1
Message Type (Configuration or TCN BPDU)	1 CAMBIOS DE
Flags	1 TOPOLOGÍA
Root Bridge ID	8
Root Path Cost	4
Sender Bridge ID	8
Port ID	2
Message Age (in 256 ^{ths} of a second)	2
Maximum Age (in 256 ^{ths} of a second)	2
Hello Time (in 256 ^{ths} of a second)	2
Forward Delay (in 256 ^{ths} of a second)	2

¿Alguna duda?

Bibliografía

- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
- P. García-Teodoro, J.E. Díaz-Verdejo, J.M. López-Soler. Transmisión de datos y redes de computadores, 2ª Edición. Editorial Pearson, 2014.
- Behrouz A. Forouzan. Transmisión de datos y redes de comunicaciones, 4º Edición. Editorial Mc Graw Hill 2007.
- David Hucaby. CCNP Self-Study, CCNP BCMSN Exam. Certification Guide, CCIECisco Press, ISBN: 1-58720-077-5, 2004.
- Michael Valentine, Keith Barker. Cisco CCNA Routing and Switching 200-120 Exam Cram, Fourth Edition, Video Enhanced Edition, Pearson IT Certification.
- Ernesto Ariganello. Redes Cisco: guía de estudio para la certificación CCNA Routing y Switching.