Lecture 12: Impedance

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Summary

- Small-signal MOSFET model
 - Two branches are related with two partial derivatives.

Simple math

- Following relations are useful.
 - Sine and cosine functions can be expanded with $e^{+j\omega t}$ and $e^{-j\omega t}$.

$$\sin \omega t = -\frac{j}{2}e^{+j\omega t} + \frac{j}{2}e^{-j\omega t}$$
$$\cos \omega t = \frac{1}{2}e^{+j\omega t} + \frac{1}{2}e^{-j\omega t}$$

- Therefore, for a function of $f(t) = f_s \sin \omega t + f_c \cos \omega t$, the expansion is

$$f(t) = \left(-j\frac{f_s}{2} + \frac{f_c}{2}\right)e^{+j\omega t} + \left(+j\frac{f_s}{2} + \frac{f_c}{2}\right)e^{-j\omega t}$$

- A single complex number, $-j\frac{f_s}{2} + \frac{f_c}{2}$, is enough to represent f(t).

Impedances

- Resistance, V(t) = R I(t)
 - It is assumed that V(t) and I(t) are in the same phase.
 - Consider $V(t) = V_0 \sin \omega t$ and $I(t) = I_0 \cos \omega t$. Then, what is the resistance?
 - In this case, we can introduce a phasor voltage, $V(\omega)$, and a phasor current, $I(\omega)$.
 - The relation between V(t) and $V(\omega)$ is

$$V(t) = Re[V(\omega)e^{j\omega t}]$$

- When $V(t) = V_0 \sin \omega t$, the phasor voltage is $V(\omega) = -jV_0$.
- When $I(t) = I_0 \cos \omega t$, the phasor voltage is $I(\omega) = I_0$.
- Impedance, $V(\omega) = Z(\omega)I(\omega)$
 - In the above example, $Z(\omega) = -j\frac{V_0}{I_0}$. A purely imaginary number.

Multi-terminal devices

- When the number of terminals is 3,
 - We can defined $9 (= 3 \times 3)$ different impedances.
- Termination condition is important.
 - Depending on the termination condition, the impedance can be heavily changed.
 - In many cases, it is obvious from the problem.

Impedances of MOSFET

- "Looking into the <u>TERMINAL</u>," we see the impedance of the <u>TERMINAL</u>.
 - Consider the following cases:
 - 1) Looking into the gate. The source and drain are ac-grounded.

- 2) Looking into the drain. The source and gate are ac-grounded.
- 3) Looking into the source. The gate and drain are ac-grounded.