

A Review of Person Re-identification with Deep Learning

Xi Li

College of Computer Science, Zhejiang University http://mypage.zju.edu.cn/xilics

Email: xilizju@zju.edu.cn

Person Re-identification

 Associate the person images across different cameras.

General Solutions

- Step 1: Feature Extraction
 - Extracting features for every person images
- Step 2: Feature Matching
 - Matching features to calculate the similarity score

From 2014, deep models were used to improve these two parts

Feature Extraction

Feature Matching

Feature Matching Methods

- Matching based on pre-defined locations
 - Global, local stripes, grid patches
- Matching based on semantic regions
 - Person parts, salient regions, attention regions

Global

Segmentation

Stripes

semantic

Grid

Part

Attention

Deep Learning Based Methods

different matching or partitioning strategies

Pre-defined MatchingLearning Matching

Deep Learning Based Methods

different matching or partitioning strategies

Pre-defined Matching Learning Matching

Stripes Based Matching: DeepMetric (2014)

- Dividing person image into 3 horizontal stripes
- Extracting CNN features from a pair of images
- Combining features within each stripe
- Computing similarity scores with fused features

Dong Yi, Zhen Lei, and Stan Z. Li. Deep metric learning for practical person re-identification. ICPR, 2014.

Stripes Based Matching: DeepReID (2014)

- Dividing person image into horizontal stripes
- Extracting CNN features from a pair of images
- Patch matching within each stripe

Patch matching:

- L. Suppose each stripe has 4 patches
- Match a pair of feature within one stripe
- 3. Get 4x4 response map for one channel
- 1. First channel detects blue, another green

Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang.

DeepReID: Deep filter pairing neural network for person re-identification. In CVPR, 2014.

Stripes Based Matching: AlignedReID (2017)

- Combing local feature and global feature
- Local using pre-defined stripes but dynamic matching
- Triplet loss by finding the shortest matching path.

Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. AlignedReID: Surpassing Human-Level Performance in Person Re-Identification. ArXiv, 2017.

Deep Learning Based Methods

different matching or partitioning strategies

Grid Patches Based: IDLA (2015)

Compute differences between each pixel and its 5x5 neighborhood pixels

	•	
UHK03	20.7%	54.7%

IDLA

DeepReID

Concatenating the differences for similarity learning

[1] IDLA (2015)

[2] PersonNet (2016) (deeper CNN)

[1] E. Ahmed, M. Jones, and T. K. Marks. An improved deep learning architecture for person re-identification. In CVPR, 2015.

[2] L. Wu, C. Shen, and A. van den Hengel. Personnet: Person re-identification with deep convolutional neural networks. CoRR, abs/1601.07255, 2016.

Challenge of Pre-defined Matching

- Spatial location misalignment due to detection or pose changes
- CNN based online feature matching is expensive for searching

Online Feature Matching: DCSL (2016)

- Deep Correspondence Learning instead of manually defining the matching grid patches
- Adaptively learn a hierarchical data-driven feature matching function

	IDLA	DCSL
CUHK03	54.7%	80.2%

pyramid matching

Yaqing Zhang, Xi Li, Liming Zhao, Zhongfei Zhang.
Semantics-Aware **D**eep **C**orrespondence **S**tructure **L**earning for Robust Person Re-identification. IJCAI, 2016.

Deep Learning Based Methods

different matching or partitioning strategies

Pre-defined Matching Learning Matching

Part Regions Learning: Part-Aligned (2017)

- Learn the key regions for Embedding instead of Matching
- Align the feature with the learnt region maps
- Extracting features and then calculating Euclidean distances

Rank1 on CUHK03: **85.4%** Rank1 on Market: **81.0%**

 DCSL
 DLPAR

 CUHK03
 80.2%
 85.4%

Liming Zhao, Xi Li, Yueting Zhuang, and Jingdong Wang.

Deeply-Learned Part-Aligned Representations for Person Re-Identification. ICCV, 2017.

Part Regions Learning: Part-Aligned (2017)

- An end-to-end solution to jointly
 - Learn the reid-sensitive maps for person matching
 - Learn the part-aligned deep representation

Proposed module

Part Regions Learning: Part-Aligned (2017)

Learn the maps without extra annotations.

ReID-sensitive regions

Different with traditional part segmentation

Attention Regions Learning: HydraPlus-Net (2017)

- Learn features by fusing three attention module with Softmax loss
- Learn attention map from different scale for each module
- Apply the attention map on different layers of the network

•	DLPAR	HPNet
CUHK03	85.4%	91.8%
Market	81.0%	76.9%

Xihui Liu, Haiyu Zhao, Maoqing Tian, Lu Sheng, Jing Shao, Shuai Yi, Junjie Yan, Xiaogang Wang: HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis. ICCV 2017

Attention Regions Learning: HydraPlus-Net (2017)

(a) Attention maps in three different levels or scales

(b,c) Each level maps contain 8 channels

(b,c) One channel learn one part or things (bags)

Attention Regions Learning: HA-CNN (2018)

- One global feature extraction branch
- Several local feature extraction branches (3 branches illustrated in figure)
- Harmonious Attention: learn a set of complementary attention maps
 - hard (regional) attention for the local branch
 - soft (pixel-level and scale-level) attention for the global branch

	HPNet	HA-CNN
CUHK03	91.8%	-
Market	76.9%	91.2%

Wei Li, Xiatian Zhu, and Shaogang Gong:
Harmonious Attention Network for Person Re-Identification. CVPR 2018

Deep Learning Based Methods

different matching or partitioning strategies

Pre-defined Matching Learning Matching

Pose-driven Embedding: PDC (2017)

- To better alleviate the challenges from pose variations
- Propose a FEN to learn and normalize human parts
 - Estimate 14 joints using a separated pose estimator (FCN).
 - Merge 14 joints to 6 parts and normalize to pre-defined locations
 - Generate a transformed and modified part image

		8 7 9 12 13 10 10 11 11			
		7 8 9 12 13 11			
(a)	(b)	(c)	(d)	(e)	(f)
	Feature	Embeddi	ng sub-N	let (FEN)	

	HPNet	PDC
CUHK03	91.8%	88.7%
Market	76.9%	84.1%

Feature Embedding sub-Net (FEN)

Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao, and Qi Tian: Pose-driven Deep Convolutional Model for Person Re-identification. ICCV 2017

Pose-driven Embedding: PDC (2017)

- Global feature learnt from original image with Softmax loss
- Part feature learnt from modified part image with Softmax loss
- Fusing global and part features with a sub-Net

	HPNet	PDC
CUHK03	91.8%	88.7%
Market	76.9%	84.1%

Framework

Feature Weighting sub-Net

Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao, and Qi Tian: Pose-driven Deep Convolutional Model for Person Re-identification. ICCV 2017

Pose-driven Embedding: PSE (2018)

- Separately trained View Predictor and off-the-shelf pose estimator
- Combine pose maps and RGB images as input
- Using view predictions to select one of three CNN units
- Embedding the pose and view information by simply training the CNN

	PDC	PSE
CUHK03	88.7%	-
Market	84.1%	90.3%

M. Saquib Sarfraz, Arne Schumann, Andreas Eberle, Rainer Stiefelhagen: A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking. CVPR 2018

Performances

Methods	Publication	Types	CUHK03	Market -1501
DeepReID	CVPR 2014	Stripes + Matching	20.7	-
IDLA	CVPR 2015	Grid Patches + Matching	54.7	-
PersonNet	ArXiv 2016	Grid Patches + Matching	64.8	37.2
DCSL	IJCAI 2016	Structure Learning+ Matching	80.2	-
HydraPlus-Net	ICCV 2017	Attention + Embedding	91.8	76.9
Part-Aligned	ICCV 2017	Attention + Embedding	85.4	81.0
PDC	ICCV 2017	Pose + Embedding	88.7	84.1
PSE	CVPR 2018	Pose + Embedding	_	90.3
HA-CNN	CVPR 2018	Attention + Embedding	_	91.2
AlignedReID	ArXiv 2017	Stripes Association + Embedding	92.4	91.8

Conclusion

Person ReID with deep learning

Extracting feature maps using CNN

Matching features by comparing on different locations

Matching on pre-defined spatial locations

- Stripes
- Grid
- Patches

Matching with learnt semantic regions

- Learn correspondence implicitly in the network
- Learn key part regions for matching
- Learn attention regions for feature embedding
- Using off-the-shelf pose/view estimator for feature embedding

Acknowledgement

Dr. Liming Zhao

Dr. Yaqing Zhang