Задача 1 (8 баллов)

Тензор проводимости электронного газа, помещенного во внешнее магнитное поле ${\bf B}\parallel z$, при условии $\omega_c au \gg 1$ дается выражением (см. домашнюю задачу 5)

$$\sigma(\omega) = \frac{ne^2}{m} \begin{pmatrix} \frac{\mathrm{i}\omega}{\omega^2 - \omega_c^2} & -\frac{\omega_c}{\omega^2 - \omega_c^2} & 0\\ \frac{\omega_c}{\omega^2 - \omega_c^2} & \frac{\mathrm{i}\omega}{\omega^2 - \omega_c^2} & 0\\ 0 & 0 & \frac{\mathrm{i}}{\omega} \end{pmatrix}, \tag{1}$$

где $\omega_c = eB/(mc)$ – циклотронная частота. Найдите частоту плазменных колебаний, распространяющихся в объемном материале с проводимостью (1) в направлении (а) параллельном и (b) перпендикулярном оси z.

Задача 2 (8 баллов)

Шаровая оболочка, сделанная из магнитного материала с проницаемостью μ , помещена в статическое внешнее магнитное поле B_0 . Внутренний и внешний радиусы оболочки равны соответственно r_1 и r_2 . Найдите величину магнитного поля внутри оболочки. Рассмотрите предельные случаи (a) $r_1 \to 0$ и (b) $r_1 \to r_2$

Задача 3 (8 баллов)

В металле с проводимостью σ вырезана шарообразная полость радиуса a. В ее центр помещен магнитный диполь $\boldsymbol{m}(t) = \boldsymbol{m}_0 \mathrm{e}^{-\mathrm{i}\omega t} + \boldsymbol{m}_0^* \mathrm{e}^{\mathrm{i}\omega t}$. Используя квазимагнитостатическое приближение, найдите магнитное поле внутри полости. Рассмотрите предельный случай $\sigma \to \infty$.