MS&E 236 / CS 225: Lecture 5 Graphs and graph algorithms

April 14, 2024

1 Plan for today

- Graphs
- Several famous graph algorithms:
 - Minimum vertex cover
 - Maximum cut

2 Graphs

- Set of objects, called *nodes*, connected by *edges*
- Nodes and edges can have data associated with them
- Example: molecule
 - Nodes are atoms, data describe atom type (carbon, nitrogen, hydrogen, ...)
 - Edges are bonds, data describe bond type (single bound, double bond, ...)
- Example: rail network
 - Nodes are cities, edges are connections with data describing journey time
- Example: social network. Nodes are people, edges are friendships
- Notation: Graph G = (V, E)
 - $-V = \{1, \dots, n\}$ is a set of nodes/vertices
 - E is a set of edges/links. Edge between $i, j \in V$ denoted (i, j)
 - Neighborhood of node $i \in V$ is the set of nodes it's connected to by an edge
 - * Denoted $N(i) \subseteq V$
 - * Node's degree is |N(i)|

Figure 1: 2-approximation algorithm for the minimum vertex cover

3 Minimum vertex cover

Definition 3.1 (Vertex cover). Set $S \subseteq V$ s.t. for every $(i,j) \in E$, $i \in S$, $j \in S$, or both

- \bullet Goal: given a graph G, find smallest vertex cover
- Example application:
 - Installing cameras in corners (nodes) covering all hallways (edges) on a floor
- Finding the minimum vertex cover is NP-hard
- 2-approximation algorithm (see Figure 1):
 - 1. Initialize the vertex cover $S \leftarrow \emptyset$
 - 2. While $E \neq \emptyset$:
 - (a) Choose the edge in $(i, j) \in E$ that maximizes |N(i)| + |N(j)|
 - (b) Add i, j to the vertex cover: $S \leftarrow S \cup \{i, j\}$
 - (c) Remove all edges incident to i and j from E
 - 3. Return S

Theorem 3.2. Let S^* be the minimum vertex cover. Then $|S| \leq 2|S^*|$

Proof. • Let E' be the set of edges the algorithm picked in Step 2a

- To cover E', S^* must include at least one node from each edge in E'
- No two edges in E' share an endpoint
 - Once an edge is chosen, all edges incident to its endpoints are deleted
- Therefore, no two edges are covered by the same vertex in S^* , so $|S^*| \ge |E'|$
- As a result, $|S| = 2|E'| \le 2|S^*|$

Figure 2: $\frac{1}{1+\Delta}$ -approximation algorithm for maximum independent set

4 Maximum independent set

Definition 4.1 (Independent set). $S \subseteq V$ s.t. no vertices in S are connected by an edge

- Goal: given a graph G, find largest independent set
- Δ : maximum degree in G
- $\frac{1}{1+\Delta}$ -approximation algorithm (see Figure 2):
 - 1. Initialize the independent set $S \leftarrow \emptyset$
 - 2. While $V \neq \emptyset$:
 - (a) Choose vertex $v \in V$ with minimum degree |N(v)|
 - (b) Add v to independent set: $S \leftarrow S \cup \{v\}$
 - (c) Remove v and its neighbors from V
 - 3. Return S

Theorem 4.2. Let V^* be the maximum independent set. Then $|S| \geq \frac{|V|}{\Delta+1} \geq \frac{|V^*|}{\Delta+1}$

Proof. • u is in $V \setminus S$ because it's removed as a neighbor of some node $v \in S$

- Removed when algorithm adds v to S
- "Charge" \boldsymbol{u} to \boldsymbol{v}
- $v \in S$ can be charged $\leq \Delta$ times (has $\leq \Delta$ neighbors)
- Implies that $|V \setminus S| \le \Delta |S|$
- So $|V| = |S| + |V \setminus S| \le |S|(1 + \Delta)$

5 Maximum cut

- One of the most famous approximation algorithms was developed for max-cut
 - Goemans-Williamson algorithm; we'll see a simpler algorithm today
- A cut in a graph is a subset of its vertices $S \subseteq V$

Figure 3: 2-approximation algorithm for maximum cut

- The weight of a cut w(S) is the number of edges that cross S to $V \setminus S$
- Goal: find a cut with maximum weight
- 2-approximation algorithm (Figure 3):
 - 1. Begin with arbitrary initial cut $S \subseteq V$
 - 2. For each $i \in V$, let w_i be the cut's weight if you switched the side i is on
 - 3. If $w_i \leq w(S)$ for all i, terminate and return S
 - 4. Else, let $i^* = \operatorname{argmax} w_i$. Switch the side of the cut i^* is on and return to step 2

Theorem 5.1. Let S^* be the maximum weight cut. Then $w(S) \geq \frac{1}{2}w(S^*)$

Proof. • First, we claim that $w(S) \ge \frac{|E|}{2}$

- For any vertex $i \in S$ some vertices in N(i) are in S, some are in $V \setminus S$
- Must be more vertices in $V \setminus S$
 - * Otherwise, we could switch i to $V \setminus S$ and improve the cut's weight
- Therefore, number of edges incident to i that cross the cut is $\geq \frac{|N(i)|}{2}$

$$w(S) \ge \frac{1}{2} \sum_{i \in V} (\text{# of } i\text{'s incident edges that cross the cut})$$

$$\ge \frac{1}{2} \sum_{i \in V} \frac{|N(i)|}{2}$$

$$\ge \frac{1}{4} \sum_{i \in V} |N(i)|$$

$$= \frac{1}{4} \cdot 2|E|$$

• Meanwhile, $w(S^*) \leq |E|$, so $w(S) \geq \frac{|E|}{2} \geq \frac{1}{2}w(S^*)$

6 Greedy algorithms

- "Greedily" choose a node to add/remove from the solution maximizing some score
 - In vertex cover: |N(i)| + N(j)|

- Independent set: |N(v)|
- Max cut: improvement of cut weight when node is swapped
- Hand-designed scores we saw today lead to decent approximation algorithms
- This module: can a ML approach learn an even better scoring rule?