

Pracownia Fizyczna Zdalna Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

TEMAT: Wyznaczanie współczynnika tarcia statycznego										
Wydział	Matematyki Stosowanej	Kierunek	Informatyka							
Grupa/Sekcja	2/C	Rok akademicki	2021							
Rok studiów	I	Semestr	2							
Oświa	dczam, że niniejsze sprawozdanie jes	t całkowicie moim/r	naszym dziełem, że żaden							
z fragr	nentów sprawozdania nie jest zapoży	czony z cudzej prac	y. Oświadczam, że jestem							
świador	na/świadom odpowiedzialności karne	ej za naruszenie prav	w autorskich osób trzecich.							
Lp.	Imię i nazwisko		Podpis							
1.	Grzegorz Koperwas									
2.										
3.										

Ocena poprawności elementów sprawozdania

Ocena	Ocena poprawności elementów sprawożdania										
data	wstęp i cel	struktura		rachunek		zapis					
oceny	ćwiczenia	sprawozdania	obliczenia	niepewności	wykres	końcowy	wnioski				

Ocena końcowa

OCENA lub	
LICZBA PUNKTÓW	
DATA	
PODPIS	

1. Wstęp teoretyczny

Celem doświadczenia jest zbadanie wartości tarcia statycznego tektury i foli aluminiowej oraz zbadanie wpływu powierzchni na wartość maksymalnej siły tarcia statycznego.

Rysunek 1: Rozkład sił w układzie.

Gdzie:

- F_s siła tarcia statycznego,
- Q_1, Q_2 siły ciężaru obciążników,
- \bullet N siły naciągu linki.

Wartość maksymalna siły tarcia statycznego w układzie z rysunku 1 jest dana wzorem:

$$F_{s_{\max}} = f_s \cdot Q_2 \tag{1}$$

gdzie f_s to współczynnik tarcia statycznego. W układzie wartość maksymalna siły tarcia statycznego jest również równa wartości siły naciągu N, której wartość jest natomiast równa wartości siły ciężaru Q_1 .

Zatem:

$$F_{s_{\text{max}}} = N = Q_1, \quad \mathbf{Z} \quad (1.)$$

$$f_s \cdot Q_2 = Q_1$$

$$f_s = \frac{Q_1}{Q_2} = \frac{m_1 g}{m_2 g}$$

Ostatecznie:

$$f_s = \frac{m_1}{m_2} \tag{2}$$

2. Wyniki pomiarów:

Material	rozmiar					masa sumaryczna $[g] \pm 1g$									
Material	$[cm^2] \pm 1cm$	$[g] \pm 1g$	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}			
tektura +	36	358	92	121	137	124	135	127	107	122	123	156			
tektura +	50	358	131	169	91	146	174	129	153	161	184	135			
	64	357	163	154	144	151	129	153	131	153	144	114			
folia + folia	36	355	183	148	182	148	185	174	165	165	-	-			
	50	356	171	191	176	162	173	153	166	183	-	-			
	64	359	190	178	169	180	170	176	154	156	-	-			

Tablica 1: Wyniki pomiarów

Masa ostatniej monety $[g] \pm 1g$										
m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}	
6	6	5	5	3	5	5	3	3	3	
3	3	6	4	3	3	3	3	1	5	
3	5	6	2	5	2	6	3	3	6	
3	3	1	4	5	2	2	4	-	-	
2	3	3	6	3	3	3	3	-	-	
3	5	6	3	3	3	3	3	_	-	

Tablica 2: Masa ostatniej monety dla każdego pomiaru

Należy zauważyć, iż używana folia aluminiowa posiadała fabryczną fakturę heksagonalną.

3. Przetwarzanie danych oraz obliczone wartości

Z powodu błędów grubych przy pomiarach tektura + tektura, eliminujemy największy i najmniejszy pomiar, gdyż nie zostały one wykonane poprawnie.

	masa sumaryczna po eliminacji $[g] \pm 1g$										
m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}		
-	121	137	124	135	127	107	122	123	-		
131	169	-	146	174	129	153	161	-	135		
-	154	144	151	129	153	131	153	144	1		
183	148	182	148	185	174	165	165	-	-		
171	191	176	162	173	153	166	183	-	-		
190	178	169	180	170	176	154	156	-	-		

Tablica 3: Wyniki pomiarów po eliminacji

Podczas pomiarów była zapisywana również masa ostatniej dodanej monety.

Błąd danego pomiaru $u(m_i)$ został obliczony jako połowa wartości z tablicy 2.

Z powodu tego, iż masy ostatnich monet w tablicy 2 są różne, obliczono średnią ważona \bar{m} , gdzie za wagi przyjęto $u(m_i)^{-2}$, gdyż funkcja $f(x) = x^{-2}$ jest malejąca.

Materiał	$ \begin{array}{c c} \text{rozmiar} \\ [cm^2] \pm 1cm^2 \end{array} $	masa obciążnika $[g] \pm 1g$	Średnia waż. $\bar{m} [g]$	Niepewność $\bar{m}[g]$	f_s	$u\left(f_{s}\right)$
tektura +	36	358	125	0,69	0,350	0,0022
tektura +	50	358	151	0,57	0,423	0,0020
	64	357	149	0,54	0,418	0,0019
folia + folia	36	355	175	0,36	0,493	0,0017
	50	356	173	0,51	0,485	0,0020
	64	359	171	0,58	0,477	0,0021

Tablica 4: Obliczone wartości

Rysunek 2: Wykresy zależności między powierzchnią styku a współczynnikiem tarcia

4. Wnioski

Powierzchnia styku a f_s

Z wykresów na rysunku 2 widzimy, iż dla folii + folii nie ma żadnego związku między powierzchnią styku a współczynnikiem tarcia statycznego.

Dla tektury + tektury nie możemy dostrzec jednoznacznego związku.

Wartości współczynnika tarcia statycznego

Nie znaleźliśmy związku między powierzchnią styku a f_s , zatem ostatecznie uśredniamy¹ wartości z tablicy 4 i, wraz z największą niepewnością, otrzymujemy:

Dla tektura + tektura:
$$\bar{f}_s=0.403;~u\left(\bar{f}_s\right)=0.0020$$
 Dla folia + folia: $\bar{f}_s=0.488;~u\left(\bar{f}_s\right)=0.0025$

5. Sposoby na ograniczenie błędów

Głównymi źródłami błędów była niepewność wagi kuchennej na poziomie $\frac{1g}{\sqrt{3}}$, oraz duża rozbieżność wyników pomiarów.

W celu zwiększenia precyzji pomiarów należałoby użyć bardziej precyzyjnych przyrządów oraz należałoby zastąpić masę odważników innym źródłem siły, na przykład cylindrem pneumatycznym z manometrem pokazującym maksymalne ciśnienie². Po wyznaczeniu charakterystyki siły F_p cylindra od ciśnienia P otrzymujemy źródło siły nieposiadające wad manualnego dodawania monet do szalki, pod warunkiem, że ciśnienie będzie dodawane powoli.

Innym sposobem na zwiększenie precyzji jest zmiana metody pomiarowej na inną, na przykład z $r\'owniq\ pochyłq.$

¹Uśredniono średnią ważoną gdzie za wagi przyjęto $u(f_s)^{-2}$

²Cylindry pneumatyczne LEGO oraz manometr cyfrowy podłączony do arduino jest ciekawym rozwiązaniem.