Dimensionality Reduction

Fuying

School of Business Administration South China University of Technology

July 26,2019

Outline

- 1 Introduction of Dimensionality Reduction
 - Dimensionality Reduction Goals
 - Preserved information
- Principle Component Analysis(PCA)
 - PCA
- 3 Multi-Dimensionality Scaling(MDS)
 - MDS
 - Equivalence of MDS and PCA
 - Kernel PCA and MDS
- Manifold Learning
 - Isomap
 - IIE

Dimensionality reduction: Definition

- Dimensionality reduction is the transformation of high-dimensional data into a lower dimensionality(intrinsic dimension exists) to preserve the information as much as possiable or for some specialised tasks (classfication or visualization)
- R=10, $\Theta = (\theta_1, \theta_2, ... \theta_n)$, $X_1 = Rsin(\theta), X_2 = Rcos(\theta), Y = A_{(3\times 2)}X + \epsilon$
- Observed dimension is 3, linear dimension reduction is 2, while intrinsic dimension is 1

Dimensionality reduction:Intrinsic dimensionality

- The ability to reduce redundancy to preserve much information is quiet different for different method.
- Linear methods can only detect the linear redundancy.
- For some task oriented problem, we may redunce the dimensionality into a very low dimension for visualization or classfication even though its intrinsic dimension is larger.

Dimensionality Reduction Goals

- ◆ High dimension leads to the curse of dimensionality → data intrinsic dimensionality is lower than observed dimensionality → compression of observed data to reduce redundancy to preserve much information as possiable to improve efficiency or reduce overfit.
 - PCA(Linear method, can only find 2 dimension in last example)
 - MDS(Linear method)
 - Sernel PCA(Non-linear method)
 - Isomap(Manifold learning, Non-linear)
 - 6 LLE(Manifold learning, Non-linear)
- For some task oriented problem, we want to reduce dimension for data visualization and exploratory data analysis also need to reduce dimension.
 - visualization(t-SNE)
 - classification(LDA)

Preserved information

Preserve info after projecting into lower dimensional space

$$Y \in \mathbb{R}^{n \times N} \to \tilde{X} \in \mathbb{R}^{m \times N} \to \tilde{Y} \in \mathbb{R}^{n \times N}, m < n$$
 s.t. $Info(\tilde{X}) \approx Info(Y)$

- ullet Preserve data points, $ilde{Y} = f(ilde{X}) pprox Y$
- Preserve pair wise distance (or dot products)

$$d(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{j}) \approx d(\mathbf{y}_{i}, \mathbf{y}_{j}), \forall i, \forall j$$

Preserve local information

$$d(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j) \approx d(\mathbf{y}_i, \mathbf{y}_j), \forall i, \forall j \in \text{Neighbor}(i)$$

Preserve task-specific information(classfication or visualization)

Preserve data points

- $Y \in \mathbb{R}^{n \times N} \to \tilde{X} \in \mathbb{R}^{m \times N} \to \tilde{Y} \in \mathbb{R}^{n \times N}, m < n$
- minimize $\|\tilde{Y} Y\|_F^2$
- Preserving data points is the most elaborate method.
- Example:PCA and Auto-Encoder

Preserve data points(.cont)

- Comprehensive Introduction to Auto-Encoder
- Auto-Encoder can deal with non-linear problem compared to PCA

Preserve pairwise distance(or dot products)

- Gram Matrix: $G_{ij} = \mathbf{y_i} \cdot \mathbf{y_j} = \mathbf{\tilde{x_i}} \cdot \mathbf{\tilde{x_j}}$ and $\tilde{G}_{ij} = \mathbf{\tilde{y_i}} \cdot \mathbf{\tilde{y_j}}$
- $J(Y, \tilde{Y}) = \left\| G \tilde{G} \right\|_{F}^{2}$
- $D_{ij} = \mathbf{x_i} \cdot \mathbf{x_i} + \mathbf{x_j} \cdot \mathbf{x_j} 2\mathbf{x_i} \cdot \mathbf{x_j} = G_{ii} + G_{jj} 2G_{ij}$
- One-one-correspondence between D and G
- When the distance is Euclidean distance(PCA equals to MDS)
- When the distance is Geodesic distance(Isomap)

Preserve local information

- LLE is a local method compared with MDS or Isomap as a global method
- $d(\mathbf{x_i}, \mathbf{x_j}) \approx d(\mathbf{y_i}, \mathbf{y_j}), \forall i, \forall j \in \text{Neighbor}(i)$
- Each instance can be linearly represented by its several nearby instances.

Intuitive view of some methods

• Manifold (an example of Swiss roll):

Preserve task-specific information

- Task oriented: classfication and visualization(MINIST dataset)
- The dimensionality after being reduced may lower than its intrinsic dimensionality.

Outline

- Introduction of Dimensionality Reduction
 - Dimensionality Reduction Goals
 - Preserved information
- 2 Principle Component Analysis(PCA)
 - PCA
- 3 Multi-Dimensionality Scaling(MDS)
 - MDS
 - Equivalence of MDS and PCA
 - Kernel PCA and MDS
- Manifold Learning
 - Isomap
 - LLE

Dimensionality Reduction Goals in PCA:Preserve data points

- Goal:Reduce redundancy in the data and preserve as much information as possiable
- Intrinsic Variances $X \in \mathbb{R}^{m \times N}$, uncorrected
- Observed Variances $Y \in \mathbb{R}^{n \times N}$ are given by Y = AX
- Assume n > m
- Find U to finish a tranformation(U is orithonormal): $\tilde{X} = U^T Y$ and Reconstract $\tilde{Y} = U \tilde{X}$
- Minimize $\|Y \tilde{Y}\|_F^2$
- Equivalent to the maximum variance

PCA: Equivalent to the maximum variance

- $\mathbf{y_i}$ as the i^th column of $\mathbf{Y}, i = 1, 2, ...N$, supposed to be zero-mean
- Firstly, we just want to find a single direction.
- Let **u**₁ denote the principle axis(u is orthonormal)
- We want to maximize the following function:

$$\frac{1}{N}\sum_{i=1}^{N}(\mathbf{y_i}\cdot\mathbf{u_1})^2 = \frac{1}{N}\sum_{i=1}^{N}(\mathbf{y_i^Tu_1})^2$$

Which is

$$\frac{1}{N}\sum_{i=1}^{N}(\mathbf{y_i^T}\mathbf{u_1})^2 = \frac{1}{N}\sum_{i=1}^{N}\mathbf{u_1^T}\mathbf{y_i}\mathbf{y_i^T}\mathbf{u_1} = \mathbf{u_1}^T\frac{1}{N}YY^T\mathbf{u_1}$$

PCA: Equivalent to the maximum variance among data points after projection

- $\mathbf{u_1} = \operatorname{arg\,max}_u \mathbf{u^T} \frac{1}{N} Y Y^T \mathbf{u} \text{ (s.t. } \mathbf{u^T} \mathbf{u} = 1)$
- The corresponding Lagrangian is given by:

$$L(\mathbf{u}, \lambda) = \mathbf{u}^{\mathsf{T}} \frac{1}{N} Y Y^{\mathsf{T}} \mathbf{u} - \lambda (\mathbf{u}^{\mathsf{T}} \mathbf{u} - 1)$$

Taking the gradient and setting it equal to zero we get:

$$\frac{1}{N}YY^T\mathbf{u} = \lambda\mathbf{u}$$

- $\frac{1}{N}YY^T$ is symmetric and positive semi-definite matrix
- Covariance matrix $\frac{1}{N}YY^T$ has an eigen-decomposition

$$\frac{1}{N}YY^T = U\Lambda_{PCA}U^T$$

PCA Algorithm

- Inputs: Observed data matrix Y and number of PCA modes k
- ullet output: Recovered intrinsic variables $ilde{X}$ and reconstructed $ilde{Y}$
- step1: Compute the mean $\mu_j = \frac{1}{N} \sum_{i=1}^{N} Y_{ji}$
- ullet step2: Center the data: Subtract μ form each column of Y
- step3:Compute the eigen-decomposition of $\frac{1}{N}YY^T$:

$$\frac{1}{N}YY^T = U\Lambda_{PCA}U^T$$

- step4:Select the top k eigen vectors U=U(:,1:K)
- ullet step5: Project onto the principal components $ilde{X}=U^TY$
- step6:Reconstract $\tilde{Y} = U\tilde{X} + \mu$

Outline

- Introduction of Dimensionality Reduction
 - Dimensionality Reduction Goals
 - Preserved information
- Principle Component Analysis(PCA)
 - PCA
- Multi-Dimensionality Scaling(MDS)
 - MDS
 - Equivalence of MDS and PCA
 - Kernel PCA and MDS
- Manifold Learning
 - Isomap
 - IIE

MDS:Preserve pairwise Euclidean distance(or dot product)

- MDS preserves the pairwise distance rather than data points compared to PCA or Auto-Encoder.
- We only know the distance(e.g.Euclidean) of each original point in dimension n,Which can be defined as D
- Let $\mathbf{x}(\mathbf{i}) \in R^m$ be the i^{th} column of \tilde{X}
- For any two points i and j: $D_{ij} = \|\mathbf{y_i} \mathbf{y_j}\|_F^2 = \|\mathbf{\tilde{x_i}} \mathbf{\tilde{x_j}}\|_F^2$

MDS:Preserve pairwise Euclidean distance(or dot product)

- Given that: $Y = A\tilde{X}$
- Instead of corrleations, define a Gram matrix: $G = Y^T Y$
- Suppose that A is orthogonal(if not, we can do a transmision to make A is orthogonal): $G = Y^T Y = \tilde{X}^T A^T A \tilde{X} = \tilde{X}^T \tilde{X}$
- G is an NxN symmetric positive semi-definite matrix, which is the pairwise inner products of the data points, that is: $G_{ii} = (\tilde{X}^T \tilde{X}) = \tilde{x}_i \cdot \tilde{x}_i$

MDS Algorithm

- Input:Given distance matrix D
- $D_{ij} = \|\mathbf{y_i} \mathbf{y_j}\|_F^2 = \|\tilde{\mathbf{x_i}} \tilde{\mathbf{x_j}}\|_F^2 = \|\tilde{\mathbf{x_i}} \cdot \tilde{\mathbf{x_i}}\| + \|\tilde{\mathbf{x_j}} \cdot \tilde{\mathbf{x_j}}\| 2\|\tilde{\mathbf{x_i}} \cdot \tilde{\mathbf{x_j}}\|$
- By constructing Gram matrix G,we know that: $G = Y^TY = \tilde{X}^TA^TA\tilde{X} = \tilde{X}^T\tilde{X}$
- Output: \tilde{X}
- So we can calculate X by:

$$D \rightarrow G = Y^T Y \rightarrow G = Y^T Y = \tilde{X}^T \tilde{X}$$

• Question: What is the relationship between D and G?

MDS Equivalence of MDS and PCA

One-one-correspondence between D and G

•
$$D_{ij} = \|\tilde{\mathbf{x}}_{i} \cdot \tilde{\mathbf{x}}_{i}\| + \|\tilde{\mathbf{x}}_{j} \cdot \tilde{\mathbf{x}}_{j}\| - 2\|\tilde{\mathbf{x}}_{i} \cdot \tilde{\mathbf{x}}_{j}\|$$

• Centering
$$X$$
: $\frac{1}{N} \sum_{i} \tilde{\mathbf{x}_{i}} = 0$ and $\frac{1}{N} \sum_{i} \tilde{\mathbf{x}_{i}} \cdot \tilde{\mathbf{x}_{i}} = \sigma^{2}$

$$\frac{1}{N} \sum_{i} D_{ij} = \frac{1}{N} \sum_{j} (\tilde{\mathbf{x}_{i}} \cdot \tilde{\mathbf{x}_{i}} + \tilde{\mathbf{x}_{j}} \cdot \tilde{\mathbf{x}_{j}} - 2\tilde{\mathbf{x}_{i}} \cdot \tilde{\mathbf{x}_{j}} = \sigma^{2} + \tilde{\mathbf{x}_{j}} \cdot \tilde{\mathbf{x}_{j}})$$

$$\frac{1}{N} \sum_{j} D_{ij} = \frac{1}{N} \sum_{j} (\tilde{\mathbf{x}_{i}} \cdot \tilde{\mathbf{x}_{i}} + \tilde{\mathbf{x}_{j}} \cdot \tilde{\mathbf{x}_{j}} - 2\tilde{\mathbf{x}_{i}} \cdot \tilde{\mathbf{x}_{j}} = \sigma^{2} + \tilde{\mathbf{x}_{i}} \cdot \tilde{\mathbf{x}_{i}})$$

$$\frac{1}{N^{2}} \sum_{i,j} D_{ij} = \frac{1}{N} \sum_{j} (\frac{1}{N} \sum_{j} D_{ij}) = \frac{1}{N} \sum_{j} (\sigma^{2} + \tilde{\mathbf{x}_{j}} \cdot \tilde{\mathbf{x}_{j}}) = 2\sigma^{2}$$

•
$$\mathbf{x_i} \cdot \mathbf{x_j} = G_{ij} = -\frac{1}{2}(D_{ij} - \frac{1}{N}\sum_i D_{ij} - \frac{1}{N}\sum_j D_{ij} + \frac{1}{N^2}\sum_{i,j} D_{ij})$$

• Let \mathbb{I} be the NxN matrix with all the element is 1,then:

$$G = -\frac{1}{2}(D - \mathbb{I}D\frac{1}{N} - \frac{1}{N}D\mathbb{I} + \frac{1}{N}D\frac{1}{N})$$

MDS Algorithm

- One-one-correspondence between D and G
- $G = Y^T Y = \tilde{X}^T A^T A \tilde{X} = \tilde{X}^T \tilde{X}$
- Compute the eigen-decomposition of $G = V \Lambda_M DSV^T$
- Dimensionality Reduction:Set $\widetilde{X} = I_{pN} \Lambda_M DSV^T$
- \bullet \widetilde{X} are the p-dimensional corrdinates with the cloest Gram matrix to X,minimizes the residual R:

$$G = X^T X = \widetilde{X}^T \widetilde{X} + \sum_{j=p+1}^{N} (\lambda_{MDS})_j v(j) v(j)^T = \widetilde{G} + R$$

Equivalence of MDS and PCA

PCA needs Y to compute correlations:

$$\frac{1}{N}YY^{T} = U_{PCA}\Lambda_{PCA}U_{PCA}^{T}, \text{then } X_{PCA} = I_{PxN}U_{PCA}^{T}Y$$

MDS needs Y to compute Gram matrix:

$$D o G = \tilde{X}^T \tilde{X} = Y^{\dot{T}} Y = V_{MDS} \Lambda_{MDS} V_{MDS}^T$$
, then $X_{MDS} = I_{P imes N} \Lambda_{MDS}^{0.5} V_{MDS}^T$

• To prove the equivalence of MDS and PCA, Suppose that Y has singular value decomposition: $Y = USV^T(U \text{ or } V \text{ is orthonormal,Respectively})$

Equivalence of MDS and PCA(cont.)

MDS Example

- Table below shows the distances between US cities
- Data Visualization using Multidimensional Scaling

	Atlanta	Chicago	Denver	Houston	Los Angeles	Miami	New York	San Francisco	Seattle	Washington, DC
Atlanta	0	587	1212	701	1936	604	748	2139	2182	543
Chicago	587	0	920	940	1745	1188	713	1858	1737	597
Denver	1212	920	0	879	831	1726	1631	949	1021	1494
Houston	701	940	879	0	1374	968	1420	1645	1891	1220
Los Angeles	1936	1745	831	1374	0	2339	2451	347	959	2300
Miami	604	1188	1726	968	2339	0	1092	2594	2734	923
New York	748	713	1631	1420	2451	1092	0	2571	2408	205
San Francisco	2139	1858	949	1645	347	2594	2571	0	678	2442
Seattle	2182	1737	1021	1891	959	2734	2408	678	0	2329
Washington, DC	543	597	1494	1220	2300	923	205	2442	2329	0

MDS Example

Kernel PCA

- A linear decision boundary in the high-dimensional feature space corresponds to a complex nonlinear decision boundary in the original space.
- It turns out that the same trick can be applied to PCA, making it possible to perform complex nonlinear projections for dimensionality reduction.

Kernel-PCA

• Map \mathbf{y} in \mathbb{R}^n into a high(possible infinite) dimensional reducing kernel Hibert space

$$y \in \mathbb{R}^n \to \phi(y) \in \mathbb{H}$$

• Kernel $J(y_i, y_i)$ is inner product:

$$J(y_i, y_j) = \langle \Phi(y_i), \Phi(y_j) \rangle$$

- Eigenvectors of matrix J give new coordinates for the data (MDS)

Kernel-PCA for manifold learning will fail

- The swiss roll, reduced to two dimensions using an RBF kernel and a sigmoid kernel, respectively. (Logistic).
- It is often good at preserving clusters of instances after projection.

Outline

- Introduction of Dimensionality Reduction
 - Dimensionality Reduction Goals
 - Preserved information
- Principle Component Analysis(PCA)
 - PCA
- 3 Multi-Dimensionality Scaling(MDS)
 - MDS
 - Equivalence of MDS and PCA
 - Kernel PCA and MDS
- Manifold Learning
 - Isomap
 - LLE

Projection may fail

- Projection(e.g.PCA) is not always the best approach for dimensionality reduction. In many cases, the subspace may twist and turn, such as in the famous Swiss roll toy dataset.
- In this case, projection method may fail.
- However, what we really want is to unroll the Swiss roll to obtain the 2D dataset.

Manifold learning

- Manifold: m-dimensional manifold is a part of an n-dimensional space (m < n) that locally resembles a m-dimensional hyperplane(In the case of the Swiss roll, m = 2 and n = 3. it locally resembles a 2D plane, but it is rolled in the third dimension.
- Manifold learning: Modeling the manifold on which the training instances lie.

Isomap:Preserve the global pairwise geodesic distance

- Identify neighbourhoods around each point (local points, assumed to be local on the manifold). Euclidean distances are preserved within a neighbourhood.
- For points outside the neighbourhood, estimate geodesic distances by shortest path in graph.
- Use classical MDS with geodesic distances(replace Euclidean distance to Geodesic distance)

LLE:Preserve the local pairwise distance

- **1** A very powerful nonlinear dimensionality reduction technique.
- 2 LLE works by first measuring how each training instance linearly relates to its closest neighbors.
- Set where these local relationships are best preserved.
- particularly good at unrolling twisted manifolds, especially when there is not too much noise.
- Solution
 LLE preserves the local pairwise distance while Isomap and MDS preserves the global pairwise distance.

LLE

- Distances between instances are locally well preserved.
- The right part of the unrolled Swiss roll is squeezed, while the left part is stretched.

LLE step1:linearly modeling local relationships

$$\hat{W} = \operatorname*{arg\,min}_{W} \sum_{i=1}^{m} \|\mathbf{y^{(i)}} - \sum_{j=1}^{m} \hat{w}_{i,j}\mathbf{y^{(j)}}\|$$

subject to
$$\begin{cases} w_{i,j} = 0 & \text{if } y^{(j)} \text{ is not one of the k c.n. of } \mathbf{y^{(i)}} \\ \sum_{i=1}^m w_{i,j} = 1 & \text{for } i = 1,2,...,m \end{cases}$$

- Each instance is linearly represented by its several nearby instances.
- W encodes the local linear relationships between the training instance.

LLE step2:reduce dimensionality while preserving relationships

$$ilde{X} = \operatorname*{arg\,min}_{ ilde{x}} \sum_{i=1}^m \| ilde{\mathbf{x}}^{(\mathbf{i})} - \sum_{j=1}^m \hat{w}_{i,j} ilde{\mathbf{x}}^{(\mathbf{j})} \|$$

- Keeping the weight fixed and finding the optimal position of the instances' images in the low-dimensional space.
- By solving the above optimization problem can obtain the mapped data set \tilde{X} .
- A regression learner can be trained to predict the low-dimensional space coordinates of the new sample.

Summary

- Preserve each individual data point
 - ullet $Y o ilde{X} o ilde{Y}$
 - To minimize $J(Y, \tilde{Y}) = \sum_{i=1}^{N} \|\mathbf{y_i} \tilde{\mathbf{y_i}}\|$
 - Example: Auto Encoder
- Preserve pairwise distance(or dot product)

•
$$G_{ij} = \mathbf{\tilde{x}_i} \cdot \mathbf{\tilde{x}_j} = \mathbf{y_i} \cdot \mathbf{y_j}$$
 and $\tilde{G}_{ij} = \mathbf{\tilde{y}_i} \mathbf{\tilde{y}_j}$

$$\bullet \ \ D_{ij} = \tilde{\mathbf{x}_i} \cdot \tilde{\mathbf{x}_i} + \tilde{\mathbf{x}_j} \cdot \mathbf{x_j} - 2\tilde{\mathbf{x}_i} \cdot \tilde{\mathbf{x}_j}$$

•
$$J(Y, \tilde{Y}) = \left\| G - \tilde{G} \right\|_2$$

- Euclidean distance(PCA); Geodesic distance(Isomap)
- Preserve local information
 - LLE(linearly represented by its several nearby instance)
- Task oriented
 - LDA(classfication)
 - t-SNE(visualization)

Reference

- http://math.gmu.edu/ berry/Presentations/PCAMDS.pdf (PCA and MDS)
- manifolds/lecture13.ppt (PCA and MDS)
- Books: Machine Learning: A Bayesian and Optimization Perspective(PCA and Kernal PCA in Chapter 19)
- Books: Hands-On Machine Learning with Scikit-Learn and TensorFlow(Manifold learning in chapter 8)

More

$$S = E((x-\mu)(x-\mu)^{T})$$

$$S^{T} = S$$

$$So S is symmetric$$

$$u S u^{T} = uE((x-\mu)(x-\mu)^{T})u^{T}$$

$$= E(u(x-\mu)(x-\mu)^{T})$$

$$= E(u(x-\mu)(u(x-\mu)^{T})$$

$$= E(u(x-\mu)^{T}) > D$$

$$SD S is semi-definite.$$