Le calcul propositionnel.

Le *calcul propositionnel*, c'est la « grammaire » de la logique. Dans ce chapitre, on s'intéressera à

- 1. la construction des formules (▷ la syntaxe);
- 2. la sémantique et les théorèmes de compacité (▷ la compacité sémantique).

1 Syntaxe.

Définition 1. Le *langage*, ou *alphabet*, est un ensemble d'éléments fini ou pas. Les éléments sont les *lettres*, et les suites finies sont les *mots*.

Définition 2. On choisit l'alphabet :

- $\triangleright \mathcal{P} = \{x_0, x_1, \ldots\}$ des variables propositionnelles;
- \triangleright un ensemble de connecteurs ou symboles logiques, défini par $\{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$, il n'y a pas \exists et \forall pour l'instant.
- ⊳ les parenthèses {(,)}.

Les formules logiques sont des mots. On les fabriques avec des briques de base (les variables) et des opérations de construction : si F_1 et F_2 sont deux formules, alors $\neg F$, $(F_1 \lor F_2)$, $(F_1 \land F_2)$, $(F_1 \to F_2)$ et $(F_1 \leftrightarrow F_2)$ aussi.

Définition 3 (« par le haut », « mathématique »). L'ensemble \mathcal{F} des formules du calcul propositionnel construit sur \mathcal{P} est le plus petit ensemble contenant \mathcal{P} et stable par les opérations de construction.

Définition 4 (« par le bas », « informatique »). L'ensemble F des formules logique du calcul propositionnel sur \mathcal{P} est défini par

$$\triangleright \, \mathcal{F}_0 = \mathcal{P} \, ;$$

$$\mathcal{F}_{n+1} = \mathcal{F}_n \cup \left\{ egin{array}{c|c} \neg F_1 \ (F_1 ee F_2) \ (F_1 \wedge F_2) \ (F_1
ightharpoonup F_2) \ (F_1
ightharpoonup F_2) \ (F_1
ightharpoonup F_2) \end{array}
ight. \left. \left. \begin{array}{c|c} F_1, F_2 \in \mathcal{F} \ F_2 \end{array}
ight.
ight.$$

puis on pose $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$

On peut montrer l'équivalence des deux définitions.

Théorème 1 (Lecture unique). Toute formule $G \in \mathcal{F}$ vérifie une et une seule de ces propriétés :

- $\triangleright G \in \mathcal{P}$;
- \triangleright il existe $F \in \mathcal{F}$ telle que $G = \neg F$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \vee F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \land F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \to F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \leftrightarrow F_2)$.

Preuve. En exercice.

Corollaire 1. Il y a une bijection entre les formules et les arbres dont

- ▷ les feuilles sont étiquetés par des variables;
- ▶ les nœuds internes sont étiquetés par des connecteurs;
- ▷ ceux étiquetés par ¬ ont un fils, les autres deux.

Exemple 1.

2 Sémantique.

Lemme 1. Soit ν une fonction de \mathcal{P} dans $\{0,1\}$ appelé valuation. Alors ν s'étend de manière unique en une fonction $\bar{\nu}$ de \mathcal{F} dans $\{0,1\}$ telle que

 \triangleright sur \mathcal{P} , $\nu = \bar{\nu}$;

 \triangleright si $F, G \in \mathcal{F}$ sont des formules alors

$$- \bar{\nu}(\neg F) = 1 - \bar{\nu}(F);$$

$$-\bar{\nu}(F \vee G) = 1 \text{ ssi } \bar{\nu}(F) = 1 \text{ ou }^{1} \bar{\nu}(G) = 1;$$

$$- \bar{\nu}(F \wedge G) = \bar{\nu}(F) \times \bar{\nu}(G);$$

$$-\bar{\nu}(F \to G) = 1 \text{ ssi } \bar{\nu}(G) = 1 \text{ ou } \bar{\nu}(F) = 0;$$

$$-\bar{\nu}(F \leftrightarrow G) = 1 \text{ ssi } \bar{\nu}(F) = \bar{\nu}(G).$$

Par abus de notations, on notera ν pour $\bar{\nu}$ par la suite.

Preuve. Existence. On définit en utilisant le lemme de lecture unique, et par induction sur \mathcal{F} :

 $\triangleright \bar{\nu}$ est définie sur $\mathcal{F}_0 = \mathcal{P}$;

 \triangleright si $\bar{\nu}$ est définie sur \mathcal{F}_n alors pour $F \in \mathcal{F}_{n+1}$, on a la

^{1.} C'est un « ou » inclusif : on peut avoir les deux (ce qui est très différent du « ou » exclusif dans la langue française).

disjonction de cas

- si $F = \neg G$ avec $G \in \mathcal{F}_n$, et on définit $\bar{\nu}(F) = 1 \bar{\nu}(F_1)$;
- etc pour les autres cas.

Unicité. On montre que si $\lambda = \nu$ sur \mathcal{P} alors $\bar{\lambda} = \bar{\nu}$ si $\bar{\lambda}$ et ν vérifient les égalités précédents.

Exemple 2 (Table de vérité). Pour la formule

$$F = ((x_1 \to x_2) \to (x_2 \to x_1)),$$

on construit la table

Définition 5. \triangleright Une formule F est dite satisfaite par une valuation ν si $\nu(F) = 1$.

- ▷ Une *tautologie* est une formule satisfaite pour toutes les valuations.
- \triangleright Un ensemble $\mathscr E$ de formules est satisfiable s'il existe une valuation qui satisfait toutes les formules de $\mathscr E$.
- ▷ Un ensemble & de formules est finiment satisfiable si tout sous-ensemble fini de & est satisfiable.
- \triangleright Une formule Fest cons'equences'emantique d'un ensemble de formules $\mathscr E$ si toute valuation qui satisfait $\mathscr E$ satisfait F.
- \triangleright Un ensemble de formules $\mathscr E$ est contradictoire s'il n'est pas satisfiable.
- $\,\,\vartriangleright\,\,$ Un ensemble de formules $\mathcal E$ est $\mathit{finiment\ contradictoire}\ s'il$

existe un sous-ensemble fini contradictoire de &.

Théorème 2 (compacité du calcul propositionnel). On donne trois énoncés équivalents (équivalence des trois énoncés laissé en exercice) du théorème de compacité du calcul propositionnel.

- **Version 1.** Un ensemble de formules & est satisfiable si et seulement s'il est finiment satisfiable.
- **Version 2.** Un ensemble de formules & est contradictoire si et seulement s'il est finiment contradictoire.
- **Version 3.** Pour tout ensemble \mathscr{E} de formules du calcul propositionnel, et toute formule F, F est conséquence sémantique de \mathscr{E} si et seulement si F est conséquence sémantique d'un sous-ensemble fini de \mathscr{E} .

Preuve. Dans le cas où $\mathcal{P} = \{x_0, x_1, \ldots\}$ est au plus dénombrable (le cas non dénombrable sera traité après). On démontre le cas « difficile » de la version 1 (*i.e.* finiment satisfiable implique satisfiable). Soit \mathscr{E} un ensemble de formules finiment satisfiable. On construit par récurrence une valuation ν qui satisfasse \mathscr{E} par récurrence : on construit $\varepsilon_0, \ldots, \varepsilon_n, \ldots$ tels que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n, \ldots$

- \triangleright Cas de base. On définit la valeur de ε_n pour $x_0 \in \mathcal{P}$.
 - 1. soit, pour tout sous-ensemble fini B de \mathscr{E} , il existe une valuation λ qui satisfait B avec $\lambda(x_0) = 0$;
 - 2. soit, il existe un sous-ensemble fini B_0 de \mathscr{E} , pour toute valuation λ qui satisfait B_0 , on a $\lambda(x_0) = 1$.

Si on est dans le cas 1, on pose $\varepsilon_0 = 0$, et sinon (cas 2) on pose $\varepsilon_0 = 1$.

 $\,\,\,\,$ Cas de récurrence. On montre, par récurrence sur n, la propriété suivante :

il existe une suite $\varepsilon_0, \ldots, \varepsilon_n$ (que l'on étend, la suite ne change pas en fonction de n) de booléens telle que, pour tout sous-ensemble fini B de \mathscr{E} , il

existe une valuation ν satisfaisant B et telle que $\nu(x_0) = \varepsilon_0, \ldots,$ et $\nu(x_n) = \varepsilon_n.$

- Pour n=0, soit on est dans le cas 1, et on prend $\varepsilon_0=0$ et on a la propriété; soit on est dans le cas 2;, et on prend B un sous-ensemble fini de \mathscr{E} , alors $B \cup B_0$ est un ensemble fini donc satisfiable par une valuation ν . La valuation satisfait B_0 donc $\nu(x_0)=1$ et ν satisfait B. On a donc la propriété au rang 0.
- Hérédité. Par hypothèse de récurrence, on a une suite $\varepsilon_0, \ldots, \varepsilon_n$.
 - 1. Soit, pour tout sous-ensemble fini B de $\mathscr E$, il existe ν qui satisfait B et telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, et $\nu(x_{n+1}) = 0$. On pose $\varepsilon_{n+1} = 0$.
 - 2. Soit il existe B_{n+1} un sous-ensemble fini de $\mathscr E$ tel que, pour toute valuation ν telle que ν satisfait B_{n+1} et $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, on a $\nu(x_{n+1}) = 1$ et on pose $\varepsilon_{n+1} = 1$.

Montrons l'hérédité:

- 1. vrai par définition;
- 2. soit B un sous-ensemble fini de \mathscr{E} . On considère $B \cup B_{n+1}$, soit ν telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$. On a que ν satisfait B_{n+1} donc $\nu(x_{n+1}) = 1 = \varepsilon_{n+1}$ et ν satisfait B.

On a donc la propriété pour tout n.

Finalement, soit δ une valuation telle que, pour tout i, $\delta(x_i) = \varepsilon_i$. Montrons que δ satisfait $\mathscr E$. Soit $F \in \mathscr E$. On sait que F est un mot (fini), donc contient un ensemble fini de variables inclus dans $\{x_0, \ldots, x_n\}$. D'après la propriété par récurrence au rang n, il existe une valuation ν qui satisfait F et telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, et donc ν et δ coïncident sur les variables de F. Donc (lemme simple), elles coïncident sur toutes les formules qui n'utilisent que ces variables. Donc, $\delta(F) = 1$, et on en conclut que δ satisfait $\mathscr E$.

Dans le cas non-dénombrable, on utilise le lemme de Zorn, un équivalent de l'axiome du choix.

Définition 6. Un ensemble ordonné (X, \mathcal{R}) est inductif si pour tout sous-ensemble Y de X totalement ordonné par \mathcal{R} (*i.e.* une chaîne) admet un majorant dans X.

Remarque 1. On considère ici un majorant et non un plus grand élément (un maximum).

- **Exemple 3.** 1. Dans le cas $(\mathcal{P}(X), \subseteq)$, le majorant est l'union des parties de la chaîne, il est donc inductif.
 - 2. Dans le cas (\mathbb{R}, \leq) , il n'est pas inductif car \mathbb{R} n'a pas de majorant dans \mathbb{R} .

Lemme 2 (Lemme de Zorn). Si (X, \mathcal{R}) est un ensemble ordonné inductif non-vide, il admet au moins un élément maximal.

Remarque 2. Un élément maximal n'est pas nécessairement le plus grand.

Preuve. Soit $\mathscr E$ un ensemble de formules finiment satisfiable, et $\mathscr P$ un ensemble de variables. On note $\mathscr V$ l'ensemble des valuations partielles prolongeables pour toute partie finie $\mathscr E$ de $\mathscr E$ en une valuation satisfaisant $\mathscr E$. C'est-à-dire :

$$\mathcal{V} := \left\{ \left. \varphi \in \bigcup_{X \subseteq \mathcal{P}} \{0,1\}^X \; \middle| \; \forall \mathscr{C} \in \wp_{\mathrm{f}}(\mathscr{C}), \exists \delta \in \{0,1\}^{\mathcal{P}}, \; \begin{array}{l} \delta_{|\mathrm{dom}(\varphi)} = \varphi \\ \forall F \in \mathscr{C}, \delta(F) = 1 \end{array} \right. \right\}.$$

L'ensemble $\mathcal V$ est non-vide car contient l'application vide de $\{0,1\}^\emptyset$ car $\mathcal E$ est finiment satisfiable. On défini la relation

d'ordre \leq sur \mathcal{V} par :

$$\varphi \preccurlyeq \psi$$
 ssi ψ prolonge φ .

Montrons que (\mathcal{V}, \preceq) est inductif. Soit \mathscr{C} une chaîne de \mathscr{V} et construisons un majorant de \mathscr{C} . Soit λ la valuation partielle définie sur dom $\lambda = \bigcup_{\varphi \in \mathscr{C}} \operatorname{dom} \varphi$, par : si $x_i \in \operatorname{dom} \lambda$ alors il existe $\varphi \in \mathscr{C}$ tel que $x_i \in \operatorname{dom} \varphi$ et on pose $\lambda(x_i) = \varphi(x_i)$.

La valuation λ est définie de manière unique, *i.e.* ne dépend pas du choix de φ . En effet, si $\varphi \in \mathscr{C}$ et $\psi \in \mathscr{C}$, avec $x_i \in \text{dom } \varphi \cap \text{dom } \psi$, alors on a $\varphi \preccurlyeq \psi$ ou $\psi \preccurlyeq \varphi$, donc $\varphi(x_i) = \psi(x_i)$.

Autrement dit, λ est la limite de $\mathscr C$. Montrons que $\lambda \in \mathscr V$. Soit B une partie finie de $\mathscr C$. On cherche μ qui prolonge λ et satisfait B. L'ensemble de formules B est fini, donc utilise un ensemble fini de variables, dont un sous-ensemble fini $\{x_{i_1},\ldots,x_{i_n}\}\subseteq \mathrm{dom}(\lambda)$. Il existe $\varphi_1,\ldots,\varphi_n$ dans $\mathscr C$ telle que $x_{i_1}\in \mathrm{dom}\,\varphi_1,\ldots,x_{i_n}\in \mathrm{dom}\,\varphi_n$. Comme $\mathscr C$ est une chaîne, donc soit $\varphi_0=\max_{i\in [\![1,n]\!]}\varphi_i$ et on a $\varphi_0\in \mathscr C$. On a, de plus, $x_{i_1},\ldots,x_{i_n}\in \mathrm{dom}(\varphi_0)$. Soit $\varphi_0\in \mathscr V$ prolongeable en ψ_0 qui satisfait B. On définit :

$$\mu: \mathcal{P} \longrightarrow \{0, 1\}$$

$$x \in \operatorname{dom} \lambda \longmapsto \lambda(x)$$

$$x \in \operatorname{var} B \longmapsto \psi_0(x)$$

$$\operatorname{sinon} \longmapsto 0.$$

On vérifie que la définition est cohérente sur l'intersection car λ et ψ_0 prolongent tous les deux φ_0 et donc $\lambda \in \mathcal{V}$ d'où \mathcal{V} est inductif.

Suite la preuve plus tard.