	Today's agenda
1)	Recap- Quizzer
2)	Employee Attrition Dostaret - graphi
3)	Ruity of Moder & Entropy
4)	Plot for entropy
5)	Weighted Entropy
6)	Crimi Impurity
=	Compound from Imprity with Entropy
8)	Code Walkthrough (Time Permits)

Table:

Splitting Cotegorical Variables

	Grenden		Total
Target Variable	Made	Female	
O (Stays)	(50)	(10)	60
1 (churn)	20	20	40
Total	70	30	061

Total 100 deta points

	Age		Total
Target Variable	< 35	>35	
O (Stays)	(02)	10	60
1 (churb)		30	40
Total	60	40	061
TT-		\ \	1

100 data-prints 100 7, = 40 Yen Node J+= 30 2) definite J-= 0 Right Just 1 clan 10 = 1 -> tul $\frac{60}{30} = \frac{3}{3} - 1$ 30 = 1 -> tre 30 = 0 -> - VR Jimpure mode -> pure flan 2 m prine -> impre

a) How do me measure impristy & parity? prily + imprity =1 priity = 1- imprify menure of random men $5 \stackrel{\bigcirc}{\otimes} \stackrel{$ Entropy = - [plog (p) + (1-p) / of (1-p) $= - [0.6 | og_{2}(0.6) + 0.4 | og_{2}(0.6)]$ = 0.97 $= 0.8 | og_{2}(0.8) + 0.2 | og_{2}(0.2)]$ $= 0.8 | og_{2}(0.8) + 0.2 | og_{2}(0.2)]$ Logistic Regression log-1013 -['y log_(b) + (1-y) log_ (1-p)] KL Divergente: log-103)]

$$- \left[\frac{1}{4} \right] \left(\frac{1}{4} + \epsilon \right) + \left(\frac{1}{4} \right) \left[\frac{1}{4} \right]$$

$$\epsilon = 10^{-6}$$
Graph of Externa

We children =
$$\frac{70}{100} \times 0.855 + \frac{30}{100} \times 0.919$$

= $\left[0.874\right] < \left[0.97\right] \rightarrow p$

Information from = Reduction in Entropy

(IG1) = $0.97 - 0.874$

Split objective = $\left(\frac{1}{2} \right) = 0$

Split objective = $\left(\frac{1}{2} \right) = 0$

Gr I = $\left[-\frac{1}{2} + 0^{2} \right] = 0$

T: $p(0)=0.9$ $p(1)=0.5$

Gr I = $\left[-\frac{1}{2} + 0.5^{2} \right] = 0.5$

$$GI_{p} = 1 - \sum_{0.6^{2}} 0.6^{2} + 0.42$$

$$= 1 - \sum_{0.48} (3/4)^{2} + (3/4)^{2}$$

$$= 0.408$$

$$G_{II} = 1 - \left[\left(\frac{1}{3} \right)^2 + \left(\frac{2}{3} \right)^2 \right]$$

$$= 0.444$$

$$Z = 0.48 - 0.4188$$
 = $[0.0612]$
GZ for Age < 35

$$G_{I} = 1 - [(\%)^{2} + (\%)^{2}]$$

$$GI_{\overline{I}} = 1 - [(4)^2 + (3/6)^2]$$

$$= 0.375$$

