Neural Networks: Representation

Quiz, 5 questions

1	
point	

1.

Which of the following statements are true? Check all that apply.

l	The activation values of the hidden units in a neural network, with the
	sigmoid activation function applied at every layer, are always in the range
	(0, 1).

Suppose you have a multi-class classification problem with three classes,
trained with a 3 layer network. Let $a_1^{(3)} = (h_\Theta(x))_1^{}$ be the activation of
the first output unit, and similarly $a_2^{(3)} = (h_\Theta(x))_2$ and
$a_3^{(3)} = (h_\Theta(x))_3$. Then for any input x , it must be the case that
$a_1^{(3)} + a_2^{(3)} + a_3^{(3)} = 1$.

A two layer (one input layer, one output layer; no hidden layer) neural
network can represent the XOR function.

Any logical function over binary-valued (0 or 1) inputs x_1 and x_2 can be
(approximately) represented using some neural network.

1 point

2.

() AND

NAND (meaning "NOT AND")

() OR

XOR (exclusive OR)

1 point

3.

Consider the neural network given below. Which of the following equations Neural Networks: Representation $a_1^{(3)}$? Note: g(z) is the sigmoid activation quiz, 5 questions function.

$$egin{aligned} a_1^{(3)} = g(\Theta_{1,0}^{(2)} a_0^{(2)} + \Theta_{1,1}^{(2)} a_1^{(2)} + \Theta_{1,2}^{(2)} a_2^{(2)}) \end{aligned}$$

$$\bigcirc \quad a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(1)} + \Theta_{1,1}^{(2)}a_1^{(1)} + \Theta_{1,2}^{(2)}a_2^{(1)})$$

$$egin{aligned} a_1^{(3)} = g(\Theta_{1,0}^{(1)} a_0^{(2)} + \Theta_{1,1}^{(1)} a_1^{(2)} + \Theta_{1,2}^{(1)} a_2^{(2)}) \end{aligned}$$

$$egin{aligned} a_1^{(3)} = g(\Theta_{2,0}^{(2)} a_0^{(2)} + \Theta_{2,1}^{(2)} a_1^{(2)} + \Theta_{2,2}^{(2)} a_2^{(2)}) \end{aligned}$$

1 point

4.

You have the following neural network:

Neural Networks: Representation

Quiz, 5 questions

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the following Octave code:

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))

a2 = zeros (3, 1);
for i = 1:3
    for j = 1:3
        a2(i) = a2(i) + x(j) * Theta1(i, j);
    end
        a2(i) = sigmoid (a2(i));
end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

z = Theta1 * x; a2 = sigmoid (z);
a2 = sigmoid (x * Theta1);
a2 = sigmoid (Theta2 * x);

Neural Networks: igmoid(x); a2 faigmoid (Theta1 * z);

Quiz, 5 questions

1 point

5.

You are using the neural network pictured below and have learned the parameters $\Theta^{(1)}=\begin{bmatrix}1&2.1&1.3\\1&0.6&-1.2\end{bmatrix}$ (used to compute $a^{(2)}$) and $\Theta^{(2)}=\begin{bmatrix}1&4.5&3.1\end{bmatrix}$ (used to compute $a^{(3)}$) as a function of $a^{(2)}$). Suppose you swap the parameters for

the first hidden layer between its two units so $\Theta^{(1)}=\begin{bmatrix}1&0.6&-1.2\\1&2.1&1.3\end{bmatrix}$ and also swap the output layer so $\Theta^{(2)}=\begin{bmatrix}1&3.1&4.5\end{bmatrix}$. How will this change the value of the output $h_{\Theta}(x)$?

(') I+	will	ctav	tha	same.
\ /	/ [[VVIII	Stay	UIC	same.

- It will increase.
- It will decrease
- Insufficient information to tell: it may increase or decrease.

I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code