1 Adversarial Search

1.

ſ	node	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
ſ	value	12	12	5	19	12	5	12	19	5	6	12	5	1	12	8

2.

0 - 1 - 4 - 10 - 21

3.

6, 13, 14, 18, 26, 27, 28, 29, 30

2 Constraint Satisfaction Problem

1. (a) We can define variables based on the areas of knowledge. The variables and their domains are as follows.

Variable	Domain					
$A_1^{(1)}$	C_1, C_2, C_3, C_4, C_6					
$A_1^{(2)}$	C_1, C_2, C_3, C_4, C_6					
A_2	C_3, C_4, C_5					
A_3	C_6, C_7, C_8					
A_4	C_3, C_9					

- (b) We can define the constraints by rewriting the restrictions as follows.
 - $R_1: (A_1^{(1)}, A_1^{(2)})$ must be one of $(C_1, C_2), (C_1, C_3)$, and (C_4, C_6) .
 - R_2 : Only one of C_3 , C_4 , and C_9 can exist in a solution.
 - R_3 : Only one of C_1 and C_7 can exist in a solution.
 - R_4 : Only one of C_6 and C_8 can exist in a solution.
 - R_5 : No two variables can share one value.
- 2. Figure shown in the next page. The solution is $(A_1^{(1)}, A_2^{(2)}, A_2, A_3, A_4) = (C_1, C_2, C_5, C_6, C_3)$, as indicated by the rightmost branch.
- 3. Let $A_3 = C_8$ and $A_4 = C_9$. Then,
 - by R_4 , C_6 is out of consideration from $A_1^{(1)}$ and $A_1^{(2)}$;
 - by R_2 , C_3 and C_4 need to be removed from the domains of $A_1^{(1)}$, $A_1^{(2)}$ and A_2 .

Finally, by R_1 , the only solution for $(A_1^{(1)},A_1^{(2)},A_2)$ is (C_1,C_2,C_5) .

