1. Termin 2018

1.

- (a) Zformulujte 3. Riceovu vetu.
- (b) Nech B je mnozina $tych i \in \mathbb{N}$, ze φ_i je prosta a obor jej hodnot je \mathbb{N}
 - i. dokazte ze B nie je rekurzivne spocetna
 - ii. dokazte ze $\overline{B} = \mathbb{N} \setminus B$ nie je rekurzivne spocetna.

2.

- (a) Ktore z nasledujucich tvrdeni su pravdive. Odpoved zdovodnite.
 - i. Mnozina $A_1 \subseteq \mathbb{N}$ je rekurzivna prave vtedy, ked existuje totalne vycislitelna funkcia f taka, ze $x \in A_i \leftrightarrow f(x)$ je prvocislo.
 - ii. Mnozina $A_2 \subseteq \mathbb{N}$ obsahujuce tie $i \in \mathbb{N}$, ze sa i-ty while program zastavi na kazdom vstupe, je rekurzivny.
 - iii. Mnozina $A_2\subseteq \mathbb{N}$ z (ii) je rekurzivne spocetna
- (b) Definujte, kedy je rozhodovaci problem PSPACE-uplny a uvedte priklad PSPACE-uplneho rozhodovacieho problemu (bez dokazu PSPACE-uplnosti).

3.

- (a) Definujte triedy problemov NL a P.
- (b) Dokazte, ze $NL\subseteq P$. Ak pouzijete k dokazu obecnejsiu vetu z prednasky, tak ju dokazte.

Skupina B

- (a) Zformulujte Třetí Riceovu větu.
- (b) Nechť A je množina těch $i \in \mathbb{N}$, že funkce φ_i je totálně vyčíslitelná. Dokažte, že množina A není rekurzivně spočetná.
- (c) Dokažte Třetí Riceovu větu.
- (a) Zformulujte Savitchovu větu. Jaká je časová složitost algoritmu z důkazu této věty?
- (b) Ukažte, že rozhodovací problém, zda zadaný n-vrcholový graf je souvislý, patří do třídy SPACE(log² n).
- (a) Která z následujících tvrzení jsou pravdivá? Svou odpověď zdůvodněte.
 - (i) Množina {i, φ_i(i) = i} ⊆ N je rekurzivně spočetná.
 - (ii) Množina $\{(i,j), W_i = W_j\} \subseteq \mathbb{N}^2$ je rekurzivní.
 - (iii) Pokud f : N → N je prostá totálně vyčíslitelná funkce, pak funkce f⁻¹ je vyčíslitelná.
- (b) Definujte třídy složitosti L a NP a uveďte, jaký je mezi nimi vztah.

list e se

Oblast strojově snímatelných informací. Své UCO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

80823456889

Skupina A

- (a) Která z následujících tvrzení jsou pravdivá? Svou odpověď zdůvodněte.
 - (i) Množina {i, 0 ∈ W_i} ⊆ N je rekurzivně spočetná
 - (ii) Množina {(i, j), φ_i = φ_j} ⊆ N² je rekurzivní.
 - (iii) Pokud f: N → N je bijektivní totálně vyčíslitelná funkce, pak funkce f⁻¹ je totálně vyčíslitelná.
- (b) Definujte třídy složitosti NL a P a uveďte, jaký je mezi nimi vztah.

list E

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

Skupina A

- (a) Zformulujte Savitchovu větu. Jaká je časová složitost algoritmu z důkazu této věty?
- (b) Ukažte, že rozhodovací problém, zda zadaný n-vrcholový graf je souvislý, patří do třídy SPACE(log² n).

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

Skupina A

- (a) Zformulujte Druhou Riceovu větu.
- (b) Nechť A je množina těch i ∈ N, že funkce φ_i není totálně vyčíslitelná. Dokažte, že množina A není rekurzivně spočetná.
- (c) Dokažte Druhou Riceovu větu.

- (a) Která z následujících tvrzení jsou pravdivá pro každou rekurzivní množinu $A\subseteq\mathbb{N}$ a rekurzivně spočetnou množinu $B\subseteq\mathbb{N}$? Svou odpověď vždy zdůvodněte.
 - (i) Množina $A \cap B$ je rekurzivní.
 - (ii) Množina A ∩ B je rekurzivně spočetná.
 - (iii) Množina A∪B je rekurzivní.
 - (iv) Množina $A \cup B$ je rekurzivně spočetná.
 - (v) Množina A \ B je rekurzivně spočetná.
 - (vi) Množina B \ A je rekurzivně spočetná.
- (b) Seřaďte následující třídy složitosti dle inkluze: TIME(log n), SPACE(√n), NSPACE(log⁴ n) a PSPACE. Odpověď stručně zdůvodněte.

Nechť A ⊆ N je rekurzivně spočetná množina, která není rekurzivní.

- (a) Dokažte, že existuje nekonečná množina B, která je podmnožinou množiny A a je rekurzivní.
- (b) Dokažte, že existuje množina C, která je podmnožinou množiny A a není rekurzivně spočetná.
- (a) Vysvětlete pojem časové složitosti nedeterministického algoritmu a definujte třídu NP.
- (b) Dokažte, že následující dvě tvrzení jsou ekvivalentní pro každý rozhodovací problém Q:
 - $Q \in NP$
 - Existuje nedeterministický algoritmus A a polynom p(k), t.ž. vstup x patří do Q právě tehdy, když A má přijímající výpočet s nejvýše p(|x|) kroky, kde |x| je délka vstupu x.
- (c) Dokažte, že NP ⊆ PSPACE.

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

- (a) Která z následujících tvrzení jsou pravdivá? Svou odpověď zdůvodněte.
 - (i) Množina $A_1 \subseteq \mathbb{N}$ je rekurzivní právě tehdy, když existuje totálně vyčislitelná funkce f taková, že $x \in A_1 \Leftrightarrow \forall x' < x : f(x) > f(x')$.
 - (ii) Množina $A_2 \subseteq \mathbb{N}$ obsahující ty $i \in \mathbb{N}$, že se *i*-tý while-program zastaví pro nějaký vstup, je rekurzivní.
 - (iii) Množina $A_2 \subseteq \mathbb{N}$ z předchozího bodu je rekurzivně spočetná.
- (b) Definujte, co znamená, že rozhodovací problém je polynomiálně redukovatelný na jiný rozhodovací problém. Platí, že každý NP-úplný problém je polynomiálně redukovatelný na každý PSPACE-úplný problém? Svou odpověď zdůvodněte.

- (a) Vysvětlete, co znamená, že množina $B \subseteq \mathbb{N}$ respektuje funkce.
- (b) Nechť $f: \mathbb{N} \to \mathbb{N} \cup \{\bot\}$ je funkce, t.ž. $f(x) \neq \bot$ pro konečně mnoho $x \in \mathbb{N}$, a nechť C je množina těch $i \in \mathbb{N}$, že funkce φ_i je rozšířením f.
 - (i) Pro které funkce f je množina C rekurzivní?
 - (ii) Pro které funkce f je množina C rekurzivně spočetná?
 - (iii) Pro které funkce f je množina \overline{C} rekurzivně spočetná?

Své odpovědi zdůvodněte.

<u></u>	0 0	list	6 36 36 36 36 36 36 36 36 36 36 36 36 36		
_	Oblast strojově sníma dle přiloženého vzoru		Své UČO vyplňte zleva to oblasti nezasahujte.	 ::::::::::::::::::::::::::::::::::	

- (a) Definujte prostorovou složitost nedeterministického algoritmu.
- (b) Zformulujete a dokažte větu z přednášky, která hovoří o inkluzi třídy NSPACE(f(n)) pro $f(n) \in \Omega(\log n)$ ve třídě problémů řešitelných deterministicky v omezeném čase.