FIT5186 Intelligent Systems

Week 11 Tutorial

Business Intelligence Modelling - Decision Analysis under Uncertainly

Let's try the Lecture Exercise first...

Question:

- News vendor Phyllis Pauley sells newspapers, and each day she must determine how many newspapers to order.
- Phyllis pays the company 20c for each newspaper and sells the paper for 25c each. Newspapers that are unsold by the end of the day are worthless.
- Phyllis knows that each day she can sell between 6 and 10 papers, with each possibility being equally likely.
- 1. Set up a payoff table for the problem.
- 2. Find the best order quantity for Phyllis, using (a) Maximax rule, (b) Maximin rule, and (c) Minimax Regret rule.

1.

		Papers Demanded					
Papers Ordered	6	7	8	9	10		
6							
7							
8							
9							
10							

2. (a) 2. (b)

# Ordered	Best State of Nature	Payoff in the Best State of Nature
6		
7		
8		
9		
10		

# ordered	Worst State of Nature	Payoff in the Worst State of Nature
6		
7		
8		
9		
10		

2. (c) Regret matrix

	Papers Demanded								
Papers Ordered	6	7	8	9	10				
6									
7									
8									
9									
10									

Exercise 1

A car dealer is offering the following three two-year leasing options:

Plan	Fixed Monthly Payment	Additional Cost Per Kilometer
	\$200	\$0.095 per kilometer.
II	\$300	\$0.061 for the first 6000 kilometers; \$0.050 thereafter.
III	\$170	\$0.000 for the first 6000 kilometers; \$0.14 per kilometer thereafter.

Assume a customer expects to drive between 15000 to 35000 kilometers during the next two years according to the following probability distribution:

P(driving 15000 kilometers) = 0.1

P(driving 20000 kilometers) = 0.2

P(driving 25000 kilometers) = 0.2

P(driving 30000 kilometers) = 0.3

P(driving 35000 kilometers) = 0.2

- a) Construct a payoff matrix for this problem.
- b) What decision should be made according to the maximax decision rule? (Keep in mind that the "payoffs" here are costs, where less is better).
- c) What decision should be made according to the maximin decision rule?
- d) What decision should be made according to the minimax regret decision rule?
- e) What decision should be made according to the EMV decision rule?
- f) What decision should be made according to the EOL decision rule?

Exercise 2

The Fish House (TFH) in Norfolk, Virginia sells fresh fish and seafood. TFH receives daily shipments of farm-raised trout from a nearby supplier. Each trout costs \$2.45 and is sold for \$3.95. To maintain its reputation for freshness, at the end of the day TFH sells any leftover trout to a local pet food manufacturer for \$1.25 each. The owner of TFH wants to determine how many trout to order each day. Historically, the daily demand for trout is:

Demand	10	11	12	13	14	15	16	17	18	19	20
Probabili	ty 0.02	0.06	0.09	0.11	0.13	0.15	0.18	0.11	0.07	0.05	0.03

- a) Construct a payoff matrix for this problem.
- b) What decision should be made according to the maximax decision rule?
- c) What decision should be made according to the maximin decision rule?
- d) What decision should be made according to the minimax regret decision rule?
- e) What decision should be made according to the EMV decision rule?
- f) What decision should be made according to the EOL decision rule?
- g) Perform a sensitivity analysis on the EMV by varying the selling price and the purchase cost.
- h) Find the expected value with perfect information and the expected value of perfect information (EVPI). Explain how this value could be interpreted.