Számítógépes szimulációk IV.: Molekuladinamika

Pál Balázs*

*Eötvös Loránd Tudományegyetem

2019. március 25.

Abstract

A Számítógépes szimulációk laboratórium negyedik alkalmával körüljártuk a termodinamika és a statisztikus fizika, azok által a fizikában képviselt szemléletmódját. Ez jelen esetben azt jelentette, hogy a szimulációkban nagyszámú, egymással kölcsönható részecske mikroszkopikus mozgását tanulmányoztuk, melynek segítségével a vizsgált rendszer egyes makroszkopikus tulajdonságait szerettünk volna feltérképezni. Ezek közé tartozott a rendszer egyensúlyi helyzetének vizsgálata, valamint az ilyen állapotban mérhető nyomás, a teljes energia, a kompresszibilitási faktor, valamint a hőkapacitás modellezése. Emellett megismerkedtünk a Verlet- és a Velocity–Verlet-algoritmusokkal, valamint azok korrekcióival, melyeket gyorsaságuk miatt előszeretettel alkalmaznak molekuladinamikai szimulációkban.

1. BEVEZETŐ

A labor negyedik alkalmával a molekuladinamika témakörével foglalkoztunk. Általánosítva olyan rendszereket vizsgáltunk, melyekben nagyszámú, egymással kölcsönható részecske található. A natív, eddig megismert integráló módszerekkel ezek megoldása a mai technológia számára még túl sok időt és elérhetlenül nagy számítási teljesítményt igényelne, így azok helyett másokat kell alkalmaznunk.

A most újonnan tanult módszereket Loup Verlet, francia fizikus javasolta elhíresült papírjában (Verlet, 1967[1]). Ezek - numerikus hibákat javító korrekciókkal ellátott verziói - akár tízszer gyorsabb sebességre képesek, kvázi ugyanolyan pontossággal, mint a Runge-Kutta függvények. Mivel egy nagy részecskeszámú rendszerben a legtöbb idő a részecskék közti erők kiszámítására fordítók, ezért a Verlet-féle algoritmusok ismerete és használata nagy segítséget nyújt minden, ilyen fajta szimulációban.

2. FELADATOK

A kitűzött feladatokon történő munka megkezdése előtt meg kellett ismerkednünk az előzetesen kiadott három darab programkóddal. Ezek mindegyike egyedül a Velocity-Verlet-algoritmust implementálta, és a szimulációk során a továbbiakban is kizárólag én ezt az egy iteratív algoritmust használtam. Az egyes kódok a Velocity-Verlet-algoritmus újabb és újabb korrekcióival bővítik az előtte levőt, folyamatosan pontosítva és gyorsítva a molekuladinamikai szimuláció modellét.

Fel kellett ismernünk, hogy kezdetben mindegyik szimuláció egy adatfile-t generál, melyben a minden egyes lépésben kiszámított pillanatnyi hőmérsékletek listája volt található. Ezek alapján azt kellett vizsgálunk, hogy azonos kezdőfeltételek mellett mennyi idő alatt relaxál a rendszer, annak egyensúlyi helyzetéhez.

Következő feladatunk a Verlet-féle szomszádsági listával és a távoli potenciálok levágásával operáló korrekciót megvalósító, valamint az enélkül integráló

módszerek futásidejnek összehasonlítása volt. Az általam vizsgált karakterisztika a potenciálok levágási határának, valamint a szomszédsági lista frissítési intervallumának módosítására történő futásidőbeli változásokat foglalta magába. Mind a korrekciókkal ellátott, mind pedig az azok nélküli iteratív módszereket teljesen azonos paraméterekkel futtattam, az egyes futások között folyamatosan változtatva a levágási hossz és a frissítési időköz nagyságát. Kellően sok párosítás segítségével kellően jól fel tudtam térképezni az kérdéses különbségeket. Utolsó előtti feladatként implementáltam a szimulált rendszer egyensúlyi pozíciójában mérhető nyomást, teljes energiát, kompresszibilitási faktort és hőkapacitást kiszámító függvényeket.

Végezetül a feladat a programkódok olyan átalakítása volt számunkra, ami egy keményfalú rendszer képes szimulálni az addigi határfeltétel nélküli, vagy periódikus módszerek mellett. Emellett opcionálisan az előző feladatban szereplő háromtest szimulációt ábrázolni képest programot kellett írnunk a molekuladinamika feladatai között megadott kód segítségével. Ezt az utóbbi már az előző feladat esetén megvalósítottam (lásd YouTube[2]), a keményfalú rendszerek dinamikáját pedig legelső lépésben implementáltam mindegyik különböző módszerre. A fenti feladatokat is mind ezen zárt feltétel mellett vizsgáltam, többek között a nyomást is a falra kifejtett erőből számoltam.

3. ELMÉLETI ALAPOK

3.1. INTEGRÁLÓ MÓDSZEREK

Mind a sima Verlet-, mind pedig a Velocity–Verletalgoritmusoknak megvannak a saját előnyei és hátrányai. Míg a Verlet-módszer majdnem olyan pontos, mint a negyedrendű Runge-Kutta integrálás (a hiba alig $\mathcal{O}\left(\tau^4\right)$ nagyságrendű, a Runge-Kutta $\mathcal{O}\left(\tau^5\right)$ hibája mellett, ahol τ a lépéshossz), addig a léptető szabálya miatt - mely a következő:

$$\vec{R}_{n+1} = 2\vec{R}_n - \vec{R}_{n-1} + \tau^2 \vec{A}_n + \mathcal{O}(\tau^4)$$
 (1)

$$\vec{V}_{n} = \frac{\vec{R}_{n+1} - \vec{R}_{n-1}}{2\tau} + \mathcal{O}\left(\tau^{2}\right) \tag{2}$$

nem indítható egy tetszőleges kezdeti feltételből: a helykoordináták léptetése két előző pontot használ fel, így azokat a szimuláció elején már ismerni kell. Emellett \vec{V} -ben csak $\mathcal{O}\left(\tau^2\right)$ pontosságú. Ezzel ellentétben a Velocity–Verlet-algoritmus \vec{R} -ben és \vec{V} -ben egyaránt csak O $\left(\tau^3\right)$ hibával rendelkezik, de cserébe indítható egy általunk választott kezdőpontból. Léptető szabálya a következő:

$$\vec{R}_{n+1} = \vec{R}_n + \tau \vec{V}_n + \frac{\tau^2}{2} \vec{A}_n + \mathcal{O}\left(\tau^3\right)$$
 (3)

$$\vec{V}_{n+1} = \vec{V}_n + \frac{\tau}{2} \left(\vec{A}_{n+1} + \vec{A}_n \right) + \mathcal{O} \left(\tau^3 \right)$$
 (4)

Ha csak a koordináták pontosságát és az energiamegmaradást tartjuk fontosnak, akkor megoldást nyújthat a kettő kombinálása, ahol az első két pontot a Velocity–Verlet-módszerrel, onnantól kezdve pedig mindet a Verlet-algoritmussal határozzuk meg. Itt azonban most az egyszerűség kedvéért mindenhol a Velocity–Verlet-módszert alkalmaztam.

A szimuláció 3 különböző módon van megvalósítva, mindegyik mód az előtte levőnek egy bővített verziója. A legelső, md1 indexű megvalósítás a legalaővetőbb Velocity-Verlet-algoritmust tartalmazza, mely a kezdeti sebességeket random módon választja meg, és a fent tárgyalt léptető szabállyal propagál. Emellett implementálva van itt is, valamint a másik két verzióban is, egy szabályozó alfüggvény is, mely 200 lépésenként ellenőrzi a sebességeket, és ha az azok segítségével, az ekvipartíció tételéből származtatott hőmérséklet nem felel meg a folyamatosan mért pillanatnyi hőmérsékletnek, újraskálázza őket. Ez az a lépés, aminek segítségével a szimuláció erőltetetten propagál az egyensúlyi állapot felé. Ez a mért mennyiségek grafikonján éles törések formájában jelenik meg. Emellett a részecskék mozgásáról készült animáción is drasztikusan szembetűnő az első újraskálázás hatására történő hirtelen sebességcsökkenés[2].

A második, md2-vel jelzett szimulációban a kezdősebességeket a Maxwell–Boltzmann-sebességeloszlás alapján választjuk, mely 3D-ben egyszerűen a Gauss-függvény:

$$P(v) = \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} \cdot e^{-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2k_B T}}$$
 (5)

Ahogy a gyakorlat leírásában is szerepel[3], hogy ezt a szimulációs kód a Numerical Recipies-ből átvett gasdev() függvény segítségével valósítja meg, mely 1 szórású véletlen számokat generál a Box-Müller-algoritmus felhasználásával[4]. Sajnos ez az algoritmus nem tökéletes, a kezdősebességek átlaga - tehát a tömegközéppont sebessége - nem 0. Hogy valóban Gauss-eloszlású sebességeket kapjunk, ahol ez a feltétel igaz, korrigálnunk kell a hibát. Előbb a tömegközéppont sebességét vonjuk le belőlük:

$$\boldsymbol{v}_i \to \boldsymbol{v}_i - \boldsymbol{v}_{\text{TKP}}$$
 (6)

Majd az így kapott új v_i sebességeket egy konstans szorzással, létrehozzuk a kívánt, inicializáláskor megadott T hőmérsékletet:

$$\boldsymbol{v}_i \to \lambda \boldsymbol{v}_i$$
 (7)

Ahol a konstans szorzó:

$$\lambda = \sqrt{\frac{2(N-1)k_BT}{\sum_{i=1}^{N} m\mathbf{v}_i^2}}$$
 (8)

Ahol az eddigiekben a gyakorlat leírásában is használt formalizmust és jelölést alkalmaztam[.]

A harmadik md3 indexxel jelölt szimuláció a - majd- ${\it nem-teljes\ Velocity-Verlet-algoritmust\ tartalmaz-}$ za, melyben már a Verlet által javasolt szomszédsági lista is implementálva van, valamint a potenciálok levágási határa is értelmezett. Az utóbbi azt a közelítést hozza be a szimulációba, miszerint nagyobb távolságokon a részecskék közti kölcsönhatás elhanyagolhatóan apró. Így ahelyett, hogy a legtávolabbi részecskék közti hatást is kiszámolnánk, minden részecskére csak egy adott rCutOff sugarú gömbön belüli hatásokkal foglalkozunk. Hogy ezeket ne kelljen minden alkalommal keresgélni, létrehozunk egy szomszédsági listát, mely minden részecskére egy adott rMax sugarú gömbön belül található részecske szomszédokat tartja nyilván. Ilyen esetben ha ki akarjuk számítani egy lépésben az egyik részecskére ható erőket, akkor egyszerűen csak a szomszédsági listán kell az iterációt elvégeznünk az összes helyett.

Ezt a listát updateInterval lépésenként frissítjük. Verlet másik közelítése alapján azért nem kell ezt a frissítést minden lépésben megtennünk, mert a részecskék sebessége véges. Ha megfelelően választjuk meg rMax és rCutOff értékeit, akkor updateInterval lépésen belül azok helyzete ne változik annyira me, hogy ez bármennyire is befolyással legyen a szimuláció pontosságára. Verlet javaslata alapján a fent tárgyalt paraméterek értékeit a következőképp kell megválasztanunk:

$$\begin{split} &\texttt{rCutOff} = 2.5r_0 \\ &\texttt{rMax} = 3.2r_0 \\ &\texttt{updateInterval} = 10 \end{split}$$

Az ezekben megjelenő r_0 jelentését és értékét a következő két részben tárgyalom.

3.2. LENNARD-JONES-POTENCIÁL

A szimulációban van der Waals-közelítést használunk, mely esetén az egyástól r távolságra levő részecskék közti kölcsönhatást a Lennard–Jonespotenciál [5] írja le:

$$V(r) = 4V_0 \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^6 \right]$$
 (9)

Ennek alakja könnyen megmagyarázható. A potenciál képletében az r^{-12} tag a Pauli-féle kicserélődési kölcsönhatás miatt fellépő faktor, mely rövid távolságokon érvényesül és nagyon erős taszító erőt fejt ki. Míg az r^{-6} tag a nagyobb távolságokon fellépő van der Waals-erők miatt jön a képletbe, melyek itt vonzó erőt hoznak létre. Egy karakterisztikus $r_m = 2^{1/6} r_0$ pontban a függvény eléri a minimumát,

a vonzó erő itt a legnagyobb. Innentől r-t csökkentve a vonzás szintén csökken, majd egy adott ponton eléri a nullát. Ha a részecskék tovább közelednek még ezután, akkor egy taszító erő lép fel, amely rendkívül gyorsan növekszik, és így a részecskéket ellöki egymástól.

Maga az erőt, mellyel a léptetési szabályokban felhasznált \vec{A} gyorsulásokat megadja, a potenciál gradienséből számíthatjuk legegyszerűbben:

$$\vec{F}\left(\boldsymbol{r}\right) = -\boldsymbol{\nabla}V\left(r\right) = \frac{24V_0}{r^2} \left[2\left(\frac{r_0}{r}\right)^{12} - \left(\frac{r_0}{r}\right)^6 \right] \boldsymbol{r} \tag{10}$$

3.3. MÉRT MENNYISÉGEK

Több különböző, a (2) részben már felsorolt mennyiség értékét kellett mérjük a szimuláció során. Hogy ezeket numerikusan vizsgálni tudjuk, javasolt volt számunkra úgy megválasztani az egyes összefüggésekben szereplő karakterisztikus mennyiségeket, hogy azok értékei mind 1-et vegyenek fel. Így a következő mértéket választottam a feladatok megoldása során:

$$V_0 = r_0 = m = 1 (11)$$

Mivel a hőkapacitás kiszámításához szükségünk volt a teljes energia - közelítésben csak - időátlagára, ezért előbb az energiát kellett kiszámolnunk. A teljes energia egyszerűen felírható a Hamiltonfüggvény segítségével:

$$\mathscr{H} \equiv E = \frac{m}{2} \sum_{i=1}^{N} \boldsymbol{v}_{i}^{2} + \sum_{i \neq j} V(|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|)$$
 (12)

Ahol $V(|\mathbf{r}_i - \mathbf{r}_j|)$ az i és j indexű részecskék közti Lennard–Jones-potenciál, \mathbf{v}_i pedig az i-edik részecske sebessége.

Másodikként a moláris, konstans térfogaton mért hőkapacitást határoztam meg, melyet a gáz fundamentális egyenletéből kaphatunk a következő módon:

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V = \frac{1}{k_B T^2} \left[\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2\right]$$
 (13)

Ahol k_B a Boltzmann-állandó. Ezen fenti mennyiség mértékegysége $\frac{J}{K\cdot mol}$, nagyságrendje standard körülmények között általában 10^1-10^2 között található[6]. Az

$$\left[\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2 \right] \tag{14}$$

szórásban szereplő átlagokat időátlagokként közelítettem, ahogy az a feladat kiírásában is javasolva volt[3].

Végezetül a nyomást és a kompresszibilitási faktort a Viriál-tétel segítségével mértem, melyből felírható az alábbi összefüggés:

$$PV = Nk_BT + \frac{1}{3} \left\langle \sum_{i < j} r_{ij} \cdot F_{ij} \right\rangle \tag{15}$$

Melyből a kompresszibilitási faktor:

$$Z = \frac{PV}{Nk_BT} \tag{16}$$

Mely utóbbinak értéke ideális gázra Z=1, míg nagy sűrűségű közegre Z>1, kis sűrűség esetén pedig Z<1.

4. MEGVALÓSÍTÁS

Előzetesen az (2)-es pontban már tisztázott funkcionalitású, C++ nyelven írt molekuladinamikai szimulációt megvalósító keretrendszerek voltak számunkra megadva, melyeket szintén a (2)-es pontban ismertetett szempontok alapján, nekünk kellett bővítenünk.

A forráskódot az eddigiekhez hasonlóan egy saját batch file segítségével, benne a clang fordító felhasználásával fordítottam. Az eredeti kód módosításával elértem, hogy a lefordított exe program egy Jupyter Notebook-ban futó Python 3 kernel segítségével induljon. A szimuláció a kezdőfeltételeket szintén ebből a környezetből várja, bemenő paraméterek formájában.

Az eredeti integritást meghagyva, a három különböző szinten megvalósított MD szimuláció három main forrásfile alapján fordul. Az egyes lefordított exe-ket a kezdőfeltételek mellett megadott másik bementei paraméter segítségével lehet tetszőlegesen keményfalú, periodikus, vagy határfeltétel nélküli módokban lefuttatni. Ezek kimenete minden szimuláció esetében egy-egy .dat file, melyek minden sora egy-egy szimulációs lépésnek felel meg. Egy sor minden esetben tartalmazza az összes szimulált részecske 3 térkoordinátáját, az azokhoz tartozó sebesség- és gyorsuláskomponenseket, valamint sorrendben az összes többi vizsgálandó mennyiséget az adott lépés esetére. Ezek pontos sorrendjéért lásd a programkódot GitHub-on[7].

Az előző szimulációkhoz hasonlóan, most is készítettem néhány animációt a szimulált folyamatokról. Szintén az előzőekhez hasonlóan, ezt most is Pythonban valósítottam meg egy saját kód segítségével, ami a matplotlib és a imageio könytárakat használva generál megadott paraméterek alapján mp4 formátumú, kis méretű, de nagy felbontású videókat. Viszont ellentétben az eddigiekkel, most minden részfeladatról animációt készítettem, amik válogatva a YouTube-on megtekinthetőek[2].

A végleges forráskódok és a programokat futtató Notebook file szintén mind elérhető GitHub-on[7].

5. KIÉRTÉKELÉS

6. FUTÁSIDŐ

Az md3 indexxel jelzett programban több bemeneti paramétert válatoztatva térképeztem fel a szimuláció futásidejét. Ezek a paraméterek az rCutOff a - (3.1)-es részben tárgyalt - potenciálok levágási távolsága, rMax a szomszédsági lista nyilvántartási távolsága, valamint az updateInterval, a szomszédsági lista frissítései közt eltelt intervallum voltak.

7. DISZKUSSZIÓ

- [1] Loup Verlet. "Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules". In: *Physical review* 159.1 (1967), p. 98.
- [2] Pál Balázs's Channel YouTube. [Online; opened at March 23, 2019]. 2019. URL: https://www.youtube.com/channel/UCBDSB7PdQ3E919WSBsTy7cQ.
- [3] József Stéger, István Csabai. Számítógépes szimulációk Molekuladinamika. [Online; opened at March 25, 2019]. 2019. URL: https://stegerjozsef.web.elte.hu/teaching/szamszim/moldin.pdf.
- [4] William H Press et al. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press, 2007.
- [5] J. E. Jones. "On the Determination of Molecular Fields. II. From the Equation of State of a Gas". In: Proceedings of the Royal Society of London Series A 106 (Oct. 1924), pp. 463–477. DOI: 10.1098/rspa. 1924.0082.
- [6] Stephen T. Thornton and Andrew Rex. *Modern physics for scientists and engineers*. Cengage Learning, 2012.
- [7] Pál Balázs. ELTE Computer Simulations 2019 GitHub. [Online; opened at March 23, 2019]. 2019. URL: https://github.com/masterdesky/ELTE_Comp_Simulations_2019.

APPENDIX A

A.1.1 MÉRENDŐ MENNYISÉGEK ADATAI

1. ábra. Pillanatnyi hőmérsékletek zárt rendszerben, ${\cal N}=64$ részecske esetén

2. ábra. A zárt rendszerben teljes energiája ${\cal N}=64$ részecske esetén

3. ábra. A zárt rendszerben mért moláris hőkapacitás ${\cal N}=64$ részecske esetén

4. ábra. A zárt rendszer nyomása ${\cal N}=64$ részecske esetén

5. ábra. A zárt rendszer kompressziós együtthatója ${\cal N}=64$ részecske esetén

A.1.2 FUTÁSIDŐK

6. ábra. A futásidők teljes 4D terének 3D projekciói. Az azonos szimulációk mindhárom képen azonos színekkel vannak jelölve. Bal szélső ábra: Az egyes szimulációk futásideje az rMax és az updateInterval függvényében Középső ábra: A futásidők az rCutOff és updateInterval függvényében Jobb szélső ábra: A futásidők az rCutOff és rMax függvényében