

Représentation énergétique des systèmes décrits par équations aux dérivées partielles (EDP) –Application aux phénomènes électromagnétiques–

Kevin AYIVI

Avril – Septembre 2024

Introduction

Cadre: Optimisation du système de traction ferroviaire.

FIGURE - Traction ferroviaire

➡ Il est composé de 5 parties principales (ci-dessus) faisant intervenir 3 phénomènes physiques

Électrique – Électromagnétique – Mécanique

→ Objectif : Représentation du couplage électromagnétique

Bond Graph

Bond Grpah:

Représentation de la puissance, vu comme le produit entre l'éffort et le flux. → P = e x f

 Montre les relations de causalité.

Symbol	Equations	Block
Se —	e imposed by S_e	Se e
Sf	f imposed by S_f	$Sf \xrightarrow{f} e$
I	$f(t) = \Phi_I^{-1} \left(\int_t e(\tau) d\tau \right)$	$\stackrel{e}{\longrightarrow} \emptyset_{l}^{-1} \int \stackrel{f}{\longrightarrow}$
├ C	$e(t) = \Phi_C^{-1} \left(\int_t f(\tau) d\tau \right)$	$\xrightarrow{f} \emptyset_c^{-1} \int \xrightarrow{e}$
├ R	e = Rf	$f \longrightarrow R \xrightarrow{e}$
R	$f = \frac{1}{R}e$	e 1/R f →

Junction		Description	
f ₁	Strong bond Causality f _j	$\sum_{i=1}^n \sum_{e_{ ext{in}}}$	$a_i e_i f_i = 0,$ $p_{ m ut} = \sum e_{ m out}$
e ₁	Strong bond Causality O T T T T T T T T T T T T	$\sum_{i=1}^n \sum_{f ext{in}}$	$a_i e_i f_i = 0,$ put $= \sum f_{ m out}$

Modélisation volumes finis

▶ Lois

Équations de Maxwell

Loi de conservation

$$\begin{cases} \mathsf{Faraday}: & \nabla \times \mathbf{E} \ = \ -\mu \ \partial_t \mathbf{H} \\ \mathsf{Ampère}: & \nabla \times \mathbf{H} \ = \ \mathbf{J} \end{cases} \quad \rightarrow \quad \alpha \frac{\partial \mathbf{Q}}{\partial t} + \nabla \cdot \mathbb{F}(\mathbf{Q}) = -\mathbf{J}$$

Schéma volumes finis centrés

$$\begin{cases} \mu \; \frac{d\mathbf{H}}{dt} \; + \; \frac{1}{volume(\mathbf{V})} \sum_{\mathbf{E}' \in \mathbf{P}(\mathbf{E})} \frac{\eta}{2} (\mathbb{F}(\mathbf{E}) + \mathbb{F}(\mathbf{E}')) \; = \; 0 \\ \varepsilon \; \frac{d\mathbf{E}}{dt} \; + \; \frac{1}{volume(\mathbf{V})} \sum_{\mathbf{H}' \in \mathbf{P}(\mathbf{H})} \frac{\eta}{2} (\mathbb{F}(\mathbf{H}) + \mathbb{F}(\mathbf{H}')) \; = -\sigma \mathbf{E} \end{cases}$$

$$\eta = \int_{\partial \mathbf{V} \cap \partial \mathbf{V}'} \mathbf{n} \ ds, \qquad n : \text{vecteur normal unitaire}$$

Représenation énergétique

- **▶** Loi de Faraday ⇒ multiport *I* and 1-junction
- **►** Loi d'Ampère ⇒ 0-junction
 - \triangleright Dans le fil \Rightarrow multiport R
 - ightharpoonup Dans l'air \Rightarrow multiport R, multiport C
 - \triangleright Sur les bords, \Rightarrow multiport R, multiport C, multiport Sf

FIGURE – Bond Graph

Simulation

- 2D transverse électrique
- rayon du fil : a = 6 mm

- I = 20 A
- $\bullet \qquad -10 \ cm \ \leqslant \ x, \ y \ \leqslant \ 10 \ cm$
- $\mathbf{H} = 0$, sur le bord

FIGURE - Champ magnétique

FIGURE - Magnitude

 $FIGURE - \mathsf{Densit\'e} \ \mathsf{de} \ \mathsf{courant}$

