Math 554

Homework

We have shown

Proposition 1. The following are equivalent for a metric space E.

- (a) E is the disjoint union of two nonempty open subsets of E.
- (b) E is the disjoint union of two nonempty open subsets of E.
- (c) E has a subset $U \neq \emptyset$, $U \neq E$ that is both open and closed.

Definition 2. A metric space E satisfying any of one of three equivalent conditions of Proposition 1 is disconnected.

But of course what we are really interested in is when a space is connected. This is when it is not disconnected:

Definition 3. The metric space E is connected iff it is not the disjoint union of two nonempty open subsets.

Proposition 4. If the metric space E is the disjoint union of the two nonempty open sets U and V and A is connected subset of E, then either $A \subseteq U$ or $A \subseteq V$.

Problem 1. Prove this along the lines outlined in class. \Box

Proposition 5. Let E be a metric space with

$$E = A \cup \bigcup_{i \in I} B_i$$

where A and each B_i is nonempty and connected and for all $i \in I$ we have $A \cap B_i \neq \emptyset$. Then E is connected.

Problem 2. Prove this along the lines outlined in classes. \Box

Here is a generalization of Proposition 5.

Proposition 6. Let $E = \bigcup_{i \in I} B_i$ were each B_i is nonempty and connected. Assume that for any $i, j \in I$ there is a finite sequence $i = i_1, i_2, \ldots, i_n = j \in I$ such that

$$B_i \cap B_{i+1} \neq \emptyset$$

for i = 1, 2, ..., n - 1. Then E is connected.

Problem 3. Prove this. *Hint:* Towards a contradiction assume that is the disjoint union of the two nonempty open subsets U and V. Choose $i_0 \in I$. Then B_{i_0} will have a point in common with either U or V. Assume it has a point in common with U. Then by Proposition 5 $B_{i_0} \subseteq U$. Then for any other B_j , connect it to B_{i_0} be a chain such as in the statement of the proposition and you take it form there.

So far our deepest result about on connected sets is

Theorem 7. Any nonempty interval in \mathbf{R} is connected.

Problem 4. Let $S \subset \mathbf{R}$ be a nonempty connected subset of \mathbf{R} that is neither bounded above or below. Show $S = \mathbf{R}$. *Hint:* Use the last theorem.

We have started to talk about continuous function between metric spaces.

Definition 8. Let (E,d) and (E',d') be metric space and $f: E \to E'$ a map from E to E'. Then f is **continuous at the point** $a \in E$ iff for all $\varepsilon > 0$ there is a $\delta > 0$ such that

$$d(x,a) < \delta$$
 implies $d'(f(x), f(a)) < \varepsilon$.

Mostly we will be working with functions that are continuous at all points of their domains so we give a name to these.

Definition 9. The function $f: E \to E'$ is **continuous** iff it is continuous at all points $a \in E$.

Recall that if $f: E \to E'$ and $U \subseteq E$, the the **preimage** of U by f is $f^{-1}[U] = \{x \in E : f(x) \in U\}.$

That is it is the set of all the x in E that get mapped into U by f.

The following relates continuity of a function $f: E \to E'$ with the open sets of E and E'.

Theorem 10. Let (E,d) and (E',d') be metric spaces and $f: E \to E'$, a function from E to E'. Then f is continuous if and only for every open set $U \subseteq E'$ the set $f^{-1}[U]$ is open in E.

A loose restatement of this would be that $f : E \to E'$ is continuous if and only if the preimage of open sets are open.

Problem 5. Prove the last theorem along the following lines.

- (a) Assume that $f: E \to E'$ is continuous. Then we wish to show that for any open set $U \subseteq E'$ the preimage $f^{-1}[U]$ is open in E. To be specific we will be done when we have shown that for each $a \in f^{-1}[U]$ there is an open ball about a that is continued in $f_{-1}[U]$. So let $a \in f^{-1}[U]$.
 - (i) Explain why $f(a) \in U$ and why there is an $\varepsilon > 0$ such that $B(f(a), \varepsilon) \subseteq U$.
 - (ii) As f is continuous at a there is a $\delta > 0$ such that $d(x, a) < \delta$ implies $d'(f(x), f(a)) < \varepsilon$. Use this to show $B(a, \delta) \subseteq f^{-1}[U]$ which is what we needed to finish this part of the proof.
- (b) Now assume that the preimage under f of open sets are open. Then we want to show that f is continuous. Explictly we need to show that for any $a \in E$ and $\varepsilon > 0$ there is a $\delta > 0$ such that $d(x, a) < \delta$ implies $d'(f(x), f(a)) < \varepsilon$. So let $a \in E$ and $\varepsilon > 0$.
 - (i) Explain why the set $f^{-1}[B(f(a),\varepsilon)]$ is an open subset of E.
 - (ii) Explain why there is a $\delta > 0$ such that $B(a, \delta) \subseteq f^{-1}[B(f(a), \varepsilon)]$.
 - (iii) Show that the last step implies $d(x, a) < \delta$ implies $d'(f(x), f(a)) < \varepsilon$ which finishes the proof.