

Кран шаровой с пробкой в опорах Тип СТМ Ш 33

Предназначены для герметичного перекрытия потока рабочей среды в технологических установках в нефтяной, газовой, химической, металлургической, энергетической промышленностях, хранении и транспортировании сжиженного природного газа.

Номинальный диаметр	DN 15÷2000 mm
Номинальное давление	PN 1,6÷42,0 MПa
Материал корпуса	ст. 20, ст. 09Г2С, ст. 12Х18Н12М3ТЛ, A350 LF2, A350 LF3, A182 F316 Специальное исполнение по запросу
Производственный ряд	PN 1,6÷10,0 MITa DN 15÷2000 mm PN 16,0 MITa DN 50÷1400 mm PN 25,0 MITa DN 50÷900 mm PN 42,0 MITa DN 50÷500 mm
Климатическое исполнение	FOCT 15150-69
Рабочая температура	-196°C ÷ +1000°C - широкий диапазон рабочих температур в зависимости от применяемых материалов
Форма фланцев	ГОСТ 33259-2015 Специальное исполнение по запросу
Стандарт испытания герметичности в затворе	ΓΟCT 9544-2015
Оснащение исполнительным механизмом	Ручной, электрический, пневматический Специальное исполнение по запросу

Конструкция крана шарового с пробкой в опорах

Корпус и патрубки крана шарового с пробкой в опорах могут быть изготовлены из литой стали, кованой стали или из специальных сплавов. Основным преимуществом кранов шаровых из трёх составных частей является упрощенное техническое обслуживание.

1	Корпус	14	Уплотнитель	27	Болт
2	Концы под приварку	15	Фланец	28	Болт
3	Крышка	16	Верхняя опора	29	Уплотнительное кольцо
4	Пробка	17	Нижняя опора	30	Штифт
5	Седло	18	Фланец	31	Ввод для уплотнителя
6	Уплотнительное кольцо	19	Верхняя опора	32	Ввод для уплотнителя
7	Пожаробезопасная прокладка	20	Нижняя опора	33	Продувочный клапан
8	Пружина	21	Втулка	34	Запорный клапан
9	Уплотнительное кольцо 1	22	Втулка	35	Дренажный клапан
10	Уплотнительное кольцо 2	23	Стойки	36	Дренажный клапан
11	Шпиндель	24	Подъёмная скоба		
12	Шпонка	25	Болт		
13	Болт	26	Гайка		

Стандартное исполнение

Шпиндель с защитой от вырывания

Антистатическое устройство

Герметичность крана шарового в любом направлении потока

Полнопроходная или неполнопроходная конструкция

Пожаробезопасная конструкция в соответствии с СТ ЦКБА 001-2003, ISO 10497, BS 6755-2

Специальное исполнение

Присоединение к трубопроводу по варианту заказчика

Защитное износостойкое покрытие пробки и седла

Сёдла с двойным эффектом поршня (Двойная Изоляция со Сбросом)

Сёдла в компоновке - одно седло с двойным эффектом поршня, другое седло с одинарным эффектом поршня

Система двойной блокировки и сброса давления

Аварийное дополнительное уплотнение сёдел и шпинделя

Ввод уплотнительной смазки в зону уплотнения седел и шпинделя

Дренажный клапан

Удлинённый шпиндель

Расширенная крышка

Уплотнение "металл по металлу"

Соответствие материалов требованиям ГОСТ 53678-2009, ГОСТ 53679-2009, EN ISO 15156-1, NACE MR 0103

Опорные поверхности (лапы)

Отличительные особенности

Отличительными особенностями являются повышенная надежность и разборная, ремонтопригодная конструкция.

Конструктивное исполнение крана шарового с пробкой в опорах повышает срок службы крана, уменьшает требуемый рабочий крутящий момент, значительно продлевает срок службы.

Конструктивно возможно исполнение как с полным, так и неполным проходом.

Присоединение к трубопроводу в зависимости от технологии возможно во фланцевом исполнении с любым видом уплотнительной поверхности или сварное присоединение.

Система двойной блокировки и сброса давления

Система «Двойной Блокировки со Сбросом» (ДБС) давления обеспечивает способность крана шарового отсечь давление со стороны каждого входного патрубка, а также сбросить рабочую среду, скопившуюся между седлами. В арматуре ДБС имеются два седла с однонаправленным уплотнением. В закрытом положении пробки такие седла отсекают давление рабочей среды в трубопроводе от полости корпуса арматуры, расположенной между седлами. Если перепад давления на седле меняет знак, оно отходит от пробки, и давление сбрасывается из полости корпуса в трубопровод. Это

замечательная возможность, особенно для жидких рабочих сред. Ведь если жидкость в полости корпуса нагревается во время работы системы или за счет внешних источников тепла, давление в ней может увеличиться из-за теплового расширения жидкости. При отсутствии седел, уплотняющих в одном направлении, способных сбросить давление, в корпусе арматуры может возникнуть избыточное давление, что неизменно приведет к утечке или разрыву.

В тех отраслях промышленности, где для перекрытия потока рабочей среды используются краны шаровые, в ряде случаев требуется второй барьер против давления, с независящей от первого герметичностью. Такая необходимость обычно вызвана либо требованиями техники безопасности, либо спецификой эксплуатации (газоснабжение, жесткие требования к герметичности, чистота проводимой среды и др.). Арматура Двойной Изоляции со Сбросом (ДИС) как нельзя лучше подходит для этих условиях. Изоляция может быть реализована в одном или двух направлениях в зависимости от конфигурации седел.

Седло двунаправленного действия прижимается к шаровой пробке независимо от того, с какой стороны действует давление — снаружи или изнутри крана. Это достигается благодаря изменению эффективного диаметра уплотнения корпуса в ту или иную сторону смещение реверсивного кольца в седле. Такая конфигурация ДИС пригодна для большинства ситуаций, в которых необходимо дублирование герметичности. ДИС сочетает в себе возможность сброса давления из полости корпуса и основные функции конфигурации ДБС.

Характеристики применяемых уплотнительных материалов

Значения давлений для конкретных исполнений корпуса крана шарового определяют максимально допустимые границы применения уплотнительных материалов корпуса по температуре и давлению рабочей среды. Значения температуры и давления могут быть меньше приведённых при определённых конструктивных исполнениях. Для гарантированной работы корпуса крана шарового рабочее давление должно быть на 20% меньше максимально допустимого для данной температуры и уплотнительного материала. Предельные значения выбирать не допускается.

Статический режим работы PTFE, PEEK

Давление, МПа 40,00 40,00 30,00 30,00 30,00 15,00 10,0

Динамический режим работы PTFE, PEEK

Статический режим работы VITON, H-NBR

Динамический режим работы VITON, H-NBR

VITON - фторэластомер, из которого изготавливаются уплотнения и, особенно, сальники, прокладки, уплотнительные кольца, уплотнения шпинделей высшего качества для применения в промышленном оборудовании для различных сред. VITON обладает улучшенными температурными свойствами, стойкостью к воздействию агрессивных сред, превосходной теплостойкостью, широкой химической совместимостью, обеспечение чистоты и целостности технологического процесса.

H-NBR - гидрированный бутадиен-нитрильный эластомер. Это термостойкий каучук с высокой стойкостью к воздействию озона и химических веществ. H-NBR обладает лучшими механическими свойствами, такими как прочность при разрыве, относительное удлинение при разрыве, устойчивость к истиранию. H-NBR применяется в основном в тех областях, в которых наряду с высокой устойчивостью к минеральным маслам также требуется хорошая эластичность при высокой температуре в масле с высоким процентом добавок, например, уплотнительные элементы при добыче сырой нефти и природного газа (также для кислого природного газа).

РТГЕ / Фторопласт-4 (Ф-4) обладает исключительной химической инертностью по отношению практически ко всем агрессивным средам (за исключением расплавов щелочных металлов, хлора). Это качество РТГЕ используется при эксплуатации трубопроводов для транспортировки высоко агрессивных сред, запорной арматуры, прокладочно-уплотнительных деталей контактирующих с агрессивными средами и др.

РЕЕК - полиэфирэфиркетон (ПЭЭК) является линейным, ароматическим, полукристаллическим

Типовой лист ТЛ 0003 5

полимером, который считается одним из самых высокоэффективных термопластических материалов в мире. Полимеры PEEK обладают уникальной комбинацией свойств, включающей высокую термостойкость, стойкость к воздействию химических веществ, стойкость к гидролизу, износостойкость, а также электрические и механические свойства.

Конструкция удлинённого шпинделя

Для защиты сальникового узла от воздействия криогенных или высоких температур рабочей среды при эксплуатации, а также при подземной установке используется конструкция удлинённого шпинделя.

Монтажные и габаритные размеры

Р 1,6 МПа, Р 2,5 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ Р 1,6 МПа, Р 1,5 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.В	L исп.J	LNN	H1	H2	Вес, кг
50	178	191	216	106	102	16
65	191	203	241	155	105	20
80	203	216	283	157	111	39
100	229	241	305	198	187	55
150	394	406	457	242	235	169
200	457	470	521	288	280	244
250	533	546	559	323	320	439
300	610	622	635	375	355	688
350	686	699	762	430	400	886
400	762	775	838	448	470	1215
450	864	876	914	477	510	1625
500	914	927	991	520	550	1850
600	1067	1080	1143	640	640	3120
700	1245	1376	1346	728	720	5200
800	1372	1555	1524	803	760	7020
900	1524	1758	1727	895	930	10300
1000	1753	-	1780	965	948	13350
1200	1995	-	2100	1097	1066	24210
1400	2300	-	2250	1302	1253	34100
1500	2489	-	2489	1418	1380	38500

PN 1,6 MIIA, PN 2,3 MIIA HEIIUJIHUIIPUAUAHAA KUHUIPYKUM									
DN	d	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг		
50	40	178	191	216	106	102	16		
65	50	191	203	241	106	102	20		
80	50	203	216	283	106	102	21		
80	65	203	216	283	130	110	22		
100	80	229	241	305	157	111	45		
150	100	394	406	457	198	187	68		
200	150	457	470	521	242	235	186		
250	200	533	546	559	288	280	266		
300	250	610	622	635	323	320	478		
350	250	686	699	762	323	320	507		
350	300	686	699	762	375	355	724		
400	300	762	775	838	375	355	767		
400	350	762	775	838	430	400	935		
450	400	864	876	914	448	470	1265		
500	400	914	927	991	448	470	1310		
500	450	914	927	991	477	510	1670		
600	500	1067	1080	1143	520	550	1970		
1000	900	1753	-	1780	895	930	10700		

L исп. ПП — строительная длина крана шарового с патрубками под приварку по ГОСТ 28908-91

^{*} L исп. В — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. В L исп. J — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. J

Р 4,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

B. 1						
DN	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг
50	216	232	216	100	85	21
65	241	257	241	125	100	25
80	283	298	283	158	121	50
100	305	321	305	191	142	87
150	403	419	403	242	235	192
200	502	518	521	288	280	333
250	568	584	559	337	320	559
300	648	664	635	375	355	728
350	762	778	762	407	400	985
400	838	854	838	473	460	1390
450	914	930	914	485	510	1810
500	991	1010	991	540	555	2350
600	1143	1165	1143	673	635	3715
700	1346	1372	1346	762	720	5600
800	1524	1553	1524	815	848	7820
900	1727	1756	1727	918	950	12010
1000	1850	-	1780	987	980	15000
1200	2180	-	2100	1208	1200	25300
1400	2300	-	2250	1285	1270	38155
1500	2743	-	2743	1380	1440	46600

Р 4,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг
50	40	216	232	216	100	85	20
65	50	241	257	241	100	85	26
80	50	283	298	283	125	100	28
80	65	283	298	283	125	100	30,5
100	80	305	321	305	158	121	58
150	100	403	419	403	191	142	106
200	150	502	518	521	242	235	218
250	200	568	584	559	288	280	370
300	250	648	664	635	337	320	610
350	250	762	778	762	337	320	685
350	300	762	778	762	375	355	807
400	300	838	854	838	375	355	862
400	350	838	854	838	407	400	1045
450	400	914	930	914	473	460	1460
500	400	991	1010	991	473	460	1545
500	450	991	1010	991	485	510	1900
600	500	1143	1165	1143	540	555	2550
1000	900	1850	-	1780	918	950	12000

Р 6,3 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.В	L исп.J	LNN	H1	H2	Вес, кг
50	292	295	292	102	98	36
65	330	333	330	130	110	51
80	356	359	356	165	128	72
100	406	410	406	210	160	102
150	495	498	495	242	235	230
200	597	600	597	289	280	420
250	673	676	673	337	320	630
300	762	765	762	379	365	902
350	826	829	826	398	395	1121
400	902	905	902	453	470	1612
450	978	981	978	500	510	2010
500	1054	1060	1054	540	560	2446
600	1232	1241	1232	641	660	4095
700	1397	1410	1397	738	760	6200
800	1651	1667	1651	819	850	9890
900	1880	1895	1880	920	880	13250
1000	2000	-	1900	987	980	18335
1200	2400	-	2180	1208	1200	31195
1400	2710	-	2385	1290	1450	47483
1500	2949	-	2949	1510	1550	61500

РИ 6,3 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг
50	40	292	295	292	102	98	35
65	50	330	333	330	102	98	40
80	50	356	359	356	130	110	50
80	65	356	359	356	130	110	55
100	80	406	410	406	165	128	90
150	100	495	498	495	210	160	138
200	150	597	600	597	242	235	272
250	200	673	676	673	289	280	495
300	250	762	765	762	337	320	678
350	250	826	829	826	337	320	795
350	300	826	829	826	379	365	1025
400	300	902	905	902	379	365	1160
400	350	902	905	902	398	395	1260
450	400	978	981	978	453	470	1705
500	400	1054	1060	1054	453	470	1852
500	450	1054	1060	1054	500	510	2165
600	500	1232	1241	1232	540	560	2785
1000	900	2000	-	1900	920	880	13260

L исп. J — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. J L исп. ПП — строительная длина крана шарового с патрубками под приварку по ГОСТ 28908-91

^{*} L исп. В — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. В

Р 10,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

			• •		•	
DN	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг
50	292	295	292	102	98	36
65	330	333	330	130	110	51
80	356	359	356	165	128	72
100	432	435	432	210	160	123
150	559	562	559	248	235	290
200	660	664	660	297	280	456
250	787	791	787	337	320	777
300	838	841	838	379	365	1029
350	889	892	889	398	400	1295
400	991	994	991	447	458	1732
450	1092	1095	1092	541	510	2400
500	1194	1200	1194	289	560	2820
600	1397	1407	1397	692	645	4770
700	1549	1562	1549	794	790	6900
800	1778	1794	1778	833	860	9890
900	2083	2099	2083	920	880	16170
1000	2000	-	1900	987	980	18335
1200	2400	-	2180	1208	1200	31195
1400	2710	-	2385	1290	1450	47483
1500	2949	-	2949	1510	1550	61500

PN 10,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг
50	40	292	295	292	102	98	35
65	50	330	333	330	102	98	40
80	50	356	359	356	130	110	50
80	65	356	359	356	130	110	55
100	80	432	435	432	165	128	90
150	100	559	562	559	210	160	160
200	150	660	664	660	248	235	332
250	200	787	791	787	297	280	540
300	250	838	841	838	337	320	825
350	250	889	892	889	337	320	942
350	300	889	892	889	379	365	1152
400	300	991	994	991	379	365	1288
400	350	991	994	991	398	400	1442
450	400	1092	1095	1092	447	458	1838
500	400	1194	1200	1194	447	458	2000
500	450	1194	1200	1194	541	510	2578
600	500	1397	1407	1397	289	560	3215
1000	900	2000	-	1900	920	880	15950

Р 16,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

	it 10,0 i ma novinom exegnitir nonem yngin								
DN	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг			
50	368	371	368	104	103	70			
65	419	422	419	130	115	102			
80	381	384	381	163	132	105			
100	457	460	457	211	169	183			
150	610	613	610	259	213	372			
200	737	740	737	297	264	719			
250	838	841	838	342	333	1140			
300	965	968	965	384	379	1426			
350	1029	1038	1029	398	368	1758			
400	1130	1140	1130	436	137	2630			
450	1219	1232	1219	484	497	3585			
500	1321	1334	1321	532	503	5190			
600	1549	1568	1549	617	633	8515			
700	1753	1775	1753	674	706	11630			
800	2032	2054	2032	784	809	16600			
900	2286	2315	2286	848	898	23235			
1000	2180	2210	2100	1160	1000	23260			
1200	2450	2480	2380	1262	1195	34800			
1400	2949	-	2400	1416	1404	47483			

Р 16,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.В	L исп.J	LNN	H1	H2	Вес, кг
50	40	368	371	368	104	103	70
65	50	419	422	419	104	103	81
80	50	381	384	381	130	115	86
80	65	381	384	381	130	115	96
100	80	457	460	457	163	132	127
150	100	610	613	610	211	169	243
200	150	737	740	737	259	213	452
250	200	838	841	838	297	264	802
300	250	965	968	965	342	333	1258
350	250	1029	1038	1029	342	333	1440
350	300	1029	1038	1029	384	379	1612
400	300	1130	1140	1130	384	379	1758
400	350	1130	1140	1130	398	368	1916
450	400	1219	1232	1219	436	437	2885
500	400	1321	1334	1321	436	437	3142
500	450	1321	1334	1321	484	497	3856
600	500	1549	1568	1549	532	503	6222
1000	900	2180	2210	2100	848	898	23505

^{*} L исп. В — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. В

Типовой лист ТЛ 0003 9

L исп. J — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. J

L исп. ПП — строительная длина крана шарового с патрубками под приварку по ГОСТ 28908-91

PN 25,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг
50	368	371	368	106	104	50
65	419	422	419	130	115	72
80	470	473	470	167	128	97
100	546	549	546	179	170	198
150	705	711	705	260	233	480
200	832	841	832	304	290	820
250	991	1000	991	363	352	1500
300	1130	1146	1130	417	425	2250
350	1257	1276	1257	437	426	2850
400	1384	1407	1384	475	493	4070
450	1537	1559	1537	563	608	6195
500	1664	1686	1664	617	645	9075
600	1945	1972	1945	698	724	14280
700	2032	2061	2032	941	1037	13100
800	2415	2444	2415	1060	1165	15100
900	2743	2755	2743	1180	1306	18840

Р 25,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.В	L исп.J	LNN	H1	H2	Вес, кг
50	40	368	371	368	104	103	41
65	50	419	422	419	104	103	50
80	50	470	473	470	130	115	68
80	65	470	473	470	130	115	95
100	80	546	549	546	167	128	122
150	100	705	711	705	179	170	285
200	150	832	841	832	260	233	566
250	200	991	1000	991	304	290	1022
300	250	1130	1146	1130	363	352	1760
350	250	1257	1276	1257	363	352	2145
350	300	1257	1276	1257	417	425	2500
400	300	1384	1407	1384	417	425	2800
400	350	1384	1407	1384	437	426	3245
450	400	1537	1559	1537	475	493	4970
500	400	1664	1686	1664	475	493	5135
500	450	1664	1686	1664	563	608	7500
600	500	1945	1972	1945	617	645	10875

Р 42,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.В	L исп.J	LΠΠ	H1	H2	Вес, кг			
50	451	454	451	120	127	88			
65	508	540	508	150	162	135			
80	578	584	578	177	198	187			
100	673	683	673	227	233	380			
150	914	927	914	264	252	770			
200	1022	1038	1022	383	339	1357			
250	1270	1292	1270	453	422	2100			
300	1422	1445	1422	520	482	3210			
350	1681	1681	1681	578	558	5520			
400	1962	1962	1962	650	620	6520			
450	2134	2134	2134	810	740	8630			
500	2286	2286	2286	900	825	11640			

PN 42,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

114 42,0 1 ma neno/mom oxogn/m nonom /na/m										
DN	d	L исп.В	L исп.J	LNN	H1	H2	Вес, кг			
50	40	451	454	451	120	82	65			
65	50	508	540	508	127	88	105			
80	50	578	584	578	162	135	155			
80	65	578	584	578	162	135	210			
100	80	673	683	673	198	187	264			
150	100	914	927	914	233	380	510			
200	150	1022	1038	1022	252	770	1090			
250	200	1270	1292	1270	339	1357	1663			
300	250	1422	1445	1422	422	2100	2555			
400	300	1962	1962	1962	482	3210	5170			
450	350	2134	2134	2134	558	5520	6670			
500	400	2286	2286	2286	620	6520	8955			

^{*} L исп. В — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. В L исп. J — строительная длина крана шарового с формой фланцев по ГОСТ 33259-2015 исп. J

L исп. ПП — строительная длина крана шарового с патрубками под приварку по ГОСТ 28908-91

Варианты оснащения исполнительными механизмами

Неполнооборотные приводы AUMA обеспечат расширенные возможности контроля потоков: расширенный диапазон времени перекрытия, высокую точность и адаптацию к любым условиям работы, безопасное управление и интеллектуальное взаимодействие с арматурой

Червячные редукторы AUMA, производимые с использованием высококачественных материалов и технологий сборки, гарантируют надежность конструкции при работе, эксплуатацию в экобых климатических условиях, а также во взрывоопасных зонах

Комбинация редуктора и многооборотного электропривода AUMA: передаточное отношение позволяет использовать многооборотные приводы меньших размеров, а соответственно и менее дорогостоящих

Варианты оснащения исполнительными механизмами

Для расчета и выбора типоразмера привода необходимо учитывать факторы, влияющие на значение требуемого крутящего момента. В первую очередь на данное значение влияют перепад давления на рабочем органе, вязкость рабочей среды и наличие механических примесей. Также количество срабатываний арматуры в определенный отрезок времени является решающим фактором при расчете требуемого крутящего момента. Чем реже происходит срабатывание арматуры, тем больший коэффициент запаса следует учитывать.

Для расчета и выбора схемы управления приводом учитываются требования Заказчика по управляющим сигналам и сигналам обратной связи. Данные сигналы должны соответствовать системе АСУТП на предприятии или стыковаться с последней посредством специальных коммутационных устройств/схем.

Для расчета типа присоединения привода к арматуре необходимо обеспечить сопряжение фланца привода и посадочного места на клапанной части. В случае невозможности реализации данного сопряжения, изготавливаются и устанавливаются специальные промежуточные переходные конструкции.

Каждый технологический процесс рассматривается нашими специалистами индивидуально. Все вышеперечисленные технические особенности рассчитываются и реализуются на основании данных Опросного листа, а также данных, дополнительно полученных от Заказчика. В связи с вышеизложенным, будем Вам признательны за предоставление максимально подробной информации.

Рекомендации по заказу

Обращаем Ваше внимание, что задача контроля потока среды требует комплексного решения.

Для ее решения необходимо, помимо верного подбора арматуры, осуществить прецизионный подбор приводной части и навесного оборудования.

Данный подбор будет осуществлен оптимально только в случае предоставления Вами полной информации как по характеристикам потока рабочей среды (клапанная часть), так и по параметрам управления, обратной связи (сервопривод и навесное оборудование). Нами приветствуется отображение данной информации в форме опросного листа.

В случае пожелания заказчика по поставке комплектного оборудования (кран шаровой, привод, навесное оборудование) последнее поставляется в сборе или собирается непосредственно на объекте. Гарантийные обязательства распространяются в полном объеме на всю сборочную единицу.

По требованию заказчика возможно осуществление помощи (силами наших специалистов) непосредственно на объекте на любой стадии процесса заказа:

- заполнение опросных листов;
- диагностика существующей схемы управления;
- монтаж и позиционирование оборудования (поэтапное и единовременное) непосредственно на объекте;
 - пусконаладочные работы;
 - обучение обслуживающего персонала.

Опросный лист на краны шаровые Тип СТМ Ш

заказчи	к / Конечныи потре	ритель:										
\дрес: _												
Гел/фак	c, E-mail:											
Троект <i>/</i>	′ Объект реконструк	ции:										
1	1 Тип крана шарового			Кран шарової	Й			Кран	шар	овой се	егментны	ІЙ
1	і іміі құапа шарової о			Кран шарової	й трехх	одовой		П Другое				
2	Марка ранее устан	новленного крана шарового (замена)										
3	Номинальный диа	метр DN, мм										
4	Номинальное дав	пение PN, МПа/бар										
5	Требуемое количе	СТВО, ШТ.										
6		Агрегатное состояние	□Ж	идкость	□ Газ	1	□ Пар	Пар 🗆 Двухф		Цвухфа	азный по	ток
7		Название рабочей среды / состав										
8		Режимы работы крана шарового		Мин.			Норм			Макс.		
9		Расход среды, м3/ч (н.у., ст.у.) / кг/ч										
10		Входное рабочее давление, МПа/бар										
11	D. C	Выходное рабочее давление, МПа/бар										
12	Рабочая среда	Рабочая температура, ⁰С										
13		Плотность рабочей среды, кг/м3										
14		Вязкость рабочей среды										
15		Коэффициент сжимаемости (для газов)										
16		Показатель адиабаты (для газов)										
17		Давление насыщенных паров (жидкости)										
18		Пожаробезопасное исполнение		Да				ı F	lет			
10		Материал корпуса		□ Чугун)	′глерс	одиста	я сталь	
19				🗆 Нержавеющая сталь				□ Другое				
		Материал затвора е		Чугун)	′глерс	одиста	я сталь	
20	Исполнение			□ Нержавеющая сталь				П Другое				
21		Герметичность затвора										
22		Уплотнение затвора										
00				Фланцево	e		Прив	арное			Резьбов	oe
23		Присоединение к трубопроводу		Межфлані	цевое	•		Др	угое			
24		Макс. перепад давления в закрытом					•					
	Гидравлические	положении, МПа/ бар										
25	характеристики	Условная пропускная способность Kvy, м³/ч		•								
26		Направление подачи среды		Односторонн	<u>ee</u>					оннее	,	
27		Тип привода		Ручной	•					ческий	1	
20	Характеристики привода	Danie amini mia l'accessor		Пневматиче	скии			і Др	угое			
28	привода	Время открытия / закрытия, сек										
29		Перепад давления для расчета привода										

30		Степень защиты от внешнего воздействия		IP66		□	P67		
		воздействия		□ IP68 □		П П	Іругое		
0.1				Exia		□ E	xd		
31		Степень взрывозащиты		Общепромышленн)e \Box		□ Другое		
32		Электрический, напряжение питания		~380 B	□ ~2:	20 B		□= 24 B	
33		Электрический, управляющий сигнал							
34		Электрический, сигнал обратной связи							
35		Пневматический, способ подачи		Простого действия		[□ Двой	іного действия	
36		Минимальное давление воздуха необходимое для работы привода, МПа/бар							
37		Положение безопасности		Открыт	□ Закрыт		□ T	екущее положение	
38		Степень защиты от внешнего воздействия		IP66			IP67	1	
30		степень защиты от внешнего воздействия		IP68			Друг	гое	
39		CTOROUL POPLIPOSOUMTLE		Exia			Exd		
37		Степень вэрывозащиты		□ Общепромышленное исполнение			□ Другое		
40		Датчик конечных положений	□ Да				□ Нет		
41	Навесное оборудование	I Dyuuoŭ ny6non III III			□ Нет				
42	17	Электромагнитный клапан для		Да			Нет		
43		Позиционер для пневмопривода		Да			Нет		
44		Фильтр-редуктор, тип пневмоприсоединения G/NPT							
45		Другие принадлежности (указать)							
46		Место установки		Помещение	□ Откр.	площ.		Подземная	
47		Размер присоединяемого трубопровода							
48	Установка	Материал трубы							
49		Комплект ответных фланцев		Да		[□ Нет		
50		Температура окружающей среды	Мин.			N	Макс.		
	Дополнительная і	информация:							
51									
"									
Контак	Контактное лицо				(ФИ)	
		Должность Г	Тодпи	1СЬ		ФИС	1		
Дата за	аполнения	«»		20 г.					

Типовой лист ТЛ 0003 15