Vivado工程2

用IP核实现多数选择器 2019.11.17

FPGA芯片: xc7a35tcpg236-1

内容

- 3-8译码器
- 设计
- 仿真
- 约束
- FPGA测试
- <u>写入flash</u>
- <u>创建IP核</u>
- 用IP核实现多数表决器

74LS138

		输	ኢℴ						输	出↩			
g1₽	g2a_L⊬	g2b_L₊	A 2⁴ ^J	A ₁ ₀⁻	A 0€ ³	Y ₀ _L +	Y1_L ∉	Y2_L +	Y3_L ∉	Y4_L +	Y5_L ∉	Y ₆ _L .	Y7_L
0€	Ø₽	Ø₽	Ø₽	Ø₽	Ø٠	1₽	1₽	1₽	1₽	1₽	1₽	1₽	1₽
Ø٠	1₽	Ø₽	Ø₽	Ø₽	Ø٠	1₽	1₽	1₽	1₽	1₽	1₽	1₽	1₽
Ø٠	Ø₽	1₽	Ø₽	Ø₽	Ø٠	1₽	1₽	1₽	1₽	1₽	1₽	1₽	1₽
1₽	0⁴₃	0↩	0↩	0↩	0₽	0₀	1₽	1₽	1₽	1₽	1₽	1₽	1₽
1₽	0↔	0↩	0↩	0↩	1₽	1₽	043	1₽	1₽	1₽	1₽	1₽	1₽
1₽	043	0₊□	0↩	1₽	0₽	1₽	1₽	0↩	1₽	1₽	1₽	1₽	1₽
1₽	043	0₽	0₄3	1₽	1₽	1₽	1₽	1₽	0₽	1₽	1₽	1₽	1₽
1₽	043	0↩	1₽	0↩	0₽	1₽	1₽	1₽	1₽	0⇔	1₽	1₽	1₽
1₽	043	0₽	1₽	0₀	1₽	1₽	1₽	1₽	1₽	1₽	0₄⋾	1₽	1₽
1₽	0₽	0₽	1₽	1₽	0₽	1₽	1₽	1₽	1₽	1₽	1₽	0₽	1₽
1₽	043	0₽	1₽	1₽	1₽	1₽	1₽	1₽	1₽	1₽	1₽	1₽	0₽

设计源代码(p138.v)

```
`timescale 1ns / 1ps
module p138(g1,g2a_l,g2b_l,a,y_l);
input g1,g2a l,g2b l;
input [2:0] a;
output [7:0] y 1;
reg [7:0] y l=0;
always @ (g1 or g2a lor g2b lor a)
begin
   if (g1 && ~g2a_I && ~g2b_I)
    case (a)
      7:y l=8'b01111111;
      6:y l=8'b10111111;
      5:y l=8'b11011111;
      4:y l=8'b11101111;
      3:y_l=8'b11110111;
      2:y l=8'b11111011;
      1:y l=8'b11111101;
      0:y l=8'b11111110;
     default:y l=8'b11111111;
   endcase
  else
   y l=8'b11111111;
end
endmodule
```

仿真源代码(p138sim.v)

```
`timescale 1ns / 1ps
module p138sim();
 reg g1;
 reg g2a_l;
 reg g2b l;
 reg[2:0] a;
 wire[7:0] y_l;
 p138 v74x138(g1,g2a_l,g2b_l,a,y_l);
 initial begin
   g1 = 0;
   g2a l = 0;
   g2b l = 0;
   a = 0;
   #100;
   g1 = 1;
   g2a_l = 0;
   g2b l = 0;
 end
 always #100 a = a + 1;
endmodule
```


约束源代码(p138.xdc)

set property PACKAGE PIN W17 [get ports g1] set property IOSTANDARD LVCMOS33 [get ports g1] set property PACKAGE PIN W15 [get ports g2a I] set property IOSTANDARD LVCMOS33 [get_ports g2a |] set property PACKAGE PIN V15 [get ports g2b |] set property IOSTANDARD LVCMOS33 [get_ports g2b_l] set property PACKAGE PIN W16 [get ports a[2]] set property IOSTANDARD LVCMOS33 [get ports a[2]] set property PACKAGE PIN V16 [get ports a[1]] set property IOSTANDARD LVCMOS33 [get ports a[1]] set property PACKAGE PIN V17 [get ports a[0]] set property IOSTANDARD LVCMOS33 [get ports a[0]] set property PACKAGE PIN U16 [get ports y I[0]] set property IOSTANDARD LVCMOS33 [get ports y I[0]] set property PACKAGE PIN E19 [get ports y I[1]] set_property IOSTANDARD LVCMOS33 [get_ports y_l[1]] set_property PACKAGE_PIN U19 [get_ports y_I[2]]
set_property IOSTANDARD LVCMOS33 [get_ports y_I[2]]
set_property PACKAGE_PIN V19 [get_ports y_I[3]]
set_property IOSTANDARD LVCMOS33 [get_ports y_I[3]]
set_property PACKAGE_PIN W18 [get_ports y_I[4]]
set_property IOSTANDARD LVCMOS33 [get_ports y_I[4]]
set_property PACKAGE_PIN U15 [get_ports y_I[5]]
set_property IOSTANDARD LVCMOS33 [get_ports y_I[5]]
set_property PACKAGE_PIN U14 [get_ports y_I[6]]
set_property IOSTANDARD LVCMOS33 [get_ports y_I[6]]
set_property PACKAGE_PIN V14 [get_ports y_I[7]]
set_property IOSTANDARD LVCMOS33 [get_ports y_I[7]]

FPGA引脚:

```
      sw0: V17
      sw1:V16
      sw2: W16
      sw3: W17
      sw4: W15

      sw5: V15
      sw6: W14
      sw7: W13
      sw8: V2
      sw9: T3

      sw10: T2
      sw11: R3
      sw12: W2
      sw13: U1
      sw14: T1

      sw15: R2

      led0: U16
      led1: E19
      led2: U19
      led3: V19
      led4: W18

      led5:U15
      led6: U14
      led7: V14
      led8: V13
      led9: V3

      led10: W3
      led11: U3
      led12: P3
      led13: N3
      led14: P1

      led15: L1
```

FPGA测试

写入flash

如果希望在掉电时FPGA可以正常工作,就要再Flash中保存Binary程序:

(1) 把右上角的MODE的跳线帽连接到最上面两根针,即使用QSPI模式。

(2) 选择和生成Binary文件。

菜单:

Flow/Settings/Bitstream Settings

下拉菜单:

Generate Bitstream/Bitstream Settings

(3) 选择配置存储设备

*选错时,系统会给出应该选择的芯片型号

可以修改或删除或下载

(4) 下载 (菜单见上页)

或

下载并重启后要按右上角的PROG按钮才 开始执行flash中指令。

创建IP核

点击Implementation, 菜单Tools/Create and Package New IP

用IP核实现多数表决器

a b c	f
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

 $f = \sum_{abc} (3,5,6,7)$

把IP核加入库: Tools/Settings

把IP核加入项目

加入设计源代码和仿真源代码

dsbjq_ip_sim.v

```
`timescale 1ns / 1ps
module dsbjq_ip_sim;
reg a,b,c;
wire f;
dsbjq_ip uut_0(a,b,c,f);
initial begin
    a=0;
    b=0;
    c=0;
end
always #10 {a,b,c}={a,b,c}+1;
endmodule
```

dsbjq_ip.v

`timescale 1ns / 1ps

```
module dsbjq_ip(input a, input b, input c, output f); wire[7:0] y_l; assign f = ^(y_l[7] \& y_l[6] \& y_l[5] \& y_l[3]); p138_0 uut_0(.g1(1),.g2a_l(0),.g2b_l(0),.a({c,b,a}),.y_l(y_l)); endmodule
```

仿真结果

加入约束源代码(dsbjq_ip.xdc)

set_property PACKAGE_PIN W16 [get_ports c]
set_property IOSTANDARD LVCMOS33 [get_ports c]
set_property PACKAGE_PIN V16 [get_ports b]
set_property IOSTANDARD LVCMOS33 [get_ports b]
set_property PACKAGE_PIN V17 [get_ports a]
set_property IOSTANDARD LVCMOS33 [get_ports a]
set_property PACKAGE_PIN U16 [get_ports f]
set_property IOSTANDARD LVCMOS33 [get_ports f]

 sw0: V17
 sw1:V16
 sw2: W16
 sw3: W17
 sw4: W15

 sw5: V15
 sw6: W14
 sw7: W13
 sw8: V2
 sw9: T3

 sw10: T2
 sw11: R3
 sw12: W2
 sw13: U1
 sw14: T1

 sw15: R2

led0: U16 led1: E19 led2: U19 led3: V19 led4: W18 led5:U15 led6: U14 led7: V14 led8: V13 led9: V3 led10: W3 led11: U3 led12: P3 led13: N3 led14: P1 led15: L1

综合、实现和下载:

