Evaluating Automated Redistricting
Algorithms Using Measures of
Compactness and Partisan Fairness:
A Case Study of 2021 Congressional
Redistricting in Virginia

Madeleine Goertz

50 Precincts 60% Yellow 40% Green

50 Precincts are to be apportioned into 5 districts, 10 precincts each district.

Proportionate Outcomes

Disproportionate Outcomes "gerrymandering"

Automated Redistricting Algorithms

Population Data & Geographic Data

How do the hypothetical district maps for the Virginia Congressional delegation for the 2020s generated by different automated redistricting algorithms compare based on compactness and partisan fairness measures?

Why Virginia?

Gerrymandered Map

Competitive Elections

(Loughran, 2016; Virginia Division of Legislative Services, 2021)

Which Algorithms?

Compact Random Seed Growth (CRSG), 2013

Sequential Monte Carlo (SMC), 2020

Which Compactness Measures?

Graph Theory Perspective

Which Partisan Fairness Measures?

Seats-Votes Curve

Efficiency Gap

Partisan Symmetry

Declination

Partisan Bias

Mean-Median Difference

Literature Review

Redistricting as Graph Cutting

Compact Random Seed Growth (CRSG)

1. Each precinct is one district.

Repeat until desired number of districts formed:

2. Random district: merge with closest neighbor.

Repeat until desired population parity reached:

3. Reassign one precinct from most-populous district to less populous district.

Sequential Monte Carlo (SMC)

Sample Run of SMC

(Eppstein, 2007; McCartan & Imai, 2020)

Polsby-Popper Score

$$PP(d) = \frac{4\pi A(d)}{P(d)^2}$$

 $PP(d) \propto compactness$

Edge-Cut Compactness

$$ECC = 1 - \frac{n}{N}$$

 $ECC \propto compactness$

Seats-Votes Curves, Partisan Symmetry & Bias

Result 1.00 Dobortion of Seats Won O.50 0.50 0.25 0.00 0.00 0.25 0.50 0.75 1.00 Average District Vote

Hypothetical Curve

Curve generated by UPS (Katz et. al, 2020; Tufte, 1973)

Efficiency Gap

(McGlone, 2017; Stephanopoulos & McGhee, 2014)

Declination

Favoring Dem. $(\delta < 0)$

Fair $(\delta \approx 0)$

Favoring Rep. $(\delta > 0)$

Mean-Median Difference

$$MMD = \mu - m$$

$$\left| \frac{1}{MMD} \right| \propto fairness$$

Method

Experimental Research

Isolate effect of algorithms on fairness.

Explanatory variable: algorithm choice.

Response variables: compactness, fairness measures.

Control: 2015-2020 district map.

Results

Conclusion

How do the hypothetical district maps for the Virginia Congressional delegation for the 2020s generated by different automated redistricting algorithms compare based on compactness and partisan fairness measures?

SMC > CRSG > Control

Limitations

Only one state, one election, two algorithms.

Only focused on major parties.

Should observe the Voting Rights Act.

State legislative districts.

Implications

Algorithms are viable tool for redist. commissions.

Necessary under The For The People Act.

Cost-savings for redist. commissions.

Trust in electoral system.

Bibliography

tinyurl.com/redist-sources