## **ATTACHMENT A**

## Claims 1 – 13: (Cancelled)

- 14. (Previously Presented) A propylene polymer composition comprising components:
  - a) from 50% to 90% by weight of a propylene homopolymer or a propylene copolymer containing up to 5% by mol of derived units of C<sub>2</sub>-C<sub>20</sub> alphaolefins, comprising:
    - (i) a polydispersity index greater than 3;
    - (ii) a melt flow rate, as measured at 230°C under a load of 2.16 kg, greater than 1 dg/min; and
    - (iii) a fraction soluble in xylene at 25°C greater than >1%
  - b) from 5% to 25% by weight a copolymer of ethylene and one or more derived units of C<sub>4</sub>-C<sub>20</sub> alpha-olefins comprising:
    - (i) a content of ethylene derived units higher than 50% by mol and lower than 92% by mol;
    - (ii) an intrinsic viscosity higher than 1.2 dL/g and lower than 6 dL/g;
    - (iii) a density ranging from 0.850 to 0.890 g/cm<sup>3</sup>; and
    - (iv) a crystallinity content, expressed as an enthalpy of fusion, lower than 62 J/g
  - c) from 5% to 25% by weight of a copolymer of propylene and ethylene comprising:
    - (i) a content of propylene derived units higher than 50% by mol and lower than 92% by mol;
    - (ii) an intrinsic viscositý higher than 2 dL/g and lower than 6 dL/g;
    - (iii) a density ranging from 0.850 to 0.890 g/cm<sup>3</sup>;
    - (iv) a value of a product of reactivity ratios r1xr2 lower than 2; and
    - (v) a crystallinity content, expressed as an enthalpy of fusion, lower than 45 J/g

wherein a weight ratio between component b) and the sum of component b) and component c) is equal to or higher than 0.5 and less than or equal to 0.9, and

wherein component c) is obtained by a process comprising at least one metallocene compound of formula (I) or (II):

wherein

M is a transition metal belonging to group 4, 5 or to the lanthanide or actinide groups of the Periodic Table of Elements;

X, equal to or different from each other, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R<sup>6</sup>, OR<sup>6</sup>, OCOR<sup>6</sup>, SR<sup>6</sup>, NR<sup>6</sup><sub>2</sub> and PR<sup>6</sup><sub>2</sub>, or two X can optionally form a substituted or unsubstituted butadienyl radical or a OR O group;

R is a divalent radical selected from  $C_1$ - $C_{20}$  alkylidene,  $C_6$ - $C_{40}$  arylidene,  $C_7$ - $C_{40}$  alkylarylidene and  $C_7$ - $C_{40}$  arylalkylidene radicals;

 $R^6$  is a linear or branched, saturated or unsaturated  $C_1$ - $C_{20}$  alkyl,  $C_3$ - $C_{20}$  cycloalkyl,  $C_6$ - $C_{20}$  aryl,  $C_7$ - $C_{20}$  alkylaryl or  $C_7$ - $C_{20}$  arylalkyl group, and optionally comprise at least one Si or Ge atom;

p is an integer equal to the oxidation state of M minus 2;

L is a divalent bridging group selected from C<sub>1</sub>-C<sub>20</sub> alkylidene, C<sub>3</sub>-C<sub>20</sub>

cycloalkylidene, C<sub>6</sub>-C<sub>20</sub> arylidene, C<sub>7</sub>-C<sub>20</sub> alkylarylidene, or C<sub>7</sub>-C<sub>20</sub> arylalkylidene radicals optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, and silylidene radicals comprising up to 5 silicon atoms such as SiMe<sub>2</sub>, SiPh<sub>2</sub>; and

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup>, equal to or different from each other, are hydrogen, halogen, or linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub>-alkyl, C<sub>3</sub>-C<sub>20</sub>-cycloalkyl, C<sub>6</sub>-C<sub>20</sub>-aryl, C<sub>7</sub>-C<sub>20</sub>-alkylaryl, or C<sub>7</sub>-C<sub>20</sub>-arylalkyl radicals, optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup> form at least one substituted or unsubstituted 3-7 membered ring optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements.

- 15. (Previously Presented) The propylene polymer composition according to claim 14, wherein component a) further comprises no detectable 2,1 regioerrors in a <sup>13</sup>C NMR spectrum recorded at a 300 MHz instrument.
- 16. (Previously Presented) The propylene polymer composition according to claim 14, wherein component b) further comprises a product of reactivity ratio r1xr2 lower than 5.
- 17. (Previously Presented) The propylene polymer composition according to claim 14, wherein component a) ranges from 50% to 80% by weight, component b) ranges from 25% to 9% by weight, and component c) ranges from 25% to 11% by weight.
- 18. (Previously Presented) The propylene polymer composition according to claim 14, wherein component b) comprises from 5% to 40% by mol. of the derived units of C<sub>4</sub>-C<sub>20</sub> alpha-olefins.
- 19. (Previously Presented) The propylene polymer composition according to claim 14, wherein the intrinsic viscosity of component b) is higher than 1.25 dL/g and lower than 3.0 dL/g.

U.S. Patent Application Serial No. 10/577,270

- 20. (Previously Presented) The propylene polymer composition according to claim 14, wherein the enthalpy of fusion of component b) is lower than 50 J/g.
- 21. (Previously Presented) The propylene polymer composition according to claim 14, wherein component b) comprises 1-butene or 1-octene.
- 22. (Previously Presented) The propylene polymer composition according to claim 14, wherein component c) comprises from 50% to 80% by mol of propylene derived units, and from 50% to 20% by mol of ethylene derived units.
- 23. (Previously Presented) The propylene polymer composition according to claim 14, wherein the intrinsic viscosity of component c) is preferably higher than 2 dL/g and lower than 4 dL/g.
- 24. (Previously Presented) The propylene polymer composition according to claim 14, wherein the value of a product of reactivity ratios r1xr2 of component c) is lower than 1.8.
- 25. (Previously Presented) The propylene polymer composition according to claim 14, wherein the enthalpy of fusion of component c) is lower than 35 J/g.
- 26. (Currently Amended) The propylene polymer composition according to claim 14, wherein component b) is obtained by polymerizing ethylene and one or more  $C_2$ - $C_{20}$  alpha olefins in presence of a metallocene compound comprising at least one cyclopentadienyl moiety which is  $\pi$ -bonded to a central metal, and component c) is obtained by polymerizing propylene and ethylene in presence of a metallocene compound comprising at least one cyclopentadienyl moiety which is  $\pi$ -bonded to a central metal.
- 27. (Previously Presented) The propylene polymer composition according to claim 14, wherein two adjacent R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, and optionally R<sup>5</sup> form at least one substituted or

4

unsubstituted 3-7 membered ring optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, the substituted or unsubstituted 3-7 membered ring forming with the cyclopentadienyl moiety indenyl; mono-, di-, tri- and tetra-methyl indenyl; 2-methyl-4-(4'-tert-butylphenyl)indenyl; 2-isopropyl-4-(4'-tert-butylphenyl)indenyl; 2-methyl indenyl; 3-butyl-indenyl; 2-isopropyli-4-phenyl indenyl; 2-methyl-4,5 benzo indenyl; 3-trimethylsilyl-indenyl; 4,5,6,7-tetrahydroindenyl; fluorenyl; 5,10-dihydroindeno[1,2-b]indol-10-yl; N-methyl- or N-phenyl-5,10-dihydroindeno [1,2-b]indol-10-yl; 5,6-dihydroindeno[2,1-b]indol-6-yl; N-methyl-or N-phenyl-5,6-dihydroindeno[2,1-b]indol-6-yl; azapentalene-4-yl; thiapentalene-6-yl; thiapentalene-6-yl; and mono-, di- and tri-methyl-azapentalene-4-yl; 2,5-dimethyl-cyclopenta[1,2-b:4,3-b']-dithiophene.

- 28. (New) The propylene polymer composition according to claim 14, wherein the polydispersity index of component a) is greater than 3.5.
- 29. (New) The propylene polymer composition according to claim 14, wherein the polydispersity index of component a) is greater than 4.