```
In [2]: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import numpy as np
```

In [22]: from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import StandardScaler, LabelEncoder
 from sklearn.metrics import classification report, confusion matrix, accuracy score

Out[3]:		Temperature	Humidity	PM2.5	PM10	NO2	SO2	СО	Proximity_to_Industrial_Areas	Population_Density	Air Quality
	0	29.8	59.1	5.2	17.9	18.9	9.2	1.72	6.3	319	Moderate
	1	28.3	75.6	2.3	12.2	30.8	9.7	1.64	6.0	611	Moderate
	2	23.1	74.7	26.7	33.8	24.4	12.6	1.63	5.2	619	Moderate
	3	27.1	39.1	6.1	6.3	13.5	5.3	1.15	11.1	551	Good
	4	26.5	70.7	6.9	16.0	21.9	5.6	1.01	12.7	303	Good
	4995	40.6	74.1	116.0	126.7	45.5	25.7	2.11	2.8	765	Hazardous
	4996	28.1	96.9	6.9	25.0	25.3	10.8	1.54	5.7	709	Moderate
	4997	25.9	78.2	14.2	22.1	34.8	7.8	1.63	9.6	379	Moderate
	4998	25.3	44.4	21.4	29.0	23.7	5.7	0.89	11.6	241	Good
	4999	24.1	77.9	81.7	94.3	23.2	10.5	1.38	8.3	461	Moderate

5000 rows × 10 columns

In [5]: aq_.shape

Out[5]: (5000, 10)

In [4]:	aqde	scribe()													
Out[4]:		Temperatu	re Hu	umidity	ı	PM2.5		PM10	NO2	SO2	со	Proximit	ty_to_Industri	ial_Areas	Pop
	count	5000.0000	00 5000.	000000	5000.00	00000	5000.0	000000	5000.000000	5000.000000	5000.000000		500	00.000000	
	mean	30.0290	20 70.	056120	20.14	42140	30.2	218360	26.412100	10.014820	1.500354			8.425400	
	std	6.7206	61 15.	863577	24.5	54546	27.3	349199	8.895356	6.750303	0.546027			3.610944	
	min	13.4000	00 36.	000000	0.00	00000	-0.2	200000	7.400000	-6.200000	0.650000			2.500000	
	25%	25.1000	00 58.	300000	4.60	00000	12.3	300000	20.100000	5.100000	1.030000			5.400000	
	50%	29.0000	00 69.	800000	12.00	00000	21.7	700000	25.300000	8.000000	1.410000			7.900000	
	75%	34.0000	00 80.	300000	26.10	00000	38.	100000	31.900000	13.725000	1.840000		1	11.100000	
	max	58.6000	00 128.	100000	295.00	00000	315.8	800000	64.900000	44.900000	3.720000		2	25.800000	
In [6]:	aqdt	ypes													
Out[6]:	Temperature Humidity PM2.5					float64 float64 float64									
	PM10				float64										
	NO2 SO2					float float									
	CO					float									
	Proxim Popula Air Qu	nity_to_Inition_Dens nality object		al_Area		float int obje	:64 :64								
In [7]:	aqhe	ad(5)													
Out[7]:	Ten	nperature l	Humidity	PM2.5	PM10	NO2	SO2	СО	Proximity_to_I	ndustrial_Areas	Population _.	_Density	Air Quality		
	0	29.8	59.1	5.2	17.9	18.9	9.2	1.72		6.3	3	319	Moderate		
	1	28.3	75.6	2.3	12.2	30.8	9.7	1.64		6.0)	611	Moderate		
	2	23.1	74.7	26.7	33.8	24.4	12.6	1.63		5.2	2	619	Moderate		
	3	27.1	39.1	6.1	6.3	13.5	5.3	1.15		11.1	ľ	551	Good		
	4	26.5	70.7	6.9	16.0	21.9	5.6	1.01		12.7	7	303	Good		

In [67]: aq_.tail(5) Out[67]: Temperature Humidity PM2.5 PM10 NO2 SO2 CO Proximity_to_Industrial_Areas Population_Density Air Quality 45.5 25.7 2.11 4995 40.6 74.1 116.0 126.7 2.8 765 1 4996 96.9 6.9 25.0 25.3 10.8 1.54 709 2 28.1 5.7 4997 25.9 78.2 14.2 22.1 34.8 7.8 1.63 9.6 379 2 4998 25.3 23.7 241 0 44.4 21.4 29.0 5.7 0.89 11.6 4999 24.1 77.9 81.7 94.3 23.2 10.5 1.38 8.3 461 2 aq .columns In [10]: Out[10]: Index(['Temperature', 'Humidity', 'PM2.5', 'PM10', 'N02', 'S02', 'C0', 'Proximity to Industrial Areas', 'Population Density', 'Air Quality'], dtype='object') In [11]: aq .isna() Out[11]: Temperature Humidity PM2.5 PM10 NO2 SO₂ CO Proximity to Industrial Areas Population Density Air Quality 0 False False False False False False False False False 1 False False False False False False False False False 2 False False False False False False False False False 3 False False False False False False False False False 4 False False False False False False False False False ... 4995 False False False False False False False False False 4996 False False False False False False False False False 4997 False False False False False False False False False 4998 False False False False False False False False False 4999 False False False False False False False False False

5000 rows × 10 columns

```
In [12]: aq .isnull().sum()
Out[12]: Temperature
                                           0
         Humidity
                                           0
         PM2.5
         PM10
         NO2
         S02
         CO
         Proximity to Industrial Areas
         Population Density
         Air Quality
         dtype: int64
In [13]:
         aq .info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5000 entries, 0 to 4999
         Data columns (total 10 columns):
          #
              Column
                                              Non-Null Count Dtype
              Temperature
                                              5000 non-null
                                                             float64
              Humidity
          1
                                              5000 non-null
                                                              float64
              PM2.5
                                              5000 non-null
                                                              float64
          3
              PM10
                                              5000 non-null
                                                              float64
          4
              NO2
                                              5000 non-null
                                                              float64
                                              5000 non-null
                                                              float64
          5
              S02
                                              5000 non-null
                                                              float64
              CO
                                                              float64
              Proximity to Industrial Areas 5000 non-null
              Population_Density
                                              5000 non-null
          8
                                                              int64
              Air Quality
                                              5000 non-null
                                                              object
         dtypes: float64(8), int64(1), object(1)
         memory usage: 390.8+ KB
```

TO FIND THE CATAEGORICAL VALUES

```
In [14]: categorical_features=[ i for i in aq_.columns if aq_[i].dtype =="Air Quality"]
         aq_[categorical_features]
Out[14]:
             0
             1
             2
             3
             4
          4995
          4996
          4997
          4998
          4999
         5000 rows × 0 columns
```

```
aq_
Out[18]:
                  Temperature Humidity PM2.5 PM10 NO2 SO2 CO Proximity_to_Industrial_Areas Population_Density Air Quality
                                                              9.2 1.72
                          29.8
                                    59.1
                                            5.2
                                                  17.9
                                                       18.9
                                                                                                 6.3
               0
                                                                                                                    319
                                                                                                                                  2
                                                  12.2
                                                       30.8
                                                              9.7 1.64
                                                                                                 6.0
                                                                                                                    611
                                                                                                                                  2
                          28.3
                                    75.6
                                            2.3
                                                  33.8 24.4 12.6 1.63
                                                                                                 5.2
               2
                          23.1
                                    74.7
                                           26.7
                                                                                                                    619
                                                                                                                                  2
               3
                          27.1
                                    39.1
                                            6.1
                                                   6.3 13.5
                                                              5.3 1.15
                                                                                                11.1
                                                                                                                    551
                                                                                                                                  0
                                                       21.9
                                                                                                12.7
               4
                          26.5
                                   70.7
                                            6.9
                                                  16.0
                                                              5.6 1.01
                                                                                                                    303
                                                                                                                                  0
                                          116.0
                                                                                                 2.8
            4995
                          40.6
                                    74.1
                                                 126.7 45.5 25.7 2.11
                                                                                                                    765
                                                                                                                                  1
                                                       25.3
                                                                                                                                  2
            4996
                          28.1
                                    96.9
                                            6.9
                                                  25.0
                                                            10.8 1.54
                                                                                                 5.7
                                                                                                                    709
                          25.9
                                           14.2
                                                       34.8
                                                              7.8 1.63
                                                                                                 9.6
            4997
                                    78.2
                                                  22.1
                                                                                                                    379
                                                                                                                                  2
            4998
                          25.3
                                    44.4
                                           21.4
                                                  29.0 23.7
                                                              5.7 0.89
                                                                                                11.6
                                                                                                                    241
                                                                                                                                  0
                                                  94.3 23.2 10.5 1.38
                                                                                                 8.3
            4999
                          24.1
                                    77.9
                                           81.7
                                                                                                                    461
                                                                                                                                  2
           5000 rows × 10 columns
In [35]:
           print(aq ['Air Quality'].unique())
           [2 0 1 3]
In [19]:
           aq_.index
```

EDA CHART

Out[19]: RangeIndex(start=0, stop=5000, step=1)

In [18]:

label encoder = LabelEncoder()

aq ['Air Quality'] = label_encoder.fit_transform(aq_['Air Quality'])

```
In [57]: sns.countplot(x='Air Quality', data=aq_)
    plt.title('Distribution of Air Quality')
    plt.xlabel('Air Quality Categories')
    plt.ylabel('Count')
    plt.show();
```



```
In [58]: sns.boxplot(x='Air Quality', y='Temperature', data=aq_)
plt.title('Temperature vs Air Quality')
plt.xlabel('Air Quality Categories')
plt.ylabel('Temperature')
plt.show();
```



```
In [66]: sns.scatterplot(
    x='Proximity_to_Industrial_Areas',
    y='Population_Density',
    hue='Air Quality',
    palette='coolwarm',
    data=aq_
)
plt.show;
```


LOGISTIC REGRESSION MODEL

```
In [28]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score

In [30]:
# Define features and target
    X = aq_.drop(columns=['Air Quality'])
    y = aq_['Air Quality']
```

to identify the x test and x test columns and values

```
In [41]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

In [42]: X_train

റ		• Г /	1 7	٦.
U	uι	. 1 4	tZ.	١.
		-		-

	Temperature	Humidity	PM2.5	PM10	NO2	SO2	СО	Proximity_to_Industrial_Areas	Population_Density
1840	39.1	82.9	56.7	69.3	39.7	8.2	2.00	3.6	543
2115	22.1	83.0	0.7	9.3	32.5	11.4	1.60	6.3	512
4437	34.5	77.7	6.2	7.1	25.6	8.9	1.71	8.1	500
1146	23.8	65.2	9.9	14.2	14.6	4.9	0.97	10.7	331
2486	34.6	81.4	21.9	32.1	29.6	1.9	1.19	6.9	512
4426	30.0	59.7	59.3	68.8	22.1	7.4	1.39	5.1	412
466	27.7	54.0	17.6	23.2	24.6	11.1	1.27	7.8	638
3092	24.2	67.6	19.4	35.1	24.2	9.6	1.91	6.2	422
3772	21.4	76.4	15.3	22.1	12.4	3.4	0.96	16.3	420
860	34.4	103.1	29.2	42.2	54.4	23.6	3.37	3.7	614

3500 rows × 9 columns

In [45]: X_test

Out[45]:

	Temperature	Humidity	PM2.5	PM10	NO2	SO2	СО	Proximity_to_Industrial_Areas	Population_Density
1501	31.3	73.4	72.8	88.88	54.1	17.1	2.54	2.6	755
2586	24.0	68.8	8.0	8.6	20.9	2.4	1.16	10.5	235
2653	25.4	78.6	4.1	6.7	21.3	9.1	1.40	10.1	543
1055	30.7	102.0	7.9	26.1	41.6	26.1	2.31	4.8	765
705	26.5	54.1	12.3	15.3	20.3	5.3	0.99	12.7	374
3563	20.9	58.2	17.5	23.6	18.8	3.9	0.94	10.9	420
1538	20.6	88.6	47.9	57.9	28.9	12.3	1.94	5.4	412
1837	34.7	75.8	2.7	6.4	33.2	6.3	1.50	7.8	335
2380	22.2	98.7	13.2	35.8	24.0	12.6	1.54	3.8	471
1912	22.7	73.6	8.2	13.6	21.8	5.2	1.14	12.2	472

1500 rows × 9 columns

to identify the y test and y test columns and values

In [47]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

```
In [53]: y_train
Out[53]: 1840
                 3
         2115
                 2
         4437
                 2
         1146
                 0
                 2
         2486
         4426
                 2
                 2
         466
         3092
                 3
         3772
                 0
         860
                 1
         Name: Air Quality, Length: 3500, dtype: int32
In [49]: y_test
Out[49]: 1501
                 1
         2586
                 0
         2653
                 2
         1055
                 1
         705
                 0
         3563
                 0
         1538
                 2
         1837
                 2
         2380
                 3
         1912
         Name: Air Quality, Length: 1500, dtype: int32
```

```
In [33]: # Split dataset (70% training, 30% testing)
         X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
         # Standardize features (important for regularization)
         scaler = StandardScaler()
         X train = scaler.fit transform(X train)
         X test = scaler.transform(X test)
         # Model with regularization (L2 penalty)
         model = LogisticRegression(penalty='12', C=0.1)
         # Train the model
         model.fit(X train, y train)
         # Evaluate performance
         y train pred = model.predict(X train)
         y test pred = model.predict(X test)
         train acc = accuracy score(y train, y train pred)
         test acc = accuracy score(y test, y test pred)
         print(f"Training Accuracy: {train acc:.2f}")
         print(f"Testing Accuracy: {test acc:.2f}")
         # Corrected accuracy calculation
         print(" Accuracy:", round(test_acc * 100, 2))
```

Training Accuracy: 0.94 Testing Accuracy: 0.93

Accuracy: 93.2

```
In [54]: from sklearn.metrics import classification report
         # Generate classification report
         report =classification_report(y_test, y_test_pred)
         print(report)
                                    recall f1-score
                       precision
                                                       support
                            0.99
                                      1.00
                                                1.00
                                                           618
                    0
                            0.88
                                      0.78
                                                0.83
                                                           148
                    1
                            0.94
                                      0.94
                                                0.94
                                                           452
                            0.82
                                      0.85
                    3
                                                0.83
                                                           282
                                                0.93
                                                          1500
             accuracy
                                                0.90
            macro avg
                            0.91
                                      0.89
                                                          1500
         weighted avg
                            0.93
                                      0.93
                                                0.93
                                                          1500
In [55]: print(y_test_pred[:10]) # Shows first 10 predictions
         print(y test[:10].values) # Shows actual values for comparison
         [1 0 2 1 0 1 0 0 0 2]
         [1 0 2 1 0 1 0 0 0 2]
In [ ]:
```