Algebraic Algorithms

mykyta.narusevych@matfyz.cuni.cz

October 2022

1 Theoretical part

- 0. * Recall that you have already proven that an oriented graph G is normal iff it is confluent. Can we strengthen this theorem and state that an oriented graph G is convergent iff it is confluent? What if G is assumed to be finite?
- 1. Prove that \ll is a strict and terminating ordering assuming < is an admissible ordering of terms. Is \ll linear?
- 2. * Notice that ≪ in general is not linear (previous exercise). But assuming that there is some natural ordering of the underlying coefficient field (e.g. Q or R) it is clear how to linearize ≪ into ≪'. What will be the problem with such new ordering ≪'?
- 3. Order given polynomials $xy^2 + x^2y$, $-2xy^2 + x^2 + x^2y$, $-x^2y + 2x^2y^2 + 2$, $x^2y + x + 2y^2$ using \ll -ordering induced by:
 - (a) $\langle LEX, x \rangle y$;
 - (b) $<_{LEX}, x < y;$
 - (c) $<_{GLEX}, x > y;$
 - (d) $<_{GLEX}, x < y$.
- 4. Prove that $<_{LEX}, <_{GLEX}$ and weighted orderings are admissible.
- 5. Assume $R = \{xy-x^3-x^2, x^4+x^3+x\}$ is a Gröbner basis for $<_{LEX}, x < y$. Decide whether $x^4y^4+x^3y^3$ belongs to < R >.
- 6. Show that the above R is not a Gröbner basis for $<_{LEX}, x > y$.
- 7. * Prove that R is a Gröbner basis of the ideal $I = \langle R \rangle$ if and only if $\langle lt(R) \rangle = \langle lt(I) \rangle$, where lt(U) denotes $\{lt(u) \mid u \in U\}$.
- 8. ** Show that the problem of deciding whether a polynomial $p(\overline{x})$ belongs to a given ideal $I \leq \mathbb{Q}[\overline{x}]$ is NP-hard (and is co-NP-hard, as well).

2 Computational part

- 1. Verify 3 using sage (follow this link to see how to introduce ordering to polynomial rings in sage).
- 2. Verify 5 using sage.