

This listing of claims will replace all prior versions, and listings, of claims in the application:

In the Claims:

1-18. Canceled.

19. (NEW) A laser machining apparatus comprising:

a workpiece fixture for fastening a workpiece,

a first laser removing device for laser drilling a workpiece using first operating parameters, and

a second laser removing device which can machine a workpiece using second operating parameters that are different from said first operating parameters, especially regarding the quality and/or quantity,

characterized in that

the second laser machining apparatus is a laser removing device for a material removal in layers for the production of a die by material removal in layers,

the laser beam outlets of the two laser removing devices are fixedly mounted in a manner offset against each other with respect to at least one, preferably two, axes, more preferably with respect to the two horizontal axes (x, y), and

mechanical adjustment axes are provided by means of which the workpiece may be adjusted translatorily with respect to a machine frame such that it

may slide between the operating windows of the first and the second laser removal devices.

20. (NEW) The laser machining apparatus according to claim 19,
characterized in that said first laser removing device comprises a first
laser source and said second laser removing device comprises a second laser source.

21. (NEW) The laser machining apparatus according to claims 19 or 20,
characterized in that at least one of said laser removing devices
comprises a beam guide, preferably through one or more deflection mirrors.

22. (NEW) The laser machining apparatus according to claim 19, characterized in that
the laser beam outlet of one or both laser removing devices is slidable with respect to at
least one axis, preferably the vertical axis (z).

23. (NEW) The laser machining apparatus according to claim 22, characterized in
that the laser source is slidable in parallel and in sync to the laser beam outlet.

24. (NEW) The laser machining apparatus according to claim 19, characterized by a first control for controlling the first laser removing device and a second control for controlling the second laser removing device.

25. (NEW) The laser machining apparatus according to claim 24, characterized in that the second control operates at a higher clock frequency than the first control.

26. (NEW) The laser machining apparatus according to claims 24 or 25, characterized by an interface between the first and second controls.

27. (NEW) The laser machining apparatus according to claim 19, characterized in that the first laser removing device comprises a first optical system and the second laser removing device comprises a second optical system.

28. (NEW) The laser machining apparatus according to claim 19, characterized in that the first laser removing device comprises a first sensor system and the second laser removing device comprises a second sensor system.

29. (NEW) The laser machining apparatus according to claim 19, characterized in that the first laser removing device may comprise one or more of the following operating parameters:

- pulsed laser light, in particular a laser pulse frequency of 0.1 to 100 Hz, preferably 1 - 30 Hz,
- a laser pulse duration of 0.1 to 20 ms, preferably 0.3 to 2 ms,
- pulse peak performance > 1 kW, preferably > 20 kW,
- laser performance 300 W - 3 kW
- energy per pulse 1 - 100 J, preferably 10 - 50 J,
- laser type: solid-state laser, in particular diode-pumped or lamp-pumped,

and that the second laser removing device may comprise one or more of the following operating parameters:

- pulsed laser light, in particular a laser pulse frequency of 1 to 100 kHz, preferably 10 - 50 kHz,
- a laser pulse duration of 10 to 1500 ns, preferably 100 to 500 ns,
- laser performance 10 - 200 W, preferably 20 - 50 W,
- energy per pulse 1 - 50 mJ,
- laser type: quality-switched solid-state laser.

30. (NEW) A laser machining method wherein a workpiece is clamped and then machined using laser light, wherein a first operating step of laser drilling is performed through a first laser removing device using first operating parameters and a second machining step is performed through a second laser removing device to machine the workpiece using second operating parameters different from the first operating parameters, especially regarding the quality and/or quantity,

characterized in that

the second machining step is the production of a die by material removal in layers using a laser,

the lasers of both laser removal devices are radiated at laser beam outlets which are fixedly mounted in a manner offset against each other with respect to at least one, preferably two, axes, more preferably with respect to the two horizontal axes (x, y), and

the workpiece may be adjusted translatorily without changing the clamping with respect to a machine frame using mechanical adjustment axes such that it may be moved between the operating windows of the first and the second laser removal devices.

31. (NEW) The method according to claim 30, characterized in that a measurement of the distance necessary for the second machining step is performed before the first machining step is taken.

32. (NEW) The method according to claims 30 or 31, characterized in that during the first machining step using the first laser removing device the focusing of the laser beam is fixed whereas during the second machining step using the second laser removing device the focusing of the laser beam is tracked.

33. (NEW) The method according to claims 30 or 31, characterized in that during the first machining step using the first laser removing device process gas is supplied.

34. (NEW) The method according to claim 32, characterized in that during the first machining step using the first laser removing device process gas is supplied.

35. (NEW) The method according to claim 30, characterized in that during the second machining step using the second laser removing device the location of the laser beam is guided by a variable beam guide.

Application No. Unknown (National Phase of International Application PCT/EP2004/012723)
Preliminary Amendment Dated 5/8/06
Attorney Docket: BEET-17

36. (NEW) The method according to claim 30, characterized in that during the first machining step using the first laser removing device the relative position of the location of the first laser removing device to the workpiece is changed.

37. (NEW) The method according to claim 30, characterized in that first the machining step having a higher laser performance is taken and then the machining step having a lower laser performance is taken.