Q1. Find the value of expexponentiation	ression "2**3**	*2", where '*	*' stands for
(A) 64 (B) 512	(C) 256	(D) Syntax
Q2. Find the value of C-e (A) 0.33 (B	xpression "2.0, 1.33	/3.0/2.0 " (C) 1.66	(D) Syntax Error
Q3. Find the value of C-e (A) 1 (B		= 4 < 5" (C) 3	(D) Syntax Error
Q4. Find the value assign a"	ed to variable	'a' in the s	tatement "a = a++ ^
) 0	(C) 1	(D) Syntax Error
Q5. For any integer varia (A) Odd (B) Ever			1)" is always ntax Error
Q6. For the following C of 'al' and 'a2'. float al; int a2; int x = 5 a1 = x/2; (A) a1 = 2.0, a2 = (C) a1 = 2.5, a2 =	; $a2 = x/2.0$; $(B) a$	find the value 1 = 2.0, a2 = 1 = 2.5, a2 =	2.0
Q7. For a float variable (A) 0 ('x', the value B) 2	of "!(x == x (C) Syntax 1	
Q8. For the following cod	e fragment, fi	nd the value a	assigned to variable
int f; int x; x = 5; f = x << 2 + x			D) 100
(A) 21 (D) 180
Q9. For any integer varia		-	-
(A) '~x' (B) 0 Q10. Determine the output	(C) of the follow:		D) 1 agment.
Х	oat x; = 123.123;	(r) •	
pr }	intf("%2.2f", :	×);	
(A) 12.12 (B) Synt	ax Error	(C) 123.12	(D) 23.12

	. In a certain number system 5+3 is number system (A) 7 (B) 8	equal to 11. (C) 9	Determine the (D) 10	ne base of
	· , ·	(- / -	(
Q12.	. Find the value of 'x' if $(72)_x = (A) 10$ (B) 14	101) ₈ (C) Indeterm	ninate ((D) 9
	. The minimum values of 'x' and 'y', $y = (37)_{10}$ are		he relation	(73) _x -
	(A) $x = 13$ $y = 13$ (B) $x = 8$ (C) $x = 10$ $y = 13$ (D) None o	_		
Q14.	. Representation of -2 in 4-bit 1's (A) 0010 (B) 1010 (C) 1110		mber system	is
Q15.	. Find the representation of 45 in 6 (A) 101101 (B) 010011 (C) Cannot	_		_
Q16.	. Find the representation of -5 in 5 (A) 00101 (B) 11011 (C) 10000			
Q17.	. In 4-bit 2's complement number sys (A) 11 (B) -6 (C) -11	stem, 1010 cor (D) No		decimal
Q18.	. Convert the number (110101011) $_2$ to (A) 1AB (B) D31 (C) D38	hexadecimal (D) D4	1	
Q19.	. Convert the octal number $(1000)_8$ t (A) 200 (B) 100 (C) ((D) 010	
Q20.	. Represent the decimal number 44 in (A) Cannot be represented (B)		_	41
Q21.	. The number $(512)_6$ in base 8 number (A) 302 (B) 256 (C) 3		(D) 254	
	. Third generation computers used (A) Semiconductor diodes (B) (C) Vacuum Tubes (D)	Transistors IC chips		
Q23.	. DRAM stands for (A) Dynamic RAM (B) Dual RAM (C) Double RAM	(D) None of	these
Q24.		Output None of these		
Q25.	. Windows 10 has been commercially i (A) 2013 (B) 2014 (C) 2015			
Q26.	. The first compiled programming land (A) Algol (B) Pascal (C) COBOL			
Q27.	. LCD stands for (A) Liquid crystal display (B) 1 (C) Liquid coded display (D) 1	Liquid colour Liquid comfort		У

```
Q28. Which of the following retains data even after power off?
     (A) ROM (B) Flash (C) Both A and B (D) None of A or B
Q29. The full form of ASCII is
      (A) American Standard Code for Information Interface
      (B) American Standard Code for Information Intelligence
      (C) American Standard Code for Information Interference
      (D) American Standard Code for Information Interchange
Q30. MICR is
     (A) Input device
     (B) Output device
     (C) Both input and output device
     (D) None of the above
Q31. Which of the following is a valid variable name in C language?
                     (B) ab cd (C) ab cd (D) Both B and C
     (A) ab*cd
Q32. The statement "static int k" is a
     (A) Function (B) Definition (C) Declaration (D) Syntax error
Q33. Which of the is a keyword in C
     (A) continue (B) next (C) Both A and B (D) then
Q34. Number of "#include" statements in a C program
      (A) 0 (B) 1 (C) 2
                                  (D) May be many
Q35. The statement "while (0) do x++;"
     (A) x incremented once (B) x not affected
     (C) x incremented infinitely (D) Syntax error
Q36. The statement "for(;;);" is
     (A) an infinite loop(B) never executed(C) executed only once(D) Syntax error
Q37. The loop-body can be null for
     (A) for loop (B) while-do loop
     (C) do-while loop
                         (D) All of them
Q38. The "break" statement within a block takes the control
     (A) out of innermost block (B) out of all nested blocks
     (C) to the same place
                                       (D) to the top of the block
Q39. Find the values of 'x', 'y' and 'z' after executing the following
code fragment.
                     x = 10;
                     y = 15;
                     z = --x + y++;
     (A) 9,16,25 (B) 9,16,24
                               (C) 9,16,23 (D) 10,15,25
Q40. The type of parameter passing for arrays in C-language is
     (A) Call-by-value (B) Call-by-name
     (C) Call-by-reference (D) Call-by-result
Q41. What will be the output of the following program?
                int main()
                 {
```

```
int i, j, k;
                       i = ++a[0] + --a[1];
                       j = a[1] ++ + a[2] --;
                       k = a[i/4] + a[j/5];
                       printf ("%d %d %d", i, j, k);
      (A) 6 7 14 (B) 6 7 13 (C) 7 13 13 (D) 7 13 14
Q42. What can you say about the following program?
           int main()
           {
                 int a = 1, b = 1, c = 0;
                 if (c != b != a)
                       printf("TRUE\n");
                 else
                       printf("FALSE\n");
           }
      (A) Prints "TRUE" (B) Prints "FALSE"
      (C) Syntax error (D) Output indeterminate
Q43. What will be the output of the following program?
           int main()
           {
                 char a[] = "Master", b[] = "Application", c[100];
                 strcpy(c, a);
                 b[4] = 0;
                 strcat(c, b);
                 printf("%s", c);
           }
      (A) MasterAppl
                     (B) Master (C) ApplMaster (D) MasterApplication
Q44. What will be the output of the following code fragment?
           int a[20];
           int *p, *q, *r;
           int x;
           p = &a[0];
           q = a;
           x = q - p;
           printf("%d ", x);
           r = p + 5;
           x = r - q;
           printf("%d", x);
              (B) 5 5
                           (C) 0 5
                                        (D) Syntax error
Q45. What will be the output of the following code fragment for x = 1?
           switch (x)
                 case 1: printf("Case 1 ");
                 case 2: printf("Case 2 ");
                             break;
                 case 3: printf("Case 3 ");
           }
      (A) Case 1
                                  (B) Case 1 Case 2
```

int $a[5] = \{3, 4, 10, 12, 20\};$

```
Q46. What will be the output of the following code fragment?
           void modify(int x, int y, int *z)
           {
                 x = x + 1;
                 y = y + 5;
                 *z = x + y;
           int main()
           {
                 int x = 3;
                 int y = 5;
                 int z = 10;
                 modify(x, y, &z);
                 printf("%d %d %d", x, y, z);
      (A) 4 6 16 (B) 3 5 8 (C) 3 5 14 (D) 3 5 16
Q47. What will be the output of the following program?
           int main()
           {
                 char *x, *y, *z;
                 char s[10] = "abcdedcba";
                 x = strchr(s, 'a'); y = strchr(s+4, 'a');
                 printf("%d", y - x);
      (A) 8 (B) 4
                     (C) 7 (D) 3
Q48. For the statement "scanf("%d;;%d", &x, &y)" how to enter data?
      (A) 8 9
                       (B) 8;;9; (C) 8;;9
                                             (D) Syntax error
Q49. What will be the output of the following program?
           # define PLUS(x) 5*(x) + 2*x - 2
           int main()
                 int y;
                 int x = 3;
                 y = PLUS(x+5) + 3;
                 printf ("%d", y);
      (A) 52
                       (B) 49
                                        (C) 29
                                                          (D) 27
Q50. What will be the output of the following code fragment? Assume
integer to be 4 byte wide and character 1 byte.
           struct record1
           { int a, b, c;
             union { int a; char c;} abc;
           printf("%d", sizeof(struct record1));
      (A) 16
                      (B) 17
                                        (C) 12
                                                          (D) 13
```

(C) Case 1 Case 2 Case 3 (D) Compilation error

```
Q51. What will be the output of the following code fragment?
           float x = 4.0, y;
           int b = 5;
           y = b/(int)x + b/x;
           printf("%f", y);
                 (B) 2.25
                          (C) 2.15
                                              (D) Syntax error
Q52. What will be the output of the following code fragment?
           char s[10] = "abcd \setminus 0abcd";
           if (strcmp(s, s+5))
                 printf("NO MATCH");
           else
                 printf("MATCH");
      (A) MATCH (B) NO MATCH
                               (C) Indeterminate (D) Syntax error
Q53. What will be the output of the following program?
           int func1 (int a)
           {
                 if (a <= 0 ) return 1;
                 else
                       return func1(a-1) + func1(a-2);
           int main()
           {
                 int x = 5;
                 printf("%d", func1(x));
      (A) 10
                       (B) 11
                                        (C) 12 (D) 13
Q54. What will be the output of the following program?
                 int p[5], q[10], sum;
                 int i, j;
                 for (i = 0; i < 5; i++)
                       q[i] = i;
                 for(j = 0; j < 10; j++)
                      p[j] = j;
                 sum = 0;
                 for (i = 0; i < 5; i++)
                       sum += q[i];
                 printf("%d", sum);
                       (B) 20
      (A) 10
      (C) Syntax Error (D) Depends on allocation of p and q
Q55. What will be the output of the following code fragment?
             int a[10], b[5];
             a[9] = 5;
                  b[-1] = 6;
             b[0] = 7;
             printf("%d%d%d", a[9], b[-1], a[10]);
    (A) 567 (B) 667 (C) Syntax error (D) Depends on allocation of a and b
Q56. For a C program supporting command-line arguments, each argument is
      (A) Character string (B) Integer
                             (D) Character or Integer
      (C) Void
```

```
Q57. For the following code fragment, what will be the output?
           union abc {
                int a;
                 char b;
           } x;
           x.a = 65;
           printf("%d %c", x.a, x.b);
      (A) 65 <unknown> (B) Syntax error (C) 65 A (D) 65 65
Q58. What is the output of the following code fragment?
           int *p1;
           struct abc {
                int q;
                       float r, s;
           } *p2;
           if (sizeof(p1) == sizeof(p2))
                printf("Equal");
           else
                printf("Not equal");
      (A) Equal (B) Not equal (C) Indeterminate (D) Syntax error
Q59. Fill in the blank in line 3 of following code fragment to have 10 as
value of 'a' after executing the fragment.
             int a=5;
             int *b;
             b = _{a + *b};
                (B) *a
                          (C) &a (D) 10
      (A) a
Q60. For the following C function, find the value returned by the call
"func(5)".
     int func(int x)
           if (x \le 0) return 1;
           else return x + func(x-1);
      (A) 13
                     (B) 14
                                  (C) 15
                                                (D) 16
```

61. The product of the three positive reals is 1 and their sum is greater than sum of their reciprocals. Exactly one of them is greater than							
(A) 0	(B) 1	(C) -1	(D) -2				
62. Solution of $ 3x+2 $	` '	(0) 1	(2) 2				
	(B) $[-1/3,-1]$	(C) (-1,-1/3	(D) $(1/3,-1/3)$				
63. Solution of $2x-3=$							
(A) 8	(B) -2,-8	(C) -2	(D) 12				
` '	` ' '	` /	(D) 12				
			respond to the points A, B and				
	plane. Then, the tria						
• • •	` ′ ′	(C) $\alpha^2 = 3\beta^2$	(D) $\alpha^2 = \beta$				
65. If the fourth roots							
(A) -1	(B)	()	` '				
66. If the cube root of	unity are $1, \omega, \omega^2$, the	en the roots of the e	quation $(x+1)^3 + 8 = 0$ are				
(A) $-1,1+2\omega,1+2$	$2\omega^2$ (B) $-3,-1$	$-2\omega, -1-2\omega^2$ (C) -	1,-1,-1 (D) $i,-i,-i$				
67. If $n_{C_{12}} = n_{C_8}$, the	en $n_{C_{17}}$ is equal to						
(A) 1040	(B) 1240	(C) 1140	(D) 1120				
68. The number of wo	ords that can be form	ned from the letters	<i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> , taken 3 at a time				
, each word contai	ining atleast one vov	vel is					
(A) 96	(B) 84	(C) 106	(D) 69				
69. In the expansion o	of $\left(3x - \frac{1}{x^2}\right)^{10}$, the 5 th to	erm from the end is					
(A) $\frac{16486}{x^8}$	(B) $\frac{17010}{x^8}$	(C) $\frac{13486}{x^8}$	(D) $\frac{11256}{x^8}$				
$\begin{bmatrix} 2 & 4 & 1 \end{bmatrix}$							
70. If $A = \begin{bmatrix} 2 & 4 & 1 \\ 5 & -6 & 2 \\ 2 & 1 & 5 \end{bmatrix}$, the second of the second	then the trace of A is -						
(A) -8	(B) -7	(C) -1	(D) 1				
71. If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, th	A^2 is equal to						
		(C) –A	(D) -2A				
$\begin{vmatrix} \alpha & -\beta & 0 \end{vmatrix}$							
72. If $\begin{vmatrix} \alpha & -\beta & 0 \\ 0 & \alpha & \beta \\ \beta & 0 & \alpha \end{vmatrix} = 0$, then is a cube root of unity							
(A) α	(B) β	(C) $\frac{\alpha}{\beta}$	(D) $\alpha \cdot \beta$				
73. Number of value of 'a' for which the system of equations, $a^2x + (2-a)y = 4 + a^2$,							
$ax + (2a-1)y = a^5 - 2$ possess no solution is							
(A) 0	(B) 1	(C) 2	(D) 3				
` '	. /	. /	• *				

74. The value of the determinant $\begin{vmatrix} 0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0 \end{vmatrix}$ is						
(A) 0 (B) pqr (C) $p+q+r$ (D) $(p-q)(q-r)(r-p)$						
75. If a 3×3 matrix A has inverse equal to the A, then A^2 is equal to						
(A) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$						
76. If the system of equations $x-ky-z=0$, $kx-y-z=0$, $x+y-z=0$ has a non-zero solution,						
then the possible values of k are						
(A) -1, 2 (B) 1, 2 (C) 0, 1 (D) -1, 1						
77. Two cards are drawn at random from a pack of 52 cards. The probability of getting at						
least a spade and an ace, is						
(A) $\frac{1}{34}$ (B) $\frac{1}{26}$ (C) $\frac{8}{22}$ (D) $\frac{2}{51}$						
78. A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit, is						
(A) $\frac{11}{85 \times 49}$ (B) $\frac{13}{85 \times 49}$ (C) $\frac{44}{85 \times 49}$ (D) $\frac{23}{85 \times 49}$						
79. All the spades are taken out from a pack of cards. From these cards, cards are drawn one by one without replacement till the ace of spades comes. The probability that the ace comes in the 4 th draw, is						
(A) $\frac{1}{13}$ (B) $\frac{12}{13}$ (C) $\frac{4}{13}$ (D) $\frac{2}{13}$						
80. In a right angle triangle, then the hypotenuse is four times as long as the perpendicular						
drawn to it from the opposite vertex. One of the acute angle is						
(A) 60° (B) 45° (C) 30° (D) 15°						
81. If $A+B+C=\pi$, then $\cos^2 A + \cos^2 B + \cos^2 C$ is equal to						
(A) $1-\cos A\cos B\cos C$ (B) $1-2\sin A\sin B\sin C$						
(C) $1-\sin A \sin B \sin C$ (D) $1-2\cos A \cos B \cos C$ 82. If in a $\triangle ABC$, $\sin^2 A + \sin^2 B + \sin^2 C = 2$, then the triangle is always						
(A) Acute angled (B) Obtuse angled (C) Right angled (D) Isosceles triangle						
83. If $\sin \alpha \sin \beta - \cos \alpha \cos \beta + 1 = 0$, then the value of $\cot \alpha \tan \beta$ is						
(A) -1 (B) 0 (C) 1 (D) 2						
84. The number of solutions of the equation $5\sec\theta - 13 = 12\tan\theta$ in $[0, 2\pi]$, is						
(A) 0 (B) 2 (C) 4 (D) 6						
$(A) \ 0 \qquad (B) \ 2 \qquad (C) \ 4 \qquad (D) \ 0$						
85. If a,b,c are the sides of a triangle ABC , then $\sqrt{a} + \sqrt{b} - \sqrt{c}$ is always						
85. If a,b,c are the sides of a triangle ABC , then $\sqrt{a} + \sqrt{b} - \sqrt{c}$ is always						
85. If a,b,c are the sides of a triangle ABC , then $\sqrt{a} + \sqrt{b} - \sqrt{c}$ is always (A) negative (B) non-negative (C) positive (D) non-positive						

87.	87. If $\sin^{-1} \frac{2a}{1+a^2} + \sin^{-1} \frac{2b}{1+b^2} = 2\tan^{-1} x$, then							
	$(A) x = \frac{a+b}{1-ab}$	$(\mathbf{B}) \qquad x = \frac{a - b}{1 + ab}$	(C) $x =$	$\frac{b-a}{1+ab} \tag{D}$	$x = \frac{b+a}{1+ab}$			
88.	-		-	•	h five others.tf they all d B speaks before C, is			
	(A) $\frac{3}{8}$	(B) $\frac{5}{8}$	(C)	$\frac{5}{6} \tag{D}$	$\frac{1}{6}$			
89.		wo independent	events such tha	at $P(A) = \frac{1}{5}$, $P(A \cup$	$(DB) = \frac{7}{10}$. Then, $P(\overline{B})$ is			
	equal to	(D) 2	(3) 7	(D)	5			
	$(A) \qquad \frac{3}{8}$	(B) $\frac{-}{7}$	$(C) = \frac{1}{9}$	(D)	7			
90.	The composite ma	apping fog, of the	e maps $f: R \to R$	$R, f(x) = \sin x; g : R$	$R \rightarrow R, g(x) = x^2 \text{ is }$			
	$(\mathbf{A}) \sin x + x^2$	(B) $\sin x^2$	(C) (sin	(D)	$\sin x$			
91.	Let $A = \{1, 2, 3\}$. We	define $R_1 = \{(1, 2),$	$(3,2),(1,2)\}, R_2 =$	$\{(1,3),(3,6),(2,1),(3,6),(3,$	(1,2)}.Then,the relation			
	on <i>A</i> is							
	(A) R_1 and R_2 rela			R_1 is relation and	-			
	(C) R_1 and R_2 are	e both non- relation	on (D)	R_1 is reflexive by	at not R_2			
92.	If $\{x+3,4-y\} = (1,7)$							
	(A) $(-2, -3)$	(B) $(-3, 2)$	(C) (3,	4) (D)	(-5, 1)			
93.	Let $f(x) = x^2 - x + 1$	$, x \ge \frac{1}{2}$, then the so	olution of the equ	uation $f^{-1}(x) = \frac{1}{x}$	<i>f</i> (<i>x</i>) is			
	(A) $x = -1$	(B) $x = -2$	(C) $x =$	1 (D)	x = 2			
94.	The fundamental J	period of the fun	ction f(x) = 2cc	$\operatorname{s}\left(\frac{x-\pi}{3}\right)$ is	-			
	(A) 8 <i>π</i>	(B) 6π	(C) 3π	(D)	2π			
95.	If $f(x) = 3x - 5$, the	$n f^{-1}(x)$ is						
	$(A) \qquad \frac{x+5}{3}$	$(B) \qquad \frac{1}{3x-1}$	(C) $\frac{1}{3x}$	<u>-5</u>	(D) $\frac{5}{x-3}$			
96.	The equation of t	he line passing	through the poi	nt (2, 3) and pe	erpendicular to the line			
	joining (-5, 6) and							
	$(\mathbf{A}) x + y + 5 = 0$	(B) $x - y + 5 =$	0 (C) $x-$	$y - 5 = 0 \qquad (D)$	x + y - 5 = 0			
97.	The value of λ , if	the lines $3x-4y$	-13 = 0, $8x - 11y$	-33 = 0 and $2x -$	$3y + \lambda = 0$ are concurrent,			
	is							
00	` '	(B) -7	` /	(D)				
98. The straight lines $3x+4y-5=0$ and $4x-3y-15=0$ intersect at the point P. On these lines the point Q and R are chosen so that $PQ = PR$. The slopes of the lines QR passing through $(1, 2)$								
	are							
	(A) $3,\frac{1}{3}$	(B) $7, \frac{1}{7}$	(C) -7,	$\frac{1}{7}$ (D)	$-3,\frac{1}{3}$			
99. A light ray gets reflected from the line $x = -2$. If the reflected ray touches the circle $x^2 + y^2 = 4$ and point of incident is $(-2, -4)$, then equation of incident ray is								

(A) $3x+4y+22=0$ (B) $4x+3y+20=0$ (C) $2x+4y+20=0$ (D) $x+y+6=0$						
100. $\int \frac{\log}{x^2} dx$ is equal to						
(A) $\frac{-1}{x}(1+\log x)+c$ (B) $\frac{-1}{x}(x+\log x)+c$ (C) $\frac{-1}{x}(1+\log 2x)+c$ (D) $\frac{-1}{x}(2+\log x)+c$						
101. The value of the integral $\int_{1}^{3} (x-1)(x-2)(x-3) dx$ is						
(A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) $\frac{9}{4}$ (D) 1						
102. $\int_{0}^{\infty} \left[\frac{2}{e^{x}} \right] dx$ (where [.] denotes the greatest integer function) equal to						
(A) e^2 (B) $\frac{2}{e}$ (C) $\ln 2$ (D) 0						
103. The value of integral $\int_{0}^{\pi/2} \sin 2x \cot x dx$, where <i>n</i> is positive, is						
(A) 0 (B) π (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{3}$						
104. If $\int_{1}^{x} \frac{dt}{ t \sqrt{t^2 - 1}} = \frac{\pi}{6}$, then <i>x</i> can be equal to						
(A) $\frac{2}{\sqrt{3}}$ (B) $\sqrt{3}$ (C) 2 (D) $\frac{1}{\sqrt{3}}$						
105. The differential equation of all circles passing through the origin and havin their entre on the x -axis is						
(A) $y^2 = 2xy \frac{dy}{dx}$ (B) $y^2 = x^2 + 2xy \frac{dy}{dx}$ (C) $x^2 = 2xy \frac{dy}{dx}$ (D) $y^2 = x^2 - 2xy \frac{dy}{dx}$						
106. The solution of the differential equation $x \sin\left(\frac{y}{x}\right) dy = \left(y \sin\frac{y}{x} - x\right) dx$ is						
(A) $\log\left(\frac{x}{y}\right) = \cos\left(\frac{x}{y}\right) + c$ (B) $\log = \cos\left(\frac{x}{y}\right) + c$						
(C) $\log x = \cos\left(\frac{x}{y}\right) + c$ (D) $\log x = \cos\left(\frac{y}{x}\right) + c$						
107. If the straight lines $\frac{x-1}{k} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x-2}{3} = \frac{y-3}{k} = \frac{z-1}{2}$ intersect at a point						
then the integer k is equal to (A) -5 (B) 5 (C) 2 (D) -2						
108. A line with positive direction cosines passes through the point $P(2,-1,2)$ and						
makes equal angles with the coordinates axes. The line meets the plane $2x + y + z = 9$ at point Q . The length of the line segment PQ equals to						
(A) 1 (B) $\sqrt{2}$ (C) $\sqrt{3}$ (D) 2						
109. A plane passing through a fixed point (a,b,c) . The locus of the foot of the						
perpendicular to it from the origin is the sphere (A) $x^2 + y^2 + z^2 - 2ax - 2by - 2cz = 0$ (B) $x^2 + y^2 + z^2 - 4ax - 4by - 4cz = 0$						
(C) $x^2 + y^2 + z^2 - ax - by - cz = 0$ (D) $x^2 + y^2 + z^2 + ax + by + cz = 0$						

110.	Radius of c	rircle \vec{r}^2 +	$-\overrightarrow{r^2}\cdot(2\hat{i}-2j-$	(2k)-1	$9 = 0, \vec{r} \cdot (\hat{i} - 2j +$	(2k) + 8	8 = 0 is
(A)	2		3			(D)	
111.		` /		` /		` /	n joins the origin to the
				_			e are coordinate axes)
		`			C		,
(A)	1, -1, 1	(B)	2,-2, 1	(C)	1, 1, 1	(D)	1, 2, 3
112.	If \vec{a} and \vec{b}	are two u	unit vectors i	ncline	d at an angle θ	such t	that $\vec{a} + \vec{b}$ is a unit vector,
then ϵ	9 is equal to	-					
(A)	2π	(B)	$\frac{\pi}{}$	(C)	$\frac{\pi}{2}$	(D)	$\frac{\pi}{}$
(12)	3		•				3
113.	If θ is the a	ngle betw	een vectors	\vec{a} and	\vec{b} such that \vec{d}	$\vec{b} \ge 0$, then
(A)	$0 \le \theta \le \pi$	(B) 0	$\leq \theta \leq \frac{\pi}{2}$	(C)	$\frac{\pi}{2} \le \theta \le \pi$	(D)	$0 < \theta < \frac{\pi}{2}$
114.	The solution	n of the	differential	equati	on $\frac{d^2y}{dx^2} = e^{-2x}$ is	S	
(A)	$\frac{e^{-2x}}{4}$	(B) $\frac{e^{-}}{a}$	$\frac{c^{2x}}{1} - cx^2 + d$	(C)	$\frac{e^{-2x}}{4} + cx^2 + d$	(D)	$\frac{e^{-2x}}{4} + cx + d$
115.	Solution of	the diffe	erential equa	ition ($(x+2y^3)\frac{dy}{dx} = y$	is	
(A) .	$x = y^2(c + y^2)$	(B)	$x = y(c - y^2)$	(C)	$x = y(c + y^2)$	(D)	$x = 2y(c - y^2)$
116.	The equation	on of a cu	ırve passing	g throu		naving	g slope $\frac{\sin 2y}{x + \tan y}$ at (x, y) is
(A)	$x = \tan y$	(B) y	$= \tan x$	(C)	x = 2 tany	(D)	$y = 2 \tan x$
117. If \vec{a} , \vec{b} are the positions vectors of A , B respectively and C is a point on AB produced such that $AC = 3AB$, then the position vector of C is							
(A)			$2\vec{a}+3\vec{b}$				$3\vec{b}-2\vec{a}$
118.	\vec{a} and \vec{b} ar	e unit vec	etors and θ is	the an	gle between the	m, the	en $\frac{\left \vec{a}-\vec{b}\right }{2}$ is
(A)	$2\sin\theta$	(B) sin	n $ heta$		(C) $\sin \frac{\theta}{2}$		(D) $\sin 2\theta$
119. $[2\vec{a} - \vec{b}]$	The \vec{a} , \vec{b} $2\vec{b} - \vec{c}$ $2\vec{c} - \vec{a}$			coplan	ar vectors, th	en th	ne scalar triple product
(A) -		(B)		(C)	1	(D)	2
120.		` /		. ,		` ′	
120. Negation of the "If it rains, I shall go to School" is (A) It rains and I shall go to school (B) If does not rains and I shall go to school (C) It rains and I shall not go to school (D) If it does rains and I shall go to school							
			- D- 10 50110	(2	,	*****	