Seminar on Condensed Mathematics Talk 2: Condensed Abelian Groups

Pedro Núñez

13th October 2019

Contents

1 The category of condensed abelian groups

1

1 The category of condensed abelian groups

The pro-étale site of a point, denoted $*_{pro\acute{e}t}$, consists of:

- The category whose objects are profinite sets S (topological spaces homeomorphic to an inverse limit of finite discrete topological spaces, a.k.a. totally disconnected compact Hausdorff spaces) and whose morphisms are continuous maps.
- For a profinite set S, its covering sieves are the ones generated² by finite families $\{S_j \to S\}_{j \in J}$ of jointly surjective maps (see [Sta19, Tag 00Z1]).

Definition 1.1. Let \mathcal{C} be any category. The category $Cond(\mathcal{C})$ of *condensed objects* of \mathcal{C} is the category of \mathcal{C} -valued sheaves on $*_{pro\acute{e}t}$.

As a warm up let us first characterize sheaves of abelian groups on $*_{pro\acute{e}t}$:

Lemma 1.2. A contravariant functor F from the category of profinite sets to the category Ab of abelian groups is a sheaf on $*_{pro\acute{e}t}$ if and only if the following conditions hold:

¹This is a large category, which translates into some set-theoretical issues later on. We will ignore these issues during the talk.

²Recall that a sieve on S is a subfunctor F of h_S , so for each profinite set S' we need to give a subset $F(S') \subseteq \operatorname{Hom}(S',S)$ with the only condition that $S_2 \to S_1 \to S$ is in $F(S_2)$ as soon as $S_1 \to S$ is in $F(S_1)$.

- $i) F(\emptyset) = 0,$
- ii) The natural map $F(S \sqcup S') \to F(S) \oplus F(S')$ is an isomorphism, and
- iii) for any surjection $S' \to S$ with projections $p_1, p_2 \colon S' \times_S S' \to S'$ from the fibre product, the map $F(S) \to F(S')$ is a monomorphism with image

$$\{g \in F(S') \mid p_1^*(g) = p_2^*(g) \in F(S' \times_S S')\}.$$

Proof. Let $\{f_i \colon S_i \to S\}_{i \in I}$ be a finite fimily of jointly surjective morphisms. We identify each profinite set with its image under the Yoneda-embedding and denote $S_{i,j} = S_i \times_S S_j$, which on an object T is given by the set of pairs (g_i, g_j) (with $g_k \colon T \to S_k$ for $k \in \{i, j\}$) such that $f_i \circ g_i = f_2 \circ g_2$. Then the covering sieve generated by this family can be described as the coequalizer of the diagram

$$\bigsqcup_{i,j} S_{i,j} \rightrightarrows \bigsqcup_{i} S_{i},$$

which on an object T is given by maps

With this characterization we can already cook up some examples of condensed abelian groups:

Lemma 1.3. Let G be an abelian topological group. Then the functor \underline{G} sending a condensed set S to the group of continuous maps $S \to G$ is a condensed abelian group.

Proof. We need to show that it is a sheaf on $*_{pro\acute{e}t}$.

References

[Sta19] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2019.