Chapitre 5

Espaces Affines II: Applications affines

5.1 Applications Affines

Ce sont les applications qui transportent correctement la structure d'espace affine

Définition 5.1. Soient (\mathcal{E}, \vec{E}) et \mathcal{F}, \vec{F} deux espaces affines. Une application de \mathcal{E} dans \mathcal{F} est dite affine si il existe une application linéaire \vec{f} de \vec{E} dans \vec{F} de sorte que :

(5.1)
$$\forall (A,B) \in \mathcal{E}^2 \quad \overrightarrow{f(A)f(B)} = \overrightarrow{f}(\overrightarrow{AB})$$

On peut remplacer (5.1) par l'une des propositions suivantes :

(5.2)
$$\exists O \in \mathcal{E}, \forall B \in \mathcal{E} \quad \overrightarrow{f(O)f(B)} = \overrightarrow{f(\overrightarrow{OB})}$$

(5.3)
$$\exists O \in \mathcal{E}, \forall B \in \mathcal{E} \quad f(B) = f(O) + \vec{f}(\overrightarrow{OB})$$

5.2 Exemples

Définition 5.2. On appelle homothétie de centre O et de rapport $k \neq 1$ la transformation du plan , notée $h_{(O,k)}$ qui a tout point M associe le point M' tel que $\overrightarrow{OM'} = k\overrightarrow{OM}$

C'est une application affine associée à l'application linéaire $\vec{h}=kId$.

Définition 5.3. On appelle translation de vecteur \vec{u} , notée $t_{\vec{u}}$ la transformation du plan qui à tout point M associe le point M' tel que $\overrightarrow{MM'} = \vec{u}$.

C'est une application affine associée à l'application linéaire $\vec{t} = Id$.

Définition 5.4. Soit Ω un point du plan affine euclidien et $\vec{r} = R_{\theta}$ une rotation vectorielle. On appelle rotation de centre Ω et d'angle θ l'application $R(\Omega, \theta)$ qui à M(x, y) associe le point M' tel que $\overrightarrow{\Omega M'} = R_{\theta}(\overrightarrow{\Omega M})$

C'est une application affine associée à l'application linéaire $\vec{r} = R_{\theta}$.

5.2.1Expression analytique

Commençons par regarder dans le plan : on désigne par $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, la matrice de l'application linéaire \vec{f} associée à l'application affine f, le fait d'écrire, pour M(x,y) et en notant f(M)=M'=(x',y'), que

$$\overrightarrow{f(O)}\overrightarrow{f(M)} = \overrightarrow{f}(\overrightarrow{OM}) \text{ soit } \overrightarrow{O'M'} = \overrightarrow{f}(\overrightarrow{OM}),$$

conduit à écrire un système d'équations appelée expression analytique de l'application

$$(S) \begin{cases} x' - x'_0 = ax + by \\ y' - y'_0 = cx + dy \end{cases}$$

soit

$$(S) \begin{cases} x' = ax + by + x'_0 \\ y' = cx + dy + y'_0 \end{cases}$$

En dimension plus grande si on note $M(x_1, \ldots, x_n)$ et f(M) = M' = (x_1',\ldots,x_n')

si $A = (a_{ij})$ est la matrice de l'application \vec{f} associée à f.

5.2. EXEMPLES 57

5.2.2 Reconnaître une application affine

Pour reconnaître une transformation affine, il faut avant tout regarder la partie linéaire :

Proposition 5.1. 1. Toute transformation affine dont l'application linéaire associée est l'identité est une translation.

- 2. La composée de deux translations est une translation (éventuellement égale à l'identité), plus précisément : $t_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}} = t_{\vec{v}} \circ t_{\vec{u}}$.
- 3. Toute application affine du plan affine associée à une rotation vectorielle est une rotation. De même toute application affine associée à une homothétie vectorielle de rapport $k \neq 1$ est une homothétie affine.

Preuve:

1. En notant A' l'image de A par l'application affine en question, étant donnés deux points quelconque A et B, comme $\overrightarrow{A'B'} = \overrightarrow{AB}$ ($\overrightarrow{f} = Id$), on utilise Chasles et on obtient $\overrightarrow{AA'} = \overrightarrow{BB'}$. On reconnaît ce que l'on nomme identité du parallélogramme.

- 2. Comme $t_{\vec{u}} \circ t_{\vec{v}}$ est associée à l'identité, c'est une translation et on regarde l'image A" d'un point A pour trouver le vecteur de translation, à cause de Chasles on trouve que c'est $\vec{u} + \vec{v}$ ($\overrightarrow{AA'} = \vec{v}, \overrightarrow{A'A'} = \vec{u}$ et $\overrightarrow{AA'} = \overrightarrow{AA'} + \overrightarrow{A'A'} = \vec{u} + \vec{v}$). Ainsi deux translations commutent.
- 3. Soit une application affine f du plan affine associée à une rotation vectorielle. Pour montrer que f est une rotation il suffit de prouver qu'il existe un point fixe. Mais si f est associée à la rotation vectorielle \vec{r} de matrice $R = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, alors comme $\overrightarrow{f(O)f(M)} = \vec{r}(\overrightarrow{OM})$, et si

58

on note M'(x', y') les coordonnées du point f(M), f a pour expression analytique

$$\begin{cases} x' - x'_0 = ax - by \\ y' - y'_0 = bx + ay \end{cases}$$

Donc si on cherche un point fixe, on doit résoudre :

$$(S) \begin{cases} x - x'_0 = ax - by \\ y - y'_0 = bx + ay \end{cases}$$

et ce système a pour matrice $R-I_2=\left(\begin{array}{cc} a-1 & -b \\ b & a-1 \end{array} \right);$ or on sait que la matrice $R-I_2$ a un noyau réduit à (0,0) puisque 1 n'est pas une valeur propre de la rotation vectorielle R (le spectre de la matrice $R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin\theta \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \text{ dans } \mathbb{R} \text{ est vide et dans } \mathbb{C} \text{ c'est } \{e^{i\theta}, e^{-i\theta}\}$) est donc (S) admet une unique solution (x_1, y_1) qui sont les coordonnées d'un unique point fixe Ω .

On démontre de même la propriété concernant les homothéties.

Pour poursuivre cette étude, on va démonter un résultat fondamental.

5.3 Propriétés fondamentales

Proposition 5.2. 1) La composée $q \circ f$ de deux applications affines $f: \mathcal{E} \to \mathcal{E}$ \mathcal{F} et $g: \mathcal{F} \to \mathcal{G}$ est une application affine d'application linéaire associée $\vec{q} \circ \vec{f}$. 2) Une application affine de $\mathcal E$ dans $\mathcal E'$ est bijective si et seulement si $\vec f$ est bijective de \vec{E} dans \vec{E}' et dans ce cas là, f^{-1} est aussi une application affine

- 3) L'ensemble $GA(\mathcal{E})$ des bijections affine de \mathcal{E} dans \mathcal{E} , muni de la loi \circ est un groupe Appelé Groupe Affine de \mathcal{E} .
- 4) L'ensemble H formé des homothéties et des translations est un sous-groupe du groupe affine. Plus précisément, la composée de deux homothéties, $h_{(O,k)} \circ$ $h'_{(O',k')}$ est soit une une translation (si kk'=1) soit une homothétie de rapport

Remarque: Le groupe affine est un exemple de groupes non commutatif.. Par exemple, en général $h_{(O,k)} \circ h'_{(O',k')}$ est différente de $h'_{(O',k')} \circ h_{(O,k)}$ (sauf si O = O'...).

Preuve: 1) c'est assez simple en effet:

$$\overrightarrow{g\circ f(A)g\circ f(B)} = \overrightarrow{g(f(A))g(f(B))} = \overrightarrow{g}(\overrightarrow{f(A)f(B)}) = \overrightarrow{g}(\overrightarrow{f}(\overrightarrow{AB})) = \overrightarrow{g}\circ\overrightarrow{f}(\overrightarrow{AB})$$

2) C'est plus délicat, il faut raisonner par condition nécessaire et suffisante : Si f est bijective , et si on se donne un vecteur \vec{u} , en se fixant un point A on sait qu'il existe un unique point C $\overrightarrow{f(A)C} = \vec{u}$ mais comme f est bijective il existe un unique point B tel que f(B) = C; alors $\overrightarrow{f(A)C} = \overrightarrow{f(A)f(B)} = \overrightarrow{f(AB)}$ et finalement le vecteur \overrightarrow{AB} est un antécédent de \vec{u} . de même l'injectivité de f assure celle de \vec{f} .

Réciproquement si \vec{f} est bijective , alors

- a) f est injective car si f(A) = f(B), alors $\vec{0} = \overrightarrow{f(A)} \overrightarrow{f(B)} = \overrightarrow{f(AB)}$ ce qui dit que $\overrightarrow{AB} = \vec{0}$ puisque \overrightarrow{f} est injective;
- b) de même si on se donne un point C de \mathcal{E} , et si on désigne par \vec{v} le vecteur $\overline{f(A)C}$, il existe un unique vecteur \vec{u} tel que $\vec{f}(\vec{u}) = \vec{v}$; mais les axiomes d'espace affine nous disent qu'il existe un unique point B telque $\vec{u} = \overrightarrow{AB}$ et comme

$$\overrightarrow{f(A)f(B)} = \overrightarrow{f}(\overrightarrow{AB}) = \overrightarrow{f}(\overrightarrow{u}) = \overrightarrow{v} = \overrightarrow{f(A)C}$$

donc f(B) = C.

Si f est bijective et en notant comme toujours, A' = f(A) et B' = f(B), on a $A = f^{-1}(A')$ et $B = f^{-1}(B')$:

$$\overrightarrow{f^{-1}(A')f^{-1}(B')} = \overrightarrow{AB} = \overrightarrow{f^{-1}}(\overrightarrow{f(AB)}) = \overrightarrow{f^{-1}}(\overrightarrow{f(A)f(B)}) = \overrightarrow{f^{-1}}(\overrightarrow{A'B'}),$$

ce qui dit bien qu'alors f^{-1} est affine associée à \vec{f}^{-1} .

- 3) C'est une conséquence directe de ce qui précède : la composés de deux bijections affines de $\mathcal E$ dans $\mathcal E$ est une bijection affine, l'identité est le neutre pour la loi \circ et si $f \in GA(\mathcal E)$, alors f^{-1} est aussi une application affine don appartient à $GA(\mathcal E)$.
- 4) Comme précédemment , on regarde les applications linéaires associées : $h_{(O,k)} \circ h'_{(O',k')}$ est associée à l'application kk'I. Si kk'=1 on a une translation d'après la proposition précédente. Sinon, on a une homothétieOn peut remarquer que les trois centres O,O',O" sont alignés.

En effet, comme $h_{(O,k)} \circ h'_{(O',k')} = h_{O'',kk'}$, en prenant l'image, que l'on note O_1 , de O' par $h_{O'',kk'}$ on trouve que

$$h_{O^*,kk'}(O') = O_1 = h_{(O,k)} \circ h'_{(O',k')}(O') = h_{(O,k)}(O')$$

donc $\overrightarrow{O''O_1} = kk'\overrightarrow{O''O'}$ et $\overrightarrow{OO_1} = k\overrightarrow{OO'}$ On utilise la relation de Chasles pour faire disparaître O_1 , on obtient $kk'\overrightarrow{O''O'} = \overrightarrow{O''O'} + (1-k)\overrightarrow{OO'}$ ce qui donne $\overrightarrow{O'O''} = \frac{(1-k)}{1-kk'}\overrightarrow{OO'}$. Les trois centres sont alignés et l'expression ci-dessus montre que la composition des deux homothéties n'est pas commutative sauf si les centres O et O' sont confondus.

Proposition 5.3. L'image G' = f(G) par une application affine du barycentre $G = Bar((A_i, \lambda_i)_{i \in I})$ est le barycentre $Bar((f(A_i), \lambda_i)_{i \in I})$ des points massiques images $f(A_i)$ affectés des mêmes coefficients.

Preuve: On sait que

(5.4)
$$\forall P \in \mathcal{E}, \quad (\sum_{i=1}^{k} \lambda_i) \overrightarrow{PG} = \sum_{i=1}^{k} \lambda_i \overrightarrow{PA_i}$$

donc en utilisant le fait que f est affine et en écrivant M' l'image d'un point M:

$$\overrightarrow{P'G'} = \overrightarrow{f}(\overrightarrow{PG}) = \overrightarrow{f}(\frac{1}{(\sum_{i=1}^{k} \lambda_i)} \sum_{i=1}^{k} \lambda_i \overrightarrow{PA_i})$$

donc

$$\overrightarrow{P'G'} = \frac{1}{(\sum_{i=1}^k \lambda_i)} \sum_{i=1}^k \lambda_i \overrightarrow{f}(\overrightarrow{PA_i}) = \frac{1}{(\sum_{i=1}^k \lambda_i)} \sum_{i=1}^k \lambda_i \overrightarrow{P'A_i'}$$

П

Proposition 5.4. L'image par une application affine d'un sous-espace affine \mathcal{F} passant par A et de direction \vec{F} est un sous-espace affine passant par f(A)et de direction $\vec{f}(\vec{F})$.

Preuve : c'est l'analogue de celle faite pour les barycentres . Pour tout point de $M \in \mathcal{F}$ qui est de direction $\vec{F} = (e_1, e_2, \dots e_k)$ on peut trouver un k-uplet de réels tels que

$$\overrightarrow{AM} = \sum_{i=1}^{k} \lambda_i \vec{e_i} = \sum_{i=1}^{k} \lambda_i \overrightarrow{AA_i}$$

et on conclut comme plus haut.

Exemple: une homothétie (une translation) du plan transforme une droite du plan en une droite parallèle.

en effet, soit $\mathcal{D} = \mathcal{D}(A, \vec{u})$ si A' et B' sont les images de A et B par h, $B \in \mathcal{D}$ il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{AB} = \lambda \vec{u}$, comme $\overrightarrow{A'B'} = k\overrightarrow{AB}$, car hest une honmothétie (ou une translation dans le acs k = 1), on a donc $\overrightarrow{A'B'} = k\overrightarrow{AB} = k\lambda \overrightarrow{u}$ et B' appartient à \mathcal{D}' , droite parallèle à \mathcal{D} , passant par

Réciproquement, si C' est un point de \mathcal{D}' , il existe un réel μ tel que $\overrightarrow{A'C'} = \mu \overrightarrow{u}$ donc C' est l'image du point $C \in \mathcal{D}$ tel que $\overrightarrow{AC} = \frac{\mu}{k} \vec{u}$. Ce point C se trouve à l'intersectiond e \mathcal{D} et de la droite (OC').

$5.4.\ LES\ TRANSFORMATIONS\ G\'EOM\'ETRIQUES\ DU\ PLAN\ ET\ DE\ L'ESPACE\ AFFINE\ 61$

5.4 Les transformations géométriques du plan et de l'espace affine

5.4.1 Les transformations affines

Ce sont les analogues dans le plan affine des applications linéaires vues en cours d'algèbre linéaire. On rajoutera le qualificatif d'affine quand il y aura ambiguïté sur la structure utilisée.

Définition 5.5. On se donne un plan $\mathcal{P} = \mathcal{A} + \vec{\mathcal{P}}$ de l'espace et une droite \mathcal{D} tels que $\mathcal{P} \cap \mathcal{D} = \{\mathcal{A}\}$. On appelle projection sur \mathcal{P} parallèlement à \mathcal{D} l'application qui à un point M de l'espace associe le point M' tel que $\overrightarrow{AM'} = \vec{p}(\overrightarrow{AM})$ \vec{p} étant la projection vectorielle sur \vec{P} parallèlement à \vec{D} .

Par définition, p est affine associée à la projection vectorielle \vec{p} . On peut définir de manière analogue la projection sur \mathcal{D} parallèlement à \mathcal{P} .

Définition 5.6. On se donne un plan $\mathcal{P} = \mathcal{A} + \vec{\mathcal{P}}$ de l'espace et une droite \mathcal{D} tels que $\mathcal{P} \cap \mathcal{D} = \{\mathcal{A}\}.$

On appelle symétrie par rapport à \mathcal{P} parallèlement à \mathcal{D} l'application qui à un point M de l'espace associe le point M' tel que $\overrightarrow{AM'} = \vec{s}(\overrightarrow{AM})$ \vec{s} étant la symétrie vectorielle par rapport à \vec{P} parallèlement à \vec{D} .

Par définition, s est affine associée à la symétrie vectorielle \vec{s} . On peut définir de manière analogue la symétrie par rapport à \mathcal{D} parallèlement à \mathcal{P} .

Proposition 5.5. Toute application affine f qui vérifie $s \circ s = Id$ est une symétrie.

Preuve : Exercice, il faut regarder les applications linéaires associées et reamrquer que si A est un point de \mathcal{E} le milieu de [Af(A)] est invariant par f.

5.4.2 Les transformations orthogonales

Définition 5.7. On se donne un plan $\mathcal{P} = \mathcal{A} + \vec{\mathcal{P}}$ de l'espace et une droite \mathcal{D} , orthogonale à \mathcal{P} , tels que $\mathcal{P} \cap \mathcal{D} = \{\mathcal{A}\}$. La projection sur \mathcal{P} parallèlement à \mathcal{D} est nommée projection orthogonale sur le plan \mathcal{P} . De même la symétrie par rapport à \mathcal{P} parallèlement à \mathcal{D} est alors nommée symétrie orthogonale par rapport au plan \mathcal{P} ou encore réflexion. La symétrie orthogonale par rapport à \mathcal{D} est alors nommée demi-tour. C'est en fait une rotation de l'espace affine

Définition 5.8. On se donne un plan $\mathcal{P} = \mathcal{A} + \vec{\mathcal{P}}$ de l'espace et une droite $\mathcal{D} = A + Vec(\vec{u})$, orthogonale à \mathcal{P} . On appelle rotation d'angle θ autour de \mathcal{D} , la transformation f qui laisse fixe tous les points de \mathcal{D} et telle que f/\mathcal{P} est une rotation d'angle θ dans le plan \mathcal{P} .

M' est l'image de M par le demi-tour d'axe \mathcal{D} M" est l'image de M par la rotation d'angle θ

Ce sont des exemples d'isométries affines

5.5 Isométries affines du plan et de l'espace

Définition 5.9. Une isométrie d'un espace affine euclidien \mathcal{E} est une application affine f dont l'application vectorielle associée est une isométrie vectorielle de l'espace vectoriel correspondant \vec{E} .

Proposition 5.6. 1) La composée de deux isométries affines est une isométrie affine .

2) L'ensemble $\mathcal{I}s(\mathcal{E})$ des isométries de l'espace affine euclidien \mathcal{E} est un sous-groupe du groupe affine $GA(\mathcal{E})$.

Preuve : On sait que si f, g sont des isométries affines alors $g \circ f$ est affine d'application linéaire associée $\vec{g} \circ \vec{f}$ mais \vec{g} et \vec{f} sont des isométries vectorielles et on a vu que $O_N(\mathbb{R})$ est un groupe multiplicatif; donc $\vec{g} \circ \vec{f}$ est une isométrie vectorielle et $g \circ f$ est une isométrie affine. L'identité est évidemment une isométrie , il reste à montrer que si $f \in \mathcal{I}s(\mathcal{E})$ alors f^{-1} aussi. Mais alors \vec{f} est une isométrie vectorielle , elle est donc bijective et donc f l'est aussi et comme \vec{f}^{-1} est associée à f^{-1} , f^{-1} est aussi une isométrie affine.

5.5.1 Dans le plan

On a déjà rencontré comme isométrie affine, les translations et les symétries orthogonales qui correspondent aux isométries vectorielles Id et \vec{s} symétrie orthogonales. On peut démontrer (cf [1]) que :

Proposition 5.7. Toute isométrie du plan peut s'écrire comme composée de 0, 1, 2 ou 3 symétries orthogonales

On regarde quelles sont les isométries qui s'écrivent comme composée de 2 symétries orthogonales :

Proposition 5.8. Toute isométrie, composée de 2 symétries orthogonales $s_{\mathcal{D}}$ et $s_{\mathcal{D}'}$ est soit une translation lorsque \mathcal{D} et \mathcal{D}' sont parallèles soit une rotation dont la mesure de l'angle est le double de l'angle des deux droites $s_{\mathcal{D}}$ et $s_{\mathcal{D}'}$.

Preuve : on regarde comme d'habitude les parties linéaires, $s_{\mathcal{D}}(\text{resp. }s'_{\mathcal{D}})$ est associée à $s_{\vec{D}'}(\text{resp. }s'_{\vec{D}'})$ donc $s_{\mathcal{D}'}(\text{older}s)$ est associée à $s_{\vec{D}'}(\text{older}s)$ qui est orthogonale et de déterminant 1 donc c'est une rotation vectorielle, éventuellement égale à l'identité . Et d'après les propositions précédentes, on sait que

— si $s_{\vec{D}'} \circ s_{\vec{D}} = I_2$, ce qui arrive si et seulement si $s_{\vec{D}'} = s_{\vec{D}}$ donc si et seulement si \mathcal{D} et \mathcal{D}' sont parrallèles, alors $s_{\mathcal{D}'} \circ s_{\mathcal{D}}$ est une translation. Pour trouver le vecteur il suffit de regarder un point et son image . prenons A sur \mathcal{D} et notons H_A sa projection sur \mathcal{D}' ; on a

$$s_{\vec{D'}} \circ s_{\vec{D}}(A) = s_{\vec{D'}}(A) = 2\overrightarrow{AH_A}$$

— Sinon, \mathcal{D} et \mathcal{D}' sont sécantes en A on a une rotation , le point fixe est évidemment A et pour trouver l'angle on regarde l'image d'un autre point! SI on prend B sur \mathcal{D} et si on appelle B" l'image de B, le triangle BAB" est isocèle en A donc l'angle $\langle \overrightarrow{AB}, \overrightarrow{AH_A} \rangle = \langle \overrightarrow{AH_A}, \overrightarrow{AB} \rangle$. Donc

$$\langle \overrightarrow{AB}, \overrightarrow{AB}, \overrightarrow{AB}, \overrightarrow{AH_A} \rangle$$
.

Remarque : cette propriété est au coeur d'un des instruments maritimes les plus utiles , qui n'a que très récemment disparu au profit de la géolocalisation par GPS : le sextant .

Comment peut-on arriver à 3 symétries? en composant une translation de vecteur \vec{u} et une symétrie par rapport à une droite dirigée par \vec{u} .. On appelle cela une symétrie glissée!

5.5.2 Dans l'espace

Quelques exemples déjà rencontrés : les symétries orthogonales par rapport à des plan, des droites, les rotations ... et les vissages , composés d'une rotation d'axe $\mathcal{D}=(A,\vec{u})$ et d'une translation de vecteur \vec{u} . C'est le mouvement d'un tire-bouchons ...

5.6Exercices sur le chapitre 5 et de révision

Exercice 20. Toute application affine f qui vérifie $s \circ s = Id$ est une symétrie.

Exercice 21. On se place dans le plan affine et on se donne A, B, C trois points non alignés. Soient P, Q, R P'Q', R' de coordonnées barycentriques $(0,1,-\alpha),(-\beta,0,1),(1,-\gamma,0),(0,-\alpha,1),(1,0,-\beta),(-\gamma,1,0),$ relativement à A, B et $C \alpha, \beta$ et γ étant des réels non nuls et différents de 1.

- 1) A quelles droites appartiennent P, Q et R (resp. P', Q' et R')?
- 2)a) Etablir que P, Q, R sont alignés si et seulement si $\alpha\beta\gamma = 1$.
- b) en déduire que si on dispose de trois points P, Q, R, distincts des sommets du triangle, respectivement sur les droites (BC), (CA) et (AB), ces 3 point sont alignés si et seulement si

$$\frac{\overline{PB}}{\overline{PC}}\frac{\overline{QC}}{\overline{QA}}\frac{\overline{RA}}{\overline{RB}} = 1.$$
 Théorème de Ménélaus

- c) Etablir que P, Q, R sont alignés si et seulement si P', Q' et R' le sont .
- d) Etablir que le milieu de [PP'], M, coincide avec le milieu de [BC].
- 3) Dans ce cas-là, montrer que les points I milieu de [AP], J milieu de [BQ]et K milieu de [CR] sont alignés; on pourra utiliser les points P', Q' et R'et une homothétie de centre G, isobarycentre des points ABC, et de rapport $-\frac{1}{2}$.

Exercice 22. Dans un plan euclidien, on se donne trois droites Δ_1 , Δ_2 et Δ_3 concourantes en 0; Construire un triangle dont ces droites sont les médiatrices des trois cotés.

Exercice 23.On reprend l'exercice 16

Soient \mathcal{D}_1 (resp. \mathcal{D}_2) la droite passant par A=(1,1) et de vecteur directeur unitaire $\vec{u}_1 = (\alpha_1, \beta_1)$ (respectivement $\vec{u}_2 = (\alpha_2, \beta_2)$).

On rappelle que l'ensemble des points M du plan qui sont à égale distance de la droite \mathcal{D}_1 et de la droite \mathcal{D}_2 est constitué de la réunion de deux droites Δ_1 et Δ_2 , orthogonales de vecteur directeurs respectifs $\vec{u}_1 + \vec{u}_2$ et $\vec{u}_1 - \vec{u}_2$.

- 1) Démontrer que la symétrie orthogonale par rapport à Δ_1 transforme \mathcal{D}_1 en \mathcal{D}_2 et \mathcal{D}_2 en \mathcal{D}_1 ; étant donné un point $P \in \mathcal{D}_1$ on pourra introduire le point M intersection de Δ_1 avec la perpendiculaire à \mathcal{D}_1 en P.
- 2) En déduire que Δ_1 est une bissectrice des droites \mathcal{D}_1 et \mathcal{D}_2 . Quelle autre droite possède la même propriété?

Exercice 24. On se place dans le plan affine euclidien muni du repère or-

thonormé (O, \vec{i}, \vec{j})

- 1. a) Etant donné un point I du plan affine euclidien, on considère la symétrie ponctuelle par rapport à I définie, si on note $M' = s_I(M)$, par $\overrightarrow{IM'} = -\overrightarrow{IM}$. Démontrer que s_I est une isométrie affine. A quelle(s) famille(s) de transformations affines bien connues appartient-elle? b) Donner l'expression analytique de s_I dans le repère $(O, \vec{\imath}, \vec{\jmath})$ si I = (a, b).
- 2. On considère deux points P et P' distincts. Soient α et α' deux réels tels que $\alpha + \alpha' = 1$ et M le barycentre de (P, α) et (P', α') .

 a)Démontrer que P' est barycentre de (M, 1) et $(P, -\alpha)$.

 b) Si M' désigne le symétrique de M par rapport à I milieu du segment [PP'], établir que M' est le barycentre de (P', α) et (P, α') .
- 3. On considère r_1 la rotation de centre $I(\sqrt{3},0)$ et d'angle de mesure $\frac{\pi}{3}$ et r_2 celle de centre J(0,1) et d'angle de mesure $-\frac{\pi}{3}$.

 a) De quelle nature est la transformation $g=r_2\circ r_1$? Précisez ses éléments caractéristiques. On pourra considérer I''=g(I).

 b) Démontrer que si (X_1,Y_1) désigne les coordonnées de l'image $r_1(M)$ du point M(x,y) dans $(O,\vec{\imath},\vec{\jmath})$, l'expressions analytique de la rotation r_1 dans le repère considéré est :

$$X_1 = \frac{1}{2}x - \frac{\sqrt{3}}{2}y + \frac{\sqrt{3}}{2}$$

$$Y_1 = \frac{\sqrt{3}}{2}x + \frac{1}{2}y - \frac{3}{2}$$

- c) Donner l'expression analytique de la rotation r_2 et retrouver le résultat de la question a).
- 4. Soit ABC un triangle non aplati du plan affine euclidien . On considère la transformation $f = r_C \circ r_B \circ r_A$ où $r_A(\text{resp. } r_B \text{ et } r_C)$ désigne la rotation de centre A et d'angle $\hat{A} = (\overrightarrow{AB}, \overrightarrow{AC})$ (resp. de centre B et d'angle $\hat{B} = (\overrightarrow{BC}, \overrightarrow{BA})$ et de centre C et d'angle $\hat{C} = (\overrightarrow{CA}, \overrightarrow{CB})$). Démontrer qu'il existe un point Ω de sorte que f soit la symétrie ponctuelle s_{Ω} .
- 5. On suppose dans cette question que le triangle est ABC équilatéral; on désigne par $C' = r_B(A)$, $A' = r_C(B)$ et $B' = r_A(C)$. a)En calculant les images des points A, B, C par f, déterminer dans ce cas-là, le point Ω de la question précédente.

68 CHAPITRE 5. ESPACES AFFINES II : APPLICATIONS AFFINES

b) Démontrer que les droites (AA'), (BB') et (CC') sont concourantes. On demande une figure.