Optimal, Noisy

		h_{Ω}^{SI}	EQ		<u> </u>	h_{Ω}^{Ll}	MC			$h_{\mathfrak{g}}^{\mathrm{I}}$	PhO			h_{Ω}^{SEQ} ,	$h_{\Omega}^{\mathrm{LMC}}$;	$h_{\Omega}^{\mathrm{LMC}}$,	$h_{\Omega}^{ ext{PhO}}$			h_{Ω}^{SEQ}	, h_{Ω}^{PhO}		h_{Ω}^{SE}	Q, h_{Ω}^{LI}	MC, h	PhO Ω
# %	Time			$ \Gamma^{\mathbf{h}} $	Time	AGR	ACC	$ \Gamma^{\mathbf{h}} $	Time	AGR	ACC	$ \Gamma^{\mathbf{h}} $					Time	AGR	ACC	$ \Gamma^{\mathbf{h}} $								
30 50 70 100	4.051 4.056	0.34 0.64 0.73 0.81	0.75 0.86 0.92 1.0	3.56 2.31 1.86 1.92	4.029 4.031 4.028 4.033	0.36 0.48 0.57 0.57	0.81 0.83 0.75 0.75	5.22 3.36 2.25 2.03	4.13 4.124 4.128 4.125 4.124	0.31 0.51 0.42 0.51	0.67 0.69 0.5 0.69	3.94 2.53 2.31 2.44	4.065 4.061 4.061 4.066 4.068	0.35 0.64 0.73 0.81	0.75 0.86 0.92 1.0	3.58 2.36 1.86 1.92	4.121 4.12 4.122 4.125 4.123	0.35 0.62 0.72 0.84	0.81 0.86 0.89	3.44 2.83 2.36 1.89	4.177 4.177 4.178 4.173 4.174	0.36 0.64 0.79 0.88	0.75 0.83 0.92 0.94		4.893 4.901 4.889 4.887 4.894	0.37 0.64 0.79 0.88	0.67 0.75 0.83 0.92 0.94	6.67 3.44 2.17 1.67 1.58
10 30 50 70 100	1.686 1.684	0.41 0.56 0.88	0.86 1.0 0.92 1.0 1.0	2.22 1.5 1.31	1.67 1.671 1.671 1.672 1.675	0.5 0.3 0.46 0.63 0.92	0.97 0.89 0.83 0.92 1.0 0.83	6.58 3.97 2.67 2.14 1.22 4.17	1.71 1.709 1.706 1.709 1.71 1.296		1.0 0.94 0.67 0.67 0.92		1.687 1.686 1.687 1.687 1.687	0.42 0.65	0.72 0.78 0.78 0.97 1.0	2.42 1.36 1.19 1.0	1.716 1.713 1.712 1.712 1.714 1.299	0.22 0.24 0.53	0.92 0.69 0.67 0.92 1.0	3.5 2.81 2.56	1.729 1.73 1.729 1.728 1.724 1.305		0.78 0.92 0.92 0.97 0.97	2.53 1.61 1.36		0.39 0.35 0.62 0.91 1.0	0.69 0.78 0.78 0.97 1.0	3.89 2.78 1.53 1.19 1.0 2.56
100 100 100 100 100 100 100 100 100 100	1.291 1.296 1.294 1.295	0.5 0.53 0.62 0.79	0.83 0.83 0.89 1.0	2.03 2.11 1.86 1.47 2.78	1.288 1.286 1.288 1.29 1.546	0.46 0.48 0.58 0.66 0.42	0.89 0.83 0.86 0.94	2.5 2.19	1.294 1.295 1.296	0.38 0.35 0.49 0.46	0.64 0.61 0.58 0.56	2.39 2.33 1.69 1.69 4.64	1.296 1.297 1.297 1.296 1.482	0.64 0.73 0.78 0.92	0.83 0.94 0.92 1.0	1.67 1.5 1.44 1.25 2.81	1.298	0.5 0.53 0.64 0.71	0.86 0.89 0.86 0.94	2.28 2.11 1.83 1.67	1.303 1.303	0.5 0.53 0.62 0.79	0.83 0.83 0.89 1.0	2.03 2.11 1.86 1.47	1.543 1.544 1.543 1.542	0.64 0.73	0.83 0.94 0.92 1.0	1.67 1.5 1.44 1.25
30 50 70 100	1.48 1.479 1.591	0.5 0.58 0.81 0.86	0.83 0.92 1.0 1.0	1.69 1.31 1.19 2.4	1.587	0.37 0.59 0.68 0.65	0.78	1.39 1.25 2.13	1.497 1.498 1.497 1.674	0.24 0.26 0.28 0.37	0.67 0.47 0.61 0.64 0.98	2.78 2.56 2.06 7.15	1.484 1.482 1.482 1.485 1.594	0.63 0.81 0.86	1.0 1.0 0.92	1.64 1.28 1.19	1.499 1.5 1.499 1.498 1.682	0.34 0.63 0.7 0.65	0.78 0.78 1.0	1.97 1.33 1.14 2.13	1.51 1.514 1.689	0.81 0.86	0.83 0.92 1.0 1.0	1.69 1.31 1.19 1.75	2.017	0.63 0.81 0.86	0.92 0.92 1.0 1.0	2.11 1.64 1.28 1.19
30 50 70 100	1.595 1.594 1.149	0.77 0.9 0.99 0.43	0.92 0.92 1.0 1.0 0.83	1.02 3.86	1.583	0.91 0.97 1.0 0.46	1.0 1.0 1.0 1.0 0.83		1.154	0.28 0.32 0.16 0.53	1.0 0.92 0.71 0.31 0.83	4.67 3.19 4.81	1.595 1.595 1.598 1.599	0.89 0.95 1.0 0.43	0.96 1.0 1.0 0.83		1.682 1.681 1.68 1.68 1.153	0.93 0.91 0.97 1.0 0.46	1.0 1.0 1.0 1.0 0.83	1.0 3.64	1.694 1.694 1.694 1.694 1.159	0.78 0.85 0.95 1.0 0.43	0.9 0.92 1.0 1.0 0.83	1.08 1.17 1.0 3.86	2.016 2.021 1.341	0.89 0.95 1.0 0.43	0.92 0.96 1.0 1.0	1.17 1.15 1.15 1.0 3.86
30 50 100 \$ 10		0.74 0.9	0.83 0.94 1.0 0.97	1.78 1.42 1.31	1.146 1.144 1.145 1.143 1.909	$0.81 \\ 0.92$	0.83 0.97 1.0 1.0	1.28	1.157	0.32 0.3 0.3 0.27	0.78 0.69 0.69 0.67	3.53	1.148 1.151 1.151 1.151 1.918		0.83 0.94 1.0 0.97	1.42 1.31	1.152 1.155 1.153 1.156 1.918		0.83 0.97 1.0 1.0		1.158 1.16 1.16 1.162 1.929	0.46 0.74 0.9 0.92 0.59	0.83 0.94 1.0 0.97	1.42 1.31	1.339 1.342 1.341 1.343 2.267	0.9	0.83 0.94 1.0 0.97	2.31 1.78 1.42 1.31 2.72
30 50 70 100	1.917 1.922 1.916	0.82 0.91	1.0 1.0 1.0 1.0 0.92	1.53	1.909 1.909 1.91 1.912		1.0 1.0 1.0 1.0 0.81		1.919 1.916 1.917	0.69 0.67	1.0 0.97 1.0 0.94 0.92	2.03 1.75 1.67 1.64 3.72	1.92 1.922 1.92 1.922 1.205	0.87 0.93 0.97 1.0	1.0 1.0 1.0 1.0 0.69	1.28 1.08 1.03 1.0 2.39	1.918 1.917 1.921 1.923 1.205	0.76 0.87 0.96 1.0	0.94 0.97 1.0 1.0	1.53 1.17 1.06 1.0	1.93 1.934 1.931 1.929 1.214	0.81 0.88 0.93 1.0	1.0 0.97 1.0 1.0	1.53 1.14 1.11 1.0	2.269 2.271	0.82 0.9 0.97 1.0	0.94 0.97 1.0 1.0	1.28 1.11 1.03 1.0
30 50 70 100	1.199 1.2 1.202	0.57 0.86 0.91 1.0	1.0 0.97 0.97 1.0 0.97	2.08 1.22 1.14 1.0	1.195	0.55 0.92 0.94 0.96	0.83 0.97 1.0 0.97	1.67 1.11 1.14 1.03		0.57 0.86 0.92 1.0	1.0 1.0 1.0 1.0	2.08 1.36 1.19 1.0	1.202 1.204 1.205 1.204 1.282	0.57 0.93 0.94 0.94	0.81 1.0 0.97 0.97	1.44 1.14 1.08 1.06		0.55 0.92 0.94 0.96	0.83 0.97 1.0 0.97	1.67 1.11 1.14 1.03		0.57 0.86 0.91 1.0	1.0 0.97 0.97 1.0 0.94	2.08 1.22 1.14 1.0	1.438	0.57 0.93 0.94 0.94	0.81 1.0 0.97 0.97	1.44 1.14 1.08 1.06
30 50 70 100	1.282 1.281 1.282 1.281	0.51 0.68 0.81 0.99	1.0 0.97 0.97 1.0	3.06	1.282 1.283 1.28 1.284	0.82 0.84 0.97 1.0	0.94 0.97 1.0 1.0 1.0	1.36 1.28 1.06 1.0	1.287 1.287 1.288 1.288	0.46 0.63 0.81 0.94 1.0	1.0 0.97 1.0 1.0 0.86	2.19	1.283 1.286 1.282 1.283	0.7 0.8 0.93 0.97	0.83 0.92 0.97 1.0	1.36	1.289 1.289 1.291 1.29	0.49 0.82 0.84 0.97 1.0	0.94 0.97 1.0 1.0 1.0	1.36 1.28 1.06 1.0		0.63 0.81 0.94 1.0	1.0 0.97 1.0 1.0	2.11 1.31 1.11 1.0	1.558 1.558 1.557 1.558	0.7 0.8 0.93 0.97	0.81 0.83 0.92 0.97 1.0	1.36 1.33 1.08 1.06
30 50 70 100	1	0.56 0.9 0.94	0.81 0.86 0.83 0.94 0.97	2.81 1.94 1.17 1.17	1.097 1.098 1.097 1.099	0.61 0.92 0.97	0.89 0.89 0.97 0.97	1.28	1.104	0.49 0.59 0.94 0.99	0.94 0.94 1.0 1.0	3.0 2.64 1.42 1.28	1.102 1.101 1.105 1.105 1.105	0.5 0.67 0.87 0.92	0.75 0.78 0.89 0.94 0.97	2.33 1.89 1.31 1.31	1.106	0.51 0.61 0.92 0.97	0.89 0.89 0.97 0.97	1.28	1.109 1.11 1.111 1.109	0.51 0.45 0.59 0.9 0.94	0.78 0.83 0.86 1.0 1.0	1.31 1.22	1.304 1.302	0.53 0.5 0.67 0.87 0.92	0.78 0.89 0.94 0.97	2.33 1.89 1.31 1.31
N 10 30 50 70 100		0.49 0.53 0.53 0.6	0.61 0.64 0.81 0.89 0.97	2.03 3.0 3.81 3.94	2.474 2.475	0.41 0.74 0.83		1.33	2.714 2.707 2.702	0.21	0.89 0.56 0.36 0.33 0.25	1.81 1.44	2.605 2.584 2.58 2.577 2.578 1.382	0.61 0.6 0.66	0.58 0.78 0.94 0.94 1.0	2.17 2.97 3.75 3.89	2.744 2.74 2.737 2.723 2.729 1.385		0.67 0.39 0.58 0.83 0.92	1.5 1.39	3.05 2.986 2.955 2.926 2.918 1.397	0.28 0.49 0.57 0.53 0.6	0.58 0.64 0.86 0.89 0.97	2.0 2.97 3.81 3.94	3.628 3.589 3.562 3.548	0.61 0.6	0.58 0.78 0.94 0.94 1.0 0.64	2.78 2.17 2.97 3.75 3.89 2.33
30 50 70	1.379 1.379	0.61 0.88 0.86	0.69 0.97 0.97 0.97 0.97	1.67 1.17 1.25	1.368	0.53 0.77 0.85	0.86 0.94 0.97 1.0 1.0	1.86 1.53 1.33	1.38 1.378	0.34 0.57 0.6	0.72 0.81 0.78	2.47 1.86 1.81	1.383 1.384 1.383 1.383	0.5 0.89 0.84	0.86 0.94 0.94 0.97	1.67 1.08 1.22	1.385 1.386 1.385 1.383 1.382	0.56 0.85	0.72 0.97 0.97 1.0 1.0	1.83 1.31 1.25	1.397 1.395 1.397	0.39 0.61 0.9 0.91 0.99	0.64 0.97 0.97 0.97 1.0	1.64 1.14 1.14	1.687 1.684 1.686 1.685	0.5 0.89 0.84	0.86 0.94 0.94 0.97	1.64 1.08 1.22 1.0
AVG	1.722	0.67	0.91	2.19	1.711	0.67	0.89	2.26	1.755	0.47	0.78	3.11	1.73	0.71	0.89	1.92	1.759	0.67	0.88	2.11	1.79	0.68	0.9	2.1	2.126	0.71	0.89	1.91

Table 1: Results for each constraint set.

Sub-Optimal, Noisy

$h^{ ext{SEQ}}_{\Omega}$	$h_{\Omega}^{ ext{LMC}}$	$h_{\Omega}^{\mathrm{PhO}}$	$\frac{b\text{-Optimal, Noisy}}{\left h_{\Omega}^{\text{SEQ}}, h_{\Omega}^{\text{LMC}}\right }$	$h_{\Omega}^{ ext{LMC}}, h_{\Omega}^{ ext{PhO}} \hspace{0.2cm} \left \hspace{0.2cm} h_{\Omega}^{ ext{SEQ}}, h_{\Omega}^{ ext{PhO}} \hspace{0.2cm} \right $	$h_{\Omega}^{\mathrm{SEQ}}, h_{\Omega}^{\mathrm{LMC}}, h_{\Omega}^{\mathrm{PhO}}$
# % Time AGR ACC $ \Gamma^h $	Time AGR ACC \Gamma^h Time	AGR ACC $ \Gamma^h $	Time AGR ACC Γ ^h	$ \left \text{Time AGR ACC } \left \Gamma^{\text{h}} \right \right \text{Time AGR ACC } \left \Gamma^{\text{h}} \right \right $	Time AGR ACC \Gamma^h
Section 30 4.053 0.39 0.75 4.5 50 50 4.056 0.49 0.86 3.0 70 4.057 0.59 0.89 2.36 100 4.056 0.72 0.97 1.89 10 1.684 0.32 0.89 5.61	4.029 0.38 0.64 3.97 4.125 4.027 0.44 0.75 2.81 4.126 4.036 0.43 0.64 2.14 4.124 4.032 0.54 0.75 2.19 4.126 1.671 0.3 0.83 5.53 1.711	0.3 0.53 3.0 0.38 0.64 3.08 0.45 0.67 2.86 0.48 0.67 2.72	8 4.061 0.49 0.86 3.03 6 4.064 0.59 0.89 2.36 2 4.068 0.72 0.97 1.89 9 1.687 0.43 0.69 2.75	8 4.124 0.42 0.64 3.19 4.177 0.36 0.64 3.39 4.124 0.55 0.81 2.86 4.176 0.53 0.83 2.64 5 4.126 0.66 0.83 2.19 4.175 0.67 0.89 2.22 0.9 4.127 0.72 0.81 1.67 4.171 0.78 0.92 1.53	4.897 0.38 0.69 6.58 4.903 0.36 0.64 3.47 4.897 0.53 0.83 2.64 4.891 0.67 0.89 2.22 4.897 0.78 0.92 1.53 2.052 0.43 0.72 2.81 2.05 0.41 0.61 1.94
50 1.685 0.65 0.94 2.33 70 1.688 0.69 0.94 2.06 100 1.685 0.9 1.0 1.44 10 1.293 0.31 0.67 3.03 30 1.292 0.52 0.83 2.14	1.674 0.38 0.86 3.03 1.704	0.17 0.58 3.67 0.15 0.58 4.25 0.15 0.92 5.75 0.39 0.69 2.78 0.4 0.61 2.28 0.54 0.61 1.78	7 1.689 0.76 0.89 1.33 5 1.688 0.71 0.83 1.33 1.692 0.94 0.97 1.11 8 1.296 0.34 0.64 2.31 8 1.298 0.65 0.83 1.58 3 1.296 0.68 0.81 1.42	3 1.712 0.35 0.81 2.78 1.726 0.65 0.89 1.97 1 1.712 0.66 0.78 1.75 1.724 0.68 0.92 2.03 1 1.715 0.94 1.0 1.14 1.725 0.89 0.97 1.56 1 1.298 0.36 0.81 3.33 1.304 0.31 0.67 3.03 1 1.297 0.47 0.86 2.36 1.304 0.52 0.83 2.14 2 1.298 0.54 0.86 2.0 1.305 0.58 0.78 2.28	2.053 0.76 0.89 1.33 2.049 0.71 0.83 1.33 2.052 0.94 0.97 1.11 1.542 0.34 0.64 2.31 1.54 0.65 0.83 1.58 1.546 0.68 0.81 1.42 1.539 0.85 0.92 1.25
100 1.295 0.73 0.86 1.44 10 1.477 0.34 0.69 3.14 30 1.478 0.53 0.69 1.83 50 1.482 0.6 0.83 1.5 70 1.482 0.73 0.86 1.31 100 1.485 0.88 0.97 1.11	1.29 0.65 0.92 1.81 1.297 1.465 0.38 0.75 4.5 1.495 1.468 0.37 0.81 3.19 1.498 1.469 0.38 0.69 2.25 1.497 1.468 0.54 0.81 1.72 1.498	0.45 0.5 1.67 0.39 0.78 4.61 0.46 0.78 3.14 0.39 0.69 2.39 0.3 0.61 2.0 0.21 0.53 2.17	7 1.297 0.78 0.83 1.22 1 1.482 0.39 0.81 3.36 4 1.486 0.55 0.83 2.14 9 1.482 0.63 0.89 1.47 1 1.484 0.78 0.92 1.22 7 1.487 0.86 0.97 1.14	2 1.299 0.68 0.94 1.72 1.305 0.73 0.86 1.44 1 5 1.5 0.38 0.75 4.47 1.513 0.34 0.69 3.14 4 1.497 0.39 0.81 3.0 1.513 0.53 0.69 1.83 7 1.5 0.42 0.75 2.14 1.513 0.6 0.83 1.5 2 1.5 0.6 0.81 1.39 1.515 0.73 0.86 1.31 4 1.498 0.75 0.89 1.36 1.515 0.88 0.97 1.11	1.541 0.78 0.83 1.22 1.813 0.39 0.81 3.36 1.812 0.55 0.83 2.14 1.81 0.63 0.89 1.47 1.813 0.78 0.92 1.22 1.813 0.86 0.97 1.14 2.018 0.62 0.9 2.1
20 1.592 0.63 0.94 2.06 50 1.594 0.77 0.94 1.4 270 1.593 0.86 0.98 1.08 100 1.596 0.94 1.0 1.0 10 1.147 0.35 0.72 3.36 30 1.149 0.47 0.78 2.33	1.587 0.77 1.0 1.5 1.677 1.586 0.88 0.98 1.06 1.675 1.59 0.9 1.0 1.04 1.676 1.588 0.94 1.0 1.0 1.676 1.142 0.35 0.72 3.17 1.15 1.146 0.53 0.83 2.11 1.152	0.27 0.88 6.33 0.23 0.75 5.44 0.04 0.08 3.02 0.04 0.0 1.83 0.38 0.86 4.61 0.27 0.67 3.67	3 1.599 0.68 0.9 1.44 4 1.596 0.84 0.96 1.06 2 1.6 0.89 1.0 1.06 3 1.598 0.94 1.0 1.0 4 1.15 0.35 0.72 3.36 7 1.151 0.47 0.78 2.33	4 1.682 0.77 1.0 1.5 1.694 0.71 0.88 1.58 1.678 0.88 0.98 1.06 1.691 0.8 0.92 1.15 1.681 0.9 1.0 1.04 1.694 0.9 0.98 1.0 1.0 1.68 0.94 1.0 1.0 1.064 0.94 1.0 1.0 1.0 1.694 0.94 1.0 1.0 1.0 1.694 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.017 0.68 0.9 1.44 2.015 0.84 0.96 1.06 2.016 0.89 1.0 1.06 2.017 0.94 1.0 1.0 1.342 0.35 0.72 3.36 1.342 0.47 0.78 2.33
8 70 1.151 0.81 0.94 1.53 100 1.152 0.85 0.97 1.53 10 1.919 0.5 0.97 3.14 5 30 1.921 0.79 1.0 1.44 5 50 1.92 0.89 1.0 1.25	1.912 0.95 1.0 1.11 1.915	0.3 0.67 3.36 0.24 0.56 3.42 0.52 0.92 2.78 0.69 0.97 1.78 0.72 1.0 1.67	5 1.153 0.81 0.94 1.53 2 1.152 0.85 0.97 1.53 3 1.919 0.5 0.94 2.83 3 1.924 0.83 1.0 1.28 7 1.921 0.94 1.0 1.17	3 1.154 0.87 0.97 1.39 1.162 0.81 0.94 1.53 3 1.156 0.95 1.0 1.33 1.16 0.85 0.97 1.53 3 1.917 0.51 0.89 2.72 1.928 0.55 0.89 2.5 8 1.918 0.79 0.94 1.25 1.932 0.76 1.0 1.5 7 1.917 0.95 1.0 1.11 1.933 0.88 1.0 1.28	1.343 0.75 0.92 1.56 1.343 0.81 0.94 1.53 1.343 0.85 0.97 1.53 2.274 0.55 0.89 2.36 2.267 0.8 1.0 1.33 2.27 0.91 1.0 1.22
2 100 1.918 1.0 1.0 1.0 10 1.199 0.46 1.0 3.83 30 1.2 0.62 0.94 2.06 50 1.201 0.9 1.0 1.19 70 1.202 0.93 1.0 1.19	1.912 0.99 1.0 1.0 1.917 1.91 1.0 1.0 1.919 1.197 0.46 0.83 2.58 1.203 1.194 0.72 0.97 1.53 1.204 1.197 0.86 0.97 1.25 1.205 1.194 0.9 0.94 1.08 1.202 1.197 1.0 1.0 1.0 1.205	0.68 0.97 1.64 0.46 1.0 3.83 0.62 0.94 2.06 0.88 1.0 1.22	4 1.926 1.0 1.0 1.0 3 1.202 0.43 0.81 2.11 5 1.205 0.75 0.89 1.36 2 1.206 0.86 0.94 1.14 7 1.204 0.9 0.94 1.08	1,918	2.272 0.96 1.0 1.0 2.27 1.0 1.0 1.0 1.437 0.43 0.81 2.11 1.438 0.75 0.89 1.36 1.437 0.86 0.94 1.14 1.438 0.9 0.94 1.08 1.439 0.97 1.0 1.08
2 30 1.282 0.44 0.94 3.22 50 1.283 0.59 0.97 2.14 70 1.284 0.83 0.59 1.00 100 1.284 0.97 1.0 1.06 p 10 1.099 0.43 0.81 3.28	1.281 0.51 0.89 2.72 1.286 1.28 0.68 0.97 1.61 1.285 1.28 0.87 1.0 1.25 1.286 1.281 0.96 1.0 1.03 1.288 1.281 1.0 1.0 1.0 1.0 1.29 1.098 0.46 0.86 3.56 1.104 1.096 0.59 0.92 2.61 1.104	0.6 0.97 1.86 0.85 1.0 1.31 0.97 1.0 1.0 1.0 1.0 1.0 0.44 0.86 3.97	5 1.283 0.65 0.92 1.56 1 1.283 0.87 0.97 1.19 1.284 0.93 1.0 1.11 1.286 0.97 1.0 1.06 1.105 0.49 0.83 3.08	6 1.288 0.68 0.97 1.61 1.292 0.6 0.97 1.86 9 1.289 0.87 1.0 1.25 1.289 0.85 1.0 1.31 1 1.291 0.96 1.0 1.03 1.29 0.97 1.0 1.0 5 1.287 1.0 1.0 1.0 1.29 1.0 1.0 1.0 8 1.105 0.46 0.86 3.56 1.109 0.43 0.78 3.11	1.556 0.46 0.72 2.31 1.556 0.65 0.92 1.56 1.555 0.87 0.97 1.19 1.555 0.93 1.0 1.11 1.556 0.97 1.0 1.06 1.301 0.49 0.83 3.08 1.302 0.54 0.78 2.17
50 1.102 0.82 0.97 1.47 70 1.102 0.84 0.97 1.47 1.102 0.93 0.94 1.11 10 2.531 0.26 0.42 2.25 30 2.53 0.45 0.64 2.67	1.097 0.79 0.92 2.61 1.104 1.097 0.79 1.0 1.67 1.102 1.101 0.87 1.0 1.67 1.105 1.099 0.97 0.94 1.19 1.104 2.474 0.25 0.61 3.61 2.721 2.473 0.34 0.5 2.0 2.716 2.473 0.43 0.67 1.94 2.714	0.78 1.0 1.83 0.87 1.0 1.75 1.0 1.0 1.25 0.25 0.86 6.42 0.13 0.31 2.08	3 1.102 0.78 0.89 1.42 5 1.102 0.86 0.97 1.47 5 1.106 0.92 0.94 1.19 2 2.598 0.31 0.58 2.47 8 2.582 0.48 0.75 2.81	2 1.107 0.79 1.0 1.67 1.11 0.8 0.94 1.39 7 1.108 0.87 1.0 1.67 1.111 0.84 1.0 1.53 9 1.105 0.97 0.94 1.19 1.113 0.96 1.0 1.17 7 2.745 0.24 0.56 3.14 3.056 0.28 0.44 2.17 1.2735 0.31 0.5 2.17 2.973 0.42 0.61 2.58	1.306 0.78 0.89 1.42 1.306 0.78 0.89 1.42 1.307 0.86 0.97 1.47 1.305 0.92 0.94 1.19 3.688 0.31 0.58 2.47 3.614 0.48 0.75 2.81 3.583 0.5 0.94 4.22
0 100 2.537 0.36 0.92 6.0 10 1.38 0.44 0.78 2.39 30 1.381 0.62 0.75 1.42 50 1.381 0.77 0.89 1.31 70 1.38 0.92 0.97 1.11	2.474 0.57 0.81 1.33 2.707	0.17 0.33 1.92 0.16 0.17 1.53 0.39 0.89 3.39 0.5 0.83 2.25 0.62 0.81 1.89 0.65 0.81 1.78	2 2.582 0.54 1.0 4.44 3 2.584 0.35 0.94 5.97 9 1.382 0.39 0.75 1.97 5 1.384 0.6 0.69 1.31 0 1.383 0.76 0.89 1.39 1 382 0.97 1.0 1.06	4 2,726 0.53 0.78 1.47 2,932 0.54 0.94 4.5 7 2,721 0.68 0.86 1.42 2,923 0.36 0.92 6.0 7 1.383 0.38 0.89 3.0 1.398 0.44 0.81 2.39 1 1.383 0.67 0.86 1.5 1.396 0.62 0.75 1.42 9 1.385 0.85 0.97 1.33 1.397 0.77 0.89 1.31 5 1.383 0.99 1.0 1.03 1.399 0.93 0.97 1.08	3.563 0.54 1.0 4.44 3.552 0.35 0.94 5.97 1.689 0.37 0.72 1.94 1.689 0.6 0.69 1.31 1.688 0.76 0.89 1.39 1.687 0.97 1.0 1.06 1.686 0.94 0.94 1.0
AVG 1.723 0.65 0.89 2.34	1.71 0.66 0.88 2.13 1.755	0.46 0.75 2.86	5 1.73 0.68 0.88 2.01	1 1.759 0.67 0.88 2.01 1.79 0.67 0.88 2.12	2.126 0.69 0.87 1.93

Table 2: Results for each constraint set.