

3.1 Convex Optimization Problems

Machine Learning 1: Foundations

Marius Kloft (TUK)

- ► Most important linear classifier: support vector machine
 - Which hyperplane to take?

- ► Most important linear classifier: support vector machine
 - Which hyperplane to take?

- ► Most important linear classifier: support vector machine
 - Which hyperplane to take?
 - ▶ The one that separates the data with the largest margin γ .

- Most important linear classifier: support vector machine
 - Which hyperplane to take?
 - ightharpoonup The one that separates the data with the largest margin γ .

$$y_i \underbrace{\frac{\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right)}{\|\mathbf{w}\|}}_{=d(x_i, H)} \ge \gamma \quad \forall i = 1, \dots, n$$

Recap (2)

Hard-Margin SVM not robust to outliers:

Recap (2)

Hard-Margin SVM not robust to outliers:

Remedy: Linear Soft-Margin SVM

Recap (2)

Hard-Margin SVM not robust to outliers:

Remedy: Linear Soft-Margin SVM

How to solve?

Contents of This Video

Convex Optimization Problems ● S V M

- Convex Optimization Problems (OPs)
- SVM is a Convex OP

How to Solve Convex OPs and SVM

- Onvex Optimization Problems (OPs)
- 2 SVM is a Convex OP
- 3 How to Solve Convex OPs and SVM

Convex sets

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ is called **convex** if and only if the line segment connecting any two points in \mathcal{X} entirely lies within \mathcal{X}

Convex sets

Definition

A set $\mathcal{X} \subset \mathbb{R}^d$ is called **convex** if and only if the line segment connecting any two points in \mathcal{X} entirely lies within \mathcal{X} , that is,

Convex Functions

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only if the set above the graph is convex

Convex Functions

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only f the set above the graph is convex, that is, $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathbf{X}$, $\forall \theta \in [0, 1]$:

$$f((1-\theta)\mathbf{x}_1+\theta\mathbf{x}_2)\leq (1-\theta)f(\mathbf{x}_1)+\theta f(\mathbf{x}_2).$$

Convex Functions

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only if the set above the graph is convex, that is, $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}, \ \forall \theta \in [0, 1]:$ $f((1 - \theta)\mathbf{x}_1 + \theta\mathbf{x}_2) \leq (1 - \theta)f(\mathbf{x}_1) + \theta f(\mathbf{x}_2).$

Definition

A function f is **concave** if and only if -f is convex.

We use the notation $A \geq 0$ to denote a positive semi-definite matrix.

How can I check that *f* is convex?

Is the easiest for (twice) **differentiable** functions *f*:

We use the notation $A \geq 0$ to denote a positive semi-definite matrix.

How can I check that *f* is convex?

Is the easiest for (twice) **differentiable** functions *f*:

Theorem (second-order condition)

f is convex if and only if the Hessian matrix $H_f(\mathbf{x})$ is positive semi-definite for all $\mathbf{x} \in \mathbb{R}^d$.

Ex. f:
$$x \mapsto -(2x - 3x^2 + 7)$$
 Ex:
 $f'(x) = -(2 - 6x)$
 $f''(x) = +6 > 6$ Of
= -f is concave

Ex:
$$f: \frac{|R^2 - y||R}{(x,y)+y} \times^2 + y^2$$

Of $(x,y) = \binom{2x}{2y}$

He $(x,y) = \binom{2x}{2y} + 0$

All $(2) = 2 > 0$

det $\binom{20}{02} = 4 > 0$

We use the notation $A \geq 0$ to denote a positive semi-definite matrix.

Convex Optimization Problems

Let
$$f_0, f_1, \ldots, f_n, g_1, \ldots, g_m : \mathcal{X} \to \mathbb{R}$$
.

Definition

An optimization problem (OP) is:

timization problem (OP) is:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f_0(\mathbf{x})$$

$$\lim_{\mathbf{x} \in \mathbb{R}^d} f_0(\mathbf{x})$$

mmi
$$x^2 - 2x + 4$$

 $x \in \mathbb{R}$
 $x + 20$

Convex Optimization Problems

Let
$$f_0, f_1, \ldots, f_n, g_1, \ldots, g_m : \mathcal{X} \to \mathbb{R}$$
.

Definition

1 An optimization problem (OP) is:

$$\begin{array}{ll}
\min_{\mathbf{x}\mathbb{R}^d} & f_0(\mathbf{x}) \\
\text{s.t.} & f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, n \\
g_j(\mathbf{x}) = 0, \quad j = 1, \dots, m
\end{array}$$

2 An OP is called **convex** if and only if the functions f_0, f_1, \ldots, f_n are *convex* and g_1, \ldots, g_m are *linear*.

Example

Recall from last week:

Linear Hard-margin SVMLinear Hard-margin SVML

$$\max_{\gamma,b\in\mathbb{R},\mathbf{w}\in\mathbb{R}^d} \gamma \quad \text{s.t.} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq \|\mathbf{w}\| \, \gamma$$

Example

Recall from last week:

Linear Hard-margin SVMLinear Hard-margin SVM

$$\max_{\gamma, b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d} \gamma \quad \text{s.t.} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge \|\mathbf{w}\| \gamma$$

Is this SVM a convex OP?

to show:
$$f: (\omega, Y) \mapsto 1\omega 1 Y - 3; (\omega^T x; +b)$$

Assume $\omega \in \mathbb{R}_+: Y - 3; X = 0$

$$0 f(\omega, Y) = (V - 3; X = 0)$$

$$H_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$H_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega, Y) = (V - 3; X = 0)$$

$$d_{\varphi}(\omega,$$

Example

Recall from last week:

Linear Hard-margin SVMLinear Hard-margin SVM

$$\max_{\gamma, b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d} \gamma \quad \text{s.t.} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge \|\mathbf{w}\| \gamma$$

Is this SVM a convex OP?

Recall:

- 1 Standard form of an OP is: $\min_{\mathbf{x} \in \mathbb{R}^d} f_0(\mathbf{x})$ $f_i(\mathbf{x}) \leq 0, i = 1, ..., n$
- 2 Thm: f is convex if the second derivative is positive.

- Onvex Optimization Problems (OPs)
- 2 SVM is a Convex OP
- 3 How to Solve Convex OPs and SVM

- Convex Optimization Problems (OPs)
- 2 SVM is a Convex OP
- 3 How to Solve Convex OPs and SVM

Refs I