Communities

Question 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

Adjacency matrix A-

	1	2	3	4	5	6	7	8
1	0	1	0	0	0	0	0	1
2	1	0	1	0	0	0	0	1
3	0	1	0	1	0	0	1	0
4	0	0	1	0	1	1	0	0
5	0	0	0	1	1	0	0	0
6	0	0	0	1	1	0	1	0
7	0	0	1	0	0	1	0	1
8	1	1	0	0	0	0	1	0

Sum of all entries=22

No of non zero entries=22

Degree Matrix D-

	1	2	3	4	5	6	7	8
1	2	0	0	0	0	0	0	0
2	0	3	0	0	0	0	0	0
3	0	0	3	0	0	0	0	0
4	0	0	0	3	0	0	0	0
5	0	0	0	0	2	0	0	0
6	0	0	0	0	0	3	0	0
7	0	0	0	0	0	0	3	0
8	0	0	0	0	0	0	0	3

Sum of all entries=8 No of non zero entries=8

Laplacian Matrix L=D-A

	1	2	3	4	5	6	7	8
1	2	-1	0	0	0	0	0	-1
2	-1	3	-1	0	0	0	0	-1
3	0	-1	3	-1	0	0	-1	0
4	0	0	-1	3	-1	-1	0	0
5	0	0	0	-1	2	-1	0	0
6	0	0	0	-1	-1	3	-1	0
7	0	0	-1	0	0	-1	3	-1
8	-1	-1	0	0	0	0	-1	3

Sum of all entries=0 No of non zero entries=30

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W, X\}, \{Y, Z\}\}\}$ and $\{\{Y, Z\}, \{W, X\}\}$ to be identical.

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Find the optimal values for \mathbf{p}_{A} and $\mathbf{p}_{\mathrm{B}}.$

 p_A =no of edges in the network/total no of edges=7/5c2=7/10

 $p_{\rm B}$ =no of edges in the network/total no of edges=9/6c2=9/15