- $\lim_{x \to \infty} f(x) \cdot f(x) \cdot f(x) = \lim_{x \to \infty} f(x) \cdot f(x) = \lim_{x$
- $\lim_{x \to \infty} f(x) \cdot f(x) \cdot f(x) = \lim_{x \to \infty} f(x) \cdot f(x) = \lim_{x$

Les lignes trigonométriques

- cos(x): Renvoie la valeur exacte de cos(x) pour des valeurs de x usuelles.
- load(ntrig): Permet de charger le package permettant de calculer des lignes pour des valeurs de x non usuelles.

Exemple: Pour calculer $\cos\left(\frac{\pi}{5}\right)$ on fait:

- load(ntrig)
- $\cos(\%\text{pi/5})$ et on obtient $\frac{\sqrt{(5)}+1}{4}$

Les vecteurs

On note v et w deux vecteurs.

- u:[a,b,c] : Définit les coordonnées du vecteur u.
- u+v : Renvoie les coordonnées de u + v
- u . v : Renvoie le produit scalaire de u et de v (le point est précédé et suivi d'un espace)

Le package load(vect) permet de calculer le produit vectoriel de deux vecteurs.

- express(u~v): Renvoie le produit vectoriel de u et v.

Gestion des listes

- first[a,b,c,d] : Renvoie le premier terme de la liste, donc a.
- second[a,b,c,d] : Renvoie le deuxième terme de la liste, donc b.
- third[a,b,c,d] : Renvoie le troisième terme de la liste, donc c.
- fourth[a,b,c,d] : Renvoie le quatrième terme de la liste, donc d.
- apply("+",[1a,b,c,d]): Renvoie a+b+c+d
- apply(max,[a,b,c,d]) : Renvoie la valeur maximum d'une liste.
- apply(min,[a,b,c,d]): Renvoie la valeur minimum d'une liste.

Autres possibilités

Développement limité de Taylor :

 taylor(f(x),x,a,b) : Renvoie le développement de Taylor de f(x); d'ordre b, au voisinage de a.

Fonction dilogarithme : $Li(x) = \int_{1}^{x} \frac{\ln(t)}{1-t} dx$

 Li[2](a): Renvoie l'image de a par la focntion dilogarithme.

Les matrices

- A:matrix([a,bc,d],[x,y,z,t]) : Définit la matrice A.
- A[n]: Renvoie la ligne n de la matrice A.
- col(A,n): Renvoie la colonne n de la matrice A.
- transpose(A) : Renvoie la transposée de A.
- echelon(A): Renvoie la matrice triangulaire supérieure.

Générer une matrice :

- $f[i,j]:=2*i^2+3*j;$
- genmatrix(f,4,5); Renvoie la matrice 4×5 dont les coefficients sont définis par f[i,j]
- A.B; Renvoie le produit de A et de B
- A^^(n); Renvoie la puissance nième de A.
- eigenvalues(A); Renvoie les valeurs propres de la matrice A.
- charpoly(A, x), expand; Renvoie le polynôme caractéristique de A.
- determinant(A); Renvoie le déterminant de A.

Résolution de f(x)=c sur [a, b]

- $find_{root}(f(x)=c,x,a,b)$: Renvoie une valeur approchée des solutions de f(x)=c sur [a,b].

Les équations différentielles

- $\frac{\text{ode2}(\text{'diff}(y,x)+y=0,y,x)}{\text{de la solution de l'équation diff y'}(x)+y(x)=0}$.
- ic1(%,x=a,y=b); : Renvoie la solution précédente avec comme condition initiale y(a)=b

AIDE MEMOIRE

Lycée Stendhal de Grenoble

Logiciel pour les maths

MAXIMA

Cet aide mémoire est fait pour les élèves et les enseignants de lycée ou supérieur.

Bonne utilisation

Téléchargement du logiciel

Maxima est un logiciel de calcul formel libre et gratuit. Pour télécharger le logiciel Maxima, il faut aller sur lesite:

http://maxima.sourceforge.net/

 $O_{\mathfrak{l}}$

http://michel.gosse.free.fr/

Pour utiliser le logiciel, il faut double cliquer sur l'icône **wxMaxima**.

http://wxmaxima.sourceforge.net/

Quelques fonctions de base

- abs(x): Valeur absolue de x
- X:a Donne à X la valeur a.
- kill(X): Efface la valeur de la variable x.
- factor(a) : Décompose l'entier a en prod de facteurs.
- Les opérations : +, -, * , /
- sqrt(x) : Racine carrée de x
- $-\cos(x)$: Cosinus de l'angle x en radians.
- sin(x): Sinus de l'angle x en radians.
- tan(x): Tangente de l'angle x en radians.
- exp(x): Exponentielle de x.
- log(x) : Logarithme népérien de x.
- $-\log 10(x)$: Logarithme décimal de x.

- entier(x) : Partie entière de x.
- assume(x>a): Donne une condition à x avant de faire un calcul.
- declare(n,integer) : Déclare une variable comme un entier.

Quelques fonctions d'arithmétique

- divide(a,b): Renvoie le diviseur et le reste de la division de a par b.
- first(divide(a,b)) : Renvoie le diviseur de la division de a par b.
- second(divide(a,b)) : Renvoie le reste de la division de a par b ou
- mod(a,b): Renvoie le reste de la division de a par b.
- gcd(a,b): Renvoie le PGCD de a et b.
- lcm(a,b): Renvoie le PPCM de a et b.

Quelques fonctions sur les polynômes

- expand(P) : Développe le polynôme p.
- factor(P) : Factorise le polynôme p.
- rat(P,X): Ordonne un polynôme suivant les puissances décroissante de X.
- divide(Q,P): Renvoie le diviseur et le reste de la division du polynôme Q par P.
- $ratcoeff(P,X^n)$: Renvoie le coefficient du terme en X^n .
- subst(a,X,P) : Calcule P pour X=a.

On note E(X) une expression en X.

- ratsubst(Y,E(X),P): Remplace E(x) par Y dans l'expression P.
- gcd(P,Q): Renvoie le PGCD de P et Q.
- lcm(P,Q): Renvoie le PPCMde P et Q.
- solve(P,X): Renvoie les racines de P.

Les expressions littérales

On note E(X) une expression littérale en X.

- subst(a,X,E(X)): Calcule E(X) pour X=a.

On note F(X) une autre expression en X.

- ratsubst(Y,F(X),E(X)): Remplace F(x) par Y dans l'expression E(X).
- is(equal(E(X),F(X)); Renvoie true si les expressions sont égales pour toutes valeurs de x sinon false.

On note R(X) une expression rationnelle.

- rpartfrac(R(X),X): Décompose R(X) en éléments

- simples.
- factor(E(x)): Factorise l'expression littérale.
- expand((E(x)) : Développe l'expression littérale.
- display(E(x)) : Simplifie l'expression littérale.

Les équations et systèmes

On note Eq une équation en X.

Exemple

- Eq: $X^2+3*X+2=2*X+1$
- Eq+5: Renvoie Eq en ajoutant 5 dans chacun des membres
- Eq-3*X: Renvoie Eq en enlevant 3x dans chacun des membres.
- solve(Eq,X): Résoud l'équation Eq suivant la variable X.
- linsolve([E1, E2, E3], [x,y,z]): Renvoie les solutions du système d'équations.

Quelques fonctions trigonométriques

On note T une expression trigonométrique avec des fonctions usuelles de trigonométrie

- trigrat(T): Renvoie l'expression T linéarisée. Exemple : $trigrat(sin(X) ^3)$
- exponentialize(T): Renvoie l'expression trigonométrique en fonction de la fonction exponentielle.

On note E une expression avec les fonctions usuelles e^x et e^{-x} :

 demoivre(E): Transforme une expression avec des exponentielles en expression trigonométrique.

Valeurs approchées à n chiffres

Exemple : La valeur de π à n chiffres :

- Définir n : fpprec : 15;
- Valeur approchée : bfloat(%pi);

On obtient: 3,14159265350979

Exemple:

La valeur du nombre d'or à 25 chiffres:

- Définir n : fpprec : 15;
- Valeur approchée : bfloat(%phi);
- On obtient: 1,618033998749894848204587

Calculs avec des racines carrées

Exemple : Comment simplifier une écriture avec des racines carrées.

Il faut commencer par entrer

- algebraic:true;
 puis ensuite
- $\frac{\operatorname{ratsimp}(x)}{\operatorname{ratsimp}((1+\operatorname{sqrt}(5))/(1-\operatorname{sqrt}(5)))}$

Calculs sur les nombres complexes

On note z un nombre complexe.

- z:a+%i*b Donne la valeur a+ib à z.
- cabs(z): Renvoie le module de z.
- carg(z): Renvoie un argument de z.
- rectform(z): Renvoie la forme algébrique de z.
- polarform(z) : Renvoie la forme exponentielle de z.

Les suites récurrentes linéaires

On note u(n) une suite récurrente.

Exemple:
$$u(n) = \frac{n \times u(n-1)}{1+n}$$

- Chargement d'un package : load(solve_rec)
- solve_rec(u(n)=n*u(n-1)/(1+n),u(n),u(a)=b)
 Renvoie la valeur de u(n) en fonction de n
 connaissant la valeur d'un terme.

Les fonctions, les fcts dérivées et les primitives

On note f(x) une fonction en x.

- define(f(x),expression) : Définit f(x) par son expression en fonction de x.
- diff(f(X),X) : Renvoie la fonction dérivée de f en X.
- integrate(f(X),X): Renvoie la primitive de f(X) suivant la variable X.
- load(bypart) puis
- byparts(intégrande,variable,u,dv) : Renvoie la primitive par intégration par partie.

Les intégrales

On note f(x) une fonction en x.

- integrate(f(X), X, a, b): Renvoie la valeur exacte de l'intégrale de f(x) entre a et b.
- intpart(f(x),g(x),a,b): Renvoie le résultat de l'intégration par partie de f(x)g(x) entre a et b.
- 'integrate(f(x),x,0,1)=integrate(f(x),x,0,1); Renvoie l'écriture de l'intégrale et de son résultat.

Les limites

On note f(x) une fonction en x.

- limit(f(x),x,a): Renvoie la limite de f(x) quand x tend vers a.