Az informatika logikai alapjai 11. előadás

Vaszil György

vaszil.gyorgy@inf.unideb.hu

I. emelet 110-es szoba

A múlt órán

- Prenex normálforma
- Egy bizonyítási módszer: a szemantikus táblák módszerének adaptációja elsőrendű formulákra

Definíció

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy tetszőleges elsőrendű nyelv.

Az A ∈ Form formulát prenex alakúnak nevezzük ha az alábbi két feltétel valamelyike teljesül:

- 1. az A formula kvantormentes, azaz sem a ∀ sem a ∃ kvantor nem szerepel benne;
- 2. az A formula $Q_1x_1Q_2x_2...Q_nx_nB$ (n=1,2,...) alakú, ahol
 - a. $B \in Form$ kvantormentes formula;
 - b. $x_1, x_2 ... x_n \in Var$ különböző változók;
 - c. $Q_1, Q_2, ..., Q_n \in \{\forall, \exists\}$ kvantorok.

Megjegyzés

 A definíció értelmében ha az A formula kvantormentes, azaz egyetlen kvantor sem szerepel benne, akkor az A formula prenex alakú.

> Például: Prenexformulák: $\neg P(x, x), \forall x \forall y (Q(x, y) \supset \neg P(x))$ Nem prenexformula: $\forall x \forall y Q(x, y) \supset \neg P(x)$

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy tetszőleges **elsőrendű nyelv** és $A \in Form$.

Ekkor létezik olyan $B \in Form$, hogy

- 1. a B formula prenex alakú,
- 2. $A \Leftrightarrow B$.

A prenex alakra hozás lépései

- A (A ≡ B) ⇔ ((A ⊃ B) ∧ (B ⊃ A)) ekvivalencia segítségével a (materiális) ekvivalencia műveletét fel kell oldani.
- Változótiszta alakra hozás, azaz meg kell határozni az eredeti formulával kongruens változóiban tiszta formulát.
- A kvantifikáció De Morgan törvényeivel és az állításlogikában megtanult ekvivalenciákkal el kell érni, hogy egyetlen negáció hatókörében se szerepeljen kvantor.
- Kvantormozgatási ekvivalenciák alkalmazásával a kvantorok a formula elejére vihetők.

1.
$$\neg \exists x A \Leftrightarrow \forall x \neg A$$

2.
$$\neg \forall x A \Leftrightarrow \exists x \neg A$$

Például:

Ha $x \notin FreeVar(A)$, akkor

1.
$$A \supset \forall xB \Leftrightarrow \forall x(A \supset B)$$

2.
$$\forall x B \supset A \Leftrightarrow \exists x (B \supset A)$$

Hozzuk a

$$\forall x(\forall y Q(x,y) \supset \neg \exists x P(x)) \supset \forall y Q(x,y)$$

Ha $x \notin FreeVar(A)$, akkor

1.
$$A \supset \exists xB \Leftrightarrow \exists x(A \supset B)$$

2.
$$\exists x B \supset A \Leftrightarrow \forall x (B \supset A)$$

formulát prenex alakúra.

Változóiban tiszta alakra hozás:

$$\forall v(\forall w Q(v, w) \supset \neg \exists z P(z)) \supset \forall y Q(x, y)$$

De Morgan törvényeinek alkalmazása:

$$\forall v(\forall w Q(v, w) \supset \forall z \neg P(z)) \supset \forall y Q(x, y)$$

Kvantorkiemelés:

$$\forall v \exists w \forall z (Q(v, w) \supset \neg P(z)) \supset \forall y Q(x, y)$$

Kvantorkiemelés:

$$\exists v \forall w \exists z \forall y ((Q(v, w) \supset \neg P(z)) \supset Q(x, y))$$

Mi történik, ha más sorrendben végezzük a kvantorkiemelést? (semmi, tábla)

A múlt órán

- Prenex normálforma
- Egy bizonyítási módszer: a szemantikus táblák módszerének adaptációja elsőrendű formulákra

Emlékeztető: szemantikus táblák nulladrendű logikában

kielėgi thetė'-e:
$$p \wedge (\neg q \vee \neg p)$$

$$p \wedge (\neg q \vee \neg p)$$

$$p, \neg q \vee \neg p$$

$$p, \neg q \qquad p, \neg p$$
nyitott zárt

Kieleigi Helo', har {p,79} wan {p,7p} willigi Helo'.

Elsőrendű formulahalmazok kielégíthetetlensége vizsgálható hasonló módszerrel - Észrevételek:

- 1. Ar egristen viailisan kvantailt famla'r parameiterer henoretie net verelen di'E
- 2. Kristialié et et poisten à a' lisan ruantei lt jamela' Ula ris le ulie ro' paramé bullet rell basai lis.
- 3. Az universailin familie Eat on à 35000 lilveretet
- 4. Ar a gar nem felsetlem ? ne goner
- 5. Figselni tell a nataly alkaluorai or somerstje is

TehaiA: A snahai hor

α	α_1	α_2	β	β_1	β_2
	$A_1 \\ A_1 \\ \neg A_1 \\ A_1$	A_2 $\neg A_2$ $\neg A_2$	$ \neg (B_1 \land B_2) $ $ B_1 \lor B_2 $ $ B_1 \supset B_2 $		

γ	$\gamma(a)$
$\forall x A(x)$	A(a)
$\neg \exists x A(x)$	$\neg A(a)$

δ	$\delta(a)$
$\exists x A(x)$	A(a)
$\neg \forall x A(x)$	$\neg A(a)$

,

Hogyan alkalmazzuk a szabályokat, példa:

$$\forall x(p(x) \lor q(x)), \neg p(a_2), \neg q(a_1)$$

$$\forall x(p(x) \lor q(x)), p(a_1) \lor q(a_1), \neg p(a_2), \neg q(a_1)$$

$$\forall x(p(x) \lor q(x)), p(a_2) \lor q(a_2), p(a_1) \lor q(a_1), \neg p(a_2), \neg q(a_1).$$

$$\forall x(p(x) \lor Q(x)), p(a_2), p(a_1) \lor Q(a_1), \neg p(a_2), \neg q(a_1).$$

$$\forall x(p(x) \lor Q(x)), p(a_2), p(a_1) \lor Q(a_1), \neg p(a_2), \neg q(a_1).$$

$$\forall x(p(x) \lor Q(x)), Q(a_1), \neg p(a_2), \neg q(a_1)$$

$$\forall x(p(x) \lor Q(x)), Q(a_1), \neg p(a_1), \neg p(a_2), \neg q(a_1)$$

$$\forall x(p(x) \lor Q(x)), Q(a_1), \neg p(a_2), \neg q(a_1), \neg p(a_2), \neg q(a_1)$$

$$\forall x(p(x) \lor Q(x)), Q(a_1), \neg p(a_2), \neg q(a_2), \neg q(a_2)$$

hég eg példa - Jelietrégeser négrelen a'gar

$$\forall x \exists y p(x, y), \ \exists y p(a_1, y)$$

$$\downarrow \qquad \qquad .$$

$$\forall x \exists y p(x, y), \ p(a_1, a_2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\forall x \exists y p(x, y), \ \exists y p(a_2, y), \ p(a_1, a_2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\forall x \exists y p(x, y), \ p(a_2, a_3), \ p(a_1, a_2).$$

esign bushe ...

Telvit: Ar algoritum

Adet: O famula fa
bedue's: En graif (nemahibus feicht), ahel an aigur
végződhetnek zárt levéllel, hyílt levéllel, vagy lehetnek végtelenek.

zárt ág

Lastan Sol

Kerdesber d a a heme
ling ranjansol.

Az algori trus / forg fates

Vegjin i en llevelet i am mig griffnet ven Zistner jeli lue. Frigselve a somerdre leggi 4 an alailitatent:

- 1. Ha U(l)-lun van Generalementer literailfois, jelêstir l-let zais trol
- . Ha W(l)-her nemer objen famleir, anvir hen literailer, veggnist len & B, & famleit, A-t - Hata punle, janjur el noraisan
 - Ha Appenler, jargin kel norajosan

2 a Gaustans de luluriet ne nailtertenne

He A of funda, all l'est in cris, alul
$$U(l') = U(l) - \{A\} \cup \{S\} (a')\}$$
 a' in $((l') = C(l) \cup \{a'\}\}$ ncs komplemens literálpár és elfogytak az α , β , δ formulák: $S(\alpha)$ a

Ha nincs komplemens literálpár és elfogytak az α, β, δ forṁulák:

· Az U(l) hels & famlin leggerer

{ Yen 1 - - 1 Yemy 19i C(l) = { cen 1 - - , (le) 1

$$((\ell') = U(l) \cup \left\{ \bigcup_{i=1}^{m} \bigcup_{j=1}^{k} \gamma_{l_i}(c_{l_j}) \right\}$$

$$((\ell') = ((\ell))$$

- la gor de familier nemer, ei U(l) = U(l), aller l-et jeli lini 4 mitettaar.

serit $\delta(a)$

nation

 $\exists x A(x)$ A(a)

 $\neg \forall x A(x)$ $\neg A(a)$ Ever uten tean aig:

- Zait, la rait leville vegjédis
- j' tott, ha vyi tott lene klien megré dir, ver vogtelen

Lan tailla:

- rait, la mider aga zant
- yibH, viilouhen.

A múlt órán

- Prenex normálforma
- Egy bizonyítási módszer: a szemantikus táblák módszerének adaptációja elsőrendű formulákra

Helyesség? Teljesség?

A nemantitus tailla Construiciójes ez médszer a fermlait Cnielégi thetetlességéner eldéutére.

· A médrer [helyen:

Ha a módszerrel kapott eredmény szerint a formula kielégíthetetlen, akkor a formula valóban kielégíthetetlen.

· A midser [lelji]:

Bármilyen kielégíthetetlen formulára alkalmazom is a módszert, a módszerrel kapott eredmény az, hogy a formula kielégíthetetlen.

akkor és csak akkor, ha a uide lenele rént (+ A, Lalula zánt")

[felszeg ei feljszeg]

A nemantitus tailla Construiciójes ez médszer a formla'r Crielégi thetetlevségéner eldöutése.

· A médrer [helyen:

Ha a kapott tábla zárt, akkor a formula valóban kielégíthetetlen.

· A midser [lelji]:

Bármilyen kielégíthetetlen formulára alkalmazom is a módszert, minden kapott tábla zárt.

Tehát:

Beláttuk (helyesség/teljesség):

- Ha egy tábla zárt, akkor a hozzá tartozó formulának nincs modellje.
- Ha van a formulához tartozó táblák között nyitott, akkor a formulának van modellje.

Vegyük észre:

Ha van a formulához tartozó táblák közt zárt, akkor mindegyik zárt. (Miért?)

Ha van a formulához tartozó táblák közt nyitott, akkor mindegyik nyitott. (Miért?)

Tehát:

Vegyük észre:

Ha van a formulához tartozó táblák közt zárt, akkor mindegyik zárt. (Miért?)

Mert a módszer helyes, azaz ha a formulához tartozó egyik tábla zárt, akkor a formulának nincs modellje. Viszont, mivel a módszer teljes, ha a formulának nincs modellje, akkor az összes hozzá tartozó tábla zárt.

Ha van a formulához tartozó táblák közt nyitott, akkor mindegyik nyitott. (Miért?)

Az 1. pont miatt

A múlt órán

- Prenex normálforma
- Egy bizonyítási módszer: a szemantikus táblák módszerének adaptációja elsőrendű formulákra

 A szemantikus táblák módszerének elsőrendű adaptációja helyes és teljes

A mai órán

 Az elsőrendű logikában algoritmikusan nem eldönthető a formulák érvényességének kérdése

Ki usherwe'yet

A nulladrendű logikában így volt. Érvényesek ezek a pontok most is?

- · A & Form alver i sar alver van modellje, la Tyjtott (suen rest).
- · At Fon ir neige (legitaité meis) alla si Juli alles, les a TA Mor tenteré taille l'int.
- · A namation tailler hamburnio joi nær sægi sæge al elde nothebe, han en fermler eine yr-e.

" eldëntësi eljaris"

Ki usherene get

A nulladrendű logikában így volt. Érvényesek ezek a pontok most is?

- · A & Form alver i sår alver van modellje, la Tyjtott (sken reit).
- · At Fon er ne go (legitai të meis) æller si Yur aller, læ a TA Mor tenter tailele leit.
- · A namation teiller hamburnio joi near rægi he'ge'ul elde nothete, hven en fermler eine yr-e.

"eldöntési eljárás" = algoritmus a kérdés eldöntésére, azaz:

- mechanikusan, pontos szabályok szerint végezhető "számítási" lépések sorozata, amelyik
- véges sok lépés után véget ér és "igen nem" típusú választ produkál

1-

Ki usher une 'yet

Az elsőrendű logikában a 3. pont nem teljesül

- · A & Form alver i sat aller van modellje, la Tyjtott (sken rist).
- · At Fon or ne go (logitai to mais) alla si Tur alla, la a TA Mor tantor tailla loit.
- · A namation teille remthonió joi man regitaly al el di notheto hen en fermes eine y e.

"eldontési eljárás" = algoritmus a kérdés eldöntésére, azaz:

- mechanikusan, pontos szabályok szerint végezhető "számítási" lépések sorozata, amelyik
- véges sok lépés után véget ér és "igen nem" típusú választ produkál

1-

Ci ustarcue yet elsőrendű logika esetén

- · A & Form alver i sat alver van modellje la Tyjitett (suen reit).
- · At Fon ørnerge (lægivei të meig) æller si Tur alela, læ a TA her tantor tailela løit.
- A tábla nem feltétlen konstruálható meg véges sok lépésben (a konstrukciós eljárás nem feltétlen fejeződik be), azaz a módszer általánosan nem alkalmazható formulák érvényességének eldöntésére.

Miért akadálya az "eldöntésnek", hogy végtelen ágak is előfordulhatnak?

- Mert az eldöntési eljárásnak (algoritmusnak) véges sok lépésben be kell fejeződni.
 - Ha a formula érvényes, akkor negáltnak nincs modellje, azaz a negálthoz tartozó tábla minden ága zárt lesz
 Dez véges sok lépésben kiderül
 - Ha a formula ellentmondás, akkor nincs modellje, azaz a formulához tartozó tábla minden ága zárt lesz
 →ez véges sok lépésben kiderül
 - Ha a formula nem érvényes ugyan, de van modellje, akkor a formulának és a negáltjának a táblájában is van nyitott ág
 - → ha a nyitott ág végtelen, akkor ez **nem feltétlen** derül ki **véges** sok lépésben. Nem mindig világos hogy egy adott ágat "növelő" lépések egy idő után nem "fogynak-e el", vagyis az, hogy az ág esetleg mégis lezárul-e.

Van esetleg más eljárás (algoritmus) elsőrendű formulák érvényességének eldöntésére?

Nincs.

A mai órán

 Az elsőrendű logikában algoritmikusan nem eldönthető a formulák érvényességének kérdése Van esetleg más eljárás (algoritmus) elsőrendű formulák érvényességének eldöntésére?

Nincs.

Bizonyítás ötlet: Ha lenne, akkor lenne eljárás (algoritmus) a "két regiszteres gépek" megállási problémájának eldöntésére is, amiről viszont tudjuk, hogy nincsen.

Mi az, a "megállási probléma"?

program/algoritmus/ /számítási modell

számítási eszköz

- A probléma: Adott számítási eszköz adott bemenettel elindítva megáll vagy nem (végtelen ciklusba kerül)?
- Eldönthető-e a megállási probléma:
 Van olyan algoritmus, ami tetszőleges (sz,b)
 párról megmondja, hogy sz eszköz b
 bemenettel indítva megáll-e?

A megállási probléma gyakran eldönthetetlen – pl. programkódok esetén

(számítási eszköz)

<u>Például</u>:

Nem létezik olyan algoritmus, ami tetszőleges (\hat{p},b) párról eldönti, hogy p megáll-e b bemenettel indítva.

Azaz, nincs ilyen program:

halts(p,b): igaz – ha p megáll b-n

hamis – ha *p* végtelen ciklusba kerül *b*-n

A megállási probléma gyakran eldönthetetlen - pl. programkódok esetén

Ha létezne

```
halts(p,b): igaz – ha p megáll b-n
hamis – ha p végtelen ciklusba
kerül b-n
```

akkor írhatnánk egy ilyen programot:

```
void contrarian(int input) {
  if (halts(contrarian, input))
  while (TRUE) { /* loop infinitely */ }
}
```

Az ötlet tehát: A megállási probléma eldönthetetlen két regiszteres gépek esetén is (ezt elhisszük, ebből indulunk ki)

Két regiszteres gép:

- x,y regiszterek
- P= $\{L_0, \ldots, L_n\}$ program, ahol az utasítások lehetnek:

```
• x = x + 1;

• y = y + 1;

• if (x == 0) goto L_j; else x = x - 1;

• if (y == 0) goto L_j; else y = y - 1;

• halt
```

• Kezdő konfiguráció: $(L_0, m, 0)$ megállási konfiguráció: (\tilde{L}_n, x, y)

Megállási probléma: döntsük el, hogy egy adott program nulla regiszterértékekkel indítva megáll-e

$$S_M = \left(p_0(a, a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

ahol:
$$L_i$$
 S_i
$$x = x + 1; \qquad \forall x \forall y (p_i(x, y) \supset p_{i+1}(s(x), y))$$

$$y = y + 1; \qquad \forall x \forall y (p_i(x, y) \supset p_{i+1}(x, s(y)))$$
 if $(x == 0)$ goto Lj;
$$\forall x (p_i(a, x) \supset p_j(a, x)) \land$$
 else $x = x - 1; \qquad \forall x \forall y (p_i(s(x), y) \supset p_{i+1}(x, y))$ if $(y == 0)$ then goto Lj;
$$\forall x (p_i(x, a) \supset p_j(x, a)) \land$$
 else $y = y - 1; \qquad \forall x \forall y (p_i(x, s(y)) \supset p_{i+1}(x, y))$

Egy interpretáció (U: a regiszterekbe írható számok):

- $p_i(x,y)$ predikátum teljesül, ha $P=\{L_0,\ldots,L_n\}$ program végrehajtása közben L_i a következő utasítás és x,y a regiszterek értéke
- a jelentése 0
- s(x) jelentése x+1

$$S_M = \left(p_0(a, a) \land \bigwedge_{i=0}^{n-1} S_i \right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

ahol:

- $p_0(a,a)$: A kezdőkonfiguráció, azaz a regiszterek tartalma 0, a következő utasítás L_0
- S_i leírja az L_i utasítást, hiszen $p_i(x,y)$ teljesül, ha L_i a következő utasítás és x,y a regiszterek értéke

$$S_M = \left(p_0(a,a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

- $p_0(a,a)$: A kezdőkonfiguráció, azaz a regiszterek tartalma 0, a következő utasítás L_0
- S_i leírja az L_i utasítást, hiszen $p_i(x,y)$ teljesül, ha L_i a következő utasítás és x,y a regiszterek értéke

$$S_M = \left(p_0(a, a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

```
ahol:  \begin{array}{lll} L_i & S_i \\ & \times = \times + 1; & \forall x \forall y (p_i(x,y) \supset p_{i+1}(s(x),y)) \\ & y = y + 1; & \forall x \forall y (p_i(x,y) \supset p_{i+1}(x,s(y))) \\ & \text{if } (x == 0) \text{ goto Lj}; & \forall x (p_i(a,x) \supset p_j(a,x)) \land \\ & & \text{else } x = x - 1; & \forall x \forall y (p_i(s(x),y) \supset p_{i+1}(x,y)) \\ & \text{if } (y == 0) \text{ then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & & \text{else } y = y - 1; & \forall x \forall y (p_i(x,s(y)) \supset p_{i+1}(x,y)) \\ \end{array}
```

- $p_0(a,a)$: A kezdőkonfiguráció, azaz a regiszterek tartalma 0, a következő utasítás L_0
- S_i leírja az L_i utasítást, hiszen $p_i(x,y)$ teljesül, ha L_i a következő utasítás és x,y a regiszterek értéke

$$S_M = \left(p_0(a, a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

ahol:

```
\begin{array}{lll} L_i & S_i \\ & \times = \times + 1; & \forall x \forall y (p_i(x,y) \supset p_{i+1}(s(x),y)) \\ & y = y + 1; & \forall x \forall y (p_i(x,y) \supset p_{i+1}(x,s(y))) \\ & \vdots & \vdots & \vdots & \forall x (p_i(a,x) \supset p_j(a,x)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; & \forall x (p_i(x,a) \supset p_i(x,a)) \land \\ & \exists f \ (y == 0) \ \text{then goto Lj}; &
```

- $p_0(a,a)$: A kezdőkonfiguráció, azaz a regiszterek tartalma 0, a következő utasítás L_0
- S_i leírja az L_i utasítást, hiszen $p_i(x,y)$ teljesül, ha L_i a következő utasítás és x,y a regiszterek értéke

$$S_M = \left(p_0(a, a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

ahol:

```
\begin{array}{lll} L_i & S_i \\ & \times = \times + 1; & \forall x \forall y (p_i(x,y) \supset p_{i+1}(s(x),y)) \\ & y = y + 1; & \forall x \forall y (p_i(x,y) \supset p_{i+1}(x,s(y))) \\ & \text{if } (x == 0) \text{ goto Lj;} & \forall x (p_i(a,x) \supset p_j(a,x)) \land \\ & \text{else } x = x - 1; & \forall x \forall y (p_i(s(x),y) \supset p_{i+1}(x,y)) \\ & \text{if } (y == 0) \text{ then goto Lj;} & \forall x (p_i(x,a) \supset p_j(x,a)) \land \\ & \text{else } y = y - 1; & \forall x \forall y (p_i(x,s(y)) \supset p_{i+1}(x,y)) \end{array}
```

- $p_0(a,a)$: A kezdőkonfiguráció, azaz a regiszterek tartalma 0, a következő utasítás L_0
- S_i leírja az L_i utasítást, hiszen $p_i(x,y)$ teljesül, ha L_i a következő utasítás és x,y a regiszterek értéke

$$S_M = \left(p_0(a, a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

- $p_0(a,a)$: A kezdőkonfiguráció, azaz a regiszterek tartalma 0, a következő utasítás L_0
- S_i leírja az L_i utasítást, hiszen $p_i(x,y)$ teljesül, ha L_i a következő utasítás és x,y a regiszterek értéke

$$S_{M} = \left(p_{0}(a,a) \land \bigwedge_{i=0}^{n-1} S_{i}\right) \supset \exists z_{1} \exists z_{2} p_{n}(z_{1},z_{2}).$$

$$ahol: x = x + 1;$$

$$\exists z_{1} \exists z_{2} p_{n}(z_{1},z_{2}).$$

$$S_{i}$$

$$\exists z_{1} \exists z_{2} p_{n}(z_{1},z_{2}).$$

$$\exists z_{1} \exists z_{2} p_{n}(z_{1},z_{2$$

- $p_0(a,a)$: A kezdőkonfiguráció, azaz a regiszterek tartalma 0, a következő utasítás L_0
- S_i leírja az L_i utasítást, hiszen $p_i(x,y)$ teljesül, ha L_i a következő utasítás és x,y a regiszterek értéke

$$S_M = \left(p_0(a,a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

 S_M akkor és csak akkor érvényes, ha az M kétszámlálós gép megáll az $(L_0, 0, 0)$ konfigurációból indítva.

$$S_M = \left(p_0(a,a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

- Ha M megáll, akkor S_M érvényes
- 2. Ha S_M érvényes, akkor M megáll

$$S_M = \left(p_0(a,a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

1. Ha M megáll, akkor S_M érvényes

- Be kell látni, hogy ha M megáll, akkor S_M minden interpretációban igaz.
- Ha a bal oldal hamis, akkor S_M automatikusan igaz, azok az interpretációk érdekesek, melyekben a bal oldal igaz.
- Ha a bal odal igaz és M megáll, akkor a jobb oldal is igaz (indukcióval precízen be kell látni).
- Azaz: S_M minden interpretációban igaz.
- 2. Ha S_M érvényes, akkor M megáll

$$S_M = \left(p_0(a,a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

- 1. Ha M megáll, akkor S_M érvényes
- 2. Ha S_M érvényes, akkor M megáll
 - Be kell látni, hogy ha S_M minden interpretációban igaz, akkor M megáll.
 - Ha S_M minden intepretációban igaz, akkor igaz az M gépet leíró interpretációban is.
 - $-p_0(0,0)$ teljesül, mert ez a kezdőkonfiguráció, tehát $p_1(z_1,z_2)$: teljesül valamilyen z_1,z_2 -re
 - és így tovább egészen $p_n(z_1,z_2)$ -ig (indukcióval precízen be kell látni) ami a ($HALT,z_1,z_2$) konfiguráció megfelelője
 - Azaz: M megáll.

$$S_M = \left(p_0(a, a) \land \bigwedge_{i=0}^{n-1} S_i\right) \supset \exists z_1 \exists z_2 p_n(z_1, z_2),$$

ahol:
$$L_i$$
 S_i
$$x = x + 1; \qquad \forall x \forall y (p_i(x, y) \supset p_{i+1}(s(x), y))$$

$$y = y + 1; \qquad \forall x \forall y (p_i(x, y) \supset p_{i+1}(x, s(y)))$$
 if $(x == 0)$ goto Lj;
$$\forall x (p_i(a, x) \supset p_j(a, x)) \land$$
 else $x = x - 1; \qquad \forall x \forall y (p_i(s(x), y) \supset p_{i+1}(x, y))$ if $(y == 0)$ then goto Lj;
$$\forall x (p_i(x, a) \supset p_j(x, a)) \land$$
 else $y = y - 1; \qquad \forall x \forall y (p_i(x, s(y)) \supset p_{i+1}(x, y))$

Tehát: Ez a formula akkor és csak akkor érvényes, ha a program ami alapján készült *0,0*-t tartalmazó regiszterekkel indítva megáll.

Az érvényesség eldöntése eldöntené a megállás kérdését is, azaz az érvényesség sem lehet eldönthető.

"Az érvényesség eldöntése eldöntené a megállás kérdését is, azaz az érvényesség sem lehet eldönthető." Miről is van szó?

- A kétregiszteres gépek megállási problémája algoritmikusan eldönthetetlen
 - Nincs ilyen algoritmus:

Bemenet: a gép leírása,

Kimenet: igen/nem (megáll-e az üres bemeneten)

- Viszont: Képesek vagyunk tetszőleges M géphez (algoritmikusan) olyan A formulát konstruálni, hogy A akkor és csak akkor érvényes, ha M megáll az üres bemeneten
- Ha létezne a formulák érvényességét eldöntő algoritmus, akkor megvizsgálhatnám vele az A formulát

"Az érvényesség eldöntése eldöntené a megállás kérdését is, azaz az érvényesség sem lehet eldönthető." Miről is van szó?

- Ha létezne a formulák érvényességét eldöntő algoritmus, akkor megvizsgálhatnám vele az A formulát:
 - Ha az A érvényes, akkor M megáll
 - Ha az A nem érvényes, akkor M nem áll meg
- → Létrehoztam egy algoritmust a kétszámlálós gépek megállási problémájára

"Az érvényesség eldöntése eldöntené a megállás kérdését is, azaz az érvényesség sem lehet eldönthető." Miről is van szó?

- → Létrehoztam egy algoritmust a kétszámlálós gépek megállási problémájára:
 - Bemenet: M, 1. lépés: M alapján megkonstruálom A-t
 2. lépés: futtatom az érvényességvizsgálatot
 A-n

Kimenet: igen, ha A érvényes, nem ha nem az

A múlt és mai órán

- Egy bizonyítási módszer: a szemantikus táblák módszerének adaptációja elsőrendű formulákra
- Helyesség, teljesség
- Az elsőrendű logikában algoritmikusan nem eldönthető a formulák érvényességének kérdése