

Why negative edge lengths? 1. Sometimes one wants to minimize product of edge lengths rather than their sum, e.g. of the number denoting an edge's "length" represents an exchange rate. No regotive cycle assumption = No arbitrage 2. Sometimes one wants to find the longest path rather than the shortest. (Examples to be given later.)

Longest path in graph with pos edge lengths.

= Shortest in graph with neg edge lengths. Solving the shortest path problem in DAGs. Step 1. Perform topological sort to number the vertices as v_1, \dots, v_n so that every edge (v_i, v_j) has itj. E.g., (y) (y) (y) (y) Assume shortest path problem is to find path from V_1 to V_2 . (If the actual start is V_3 and actual smish is V_3 then $V_1,...,V_{i-1}$ can be deleted. $V_{j+1},...,V_n$ can deleted.)

