

Álgebra Linear Numérica – P1 10 de Abril de 2025

1	
2	
3	
4	
Total	

A prova pode ser feita a lápis / SEM CONSULTA

Total: 10 pontos — Duração: 3 horas

Nome (le	egível): _				
•	-	CDIA	Outro		

Justifique seu raciocínio e escreva respostas completas. Os resultados de questões/itens anteriores podem ser usados nas seguintes.

Questão 1. Verdadeiro ou falso (4×0.5)

Se for verdadeiro, explique sucintamente porque. Se for falso, mostre um contra-exemplo.

- (i) Seja $x \in \mathbf{R}^m$. Se $||x||_2 = ||x||_3$, então todas as normas-p de x são iguais.
- (ii) Se Q é uma matriz ortogonal, sua decomposição de valores singulares é única.
- (iii) O método de Jacobi converge para qualquer matriz A simétrica.
- (iv) O número de condicionamento relativo da função $f:[-1,\infty)\to \mathbf{R}:x\mapsto \sqrt{1+x}$ é menor do que 10.

(i)	(ii)	(iii)	(iv)

(Questão 1)

Questão 2. Jacobi e Gauss-Seidel 2 por 2 (3×0.5)

Seja
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

- (i) Determine os autovalores da matriz M_J correspondente à iteração do método de Jacobi.
- (ii) Determine os autovalores da matriz M_{GS} correspondente à iteração do método de Gauss-Seidel. Compare com os autovalores do método de Jacobi.
- (iii) Construa uma matriz 2×2 que não é diagonal-dominante, mas para a qual o método de Jacobi converge.

(Questão 2)

Questão 3. Projeções e condicionamento (5×0.5)

Seja P uma matriz de projeção oblíqua em \mathbf{R}^m , isto é, $P^2=P$.

- (i) Para $x \in \mathbf{R}^m$, defina $s(x) = \frac{\|Px\|_2}{\|x\|_2}$. Quais os valores máximo e mínimo de s(x)?
- (ii) Dê um exemplo de uma matrix P e dois vetores x_1 e x_2 tais que $s(x_1)>1$ e $s(x_2)<1$.
- (iii) Calcule o número de condicionamento absoluto da função $f:x\mapsto Px$, com relação à norma euclidiana.
- (iv) Qual o número de condicionamento relativo de f? Compare as respostas com o número de condicionamento da **matriz** P.
- (v) O que muda se a projeção for ortogonal? (isso não quer dizer que a matriz P é ortogonal!)

(Questão 3)

Questão 4. Fatoração QR para sistemas subdeterminados (4.0)

Vimos em aula que podemos usar a fatoração QR para resolver problemas de mínimos quadrados, com sistemas sobredeterminados. Esta questão é o caso "complementar", onde temos *menos* equações do que incógnitas. Para fixar uma solução, também vamos usar um critério de otimização: queremos **minimizar a norma euclidiana da solução**.

Seja A uma matriz $m \times n$ com $m \leq n$, de posto completo, e seja $b \in \mathbf{R}^m$.

- (i) Calcule a dimensão de $S_b = \{ x \mid Ax = b \}.$ (0.25)
- (ii) S_b é paralelo a um dos 4 espaços fundamentais de A. Qual? (0.5)
- (iii) Seja z o vetor com a menor norma euclidiana de S_b . Mostre que $z \perp \ker(A)$. (1.0)
- (iv) Conclua que z está na imagem de A^* . (0.5)
- (v) Seja então $A^* = QR$ uma fatoração QR reduzida de A^* . Quais as dimensões das matrizes Q e R? (0.25)
- (vi) Explique porque existe y tal que z = Qy. (0.5)
- (vii) Dê o sistema linear que permite calcular y, e deduza uma fórmula para a solução z. (0.5)
- (viii) Compare esta fórmula com a da solução do problema de mínimos quadrados. (0.5)

(Questão 4)

(Rascunho)

(Rascunho)