

PRINCIPLE OF MATHEMATICAL INDUCTION

❖ Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction. Newton was indebted to it for his theorem of the binomial and the principle of universal gravity. – LAPLACE ❖

4.1 Introduction

One key basis for mathematical thinking is deductive reasoning. An informal, and example of deductive reasoning, borrowed from the study of logic, is an argument expressed in three statements:

- (a) Socrates is a man.
- (b) All men are mortal, therefore,
- (c) Socrates is mortal.

If statements (a) and (b) are true, then the truth of (c) is established. To make this simple mathematical example, we could write:

- (i) Eight is divisible by two.
- (ii) Any number divisible by two is an even number, therefore,
- (iii) Eight is an even number.

In contrast to deduction, inductive reasoning depends on working with each case, and developing a conjecture by observing incidences till we have observed each and every case. It is frequently used in mathematics and is a key aspect of scientific reasoning, where collecting and analysing data is the norm. Thus, in simple language, we can say the word induction means the generalisation from particular cases or facts.

G. Peano (1858-1932)

In algebra or in other discipline of mathematics, there are certain results or statements that are formulated in terms of n, where n is a positive integer. To prove such statements the well-suited principle that is used—based on the specific technique, is known as the *principle of mathematical induction*.

4.2 Motivation

In mathematics, we use a form of complete induction called mathematical induction. To understand the basic principles of mathematical induction, suppose a set of thin rectangular tiles are placed as shown in Fig 4.1.

When the first tile is pushed in the indicated direction, all the tiles will fall. To be absolutely sure that all the tiles will fall, it is sufficient to know that

- (a) The first tile falls, and
- (b) In the event that any tile falls its successor necessarily falls.

This is the underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real numbers. In fact, N is the smallest subset of R with the following property:

A set S is said to be an inductive set if $1 \in S$ and $x + 1 \in S$ whenever $x \in S$. Since **N** is the smallest subset of **R** which is an inductive set, it follows that any subset of **R** that is an inductive set must contain **N**.

Illustration

Suppose we wish to find the formula for the sum of positive integers 1, 2, 3,...,n, that is, a formula which will give the value of 1 + 2 + 3 when n = 3, the value 1 + 2 + 3 + 4, when n = 4 and so on and suppose that in some manner we are led to believe that the

formula
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$
 is the correct one.

How can this formula actually be proved? We can, of course, verify the statement for as many positive integral values of n as we like, but this process will not prove the formula for all values of n. What is needed is some kind of chain reaction which will

have the effect that once the formula is proved for a particular positive integer the formula will automatically follow for the next positive integer and the next indefinitely. Such a reaction may be considered as produced by the method of mathematical induction.

4.3 The Principle of Mathematical Induction

Suppose there is a given statement P(n) involving the natural number n such that

- (i) The statement is true for n = 1, i.e., P(1) is true, and
- (ii) If the statement is true for n = k (where k is some positive integer), then the statement is also true for n = k + 1, i.e., truth of P(k) implies the truth of P(k + 1).

Then, P(n) is true for all natural numbers n.

Property (i) is simply a statement of fact. There may be situations when a statement is true for all $n \ge 4$. In this case, step 1 will start from n = 4 and we shall verify the result for n = 4, i.e., P(4).

Property (ii) is a conditional property. It does not assert that the given statement is true for n = k, but only that if it is true for n = k, then it is also true for n = k + 1. So, to prove that the property holds, only prove that conditional proposition:

If the statement is true for n = k, then it is also true for n = k + 1.

This is sometimes referred to as the inductive step. The assumption that the given statement is true for n = k in this inductive step is called the *inductive hypothesis*.

For example, frequently in mathematics, a formula will be discovered that appears to fit a pattern like

$$1 = 1^{2} = 1$$

$$4 = 2^{2} = 1 + 3$$

$$9 = 3^{2} = 1 + 3 + 5$$

$$16 = 4^{2} = 1 + 3 + 5 + 7, \text{ etc.}$$

It is worth to be noted that the sum of the first two odd natural numbers is the square of second natural number, sum of the first three odd natural numbers is the square of third natural number and so on. Thus, from this pattern it appears that

$$1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$$
, i.e,

the sum of the first n odd natural numbers is the square of n.

Let us write

$$P(n)$$
: 1 + 3 + 5 + 7 + ... + $(2n - 1) = n^2$.

We wish to prove that P(n) is true for all n.

The first step in a proof that uses mathematical induction is to prove that

P (1) is true. This step is called the basic step. Obviously

$$1 = 1^2$$
, i.e., $P(1)$ is true.

The next step is called the *inductive step*. Here, we suppose that P (k) is true for some

positive integer k and we need to prove that P(k + 1) is true. Since P(k) is true, we have

$$1 + 3 + 5 + 7 + \dots + (2k - 1) = k^2$$
 ... (1)

Consider

$$1 + 3 + 5 + 7 + \dots + (2k - 1) + \{2(k + 1) - 1\}$$
 ... (2)
= $k^2 + (2k + 1) = (k + 1)^2$ [Using (1)]

Therefore, P(k + 1) is true and the inductive proof is now completed.

Hence P(n) is true for all natural numbers n.

Example 1 For all $n \ge 1$, prove that

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Solution Let the given statement be P(n), i.e.,

P(n):
$$1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

For
$$n = 1$$
, $P(1)$: $1 = \frac{1(1+1)(2\times 1+1)}{6} = \frac{1\times 2\times 3}{6} = 1$ which is true.

Assume that P(k) is true for some positive integer k, i.e.,

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$
 ... (1)

We shall now prove that P(k + 1) is also true. Now, we have

$$(1^{2} +2^{2} +3^{2} +4^{2} +...+k^{2}) + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)(2k^{2} +7k +6)}{6}$$

$$= \frac{(k+1)(k+1+1)\{2(k+1)+1\}}{6}$$

Thus P(k + 1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.

Example 2 Prove that $2^n > n$ for all positive integers n.

Solution Let P(n): $2^n > n$

When $n = 1, 2^1 > 1$. Hence P(1) is true.

Assume that P(k) is true for any positive integer k, i.e.,

$$2^k > k \qquad \dots (1)$$

We shall now prove that P(k + 1) is true whenever P(k) is true.

Multiplying both sides of (1) by 2, we get

$$2. 2^k > 2k$$

i.e.,
$$2^{k+1} > 2k = k + k > k + 1$$

Therefore, P(k + 1) is true when P(k) is true. Hence, by principle of mathematical induction, P(n) is true for every positive integer n.

Example 3 For all $n \ge 1$, prove that

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
.

Solution We can write

P(n):
$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

We note that P(1): $\frac{1}{12} = \frac{1}{2} = \frac{1}{1+1}$, which is true. Thus, P(n) is true for n = 1.

Assume that P(k) is true for some natural number k,

i.e.,
$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$
 ... (1)

We need to prove that P(k + 1) is true whenever P(k) is true. We have

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$$

$$= \left[\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{k(k+1)} \right] + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
 [Using (1)]

$$=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{(k^2+2k+1)}{(k+1)(k+2)}=\frac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\frac{k+1}{k+2}=\frac{k+1}{\left(k+1\right)+1}$$

Thus P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all natural numbers.

Example 4 For every positive integer n, prove that $7^n - 3^n$ is divisible by 4.

Solution We can write

P(n): $7^n - 3^n$ is divisible by 4.

We note that

P(1): $7^1 - 3^1 = 4$ which is divisible by 4. Thus P(n) is true for n = 1

Let P(k) be true for some natural number k,

i.e., $P(k): 7^k - 3^k$ is divisible by 4.

We can write $7^k - 3^k = 4d$, where $d \in \mathbb{N}$.

Now, we wish to prove that P(k + 1) is true whenever P(k) is true.

Now
$$7^{(k+1)} - 3^{(k+1)} = 7^{(k+1)} - 7 \cdot 3^k + 7 \cdot 3^k - 3^{(k+1)}$$

= $7(7^k - 3^k) + (7 - 3)3^k = 7(4d) + (7 - 3)3^k$
= $7(4d) + 4 \cdot 3^k = 4(7d + 3^k)$

From the last line, we see that $7^{(k+1)} - 3^{(k+1)}$ is divisible by 4. Thus, P(k+1) is true when P(k) is true. Therefore, by principle of mathematical induction the statement is true for every positive integer n.

Example 5 Prove that $(1 + x)^n \ge (1 + nx)$, for all natural number n, where x > -1.

Solution Let P(n) be the given statement,

i.e.,
$$P(n)$$
: $(1 + x)^n \ge (1 + nx)$, for $x > -1$.

We note that P(n) is true when n = 1, since $(1+x) \ge (1+x)$ for x > -1

Assume that

i.e.

$$P(k)$$
: $(1+x)^k \ge (1+kx)$, $x > -1$ is true. ... (1)

We want to prove that P(k + 1) is true for x > -1 whenever P(k) is true. ... (2)

Consider the identity

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

Given that x > -1, so (1+x) > 0.

Therefore, by using $(1 + x)^k \ge (1 + kx)$, we have

$$(1+x)^{k+1} \ge (1+kx)(1+x)$$

$$(1+x)^{k+1} \ge (1+x+kx+kx^2).$$
 ... (3)

Here k is a natural number and $x^2 \ge 0$ so that $kx^2 \ge 0$. Therefore

$$(1 + x + kx + kx^2) \ge (1 + x + kx),$$

and so we obtain

$$(1+x)^{k+1} \ge (1+x+kx)$$

i.e. $(1+x)^{k+1} \ge [1+(1+k)x]$

Thus, the statement in (2) is established. Hence, by the principle of mathematical induction, P(n) is true for all natural numbers.

Example 6 Prove that

$$2.7^n + 3.5^n - 5$$
 is divisible by 24, for all $n \in \mathbb{N}$.

Solution Let the statement P(n) be defined as

$$P(n)$$
: $2.7^n + 3.5^n - 5$ is divisible by 24.

We note that P(n) is true for n = 1, since 2.7 + 3.5 - 5 = 24, which is divisible by 24.

Assume that P(k) is true

i.e.
$$2.7^k + 3.5^k - 5 = 24q$$
, when $q \in \mathbb{N}$... (1)

Now, we wish to prove that P(k + 1) is true whenever P(k) is true.

We have

$$2.7^{k+1} + 3.5^{k+1} - 5 = 2.7^{k} \cdot 7^{1} + 3.5^{k} \cdot 5^{1} - 5$$

$$= 7 [2.7^{k} + 3.5^{k} - 5 - 3.5^{k} + 5] + 3.5^{k} \cdot 5 - 5$$

$$= 7 [24q - 3.5^{k} + 5] + 15.5^{k} - 5$$

$$= 7 \times 24q - 21.5^{k} + 35 + 15.5^{k} - 5$$

$$= 7 \times 24q - 6.5^{k} + 30$$

$$= 7 \times 24q - 6 (5^{k} - 5)$$

$$= 7 \times 24q - 6 (4p) [(5^{k} - 5) \text{ is a multiple of 4 (why?)}]$$

$$= 7 \times 24q - 24p$$

$$= 24 (7q - p)$$

$$= 24 \times r; r = 7q - p, \text{ is some natural number.} \dots (2)$$

The expression on the R.H.S. of (1) is divisible by 24. Thus P(k + 1) is true whenever P(k) is true.

Hence, by principle of mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

Example 7 Prove that

$$1^2 + 2^2 + \dots + n^2 > \frac{n^3}{3}, n \in \mathbb{N}$$

Solution Let P(n) be the given statement.

i.e.,
$$P(n): 1^2 + 2^2 + ... + n^2 > \frac{n^3}{3}, n \in \mathbb{N}$$

We note that P(n) is true for n = 1 since $1^2 > \frac{1^3}{3}$

Assume that P(k) is true

i.e.
$$P(k): 1^2 + 2^2 + ... + k^2 > \frac{k^3}{3}$$
 ...(1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

We have $1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2$

$$= (1^{2} + 2^{2} + ... + k^{2}) + (k+1)^{2} > \frac{k^{3}}{3} + (k+1)^{2}$$
 [by (1)]

$$= \frac{1}{3} [k^{3} + 3k^{2} + 6k + 3]$$

$$= \frac{1}{3} [(k+1)^{3} + 3k + 2] > \frac{1}{3} (k+1)^{3}$$

Therefore, P(k+1) is also true whenever P(k) is true. Hence, by mathematical induction P(n) is true for all $n \in \mathbb{N}$.

Example 8 Prove the rule of exponents $(ab)^n = a^n b^n$ by using principle of mathematical induction for every natural number.

Solution Let P(n) be the given statement

i.e.
$$P(n) : (ab)^n = a^n b^n$$
.

We note that P(n) is true for n = 1 since $(ab)^1 = a^1b^1$.

Let P(k) be true, i.e.,

$$(ab)^k = a^k b^k \qquad \dots (1)$$

We shall now prove that P(k + 1) is true whenever P(k) is true.

Now, we have

$$(ab)^{k+1} = (ab)^k (ab)$$

94 MATHEMATICS

$$= (a^{k} b^{k}) (ab)$$
 [by (1)]
= $(a^{k} . a^{1}) (b^{k} . b^{1}) = a^{k+1} . b^{k+1}$

Therefore, P(k + 1) is also true whenever P(k) is true. Hence, by principle of mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

EXERCISE 4.1

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

1.
$$1 + 3 + 3^2 + ... + 3^{n-1} = \frac{(3^n - 1)}{2}$$
.

2.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
.

3.
$$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+...+\frac{1}{(1+2+3+...n)}=\frac{2n}{(n+1)}$$

4.
$$1.2.3 + 2.3.4 + ... + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

5.
$$1.3 + 2.3^2 + 3.3^3 + ... + n.3^n = \frac{(2n-1)3^{n+1} + 3}{4}$$
.

6.
$$1.2 + 2.3 + 3.4 + ... + n.(n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$$
.

7.
$$1.3 + 3.5 + 5.7 + ... + (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$$
.

8.
$$1.2 + 2.2^2 + 3.2^3 + ... + n.2^n = (n-1) 2^{n+1} + 2.$$

9.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$
.

10.
$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

11.
$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

12.
$$a + ar + ar^2 + ... + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$$
.

13.
$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)...\left(1+\frac{(2n+1)}{n^2}\right)=(n+1)^2$$
.

14.
$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{n}\right)=(n+1)$$
.

15.
$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$
.

16.
$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$
.

17.
$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$
.

18.
$$1+2+3+...+n<\frac{1}{8}(2n+1)^2$$
.

- **19.** n(n+1)(n+5) is a multiple of 3.
- **20.** $10^{2n-1} + 1$ is divisible by 11.
- **21.** $x^{2n} y^{2n}$ is divisible by x + y.
- **22.** $3^{2n+2} 8n 9$ is divisible by 8.
- **23.** $41^n 14^n$ is a multiple of 27.
- **24.** $(2n+7) < (n+3)^2$.

Summary

- One key basis for mathematical thinking is deductive reasoning. In contrast to deduction, inductive reasoning depends on working with different cases and developing a conjecture by observing incidences till we have observed each and every case. Thus, in simple language we can say the word 'induction' means the generalisation from particular cases or facts.
- ◆ The principle of mathematical induction is one such tool which can be used to prove a wide variety of mathematical statements. Each such statement is assumed as P(n) associated with positive integer n, for which the correctness

for the case n = 1 is examined. Then assuming the truth of P(k) for some positive integer k, the truth of P(k+1) is established.

Historical Note

Unlike other concepts and methods, proof by mathematical induction is not the invention of a particular individual at a fixed moment. It is said that the principle of mathematical induction was known by the Pythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

Later the principle was employed to provide a proof of the binomial theorem.

De Morgan contributed many accomplishments in the field of mathematics on many different subjects. He was the first person to define and name "mathematical induction" and developed De Morgan's rule to determine the convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers from a set of explicitly stated assumptions, now known as Peano's axioms. The principle of mathematical induction is a restatement of one of the Peano's axioms.

CBSE Class 11 Study Material

Printable Worksheets for Class 11

NCERT Solutions for Class 11

- NCERT Solutions for class 11 Maths
- NCERT Solutions for class 11 Physics
- NCERT Solutions for class 11 Chemistry
- NCERT Solutions for class 11 Biology
- NCERT Solutions for class 11 English
- NCERT Solutions for Class 11 English
 Woven Words Essay
- NCERT Solutions for Class 11 English
 Woven Short Stories
- NCERT Solutions for Class 11 English
 Woven Words Poetry
- NCERT Solutions for class 11 Accountancy
- NCERT Solutions for class 11 Business
 Studies
- NCERT Solutions for class 11 Economics
- NCERT Solutions for class 11 Computer
 Science Python
- Class 11 Hindi Aroh (आरोह भाग 1)
- Class 11 Hindi Vitan (वितान भाग 1)

- Class 11 Sanskrit
- Class 11 History
- Class 11 Geography
- Class 11 Indian Economic Development
- Class 11 Statistics for Economics
- Class 11 Political Science
- Class 11 Psychology
- Class 11 Sociology
- Class 11 Entrepreneurship
- Maths formulas for Class 11
- Hindi Grammar for Class 11
- Class 11 English Hornbill Summaries
- Class 11 English Snapshots Summaries
- CBSE Sample Papers for Class 11
- NCERT Exemplar Class 11 Maths Solutions
- NCERT Exemplar Class 11 Physics Solutions
- NCERT Exemplar Class 11
 Chemistry Solutions
- NCERT Exemplar Class 11 Biology Solutions
- RD Sharma Class 11 Solutions
- CBSE Class 11 and 12 Revised Syllabus
- MCQ Questions

- CBSE Class 11 Physics Manual
- CBSE Class 11 Chemistry Manual
- Trigonometry Formulas
- Integration Formulas
- JEE Main Study Material
- NEET Study Material
- CBSE Class 11 Notes
- Class 11 Maths Notes
- Class 11 Physics Notes
- Class 11 Chemistry Notes
- Class 11 Biology Notes
- Class 11 English Notes
- Class 11 English Woven Words Short Stories
- CBSE Class 11 English Woven Words Essay
- CBSE Class 11 English Woven Words Poetry
- CBSE Class 11 English Snapshots
- CBSE Class 11 English Hornbill
- Class 11 Business Studies Notes
- Class 11 Accountancy Notes
- Class 11 Psychology Notes
- Class 11 Entrepreneurship Notes
- Class 11 Economics Notes

- Class 11 Indian Economic Development Notes
- Statistics for Economics Class 11 Notes
- Class 11 Political Science Notes
- Class 11 History Notes
- Sociology Class 11 Notes
- Geography Class 11 Notes

NCERT Books for Class 11

- Class 11 NCERT Maths Books
- Class 11 Physics NCERT Book
- Class 11 Chemistry NCERT Book
- Class 11 Biology NCERT Book
- Class 11 Political Theory Part-I
- Class 11 NCERT Business Studies Books
- Class 11 India Constitution at Work
- NCERT Geography Book Class 11
- NCERT Class 11 History Book
- Class 11 India Economic Development
- Class 11 NCERT English Books
- NCERT Sanksrit Books Class 11
- Class 11 Computer and Communication
 Technology Book
- Class 11 NCERT Accountancy Books

- Class 11 Statistics
- Class 11 Introduction to Psychology
- Class 11 Introducing Sociology
- Class 11 Understanding Society
- Class 11 Fine Arts
- Class 11 Heritage Craft Books
- Class 11 Nai Awaz
- Class 11 Dhanak
- Class 11 The story of Graphic Design
- Class 11 Human Ecology and Family Sciences