Class129: Finite Fields

Virendra Sule

The group of units \mathbb{F}_q^*

The set of nonzero elements of \mathbb{F}_q forms a group denoted \mathbb{F}_q^* . Clealry $|\mathbb{F}_q^*|=q-1$. Hence for any element a in \mathbb{F}_q^*

ord
$$a|(q-1)$$

Question. Does an element a exist in \mathbb{F}_q of order d if d | (q-1)? This is a fundamental structure theorem about finite fields. It turns out that for every divisor d of (q-1) there is an element of ord d. This is because \mathbb{F}_q^* is a cyclic group and can be generated by single elements called *primitive* elements. Hence elements of order (q-1) exist called primitive elements.

Order of a power

Question. Consider a in \mathbb{F}_q^* of order d. For $1 \leq e \leq d$ what is the order of a^e ? Take 1 < e < d.

- The set $\{1, a, a^2, \ldots, a^{(d-1)}\}$ is a cyclic group of d distinct elements. Hence ord $a^e|d$. Let r= ord a^e . Then r is smallest such that $a^{er}=1$. Hence $er\geq d$ as all powers upto d-1 are distinct.
- If $er = qd + r_0$, then $0 \le r_0 < d$. Hence $a^{qd+r_0} = 1$ implies $r_0 = 0$.
- Let $d = gd_1$, $e = ge_1$ where $g = \gcd(e, d)$. Hence $er = gd_1e_1r_1$ where r_1 is smallest. Hence $r_1 = 1$. This proves

$$r = \operatorname{ord} a^{e} = d_{1} = \frac{d}{\gcd(e, d)}$$

STRUCTURE OF \mathbb{F}_q^*

- Let d|(q-1) and let there exist an element a of order d. Hence the number $\psi(d)$ of elements of order d is assumed positive, $\psi(d) > 0$.
- $\{1, a, a^2, \dots, a^{(d-1)}\}$ are all distinct elements and each satisfies the equation $X^d 1 = 0$. But this equation has at most d roots. Hence this set is the set of all roots of this equation and all are powers of a.
- By the previous formula, $\operatorname{ord}(a^e) = d/\gcd(e,d)$. Hence any of these elements have order d iff $\gcd(e,d) = 1$. Hence $\psi(d) = \phi(d)$.

STRUCTURE OF \mathbb{F}_q^* CONT...

• But for each distinct divisor of d of (q-1) the sum of all elements of order d must be equal to all elements of \mathbb{F}_q^* ,

$$(q-1) = \sum_{d|(q-1)} \psi(d)$$

= $\sum_{d|(q-1)} \phi(d)$

Hence if for some d, $\psi(d)=0$ then the (q-1) is strictly less than the RHS which shows

$$(q-1)<\sum_{d\mid (q-1)}\phi(d)$$

This violates the identity for the function ϕ discussed previously

$$\sum_{d|n} \phi(d) = n$$

Structure of \mathbb{F}_q^* cont...

- Hence it follows that $\psi(d) > 0$ for any divisor d of (q-1). In particular for d = (q-1). Hence primitive elements exist in \mathbb{F}_q^* .
- ullet \mathbb{F}_q^* is the cyclic group C_{q-1} .
- For every divisor d of (q-1) there is an element in \mathbb{F}_q^* of order d and a subgroup C_d . This shows that even if all subfields $\mathbb{F}_{\tilde{q}}$ of \mathbb{F}_q have cyclic groups of units $\mathbb{F}_{\tilde{q}}^* \subset \mathbb{F}_q^*$ there are cyclic groups which are not unit groups of subfields.
- As an example consider \mathbb{F}_{2^6} . The subfields of \mathbb{F}_{2^6} are \mathbb{F}_{2^2} and \mathbb{F}_{2^3} their unit groups are C_4 , C_8 . Since $|\mathbb{F}_{2^6}^*|=2^6-1=63=3^2*7$. There is cyclic group C_9 which is not a group of a finite field.

FIELD REPRESENTATION AND COMPUTATIONS

• Polynomial representation. If \mathbb{F}_{p^m} is obtained as $\mathbb{F}_p[X]/f(X)$ by the generating polynomial f(X), which is irreducible and θ denotes its root. Then

$$\mathbb{F}_{p^m} = \{\sum_{i=1}^m a_i \theta^i, a_i \in \mathbb{F}_p\}$$

This is called polynomial representation of \mathbb{F}_{p^m} in the basis $\{1, \theta, \dots, \theta^{(m-1)}\}.$

• Order computation. Let n denote the order of the group G which in this case is $\mathbb{F}_{q}*$ and the order of G is n=(q-1). Let

$$n = \prod_{i=1}^{i=m} p_i^{m_i}$$

be the prime factorization of n.

Order Computation...

• If a is an arbitrary element, then

ord
$$a=$$
 smallest k_i such that $a^{\prod_{i=1}^m p^{k_i}}=1$

Hence order of an element can be searched by raising a to the powers $\prod p_i^{k_i}$ successively.

• Example. Find order of 3 in \mathbb{F}_{37} . $n = 36 = 2^2 * 3^2$. Compute

$$3 \neq 1, 3^{2^2} \neq 1 \mod 37, 3^{2^2*3} = 10 \mod 37, 3^{2^2*3^2} = 1 \mod 37$$

• In extension field \mathbb{F}_{p^m} , a is given as a polynomial in θ a root of the generating polynomial. Compute the prime factorization of $n=p^m-1$ and use above procedure. (Note: the problem of computing order of a in a group G without knowing prime factorization of the order of G is a hard problem).

EXPONENTIATION IN A GROUP

- If $a \in G$ is given and an exponent x < ord G is given. The problem of computing a^x in G is called an exponentiation problem.
- For example find θ^{60} in \mathbb{F}_{2^6} with generating polynomial X^6+X+1 .
- Expand in binary

$$60 = 1.2^5 + 1.2^4 + 1.2^3 + 1.2^2$$

Then

$$\theta^{60} = (\theta^{2^5})(\theta^{2^4})(\theta^{2^3})(\theta^{2^2})$$

Hence by repeated squaring of θ the large power can be computed efficiently.

 Exponentiation is a polynomial time problem in length of the exponent.

Example...

Complete the previous example. It requires computation of powers upto 2^5 . Each of these are further computed by binary expansion of the power and using previous computations.

•
$$\theta^{2^3} = \theta^6 \theta^2 = (\theta + 1)\theta^2 = \theta^3 + \theta^2$$

• $\theta^{2^4} = \theta^{(8+8)} = (\theta^{2^3})^2 = (\theta^3)^2 + \theta^4 = (\theta + 1) + \theta^4$
• $\theta^{2^5} = \theta^{(16+16)}$
• $\theta^{(16+16)}$
• $\theta^{(16+16)}$
• $\theta^{(16+16)}$
• $\theta^{(16+16)}$

$$= \theta^{8} + \theta^{2} + 1$$

$$= (\theta + 1)\theta^{2} + \theta^{2} + 1$$

$$= (\theta^{2})(\theta) + 1 = \theta^{3} + 1$$

ullet Compute product of all powers required for $heta^{60}$

