INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE ELECTRÓNICA / ÁREA DE INGENIERÍA EN COMPUTADORES CIRCUITOS ELÉCTRICOS EN CC

PRÁCTICA No.6 CIRCUITOS RLC

Prof. Juan Carlos Jiménez

PROBLEMA No.1

El circuito ha tenido el interruptor por mucho tiempo abierto y en t=0 cierra. Para el circuito y para t>0 determine:

- a. Las condiciones iniciales
- b. las raíces de la ecuación característica
- c. el valor de α y ωo para determinar el comportamiento del circuito
- d. escribir una expresión para $V_c(t)$ e $i_L(t)$
- e. grafique la forma $V_C(t)$ e $i_L(t)$

PROBLEMA No.2

Después de mucho tiempo de estar abierto el interruptor cierra para t=0,

- a. determine las condiciones iniciales
- b. el valor de α y ω o para determinar el comportamiento del circuito
- c. escriba una expresión para $V_c(t)$ para t>0.

$$R/v(t) = \left(e^{(-2)(t)} \left((-130)\cos(10t) - 26\sin(10t) \right) \right)$$

PROBLEMA No.3

Calcular iL(t) y Vc(t) para t≥ 0. Las fuentes están representadas empleando la función escalón unitario

$$_{R/}$$
 i_{L} (t)= 18,5 e^{-4t} -22,5 e^{-8t} +4 A v_{C} (t)= 296 e^{-4t} -180 e^{-8t} V

PROBLEMA No.4

Asumir que el interruptor ha estado abierto por mucho tiempo y en t=0 cierra. Encontrar una expresión para i(t)

$$R/$$
: $i_L(t) = 0.18 - (90 t + 0.18) e^{-500t} A$

PROBLEMA No.5

El circuito está en estado estable en la posición 1 y en t=0 pasa a la posición 2. Obtener una expresión para $V_C(t)$ e $i_L(t)$ para t≥0

R/ es un circuito LC sin resistencia y por tanto α=0 y el circuito siempre será subamortiguado

$$V_C(t) = 10 \cos(2t) \text{ V para } t \ge 0$$

 $i_L(t) = 5 \cos(2t + 90^0) = -5 \sin(2t) \text{ A para } t \ge 0$

Pruebe, con los valores dados, que la constante que multiplica al seno en la corriente es $V\sqrt{\frac{c}{L}}$ para un circuito LC puro

PROBLEMA No. 6

. Para el circuito y para t>0 determine:

- a. Las condiciones iniciales
- b. las raíces de la ecuación característica
- c. el valor de α y $\ \omega$ o para determinar el comportamiento del circuito
- d. escribir una expresión para $V_c(t)$ e $i_L(t)$
- e. grafique la forma $V_{\mathcal{C}}(t)$ e $i_{\mathcal{L}}(t)$
- f. calcule $i_L(t)$ para t=0.1s

$$vs \stackrel{+}{\longleftarrow} 50\Omega \stackrel{R}{\rightleftharpoons} R \stackrel{v_C}{\longleftarrow} C = 1mF$$

$$v_s(t) = 10 + 20u(t)$$

R/
$$i_L(t) = 0.027 e^{-16t} - 0.427 e^{-4t} + 0.6$$
 $i_L(0.1) = 0.3195A$.

Ahora les comparto en la siguiente página una colección de escalones unitarios que tengo.

