Also published as:

Cited documents:

DE2338503 (A1)

TEP0052322 (A3)

T EP0052322 (B1)

Method of preparing lipid vesicles by ultrasonic treatment, the use of this method and apparatus for its application.

Publication number: EP0052322 (A2)

Publication date:

1982-05-26

Inventor(s):

GERSONDE KLAUS PROF DR MED; SCHAL WILFRIED DR

Applicant(s):

GERSONDE KLAUS PROF DR [DE]

Classification:

- international:

A61K9/127; A61K9/50; A61K9/127; A61K9/50; (IPC1-

7): A61K9/50

- European:

A61K9/127P; A61K9/50H8B

Application number: EP19810109575 19811109 Priority number(s): DE19803042360 19801110

Abstract of EP 0052322 (A2)

1. A method of preparing lipid vesicles from biological membranes or lipid suspensions, in which the lipid suspensions or lipid particles to be desintegrated are ultrasonically treated in a dispersion fluid inside a treatment container at a substantially constant temperature, characterized in that the size respectively size distribution of the lipid vesicles, effective for the desired purpose, and the optimum ultrasonic frequency and intensity in the dispersion fluid required for obtaining this size respectively this size distribution are determined, and that the thus determined optimum ultrasonic frequency and intensity, with the other constant conditions; are maintained constant in such a manner that during the ultrasonic treatment the actuel value of frequency and intensity of the ultrasonic field in the reaction medium is continuously measured and the output power and the frequency of the electric generator supplying the sound transmitter are controlled in dependence upon the actuel value of the frequency and intensity of the ultrasonic field.

Data supplied from the esp@cenet database --- Worldwide

11) Veröffentlichungsnummer:

0 052 322

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 81109575.1

(51) Int. Cl.3: A 61 K 9/50

(22) Anmeldetag: 09.11.81

30 Priorität: 10.11.80 DE 3042360

43 Veröffentlichungstag der Anmeldung: 26.05.82 Patentblatt 82/21

84 Benannte Vertragsstaaten:
AT BE CH DE FR GB LI NL SE

71 Anmelder: Gersonde, Klaus, Prof. Dr. Preusweg 69 D-5100 Aachen(DE)

2 Erfinder: Gersonde, Klaus, Prof. Dr. med.

Preusweg 69 D-5100 Aachen(DE)

72 Erfinder: Schäl, Wilfried, Dr.

Tannenwaldweg 27 D-6380 Bad Homburg(DE)

74 Vertreter: Biermann, Wilhelm, Dr.-Ing.

Morillenhang 39 D-5100 Aachen(DE)

54 Verfahren zur Herstellung von Lipid-Vesikeln durch Ultraschallbehandlung, Anwendung des Verfahrens und Vorrichtung zur Durchführung des Verfahrens.

(57) Bei einem Verfahren zur Herstellung von Lipid-Versikeln aus biologischen Membranen oder aus Lipid-Suspensionen, bei dem die zu desintegrierenden Lipid-Suspensionen oder Lipid-Partikel in einer Dispersionsflüssigkeit einer Ultraschallbehandlung unterworfen werden, werden die für den jeweiligen Zweck optimalen Ultraschall-Bedingungen ermittelt. Während der Ultraschallbehandlung unter den ermittelten Bedingungen werden im Reaktionsmedium die Frequenz und die Intensität des Ultraschallfeldes fortlaufend gemessen, und in Abhängigkeit von den gemessenen Istwerten werden die Ausgangsleistung und die Frequenz des den Schwingungsgeber für die Ultraschallwellen speisenden elektrischen Generators zur ständigen Aufrechterhaltung der optimalen Bedingungen nachgeregelt. Die Regelung kann über einen automatischen Regelkreis mit Sollwert-Istwert-N Vergleich durchgeführt werden.

Das Verfahren findet insbesondere Anwendung für die Herstellung von für therapeutische Zwecke bestimmten, mit einem Wirkstoff beladenen Lipid-Vesikeln, die zur Fusion mit roten Blutzellen befähigt sind.

052 322 /

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung von uniformen, unilamellaren sogenannten
kleinen Lipid-Vesikeln, insbesondere ein Verfahren zum Überführen von lamellär angeordneten
Lipiden in Lipidvesikel, bei dem die zu desintegrierenden Lipid-Strukturen (Lamellen) in
einer Suspensionsflüssigkeit innerhalb eines Beschallungsgefäßes bei im wesentlichen konstanter
Temperatur einer Ultraschallbehandlung unterworfen werden. Die Erfindung umfaßt ferner geeignete
Vorrichtungen zur Durchführung des Verfahrens.

Lipid-Vesikel werden zum Beispiel für medizinisch-15 therapeutische und wissenschaftliche Zwecke benötigt. Arzneimittel, die einen intrazellulären . Wirkort haben, müssen die Zell-Membran passieren können. Viele Effektoren, die den intrazellulären Stoffwechsel kontrollieren und in der Zelle 20 gebildet werden, können die Zelle weder verlassen noch in diese von außen eindringen. Der therapeutische Einsatz dieser Stoff-Klasse macht daher einen Transportmechanismus erforderlich, der es erlaubt, nicht-membran-permeable Stoffe in die 25 Zellen hineinzuschleusen, ohne daß diese Stoffe die Zellen wieder verlassen können. Ein solcher Transportmechanismus soll darüberhinaus möglichst unabhängig von dem zu transportierenden Wirkstoff sein, also jede Art von Effektor transportieren 30 können, andererseits aber Zell-spezifisch sein, d.h. den Transport nur in bestimmte Zellen ermöglichen. Ein Transport-System mit den oben genannEigenschaften stellen Lipid-Vesikel dar, welche die verschiedensten Stoffe einschließen können, wie Enzyme, Arzneimittel, Chelat-bildende Substanzen, Hormone, Zell-Effektoren, Antigene, Antikörper,

5 Interferon-Induktoren und Gene. In den Lipid-Vesikeln sind das Lösungsmittel und die im Lösungsmittel gelösten Stoffe von Phospholipid-Doppelschichtmembranen umschlossen. Die Lipid-Membran hat eine Dicke von 4 nm, die Vesikel können einen Durchmesser von 25 bis 120 nm annehmen. Die Größe der Vesikel läßt sich mit Hilfe der Laser-Lichtstreuung, durch Ultrazentrifugation, Gelfiltration oder im Raster-Elektronenmikroskop bestimmen.

Ein wichtiges Anwendungsgebiet der Lipid-Vesikel 15 ist die Inkorporierung von Inositolhexaphosphat (IHP) in rote Blutzellen nach dem von Y.C. Nicolau und K. Gersonde beschriebenen Verfahren (US-Patent 4.192.869), zur Herabsetzung der Sauerstoff-Affinität des Hämoglobins. Man weiß nämlich, daß z.B. bei der 20 Lagerung von Blutkonserven die Sauerstoff-Affinität des Hämoglobins in den roten Blutzellen ständig zunimmt. Ebenso beobachtet man bei bestimmten Krankheiten eine erhöhte Sauerstoff-Affinität des Hämoglobins. Diese erhöhte Sauerstoff-Affinität 25 führt dazu, daß nur ein geringer Anteil des Sauerstoffs, der an Hämoglobin gebunden ist und im Blut zirkuliert, tatsächlich an das Gewebe abgegeben wird. Diese hohe O₂-Affinität des Hämoglobins kann durch Bindung von bestimmten Effektoren **3**0 an das Hämoglobin herabgesetzt werden. Der stärkste Effektor dieser Art ist das Inositolhexaphosphat (IHP). Die Inkorporierung von IHP wird erreicht dadurch, daß intakte Zellen mit IHP-beladenen Lipid-Vesikeln inkubiert werden, wobei durch Fusion der Lipid-Membranen der Zelle und der Vesikel IHP in die Zelle eingeschleust wird und dort seine Wirkung erzielt, nämlich die Veränderung der O₂ - Affinität des Hämoglobins, meßbar als "Rechtsverschiebung" der Hämoglobin-O₂-Dissoziationskurve. Nach Rückkehr dieser IHP-beladenen roten Blutzellen in den Kreislauf wird ein erheblich höherer Anteil der in den roten Blutzellen gespeicherten O₂- Menge in der Peripherie abgegeben. Diese Eigenschaft der modifizierten roten Blutzellen bleibt während des gesamten Lebens der Zelle erhalten.

10

15 Für die Inkorporierung von Inositolhexaphosphat in rote Blutzellen werden kleine, unilamellare IHP-beladene Lipid-Vesikel mit einem Durchmesser von 20 bis 50 nm benötigt. Es ist bekannt, Lipid-Vesikel durch Desintegration von Lipid-Suspensionen im Ultraschallfeld herzustellen. Der Fort-20 schritt in der Anwendung von Lipid-Vesikeln in der Therapie vollzieht sich bisher nur sehr langsam, da die Herstellung von für die Fusion mit den roten Blutzellen geeigneten Lipid-Vesikeln in ausreichender Menge mit erheblichen Schwierig-25 keiten verbunden ist. Die für diesen Zweck geeigneten Lipid-Vesikel müssen nämlich nicht nur in größen Mengen hergestellt werden können, sondern auch reproduzierbar von einheitlicher Größe und somit dosierbar in der therapeutischen Anwendung 30 sein. Die nachträgliche Anwendung von Trennverfahren zum Abtrennen geeigneter Fraktionen der Lipid-Vesikel wirft vielerlei Probleme auf, z.B.

10

15

20

25

30

Aufrechterhaltung der Sterilität und Anwendung aufwendiger und zeitraubender Trenn-Techniken, die die biologische Effektivität der Vesikel, die nur eine Halb-Lebenszeit von ca. 1 Tag haben, stark vermindern. Das einzige Verfahren, das die Herstellung großer Mengen von Vesikeln in kurzer Zeit erlaubt, ist die Desintegration im Ultraschall. Außer von der Art und Zusammensetzung der Lipid-Membran der Vesikel hängen der Erfolg und die Reproduzierbarkeit der wissenschaftlichen Untersuchung bzw. der therapeutischen Behandlung, d.h. Einschleusung von IHP in rote Blutzellen, wesentlich von der Größe der Lipid-Vesikel ab. Die Kontrolle, ob sich bei der Desintegration der Lipid-Suspension die Lipid-Vesikel in ausreichender Homogenität und somit Qualität und in ausreichender Menge gebildet haben, erfolgt in der Weise, daß man mit den hergestellten Lipid-Vesikeln die gewünschten IHP-Einschleusungsversuche in rote Blutzellen durchführt, das intrazelluläre IHP chemisch nachweist und die Hämoglobin-0, -Dissoziationskurve intakter Zellen mißt bzw. die gewünschte biologische oder therapeutische Wirkung der IHP-beladenen roten Blutzellen im Tierversuch nachweist. Die Ergebnisse der Versuche bzw. der Erfolg der Behandlung können also erst nach aufwendigen Experimenten beurteilt werden, und der Erfolg der Ultraschallbehandlung, nämlich die Herstellung von für die Fusion mit den roten Blutzellen befähigten Vesikeln, erst im Nachhinein erkannt werden.

Es hat sich gezeigt, daß die Herstellung von Lipid-Vesikeln - insbesondere in großen Volumina, wie sie für therapeutische Verfahren erforderlich sind mit gleichbleibenden Eigenschaften mit Hilfe der
bekannten Ultraschall-Technik schwierig ist. Trotz
Einhaltung anscheinend völlig gleicher äußerer
Bedingungen bei der Desintegration der LipidSuspensionen im Ultraschallfeld gelingt es bisher
nicht, stets die gleiche Ausbeute an sogenannten
kleinen unilamellaren und somit fusionswirksamen
Lipid-Vesikeln zu erhalten.

Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren zur Herstellung von Lipid-Vesikeln, die erfolgreich Effektoren in Zellen einschleusen, dahingehend weiterzuent-wickeln, daß der Wirkungsgrad des Verfahrens erhöht wird, und daß in reproduzierbarer Weise eine hohe Ausbeute an für den jeweils gewünschten Zweck hochwirksamen Lipid-Vesikeln erzielt wird.

Die Erfindung besteht darin, daß die für den gewünschten Zweck wirksamste Vesikelgröße bzw. Vesikelgrößenverteilung, sowie die für die Erzielung dieser Vesikelgröße bzw. Vesikelgrößenverteilung optimale Ultraschall-Frequenz und -Intensität ermittelt wird, und daß die so ermittelte optimale Ultraschall-Frequenz und -Intensität bei im übrigen gleichen Behandlungsbedingungen dadurch konstantgehalten wird, daß während der Ultraschallbehandlung der Istwert der Frequenz und der Intensität des Ultraschallfeldes in dem Reaktionsmedium fortlaufend gemessen, und in Abhängigkeit von diesem Istwert die Ausgangsleistung und die Frequenz des den Schwingungsgeber speisenden elektrischen

Generators geregelt wird.

5

Der Erfindung liegt die Erkenntnis zugrunde, daß bei Verwendung der Vesikel zu therapeutischen Zwecken Größe bzw. Größenverteilung der Vesikel für die Wirksamkeit derselben von ausschlaggebender Bedeutung ist, und daß andererseits die Größe und Homogenität der im Ultraschallfeld erzeugten Vesikel in empfindlicher Weise von der Konstanz 10 und Intensität des auf die Lipide einwirkenden Ultraschallfeldes abhängen. Während es bisher üblich ist, die in den Schallgeber eingekoppelte Schallenergie zu messen und konstant zu halten, schlägt die Erfindung vor, die in dem Reaktions-15 medium wirksame Schallenergie zu messen und gezielt zu verändern, und zwar in der Weise, daß die effektive Schallenergie im Reaktionsmedium selbst auf ihrem optimalen Wert konstantgehalten wird. Durch das Messen der effektiven Schallenergie im Re-20 aktionsmedium selbst, und durch die Verwendung dieses Istwertes zum Regeln der eingekoppelten Schallenergie, werden alle Einflüsse kompensiert, die die effektive Schallintensität und die Schallfrequenz am Vesikel-Bildungsort beeinflussen, wie z.B. unterschiedliche und sich verändernde Ab-25 sorption der Schallenergie mit fortschreitender Reaktion, sich ändernde geometrische Verhältnisse innerhalb des Reaktionsmediums bei Auftreten von Gasbläschen während der Ultraschallbehandlung, sowie Reflexion eines Frequenzbandes von Schall-30 wellen, das sich mit den vom Schallgeber abgestrahlten Schallwellen überlagert, und gegebenen-

5

10

15

20

25

3 o

falls bei phasenverschobener Überlagerung bis zur Auslöschung der Schallenergie führt.

Wenn man also gemäß dem erfindungsgemäßen Verfahren zunächst mit Hilfe der bekannten Untersuchungsmethoden den für den jeweiligen Zweck optimalen Vesikeldurchmesser bzw. die optimale Verteilungskurve der wirksamsten Vesikeldurchmesser feststellt, sodann in einer weiteren Versuchsreihe die optimalen Ultraschallbedingungen wie Frequenz und Schalldruck ermittelt, die zu der gewünschten Verteilungskurve führen, und dann die so ermittelte optimale Ultraschallintensität und Ultraschallfrequenz innerhalb des Reaktionsmediums während der Reaktionsdauer konstant hält, erhält man eine sehr hohe Ausbeute an für den jeweiligen Zweck außerordentlich wirkungsvollen Lipid-Vesikeln.

Das erfindungsgemäße Verfahren läßt sich nicht nur für die Herstellung von Lipid-Vesikeln, sondern mit demselben Erfolg auch zum Behandeln von natürlichen biologischen Membranen und deren Umwandlung in Vesikel anwenden, beispielsweise bei der Erforschung von Funktion und Struktur von Membran-Enzymen. Auch hierfür ist es nämlich erforderlich, die Membran-Enzyme reproduzierbar in Vesikel bestimmter Größe zu überführen, was nach den bekannten Verfahren nicht mit ausreichender Sicherheit möglich ist.

Weitere Einzelheiten und Vorteile des erfindungsgemäßen Verfahrens werden nachfolgend anhand der Zeichnungen und anhand von Ausführungsbeispielen näher beschrieben.

Von den Zeichnungen zeigt:

Fig. 1 eine für die Herstellung von kleineren Mengen von Lipid-VesikelSuspensionen geeignete Vorrichtung
mit den Merkmalen der Erfindung,
teilweise in schematischer Darstellung, und

rung, und

Fig. 2 eine für die Herstellung von LipidVesikel-Suspensionen in SterilPackungen für den klinischen Gebrauch in Liter-Quantitäten geeignete Vorrichtung, ebenfalls in
teilweise schematischer Darstellung.

Das Reaktionsmedium 1 in Form einer Suspension eines Lipides in einem geeigneten Dispersionsmittel befindet sich in dem inneren zylinderförmigen Rohr 2 des doppelwandigen gläsernen Reaktionsgefäßes 3. Der Boden des Reaktionsgefäßes 3
weist eine zu dem Reaktionsraum 3 durchgehende
Öffnung auf, in die ein Schallaufnehmer 5 eingesetzt ist. Der Schallaufnehmer 5 ist mit Hilfe
einer Epoxidharzschicht 6 mit der die Öffnung
umgebenden Wand 7 verklebt und abgedichtet. Von
oben taucht in das Reaktionsmedium 1 ein Ultraschall-Schwingungsgeber 8 ein. Der aus dem Reaktionsgefäß 3 oben herausragende Teil 9 des
Schwingungsgebers 8 ist mit einer Kupplung 9 für
den Stromanschluß versehen.

5

10

15

20

25

Durch die doppelte Wand des Reaktionsgefäßes wird ein Hohlraum 10 gebildet, der von Kühlwasser durchströmt ist. Die Rohrstutzen 11 und 12 dienen zur Zuleitung bzw. zur Abführung des Kühlwassers. Der Rohrstutzen 13 führt in den Reaktionsraum oberhalb des Reaktionsmediums 1 und dient zur Zuführung eines Inertgases wie Argon. Nach oben ist der Reaktionsraum abgeschlossen durch einen Deckel 14. Durch die zwischen dem Deckel 14 und dem Ultraschallgeber bzw. der Gefäßwand verbleibenden Spalte kann das unter geringem Überdruck stehende Inertgas entweichen.

5

10

Der Schallaufnehmer 5 weist als eigentlichen Schalldruck- bzw. Schallintensitätsempfänger an 15 seinem oberen, mit dem Reaktionsmedium 1 in Kontakt stehenden Ende eine Piezo-Scheibe 18 auf, die in dem dargestellten Fall radial in einem Halterohr eingebaut, und in diesem Halterohr beispielsweise mit Epoxidharz eingeklebt und abgedich-20 tet ist. Das von der Piezo-Scheibe 18 gelieferte elektrische Signal ist ein Maß für die effektive Schallfrequenz und die effektive Schallintensität in dem Reaktionsmedium. Dieses elektrische Signal stellt den Istwert des Regelkreises dar und wird 25 über die Leitung 20 dem Regelverstärker 21 zugeführt. Auf dem Oszillographen 22 können gegebenenfalls die effektive Frequenz und die Schallintensität visuell verfolgt, und erforderlichenfalls von Hand Nachregulierungen der Frequenz und der 30 Ausgangsleistung des Hochfrequenzgenerators 23 vorgenommen werden.

Dem Regelverstärker 21 wird über eine Sollwert-

Einstell-Vorrichtung 24 der Sollwert für die Ultraschall-Intensität, und über eine Sollwert-Einstell-Vorrichtung 25 der Sollwert für die Ultraschall-Frequenz vorgegeben. Bei Abweichungen der Istwerte der Frequenz und der Intensität des Ultraschallfeldes im Reaktionsmedium von den vorgegebenen Sollwerten wird über die Leitung 26 der Ultraschallgenerator 23 angesteuert, dessen Frequenz und/oder Ausgangsleistung so lange verändert werden, bis die innerhalb des Reaktions-10 mediums 1 gemessenen effektiven Werte mit den vorgegebenen Sollwerten übereinstimmen. Von dem Hochfrequenzgenerator 23 wird der Ultraschallgeber 8 über die Leitung 28 mit der erforderlichen elektrischen Spannung versorgt. 15

5

Die in Fig. 2 dargestellte Vorrichtung eignet sich für die Herstellung von Lipid-Vesikeln in größeren Quantitäten. Das Reaktionsgefäß ist eine oben offene zylindrische rechteckige Wanne 30 aus korro-20 sionsbeständigem Cr-Ni-Stahl. Die Kühlung der Flüssigkeit 31 in dem Reaktionsgefäß erfolgt durch eine Kühlschlangenanordnung 32, die in die in der Wanne 30 befindliche Flüssigkeit 31 eingesetzt wird. Unter dem Boden der Wanne 30 sind auf der Außenseite 25 acht elektro-akustische Wandler 33 angeordnet, deren Schwingungsgeber 34 an den Boden der Wanne 30 angekoppelt sind. Die Schallenergie wird so auf Flüssigkeit 31 in der Wanne 30 übertragen. die In die Flüssigkeit 31 taucht von oben der Schall-30 aufnehmer 35 ein. Das Reaktionsmedium selbst befindet sich in einem verschlossenen Steril-Beutel 36, der durch die Kühlschlangenanordnung 32 innerhalb der Flüssigkeit 31 wenig oberhalb des Bodens

der Wanne gehalten wird. Der Schallaufnehmer 35 wird so weit abgesenkt, daß der Schallaufnahmkopf, d.h. die Piezo-Scheibe 37, gegen den Steril-Beutel 36 gedrückt wird, und so das Ultraschallfeld in dem Reaktionsmedium erfaßt.

Das von der Piezo-Scheibe 37 gelieferte Signal steuert über die Leitung 38 den Regelverstärker 39 an und liefert diesem die Istwerte für den Regelvorgang. Die Sollwerte für die Frequenz und die Intensität 10 des Ultraschalls werden vorgegeben durch die Sollwert--Vorgæbeeinrichtung 40 bzw. 41. Bei Abweichung der Istwerte von den vorgegebenen Sollwerten wird über die Leitung 42 der regelbare elektrische Generator 43 angesteuert, dessen an die elektromagnetischen 15 Wandler 33 über die Leitung 44 abgegebene Ausgangsleistung und/oder Frequenz so lange verändert werden, bis Sollwerte und Istwerte übereinstimmen. Die von der Piezo-Scheibe 37 gemessene Frequenz und Amplitude des Ultraschallfeldes können auf dem Oszillographen 45 visuell beobachtet werden, so daß auch ggf. ein manueller Eingriff in die Regelung möglich ist.

Mit Hilfe der beschriebenen Vorrichtungen werden 25 beispielsweise folgende Reaktionen durchgeführt:

Beispiel 1

5

Es sollen IHP-beladene Lipid-Vesikel für therapeutische Zwecke hergestellt werden, und zwar
zur Einschleusung von IHP in rote Blutzellen mittels Fusion zur Verbesserung der O-Freisetzungseigenschaften der roten Blutzellen. Die generelle
Methode zur Präparation von Lipid-Vesikeln ist in
der US-Patentschrift 4.192.869 beschrieben, auf

10

· 15

20

25

30

die insoweit Bezug genommen wird. Die Lipid-Vesikel sind aus Phosphatidylcholin, Phosphatidylserin und Cholesterol im molaren Verhältnis von 8:2:7 aufgebaut. Diese Lipide werden zunächst in einem organischen Lösungsmittel aus 95 Teilen Chloroform und 5 Teilen Methanol gelöst, um eine homogene Lösung und Mischung dieser Lipide zu erreichen. Dann wird das Lösungsmittel bei 20 Grad Celsius im Rotationsverdampfer entfernt. Der dann im Rundkolben verbleibende Lipid-Film wird mit einer wäßrigen Lösung, welche die biologisch aktive Substanz (hier IHP) enthält, aufgenommen und geschüttelt, so daß sich nunmehr ebene Lipid-Lamellen in dieser Suspension bilden. Diese Suspension enthält Lipide in einer Konzentration von ca. 17 - 200 /ug/l. Die Suspension ist ferner gesättigt an IHP und zwischen pH 7.0 - 8.0 gepuffert.

In einer vorausgehenden Versuchsreihe wurde festgestellt, daß sich für die Fusion mit Erythrozyten und die Inkorporierung von IHP in Erythrozyten Vesikel eignen, die die oben beschriebene Zusammensetzung haben und die einen Durchmesser von 250 - 500 Å aufweisen. Die Wirksamkeit ist um so größer, je größer der Mengenanteil dieser Vesikel-Formation in dem jeweiligen Präparat ist. Durch eine weitere Versuchsreihe wurde sodann ermittelt, daß sich diese gewünschte Durchmesserverteilung erreichen läßt, wenn die Lipide bei einer in etwa konstanten Temperatur von 37 Grad Celsius mit einer schmalbandigen Schallfrequenz von 20 kHz mit einer effektiven Schallenergie von 3 bis 6 W/ cm²beschallt werden.

Die oben beschriebene Lipid-Suspension wird unter Inertgas in das Reaktionsgefäß 3 (Fig. 1) eingefüllt. Das Reaktionsgefäß wird durch das Rohr 13 mit Argon gespült. An den Sollwert-Einstellvorrichtungen 24 und 25 werden sodann die optimale Schallintensität und die gewünschte Schallfrequenz eingestellt. Die beschriebene Regeleinrichtung sorgt dafür, daß die optimale Schallintensität als effektive, auf die Reaktionsflüssigkeit zur vollen Einwirkung kommende Schallintensität während der gesamten Behandlungszeit eingehalten wird. Die Behandlung dauert 30 bis 60 Minuten. Während dieser Zeit wird durch das Kühlwasser die in dem Reaktionsgefäß entwickelte Wärme abgeführt und so die Temperatur konstant gehalten.

Die auf diese Weise erhaltene Vesikel-Suspension wird nun mit roten Blutzellen bei 37 Grad Celsius 1 h inkubiert. Danach werden die roten Blutzellen in isotonischem Puffer pH 7,4 gewaschen und die Hämoglobin-O₂-Dissoziationskurve der modifizierten intakten Zellen gemessen. Der Erfolg der IHP-In-korporierung wird als "Rechtsverschiebung" der Hämoglobin-O₂- Dissoziationskurve erkannt. Der durch IHP-Bindung an Hämoglobin maximal erreichbare O₂- Halbsättigungsdruck beträgt bei 37 Grad Celsius und pH 7.4 95 mmHg.

Der Erfolg der kontrollierten Ultraschall-Methode

liegt vor allem darin, daß der maximale IHP-Inkorporierungseffekt mit Volumen-Verhältnissen RBC
(Rote-Blutzellen): Vesikel oder mit Lipid-Konzen-

werte betragen, die bei der bisher üblichen unkontrollierten Ultraschallanwendung für eine
erfolgreiche IHP-Inkorporierung eingesetzt werden mußten. Daraus resultiert ein erheblicher
wirtschaftlicher Vorteil, da Lipide teuer sind
und nicht wiederverwendet werden können. Darüberhinaus sind mit der bisher üblichen Methode
keine reproduzierbaren Ergebnisse zu erzielen,
die unbedingte Voraussetzung für eine sichere
Dosierung in der Therapie sind.

Beispiel 2

5

10

15

20

25

30

Bei Lipid-Vesikeln für therapeutische Zwecke besteht die Forderung nach absoluter Keimfreiheit.Da eine Sterilisation der fertigen Vesikel-Suspension auf äußerste Schwierigkeiten stößt, wird folgendes Verfahren angewandt: Die Ausgangskomponenten entsprechend dem Beispiel 1 werden zunächst sterilisiert, und unter sterilen Kautelen in einen ebenfalls sterilisierten Beutel aus Polyäthylen oder Weich-PVC-Folie von etwa 0,5 mm Wandstärke gefüllt. Der Beutel wird steril dicht verschlossen und dann in dem Ultraschallgefäß nach Fig. 2 der Ultraschallwirkung ausgesetzt, wobei der Raum zwischen den Gefäßwänden und dem Beutel mit Wasser ausgefüllt ist. Die Messung der Schallintensität erfolgt in diesem Fall an der Außenseite des Beutels. Unter sonst gleichen Bedingungen wie in Beispiel 1 beschrieben werden die gleichen Ergebnisse erzielt, wenn

die den Schwingungsgebern zugeführte Leistung etwa um den Faktor 1,65 erhöht wird. Dieser bei der vorgegebenen Versuchsanordnung anhand der Messungen experimentell ermittelte Faktor repräsentiert die durch die Einbringung des Beutels eintretenden Leistungsverluste.

Verfahren zur Herstellung von Lipid-Vesikeln durch Ultraschallbehandlung, Anwendung des Verfahrens und Vorrichtung zur Durchführung des Verfahrens

Patentansprüche

1. Verfahren zur Herstellung von Lipid-Vesikeln aus biologischen Membranen oder Lipid-Suspensionen, bei dem die zu desintegrierenden Lipid-Suspensionen oder Lipid-Partikel in einer Dispersionsflüssigkeit innerhalb eines Behandlungsgefäßes bei im wesentlichen konstanter Temperatur einer Ultraschallbehandlung unterworfen werden, dadurch gekennzeich-10 n e t, daß die für den gewünschten Zweck wirksame Vesikelgröße bzw. Vesikelgrößenverteilung, sowie die für die Erzielung dieser Vesikelgröße bzw. dieser Vesikelgrößenverteilung optimale Ultraschall-Frequenz und -Intensität in 15 der Dispersionsflüssigkeit ermittelt, und daß die so ermittelte optimale Ultraschall-Frequenz und -Intensität bei im übrigen gleichen Behandlungsbedingungen dadurch konstant gehalten wird,

daß während der Ultraschallbehandlung der Istwert der Frequenz und Intensität des Ultraschallfeldes in dem Reaktionsmedium fortlaufend gemessen, und in Abhängigkeit von dem
Istwert die Ausgangsleistung und die Frequenz
des den Schwingungsgeber speisenden elektrischen Generators geregelt wird.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Regelung des den Ultraschallgeber
 speisenden Generators mit Hilfe eines automatischen Regelkreises mit Sollwert-Istwert-Vergleich vorgenommen wird.
- 15 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Messung der UltraschallIntensität und -Frequenz ein in die Reaktionsflüssigkeit eintauchender piezoelektrischer
 Schallaufnehmer verwendet wird.

20

25

- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der piezoelektrische Schallaufnehmer am Boden des Reaktionsgefäßes so angeordnet wird, daß die Richtung seiner höchsten Empfindlichkeit gegen den Ultraschallgeber gerichtet ist, während der Ultraschallgeber in das obere Drittel des Mediums eintaucht.
- 5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das
 Reaktionsmedium unter einer Inertgasatmosphäre
 behandelt wird.

- 6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Reaktionsmedium sterilisiert und in einem Steril-Beutel eingeschlossen, und der das Reaktionsmedium enthaltende Steril-Beutel innerhalb einer dem Ultraschallfeld ausgesetzten Flüssigkeit behandelt wird.
- 7. Anwendung des Verfahrens nach einem oder meh10 reren der Ansprüche 1 bis 6 zur Herstellung
 von für therapeutische Zwecke bestimmten, mit
 einem Wirkstoff wie Inositolhexaphosphat beladenen, zur Fusion mit roten Blutzellen befähigten Lipid-Vesikeln.

- 8. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, mit einem die Reaktionsflüssigkeit aufnehmenden Behandlungsgefäß und mindestens einem von einem elektrischen Generator gespeisten elektroakustischen Wandler zur Erzeugung eines Ultraschallfeldes in dem Reaktionsmedium, dadurch ge kenn-ze ich net, daß innerhalb des Behandlungsgefäßes (3; 30) als Schallaufnehmer ein akustisch-elektrischer Wandler (18; 37) angeordnet ist, dessen Ausgangssignal zur Regelung der Ultraschall-Intensität und -Frequenz in der Reaktionsflüssigkeit dient.
- 9. Vorrichtung nach Anspruch 8,gekennzeichnet durch einen den elektrischen Generator (23; 43) ansteuernden Regelverstärker (21; 39)mit Sollwert-Istwert-Vergleich.

10. Vorrichtung nach Anspruch 8 und 9, dadurch gekennzeichnet, daß der akustisch-elektrische Wandler (18; 37) aus einer am Ende eines Rohres angeordneten Piezo-Scheibe besteht, die mit ihrer gegen Schalldruck empfindlichsten Richtung gegen den Schwingungsgeber gerichtet ist.

- 11. Vorrichtung nach Anspruch 8 bis 10, dadurch
 gekennzeichnet, daß die Geometrie des Ultraschallgebers und des das Medium aufnehmenden Behandlungsgefäßes (3; 30) so gewählt
 sind, daß die durch Reflexion verursachte
 Bildung von Ultraschallwellen mit einer von
 der Sollfrequenz abweichenden Frequenz und/
 oder mit gegenüber den primären Ultraschallwellen verschobener Phase in dem beschallten
 Medium vermieden wird.
- 20 12. Vorrichtung nach Anspruch 8 bis 11, dadurch gekennzeichnet, daß das Behandlungsgefäß (3; 30) von einer Kühlflüssigkeit durchströmte Doppelwände aufweist.
- 13. Vorrichtung nach Anspruch 8 bis 12, dadurch gekennzeichnet, daß das Behandlungsgefäß

 (3) gegen die Außenatmosphäre abgeschlossen ist und eine Zuleitung (13) für die Zufuhr von Inertgas zu dem Gasraum oberhalb des beschalten Reaktionsmediums (1) aufweist.

