Documento de Especificaciones y Requisitos de Producto [DEP] para el desarrollo de productos mecatrónicos

Proyecto: Smartronic

Revisión 1.0

Instrucciones para el uso de este formato

Este formato es una plantilla tipo para documentos de requisitos de producto para su desarrollo.

Está basado y es conforme con el estándar IEEE Std 830-1998 y ha sido modificada para su suso en un ambiente de desarrollo mecatrónico simplificado.

El uso de este documento permite capturar la información relevante para desarrollar un producto o algunas de sus partes, sean electrónicas, mecánicas, de software y funcionales.

Las secciones que no se consideren aplicables al sistema descrito podrán de forma justificada indicarse como no aplicables (NA).

Notas:

Los textos en color azul son indicaciones que deben eliminarse y, en su caso, sustituirse por los contenidos descritos en cada apartado.

Los textos entre corchetes del tipo "[Inserte aquí el texto]" permiten la inclusión directa de texto con el color y estilo adecuado a la sección, al pulsar sobre ellos con el puntero del ratón.

Los títulos y subtítulos de cada apartado están definidos como estilos de MS Word, de forma que su numeración consecutiva se genera automáticamente según se trate de estilos "Titulo1, Titulo2 y Titulo3".

La sangría de los textos dentro de cada apartado se genera automáticamente al pulsar Intro al final de la línea de título. (Estilos Normal indentado1, Normal indentado 2 y Normal indentado 3).

El índice del documento es una tabla de contenido que MS Word actualiza tomando como criterio los títulos del documento.

Una vez terminada su redacción debe indicarse a Word que actualice todo su contenido para reflejar el contenido definitivo.

Ficha del documento

Fecha	Revisión	Autor	Verificado dep. calidad.		
25-04-2025 1		Francis Lara Sánchez	Smartronic=Francis Lara		

Documento validado por las partes en fecha: [Fecha]

Por el cliente	Por la empresa suministradora
Fdo. D./ Dña cardinal healt	Fdo. D./Dña Mecavisión

Contenido

FICHA DEL	DOCUMENTO	3				
CONTENIDO		2				
1 INTRO	DUCCIÓN 4					
1.1	Propósito 4					
1.2	Alcance 4					
1.3	Personal involucrado 6					
1.4	Definiciones, acrónimos y abreviaturas 7					
1.5	Referencias 7					
1.6	Resumen 8					
2 DESCI	RIPCIÓN GENERAL 8					
2.1	Perspectiva del producto 9 2.2 Funcionalidad del producto 9					
2.3	Características de los usuarios					
2.4	Restricciones 9					
2.5	Suposiciones y dependencias 9					
2.6	Evolución previsible del sistema 9					
3 REQU	ISITOS ESPECÍFICOS 10					
3.1	Requisitos comunes de los interfaces 3.1.1 Interfaces de usuario 10 3.1.2 Interfaces de hardware 11 3.1.3 Interfaces de software 11 3.1.4 Interfaces de comunicación 12					
3.2	Requisitos funcionales 3.2.1 Requisito funcional 1 ¡Error! Marcador no definido. 3.2.2 Requisito funcional 2 ¡Error! Marcador no definido. 3.2.3 Requisito funcional 3 ¡Error! Marcador no definido. 3.2.4 Requisito funcional n ¡Error! Marcador no definido.	to				
3.3	Requisitos no funcionales 14 3.3.1 Requisitos de rendimiento 19 3.3.2 Seguridad 20 3.3.3 Fiabilidad 20 3.3.4 Disponibilidad 20 3.3.5 Mantenibilidad 21 3.3.6 Portabilidad 21					

3.4 Otros requisitos

¡Error! Marcador no definido.

4 APÉNDICES 15

1 Introducción

Propósito

Este documento tiene como objetivo definir el diseño, funcionalidad, interfaces y especificaciones de una empresa de desarrollo de sistemas electrónicos inteligentes, enfocada en la automatización residencial y comercial. Se detalla la propuesta de valor, el producto principal de la empresa, el mercado meta y los requerimientos técnicos que sustentan la implementación de la plataforma de automatización llamada Smartronic OS.

1.2 Alcance

Smartronic se enfoca en desarrollar e integrar soluciones de automatización para hogares y oficinas pequeñas, a través de dispositivos IoT (Internet of Things). Su producto principal es un sistema modular que permite controlar luces, persianas, seguridad, sensores ambientales y climatización desde una interfaz unificada basada en una aplicación móvil multiplataforma.

Incluye:

- Dispositivos de control (interruptores inteligentes, sensores, cámaras).
- Un concentrador central (Smartronic Hub) basado en ESP32.
- Aplicación móvil en Android e iOS.
- API para integraciones con asistentes como Alexa, Google Assistant y Home Assistant.

1.3 Personal involucrado

Nombre	Francis Lara Sánchez	
Rol	Fundador y CTO	
Categoría profesional	Ingeniero en Mecatrónica	
Responsabilidades	Diseño de hardware, firmware y arquitectura del sistema	
Información de contacto	809-587-9635	

1.4 Definiciones, acrónimos y abreviaturas

- IoT: Internet of Things
- API: Application Programming Interface
- UI: User Interface
- ESP32: Microcontrolador WiFi + Bluetooth de Espressif
- OTA: Over-The-Air (actualización remota de firmware)
- PWM: Pulse Width Modulation
- MQTT: Protocolo ligero de mensajería usado en IoT

1.5 Referencias

Referencia	Titulo	Ruta	Fecha	Autor
ESP-IDF	Framework oficial de desarrollo para ESP32	[Ruta]	2025	Espressif
IEEE 802.11	Estándar WiFi		2018	IEEE
ISO/IEC 27001	Seguridad de la información		2022	ISO

1.6 Resumen

Smartronic es una empresa de electrónica orientada a soluciones de automatización inteligente. Su producto modular es accesible, intuitivo, escalable y compatible con tecnologías de terceros. Este documento establece las bases técnicas y organizativas para el desarrollo y despliegue de su primera línea de productos.

2 Descripción general

2.1 Perspectiva del producto

Smartronic OS es el sistema centralizado que integra y controla todos los dispositivos inteligentes de la marca. Funciona como un middleware entre el hardware (sensores, actuadores, cámaras) y los usuarios finales a través de una aplicación móvil. El sistema es modular y escalable: permite agregar nuevos dispositivos simplemente conectándolos a la red WiFi y registrándolos en la aplicación.

Los principales componentes del sistema son:

- **Smartronic Hub:** Unidad central basada en ESP32 que coordina todos los dispositivos locales.
- Aplicación Smartronic Home: Disponible para Android y iOS, permite la configuración y control remoto.
- **API Smartronic Connect:** Permite integrar dispositivos de terceros (Alexa, Google Home, Home Assistant).

2.2 Funcionalidad del producto

- Encendido y apagado de luces, aires acondicionados y electrodomésticos.
- Control de persianas motorizadas.
- Monitoreo ambiental (temperatura, humedad, calidad del aire).
- Activación de alarmas de seguridad (sensores de movimiento, puertas, ventanas).
- Programación de rutinas inteligentes (ej: "modo noche", "modo vacaciones").
- Monitoreo en tiempo real mediante cámaras de seguridad.
- Actualización de firmware OTA para dispositivos conectados.

2.3 Características de los usuarios

Tipo de usuario: Usuario final residencial

- Formación: No requiere conocimientos técnicos.
- Actividades: Control de casa inteligente desde la app.

Tipo de usuario: Instalador certificado

- Formación: Curso básico Smartronic de 20 horas.
- Actividades: Instalación de dispositivos, configuración de red.

Tipo de usuario: Soporte técnico

- Formación: Técnico en electrónica / redes.
- Actividades: Diagnóstico remoto y asistencia en instalaciones.

2.3 Restricciones

- El sistema debe operar bajo una red WiFi de 2.4 GHz estable.
- Los dispositivos deben ser energéticamente eficientes (consumo <2W en modo standby).
- El diseño del hardware debe cumplir la normativa FCC y CE para dispositivos electrónicos de consumo.
- El app debe ser compatible con Android 8.0+ y iOS 13+.
- No debe almacenar datos personales sin consentimiento explícito del usuario (cumplimiento GDPR).

2.4 Suposiciones y dependencias

- Se supone que los usuarios tendrán acceso a internet en sus hogares u oficinas.
- Se asume disponibilidad de dispositivos móviles compatibles.
- Se depende de proveedores externos para servicios en la nube (AWS IoT Core).
- La estabilidad del sistema depende de la calidad de la red WiFi disponible.
- Se prevé que los sistemas de terceros (Alexa, Google Home) mantendrán compatibilidad mediante sus APIs públicas.

3 Requisitos específicos

3.1 Requisitos comunes de los interfaces

3.1.1 Interfaces de usuario

• Aplicación Smartronic Home

- Interfaz intuitiva en español e inglés.
- o Diseño adaptativo (responsive) compatible con móviles y tablets.
- Panel principal con control por habitación, escenas programadas y acceso rápido a dispositivos favoritos.
- Módulo de configuración para añadir dispositivos, cambiar nombres y crear automatizaciones.
- Sección de alertas y notificaciones (ej. puerta abierta, detección de humo).

• Interfaz web (opcional)

- o Para usuarios administradores (edificios, oficinas) vía navegador.
- Permite ver estadísticas de uso energético, consumo por dispositivo y control masivo de nodos.

Accesibilidad

- o Compatible con lectores de pantalla.
- o Modos de alto contraste y texto grande disponibles.

3.1.2 Interfaces de hardware

• Smartronic Hub (ESP32):

- o Conexión WiFi 2.4GHz, Bluetooth BLE.
- o Comunicación vía MQTT y HTTP.
- o GPIOs configurables para sensores y relés.

• Sensores inteligentes:

- DHT22 (temperatura/humedad), sensores magnéticos, sensores PIR de movimiento.
- Comunicación inalámbrica con el hub o mediante protocolo I²C/SPI.

Actuadores:

- o Relés de estado sólido para control de luces o enchufes.
- Servomotores o motores DC controlados por PWM para persianas.

• Fuente de alimentación:

o Entrada universal 90-240V AC -> 5V o 12V DC regulado.

3.1.3 Interfaces de software

• API REST Smartronic Connect

- o Para integración con asistentes virtuales o apps de terceros.
- o Autenticación por token y OAuth 2.0.
- o Formatos compatibles: JSON para entrada/salida.

Base de datos

- Firebase Realtime Database (para usuarios) + Firestore para logs.
- o Cada dispositivo tiene ID único, nombre, tipo, estado, historial y métricas.

Firmware OTA

Actualización remota mediante HTTPS con cifrado SSL.

3.1.4 Interfaces de comunicación

- WiFi 2.4GHz (IEEE 802.11 b/g/n)
- MQTT sobre TCP/IP para envío rápido y ligero de eventos.
- Bluetooth BLE para configuración inicial del hub y dispositivos.
- HTTPS para comunicación con la nube y actualización OTA.

3.2 Requisitos Funcionales

- RF1. El sistema debe permitir el encendido/apagado de dispositivos eléctricos mediante la app.
- RF2. El sistema debe permitir la configuración de rutinas y automatizaciones horarias o condicionales.
- RF3. El sistema debe notificar al usuario si se detecta movimiento cuando no hay nadie en casa.
- RF4. El usuario debe poder configurar zonas específicas para sensores (por ejemplo, ventanas, puertas).
- RF5. El sistema debe soportar actualización OTA sin necesidad de intervención técnica. RF6. Los datos deben sincronizarse en la nube para acceso remoto y análisis.

3.3 Requisitos No Funcionales

RNF1. La app debe ser capaz de actualizar estados de dispositivos en menos de 1 segundo. RNF2. El sistema debe tener una disponibilidad del 99.9% mensual. RNF3. El firmware del Hub debe poder operar sin conexión a internet, al menos en funciones

RNF4. La interfaz debe ser intuitiva, accesible y configurable. RNF5. La seguridad de las comunicaciones debe cumplir el estándar TLS 1.2 o superior.

3.4.6 Portabilidad

El sistema Smartronic ha sido diseñado desde su concepción con un enfoque fuerte en la portabilidad, tanto a nivel de software como de hardware, para permitir su uso en diferentes entornos y plataformas sin modificaciones significativas. Esta característica es esencial para garantizar la expansión del producto a otros mercados, adaptabilidad tecnológica, y reducción de costos en actualizaciones o migraciones.

a) Portabilidad del Software

1. Independencia del sistema operativo

- o La arquitectura del software backend (basada en Python/Node.js) está diseñada para ser completamente multiplataforma.
- o Puede ejecutarse en sistemas Linux, Windows e incluso macOS sin requerir cambios en el código fuente.
- El firmware de los dispositivos Smartronic está basado en ESP-IDF (para ESP32), que es compatible con compiladores GCC en cualquier SO.

2. Contenedores y despliegue

- Se utiliza Docker para encapsular los servicios del sistema, lo que permite su implementación idéntica en entornos locales, en la nube o híbridos.
- Esto facilita el paso de pruebas locales a producción, reduciendo el margen de error por diferencias de entorno.

3. Independencia del hardware del servidor

- El backend puede desplegarse en servidores virtuales (VPS), cloud (AWS, Azure, GCP), o incluso en dispositivos de bajo costo como Raspberry Pi 4, permitiendo soluciones económicas y escalables.
- El código evita dependencias con drivers propietarios, y se basa en bibliotecas ampliamente soportadas como SQLite, MQTT, Flask, Firebase SDK y OpenCV.

4. Portabilidad de la App Móvil

- La aplicación Smartronic Home está desarrollada con Flutter, un framework que permite exportar una sola base de código tanto para Android como para iOS.
- Esto reduce el tiempo de mantenimiento, mejora la coherencia visual y facilita las actualizaciones simultáneas en ambas plataformas.

b) Portabilidad del Hardware

1. Diseño modular y adaptable

- Los dispositivos están diseñados para ser fácilmente adaptables a distintos estándares eléctricos (por ejemplo, interruptores 110V para América y 220V para Europa).
- Se utilizan fuentes conmutadas internas capaces de operar entre 90-240V AC, 50-60Hz.

2. Compatibilidad con cajas de empotrar estándar

El diseño físico de los interruptores y sensores sigue estándares internacionales de instalación (DIN, cajas cuadradas o rectangulares de 4x2"), lo que facilita su adopción global sin necesidad de adaptadores.

3. Firmware parametrizable v escalable

Las versiones del firmware se pueden compilar con distintas configuraciones regionales (idioma, frecuencia de red, API endpoints), y actualizar OTA dependiendo del país del cliente.

c) Beneficios estratégicos de la portabilidad

• Expansión global más rápida: el producto no necesita rediseñarse para nuevos mercados.

Smartronic

- Reducción de costos de mantenimiento: una sola base de código y diseño modular disminuyen el esfuerzo de soporte.
- Interoperabilidad: gracias a su API estandarizada, Smartronic puede integrarse fácilmente con otras plataformas y sistemas domóticos como Home Assistant, OpenHAB o SmartThings.
- Futuro a prueba: cualquier migración a nuevas plataformas, nubes o protocolos (como Matter o Thread) será viable con cambios mínimos.

Conclusiones

El sistema Smartronic representa una propuesta integral y estratégica dentro del ámbito de la automatización electrónica residencial y comercial. Basado en tecnologías emergentes como IoT, microcontroladores de alta eficiencia (ESP32), y arquitecturas modernas de software (cloud-native, apps móviles híbridas y APIs abiertas), este proyecto busca democratizar el acceso a soluciones inteligentes para hogares y oficinas, sin comprometer la calidad, la seguridad o la escalabilidad.

La empresa ha priorizado desde el inicio una arquitectura modular, portable, intuitiva y centrada en la experiencia del usuario. Esta visión ha permitido el desarrollo de un ecosistema cohesivo compuesto por hardware fácilmente instalable, firmware robusto, y software adaptable a múltiples plataformas y contextos, garantizando que tanto usuarios finales como integradores profesionales puedan interactuar con Smartronic de manera fluida y segura.

Uno de los mayores logros de esta solución es su capacidad de expansión futura, gracias a:

- Su compatibilidad con estándares y asistentes virtuales de terceros.
- Su capacidad de actualización remota (OTA) que reduce la obsolescencia.
- Su diseño físico y eléctrico adaptable a normativas internacionales.
- Su backend y app multiplataforma con mínimo esfuerzo de mantenimiento.

Desde un punto de vista económico y operativo, Smartronic también aporta un alto valor agregado, tanto en reducción de costos energéticos como en seguridad del hogar, confort ambiental, y monitoreo en tiempo real. Todo esto hace posible su inserción en diversos mercados, desde residencias familiares hasta soluciones a nivel de condominios inteligentes o pequeñas oficinas distribuidas.

Asimismo, la portabilidad y flexibilidad que ofrece el sistema lo convierten en una plataforma de automatización altamente viable para regiones con infraestructuras variables, lo cual fortalece su posicionamiento como una solución global y resiliente frente a cambios tecnológicos.

Finalmente, este documento establece las bases fundamentales para el desarrollo continuo de Smartronic, sirviendo no solo como guía técnica y organizativa, sino también como declaración del compromiso con la innovación, la calidad y la eficiencia que definen el

núcleo de la empresa. A partir de aquí, se trazan los caminos hacia una futura integración con inteligencia artificial, análisis predictivo, aprendizaje automático y control energético adaptativo, consolidando a Smartronic como un referente emergente dentro del sector de tecnología domótica.

5. Apéndice

5.1 Integración con otros sistemas

Smartronic ha sido diseñado con una arquitectura abierta, lo que permite su integración con diversos sistemas de terceros, tanto para hogares como entornos comerciales o industriales. Entre las plataformas compatibles destacan:

- Amazon Alexa y Google Assistant: integración nativa mediante API REST y autenticación OAuth 2.0.
- **Home Assistant y OpenHAB:** gracias al uso de MQTT, los dispositivos pueden integrarse directamente con hubs de automatización personal.
- ERP o BMS (Building Management Systems): a través de módulos complementarios, se puede conectar a sistemas de gestión energética o de mantenimiento predictivo.

Esta capacidad de interoperabilidad garantiza que Smartronic no solo sea una solución vertical, sino una pieza que se adapta en ecosistemas tecnológicos más amplios.

5.2 Herramientas utilizadas durante el desarrollo

- Lenguajes de programación:
 - o *Python* (backend en la nube y firmware).
 - \circ C/C++ (para firmware bajo ESP-IDF).
 - o Flutter (Dart) (aplicación móvil Android/iOS).
 - o JavaScript + Node.js (integraciones web, dashboards técnicos).
- Frameworks y plataformas:
 - o ESP-IDF: framework oficial para desarrollo en ESP32.
 - o Firebase: base de datos en tiempo real y autenticación.
 - o *Docker*: contenedores para backend portátil.
 - o MQTT + Mosquitto: protocolo de mensajería.
 - o GitHub Actions: automatización de despliegues OTA.
- Hardware utilizado:
 - o ESP32-WROOM, ESP32-S3.
 - o DHT22, sensores PIR HC-SR501, módulos de relé 5V.
 - o Cámara ESP32-CAM para videovigilancia.

5.3 Normativas y estándares de referencia

- **IEEE 802.11:** Estándar de comunicación WiFi.
- TLS 1.2 / SSL: Cifrado de extremo a extremo para comunicaciones seguras.
- ISO/IEC 27001: Gestión de seguridad de la información.
- IEC 60669: Estándar de interruptores y controles eléctricos de uso doméstico.
- GDPR (Reglamento General de Protección de Datos): Normativa de privacidad aplicable a usuarios en la Unión Europea.

5.4 Glosario de términos

- OTA (Over-The-Air): método de actualización remota del firmware de los dispositivos.
- MQTT: protocolo ligero de mensajería ideal para IoT.
- BLE (Bluetooth Low Energy): protocolo inalámbrico eficiente para comunicación local.
- **Hub:** dispositivo central que interconecta los dispositivos Smartronic.
- Escena: conjunto de acciones automatizadas (ej: apagar luces y cerrar persianas).
- **Domótica:** disciplina que automatiza los sistemas de un hogar.
- SDK (Software Development Kit): conjunto de herramientas para programar extensiones o integraciones.
- Interfaz responsiva: diseño adaptable a distintas pantallas y resoluciones.

