Parishram (2025)

Physics

DPP:3

Electric Charges and Fields

- **Q1** $+2\mathrm{C}$ and $+6\mathrm{C}$ two charges are repelling each other with a force of $12 \, \mathrm{N}$. If each charge is given -2C of charge, then the value of force will be:
 - (A) 4 N (Attractive)
 - (B) 4 N (Repulsive)
 - (C) 8 N (Repulsive)
 - (D) Zero
- **Q2** Dielectric constant of pure water is 81. Its permittivity will be in MKG units:
 - (A) $7.17 imes 10^{-10}$
 - (B) $8.\,86\times10^{-12}$
 - (C) 1.02×10^{13}
 - (D) cannot be calculated
- Q3 Two small conducting spheres of equal radius have charges $+10\mu\mathrm{C}$ and $-20\mu\mathrm{C}$ respectively and placed at a distance R from each other experience force F_1 . If they are brought in contact and separated to the same distance, they experience force F_2 . The ratio of F_1 to F_2
 - (A) 1:2
- (B) -8:1
- (C) 1:8
- (D) -2:1
- **Q4** Two charges placed in air repel each other by a force of $10^{-4} \, \mathrm{N}$. When oil is introduced between the charges, the force on the charge becomes $2.5 imes 10^{-5}$ m N. The constant of oil is:
 - (A) 2.5
- (B) 0.25
- (C) 2.0
- (D) 4.0

- **Q5** Charge q_2 of mass m revolves around a stationary charge q_1 in a circular orbit of radius r. The orbital periodic time of q_2 would be
 - (A) $\left[4\pi^2 \text{ mr}^3\right]^{1/2}$ $kq_1 q_2$
 - (B) $\left\lceil \frac{kq_1 \ q_2}{} \right\rceil^{1/2}$ $4\pi^2~{
 m mr}^3$
 - (C) $\left[\frac{4\pi^2 \text{ mr}^4}{\text{kq}_1 \text{ q}_2} \right]^{1/2}$
 - (D) $\left[\frac{4\pi^2 \text{ mr}^2}{\text{kq}_1 \text{ q}_2}\right]^{1/2}$
- Q6 Two identical charges repel each other with a force equal to $10~\mathrm{g}$ -wt when they are $0.6~\mathrm{m}$ apart in air. $(g=10~{
 m ms}^{-2})$ The value of each charge is:
 - (A) 2 mC
- (B) $2 imes 10^{-7}$
- (C) 2 nC
- (D) $2\mu C$
- ${f Q7}$ A charge ${f q}_1$ exerts some force on a second charge q_2 . If third charge q_3 is brought near, the force that q_1 exerts on q_2 and net force on q₂ respectively
 - (A) decreases, increases
 - (B) increases, increases
 - (C) remains unchanged, may increase or decrease
 - (D) remains unchanged, remains unchanged
- **Q8** Four charges are arranged at the corners of a square ABCD, as shown in the adjoining figure. The force on the charge a kept at the centre O is:

- (A) zero
- (B) along the diagonal $AC\,$
- (C) along the diagonal $BD\/$
- (D) perpendicular to side \overline{DC}
- $\mbox{\bf Q9}\mbox{\ }$ Three charges 4q,Q and q are in a straight line in the position of 0, l/2 and l respectively. The resultant force on ${\bf q}$ will be zero, if ${\bf Q}$ is:
 - (A) $-\mathbf{q}$
- (B) $-2\mathbf{q}$
- (C) $-\frac{1}{2}$
- (D) 4q

Answer Key

Q1 (D) Q2 (A)

Q3 (B)

Q4 (D)

Q5 (A) Q6 (D)

(C) **Q7**

(D) Q8

(A) Q9

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

Q6 Video Solution:

Q7 Video Solution:

Q8 Video Solution:

Q9 Video Solution:

Android App | iOS App | PW Website