

Stem and Leaf Plots Scatter Plots

Stem and Leaf Plots

Sachin's score in his last 30 ODI's

[40, 175, 10,69,43, 96, 8, 4, 200, 7, 24, 28, 120, 38, 27, 111) 2, 53, 85, 18, 2, 48, 15, 3, 22, 14, 39, 6, 114, 52]

Stem		Leaf
	6	9
	8	5
	9	6
	11	1

Stem and Leaf Plots

Sachin's score in his last 30 ODI's [2,2,3,4,6,7,8,10,14,15,18,22,24,27,28,38,39,40,43,48,52,53,69,85,96,11,114,120,175,200]

Stem	Leaf
0	2234678
1	0458
2	2478
3	89
4	038
5	23
6	9
7	
8	5
9	6
10	
11	14

Stem and Leaf Plots (continuous data)

Sachin's strike rate in his las 30

ODIs

[58,82, 124.11, 58.82,109.52,

82.69, 92.3, 100, 80, 136.05,

63.63, 54.54, 96.55, 104.34,

67.85, 122.72, 109.9, 50.11,

77.94, 73.91,128.57, 33.33,

76.19, 62.5, 25, 95.65, 93.33,

130, 31.57, 77.55, 108.33]

"Efficient way of describing small and medium data"

Stem	Leaf
2	5
3	23
4	
5	0599
6	248
7	4688
8	03
9	2367
10	048
11	00
12	349
13	06

Stem and Leaf Plots (for Large Values)

State / Union Territory	NSDP(INR)
Goa	467998
Delhi	365529
Sikkim	357643
Chandigarh	297313
Haryana	226644
Puducherry	22 <mark>0461</mark>
Karnataka	210887
Telangana	205696
Uttatakhand	19 <mark>8738</mark>
Tamil Nadu	193750
Maharashtra	180596
Kerala	179523

Stem		Leaf
	17	9523
	18	0596
	19 (3750 <mark>8738</mark>
7	20	5696
	21	0887
	22	0461 6644
	29	7313
	35	7643
	36	5529
	46	7798

What if the data contains bigger values?

Stem and Leaf Plots (Splitting Rows)

What if a row has many values?

	Stem	Leaf
ues ?	43	<mark>0</mark> 12, <mark>0</mark> 19 <mark>,2</mark> 13 <mark>,3</mark> 14 <mark>,4</mark> 19
	43	514, <mark>6</mark> 25, <mark>7</mark> 65, <mark>8</mark> 22, <mark>9</mark> 91
independent	Row 1: leaf starting from Row 2: leaf starting from Property in the Row 2: leaf starting from Ro	/

Stem and Leaf Plots Vs Histogram

Stem & Leaf Plot looks like a histogram rotated on its side

More informative: displays values with group

Histogram

Stem and Leaf Plots Vs Histogram

Stem & Leaf Plot is not preferred for large data set histogram is better

Stem and Leaf Plots Vs Histogram

Displaying individual values makes it easy to spot

patterns

Stem		Leaf
0 (1	
(Diff of 3)	2	222 555 <mark>5 888</mark>
	3	
(Diff of 3)	4	111 4444 777
	5	
	6	11 44444 579
	7	
(Multi of 2)	8	000 22 444 66 888

Back to back Stem and Leaf Plots 2 Sides

Test
Scores

Leaf	Stem	Leaf
8875210	0	2234678
30	1	0458
1	2	2478
72	3	89
	4	038
	5	23
	6	9
76	7	
1	8	5
	9	6
	10	

Scores

Can be used to compare 2 different sets of data

How to describe relationship between variables? Scatter Plots

Multiple attributes in datasets

Cricket

Runs, Balls, Minutes, Strike Rate, dismissal

Agriculture

State, district, crop, area, yield

E Commerce

Price, Color, Pattern, Size, Discount

We often expect certain relationship between attributes

Runs Scored = f(Balls faced)

Total yield = g(area)

Price = h(Size)

Can individual plots reveal relations

Individual Histograms do not reveal such information's

How does sachin's score change as the number of balls faced increases

Can individual plots reveal relations

Frequency Runs

Individual Histograms do not reveal such information's How does sachin's score change as the number of balls faced increases

Scatter Plot (relationship b/n Variables)

X – co ordinates balls faced, Y – co ordinates runs scored

Scatter Plot (relationship b/n Variables)

Not for qualitative variables

2 Continuous variables (farm data)

1 Continuous and 1 discrete (strike rate Vs Runs)

Recap on fuctions

Types of Correlations

Use of Scatter Plots in ML

Use of Scatter plot in ML

1. Identifying discriminatory features

Age	Height	 Risk
38	6	×
47	5.8	
53	5.10	

Use of Scatter plot in ML

1. Identifying discriminatory features

Use uncorrelated or non redundant features for classification

Summary

Summary

Thank You!