

TDS

Computacional Thinking using Python Conceitos Iniciais & Introdução a Lógica de Programação Prof. Dr. Daniel Trevisan Bravo

* Material adaptado da Profa. Patrícia Angelini

2. INTRODUÇÃO À LÓGICA DE PROGRAMAÇÃO

LÓGICA

Pode-se entender como lógica, a ciência dos princípios formais do raciocínio.

Todos têm a capacidade de raciocínio, porém é necessário representá-la formalmente. A lógica estuda a organização do pensamento ou raciocínio estruturado.

 A lógica de programação é a base para o desenvolvimento de todo e qualquer tipo de programa de computador e é representada por meio de algoritmos.

ALGORITMOS

Entende-se por algoritmo uma **sequência finita** de instruções que não pode ter duplo sentido e que pode ser executada **mecanicamente**

De forma prática é como uma "receita de bolo" dando ao computador instruções detalhadas sobre como executar determinada tarefa. Essa sequência de regras formais normalmente envolve expressões matemáticas para a resolução de um problema.

Problema é uma **proposta duvidosa** que pode ter múltiplas soluções ou mesmo não ter nenhuma, **logo cada indivíduo pode construir sua própria solução.**

EXEMPLO 1

Problema das Torres de Hanói: inicialmente têm-se três hastes (A, B e C) e, na haste A, repousam três anéis de diâmetros diferentes, em ordem decrescente por diâmetro.

OBJETIVO

Transferir os três anéis da haste A para C, usando B se necessário. As regras de movimento são as seguintes:

- deve-se mover um único anel por vez;
- um anel de diâmetro maior nunca pode repousar sobre algum outro de diâmetro menor.

ALGORITMO

INÍCIO

- 1. Mover um anel da haste A para a haste C.
- 2. Mover um anel da haste A para a haste B.
- 3. Mover um anel da haste C para a haste B.
- 4. Mover um anel da haste A para a haste C.
- 5. Mover um anel da haste B para a haste A.
- 6. Mover um anel da haste B para a haste C.
- 7. Mover um anel da haste A para a haste C.

FIM

EXEMPLO 2

Problema dos Missionários e Canibais:

Três missionários e três canibais precisam atravessar um rio. Para tal, dispõem de um barco com capacidade para duas pessoas. Por medida de segurança, não se deve permitir que em alguma margem a quantidade de missionários seja inferior à de canibais

ALGORITMO

INÍCIO

- 1. Atravessar um missionário e um canibal para a margem B.
- 2. Voltar o missionário para a margem A.
- 3. Atravessar dois canibais para a margem B.
- 4. Voltar um canibal para a margem A.
- 5. Atravessar dois missionários para a margem B.
- 6. Voltar um missionário e um canibal para a margem A.
- 7. Atravessar dois missionários para a margem B.
- 8. Voltar um canibal para a margem A.
- 9. Atravessar dois canibais para a margem B.
- 10. Voltar um canibal para a margem A.
- 11. Atravessar dois canibais para a margem B.

FIM

Fases para Montar um Algoritmo com solução computacional

Para montar um algoritmo, é necessário dividir o problema apresentado em três fases fundamentais:

- Entrada: dados de entrada
- Processamento: procedimentos utilizados para se chegar ao resultado final
- Saída: dados processados

EXEMPLOS DE ALGORITMO COM SOLUÇÃO COMPUTACIONAL

Soma de 2 números inteiros definidos pelo usuário

TIPOS DE ALGORITMOS

Não estruturados: são aqueles usados para descrever soluções para problemas cotidianos e que não necessariamente podem ser executados por máquinas.

Estruturados: são aqueles usados para descrever instruções detalhadas considerando que as mesmas serão executadas por máquinas.

FORMAS DE REPRESENTAÇÃO DE ALGORITMOS

Diagrama de fluxo: também conhecido como diagrama de blocos é uma forma gráfica que representa as instruções de acordo com formas geométricas padronizadas e mundialmente aceitas.

Pseudocódigo: também conhecido como portugol descreve as instruções em língua portuguesa como se fossem instruções em linguagem nativa.

EXEMPLO DE DIAGRAMA DE BLOCOS

SIMBOLOS DO DIAGRAMA DE BLOCOS

Símbolo	Função
TERMINAL	Indica o INÍCIO ou FIM de um processamento Exemplo: Início do algoritmo
PROCESSAMENTO	Processamento em geral Exemplo: Calculo de dois números
ENTRA/SAÍDA	Operação de entrada e saída de dados Exemplo: Leitura e Gravação de Arquivos
DECISÃO	Indica uma decisão a ser tomada Exemplo: Verificação de Sexo

SIMBOLOS DO DIAGRAMA DE BLOCOS

Símbolo	Função
DESVIO	Permite o desvio para um ponto qualquer do programa
DESVIO	Indica entrada de dados através do Teclado
	Exemplo: Digite a nota da prova 1
ENTRADA MANUAL	
	Mostra informações ou resultados Exemplo: Mostre o resultado do calculo
EXIBIR	
	Relatórios
RELATÓRIO	

Tipos de Dados

- Os dados são representados por elementos advindos do mundo externo, os quais representam as informações que os seres humanos manipulam. Eles devem ser abstraídos para serem processados por um computador
- São caracterizados por três tipos básicos:
 - Numéricos (inteiros ou reais)
 - Caracteres
 - Lógicos

Inteiros

- Dados numéricos positivos ou negativos
- Exclui qualquer valor numérico fracionário
- Exemplo: 35, 234, -56, -9, 0

Reais

- Dados numéricos positivos, negativo e números fracionários
- Exemplo: 35, 234, -56, -9, -45.99, 4.5, 0

Caracteres

- Sequência de valores delimitados por aspas
- Formadas por: letras, números e símbolos
- Também conhecido como: alfanumérico, string, literal, cadeia
- Exemplo: "Programação", "10a", "10", " "

Lógicos

- Dados com valores que sugerem uma única opção entre duas possibilidades existentes
- Representação: verdadeiro ou falso, 0 (zero) ou 1 (um), sim ou não
- Também conhecido como booleano

- Variável é tudo aquilo que é sujeito a variações, que é incerto, instável ou inconstante.
- Como referenciar a armazenar os dados armazenados em um computador?
 - Os valores são armazenados na memória
 - Cada tipo de dado diferente ocupa um número específico de bytes na memória
 - Para recuperar um valor é necessário saber o seu tipo e o endereço do byte inicial ocupado na memória

- De forma geral, podemos dizer que uma célula de memória está associada a um identificador
- O termo variável é frequentemente utilizado com sinônimo de identificador
- Variável é uma entidade que guarda valores que podem ser alterados no decorrer de um algoritmo
- Embora uma variável possa assumir diferentes valores, ela só pode armazenar um valor a cada instante

- Uma variável não pode armazenar um valor de tipo de dado diferente daquele para o qual foi criada
- Uma variável deve possuir um nome e este é utilizado para sua identificação e representação dentro de um programa.

Imagine a mémoria de um computador como um grande arquivo com várias gavetas, e em cada gaveta é possível guardar um único valor por vez. Como em um arquivo, as gavetas devem estar identificadas com uma "etiqueta" contendo um nome.

- Regras de definição e uso de variáveis:
 - O nome de identificação de uma variável pode utilizar um ou mais caracteres
 - O primeiro caractere de identificação do nome de uma variável deve sempre ser alfabético (letras maiúsculas ou minúsculas), os demais podem ser alfanuméricos (letras, números e _)
 - Na definição de um nome composto de uma variável não podem existir espaços em branco entre os nomes
 - Jamais uma variável pode ser definida com o mesmo nome de uma palavra que represente os comandos de uma linguagem de programação de computadores, ou seja, as palavras reservadas de uma linguagem de programação
 - Não pode ser utilizado como nome de variável algum que já tenha sido usado para identificar o nome de um programa

Operadores Aritméticos

- Duas categorias: unários e binários
- São unários quando atuam na inversão do estado de um valor numérico
- São binários quando utilizados em operações matemáticas de divisão, multiplicação, adição e subtração
- Em uma expressão aritmética, caso necessite alterar o nível de prioridade de um referido cálculo, ele deve ser definido por meio de parênteses.

27

Expressões Aritméticas

- São definidas pelo relacionamento existente entre variáveis e constantes numéricas com a utilização dos operadores aritméticos
- Exemplo

```
resultado \leftarrow 10 * (3 + v1)
```


Diagrama de Blocos – Soma de 2 números inteiros

REFERÊNCIAS

- OLIVEIRA, Jayr Figueiredo de; MANZANO, José Augusto N. G. Algoritmos: Lógica para Desenvolvimento de Programação de Computadores. 23ª Edição. São Paulo: Érica, 2010.
- CONCILIO, Ricardo et al. Algoritmos e lógica de programação. 2ª Edição. São Paulo: Cengage, 2011