MANIPULATING TABLES

Adelaide Code Club 16/06/2022

OUTLINE FOR TODAY

- Recap of last week
- A few more join functions
- Comparing similar datasets
- Extracting values

RECAP

- pivot_longer(
 x = dataframe,
 cols= columns to make longer,
 names_to=n ew column name,
 values_to = name of new column for
 values)
- pivot_wider(
 x= dataframe,
 names_from= name of column to widen,
 values_from= name of column with values)

country	year	cases	country	1999
fghanistan	1999	745	Afghanistan	7/15
Afghanistan	2000	2666	Brazil	37737
Brazil	1999	37737	China	212258
Brazil	2000	80488		
China	1999	212258		
China	2000	213766		table4

_			
country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583
	ta	able2	
	τά	abie2	

d plur ophradyers of

RECAP

• separate(

col= name of column,
into= name of new columns,
sep= separatpr character,
convert= TRUE/FALSE as to whether to
leave as character or change to integer)

country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583
	ta	ble3

• unite(
 col= name of new column,
 ...= name of columns to join,
 sep= delimiter to pit between columns)

country	year	rate
Afghanistan	19 99	745 / 19987071
Afghanistan	20 00	2666 / 20595360
Brazil	19 99	37737 / 172006362
Brazil	2000	80488 / 174504898
China	19 99	212258 / 1272915272
China	2000	213766 / 1280428583


```
*_join(
x= df_1,
y= df_2.
by=col_name or c(col_1, col_2) or
by=(x = grouping_var_x & y =
grouping_var_y) if x and y cols have different names
)
```

left_join()

a t 1 3 b u 2 2 c v 3 NA

ABCD

right_join()

A B C D
a t 1 3
b u 2 2
d w NA 1

inner_join()

A B C D
a t 1 3
b u 2 2

full_join()

MANIPULATING DATASETS

- You may have two of the same dataset from different sources
- These might have small differences that need to be reconciled to assimilate into one data frame

A FEW MORE JOIN FUNCTIONS

- There are 2 more join functions that can be useful
 - to check a join is going to go how you want.
 - Syntax is the same

A FEW MORE JOIN FUNCTIONS

- There are 2 more join functions that can be useful
 - to check a join is going to go how you want.
 - Syntax is the same
- semi_join (x, y, by=) rows of x that match in y (if you perform a left join will show what will be kept)

A FEW MORE JOIN FUNCTIONS

- There are 2 more join functions that can be useful
 - to check a join is going to go how you want.
 - Syntax is the same
- semi_join (x, y, by=) rows of x that
 match in y (if you perform a left join will show what
 will be kept)
- anti_join (x, y, by=) shows what in x is not in y (and will be excluded from join)

• intersect(x, y)— rows that are in both x and y

- intersect(x, y)— rows that are in both x and y
- setdiff(x, y) rows that are in x but not y

- intersect(x, y)— rows that are in both x and y
- setdiff(x, y) rows that are in x but not y
- union(x, y)— rows that's are in x or y but without duplicates.

- intersect(x, y)— rows that are in both x and y
- setdiff(x, y) rows that are in x but not y
- union(x, y) rows that's are in x or y but without duplicates.

• setequal(x, y)— to test if two data set have the same rows in any order.

EXTRACTING VALUES

 pull(data, var=col names or position)— extracts the values of a column into a vector

EXTRACTING VALUES

- pull(data, var=col names or position)— extracts the values of a column into a vector
- select(data, var=col names or position)— extracts the column into a table

EXERCISE TIME!

SUMMARY

- How to check joins with semi_join and anti_join
- How to compare similar datasets with intersect, setdiff and union.
- How to extract values using pull or select.