Hilbert 空間

信号処理-第2講

村田 昇

前回のおさらい

ベクトル空間

- 以下の条件を満たす
 - 1. $a, b \in V \implies a + b \in V$ (線形性)
 - 2. $a, b, c \in V \implies (a+b) + c = a + (b+c)$ (結合則)
 - $3. a, b \in V \implies a+b=b+a$ (交換則)
 - 4. $\exists 0 \in V$ s.t. $\forall a \in V$, a + 0 = a (零元)
 - 5. $\forall a \in V \implies \exists -a \in V \text{ s.t. } a + (-a) = 0$ (逆元)
 - 6. $\forall \lambda \in K, \forall a \in V \Rightarrow \lambda a \in V$ (スカラ倍)
 - 7. $\forall \lambda, \mu \in K, \forall a \in V \implies (\lambda \mu)a = \lambda(\mu a)$ (結合則)
 - 8. $\exists 1 \in K$ s.t. $\forall a \in V$, 1a = a (K の単位元)
 - 9. $\forall \lambda \in K, \forall a, b \in V \implies \lambda(a+b) = \lambda a + \lambda b$ (分配則)
 - 10. $\forall \lambda, \mu \in K, \forall a \in V \implies (\lambda + \mu)a = \lambda a + \mu a$ (分配則)

ベクトル空間の例

- 幾何ベクトル
- 数ベクトル
- 関数空間 *C^m*[0,1]

区間 [0,1] 上の実数値関数で、m 階微分可能な関数の集合。和とスカラ倍は以下で定義される。

$$(f+g)(x) = f(x) + g(x)$$
(和)
(λf)(x) = λf (x) (スカラ倍)

線形独立

定義

$$\lambda_1 a_1 + \cdots + \lambda_k a_k = 0$$

となるのが $\lambda_1 = \cdots = \lambda_k = 0$ に限られるとき、 $\{a_1, \ldots, a_k\}$ は 線形独立 であるという.

基底

定義

Vの極大独立集合をVの基底と呼ぶ。Vの階数,すなわち極大独立集合の基数をVの 次元 (dimension) という。

• 極大独立集合

ある集合 S の線形独立な部分集合 $B \subset S$ を考える。 $\forall b \in S - B$ において $B \cup \{b\}$ が線形従属のとき,B は 極大独立集合 であるという。

基底の重要性

• 定理

$$B = \{u_1, \dots, u_n\}$$
 を V_n の基底とする。 $\forall b \in V_n$ は B に線形従属で,
$$b = \lambda_1 u_1 + \dots + \lambda_n u_n$$

と一意に表される。

- ベクトル b を数ベクトル $(\lambda_1, \ldots, \lambda_n)$ で表すことができる

演習

練習問題

- 以下の集合 V のうちベクトル空間はどれか?
 - $V = \{f \in C^3(-\pi, \pi)$ π $f^{(2)} + f^{(1)} + f = 0\}$

-
$$V = \{f \in C^3(-\pi, \pi)$$
 $Φ$ $^{(2)} + f^{(1)} + f = 1\}$

- 以下の集合のうち線形独立なものはどれか?
 - $-\{1, x, x^2\} \quad (x \in \mathbb{R})$
 - $-\{1-x, 1+x, 1-x^2\}\ (x \in \mathbb{R})$
- 以下のベクトル空間の空間の次元は?
 - $C^m[0,1]$
 - $-V = \{f(x) = a + bx + cx^2, (a, b, c) \in \mathbb{R}^3\}$

内積空間

内積

• 定義

ベクトル空間の2つの要素 $u,v \in \mathcal{H}$ に対して、次の性質を持つ2変数関数を**内積**という。

- 1. $\langle u, u \rangle \ge 0$ 特に $\langle u, u \rangle = 0 \implies u = 0$
- 2. $\langle u, v \rangle = \overline{\langle v, u \rangle}$ (複素共役) なお, 体 K が実数の場合は $\langle u, v \rangle = \langle v, u \rangle$
- 3. $\langle \alpha u + \beta u', v \rangle = \alpha \langle u, v \rangle + \beta \langle u', v \rangle$ (線形性)
- $-\langle u,v\rangle,(u,v),u\cdot v$ などいろいろな書き方があるが、講義では $\langle u,v\rangle$ を用いる

内積空間

定義

内積が定義されたベクトル空間を内積空間という.

内積空間の例

- 幾何ベクトル空間
- 数ベクトル空間
- 関数空間

内積の例

• 幾何ベクトル空間

2つの有効線分のなす角 θ とそれぞれの長さ|u|,|v|を用いて定義

$$\langle u, v \rangle = |u||v|\cos\theta$$

• 数ベクトル空間

2 つの複素数値ベクトル $u = (u_1, u_2, ..., u_n), v = (v_1, v_2, ..., v_n)$ に対して

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i \bar{v}_i$$

ただし: は複素共役

• 関数空間

 \mathbb{R} 上で定義された 2 つの複素数値関数 u,v に対して

$$\langle u, v \rangle = \int_{-\infty}^{\infty} u(x) \overline{v(x)} dx$$

- 定義域が Ω で表される場合に

$$\langle u, v \rangle = \int_{\Omega} u(x) \overline{v(x)} dx$$

のように書くこともある

ノルム

定義

 $u \in \mathcal{H}$ に対して、その**ノルム**を

$$||u|| = \sqrt{\langle u, u \rangle}$$

で定義する.

- ノルムの性質
 - $||u|| \ge 0$ 特に $||u|| = 0 \Rightarrow u = 0$
 - $\|\alpha u\| = |\alpha| \|u\|$, $\forall \alpha \in K$ (係数体 K としては $\mathbb R$ か $\mathbb C$ を考え, $|\cdot|$ は K 上の絶対値を表す)
 - $|\langle u, v \rangle| \le ||u|| \cdot ||v||$ (Cauchy-Schwarz の不等式)
 - $||u + v|| \le ||u|| + ||v||$ (三角不等式)

距離

• 内積空間では自然に距離が導入される

d(u,v) = ||u-v|| を考えると d は距離 になっている.

演習

練習問題

- 距離の定義を述べよ.
- 2 つのベクトルの差のノルムが距離となることを確かめよ.
- 係数体を ℂとする内積空間 ℋ を考える。内積およびノルムの性質として正しいものはどれか?
 - $-\langle u, v \rangle = \langle v, u \rangle$
 - $\|u\| = 0$ $x \in U$ x = 0
 - $\forall \alpha \in \mathbb{C}, \|\alpha u\| = \alpha \|u\|$
 - $|\langle u, v \rangle| > ||u|| + ||v||$

Hilbert 空間

完備性

定義

ある集合の中で無限に続く点列 u_n を考え、この点列がだんだん動かなくなる状況を考える。

$$\lim_{n,m\to\infty} d(u_n,u_m) = 0$$
. (Cauchy 列という)

この点列の収束先 $\lim_{n\to\infty} u_n$ がもとの集合に含まれるとき、その集合は**完備**であるという.

完備性の例

• 有理数は完備でない

点列 a_n を円周率の小数 n 桁以下を切り捨てた数と定義する. 明らかに a_n は有限桁なので有理数であるが、 $\lim_{n\to\infty}a_n=\pi$ は無理数

• 実数の区間 [0,1] は完備だが、(0,1) は完備でない

点列 $1/2n \in (0,1)$ であるが、 $\lim_{n\to\infty} 1/2n = 0 \notin (0,1)$

Hilbert 空間

定義

内積空間 \mathcal{H} がノルムに関して完備なとき、Hilbert 空間という.

- "ノルムに関して"とはノルムから自然に導出された距離を用いて Cauchy 列を考えるということ
- 完備の厳密な定義は解析学の本を参照

Hilbert 空間の例

• 12 空間 (無限次元数ベクトル空間)

$$l^2 = \{u = (u_1, u_2, \dots), u_i \in K, ||u|| < \infty\}$$

$$\langle u, v \rangle = \sum_{i=1}^{\infty} u_i \overline{v_i}, \quad ||u||^2 = \sum_{i=1}^{\infty} |u_i|^2.$$

- Cauchy-Schwarz の不等式 $\langle u,v\rangle \leq \|u\|\cdot\|v\|$ により、条件 (ノルムが有限の値を持つ) から必ず内積の値は存在

- 完備性の証明はかなり面倒、興味のあるものは成書を参照
- L² 空間

$$L^2(\Omega) = \{ f \mid ||f|| < \infty \}$$

$$\langle f, g \rangle = \int_{\Omega} f(x) \overline{g(x)} dx, \quad ||f||^2 = \int_{\Omega} |f(x)|^2 dx$$

- 今後扱う信号の空間に対応する
- ノルムが有界であることは信号の物理的な性質と関係する

演習

練習問題

- 以下の集合の中で完備なものはどれか?
 - 実数全体 (-∞,∞)
 - 0以外の実数
 - 区間 [0,1] の無理数
- ・ 実数 ℝ を係数体とする以下の内積空間で Hilbert 空間となるものはどれか?
 - $(u_1,u_2,u_3)\in\mathbb{R}^3$ (内積は $\langle u,v\rangle=\sum_{i=1}^3 u_iv_i)$
 - 区間 [-1,1] 上の実数値連続関数の空間 C[-1,1] (内積は $\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$. 不連続な点がない関数. 微分できなくても良い)

今回のまとめ

- 内積:ベクトル空間の2つの要素に対して定義され、以下の性質を持つ
 - $\langle u, u \rangle \ge 0$ 特に $\langle u, u \rangle = 0 \Rightarrow u = 0$
 - $-\langle u,v\rangle = \overline{\langle v,u\rangle}$ (複素共役)
 - $\langle \alpha u + \beta u', v \rangle = \alpha \langle u, v \rangle + \beta \langle u', v \rangle$ (線形性)
- ノルム:内積を用いて $||u|| = \sqrt{\langle u,u \rangle}$ で定義され、以下の性質を持つ
 - $||u|| \ge 0$ 特に $||u|| = 0 \Rightarrow u = 0$
 - $\|\alpha u\| = |\alpha| \|u\|, \ \forall \alpha \in K$
 - $|\langle u, v \rangle| \le ||u|| \cdot ||v||$ (Cauchy-Schwarz の不等式)
 - $||u + v|| \le ||u|| + ||v||$ (三角不等式)
- 完備性: ある集合の点列の収束先がもとの集合に含まれること
- 内積空間: 内積が定義されたベクトル空間
- Hilbert 空間: 完備な内積空間