The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions

Dimitar Shterionov,
Joris Renkens,
Jonas Vlasselaer,
Angelika Kimmig,
Wannes Meert,
Gerda Janssens

ILP 2014 (Nancy, France)

What is most probable to happen?

What is most probable to happen?

What is most probable to happen knowing the player always picks?

What is most probable to happen knowing the player always picks?

The Most Probable Explanation

- Useful for
 - Medical Diagnostics
 - Computer Systems Diagnostics
 - Scheduling
 - etc.
- Typical task in SRL and PGM

- ProbLog programs with Annotated Disjunctions
- MPE of ProbLog programs
- Encodings of Annotated Disjunctions
- Evaluation

- ProbLog programs with Annotated Disjunctions
- MPE of ProbLog programs
- Encodings of Annotated Disjunctions
- Evaluation

ProbLog*

```
0.6::red(b1). win:- red(b1), red(b2). 
0.2::red(b2). win:- red(b2), red(b3). 
0.7::red(b3). win:- red(b1), red(b3).
```

Possible Worlds

```
0.6::red(b1). win:- red(b1), red(b2). 
0.2::red(b2). win:- red(b2), red(b3). 
0.7::red(b3). win:- red(b1), red(b3).
```

poss. world	$\mid r_1 \mid$	$\mid r_2 \mid$	$\mid r_3 \mid$	win	$P(r_1)$	$P(r_2)$	$P(r_3)$	$P(\omega_i)$
ω_1	T	T	$\mid T \mid$	Γ	0.6	0.2	0.7	0.084
ω_2	${ m T}$	Γ	\mathbf{F}	Γ	0.6	0.2	0.3	0.036
ω_3	${ m T}$	\mathbf{F}	Γ	Γ	0.6	0.8	0.7	0.336
ω_4	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	0.6	0.8	0.3	0.144
ω_5	${ m F}$	Γ	Γ	Γ	0.4	0.2	0.7	0.056
ω_6	${ m F}$	Γ	\mathbf{F}	\mathbf{F}	0.4	0.2	0.3	0.024
ω_7	${ m F}$	\mathbf{F}	$\mid T \mid$	\mathbf{F}	0.4	0.8	0.7	0.224
ω_8	${ m F}$	F	$\mid F \mid$	\mathbf{F}	0.4	0.8	0.3	0.096

Probabilistic Facts

Probabilistic Facts

Can express

Cannot express but annotated disjunctions can

Logic Programs with Annotated Disjunctions

 $0.6 :: pick(b1); 0.4 :: no_pick(b1) \leftarrow true.$

 $0.6 :: red(b1); 0.3 :: green(b1); 0.1 :: blue(b1) \leftarrow pick(b1).$

Selection:	Interpretation	Probability
		$P(\sigma_i)$
σ_1	$I1 = \{ \texttt{pick(b1)}, \texttt{red(b1)} \}$	0.36
σ_2	$I2 = \{ pick(b1), green(b1) \}$	0.18
σ_3	$I3 = \{ pick(b1), blue(b1) \}$	0.06
σ_4	$I4 = \{ exttt{no_pick(b1)} \}$	0.4

- ProbLog programs with Annotated Disjunctions
- MPE of ProbLog programs
- Encodings of Annotated Disjunctions
- Evaluation

ProbLog

```
0.6::red(b1). win:- red(b1), red(b2). 
0.2::red(b2). win:- red(b2), red(b3). 
0.7::red(b3). win:- red(b1), red(b3).
```

poss. world	$\mid r_1 \mid$	$\mid r_2 \mid$	$\mid r_3 \mid$	win	$P(r_1)$	$P(r_2)$	$P(r_3)$	$P(\omega_i)$
ω_1	$\mid T \mid$	Γ	$\mid T \mid$	Γ	0.6	0.2	0.7	0.084
ω_2	$\mid T \mid$	Γ	\mathbf{F}	Γ	0.6	0.2	0.3	0.036
ω_3	$\mid T \mid$	\mathbf{F}	$\mid T \mid$	Γ	0.6	0.8	0.7	0.336
ω_4	Γ	\mathbf{F}	\mathbf{F}	F	0.6	0.8	0.3	0.144
ω_5	\mathbf{F}	Γ	$\mid T \mid$	Γ	0.4	0.2	0.7	0.056
ω_6	\mathbf{F}	Γ	\mathbf{F}	F	0.4	0.2	0.3	0.024
ω_7	\mathbf{F}	\mathbf{F}	$\mid T \mid$	F	0.4	0.8	0.7	0.224
ω_8	F	\mathbf{F}	$\mid F \mid$	F	0.4	0.8	0.3	0.096

ProbLog

```
0.6::red(b1). win:- red(b1), red(b2). 
0.2::red(b2). win:- red(b2), red(b3). 
0.7::red(b3). win:- red(b1), red(b3).
```

pos	ss. world	$\mid r_1 \mid$	$\mid r_2 \mid$	$\mid r_3 \mid$	win	$P(r_1)$	$P(r_2)$	$P(r_3)$	$\mathrm{P}(\omega_i)$
	ω_1	$\mid T \mid$	$\mid T \mid$	$\mid T \mid$	Γ	0.6	0.2	0.7	0.084
	ω_2	T	T	F	T	0.6	0.2	0.3	0.036
	ω_3	Γ	F	$\mid T \mid$	$\mid T \mid$	0.6	0.8	0.7	0.336
	ω_4	T	F	F	F	0.6	0.8	0.3	0.144
	ω_5	\mathbf{F}	$\mid T \mid$	$\mid T \mid$	Γ	0.4	0.2	0.7	0.056
	ω_6	\mathbf{F}	$\mid T \mid$	F	F	0.4	0.2	0.3	0.024
	ω_7	$\mid F \mid$	\mathbf{F}	$\mid T \mid$	F	0.4	0.8	0.7	0.224
	ω_8	$\mid \mathrm{F} \mid$	$\mid F \mid$	$\mid \; \mathrm{F} \mid$	$\mid F \mid$	0.4	0.8	0.3	0.096

Logic Programs with Annotated Disjunctions

```
0.6 :: pick(b1); 0.4 :: no\_pick(b1) \leftarrow true.
0.6 :: red(b1); 0.3 :: green(b1); 0.1 :: blue(b1) \leftarrow pick(b1).
```

Selection:	Interpretation	Probability
		$P(\sigma_i)$
σ_1	$I1 = \{ \mathtt{pick(b1)}, \mathtt{red(b1)} \}$	0.36
σ_2	$I2 = \{ exttt{pick(b1)}, exttt{green(b1)} \}$	0.18
σ_3	$I3 = \{ exttt{pick(b1)}, exttt{blue(b1)} \}$	0.06
σ_4	$I4 = \{ exttt{no_pick(b1)} \}$	0.4

Logic Programs with Annotated Disjunctions

```
0.6 :: pick(b1); 0.4 :: no\_pick(b1) \leftarrow true.
```

$$0.6 :: red(b1); 0.3 :: green(b1); 0.1 :: blue(b1) \leftarrow pick(b1).$$

Selection:	Interpretation	Probability
		$P(\sigma_i)$
σ_1	$I1 = \{ exttt{pick(b1)}, exttt{red(b1)} \}$	0.36
σ_2	$I2 = \{ \texttt{pick(b1)}, \texttt{green(b1)} \}$	0.18
σ_3	$I3 = \{ pick(b1), blue(b1) \}$	0.06
σ_4	$I4 = \{ exttt{no_pick(b1)} \}$	0.4

- ProbLog programs with Annotated Disjunctions
- MPE of ProbLog programs
- Encodings of Annotated Disjunctions
- Evaluation

ProbLog Encoding of ADs

- ADs converted to Facts and Rules.
- Negation retains the mutual exclusiveness.
- Incorrect for MPE.

Weighted CNF Encoding of ADs

- Surrogate Probabilistic Facts
- Rules
- Constraints (based on cProbLog implementation)
- Retains the AD semantics regardless the task.

Weighted CNF Encoding of ADs

```
True False (0.6, 1.0)::spf(1, red(b1), 1).
  (0.3, 1.0)::spf(1, green(b1), 2).
  (0.1, 1.0)::spf(1, blue(b1), 3).
  red(b1):-pick(b1), spf(1, red(b1), 1).
  green(b1):-pick(b1), spf(1, green(b1), 2).
  blue(b1):- pick(b1), spf(1, blue(b1), 3).
 (0.6, 1.0)::spf(2, pick(b1), 1).
 (0.4, 1.0)::spf(2, no\_pick(b1), 2).
 \operatorname{pick}(b1):-\operatorname{spf}(2,\operatorname{pick}(b1),1).
 no_{pick}(b1):= spf(2, no_{pick}(b1), 2).
```

... and Constraints in CNF (to retain the mutual exclusiveness)

```
 \begin{array}{l} (\neg \mathtt{spf}(1,\mathtt{red}(\mathtt{b1}),1) \vee \neg \mathtt{spf}(1,\mathtt{green}(\mathtt{b1}),2)) \wedge \\ (\neg \mathtt{spf}(1,\mathtt{red}(\mathtt{b1}),1) \vee \neg \mathtt{spf}(1,\mathtt{blue}(\mathtt{b1}),3)) \wedge \\ (\neg \mathtt{spf}(1,\mathtt{green}(\mathtt{b1}),2) \vee \neg \mathtt{spf}(1,\mathtt{blue}(\mathtt{b1}),3)) \\ \mathrm{pick}(\mathtt{b1}) \leftrightarrow (\mathtt{spf}(1,\mathtt{red}(\mathtt{b1}),1) \vee \mathtt{spf}(1,\mathtt{green}(\mathtt{b1}),2) \vee \mathtt{spf}(1,\mathtt{blue}(\mathtt{b1}),3)) \\ \neg \mathtt{spf}(2,\mathtt{pick}(\mathtt{b1}),1) \vee \neg \mathtt{spf}(2,\mathtt{no\_pick}(\mathtt{b1}),2) \\ \mathrm{spf}(2,\mathtt{pick}(\mathtt{b1}),1) \vee \mathtt{spf}(2,\mathtt{no\_pick}(\mathtt{b1}),2) \end{array}
```

Possible Worlds of the WMC Encoding

						r	g	b	p	np	$P(\omega_i)$			
ω_1	$\mid T \mid$	${ m F}$	\mathbf{F}	T	$\mid F \mid$	$\mid T \mid$	\mathbf{F}	${ m F}$	Γ	F	0.36			
ω_2	F	T	\mathbf{F}	T	$\mid F \mid$	F	T	${ m F}$	Γ	F	0.18			
ω_3	F	${ m F}$	$\mid T \mid$	${ m T}$	$\mid F \mid$	F	\mathbf{F}	${ m T}$	Γ	F	0.06			
ω_4	\mathbf{F}	\mathbf{F}	$\mid F \mid$	\mathbf{F}	$\mid T \mid$	F	\mathbf{F}	${ m F}$	\mathbf{F}	Γ	0.40			

Possible Worlds of the WMC Encoding

						r	g	b	p	np	$P(\omega_i)$			
ω_1	Γ	${ m F}$	$\mid F \mid$	$\mid T \mid$	$\mid F \mid$	$\mid T \mid$	F	${ m F}$	$\mid T \mid$	\mathbf{F}	0.36			
ω_2	F	${ m T}$	$\mid F \mid$	$\mid T \mid$	$\mid F \mid$	F	$\mid T \mid$	${ m F}$	$\mid T \mid$	\mathbf{F}	0.18			
ω_3	F	${ m F}$	$\mid T \mid$	$\mid T \mid$	$\mid F \mid$	F	\mathbf{F}	${ m T}$	$\mid T \mid$	\mathbf{F}	0.06			
ω_4	F	F	F	F	$\mid \mathrm{T} \mid$	F	F	F	$\mid F \mid$	$\mid T \mid$	$\mid 0.40$			

T	
Selection:	Interpretation
σ_1	$I1 = \{ exttt{pick(b1)}, exttt{red(b1)} \}$
σ_2	$I2 = \{ pick(b1), green(b1) \}$
σ_3	$I3 = \{ pick(b1), blue(b1) \}$
σ_4	$I4 = \{ \mathtt{no_pick(b1)} \}$

1:1 correspondence

Probability $P(\sigma_i)$ 0.36 0.18 0.06

28

Possible Worlds of the WMC Encoding

	Sofiz	Spf(2,0,2)	50f(2,6.2)	Spf(2,0.3)	Spf(2,110 2)	Ž.					Trust me it's
						r	g	b	p	np	$P(\omega_i)$
ω_1	Γ	\mathbf{F}	$\mid F \mid$	$\mid T \mid$	$\mid \mathrm{F} \mid$	$\mid T \mid$	$\mid F \mid$	$\mid F \mid$	$\mid T \mid$	\mathbf{F}	0.36
ω_2	\mathbf{F}	Γ	$\mid F \mid$	$\mid T \mid$	$\mid F \mid$	F	$\mid T \mid$	$\mid F \mid$	$\mid T \mid$	\mathbf{F}	0.18
ω_3	\mathbf{F}	\mathbf{F}	$\mid T \mid$	$\mid T \mid$	$\mid F \mid$	F	$\mid F \mid$	$\mid T \mid$	$\mid T \mid$	\mathbf{F}	0.06
ω_4	F	F	$\mid F \mid$	F	$\mid \mathrm{T} \mid$	F	$\mid F \mid$	$\mid F \mid$	F	$\mid T \mid$	0.40

Probability $P(\sigma_i)$ 0.36 0.18 0.06

1:1 correspondence

Possible Worlds and MPE

	SOFIZ	SOFA	SDF(2,6)	Spf(2,0,2)	Spf(2,110,2)	Ž.					
						r	g	b	p	np	$P(\omega_i)$
ω_1	$\mid T \mid$	\mathbf{F}	\mathbf{F}	$\mid T \mid$	$\mid \mathrm{F} \mid$	$\mid T \mid$	\mathbf{F}	\mathbf{F}	$\mid T \mid$	\mathbf{F}	0.36
ω_2	\mathbf{F}	${ m T}$	\mathbf{F}	Γ	$\mid F \mid$	F	Γ	\mathbf{F}	Γ	\mathbf{F}	0.18
ω_3	F	${ m F}$	$\mid T \mid$	Γ	F	F	\mathbf{F}	T	T	\mathbf{F}	0.06
ω_4	F	F	F	F	$\mid T \mid$	F	F	F	F	T	0.40

Selection:	Interpretation	Probability	
		$P(\sigma_i)$	
σ_1	$I1 = \{ exttt{pick(b1)}, exttt{red(b1)} \}$	0.36	
σ_2	$I2 = \{ \texttt{pick(b1)}, \texttt{green(b1)} \}$	0.18	
σ_3	$I3 = \{ pick(b1), blue(b1) \}$	0.06	
σ_4	$I4 = \{ exttt{no_pick(b1)} \}$	0.4)

- ProbLog programs with Annotated Disjunctions
- MPE of ProbLog programs
- Encodings of Annotated Disjunctions
- Evaluation

- ProbLog programs with Annotated Disjunctions
- MPE of ProbLog programs
- Encodings of Annotated Disjunctions
- Evaluation

people.cs.kuleuven.be/~dimitar.shterionov/mpe

ProbLog vs Weighted CNF Encoding - Time

ProbLog vs Weighted CNF Encoding - Time

ProbLog vs Weighted CNF Encoding - Size

sd-DNNF Nodes

sd-DNNF Edges

MPE - Time

Body

- ProbLog programs with Annotated Disjunctions
- MPE of ProbLog programs
- Encodings of Annotated Disjunctions
- Evaluation

Conclusions

- WMC encoding of Annotated Disjunctions
 - Constraints
 - Semantically correct
- (Efficient) MPE is possible
- Good performance

Thank you! Merci!