

SUBJECT: DIGITAL COMPUTER PRINCIPLES

**FACULTY NAME: JYOTHSNA S MOHAN** 

#### TOPICS WE HAVE TO COVER



**Digital Computer Principles:** Number systems – Binary, Decimal, Octal and Hexadecimal Conversion, Arithmetic operations, Boolean algebra, Logic gates, SOP, POS, minterm and maxterms, Boolean expression, simplification, Postulates and theorems, Simplifications, K-Map, Combinational logic circuits – Adder, Subtractor, Multiplexer, Demultiplexer, Encoder, Decoder, Sequential Circuits – SR, JK, T, D flip flops, Shift registers, Asynchronous, synchronous and Modulo n Counters.



# NUMBER SYSTEM

• A way to represent or express numbers using a given set of symbols.



- People use the decimal number system.
- In digital electronics, binary number system and digital codes are used for representing the information.
- The number of unique symbols in a number system: Radix or Base

# **COMMON NUMBER SYSTEMS**



• Based on the number of unique symbols, number systems are classified.

| Number system | Base | Symbols                         |
|---------------|------|---------------------------------|
| Decimal       | 10   | 0,1,2,3,4,5,6,7,8,9             |
| Binary        | 2    | 0,1                             |
| Octal         | 8    | 0,1,2,3,4,5,6,7                 |
| Hexadecimal   | 16   | 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F |



Q) Radix of hexadecimal system is

[ Tradesman IT Idukki 2016]

a) 8 b) 3 c) 2 d)16

Ans. d) 16

• A number N in base b can be written as:



$$(N)_b = d_{n-1} d_{n-2} - - - - - d_1 d_0 \cdot d_{-1} d_{-2} - - - - - d_{-m}$$

- In the above,  $d_{n-1}$  to  $d_0$  is integer part, then follows a radix point, and then  $d_{-1}$  to  $d_{-m}$  is fractional part.
- $d_{n-1} = Most significant digit (MSD)$
- $d_{-m}$  = Least significant digit (LSD)

#### THE DECIMAL NUMBER SYSTEM



- Contains 10 unique symbols : 0,1,2,3,4,5,6,7,8,and 9
- Radix = 10
- If base value not given, it is decimal number
- Any number (integer, fraction) of any magnitude can be represented by the use of these ten symbols only.
- Each symbol in the number is called digit.
- Integer part . Fractional part

• It is a positional weighted system- Value attached to a symbol depends on its location with respect to decimal point.

• Integer part - The column weights are positive powers of ten that increase from right to left beginning with  $10^0$ 

$$\dots 10^5 \ 10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0$$
.

- Fractional part- The column weights are negative powers of ten that decrease from left to right:

  . 10<sup>-1</sup> 10<sup>-2</sup> 10<sup>-3</sup> 10<sup>-4</sup>
- 10<sup>2</sup> 10<sup>1</sup> 10<sup>0</sup>, 10<sup>-1</sup> 10<sup>-2</sup> 10<sup>-3</sup> 10<sup>-4</sup>

#### REPRESENTATION OF DECIMAL NUMBER



• Decimal number can be expressed as the sum of the products of each digit times the column value for that digit

#### • Example:

$$7240 = (7 * 10^{3}) + (2 * 10^{2}) + (4 * 10^{1}) + (0 * 10^{0}) = 7 * 1,000 + 2 * 100 + 4 * 10 + 0 * 1$$

$$980.52 = (9 \times 10^{2}) + (8 \times 10^{1}) + (0 \times 10^{0}) + (5 \times 10^{-1}) + (2 \times 10^{-2}) = 9 * 100 + 8 * 10 + 0 * 1$$

$$+ 5 * .1 + 2 * .01$$

#### THE BINARY NUMBER SYSTEM



- Radix/base=2
- Symbols- 0,1
- Each symbol is called bit
- For digital systems, the binary number system is used.
- The column weights of binary numbers are powers of 2.
- For integer part column weights increase from right to left beginning with  $2^0 = 1$ :
- ... $2^5 2^4 2^3 2^2 2^1 2^0$ .
- For fractional binary numbers, the column weights are negative powers of two that decrease from left to right: .2<sup>-1</sup> 2<sup>-2</sup> 2<sup>-3</sup> 2<sup>-4</sup> ...
- 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>• 2<sup>-1</sup> 2<sup>-2</sup> 2<sup>-3</sup> 2<sup>-4</sup> ...

# **COUNTING IN BINARY**



| DECIMAL | BINARY |
|---------|--------|
| 0       | 0      |
| 1       | 1      |
| 2       | 10     |
| 3       | 11     |
| 4       | 100    |
| 5       | 101    |
| 6       | 110    |
| 7       | 111    |
| 8       | 1000   |
| 9       | 1001   |
| 10      | 1010   |
| 11      | 1011   |
| 12      | 1100   |
| 13      | 1101   |
| 14      | 1110   |
| 15      | 1111   |

With n bits ,its is possible to count upto a number equal to 2<sup>n</sup>-1

$$2^{n}-1=15$$
 $2^{n}=16$ 
 $n=4$ 

# WEIGHTING STRUCTURE OF BINARY NUMBERS

| +ve powers of 2 | -ve powers of 2  |
|-----------------|------------------|
| $2^0 = 1$       |                  |
| $2^1 = 2$       | $2^{-1} = 1/2$   |
| $2^2 = 4$       | $2^{-2} = 1/4$   |
| $2^3 = 8$       | $2^{-3} = 1/8$   |
| $2^4 = 16$      | $2^{-4} = 1/16$  |
| $2^5 = 32$      | $2^{-5} = 1/32$  |
| $2^6 = 64$      | $2^{-6} = 1/64$  |
| $2^7 = 128$     | $2^{-7} = 1/128$ |
| $2^8 = 256$     | $2^{-8} = 1/256$ |

# BINARY TO DECIMAL CONVERSION



#### Adding the weights of all bits that are 1

Q. Convert the binary whole number 1101101 to decimal

Q. Covert the fractional binary number 0.1011 to decimal.

0. 1 0 1 1 
$$2^{-1}$$
 +  $2^{-3}$  +  $2^{-4}$  = 0.5+ 0.125+0.0625=0. 6875

#### **DECIMAL TO BINARY**



#### CONVERSION OF FIXED DECIMALS TO BINARY

#### **Methods**

- Sum of weights
- Repeated division by 2

#### Sum of weights:

- 1.Determine the sets of binary weights whose sum is equal to the decimal number.
- 2. Placing 1's in those weight positions and 0's in the remaining positions

#### Repeated division by 2:

- 1. Take decimal number as dividend.
- 2. Divide this number by 2
- 3. Store the remainder in an array
- 4. Repeat the above two steps until the number is greater than zero.
- 5. Print the array in reverse order

#### **SUM OF WEIGHTS**



Q. Find the binary equivalent of 9

| 24 | 23 | 22 | 21 | 20 |
|----|----|----|----|----|
| 16 | 8  | 4  | 2  | 1  |
| 0  | 1  | 0  | 0  | 1  |

Q. Binary number of the decimal number 15 is:

[Sub Inspector]

a) 1010

b) 1111

- c)1101
- d)1001

### REPEATED DIVISION BY 2



Q) Binary number of the decimal number 25 is



Q. Binary number of the decimal number 15 is:

a) 1010

b) 1111

c)1101

d)1001

[Sub Inspector]

# **CONVERSION OF DECIMAL FRACTIONS**



#### **Methods**

- Sum of weights
- Repetitive multiplication by 2

#### Sum of weights:

- 1.Determine the sets of binary weights whose sum is equal to the fraction value.
- 2. Placing 1's in those weight positions and 0's in the remaining positions

#### Repeatitive multiplication by 2:

- 1. Multiply the fractional decimal number by 2.
- 2.Integral part of resultant decimal number will be first digit of fraction binary number.
- 3. Repeat step 1 using only fractional part of decimal number and then step 2 till all fractional bits become 0 or upto a required precision.

# FRACTIONAL DECIMAL TO BINARY - SUM OF WEIGHTS



#### Q. Convert 0.1875 to binary

| 2-1 | 2-2  | 2-3   | 2-4    | 2-5     |
|-----|------|-------|--------|---------|
| 0.5 | 0.25 | 0.125 | 0.0625 | 0.03125 |
| 0   | 0    | 1     | 1      | 0       |

Ans: 0.0011

- Q. The decimal value of 0.25
  - a) is equivalent to binary 0.1
  - b) is equivalent to binary 0.01
  - c) is equivalent to binary 0.00111
  - d) Cannot be represented precisely in binary

Ans: b) is equivalent to binary 0.01

[GATE 2002]

# FRACTIONAL DECIMAL TO BINARY WITH REPETITIVE MULTIPLICATION BY 2



Q) The binary equivalent of the decimal number 0.34375 is:

[Lecturer in polytechnic IT 2015]

- A. 0.0111
- B. 0.01111
- C. 0.01011
- D. 0.01110 1

Ans: 0.01011

Solution:





Q) The binary equivalent of the number 0.3125

Ans: 0.0101



Q)The binary equivalent od decimal number 20.625 is: [Lecturer in CS 2015]

a)10100.1011

b) 10100.1100

c)10100.1010

d) 10101.1010

Ans: c) 10100.1010

# BINARY ARITHMETIC



- Binary addition
- Binary subtraction
- Binary Multiplication
- Binary division

# **BINARY ADDITION**



# Rules for binary addition

| Case | Α | + | В | Sum | Carry |
|------|---|---|---|-----|-------|
| 1    | 0 | + | 0 | 0   | 0     |
| 2    | 0 | + | 1 | 1   | 0     |
| 3    | 1 | + | 0 | 1   | 0     |
| 4    | 1 | + | 1 | 0   | 1     |

$$\begin{array}{r} 0111 \\ 00111 \\ \hline 10101 \\ \hline 11100 \\ = 28 \end{array}$$



Q. Find 1011.11 + 011.101

1 1 1

 $1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad +$ 

0 1 1 . 1 0 1

\_\_\_\_\_\_

1 1 1 1 . 0 1 1

#### **BINARY SUBTRACTION**



Rules for binary subtraction

| Case | Α | 100   | В | Subtract | Borrow |
|------|---|-------|---|----------|--------|
| 1    | 0 | :7:   | 0 | 0        | 0      |
| 2    | 1 |       | 0 | 1        | 0      |
| 3    | 1 | 12    | 1 | 0        | 0      |
| 4    | 0 | 167.6 | 1 | 1        | 1      |

0011010 - 001100 = 00001110

 $\begin{array}{rcl}
1 & \text{borrow} \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
-0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}$ 

0001110 = 1410

Q. Subtract  $(10)_2$  from  $(1000)_2$ 



\_

 $1 \qquad 0 \qquad 0$ 

1 0

\_\_\_\_\_

0 1 1 0

Q. Subtract  $(111.111)_2$  from  $(1010.01)_2$ 



 1
 1
 1
 1
 1

 1
 0
 1
 0
 0
 1
 0

 0
 0
 1
 0
 0
 1
 1
 1

28



# Thank you....