ALG 08

Merge sort

Heap Sort

Priority queue implemented with binary heap

Merge sort Unsorted В M E R Α 0 **Divide!** В U M Ε **Process** Sort! Sort! separately B Ε 0 **Conquer!** Merge! В D Ε K R M 0 **Sorted**

Merge sort

```
def merge (inArr, outArr, low, high):
    half = (low+high) // 2
    i1 = low
    i2 = half + 1
    j = low;
    # compare and merge
    while i1 <= half and i2 <= high:</pre>
        if inArr[i1] <= inArr[i2]:</pre>
             outArr[j] = inArr[i1]; i1 += 1
        else:
             outArr[j] = inArr[i2]; i2 += 1
        i += 1
    # copy the rest
    while i1 <= half:</pre>
        outArr[j] = inArr[i1]; i1 += 1; j += 1
    while i2 <= high:</pre>
        outArr[j] = inArr[i2]; i2 += 1; j += 1
```

Merge sort

```
def mergeSort (arr, auxArr, low, high):
 if low >= high: return # too small!
 half = (low+high) // 2
 # sort to auxArr
 _mergeSort(arr, auxArr, low, half) # left half
 _mergeSort(arr, auxArr, half+1, high) # right half
 merge(arr, auxArr, low, high)
 # copy back from auxArr
  for i in range(low, high+1):
   arr[i] = auxArr[i]
```

Merge sort - improved use of auxArr

```
def mergeSortX (arr, auxArr, low, high, depth):
 if low >= high: return # too small!
 half = (low+high) // 2
 _mergeSortX(arr, auxArr, low, half, depth+1)
 mergeSortX(arr, auxArr, half+1, high, depth+1)
 # note the swaping of arr and auxArr
 if depth%2 == 0: merge(auxArr, arr, low, high)
 else:
           merge(arr, auxArr, low, high)
def mergeSortX (arr):
 auxArr = arr[:] # auxArr = copy(arr)
 mergeSortX(arr, auxArr, 0, len(arr)-1, 0)
```

Merge sort

Asymptotic complexity

Divide! $log_2(n)$ times \Rightarrow

 \Rightarrow Merge! $log_2(n)$ times

Divide! $\Theta(1)$ operations

Merge! $\Theta(n)$ operations

Total $\Theta(n) \cdot \Theta(\log_2(n)) = \Theta(n \cdot \log_2(n))$ operations

Asymptotic complexity of Merge sort is $\Theta(n \cdot \log_2(n))$

Merge sort

Stability

Divide! Does not move the elements.

Merge! " if (in[i1] <= in[i2]) { out[j] = in[i1]; ..."

When the two compared and merged elements are equal, merge the left one first.

Merge sort is stable.

Heap

Heap property.

Heap sort Terminology a predecessor, parent of successor, child of .. (heap) top

Heap stored in an array

Heap repair

Top removed (2)

Out at the top - cont...

U > M, U > J, J < M \Rightarrow swap $J \longleftrightarrow U$

U > K, U > R, K < R \Rightarrow swap $K \longleftrightarrow U$

Heap repair

Top removed (3)

Put at the topdone.

New heap

Heap repair Top removed II (2) Top removed II (3) 3 3 Put at the top Put at the top - cont. - done. M K K R M R < T, R > E**New heap** \Rightarrow swap E \leftrightarrow R

∭ Make a heap

IV Sorted

Make one bigger heap from two smaller ones

Z > A or Z > B

 \Rightarrow swap: Z \leftrightarrow min(A,B)

Make one bigger heap from two smaller ones heap heap not a heap not a heap

Create a heap

- Make a heap in ① ...
- ... make a heap in (2) ...
- ... make a heap in (3) ...
- ... make a heap in 4 ...
- ... make a heap in (5) ...
- ... make a heap in 6 ...
- ... and the whole heap is complete.

Heap in an array

Heap stored in an array

Heap

Step1 1

Step k


```
# beware! array is arr[1] ... arr[n]

def heapSort (arr):
    n = len(arr)-1

# create a heap
    for i in range(n//2, 0, -1): # progress backwards!
        repairTop(arr, i, n)

for i in range(n, 1, -1): # progress backwards!
        swap(arr, 1, i)
        repairTop(arr, 1, i-1)
```

```
def repairTop (arr, top, bottom):
    i = top  # arr[2*i] and arr[2*i+1]
    j = i*2  # are successors of arr[i]
    topVal = arr[top]
    # try to find a successor < topVal
    if j < bottom and arr[j] > arr[j+1]: j += 1
    # while successors < topVal move successors up
    while j <= bottom and topVal > arr[j]:
       arr[i] = arr[i]
        i = j; j = j*2 # move to next successor
        if j < bottom and arr[j] > arr[j+1]: j += 1
    # put topVal to its correct place
    arr[i] = topVal
```

repairTop operation worst case ... $log_2(n)$ (n = heap size)

make a heap ... n/2 repairTop calls

$$\log_2(n/2) + \log_2(n/2+1) + ... + \log_2(n) \le (n/2)(\log_2(n)) = O(n \cdot \log_2(n))$$

sort the heaps ... n-1 repairTop calls, worst case:

$$\log_2(n) + \log_2(n-1) + ... + 1 \le n \cdot \log_2(n) = O(n \cdot \log_2(n))$$

surprisingly, also the best case = $\Theta(n \cdot \log_2(n))$

total ... make a heap + sort the heap = $\Theta(n \cdot \log_2(n))$

Asymptotic complexity of Heap sort is $\Theta(n \cdot \log_2(n))$.

Heap sort is not stable.

Priority queue

Operations

- Insert or Enqueue
- Front, Top, Peek -- read topmost element
- Dequeue, Pop, Poll -- delete topmost element.

The element with the smallest value (biggest value in max-heaps) of all elements in the heap is always at the top.

Priority queue might be implemented using a heap.

Officially:

" A binary heap".

Priority queue implemented with binary heap -- operations

Read the topmost element (Front, Top, Peek, ...) .

Obvious.

Delete the topmost element (Dequeue, Pop, Poll, ...) = Remove the top and repair the heap.

As before.

Insert an element to the queue (Insert, Enqueue, ...)

Insert the element at the end of the queue (end of the heap).

In most cases, this violates the heap property

and the heap has to be repaired.

Priority queue implemented with binary heap -- Insert

Heap property is violated, swap the element with its parent.

Heap property is still violated, swap the element with its parent.

Priority queue implemented with binary heap -- Insert

Heap property is still violated, swap the element with its parent.

Heap property is respected, the inserted element has found its place in the queue (heap).

Binary heap -- Insert element more effectively

Do not insert the element at the end of the queue.

First, find its place and while searching move down other elements encountered in the search.

Finally, store the inserted element at its correct position.

Binary heap – Insert

```
# beware! array is arr[1] ... arr[n]
# bottom == ndx of last elem
def heapInsert(arr, x, bottom):
   bottom += 1  # expand the heap space
   j = bottom
   i = j/2  # parent index

while i > 0 and arr[i] > x:
   arr[j] = arr[i]  # move elem down the heap
   j = i; i /= 2  # move indices up the heap
arr[i] = x  # put inserted elem to its place
return bottom
```

Insert -- Complexity

Inserting represents a traversal in a binary tree from a leaf to the root in the worst case. Therefore, the Insert complexity is $O(log_2(n))$.