Pairwise and Multiple Sequence Alignment

Substitution Matrix

A substitution matrix contains values proportional to the probability that amino acid *i* mutates into amino acid *j* for all pairs of amino acids.

Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids.

Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution.

The two major types of substitution matrices are PAM and BLOSUM.

PAM(Point Accepted Mutation)

- PAM matrices were introduced by <u>Margaret</u> <u>Dayhoff</u> in 1978.
- The calculation of these matrices were based on 1572 observed mutations in the <u>phylogenetic trees</u> of 71 families of closely related proteins.
- The proteins to be studied were selected on the basis of having high similarity with their predecessors.

Point-accepted mutations

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence.

Other PAM matrices are extrapolated from PAM1.

All the PAM data come from closely related proteins (>85% amino acid identity)

Hence, the time of evolution can be measured by the number of mutations observed in a certain number of residues

This is measured in point accepted mutations (PAMs), and I PAM means one accepted mutation per 100 residues

Dayhoff's PAM1 mutation probability matrix

			98.6	There is 57%chance		amino	o acid			
	A	R		vill be repla by A over a		Q	E	G	Н	I
	Ala	Ar		evolutionar	У	Gln	Glu	Gly	His	Ile
A	9867		dist	tance of 1 P	AM	8	17	21	2	6
R	1	9913	1		1	10	0	0	10	3
N	4	1	9822	36	0	4	6	6	21	3
D	6	0	42			the probab mino acid j		6	4	1
C	1	1	0	(columns)v amino acid		aced byano		0	1	1
Q	3	9	4		divergen			1	23	1
E	10	0	7	00	0	35	9865	4	2	3
G	21	1	12	11	1	3	7	9935	1	0
Н	1	8	18	3	1	20	1	0	9912	0
I	2	2	3	1	2	1	2	0	0	9872

Dayhoff's PAM0 mutation probability matrix: the rules for extremely slowly evolving proteins

PAM0	A	R	N	D	С	Q	Е	G
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly
A	100%	0%	0%	0%	0%	0%	0%	0%
R	0%	100%	0%	0%	0%	0%	0%	0%
N	0%	0%	100%	0%	0%	0%	0%	0%
D	0%	0%	0%	100%	0%	0%	0%	0%
С	0%	0%	0%	0%	100%	0%	0%	0%
Q	0%	0%	0%	0%	0%	100%	0%	0%
Е	0%	0%	0%	0%	0%	0%	100%	0%
G	0%	0%	0%	0%	0%	0%	0%	100%

Top: original amino acid

Side: replacement amino acid

Dayhoff's PAM2000 mutation probability matrix: the rules for very distantly related proteins

PAM∞	А	R	N	D	С	Q	E	G
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly
Α	8.7%	8.7%	8.7%	8.7%	8.7%	8.7%	8.7%	8.7%
R	4.1%	4.1%	4.1%	4.1%	4.1%	4.1%	4.1%	4.1%
N	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%
D	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%
С	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%
Q	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%
E	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
G	8.9%	8.9%	8.9%	8.9%	8.9%	8.9%	8.9%	8.9%

PAM1 matrix is multiplied 2000 times by itself

Top: original amino acid

Side: replacement amino acid

PAM250 mutation probability matrix

	Α	R	N	D	С	Q	Е	G	Н	I	L	K	M	F	P	S	T	W	Y	V
Α	13	6	9	9	5	8	9	12	6	8	6	7	7	4	11	11	11	2	4	9
R	3	17	4	3	2	5	3	2	6	3	2	9	4	1	4	4	3	7	2	2
N	4	4	6	7	2	5	6	4	6	3	2	5	3	2	4	5	4	2	3	3
D	5	4	8	11	1	7	10	5	6	3	2	5	3	1	4	5	5	1	2	3
С	2	1	1	1	52	1	1	2	2	2	1	1	1	1	2	3	2	1	4	2
Q	3	5	5	6	1	10	7	3	7	2	3	5	3	1	4	3	3	1	2	3
Е	5	4	7	11	1	9	12	5	6	3	2	5	3	1	4	5	5	1	2	3
G	12	5	10	10	4	7	9	27	5	5	4	6	5	3	8	11	9	2	3	7
Н	2	5	5	4	2	7	4	2	15	2	2	3	2	2	3	3	2	2	3	2
Ι	3	2	2	2	2	2	2	2	2	10	6	2	6	5	2	3	4	1	3	9
L	6	4	4	3	2	6	4	3	5	15	34	4	20	13	5	4	6	6	7	13
K	6	18	10	8	2	10	8	5	8	5	4	24	9	2	6	8	8	4	3	5
M	1	1	1	1	0	1	1	1	1	2	3	2	6	2	1	1	1	1	1	2
F	2	1	2	1	1	1	1	1	3	5	6	1	4	32	1	2	2	4	20	3
P	7	5	5	4	3	5	4	5	5	3	3	4	3	2	20	6	5	1	2	4
S	9	6	8	7	7	6	7	9	6	5	4	7	5	3	9	10	9	4	4	6
T	8	5	6	6	4	5	5	6	4	6	4	6	5	3	6	8	11	2	3	6
W	0	2	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	55	1	0
Y	1	1	2	1	3	1	1	1	3	2	2	1	2	15	1	2	2	3	31	2
V	7	4	4	4	4	4	4	5	4	15	10	4	10	5	5	5	7	2	4	17

Top: original amino acid

Side: replacement amino acid

BLOSUM 80 PAM 1 BLOSUM 62 PAM 120 BLOSUM 45 PAM 250

Less divergent

More divergent

BLOSUM

BLOSUM matrices are based on local alignments.

BLOSUM stands for blocks substitution matrix.

BLOSUM62 is a matrix calculated from comparisons of sequences with no less than 62% divergence.

BLOSUM Scoring Matrices

- In the Dayhoff model, the scoring values are derived from protein sequences with at least 85% identity
- Alignments are, however, most often performed on sequences of less similarity, and the scoring matrices for use in these cases are calculated from the 1 PAM matrix
- Henikoff and Henikoff (1992) have therefore developed scoring matrices based on known alignments of more diverse sequences

BLOSUM Scoring Matrices

- BLOck SUbstitution Matrix
- Based on comparisons of blocks of sequences derived from the Blocks database
- The Blocks database contains multiply aligned un-gapped segments corresponding to the most highly conserved regions of proteins (local alignment versus global alignment)

Conserved blocks in alignments

```
AABCDA...BBCDA
DABCDA.A.BBCBB
BBBCDABA.BCCAA
AAACDAC.DCBCDB
CCBADAB.DBBDCC
AAACAA...BBCCC
```

Constructing BLOSUM r

- To avoid bias in favor of a certain protein, first eliminate sequences that are more than r% identical
- The elimination is done by either
 - removing sequences from the block, or
 - finding a cluster of similar sequences and replacing it by a new sequence that represents the cluster.
- BLOSUM r is the matrix built from blocks with no more the r% of similarity
 - E.g., BLOSUM62 is the matrix built using sequences with no more than 62% similarity.
 - Note: BLOSUM 62 is the default matrix for protein BLAST

Collecting substitution statistics

- 1. Count amino acids pairs in each column; e.g.,
 - 6 AA pairs, 4 AB pairs, 4 AC, 1 BC, 0 BB, 0 CC.
 - Total = 6+4+4+1=15
- 2. Normalize results to obtain probabilities $(p_X's \text{ and } q_{XY}'s)$
- 3. Compute log-odds score matrix from probabilities:

$$s(X,Y) = \log (q_{XY}/(p_X p_y))$$

A

A

 \mathbf{B}

A

Computing probabilities

Sum the scores for each columns across columns:

$$C_{ij} = \sum_{k} C_{ij}^{(k)}$$

Normalize the pair frequencies so they will sum to 1:

$$T = \sum_{i > i} c_{ij} = w \frac{n(n-1)}{2}$$
 where $w = \text{number of columns}$ $n = \text{number of sequences}$

$$q_{ij} = \frac{c_{ij}}{T}$$

Computing probabilities

Calculate the expected probability of occurrence of the *i*th residue in an (i,j) pair:

$$p_i = q_{ii} + \sum_{i \neq i} \frac{q_{ij}}{2}$$

The desired denominator is the expected frequency for each pair (assuming independence):

$$e_{ii} = p_i^2$$

$$e_{ij} = 2p_i p_j \qquad (i \neq j)$$

Computing probabilities

Each entry for (i,j) in the log odds matrix is then equal to q_{ij}/e_{ij}

Log odds ratio:
$$s_{ij} = \log_2 \frac{q_{ij}}{e_{ij}}$$

Value stored for BLOSUM = $2 s_{ij}$, rounded to nearest integer ("half bit" units)

Matrix of c_{ij} values:

sequence 1 A A I sequence 2 S A L sequence 3 T A L sequence 4 T A V sequence 5 A A L

	A	I	L	S	T	V
A	1+10					
I		0				
L		3	3			
S	2		0			
T	4			2	1	
V	: ! !	1	3			0

$$T = \sum_{i \ge j} c_{ij} = 3 \left[\frac{(5)(4)}{2} \right] = 30$$

Matrix of q_{ij} values:

Vector of p_i values:

$$p_{A} = \left(11 + \frac{6}{2}\right) / 30 = 14/30 = 0.46\overline{6}$$

$$p_{I} = \left(0 + \frac{4}{2}\right) / 30 = 2/30 = 0.06\overline{6}$$

$$p_{L} = \left(3 + \frac{6}{2}\right) / 30 = 6/30 = 0.2$$

$$p_{S} = \left(0 + \frac{4}{2}\right) / 30 = 2/30 = 0.06\overline{6}$$

$$p_{T} = \left(1 + \frac{6}{2}\right) / 30 = 4/30 = 0.13\overline{3}$$

$$p_{V} = \left(0 + \frac{4}{2}\right) / 30 = 2/30 = 0.06\overline{6}$$

Matrix of e_{ij} values:

Log odds ratio:

e.g.,
$$s_{AA} = \log_2 \frac{0.366}{\left(\frac{14}{30}\right)^2} = \log_2 1.6837 = 0.7516$$

BLOSUM value for AA = $round(2 \cdot 0.7516) = 2$

Full matrix:

Since it is getting 4 column in this sample, so we times 4 to gain the total of frequency of all pairs.

$$=15*4$$

=<u>60</u>

A aligning with another A (AA)

P(E) of AA = A*A
=
$$(14/24)*(14/24)$$

= $196/576$

Pair	Observed (O)	Expected (E)	2log _z (O/E)
AA	26/60	196/576	0.70 ≈ 1
АВ	8/60	112/576	-1.09 ≈ -1
AC	10/60	168/576	-1.61 ≈ -2
ВВ	3/60	16/576	1.70 ≈ 2
ВС	6/60	48/576	0.53 ≈ 1
сс	7/60	36/576	1.8 0 ≈ 2

Pair	Observed (O)	Expected (E)	2log ₂ (O/E)
AA	26/60	196/576	0.70 ≈ 1
АВ	8/60	112/576	-1.09 ≈ -1
AC	10/60	168/576	-1.61 ≈ -2
ВВ	3/60	16/576	1.70 ≈ 2
ВС	6/60	48/576	0.53 ≈ 1
сс	7/60	36/576	1.8 0 ≈ 2

	А	В	С
A	1	-1	-2
В	-1	2	1
С	-2	1	2

Comparison

- PAM is based on an evolutionary model using phylogenetic trees
- BLOSUM assumes no evolutionary model, but rather conserved "blocks" of proteins

