Lesson 2.3 Cube Roots

Cube roots can be estimated by finding cube roots on either side of the desired root. $\sqrt[3]{130}$ is between 5 and 6 because $\sqrt[3]{125}$ is 5 and $\sqrt[3]{216}$ is 6. Therefore, $\sqrt[3]{130}$ is between 5 and 6, but closer to 5 because 130 is closer to 125 than it is to 216.

Fractions can also have cube roots. For example, $\sqrt[3]{\frac{1}{8}} = \frac{1}{2}$ because $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$.

Find the cube root of each number.

b

C

1.
$$\sqrt[3]{\frac{1}{64}} =$$
 $\sqrt[3]{\frac{8}{27}} =$ $\sqrt[3]{512} =$

$$3\sqrt{\frac{8}{27}} =$$

$$3\sqrt{512} =$$

2.
$$\sqrt[3]{0} =$$

2.
$$\sqrt[3]{0} =$$
 $\sqrt[3]{\frac{64}{125}} =$ $\sqrt[3]{1} =$

$$3\sqrt{1} =$$

3.
$$3\sqrt{\frac{8}{216}} =$$
 $3\sqrt{\frac{125}{343}} =$

$$3\sqrt{\frac{125}{343}} =$$

$$3\sqrt{64} =$$

Estimate the following cube roots.

- **4.** $\sqrt[3]{10}$ is between ____ and ____ but closer to _____.
- **5.** $\sqrt[3]{110}$ is between ____ and ____ but closer to ____.
- **6.** $\sqrt[3]{500}$ is between _____ and ____ but closer to ____.
- **7.** $\sqrt[3]{155}$ is between ____ and ____ but closer to ____.
- **8.** $\sqrt[3]{1,322}$ is between _____ and _____ but closer to _____.