Sensibilidade de Sistemas Lineares

Efeitos dos Erros de Arredondamento

Fig. 1.6. Types of errors in a computational process

1. Erro do Modelo (e_m)

Ocorre ao simplificar a realidade física (PP) em um modelo matemático (MP). Está além do controle computacional.

Fig. 1.6. Types of errors in a computational process

2. Erro Algorítmico (e_a)

Erros introduzidos durante a resolução computacional do modelo matemático, principalmente devido a arredondamentos na representação numérica.

Fig. 1.6. Types of errors in a computational process

3. Erro de Truncamento (e_t)

Erros introduzidos ao aproximar sequências infinitas por operações finitas. Ocorre quando a solução numérica (x_n) difere da solução exata (x).

Fig. 1.6. Types of errors in a computational process

4. Erro Computacional (e_c)

O erro total que surge a partir da soma do erro algorítmico (e_a) e do erro de truncamento (e_t) .

Este é o erro de interesse ao resolver problemas numéricos.

Precisão Numérica

A precisão numérica é afetada pela ordem das operações aritméticas (pelo algoritmo).

Como ilustração, suponha uma máquina com dois algarismos significativos e que desejamos calcular

$$1 + \epsilon + \epsilon + \ldots + \epsilon$$
,

onde $\epsilon = 3.0 \times 10^{-2}$ e que tenhamos n=11 parcelas.

Algoritmo Ingênuo de Soma

```
s = 0
for i in range(n):
  s += epsilon
```

Algoritmo de Soma de Kahan

```
s = 0
c = 0
for i in range(n):
    # y : parcela + compensação
    y = epsilon - c
    # soma efetiva
    t = s + y
    # c : erro de arredondamento
    c = (t - s) - y
    s = t
```

Algoritmo de Soma de Kahan

k	$y=\epsilon-c$	t = s + y	c=(t-s)-y	s = t
1	$3.0 imes10^{-2}$	1.0	$(1.0-0.0)-3.0 imes 10^{-2}=-3.0 imes 10^{-2}$	1.0
2	$6.0 imes10^{-2}$	1.0	$(1.0-0.0)-6.0 imes 10^{-2}=-3.0 imes 10^{-2}$	1.0
3	9.0×10^{-2}	1.0	$(1.0-0.0)-9.0 imes 10^{-2}=-6.0 imes 10^{-2}$	1.0
4	$1.2 imes 10^{-1}$	1.1	$(1.1-1.0)-1.2 imes 10^{-2}=-2.0 imes 10^{-2}$	1.1
5	$5.0 imes10^{-2}$	1.1	$(1.1-1.1)-5.0 imes 10^{-2}=-5.0 imes 10^{-2}$	1.1
6	$8.0 imes 10^{-2}$	1.1	$(1.1-1.1)-8.0 imes 10^{-2} = -8.0 imes 10^{-2}$	1.1
7	$1.1 imes 10^{-1}$	1.2	$(1.2-1.1)-1.1 imes 10^{-1}=-1.0 imes 10^{-2}$	1.2

Caso de estudo

Para a matriz A, calcule a solução dos sistemas lineares Ax=b e $A\hat{x}=\hat{b}$ onde

$$A = \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}, \quad b = \begin{bmatrix} 1999 \\ 1998 \end{bmatrix} \quad e \quad \hat{b} = \begin{bmatrix} 1999 \\ 1998.001 \end{bmatrix}.$$

Escrevendo $\hat{x}=x+\delta x$ e $\hat{b}=b+\delta b$, compare as variações relativas $\frac{\delta x}{x}$ e $\frac{\delta b}{b}$.

Norma de um vetor

Uma norma (ou **norma vetorial**) em \mathbb{R}^n é uma função que atribui a cada $x \in \mathbb{R}^n$ um número real não-negativo ||x||, tal que para todos $x,y \in \mathbb{R}^n$ e todos $\alpha \in \mathbb{R}$:

1. Positividade

$$\|x\| \geq 0$$
 para todo x , e $\|x\| = 0$ se e somente se $x = 0$

2. Homogeneidade absoluta

$$\|\alpha x\| = |lpha| \|x\|$$

3. Desigualdade triangular

$$||x+y|| \le ||x|| + ||y||$$

Exemplos

1. Norma euclidiana

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$

2. Norma de Manhattan (ou *norma do valor absoluto* ou *norma 1*)

$$||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$$

3. Norma infinita

$$||x||_{\infty} = \max(|x_1|, |x_2|, \cdots, |x_n|)$$

4. Norma p

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}$$

Norma de uma matriz

Para todos $A,B\in\mathbb{R}^{n imes n}$ e $\alpha\in\mathbb{R}$:

1. Positividade

$$\|A\| \geq 0$$
 para todo A , e $\|A\| = 0$ se e somente se $A = 0$

2. Homogeneidade absoluta

$$||A\alpha|| = |\alpha|||A||$$

3. Desigualdade triangular

$$||A + B|| \le ||A|| + ||B||$$

4. Submultiplicatividade

$$||AB|| \le ||A|| ||B||$$

Exemplos

1. Norma de Frobenius

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$$

2. Norma de Schatten p

$$||A||_p = \left(\sum_{i=1}^n \sigma_i^p
ight)^{1/p},$$

onde σ_i são os valores singulares de A.

Norma Matricial Induzida

Seja $A \in \mathbb{R}^{n imes n}$. A norma induzida por uma norma vetorial $\|\cdot\|$ é definida como

$$||A|| = \max_{x
eq 0} rac{||Ax||}{||x||}.$$

A norma induzida mede a amplificação máxima de um vetor x por uma matriz A.

Teorema 2.1.26

A norma matricial induzida é uma norma matricial.

Teorema 2.1.24

Uma norma vetorial e sua norma matricial induzida satisfazem a desigualdade

$$||Ax|| \leq ||A|| \, ||x||$$

para todo $A \in \mathbb{R}^{n imes n}$ e $x \in \mathbb{R}^n$.

Além disso, sempre existe um vetor x tal que $||Ax|| = ||A|| \, ||x||$.

Retornando ao caso de estudo

- 1. Ax=b e $A(x+\delta x)=b+\delta b$ implica em $A\delta x=\delta b$, portanto $\delta x=A^{-1}\delta b$.
- 2. Uma vez que $||Az|| \leq ||A|| \, ||z||$ para todo $z \in \mathbb{R}^n$, temos

2.2
$$||b|| \leq ||A||\,||x|| \Longrightarrow ||x|| \geq rac{||b||}{||A||}$$
 .

Portanto,

$$\frac{||\delta x||}{||x||} \le ||A|| \, ||A^{-1}|| \, \frac{||\delta b||}{||b||}.$$

Número de Condição

Seja A uma matriz não singular. O número de condição de A é definido como

$$\kappa(A) = ||A||||A^{-1}||.$$

- 1. O número de condição mede a sensibilidade da solução de um sistema linear às variações dos dados.
- 2. Em um sistema linear com número de condição alto, pequenas variações nos dados podem causar grandes variações na solução.

Retornando ao caso de estudo...

Calcule o número de condição da matriz A para a norma de Frobenius.

Exemplo: Matrizes de Hilbert

Um dos exemplos mais famosos de matrizes mal condicionadas são as **matrizes de Hilbert**, definidas por $h_{ij}=1/(i+j-1)$.

Essas matrizes são simétricas, podem ser mostradas como positivas definidas e se tornam cada vez mais mal condicionadas à medida que n aumenta. Por exemplo, $\kappa_2(H_4) \approx 1.6 \times 10^4$ e $\kappa_2(H_8) \approx 1.5 \times 10^{10}$.

$$H_4 = egin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \ 1/2 & 1/3 & 1/4 & 1/5 \ 1/3 & 1/4 & 1/5 & 1/6 \ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix},$$

Interpretação Geométrica do Condicionamento

Definições

Ampliação máxima e mínima

$$maxmag(A) = \max_{x
eq 0} rac{||Ax||}{||x||} \quad ext{e} \quad minmag(A) = rac{||Ax||}{||x||}$$

Nota: Ampliação máxima é outro nome para a norma induzida ||A||.

Propriedades

$$maxmag(A) = rac{1}{minmag(A^{-1})} \quad ext{e } maxmag(A^{-1}) = rac{1}{minmag(A)}$$

Interpretação Geométrica do Condicionamento

Prova

Sabendo que
$$maxmag(A) = \max_{x \neq 0} \frac{||Ax||}{||x||}$$
 e escrevendo $y = Ax$, obtemos
$$\max (A) = \max_{A^{-1}y \neq 0} \frac{||y||}{||A^{-1}y||} = \min_{A^{-1}y \neq 0} \frac{||A^{-1}y||}{||y||}$$

$$= \min_{y \neq 0} \frac{||A^{-1}y||}{||y||} = \min (A^{-1})$$

Interpretação Geométrica do Condicionamento

Teorema 2.1.12

$$\kappa(A) = \frac{maxmag(A)}{minmag(A)}$$
, para toda matriz A não singular.

Nota:

- 1. Em matrizes mal condicionadas, a razão entre as amplificações máxima e mínima são muito grandes ($\kappa(A)\gg 1$).
- 2. Portanto, alguns vetores serão muito ampliados, enquanto outros serão muito contraídos.
- 3. Esta desproporção é que permite erros pequenos serem amplificados quando as matrizes são mal condicionadas.

Condicionamento vs Determinante

Ainda que o condicionamento envolva tanto A quanto A^{-1} e que A^{-1} só exista se $det(A) \neq 0$, a verdade é que **o determinante não é útil no cálculo do condicionamento**.

Exemplo

Considere a matriz

$$A_lpha = egin{bmatrix} lpha & 0 \ 0 & lpha \end{bmatrix}.$$

Temos $\det(A)=\alpha^2$, mas para qualquer norma induzida $\kappa(A)=1$. Portanto, A_{α} é bem condicionada mesmo quando temos $\det(A)=\alpha^2$ muito pequeno.

Mal Condicionamento e Scaling

Algumas vezes o problema do mal condicionamento é causado pela diferença entre as magnitudes das linhas (colunas) da matriz.

$$A = egin{bmatrix} 1 & 0 \ 0 & \epsilon \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} 1 \ \epsilon \end{bmatrix}.$$

Se fizermos uma perturbação $b+\delta b=\begin{bmatrix}1\\2\epsilon\end{bmatrix}$ encontraremos a solução perturabada

$$x+\delta x=egin{bmatrix}1\2\end{bmatrix}$$
, ou seja, $rac{||\delta x||}{||x||}\ggrac{||\delta b||}{||b||}$.

De fato, A é mal condicionada para $\epsilon \approx 0$,

$$\kappa_1(A) = \kappa_2(A)) = \kappa_\infty(A) = 1/\epsilon$$

Teorema 2.2.25

Seja A uma matriz não singular qualquer, e sejam a_1, a_2, \ldots, a_n suas colunas. Então, para qualquer i e j,

$$\kappa_p(A) \geq rac{\|a_i\|_p}{\|a_j\|_p}, \quad 1 \leq p \leq \infty.$$

Prova. Claramente $a_i = Ae_i$ (e_i base canônica). Portanto,

$$egin{aligned} \max & \max_{x
eq 0} rac{\|Ax\|_p}{\|x\|_p} \geq rac{\|Ae_i\|_p}{\|e_i\|_p} = \|a_i\|_p, \ \min & \max_{x
eq 0} rac{\|Ax\|_p}{\|x\|_p} \leq rac{\|Ae_j\|_p}{\|e_j\|_p} = \|a_j\|_p, \ & \kappa_p(A) = rac{\max & \max_{x
eq 0} rac{\|Ax\|_p}{\|x\|_p} \leq rac{\|Ae_j\|_p}{\|e_j\|_p} = \|a_j\|_p, \end{aligned}$$

Estimando o Condicionamento

Uma vez que
$$\frac{\|A^{-1}w\|_1}{\|w\|_1} \leq \max_{y \neq 0} \frac{\|A^{-1}y\|_1}{\|y\|_1} = \|A^{-1}\|_1$$
.

Tomando w=b, temos $A^{-1}w=x$, então

$$rac{\|x\|_1}{\|b\|_1} \leq \|A^{-1}\|_1 \quad ext{e} \quad \kappa_1(A) \geq rac{\|A\|_1 \|x\|_1}{\|b\|_1} = rac{\|A\|_1 \|A^{-1}w\|_1}{\|w\|_1}.$$

Se tivermos uma decomposição LU de A, podemos calcular $A^{-1}w$ resolvendo Ac=w. Além disso, se w for escolhido em uma direção próxima da amplificação máxima por A^{-1} , a teremos

$$\kappa_1(A) pprox rac{\|A\|_1 \|A^{-1}w\|_1}{\|w\|_1}$$

Perturbação na Matriz ${\cal A}$

Teorema 2.3.1

Se A é não singular e $\dfrac{||\delta A||}{||A||}<\dfrac{1}{\kappa(A)}$, então $A+\delta A$ é não singular.

Teorema 2.3.3

Seja A não singular, seja $b \neq 0$, e sejam x e $\hat{x}=x+\delta x$ soluções de Ax=b e $(A+\delta A)\hat{x}=b$, respectivamente. Então,

$$rac{\|\delta x\|}{\|x\|} \le \kappa(A) rac{\|\delta A\|}{\|A\|}$$

Demonstração

Reescrevendo a equação $(A+\delta A)\hat{x}=b$ como $Ax+A\delta x+\delta A\hat{x}=b$, utilizando a equação Ax=b, e reorganizando a equação resultante, obtemos $\delta x=-A^{-1}\delta A\hat{x}$. Assim,

$$\|\delta x\| \leq \|A^{-1}\| \|\delta A\| \|\hat{x}\|.$$

Dividindo por $\|x\|$ e usando a definição $\kappa(A) = \|A\| \|A^{-1}\|$, obtemos o resultado desejado.

Análise à posteriori, usando resíduo

Teorema 2.4.1

Seja A não singular, seja $b \neq 0$, e seja \hat{x} uma aproximação para a solução de Ax = b (em outras palavras, \hat{x} é qualquer vetor). Seja $r = b - A\hat{x}$. Então,

$$rac{\|x-\hat{x}\|}{\|x\|} \leq \kappa(A) rac{\|r\|}{\|b\|}.$$

PERGUNTAS?