Localisation et Navigation en Robotique Mobile

MENASRI Riad

03-02-2014 menasri.riad@gmail.com

Plan

- Navigation basée sur une carte
- Représentations de l'environnement
- Classification des méthodes de localisation
- Méthodes de localisation métrique

Qu'est-ce qu'une carte?

Carte:

Modèle interne de l'environnement

Mémorise sous diverses formes les informations proprioceptives et les perceptions Permet de relier des perceptions à une position

• pour compenser la dérive de la proprioception

Pourquoi une carte

Catégories 4 et 5 de la classification de Trullier

- Approche d'un objet
- Quidage
- Action associée à un lieu
- Navigation topologique
- Navigation métrique

Pourquoi une carte

Connaissance de l'environnement

- Pour repérer le robot
- Pour donner une vision globale à l'opérateur
- Pour la carte elle-même (relevé de plan d'architecte)

Pourquoi une carte

Caractéristiques

Relevé de zones mal connues

Planification d'actions à long terme

- buts hors de la vue directe
- optimisation globale de trajectoires

3 problèmes

Cartographie

Construction de la carte

Localisation

• Estimer la position du robot dans une carte connue

Planification

Calculer un chemin de la position courante jusqu'au but

Quelques hypothèses usuelles

Environnement plan (2D)

- plan de coupe d'un télémètre laser
- mobilité simplifiée

Environnement statique (mais bruité)

- pas de modélisation de portes ouvertes/fermés
- mais présence d'obstacles dynamiques possible (personnes, mobilier...) donc bruit

Estimation séparée de la position et de la direction

- notamment pour cartes topologiques (vision panoramique)
- pour des plates-formes holonomes :boussole, gyroscopes, recalage

2 types de représentations

Carte topologiques

- Graphe de lieux et de transitions entre lieux
- perception sans modèle métrique

Cartes métriques

- Ensemble d'objets dans un espace commun
- perception avec modèle métrique

Cartes topologiques

Avantages

- Discrétisation pour la planification
- Proche des données capteurs
- Utilisation de capteurs sans modèles métriques
- Séparation des info proprioceptives et des perceptions (cartographie)
- Localisation grossière, mais rapide

Inconvénients

- Séparation des info proprioceptives et des perceptions (localisation)
- Pas d'information sur les lieux non visités
- Représentation très liée à un robot particulier

Cartes métriques

Ensemble d'objets dans un repère commun

- Points, segments, polygones
- Scans laser
- Espace libre (grille d'occupation)

Cartes métriques

Avantages

- Représentation de lieux non visités (mais « vus » de loin)
- Utilisation de la géométrie
- Localisation précise
- Représentation indépendante du robot (utilisation d'un modèle métrique)

Inconvénients

- Planification moins directe que pour les cartes topologiques
- Nécessite un modèle métrique
- Fusion au sein d'un même espace -> difficulté de modifications futures

Représentations hybrides

Représentations mixtes (topo-métrique)

Nœuds (images) avec positions relatives métriques

Représentations hiérarchiques

Hiérarchies de représentations

- Métrique
- Topologique
- Sémantique

Oscar Martinez Mozos, Rudolph Triebel, Patric Jensfelt, Axel Rottmann, Wolfram Burgard
Supervised semantic labeling of places using information extracted from sensor data

Capacité de localisation

Localisation locale

Estimation de la position par correction d'une estimation initiale

Localisation globale

- Estimation de la position sans estimation initiale « lost robot »
- Estimation de la position avec une fausse estimation initiale « stolen robot »