力学(1)大作业

1. (本题 3分)(0015)

一运动质点在某瞬时位于矢径 $\bar{r}(x,y)$ 的端点处,其速度大小为

(A)
$$\frac{\mathrm{d}r}{\mathrm{d}t}$$

(B)
$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

(C)
$$\frac{\mathrm{d}|\vec{r}|}{\mathrm{d}t}$$

(D)
$$\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2}$$

2. (本题 3分)(0604)

某物体的运动规律为 $dv/dt = -kv^2t$, 式中的 k 为大于零的常量. 当t = 0 时, 初速为 v_0 ,则速度v与时间 t的函数关系是

(A)
$$v = \frac{1}{2}kt^2 + v_0$$
,

(A)
$$v = \frac{1}{2}kt^2 + v_0$$
, (B) $v = -\frac{1}{2}kt^2 + v_0$,

(C)
$$\frac{1}{v} = \frac{kt^2}{2} + \frac{1}{v_0}$$
, (D) $\frac{1}{v} = -\frac{kt^2}{2} + \frac{1}{v_0}$

(D)
$$\frac{1}{v} = -\frac{kt^2}{2} + \frac{1}{v_0}$$

3. (本题 3分)(0343)

如图所示,用一斜向上的力 \bar{F} (与水平成 30°角),将一重为 G 的木块压靠在竖直壁面上,如果不论用怎样大的力 F,都不能 使木块向上滑动,则说明木块与壁面间的静摩擦系数 μ 的大小为

(A)
$$\mu \ge \frac{1}{2}$$
.

(B)
$$\mu \ge \frac{1}{\sqrt{3}}$$
.

(C)
$$\mu \ge \sqrt{3}$$
.

(C)
$$\mu \ge \sqrt{3}$$
. (D) $\mu \ge 2\sqrt{3}$.

4. (本题 3分)(0617)

如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不 计,物体 A 的质量 m_1 大于物体 B 的质量 m_2 . 在 $A \setminus B$ 运动 过程中弹簧秤S的读数是

(A)
$$(m_1 + m_2)g$$
.

(A)
$$(m_1 + m_2)g$$
. (B) $(m_1 - m_2)g$.

(C)
$$\frac{2m_1m_2}{m_1+m_2}g$$
.

(D)
$$\frac{4m_1m_2}{m_1+m_2}g$$

5. (本题 3分)(0063)

质量为m的质点,以不变速率v沿图中正三角形 ABC 的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为

(A) mv.

(B) $\sqrt{2} mv$.

(C) $\sqrt{3} mv$.

(D) 2mv.

B

6. (本题 3分)(0367)

质量为 20 g 的子弹沿 X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿 X 轴正向以 50 m/s 的速率前进,在此过程中木块所受冲量的大小为

 $(A) 9 N \cdot s$.

 $(B) - 9 N \cdot s$.

(C)10 N·s .

(D) -10 $N \cdot s$.

A]

7. (本题 3分)(0405)

人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫 星的

- (A)动量不守恒,动能守恒.
- (B)动量守恒,动能不守恒.
- (C)对地心的角动量守恒,动能不守恒.
- (D)对地心的角动量不守恒,动能守恒.

8. (本题 3分)(0350)

一个质点同时在几个力作用下的位移为:

$$\Delta \vec{r} = 4\vec{i} - 5\vec{j} + 6\vec{k} \quad (SI)$$

其中一个力为恒力 $\vec{F} = -3\vec{i} - 5\vec{j} + 9\vec{k}$ (SI),则此力在该位移过程中所作的功为

(A) -67 J.

(B) 17 J.

(C) 67 J.

(D) 91 J.

C

9. (本题 3分)(0078)

质量为m的质点在外力作用下,其运动方程为 $\vec{r} = A\cos\omega t \ \vec{i} + B\sin\omega t \ \vec{j}$

式中 $A \setminus B \setminus \omega$ 都是正的常量. 由此可知外力在t=0到 $t=\pi/(2\omega)$ 这段时间内所作 的功为

(A)
$$\frac{1}{2}m\omega^2(A^2+B^2)$$

(B)
$$m\omega^2(A^2+B^2)$$

(A)
$$\frac{1}{2}m\omega^2(A^2 + B^2)$$
 (B) $m\omega^2(A^2 + B^2)$ (C) $\frac{1}{2}m\omega^2(A^2 - B^2)$ (D) $\frac{1}{2}m\omega^2(B^2 - A^2)$

(D)
$$\frac{1}{2}m\omega^2(B^2-A^2)$$

10. (本题 3分)(0408)

 $A \times B$ 二弹簧的劲度系数分别为 k_A 和 k_B , 其质量均忽略不 计, 今将二弹簧连接起来并竖直悬挂, 如图所示, 当系统静止 时,二弹簧的弹性势能 E_{PA} 与 E_{PB} 之比为

$$(A) \quad \frac{E_{PA}}{E_{PB}} = \frac{k_A}{k_B}$$

(B)
$$\frac{E_{PA}}{E_{PB}} = \frac{k_A^2}{k_B^2}$$

(C)
$$\frac{E_{PA}}{E_{PB}} = \frac{k_B}{k_A}$$

(D)
$$\frac{E_{PA}}{E_{PB}} = \frac{k_B^2}{k_A^2}$$

11. (本题 3分)(0020)

一质点在力 F=5m(5-2t) (SI)的作用下,t=0 时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当 t=5 s 时,质点的速率为

- (A) $50 \text{ m} \cdot \text{s}^{-1}$.
- . (B) $25 \text{ m} \cdot \text{s}^{-1}$.

(C) 0.

(D) $-50 \text{ m} \cdot \text{s}^{-1}$.

C]

12. (本题 3分)(0206)

两质量分别为 m_1 、 m_2 的小球,用一劲度系数为 k 的轻弹簧相连,放在水平光滑桌面上,如图所示. 今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的

- (A) 动量守恒,机械能守恒.
- (B) 动量守恒,机械能不守恒.
- (C) 动量不守恒,机械能守恒.
- (D) 动量不守恒,机械能不守恒.

В

13. (本题 3分)(0006)

质点沿半径为 R 的圆周运动,运动学方程为 $\theta = 3 + 2t^2$ (SI),则 t 时刻

10 K l ; 角加速度

$$\beta =$$
 4 rad /s².

14. (本题 4分)(0017)

一物体作如图所示的斜抛运动,测得在轨道 A 点处速度 \bar{v} 的大小为 v,其方向与水平方向夹角成 30° .则

物体在 A 点的切向加速度 $a_t = \underline{\qquad -g/2}$

轨道的曲率半径
$$\rho = \frac{2\sqrt{3}v^2/(3g)}{2\sqrt{3}v^2/(3g)}$$

15. (本题 3分)(0031)

质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比

$$T:T'=\underbrace{\frac{1/\cos^2\theta}{}}.$$

16. (本题 5分)(0374)

图示一圆锥摆,质量为 m 的小球在水平面内以角速度 ω 匀速转动.在小球转动一周的过程中,

- (1) 小球动量增量的大小等于______0_____.
- (2) 小球所受重力的冲量的大小等于 $_{----}^{2\pi mg/\omega}$ ____.
- (3) 小球所受绳子拉力的冲量大小等于 $_{-----}^{2\pi mg/\omega}$.

17. (本题 4分)(0631)

一物体质量为 10 kg,受到方向不变的力 F=30+40t (SI)作用,在开始的两

秒内,此力冲量的大小等于______; 若物体的初速度大小为 10 m/s,

方向与力 \bar{F} 的方向相同,则在 2s 末物体速度的大小等于_____24 m/s

18. (本题 5分)(0724)

一质量为 m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为 $\bar{r} = a\cos\omega t\bar{i} + b\sin\omega t\bar{j}$,其中 a、b、 ω 皆为常量,则此质点对原点的角动

量 $L = \underline{m\omega ab}$, 此质点所受对原点的力矩 $M = \underline{0}$.

19. (本题10分)(0037)

质量为m的子弹以速度 v_0 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:

- (1) 子弹射入沙土后,速度随时间变化的函数式;
- (2) 子弹进入沙土的最大深度.

解:
$$-Kv = m\frac{\mathrm{d}v}{\mathrm{d}t} \qquad -\frac{K}{m}\mathrm{d}t = \frac{\mathrm{d}v}{v}, \qquad -\int_{0}^{t} \frac{K}{m}\mathrm{d}t = \int_{v_{0}}^{v} \frac{\mathrm{d}v}{v} \qquad v = v_{0}\mathrm{e}^{-Kt/m}$$

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} \qquad \mathrm{d}x = v_{0}\mathrm{e}^{-Kt/m}\,\mathrm{d}t \qquad \int_{0}^{x} \mathrm{d}x = \int_{0}^{t} v_{0}\mathrm{e}^{-Kt/m}\,\mathrm{d}t$$

$$x = (m/K)v_{0}(1 - \mathrm{e}^{-Kt/m}) \qquad x_{\max} = mv_{0}/K$$

型
$$-Kv = m\frac{\mathrm{d}v}{\mathrm{d}t} = m(\frac{\mathrm{d}v}{\mathrm{d}x})(\frac{\mathrm{d}x}{\mathrm{d}t}) = mv\frac{\mathrm{d}v}{\mathrm{d}x}$$
$$dx = -\frac{m}{K}dv \qquad \int_{0}^{x_{\max}} \mathrm{d}x = -\int_{v_{0}}^{0} \frac{m}{K} \mathrm{d}v \qquad x_{\max} = mv_{0}/K$$

20. (本题10分)(0530)

一质量为 60 kg 的人,站在质量为 30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以 1 m/s²的加速度上升,人对绳子的拉力 T_2 多大?人对底板的压力多大?(取 g=10 m/s²)

解:

$$T_2 + N - m_1 g = m_1 a$$

$$T_1 + T_2 - N' - m_2 g = m_2 a$$

$$T_1 = 2T_2$$

$$N' = N$$

$$4T_2 - m_1 g - m_2 g = (m_1 + m_2)a$$

$$T_2 = (m_1 + m_2)(g + a)/4 = 247.5 \text{ N}$$

$$N' = N = m_1(g + a) - T_2 = 412.5 \text{ N}$$

21. (本题10分)(0769)

如图所示,有两个长方形的物体 A 和 B 紧靠着静止放在光滑的水平桌面上,已知 m_A \square =2 kg, m_R =3 kg. 现有一质量 m=100 g 的

子弹以速率 v_0 =800 m/s 水平射入长方体 A,经 t=0.01 s,又射入长方体 B,最后停留在长方体 B 内未射出. 设子弹射入 A 时所受的摩擦力为 F= 3×10³ N,求:

- (1) 子弹在射入A的过程中,B受到A的作用力的大小.
- (2) 当子弹留在B中时,A和B的速度大小.

解: 子弹射入 A 未进入 B 以前, A 、 B 共同作加速运动. $F=(m_A+m_B)a$, $a=F/(m_A+m_B)=600 \text{ m/s}^2$ B 受到 A 的作用力 $N=m_Ba=1.8\times 10^3 \text{ N}$ 方向向右

A 在时间 t 内作匀加速运动,t 秒末的速度 $v_A=at$. 当子弹射入 B 时,B 将加速而 A 则以 v_A 的速度继续向右作匀速直线运动。 $v_A=at=6$ m/s

取 A、B 和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动量守恒,子弹留在 B 中后有

$$mv_0 = m_A v_A + (m + m_B)v_B$$
 $v_B = \frac{mv_0 - m_A v_A}{m + m_B} = 22 \text{ m/s}$

22. (本题10分)(0422)

一质量为 m 的质点在 Oxy 平面上运动,其位置矢量为 $\vec{r} = a\cos\omega t \vec{i} + b\sin\omega t \vec{j}$ (SI)

式中 a、b、 ω 是正值常量,且 a > b.

- (1)求质点在A点(a, 0)时和B点(0, b)时的动能;
- (2)求质点所受的合外力 \vec{F} 以及当质点从A点运动到B点的过程中 \vec{F} 的分力 \vec{F}_x 和 \vec{F}_v 分别作的功.

解:
$$\vec{r} = a\cos\omega t \,\vec{i} + b\sin\omega t \,\vec{j}$$
 $x = a\cos\omega t$, $y = b\sin\omega t$

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t} = -a\omega\sin\omega t$$
, $v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = b\omega\cos\omega t$

在
$$A$$
 点 $(a, 0)$, $\cos \omega t = 1$, $\sin \omega t = 0$ $E_{KA} = \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 = \frac{1}{2} m b^2 \omega^2$

在
$$B$$
 点 $(0, b)$, $\cos \omega t = 0$, $\sin \omega t = 1$ $E_{KB} = \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 = \frac{1}{2} m a^2 \omega^2$

22. (本题10分)(0422)

一质量为m的质点在Oxy平面上运动,其位置矢量为 $\vec{r} = a\cos\omega t \vec{i} + b\sin\omega t \vec{j}$ (SI)

式中 a、b、 ω 是正值常量,且 a > b.

- (1)求质点在A点(a, 0)时和B点(0, b)时的动能;
- (2)求质点所受的合外力 \vec{F} 以及当质点从A点运动到B点的过程中 \vec{F} 的分力 \vec{F}_x 和 \vec{F}_y 分别作的功.

$$\vec{F} = ma_x \vec{i} + ma_y \vec{j} = -ma\omega^2 \cos\omega t \, \vec{i} - mb\omega^2 \sin\omega t \, \vec{j}$$

$$W_{y} = \int_{0}^{b} F_{y} dy = -\int_{0}^{b} m\omega^{2} b \sin \omega t dy = -\int_{0}^{b} m\omega^{2} y dy = -\frac{1}{2} mb^{2} \omega^{2}$$