

Высшая Школа Экономики Московский Институт Электроники и Математики

Разработка алгоритма преобразования стиля изображений с применением алгоритмов машинного обучения и параллельных вычислений

Павел Цветов, БИВ 161

Актуальность

Image Style Transfer

Machine Learning, Deep Learning CNN, RNN, GPUs

Text Style Transfer

Audio Style Transfer

Convolutional Neural Networks

Цели проекта

Целью данной работы является разработка алгоритма "Нейронного переноса стиля" для рендеринга изображений с высоким разрешением, с использованием алгоритмов оптимизации и ускорения вычислений в нейронной сети и параллельных распределенных вычислений.

Новизна

- 1. Рендеринг изображений с высоким разрешением (Full HD Up to 4K)
- 2. Рассмотрение возможных способов
- 3. Параллельные и распределенные вычисления, алгоритмы, методы, использование вкупе с Cloud GPUs
- 4. Проведение экспериментов с Color Preservation, Depth/Perspective Preservation, Brush Size/Stroke, MultiStyle, PhotoRealistic Style
- 5. Эксперименты с гиперпараметрами модели (learning rate, optimizer, etc)

- Deep Learning (the early idea 60s 80s; real use 2000s)
- Convolutional Neural Networks (CNN) emerged in 80s; real use in 2000s
- Original paper: Gatys et al. (2015) "Image Style Transfer Using Convolutional Neural Networks"
- Johnson et al. (2016) "Perceptual Losses for Real-Time Style Transfer"
- Multiple Style Transfer and Video Style Transfer (2017)
- Вердикт: obsolete research papers, major flaws, various limitations to our cause, not reflecting on our issue

Постановка задачи

• Input: given Content image Y_C and Style image Y_S generate output image Y, so that:

 $Y = argmin(y) L_{total}(Y_C, Y_S, Y)$

- Issue: Baseline Method Image Size to VRAM (1920x1080 ~ 12 GB)
- How to generate high-resolution images (Full HD up to 4K)?
- How to change and control perceptual factors (e.g. brush size & stroke, color, texture, etc.)?

$$Ltotal = \alpha Lc + \beta Ls + \gamma Li$$

Методология / технологии

- 1. Implementation of original Gatys et al. Algorithm
- 2. Extending a baseline algorithm adding new features (color, depth, perspective, stroke)
- 3. Render of High-Resolution images:

Super Resolution Image Upscaling, Image to Tile Splitting

4. Experimental stage

Tools:

- Python 3 language, user-friendly PyTorch ML framework
- Cloud GPU Platforms, Jupyter Notebook, Google Colab, etc
- Using pre-trained CNN VGG19 network, external NNs

Фактические результаты / стадия проекта

- 1. Обзор литературы и изучение работы алгоритма Neural Style Transfer
- 2. Реализация алгоритма Гэтиса нейронного переноса стиля с использованием библиотеки PyTorch
- 3. Ознакомление с облачными GPU-платформами для обучения модели и настройки рабочей среды
- 4. Расширение реализованного алгоритма для рендеринга изображений с высоким разрешением, рассмотрение способов (склейка, Super Resolution Upscaling, и т.д.)
- 5. Реализация алгоритма нейронного переноса стиля с сохранением исходного цвета

https://github.com/yaiestura/neural-style-transfer

Colab Google

Недоработки

Развитие

- 1. Реализация алгоритма нейронного переноса стиля с сохранением глубины и перспективы исходного изображения
- 2. Multi Style Transfer
- 3. Изучение факторов, влияющих на толщину и размер кисти на генерируемом изображении
- 4. Проведение различных экспериментов, улучшающих общее качество и эффективность алгоритма
- 5. Изучение алгоритмов параллельных вычислений для использования в комбинации с алгоритмом нейронного переноса стиля

- Generative Adversarial Networks
 (GAN)
- Real-Time Arbitrary Style Transfer
- Video Style Transfer
- Shading
- VRAM efficiency
- Automatic hyperparameter tuning

Super Resolution

Сохранение цвета

Сопоставление гистограмм (Histogram Color Matching) и Перенос по яркости

(Luminance-only transfer)

Фотореалистичный перенос стиля

Single-Image Depth Perception in the Wild, 2017

