

Введение в нейронные сети. Урок 2. Keras

План вебинара

- 1. Инструменты для создания нейронных сетей.
- 2. Общие сведения o Keras
- 3. Синтаксис Keras
- 4. Практика

GeekBrains

Инструменты для создания нейр. сетей

Общие сведения о Keras

Deep Learning with Keras

Основы синтаксиса

Deep Learning with Keras:: cheat sheet

Intro

Keras is a high-level neural networks API developed with a focus on enabling fast experimentation. It supports multiple backends, including TensorFlow, CNTK and Theano.

TensorFlow is a lower level mathematical library for building deep neural network architectures. The keras R package makes it easy to use Keras and TensorFlow in R.

https://keras.rstudio.com

https://www.manning.com/books/deep-learning-with-r

INSTALLATION

The ker as R package uses the Python keras library. You can install all the prerequisites directly from R.

https://keras.rstudio.com/reference/install_keras.html

library(keras) install_keras()

This installs the required libraries in an Anaconda environment or virtual environment 'r tensorflow'.

Working with keras models

DEFINE A MODEL

keras_model() Koras Model

keras_model_sequential() Xeras Model composed of a linear stack of layers

multi_gpu_model() Replicates a model on different

COMPILE A MODEL

compile(object, optimizer, loss, metrics = NULL) Configure a Keras model for training

FIT A MODEL

fit(object, x = NULL, y = NULL, batch_size = NULL, epochs = 10, verbose = 1, callbacks = NULL,...) Train a Keras model for a fixed number of epochs.

fit_generator() Fits the model on data yielded batchby-batch by a generator

train_on_batch() test_on_batch() Single gradient update or model evaluation over one batch of

EVALUATE A MODEL

evaluate(sbject, x = NULL, y = NULL, batch_size = NULL3 Evoluate a Kevas mo-

evaluate_generator() Evaluates the model on a data

PREDICT

predict() Generate predictions from a Keras model

predict_proba() and predict_classes() Generates probability or class probability predictions for the input samples

predict_on_batch() Returns predictions for a single

predict_generator() Generates predictions for the input samples from a data generator

OTHER MODEL OPERATIONS

summary() Print a summary of a Keras model

export_savedmodel() Export a saved model

get_layer() Retrieves a layer based on either its name (unique) or index

pop_layer() Remove the last layer in a model

save_model_hdf5(); load_model_hdf5() Save/ Load models using HDF5 files

serialize model(): unserialize model() Serialize a model to an R object

clone model() Clone a model instance

freeze weights/i: unfreeze weights/i Freeze and unfreeze weights

CORE LAYERS

COLUMN TWO IS NOT THE OWNER.

tayer_input() input layer tayer_dense() Add a densely-

layer_activation() Apply an activation function to an output

layer_dropout() Applies Dropout

nected NN layer to an output

layer_reshape() Reshapes an output to a certain shape

layer_permute() Permute the ions of an input according. to a given pattern

layer_repeat_vector() Repeats

tayer_tambda(object, f) Wrops arbitrary expression as a layer

> layer_activity_regularization() Layer that applies an update to the cost function based input

layer, masking() Masks a sequence by using a mask value to skip timesteps

layer_flatten() Flattens an input

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA # input layer: use MNIST images 5041 mnist <- dataset_mnist() x_train <- mnistStrainSx; y_train <- mnistStrainSy

x train <- array_reshape(x train, c(nrow(x train), 784)) x_test <- array_reshape(x_test, c)nrow(x_test), 784() x train <- x train / 255; x test <- x test / 255

x_test <- mnistStestSx; y_test <- mnistStestSy

y_train <- to_categorical(y_train, 10) y_test <- to_categorical(y_test, 10)

defining the model and layers

model <- keras_model_sequential() model Nati

layer_dense(units = 256, activation = 'relu', input_shape = c(784)| %>% layer_dropout(rate + 0.4) %/% layer_dense(units = 128, activation = 'relu') %>% layer_dense(units = 10, activation = 'softmax')

compile (define loss and optimizer)

model %>% compile(loss = 'categorical_crossentropy', optimizer = optimizer_rmsprop()_ metrics = c('accuracy')

or torpains (file)

model %>% fit) x_train, y_train, epochs = 30, batch, size = 128, validation_split = 0.2 model %>% evaluate(x, test, y, test)

model %>% predict_classes(x_test)

Структура Keras

Models

- Sequential
- Model API

Layers

- сверточные
- рекуррентные
- полносвязные

- служебные Preprocessing

- utils
- обработка изображений
- обработка текстов

Models.Model

keras.Model()

inputs outputs name

Model.summary()

Models.Sequential

keras.Sequential() layers, Name модель.add(<Слой>)

Models Model training API

```
Model.compile(
    optimizer="rmsprop",
    loss=None,
    metrics=None)

Model.fit( x=None, y=None,
    batch_size=None,
    epochs=1,
    validation_split=0.0)

Model.predict( x)
```


Практическое задание

- 1. Попробуйте обучить нейронную сеть на Keras на Fashion-MNIST датасете. Опишите в комментарии к уроку какой результата вы добились от нейросети? Что помогло вам улучшить ее точность?
- *2. Поработайте с документацией Keras. Найдите полезные команды не разобранные на уроке.