

. .

. .

« »

• • • •

1

```
: 519.8(075)
                                                                              . . 1. –
                    , 2013. – 117 .
                        (
                                        ),
                                                                       ».
                                «
   . 15.
                  .: 8
                                                                     , 2013
                                                                      , 2013
```

, 2013

©

«

1.) optimus –). 1.1. ?

--?

,

, . .

?

()

· -

() .

"

1.2.

,

()

,

. – ,

_ ,

,

· 1.1

S(.1.1).

 $A \longrightarrow D$ $A \longrightarrow D$ $A \longrightarrow D$

,

. S, . . $S = 2R^2 \sin x$, ,

 $\sin = 1,$ $\sin = \frac{1}{2}$.

 $2R^2$.

 $0 \quad b \quad 0$

 $\sqrt{2}$

S = b

 $\sqrt{a^2 + b^2} = 2R$

 $\begin{cases} S = ab \to \max; \\ a^2 + b^2 = 4R^2, a \ge 0, b \ge 0. \end{cases}$

S = ab

 $4R^2 - 2S = {}^2 + b^2 - 2 \ b = (a - b)^2, \qquad S = 2R^2 - \frac{(a - b)^2}{2}.$, S

 $S^* = 2R^2$ $= b = R\sqrt{2}.$ $= b, \ldots$

) 1.2 (

ABCb

(.1.2).

. 1.2

 $(\qquad . 1.2),$ $S \qquad h.$ $S = hx, \qquad ,$ $- \qquad (H$ -h)/H = x/b, $\begin{cases} S = hx \rightarrow \max; \\ \frac{H-h}{H} = \frac{x}{b}, h \ge 0, x \ge 0. \end{cases}$

1.1). $x^* = b/2$ $h^* = (1 - x/b)H = H/2.$,

,

ABC.

1.3.

,

. 1.3

,

R

S

$$S=2 R(H+R)$$

 $R^2H=V$, ...

$$S(R) = \frac{V}{R} + \frac{V}{R} + 2\pi R^2,$$

R,

 $S(R) = \frac{V}{R} + \frac{V}{R} + 2\pi R^2 \ge 3\sqrt[3]{\frac{V}{R}} \frac{V}{R} 2\pi R^2 = 3\sqrt[3]{2\pi V^2} = S_*.$

 $\frac{V}{R} = 2\pi R^2 , \qquad R_* = \sqrt[3]{\frac{V}{2\pi}} .$

 $H_* = \frac{V}{\pi R_*^2} = \sqrt[3]{\frac{4V}{\pi}} = 2R_*,$

 R^2 $4R^{2}$,

 $\tilde{s} = 2\pi RH + 8R^2$ $R^2H=V$.

 $\widetilde{R}_* = \sqrt[3]{V}$, $\widetilde{S}_* = 6\sqrt[3]{V^2}$, $\widetilde{H}_* = \frac{8}{\pi}\widetilde{R}_*$.

2*R*. $2\sqrt{3}R^2$

R.

 $\tilde{S} = 2\pi RH + 4\sqrt{3}R^2$

 $\hat{R}_* = \sqrt[3]{\frac{V}{4\sqrt{3}}}, \ \hat{S}_* = 3\sqrt[3]{4\sqrt{3}V^2}, \ \hat{H}_* = \frac{4\sqrt{3}}{\pi}\tilde{R}_*.$

,

,

1.4.

,

•

, , , , , ,

· ,

•

1.4

(, , , i-

j- o j- o j- o j- o

. $a_j \hspace{1cm} A_j$

,

 $\sum_{j=1}^n a_{ij} x_j \leq b_i, \ i = \overline{1,m}, \ a_j \leq x_j \leq A_j, \ j = \overline{1,n}.$

 $, \qquad \qquad = (\ _{1},$

2, ..., n)

 $S = \sum_{j=1}^{n} d_{j} x_{j}$, j, j, j j, j

1.5 (

, a j- , $j=\overline{1,n}$, i- , $i=\overline{1,m}$, a_i , i- , j- ij , i- j- , ij x_{ij} , i- j- , ij x_{ij} ,

-

 $S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min,$ min x_{ij} 0,

, . .

 $\sum_{i=1}^m x_{ij} = b_j, j = \overline{1,n}.$

 $\sum_{j=1}^n x_{ij} \leq a_i, \ i = \overline{1,m}.$

m

. .

$$\sum_{j=1}^{n} b_{j} \leq \sum_{i=1}^{m} a_{i}.$$
1.6 (

; – ; –

; a_{ij} – i–

j-- ; b_j - i--

; c_j – j– . . ,

(, ,

 $= (1, x_2, ..., n)^T, x_j -$

j- o , , ,

.

 $S = \sum_{j=0}^{n} c_{j} x_{j}$

 $\sum_{j}^{n} a_{ij} x_{j} \geq b_{i}, i = \overline{1, m};$

 $x_j \ge 0, j = \overline{1,n}$.

1.7

,

x i-

 a_i — i — (

 $k_i = 1,$ $-k_i <$

1).

i- : $b_i \ x_i \geq b_i, \ i=\overline{1,n} \, .$

, n

 $\sum_{i=1}^n d_i x_i \ge b ,$

 $C = \sum_{i=1}^{n} k_i$

$$S = \sum_{i=1}^n a_i x_i^{k_i} ,$$

,

1.8

 $i=\overline{1,m},$ $B_{j},j=\overline{1,n},$ g_{i} $i=\overline{1,m}$

, $i=\overline{1,m},$ $G_i,$. . . i- , $i=\overline{1,m},$ $\varphi_i(g_i)$ $g_i.$

K , k- ,

 $k = \overline{1, K}, f_k(g_k) g_k .$

 $\sum_{k \in B_j^+} g_k = p_j + \sum_{k \in B_j^-} g_k , j = \overline{1,n} ,$ $B_j^+ \qquad B_j^- \qquad \qquad j-$

 $\sigma_i = \sum_i \sigma_i$ $i = \overline{1 m}$

 $g_i = \sum_{k \in A_i} g_k$, $i = \overline{1,m}$.

 $S = \sum_{i=1}^{m} \varphi_{i}(g_{i}) + \sum_{k=1}^{K} f_{k}(g_{k})$

. $arphi_i(g_i) \quad f_k(g_k)$

1.5.

.

,

,

,

,

 $f_0(x)$ – ,

 $x_j, j = \overline{1,n}, \qquad x \in \mathbb{R}^n.$

).

,

 $f_0(x) \to min, x \in \Omega,$ (1.1)

 $\Omega \subset \mathbb{R}^n$,

 $x \in \Omega$

 $x^* \in \Omega,$ $f_0(x)$

.

 $D(f_0) \subset \mathbb{R}^n$.

. (1.1)

```
14
```

Ω, $x \in \Omega$, $f_0(x)$ Ω Ω $\inf_{x \in \Omega} f_0(x)$ $f_0(x)$ (1.1) $f_0(x) \to \inf, x \in \Omega.$ (1.2)(1.1)(1.2) $x^* \in \Omega$, Ω, $x_j, j = \overline{1,n},$ $f_0(x^*) = \min_{x \in \Omega} f_0(x),$ $x^* \in \Omega$ $x_n \in \Omega$, $\{f_0(x_n)\},\$ $\inf_{x\in\Omega}f_0(x),$ (1.2) $f_0(x)$ — R^n . $f_0(x) = (c, x),$ $c = (c_1, ..., c_n) \in \mathbb{R}^n$ $f_0(x) = (c, x) = \sum_{j=1}^{n} c_j x_j$ $f_0(x^*)$ Ω $\Omega = R^n$ Ω 6 $(c, x) \rightarrow min, x \in \mathbb{R}^n$ (1.3)

 $Bx = \mathbf{d}, x \in \mathbb{R}^{n},$ $k \times ,$ (1.4)

```
x_j \ge 0, j = \overline{1,n},
                                                                                                                 (1.5)
                       (1.3) - (1.5)
                                                                             x \in \mathbb{R}^n, \mathbb{R}^n –
                      (1.5)
                                                R
(1.3) - (1.5)
                                                    \sum_{j=1}^n a_{ij} x_j \leq b_m,
                                                                                                                 (1.6)
                                                          (1.3) - (1.6)
      a_{ij} \in \mathbb{R}, i = \overline{1,m},
                                                                                                                     (1.5)
                      (1.3), (1.5) (1.6)
                            x_j \geq a_j, x_j \geq b_j a_j \leq x_j \leq b_j, j = \overline{1,n}
                      (1.5)
                                                                      (1.3)
                                            (c, x) + \frac{1}{2}(Qx, x) \rightarrow \min,
                                                                                                                 (1.7)
      Q –
                                                                                                  (1.7)
                     (1.4) - (1.6)
```

$$\frac{(q,x)+\alpha}{(r,x)+\beta} \to \min,$$

 $q \in RR^n, r \in R^n, \alpha \in R \quad \beta \in R$

 $g_i(x) = \begin{cases} f_0 = \sum_{j=1}^n h_j(x_j) \to \min; \\ g_i(x) = \sum_{j=1}^n g_{ij}(x_j) \le \gamma_i, & i = \overline{1, m}; \\ x_j \ge 0, & j = \overline{1, n}, \end{cases}$

 $\gamma_i \in R$

 $f_0(x)$ $g_i(x)$

 $f_0(x)$ $g_i(x)$

•

 $y(x) = \sum_{i=1}^{m} c_i p_i(x),$

 $x = (x_1, ..., x_n) \in R_+^n, c_i \in R_+, R_+^n$

n

 R_{+}^{n}

 $p_i(x)$

 $p_i(x) = \prod_{j=1}^n x_j^{a_{ij}} ,$

 $a_{ij} \in \mathbb{R}.$ $c_i, i = \overline{1,m},$

(),

•

 $x_{j}^{a_{ij}}$ ij

()

•

```
( )
                                   f_1(x) = 0, l = \overline{1,k}; g_i(x) \le 0, i = \overline{1,m},
                                                 f_1(x), g_i(x)
                                                                                      (
                                                                                                    ),
(
             ).
                                      Q
```

2. 2.1. ($max f(x_1, ..., x_n)$ m $G_1(x_1, ..., x_n) \leq B_1,$ $G_m(x_1, ..., x_n) \leq B_m,$,); $x_1, ..., x$ – 2.2. 2.1

: *M*1 2.

	(
<i>M</i> 1	6	4	24
2	1	2	6
	5	4	

2 (),) () 2.
 3. x_1 x_2 z $z = 5x_1 + 4x_2.$

 $z=5x_1+4x_2.$

(), $M1 = 6x_1 + 4x_2$ (). $2 = 1x_1 + 2x_2$ (). *M*1 2 24 6 $6x_1 + 4x_2 \le 24 \ ($ M1); $1x_1 + 2x_2 \le 6$ (2). 1) 2;2) $_2 \leq 2.$ $, \ldots_{2} - 1 \leq 1.$ 2 1

: $_1 \ge 0$, $_2 \ge 0$.

 $z = 5x_1 + 4x_2$ $6x_1 + 4x_2 \le 24,$ $1x_1 + 2x_2 \le 6,$ $-x_1+x_2\leq 1,$ $_{2} \leq 2$, $_{1} \ge 0, _{2} \ge 0.$

```
. , _{1}=3 _{2}=1 , , , _{1}=3 _{2}=1 , , , , , , , , , , , .
```

 $z = 5 \times 3 + 4 \times 1 = 19.$,
,
,

. 1.

2.

2.3.

1.

2.

2.1,

2.2

```
z = 5x_1 + 4x_2
                                            6x_1 + 4x_2 \le 24,
                                             1x_1 + 2x_2 \le 6,
                                             -x_1+x_2\leq 1,
                                                  _{2} \le 2,
                                              _{1} \ge 0, _{2} \ge 0.
               1.
                                                - <sub>2</sub> (
                                                           . 2.1).
                 x_1,
                                             : x_1 \geq 0 \qquad _2 \geq 0.
                                                          <sub>2</sub>).
                                   x_1
6x_1 + 4_2 \le 24
                                                               6x_1 + 4_2 = 24.
                                      _2 = 24 / 4 = 6.
                                                                                        _{2} = 0
                         x_1 = 0,
x_1 = 24 / 6 = 4.
                                                                                   (0, 6) (4, 0).
                                   . 2.1
                                                         (x_1,
                                                                 2)
                                                                                         (
                         ),
                                                                                                  (0, 0).
                                                                                     6x_1 + 4_2 \le 24
          6\ 0\ +\ 4\ 0\ =\ 0\ \le\ 24).
                                            (0, 0),
     . 2.1
```


,

,

.

 $z = 5x_1 + 4x_2$

. 2.2 ,

 $6x_1 + 4_2 = 24,$

 $x_1 + 2_2 = 6$.

 $x_1 = 3$ $_2 = 1,5,$

 x_1

 $z = 5 \times 3 + 4 \times 1,5 = 21.$

2.1

3 1,5 —

21 000.

z (),

(

. 3.

```
2.4.
                                          " (
              ≤)
                                                                 ≥).
              (
                                                                ),
                          "≤"
                                                      0).
                             ( ,
                                                             (
                          ).
                                                                "≤"
(
                                                                            ).
                                                  2.1
                                                                      6x_1 + 4_2 \le 24
                                           M1.
            6x_1 + 4_2 + s_1 = 24,
                                          s_1 \geq 0.
                                                                                       s_1
(s_1 = 24 - 6x_1 - 4_2)
                                                                       M1.
                                                  x_1 + y_2 \ge 800
                                                                         800
```

 $x_1 + z \ge 800$, 800 . $x_1 + z - s_1 = 800$, $s_1 \ge 0$.

•

. ,

,

2.3

0,25 0,2 200 25 20 15 900 (. . x_1 2 200 $0.25x_1 + 0.2_2 \le 200,$ $0.25x_1 + 0.2_2 \ge 200.$ $0,25x_1 + 0,2_2 + _3 = 200,$ $_3 s_1$ 3

 $x_3 = x_3^+ - x_3^-, \qquad x_3^+, x_3^- \ge 0$

 $x_3^+ > 0$ $x_3^- = 0$,

 $, x_3^- > 0 \quad x_3^+ = 0, \qquad x_3$. (

,

 $x_3^+, x_3^-.$

 $0.25x_1 + 0.2_2 + x_3^+ - x_3^- = 200.$

 $z = 0.20x_1 + 0.15_2 - 0.25x_3^-$.

```
3.
                                                                                        ).
                         (
3.1.
3.1.1.
1.
         )
2.
3.
1.
                                             <u>≤</u>
                                                      ≥)
                 . 2).
```

2 < 4 -1

2. j (..

)

$$x_{j} = x_{j}^{+} - x_{j}^{-}, \quad x_{j}^{+}, x_{j}^{-} \ge 0.$$

$$x_{j} = -5 \qquad x_{j}^{+} = 0 \quad x_{j}^{-} = 5. \qquad x_{j} = +5,$$

$$x_{j}^{+} = 5 \quad x_{j}^{-} = 0. \qquad x_{j}^{+} \quad x_{j}^{-} \qquad .$$

3. f(1, 2, ..., n)-f(1, 2, ..., n),

> 1, 2, ..., n. 3.1

$$z = 2x_1 + 3_2 + 5_3$$

$$x_1 + {}_2 - {}_3 \ge -5,$$

 $-6x_1 + 7 {}_2 - 9 {}_3 \le 4,$
 $x_1 + x_2 + 4 {}_3 = 10,$
 $x_1 + x_2 \ge 0,$

3 —

```
1.
(
                                                                                                       -1,
                                         \chi_4
                                                                 x_4.)
      2.
                                                                                          \chi_5
      3.
                                       x_3 = x_3^+ - x_3^-, \qquad x_3^+, x_3^- \ge 0,
      4.
                                 z = 2_{1} + 3_{2} + 5x_{3}^{+} - 5x_{3}^{-}
                                     -x_1 - x_2 + x_3^+ - x_3^- + x_4 = 5,
                                  -6_{1} + 7x_{2} - 9x_{3}^{+} + 9x_{3}^{-} + x_{5} = 4,
                                       x_1 + x_2 + 4x_3^+ - 4x_3^- = 10,
                                        x_1, x_2, x_3^+, x_3^-, x_4, x_5 \ge 0.
      3.1.2.
                                                                                                     (m < n).
               m
                                                               : 1) n - m
               n
                                     ; 2)
                                                              m
                                                              m
                                                                         m
                                     n-m
```

· .

,

m n

```
\binom{n}{m} = \frac{n!}{m!(n-m)!},
\binom{n}{m}
3.2
```

(m = 2, n = 5): $_1 + x_2 + 4x_3 + 2x_4 + 3x_5 = 8,$ $_1 + 2x_2 + 2x_3 + x_4 + 6x_5 = 4.$

 $\frac{5!}{3!2!} = 10.$

•

() $: x_3, _4 x_5.$ $: _1 + x_2 = 8,$

 $4x_1 + 2 _2 = 4.$

> · (

```
).
                 4.
                                                        : x_1, \quad 3 \quad x_4.
                     : _2 + 3_5 = 8,
                       2x_2 + 6x_5 = 4.
      3.1.3.
                                                                               . 2.4.
3.1.1
                    x_j
                                       x_j = x_j^+ - x_j^-, x_j^+, x_j^- \ge 0
                                                                                                    . 3.1.2,
      3.2.
                                                                        . 3.1,
```

m

```
.)
                                        m
                           ),
         ).
                                     (
                                                                          ).
                      max z = -min (-z).
                                                   z -
z -
                   3.3
                                   (
                                                2.1)
                                 z = 5_{1} + 4_{2} + 0s_{1} + 0s_{2} + 0s_{3} + 0s_{4}
                                          6x_1 + 4x_2 + s_1 = 24,
                                           1x_1 + 2x_2 + s_2 = 6,
                                            -x_1 + x_2 + s_3 = 1,
                                                 _2 + s_4 = 2,
                                           _{1}, _{2}, s_{1}, s_{2}, s_{3}, s_{4} \ge 0.
        s_1, s_2, s_3, s_4
```

	Z	x_1	x_2	s_1	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄		
Z	1	-5	-4	0	0	0	0	0	<i>z</i> –
s_1	0	6	4	1	0	0	0	24	s_1 –
s_2	0	1	2	0	1	0	0	6	s_2 –
s_3	0	-1	1	0	0	1	0	1	s_3 –
s_4	0	0	1	0	0	0	1	2	s_4 —

 $z - 5_{1} - 4_{2} = 0.$ Z S_1 , S_2 , S_3 S_4 x_1 ": $s_1 = 24$, $s_2 = 6$, $s_3 = 1$ $s_4 = 2$. x_1

> $z = 5x_1 + 4x_2$ 5 (1) 4 ₂). x_1

 x_1 2,

z-

 $(_{1} = 0, _{2} = 0),$. 3.1 1 (

), 4,

 $(_1 = 4,_2 = 0).$

,

 x_2 Максимизировать $z = 5x_1 + 4x_2$ при выполнении условий 6 $6x_1 + 4x_2 < 24$ 1 5 $x_1 + 2x_2 < 6$ ② $-x_1 + x_2 < 1$ (3) 4 $x_2 \le 2$ 2 3 . (4) $x_1, x_2 > 0$ 2 1 $\frac{24}{6} = 4$ $\frac{1}{-1} = -1$ $-\frac{6}{1}=6$. 3.1

" ") .

	x_1		()
s_1	6	24	24 / 6 = 4 ()
s_2	1	6	6 / 1 = 6	
s_3	-1	1	1/(-1) = -1 ()
s_4	0	2	$2 / 0 = \infty ($)

 x_1 ,

" ,

,

. 3.1). 20 (5 × 4). $x_1 = 4 ($ $s_1, s_2, s_3 s_4$ 1. (4 () s_1 , s_1 4. s_1 1 $(x_1, s_2, s_3, s_4).$) *z* – z – ().).

•

	Z	x_1	x_2	s_1	s_2	<i>S</i> ₃	s_4	
Z	1	-5	-4	0	0	0	0	0
s_1	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
s_4	0	0	1	0	0	0	1	2

2.

X $(s_1 -$

(= 6). (" x_1

 $x_1 = 4$. s_1 .

	Z	x_1	x_2	s_1	s_2	S ₃	s_4	
Z								
x_1	0	1	4/6	1/6	0	0	0	24/6 = 4
s_2								
s_3								
<i>S</i> ₄								

1. *z* –

(1 -5 -4 0)0 | 0) 0 0 z -

: (0 5 10/3 5/6 0 0 $-(-5) \times$ 0 |20)

(0 0 4/3 1/6 1

0

0

| 2)

 $3. s_3 - ...$

 s_2 –

=

$$s_3 - c_3 - c_4 - c_5 - c_5$$

4. $s_4 - s_4 - s$

,

_ .

0.

1.

,

2.

3. –

1.

,

- ,

- .

 $(1, s_2, s_3, s_4),$

	z	x_1	x_2	s_1	s_2	S 3	s_4	
Z	1	0	-2/3	5/6	0	0	0	20
x_1	0	1	2/3	1/6	0	0	0	4
s_2	0	0	4/3	-1/6	1	0	0	2
s_3	0	0	5/3	1/6	0	1	0	5
s_4	0	0	1	0	0	0	1	2

```
s_1
                                                                   2
                                                                         (1 = 4, s_2 = 2, s_3 = 5, s_4 = 2)
                                                                           z = 20.
                                                             z –
                                                                                                                Z
                                            z = \frac{2}{3}x_2 - \frac{5}{6}s_1 + 20.
2 (
                                                                                                              )
                                                                                       3
                              3
       x_1
                                                                                      1,5
                             3/2
       x_2
                                                                                                21 000
                              21
        \boldsymbol{z}
                                                                                                        3.3
                                                                                (
                                                                                      . 3.1)
```

3.3.

"≤"), (*3.3.1*. i, R_i , R_i , $-MR_i$ Μ, MR_i - R_i . 3.4 $z = 4_{1} + _{2}$ $3x_1 + 2 = 3$, $4x_1 + 3 \ _2 \ge 6$, $x_1 + 2_2 \le 4$,

 $x_1, x_2 \ge 0.$

$$z = 4_{1} + 2_{2}$$

$$3x_{1} + 2_{2} = 3,$$

$$4x_{1} + 3_{2} - x_{3} = 6,$$

$$x_{1} + 2_{2} + x_{4} = 4,$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0.$$

() ,

$$R_1 R_2$$
, $MR_1 + R_2$.

 $z = 4 _{1} + _{2} + MR_{1} + R_{2}$ $3x_{1} + _{2} + R_{1} = 3,$ $4x_{1} + 3 _{2} - x_{3} + R_{2} = 6,$ $x_{1} + 2 _{2} + x_{4} = 4,$ $x_{1}, x_{2}, x_{3}, x_{4}, R_{1}, R_{2} \ge 0.$

 R_1 , R_2 4

4

 R_1 R_2 x_4 x_1 x_2 x_3 0 -M-M0 0 Z R_1 3 1 3 0 0 0 3 R_2 -10 6 0

0

0

0

2

1

 χ_4

,
$$z-$$
). R_1 R_2 M $z-$. (" $z-$,

z-
$$=$$
 $z +M\times R_1 +M\times R_2-$

$$z-$$
 : $(-4$ -1 0 $-M$ $-M$ $|$ $0)$ $M \times R_1-$: $(3M$ M 0 M 0 $|$ $3M)$

$$M \times R_2 -$$
 : (4M 3M -M 0 M | 6M)

 $z - : (-4 + 7M \quad -1 + 4M \quad -M \quad 0 \quad 0 \quad | \quad 9M)$

 R_1 R_2 x_1 x_2 x_3 x_4 -4 + 7M-1 + 4M0 -M0 0 9M Z 3 0 3 R_1 0 0 1 1 4 3 -1 R_2 6 0 1 0 2 1 0 0 0 1 4 x_4

$$, z = 9M,$$

 $R_1 = 3, R_2 = 6$ $x_4 = 4.$

z- . $-4+7M x_1, .$

 R_1 .

-

,
$$z-$$
 , M ,

 R_1 ,

	x_1	x_2	x_3	R_1	R_2	χ_4	
x_1	0	(1 + 5M)/3	-M	(4-7M)/3	0	0	4 + 2M
R_1	1	1/3	0	1/3	0	0	1
R_2	0	5/3	-1	-4/3	1	0	2
x_4	0	5/3	0	-1/3	0	1	3

 R_2 x_2

 $_1 = 2/5, \quad _2 = 9/5, x_3$

= 1 z = 17/5.

M-

1. M

(),

2. M-

M

3.3.2.

M-M-

1. ,

•

.

3.5

3.4

1. $r = R_1 + R_2$ $3x_1 + x_2 + R_1 = 3,$ $4x_1 + 3x_2 - x_3 + R_2 = 6,$ $x_1 + 2x_2 + x_4 = 4,$ $x_1, x_2, x_3, x_4, R_1, R_2 \ge 0.$

 R_2 R_1 x_1 x_2 x_3 x_4 0 0 0 0 0 r -1-10 R_1 3 0 1 3 1 0 4 R_2 3 1 6 0 0 -11 2 0 0 0 χ_4

 $r - r + 7x_1 + 4x_2 - x_3 + 0R_1 + 0R_2 + 0x_4 = 9$

	x_1	x_2	χ_3	R_1	R_2	χ_4	
r	0	0	0	-1	-1	0	0
x_1	1	0	1/5	3/5	-1/5	0	3/5
x_2	0	1	-3/5	_4/5	3/5	0	6/5
χ_4	0	0	1	1	-1	1	1

$$r = 0,$$
 $x_1 = 3/5, x_2 = 6/5$
 $x_4 = 1.$

$$z = 4_{1} + \frac{1}{5}_{3} = \frac{3}{5},$$

$$x_{2} - \frac{3}{5}_{3} = \frac{6}{5},$$

$$x_{3} + 2_{4} = 1,$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0.$$

	x_1	x_2	x_3	\mathcal{X}_4	
z	-4	-1	0	0	0
x_1	1	0	1/5	0	3/5
x_2	0	1	-3/5	0	6/5
x_4	0	0	1	1	1

1 2

$$z - ,$$

$$z - ; (-4 -1 0 0 | 0)$$

$$+ 4 \times x_1 - ; (4 0 4/5 0 | 12/5)$$

$$+ 1 \times x_2 - ; (0 1 -3/5 0 | 6/5)$$

$$= z - ; (0 0 1/5 0 | 18/5)$$

 x_2 x_3 x_1 x_4 0 1/5 18/5 0 0 Z 1/5 3/5 0 1 0 x_1 -3/5 0 1 0 6/5 x_2 0 1 1 1 0 x_4

 x_3 3.5).

4.1.

(),

 $z = \sum_{j=1}^{n} c_j x_j$

 $\sum_{j=1}^{n} a_{ij} x_{j} = b_{j}, i = 1, 2, ..., m,$

 $x_j \ge 0, j = 1, 2, ..., n.$

n

1.).

2.

3.

•

1. *m*

2. n

3. –

,

4.

	x_1	x_2		\mathcal{X}_{j}	 X_n	
	c_1	c_2		c_{j}	 c_n	
<i>y</i> ₁	a_{11}	a_{12}	•••	a_{1j}	 a_{1n}	b_1
y_2	a_{21}	a_{22}	•••	a_{2j}	 a_{2n}	b_2
		•	•		•	
		•	•••		 •	
		•	•		•	
\mathcal{Y}_m	a_{m1}	a_{m2}	•••	a_{mj}	 a_{mn}	b_m

j-

, ,

,

	\geq	
	<u>≤</u>	

4.1

$z = 5x_1 + 6x_2$	$x_1 = x_1^+ - x_1^-$:	
$x_1 + 2x_2 = 5,$ $-x_1 + 5x_2 \ge 8,$	$z = 5x_1^+ - 5x_1^- + 6x_2$	
$4x_1 + 7x_2 \le 8,$	$x_1^+ - x_1^- + 2x_2 = 5,$ $-x_1^+ + x_1^- + 5x_2 - x_3 = 3,$	y ₁ y ₂
x_1 - ,	$4x_1^+ - 4x_1^- + 7x_2 + x_4 = 8,$ $x_1^+, x_1^-, x_2 \ge 0$	<i>y</i> ₃
$x_2 \ge 0$		

$$w = 5y_1 + 3y_2 + 8_3$$

$$y_1 - y_2 + 4y_3 \ge 5$$

$$-y_1 + y_2 - 4y_3 \ge -5$$

$$y_1 - y_2 + 4y_3 = 5,$$

$$2_1 + 5y_2 + 7_3 \ge 6,$$

$$-y_2 \ge 0 \rightarrow y_2 \le 0,$$

$$y_3 \ge 0,$$

$$y_2, y_3 -$$

$$($$

. :

4.2.

, (

) – ,

•

1. –

_ ,

.

), , 100 500 ,

, ,

100 .

4.2 4.1.

 $z = 5x_1 + 12x_2 + 4x_3$ $w = 10y_1 + 8_2$ $x_1 + 2x_2 + _3 \le 10,$ $2x_1 - x_2 + 3x_3 = 8,$ $y_1 + 2y_2 \ge 5,$ $2_{-1} - y_2 \ge 12,$ $x_1 + 2x_2 + _3 \le 4$

 $x_1 - x_2 + 3x_3 = 8,$ $x_1, x_2, x \ge 0$ $y_1 + 3 \le 4,$ $y_1 \ge 0, y_2 -$

		x_1	x_2	x_3	\mathcal{X}_{4}	R	
	Z	-5 - 2M	-12 + M	-4 - 3M	0	0	-8 <i>M</i>
0	x_4	1	2	1	1	0	10
	R	2	-1	3	0	1	8
	Z	-7/3	-40/3	0	0	4/3 + M	32/3
1	x_4	1/3	7/3	0	1	-1/3	22/3
	x_3	2/3	-1/3	1	0	1/3	8/3
	Z	-3/7	0	0	40/7	-4/3 + M	368/7
2	x_2	1/7	1	0	3/7	-1/7	22/7
	x_3	5/7	0	1	1/7	2/7	26/7
	Z	0	0	3/5	29/5	-2/5 + M	274/5
3	x_2	0	1	-1/5	2/5	-1/5	12/5
	x_1	1	0	7/5	1/5	2/5	26/5

- 1 $x_4 R$,

	χ_4	R
z- 3-	29/5	-2/5 +
	$y_1 \ge 0$	$y_2 \ge -M$
,	$y_1 - 0 = 29/5$	$_2 - (-) = -2/5$ $+ M$

$$_1 = 29/5$$
 $_2 = -2/5$.

,

1,

:
$$x_1 = 26/5$$
, $x_2 = 12/5$ $x_3 = 0$. (

```
52
                          1
                                       x_1, \quad 2 \qquad 3
)
                                                          1
                                                  x_1
                                                      x_3:
                         y_1 + 2_2 - 5 = 0,
                        y_1 + 3_2 - 4 = 3/5.
                             _1 = 29/5 _2 = -2/5.
                                      _{4} R,
                            x_1, x_2, x_3, x_4, R,
                                             1
              2.
       4.3
                        4.2
                                                 (
    y_1 = 0, y_2 = 0, y_3 = 8/3 y_1 = 6, y_2 = 0.
                                    z = 32/3 w = 60.
    z = 26/5, z = 12/5, z = 0 z = w = 54,8.
```

2.

53 4.3. . 3,

min $x_j \left\{ \frac{|z_j - c_j|}{\alpha_{rj}}, \alpha_{rj} < 0 \right\}$, α_{rj} _r) x_j .

- .3.

4.4

$$z = 3x_1 + 2 _2$$

$$3x_1 + x_2 \ge 3,$$

$$4 _1 + 3x_2 \ge 6,$$

$$x_1 + x_2 \le 3,$$

$$x_1, x_2 \ge 0.$$

_

	x_1	x_2	x_3	χ_4	χ_5	
Z	-3	-2	0	0	0	0
x_3	-3	-1	1	0	0	-3
x_4	_4	-3	0	1	0	-6
x_5	1	1	0	0	1	3

 $, x_5 - .$

 $, \qquad -1;$

 $, x_3$

 x_4

 $(x_3 = -3, _4 = -6,$

 $z_{j}=3$). $z_{j}-z_{j} \leq 0$ j=1, ..., 5, (

 $_{4} = -6$

		x_1	x_2	x_3	χ_4	χ_5
z –	(z_j-c_j)	-3	-2	0	0	0
x_4 –	, α_{4j}	-4	-3	0	1	0
$\frac{ z_j - c_j }{\alpha_{4j}}$	<u>-</u>	3/4	2/3	_		_

,

2· , j

, $lpha_{4j}$. $lpha_{3}$, $lpha_{3}$, $lpha_{4}$ 5

•

_ .

		\downarrow					
		x_1	x_2	χ_3	\mathcal{X}_4	x_5	
	z	-1/3	0	0	-2/3	0	4
\leftarrow	x_3	-5/3	0	1	-1/3	0	-1
	x_2	4/3	1	0	-1/3	0	2
	x_5	-1/3	0		1/3	1	1
		1/5	_	_	2	_	

•

 x_i .

	x_1	x_2	x_3	\mathcal{X}_4	x_5	
Z	0	0	-1/5	-3/5	0	21/5
x_1	1	0	-3/5	1/5	0	3/5
x_2	0	1	4/5	-3/5	0	6/5
x_5	0	0	-1/5	2/5	1	6/5

,

 $x_1 = 3/5$, z = 6/5 z = 21/5.

, ,

. 5.1 n ,

. ,

i . (i, j),

i j; i j; i i

2) a_i , a $j - b_j$.

 x_{ij} ,

```
(
               ).
                                                                                              (
                                                                                                        ),
5.2.
                                                                                                    . 3).
             5.1
          ij
                                               2
                                                          20
                                                                    \overline{11}|_{15}
                                      10
                                                              x_{14}
                                x_{11}
                                           x_{12}
                                                     x_{13}
                                                            9
                                       12
                                                  1
                                                                        25
                               2
                                                              x_{24}
                                 x_{21}
                                           x_{22}
                                                      23
                                                 14
                                                          16
                                                                    18
                                        4
                               3
                                                                         10
                                                     15
                                                               x<sub>34</sub>
                                           x_{32}
                                 x_{31}
                                 5
                                                               15
                                           15
```

i– ij 1. 2. **3**. *5.2.1*. mn m + n(), = m + n - 1m + n - 15.1 3 + 4 - 1 = 6). 1. 2. 3.

,

(-) , ...

11.

1. 11

2. ()).

(,).

,

,

5.2

5.1,

,

 $x_{11} = 15, x_{12} = 10,$ $x_{22} = 5, x_{23} = 10, x_{24} = 5,$ $x_{34} = 10.$

$$z = 5 \times 10 + 10 \times 2 + 5 \times 7 + 15 \times 9 + 5 \times 20 + 10 \times 18 = 520.$$
 (

. (.)). **5.3** 5.1. (1, 2)1. 2. 15. x_{12} , 2. (3, 1). 5 31 10 - 5 = 5. 3. x_{23} 15, 0; $x_{34} = 5$ $x_{24} = 10$. 14 -25 15

```
6
                    ):
                                             x_{12} = 15, x_{14} = 0,
                                            x_{23}=15, x_{24}=10,
                                              x_{31} = 5, x_{34} = 5.
              z = 15 \times 2 + 0 \times 11 + 15 \times 9 + 10 \times 20 + 5 \times 4 + 5 \times 18 = 475.
                                                      5.2).
               1.
                                                     ),
(
             ).
              2.
               3. )
                       (
                                     ),
```

5.4 5.1.

1 2 3 4

1		10	2	20	11	15	10 - 2 = 8
2		12	7	9	20	25	9 - 7 = 2
3		4	14	16	18	10	14 - 4 = 10
	5		15	15	15	•	

10-4=6 7-2=5 16-9=7 18-11=7

, 10 (3, 1),

 x_{31} 5.

,

	1		4	2	3	3	4	ļ.		
1		10		2		20		11		11 - 2 = 9
1			15						15	11 – 2 – 9
2		12		7		9		20		9 - 7 = 2
_									25	, <u>-</u>
3		4		14		16		18		16 - 14 = 2
J	5								5	10 14 – 2
	0		15		15		15			

 x_{12} , 9.

5 7

,

7

```
, (20 - 9 = 11),
                                                                                                 x_{23}
                          15.
                                                                                                  10
                                                                                    15
        x_{14} = 0, x_{34} = 5 x_{24} = 10.
       z = 15 \times 2 + 0 \times 11 + 15 \times 9 + 10 \times 20 + 5 \times 4 + 5 \times 18 = 475.
5.2.2.
                                     . 5.2.1)
       1.
       2.
                                                            z—
                                                              i
```

) u_i v_j . u_i v_j ij $u_i + v_j = c_{ij}.$ $u_i + v_j - ij$. z $u_i + v_j - u_j = 0$ x_{ij} . z-: $u_1 = 0$. u_1 $u_i + v_j - ij$ x_{ij} . x_{ij} , Θ (i,j) $(. . x_{ij} = \Theta).$ Θ 1.

2.

 $u_1 = 0$

<i>x</i> ₁₁	$u_1 + v_1 = 10$	$u_1 = 0 \rightarrow v_1 = 10$
x_{12}	$u_1 + v_2 = 2$	$u_1 = 0 \rightarrow v_2 = 2$
x_{22}	$u_2 + v_2 = 7$	$v_2 = 2 \rightarrow u_2 = 5$
x_{23}	$u_2 + v_3 = 9$	$u_2 = 5 \rightarrow v_3 = 4$
x_{24}	$u_2 + v_4 = 20$	$u_2 = 5 \rightarrow v_4 = 15$
<i>x</i> ₃₄	$u_3+v_4=18$	$v_4 = 15 \rightarrow u_3 = 3$

,

$$u_1 = 0$$
, $u_2 = 5$, $u_3 = 3$,
 $v_1 = 10$, $v_2 = 2$, $v_3 = 4$, $v_4 = 15$.

 $u_i + v_j$

– _{ij}.

$u_i + v_j - ij$
$u_1 + v_3 - c_{13} = 0 + 4 - 20 = -16$
$u_1 + v_4 - c_{14} = 0 + 15 - 11 = 4$
$v_2 + u_1 - c_{21} = 5 + 10 - 12 = 3$
$u_3 + v_1 - c_{31} = 3 + 10 - 4 = 9$
$u_3 + v_2 - c_{32} = 3 + 2 - 14 = -9$
$v_3 + u_4 - c_{34} = 3 + 4 - 16 = -9$

 $v_1 = 10$ $v_2 = 2 \quad v_3 = 4$ $v_4 = 15$ -16 $u_2 = 5$ 3 5 $u_3 = 3$ **-**9

	x_{11}	x_{12}	<i>x</i> ₁₃	x_{14}	x_{21}	x_{22}	x_{23}	<i>x</i> ₂₄	<i>x</i> ₃₁	<i>x</i> ₃₂	x_{33}	<i>x</i> ₃₄
Z	0	0	-16	4	3	0	0	0	9	-9	- 9	0

 $(. . x_{31} = \Theta).$ (3, 1) (3, 1). $x_{31}.$

Θ.

,

:

$$x_{11} = 5 - \Theta \ge 0,$$

$$22 = 5 - \Theta \ge 0,$$

$$34 = 10 - \Theta \ge 0.$$

 x_{11} x_{22} .

, X11 22

 $x_{11},$ $x_{11}.$ $x_{11}.$ $x_{11}.$

Θ,

. (3, 1)

9
$$(u_3 + v_1 - c_{31} = 9),$$

9 × 5 = 45 ,

. ,

520 - 45 = 475.

•

.

1	2	5
1	4	10
2	2	10
2	3	15
3	1	5
3	4	5
		435.

5.2.3.

-(. 4.2).

i

,

$$z = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$

$$u_i + v_j \le c_{ij} \qquad i \quad j,$$

$$u_i \quad v_j - \qquad ,$$

$$i - \qquad (\qquad) \qquad i,$$

$$b_j - \qquad (\qquad) \qquad j,$$

$$ij - \qquad j,$$

 u_i — , i,

 v_j — ,

j.

```
(
                                                                 4.2)
                                        ij
            u_i + v_j = i_j. \qquad m + n - 1
                                          u_1 = 0),
                                                                                         u_i
  v_j.
                                          u_i + v_j - ij.
                         , u_i = 0)
                                                                                     ))
     5.3.
                                                            (
                                                                                          )
                                                             n
                                       n
                                                                           i
(i, j = 1, 2, ..., n).
```

	1	2	• • •	n	
1	c_{11}	c_{12}		c_{1n}	1
2	c_{21}	c_{22}		c_{2n}	1
•	•				•
•		•			•
					•
n	c_{n1}	c_{n2}		c_{nn}	1
	1	1		1	, i

,

1. " " j j.

· 1,

, ,

5.3.1.

1.

2. 1,

3.

, $_{i}\quad q_{j}$

i j, 1 2

4

```
1
                                                                 2
                                    1
                                        2
)
           3
       5.6
                            2
                                       10
                            3
                                    5
                                       11
                    2
                  1
```

 $p_1 = 1$, $p_2 = 7$, $p_3 = 4$, $p_4 = 5$, $q_1 = 0$, $q_2 = 0$, $q_3 = 3$ $q_4 = 0$)

1,

4,

(1.)

<u>0</u> 3 <u>0</u> 3 <u>0</u> 2 <u>0</u>

3, 1, 2 4. 1 + 10 + 5 + 5 = 21. : (1+7+4+5)+(0+0+3+0)+(1)=21.*5.3.2*. nni c_{ij} j, $x_{ij} = \begin{cases} 1, \\ 0, \end{cases}$ $z = \sum_{i=1}^n \sum_{i=1}^n c_{ij} x_{ij}$ $\sum_{i=1}^{n} x_{ij} = 1, i = 1, 2, ..., n,$ $\sum_{i=1}^{n} x_{ij} = 1, j = 1, 2, ..., n,$ $x_{ij}=0 1.$ (_{ij}) i $c'_{ij}=c_{ij}-p_i-q_j.$ c'_{ii}

ij: $\sum_{i} \sum_{j} (c_{ij} - p_i - q_j) x_{ij} = \sum_{i} \sum_{j} c_{ij} x_{ij} - \sum_{i} p_i \left(\sum_{j} x_{ij} \right) - \sum_{j} q_j \left(\sum_{i} x_{ij} \right) =$ $= \sum_{i} \sum_{i} c_{ij} x_{ij} - \sum_{i} p_{i}(1) - \sum_{i} q_{j}(1) = \sum_{i} \sum_{i} c_{ij} x_{ij} - \sum_{i} c_{ij} x_{$

```
1 2
                                                 i, a q_j —
    p_i
1
     2
                                                                   4, .
                             \sum{}_{i}p_{i}+\sum{}_{j}q_{j}
                                                                                     . 5.2
     5.4.
                         ).
(
               5.7
                                                                               D1, D2
                                       1
                                             2
                                                                   1
D3,
                                                                       T2.
                                                       )
                                                                                     1
 2
                   1000
                              1200
                   800, 900
                                 500
                                                        . 5.2.
              (
                                                                          ),
                  (
```

```
. 5.2,
(
          T1, T2, D1
                        D2).
                                                            - 800
                        1000
                                                            900
                        1200
                                            . 5.2
        2),
 1
                                                              (
                        - D3).
                                                                (P1, P2, T1, T2, D1
D2)
                                         (T1, T2, D1, D2)
                                                              D3).
                             ).
                                                   \boldsymbol{B}
                                                       ) = 1000 + 1200 (800 + 900 +
+500) = 2200
                                                                   D2
    . 5.3.
                                                                                   1400
                        900
                                                                                       ),
 500
                            D3.
```

	<i>T</i> 1	<i>T</i> 2	D1	D2	D3	
<i>P</i> 1	3	4	M	M	M	1000
<i>P</i> 2	2	5	M	M	M	1200
<i>T</i> 1	0	7	8	6	M	\boldsymbol{B}
<i>T</i> 2	M	0	M	4	9	\boldsymbol{B}
D1	M	M	0	5	M	\boldsymbol{B}
D2	M	M	M	0	3	В
	\overline{B}	B	800 + B	900 + B	500	_

6.

()

(

,

•

,

6.1.

, ,

,

, –

6.1 (

.

		(./)		
	1-	2-	3-	(.)
1	5	1	8	20	
2	4	7	10	40	
3	3	9	2	20	
4	7	4	1	15	
5	8	6	10	30	
(.)	25	25	25		

•

" — " . j:

 $x_j = \begin{cases} 1, & j & , \\ 0, & j & . \end{cases}$

 $z = 20_{1} + 40_{2} + 20_{3} + 15_{4} + 30_{5}$

 $5x_1 + 4_2 + 3_3 + 7_4 + 8_5 \le 25,$ $_1 + 7_2 + 9_3 + 4_4 + 6x_5 \le 25,$ $8x_1 + 10_2 + 2_3 + x_4 + 10x_5 \le 25,$

 $_{1}$, $_{2}$, $_{3}$, $_{4}$, $x_{5} = 0$ 1.

 $_{1} = _{2} = _{3} = _{4} = 1,$

z = 0 z = 95 .

,

,

.

 $j = 0 \qquad 1$

 $_{1} = _{5} = 1.$

,

, j " - ",

6.2.

.

.

1. "

0 \le 1 y 2. **3.** (3. 1. 2. *6.2.1.* 6.2 $z = 5_{1} + 4_{2}$ $_{1} + _{2} \leq 5$, $10x_1 + 6_2 \le 45$, $_{1}$, $_{2} \ge 0$. 6.1 0) $_1 = 3,75, _2 = 1,25$ z = 23,75.

, , ,

1 , ,

. 0 1 2,

 $1 = 0 + (1 \le 3),$

 $2 = 0 + (_1 \ge 4).$

. 6.2 2.

. , 1 2 " " 0.

$$($$
 $3 < 1 < 4),$

$$_1 \leq 3$$
 $_1 \geq 4$

. 6.3.

ЛПО $x_1 = 3.75, x_2 = 1.25, z = 23.75$ $x_1 \ge 4$ ліі 2 $x_1 = 3$, $x_2 = 2$, z = 23Нижняя граница (оптимум)

```
1,
                                                                  2.
                                                                                    1 (
              ),
                                                                    _{1} \leq 3.
                            z = 5_{1} + 4_{2}
                                          _1 + _2 \le 5,
                                      10x_1 + 6_2 \le 45,
                                           _{1} \leq 3,
                                           1, 2 \ge 0.
                                                  1
                                                                _1 = 3, _2 = 2 z = 23.
                                                       1
                                                                                              1
                                            2.
                                       1
                                                                 1
                                                                  1,
    2
                                    z).
z = 23
                                                   z = 23
                                                                                              2
(
                                                                        ).
   0
                                                                          23,75
                                            2 (
                           0),
                                  2
    1
             2
                                     (
```

). $_1 = 3$, $_2 = 2$ z = 23. 1. 0 2 1? 2. 2 1? 2, . 6.4), z = 4, z = 0.83 z = 23.33. 1 $x_1 = 3.75, x_2 = 1.25, z = 23.75$ $x_1 \ge 4$ $x_1 \leq 3$ $x_1 = 3, x_2 = 2, z = 23$ $x_1 = 4$, $x_2 = 0.83$, z = 23.33Нижняя граница (оптимум) $x_2 \ge 1$ $x_1 = 4.5$, $x_2 = 0$, z = 22.53 Нет решения $x_1 \ge 5$ лп6 $x_1 = 4$, $x_2 = 0$, z = 20Нет решения . 6.4 $_2$ (= 0,83) 2 3 4, $_2 \le 0$ $_2 \ge 1$ $2 + (_2 \le 0) =$ 3 = $0 + (_1 \ge 4) + (_2 \le 0),$

4 =

 $2 + (_2 \ge 1) =$

=

```
0 + (_1 \ge 4) + (_2 \ge 1).
=
                               4.
               1, 3
                    4.
                                                                               3.
                                       _1 = 4,5, x_2 = 0 z = 22,5.
                          _{1} = 4,5
                                                                             <sub>1</sub> ≤ 4
                                                5
 1 ≥ 5
                                                        6.
                                                                     0 + (_1 \ge 4) +
                                 5 =
+(_{2} \le 0) + (_{1} \le 4),
                                                                     0 + (_1 \ge 4) +
                                 6 =
+(_{2} \le 0) + (_{1} \ge 5).
                                                        1, 5 6.
   6
                                                      (_1 = 4, _2 = 0, z = 20),
                5
                                                  (z = 20)
                                                                                    1,
                                                         (_1 = 3, _2 = 2, z = 23).
        23.
                    _1 = 3, _2 = 2 z = 23.
                                                                         . 6.4 ( 0,
   2,
                3,
                    6, 5,
          4,
                                    1),
                                                                   ?
                                                             . 6.3,
                                                                               2
                                  1,
                            . 6.4,
```

Z i = 0. 1. () 1. 2. 3. 1. i = i + 11. 2. 2 2. (j, i $[j^*] < j < [j^*] + 1 ([j^*]$ *j**) $_{j} \leq [\ _{j}^{*}] \qquad _{j} \geq [\ _{j}^{*}] + 1.$ i = i + 11. ($z=+\infty$). (

6.2.2. $(... 0 \le x \le),$ $=2^{0} _{0}+2^{1} _{1}+2^{2} _{2}+...+2^{k}$, $2^{k+1}-1\geq u,$ *k* — 1965 .,

1.

2.

$$z = 3_{1} - 5_{2}$$

 $x_{1} + {}_{2} = 5,$
 $4_{1} + 6_{2} \ge 4,$
 $x_{1}, {}_{2} = 0$ 1.

"≤".

6.3

1. z - 1 $w = -3_1 + 5_2$

2.

"≤", $x_1 + 2 \le 5 - 1 - 2 \le -5.$

 $-4x_1 - 6_2 \le -4$. -13. s_1 , s_2 s_3 ,

> $w = -3_{1} + 5_{2}$ $x_1 + 2 + s_1 = 5,$ $-1-2+s_2=-5$, $-4x_1 - 6 _2 + s_3 = -4$

 $x_1, \quad 2 = 0$ 1,

 $s_1, s_2, s_3 \ge 0.$

j = 1 - j

 $_{1} = 1 - _{1},$

, 1 2.

j=0 j=1,

j

1.

2.

3.

6.4 (

$$z = 3_{1} + 2_{2} - 5y_{3} - 2_{4} + 3_{5}$$

$$_{1} + _{2} + y_{3} + 2_{4} + _{5} \le 4,$$

$$7_{1} + 3_{3} - 4_{4} + 3_{5} \le 8,$$

$$11_{1} - 6_{2} + 3_{4} - 3_{5} \ge 3,$$

$$_{1}, _{2}, y_{3}, _{4}, _{5} = 0$$
1.

1. -1.

2. -1.

 $s_1, s_2 s_3$

4.

 $_1 = 1 - _1, _2 = 1 - _2, _5 = 1 - x_5, y_3 = x_3, _4 = x_4.$

 $z' = 3x_1 + 2x_2 + 5x_3 + 2x_4 + 3x_5 - 8.$ -8 z' + 8 z,

 $z = 3x_1 + 2x_2 + 5x_3 + 2x_4 + 3x_5$ $-x_1 - x_2 + x_3 + 2x_4 - x_5 + s_1 = 1,$ $-7x_1 + 3 \quad _3 - 4x_4 - 3x_5 + s_2 = -2,$ $11x_1 - 6x_2 - 3x_4 - 3x_5 + s_3 = -1,$

 $x_1, x_2, x_3, x_4, x_5 = 0$ 1.

,

,

 x_1 s_3 -1 1 2 0 0 1 s_1 -4 -3 **-**7 0 3 1 -2 s_2 0 11 -6 0 -3 -3 01 -1 s_3 3 2 5 2 3

,

 $(s_1, s_2, s_3) = (1, -2, -1),$

z = 0.

,

(),

, (

).

,

(

```
91
```

```
_{3} = 1,
                                       s_2
                                             S_3.
                                                                   x_1,
                                                                          2,
                                                                                      5
                                                                                                 j
                        1,
                                   I_j = \sum_{i} \min\{0, s_i - a_{ij}\},\,
     s_i –
                                   I_j
                                             j 1.
                  I_j = \sum_{i} (
                                                                       x_j = 1).
                                                       s_i
                                                                        s_1 = 1 - (-1) = 2,
                                               _{1} = 1,
s_2 = -2 - (-7) = 5 s_3 = -1 - 11 = -12.
                                                                    , I_1 = -12.
I_2 = -2, I_4 = -1 I_5 = 0 (
                                                                       3
                                                                                  ).
                                                                                                I_5
                                                                             5
                                                        . 6.5
                         _{5}=1 _{5}=0,
                                                                                          1
                                                                                                2.
              1
(s_1, s_2, s_3) = (2, 1, 2) z = 3.
                                                            1
\overline{z} = 3
```

```
z = 0
                                              . 6.5
                                                          2,
                                                                               _{5}=0.
                               1,
        (s_1, s_2, s_3) = (1, -2, -1) z = 0, ...
 1, 2, 3 4
                                            0 2
                                                                        2
(
                                                                                  .)
           0,
                                                        x_3 = 1
                s_2
                     S<sub>3</sub>.
                                  5,
\overline{z} = 3.
                                                                                  _{1} = 1
                                                     3,
                                                                                  : I_2 = -2,
I_4 = -1.
                                    2
                                     _{4}=1 x_{1}=0,
              . 6.6
                                                                                        3 4
                               3 (
                                                                          _{5} = 0
                                                                                      _{4} = 1)
                   (s_1, s_2, s_3) = (-1, 2, 2), z = 2,
                                                                    1,
                                                                                3.
                                                   1,
                                                                                    (z = 3).
              Z
      3
                                                                     _{5} = _{4} = 0,
(s_1, s_2, s_3) = (1, -2, -1), z = 0.
                  2
```


. 6.7 5 6, 4. 5 $(s_1, s_2, s_3) = (2, -2, 5), z = 2, 1 3$. 1 , 3

. , 5

6

, 1, 3

(. 6.7) , . 1, . .

 $_{5}=1, z=3,$

 $y_1 = y_2 = 1$, $y_3 = y_4 = y_5 = 0$, w = 5.

. 6.7 ,

 $(_{5} = 1),$

```
2^{5-1}=16
          _{5} = 1).
                                 3
                                                                                    2^{5-2} = 8
                                                        6.4,
                                                                                                                   6.4.
6.2.3.
             ).
              6.5
                              z = 7_{1} + 10_{2}
                                             12_{1} + 3_{2} \le 6,
                                             7_{1} + x_2 \le 35,
                                            _{1}, _{2} \ge 0
                                                                                                                       )
                                                . 6.8
                        (_{1},_{2}) = \left(4\frac{1}{2}, 3\frac{1}{2}\right) \quad z = 66\frac{1}{2}.
```

 $(_{1},_{2}) = \left(4\frac{4}{7},3\right)$

I,

z = 62. II,

(1, 2) = (4, 3) z = 58.

, ().

()

•

. – ,

(),

6.63 4 1 2

6.5

	x_1	x_2	x_3	x_4	
z	0	0	63/22	31/22	66,5
x_2	0	1	7/22	1/22	3,5
x_1	1	0	-1/22	3/22	4,5

$$_{1}=4\frac{1}{2}, x_{2}=3\frac{1}{2}, x_{3}=0,$$

 $x_4 = 0$ $z = 66\frac{1}{2}$.

Ζ,

_ _ ,

,

:

$$z z+\frac{63}{22}x_3+\frac{31}{22}$$
 $_4=66\frac{1}{2}$,

$$x_2$$
 : $_2 + \frac{7}{22} _3 + \frac{1}{22} _4 = 3\frac{1}{2}$,

 \mathcal{Z}_{2} 1 2

- , (

z–

$$z + \frac{63}{22}x_3 + \frac{31}{22} = 66\frac{1}{2}$$
 ($z-$).

$$\frac{5}{2} = \left(2 + \frac{1}{2}\right),$$

$$-\frac{7}{3} = \left(-3 + \frac{2}{3}\right).$$

z-

:

$$z + \left(2 + \frac{19}{22}\right)x_3 + \left(1 + \frac{9}{22}\right) _4 = \left(66 + \frac{1}{2}\right).$$

 $z + 2_3 + 4 - 66 = \frac{1}{2} - \frac{19}{22}x_3 - \frac{9}{22}$ 4.

,

,

.

$$\frac{1}{2} - \frac{19}{22}x_3 - \frac{9}{22} \quad {}_{4} = \frac{1}{2} - \left(\frac{19}{22}x_3 + \frac{9}{22}x_4\right).$$

 $_{3}$, $_{4} \geq 0$,

$$\frac{1}{2} - \frac{19}{22}x_3 - \frac{9}{22}$$
 4,

1.

 x_2

:

$$\frac{1}{2} - \frac{19}{22}x_3 - \frac{9}{22} \quad {}_{4} \le 0.$$

, z- .

$$_{1}=4\frac{1}{2}, _{2}=3\frac{1}{2}, _{3}=0,$$

 $_{4}=0$, $_{3}=_{4}=0$ (

$$3 = 4 = 0$$
 ($1 \le 0$).

- ,

" "

, 1

. 1 . 3 . 41 .

$$x_1 - \frac{1}{22} \ _3 + \frac{3}{22} \ _4 = 4\frac{1}{2}$$
 (

$$x_1 + \left(-1 + \frac{21}{22}\right)_3 + \left(0 + \frac{3}{22}\right)_4 = \left(4 + \frac{1}{2}\right).$$

$$-\frac{21}{22} _{3} - \frac{3}{22} _{4} + \frac{1}{2} \le 0.$$

$$x_2 + \frac{7}{22} _3 + \frac{1}{22} _4 = 3\frac{1}{2}$$
 (2^-

$$_{2} + \left(0 + \frac{7}{22}\right)_{3} + \left(0 + \frac{1}{22}\right)_{4} = \left(3 + \frac{1}{2}\right).$$

$$-\frac{7}{22} _{3} - \frac{1}{22} _{4} + \frac{1}{2} \le 0.$$

$$-\frac{7}{22} _{3} - \frac{1}{22} _{4} + s_{1} = -\frac{1}{2}, s_{1} \ge 0$$
 (1).

 x_1 s_1 63/22 31/22 66,5 0 0 0 7/22 1/22 3,5 0 x_2 -1/22 3/224,5 x_1 1 0 0 -7/22 -1/22 -0,50 1

	x_1	2	x_3	4	s_1	
Z	0	0	0	1	9	62
2	0	1	0	0	1	3
x_1	1	0	0	1/7	-1/7	$4\frac{4}{7}$
x_3	0	0	1	1/7	-22/7	$1\frac{4}{7}$

 x_1

$$x_1$$
 - $x_1 + \left(0 + \frac{1}{7}\right)x_4 + \left(-1 + \frac{6}{7}\right)s_1 = \left(4 + \frac{4}{7}\right)$.

$$-\frac{1}{7}x_4 - \frac{6}{7}s_1 + s_2 = -\frac{4}{7}, s_2 \ge 0$$
 (2).

,

					_		
	x_1	2	x_3	4	s_1	s_2	
Z	0	0	0	1	9	0	62
2	0	1	0	0	1	0	3
x_1	1	0	0	1/7	-1/7	0	$4\frac{4}{7}$
x_3	0	0	1	1/7	-22/7	0	$1\frac{4}{7}$
C-	0	<u> </u>	0	1 /7	6/7	1	1/7

_

	x_1	2	χ_3	4	s_1	s_2	
Z	0	0	0	0	3	7	58
2	0	1	0	0	1	0	3
x_1	1	0	0	0	-1	1	4
x_3	0	0	1	0	-4	1	1
4	0	0	0	1	6	-7	4

$$(_1 = 4, x_2 = 3, z = 58),$$

- , , , ,

- ,

.

 $_{1} + \frac{1}{3} \quad _{2} \le \frac{13}{2},$ $_{1}, \quad _{2} \ge 0$

 s_1, \ldots $1 + \frac{1}{3} \quad 2 + s_1 = \frac{13}{2}.$

 $, \ldots 1, 2 S_1.$

1 2 ,

 s_1 . ,

, $1, 2 S_1$

1 2.

1.

 $6x_1 + 2x_2 \le 39.$

,

, (

6.4.

·
,
,
,
,
,

,

1. ,

2. , ,

3.

. ,

•

•

		7.					
	7.1.						
	,	,			,	(,
	,	"	. "	,			
()				
	,		,		,		
	_						,
	7.2.						
	7.1	,	,			20	•
	· 550	,		35	55		7,5
	•						1,5

•

16 1. 2. 10 % 3. 20 % 4. 2-) + 35 + 55 + 0,075 16 (550 0,1 (550 + 35 + 55 + 0,075)35 55 0.2(550 + 35 + 55 + 0.075)2 (0. 550 + 35 + 55 + 0,07516, 55x - 31,5 + 5,5 + 0,00750, 110x + 7 - 44 + 0,0150, 2, 0. $550 + 35 + 55 + 0.075 + s_1^+ - s_1^- = 16,$ $55x - 31.5 + 5.5 + 0.0075 + s_2^+ - s_2^- = 0,$ $110x + 7 - 44 + 0.015 + s_3^+ - s_3^- = 0,$

 $+ s_4^+ - s_4^- = 2,$, , , 0, $s_i^+, s_i^- 0, i = 1, 2, 3, 4.$ s_i^+, s_i^-

 $s_i^+ \quad s_i^-$,

•

i- "" $s_i^+ > 0$,

 $. s_i^- > 0,$

 $s_i^+ s_i^-$, .

,

•

" ", $S_1^+, S_2^+, S_3^+ S_4^-$

,

,

():

 $G_{1}=s_{1}^{\ +}; \ G_{2}=s_{2}^{\ +};$

 $G_3 = s_3^+;$ $G_4 = s_4^-.$

?

. : 1)

2) .

7.3.

7.3.1.

 G_i , i = 1, 2, ..., ...

 $z = w_1G_1 + w_2G_2 + \ldots + w_nG_n.$ $w_i (i = 1, 2, ..., n)$ —

 $w_1 = 1$

7.2

10

45 (),

6-

, 100 000

?

()	4	8
()	8	24
	1	2

1 2 ,

 $: z = 10, _1 = 5$

$$G_1 = s_1^+ ($$

$$G_2 = s_1^- ($$
).

 $4x_{1} + 8_{2} + s_{1}^{+} - s_{1}^{-} = 45 (),$ $8x_{1} + 24x_{2} + s_{2}^{+} - s_{2}^{-} = 100 (),$ $x_{1} + 2x_{2} \quad 10 (),$ $x_{1} \quad 6 (),$ $x_{1}, x_{2}, s_{1}^{+}, s_{1}^{-}, s_{2}^{+}, s_{2}^{-} \quad 0.$

•

$$z = 2G_1 + G_2 = 2s_1^+ + s_2^-.$$

 $s_2 = 2.5$, $s_1^+ = 5$.

,

, ,

 $s_1 = 5$

 $s_2^- = 0$

 $_{1} = 6$ $(4 \times 6 + 8 \times 2 = 40)$ $(8 \times 6 + 24 \times 2 = 96\ 000$.). 7.3.2. $G_I = I$ (), $G_n = _n$ (). s_i^- , 7.1 $_1 = s_1^+ p_2 = s_2^-$. $z(G_i)$, i 1 G_i , G_j (j > i)

- ,

 $z(G_i)$.

- $G_{\scriptscriptstyle K}$

```
x_j z_j - j 0
G_{k+1}.
           0.
                        : G_1 = {}_1 > G_2 = {}_2 > ... > G_n = {}_n.
                                                                           i = 1.
           i.
                       i-
                                                                    G_{i}.
_{i}*
i = n,
                                                                            n-
                                                                           _{i} = _{i}*,
            i = i + 1
                                          i.
                       _{i}=_{i}*),
                                            p_i,
                         . (
                                                      i *.)
```

7.3 7.2. **0**. $G_1 > G_2$. s_1^+ (G_1 :), G_2 :). 1. $G_1 = s_1^+$ $4x_1 + 8_2 + s_1^+ - s_1^- = 45$ (), $8x_1 + 24x_2 + s_2^+ - s_2^- = 100$ ($x_1 + 2x_2$ 10 (*x*₁ 6 ($x_1, x_2, s_1^+, s_1^-, s_2^+, s_2^-$ 0. $_{1}=5$, $_{2}=2,5$ = 5 $_{1} = s_{1}^{+}.$ 5 $s_1^+ = 5.$ **2**. $\mathbf{G}_2 = s_2^$ $s_2^-=0.$ $s_2^- = 0$

 $s_1^+ = 5$ $s_1^+ = 5$.
.
.
.
.

 $G_2 = s_2^ 4x_1 + 8x_2 - s_1^- = 40,$ $8x_1 + 24x_2 + s_2^+ - s_2^- = 100,$

$$x_1 + 2x_2$$
 10,
 x_1 6,
 x_1 7, x_1 8, x_2 9. 0.

•

, ·

7.4 7.2,

1. (P_1) .

2. (2).

 $_{1} = 4x_{1} + 8_{2}.$ $_{2} = 8x_{1} + 24x_{2}.$

7.2 7.3,

 $P_1 = 4x_1 + 8_2$ $_2 = 8x_1 + 24_2$

 $x_1 + 2x_2 \le 10,$ $x_1 \le 6,$ $x_1, x_2 \ge 0.$

7.3.

7.3. $1. 1 = 4x_1 + 8_2$

 $x_1 + 2x_2 \le 10,$ $x_1 \le 6$, $x_1, x_2 \ge 0.$ $_{1}=40.$ $x_1 = 0, \quad z = 5$ 40 2. $4x_1 + 8_2$ 40 $_2 = 8x_1 + 24_2$ $x_1 + 2x_2 \le 10,$ $x_1 \le 6$, $4x_1 + 8x_2 \ge 40,$ $x_1, x_2 \ge 0.$: $_2 = 96~000$ $x_1 = 6$ $_{2} = 2$ $(P_1 = 40)$.), 7.3. (). P_1 , 2• 2 $x_1 = 0$,

 $_{j}, z_{j}-c_{j}\neq 0.$

 $_2 = 5$ $P_1 = 40$

	x_1	x_2	s_1	s_2	
P_1	-4	-8	0	0	0
P_2	-8	-24	0	0	0
s_1	1	2	1	0	10
s_2	1	0	0	1	6
P_1	0	0	4	0	40
P_2	4	0	12	0	120
x_2	1/2	1	1/2	0	5
s_2	1	0	0	1	6

(1 = 6, 2 = 2) (1 = 6, 2 = 2) (1 = 6, 2 = 2) (1 = 6, 2 = 2)

		x_1	x_2	s_1	<i>S</i> ₂	
1	1					40
	P_2	4	0		0	120
1	x_2	1/2	1		0	5
	s_2	1	0		1	6
	1					40
2	P_2	0	0		-4	96
2	x_2	0	1		-1/2	2
	x_1	1	0		1	6

,

1.	X.				.:
	*	», 2007.			
2.			•	/	
•	,	:		, 2003.	
3.			:		,
2007.					
4.	,				
	:	.:	• •	- , 2010.	
5.			:	,	,
	•	:	, 2010.		
6.			: .	•	•
:	,	, 2010.			
7.				:	
		.:	, 2005.		
8.			:	•	
•	: , 20	10.			

1.	3
1.1.	3
1.2.	5
1.3.	7
1.4.	9
1.5.	13
2.	18
2.1.	
2.2.	18
2.3.	21
2.4.	25
3.	–
3.1.	28
3.1.1.	28
3.1.2.	30
3.1.3.	32
3.2.	<i>-</i> 32
3.3.	40
3.3.1.	<i>–</i> 40
3.3.2.	43
4.	47
4.1.	47
4.2.	
	50
4.3.	<i>-</i> 53
5.	57
5.1.	57
5.2.	58
5.2.1.	59
5.2.2.	64
5.2.3.	69
5.3.	70
5.3.1.	71
5.3.2.	

7	5.4.
7	6.
7	6.1.
7 ^o	6.2.
8	6.2.1.
8	6.2.2.
90	6.2.3.
	6.4.
	7.
	7.1.
	7.2.
10	7.3.
10	7.3.1.
	7.3.2.

. .

. .

020565 23.06.1997 . 60 84 1/16.

. . . -7,0. . - . . -6,8. 300 .

« »

, , 44

, , 44