Algorithm Design and Analysis

LECTURE 2

- Analysis of Stable Matching
- Asymptotic Notation

Adam Smith

Stable Matching Problem

- Goal: Given *n* men and *n* women, find a "suitable" matching.
 - -Participants rate members of opposite sex.
 - -Each man lists women in order of preference from best to worst.
 - -Each woman lists men in order of preference from best to worst.

	tavorite ↓		least tavorit ↓
	1 st	2 nd	3 rd
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

	+		+
	1 st	2 nd	3 rd
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

least favorite

favorite

Men's Preference Profile

Women's Preference Profile

Stable Matching Problem

- Unstable pair: man *m* and woman *w* are unstable if
 - -m prefers w to his assigned match, and
 - -w prefers m to her assigned match
- Stable assignment: no unstable pairs.

	favorite ↓	favorite ↓ 			
	1 ^{s†}	2 nd	3 rd		
Xavier	Amy	Bertha	Clare		
Yancey	Bertha	Amy	Clare		
Zeus	Amy	Bertha	Clare		

	† dvorrie		teast tavortie		
	1 ^{s†}	2 nd	3 rd		
Amy	Yancey	Xavier	Zeus		
Bertha	Xavier	Yancey	Zeus		
Clare	Xavier	Yancey	Zeus		

favonita

least favorita

Men's Preference Profile

Women's Preference Profile

Review Questions

• In terms of *n*, what is the length of the input to the Stable Matching problem, i.e., the number of entries in the tables?

(Answer: $2n^2$ list entries, or $2n^2\log n$ bits)

Review Question

• Brute force algorithm: an algorithm that checks every possible solution.

• In terms of *n*, what is the running time for the brute force algorithm for Stable Matching Problem? (Assume your algorithm goes over all possible perfect matchings.)

(Answer: $n! \times \text{(time to check if a matching is stable)} = \Theta(n! n^2)$)

Propose-and-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962]

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
   Choose such a man m
   w = 1<sup>st</sup> woman on m's list to whom m has not yet proposed
   if (w is free)
        assign m and w to be engaged
   else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
   else
        w rejects m
}
```


Proof of Correctness: Termination

- Claim. Algorithm terminates after at most n^2 iterations of while loop.
- Pf. Each time through the loop a man proposes to a new woman. There are only n^2 possible proposals. •

	1 ^{s†}	2 nd	3 rd	4 th	5 th
Victor	Α	В	С	D	Е
Wyatt	В	С	D	Α	Е
Xavier	С	D	Α	В	Е
Yancey	D	Α	В	С	Е
Zeus	Α	В	С	D	Е

	1 ^{s†}	2 nd	3 rd	4 th	5 th
Amy	W	X	У	Z	V
Bertha	X	У	Z	V	W
Clare	У	Z	V	W	X
Diane	Z	V	W	X	У
Erika	V	W	X	У	Z

An instance where n(n-1) + 1 proposals required

Propose-and-Reject Algorithm

• Observation 1. Men propose to women in decreasing order of preference.

• Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- **Proof:** (by contradiction)
 - -Suppose, for sake of contradiction, some guy, say Zeus, is not matched upon termination of algorithm.
 - -Then some woman, say Amy, is not matched upon termination.
 - −By Observation 2, Amy was never proposed to.
 - But Zeus proposes to everyone, since he ends up unmatched. ■

Proof of Correctness: Stability

- •Claim. No unstable pairs.
- •Proof: (by contradiction)
- Suppose A-Z is an unstable pair: they prefer each other to their partners in Gale-Shapley matching S*.
- *− Case 1*: Z never proposed to A.
 - ⇒ Z prefers his GS partner to A. ____men propose in decreasing order of preference
 - \Rightarrow A-Z is stable.
- Case 2: Z proposed to A.
 - \Rightarrow A rejected Z (right away or later)
 - \Rightarrow A prefers her GS partner to Z. \leftarrow women only trade up
 - \Rightarrow A-Z is stable.
- In either case A-Z is stable, a contradiction. ■

Efficient Implementation

- We describe $O(n^2)$ time implementation.
- Assume men have IDs 1,..., *n*, and so do women.
- Engagements data structures:
 - a list of free men, e.g., a queue.
 - two arrays wife[m], and husband[w].
 - set entry to 0 if unmatched
 - if m matched to w then wife[m]=w and husband[w]=m
- Men proposing data structures:
 - an array men-pref[m,i] = ith women on mth list
 - an array count [m] = how many proposals m made.

Efficient Implementation

- Women rejecting/accepting data structures
 - Does woman w prefer man m to man m '?
 - For each woman, create **inverse** of preference list of men.
 - Constant time queries after O(n) preprocessing per woman.

Amy	1 ^{s†}	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Pref	8	3	7	1	4	5	6	2

Amy	1	2	3	4	5	6	7	8
Inverse	4 th	8 th	2 nd	5 th	6 th	7 th	3 rd	1 ^{s†}

Amy prefers man 3 to 6
since inverse[3] < inverse[6]
2 7

Summary

- Stable matching problem. Given *n* men and *n* women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guarantees to find a stable matching for every problem instance.
 - (Also proves that stable matching always exists)
- Time and space complexity:

 $O(n^2)$, linear in the input size.

Brief Syllabus

- Reminders
 - Worst-case analysis
 - Asymptotic notation
 - Basic Data Structures
- Design Paradigms
 - Greedy algorithms, Divide and conquer, Dynamic programming, Network flow and linear programming
- Analyzing algorithms in other models
 - Parallel algorithms, Memory hierarchies (?)
- P, NP and NP-completeness

Measuring Running Time

- Focus on scalability: parameterize the running time by some measure of "size"
 - (e.g. n = number of men and women)
- Kinds of analysis
 - Worst-case
 - Average-case (requires knowing the distribution)
 - Best-case (how meaningful?)
- Exact times depend on computer; instead measure asymptotic growth