Practice 12

Practice name	Displaying Data from Multiple Tables	
Academic Program	Software Engineering	
Subject name	Laboratory of Database Systems II	
Unit	I. SQL.	
Professor	Aldonso Becerra Sánchez	
Due date	November 4, 2021	
Due date with penalty	November 5, 2021	
Elaboration date	November 2, 2021	

Practice objective	Use SQL SELECT statements for retrieving data from several tables.
Estimated time of completion	5 hours
Introduction	SQL language allows the realization of projection and selection of data from several tables to satisfy the needs of reports that may be required for a programmer, developer or end user.

Reference 1:

1. Oracle Database 11g: SQL Fundamentals.

Reference 2:

2. Oracle Database SQL Language Reference 11g.

Reference 3:

Initial Activity:

Read the whole practice before start it.

Write the corresponding report, starting with the **Introduction** section.

Activity 1:

Write the section that describes the **Work developed** in the following activities.

Read all the choices carefully because there might be more than one correct answer. Choose all the correct answers for each question.

Explain the reason for your answer.

WRITE SELECT STATEMENTS TO ACCESS DATA FROM MORE THAN ONE TABLE USING EQUIJOINS AND NONEQUIJOINS

1. The EMPLOYEES and DEPARTMENTS tables have two identically named columns:

DEPARTMENT_ID and MANAGER_ID. Which of these statements joins these tables based only on common DEPARTMENT ID values? (Choose all that apply.)

- A. SELECT * FROM EMPLOYEES NATURAL JOIN DEPARTMENTS;
- B. SELECT * FROM EMPLOYEES E NATURAL JOIN DEPARTMENTS D ON E.DEPARTMENT_ID=D.DEPARTMENT_ID;
- C. SELECT * FROM EMPLOYEES NATURAL JOIN DEPARTMENTS USING (DEPARTMENT ID);
- D. None of the above
- 2. The EMPLOYEES and DEPARTMENTS tables have two identically named columns:

DEPARTMENT_ID and MANAGER_ID. Which statements join these tables based on both column values? (Choose all that apply.)

- A. SELECT * FROM EMPLOYEES NATURAL JOIN DEPARTMENTS;
- B. SELECT * FROM EMPLOYEES JOIN DEPARTMENTS USING (DEPARTMENT ID, MANAGER ID);
- C. SELECT * FROM EMPLOYEES E JOIN DEPARTMENTS D ON E.DEPARTMENT_ID=D.DEPARTMENT_ID AND E.MANAGER_ID=D.MANAGER_ID;
- D. None of the above
- 3. Which join is performed by the following query?

SELECT E.JOB ID, J.JOB ID

FROM EMPLOYEES E JOIN JOBS J ON (E.SALARY < J.MAX_SALARY); (Choose the best answer.)

- A. Equijoin
- B. Nonequijoin
- C. Cross join
- D. Outer join
- 4. Which of the following statements are syntactically correct? (Choose all that apply.)

A. SELECT * FROM EMPLOYEES E JOIN DEPARTMENTS D USING (DEPARTMENT ID);

- B. SELECT * FROM EMPLOYEES JOIN DEPARTMENTS D USING (D.DEPARTMENT ID);
- C. SELECT D.DEPARTMENT_ID FROM EMPLOYEES JOIN DEPARTMENTS D USING (DEPARTMENT ID);
- D. None of the above
- 5. Which of the following statements are syntactically correct? (Choose all that apply.)
- A. SELECT E.EMPLOYEE_ID, J.JOB_ID PREVIOUS_JOB, E.JOB_ID CURRENT_JOB FROM JOB_HISTORY J CROSS JOIN EMPLOYEES E ON (J.START DATE=E.HIRE DATE);
- B. SELECT E.EMPLOYEE_ID, J.JOB_ID PREVIOUS_JOB, E.JOB_ID CURRENT_JOB FROM JOB_HISTORY J JOIN EMPLOYEES E ON (J.START_DATE=E.HIRE_DATE);
- C. SELECT E.EMPLOYEE_ID, J.JOB_ID PREVIOUS_JOB, E.JOB_ID CURRENT_JOB FROM JOB_HISTORY J OUTER JOIN EMPLOYEES E ON (J.START DATE=E.HIRE DATE);
- D. None of the above
- 6. Choose one correct statement regarding the following query:

SELECT *

FROM EMPLOYEES E JOIN DEPARTMENTS D ON (D.DEPARTMENT_ID=E.DEPARTMENT_ID) JOIN LOCATIONS L ON (L.LOCATION ID =D.LOCATION ID);

- A. Joining three tables is not permitted.
- B. A Cartesian product is generated.
- C. The JOIN...ON clause may be used for joins between multiple tables.
- D. None of the above

JOIN A TABLE TO ITSELF USING A SELF-JOIN

7. How many rows are returned after executing the following statement? SELECT *

FROM REGIONS R1 JOIN REGIONS R2 ON (R1.REGION_ID=LENGTH(R2. REGION_NAME)/2);

The REGIONS table contains the following row data. (Choose the best answer.)

REGION_ID	REGION_NAME
1	Europe
2	Americas
3	Asia
4	Middle East and Africa

- A. 2
- B. 3
- C 4
- D. None of the above

VIEW DATA THAT DOES NOT MEET A JOIN CONDITION USING OUTER JOINS

8. Choose one correct statement regarding the following query.

SELECT C.COUNTRY ID

FROM LOCATIONS L RIGHT OUTER JOIN COUNTRIES C

ON (L.COUNTRY ID=C.COUNTRY ID)

WHERE L.COUNTRY_ID is NULL

- A. No rows in the LOCATIONS table have the COUNTRY ID values returned.
- B. No rows in the COUNTRIES table have the COUNTRY ID values returned.
- C. The rows returned represent the COUNTRY_ID values for all the rows in the LOCATIONS table.
- D. None of the above
- 9. Which of the following statements are syntactically correct? (Choose all that apply.)
- A. SELECT JH.JOB_ID FROM JOB_HISTORY JH RIGHT OUTER JOIN JOBS J ON JH.JOB_ID=J.JOB_ID
- B. SELECT JOB_ID FROM JOB_HISTORY JH RIGHT OUTER JOIN JOBS J ON (JH.JOB_ID=J.JOB_ID)
- C. SELECT JOB_HISTORY.JOB_ID FROM JOB_HISTORY OUTER JOIN JOBS ON JOB_HISTORY.JOB_ID=JOBS.JOB_ID
- D. None of the above

GENERATE A CARTESIAN PRODUCT OF TWO OR MORE TABLES

- 10. If the REGIONS table, which contains 4 rows, is cross joined to the COUNTRIES table, which contains 25 rows, how many rows appear in the final results set? (Choose the best answer.)
- A. 100 rows
- B. 4 rows
- C. 25 rows
- D. None of the above

Activity 2:

Propose an answer to the following issues:

- You are required to retrieve information from multiple tables, group the results, and apply an aggregate function to them. Can a group function be used against data from multiple table sources?
- When joining two tables, there is a risk that between them they contain common column names. Does Oracle know which tables to fetch data from if such columns are present in the SELECT list?
- The NATURAL JOIN clause is used to join rows from two tables based on columns with common names sharing identical values. Is it possible to join two tables based on some of the shared columns and not all of them?
- The data in two tables you wish to join is related but does not share any identically named columns. Is it possible to join tables using columns that do not share the same name?
- You wish to divide staff into four groups named after the four regions in the REGIONS table. Is it possible to obtain a list of EMPLOYEE_ID, LAST_NAME, and REGION_NAME values for each employee by joining the EMPLOYEE_ID and REGION ID columns in a round-robin manner?
- You are required to retrieve a list of DEPARTMENT_NAME and LAST_NAME values for all departments, including those that currently have no employees assigned to them. In such cases the string 'No Employees' should be displayed as the LAST_NAME column value. Can this be done using joins?

Activity 3:

Connect to the OE schema and complete the following tasks.

You are required to produce a report of customers who purchased products with list prices of more than \$1000. The report must contain customer first and last names and the product names and their list prices. Customer information is stored in the CUSTOMERS table, which has the CUSTOMER_ID column as its primary key. The product name and list price details are stored in the PRODUCT_INFORMATION table with the PRODUCT_ID column as its primary key. Two other related tables may assist in generating the required report: the ORDERS table, which stores the CUSTOMER_ID and ORDER_ID information, and the ORDER_ITEMS table, which stores the PRODUCT_ID values associated with each ORDER_ID. There are several approaches to solving this question.

▶ Query Result ×			
🥕 🖺 🝓 📚 SQL All Row	s Fetched: 14 in 0.26	7 seconds	
1 Gustav	Steenburgen	Desk - W/48	2500
² Maurice	Mahoney	Desk - W/48	2500
₃ Ishwarya	Roberts	Desk - W/48	2500
4 Goldie	Slater	Desk - W/48	2500
5 Divine	Sheen	SPNIX4.0 - SL	1500
∈Frederico	Romero	Monitor 21/SD	1023
⁷ Harrison	Pacino	Laptop 32/10/56	1749
8 Eddie	Boyer	Laptop 128/12/56/v90/110	3219
9 Hema	Voight	Laptop 128/12/56/v90/110	3219
10 Sivaji	Landis	Desk - W/48	2500
11 Harrison	Sutherland	Laptop 32/10/56	1749
12 Matthias	MacGraw	SPNIX4.0 - SL	1500
13 Matthias	Cruise	Desk - W/48	2500
14 Guillaume	Edwards	Desk - W/48	2500

NOTE: Capture an image for each statement output.

Activity 4:

This exercise must be performed in the HR schema.

a) The JOB_HISTORY table shares three identically named columns with the EMPLOYEES table: EMPLOYEE_ID, JOB_ID, and DEPARTMENT_ID. You are required to describe the tables and fetch the EMPLOYEE_ID, JOB_ID, DEPARTMENT_ID, LAST_NAME, HIRE_DATE, and END_DATE values for all rows retrieved using a pure natural join. Alias the EMPLOYEES table as EMP and the JOB_HISTORY table as JH and use dot notation where possible.

b) Each record in the DEPARTMENTS table has a MANAGER_ID column matching an EMPLOYEE_ID value in the EMPLOYEES table. You are required to produce a report with one column aliased as Managers. Each row must contain a sentence of the format FIRST_NAME LAST_NAME is manager of the DEPARTMENT_NAME department. Alias the EMPLOYEES table as E and the DEPARTMENTS table as D and use dot notation where possible.

c) There is a hierarchical relationship between employees and their managers. For each row in the EMPLOYEES table the MANAGER_ID column stores the EMPLOYEE_ID of every employee's manager. Using a self-join on the EMPLOYEES table, you are required to retrieve the employee's LAST_NAME, EMPLOYEE_ID, manager's LAST_NAME, and employee's DEPARTMENT_ID for the rows with DEPARMENT_ID values of 10, 20, or 30. Alias the EMPLOYEES table as E and the second instance of the EMPLOYEES table as M. Sort the results based on the DEPARTMENT_ID column.

d) Write a query for the HR department to produce the addresses of all the departments. Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or province, and country in the output. Use a NATURAL JOIN to produce the results.

e) The HR department needs a report of all employees. Write a query to display the last name, department number, and department name for all the employees.

f) The HR department needs a report to display the last name, job, department number, and department name for all employees who work in a city entered by a user parameter.

For instance, city equals 'toronto':

g) Crete a report to display employees' last names and employee number along with their managers' last names and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.

h) Modify previous sentence to display all employees including those who have no manager. Order the results by the employee number.

i) Create a report for the HR department that displays employee last names, department name for all the employees along with their colleagues. Give each column an appropriate label and order the results as you consider appropriate to the study case.

j) The HR department needs a report on job grades and salaries. To familiarize yourself with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query that displays the name, job, department name, salary, and grade for all employees.

k) HR department wants to create a query to display the name and hire date of any employee hired after an employee entered by a user parameter.

For Instance, after 'Davies':

 The HR department needs to find the names and hire dates for all employees who were hired before their managers, along with their managers' names and hire dates.

m) The DEPARTMENTS table contains details of all departments in the organization. You are required to retrieve the DEPARTMENT_NAME and DEPARTMENT_ID values for those departments to which no employees are currently assigned.

n) You are required to obtain the number of rows in the EMPLOYEES and DEPARTMENTS table as well as the number of records that would be created by a Cartesian product of these two tables. Confirm your results by explicitly counting and multiplying the number of rows present in each of these tables.

NOTE: Capture an image for each statement output.

Activity 5:

This practice is intended to give you experience in extracting data from more than one table using the SQL:1999–compliant joins.

1. Write a query for the HR department to produce the addresses of all the departments. Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or province, and country in the output. Use a NATURAL JOIN to produce the results.

	LOCATION_ID	STREET_ADDRESS	2 CITY	STATE_PROVINCE	2 COUNTRY_NAME
1	1400	2014 Jabberwocky Rd	Southlake	Texas	United States of America
2	1500	2011 Interiors Blvd	South San Francisco	California	United States of America
3	1700	2004 Charade Rd	Seattle	Washington	United States of America
4	1800	460 Bloor St. W.	Toronto	Ontario	Canada
5	2500	Magdalen Centre, The	Oxford	Oxford	United Kingdom

2. The HR department needs a report of all employees. Write a query to display the last name, department number, and department name for all the employees.

	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
1	Whalen	10	Administration
2	Hartstein	20	Marketing
3	Fay	20	Marketing
4	Davies	50	Shipping
5	Vargas	50	Shipping
6	Rajs	50	Shipping
7	Mourgos	50	Shipping
8	Matos	50	Shipping
9	Hunold	60	IT
10	Ernst	60	IT

- - -

18 Higgins	110 Accounting
19 Gietz	110 Accounting

3. The HR department needs a report of employees in Toronto. Display the last name, job, department number, and the department name for all employees who work in Toronto.

A	LAST_NAME	2 JOB_ID	DEPARTMENT_ID DEPARTMENT_NAME
1 Ha	artstein	MK_MAN	20 Marketing
2 Fa	ay	MK_REP	20 Marketing

4. Create a report to display employees' last name and employee number along with their manager's last name and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively. Save your SQL statement as lab_12_04.sql. Run the query.

	Employee	EMP#	Manager	2 Mgr#
1	Kochhar	101	King	100
2	De Haan	102	King	100
3	Hunold	103	De Haan	102
4	Ernst	104	Hunold	103
5	Lorentz	107	Hunold	103
6	Mourgos	124	King	100
7	Rajs	141	Mourgos	124
8	Davies	142	Mourgos	124
9	Matos	143	Mourgos	124
10	Vargas	144	Mourgos	124

- - -

15 Whalen	200 Kochhar	101
16 Hartstein	201 King	100
17 Fay	202 Hartstein	201
18 Higgins	205 Kochhar	101
19 Gietz	206 Higgins	205

5. Modify lab_12_04.sql to display all employees including King, who has no manager. Order the results by the employee number. Save your SQL statement as lab_12_05.sql. Run the query in lab_12_05.sql.

	£ Employee	2 EMP#	2 Manager	2 Mgr#
1	King	100	(null)	(null)
2	Kochhar	101	King	100
3	De Haan	102	King	100
4	Hunold	103	De Haan	102
5	Ernst	104	Hunold	103
6	Lorentz	107	Hunold	103
7	Mourgos	124	King	100
8	Rajs	141	Mourgos	124
9	Davies	142	Mourgos	124
10	Matos	143	Mourgos	124

- - -

18 Fay	202 Hartstein	201
19 Higgins	205 Kochhar	101
20 Gietz	206 Higgins	205

6. Create a report for the HR department that displays employee last names, department numbers, and all the employees who work in the same department as a given employee. Give each column an appropriate label. Save the script to a file named lab_12_06.sql.

	A	DEPARTMENT	A	EMPLOYEE	A	COLLEAGUE
1		20	Fay		Har	tstein
2		20	Har	tstein	Fay	,
3		50	Dav	ries	Mat	os
4		50	Dav	ries	Моц	urgos
5		50	Dav	ries	Raj	3
6		50	Dav	ries	Var	gas
7		50	Matos		Davies	
8		50	Matos		Mourgos	
9		50	Matos		Raj	3
10		50	Mat	os	Var	gas

42 110 Higgins Gietz

7. The HR department needs a report on job grades and salaries. To familiarize yourself with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query that displays the name, job, department name, salary, and grade for all employees.

DESC JOB_GRADES Name	Null	Туре
GRADE_LEVEL LOWEST_SAL HIGHEST_SAL		VARCHAR2(3) NUMBER NUMBER
3 rows selected		

	LAST_NAME	2 JOB_ID	DEPARTMENT_NAME	SALARY	grade_level
1	Vargas	ST_CLERK	Shipping	2500	А
2	Matos	ST_CLERK	Shipping	2600	А
3	Davies	ST_CLERK	Shipping	3100	В
4	Rajs	ST_CLERK	Shipping	3500	В
5	Lorentz	IT_PROG	IT	4200	В
6	Whalen	AD_ASST	Administration	4400	В
7	Mourgos	ST_MAN	Shipping	5800	В
8	Ernst	IT_PROG	IT	6000	С
9	Fay	MK_REP	Marketing	6000	С
10	Gietz	AC_ACCOUNT	Accounting	8300	С

. . .

18 De Haan	AD_VP	Executive	17000 E
19 King	AD_PRES	Executive	24000 E

8. The HR department wants to determine the names of all the employees who were hired after Davies. Create a query to display the name and hire date of any employee hired after employee Davies.

,	LAST_NAME	HIRE_DATE
1	Lorentz	07-FEB-99
2	Mourgos	16-NOV-99
3	Matos	15-MAR-98
4	Vargas	09-JUL-98
5	Zlotkey	29-JAN-00
6	Taylor	24-MAR-98
7	Grant	24-MAY-99
8	Fay	17-AUG-97

9. The HR department needs to find the names and hire dates of all the employees who were hired before their managers, along with their managers' names and hire dates. Save the script to a file named lab_12_09.sql.

	LAST_NAME	HIRE_DATE	LAST_NAME_1	HIRE_DATE_1
1	Whalen	17-SEP-87	Kochhar	21-SEP-89
2	Hunold	03-JAN-90	De Haan	13-JAN-93
3	Vargas	09-JUL-98	Mourgos	16-NOV-99
4	Matos	15-MAR-98	Mourgos	16-NOV-99
5	Davies	29-JAN-97	Mourgos	16-NOV-99
6	Rajs	17-OCT-95	Mourgos	16-NOV-99
7	Grant	24-MAY-99	Zlotkey	29-JAN-00
8	Taylor	24-MAR-98	Zlotkey	29-JAN-00
9	Abel	11-MAY-96	Zlotkey	29-JAN-00

Universidad Autónoma de Zacatecas

Unidad Académica de Ingeniería Eléctrica Programa Académico de Ingeniería de Software

Activity 6:

Write the **Pre-assessment** section.

Final activity:

Write the **Conclusion** section.

Attached file that is required for this task (optional):

```
CREATE TABLE job_grades (
               grade
                              CHAR(1),
                              NUMBER(8,2) NOT NULL,
               lowest_sal
               highest_sal NUMBER(8,2) NOT NULL
               );
               ALTER TABLE job_grades
               ADD CONSTRAINT jobgrades_grade_pk
               PRIMARY KEY (grade);
               INSERT INTO job_grades VALUES ('A', 1000, 2999);
               INSERT INTO job_grades VALUES ('B', 3000, 5999);
               INSERT INTO job_grades VALUES ('C', 6000, 9999);
               INSERT INTO job_grades VALUES ('D', 10000, 14999);
               INSERT INTO job_grades VALUES ('E', 15000, 24999);
               INSERT INTO job_grades VALUES ('F', 25000, 40000);
               COMMIT;
```

e-mail: a7donso@gmail.com