核酸适配体折叠动力学探究

蔡瑾1

1中山大学物理学院,广州 510275

目录

1 Adaptor1 的制备

	1	Adaptor1 的制备	2
		1.1 Annealing	2
	2	5'Bio-2.9k handle-Adaptor1 的制备	2
		2.1 质粒扩增	2
		质粒扩增 2	2
		琼脂糖凝胶电泳	2
		2.2 PCR——制备 2.9k handle	3
		PCR 3	3
		Purification	3
		2.3 检验 Biotin	3
		琼脂糖凝胶电泳 4	4
		2.4 Bsal 酶切	4
		Bsal Digestion	4
		Purification	4
		2.5 Ligate 5'Bio-2.9k handle with Adaptor1	5
		Ligation	5
		Purification	5
	3	Pepper RNA 的制备	5
		3.1 Transcription	5
		3.2 降解 DNA 模板链	6
		3.3 乙醇沉淀法提纯	6
中山大学本科生	4	Annealing: Bio-handle-adaptor1 + Pepper RNA + Adaptor2-dig	7
<u>科研训练项目</u> (2025)		4.1 Annealing	7
		4.2 Purification	8
归属人 蔡瑾			
学号	5	MT 实验	8
字号 23363052		5.1 Chamber	8
通讯邮箱 caij77@mail2.sysu.edu.cn		5.2 MT	1

1 Adaptor1 的制备

1.1 Annealing

表 1. Annealing: Adaptor1

Reagent	ini con.	$volume(\lambda)$	final con.
Pepper Adaptor1 Upper	100μ M	5	
Pepper Adaptor1 Lower	$100 \mu M$	5	
Annealing Buffer	$10 \times$	2	$1 \times$
H_2O		8	
Total		20	

 95°C for 5min, then decrease the temperature at the rate of $0.1^{\circ}\text{C}/10\text{s},$ for 910 cycles, 4°C for $\infty.$

2 5'Bio-2.9k handle-Adaptor1 的制备

2.1 质粒扩增

我们已有足量 PLB601。

质粒扩增

用感受态细胞 trans5a 扩增 PLB601 质粒。参考我的笔记。

琼脂糖凝胶电泳

质粒应有3个条带,从快到慢分别是环状、线性、带 Nick 环状 DNA.

2.2 PCR——制备 2.9k handle

PCR

表 2. PCR: 制备带 Biotin 的 2.9k handle

Reagent	ini con.	volume(λ)	final con.
KOD Fx	$1U/\lambda$	1	
KOD Buffer	$2\times$	25	$1 \times$
PLB601	$10 \text{ng}/\mu\text{L}$	5	
2.9k-Bsal-handle-F($100\mu M$)	$10\mu M$	2	
5'Bio-2.9k-Bsal-handle-R $(100\mu M)$	$10\mu M$	2	
dNTPs	2 mM each	10	
H_2O		5	
Total		50	

蓝色字的试剂需要稀释。

- 1. 94°*C*, 2min
- 2. 98°C, 10s
- 3. $53.9^{\circ}C$, 30s
- 4. 68° C, 3min10s. Return to 2, for 40 cycles.
- 5. 68°*C*, 5min
- 6. $4^{\circ}C$, ∞

程序保存在 PCR 仪中: CJ-HKY/KOD.

Purification

Purify via **TIANGEN**. Add **3 times volume of PC** into DNA first. Elute with $50\mu L$ TE(**65°C**).

2.3 检验 Biotin

Add $1\mu L$ SA into 100ng Bio-handle, mix well. Incubate at room temperature for 15min. Then run gel.

琼脂糖凝胶电泳

- #1: 250-10000 marker
- #2: Bio-handle(1)
- #3: Bio-handle(1)+SA
- ...
- #n: 250-10000 marker

120V for 60min.

若加了 SA 的比未加 SA 的慢,则说明 PCR 获得的 handle 上的确有 Biotin, 可以进行下一步实验。

2.4 Bsal 酶切

Bsal Digestion

Reagent	ini con.	volume(λ)	final con.
5 'Bio-handle	с	V	
Bsal-HF v2	$20U/\mu L$	$x \approx \frac{cV(pN)}{0.031 \times 7} \times 2/20$	
rCutSmart Buffer	10×	y/10	$1 \times$
H_2O		$y-(V+x+\tfrac{y}{10})$	
Total		у	

 37°C for 3h.

Purification

Purify via **PureLink** with **B3**, elute with 50μ L EB.(不可以用天根的 DNA 纯化试剂盒,因为酶切下来的片段长度约为 34-39bp,谭老师说 >30bp 后就不能用天根取代 PureLink 的 B3 了。)

2.5 Ligate 5'Bio-2.9k handle with Adaptor1

Ligation

Purification

Purify via **PureLink** with **B3**, elute with 20μL TE(**65°C**).(同样不可用天根取代)

3 Pepper RNA 的制备

3.1 Transcription

3.2 降解 DNA 模板链

DNase Digestion

表 6. DNase Digestion

Reagent	ini con.	volume(λ)	final con.
RNA		100	
RQ1 RNase-free DNase Reaction Buffer	10×	12	1×
RQ1 RNase-free DNase	$1U/\mu L$	2	$0.017 U/\mu L$
RNase Inhibitor	$40U/\mu L$	2	$0.73U/\mu L$
H_2O		4	
Total		120	

 37° C for 40min. Then add $13\mu L$ **RQ1 DNase stop solution**, 65° for 10min.

3.3 乙醇沉淀法提纯

乙醇沉淀法(一)

表 7. 乙醇沉淀法

Reagent	ini con.	volume(λ)	final con.
RNA		133(20%)	
乙酸铵	10 M	33.25(5%)	0.5 M
乙醇	100%	498.75(75%)	75%
Total		665	

乙醇、乙酸铵需要预冷。

 -20° C overnight, but things could be better if time is longer.

乙醇沉淀法(二)

- 1. 4°C下16000rpm(~17794g) 离心10min。
- 2. 去除上清液,注意不要接触到核酸沉淀。
- 3. 加入 0.5mL 冷 70% 乙醇。 4°C 下 16000rpm(~ 17794g) 离心 10min。
- 4. 室温下敞盖约 5min 至残留液体(主要是乙醇)挥发干净。
- 5. 用 100μL 的 TE 溶解 RNA。

乙醇沉淀法 (三)

表 8. 乙醇重沉淀

Reagent	ini con.	volume(λ)	final con.
RNA		~ 100(20%)	
乙酸铵	10 M	25(5%)	0.5 M
乙醇	100%	375(75%)	75%
Total		500	

乙醇、乙酸铵需要预冷。

-20°C 下保存。

4 Annealing: Bio-handle-adaptor1 + Pepper RNA + Adaptor2dig

4.1 Annealing

取用 RNA

- 1. 4°C下 16000rpm(~ 17794g) 离心 10min。
- 2. 去除上清液,注意不要接触到核酸沉淀。
- 3. 加入 0.5mL 冷 70% 乙醇。 4°C 下 16000rpm $(\sim 17794g)$ 离心 10min。
- 4. 室温下敞盖约 5min 至残留液体(主要是乙醇)挥发干净。
- 5. 用 100μL 的 TE 溶解 RNA。

Annealing

表 9. Annealing

Reagent	ini con.	$volume(\lambda)$	final con.
5'Bio-2.9k Pepper Handle+Adaptor1	c_1	18(1:10:20)	
Pepper RNA	c_2	$V_1 = \frac{c_1 \times 18}{c_2} \times 10$	
5'Dig-Pepper Handle2	$c_3 = 2\mu M$	$V_2 = \frac{c_1 \times 18}{c_3} \times 20$	
SSC Buffer ¹	$20\times$	V/20	1×
EDTA	50 mM	V/50	1 mM
H_2O		$V - (18 + 1.5 + 0.6 + V_1 + V_2)$	
Total		V	

¹SSC Buffer: 3M NaCl, 300mM NaOAc pH7.0

 80° C for 10min, then decrease the temperature at the rate of 0.1° C/10s, for 760 cycles,

4°C for ∞.

RNA 的乙醇重沉淀

表 10. 乙醇重沉淀

Reagent	ini con.	$volume(\lambda)$	final con.
RNA		~ 100(20%)	
乙酸铵	10 M	25(5%)	0.5 M
乙醇	100%	375(75%)	75%
Total		500	

乙醇、乙酸铵需要预冷。

-20°C 下保存。

4.2 Purification

Purify via PureLink, with **B3** buffer. Elute with 20μ L TE(**room temperature because of RNA**). (同样不能用天根取代)

5 MT 实验

5.1 Chamber

• #1: 2.8k DNA

• #2: Pepper RNA Sample

• #3: Pepper RNA Sample

表 11. 稀释

试剂	稀释前浓度	稀释后浓度	在冰箱中的位置
SB	1/10	1/100	-4°C 冰箱 QGZ 盒/GYH 盒
anti-dig	0.2	0.02 mg/mL	-4°C 冰箱 QGZ 盒/GYH 盒
cassein	12	6 mg/mL	−20°C 冰箱 QGZ 盒
M270	1/10	1/20	-4°C 冰箱 QGZ 盒/GYH 盒
2.8k DNA		10pM	−20°C 冰箱 QGZ 盒
pepper RNA sample		50pM	−20°C 冰箱 CJHKY 盒

稀释 SB: $1/10 \xrightarrow{\div 10} 1/100$

表 12. SB for DNA

Reagent	volume(λ)
SB	1
H_2O	9
Total	10

表 13. SB for Pepper

$volume(\lambda)$
2
4
14
20

稀释 anti-dig: $0.2 \xrightarrow{\div 10} 0.02$ mg/mL

表 14. Anti-dig for DNA

Reagent	volume(λ)
Anti-dig	1
H_2O	9
Total	10

表 15. Anti-dig for Pepper

$volume(\lambda)$
2
4
14
20

稀释 cassein: $12 \xrightarrow{\div 2} 6$ mg/mL

表 16. Cassein for DNA

Reagent	$volume(\lambda)$
Cassein	10
H_2O	10
Total	20

表 17. Cassein for Pepper

Reagent	volume(λ)
Cassein	20
$5 \times \text{TB}$	8
H_2O	12
Total	40

稀释 M270: $1/10 \xrightarrow{\div 2} 1/20$

表 **18.** M270 for DNA

Reagent	volume(λ)
Cassein	5
H_2O	5
Total	10

表 **19.** M270 for Pepper

Reagent	$volume(\lambda)$
Cassein	10
$5{\times}\mathrm{TB}$	4
H_2O	6
Total	20

Chamber

表 20. Chamber

试剂	$Volume(\lambda)$	等待时间 (min)
PBS/TB	10	
SB	10	20
PBS/TB	20	
anti-dig	10	10
PBS/TB	10	
cassein	20	15
PBS/TB	20	
DNA	10	15
PBS/TB	10	
M270	10	10
PBS/TB	40	

5.2 MT

拉伸到约 35pN 时开始回复,否则样品会断。