1 分割統治法による多項式の評価

A(x) を n-1 次の多項式 $A(x)=a_0+a_1x^1+a_2x^2+\cdots+a_{n-1}x^{n-1}$, \vec{a} を A の係数列 $\vec{a}=(a_0,a_1,\ldots,a_{n-1})$ とする.ここで一般性を失うことなく n は偶数であると仮定してよい;そうでないなら n'=n+1 次の A' ただし $a'=(a_0,a_1,\ldots,a_{n-1},0)$,つまり n 次の係数は 0, を考える.

すると.

$$A(x) = a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2} + a_1 x^1 + a_3 x^3 + \dots + a_{n-1} x^{x-1}$$
$$= \sum_{i=0}^{n/2-1} a_{2i} x^{2i} + x \cdot \sum_{i=0}^{n/2-1} a_{2i+1} x^{2i}$$

と書ける. ここで係数列 (a_0,a_2,\ldots,a_{n-2}) の多項式 A_0 と (a_1,a_3,\ldots,a_{n-1}) の A_1 , 二 つの多項式を導入すれば、上の式は

$$A(x) = A_0(x^2) + x \cdot A_1(x^2)$$

と書き換えられる. したがって, $x^2, x^4, x^6, \dots, x^{n/2}$ と x 倍の計算で, n-1 次の多項式 A(x) の値を求めることができる.

さらに、もし n が 2 のべきであるなら、 $x, x^2, x^4, \ldots, x^{\log_2 n}$ について再帰的に評価をすることで時間計算量

$$T(n) = \begin{cases} 2 & n \le 1, \\ 2T(n/2) + 2 & \text{otherwise}, \end{cases}$$

つまり $O(\log_2 n)$ で計算ができる. これを $x=\mathrm{e}^{-\iota \frac{2\pi}{n}i}$ にもちいるのが高速フーリエ変換 FFT である. ι は虚数単位.

2 多項式の評価による文字列パタン照合

有限アルファベットを Σ とし、その大きさを $N=|\Sigma|$ とする。有限アルファベット Σ 上の文字列 $t=t_0\cdot t_1\cdot \dots \cdot t_{n-1}, \ p=p_0\cdot \dots \cdot p_{m-1}$ ただし $n\geq m$ を、それぞれテキスト、パタンと呼ぶこととする。有限アルファベットの要素 a_1,\dots,a_N は、多項式に現れるときそれぞれを整数値 $1,\dots,N$ とみなすことにする。

ここでテキストとパタンそれぞれの x の多項式 T,P を

$$T(i) = t_i \cdot x^{n-1-i}, P(i) = p_i \cdot w_p(i),$$

ただし

$$w_p(i) = \begin{cases} x^i & 0 \le i < m, \\ 0 & i > m \end{cases}$$

としよう. するとたとえばパタン $p = p_0 p_1 p_2$ がテキスト $t = t_0 t_1 t_2 t_3 t_4 \cdots t_{n-1}$ の位置 2 に出現する, すなわち $0 \le i < m$ について $p_i = t_{2+i}$ であるかどうかは, 多項式

$$\sum_{i=0}^{n-1} T(i) \cdot P((i-2) \bmod n)$$

$$= t_2 \cdot x^{n-1-2} \cdot p_0 \cdot w_p(0) + t_3 \cdot x^{n-1-3} \cdot p_1 \cdot w_p(1) + t_4 \cdot x^{n-1-4} \cdot p_2 \cdot w_p(2)$$

$$= x^{n-3} \sum_{i=0}^{2} t_{i+2} \cdot p_i$$

を評価することで知ることができる; ここで P の添え字を $i \bmod n$ としているのは, ただ添え字を定義域の中に収めるためである. 上式の値は, $t_{[2,4]}$ と p をベクトル $t_{[2,4]}$ = (t_2,t_3,t_4) と $\vec{p}=(p_0,p_1,p_2)$ の内積に x^{n-3} を乗じたものに等しく,

$$\frac{\vec{t_{[2,4]}} \cdot \vec{p}}{|\vec{t_{[2,4]}}| \cdot |\vec{p}|} = 1$$

であるとき、またそのときに限り $t_{[2,4]}=p$ であることを使うと、上式が $x^{n-3}\cdot|t_{[2,4]}|\cdot|\vec{p}|$ に等しいとき、位置 2 に出現しているとわかる.

このテキストの部分列のノルム $|t_{[2,4]}^{-1}|$ が位置によって異なるのは、計算量の点で都合がわるい。そこで、文字 $a_i\in\Sigma$ を複素数 $a_i=\mathrm{e}^{-\iota\frac{2\pi}{N}i}$ で表すことにする。すると、ベクトルのノルムは含まれる文字によらず、文字列長に等しくなる。すなわち, $t_{[j,j+m-1]}=p$ のとき、またそのときに限り

$$t_{[j,j+m-1]}^{\dagger} \cdot p = m$$

となる. ただし†は複素共役なベクトル.

以上から,

$$M(i) = \sum_{k=0}^{n-1} T(i+k) \cdot P(k) = x^{n-1-i} \sum_{k=0}^{k < |p|} t_{i+k} \cdot p_i$$

を $0 \le i < n$ について求めれば, M(i) = m のとき i+1 に p が出現しているとわかる. この $M(0), \ldots, M(n-1)$ の計算は, 離散フーリエ変換, もしくは n が 2 のべきのとき高速フーリエ変換で行う.

3 FFT による文字列パタン照合

入力: 有限アルファベット $\Sigma = \{a_0, a_{N-1}\}$ 上のテキスト $t \in \Sigma^*$ と パターン $p \in \Sigma^*$, ただし $|t| \leq |p|$.

1. $n=2^{\lceil \log |t| \rceil}$ とする.

- 2. 文字 a_i を $\omega^i=\mathrm{e}^{t\frac{2\pi}{N}i}$ で置き換えた長さ n の列 \vec{t} と複素共役な列 t^\dagger と, p の逆順 の文字を ω^i で置き換えた長さ n の列 p^R を作る. 文字列の長さが満たない部分 の要素は 0 でうめておく.
- $3. t^{\dagger}$ と p^{R} それぞれを高速フーリエ変換した列 T, P を求める.
- 4. T と P の要素ごとの積からなる列 Q を求める. $(Q(i) = T(i) \cdot P(i))$
- 5. Q を逆高速フーリエ変換した列 M を求める.
- $6. \ M(i) = |p|$ となる位置 i を枚挙する. i+1 が出現位置である.

以上により, p の長さにかかわらず $O(n \log n)$ 時間で終了する.