

Licenciatura en Inteligencia Artificial y Ciencia de Datos, CUGDL, Universidad de Guadalajara.

Guadalajara, Jal., agosto de 2025

Ejemplo

- Queremos modelar el precio de los departamentos en una ciudad según su superficie (en m^2).
- La variable de entrada (independiente) nos ayuda a predecir el valor de la variable de salida (superficie del piso).
- La variable de salida (dependiente) es la que queremos predecir (el costo mensual)

Superficie [metros cuadrados]	Renta [pesos]
150	4500
120	3800
170	4800
80	2700

Ecuación de una recta

- En el caso de una regresión lineal, asumimos que y (la renta) es una función lineal de x (la superficie) y entonces el modelo lineal se escribe como:
- $\hat{y} = \beta_0 + \beta_1 x$, i.e., Renta = $\beta_0 + \beta_1$ * superficie.
- El objetivo de una regresión lineal es encontrar de forma estadística unos valores que sean significativos para β_0 y β_1 , de tal forma que minimizan las diferencias entre los valores reales de y (los que realmente tenemos) y los que prediga nuestro modelo (\hat{y}) .
- Con estos parámetros tendremos una ecuación que será capaz de predecir los valores de y en función de la variables (o variables) de entrada x.

Ecuación de una recta

- Requiere de una serie de datos históricos con tantos valores de entrada como uno quiera modelar pero solo un parámetro de salida.
- Por ejemplo, con ciertos datos históricos (una base de datos anterior) podríamos crear un modelo lineal con valores $\beta_0 = 869.6$ y $\beta_1 = 23.7$.
- El modelo lineal sería $\hat{y} = 869.6 + 23.7x$.
- Con esto, por ejemplo, podríamos encontrar el alquiler de cualquier casa, por ejemplo una de 110 metros cuadrados.
- $\hat{y} = f(x = 110) = 869.6 + 23.7(110) = 3476.6$ pesos.

Ecuación de una recta

$$\hat{y} = 869.6 + 23.7x$$

renta = 869.6 + 23.7 * superficie

Interpretación de los parámetros:

- β_0 (intercept): también llamado ordenada al origen, representa el punto donde la recta de regresión cruza el eje y.
- β_1 : Es el cambio esperado en y por cada unidad de aumento en x, manteniendo todo lo demás constante.

Modelo supervisado de ML

- La regresión lineal es un modelo de aprendizaje supervisado utilizado para predecir una variable continua a partir de una o más variables de entrada.
- Su objetivo es encontrar una relación lineal entre las variables independientes x y la variable dependiente y, ajustando una línea (o un hiperplano en dimensionas mayores) que minimiza la diferencia entre los valores predichos y los observados (datos).
- En el contexto de Machine Learning, se considera un **modelo base o de referencia**, debido a su simplicidad, interpretabilidad y utilidad para entender patrones en los datos, además de ser un punto de comparación frente a modelos más complejos.

Mínimos cuadrados

- ¿Cómo podemos encontrar los parámetros del modelo lineal?
- La diferencia entre el valor real y el estimado (residuales) se puede escribir como:
- $E = (\hat{y}_i y_i)$, donde \hat{y}_i son los valores predecidos por cada x_i , y y_i son los valores históricos (asociados a cada x_i).
- El objetivo es minimizar la suma de errores al cuadrado sobre todos los puntos del data set $X = \{(x_i, y_i)\}_{i=1}^n$

$$\min \sum_{i=1}^{n} E^2 = \sum_{i=1}^{n} (\hat{y}_i(x_i) - y_i)^2 = \sum_{i=1}^{n} ((\beta_0 + \beta_1 x_i) - y_i)^2 = e$$

Mínimos cuadrados

• La suma de residuales al cuadrado se tiene que minimizar, y para eso derivamos para encontrar los parámetros óptimos β_0 y β_1

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

Parámetro β_0

- Queremos ver dónde se encuentra el mínimo de este error. En otras palabras, dónde su derivada (pendiente) es igual a cero. Para eso tenemos que utilizar la primera derivada.
- Primero derivamos con respecto al parámetro β_0

$$\frac{\partial}{\partial \beta_0} e = \frac{\partial}{\partial \beta_0} \left[\sum_{i=1}^n \left((\beta_0 + \beta_1 x_i) - y_i \right)^2 \right] = 0$$

Parámetro β_0

- La idea es ver esta expresión de una manera más sencilla. Todo lo que está dentro del paréntesis se puede ver como **una función de** β_0 , y podríamos llamarla si queremos $u(\beta_0) = \beta_0 + \beta_1 x_i y_i$.
- Recordar que en esta derivada parcial, β_0 es la única variable. Qué quiere decir? Que consideramos β_1 como constante, un número.

$$\frac{\partial}{\partial \beta_0} e = \frac{\partial}{\partial \beta_0} \left| \sum_{i=1}^n (u(\beta_0))^2 \right| = \frac{\partial}{\partial \beta_0} \left| \sum_{i=1}^n u^2(\beta_0) \right|$$
 Ya no se ve tan mal.!!!

Parámetro β_0

•
$$\frac{\partial}{\partial \beta_0} e = \frac{\partial}{\partial \beta_0} \left[\sum_{i=1}^n u^2(\beta_0) \right]$$
. Entonces, tenemos una función anidada en otra!!!

• Tenemos una función $e(u) = \sum_{i=1}^n u^2$, $u(\beta_0) = \beta_0 + \beta_1 x_i - y_i$. Por regla de la cadena:

$$\frac{\partial e}{\partial \beta_0} = \frac{\partial e}{\partial u} \frac{\partial u}{\partial \beta_0}$$

Parámetro β_0

$$\frac{\partial e}{\partial \beta_0} = \frac{\partial e}{\partial u} \frac{\partial u}{\partial \beta_0}$$

• Hacemos cada una por separado. Cada una de las derivadas únicamente requiere derivadas de una ley de potencias. !!! Recordar sustituir de vuelta la variable u del comienzo.

$$\frac{\partial e}{\partial u} = \sum_{i=1}^{n} 2u = 2 \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)$$

$$\frac{\partial u}{\partial \beta_0} = 1$$

Parámetro β_0

• Entonces, sólo nos queda sustituir:

$$\frac{\partial e}{\partial \beta_0} = \frac{\partial e}{\partial u} \frac{\partial u}{\partial \beta_0} = \left[2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \right] [1] = 0$$

• Que podemos reordenar, despejar:

$$\Rightarrow \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0 = \sum_{i=1}^{n} y_i - n\beta_0 - \beta_1 \sum_{i=1}^{n} x_i$$

$$\Rightarrow \sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i$$

Parámetro β_1

• Derivando con respecto al parámetro β_1 es algo muy similar, pero hay un factor x_i adicional por ahí.

$$\frac{\partial}{\partial \beta_1}(e) = \left[2 \sum_{i=1}^n \left[-x_i \right] (y_i - \beta_0 - \beta_1 x_i) \right] = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i) = 0 = \sum_{i=1}^{n} x_i y_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2$$

Parámetro óptimos : sistema de ecuaciones

• Entonces tenemos un sistema de dos ecuaciones:

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i \tag{1}$$

$$\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2$$
 (2)

· Podemos resolver este sistema de ecuaciones por el método de sustitución.

Parámetro β_0

• De la ecuación 1, podemos dividir entre n:

$$\sum_{i=1}^{n} y_i = \beta_0 + \beta_1 \frac{1}{n} \sum_{i=1}^{n} x_i$$

•
$$\Rightarrow \bar{y} = \beta_0 + \beta_1 \bar{x}$$

•
$$\Rightarrow \beta_0 = \bar{y} - \beta_1 \bar{x}$$

Parámetro β_1

• Entonces podemos sustituir esta expresión para β_0 en la ecuación (2).

$$\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2 = (\bar{y} - \beta_1 \bar{x}) \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2$$
$$= \bar{y} \sum_{i=1}^{n} x_i - \beta_1 \bar{x} \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2$$

• Dividimos entre *n*,

$$\frac{1}{n} \sum_{i=1}^{n} x_i y_i = \bar{y} \frac{1}{n} \sum_{i=1}^{n} x_i - \beta_1 \bar{x} \frac{1}{n} \sum_{i=1}^{n} x_i + \beta_1 \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} x_i y_i = \bar{y} \bar{x} - \beta_1 \bar{x} \bar{x} + \beta_1 \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

Parámetro β_1

· Despejando tenemos que:

$$\frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y} = \beta_1 \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2 \right)$$

$$\Rightarrow Cov(x,y) = \beta_1 \left(\frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 \right)$$

Parámetro β_1

• Por otro lado, tenemos que la varianza puede expresarse de otra forma:

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n} \left(\sum_{i=1}^{n} x_i^2 - 2 \sum_{i=1}^{n} x_i \bar{x} + \sum_{i=1}^{n} \bar{x}^2 \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2\bar{x} \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n} n\bar{x}^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2$$

$$Var(x) = \sigma_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$$

Parámetro β_1

•
$$Cov(x, y) = \sigma_{xy} = \beta_1 \left(\frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 \right) = \beta_1 \sigma_x^2$$

$$\beta_1 = \frac{\sigma_{xy}}{\sigma_x^2}$$

Parámetros óptimos

• Los parámetros que minimizan la suma de los residuos al cuadrado son:

$$\beta_1 = \frac{\sigma_{xy}}{\sigma_x^2}$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$A = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$B = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^{2}) - (\Sigma x)^{2}}$$

Valor actual vs prediccion

La componente de error

- En un mundo ideal, el modelo sería perfectamente lineal $\hat{y} = \beta_0 + \beta_1 x$.
- ullet Pero en realidad, siempre tendremos una componente de error o residuo ϵ .
- $y = \beta_0 + \beta_1 x + \epsilon$
- El residuo ϵ será una variable aleatoria con **distribución normal** $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.
- e_i es usualmente llamado **error irreducible**, siempre está presente. La idea de ajustar (o entrenar) un modelo no es eliminar esté error verdaderamente aleatorio, pues esto llevaría a un **sobreentrenamiento**.
- Siempre se supone, o se hacen pruebas, para ver que $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$. A esto se le llama **homocedasticidad.**
- Para un ejemplo práctico sobre esto, revisa el notebook de Jupyter de esta sección.

Ejemplos de algunos modelos ajustados

En todos los 4 casos, los valores de $\beta_0, \beta_1, r_{xy}, R^2$, son iguales.

Suposiciones

- Libre de error. Las variables predictoras son libre de error, i. e., que no son variables aleatorias.
- Linealidad. Se asume que la relación entre las variables independientes y la variable dependiente es lineal.
- Varianza constante. El error en la variable de respuesta es constante sobre los valores de entrada.
- No hay multicolinealidad. Ninguno de los parámetros de entrada son redundantes uno de otro.

Overview

- La regresión lineal que hemos visto tiene la forma
- $y_{model} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \epsilon$
- Se podría pensar que todas las variables toman valores numéricos.
- Se pueden usar variables dummy para variables categóricas.

Definición

• En una regresión lineal múltiple se trabajan con más de 1 variable independiente.

•
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_n x_{ni} + \epsilon_i$$

O de forma equivalente, $y_i = \beta_0 + \left(\sum_{j=1}^k \beta_j x_{ij}\right) + \epsilon_i$ para k variables independientes.

Forma matricial

• O puesto de otra forma,

$$y_1 = \beta_0 + \sum_{j=1}^{k} \beta_j x_{1j} + \epsilon_1$$

$$y_2 = \beta_0 + \sum_{j=1}^k \beta_j x_{2j} + \epsilon_2$$

$$y_3 = \beta_0 + \sum_{j=1}^{\kappa} \beta_j x_{3j} + \epsilon_3$$

•

$$y_n = \beta_0 + \sum_{j=1}^k \beta_j x_{nj} + \epsilon_n$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$Y = X\beta + \epsilon$$

Mínimos cuadrados

• Queremos minimizar
$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1i} - \dots - \hat{\beta}_{k}x_{ki})^{2}$$

• O puesto en forma matricial

•
$$\epsilon^T \epsilon = (Y^T - B^T X^T)(Y - BX)$$

• Que se puede desarrollar y llegar a que:

puede desarrollar y llegar a que:
$$B^T X^T Y = Y^T X B$$

•
$$\epsilon^T \epsilon = Y^T Y - 2B^T X^T Y + B^T X^T X B$$

Mínimos cuadrados y parámetros óptimos

• Entonces, tomando la primera derivada,

$$\frac{\partial(\epsilon^T \epsilon)}{\partial B} = -2X^T Y + 2X^T X B$$

- Al igualar a cero. Ya estamos considerando solamente los estimadores de la minimización \hat{eta} ,

$$-2X^TY + 2X^TX\beta = 0 \Rightarrow X^TX\beta = X^TY$$

- Multiplicando por la inversa de la matriz X^TX
- $\beta = (X^T X)^{-1} X^T Y$

Error estándar residual

- RSE es la desviación estándar del término de error (desviación de la parte de los datos que el modelo no es capaz de explicar ya sea por falta de información o por parámetros adicionales.)
- En una regresión lineal simple: $RSE = \sqrt{\frac{\sum (y_i \hat{y}_i(x_i))^2}{n-2}} = \sqrt{\frac{SSD}{n-2}}$ siendo n el número de datos.
- En una regresión lineal múltiple (k número de variables de entrada):

$$RSE = \sqrt{\frac{SSD}{n-k-1}}$$

El problema de la multicolinealidad

La **multicolinealidad** es una relación de dependencia (lineal) fuerte entra más de dos variables de entrada en una regresión lineal múltiple. Esto puede llevar a lo siguiente:

- Las varianzas de los estimadores son muy grandes.
- Podría pasar que la hipótesis nula de que un estimador es cero sea aceptadas, aún cuando la correspondiente variable sea relevante.
- Los coeficientes estimados serán muy sensibles ante pequeños cambios en los datos.
- Este problema puede reducirse con la eliminación de los represores de las variables con alta relación lineal entre ellas.

Factor de inflación de la varianza

 Un criterio utilizado para verificar multicolinealidad es el uso del factor de inflación de la varianza (VIF), dado por:

$$\bullet VIF = \frac{1}{1 - R^2}$$

 Cuando este valor supera a 5, se considera que se tiene un problema alto de multicolinealidad, que se tendrá que resolver de alguna manera.