GRUPO DE ESTUDIOS EL NÚCLEO PREUNIVERSITARIO

Treceava Práctica Dirigida de Trigonometría

Tema: Inecuaciones Trigonométricas

1.- Resolver:

$$\sqrt{2+tgx} + \sqrt{2-tgxz} = \sqrt{2}.tgx$$

- A) $k\pi$; $k \in \mathbb{Z}$
- B) $k\pi + \frac{\pi}{2}; k \in \mathbb{Z}$
- C) $k\pi + \frac{\pi}{3}; k \in \mathbb{Z}$
- $\mathsf{D)} \ k\pi + \frac{\pi}{4}; k \in \mathbb{Z}$
- $\mathsf{E}) \ k\pi + \frac{\pi}{5}; k \in \mathbb{Z}$

2.- Resolver:

$$x - y = \frac{\pi}{3}$$

senx = 2seny

A)
$$x = n\pi + \frac{\pi}{2}$$
; $y = n\pi + \frac{\pi}{6}$

B)
$$x = n\pi + \frac{\pi}{3}$$
; $y = n\pi + \frac{\pi}{6}$

C)
$$x = n\pi + \frac{\pi}{6}$$
; $y = n\pi + \frac{\pi}{2}$

D)
$$x = n\pi - \frac{\pi}{6}$$
; $y = n\pi - \frac{\pi}{6}$

E)
$$x = n\pi - \frac{\pi}{3}$$
; $y = n\pi - \frac{2\pi}{6}$

3.- Resolver la inecuación:

$$sen \frac{x}{3} \ge sen \frac{\pi}{4}$$

A)
$$\left[6k\pi + \frac{\pi}{4}; 6k\pi + \frac{3\pi}{4}\right]; k \in \mathbb{Z}$$

B)
$$\left[6k\pi + \frac{3\pi}{4}; 6k\pi + \frac{9\pi}{4}\right]; k \in \mathbb{Z}$$

C) $\left[6k\pi - \frac{3\pi}{4}; 6k\pi + \frac{3\pi}{4}\right]; k \in \mathbb{Z}$

$$\mathsf{D})\left[3k\pi + \frac{\pi}{4}; 3k\pi + \frac{3\pi}{4}\right]; k \in \mathbb{Z}$$

$$\mathsf{E})\left[3k\pi + \frac{9\pi}{4}; 3k\pi + \frac{11\pi}{4}\right]; k \in \mathbb{Z}$$

4.- Resolver: senx.cos 2x > 0.Si: $x \in \langle 0; \pi \rangle$

A)
$$\left\langle 0; \frac{\pi}{4} \right\rangle$$
 B) $\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle$ C) $\left\langle \frac{3\pi}{4}; \pi \right\rangle$

D)
$$\left\langle 0; \frac{\pi}{4} \right\rangle U \left\langle \frac{3\pi}{4}; \pi \right\rangle$$
 E) $\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle U \left\langle \frac{3\pi}{4}; \pi \right\rangle$

5.- Resolver la inecuación:

$$tgx + ctgx < tg\frac{\pi}{4}$$

en el intervalo <0; 2π >

A)
$$< 0; \frac{\pi}{2} > \cup < \pi; \frac{3\pi}{2} >$$

B)
$$<\frac{\pi}{2};\pi> \cup <\frac{3\pi}{2}2\pi>$$

C)
$$< 0; \pi > -\left\{\frac{\pi}{2}\right\}$$

D)
$$<\pi;2\pi>-\left\{\frac{3\pi}{2}\right\}$$

E)
$$< 0; \frac{\pi}{2} >$$

6.- Resolver en $[0;2\pi]$. Si: sen2x > senx

A)
$$\left\langle 0; \frac{\pi}{6} \right\rangle U \left\langle \frac{5\pi}{6}; \pi \right\rangle$$

B)
$$\left\langle 0; \frac{\pi}{3} \right\rangle U \left\langle \pi; \frac{4\pi}{3} \right\rangle$$

EL NÚCLEO: ¡La manera más inteligente de estudiar!

C)
$$\left\langle 0; \frac{\pi}{3} \right\rangle U \left\langle \pi; \frac{5\pi}{3} \right\rangle$$

D)
$$\left\langle 0; \frac{\pi}{6} \right\rangle U \left\langle \pi; \frac{7\pi}{6} \right\rangle$$

E)
$$\left\langle 0; \frac{\pi}{6} \right\rangle U \left\langle \frac{7\pi}{6}; 2\pi \right\rangle$$

7.- Dada la función :

f(x) = 1 + senx + cos 2x + sen3x

Hallar el dominio de la función para que su rango adopte solo valores negativos

A)
$$\left\langle \frac{\pi}{2}; \frac{3\pi}{2} \right\rangle - \left\{ \pi \right\}$$
 B) $\left\langle \frac{7\pi}{6}; \frac{11\pi}{6} \right\rangle - \left\{ \frac{3\pi}{2} \right\}$

C)
$$\left\langle \frac{\pi}{2}; \frac{3\pi}{2} \right\rangle$$
 D) $\left\langle \frac{7\pi}{6}; \frac{1 \ln \pi}{6} \right\rangle$

E)
$$\left\langle \frac{4\pi}{3}; \frac{5\pi}{3} \right\rangle - \left\{ \frac{3\pi}{2} \right\}$$

8.- Resolver: $\cos^2 2x + \cos^2 x \le 1$

A)
$$\left[n\pi + \frac{\pi}{3}; n\pi + \frac{5\pi}{3}\right]; n \in \mathbb{Z}$$

B)
$$\left[n\pi - \frac{\pi}{3}; n\pi + \frac{\pi}{3}\right]; n \in \mathbb{Z}$$

C)
$$\left[n\pi - \frac{\pi}{6}; n\pi + \frac{\pi}{6}\right]; n \in \mathbb{Z}$$

D)
$$\left[n\pi + \frac{\pi}{6}; n\pi + \frac{5\pi}{6}\right]; n \in \mathbb{Z}$$

$$\mathsf{E}) \left[n\pi + \frac{\pi}{2}; n\pi + \frac{3\pi}{4} \right]; n \in \mathbb{Z}$$

9.- Resolver:

$$2sen^2x - \sqrt{3}senx.\cos x + \cos^2 x \le 1$$

A)
$$k\pi \le x \le k\pi + \frac{\pi}{3}; k \in \mathbb{Z}$$

$$\mathsf{B)} \ k\pi \le x \le \frac{k\pi}{2} + \frac{\pi}{3}; k \in \mathbb{Z}$$

C)
$$k\pi + \frac{\pi}{3} \le x \le k\pi + \frac{2\pi}{3}; k \in \mathbb{Z}$$

D)
$$\frac{k\pi}{2} + \frac{\pi}{3} \le x \le \frac{k\pi}{2} + \frac{2\pi}{3}; k \in Z$$

E) $k\pi + \frac{\pi}{6} \le x \le k\pi + \frac{5\pi}{6}; k \in \mathbb{Z}$

9 10.- Resolver :

 $\cos x + \sec x + 2 \ge 0; (k \in \mathbb{Z})$

A)
$$2k\pi + \frac{\pi}{2} < x < 2k\pi + \frac{3\pi}{2} \lor x = (2k+1)\pi$$

B)
$$k\pi + \frac{\pi}{2} < x < k\pi + \frac{3\pi}{2} \lor x = 2k\pi$$

C)
$$2k\pi < x < 2k\pi + \frac{\pi}{2} \lor x = 2k\pi$$

D)
$$k\pi + \frac{\pi}{4} < x < k\pi + \frac{5\pi}{4} \lor x = k\pi$$

E)
$$2k\pi - \frac{\pi}{2} < x < 2k\pi + \frac{\pi}{2} \lor x = (2k+1)\pi$$

11.- Señale un conjunto solución de:

$$senx.\cos^3 x - sen^3 x.\cos x \ge 0.125$$

A)
$$\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle$$
 B) $\left[\frac{\pi}{4}; \frac{\pi}{2} \right]$ C) $\left[\frac{\pi}{24}; \frac{5\pi}{2} \right]$

D)
$$\left[\frac{13\pi}{24}, \frac{17\pi}{24}\right]$$
 E) $\left\langle\frac{13\pi}{24}, \frac{3\pi}{4}\right\rangle$

12.- Resolver: $tg2x \ge 2tgx$ en $[0;\pi]$

A)
$$[0; \frac{\pi}{4} >$$
 B) $\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle$ C) $\left\langle \frac{3\pi}{4}; \pi \right\rangle$

D)
$$\left\langle \frac{\pi}{2}; \frac{3\pi}{4} \right\rangle$$
 E) "A" y "D" son respuestas.

13.- Si $x \in [\pi; 2\pi]$, calcular.

"
$$x_{m\acute{a}x}.x_{min}$$
" si son soluciones de la inecuación :

$2sen^2x \ge 1 + senx$

A) 0 B)
$$\frac{20\pi^2}{9}$$
 C) $\frac{35\pi^2}{16}$ D) $\frac{77\pi^2}{36}$

E)
$$\frac{7\pi^2}{8}$$

\blacksquare 14.- Resolver en $\langle 0; 2\pi \rangle$. $tg^3x < tgx$

$$\begin{array}{c} \mathbf{Q} \\ \mathbf{A} \end{array}) \left\langle 0; \frac{\pi}{4} \right\rangle \cup \left\langle \frac{\pi}{2}; \frac{3\pi}{4} \right\rangle \cup \left\langle \pi; \frac{5\pi}{4} \right\rangle \cup \left\langle \frac{3\pi}{2}; \frac{7\pi}{4} \right\rangle$$

grupo_el_nucleo@hotmail.com

UNI Telf.: 481-3444 /

UNGER 261-B. Fte

GERARDO

C)
$$\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle \cup \left\langle \frac{5\pi}{4}; \frac{3\pi}{2} \right\rangle$$

D)
$$\left\langle 0; \frac{\pi}{4} \right\rangle \cup \left\langle \pi; \frac{5\pi}{4} \right\rangle$$

E)
$$\left\langle 0; \frac{\pi}{4} \right\rangle \cup \left\langle \pi; \frac{5\pi}{4} \right\rangle \cup \left\langle \frac{3\pi}{2}; \frac{7\pi}{4} \right\rangle$$

15.- Para $x \in [0;\pi]$ determine el intervalo de solución de $tg\left(\frac{\pi}{4} - x\right) < 2 - 3tgx$

A)
$$\left\langle 0; \frac{\pi}{6} \right\rangle$$
 B) $\left\langle \frac{\pi}{2}; \frac{3\pi}{4} \right\rangle$ C) $\left\langle \frac{5\pi}{6}; \pi \right\rangle$

D)
$$\langle 0; \pi \rangle$$
 E) $A \cup B \cup C$

16.- Hallar todos los valores de x tal que: $sen2x > 6\cos x$. dado $n \in Z$

A)
$$\left\langle n\pi + \frac{\pi}{3}; n\pi + \frac{2\pi}{3} \right\rangle$$

B)
$$\left(2n\pi + \frac{\pi}{2}; 2n\pi + \frac{3\pi}{2}\right)$$

C)
$$\left(2n\pi + \frac{\pi}{3}; 2n\pi + \frac{2\pi}{3}\right)$$

D)
$$\left\langle n\pi + \frac{\pi}{2}; n\pi + \frac{2\pi}{3} \right\rangle$$

E)
$$\left\langle 2n\pi - \frac{\pi}{2}; 2n\pi + \frac{\pi}{2} \right\rangle$$

17.- Resolver la inecuación en el siguiente intervalo $\left\langle 0; \frac{\pi}{2} \right\rangle$

senx.sen2x < sen3x.sen4x

A)
$$\left\langle \frac{\pi}{5}; \frac{2\pi}{5} \right\rangle$$
 B) $\left\langle 0; \frac{\pi}{5} \right\rangle \cup \left\langle \frac{2\pi}{5}; \frac{4\pi}{5} \right\rangle$

C)
$$\left\langle 0; \frac{\pi}{5} \right\rangle \cup \left\langle \frac{2\pi}{5}; \frac{\pi}{2} \right\rangle$$
 D) $\left\langle \frac{\pi}{5}; \frac{4\pi}{5} \right\rangle$

E)
$$\left\langle 0; \frac{\pi}{5} \right\rangle \cup \left\langle \frac{2\pi}{5}; \frac{\pi}{2} \right\rangle$$

 $5sen^2\theta + sen^2 2\theta \ge 4\cos 2\theta$; $k \in \mathbb{Z}$

18.- Resolver:

$$5sen^2\theta + sen^2 2\theta \ge 4$$

A) $\left[k\pi + \frac{\pi}{6}; k\pi + \frac{5\pi}{6}\right]$

$$\mathsf{B}) \left[\frac{k\pi}{2} + \frac{\pi}{6}; \frac{k\pi}{2} + \frac{5\pi}{12} \right]$$

C)
$$\left[2k\pi - \frac{\pi}{6}; 2k\pi - \frac{5\pi}{6}\right]$$

D)
$$\left\langle k\pi + \frac{\pi}{6}; k\pi + \frac{5\pi}{6} \right\rangle$$

E)
$$\left[k\pi - \frac{\pi}{6}; k\pi - \frac{5\pi}{6}\right] >$$

n the signification in the signification in the signification in the signification in the significant in th

$$\csc 2x + tg \, 2x \ge 0$$
; para $x \in \left[\frac{\pi}{2}; \pi > \right]$

A)
$$\left\langle -\arccos\left(\frac{\sqrt{5}-1}{2}\right); \frac{3\pi}{4}\right\rangle$$

B)
$$\left[\frac{1}{2}\arccos\left(\frac{1-\sqrt{5}}{2}\right);\frac{3\pi}{4}\right]$$

C)
$$\left[\arccos\left(\frac{\sqrt{5}-1}{2}\right);\pi\right)$$

D)
$$\left[\pi - \frac{1}{2}\arccos\left(\frac{1-\sqrt{5}}{2}\right); \frac{3\pi}{4}\right)$$

E)
$$\left\langle \frac{\pi}{2} - \frac{1}{2} \arccos\left(\frac{\sqrt{5} - 1}{2}\right); \pi \right\rangle$$

20.- Resolver la inecuación Grupo "EI NÚCLEO":

$$3tgx + 4sen^2\frac{x}{2} < 2$$

dar el conjunto solución comprendido en $\left\langle \frac{5\pi}{2}; 3\pi \right\rangle$

A)
$$\left\langle \frac{13\pi}{6}; \frac{17\pi}{6} \right\rangle$$
 B) $\left\langle \frac{5\pi}{2}; \frac{13\pi}{6} \right\rangle$

grupo el nucleo@hotmail.com

EL NÚCLEO: ¡La manera más inteligente de estudiar!

UNI Telf.: 481-3444 /

C)
$$\left\langle \frac{13\pi}{6}; 3\pi \right\rangle$$
 D) $\left\langle \frac{5\pi}{2}; \frac{17\pi}{6} \right\rangle$

E)
$$\left\langle \frac{5\pi}{2}; 3\pi \right\rangle$$

21.- Resolver: $sen2x \ge tgx$; $0 < x < \pi$

A)
$$\left\langle 0; \frac{\pi}{2} \right\rangle \cup \left\langle \frac{3\pi}{4}; \pi \right\rangle$$
 B) $\left\langle 0; \frac{\pi}{4} \right\rangle \cup \left\langle \frac{\pi}{2}; \frac{3\pi}{4} \right\rangle$

C)
$$\langle 0; \frac{\pi}{4} \rangle \cup \langle \frac{3\pi}{4}; \pi \rangle$$
 D) $\langle \frac{\pi}{4}; \frac{3\pi}{4} \rangle - \{ \frac{\pi}{2} \}$

E)
$$\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle \cup \left\langle \frac{\pi}{2}; \pi \right\rangle$$

22.- Para que valores de x: $0 < x < 2\pi$ se cumple: $(1 - \cos x + senx)^2 \ge 1 + senx$

A)
$$\left[\frac{\pi}{3}; 2\pi\right)$$
 B) $\left\langle 0; \frac{\pi}{3} \right] \cup \left[\frac{5\pi}{3}; 2\pi\right]$

C)
$$\left[\frac{\pi}{3}, \frac{3\pi}{2}\right] \cup \left(\frac{3\pi}{2}, \frac{5\pi}{3}\right)$$
 D) $\left[\frac{\pi}{3}, \frac{5\pi}{3}\right]$

E)
$$\left[\frac{\pi}{2}; \frac{3\pi}{2}\right] \cup \left[\frac{5\pi}{3}; 2\pi\right)$$

23.- Resolver la inecuación:

3sen2x + sen4x < tgx, dar el conjunto solución comprendido en $\left\langle \frac{\pi}{2};\pi \right\rangle$

A)
$$\left\langle \frac{\pi}{3}; \frac{2\pi}{3} \right\rangle$$
 B) $\left\langle \frac{2\pi}{3}; \pi \right\rangle$ C) $\left\langle \frac{\pi}{2}; \frac{2\pi}{3} \right\rangle$

D)
$$\left\langle \frac{2\pi}{3}; \frac{5\pi}{6} \right\rangle$$
 E) $\left\langle \frac{5\pi}{6}; \pi \right\rangle$

24.- Resolver: $sen^2x + sen2x \le 3\cos^2 x$, dar un conjunto solución comprendido en $-\frac{\pi}{2};\frac{\pi}{2}$

A)
$$\left[-arctg3; \frac{\pi}{4}\right]$$
 B) $\left[-arctg3; \frac{\pi}{2}\right]$

C)
$$\left[arctg3; \frac{\pi}{2} \right]$$
 D) $\left[-\frac{\pi}{4}; arctg3 \right]$

E) $\left[-\frac{\pi}{2}; ar_{1} \right]$ E) $\left| -\frac{\pi}{2}; arctg3 \right|$

$$4\cos^2 x - 2(\sqrt{3} + \sqrt{2})\cos x + \sqrt{6} < 0$$
; si
 $x \in [0; 2\pi]$

A)
$$\left\langle \frac{\pi}{6}; \frac{\pi}{4} \right\rangle$$
 B) $\left\langle \frac{\pi}{6}; \frac{\pi}{3} \right\rangle$ C) $\left\langle \frac{\pi}{6}; \frac{\pi}{2} \right\rangle$

D)
$$\left\langle 0; \frac{\pi}{6} \right\rangle \cup \left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle$$

E)
$$\left\langle \frac{\pi}{6}; \frac{\pi}{4} \right\rangle \cup \left\langle \frac{7\pi}{4}; \frac{11\pi}{6} \right\rangle$$

26.- Resover: $tg\left(\frac{x}{2}\right) > 1 - ctgx$, si $x \in \langle 0; \pi \rangle$ • A) $\left\langle 0; \frac{\pi}{2} \right\rangle$ B) $\left\langle 0; \pi \right\rangle$ C) $\left\langle 0; \pi \right\rangle - \frac{\pi}{2}$

A)
$$\left\langle 0; \frac{\pi}{2} \right\rangle$$
 B) $\left\langle 0; \pi \right\rangle$ C) $\left\langle 0; \pi \right\rangle - \frac{\pi}{2}$

D)
$$\left\langle \frac{\pi}{2}; \pi \right\rangle$$
 E) $\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle$

27.- Resolver: senx.sen3x > sen2x.sen4x; si $x \in \langle 0; \pi \rangle$

A)
$$\langle 0; \pi \rangle - \left\{ \frac{\pi}{5}, \frac{2\pi}{5}, \frac{3\pi}{5} \right\}$$

B)
$$\left\langle \frac{\pi}{5}; \frac{2\pi}{5} \right\rangle \cup \left\langle \frac{3\pi}{5}; \frac{4\pi}{5} \right\rangle$$

C)
$$\langle 0; \pi \rangle$$
 D) $\langle 0; \frac{2\pi}{5} \rangle \cup \langle \frac{4\pi}{5}; \pi \rangle$

E)
$$\left\langle 0; \frac{\pi}{5} \right\rangle \cup \left\langle \frac{2\pi}{5}; \frac{3\pi}{5} \right\rangle \cup \left\langle \frac{4\pi}{5}; \pi \right\rangle$$

$$2(sen^6x + \cos^6x) \ge sen^4x + \cos^4x$$

A)
$$2k\pi \pm \frac{\pi}{2}; k \in \mathbb{Z}$$
 B) $k\pi; k \in \mathbb{Z}$

28.- Resolver:
$$2(sen^6x + cos^6x) \ge sen^4x$$
A) $2k\pi \pm \frac{\pi}{2}; k \in Z$ B)

C) $k\pi \pm \frac{\pi}{4}; k \in Z$ D) F

E)
$$k\pi \pm \frac{\pi}{2}; k \in \mathbb{Z}$$

grupo_el_nucleo@hotmail.com