Janitza electronics GmbH Vor dem Polstück 6 D-35633 Lahnau Support Tel. +49 6441 9642-22 Fax +49 6441 9642-30 E-mail: info@janitza.de Internet: http://www.janitza.de

Power Analyser

UMG 96 RM-M

Benutzerhandbuch und technische Daten

Inhaltsverzeichnis

Allgemeines	4	Inbetriebnahme	54
Eingangskontrolle	6	Versorgungsspannung anlegen	54
Lieferbares Zubehör	7	Messspannung anlegen	54
Produktbeschreibung	8	Messstrom anlegen	54
Bestimmungsmäßiger Gebrauch	8	Drehfeldrichtung	55
Leistungsmerkmale Grundgerät	9	Phasenzuordnung prüfen	55
Messverfahren	10	Kontrolle der Leistungsmessung	55
Netzanalysesoftware GridVis	11	Messung überprüfen	55
Anschlussvarianten	11	Überprüfen der Einzelleistungen	55
Montage	12	Überprüfen der Summenleistungen	56
Installation	14	M-Bus Schnittstelle	57
Versorgungsspannung	14	Anzahl der Datenpunkte	57
Spannungsmessung	16	Messung Signalpegel	58
Strommessung	22	Aufbau des RSP_UD2-Telegramms	58
M-Bus Schnittstelle	29	Liste der Datenpunkte	59
Digitale Ausgänge	32	Telegramm	61
Bedienung	34	M-Bus Test	63
Anzeige-Modus	34	Auszug der Auswertung über	
Programmier-Modus	34	M-Bus Scanner	64
Parameter und Messwerte	36	Auszug der Werte innerhalb der	
Konfiguration	38	Software GridVis	65
Versorgungsspannung anlegen	38	Kontrolle der Werte	65
Strom- und Spannungswandler	38		
Stromwandler programmieren	39		
Spannungswandler programmieren	40		
Parameter programmieren	41		

Digitalausgänge	66
Impulsausgang	68
Vergleicher	74
Parameterliste Vergleicher und Digitalausgär	nge77
Service und Wartung	80
Fehlermeldungen	82
Technische Daten	88
Kenngrößen von Funktionen	94
Tabelle 1 - Parameterliste	96
Zahlenformate	101
Maßbilder	102
Übersicht Messwertanzeigen	104
Konformitätserklärung	110
Anschlussbeispiel	111
Kurzanleitung	112

Allgemeines

Copyright

Dieses Handbuch unterliegt den gesetzlichen Bestimmungen des Urheberrechtsschutzes und darf weder als Ganzes noch in Teilen auf mechanische oder elektronische Weise fotokopiert, nachgedruckt, reproduziert oder auf sonstigem Wege ohne die rechtsverbindliche, schriftliche Zustimmung von

Janitza electronics GmbH, Vor dem Polstück 1, D 35633 Lahnau, Deutschland,

vervielfältigt oder weiterveröffentlicht werden.

Markenzeichen

Alle Markenzeichen und ihre daraus resultierenden Rechte gehören den jeweiligen Inhabern dieser Rechte.

Haftungsausschluss

Janitza electronics GmbH übernimmt keinerlei Verantwortung für Fehler oder Mängel innerhalb dieses Handbuches und übernimmt keine Verpflichtung, den Inhalt dieses Handbuchs auf dem neuesten Stand zu halten.

Kommentare zum Handbuch

Ihre Kommentare sind uns willkommen. Falls irgend etwas in diesem Handbuch unklar erscheint, lassen Sie es uns bitte wissen und schicken Sie uns eine EMAIL an: info@janitza.de

Bedeutung der Symbole

Im vorliegenden Handbuch werden folgende Piktogramme verwendet:

Gefährliche Spannung!

Lebensgefahr oder schwere Verletzungsgefahr. Vor Beginn der Arbeiten Anlage und Gerät spannungsfrei schalten.

Achtung!

Bitte beachten Sie die Dokumentation. Dieses Symbol soll Sie vor möglichen Gefahren warnen, die bei der Montage, der Inbetriebnahme und beim Gebrauch auftreten können.

Hinweis!

Anwendungshinweise

Bitte lesen Sie die vorliegende Bedienungsanleitung sowie alle weiteren Publikationen, die zum Arbeiten mit diesem Produkt (insbesondere für die Installation, den Betrieb oder die Wartung) hinzugezogen werden müssen

Beachten Sie hierbei alle Sicherheitsvorschriften sowie Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche unerlaubte Änderung oder Verwendung dieses Geräts, welche über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche solche unerlaubte Änderung begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus.

Dieses Gerät ist ausschließlich durch Fachkräfte zu betreiben und instandzuhalten.

Fachkräfte sind Personen, die aufgrund ihrer einschlägigen Ausbildung und ihrer Erfahrung befähigt sind, Risiken zu erkennen und mögliche Gefährdungen zu vermeiden, die der Betrieb oder die Instandhaltung des Gerätes verursachen kann

Bei Gebrauch des Gerätes sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten.

Wird das Gerät nicht gemäß der Betriebsanleitung betrieben, so ist der Schutz nicht mehr sichergestellt und es kann Gefahr von dem Gerät ausgehen.

Leiter aus Einzeldrähten müssen mit Aderendhülsen versehen werden.

Nur Schraubsteckklemmen mit der gleichen Polzahl und der gleichen Bauart dürfen zusammengesteckt werden.

Zu dieser Betriebsanleitung

Diese Betriebsanleitung ist Teil des Produktes.

- Betriebsanleitung vor dem Gebrauch des Gerätes lesen
- Betriebsanleitung während der gesamten Lebensdauer des Produkts aufbewahren und zum Nachschlagen bereit halten
- Betriebsanleitung an jeden nachfolgenden Besitzer oder Benutzer des Produktes weitergeben.

Alle zum Lieferumfang gehörenden Schraubklemmen sind am Gerät aufgesteckt.

Eingangskontrolle

Der einwandfreie und sichere Betrieb dieses Gerätes setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus. Wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr möglich ist, so ist das Gerät unverzüglich außer Betrieb zu setzen und gegen unbeabsichtigte Inbetriebnahme zu sichern.

Das Aus- und Einpacken ist mit der üblichen Sorgfalt ohne Gewaltanwendung und nur unter Verwendung von geeignetem Werkzeug vorzunehmen. Die Geräte sind durch Sichtkontrolle auf einwandfreien mechanischen Zustand zu überprüfen.

Es ist anzunehmen, dass ein gefahrloser Betrieb nicht mehr möglich ist, wenn das Gerät z.B.

- · sichtbare Beschädigung aufweist,
- trotz intakter Netzversorgung nicht mehr arbeitet,
- längere Zeit ungünstigen Verhältnissen (z.B. Lagerung außerhalb der zulässigen Klimagrenzen ohne Anpassung an das Raumklima, Betauung o.Ä..) oder Transportbeanspruchungen (z.B. Fall aus großer Höhe auch ohne sichtbare äußere Beschädigung o.Ä..) ausgesetzt war.
- Prüfen Sie bitte den Lieferumfang auf Vollständigkeit bevor Sie mit der Installation des Gerätes beginnen.

Lieferbares Zubehör

Anzahl	Art.Nr.	Bezeichnung
2	29.01.036	Befestigungsklammern
1	10.01.855	Schraubklemme, steckbar, 2-polig (Hilfsenergie)
1	10.01.849	Schraubklemme, steckbar, 4-polig (Spannungsmessung)
1	10.01.871	Schraubklemme, steckbar, 6-polig (Strommessung)
1	10.01.857	Schraubklemme, steckbar, 2-polig (M-Bus)
1	10.01.859	Schraubklemme, steckbar, 3-polig (Digital-/Impulsausgang)
1	29.01.065	Silikon-Dichtung, 96 x 96
1	15.06.048	M-Bus Pegelwandler PW60

Produktbeschreibung

Bestimmungsmäßiger Gebrauch

Das UMG 96RM-M ist für die Messung und Berechnung von elektrischen Größen wie Spannung, Strom, Leistung, Energie, Oberschwingungen usw. in der Gebäudeinstallation, an Verteilern, Leistungsschaltern und Schienenverteilern vorgesehen.

Das UMG 96RM-M ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein.

Messspannungen und Messströme müssen aus dem gleichen Netz stammen.

Die Messergebnisse können angezeigt und über die M-Bus Schnittstelle ausgelesen und weiterverarbeitet werden

Die Spannungsmesseingänge sind für die Messung in Niederspannungsnetzen, in welchen Nennspannungen bis 300V Leiter gegen Erde und Stoßspannungen der Überspannungskategorie III vorkommen können, ausgelegt.

Die Strommesseingänge des UMG 96RM-M werden über externe ../1A oder ../5A Stromwandler angeschlossen.

Die Messung in Mittel- und Hochspannungsnetzen findet grundsätzlich über Strom- und Spannungswandlern statt.

Das UMG 96RM-M kann in Wohnbereichen und Industriebereichen eingesetzt werden.

Geräte-Kenngrößen

- Einbautiefe: 45 mm
- Versorgungsspannung:

Option 230V: 90V - 277V (50/60Hz) oder

DC 90V - 250V; 300V CATIII

Option 24V: 24 - 90V AC / DC; 150V CATIII

• Frequenzbereich: 45 - 65Hz

Geräte-Funktionen

- 3 Spannungsmessungen, 300V
- 3 Strommessungen (über Stromwandler)
- M-Bus Schnittstelle
- 2 digitale Ausgänge

Leistungsmerkmale Grundgerät

- Allgemeines
 - Fronttafeleinbaugerät mit den Abmessungen 96x96 mm
 - Anschluss über Schraubsteck-Klemmen.
 - LC Display mit Hintergrundbeleuchtung.
 - Bedienung über 2 Tasten.
 - 3 Spannungsmesseingänge (300V CATIII).
 - 3 Strommesseingänge für Stromwandler.
 - M-Bus Schnittstelle
 - 2 digitale Ausgänge.
 - Arbeitstemperaturbereich -10°C .. +55°C.
 - Speicherung von Min- und Maxwerten (ohne Zeitstempel).
- Messunsicherheit
 - Wirkenergie, Messunsicherheit Klasse 0,5 für "/5A Wandler.
 - Wirkenergie, Messunsicherheit Klasse 1 für ../1A Wandler,
 - Blindenergie, Klasse 2.

- Messuna
 - Messung in IT-, TN- und TT-Netzen
 - Messung in Netzen mit Nennspannungen bis I -I 480V und I -N 277V
 - Messbereich Strom 0 ..5Aeff
 - Echte Effektivwertmessung (TRMS)
 - Kontinuierliche Abtastung der Spannungsund Strommesseingänge.
 - Frequenzbereich der Grundschwingung 45Hz.. 65Hz.
 - Messung der Oberschwingungen 1. bis 40. für ULN und I.
 - Uln, I, P (Bezug/Lief.), Q (ind./kap.),
 - Fourieranalyse 1. bis 40. Oberschwingung für U und I.
 - 7 Energiezähler für

Wirkenergie (Bezug),

Wirkenergie (Lieferung)

Wirkenergie (ohne Rücklaufsperre)

Blindenergie (ind)

Blindenergie (kap)

Blindenergie (ohne Rücklaufsperre)

Scheinenergie

jeweils für L1, L2, L3 und Summe.

Messverfahren

Das UMG 96RM-M misst lückenlos und berechnet alle Effektivwerte über ein 10/12-Perioden-Intervall (200ms). Das UMG 96RM-M misst den echten Effektivwert (TRMS) der an den Messeingängen angelegten Spannungen und Ströme.

Bedienungskonzept

Sie können das UMG 96RM-M über die 2 Tasten direkt am Gerät programmieren. Zusätzlich sind Messwerte über die M-Bus Schnittstelle - z. B. mit der Auslesesoftware GridVis - abrufbar.

Die Auslesesoftware GridVis besitzt eine eigene "Online-Hilfe"

Netzanalysesoftware GridVis

Das UMG 96RM-M kann mit der zum Lieferumfang gehörenden Netzanalysesoftware GridVis ausgelesen werden. Hierfür muss ein PC über eine serielle Schnittstelle (RS232 / USB) über z. B. einen M-Bus Master (Pegelwandler) an die M-Bus Schnittstelle des UMG 96RM-Mangeschlossen werden.

Eine Gerätekonfiguration des UMG96RM-M erfolgt ausschließlich über die zwei Tasten am Gerät – die Software GridVis unterstützt diese Funktion nicht!

Ein Auslesen von M-Bus-Geräten fremder Hersteller ist über die Software GridVis nicht möglich!

Leistungsmerkmale GridVis

- Auslesen von Online-Messwerten
- · Grafische Darstellung der Messwerte

Anschlussvarianten

Anschluss eines UMG 96RM-M an einen PC über einen Pegelwandler (RS232):

Anschluss eines UMG 96RM-M an einen PC über einen Pegelwandler (USB):

Montage

Einbauort

Das UMG 96RM-M ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein.

Einbaulage

Um eine ausreichende Belüftung zu erreichen muss das UMG 96RM-M senkrecht eingebaut werden. Der Abstand oben und unten muss mindestens 50mm und seitlich 20mm betragen.

Fronttafelausschnitt

Ausbruchmaß: 92^{+0,8} x 92^{+0,8} mm.

Abb. Einbaulage UMG 96RM-M (Ansicht von hinten)

Befestiauna

Das UMG 96RM-M wird über die seitlich liegenden Befestigungsklammern in der Schalttafel fixiert. Vor dem Einsetzen des Gerätes sind diese zu entfernen. Die Befestigung erfolgt anschließend über das Einschieben und Einrasten der Klammern

Abb. Befestigungsklammer UMG 96RM-M (Seitenansicht)

Nichteinhaltung der Mindestabstände kann das UMG 96RM-M bei hohen Umgebungstemperaturen zerstören!

Installation

Versorgungsspannung

Für den Betrieb des UMG 96RM-M ist eine Versorgungsspannung erforderlich.

Der Anschluss Versorgungsspannung erfolgt auf der Rückseite des Gerätes über Steckklemmen.

Stellen Sie vor dem Anlegen der Versorgungsspannung sicher, dass Spannung und Frequenz mit den Angaben auf dem Typenschild übereinstimmen!

Die Versorgungsspannung muß über einen UL/IEC zugelassenen Leitungsschutzschalter (6A Char. B) angeschlossen werden.

Abb. Anschlussbeispiel der Versorgungsspannung an ein UMG 96RM-M

- In der Gebäudeinstallation muss ein Trennschalter oder Leistungsschalter für die Versorgungsspannung vorgesehen sein.
- Der Trennschalter muss in der Nähe des Gerätes angebracht und durch den Benutzer leicht zu erreichen sein.
- Der Schalter muss als Trennvorrichtung für dieses Gerät gekennzeichnet sein.
- Spannungen, die über dem zulässigen Spannungsbereich liegen, können das Gerät zerstören.

Spannungsmessung

Sie können das UMG 96RM-M für die Spannungsmessung in TN-, TT-, und IT-Systemen einsetzen.

Die Spannungsmessung im UMG 96RM-M ist für die Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) ausgelegt.

In Systemen ohne N beziehen sich Messwerte die einen N benötigen auf einen berechneten N.

L2 480V 50/60Hz

L3

Impedanz

V1 V2 V3 VN

Erdung des Systems

Spannungsmessung

UMG 96RM

Hilfsenergie

Abb. Prinzipschaltbild - Messung in Dreiphasen-4-Leitersystemen.

Abb. Prinzipschaltbild - Messung in Dreiphasen-3-Leitersystemen.

Netz-Nennspannung

Listen der Netze und deren Netz-Nennspannungen in denen das UMG 96RM-M eingesetzt werden kann.

Dreiphasen-4-Leitersysteme mit geerdetem Neutralleiter.

U_{L-N} / U_{L-L}

66V / 115V
120V / 208V
127V / 220V
220V / 380V
230V / 400V
240V / 415V
260V / 440V
277V / 480V

Maximale Nennspannung des Netzes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003

Dreiphasen-3-Leitersysteme ungeerdet.

Maximale Nennspannung des Netzes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003.

Spannungsmesseingänge

Das UMG 96RM-M hat 3 Spannungsmesseingänge (V1, V2, V3).

Überspannung

Die Spannungsmesseingänge sind für die Messung in Netzen, in denen Überspannungen der Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) vorkommen können, geeignet.

Frequenz

Für die Messung und die Berechnung von Messwerten benötigt das UMG 96RM-M die Netzfrequenz.

Das UMG 96RM-M ist für die Messung im Frequenzbereich von 45 bis 65Hz geeignet.

Abb. Anschlussbeispiel für die Spannungsmessung

Beim Anschluss der Spannungsmessung muss folgendes beachtet werden:

Trennvorrichtung

- Um das UMG 96RM-M stromlos und spannungslos zu schalten, ist eine geeignete Trennvorrichtung vorzusehen.
- Die Trennvorrichtung muss in der Nähe des UMG 96RM-M platziert, für den Benutzer gekennzeichnet und leicht erreichbar sein.
- Die Trennvorrichtung muss UL/IEC zugelassenen sein

Überstromschutzeinrichtung

- Als Leitungsschutz muss eine Überstromschutzeinrichtung verwendet werden.
- Für den Leitungsschutz empfehlen wir eine Überstromschutzeinrichtung gemäß den Angaben der technischen Daten.
- Die Überstromschutzeinrichtung muss dem verwendeten Leitungsquerschnitt angepasst sein.
- Die Überstromschutzeinrichtung muss UL/IEC zugelassenen sein.
- Als Trennvorrichtung und als Leitungsschutz kann auch ein Leitungsschutzschalter verwendet werden.
 Die Leitungsschutzschalter muss UL/IEC zugelassenen sein.
- Messspannungen und Messströme müssen aus dem gleichen Netz stammen.

Achtung!

Spannungen, die die erlaubten Netz-Nennspannungen überschreiten, müssen über Spannungswandler angeschlossen werden.

Achtung!

Das UMG 96RM-M ist nicht für die Messung von Gleichspannungen geeignet.

Achtung!

Die Spannungsmesseingänge am UMG 96RM-M sind berührungsgefährlich!

Anschlussschemas, Spannungsmessung

• 3p 4w (Adr. 509= 0), werksseitige Voreinstellung

Abb. System mit drei Außenleitern und Neutralleiter

• 3p 4u (Adr. 509 = 2)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messwerte die einen N benötigen beziehen sich auf einen berechneten N.

• 3p 4wu (Adr. 509 = 1)

Abb. System mit drei Außenleitern und Neutralleiter. Messung über Spannungswandler.

• 3p 2u (Adr. 509 = 5)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messung über Spannungswandler. Messwerte die einen N benötigen beziehen sich auf einen berechneten N.

• 1p 2w1 (Adr. 509 = 4)

Abb. Aus dem Spannungsmesseingängen V2 und V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet.

• 1p 2w (Adr. 509 = 6)

Abb. TN-C-System mit Einphasen-Dreileiteranschluss. Aus dem Spannungsmesseingang V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet.

• 2p 4w (Adr. 509 = 3)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Spannungsmesseingang V2 werden berechnet.

• 3p 1w (Adr. 509 = 7)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte L2/L3 bzw. L1/L3 bzw. L1/L2 der jeweiligen Systeme werden berechnet.

Strommessung

Das UMG 96RM-M ist für den Anschluss von Stromwandlern mit Sekundärströmen von ../1A und ../5A ausgelegt. Das werkseitig eingestellte Stromwandlerverhältnis liegt bei 5/5A und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Eine Direktmessung ohne Stromwandler ist mit dem UMG 96RM-M nicht möglich.

Es können nur Wechselströme und keine Gleichströme gemessen werden.

Die Messleitungen müssen für eine Betriebstemperatur von mindestens 80°C ausgelegt sein.

Achtung!

Die Strommesseingänge sind berührungsgefährlich.

Achtung!

Das UMG 96RM-M ist nicht für die Messung von Gleichspannungen geeignet.

Erdung von Stromwandlern!

lst für die Erdung der Sekundärwicklung ein Anschluss vorgesehen, so muss dieser mit Erde verbunden werden.

Abb. Strommessung über Stromwandler (Anschlussbeispiel)

Die aufgesetzte Schraubklemme ist mit den zwei Schrauben am Gerät ausreichend zu fixieren!

Stromrichtung

Bei Falschanschluss ist ein nachträgliches Umklemmen der Stromwandler erforderlich

Stromwandleranschlüsse!

Die Sekundäranschlüsse der Stromwandler müssen an diesen kurzgeschlossen sein, bevor die Stromzuleitungen zum UMG 96RM-M unterbrochen werden! Ist ein Prüfschalter vorhanden, welcher die Stromwandlersekundärleitungen automatisch kurzschließt, reicht es aus, diesen in die Stellung "Prüfen" zu bringen, sofern die Kurzschließer vorher überprüft worden sind.

Offene Stromwandler!

An Stromwandlern die sekundärseitig offen betrieben werden, können hohe berührungsgefährliche Spannungsspitzen auftreten!

Bei "offensicheren Stromwandlern" ist die Wicklungsisolation so bemessen, dass die Stromwandler offen betrieben werden können. Aber auch diese Stromwandler sind berührungsgefährlich, wenn sie offen betrieben werden

Anschlussschemas, Strommessung

• 3p 4w (Adr. 510 = 0), werksseitige Voreinstellung

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung.

• 3p 2i0 (Adr. 510 = 2)

Abb. Die Messwerte für den Strommesseingang 12 werden berechnet.

• 3p 2i (Adr. 510 = 1)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang I2 werden gemessen.

• 3p 3w3 (Adr. 510 = 3)

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung.

• 3p 3w (Adr. 510 = 4)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für die Strommesseingänge I2 und I3 werden berechnet.

• 1p 2i (Adr. 510 = 6)

Abb. Aus dem Strommesseingang 13 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet.

• 2p 4w (Adr. 510 = 5)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang 12 werden berechnet.

• 1p 2w (Adr. 510 = 7)

Abb. Aus den Strommesseingängen I2 und I3 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet.

Anschlussschemas, Strommessung

• 3p 1w (Adr. 510 = 8)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte I2/ I3 bzw. 11/I3 bzw. 11/I2 der jeweiligen Systeme werden berechnet.

Achtuna!

Das UMG96RM-M ist nur für eine Strommessung über Stromwandler zugelassen.

Summenstrommessung

Erfolgt die Strommessung über zwei Stromwandler, so muss das Gesamtübersetzungsverhältnis der Stromwandler im UMG 96RM-M programmiert werden.

Abb. Strommessung über einen Summenstromwandler (Beispiel).

Beispiel: Die Strommessung erfolgt über zwei Stromwandler. Beide Stromwandler haben ein Übersetzungsverhältnis von 1000/5A. Die Summenmessung wird mit einem Summenstromwandler 5+5/5A durchgeführt.

Das UMG 96RM-M muss dann wie folgt eingestellt werden:

Primärstrom: 1000A + 1000A = 2000A Sekundärstrom: 5A

Amperemeter

Wollen Sie den Strom nicht nur mit dem UMG 96RM-M, sondern auch zusätzlich mit einem Amperemeter messen, so muss das Amperemeter in Reihe zum UMG 96RM-M geschaltet werden.

Abb. Strommessung mit einem zusätzlichen Amperemeter (Beispiel).

M-Bus Schnittstelle

Die M-Bus Schnittstelle ist beim UMG 96RM-M als 2poliger Steckkontakt ausgeführt und kommuniziert über das M-Bus-Protokoll.

Das UMG 96RM-M belastet den M-Bus mit einer M-Bus-Gerätelast von 1.5 mA

M-Bus Schnittstelle, 2-poliger Steckkontakt

2-poliger Steckkontakt mit Kabelanschluss (Kabeltyp: 2 x 0,75 mm²) über Twin-Aderendhülsen

Kabelverbindungen

Für Verbindungen über die M-Bus Schnittstelle ist ein verdrilltes, abgeschirmtes Kabel vorzusehen.

- Kabelwege sollten so kurz wie möglich ausgelegt werden.
- Halten Sie einen größtmöglichen Abstand zu stromführenden Kabeln und zu Verbrauchern (z. B. Elektromotoren, Neonröhren, Transformatoren).
- Um Querströme im Bus zu verhindern, sollte keine oder maximal eine Massekopplung erfolgen.
- Fangen Sie die Kabel oberhalb der Erdungsschelle mechanisch ab, um Beschädingungen durch Bewegungen des Kabels zu vermeiden.
- Verwenden Sie zur Einführung des Kabels in den Schaltschrank passende Kabeleinführungen zum Beispiel PG-Verschraubungen.

Kabeltyp

Die verwendeten Kabel müssen für eine Umgebungstemperatur von mindestens 80°C geeignet sein.

Verwenden Sie für eine optimale Datenübertragung möglichst 2-adrige, verdrillte, abgeschirmte Kabel.

Empfohlener Kabeltyp: Unitronic LIYCY 4x0,75

Für die Busverdrahtung sind CAT-Kabel nicht geeignet. Verwenden Sie hierfür die empfohlenen Kabeltypen.

Bus-Struktur

- Alle Geräte werden in einer Stern-, Linien- oder Baumstruktur angeschlossen, wobei jedes Gerät eine eigene Adresse innerhalb des Buses besitzt (siehe auch Parameter programmieren).
- Eine Unterteilung der Netz-Struktur in einzelne Segmente erfolgt mit Repeatern (Leitungsverstärker).
- In einem Segment können bis zu 250 Teilnehmer zusammengeschaltet werden. Maßgeblich hierbei sind jedoch die Eigenschaften des Master-Gerätes.
- Wird der Master ausgetauscht, ist der Bus außer Betrieb.
- Geräte können ausgetauscht werden, ohne dass der Bus instabil wird.

Stern-Struktur

 Jedes Messgerät ist direkt mit dem M-Bus Master verbunden. Fehler im Bus-System sind durch an- und abschalten der einzelnen Geräte schneller zu lokalisieren.

Linien-Struktur

 Der Anschluss der Messgeräte erfolgt hintereinander in einer Linie. Hierbei sind mögliche Störungen des Bus-Systems durch den Spannungsabfall zu beachten. Fehler innerhalb des Systems sind durch diese kostengünstige Struktur schwerer zu lokalisieren.

Baum-Struktur

 Diese Topologie vereint die Stern- und die Linien-Struktur. Repeater teilen zumeist die Äste in einzelne Segmente. Im Fehlerfall sind daher oft nur die spezifischen Äste betroffen und eine Störung um Bus-System ist schneller lokalisierbar.

Abb. Bustyp: Stern-Struktur

Abb. Bustyp: Baum-Struktur

Abb. Bustyp: Linien-Struktur

Digitale Ausgänge

Das UMG 96RM-M hat 2 digitale Ausgänge. Diese Ausgänge sind über Optokoppler galvanisch von der Auswerteelektronik getrennt. Die digitalen Ausgänge haben einen gemeinsamen Bezug.

- Die digitalen Ausgänge können Gleich- und Wechselstromlasten schalten.
- Die digitalen Ausgänge sind nicht kurzschlussfest.
- Angeschlossene Leitungen die länger als 30m sind, müssen abgeschirmt verlegt werden.
- Eine externe Hilfsspannung ist erforderlich.
- Die digitalen Ausgänge können als Impulsausgänge verwendet werden.
- Die digitalen Ausgänge können Ergebnisse von Vergleichern ausgeben.

Abb. Anschluss von zwei Relais an die digitalen Ausgänge 14 und 15.

Bei der Verwendung der digitalen Ausgänge als Impulsausgang darf die Hilfsspannung (DC) nur eine max. Restwelligkeit von 5% besitzen.

Bedienung

Die Bedienung des UMG 96RM-M erfolgt über die Tasten 1 und 2. Messwerte und Programmierdaten werden auf einer Flüssigkristall-Anzeige dargestellt.

Es wird zwischen dem *Anzeige-Modus* und dem *Programmier-Modus* unterschieden. Durch die Eingabe eines Passwortes hat man die Möglichkeit, ein versehentliches Ändern der Programmierdaten zu verhindern.

Anzeige-Modus

Im Anzeige-Modus kann man mit den Tasten 1 und 2 zwischen den programmierten Messwertanzeigen blättern. Werkseitig sind alle im Profil 1 aufgeführten Messwertanzeigen abrufbar. Pro Messwertanzeige werden bis zu drei Messwerte angezeigt. Die Messwert-Weiterschaltung erlaubt es, ausgewählte Messwertanzeigen abwechselnd nach einer einstellbaren Wechselzeit darzustellen.

Programmier-Modus

Im Programmier-Modus können die für den Betrieb des UMG 96RM-M notwendigen Einstellungen angezeigt und geändert werden. Betätigt man die Tasten 1 und 2 gleichzeitig für etwa 1 Sekunde, gelangt man über die

Passwort-Abfrage in den Programmier-Mode. Wurde kein Benutzer-Passwort programmiert gelangt man direkt in das erste Programmiermenü. Der Programmier-Modus wird in der Anzeige durch den Text "PRG" gekennzeichnet.

Mit der Taste 2 kann jetzt zwischen den folgenden Programmier-Menüs umgeschaltet werden:

- Stromwandler,
- Spannungswandler,
- Parameterliste.

Befindet man sich im Programmier-Modus und hat für ca. 60 Sekunden keine Taste betätigt, oder betätigt die Tasten 1 und 2 für etwa 1 Sekunde gleichzeitig, so kehrt das UMG 96RM-M in den Anzeige-Modus zurück.

Parameter und Messwerte

Alle für den Betrieb des UMG 96RM-M notwendigen Parameter, wie z.B. die Stromwandlerdaten, und eine Auswahl von häufig benötigten Messwerten sind in der Tabell abgelegt.

Auf den Inhalt der meisten Adressen kann über die Tasten am UMG 96RM-M zugegriffen werden.

Am Gerät können Sie nur die ersten 3 signifikanten Stellen eines Wertes eingeben.

Am Gerät werden immer nur die ersten 3 signifikanten Stellen der Werte angezeigt.

Ausgewählte Messwerte sind in Messwertanzeige-Profilen zusammengefasst und können im Anzeige-Modus über die Tasten 1 und 2 zur Anzeige gebracht werden.

Beispiel Paramteranzeige

Im Display des UMG 96RM-M wird als Inhalt der Adresse "000" der Wert "001" angezeigt. Dieser Parameter gibt laut Liste die Geräteadresse (hier "001") des UMG 96RM-M innerhalb eines Buses wieder.

Beispiel Messwertanzeige

In diesem Beispiel werden im Display des UMG 96RM-M die Spannungen L gegen N mit je 230V angezeigt. Die Transistorausgänge K1 und K2 sind leitend und es kann ein Strom fließen.

Tastenfunktionen

Konfiguration

Versorgungsspannung anlegen

Für die Konfiguration des UMG 96RM-M muss die Versorgungsspannung angeschlossen sein.

Die Höhe der Versorgungsspannung für das UMG 96RM-M können Sie dem Typenschild entnehmen.

Erscheint keine Anzeige, so muss überprüft werden, ob sich die Betriebsspannung im Nennspannungsbereich befindet

Strom- und Spannungswandler

Werkseitig ist ein Stromwandler von 5/5A eingestellt. Nur wenn Spannungswandler angeschlossen sind, muss das vorprogrammierte Spannungswandlerverhältnis geändert werden.

Beim Anschluss von Spannungswandlern ist die auf dem Typenschild des UMG 96RM-M angegebene Messspannung zu beachten!

Achtung!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Der einstellbare Wert 0 für die primären Stromwandler ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

Geräte, die auf automatischer Frequenzerkennung stehen, benötigen etwa 20 Sekunden bis die Netzfrequenz ermittelt wurde. In dieser Zeit halten die Messwerte die zugesicherte Messunsicherheit nicht ein.

Vor der Inbetriebnahme sind mögliche produktionsbedingte Inhalte der Energiezähler und der Min-/Maxwerte zu löschen!

Stromwandler programmieren

In den Programmier-Modus wechseln

- Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2. Wurde ein Benutzer-Passwort programmiert, so erscheint die Passwortabfrage mit "000". Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man die Taste 2 wird die nächste Ziffer ausgewählt und blinkt. Wurde die richtige Zahlenkombination eingegeben oder war kein Benutzer-Passwort programmiert, gelangt man in den Programmier-Modus.
- Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches für den Primärstrom blinkt.

Eingabe Stromwandler-Primärstrom

- Mit Taste 2 die blinkende Ziffer ändern.
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden.

Eingabe Stromwandler-Sekundärstrom

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern.

Programm-Modus verlassen

 Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.

Spannungswandler programmieren

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole für den Programmier-Modus PBG und für den Stromwandler CT erscheinen
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches für die Primärspannung blinkt. Analog der Zuordnung des Stromwandlerverhältnisses von Primär- zu Sekundärstrom kann das Verhältnis von Primär- zu Sekundärspannung des Spannungswandlers eingestellt werden.

Parameter programmieren

In den Programmier-Modus wechseln

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung. Bei wiederholtem Drücken der Taste 2 wird der erste Parameter der Parameterliste angezeigt.

Parameter ändern

- Die Auswahl mit Taste 1 bestätigen.
- Die zuletzt gewählte Adresse mit dem dazugehörigen Wert wird angezeigt.
- Die erste Ziffer der Adresse blinkt und kann mit Taste 2 verändert werden. Über Taste 1 findet eine Auswahl der Ziffer statt, die wiederum mit Taste 2 verändert werden kann.

Wert ändern

 Ist die gewünschte Adresse eingestellt, wird mit Taste 1 eine Ziffer des Wertes angewählt und mit Taste 2 geändert.

Programm-Modus verlassen

• Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.

Abb. Passwortabfrage Wurde ein Passwort gesetzt, kann über die Tasten 1 und 2 dieses eingegeben werden.

Abb. Programmier-Modus Stromwandler Über die Tasten 1 und 2 können Primär- und Sekundärstrom geändert werden (vgl. Seite 39).

Abb. Programmier-Modus Spannungswandler Über die Tasten 1 und 2 können Primär- und Sekundärstrom geändert werden (vgl. Seite 40).

Abb. Programmier-Modus Parameteranzeige Über die Tasten 1 und 2 können die einzelnen Parameter geändert werden (vgl. Seite 36).

Primär-Geräteadresse (Adr. 000)

Sind mehere Geräte über die M-Bus Schnittstelle miteinander verbunden, so kann ein Mastergerät diese Geräte nur aufgrund ihrer Geräteadresse unterscheiden. Innerhalb eines Netzes muss daher jedes Gerät eine andere Geräteadresse besitzen. Es können Primär-Adressen im Bereich 1 bis 250 eingestellt werden.

Der einstellbare Bereich der Geräteadresse liegt zwischen 0 und 255. Die Werte 0 und 251 bis 255 sind reserviert und dürfen nicht verwendet werden

Sekundär-Geräteadresse (Adr. 081-084)

Die Sekundär-Adresse ermöglicht – zusätzlich zur Primär-Adresse – eine weitere Möglichkeit, das Gerät innerhalb des Bus-Systems anzusprechen.

Der Aufbau der Sekundär-Adresse ist in einem gerätespezifischen und einem erweiterten Teilbereich untergliedert:

- Die Sekundär-Adresse besteht aus 8 Bytes und ist BCD kodiert.
- Der erweiterte Teil der Sekundär-Adresse ist mit der

Geräte-Seriennummer vorbelegt. Dieser Teilbereich kann vom Kunden geändert werden (Adr. 081-084).

• Der gerätespezifische Teil der Sekundär-Adresse kann nicht geändert werden.

Baudrate (Adr. 001)

Für die M-Bus Schnittstellen ist eine gemeinsame Baudrate einstellbar. Die Baudrate ist im Netz einheitlich zu wählen. Die Parameter Datenbits (8), Parität (even) und Stoppbits (1) sind fest voreingestellt.

Einstellung	Baudrate	
0	300 Baud	
1	600 Baud	
2	1200 Baud	
3	2400 Baud	
4	4800 Baud	
5	9600 Baud	
6	19200 Baud	
7	38400 Baud	

Hinweis zum Setzen der Baudrate:

Die Baudrate ist direkt am Gerät einzustellen. Ein Setzen der Baudrate über M-Bus ist **nicht** möglich!

Mittelwert

Für die Strom-, Spannungs- und Leistungsmesswerte werden Mittelwerte über einen einstellbaren Zeitraum gebildet. Die Mittelwerte sind mit einem Querstrich über dem Messwert gekennzeichnet.

Die Mittelungszeit kann aus einer Liste mit 9 festen Mittelungszeiten ausgewählt werden.

Mittelungszeit Strom (Adr. 040) Mittelungszeit Leistung (Adr. 041) Mittelungszeit Spannung (Adr. 042)

Einstellung	Mittelungszeit/Sek.
0	5
1	10
2	15
3	30
4	60
5	300
6	480 (Werkseinstellung)
7	600
8	900

Mittelungsverfahren

Das verwendete exponentielle Mittelungsverfahren erreicht nach der eingestellten Mittelungszeit mindestens 95% des Messwertes.

Min- und Maxwerte

Alle 10/12 Perioden werden alle Messwerte gemessen und berechnet. Zu den meisten Messwerten werden Min- und Maxwerte ermittelt.

Der Minwert ist der kleinste Messwert, der seit der letzten Löschung ermittelt wurde. Der Maxwert ist der größte Messwert, der seit der letzten Löschung ermittelt wurde. Alle Min- und Maxwerte werden mit den dazugehörigen Messwerten verglichen und bei Unter- bzw. Überschreitung überschrieben.

Die Min- und Maxwerte werden alle 5 Minuten in einem EEPROM ohne Datum und Uhrzeit gespeichert. Dadurch können durch einen Betriebsspannungsausfall nur die Min- und Maxwerte der letzten 5 Minuten verloren gehen.

Min- und Maxwerte löschen (Adr.506)

Wird auf die Adresse 506 eine "001" geschrieben, werden alle Min- und Maxwerte gleichzeitig gelöscht. Eine Ausnahme bildet der Maxwert des Strommittelwertes. Der Maxwert des Strommittelwertes kann auch direkt im Anzeigenmenü durch langes Drücken der Taste 2 gelöscht werden.

Netzfrequenz (Adr. 034)

Für die automatische Ermittlung der Netzfrequenz muss am Spannungsmesseingang V1 eine Spannung L1-N von größer 10Veff anliegen.

Aus der Netzfrequenz wird dann die Abtastfrequenz für die Strom- und Spannungseingänge berechnet.

Fehlt die Messspannung, so kann keine Netzfrequenz ermittelt und damit keine Abtastfrequenz berechnet werden. Es kommt die quittierbare Fehlermeldung "500". Spannung, Strom und alle anderen sich daraus ergebenden Werte werden auf Basis der letzten Frequenzmessung bzw. aufgrund von möglichen Leitungskopplungen berechnet und weiterhin angezeigt. Diese ermittelten Messwerte unterliegen jedoch nicht mehr der angegebenen Genauigkeit.

Ist eine erneute Messung der Frequenz möglich, wird die Fehlermeldung nach ca. 5 Sekunden nach Wiederkehr der Spannung automatisch ausgeblendet.

Der Fehler wird nicht angezeigt, wenn eine Festfrequenz eingestellt ist.

Finstellbereich: 0, 45, 65

0 = Automatische Frequenzbestimmung.

Die Netzfrequenz wird aus der Messpannung ermittelt

45..65 = Festfrequenz

Die Netzfrequenz wird fest vorgewählt.

Energiezähler

Das UMG 96RM-M hat Energiezähler für Wirkenergie, Blindenergie und Scheinenergie.

Ablesen der Wirkenergie

Summe Wirkenergie

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 12 345 678 kWh

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 134 178 kWh

Oberschwingungen

Oberschwingungen sind das ganzzahlige Vielfache einer Grundschwingung.

Beim UMG 96RM-M muss die Grundschwingung der Spannung im Bereich 45 bis 65Hz liegen. Auf diese Grundschwingung beziehen sich die berechneten Oberschwingungen der Spannungen und der Ströme.

Oberschwingungen bis zum 40fachen der Grundschwingung werden erfasst.

Die Oberschwingungen für die Ströme werden in Ampere und die Oberschwingungen der Spannungen in Volt angegeben.

Abb. Anzeige der 15. Oberschwingung des Stromes in der Phase L3 (Beispiel).

Oberschwingungen werden nicht in der werksseitigen Voreinstellung angezeigt.

Oberschwingungsgehalt THD

THD ist das Verhältnis des Effektivwertes der Oberschwingungen zum Effektivwert der Grundschwingung.

Oberschwingungsgehalt des Stromes THDI:

$$THD_{I} = \frac{1}{\left|I_{fund}\right|} \sqrt{\sum_{n=2}^{M} \left|I_{n.Ham}\right|^{2}}$$

Oberschwingungsgehalt der Spannung THDU:

$$THD_{U} = \frac{1}{|U_{fund}|} \sqrt{\sum_{n=2}^{M} |U_{n.Harm}|^{2}}$$

Abb. Anzeige des Oberschwingungsgehalt THD der Spannung aus der Phase L3 (Beispiel).

Messwert-Weiterschaltung

Alle 10/12 Perioden werden alle Messwerte berechnet und sind einmal in der Sekunde in den Messwertanzeigen abrufbar. Für den Abruf der Messwertanzeigen stehen zwei Methoden zur Verfügung:

- Die automatisch wechselnde Darstellung von ausgewählten Messwertanzeigen, hier als Messwert-Weiterschaltung bezeichnet.
- Die Auswahl einer Messwertanzeige über die Tasten 1 und 2 aus einem vorgewählten Anzeigen-Profil.

Beide Methoden stehen gleichzeitig zur Verfügung. Die Messwert-Weiterschaltung ist dann aktiv, wenn mindestens eine Messwertanzeige und mit einer Wechselzeit größer 0 Sekunden programmiert ist.

Wird eine Taste betätigt, so kann in den Messwertanzeigen des gewählten Anzeigen-Profiles geblättert werden. Wird für etwa 60 Sekunden keine Taste betätigt, so erfolgt die Umschaltung in die Messwert-Weiterschaltung und es werden nacheinander die Messwerte aus dem gewählten Anzeigen-Wechsel-Profil programmierten Messwertanzeigen zur Anzeige gebracht.

Wechselzeit (Adr. 039)

Finstellbereich: 0...60 Sekunden

Sind 0 Sekunden eingestellt, so erfolgt kein Wechsel zwischen den für die Messwert-Weiterschaltung ausgewählten Messwertanzeigen.

Die Wechselzeit gilt für alle Anzeigen-Wechsel-Profile.

Anzeigen-Wechsel-Profil (Adr. 038)

Einstellbereich: 0..3

- 0 Anzeigen-Wechsel-Profil 1, vorbelegt.
- 1 Anzeigen-Wechsel-Profil 2, vorbelegt.
- 2 Anzeigen-Wechsel-Profil 3, vorbelegt.

Messwertanzeigen

Nach einer Netzwiederkehr zeigt das UMG 96RM-M die erste Messwerttafel aus dem aktuellen Anzeigen-Profil an. Um die Auswahl der anzuzeigenden Messwerte übersichtlich zu halten, ist werkseitig nur eine Teil der zur Verfügung stehenden Messwerte für den Abruf in der Messwertanzeige vorprogrammiert. Werden andere Messwerte in der Anzeige des UMG 96RM-M gewünscht, so kann ein anderes Anzeigen-Profil gewählt werden.

Anzeigen-Profil (Adr. 037)

Einstellbereich: 0 .. 3

- 0 Anzeigen-Profil 1, fest vorbelegt.
- 1 Anzeigen-Profil 2, fest vorbelegt.
- 2 Anzeigen-Profil 3, fest vorbelegt.

Benutzer-Passwort (Adr. 050)

Um ein versehentliches Ändern der Programmierdaten zu erschweren, kann ein Benutzer-Passwort programmiert werden. Erst nach Eingabe des korrekten Benutzer-Passwortes, ist ein Wechsel in die nachfolgenden Programmier-Menüs möglich.

Werkseitig ist kein Benutzer-Passwort vorgegeben. In diesem Fall wird das Passwort-Menü übersprungen und man gelangt sofort in das Stromwandler-Menü.

Wurde ein Benutzer-Passwort programmiert, so erscheint das Passwort-Menü mit der Anzeige "000". Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man Taste 1 wird die nächste Ziffer angewählt und blinkt.

Erst wenn die richtige Zahlenkombination eingegeben wurde, gelangt man in das Programmier-Menü für den Stromwandler

Energiezähler löschen (Adr. 507)

Die Wirk-, Schein- und Blindenergiezähler können nur gemeinsam gelöscht werden.

Um den Inhalt der Energiezähler zu löschen, muss die Adresse 507 mit "001" beschrieben werden.

Vor der Inbetriebnahme sind mögliche produktionsbedingte Inhalte der Energiezähler und der Min-/Maxwerte zu löschen!

Durch das Löschen der Energiezähler gehen diese Daten im Gerät verloren. Um einen möglichen Datenverlust zu vermeiden, sollten Sie diese Messwerte vor dem Löschen mit der GridVis Software auslesen und abspeichern.

Drehfeldrichtung

Die Drehfeldrichtung der Spannungen und die Frequenz der Phase L1 werden in einer Anzeige dargestellt.

Die Drehfeldrichtung gibt die Phasenfolge in Drehstromnetzen an. Üblicherweise liegt ein "rechtes Drehfeld" vor. Im UMG 96RM-M wird die Phasenfolge an den Spannungsmesseingängen geprüft und angezeigt. Eine Bewegung der Zeichenkette im Uhrzeigersinn bedeutet ein "rechtes Drehfeld" und eine Bewegung entgegen dem Uhrzeigersinn bedeutet ein "linkes Drehfeld".

Die Drehfeldrichtung wird nur dann bestimmt, wenn die Mess- und Betriebsspannungseingänge vollständig angeschlossen sind. Fehlt eine Phase oder werden zwei gleiche Phasen angeschlossen, so wird die Drehfeldrichtung nicht ermittelt und die Zeichenkette steht in der Anzeige.

Abb. Anzeige der Netzfrequenz (50.0) und der Drehfeldrichtung

Abb. Keine Drehfeldrichtung feststellbar.

LCD Kontrast (Adr. 035)

Die bevorzugte Betrachtungsrichtung für die LCD Anzeige ist von "unten". Der LCD Kontrast der LCD Anzeige kann durch den Anwender angepasst werden. Die Kontrasteinstellung ist im Bereich von 0 bis 9 in 1er Schritten möglich.

0 = Zeichen sehr hell

9 = Zeichen sehr dunkel

Werksseitige Voreinstellung: 5

Hintergrundbeleuchtung

Die Hintergrundbeleuchtung ermöglicht bei schlechten Sichtverhältnissen eine gute Lesbarkeit der LCD Anzeige. Die Helligkeit kann durch den Anwender in einem Bereich von 0 bis 9 in 1er Schritten gesteuert werden.

Das UMG 96RM besitzt zwei unterschiedliche Arten der Hintergrundbeleuchtung:

- Betriebsbeleuchtung und
- Standby-Beleuchtung

Betriebsbeleuchtung (Adr. 036):

Die Betriebsbeleuchtung wird durch einen Tastendruck oder beim Neustart aktiviert

Standby-Beleuchtung (Adr. 747)

Die Aktivierung dieser Hintergrundbeleuchtung erfolgt nach einem frei wählbaren Zeitraum (Adr. 746). Wird innerhalb dieses Zeitraums keine Taste betätigt, so schaltet das Gerät in die Standby-Beleuchtung um.

Erfolgt ein Drücken der Tasten 1 - 3 wechselt das Gerät in die Betriebsbeleuchtung und der definierte Zeitraum wird neu gestartet.

Sind die Helligkeitswerte beider Beleuchtungsarten gleich, ist kein Wechsel zwischen der Hintergrund- und Standby-Beleuchtung zu erkennen.

Adr.	Beschreibung	Einstell- bereich	Vorein- stellung
036	Helligkeit bei Betriebsbeleuchtung	09	6
746	Zeitraum nach dem in die Standby-Beleuch- tung gewechselt wird	60 9999 Sek.	900 Sek.
747	Helligkeit bei Standby-Beleuchtung	09	0

0 = minimale Helligkeit, 9 = maximale Helligkeit

Zeiterfassung

Das UMG 96RM-M erfasst die Betriebsstunden und die Gesamtlaufzeit jedes Vergleichers, wobei die Zeit

- der Betriebsstunden mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt wird bzw.
- der Gesamtlaufzeit der Vergleicher in Sekunden dargestellt wird (beim Erreichen von 999999s erfolgt die Anzeige in Stunden).

Für die Abfrage über die Messwertanzeigen sind die Zeiten mit den Ziffern 1 bis 6 gekennzeichnet:

keine = Betriebsstundenzähler

- 1 = Gesamtlaufzeit, Vergleicher 1A
- 2 = Gesamtlaufzeit, Vergleicher 2A
- 3 = Gesamtlaufzeit, Vergleicher 1B
- 4 = Gesamtlaufzeit, Vergleicher 2B
- 5 = Gesamtlaufzeit, Vergleicher 1C
- 6 = Gesamtlaufzeit, Vergleicher 2C

In der Messwertanzeige können maximal 99999.9 h (=11.4 Jahre) dargestellt werden.

Betriebsstundenzähler

Der Betriebsstundenzähler misst die Zeit in der das UMG 96RM-M Messwerte erfasst und anzeigt.

Die Zeit der Betriebsstunden wird mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt. Der Betriebsstundenzähler kann nicht zurückgesetzt werden.

Gesamtlaufzeit Vergleicher

Die Gesamtlaufzeit eines Vergleichers ist die Summe aller Zeiten für die eine Grenzwertverletzung im Vergleicherergebnis stand.

Die Gesamtlaufzeiten der Vergleicher kann nur über die Software GridVis zurückgesetzt werden. Die Rücksetzung erfolgt für alle Gesamtlaufzeiten.

Abb. Messwertanzeige Betriebsstundenzähler Das UMG 96RM-M zeigt im Betriebsstundenzähler die Zahl 140,8h an. Das entspricht 140 Stunden und 80 Industrieminuten. 100 Industrieminuten entsprechen 60 Minuten. In diesem Beispiel entsprechen danach die 80 Industrieminuten 48 Minuten.

Seriennummer (Adr. 754)

Die vom UMG 96RM-M angezeigte Seriennummer ist 6 stellig und ist ein Teil der auf dem Typenschild angezeigten Seriennummer.

Die Seriennummer kann nicht geändert werden.

Software Release (Adr. 750)

Die Software für das UMG 96RM-M wird kontinuierlich verbessert und erweitert. Der Softwarestand im Gerät wird mit einer 3-stelligen Nummer, der Software Release, gekennzeichnet. Die Software Release kann vom Benutzer nicht geändert werden.

Inbetriebnahme

Versorgungsspannung anlegen

- Die Höhe der Versorgungsspannung für das UMG 96RM-M ist dem Typenschild zu entnehmen.
- Nach dem Anlegen der Versorgungsspannung schaltet das UMG 96RM-M auf die erste Messwertanzeige um.
- Erscheint keine Anzeige, so muss überprüft werden, ob die Versorgungsspannung im Nennspannungsbereich liegt.

Messspannung anlegen

- Spannungsmessungen in Netzen mit Nennspannungen über 300VAC gegen Erde müssen über Spannungswandler angeschlossen werden.
- Nach dem Anschluss der Messspannungen müssen die vom UMG 96RM-M angezeigten Messwerte für die Spannungen L-N und L-L mit denen am Spannungsmesseingang übereinstimmen.

Achtung!

Spannungen und Ströme die außerhalb des zulässigen Messbereiches liegen können zu Personenschäden führen und das Gerät zerstören.

Messstrom anlegen

Das UMG 96RM-M ist für den Anschluss von ../1A und ../5A Stromwandlern ausgelegt.

Über die Strommesseingänge können nur Wechselströme und keine Gleichströme gemessen werden.

Schließen Sie alle Stromwandlerausgänge außer einem kurz. Vergleichen Sie die vom UMG 96RM-M angezeigten Ströme mit dem angelegten Strom.

Der vom UMG 96RM-M angezeigte Strom muss unter Berücksichtigung des Stromwandlerübersetzungsverhältnisses mit dem Eingangsstrom übereinstimmen. In den kurzgeschlossenen Strommesseingängen muss das UMG 96RM-M ca. null Ampere anzeigen.

Das Stromwandlerverhältnis ist werkseitig auf 5/5A eingestellt und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Achtuna!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Achtung!

Das UMG 96RM-M ist nicht für die Messung von Gleichspannungen geeignet.

Drehfeldrichtung

Überprüfen Sie in der Messwertanzeige des UMG 96RM-M die Richtung des Spannungs-Drehfeldes. Üblicherweise liegt ein "rechtes" Drehfeld vor.

Phasenzuordnung prüfen

Die Zuordnung Außenleiter zu Stromwandler ist dann richtig, wenn man einen Stromwandler sekundärseitig kurzschließt und der vom UMG 96RM-M angezeigte Strom in der dazugehörigen Phase auf 0A sinkt.

Kontrolle der Leistungsmessung

Schließen Sie alle Stromwandlerausgänge, außer einem kurz und überprüfen Sie die angezeigten Leistungen. Das UMG 96RM-M darf nur eine Leistung in der Phase mit dem nicht kurzgeschlossenen Stromwandlereingang anzeigen. Trifft dies nicht zu, überprüfen Sie den Anschluss der Messspannung und des Messstromes.

Stimmt der Betrag der Wirkleistung aber das Vorzeichen der Wirkleistung ist negativ, so kann das zwei Ursachen haben:

- Die Anschlüsse S1(k) und S2(l) am Stromwandler sind vertauscht.
- Es wird Wirkenergie ins Netz zurückgeliefert.

Messung überprüfen

Sind alle Spannungs- und Strommesseingänge richtig angeschlossen, so werden auch die Einzel- und Summenleistungen richtig berechnet und angezeigt.

Überprüfen der Einzelleistungen

Ist ein Stromwandler dem falschen Außenleiter zugeordnet, so wird auch die dazugehörige Leistung falsch gemessen und angezeigt.

Die Zuordnung Außenleiter zu Stromwandler am UMG 96RM-M ist dann richtig, wenn keine Spannung zwischen dem Aussenleiter und dem dazugehörigen Stromwandler (primär) anliegt.

Um sicherzustellen, dass ein Außenleiter am Spannungsmesseingang dem richtigen Stromwandler zugeordnet ist, kann man den jeweiligen Stromwandler sekundärseitig kurzschließen. Die vom UMG 96RM-M angezeigte Scheinleistung muss dann in dieser Phase Null sein.

Wird die Scheinleistung richtig angezeigt aber die Wirkleistung mit einem "-" Vorzeichen, dann sind die Stromwandlerklemmen vertauscht oder es wird Leistung an das Energieversorgungsunternehmen geliefert.

Überprüfen der Summenleistungen

Werden alle Spannungen, Ströme und Leistungen für die jeweiligen Außenleiter richtig angezeigt, so müssen auch die vom UMG 96RM-M gemessenen Summenleistungen stimmen. Zur Bestätigung sollten die vom UMG 96RM-M gemessenen Summenleistungen mit den Arbeiten der in der Einspeisung sitzenden Wirk- und Blindleistungszähler verglichen werden.

M-Bus Schnittstelle

Über die M-Bus-Schnittstelle kann mit Hilfe der Primäroder Sekundär-Adresse auf die Daten der Parameterund Messwertliste zugegriffen werden. Eine Änderung dieser Werte über den M-Bus ist nicht möglich.

Die primäre Geräteadresse ist werkseitig auf "1" vorbelegt.

Der erweiterte Teilbereich der 8 Byte langen Sekundär-Adresse beinhaltet werkseitig die Geräte-Seriennummer und kann über die entsprechenden Parameter individuell geändert werden. Der gerätespezifische Teilbereich der Sekundär-Adresse ist nicht einstellbar (vgl. Seite 42).

M-Bus Gerätemerkmale:

- Adressierung über Primäradresse und Sekundäradresse (0..250) möglich
- Frei wählbare Anzahl der Datenpunkte (0..27)
- Unterstützt die Protokolltypen: SND_NKE/\$E5 und REQ_UD2/RSP_UD2
- · Slave Search: Suche am M-Bus

Das UMG 96RM-M belastet den M-Bus mit einer M-Bus-Gerätelast von 1,5 mA.

Anzahl der Datenpunkte

Über diese Adresse bestimmen Sie, wieviele Datenpunkte für das Telegramm RSP UD2 übertragen werden.

Adresse: 080

Bedeutung: Anzahl der Datenpunkte für RSP UD2

Einstellbereich: 0 .. 27

Voreinstellung: 0 (0=alle Datenpunkte)

Um alle Datenpunkte (0) abzurufen, muss ein Telegramm gesendet werden.

Beispiel: Auslesen der Datenpunkte 1 bis 6

Setzen Sie den Parameter der Adresse auf 6. Bei jeder Anfrage werden alle Datenpunkte bis einschließlich Datenpunkt 6 übertragen.

Beispiel: Nur Datenpunkt 10 lesen

Setzen Sie den Parameter der Adresse auf 10. Bei jeder Anfrage werden alle Datenpunkte bis einschließlich Datenpunkt 10 übertragen. Verwenden Sie nur den benötigten Datenpunkt und ignorieren SIe die nicht benötigten.

Messung Signalpegel

Die Datenübertragung im M-Bus-Netz erfolgt durch eine Modulation der Versorgungsspannung, wobei die Spannung für ein High-Signal bei 36 V und für ein Low-Signal bei 24 V liegt. Das Slave-Gerät antwortet dem Master über die Modulation seines Stromverbrauches, der für ein High-Signal bei 1,5 mA und bei einem Low-Signal bei 11-20 mA liegt.

Signal	Spannung	Antwort-Strom
High-Signal	36 V	1,5 mA
Low-Signal	24 V	11-20 mA

Aufbau des RSP UD2-Telegramms

Byte	1	2	3	4	5	6
Name	Start	Length	Length	Start	С	Α
Cont.	68			68	8	
Byte	7	8	9	10	11	12
Name	CI	ID1	ID2	ID3	ID4	MAN1
Cont.	72					46
Byte	13	14	15	16	17	18
Name	MAN2	GEN	MED	TC	Status	SIG1
Cont.	40	8	2		0	0
Byte	19	20			N-1	N
Name	SIG2	DIF	Data	Data	SC	Stop
Cont.	0					16

Liste der Datenpunkte

Daten- punkte	Beschreibung	Einheit	Auflös.	Device	Format Byte
1	Wirkarbeit, ohne Rücklaufsperre	Wh	10	0	6
2	Wirkarbeit, bezogen	Wh	10	0	6
3	Wirkarbeit, geliefert	Wh	10	0	6
4	Blindarbeit, induktiv	varh	10	1	6
5	Blindarbeit, kapazitiv	varh	10	1	6
6	Blindarbeit, ohne Rücklaufsperre	varh	10	1	6
7	Scheinarbeit	VAh	10	2	6
8	Laufzeit Vergleicher 1a	sek	1	1	4
9	Laufzeit Vergleicher 1b	sek	1	2	4
10	Laufzeit Vergleicher 1c	sek	1	3	4
11	Laufzeit Vergleicher 2a	sek	1	4	4
12	Laufzeit Vergleicher 2b	sek	1	5	4
13	Laufzeit Vergleicher 2c	sek	1	6	4
14	Betriebsstundenzähler	sek	1	0	4
15	I_summe	mA	1	4	4
16	P_summe	W	1	5	4
17	Q_summe, Grundschwingung	var	1	6	4
18	S_summe	VA	1	7	4

Liste der Datenpunkte

Daten- punkte	Beschreibung	Einheit	Auflös.	Device	Format Byte
19	Uln - Phase L1	mV	100	1	4
20	Uln - Phase L2	mV	100	2	4
21	Uln - Phase L3	mV	100	3	4
22	I - Phase L1	mA	1	1	4
23	I - Phase L2	mA	1	2	4
24	I - Phase L3	mA	1	3	4
25	P - Phase L1	W	1	1	4
26	P - Phase L2	W	1	2	4
27	P - Phase L3	W	1	3	4

Telegramm

Daten- punkt	Beschreibung	DIF	DIFE	DIFE	DIFE	VIF	VIFE
1	Wirkarbeit, ohne Rücklaufsperre	0x06	Χ	Х	Χ	0x04	Х
2	Wirkarbeit, bezogen	0x86	0x10	Χ	Χ	0x04	Χ
3	Wirkarbeit, geliefert	0x86	0x20	Χ	Χ	0x04	Χ
4	Blindarbeit, induktiv	0x86	0x40	Χ	Χ	0x04	Χ
5	Blindarbeit, kapazitiv	0x86	0x50	Χ	Χ	0x04	Χ
6	Blindarbeit, ohne Rücklaufsperre	0x86	0x60	Χ	Χ	0x04	Χ
7	Scheinarbeit	0x86	0x80	0x40	Χ	0x04	Χ
8	Laufzeit Vergleicher 1a	0x84	0x40	Χ	Χ	0x24	Χ
9	Laufzeit Vergleicher 1b	0x84	0x80	0x40	Χ	0x24	Χ
10	Laufzeit Vergleicher 1c	0x84	0xC0	0x40	Χ	0x24	Χ
11	Laufzeit Vergleicher 2a	0x84	0x80	0x80	0x40	0x24	Χ
12	Laufzeit Vergleicher 2b	0x84	0xC0	0x80	0x40	0x24	Χ
13	Laufzeit Vergleicher 2c	0x84	0x80	0xC0	0x40	0x24	Χ
14	Betriebsstundenzähler	0x04	Χ	Χ	Χ	0x24	Χ
15	I_summe,	0x84	0x80	0x80	0x40	0xFD	0x59
16	P_summe	0x84	0xC0	0x80	0x40	0x2B	Χ
17	Q_summe, Grundschwingung	0x84	0x80	0xC0	0x40	0x2B	Χ
18	S_summe	0x84	0xC0	0xC0	0x40	0x2B	Χ

Telegramm

Daten- punkt	Beschreibung	DIF	DIFE	DIFE	DIFE	VIF	VIFE
19	Uln - Phase L1	0x84	0x40	Х	Х	0xFD	0x48
20	Uln - Phase L2	0x84	0x80	0x40	Χ	0xFD	0x48
21	Uln - Phase L3	0x84	0xC0	0x40	Χ	0xFD	0x48
22	I - Phase L1	0x84	0x40	X	Χ	0xFD	0x59
23	I - Phase L2	0x84	0x80	0x40	Χ	0xFD	0x59
24	I - Phase L3	0x84	0xC0	0x40	Χ	0xFD	0x59
25	P - Phase L1	0x84	0x40	Χ	X	0x2B	Х
26	P - Phase L2	0x84	0x80	0x40	Χ	0x2B	Χ
27	P - Phase L3	0x84	0xC0	0x40	Χ	0x2B	Х

⁽X - kein Wert vorhanden)

M-Bus Test

Datenstring M-Bus

\$68\$F7\$F7\$68\$08\$01\$72\$37\$21\$10\$57\$2F\$28\$09\$02\$02\$00 \$00\$00\$06\$04\$7E\$18\$00\$00\$00\$86\$10\$04\$7E\$18\$00\$00 \$00\$00\$86\$20\$04\$00\$00\$00\$00\$00\$00\$86\$40\$04\$28\$00\$00 \$00\$00\$00\$86\$50\$04\$00\$00\$00\$00\$00\$86\$60\$04\$28\$00 \$00\$00\$00\$00\$86\$80\$40\$04\$92\$18\$00\$00\$00\$00\$84\$40\$24 \$00\$00\$00\$00\$84\$80\$40\$24\$00\$00\$00\$00\$84\$C0\$40\$24\$00 \$00\$00\$00\$84\$80\$80\$40\$24\$00\$00\$00\$00\$84\$C0\$80\$40\$24 \$00\$00\$00\$00\$84\$80\$C0\$40\$24\$00\$00\$00\$00\$04\$24\$FA\$4F \$00\$00\$84\$80\$80\$40\$FD\$59\$00\$00\$00\$84\$C0\$80\$40\$2 B\$00\$00\$00\$84\$80\$C0\$40\$2B\$00\$00\$00\$00\$84\$C0\$C0\$ 40\$2B\$00\$00\$00\$00\$84\$40\$FD\$48\$C8\$08\$00\$00\$84\$80\$40 \$ED\$48\$ED\$03\$00\$00\$84\$C0\$40\$ED\$48\$EC\$03\$00\$00\$84\$ 40\$FD\$59\$00\$00\$00\$00\$84\$80\$40\$FD\$59\$00\$00\$00\$00\$84 \$C0\$40\$FD\$59\$00\$00\$00\$00\$84\$40\$2B\$00\$00\$00\$80\$84\$8 0\$40\$2B\$00\$00\$00\$00\$84\$C0\$40\$2B\$00\$00\$00\$00\$0E\$25\$ 16

Auszug der Auswertung über M-Bus Scanner

Datenpunkte 1 bis 6

Hinweis: Die Durchführung der M-Bus-Kontrolle erfolgte mit einem M-Bus-Scanner der Firma Wachendorff GmbH / Geisenheim. Die Abbildung stellt einen Auszug der Software dar und unterliegen dem Copyright der Firma Wachendorff GmbH.

Auszug der Werte innerhalb der Software GridVis

Kontrolle der Werte

\$187E = 6270 * 10 (Auflösung) = 62700 Wh

Digitalausgänge

Das UMG 96RM-M hat zwei Digitalausgänge. Den Digitalausgängen können wahlweise folgende Funktionen zugeordnet werden:

Digitalausgang 1

Adr. 200 = 0

Adr. 200 = 1

Impulsausgang

Digitalausgang 2

Adr. 202 = 0

Adr. 202 = 0

Adr. 202 = 1

Impulsausgang

Abb.: Gesamt-Blockschaltbild für Digitalausgang 1

Digitalausgänge - Zustandsanzeigen

Der Zustand der Schaltausgänge wird in der Anzeige des UMG 96RM-M durch Kreissymbole dargestellt.

Da die Anzeige nur einmal pro Sekunde aktualisiert wird, können schnellere Zustandsänderungen der Ausgänge nicht angezeigt werden.

Zustände am Digitalausgang

Es kann ein Strom von <1mA fließen

Digitalausgang 1: Adr. 608 = 0 Digitalausgang 2: Adr. 609 = 0

Es kann ein Strom von bis zu 50mA fließen

Digitalausgang 1: Adr. 608 = 1 Digitalausgang 2: Adr. 609 = 1

Impulsausgang

Die Digitalausgänge können u.a. auch für die Ausgabe von Impulsen zur Zählung des Energieverbrauchs genutzt werden. Dazu wird nach dem Erreichen einer bestimmten, einstellbaren Energiemenge ein Impuls von definierter Länge am Ausgang angelegt. Um einen Digitalausgang als als Impulsausgang zu verwenden müssen Sie verschiedene Einstellungen vornehmen.

- · Digitalausgang,
- · Auswahl der Quelle,
- Messwert-Auswahl,
- · Impulslänge,
- · Impulswertiakeit.

Messwert-Auswahl (Adr.100, 101)

Tragen Sie hier die Adresse des Leistungswertes ein, der als Arbeits-Impuls ausgegeben werden soll. Siehe Tabelle 2.

Auswahl der Quelle (Adr.200, 202)

Hier tragen Sie ein, welche Quelle den Messwert liefert, der auf dem Digitalausgang ausgegeben werden soll.

Wählbare Quellen:

- Vergleichergruppe
- Impuls

Abb.: Blockschaltbild; Beispiel Digitalausgang 1 als Impulsausgang.

Impulslänge (Adr.106)

Die Impulslänge ist für beide Impulsausgänge gültig und wird über die Parameteradresse 106 fest eingestellt.

Einstellbereich: 1 .. 1000 1 = 10ms Voreinstellung: 5 = 50ms

Die typische Impulslänge für S0-Impulse beträt 30ms.

Impulspause

Die Impulspause ist mindestens so groß wie die gewählte Impulslänge.

Die Impulspause ist abhängig von der z. B. gemessenen Energie und kann Stunden oder Tage betragen.

Impulslänge Impulspause 10ms .. 10s >10ms

Impulsabstand

Der Impulsabstand ist innerhalb der gewählten Einstellungen proportional zur Leistung. Aufgrund der Mindest-Impulslänge und der Mindest-Impulspause, ergeben sich für die maximale Anzahl an Impulsen pro Stunde die Werte in der Tabelle.

Impulspause	Max. Impulse/h
10 ms	180 000 Impulse/h
30 ms	60 000 Impulse/h
50 ms	36 000 Impulse/h
100 ms	18 000 Impulse/h
500 ms	3600 Impulse/h
1 s	1800 Impulse/h
10 s	180 Impulse/h
	10 ms 30 ms 50 ms 100 ms 500 ms 1 s

Beispiele für die maximal mögliche Impulsanzahl pro Stunde.

Impulswertigkeit (Adr.102, 104)

Mit der Impulswertigkeit geben Sie an, wieviel Energie (Wh oder varh) einem Impuls entsprechen soll. Die Impulswertigkeit wird durch die maximale Anschlußleistung und die maximale Impulsanzahl pro Stunde bestimmt.

Wenn Sie die Impulswertigkeit mit einem positiven Vorzeichen angeben, werden nur dann Impulse ausgegeben wenn auch der Messwert ein positives Vorzeichen hat.

Wenn Sie die Impulswertigkeit mit einem negativen Vorzeichen angeben, werden nur dann Impulse ausgegeben wenn auch der Messwert ein negatives Vorzeichen hat.

Impulswertigkeit =
$$\frac{\text{max. Anschlußleistung}}{\text{max. Impulsanzahl/h}}$$
 [Impulse/Wh]

Da der Wirkenergiezähler mit Rücklaufsperre arbeitet, werden nur bei Bezug von elektrischer Energie Impulse ausgegeben.

Da der Blindenergiezähler mit Rücklaufsperre arbeitet, werden nur bei induktiver Last Impulse ausgegeben.

Impulswertigkeit ermitteln

Festlegen der Impulslänge

Legen Sie die Impulslänge enstprechend den Anforderungen des angeschlossenen Impulsempfängers fest. Bei einer Impulslänge von z.B. 30 ms, kann das UMG 96RM-M eine maximale Anzahl von 60000 Impulsen (siehe Tabelle "maximale Impulsanzahl" pro Stunde abgeben.

Ermittlung der maximalen Anschlussleistung Beispiel:

Stromwandler = 150/5ASpannung L-N = max. 300 V

Leistung pro Phase = 150 A x 300 V

=45 kW

Leistung bei 3 Phasen = 45kW x 3 Maximale Anschlußleistung= 135kW

Berechnen der Impulswertigkeit

Impulswertigkeit = $\frac{\text{max. Anschlußleistung}}{\text{max. Impulsanzahl/h}} \text{ [Impulse/Wh]}$

Impulswertigkeit = 135kW / 60000 Imp/h Impulswertigkeit = 0,00225 kWh / Impulse Impulswertigkeit = 2,25 Wh / Impulse

Abb.: Anschlussbeispiel für die Beschaltung als Impulsausgang.

Bei der Verwendung der digitalen Ausgänge als Impulsausgang darf die Hilfsspannung (DC) nur eine max. Restwelligkeit von 5% besitzen.

Grenzwertüberwachung

Für eine Grenzwertüberwachung stehen Ihnen zwei Vergleichergruppen zur Verfügung.

Die Vergleichergruppe 1 ist dem Digitalausgang 1 und die Vergleichergruppe 2 ist dem Digitalausgang 2 fest zugeordnet.

Blockschaltbild: Verwendung des Digitalausganges 1 zur Grenzwertüberwachung.

Beispiel: Stromüberwachung im N

Wird der Strom im N für 60 Sekunden größer als 100A, so soll der Digitalausgang 1 für mindestens 2 Minuten schalten

Folgende Programmierungen müssen vorgenommen werden:

1. Vergleichergruppe 1

Wir wählen für die Grenzwertüberwachung die Vergleichergruppe 1. Die Vergleichergruppe wirkt nur auf den Digitalausgang 1.

Da nur ein Grenzwert überwacht wird, wählen wir den Vergleicher A und programmieren diesen wie folgt:

Die Adresse des zu überwachenden Messwertes von Vergleicher A:

Adr. 110 = 866 (Adresse des Strom im N)

Die Messwerte für die Vergleicher B und C werden mit 0 beleat.

Adr. 116 = 0 (Der Vergleicher ist inaktiv) Adr. 122 = 0(Der Vergleicher ist inaktiv)

Der einzuhaltende Grenzwert. Adr. 108 = 100 (100A)

Für eine Mindesteinschaltzeit von 2 Minuten soll der Digitalausgang 1 bei einer Überschreitung des Grenzwertes geschaltet bleiben.

Adr. 111 = 120 Sekunden

Für die Vorlaufzeit von 60Sekunden soll Überschreitung mindestens anliegen.

Adr. 112 = 60 Sekunden

Den Operator für den Vergleich zwischen Messwert und Grenzwert.

Adr. 113 = 0 (entspricht >=)

Auswahl der Quelle

Wählen Sie als Quelle die Vergleichergruppe 1 aus.

Adr. 200 = 0 (Vergleichergruppe 1)

3. Inverter

Das Ergebnis aus der Vergleichergruppe 1 kann hier zusätzlich invertiert werden. Wir invertieren das Erggebnis nicht.

Adr. 201 = 0 (nicht invertiert)

4. Vergleicher verknüpfen

Die Vergleicher B und C wurden nicht gesetzt und sind gleich Null

Durch die ODER-Verküpfung der Vergleicher A, B und C wird als Vergleicherergebnis das Ergebnis von Vergleicher A ausgegeben.

Adr. 107 = 0 (ODER verknüpfen)

Ergebnis

Wird der Strom im N für mehr als 60 Sekunden größer als 100A, so schaltet der Digitalausgang 1 für mindestens 2 Minuten. Der Digitalausgang 1 wird leitend. Es kann Strom fließen.

Vergleicher

Zur Überwachung von Grenzwerten stehen zwei Vergleichergruppen mit je 3 Vergleichern zur Verfügung. Die Ergebnisse der Vergleicher A, B und C können UND oder ODER verknüpft werden.

Das Verknüpfungsergebnis der Vergleichergruppe 1 kann dem Digitalausgang 1 und das Verknüpfungsergebnis der Vergleichergruppe 2 kann dem Digitalausgang 2 zugewiesen werden.

Jedem Vergleichergruppen-Ausgang kann zusätzlich die Funktion "Display-Blinken" zugeordnet werden. Hierbei erfolgt bei einem aktiven Vergleicher-Ausgang ein Wechsel der Hintergrundbeleuchtung zwischen maximaler und minimaler Helligkeit (Adr. 145).

Messwert (Adr. 110.116.122.129.135.141)

Im Messwert steht die Adresse des zu überwachenden Messwertes

Messwert = 0 der Vergleicher ist inaktiv.

• Grenzwert (Adr. 108,114,120,127,133,139)

In den Grenzwert schreiben Sie den Wert der mit dem Messwert verglichen werden soll.

Mindesteinschaltzeit (Adr. 111,117,123,130,136,142) Für die Dauer der Mindesteinschaltzeit bleibt das Ver-

knüpfungsergebnis (Bsp. Adr.610) erhalten. Finstellbereich: 1 bis 32000 Sekunden

Vorlaufzeit (Adr. 112,118,124,131,137,143)

Für mindestens die Dauer der Vorlaufzeit muss eine Grenzwertverletzung vorliegen, dann erst wird das Vergleicherergebnis geändert.

Der Vorlaufzeit können Zeiten im Bereich 1 bis 32000 Sekunden zugewiesen werden.

Operator (Adr.113,119,125,132,138,144)

Für den Vergleich von Messwert und Grenzwert stehen zwei Operatoren zur Verfügung.

Operator = 0 entspricht größer gleich (>=)

Operator = 1 entspricht kleiner (<)

• Vergleicherergebnis (Adr.610.611.612.613.614.615)

Das Ergebnis aus dem Vergleich zwischen Messwert und Grenzwert steht im Vergleicherergebnis.

Dabei entspricht:

0 = Es liegt keine Grenzwertverletzung vor.

1 = Es lieat eine Grenzwertverletzung vor.

Gesamtlaufzeit

Die Summe aller Zeiten für die eine Grenzwertverletzung im Vergleicherergebnis stand.

• Verknüpfen (Adr. 107,126)

Die Ergebnisse der Vergleicher A, B und C UND oder ODER verknüpfen.

• Verknüpfen (Adr. 107,126)

Die Ergebnisse der Vergleicher A, B und C UND oder ODER verknüpfen.

Gesamtverknüpfungsergebnis (Adr.616,617)

Die verknüpften Vergleicherergebnisse der Vergleicher A. B und C stehen im Gesamtverknüpfungsergebnis.

Parameterliste Vergleicher und Digitalausgänge

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
100	SHORT	RD/WR	-	Adresse des Messwertes,		
				Digitalausg. 1	032000	874
101	SHORT	RD/WR	-	Adresse des Messwertes,		
100	FI 0.4T	DD 44/D		Digitalausg. 2	032000	882
102	FLOAT	RD/WR	Wh	Impulswertigkeit, Digitalausgang 1	-1000000+1000000	1000
104	FLOAT	RD/WR	Wh	Impulswertigkeit,	-1000000+1000000	1000
104	ILOAI	I IID/WIII	VVII	Digitalausgang 2	-1000000+1000000	1000
106	SHORT	RD/WR	10ms	Mindestimpulslänge (1=10ms)	10000001111000000	
				Digitalausg. 1/2	11000	5 (=50ms)
107	SHORT	RD/WR	-	Ergebnis der Vergleichergruppe 1;	0,1	0
				A, B, C verknüpfen		
100	FLOAT	DDAMD		(1=und, 0=oder)	1012 1 . 1012 1	0
108 110	FLOAT SHORT	RD/WR RD/WR	-	Vergleicher 1A, Grenzwert Vergleicher 1A.	-10 ¹² -1+10 ¹² -1	0
110	SHUNI	ND/WN	-	Adresse des Messwertes	032000	0
111	SHORT	RD/WR	s	Vergleicher 1A,	002000	O
		,		Mindesteinschaltzeit	032000	0
112	SHORT	RD/WR	s	Vergleicher 1A, Vorlaufzeit	032000	0
113	SHORT	RD/WR	-	Vergleicher 1A, Operator	0,1	0
				">="=0, "<"=1	1010 1 1010 1	
114	FLOAT	RD/WR	-	Vergleicher 1B, Grenzwert	-10 ¹² -1+10 ¹² -1	0
116	SHORT	RD/WR	-	Vergleicher 1B, Adresse des Messwertes	032000	0
117	SHORT	RD/WR	s	Vergleicher 1B,	002000	O
	33111	,		Mindesteinschaltzeit	032000	0
118	SHORT	RD/WR	s	Vergleicher 1B, Vorlaufzeit 032000 0		0
119	SHORT	RD/WR	-	Vergleicher 1B, Operator 0,1 0		0
				">="=0 "<"=1		
120	FLOAT	RD/WR	-	Vergleicher 1C, Grenzwert	-10 ¹² -1+10 ¹² -1	0

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
122	SHORT	RD/WR	-	Vergleicher 1C,		
				Adresse des Messwertes	032000	0
123	SHORT	RD/WR	S	Vergleicher 1C, Mindesteinschaltzeit	0.00000	0
124	SHORT	RD/WR	s	Vergleicher 1C, Vorlaufzeit	032000	0
125	SHORT	RD/WR	-	Vergleicher 1C, Operator	052000	0
				">="=0 "<"=1		
126	SHORT	RD/WR	-	Ergebnis der Vergleichergruppe 2;	0,1	0
				A, B, C verknüpfen		
127	FLOAT	RD/WR	_	(1=und, 0=oder) Vergleicher 2A, Grenzwert	-10 ¹² -1+10 ¹² -1	0
129	SHORT	RD/WR	_	Vergleicher 2A, Grenzwert Vergleicher 2A,	-10 -1+10 -1	
				Adresse des Messwertes	032000	0
130	SHORT	RD/WR	s	Vergleicher 2A,		
101	OLIOPT	DD 44/D		Mindesteinschaltzeit	032000	0
131 132	SHORT	RD/WR RD/WR	S	Vergleicher 2A, Vorlaufzeit Vergleicher 2A, Operator	032000 0,1	0
132	SHUNI	ND/WN	-	">="=0 ,<"=1	0,1	0
133	FLOAT	RD/WR	-	Vergleicher 2B, Grenzwert	-10 ¹² -1+10 ¹² -1	0
135	SHORT	RD/WR	-	Vergleicher 2B,		
				Adresse des Messwertes	032000	0
136	SHORT	RD/WR	S	Vergleicher 2B, Mindesteinschaltzeit	032000	0
137	SHORT	RD/WR	S	Vergleicher 2B, Vorlaufzeit	032000	0
138	SHORT	RD/WR	-	Vergleicher 2B, Operator	0,1	0
				">="=0 "<"=1	-,	
139	FLOAT	RD/WR	-	Vergleicher 2C, Grenzwert	-10 ¹² -1+10 ¹² -1	0
141	SHORT	RD/WR	-	Vergleicher 2C,		
142	SHORT	RD/WR	s	Adresse des Messwertes 032000 0 Vergleicher 2C,		U
172	3110111	. 10/ 7711	3	Mindesteinschaltzeit	032000	0

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
143 144	SHORT SHORT	RD/WR RD/WR	s -	Vergleicher 2C, Vorlaufzeit Vergleicher 2C, Operator ">=" = 0 ,<" = 1	032000 0,1	0
200 201 202 203	SHORT SHORT SHORT	RD/WR RD/WR RD/WR	-	Auswahl der Quelle für Digitalausgang 1 Inverter Digitalausgang 1 Auswahl der Quelle für Digitalausgang 2 Inverter Digitalausgang 2	04 *1 01 *2 04 *1 01 *2	1 0 1 0
602 605 608 609 610 611 612 613 614 615 616	SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT	RD/WR RD/WR RD RD RD RD RD RD RD RD RD RD RD RD		Wert für Ausgang 1 Wert für Ausgang 2 Zustand Ausgang 1 Zustand Ausgang 2 Vergleicherergebnis 1 Ausgang A Vergleicherergebnis 1 Ausgang B Vergleicherergebnis 1 Ausgang C Vergleicherergebnis 2 Ausgang A Vergleicherergebnis 2 Ausgang B Vergleicherergebnis 2 Ausgang C Verknüpfungsergebnis Vergleichergru Verknüpfungsergebnis Vergleichergru	0, 1 0, 1	

^{*1 0=}Vergleichergruppe, 1=Impulsausgang, 2=reserviert, 3=reserviert, 4=reserviert *2 0=nicht invertiert, 1=invertiert

Service und Wartung

Das Gerät wird vor der Auslieferung verschiedenen Sicherheitsprüfungen unterzogen und mit einem Siegel gekennzeichnet. Wird ein Gerät geöffnet, so müssen die Sicherheitsprüfungen wiederholt werden. Eine Gewährleistung wird nur für ungeöffnete Geräte übernommen.

Instandsetzung und Kalibration

Instandsetzungsarbeiten und Kalibration können nur vom Hersteller durchgeführt werden.

Frontfolie

Die Reinigung der Frontfolie kann mit einem weichen Tuch und haushaltsüblichen Reinigungsmitteln erfolgen. Säuren und säurehaltige Mittel dürfen zum Reinigen nicht verwendet werden.

Entsorgung

Das UMG 96RM-M kann als Elektronikschrott gemäß den gesetzlichen Bestimmungen der Wiederverwertung zugeführt werden.

Service

Sollten Fragen auftreten, die nicht in diesem Handbuch beschrieben sind, wenden Sie sich bitte direkt an den Hersteller

Für die Bearbeitung von Fragen benötigen wir von Ihnen unbedingt folgende Angaben:

- Gerätebezeichnung (siehe Typenschild),
- Seriennummer (siehe Typenschild),
- Software Release (siehe Messwertanzeige),
- Messspannung und Versorgungsspannung,
- genaue Fehlerbeschreibung.

Gerätejustierung

Die Geräte werden vor Auslieferung vom Hersteller justiert - eine Nachjustierung ist bei Einhaltung der Umgebungsbedingungen nicht notwendig.

Kalibrierintervalle

Nach jeweils ca. 5 Jahren wird eine Neukalibrierung vom Hersteller oder von einem akkreditiertem Labor empfohlen.

Fehlermeldungen

Das UMG 96RM-M zeigt im Display drei verschiedene Fehlermeldungen:

- Warnungen,
- schwerwiegende Fehler und
- Messbereichsüberschreitungen.

Bei Warnungen und schwerwiegenden Fehlern wird die Fehlermeldung durch das Symbol "EEE" gefolgt mit einer Fehlernummer dargestellt.

Die dreistellige Fehlernummer setzt sich aus der Fehlerbeschreibung und - falls vom UMG 96RM-M feststellbareiner oder mehreren Fehlerursachen zusammen

Beispiel Fehlermeldung 911:

Die Fehlernummer setzt sich aus dem schwerwiegenden Fehler 910 und der internen Fehlerursache 0x01 zusammen.

In diesem Beispiel ist ein Fehler beim Lesen der Kalibrierung aus dem EE-PROM aufgetreten. Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

Warnungen

Warnungen sind weniger schwerwiegende Fehler und können mit der Taste 1 oder Taste 2 quittiert werden. Die Erfassung und Anzeige von Messwerten läuft weiter. Dieser Fehler wird nach jeder Spannungswiederkehr neu angezeigt.

Fehler	Fehlerbeschreibung					
EEE	Die Netzfrequenz konnte nicht ermittelt					
500	werden.					
	Mögliche Ursachen:					
	Die Spannung an L1 ist zu klein.					
	Die Netzfrequenz liegt nicht im Bereich					
	45 bis 65Hz.					

Interne Fehlerursachen

Das UMG 96RM-M kann in manchen Fällen die Ursache für einen internen Fehler feststellen und dann mit folgendem Fehlercode melden. Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

Fehler	Fehlerbeschreibung			
0x01	EEPROM antwortet nicht.			
0x02	Adressbereichsüberschreitung.			
0x04	Checksummenfehler.			
0x08	Fehler im internen I2C-Bus.			

Schwerwiegende Fehler

Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

Fehler	Fehlerbeschreibung
EEE	Fehler beim Lesen der Kalibrierung.
910	

Messbereichsüberschreitung

Messbereichsüberschreitungen werden so lange sie vorliegen angezeigt und können nicht quittiert werden. Eine Messbereichsüberschreitung liegt dann vor, wenn mindestens einer der drei Spannungs- oder Strommesseingänge ausserhalb seines spezifizierten Messbereiches liegt.

Mit den Pfeilen "nach oben" wird die Phase markiert in welcher die Messbereichsüberschreitung aufgetreten ist. Die Symbole "V" und "A" zeigen, ob die Messbereichsüberschreitung im Strom- oder Spannungspfad aufgetreten ist.

Grenzwerte für Messbereichsüberschreitung:

$$\begin{array}{lll} I & = & 7 \text{ Aeff} \\ U_{L\text{-N}} & = & 300 \text{ V}_{rms} \end{array}$$

Beispiele

Abb.: Anzeige Messbereichsüberschreitung im Strompfad der 2. Phase (I2).

Abb.: Anzeige Messbereichsüberschreitung im Spannungspfad L3.

Parameter Messbereichsüberschreitung

Eine weiterführende Fehlerbeschreibung wird kodiert im Parameter Messsbereichsüberschreitung (Adr. 600) nach folgendem Format abgelegt:

	0x	F	F	F	F	F	F	F	F	
Phase 1:			1		1					
Phase 2:			2		2					
Phase 3:			4		4					
			Strom:		U L-N					

Beispiel: Fehler in Phase 2 im Strompfad:

0x**F2FFFFF**

Beispiel: Fehler in Phase 3 im Spannungspfad UL-N:

0xFFF4FFF

Vorgehen im Fehlerfall

Fehlermöglichkeit	Ursache	Abhilfe	
Keine Anzeige	Externe Sicherung für die Versorgungs- spannung hat ausgelöst.	Sicherung ersetzen.	
Keine Stromanzeige	Messspannung nicht angeschlossen.	Messspannung anschließen.	
	Messstrom nicht angeschlossen.	Messstrom anschließen.	
Angezeigter Strom ist zu groß oder zu	Strommessung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
klein.	Stromwandlerfaktor falsch programmiert.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmie- ren.	
	Der Stromscheitelwert am Messeingang wurde durch Stromoberschwingungen überschritten.	Stromwandler mit einem größeren Stromwandler-Übersetzungsverhältnis einbauen.	
	Der Strom am Messeingang wurde unterschritten.	Stromwandler mit einem kleineren Stromwandler-Übersetzungsverhältnis einbauen.	
Angezeigte Spannung ist zu klein oder	Messung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
zu groß.	Spannungswandler falsch programmiert.	Spannungswandler-Übersetzungsverhält- nis am Spannungswandler ablesen und programmieren.	
Angezeigte Spannung ist zu klein.	Messbereichsüberschreitung.	Spannungswandler verwenden.	
	Der Spannungsscheitelwert am Messeingang wurde durch Oberschwingungen überschritten.	Achtung! Es muss sichergestellt sein, dass die Messeingänge nicht überlastet werden.	

Fehlermöglichkeit	Ursache	Abhilfe		
Phasenverschiebung ind/kap.	Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.		
Wirkleistung zu klein oder zu groß.	Das programmierte Stromwandler-Übersetzungsverhältnis ist falsch.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmie- ren		
	Der Strompfad ist dem falschen Span- nungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.		
	Das programmierte Spannungswandler- Übersetzungsverhältnis ist falsch.	Spannungswandler-Übersetzungsverhält- nis am Spannungswandler ablesen und programmieren.		
Wirkleistung Bezug / Lieferung ist vertauscht.	Mindestens ein Stromwandleranschluss ist vertauscht.	Anschluss überprüfen und ggf. korrigieren.		
	Ein Strompfad ist dem falschen Span- nungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.		
Ein Ausgang reagiert nicht.	Der Ausgang wurde falsch programmiert.	Programmierung überprüfen und ggf. korrigieren.		
	Der Ausgang wurde falsch angeschlossen.	Anschluss überprüfen und ggf. korrigieren.		
"EEE" im Display	Siehe Fehlermeldungen.			
Keine Verbindung zum Gerät.	Falsche Geräteadresse	Geräteadresse korrigieren.		
	Unterschiedliche Bus-Geschwindigkeiten (Baudrate)	Geschwindigkeit (Baudrate) korrigieren.		
Trotz obiger Maßnahmen funktioniert das Gerät nicht.	Gerät defekt.	Gerät zur Überprüfung an den Hersteller mit einer genauen Fehlerbeschreibung einschicken.		

Technische Daten

Allgemein					
Nettogewicht (mit aufgesetzten Steckverbindern)	300g				
Verpackungsgewicht (inkl. Zubehör)	625g				
Geräteabmessungen	ca. I = 42mm, b = 97mm, h = 100mm				
Lebensdauer der Hintergrundbeleuchtung	40000h (50% der ursprünglichen Helligkeit)				

Transport und Lagerung Die folgenden Angaben gelten für Geräte, die in der Originalverpackung transportiert bzw. gelagert werden.					
Freier Fall 1m					
Temperatur	K55 (-25°C bis +70°C)				
Relative Luftfeuchte	0 bis 90 % RH				

Umgebungsbedingungen im Betrieb						
Das UMG 96RM-M ist für den wettergeschützten, ortsfesten Einsatz vorgesehen. Schutzklasse II nach IEC 60536 (VDE 0106, Teil 1).						
Bemessungstemperaturbereich	K55 (-10°C +55°C)					
Relative Luftfeuchte	0 bis 75 % RH					
Betriebshöhe	0 2000m über NN					
Verschmutzungsgrad	2					
Einbaulage	senkrecht					
Lüftung	eine Fremdbelüftung ist nicht erforderlich.					
Fremdkörper- und Wasserschutz - Front - Rückseite - Front mit Dichtung	IP40 nach EN60529 IP20 nach EN60529 IP54 nach EN60529					

Versorgungsspannung					
Option 230V	Nennbereich 90V - 277V (50/60Hz) oder DC 90V - 250V; 300V CATII				
	Leistungsaufnahme	max. 4,5VA / 2W			
Option 24V	Nennbereich	24V - 90V AC / DC; 150V CATIII			
	Leistungsaufnahme	max. 2,5VA / 2W			
Arbeitsbereich	+-10% vom Nennbereich				
Interne Sicherung, nicht austauschbar	Тур T1A / 250V/277V gemäß IEC 60127				
Empfohlene Überstromschutzeinrichtung für den Leitungsschutz (Zulassung nach UL)		Option 230V: 6 - 16A Option 24V: 6 - 16A			

Empfehlung zur maximalen Geräteanzahl an einem Leitungsschutzschalter:

Option 230V: Leitungsschutzschalter B6A: max. 4 Geräte / Leitungsschutzschalter B16A: max. 12 Geräte Option 24V: Leitungsschutzschalter B6A: max. 12 Geräte / Leitungsschutzschalter B16A: max. 35 Geräte

Anschlussvermögen der Klemmstellen (Versorgungsspannung) Anschließbare Leiter. Pro Klemmstelle darf nur ein Leiter angeschlossen werden!			
Eindrähtige, mehrdrähtige, feindrähtige 0,2 - 2,5mm², AWG 26 - 12			
Stiftkabelschuhe, Aderendhülsen 0,2 - 2,5mm²			
Anzugsdrehmoment 0,4 - 0,5Nm			
Abisolierlänge 7mm			

Ausgänge 2 Digitale Ausgänge, Halbleiterrelais, nicht kurzschlussfest.			
Schaltspannung max. 33V AC, 60V DC			
Schaltstrom	max. 50mAeff AC/DC		
Reaktionszeit	10/12 Perioden + 10ms *		
Impulsausgang (Energie-Impulse)	max. 50Hz		

^{*} Reaktionszeit z. B. bei 50 Hz: 200ms + 10ms = 210 ms

Anschlussvermögen der Klemmstellen (Ausgänge)			
Starr/flexibel	0,14 - 1,5mm², AWG 28-16		
Flexibel mit Aderendhülsen ohne Kunststoffhülse	0,20 - 1,5mm ²		
Flexibel mit Aderendhülsen mit Kunststoffhülse	0,20 - 1,5mm ²		
Anzugsdrehmoment	0,20 - 0,25Nm		
Abisolierlänge	7mm		

Spannungsmessung				
Dreiphasen 4-Leitersysteme mit Nennspannungen bis	277V/480V (+-10%)			
Dreiphasen 3-Leitersysteme, ungeerdet, mit Nennspannungen bis	IT 480V (+-10%)			
Überspannungskategorie	300V CAT III			
Bemessungsstoßspannung	4kV			
Messbereich L-N	01) 300Vrms (max. Überspannung 520Vrms)			
Messbereich L-L	01) 520Vrms (max. Überspannung 900Vrms)			
Auflösung	0,01V			
Crest-Faktor	2,45 (bezogen auf den Messbereich)			
Impedanz	4MOhm/Phase			
Leistungsaufnahme	ca. 0,1VA			
Abtastfrequenz	21,33kHz (50Hz), 25,6 kHz (60Hz) je Messkanal			
Frequenz der Grundschwingung - Auflösung	45Hz 65Hz 0,01Hz			

¹⁾ Das UMG 96RM-M kann nur dann Messwerte ermitteln, wenn am Spannungsmesseingang V1 eine Spannung L1-N von größer 20Veff (4-Leitermessung) oder eine Spannung L1-L2 von größer 34Veff (3-Leitermessung) anliegt.

Strommessung			
Nennstrom	5A		
Messbereich	0 6Arms		
Crest-Faktor	1,98		
Auflösung	0,1mA (Display 0,01A)		
Überspannungskategorie	300V CAT II		
Bemessungsstoßspannung	2kV		
Leistungsaufnahme	ca. 0,2 VA (Ri=5mOhm)		
Überlast für 1 Sek.	120A (sinusförmig)		
Abtastfrequenz	21,33kHz (50Hz), 25,6 kHz (60Hz) je Messkanal		

Anschlussvermögen der Klemmstellen (Spannungs- und Strommessung) Anschließbare Leiter. Pro Klemmstelle darf nur ein Leiter angeschlossen werden!					
Strom Spannung					
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 2,5mm², AWG 26-12	0,08 - 4,0mm², AWG 28-12			
Stiftkabelschuhe, Aderendhülsen 0,2 - 2,5mm² 0,2 - 2,5mm²					
Anzugsdrehmoment 0,4 - 0,5Nm 0,4 - 0,5Nm					
Abisolierlänge 7mm 7mm					

Serielle Schnittstelle	
M-Bus	300, 600, 1200, 2400, 4800, 9600, 19200, 38400 Baud
M-Bus-Gerätelast	max. 20 mA
Abisolierlänge	7mm

Anschlussvermögen der Klemmstellen (serielle Schnittstelle)			
Eindrähtige, mehrdrähtige, feindrähtige	0,20 - 1,5mm ²		
Stiftkabelschuhe, Aderendhülsen	0,20 - 1,5mm²		
Anzugsdrehmoment	0,20 - 0,25Nm		
Abisolierlänge	7mm		

Kenngrößen von Funktionen

Funktion	Symbol	Genauigkeitsklasse	Messbereich	Anzeigebereich
Gesamt-Wirkleistung	Р	0,5 ⁵⁾ (IEC61557-12)	0 5,4 kW	0 W 999 GW *
Gesamt-Blindleisung	QA, Qv	1 (IEC61557-12)	0 5,4 kvar	0 varh 999 Gvar *
Gesamt-Scheinleistung	SA, Sv	0,5 ⁵⁾ (IEC61557-12)	0 5,4 kVA	0 VA 999 GVA *
Gesamt-Wirkenergie	Ea	0,5S ^{5) 6)} (IEC61557-12)	0 5,4 kWh	0 Wh 999 GWh *
Gesamt-Blindenergie	ErA, ErV	1 (IEC61557-12)	0 5,4 kvarh	0 varh 999 Gvarh *
Gesamt-Scheinenergie	EapA, EapV	0,5 ⁵⁾ (IEC61557-12)	0 5,4 kVAh	0 VAh 999 GVAh *
Frequenz	f	0,05 (IEC61557-12)	45 65 Hz	45,00 Hz 65,00 Hz
Phasenstrom	1	0,2 (IEC61557-12)	0 6 Arms	0 A 999 kA
Neutralleiterstrom gemessen	IN	-	-	-
Neutralleiterstrom berechnet	INc	1,0 (IEC61557-12)	0,03 25 A	0,03 A 999 kA
Spannung	U L-N	0,2 (IEC61557-12)	10 300 Vrms	0 V 999 kV
Spannung	U L-L	0,2 (IEC61557-12)	18 520 Vrms	0 V 999 kV
Leistungsfaktor	PFA, PFV	0,5 (IEC61557-12)	0,00 1.00	0,00 1,00
Kurzzeit-Flicker, Langzeitflicker	Pst, Plt	-	-	-
Spannungseinbrüche (L-N)	Udip	-	-	-
Spannungsüberhöhungen (L-N)	Uswl	-	-	-
Transiente Überspannungen	Utr	-	-	-
Spannungsunterbrechnungen	Uint	-	-	-
Spannungsunsymmetrie (L-N) 1)	Unba	-	-	-
Spannungsunsymmetrie (L-N) 2)	Unb	-	-	-
Spannungsoberschwingungen	Uh	KI. 1 (IEC61000-4-7)	bis 2,5 kHz	0 V 999 kV
THD der Spannung 3)	THDu	1,0 (IEC61557-12)	bis 2,5 kHz	0 % 999 %
THD der Spannung 4)	THD-Ru	-	-	-

Funktion	Symbol	Genauigkeitsklasse	Messbereich	Anzeigebereich
Strom-Oberschwingungen	lh	Kl. 1 (IEC61000-4-7)	bis 2,5 kHz	0 A 999 kA
THD des Stromes 3)	THDi	1,0 (IEC61557-12)	bis 2,5 kHz	0 % 999 %
THD des Stromes 4)	THD-Ri	-	-	-
Netzsignalspannung	MSV	-	-	-

- 1) Bezug auf die Amplitude.
- Bezug auf Phase und auf Amplitude.
- 3) Bezug auf die Grundschwingung.
- Bezug auf den Effektivwert.
- 5) Genauigkeitsklasse 0,5 mit ../5A Wandler. Genauigkeitsklasse 1 mit ../1A Wandler.
- 6) Genauigkeitsklasse 0,5S nach IEC62053-22
- Beim Erreichen der max. Gesamt-Arbeitswerte springt die Anzeige auf 0 W zurück.

Parameter- und Adressenliste

In dem Auszug der folgenden Parameterliste stehen Einstellungen, die für den korrekten Betrieb des UMG 96RM-M notwendig sind, wie z.B. Stromwandler und Geräteadresse. Die Werte in der Parameterliste können beschrieben und gelesen werden.

In dem Auszug der Messwertliste sind die gemessenen und berechneten Messwerte, Zustandsdaten der Ausgänge und protokollierte Werte zum Auslesen abgelegt.

Tabelle 1 - Parameterliste

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
0	SHORT	RD/WR	-	Primär-Geräteadresse	0255 ^(*1)	1
1	SHORT	RD/WR	kbps	Baudrate (0=300, 1=600, 2=1200, 3= 2400, 4=4800, 5=9600. 6=19200, 7=38400 Baud	07	5
3	SHORT	RD/WR		nur zum internen Gebrauch		
10	FLOAT	RD/WR	Α	Stromwandler I1, primär	01000000 (*2)	5
12	FLOAT	RD/WR	Α	Stromwandler I1, sek.	15	5
14	FLOAT	RD/WR	V	Spannungswandler V1, prim.	01000000 ^(*2)	400
16	FLOAT	RD/WR	V	Spannungswandler V1, sek.	100, 400	400
18	FLOAT	RD/WR	Α	Stromwandler I2, primär	01000000 ^(*2)	5
20	FLOAT	RD/WR	Α	Stromwandler I2, sek.	15	5
22	FLOAT	RD/WR	V	Spannungswandler V2, prim.	01000000	400

⁽¹⁾ Die Werte 0 und 248 bis 255 sind reserviert und dürfen nicht verwendet werden.

⁽²⁾ Der einstellbare Wert 0 ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

26 F 28 F	FLOAT FLOAT FLOAT	RD/WR	v			
32 F	FLOAT FLOAT SHORT	RD/WR RD/WR RD/WR RD/WR RD/WR	A A V V Hz	Spannungswandler V2, sek. Stromwandler I3, primär Stromwandler I3, sek. Spannungswandler V3, prim. Spannungswandler V3, sek. Frequenzermittlung 0=Auto, 45 65=Hz	100, 400 01000000 15 01000000 100, 400 0, 45 65	400 5 5 400 400 0
	SHORT	RD/WR RD/WR	-	Kontrast der Anzeige 0 (niedrig), 9 (hoch) Hintergrundbeleuchtung 0 (dunkel), 9 (hell)	09	5
38 S	SHORT	RD/WR RD/WR	5	Anzeigen-Profil 0=vorbelegtes Anzeigen-Profil 1=vorbelegtes Anzeigen-Profil 2=vorbelegtes Anzeigen-Profil 3=nur für den internen Gebrauch Anzeigen-Wechsel-Profil 02=vorbelegte Anzeigen- Wechsel-Profile Wechselzeit	03	0
41 S 42 S	SHORT SHORT SHORT	RD/WR RD/WR RD/WR	- - -	Mittelungszeit, I Mittelungszeit, P Mittelungszeit, U	0 8* 0 8* 0 8*	6 6 6
	SHORT	RD/WR	mA -	Ansprechschwelle Strommessung 11 13 Passwort	0 200	5 0 (Kein Passwort)

^{*} 0 = 5Sek.; 1 = 10Sek.; 2 = 15Sek.; 3 = 30Sek.; 4 = 1Min.; 5 = 5Min.; 6 = 8Min.; 7 = 10Min.; 8 = 15Min.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
81	SHORT	RD/WR	-	Sekundär-Adresse,	099	
				erweiterter Teilbereich 1		
82	SHORT	RD/WR	-	Sekundär-Adresse,	099	
				erweiterter Teilbereich 2		
83	SHORT	RD/WR	-	Sekundär-Adresse	099	
				erweiterter Teilbereich 3		
84	SHORT	RD/WR	-	Sekundär-Adresse	099	
				erweiterter Teilbereich 4	0	
500	SHORT	RD/WR	-	Anschlussbelegung, I L1	-30+3 ¹)	+1
501	SHORT	RD/WR	-	Anschlussbelegung, I L2	-30+3 ¹)	+2
502	SHORT	RD/WR	-	Anschlussbelegung, I L3	-30+3 ¹⁾	+3
503	SHORT	RD/WR	-	Anschlussbelegung, U L1	03 1)	1
504	SHORT	RD/WR	-	Anschlussbelegung, U L2	03 1)	2
505	SHORT	RD/WR	-	Anschlussbelegung, U L3	03 1)	3
506	SHORT	RD/WR	-	Min- und Maxwerte löschen	01	0
507	SHORT	RD/WR	-	Energiezähler löschen	01	0
508	SHORT	RD/WR	-	EEPROM beschreiben erzwingen	01	0
Hinweis	Hinweis: Energiewerte und Min-Maxwerte werden alle 5 Minuten in den EEPROM geschrieben.					
509	SHORT	RD/WR	_	Anschlußbild Spannung	08 2)	0
510	SHORT	RD/WR	-	Anschlußbild Strom	08	0
511	SHORT	RD/WR	-	Relevante Spannung für		
				THD und FFT	0, 1	0
Im Disc	 plav können d	 lie Spannunge	 n für THD und	l FFT als L-N oder als L-L Werte angeze	 iat werden. 0=LN. 1=LL	
2.00	l		l		 	-
600	UINT	RD/WR	-	Messbereichsüberschreitung	00xFFFFFFF	
746	SHORT	RD/WR	S	Zeitraum nach dem in die Standby-		
				Beleuchtung gewechselt wird	60 9999	900
747	SHORT	RD/WR	s	Helligkeit der Standby-Beleuchtung	09	0

 ^{0 =} der Strom- oder Spannungspfad wird nicht gemessen.
 Die Einstellung 8 entspricht der Einstellung 0.

Im Display werden nur die ersten 3 Stellen (###) eines Wertes dargestellt. Werte größer 1000 werden mit "k", gekennzeichnet. Beispiel: 003k = 3000

Tabelle 2 - Adressenliste (häufig benötigte Messwerte)

Adresse	Format	RD/WR	Einheit	Bemerkung
750	SHORT	RD	-	Software Release
754 756	SERNR SERNR	RD RD	-	Seriennummer Produktionsnummer
800 802 804 806	FLOAT FLOAT FLOAT FLOAT	RD RD RD RD	Hz - -	Frequenz Spannung, Neutralsystem Spannung, Gegensystem Spannung, Mitsystem
808 810 812 814 816 818	FLOAT FLOAT FLOAT FLOAT FLOAT	RD RD RD RD RD RD	V V V V	Spannung L1-N Spannung L2-N Spannung L3-N Spannung L1-L2 Spannung L2-L3 Spannung L1-L3
820 822 824 826 828 830	FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT	RD RD RD RD RD RD	- - - -	Fund. Leistungsfaktor, CosPhi; U L1-N IL1 Fund. Leistungsfaktor, CosPhi; U L2-N IL2 Fund. Leistungsfaktor, CosPhi; U L3-N IL3 Sum; CosPhi sum3=POsum3/Ssum3 Leistungsfaktor; U L1-N IL1 Leistungsfaktor; U L2-N IL2
832 834 836 838	FLOAT FLOAT FLOAT FLOAT	RD RD RD RD	- - % %	Leistungsfaktor; U L3-N IL3 Summe; Power Faktor sum3=Psum3/Ssum3 THD, U L1N, bezogen auf U0 L1 THD, U L2N, bezogen auf U0 L2

Adresse	Format	RD/WR	Einheit	Bemerkung
840	FLOAT	RD	%	THD, U L3N, bezogen auf U0 L3
842	FLOAT	RD	%	THD, U L1L2, bezogen auf U0 L1L2
844	FLOAT	RD	%	THD, U L2L3, bezogen auf U0 L2L3
846	FLOAT	RD	%	THD, U L1L3, bezogen auf U0 L1L3
848	FLOAT	RD	V	Spannung, Realteil U1 L1N
850	FLOAT	RD	V	Spannung, Realteil U2 L2N
852	FLOAT	RD	V	Spannung, Realteil U3 L3N
854	FLOAT	RD	V	Spannung, Imaginärteil U L1N
856	FLOAT	RD	V	Spannung, Imaginärteil U L2N
858	FLOAT	RD	V	Spannung, Imaginärteil U L3N
860	FLOAT	RD	Α	Strom I1 L1
862	FLOAT	RD	Α	Strom I2 L2
864	FLOAT	RD	A	Strom I3 L3
866	FLOAT	RD	A	Vektorsumme; IN=I1+I2+I3
868	FLOAT	RD	W	Wirkleistung P1 L1N
870	FLOAT	RD	W	Wirkleistung P2 L2N
872	FLOAT	RD	W	Wirkleistung P3 L3N
874	FLOAT	RD	W	Summe; Psum3=P1+P2+P3
876	FLOAT	RD	var	Fund. Blindleistung Q1 L1N
878	FLOAT	RD	var	Fund. Blindleistung Q2 L2N
880	FLOAT	RD	var	Fund. Blindleistung Q3 L3N
882	FLOAT	RD	var	Summe; Qsum3=Q1+Q2+Q3
884	FLOAT	RD	VA	Scheinleistung S1 L1N
886	FLOAT	RD	VA	Scheinleistung S2 L2N
888	FLOAT	RD	VA	Scheinleistung S3 L3N
890	FLOAT	RD	VA	Summe; Ssum3=S1+S2+S3
892	FLOAT	RD	W	Fund. Wirkleistung P01 L1N
894	FLOAT	RD	W	Fund. Wirkleistung P02 L2N
896	FLOAT	RD	W	Fund. Wirkleistung P03 L3N
898	FLOAT	RD	W	Summe; P0sum3=P01+P02+P03
900	FLOAT	RD	var	Harmonic distortion power D1 L1N
902	FLOAT	RD	var	Harmonic distortion power D2 L2N

Adresse	Format	RD/WR	Einheit	Bemerkung
904	FLOAT	RD	var	Harmonic distortion power D3 L3N
906	FLOAT	RD	var	Summe; Dsum3=D1+D2+D3
908	FLOAT	RD	%	THD1 I1, bezogen auf I01
910	FLOAT	RD	%	THD2 I2, bezogen auf I02
912	FLOAT	RD	%	THD3 I3, bezogen auf I03
914	FLOAT	RD	%	TDD1 I1, bezogen auf den Nenn-Laststrom
916	FLOAT	RD	%	TDD2 I2, bezogen auf den Nenn-Laststrom
918	FLOAT	RD	%	TDD3 I3, bezogen auf den Nenn-Laststrom
920	FLOAT	RD	-	Strom, Nullsystem
922	FLOAT	RD	-	Strom, Gegensystem
924	FLOAT	RD	-	Strom, Mitsystem
926	FLOAT	RD	A	Strom, Realteil I L1
928	FLOAT	RD	A	Strom, Realteil I L2
930	FLOAT	RD	Α	Strom, Realteil I L3
932	FLOAT	RD	A	Strom, Imaginärteil I L1
934	FLOAT	RD	A	Strom, Imaginärteil I L2
936	FLOAT	RD	A	Strom, Imaginärteil I L3
938	FLOAT	RD	-	Drehfeld; 1=rechts, 0=kein, -1=links

Zahlenformate

Тур	Größe	Minimum	Maximum
short	16 bit	-2 ¹⁵	2 ¹⁵ -1
ushort	16 bit	0	216 -1
int	32 bit	-231	231 -1
uint	32 bit	0	232 -1
float	32 bit	IEEE 754	IEEE 754

Hinweis zum Speichern von Messwerten und Konfigurationsdaten:

- Folgende Messwerte werden spätestens alle 5 Minuten gespeichert:
 - Komparatortimer
 - S0-Zählerstände
 - Min. / Max. / Mittelwerte
 - Energiewerte
- Konfigurationsdaten werden sofort gespeichert!

Maßbilder

Alle Angaben in mm.

Rückansicht

Seitenansicht

Ansicht von unten

Ausbruchmaß

Übersicht Messwertanzeigen (mit Angabe der zugehörigen Profilanzeigen)

Δ	A01 (Profil: 1,2,3)	> B01 (Profil: 1,2,3) ▷	C01 (Profil: 1,2,3)	D01 (Profil: 1,2,3)
	Messwerte L1-N Spannung L2-N Spannung L3-N Spannung	Mittelwerte L1-N Spannung L2-N Spannung L3-N Spannung	Maxwerte L1-N Spannung L2-N Spannung L3-N Spannung	Minwerte L1-N Spannung L2-N Spannung L3-N Spannung
Δ	A02 (Profil: 1,2,3)	B02 (Profil: 1,2,3)	C02 (Profil: 1,2,3)	D02 (Profil: 1,2,3)
	Messwerte L1-L2 Spannung L2-L3 Spannung L3-L1 Spannung	Mittelwerte L1-L2 Spannung L2-L3 Spannung L3-L1 Spannung	Maxwerte L1-L2 Spannung L2-L3 Spannung L3-L1 Spannung	Minwerte L1-L2 Spannung L2-L3 Spannung L3-L1 Spannung
Δ	A03 (Profil: 1,2,3)	B03 (Profil: 1,2,3)	C03 (Profil: 1,2,3)	D03 (Profil: 1,2,3)
	Messwerte L1 Strom L2 Strom L3 Strom	Mittelwerte L1 Strom L2 Strom L3 Strom	Maxwerte L1 Strom L2 Strom L3 Strom	Maxwerte (Mittelw.) L1 Strom L2 Strom L3 Strom
Δ	A04 (Profil: 1,2,3)	B04 (Profil: 1,2,3)	C04 (Profil: 1,2,3)	D04 (Profil: 1,2,3)
	Messwert Summe Strom im N	Mittelwert Summe Strom im N	Maxwert Summe Messwert Strom im N	Maxwerte Summe Mittelwert Strom im N
Δž	A05 (Profil: 1,2,3)	B05 (Profil: 1,2,3)	C05 (Profil: 1,2,3)	
	Messwerte L1 Wirkleistung L2 Wirkleistung L3 Wirkleistung	Mittelwert L1 Wirkleistung L2 Wirkleistung L3 Wirkleistung	Maxwerte L1 Wirkleistung L2 Wirkleistung L3 Wirkleistung	
Δž	A06 (Profil: 1,2,3)	B06 (Profil: 1,2,3)	C06 (Profil: 1,2,3)	D06 (Profil: 1,2,3)
	Messwert Summe Wirkleistung	Mittelwert Summe Wirkleistung	Maxwert Summe Wirkleistung	Maxwert Summe WirklMittelwert

Anzeigen-Wechsel-Profil 1 A01 - A03 - A06 - A10 - A16 - A17 - A18 - B18 - C18 - A19

Anzeigen-Wechsel-Profil 2:

A01 - A02 - A03 - A04 - A05 - A06 - A07 - A16 - A17 - A18 - B18 - C18 - A19 - A20 - A21 - A22 - A23 - A24 - A25 - A26

Anzeigen-Wechsel-Profil 3: A01 - A03 - A05 - A06 - A16

Konformitätserklärung

Das Produkt erfüllt folgende EG-Richtlinien:	
2004/108/EG	Elektromagnetische Verträglichkeit von Betriebsmitteln.
2006/95/EG	Elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen.
Berücksichtigte Normen:	
Störfestigkeit	
IEC/EN 61326-1:2013	Klasse A: Industriebereich
IEC/EN 61000-4-2:2009	Entladung statischer Elektrizität
IEC/EN 61000-4-3:2011	Elektromagn. Felder 80-2700MHz
IEC/EN 61000-4-4:2013	Schnelle Transienten
IEC/EN 61000-4-5:2007	Stoßspannungen
IEC/EN 61000-4-6:2009	Leitungsgeführte HF-Störungen 0,15-80MHz
IEC/EN 61000-4-8:2010	Netzfrequente Magnetfelder
IEC/EN 61000-4-11:2005	Spannungseinbrüche, Kurzzeitunterbrechungen, Spannungsschwankungen
	und Frequenzänderung
Störaussendung	
IEC/EN 61326-1:2013	Klasse B: Wohnbereich
IEC/CISPR11/EN 55011:2011	Funkstörfeldstärke 30-1000MHz
IEC/CISPR11/EN 55011:2011	Funkstörspannung 0,15-30MHz
Gerätesicherheit	
IEC/EN 61010-1:2011	Sicherheitsbestimmungen für elektrische Mess-, Steuer-,
UL61010-1:2012 3rd Edition	Regel- und Laborgeräte - Teil 1: Allgemeine Anforderungen
CAN/CSA-C22.2 No. 61010-1:2012 3nd Edition	3
IEC/EN 61010-2-030:2011	Besondere Bestimmungen für Prüf- und Messstromkreise

Anschlussbeispiel

- ¹⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (6A Char. B)
- ²⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (10A Class CC / Char. C)
- ³⁾ Kurzschlussbrücken (extern)

Kurzanleitung

Stromwandlereinstellung ändern

In den Programmier-Modus wechseln:

- Fin Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2 für ca. 1 Sekunde. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches für den Primärstrom blinkt

Primärstrom ändern

- Mit Taste 2 die blinkende Ziffer ändern
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden

Sekundärstrom ändern

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden.
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern

Programmier-Modus verlassen

• Der Wechsel in den Anzeige-Modus erfolgt durch ein erneutes gleichzeitiges Drücken der Tasten 1 und 2 für ca. 1 Sekunde.

Messwerte ahrufen

In den Anzeige-Modus wechseln:

- Sollte der Programmier-Modus noch aktiv sein (Darstellung der Symbole PRG und CT im Display), wird über das gleichzeitige Drücken für ca. 1 Sekunde der Tasten 1 und 2 in den Anzeige-Modus gewechselt.
- Eine Messwertanzeige, z. B. für die Spannung, erscheint

Tastensteuerung

- Über Taste 2 erfolgt ein Wechsel der Messwertanzeigen für Strom, Spannung, Leistung usw.
- Über Taste 1 erfolgt ein Wechsel der zum Messwert gehörenden Mittelwerte. Maxwerte usw.

