

ABB - Session 2

Software 2.0, Data Engineering, & Machine Learning

Shaw Talebi

Today's Session

1. Housekeeping

- 1.1. Announcements
- 1.2. Homework 1

2. Software 2.0 ☐

- 2.1. Machine Learning
- 2.2. Data Engineering

3. Example Code []

- 3.1. ETL of Survey Data
- 3.2. Training an ML Model

A Few Adjustments

1) Pre- and post-lecture Q&A (30 min)

2) Code walkthrough format

3) How to upload HW

Homework 1

File Organizer

Vladimir Belony

Automated Birthday Email Sender

Mathew Olajide

Resume Matcher

Saijai Osika

Personalized Mortgage Rate Emailer

Kalyan Mutyala

Report Image Extractor

Deborah Shutt

Football SuperLeague Leaderboard

Peirluigi Chiusolo

Bulk File Copier

Ronnie Rampersad

Radio Station Watcher

Sangeeta Bahri

Arxiv Paper Retriever

Fahad Ebrahim

News Feed Aggregator

Adam Rosenkoetter

Chess Grandmaster Ranking

Ludovic H

Python Project Summarizer

Bryce

iTunes Library Analysis

Rod Morrison

LI Internship Scraper and Emailer

Ewa Gros

Software 1.0

Rules are explicitly programmed into computer

You can do a lot with Software 1.0

But writing robust logic is hard...

... if possible.

Software 1.0

Rules are explicitly programmed into computer

But writing robust logic is hard...

... if possible.

What is this?

Speech to text

Self-driving

Software 2.0

Software 2.0

Programming computers by example (i.e. with data)

Gather spam/not spam examples

Pass to ML algorithm

ML Model

Machine Learning

Programming computers by example (i.e. with data)

Gather spam/not spam examples

Pass to ML algorithm

ML Model

Machine Learning

Programming computers by example (i.e. with data)

3 Flavors of ML

1) Classification

2) Regression

3) Clustering

Flavor 1: Classification

Labeling data with known categories

ABB #1 - Fall 2024

Techniques

Training Data

[2][3]

Flavor 1: Classification

Example: Fraud Detection

Ratio to Median Purchase

Flavor 2: Regression

Predicting a continuous value

Training Data

Techniques

14 **[3][4]** ABB #1 - Fall 2024

Flavor 2: Regression

Example: Estimating Arrival Times

15 **[3]** ABB #1 - Fall 2024

Thunderstorms

45

1100

Flavor 3: Clustering

Grouping data based on similarity

No target needed!

Training Data

Techniques

Flavor 3: Clustering

Example: Customer Segmentation

Age	Sex	Country
25	Male	USA
30	Female	Canada
22	Female	UK
28	Male	Australia
35	Female	Germany
40	Male	France
27	Female	USA
33	Male	Canada
29	Female	UK
31	Male	Australia

Cluster	
2	
1	
2	
1	
3	
3	
2	
1	
1	
1	

1 = Middle-aged, non-European/US

2 = Young, US/UK

3 = Middle-aged, European

Data Engineering

Data Engineering

Making data available for analytics and ML applications

[6][7] ABB #1 - Fall 2024

Data Pipeline

Getting data from point A to point B

Data Pipeline

Getting data from point A to point B

Data Pipeline

Getting data from point A to point B

22 **[7]**

E: Extract

Acquiring data from its source

Custom Extracts

Scraping Public Webpages

Docs from File System

Sensor Data

T: Transform

Translating data into a useful form

Common Tasks

- Managing data types and ranges
- Deduplication
- Imputing missing values

- Handling special characters and values
- Feature engineering

L: Load

Making data available for ML training or inference

Project Directory

MB-scale, few sources, 1 use

Simple Storage

GB-scale, few sources, few uses

Database

GB-scale, many sources, many uses

Data Warehouse

TB-scale, many sources, many uses

Data Lake

PB-scale, many sources, endless uses

ETL of Gmail Data (Overview)

Feature engineering and labeling personal/not personal emails

ETL of Gmail Data (Flowchart)

ETL of Gmail Data (Example)

Training an Email Classifier (Overview)

Dataset of personal and not personal emails

Logistic Regression Trainer

Logistic Regression Model

Training an Email Classifier (Flowchart)

Training an Email Classifier (Example)

Homework 2

Project -

Build a Simple ETL Pipeline

Bonus: train a ML model with it!

Pre-work 🚣

Session 3: Introduction to LLMs

Session 3: Prompt Engineering

Session 3: OpenAl API

References

- [1] Machine learning: the power and promise of computers that learn by example
- [2] sklearn Classifier Comparison
- [3] An Introduction to Decision Trees | Gini Impurity & Python Code
- [4] sklearn Supervised Learning
- [5] sklearn Unsupervised Learning
- [6] How Data Engineering Works
- [7] How to Build Data Pipelines for ML Projects (w/ Python Code)