

Determine by direct integration the centroid of the area shown. Express your answer in terms of a and b.

SOLUTION

For the element (EL) shown on line 1 at

$$x = a, b = k_2 a^2$$
 or $k_2 = \frac{b}{a^2}$

$$\therefore y = \frac{b}{a^2}x^2$$

On line 2 at
$$x = a, -2b = k_1 a^3$$
 or $k_2 = \frac{-2b}{a^3}$

$$k_2 = \frac{-2b}{a^3}$$

$$\therefore y = \frac{-2b}{a^3}x^3$$

$$dA = \left(\frac{b}{a^2}x^2 + \frac{2b}{a^3}x^3\right)dx$$

$$A = \int dA = \int_0^a \frac{b}{a^2} \left(x^2 + \frac{2x^3}{x} \right) dx = \frac{b}{a^2} \left(\frac{x^3}{3} + \frac{2x^4}{4a} \right) \Big|_0^a$$

$$=ab\left(\frac{1}{3}+\frac{1}{2}\right)=\frac{5}{6}ab$$

and
$$\int \overline{x}_{EL} dA = \int_0^a x \left(\frac{b}{a^2} x^2 + \frac{2b}{a^3} x^3 \right) dx = \frac{b}{a^2} \left(\frac{x^4}{4} + \frac{2x^5}{5a} \right) \Big|_0^a = a^2 b \left(\frac{1}{4} + \frac{2}{5} \right)$$

$$=\frac{13}{20}a^2b$$

$$\int \overline{y}_{EL} dA = \int_0^a \frac{1}{2} \left(\frac{b}{a^2} x^2 - \frac{2b}{a^3} x^3 \right) \left[\left(\frac{b}{a^2} x^2 + \frac{2b}{a^3} x^3 \right) dx \right]$$

$$= \int_0^a \frac{1}{2} \left[\left(\frac{b}{a^2} x^2 \right)^2 - \left(\frac{2b}{a^3} x^3 \right)^2 \right] dx = \frac{b^2}{2a^4} \left(\frac{x^5}{5} - \frac{2}{7a^2} x^7 \right) \Big|_0^a$$

$$=b^2a^5\left(\frac{1}{10}-\frac{2}{7}\right)=-\frac{13}{70}ab^2$$

$$\overline{x}A = \int \overline{x}_{EL} dA$$
: $\overline{x} \left(\frac{5}{6} ab \right) = \frac{13}{20} a^2 b$ or $\overline{x} = \frac{39}{50} a$

or
$$\overline{x} = \frac{39}{50}a$$

$$\overline{y}A = \int \overline{y}_{EL} dA$$
: $\overline{y} \left(\frac{5}{6} ab \right) - \frac{13}{70} ab^2$ or $\overline{y} = -\frac{39}{175} b$

or
$$\bar{y} = -\frac{39}{175}b$$

Determine by direct integration the centroid of the area shown. Express your answer in terms of a and b.

SOLUTION

At

$$x = 0, y = b$$

$$b = k(0-a)^{2} \quad \text{or} \quad k = \frac{b}{a^{2}}$$
$$y = \frac{b}{a^{2}}(x-a)^{2}$$

$$\overline{x}_{EL} = x$$
, $\overline{y}_{EL} = \frac{y}{2} = \frac{b}{2a^2} (x - a)^2$

$$dA = ydx = \frac{b}{a^2} (x - a)^2 dx$$

$$A = \int dA = \int_0^a \frac{b}{a^2} (x - a)^2 dx = \frac{b}{3a^2} \left[(x - a)^3 \right]_0^a = \frac{1}{3} ab$$

and
$$\int \overline{x}_{EL} dA = \int_0^a x \left[\frac{b}{a^2} (x - a)^2 dx \right] = \frac{b}{a^2} \int_0^a (x^3 - 2ax^2 + a^2 x) dx$$
$$= \frac{b}{a^2} \left(\frac{x^4}{4} - \frac{2}{3} ax^3 + \frac{a^2}{2} x^2 \right) = \frac{1}{12} a^2 b$$

$$\int \overline{y}_{EL} dA = \int_0^a \frac{b}{2a^2} (x - a)^2 \left[\frac{b}{a^2} (x - a)^2 dx \right] = \frac{b^2}{2a^4} \left[\frac{1}{5} (x - a)^5 \right]_0^a$$
$$= \frac{1}{10} ab^2$$

$$\overline{x}A = \int \overline{x}_{EL} dA$$
: $\overline{x} \left(\frac{1}{3} ab \right) = \frac{1}{12} a^2 b$ $\overline{x} = \frac{1}{4} a \blacktriangleleft$

$$\overline{x} = \frac{1}{4}a$$

$$\overline{y}A = \int \overline{y}_{EL} dA$$
: $\overline{y} \left(\frac{1}{3} ab \right) = \frac{1}{10} ab^2$ $\overline{y} = \frac{3}{10} b$

$$\overline{y} = \frac{3}{10}b$$

Determine by direct integration the centroid of the area shown.

SOLUTION

Have

$$\overline{y}_{EL} = \frac{1}{2}y = \frac{a}{2}\left(1 - \frac{x}{L} + \frac{x^2}{L^2}\right)$$

$$dA = ydx = a\left(1 - \frac{x}{L} + \frac{x^2}{L^2}\right)dx$$

Then $A = \int dA = \int_0^{2L} a \left(1 - \frac{x}{L} + \frac{x^2}{L^2} \right) dx = a \left[x - \frac{x^2}{2L} + \frac{x^3}{3L^2} \right]^{2L} = \frac{8}{3}aL$

and
$$\int \overline{x}_{EL} dA = \int_0^{2L} x \left[a \left(1 - \frac{x}{L} + \frac{x^2}{L^2} \right) dx \right] = a \left[\frac{x^2}{2} - \frac{x^3}{3L} + \frac{x^4}{4L^2} \right]_0^{2L}$$
$$= \frac{10}{3} aL^2$$

$$\int \overline{y}_{EL} dA = \int_0^{2L} \frac{a}{2} \left(1 - \frac{x}{L} + \frac{x^2}{L^2} \right) \left[a \left(1 - \frac{x}{L} + \frac{x^2}{L^2} \right) dx \right]$$

$$= \frac{a^2}{2} \int_0^{EL} \left(1 - 2\frac{x}{L} + 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3} + \frac{x^4}{L^4} \right) dx$$

$$= \frac{a^2}{2} \left[x - \frac{x^2}{L} + \frac{x^3}{L^2} - \frac{x^4}{2L^3} + \frac{x^5}{5L^4} \right]_0^{2L} = \frac{11}{5} a^2 L$$

Hence

$$\overline{x}A = \int \overline{x}_{EL} dA$$
: $\overline{x} \left(\frac{8}{3} aL \right) = \frac{10}{3} aL^2$ $\overline{x} = \frac{5}{4} L \blacktriangleleft$

$$\overline{x} = \frac{5}{4}L$$

$$\overline{y}A = \int \overline{y}_{EL} dA$$
: $\overline{y} \left(\frac{1}{8} a \right) = \frac{11}{5} a^2$ $\overline{y} = \frac{33}{40} a$

$$\overline{y} = \frac{33}{40}a$$

Determine by direct integration the centroid of the area shown. Express your answer in terms of a and b.

SOLUTION

Y X DO DX

For
$$y_1$$
 at $x = a$, $y = 2b$ $2b = ka^2$ or $k = \frac{2b}{a^2}$

Then

$$y_1 = \frac{2b}{a^2}x^2$$

By observation

$$y_2 = -\frac{b}{a}(x+2b) = b\left(2 - \frac{x}{a}\right)$$

Now

$$\overline{x}_{EL} = x$$

and for $0 \le x \le a$:

$$\overline{y}_{EL} = \frac{1}{2} y_1 = \frac{b}{a^2} x^2$$
 and $dA = y_1 dx = \frac{2b}{a^2} x^2 dx$

For $a \le x \le 2a$:

$$\overline{y}_{EL} = \frac{1}{2}y_2 = \frac{b}{2}\left(2 - \frac{x}{a}\right)$$
 and $dA = y_2 dx = b\left(2 - \frac{x}{a}\right) dx$

$$A = \int dA = \int_0^a \frac{2b}{a^2} x^2 dx + \int_a^{2a} b \left(2 - \frac{x}{a} \right) dx$$
$$= \frac{2b}{a^2} \left[\frac{x^3}{3} \right]_0^a + b \left[-\frac{a}{2} \left(2 - \frac{x}{a} \right)^2 \right]_0^{2a} = \frac{7}{6} ab$$

and
$$\int \overline{x}_{EL} dA = \int_0^a x \left(\frac{2b}{a^2} x^2 dx \right) + \int_a^{2a} x \left[b \left(2 - \frac{x}{a} \right) dx \right]$$
$$= \frac{2b}{a^2} \left[\frac{x^4}{4} \right]_0^a + b \left[x^2 - \frac{x^3}{3a} \right]_0^{2a}$$
$$= \frac{1}{2} a^2 b + b \left\{ \left[(2a)^2 - (a)^2 \right] + \frac{1}{3a} \left[(2a^2) - (a)^3 \right] \right\}$$
$$= \frac{7}{6} a^2 b$$

PROBLEM 5.40 CONTINUED

$$\int \overline{y}_{EL} dA = \int_0^a \frac{b}{a^2} x^2 \left[\frac{2b}{a^2} x^2 dx \right] + \int_0^{2a} \frac{b}{2} \left(2 - \frac{x}{a} \right) \left[b \left(2 - \frac{x}{a} \right) dx \right]$$

$$= \frac{2b^2}{a^4} \left[\frac{x^5}{5} \right]_0^a + \frac{b^2}{2} \left[-\frac{a}{3} \left(2 - \frac{x}{a} \right)^3 \right]_a^{2a}$$

$$= \frac{17}{30} ab^2$$

Hence

$$\overline{x}A = \int \overline{x}_{EL} dA$$
: $\overline{x} \left(\frac{7}{6} ab \right) = \frac{7}{6} a^2 b$ $\overline{x} = a \blacktriangleleft$

$$\overline{y}A = \int \overline{y}_{EL} dA$$
: $\overline{y} \left(\frac{7}{6} ab \right) = \frac{17}{30} ab^2$ $\overline{y} = \frac{17}{35} b$

Determine by direct integration the centroid of the area shown. Express your answer in terms of a and b.

SOLUTION

For y_2

at x = a, y = b: $a = kb^2$ or $k = \frac{a}{b^2}$

$$y_2 = \frac{b}{\sqrt{a}} x^{1/2}$$

$$\overline{x}_{FI} = x$$

Now
$$\overline{x}_{EL} = x$$
 and for $0 \le x \le \frac{a}{2}$: $\overline{y}_{EL} = \frac{y_2}{2} = \frac{b}{2} \frac{x^{1/2}}{\sqrt{a}}$, $dA = y_2 dx = b \frac{x^{1/2}}{\sqrt{a}} dx$

For
$$\frac{a}{2} \le x \le a$$
: $\overline{y}_{EL} = \frac{1}{2} (y_1 + y_2) = \frac{b}{2} \left(\frac{x}{a} - \frac{1}{2} + \frac{x^{1/2}}{\sqrt{a}} \right)$

$$dA = (y_2 - y_1)dx = b\left(\frac{x^{1/2}}{\sqrt{a}} - \frac{x}{a} + \frac{1}{2}\right)dx$$

Then
$$A = \int dA = \int_0^{a/2} b \frac{x^{1/2}}{\sqrt{a}} dx + \int_{a/2}^a b \left(\frac{x^{1/2}}{\sqrt{a}} - \frac{x}{a} + \frac{1}{2} \right) dx$$

$$= \frac{b}{\sqrt{a}} \left[\frac{2}{3} x^{3/2} \right]_0^{a/2} + b \left[\frac{2}{3} \frac{x^{3/2}}{\sqrt{a}} - \frac{x^2}{2a} + \frac{1}{2} x \right]_{a/2}^a$$

$$= \frac{2}{3} \frac{b}{\sqrt{a}} \left[\left(\frac{a}{2} \right)^{3/2} + \left(a \right)^{3/2} - \left(\frac{a}{2} \right)^{3/2} \right]$$

$$+ b \left\{ -\frac{1}{2a} \left[\left(a^2 \right) - \left(\frac{a}{2} \right)^2 \right] + \frac{1}{2} \left[\left(a \right) - \left(\frac{a}{2} \right) \right] \right\}$$

$$= \frac{13}{24} ab$$

PROBLEM 5.41 CONTINUED

and
$$\int \overline{x}_{EL} dA = \int_0^{a/2} x \left(b \frac{x^{1/2}}{\sqrt{a}} dx \right) + \int_{a/2}^a x \left[b \left(\frac{x^{1/2}}{\sqrt{a}} - \frac{x}{a} + \frac{1}{2} \right) \right] dx$$

$$= \frac{b}{\sqrt{a}} \left[\frac{2}{5} x^{5/2} \right]_0^{a/2} + b \left[\frac{2}{5} \frac{x^{5/2}}{\sqrt{a}} - \frac{x^3}{3a} + \frac{x^4}{4} \right]_{a/2}^a$$

$$= \frac{2}{5} \frac{b}{\sqrt{a}} \left[\left(\frac{a}{2} \right)^{5/2} + (a)^{5/2} - \left(\frac{a}{2} \right)^{5/2} \right]$$

$$+ b \left\{ -\frac{1}{3a} \left[(a)^3 - \left(\frac{a}{2} \right)^3 \right] + \frac{1}{4} \left[(a)^2 - \left(\frac{a}{2} \right)^2 \right] \right\}$$

$$= \frac{71}{240} a^2 b$$

$$\int \overline{y}_{EL} dA = \int_0^{a/2} \frac{b}{2} \frac{x^{1/2}}{\sqrt{a}} \left[b \frac{x^{1/2}}{\sqrt{a}} dx \right]$$

$$+ \int_{a/2}^a \frac{b}{2} \left(\frac{x}{a} - \frac{1}{2} + \frac{x^{1/2}}{\sqrt{a}} \right) \left[b \left(\frac{x^{1/2}}{\sqrt{a}} - \frac{x}{a} + \frac{1}{2} \right) dx \right]$$

$$= \frac{b^2}{2a} \left[\frac{1}{2} x^2 \right]_0^{a/2} + \frac{b^2}{2} \left[\left(\frac{x^2}{2a} - \frac{1}{3a} \left(\frac{x}{a} - \frac{1}{2} \right)^3 \right) \right]_{a/2}^a$$

$$= \frac{b}{4a} \left[\left(\frac{a}{2} \right)^2 + (a)^2 - \left(\frac{a}{2} \right)^2 \right] - \frac{b^2}{6a} \left(\frac{a}{2} - \frac{1}{2} \right)^3$$

$$= \frac{11}{48} ab^2$$

Hence
$$\overline{x}A = \int \overline{x}_{EL} dA$$
: $\overline{x} \left(\frac{13}{24} ab \right) = \frac{71}{240} a^2 b$ $\overline{x} = \frac{17}{130} a = 0.546a$

$$\overline{y}A = \int \overline{y}_{EL} dA$$
: $\overline{y} \left(\frac{13}{24} ab \right) = \frac{11}{48} ab^2$ $\overline{y} = \frac{11}{26} b = 0.423b$

A homogeneous wire is bent into the shape shown. Determine by direct integration the x coordinate of its centroid. Express your answer in terms of a.

SOLUTION

First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line

Have at

$$x = a, y = a : a = ka^2$$
 or $k = \frac{1}{a}$

Thus

$$y = \frac{1}{a}x^2$$
 and $dy = \frac{2}{a}xdx$

Then

$$dL = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \sqrt{1 + \left(\frac{2}{a}x\right)^2} dx$$

$$\begin{array}{l}
\stackrel{\times}{\times} : L = \int dL = \int_0^a \sqrt{1 + \frac{4}{a^2} x^2} dx = \left[\frac{x}{2} \sqrt{1 + \frac{4x^2}{a^2}} + \frac{a}{4} \ln \left(\frac{2}{a} x + \sqrt{1 + \frac{4x^2}{a^2}} \right) \right] \\
= \frac{a}{2} \sqrt{5} + \frac{a}{4} \ln \left(2 + \sqrt{5} \right) = 1.4789a \\
\int \overline{x}_{EL} dL = \int_0^a x \left(\sqrt{1 + \frac{4x^2}{a^2}} dx \right) = \left[\frac{2}{3} \left(\frac{a^2}{8} \right) \left(1 + \frac{4}{a^2} x^2 \right)^{3/2} \right]_0^a \\
= \frac{a^2}{12} \left(5^{3/2} - 1 \right) = 0.8484a^2
\end{array}$$

$$\overline{x}L = \int \overline{x}_{EL} dL$$
: $\overline{x} (1.4789a) = 0.8484a^2$ $\overline{x} = 0.574a$

$$x = 0.574a$$

Thus

A homogeneous wire is bent into the shape shown. Determine by direct integration the *x* coordinate of its centroid.

SOLUTION

First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line

Now $\overline{x}_{EL} = r \cos \theta$ and $dL = rd \theta$

Then $L = \int dL = \int_{\pi/4}^{7\pi/4} r d\theta = r \left[\theta\right]_{\pi/4}^{7\pi/4} = \frac{3}{2} \pi r$

 $\int \overline{x}_{EL} dL = \int_{\pi/4}^{7\pi/4} r \cos\theta \left(r d\theta \right)$

 $= r^{2} \left[\sin \theta \right]_{\pi/4}^{7\pi/4} = r^{2} \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = -r^{2} \sqrt{2}$

 $\overline{x}L = \int \overline{x}dL$: $\overline{x}\left(\frac{3}{2}\pi r\right) = -r^2\sqrt{2}$ $\overline{x} = -\frac{2\sqrt{2}}{3\pi}r$

A homogeneous wire is bent into the shape shown. Determine by direct integration the *x* coordinate of its centroid.

SOLUTION

First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line

$$\overline{x}_{FL} = a\cos^3\theta$$

$$\overline{x}_{EL} = a\cos^3\theta$$
 and $dL = \sqrt{dx^2 + dy^2}$

Where

$$x = a\cos^3\theta$$
: $dx = -3a\cos^2\theta\sin\theta d\theta$

$$y = a\sin^3\theta$$

$$y = a \sin^3 \theta$$
: $dy = 3a \sin^2 \theta \cos \theta d\theta$

Then

$$dL = \left[\left(-3a\cos^2\theta \sin\theta d\theta \right)^2 + \left(3a\sin^2\theta \cos\theta d\theta \right)^2 \right]^{1/2}$$
$$= 3a\cos\theta \sin\theta \left(\cos^2\theta + \sin^2\theta \right)^{1/2} d\theta$$

$$= 3a\cos\theta\sin\theta d\theta$$

$$\therefore L = \int dL = \int_0^{\pi/2} 3a \cos \theta \sin \theta d\theta = 3a \left[\frac{1}{2} \sin^2 \theta \right]_0^{\pi/2}$$

$$=\frac{3}{2}a$$

and

$$\int \overline{x}_{EL} dL = \int_0^{\pi/2} a \cos^3 \theta \left(3a \cos \theta \sin \theta d\theta \right)$$

$$=3a^2 \left[-\frac{1}{5} \cos^5 \theta \right]_0^{\pi/2} = \frac{3}{5} a^2$$

Hence

$$\overline{x}L = \int \overline{x}_{EL} dL$$
: $\overline{x} \left(\frac{3}{2} a \right) = \frac{3}{5} a^2$

$$\overline{x} = \frac{2}{5}a$$

PROBLEM 5.44 CONTINUED

Alternative solution

$$x = a\cos^{3}\theta \implies \cos^{2}\theta = \left(\frac{x}{a}\right)^{2/3}$$

$$y = a\sin^{3}\theta \implies \sin^{2}\theta = \left(\frac{y}{a}\right)^{2/3}$$

$$\therefore \left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{a}\right)^{2/3} = 1 \quad \text{or} \quad y = \left(a^{2/3} - x^{2/3}\right)^{3/2}$$
Then
$$\frac{dy}{dx} = \left(a^{2/3} - x^{2/3}\right)^{1/2} \left(-x^{-1/3}\right)$$

Now
$$\overline{x}_{EL} = x$$

and
$$dL = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
 $dx = \left\{1 + \left[\left(a^{2/3} - x^{2/3}\right)^{1/2}\left(-x^{-1/3}\right)\right]^2\right\}^{1/2} dx$

Then
$$L = \int dL = \int_0^a \frac{a^{1/3}}{x^{1/3}} dx = a^{1/3} \left[\frac{3}{2} x^{2/3} \right]_0^a = \frac{3}{2} a$$

and
$$\int \overline{x}_{EL} dL = \int_0^a x \left(\frac{a^{1/3}}{x^{1/3}} dx \right) = a^{1/3} \left[\frac{3}{5} x^{5/3} \right]_0^a = \frac{3}{5} a^2$$

Hence
$$\overline{x}L = \int \overline{x}_{EL} dL$$
: $\overline{x} \left(\frac{3}{2} a \right) = \frac{3}{5} a^2$ $\overline{x} = \frac{2}{5} a$