МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу «Математика» для студентов факультета электронно-информационных систем

Дифференциальные уравнения

II семестр

УДК 517.91 (076)

Настоящее методическое пособие содержит задачи и упражнения из раздела «Дифференциальные уравнения» общего курса «Математика». Представлены краткие теоретические сведения по темам и наборы заданий для аудиторных и индивидуальных работ. Пособие составлено в соответствии с действующей программой для студентов первого курса факультета электронно-информационных систем.

Составители: Каримова Т.И., доцент, к.ф.-м.н. Лебедь С.Ф., доцент, к.ф.-м.н. Журавель М.Г., ассистент Гладкий И.И., доцент Дворниченко А.В., ст. преподаватель

Рецензент: Мирская Е.И., доцент кафедры алгебры, геометрии и математического моделирования учреждения образования «Брестский государственный университет им. А.С. Пушкина», к.ф.-м.н., доцент.

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

1. Дифференциальные уравнения (ДУ) с разделяющимися переменными. Однородные ДУ первого порядка. Задача Коши

Дифференциальным уравнением (ДУ) называется уравнение, связывающее независимую переменную, функцию и ее производные или дифференциалы.

Порядком ДУ называется наивысший порядок входящей в него производной. ДУ первого порядка имеет вид

$$F(x, y, y') = 0$$
 или $y' = f(x, y)$.

Процесс нахождения решений ДУ называется интегрированием ДУ. Общим решением ДУ первого порядка называется такая функция $y = \varphi(x,C)$, где C – произвольная постоянная, что:

- 1) $y = \varphi(x, C)$ является решением данного уравнения при любых значениях постоянной C;
- 2) для любого допустимого начального условия $y(x_0) = y_0$ найдется такое значение $C = C_0$, при котором функция $y = \varphi(x, C_0)$ удовлетворяет заданному начальному условию.

Решение ДУ первого порядка вида $\Phi(x,y) = C$ или $\psi(x,y,C) = 0$ называется общим интегралом уравнения.

Частным решением ДУ называется решение, полученное из общего решения при конкретном значении постоянной *С*.

Нахождение частного решения ДУ, удовлетворяющего начальному условию $y(x_0) = y_0$, называется решением задачи Коши.

Уравнение вида

$$M(x) \cdot N(y)dx + P(x) \cdot Q(y)dy = 0 \tag{1}$$

называют уравнением с разделяющимися переменными в форме дифференциалов.

Его общее решение имеет вид

$$\int \frac{M(x)}{P(x)} dx + \int \frac{Q(y)}{N(y)} dy = C,$$

 $P(x) \neq 0$, $N(y) \neq 0$.

Если решения уравнения $P(x) \cdot N(y) = 0$ удовлетворяют уравнению (1) и не входят в найденное общее решение, то они являются *особыми решениями* уравнения (1).

Функция $\varphi(x,y)$ называется *однородной функцией степени п* относительно переменных x и y, если для любого $t \in \Breve{Y}$ выполняется тождество $\varphi(tx,ty) = t^n \varphi(x,y)$.

Дифференциальное уравнение вида M(x,y)dx + N(x,y)dy = 0 называется однородным ДУ первого порядка, если функции M(x,y) и N(x,y) –

однородные функции одной и той же степени. Однородное ДУ можно привести к виду $\frac{dy}{dx} = \varphi \left(\frac{y}{x} \right)$. Полученное уравнение с помощью подстановки

 $\frac{y}{x} = u(x)$ преобразуется в уравнение с разделяющимися переменными.

Пример 1. Найти общее решение ДУ $(y^2 + xy^2) \cdot y' + x^2 - yx^2 = 0$. **Решение.** Запишем уравнение в виде

$$y^2(1+x) dy = x^2(y-1) dx$$
.

Это уравнение с разделяющимися переменными. Разделив обе части уравнения на выражение $(y-1)(x+1) \neq 0$, получим уравнение

$$\frac{y^2}{y-1}dy = \frac{x^2}{x+1}dx.$$

Интегрируем обе части полученного уравнения.

$$\int \left(y+1+\frac{1}{y-1}\right)dy = \int \left(x-1+\frac{1}{x+1}\right)dx$$

Получим общее решение исходного ДУ в виде:

$$\frac{y^2}{2} + y + \ln|y-1| = \frac{x^2}{2} - x + \ln|x+1| + C$$
.

Проверим, являются ли решениями заданного ДУ решения уравнения (y-1)(x+1)=0, т.е. функции $y=1,\ x=-1$.

При x=-1, dx=d(-1)=0 и уравнение превращается в тождество. Значит, x=-1 – решение данного ДУ. При y=1, dy=d(1)=0 уравнение так же обращается в тождество. Таким образом, y=1, x=-1 – особые решения, т.е. решения, которые нельзя получить из общего решения ни при каком значении константы C.

Ответ:
$$\frac{y^2 - x^2}{2} + x + y + \ln \left| \frac{y - 1}{x + 1} \right| = C$$
, особые решения $y = 1$, $x = -1$.

Пример 2. Найти частное решение уравнения

$$(x^2-3y^2)dx + 2xydy = 0$$
,

удовлетворяющее начальному условию y(2) = 1.

Решение. Функции $f(x; y) = x^2 - 3y^2$ и g(x; y) = 2xy являются однородными второй степени, т.к.

$$f(tx; ty) = (tx)^{2} - 3(ty)^{2} = t^{2}(x^{2} - 3y^{2}) = t^{2}f(x; y),$$

$$g(tx; ty) = 2tx \cdot ty = t^{2}2xy = t^{2}g(x; y), t \in \S.$$

Преобразуем уравнение:

$$\frac{dy}{dx} = \frac{3y^2 - x^2}{2xy} \implies \frac{dy}{dx} = \frac{1}{2} \left(3 \cdot \frac{y}{x} - \frac{x}{y} \right).$$

Введем замену $\frac{y}{x} = u(x)$, тогда $y = u(x) \cdot x$; $y' = u(x) + x \cdot u'(x)$.

Подставим эти выражения в ДУ, получим уравнение с разделяющимися переменными

$$x \cdot u'(x) + u = \frac{1}{2} \left(3u - \frac{1}{u} \right), \quad xu' = \frac{1}{2} \left(u - \frac{1}{u} \right), \quad xu' = \frac{u^2 - 1}{2u},$$

$$xdu = \frac{u^2 - 1}{2u} dx, \quad \frac{2udu}{u^2 - 1} = \frac{dx}{x}, \quad \int \frac{2udu}{u^2 - 1} = \int \frac{dx}{x},$$

$$\ln|u^2 - 1| = \ln|x| + \ln|C|, \quad u^2 - 1 = Cx, \quad \left(\frac{y}{x}\right)^2 - 1 = Cx, \quad C = const.$$

Общее решение имеет вид $y^2 - x^2 = Cx^3$.

Чтобы найти частное решение, определим постоянную C из условия y(2)=1. Подставим эти значения в общее решение: 1-4=8C, т.е. $C=\frac{3}{6}$.

Частное решение:
$$\frac{y^2}{x^2} = 1 - \frac{3}{8}x$$
, т.е. $y = \pm x \sqrt{1 - \frac{3}{8}x}$.

Omsem:
$$y = \pm x \sqrt{1 - \frac{3}{8}x}$$
.

Задания для аудиторной работы

1. Найти общее или частное решение следующих дифференциальных уравнений:

1)
$$xdx + \frac{2dy}{y+5} = 0$$
; 2) $(xy^2 + x)dx + (y - x^2y)dy = 0$, $y(0) = 1$;

3)
$$xyy' = 1 - x^2$$
; 4) $y' \cdot \sin x = y \ln y$, $y(\frac{\pi}{2}) = e$;

5)
$$\sin y \cdot \cos x \, dy = \cos y \cdot \sin x \, dx$$
, $y(0) = \frac{\pi}{2}$;

6)
$$y' = \frac{y^2}{x^2} - 2;$$
 7) $y' = -\frac{x + y}{y};$

8)
$$xy' = y + \sqrt{x^2 + y^2}$$
, $y(1) = 0$; 9) $y' = \frac{x + y - 3}{-x + y + 1}$.

2. По закону Ньютона скорость охлаждения какого-либо тела в воздухе пропорциональна разности между температурой тела T и температурой

воздуха T_0 . Температура воздуха равна $20^{\circ}C$, в течение 20 минут тело охлаждается от 100 до 60 градусов. Через сколько времени его температура понизится до 30 градусов?

- 3. Найти закон убывания лекарственного препарата в организме человека, если через 1 час после введения 10 мг препарата его масса уменьшилась вдвое. Какое количество препарата останется в организме через 2 часа?
- 4. Найти кривую, проходящую через точку (-1; 1), если угловой коэффициент касательной к ней в любой точке кривой равен квадрату ординаты точки касания.

Задания для индивидуальной работы

5. Найти общее или частное решения следующих дифференциальных уравнений:

1)
$$(2x + e^x) dx - \frac{dy}{v} = 0;$$

2)
$$xy' = y^2 + 1$$

3)
$$(x + xy)dy + (y - xy)dx = 0$$
, $y(1) = 1$

4)
$$e^{x+3y}dy = xdx$$

3)
$$(x + xy)dy + (y - xy)dx = 0$$
, $y(1) = 1$; 4) $e^{x+3y}dy = xdx$;
5) $tgx \cdot \sin^2 y dx + \cos^2 x \cdot ctgy dy = 0$; 6) $xy' = y \ln \frac{x}{y}$;

6)
$$xy' = y \ln \frac{x}{y}$$
;

7)
$$(x+2y) dx - xdy = 0$$
;

8)
$$(x-y) dx + (x+y) dy = 0$$
.

6. Найти общее или частное решение следующих дифференциальных уравнений:

1)
$$xy' - y = y^3$$
;

2)
$$(xy + x^3y)y' = 1 + y^2$$
;

3)
$$(1+e^x)yy'=e^x$$
, $y(0)=1$;

4)
$$3y' = \frac{y^2}{x^2} + 9\frac{y}{x} + 9$$
;

5)
$$y - xy' = x \sec \frac{y}{x}$$
;

3)
$$(1+e^x)yy' = e^x$$
, $y(0) = 1$; 4) $3y' = \frac{y^2}{x^2} + 9\frac{y}{x} + 9$;
5) $y - xy' = x \sec \frac{y}{x}$; 6) $xy' = y(1 + \ln y - \ln x)$, $y(1) = e^2$;

7)
$$ydx + \left(2\sqrt{xy} - x\right)dy = 0$$

7)
$$ydx + (2\sqrt{xy} - x)dy = 0$$
; 8) $(2x - y + 4)dy + (x - 2y + 5)dx = 0$.

7. Найти общее или частное решение следующих дифференциальных уравнений:

1)
$$(4x^3 - e^{-2x})dx - (e^{2y} - \sin 3y)dy = 0$$
; 2) $x\sqrt{4 + y^2}dx - y\sqrt{1 + x^2}dy = 0$;

2)
$$x\sqrt{4+y^2}dx - y\sqrt{1+x^2}dy = 0$$
;

3)
$$4(yx^2 + y)dy + \sqrt{5 + y^2}dx = 0$$
; 4) $(x^2 + x)y' = 2y + 1$;

4)
$$(x^2 + x)y' = 2y + 1$$
;

5)
$$y'\cos^2 x = y \ln y$$
, $y(\frac{\pi}{4}) = e$;

6)
$$xdy - (y+1)dx = 0$$
, $y(2) = 5$;

7)
$$(2x - \sin 4x) dx + (4y - e^{2y}) dy = 0$$
;

8)
$$(e^{3x} - 3x^2) dx - (\sin 2y - 4y^3) dy = 0$$
;

9)
$$(xy'-y)$$
 arctg $\frac{y}{x} = x$, $y(1) = 0$; 10) $xy' = \sqrt{y^2 - x^2}$;

11)
$$xy'\cos\frac{y}{x} = y\cos\frac{y}{x} - x;$$
 12) $xy' = x\sin\frac{y}{x} + y, \ y(2) = \pi;$

13)
$$ydx + (\sqrt{xy} - \sqrt{x})dy = 0;$$
 14) $(x^2 + y^2)dx = 2xydy, y(4) = 0;$

15)
$$(y^2 - 2xy - x^2) dx + (x^2 - 2xy - y^2) dy = 0$$
;

16)
$$(4x^2 - xy + y^2)dx + (x^2 - xy + 4y^2)dy = 0$$
;

17)
$$(x^2 - 3y^2)dx + 2xydy = 0$$
, $y(2) = 1$.

- **8.** Сосуд объемом 40 л содержит 80% азота и 20 % кислорода. В сосуд втекает каждую секунду 0,2 л азота, который непрерывно перемешивается и вытекает такое же количество смеси. Через какое время в сосуде будет 99% азота?
- **9.** Записать уравнение кривой, проходящей через точку A (0; -2), если известно, что угловой коэффициент касательной в любой ее точке равен ординате этой точки, увеличенной в три раза.
- **10.** Найти кривую, у которой длина отрезка касательной, заключенного между осями координат, равна расстоянию от точки касания до начала координат.
- **11.** Найти уравнение кривой, проходящей через точку (2; 0), если отрезок касательной к кривой между точкой касания и осью ординат имеет постоянную длину, равную 2.

Ответы: 4.
$$xy = -1$$
. **7.** ≈ 600 c. **9.** $y = -2e^{3x}$. **10.** $y = \frac{C}{x}$, $C = const$.

11.
$$y = \pm \left(\sqrt{4 - x^2} + 2 \ln \frac{2 - \sqrt{4 - x^2}}{|x|} \right).$$

2. Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли

Уравнение вида

$$y' + p(x)y = q(x)$$
 или $A(x)y' + B(x)y + C(x) = 0$

называется линейным дифференциальным уравнением первого порядка относительно y и y'. С помощью подстановки $y = u(x) \cdot v(x)$, где u(x)и v(x) – неизвестные функции, данное уравнение приводится к виду

$$u'v + uv' + p(x)uv = q(x) \implies u'v + u(v' + p(x)v) = q(x).$$

Так как одна из неизвестных функций может быть выбрана произвольно, то в качестве v(x) можно выбрать любое частное решение уравнения v' + p(x)v = 0. Функция u(x) определится из уравнения u'(x)v(x) = q(x).

Таким образом, решение линейного уравнения сводится к последовательному решению двух уравнений с разделяющимися переменными относительно каждой из вспомогательных функций.

Дифференциальное уравнение вида x' + p(y)x = q(y) называется линейным дифференциальным уравнением первого порядка относительно функции x(y) и ее производной.

Решается с помощью подстановки x(y) = u(y)v(y).

Рассмотрим уравнения вида

При n=0 получим линейные уравнения, при n=1 – уравнения с разделяющимися переменными, если $n \neq 0, n \neq 1$, то уравнения называются уравнениями Бернулли. Эти уравнения можно свести к соответствующим линейным уравнениям или применить подстановку

$$y = u(x)v(x) (x = u(y)v(y)).$$

Пример 3. Найти общее решение уравнения $y' + \frac{3y}{x} = x^2$.

Решение. Применим подстановку y = uv, y' = u'v + uv'. Получим уравнение $u'v + uv' + \frac{3uv}{x} = x^2$.

Сгруппируем второе и третье слагаемые $u'v + u\left(v' + \frac{3v}{x}\right) = x^2$.

Решим последовательно два уравнения: $v' + \frac{3v}{x} = 0$ и $u'v = x^2$.

$$v' + \frac{3v}{x} = 0; \implies \frac{dv}{dx} = -\frac{3v}{x}; \implies \frac{dv}{v} = -\frac{3dx}{x}; \implies \int \frac{dv}{v} = -\int \frac{3dx}{x}; \implies \ln|v| = -3\ln|x|; \implies v = \frac{1}{x^3}.$$

$$u'v = x^2$$
; $\Rightarrow u' \cdot \frac{1}{x^3} = x^2$; $\Rightarrow \frac{du}{dx} = x^5$; $\Rightarrow du = x^5 dx$; $\Rightarrow u = \int x^5 dx = \frac{x^6}{6} + C$.

Тогда общее решение данного уравнения

$$y = uv = \frac{1}{x^3} \left(\frac{x^6}{6} + C \right) = \frac{x^3}{6} + \frac{C}{x^3}, \quad C = const.$$

Omeem: $y = \frac{x^3}{6} + \frac{C}{x^3}$, C = const.

Пример 4. Решить задачу Коши: $2ydx + (y^2 - 6x)dy = 0$, y(6) = 2.

Решение. Заметим, что данное уравнение не является линейным относительно у. Разделим обе части уравнения на dy:

$$2y\frac{dx}{dy} + y^2 - 6x = 0; \implies \frac{dx}{dy} - \frac{3}{y}x = -\frac{y}{2}.$$

Воспользуемся подстановкой x = u(y)v(y), x' = u'v + uv'.

Получим уравнение $u'v + u\left(v' - \frac{3}{v}v\right) = -\frac{y}{2}$.

Решим последовательно два уравнения: $v' - \frac{3v}{v} = 0$ и $u'v = -\frac{y}{2}$.

$$v' - \frac{3v}{y} = 0$$
; $\Rightarrow \frac{dv}{dy} = \frac{3v}{y}$; $\Rightarrow \frac{dv}{v} = \frac{3dy}{y}$; $\Rightarrow \ln|v| = 3\ln|y|$; $\Rightarrow v = y^3$.

Затем из уравнения $u'v = -\frac{y}{2}$ определяем функцию u(y):

$$u'y^3 = -\frac{y}{2}; \implies u' = -\frac{1}{2y^2}; \implies du = -\frac{dy}{2y^2}; \implies u = \frac{1}{2y} + C.$$

Выпишем общее решение исходного уравнения

$$x = uv; \Rightarrow x = \left(\frac{1}{2y} + C\right)y^3 = Cy^3 + \frac{y^2}{2}.$$

Используем начальное условие y = 2 при x = 6, получим 6 = 8C + 2. Отсюда C = 0,5.

Omeem: $x = 0.5(y^3 + y^2)$.

Задания для аудиторной работы

12. Проинтегрировать дифференциальные уравнения:

1)
$$y' - \frac{y}{x} = x$$
;

2)
$$xy' + 2y = x^2$$
;

1)
$$y' - \frac{y}{x} = x$$
;
2) $xy' + 2y = x^2$;
3) $y' + \frac{3}{x}y = \frac{2}{x^3}$, $y(1) = 1$;
4) $x^2y' + 2xy = \ln x$, $y(e) = 1$;

4)
$$x^2y' + 2xy = \ln x$$
, $y(e) = 1$;

$$5) xy' + y = xy^2 \ln x$$

5)
$$xy' + y = xy^2 \ln x$$
; 6) $y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$.

- **13.** Решить ДУ, линейное относительно x: $(x-2xy-y^2)y'+y^2=0$.
- 14. Указать типы ДУ и методы их решения:

$$1) xy' + 2\sqrt{xy} = y;$$

2)
$$v' = e^{2x} - e^{x}v$$
:

3)
$$y'\cos x = \frac{y}{\ln y}$$
;

4)
$$y' = \frac{y}{2x \ln y + y - x}$$
.

- 15. Моторная лодка движется в спокойной воде со скоростью 10 км/ч. На полном ходу ее мотор был выключен, и через 20 секунд скорость стала 6 км/ч. Найти скорость лодки через 2 минуты после остановки мотора, считая, что сопротивление воды пропорционально скорости лодки.
- 16. Скорость распада радия пропорциональна количеству не распавшегося радия. Вычислить, через сколько лет от 1 кг радия останется 650 г, если известно, что за 1600 лет распадается половина первоначального количества.

Задания для индивидуальной работы

17. Проинтегрировать дифференциальные уравнения:

1)
$$y' + \frac{2y}{x} = x^3$$
;

2)
$$xy' - 3y = x^4 e^x$$
;

3)
$$xy' + y - e^x = 0$$
, $y(a) = b$;

4)
$$y^2 dx - (2xy + 3) dy = 0$$
;

5)
$$\frac{dy}{dx} + \frac{y}{x} = -xy^2;$$

6)
$$y^2 dx = \left(x + ye^{-\frac{1}{y}}\right) dy$$
, $y(0) = -3$.

18. Проинтегрировать дифференциальные уравнения:

1)
$$y' - ytgx = \frac{1}{\cos^2 x}$$
, $y(0) = 2$; 2) $y' + \frac{6y}{x} = x^3$, $y(1) = 3$;

2)
$$y' + \frac{6y}{x} = x^3$$
, $y(1) = 3$;

3)
$$2xy\frac{dy}{dx} - y^2 + x = 0$$
;

4)
$$y' + 3y = e^{2x}y^2$$
, $y(0) = 1$;

5)
$$y' - \frac{y}{x-3} = \frac{y^2}{x-3}$$
, $y(1) = -2$;

$$6) y' = \frac{1}{x\cos y + \sin 2y}.$$

19. Указать типы ДУ и методы их решения:

1)
$$(1+e^{2x})y^2dy - e^xdx = 0$$
;

2)
$$xy' + y - y^2 = 0$$
;

3)
$$2x\cos^2 y dx + (2y - x^2 \sin 2y) dy = 0$$
;

4)
$$y^2 + x^2y' = xyy'$$
.

20. Проинтегрировать дифференциальные уравнения:

1)
$$y' - \frac{2y}{x+1} = e^x(x+1)^2$$
;

2)
$$y' - \frac{4y}{x} = 3 + 2x - x^2$$
, $y(1) = 4$;

3)
$$y' + \frac{4y}{x} = \frac{x^2 - 3x + 1}{x^4}$$
;

4)
$$xy' - 3y = x^4 - 2x^3 + 5x$$
;

5)
$$xy' + 2y = 2 + 3x + x^2$$
, $y(1) = 3$; 6) $y' + \frac{3y}{x} = \frac{4x - 5}{x^2}$;

6)
$$y' + \frac{3y}{x} = \frac{4x-5}{x^2}$$
;

7)
$$y' + ytgx = \frac{1}{\cos x}$$
, $y(\pi) = 5$;

8)
$$y' = \frac{y}{2y \ln y + y - x}$$
;

9)
$$(1+x^2)y' = xy + x^2y^2$$
;

10)
$$2xydx + (y - x^2)dy = 0$$
;

11)
$$y' - 7y = e^{3x}y^2$$
, $y(0) = 2$;

12)
$$xdy = (e^{-x} - y) dx$$
, $y(1) = 1$;

13)
$$3xy' - 2y = \frac{x^3}{v^2}$$
;

14)
$$x^2y' + 2x^3y = y^2(1+2x^2);$$

15)
$$2\sin x \cdot y' + y\cos x = y^3(x\cos x - \sin x);$$
 16) $y' + \frac{y}{x+1} = \frac{1}{2}(x+1)^3 y^3.$

16)
$$y' + \frac{y}{x+1} = \frac{1}{2}(x+1)^3 y^3$$
.

- **21.** Корабль замедляет свой ход под действием силы сопротивления воды, которая пропорциональна скорости корабля. Начальная скорость корабля 10 м/с, а его скорость через 5 секунд равна 8 м/с. Определить время, когда скорость корабля уменьшится до 1 м/с.
- **22.** Найти уравнения кривых, для которых площадь треугольника, образованного осью *Ох*, касательной и радиус-вектором точки касания, постоянна и равна *a*.

Ответы: 12. 3)
$$y = \frac{2}{x} + \frac{C}{x^3}$$
, $y_4 = \frac{2}{x} - \frac{1}{x^3}$. 13. $x = y^2 + Cy^2 e^{\frac{1}{y}}$.

15. 0,467 км/ч. **16.** через 1000 лет. **22.** $xy = Cy^2 + a^2$.

3. Дифференциальные уравнения высших порядков, допускающие понижение порядка. Краевые задачи для ДУ 2-го порядка

Рассмотрим некоторые типы уравнений высших порядков, допускающих понижение порядка.

1. Уравнения вида $y^{(n)} = f(x)$.

Общее решение находим методом *п*-кратного интегрирования.

Умножим обе части исходного уравнения на dx и проинтегрируем полученное равенство, получим уравнение (n-1)-го порядка:

$$y^{(n-1)} = \int y^{(n)} dx = \int f(x) dx = \varphi_1(x) + C_1$$
.

Умножим обе части полученного уравнения на dx и проинтегрируем его, получим уравнение (n-2)-го порядка:

$$y^{(n-2)} = \int (\varphi_1(x) + C_1) dx = \varphi_2(x) + C_1 x + C_2.$$

После n-кратного интегрирования получим общее решение уравнения:

$$y = \varphi_n(x) + \overline{C}_1 x^{n-1} + \overline{C}_2 x^{n-2} + L + \overline{C}_{n-1} x + \overline{C}_n$$

где \overline{C}_i $(i=\overline{1,n})$ – константы, связанные определенным образом с произвольными постоянными C_1,C_2,L , C_n .

Следующие случаи уравнений высших порядков, допускающих понижение порядка, рассмотрим на примере дифференциального уравнения второго порядка. Дифференциальное уравнение второго порядка имеет вид y'' = f(x, y, y').

2. Уравнение явно не содержит функции у: y'' = f(x, y').

С помощью замены y' = p(x), y'' = p'(x), получим ДУ первого порядка p'(x) = f(x,p). Решение этого уравнения зависит от его типа.

Запишем общее решение в виде $p = \varphi(x, C_1)$.

Подставим вместо найденной функции p(x) = y'(x) и решим ДУ с разделяющимися переменными:

$$\frac{dy}{dx} = \varphi(x, C_1); \Rightarrow dy = \varphi(x, C_1)dx; \Rightarrow y = \int \varphi(x, C_1)dx + C_2.$$

3. Уравнение явно не содержит переменную x: y'' = f(y, y'),

Полагая, что y' = p(y), $y'' = \frac{dp}{dy} \cdot \frac{dy}{dx} = \frac{dp}{dy} \cdot p = p'p$, понизим порядок исходного уравнения на единицу.

Пример 5. Найти частное решение уравнения

$$xy'' = y' \ln \frac{y'}{x}, \ y(1) = e, \ y'(1) = e^2.$$

Решение. Данное дифференциальное уравнение является уравнением второго порядка, которое явно не содержит переменную y. Понизим порядок уравнения с помощью замены y' = p(x), y'' = p'(x). Исходное уравнение превращается в однородное ДУ первого порядка относительно искомой функции p(x): $xp' = p \ln \frac{p}{x} \Rightarrow p' = \frac{p}{x} \ln \frac{p}{x}$.

Решаем его известным способом:

$$\frac{p(x)}{x} = u(x), \quad p(x) = x \cdot u(x), \quad p' = u + xu'; \implies u + xu' = u \ln u.$$

Разделяя переменные и интегрируя, получим:

$$\frac{du}{u(\ln u - 1)} = \frac{dx}{x}; \Rightarrow \ln|\ln u - 1| = \ln|x| + \ln|C|; \Rightarrow |\ln u - 1| = |Cx|; \Rightarrow$$

$$\ln u - 1 = \pm Cx; \pm C = C_1 \Rightarrow \ln u - 1 = C_1x; \Rightarrow$$

$$u = e^{1+C_1x} \Rightarrow p = xe^{1+C_1x} \Rightarrow y' = xe^{1+C_1x}.$$

Воспользуемся начальным условием $y'(1) = e^2$ или $p(1) = e^2$. Тогда:

$$e^2 = 1 \cdot e^{1+C_1}; \ 2 = 1 + C_1; \ C_1 = 1.$$

Следовательно, получаем уравнение:

$$y' = xe^{x+1}$$
; $\Rightarrow y = \int xe^{x+1} dx = xe^{x+1} - e^{x+1} + C_2$.

Из начального условия y(1) = e находим значение постоянной C_2 :

$$e = e^2 - e^2 + C_2$$
; $\Rightarrow C_2 = e$.

Итак, частным решением исходного уравнения является функция $y = (x-1)e^{x+1} + e$.

Ответ:
$$y = (x-1)e^{x+1} + e$$
.

Краевая задача — задача об отыскании решения заданного дифференциального уравнения (системы дифференциальных уравнений),

удовлетворяющего краевым (граничным) условиям на концах интервала или на границе области. Отличие краевой задачи от задачи Коши (задачи с начальными условиями) состоит в том, что решение дифференциального уравнения должно удовлетворять граничным условиям, связывающим значения искомой функции более чем в одной точке.

Простейшим представителем краевой задачи является двухточечная граничная задача, для которой граничные условия задаются в двух точках, как правило, на концах интервала, на котором ищется решение. Двухточечные граничные задачи встречаются во всех областях науки и техники.

Пример 6. Для дифференциального уравнения решить краевую задачу, т.е. найти решение, удовлетворяющее краевым условиям:

$$yy' + y'^2 + yy'' = 0$$
, $y = 1$ при $x = 0$, $y = 0$ при $x = -1$.

Решение. Данное уравнение является дифференциальным уравнением второго порядка, в котором явно отсутствует переменная x. Понизим порядок уравнения заменой y' = p(y), y'' = p'p. Получим уравнение первого порядка:

$$yp + p^2 + ypp' = 0; \Rightarrow p(yp' + p + y) = 0; \Rightarrow \begin{bmatrix} p = 0, \\ yp' + p + y = 0. \end{bmatrix}$$

В данном случае p=0 не подходит из-за краевых условий. Решаем однородное ДУ первого порядка известным способом:

$$p' = -\frac{p}{y} - 1; \Rightarrow \frac{dp}{dy} = -\frac{p}{y} - 1.$$

Замена
$$\frac{p}{y} = u(y)$$
, $p = yu$, $p' = u + yu'$ $u + yu' = -u - 1$; $\Rightarrow yu' = -2u - 1$; $\Rightarrow ydu = -(2u + 1)dy$; $\Rightarrow \frac{du}{2u + 1} = -\frac{dy}{y}$; $\Rightarrow \frac{1}{2}\ln|2u + 1| = -\ln|y| + \frac{1}{2}\ln|C|$; $\Rightarrow 2u + 1 = \frac{C_1}{y^2}$.

Пользуясь тем, что $u(y) = \frac{p}{v}$, получим уравнение:

$$2\frac{p}{y} = \frac{C_1}{y^2} - 1; \implies 2\frac{dy}{dx} = \frac{C_1 - y^2}{y}; \implies \frac{2ydy}{C_1 - y^2} = dx; \implies -\ln|C_1 - y^2| = x - C_2; \implies C_1 - y^2 = e^{C_2 - x}; \implies C_1 - y^2 = \bar{C}_2 e^{-x}, \quad \text{ade } \bar{C}_2 = e^{C_2}, \quad C_1, \bar{C}_2 - \forall \text{ const}$$

Подберем постоянные так, чтобы выполнялись краевые условия y(0) = 1, y(-1) = 0.

$$\begin{cases} C_1 - 1 = \overline{C}_2 e^0, \\ C_1 - 0 = \overline{C}_2 e^1, \end{cases} \Rightarrow \begin{cases} C_1 = \overline{C}_2 + 1, \\ C_1 = \overline{C}_2 e, \end{cases} \Rightarrow \begin{cases} \overline{C}_2 = \frac{1}{e - 1}, \\ C_1 = \frac{1}{e - 1} + 1 = \frac{e}{e - 1}. \end{cases}$$

Подставляя значения постоянных в общий интеграл, получим решение данной краевой задачи:

$$\frac{e}{e-1}-y^2=\frac{1}{e-1}e^{-x}$$
 или $y^2=\frac{e-e^{-x}}{e-1}$.

Omsem: $y^2 = \frac{e - e^{-x}}{e - 1}$.

Замечание. Отметим, что краевая задача не всегда разрешима.

Задания для аудиторной работы

23. Проинтегрировать следующие уравнения:

1)
$$y''' = x + \cos x$$
; 2) $y'^{V} = \frac{y'''}{x}$; 3) $x^{2}y'' + xy' = 1$; 4) $yy'' + y'^{2} = 1$.

24. Найти частное решение уравнений, удовлетворяющее указанным начальным условиям:

1)
$$y''' = \frac{x}{(x+2)^5}$$
, $y(1) = y'(1) = y''(1) = 0$;

2)
$$(x+1)y'' + xy'^2 = y'$$
, $y(1) = -2$, $y'(1) = 4$;

3)
$$2yy'' = (y')^2$$
, $y(-1) = 4$, $y'(-1) = 1$.

25. Материальная точка массы m падает на землю с высоты h. Найти закон движения точки, если сопротивление воздуха пропорционально квадрату скорости.

Задания для индивидуальной работы

26. Проинтегрировать следующие ДУ:

1)
$$y''' = x + \cos x$$
;

2)
$$x^2y''' = (y'')^2$$
;

3)
$$xy'' = y'(\ln y' - \ln x)$$
;

4)
$$y''tgy = 2(y')^2$$
.

27. Проинтегрировать следующие ДУ:

1)
$$y''' = x^2 - \sin x$$
;

2)
$$y''' = (y'')^2$$
;

3)
$$xy'' - y' = x^2 e^x$$
;

4)
$$2yy'' = 3y'^2 + 4y^2$$

28. Проинтегрировать следующие ДУ:

1)
$$y'' = x \sin x$$
;

2)
$$y''' = xe^x$$
;

3)
$$(1+x^2)y''-2xy'=0$$
;

4)
$$xy'' + y' = (y')^2$$
.

29. Найти частное решение уравнения, удовлетворяющее указанным начальным условиям:

1)
$$y'' = \frac{\ln x}{x^2}$$
, $y(1) = 3$, $y'(1) = 1$;

2)
$$xy''' - y'' = x^2 + 1$$
, $y(-1) = 0$, $y'(-1) = 1$, $y''(-1) = 0$;

3)
$$y'' = e^{2y}$$
, $y(0) = 0$, $y'(0) = 1$.

30. Найти частное решение уравнения, удовлетворяющее указанным начальным условиям:

1)
$$xy''' = 2$$
, $y(1) = 0.5$, $y'(1) = y''(1) = 0$;

2)
$$y''(x^2+1)=2xy'$$
, $y(0)=1$, $y'(0)=3$;

3)
$$y^3y'' + 1 = 0$$
, $y(1) = 1$, $y'(1) = 0$.

31. Найти частное решение уравнения, удовлетворяющее указанным начальным условиям:

1)
$$y'' = \frac{y'}{x} + \frac{x^2}{y'}$$
, $y(2) = 0$, $y'(2) = 4$;

2)
$$x^2y''' = y''^2$$
, $y(1) = \frac{7}{6}$, $y'(1) = 2$, $y''(1) = 1$;

3)
$$y'' = y'^2 - y$$
, $y(1) = -\frac{1}{4}$, $y'(1) = \frac{1}{2}$;

4)
$$2y'' = 3y^2$$
, $y(2) = 1$, $y'(2) = -1$;

5)
$$2(y')^2 = (y-1)y''$$
, $y(0) = 0$, $y'(0) = 1$.

- **32.** Автомобиль движется по горизонтальному участку пути со скоростью 90 км/час. В некоторый момент времени он начинает тормозить. Сила торможения равна 0,3 от веса автомобиля. В течение какого промежутка времени он будет двигаться от начала торможения до полной остановки и какой путь пройдет за это время (какова длина тормозного пути)?
- **33.** Если тело не слишком быстро погружается в жидкость, то сопротивление приблизительно пропорционально скорости. Найти закон движения тяжелой материальной точки, погружающейся в жидкость без начальной скорости.

Ответы: 27. 4)
$$y\cos^2(x+C_1)=C_2$$
. 30. 2) $y=x^3+3x+1$. 32. 8,5 c;

106,3 M. 33.
$$y = \frac{gm^2}{k^2} \left(e^{-\frac{kt}{m}} - 1 \right) + \frac{gm}{k} t$$
.

4. Линейные однородные дифференциальные уравнения (ЛОДУ) с постоянными коэффициентами

Уравнение вида

$$y'' + py' + qy = 0$$

называется линейным однородным дифференциальным уравнением (ЛОДУ) второго порядка с постоянными коэффициентами р и q.

После замены $y = e^{kx}$ получим характеристическое уравнение

$$k^2 + pk + q = 0.$$

Пусть k_1 , k_2 – корни характеристического уравнения.

Общее решение исходного уравнения имеет вид:

1)
$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$$
, если $k_1 \neq k_2$, $k_1, k_2 \in \Breve{Y}$;

2)
$$y = e^{k_1 x} (C_1 + C_2 x)$$
, если $k_1 = k_2$, $k_1, k_2 \in \Breve{Y}$;

3)
$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$
, если $k_{1,2} = \alpha \pm i\beta$, $k_1, k_2 \in J$.

ЛОДУ n-го порядка с постоянными коэффициентами имеет вид

$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + L + a_1y' + a_0y = 0$$
.

Общим решением уравнения является функция

$$y = C_1 y_1 + C_2 y_2 + L + C_n y_n$$

где $y_1, y_2, ..., y_n$ – частные линейно независимые решения данного ЛОДУ.

Частные решения $y_1, y_2, ..., y_n$ этого уравнения ищут в виде $y = e^{kx}$. Для определения k составляют характеристическое уравнение

$$k^{n} + a_{n-1}k^{n-1} + a_{n-2}k^{n-2} + L + a_{1}k + a_{0} = 0$$
.

Каждому действительному корню k характеристического уравнения соответствует одно частное решение ДУ вида e^{kx} .

Каждому действительному корню k кратности m соответствует m линейно независимых частных решений ДУ:

$$y_1 = e^{kx}, y_2 = xe^{kx}, L, y_m = x^m e^{kx}.$$

Если $\alpha \pm i\beta$ – пара комплексных корней характеристического уравнения кратности m, то ей соответствует 2m линейно независимых решений ДУ: $e^{\alpha x}\cos\beta x$, $e^{\alpha x}\sin\beta x$; $xe^{\alpha x}\cos\beta x$, $xe^{\alpha x}\sin\beta x$; ..., $x^{m-1}e^{\alpha x}\cos\beta x$, $x^{m-1}e^{\alpha x}\sin\beta x$.

Пример 7. Найти общие решения ЛОДУ:

1)
$$y'' - 5y' + 6y = 0$$
; 2) $y'' + 8y' + 16y = 0$; 3) $y'' - 6y' + 13y = 0$.

Решение. Для каждого случая составляем характеристическое уравнение, находим его корни, выписываем соответствующие линейно независимые решения ДУ и их общее решение:

1)
$$k^2 - 5k + 6 = 0$$
, $k_1 = 2$, $k_2 = 3$; $y_1 = e^{2x}$, $y_2 = e^{3x}$; $y = C_1 e^{2x} + C_2 e^{3x}$.

2)
$$k^2 + 8k + 16 = 0$$
, $k_1 = -4$, $k_2 = -4$; $y_1 = e^{-4x}$, $y_2 = xe^{-4x}$; $y = e^{-4x} (C_1 + C_2 x)$.

3)
$$k^2 - 6k + 13 = 0$$
, $k_1 = 3 - 2i$, $k_2 = 3 + 2i$; $y_1 = e^{3x} \cos 2x$, $y_2 = e^{3x} \sin 2x$; $y = e^{3x} (C_1 \cos 2x + C_2 \sin 2x)$.

Ответ:

1)
$$y = C_1 e^{2x} + C_2 e^{3x}$$
; 2) $y = e^{-4x} (C_1 + C_2 x)$; 3) $y = e^{3x} (C_1 \cos 2x + C_2 \sin 2x)$.

Пример 8. Найти общее решение для ЛОДУ высших порядков:

1)
$$y''' - 3y'' - 10y' + 24y = 0$$
; 2) $y^{IV} + 3y'' - 4y = 0$; 3) $y^{IV} + 2y'' + y = 0$.

Решение. Действуем по вышеизложенному плану:

1)
$$k^3 - 3k^2 - 10k + 24 = 0$$
, $k_1 = 2$, $k_2 = -3$, $k_3 = 4$; $y = C_1e^{2x} + C_2e^{-3x} + C_3e^{4x}$;

2)
$$k^4 + 3k^2 - 4 = 0$$
, $(k^2 - 1)(k^2 + 4) = 0$, $k_1 = -1$, $k_2 = 1$, $k_3 = -2i$, $k_4 = 2i$; $y = C_1 e^{-x} + C_2 e^x + C_3 \cos 2x + C_4 \sin 2x$;

3)
$$k^4 + 2k^2 + 1 = 0$$
, $(k^2 + 1)^2 = 0$, $k_{1,2} = \pm i$, $k_{3,4} = \pm i$; $y_1 = \cos x$, $y_2 = \sin x$; $y_3 = x \cos x$, $y_4 = x \sin x$; $y = (C_1 + C_2 x) \cos x + (C_3 + C_4 x) \sin x$.

Omeem: 1)
$$y = C_1 e^{2x} + C_2 e^{-3x} + C_3 e^{4x}$$
;

2)
$$y = C_1 e^{-x} + C_2 e^x + C_3 \cos 2x + C_4 \sin 2x$$
;

3)
$$y = (C_1 + C_2 x)\cos x + (C_3 + C_4 x)\sin x$$
.

Задания для аудиторной работы

34. Найти общее решение следующих уравнений:

1)
$$y'' + y' - 2y = 0$$
;

2)
$$y'' - 9y = 0$$
;

3)
$$y'' - 2y' + y = 0$$
;

4)
$$y'' - 10y' + 25y = 0$$
; 5) $y'' + 6y' + 13y = 0$; 6) $y'' + 36y = 0$.

5)
$$y'' + 6y' + 13y = 0$$
;

6)
$$y'' + 36 y = 0$$

35. Найти частное решение следующих уравнений:

1)
$$y'' - 4y' + 3y = 0$$
, $y(0) = 6$, $y'(0) = 10$;

2)
$$y'' + 4y' + 29y = 0$$
, $y(0) = 0$, $y'(0) = 15$.

- 36. Найти интегральную кривую дифференциального уравнения y'' - 4y' + 3y = 0, проходящую через точку (0; 2) и касающуюся в этой точке прямой y = x + 2.
- 37. Зная корни характеристического уравнения, записать общее решение однородного уравнения:

1)
$$\lambda_1 = 3$$
; $\lambda_2 = 0$; $\lambda_{3,4} = 5$;

2) 1)
$$\lambda_{1,2} = 2 \pm i$$
; $\lambda_{3,4} = -1 \pm 3i$.

38. Найти общее решение следующих уравнений:

1)
$$y''' - 2y'' - y' + 2y = 0$$
; 2) $y''' - 2y'' + 2y' = 0$; 3) $y^{VI} + 2y^{V} + 2y^{IV} = 0$.

3)
$$v^{VI} + 2v^{V} + 2v^{IV} = 0$$

39. Найти частное решение уравнения:

$$y''' + y'' - 5y' + 3y = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = -2$.

40. Материальная точка массы 1 г отталкивается вдоль прямой от некоторого центра с силой, пропорциональной ее расстоянию от этого центра (коэффициент пропорциональности равен 4). Сопротивление среды пропорционально скорости движения (коэффициент пропорциональности равен 3). В начале движения расстояние от центра равно 1 см, а скорость – нулю. Найти закон движения материальной точки.

Задания для индивидуальной работы

41. Найти общее решение следующих уравнений:

1)
$$y'' + 2y' - 8y = 0$$
; 2) $y'' + 3y' = 0$;

2)
$$y'' + 3y' = 0$$
;

3)
$$y'' - 6y' + 34y = 0$$
;

4)
$$4v'' + 9v = 0$$
:

4)
$$4y'' + 9y = 0$$
; 5) $y'' + 6y' + 9y = 0$.

42. Найти общее решение следующих уравнений:

1)
$$v'' - v' = 0$$
:

1)
$$y'' - y' = 0$$
; 2) $y'' - 4y' + 13y = 0$; 3) $y'' - 4y' = 0$;

3)
$$y'' - 4y' = 0$$
;

4)
$$y'' + 16y = 0$$

5)
$$v'' + 8v' + 16v = 0$$
:

4)
$$y'' + 16y = 0$$
; 5) $y'' + 8y' + 16y = 0$; 6) $y'' - 10y' + 29y = 0$;

7)
$$v'' - 2v' - 15v = 0$$

7)
$$y'' - 2y' - 15y = 0$$
; 8) $y'' - 12y' + 36y = 0$; 9) $y'' + 8y' + 25y = 0$.

$$9) y'' + 8y' + 25y = 0.$$

43. Найти частное решение следующих уравнений:

1)
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 2$;

2)
$$y'' + 3y' = 0$$
, $y(0) = 0$, $y(3) = 0$;

3)
$$4y'' + 4y' + y = 0$$
, $y(0) = 2$, $y'(0) = 0$.

44. Найти общее решение следующих уравнений:

1)
$$y''' - 5y'' + 16y' - 12y = 0$$
;

2)
$$y^{IV} - 8y'' + 7y = 0$$
;

3)
$$y^V - 6y^{\prime\prime\prime} + 9y^{\prime\prime\prime} = 0$$
;

4)
$$y^{VI} - 3y^{V} + 3y^{IV} = 0$$
.

45. Найти общее решение следующих уравнений:

1)
$$y^{IV} + 4y'' = 0$$
;

2)
$$y''' - 4y''' + 4y'' = 0$$
;

3)
$$y^{IV} + 8y' = 0$$
;

4)
$$y^{IV} - 6y'' + 9y = 0$$
.

46. Найти частное решение уравнения:

$$y''' - 3y'' + 3y' - y = 0$$
, $y(0) = 1$, $y'(0) = 2$, $y''(0) = 3$.

47. Частица массы 1 г движется по прямой к точке А под действием некоторой силы притяжения, пропорциональной расстоянию ее от точки А. На расстоянии 1 cM действует сила 10^{-6} H. Сопротивление среды пропорционально скорости движения и равно $4 \cdot 10^{-6} \ H$ при скорости 1 *см/с*. В момент t=0 частица расположена на расстоянии 10 *см* от точки *A* и скорость ее равна нулю. Найти зависимость расстояния от времени и вычислить это расстояние для t = 3c.

Ответы: 35. 1) $y = 2e^{3x} + 4e^{x}$; 2) $y = 3e^{-2x} \sin 5x$. **36.** $y = -\frac{1}{2}e^{3x} + \frac{5}{2}e^{x}$.

39.
$$y = \frac{1}{4}e^x - 4e^{-3x}$$
. **40.** $y = \frac{1}{5}(4e^t + e^{-4t})$. **43.** $y = e^{-\frac{x}{2}}(2+x)$.

47.
$$s = e^{-0.2t} (10\cos 0.245t + 8.16\sin 0.245t), \ s(3) \approx 7.07 \ \text{cm}.$$

5. Линейные неоднородные дифференциальные уравнения (ЛНДУ) с постоянными коэффициентами и специальной правой частью

Уравнение вида

$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + L + a_1y' + a_0y = f(x)$$

называется линейным неоднородным дифференциальным уравнением (ЛНДУ) с постоянными коэффициентами.

Общее решение ЛНДУ можно записать в виде суммы

$$y = \overline{y} + y_*$$

где \overline{y} — общее решение соответствующего однородного уравнения, а y_* — частное решение данного уравнения. Его можно получить методом неопределенных коэффициентов.

Пусть правая часть уравнения представлена следующими функциями:

1)
$$f(x) = P_n(x) \cdot e^{\alpha x}$$
, где $P_n(x)$ – многочлен степени n .

Частное решение в этом случае будем искать в виде $y_* = x^r Q_n(x) \cdot e^{\alpha x}$, где $Q_n(x)$ — многочлен степени n с неопределенными коэффициентами. Число r равно кратности числа α по отношению к корням характеристического уравнения.

2)
$$f(x) = e^{\alpha x} (P_n(x) \cos bx + Q_m(x) \sin bx)$$
.

Частное решение в этом случае будем искать в виде

$$y_* = x^r e^{\alpha x} (S_N(x) \cos bx + T_N(x) \sin bx),$$

где $S_N(x)$, $T_N(x)$ — многочлены степени $N = \max\{n, m\}$. Число r равно кратности чисел $\alpha \pm i\beta$ по отношению к корням характеристического уравнения.

Пример 9. Найти общее решение ЛНДУ $y'' - y' - 2y = 4xe^x$. **Решение.** $y = \overline{y} + y_*$.

Найдем общее решение соответствующего однородного уравнения \overline{y} .

$$y'' - y' - 2y = 0$$
, $k^2 - k - 2 = 0$, $k_1 = -1$, $k_2 = 2$; $\overline{y} = C_1 e^{-x} + C_2 e^{2x}$.

Правая часть заданного уравнения $f(x) = 4xe^x$, значит $\alpha = 1$, r = 0.

Поэтому частное решение будем искать в виде: $y_* = (Ax + B)e^x$. Методом неопределенных коэффициентов найдем частное решение данного уравнения y_* . Дифференцируя y_* два раза и подставляя производные в исходное уравнение, получим:

$$2Ae^{x} + (Ax + B)e^{x} - Ae^{x} - (Ax + B)e^{x} - 2(Ax + B)e^{x} = 4xe^{x}$$
.

Сокращаем обе части равенства на e^x , приравниваем коэффициенты при одинаковых степенях x, получим:

$$A-2Ax-2B=4x$$
, $-2A=4$, $A-2B=0$; $A=-2$, $B=-1$.

Т.о, частное решение неоднородного уравнения $y_* = -(2x+1)e^x$.

Тогда общее решение уравнения $y = C_1 e^{-x} + C_2 e^{2x} - (2x+1)e^x$.

Omeem:
$$y = C_1 e^{-x} + C_2 e^{2x} - (2x+1)e^x$$
.

Пример 10. Найти общее решение уравнения $y'' + y = x \sin x$.

Решение. Характеристическое уравнение $k^2 + 1 = 0$ имеет корни $k = \pm i$, тогда общим решением однородного уравнения будет функция $\overline{y} = C_1 \cos x + C_2 \sin x$.

Частное решение *у*_∗ будем искать в виде

$$y_* = x((Ax+B)\cos x + (Cx+D)\sin x).$$

Найдем производные y'_*, y''_* .

$$y_* = (Ax^2 + Bx)\cos x + (Cx^2 + Dx)\sin x;$$

$$y_*' = (2Ax + B)\cos x - (Ax^2 + Bx)\sin x + (2Cx + D)\sin x + (Cx^2 + Dx)\cos x;$$

$$y_*'' = 2A\cos x - 2(2Ax + B)\sin x - (Ax^2 + Bx)\cos x + 2C\sin x + 2(2Cx + D)\cos x - (Cx^2 + Dx)\sin x.$$

Подставим их в заданное уравнение:

$$2A\cos x - 2(2Ax + B)\sin x + 2C\sin x + 2(2Cx + D)\cos x = x\sin x$$

Приравниваем коэффициенты при $\cos x$, $x \cos x$, $\sin x$, $x \sin x$. Получим четыре уравнения:

$$2A + 2D = 0$$
; $4C = 0$; $-2B + 2C = 0$; $-4A = 1$.

$$2A+2D=0; \quad 4C=0; \quad -2B+2C=0;$$
 Из которых $A=-\frac{1}{4}, D=\frac{1}{4}, B=C=0.$ Отсюда:

сюда.
$$y_* = -\frac{x^2}{4}\cos x + \frac{x}{4}\sin x \text{ и } y = C_1\cos x + C_2\sin x - \frac{x^2}{4}\cos x + \frac{x}{4}\sin x.$$

Omeem:
$$y = C_1 \cos x + C_2 \sin x - \frac{x^2}{4} \cos x + \frac{x}{4} \sin x$$
.

Задания для аудиторной работы

48. Найти общее решение следующих уравнений:

1)
$$y'' - 3y' + 2y = \begin{cases} xe^{-x}; \\ (2x+3)e^{x}; \\ e^{2x}; \end{cases}$$
 2) $y'' - 10y' = \begin{cases} 10x^2 + 18x + 8; \\ (3x-4)e^{5x}; \end{cases}$ 3) $y'' + 9y = \begin{cases} 3\sin x + 6\cos x; \\ 2\sin 3x - 4\cos 3x; \end{cases}$ 4) $y'' - y = \begin{cases} 3xe^{x}; \\ \sin x. \end{cases}$

3)
$$y'' + 9y = \begin{cases} 3\sin x + 6\cos x; \\ 2\sin 3x - 4\cos 3x; \end{cases}$$
 4) $y'' - y = \begin{cases} 3xe^{x}; \\ \sin x. \end{cases}$

49. Найти общее решение уравнения $y'' - 2y' + y = \sin x + e^{-x}$.

50. Найти частное решение следующих уравнений:

1)
$$y'' + y = 2\cos x$$
, $y(0) = 1$, $y'(0) = 0$;

2)
$$y'' + 4y = 4(\cos 2x + \sin 2x)$$
, $y(\pi) = 2\pi$, $y'(\pi) = 2\pi$.

51. Определить и записать структуру частного решения:

1)
$$y'' - 8y' + 16y = e^{4x}(1-x)$$
;

2)
$$y'' + 16y = x \sin 4x$$
; 3) $y'' - 4y' = 2 \cos^2 4x$.

Задания для индивидуальной работы

52. Найти общее решение следующих уравнений:

1)
$$y'' + 8y' = 8x$$
;

2)
$$y'' + 4y' + 3y = 9e^{-3x}$$
;

3)
$$y'' - 3y' + 2y = e^{3x}(x^2 + x)$$
; 4) $y''' + y'' - 2y' = x^2 + x$.

4)
$$y''' + y'' - 2y' = x^2 + x$$

53. Найти общее решение следующих уравнений:

1)
$$y'' - 5y' = x + 5$$
;

2)
$$y'' + 6y' + 9y = \begin{cases} 10 \sin x - 3 \cos x, \\ x \cos x. \end{cases}$$

3)
$$y'' - 8y' + 16y = (1 - x)e^{4x}$$
;

4)
$$y''' + y'' = 6x$$
.

54. Найти общее решение следующих уравнений:

1)
$$y'' + 2y' + 2y = 4e^x \cos x$$
;

2)
$$y'' + 4y = 4(\sin 2x + \cos 2x)$$
;

3)
$$y'' + 4y = \cos^2 x$$
;

4)
$$y''' - y'' + y' - y = x^2 e^{-x}$$
;

5)
$$y^{V} - y^{IV} = 2xe^{x}$$
;

6)
$$y'' + y'' = x^2 - 6x + 8$$
.

55. Найти частное решение следующих уравнений:

1)
$$y'' + y = 4 \sin x - 6 \cos x$$
, $y(0) = 1$, $y'(0) = 18$;

2)
$$y'' + 9y = 2\cos 4x - 3\sin 4x$$
, $y(0) = 0$, $y'(0) = 12$.

56. Определить и записать структуру частного решения:

1)
$$y'' - 3y' = e^{3x} - 28x$$
; 2) $y'' - 7y' = (x-1)^2$;

2)
$$y'' - 7y' = (x-1)^2$$
;

3)
$$y'' - 4y' + 13y = e^{2x} (x^2 \cos 3x + \sin 3x)$$
.

6. Метод вариации произвольных постоянных для неоднородных ЛДУ

Рассмотрим линейное неоднородное ДУ вида

$$y''' + a_1y'' + a_2y' + a_3y = f(x).$$

Запишем соответствующее однородное уравнение

$$y''' + a_1y'' + a_2y' + a_3y = 0.$$

Метод вариации произвольных постоянных (метод Лагранжа) применяется для отыскания частного решения уравнения ЛНДУ в случаях, когда правая часть этого уравнения имеет общий вид. Суть метода: находим общее решение соответствующего однородного уравнения $\overline{y} = C_1 y_1(x) + C_2 y_2(x) + C_3 y_3(x), C_1, C_2, C_3 - \forall const, y_1(x), y_2(x), y_3(x) - \text{част-}$ ные линейно независимые решения однородного уравнения.

Тогда частное решение уравнения

$$y''' + a_1y'' + a_2y' + a_3y = f(x)$$

будем искать в виде $y_* = C_1(x)y_1(x) + C_2(x)y_2(x) + C_3(x)y_3(x)$.

Функции $C_i(x)$ (i = 1, 2, 3) определяются из системы уравнений

$$\begin{cases} C'_1 y_1(x) + C'_2 y_2(x) + C'_3 y_3(x) = 0, \\ C'_1 y'_1(x) + C'_2 y'_2(x) + C'_3 y'_3(x) = 0, \\ C'_1 y''_1(x) + C'_2 y''_2(x) + C'_3 y''_3(x) = f(x). \end{cases}$$

Пример 11. Решить уравнение $y'' + 4y = \frac{1}{\sin 2x}$.

Решение. Выпишем соответствующее однородное уравнение, составим характеристическое уравнение и получим общее решение однородного уравнения.

$$y'' + 4y = 0$$
, $k^2 + 4 = 0$, $k = \pm 2i$, $\overline{y} = C_1 \cos 2x + C_2 \sin 2x$.

T.e. $y_1(x) = \cos 2x$, $y_2(x) = \sin 2x$, тогда $y_1'(x) = -2\sin 2x$, $y_2'(x) = 2\cos 2x$.

Частное решение неоднородного уравнения будем искать в виде $y_* = C_1(x)\cos 2x + C_2(x)\sin 2x.$

Для определения неизвестных функций $C_1(x)$ и $C_2(x)$ составим систему:

$$\begin{cases} C'_{1}(x)\cos 2x + C'_{2}(x)\sin 2x = 0, \\ -2C'_{1}(x)\sin 2x + 2C'_{2}(x)\cos 2x = \frac{1}{\sin 2x}. \end{cases}$$

Решим систему с помощью формул Крамера.
$$\Delta = \begin{vmatrix} \cos 2x & \sin 2x \\ -2\sin 2x & 2\cos 2x \end{vmatrix} = 2\cos^2 2x + 2\sin^2 2x = 2.$$

Тогда:

Гогда:
$$C_1'(x) = \frac{1}{2} \begin{vmatrix} 0 & \sin 2x \\ \frac{1}{\sin 2x} & 2\cos 2x \end{vmatrix} = -\frac{1}{2}, \quad C_2'(x) = \frac{1}{2} \begin{vmatrix} \cos 2x & 0 \\ -2\sin 2x & \frac{1}{\sin 2x} \end{vmatrix} = \frac{1}{2}ctg2x.$$

Интегрируя последние два равенства, получим

$$C_1(x) = -\frac{1}{2}x$$
, $C_2(x) = \frac{1}{4}\ln|\sin 2x|$.

Общее решение исходного неоднородного уравнения имеет вид

$$y(x) = \overline{y}(x) + y_*(x) = C_1 \cos 2x + C_2 \sin 2x - \frac{1}{2}x \cos 2x + \frac{1}{4}\sin 2x \ln |\sin 2x|.$$

Omsem:
$$y(x) = C_1 \cos 2x + C_2 \sin 2x - \frac{1}{2}x \cos 2x + \frac{1}{4} \sin 2x \ln |\sin 2x|$$
.

Задания для аудиторной работы

57. Применяя метод вариации произвольных постоянных, решить уравн.:

1)
$$y'' - 4y' + 5y = \frac{e^{2x}}{\cos x}$$
; 2) $y'' + 4y' + 4y = e^{-2x} \ln x$;

3)
$$y'' + y + ctg^2 x = 0$$
; 4) $y''' + y' = tgx \cdot \frac{1}{\cos x}$.

Задания для индивидуальной работы

58. Применяя метод вариации произвольных постоянных, решить уравнения:

1)
$$y'' - 2y' + y = \frac{e^x}{x}$$
;

2)
$$y'' + y = \frac{1}{\sin x}$$
;
4) $y'' - 2tgx \cdot y' =$

3)
$$y''' + y' = tgx$$
;

4)
$$y'' - 2tgx \cdot y' = 1$$
.

59. Применяя метод вариации произвольных постоянных, решить уравнения:

1)
$$y'' - 2y' + y = \frac{e^x}{x^2 + 1}$$
;

1)
$$y'' - 2y' + y = \frac{e^x}{x^2 + 1}$$
; 2) $y'' + 2y' + 2y = \frac{1}{e^x \sin x}$;
3) $y'' - y' = e^{2x} \cos e^x$; 4) $y'' + 4y = \frac{1}{\sin^2 x}$;
5) $y''' + y' = tgx \sec x$; 6) $x \ln x \cdot y'' - y' = \ln^2 x$;
7) $y'' + 2ctgx \cdot y' = 1$; 8) $xy'' + (2x - 1)y' = -4x^2$.

3)
$$y'' - y' = e^{2x} \cos e^x$$
;

4)
$$y'' + 4y = \frac{1}{\sin^2 x}$$
;

5)
$$y''' + y' = tgx \sec x$$
;

6)
$$x \ln x \cdot y'' - y' = \ln^2 x$$

7)
$$y'' + 2ctgx \cdot y' = 1$$
;

8)
$$xy'' + (2x-1)y' = -4x^2$$
.

7. Системы дифференциальных уравнений

Рассмотрим нормальную систему двух ДУ первого порядка, т.е. систему вида

$$\begin{cases} \frac{dy}{dx} = f(x, y, z), \\ \frac{dz}{dx} = g(x, y, z). \end{cases}$$

Решение системы, разрешенной относительно производных от двух искомых функций y(x) и z(x), методом исключения сводится к решению одного дифференциального уравнения второго порядка относительно одной из функций. Рассмотрим процесс сведения на примере.

Пример 12. Решить систему
$$\begin{cases} \frac{dy}{dx} = -2y - 4z + 4x + 1, \\ \frac{dz}{dx} = -y + z + \frac{3}{2}x^2. \end{cases}$$

Решение. Запишем систему в виде $\begin{cases} y' = -2y - 4z + 4x + 1, \\ z' = -v + z + 1.5x^2 \end{cases}$

Продифференцируем первое уравнение по переменной х: y'' = -2y' - 4z' + 4 и в это уравнение подставим z' из второго уравнения системы, получим выражение

$$y'' = -2y' - 4(-y + z + 1,5x^2) + 4$$
.

Из первого уравнения системы выразим переменную z и подставим в полученное уравнение, получим ДУ второго порядка относительно функции y(x).

$$\begin{cases} y'' + 2y' - 4y + 4z = 4 - 6x^{2}, \\ z = \frac{1}{4} (1 + 4x - y' - 2y), \end{cases} \Rightarrow \begin{cases} 4z = 1 + 4x - y' - 2y, \\ y'' + 2y' - 4y + 1 + 4x - y' - 2y = 4 - 6x^{2}, \end{cases} \Rightarrow \begin{cases} 4z = 1 + 4x - y' - 2y, \\ y'' + y' - 6y = 3 - 4x - 6x^{2}. \end{cases}$$

Решим неоднородное уравнение относительно функции y(x):

$$k^{2} + k - 6 = 0$$
, $(k+3)(k-2) = 0$, $k_{1} = -3$, $k_{2} = 2 \implies \overline{y} = C_{1}e^{-3x} + C_{2}e^{2x}$;
 $y_{*} = ax^{2} + bx + c$, $y'_{*} = 2ax + b$, $y''_{*} = 2a$,
 $2a + 2ax + b - 6ax^{2} - 6bx - 6c = 3 - 4x - 6x^{2}$.

Приравниваем коэффициенты при одинаковых степенях переменной x, получим систему для определения коэффициентов a,b,c.

$$\begin{cases}
-6a = -6, \\
2a - 6b = -4, \\
2a + b - 6c = 3,
\end{cases} \Rightarrow \begin{cases}
a = 1, \\
6b = 2a + 4 = 6, \\
6c = 2a + b - 3 = 0,
\end{cases} \Rightarrow \begin{cases}
a = 1, \\
b = 1, \\
c = 0.
\end{cases}$$

Тогда,
$$y_* = x^2 + x$$
; $y = C_1 e^{-3x} + C_2 e^{2x} + x^2 + x$.

Найдем функцию z(x).

Общее решение системы:

$$\begin{cases} y = C_1 e^{-3x} + C_2 e^{2x} + x^2 + x, \\ z = 0,25 \ C_1 e^{-3x} - C_2 e^{2x} - 0,5 \ x^2. \end{cases}$$
 Omsem:
$$\begin{cases} y = C_1 e^{-3x} + C_2 e^{2x} + x^2 + x, \\ z = 0,25 \ C_1 e^{-3x} - C_2 e^{2x} - 0,5 x^2. \end{cases}$$

Аналогично поступают при решении систем дифференциальных уравнений с большим числом уравнений.

Метод Эйлера решения линейных однородных систем ДУ с постоянными коэффициентами. Рассмотрим систему трех уравнений с тремя неизвестными функциями:

$$\begin{cases} x'(t) = a_{11}x + a_{12}y + a_{13}z, \\ y'(t) = a_{21}x + a_{22}y + a_{23}z, \\ z'(t) = a_{31}x + a_{32}y + a_{33}z. \end{cases}$$

Будем искать неизвестные функции в виде

$$x = \alpha \cdot e^{kt}$$
, $y = \beta \cdot e^{kt}$, $z = \gamma \cdot e^{kt}$.

Подставим эти выражения в систему и преобразуем ее к виду

$$\begin{cases} (a_{11} - k)\alpha + a_{12}\beta + a_{13}\gamma = 0, \\ a_{21}\alpha + (a_{22} - k)\beta + a_{23}\gamma = 0, \\ a_{31}\alpha + a_{32}\beta + (a_{33} - k)\gamma = 0. \end{cases}$$

Получили систему линейных однородных алгебраических уравнений относительно α , β и γ . Система имеет ненулевые решения, если ее определитель равен нулю. Получим уравнение для определения числа к.

$$\Delta = \begin{vmatrix} a_{11} - k & a_{12} & a_{13} \\ a_{21} & a_{22} - k & a_{23} \\ a_{31} & a_{32} & a_{33} - k \end{vmatrix} = 0,$$

которое называется характеристическим уравнением исходной системы ДУ. Решая его, найдем значения k. Для каждого найденного значения определяем α , β и γ , после чего выписываем линейно независимые решения по каждой искомой функции и составляем общее решение системы.

Пример 13. Решить систему по методу Эйлера
$$\begin{cases} x' = x - y + z, \\ y' = x + y - z, \\ z' = 2x - y. \end{cases}$$

Решение. Характеристическое уравнение этой системы имеет вид

$$\begin{vmatrix} 1-k & -1 & 1 \\ 1 & 1-k & -1 \\ 2 & -1 & -k \end{vmatrix} = 0, \quad (1-k)^{2}(-k)-1+2-2(1-k)-(1-k)-k=0,$$

$$-k(1-k)^{2}-2(1-k)=0, \quad (k-1)(k-2)(k+1)=0, \quad k_{1}=1, k_{2}=2, k_{3}=-1.$$

$$-k(1-k)^2-2(1-k)=0$$
, $(k-1)(k-2)(k+1)=0$, $k_1=1$, $k_2=2$, $k_3=-1$.

Соответствующие значения α , β , γ для каждого найденного k найдем из системы уравнений:

$$\begin{cases} (1-k)\alpha - \beta + \gamma = 0, \\ \alpha + (1-k)\beta - \gamma = 0, \\ 2\alpha - \beta - k\gamma = 0. \end{cases}$$

Подставим в систему k = 1.

$$\begin{cases} -\beta + \gamma = 0, \\ \alpha - \gamma = 0, \\ 2\alpha - \beta - \gamma = 0, \end{cases} \Rightarrow \begin{cases} \beta = \gamma, \\ \alpha = \gamma, \\ 0 = 0, \end{cases} \Rightarrow \begin{cases} \alpha = 1, \\ \beta = 1, \\ \gamma = 1, \end{cases} \Rightarrow \begin{cases} x_1 = e^t, \\ y_1 = e^t, \\ z_1 = e^t. \end{cases}$$

Если k=2, то система примет вид:

$$\begin{cases} -\alpha - \beta + \gamma = 0, \\ \alpha - \beta - \gamma = 0, \\ 2\alpha - \beta - 2\gamma = 0, \end{cases} \Rightarrow \begin{cases} 2\beta = 0, \\ \alpha = \gamma, \\ 0 = 0, \end{cases} \Rightarrow \begin{cases} \alpha = 1, \\ \beta = 0, \\ \gamma = 1, \end{cases} \Rightarrow \begin{cases} x_2 = e^{2t}, \\ y_2 = 0, \\ z_2 = e^{2t}. \end{cases}$$

Найдем частное решение исходной системы ДУ для k = -1.

$$\begin{cases} 2\alpha - \beta + \gamma = 0, \\ \alpha + 2\beta - \gamma = 0, \\ 2\alpha - \beta + \gamma = 0, \end{cases} \Rightarrow \begin{cases} 2\alpha - \beta + \gamma = 0, \\ 3\alpha + \beta = 0, \end{cases} \Rightarrow \begin{cases} \beta = -3\alpha, \\ \gamma = -5\alpha, \end{cases} \Rightarrow \begin{cases} \alpha = 1, \\ \beta = -3, \\ \gamma = -5, \end{cases} \Rightarrow \begin{cases} x_3 = e^{-t}, \\ y_3 = -3e^{-t}, \\ z_3 = -5e^{-t}. \end{cases}$$

Выпишем общее решение системы дифференциальных уравнений:

$$\begin{cases} x(t) = C_1 x_1 + C_2 x_2 + C_3 x_3, \\ y(t) = C_1 y_1 + C_2 y_2 + C_3 y_3, \\ z(t) = C_1 z_1 + C_2 z_2 + C_3 z_3, \end{cases} \Rightarrow \begin{cases} x = C_1 e^t + C_2 e^{2t} + C_3 e^{-t}, \\ y = C_1 e^t - 3C_3 e^{-t}, \\ z = C_1 e^t + C_2 e^{2t} - 5C_3 e^{-t}. \end{cases}$$

Omeem:
$$\begin{cases} x = C_1 e^t + C_2 e^{2t} + C_3 e^{-t}, \\ y = C_1 e^t - 3C_3 e^{-t}, \\ z = C_1 e^t + C_2 e^{2t} - 5C_3 e^{-t}. \end{cases}$$

Задания для аудиторной работы

60. Найти общее решение каждой из следующих систем:

1)
$$\begin{cases} y' = -7y + z, \\ z' = -2y - 5z, \end{cases}$$

2)
$$\begin{cases} y' = -5y + 2z + e^{x}; \\ z' = y - 6z + e^{-2x}; \end{cases}$$

3)
$$\begin{cases} y'' + 2y + 4z = 0; \\ z'' - y - 3z = 0; \end{cases}$$

4)
$$\begin{cases} y' = \frac{y^2}{z}; \\ z' = 0.5y; \end{cases}$$

5)
$$\begin{cases} \frac{d^2y}{dx^2} = z, \\ \frac{d^2z}{dx^2} = y. \end{cases}$$

6)
$$\begin{cases} x'(t) = 5x + 2y - 3z, \\ y'(t) = 4x + 5y - 4z, \\ z'(t) = 6x + 4y - 4z. \end{cases}$$

61. Найти частное решение системы

$$\begin{cases} x'(t) = 4x + y - 36t; \\ y'(t) = -2x + y - 2e^t; \ x(0) = 0, \ y(0) = 1. \end{cases}$$

Задания для индивидуальной работы

62. Найти общее решение каждой из следующих систем:

1)
$$\begin{cases} x' = 5x + 3y; \\ y' = -3x - y; \end{cases}$$

2)
$$\begin{cases} y'_1 = 3y_1 - 2y_2 + x; \\ y'_2 = 3y_1 - 4y_2; \end{cases}$$

3)
$$\begin{cases} y_1' = y_2 \\ y_2' = y_3 \\ y_3' = y_1 \end{cases}$$

4)
$$\begin{cases} x'(t) = x - 4y - z, \\ y'(t) = x + y; \\ z'(t) = 3x + z. \end{cases}$$

63. Найти общее решение каждой из следующих систем:

1)
$$\begin{cases} x' = 2x + y; \\ y' = 3x + 4y; \end{cases}$$

2)
$$\begin{cases} y_1' = y_1 + y_2 + x, \\ y_2' = -4y_1 - 3y_2 + 2x, \end{cases}$$

3)
$$\begin{cases} x'(t) = 3x - 4y + e^{-2t}; \\ y'(t) = x - 2y - 3e^{-2t}; \end{cases}$$

$$\begin{cases} \frac{dx}{dt} = y + z, \\ \frac{dy}{dt} = x + z, \\ \frac{dz}{dt} = x + y. \end{cases}$$

64. Найти общее решение каждой из следующих систем:

1)
$$\begin{cases} x'(t) = 2x + y + e^{t}; \\ y'(t) = x + 2y - 3e^{4t}; \end{cases}$$

2)
$$\begin{cases} y_1' = y_2 + y_3; \\ y_2' = y_1 + y_3; \\ y_3' = y_1 + y_2; \end{cases}$$

3)
$$\begin{cases} x'(t) = 4x - 3y + \sin t; \\ y'(t) = 2x - y - 2\cos t; \end{cases}$$

4)
$$\begin{cases} x'(t) = x - y + 8t; \\ y'(t) = 5x - y; \end{cases}$$

5)
$$\begin{cases} x'(t) = -3x + 4y - 2z, \\ y'(t) = x + z, \\ z'(t) = 6x - 6y + 5z, \end{cases}$$

$$\begin{cases} x'(t) = x - 4y - z, \\ y'(t) = x + y, \\ z'(t) = 3x + z, \end{cases}$$

6)
$$\begin{cases} x'(t) = 3x - y + z, \\ y'(t) = x + y + z, \\ z'(t) = 4x - y + 4z, \end{cases}$$

7)
$$\begin{cases} x'(t) = x - 4y - z, \\ y'(t) = x + y; \\ z'(t) = 3x + z, \end{cases}$$

8)
$$\begin{cases} x'(t) = x - 2y - z, \\ y'(t) = -x + y + z, \\ z'(t) = x - z. \end{cases}$$

Ответы: 62. 1) $x = (C_1 + C_2 t)e^{2t}$; $y = \left(-C_1 + \frac{C_2}{3} - C_2 t\right)e^{2t}$.

63. 1)
$$x = C_1 e^t + C_2 e^{5t}$$
; $y = -C_1 e^t + 3C_2 e^{5t}$.

Задания для подготовки к контрольной работе по теме «Дифференциальные уравнения»

65. Найти общие решения дифференциальных уравнений, а там где заданы начальные условия, определить частное решение:

1)
$$y' = \frac{2xy}{1+x^2}$$
, $y(2) = 5$;

2)
$$(3x-1)dy + y^2dx = 0$$

3)
$$(x+2y) dx - xdy = 0$$
;

4)
$$y' = 2x(x^2 + y)$$
, $y(0) = 0$;

5)
$$(4y-3x-5)y'+7x-3y+2=0$$

6)
$$xy' + y = y^2 \ln x$$

5)
$$(4y-3x-5)y'+7x-3y+2=0$$
; 6) $xy'+y=y^2\ln x$;
7) $y''=x-\ln x$, $y(1)=-\frac{5}{12}$, $y'(1)=\frac{3}{2}$; 8) $y''+2xy'^2=0$;

8)
$$y'' + 2xy'^2 = 0$$
;

9)
$$y'' = 2 - y$$
, $y(0) = 2$, $y'(0) = 2$;

10)
$$9y'' - 6y' + y = 0$$
;

11)
$$y'' + 12y' + 37y = 0$$
;

12)
$$y'' - 2y' = 0$$

13)
$$y'' - 12y' + 36y = 14e^{6x}$$
;

14)
$$y^{V} - 9y''' = 0$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 0$, $y'''(0) = 0$, $y^{IV}(0) = 0$;

15)
$$y'' + 4y = tg2x$$
.

15)
$$y'' + 4y = tg2x$$
.
16) Решить систему дифференциальных уравнений $\begin{cases} y'_1 = 5y_1 + 8y_2; \\ y'_2 = 3y_1 + 3y_2. \end{cases}$

- 17) Записать уравнение кривой, проходящей через точку А(4; 1) и обладающей свойством: отрезок, который касательная в любой точке кривой отсекает на оси Оу, равен квадрату абсциссы точки касания.
- 18) Через сколько времени тело, нагретое до 100° , охладится до 25° в комнате с температурой 20° , если до 60° оно охлаждается за 10 мин? (По закону Ньютона скорость охлаждения пропорциональна разности температур.)
- 66. Найти общие решения дифференциальных уравнений, а там, где заданы начальные условия, определить частное решение:

1)
$$xy' = \frac{y}{\ln x}$$
, $y(e) = 1$;

2)
$$ye^{2x}dx - (1+e^{2x})dy = 0$$
;

3)
$$y' = \frac{y}{x} (1 + \ln y - \ln x);$$

4)
$$x^2y' = 2xy + 3$$
, $y(1) = -1$;

5)
$$(2x+y)dx + (3y-5x-11)dy = 0$$
; 6) $y' + 2xy = 2x^3y^3$;

6)
$$y' + 2xy = 2x^3y^3$$
;

7)
$$y'' = \frac{1}{x^2}$$
, $y(1) = 3$, $y'(1) = 1$;

8)
$$y'''x\ln x = y''$$
;

9)
$$2y'^2 = (y-1)y''$$
, $y(0) = 2$, $y'(0) = 2$; 10) $y'' - 10y' + 21y = 0$;

10)
$$y'' - 10y' + 21y = 0$$

11)
$$y'' - 2y' + 2y = 0$$
;

12)
$$y'' + 4y' = 0$$
;

13)
$$y'' + y = 2\cos x - (4x + 4)\sin x$$
;

14)
$$y''' + 2y''' - 2y' - y = 0$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 0$, $y'''(0) = 8$;

15)
$$y'' - 2y' + 2y = \frac{e^x}{\sin^2 x}$$
;

- 16) Решить систему дифференциальных уравнений $\begin{cases} y_1' = 3y_1 + y_2; \\ y_2' = 8y_1 + y_2. \end{cases}$
- 17) Записать уравнение кривой, проходящей через точку A(0; 4), если известно, что длина отрезка, отсекаемого на оси ординат касательной, проведенной в любой точке кривой, равна расстоянию от этой точки до начала координат.
- 18) Моторная лодка движется в спокойной воде со скоростью 5 м/сек. На полном ходу ее мотор выключается, и через 40 сек после этого скорость лодки уменьшается до 2 м/сек. Определить скорость лодки через 2 мин после остановки мотора, считая, что сопротивление воды пропорционально скорости движения лодки.

Ответы: 65. 1)
$$y = x^2 + 1$$
; 2) $y = \frac{1}{\ln C \sqrt[3]{|3x-1|}}$; 3) $y = Cx^2 - x$;

4)
$$y = -x^2 - 1 + e^{x^2}$$
; 5) $2y^2 - 3xy + \frac{7}{2}x^2 + 2x - 5y = C$; 6) $y = \frac{1}{\ln x + 1 + Cx}$;

8)
$$y = \frac{1}{2C_1} \ln \left| \frac{x - C_1}{x + C_1} \right| + C_2$$
; 9) $y = 2\sin x + 2$; 13) $y = C_1 e^{6x} + C_2 x e^{6x} + 7x^2 e^{6x}$;

14)
$$y = 1 - x$$
; 15) $y = C_1 \cos 2x + C_2 \sin 2x - \frac{1}{4} \ln \left| tg \left(x + \frac{\pi}{4} \right) \right| \cos 2x$;

16)
$$y_1 = C_1 e^{-x} + C_2 e^{9x}$$
; $y_2 = -\frac{3C_1}{4} e^{-x} + \frac{C_2}{2} e^{9x}$; 17) $y = \frac{17}{4} x - x^2$; 18) 40 мин.

66. 1)
$$y = \ln x$$
; 2) $y = C\sqrt{1 + e^{2x}}$; 3) $y = xe^{Cx}$; 4) $y = -\frac{1}{x}$;

5)
$$C(3y-2x+1)^3(y-x-1)^2=0$$
;

6)
$$2 = Cy^2e^{2x^2} + 2x^2y^2 + y^2$$
;

8)
$$y = C_1 x^2 \frac{2 \ln x - 3}{4} + C_2 x + C_3$$
; 9) $y = 1 + \frac{1}{1 - 2x}$, $y = 2$;

13)
$$y = C_1 \cos x + C_2 \sin x + (x^2 + 2x) \cos x$$
;

14)
$$y = 2e^{-x} - 4xe^{-x} - 4x^2e^{-x} - 2e^x$$
;

15)
$$y = \left(\ln \left(ctg \frac{x}{2} \right) + C_1 \right) e^x \cos x + \left(\frac{1}{\sin x} + C_2 \right) e^x \sin x;$$

16)
$$y_1 = C_1 e^{-x} + C_2 e^{5x}$$
; $y_2 = -4C_1 e^{-x} + 2C_2 e^{5x}$; 17) $y = -\frac{x^2}{16} + 4$;

18) $v \approx 0.32$ m/cek.

Литература

- 1. Бугров, Я.С. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного / Я.С. Бугров, С.М. Никольский. М.: Наука, 1981. 448 с.
- 2. Власов, В.Г. Конспект лекций по высшей математике / В.Г. Власов. М.: АйрисПресс, 1997. 288 с.
- 18 Выгодский, М.Я. Справочник по высшей математике / М.Я. Выгодский. М.: Астрель: АСТ, 2005. 991 с.
- 3. Высшая математика для инженеров: в 2-х томах / С.А. Минюк [и др.]; под общ. ред. Н.А. Микулина. Минск: ООО «Элайда», 2004. Т.1. 464 с., Т.2. 592 с.
- 4. Герасимович, А.И. Математический анализ: Справочное пособие в 2-х частях / А.И. Герасимович [и др.]. Мн.: Выш. шк., 1990. 272 с.
- 5. Гусак, А.А. Высшая математика: в 2-х частях / А.А. Гусак. Мн.: ТетраСистемс, 2000-2001. Т.1. 544 с., Т.2. 442 с.
- 6. Данко, П.Е. Высшая математика в упражнениях и задачах: в 2-х частях / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. Мн.: Высш. шк., 1997. Ч.1. 304 с., Ч.2. 416 с.
- 7. Жевняк, Р.М. Высшая математика, ч.І-IV / Р.М. Жевняк, А.А. Карпук. Мн.: Выш. шк., 1984-1996 и все последующие издания.
- 8. Задачи и упражнения по курсу «Высшая математика» для студентов электронно-информационных специальностей. II семестр / Т.А. Тузик, А.И. Тузик, М.Г. Журавель. Брест: Изд-во БрГТУ, 2007. 103 с.
- 9. Индивидуальные задания по высшей математике / Под ред. А.П. Рябушко, I-IIIч. Мн.: Выш. шк., 2004-2008. Ч.1 304 с., Ч.2. 367 с., Ч.3. 367 с.
- 10. Лудерер, Б. Высшая математика в экономике, технике, информатике: справочник: пер. с нем. / Б. Лудерер, Ф. Наллау, К. Феттерс; под ред. А.В. Самусенко, В.В. Казаченок. Мн.: Выш. шк., 2005. 279 с.
- 11. Пискунов, Н.С. Дифференциальное и интегральное исчисления: в 2-х томах / Н.С. Пискунов. М.: Наука, 1985. Т.1. 432 с., Т.2. 560 с.
- 12. Письменный, Д.Т. Конспект лекций по высшей математике: Ч.1 / Д.Т. Письменный. М.: АйрисПресс, 2004. 288 с.
- 13. Руководство к решению задач по высшей математике: в 2-х частях / Е.И. Гурский. Мн.: Выш. шк., 1990. Ч.1. 304 с., Ч.2. 400 с.
- 14. Сборник задач по высшей математике: с контрольными работами / К.Н. Лунгу, Д.Т. Письменный, С.Н. Федин, Ю.А. Шевченко. М.: Айрис-Пресс, 2003. 576 с.
- 15. Сухая, Т.А. Задачи по высшей математике: в 2-х частях / Т.А. Сухая, В.Ф. Бубнов. Мн.: Выш. шк., 1993. Ч.1. 416 с., Ч.2. 304 с.
- 16. Тер-Крикоров, А.М. Курс математического анализа / А.М. Тер-Крикоров, М.И. Шабунин. М.: Изд-во МФТИ, 2000. 720 с.

Оглавление

Обыкновенные дифференциальные уравнения	3
1. Дифференциальные уравнения (ДУ) с разделяющимися переменными. Однородные ДУ первого порядка. Задача Коши 3	3
2. Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли	7
3. Дифференциальные уравнения высших порядков, допускающие понижение порядка. Краевые задачи для ДУ 2-го порядка	11
4. Линейные однородные дифференциальные уравнения (ЛОДУ) с постоянными коэффициентами	15
5. Линейные неоднородные дифференциальные уравнения (ЛНДУ) с постоянными коэффициентами и специальной правой частью	18
6. Метод вариации произвольных постоянных для неоднородных линейных ДУ	21
7. Системы дифференциальных уравнений	23
Задания для подготовки к контрольной работе по теме «Дифференциальные уравнения»	28
Литература	30

Учебное издание

Составители:

Каримова Татьяна Ивановна
Лебедь Светлана Федоровна
Журавель Мария Григорьевна
Гладкий Иван Иванович
Дворниченко Александр Валерьевич

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу «Математика» для студентов факультета электронно-информационных систем

Дифференциальные уравнения

II семестр

Ответственный за выпуск: Каримова Т.И. Редактор: Боровикова Е.А. Компьютерная верстка: Кармаш Е.Л. Корректор: Никитчик Е.В.

Подписано к печати 10.12.2015 г. Формат 60х84 ¹/₁₆. Усл. п. л. 1,86. Уч.-изд. л. 2,0. Заказ № 1262. Тираж 70 экз. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.