



# 金融基础-数量分析



# **CONTENTS**



|  | <b>PART</b> | 1 |
|--|-------------|---|
|--|-------------|---|

PART 2

**▶** PART 3

**▶** PART 4

PART 5

### 概率论的基本概念

随机变量的数字特征

常见的概率分布

参数估计和假设检验

线性回归分析



### 随机事件



#### > 随机试验

- 试验可以在相同条件下重复进行
- 试验的结果不止一个, 且事先可以明确试验的所有可能结果
- 试验之前无法预知会出现哪一个结果

#### > 样本空间

- 随机试验所有可能结果组成的集合
- 样本点: 样本空间的元素, 即随机试验的每个结果

#### ▶ 随机事件

- 随机试验的结果,样本空间的子集,简称事件
- 当且仅当这一子集中的一个样本点出现时,称这一事件发生
- 基本事件:由一个样本点组成的单点集
- 复合事件: 由多个样本点组成的集合



### 事件间的关系



• 包含关系: A ⊆ B 表示"A 发生则 B 发生"

▶ 相等事件: 如果A⊆B且B⊆A, 则A=B

▶ 和 (并) 事件: A ∪ B, 表示"A、B 中至少有一个发生"的事件。

→ 积(交)事件: A ∩ B (或 AB) ,表示"A、B 同时发生"的事件



包含关系



和(并)事件



积(交)事件



# 事件间的关系



- **□ 互斥事件:** 若  $A \cap B = \emptyset$ ,则称事件  $A \subseteq B''$  互斥"或"互不相容",表示"A、B 不能同时发生"
- **对立事件:** 若  $A \cup B = \Omega$  且  $A \cap B = \emptyset$ ,则称事件 A 与事件 B 互为"逆事件" 或"对立事件",表示"每次试验中,事件 A、B 中必有一个发生,且仅有一个发生";A 的对立事件记为  $\overline{A}$
- Arr **差事件:**  $A B = A \cap \overline{B}$ , 表示"A 发生但 B 不发生"的事件









### 概率的定义和性质



### > 概率的定义

• 在一次试验中,某事件发生的可能性的大小

#### ► 概率的性质

- $P(\emptyset) = 0$ ,  $0 \le P(A) \le 1$ ,  $P(\Omega) = 1$
- 差事件的概率: P(A B) = P(A) P(AB)
- 逆事件的概率: P(Ā) = 1 P(A)
- 如事件  $A_1, A_2, ..., A_n$  互不相容,则:  $P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n P(A_k)$
- 如有任意事件 A、B, 且 A⊆B, 则: P(A) ≤ P(B), P(B A) = P(B) P(A)
- 加法公式: P(A∪B) = P(A) + P(B) P(AB)
  - ✓ 若 A、B 互斥,则: P(A∪B) = P(A) + P(B)
  - ✓ 若 A、B 独立, 则: P(A∪B) = P(A) + P(B) P(A)P(B)



### 概率模型



### > 古典概型

- 试验的样本空间只包含有限个元素,且每个基本事件发生的可能性相等
- 事件 A 的概率为:

● 例: 抛硬币, 掷骰子

### > 排列组合

● 排列:从 n 个不同元素中取出  $m(m \le n)$  个元素的所有排列的个数,用符号  $A_n^m$  表示

$$A_n^m = n(n-1)...(n-m+1) = \frac{n!}{(n-m)!}$$

$$C_n^m = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!}$$



### 概率模型



#### > 几何概型

- 试验的样本空间包含无限个元素, 且每个基本事件发生的可能性相等
- 如果每个事件发生的概率只与构成该事件区域的测度(长度、面积、体积等)成比例,而与该区域的位置和形状无关,则称这样的概率模型为几何概率模型,简称为几何概型
- 事件 A 的概率为:

$$P(A) = \frac{A \text{ 的测度}}{\text{样本空间的测度}}$$

• 例: 扔石子问题, 见面问题



$$P(A) = \frac{\pi r^2}{4r^2} = \frac{\pi}{4}$$





# 边际、联合、条件概率



- ▶ 边际概率: 指一个事件发生的概率,而不考虑过去或者将来其他事件发生的情况,一般记为 P(A)
- ▶ **联合概率**:指两个事件同时发生的概率,一般记为 P(AB)
- ➤ **条件概率:** 指在一个事件已经发生的条件下,考虑另一个事件发生的概率,一般记为 P(A|B),表示在事件 B 发生的情况下,事件 A 发生的概率

$$P(A|B) = \frac{P(AB)}{P(B)}$$

#### 乘法公式:

- $P(AB) = P(A|B) \cdot P(B)$
- 若 A、B 互斥,则: P(AB) = 0
- 若 A、B 独立, 则: P(AB) = P(A) · P(B)



# 边际、联合、条件概率



▶ **例**:已知 A 和 B 联合概率矩阵:

|   |                | E              | 3     |                |
|---|----------------|----------------|-------|----------------|
| A |                | $\mathrm{B}_1$ | $B_2$ | A <sub>i</sub> |
|   | $A_1$          | 14%            | 6%    | 20%            |
|   | $A_2$          | 20%            | 30%   | 50%            |
|   | $A_3$          | 6%             | 24%   | 30%            |
|   | B <sub>j</sub> | 40%            | 60%   | 1              |

- 事件 A₂ 与事件 B₁ 的联合概率
- 事件 A₂ 发生的边际概率
- 在事件 A₂ 发生的情况下,事件 B₁ 发生的概率



# 全概率公式



### > 全概率公式

● 如果样本空间 A 划分为 A<sub>1</sub>、A<sub>2</sub>、…、A<sub>n</sub>,并且相互间为互斥事件,那么事件 B 发生的概率为:

$$P(B) = P(A_1B) + P(A_2B) + \dots + P(A_nB)$$

$$= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$





### 贝叶斯公式



#### > 贝叶斯公式

• 如果样本空间 A 划分为  $A_1$ 、 $A_2$ 、 ...、 $A_n$ ,并且相互间为互斥事件,那么事件 B 发生的情况下事件  $A_i$  发生的概率为:





# 随机变量



### > 离散型随机变量

- 随机变量全部可能取到的值是有限个或可列无限多个
- ▶ 概率质量函数 (PMF)
  - 设离散型随机变量 X 所有可能取值为  $x_1, x_2, ..., x_n$ ,则 X 的概率质量函数为:

$$P(X = x_i) = p_k$$
, 其中  $i = 1, 2, ..., n$ 

- 离散型随机变量的概率质量函数的性质:  $\sum_{i=1}^{n} P(x_i) = 1$
- > 累积分布函数 (CDF)
  - 离散型随机变量 X 的累积分布函数记为:

$$F(x) = P(X \le x)$$

• 表示离散型随机变量 X 取值小于等于 x 时的概率



# 随机变量



- > 连续型随机变量
  - 随机变量的所有可能值不可以逐个列举出来
- ▶ 概率密度函数 (PDF)
  - 连续型随机变量 X 的概率密度函数通常用 f(x) 来表示
  - 连续型随机变量的点概率等于零: P(X = x<sub>i</sub>) = 0
  - 连续型随机变量的概率密度函数的性质:  $\int_{-\infty}^{+\infty} f(x) dx = 1$
- > 累积分布函数 (CDF)

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

● 连续型随机变量 X 取值落在常数 a 与常数 b 之间的概率可以表示为

$$P(a < X \le b) = \int_a^b f(x)dx = F(b) - F(a)$$



0.00





### 离散型

0.25 - 0.15 - 0.10 - 0.05 -

连续型



分布函数

概率函数





# **CONTENTS**



|  | PART | 1 |
|--|------|---|
|--|------|---|

概率论的基本概念

PART 2

随机变量的数字特征

PART 3

常见的概率分布

PART 4

参数估计和假设检验

**PART 5** ▶

线性回归分析



### 期望



### > 期望

- 离散变量:  $E(X) = \sum_{i=1}^{i=n} P(x_i)x_i$
- 连续变量:  $E(X) = \int_{-\infty}^{\infty} xf(x)dx$

### 》 期望的性质 (a、b、c 均为常数)

- E(c) = c
- E(aX) = aE(X), E(X + b) = E(X) + b
- E(aX + b) = aE(X) + b
- $E(X \pm Y) = E(X) \pm E(Y)$
- 一般来说, E(XY) ≠ E(X)E(Y); 如果随机变量 X 与 Y 相互独立, 则 E(XY) = E(X)E(Y)
- E(X<sup>2</sup>) ≠ [E(X)]<sup>2</sup>, 只有当 X 为常数时等号才成立



# 方差



### ▶ 方差

• 
$$Var(X) = \sigma^2 = E[(X - E(X))^2]$$

### > 方差的性质 (a、b、c 均为常数)

- Var(c) = 0
- $Var(aX) = a^2Var(X)$ , Var(X + b) = Var(X)
- $Var(aX + b) = a^2Var(X)$
- 如果随机变量 X 与 Y 相互独立,则:

$$\checkmark Var(X \pm Y) = Var(X) + Var(Y)$$

$$\checkmark Var(aX + bY) = a^2Var(X) + b^2Var(Y)$$

• 
$$Var(X) = E(X^2) - [E(X)]^2$$



# 协方差



### > 协方差

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

- 衡量两个变量的总体误差
- 协方差的取值范围为负无穷到正无穷

### **>** 协方差的性质

- Cov(X, X) = Var(X)
- Cov(a + bX, c + dY) = bdCov(X, Y)
- $Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X, Y)$
- $Var(aX \pm bY) = a^2Var(X) + b^2Var(Y) \pm 2abCov(X, Y)$
- 如果随机变量 X 与 Y 相互独立,则: Cov(X,Y) = 0



### 相关系数



### **相关系数**

$$\rho_{XY} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

#### **相关系数的性质**

- $Var(X \pm Y) = Var(X) + Var(Y) \pm 2\rho\sigma_X\sigma_Y$
- 相关系数衡量两个变量之间的线性关系
- 相关系数没有单位,取值从-1到1之间
- 相关系数<u>不表明因果关系</u>
- 如果两个变量相互独立,则相关系数为 ①
- 相关系数为 ○,两个变量不一定相互独立,例如: X~U(-1,1),Y = √1 X²



# 相关系数



### > 线性相关程度





# 偏度



### 偏度

● 衡量概率密度函数的不对称性:

Skewness = 
$$\frac{E[(X - \mu)^3]}{\sigma^3}$$

• 正偏(右偏)与负偏(左偏)









# 峰度



### > 峰度

• 衡量概率密度函数峰部的尖度:

$$K = \frac{E[(X - \mu)^4]}{\sigma^4}$$



超额峰度 = 峰度 - 3

|      | 尖峰  | 常峰态<br>(正态分布) | 低峰  |
|------|-----|---------------|-----|
| 峰度   | > 3 | = 3           | < 3 |
| 超额峰度 | > 0 | = 0           | < 0 |



### K阶距和中心距



### ➤ K阶距

- 随机变量 X 的 k 阶距为: m<sub>k</sub> = E[X<sup>k</sup>]
- 当 k = 1 时,有 m₁ = E[X],可以看出 m₁为数学期望

### > 中心距

- 随机变量 X 的 k 阶中心距为: μ<sub>k</sub> = E[(X μ)<sup>k</sup>]
- 如果 k = 1, 一阶中心距为0
- 如果 k = 2, 二阶中心距为方差
- 如果 k = 3, 三阶中心距除以标准差的立方, 为偏度
- 如果 k = 4, 四阶中心距除以方差的平方, 为峰度

# **CONTENTS**

ARE Analyst of Quantitative Finance

|  | PART | 1 |
|--|------|---|
|--|------|---|

概率论的基本概念

PART 2

随机变量的数字特征

PART 3

常见的概率分布

PART 4

参数估计和假设检验

▶ PART 5

线性回归分析



# 伯努利分布



### 伯努利试验

● 试验只有两种可能的结果 A 及 Ā

### ▶ 伯努利分布 (0-1分布)

● 随机变量 X 只取 0 和 1 两个值:

$$P(X) = \begin{cases} p, & X = 1 \\ 1 - p, & X = 0 \end{cases}$$

• 期望和方差:

$$E(X) = p, \qquad Var(X) = p(1 - p)$$



# 二项分布



#### > 二项分布

● n 次独立重复的伯努利试验中,成功次数为 k 的概率为:

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

• 期望和方差:

$$E(X) = np$$
,  $Var(X) = np(1 - p)$ 

$$\checkmark kC_n^k = nC_{n-1}^{k-1}$$

✓ 二项展开式: 
$$(a+b)^n = C_n^0 a^0 b^n + C_n^1 a^1 b^{n-1} + \cdots + C_n^n a^n b^0$$



### 二项分布



### > 二项分布



随着 n 的增大,二项分布趋近于正态分布



# 泊松分布



### > 泊松分布

• 泊松分布适合于描述单位时间内随机事件发生的次数

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0,1,...$$

- ✓ A 是单位时间内随机事件的平均发生率
- ✓ 当二项分布  $n \to \infty$ ,  $p \to 0$ , 而 np 比较稳定时, 泊松分布可作为二项分布的逼近  $(np = \lambda)$

#### • 期望和方差:

$$E(X) = Var(X) = \lambda$$





# 均匀分布



### > 均匀分布

● 概率密度函数:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp \& \end{cases}$$

• 累积分布函数:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

● 期望和方差:

$$E(X) = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}$$







# 指数分布



### > 指数分布

- 描述泊松过程中事件之间的间隔时间
- 概率密度函数:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0, & x \le 0 \end{cases}$$

其中 $\lambda > 0$ 

• 累积分布函数:

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, x > 0\\ 0, & x \le 0 \end{cases}$$







# 指数分布



### > 指数分布

• 期望和方差:

$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$

- 无记忆性:
  - ✓ 对于任意 s,t > 0, 有:

$$P(X > s + t | X > s) = \frac{P(X > s + t)}{P(X > s)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t)$$

✓ 如果 X 是某元件的寿命,已知元件已使用了 s 小时,它总共能使用至少 s + t 小时的条件 概率,与从开始使用时算起至少能使用 t 小时的概率相等,即元件对它已使用过 s 小时没有记忆



# 正态分布



### > 正态分布

● 概率密度函数:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

• 累积分布函数:

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx, \quad -\infty < x < \infty$$

• 期望和方差:

$$E(X) = \mu$$
,  $Var(X) = \sigma^2$ 







### 正态分布



### > 正态分布的可加性

- 两个(或多个)满足正态分布的随机变量,经过线性组合构成的新的随机变量仍满足正态分布
  - ✓ 如果  $X \sim N(\mu, \sigma^2)$ , 则  $Y = mX + b \sim N(m\mu + b, m^2\sigma^2)$
  - ✓ 如果  $X \sim N(\mu_1, \sigma_1^2)$ ,  $Y \sim N(\mu_2, \sigma_2^2)$ , 则 Z = X + Y 仍服从正态分布

#### > 标准正态分布

- N(0,1) 或 Z分布
- 标准化:如果 X~N(μ,σ²),那么:

$$Z = \frac{X - \mu}{\sigma} \sim N(0,1)$$

 $\Phi(-x) = 1 - \Phi(x)$ 





# 对数正态分布



### > 对数正态分布



- $\ln X \sim N(\mu, \sigma^2)$
- 右偏 (正偏)

● 概率密度函数:

$$f(x) = \frac{1}{x\sqrt{2\pi}\sigma} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, x > 0$$

- 如果 lnX 满足正态分布, 那么 X 满足对数正态分布; 反之亦然
- 该分布在对资产价格建模时非常有用,例如:BSM模型假设标的资产价格满足对数正态分布



# 对数正态分布



▶ 例:某股票的日收益率和股价分布



• 资产收益率近似服 从正态分布



• 资产价格近似服从对数正态分布

# **CONTENTS**

ALF Analyst of Quantitative Finance

|  | <b>PART</b> | 1 |
|--|-------------|---|
|--|-------------|---|

概率论的基本概念

PART 2

随机变量的数字特征

PART 3

常见的概率分布

PART 4

参数估计和假设检验

PART 5

线性回归分析



## 切比雪夫不等式



#### > 切比雪夫不等式

• 设服从任意分布的随机变量  $\times$  的数学期望  $E(X) = \mu$ , 方差  $D(X) = \sigma^2$ , 则:

$$P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}, k > 1$$

• 利用切比雪夫不等式,可以在随机变量 X 的分布未知的情况下,对事件  $|X - \mu| \le k\sigma$  的概率作出估计

- ▶ 例:对于任意一个分布而言,观测值落在偏离均值正负3个标准差内的概率最小为多少?
  - 解析:根据切比雪夫不等式:

$$P(|X - \mu| \le 3\sigma) \ge 1 - \frac{1}{3^2} \approx 89\%$$



## 大数定律和中心极限定理



#### > 大数定律

• 设随机变量  $X_1, X_2, ..., X_n$  独立同分布,期望为  $\mu$ ,  $S_n = X_1 + X_2 + ... + X_n$ ,则  $\frac{S_n}{n}$  收敛到  $\mu$ :

$$\lim_{n\to\infty} \overline{X} = \mu$$

#### > 中心极限定理

• 设随机变量  $X_1, X_2, ..., X_n$  独立同分布,且具有有限的数学期望和方差:  $E(X_k) = \mu$ ,  $D(X_k) = \sigma^2 > 0$ 。当 n 充分大时,样本均值近似服从正态分布,即:

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$



# 总体和样本



## 总体和样本

## 样本统计量

- 样本均值:  $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$  总体均值:  $\mu = \frac{1}{N} \sum_{i=1}^{N} X_i$
- 样本方差:  $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$  总体方差:  $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i \mu)^2$



# 样本统计量



## **> 样本统计量**

• 标准差 (SD): 衡量数据分散程度

$$\checkmark$$
 总体标准差:  $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2} \quad \checkmark$  样本标准差:  $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$ 

• 标准误 (SE): 样本统计量的标准差,是衡量样本统计量抽样误差大小的尺度

✓ 样本均值的标准误: SEM = 
$$\frac{\sigma}{\sqrt{n}}$$

$$\checkmark$$
 由于通常  $σ$  未知,可以用样本标准差  $S$  替代,则:  $SEM = \frac{S}{\sqrt{n}}$ 



## 抽样分布



## > 卡方分布

● 若 n 个相互独立的随机变量 X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub> 均服从标准正态分布,则:

$$Y = X_1^2 + X_2^2 + \dots + X_n^2$$

服从自由度为 n 的卡方分布, 记为  $Y \sim \chi^2(n)$ 

#### ▶ 性质

- 右偏(正偏)
- 期望和方差:  $E(\chi^2) = n$ ,  $D(\chi^2) = 2n$
- 随着自由度的增加,卡方分布接近正态分布
- 可加性: 设  $\chi_1^2 \sim \chi^2(n_1)$ ,  $\chi_2^2 \sim \chi^2(n_2)$ , 并且  $\chi_1^2$ ,  $\chi_2^2$  相互独立,则有  $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$





## 抽样分布



#### ➤ t分布

● 设 X~N(0,1), Y~χ²(n), 且 X, Y 相互独立,则称随机变量

$$T = \frac{X}{\sqrt{Y/n}}$$

服从自由度为 n 的 t 分布, 记为 T~t(n)

## > 性质

- 对称,肥尾
- 期望和方差: E(X) = 0,  $D(X) = \frac{n}{n-2}$
- 随着自由度的增加, t 分布接近标准正态分布





## 抽样分布



#### ▶ F 分布

设 X、Y 为两个独立的随机变量,且 X~χ²(m), Y~χ²(n),则:

$$F = \frac{X/m}{Y/n}$$

服从自由度 (m,n) 的 F 分布, 记为 F~F(m,n)

#### ▶ 性质

- 右偏 (正偏)
- 如果随机变量 T~t(n) , 则 T<sup>2</sup>~F(1, n)





# 抽样分布定理



ightharpoonup 定理1: 设  $X_1, X_2, ..., X_n$  是来自正态总体  $N(\mu, \sigma^2)$  的样本,  $\bar{X}, S^2$  分别是样本均值和样本方差, 则有:

$$Y = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

- X̄, S² 相互独立
- ho 定理2: 设  $X_1, X_2, ..., X_n$  是来自正态总体  $N(\mu, \sigma^2)$  的样本,  $\overline{X}, S^2$  分别是样本均值和样本方差,则有:

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

**定理**3:设  $X_1, X_2, ..., X_n$  与  $Y_1, Y_2, ..., Y_n$  分别是来自正态总体  $N(μ_1, σ_1^2)$  与  $N(μ_2, σ_2^2)$  的样本,且这两个样本相互独立。设  $\overline{X}, \overline{Y}, S_1^2, S_2^2$  分别表示这两个样本的样本均值与样本方差,则有:

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$



# 点估计与区间估计



## > 点估计



#### > 区间估计

- 显著性水平: α; 置信度: 1 α
- 当置信度为95%时,我们可以说,置信区间包含真实总体参数的概率为95%
- 置信区间 = [点估计 ± 关键值 × 标准误]



## 估计量的评价标准



#### > 估计量的评价标准

• 无偏性: 估计量的数学期望等于需要估计的总体参数值

$$E[\widehat{\theta}] = \theta$$

- 有效性:对于同一个参数的多个无偏估计量中方差最小
- 一致性: 随着样本量的增大, 该估计量越接近总体参数真实值

$$\lim_{n\to\infty} P(|\hat{\theta}-\theta|<\epsilon)=1$$

## ▶ 最优线性无偏估计 (BLUE)

● 如果一个参数的估计量是样本观察值的线性函数,且具有无偏性和有效性,那么这个估计量就 被称为是最优线性无偏估计量。



## 假设检验



## **一假设检验的步骤**



#### ▶ 单尾检验 vs. 双尾检验

- 单尾检验: H<sub>0</sub>: μ = μ<sub>0</sub> H<sub>a</sub>: μ > μ<sub>0</sub> (或 H<sub>a</sub>: μ < μ<sub>0</sub>)
- 双尾检验: H<sub>0</sub>: μ = μ<sub>0</sub> H<sub>a</sub>: μ ≠ μ<sub>0</sub>



## 决定规则



#### > 拒绝域

● 单尾检验:如果样本估计值 > 关键值,则拒绝原假设 H<sub>0</sub>

● 双尾检验:如果 |样本估计值| > 关键值,则拒绝原假设 H<sub>0</sub>







# 决定规则



- ▶ P值
  - p value < α,则拒绝原假设







# 总体均值的假设检验



$$\rightarrow$$
  $H_0$ :  $\mu = \mu_0$ 

|           | 正态总体, n < 30 | n ≥ 30      |
|-----------|--------------|-------------|
| 方差已知 (σ²) | Z 检验         | Z 检验        |
| 方差未知      | t 检验         | t 检验 或 Z 检验 |

• **Z 检验:** 
$$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$$

• 
$$t$$
 **\text{\text{\$\frac{\overline{X}}{S}\$}}:**  $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$ 



# 总体方差的假设检验



- - 卡方检验

$$\chi^{2} = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1)$$

- $ightharpoonup H_0: \sigma_1^2 = \sigma_2^2$ 
  - F 检验

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$$

- 通常将较大的方差放在分子的位置,即:  $S_1^2 > S_2^2$
- 无论是单尾还是双尾, 拒绝域通常都在右尾



# 假设检验汇总



## > 常见检验类型

| 检验类型                  | 假设               | H <sub>o</sub>            | 统计量                                                  | 临界值                   |
|-----------------------|------------------|---------------------------|------------------------------------------------------|-----------------------|
| 均值检验                  | 正态分布总体<br>总体方差已知 | $\mu=\mu_0$               | $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ | N(0,1)                |
| <b>上刊111111111111</b> | 正态分布总体<br>总体方差未知 | $\mu=\mu_0$               | $t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$        | t(n – 1)              |
| ᠸᡸᡟᢙᠯᢙ                | 正态分布总体           | $\sigma^2 = \sigma_0^2$   | $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$               | $\chi^2(n-1)$         |
| 方差检验                  | 两个独立的<br>正态分布总体  | $\sigma_1^2 = \sigma_2^2$ | $F = \frac{S_1^2}{S_2^2}$                            | $F(n_1 - 1, n_2 - 1)$ |



## 第一类错误与第二类错误



第一类错误:原假设正确,但被拒绝(拒真)

第二类错误:原假设错误,但却没有拒绝原假设(存伪)

▶ 显著性水平 (α): 第一类错误发生的概率

▶ 检验的势: 当原假设错误时,正确拒绝原假设的概率

| 决策                 | 真实情况                         |                                                     |  |  |
|--------------------|------------------------------|-----------------------------------------------------|--|--|
| <b>大</b> 來         | H <sub>0</sub> 正确            | H <sub>0</sub> 错误                                   |  |  |
| 不拒绝 H <sub>0</sub> | 决策正确第二类错误                    |                                                     |  |  |
| 拒绝 H <sub>0</sub>  | 第一类错误<br>P(Type I error) = α | 决策正确<br>Power of the test<br>= 1 – P(Type II error) |  |  |

# **CONTENTS**

Analyst of Quantitative Finance

|    | <b>PART</b> | 1 |
|----|-------------|---|
| 10 |             |   |

概率论的基本概念

PART 2

随机变量的数字特征

PART 3

常见的概率分布

PART 4

参数估计和假设检验

**▶** PART 5

线性回归分析



# 简单线性回归



## > 总体回归函数

$$E(Y|X_i) = \beta_0 + \beta_1 X_i$$

• 对于任何一个观测点,有:  $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ 

## > 样本回归函数

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- Ŷ为 E(Y|X<sub>i</sub>) 的估计量
- β̂<sub>0</sub>、β̂<sub>1</sub> 为 β₀、β₁ 的估计量
- 对于任何一个观测点,有:  $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\epsilon}_i$



# 简单线性回归



## > 总体回归线和样本回归线





# 普通最小二乘法



- ▶ 普通最小二乘法 (OLS)
  - 使样本回归方程中残差项的平方最小,即:

$$\min_{\widehat{\beta}_0, \widehat{\beta}_1} \sum_{i=1}^n \widehat{\epsilon}_i^2 = \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2 = \sum_{i=1}^n (Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 X_i)^2$$

● 求解可得:

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}$$

➤ Gauss-Markov **定理**:在线性回归模型中,如果随机误差项期望为零,方差相等,且互不相关,则 OLS估计量是最佳线性无偏估计 (BLUE) 。



# 简单线性回归模型假设



## > 简单线性回归模型 (SLR) 假设:

- 线性回归模型:参数线性
- 自变量 X 非随机
- 随机误差项的期望为零: E(ε<sub>i</sub>) = 0, i = 1,2, ..., n
- 随机误差项的方差相同:  $Var(\epsilon_i) = \sigma_{\epsilon}^2$ , i = 1, 2, ..., n
- 随机误差项之间彼此不相关: Cov(ε<sub>i</sub>,ε<sub>j</sub>) = 0, i ≠ j
- 自变量 X 和随机误差项 ε 不相关: Cov(X<sub>i</sub>, ε<sub>i</sub>) = 0
- 随机误差项服从正态分布: ε<sub>i</sub>~N(0,σ<sub>ε</sub><sup>2</sup>)



# 回归系数显著性检验



## > 回归系数显著性检验

• 原假设与备择假设

$$H_0: \beta_1 = 0 \quad H_a: \beta_1 \neq 0$$

• Z 检验 - 方差已知

$$Z = \frac{\hat{\beta}_1 - 0}{SD(\hat{\beta}_1)} \sim N(0,1)$$

• t 检验 – 方差未知

$$T = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

• 也可以检验回归系数是否等于某个特定假设的值



# 方差分析



## > 样本回归方程





## 方差分析



#### ANOVA表

|    | df    | SS  | MSS       |  |
|----|-------|-----|-----------|--|
| 回归 | 1     | RSS | RSS/1     |  |
| 残差 | n – 2 | SSE | SSE/(n-2) |  |
| 总值 | n – 1 | TSS | _         |  |

#### > TSS, RSS, SSE

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2 + \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

- Total sum of squares (TSS) = Sum of squares total (SST)
- Regression sum of squares (RSS) = Explained sum of squares (ESS)
- Sum of squared errors (SSE) = Sum of squared residual (SSR)



## 拟合优度



## **▶** R<sup>2</sup> (决定系数)

$$R^2 = \frac{RSS}{TSS} = 1 - \frac{SSE}{TSS}$$

- 表示因变量的变化有多少是由自变量解释的
- 取值范围为 0 ≤ R<sup>2</sup> ≤ 1
- 在一元线性回归中: R<sup>2</sup> = r<sup>2</sup>

#### > SER (回归标准误)

$$SER = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{n-2}}$$

- SER衡量的是,真实的Y值偏离回归线的程度
- SER越小,拟合度越好



# Python 实现线性回归



## ▶ 例: 工资水平与工作年限的关系



#### OLS Regression Results

| Dep. Variable:    | Salary           | R-squared:          | 0.957    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.955    |
| Method:           | Least Squares    | F-statistic:        | 622.5    |
| Date:             | Tue, 23 Jun 2020 | Prob (F-statistic): | 1.14e-20 |
| Time:             | 13:16:09         | Log-Likelihood:     | -301.44  |
| No. Observations: | 30               | AIC:                | 606.9    |
| Df Residuals:     | 28               | BIC:                | 609.7    |
| Df Model:         | 1                |                     |          |
| Covariance Type:  | nonrobust        |                     |          |
|                   |                  |                     |          |
|                   | coef std e       | err t P>ltl         | [0.025   |

|                 | coef      | std err  | t      | P> t  | [0.025   | 0.975]   |
|-----------------|-----------|----------|--------|-------|----------|----------|
| const           | 2.579e+04 | 2273.053 | 11.347 | 0.000 | 2.11e+04 | 3.04e+04 |
| YearsExperience | 9449.9623 | 378.755  | 24.950 | 0.000 | 8674.119 | 1.02e+04 |

 Omnibus:
 2.140
 Durbin-Watson:
 1.648

 Prob(Omnibus):
 0.343
 Jarque-Bera (JB):
 1.569

 Skew:
 0.363
 Prob(JB):
 0.456

 Kurtosis:
 2.147
 Cond. No.
 13.2



## 多元线性回归模型假设



## ▶ 多元线性回归模型 (MLR) 假设:

- 线性回归模型:参数线性
- 自变量 X 非随机
- 随机误差项的期望为零: E(ε<sub>i</sub>) = 0, i = 1,2, ..., n
- 随机误差项的方差相同:  $Var(\epsilon_i) = \sigma_{\epsilon}^2$ , i = 1, 2, ..., n
- 随机误差项之间彼此不相关: Cov(ε<sub>i</sub>,ε<sub>j</sub>) = 0, i ≠ j
- 自变量 X 和随机误差项 ε 不相关: Cov(X<sub>i</sub>, ε<sub>i</sub>) = 0
- 随机误差项服从正态分布: ε<sub>i</sub>~N(0,σ<sub>ε</sub><sup>2</sup>)
- 自变量之间不存在完全的线性相关,即完全共线性



# 回归系数显著性检验

# Analyst of Quantitative Finance

## > 单个回归系数显著性检验

• 原假设与备择假设

$$H_0$$
:  $\beta_j = 0, j = 1, 2, ..., k$ 

Z 检验

$$Z = \frac{\hat{\beta}_{j} - 0}{SD(\hat{\beta}_{i})} \sim N(0,1)$$

t 检验

$$T = \frac{\hat{\beta}_j - 0}{SE(\hat{\beta}_j)} \sim t_{n-k-1}$$



# 回归系数显著性检验



## > 联合假设检验

• 原假设与备择假设

$$H_0$$
:  $\beta_1 = \beta_2 = \dots = \beta_k = 0, j = 1, 2, \dots, k$ 
 $H_a$ : 至少一个 $\beta_j \neq 0, j = 1, 2, \dots, k$ 

F 检验

$$F = \frac{RSS/k}{SSE/(n-k-1)}$$

● 决策规则: 拒绝 H<sub>0</sub>, 如果 F (检验统计量)>Fc (关键值)



## 拟合优度



#### **▶ 调整后的** R<sup>2</sup>

● 在多元线性回归中,R<sup>2</sup>会随着自变量的加入而增大,甚至新加入的变量并不满足统计上的显著性检验

$$R^2 = \frac{RSS}{TSS} = 1 - \frac{SSE}{TSS}$$

● 调整后的 R<sup>2</sup> 不一定随着自变量的加入而变大

Adjusted R<sup>2</sup> = 
$$1 - \frac{SSE/(n-k-1)}{TSS/(n-1)}$$

- 调整后的 R<sup>2</sup> ≤ R<sup>2</sup>
- 调整后的 R<sup>2</sup>也许会小于 ()



## 多重共线性



#### > 多重共线性

• 多元线性回归模型中的自变量之间存在高度线性相关关系

#### > 多重共线性对统计推断的影响

- 多重共线性不影响 OLS 估计量的一致性
- OLS 估计量的标准误会被高估,t 检验失效
- 很难区分各自变量对因变量的影响

#### > 诊断多重共线性

- 现实中,我们常常关注的是多重共线性的程度,而非它是否存在
- 诊断多重共线性最常用的方法是:回归模型的 R<sup>2</sup>很高,但是斜率系数的 t 统计量都不显著

# Thank you!

