Homework #3 Introduction to Algorithms/Algorithms 1 600.363/463 Spring 2013

Yifan Ge

February 19, 2013

1 Problem 1 (20 points)

Assume that there are N robots R_1,\ldots,R_N and N tasks, T_1,\ldots,T_N . Typically, robot R_i performs task T_i . Also, the power of robots grows with their index. Thus, robot R_i can perform any task T_j without a failure for $j \leq i$ but it will fail if i < j. As a result of a program bug, all tasks have been permuted randomly and then assigned to robots. That is, R_i performs task $T_{\pi(i)}$, where π is a random permutation of the numbers $\{1, 2, \ldots, N\}$.

1. What is the expected number of robots that perform their original tasks? **Solution:** Let random variable $X_i = 1$ if the robot R_i performs its original task, and $X_i = 0$ if R_i does not perform its original task. We have

$$P\{X_i = 1\} = \frac{1}{N} \tag{1}$$

$$E[X_i] = \frac{1}{N} \tag{2}$$

We assume the number of robots that perform their original task to be a random variable Y, we have $Y = \sum_{i=1}^{N} X_i$. Then the expectation of Y is:

$$E[Y] = E\left[\sum_{i=1}^{N} X_i\right] \tag{3}$$

$$=\sum_{i=1}^{N} E[X_i] \tag{4}$$

$$=1 (5)$$

2. What is the expected number of failures?

Solution: Let random variable $X_i = 1$ denote that the robot R_i encounters a failure. We have:

$$P\{X_i = 1\} = \frac{N - i}{N} \tag{6}$$

$$E[X_i] = \frac{N-i}{N} \tag{7}$$

We assume the number of failures to be a random variable Y, and $Y = \sum_{i=1}^{N} X_i$. The expectation of Y is:

$$E[Y] = E\left[\sum_{i=1}^{N} X_i\right] \tag{8}$$

$$=\sum_{i=1}^{N} E[X_i] \tag{9}$$

$$=\sum_{i=1}^{N} \frac{N-i}{N} \tag{10}$$

$$=\frac{N-1}{2}\tag{11}$$

2 Problem 2 (20 points)

2.1 (10 points)

Resolve the following recurrences. Use Master theorem, if applicable. In all examples assume that T(1)=1. To simplify your analysis, you can assume that $n=a^k$ for some a,k.

1.
$$T(n) = 5T(n/2) + \sqrt{n}$$

Solution: As $\sqrt{n} = n^{0.5} = O(n^{\log_2 5 - \epsilon})$, with $\epsilon = 0.1$, $T(n) = \Theta(n^{\log_2 5})$.

2.
$$T(n) = T(n/2) + 10$$

Solution: As $10 = \Theta(n^{\log_2 1}) = \Theta(1)$, $T(n) = \Theta(n^{\log_2 1} \lg n) = \Theta(\lg n)$.

3.
$$T(n) = 200T(\sqrt{n}) + n$$

Solution: As $n = a^k$, we have $k = \log_a n$. Rewrite the recurrence as follows:

$$T(a^k) = 200T(a^{\frac{1}{2}k}) + a^k \tag{12}$$

Let $S(k) = T(n) = T(a^k)$, we get

$$S(k) = 200T(a^{\frac{1}{2}k}) + a^k \tag{13}$$

$$=200S(\frac{1}{2}k) + a^k \tag{14}$$

Now we can use Master theorem to resolve this recurrence for S(k). Here we have $f(n)=a^k=\Omega(k^{\log_2 200+\epsilon})$ and if we choose c=200 we can satisfy $200a^{k/2}\leq ca^k$ with sufficiently large k. As a result we get $S(k)=\Theta(a^k)$. Substitute S(k) with T(n) and a^k with n, we have $T(n)=\Theta(n)$.

4. $T(n) = 12T(n/12) + n^2$

Solution: As $f(n) = n^2 = \Omega(n^{\log_{12} 12 + \epsilon}) = \Omega(n^{\epsilon})$ with $\epsilon = 0.1$, and if we choose $c = \frac{1}{10}$, $12f(n/12) \le cf(n)$ satisfies for all sufficiently large n. So $T(n) = \Theta(f(n)) = \Theta(n^2)$.

5. $T(n) = T(n/200) + n^{200}$

Solution: As $f(n) = n^{200} = \Omega(n^{\log_{200} 1 + \epsilon}) = \Omega(n^{\epsilon})$ with $\epsilon = 0.1$, and if we choose $c = \frac{1}{20^{200} - 1}$, $f(\frac{n}{200}) \le cf(n)$ will satisfy for sufficiently large n. So we have $T(n) = \Theta(f(n)) = \Theta(n^{200})$.

6. T(n) = n + T(n-1)

Solution: We cannot use Master theorem for this problem. We can use the substitution method to solve the recurrence:

$$T(n) = n + T(n-1) \tag{15}$$

$$= n + (n-1) + T(n-2)$$
(16)

$$= n + (n-1) + (n-2) + T(n-3)$$
(17)

$$= n + (n-1) + (n-2) + \dots + (n-k+1) + T(n-k)$$
 (18)

$$=\sum_{k=2}^{n} k + T(1) \tag{19}$$

$$=\frac{(n+2)(n-1)}{2}+1\tag{20}$$

$$=\Theta(n^2) \tag{21}$$

7. $T(n) = 50T(n/45) + n^3$

Solution: Applying Master theorem, $f(n) = n^3 = \Omega(n^{\log_{45} 50 + \epsilon})$ with $\epsilon = 0.1$, and choosing $c = \frac{1}{50 \cdot 45^3 - 1}$ satisfies $50 f(\frac{n}{45}) \le c f(n)$ for sufficiently large n. As a result, $T(n) = \Theta(f(n)) = \Theta(n^3)$.

8. $T(n) = \sqrt{n}T(n/2)$

Solution: Master theorem is not applicable for this problem. Using substitution method:

$$T(n) = \sqrt{n}T(n/2) \tag{22}$$

$$=\sqrt{n}\sqrt{n/2}T(n/4)\tag{23}$$

$$= \sqrt{n}\sqrt{n/2} \dots \sqrt{n/2^{k-1}} T(n/2^k)$$
 (24)

$$= \sqrt{n(n/2)\dots(n/2^{k-1})}T(n/2^k)$$
 (25)

$$= \sqrt{n(n/2)\dots(n/2^{\log_2 n - 1})}T(1)$$
 (26)

$$= \sqrt{\frac{n^{\log_2 n}}{2^{(\log_2 n - 1)(\log_2 n)/2}}}$$
 (27)

$$= \sqrt{\frac{n^{\log_2 n}}{n^{(\log_2 n - 1)/2}}} \tag{28}$$

$$= n^{\frac{1}{4}\log_2 n + \frac{1}{4}} \tag{29}$$

9. T(n) = 5T(n/4) + n

Solution: Using Master theorem, $f(n) = n = O(n^{\log_4 5 - \epsilon})$ with $\epsilon = 0.1$. So $T(n) = \Theta(n^{\log_4 5})$.

10. $T(n) = 9T(n/3) + n^2$

Solution: Using Master theorem, $f(n) = n^2 = \Theta(n^{\log_3 9}) = \Theta(n^2)$, so $T(n) = \Theta(n^2 \lg n)$.

2.2 (10 points)

Imagine abstract problem A with the input of size n. You and your friends came up with the following four algorithms that solve A:

- 1. Algorithm X divides A into 5 subproblems of half the size, recursively solves each subproblem and then combines the solutions in quadratic time.
- 2. Algorithm Y divides A into 1 subproblem of size n-2, recursively solves the subproblem and then derives the solution in linear time.
- 3. Algorithm Z divides A into 2 subproblems of size n-1, recursively solves each subproblem and then combines the solutions in constant time.

4. Algorithm W divides A into 100 subproblems of size n/1000, recursively solves each subproblem and then combines the solutions in linear time.

Which algorithm you should choose and why?

Solution: The time complexities in recurrence of the four algorithms are:

$$T_X(n) = 5T_X(n/2) + c_1 n^2 (30)$$

$$T_Y(n) = T_Y(n-2) + c_2 n (31)$$

$$T_Z(n) = 2T_Z(n-1) + c_3 (32)$$

$$T_W(n) = 100T_W(n/1000) + c_4 n (33)$$

 c_1, c_2, c_3, c_4 are constants.

Solve the four recurrences:

- 1. For Algorithm X, we can use Master theorem to solve for $T_X(n)$. As $c_1 n^2 = O(n^{\log_2 5 \epsilon})$ with $\epsilon = 0.1$, apply the Master theorem we get $T_X(n) = \Theta(n^{\log_2 5})$.
- 2. For Algorithm Y, we use the substitution method to solve the recurrence.

$$T_Y(n) = T_Y(n-2) + c_2 n (34)$$

$$= T_Y(n-4) + c_2(n+(n-2))$$
(35)

$$=c_2(\frac{(n+2)n}{4}) + O(1)$$
(36)

$$=\Theta(n^2) \tag{37}$$

In equation (36) we assume n is even and $T_Y(0) = O(1)$.

3. For Algorithm Z, use the substitution method:

$$T_Z(n) = 2T_Z(n-1) + c_3 (38)$$

$$= 2(2T_Z(n-2) + c_3) + c_3 (39)$$

$$=2^{k}T_{Z}(n-k)+c_{3}(1+2+2^{2}+\cdots+2^{k})$$
(40)

$$=2^{n-1}T_Z(1)+c_3(1+2+2^2+\cdots+2^{n-1})$$
(41)

$$= O(2^{n-1}) + (2^n - 1)c_3 (42)$$

$$=\Theta(2^n) \tag{43}$$

4. For Algorithm W, we can use the Master theorem. $f(n) = c_4 n = \Omega(n^{\log_{1000} 100 + \epsilon})$, and choosing $c = \frac{1}{1000}$ satisfies that $100 f(n/1000) \leq c f(n)$ with sufficiently large n. As a result, $T_W(n) = \Theta(f(n)) = \Theta(n)$.

Comparing the time complexities of the four algorithms, we should choose Algorithm ${\cal W}.$