San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Pushdown Automata

(Part 2)

Lecture 14 Day 15/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 15

- Summary of Lecture 13
- Quiz 5
- Lecture 14: Teaching ...
 - Pushdown Automata (part 2)

Summary of Lecture 13: We learned ...

NPDAs

- NFAs are strong enough to recognize regular languages.
- To accept non-regular languages, we need more powerful machines.
- We noticed that we needed writable memory.
- We added writable memory in the stack format to NFAs.
- We introduced pushdown automaton to accept all or at least some of those languages.

 We talked about the structure of NPDA's, transitions, ...

- Condition for transition = ...
 - input symbol + top of stack
- We learned how to relax these conditions by λ.

Any question?

Summary of Lecture 13: We learned ...

NPDAs

- NPDAs halt when ...
 - the conditions for the next transition are not satisfied.
- The conditions for a string be accepted by a process ...

$$(h \land c \land f) \leftrightarrow a$$

 The conditions for a string be rejected by a process ...

$$(\sim h \lor \sim c \lor \sim f) \leftrightarrow \sim a$$

 The content of the stack does not matter.

Any question?

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	5
DATE	03/15/2018	PERIOD	1,2,3

Quiz 5 Use Scantron

Template for Constructing a New Class of Automata

- To construct a new class of automata, we need to respond the following questions:
- Why do we need a new class of machines? (Justification)
- 2. Name of the new class
- 3. Building blocks of the new class
- 4. How they work
 - 4.1. What is the starting configuration?
 - 4.2. What would happen during a timeframe?
 - 4.3. When would the machines halts?
 - 4.4. How would a string be Accepted/Rejected?

- 5. The automata in action
- 6. Formal definition
- Their power: this class versus previous class
- 8. What would be the next possible class?

Example 15

Design an NPDA to accept our famous language L = {aⁿbⁿ : n ≥ 0}.

Solution

- Strategy: read a's and push them in the stack regardless of top of the stack.
- When the first b is sensed, start popping a's to match them with b's.
- Continue popping a's until you are out of b.
- If end of stack is reached, means the number of a's and b's are equal, so, accept the string, otherwise, reject it.
 a, λ; a
 b, a; λ

Let's trace this solution.

λ-Transitions

29

λ-Transitions

Recap

- λ-transition in automata theory means:
 - The machine may "unconditionally" transit.
- To understand the λ-transition in any automata class, we need to know what the "transition condition" is.

This is our knowledge so far:

Automata Class	Transition Condition
DFA/NFA	Input Symbol
NPDA	Input Symbol + Top of stack

λ-Transitions

For example, in the following transition, conditions for transition:
 input symbol = 'a' AND top of the stack = 'b'.

• So, if we put λ in the conditions places, we make a λ -transition.

① λ-Transitions

Definition

• For NPDAs, a transition is called λ -transition iff both input and popparts of the label are λ .

- Note that w is a string and can be λ.
- So, one possible λ-transition that is used extensively is:

NPDAs' Behavior for λ-Transitions

 Since they may or may not transit, they would have multiple choices.

- We already know that in these cases, machines would check all possibilities by "parallel processing".
 - In other words, for every possible choice, they create a new independent process and every process independently continues processing the string.
- NPDAs' configuration = state + rest of input + stack

Homework

- Design an NPDA for each of the following languages:
 - 1. $L = \{a^nb^{2n} : n \ge 0\}$ over $\Sigma = \{a, b\}$
 - 2. $L = \{a^n b^m c^{n+m} : n \ge 1, m \ge 1\}$ over $\Sigma = \{a, b, c\}$
 - 3. $L = \{ww^R : w \in \{a, b\}^*\}$
 - 4. $L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\}$ //number of a's and b's are equal
 - 5. $L = \{1^n + 1^m = 1^{n+m} : n \ge 1, m \ge 1\}$ over $\Sigma = \{1, +, =\}$ (Unary addition)

Definitions

Formal Definition of NPDAs

• An NPDA M is defined by the septuple (7-tuple):

$$M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$

- Where:
 - Q is a finite and nonempty set of states of the transition graph.
 - $-\Sigma$ is a finite and nonempty set of symbols called input alphabet.
 - Γ is a finite and nonempty set of symbols called stack alphabet.
 - δ is called transition function and is defined as:

$$δ$$
: Q x (Σ U { $λ$ }) x $Γ → a$ finite subset of Q x $Γ$ * $δ$ is total function.

- $-q_0 \in Q$ is the initial state of the transition graph.
- Z ∈ Γ is a special symbol called stack start symbol.
- $F \subseteq Q$ is the set of accepting states of the transition graph.

Formal Definition of NPDAs

NPDAs Transition Function Examples

Example 19

- Write the sub-rule of the following transition.
- $\delta(q_2, a, x) = \{(q_5, yx)\}$

Example 20

- Write the sub-rules of the following transition.
- $\delta(q_1, a, c) = \{(q_2, yx)\}$
- $\delta(q_1, a, b) = \{(q_3, \lambda)\}$

NPDAs Transition Function Examples

Example 21

- Write the sub-rule of the following transition.
- $\delta(q_1, a, x) = \{(q_2, yx), (q_3, \lambda)\}$

NPDAs vs NFAs

Can NPDAs Do Whatever NFAs Can Do?

- Let's assume that we've constructed an NFA for an arbitrary language L.
- Can we always construct an NPDA for L?
- Yes! Why?
- We should prove that we can always convert an NFA's definition to an NPDA's definition.

Let's show this through an example first.

Can NPDAs Do Whatever NFAs Can Do?

Example 22

- Convert the following NFA's definition to an NPDA's.
- q₀ is the initial state, and q₁ is the final state.

$$\delta: \begin{cases} \delta(q_0, a) = \{q_0\} \\ \delta(q_0, b) = \{q_1\} \end{cases}$$

$$\delta : \begin{cases} \delta(q_0, a, \lambda) = \{(q_0, \lambda)\} \\ \delta(q_0, b, \lambda) = \{(q_1, \lambda)\} \end{cases}$$

NFA

NPDA

- Just convert the δ.
- The reset items are the same.

Any NFA Can be Converted to NPDA

	NFA	NPDA
States	$Q = \{q_0, q_1, q_2\}$	$Q = \{q_0, q_1, q_2\}$
Alphabet	$\Sigma = \{a, b\}$	$\Sigma = \{a, b\}$
Stack alphabet	N/A	Γ = {Z}
Sub-rule	$\delta (q_i, a) = \{q_j\}$	$\delta (q_i, x, \lambda) = \{(q_j, \lambda)\}$
Initial state	q_0	q_0
Stack start symbol	N/A	Z
Final states	$F = \{q_1\}$	$F = \{q_1\}$

Can NPDAs Do Whatever NFAs Can Do?

 As the previous example showed, there is a simple algorithm to convert an NFA to an NPDA.

Algorithm: Converting NFAs' Formal Definition to NPDAs'

 Change all NFAs' sub-rules to NPDAs format by adding λ in the pop and push parts. i.e.:

$$\delta (q_i, x) = \{q_j, q_{j+1}, \dots, q_{j+n}\}$$

$$\text{changes to}$$

$$\delta (q_i, x, \lambda) = \{(q_i, \lambda), (q_{i+1}, \lambda), \dots, (q_{i+n}, \lambda)\}$$

- Set the stack start symbol as Z.
- The rest of the definitions, (i.e. Q, Σ , q_0 , F) are the same.

Can NFAs Do Whatever NPDAs Can Do?

- Let's assume that we've constructed an NPDA for an arbitrary language L.
- Can we always construct an NFA for L?
- No! Why?
- We know at least the following languages for which we constructed NPDAs but it was impossible to construct NFAs.

```
- L = {a<sup>n</sup>b<sup>n</sup> : n ≥ 0}
- L = {ww<sup>R</sup> : w ∈ Σ*}
```

 Let's summarize our knowledge and figure out what would be the next step.

Machines and Languages Association

- The set of languages that NFAs recognize is a proper subset of the set of languages that NPDAs recognize.
 - We'll explain later what the "context free" languages are.

NPDAs Power

- Design an NPDA for each of the following languages:
- L = $\{a^nb^nc^n : n \ge 1\}$ over Σ = $\{a, b, c\}$
- L = {ww : w $\in \Sigma^*$ } over Σ = {a, b}

- After some struggling, you realize that you cannot construct such machines.
- The reason is ...
 - we need more control on the memory.
 - stack is not so flexible in storing and manipulating data.
 - if you access the older data, you'd lose newer data.

What is the Next Step?

- NFAs/DFAs recognize regular languages.
- NPDAs recognize some non-regular languages called "context-free".
 - We'll see the meaning of context-free later.
- The next step is to define a new class of machines that recognizes all or part of the remaining non-regular languages.

Project (Optional)

- Design a new class of machines like NPDAs but use "Queue" for the memory.
- Pick a name for your machine.
- Discuss what kind of languages it can recognize.
- Compare its power with NPDAs'.

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790