Fluides et Electromagnetisme

David Wiedemann

Table des matières

1	Notations du cours et maths necessaires		
	1.1	Scalaires et Vecteurs	4
	1.2	L'operateur ∇ (nabla) et la definition du gradient, de la diver-	
		gence et du rotationnel	4
	1.3	Formules d'integration	5
2	Flu	ides au repos	5
	2.1	Introduction	5
	2.2	Densite de fluide	6
3	Pre	ssion dans un fluide	6
	3.1	Pression hydrostatique	6
	3.2	Densite de force associee a la pression	7
	3.3	Poussee d'Archimede	8
	3.4	Tension superficielle	8
		3.4.1 Origine et definition de la tension superficielle	8
		3.4.2 Quelques consequences immediates de la tension superficielle	8
	3.5	$Interface\ solide/liquide/gaz . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	9
	3.6	Loi de laplace	9
4	Dyı	namique des fluides	10
	4.1	Types d'ecoulement	10
	4.2	Derivee convective	10
	4.3	Equations fluides	11
		4.3.1 Equations de continuite(description Eulerienne)	11
	4.4	Equation d'Euler	12
	4.5	Equation d'état	12
	4.6	Theoreme de Bernoulli	13
	4.7	Applications de Bernoulli	15
	4.8	Ecoulement d'un fluide visqueux	15
		4.8.1 Definition de la viscosite	16

		4.8.2	Force de viscosite par unite de volume et equation de							
			Navier-Stokes incompressible	17						
		4.8.3	Resolution Navier-Stokes avec l'ecoulement de Poiseuille .	18						
5	Phe	Phenomenes Ondulatoires 2								
	5.1	Onde t	transverse et longitudinale et l'equation d'onde	20						
	5.2	Ondes	sinusoidales	21						
	5.3	Ondes	stationnaires	21						
	5.4	Ondes	en 3 D	22						
	5.5	Quelqu	les consequences du principe de superposition	22						
	5.6	Vitesse	e de phase et de groupe	23						
6	Ond	Ondes dans les milieux fluides 2								
	6.1	Ondes	dans un fluide uniforme $\ \ \ldots \ \ \ldots \ \ \ldots \ \ \ldots$	23						
	6.2	Tuyau	x d'orgues	26						
	6.3	Ondes	lineaires a la surface d'un fluide parfait	26						
7	L'el	ectrom	nagnetisme	27						
	7.1	Electro	ostatique	27						
		7.1.1	Charge electrique	27						
		7.1.2	L'unite de la charge $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	27						
	7.2	Loi de	$Coulomb \dots \dots$	27						
		7.2.1	Principe de superposition	28						
	7.3	Champs Electriques								
		7.3.1	Champ electrique du a une distribution des charges quel-							
			$conque \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	29						
		7.3.2	Densite de charge de surface	29						
		7.3.3	Lignes de champ electrique	31						
	7.4	Loi de	Gauss	33						
		7.4.1	Enonce de la loi de Gauss	33						
		7.4.2	Preuve de la loi de Gauss	35						
	7.5	Le pot	entiel electrostatique	38						
		7.5.1	Quelques proprietes de ϕ (et de $E)$ en electrostatique $% \left(1\right) =\left(1\right) \left(1\right) \left$	39						
	7.6	Le role	e des conducteurs en electrostatique	42						
		7.6.1	Proprietes de base	42						
	7.7	Densit	e de charge de surface par influence (influence electrosta-							
		- /		44						
	7.8	Effets de Pointe								
	7.9	Traitement general, equation de Laplace et de Poisson 4								
	7.10		ite et condensateur	46						
		7.10.1	Definition de la capacite	46						
		7.10.2	Condensateur	47						

List of Theorems

4	Theorème (Theoreme du gradient)	Ę
5	Theorème (Theoreme de La divergence(de Gauss))	Ę
6	Theorème (Theoreme de Stokes)	Ę
10	Theorème (Theoreme de Bernoulli)	15

1 Notations du cours et maths necessaires

1.1 Scalaires et Vecteurs

On distingue les quantites scalaires (pression, masse, la charge electrique) et les quantites vectorielles (vitesse, force) .

Dans un repere 3D, les vecteurs de base unitaires e_x, e_y, e_z

On definit un champ scalaire (resp. vectoriel) par une fonction $p(\overrightarrow{r},t)$ qui depend de la position et du temps.

1.2 L'operateur ∇ (nabla) et la definition du gradient, de la divergence et du rotationnel

En coordonnes cartesiennes, on a

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

On note

$$\frac{\partial p}{\partial x}(\overrightarrow{r},t) = \lim_{h \to 0} \frac{p(x+h,y,z,t) - p(x,y,z,t)}{h}$$

— Le gradient, note ∇f d'un champ scalaire $f(\overrightarrow{r},t)$ est un champ vectoriel donne par

$$\nabla f(\overrightarrow{r},t) = e_x \frac{\partial f}{\partial x} + e_y \frac{\partial f}{\partial y} + e_z \frac{\partial f}{\partial z}$$

— La divergence, notee $\nabla \cdot \overrightarrow{u}$ d'un champ vectoriel $\overrightarrow{u}(\overrightarrow{r},t)$ est un champ scalaire donne par

$$\nabla \cdot \overrightarrow{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

— Le rotationnel $\nabla \times \overrightarrow{u}$ d'un champ vectoriel est un champ vectoriel donne par

$$\nabla \times \overrightarrow{u}(\overrightarrow{r},t) = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \times (u_x, u_y, u_z)$$

Remarque

On peut utiliser ∇ comme un vecteur, mais il faut faire attention car les operations sont pas commutatives.

Remarque

Souvent, on ecrit ∂_x pour $\frac{\partial}{\partial x}$

Remarque

Les expressions du gradient, divergence, rotationel sont independantes du systeme de coordonnees

1.3 Formules d'integration

Theorème 4 (Theoreme du gradient)

Soit un volume V quelconque dans l'espace et soit S la surface fermee limitant le volume V (on note $S = \partial V$).

A chaque element de la surface, on assimile un vecteur orthogonal a la surface en ce point. On le note \overrightarrow{dS} et il represente le "petit element" de surface.

Alors on a

$$\iint_S f d\overrightarrow{S} = \iiint_V \nabla f dV$$

Theorème 5 (Theoreme de La divergence (de Gauss))

Le flux d'un champ vectoriel $\overrightarrow{A}(\overrightarrow{r},t)$ au travers d'une surface S:

$$\phi = \iint_S \overrightarrow{A} \cdot \overrightarrow{dS}$$

Soit une surface fermee $S=\partial V$ et $d\overrightarrow{S}$ qui point vers l'exterieur de V, alors on a

$$\iint_{S} \overrightarrow{A} \cdot d\overrightarrow{S} = \iiint_{V} (\nabla \cdot \overrightarrow{A}) dV$$

Theorème 6 (Theoreme de Stokes)

On definit la circulation d'un champ vectoriel $\overrightarrow{A}(\overrightarrow{r},t)$ le long d'une courbe fermee Γ :

$$\Sigma = \oint_{\Gamma} \overrightarrow{A} \cdot d\overrightarrow{l}$$

Dans ce cas la, on a

$$\oint_{\Gamma} \overrightarrow{A} \cdot \overrightarrow{dl} = \iint_{S} (\nabla \times \overrightarrow{A}) \cdot \overrightarrow{dS}$$

L'orientation relative de \overrightarrow{dl} et \overrightarrow{dS} est donnee par la regle de la main droite.

2 Fluides au repos

2.1 Introduction

On appelle un fluide un corps qui est a l'etat liquide, gazeux, ou plasma, systeme d'un grand nombre de particules qui est susceptible de s'ecouler facilement.

Autrement dit, un corps deformable/qui n'a pas de forme propre.

Pour beaucoup d'applications : un fluide est decrit par sa densite de masse $\rho(\overrightarrow{r},t)$, la pression ($p(\overrightarrow{r},t)$) et la vitesse $\overrightarrow{u}(\overrightarrow{r},t)$

Dans ce chapitre, on suppose $\overrightarrow{u}(\overrightarrow{r},t)=0, \rho(\overrightarrow{r},t)=\rho(\overrightarrow{r})$ et $p(\overrightarrow{r},t)=p(\overrightarrow{r})$

2.2 Densite de fluide

Supposons un recipient avec un fluide dedans et un systeme de coordonnees.

On note

$$\bar{\rho} = \frac{\Delta m}{\Delta V}$$

pour la densite moyenne.

On prend ensuite la limite $\Delta V \to dV$ et on obtient ainsi

$$\rho(\overrightarrow{r},t) = \lim_{\Delta V \to dV} \frac{\Delta m}{\Delta V}$$

Lecture 2: Pression dans un fluide

Fri 26 Feb

3 Pression dans un fluide

La pression dans un fluide est definie par la force par unite de surface exercee par le fluide sur une paroi ou sur une autre partie du fluide. Cette force sera perpendiculaire a la surface. On note

$$\overrightarrow{dF} \left[\frac{N}{m^2} = \text{ Pascal } = \text{ Pa } \right] = p \overrightarrow{dS}$$

La pression est donnee par un champ scalaire.

L'isotropie de la pression suit naturellement dans le cas ou il n'y a pas de forces de cisaillement (= forces tangentielles a la surface)

3.1 Pression hydrostatique

On veut determiner $p(\overrightarrow{r})$ pour un fluide au repos.

On supposera un fluide incompressible (la densite est constante).

On considere un recipient contenant un fluide et un pave droit de dimension dy, dx et $z_2 - z_1$.

On utilise

$$\sum_{i} \overrightarrow{F}_{i} = 0$$

selon z.

On a donc une force F_1 s'appliquant en haut et F_2 s'appliquant en bas et finalement F_g , on a donc

$$F_1 + F_g - F_2 = 0$$

$$p(z_1)dxdy + \rho dxdy(z_2 - z_1)g - p(z_2)dxdy = 0$$

$$p(z_2) = p(z_1) + \rho g(z_2 - z_1)$$

pour $z_1 = 0$ et $z_2 = h$, on trouve

$$p(h) = p(0) + \rho g h = p_0 + \rho g h$$

Ainsi, la variation d'un fluide au repos ne depend que de la profondeur, mais est independante de la forme du fluide et ne varie pas perpendiculairement a la pesanteur.

Lecture 3: Hydrostatique

Tue 02 Mar

3.2 Densite de force associee a la pression

Calculons la force exercee sur un volume de fluide infinitesimal du a la pression.

On suppose qu'on connait $p(\overrightarrow{r})$.

$$\overrightarrow{F}_1 = p(\overrightarrow{r}(-\frac{dx}{2},0,0)) dy dz \overrightarrow{e}_x$$

Donc

$$\begin{split} \sum_{i=1}^{6} \overrightarrow{F}_i &= (-p(\frac{dx}{2},0,0) - p(\frac{dx}{2},0,0)) dy dz + \dots \\ &= -\frac{p(\frac{dx}{2},0,0) - p(-\frac{dx}{2},0,0)}{dx} dx dy dz \overrightarrow{e}_x + \dots \\ &= -\frac{\partial p}{\partial x} dV \overrightarrow{e}_x + \dots = -\nabla p dV \end{split}$$

donc la densite de force associee a la pression est $-\nabla p$.

3.3 Poussee d'Archimede

Tout corps plonge dans un fluide recoit de la part de celui-ci une poussee verticale egale au poids du fluide deplace

3.4 Tension superficielle

Experience:

On a des tubes de largeurs differentes, ouverts en haut et plonge dans l'eau.

On note que le niveau d'eau monte a un niveau de $h\alpha^{\frac{1}{r}}$

Semble etre une contradiction de la pression hydrostatique.

On verra que ce phenomene est du a la tension superficielle. La loi $p(h) = p_0 + \rho g h$ reste valable dans le fluide, mais pas necessairement a la surface.

3.4.1 Origine et definition de la tension superficielle

On considere a nouveau un fluide, il est constitue de particules ayant des interactions entre elles (inter moleculaires, etc)

Il y a moins de telles liaisons pour une molecule a la surface du fluide. Pour amener cette molecule la-bas et pour augmenter la surface, il faut faire un travail. Experience :

Soit un film de liquide (eau savonneuse) tendu dans un cadre ABCD.

Si on tend le cadre, il ya une force qui s'y oppose.

Le travail est donc proportionel au changement de surface

$$\Delta W = \gamma \Delta S = \gamma B C \Delta k \cdot 2$$

Le 2 apparait parce que il y a 2 surfaces (liquide/gaz)

Donc on a

$$F = 2F_{\gamma} = 2BC\gamma$$

L'interface liquide/gaz est un peu comme une membrane elastique, mais la force est independante de la deformation.

Experience

Mesure de γ On plonge un cylindre attache a un newton metre dans le liquide. On mesure la force necessaire pour faire apparaître un film lie au cylindre et on prend la difference entre cette force et la force F_G .

3.4.2 Quelques consequences immediates de la tension superficielle

Les bulles de savon minimisent leur surface et c'est pour cela qu'elles sont spheriques.

Meme chose pour les bulles d'eau en apesanteur.

Meme chose pour les cheveux mouilles qui collent.

Certains objets (trombone, punaises) ou des insectes qui flottent (qui marchent sur la surface)

Lecture 4: Interfaces solide/liquide

Fri 05 Mar

3.5 Interface solide/liquide/gaz

On considere une goutte sur une surface.

En equilibre la somme des forces sur la ligne tripe est nulle.

Selon l'axe horizontal, on trouve

$$\gamma_{sq} = \gamma_{sl} + \cos\theta\gamma_{lq}$$

Cette propriete s'appelle la loi de Young. Si $0 < \theta < 90$, on a un bon mouillage.

Si $\gamma_{sg} - \gamma_{sl} > \gamma_{lg}$, on a $\cos \theta > 1$, cette situation est non-stationnaire. On parle alors de mouillage total.

Si $-\gamma_{lg} < \gamma_{sg} - \gamma_{sl} < 0$, alors $-1 < \cos \theta < 0$ et donc $90 < \theta < 180$, \Rightarrow mauvais mouillage.

Si $\gamma_{sq} - \gamma_{sl} < -\gamma_{lg}$, alors $\cos \theta < -1$, on parle alors de super-hydrophobie ou effet lotus.

3.6 Loi de laplace

Notons qu'a l'interieur d'un ballon, il y a une surpression.

Et a l'interieur d'une goutte d'eau, d'une bulle de savon, ...?

On suppose une goutte de liquide spherique en apesanteur. Les forces s'appliquant sur la goutte donnent

$$\sum F_i^{ext} = 0 = \overrightarrow{F}_{p_2} + \underbrace{\overrightarrow{F}_{p_1}}_{=\pi R^2 p_1 \overrightarrow{e}_z} + \underbrace{\overrightarrow{F}_{\gamma}}_{=-2\pi R \gamma \overrightarrow{e}_z}$$

Pour \overrightarrow{F}_{p_2} , on a

$$\overrightarrow{F}_{p_2} = \iint_S -p_2 \overrightarrow{dS} = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} -p_2 \overrightarrow{e}_r R^2 \sin\theta d\theta d\phi = \overrightarrow{e}_z \int_0^{2\pi} \int_0^{\frac{\pi}{2}} -p_2 R^2 \sin\theta \cos\theta d\theta d\phi = -\pi R^2 p_2 \overrightarrow{e}_z$$

Donc

$$\sum F^{ext} = -2\pi R \gamma \overrightarrow{e}_z + \pi R^2 p_1 \overrightarrow{e}_z$$

Et donc

$$p_1 - p_2 = \frac{2\gamma}{R}$$

Lecture 5: Hydrostatique continuation

Tue 09 Mar

Exemple (Bulle de Savon-deux interfaces)

On note p_1 la pression interne, p_2 la pression externe et p_0 la pression dans l'interface, on a donc

$$p_0 = p_2 + \frac{2\gamma}{R_e} \ et \ p_1 = p_0 + \frac{2\gamma}{R_i}$$

$$p_1 = p_2 + \frac{2\gamma}{R_i} + \frac{2\gamma}{R_e}$$

comme
$$R_i = R_e = R, p_1 = p_2 + \frac{4\gamma}{R}$$

Exemple (Capilarite)

On considere h>>l et que l'interface liquide/gaz est quasiment spherique. On a $p_1=p_2+2\frac{\gamma}{R}$ et $p_3=p_2+\rho gh$.

$$p_1 = p_3 = p_{atm}$$

On trouve que $\frac{2\gamma}{R} = \rho g h$ et donc

$$h = \frac{2\gamma}{\rho gR} = \frac{2\gamma\cos\theta}{\rho gr} = \alpha\frac{1}{r}$$

4 Dynamique des fluides

On considere des fluides decris par

$$\rho(\overrightarrow{r},t), p(\overrightarrow{r},t), \overrightarrow{u}(\overrightarrow{r},t)$$

Vitesse d'un element fluide infinitesimal (vitesse moyenne de toutes les particules dans cet element) .

4.1 Types d'ecoulement

- $-\overrightarrow{u}(\overrightarrow{r},t)=0$, ecoulement statique
- $\partial_t \overrightarrow{u} = 0, \partial_t \rho = 0, \partial_t p = 0$, ecoulement stationnaire
- Ecoulement laminaire "couches successive de fluide se deplacent doucement et regulierement l'un a cote de l'autre. (a basse vitesse)
- Ecoulement turbulent s i non-laminaire.
 Mouvement irregulier et chaotique. (typiquement a haute vitesse d'ecoulement)

4.2 Derivee convective

Attention

 $\partial_t \overrightarrow{u} = \text{variation de } \overrightarrow{u} \text{ par unite de temps a un endroit fixe } \neq \text{ acceleration de l'element fluide a } (\overrightarrow{r},t)$

On considere la trajectoire d'un element fluide au cours du temps.

On veut connaître la variation temporelle de p au long de la trajectoire.

au temps $t: p(\overrightarrow{r},t)$

au temps t+dt: position $\overrightarrow{r}+\overrightarrow{u}(\overrightarrow{r},t)dt$, pression $p(\overrightarrow{r}+\overrightarrow{u}(\overrightarrow{r},t)dt,t+dt)$

$$= p(x + u_x dt, y + u_y dt, z + u_z dt, t + dt)$$

$$= p(x, y, z, t) + \partial_x p u_x dt + \partial_y p u_y dt + \partial_z p u_z dt + \partial_t p dt$$

$$= p(\overrightarrow{r}, t) + (\overrightarrow{u} \cdot \nabla) p dt + \partial_t p dt$$

On appelle $(\frac{\partial}{\partial t} + \overrightarrow{u} \cdot \nabla)p := \frac{D}{Dt}p$

De meme, la variation temporelle de \overrightarrow{u} le long de la trajectoire (= l'acceleration)

 $\overrightarrow{a} = \frac{D\overrightarrow{u}}{Dt}$

4.3 Equations fluides

Pour determiner l'evolution des cinq fonctions $\rho, p, \overrightarrow{u}$ il faut 5 equations.

4.3.1 Equations de continuite (description Eulerienne)

Principe de conservation de masse en absence de sources/pertes. On considere un volume V fixe dans notre liquide, il definit une surface S fermee.

variation de masse dans V =Flux de masse a travers S

On a

$$\frac{d}{dt}\int\int\int_{V}\rho(\overrightarrow{r},t)dV=-\int\int_{S}\rho(\overrightarrow{r},t)\overrightarrow{u}(\overrightarrow{r},t)d\overrightarrow{S}$$

Lecture 6: Equations de continuite

Fri 12 Mar

On a trouve que

$$\frac{d}{dt} \int \int \int_{V} \rho(\overrightarrow{r'}, t) dV = \int \int \int_{V} \frac{\partial}{\partial t} \rho(\overrightarrow{r'}, t)$$

Pour la partie de droite, on a

$$-\int\int_{S}\rho(\overrightarrow{r},t)\overrightarrow{u}(\overrightarrow{r},t)\overrightarrow{dS}=-\int\int\int_{V}\nabla(\rho\overrightarrow{u})dV$$

Donc

$$\int\int\int_{V}\frac{\partial}{\partial t}+\nabla(\rho\overrightarrow{u}dV)=0$$

Pour tout volume V

Et donc

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overrightarrow{u}) = 0$$

4.4 Equation d'Euler

On fait un bilan de la quantite de mouvement. On considere un fluide parfait (pas de frottement interne).

La quantite de mouvement dans V(t), on a

$$\overrightarrow{p} = \int \int \int_{V(t)} \rho \overrightarrow{u} \, dV$$

Seconde loi de newton:

 $\frac{d\overrightarrow{p}}{dt} = \sum$ forces externes sur la partie du fluide contenue dans V(t)

On va montrer que

$$\frac{d\overrightarrow{P}}{dt} = \int \int \int_{V(t)} \frac{D}{Dt} (\rho \overrightarrow{u}) + \rho \overrightarrow{u} (\nabla \cdot \overrightarrow{u}) dV$$

$$\begin{split} &= \int \int \int_{V(t)} \rho \overrightarrow{g} \, dV - \int \int_{S(t)} p \overrightarrow{dS} \\ &= \int \int \int_{V(t)} \rho \overrightarrow{g} \, dV - \int \int \int_{V(t)} \nabla p dV \end{split}$$

Donc

$$\frac{D}{Dt}(\rho\overrightarrow{u}) + \rho\overrightarrow{u}(\nabla\cdot\overrightarrow{u}) = \rho\overrightarrow{g} - \nabla p$$

$$\begin{split} & \rho \frac{D}{Dt} \overrightarrow{u} + \overrightarrow{u} \frac{D}{Dt} \rho + \rho \overrightarrow{u} (\nabla \cdot \overrightarrow{u}) \\ & = \rho \frac{D}{Dt} \overrightarrow{u} + \overrightarrow{u} (\frac{D\rho}{Dt} + \rho (\nabla \cdot \overrightarrow{u})) \end{split}$$

Le dernier terme est nul par l'equation de continuite, et on trouve

$$\rho \frac{\overrightarrow{Du}}{Dt} = \rho \overrightarrow{g} - \nabla p$$

Remarque

En general, les fluides ont de la viscosite.

De plus, tout comme l'equation de continuite, l'equation d'Euler est non-lineaire, la solution a l'equation differentielle est generalement extremement complique.

4.5 Equation d'etat

equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overrightarrow{u}) = 0$$

$$\rho \frac{D\overrightarrow{u}}{Dt} = \rho \overrightarrow{g} - \nabla p$$

Il nous manque encore une equation pour decrire un fluide en mouvement : l'equation d'etat, qui depend du type de fluide.

$$\frac{D}{Dt}(p\rho^{-\gamma}) = 0$$

ou γ est l'indice d'adiabicite.

Lecture 7: Theoreme de Bernoulli

Tue 16 Mar

4.6 Theoreme de Bernoulli

On considere un ecoulement laminaire au travers d'un tube

FIGURE 1 – tube 2

On s'interesse a la pression au travers du tube.

On remarque que la pression a diminue dans la partie etroite du tube si $\overrightarrow{u} \neq 0$. On explique ce phenome par la theoreme de Bernoulli.

On considere un fluide parfait (pas de viscosite), on considere aussi qu'il est incompressible, et qu'il est en ecoulement stationnaire (toutes les derivees partielles sont egales a 0), dans un champ de pesanteur \overrightarrow{g} constant.

FIGURE 2 – tube de courant

On considere un tube de courant dans ce fluide et on le suit. A $t=t_0$: on a une section ABCD, en $t=t_0+\Delta t: A'B'C'D'$. On choisint S_A et Δt tres petit, donc la distance entre AB et $A'B'\cong \overrightarrow{u}_A\Delta t$. On utilise maintenant que

Masse de
$$ABCD = Masse de A'B'C'D'$$
,

$$m_{A'B'C'D'} = m_{ABCD} - S_A u_A \Delta t \rho + S_C u_c \Delta t \rho$$

$$S_A u_A \Delta t \rho = S_C u_c \Delta t \rho$$

Donc si la section diminue, la vitesse augmente. On definit

$$V_{ABA'B'} = S_A u_A \Delta t = V_{CDC'D'} =: \Delta V$$

Vu qu'on considere un fluide parfait, pour notre tube de courant, on a

$$\Delta E_{cin} + \Delta E_{pot} = \Delta W$$

Le changement d'energie cinetique est donne par

$$\Delta E_{cin} = \frac{1}{2} \rho u_c^2 \Delta V - \frac{1}{2} \rho u_A^2 \Delta V$$

Et pour l'energie potentielle

$$\Delta E_{pot} = \rho \Delta V g z_z - \rho \Delta V z_A g$$

Le travail ΔW est du au travail des forces de pression ($\Delta W = \overrightarrow{F} \cdot \Delta \overrightarrow{x})$

Donc

$$\Delta W = p_A S_A u_A \Delta t - p_C S_C u_C \Delta t$$

Donc

$$\Delta W = (p_A - p_C)\Delta V$$

Donc

$$\frac{1}{2}\rho u_C^2 - \frac{1}{2}\rho u_A^2 + \rho g z_c - \rho g z_A = p_A - p_C$$

Et donc

Theorème 10 (Theoreme de Bernoulli)

$$\frac{1}{2}\rho u_A^2 + \rho g z_A + p_A = \frac{1}{2}\rho u_C^2 + \rho g z_c + p_c$$

Ce qui implique que $\frac{1}{2}\rho u^2 + \rho gz + p$ est constant le long d'une ligne de courant.

4.7 Applications de Bernoulli

FIGURE 3 – Tube de Pitot

La difference de pression entre le point 1 et 2 permet de mesure la vitesse.

Lecture 8: Ecoulement d'un fluide visqueux

Fri 19 Mar

4.8 Ecoulement d'un fluide visqueux

On se restreins au cas des fluides incompressibles.

FIGURE 4 – viscosimetre

4.8.1 Definition de la viscosite

Exemple (Viscosimetre de Couette)

Observation:

Pour la meme frequence angulaire, le moment de force necessaire pour faire tourne le cylindre depend du type de fluide.

Imaginons l'experience suivante ("Ecoulement de Couette"), on a

FIGURE 5 – ecoulement de couette

Il nous faut une force externe (force de cisaillement), on remarque que

$$F_{ext} \propto S \frac{u_0}{h}$$

On definit η par

$$F_{ext} = \eta S \frac{u_0}{h}$$

 η s'appelle le coefficient de viscosite dynamique ($[\eta] = \frac{N}{m^2} s = Pa \cdot s).$ On a

$$F_{ext} = \eta S \frac{u_0}{h} = \eta S \frac{\partial u}{\partial y}$$

Les fluides qui obeissent cette loi s'appellent les fluides Newtoniens.

4.8.2 Force de viscosite par unite de volume et equation de Navier-Stokes incompressible

Supposons
$$\overrightarrow{u}(\overrightarrow{r},t) = u_x(y)\overrightarrow{e}_x$$

Figure 6 – viscosite par volume

La force de viscosite sur un elelement

$$F_{visc} = -\eta S \frac{\partial u_x}{\partial y}(y)e_x + \eta S \frac{\partial u_x}{\partial y}(y + dy)e_x$$
$$= \eta S dy \frac{\frac{\partial u_x}{\partial y}(y + dy) - \frac{\partial u_x}{\partial y}}{dy}e_x$$
$$= dV \eta \frac{\partial^2 u_x}{\partial y^2}e_x$$

Et donc le terme

$$\eta \frac{\partial^2 u_x}{\partial y^2}$$

est la force par unite de volume.

Dans le cas general, pour un fluide incompressible (sans preuve) est donne par

$$\eta(\frac{del^2}{\partial x^2} + \frac{del^2}{\partial y^2} + \frac{del^2}{\partial z^2})\overrightarrow{u} = \eta \Delta \overrightarrow{u}$$

Les equations pour un fluide incompressible et visqueux sont donc :

$$\rho = \text{ const}$$
$$\nabla \cdot \overrightarrow{u} = 0$$

$$\mathbf{v} \cdot \mathbf{u} = \mathbf{0}$$

$$\rho \frac{D\overrightarrow{u}}{Dt} = \rho \overrightarrow{g} - \nabla p + \eta \Delta \overrightarrow{u} \to \text{ Navier-Stokes incompressible}$$

Les conditions de bords sont donnees par

$$\overrightarrow{u} = 0$$

a l'interface avec des parois immobile.

4.8.3 Resolution Navier-Stokes avec l'ecoulement de Poiseuille

Ecoulement laminaire dans un tube

On force un ecoulement laminaire

FIGURE 7 – glicerine dans un tube

Dans un cas plus simple

Figure 8 – ecoulement plaques

On suppose ρ constant, on neglige la pesanteur et on pose

$$\overrightarrow{u}(\overrightarrow{r},t) = \overrightarrow{u}_x(y)\overrightarrow{e}_x$$

Lecture 9: Resolution Ecoulement de Poiseuille

Tue 23 Mar

Verifions que l'equation de continuite est satisfaite.

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0$$

Ceci est clair par hypothese.

De manierege generale

$$\rho \frac{D\overrightarrow{u}}{Dt} = \rho \overrightarrow{g} - \nabla p + eta\Delta \overrightarrow{u}$$

$$\frac{D\overrightarrow{u}}{Dt} = \frac{\partial}{\partial t} + u_x(y)\frac{\partial}{\partial x} \begin{pmatrix} u_x(y) \\ 0 \\ 0 \uparrow \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Donc $0 = -\nabla p + \eta \Delta \overrightarrow{u}$, et donc selon y.

$$0 = \frac{-\partial p}{\partial y} \Rightarrow p = f(x, z)$$

de meme selon z, et donc la pression depend seulement de x.

Ainsi

$$0 = \underbrace{\frac{-\partial p}{\partial x}}_{\text{depend de } x} + \underbrace{\eta \frac{\partial^2}{\partial y^2} u_x(y)}_{\text{une fonction de } y}$$

Donc $p(x) = f(x) = -c_1 x + c_2$

Donc

$$p = p_{in} - \frac{p_{in} - p_{out}}{l}x = p_i n - \frac{\Delta P}{l}x$$

Determinons $u_x(y)$

$$\eta \frac{\partial^2}{\partial y^2} u_x = \frac{\partial p}{\partial x} = -c_1$$

Et donc

$$u_x = -\frac{c_1}{2\eta}y^2 + ay + b$$

Les conditions de bord donnent

$$u(-\frac{h}{2}) = -\frac{c_1}{2\eta} \frac{h^2}{4} - a\frac{h}{2} + b = 0$$

$$u(-\frac{h}{2}) = -\frac{c_1}{2\eta} \frac{h^2}{4} + a\frac{h}{2} + b = 0$$

Donc

$$u_x(y) = \frac{c_1}{2\eta} (\frac{h^2}{4} - y^2) = \frac{\Delta p}{2\eta l} (\frac{h^2}{4} - y^2)$$

Calculons le debit volumique D de l'ecoulement

$$D = \int_{-\frac{h}{2}}^{\frac{h}{2}} dy \int_{0}^{s_z} dz u_x(y)$$
$$= \frac{\Delta p s_z h^3}{12\eta l}$$

5 Phenomenes Ondulatoires

5.1 Onde transverse et longitudinale et l'equation d'onde

Perturbation generee en \mathcal{P}_1

FIGURE 9 – corde suspendue

Exemple (Corde tendue avec extremites fixees)

La perturbation se fait presque sans perturbation.

On definit la perturbation par $y_0(x,t)$.

En t = 0, on a $y_0(x, 0) = f(x)$.

Si la propagation se deplace juste, on a

$$y_0(x,t) = f(x - ct)$$

Si le maximum de f(x) se trouve en x_0 , le maximum de f(x-ct) se trouve en $x=x_0+ct$.

c s'appelle la vitesse de propagation de l'onde.

Description mathematique pour des petites perturbations : On va montrer que

$$\frac{\partial^2 y_0}{\partial t^2} = \frac{T}{\mu} \frac{\partial^2 y_0}{\partial x^2}$$

Etant donne que c'est une equation differentierlle lineaire, si f et g sont une solution, alors f+g le sont aussi.

5.2 Ondes sinusoidales

Cas particulier des ondes sont les ondes de la forme

$$y_0(x,t) = A\cos(\omega t - kx + \phi)$$

5.3 Ondes stationnaires

Notons que

$$A\cos(\omega t - kx + \phi)$$

ne respecte pas les conditions de bord.

Comme les ondes sont reflechies, on cherche une solution de la forme

$$y_0(x,t) = \tilde{A}_1 e^{i(\omega t - kx)} + \tilde{A}_2 e^{i(\omega t + kx)}$$

Lecture 10: Ondes Stationnaires

Fri 26 Mar

Une onde stationnaire est de la forme

$$y_0(x,t) = d\sin(\frac{\pi n}{l}x)\cos(\frac{\pi c}{n}t + \phi)$$

la frequence est donnee par

$$\nu = \frac{c}{\lambda} = \frac{cn}{2\lambda}$$

Ici, c est la vitesse de l'onde ($c = \sqrt{\frac{T}{\mu}}$) Le mouvement arbitraire de la corde est une somme infine des modes normaux

5.4 Ondes en 3D

En 3 dimensions, l'equation d'onde devient

$$\frac{\partial^2 y_0}{\partial t^2} = c^2 \Delta y_0$$

Les ondes sinusoidales deviennent des ondes sinusoidales planes

$$y_0 * (\overrightarrow{r}, t) = Ae^{i(\omega t - \overrightarrow{k} \cdot \overrightarrow{r})}$$

ou \overrightarrow{k} est le vecteur d'ondes.

Une surface equiphase est definie par

$$\omega t - \overrightarrow{k} \cdot \overrightarrow{r} = \text{const}$$

On peut choisir $e_x||\overrightarrow{k}|$ et alors on a

$$\omega t - \begin{pmatrix} k \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \omega t - kx$$

Et donc

$$x = \frac{\omega}{k}t - \frac{\phi_0}{k}$$

Donc les surfaces equiphases sont des plans et donc l'onde (et les surfaces equiphases) se deplacent selon \overrightarrow{k} , avec la vitesse $\frac{\omega}{k}=c$

5.5 Quelques consequences du principe de superposition

Superposition de deux ondes de frequence $\omega + \Delta \omega$ et $\omega - \Delta \omega$, de vecteurs d'onde $k + \Delta k$ et $k - \Delta k$ et de dephasage ϕ_1 et ϕ_2 , de meme amplitude.

$$y_0 = Ae^{i(\omega + \Delta\omega)t - (k + \Delta k)x + \phi_1} + Ae^{i(\omega - \Delta\omega)t - (k - \Delta k)x + \phi_2}$$

Alors on a

$$\begin{split} Ae^{i(\omega t - kx)} &(e^{i(\phi_1 - \frac{\phi_1 + \phi_2}{2} + \frac{\phi_1 + \phi_2}{2} + \Delta\omega t - \Delta kx)} + e^{i(\phi_2 - \frac{\phi_1 + \phi_2}{2} + \frac{\phi_1 + \phi_2}{2} - \Delta\omega t + \Delta kx)})) \\ &= 2Ae^{i(\omega t - kx + \frac{\phi_1 + \phi_2}{2})} &(e^{i(\frac{\phi_1 - \phi_2}{2} + \Delta\omega t - \Delta kx)} + e^{i(-\frac{\phi_1 - \phi_2}{2} - \Delta\omega t + \Delta kx)}) \\ &= 2Ae^{i(\omega t - kx + \frac{\phi_1 + \phi_2}{2})} cos((\frac{\phi_1 - \phi_2}{2} + \Delta\omega t - \Delta kx)) \end{split}$$

La partie reelle est donc donne par

$$y_0 = 2A\cos(\omega t - kx + \frac{\phi_1 + \phi_2}{2})\cos(\frac{\phi_1 - \phi_2}{2} + \Delta\omega t - \Delta kx)$$

Dans le cas $\Delta \omega = 0 \Rightarrow \Delta k = 0$ et donc

$$y_0 = 2A\cos(\frac{\phi_1 - \phi_2}{2}\cos(\omega t - kx + \frac{\phi_1 + \phi_2}{2}))$$

5.6 Vitesse de phase et de groupe

 $\Delta\omega \neq 0$ mais $\Delta\omega \ll \omega$.

La vitesse de l'enveloppe V_G est appelee la vitesse de groupe

$$v_G = \frac{\Delta\omega}{\Delta k} \simeq \frac{d\omega}{dk}$$

pour $\omega = ck$ on a une onde sans dispersion.

Pour une onde avec dispersion ($\frac{\omega}{k}\neq \text{const.}$) on a la relation de dispersion $\omega=\omega(k)$ on a en general

$$v_G = .\frac{d\omega}{dk}$$

Lecture 11: Phenomenes ondulatoires II

Tue 30 Mar

- Une onde sinuisoidale se deplace avec une vitesse de phase $v = \frac{\omega}{h}$
- Une pule (superposition d'ondes sinuisoidales) se deplace avec une vitesse de groupe $v_g=\frac{d\omega}{dk},$ donc "l'information" se deplace avec v_g

Exemple

Dans une corde, on a

$$\omega = \sqrt{\frac{T}{\mu}}k$$

Alors la vitesse de phase est la vitesse de groupe.

Dans le cas d'une vague sur l'eau, alors

$$\omega = \sqrt{gk \tanh(kh)}$$

6 Ondes dans les milieux fluides

6.1 Ondes dans un fluide uniforme

Equations de continuite
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overrightarrow{u}) = 0$$
 Equations d'Euler
$$\rho(\frac{\partial \overrightarrow{u}}{\partial t} + (\overrightarrow{u} \cdot \nabla) \overrightarrow{u}) = -\nabla p$$
 Equations d'Etat
$$\frac{D}{Dt}(\frac{p}{\rho^0}) = 0$$

En equilibre, on a

$$\rho = \rho_0 = constant$$

On considere des "petites" perturbations ρ_1 , \overrightarrow{u}_1 , $p_1(\rho_1 << \rho_0, p_1 << p_0, \overrightarrow{u_1} << \gamma_0)$ On pose $\rho = \rho_0 + \rho_1$, $\overrightarrow{u} = \overrightarrow{u_1}$, $p = p_0 + p_1$.

En considerant des "petites" perturbations, on peut negliger les termes quadratiques et d'ordre superieur en ρ_1, u_1 et p_1 et leurs derivees.

Ainsi, on linearise les equations.

L'equation de continuite implique

$$\frac{\partial(\rho_0 + \rho_1)}{\partial t} + \nabla(\rho_0 u_1 + \rho_1 \overrightarrow{u_1}) = 0$$
$$\frac{\partial \rho_1}{\partial t} + \rho_0 \nabla \cdot \overrightarrow{u_1} = 0$$

L'equation d'Euler:

$$(\rho_0 + \rho_1) \left(\frac{\partial \overrightarrow{u_1}}{\partial t} + (\overrightarrow{u_1} \cdot \nabla) \overrightarrow{u_1} \right) = -\nabla (p_0 + p_1)$$
$$\rho_0 \frac{\partial \overrightarrow{u_1}}{\partial t} = -\nabla p_1$$

L'equation de continuite donne

$$\left(\frac{\partial}{\partial t} + (\overrightarrow{u_1} \cdot \nabla)\right) \left(\frac{p_0 + p_1}{(\rho_0 + \rho_1)^{\gamma}}\right) = 0$$

en exercice, on montrera que apres linearisation, on a

$$\frac{\partial p_1}{\partial t} - \gamma \frac{p_0}{\rho_0} \frac{\partial p_1}{\partial t} = 0$$

A partir de ces equations, on peut deriver des equations d'onde pour ρ_1 , \overrightarrow{u}_1 , p_1 (Villard, III, chap. 2).

On cherche des solutions d'onde planes sinusoidales complexes se propageant au long de \overrightarrow{k} , ses solutions ont la forme

$$\rho_1(\overrightarrow{r},t) = \tilde{\rho}_1 e^{i(\omega t T H E - \overrightarrow{k} \cdot \overrightarrow{r})}$$

$$u_1(\overrightarrow{r},t) = \tilde{u}_1 e^{i(\omega t - \overrightarrow{k} \cdot \overrightarrow{r})}$$

$$p_1(\overrightarrow{r},t) = \tilde{p}_1 e^{i(\omega t - \overrightarrow{k} \cdot \overrightarrow{r})}$$

Les equations differentielles etant lineaires, si f etait une solution complexe, Re(f) serait une solution reelle. En substituant ces solutions dans les equations, on trouve

$$i\omega\tilde{\rho_1}e^{i(\omega t - \overrightarrow{k}\cdot\overrightarrow{r})} + \rho_0(-i)\overrightarrow{k}\cdot\overrightarrow{u}e^{i(\omega t - \overrightarrow{k}\cdot\overrightarrow{r})} = 0$$
$$i\omega\tilde{\rho_1} - i\rho_0\overrightarrow{k}\cdot\widetilde{\overrightarrow{u}} = 0$$

De meme

$$i\omega\rho_0\tilde{\overrightarrow{u_1}} - i\overrightarrow{k}\widetilde{p_1} = 0$$

et finalement

$$i\omega\tilde{p_1} - \gamma \frac{p_0}{\rho_0} i\omega\tilde{\rho_1} = 0$$

Donc

$$\tilde{\rho_1} = \frac{\rho_0}{\gamma p_0} \tilde{p_1}$$

$$\tilde{\overrightarrow{u_1}} = \frac{1}{\omega \rho_0} \overrightarrow{k} \tilde{p_1}$$

Ainsi, $\widetilde{u_1}$ est parallele a \overrightarrow{k} . Choisissans $\overrightarrow{e_2}||\overrightarrow{k}$, donc $\overrightarrow{k} = k\overrightarrow{e_2}$, et donc

$$\frac{\tilde{u}_1}{\tilde{u}_1} = \tilde{u}_1 e_2$$

On a donc

$$\begin{split} \rho_1(\overrightarrow{r'},t) &= \frac{\rho_0}{\gamma p_0} \tilde{p_1} e^{i(\omega t - kz)} \\ u_1(\overrightarrow{r'},t) &= \frac{k}{\omega \rho_0} \tilde{p_1} e^{i(\omega t - kz)} \\ p_1(\overrightarrow{r'},t) &= \tilde{p_1} e^{i(\omega t - kz)} \end{split}$$

En introduisant les equations d'avant, on trouve

$$i\omega \frac{\rho_0}{\gamma p_0} \tilde{p_1} = i\rho_0 \overrightarrow{k} \cdot \overrightarrow{k} \frac{1}{\omega \rho_0} \tilde{p_1}$$

$$\omega^2 = \gamma \frac{p_0}{\rho_0} k^2$$

Et donc

$$c = \frac{\omega}{k} = \sqrt{\gamma \frac{p_0}{\rho_0}}$$

Quelle est la condtion sur la vitesse pour des petites perturbations de $\overrightarrow{u_1}$

On a suppose qu'on peut negliger $(\overrightarrow{u_1} \cdot \nabla)\overrightarrow{u_1} << \frac{\partial \overrightarrow{u_1}}{\partial t}$. En choisissant nos coordonnees tel que $\overrightarrow{k} || \overrightarrow{e_z}$, alors

$$\overrightarrow{u_1}(\overrightarrow{r},t) = |\widetilde{u_1}|\cos(\omega t - kz + \phi)\overrightarrow{e_z}|$$

Donc

$$|\tilde{\overrightarrow{u_1}}|k|\cos(\omega t - kz + \phi) \cdot \sin(\omega t - kz + \phi)| << \frac{\partial \overrightarrow{u_1}}{\partial t} = |\tilde{\overrightarrow{u_1}}|\omega|\sin(\omega t - kz + \phi)|$$

Donc, on trouve que

$$|\tilde{\overrightarrow{u_1}} << \frac{\omega}{k} = c$$

6.2 Tuyaux d'orgues

Figure 10 – Tuyau d'orgue

La longueur d'onde est donnee par

$$l = \frac{\lambda}{2} \ et \ \nu = \frac{c}{\lambda} = \frac{c}{2l}$$

C'esty la frequence fondamentale qui determine la note, les deuxiemes, troisiemes,... harmoniques determinent le timbre.

Lecture 12: Ondes lineaires

Tue 13 Apr

6.3 Ondes lineaires a la surface d'un fluide parfait

On considere a nouveau une petite vague a la surface.

On defint par h la profondeur de l'eau non perturbee.

Si on neglige la viscosite et la tension superficielle et on reste en regime lineaire, on trouve la relation de dispersion

$$\omega^2 = gk \tanh(kh)$$

Cas 1 : Eau profonde

Si $kh = \frac{2\pi h}{\lambda} >> 1$, alors chaque point se deplace en "cercle"

Cas 1 : Eau peu profonde

Si kh << 1,les trajectoires sont applaties mais ne deviennent pas negligeable. Alors

$$\frac{\omega}{k} = \sqrt{gh}$$

7 L'electromagnetisme

On connait quatre types de forces fondamentales

- L'interaction electromagnetique
- L'interaction nucleaire forte
- L'interaction nucleaire faible
- L'interaction gravitationelle

L'interaction electromagnetique

- Attractive ou repulsive
- Responsable de la plupart des phenomenes quotidiens
 - electricite
 - lumiere
 - structure des atomes et molecules
 - gouverne les reactions chimiques

7.1 Electrostatique

7.1.1 Charge electrique

On definit deux types de charges, appelees positives et negatives.

Un corps est dit:

- neutre si les charges positives et negatives s'annullent
- charge s'il y a un exces d'un type de charge

7.1.2 L'unite de la charge

On utilisera q pour indiquer la charge, l'unite est le coulomb C.

Dans le système international (SI), le coulomb est une unite "derivee".

1 coulomb est donne par un ampere pendant 1 seconde.

Il existe une charge elementaire e.

Un electron a une charge -e et un proton a une chargte +e. Toutes les charges observables sont des multiples de e.

Conservation de la charge

La quantite de charge totale est toujours conservee.

7.2 Loi de Coulomb

On considere deux charges ponctuelles q_1 et q_2 et on considere le vecteur r_{12} qui relie les deux points. La loi de Coulomb donne

$$\overrightarrow{F}_{1\to 2} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|r_{12}|^2} \frac{r_{12}}{|r_{12}|}$$

Ou encore

$$\overrightarrow{F}_{1\to 2} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|r_{12}|^3} r_{12}$$

Par Newton on a bien sur que

$$\overrightarrow{F}_{2 \to 1} = -\overrightarrow{F}_{1 \to 2}$$

7.2.1 Principe de superposition

Pour trois charges q_1,q_2 et q_3 on a que la force sur q_3 en presence de q_1 et q_2 est donne par

$$F_{res} = F_{1 \to 3} + F_{2 \to 3}$$

Lecture 13: Champs Electriques

Fri 16 Apr

7.3 Champs Electriques

Soit une charge ponctuelle au point r_1

FIGURE 11 – charge ponctuelle

La charge q va ressentir une force donne par

$$\overrightarrow{F}_{1 \to q} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{r} - \overrightarrow{r_1}|^2} \frac{\overrightarrow{r} - \overrightarrow{r_1}}{|\overrightarrow{r} - \overrightarrow{r_1}|}$$

On appelle le champ electrique \overrightarrow{E} genere par q_1 .

A cause du principe de superposition, il suit que le champ electrique \overrightarrow{E} genere par n charges q_i aux positions \overrightarrow{r}_i , peut s'ecrire par

$$\overrightarrow{E}(\overrightarrow{r}) = \sum_{i=1}^{n} \frac{1}{4\pi\epsilon_0} \frac{q_i}{|\overrightarrow{r'} - \overrightarrow{r_i}|^2} \frac{\overrightarrow{r'} - \overrightarrow{r_i}}{|\overrightarrow{r'} - \overrightarrow{r_i}|}$$

 \overrightarrow{E} pointe dans la direction de la force ressentie par une charge positive

$7.3.1 \quad \hbox{Champ electrique du a une distribution des charges quelconque}$

Densite de charge ρ_{el}

On definit

$$\rho_{el} = \lim_{\Delta V \to dV} \frac{\Delta q}{\Delta V}$$

FIGURE 12 – densite de charge

Alors le champ vectoriel devient

$$\overrightarrow{E}(\overrightarrow{r'}) = \frac{1}{4\pi\epsilon_0} \iiint \frac{\rho_{\overrightarrow{e}_l(\overrightarrow{r'})(\overrightarrow{r'}-\overrightarrow{r'})}}{|\overrightarrow{r'}-\overrightarrow{r'}|^3} \overrightarrow{dV}$$

7.3.2 Densite de charge de surface

On definit

$$\sigma_{el} = \lim_{\Delta s \to 0} \frac{\Delta q}{\Delta s}$$

FIGURE 13 – charge de surface

Et on obtient

$$\overrightarrow{E}(\overrightarrow{r}) = \frac{1}{4\pi\epsilon_0} \iint_S \frac{\sigma_{el}(\overrightarrow{r}')(\overrightarrow{r} - \overrightarrow{r}')}{|\overrightarrow{r} - \overrightarrow{r}'|^3} dS'$$

Exemple

Disque de rayon R uniformement charge avec $\sigma_{el} = const.$

FIGURE 14 – disque charge

Calculons \overrightarrow{E} le long de l'axe z , on a donc

$$\overrightarrow{E}(z) = \frac{1}{4\pi\epsilon_0} \iint_{disque} \frac{\sigma_{el}(\overrightarrow{r} - \overrightarrow{r}')}{|\overrightarrow{r} - \overrightarrow{r}'|^3} dS'$$

Par symmetrie, on a toujours que $\overrightarrow{E}(x=0,y=0,z)||\overrightarrow{e_z}|$, on a donc

$$\overrightarrow{E}(z) = \frac{1}{4\pi\epsilon_0} \iiint \frac{\sigma_{el}(z - z')}{\left\| \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} - \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \right\|^3} dS'$$

Or comme z' = 0 sur S, on a

$$= \frac{1}{4\pi\epsilon_0} \iint \frac{\sigma_{el}z}{(x'^2 + y'^2 + z^2)^{\frac{3}{2}}} dS'$$

Pour integrer sur le disque S, on utilise les coordonnees polaires

$$dS' = r'd\theta'dr'$$

et on a que $x'^{2} + y'^{2} = r'^{2}$, on a donc

$$= \frac{1}{4\pi\epsilon_0} \int_0^R \int_0^{2\pi} \frac{\sigma_{el} z}{(r'^2 + z^2)^{\frac{3}{2}}} r' d\theta' dr'$$

$$= \frac{\sigma_{el} z}{4\pi\epsilon_0} 2\pi \int_0^R \frac{r'}{(r'^2 + z^2)^{\frac{3}{2}}} dr'$$

$$\dots = \frac{\sigma_{el}}{2\epsilon_0} \left(\frac{z}{|z|} - \frac{z}{\sqrt{z^2 + R^2}}\right)$$

 $En\ particulier,\ on\ voit\ que$

$$E_z o rac{\sigma_{el}}{2\epsilon_0} rac{z}{|z|} \ quand \ R o \infty$$

7.3.3 Lignes de champ electrique

Les lignes qui sont tangentielles a \overrightarrow{E} en tout point (en analogie avec les lignes de courant)

Ces lignes sont orientees dans la direction de E.

Exemple

Pour une charge ponctuelle positive

Figure 15 – champ electrique d'une charge positive

Exemple

Pour deux charges positives

 ${\tt FIGURE~16-champ~deux~charges}$

Figure 17 – conducteur avec deux charges positives

Le debut des lignes de champ E: charges positives ou a l'infini, et la fin des lignes de champ sont a l'infini ou sur la charge negative. Les lignes de champ peuvent etre parametrees $\overrightarrow{l}(s)$ (courbe parametree par s) determinee par la condition $\frac{d\overrightarrow{l}}{ds} \times \overrightarrow{E}(\overrightarrow{l}(s)) = 0 \forall s^1$

7.4 Loi de Gauss

7.4.1 Enonce de la loi de Gauss

" Le flux du champ electrique a travers une surface S fermee est egale a la somme des charges electriques contenues dans le volume V delimite par S, divise par la permitivite du vide."

$$\iint_{S} \overrightarrow{E} \cdot d\overrightarrow{S} = \frac{1}{\epsilon_0} \iiint_{V} \rho_{el} dV$$

On peut aussi reecrire ceci comme

$$\frac{1}{\epsilon_0} \iiint_V \rho_{el} dV = \iint_S \overrightarrow{E} \cdot d\overrightarrow{S} = \iiint_V \nabla \cdot \overrightarrow{E} dV$$

Ce qui est valable pour tout volume V. La forme differentielle de la loi de gauss s'ecrit donc

$$\nabla \cdot \overrightarrow{E} = \frac{\rho_{el}}{\epsilon_0}$$

^{1.} il faut que $\frac{d\overrightarrow{l}}{ds}$ soit parallele a $\overrightarrow{E}(\overrightarrow{l}(s))$

Exemple

On suppose que le plan x-y est charge uniformement avec $\sigma_{el}=\ const\ >0$

FIGURE 18 – plan charge xy

On a bien sur que $S = \partial V$, et on note A pour l'aire de la section du cylindre.

$$\begin{split} \iint_{S} \overrightarrow{E} \cdot d\overrightarrow{S} &= \iint_{S_{top}} E_{z}(z) \overrightarrow{e}_{z} \cdot \overrightarrow{e}_{z} dS \\ &+ \iint_{S_{bot}} E_{z}(-z) \overrightarrow{e}_{z} \cdot - \overrightarrow{e}_{z} dS \\ &= E_{z}(z) \iint_{S_{top}} dS + E_{z}(-z)(-1) \iint_{S_{bot}} dS \\ &= AE_{z}(z) - E_{z}(-z)A = 2E_{z}(z)A \qquad \qquad = \frac{1}{\epsilon_{0}} \text{ charge totale dans } V \\ &= E_{z}(z) = \frac{\sigma_{el}}{2\epsilon_{0}} \end{split}$$

7.4.2 Preuve de la loi de Gauss

Charge ponctuelle $q,\,S$ une sphere de rayon r autour de q

Figure 19 – surface avec charge ponctuelle

$$\iint_{S} \overrightarrow{E} \cdot d\overrightarrow{S} = \iint_{S} |\overrightarrow{E}| dS$$
$$= |\overrightarrow{E}| \iint_{S} dS$$
$$= 4\pi r^{2} |\overrightarrow{E}|$$

En calculant l'autre cote de la loi de Gauss, on trouve

$$\frac{1}{\epsilon_0} \iiint_V \rho_{el} dV = \frac{q}{\epsilon_0}$$

Et donc

$$|\overrightarrow{E}| = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

Ce qui est vrai par la loi de Coulomb.

Charge ponctuelle q entouree d'une surface fermee S arbitraire

FIGURE 20 - surface arbitraire, charge ponctuelle

Le flux a travers $d\overrightarrow{S}'$ est donnne par

Le flux a travers $d\overrightarrow{S}$ est donne par

$$EdS\cos\theta$$

En comparant les normes, on trouve que

$$E=E'\frac{r'^2}{r^2}($$
loi de Coulomb)

Par geometrie, on a aussi que

$$dS = dS' \frac{r^2}{r'^2} \frac{1}{\cos \theta}$$

Le flux a travers dS peut s'ecrire comme

$$EdS\cos\theta = E'\frac{r'^2}{r^2}dS'\frac{r^2}{r'^2}\frac{1}{\cos\theta}\cos\theta = E'dS'$$

Et donc les deux flux sont les memes.

Ceci est valable pour chaque element dS et donc le flux de E a travers S est le meme que le flux de E a travers S' et donc la loi de Gauss est satisfaite dans ce cas.

Charge ponctuelle q a l'exterieur d'une surface S fermee arbitraire

FIGURE 21 – charge q a l exterieur

Pour la preuve on va utiliser

FIGURE 22 – preuve charge a l exterieur

On a donc que la surface $S_1 + S_2$ est ferme e contenant q, donc on peut ecrire que

$$\iint_{S_1+S_2} \overrightarrow{E} \cdot d\overrightarrow{S} = \frac{q}{\epsilon_0}$$

$$= \iint_{S_1} \overrightarrow{E} \cdot d\overrightarrow{S} + \iint_{S_2} \overrightarrow{E} \cdot d\overrightarrow{S}$$

Si on laisse tendre $d \to 0$,

$$\iint_{S_1} \overrightarrow{E} \cdot d\overrightarrow{S} = \frac{q}{\epsilon_0}$$

Et donc

$$\iint_{S_2} \overrightarrow{E} \cdot d\overrightarrow{S} = 0$$

Le cas general pour une densite de charge abritraire (qui est juste une somme de charges ponctuelles) suit du principe de superposition.

7.5 Le potentiel electrostatique

En electrostatique, on peut definir une fonction scalaire $\phi(\overrightarrow{r})$ tel que $\overrightarrow{E} = -\nabla \phi$. On appelle ϕ le potentiel electrostatique.

Montrons l'existence de ϕ .

Soit une charge ponctuelle q_1 a la position \overrightarrow{r}_1 :

$$\phi(\overrightarrow{r}) = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{r} - \overrightarrow{r}_1|} + \text{constante}$$

On calcule

$$-\nabla\phi(\overrightarrow{r'}) = \begin{pmatrix} -\frac{\partial}{\partial x} \left(\frac{1}{4\pi\epsilon_0} \frac{q_1}{\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}}\right) \\ -\frac{\partial}{\partial y} \left(\frac{1}{4\pi\epsilon_0} \frac{q_1}{\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}}\right) \\ -\frac{\partial}{\partial z} \left(\frac{1}{4\pi\epsilon_0} \frac{q_1}{\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}}\right) \end{pmatrix}$$

$$= -\frac{1}{4\pi\epsilon_0} q_1(-\frac{1}{2}) \begin{pmatrix} \frac{q_1}{(\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}})^{\frac{3}{2}} 2(x-x_1)) \\ \frac{q_1}{(\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}})^{\frac{3}{2}} 2(y-y_1)) \\ \frac{q_1}{(\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}})^{\frac{3}{2}} 2(z-z_1)) \end{pmatrix}$$

$$= \frac{q_2}{4\pi\epsilon_0} \frac{1}{|\overrightarrow{r'} - \overrightarrow{r'}_2|^3} \begin{pmatrix} x-x_1 \\ y-y_1 \\ z-z_1 \end{pmatrix} = \frac{q_1}{4\pi\epsilon_0} \frac{\overrightarrow{r'} - \overrightarrow{r'}_1}{|\overrightarrow{r'} - \overrightarrow{r'}_1|^3}$$

Dans le cas general, on a

Distribution de charges arbitraires

$$\phi(\overrightarrow{r}) = \frac{1}{4\pi\epsilon_0} \iiint_V \frac{\rho_{el}(\overrightarrow{r})}{|\overrightarrow{r} - \overrightarrow{r}'|} dV' + \text{ const.}$$

$$-\nabla\phi(\overrightarrow{r}) = \frac{1}{4\pi\epsilon_0} \iiint_V \rho_{el}(\overrightarrow{r})(-\nabla) \frac{1}{|\overrightarrow{r} - \overrightarrow{r}'|} dV'$$

$$= \frac{1}{4\pi\epsilon_0} \iiint_V \frac{\rho_{el}(\overrightarrow{r})(\overrightarrow{r} - \overrightarrow{r}')}{|\overrightarrow{r} - \overrightarrow{r}'|^3} = \overrightarrow{E}(\overrightarrow{r})$$

Pour une densite de charges de surface

$$\phi(\overrightarrow{r}) = \frac{1}{4\pi\epsilon_0} \iint_S \frac{\sigma_{el}(\overrightarrow{r}')}{|\overrightarrow{r} - \overrightarrow{r}'|} dS' + \text{ const}$$

7.5.1 Quelques proprietes de ϕ (et de E) en electrostatique

- 1. Les unites de ϕ sont le Volt $V=\frac{kg\cdot m^2}{s^2}\frac{1}{C}=\frac{\text{"energie"}}{\text{"charge"}}.$
- 2. ϕ est seulement definit a une constante pres (la constante d'integration.)
- 3. Le potentiel electrostatique du a differentes charges esst additif.
- 4.

$$\nabla \times (\nabla \phi) = \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \times \begin{pmatrix} \partial_x \phi \\ \partial_y \phi \\ \partial_z \phi \end{pmatrix} = 0$$

Et donc

$$\nabla \times \overrightarrow{E} = -\nabla \times (\nabla \phi) = 0$$

Par le theoreme de stokes, on a donc

$$\oint_{\gamma} \overrightarrow{E} \cdot \overrightarrow{dl} = \iint_{S} \nabla \times \overrightarrow{E} \cdot \overrightarrow{dS} = 0$$

Lecture 15: Proprietes additionelles

Exemple

On considere une sphere avec $\sigma_{el} = const.$

Fri 23 Apr

FIGURE 23 – sphere chargee

On a que l'inverse de la propriete 4 ci-dessus est egalement vraie :

Pour
$$\overrightarrow{A}(\overrightarrow{r})$$
 avec $\nabla \times \overrightarrow{A} = 0 \forall \overrightarrow{r}$

Alors il existe $\phi(\overrightarrow{r})$ tel que $\overrightarrow{A} = -\nabla \phi$.

Le travail pour deplacer une charge q dans un champ \overrightarrow{E} de A a B ne depend pas du chemin suivi et est egal a $q(\phi(B) - \phi(A))$

Figure 24 – dessin point A point B

Preuve

On considere γ parametre par $\overrightarrow{l}(s), s \in [0, 1]$

$$\Rightarrow \omega_{\gamma} = \underbrace{\qquad \qquad \qquad }_{\text{On considere le travail contre la force}} \int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{l}$$

$$= -\int_{\gamma} q \overrightarrow{E} \cdot \overrightarrow{dl}$$

$$= \int_{\gamma} q \nabla \phi d\overrightarrow{l}$$

$$= \int_{0}^{1} q \nabla \phi(\overrightarrow{l}(s)) \cdot \frac{\overrightarrow{dl}}{ds} ds$$

$$= \int_{0}^{1} q \frac{d\phi(\overrightarrow{l}(s))}{ds} ds$$

$$= q\phi(\overrightarrow{l}(s))|_{0}^{1}$$

$$= q(\phi(B) - \phi(A)) = \int_{A \to B} \overrightarrow{E} \cdot \overrightarrow{dl}$$

est le changement de l'energie potentielle electrostatique par unite de charge si q est deplace de A a B.

On remarque que la difference de potentiel est independante du chemin choisi. On appele $\phi(B) - \phi(A)$ la tension entre B et A.

On a aussi que le travail pour deplacer une charge q le long d'une courbe fermee est toujours nul, ce qui suit immediatement de la propriete precedente.

FIGURE 25 – travail sur une courbe fermee

donc $q\overrightarrow{E}$ est une force conservative.

On peut donc definir des surfaces equipotentielles $\{\overrightarrow{r}:\phi(\overrightarrow{r})=\text{const}\}$. Comme $\overrightarrow{E}=-\nabla\phi$, les lignes du champ electrique E sont perpendiculaires aux surfaces equipotentielles

FIGURE 26 – champ electrique perpendiculaire

On prouve ceci avec l'expansion de Taylor

$$\begin{split} \phi(\overrightarrow{r} + \overrightarrow{h}) &= \phi(\overrightarrow{r}) + \nabla \phi(\overrightarrow{r}) \cdot \overrightarrow{h} +) (|h|^2) \\ &= \phi(\overrightarrow{r}) - \overrightarrow{E}(\overrightarrow{r}) \cdot h + O(|h|^2) \end{split}$$

Pour |h| tres petit :

$$=\phi(\overrightarrow{r}+\overrightarrow{h})=\phi(\overrightarrow{r})-\overrightarrow{E}(\overrightarrow{r})\cdot h$$

Donc, si \overrightarrow{h} est tangentiel a la surface equipotentielle au point r, on peut ecrire que

$$\phi(\overrightarrow{r} + \overrightarrow{h}) \approx \phi(\overrightarrow{r})$$

Et donc

$$\overrightarrow{E}(\overrightarrow{r}) \cdot \overrightarrow{h} = 0$$

Et donc \overrightarrow{E} pointe dans la direction perpendiculaire aux surfaces equipotentielles.

7.6 Le role des conducteurs en electrostatique

7.6.1 Proprietes de base

FIGURE 27 – champ electrique avec charges et conducteur

En electrostatique, il n'y a pas de courant, donc

- $\overrightarrow{E}=0$ a l'interieur d'un conducteur (sinon, les charges libres produiraient un courant)
- $\nabla \cdot \overrightarrow{E} = 0 = \frac{\rho_{el}}{\epsilon_0}$, donc il n'y a pas de densite de charge a l'interieur du conducteur.
- Le conducteur delimite une region ou ϕ (le potentiel) est constant.
- $\overrightarrow{E} = -\nabla \phi \Rightarrow \overrightarrow{E}$ est perpendiculaire a la surface du conducteur.
- Des charges peuvent se trouver seulement a la surface du conducteur $\Rightarrow \sigma_{el} = 0$ possible.

Lecture 16: Conducteurs en electrostatique Exemple

Tue 27 Apr

Charge Q > 0 places sur une sphere conductrice

FIGURE 28 – sphere conductrice

On veut calculer le champ electrique que la sphere genere. Par symmetrie, $\sigma_{el}=$ const sur la surface de la sphere, donnee par $4\pi R^2\sigma_{el}=Q$, donc

$$\sigma_{el} = \frac{Q}{4\pi R^2}$$

On sait que $\overrightarrow{E}=0$ pour r< R, mais E=? pour r>R. On sait que $\overrightarrow{E}=E(R+\Delta R)$ (ne depend pas de l'angle) On a

$$\iint_{S_1} \overrightarrow{E} \cdot \overrightarrow{dS} = \iint_{S_1} E(R + \Delta R) \cdot e_r \cdot e_r dS$$
$$= E(R + \Delta R) \cdot 4\pi (R + \Delta R)^2$$

Par la loi de Gauss, on a que le tout $=\frac{Q}{\epsilon_0}=\frac{4\pi R^2\sigma_{el}}{\epsilon_0}$. On voit que si on laisse tendre $\Delta R \to 0$, on a que $E(R)=\frac{\sigma_{el}}{\epsilon_0}$. En general, \overrightarrow{E} est perpendiculaire a la surface du conducteur. Dans le vide, ce champ vaudra toujours $\frac{\sigma_{el}}{\epsilon_0}$

7.7 Densite de charge de surface par influence (influence electrostatique)

Figure 29 – sphere chargee avec une charge positive Q>0

Exemple

Car la sphere est chargee, il y a un champ electrique.

On observe que, apres avoir separe les deux plaques metalliques, elles sont chargees.

De plus, la plaque 1 porte une charge -Q' et la plaque 2 porte une charge +Q'. On considere \overrightarrow{E} uniforme (genere par exemple par un plan infini charge)

 ${\tt Figure~30-plaque~chargee}$

On a que $E = E_z e_z$.

On applique la loi de Gauss sur S_1 (un cylindre).

$$-E_1 A = \frac{\sigma_{el,1}}{\epsilon_0} A \Rightarrow \sigma_{el,1} = -\epsilon_0 E_1 < 0$$

On a que $\sigma_{el,2} = -\sigma_{el,1}$.

 $\sigma_{el,1}$ et $\sigma_{el,2}$ sont generes par influence pour assurer que E=0 dans le conducteur

Variation de \overrightarrow{E} et ϕ le long de z.

En appliquant Gauss sur $S_2 \Rightarrow$

$$AE_2 - AE_1 = \frac{(\sigma_{el,1} + \sigma_{el,2}A)}{\epsilon_0} = 0$$

Et donc $E_1 = E_2 = E_0$.

Pour determiner ϕ , on considere

$$\phi(B) - \phi(A) = -\int_{A}^{B} \overrightarrow{E} \cdot \overrightarrow{dl}$$

Comme $\overrightarrow{E}||e_z, \phi(x, y, z) = \phi(z).$

Choisissons B a la hauteur z et A a la hauteur 0, on a donc $\overrightarrow{dl} = e_z dz$

$$\begin{split} \phi(z) - & \underbrace{\phi(0)}_{=0 \ choix \ de \ la \ constante} = \phi(z) \\ & = -\int_0^z \overrightarrow{E} \cdot \overrightarrow{dl} = -\int_0^z \overrightarrow{E} \cdot e_z dz' \\ & = -\int_0^z E_z(z') dz' \\ & z < 0 \Rightarrow \phi(z) = -\int_0^z E_z(z') dz' \\ & = \int_z^0 E_z(z') dz' \\ & = E_0 \int_z^0 dz' \\ & = -z E_0 \end{split}$$

Pour 0 < z < d, on a

$$\phi(z) = -\int_0^z 0dz' = 0$$

 $Si \ z > d$, on a

$$\phi(z) = -\int_{d}^{z} E_{z}(z')dz' = -(z-d)E_{0}$$

7.8 Effets de Pointe

Autour des pointes d'un conducteur, le champ E peut etre tres eleve $\to \mathbf{Ef}$ fet de pointe

7.9 Traitement general, equation de Laplace et de Poisson

En principe, la loi de Gauss, $\nabla \cdot E = \frac{\rho_{el}}{\epsilon_0}$ permet de calculer le champ electrique E(r) a partir de ρ_{el} .

Malheureusement, souvent, ρ_{el} n'est pas connue.

On connait le potentiel a la surface de chaque conducteur, mais pas σ_{el}

— Si ρ_{el} dans l'espace a l'exterieur des conducteurs, alors $\nabla \cdot \overrightarrow{E} = 0$, avec $E = -\nabla \phi$, on trouve

$$\nabla \cdot (\nabla \phi) = \begin{pmatrix} \partial x \\ \partial y \\ \partial z \end{pmatrix} \cdot \begin{pmatrix} \partial x \phi \\ \partial y \phi \\ \partial z \phi \end{pmatrix} = \Delta \phi \rightarrow \text{ equation de Laplace}.$$

Si $\rho_{el} \neq 0$ entre conducteurs (p. ex q_1, q_2) , on a

$$\Delta \phi = -\frac{\rho_{el}}{\epsilon_0} \rightarrow \text{ equation de Poisson}$$

Pour les conditions aux limites $\phi = \phi_i$ sur la surface du conducteur $i(i=1,2\ldots)$ et $\phi \to 0$ quand $|r| \to \infty$, la solution de l'equation de poisson (resp. laplace) est unique.

Lecture 17: Capacite et condensateurs

Fri 30 Apr

7.10 Capacite et condensateur

7.10.1 Definition de la capacite

— Deux conducteurs initialement non-charge.

$$\phi_A = \phi_B = 0$$

— Charge -q enlevee de A et placee sur B

On a

$$\phi_A - \phi_B = -\int_B^A \overrightarrow{E} \cdot \overrightarrow{dl} > 0$$

Or

$$\overrightarrow{E}(\overrightarrow{r})$$
 est proportionnel a q

car

$$\nabla \cdot \overrightarrow{E} = \frac{\rho_{el}}{\epsilon_0}; \nabla \times \overrightarrow{E} = 0$$

et donc pour

$$\phi_A - \phi_B$$

aussi.

Et donc

$$\frac{q}{\phi_A - \phi_B} = C = \text{ const.}$$

Souvent, on ecrit

$$\phi_A - \phi_B = U$$

On appelle cette constante C la capacite entre les deux conducteurs.

$$[C] = [\frac{Q}{U}] = \frac{C}{V} = \frac{C^2 s^2}{kqm^2} = \frac{A^2 s^4}{kqm^2} = \text{ Farad } = F$$

Dans le vide, C ne depend que de la geoetrie des deux conducteurs.

7.10.2 Condensateur

Un condensateur est un systeme de deux conducteurs avec charge $\pm q$. Normalement, la geometrie est choisie pour maximiser la capacite.

Figure 31 – condensateur cylindrique

Soit l la longueur du condensateur, on suppose que $l >> R_2 - R_1 \Rightarrow$ les effets de bord sont negligeables.

Pour appliquer, la loi de gauss, on considere un cylindre compris entre R_1 et R_2

$$\iint_{S} \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{q}{\epsilon_{0}} \approx 2\pi r l E(r)$$

Donc

$$E(r) = \approx = \frac{q}{2\pi r \epsilon_0 l}$$

Donc

$$\phi_A - \phi_B = -\int_{R_2}^{R_1} \overrightarrow{E} \cdot \overrightarrow{dl} = \int_{R_1}^{R_2} E(r)e_r(-e_r)dl$$
$$= \int_{R_1}^{R_2} E(r)dr = \frac{q}{2\pi\epsilon_0 l} \int_{R_1}^{R_2} \frac{dr}{r}$$

$$\begin{split} &=\frac{q}{2\pi\epsilon_0 l}\ln(\frac{R_2}{R_1})\\ \Rightarrow &C=\frac{q}{\phi_A-\phi_B}=\frac{2\pi\epsilon_0 l}{\ln(\frac{R_2}{R_1})} \end{split}$$

Figure 32 – condensateur plan

On suppose a nouveau d << a et $d << b \Rightarrow$ effet de bord negligeable.

$$\iint_{S} \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{q}{\epsilon_{0}} \approx ES_{c} \Rightarrow E = \frac{q}{\epsilon_{0}S_{c}}$$

$$\phi_B - \phi_A = -\int_A^B \overrightarrow{E} \cdot \overrightarrow{dl} = -\int_0^d E(x)e_x e_x dx$$
$$= -\int_0^d E dx = -E d = \frac{-dq}{\epsilon_0 S_c}$$

Donc
$$c = \frac{q}{\phi_A - \phi_B} = \frac{\epsilon_0 S_c}{d}$$