Biostatistics I: Introduction to R

Data transformation, exploration and visualization

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

■ e.andrinopoulou@erasmusmc.nl

y@erandrinopoulou

In this Section

- ► Data transformation
- ▶ Data exploration
- ▶ Data visualization
- ► A lot of practice

You will never receive the perfect data set!

- Round continuous variables
- Convert numeric variables to factors
- ► Compute **new variables**
 - transform variables
- ► **Sort** the data set
- ▶ Data sets of wide ⇔ long format

► Round continuous variables

```
pbc[1:3, c("time", "age", "bili", "chol")]
  time age bili chol
1 400 58.76523 14.5 261
2 4500 56.44627 1.1 302
3 1012 70 07255 1.4 176
round(pbc[1:3, c("time", "age", "bili", "chol")], digits = 2)
  time age bili chol
1 400 58.77 14.5 261
2 4500 56.45 1.1 302
3 1012 70.07 1.4 176
```

Convert numeric variables to factors

```
id time status trt age sex bili chol
1 1 400 2 1 58.76523 f 14.5 261
2 2 4500 0 1 56.44627 f 1.1 302
3 3 1012 2 1 70.07255 m 1.4 176
4 4 1925 2 1 54.74059 f 1.8 244
5 5 1504 1 2 38.10541 f 3.4 279
6 6 2503 2 2 66.25873 f 0.8 248
```

Convert numeric variables to factors

	id	time	status	trt	age	sex	bili	chol
1	1	400	2	D-penicillmain	58.76523	f	14.5	261
2	2	4500	0	D-penicillmain	56.44627	f	1.1	302
3	3	1012	2	D-penicillmain	70.07255	m	1.4	176
4	4	1925	2	D-penicillmain	54.74059	f	1.8	244
5	5	1504	1	placebo	38.10541	f	3.4	279
6	6	2503	2	placebo	66.25873	f	0.8	248

- Compute new variables
 - transform variables

```
id time status trt age sex bili chol
1 1 400 2 1 58.76523 f 14.5 261
2 2 4500 0 1 56.44627 f 1.1 302
3 3 1012 2 1 70.07255 m 1.4 176
4 4 1925 2 1 54.74059 f 1.8 244
5 5 1504 1 2 38.10541 f 3.4 279
6 6 2503 2 2 66.25873 f 0.8 248
```

- ► Compute **new variables**
 - transform variables

	id	time	status	trt	age	sex	bili	chol	time_years
1	1	13.33333	2	1	58.76523	f	14.5	261	1.111111
2	2	150.00000	0	1	56.44627	f	1.1	302	12.500000
3	3	33.73333	2	1	70.07255	m	1.4	176	2.811111
4	4	64.16667	2	1	54.74059	f	1.8	244	5.347222
5	5	50.13333	1	2	38.10541	f	3.4	279	4.177778
6	6	83.43333	2	2	66.25873	f	0.8	248	6.952778

- ▶ **Sort** the data set in either ascending or descending order
 - ▶ The variable by which we sort can be a numeric, string or factor

head(sort(pbc\$bili))

[1] 0.3 0.3 0.3 0.4 0.4 0.4

- ▶ **Sort** the data set in either ascending or descending order
 - ▶ The variable by which we sort can be a numeric, string or factor

```
head(pbc[order(pbc$bili), ])
```

	id	time	status	trt		age	sex	as	cites	hepa	ato	spide	ers	edema	bili	chol
8	8	2466	2	2 2	53	.05681	f		0		0		0	0	0.3	280
36	36	3611	C) 2	56	41068	f		0		0		0	0	0.3	172
163	163	2055	2	2 1	53	. 49760	f		0		0		0	0	0.3	233
84	84	4032	C) 2	55	.83025	f		0		0		0	0	0.4	263
108	108	2583	2	2 1	50	. 35729	f		0		0		0	0	0.4	127
135	135	3150	C) 1	42	. 96783	f		0		0		0	0	0.4	263
	albı	ımin	copper	alk.j	phos	s a	st t	rig	plate	elet	pro	otime	sta	age		
8	4	1.00	52	46	51.2	2 28.3	38	189		373		11.0		3		
36	3	3.39	18	5	58.0	71.3	30	96		311		10.6		2		
163	4	1.08	20	63	22.0	66.6	65	68		358		9.9		3		
84	3	3.76	29	134	45.0	137.9	95	74		181		11.2		3		
108	3	3.50	14	100	62.0	49.6	60	84		334		10.3		2		
135	3	3.57	123	83	36.0	74.4	40	121		445		11.0		2		

- ▶ **Sort** the data set in either ascending or descending order
 - ▶ The variable by which we sort can be a numeric, string or factor

```
head(pbc[order(pbc$bili, pbc$age), ])
```

	id	time	status	trt		age	sex	ascites	hepato	spiders	edema	bili	chol	
8	8	2466	2	2	53.	05681	f	0	0	C	0.0	0.3	280	
163	163	2055	2	2 1	53.	49760	f	0	0	C	0.0	0.3	233	
36	36	3611	C	2	56.	41068	f	0	0	C	0.0	0.3	172	
135	135	3150	C) 1	42.	96783	f	0	0	C	0.0	0.4	263	
320	320	2403	C) NA	44.	00000	f	NA	NA	N A	0.5	0.4	NA	
168	168	2713	C	2	47.	75359	f	0	1	C	0.0	0.4	257	
	albı	ımin	copper	alk.	phos	ast	tri	g plate	let pro	time sta	ıge			
8	4	1.00	52	469	51.2	28.38	3 18	39 3	373	11.0	3			
163	4	1.08	20	62	22.0	66.65	5 6	8 3	358	9.9	3			
36	3	3.39	18	58	58.0	71.30) 9	6 :	311	10.6	2			
135	3	3.57	123	83	36.0	74.40	12	11 4	445	11.0	2			
320	3	3.81	NA		NA	NA.	N N	A :	226	10.5	3			
168	:	3.80	44	84	42.0	97.65	5 11	.0	NA	9.2	2			

▶ Data sets of wide ⇔ long format

```
    id time
    status
    trt
    age
    sex
    bili
    chol

    1
    1
    400
    2
    1
    58.76523
    f
    14.5
    261

    2
    2
    4500
    0
    1
    56.44627
    f
    1.1
    302

    3
    3
    1012
    2
    1
    70.07255
    m
    1.4
    176

    4
    4
    1925
    2
    1
    54.74059
    f
    1.8
    244

    5
    5
    1504
    1
    2
    38.10541
    f
    3.4
    279

    6
    6
    2503
    2
    2
    66.25873
    f
    0.8
    248
```

▶ Data sets of wide ⇔ long format

```
      id futime
      status
      trt
      age
      day
      sex
      bili
      chol

      1
      1
      400
      2
      1
      58.76523
      0
      f
      14.5
      261

      2
      1
      400
      2
      1
      58.76523
      192
      f
      21.3
      NA

      3
      2
      5169
      0
      1
      56.44627
      0
      f
      1.1
      302

      4
      2
      5169
      0
      1
      56.44627
      182
      f
      0.8
      NA

      5
      2
      5169
      0
      1
      56.44627
      365
      f
      1.0
      NA

      6
      2
      5169
      0
      1
      56.44627
      768
      f
      1.9
      NA
```

▶ Data sets of wide ⇔ long format

?reshape

Data Exploration

- Common questions for the pbc data set
 - ▶ What is the mean and standard deviation for age?
 - ▶ What is the mean and standard deviation for time?
 - What is the median and interquartile range for age?
 - What is the percentage of placebo patients?
 - What is the percentage of females?
 - What is the mean and standard deviation for age in males?
 - ▶ What is the mean and standard deviation for baseline serum bilirubin?
 - ▶ What is the percentage of missings in serum bilirubin?

All these questions can be answered using R!

Data Exploration

▶ Hints

► Check functions: mean(...), sd(...), percent(...), median(...), IQR(...), table(...)

Data Exploration

▶ Hints

► Check functions: mean(...), sd(...), percent(...), median(...), IQR(...), table(...)

What is the mean value for age?

mean(pbc\$age)

[1] 50.74155

- ▶ It is important to investigate each variable in our data set using plots
 - Descriptive statistics for continuous and categorical variables
 - Distributions of variables
 - Distributions of variables per group
 - Extreme values
 - ► Linear/nonlinear evolutions

Take care!

Serum bilirubin

- ► R has very powerful graphics capabilities
- ► Some good references are
 - ▶ Murrel, P. (2005) R Graphics. Boca Raton: Chapman & Hall/CRC.
 - ➤ Sarkar, D. (2008) Lattice Multivariate Data Visualization with R. New York: Springer-Verlag.

- ► Traditional graphics system
 - package graphics
- ► Trellis graphics system
 - package lattice (which is based on package grid)
- ► Grammar of Graphics implementation (i.e., Wilkinson, L. (1999) The Grammar of Graphics. New York: Springer-Verlag)
 - packages ggplot & ggplot2

Important plotting basic functions

- plot(): scatter plot (and others)
- **barplot()**: bar plots
- **boxplot()**: box-and-whisker plots
- ► hist(): histograms
- ▶ dotchart(): dot plots
- ▶ pie(): pie charts
- qqnorm(), qqline(), qqplot(): distribution plots
- ▶ pairs(): for multivariate data

Continuous variables

```
plot(x = pbc\$age, y = pbc\$bili)
```


Continuous variables

Continuous variables

► For more options check

?plot


```
pbc male bili <- pbc$bili[pbc$sex == "m"]</pre>
pbc female bili <- pbc$bili[pbc$sex == "f"]</pre>
plot(density(x = pbc male bili), col = rgb(0,0,1,0.5),
     main = "Density plots", xlab = "bili", ylab = "")
polygon(density(x = pbc male bili), col = rgb(0,0,1,0.5),
        border = "blue")
lines(density(x = pbc female bili), col = rgb(1,0,0,0.5))
polygon(density(x = pbc female bili), col = rgb(1,0,0,0.5),
        border = "red")
legend(x = 8, y = 0.2, legend = c("male", "female"),
       col = c(rgb(0,0,1,0.5), rgb(1,0,0,0.5)), lty = 1)
```


Categorical variables

Summary

Transformation

- round()
- ▶ factor()
- ▶ order()
- reshape()

Exploration

- ▶ mean(), sd()
- ▶ median(), IQR()
- ► table()

Visualization

- ▶ plot(), legend()
- ▶ hist()
- barchart()
- ▶ boxplot()
- xyplot(), ggplot()
- ▶ par()