Concordia University

Department of Computer Science & Software Engineering COMP 478/6771 Image Processing

Assignment 1 - Due date: October 3, 2023

Part I: Theoretical questions

1. (6 point) A greyscale image A has a normalized histogram p_r (modeled by a probability density function) that can be presented by

$$p_r(r) = \begin{cases} -2r+2, & 0 \le r \le 1\\ 0, & otherwise \end{cases}$$

Now we want to transform the grey levels of this image so that they will have the normalized histogram p_z , which is given by:

$$p_z(z) = \begin{cases} 2z, & 0 \le z \le 1 \\ 0, & otherwise \end{cases}$$

You can assume continuous quantities. Please find the transform between r and z that will accomplish that.

2. (20 point) The purpose of this question is to perform histogram equalization to a given histogram and plot the result. Given the following histogram with their gray levels, and the corresponding number of pixels:

Grey level	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
# of pixels	1	9	15	45	93	50	23	12	7	1	0	0	0	0	0	0

- a) (5 point) Plot the histogram of the image given in the table above.
- b) (10 point) Let r_k be the grey level given in the table, perform histogram equalization by:
 - i) Calculate the grey level s_k in the image after histogram equalization from the table.
 - ii) Plot the probability density functions $p_r(r_k)$ and $p_s(s_k)$.
- c) (5 point) Plot the new histogram after performing the histogram equalization.
- 3. (4 **point**) Given two images f(x, y) and g(x, y) with their histograms h_f and h_g . Assuming that all the pixels of g(x, y) have the same constant intensity value of c(c>0) and both images have positive values. Let u_k be the intensity levels of the pixels formed by an element-wise

arithmetic operation applied to the two images: f(x, y) - g(x, y). Explain the relationship between the histograms of f(x, y) - g(x, y) and f(x, y).

4. (6 point) Find all the bit planes of the following 4-bit image:

Part II: Programming question

- 1. Download the two images from the assignment folder and perform the following operations using MATLAB or <u>any software library</u> you are familiar with. Please show your steps in the report.
- 1) (1 point) Write a program to read the images.
- 2) (3 point) Write a program to calculate the histograms of the images and display the histograms.
- 3) (2 point) Compare the calculated histograms obtained by using your own program with the ones using the **imhist** function in MATLAB (or an equivalent function in the software library of your choice).
- 4) (3 point) Write a program to do histogram equalization on these images.
- 5) (1 point) Compare the histogram-equalized images obtained by using your own program with the one by using histeq function in MATLAB (or an equivalent function in the software library of your choice).