

Mid-term programming assignments Parallel Programming

What to do

- It's possible to implement the assignments in pairs (only 9 credit course)
- Implement a programming assignment using one of the approaches presented (parallelization in OpenMP + vectorization). Implement a sequential and a parallel version.
- Write a tech report with performance analysis (speedup) and prepare a presentation
- Keep everything on a public Github/Bitbucket/Gitlab

Morphological image processing

- Image processing technique
 - Evaluate on different image sizes.
 - See https://en.wikipedia.org/wiki/Mathematical_morphology

Bigrams / trigrams

- Compute histograms of bigrams/trigrams on texts (eg. Wikipedia / Gutenberg project documents)
 - Consider bigrams/trigrams of characters and words
 - How to deal with tokens? And splitting tokens?
 - If needed re-use more and more times the collected data to create a large enough corpus

ANN retrieval

- Consider high dimensionality vectors (eg. 128)
- Given a specified query find the k nearest neighbors in a database of vectors
 - Can use LSH for approximate indices, eg. using mlpack o LSHkit
 - Can get sample datasets from http://corpus-texmex.irisa.fr

Password decryption

- Decrypt passwords encrypted using crypt (DES)
 - Consider 8 characters lengths in the set [a-zA-Z0-9./]
 - Library funds may be deprecated or not available. E.g.
 CUDA does not provide the crypt C-library function. Must use a special implementation (check Moodle).
 - It's a (slowed down) search problem.
 - Can choose to attack a specific password in a list (in different positions), or decrypt a full list of passwords (in this case reduce the search space)
 - Can consider only dates or common 8-chars passwords

Pattern recognition

- Search a given time series within a larger and longer set of time series
 - Get time series from existing machine learning datasets or generate using: https://github.com/cyrilou242/mockseries
 - Use SAD as the metric to evaluate the match

α_1	α_2	α_3	α_4	α_5	α_6	α ₇	α_8	α_9	α ₁₀	α_{11}	α ₁₂	α ₁₃	α ₁₄	α ₁₅	α ₁₆
β_1	β ₂	β ₃	β_4	β ₅	β ₆	β ₇	β ₈	β ₉	β ₁₀	β ₁₁	β ₁₂	β ₁₃	β ₁₄	β ₁₅	β_{16}

γ ₁	γ ₂	γ ₃	γ ₄	γ ₅	γ ₆
δ_1	δ_2	δ_3	δ_4	δ ₅	δ_6

|α1-γ1|+ ...+|α6-γ6|+ |β1-δ1|+...+|β6-δ6| $|\alpha 11 - \gamma 1| + ... + |\alpha 16 - \gamma 6| + |\beta 11 - \delta 1| + ... + |\beta 16 - \delta 6|$

k-means

- Implement a parallel version of k-means clustering
 - There's no need to implement K-means++ centroid assignments
 - Careful with experiment reproducibility: use fixed iterations or the same starting points
 - Feel free to chose to operate on 2D or larger dimensionality vectors

Mean shift clustering

- Implement a parallel version of mean-shift clustering.
 This clustering doesn't require to specify the number of desired clusters (it uses KDE, so needs a bandwidth parameter) but its complexity is O(N²)
- Can be used to segment images

Mean shift clustering

- Implement a parallel version of mean-shift clustering.
 This clustering doesn't require to specify the number of desired clusters (it uses KDE, so needs a bandwidth parameter) but its complexity is O(N²)
- Can be used to segment images

Renderer

- Implement a renderer that draws (semi) transparent circles (or other shapes). Circles have 3D coordinates and the order along Z axis matters for the correct rendering
 - A pixel belongs to a circle if its center is within the circle.

Random 10K

Random 100K

Image composition

- It's a variation of the Render assignment.
- Implement a parallel alpha composition of images
- Useful to create image augmentation to train Convolutional Neural Networks, e.g. for detection (see Blend augmentation in ImgAug library)
- Can parallelize applying the same object to different images, or in different positions in the same image

Boids

- Simulate the behavior of a flock / crowd.
 - Boids is an artificial life program which simulates the flocking behaviour of birds, and related group motion.

Check https://vanhunteradams.com/Pico/
 Animal Movement/Boids-algorithm.html

Boids

- Simulate the behavior of a flock / crowd.
 - Boids is an artificial life program which simulates the flocking behaviour of birds, and related group motion.

Check https://vanhunteradams.com/Pico/
 Animal Movement/Boids-algorithm.html

