Math 547: Mathematical Foundations of Statistical Learning Theory

Instructor: S. Minsker Scribe: S. Minsker

1.1 Adaboost continued

Last week, we started talking about Adaboost algorithm, due to R. Schapire and Y. Freund. It was originally motivated by the following question: given a class G that satisfies a weak learnability condition, can one find \hat{g} such that

$$P_n \mathbb{I}\left(y \neq \hat{g}(x)\right) \leq \varepsilon$$

for any $\varepsilon > 0$? For instance, such a \hat{g} can be found by "combining" the elements of G. We will derive Adaboost as a steepest descent method for a specific problem by asking:

Question. How can we replace minimization of the binary loss by a numerically feasible problem?

Note that since Y is a binary label we have that

$$\mathbb{P}(Y \neq g(X)) = \mathbb{P}\left(\underbrace{Yg(X)}_{\text{"the margin"}} \leq 0\right)$$

since when $Y \neq g(X)$, Y and g(X) have different signs. The product Yg(X) is called **the margin**.

Recall that

$$\mathbb{P}\left(Yg(X) \le 0\right) = \mathbb{E}\left[\mathbb{I}\left(\underbrace{Yg(X)}_{\ell(t)} \le 0\right)\right]$$

and now we want to bound this from above by some convex function $\ell(t)$, as shown in figure 1.1, namely

$$\mathbb{E}\left[\mathbb{I}\left(Yg(X) \leq 0\right)\right] \leq \mathbb{E}\left[\ell(Yg(X))\right].$$

Figure 1.1. The function Yg(X) being bound above by $\ell(t)$.

So let's choose a "nice" function, say $\ell(t) = e^{-t}$. Now, the key question here is: what are the properties of $\mathbb{E}[\exp(-Yg(X))]$?

Lemma 1. Let

$$\bar{g} = \underset{g: \mathbb{S} \to \{\pm 1\}}{\operatorname{argmin}} \mathbb{E} \left[\exp \left(-Yg(X) \right) \right].$$

Then, sign $\bar{g} = \operatorname{sign} \eta$.

Proof. By the law of total expectation we have

$$\mathbb{E}\left[\exp\left(-Yg(X)\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\exp\left(-Yg(X)\right)|X\right]\right].$$

Recall from the previous lecture that $\mathbb{P}(Y=1|X=x)=\frac{1+\eta(x)}{2}$ and $\mathbb{P}(Y=-1|X=x)=\frac{1-\eta(x)}{2}$. Thus,

$$\mathbb{E}\left[\exp\left(-Yg(X)\right)\right] = \int \left[\exp\left(-1 \cdot g(x)\right) \cdot \mathbb{P}\left(Y = 1 | X = x\right) + \exp\left(1 \cdot g(x)\right) \cdot \mathbb{P}\left(Y = -1 | X = x\right)\right] d\Pi(x)$$

$$= \int \underbrace{\left[\exp\left(-g(x)\right) \left(\frac{1 + \eta(x)}{2}\right) + \exp\left(g(x)\right) \left(\frac{1 - \eta(x)}{2}\right)\right]}_{} d\Pi(x)$$

Nonnegative expression, so it can be minimized pointwise

Let q(X) = t. We now want to minimize the following function h(t) with respect to $t \in \mathbb{R}$:

$$h(t) = e^{-t} \left(\frac{1 + \eta(x)}{2} \right) + e^{t} \left(\frac{1 - \eta(x)}{2} \right).$$

Taking the derivative and setting it equal to zero gives us

$$e^{t} \left(\frac{1 - \eta(x)}{2} \right) - e^{-t} \left(\frac{1 + \eta(x)}{2} \right) = 0$$

$$\Rightarrow e^{2t} = \frac{1 + \eta(x)}{1 - \eta(x)}$$

$$\Rightarrow t = \frac{1}{2} \log \left(\frac{1 + \eta(x)}{1 - \eta(x)} \right)$$

Therefore,

$$\bar{g}(x) = \frac{1}{2} \log \left(\frac{1 + \eta(x)}{1 - \eta(x)} \right).$$

Thus, we find that $\operatorname{sign} \bar{g} = \operatorname{sign} \eta$ since $\operatorname{sign} \bar{g}(x) = 1 \Rightarrow 1 + \eta(x) > 1 - \eta(x) \Rightarrow \eta(x) > 0$, and $\operatorname{sign} \bar{g}(x) = -1 \Rightarrow 1 + \eta(x) < 1 - \eta(x) \Rightarrow \eta(x) < 0$.

Conclusion. We have shown that sign \bar{g} is the Bayes classifier!

We now set our sights forward on to our next goal: consider the empirical risk minimization problem

$$\frac{1}{n} \sum_{j=1}^{n} \exp\left(-Y_j g(X_j)\right) \to \min_{g \in \mathbb{G}}$$
(1.1)

Note that this problem is convex with respect to g as long as the class \mathbb{G} is convex.

1.2 AdaBoost

Define

$$\hat{g}_n = \operatorname*{argmin}_{g \in \mathbb{G}} \frac{1}{n} \sum_{j=1}^n \exp\left(-Y_j g(X_j)\right), \tag{1.2}$$

where \mathbb{G} is a class of functions $S \mapsto \mathbb{R}$. If \mathbb{G} is convex, then \hat{g}_n is the solution of the convex minimization problem. Let \mathcal{F} be the "base class" (the collection of "weak learners"), and set

$$\mathbb{G} := \text{closed linear span of } \mathcal{F} = \overline{\left\{ \sum_{j=1}^k \alpha_j f_j : k \geq 1, \alpha_0, \dots, \alpha_k \in \mathbb{R}, f_0, \dots, f_k \in \mathcal{F} \right\}}.$$

Then \mathbb{G} is indeed convex and closed. Let's examine one step of the (version of) the steepest descent algorithm for (1.2). Assume that $g \in \mathbb{G}$ is our current guess. We will look for $\alpha \in \mathbb{R}$ and $f \in \mathcal{F}$ that minimize (at least approximately)

$$\frac{1}{n} \sum_{j=1}^{n} e^{-Y_j[g(X_j) + \alpha f(X_j)]} = \sum_{j=1}^{n} \frac{1}{n} e^{-Y_j g(X_j)} e^{-\alpha f(X_j) Y_j}.$$

Intuitively, such an f can be seen as an "approximate gradient". Define $w_j = \frac{1}{n}e^{-Y_jf(X_j)}$, $j = 1, \ldots, n$, to be the weights. Note that $w_j \geq 0$. Let $\tilde{w}_j = \frac{w_j}{\sum_{j=1}^n w_j}$, so that $\sum_{j=1}^n \tilde{w}_j = 1$. Our problem is then to minimize $\sum_{j=1}^n \tilde{w}_j e^{-\alpha f(X_j)Y_j}$ over $f \in \mathcal{F}$, $\alpha \in \mathbb{R}$. Since f takes only two values ± 1 , we have that

$$\sum_{j=1}^{n} \tilde{w}_{j} e^{-\alpha f(X_{j})Y_{j}} = \sum_{j=1}^{n} \tilde{w}_{j} e^{-\alpha} \mathbb{I}(Y_{j} = f(X_{j})) + \sum_{j=1}^{n} \tilde{w}_{j} e^{\alpha} \mathbb{I}(Y_{j} \neq f(X_{j})) \pm \sum_{j=1}^{n} \tilde{w}_{j} e^{-\alpha} \mathbb{I}(Y_{j} \neq f(X_{j}))$$

$$= e^{-\alpha} + (e^{\alpha} - e^{-\alpha}) \sum_{j=1}^{n} \tilde{w}_{j} \mathbb{I}(Y_{j} \neq f(X_{j})),$$

where $e_{n,\tilde{w}}(f) = \sum_{j=1}^{n} \tilde{w}_{j} \mathbb{I}(Y_{j} \neq f(X_{j}))$ is the "weighted" training error. To minimize the resulting expression, we proceed in two steps:

- 1. Minimize $\sum_{j=1}^{n} \tilde{w}_{j} \mathbb{I}(Y_{j} \neq f(X_{j}))$ with respect to f
- 2. Minimize $e^{-\alpha} + (e^{\alpha} e^{-\alpha})e_{n,\tilde{w}}(f)$ with respect to α .

To complete step 1, we need the following "weak learnability" assumption: for any nonnegative weights $\tilde{w}_1, \ldots, \tilde{w}_n$ with $\sum_{j=1}^n \tilde{w}_j = 1$, $\exists f \in \mathcal{F}$ such that $e_{n,\tilde{w}}(f) \leq \frac{1}{2}$. Weak learnability is implied by symmetry, meaning that $\mathcal{F} = -\mathcal{F}$; indeed, if $e_{n,\tilde{w}}(f) > \frac{1}{2}$ then $e_{n,\tilde{w}}(-f) < \frac{1}{2}$. For instance, the class of decision stumps is symmetric. We will assume access to a "black box" weak learning algorithm that takes $\tilde{w}_1, \ldots, \tilde{w}_n$ and $(X_1, Y_1), \ldots, (X_n, Y_n)$ as inputs and outputs some $f \in \mathcal{F}$ such that $e_{n,\tilde{w}}(f) \leq \frac{1}{2}$; an example of such an algorithm for the class of decision stumps was discussed before.

Assuming that $e_{n,\tilde{w}}(f) \leq \frac{1}{2}$, the minimum of $e^{-\alpha} + (e^{\alpha} - e^{-\alpha})e_{n,\tilde{w}}(f)$ occurs for

$$\hat{\alpha} = \frac{1}{2} \log \frac{1 - e_{n,\tilde{w}}(f)}{e_{n,\tilde{w}}(f)} \ge 0.$$

Adaboost is an algorithm that repeats the steps outlined above. We present it now.

Adaboost algorithm:

Initialize $w_j^{(0)} = \frac{1}{n}, j = 1, \dots, n$. For $t = 0, \dots, T$ do

- Call the weak learner (WL);
- Output f_t such that $e_{n,w^{(0)}}(f_t) \leq \frac{1}{2}$;
- Set $\alpha_t = \frac{1}{2} \log \frac{1 e_{n,w(t)}(f_t)}{e_{n,w(t)}(f_t)};$
- Update the weights $w_j^{(t+1)} = \frac{w_j^{(t)} \exp(-Y_j \alpha_t f_t(X_j))}{Z_t}$, $j = 1 \dots n$, where $Z_t = \sum_{j=1}^n w_j^{(t)} \exp(-Y_j \alpha_t f_t(\cdot))$ is the "normalizing factor."
- Output: $\widehat{g}_T(\cdot) = \operatorname{sign}\left(\sum_{j=1}^T \alpha_t f_t(\cdot)\right)$.

Exercise 1. If f_t classifies X_j correctly, then $w_j^{(t+1)} \leq w_j^{(t)}$. If f_t classifies X_j incorrectly, then $w_j^{(t+1)} \geq w_j^{(t)}$.

Theorem 1. Assume that at each step, WL outputs f_t such that

$$e_{n,w^{(t)}}(f_t) = \sum_{j=1}^{n} w_j^{(t)} I\{Y_j \neq f_t(X_j)\} \le \frac{1}{2} - \gamma,$$

for some $\gamma > 0$. Then the training error corresponding to the classifier \hat{g}_T satisfies

$$\frac{1}{n} \sum_{j=1}^{n} I\{Y_j \neq \widehat{g}_T(X_j)\} \leq \exp\left(-2T\gamma^2\right).$$

Proof.

- a) Note that $w_j^{(T+1)} = \frac{1}{n} \frac{e^{-Y_j \sum_{t=1}^T \alpha_t f_t(X_j)}}{\prod_{t=1}^T Z_t}$; this is easy to show by induction.
- b) We have that

$$\frac{1}{n} \sum_{j=1}^{n} I\{Y_j \neq \widehat{g}_T(X_j)\} = \frac{1}{n} \sum_{j=1}^{n} I\{Y_j \sum_{t=1}^{T} \alpha_t f_t(X_j) \leq 0\}$$

$$\leq \frac{1}{n} \sum_{j=1}^{n} e^{-Y_j \sum_{t=1}^{T} \alpha_t f_t(X_j)}$$

$$= \frac{1}{n} \sum_{j=1}^{n} w_j^{(T+1)} n \prod_{t=1}^{T} Z_t$$

$$= \prod_{t=1}^{T} Z_t.$$

c) For Z_t at each step

$$\begin{split} Z_t &= \sum_{j=1}^n w_j(t) \exp\left(-Y_j \alpha_t f_t(X_j)\right) \\ &= \sum_{j=1}^n w_j^{(t)} I\{Y_j = f_t(X_j)\} e^{-\alpha_t} + \sum_{j=1}^n w_j^{(t)} I\{Y_j \neq f_t(X_j)\} e^{\alpha_t} \pm \sum_{j=1}^n w_j I\{Y_j \neq f_t(X_j)\} e^{-\alpha_t} \\ &= e^{-\alpha_t} + (e^{\alpha_t} - e^{-\alpha_t}) \sum_{j=1}^n w_j^{(t)} I\{Y_j \neq f_t(X_j)\}, \end{split}$$

where the last multiplicand is $e_{n,w^{(t)}}(f_t)$. Recall that $\alpha_t = \frac{1}{2} \log \left(\frac{1 - e_{n,w^{(t)}}(f_t)}{e_{n,w^{(t)}}(f_t)} \right)$, we thus have that

$$Z_t = 2\sqrt{e_{n,w^{(t)}}(f_t)(1 - e_{n,w^{(t)}}(f_t))}.$$

d) The function $f(x) = x(1-x); x \in [0, \frac{1}{2} - \gamma]$ is maximized for $x = \frac{1}{2} - \gamma$, thus

$$\mathbb{Z}_t \le 2\sqrt{(1/2 - \gamma)(1/2 + \gamma)} \le \sqrt{1 - 4\gamma^2} \le \sqrt{e^{-4\gamma^2}} = e^{-2\gamma^2},$$

since $1 - x \le e^{-x}$ for $x \in [0, 1]$. Therefore

$$\frac{1}{n} \sum_{j=1}^{n} I\{Y_j \neq \widehat{g}_T(X_j)\} = \prod_{t=1}^{T} Z_t \le \exp(-2T\gamma^2).$$

In conclusion, the training error goes to 0 exponentially fast. However, the main object of interest is the $generalization\ error$

$$P(Y\widehat{g}_T(X)) \le 0.$$

Estimating the generalization error turns out to be a much harder problem that we will consider later in this course.