(一) 一些新变量的引入

变量名	变量含义
1	layers
n ^[l]	units in layer l

(二) 核对矩阵的维数

这个在前面其实已经做过了,这里再总结一下

矩阵符号	矩阵维数
X	(n ^[0] ,m)
$W^{[l]}$ and $dW^{[l]}$	(n ^[I] ,n ^[I-1])
b ^[I] and db ^[I]	(n ^[I] ,1)
$Z^{[l]}$ and $dZ^{[l]}$	(n ^[I] ,m)
A ^[I] and dA ^[I]	(n ^[I] ,m)
Υ	(n ^[the last I] ,m)

(三) 为什么使用深层表示

观点1

模拟大脑思考过程:由浅到深、由简到繁、层层深入

观点2

识别一个n维特征向量,使用单隐层神经网络需要的神经元个数,呈2ⁿ增长。

而使用多隐层神经网络所需神经元个数,则呈log n增长

(四) 搭建深层神经网络块

Forward and backward functions

Forward and backward functions

(五) 前向和反向传播的实现

 $\#\#Forward\ Propagation \#\#Z^{[l]} = W^{[1]}A^{[l-1]} + b^{[l]}A^{[l]} = g^{[l]}(Z^{[l]}) \#\#Backward\ Propagation \#\#dZ^{[l]} = dA^{[l]}*g^{[l]'}(Z^{[l]})dW^{[l]} = \frac{1}{m}dZ^{[l]}A^{[l]} + b^{[l]}A^{[l]} = g^{[l]}(Z^{[l]}) \#\#Backward\ Propagation \#\#dZ^{[l]} = dA^{[l]}*g^{[l]'}(Z^{[l]})dW^{[l]} = \frac{1}{m}dZ^{[l]}A^{[l]} + b^{[l]}A^{[l]} = g^{[l]}A^{[l]} + g^{[l]}A^{[l]} + g^{[l]}A^{[l]} = g^{[l]}A^{[l]} + g^{[l]}A^{[l]} + g^{[l]}A^{[l]} = g^{[l]}A^{[l]} + g^{[l]}$

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$\begin{split} dZ^{[L]} &= A^{[L]} - Y \\ dW^{[L]} &= \frac{1}{m} dZ^{[L]} A^{[L]^T} \\ db^{[L]} &= \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True) \\ dZ^{[L-1]} &= dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]}) \\ & \vdots \\ dZ^{[1]} &= dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]}) \\ dW^{[1]} &= \frac{1}{m} dZ^{[1]} A^{[1]^T} \\ db^{[1]} &= \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True) \end{split}$$

■ 网易云