线性代数 homework (第七周)

PB20000113 孔浩宇

April 9, 2022

1 周四

1.1 习题五

9. 判别下列线性方程组是否线性相关

$$\begin{array}{l}
(1) \begin{cases}
-x_1 + 2x_2 + 3 & x_3 = 3, \\
5x_1 & -x_3 = 5, \\
8x_1 - 6x_2 - 10x_3 = 7;
\end{array} \\
(2) \begin{cases}
2x_1 + 3x_2 + x_3 + 5x_4 = 2, \\
3x_1 + 2x_2 + 4x_3 + 2x_4 = 3, \\
x_1 + x_2 + 2x_3 + 4x_4 = 1.
\end{cases}$$

(1)
$$\diamondsuit$$

$$\begin{cases} l_1 &= -x_1 + 2x_2 + 3x_3 - 4, \\ l_2 &= 5x_1 - x_3 + 1, \\ l_3 &= 8x_1 - 6x_2 - 10x_3 + 13. \end{cases}$$
 (Bÿ $l_3 = \lambda_1 l_1 + \lambda_2 l_2$, y)

$$\begin{cases}
-\lambda_1 + 5\lambda_2 &= 8, \\
2\lambda_1 &= -6, \\
3\lambda_1 - \lambda_2 &= -10, \\
-4\lambda_1 + \lambda_2 &= 13.
\end{cases} \Rightarrow \begin{cases}
\lambda_1 &= -3, \\
\lambda_2 &= 1.
\end{cases} \Rightarrow l_3 = -3l_1 + l_2, 原方程组线性相关.$$

(2)
$$\diamondsuit$$

$$\begin{cases} l_1 = 2x_1 + 3x_2 + x_3 + 5x_4 - 2, \\ l_2 = 3x_1 + 2x_2 + 4x_3 + 2x_4 - 3, \text{ (Big } l_3 = \lambda_1 l_1 + \lambda_2 l_2, \text{ (I)} \\ l_3 = x_1 + x_2 + 2x_3 + 4x_4 - 1. \end{cases}$$

10. 判断下列向量组是否线性相关:

(2)
$$a_1 = (2, 1, 2, -4), a_2 = (1, 0, 5, 2), a_3 = (-1, 2, 0, 3).$$
 假设有 $a_3 = m \cdot a_1 + n \cdot a_2$, 则

(4)
$$a_1 = (1, -1, 0, 0), a_2 = (0, 1, -1, 0), a_3 = (0, 0, 1, -1), a_4 = (-1, 0, 0, 1).$$

假设有 $a_4 = m \cdot a_1 + n \cdot a_2 + p \cdot a_3$, 则

$$\begin{cases} m & = -1, \\ -m+n & = 0, \\ -n+p & = 0, \\ -p & = 1. \end{cases} \Rightarrow \begin{cases} m & = -1, \\ n & = -1, \\ p & = -1, \end{cases} \Rightarrow a_4 = -a_1 - a_2 - a_3,$$
 向量组线性相关.

- 12. 下列说法是否正确? 为什么?
 - (1) 错误. 例如取 $\alpha_1 = (1,1), \alpha_2 = (0,0), 有 \alpha_2 = 0 \cdot \alpha_1$, 线性相关. 但不存在 λ , 使得 $\alpha_1 = \lambda \cdot \alpha_2$.
 - (2) 错误. 例如取 $\alpha_1 = (1,0), \alpha_2 = (0,1), \alpha_3 = (1,1),$ 有 $\{\alpha_1,\alpha_2\}, \{\alpha_1,\alpha_3\}, \{\alpha_2,\alpha_3\}$ 线性无关,但有 $\alpha_3 = \alpha_1 + \alpha_2$.
 - (5) 错误. 例如取 s = 2, 则 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_1$ 线性相关.
 - (6) 正确.

若 s 为偶数,则 $(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) + \cdots + (\alpha_{s-1} + \alpha_s) = (\alpha_2 + \alpha_3) + (\alpha_4 + \alpha_5) + \cdots + (\alpha_s + \alpha_1)$, 线性相关;

若 s 为奇数, 取 $\alpha_{i+s} = \alpha_i$ $(1 \le i \le s)$. 则 $\alpha_i = \sum_{k=0}^{s-1} (-1)^k (\alpha_{i+k} + \alpha_{i+k+1})$, 两向量组等价.

即 rank $\{\alpha_1 + \alpha_2, \dots, \alpha_s + \alpha_1\} = \text{rank } \{\alpha_1, \dots, \alpha_s\} < s$, 即证线性相关.

15. 证明: 非零向量组 $\alpha_1, \ldots, \alpha_s$ 线性无关的充要条件是,每个 $\alpha_i (1 < i \le s)$ 都不能用它面前的向量线性表示。

Proof.

- (1) 必要性: 显然.
- (2) 充分性: 假设有非零向量组 $\alpha_1, \ldots, \alpha_s$ 每个 $\alpha_i (1 < i \le s)$ 都不能用它面前的向量线性表示, 且线性 相关.

由 $\alpha_1, \ldots, \alpha_s$ 线性相关, 得 $\exists \alpha_i = \sum_{i \neq i} \lambda_i \alpha_i$, 且 λ_i 不全为 0.

 $\mathfrak{P} k = \max\{j \mid \lambda_j \neq 0\},\$

- (a) k < i. 矛盾, 不存在这样的非零向量组.
- (b) k > i. 则有 $\alpha_k = \alpha_i \sum_{j \neq k, i} \alpha_j$, 矛盾, 不存在这样的非零向量组

即假设不成立, 充分性即证.

综上,即证非零向量组 α_1,\dots,α_s 线性无关的充要条件是,每个 $\alpha_i(1< i\leqslant s)$ 都不能用它面前的向量线性表示.

16. 设向量组 $\alpha_1, \ldots, \alpha_s$ 线性无关, $\beta = \lambda_1 \alpha_1 + \cdots + \lambda_s \alpha_s$. 如果 $\lambda_i \neq 0$, 则用 β 代替 α_i 后,向量组 $\alpha_1, \ldots, \alpha_{i-1}, \beta, \alpha_{i+1}, \ldots, \alpha_s$ 线性无关.

Proof.

$$\alpha_{j} = \begin{cases} \alpha_{i}, \\ \frac{1}{\lambda_{i}} \left(\beta - (\lambda_{1}\alpha_{1} + \dots + \lambda_{i-1}\alpha_{i-1} + \lambda_{i+1}\alpha_{i+1} + \dots + \lambda_{s}\alpha_{s}) \right). \end{cases}$$

$$\Rightarrow$$
 { $\alpha_1, \ldots, \alpha_s$ } 与 { $\alpha_1, \ldots, \alpha_{i-1}, \beta, \alpha_{i+1}, \ldots, \alpha_s$ } 等价;

$$\Rightarrow$$
rank $\{\alpha_1, \ldots, \alpha_s\} =$ rank $\{\alpha_1, \ldots, \alpha_{i-1}, \beta, \alpha_{i+1}, \ldots, \alpha_s\} = s;$

$$\Rightarrow \alpha_1, \ldots, \alpha_{i-1}, \beta, \alpha_{i+1}, \ldots, \alpha_s$$
线性无关.