Моделирование программного обеспечения управления умного дома на основе сетей Петри

Студент: Нгуен Фыок Санг

Руководитель: доцент Рудаков Игорь Владимирович

Цель и задачи работы

• Цель работы: Разработать метод моделирования программного обеспечения управления умного дома на основе сетей Петри.

Задачи:

- 1. Провести анализ характеристик сети Петри, характеристик компонентов системы умного дома;
- 2. Формулировать модели ПО на основе сетей Петри;
- 3. Разработать алгоритм управления умного дома;
- 4. Разработать структуру ПО метода;
- 5. Провести исследование метода.

Сеть Петри

• PN = <**P**, **T**, **I**, **O**, **M**₀>

 $P = \{p1, p2, ..., pn\}$ — конечные множества позиций;

 $T = \{t1, t2, ..., tm\}$ — конечные множества переходов;

I и O - множества входных и выходных функций $(T \to P)$

 \mathbf{M}_0 - начальная разметка \mathbf{H}_1

Расширения сетей Петри

Сети с приоритетом	каждому переходу t поставлено в соответствие некоторое число Prt, называемое приоритетом этого перехода. → разрешена конфликтная ситуация.
Ингибиторные сети	добавляются ингибиторные дуги → выполнять проверку на отсутствие меток в заданной позиции.
Цветные сети Петри	каждый токен имеет свое значение (цвет), \rightarrow дает возможность отличать одни метки от других.
Вложенные сети Петри	токены в позициях сети сами могут быть сетями Петри.

Анализ систем умного дома

Формализация подсистемы климат-контроля сетями Петри

очиститель воздуха

Формализация подсистемы климат-контроля

Вкл/выкл-регулятор

- +) простой
- -) большая ошибка
- -) больше энергии

ПИД-регулятор

- -) сложный
- +) небольшая ошибка
- +) меньше энергии

Формализация подсистемы освещения сетью Петри

После захода солнца включаются все лампы;

После 22:00 яркость лампы снижается на 50%;

После 0 часов выключаются все лампы

позиция Позиция

Р1 - включено

Р2 - выключено

Р3 - количество приращений

Р4 - количество декрементов

Переходы

Т1 - включить

Т2 - выключить

Т3 - увеличить яркость

Т4 - уменьшить яркость

Алгоритм функции безопасности

неизвестный пользователь C1 C2 начинает аутентификацию **C3** завершает аутентификацию **C4** аутентифицированный пользователь **C5** пользователь не прошел аутентификацию **C6** нарушитель **C7** количество попыток N1 пользователь приходит N2 процесс аутентификации N3 успешная аутентификация N4 аутентификация не удалась N5 повторить **N6** нарушитель

Формализация системы умного дома

Формализация пользователя

Структура разработанного ПО

Температура внутри комнатыи вне комнаты

Сравнение уровни работы с использованием двух регуляторов (ПИД и вкл./выкл.)

Временная мощность

Общая мощность

Заключение

- ✓ Выполнен анализ характеристик сети Петри, характеристик компонентов системы умного дома;
- ✓Формулированы модели ПО на основе сетей Петри;
- ✓ Разработан алгоритм управления умного дома;
- ✓ Разработана структура ПО метода;
- ✓Выполнено исследование метода.