1 Постановка цели и задачи

1.1 Описание предметной области

1.1.1 Основные понятия

Ключевой термин в рамках данной работы — информация. Информация представляет собой любые сведения независимо от формы их представления.

Информация обладает следующими свойствами:

- объективность. Информация в любом своём проявлении объективна,
 она отображает объективную действительность;
- достоверность. Информация достоверна, если она отражает истинное положение дел. Достоверная информация помогает принять нам правильное решение;
- полнота. Информацию можно назвать полной, если ее достаточно для понимания и принятия решений. Неполная информация может привести к ошибочному выводу или решению;
- точность определяется степенью ее близости к реальному состоянию объекта, процесса, явления;
- актуальность важность для настоящего времени, злободневность, насущность. Только вовремя полученная информация может быть полезна;
- полезность (ценность). Полезность может быть оценена применительно к нуждам конкретных ее потребителей и оценивается по тем задачам, которые можно решить с ее помощью.
- В силу того, что информация может обладать определенной ценностью, ее необходимо защищать. Согласно ФЗ от 27.07.2006 N 149-ФЗ (ред. от 18.03.2019) "Об информации, информационных технологиях и о защите

информации" защита информации представляет собой принятие правовых, организационных и технических мер, направленных на:

- обеспечение защиты информации от неправомерного доступа,
 уничтожения, модифицирования, блокирования, копирования,
 предоставления, распространения, а также от иных неправомерных действий
 в отношении такой информации;
 - соблюдение конфиденциальности информации ограниченного доступа;
 - реализацию права на доступ к информации.

Такая защита обеспечивается соблюдение трех принципов – доступности, целостности и конфиденциальности.

Конфиденциальность – свойство информации быть недоступной или закрытой для неавторизованных лиц, сущностей или процессов;

Целостность – свойство сохранения правильности и полноты активов;

Доступность – свойство быть доступным и готовым к использованию по запросу авторизованного субъекта.

К защищаемой информации относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями, устанавливаемыми собственником информации. Это, как правило, информация ограниченного доступа, содержащая сведения, отнесенные к государственной тайне, а также сведения конфиденциального характера.

Совокупность операций ввода, вывода, сбора, записи, хранения, регистрации, накопления, уничтожения, преобразования, приема, передачи и отображения информации часто называют обобщенным термином обработка информации.

С этим же понятием связаны информационные технологии – процессы, методы поиска, сбора, хранения, обработки, предоставления, распространения информации и способы осуществления таких процессов и методов.

1.1.2 Угрозы информации

Угроза информационной безопасности — совокупность условий и факторов, создающих опасность нарушения информационной безопасности.

Под угрозой (в общем) понимается потенциально возможное событие, действие (воздействие), процесс или явление, которые могут привести к нанесению ущерба чьим-либо интересам.

Под угрозой интересам субъектов информационных отношений понимают потенциально возможное событие, процесс или явление, которое посредством воздействия на информацию ИЛИ другие компоненты информационной системы может прямо или косвенно привести к нанесению ущерба интересам данных субъектов.

Носителями угроз безопасности информации являются источники угроз. В качестве источников угроз могут выступать как субъекты (личность), так и объективные проявления, например, конкуренты, преступники, коррупционеры, административно-управленческие органы. Источники угроз преследуют при этом следующие цели: ознакомление с охраняемыми сведениями, их модификация в корыстных целях и уничтожение для нанесения прямого материального ущерба.

Все источники угроз информационной безопасности можно разделить на три основные группы:

обусловленные действиями субъекта – субъекты, действия которых могут привести к нарушению безопасности информации, данные действия могут быть квалифицированы как умышленные или случайные преступления. Источники, действия которых могут привести к нарушению безопасности информации могут быть как внешними, так и внутренними. Данные источники можно спрогнозировать, и принять адекватные меры;

- обусловленные техническими средствами эти источники напрямую зависят от свойств техники и поэтому требуют особого внимания. Данные источники угроз информационной безопасности, также могут быть как внутренними, так и внешними;
- стихийные источники данная группа объединяет обстоятельства,
 составляющие непреодолимую силу (стихийные бедствия или другие обстоятельства, которые невозможно предусмотреть или предотвратить, или возможно предусмотреть, но невозможно предотвратить)

Попытка реализации угрозы называется атакой.

1.1.3 Защита информации от утечки по техническим каналам

К техническим средствам передачи, обработки, хранения и отображения информации ограниченного доступа (ТСПИ) относятся: технические средства автоматизированных систем управления, электронновычислительные машины и их отдельные элементы; средства изготовления и размножения документов; аппаратура звукоусиления, звукозаписи, звуковоспроизведения и синхронного перевода; системы внутреннего телевидения; системы видеозаписи и видеовоспроизведения; системы оперативно-командной связи; системы внутренней автоматической телефонной связи, включая и соединительные линии перечисленного выше оборудования и т.д. Данные технические средства и системы в ряде случаев именуются основными техническими средствами и системами (ОТСС).

Наряду с техническими средствами и системами, обрабатывающими информацию ограниченного доступа, на объектах ТСПИ также устанавливаются вспомогательные технические средства и системы (ВТСС), непосредственно не участвующие в ее обработке. К ним относятся: системы и средства городской автоматической телефонной связи; системы и средства передачи данных в системе радиосвязи; системы и средства охранной и

пожарной сигнализации; системы и средства оповещения и сигнализации; контрольно-измерительная аппаратура; системы и средства кондиционирования; системы и средства проводной радиотрансляционной сети и приема программ радиовещания и телевидения (абонентские громкоговорители, средства радиовещания; телевизоры и радиоприемники и т.д.); средства электронной оргтехники.

Совокупность объекта разведки (в данном случае - объекта ТСПИ), технического средства разведки, помощью которого добывается cинформация, физической среды, которой распространяется В информационный сигнал, называется техническим каналом утечки информации (рис. 1.1).

Рисунок 1.1 – Технический канал утечки информации

При работе технических средств возникают информативные электромагнитные излучения, а в соединительных линиях ВТСС и посторонних проводниках могут появляться наводки информационных сигналов. Поэтому, технические каналы утечки информации можно разделить на электромагнитные и электрические.

В данной работе основное внимание уделено именно электромагнитным каналам утечки конфиденциальной информации. К которым относятся возникающие вследствие движения электронов электрические и магнитные поля

1.1.4 Теория ПЭМИН

В электромагнитных каналах утечки информации носителем информации являются различного вида побочные электромагнитные излучения (ПЭМИ), возникающие при работе технических средств, а именно:

- побочные электромагнитные излучения, возникающие вследствие протекания по элементам ТСПИ и их соединительным линиям переменного электрического тока;
- побочные электромагнитные излучения на частотах работы высокочастотных генераторов, входящих в состав ТСПИ;
- побочные электромагнитные излучения, возникающие
 вследствие паразитной генерации в элементах ТСПИ.

Побочные электромагнитные излучения возникают при следующих режимах обработки информации средствами вычислительной техники:

- вывод информации на экран монитора;
- ввод данных с клавиатуры;
- запись информации на накопители на магнитных носителях;
- чтение информации с накопителей на магнитных носителях;
- передача данных в каналы связи;
- вывод данных на периферийные печатные устройства принтеры,
 плоттеры;
 - запись данных от сканера на магнитный носитель (ОЗУ).

Для перехвата побочных электромагнитных излучений ТСПИ "противником" могут использоваться как обычные средства радио-, радиотехнической разведки, так и специальные средства разведки, которые называются техническими средствами разведки побочных электромагнитных

излучений и наводок (ТСР ПЭМИН). Как правило, полагается, что ТСР ПЭМИН располагаются за пределами контролируемой зоны объекта.

Пространство вокруг ТСПИ, в пределах которого напряженность электромагнитного поля превышает допустимое (нормированное) значение, называется зоной 2 (R2). Фактически зона R2 — это зона, в пределах которой возможен перехват средством разведки побочных электромагнитных излучений ТСПИ с требуемым качеством.

Зона 2 для каждого ТСПИ определяется инструментально-расчетным методом при проведении специальных исследований технических средств на ПЭМИН и указывается в предписании на их эксплуатацию или сертификате соответствия.

Причинами возникновения электрических каналов утечки информации могут быть:

- гальванические связи соединительных линий ТСПИ с линиями ВТСС и посторонними проводниками;
- наводки побочных электромагнитных излучений ТСПИ на соединительные линии ВТСС и посторонние проводники;
- наводки побочных электромагнитных излучений ТСПИ на цепи электропитания и заземления ТСПИ;
- "просачивание" информационных сигналов в цепи электропитания и заземления ТСПИ;
 - "просачивание" информационных сигналов в цепи заземления ТСПИ.

Наводки (токи и напряжения) в токопроводящих элементах обусловлены электромагнитным излучением ТСПИ (в том числе, и их соединительными линиями), а также емкостными и индуктивными связями между ними. Соединительные линии ВТСС или посторонние проводники являются как бы случайными антеннами, при гальваническом подключении к которым средства разведки ПЭМИН возможен перехват наведенных в них информационных сигналов.

При распространении по случайной антенне наведенный информационный сигнал затухает. Коэффициент затухания информационного сигнала можно рассчитать, зная расстояние от места возможного подключения ТСР к случайной антенне до объекта ТСПИ и частоты побочных электромагнитных излучений.

1.1.5 Сущность утечки конфиденциальной информации по каналу ПЭМИН

В области технической защиты информации перехват ПЭМИН потенциальным злоумышленником представляется как перехват одного двоичного разряда. При этом считается, что ему доступна ПЭМИН в диапазоне частот от 10 Гц до 1000 МГц, что обуславливается частотой работы компьютера и возможностями технических средств разведки, доступных потенциальному нарушителю, учитывая его возможности в данной области. Потенциал возможностей нарушителя определяется уровнем секретности информации – конфиденциальная информация, не составляющая государственную тайну.

При измерениях ПЭМИН оперируют понятием "информативность" сигнала. Информативными сигналами в общем случае считаются сигналы, амплитуда которых претерпевает изменения в зависимости от передаваемой информации. То есть если сигнал цифровой — это переход от "0" к "1" и от "1" к "0". Допустим, по цепи пересылается последовательность битов в один байт — например, 11111111, с некоторой тактовой частотой и длительностью импульса. Метод кодирования — последовательный импульсный код, то есть единица кодируется наличием импульса, ноль - отсутствием. Пауза между импульсами равна длительности импульса.