Phynance

Zura Kakushadze§†1

§ Quantigic® Solutions LLC
1127 High Ridge Road #135, Stamford, CT 06905 ²
† Department of Physics, University of Connecticut
1 University Place, Stamford, CT 06901

(May 6, 2014)

Dedicated to the memory of my father Jemal Kakushadze, Ph.D. (1940-2005)

Abstract

These are the lecture notes for an advanced Ph.D. level course I taught in Spring'02 at the C.N. Yang Institute for Theoretical Physics at Stony Brook. The course primarily focused on an introduction to stochastic calculus and derivative pricing with various stochastic computations recast in the language of path integral, which is used in theoretical physics, hence "Phynance". I also included several "quiz" problems (with solutions) comprised of (pre-)interview questions quantitative finance job candidates were sometimes asked back in those days. The course to a certain extent follows an excellent book "Financial Calculus: An Introduction to Derivative Pricing" by M. Baxter and A. Rennie.

¹ Email: zura@quantigic.com. Emails pointing out any typos or other inadvertent errors that slipped through the cracks are more than welcome and will be greatly appreciated.

² DISCLAIMER: This address is used by the corresponding author for no purpose other than to indicate his professional affiliation as is customary in publications. In particular, the contents of this paper are not intended as an investment, legal, tax or any other such advice, and in no way represent views of Quantigic Solutions LLC, the website www.quantigic.com or any of their other affiliates.

Contents

1	Introduction: How Does "Bookie the Crookie" Make Money?	4
2	Bid, Ask and Spread	5
3	Stocks, Bonds and Free Markets	6
4	Arbitrage Pricing	11
5	Binomial Tree Model 5.1 Risk-neutral Measure	
6	Martingales6.1 The Tower Law6.2 Martingale Measure6.3 Binomial Representation Theorem6.4 Self-financing Hedging Strategies6.5 The Self-financing Property	17 18 19
7	Discrete vs. Continuous Models 7.1 Brownian Motion	21 22
8	Stochastic Calculus 8.1 Itô Calculus 8.2 Radon-Nikodym Process 8.3 Path Integral 8.4 Continuous Radon-Nikodym Process 8.5 Cameron-Martin-Girsanov Theorem	25 26 28
9	Continuous Martingales 9.1 Driftlessness	
	Continuous Hedging 10.1 Change of Measure in the General One-Stock Model 10.2 Terminal Value Pricing 10.3 A Different Formulation 10.4 An Instructive Example 10.5 The Heat Kernel Method	35 36 38 39 41
11	European Options: Call, Put and Binary	42

12	The Black-Scholes Model	43
	12.1 Call Option	45
	12.2 Put Option	
	12.3 Binary Option	46
13	Hedging in the Black-Scholes Model	46
	13.1 Call Option	47
	13.2 Put Option	47
	13.3 Binary Option	48
14	Price, Time and Volatility Dependence	49
	14.1 Call Option	50
	14.2 Put Option	51
	14.3 Binary Option	52
	14.4 American Options	53
15	Upper and Lower Bounds on Option Prices	53
	15.1 Early Exercise	54
16	Equities and Dividends	54
	16.1 An Example	56
	16.2 Periodic Dividends	56
17	Multiple Stock Models	57
	17.1 The Degenerate Case	60
	17.2 Arbitrage-free Complete Models	61
18	Numeraires	63
	18.1 Change of Numeraire	65
19	Foreign Exchange	66
20	The Interest Rate Market	67
	20.1 The Heath-Jarrow-Morton (HJM) Model	67
	20.2 Multi-factor HJM Models	70
21	Short-rate Models	71
	21.1 The Ho and Lee Model	73
	21.2 The Vasicek/Hull-White Model	74
	21.3 The Cox-Ingersoll-Ross Model	75
	21.4 The Black-Karasinski Model	76

22	Interest Rate Products	77
	22.1 Forward Measures	77
	22.2 Multiple Payment Contracts	78
	22.3 Bonds with Coupons	79
	22.4 Floating Rate Bonds	79
	22.5 Swaps	80
	22.6 Bond Options	81
	22.7 Bond Options in the Vasicek Model	83
	22.8 Options on Coupon Bonds	85
	22.9 Caps and Floors	85
	22.10Swaptions	86
23	The General Multi-factor Log-Normal Model	87
	23.1 The Brace-Gatarek-Musiela (BGM) Model	88
24	Foreign Currency Interest-rate Models	90
25	Quantos	90
	25.1 A Forward Quanto Contract	91
26	Optimal Hedge Ratio	91
Ac	cknowledgments	92
\mathbf{A}	Some Fun Questions	92
В	Quiz 1	92
\mathbf{C}	Quiz 2	97
Bi	bliography	110
${f L}_{f i}$	ist of Figures	
	1 Figure for Problem 3 in Quiz 1	94