VASHAKMADZE, B.A.

Effect of the time of nitrogen fertilizer application on grape yields. Soob. AN Gruz. SSR 27 no.5:547-552 N '61. (MIRA 15#1)

1. Akademii sel'skokhozyaystvennykh nauk Gruzinskoy SSR Institut sadovodstva, vinogradarstva i vinodeliya, Tbilisi. Predstavleno chlenom-korrespondentom AN Gruzinskoy SSR Sh.F. Chanishvili.

(Georgia--Grapes--Fertilizers and manures)

(Nitrogen fertilizers)

Wold wash to avoid sand sticking and crumbling. Lit. proizv.
no.4:44 Ap *62. (Molding (Founding))

s/0208/64/004/004/0623/0637 ACCESSION NR: AP4042751 Vashakmadze, T. S. (Tiflis) AUTHOR: Numerical solution of boundary value problems TITLE: Zhurnal vy*chislitel'noy matematiki i matematicheskoy fiziki, v. 4, no. 4, SOURCE: 1964, 623-637 TOPIC TAGS: boundary value problem, approximate solution, Lipschitz condition, existence, uniqueness, quadrature ABSTRACT: The author studies the problem of approximate solution of a boundary value problem of the form $y''(x) = f(x, y(x), y'(x)) \quad (0 < x < 1),$ $y(0) = \alpha, \quad y(1) = \beta.$ and the case where (1) has the form $y^{*}(x) = f(x, y(x)) \quad (0 < x < 1),$ where the function f(x,y) satisfies a Lipschitz condition with respect to y with some constant L < 8. This assumption guarantees existence and uniqueness of the Card 1/2

ACCESSION NR: AP4042751

solution of problem (3), (2). He assumes that

$$\frac{1}{4}(L+L')<1,$$

(4)

where

$$L = \max_{x} |f_{y}|, \qquad L' = \max_{x} |f_{y'}| \quad (-\infty < y, y' < \infty)$$
 (5)

(4) is a sufficient condition for unique solvability of problem (1)-(2). In the case of (2) convergence of the computational process has second order with respect to a step of the grid. Computational schemes are constructed on the basis of new quadrature formulas for obtaining an approximate solution of (1)-(2) and the derivative of this solution. These functions converge, respectively, to the precise solution of (1)-(2) and its derivative. If $y(x) \in C^{(p+1)}[0,1]$ then convergence has (p-1)-st order of smallness with respect to a step of the grid. "The author uses this opportunity to express his gratitude to Sh. Ye. Mikeladze for his many valuable remarks." Orig. art. has: 57 formulas.

ASSOCIATION: none

SUBMITTED: 280ot63

ENCL: 00

SUB CODE: MA

NO REF SOV: 002

OTHER: 004

Card 2/2

ACCESSION NR: AP4042887

8/0251/64/035/001/0029/0036

AUTHOR: Vashakmadze, T.S.

TITLE: Multiple-point linear boundary problems

SOURCE: AN GruzSSR. Soobshcheniya, v. 35, no. 1, 1964, 29-36

TOPIC TAGS: differential equation, boundary problem, boundary value problem, linear differential equation, multiple point problem

ABSTRACT: The paper investigates multiple-point boundary value problems of the form

$$L[y] \equiv y^{(n)}(x) + X_1(x) y^{(n-1)}(x) + \dots + X_n(x) y = X_0(x) \quad (0 < x < l),$$

$$L_i[y] \equiv \sum_{s=1}^m \sum_{j=0}^{n-1} a_i^{(s)} y^{(j-1)}(x_s) = \gamma_i \quad (i = 1, 2, ..., n),$$
(1)

 $0 < x_1 < x_2 < \cdots < x_{m-1} < x_m < l.$

Card 1/2

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001858720007-3

ACCESSION NR: AP40428

The first section specializes the boundary conditions to

$$y(x_i) = \gamma_i (i - i, 2, ..., y_i). \tag{2}$$

which reduces the system to a de la Vallee-Poisson problem. A theorem is given which proves that if the coefficients Xi(x) ($i=1,\dots n$) are continuous for $0 \le x \le 1$, there is an $h_0 > 0$ such that the equations with the above special conditions have a unique solution in the interval (0, $2h_0 \le 1$). Another theorem generalizes this result by proving the same assertion for a system satisfying

$$\gamma^{(j-1)}(x_i) = \gamma_{ij} \left(i = 1, 2, ..., \rho; \ j = 1, 2, ..., n_i, \sum_{i=1}^{p} n_i = n \right) \quad L[y] = \chi_o(x), \tag{3}$$

The second section of the paper concerns itself with the approximation of solutions to systems of equations of the above form. Orig. art. has: 23 formulas.

ASSOCIATION: Tbilisskiy matematicheskiy institut im. A. M. Razmadze, Akademiya nauk Gruzinskoy SSR (Tiflis Institute of Mathematics, Academy of Sciences of the Georgian SSR)

SUBMITTED: 15Jan64

ENCL: 00

SUB CODE: MA

NO REF SOV: 006

OTHER: 003

Card 2/2

unical contrata de la contrata del contrata del contrata de la contrata del la contrata de la contrata del la contrata de la c IJP(c) E 28158-66 EWT(d) UR/0376/66/002/005/0614/0618 SOURCE CODE: ACC NR: AP6017848 8 Vashakmadze, T. S. AUTHOR: (Institut matematiki AN GruzSSR) Institute of Mathematics, AN GruzSSR ORG: TITLE: A generalized finite-difference method SOURCE: Differentsial nyye uravneniya, v. 2, no. 5, 1966, 614-618 TOPIC TAGS: numerical analysis, boundary value problem, finite difference method ABSTRACT: A new finite-difference method for solving the boundaryvalue problem $y''(x) - q(x)y(x) = f(x) \quad (0 \le x \le 1),$ (1) $y(0) = \alpha, \quad y(1) = \beta.$ (2) Under the assumption that $q(x) \ge 0$ and f(x) belong to the class CP-1(0, 1), the computing schemes for numerical solution of is presented. the boundary-value problem are constructed by utilizing the formulas derived by the author (Zhurnal vychislitel'noy matematiki i matemati-UDC: 517.949.2 1/2

CONTRA	: USSR
CY COOLEY	: Cultivated Plants - Subtropical. Tropical. M
	: FEMBIOL, Fo.14, 1958, Mr.63561
AUTHER	: Vadaenkoriya, P. G., Vashalomidze, A. M.
INGT.	: All-Union Institute of Tea and Subtropical Grops.
TITLE	: Repair of Tea Plantations with Saplings Dressed with Moss.
i Pota	: Syul, Vses, ni. in-ta chayo i subtrop, kalitur, 1956,
	No. 4, 32-34
A10. 200	: Results are recorded of the experiment of raising tea
	planting material in a short period by means of sowing tea seeds in a lump and wrapping it with moss. The natri-
	ent soils was prepared as follows: I part of turf soil,
1	1 part of rotted peat and 1 part of manure; P and K were
	added; the mixture was moistened and dressed with mess
	H. M. Myazdrikova
1	
•	
Card: 1/1	
Sitta of California	ľ

VASHALOMIDZE, A.F., 1ngh.; AYOLLO, E.S., ingh.

Apparatus for field tests. Hekh. i elek. sets. sel'khes. 17 ne.2:
46-48 '59.

1.Grusinskaya mashineispytatel'naya stantsiya.

(Agricultural machinery--Testing) (Tractors--Testing)

VUL'F, N.N.; VASHANTSEV, A.A.

Use of neuroplegics in local anesthesia. Vest.khir. 89 no.8:64-67 Ag '62. (MIRA 15:10)

1. Iz gospital'noy khirurgicheskoy kliniki (zav. - prof. V.P. Radushkevich) Voronezhskogo meditsinskogo instituta.

(LOCAL ANESTHESIA) (AUTONOMIC DRUGS)

VASHANTSEV, A.A.

Functional state of external respiration in mitral stenosis.

Sov. med. 26 no.4:13-15 Ap '63. (MIRA 17:2)

1. Iz kliniki gospital'nov khirurgii (zav. - prof. V.P. Radushkevich) Voronezhskogo meditsinskogo instituta.

RADUSHKEVICH, V.P., prof.; KOSONOGOV, L.F.; BONDARENKO, V.V.; VASHANTSEV, A.A.; SLIVKIN, A.V.; STARYKH, V.S.

Use of new Soviet ganglionic blocking preparations in surgical practice. Khirurgiia 39 no.7:13-19 Jl:63 (MIRA 16:12)

1. Iz kafedry gospital noy khirurgii (zav. - prof. V.P.Radushke-vich) Voronezhskogo meditsinskogo instituta.

KOSONCOW, 1.F.: Valuation, a.f.; Elemen, G.A.; Returner, V.V.

User of ministering chargery, box. Rev. M. markings., g. F. 164.

(Nichtaria)

1. Kafedra gospitaling khirungii (zav. - prof. V.P. Padnakkevion; Varanezhekoro ministerinskero in tirina.

VASHANTSEV, A.A. (Voronezh, ul. Oborony revolyutati, 68); KLEYNER, G.A.

Spirography as a criterion of the restoration of respiration in residual curarization. Vest. khir. no.7:95-97 Jl *64. (MIRA 18:4)

1. Iz gospital'noy khirurgicheskoy kliniki (zav. - prof. V.P. Radushkevich) Voronezhskogo meditsinskego instituta.

AU PHOR:

VASHARIN, A.A.

20-5-3/54

TITLE:

Boundary Properties of the Functions Which Possess a Finite Dirichlet Integral With Weight (Granichnyye svoystva funktsiy,

imeyushchikh konechnyy integral Dirikhle s vesom)

PERIODICAL:

ABSTRACT:

Doklady Akademii Nauk, 1957, Vol. 117, Nr 5, pp. 742-744 (USSR) Let in Ω , which is limited by Γ , be defined a 2k-times con-

tinuously differentiable function $\sigma'(x,y)$ with

 $c_{1}(x,y) \leq c'(x,y) \leq c_{2}(x,y)$,

where g(x,y) denotes the (normal) distance of the point (x,y) from Γ and c_1 and c_2 are two positive constants independent of x,y . Let $f(x,y) \in W_{2(x)}^{k}$, if f(x,y) possesses on Ω

generalized derivatives up to the k-th order and if

$$\mathcal{G}_{\mathcal{L}}^{k}(\mathbf{f}) = \left[\left[\sum_{\beta_{1} + \beta_{2} = k} \frac{k!}{\beta_{1}! \beta_{2}!} \left(\frac{k_{\mathbf{f}}}{x_{1} y_{2}} \right)^{2} \right] \mathcal{G}^{\mathcal{L}} dx dy < \infty \right],$$

 $0 \leqslant \omega < 1$, $k = 1, 2, \dots$ Let Ω_h be the set of those points

Card 1/4

Boundary Properties of the Functions Which Possess a Finite 20-5-3/54 Dirichlet Integral With Weight

of Ω , the distance of which from Γ is not smaller than h. Let Γ_h be the boundary of Ω_h . Let $f|_{\Gamma}=\psi(s)$ denote the function for which the convergence in the mean $f|_{\Gamma_h}=0$

= \P_h (s) \to \P (s) takes place. The $2\sqrt{r}$ -periodic function \P (s) is assumed to belong to the class A_1 (1 an integer), if it possesses 1-1 absolutely continuous derivatives, if the 1-th derivative belongs to L_2 and satisfies the condition

$$I_{h}\left[\gamma^{1}(s)\right] = \int_{0}^{s} \int_{0}^{2^{2}} \frac{\gamma^{1}(s+h) - \gamma^{1}(s) \mid 2}{h^{2-4}} \operatorname{dsdh} < \infty$$

for arbitrary $\delta > 0$.

Let $\frac{\delta^{\lambda} f}{\delta n^{\lambda}} \Big|_{\Gamma} = \psi_{\lambda}(s)$, $(\lambda = 0,1,..., k-1)$, where n is the inner

normal of T.

Card 2/4

。可能與實施

Boundary Properties of the Functions Which Possess a Finite 20-5-3/54 Dirichlet Integral With Weight

A. From
$$f \in W_{2(L)}^{k}$$
 it follows: $f_{\lambda}(s) \in A_{k-\lambda-1}^{\prime}$

B. If on f a system of functions $\varphi_{\lambda}(s) \in \mathbb{A}^d_{k-\lambda-1}$ is given, then on Ω there can be constructed an $f(x,y) \in \mathcal{W}^k_{2(d)}$ for which

it is
$$\frac{\langle \lambda_f \rangle}{\langle \lambda_n \rangle} = \langle \gamma_\lambda \rangle$$
.

Theorem 2: The functions $\gamma_{\lambda}(s)$ are assumed to satisfy the conditions of theorem 1. Then in Ω there exists a unique function u(x,y) belonging to $W_{2(\lambda)}^{k}$ which satisfies the differential equation

$$L(n) = \sum_{\beta_1 + \beta_2 = k} \frac{k!}{\beta_1! \beta_2!} \frac{\delta^k}{\delta_x^{\beta_1} \delta_y^{\beta_2}} \left(\frac{\delta^k n}{\delta_x^{\beta_1} \delta_y^{\beta_2}} \right) = 0$$

Card 3/4

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001858720007-3

ACCESSORS OF THE ENGLISHED

Boundary Properties of the Functions Which Possess a Finite 20-5-3/54 Dirichlet Integral With Weight

and the condition $\frac{\partial^{\lambda} u}{\int_{\pi} \lambda^{\lambda} / \Gamma} = \mathcal{L}_{\lambda}(u)$. 7 Soviet references are

quoted.

ASSOCIATION: Mathematical Institute imeni V.A. Steklov, Academy of Sciences

USSR (Matematicheskiy institut imeni V.A. Steklova, Akademii

nauk SSSR)

By M.A. lawrent yev, Academician, 17 May 1957 PRESENTED:

SUBMITTED: 16 May 1957

AVAILABLE: Library of Congress

Card 4/4

100 TO 10		
	VASHARIN, A.A., Cand Phys-Math Sci-(diss) Engranger properties of functions class and their applies tion to the solution of	
	one marginal problem of mathematical physics. Moscow, 1958. 6 pp, (Acad Sci USSR. Mathematical phy	
	JANA 1 2 martines	
	3	

16(1) 507/32-23-3-5/6 AUTHOR: Vasharin, A.A. Boundary Properties of Functions of the Class W2(&) and Their TITLE: Application for the Solution of a Boundary Value Problem of Mathematical Physics PERIODICAL: Izvestiya Akademii nauk SSSR, Seriya matematicheskaya, 1959, Vol 23, Nr 3, pp 421-454 (USSR) The author considers functions of the class $\mathbb{W}_{2}^{r}(\alpha)$; they are ABSTRACT: defined on a bounded domain Ω of the R_n and there they have generalized (in the sense of S.L.Sobolev) derivatives of first order summable in the square and with a certain weight on Qu; the weight function is characterized by the fact that for the approach of the point $(x_1, x_2, ..., x_n)$ to the boundary Γ of Ω it decreases as the α -th (0 $\leq \alpha < 1$) power of the distance of the point from the boundary. It is assumed that I can be described by curvilinear coordinates (u_1, \dots, u_{n-1}) in a sufficiently small neighborhood of Q∈ Γ and that the surface normals intersect outside of a certain neighborhood of Γ . Thus every point can be fixed by the coordinates (u1,...,un-1) and by the distance h Card 1/3

4

Boundary Properties of Functions of the Class $W_2^*(r)$ 507/38-23-3-5/6 and Their Application for the Solution of a Boundary Value Problem of Mathematical Physics

measured on the normal. Let a function φ defined on Γ belong to the class $A_0^{\alpha}(\Gamma)$ if it belongs to $L_2(\Gamma)$ and if everywhere on Γ it satisfies the local condition

 $\int_{0}^{\delta} \int_{S_{\epsilon}} \frac{|\varphi(u_{1},...,u_{i-1},u_{i}+h,u_{i+1},...,u_{n-1})-\varphi(u_{1},...,u_{n-1})|^{2}}{h^{2-\alpha \epsilon}} du dh < \infty;$ $du = du_{1}...du_{n-1}, i = 1,2,...,n-1; S_{\epsilon} is the set of those points$ $described locally by u_{i}, the distance of which from the boundary$ of the considered segment of Γ is not smaller than ϵ ; $\delta = \delta(\epsilon)$ is a certain sufficiently small positive number.

Theorem: If a function f(x,...,x) defined on Ω belongs to the

Theorem: If a function $f(x_1,...,x_n)$ defined on Ω belongs to the class $W_2(\alpha)$, then $f|_{\Gamma} = \Psi$ understood in the sense of

 $\lim_{h\to 0} (x_1(u_1,...,u_{n-1},h),...x_n(u_1,...,u_{n-1},h)) = \varphi(u_1,...,u_{n-1})$

Card 2/3

Boundary Properties of Functions of the Class $W_2^*(\infty)$ SOV/38-23-3-5/ ϵ and Their Application for the Solution of a Boundary Value Problem of Mathematical Physics

belongs to the class $A_{\mathcal{O}}^{cl}(\Gamma)$.

Theorem: If ψ belongs to $A_0^{\bullet}(\Gamma)$, then it can be continued from Γ on Ω so that the continued function f belongs to $W_2^{\bullet}(\sigma)$ and $f|_{\Omega} = \psi$.

12 Theorems and lemmas are formulated.
The author mentions Ul'yanov, V.M.Babich, L.N.Slobodetskiy, L.D.Kudryavtsev, M.V.Keldysh, M.I.Vishik, V.K.Zakharov, S.H. Nikol'skiy.
There are 16 Soviet references.

PRESENTED: by S.L. Sobolev, Academician

SUBMITTED: June 5, 1958

Card 3/3

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

21700

s/020/61/137/005/003/026 c111/c222

16.3500 AUTHORS:

Vasharin, A.A., and Lizorkin, P.I.

TITLE:

Certain boundary value problems for elliptic equations with a strong degeneration at the boundary .

PERIODICAL:

Akademiya nauk SSSR.Doklady, vol.137,no.5,1961,1015-1018

TEXT: Let G be a simply connected region with a piecewise smooth boundary which contains the piece of the Ox-axis. In G the authors consider

 $L(u) = \frac{\partial}{\partial x} \left[G^{k}(x,y) \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial y} \left[F^{k}(x,y) \frac{\partial u}{\partial y} \right] = 0,$

where 5(x,y) is sufficiently smooth and positive, where $c_1y < 5(x,y) < c_2y$, $c_1,c_2 > 0$. The degeneration on t_0 is called strong for $k \ge 1$ and weak for k < 1; k = 1 is called the critical case. Let k > 1.

Problem A: Determine a solution of (2) two times continuously differentiable in G which in the mean on C assumes the values

in G which in the mean on
$$\Gamma$$
 assumes the values

$$\lim_{(x,y)\to M\in\Gamma} \{ 6^{k-1}(x,y)u(x,y) \} = \gamma(M). \tag{3}$$

Card 1/4

1.3.其智慧数字()

11,70

\$/020/61/137/005/003/026 C111/C222

Certain boundary value problems ...

Theorem 1: Let Γ does not touch the axis 0x and let it have no degenerated corners. If 1 < k < 2, if G(x,y) is 4 times boundedly differentiable and $\Delta G > 0$ then the problem A has a unique solution if the postulates

a)
$$\varphi(M) \in L_2(\Gamma)$$
; b) $\int_{\Gamma} ds_M \int_{\Gamma} \frac{|\varrho(M) - \varrho(Q)|^2}{|MQ|^2} \omega^{2-k}(M,Q) ds_Q < \infty$ (4)

are satisfied, where $\omega(M,Q)$ is the distance |M| between the point: k and Q if at least one of the points lies on Γ_Q and in the other case it

is equal to the smaller of the distances of these points from the Ox-axis. The restriction $k \le 2$ is caused by the proof. As an example the authors consider the problem A for

$$\frac{\partial}{\partial x} \left[y^k \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial y} \left[y^k \frac{\partial u}{\partial y} \right] = 0 \tag{1}$$

in the halfplane y>0. Putting $y^{k-1}u=v$ then one obtains the equation

$$\frac{\Im}{\Im x} \left(y^{2-k} \frac{\Im x}{\Im y} \right) + \frac{\Im}{\Im} \left(y^{2-k} \frac{\Im y}{\Im y} \right) = 0$$

Card 2/4

21960

\$/020/61/137/005/003/026 C111/C222

Certain boundary value problems ...

and the solution is given by

$$u_{o}(x,y) = \frac{1}{\sqrt{\pi}} \frac{\Gamma(k/2)}{\Gamma((k-1)/2)} \int_{-\infty}^{\infty} \frac{\Psi(\xi) d\xi}{\left[(x-\xi)^{2}+y^{2}\right]^{k/2}}$$
(6)

for all k > 1.

Let k=1 and for reasons of simplicity $6 \equiv y$. Problem B: Find in G a two times continuously differentiable solution of

 $L_1(u) = y(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) + \frac{\partial u}{\partial y} = 0$

which on the boundary in the mean assumes the values

$$\left[\frac{1}{\ln \frac{\underline{\mathbf{w}}}{y}} \ \mathbf{u}(\mathbf{x}, \mathbf{y})\right]_{(\mathbf{x}, \mathbf{y}) \to \mathbf{P} \in \Gamma} = \varphi(\mathbf{P})$$

and which possesses the finite integral

Card 3/4

Certain boundary value problems ...

$$\iint_{G} y \ln^{2} \frac{M}{y} \left\{ \left[\frac{\partial}{\partial x} \left(\frac{1}{\ln \frac{M}{y}} u \right) \right]^{2} + \left[\frac{\partial}{\partial y} \left(\frac{1}{\ln \frac{M}{y}} u \right) \right]^{2} \right\} dx dy,$$

where M = const is greater than the diameter of the region. Let G satisfy the postulates of theorem 1 and let $\Theta(P,Q)$ have the

Theorem 2: In order that problem B has a solution it is necessary and sufficient that $\varphi(P)$ satisfies the conditions

a)
$$\varphi(P) \in L_2(\Gamma)$$
; b) $\int_{\Gamma} ds_P \int_{\Gamma} \frac{|\varphi(P) - \varphi(Q)|^2}{|PQ|^2} \omega(P,Q) ds_Q < \infty$. (7)

There are 6 Soviet-bloc and 1 non-Soviet-bloc references.

ASSOCIATION: Moskovskiy inzhenerno-fizicheskiy institut (Moscow Engineering-Physical Institute)

PRESENTED: November 25, 1960, by S.L.Sobolev, Academician

SUBMITTED: November 11, 1960

Card 4/4

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001858720007-3

ACCESSION NR: AP5004999		S/0186761	006\00 tr\ 0718tr\07180	
AUTan: Vasharosn, L.; Fila	College of the same	yanov, Ar.	S_{-}	
reaction yields of 3137 'n,	emilatr o His m	in chlor	Methanes, Festira	? of the
war in the state of the state				
TORIC TAUS: chloring, bromin	ne. isotope math	unne, atom c		
TORIC TAUS: chloring, bromin	ne. isotope math	wane, atom, cavior of Cl3	themical reaction 8 recoil stoms	
TOTIC TAUS: chloring, bromin	ne. isotope math	wane, atom, cavior of Cl3	themical reaction 8 recoil stoms	
TORIC TAUS: chloring, bromin	ne. isotope math	avior of Cl3	themical reaction 8 recoil stong	
TOFIC TAUS: chloring, broming Abstract: It is shown that produced in the reaction C:3	ne. isotope math	avior of Cl3	themical reaction 8 recoil stons	

VASHATKO, Iosif [Vasatko, Josef], doktor-inshener, professor.

Seventieth birthday of P.M. Silin. Sakh. prom. 31 no.5:15-16 My
'57. (MIRA 10:6)

1. Akademik Ch. A. 2. Akademik SAN. 3. Slovatskaya vysshey tekhnicheskaya shkola. 4. Direktor Khimicheskogo instituta Akademii nauk v Bratislve. (Silin, Pavel Mikhailovich, 1887-)

CZECHOSLOVAKIA / Chemical Technology. Carbohydrates and their Processing.

H-26

Abs Jour : Rof. Zhur-Khimiya, No 12, 1958, 41223

Author : Vashatko, Kon.

Inst : Not given

Tithe : Physical-chemical study of boot juice refining. IV.

Dotormination of the electrokinetical potential 5 of
CaCO3 particles obtained from the carbonation of sugarlime solutions by carbon diexide.

Orig Pub : Chom. zvosti, 1956, 10, No 7, 405-415; Listy cukrovarn., 1957, 73, No 4, 9195.

Abstract: A description is given of the experimental part, and of the results obtained from the study of the electrokinetic potential ξ (at 20°C) of C_0CO_3 particles in carbonated sugar-lime

Card 1/2

24

GANKEVICH, V.: VASHATOVSKIY, V. (Leningrad)

A creative laboratory. Okhr. truda i sots. strakh. 3 no.8:46-49 Ag
'60.

(MERA 13:9)

(Leningrad--Machinery industry-Hygienic aspects)

COUNTRY : USSR M-6 CATEGORY ABS. JOUR. : RZBiol., No. /9, 1959, No. 87054 AUTHOR Vashchenko, A. INST. Moscow Agricultural Academy Imeni K. A. Single and Mixed Sowing of Annual TITLE Forage Grasses. ORIG. PUB. : Sb. stud. nauchno-issled. rabot. Mosk. s .kh. akad. im. K.A. Timiryszeva, 1957 (1958) ABSTRACT: In 1953-1954, at the experiment station of the Academy, studies were conducted on growing of annual ryegrass, sowed singly and in admixture with oats and vetch. After the first harvesting the cats produced no aftermath. With 2 harvesting the highest yields of green crop (292 centners per hectare) were obtained from sowings of the mixture of three components, next best were ryegrass with oats (271.3 centners/hectare) and ryegrass with vetch (258.3 centners/hectare). In the last mentioned case the feed value of the green crop is higher, since the second component is vetch. -- Ye. A. Okorokova. CARD:/// Timiryazev.

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001858720007-3

SOV/137-58-9-20061

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 9, p 279 (USSR

Drits, M.Ye., Sviderskaya, Z.A., Kadaner, E.S. AUTHORS:

Vashchenko, A.A.

Magnesium Alloys for Work at Elevated Temperatures (Mag-TITLE:

niyevyye splavy dlya raboty pri povyshennykh temperaturakh;

V sb.: Legkiye splavy. Nr 1. Moscow, 1958, pp 147-156 PERIODICAL:

MA9, a new Mg alloy (A) based on the Mg-Mn system. plus ABSTRACT:

small additions of other elements, is developed. In heat resistance when cast, MA9 is superior to all the standard foundry A and the majority of A containing the rare elements. At room temperature, the mechanical properties of the cast A

are below standard: σ_b 14-16 kg/mm², δ 4-6%. In the extruded condition, MA9 combines superior mechanical properties at room temperature: $\sigma_b 30-32 \text{ kg/mm}^2$, $\sigma_s 28-29$

kg/mm², 8 7-8%, with adequate heat resistance

 σ_{100}^{200} 7-9 kg/mm² and σ_{100}^{250} 5 kg/mm². Pilot-plant tests of

the properties of MA9 with semifinished products from Card 1/2

SOV/137-58-9-20061

Magnesium Alloys for Work at Elevated Temperatures

continuous-casting ingots show the minimum longitudinal values of σ_h for sheet 0.8-3.0 mm thick, and for extruded sections and rods, to be 26 kg/mm². The heat-resistance characteristics obtained at 200°C with specimens of extruded semifinished products are: σ_{100} 7-8 kg/mm²,

 $\sigma_{0.2/100}$ 2.9 kg/mm², and at 250° σ_{100} 5 kg/mm², and $\sigma_{0.2/100}$ 1.7 kg/mm². Comparison of the properties of MA9 A with those of standard A (MA2, MA5, MA8, VM17, VM65-1) shows that at room temperature MA9 has higher strength characteristics than MAZ, MA8, and VM17, and that at above 1500 the strength of MA9 exceeds those of the above-indicated A. The advantage of MA9 alloy is manifested particularly in terms of 150° is 65% higher than that of MA8. MA9 A contains no rare elements or elements in short supply, does not need heat treatment, is not subject to corrosion cracking under stress, and undergoes less oxidation in the molten state than do other Mg alloys. A characteristic peculiarity of MA9 A 1s the small level of softening which it undergoes after annealing. The good engineering properties of MA9 when subjected to pressworking make possible its use for a wide variety of semifinished products. The satisfactory mechanical properties of MA9 at room and elevated temperatures make it suitable for a wider range of uses in aircraft structures than other Mg A. Card 2/2 1. Magnesium alloys-Thermodynamic properties 2. Heat resistant alloys-

ment.

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

VASHCHENKO, A. A, DRITS, M. Ye.: SVIDERSKAYA, Z. A.; KADANER, E. S.:

"Magnesium Alloys for Performance at Elevated Temperatures"

Light Alloys, no. 1: Physical Metallurgy, Heat Treatment, Genting, and Forming: Principal Reports of the Conference, Moscow, Izd-vo All SSSR, 1950, 477 P.

Seed. Red. Seed. Seed. Affiliage 3000

SVIDERSKAYA, Z.A.; DRITS, M.Ye.; VASHCHENKO, A.A.

Effect of cold deformation on properties of alloys of Al - Cu and Al - Cu - Mg systems in a state of artificial aging. Izv. vys.ucheb.zav.; tsvet.met. 2 no.6:158-160 '59.

(MIRA 13:4)

1. Institut metallurgii AN SSSB. i Vsesoyuznyy saochnyy institut tekstil'noy i legkoy promyshlennosti, kafedra tekhnologii metallov.

(Aluminum alloys)

Exaltrative wealthwater wealthread to be although the status of the laterative wealth status to wealthread to be although the status of the st
--

SVIDERSKAYA, Z.A., kand.tekhn.nauk; DRITS, M.Ye., kand.tekhn.nauk;

VASHCHEMKO, A.A.; ROKHLIN, L.L.

Effect of cold deformation on the properties of certain aluminum alloys hardened by heat treatment. Issl.splav.tsvet.

met. no.2:67-71 '60. (MIRA 13:5)

(Aluminum alloys-Cold working)

SVIDERSKAYA, Z.A.; VASHCHENKO, A.A.

Effect of cold deformation on the properties of aluminum-copper and aluminum-copper-magnesium alloys under various conditions of aging.

Trudy Inst.met. no.5:95-99 *60. (MIRA 13:6)

(Aluminum-copper alloys--Cold working)

SVIDERSKAYA, Z.A.; DRITS, M.Ye.; VASHCHENKO, A.A.

Effect of cold deformation on the properties of artificially aged aluminum alloys at high temperatures. Issl. splav. tavet. met. no.3:48-57 '62. (MIRA 15:8)

(Aluminum alloys—Cold working)

(Metals at high temperatures)

SVIDERSKAYA, Z.A.; VASHCHENKO, A.A.

Changes in properties and structure during the annealing of aluminum alloys subjected to plastic deformation between hardening and artificial aging. Issl. splav. tsvet. met. no.4:171-184 '63. (MIRA 16:8)

(Aluminum alloys—Metallography)
(Annealing of metals)

CIA-RDP86-00513R001858720007-3

	•	•		
	•	1		
т. 1707-66	EWT(d)/EVIT(m)/EWP	$(\mathbf{w})/\mathbb{E}PF(\mathbf{n})-2/\mathbb{E}NP(\mathbf{v})/T/$	EMP(t)/EMP(k)/EMP(b)/EMA(c) M UR/0125/65/000/008/0026/0 621.791.0:620.183:546.3-1	1030
ACCESSION N	R: AP5021222 IJP(c) MJM/JD/WW/HM/JG/E	UR/0125/65/000/008/0026/0	0.30
MOODDDDD			621.791.0:620.183:546.3-1	62
	14.55		N. Vodenow E S (Candidat	ie / /)
AUTHOR: Dr	its M. Ye. (Doctor	r of technical sciences	(Candidat	60
of technica	l sciences); Vashch	henko, A. A. (Engineer)	, , , , ,	2
	a	of the velded Acints	of some aluminum alloys	
TITLE: Stu	ida oi tue attricture	e of one morada do	44,55,27	
COIDCE A	rtometicheskava sva	rka, no. 8, 1965, 26-3	0	4
TOPIC TAGS	aluminum alloy,	zinc containing alloy,	magnesium containing alloy	eld.
manganesev	containing alloy, z	irconium containing al	loy, alloy welding, alloy w	,
weld struc	ture	7/	4	í
	mittune of t	he welded toints Of tw	o AMts-type aluminum alloys	con-
				an-
welded wit	h filler wire of t	he same composition.	Microscopic examination sho	weu nita⇒
that the s	egregation-induced	heterogeneity of the s	solid solution and the preci	cent
			cur mainly in the weld-adja e for stresses and microcrac	
zone, which	h makes this zone t	the most probable place	. 101	i
Card 1/2_			and the second of the second o	•
				-

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

CIA-RDP86-00513R001858720007-3

CCESSION N	R: AP5021222	and the second section of the second section of the second section of the second section of the second section			3
originate. case metal, orevents the figures.	The addition of zalso modifies the eformation of a continuous cont	structure of cast ontinuous network	at grain boundar	ries. Orig.	art. has:
ASSOCIATION SUBMITTED:	: Institut metall	ench: 00	ykova (Institut	e of Metallur 144,55 SUB CODE:	1
NO REF SOV:			D1	ATD PRESS	:4093
				· . · · ·	
		· • · · · · · · · · · · · · · · · · · ·			
11	•				

CIA-RDP86-00513R001858720007-3

ACC NR: AT6016420 AUTHORS: Sviderskaya, Z. A.; Vashchenko, A. A. ORG: none PITLE: Influence of plastic deformation on the properties of aging alloys of the system aluminum—copper—lithium
RG: none ITLE: Influence of plastic deformation on the properties of aging alloys of the
ITLE: Influence of plastic deformation on the properties of aging alloys of the
ITLE: Influence of <u>plastic deformation</u> on the properties of aging alloys of the rstem <u>aluminumcopperlithium</u>
OURCE: AN SSSR. Institut metallurgii. Metallovedeniye legkikh splavov (Metallography f light alloys). Moscow, Isd-vo Nauka, 1965, 135-144
OPIC TAGS: aluminum containing alloy, copper containing alloy, lithium containing alloy
SSTRACT: The effect of intermediate deformation (between annealing and aging) on the echanical properties, electrical resistance, microstructure, and lattice parameter of luminumcopperlithium alloys containing 23% Cu and sufficient lithium to form the compound Al ₂ CuLi were investigated. The investigation supplements the results of H. K
ardy and J. M. Silcock (The Phase Sections at 500° and 350° of Aluminum-rich luminum-Copper-Lithium Alloys J. Inst. Metals, 19551956, 84, 423). The experiental results are summarized in graphs and tables (see Fig. 1). Cold intermediate eformation between annealing and aging of Al-Cu-Li alloys leads to a considerable acrease in their mechanical properties. However, the increase in mechanical
Card 1/3

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

		20 Con l	dehlw allo	ved specime	ns wher	n they are	exposed for short is concluded that	440
periods	of time 1	to Letariae	STA TOU DOW	perman in	+ha a1	love which	in turn cause a	tue
reakeni	ng or the	STION BALL	to age 1 - 1 - 1	ocesses in ig. art. ha				
SUB COL	E: 17/ 3	SODW TWIE:	1000000)/		•			
				•				
	•			•				
	•			•				
				•				
•								-
			•					
						•	•	-
								1

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

CIA-RDP86-00513R001858720007-3

SOURCE CODE: UR/2981/66/000/004/0159/0169.

AUTHOR: Drits, M. Ye.; Kadaner, E. S.; Vashchenko, A. A.; Shiryayevs, N. V.; Fridlyander, I. N.

ORG: none

11日本の日本

36

TITLE: Structure of wold joints of V96-type alloys

SOURCE: Alyuminiyevyye splavy, no. 4, 1966. Zharoprochnyye i vysokoprochnyye splavy (Heat resistant and high-strength alloys), 159-169

TOPIC TAGS: aluminum zinc alloy, aluminum alloy property, weld evaluation / V96 aluminum zinc alloy

ABSTRACT: The purpose of the study was to determine the influence of various alloying elements on the structure of V96-type weld joints by using filler wire of various compositions. A definite relationship was found between the tendency of the alloys to form het cracks during welding and the structure of the transition zone of the weld joint. As a rule, the structure of the transition zone differs from the center of the seam in that it has coarser agglomerates of second excess phases along the grain boundaries; in most cases, those phases form a continuous network. The coarser the structure of the transition zone, greater its extent, more pronounced the network character of the structure, and greater the enrichment of the boundaries with brittle second phases, the more distinct is the tendency of the alloys to form het cracks dur-

Card 1/2

	ACC NR. ATGORIOGE	
	ing welding. Conversely, a fine, regular structure of the transition metal zone and a discontinuity of the network of second phases correspond to lower values of the cracking coefficient. By selecting optimum welding conditions, one can influence the process so as to obtain a favorable structure in the transition zone and thus reduce the danger of failure of the weld joints. Orig. art. has: 7 figures. SUB CODE: 11/ SUBM DATE: none/ ORIG REF: 003/ OTH REF: 001	
	Card 2/2	
a sagarenan		**************************************

A. I. VASHCHENKO, and LITVIN, G. E.

Plamennye pechi. Moskva. Mashgis, 1945. 71 p. illus. (Ratsionalizatsiia energeispol'zovaniia na mashinostroitel'nykh zavodakh, vyp 3

Flame furnaces. 7

DLC: TH7121.15

50: Manufacturing and Mechanical Engineering in the Soviet Union, Library of

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3" VASHCHENKO, A.L., detsent.

Developments in the design of nevable betten heating furnaces.
Stal' 7 ne.2:155-157 . 47. (MIRA 9:1)

1.Moskevskiy Institut stali; (Metallurgical furnaces)

VASHCHENKO, A.I.

The biggest retary heating furnace in the world. Stal' 7 ne.2:
187 '47.

(Ganten, Ohie-Metallurgical Furnaces)

(Ganten, Ohie-Metallurgical Furnaces)

VASHCHENKO, A. I. Docent

TA Altis

USSR/Engineering
Metallurgical Plants
Fuel - Conservation

Feb 1948

"Transfer of Foundry Driers to Solid Fuel," Docent A. I. Vashchenko, Moscow Steel Inst, 4 pp

"Stal" No 2 p.173-76

For economy all foundry driers using liquid fuel are being changed over to cheaper solid fuel. With this change the heaters can be equipped with simple fire-boxes, with means for ejection of smoke gases. Such units have been used successfully at Moscow Steel Institute.

41T18

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

VASHCHENKO, A. I.

"Investigation of the Hovement and Distribution of Gas Pressure on the Walls of Three-Chamber Holding Furnaces." Sub 22 Mar 51, Moscow Order of Labor Red Banner Inst of Steel imeni I. V. Stalin

Dissertations presented for science and engineering degrees in Moscow during 1951. SO: Sum. No. 480, 9 May 55

DADDEN, V. A.; BUIRCIN, D. V.; VALHENKO, A. I.: GLIBIKOV, M. A.; GRANOVSKIY, B. L.; KITAYEV,B.I. KUZMIN, M. A.; MIKHAYLENKO, A. Ya.; NAZARÖV, I. S.; PLOTNIKOV, L. A.; SEMIKIN, I. D.;

Metallurgiueskie Peui (Metallurgical Furnaces), 975 p., 1951.

VASHCHENKO, A.I., dotsent, kandidat tekhnicheskikh nauk.

Distribution of gas pressure on walls in triple-fired holding furnaces. Sbor.Inst.stali no.31:242-284 '53. (NIRA 9:9)

1. Kafedra "Metallurgicheskiye pechi".
(Smelting furnaces) (Gas flow)

VASHCHENKO, A.L. MIKHAYLENKO, A.Ya. ERAPUKHIN, V.V.; VASHCHENKO, A.I., kandidat tekhniche-malkh nauk, retsensent; YEVDOKIHENKO, A.I., kandidat tekhnicheskikh nauk, retsensent; GHERHOV, A.B., redaktor; ARKHAEGEL'SKAYA, M.S., redaktor: VAYBSHTEYE, Ye.B., tekhnicheskiy redaktor [Furnaces used in non-ferrous metallurgy] Pechi tsvetnoi metallurgii. Moskva, Gos. nauchno-tekhn. izd-vo lit-ry po chernoi i tevetnoi metallurgii, 1954, 458 p. (MLRA 7:9) (Metallurgical furnaces)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

307/123-59-16-64226

Translation from: Referativnyy zhurnal. Mashinostroyeniye, 1959, Nr 16, p 87 (USSR)

AUTHOR: Vashchenko, A.I.

TITIE: On Some Questions of Improving the Work and Design of Continuous Furnaces

PERIODICAL: Tr. Nauchno-tekhn. konferentsii po prom. pecham, 1955, M.-L. Gosenergoizdat,

1958, 205-212

ABSTRACT: The article has not been reviewed:

Card 1/1

国际的国际

SOV/137-58-10-20869

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 10, p 74 (USSR)

AUTHORS: Vashchenko, A.I., Nevedomskaya, I.N.

TITLE: A New Ejection Burner for a Soaking Pit, With Fuel Delivery

From the Center of the Bottom (Novaya ezhektsionnaya gorelka

dlya kolodtsa s podachey topliva iz tsentra podiny)

PERIODICAL: Izv. vyssh. uchebn. zavedeniy. Chernaya metallurgiya,

1958, Nr 2, pp 93-98

ABSTRACT: A new design for a type of annular ejector, providing a shorter flame and greater ejection capacity, is provided. Em-

ployment of a burner of this type makes it possible to increase the heightwise uniformity of the heating of the billets and to

reduce air leakage in recuperators.

V.T.

1. Metals--Heating 2. Industrial plants--Equipment 3. Waters--Design

Card 1/1

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

18(5)

SOV/148-59-2-17/24

AUTHORS:

Yashchenko , A.I. and Zen'kovskiy, A.G.. Powents, Candidates of Technical Sciences

TITLE:

Investigation of Non-Oxidizing Metal Preheating in Flame Muffleless Furnaces (Issledovaniye bezokislitel'nogo nagreva metalla v plamennykh bezmufel'nykh pechakh)

PERIODICAL:

Izvestiya vysshikh uchebnykh zavadeniy, Chernaya metallurgiya,

1959, Nr 2, pp 127-133 (USSR)

ABSTRACT:

Card 1/2

The authors investigate the efficiency of a new method of nonoxidizing metal preheating in flame furnaces. The method consists in the burning of high-calory gaseous fuel with a considerable undercontent of oxygen. The investigations were carried out in a special laboratory on a compartment kiln and a continuous furnace. Technological recommendations are given including the operation of the furnaces and computations of gas and air preheating temperatures, which were partly carried out by A. Ye.

Lifshits.

There are 2 diagrams, 4 graphs, 1 table and 4 references, 1 of

which is Soviet, 2 English and 1 German

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

18(5) SOV/148-59-2-17/24

Investigation of Mon-Oxidizing Metal Preheating in Flame Muffleless Furnaces

ASSOCIATION: Moskovskiy vecherniy metallurgisheskiy institut. (Moscow Metallur-

gical Evening Institute), Kafedra metallurgicheskikh pechev 1

energetiki (Chair of Metallurgical Furnaces and Power Engineering)

SUBMITTED: January 9, 1959

Card 2/2

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

s/709/60/025/001/001/006 DO40/D113

Vashchenko, A.I., Candidate of Technical Sciences, Docent AUTHOR:

Nonexidizing billet heating in flame furnaces TITLE:

Nauchno-tekhnicheskoye obshchestvo chernoy metallurgii. SOURCE:

Trudy, v. 25, pt. 1. Moscow, 1960. Raschety, konstruirovaniy? i ekspluatatsiya nagrevatel nykh pechey; materialy Vsesoyuznogo

soveshchaniya, 138-146

TEXT: The paper deals with modern nonoxidizing heating furnace designs. and data obtained in an investigation at the Moskovskiy vecherniy metallurgicheskiy institut (Moscow Metallurgical Evening Institute) -MVMI, conducted in view of the expected extensive use of natural gas. Experiments were conducted in compartment and holding furnaces, with an electric heater for the air. Specimens of 45 steel, 25 and 40 mm in diameter and 40 and 60 mm in length, were heated. Fuel and flue gases were analyzed in the process and the fuel and air flow, furnace temperature, and the surface and center

Card 1/4

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

S/709/66/625/SS:/661/606 D040/D113

Nonoxidizing billet ...

of specimens were measured. The "Equiverse" furnaces of the British "Incandescent" Company are considered unreliable because of their complex regenerator valve control and metal checkers. Reference is made to calculations made by Engineer A.Ye.Lifshits of Stal'proyekt on the amount of lations made by Engineer A.Ye.Lifshits of Stal'proyekt on the amount of caygen to be used with natural gas, and calculations by Candidate of Technoxygen to be used with natural gas, and calculations by Candidate of Technoxygen to be used with natural gas. In the effect of air and gas nical Sciences, Docent A.G.Zen'kovskiy of MVMI on the effect of air and gas preheating. The latter proved that air can be preheated to 800-850 C. when the preheating of the latter proved that air can be preheated to 800-850 C. When the cally scalefree neating to 1100, 1150, 1200 and 1250 C was possible at an cally scalefree neating to 1100, 1150, 1200 and 1250 C was possible at an cally scalefree neating to 1100, 1150, 1200 and 1250 C was possible at an cally scalefree neating to Moscow gas with a 0.52 air factor was 1640 C. According to Soviet and foreign data 1600 C is sufficient for medium-size cording to Soviet and foreign data 1600 C is sufficient for medium-size forging furnaces working with 300 kg load per m of the furnace floor. The forging furnaces working with 300 kg load per m of the furnace floor. The following conclusions were drawn: (1) Furnaces fired with gas of high following conclusions were drawn: (1) Furnaces fired with gas of high air or air and gas. (2) The furnace burners must ensure good mixing of

Card 2/4

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

S/709/60/025/001/001/006 D040/D113

Nonoxidizing billet ...

gas and air. (3) If secondary air is fed into the work space for burning the imcomplete fuel combustion products, air must be well mixed with these products, and the contact of atmospheric oxygen and of the products of more complete combustion (at = 0.5) with metal heated over 500-600°C must be prevented. (4) Furnaces for nonoxidizing heating have to be lower than furnaces designed for complete combustion of fuel in the work space, because if the flame is nearer local oxidation of motal will be avoided and high temperatures will be easier to obtain in a lower furnace. (5) Heat insulation has to be much more effective that in ordinary furnaces, and the refractories much denser. (6) Increased pressure must be maintained in the furnace work space. (7) The furnace (including the roof) must be covered completely with a solid casing to seal the furnace work space. (8) Draught screens with air and water curtains must be provided at the furnace doors for the convenience and safety of operators. (9) Noncxidizing heating furnaces must be fully automated and mechanized. There are il figures and 8 references: 2 Soviet and 6 non-Soviet bloc. The 4 English-language references are: Iron and Coal Trades Review, 1955, no. 4556;

Card 3/4

Nonoxidizing billet ...

3/709/60/025/001/001/006 D040/D113

1957, no. 4639; Metal Progress, 1957, no. 1; Fuel Efficiency, 1957, no. 12; Industrial Heating, 1956, no. 4

ASSOCIATION: Moskovskiy vecherniy metallurgicheskiy institut (Moscow Metallurgical Evening Institute) - MVMI

Card 4/4

VASHCHENKO, A.I.: ZEN'KOVSKIY, A.G.; LIFSHITS, A.Ye.

Effect of certain factors on the composition of combustion products in nonmuffle furnaces for nonoxidizing heating. Izv. vys.ucheb.zav.; chern.met. 4 no.9:153-160 '61. (MIRA 14:10)

1. Moskovskiy vecherniy metallurgicheskiy institut i Stal¹proyekt. (Furnaces, Heating) (Combustion gases)

S/148/62/000/001/015/015 E194/E180

还是,还是多种不是这些地域的根据的对对 格特 和声的现在

AUTHORS: Kondakov, Ye.A., and Vashchenko, A.I.

TITLE: Oxidation-free heating of steel in an open flame

furnace fired with fuel oil

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy, Chernaya metallurgiya, no.1, 1962, 190-197

Gas is best for oxidation-free heating of steel in TEXT: open flame furnaces, but many furnaces still burn fuel oil. Oxidation-free heating of steel in furnaces fired with fuel oil may take place in a reducing or neutral atmosphere of incomplete combustion products. Ordinary burners are not suitable and work is in progress on the preliminary gasification of the fuel oil. A laboratory furnace was built with a cyclone combustion chamber 200 nm in diameter and 840 mm long with an electric air heater. The furnace dimensions were 120 mm cube. The fuel oil, vapourised by steam, was delivered at 80 °C with high-pressure (3 atm. 150 °C) steam nozzles fitted tangentially to the cylindrical part of the furnace. Oxidation was assessed by loss The work was carried out in weight of grade 45 steel specimens. Card 1/3

Oxidation-free heating of steel... S/148/62/000/001/015/015 E194/E180

with fuel oil grade 80 (85.6% C, 10.5% H2, 0.7% S, 0.5% O2, 0.5% N2, 2% W, 0.2% A). Two methods of combustion were used. In the first method steam and gas were delivered to the first nozzle and burnt with hot air in the horizontal cyclone chamber. The air consumption factor n ranged from 0.31 to 0.52; specific steam consumption was 0.6 kg per kg of fuel oil. At a hot air temperature of 500 °C the furnace temperature ranged With the second method of combustion the from 1030 to 1000 °C. first nozzle was supplied with fuel oil pulverized by steam and with air sufficient for complete combustion. A second nozzle delivered fuel oil and steam into the flow of hot gas from the first nozzle in sufficient amount to reduce the overall air factor to 0.3-0.54. Furnace temperature was 1000-1070 °C. Both methods gave practically oxidation-free heating with an air factor of 0.3; the specimens were covered with a dense layer of soot; coke was deposited on the furnace walls. The soot content of combustion products was less with the second method than the first, and accordingly further tests at higher temperatures were carried out by the second method, placing Card 2/3

Oxidation-free heating of steel ... S/148/62/000/001/015/015 E194/E180

samples at a distance of 490 mm from the start of the chamber where the temperature was 1200 °C. Heating conditions were found to be oxidation-free. It is concluded that metal can be heated without oxidation to a temperature of 1100-1200 °C in furnaces fired by fuel oil provided that the air is heated to a temperature of not less than 500 °C. The method of burning fuel oil in cyclone furnaces offers promise and sectional furnaces for high speed heating of metal are of particular interest. There are 4 figures, 2 tables and 8 references: 6 Soviet-bloc and 2 non-Soviet-bloc. The English language reference reads as follows:

Ref.6: I.A. Haveman and K. Mahodevan, Journal of the Inst. of Fuel, v.30, no.192, January 1957.

ASSOCIATION: Moskovskiy vecherniy mashinostroitel'nyy institut (Moscow Machinery Evening Institute)

SUBMITTED: May 8, 1961

Card 3/3

VASHCHENKO, A.I., LIFSHITS, A.Ye.

Precipitation of soot carbon in flame furnaces for nonoxidizing heating. Izv. wys. ucheb. zav.; chern met. 5 no.1:198-203 '62. (MIRA 15:2)

1. Moskovskiy vecherniy metallurgicheskiy institut i Gosudarstvennyy soyuznyy proyektnyy institut Ministerstve chernoy metallurgii.

(Furnaces, Heating)

(Scot)

Steel tempering without oxidation in the mazut open-flame furnaces. Analele metalurgie 16 no.3:132-140 J1-S '62,

BOGOYAVLENSKIY, M.S.; VASHCHENKO, A.I.; DENISOV, A.N.; ZHETVIN, A.N.; ZEN'KOVS-KIY, A.G.; MAKAROV, D.M.; MAKSIMOV, B.M.; FILATOVA, A.I.; SHABUNIN, Ye.M.

Oxidation and decarburizing of certain steels in duo-muffle furnaces of nonoxidizing heating. Stal' 23 no.12:1124-1126 D '63. (MIRA 17:2)

MITWALINNYY, V evolod lvanovich; KRAFUKHIN, Vsevolod Valer'yanovich;

VASncHENKO, Aleksandr Ivanovich; GRANGV:KIY, scris L'vovich;

GLINKOV, M.A., prof., doktor tekhn. nauk, rea.

[Metallurgical furnaces; an atlas] Metallurgicheskie pechi;

atlas. Izd.2, perer. Moskva, Metallurgita, 1964. 219 p.

____[Data for the atlas "Metallurgical furnaces"] K atlasu

"Letallurgicheskie pechi." 45 p. (NIRA 17:9)

VASHCHENKO, Aleksandr Ivanovich; GLINKOV, Mark Alekseyevich,
prof., doktor tekim. nauk; KITAYEV, Boris Ivanovich;
TAYTS, Now Yur'sevich

[Metallurgical furnaces] Metallurgicheskie pechi. Izd.2.,
dop. 1 perer. Moskva, Metallurgiia. Pt.2. 1964. 343 p.

(MIRA 18:3)

VASHCHENKO, A.I.; ZEN*KOVSKIY, A.G.; CHIZHOV, D.I.

Burning off gas to achieve a brighter flame in nonscale heating furnaces. Kuz. shtam. proizv. 7 no.2:33-35 F *165.

(MIRA 18:4)

VASHCHENKO, A.I.; SHUL'TS, L.A.

One of the characteristics of heat processes in furnace for the nonoxidizing heating of metals. Izv. vys. ucheb. zav.; chern. met. 7 no.3:203-211 '64. (MIRA 17:4)

1. Moskovskiy vecherniy metallurgicheskiy institut.

SOURCE: IVUZ. Chernaya metallurgiya, no. 5, 1965, 188-193
TOPIC TAGS: lithium salt, exidation inhibition, steel
ABSTRACT: The authors have attempted to illuminate the condition relation the

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

ACCESSION NP. APPOINTE			
to the second to the second se	english to the move the	s mag am mot tillo	recognition of the state of the design of th
			• •
The authors submit that a	Change in the early		
		1	ungilant tettle

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

VASHCHENKO, A.I.; ROZENFEL'D, E.I.

Calculating heat exchange in furnaces with radiant tubes. Izv. vys. ucheb. zav.; chern. met. 8 no.7:180-187 '65. (MIRA 18:7)

1. Moskovskiy vecherniy metallurgicheskiy institut.

VASHCHENKO, A.I.; ZEN'KOVSKIY, A.G.; McGILLVJKIY, Ye.1.

Lithium atmosphere flame furnaces operating on natural gas.
Gaz. prom. 10 no.7; 36-38 '65. (MIRA 18:8)

YAMPOLISKIY, D.S. (Moskva); CLIDVA, T.A. (Moskva); SPUJAK, I.M. (Moskva); VashCHENKS, A.F. (Moskva) Experimental determination of the time constant of a d.c. motor with independent excitation. Elektrichestvo nc.9:65-71 S 164. (MIRA 17:10) The second of the second secon

> APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

VASHCHENKO, A.T., dotsent.

Division of western regions of the Ukrainian S.S.R. into natural and historical districts. Dop.ta pov.L'viv.un. no.3 pt.2:3-4 '52. (MLRA 9:11)

(Ukraine--Geography)

VASHCHENKO, A.T., dotsent. The second of the second of the second Some tasks of Soviet economic geography in the light of resolutions of the 19th Party Congress and I.V. Stalin's work "Economic problems of socialism in the U.S.S.R." Dop.

ta pov.L'viv.un. no.4, pt.2:3-6 '53.

(Geography, Economic)

(MLRA 9:11)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

VASHCHENKO, A.T.; LUTSKIY, S.L.

Brotherly union and friendship of the Ukrainian and Russian people. Geog.v shkole no.2:1-14 Mr-Ap '54, (MLRA 7:2) (Ukraine--History)

THE STATE OF THE S

VASHCHENKO. A.T.

Heview of the scientific sessions of the Department of Geography of the Lvov State University and the Lvov branch of the Geographical Society of the U.S.S.R. (1946-1953). Nauk.zap.L'viv.un. 28:133-135-154. (MIRA 9:10)

(Lvov--Geography--Societies)

Dividing the territory of the Soviet Carpathians into natural history regions. Dop. ta pov. L'viv. un. no. 5 pt.2141-46 '55. (MERA 9:10) (Carpathian Mountains---Physical geography)

VASHCHENKO, A.T.

化 的复数种种

Reclamation of new lands in western provinces of the Ukrainian S.S.R. is an important resource for the development of agriculture. Dop. ta pov. L'viv. un. no.5:pt.2:46-49 *55. (MLRA 9:10)

(Ukraine--Reclamation of land)

VASHCHENKO, Afanasiy Trofimovich [Vashchenko, P.T.]; DERKACH, I., red.; NEDOVIZ, S., tekhred.

[Natural resources of western regions of the Ukrainian S.S.R.;

economic-geographical study] Pryrodni resursy zakhidnykh raioniv URSR; ekonomiko-geografichnyi narys. L'viv. Knyzhkovo-zhurnal'ne vyd-vo. 1959. 125 p. (MIRA 13:4) (Ukraine, Western--Natural resources)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

VASHCHENKO, A.T.

Major Characteristics of the development and geographical distribution of agricultural areas in the western provinces of the Ukrainian S.S.R. Nauch.dokl.vys.shkoly; geol.-geog.nauki no.1:210-217 (MIRA 12:6)

1. L'vovskiy universitet, geograficheskiy fakul'tet, kafedra ekonomicheskoy geografii.
(Ukraine--Agriculture)

VASHCHENKO, A. T.

公司管理的

Doc Geog Sci - (diss) "Geography of the productive forces of the western regions of the Ukrainian SSR." Moscow, 1961. 34 pp; (Ministry of Higher and Secondary Specialist Education USSR, Moscow Order of Lenin and Order of Labor Red Banner State Univimeni M. V. Lomonosov, Geography Faculty); 150 copies; price not given; list of author's works on pp 33-34 (23 entries); (KL, 6-61 sup, 200)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858720007-3"

VASHCHENKO, D. A knowledge of economics for workers. Prof.-tekh. obr. 13 no.10:29-30 o *56. (MIRA 9:11) 1. Starshiy inshener po tekhnicheskomu obucheniyu Beresnikovskogo sodovogo zavoda. (Economics--Study and teaching)

Vysokoprochnyye chuguny (Hichly resistant pi; iron) Red. Kollegiya
A. A. Vasilenko, D. I. Vashchenko (i Dr.) Kiyev, Mashgiz, 195h.
Includes Pibliographies.

公式都模式