PHYS 20323/60323: Fall 2024 - LaTeX Example

- 1. An electron is found to be in the spin state (in the z-basis): $\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$
 - (a) (5 points) Determine the possible values of A such that the state is normalized.
 - (b) (5 points) Find the expectation values of the operators S_x , S_y , S_z and \vec{S}^2 .

The matrix representations in the z-basis for the components of electron spin operators are given by:

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad S_x = \frac{\hbar}{2} \begin{pmatrix} 0 - i \\ i & 0 \end{pmatrix}; \qquad S_x = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 - 1 \end{pmatrix};$$

2. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\vec{E} = E_0 (Ae^{-\alpha z} + Be^{-\beta z})\hat{z},\tag{1}$$

where A, B, α , β are positive constants and z is the highest above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height
- (b) (5 points) Find the electric potential as a function height above the earth.
- 3. The following questions refer to stars the Table below.

Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
β Cyg.	1.3M _☉	3.5 <i>L</i> ⊙			
α Cen.	1.0M _☉				$1R_{\odot}$
η Car.	60.M _☉	$10^{6}L_{\odot}$	8.0×10^5 years		
σ Eri.	6.0M _☉	$10^3 L_{\odot}$		20,000K	
δ Scu.	$2.0M_{\odot}$		5.0×10^8 years		$2R_{\odot}$
γDel.	$0.7M_{\odot}$		4.5×10^{10} years	5000K	

- (a) (4 points) Which of these stars will produce a planetary nebula.
- (b) (4 points) Elements heavier then *Carbon* will be produced in which stars.