Chapter 5: Support Vector Machines

- Linear SVM Classification
 - o Intro: large margin classification, support vectors
 - Street analogy
 - Soft Margin Classification
 - Hard margin: requirement that only on one side of the line
 - Data must be linearly separable
 - Sensitive to outliers
 - Resolve by keeping street as wide as possible
 - Limit margin violations:
 - Sklearn SVM: C hyperparameter: C↓margin↑
 - Want to limit margin violations, but sometimes more violations allow model to be more generalizable
 - Sklearn models to use
 - LinearSVC(C=1, loss='hinge')
 - Regularizes bias term. So center training set first. Automatic with StandardScaler
 - Set loss='hinge' since not default
 - Set dual=False, unless features > len(label)
 - SVC(kernel='linear', C=1)
 - SGDClassifier(loss='hinge', alpha=1/(m*C)) ← Good for online classification tasks or huge datasets that don't fit into memory. Does not converge as fast as LinearSVC
- Nonlinear SVM Classification
 - o Background:
 - Many datasets not linearly separable
 - Adding features (e.g., polynomial) can make separable
 - Add PolynomialFeatures in pipeline
 - Polynomial Kernel
 - Adding polynomial features works well with many models
 - Drawback: low degree may not handle complex data sets; high degree makes model slow → too many features
 - Kernel trick: get same result as having added many polynomial features without adding them
 - Adding Similarity Features
 - Another technique to deal with nonlinearity
 - Similarity function measures how much each instance resembles landmark
 - Gaussian RBF = $\exp(\gamma ||x-I||^2)$
 - Create landmark for every instance of dataset: multi-dimensional, but can
 - Gaussian RBF Kernel
 - Similarity features useful with any ML algo, but computationally expensive
 - Kernel trick
 - SVC: gamma ↑ narrows bell curve → irregular decision boundary

- Underfitting increase gamma or C, Overfitting decrease
- Which kernel?
 - Start with linear, then try rbf, then others using cross-validation & grid search
- Computational Complexity
 - Kernel trick support: No for LinearSVC, Yes for SVC
 - Slow. Good for complex small to medium training sets
- SVM Regression
 - SVM supports linear and nonlinear classification and regression
 - Classification: fit largest street between two classes while limiting margin violations
 - Regression: fit as many instances on narrowest street while limiting margin violations
 - Hyperparameter ε controls margin width; adding more instances within margin doesn't affect predictions
 - LinearSVR for linear tasks, kernelized SVR for nonlinear
 - Large C little regularization, small C more
 - LinearSVC or LinearSVR vs. SVC or SVR
- Under the Hood
 - o Background: how SVMs make predictions
 - Decision Function and Predictions
 - SVM classifier applies w to new x and if +ve, y is +ve
 - Linear SVC finds values of w and b that make margin as wide as possible while avoiding margin violations
 - Training Objective
 - Lower w, increase margin
 - Slack variable ζ: how much each instance allowed to violate margin
 - Conflict: make w small to increase margin, and slack variable small to reduce margin violations
 - C hyperparameter defines tradeoff between conflict
 - Minimize $\frac{1}{2}$ w² + C* Σ ζ
 - Subject to $t(w^tx + b) >= 1 \zeta$ and $\zeta >= 0$
 - Quadratic Programming (QP)
 - General programming problem
 - Minimize p: $\frac{1}{2}$ p^THp + f^Tp
 - Subject to Ap <= b
 - P is n_p (# of parameters) dimensional vector
 - H is n_p x n_p matrix
 - f is n_p dimensional vector
 - A is n_c (# of constraints) x n_p matrix
 - b is n_c dimensional vector
 - o The Dual Problem
 - Dual problem is closely related to constrained optimization problem.
 - Solution gives lower bound than primal
 - Both the same solution, dual is faster when training instances < # features</p>

Kernel trick is possible with Dual

Kernelized SVM

- Kernel trick: the dot product of transformed vectors is equal to the transformation of the dot product of the vectors given certain conditions
 - Insight: don't need to transform the vectors first, making it more computationally efficient
- Kernel: function of capable of computing dot product of original vectors without having to compute transformation
- Mercer's Theorem:
 - Given: function K
 - Conditions: K is continuous, symmetric K(a,b) = K(b,a)
 - Then: there exists another function that maps a and b onto another space where you can use K to compute dot products
 - Don't need to know mapping function, only that it exists
- Can make predictions without knowing weights by plugging formula for weights into decision function for new instance of x
 - Converting primal problem to dual problem and using kernel trick

o Online SVMs

- Online learning is learning incrementally
- Gradient descent converges more slowly than QP solver
- Linear SVM classifier cost function
 - Weights plus hinge loss
 - $1/2w^tw + C \Sigma \max(0, 1 t(w^tx + b))$
 - Hinge loss max(0, 1 t)