¿ Cómo se obtiene la Transformada de Legendre!

Tenemos
$$y = y(x_0, x_1, ..., x_t)$$

$$P_k = \frac{\partial y}{\partial x_k}$$
Tenmo: $p = y$
intensives

Overenos cambin como variables Xx -> Px >
olefinimos Y = Y - Px x

dy = dy - Pr dxx - xx dpx

Nuevo Potencial dy = S Prodx + patx - Prodx - Xx dpx
Termodinanis

 $\Rightarrow - \times_{k} = \frac{\partial V}{\partial R}$

 $\frac{10}{\cos \rho} = \frac{3V}{3x} \quad \frac{1}{3x} \quad \frac{1}{3$

(0,Q) pend:yte x

pendiente = $p = \frac{y - \varphi}{x - 0}$

$$\Rightarrow \varphi = Y - pX$$

 $Y(x) \rightarrow Y(r)$

Ejemplo: Energid libre de Helmholtz

F=F(T,V,N)* G=G(TP,N)*

Paro obtener una transformación F de Legendre tal que si U=U(S,V,N), sea F=F(T,V,N);

Es oran la variable conjugade à 5 en U passe a sen independiente en F (S => 7)

Entonces hacemos la transformación F= U-TS

=> dF - TdS - pdV+wdN-Tds-SdT

dF=-pdV+mdN-5dT

Representation F = F(T,V,N)

0F _ -S

nsemble M.E.

 $(N_i \vee_i T)$

reemplagado variables extensivos por intentivas (combin lo representación). Processo termodinámico:

* Se minimiza el potencial termodirámicos respecto de les variables independientes. Fin Reposo termodinàmica ! Descripcion Macroscopics Microscopica * Comportanisto de variables termodistinios * Estados Microsopicos del sistena * Mecanica

Espacio real Epacio M Micross lado " viver" proficular "vive" microentados

* Li integration es sobre todo el españo [pero sólo la reajores con "puntos" de l'españo [recomidos por alguna traxecteria (es dein can [±0!) contri bizan realmente al promedia.

* En general < F2 puede sen función del ciempo

* Un ensemble se dice entacionario si af =0 > t

= si p no depende explicitamente del ot tiempo.

* Ensemble estacionario - panele cervin para reprecubar estados
de expilibrio (termodinàmico!)

Teorema de Civille y Sus consecuencias

Ensideranos un volumen W: Volumen relevante en una región con $f \neq 0$ del espacio Γ

donale du = (dg3n dp3n)

Por otro lado | a tasa neta o la cual los punos representativos "fluyen" a través de la suporficie or que delimita el borde de w está doda pon:

 ω

* Ecuación de continuidad para un racino de portos reprostativos * La evolución de porto, en el espario l'se comporta como un líquido en hidrodinámica.

