GPU Computing

Edwin Carlinet, Joseph Chazalon

firstname.lastname@epita.fr

Fall 2023

EPITA Research Laboratory (LRE)

Slides generated on September 8, 2023

1

From programming model to hardware parallelism (\checkmark & $\mathrel{\roathick{\triangle}}$)

GPU memory model

From programming model to

hardware parallelism (🥠 🥠 &

Programming Model (1D)

The **same** program K (kernel) is executed by thousands of threads The only thing that changes is the thread identifier.


```
Program P<sub>i</sub>(in, out):
  x ← in[i]
  y ← Compute something(x)
  out[i] ← y
```

Programming Model (2D)

The same holds with compute grid in 2D and 3D


```
Program P_{ij} (in, out):
   x \leftarrow in[i][j]
   y \leftarrow Compute something(x)
   out[i][j] \leftarrow y
```

Programming Model (CUDA terminology)

Thread

- Instance of one kernel (list of instructions)
- If active, it has a Program Counter, registers, private memory, IO
- Thread ID = ID a block

Block

A set of *threads* that cooperate:

- Synchronisation
- · Shared memory
- Block ID = ID in a grid

Grid

Array of blocks executing same *kernel*:

- · Access to global GPU memory
- Sync. by stop and start a new kernel

Programming Model - Summary

Hierarchy

Memory

Mapping Programming model to hardware - the SMs

• CUDA's Thread/block/grid is mapped to GPU (N°Threads ≠ N°Cores)

- GTX 980 16 Streaming Multi-processors (SM)
- · SMs are rather independant

Mapping Programming model to hardware - the SMs

· Any block of any grid can be mapped to any SM

• Once thread block is affected to a SM, it won't move to another one.

Zoom on the SM

- · SM organizes blocks into warps
- 1 warp = group of 32 threads

GTX 920:

- 128 cores = 4 x 32 cores
- · Quad warp scheduler selects 4 warps (TLP)
- And 2 independent instructions per warp can be dispatched each cycle (ILP)

Example:

• 1 (logical) *block* of 96 threads maps to: 3 (physical) *warps* of 32 threads

Zoom on the CUDA cores

1 core = 1 thread

- A warp executes 32 threads on the 32 CUDA cores
- The threads executes the same instruction (DLP)
- All instructions are SIMD (width = 32) instructions

Fach core·

- Floating point & Integer unit
- · Fused multiply-add (FMA) instruction
- Logic unit
- · Move, compare unit
- · Branch unit
- \cdot The first IF/ID of the pipeline is done by the SM

Warning: SIMT allows to specify the execution and branching behavior of a single thread but maps to SIMD processors!

· Divergent code paths (branching) pile up!

· Divergent code paths (branching) pile up!

A mask allow to dis/activate threads:

If branch	1	1	0	1	0	0	0	0
Else branch	0	0	1	0	1	1	1	1

What is the latency (in term of inst) of this code in the better and worst case ?

```
if a > 0:
    inst-a
    if b > 0:
        inst-b;
    else
        inst-c
else:
    inst-d
```

What is the latency (in term of inst) of this code in the better and worst case ?

```
if a > 0:
     inst-a
     if b > 0:
         inst-b;
     else
         inst-c
else:
     inst-d
   • Best case: a > 0 is false for every thread. For all threads: inst-d
   • Worst case: a > 0 and b > 0 is true for some but not all threads. For all threads:
inst-a
inst-b
inst-c
inst-d
```

Unrollable loops cost = max iterations, ie:

- · Keep looping until all threads exit
- · Mask out threads that have exited the loop

Exe	cution trace	T0	T1	T2	T3
i =	0	0	0	0	0
i <	tid	0	1	1	1
i++		0	1	1	1
i <	tid	0	0	1	1
i++		0	1	2	2
i <	tid	0	0	0	1
i++		0	1	2	3
i <	tid	0	0	0	0

Computation cost vs. memory cost

· Power measurements on NVIDIA GT200

	Energy/op (nJ)	Total power (W)
Instruction Control	1.8	18
Mult-add 32-wide warp	3.6	36
Load 128B from DRAM	80	90

With the same amount of energy:

- Load 1 word from external memory (DRAM)
- · Compute 44 flops
- \rightarrow Must optimize memory first

External memory: discrete GPU

Classical CPU-GPU model

- · Split memory space
- Highest bandwidth from GPU memory
- · Transfers to main memory are slower

Intel i7 4770 / GTX 780

External memory: embedded GPU

Most GPUs today:

- · Same memory
- May support memory coherence (GPU can read directly from CPU caches)
- More contention on external memory

GPU: on-chip memory

Cache area in CPU vs GPU:

Figure 1-2. The GPU Devotes More Transistors to Data Processing

GPU: on-chip memory

Cache area in CPU vs GPU:

Figure 1-2. The GPU Devotes More Transistors to Data Processing

But if we include registers:

GPU	Registers files + caches
NVidia Maxwell	8.3 MB
AMD Hawaii GPU	15.8 MB
Core i7 CPU	9.3 MB

	CPU	GPU
Register / Core	256	65K

Memory model hierarchy (hardware)

Cache hierarchy:

- · Keep frequently-accessed data Core
- · Reduce throughput demand on main memory L1
- · Managed by hardware (L1, L2) or software (shared memory)

- · On CPU, caches are designed to avoid memory latency
- · On GPU, multi-threading deals with memory latency

Memory model hierarchy (software)

Memory	On chip	Cached	Access	Scope	Lifetime
Register	✓	n/a	RW	1 thread	Thread
Local	X	✓	RW	1 thread	Thread
Shared	✓	n/a	RW	All threads block	Block
Global	X	✓	RW	All threads + host	Host
Constant	X	✓	R	All threads + host	Host
Texture	X	✓	R	All threads + host	Host

Conclusion

The hierarchical programming model maps to the hierarchical hardware constraints

- · Threads inside blocks can synchronise / use shared memory because they are on the same SM
- Threads in the same warp have synchronized execution because they are on the same "SIMD processor"
- Threads in different blocks are hard to synchronize/only communicate with the global memory because they may be on different SMs.

Next time...

CUDA crash course