Mathematical Statistics Solutions: HW 4

October 19, 2022

Exercise 1

Part (a)

If $\rho(t) = 2e^{-t^2/2}$, then we want to prove $\mathbb{P}_{\theta}(|\hat{\theta} - \theta| \ge t) \le \rho(t\sqrt{n}) = 2e^{-nt^2/2}$. In the Bernoulli case, this follows from an application of Hoeffding's inequality, since the random variables lie in [0,1]. The Gaussian case follows from the Chernoff-bound analogue.

Part (b)

Fix $\varepsilon > 0$, with $\mathbb{P}_{\theta}(|\hat{\theta} - \theta| \ge t) \le \rho(t\sqrt{n})$. Since $\lim_{n \to \infty} \rho(t\sqrt{n}) = 0$, it follows that

$$0 \le \lim_{n \to \infty} \mathbb{P}_{\theta}(|\hat{\theta} - \theta| \ge t) \le \lim_{n \to \infty} \rho(t\sqrt{n}) = 0.$$

Part (c)

$$\begin{split} \mathbb{P}_{\theta}(\theta \in \hat{C}) &= 1 - \mathbb{P}_{\theta}(\theta \notin \hat{C}) \\ &= 1 - \mathbb{P}_{\theta}(|\hat{\theta} - \theta| \le \rho^{-1}(\alpha)/\sqrt{n}) \\ &\ge 1 - \rho(\sqrt{n}\rho^{-1}(\alpha)/\sqrt{n}) \\ &= 1 - \rho(\rho^{-1}(\alpha)) = 1 - \alpha \,. \end{split}$$

For a fixed θ , the probability that it lies in \hat{C} is at least $1 - \alpha$ (many other verbose ways to write this).

Part (d)

For all $\theta \in \Theta_1$,

$$\mathbb{P}_{\theta}(\psi = 1) = \mathbb{P}_{\theta}(\exists \theta_1 \in \Theta_1 \text{ and } |\hat{\theta} - \theta_1| \leq \delta)$$
$$= 1 - \mathbb{P}_{\theta}(\forall \theta_1 \in \Theta_1, |\hat{\theta} - \theta_1| \geq \rho^{-1}(\alpha)/\sqrt{n})$$
$$\geq 1 - \alpha,$$

by (c). Similarly, for all $\theta \in \Theta_0$,

$$\mathbb{P}_{\theta}(\psi = 0) = \mathbb{P}_{\theta}(\forall \theta_{1} \in \Theta_{1}, |\hat{\theta} - \theta_{1}| \geq \delta)$$

$$\geq \mathbb{P}_{\theta}(|\hat{\theta} - \theta_{0}| < \delta)$$

$$\geq \mathbb{P}_{\theta}(|\hat{\theta} - \theta_{0}| < \rho^{-1}(\alpha)/\sqrt{n})$$

$$\geq 1 - \alpha$$

Part (e)

Let $\Theta_0 := [0, \frac{1}{4}]$ and $\Theta_1 := [\frac{3}{4}, 1]$, and define the Bernoulli family over $\Theta := \Theta_0 \cup \Theta_1$, which satisfies equation (4.4), and suppose the true parameter of the data-generating process is $\theta = 3/4$ (generating X_1, \ldots, X_n observations) and let $\hat{\theta} = \bar{X}_n$.

Now compute the following probability,

$$\mathbb{P}_{\theta}(\tilde{\psi} = 1) = \mathbb{P}_{\theta}(\hat{\theta} \in [3/4, 1]) = \mathbb{P}_{\theta}(\hat{\theta} \ge \theta) \le 2/3,$$

for n sufficiently large (by CLT calculations). It is therefore impossible to guarantee $\mathbb{P}_{\theta}(\tilde{\psi}=1) \geq 1-\alpha$ for $\alpha < 1/3$.

Exercise 2

 $\sigma(\cdot)$ is a continuous function so if $T_n \xrightarrow{p} \theta$ then by continuous mapping theorem, $1/\sigma(T_n) \xrightarrow{p} 1/\sigma(\theta)$. We also have that $\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$ so by Slutsky's theorem,

$$\frac{\sqrt{n}(T_n - \theta)}{\sigma(T_n)} \xrightarrow{d} N(0, \sigma^2(\theta) / \sigma^2(\theta)) = N(0, 1).$$

Thus,

$$\mathbb{P}_{\theta}(\theta \in \hat{C}_{n}) = \mathbb{P}_{\theta}(\theta \in [T_{n} - \sigma(\theta)z_{\alpha/2}/\sqrt{n}, T_{n} + \sigma(\theta)z_{\alpha/2}/\sqrt{n}])$$

$$= \mathbb{P}_{\theta}\left(\left|\frac{\sqrt{n}(T_{n} - \theta)}{\sigma(T_{n})}\right| \leq z_{\alpha/2}\right)$$

$$\to \mathbb{P}_{\theta}(|Z| \leq z_{\alpha/2}) \quad \text{(in the limit } n \to \infty)$$

$$= 1 - \alpha,$$

which implies that \hat{C}_n is an asymptotic confidence interval.

Exercise 3

Part (a)

Recall that the DKW inequality gives,

$$\mathbb{P}\left(\sup_{t\in\mathbb{R}}\left|F(t)-\hat{F}_n(t)\right|\geq s\right)\leq 2e^{-2ns^2}.$$

Set $\alpha = 2e^{-2ns^2}$, we get

$$\mathbb{P}\left(\sup_{t\in\mathbb{R}}\left|F(t)-\hat{F}_n(t)\right|\geq\sqrt{\frac{\log(2/\alpha)}{2n}}\right)\leq\alpha.$$

Therefore, for any $t \in \mathbb{R}$, $(\underline{F}(t), \overline{F}(t))$ gives a $1 - \alpha$ confidence band for F, where

$$\underline{F}(t) = \hat{F}_n(t) - \sqrt{\frac{\log(2/\alpha)}{2n}}, \ \overline{F}(t) = \hat{F}_n(t) + \sqrt{\frac{\log(2/\alpha)}{2n}}.$$

Part (b)

For any $t \in \mathbb{R}$, if $\underline{F}(t) < 0$ we can define the following sets,

$$C := (F(t), \overline{F}(t)), C_1 := (F(t), 0), C_2 := [0, \overline{F}(t)).$$

We have $C = C_1 \cup C_2$, and since $F(t) \ge 0$, we have $\mathbb{P}(F(t) \in C_1) = 0$. Therefore, $\mathbb{P}(F(t) \in C_2) = \mathbb{P}(F(t) \in C) \ge 1 - \alpha$. Thus $(\max\{\underline{F}, 0\}, \overline{F})$ is a $1 - \alpha$ confidence band for F. Using the same argument for the case $\overline{F}(t) \ge 1$, we conclude that $(\max\{\underline{F}, 0\}, \min\{\overline{F}, 1\})$ is a $1 - \alpha$ confidence band for F.

Exercise 4

Part (a)

 $S_n := \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \frac{1}{n}\sigma^2)$, so $(S_n - \mu)/\sigma \sim N(0, 1)$, which is pivotal.

Part (b)

For all $\theta \in \Theta$,

$$P_{\theta}[\theta \in C(X_1, \dots, X_n)] = P_{\theta}[\underline{c} \le g(X_1, \dots, X_n, \theta) \le \overline{c}]$$

$$\ge 1 - \alpha$$

where we have used the given property of $g(X_1, \ldots, X_n, \theta)$, and that it holds for any θ since g is pivotal.

Part (c)

We can compute these values because $g(\omega, \theta)$ is independent of θ . For example, in the case where the pivotal quantity is the standard normal Gaussian (like in (4a)), one can pre-compute $z_{\alpha/2}$ such that $\mathbb{P}(|Z| \geq z_{\alpha/2}) = \alpha$, for $Z \sim N(0, 1)$.