TERMODINÁMICA

Examen Intersemestral

Nombre	Grupe	о	

Problema -1 (6 puntos)

Se dispone de un dispositivo cilindro pistón que contiene 20 g de un gas ideal (M = 44 kg/kmol) cuyas tablas se adjuntan. Sobre el pistón actúa la fuerza de un resorte y la presión ambiente (95 kPa). El resorte tiene una rigidez de 100 kN/m y en el estado inicial se encuentra en su longitud natural. Cuando el acortamiento del resorte es de 50 mm todas las espiras del mismo se están tocando, pasando a comportarse entonces como un sólido rígido (puede soportar presiones infinitas sin reducir su volumen). La masa del pistón es de 100 kg y su diámetro de 250 mm. Tanto el cilindro como el pistón tienen sus superficies recubiertas por un material aislante térmico perfecto.

Se dispone también de un sólido incompresible (ρ = 8.000 kg/m³; c = 0,5 kJ/kg·K) de masa 820 g que inicialmente se encuentra a 860 K, con todas sus superficies aisladas térmicamente. La temperatura inicial del gas es de 300 K.

Instantáneamente se retira el aislamiento de la base del cilindro y de una parte del sólido, de modo que el sólido y el cilindro comienzan a intercambiar calor. No existe ninguna fuga de calor al ambiente. Se permite que el sistema evolucione hasta alcanzar el equilibrio, verificándose un proceso cuasiestático.

Determinar:

- a) Temperatura y presión final del gas
- b) Deformación experimentada por el resorte en el proceso
- c) Realizar un diagrama p V del proceso que experimenta el gas

Tómese g = 9.8 N/kg.

Tablas de la sustancia como gas ideal

T [K]	u [kJ/kg]	h [kJ/kg]	 T [K]	u [kJ/kg]	h [kJ/kg]
300	17,28	73,95	650	297,9	420,7
310	23,88	82,44	660	307,0	431,7
320	30,58	91,04	670	316,3	442,8
330	37,39	99,73	680	325,5	454,0
340	44,3	108,5	690	334,8	465,2
350	51,31	117,4	700	344,2	476,4
360	58,41	126,4	710	353,6	487,7
370	65,61	135,5	720	363,0	499,0
380	72,91	144,7	730	372,5	510,4
390	80,29	154,0	740	382,0	521,8
400	87,76	163,3	750	391,6	533,3
410	95,32	172,8	760	401,2	544,8
420	103,0	182,3	770	410,9	556,3
430	110,7	191,9	780	420,5	567,9
440	118,5	201,6	790	430,3	579,5
450	126,4	211,4	800	440,0	591,2
460	134,3	221,2	810	449,8	602,9
470	142,4	231,1	820	459,7	614,6
480	150,5	241,1	830	469,6	626,3
490	158,6	251,2	840	479,5	638,1
500	166,9	261,3	850	489,4	650,0
510	175,2	271,5	860	499,4	661,8
520	183,6	281,8	870	509,4	673,8
530	192,0	292,1	880	519,4	685,7
540	200,5	302,5	890	529,5	697,7
550	209,1	313,0	900	539,6	709,7
560	217,7	323,5	910	549,8	721,7
570	226,4	334,1	920	559,9	733,7
580	235,1	344,7	930	570,2	745,8
590	243,9	355,4	940	580,4	758,0
600	252,8	366,1	950	590,7	770,1
610	261,7	376,9	960	600,9	782,3
620	270,7	387,8	970	611,3	794,5
630	279,7	398,7	980	621,6	806,7
640	288,8	409,7	990	632,0	819,0

El proceso requido por el gas podrás ser:

El cemino ab odurni ria si las espisos del muelle llegoren a towerse y el solido airu turiere energie sufricen te para requir trong tiviendo whom (Tas > Tay).

Pare courser, por tout, et estoch trust re hace En conterio, Vz < Va. me hipóteris:

"suponemes ofthe se alcentre la" En este como:

$$P_{a} = P_{1} + \frac{K \cdot \Delta Z \text{ mox}}{A}$$

$$P_{1} = 95 + \frac{100 \times 9'8 \times 10^{-3}}{7 \times 0.25^{-2}} = 114,96 \text{ KPa}$$

Pa = 114, 96 +
$$\frac{100 \times 0.05}{4 \times 0.25^2} = 216, 82 \text{ KPa}$$

$$mg \cdot R \cdot T_1 = \frac{0.02 \times \frac{8.314}{44} \times 300}{4} = 0.009862 \text{ M}$$

$$V_{1} = \frac{m_{9} \cdot R \cdot T_{1}}{P_{1}} = \frac{0'02 \times \frac{8'31''}{4''} \times 300}{114,96} = 0'009862 \text{ m}^{3}$$

$$\sqrt{a} = \sqrt{1 + 0.05 \times \frac{70.25^2}{4}} = 0.012316 \text{ m}^3$$

Tomando el sistema gas + sólido, al suponer el proceso monestation:

$$W_{1a} = \int_{1}^{a} \rho dV = \frac{P_{1} + P_{0}}{2} (V_{0} - V_{1}) = \frac{114,96 + 216,82}{2} \times 0.05 \times \frac{71 \times 0.25^{2}}{4} = 0.4072 \text{ KJ}$$

$$= \frac{114,96 + 216,82}{2} \times 0.05 \times \frac{71 \times 0.25^{2}}{4} = 0.4072 \text{ KJ}$$

Aplicando el Primer Principio al mismo

$$0 - 0.4072 = 0.02 (ua - u_1) + 0.82 \times 0.5 \times (Tas - 860)$$

$$u_1 = 17.28 \times 3/1 \times y$$

$$u_2 = 350, 44 \times 3/1 \times y$$

$$Tas = 842, 76 \times 5 \times 7 \times y$$

$$u_3 = 350, 44 \times 3/1 \times y$$

$$u_4 = 500$$

Por tanto, el proceso llega al estado "a" J mosique hairo el "b", que serie el "2".

Aplicando el Primer Principro al proceso gle had (1-2) re tiene:

$$-0.4042 = 0'02(u_2 - 17.28) + 0.82 \times 0'\Gamma(T_2 - 860)$$

$$f(t_2) = 0 = 0.02(u_2) + 0.41T_2 - 352,54$$

 $706,6 \le T_2 \le 842.8$

T2	UZ	f(T2)
750	391.6	-37,208
200	440	-15,74
820	459,7	-7,146
	469,6	-2,848
830 T2 840	479,5	+1,450

Interpolarido:

$$0 = -2,848 + \frac{1,45 + 2,848}{840 - 830} (T_2 - 830)$$

$$\frac{F_2}{8314} = \frac{0'02 \times \frac{8'314}{44} \times 836,63}{0,012316} = \frac{256,71 \times Pa}{256,71 \times Pa} > Pa$$
Segin el proceso desarrollado: $\Delta Z = 0'0.5 \text{ m}$

TERMODINÁMICA

Examen Intersemestral

Nombre	Grupo

Problema -2 (4 puntos)

La instalación de la figura representa un calorímetro de estrangulación (3-4) para determinar el título de una corriente de vapor que circula por la línea principal (1-2) a 20 bar. El calorímetro funciona desviando una parte del flujo por la sección (3) hacia la válvula, que opera de forma adiabática. Las condiciones a la salida de la misma (4) son de 2 bar y 100°C. Seguidamente el flujo derivado se lleva a un intercambiador donde se condensa hasta líquido saturado (5) sin perder presión en la línea 4-5.

El fluido frío del intercambiador es una corriente de 5 m³/h de agua (ρ = 1.000 kg/m³; c = 4,18 kJ/kg·K) que entra (6) a 25°C y 3 bar y sale (7) a 30°C y 2,5 bar.

Determinar:

- a) Gasto másico derivado de la instalación principal (3-5)
- b) Título del vapor en la instalación principal (1)
- c) Potencia disipada por irreversibilidades internas en la rama 6-7.

Tablas de saturación (líquido – vapor)

р	Т	Vf	Vg	Uf	Ug	h _f	hg	Sf	Sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg·K]	[kJ/kg·K]
1	48,86	0,001398	0,36930	-0,5034	351,9	-0,3636	388,8	-0,0011	1,2074
2	71,6	0,001446	0,19370	44,50	377,9	44,79	416,7	0,1338	1,2126
4	98,32	0,001511	0,10030	101,0	410,6	101,6	450,7	0,2917	1,2315
6	116,2	0,001562	0,06752	141,2	433,3	142,2	473,8	0,3976	1,2494
8	130	0,001607	0,05058	173,8	451,3	175,1	491,7	0,4800	1,2653
10	141,5	0,001650	0,04018	201,9	466,2	203,5	506,4	0,5488	1,2792
12	151,4	0,001692	0,03311	226,9	479,1	228,9	518,9	0,6084	1,2914
16	168	0,001775	0,02409	270,6	500,4	273,4	538,9	0,7097	1,3116
20	181,7	0,001862	0,01854	308,7	517,3	312,4	554,3	0,7951	1,3270
24	193,5	0,001957	0,01475	343,0	530,7	347,7	566,1	0,8700	1,3381

Tablas de vapor sobrecalentado

	n	2 hor	
_	•	2 bar	L
T	V [ma 3/ls as]	U []. [/]. m]	h
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]
72	0,1929	378,5	417
76	0,1956	383,9	423
80	0,1983	389,3	429
84	0,2009	394,9	435,1
88	0,2036	400,5	441,2
92	0,2062	406,2	447,5
96	0,2089	412	453,8
100	0,2115	417,9	460,2
104	0,2141	423,8	466,6
108	0,2167	429,8	473,1
	p = 1	0 bar	
Т	V	u	h
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]
142	0,04035	467,2	507,5
146	0,04108	474,4	515,5
150	0,04181	481,6	523,5
154	0,04251	489	531,5
158	0,04321	496,3	539,5
162	0,0439	503,7	547,6
166	0,04457	511,1	555,7
170	0,04524	518,6	563,9
174	0,04589	526,2	572,1

Balance energético en el intercambiador:

Bohenie en ergético en la valvala: $h_3 = h_4 = 460,2 = 312,4 + x_3(554,3 - 312,4)$ $x_1 = x_3 = 0,610996 \approx 0,62$

Bernoulli en la rama 6-7: $-\int_{6}^{7} v \, d\rho = -wd \Rightarrow -\frac{P_{7} - P_{6}}{\rho} = \frac{(3-2.5)100}{1000} = -wd$ =-wd $= -\left(\frac{5 \cdot 1000}{3600}\right) \times \frac{0.5 \times 100}{1000} = -0,06944 \text{ kW} = -69,44 \text{ W}$