Reg. No.:
Name:

TERM END EXAMINATIONS (TEE) – May 2023

Programme	:	B.Tech. (All Branches)	Semester	:	Summer 2022-23
Course	:	Differential and Difference Equations / MAT2001	Slot	:	A11+A12+A13+A14+A15
Time	<u> </u> :	1½ hours	Max. Marks	:	50

Answer all the Questions Sub. Q.No. **Question Description** Marks Sec. PART - A (30 Marks) If *A* is the coefficient matrix of the given homogeneous system of equations. 10 1. a) 3x + y + 4z = 0; 2y + 6z = 0; 5z = 0then find the eigen values and eigen vectors of I) A^{-1} II) A^2 III) adj A IV) OR Obtain Fourier Series of the given periodic curve and show. b) **10** X Determine the Fourier transform of the given signal depicted in the figure below 2 a) 10 f(t) 2 OR

	b)	Determine f_0 , f_1 , f_2 when $Z\{f(n)\} = F(z)$ is as given below $\frac{(z-1)^2(z+2)}{(z+3)(z+5)^2}$.	10
3	a)	I) Find the Z Transform for the sum of two exponential $f[n] = \left(\frac{1}{2}\right)^n u[n] + \left(-\frac{1}{3}\right)^n u[n],$ where $u[n]$ is unit step function.	5
		II) Find inverse Z- Transform of $\frac{az}{(z-a)^5} + \frac{bz}{(z-b)^4}$ OR	5
	b)	Using Z transform solve the following difference equation $y_{n+2} + y_n = 6$ with $y_0 = y_1 = 0$.	10
		PART - B (20 Marks)	
4		Solve given system of differential equations $\frac{dx}{dt} = 2x + y \text{ and } \frac{dy}{dt} = 3x + 4y \text{ at } x(0) = 2, y(0) = 2 \text{ by Eigen value Method.}$	10
5		Using method of undetermined coefficient to solve the following difference equation $y_{n+2}+4y_{n+1}+3y_n=5^n$ at $y_0=0$ & $y_1=1$.	10