ID3(Examples, Target\_attribute, Attributes)

Examples are the training examples. Target\_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target\_attribute in Examples
- Otherwise Begin
  - $A \leftarrow$  the attribute from Attributes that best\* classifies Examples
  - The decision attribute for  $Root \leftarrow A$
  - For each possible value,  $v_i$ , of A,
    - Add a new tree branch below *Root*, corresponding to the test  $A = v_i$
    - Let  $Examples_{v_i}$  be the subset of Examples that have value  $v_i$  for A
    - If  $Examples_{v_i}$  is empty
      - Then below this new branch add a leaf node with label = most common value of Target\_attribute in Examples
      - Else below this new branch add the subtree
        ID3(Examples<sub>vi</sub>, Target\_attribute, Attributes {A}))
- End
- Return Root

## TABLE 3.1

Summary of the ID3 algorithm specialized to learning boolean-valued functions. ID3 is a greedy algorithm that grows the tree top-down, at each node selecting the attribute that best classifies the local training examples. This process continues until the tree perfectly classifies the training examples, or until all attributes have been used.

where  $p_{\oplus}$  is the proportion of positive examples in S and  $p_{\ominus}$  is the proportion of negative examples in S. In all calculations involving entropy we define  $0 \log 0$  to be 0.

To illustrate, suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5 negative examples (we adopt the notation [9+,5-] to summarize such a sample of data). Then the entropy of S relative to this boolean classification is

$$Entropy([9+, 5-]) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$$
$$= 0.940$$
(3.2)

Notice that the entropy is 0 if all members of S belong to the same class. For example, if all members are positive  $(p_{\oplus} = 1)$ , then  $p_{\ominus}$  is 0, and  $Entropy(S) = -1 \cdot \log_2(1) - 0 \cdot \log_2 0 = -1 \cdot 0 - 0 \cdot \log_2 0 = 0$ . Note the entropy is 1 when the collection contains an equal number of positive and negative examples. If the collection contains unequal numbers of positive and negative examples, the

<sup>\*</sup> The best attribute is the one with highest information gain, as defined in Equation (3.4).