¡Felicitaciones! ¡Aprobaste!

PARA APROBAR 75 % o más

Continúa aprendiendo

calificación 100%

Practice quiz on Exponents and Logarithms

PUNTOS TOTALES DE 12

1. Re write the number $784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ using exponents.

1 / 1 puntos

- \bigcirc (2⁶)(7⁶)
- $\bigcirc (2 \times 7)^6$
- \bigcirc (16⁴)(49²)
- $(2^4)(7^2)$

Correct

For this type of problem, count the number of times each relevant factor appears in the product. That number is the exponent for that factor.

2. What is $(x^2 - 5)^0$?

1 / 1 puntos

- \bigcirc (x^2)
- $(x^2) 5$
- O -4
- 1

Correct

Any real number (except zero) raised to the "zeroith" power = 1.

- 3. Simplify $((x-5)^2)^{-3}$
 - $(x-5)^{-1}$
 - $(x-5)^{-5}$
 - $(x-5)^{-6}$
 - $\bigcirc (x-5)$

✓ Correct

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times-3)} = (x-5)^{-6}$$

By the definition of negative exponents, this is equal to $\frac{1}{(x-5)^6}$

Simplify $(\frac{8^2}{8^7})^2$

1 / 1 puntos

- **●** 8^{−10}
- 0.8^{-1}
- 0 8-4
- 0.8^{-5}

✓ Correct

We can first simplify what is inside the parenthesis to 8^{-5} using the Division and Negative Powers Rule.

Then apply division and negative powers-- the result is the same.

$$\frac{8^4}{8^{14}} = 8^{-10}$$

1 / 1 puntos

5. $\log 35 = \log 7 + \log x$

Solve for x

- \bigcirc 7
- 5
- \bigcirc 4
- O 28

✓ Correct

$$\log(x) = \log 35 - \log 7$$

$$\log(x) = \log\left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

6.
$$\log_2(x^2 + 5x + 7) = 0$$

1 / 1 puntos

Solve for x

- x = 2
- x = 3
- x = -2 or x = -3
- x = 2 or x = 3

Correc

We use the property that $b^{\log_b a} = a$

Use both sides as exponent for 2.

$$2^{\log_2 x^2 + 5x + 7} = 2^0$$

$$x^2 + 5x + 7 = 1$$

$$x^2 + 5x + 6 = 0$$

$$(x+3)(x+2)=0$$

$$x = -3$$
 OR

$$x = -2$$

7. Simplify $\log_2 72 - \log_2 9$

1 / 1 puntos

- \bigcirc 4
- **(**) 3
- $\bigcirc \log_2 63$
- $\bigcirc \log_2 4$

✓ Correct

By the quotient rule, this is log_2 $\frac{72}{9} = log_2 2^3 = 3$

8. Simplify $\log_3 9 - \log_3 3 + \log_3 5$

1 / 1 puntos

- O 15
- $\bigcirc \log_3 8$
- 0 8
- log₃ 15

✓ Correct

By the Quotient and Product Rules, this is $log_3 = \frac{9 \times 5}{3} = log_3 = 15$

1 / 1 puntos

- 9. Simplify $\log_2(3^8 \times 5^7)$
 - $(8 \times \log_2 3) + (7 \times \log_2 5)$
 - \bigcirc 56 × log₂ 15
 - \bigcirc 15 × log₂ 56
 - $\bigcirc (5 \times \log_2 3) + (8 \times \log_2 5)$

✓ Correct

We first apply the Product Rule to convert to the sum: $\log_2(3^8) + \log_2(5^7)$. Then apply the power and root rule.

10. If $\log_{10} y = 100$, what is $\log_2 y = ?$

1 / 1 puntos

- 500
- 332.19
- O 20
- 301.03

✓ Correct

Use the change of base formula, $\log_a b = \frac{\log_x b}{\log_x a}$

Where the "old" base is x and the "new" base is a.

so
$$\frac{100}{\log_{10}(2)} = \frac{100}{0.30103} = 332.19$$

11. A tree is growing taller at a continuous rate. In the past 12 years it has grown from 3 meters to 15 meters. What is its rate of growth per year?

1 / 1 puntos

- 13.41%
- 0 10.41%

- 12.41%
- 11.41%

$$\frac{\ln \frac{15}{3}}{12} = 0.1341$$

12. Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25×10^{-10} grams weights 1000 Kilograms?

1 / 1 pu

- \bigcirc 0.875 days
- 875 days
- 87.5 days
- 8.75 days

Correct
$$6.25 \times 10^{-10} \times e^{4t} = 10^{6}$$

$$4t = \ln \left(\frac{10^{6}}{(6.25 \times 10^{-10})} \right) = 35.00878$$

$$t = \ln \frac{10^{6}}{6.25 \times 10^{-10}} = 8.752195$$