

XTTS迁移最佳实践

1 方案选型

2 跨平台迁移实践

方案选型

在去IE的大趋势下, Oracle数据库面临着从"小机+集中式存储"环境迁移至"X86架构+分布式存储"环境的挑战。核心数据库已经在"小机+集中式存储"环境中平稳运行了多年, 如何将这些单库容量超过10TB级的数据库在有限的停机时间内平稳安全的迁移至x86服务器中, dba面临3方面的挑战

停机时间

对于数据量大,业务连续性要求高的核心数据库如何降低业务中断时长?

跨平台

不同字节序操作系统之间的 迁移对方案选行有何限制?

应用平滑过渡

迁移之后部分特殊应用能 否完成平滑过渡?

方案选型

TB级别的数据库,常规迁移方案对比

方案	操作难度	业务中断时长	数据校验	跨平台	
数据泵	低	48小时以上	是	支持	
RMAN恢复	低	10小时	否	不支持	
DATAGUARD	低	15分钟	否	不支持	
GOLDENDATE	高	30分钟	是	支持	

什么是XTTS

XTTS是基于表空间的一种迁移技术。Oracle8i时代,就引入了TTS技术,支持相同平台相同块大小之间的表空间传输。到了9i,TTS开始支持同平台中,不同块大小的表空间传输。10g时代,引入了跨平台的表空间传输方案,也就是我们说的XTTS。在11g开始,为了应对越来越大的数据量,而停机时间甚至还在减少的情况,出现了新的解决方案—使用增量备份方式的xtts。

关键

使用tts迁移数据,数据文件大小直接决定停机时长

XTTS VIA增备

11g开始出现了一样新的技术--XTTS VIA增备。即在源端库保持正常运行的时候传送所有的数据文件,通过不断生成的增量备份并恢复,使需要迁移的数据不断前滚接近生产数据状态。

rman-xttconvert_2.0

参数	定义
tablespaces=tbs1,tbs2	迁移表空间列表
platformid=4	查询主端V\$DATABASE.PLATFORM_ID
Srcdir=srcdir1,srcdir2	当前源端数据文件所在的位置
dstdir=dstdir1 ,dstdir2	目标端数据文件放置位置
srclink= zjtest	目标端数据库连接源数据库的dblink
backupformat=/data/backup	源端放置增量备份的目录
stageondest=/data/backup	目标端放置增量备份的目录
backupondest=/data/restore	目标端放置增量备份转换后的目录
rollparallel=2	定义增量前滚的并行度
getfileparallel=4	定义同时获取文件的并行度

增量还原

利用源端产生端增量备份集前 滚数据文件

增量备份

基于scn进行增量备份

数据文件抽取

目标库利用初始化产生的配置 文件信息,从源库通过**dblink** 抽取数据文件

初始化

使用xttdriver - s生成xttne wdatafile等文件

初始化阶段产生的三个文件(xttdriver - s)

```
01 • /bama/ama11207/:tto\ mome xttnewdatafiles.txt
::RES_DATA
7.SOURCEDIR3:/rvg11_lv_16g_03.dbf
41,58URCEBIR3://vg12_iv_16g_01.dbf
42,S0URCEDIR3:/rvg12_lv_16g_02.dbf
43,SOURCEDIR3:/rvg12_lv_16g_03.dbf
44,SOURCEDIR3:/rvg12_lv_16g_04.dbf
45,SOURCEDIR3:/rvg12_lv_16g_05.dbf
46,SOURCEDIR3:/rvg12_lv_16g_06.dbf
____n_1:/home/ora11203/xtts> more getfile.sql
O_SOURCEDIR3 rug11 lu 16g 03 dbf SOURCEDIR3 rug11 lu 16g 03 dbf
O SOURCEDIR3,rvg12_lv_16g_01.dbf,SOURCEDIR3,rvg12_lv_16g_01.dbf
O.SUURCEDIR3.rvg12 Iv 16g O2.dbf.SUURCEDIR3.rvg12 Iv 16g O2.dbf
0,SOURCEDIR3,rvg12_lv_16g_03.dbf,SOURCEDIR3,rvg12_lv_16g_03.dbf
0,SOURCEDIR3,rvg12_lv_16g_04.dbf,SOURCEDIR3,rvg12_lv_16g_04.dbf
O,SOURCEDIR3,rvg12_lv_16g_05.dbf,SOURCEDIR3,rvg12_lv_16g_05.dbf
<u>zjndnisô1./home/oral1203/xtts/ mo</u>je xttplan.txt
RÈS DATA::::14902971802300
41
42
45
44
45
46
47
```

基于rman的xtts迁移

参数	定义
tablespaces=tbs1,tbs2	迁移表空间列表
platformid=4	查询主端V\$DATABASE.PLATFORM_ID
Dfcopydir=/data	源端放置数据文件的目录
Backupformat=/increment	源端放置增量备份的目录
Stageondest=/data	目标端放置增量备份的目录
storageondest=+DATA_DG/data02	目标端放置转换后数据文件的目录
Backupondest=/restore	目标端放置增量备份转换后的目录
parallel=6	数据文件转换并行度
rollparallel=4	增量还原并行度

目标端多数据文件 平行转换 目标端通过配置parallel 通过创建多个xtts目录, 参数进行多个数据文件的 配置多份xtt.Properties 并行字节序转换 文件发起多个xtts数据文 件转储 源端表空间 并行分批转换 合并增量备份 参数文件 合并xtts.Properties、 利用oracle块更改跟踪可 xttplan等参数文件,对 以有效降低增量备份时间 增量备份还原进行集中管

www.shsnc.cn

开启块更改跟踪

停机割接是整个xtts迁移的关键,如何降低停机时间直接影响业务连续性和客户感知。整个停机割接步骤包括:最后一次增量备份还原、源数据同步、数据校验三部分

提升效率、压缩时间

元数据同步

测试发现expdp / impdp数据同步效率低下,4w张表数据导出导入时间达到3小时

统计信息导出

统计信息的抽取占整个 元数据同步时间的30%

数据校验

数据同步完成之后,手工校验源数据时间达到 30分钟

序号	步骤内容	步骤	预计开始时间	预计时长	操作人
1	进行统计信息备份	抽取生产表以及索引的统计信息	22:00	30分钟	ххх
2	生产表空间read only	将生产表空间只读,同时修改 iob_queue_processes参数为0	23:10	10分钟	xxx
3	最后一次增量备份还原 以及数据字典信息导出	增量备份还原以及导出元数据	23:20	30分钟	ххх
4	目标端导入元数据	target1/target2等人兀剱佑	23:50	30分钟	xxx
5	统计信息导入	多plsql窗口并行导入统计信息	0:20	10分钟	ххх
6	数据交验	详细方法见校验文档	0:20	15分钟	xxx
8	表空间read write	alter tablespace tbs1 read write; alter tablespace tbs2 read write; alter tablespace tbs3 read write; alter tablespace tbs4 read write;	00:35	10分钟	xxx

通过增量备份、元数据导出、统计信息导入、数据校验等步骤的并行操作,有效缩 短缩短停机时间

割接预演

至少三次完整的割接预演 具体操作落实到人 割接步骤精确到分钟

双割接环境

准备两套割接环境 异步操作

二次确认

对于正式割接, 每一步操作要求两人确认

闪回还原点

利用oracle附带的闪回还原点 技术,做做到关键操作可回退

