無線通訊積體電路 Homework 5 107501019 魏子翔

1.

Assume that a MIMO equation is described by

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \end{bmatrix} = \begin{bmatrix} H^{(1,1)} & H^{(1,2)} & H^{(1,3)} \\ H^{(2,1)} & H^{(2,2)} & H^{(2,3)} \\ H^{(3,1)} & H^{(3,2)} & H^{(3,3)} \end{bmatrix} \begin{bmatrix} \chi^{(1)} \\ \chi^{(2)} \\ \chi^{(3)} \end{bmatrix} + \begin{bmatrix} v^{(1)} \\ v^{(2)} \\ v^{(3)} \end{bmatrix} = \mathbf{H}\mathbf{x} + \mathbf{v},$$

where $y^{(n)}$ is the received signal at nth antenna; $x^{(m)}$ is the transmitted signal at mth antenna; $v^{(n)}$ is the noise; $H^{(n,m)}$ is the channel response from antenna m to antenna n.

(a). Find the ZF detection matrix G_{ZF} so that we can detect x by $G_{ZF}y$, what is $\hat{x_1}$, the output after ZF detection.

GZF =

xl bar =

(b). What is the output after you apply $G_{ZF}y'$? (5%), what is the detection output $\hat{x_2}$?

x2prime =

noise =

x2 bar =

 $x_2' = G_{ZF}y'$,我們這邊將 \hat{x}_2 進行兩種分析,首先就是直接將 x_2' 量化,可得 $[-1-3i\ 3-3i\ 3+1i]'$

第二種,為了要求 \hat{x}_2 ,首先要找出nosie=y'-y,所以 $\hat{x}_2=x_2'-G_{ZF}*noise$,得到的結果如上方 x2_bar,其值完全與(a)小題一模一樣。

2.

Given that noisy
$$\mathbf{y}' = \mathbf{H}\mathbf{x} + \mathbf{v} = \begin{bmatrix} H^{(1,1)} & H^{(1,2)} & H^{(1,3)} \\ H^{(2,1)} & H^{(2,2)} & H^{(2,3)} \\ H^{(3,1)} & H^{(3,2)} & H^{(3,3)} \end{bmatrix} \begin{bmatrix} \chi^{(1)} \\ \chi^{(2)} \\ \chi^{(3)} \end{bmatrix} + \mathbf{v}$$
, now we want to

use OSIC to detect transmitted signals from 16-QAM constellation $\{\pm 1 \pm 1j, \pm 1 \pm 3j, \pm 3 \pm 1j, \pm 3 \pm 3j\}$. Please download HW5-2.mat, which contains two variables, **H**(Hmatrix) and **y**'(yprime).

(a). Which signal should be detected first? $x^{(1)}$, $x^{(2)}$ or $x^{(3)}$?

ROW1 =

1.0351

ROW2 =

1.5042

ROW3 =

3.1402

我們藉由計算 G_0 每一行的平方和,得到上方的結果,可以看出第一航所得到的值最小,因此 $x^{(1)}$ 先。

(b). Please write down your first detected output $\hat{x}^{(\alpha^1)}$ after decision.

xal =

-1.1507 + 3.2353i

 $\hat{x}^{(lpha 1)}$ 計算得到上方的結果,我們再將其量化成<u>-1+3i</u>

(c). Please write down the equation y(1) = H(1)x(1)

```
H1 =
```

y1 =

x1 =

我們將 H(0)的第 $\alpha 1 = 1$ 列刪除後就能得到 H(1),而 $y(1) = y(0) - H(0)_{col,\alpha 1} * \hat{x}^{(\alpha 1)}$, $x(1) = H^{-1}(1)y(1)$

(d). Please write down the second detected output $\hat{x}^{(\alpha^2)}$.

1.0646

ROW2 =

1.3132

xa2 =

計算G(1)每一行的平方和,得到第一行的值最小,再將 $G(1)_{row,\alpha 2}*y(1)$ 就 能得到 $\hat{x}^{(\alpha 2)}$,將其量化後得到 $\underline{-3+1i}$ (e). Please write down the equation y(2) = H(2)x(2).

H2 =

$$-0.5525 + 0.1579i$$

$$-0.7337 + 0.4045i$$

y2 =

$$-1.2787 + 2.4262i$$

$$-1.0337 + 3.6595i$$

x2 =

我們將 H(1)的第 $\alpha 2=1$ 列刪除後就能得到 H(2),而 $y(2)=y(1)-H(1)_{col,\alpha 2}*\hat{x}^{(\alpha 2)}$, $x(2)=H^{-1}(2)y(2)$

(f). Please write down the second detected output $\hat{x}^{(\alpha^3)}$.

xa3 =

最後直接將 G(2)*y(2)就能得到 $\hat{x}^{(\alpha 3)}$,將其量化後得到 $\underline{\textbf{3-3i}}$

Assume that the MIMO configuration is 4×4. The constellation of BPSK is used at the transmitter, which means the element $x^{(n)}$ of the 4×1 transmitted vector \mathbf{x} belongs to $\{+1,-1\}$. Now, please download HW5-3.mat. It contains the 4×4 channel matrix, \mathbf{H} (Hmatrix) and the 4×1 received signal, $\mathbf{y}(=\mathbf{H}\mathbf{x}+\mathbf{n})$. Note that

(a). Please draw $\Gamma(\bar{x})$ versus the index of possible \bar{x} vectors and then determine $\hat{x}_{ML} = \arg\min_{\bar{x}} \Gamma(\bar{x})$.

1	1	1	1	67.8616
1	1	1	-1	58.2691
1	1	-1	1	98.5133
1	1	-1	-1	90.2492
1	-1	1	1	60.0647
1	-1	1	-1	53.8053
1	-1	-1	1	83.4545
1	-1	-1	-1	78.5236
-1	1	1	1	16.0189
-1	1	1	-1	1.6859
-1	1	-1	1	17.5500
-1	1	-1	-1	4.5454
-1	-1	1	1	15.7033
-1	-1	1	-1	4.7033
-1	-1	-1	1	9.9726
-1	-1	-1	-1	0.3010

經過 matlab 模擬後得到上方的表格(map),可以得到當 $\bar{x} = [-1-1-1-$

1]時,可以得到
$$\min_{\bar{x}} \Gamma(\bar{x}) = 0.3010$$
,因此 $\hat{x}_{ML} = [-1-1-1-1]$ 。

(b). Write down
$$\mathbf{z} = [z^{(1)} \ z^{(2)} \ \dots z^{(4)}]^T$$
.

Q =

-0.9283 0.0481 0.3591 -0.0841
-0.3713 -0.1223 -0.9076 0.1532
-0.0069 0.9497 -0.0738 0.3044
-0.0204 -0.2843 0.2047 0.9364

R =

4.2225 0.2215 -0.8621 -0.1403
0 -1.1403 0.6286 -0.3926
0 0 -0.3820 -0.7641
0 0 0 1.3334

z =

-3.8503
0.5722
1.0411
-1.4460

(c). Use the 6-best algorithm to find out the detection output $\hat{\mathbf{x}}_{6B}$ that has minimum $\Phi(\bar{\mathbf{x}})$ at the bottom layer of the visiting nodes. Mark the partial Euclidean distance (PED) of (2+4+8+12) nodes that you visited.

best =

-1 -1 -1 -1

ED =

0.3010

0	0	1	7.7254
0	0	-1	0.0127
0	-1	-1	0.0237
0	1	-1	0.4470
0	-1	1	9.7508
0	1	1	12.5093
-1	-1	-1	0.1340
1	1	-1	0.9247
-1	1	-1	2.9730
1	-1	-1	3.8201
-1	-1	1	9.9562
-1	1	1	13.1559
-1	-1	-1	0.3010
1	1	-1	1.6859
1	-1	-1	4.5454
-1	1	-1	4.7033
-1	-1	1	9.9726
-1	1	1	15.7033
	0 0 0 0 0 -1 1 -1 -1 -1 -1 -1 -1	0 0 0 -1 0 1 0 1 -1 -1 1 1 -1 1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1	0 0 -1 0 -1 -1 0 1 -1 0 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

上方表格為 6-best 演算法中所被選擇的點,而黃底的數據由上到下分別 PED of (2+4+8+12) nodes that you visited,

NODE 2 0 0 0 -1 0.0127

NODE 4 0 0 1 -1 0.4470

NODE 8 0 1 1 -1 0.9247

NODE 12 0 -1 1 1 13.1559

(我的演算法在算每一層的 PED 時,除了 Level 4(Node 1、2)外,會將算到的結果進行排序,然後選擇當中的前 6 個,因此都會根據 PED 從小到大去拜訪 nodes)

最後得到當 $\hat{x}_{6B} = [-1 - 1 - 1 - 1]$ 時,會得到 minimum $\Phi(\bar{x}) = 0.3010$

(d). Does the $\hat{\mathbf{x}}_{6B}$ same as $\hat{\mathbf{x}}_{ML}$. If yes, why? If no, why? Please comment.

 \hat{x}_{6B} 與 \hat{x}_{ML} 相同,這是因為當 K-best algorithm 的 K 值越大時所能得到的 ED 越有機會接近窮舉所得到的最佳答案,這次我們的 x vector 也夠小(4 個元素),所以取 6 best 時,每一層最多都可以算到 12 個節點的 PED,而這題的 tree 的最底層的 leaf 只有 16 個,因此才有很高的機率得到最佳解;但是根據上方表格,在每一層中可以發現最小 PED 都發生在[$\sim\sim\sim-1$]、[$\sim\sim-1$ -1]、[$\sim\sim-1$ -1]上,因此取 2-best 也可以得到[~-1 -1-1]有最佳解。