$12n_{0199} (K12n_{0199})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{10} + u^9 + 5u^8 - 3u^7 - 9u^6 + 7u^4 + 4u^3 - 3u^2 + b + u + 1, \\ u^{10} - u^9 - 5u^8 + 3u^7 + 9u^6 - 7u^4 - 5u^3 + 3u^2 + a + u - 1, \\ u^{11} - 2u^{10} - 4u^9 + 8u^8 + 6u^7 - 8u^6 - 8u^5 + 9u^3 - 2u^2 + 1 \rangle \\ I_2^u &= \langle b + 1, \ -u^3 + a + 2u - 1, \ u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 17 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{10} + u^9 + \dots + b + 1, \ u^{10} - u^9 + \dots + a - 1, \ u^{11} - 2u^{10} + \dots - 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10} + u^{9} + 5u^{8} - 3u^{7} - 9u^{6} + 7u^{4} + 5u^{3} - 3u^{2} - u + 1 \\ u^{10} - u^{9} - 5u^{8} + 3u^{7} + 9u^{6} - 7u^{4} - 4u^{3} + 3u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{10} - u^{9} - 5u^{8} + 3u^{7} + 9u^{6} - 7u^{4} - 4u^{3} + 3u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 4u^{10} - 3u^{9} - 20u^{8} + 8u^{7} + 32u^{6} + 5u^{5} - 16u^{4} - 18u^{3} + 3u^{2} - 3u - 2 \\ -2u^{10} + u^{9} + 12u^{8} - 2u^{7} - 24u^{6} - 5u^{5} + 16u^{4} + 10u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{10} - u^{9} - 4u^{8} + 3u^{7} + 4u^{6} - 4u^{3} + u^{2} - u \\ u^{10} - u^{9} - 4u^{8} + 3u^{7} + 5u^{6} + u^{5} - 3u^{4} - 7u^{3} + 3u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \\ v^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u^{9} + 4u^{7} - 3u^{5} - 2u^{3} - u \\ u^{9} - 5u^{7} + 7u^{5} - 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

$$= 4u^{10} - 5u^9 - 15u^8 + 17u^7 + 14u^6 - 9u^5 - 4u^4 - 3u^3 + 13u^2 - 18u + 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{11} + 27u^{10} + \dots + 133u + 1$
c_2, c_4	$u^{11} - 7u^{10} + \dots - 13u + 1$
c_3, c_7	$u^{11} - u^{10} + \dots - 64u + 64$
c_5, c_6, c_9 c_{10}	$u^{11} + 2u^{10} - 4u^9 - 8u^8 + 6u^7 + 8u^6 - 8u^5 + 9u^3 + 2u^2 - 1$
c_8, c_{11}, c_{12}	$u^{11} + 12u^9 + 38u^7 + 10u^5 - 11u^3 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} - 159y^{10} + \dots + 14833y - 1$
c_{2}, c_{4}	$y^{11} - 27y^{10} + \dots + 133y - 1$
c_3, c_7	$y^{11} + 51y^{10} + \dots + 49152y - 4096$
c_5, c_6, c_9 c_{10}	$y^{11} - 12y^{10} + \dots + 4y - 1$
c_8, c_{11}, c_{12}	$y^{11} + 24y^{10} + \dots + 4y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.556675 + 0.808029I		
a = -0.55576 - 1.52077I	16.4992 - 2.6778I	2.70707 + 2.34778I
b = 2.58699 + 0.12834I		
u = -0.556675 - 0.808029I		 -
a = -0.55576 + 1.52077I	16.4992 + 2.6778I	2.70707 - 2.34778I
b = 2.58699 - 0.12834I		
u = 1.26079		
a = 1.16164	1.10399	6.07670
b = -1.67909		
u = -1.44218 + 0.13979I		
a = 0.14841 + 1.46791I	4.02973 - 3.04693I	7.61574 + 3.00651I
b = -0.179069 - 0.877965I		
u = -1.44218 - 0.13979I		
a = 0.14841 - 1.46791I	4.02973 + 3.04693I	7.61574 - 3.00651I
b = -0.179069 + 0.877965I		
u = 0.263767 + 0.414640I		
a = 0.051496 - 1.271950I	-1.53989 + 1.03784I	0.63702 - 4.26648I
b = -0.696724 + 0.457926I		
u = 0.263767 - 0.414640I		
a = 0.051496 + 1.271950I	-1.53989 - 1.03784I	0.63702 + 4.26648I
b = -0.696724 - 0.457926I		
u = 1.52082		
a = 0.186924	7.24960	14.5180
b = 0.288918		
u = -0.426077		
a = 0.683970	0.618683	16.2830
b = 0.0908333		
u = 1.55733 + 0.28677I		
a = -2.16041 + 1.82801I	-16.0730 + 6.7220I	5.60131 - 2.60237I
b = 2.43848 - 0.33867I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.55733 - 0.28677I		
a = -2.16041 - 1.82801I	-16.0730 - 6.7220I	5.60131 + 2.60237I
b = 2.43848 + 0.33867I		

II. $I_2^u = \langle b+1, \ -u^3+a+2u-1, \ u^6+u^5-3u^4-2u^3+2u^2-u-1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - 2u + 1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - 2u \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - 2u \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u + 1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} + 2u^{3} + u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^5 + u^4 6u^3 u^2 2u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_{3}, c_{7}	u^6
C ₄	$(u+1)^6$
c_5, c_6	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
<i>c</i> ₈	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$
c_{9}, c_{10}	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
c_{11}, c_{12}	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_6, c_9 c_{10}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_8, c_{11}, c_{12}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.493180 + 0.575288I		
a = -0.356069 - 0.921195I	-4.60518 + 1.97241I	2.71215 - 3.88360I
b = -1.00000		
u = 0.493180 - 0.575288I		
a = -0.356069 + 0.921195I	-4.60518 - 1.97241I	2.71215 + 3.88360I
b = -1.00000		
u = -0.483672		
a = 1.85419	-0.906083	3.38760
b = -1.00000		
u = -1.52087 + 0.16310I		
a = 0.645284 + 0.801205I	2.05064 - 4.59213I	6.49628 + 3.92496I
b = -1.00000		
u = -1.52087 - 0.16310I		
a = 0.645284 - 0.801205I	2.05064 + 4.59213I	6.49628 - 3.92496I
b = -1.00000		
u = 1.53904		
a = 1.56737	6.01515	6.19550
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{11} + 27u^{10} + \dots + 133u + 1)$
c_2	$((u-1)^6)(u^{11}-7u^{10}+\cdots-13u+1)$
c_3, c_7	$u^6(u^{11} - u^{10} + \dots - 64u + 64)$
C ₄	$((u+1)^6)(u^{11}-7u^{10}+\cdots-13u+1)$
c_5, c_6	$(u^{6} + u^{5} - 3u^{4} - 2u^{3} + 2u^{2} - u - 1)$ $\cdot (u^{11} + 2u^{10} - 4u^{9} - 8u^{8} + 6u^{7} + 8u^{6} - 8u^{5} + 9u^{3} + 2u^{2} - 1)$
c ₈	$(u^{6} - u^{5} + 3u^{4} - 2u^{3} + 2u^{2} - u - 1)$ $\cdot (u^{11} + 12u^{9} + 38u^{7} + 10u^{5} - 11u^{3} - 2u + 1)$
c_9, c_{10}	$(u^{6} - u^{5} - 3u^{4} + 2u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{11} + 2u^{10} - 4u^{9} - 8u^{8} + 6u^{7} + 8u^{6} - 8u^{5} + 9u^{3} + 2u^{2} - 1)$
c_{11}, c_{12}	$(u^{6} + u^{5} + 3u^{4} + 2u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{11} + 12u^{9} + 38u^{7} + 10u^{5} - 11u^{3} - 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{11}-159y^{10}+\cdots+14833y-1)$
c_2, c_4	$((y-1)^6)(y^{11} - 27y^{10} + \dots + 133y - 1)$
c_3, c_7	$y^6(y^{11} + 51y^{10} + \dots + 49152y - 4096)$
$c_5, c_6, c_9 \ c_{10}$	$(y^6 - 7y^5 + \dots - 5y + 1)(y^{11} - 12y^{10} + \dots + 4y - 1)$
c_8, c_{11}, c_{12}	$(y^6 + 5y^5 + \dots - 5y + 1)(y^{11} + 24y^{10} + \dots + 4y - 1)$