Lagrangian Problems Part 1

M. Yu

November 2015

Solve the following problems without the standard method of Newtonian mechanics. The Lagrangian is defined to be $\mathcal{L} = T - U$ (kinetic - potential energy), the Euler-Lagrange equation is:

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{L}}{\partial q} = 0.$$

- 1. Give the equation of acceleration of Patrick on a sled on a frictionless ramp inclined at an angle of θ using the Lagrangian. Prove that it agrees with $g \sin(\theta)$.
- 2. We had this problem in the gravitation pset about Patrick and his breakfast. Patrick has mass m and his breakfast has mass M. They initially start infinitely far away. When they are a distance r from each other find how fast Patrick and his breakfast are moving.
- 3. Matthew has Patrick tied onto the end of a string, forming a pendulum. Let the angle that the Patrick pendulum makes with the vertical be θ and the string have length ℓ . Find the equation of motion of the pendulum.
- 4. Take the first problem again. This time, the ramp has mass M and Patrick has mass m. When Patrick slides down the ramp, he also pushes the ramp backwards. Assume all contact surfaces are frictionless. Find the acceleration of the ramp.

Remark. Consider setting up two coordinate systems. Let the coordinate for the ramp be relative to a point far away from the ramp. You may set up the coordinate for Patrick the same way as problem 1.

5. Here is a prelude to what is to come. A function $F(q_j, \dot{q}_j, t)$ which has its total time derivative zero is called a constant of motion, better known as a conserved quantity. As an example we will define the Hamiltonian:

$$H = \sum_{j} q_{j} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} - \mathcal{L}$$

- Prove that the Hamiltonian, or total energy, is conserved given that the E-L holds by taking $\frac{dH}{dt}$.
- Let $p_j = \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$, we call this the generalized momentum. Show that if $\frac{\partial \mathcal{L}}{\partial q} = 0$, then momentum is a conserved quantity. (Use the E-L equation given above)
- 6. *Challenge*: Suppose you are ambitious enough to try and describe everything in the observable universe in one mathematical equation

$$\mathscr{L} = \sqrt{g} \left(R - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \psi \not \!\! D \bar{\psi} \right).$$

Learn all you can about this equation, come back, and teach me something you learned! You might want to search "Standard Model"