Calculating Vladimirov derivatives

Ziming Ji

October 3, 2018

1 Derivative of the χ character

Calculating Vladimirov derivative of $\chi(k_n y)$ where $k_n = p^{-n}$:

$$D_{y}^{s}\chi(k_{n}y) = \frac{1}{\Gamma_{p}(-s)} \int_{\mathbb{Q}_{p}} dx \frac{\chi(p^{-n}x) - \chi(p^{-n}y)}{|x - y|_{p}^{1+s}}$$

$$= \frac{1}{\Gamma_{p}(-s)} \left(\int_{\mathbb{Q}_{p}} du \frac{\chi(p^{-n}(u + y))}{|u|_{p}^{1+s}} - \int_{\mathbb{Q}_{p}} du \frac{\chi(p^{-n}y)}{|u|_{p}^{1+s}} \right)$$

$$= \frac{1}{\Gamma_{p}(-s)} \chi(p^{-n}y) \left(\int_{\mathbb{Q}_{p}} du \frac{\chi(p^{-n}u)}{|u|_{p}^{1+s}} - \int_{\mathbb{Q}_{p}} du \frac{1}{|u|_{p}^{1+s}} \right)$$

$$= \frac{1}{\Gamma_{p}(-s)} \chi(p^{-n}y) \left(-p^{(n-1)(s+1)-n} + \sum_{n}^{\infty} p^{ls} (1 - \frac{1}{p}) - \sum_{-\infty}^{\infty} p^{ls} (1 - \frac{1}{p}) \right)$$

$$? = \frac{1}{\Gamma_{p}(-s)} \chi(p^{-n}y) \left(p^{ns} \Gamma_{p}(-s) \right) = p^{ns} \chi(k_{n}y)$$

2 Check shift invariance of a general p-adic integral

Define a general integral over p-adic number field as:

$$\int_{\mathbb{Q}_p} dx f(|x|_p) = \sum_{l=-\infty}^{\infty} \int_{p^l \mathbb{U}_p} dx f(p^{-l})$$
(2)

A shift of the integral variable gives:

$$\int_{\mathbb{Q}_p} dx f(|x|_p) = \int_{\mathbb{Q}_p} d(u - y) f(|u - y|_p) \quad \text{where} \quad u = x + y$$
(3)

Suppose that d(u-y)=du when y is constant. Then we can proceed by splitting \mathbb{Q}_p :

$$\int_{\mathbb{Q}_p} d(u)f(|u-y|_p) = \sum_{l=-\infty}^{\infty} \int_{p^l \mathbb{U}_p} du f(|u-y|_p)$$
(4)

Note that we cannot write $|u-y|_p$ as p^{-l} in each block any more. Suppose that $y=p^m(a_0+a_1p+a_2p^2+...)$