Time Series Prediction for Wal-Mart Sales

Augusto Perez, James Ghosn, German Baltazar

06/29/2022

Data Description

- Weekly information regarding Wal-Mart sales
- Dataset with 421,570 observations
- Sum of sales per department

Date	Store	Dept	Weekly_Sales	Temperature
Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4
MarkDown5	CPI	Unemployment	IsHoliday	

EDA

- General observation shows little periodic behavior on the weekly sales
- Too many models to predict each store individually
- Use of K-Means to cluster the data into smaller groups

Elbow Method

- Vary the number of clusters k
- Obtain the WCSS (Within-Cluster Sum of Square)
- Stay with the model that breaks the drastic change on the WCSS (the elbow)

$$D_r = \sum_{i=1}^{n_r-1} \sum_{j=i}^{n_r} ||d_i - d_j||_2$$

Elbow Method

K-Means Visualization

- One possible way of observing
- Difficult to see multidimension al behavior on 2D

Weekly Sales per Cluster

Classification based on range of prices

ARIMA

- Evaluate for stationarity of clusters
- Clusters 1 and 3 were non-stationary
- Applied differentiation for stationarity

ACF and PCF

Definition(Autocorrelation function ACF)

Let $\{X_t\}$ be a stationary time series. The autcorrelation function de $\{X_t\}$ at lag h is

$$\rho(h) = \frac{\gamma_X(h)}{\gamma_X(0)}$$

where $\gamma_X(h) = Cov(X_{t+h}, X_t)$ and the covariance function, $Cov(X_{t+h}, X_t)$ is defined by $E[(X_t - \mu(t))(X_{t+h} - \mu(t+h))]$

PACF for ARIMA

- Selected the smallest lag value closer to the decision boundary (without touching it)
- Determines the p
 parameter for
 ARIMA model

ACF for ARIMA

Repeat same process for the quantum parameter

Selected ARIMA Structures

	р	d	q
Cluster 0	0	1	1
Cluster 1	3	0	4
Cluster 2	0	1	1
Cluster 3	1	0	1
Cluster 4	1	0	5

Facebook Prophet

Facebook Prophet

Conclusions

- The use of unsupervised methods allows for solving the problem with fewer models
- The application of multiple processing techniques like Elbow or normalization makes it easier to generate useful predictions

Thanks!

Any questions?