20 Inner and outer automorphisms (11/08)

20.1 More on automorphisms

Lemma 20.1. There is a homomorphism $c: G \to \operatorname{Aut}(G)$ given by sending $g \in G$ to conjugation by g, denoted by c_q . The kernel is Z(G), the center of G.

Proof. Given $g \in G$, the function $c_g \colon G \to G$ is a bijective group homomorphism. It follows that $g \mapsto c_g$ defines a function $G \to \operatorname{Aut}(G)$. To see that this is a group homomorphism, it is enough to check that

$$(c_g \circ c_h)(x) = c_g(c_h(x)) = g(hxh^{-1})g^{-1} = (gh)x(gh)^{-1} = c_{gh}(x),$$

for all $g, h, x \in G$. If $g \in Z(G)$, then $c_g(x) = gxg^{-1} = xgg^{-1} = x$, so c_g is the identity automorphism. Conversely, if $c_g = \mathrm{id}_G$, then $gxg^{-1} = x$ for every $x \in G$; in other words, g is in the center. \square

Definition 20.2. The image of $c: G \to \operatorname{Aut}(G)$ is called $\operatorname{Inn}(G)$. It is a subgroup of $\operatorname{Aut}(G)$. Automorphisms in $\operatorname{Inn}(G)$ are called **inner automorphisms**.

Example 20.3. If G is abelian, then Z(G) = G and Inn(G) = G/Z(G) is trivial.

Lemma 20.4. The subgroup $\text{Inn}(G) \subseteq \text{Aut}(G)$ is normal. Specifically, if $g \in G$ and $\sigma \in \text{Aut}(G)$, then $\sigma \circ c_g \circ \sigma^{-1} = c_{\sigma(g)}$.

Proof. Given $x \in G$ we have

$$(\sigma \circ c_g \circ \sigma^{-1})(c) = \sigma(c_g(\sigma^{-1}(x))) = \sigma(g\sigma^{-1}(x)g^{-1}) = \sigma(g)\sigma(\sigma^{-1}(x))\sigma(g^{-1}) = \sigma(g)x\sigma(g)^{-1} = c_{\sigma(g)}(x).$$

Thus, Inn(G) is normal in Aut(G) as claimed.

Definition 20.5 (Outer automorphisms). The quotient of Aut(G) by Inn(G) is the group of **outer automorphisms**. Note that, despite the name, the elements of Out(G) are not, in fact, automorphisms of G but are Inn(G)-cosets of automorphisms.

Definition 20.6 (Characteristic subgroups). A subgroup $H \subseteq G$ is **characteristic** if for every automorphism $\sigma \in \operatorname{Aut}(G)$ one has $\sigma(H) = H$.

Remark 20.7. A characteristic subgroup $H \subseteq G$ is necessarily normal. A normal subgroup is characteristic if every outer automorphism preserves H.

Example 20.8. The center Z(G) of a group G is characteristic.

Example 20.9. A normal p-Sylow subgroup of a finite group is characteristic.

Example 20.10. Let $G = \mathbf{Z}/p \times \mathbf{Z}/p$. Every subgroup of G is normal since G is abelian. However, the only characteristic subgroups of G are trivial. To see this, note that $\operatorname{Aut}(G) = \mathbf{GL}_2(\mathbf{F}_p)$. This group acts transitively on the group of non-zero vectors in G. So, no subgroup of order p is fixed by $\operatorname{Aut}(G)$. For concreteness, assume that $H \subseteq G$ is the group of order p generated by the element (1,0). The element

$$\sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

implements the "switch" automorphism $\sigma(a,b)=(b,a)$, And, $H\subseteq G$ is not fixed by σ .

Remark 20.11. In the situation of Example 20.10, Inn(G) is trivial, so $Aut(G) \cong Out(G)$.

20.2 Extensions

Definition 20.12 (Extensions). An extension of a group H by a group N is a sequence

$$1 \to N \to G \to H \to 1$$

of group homomorphisms called an exact sequence (or a short exact sequence). Each arrow is a homomorphism of groups and at each point in the diagram we have $\ker = \operatorname{im}$. This is a short-hand way of expressing the following:

- (a) $N \to G$ is injective,
- (b) $G \to H$ is surjective,
- (c) the kernel of $G \to H$ is N, and hence
- (d) $G/N \cong H$.

Remark 20.13. In the notation for an exact sequence "1" denotes the trivial group $\{e\}$.

Example 20.14. If N is a normal subgroup of G there is an exact sequence

$$1 \to N \to G \to G/N \to 1$$
,

and G is an extension of G/N by N.

Example 20.15. We can write S_3 as an extension of $\mathbb{Z}/2$ by $\mathbb{Z}/3$, resulting in $1 \to \mathbb{Z}/3 \to S_3 \to \mathbb{Z}/2 \to 1$. We cannot express S_3 as an extension of $\mathbb{Z}/3$ by $\mathbb{Z}/2$ because S_3 has no normal 2-Sylow subgroups.

Example 20.16. There is an exact sequence

$$1 \rightarrow \mathbf{Z}/3 \rightarrow \mathbf{Z}/6 \rightarrow \mathbf{Z}/2 \rightarrow 1.$$

Unlike for S_3 , there is also an exact sequence

$$1 \rightarrow \mathbf{Z}/2 \rightarrow \mathbf{Z}/6 \rightarrow \mathbf{Z}/3 \rightarrow 1.$$

Remark 20.17. In the ideal case when attempting to understand a group G one expresses G as the middle term of an exact sequence, and hence as an extension of G/N by a normal subgroup N. Understanding N and G/N and how they are "glued together" in the exact sequence leads to an understanding of G. The puzzle of finite group theory is that there *are* simple groups, even simple non-abelian groups as we will see, which by definition foil this approach.

20.3 Exercises

Exercise 20.1. Compute $\text{Inn}(\mathbf{Z}/n)$, $\text{Aut}(\mathbf{Z}/n)$, and $\text{Out}(\mathbf{Z}/n)$ for any $n \ge 2$.

Exercise 20.2. Compute $Inn(D_{2n})$, $Aut(D_{2n})$, and $Out(D_{2n})$, where D_{2n} is the dihedral group of order 2n for $n \ge 3$.