лите это понятие), лежащей в соприкасающейся плоскости с центром в центре кривизны кривой и радиусом, равным радиусу кривизны в точке $r(t_0)$.

Это предельная окружность называется соприкасающейся окруженостью в данной точке кривой.

17.6. Эвольвента

Как известно, $\frac{d \boldsymbol{t}}{d s} = k \boldsymbol{n}$. Покажем, что для плоских кривых

$$\frac{d\mathbf{n}}{ds} = -k\mathbf{t}.\tag{17.31}$$

В самом деле, поскольку n - единичный вектор и, следовательно, имееь постоянную длину, его производная $\frac{dn}{ds}$ перпендикулярна ему. Касательный вектор t также перпендикулярен вектору n. На плоскости два вектора, перпендикулярные третьему, коллинеарны, поэтому

$$\frac{d\mathbf{n}}{ds} = a\mathbf{t}.\tag{17.32}$$

Для того чтобы найти значение коэффициента a, продифференцируем по длине дуги тождество tn = 0. В результате получим

$$\frac{dt}{ds}\mathbf{n} + \mathbf{t}\frac{dn}{ds} = 0.$$

Подставив сюда значения $\frac{dt}{ds} = k\boldsymbol{n}, \frac{dn}{ds} = a\boldsymbol{t}$ и заметив, что $\boldsymbol{tt} = \boldsymbol{nn} = 1$, получим a = -k. Отсюда, в силу равенства (17.32), и следует формула (17.31). Формулы (17.9) и (17.31), т.е.

$$\frac{dt}{ds} = k\mathbf{n}, \frac{dn}{ds} = -k\mathbf{t},$$

называются формулами Френе¹ для плоской кривой.

Определение 8. $Eсли \ \kappa puвая \ \Gamma_1$ является эволютной плоской $\kappa puвой \ \Gamma$, то $\kappa puвая \ \Gamma$ называется эволбвентной $\kappa puвой \ \Gamma_1$.

 $^{^1 \}text{Ж.} \Phi. \Phi$ рене (1816-1900) - французский математик.