DIGITAL LOGIC DESIGN SHARDA KUMARI BT20EC001 ELECTRONICS AND COMMUNICATION EXPERIMENT 11

EXPERIMENT – 11

<u>AIM: -</u>

Design of 4-bit shift register (shift right).

APPARATUS REQUIRED: -

Logic trainer kit, D Flip-flop IC - 7474 wires.

THEORY:

Serial In/Shift Right/Serial Out Operation

Data is shifted in the right hand direction one bit at a time with each transition of the clock signal. The data enters the shift register serially from the left hand side and after four clock transitions the 4-bit registers has 4-bbits of data. The data is shifted out serially one bit at a time from the right hand side of the register if clock signals are continuously applied. Thus after 8 clock signals the 4-bit data is completely shifted out of the shift register.

Serial In/Serial Right/Serial Out Operation

Serial shift registers can be implemented using any type of flip-flops. A serial shift register implemented using D flip-flops with the serial data applied at the D input of the first flip-flop and serial data out obtained at the Q output of the last flip-flop is shown in figure. At each clock transition 1 bit of serial data is shifted in and at the same instant 1-bit of serial data is shifted out. For a 4-bit shift register, 8 clock transitions are required to shift in 4-bit data and completely shift out the 4-bit data. As the data shifted out 1-bit at a time, a logic 0 value is usually shifted in to fill up the vacant bits in the shift register.

Serial In/Shift Right/Serial Out Register

Timing diagram of a Serial In/Shift Right/Serial Out Register

Shift Register Truth Table

Q_0	Q_1	Q_2	Q_3	
0	0	0	0	
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	0	0	1	
	0 1 0	0 0 1 0 0 1	0 0 0 1 0 0 0 1 0	0 0 0 0 1 0 0 0 0 1 0 0

PROCEDURE:

- (i) Connections are given as per circuit diagram.
- (ii) Logical inputs are given as per circuit diagram.
- (iii) Observe the output and verify the truth table.

DESIGN:

RESULT:

Thus the Shift register was designed and their truth table is verified.

PRECATIONS:

- All connections should be made neat and tight.
- Digital lab kits and ICs should be handled with utmost care.
- While making connections main voltage should be kept switched off.
- Never touch live and naked wires.