

Human-Machine Calibration

Using Conformal Prediction

Why Calibration Matters?

- Machine metrics ≠ Human judgment
- Need for trustworthy evaluation
- Importance in regulated domains

Key Challenges

- Subjectivity in evaluation
- Cost of human labeling
- Need for uncertainty quantification

Conformal Prediction

- Statistical framework for prediction sets
- Guaranteed coverage probabilities
- Uncertainty quantification

Two Main Approaches

Transductive (Full) Conformal Prediction

- Retrains with each prediction
- Higher accuracy, more computational cost

Split Conformal Prediction

- Uses separate calibration set
- More efficient, slightly less accurate

Statistical Guarantees

- Coverage probability: $P(Y \in C(X)) \ge 1 \alpha$
- Exchangeability assumption
- · Finite sample validity
- Distribution Free

Steps

- 1. Pick a machine metrics to calibrate
- 2. Train the Model on Entire Labeled Dataset

 Logistics, Isotonic Regression, Monotonic xgboost, etc.
- 3. Calculate Nonconformity Scores for Each Data Point
- 4. Determine the Quantile Threshold
 - Sort the nonconformity scores
 - Set a confidence level 1 α (e.g., 95%)
- 5. Assign Hypothetical Labels to the New Unlabeled Observation
- 6. Compare Nonconformity Scores to the Quantile Threshold
- 7. Classify the New Observation: {0}, {1}, {0,1},{}

Non Conformity Scores

- Negative Logit Score
 - Based on prediction confidence
 - Distance from decision boundary

 $\alpha = -\log(p(y)/(1-p(y)))$ where p(y) = predicted probability for true class

- 2. Residual Score
 - Direct error measurement
 - |true_label predicted_probability|

 α = |ytrue - p(ypositive)| where p(ypositive) = predicted probability for positive class

Choosing the Right Score

- Negative Logit: When confidence matters
- Residual: When error measurement is key

Implementation Detail

1. Model Training

Train model M on labeled data $D = \{(xi, yi)\}$

2. Nonconformity Calculation

```
For each point (x, y):

\alpha = \text{nonconformity\_score}(M, x, y)
```

3. Threshold Determination

```
Q = (n+1)(1-\alpha)/n \# n = number of calibration points

T = quantile(non conformity scores, Q)
```

4. Prediction Set Construction

```
C(x) = \{y : nonconformity\_score(M, x, y) \le \tau\}
```

5. Decision Making

```
For each test point:
if nonconformity_score < τ:
  include in prediction set
else:
  exclude from prediction set
```


Active Learning

- 1. Train initial model
- 2. Measure Uncertainty
- 3. Select Sample
- 4. Get Human Labels
- 5. Model update
 - Update training set
 - Retrain model if necessary
 - Recalibrate conformal predictor

- 2. Calculate uncertainty for each unlabeled point: U(x) = size(C(x)) # size of prediction set
- 3. Select points for labeling:X_select = argmax_x U(x)

Key Takeaways

- Conformal prediction provides rigorous uncertainty quantification
- Choice of method depends on computational resources
- Active learning optimizes human labeling effort
- Framework enables trustworthy automated evaluation