Notes of Introducing to linear algebra

 $FrankZhou-jun^*$

2019年10月22日

1 the Geometry of linear equations

书上对常见的解线性方程组方式解释的很清楚了,这里从另一个角度解释"线性方程组"的意义。 假设一个两行的线性方程组

$$2x - y = 0$$

$$-x + 2y = 3$$
(1)

① 这是一个简单的二维线性方程组,解等于 x=1,y=2, 在**行图像** 中为二维空间下两条连线的交点。

②下面考虑列图像, 化简方程组:

$$x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \tag{2}$$

列图像中的集合意义就是找到合适的 x、y,进行伸缩变换,然后组合列向量,得到等号右边的列向量。

^{*}研究方向:信号处理,机械故障诊断,深度学习,强化学习,邮箱:zhoujun14@yeah.net

从图中可以看到,第一列向量不变,第二列向量延伸两倍,在进行列向量组合,可以得到最右边的列向量,即可得到解x=1,y=2。

$$\mathbf{A} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
$$b = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

由此,我们可以从中得到启发,求解线性方程组的问题其实就在问**. 是否最右边的所有列向量可以用列向量组合的形式进行表示?**。Can I solve $\mathbf{A}x = b$ for every \mathbf{b} ?(\mathbf{A} 为奇异或非奇异矩阵?是否所有列向量独立)

2 elimilation with matrix

假设增广矩阵 $(R(\mathbf{A}|b))$ 如下:

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \end{bmatrix} \xrightarrow{row_1 * -3 + row_2} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{bmatrix} \xrightarrow{row_2 * -2 + row_3} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 2 & -10 \end{bmatrix}$$

其实可以使用初等矩阵进行行操作。 $row_1 * -3 + row_2$ 行操作可以表示为

$$\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{bmatrix}$$

在该矩阵左边乘以一个矩阵是对其进行行操作,右乘是进行列操作。下面举一个例子来说说明这两种操作,置换矩阵如下所示:

左乘

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$

右乘

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} b & a \\ d & c \end{bmatrix}$$

3 multiplication and inverse matrix

3.1 multiplication

3.1.1 A* 列 = 列

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{bmatrix}$$

$$A: m \times n \qquad B: n \times p = c: m \times p$$

两个矩阵相乘,可以把其中一个矩阵 B 看做多个列向量组合,将矩阵 A 每一行矩阵 B 中的某列向量,则得到矩阵 C 中对应列向量,"columns of C are combinations of columns of A", 矩阵 C 中的列向量是矩阵 A 中列向量的线性组合。这样便把前面的线性方程组结合起来思考。

3.1.2 行 *B= 行

下面是矩阵 A 中每一行乘以 B 得到 C 中每一行。

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{bmatrix}$$

$$A: m \times n \qquad B: n \times p = c: m \times p$$

3.2 inverse matrix

谈到可逆矩阵,不得不提一下奇异矩阵和非奇异矩阵,非奇异矩阵可逆,奇异矩阵不可逆。

假设矩阵 A

 $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$

很明显,经过化简后矩阵 A

 $\begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$

下面说明什么是奇异矩阵, 若

$$\mathbf{A}x = 0 \tag{3}$$

存在任一个非零解 x,则 A 为奇异矩阵;若解 x 只有唯一零解,则是非奇异矩阵,即矩阵满秩。显然存在一个非零解 $\vec{x} = [-3,1]$ 。

求可逆矩阵方法有 Gauss-Jordan elimination, $\mathbf{E}[\mathbf{A} \ \mathbf{I}] = [\mathbf{I} \ \mathbf{A}^{-1}]$, 注意这里就用到了"矩阵乘以列向量等于列向量"思想。 \mathbf{E} 表示对矩阵 $[\mathbf{A} \ \mathbf{I}]$ 进行行变换,若初等矩阵 \mathbf{E} 满足 $\mathbf{E}\mathbf{A} = \mathbf{I}$, 则初等矩阵 \mathbf{E} 为 \mathbf{A}^{-1} , 所以 $\mathbf{E}\mathbf{I} = \mathbf{A}^{-1}$.

4 Fractorization into A = LU

L 代表 lower 下三角, U 代表 upper 上三角

$$\mathbf{E}_{32}\mathbf{E}_{31}\mathbf{E}_{21} = \mathbf{U}$$
 $\mathbf{A} = \mathbf{E}_{21}^{-1}\mathbf{E}_{31}^{-1}\mathbf{E}_{32}^{-1}\mathbf{U}$ $\mathbf{L} = \mathbf{E}_{21}^{-1}\mathbf{E}_{31}^{-1}\mathbf{E}_{32}^{-1}$

L 计算简单,包含了消元乘数信息。下面举个例子来说明这一过程,假设已知初等矩阵

$$\mathbf{E}_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix}$$

$$\mathbf{E}_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{E} = \mathbf{E}_{32} \times \mathbf{E}_{21} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 10 & -5 & 1 \end{bmatrix}$$

可以看到这里对消元乘数进行了相乘操作

$$\mathbf{E}_{21}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{E}_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$
$$\mathbf{L} = \mathbf{E}_{21}^{-1} \mathbf{E}_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$

可以发现这里是直接向消元乘数直接写入 L 中。

5 Transposes Permutations Spaces \mathbb{R}^n

置换矩阵 P:identify matrix with reordered rows $\mathbf{P}^T\mathbf{P} = \mathbf{I}, \mathbf{P}^T = \mathbf{P}^{-1}$ 。 转置矩阵 Transpose 的表达式为:

$$(\mathbf{A}^T)_{ij} = \mathbf{A}_{ji} \tag{4}$$

将转置用用到一个矩阵上,具有如下现象:一个矩阵转置后的矩阵等于转置前的矩阵,我们成该矩阵为 symmetric matrix, 即:

$$\mathbf{A}^T = \mathbf{A} \tag{5}$$

转置有一个非常重要的作用,矩阵 $\mathbf{R}^T\mathbf{R}$ 是一个对称矩阵,通过计算分析可以验证:

$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\mathbf{R}^T \mathbf{R} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 3 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 11 & 7 \\ 11 & 13 & 11 \\ 7 & 11 & 17 \end{bmatrix}$$

可以发现因为 $(\mathbf{A}^T)_{ij} = \mathbf{A}_{ji}$,所以在相乘的过程中具有重复的就算,比如 $row_1*col_2=row_2*row_1$,也就是右斜方向上的数值关于主元线对称相等。

证明
$$\mathbf{R}^T \mathbf{R}$$
 是一个对阵矩阵 $(\mathbf{R}^T \mathbf{R})^T = \mathbf{R}^T (\mathbf{R}^T)^T = \mathbf{R}^T \mathbf{R}$

5.1 Spaces of \mathbb{R}^n

 \mathbf{R}^2 表示的是 all 2-dim real vectors, 也就是组成的 X-Y plane。 $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} \pi \\ e \end{bmatrix}$

 \mathbf{R}^2 包含了实数组成的所有 2-dim 向量,同理, \mathbf{R}^3 包含了实数组成的所有 3-dim 向量。线性空间满足那 8 个 rules,具有封闭性,下面举个例子说明一下: 不是线性空间。

图 1: 取第一象限

可以验证,虽然第一象限的点满足加法法则,但当第一象限的点乘以一个负数时,得到的数很明显超出了第一象 限。不具有封闭特点。

下面考虑一下什么是子空间,或者说 a vector space inside ${f R}^2$

图 2: 子空间

可以看到这里有两条线,其中一条线穿过原点,可以验证穿过原点的这条线的所有点可构成 \mathbf{R}_2 下的子空间,这条线满足八个 rules,线性封闭。若果这条线不通过原点,则该线上的点乘 0 后,得到的点不在该空间范围内,也就是线性不封闭。可以得到 \mathbf{R}^2 的子空间:

- all of \mathbf{R}_2 , 即该空间本身 是一个子空间
- any line through origin, 通过原点的线 可以是一个子空间
- zero vector only,只有**原点向量** 的空间 同理我们可以得到 \mathbf{R}^3 的子空间:
- 1. all of \mathbf{R}_3 , 即该空间本身 是一个子空间
- 2. any plane through origin, 通过原点的平面 可以是一个子空间
- 3. any plane through origin, 通过原点的线可以是一个子空间,注意:这里的线是在三维空间中,有3个component。
- 4. zero vector only, 只有**原点向量** 的空间

下面讲一下矩阵的列空间:

矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix}$$
,则 $\mathbf{col1} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ 和 $\mathbf{col2} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$ 则 $\mathbf{col1}$ 和 $\mathbf{col2}$ 线性组合的所有向量构成 \mathbf{R}^3 的子空间,叫做列空间,可以是多列线性组合构成的线性空间。

6 Column Space and Null Space

6.1 Column Space

上一节已经讲了什么是列空间,这里在回顾一下,假设 P 和 L 是 A 的列空间。其中 P 是 R^3 中的平面子空间,其中 L 是 R^3 中的线子空间。

 $P \cup L$ is a subspace?

 $P \cap L$ is a subspace?

可以确定 $\mathbf{P} \cap \mathbf{L}$ is a subspace!,因为他们交集产生的子空间在 \mathbf{P} or \mathbf{L} or both 之中,所以交集一定是子空间。并集不是,不满足加法定理!

提到列空间有啥作用呢,我的理解是方面研究及知识传播,如要使线性方程组有解

$$\mathbf{A}x = b \tag{6}$$

b 应该存在 A 的列空间中 in \mathbb{R}^4

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$$

可以看到矩阵 **A** 中 $col_3 = col_1 + col_2$, 这说明在 **A** 的列空间中,仅使用 col_1 和 col_2 就可以做子空间的基,而 col_3 没有做贡献,子空间可以描述为:**a** two dimensional subspace of \mathbf{R}^4

6.2 Null Space

零空间是指 $\mathbf{A}x=0$ 的解形成的空间,可以发现 $\mathbf{x}=[0\ 0\ 0]$ 为齐次方程的解,在 $\mathbf{A}=\begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix}$ 很明显还有另一

个非零解 $x=[1\ 1\ -1]$,所以 $x=k[1\ 1\ -1]$,与前面的零解满足 8 个 rules,线性封闭构成零空间,即该其次方程中的零解为 \mathbf{R}^3 空间中的一条过原点的线。

7 solving Ax=0 pivots variables, special solutions

主要还是用到了 Gauss-Jordan 消元法,如矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}$,分别化简到 U(echelon) 形式、R 形式 (reduce

row echelon)

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{A}x = 0 = \mathbf{U}x = 0 = \mathbf{R}x = 0$$

matlab 中可以通过 rref(A) 直接得到 U 形式的矩阵,但 matlab 中的计算时这样的,将 R 的列进行变换, pivots columns 和 Free columns 移动到一起。

$$\begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ pivotcolumn & freecolumn & pivotscolumn & freecolumn \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ pivotcolumn & pivotscolumn & freecolumn \end{bmatrix}$$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 2 & -2 \\ 0 & 2 \end{bmatrix},$$
所以 \mathbf{R} 可以表示为 $\mathbf{R} = \begin{bmatrix} \mathbf{I} & \mathbf{F} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ 则 $\mathbf{R}\mathbf{x} = 0, \begin{bmatrix} \mathbf{I} & \mathbf{F} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} x = 0$ 解得 $x = \begin{bmatrix} -\mathbf{F} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 0 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$

这里主元列的个数 r 等于矩阵的秩 r(A), 自由列的个数等于 n-r, 自由列的意思可以自由取值, 所以一旦出现自 由列,就有无穷多多个解,如何表示这些无穷多个解呢?,找到解的基就行啦,零空间的基一定是线性无关了,这里自

由列的个数为 2,则取
$$[x_2,x_4]=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
,得到的解分别为 $k_1\begin{bmatrix}-2\\1\\0\\0\end{bmatrix}$, $k_2\begin{bmatrix}2\\0\\-2\\1\end{bmatrix}$ 。可以看到与 matlab 中 $\operatorname{null}(\mathbf{A})$ 得到解一样。

Solving Ax = b Row Reduced Form R 8

由前面可知,要使 $\mathbf{A}x = b$ 有解,则 b 应该在列空间 $C(\mathbf{A})$ 中,也就是 b 可以用矩阵 **A** 各列进行线性组合表示。 通过矩阵 A 的秩可以确定解的个数。

to
$$\mathbf{A}x = b$$

1.
$$rank(\mathbf{A}) = m = n$$

$$\mathbf{R} = \mathbf{I} \ 1$$
 solution

2.
$$rank(\mathbf{A}) = n < m$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix}$$
,0 or 1 solution

3.
$$rank(\mathbf{A}) = m < n$$

3.
$$rank(\mathbf{A}) = m < n$$

 $\mathbf{R} = \begin{bmatrix} \mathbf{I} & \mathbf{F} \end{bmatrix}, \infty \text{ solution}$

4.
$$rank(\mathbf{A}) < m,r < n$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{I} & \mathbf{F} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, 0 \text{ or } \infty \text{ solution}$$

下面使用一个具体的例子求解
$$\mathbf{A}x = b, \mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$
。

$$\mathbf{A}:b = \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 2 & 4 & 6 & 8 & b_2 \\ 3 & 6 & 8 & 10 & b_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 0 & 0 & 2 & 4 & b_2 - 2b_1 \\ 0 & 0 & 2 & 4 & b_3 - 3b_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 0 & 0 & 2 & 4 & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}$$

求解 $\mathbf{A}x = b$ 等于求 $x_{special}$ 特解 $+x_{null}$ 零空间。特解的求法解释设置自由变量为零,在代入线性方程组求解。

$$\mathbf{R} = egin{bmatrix} 1 & 2 & 2 & 2 & b_1 \ 0 & 0 & 2 & 4 & b_2 - 2b_1 \ 0 & 0 & 0 & 0 & b_3 - b_2 - b_1 \ pivot & free & pivot & free & ? \end{bmatrix}$$

所以 $[x_2, x_4] = [0, 0]^T$,

$$x_1 + 2x_2 = 12x_3 = 3$$

特解为
$$x_{special} = \begin{bmatrix} -2 \\ 0 \\ 3/2 \\ 0 \end{bmatrix}$$
,上一节求出的零解为 $x_n = k_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$, $\mathbf{x} = x_{special} + x_n$,在二维空间内,

9 Independent, Basis, and, Dimension

repeat, when $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are colums of \mathbf{A}

- 1. they are independent if null space of **A** is zero vector rank=n,no free variables
- 2. they are dependent if $\mathbf{A}x = 0$, for some none-zero c, rank<n, have free variables
- 3. vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ span a space, means:the space consists of all combinations of those vectors.

Basis for a space is a sequence of vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_d$ with 2 properties.

- 1. they are independent
- 2. they span a space

Giving a space, every basis for the space has the same number of vectors, 就是说不管你用什么基,只要构建的空间是同一个,则基的数量是一样的。我们把不变的数量的大小叫维度。由此,在解线性方程组时,矩阵 \mathbf{A} , 列空间 的维度等于矩阵主元列的个数 (秩 r),零空间 的维度等于自由列的个数 $(n-rank(\mathbf{A}))$ 。

10 The Four Foundamental Subsapce

这 4 个基本子空间主要是矩阵 **A** 的列空间 $C(\mathbf{A})$ 和零空间 $N(\mathbf{A})$,以及其转置矩阵 \mathbf{A}^T 的 $C(\mathbf{A}^T)$ 和零空间 $N(\mathbf{A}^T)$,假设矩阵 **A** is **m** by **n**

- 1. column space $C(\mathbf{A})$ in \mathbf{R}^m
- 2. null space $N(\mathbf{A})$ in \mathbf{R}^n
- 3. row sapce =all combinations of rows=all combinations of \mathbf{A}^T in \mathbf{R}^n
- 4. null sapce of \mathbf{A}^T , we could call it as left nu \mathbf{R}^m

表 1: 4 个基本矩阵基和维度的确定

	$C(\mathbf{A})$	$N(\mathbf{A})$	$C(\mathbf{A}^T)$	$N(\mathbf{A}^T)$
basis	pivots columns of A	free columns of ${\bf A}$	pivots columns of \mathbf{A}^T	free columns of \mathbf{A}^T
dim	r	n-r	r	m-r

Matrix spaces Rank 1-samll world Graphs 11

一个包含所有
$$3 \times 3$$
 维的矩阵,共有 9 维,基可以表示为:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \dots \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 。

其子空间有

- 1. Symmetrix, 可以验证在 3×3 空间里, 维度为 6, $\dim(\mathbf{S})=6$
- 2. Upper triangle,可以验证在 3×3 空间里,维度为 6,dim(U)=6

$$\begin{cases} \mathbf{S} \cap \mathbf{U} = Symmetrix \cap Uppertriangle = Diagonal3 \times 3, dim(\mathbf{S} \cap \mathbf{U}) = 3 \\ \mathbf{S} + \mathbf{U} = anyelement of Sanyelement of U = allof 3 \times 3, dim(\mathbf{S} + \mathbf{U}) = 9 \end{cases}$$

可以得到维度计算公式: $\dim(S) + \dim(U) = \dim(S \cap U) + \dim(S + U)$ 结合微分方程

$$\frac{d^2y}{dx^2} + y = 0$$

可以得到特解有 $\sin x$, $\cos x$, e^{ix} ,但由于是是二阶微分方程,所以是有两个基,直接拿两个特解构建零空间就可以得到所 有解了。所以完整解为:

$$y = c_1 cos x + c_2 sin x$$

下面讲一下秩为 1 的矩阵 ,可以表示为一列乘以一行,可以用秩为 1 的矩阵构造所有矩阵。

$$\mathbf{A} = \mathbf{U}\mathbf{V}^T$$

假设
$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 8 & 10 \end{bmatrix}$$
 则 \mathbf{A} 可以表示为 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 & 5 \end{bmatrix}$

世界好小: 六人法则: 只要通过6个人就可以连接到世界上任何一个人。

12 Graphs, Network, Incidence Matrices

世界万物可以看成是一个巨大的关系网 (突然想起了一句话,世界万物是相互联系,具有各种各样的关系),网中存在节点,在进行数学描述或建模研究时候可以得到关系图 (可能会更加复杂,但是这个例子可以很好的启发,甚至解释一切),而矩阵可以描述图中的一些"关系"。假设有 4 个 nodes,他们之间的联系有 5 条 edges,则可以得到以下图形。

从实际问题中得到图, 让后得到关联矩阵 A

表 2: incident matrix

	Noc			
1	2	3	4	edges
-1	1	0	0	edge1
0	-1	1	0	edge2
-1	0	1	0	edge3
-1	0	0	1	edge4
0	0	-1	1	edge5

表中-1 代表起点, 1 代表终点。则关系就可以用一张稀疏矩阵或者其他矩阵进行描述。可以发现 edge1, edge2, edge3 构成一个回路,对应行向量相关,从图中也可以明显的感觉到③=①+②,在后面的叙述中可以验证这一结论。

接下来对零空间进行分析 , $\mathbf{A}x = 0$:

$$\mathbf{A}x = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_3 - x_1 \\ x_4 - x_1 \\ x_4 - x_3 \end{bmatrix} x = 0$$

由此可以计算边上上的差值 ,若 $x_1,x_2,...,x_5$ 代表电势,则, $\mathbf{A}x=0$ 可以分析电势差。很明显存在零解 $x=k\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$,则 $\mathrm{rank}(\mathbf{A})=\mathrm{n-dim}(\mathrm{N}(\mathbf{A}))=3$ 。

对左零空间进行分析 ,即 $\mathbf{A}^Ty=0$,可计算出维度 $N(\mathbf{A}^T)=5-3$

$$\mathbf{A}y = \begin{bmatrix} -1 & 0 & -1 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 01 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

可以得到

$$\begin{cases}
-y_1 - y_3 - y_4 = 0 \\
y_1 - y_2 = 0 \\
y_2 + y_3 - y_5 = 0 \\
y_4 + y_5 = 0
\end{cases}$$
(7)

再看图

很明显上式可以表示出图中的关系,已知 $N(\mathbf{A}^T)=2$,则选择两个基就行了。解得

$$y = k_1 \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

可以得到一个结论,欧拉公式: # loops=#edges-(#nodes-1)

图 3: 电势建模分析流程

通过图3可以得到公式 $\mathbf{A}^T c \mathbf{A} x = 0$

13 Quiz review

N(CD)=N(D), if C is invertible

14 Orthogonal Vectors and subspaces

图 4: 正交向量

由勾股定理可得: $||x||^2 + ||y||^2 = ||x+y||^2 \Rightarrow x^Ty = 0$ 。两个空间正交是指任何空间 S 中的向量正交于任何空间 T 中的向量 , Subsapce S is orthogonal to subspace T means: every vector in S is orthogonal to every vector in T, 对于四个基本空间,可得到:

Row space is orthogonal to null space,通过 $\mathbf{A}x=0$ 就可清除看到,行空间正交于零空间,下进行证明: 可以看到所有行垂直于 \mathbf{x}

$$\begin{bmatrix} row_1 & of & \mathbf{A} \\ row_2 & of & \mathbf{A} \\ & \cdots \\ row_m & of & \mathbf{A} \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{bmatrix}$$

下面证明列空间垂直 x,行空间就是主元行的线性组合,因此就是证明主元行的线性组合垂直于 x

$$c_1(row_1 \quad of \quad A)^T x = 0$$

$$c_2(row_2 \quad of \quad A)^T x = 0$$

$$\Rightarrow \underbrace{(c_1(row_1 \quad of \quad A)^T + c_2(row_2 \quad of \quad A)^T)}_{row \quad samce} x = 0$$

coming: $\mathbf{A}x = b$ when there is no solution m>n, How to solve 将在下一节进行详细讲解,这里先提一下,在两边同乘矩阵 \mathbf{A}^T :

$$\mathbf{A}^T \mathbf{A} \hat{x} = \mathbf{A}^T b$$

这里用到了最小二乘法的原理,原方程组在列空间中找不到向量 b,只能找一个和 b 相似的向量,而两点之间,直线最短,所以将向量 b 沿着列空间平面的法线方向投影到列空间平面,夹角越小则误差越小。

15 Projections onto subspace