Logistik

Penentuan Rute Distribusi Pengiriman Barang Menggunakan Metode Saving Matrix pada PT Indah Logistik Internasional Express

Determination Of Delivery Distribution Routes Using The Saving Matrix Method in PT Indah International Express Logistics

Andi Turseno a,1*, Nisa Hernikab,2,

- ^a Universitas Bhayangkara Jakarta Raya, Jl. Raya Perjuangan, Kota Bekasi, Indonesia
- ^b Politeknik Citra Widya Edukasi, Jalan Gapura No. 8, Rawa Banteng, Cibuntu, Cibitung, Bekasi, Indonesia

ABSTRACT

PT Indah Logistik International Express is a company engaged in freight forwarding services which is a central warehouse in Bekasi. The problem found that the delivery of goods was not in accordance with the capacity of the vehicle used. Another problem was that the route that has been delivered has never been evaluated regarding whether it is the best route in terms of speed of delivery, timeliness and cost efficiency. The purpose of this study is to obtain an optimal route for delivery of goods so that the total cost of delivery which includes vehicle operational costs, labor costs and other transportation costs is quite low. The method used in this research is the Saving Matrix method which aims to make the delivery of goods according to consumer orders can be done in an effective and efficient way, so that companies can save costs, energy, and delivery time. The results showed that the effective route based on the calculation of 6 routes with the shortest distance using the Saving Matrix method was 212.4 km and the savings was 65.5 km.

Keywords: Freight forwarding services, Saving matrix method, Cost of delivery, Route, Transportation

ABSTRAK

PT Indah Logistik International Express merupakan perusahaan yang bergerak pada bidang jasa layanan pengiriman barang (yang mana dalam hal ini merupakan gudang pusat di Bekasi). Permasalahan yang ditemukan yakni pengiriman barang yang dilakukan tidak sesuai dengan kapasitas kendaraan yang digunakan. Masalah yang lain adalah rute yang telah dilaksanakan pengirimannya belum pernah dievaluasi terkait apakah rute tersebut adalah rute terbaik dalam hal kecepatan pengiriman, ketepatan waktu dan efisiensi biaya. Tujuan penelitian ini adalah untuk mendapatkan rute pengiriman barang yang optimal. Metode yang digunakan pada penelitian ini adalah metode *Saving Matrix* yang bertujuan agar pengiriman barang yang sesuai pesanan konsumen dapat dilakukan dengan cara yang efektif dan efisien. Hasil penelitian menunjukkan bahwa rute yang efektif berdasarkan perhitungan metode *Saving Matrix* adalah sebanyak 6 rute dengan jarak terpendek yaitu sebesar 212,4 km dan penghematan sebesar 65,5 km.

Kata kunci : Pelayanan Freight Forwarding, Metode Saving matrix, biaya pengiriman, Rute, Transportasi

^{1*} andi.turseno@dsn.ubharajaya.ac.id, ² nisahernika0801@gmail.com

^{*}corresponding e-mail: andi.turseno@dsn.ubharajaya.ac.id

A. Pendahuluan

Ekspedisi adalah pengiriman barang atau pengangkutan perusahaan barang. Sedangkan jasa ekspedisi yaitu perusahaan yang bergerak di bidang baik pengiriman pengiriman barang melalui jalur darat, jalur air atau jalur udara dan memberikan pelayanan secara efektif dan efisien guna memenuhi kepuasan pelanggan. Perkembangan jasa ekpedisi saat ini mengalami peningkatan, hal ini terbukti dengan adanya kenaikan peringkat dari LPI. Hal tersebut terjadi karena semakin tinggi minat masyarakat dalam belanja online dan banyaknya perusahaan yang menggunakan jasa ekpedisi dalam akitivitas logistiknya.

PT Indah Logistik International Express merupakan perusahaan yang bergerak di bidang jasa layanan pengiriman barang di Perusahaan ini menfasilitasi Bekasi. layanan pengiriman barang untuk pelanggan di seluruh Indonesia dan melayani pengiriman dalam kota, antar kota, antar provinsi. Jenis barang yang dikirim berupa perabotan rumah tangga, makanan, minuman, sparepart, pakaian dan elektronik. Saat ini penetapan rute distribusi barang di PT. Indah Logistik Internasional Express masih bersifat situasional yaitu disesuaikan dengan permintaan yang ada. Permasalahan yang ditemukan adalah pengiriman barang yang

dilakukan tidak sesuai dengan kapasitas kendaraan yang digunakan. Sehingga total biaya pengiriman yang meliputi biaya operasional kendaraan, biaya tenaga kerja dan biaya transportasi (Suparjo, 2017) lainnya menjadi cukup tinggi. Masalah yang lain adalah rute yang telah dilaksanakan pengirimannya belum pernah dievaluasi terkait apakah rute tersebut adalah rute terbaik dalam hal kecepatan pengiriman, ketepatan waktu dan efisiensi biaya.

Transportasi menurut Martono (2018) adalah sebuah sistem yang mendukung keterkaitan yang kompleks antara lokasi, jaringan, dan kebutuhan transportasi. Sementara itu menurut Nasution (2004) transportasi adalah pemindahan barang dan manusia dari tempat asal ke tempat tujuan. Proses pengangkutan merupakan gerakan dari tempat asal, darimana kegiatan angkutan dimulai, ke tempat tujuan, kemana kegiatan pengangkutan di akhiri. Menurut Nasution (2004)manajamen transportasi yaitu kegiatan dilaksanakan oleh bagian vang transportasi atau unit dalam organisasi industri atau perdagangan dan jasa lain (manufacturing business and service) untuk memindahkan / mengangkut barang atau penumpang dari suatu lokasi ke lokasi lain secara efektif dan efisien.

P-ISSN: 2085-5141

Vol. xx, No. xx, Bulan Tahun

Menurut Martono (2018) distribusi adalah aktivitas pergerakan barang dan jasa dari pemasok hingga konsumen akhir melalui distribution channel (saluran distribusi). Keseluruhan kegiatan ini menghasilkan nilai tambah (value added) melalui pengiriman barang ke lokasi tempat konsumen berada, pada waktu konsumen membutuhkannya, utilisasi alat. dan efisiensi biaya (Arifudin et al., 2017); (Marfuah & Ratmi, 2019). Pihak yang berperan; shipper, yaitu pihak yang barang mengirim (pemilik barang); forwarder, yaitu pihak/perusahaan yang mengatur pengiriman barang sampai diterima konsumen; dan carrier, yaitu pihak/perusahaan yang melakukan pemindahan barang (transportasi) kepada konsumen (Oktaviana & Setiafindari, 2019). Menurut Charles A.Taff. dan Marianus Sinaga (1994),distribusi merupakan penambahan kegunaan waktu, tempat, dan pemilikan barang.

Fungsi Dasar Distribusi (Martono R. V., 2018) Beberapa fungsi dasar distribusi sebagai berikut :

1. Menyediakan nilai tambah berupa pengiriman barang yang tepat jenis, jumlah, waktu, dengan tingkat biaya dan risiko yang paling optimum sesuai kebutuhan konsumen. Konsumen bisa berupa konsumen internal dan eksternal organisasi. Kebutuhan konsumen

tergantung kebutuhan pada pada kebutuhan konsumen dnan karakter barang yang akan dikirim. Konsumen internal ingin agar barang dikirim untuk memenuhi kebutuhan organisasi bersamasama, sedangkan konsumen eksternal ingin barang dikirim sesuai kesepakatan biaya, waktu. risiko. dan moda transportasi.

 Mengkonsolidasi dan memfasilitasi pengiriman dari produsen kepada konsumen.

Termasuk di dalamnya adalah mengirim barang sesuai peraturan, sistem transportasi, dan hambatan lain di setiap lokasi tujuan.

3. Menentukan moda transportasi.

transportasi Setian moda memiliki karakter, kelebihan, dan kekurangan masing-masing. Pemilihan moda tergantung pada infrastruktur yang tersedia dan kebutuhan untuk menyediakan transportasi sendiri atau bekerja sama dengan pihak lain.

- 4. Melakukan penjadwalan dan penentuan rute pengiriman.
- 5. Menyimpan persediaan.

Jaringan distribusi selalu melibatkan penyimpanan produk sebelum produk tesebut dikirim atau diteruskan sampai diterima konsumen. Tujuan pengadaan persediaan adalah mengimbangi perbedaan waktu kirim (*Lead Time*)

P-ISSN: 2085-5141

E-ISSN: 2745-9624 Vol. xx, No. xx, Bulan Tahun http://journal.unj.ac.id/unj/index.php/logistik/

permintaan dengan konsumen yang bervariasi.

Menyediakan sistem transportasi pengembalian barang (reverse logistic). Yaitu kegiatan pengembalian produk dari hilir ke hulu. Pengembalian ini bisa terjadi karena produk rusak yang harus diperbaiki (rework), didaur ulang (recycle), kadaluwarsa.

Metode Saving Matrix pada hakikatnya adalah metode untuk meminimumkan jarak atau waktu atau ongkos dengan mempertimbangkan kendala-kendala yang ada (Bowersox, 2002). Metode ini bertujuan pengiriman barang yang sesuai pesanan konsumen dapat dilakukan dengan cara vang efektif dan efisien, sehingga perusahaan dapat menghemat biaya, tenaga, dan waktu pengiriman (Hudori & Madusari, 2017).

Langkah-langkah dalam metode Saving *Matrix*:

1) Mengidentifikasi matrik jarak.

Setelah mengetahui koordinat dari masing-masing lokasi, maka jarak antar kedua lokasi tersebut dapat dihitung dengan menggunakan rumus sebagai berikut:

$$f(1,2) = \sqrt{(x_1 - x_2) + (y_1 - y_2)^2}$$
 (1)

Akan tetapi jika jarak antar kedua koordinat sudah diketahui, maka

perhitungan menggunakan rumus tidak digunakan dan menggunakan jarak yang sudah ada.

2) Menentukan Matriks Penghematan (Saving Matrix)

Setelah mengetahui jarak keseluruhan yaitu jarak antara pabrik dengan lokasi dan lokasi dengan lokasi yang lainnya, maka dalam langkah ini diasumsikan bahwa setiap lokasi akan dilewati oleh satu truk secara ekslusif (Hisda, 2019). Artinya akan ada beberapa rute yang berbeda yang akan dilewati untuk tujuan masing masing. Dengan demikian akan ada penghematan apabila ada penggabungan rute yang dinilai satu arah dengan rute yang lainnya. Untuk mencari matriks penghematan dapat digunakan rumus sebagai berikut (Bowersox, 2002).

$$S(x, y) = J(G, x)+J(G, y)-J(x, y)$$
 (2)

Keterangan:

S : Penghematan Jarak (*Saving*)

J : Jarak

G: Gudang

x : wilayah pengiriman

x, y: wilayah pengiriman y

S (x,y) merupakan penghematan jarak yaitu dari penggabungan antara rute x dengan rute y.

3) Pengalokasian Kendaraan dan Rute Berdasarkan Lokasi

Vol. xx, No. xx, Bulan Tahun

Setelah matriks penghematan diketahui, langkah selanjutnya maka adalah lokasi ke rute pengalokasian atau kendaraan. Artinya dalam langkah ini akan ditentukan rute pengiriman baru berdasarkan atas penggabungan rute pada langkah kedua di atas. Hasilnya adalah pengiriman lokasi 1 dan lokasi 2 akan dilakukan dengan menggunakan 1 rute.

Mengurutkan rute yang sudah terdefinisi. Setelah alokasi tujuan ke rute dilakukan, langkah berikutnya adalah menentukan urutan kunjungan.

Ada beberapa metode sederhana yang digunakan untuk mengurutkan tujuan dalam rute contoh metode Nearest neighbour. Prosedur pengurutan kunjungan konsumen dengan metode Nearest neighbour dimulai dari gudang kemudian dilakukan penambahan konsumen yang jaraknya paling dekat dengan gudang. Pada setiap tahap, rute yang ada dibangun dengan melakukan penambahan konsumen yang jaraknya paling dekat dengan konsumen terakhir yang dikunjungi.

B. Metode Penelitian

1. Objek Penelitian

diteliti Objek yang akan dalam penelitian ini adalah pengiriman barang pada PT Indah Logistik Internasional Express. Penelitian ini dilakukan pada periode 1

November 2020 sampai dengan 31 Januari 2020. Penelitian dilakukan di PT Indah Logistik Internasional Express vang berlokasi di Jl. Raya Pengasinan No. 11, Jatimulya, Kecamatan Tambun Selatan, Kabupaten Bekasi, Provinsi Jawa Barat.

2. Populasi dan Sampel

Populasi penelitian ini adalah seluruh pengiriman barang di PT Indah Logistik Internasional Express. Sampel penelitian ini adalah pengiriman barang di 13 lokasi (Jatiasih, Pondok Gede, Jati Sampurna, Bantargebang, Mustika Java, Rawa Lumbu, Bekasi Timur, Bekasi Selatan. Bekasi Barat, Bekasi Utara, Tambun Selatan, Tambun Utara, dan Cibitung) pada periode 01 Desember 2020 – 31 Desember 2020 di PT Indah Logistik Internasional Express.

3. Definisi

Berikut adalah istilah yang digunakan dalam penelitian ini adalah sebagai berikut :

- 1) Jumlah barang adalah banyak muatan yang dibawa oleh armada pengangkut.
- 2) Jarak tempuh adalah jarak yang dilalui oleh armada dimulai dari satu titik pemberangkatan menuju ke titik pingiriman.
- 3) Penghematan adalah pengurangan hasil jarak awal dengan jarak akhir setelah adanya perbaikan.

Logistik

4. Data vang Dibutuhkan

Berikut ini adalah data data primer yang dibutuhkan dalam penelitian ini:

- Data pengiriman barang Data permintaan pengiriman barang vang digunakan yaitu data pengiriman barang pada 01 Desember 2020 – 30 Desember 2020.
- 2) Data jarak dari gudang ke tujuan pengiriman, jarak dari tujuan pengiriman ke tujuan lainnya. Data jarak dari gudang ke tujuan pengiriman, jarak dari ke tujuan pengiriman ini diperoleh menggunakan Google Maps, dengan cara memasukkan titik asal ke titik tujuan.
- 3) Data jenis dan kapasitas armada yang digunakan dalam pengiriman barang.

5. Metode Penelitian

Penilitian ini menggunakan metode Saving Matrix menyelesaikan untuk masalah ini.

C. HASIL DAN PEMBAHASAN

1. Data Pengiriman Barang

Data pengiriman yang digunakan dalam penelitian ini yaitu data pengiriman untuk lokasi Jatiasih, Pondok Gede, Sampurna, Bantargebang, Mustika Jaya, Rawa Lumbu, Bekasi Timur, Bekasi Selatan, Bekasi Barat, Bekasi Utara, Tambun Selatan, Tambun Utara, dan Cibitung. Sedangkan armada yang digunakan yaitu 11 mobil Daihatsu Grand

Max dengan kapasitas angkut yaitu 720

Berdasarkan data tersebut maka dapat diperoleh total pengiriman barang pada bulan 01 Desember 2020 – 30 Desember 2020, seperti terlihat pada tabel 1.

Tabel 1. Rata rata pengiriman barang (PT. ILI Express, 2021)

No.	Kode Wilayah	Rata rata Pengiriman (Kg)
1	A1	223
2	A2	162
3	A33	231
4	A4	292
5	A5	264
6	A6	304
7	A7	243
8	A8	223
9	A9	147
10	A10	357
11	A11	238
12	A12	163
13	A13	255

A1: Tujuan Pengiriman Jatiasih

A2 : Tujuan Pengiriman Pondok Gede

A3 : Tujuan Pengiriman Jati Sampurna

A4 : Tujuan Pengiriman Bantargebang

A5 : Tujuan Pengiriman Mustika Jaya

A6 : Tujuan Pengiriman Rawa Lumbu

A7 : Tujuan Pengiriman Bekasi Timur

A8 : Tujuan Pengiriman Bekasi Selatan

A9 : Tujuan Pengiriman Bekasi Barat

A10 : Tujuan Pengiriman Bekasi Utara

A11: Tujuan Pengiriman Tambun Selatan

A12 : Tujuan Pengiriman Tambun Utara A13 : Tujuan Pengiriman Cibitung

2. Data Jarak dari Gudang ke Tujuan Pengiriman Data jarak dari gudang ke tujuan pengiriman didapatkan dengan menggunakan *google maps* untuk menentukan koordinat alamat gudang ke tujuan pengiriman sehingga didapatkan jarak antara keduanya dalam kilometer. Seperti terlihat pada tabel 2.

Tabel 2. Jarak dari Gudang ke Tujuan Pengiriman

No.	Kode Wilayah	Rata rata Pengiriman (Kg)
1	A1	10,6
2	A2	15,5
3	A33	20,6
4	A4	9,6
5	A5	3,9
6	A6	2,4
7	A7	7,2
8	A8	6,7
9	A9	13,9
10	A10	9,9
11	A11	7,5
12	A12	18
13	A13	19,2

3. Data Jarak antar Tujuan Pengiriman

Data jarak antar tujuan pengiriman diperoleh dengan menggunakan *google maps* dan diperoleh dalam kilometer. Seperti terlihat pada Gambar 1.

	A1	A2	А3	Α4	A5	A6	Α7	A8	A9	A10	A11	A12	A13
A1	0												
A2	8.8	0											
А3	7.4	14.5	0										
Α4	7.7	15.9	13.3	0									
A5	12.2	19.4	18.1	8.8	0								
A6	10.1	13.1	16.7	9	5.8	0							
Α7	15	16.1	25.5	11.7	9.7	7	0						
A8	8.2	7.5	14.9	12.2	10.2	5.4	8	0					
А9	13	8.7	18.1	17.1	14.5	9.8	9.7	4.3	0				
A10	18	16	25.1	13.4	13.5	10.1	7	8.6	10.1	0			
A11	16.5	18.6	23.8	13.9	7.1	7.8	5.4	9.3	12.1	11.1	0		
A12	25.8	25.9	32	26.2	18.7	17	11.1	18.1	18.4	11.6	14.1	0	
A13	27.1	18.6	38.8	19	10.6	18.4	14.4	20	17.1	16.7	5.9	12.7	0

Gambar 1. Data jarak antar tujuan pengiriman (km)

4. Pengolahan Data

Berdasarkan data di atas maka akan dilakukan pengolahan data dengan langkah – langkah sebagai berikut :

a. Mengindentifikasi Jarak Untuk mengidentifikasi jarak dalam penelitian menggunakan Google Maps. Matrik jarak hasil identifikasi dapat dilihat pada gambar 2.

	GDG	Al	A2	A3	A4	A5	A6	A7	A8	A9	A10	All	A12	A13
ŒG	0													
Al	10.6	0												
A2	15.5	8.8	0											
A3	20.6	7.4	14.5	0					П					
A4	9.6	7.7	15.9	13.3	0									
A5	3.9	12.2	19.4	18.1	8.8	0								
A6	24	10.1	13.1	16.7	9	5.8	0							
A7	7.2	15	16.1	25.5	11.7	9.7	7	0						
A8	6.7	8.2	75	14.9	12.2	10.2	5.4	8	0					
A9	139	13	8.7	18.1	17.1	14.5	9.8	9.7	43	0				
A10	9.9	18	16	25.1	13.4	13.5	10.1	7	8.6	10.1	0			
A11	7.5	16.5	18.6	23.8	13.9	7.1	7.8	5.4	93	12.1	11.1	0		
A12	18	25.8	25.9	32	26.2	18.7	17	11.1	18.1	18.4	11.6	14.1	0	
A13	19.2	27.1	18.6	38.8	19	10.6	18.4	14.4	20	17.1	16.7	5.9	12.7	0

Gambar 2. Matrix jarak (dalam km)

b. Mengindentifikasi Penghematan

Matriks penghematan merupakan kunci penting dalam penggunaan metode *saving* Logistik P-ISSN: 2085-5141 E-ISSN: 2745-9624 Vol. xx, No. xx, Bulan Tahun http://journal.unj.ac.id/unj/index.php/logistik/

matrix, karena tujuan yang memiliki

matriks penghematan paling besar akan dipilih terlebih dahulu. Perhitungan penghematan jarak pada setiap rute dengan menggabungkan dua rute yang berbeda dapat dilihat dalam gambar 3.

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
A1	0											
A2	17.3	0										
A3	23.8	21.6	0									
A4	12.5	9.2	16.9	0							6 8 6 9	
A5	2.3	0	6.4	4.7	0							
A6	2.9	4.8	6.3	3	0.5	0						
A7	2.8	6.6	2.3	5.1	1.4	2.6	0				0 0	
A8	9.1	14.7	12.4	4.1	0.4	3.7	5.9	0				
A9	11.5	20.7	16.4	6.4	3.3	6.5	11.4	16.3	0			
A10	2.5	9.4	5.4	6.1	0.3	2.2	10.1	8	13.7	0		
A11	1.6	4.4	4.3	3.2	4.3	2.1	9.3	4.9	9.3	6.3	0	
A12	2.8	7.6	6.6	1.4	3.2	3.4	14.1	6.6	13.5	16.3	11.4	0
A13	2.7	16.1	1	9.8	12.5	3.2	12	5.9	16	12.4	20.8	24.5

Gambar 3. Matriks Penghematan jarak (dalam km)

c. Mengalokasikan Tujuan Pengiriman Ke Armada dan Rute

Alokasi tujuan pengiriman armada dan rute dapat dilihatdengan nilai penghematan terbesar. melihat Adapun urutannilai penghematan terbesar dapat dilihat secara lengkap pada tabel 3:

Tabel 3. Urutan nilai penghematan

			8		
Rangking	Gabungan	Saving	Rangking	Gabungan	Saving
	rute	(km)		rute	(Km)
1	A12-A13	24.5	40	A3-A6	6.3
2	A1-A3	23.8	41	A10-A11	6.3
3	A2-A3	21.6	42	A4-A10	6.1
4	A11-A13	20.8	43	A7-A8	5.9
5	A2-A9	20.7	44	A8-A13	5.9
6	A1-A2	17.3	45	A3-A10	5.4
7	A3-A4	16.9	46	A4-A7	5.1
8	A3-A9	16.4	47	A8-A11	4.9
9	A10-A12	16.3	48	A2-A6	4.8
10	A8-A9	16.3	49	A4-A5	4.7
11	A2-A13	16.1	50	A2-A11	4.4
12	A9-A13	16	51	A3-A11	4.3
13	A2-A8	14.7	52	A5-A11	4.3
14	A7-A12	14.1	53	A4-A8	4.1
15	A9-A10	13.7	54	A6-A8	3.7
16	A9-A12	13.5	55	A6-A12	3.4
17	A1-A4	12.5	56	A5-A9	3.3
18	A5-A13	12.5	57	A4-A11	3.2
19	A3-A8	12.4	58	A5-A12	3.2
20	A10-A13	12.4	59	A6-A13	3.2
21	A7-A13	12	60	A4-A6	3
22	A1-A9	11.5	61	A1-A6	2.9
23	A7-A9	11.4	62	A1-A2	2.8
24	A11-A12	11.4	63	A1-A7	2.8
25	A7-A10	10.1	64	A1-A12	2.7
26	A4-A13	9.8	65	A6-A7	2.6
27	A2-A10	9.4	66	A1-A10	2.5
28	A9-A11	9.3	67	A1-A5	2.3
29	A7-A11	9.3	68	A3-A7	2.3
30	A2-A4	9.2	69	A6-A10	2.2
31	A1-A8	9.1	70	A6-A11	2.1
32	A8-A10	8	71	A1-A11	1.6
33	A2-A12	7.6	72	A5-A7	1.4
34	A2-A7	6.6	73	A4-A12	1.4
35	A3-A12	6.6	74	A3-A13	1
36	A8-A12	6.6	75	A5-A6	0.5
37	A6-A9	6.5	76	A5-A8	0.4
38	A3-A5	6.4	77	A5-A10	0.3
39	A4-A9	6.4	78	A2-A5	0
				·	

Berdasarkan pengurutan nilai penghematan, dapat diketahui bahwa matriks penghematan terbesar adalah 24,5 km yang terjadi dalam rute A12-A13. Dan penghematan terpendek terjadi dalam rute 0 A2-A5 vaitu km. Dalam mengalokasikan tujuan pengiriman dalam rute, dilakukan pertimbangan kapasitas armada yang digunakan dalam pegiriman yaitu 720 kg. Penggabungan tujuan pengiriman dalam rute langkah pertama dapat dilihat tabel 4 pada

Tabel 4. Penggabungan rute berdasarkan penghematan

Saving (km)	Tujuan	Beban (Kg)	Status	Total Beban (Kg)	Sisa Kapasitas	Rute
24,5	A12	163				
,	A13	225	Ok	418	302	A12 - A13
23,8	A1	223				
	A3	231	Ok	454		A12-A13-A1
21,6	A3	231				
	A2	162	Ok	393	393	A3 - A2
20,8	A11	238				
	A13	225	Ok	493		A3-A2-A11
20,7	A2	162				
	A9	147	Ok	309		A9
16,3	A9	147				
	A10	357	Ok	504		A9 - A10
16,3	A8	223				
	A9	147	Ok	370		A8
14,1	A7	243				
	A12	163	Ok	406		A8 - A7
12,5	A1	223				
	A4	292	Ok	515		A4
12,5	A5	264				
	A13	225	Ok	519		A4 - A5
6,5	A6	304				
	A9	147	Ok	451		A6

Berdasarkan tabel 4 maka diperoleh 6 rute yang bisa digabungkan dengan jumlah beban yang tidak melebihi kapasitas armada. Untuk lebih jelasnya ringkasan penggabungan rute dalam dilihat pada tabel 5.

Tabel 5 Ringkasan Penggabungan Rute

Lan	Tabel 5 Kingkasan Tenggabangan Kute							
No.	Rute	Tujuan	Total beban					
			(Kg)					
1.	Rute 1	A12-A13-A1	641					
2.	Rute 2	A3-A2-A11	631					
3.	Rute 3	A9-A10	504					
4.	Rute 4	A7-A8	466					
5.	Rute 5	A4-A5	556					
6.	Rute 6	A6	304					

d. Penentuan urutan kunjungan dalam rute yang sudah terdefenisi

Berdasarkan rute yang telah terdefinisi

Penentuan Rute Distribusi Pengiriman Barang Menggunakan Metode Saving Matrix pada PT Indah Logistik Internasional Express

maka langkah selanjutnya menentukan urutan tujuan yang akan dikunjungi dalam rute. Hal ini bertujuan untuk meminimumkan jarak perjalanan armada yang dilalui. Pengurutan urutan kunjungan dalam rute dapat dilihat pada tabel 6.

Tabel 6. Pengurutan kunjungan dalam rute

Rute	Tujuan	Kapasitas (Kg)	Rute	Jarak (Km)
1	A12-A13-A1	641	G-A12-A13-A1-G	68.4
			G-A12-A1-A13-G	90.1
			G-A13-A1-A12-4	90.1
			G-A13-A12-A1-G	68.3
			G-A1-A12-A13-G	68.3
			G-A1-A13-A12-G	68.4
2	A3-A2-A11	631	G-A3-A2-A11-G	61.2
			G-A3-A11-A2-G	74
			G-A2-A11-A3-G	78.5
			G-A2-A3-A11-G	61.3
			G-A11-A3-A2-G	61.3
			G-A11-A2-A3-G	61.2
3	A9-A10	504	G-A9-10-G	33.9
4	A7-A8	466	G-A7-A8-G	21.9
5	A4-A5	556	G-A4-A5-G	22.3
6	A6	304	G-A6-G	4.8

Logistik
Vol. xx , No. xx, Bulan Tahun

Adapun cara untuk menentukan urutan kunjungan setiap rute dimulai dari gudang dan berakhir di gudang sebagai tujuan akhir pengiriman barang dan mencari tujuan yang jaraknya dekat dengan gudang. Setelah itu mencari tujuan kedua yang jaraknya dekat dengan tujuan pertama. Lakukan hal yang sama hingga semua tujuandalam rute tersebut masuk urutan pengiriman dan kembali kegudang. Untuk rute yang memiliki 2 tujuan maka pemilihan rute kunjungan tidak memiliki masalah karena total jarak yang ditempuh adalah sama. Hasil pengurutan rute kunjungan tujuan yang dipilih dapat dilihat pada tabel 7.

Tabel 7. Urutan kunjungan yang dipilih

	1 a	bei 7. Of utal	i Kunjun	gan yang	, uipiiiii
No.	Rute	Urutan	Jarak	Saving	Kapasitas
		Kunjungan	(km)	(km)	(kg)
1.	Rute 1	G-A1-A12-	68,3	27,3	641
		A13-G			
2.	Rute 2	G-A2-A3-	61,2	26	631
		A11-G			
3.	Rute 3	G-A9-A10-	33,9	13,7	504
		G			
4.	Rute 4	G-A7-A8-G	21,9	5,9	466
5.	Rute 5	G-A4-A5-G	22,3	4,7	556
6.	Rute 6	G-A6-G	4,8	0	304

Setelah semua langkah dilakukan dan didapat rute yang telah dipilih. Dapat dilihat pada gambar yaitu rute awal pengiriman barang di PT Indah Logistik Internasional Express. Awalnya pengiriman barang dilakukan dengan rute ke masing-masing tujuan pengiriman kemudian gudang sebagai akhir dari rute.

Pada gambar 4 dan 5 yaitu rute pengiriman barang yang diperoleh menggunaka metode *Saving Matrix*.

Gambar 4. Rute Awal Pengiriman Barang

Gambar 5. Rute Pengiriman Barang setelah Metode Saving Matrix

Berdasarkan tabel 4 maka diketahui penghematan jarak dari masing-masing tujuan dengan matriks penghematan terbesar adalah 24,5 km yang terjadi dalam rute A12-A13. Jumlah beban untuk A12 adalah 163 kg dan beban A13 adalah 225 kg. Jika beban dari kedua rute tersebut dijumlahkan maka didapatkan hasil sebesar 418 kg. Jumlah

tersebut tidak melebihi kapasitas armada, sehingga kedua rute dapat digabungkan dalam satu rute. Matriks penghematan terbesar berikutnya adalah 23,8 km terjadi dalam rute A1-A3. Jumlah beban untuk A1 adalah 223 kg, jika digabungkan dengan rute A12-A13 maka jumlah beban adalah 641 kg. Jumlah tersebut tidak melebihi kapasitas armada, sehingga rute bisa digabungkan menjadi A12-A13-A1.

Sedangkan A3 memiliki jumlah beban sebesar 231 kg sehingga jika digabungkan ke rute sebelumnya maka jumlah beban menjadi 872 kg. Jumlah ini melebihi kapasitas armada, sehingga tujuan tersebut tidak bisa digabungkan dan menjadi rute selanjutnya. Lakukan hal yang sama untuk mecari alokasi rute berikutnya. Pengalokasian rute berdasarkan kapasitas angkut kendaraan dapat dilihat pada tabel 5.

Berdasarkan tabel 5 terdapat enam rute yang telah dialokasikan berdasarkan nilai penghematan terbesar dan mempertimbangkan kapasitas armada.

Rute tersebut belum diurutkan tujuan harus terlebih dahulu mana yang dikunjungi. Pengurutan kunjungan rute bertujuan untuk meminimumkan jarak perjalanan armada yang dilalui. Karena pada kenyataannya jika urutan kunjungan rute yang dilalui berbeda, maka jarak yang ditempuh juga berbeda. Hal ini dikarenakan adanya perbedaan jarak antar

tujuan. Oleh sebab itu jika dalam satu rute terdapat dua tujuan dan jarak yang ditempuh masing-masing adalah sama, maka untuk dalam pemilihan urutan rute tidak memiliki masalah. Tetapi jika dalam satu rute terdapat lebih dari dua tujuan maka harus dilakukan pengurutan kunjungan rute agar jarak yang ditempuh lebih pendek.

Berdasarkan tabel 4 terdapat tujuan dalam rute yang telah diurutkan dan gudang dijadikan titik awal rute pada saat dimulai dan sebagai tujuan akhir pengiriman barang. Pada rute 1 terdapat rute yang dimulai dari gudang lalu ke A13 dengan jarak 19,2 km. Lalu dilanjutkan ke A12 yang memilikijarak 12,7 km. Tujuan ketiga yaitu A1 dengan jarak 25,8 km dan tujuan akhir yaitu kembali ke gudang dengan jarak 10,6 km. Dengan pengurutan tersebut diperoleh total jarak yang ditempuh sebesar 68,3 km dan penghematan jarak adalah 27,3 km. Jadi urutan pertama kunjungan yaitu dari G- A13-A12-A1-G.

Urutan di atas jika dibedakan maka akan berbeda juga jarak yang ditempuh. Urutan kunjungan kedua dimulai dari gudang ke A1 yang mempunyai jarak sejauh 10,6 km. Tujuan selanjutnya dari A1 ke A13 memiliki jarak sejauh 27,1 km. Lalu dari A13 menuju ke A12 dengan jarak 12,7 km dan kembali ke gudang jaraknya yaitu 18 km. Total jarak yang ditempuh dari urutan G-A1-A13- A12-G yaitu 68,4 km dengan penghematan sebesar 27,2 km. Berdasarkan hal tersebut diketahui bahwa urutan kedua memiliki jarak

lebih paniang tempuh yang penghematan lebih pendek dari urutan pertama. Pengurutan ketiga pada rute 1 yang bisa dilakukan yaitu dari gudang lalu ke A12 jaraknya yaitu 18 km. Lalu dari A12 ke A1 dengan jarak 25,8 km dan tujuan ketiga yaitu A13 dengan jarak 27,1 km. Tujuan terakhir yaitu ke gudang dengan jarak dari A13 kegudang yaitu 19,2 km. Jadi urutannya yaitu G-A12-A1-A13-G dengan total jarak yang ditempuh yaitu 90,1 km dan penghematan sebesar 5,5 km. Hal ini berarti urutan ketiga memiliki jarak tempuh yang lebih panjang dari urutan pertama dan kedua. Berdasarkan ketiga urutan di atas maka diketahui bahwa urutan kunjungan yang paling pendek yaitu urutan G-A13-A12-A1-G sehingga digunakan sebagai urutan kunjungan dalam rute Berdasarkan hasil pengolahan data di atas dapat dilihat bahwa penentuan rute distribusi pengiriman barang pada PT Indah Logistik Internasional Express memiliki hasil penghematan jarak lebih pendek dari jarak rute pengiriman awal. Untuk lebih jelasnya dapat dilihat pada tabel 8 dan Tabel 9.

Tabel 8 Total Tempuh Rute Awal

No.	Rute	Jarak
		(km)
1.	G-A1-G	21,2
2.	G-A2-G	31
3.	G-A3-G	41,2

4.	G-A4-G	19,2
5.	G-A5-A6-G	12,1
6.	G-A7-G	14,4
7.	G-A8-G	13,4
8.	G-A9-G	27,8
9.	G-A10-G	19,8
10.	G-A11-A12-G	39,6
11.	G-A13-G	38,4
	Total	278

Tabel 9. Total Jarak Tempuh Pengiriman Rute Usulan

No.	Rute	Urutan	Jarak
		Kunjungan	(km)
1.	Rute 1	G-A1-A12-A13-G	68,3
2.	Rute 2	G-A2-A3-A11-G	61,2
3.	Rute 3	G-A9-A10-G	33,9
4.	Rute 4	G-A7-A8-G	21,9
5.	Rute 5	GA4-A5-G	22,3
6.	Rute 6	G-A6-G	4,8
		Total	212,4

Dari tabel 8 dan 9 dapat dilihat bahwa ruteawal sebanyak 11 rute dengan total jarak yaitu 278 km. Sedangkan setelah dilakukan perhitungan menggunakan metode Saving Matrix didapatkan rute usulan sebanyak 6 rute dengan jarak sebesar 212,4 km. Hal ini menunjukkan terdapat penghematan jarak sebesar 65,5 km dengan persentasi penghematan sebesar 23,6%. Artinya penggunaan Saving Matrix dapat meghasilkan rute vang optimal.

Penggunaan metode Saving Matrix ini dapat Penentuan Rute Distribusi Pengiriman Barang Menggunakan Metode Saving Matrix pada PT Indah Logistik Internasional Express

P-ISSN: 2085-5141 E-ISSN: 2745-9624 http://journal.unj.ac.id/unj/index.php/logistik/

meminimalkan total jarak tempuh jika kedua titik tujuan dijadikan satu rute. Serta penggunaan metode ini memiliki kemudahan dimoodifikasi iika terjadi batasan seperti waktu pengiriman, kapasitas dan jumlah armada. Hal ini sesuai dengan penelitian sebelumnya yang dilakukan oleh Hisda (2019).Lawra Gama Aziz Priyambodo,dkk (2019)melakukan penelitian dalam menentukan rute distribusi dan biaya pengiriman yang optimal dengan menggunakan metode Saving menyatakan bahwa dengan menggunakan metode Saving Matrix menghasilkan rute yang lebih sedikit dari rute distribusi yang diterapkan oleh perusahaan, dimana rute usulan adalah 3 rute dengan jarak lebih minimum yaitu 296.2 km dan penghematan sebesar 57,6%. Berdasarkan penelitian tersebut maka hasil yang diperoleh oleh penulis mempunyai kemiripan atau

D. Simpulan

mendekati kesesuaian.

Berdasarkan perhitungan dan analisa yang telah dilakukan, dapat disimpulkan sebagai berikut :

kesesuaian. Sehingga penulis mempunyai

keyakinan bahwa hasil yang diperoleh

1. Rute distribusi awal sebanyak 11 rute dengan jarak sebesar 278 Km, setelah dilakukan perhitungan menggunakan metode Saving Matrix didapatkan rute usulan sebanyak 6 rute dengan jarak sebesar 212,4 km dan penghematan sebesar 65,5 km dan persentasi sebesar 23,6%.

- 2. Pada rute usulan terdapat 6 rute pengiriman yang optimal adalah :
- Rute 1 : Gudang-A1-A12-A13-Gudang
- Rute 2 : Gudang-A2-A3-A11-Gudang
- Rute 3 : Gudang-A9-A10-Gudang
- Rute 4 : Gudang-A7-A8-Gudang
- Rute 5 : Gudang-A4-A5-Gudang
- Rute 6 : Gudang-A6-Gudang

E. Daftar Pustaka

Arifudin, A., Wisnubroto, P., & Parwati, C. I. (2017). Optimalisasi Vehicle Routing Problem Dengan Pendekatan Metode Saving Matrix dan Clarke & Wright Saving Heuristic. *Jurnal REKAVASI*, 4(2),60–118.

Hisda, L. (2019). Analisis Rute Penjemputan Barang Kiriman Pada Pos Indonesia Cabang Depok Menggunakan Metode Saving Matrix. In *Politeknik APP*. Politeknik APP Kementrian Perindustrian.

- Hudori, M., & Madusari, S. (2017).

 Penentuan Rute Angkutan Tandan
 Buah Segar (Tbs) Kelapa Sawit Yang
 Optimal Dengan Metode Saving
 Matrix. *Jurnal Citra Widya Edukasi*,
 9(1), 25–39.
- Marfuah, U., & Ratmi. (2019). Penentuan Rute Pengiriman Service Part untuk Meminimalkan Biaya Transportasi pada PT XYZ dengan menggunakan Metode Saving Matrix. Seminar Nasioanal Sains Dan Teknologi 2019, 1–13. jurnal.umj.ac.id/index.php/semnaste
- Oktaviana, W. N., & Setiafindari, W. (2019). Penentuan Rute Distribusi Kerupuk Menggunakan Metode Saving Matrix dan Nearest Neighbor.

Vol. xx , No. xx, Bulan Tahun

Jurnal INTECH Teknik Industri Universitas Serang Raya, 5(2), 81-86. https://doi.org/10.30656/intech.v5 i2.1481

Suparjo. (2017). Metode Saving Matrix Sebagai Metode Alternatif Untuk Efisiensi Biaya Distribusi. Media Ekonomi Dan Manajemen, 32(2), 137–153.