FBQ1: Let $G = \{1, -1, i, -i\}$. Then G is a group under usual multiplication of complex numbers, in this group, the order of i is Answer: 4
FBQ2: Answer: (4,1)
FBQ3: Answer: N
FBQ4: The order of (12) in isÂ Answer: 2
FBQ5: In a permutation, any cycle of length two is called Answer: Transposition
FBQ6: A field K is called of F if F is a subfield of K, thus Q is a subfield of R and R is a field extension of Q Answer: Field extension
FBQ7: Answer: Proper subfield
FBQ8: Answer: Primitive
FBQ9: We call an integral domain R a if every non $\hat{a} \in \mathcal{C}$ zero element of R which is not a unit in R can be uniquely expressed as a product of a finite number of irreducible elements of R Answer: Unique factorization domain
FBQ10: Answer: Greatest Common divisor
FBQ11: Given two elements a and b in a ring R, we say that c is a of a and b if c a and c b. Answer: Common divisor
FBQ12: We call an integral domain R a if every ideal in R is a principal ideal. Answer: Principal ideal
FBQ13:Â Answer: 2
FBQ14: Let R be an integral domain, an element a R is called a unit or an in R if we can find bR such that ab = 1 i.e if a has a multiplicative inverse Answer: Invertible element
FBQ15: A domain on which we can define a Euclidean valuation is called Answer: Euclidean domain
FBQ16: Answer: Euclidean Evaluation
FBQ17: Answer: Root of multiplicity m
FBQ18: Let F be a field and $f(x)$ Fx we say that an element a F is a (or zero) of $f(x)$ if $f(a) = 0$ Answer: Factor
FBQ19: If S is set, an object â€~a' in the collection S is called

an of S
Answer: Element
FBQ20: A set withelement in S is called an empty set Answer: No
FBQ21: method is sometimes used to list the element of a large set Answer: Roster
FBQ22: The set of rational numbers and the set of real numbers are respectively represented by the symbol and Answer: Q and R
FBQ23: The symboldenotes Answer: There exist
FBQ24: If A and B are two subsets of a set S, we can collect the element that are common to both A and B, we call this set theof A and B. Answer: Intersection
FBQ25: A relation R defined on a set S is said to be if we have
Answer: Reflexive
FBQ26: A relation R defined on a set S is said to beif Answer: Symmetric
FBQ27: A relation R defined on a set S is said to be if a R b and Answer: Transitive
FBQ28: A relation R defined on a set S that is reflexive, symmetric and transitive is called relation Answer: Equivalence
FBQ29: A f from a non – empty set A to a non – empty set B is a rule which associates with every element of A exactly on element of B Answer: Function
FBQ30: A function is called if associates different elements of A with different element of B Answer: Injective
FBQ31: A function is called if the range of f is B.Â Answer: Onto
FBQ32: Answer: Projection
FBQ33: A function that is both one to one and onto is called Answer: Bijective
FBQ34: set. Answer: Finite
FBQ35: A set that is not is called infinite set Answer: Finite
FBQ36:Â Answer: Bijective

FBQ37: 1 and p Answer: Prime

FBQ38: _ Answer:	number Composite
FBQ39: _ Answer:	on A.Â Identity function
FBQ40: _ Answer:	on S.Â Binary operation
FBQ41: Answer:	Closed
FBQ42: Answer:	Associative
FBQ43: Answer:	Commutative
	Â Distributive over
FBQ45: Answer:	Identity element
	The Cayley table is named after the famous mathemathecian Arthur Cayley
satisfie	system consists of a set with a binary operation which es certain properties is called a group Algebraic
FBQ48: Answer:	The integral power
equivale	is an equivalence relation, and hence partition Z into disjoint ence classes called modulo n.Â Congruence class
and each	If the set X is finite, say X = (1,2,3, …, n) then we denote S(x) by n of is called a on n symbols Permutation
	n a principle ideal Domain an element is prime if and only if it is Reducible
MCQ2: Answer:	I only
MCQ3: Answer:	3x+1
MCQ4: Answer:	II only
MCQ5: Answer:	II only
MCQ6: Answer:	
MCQ7: Answer:	1

MCQ8:

Answer: f(a) = 1

MCQ9: Express $x4+\hat{A}$ $x3+5x2-x\hat{A}$ as $(x2\hat{A} + x+1)+rx$ in Q[x]

Answer: None of the options

MCQ10: Let F be a field. Let f(x) and g(x) be two polynomials in F[x] with g(x) a = 0. Then I There exist two polynomial g(x) and g(x) and g(x) in g(x) such that g(x) = g(x)g(x) + g(x), where g(x) and g(x) and g(x) and g(x) and g(x) and g(x) are unique, which of the following is a properties of Division Algorithmâ

Answer: I only

MCQ11: Which of the following polynomial ring is free from zero divisor $\mbox{\sc Answer:}\ \mbox{\sc Z6\^{A}}$

MCQ12: . Let R be a ring and f(x) and g(x) be two non $\hat{a} \in \text{"zero element of R[x]}$. Then $\deg(f(x)g(x))$ $\hat{a}_{x}^{w} \deg(x) + \deg(x)$ with equality if

Answer: R does not have a zero divisor

MCQ13: If p(x), q(x) $\hat{a}^{\hat{a}}$ Z[x] then the deg(p(x).q(x)) is Answer: Max (deg p(x), deg q(x))

MCQ14: If $f(x) = a0+a1x+\hat{a}\in |+anx|$ and $g(x) = b0+b1x+\hat{a}\in |+bmx|$ are two polynomial in R[x], we define their product $f(x).g(x) = c0+c1x+\hat{a}\in |+cm+nx|$ where ci is \hat{A} Answer: $ai\hat{A}$ bi $\hat{a}^{\uparrow}\in i=0,1$, $\hat{a}\in |+cm+nx|$

MCQ15: Consider the two polynomials p(x), q(x) in Z[x] by p(x) = 1+2x+3x2, q(x) = 4+5x+7x3. Then p(x) + q(x) is

Answer: 5+7x+3x2+7x3

MCQ16: Determine the degree and the leading coefficient of the polynomial \hat{A} \hat{A} \hat{A} \hat{A} \hat{A} \hat{A} \hat{A} \hat{A} 1+x3+x4+0.x5 is

Answer: (3,1)

MCQ17: The Degree of a polynomial written in this form $deg(\hat{a}^{'}i=0naixi)$ if an â % 0 is Answer: 0

MCQ18: Let R be a domain and x \hat{a} R be nilpotent then xn = 0 for some n \hat{a} N. Since R has no zero divisors this implies that

Answer: x = 1

MCQ19: An ideal m Z of Z is maximal if and only if m is

Answer: An even number

MCQ20: Â Every maximal ideal of a ring with identity is

Answer: A field

MCQ21: \hat{A} Let R be a ring with identity. An ideal M in R is Maximal if and only if R/M is

Answer: A field

MCQ22: An ideal p of a ring R with identity is a prime ideal of R if and only if the quotient ring is

Answer: An integral domain

MCQ23: Â The characteristics of a field is either

Answer: None of the options

MCQ24: Zn is a field if and only if

Answer: n is an even number

MCQ25: Â Which of the following is an axioms of a field

Answer: Is commutative

MCQ26: Let R be a ring, the least positive integer n such that nx = 0 â^€ x â^^ R is called

Answer: The order of R

MCQ27: Which of the following is not a property of an integral domain

Answer: Is a commutative ring

MCQ28: A non – zero element in a ring R is called zero divisor in R if there

exist a non â€" zero element b in R such that

Answer: ab = 0

MCQ29: If H is a subgroup of a group G and a, b $\hat{a}^{\hat{}}$ G then which of the

following statement is true

Answer: Ha = H Iff aâ^^ H

MCQ30: Let G be a group and aâ^G such that O(G) = t, then an=Â am, if and only

if

Answer: None of the options

MCQ31: Which of these does not hold for $\hat{a} \in \tilde{A} - \hat{a} \in M$ distributive over , and $\hat{a} \in \tilde{A} - \hat{a} \in M$

–

Answer: $A\tilde{A}$ — (BC) = $A\tilde{A}$ —B $A\tilde{A}$ —C

MCQ32: The symmetric difference of two given sets A and B, denoted by A \hat{a}^{\dagger} B is

defined by

Answer: A \hat{a}^{\dagger} B = (A $\hat{a} \in B$) or (B $\hat{a} \in A$)

MCQ33: The (relative) complement (or difference) of a set A with respect to a

set B denoted by B â€" A (or B\A) is the set

Answer: B â€" A = {x B :xâ^^A}

MCQ34: Which of the following is of the operations and

Answer: Associative A(BC) = (AB) C and A(BC) = (AB)C for three sets A, B, C

MCQ35: The intersection of two sets A and B written as AB is

Answer: The set $AB = \{x:x\hat{a}^A \text{ and } x\hat{a}^B\}$

MCQ36: A set X of n elements has

Answer: 2n subsets

MCQ37: If G is a finite group such that O(G) is neither I nor a prime, then G

has

Answer: Non – trivial proper subgroup

MCQ38: Which of the following is not the definition of Euler Phi – function

MCQ39: Every group of prime order is

Answer: Non – abelian

MCQ40: An element is of infinite order if and only if all its power are

Answer: Real

MCQ41: Consider the following set of 8 $2 \text{ Å}^{\prime} 2 \text{ matrices over } \text{Å} \div \text{L}$. Q8 = $\{\text{Å} \pm \text{I}, \text{Å} \pm \text{A}, \text{A} \pm \text{A}, \text{A}, \text{A}, \text{A} \pm \text{A}, \text{$

 $\hat{A}\pm B$, $\hat{A}\pm C$ } where I = , A = , \hat{B} = , C = and i = -1. If H = <A> is a

subgroup, how many distinct right cosets does it have in Q8Â

Answer: 8

MCQ42: Let H = 4Z. How many distinct right coset of H in Z do we have?

Answer: 2

MCQ43: A function f : A B is called one â€" one if and only if different element

of B. some time is called

Answer: Bijective

MCQ44: Let G be a group, g â^ G and m, n â^ Z. which of the following does not

hold

Answer: (gm)n = gmn

MCQ45: Let G be a group. If there exist g $\hat{a}^{\hat{}}$ G has the form x = gn for some n

 $\hat{a}^{\hat{}}$ Z then G is

Answer: A cyclic group

MCQ46: Let $H = \{I, (1, 2)\}$ be a subgroup of S3. The distinct left cosets of H in

S3are

Answer: H, (123)H, (12)H

MCQ47: The order of in Q8 is

Answer: 4

MCQ48: The order of (12) in S3 isÂ

Answer: 1

MCQ49: A group generated by g is given by <g> = {e, g, g2, …,gm-1} the

order of ${\sf g}$ is

Answer: 0

MCQ50: Let H be a subgroup of a finite group G. We call the number of distinct

of H in G $_$ ___.

Answer: index