$$ar{u}_{t+1}$$
 $u_t - P_t^n g_t \ u_t - g_t$

Figure 1: Illustration of the proposed algorithm: based on an iterate $u_t \in \mathcal{M}$ and the choice of a linear space \mathcal{T}_t , an approximation $P_t^n g_t \in \mathcal{T}_t$ of the true gradient g_t is first obtained via a random operator P_t^n . Then an update $\bar{u}_{t+1} = u_t - s_t P_t^n g_t$ is obtained given a step size s_t . Then, the next iterate $u_{t+1} \in \mathcal{M}$ is obtained

through application of the retraction map R_t .