

Computational Geometry: Delaunay Triangulations and Voronoi Diagrams

Lecture 3

Prof. Marcelo Ferreira Siqueira

 $\begin{aligned} DIMAp-UFRN \\ \texttt{mfsiqueira@dimap.ufrn.br} \end{aligned}$

Triangulations

Given a *finite* family, $(a_i)_{i \in I}$, of points in \mathbb{E}^n , we say that $(a_i)_{i \in I}$ is *affinely independent* if and only if the family of vectors, $(a_i a_j)_{j \in (I - \{i\})}$, is linearly independent for some $i \in I$.

Triangulations

Given a *finite* family, $(a_i)_{i \in I}$, of points in \mathbb{E}^n , we say that $(a_i)_{i \in I}$ is *affinely independent* if and only if the family of vectors, $(a_i a_j)_{j \in (I - \{i\})}$, is linearly independent for some $i \in I$.

In \mathbb{E}^n , the largest number of affinely independent points is n+1.

Let a_0, \ldots, a_d be any d+1 affinely independent points in \mathbb{E}^n .

Triangulations

The *simplex* σ spanned by the points a_0, \ldots, a_d is the convex hull, $conv(\{a_0, \ldots, a_d\})$, of these points, and is denoted by $[a_0, \ldots, a_d]$.

The points a_0, \ldots, a_d are the *vertices* of σ .

Triangulations

The *simplex* σ spanned by the points a_0, \ldots, a_d is the convex hull, $conv(\{a_0, \ldots, a_d\})$, of these points, and is denoted by $[a_0, \ldots, a_d]$.

The *dimension*, $\dim(\sigma)$, of σ is d, and σ is called a *d-simplex*.

The *simplex* σ spanned by the points a_0, \ldots, a_d is the convex hull, $conv(\{a_0, ..., a_d\})$, of these points, and is denoted by $[a_0,\ldots,a_d].$

In \mathbb{E}^n , we have simplices of dimension $0, 1, \dots, n$ only.

Triangulations

A 0-simplex is a point, a 1-simplex is a line segment, a 2simplex is a triangle, and a 3-simplex is a tetrahedron, and so on.

Triangulations

The convex hull of any nonempty (proper) subset of vertices of a simplex σ is also a simplex, called a *(proper) face* of σ .

A *simplicial complex*, K, in \mathbb{E}^n is a finite set of simplices in \mathbb{E}^n such that

- (1) if $\sigma \in \mathcal{K}$ and $\tau \leq \sigma$ then $\tau \in \mathcal{K}$, and
- (2) if $\sigma \cap \tau \neq \emptyset$ then $\sigma \cap \tau \leq \sigma, \tau$, for all $\sigma, \tau \in \mathcal{K}$,

where $a \leq b$ denotes "a is a (not necessarily proper) face of b"

10

Triangulations

violates (1) violates (2)

A simplicial complex

П

Triangulations

The *dimension*, $\dim(\mathcal{K})$, of a simplicial complex \mathcal{K} is the largest dimension of a simplex in \mathcal{K} . We refer to a *d*-dimensional simplicial complex as simply a *d*-(*simplicial*) *complex*.

a 2-complex

Note that a simplicial complex is a *discrete* object (i.e., a finite collection of simplices). In turn, each simplex is a set of points.

13

Triangulations

The (point) set consisting of the union of all points in the simplices of a simplicial complex, \mathcal{K} , is called the *underlying space* of \mathcal{K} and denoted by $|\mathcal{K}|$. Note that \mathcal{K} is a *continuous* object.

its underlying space

14

Triangulations

A triangulation of a nonempty and finite set, P, of points of \mathbb{E}^n , is a simplicial complex, $\mathcal{T}(P)$, such that all vertices of $\mathcal{T}(P)$ are in P and the union of all simplices of $\mathcal{T}(P)$ equals conv(P).

A triangulation of a nonempty and finite set, P, of points of \mathbb{E}^n , is a simplicial complex, $\mathcal{T}(P)$, such that all vertices of $\mathcal{T}(P)$ are in P and the union of all simplices of $\mathcal{T}(P)$ equals conv(P).

Triangulations

In our definition we do assume that the affine hull of P has dimension n. So, a triangulation of P may contain no simplex of dimension n, such as the example below for n = 2:

Triangulations

Note that not all points of P need to be vertices of $\mathcal{T}(P)$, except for the extremes points of conv(P), which are always in $\mathcal{T}(P)$.

Whenever all points in P are vertices of $\mathcal{T}(P)$, we call $\mathcal{T}(P)$ a *full-triangulation*. This is the type of triangulation we will study.

From now on, we drop the word "full" and refer to the term "triangulation" as a full-triangulation of the given point set.

Theorem 3.1. Every nonempty and finite set, $P \subset \mathbb{E}^2$, admits a triangulation, which partitions the convex hull of P.

(proof discussed in the end of the lecture)

19

The Delaunay Triangulation

Let *P* be a nonempty and finite set of points in \mathbb{E}^2 .

For the time being, let us assume that (1) not all points of P are collinear, and (2) no four points of P lie in the circumference defined by 3 of them. Observe that "(1) \Rightarrow $|P| \geq 3$ ".

20

The Delaunay Triangulation

The Lifting Procedure

Let $\omega:\mathbb{E}^2 \to \mathbb{R}$ be the function defined as

$$\omega(p) = x^2 + y^2,$$

for every $p = (x, y) \in \mathbb{E}^2$.

Note that ω can be seen as a *height* function that lifts the point p=(x,y) to the paraboloid of equation $z=x^2+y^2$ in \mathbb{E}^3 .

22

The Delaunay Triangulation

Let

$$P^{\omega} = \{(x, y, \omega(x, y)) \in \mathbb{E}^3 \mid (x, y) \in P\}.$$

23

The Delaunay Triangulation

Note that P is the orthogonal projection of P^{ω} onto the xy-plane.

Consider the convex hull, $conv(P^{\omega})$, of P^{ω} . Denote it by \mathcal{P} .

25

The Delaunay Triangulation

Consider the convex hull, $\operatorname{conv}(P^{\omega})$, of P^{ω} . Denote it by \mathcal{P} .

 \mathbb{E}^3

The Delaunay Triangulation

Project the *lower envelope* of \mathcal{P} onto the *xy*-plane.

Project the *lower envelope* of \mathcal{P} onto the *xy*-plane.

28

The Delaunay Triangulation

If the result of the projection of the lower envelope of \mathcal{P} is a triangulation, then we call it the *Delaunay triangulation* of P.

We denote the Delaunay triangulation of P by $\mathcal{DT}(P)$.

29

The Delaunay Triangulation

Proposition 3.2. Let $S \subset \mathbb{E}^3$ be the paraboloid given by the equation $z = x^2 + y^2$, and let $H \subset \mathbb{E}^3$ be a non-vertical hyperplane, i.e., one whose normal vector has non-zero last coordinate. Let C be the projection of $H \cap S$ into \mathbb{E}^2 obtained by dropping the last coordinate of all points in $H \cap S$. Then, C is either empty, a single point, or a circumference.

Proposition 3.2.

(proof on the board)

31

The Delaunay Triangulation

Lemma 3.3. Let $Q \subset P$ be any subset of P with 3 affinely independent points. Then, Q^{ω} corresponds to the vertex set of a lower facet of the polytope, \mathcal{P} , if and only if all points in Q lie on a circle and all points of P - Q are outside it.

32

The Delaunay Triangulation

Lemma 3.3.

(proof on the board)

By hypothesis, no four points of *P* lie in the same circumference.

So, Lemma 3.3 implies that all facets of the lower envelope of \mathcal{P} are triangles in \mathbb{E}^3 , and so are their projections onto \mathbb{E}^2 .

By hypothesis, not all points of P are collinear. This means that the proper faces of the lower envelope of \mathcal{P} are triangles.

34

The Delaunay Triangulation

What can we conclude from the previous remarks?

The projection of the lower envelope of \mathcal{P} is a set of triangles.

It turns out that — with a little bit of an effort — we can also show that this set of triangles, along with their edges and vertices, is a triangulation of P. This implies that the edges and vertices of the triangles must be in the lower envelope of \mathcal{P} .

35

The Delaunay Triangulation

By definition, the triangulation resulting from the projection of the lower envelope is the Delaunay triangulation, $\mathcal{DT}(P)$.

Lemma 3.4. Let P be a nonempty and finite set of points of \mathbb{E}^2 . If no four points of P lie in the same circumference and not all points of P lie in the same line, then the Delaunay triangulation, $\mathcal{DT}(P)$, of P exists. Furthermore, it is unique.

(proof on the board)

37

The Delaunay Triangulation

What if one these two assumptions does not hold?

38

The Delaunay Triangulation

If all points of P are collinear, then \mathcal{P} is 2-dimensional and its lower envelope is a polygonal chain containing all points of P.

The Delaunay Triangulation The projection of the lower envelope is also a polygonal chain containing all points of *P*, which is a triangulation as well. According to our definition!

The Delaunay Triangulation

From our definition of Delaunay triangulation, this "degenerate" triangulation is also the Delaunay triangulation of *P*.

The Delaunay Triangulation

Let *Q* be a subset of *P* containing *at least* four points.

Suppose that all points in *Q* lie in the same circumference, *C*.

The points in *Q* cannot be all collinear. Otherwise, they would not lie in the same circumference (assuming "finite" radius).

The Delaunay Triangulation

If there is no point of P inside C, then Lemma 3.3 also tells us that Q is exactly the vertex set of a lower envelope facet of \mathcal{P} .

The Delaunay Triangulation

The projection of this facet is a convex set with ≥ 4 vertices!

So, the projection of the lower envelope is not a triangulation.

The Delaunay Triangulation We call the resulting projection the Delaunay subdivision of P. Two-dimensional convex sets that are not triangles can always be triangulated (it is a well-known result in mathematics).

So, we can *always* obtain a triangulation of *P* from the Delaunay subdivision by triangulating those 2D convex sets.

46

The Delaunay Triangulation

In practice, the resulting triangulation is usually called a Delaunay triangulation. But, conceptually, this is not quite right!

However, keep in mind that there is more than one way of "refining" a Delaunay subdivision to obtain a triangulation.

So, the triangulation (whatever we call it) is not unique!

47

The Delaunay Triangulation

Let us summarize all facts we have learned so far...

Let *P* be any subset of points of \mathbb{E}^2 .

If no four points of P lie in the same circumference, then we know that the Delaunay triangulation, $\mathcal{DT}(P)$, of P exists.

Furthermore, this triangulation contains no triangles if the points of *P* are all collinear. Note that the converse also holds.

If four points of P lie in the same circumference and *this circumference contains no other point of* P *in its interior*, then $\mathcal{DT}(P)$ does not exist, but the Delaunay subdivision of P does!

From any Delaunay subdivision of P, we can obtain a triangulation of P by triangulating convex sets with ≥ 4 vertices.

49

The Delaunay Triangulation

However, if for every circumference defined by (at least) four points of P on it, there is always at least one point of P inside it, then the Delaunay triangulation, $\mathcal{DT}(P)$, of P exists.

Why?

Because the lifting of the points on the circumference to the paraboloid doesn't define a facet of the lower envelope of \mathcal{P} .

50

The Delaunay Triangulation

What can we conclude from all these facts?

If P is nonempty and finite set of points of \mathbb{E}^2 such that no four points of P define a circumference whose interior is empty of points of P, then $\mathcal{DT}(P)$ always exists and is unique.

Otherwise, we get the Delaunay subdivision, which can always be refined to yield a triangulation of *P* in a non-unique way.

We have a proof for Theorem 3.1:

Theorem 3.1. Every nonempty and finite set, $P \subset \mathbb{E}^2$, admits a triangulation, which partitions the convex hull of P.

The assertion of Theorem 3.1 also holds in \mathbb{E}^n .

We can also show its veracity by first proving the existence of Delaunay triangulations and subdivisions of $P \subset \mathbb{E}^n$, for $n \geq 3$.

52

The Delaunay Triangulation

We defined the Delaunay triangulation in \mathbb{E}^2 only, although our definition of triangulation holds in \mathbb{E}^n , for any $n \in \mathbb{N}$.

The lifting procedure can be extended to \mathbb{E}^n , for n = 1 and $n \ge 3$.

So, our definition of $\mathcal{DT}(P)$ is the same for $P \subset \mathbb{E}^n$, with $n \in \mathbb{N}$.

53

The Delaunay Triangulation

If all points in $P \subset \mathbb{E}^n$ lie in the same hyperplane in \mathbb{E}^n , then $\mathcal{DT}(P)$ has no simplex of dimension n (like we saw for n = 2).

If n + 2 points in $P \subset \mathbb{E}^n$ lie in the same sphere in \mathbb{E}^n and this sphere contains no point of P in its interior, then the projection of the lower envelope of conv(P) is not a Delaunay triangulation, but the Delaunay subdivision of P.

_	4
э	4

FR01	-	1		1
Tho		21112 277	PIONOTI	lation
1116	De.	laullav	Triangu	iauvii

However, we can always refine the Delaunay subdivision of *P* to obtain a Delaunay triangulation of *P*, which is not unique.

We rely on the fact that any n-dimensional polytope, which is the projection of a n-dimensional, lower facet of $\operatorname{conv}(P)$ containing more than n+1 vertices, can be triangulated.

55

The Delaunay Triangulation

Consider Lemma 3.3 again:

Lemma 3.3. Let $Q \subset P$ be any subset of P with 3 affinely independent points. Then, Q^{ω} corresponds to the vertex set of a lower facet of the polytope, \mathcal{P} , if and only if all points in Q lie on a circle and all points of P - Q are outside it.

This lemma gives us an algorithm for computing $\mathcal{DT}(P)$.

Can you describe it?