Advanced Data Analysis

DATA 71200

Class 5

Weekly Schedule

7-Jun Inspecting Data

8-Jun Representing Data

9-Jun Evaluation Methods

10-Jun Async

Reading for today

 Ch 4: "Representing Data/Engineering Features"in Guido, Sarah and Andreas C. Muller. (2016). Introduction to Machine Learning with Python, O'Reilly Media, Inc. 213–55.

Inspecting Data to Gain Insights

Review from yesterday

- Data size and type
- Summary statistics
- Histograms
- Scatter Matrix

Representing Data

- Continuous versus categorical
 - One-Hot Encoding
 - Binning
- Transformations
- Automatic feature selection
- Utilizing expert knowledge

Some Terminology

(Linear) Regression

 Continuous predictive model created by estimating a linear relationship between features

Logistic Regression

Predictive model of the probability of a certain class

Some Terminology

Regularization

- Adds an extra term to the cost function
- Can be applied to linear and logistic regression
- Can also be used for feature selection
- Lasso (least absolute shrinkage and selection operator) regression, referred to as L1 regularization
- Ridge regression, referred to at L2 regularization

Some Terminology

Lasso Regression (L1)

 reduces the coefficients of the least important variables to zero (removing them completely by the model)

Ridge Regression (L2)

 useful addresses multicollinearity (linear relationships between parameters) and having more parameters than observations

Continuous Versus Categorical

- Regression predicts continuous values
- Classification predicts categorical, or discrete, values
- Continuous versus categorical distinct also holds for input features

One-Hot Encoding

- Split the different categories in their own variable
- E.g., a single variable for color where the values are the strings "blue", "red", "yellow" would be encoded as

	Blue	Red	Yellow	← Variables
Blue	1	0	0	
Red	0	1	0	
Yellow	0	0	1	
1	I	i	i	Cotogoriool

Categorical data can also be encoded as numbers

In-Class Activity 1

- Apply one-hot encoding to the ocean_proximity value in the California Housing dataset that we looked at last class
 - Using pd.dummies and/or OneHotEncoder from scikitlearn

Binning

- Discretizing continues data into numerical bins can be useful when small differences in value are not significant
- E.g., for numerical grade data (out of 100), it may be more useful to give a model how many scores fall into ranges of 5 rather than the continuous data

In-Class Activity 2

- Apply binning to the housing_median_age value in the California Housing dataset that we looked at last class
 - housing['housing median age'].values.reshape(-1, 1)
 - Plot both the original data and the binned data
- Explore binning with other features

Transformations

- Squaring and cubing is useful for linear regression models
- Logarithms and exponentials are useful for representing your data with a Gaussian distribution, which is useful for mean-based models

In-Class Activity 3

- Apply the following transformations to housing_median_age in the California Housing dataset that we looked at last class
 - Squaring (**2)
 - Cubing (**3)
 - np.log
 - np.exp
- Plot histograms and scatter matrices to explore the resultant data (for **2, **3, and np.log)

Automatic Feature Selection

- Regularization can be used to assess the relative importance of features in the performance of a model
 - Although this can't tell you anything about features you don't include
- Recursive feature elimination (RFE) starts with all features and removes the poorly performing ones
- You can also start with one feature and build up a model

Utilizing Expert Knowledge

- Domain knowledge can be useful for recognizing patterns in data that may be beneficial or detrimental to the model
- This can inform decisions about which features to include and how to represent them

Reading for tomorrow

 Ch 5: "Model Evaluation and Improvement" in Guido, Sarah and Andreas C. Muller. (2016). Introduction to Machine Learning with Python, O'Reilly Media, Inc.