# **Mathematical Foundation of Computer Sciences III**

Automata on Infinite Objects

Guoqiang Li

School of Software, Shanghai Jiao Tong University

# Büchi Automata

#### **Büchi Automata**

Accept  $\omega$ -words, instead of finite words.

Acceptance condition is different.

For a Büchi automaton  $A = (S, \Sigma, \delta, q_0, F)$ ,  $\omega$ -word  $w = a_0 a_1 \ldots \in \Sigma^{\omega}$  is accepted if there exists  $q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} \ldots$  for  $(q_i, a_i, q_{i+1}) \in \delta$  across F infinitely often. L(A) is the set of accepted  $\omega$ -words.

L(A) is called regular ( $\omega$ -language).

# **Examples of Büchi Automata**



Accepts  $\{0^*1^*2^{\omega}\}$ 



Accepts  $\{ab^{\omega}, ac^{\omega}\}$ 

#### Deterministic VS. Non-deterministic

### Accepted by deterministic Büchi automata?

- (b\*a)<sup>ω</sup>
  - a appears infinitely many
  - Yes!
- $(b^*a)^*b^{\omega}$ 
  - $\{a, b\}^{\omega} (b^*a)^{\omega}$
  - No!



$$(b^*a)^{\omega}$$



$$(b^*a)^*b^{\omega}$$

#### Variation on Automata for $\omega$ -Words

Let  $Inf(\sigma)$  be the set of states that a path  $\sigma$  across infinitely often. Let  $\alpha \in \Sigma^\omega$ 

### Büchi automata $A = (S, \Sigma, \delta, q_0, F)$

•  $\alpha$  has a path  $\sigma$  such that  $Inf(\sigma) \cap F \neq \emptyset$ .

# Muller automata $A = (S, \Sigma, \delta, q_0, \{F_1, \dots, F_m\})$

•  $\alpha$  has a path  $\sigma$  such that  $Inf(\sigma) = F_i$ .

## Rabin automata $A = (S, \Sigma, \delta, q_0, \{(L_1, M_1), \dots, (L_m, M_m)\})$

•  $\alpha$  has a path  $\sigma$  such that  $Inf(\sigma) \cap L_i = \emptyset$ ,  $Inf(\sigma) \cap M_i \neq \emptyset$ .

If nondeterministic, they are all equivalent.

# **Algorithm Reuse**

Q: Which algorithms of finite automata can be reused in Büchi automata?

- Union?
- Concatenation?
- $\omega$ -Star?
- Intersection?
- Complement?
- Emptiness?
- Subset?

#### **Operations of Büchi Automata**

Two Büchi automata  $A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$ , and a finite automaton  $C = (S'', \Sigma, \delta'', q''_0, F'')$ 

Union: Büchi automaton that accepts  $L(A) \cup L(B)$ 

$$(S \cup S' \cup \{q\}, \Sigma, \delta \cup \delta' \cup \{(q, \varepsilon, q_0), (q, \varepsilon, q'_0)\}, q, F \cup F')$$

Concatenation: Concatenation between  $L(C) \circ L(A)$ 

ω-Star:  $L(A)^ω$ 

#### Intersection of Büchi Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F'),$$

Büchi automaton that accepts  $L(A) \cap L(B)$ 

$$\left(S \times S' \times \{0,1\}, \Sigma, \delta'', \left(q_0, q_0', 0\right), F \times S' \times \{0\} \cup S \times F' \times \{1\}\right)$$

where  $\delta'' = \{((s, s', i), a, (t, t', j)) \mid (s, a, t) \in \delta, (s', a, t') \in \delta',$ 

- j = 1 if either i = 0 and  $t \in F$ , or i = 1 and  $t' \notin F'$ ,
- j = 0 if either i = 0 and  $t \notin F$ , or i = 1 and  $t' \in F'$

}

### **Emptiness**

For a Büchi automaton  $A = (S, \Sigma, \delta, q_0, F)$ ,  $L(A) \neq \emptyset$  implies  $\exists u, v \in \Sigma^*$  such that  $|u|, |v| \leq |S|$  and  $uv^{\omega} \in L(A)$ .



# **Emptiness**

SCC!

# Complement of Büchi Automata

For a Büchi automaton  $A = (S, \Sigma, \delta, q_0, F)$ ,

Even if A is deterministic,  $A^c$  may be non-deterministic.

But,  $deterministic \subset non-deterministic \dots$ 

The Büchi automaton version of Myhill-Nerode Theorem discussion is required.

# **Several ways for Complement**

Via Muller Automata

#### Via Alternating Automata

Miyano, S., Hayashi, T., Alternating Finite Automata on omega-Words. TCS 32, pp.321-330, 1984

Explicit representation by congruence classes (this also gives minimization)

Many many new techniques recently, which is still a hot topic nowadays.

#### **Notations**

For a Büchi automaton  $A = (S, \Sigma, \delta, q_0, F)$ ,

$$q \xrightarrow{u}_F q' \Leftrightarrow q \xrightarrow{u} q'$$
 across some  $q_f \in F$ 

$$u \sim_A v \text{ iff } \forall q, q' \in S,$$
 
$$(q \stackrel{u}{\rightarrow} q' \Leftrightarrow q \stackrel{v}{\rightarrow} q') \wedge (q \stackrel{u}{\rightarrow}_F q' \Leftrightarrow q \stackrel{v}{\rightarrow}_F q')$$

# Finite Congruence of Büchi Automata

 $\sim_A$  is a finite congruence over  $\Sigma$ 

 $\sim_A$  classes U, V are regular

 $U.V^{\omega}$  is regular  $\omega$ -languages.

# L(A) as a Union of $U.V^{\omega}$

#### Lemma

For a Büchi automaton  $A = (S, \Sigma, \delta, q_0, F)$ ,

$$L(A) = \bigcup_{U.V^{\omega} \cap L(A) \neq \emptyset} U.V^{\omega}$$

$$L(A) \supseteq \bigcup_{U.V^{\omega} \cap L(A) \neq \emptyset} U.V^{\omega}$$
 is easy, since

$$U.V^{\omega} \cap L(A) \neq \emptyset \Rightarrow U.V^{\omega} \subseteq L(A)$$

 $L(A) \subseteq \bigcup_{U,V^{\omega} \cap L(A) \neq \emptyset} U,V^{\omega}$  needs Ramsey's Theorem.

#### Ramsey's Theorem

#### General Version

Let G be an infinite complete graph. Put a label from  $\{1, 2, ..., k\}$  on each edge. Then, there exists an infinite complete sub-graph such that its each edge has the same label.

# $L(A) \subseteq \bigcup_{U.V^{\omega} \cap L(A) \neq \emptyset} U.V^{\omega}$

For each  $\alpha \in \Sigma^{\omega}$ , there exist  $\sim_A$  -classes U, V such that  $\alpha \in U.V^{\omega}$ .

Let 
$$\alpha(m, n) = a_m a_{m+1} \dots a_{n-1}$$
 for  $\alpha = a_1 a_2 a_3 \dots$ 

Regarding  $\alpha(m, n) \in V$  as a label V, by Ramsey's Theorem,  $\alpha(n_1, n_2), \alpha(n_2, n_3), \ldots \in V$ . If  $\alpha(0, n_1) \in U$ , then  $\alpha \in U.V^{\omega}$ .

# Complement of L(A)

For a Büchi automaton  $A = (S, \Sigma, \delta, q_0, F)$ ,

$$L(A) = \bigcup_{U.V^{\omega} \cap L(A) \neq \emptyset} U.V^{\omega}$$

Then,

$$L^{c}(A) = \bigcup_{U.V^{\omega} \cap L(A) = \emptyset} U.V^{\omega}$$

U, V are regular; thus,  $L^{c}(A)$  is regular.

# LTL Logic

### Models: Systems Vs. Machines

- Kripke structure:  $M = (S, S_0, R, L)$ 
  - S. finite set of state
  - $S_0 \subseteq S$ , initial state
  - $R \subseteq S \times S$ , transition relations
  - $L: S \to 2^{AP}$ , status label function (AP: atomic propositions)
- FA:  $A = (\Sigma, Q, Q_0, F, \delta)$ 
  - A, finite set of input alphabet
  - Q, finite set of control location
  - $Q_0 \subseteq Q$ , initial control locations
  - $F \subseteq Q$ , final control locations
  - $\delta \subseteq Q \times \Sigma \times Q$ , transitions
- Büchi automata, pushdown automata,...



### Models: Finite Systems Vs. Infinite Computation Tree



### An Example: An Microwave Oven Example



# **Logic-Based MC: Temporal Operators**



# Logic-Based MC: Path Operators, A, E



- AG: safety, bad things will never happen.
- AF: liveness, good things will eventually happen.

### State Formula & path formulas

Let AP be the set of atomic proposition names. The syntax of state formulas is given by the following rules:

- If  $p \in AP$ , then p is a state formula.
- If f and g are state formulas, then  $\neg f$ ,  $f \lor g$  and  $f \land g$  are state formulas.
- If f is a path formula, then E f and A f are state formulas.
- If f is a state formula, then f is also a path formula.
- If f and g are path formulas, then  $\neg f$ ,  $f \lor g$ ,  $f \land g$ , Xf, Ff, Gf and fUg are path formulas.

#### Formal Description

```
1. M, s \models p \Leftrightarrow p \in L(s).
2. M, s \models \neg f_1 \Leftrightarrow M, s \not\models f_1.
3. M, s \models f_1 \lor f_2 \Leftrightarrow M, s \models f_1 \text{ or } M, s \models f_2.
4. M, s \models f_1 \land f_2 \Leftrightarrow M, s \models f_1 \text{ and } M, s \models f_2.
5. M, s \models \mathbf{E} \ g_1 \Leftrightarrow \text{ there is a path } \pi \text{ from } s \text{ such that } M, \pi \models g_1.
6. M, s \models A g_1 \Leftrightarrow \text{ for every path } \pi \text{ starting from } s, M, \pi \models g_1.
7. M, \pi \models f_1 \Leftrightarrow s \text{ is the first state of } \pi \text{ and } M, s \models f_1.
8. M, \pi \models \neg g_1 \Leftrightarrow M, \pi \not\models g_1.
9. M, \pi \models g_1 \lor g_2 \Leftrightarrow M, \pi \models g_1 \text{ or } M, \pi \models g_2.
10. M, \pi \models g_1 \land g_2 \Leftrightarrow M, \pi \models g_1 \text{ and } M, \pi \models g_2.
11. M, \pi \models \mathbf{X} g_1 \Leftrightarrow M, \pi^1 \models g_1.
12. M, \pi \models \mathbf{F} g_1 \Leftrightarrow \text{there exists a } k \ge 0 \text{ such that } M, \pi^k \models g_1.
13. M, \pi \models \mathbf{G} g_1 \Leftrightarrow \text{ for all } i > 0, M, \pi^i \models g_1.
14. M, \pi \models g_1 \cup g_2 \Leftrightarrow \text{there exists a } k \geq 0 \text{ such that } M, \pi^k \models g_2 \text{ and }
                                                 for all 0 < i < k, M, \pi^j \models \varrho_1.
```

### **Example Specification**

- *EF*(Start ∧ ¬Ready)
  - It is possible to get to a state where Start holds but Ready does not hold.
- $AG(\text{Req} \rightarrow AF \text{Ack})$ 
  - If a request occurs, then it will be eventually acknowledged.
- AG(AF DeviceEnabled)
  - The proposition <u>DeviceEnabled</u> holds infinitely often on every computation path.
- AG(EF Restart)
  - From any state it is possible to get to the Restart.

### **Example Specification**

- AG (request  $\rightarrow F$  grant)
  - each request will be finally grant(ed).
- $AG(\neg(\neg request \ U \ grant))$ 
  - each grant follows some request.
- AGF request
  - request occurs infinitely often.

#### Subclass of CTL, LTL

- CTL: temporal operators must be immediately followed by path quantifiers.
  - e.g.,  $AF\varphi$ ,  $EG\varphi$ ,  $AXEG\varphi$ ,  $EXA(\varphi U\psi)$
- LTL: path quantifiers are allowed only at the outermost position.
  - e.g.,  $AGF\varphi$ ,  $EX(\varphi U\psi)$ ,  $A(F\varphi \lor G\psi)$

**Büchi Automata and Logic** 

#### Generalized Büchi Automata

The acceptance condition of a generalized Büchi automaton is a set of sets of states  $\mathcal{F} \subseteq 2^S$ , and the requirement is that some state of each of the sets  $F_i \in \mathcal{F}$  appears infinitely often.

More formally, a generalized Büchi  $A = (\Sigma, S, \delta, S_0, \mathcal{F})$  accepts a word w if there is a labeling  $\rho$  of w by states of A that satisfies the same first two conditions as given for Büchi automata, the third being replaced by:

• For each  $F_i \in \mathcal{F}$ ,  $inf(\rho) \cap F_i \neq \emptyset$ .

#### **Encoding Generalized Büchi automata**

Given a generalized Büchi automaton  $A = (\Sigma, S, \delta, S_0, F4)$ , where  $F = \{F_1, \dots, F_k\}$ , the Büchi automaton  $A' = (\Sigma, S', \delta', S'_0, F')$  defined as follows accepts the same language as A.

- $S' = S \times \{1, \ldots, k\}.$
- $S_0' = S_0 \times \{1\}.$
- $\delta'$  is defined by  $(t, i) \in \delta'((s, j), a)$  if

$$t \in \delta(s, a) \land \begin{cases} i = j & \text{if } s \notin F_j \\ i = (j \mod k) + 1 & \text{otherwise} \end{cases}$$

•  $F' = F_1 \times \{1\}.$ 

# An Example



#### **Problem Statement**

Given an LTL formula  $\varphi$  built from a set of atomic propositions AP, construct an automaton on infinite words over the alphabet  $2^{AP}$  that accepts exactly the infinite sequences satisfying  $\varphi$ .

### A Dialect of LTL Logic

- true, false, p, and  $\neg p$ , for all  $p \in AP$ ;
- $\varphi_1 \wedge \varphi_2$  and  $\varphi_1 \vee \varphi_2$ , where  $\varphi_1$  and  $\varphi_2$  are LTL formulas;
- $X\varphi_1$ ,  $\varphi_1U\varphi_2$ , and  $\varphi_1R\varphi_2$ , where  $\varphi_1$  and  $\varphi_2$  are LTL formulas.

 $\varphi_1 R \varphi_2$ : it requires  $\varphi_2$  always be true, a requirement that is released as soon as  $\varphi_1$  becomes true.

# The Way to Handle Negation

$$\sigma \not\models \varphi_1 U \varphi_2 \Leftrightarrow \sigma \models (\neg \varphi_1) R (\neg \varphi_2)$$
$$\sigma \not\models X \varphi \Leftrightarrow \sigma \models X \neg \varphi$$

#### Closure of a Formula

$$\varphi \in cl(\varphi)$$

$$\varphi_1 \wedge \varphi_2 \in cl(\varphi) \Rightarrow \varphi_1, \varphi_2 \in cl(\varphi)$$

$$\varphi_1 \vee \varphi_2 \in cl(\varphi) \Rightarrow \varphi_1, \varphi_2 \in cl(\varphi)$$

$$X\varphi_1 \in cl(\varphi) \Rightarrow \varphi_1 \in cl(\varphi)$$

$$\varphi_1 U\varphi_2 \in cl(\varphi) \Rightarrow \varphi_1, \varphi_2 \in cl(\varphi)$$

$$\varphi_1 R\varphi_2 \in cl(\varphi) \Rightarrow \varphi_1, \varphi_2 \in cl(\varphi)$$

#### **Example**

$$cl(F \neg p) = cl(trueU \neg p) = \{F \neg p, \neg p, true\}$$

#### Hintikka Structure

A valid closure labeling  $\tau:\mathbb{N}\to 2^{cl(\varphi)}$  of a sequence  $\sigma:\mathbb{N}\to 2^{AP}$  has to satisfy.

If a formula  $\varphi_1 \in cl(\varphi)$  labels a position i, then the sequence  $\sigma^i \models \varphi_1$ .

### **Rules for Labeling Sequences**

- 1.  $false \notin \tau(i)$ ;
- 2. for  $p \in AP$ , if  $p \in \tau(i)$  then  $p \in \sigma(i)$ , and if  $\neg p \in \tau(i)$  then  $p \notin \sigma(i)$ ;
- 3. if  $\varphi_1 \wedge \varphi_2 \in \tau(i)$  then  $\varphi_1 \in \tau(i)$  and  $\varphi_2 \in \tau(i)$ ;
- 4. if  $\varphi_1 \vee \varphi_2 \in \tau(i)$  then  $\varphi_1 \in \tau(i)$  or  $\varphi_2 \in \tau(i)$ ;
- 5. if  $X\varphi_1 \in \tau(i)$  then  $\varphi_1 \in \tau(i+1)$ ;
- 6. if  $\varphi_1 U \varphi_2 \in \tau(i)$  then either  $\varphi_2 \in \tau(i)$ , or  $\varphi_1 \in \tau(i)$  and  $\varphi_1 U \varphi_2 \in \tau(i+1)$ ;
- 7. if  $\varphi_1 R \varphi_2 \in \tau(i)$  then  $\varphi_2 \in \tau(i)$ , and either  $\varphi_1 \in \tau(i)$  or  $\varphi_1 R \varphi_2 \in \tau(i+1)$ ;
- 8. if  $\varphi_1 U \varphi_2 \in \tau(i)$  then there exists a j > i such that  $\varphi_2 \in \tau(j)$ .

#### **Key Lemmas**

#### Lemma.

Consider a formula  $\varphi$  defined over a set of propositions AP, a sequence  $\sigma: \mathbb{N} \to 2^{AP}$ , and a closure labeling  $\tau: \mathbb{N} \to 2^{cl(\varphi)}$  satisfying rules 1-8. For every formula  $\varphi' \in cl(\varphi)$  and  $i \geq 0$ , one has that if  $\varphi' \in \tau(i)$  then  $\sigma^i \models \varphi'$ .

#### Lemma.

Consider a formula  $\varphi$  defined over a set of propositions AP and a sequence  $\sigma: \mathbb{N} \to 2^{AP}$ . If  $\sigma \models \varphi$ , there exists a closure labeling  $\tau: \mathbb{N} \to 2^{cl(\varphi)}$  satisfying rules 1-8 and such that  $\varphi \in \tau(0)$ .

#### **Correctness**

#### **Theorem**

Consider a formula  $\varphi$  defined over a set of propositions AP and a sequence  $\sigma: \mathbb{N} \to 2^{AP}$ . One then has that  $\sigma \models \varphi$ , iff there is a closure labeling  $\tau: \mathbb{N} \to 2^{cl(\varphi)}$  satisfying rules 1-8 and such that  $\varphi \in \tau(0)$ .

# **Encoding to Büchi Automata** $\Sigma$ , S

Given a formula  $\varphi$ , a generalized Büchi automaton accepting exactly the sequences  $\sigma: \mathbb{N} \to 2^{AP}$  satisfying  $\varphi$  can be defined as follows. The automaton is  $A_{\varphi} = (S, \Sigma, \delta, S_0, \mathcal{F})$  where,

- $\Sigma = 2^{AP}$ .
- $S \subseteq 2^{cl(\varphi)}$ , and for each  $s \in S$ 
  - false ∉ s;
  - if  $\varphi_1 \wedge \varphi_2 \in s$ , then  $\varphi_1 \in s$  and  $\varphi_2 \in s$ .
  - if  $\varphi_1 \vee \varphi_2 \in s$ , then  $\varphi_1 \in s$  or  $\varphi_2 \in s$ .

# Encoding to Büchi Automata $\delta$ , $S_0$

Given a formula  $\varphi$ , a generalized Büchi automaton accepting exactly the sequences  $\sigma: \mathbb{N} \to 2^{AP}$  satisfying  $\varphi$  can be defined as follows. The automaton is  $A_{\varphi} = (\Sigma, S, \delta, S_0, \mathcal{F})$  where,

- $t \in \delta(s, a)$  iff,
  - For all  $p \in AP$ , if  $p \in s$  then  $p \in a$ .
  - For all  $p \in AP$ , if  $\neg p \in s$  then  $p \notin a$ .
  - If  $X\varphi \in s$ , then  $\varphi \in t$ .
  - If  $\varphi_1 U \varphi_2 \in s$  then either  $\varphi_2 \in s$ , or  $\varphi_1 \in s$  and  $\varphi_1 U \varphi_2 \in t$ .
  - If  $\varphi_1 R \varphi_2 \in s$  then  $\varphi_2 \in s$  and either  $\varphi_1 \in s$ , or  $\varphi_1 R \varphi_2 \in t$ .
- $S_0 = \{ s \in S \mid \varphi \in s \}.$

### Encoding to Büchi Automata ${\mathcal F}$

Given a formula  $\varphi$ , a generalized Büchi automaton accepting exactly the sequences  $\sigma: \mathbb{N} \to 2^{AP}$  satisfying  $\varphi$  can be defined as follows. The automaton is  $A_{\varphi} = (\Sigma, S, \delta, S_0, \mathcal{F})$  where,

• If the eventualities appearing in  $cl(\varphi)$  are  $e_1(\varphi_1), \ldots, e_m(\varphi_m)$ ,  $\mathcal{F} = \{ \varphi_1, \varphi_2 \ldots \varphi_m \}$ , where  $\varphi_i = \{ s \in S \mid e_i(\varphi_i), \varphi_i \in s \lor e_i(\varphi_i) \notin s \}$ 

for every eventuality formula  $e(\varphi') = \varphi U \varphi'$ 

# **An Example** *F p*



# **Optimizations**

Omitting Redundant Transitions

Building the Automaton by Need

Identifying Equivalent States

Simplifying the Formula.

Early Detection of Inconsistencies.

Moving Propositions from States to Transitions.