成都信息工程大学考试试卷

2021——2022 学年第 1 学期

课程名称:模拟电子技术 A 使用班级: 电子、通信、控制工程学院 20级			
试卷形式: 开卷□闭卷□			
一、单项选择题(每题 2 分, 共 30 分)			
1、硅和锗半导体原子外层价电子均为()个。			
A , 1 B, 2 C, 4 D, 8			
2. NPN 型和 PNP 型晶体管的区别是 ()。			
A、由两种不同材料 Si 和 Ge 组成 B、掺入杂质不同			
C、P 区和 N 区的位置不同 D、P 区和 N 区的宽度不同			
3、三端集成稳压器 79M05 的输出电压为 ()。			
A, +5V B, -5V C, 0V D, 9V			
4、集成电路中多采用的耦合方式是()			
A、变压器耦合 B、直接耦合			
C、光电耦合 D、阻容耦合			
5、理想运算放大器的开环差模增益、输入电阻、输出电阻分别为()			
$A_{\circ} \infty$, 0 , 0 $B_{\circ} \infty$, ∞ , 0			
$C, 0, \infty, 0$ $D, \infty, 0, \infty$			
6、放大电路引入负反馈会使()			
A、放大倍数的变化量增大 B、放大倍数提高			
C、放大倍数的稳定性提高 D、失真更大			
7、深度负反馈条件下电路放大倍数的分析计算,实质是忽略()而进行的等效变换。			
A、输入量 B、反馈量			

小品

姓名

答

密封线内

光弧

C、净输入量

D、输出量

8.	欲使放大器的输出电压基本稳定并能抗	是高输入电阻,该放大器应采用()	
A、	电流串联负反馈 B、	电压并联负反馈	
C,	电流并联负反馈 D、	电压串联负反馈	
9、	被称为施密特触发器的电压比较器是	()。	
A、	单门限电压比较器]	3、过零比较器	
C,	迟滞电压比较器) 、窗口比较器	
10、)、对输入信号的频率具有选择作用的电路称为()。		
A٠	放大电路	B、比较电路	
C,	振荡电路	D、滤波电路	
11、	1、LC 振荡电路适合产生()范围的正弦波。		
A٠	1 Hz \sim 1 MHz	B、1MHz 以上	
C,	任意频率	D、20kHz 以下	
12、	12、 振荡频率稳定度最高的是()。		
A٠	RC 振荡器	B、LC 振荡器	
C,	石英晶体振荡器	D、都差不多	
13、	13、利用()电路可以实现正弦波信号到方波信号的转换。		
A٠	积分	B、微分	
C,	迟滞比较器	D、窗口比较器	
14、	14、乙类互补推挽功率放大电路的能量转换效率最高可达()。		
A、	50%	B、78.5%	
C,	90%	D. 100%	
15、	AB 类功率放大器亦称甲乙类功放,	功率放大电路中的晶体管在信号的()内	
导道	通。		
A٠	半个周期	B、大于半个,小于一个周期	
C,	一个周期	D、每个周期正峰值附近的一段较短时间	
二、	、二极管电路分析(6分)		
电路	电路如图 1 所示,已知 $u_i = 6\sin\omega t$ (V),二极管导通电压忽略不计。试分别画出 u_i 与 u_0		

——第 2 页/共 7 页——

三、场效应管电路分析(4分)

电路如图 2 所示,已知: g_m =2ms, V_{DD} =18V, R_{G1} =1M Ω , R_{G2} =1M Ω , R_{G3} =2M Ω , R_{S1} =1K Ω , R_{S2} =6K Ω , R_{D} =5K Ω , R_{L} =5K Ω 。试求: A_{u} 、 R_{i} 、 R_{o} 的值。

四、三极管电路分析(9分)

电路如图 3 所示已知: β =80, $V_{\rm CC}$ =15V, $R_{\rm b1}$ =50K Ω , $R_{\rm b2}$ =6.2K Ω , $R_{\rm C}$ =5K Ω , $R_{\rm L}$ =5K Ω , $R_{\rm c}$ =1k Ω , $U_{\rm BE}$ =0.65V , $r_{\rm bb}$ = 300 Ω 。试求:

- 1、画出微变等效电路;
- 2、计算电压放大倍数 $A_{\rm u}$ 、输入电阻 $R_{\rm i}$ 、输出电阻 $R_{\rm o}$

线内

#

倒

五、差分放大电路分析(6分)

如图 4 所示差分放大电路,(a)、(b)两电路对应元器件参数相同,请指出电路图(a)、

(b) 输入、输出端的接法,并说明两个电路的差模电压放大倍数有何关系。

六、负反馈电路分析(8分)

反馈放大电路如图 5 所示, 请回答下列问题:

- (1) 判断所示电路中引入的反馈,是正反馈还是负反馈,电压还是电流反馈,串联还是并联反馈。并指出引入该反馈对电路输入、输出电阻的影响;
 - (2) 若电路满足深度负反馈,求其电压放大倍数 $A_{\rm nf}$ 的表达式。

七 、集成运算放大电路分析计算(15分)

- 1、集成运放构成的电路如图 6 所示, 试回答下列问题: (10 分)
- (1) 写出 A₁与外围元件构成的运算电路名称;
- (2) 指出 A2运放处于何种工作区?
- (3) 推导出该电路输出电压 u_{01} 、 u_{0} 表达式;
- (4)根据上一问推导出的关系式,说明该电路实现的运算功能,并从输入电阻大小方面 指出该电路的优点。

图 6

2、集成运放构成的电路如图 7 所示,试回答下列问题:(5分)

(1) 试写出 A 与外围元件构成的运算电路名称;

全全

答 题

 \mathbb{Z}

對线

铋

(2) 若输入信号 $u_i = 0.5 \sin 200\pi t$,则输出波形应为下列哪一种?

(3) 试指明图 7 电阻 R_f 的作用。

八 、振荡电路分析与计算(6分)

信号产生电路如图 8 所示, 试完成:

- (1) 计算输出的正弦波频率 f;
- (2)正弦波振荡电路中振幅平衡时, R_{W1} 的值应该为多大, 假设此时 R_{T} 的电阻为 $2K\Omega$;
- (3) 热敏电阻 RT 的作用是什么?
- (4) 指出电阻 R₃、R₄及电容 C₁、C₂构成电路在本振荡器中的作用。

图 8

九、功率放大电路分析(6分)

图 9 所示 OTL 功率放大电路,电源电压 $V_{\rm CC}$ =24V,功放管 T_1 和 T_2 的饱和压降 $|U_{\rm CES}|$ =2V、各晶体管均为硅管、负载(扬声器)的电阻 $R_{\rm L}$ =8 Ω 、各电容容量足够大,试完成以下问题:

- (1) 器件 C_4 和 R_5 构成什么电路? 输入信号 u_i 的负半周,哪只功率三极管导通?
- (2) 该电路最大不失真输出电压振幅 U_{omm} 为多少? 在此条件下,直流电源所提供的功率为多少?
- (3) 该电路功放管的最大管耗为多少?

本

倒

十、电源电路的分析与计算(6分)

- (1) 电路如图 10 所示,请回答图中的 D1-D4 构成电路的作用;
- (2) 已知输出电压 U_0 =9V, U_i =220V,试分析计算变压器初次级的变压比 U_i : U_2 。

十一、工程分析计算 (4分)

电路如图 11 所示,已知 R_t 为 PT100 铂电阻,其阻值 R_t 与温度 t 的关系为 R_t =100+0.39t (Ω) , R_1 =200 Ω ,其余器件参数均合适。

- (1) 写出运放 D1、D2、A1 和 A2 构成电路的名称; (2分)
- (2) 分析 LED 灯什么温度条件下亮灯,写出必要的分析过程或表达式。(2分)

