Kvantni algebrajski učinki

Strah, mentor: doc. dr. Matija Pretnar

28. februar 2022

Povzetek

Kvantno računalništvo temelji na veliko modernih konceptih v teoriji programskih jezikov, kot na primer linearnost tipov, (kvantnimi) fizikalnimi pojavi, in še mnogo drugimi. V diplomski nalogi se bomo posvetili tema dvema, v tem članku pa zgolj drugemu. Naš cilj je razumeti, kako se kvantni programi obnašajo, in dober način je razumevanje enakosti programov.

1 Kvantna mehanika

Ta del je povzet po [1]. Vsebuje osnovne definicije (in primere) matematičnih osnov kvantne mehanike, ki jih potrebujemo za definicije želenih operacij nad kubiti.

Oznake

Skozi ta del bomo uporabljali naslednje oznake:

- $\mathbb{N} = \{0, \dots\}, \mathbb{N}_+ = \{1, \dots\}, \mathbb{N}_n = \{0, \dots, 2^n 1\},$
- $n, m \in \mathbb{N}_+$, ki mu bomo pravili število kubitov,
- $j, k, \dots \in \mathbb{N}_n$
- a_i j-ta komponenta vektorja a,
- $j = j_1 \dots j_n$ binarni zapis števila j.

1.1 Kvantni vektorji

Definicija 1. Binarni vektorji so elementi prostora $\mathbf{B}_n := \{0,1\}^n$ in jih pišemo kot nize v binarnem zapisu. Za nas predstavljajo svet v katerem se odvijajo klasični programi.

Primer. $\mathbf{B}_2 = \{00, 01, 10, 11\}.$

Opomba. 1 in 01 predstavljata različna vektorja.

Definicija 2 (Hilbertov prostor). Elementom prostora $\mathbf{H}_n := \mathbb{C}^{2^n}$ pravimo kvantni vektorji, elementom $\mathbf{H} := \mathbf{H}_1$ pa kubiti. Prostoru \mathbf{H}_n torej pravimo prostor kvantnih vektorjev reda n, njegovo standardno bazo pa označimo z $\{e_i\}$. Tu se izvajajo kvantni programi.

Definicija 3 (Braket notacija). Naj bo $j \in \mathbb{N}_n$, ter $\hat{j} \in \mathbf{B}_n$ pripadajoč vektor v binarnem zapisu. Potem je $|j\rangle = |\hat{j}\rangle := e_j$.

Opomba. Po definiciji je torej $\mathbf{H}_n = \mathcal{L}_{\mathbb{C}}(\{|j\rangle \mid j \in \mathbf{B}_n\}).$

Primer (n = 1 in n = 2).

$$\begin{split} a &= \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = a_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a_0 \left| 0 \right\rangle + a_1 \left| 1 \right\rangle, \\ a &= \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{bmatrix} = a_{00} \left| 00 \right\rangle + a_{01} \left| 01 \right\rangle + a_{10} \left| 10 \right\rangle + a_{11} \left| 11 \right\rangle. \end{split}$$

Primer (Hadamardov vektor).

$$\mathbf{h} \coloneqq \rho \left(\left| 0 \right\rangle + \left| 1 \right\rangle \right), \quad \mathbf{h}_n \coloneqq \rho^n \sum_{j \in \mathbf{B}_n} \left| j \right\rangle, \quad \rho \coloneqq \frac{1}{\sqrt{2}}.$$

1.2 Blochova sfera

Trditev 1. V fizičnem svetu sta dva kubita, ki se razlikujeta zgolj za (kompleksen) faktor, enaka. Matematično to pomeni, da stanja kubitov (nadaljnje tudi kubiti) živijo v $\mathbf{P}\mathbb{C}^1 \cong \mathbb{S}^2$:

$$a=\cos\frac{\theta}{2}\left|0\right\rangle+e^{i\varphi}\sin\frac{\theta}{2}\left|1\right\rangle,\quad\varphi\in[0,2\pi),\theta\in[0,\pi].$$

$$\begin{array}{ll} \operatorname{Dokaz.} \ \operatorname{Naj} \ \operatorname{bo} \ a = a_0 \left| 0 \right\rangle + a_1 \left| 1 \right\rangle = r_0 e^{i\varphi_0} \left| 0 \right\rangle + r_1 e^{i\varphi_1} \left| 1 \right\rangle. \ \operatorname{Ozna-timo} \ r := \sqrt{r_0^2 + r_1^2}, \varphi := \varphi_1 - \varphi_0, \theta := 2 \arccos \frac{r_0}{r}. \ \operatorname{Potem} \ \operatorname{je} \\ a = \hat{a} := \frac{a}{r e^{i\varphi_0}} = \frac{r_0}{r} \left| 0 \right\rangle + \frac{r_1}{r} e^{i\varphi} \left| 1 \right\rangle = \cos \frac{\theta}{2} \left| 0 \right\rangle + e^{i\varphi} \sin \frac{\theta}{2} \left| 1 \right\rangle. \end{array}$$

1.3 Tenzorski produkt

Definicija 4 (Tenzorski produkt). Tenzorski produkt prostorov \mathbf{H}_n in \mathbf{H}_m je enak \mathbf{H}_{n+m} . Pišemo $\mathbf{H}_n \otimes \mathbf{H}_m$. Če sta $a \in \mathbf{H}_n$ in $b \in \mathbf{H}_m$ je $a \otimes b \in \mathbf{H}_n \otimes \mathbf{H}_m$.

Opomba. Operator \otimes je res tenzorski produkt.

Primer (Tenzorski produkt baznih vektorjev).

$$|j\rangle \otimes |k\rangle = |j_1 \dots j_n k_1 \dots k_m\rangle = |j\rangle |k\rangle = |jk\rangle$$

Primer (Splošni tenzorski produkt).

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_0b_0 \\ a_0b_1 \\ a_1b_0 \\ a_1b_1 \end{bmatrix}, \quad a \otimes b = \sum_{\substack{j \in \mathbf{B}_n, \\ k \in \mathbf{B}_m}} a_jb_k \left| jk \right\rangle.$$

Primeri (Tenzorski eksponent).

$$\begin{split} \mathbf{h}_n &= \mathbf{h}^{\otimes n} = \rho^n \underbrace{(|0\rangle + |1\rangle) \otimes \cdots \otimes (|0\rangle + |1\rangle)}_n, \\ \mathbf{H}_n &= \mathbf{H}^{\otimes n} = \underbrace{\mathbf{H} \otimes \cdots \otimes \mathbf{H}}_n. \end{split}$$

Definicija 5. Če lahko $a \in \mathbf{H}_n$ zapišemo kot $\bigotimes_{j=1}^n a_j$ za neke $a_j \in \mathbf{H}$ pravimo, da je enostaven ali separabilen, sicer je pa sestavljen oziroma kvantno prepleten.

1.4 Kvantne preslikave

Definicija 6. Prostor unitarnih vrat reda n je $\mathbf{U}_n \coloneqq \mathbf{U}(2^n)$, prostor unitarnih $2^n \times 2^n$ matrik. Tenzorski produkt vrat $U \otimes V \coloneqq [u_{jk}V]_{j,k}$ uporabljen na $a \otimes b$ je enak $Ua \otimes Vb$.

 ${\bf Primer}$ (Tenzorski produkt unitarnih vrat).

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \otimes B = \begin{bmatrix} a_{00}B & a_{01}B \\ a_{10}B & a_{11}B \end{bmatrix}.$$

Definicija 7. Za vrata U_0, \dots, U_s označimo njihovo bločno-diagnoalno matriko z $D(U_0, \dots, U_s)$.

Izrek 1 (No cloning). Ne obstajajo vrata reda 2, ki vsak vektor $a \otimes |0\rangle \in \mathbf{H} \otimes \mathbf{H}$ slika v $a \otimes a$.

Dokaz. Naj bo U tak, da za vsak $a \in \mathbf{H}$ velja $U(a \otimes |0\rangle) = a \otimes a$. Potem za $\mathbf{h} \otimes |0\rangle = \rho(|00\rangle + |10\rangle)$ velja:

$$U(\rho(|00\rangle+|10\rangle)) = \begin{cases} \rho^2(|00\rangle+|01\rangle+|10\rangle+|11\rangle), \\ \rho U|00\rangle+U|10\rangle = \rho(|00\rangle+|11\rangle), \end{cases}$$

kar je protislovje.

Primer (Paulijeve matrike). To so matrike zrcaljenja okrog osi na Blochovi sferi:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Velja $X^2=Y^2=Z^2=I_2$. Preslikavi X pravimo negacija, saj je $X|0\rangle=|1\rangle$ in $X|1\rangle=|0\rangle$.

Primer (Hadamardova matrika).

$$ext{Had} =
hoegin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}, \quad ext{Had} \ket{0} = \mathbf{h}, \quad ext{Had}^{\otimes n} \ket{\mathbf{0}^n} = \mathbf{h}_n.$$

Primer (Fazni zamik).

$$S_{\alpha} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{bmatrix}$$
, posebej označimo $S := S_{\pi/2}, T := S_{\pi/4},$
 $S_{\alpha}(a_0|0\rangle + a_1|1\rangle) = a_0|0\rangle + a_1e^{i\alpha}|1\rangle$.

1.5 Kvantna meritev

V klasičnem računalništvu poznamo pogojne stavke. To lahko na kubite posplošimo na dva načina, prvi z direktno meritvijo kubita (in uporabo klasičnih pogojnih stavkov), drugi pa z uporabo kvantne prepletenosti. Izkaže se, da če na koncu zmerimo kubite, se drugi način obnaša enako kot prvi.

Definicija 8 (Kvantna meritev). Meritev kubita $a=a_0|0\rangle+a_1|1\rangle$ označimo M(a) in je 0 z verjetnostjo $|a_0|^2$ in 1 z verjetnostjo $|a_1|^2$. To "uniči" kubit a.

Definicija 9 (Kontrola). Za $r,s\in\mathbb{N}$ in $U\in\mathbf{U}_1$ definiramo $C_{r,s}(U)$ in $\overline{C}_{r,s}(U)$ s predpisoma

$$C_{r,s}(U)\left|j\right\rangle = \begin{cases} \left|j\right\rangle & ; j_r = 0 \\ \left|j_1\ldots\right\rangle\left|Uj_s\right\rangle\left|\ldots j_n\right\rangle & ; j_r = 1 \end{cases} \qquad \overline{C}_{r,s}(U)\left|j\right\rangle = \begin{cases} \left|j\right\rangle & ; j_r = 1 \\ \left|j_1\ldots\right\rangle\left|Uj_s\right\rangle\left|\ldots j_n\right\rangle & ; j_r = 0 \end{cases}$$

Takim vratom pravimo kontrolirana ("na ena" in "na nič"). Posebej za $U \in \mathbf{U}_1$ označimo

$$\mathtt{cU} \coloneqq C_{1,2}(U) = D(\mathtt{I_2}, \mathtt{U}), \quad \mathtt{\bar{c}U} \coloneqq \overline{C}_{1,2}(U) = D(\mathtt{U}, \mathtt{I_2}).$$

Primer (Prepleteni pari kubitov). Kontrolirana vrata prepletejo pare kubitov. Na primer $\underline{\mathsf{apply}}_{\mathsf{cx}}(a,b)$ se obnaša kot if $\underline{\mathsf{measure}}(a) = 0$ then (a,b) else $(a,\neg b)$. Seveda vemo, da drugi izraz ni veljaven (ker meritev uniči kubit a), ampak je zato kontrola ravno tisto orodje, s katerim želimo nadomestiti pogojne stavke.

2 Kvantno računalništvo ter algebrajski učinki in diagrami

2.1 Kvantna vezja

Kvantne programe lahko predstavimo kot diagrame vezja. Škatle predstavljajo unitarna vrata, črte med njimi pa žice; po enojnih žicah tečejo kubiti, po dvojnih pa klasični biti (0 ali 1). Pike na žici (in potem navpična žica ven) pomenijo kontrolo; prazna pika kontrolira "na nič", polna pa "na ena". Taka vezja beremo od leve proti desni. Natančnejši opis lahko najdete v [1].

Spodaj sta dva primera kvantnih programov, opisana z besedami in diagrami, ki ju bomo srečali tudi še kasneje.

Primer (Projekcija na z-os). Najprej zmerimo a in nato glede na rezultat svež kubit bodisi negiramo bodisi ne. Na Blochovi sferi to zgleda približno kot projekcija na z-os (edina kubita na z-osi sta $|0\rangle$ in $|1\rangle = X|0\rangle$).

$$\begin{array}{c|c} |0\rangle & \hline & \mathbf{X} \\ \hline a & \hline \end{array}$$

Primer (Naključna rotacija faze). Meritev Hadamardovega vektorja simulira pravičen met kovanca, vrata Z pa rotirajo fazo, torej bomo v polovici primerov kubitu a rotirali fazo.

2.2 Algebrajski učinki

Z računskimi učinki se med programiranjem pogosto srečamo: globalno stanje spremenljivk, vhodno/izhodne naprave, naključnost, izjeme, nedeterminizem, ipd.

Definicija 10 (Računski učinki). Če ima funkcija ali operacija še kak navzven viden učinek poleg vrnjene vrednosti, slednjemu pravimo računski učinek (učinek računanja).

Definicija 11 (Algebrajski učinki). Računskim učinkom, ki jih lahko predstavimo s kašno algebrajsko teorijo, pravimo algebrajski učinki.

3 Programski jezik

V našem jeziku[2] imamo navadne osnovne konstrukte, npr. tipe, let ter if stavke, itd. Poleg tega imamo pa še elemente kvantnega računalništva: tip kubitov qubit in tip prepletenih parov $A \otimes B$ za vsaka dva tipa A in B. Zaradi narave kubitov ne moremo neposredno dostopati do notranjega stanja pomnilnika, imamo pa naslednje funkcije dostopanja:

- new: dodeli nov kubit, z začetno vrednostjo $|0\rangle$,
- $apply_{u}$: uporabi vrata U na danem vektorju,
- measure: izvede meritev na kubitu, vrne element tipa bit.

3.1 Pretvorba v algebrajske izraze

Konstruktom v programskem jeziku priredimo naslednje algebrajske izraze ter uvedemo še strnjeno obliko, za lažjo manipulacijo na papirju.

Kvantni programski jezik	Algebrajski izrazi	Matematični simboli
let $a \leftarrow \underline{new}()$ in $x(a)$	new(a.x(a))	$\nu a. x(a)$
$apply_{\mathbf{U}}(a); x(a)$	$apply_\mathtt{U}(a.x(a))$	$\bigcup U_a(x(a))$
if $\underline{measure}(a) = 0$ then t else u	measure(a.t;u)	$\mid t ?_a u$
$\underline{discard}(a)$; t	discard(a.t)	$disc_a(t)$

Primer (Projekcija na z-os).

- $1. \ \, \mathbf{if} \ \, \underline{\mathsf{measure}}(a) = 0 \ \, \mathbf{then} \ \, \underline{\mathsf{new}}() \ \, \mathbf{else} \ \, \underline{\mathsf{apply}}_{\mathbf{x}}(\underline{\mathsf{new}}())$
- 2. $\mathsf{measure} \big(a.\, \mathsf{new} (b.\, x(b)); \mathsf{new} \big(b.\, \mathsf{apply}_{\mathbf{x}} (b.\, x(b)) \big) \big)$
- 3. $(\nu b. x(b)) ?_a (\nu b. X_b(x(b)))$

Primer (Naključna rotacija faze).

- 1. if $\underline{\mathsf{measure}}\big(\underline{\mathsf{apply}}_{\mathsf{Had}}(\underline{\mathsf{new}}())\big) = 0 \text{ then } a \text{ else } \underline{\mathsf{apply}}_{\mathsf{Z}}(a)$
- $2. \ \ \mathsf{new} \Big(b. \, \mathsf{apply}_{\mathtt{Had}} \Big(b. \, \mathsf{measure} \Big(b. \, x(a); \mathsf{apply}_{\mathtt{Z}} (a. \, x(a)) \Big) \Big) \Big)$
- 3. $\nu b. \operatorname{Had}_b(x(a)?_b\operatorname{Z}_a(x(a)))$

3.2 Aksiomi

Aksiome za enakost programov lahko delimo na dva dela; prvih pet je glavnih, ostalih sedem pa bolj "administrativnih" oziroma pomožnih. Slednji nam povejo zgolj, da se <u>apply</u> strinja s strukturo unitarnih matrik, ter da stvari komutirajo, kolikor vezanje spremenljivk (in vrstni red uporabe matrik) dopušča. Podrobnejši opis (z dokazom) najdete v [2].

Kvantna negacija pred meritvijo je negacija po meritvi:

Aksiom A.
$$X_a(x ?_a y) = y ?_a x$$
.

Kvantna kontrola je po meritvi kot klasična kontrola:

Aksiom B.
$$D(\mathtt{U}, \mathtt{V})_{a,b}(x(b) ?_a y(b)) = \mathtt{U}_b(x(b)) ?_a \mathtt{V}_b(y(b)).$$

Kvantna vrata uporabljena na zavrženih kubitih so odveč:

$$\textbf{Aksiom C.} \ \mathtt{U}_a(\mathsf{disc}_a(t)) = \mathsf{disc}_a(t).$$

Novi kubiti so $|0\rangle$ glede na meritev:

Aksiom D.
$$\nu a. x ?_a y = x.$$

Novi kubiti so $|0\rangle$ glede na kontrolo:

Aksiom E.
$$\nu a. D(U, V)_{a,b}(x(a,b)) = U_b(\nu a. x(a,b)).$$

Spoštovanje simetrične grupe \mathbf{U}_n :

Aksiom F. swap_{a,b}
$$(x(a,b)) = x(b,a),$$

Aksiom G.
$$I_a(x(a)) = x(a)$$
,

Aksiom H.
$$UV_a(x(a)) = V_a(U_a(x(a))),$$

Aksiom I.
$$\mathbb{U} \otimes \mathbb{V}_{a,b}(x(a,b)) = \mathbb{U}_a(\mathbb{V}_b(x(a,b))).$$

Komutativnost:

Aksiom J.
$$(u?_bv)?_a(x?_by) = (u?_ax)?_b(v?_ay),$$

Aksiom K.
$$\nu a. \nu b. x(a,b) = \nu b. \nu a. x(a,b),$$

Aksiom L.
$$\nu a. x(a) ?_b y(a) = (\nu a. x(a)) ?_b (\nu a. y(a)).$$

Primer (Izpeljava enakosti projekcije na z-os in naključne rotacije faze). Izpeljava se zanaša na identiteti cX.swap.cX $\stackrel{\dagger}{=}$ swap.cX.swap in swap.cX.swap $\stackrel{\dagger}{=}$ (Had \otimes I₂).cZ.(Had \otimes I₂).

$$\begin{array}{lll} (\nu b.\,x(b))\,\,?_a\,\,(\nu b.\,{\rm X}_b(x(b))) & & & & & & \\ = \nu b.\,x(b)\,\,?_a\,{\rm X}_b(x(b)) & & & & & \\ = \nu b.\,\,{\rm cX}_{a,b}(x(b)\,?_a\,x(b)) & & & & & \\ = \nu b.\,\,{\rm cX}_{a,b}({\rm disc}_a(x(b))) & & & & \\ = \nu b.\,\,{\rm cX}_{a,b}({\rm disc}_b(x(a))) & & & & \\ = \nu b.\,\,{\rm cX}_{b,a}\big({\rm cX}_{a,b}({\rm disc}_b(x(a)))\big) & & & & \\ = \nu b.\,\,{\rm cX}_{a,b}({\rm disc}_b(x(a))) & & & & \\ = \nu b.\,\,{\rm Had}_b\big({\rm cZ}_{b,a}({\rm Had}_b({\rm disc}_b(x(a))))\big) & & & \\ = \nu b.\,\,{\rm Had}_b\big({\rm cZ}_{b,a}({\rm disc}_b(x(a)))\big) & & & & \\ = \nu b.\,\,{\rm Had}_b\big({\rm cZ}_{b,a}({\rm disc}_b(x(a)))\big) & & & & \\ = \nu b.\,\,{\rm Had}_b\big({\rm cZ}_{b,a}({\rm disc}_b(x(a)))\big) & & & \\ = \nu b.\,\,{\rm Had}_b\big({\rm cZ}_{b,a}({\rm disc}_b(x(a)))\big) & & & \\ \end{array}$$

Literatura

- [1] Sebastian Xambó Juanjo Rué. "Mathematical Essentials of Quantum Computing". V: 2011 (cit. na str. 1, 3).
- [2] Sam Staton. "Algebraic Effects, Linearity, and Quantum Programming Languages". V: SI-GPLAN Not. 50.1 (jan. 2015), str. 395–406. ISSN: 0362-1340. DOI: 10.1145/2775051.2676999. URL: https://doi.org/10.1145/2775051.2676999 (cit. na str. 4, 5).