IN THE CLAIMS

1. (previously presented) A cross-connector assembly for interconnecting a pair of orthopedic rods, said assembly comprising:

an interconnection element including a first body and a stud, said first body having a first aperture formed therein and said stud extending from the body;

a first rod connector including a first shaft terminating in a first rod engaging portion and a projection extending laterally from said first shaft and displaced axially along said first shaft from the spinal rod engaging portion, said first shaft and said projection slideably received within the first aperture;

a second rod connector including a second shaft having a second body carried thereon, said second body having a second aperture formed therein, said second aperture having the stud received therein; and

a fastener configured to engage with the stud.

- 2. (original) The assembly of claim 1 wherein the first aperture defines a first axis extending through the first body and the stud is positioned to lie substantially orthogonal to the axis.
 - 3. (original) The assembly of claim 1 wherein the first aperture is non-circular.
- 4. (original) The assembly of claim 1 wherein the first shaft exhibits a substantially round cross-sectional profile.
- 5. (previously presented) The assembly of claim 1 wherein the first rod engaging portion comprises a curved member configured to at least partially encircle a spinal rod.
- 6. (previously presented) The assembly of claim 5 wherein the first rod engaging portion comprises a threaded aperture extending into the curved member.
 - 7. (original) The assembly of claim 1 wherein the first shaft is substantially straight.

8. (previously presented) The assembly of claim 1 wherein the first shaft is curved so as

to be non-linear.

9. (original) The assembly of claim 8 wherein the second shaft is curved.

10. (previously presented) The assembly of claim 1 wherein the first shaft is slidably

received within the first aperture to allow the first rod engaging portion to be spaced from the

second rod engaging portion at varying distances.

11. (original) The assembly of claim 10 wherein the second shaft is rotatable about an

axis defined by the stud to vary an angle defined by the first shaft and the second shaft.

12. (original) The assembly of claim 11 wherein the first shaft and the second shaft are

curved.

13. (original) The assembly of claim 11 comprising a washer carried by the stud and

positioned between the stud and the second aperture of the second rod connecting member.

14. (original) The assembly of claim 13 wherein the second aperture of the second shaft

is configured to allow the second shaft to pivot along the axis defined by the stud.

15. (original) The assembly of claim 14 wherein the first rod connector is rotatable

about an axis defined by the first shaft.

16. (original) The assembly of claim 1 wherein the second body on the second shaft

includes a lower surface, wherein engagement of the fastener to the stud urges the lower surface

to contact the first shaft and clamp the first shaft in a first orientation relative to the second shaft.

17. (original) The assembly of claim 1 wherein the first rod connector is rotatable about

an axis defined by the first shaft.

Response to Final Office Action YOUNG et al., USSN 10/695,067 18. (original) The assembly of claim 17 wherein rotation of the first rod connector

induces the projection to contact said first body and inhibit removal of the first shaft from the

first aperture.

19. (original) The assembly of claim 17 wherein the first rod connector is rotatable

about an axis defined by the stud.

20. (original) The assembly of claim 19 wherein the second rod connector is rotatable

about an axis defined by the stud.

21. (original) The assembly of claim 20 wherein the first shaft of the first rod connector

and the second shaft of the second rod connector are curved.

22. (previously presented) The assembly of claim 21 wherein the first shaft is slidably

received within the first aperture to allow the first rod engaging portion to be spaced from the

second rod engaging portion at varying distances.

23. (original) The assembly of claim 22 comprising a first spinal rod secured to the first

rod engaging portion and a second spinal rod secured to the second rod engaging portion,

wherein the first spinal rod is positioned to lie non-parallel to the second spinal rod.

24. (original) The assembly of claim 1 comprising a washer carried by the stud and

positioned in the second body of the second rod connecting member, wherein engagement of the

fastener to the stud urges the washer to contact the first shaft of the first rod connecting member

and clamp the first rod connecting member in a first orientation relative to the second rod

connecting member.

25. (original) The assembly of claim 24 wherein the washer is composed of a

deformable material.

26. (original) The assembly of claim 25 wherein engagement of the fastener to the stud

induces the washer to deform.

27. (original) The assembly of claim 24 wherein engagement of the fastener frictionally

engages the washer to the first shaft of the first rod connector.

28. (original) The assembly of claim 24 wherein engagement of the fastener to the stud

secures the second rod connector in a selected orientation.

29. (original) The assembly of claim 1 comprising a first spinal rod secured to the first

rod engaging portion and a second spinal rod secured to the second rod engaging portion,

wherein the first spinal rod is positioned to lie non-parallel to the second spinal rod.

30. (original) The assembly of claim 29 wherein the first spinal rod defines a first plane

and the second spinal rod is positioned to lie in a plane different from the first plane.

31. (original) The assembly of claim 1 wherein the first rod engaging portion comprises

a hook sized to at least partially encircle a spinal rod, said hook extending laterally from the first

shaft in a first direction and wherein said projection extends laterally from the first shaft along

said first direction.

32. (original) The assembly of claim 1 wherein the projection defines a finger, lobe, or

ridge.

33. (original) The assembly of claim 1 wherein at least one of the first shaft or the

second shaft has a smooth exterior surface and a round or oval cross-sectional profile.

34. (original) The assembly of claim 1 wherein the first and second shafts are configured

to nest with each other.

35. (original) The assembly of claim 1 comprising an insert configured to at least

partially encircle said first shaft, said insert disposed within said first aperture.

36. (original) The assembly of claim 35 wherein the insert in combination with the first

aperture define a ball and socket joint.

37. (original) The assembly of claim 1 comprising a washer carried on said first body

said washer having a surface including a first set of splines formed therein and wherein the

second body on the second spinal rod connector includes a lower surface having a second set of

splines formed thereon configured to matingly engage with the first set of splines.

38. (original) The assembly of claim 37 wherein the washer includes a lower surface

having one or more recesses formed therein provided to contact said first shaft when the first

shaft is received within the first aperture.

39. (original) The assembly of claim 1 comprising an insert disposed within the second

aperture, said insert configured to at least partially encircle said stud.

40. (original) The assembly of claim 39 wherein the insert in combination with the

second aperture define a ball and socket joint.

41. (original) The assembly of claim 39 wherein the insert is substantially spherical.

42. (original) The assembly of claim 39 wherein the insert is substantially cylindrical.

43. (original) A method of treating a spinal defect, said method comprising:

securing a first spinal rod and a second spinal rod each to two or more vertebrae; and

interconnecting the first spinal rod to the second spinal rod using the assembly of claim 1.

44. (original) A cross-connector assembly for interconnecting a pair of orthopedic rods,

said assembly comprising:

a first rod connector including a first shaft terminating in a first body having a channel

therethrough;

a second rod connector including a second shaft defining a longitudinal axis and

terminating on a first end with a rod engaging portion and on an opposite second end with a

second body, said second body having a first aperture therein defining a first central axis

positioned to lie in a plane with the longitudinal axis, said second rod connector also including a

second aperture therein defining a second central axis positioned to lie at an angle to the first

central axis;

an insert configured to engage the first shaft of the first rod connecting member extending

through the first aperture and positioned in said second body and in communication with said

second aperture; and

a fastener extending through the second aperture of the second body and engaging one or

more of the insert, the second body of the second rod connector, or the first shaft of the first rod

to secure the orientation of the first rod connector relative to the second rod connector.

45. (original) The cross connector assembly of claim 44 wherein the first shaft of the

first connector is straight.

46. (original) The cross connector assembly of claim 44 wherein the first shaft of the

first connector is curved.

47. (original) The cross connector assembly of claim 44 wherein the first aperture and

the second aperture intersect.

48. (original) The cross connector assembly of claim 44 wherein the fastener engages

with both the insert and the first shaft.

49. (original) The cross connector assembly of claim 44 wherein the fastener engages

the insert thereby securing the first rod connecting member in a desired orientation relative to the

second rod connecting member.

Response to Final Office Action YOUNG et al., USSN 10/695,067 50. (original) The cross connecting assembly of claim 44 wherein the fastener engages

the first shaft thereby securing the first rod connecting member in a desired orientation relative to

the second rod connecting member.

51. (original) The cross connecting assembly of claim 44 wherein the fastener engages

the second body of the second rod connector thereby securing the first rod connecting member in

a desired orientation relative to the second rod connecting member.

52. (original) A method of treating a spinal defect, said method comprising:

securing a first spinal rod and a second spinal rod each to two or more vertebrae; and

interconnecting the first spinal rod to the second spinal rod using the assembly of claim

44.

53. (original) An cross connector comprising

an interconnection element including a first body having an aperture formed therein and a

stud extending from said body;

a first spinal rod connector including a first shaft having a proximal end received within

said aperture and a distal end carrying a first spinal rod engaging portion configured to at least

partially encircle a spinal rod;

a second spinal rod connector having a second body on a proximal end, a second spinal

rod engaging portion on a distal end and a second shaft extending therebetween, wherein said

body includes a second aperture having the stud received therein; and

a single fastener to secure the first and second spinal rod connectors to each other at a

user defined orientation relative to each other.

54. (original) The apparatus of claim 53 comprising an insert positioned with the first

body and configured to at least partially encircle the first shaft.

55. (original) The apparatus of claim 53 wherein the insert in combination with the first

body restrict movement of the first shaft to inhibit disassembly of the apparatus.

56. (original) The apparatus of claim 53 wherein the first shaft comprises a protuberance extending laterally therefrom, said protuberance sized to be received within said first aperture.

57. (original) The apparatus of claim 53 comprising an insert positioned within the

second body and configured to at least partially encircle the second shaft.

58. (original) A method of treating a spinal defect, said method comprising:

securing a first spinal rod and a second spinal rod each to two or more vertebrae; and

interconnecting the first spinal rod to the second spinal rod using the assembly of claim

53.

59. (previously presented) The apparatus of claim 1, wherein said stud is monolithic

with said body.

60. (previously presented) The apparatus of claim 1, wherein said stud has a

longitudinal axis, and said first shaft has a longitudinal axis, and said stud longitudinal axis is

oblique to said first shaft longitudinal axis.

61. (previously presented) The apparatus of claim 1, wherein said first shaft and said

second shaft are capable of pivoting with respect to each other between a first position in which

said first shaft and said second shaft are substantially parallel, and a second position in which

said first shaft and said second shaft define an interior angle between them that is less than 180

degrees.