Deep Learning Explained

Module 2: Logistic Regression

Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft Roland Fernandez, Senior Researcher, Microsoft

Module Outline

Application:

OCR With MNIST data

Model:

Logistic Regression

concepts:

Loss, Míníbatch

Train-Test-Predict workflow

MNIST Handwritten Digits (OCR)

Corresponding Labels

Data set of hand written digits (0-9) with

 \checkmark 60,000 training images

 \checkmark 10,000 test images

Each image is: 28 x 28 pixels

Logistic Regression

(S) = Sum (weights x pixels) =
$$\overrightarrow{w}_1 \cdot \overrightarrow{x}^T$$

 $\neq 84$ $\neq 84$

•••

(S) = Sum (weights x pixels) =
$$\vec{w}_9 \cdot \vec{x}^T$$

 $\neq 84$ $\neq 84$

$$\vec{z} = \mathbf{W} \; \vec{\chi}^T$$

Loss Function

Train Workflow

Learn the weights: Learners / Optimizers / Solvers

For 1 sample:

Loss
$$(L_i) = -\sum_{j=0}^9 y_j^{(i)} log(p_j)$$
 where: $p_j = f(x^{(i)}; \theta)_j$ $\theta \in (w,b)$

Total loss = $\sum_{i=1}^{m} L_i(\theta; (x^{(i)}, y^{(i)}))$ For all samples (m = 60000) images):

Convex function:There is 1 and only 1 minimum

Fig: courtesy http://codingwiththomas.blogspot.com/2012/09/particle-swarm-optimization.html

Gradient Descent

$\theta' = \theta - \mu \ grad \ (L; \theta)$

Where:

 θ = model parameter μ = learning rate

- refer to http://sebastianruder.com/optimizing-gradient-descent/for details Computing "Total Loss" $(\Sigma_i^n L_i)$ for large data set is expensive and often redundant

Stochastic Gradient Descent (SGD)

SQD:

update the parameters for each (data, label) paír

Mini-batch SGD:

update the parameters for míní-batch set Set of (data, label) paírs

refer to http://sebastianruder.com/optimizing-gradient-descent/ for details on different learners

Other learners

Momentum-SGD Nestorov Adagrad Adsdelta Adam Refer to http://sebastianruder.com/optimizing-gradient-descent/for details on different learners

Image by: Alec Radford

Features (x), Labels (Y)Data Sampler Reporting Validate **More?** params trained Validation Data iterations z(params) Model final Model Training Data 5501 update params params Validation Workflow Features (x), Labels (\forall) Data Sampler Reporting Train (Learmer) more? Train

Test Workflow

Returns the classification error as % incorrectly labeled MNIST image.

[numpy.argmax(predicted_label)forpredicted_labelinpredicted_labels]

Prediction Workflow

[numpy.argmax(predicted_label)forpredicted_labelinpredicted_labels] [9, 5, 8, ..., 2]