Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 05 du lundi 8 mars 2021

Exercice 1.

1) Soient $E \subset \mathbb{R}^n$ un ensemble compact et $F \subset \mathbb{R}^n$ un ensemble fermé, tous deux non-vides et tels que $E \cap F = \emptyset$. Montrer qu'il existe $\mathbf{a} \in E$ et $\mathbf{b} \in F$ tels que

$$\inf\{\|x - y\| : x \in E, y \in F\} = \|a - b\| > 0.$$
(1)

2) En utilisant le point précédent, montrer que si E est un sous-ensemble strict (i.e. $E \subsetneq \mathbb{R}^n$) non-vide, alors sa frontière ∂E n'est pas vide.

Solution:

1) Notons $\sigma := \inf\{\|\boldsymbol{x} - \boldsymbol{y}\| : \boldsymbol{x} \in E, \boldsymbol{y} \in F\} \geq 0$. Il existe deux suites $(\boldsymbol{x}_k)_{k \in \mathbb{N}} \subset E$ et $(\boldsymbol{y}_k)_{k \in \mathbb{N}} \subset F$ telles que

$$\sigma = \lim_{k \to +\infty} \|\boldsymbol{x}_k - \boldsymbol{y}_k\|. \tag{2}$$

D'une part, E étant compact, de la suite $(\boldsymbol{x}_k)_{k\in\mathbb{N}}$ on peut extraire une sous-suite qui converge vers un point $\boldsymbol{a}\in E$. Notons l'extracteur $r:\lim_{k\to +\infty}\boldsymbol{x}_{r(k)}=\boldsymbol{a}$. D'autre part, la suite $(\boldsymbol{y}_{r(k)})_{k\in\mathbb{N}}$ est bornée car $\|\boldsymbol{y}_{r(k)}\| \leqslant \|\boldsymbol{x}_{r(k)}\| + \|\boldsymbol{x}_{r(k)} - \boldsymbol{y}_{r(k)}\|$. On peut en extraire une sous-suite qui converge vers un point \boldsymbol{b} . Notons l'extracteur $s:\lim_{k\to +\infty}\boldsymbol{y}_{s(r(k))}=\boldsymbol{b}$. Comme F est fermé, $\boldsymbol{b}\in F$.

De $a \in E$ et $b \in F$, on déduit $||a - b|| > \sigma$. De plus

$$\|\boldsymbol{a} - \boldsymbol{b}\| \le \|\boldsymbol{a} - \boldsymbol{x}_{s(r(k))}\| + \|\boldsymbol{x}_{s(r(k))} - \boldsymbol{y}_{s(r(k))}\| + \|\boldsymbol{y}_{s(r(k))} - \boldsymbol{b}\| \xrightarrow{k \to +\infty} \sigma$$

$$\tag{3}$$

et donc $\|\boldsymbol{a} - \boldsymbol{b}\| = \sigma$. Comme $E \cap F = \emptyset$, on a $\boldsymbol{a} \neq \boldsymbol{b}$ et $\sigma > 0$.

2) Considérons l'ensemble \overline{E} . Si $\overline{E} = \mathbb{R}^n$, alors $\emptyset \neq E^{\mathbb{C}} = \overline{E} \setminus E \subset \partial E$ et on a fini. Si $\overline{E} \neq \mathbb{R}^n$, alors il existe $\boldsymbol{x} \in \mathbb{R}^n \setminus \overline{E}$. Vu que $\{\boldsymbol{x}\}$ est compact et \overline{E} est fermé, il existe un point a de \overline{E} qui réalise l'infimum

$$\sigma = \inf\{\|\boldsymbol{x} - \boldsymbol{y}\| : \boldsymbol{y} \in \overline{E}\} > 0. \tag{4}$$

En particulier $\boldsymbol{a} \neq \boldsymbol{x}$. Montrons que $\boldsymbol{a} \in \partial E$. On doit montrer que pour tout $\delta > 0$, on a $\mathrm{B}(\boldsymbol{a},\delta) \cap E \neq \emptyset$ et $\mathrm{B}(\boldsymbol{a},\delta) \cap E^{\complement} \neq \emptyset$. Sans perte de généralité, considérons $\delta \in]0,\sigma[$. Que $\mathrm{B}(\boldsymbol{a},\delta) \cap E \neq \emptyset$ suit du fait que $\boldsymbol{a} \in \overline{E}$. Pour montrer que la deuxième intersection est non-vide, considérons le point

$$z \coloneqq a + \frac{\delta}{2} \times \frac{x - a}{\|x - a\|}.$$
 (5)

Alors $z \in B(a, \delta) \cap E^{\mathbb{C}}$, car (I) $||z - a|| = \delta/2$ et (II) z ne peut pas être dans \overline{E} car a réalise la distance minimale à x.

^{1.} Fonction $\mathbb{N} \to \mathbb{N}$ strictement croissante.

Exercice 2.

Notons $E = \{(x, \sin 1/x) : x \in]0, +\infty[\}.$

- 1) Montrer que E est connexe par arcs.
- 2) Donner une description explicite de \overline{E} .
- 3) Montrer que \overline{E} n'est pas connexe par arcs.

Solution:

1) Montrons que E est connexe par arcs. Soient $\boldsymbol{a}=(a_1,a_2)\in E$ et $\boldsymbol{b}=(b_1,b_2)\in E$. l'application $\gamma:[0,1]\to E$ définie par

$$\gamma(t) = \left(a_1 + t(b_1 - a_1), \sin\frac{1}{a_1 + t(b_1 - a_1)}\right) \tag{6}$$

est un chemin de E d'origine \boldsymbol{a} et d'extrémité \boldsymbol{b} .

2) Montrons que $\overline{E} = E \cup A$ où $A := \{0\} \times [-1, 1]$. Pour cela, notons $F := E \cup A$ et montrons les deux inclusions.

 $F \subset \overline{E}$. Puisque $E \subset \overline{E}$ il suffit de montrer $A \subset \overline{E}$. Soit $(0,b) \in A$. La suite $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ définie par

$$\boldsymbol{x}_k = \left(\frac{1}{\arcsin b + 2(k+1)\pi}, \ b\right) \tag{7}$$

est une suite d'éléments de E qui converge vers (0,b). Pour le prouver, notons $\forall k \in \mathbb{N}$, $z_k := \arcsin b + 2(k+1)\pi$. La fonction arcsin étant définie de [-1,1] dans $[-\frac{\pi}{2},\frac{\pi}{2}]$, $z_k \geqslant \pi > 0$. De plus, $\sin z_k = b$ et $\lim_{k \to +\infty} z_k^{-1} = 0$. On en conclut que $(0,b) \in \overline{E}$ et donc que $F \subset \overline{E}$.

 $\overline{E} \subset F$. Soit $(c,d) \in \overline{E}$. Il existe une suite $(c_k,\sin(c_k^{-1}))_{k \in \mathbb{N}} \subset E$ qui converge vers (c,d), i.e.

$$\lim_{k \to +\infty} c_k = c \geqslant 0, \qquad \lim_{k \to +\infty} \sin \frac{1}{c_k} = d. \tag{8}$$

Par conséquent, ou bien c>0 et $d=\sin(c^{-1})$, ou bien c=0 et $d\in[-1,1]$; donc $(c,d)\in F$. Ceci prouve que $\overline{E}\subset F$.

Remarque. « $\lim_{k\to +\infty}\sin(c_k^{-1})=d$ » ne contredit pas le fait que $x\mapsto \sin(x^{-1})$ n'a pas de limite en 0.

3) Raisonnons par contradiction : supposons que \overline{E} est connexe par arcs. Il existe donc un chemin continu $\gamma:=(\gamma_1,\gamma_2):[0,1]\to\overline{E}$ d'origine $\gamma(0)=(0,1)$ et d'extrémité $\gamma(1)=(1,\sin 1)$. On remarque que pour tout $t\in[0,1]$ tel que $\gamma_1(t)>0$, on a nécessairement $\gamma_2(t)=\sin(\gamma_1(t)^{-1})$ car il y a un seul point dans \overline{E} d'abscisse $\gamma_1(t)$ si $\gamma_1(t)\in[0,1]$. Puisque $\gamma_1(1)=1>0$ et γ_1 continue, il existe $s\in[0,1]$ tel que, $\forall t\in[s,1], \gamma_1(t)>0$. On peut alors définir $\alpha:=\inf\{r\in[0,1]:\forall t\in[r,1],\gamma_1(t)>0\}$; bien sûr, $\alpha\geqslant 0$. Ainsi, sur l'intervalle $]\alpha,1]$ le chemin reste sur E et on a

$$\lim_{t \to \alpha^+} \gamma_1(t) = \gamma_1(\alpha) = 0, \tag{9}$$

ce qui amène

$$\lim_{t \to \alpha^+} \gamma_2(t) = \lim_{t \to \alpha^+} \sin \frac{1}{\gamma_1(t)}.$$
 (10)

Le membre de droite de (10) n'existe pas, or la continuité de γ_2 en α implique $\lim_{t\to\alpha^+}\gamma_2(t)=\gamma_2(\alpha)$. Ceci contredit l'hypothèse de départ : il n'existe pas de chemin continu d'origine (0,1) et d'extrémité (1, sin 1).

Exercice 3.

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{y}{x^2} e^{-y/x^2} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$
 (11)

Montrer que $\lim_{(x,y)\to(0,1)} f(x,y) = 0$.

Solution:

On considère la fonction

$$g(x,y) := \frac{x^2}{y} e^{\frac{y}{x^2}} \tag{12}$$

définie pour (x,y) tel que $x \neq 0$ et $y \neq 0$. Si $x \neq 0$ et $y \neq 0$, on a bien sûr $\frac{1}{f(x,y)} = g(x,y)$. Soit C > 0.

— Puisque $\lim_{s\to 0^+} se^{1/s} = +\infty$, il existe $\varepsilon > 0$ tel que

$$se^{1/s} \ge C, \ \forall s \in]0, \varepsilon].$$
 (13)

- Il existe $\delta \in]0,1[$ tel que $0 \leqslant \frac{x^2}{y} \leqslant \varepsilon$ si $|x| \leqslant \delta$ et $|y-1| \leqslant \delta$. Par exemple $\delta = \min\{1/2, \sqrt{\varepsilon/2}\}.$
- Ainsi, si $0 < |x| \le \delta$ et $|y-1| \le \delta$, on obtient $g(x,y) \ge C$ et $0 \le f(x,y) \le 1/C$. Comme f(0,y) = 0, ceci prouve que

$$\lim_{(x,y)\to(0,1)} f(x,y) = 0. \tag{14}$$

Exercice 4.

Montrer que

$$\lim_{(x,y)\to(0,0)} \frac{\ln\left(\frac{1+x^4+y^4}{1+x^2+y^2}\right)}{\sin(x^2+y^2)} = -1.$$
(15)

Solution:

Pour tout $\boldsymbol{x} \in \mathbb{R}^2$, on note $\boldsymbol{x} = (x_1, x_2)$ et $\|\boldsymbol{x}\| \coloneqq \|\boldsymbol{x}\|_2 = \sqrt{x_1^2 + x_2^2}$. On a

$$\frac{\ln\left(\frac{1+x_1^4+x_2^4}{1+\|\boldsymbol{x}\|^2}\right)}{\sin(\|\boldsymbol{x}\|^2)} = \frac{\ln(1+x_1^4+x_2^4)}{\sin(\|\boldsymbol{x}\|^2)} - \frac{\ln(1+\|\boldsymbol{x}\|^2)}{\sin(\|\boldsymbol{x}\|^2)}.$$
(16)

Étudions ces deux limites séparément. D'une part,

$$\lim_{\boldsymbol{x} \to 0} \frac{\ln(1 + \|\boldsymbol{x}\|^2)}{\sin(\|\boldsymbol{x}\|^2)} = \lim_{r \to 0^+} \frac{\ln(1 + r^2)}{\sin(r^2)} = \lim_{s \to 0^+} \frac{\ln(1 + s)}{\sin s} = 1.$$
 (17)

D'autre part, pour tout $\boldsymbol{x} \in \mathcal{B}(0,\sqrt{\pi}) \setminus \{0\},\$

$$0 \leqslant \frac{\ln(1 + x_1^4 + x_2^4)}{\sin(\|\boldsymbol{x}\|^2)} \leqslant \frac{\ln(1 + \|\boldsymbol{x}\|^4)}{\sin(\|\boldsymbol{x}\|^2)} \xrightarrow{\boldsymbol{x} \to 0} 0.$$
 (18)

Ainsi, en utilisant le théorème des deux gendarmes dans (18),

$$\lim_{\substack{(x_1, x_2) \to (0, 0)}} \frac{\ln\left(\frac{1 + x_1^4 + x_2^4}{1 + \|\boldsymbol{x}\|^2}\right)}{\sin(\|\boldsymbol{x}\|^2)} = -1.$$
(19)