Fourier series (FS)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Property/signal	Time domain	Transform domain
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shifting	x(t- au)	$e^{-jk\omega_0\tau}a_k$
Time reversal	x(-t)	a_{-k}
Time scaling	$x(at), a > 0$ (periodic $\frac{T}{a}$)	a_k
Conjugation	$x^*(t)$	a_{-k}^*
Symmetry	x(t) real	$a_k = a_{-k}^*$
Differentiation	$\frac{d}{dt}x(t)$	$jk\omega_0 a_k$
Integration	$\int_{-\infty}^{t} x(t)dt, \ a_0 = 0$	$rac{a_k}{jk\omega_0}$
Convolution	$\int_T h(\tau) * x(t-\tau) d\tau$	Ta_kb_k
Multiplication	x(t)y(t)	$\sum_{m=-\infty}^{\infty} a_m b_{k-m}$
Cosine	$2A\cos(\omega_0 t + B)$	$a_1 = Ae^{jB}, a_{-1} = Ae^{-jB}$
Parseval	$\frac{1}{T} \int_T x(t) ^2 dt =$	$\sum_{k=-\infty}^{\infty} a_k ^2$

Fourier transform (FT)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Property/signal	Time domain	Transform domain
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	x(t- au)	$e^{-j\omega\tau}X(j\omega)$
Time scaling	x(at)	$\frac{1}{ a }X(j\omega/a)$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Symmetry	x(t) real	$X(j\omega) = X^*(-j\omega)$
Differentiation	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Convolution	$\int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$	$H(j\omega)X(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(ju)Y(j\omega - ju)du$
Delta	$\delta(t)$	1
One	1	$2\pi\delta(\omega)$
Exponent	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
Cosine	$\cos(w_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
Sine	$\sin(w_0 t)$	$\frac{\pi}{i}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
Unit step	u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
Decaying step	$u(t)e^{-at}, \ a > 0$	$\frac{1}{a+j\omega}$
Rectangular pulse	$\Pi(rac{t}{2T})$	$\frac{2\sin(\omega T)}{\omega}$
Sinc (normalized)	$\frac{\sin(Wt)}{\pi t}$	$\Pi(rac{\omega}{2W})$
Parseval	$\int_{-\infty}^{\infty} x(t) ^2 dt =$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$

Discrete-time Fourier transform (DTFT)

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Property/signal	Time domain	Transform domain
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
Time shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Time reversal	x[-n]	$X(e^{-j\omega})$
Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Symmetry	x[n] real	$X(e^{j\omega}) = X^*(e^{-j\omega})$
Convolution	$\sum_{m=-\infty}^{\infty} x[m]y[n-m]$	$X(e^{j\omega})Y(e^{j\omega})$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Delta	$\delta[n]$	1
One	1	$2\pi \sum_{m=-\infty}^{\infty} \delta(\omega - 2\pi m)$
Exponent	$e^{j\omega_0 n}$	$2\pi \sum_{m=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi m)$
Cosine	$\cos[w_0 n]$	$\pi \sum_{m=-\infty}^{\infty} [\delta(\omega - \omega_0 - 2\pi m) + \delta(\omega + \omega_0 - 2\pi m)]$
Sine	$\sin[w_0 t]$	$\frac{\pi}{i} \sum_{m=-\infty}^{\infty} [\delta(\omega - \omega_0 - 2\pi m) - \delta(\omega + \omega_0 - 2\pi m)]$
Decaying step	$u[n]a^n, a < 1$	$\frac{1}{1-ae^{-j\omega}}$
Rectangular pulse	$\Pi_N[n]$	$rac{\sin[\omega(N+rac{1}{2})]}{\sin(\omega/2)}$
Sinc (normalized)	$\frac{\sin[Wn]}{\pi n}$	$\sum_{m=-\infty}^{\infty} \prod \left(\frac{\omega - 2\pi m}{2W} \right)$
Parseval	$\sum_{n=-\infty}^{\infty} x[n] ^2 =$	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2$

Discrete Fourier transform (DFT)

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}nk} \qquad X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$$

Property/signal	Time domain	Transform domain
Linearity	ax[n] + by[n]	aX(k) + bY(k)
Time shifting	$x[n-n_0]_{modN}$	$e^{-j\left(\frac{2\pi}{N}n_0k\right)}X(k)$
Time reversal	$x^*[-n]_{modN}$	$X^*(k)$
Conjugation	$x^*[n]$	$X^*(-k)_{modN}$
Symmetry	x[n] real	$X(k) = X^*(-k)_{modN}$
Convolution	$\sum_{m=0}^{N-1} x[m]_{modN} y[n-m]_{modN}$	X(k)Y(k)
Multiplication	x[n]y[n]	$\frac{1}{N} \sum_{l=0}^{N-1} X(l)_{modN} Y(k-l)_{modN}$
Parseval	$\sum_{n=0}^{N-1} x[n] ^2 =$	$\frac{1}{N} \sum_{k=0}^{N-1} X(k) ^2$

Laplace transform

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds \qquad X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$

Property/signal	Time domain	Transform domain
Linearity	ax(t) + by(t)	aX(s) + bY(s)
Time shifting	x(t- au)	$e^{-s\tau}X(s)$
time scaling	x(at)	$\frac{1}{ a }X(s/a)$
Conjugation	$x^*(t)$	$X^*(s^*)$
Differentiation	$\frac{d}{dt}x(t)$	sX(s)
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$
Convolution	$\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$	X(s)Y(s)
Delta	$\delta(t)$	1
Unit step	u(t)	$\frac{1}{s} \ (Re\{s\} > 0)$
Decaying step	$e^{-at}u(t)$	$\frac{1}{s+a} (Re\{s\} > -a)$
Decaying step	$-e^{-at}u(-t)$	$\frac{1}{s+a} (Re\{s\} < -a)$
Causal Cosine	$\cos(w_0 t) u(t)$	$\frac{s}{s^2 + \omega_0^2} \ (Re\{s\} > 0)$
Causal Sine	$\sin(w_0 t) u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2} \ (Re\{s\} > 0)$

Z transform

$$x[n] = \frac{1}{2\pi j} \oint X(z)z^{n-1}dz \qquad X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Property/signal	Time domain	Transform domain
Linearity	ax[n] + by[n]	aX(z) + bY(z)
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$
time reversal	x[-n]	$X(z^{-1})$
Conjugation	$x^*[n]$	$X^*(z^*)$
Convolution	$\sum_{m=-\infty}^{\infty} x[m]y[n-m]$	X(z)Y(z)
Delta	$\delta[n]$	1
Unit step	u[n]	$\frac{1}{1-z^{-1}} (z > 1)$
Decaying step	$a^n u[n]$	$\frac{1}{1-az^{-1}} (z > a)$
Decaying step	$-a^n u[-n-1]$	$\frac{1}{1-az^{-1}} (z < a)$

General

Description	Equation
Rectangular pulse in continuous-time	$\Pi(x) = \begin{cases} 1 & x < \frac{1}{2} \\ \frac{1}{2} & x = \frac{1}{2} \\ 0 & elsewhere \end{cases}$
Rectangular pulse in discrete-time	$\Pi_N[n] = \begin{cases} 1 & n \leq N \\ 0 & elsewhere \end{cases}$
Unit step in continuous-time	$u(x) = \begin{cases} 1 & x > 0 \\ \frac{1}{2} & x = 0 \\ 0 & elsewhere \end{cases}$ $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & elsewhere \end{cases}$
Unit step in discrete-time	$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & elsewhere \end{cases}$
Sinc in continuous-time	$\operatorname{sinc}(\mathbf{x}) = \frac{\sin(\pi \mathbf{x})}{\pi \mathbf{x}}$
Cosine of sum of angles	$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$
Sine of sum of angles	$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$