Problem 1

Theorem 1. Suppose that f is a continuous function a.e. in a measurable set $E \in \mathbb{R}^n$. Show that f is measurable on E.

Solution

Proof. By Theorem 4.5 in our textbook, we can assume, without loss of generality, that f is continuous on all of E. Let $a \in \mathbb{R}$. We have

$$x \in \{f > a\} \iff f(x) > a$$

 $\iff (f(x) - a > 0).$

Define $\epsilon_x = f(x) - a$. Since f is continuous, there exists some δ_x such that $f(B(x; \delta_x)) \subseteq B(f(x); \epsilon_x)$. Let $y \in B(x; \delta_x)$. Then

$$f(y) \in B(f(x); \epsilon_x) \implies |f(x) - f(y)| < \epsilon_x$$

$$\implies f(y) > f(x) - \epsilon_x$$

$$\implies f(y) > f(x) - (f(x) - a)$$

$$\implies f(y) > a$$

$$\implies y \in \{f > a\}.$$

Thus, $B(x; \delta_x) \subseteq \{f > a\}$, and we have shown that $\{f > a\}$ is an open set. Since every open set is measurable, we have shown that $\{f > a\}$ is measurable. Since a was arbitrary, we have shown that f is measurable, and our proof is complete.

Problem 2

Theorem 2. Let f_k (k = 1, 2, ...) be measurable functions and finite a.e. on E, with $|E| < \infty$. Let f be a function on E. Assume that for any $\delta > 0$, there is a measurable set $F \subseteq E$ such that $|E - F| < \delta$ and $f_k \to f$. Then $f_k \to f$ a.e. on E and f is measurable on E.

Solution

Proof. Construct a family of measurable sets $\{F_j\}$ such that for each $j \in \mathbb{N}$, $F_j \subseteq E$ with $|E - F_j| < \frac{1}{j}$, and $f_k \to f$ on F_j . Define a new family of measurable sets $\{E_j\}$ by $E_j = \bigcup_{i=1}^j F_j$. Then we have that $E_j \nearrow E$ and $E_j \nearrow \bigcup_{j=1}^\infty F_j$. By theorem 3.26 in our textbook

$$\left| \bigcup_{j=1}^{\infty} F_j \right| = \lim_{k \to \infty} |E_k| = |E|.$$

Thus, since $|E| < \infty$, we have that

$$\left| E - \bigcup_{j=1}^{\infty} F_j \right| = 0.$$

Since $f_k \to f$ on F_j for all j, we have that $f_k \to f$ on $\bigcup_{j=1}^{\infty} F_j$, and our proof is complete.

Problem 3

Theorem 3. Let $f_k = \chi_{|x| < k}$ for all $k \in \mathbb{N}$. Then,

Part (i):

 $f_k \to 1 \text{ for all } x \in \mathbb{R}^n.$

Part (ii):

 f_k does not converge uniformly outside any ball |x| > m for m > 0.

Part (iii):

The conclusion in Egorov's theorem does not hold for $\{f_k\}$.

October 30, 2022

Solution

Proof. Part (i):

Let $x \in \mathbb{R}^n$. Define $K \in \mathbb{N}$ to be the smallest natural number such that $K \geq |x|$. Then, we have that $f_k(x) = 1$ for all $k \geq K$. Since we can do this for any x, we have that $f_k \to 1$.

Part (ii):

Suppose, for sake of contradiction, that f_k does converge uniformly to f on some unbounded subset of \mathbb{R}^n . Then, there exists some natural K such that $|f_k(x) - 1| < 1$ for all $k \ge K$. Now let $x \in \mathbb{R}^n$ be such that |x| > K. Then, $f_K(x) = 0$, and we have a contradiction. Thus, f_k does not converge uniformly on any unbounded set.

Part (iii):

Let $f \subseteq \mathbb{R}^n$ be closed, with $|E - F| < \epsilon$ for some finite $\epsilon > 0$. Now, F must be unbounded, for any bounded subset of \mathbb{R}^n would have finite measure, and thus we would have $|E - F| = \infty$. Therefore, by part (ii), f_k cannot converge uniformly to 1 on F, and the conclusion of Ergorov's theorem does not hold.

Problem 4

Theorem 4. Part (i):

Assume that $f_k \stackrel{m}{\to} f$ on E and $f_k \leq f_{k+1}$ for natural k. Then, $f_k \to f$ a.e. on E.

Part (ii):

Assume that $f_k \stackrel{m}{\to} f$ on E and $f_k \leq M$ a.e. on E for each natural k. Then $f \leq M$ a.e. on E.

Solution

Proof. Part (i):

By theorem 4.22 in our textbook, there exists a subsequence f_{k_j} such that $f_{k_j} \to f$ a.e. on E. Let $\epsilon > 0$, and let $x \in \mathbb{R}^n$ be such that $f_{k_j}(x) \to f(x)$. Then, there exists some $J \in \mathbb{N}$ such that for all $j \geq J$

$$|f_{k_j}(x) - f(x)| < \frac{\epsilon}{3}.$$

Let $k \geq k_J$. Then, there exist $j_1, j_2 \geq J$ such that $k_{j_1} \leq k \leq k_{j_2}$. Then, we have

$$|f_{k}(x) - f(x)| \leq |f_{k}(x) - f_{k_{j_{1}}}(x)| + |f_{k_{j_{1}}}(x) - f(x)|$$
By the triangle inequality
$$= f_{k}(x) - f_{k_{j_{1}}}(x) + |f_{k_{j_{1}}}(x) - f(x)|$$
Since $k \geq k_{1}$
$$\leq f_{k_{j_{2}}}(x) - f_{k_{j_{1}}}(x) + |f_{k_{j_{1}}}(x) - f(x)|$$
Since $k \leq k_{2}$
$$= |f_{k_{j_{2}}}(x) - f_{k_{j_{1}}}(x)| + |f_{k_{j_{1}}}(x) - f(x)|$$
By the triangle inequality
$$\leq 2\frac{\epsilon}{3} + \frac{\epsilon}{3}$$
$$= \epsilon$$

Part (ii).

Suppose that f > M on a set $F \subseteq E$ with nonzero measure. We can write F as a countable union of disjoint measurable sets

$$F = \bigcup_{j=1}^{\infty} \{f > M + \frac{1}{j}\}.$$

One of these sets must have nonzero measure. Thus, there exists some $\epsilon > 0$ such that $\{f > M + \epsilon\}$ has non zero measure. Since $f_k \leq M$ a.e. on E, we have that for all k

$$\{f > M + \epsilon\} - Z \subseteq \{x \in E : |f(x) - f_k(x)| > \epsilon\},\$$

where Z is a set of measure zero, where each of the $f_k > M$. With this, we have that

$$\lim_{k \to \infty} |\{x \in E : |f(x) - f_k(x)| > \epsilon\}| \ge |\{f > M + \epsilon\}| > 0,$$

showing that $f_k \stackrel{\text{m}}{\to} f$, and proving the contrapositive.

Problem 5

Theorem 5. Let $f_k(x) = \frac{x}{k}$ for $x \in \mathbb{R}$ and $k \in \mathbb{N}$. Then f_x does not converge in measure on \mathbb{R} .

Solution

Proof. Clearly, $f_k \to 0$. Let $\epsilon > 0$, and let $k \in \mathbb{N}$. Then, there exists and $X \in \mathbb{R}$ such that for all $x \geq X$, we have $\frac{x}{k} > \epsilon$. Therefore,

$$\{x \in E : |f_k(x) - 0| > \epsilon\} \subseteq \{x \ge X\}$$

has infinite measure. Since this is true for all k, we can conclude that

$$\lim_{k \to \infty} |\{x \in E : |f_k(x) - 0| > \epsilon\}| = \infty,$$

and we have shown that f_k does not converge in measure.

Problem 6

Theorem 6. $f_k \stackrel{m}{\to} f$ on E if and only if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $k \geq N$,

$$|\{x \in E : |f_k(x) - 0| > \epsilon\}| < \epsilon.$$

Solution

Proof. Suppose first that $f_k \stackrel{\text{m}}{\to} f$. Then, by definition, we have that for every $\epsilon > 0$,

$$\lim_{k \to \infty} |\{x \in E : |f_k(x) - 0| > \epsilon\}| = 0.$$

By directly applying the definition of a limit, there exists some $N \in \mathbb{N}$ such that for all $k \geq N$,

$$|\{x \in E : |f_k(x) - 0| > \epsilon\}| < \epsilon.$$

With this, we have proven the forward direction.

Now suppose that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $k \geq N$,

$$|\{x \in E : |f_k(x) - 0| > \epsilon\}| < \epsilon.$$

Fix some $\epsilon_0 > 0$, and let $\epsilon > 0$ be such that $\epsilon < \epsilon_0$. Then,

$$\{x \in E: |f_k(x) - 0| > \epsilon_0\} \subseteq \{x \in E: |f_k(x) - 0| > \epsilon\} \implies |\{x \in E: |f_k(x) - 0| > \epsilon_0\}| \le |\{x \in E: |f_k(x) - 0| > \epsilon\}|.$$

By initial assumption, there exists $N \in \mathbb{N}$ such that for any $k \geq N$,

$$|\{x \in E : |f_k(x) - 0| > \epsilon\}| < \epsilon.$$

Thus, for any $k \geq N$,

$$|\{x \in E : |f_k(x) - 0| > \epsilon_0\}| < \epsilon,$$

and we have shown that

$$\lim_{k \to \infty} |\{x \in E : |f_k(x) - 0| > \epsilon_0\}| = 0.$$

Thus, we have shown that $f_k \stackrel{\text{m}}{\to} f$, and our proof is complete.

Problem 7

Theorem 7. Let E be measurable and $|E| < \infty$. Then $f_k \stackrel{m}{\to} f$ if and only if any subsequence $\{f_{k_n}\}$ has a subsequence $\{f_{k_n}\}$ that is convergent to f a.e. on E.

Solution

Proof. Suppose first that $f_k \xrightarrow{\mathbf{m}} f$, and let $\{f_{k_n}\}$ be a subsequence of f_k . Let $\epsilon > 0$. Since $f_k \xrightarrow{\mathbf{m}} f$, there exists a $K \in \mathbb{N}$ such that for all $k \geq K$,

$$|\{x \in E : |f_k(x) - f(x)| > \epsilon\}| < \epsilon.$$

Thus, since $k_n \geq K$ for all $n \geq K$, we have that

$$|\{x \in E : |f_{n_h}(x) - f(x)| > \epsilon\}| < \epsilon$$

for all $n \geq K$. Thus, $\{f_{k_n}\}$ converges in measure to f. By theorem 4.22 in our textbook, we can conclude that $\{f_{k_n}\}$ has a subsequence $\{f_{k_{n_i}}\}$ that is convergent to f a.e. on E.

For the reverse direction, we will prove the contrapositive. Suppose then, that $f_k \stackrel{m}{\not\to} f$. Then, there exists some $\epsilon > 0$ such that

$$\lim_{k \to \infty} |\{x \in E : |f_k(x) - f(x)| > \epsilon\}| \neq 0.$$

Then, for some $\delta > 0$, we have that for all $K \in \mathbb{N}$, there exists a $k \geq K$ such that

$$|\{x \in E : |f_k(x) - f(x)| > \epsilon\}| > \delta.$$

Thus, we can define a subsequence $\{f_{k_n}\}$ of $\{f_k\}$ such that

$$|\{x \in E : |f_{k_n}(x) - f(x)| > \epsilon\}| > \delta$$

for all $n \in \mathbb{N}$. Define $E_n \subseteq E$ by

$$E_n = \{ x \in E : |f_{k_n}(x) - f(x)| > \epsilon \}.$$

Let $\{f_{k_{n_j}}\}$ be a subsequence of $\{f_{k_n}\}$, and suppose for sake of contradiction that $f_{k_{n_j}} \to f$ a.e.. Then, there exists some set $Z \subseteq E$ such that |Z| = 0 and $f_{k_{n_j}} \to f$ on E - Z. Thus, there exists some $J \in \mathbb{N}$ such that for all $j \geq J$, and all $x \in E - Z$

$$|f_{k_i}(x) - f(x)| < \epsilon.$$

However, since $|E_{n_i}| > 0$, we must have that $E_{n_i} \cap (E - Z) \neq \emptyset$. Thus, there exists an $x \in E - Z$ such that

$$|f_{k_i}(x) - f(x)| > \epsilon,$$

and we have reached a contradiction. Thus, $f_{k_{n_j}} \not\to f$ a.e.. Since this is true for any subsequence of $\{f_{k_n}\}$, our proof is complete.

Problem 8

Theorem 8. Assume that $f_k \stackrel{m}{\to} f$ on E with $|E| < \infty$. Then, $f_k^2 \stackrel{m}{\to} f^2$ on E.

Solution

Before we jump into this proof, we will need to prove a useful lemma.

Lemma 1. Let $\{a_k\}$ and $\{b_k\}$ be two sequences in R with limits A and B respectively. Then,

$$a_k b_k \to AB$$
.

Proof. Let $\epsilon > 0$. Assume first that A and B are nonzero, as otherwise the proof would be trivial. Using the handy equality

$$a_k b_k - AB = (a_k - A)B + (b_k - B)A + (a_k - A)(b_k - B),$$

we have that for all k,

$$|a_k b_k - AB| \le |a_k - A||B| + |b_k - B||A| + |a_k - A||b_k - B|.$$

Define $N_1 \in \mathbb{N}$ to be such that for all $n \geq N_1$,

$$|a_k - A| < \min\left\{\frac{\epsilon}{3|B|}, \sqrt{\frac{\epsilon}{3}}\right\}.$$

Furthermore, define $N_2 \in \mathbb{N}$ to be such that for all $n \geq N_2$,

$$|b_k - B| < \min\left\{\frac{\epsilon}{3|A|}, \sqrt{\frac{\epsilon}{3}}\right\}.$$

Finally, define $N \in \mathbb{N}$ to be the larger of N_1 and N_2 , and we can see that for all $k \geq N$, we have

$$|a_k b_k - AB| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

With this, we have completed the proof.

Now we can jump into the main proof.

Proof. Let $\{f_{k_n}^2\}$ be a subsequence of $\{f_k^2\}$. By the result of problem 7, and the fact that $f_k \stackrel{\text{m}}{\to} f$, we have that there exists a subsequence $\{f_{k_{n_j}}\}$ of $\{f_{k_n}\}$ that converges almost everywhere to f. Thus, for almost every $x \in E$, we have that

$$f_{k_{n_i}}(x) \to f(x).$$

Thus, by Lemma 1, we can see that for almost every $x \in E$,

$$f_{k_{n_i}}(x)^2 \to f(x)^2$$
.

Thus, $\{f_{k_{n_j}}^2\}$ converges almost every where to f^2 . Utilizing the other direction of what we proved in problem 7, we have shown that $f_k^2 \stackrel{\text{m}}{\to} f^2$ on E, and our proof is complete.