PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-023904

(43)Date of publication of application : 01.02.1988

(51)Int.Cl.

C08F 8/46 C08F255/02

C08L 21/00

(21)Application number: 61-166623

(71)Applicant: MITSUI PETROCHEM IND LTD

(22)Date of filing:

17.07.1986

(72)Inventor: TSUTSUI TOSHIYUKI

TOYODA AKINORI KASHIWA NORIO

(54) LIQUID MODIFIED ETHYLENIC RANDOM COPOLYMER

(57)Abstract:

PURPOSE: To obtain a liquid modified ethylenic random copolymer useful as a modifier or modification aid for various resins or rubber—like polymers, a lubricant additive or the like, by bonding an unsaturated carboxylic acid derivative component to an ethylenic random copolymer.

CONSTITUTION: This liquid modified ethylenic random copolymer is formed by bonding an unsaturated carboxylic acid derivative component (b) comprising a 3W10C unsaturated carboxylic acid or its anhydride or ester to an ethylenic random copolymer (a) composed of ethylene and a 3W20C α -olefin. This copolymer satisfies the following requirements: (i) the ethylene component content of copolymer (a) is 10W85mol% and its α -olefin component content is 15W90mol%, (ii) none and $\alpha\beta$ and $\beta\gamma$ signals ascribable to the methylene chain between two adjoining tertiary carbon atoms in the copolymer main chain is observed in a 13C-NMR spectrum of copolymer (a), and (iii) the content of component (b) is 0.2W50pts.wt. per 100pts.wt. copolymer (a).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許出願公告番号

特公平7-78098

(24) (44)公告日 平成7年(1995) 8月23日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI	技術表示箇所
C08F 8/46	MHW			
255/02	MQC			
255/08	MQG			
C 0 8 L 21/00	LBF			

発明の数1(全8頁)

(21)出願番号

特顧昭61-166623

(22)出願日

昭和61年(1986)7月17日

publication no.

(65)公開番号

特開昭63-23904

(43)公開日

昭和63年(1988) 2月1日

(71)出願人 999999999

三井石油化学工業株式会社

東京都千代田区霞が関3丁目2番5号

(72)発明者 筒井 俊之

広島県大竹市御園1丁目3番6号

(72)発明者 豊田 昭徳

山口県岩国市南岩国町2丁目103番21号

(72) 発明者 柏 典夫

山口県岩国市室の木町1丁目2番9号

(74)代理人 弁理士 小田島 平吉 (外1名)

審査官 佐藤 健史

(56)参考文献 特開 昭61-126120 (JP, A)

特開 昭57-123205 (JP, A)

(54) 【発明の名称】 液状変性エチレン系ランダム共重合体

【特許請求の範囲】

【請求項1】エチレンと炭素原子数が3ないし20のα-オレフインから構成されるエチレン系ランダム共重合体 に、炭素原子数が3ないし10の不飽和カルボン酸、その 酸無水物およびそのエステルからなる不飽和カルボン酸 誘導体成分が結合した液状変性エチレン系ランダム共重 合体であつて、

- (i) 該エチレン系ランダム共重合体のエチレン成分が 10ないし85モル%およびαーオレフイン成分が15ないし 90モル%の範囲にあること、
- (ii) 該エチレン系ランダム共重合体の13 C-NMRスペク トル中に共重合体主鎖中の隣接した2個の3級炭素原子 間のメチレン連鎖に基づくαβおよびβγのシグナルが 観測されないこと、
- (iii) 該不飽和カルボン酸誘導体成分の含有割合が該

エチレン系ランダム共重合体の100重量部に対して0.2な いし50重量部の範囲にあること、および

(iv) 該液状変性エチレン系ランダム共重合体の135℃ のデカリン中で測定した極限粘度〔η〕が0.01ないし0. 4dl/gの範囲にあること、

によつて特徴づけられる液状変性エチレン系ランダム共 重合体。

【発明の詳細な説明】

[産業上の利用分野]

10 本発明は、新規な液状変性エチレン系ランダム共重合体 に関する。さらに詳細には色相に優れ、かつ種々の樹脂 またはゴム状重合体の改質剤、改質助剤、潤滑油添加 剤、樹脂またはゴム状重合体の水性分散液の分散助剤な どの用途に優れた性能を発揮することのできる液状変性 エチレン系ランダム共重合体に関する。

3

[従来の技術]

従来、ポリエチレン、ポリプロピレンなどの高分子量の オレフイン系重合体に不飽和カルボン酸またはその酸無 水物などをグラフト共重合した変性オレフイン系重合体 が樹脂の改質剤、接着性付与剤、その他の用途に利用さ れている。しかし、これらの変性オレフイン系重合体は 高分子量体であつて固体状であるために、利用分野によ つては充分な性能が得られない場合もある。また、低分 子量のポリブデン、ポリイソブチレンなどのオレフイン 系重合体に不飽和カルボン酸、その酸無水物、エステル 10 などの不飽和カルボン酸誘導体成分をグラフト共重合し た変性低分子量オレフイン系重合体が特公昭52-23668号 公報、特公昭52-23669号公報、特公昭52-48639号公報な どに提案されているが、該変性低分子量オレフイン系重 合体をゴム状重合体、とくに硅素含有ゴム状重合体の改 質剤、改質助剤、潤滑油添加剤、樹脂またはゴム状重合 体の水性分散液の分散助剤などの分野の用途に利用して も優れた性能を示さない。とくにゴム状重合体の配合技 術の分野においては、エチレン・αーオレフイン系また はエチレン・αーオレフイン系弾性共重合体を天然ゴ ム、ポリイソプレン、ポリイソブチレン、クロロプレン などのゴム状重合体に配合することにより、耐候性、耐 老化性に優れかつ粘着性に優れたゴム状重合体組成物を 提供することが試みられているが、その際単に両者を配 合しただけでは得られる組成物の力学物性が低下すると いう欠点があり、通常はこの欠点を改善するための改質 助剤が配合されている。この改質助剤として、従来から 公知の前記変性低分子量のオレフイン系重合体を配合し てもその効果は著しく小さい。

[発明が解決しようとする問題点]

本発明者らは、種々の樹脂またはゴム状重合体の改質 剤、とくにゴム状重合体組成物に改質助剤として優れた 変性低分子量エチレン系重合体を探索した結果、特定の 性状の液状変性エチレン系ランダム共重合体が新規な高分子物質でありかつ前記のゴム状重合体組成物やポリオレフイン、ポリエチレンテレフタレートなどの樹脂に改質助剤として配合することにより、優れた力学物性のゴム状重合体組成物あるいは改質樹脂が得られることを見出し、本発明に到達したものである。また、本発明の液状変性エチレン系ランダム共重合体は、その他に、潤滑 40油添加剤、樹脂またはゴム状重合体の水性分散液の分散助剤などの用途においても優れた性能を発揮する。

[問題を解決するための手段] および [作用]

本発明は、エチレンと炭素原子数が3ないし20のαーオレフインから構成されるエチレン系ランダム共重合体に、炭素原子数が3ないし10の不飽和カルボン酸、その酸無水物およびそのエステルからなる不飽和カルボン酸誘導体成分が結合した液状変性エチレン系ランダム共重合体であつて、

(i) 該エチレン系ランダム共重合体のエチレン成分が 50

10ないし85モル%および α ーオレフイン成分が15ないし90モル%の範囲にあること、

- (ii) 該エチレン系ランダム共重合体の 13 C-NMRスペクトル中には共重合体主鎖中の隣接した 2 個の 3 級炭素原子間のメチレン連鎖に基づく $^{\alpha}$ $^{\beta}$ および $^{\beta}$ $^{\gamma}$ のシグナルが観測されないこと、
- (iii) 該不飽和カルボン酸誘導体成分の含有割合が該 エチレン系ランダム共重合体の100重量部に対して0.2な いし50重量部の範囲にあること、および
- (iv) 該液状変性エチレン系ランダム共重合体の135℃ のデカリン中で測定した極限粘度〔η〕が0.01ないし0.4d1/gの範囲にあること、

によつて特徴づけられる液状変性エチレン系ランダム共 重合体である。

本発明の液状変性エチレン系ランダム共重合体は、エチレンと炭素原子数が3ないし20のαーオレフインから構成されるエチレン系ランダム共重合体に、炭素原子数が3ないし10の不飽和カルボン酸、その酸無水物およびそのエステルからなる不飽和カルボン酸誘導体成分が結合した液状変性エチレン系ランダム共重合体である。

該液状変性エチレン系ランダム共重合体の不飽和カルボン酸誘導体成分の含有割合は該エチレン系ランダム共重合体100重量部に対して0.2ないし50重量部、好ましくは0.5ないし40重量部の範囲である。不飽和カルボン酸誘導体成分の含有割合が0.2重量部より少なくなると、ゴム状重合体組成物の改質助剤として配合した場合には組成物の力学的物性の改善効果が劣るようになり、また50重量部より多くなると色相が悪くなり、かつ固化し流動性がなくなり、またゴム状重合体の分散性が悪くなる。該液状変性エチレン系ランダム共重合体の成分である炭

素原子数が3ないし10の不飽和カルボン酸誘導体成分単位として具体的には、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ[2,2,1] ヘプトー2ーエンー5.6ージカルボン酸などの不飽和カルボン酸、無水マレイン酸、無水イタコン酸、無水シラトコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1] ヘプトー2ーエンー5.6ージカルボン酸無水物などの不飽和カルボン酸の無水物、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマール酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロ無水フタル酸ジメチル、ビシクロ[2,2,1]ヘプトー2ーエンー5.6ージメチルなどの不飽和カルボ

該液状変性エチレン系ランダム共重合体の135²Cのデリカン中で測定した極限粘度 [n] は0.01ないし0.4d1/g、好ましくは0.02ないし0.3d1/gの範囲である。該液状変性エチレン系ランダム共重合体の極限粘度 [n] が0.0ld1/gより小さくなつて0.4d1/gより大きくなつて

ン酸のエステル等を例示することができる。

6

も、ゴム状重合体組成物の改質剤として配合した場合に は組成物の力学的物性の改善効果が劣るようになる。ま た、該液状変性エチレン系ランダム共重合体のゲルパー ミエイションクロマトグラフイー (GPC) によつて測定 した分子量分布(w/n)は4以下、好ましくは3以 下の範囲である。分子量分布があまり小さくなると、前 記ゴム状重合体組成物の改質助剤として配合した場合 に、組成物の力学的物性の改善効果が小さくなる。 該液状変性エチレン系ランダム共重合体を構成するエチ レン系ランダム共重合体はエチレンと炭素原子数が3な 10 いし20のαーオレフインから形成される液状エチレン系 ランダム共重合体であり、そのエチレン成分 (a) は10 ないし85モル%、好ましくは20ないし80モル%、とくに 好ましくは30ないし70モル%の範囲であり、そのαーオ レフイン成分(b)は15ないし90モル%、好ましくは20 ないし80モル%、とくに好ましくは30ないし70モル%の 範囲である。また、エチレン成分(a)および該 α -オ レフイン成分の他に必要に応じて非共役ポリエン成分

- (c) が共重合された液状エチレン系ランダム共重合体 である場合もあり、その場合の非共役ポリエン成分
- (c) の含有率は通常 0 ないし30モル%、好ましくは 0 ないし20モル%、とくに好ましくは 0 ないし15モル%の範囲である。ここで、該エチレン系ランダム共重合体がエチレン成分 (a) および α -オレフイン成分 (b) からなる共重合体である場合には、(a) 成分と (b) 成分の合計は100モル%であり、エチレン成分 (a) 、 α -オレフイン成分 (b) および非共役ポリエン成分
- (c) からなる共重合体である場合には、(a) 成分、
- (b) 成分および (c) 成分の合計は100モル%である。

該液状エチレン系ランダム共重合体の135℃のデリカン中で測定した極限粘度 [n] は通常は0.01 0.4d1/g、好ましくは0.03ないし0.3d1/gの範囲にあり、数平均分子量は通常は300ないし8000、好ましくは500ないし5000の範囲にあり、GPC法によつて測定した分子量分布 (w/n) は通常は3以下、好ましくは2.8以下、とくに2.5以下の範囲にある。該液状エチレン系ランダム共重合体のエチレン系ランダム共重合体のエチレンが分の含有率が10モル%より小さくなりαーオレフイン成分の含有率が90モル%り大きくなつても、またエチレン成分の含有率が85モル%より大きくなりαーオレフイン成分の含有率が15モル%より小さくなつても、該液状変性エチレン系ランダム共重合体をゴム状重合体組成物の改質助剤と

して配合した場合には組成物の力学的物性の改善効果が 劣るようになる。

該液状エチレン系ランダム共重合体の構成成分である炭素原子数が3ないし20のαーオレフイン成分として具体的には、プロピレン、1ーブテン、1ーヘキセン、4ーメチルー1ーペンテン、3ーメチルー1ペンテン、1ーオクテン、1ーデセン、1ードデセン、1ーテトラデセン、1ーヘキサデセン、1ーオクタデセン、1ーエイコセンなどを例示することができる。また、非共役ポリエン成分として、具体的には、1,4ーヘキサジエン、1,4ーペンタジエン、1,7ーオクタジエン、1,8ーノナジエン、1,9ーデカジエン、4ーメチルー1,4ーヘキサジエン、5ーメチルー1,4ーヘキサジエン、5ーエチリデンー2ーノルホルネン、ジシクロペンタジエン、5ーエチリデンー2ーノルボルネン、ジシクロペンタジエン、5ーエー2ーノルボルネン、1,5ーシクロオクタジエン、5,8ーエンドメチレンヘキサヒドロナフタレンなどを例示することができる。

該状エチレン系ランダム共重合体の 13 C-NMRスペクトル中には、共重合体主鎖中の隣接した 2 個の 3 級炭素原子間のメチレン連鎖に基づく $^{\alpha}$ $^{\beta}$ および $^{\beta}$ $^{\gamma}$ のシグナルが観測されない。

例えばエチエンと1-ヘキセンとの共重合体において、 下記結合:

は、1-へキセンに由来する左側の3級炭素からみれば中央の3個のメチレン基は左側から α 、 β 、 γ の位置にあり、一方右側の3級炭素からみれば右側から α 、 β 、 γ の位置にある。それ故、上記結合単位中には、 α γ および β β のシグナルを与えるメチレン基はない。

同様に1-ヘキセン同志が頭対尾で結合した下記結合:

$$-C H \widetilde{C} H_2 -C H C H_2 -$$

$$\begin{vmatrix} \alpha & 1 \\ C_4 H_9 & C_4 H_9 \end{vmatrix}$$

には、 α , α のシグナルを与えるメチレン基のみが存在し、 α β および β γ のシグナルを与えるメチレン基はない。

他方、下記結合

$$-CHCH_{2}^{\alpha}H_{2}-CH_{2}CH_{2}CH_{2}-CH_{2}CH- \Rightarrow ICG$$

$$\begin{vmatrix} \delta & \gamma & \beta & \alpha & 1 \\ C_{4}H_{9} & C_{4}H_{9} & C_{4}H_{9} \end{vmatrix}$$

はそれぞれ β γ のシグナルおよび α β のシグナルを与えるメチレン基を有する。

$$B \equiv \frac{PoB}{2Po \cdot P_B}$$

[式中、PE は共重合体のエチレン成分の含有モル分率を示し、Poは α ーオレフイン成分の含有モル分率を示し、PoE は全dyad連鎖の α ーオレフイン・エチレン連鎖のモル分率を示す。(ただし、該(I)式における各成分の含有モル分率は、末端成分を除き算出された値である)〕

で表わされるB値が、下記式(II)

 $1.05 \le B \le 2$

..... (11)

を満足する範囲にある。

上記B値は共重合体鎖中における各モノマー分布の分布 状態を表わす指標であり、G.J.Ray (Macromolecules,1 0.773 (1977))、J.C.Randall (Macromolecules,15,35 3 (1982)、J.Polymer Scinnce,Polymer Physics Ed.,1 30 1,275 (1933))、K.Kimura (Polymer,25,441 (198 4))、らの報告に基づいて、上記定義のPE、PoおよびP OEを求めことによつて、算出される。

上記B値が大きい程、ブロツク的な連鎖が少なく、エチレン及び α ーオレフインの分布が一様であり、組成部布の狭い共重合体であることを示している。

該液状エチレン系ランダム共重合体は、好ましくは下記 の如きB値を有している。

共重合体のエチレン含量が50モル%以下の場合:

- $1.0+0.3 \times P_E \le B \le 1/(1-P_E)$
- より好ましくは一般式
- $1.0+0.4 \times P_E \le B \le 1/(1-P_E)$
- とくに好ましくは一般式
- $1.0+0.5 \times P_E \le B \le 1/(1-P_E)$,

共重合体のエチレン含量が50モル%以上の場合:

- $1.3-0.3 \times P_E \leq B \leq 1/P_E$
- より好ましくは一般式
- $1.4-0.4\times P_E \leq B \leq 1/P_E$
- とくに好ましくは一般式
- $1.5 0.5 \times P_E \leq B \leq 1/P_E,$

さらに、該液状エチレン系ランダム共重合体は、下記式 (1)

8

... ... (1)

なお、組成分布B値は、10mm ϕ の試料管中で約200mgの 共重合体を1ml 0 へキサクロロブタジエンに均一に溶解 させた試料の13 C-NMRのスペクトルを、測定温度120 $\mathbb C$ 、 測定周波数25 .05MHz、スペクトル幅1500Hz、フイルター 幅1500Hz、パルス繰り返し時間4 .2 sec、パルス幅 7 μ se $\mathbf c$ 、積算回数2000 ~ 5000 回の測定条件の下で測定し、こ のスペクトルから P_E 、 P_O 、 P_OE を求めるここにより算出

該液状エチレン系ランダム共重合体は、

- (A) 共役 π 電子を有する基を配位子としたジルコニウム化合物、および
- (B) アルミノオキサン

からなる触媒の存在下に、エチレンと炭素原子数が 3 ないし20の α ーオレフインおよび必要に応じて非共役ポリエンを共重合せしめることにより調製することができる。

なお、本発明の液状エチレン系ランダム共重合体の数平均分子量(n)および分子量分布(w/n)は武内著、丸善発行の「ゲルパーミエイションクロマトグラフィー」に準じて次の如く行つた。

- (1) 分子量既知の標準ポリスチレン (東洋ソーダ
- (製) 単分散ポリスチレン)を使用して、分子量MとそのGPC (Gel Permeation Chromctograph) カウントを測定し、分子量MとEV (Elution Volume) の相関図較正曲線を作成する。この時の濃度は、0.02wt%とする。
 - (2) GPC測定により試料のGPCクロマトグラフをとり前記 (1) によりポリスチレン換算の数平均分子量n、重量平均分子量wを算出しw/n値をを求める。その際のさんぷる調製条件およびGPC測定条件は以下の通りである。

[サンプル調製]

(イ) 試料を0.1wt%になるようにo-ジクロルベンゼ 50 ン溶媒とともに三角フラスコに分取する。 (ロ) 試料の入つている三角フラスコに老化防止剤2.6 ージーtertーブチルー p ークレゾールをポリマー溶液に 対して0.05wt%添加する。

(ハ) 三角フラスコを140℃に加温し、約30分間撹拌 し、溶解させる。

(二) その液をGPCにかける。

[GPC測定条件]

次の条件で実施した。

- (イ) 装置 Waters社製 (150℃ ALC/GPC)
- (ロ) カラム Dupont社製 (ZORBAXPSM BiModalー)
- (ハ) サンプル量 200μ1
- (二) 温度 140℃
- (ホ) 流速 1ml/min

なお、数平均分子量は、分子量既知の標準物質(単分散 ポリスチレンおよびスクアラン)を用いて予め較正され たGPCによつて測定した。

本発明の液状変性エチレン系ランダム共重合体は、前記 液状エチレン系ランダム共重合体と前記不飽和カルボン 酸誘導体を(1)無触媒下に熱反応させることにより、 また(2)ラジカル開始剤の存在下に反応させることに より製造することができる。これらの方法のうちでは、

(1)の方法を採用するのが好ましい。(1)の方法で 得られた液状変性エチレン系ランダム共重合体は、主に 共重合体主鎖末端にカルボン酸誘導体が結合した構造を している。

具体的には

$$CH_2$$
 CH_2-C-CH_2
 $CH-CH_2$
 $C=C$

又は

$$C H_{3}$$

$$C H = C - C H_{2}$$

$$C H - C H_{2}$$

$$C = C$$

$$C = 0$$

などを例示できる。

反応は溶媒の存在下に実施することもできるし、溶媒の 不存在下に実施することもできる。

反応方法としては、たとえば、液状エチレン系ランダム 共重合体と該不飽和カルボン酸誘導体を混合し加熱下連 50

続的に撹拌しながら反応させる方法を例示することができる。上記混合法としては、たとえば液状エチレン系ランダム共重合体に該不飽和カルボン酸誘導体を分割し逐次に添加する方法、逆に、該不飽和カルボン酸誘導体に液状エチレン系ランダム共重合体を分割し逐次に添加する方法、さらに、液状エチレン系ランダム共重合体及び該不飽和カルボン酸誘導体を一割して混合する方法を例示することができる。該反応に供給される不飽和カルボン酸誘導体の割合は、該液状エチレン系ランダム共重合体の100重量部に対して通常は0.2ないし100重量部、好ましくは0.570重量部の範囲である。反応の際の温度は通常120ないし250℃、好ましくは130℃ないし230℃の範囲であり、反応に要する時間は通常、1時間ないし50時間、好ましくは2時間ないし30時間である。反応は常圧、加圧いずれの条件下においても実施することができる。

本発明の液状変性エチレン系ランダム共重合体のゴム状 重合体組成物の改質剤としての用途への利用について説 明する。

該ゴム状重合体組成物には、エチレン・ α ーオレフイン系またはエチレン・ α ーオレフイン・ジエン系弾性共重合体(A)、または(A)と天然ゴム、クロロプレンゴム、イソプレンゴム、ブタジエンゴム、アクリルゴムからなる群から選ばれた少なくとも1種のゴム状重合体(B)、該液状変性エチレン系ランダム共重合体(C)およびその他の成分(D)から構成されている。該弾性共重合体(A)と該ゴム状重合体(B)を混合する場合、通常は(A)5~95重量部及び(B)95~5重量部、好ましくは(A)10~90重量部および(B)90~10重量部の範囲であり、該液状変性エチレン系ランダム共重合体(C)の配合割合は(A)と(B)の合計100重量部に対し1ないし50重量部、好ましくは5ないし30重量部の範囲である。

該ゴム状重合体組成物に配合される弾性共重合体 (A) としてはエチレン・プロピレン共重合体、エチレン・1ーブテン共重合体、エチレン・1ーペンテン共重合体、エチレン・1ーペンテン共重合体、エチレン・1ーデセン共重合体などの結晶化度が 0 ないし10%のエチレン・αーオレフイン系弾性共重合体、エチレン・プロピレン・ジシクロペンタジエン共重合体、エチレン・プロピレン・5ーエチリデンー2ーノルボルネン共重合体、エチレン・1ーブテン・ジシクロペンタジエン共重合体、エチレン・1ーブテン・ジシクロペンタジエン共重合体、エチレン・1ーブン・5ーエチリデンー2ーノルボルネン共重合体などのジエン成分含量が通常0.5ないし4.5モル%の範囲にあるエチレン・αーオレフイン系弾性共重合体を例示することができる。

該ゴム状重合体組成物に配合されるその他の成分(D) として具体的には、架橋剤、架橋促進剤、耐熱安定剤、 老化防止剤などの安定剤、充填剤などを挙げることがで きる。これらの成分の配合割合は任意である。

該ゴム状重合体組成物に配合される架橋剤として具体的 には、過酸化物、硫黄、-塩化イオウ、二塩化イオウ、 モルホリンジスルフイド、アルキルフエノールジスルフ イド、テトラメチルチウラムジスルフイド、ジメチルジ チオカルバミン酸セレンなどのイオウ化合物、酸化マグ ネシウム、亜鉛華、鉛丹などの金属化合物を挙げること ができる。硫黄は通常前記(A)成分または(A)成分 と(B)成分からなるゴム成分の合計100重量部に対し て0.1ないし10重量部、好ましくは0.5ないし5重量部の 10 割合で使用される。また、必要に応じて架橋促進剤を使 用できる。架橋促進剤としては、Nーシクロヘキシルー 2-ベンゾチアゾールスルフエンアミド、N-オキシジ エチレン-2-ベンゾチアゾールスルフエンアミド、N. N-ジイソプロピル-2-ベンゾチアゾールスルフエン アミド、2-メルカプトベンゾチアゾール、2-(2.4 ーニトロフエニル)メルカプトベンゾチアゾール、2-(2,6-ジエチルー4ーモルホリノチオ) ベンゾチアゾ ール、ベンゾチアジルジスルフイドなどのチアゾール 系;ジフエニルグアニジン、トリフエニルグアニジン、 ジオルソトリルグアニジン、オルソトリルバイグアナイ ド、ジフエニルグアニジンフタレートなどのグアニジン 系;アセトアルデヒドーアニリン反応物;ブチルアルデ ヒド-アニリン縮合物;ヘキサメチレンテトラミン、ア セトアルデヒドーアンモニアなどのアルデヒドアミン、 またはアルデヒドーアンモニア系:2-メルカプトイミダ ゾリンなどのイミダゾリン系;チオカルバニリド、ジエ チルチオユリアジブチルチオユリア、トリメチルチオユ リア、ジオルソトリルチオユリアなどのチオユリア系; テトラメチルチウラムモノスルフイド、テトラメチルチ 30 ウラムジスルフイド、テトラエチルウラムジスルフイ ド、テトラブチルチウラムジスルフイド、ジペンタメチ レンチウラムテトラスルフイドなどのチウラム系;ジメ チルジチオカルバミン酸亜鉛、ジエチルチオカルバミン 酸亜鉛、ジーnーブチルジチオカルバミン酸亜鉛、エチ ルフエニルジチオカルバミン酸亜鉛、ブチルフエニルジ チオカルバミン酸亜鉛、ジメチルチオカルバミン酸ナト リウム、ジメチルチオカルバミン酸セレン、ジエチルジ チオカルバミン酸テルルなどのジチオ酸塩系;ジブチル キサントゲン酸亜鉛などのザンテート系などを挙げるこ 40 とができる。

これら架橋促進剤は前記(A)成分または(A)成分と(B)成分からなるゴム成分の合計100重量部に対して通常0.1ないし20重量部、好ましくは0.2ないし10重量部の割合で使用される。

ペルオキシド架橋に使用されるペルオキシドとして、ジクミルペルオキシド、1,1' - \odot (t - \mathcal{I} - \mathcal{I} \mathcal{I}

ジメチルー2,5ージ (tーブチルペルオキシ) ヘキシンなどが例示される。

またその際の架橋促進剤として、硫黄、ジペンタメチレンチウラムテトラスルフイドのような硫黄化合物、エチレンジメタクリレート、ジビニルベンゼン、ジアリルフタレート、メタフエニレンビスマレイミド、トルイレンビスマレイミドのような多管能性モノマー、pーキノンジオキシム、p,p'ージベンゾイルキノンオキシムなどのオキシム化合物などを単独でもしくは混合して用いることができる。

該ゴム状重合体組成物にはその他必要に応じ活性剤、分 散剤、充填剤、可塑剤、粘着付着剤、着色剤、発砲剤、 発砲助剤、滑剤、老化防止剤、その他添加剤を併用する ことができる。

充填剤としては、カーボンブラック、ホワイトカーボン (ケイ酸化合物)、炭酸カルシウム、タルク、クレーな どの無機充填剤;ハイスチレン樹脂、クマロンインデン 樹脂、フエノール樹脂、リグニン、変性メラミン樹脂、石油樹脂などの有機充填剤を挙げることができる。この うち特に無機充填剤が好ましく使用される。

軟化剤としては、プロセス油、潤滑油、パラフイン、流動パラフイン、石油アスフアルト、ワセリンなどの石油系軟化剤;コールタール、コールタールピツチなどのコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、ヤシ油などの脂肪油系軟化剤;トール油;サブ;密ロウ;カルナウバロウ、ラノリンなどのロウ類;リシノール酸、パルミチン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛などの脂肪酸および脂肪酸塩;石油樹脂などの合成高分子物質を挙げることができる。

可塑剤としては、フタール酸エステル系、アジピン酸エステル系、セバシン酸エステル系、リン酸系など、粘着付着剤としては、クマロンインデン樹脂、テルペン・フエノール樹脂、キシレン・ホルマリン樹脂など、着色剤としては、無機および有機顔料など、発砲剤としては、重炭酸ナトリウム、炭酸アンモニウム、N.N ージニトロソペンタメチレンテトラミン、アゾカルボンアミド、アゾビスイソブチロニトリル、ベンゼンスルホニルヒドラジド、トルエンスルホニルヒドラジド、カルシウムアミド、パラトルエンスルホニルアジドなど、発砲助剤としては、サリチル酸、フタル酸、尿素などを使用することができる。

また、配合物の製造はオープンロールミル、バンバリーミキサー、ニーダーなどを用いる公知の方法を採用することができる。

架橋方法は通常100℃~270℃、好ましくは120℃~250℃ の温度で、架橋時間通常 1 分~120分、好ましくは1.5~ 60分の条件で行うことができる。とくにペルオキシドの 半減期の4倍程度とするのが好ましい。

(発明の効果)

本発明の液状変性エチレン系ランダム共重合体は樹脂またはゴム状重合体の改質剤、改質助剤、潤滑油添加剤、樹脂またはゴム状重合体の水性分散液の分散助剤として優れた性能を発揮する。とくに、エチレン・αーオレフイン・ジエン系弾性共重合体 (A) または (A) とゴム状重合体 (B) からなるゴム状重合体組成物に改質助剤として配合することにより、耐候性、耐熱老化性、粘着性に優れかつ力学的物性が改善されるという特徴を有している。

[実施例]

まず、実施例で原料として使用するエチレン系ランダム 共重合体の製造を、製造例 $1\sim5$ によって具体的に説明 する。

製造例1

21の連続重合反応器を用いて精製トルエンを 1/hr、メチルアルミノキサンをアルミニウム原子換算で 5 ミリグラム原子/hr、ビス(シクロペンタジエニル)ジルコニウムモノハイドライドモノクロリドをトリメチルアルミニウムで処理したもの(A1/Zrのモル比10、0.04モル・Zr/1・トルエン)をジルコニウム原子換算で 8 × 10⁻²ミリグラム原子/hrの割合で連続的に供給し、重合器内において同時にエチレン401/hr、プロピレン2401/hrの割合で連続的に供給し、重合温度40℃、常任滞留時間1hrとなる条件下に重合を行った。生成したポリマー溶液を重合器より連続的に抜き出し、少量のメタノールを添加することにより重合を停止した。そのポリマー溶液に多量の水を加え水洗する操作を 4 回繰り返した。その後、ポリマー溶液よりトルエンを除去することにより液状のエチレンープロピレン共重合体を得た。

製造例1で得られた液状のエチレンープロピレン共重合体は、実施例1において原料の共重合体として用いた。 製造例2~5のポリマーは下表の条件下で製造例1と同様の操作を行うことにより得られた。

製造例	2	3	4	5
モノマー1 種類	エチレン	エチレ ン	エチレン	エチレン
量(<i>ℓ/</i> hr)	50	200	55	50
モノマー2 種類	プロピレ ン	ヘキセ ン-1	プロピレ ン	プロピ レン
量(ℓ / hr)	240	1	240	270
モノマー3 種類	1,7-オク タジエン	_	_	-
量(ℓ/h r)	0.02	_		_
重合温度 (℃)	40	60	50	40
Zr(ミリグラム 原子/hr)	0.08	0.15	0,005	0,04
Al(ミリグラム 原子/hr)	10	10	5	5
滯留時間(h)	1	0.5	1	1
溶媒(ℓ/hr)	1	2	1	11

上に記載した製造例2,3,4および5で得られた液状の共 重合体は、それぞれ実施例3,4,5および6において原料 の共重合体として用いた。

製造例 6

製造例1において、エチレン、プロピレンの供給量をそれぞれ451/hr、2401/hrとすることによりポリマーを得た

このポリマー100gをシクロヘキサン1で希釈し、ニツケル触媒4g(日輝化学製N-103)を添加し、水素圧25kg/cm²-G、150℃で3時間水添反応を行うことによりポリマーを得た。

このポリマーは、比較例1において原料の共重合体として用いた。

次に、本発明の液状変性エチレン系ランダム共重合体を 実施例によつて具体的に説明する。

実施例1

窒素吸込管、冷却管および温度計を装着した内容積500m 1の撹拌機付きガラス製反応器を充分窒素で置換した 後、エチレン含量43モル%、プロピレン含量57モル%、 数平均分子量750、w/n 1.70、 [η] 0.05d1/g、B 値1.28ヨウ素価33の液状のエチレン・プロピレン共重合 体200gと無水マレイン酸65gを装入し、撹拌下に200℃ま で昇温した。引き続き200℃で8時間反応を行つた後、 室温まで冷却し反応混合物を多量のヘキサン中に投入 し、未反応の無水マレイン酸を除去した。更にヘキサン を除去し、100℃で10mmHgの減圧下で乾燥することによ り淡黄透明な粘性のある液体が得られた。該生成物の [η] は、0.05d1/g、w/nは1.95および無水マレイ ン酸成分の含有量は1.1wt%であつた。尚、反応に用い た液状エチレン・プロピレン共重合体の13 C-NMRスペク トルには α β、 β γに基づくシグナルは観測されなかつ た。

実施例2

実施例1において反応温度を180℃とした以外は実施例 1 と全く同様に反応を行い淡黄色透明な粘性のある液体が得られた。該生成物の〔η〕は0.05dl/g、w/nは 1.83、および無水マレイン酸成分の含有量は、6wt%であつた。尚、反応に用いた液状エチレン・プロピレン共重合体の¹³ C-NMRスペクトルには、αβ、βγに基づく シグナルは観測されなかつた。

比較例1

実施例 2 においてエチレン含量49モル%、プロピレン含量51モル%、数平均分子量830、w/n 1.44、 [n] 0.05d1/g、 B identify identi

50 比較例 2

16

実施例1で用いた反応器に滴下ロート2個を更に装着し、比較例1で用いた液状エチレン・プロピレン共重合体200gを入れ160℃に昇温した。引き続き、2個の滴下ロートに各々予め装入しておいた無水マレイン酸16g(60℃に保温)、およびジーターシャリーブチルパーオキサイド3gを1.5時間かけて滴下した。滴下終了後、160℃で4時間反応を行つた後、180℃に昇温し、その温度で0.5mmHgの減圧下に未反応の無水マレイン酸およびジーターシャリーブチルパーオキサイドの分解物を除去することにより〔η〕が0.05d1/g、w/nが1.63、無水マレイン酸成分の含有量6wt%の活性ある液体が得られた。該生成物は黄色に着色した透明な液体であつた。実施例3

実施例4

実施例1においてエチレン含量62モル%、ヘキセン-1 含量38モル%、数平均分子量970、w/n 1.69、

 $[\eta]$ 0.06d1/g、B値1.30ョウ素価26の液状のエチレン・ヘキセンー 1 共重合体を用いた以外は実施例 1 と全く同様に行い淡黄色透明な粘性のある液体が得られた。該 30 生成物の $[\eta]$ は0.06d1/g、w/nは1.81および無水マレイン酸成分の含有量は8wt%であつた。尚、反応に用いた液状エチレン・ヘキセンー 1 共重合体の 13 C-NMRスペクトルには α β 、 β γ に基づくシグナルは観測されなかつた。

実施例5

実施例1と同様の反応器にエチレン含量66モル%、プロピレン含量34モル%、数平均分子量3570、w/n 1.9 0、〔η〕0.24dl/g、B値1.25、ヨウ素化7の液状のエチレン・プロピレン共重合体200gとメタクリル酸 n ーブ 40 チル25gを仕込み、180℃で8時間反応を行つた。次いで180℃に保つたまま10mmllgの減圧下に未反応の n ーブチルメタクリレートを除去し、無色透明に近い非常に粘性のある液体を得た。該生成物の〔η〕は0.25dl/g、w/nは2.07およびメタクリル酸 n ーブチル成分の含有率は3wt%であつた。尚、反応に用いた液状エチレン・プロピレン共重合体の13 C-NMRスペクトルにはαβ、βγ

に基づくシグナルは観測されなかつた。

実施例6

実施例 1 においてはエチレン含量55モル%、プロピレン含量45モル%、数平均分子量1700w/n 1.80、 [n] 0.13dl/g、B値1.28、ヨウ素価15の液状のエチレン・プロピレン共重合体を用いた以外は、実施例 1 と全く同様に行い、淡黄色透明な粘性のある液体が得られた。該生成物の [n] は0.14dl/g、w/nは1.96および無水マレイン酸成分の含有量は5wt%であつた。尚、反応に用いた液状エチレン・プロピレン共重合体の 13 C-NMRスペクトルには、 α β 、 β γ に基づくシグナルは観測されなかつた。

応用例1

実施例1で得られた生成物をNBRとEPDMをブレンドする際の改質剤として用いた。ENB系EPDM(▲M¹00℃ 1-4 ▼67、エチレン含量67モル%、ョウ素価22)35重量部、日本ゼオン社製NBR(ニツボール1042)65重量部、実施例1で得られた生成物10重量部、亜鉛華3号5重量部、ステアリン酸1重量部、旭カーボン社製カーボンブラツク(旭70)60重量部、ジオクチルフタレート15重量部、シクロヘキシルベンゾチアゾールスルフエンアミド1.5重量部、2ーメルカプトベンゾチアゾール0.4重量部、ジエチレングリコール2重量部、硫黄1.5重量部の割合で配合し表面温度60±5℃の8インチオープンロールミルを用い、所要時間20分で混練した。得られた組成物のムーニー粘度をJIS K6300に準じて測定した。

更に、該組成物を160℃で20分間加熱し、150×100×2.5 mmのシートを作成し、JIS K6301に準じスプリングかた さ (Hs) 、引張強さ (Tb) 、伸び (Eb) を測定した。結果を表 1 に示した。

応用例2~5

実施例 $2\sim6$ で得られた生成物を用い応用例1と同様にして組成物を合成し、ムーニー粘度、Hs、TbおよびEbを測定した。結果を表1に示した。

未加硫 加硫ゴム性状 ゴム性 Hs ТЪ ЕЪ 1125℃ 11+4 (kg/ (JIS-A) catt) (%) 応用例1 実施例1 170 340 46 67 330 2 43 65 164 2 3 350 3 44 66 165 4 42 66 166 330 5 6 47 65 168 340