Globally Distributed Content Delivery

Presented by Will Johnson

ToC

- Introduction
 - Goals
 - Previous Works
 - The Big Picture
- Network Services
- Technical Challenges
- Concluding Remarks

Goals

- Stop the flash crowding problem!
- Reduce lost revenue
 - Prevent site crashes
 - Reduce overly high latency
- Reduce load at centralized servers
- Serve Content from the Network Edge!

Previous Works

Traditional Approaches

- Local Clustering Several servers on site to handle requests
 - Difficult to scale to the thousands
- Mirroring Copies of the server, distributed geographically
 - o All mirrors must be synchronised
- Multi-homing Connect the Server to multiple ISPs
 - o If one link fails, BGP does not converge quickly to a new one

Distributed Approaches

- Autonet Uses logically centralized controls to recompute routes when a route fails
 - What about a more fine-grained approach that remaps in response to health?
- Web Caching keep data stored in caches on the web
 - Typical use case: users want to read data. This means faults are more readily tolerated.
 - Cache misses are quite common because of dynamic content
- Depot system updates and management for large distributed networks
 - Modular packages
 - Internal consistency verification (what about end-to-end?)

The Big Picture

Request Handling

- Akamai handles flash crowds by sending requests to the nearest, available server that is likely to have requested content.
- Nearest function of network topology and dynamic link characteristics
 - Lower round-trip time
 - Lower packet loss
- Available function of load and network bandwidth
 - o Server with low load, and a datacenter with plenty of bandwidth
- Likely function of which servers carry the content for each customer in a datacenter
 - Use as few servers as possible

Mapping

- Mapping Direction of requests to content servers
 - Based on Service Requested, User Location, and Network Status
 - Uses DNS for load balancing

Mapping Metrics

- Service Requested Server must be able to service the request
- Server Health Must be up and running with no errors
- Server Load Load cannot exceed a certain threshold.
- Network Condition Data center must have sufficient bandwidth, and packet loss must be minimal
- Client Location Server must be Near to the client
- Content Requested Server must be likely to have to content requested

Network Monitoring: Content Server

- Monitoring Application watches loads of each content server
 - Content servers report load
 - Load Data Aggregated and published to DNS

Network Monitoring: End to End

- Agents simulate end to end behavior
 - Download web objects
 - Measure failure rates
 - Measure download times
- Detect and suspend problematic data centers
- Provide centralized content reporting for data owners

ToC

- Introduction
- Network Services
 - Static Content
 - Dynamic Content
 - Streaming Media
- Technical Challenges
- Concluding Remarks

Static Content

- Html, pdf, embedded images, executables, etc...
 - Content type helps decide Static or Dynamic
- Static content has labels applied to it
 - Lifetime (from 0 to infinite)
 - Ability to be served over HTTPS
 - o Etc...
- Features are decided based on content type, content provider requirements, and other criteria.

Dynamic Content

- Many modern web pages rely on dynamic content
 - Web caches cannot handle any degree of dynamic content. Even one dynamic element prevents their use
- Edge Side Includes (ESI) technology allows pages to be broken into static and dynamic content
 - Uses XSLT to provide XML data
 - Similar to Server Side Include languages, but allows for fault tolerance
- Dynamic web pages are re-assembled upon request
- ESI reduces bandwidth requirements for dynamic content by 95 to 99 percent

Streaming Media

- Supports
 - Windows Media
 - Real
 - Apple Quicktime
- Live streams usually send to an entry point server
 - This should be fault tolerant, and react quickly to an unavailable entry point server
- Entry Point servers then distribute content to Edge Servers
 - Traffic must be routed around congestion
 - Must be resilient against network failures

ToC

- Introduction
- Network Services
- Technical Challenges
 - System Scalability
 - System Reliability
 - Software Deployment and Platform Management
 - Content Visibility and Control
- Concluding Remarks

System Scalability

- For things to run smoothly, the network must support different use cases and geographic locations.
 - Keep bandwidth low, but monitor thousands of servers
 - Monitor and aggregate network health info every few seconds (i.e. keep DNS lookup times down)
 - Gracefully handle outdated programs and information
 - React quickly to new network conditions and loads
 - Handle a wide variety of customer needs
 - Isolate customers
 - Ensure integrity on devices and end-to-end
 - Collect and process logs for billing and analytics

System Scalability (Cont.)

- To handle this, Akamai developed a distributed, monitoring service
 - Resilient to temporary loss of information
- Customer problems are handled by support teams
 - Diagnostics
 - Billing

System Reliability

Fault Tolerance

- System and Network failures must be identified and fixed quickly
 - DNS automatically detects failures
 - New IP addresses can be handed out
 - Cached Answers can be used
 - All DNS responses have at least 2 IP addresses
 - o Backup servers on site can take over for a downed Content Delivery Server
 - The Top Level DNS server can identify DNS servers that have connections

Fault Tolerance (Cont.)

- Software Flaws must be handled quickly
- New request and response headers emerge all the time
 - Edge servers must interpret these correctly
- Testing new features with the Top Browser and Content Server configs is infeasible
 - Created a test tool that can direct live traffic to test version of software
 - Live traffic allows for faster debugging without affecting the network

Software Deployment and Platform Management

Software Updates

- Software must be updated regularly
 - Improved performance
 - Better operational and monitoring capabilities
- Not all servers are available all the time
 - 2 versions of all software will be live at any given time
 - o Different components must be able to coexist
- Monitoring software must watch carefully to catch problems

Device Specifics

- The network runs on the backs of Linux and Windows OSes
 - Monitoring platform must be able to run ubiquitously and collect accurate information
 - Necessary for load balancing
- Diagnostics teams must be familiar with a wide variety of OSes

Content Visibility and Control

Content Providers Don't Own Their Content

- Content Providers should be able to control their data
 - Analytics should be accurate and fine grained
 - Must have the greatest amount of control possible
- This implies that the network must take into account
 - Cache Consistency
 - o Lifetime Control
 - Authentication and Authorization
 - Integrity Control
 - Visibility and Billing

Cache Consistency and Lifetime Control

- Objects that can be cached, should have a Time To Live (TTL) associated with them
 - Some might be cacheable forever
 - Some might be versioned (specified in the URL)
- Cacheable objects should be removable before the TTL has expired
 - Revocation can be done by content providers or network owners
- Non-Cacheable content should travel from the Origin Server to the Edge Server to the User.

Security

- Authorized Content should be protected
 - Edge servers contain authorization features
 - Authorization Tokens can be passed between User and Origin Server
- Content Integrity should be enforced, such that corrupted data does not propagate
 - o Incomplete responses should not be cached
 - Corrupted data should be detected and re-fetched

Visibility and Billing

- Content delivery logs should be aggregated to a centralized location
 - Analytics
 - Billing
- This generates a lot of data flow and computation
- Content Delivery Rates and Client Location can be delivered more readily

ToC

- Introduction
- Network Services
- Technical Challenges
- Concluding Remarks
 - o Pros
 - o Cons

Pros

- Works very well for intended use case
 - Huge networks with tremendous amounts of traffic
 - CDNs are still used today!
- Companies that own both the CDN and the data suffer no losses
 - They maintain control over their data!

Cons

- Content providers do not own their content any more
 - Fees to remove, or scrub data from the CDN
- Large startup cost to implement
- Lack of details
 - Distributed Monitoring Application
 - Log Aggregation
 - o "95% to 99% reduction in ESI bandwidth usage"
- Paper within a paper?

Questions

