Date:

Assignment Number

Problem Statement

Program in C to find the root of a transcendental equation using Bisection Method.

Theory

The bisection method in mathematics is a root-finding method that repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods.

The method is applicable for numerically solving the equation f(x) = 0 for the real variable x, where f is a continuous function defined on an interval [a, b] and where f(a) and f(b) have opposite signs. In this case a and b are said to bracket a root since, by the intermediate value theorem, the continuous function f must have at least one root in the interval (a, b).

At each step the method divides the interval in two by computing the midpoint c = (a+b) / 2 of the interval and the value of the function f(c) at that point. Unless c is itself a root (which is very unlikely, but possible) there are now only two possibilities: either f(a) and f(c) have opposite signs and bracket a root, or f(c) and f(b) have opposite signs and bracket a root. The method selects the subinterval that is guaranteed to be a bracket as the new interval to be used in the next step. In this way an interval that contains a zero of f is reduced in width by 50% at each step. The process is continued until the interval is sufficiently small.

Explicitly, if f(a) and f(c) have opposite signs, then the method sets c as the new value for b, and if f(b) and f(c) have opposite signs then the method sets c as the new a. (If f(c)=0 then c may be taken as the solution and the process stops.) In both cases, the new f(a) and f(b) have opposite signs, so the method is applicable to this smaller interval.

Iteration tasks

The input for the method is a continuous function f, an interval [a, b], and the function values f(a) and f(b). The function values are of opposite sign (there is at least one zero crossing within the interval). Each iteration performs these steps:

- 1. Calculate c, the midpoint of the interval, c = a + b/2.
- 2. Calculate the function value at the midpoint, f(c).
- 3. If convergence is satisfactory (that is, c a is sufficiently small, or |f(c)| is sufficiently small), return c and stop iterating.
- 4. Examine the sign of f(c) and replace either (a, f(a)) or (b, f(b)) with (c, f(c)) so that there is a zero crossing within the new interval.

Algorithm

Input:

- 1. y = f(x), the function to find root of
- 2. The lower bound of the root, say a
- 3. The upper bound of the root, say b
- 4. A predefined small quantity, say EPSILON, which will denote the proximity of two roots to be considered as equal
- 5. A predefined number of steps to continue the iteration for, say STEPS

Output: The root of the function, say ROOT

Steps:

```
Step 1 : At first, y = f(x) is defined
Step 2: Input a
Step 3: Input b
Step 4 : If(f(b) * f(a) > 0)
  Then
   1. Goto step 2
Step 5 : prevroot = a
Step 6: c = (b + a)/2
Step 7: If(c - prevroot < EPSILON)
  Then
  1. ROOT = c
  2. Print "Root found: ", ROOT
  3. Exit
Step 8 : If(f(b) * f(c) < 0)
  Then
   1. b = c
Step 9 : Else
   1. a = c
Step 10: prevroot = c
Step 11: STEPS = STEPS - 1
Step 12:
          If(STEPS > 0)
        Then
     1. Goto step 6
Step 13:
             Else
```

```
    Print "Root does not converge in given steps!"
    Exit
    End
```

Source Code

```
#include <stdio.h>
#include <math.h>
#define f(x) (x*x*x - 3*x*x + 3*x - 1) // the equation is to be defined here
#define EPSILON 0.0000001
#define STEPS 100
int main(){
  double a, b;
  printf("\nEquation: x^3 - 3*x^2 + 3*x - 1");
restart:
  printf("\nEnter initial approximation of the root : ");
  scanf("%lf%lf", &a, &b);
  if(f(a)*f(b) > 0){
    printf("The root does not lie between %g and %g!", a, b);
    goto restart;
  }
  int it = 0;
  double prevroot = a, preva = a, prevb = b;
  printf("\nlteration\t a \t f(a) \t b \t f(b) \t c \t f(c) ");
  printf("\n======\t======\t======\t======\t======\
t=======");
  while(it < STEPS){
    double c = (a+b)/2;
    printf("\n%9d\t", (it+1));
    if(preva != a)
      printf("*%8lf", a);
    else
      printf("%9lf", a);
    printf("\t%9lf\t", f(a));
```

```
if(prevb != b)
       printf("*%8lf", b);
     else
       printf("%9lf", b);
     printf("\t%9If\t%9If\t%9If\t, f(b), c, f(c));
     preva = a; prevb = b;
     if(fabs(c-prevroot) < EPSILON){</pre>
       printf("\nRoot found : %10lf", prevroot);
       return 0;
     if(f(b) * f(c) < 0){
       a = c;
     }
     else{
       b = c;
     prevroot = c;
     it++;
  printf("\nRoot does not converge in %2d steps!", it);
}
```

Page No:

Input and Output

Set 1:

Equation: $x^3 - 5*x + 3$

Enter initial approximation of the root: 10

Iteration	a	f(a)	b	f(b)	С	f(c)
======	======	=======	=======	======	======	======
1	1.000000	0.000000	0.000000	-1.000000	0.500000	-0.125000
2	1.000000	0.000000	*0.500000	-0.125000	0.750000	-0.015625
3	1.000000	0.000000	*0.750000	-0.015625	0.875000	-0.001953
4	1.000000	0.000000	*0.875000	-0.001953	0.937500	-0.000244
5	1.000000	0.000000	*0.937500	-0.000244	0.968750	-0.000031
6	1.000000	0.000000	*0.968750	-0.000031	0.984375	-0.000004
7	1.000000	0.000000	*0.984375	-0.000004	0.992188	-0.000000
8	1.000000	0.000000	*0.992188	-0.000000	0.996094	-0.000000
9	1.000000	0.000000	*0.996094	-0.000000	0.998047	-0.000000
10	1.000000	0.000000	*0.998047	-0.000000	0.999023	-0.000000
11	1.000000	0.000000	*0.999023	-0.000000	0.999512	-0.000000
12	1.000000	0.000000	*0.999512	-0.000000	0.999756	-0.000000
13	1.000000	0.000000	*0.999756	-0.000000	0.999878	-0.000000
14	1.000000	0.000000	*0.999878	-0.000000	0.999939	-0.000000
15	1.000000	0.000000	*0.999939	-0.000000	0.999969	-0.000000
16	1.000000	0.000000	*0.999969	-0.000000	0.999985	-0.000000
17	1.000000	0.000000	*0.999985	-0.000000	0.999992	-0.000000
18	1.000000	0.000000	*0.999992	-0.000000	0.999996	0.000000
19	1.000000	0.000000	*0.999996	0.000000	0.999998	0.000000
20	1.000000	0.000000	*0.999998	0.000000	0.999999	0.000000
21	1.000000	0.000000	*0.999999	0.000000	1.000000	0.000000
22	1.000000	0.000000	*1.000000	0.000000	1.000000	0.000000
23	1.000000	0.000000	*1.000000	0.000000	1.000000	0.000000
24	1.000000	0.000000	*1.000000	0.000000	1.000000	0.000000
25	1.000000	0.000000	*1.000000	0.000000	1.000000	0.000000

Root found: 1.000000

Set 2: Equation: x^3 - 5*x + 3

 $\dot{\text{Enter}}$ initial approximation of the root : 0 1

Iteration	a	f(a)	b	f(b)	С	f(c)
1	0.000000	3.000000	1.000000	-1.000000	0.500000	0.625000
2	*0.500000	0.625000	1.000000	-1.000000	0.750000	-0.328125
3	0.500000	0.625000	*0.750000	-0.328125	0.625000	0.119141
4	*0.625000	0.119141	0.750000	-0.328125	0.687500	-0.112549
5	0.625000	0.119141	*0.687500	-0.112549	0.656250	0.001373
6	*0.656250	0.001373	0.687500	-0.112549	0.671875	-0.056080
7	0.656250	0.001373	*0.671875	-0.056080	0.664062	-0.027475
8	0.656250	0.001373	*0.664062	-0.027475	0.660156	-0.013081
9	0.656250	0.001373	*0.660156	-0.013081	0.658203	-0.005861
10	0.656250	0.001373	*0.658203	-0.005861	0.657227	-0.002246
11	0.656250	0.001373	*0.657227	-0.002246	0.656738	-0.000437
12	0.656250	0.001373	*0.656738	-0.000437	0.656494	0.000468
13	*0.656494	0.000468	0.656738	-0.000437	0.656616	0.000016
14	*0.656616	0.000016	0.656738	-0.000437	0.656677	-0.000211
15	0.656616	0.000016	*0.656677	-0.000211	0.656647	-0.000097
16	0.656616	0.000016	*0.656647	-0.000097	0.656631	-0.000041
17	0.656616	0.000016	*0.656631	-0.000041	0.656624	-0.000013
18	0.656616	0.000016	*0.656624	-0.000013	0.656620	0.000002
19	*0.656620	0.000002	0.656624	-0.000013	0.656622	-0.000006
20	0.656620	0.000002	*0.656622	-0.000006	0.656621	-0.000002
21	0.656620	0.000002	*0.656621	-0.000002	0.656621	-0.000000
22	0.656620	0.000002	*0.656621	-0.000000	0.656620	0.000001
23	*0.656620	0.000001	0.656621	-0.000000	0.656620	0.000000
24	*0.656620	0.000000	0.656621	-0.000000	0.656620	-0.000000
25	0.656620	0.000000	*0.656620	-0.000000	0.656620	0.000000
26	*0.656620	0.000000	0.656620	-0.000000	0.656620	0.000000
27	*0.656620	0.000000	0.656620	-0.000000	0.656620	-0.000000

Root found: 0.656620

Page No:

Discussion

- 1. Bisection method is the safest and it always converges. The bisection method is the simplest of all other methods and is guaranteed to converge for a continuous function.
- 2. It is always possible to find the number of steps required for a given accuracy and the new methods can also be developed from bisection method and bisection method plays a very crucial role in computer science research.
- 3. However, bisection method is less accurate than its companions, hence it is less used where precision plays a major role.