Combinatorics, 2018 Fall, USTC Homework 11

- The due is on Thursday, Dec. 13.
- Please sign your name and student number.
- Please solve as many problems as you can.
- 1. Let $\{A_1, \dots, A_m\}$ be an *L*-intersecting family of subsets of [n], where each A_i is of a constant size, say, k. Prove that $m \leq \binom{n}{|L|}$.

Hint: Besides f_i defined in Frankl-Wilson Theorem, define more polynomials. For each $I \subset [n]$, $|I| \leq |L| - 1$, define $g_I(x) = [(\sum_{j=1}^n x_j) - k] \prod_{i \in I} x_i$. Show $f_i, i \in [m]$ and $g_I, I \subset [n] \& |I| \leq |L| - 1$ are linearly independent.

2. Let $A_1, \dots A_m$ and $B_1, \dots B_m$ be subsets of [n] such that $|A_i \cap B_i|$ is odd for all $i \in [m]$ and $|A_i \cap B_j|$ is even for all $1 \leq i < j \leq m$. Show that $m \leq n$.

Hint: Use the fact that $rank(AB) \leq \min \{ rank(A), rank(B) \}$ for any matrices A, B over any field.

3. Let $\mathcal{F} \subset 2^{[n]}$ be such that |A| is even for all $A \in \mathcal{F}$ and $|A \cap B|$ is even for all distinct $A, B \in \mathcal{F}$. Show that $|\mathcal{F}| \leq 2^{n/2}$.

4. Prove that there are at most n+1 points in \mathbb{R}^n such that the distance between any 2 points is 1.

Hint: Assume $0, v_1, \dots, v_{m-1}$ are such points (i.e. column vectors) in \mathbb{R}^n . Let $A = (v_1 \dots v_{m-1})^T$. Show $rank(AA^T) = m-1$ and use the Hint of Question 2.