

厦门大学第十七届"景润杯"数学竞赛试卷

(非数学类, 2020.10.17)

一、填空题(本题共6小题,每小题4分,共24分)

- 1. 已知a > 0,则 $\lim_{n \to \infty} n^2 \left(\sqrt[n]{a} \sqrt[n+1]{a} \right) = \underline{\hspace{1cm}}$
- 2. 已知曲线 Γ : $\frac{x^2}{4} + y^2 = 1$ 的周长为l,则 $\oint_{\Gamma} (x+2y)^2 ds = _______$ 。
- 3. 已知级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n} \sin \frac{1}{n}\right)^a$ 收敛,则 a 的取值范围是_____。
- 4. 在极坐标系下,曲线 $C: \rho = a(1-\cos\theta)$ 在 $\theta = \frac{\pi}{2}$ 的切线为 L ,则在直角坐标系, L 的方程 是
- 5. 已知 $y = e^{2x} + (1+x)e^{x}$ 是二阶常系数线性微分方程 $y'' + \alpha y' + \beta y = \gamma e^{x}$ 的一个特解。则 $\alpha^{2} + \beta^{2} + \gamma^{2} = \underline{\hspace{1cm}}$ 。
- 6. $\% f(x) = e^x \sin x$, $f^{(50)}(0) = \underline{\hspace{1cm}}$

答案: 1. $\ln a$; 2. 4l; 3. $a > \frac{1}{3}$; 4. x + y - a = 0; 5. 14; 6. 2^{25} .

二、解答题:

1. (10 分) 设函数 f(x), g(x)满足 f'(x) = g(x) - x, $g'(x) = 2e^x + 1 - f(x)$, 且 f(0) = 0, g(0) = 2,

$$\vec{x} \int_0^{\pi} \left[\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right] dx.$$

解:由己知条件,得 $f''(x) = g'(x) - 1 = 2e^x + 1 - f(x) - 1 = 2e^x - f(x)$,即

$$f''(x) + f(x) = 2e^x.$$

该方程的通解为 $f(x) = e^x + C_1 \cos x + C_2 \sin x$.

曲 f(0) = 0, f'(0) = g(0) = 2, 可得 $C_1 = -1$, $C_2 = 1$, 所以, $f(x) = e^x - \cos x + \sin x$.

$$\int_0^{\pi} \left[\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right] dx = \int_0^{\pi} \left[\frac{f'(x)+x}{1+x} - \frac{f(x)}{(1+x)^2} \right] dx$$

$$= \frac{f(x)}{1+x} \Big|_0^{\pi} - \int_0^{\pi} \frac{x}{1+x} dx$$

$$= \frac{f(\pi)}{1+\pi} - \frac{f(0)}{1+0} - \left[x - \ln(1+x) \right] \Big|_0^{\pi}$$

$$= \frac{e^{\pi} + 1}{1+\pi} - \pi + \ln(1+\pi).$$

2. $(10 \, \text{分})$ 求 $\lim_{n \to \infty} \frac{1}{n^4} \iiint_{\Omega_n} [\sqrt{x^2 + y^2 + z^2}] dx dy dz$,其中 Ω_n 为球体 $x^2 + y^2 + z^2 \le n^2$,[x]为不超过x的最大整数.

解: 记
$$V_k$$
: $k-1 \le \sqrt{x^2 + y^2 + z^2} \le k$,则

$$\iiint_{\Omega_n} [\sqrt{x^2 + y^2 + z^2}] dx dy dz = \sum_{k=1}^n \iiint_{V_k} [\sqrt{x^2 + y^2 + z^2}] dx dy dz$$

$$= \sum_{k=1}^n (k-1) \frac{4}{3} \pi \cdot [k^3 - (k-1)^3]$$

$$= \frac{4}{3} \pi [-1^3 - 2^3 - \dots - (n-1)^3 - n^3 + n^4]$$

所以,

$$\lim_{n \to \infty} \frac{1}{n^4} \iiint_{\Omega_n} \left[\sqrt{x^2 + y^2 + z^2} \right] dx dy dz = \frac{4}{3} \pi \left(1 - \lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{n^3} + \left(\frac{2}{n} \right)^3 + \dots + \left(\frac{n}{n} \right)^3 \right] \right)$$
$$= \frac{4}{3} \pi \left(1 - \int_0^1 x^3 dx \right) = \pi.$$

- 3. (12 分)设空间曲面 S 是以 A(5,-3,-2) 为顶点,且与球面 $\Sigma: x^2 + y^2 + z^2 2x + 2y 4z 3 = 0$ 相 切的圆锥面, Ω 是由球面 Σ 和圆锥面 S 所围成的空间区域.
 - (1) 求立体 Ω 的体积;
- (2)在空间区域 Ω 内,与球面 Σ 和圆锥面S都相切的球面记为 S_1 ,与球面 S_1 和圆锥面S都相切的球面记为 S_2 ,…,与球面 S_{n-1} 和圆锥面S都相切的球面记为 S_n ,…。设球面 S_n 的半径为 S_n ,求

$$\sum_{n=1}^{\infty} (1 + \frac{1}{2} + \dots + \frac{1}{n}) r_n \circ$$

解: 球面 Σ 的方程可改写为 $(x-1)^2 + (y+1)^2 + (z-2)^2 = 9$,该球面的球心到圆锥面顶点A的距离为

$$d = \sqrt{(5-1)^2 + (-3+1)^2 + (-2-2)^2} = 6.$$

问题所讨论的球面和圆锥面可换成球心在原点,半径为 3 的球面 Σ' ,和顶点在 Q'(6,0,0) 并与球面 Σ' 相切的圆锥面 S' (见右图).

(1) 在平面直角坐标系 Oxy 中,过点 Q(6,0) 作圆 $L: x^2 + y^2 = 9$ 的切线,切点分别为 M_1, M_2 。

将平面图形 QM_1M_2 绕x轴旋转一周得旋转体,则

$$V_{\Omega} = V_{\text{idith}} = \frac{\pi}{3} (\frac{3}{2} \sqrt{3})^2 \times \frac{9}{2} - \int_{\frac{3}{2}}^3 \pi (9 - x^2) dx = \frac{9}{2} \pi.$$

(2) 注意到
$$\frac{r_1}{3} = \frac{3-r_1}{6}$$
, 即 $2r_1 = 3-r_1 \Rightarrow r_1 = 1$.

一般地,
$$\frac{r_n}{3} = \frac{3-2r_1-2r_2-\cdots-2r_{n-1}-r_n}{6}$$
,于是, $2r_n = (3-2r_1-2r_2-\cdots-2r_{n-1})-r_n$,即 $r_n = \frac{1}{3}(3-2r_1-2r_2-\cdots-2r_{n-1}).$

曲数学归纳法,可得
$$r_n = \frac{1}{3^{n-1}}$$
,故 $\sum_{n=1}^{\infty} (1 + \frac{1}{2} + \dots + \frac{1}{n}) r_n = 3 \sum_{n=1}^{\infty} (1 + \frac{1}{2} + \dots + \frac{1}{n}) \frac{1}{3^n}$.

记 $a_n=1+\frac{1}{2}+\cdots+\frac{1}{n}$,因为调和级数发散,所以, $\lim_{n\to\infty}(1+\frac{1}{2}+\cdots+\frac{1}{n})=+\infty$,从而

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{1+\frac{1}{2}+\dots+\frac{1}{n}+\frac{1}{n+1}}{1+\frac{1}{2}+\dots+\frac{1}{n}} = \lim_{n\to\infty} (1+\frac{\frac{1}{n+1}}{1+\frac{1}{2}+\dots+\frac{1}{n}}) = 1,$$

$$\therefore \sum_{n=1}^{\infty} a_n x^n$$
 的收敛域为(-1,1)。

当x ∈ (-1,1)时,

$$S_n(x) = \sum_{i=1}^n (1 + \frac{1}{2} + \dots + \frac{1}{i}) x^i = \sum_{i=2}^n (1 + \frac{1}{2} + \dots + \frac{1}{i-1}) x^i + \sum_{i=1}^n \frac{1}{i} x^i$$
$$= x \sum_{i=1}^{n-1} (1 + \frac{1}{2} + \dots + \frac{1}{i}) x^i + \sum_{i=1}^n \frac{1}{i} x^i$$

$$= x(S_n(x) - a_n x^n) + \sum_{i=1}^n \frac{1}{i} x^i.$$

注意到 $\sum_{i=1}^{n} \frac{1}{i} x^{i} = \ln(1-x), -1 \le x < 1$,于是,我们有 $S(x) = -\frac{\ln(1-x)}{1-x}$,故

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) r_n = 3S(3) = \frac{9(\ln 3 - \ln 2)}{2}.$$

4.
$$(8 \%) \otimes \lim_{x \to +\infty} \left\{ \frac{e}{2} x + x^2 \left(1 + \frac{1}{x} \right)^x - ex^2 \right\}.$$

解:
$$\left(1+\frac{1}{x}\right)^x = e^{x(\frac{1}{x}-\frac{1}{2x^2}+\frac{1}{3x^3}+o(\frac{1}{x^3}))} = e^{1-\frac{1}{2x}+\frac{1}{3x^2}+o(\frac{1}{x^2})}$$

$$= e \left[1 - \frac{1}{2x} + \frac{1}{3x^2} + o(\frac{1}{x^2}) + \frac{1}{2} \left(-\frac{1}{2x} + \frac{1}{3x^2} + o(\frac{1}{x^2}) \right)^2 + o(\frac{1}{x^2}) \right]$$

$$= e - \frac{e}{2x} + \frac{11e}{24x^2} + o(\frac{1}{x^2}),$$

故
$$\lim_{x \to +\infty} \left\{ \frac{e}{2} x + x^2 \left(1 + \frac{1}{x} \right)^x - ex^2 \right\} = \lim_{x \to +\infty} \left\{ \frac{11e}{24} + x^2 \left(o(\frac{1}{x^2}) \right) \right\} = \frac{11e}{24}.$$

5. (8 分) 假设函数 f(x) 在 $(-\infty, +\infty)$ 上二阶可导,且满足 f(x) + f''(x) = -xg(x)f'(x),其中对任意的 $x \in (-\infty, +\infty)$,恒有 $g(x) \ge 0$.证明: |f(x)| 有界.

故 $F(x) \le F(0) = [f(0)]^2 + [f'(0)]^2$,从而

$$|f(x)| \le \sqrt{F(x)} \le \sqrt{[f(0)]^2 + [f'(0)]^2}$$
.

故|f(x)|有界.

6. (8分)设函数 f(x,y) 在闭区域 $D: x^2 + y^2 \le 1$ 上有二阶偏导数,且 $\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} = e^{-x^2 - y^2}$.

$$\vec{\mathcal{R}} \iint_{D} \left(x \frac{\partial f(x, y)}{\partial x} + y \frac{\partial f(x, y)}{\partial y} \right) dxdy.$$

$$\iint_{D} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) dxdy$$

$$= \int_{0}^{2\pi} \left[\int_{0}^{1} \left(r \cos \theta \frac{\partial f(r \cos \theta, r \sin \theta)}{\partial x} + r \sin \theta \frac{\partial f(r \cos \theta, r \sin \theta)}{\partial y} \right) r dr \right] d\theta$$

$$= \int_{0}^{1} r \left[\int_{0}^{2\pi} \left(r \cos \theta \frac{\partial f(r \cos \theta, r \sin \theta)}{\partial x} + r \sin \theta \frac{\partial f(r \cos \theta, r \sin \theta)}{\partial y} \right) d\theta \right] dr$$

记 $L_r: x^2 + y^2 = r^2$, 取逆时针方向, 于是,

$$\oint_{L_r} -\frac{\partial f}{\partial y} dx + \frac{\partial f}{\partial x} dy$$

$$= \int_0^{2\pi} -\frac{\partial f(r\cos\theta, r\sin\theta)}{\partial y} d(r\cos\theta) + \frac{\partial f(r\cos\theta, r\sin\theta)}{\partial x} d(r\sin\theta)$$

$$= \int_0^{2\pi} (r\cos\theta \frac{\partial f(r\cos\theta, r\sin\theta)}{\partial x} + r\sin\theta \frac{\partial f(r\cos\theta, r\sin\theta)}{\partial y}) d\theta,$$

因此,
$$\iint_{D} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}\right) dx dy = \int_{0}^{1} r \left[\oint_{L_{r}} -\frac{\partial f}{\partial y} dx + \frac{\partial f}{\partial x} dy \right] dr$$

记 $L_r: x^2 + y^2 = r^2$ 所围成的区域为 D_r , 利用格林公式, 可得

$$\oint_{L_r} -\frac{\partial f}{\partial y} dx + \frac{\partial f}{\partial x} dy = \iint_{D_r} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) dx dy = \iint_{D_r} e^{-x^2 - y^2} dx dy = \pi (1 - e^{-r^2}).$$

故
$$\iint_{D} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}\right) dxdy = \int_{0}^{1} r \left[\pi (1 - e^{-r^{2}})\right] dr = \frac{\pi}{2e}.$$

7. (10 分)已知函数 f(x) 在[0,1] 上可导,且 f(0) = 0, f(1) = 1。正数 λ_1 , λ_2 , λ_3 满足: $\lambda_1 + \lambda_2 + \lambda_3 = 1$ 。

求证: 存在不同
$$\xi_1, \xi_2, \xi_3 \in (0,1)$$
 使得 $\frac{\lambda_1}{f'(\xi_1)} + \frac{\lambda_2}{f'(\xi_2)} + \frac{\lambda_3}{f'(\xi_3)} = 1$ 。

证明: $:: f(0) = 0, f(1) = 1, 0 < \lambda_1 < 1$, 由介值定理,存在 $a \in (0,1)$, 使得 $f(a) = \lambda_1$.

因为 $\lambda_1 < \lambda_1 + \lambda_2 < 1$,由介值定理,故存在 $b \in (a,1)$,使得 $f(b) = \lambda_1 + \lambda_2$.

在[0,a],[a,b],[b,1]中分别应用拉格朗日中值定理,存在满足 $0<\xi_1< a<\xi_2< b<\xi_3<1$ 的 ξ_1,ξ_2,ξ_3 ,使得

$$\frac{f(a)-f(0)}{a-0}=f'(\xi_1)=\frac{\lambda_1}{a}\,,\quad \frac{f(a)-f(b)}{a-b}=f'(\xi_2)=\frac{\lambda_2}{b-a}\,,\quad \frac{f(1)-f(b)}{1-b}=f'(\xi_3)=\frac{\lambda_3}{1-b}\,.$$

$$\exists \xi_1,\quad \frac{\lambda_1}{f'(\xi_1)}+\frac{\lambda_2}{f'(\xi_2)}+\frac{\lambda_3}{f'(\xi_3)}=a+b-a+1-b=1\,.$$

8. (10 分) 已知 $\lambda > 1$ 为常数, $\left\{A_{n}\right\}$ 为有界数列. 假设 $u_{n} > 0$ $(n = 1, 2, \cdots)$,且满足

$$\frac{u_n}{u_{n+1}} = 1 + \frac{a}{n} + \frac{A_n}{n^{\lambda}}, \quad n = 1, 2, \cdots.$$

证明: 若a > 0时, $\sum_{n=1}^{\infty} (-1)^n u_n$ 收敛; 若 $a \le 0$ 时, $\sum_{n=1}^{\infty} (-1)^n u_n$ 发散.

解: (1) 若
$$a > 0$$
 时, $\exists N, n > N, \frac{a}{2n} > \frac{A_n}{n^{\lambda}}$, 即 $\frac{u_n}{u_{n+1}} > 1 + \frac{a}{2n}, n = N + 1, N + 2, \cdots$,

也即 $u_{n+1} < u_n, n = N+1, N+2, \cdots$.

又因为
$$\frac{u_N}{u_{n+1}} = \frac{u_N}{u_{N+1}} \frac{u_{N+1}}{u_{N+2}} \cdots \frac{u_n}{u_{n+1}} > (1 + \frac{a}{2N})(1 + \frac{a}{2(N+1)}) \cdots (1 + \frac{a}{2n})$$

由级数
$$\sum_{n=1}^{\infty} \ln(1+\frac{a}{2n})$$
 发散可得 $\lim_{n\to\infty} (1+\frac{a}{2N})(1+\frac{a}{2(N+1)})\cdots(1+\frac{a}{2n}) = \infty$,

因此 $\lim_{n\to\infty} u_n = 0$.

由莱布尼茨判别法知,级数 $\sum_{n=N+1}^{\infty} (-1)^n u_n$ 收敛,即 $: : \sum_{n=1}^{\infty} (-1)^n u_n$ 收敛.

(2) 若
$$a = 0$$
 时,因 $\lambda > 1$, $\{A_n\}$ 有界,故级数 $\sum_{n=1}^{\infty} \ln(1 + \frac{A_n}{n^{\lambda}})$ 收敛,即 $\frac{u_1}{u_{n+1}} = (1 + \frac{A_1}{1^{\lambda}})(1 + \frac{A_2}{2^{\lambda}})\cdots(1 + \frac{A_n}{n^{\lambda}})$

收敛于一个正数.

于是, $\lim_{n\to\infty} u_n \neq 0$,所以,级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 发散.

(3) 若
$$a < 0$$
 时, $\exists N, n > N, \frac{a}{2n} < \frac{A_n}{n^{\lambda}} \Rightarrow \frac{u_n}{u_{n+1}} < 1 + \frac{a}{2n} < 1$,即当 $n > N$ 时, $\frac{u_{n+1}}{u_n} > 1$,因此, $\lim_{n \to \infty} u_n \neq 0$,

故级数
$$\sum_{n=1}^{\infty} (-1)^n u_n$$
发散.