Aufgabe 3

\mathbf{a}

Wenn eine Wort w vom Automaten A akzeptiert wird, dann befindet sich der Automat am ende in einem akzeptierendem Zustand $z_k \in F$. Wenn wir das Wort \boldsymbol{w}^R akzeptieren möchten, so müssen wir in diesem akzeptierten Zustand z_k starten und dann alle Pfeile umdrehen. Sprich, wenn man im Automaten Avom Zustand z_i bei Eingabe e in z_j landet, so muss man in unserem Spiegelautomaten vom Zustand z_i bei Eingabe e in z_i landen. Unser neuer Spiegelautomat hat nur einen akzeptierenden Zustand, und zwar z_0 des Uhrsprünglichen Automatens da wenn wir im Spiegelautomaten von einem akzeptierenden Zustand starten und wieder bei z_0 von A landen haben wir ein Wort aus L(A) rückwährts eingelesen. Zuletzt muss beachtet werden, dass A mehrere akzeptierte Zustände haben kann, unser neuer Automat N müsste also mehrere Startzustände haben, was per Definition nicht erlaubt ist. Wir müssen also einen neuen Startzustand z_0^\prime einführen der alle akzeptieren Zustände aus A
 zusammenfasst, die Pfeile von diesem Zustand weg sind wie oben beschrieben die aus A umgedrehten Übergänge. Die alten akzeptierenden Zustände aus A müssen in N entfernt werden. Die Überführungsfunktion von N muss also so aufgestellt werden, dass von einem Zustand z bei Eingabe a in alle Zustände z_i übergegangen wird, für die der Automat A von z_i bei Eingabe a nach z wechselt.

b

DEA $N = (\Sigma, Z, \delta', z_k, F')$ mit

- $\Sigma_N = \Sigma_A, Z_N = \{Z_A \cup \{z_0'\}\} \backslash F_A, F' = \{z_0\}$
- $\delta'(z,a)$) = $\bigcup_{z_i \in Z_N} \{ z_i | \delta(z_i,a) = z \}$