Resolución Ejercicios Práctica 8

Ejercicio 7:

Sean M_1 y M_2 dos matchings de un grafo simple G con $|M_1| > |M_2|$. Probar que existen matchings M_1' y M_2' tales que $|M_1'| = |M_1| - 1$, $|M_2'| = |M_2| + 1$, $M_1' \cup M_2' = M_1 \cup M_2$ y $M_1' \cap M_2' = M_1 \cap M_2$.

Resolución:

Consideremos $F = M_1 \Delta M_2$, y sea $G_F = (V(G), F)$. Observemos que $E(G_F) = F \subseteq M_1 \cup M_2$, y resulta $\Delta(G_F) \leq 2$ ya que en cada vértice inciden a lo sumo dos aristas de G_F , una perteneciente a M_1 y una a M_2 . Luego, por el ejercicio 3, cada componente de G_F es un ciclo o un camino.

Tenemos que $|M_1| > |M_2|$. Veamos entonces que existe alguna componente conexa de G_F que es un ciclo o camino con más aristas de M_1 que de M_2 . En caso contrario, si G_1, G_2, \ldots, G_k son las componentes conexas de G y para cada una de ellas vale $|E(G_i) \cap M_1| \leq |E(G_i) \cap M_2|$, tendríamos que

$$|M_1| = \sum_{i=1}^k |M_1 \cap E(G_i)| \le \sum_{i=1}^k |M_2 \cap E(G_i)| = |M_2|,$$

y esto no es posible ya que $|M_1| > |M_2|$.

Sea G' una componente conexa de G_F con más aristas de M_1 que de M_2 . Notemos que G' alterna aristas de M_1 con aristas de M_2 . Luego, si G' es un ciclo, al alternar aristas de ambos matchings, tiene longitud par y por ende, la misma cantidad de aristas de M_1 que de M_2 . De manera similar, si G' es un camino de longitud par, tiene la misma cantidad de aristas de M_1 que de M_2 . Por lo tanto, G' es un camino de longitud impar. G' tiene vértices v_1, v_2, \ldots, v_{2k} , y aristas $v_i v_{i+1}$ para i = [2k-1]. Como G' tiene más aristas de M_1 que de M_2 , tenemos

$$M_1 \cap E(G') = \{v_i v_{i+1} : i \in [2k-1] \text{ con } i \text{ impar}\}, \qquad M_2 \cap E(G') = \{v_i v_{i+1} : i \in [2k-1] \text{ con } i \text{ par}\}$$

Tenemos $|M_1 \cap E(G')| = k$ y $|M_1 \cap E(G')| = k - 1$. Consideremos $M'_1 = M_1 \setminus (M_1 \cap E(G')) \cup (M_2 \cap E(G'))$ y $M'_2 = M_2 \setminus (M_2 \cap E(G')) \cup (M_1 \cap E(G'))$. Es decir, "intercambiamos" entre M_1 y M_2 las aristas de G' para obtener M'_1 y M'_2 .

Veamos que M'_1 y M'_2 son matchings. Para ver esto, observemos que basta chequear que cada vértice de G' es extremo de a lo sumo una arista de M'_1 y de a lo sumo una arista de M'_2 , ya que no modificamos las aristas incidentes en vértices fuera de G'. Las únicas aristas de los matchings M_1 y M_2 que inciden en los vértices de G' son aquellas aristas de G'. Pues de lo contrario, si e fuese una arista de $M_1 \cup M_2$ incidente en algún v_i pero que no está en G', entonces, como no es una arista de la diferencia simétrica $M_1 \Delta M_2$, es una arista de $M_1 \cap M_2$. Luego, como en v_i incide al menos una arista de M_1 (o de M_2), tendríamos que junto a la arista e, en v_i inciden 2 aristas del matching M_1 (o de M_2), y esto no es posible.

Consideremos las aristas de M'_1 que inciden en vértices de G'. Éstas son las aristas de $M_2 \cap E(G')$. Como cada vértice de G' incide en a lo sumo una arista de M_2 , resulta que cada vértice de G' incide en a lo sumo una arista de M'_1 . De manera similar para M'_2 .

Luego, tanto M'_1 como M'_2 son matchings.

Por otro lado, observemos que como $E(G') \subseteq M_1 \Delta M_2$, $(M_2 \cap E(G')) \cap M_1 = \emptyset$. Luego,

$$|M_1'| = |M_1| - |(M_1 \cap E(G'))| + |(M_2 \cap E(G'))| = |M_1| - k + k - 1 = |M_1| - 1.$$

Con un razonamiento similar, $(M_1 \cap E(G')) \cap M_2 = \emptyset$, y resulta

$$|M_2'| = |M_2| - |(M_2 \cap E(G'))| + |(M_1 \cap E(G'))| = |M_2| - (k-1) + k = |M_2| + 1.$$

Finalmente,

$$M_1' \cup M_2' = [M_1 \setminus (M_1 \cap E(G')) \cup (M_2 \cap E(G'))] \cup [M_2 \setminus (M_2 \cap E(G')) \cup (M_1 \cap E(G'))] =$$

$$= [M_1 \setminus (M_1 \cap E(G')) \cup (M_1 \cap E(G'))] \cup [M_2 \setminus (M_2 \cap E(G')) \cup (M_2 \cap E(G'))] = M_1 \cup M_2$$

у

$$M_1' \cap M_2' = [M_1 \setminus (M_1 \cap E(G')) \cup (M_2 \cap E(G'))] \cap [M_2 \setminus (M_2 \cap E(G')) \cup (M_1 \cap E(G'))] = M_1 \cap M_2$$

Por lo tanto, queda probado el enunciado.

Ejercicio 16:

Sea G un grafo simple sin vértices aislados. Probar que G tiene un matching M tal que

$$|M| \ge \frac{|V(G)|}{\Delta(G) + 1}$$

Resolución:

Sea G un grafo de n vértices.

Haremos inducción

y probemos esto por inducción sobre la cantidad de aristas |E(G)| = m.

Caso base. Si m=1, entonces $G=K_2$, entonces $\Delta(G)=1$ y |V(G)|=2. Tomando M=E(G), M resulta un matching y se tiene

 $|M| = 1 = \frac{2}{1+1} = \frac{|V(G)|}{\Delta(G)+1}$

Hipótesis inductiva. Supongamos que el enunciado es válido para grafos simples conexos con m aristas.

Paso inductivo. Sea G un grafo simple conexo con m+1 aristas.

Si toda arista de G incide en un vértice de grado 1, entonces como G es conexo resulta que $G=K_{1,n}$ para algún n. Entonces $\alpha'(G)=1$, $\Delta(G)=|V(G)|-1$ y en consecuencia G tiene un matching M (que consiste de una arista cualquiera de G) con

$$|M| = 1 = \frac{|V(G)|}{\Delta(G) + 1}$$

Por otro lado, si G tiene una arista $e = uv \in E(G)$ con $d(u) \ge 2$ y $d(v) \ge 2$, sea $G' = G \setminus e$. Tenemos |V(G')| = |V(G)| y |E(G')| = |E(G)| - 1.

Si G' es conexo, como |E(G')| = m, por hipótesis inductiva, existe un matching M de G' tal que

$$|M| \ge \frac{|V(G')|}{\Delta(G') + 1}.$$

Como G' es subgrafo de G, M es también un matching de G. Además, $\Delta(G') \leq \Delta(G)$. Luego, $1 + \Delta(G') \leq 1 + \Delta(G)$, y en consecuencia, $\frac{1}{\Delta(G')+1} \geq \frac{1}{\Delta(G)+1}$. Luego, M es un matching de G con

$$|M| \geq \frac{|V(G')|}{\Delta(G')+1} = \frac{|V(G)|}{\Delta(G')+1} \geq \frac{|V(G)|}{\Delta(G)+1}.$$

Por lo que G tiene un matching M tal que

$$|M| \ge \frac{|V(G)|}{\Delta(G) + 1}.$$

Si G' es disconexo, entonces e es una arista de corte. Como G era conexo, G' tiene exactamente dos componentes conexas G_1 , y G_2 , con $u \in G_1$ y $v \in G_2$. Observemos además que como tanto u como v tenían grado al menos 2, $|E(G_1)| \ge 1$ y $|E(G_2)| \ge 1$.

Como $|E(G_1)| \leq |E(G)| - 1 \leq m$, y G_1 es conexo, por hipótesis inductiva existe un matching M_1 de G_1 tal que

$$|M_1| \ge \frac{|V(G_1)|}{\Delta(G_1) + 1}.$$

De manera similar, existe un matching M_2 de G_2 tal que

$$|M_2| \ge \frac{|V(G_2)|}{\Delta(G_2) + 1}.$$

Como M_i es un matching en G_i , y G_i es un subgrafo de G, M_i es un matching en G con i=1,2. Además, como M_1 y M_2 están en componentes conexas distintas, no hay aristas $e_1 \in M_1$ y $e_2 \in M_2$ que tengan algún extremo en común. Luego, $M = M_1 \cup M_2$ es un matching en G y $|M| = |M_1| + |M_2|$.

2

Notemos además que $\Delta(G_1) \leq \Delta(G)$ y $\Delta(G_2) \leq \Delta(G)$ por ser G_1 y G_2 subgrafos de G.

Luego,

$$|M| = |M_1| + |M_2| \ge \frac{|V(G_1)|}{\Delta(G_2) + 1} + \frac{|V(G_2)|}{\Delta(G_2) + 1} \ge \frac{|V(G_1)|}{\Delta(G) + 1} + \frac{|V(G_2)|}{\Delta(G) + 1} = \frac{|V(G_1)| + |V(G_2)|}{\Delta(G) + 1} = \frac{|V(G)|}{\Delta(G) + 1}.$$

Así, G tiene un matching M tal que

$$|M| \ge \frac{|V(G)|}{\Delta(G) + 1}.$$

Luego, hemos probado por inducción el enunciado para G conexo.

Supongamos ahora que G no es conexo. Sean G_1, G_2, \ldots, G_k sus componentes conexas. Como G no tiene vértices aislados, cada una de ellas tiene al menos una arista. Luego, por lo probado arriba, tenemos que para cada $i \in [k]$, existe un matching M_i con

$$|M_i| \ge \frac{|V(G_i)|}{\Delta(G_i) + 1}.$$

Observemos que $M = \bigcup_{i=1}^k M_i$ es un matching de G, que $|V(G)| = \sum_{i=1}^k |V(G_i)|$, y que $\Delta(G_i) \leq \Delta(G)$, para cada $i \in [k]$. Luego, resulta

$$|M| = \sum_{i=1}^{k} |M_i| \ge \sum_{i=1}^{k} \frac{|V(G_i)|}{\Delta(G_i) + 1} \ge \sum_{i=1}^{k} \frac{|V(G_i)|}{\Delta(G) + 1} = \frac{\sum_{i=1}^{k} |V(G_i)|}{\Delta(G) + 1} = \frac{|V(G)|}{\Delta(G) + 1}$$

Por lo que G tiene un matching M tal que

$$|M| \ge \frac{|V(G)|}{\Delta(G) + 1}$$

y queda probado el enunciado.