TRIGONOMETRY VOLUME I

5th SECONDARY

FEEDBACK

HELICO MOTIVATING

Si un ángulo agudo de medida β cumple que $\cos\beta = 0,75$. Efectúe

$$F = \sqrt{7}sen\beta + \frac{1}{4}$$

RESOLUCIÓN

Por condición:

$$\cos\beta = 0.75 = \frac{75}{100} \longrightarrow \cos\beta = \frac{3}{4} = \frac{\text{CA}}{\text{H}}$$

$$seneta = rac{CO}{H}$$

CO

¡Por teorema ; de Pitágoras! ;

Efectuamos $F = \sqrt{7} sen \beta + \frac{1}{4}$

$$F = \sqrt{7} \left(\frac{\sqrt{7}}{4} \right) + \frac{1}{4}$$

$$F = \frac{7}{4} + \frac{1}{4} = \frac{8}{4} = \mathbf{2}$$

$$F = 2$$

En un triángulo rectángulo ABC, recto en B, se cumple que 17senA + 12cosC = 20. A partir de ello, calcule 20tanC.

RESOLUCIÓN

Graficamos el triángulo:

女	CO	CA	
<i>₄A</i>	a	С	
4 C	С	a	

Reemplazamos en la condición:

$$17 \cdot \frac{\mathbf{a}}{\mathbf{b}} + 12 \cdot \frac{\mathbf{a}}{\mathbf{b}} = 20$$

Tenemos
$$29 \cdot \frac{\mathbf{a}}{\mathbf{b}} = 20 \rightarrow \underbrace{\mathbf{b}}_{\mathbf{b}} = \underbrace{\frac{20}{29}}$$

20tanC = 21

Félix tiene un terreno el cual tiene forma de un triángulo rectángulo en el que los lados mayores están en la relación como 113 es a 112. Calcule la suma de la cosecante y la cotangente del menor ángulo agudo de dicho triángulo.

RESOLUCIÓN

Graficamos el terreno:

Lados mayores

- Hipotenusa
- 1 Cateto

El profesor Gian Carlo plantea un reto a sus estudiantes el cual consiste en encontrar el valor de $K = \cot^2 30^\circ$. $\csc^2 45^\circ + \sec 60^\circ - 4\tan 37^\circ$. Si la estudiante Rosita le da la respuesta correcta, ¿cuál es el resultado que obtuvo Rosita?

Recordemos!

≰ RT	sen	cos	tan	cot	sec	CSC
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{3}{4}$	$\frac{4}{3}$	$\frac{5}{4}$	$\frac{5}{3}$
53°	$\frac{4}{5}$	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{5}{4}$

RESOLUCIÓN

Reemplazamos en

$$K = \cot^2 30^\circ \cdot \csc^2 45^\circ + \sec 60^\circ - 4 \tan 37^\circ$$

$$K = \sqrt{3}^2 \cdot \sqrt{2}^2 + 2 - \cancel{4} \times \frac{3}{\cancel{4}}$$

$$K = 6 + 2 - 3$$

$$K = 5$$

Rosita obtuvo 5

Siendo α y β las medidas de dos ángulos agudos, calcule β si

$$sen(7\alpha - 15^{\circ}) = cos(5\alpha + 21^{\circ})$$

$$tan(2\beta - \alpha) \cdot cot(3\alpha + 2^{\circ}) = 1$$

RESOLUCIÓN

•
$$sen(7\alpha - 15^\circ) = cos(5\alpha + 21^\circ)$$

Por RT de ángulos complementarios:

$$\rightarrow 7\alpha - 15^{\circ} + 5\alpha + 21^{\circ} = 90^{\circ}$$

$$12\alpha + 6^{\circ} = 90^{\circ}$$

$$12\alpha = 84^{\circ}$$

$$\alpha = 7^{\circ}$$

•
$$tan(2\beta - \alpha) \cdot \cot(3\alpha + 2^{\circ}) = 1$$

Por RT recíprocas:
$$2\beta - \alpha = 3\alpha + 2^{\circ}$$

$$2\beta = 4\alpha + 2^{\circ}$$

$$2\beta = 4(7^{\circ}) + 2^{\circ}$$

$$2\beta = 30^{\circ}$$

$$\beta = 15^{\circ}$$

Las edades de Álvaro y Ricky son a y b años respectivamente, si dichos valores se pueden calcular al resolver las siguientes expresiones:

$$tan(3a - 10)^{\circ} \cdot cot44^{\circ} = 1 \text{ y } sec(5b)^{\circ} = csc5^{\circ}$$

- a) ¿Cuál es la edad de Álvaro y Ricky?
- b) ¿Cuál es la diferencia de ambas edades?

RESOLUCIÓN

•
$$tan(3a-10)^{\circ} \cdot cot44^{\circ} = 1$$

Por RT recíprocas:

$$3a - 10$$
 = 44
 $3a - 10 = 44$ Álvaro
 $3a = 54$ $a = 18$

•
$$\sec(5b)^{\circ} = \csc 5^{\circ}$$

Por RT de ángulos complementarios:

$$\rightarrow (5b)^{\circ} + 5^{\circ} = 90^{\circ}$$

$$(5b)$$
 = 85

$$b = 17$$
Ricky

Respondemos:

En las orillas de un río crecen dos palmeras cuyas alturas son de 20 m y de 30 m y están distanciadas 50 m. En las copas de cada una hay un águila quienes divisan un pez en la superficie del agua para tratar de cazarlo. Las aves se lanzan a la vez y llegan al pez al mismo tiempo. Considerando que volaron en línea recta y a rapidez constante, ¿a qué distancia de la base de la palmera de mayor altura apareció el pez?

RESOLUCIÓN

Graficamos acorde al enunciado:

Por teorema de Pitágoras en cada triángulo rectángulo:

$$d^2 = 20^2 + (50 - x)^2$$
 y $d^2 = x^2 + 30^2$

Igualamos
$$d^2$$
: $20^2 + (50 - x)^2 = x^2 + 30^2$

$$400 + 2500 - 100x + x^2 = x^2 + 900$$

$$2000 = 100x$$

$$\rightarrow$$
 20 = x

El pez apareció a los 20 m.

