# Ahsanullah University of Science & Technology

# Department of Computer Science & Engineering

#### **SPRING 2020**



#### LAB REPORT

Course No: CSE 3110 Course Title: Digital System Design Lab

**Experiment Number: 01** 

Name of the Experiment: Designing a 4-bit ALU (Arithmetic and Logic Unit)

## Group No: V Group Members

| Simanta Sarker       | 18.01.04.010 |
|----------------------|--------------|
| Shawly Rohman        | 18.01.04.013 |
| Atanu Kumar Saha     | 17.02.04.003 |
| Mahin Opu            | 17.02.04.006 |
| Faisal Ahmmed Tonmoy | 17.02.04.025 |

#### **Introduction:**

In this experiment, we made a 4-bit Arithmetic Logic Unit (ALU) using a 4-bit full adder and basic gates. In this experiment, if S2 = 0 then the ALU will perform the arithmetic operation, and if the S2 = 1 then the ALU will perform the logical operation. So, depending on the value of S2 the ALU will perform a logical or arithmetic operation.

### **Problem Statement:**

| S2 | <b>S1</b> | S0 | Output      | Function             |
|----|-----------|----|-------------|----------------------|
| 0  | 0         | 0  | Ai-Bi-1     | Subtract with Borrow |
| 0  | 0         | 1  | Ai          | Transfer A           |
| 0  | 1         | 0  | Ai + 1      | Increment A          |
| 0  | 1         | 1  | Ai + Bi + 1 | Add with Carry       |
| 1  | 0         | X  | Ai'         | Complement A         |
| 1  | 1         | X  | Ai   Bi     | OR                   |

#### **Function Generation:**

| S2 | S1 | S0 | Z | X       | Y   | Output      | Function             |  |
|----|----|----|---|---------|-----|-------------|----------------------|--|
| 0  | 0  | 0  | 0 | Ai      | Bi' | Ai-Bi-1     | Subtract with Borrow |  |
| 0  | 0  | 1  | 0 | Ai      | 0   | Ai          | Transfer A           |  |
| 0  | 1  | 0  | 1 | Ai      | 0   | Ai + 1      | Increment A          |  |
| 0  | 1  | 1  | 1 | Ai      | Bi  | Ai + Bi + 1 | Add with Carry       |  |
| 1  | 0  | X  | 0 | Ai'     | 0   | Ai'         | Complement A         |  |
| 1  | 1  | X  | 0 | Ai   Bi | 0   | Ai   Bi     | OR                   |  |

$$X = \overline{S2} Ai + S2 \overline{S1} \overline{Ai} + S2 S1(A+B)$$

$$Y = \overline{S2} \, \overline{S1} \, \overline{S0} \, \overline{Bi} + \overline{S2} \, S1 \, S0 \, Bi$$
$$= \overline{S2} \, (\overline{S1} \, \overline{S0} \, \overline{Bi} + S1 \, S0 \, Bi)$$

### **K-Map Simplification:**

| S1S0<br>S2 | <u>51</u> <u>50</u> | <u>51</u> S0 | S1 S0 | S1 <del>50</del> |  |
|------------|---------------------|--------------|-------|------------------|--|
| <u>82</u>  | 0                   | 0            | 1     | 1                |  |
| <b>S2</b>  | 0                   | 0            | 0     | 0                |  |

$$Z = \overline{S2} S1 \overline{S0} + \overline{S2} S1 S0$$

$$= \overline{S2} S1(\overline{S0} + S0)$$

$$= \overline{S2} S1$$

# **Equipment and Budget:**

| IC Name  | IC Number | Amount | Price per IC<br>(Tk) | Price (Tk) |
|----------|-----------|--------|----------------------|------------|
| AND Gate | 7408      | 10     | 25                   | 250        |
| OR Gate  | 7432      | 5      | 28                   | 140        |
| NOT Gate | 7404      | 2      | 20                   | 40         |
| XOR Gate | 7486      | 2      | 25                   | 50         |
|          |           |        | Total:               | 480 Tk     |

# Simulation:



# **Result:**

For A=1110 and B=0101, these results can be observed:

| S2 | <b>S1</b> | S0 | Output      | Function       | Cout | F3 | F2 | F2 | F0 |
|----|-----------|----|-------------|----------------|------|----|----|----|----|
| 0  | 0         | 0  | Ai-Bi-1     | Subtract with  | 1    | 1  | 0  | 0  | 0  |
|    |           |    |             | Borrow         |      |    |    |    |    |
| 0  | 0         | 1  | Ai          | Transfer A     | 0    | 1  | 1  | 1  | 0  |
| 0  | 1         | 0  | Ai + 1      | Increment A    | 0    | 1  | 1  | 1  | 1  |
| 0  | 1         | 1  | Ai + Bi + 1 | Add with Carry | 1    | 0  | 1  | 0  | 0  |
| 1  | 0         | X  | Ai'         | Complement A   | 0    | 0  | 0  | 0  | 1  |
| 1  | 1         | X  | Ai   Bi     | OR             | 0    | 1  | 1  | 1  | 1  |

# **Conclusion:**

There were some errors while working with Dual carry save full adder (IC 74LS183). While working with IC74LS183 the proteus software was showing some errors such as (No model specified, Simulation Failed due to partition analysis error). But even after fixing these errors the circuit was not showing any output. After that, we built a 4-bit Binary full adder. After using that, the circuit worked perfectly and there was no error during simulation. All operations worked without generating any error.