First the graph can ran all transaction in T1, then T3, and finally T2 with the same output, so the transaction is serializable

T1	T2	T3	Precedence Graph:	Conflict
R(A)			T1 connect T3	Still conflict
W(A)			T1 connect T2, T1 connect T3	Still conflict
		R(A)		Still conflict
		W(A)	T3 connect T2	Still conflict
	R(A)			Still conflict
R(B)			T1 connect T3	Still conflict
		R(B)	T3 connect T1	RULE BREAK
W(B)				
		W(B)		
	R(B)			
	commit			
commit				
		commit		

So, NO, it's not conflict serializable, and because there is a circle forms (t1 to t3 and t3 to t1). Also, it's also because we cannot change the order of 7^{th} and the 8^{th} transaction, which will result in different result.