- (1) Let G be a finite group.
 - (a) Define what it means for a subgroup $H \subseteq G$ to be a Sylow p-subgroup.
 - (b) Explain why each subgroup of S_4 of order 8 is isomorphic to D_8 .
 - (c) Show that S_4 has three subgroups of order 8, none of which is normal.

Solution:

- (b) D_8 is the symmetry group of a square and as such a Sylow 2-subgroup of S_4 . Sylow's Theorem says that all other Sylow 2-subgroups can be obtained via conjugation and are thus isomorphic to D_8 .
- (c) Sylow's Theorem says that there are either one or three Sylow 2-subgroup of S_4 , so it suffices to find two copies of D_8 among the subgroups of S_4 , e.g.,

$$\langle (12), (1234) \rangle$$
 and $\langle (12), (1324) \rangle$.

Since there is more than one Sylow 2-subgroup, they cannot be normal by Sylow's Theorem.

- (2) Let R be a ring with 1.
 - (a) Define what it means for $a \in R$ to be a zero divisor, and what it means for a to be a unit.
 - (b) Now let $R = \mathbb{Z}_2[x]/\langle x^3 + 1 \rangle$. Show that $x^2 + x + 1 + \langle x^3 + 1 \rangle$, $x + 1 + \langle x^3 + 1 \rangle$, $x^2 + x + \langle x^3 + 1 \rangle$, and $x^2 + 1 + \langle x^3 + 1 \rangle$ are zero divisors in R.
 - (c) Show that R^* is cyclic of order 3.

Solution:

- (b) To ease notation, let $\bar{x} = x + \langle x^3 + 1 \rangle \in R$. Since $x^3 + 1 = (x^2 + x + 1)(x + 1)$, we conclude that $\bar{x}^2 + \bar{x} + 1$ and $\bar{x} + 1$ are zero divisors in R, and thus so are $\bar{x}^2 + \bar{x} = \bar{x}(\bar{x} + 1)$ and $\bar{x}^2 + 1 = \bar{x}(\bar{x}^2 + \bar{x})$.
- (c) We just found four zero divisors. Because |R| = 8, there are three nonzero elements in R, namely 1, \bar{x} , and \bar{x}^2 ; they are all units since $\bar{x} \cdot \bar{x}^2 = 1$ in R. Hence R^* is a group of order three, which has to be cyclic.
- (3) Let R be an integral domain.
 - (a) Define what it means for R to be a principal ideal domain.
 - (b) Define what it means for R to be Euclidean.
 - (c) Sketch a proof that $\mathbb{R}[x]$ is Euclidean.

Solution: See class notes.

- (4) Let R, S, and T be rings, and let M and N be R-modules.
 - (a) Define what it means for $\phi: S \to T$ to be a ring homomorphism.
 - (b) Define what it means for $\psi:M\to N$ to be an R-module homomorphism.
 - (c) Show that $\mathbb{Z}_3[x]/\langle x^2+1\rangle$ and $\mathbb{Z}_3[x]/\langle x^2+x\rangle$ are
 - isomorphic as \mathbb{Z}_3 -modules,
 - non-isomorphic as rings.

(Hint for the last part: one of $\mathbb{Z}_3[x]/\langle x^2+1\rangle$ and $\mathbb{Z}_3[x]/\langle x^2+x\rangle$ is a field.)

Solution: (c) Let $f = x^2 + 1$ and $g = x^2 + x$. Then any polynomial $h \in \mathbb{Z}_3[x]$ can be written as $h = a_1x + a_0 + \langle f \rangle$ and $h = b_1x + b_0 + \langle g \rangle$ for some $a_1, a_0, b_1, b_0 \in \mathbb{Z}_3$.

The map $\phi: \mathbb{Z}_3[x]/\langle f \rangle \to \mathbb{Z}_3[x]/\langle g \rangle$ given by

$$\phi\left(cx+d+\langle f\rangle\right) = cx+d+\langle g\rangle$$

is a module isomorphism: If $c_1x + d_1 + \langle f \rangle$, $c_2x + d_2 + \langle f \rangle \in \mathbb{Z}_3[x]/\langle f \rangle$, then for any $\lambda \in \mathbb{Z}_3$,

$$\phi\left(\lambda\left(c_{1}x+d_{1}+\left\langle f\right\rangle\right)+\left(c_{2}x+d_{2}+\left\langle f\right\rangle\right)\right)=\phi\left(\left(\lambda c_{1}+c_{2}\right)x+\left(\lambda d_{1}+d_{2}\right)+\left\langle f\right\rangle\right)$$

$$=\left(\lambda c_{1}+c_{2}\right)x+\left(\lambda d_{1}+d_{2}\right)+\left\langle g\right\rangle$$

$$=\lambda\left(c_{1}x+d_{1}+\left\langle g\right\rangle\right)+\left(c_{2}x+d_{2}+\left\langle g\right\rangle\right)$$

$$=\lambda\phi\left(c_{1}x+d_{1}+\left\langle f\right\rangle\right)+\phi\left(c_{2}x+d_{2}+\left\langle f\right\rangle\right)$$

and $\ker(\phi) = \langle f \rangle$. Since ϕ is apparently onto, the module isomorphism theorem gives the statement.

The polynomial f is irreducible over \mathbb{Z}_3 (because it has no roots), so $\mathbb{Z}_3[x]/\langle f \rangle$ is a field. On the other hand, $\mathbb{Z}_3[x]/\langle g \rangle$ has zero divisors (e.g., $(x + \langle g \rangle)(x + 1 + \langle g \rangle) = \langle g \rangle$), and so $\mathbb{Z}_3[x]/\langle g \rangle$ cannot be ring-isomorphic to $\mathbb{Z}_3[x]/\langle f \rangle$.