Accurately Computing log(1 - exp(-|a|))Assessed by the Rmpfr package

Martin Mächler

ETH Zurich

April 2012 (IATEX'ed May 16, 2012)

Abstract

In this note, we explain how $f(a) = \log(1 - e^{-a}) = \log(1 - \exp(-a))$ can be computed accurately, in a simple and optimal manner, building on the two related auxiliary functions $\log p(x) = \log(1+x)$ and $expm1(x) = \exp(x) - 1 = e^x - 1$. The cutoff, a_0 , in use in R since 2004, is shown to be optimal both theoretically and empirically, using **Rmpfr** high precision arithmetic.

Keywords: Accuracy, Cancellation Error, R, MPFR, Rmpfr.

1. Introduction: Not log() nor exp(), but log1p() and expm1()

In applied mathematics, it has been known for a very long time that direct computation of $\log(1+x)$ suffers from severe cancellation (in "1+x") whenever $|x| \ll 1$, and for that reason, we have provided $\log(1p(x))$ in R, since R version 1.0.0 (released, Feb. 29, 2000). Similarly, $\log(1p(x))$ has been provided by C math libraries and has become part of C language standards around the same time, see, for example, IEEE and Open Group (2004).

Analogously, since R 1.5.0 (April 2002), the function expm1(x) computes $\exp(x) - 1 = e^x - 1$ accurately also for $|x| \ll 1$, where $e^x \approx 1$ is (partially) cancelled by "-1".

In both cases, a simple solution for small |x| is to use a few terms of the Taylor series, as

$$\log 1p(x) = \log(1+x) = x - x^2/2 + x^3/3 - + \dots, \text{ for } |x| < 1,$$
(1)

$$\operatorname{expm1}(x) = \exp(x) - 1 = x + x^2/2! + x^3/3! + \dots, \text{ for } |x| < 1,$$
 (2)

and n! denotes the factorial.

We have found, however, that in some situations, the use of log1p() and expm1() may not be sufficient to prevent loss of numerical accuracy. The topic of this note is to analyze the important case of computing $\log(1-e^x) = \log(1-\exp(x))$ for x < 0, computations needed in accurate computations of the beta, gamma, Weibull and logistic distributions, and even for the logit link function in logistic regression. For the beta and gamma distributions, see, for example, DiDonato and Morris $(1992)^1$, and further references mentioned in R's ?pgamma and ?pbeta help pages. For the logistic distribution, $F_L(x) = \frac{e^x}{1+e^x}$, the inverse, aka quantile function is $q_L(p) = \text{logit}(p) := \log \frac{p}{1-p}$. If the argument p is provided on the log scale,

¹In the Fortran source, file "708", also available as http://www.netlib.org/toms/708, the function AL-NREL() computes log1p() and REXP() computes expm1().

 $\tilde{p} := \log p$, hence $\tilde{p} \leq 0$, we need

$$\operatorname{qlogis}(\tilde{p},\, \operatorname{log.p} = \operatorname{TRUE}) = q_L\big(e^{\tilde{p}}\big) = \operatorname{logit}\big(e^{\tilde{p}}\big) = \log\frac{e^{\tilde{p}}}{1-e^{\tilde{p}}} = \tilde{p} - \log\big(1-e^{\tilde{p}}\big)\,, \qquad (3)$$

and the last term is exactly the topic of this note.

2. $\log 1p()$ and expm1() for $\log(1 - exp(x))$

Contrary to what one would expec, for computing $\log (1 - e^x) = \log (1 - \exp(x))$ for x < 0, neither

$$\log(1 - \exp(x)) = \log(-\exp(x)), \text{ nor}$$
(4)

$$\log(1 - \exp(x)) = \log 1p(-\exp(x)),\tag{5}$$

are uniformly sufficient for numerical evaluation. In (5), when x approaches 0, $\exp(x)$ approaches 1 and loses accuracy. In (4), when x is large, expm1(x) approaches -1 and similarly loses accuracy. Because of this, we will propose to use a function log1mexp(x) which uses either expm1 (4) or log1p (5), where appropriate. Already in R 1.9.0 (R Development Core Team (2004)), we have defined the macro R_D_LExp(x) to provide these two cases automati $callv^2$.

To investigate the accuracy losses empirically, we make use of the R package Rmpfr for arbitrarily accurate numerical computation, and use the following simple functions:

```
R> library(Rmpfr)
R> t3.11e <- function(a)
      c(def = log(1 - exp(-a)),
        expm1 = log(-expm1(-a)),
        log1p = log1p(-exp(-a)))
R> ##' The relative Error of log1mexp computations:
R> relE.l1e <- function(a, precBits = 1024) {
      stopifnot(is.numeric(a), length(a) == 1, precBits > 50)
      da <- t3.11e(a) ## double precision
      a. <- mpfr(a, precBits=precBits)</pre>
      ## high precision *and* using the correct case:
      mMa \leftarrow if(a \leftarrow log(2)) log(-expm1(-a.)) else log1p(-exp(-a.))
      structure(as.numeric(1 - da/mMa), names = names(da))
  }
```

where the last one, relE.11e() computes the relative error of three different ways to compute $\log(1-\exp(-a))$ for positive a (instead of computing $\log(1-\exp(x))$ for negative x).

```
R > a.s <- 2^seq(-55, 10, length = 256)
R> ra.s <- t(sapply(a.s, relE.l1e))
R> cbind(a.s, ra.s) # comparison of the three approaches
```

```
expm1
                                               log1p
[1,] 2.7756e-17
                       -Inf -7.9755e-17
                                                 -Inf
[2,] 3.3119e-17
                       -Inf -4.9076e-17
                                                -Inf
[3,] 3.9520e-17
                       -Inf -7.8704e-17
                                                -Inf
[4,] 4.7157e-17
                       -Inf -4.5998e-17
                                                -Inf
```

 $^{^2} look \ for \ "log(1-exp(x))" \ in \ http://svn.r-project.org/R/branches/R-1-9-patches/src/nmath/dpq.h$

This is revealing: Neither method, $\log 1p$ or expm1, is uniformly good enough. Note that for large a, the relative errors evaluate to 1. This is because all three double precision methods give 0, and that is the best approximation in double precision (but not in higher mpfr precision), hence no problem at all, and we can restrict ourselves to smaller a (smaller than about 710, here).

What about really small a's?

```
R> t3.11e(1e-20)
    def expm1 log1p
    -Inf -46.052 -Inf
R> as.numeric(t3.11e(mpfr(1e-20, 256)))
[1] -46.052 -46.052 -46.052
```

so, indeed, the expm1 method is absolutely needed here.

Figure 1 visualizes the relative errors of the three methods. Note that the default basically gives the maximum of the two methods' errors, whereas the final log1mexp() function will have (approximately) minimal error of the two.

In Figure 2 below, we zoom into the region where all methods have about the same (good) accuracy. The region is the rectangle defined by the ranges of a. and ra2: In Figure 2 below, we zoom into the region where all methods have about the same (good) accuracy. The region is the rectangle defined by the ranges of a. and ra2:

```
R> a. <- (1:400)/256
R> ra <- t(sapply(a., relE.l1e))
R> ra2 <- ra[,-1]
```

In addition to zooming in Figure 1, we want to smooth the two curves, using a method assuming approximately normal errors. Notice however that neither the original, nor the log-transformed values have approximately symmetric errors, so we use MASS::boxcox() to determine the "correct" power transformation,

```
R> da <- cbind(a = a., as.data.frame(ra2))
R> library(MASS)
R> bc1 <- boxcox(abs(expm1) ~ a, data = da, lambda = seq(0,1, by=.01), plotit=.plot.BC)</pre>
```

4

Figure 1: Absolute relative errors (with respect to 1024 bit **Rmpfr** computation) of the default, $\log(1-e^{-a})$, and the two methods "expm1" $\log(-\exp(1-a))$ and "log1p" $\log(1-\exp(-a))$. Figure 2 will be a zoom into the gray rectangular region where all three curves are close.

```
R> bc2 <- boxcox(abs(log1p) ~ a, data = da, lambda = seq(0,1, by=.01), plotit=.plot.BC)
R > c(with(bc1, x[which.max(y)]),
    with(bc2, x[which.max(y)]))## optimal powers
[1] 0.38 0.30
R > \#\# ==> taking ^ (1/3) :
R > s1 \leftarrow with(da, smooth.spline(a, abs(expm1)^(1/3), df = 9))
R > s2 \leftarrow with(da, smooth.spline(a, abs(log1p)^(1/3), df = 9))
and now plot a "zoom-in" of Figure 1. This already suggests that the cutoff, a_0 = \log 2 is
empirically very close to optimal.
R> matplot(a., abs(ra2), type = "l", log = "y", # ylim = c(-1,1)*1e-12,
          col=cc[-1], lwd=l1[-1], lty=lt[-1],
          ylim = yl, xlab = "a", ylab = "", axes=FALSE)
R> legend("topright", leg[-1], col=cc[-1], lwd=ll[-1], lty=lt[-1], bty="n")
R> eaxis(1); eaxis(2); draw.machEps()
R > lines(a., predict(s1)$y ^ 3, col=cc[2], lwd=2)
R> lines(a., predict(s2)$y ^ 3, col=cc[3], lwd=2)
```

Why is it very plausible to take $a_0 := \log 2$ as approximately optimal cutoff? Already from Figure 2, empirically, an optimal cutoff a_0 is around 0.7. We propose to compute

$$f(a) = \log(1 - e^{-a}) = \log(1 - \exp(-a)), \quad a > 0,$$
 (6)

Figure 2: A "zoom in" of Figure 1 showing the region where the two basic methods, "expm1" and "log1p" switch their optimality with respect to their relative errors. Both have small relative errors in this region, typically below $\varepsilon_c := .$ Machine\$double.eps $= 2^{-52} \approx 2.22 \cdot 10^{-16}$. The smoothed curves indicate crossover close to $a = a_0 := \log 2$.

by a new method or function log1mexp(a). It needs a cutoff a_0 between choosing expm1 for $0 < a \le a_0$ and log1p for $a > a_0$, i.e.,

$$f(a) = \log 1 \operatorname{mexp}(a) := \begin{cases} \log(-\operatorname{expm1}(-a)) & 0 < a \le a_0 \ (:= \log 2 \approx 0.693) \\ \log 1 \operatorname{p}(-\operatorname{exp}(-a)) & a > a_0. \end{cases}$$
 (7)

The mathematical argument for choosing a_0 is quite simple, at least informally: In which situations does $1-e^{-a}$ loose bits (binary digits) entirely independently of the computational algorithm? Well, as soon as it "spends" bits just to store its closeness to 1. And that is as soon as $e^{-a} < \frac{1}{2} = 2^{-1}$, because then, at least one bit cancels. This however is equivalent to $-a < \log(2^{-1}) = -\log(2)$ or $a > \log 2 =: a_0$.

3. Computation of log(1+exp(x))

Related to $\log 1 \operatorname{mexp}(a) = \log (1 - e^{-a})$ is the log survival function of the logistic distribution $\log (1 - F_L(x)) = \log \frac{1}{1 + e^x} = -\log (1 + e^x),$

$$g(x) := \log(1 + e^x) = \log 1 p(e^x),$$
 (8)

(with a "+"" instead of a "-") which is easier to analyze and compute, its only problem being large x's where e^x overflows numerically. As $g(x) = \log(1 + e^x) = \log(e^x(e^{-x} + 1)) = x + \log(1 + e^{-x})$, we see from (1) that

$$g(x) = x + \log(1 + e^{-x}) = x + e^{-x} + \mathcal{O}((e^{-x})^2),$$
 (9)

6

for $x \to \infty$. Using double precision arithmetic, a fast and accurate computational method is to use

$$g(x) = \log 1 \operatorname{pexp}(x) := \begin{cases} \log 1 \operatorname{p}(\exp(x)) & x < x_1 := 33.3, \\ x & x \ge x_1, \end{cases}$$
(10)

where x_1 can be replaced by a larger number such as 34 (and even 100, but not 800^3).

4. Conclusion

We have used high precision arithmetic (R package **Rmpfr**) to empirically verify that computing $f(a) = \log(1 - e^{-a})$ is accomplished best via equation (7). In passing, we have also shown that accurate computation of $g(x) = \log(1 + e^x)$ can be achieved via (10).

Session Information

R> toLatex(sessionInfo())

- R version 2.15.0 Patched (2012-05-15 r59342), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=de_CH.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=C, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=de_CH.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: MASS 7.3-18, Rmpfr 0.4-7, gmp 0.5-2, polynom 1.3-6, sfsmisc 1.0-20
- Loaded via a namespace (and not attached): tools 2.15.0

References

DiDonato AR, Morris Jr AH (1992). "Algorithm 708: Significant digit computation of the incomplete beta function ratios." *ACM Transactions on Mathematical Software*, **18**(3), 360–373. ISSN 0098-3500. URL http://doi.acm.org/10.1145/131766.131776.

IEEE, Open Group (2004). "The Open Group Base Specifications Issue 6 — log1p." In *IEEE Std 1003.1*, 2004 Edition. URL http://pubs.opengroup.org/onlinepubs/009604599/functions/log1p.html.

R Development Core Team (2004). R: A language and environment for statistical computing (Ver. 1.9.0). R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3, URL http://www.R-project.org.

³The R plot curve(log1p(exp(x)) - x, 33.1, 33.5, n=2^10) reveals a somewhat fuzzy cutoff x_1

Affiliation:

Martin Mächler Seminar für Statistik, HG G 16 ETH Zurich 8092 Zurich, Switzerland

E-mail: maechler@stat.math.ethz.ch

URL: http://stat.ethz.ch/people/maechler