微分方程指南

King

2023年11月24日

目录

Ι	概念	x总结	2
1	STA	RTED 目前对于一般的方程最一般的方法为:幂级数解法	4
II	求	解析解	5
2	一阶	方程	8
	2.1	线性方程	8
	2.2	分离变量	9
	2.3	积分因子/恰当方程	9
3	高阶	方程	13
4	二阶	方程	14
	4.1	特征方程: 通解	14
	4.2	积分因子/二阶恰当方程	14
	4.3	TODO 换自变量	15
5	求非	齐次特解	16
	5.1	待定系数法	16
	5.2	常数变易法	17
	5.3	旧案用子注 (Δ)	18

6	幂级数解法		
	6.1 幂级数	19	
	6.2 特殊方程	20	
	6.3 Euler 方程	20	
7	Laplace 变换求解	22	
II	I 性质定理	23	
8	形式定义	25	
9	存在唯一性定理	26	
10	线性性质	28	
	10.1 叠加原理	28	
11	Wronski 行列式判断线性相关性	29	
	11.1 TODO	29	
12	Abel 定理	31	
	12.1 引申定理	32	
13	幂级数收敛	34	
14	奇点	35	
IV	水数值解	36	
15	Euler 方法(欧拉折线)	37	

Part I

概念总结

方程表示一种约束关系,它的解就是使方程成立的元素,在微分方程里往往是一个函数,它可能可以表达为显函数,或者只能写为隐函数,甚至于我们只能拿符号代替它的解。能力有限,还没学过复变函数,所以只会初等的解法。

STARTED 目前对于一般的方程 最一般的方法为: 幂级数解法

文中一般使用 x 为自变量。

Part II

求解析解

- 一般手算思路线性
- → 计算齐次方程的特征方程解

无重根 → 得到 齐次通解 有重根 → 依据重数补齐

- 非齐次- _ 特解 $(y = y_b + y_p)$
 - 形式简单 → 待定系数
 - → 常数变易 → 解 Wronski 方程得到特解

非线性已知特解: → 常数变易

重根:一般方法

d'Alembert /降阶法

 $y_2(x) = v(x)y_1(x) y_1$ 为已知形式的解

求出隐式解,那么根据初值条件代入,取最小的可能区间

进阶:

幂级数

更一般的幂级数 $y = x^r \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+r}$

此时就先解出 r 之后进行 an 的递推

奇点 (singular point) 对于方程变化的情况二阶方程

$$P(x)y'' + Q(x)y' + R(x)y = 0 (1.1)$$

 $P(x_0) = 0$ x_0 处为奇点正则如果后两项存在,称为正则即满足 $\lim_{x\to x_0} (x - x_0)$ $x_0) \frac{Q(x)}{P(x)}$ 和 $\lim_{x \to x_0} (x - x_0) \frac{R(x)}{P(x)}$ 都存在,分别设为 p, q 也就是转化为研究 $y'' + \frac{Q(x)}{P(x)} y' + \frac{R(x)}{P(x)} y = 0$ 的性质。

此处要求 Q(x) R(x) 是解析的, 即它们可以写成级数展开形式这样可以 忽略后面高阶项只取第一项 $P(x) = p_0 + p_1 x + p_2 x^2 + \cdots$ 使得取极限 (有 效)可以

由此构造方程

$$x^{2}y'' + x\left(x\frac{Q(x)}{P(x)}\right)y' + \left(x^{2}\frac{R(x)}{P(x)}\right)y = 0$$
 (1.2)

得到(类似 Euler 方程的结构)

 $x^2y'' + p_0xy' + q_0y = 0$

Euler 方程使用尝试解 $y=x^r$ 因为可以发现如果重根,那么使用 $x^r \ln r$ 可以代入验证发现它满足方程并且 r 还是重根的 r

理由:

1. 使用 Wronski 行列式

2.

对于 $x^2y'' + \alpha xy' + \beta y = 0$ 设代人 x^r 得到方程为 $L[x^r]$ 它的形式应该满足

$$x^{2}(r-1)rx^{r-2} + \alpha xrx^{r-1} + \beta x^{r} = 0$$
(1.3)

$$(r-1)rx^r + \alpha rx^r + \beta x^r = 0 \tag{1.4}$$

$$x^{r}(r^{2} + (\alpha - 1)r + \beta) = 0 \tag{1.5}$$

我们发现 x 和 r 可以分开于是方便称呼定义 $L[x^r] = x^r F(r)$ 这里 $F(r) := r^2 + (\alpha - 1)r + \beta$

对于任意 x 成立, 所以也就是求解 r 即求 F(r) = 0

对于有重根, 那么 F(r) 一定可以写成 $F(r) = (r - r_{1,2})^2$

我们现在要再找一个(除了 x^r)形式的解

可以由 $\mathrm{e}^{\lambda x}$ 的重根取 $x\mathrm{e}^{\lambda x}$ 的启发后者推导一下。我们要求这另外一个形式依然要满足 F(r)=0 于是构造可以对 L 求偏导得到 $\frac{\partial}{\partial r}L[x^r]=L[\frac{\partial}{\partial r}x^r]$ 得到 $x^r\ln rF+x^r\frac{\partial}{\partial r}F=$

一阶方程

直接积分积分因子

2.1 线性方程

形式: P(x)y' + Q(x)y + R(x) = 0 思想: 等价变化(乘除) 使等式左侧化为乘积微分的结果,和化为积的微分案例:

- $(4+x)^2y'+2xy=4x$ 左侧形式特殊: $((4+x)^2)'=2x$ 化为: $\frac{\mathrm{d}}{\mathrm{d}x}((4+x)^2y)=4x$ 两边积分: $y=\frac{2x^2+C}{(4+x)^2}$
- $y' + \frac{1}{2}y = \frac{1}{3}e^{x/3}$ 乘(尚未知)积分因子: $\mu y' + \frac{1}{2}\mu y = \mu \frac{1}{3}e^{x/3}$ 观察左侧得到方程: $\mu_x = \frac{1}{2}\mu$ 令(只要一个符合的 μ 即可) $\mu = e^{x/2}$ 得到: $\frac{d}{dx}(e^{x/2}y) = \frac{1}{3}e^{x/3}$ 两边积分,通解: $y = \frac{3}{5}e^{x/3} + Ce^{-x/2}$
- 2y' + xy = 2 即 $y' + \frac{x}{2}y = 1$ $\mu = e^{x^2/4}$ $e^{x^2/4}y' + \frac{x}{2}e^{x^2/4}y = e^{x^2/4}$ 即 $\frac{d}{dx}(ye^{x^2/4}) = e^{x^2/4}$ (积不出来但) 得到形式 $y = e^{-x^2/4}\int e^{x^2/4}dx + Ce^{-x^2/4}$

方法:条件:(方程)

$$y' + py = q$$

过程: 同时乘以积分因子 μ

$$\mu y' + \mu p y = q$$

如果可以化为,得到条件

$$\mu_x = p\mu \tag{2.1}$$

于是, $\frac{\mathrm{d}\mu}{\mu} = p\mathrm{d}x$ (不论常数) 可取

$$\mu = e^{\int p dx} \tag{2.2}$$

乘回方程,得到

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = \frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{\int p\mathrm{d}x}y) = \mu q \tag{2.3}$$

最终解的形式为

$$y = e^{-\int p dx} \int \mu q dx = e^{-\int p dx} \int e^{\int p dx} q dx$$
 (2.4)

2.2 分离变量

对于简单的方程,将 x,y 分到方程两边,同时积分

2.3 积分因子/恰当方程

1. 恰当方程 转化为全微分方程。

$$Mdx + Ndy = 0 (2.5)$$

$$\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = 0$$

$$du = 0$$
(2.6)

所以得到隐式解 u = C

条件 方程满足:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

案例

•
$$(y\cos x + 2xe^y) + (\sin x + x^2e^y - 1)y' = 0$$
 验证: $\frac{\partial y\cos x + 2xe^y}{\partial y} = \cos x + 2xe^y = \frac{\partial\sin x + x^2e^y - 1}{\partial x}$ 求解原函数: 偏积分

$$u = \int y \cos x + 2x e^y dx = -y \sin x + e^y x^2 + C(y)$$

对另一项 (y) 偏导

$$\sin x + x^2 e^y - 1 = \frac{\partial u}{\partial y} = -\sin x + x^2 e^y + C'$$

$$C = \int 2\sin x + 1 dy = 2y\sin x + y$$

通解: $-y\sin x + e^y x^2 + 2y\sin x + y = A$

特殊形式 一些全微分 fn

$$yx^{y-1}dx + x^y \ln xdy = dx^y \tag{2.7}$$

$$\frac{y\mathrm{d}x - xdy}{y^2} = d(\frac{x}{y})\tag{2.8}$$

$$\frac{y\mathrm{d}x - xdy}{yx} = d(\ln\left|\frac{x}{y}\right|) \tag{2.9}$$

$$\frac{y\mathrm{d}x - xdy}{x^2 + y^2} = d(\arctan\frac{x}{y}) \tag{2.10}$$

$$\frac{y\mathrm{d}x - xdy}{x^2 + y^2} = \frac{1}{2}d(\ln\left|\frac{x - y}{x + y}\right|) \tag{2.11}$$

$$\begin{array}{l} yx^{y-1}\mathrm{d}x + x^y \ln x\mathrm{d}y = \mathrm{d}x^y \ \frac{y\mathrm{d}x - xdy}{y^2} = d(\frac{x}{y}) \ \frac{y\mathrm{d}x - xdy}{yx} = d(\ln\left|\frac{x}{y}\right|) \ \frac{y\mathrm{d}x - xdy}{x^2 + y^2} = d(\ln\left|\frac{x}{y}\right|) \ \frac{y\mathrm{d}x - xdy}{x^2 + y^2} = \frac{1}{2}d(\ln\left|\frac{x - y}{x + y}\right|) \end{array}$$

2. 积分因子 区别之前,这里是找到原函数,之前是将方程左侧化为 - 可以求解所有方程,但不一定可以解出不是恰当的方程转化为恰当把 ref 乘以 μ 得到

$$\mu M dx + \mu N dy = 0 \tag{2.12}$$

必要条件

$$\frac{\partial \mu M}{\partial y} = \frac{\partial \mu N}{\partial x} \tag{2.13}$$

找法假设 $du = \mu_y M + \mu M_y = \mu_x N + \mu N_x$ (不会解方程, 化简形式, 令某些项为 0) 找一个只与 x 或 y 有关的积分因子只与 x 相关的积分 因子 $\mu_x N = \mu (M_y - N_x)$

$$\frac{1}{\mu} \frac{\mathrm{d}\mu}{\mathrm{d}x} = \frac{(M_y - N_x)}{N} \tag{2.14}$$

$$\mu = e^{\int \frac{(M_y - N_x)}{N} dx} \tag{2.15}$$

案例

• $(3xy+y^2)+(x^2+xy)y'=0$ [完整] 验证发现非恰当: $\frac{\partial 3xy+y^2}{\partial y}=3x+2y\neq 2x+y=\frac{\partial x^2+xy}{\partial x}$ 写出积分因子方程: $\mu_y M+\mu M_y=\mu_x N+\mu N_x$ 即 $\mu_y (3xy+y^2)+\mu (3x+2y)=\mu_x (x^2+xy)+\mu (2x+y)$ 取 $\mu_y=0$ 得 $\mu(x+y)=\mu_x (x^2+xy)\to \mu=x\mu_x$ 于是令 $\mu=x$ 得恰当方程 M 对 x 偏积分 $u=\int 3x^2y+xy^2\mathrm{d}x=x^3y+\frac{1}{2}x^2y^2+c(y)$ u 对 y 偏导解为 $x^3y+\frac{1}{2}x^2y^2=C$

3. 原理

(a) 恰当方程的判据 判断 ref 是 (具有连续一阶偏导) 是恰当微分方程 (可以转化为 du = 0) 的充分必要条件

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

ref 具有一般性

充分: 满足条件则能够找到一个 u 使得 $M = \frac{\partial u}{\partial x}$, $N = \frac{\partial u}{\partial y}$ 找 u 对 M 向 x 积分, 取原函数为 u, $u = \int M \mathrm{d}x + C$ (C 与 x 必然 无关) 可以认为 $u(x,y) = \int M(x,y) \mathrm{d}x + C(y)$ 如果 C 的确只与 y 有关那么 (我们希望 $\mathrm{d}u - \frac{\partial u}{\partial x} \mathrm{d}x = \mathrm{d}C = \mathrm{d}C(y)$ 这个 dC 与 dx 无 关,就的确说明找到的函数 u 它的全微分是原方程,便得证)

研究 C , (无法直接得到 dC 只好先算 u 偏导) 将所得结果对 y 求偏导

 $\frac{\partial u}{\partial y} = \frac{\partial \int M \mathrm{d}x}{\partial y} + \frac{\mathrm{d}C}{\mathrm{d}y} = N$ 所以 $\frac{\mathrm{d}C}{\mathrm{d}y} = N - \frac{\partial}{\partial y} \int M \mathrm{d}x$ 证明它与 x 无关于是它就是全微分,使用偏导为 0 验证

$$\frac{\partial}{\partial x}[N - \frac{d}{dy}\int Mdx] = \frac{\partial}{\partial x}N - \frac{\partial}{\partial x}\frac{\partial}{\partial y}\int Mdx$$

$$= \frac{\partial N}{\partial x} - \frac{\partial}{\partial y}\frac{\partial}{\partial x}\int Mdx$$

$$= \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 0$$
(2.16)

于是 dC 与 x 无关,得证 u 的全微分是原方程。x,y 对称,证明 具有一般性。

必要: 如果是恰当方程那么已经存在函数 u , 它的全微分是原方程, 那么可以根据 Cla 克莱罗定理 fn 验证两者相等

高阶方程

二阶方程

以下方法, 齐次方程的特解为 0, 只需要考虑非齐次情况

4.1 特征方程:通解

试用范围: 齐次方程求通解原理:

具体过程 首先使用 $e^{\lambda x}$ 试探方程的解,得到代数方程,即它的特征方程。 使用代数方程解得 λ 得到通解

特殊情况 如果出现重根,相当于少了一些解,因此我们需要补齐至方程阶数的解

,那么可以猜测这些需要添加的解形式和 $e^{\lambda x}$ 类似,可以尝试发现 $xe^{\lambda x}$ 满足方程,则根据重数使用如 $xe^{\lambda_p x},\cdots,x^{(p-1)}e^{\lambda_p x}$ 的形式扩展解的数目,补满 n 个,假设 λ_p 有 p 重根,就添加额外 p-1 个解如前。

4.2 积分因子/二阶恰当方程

- 1. **TODO** 案例
- 2. 原理 方程为

$$P(x)y'' + Q(x)y' + R(x)y = 0 (4.1)$$

希望转化为(一阶恰当方程的形式 Mdx + Ndy = 0)

$$(P(x)y')' + (f(x)y)' = 0 (4.2)$$

可知

$$P'y' + Py'' + f'y + fy' = 0 (4.3)$$

条件为

$$P' + f' = Q$$
$$f' = R$$

得到条件

$$P'' - Q' + R = 0 (4.4)$$

实际代入计算

$$f = Q - P' \tag{4.5}$$

4.3 TODO 换自变量

Euler 方程 (6.5) 一般形式

求非齐次特解

5.1 待定系数法

概要 非齐次方程观察右端项,猜测可能形式(采取相同相似形式),代入解出系数。

需要考虑重根和与齐次通解重复的部分。如果有重复。

举枚

•
$$y'' - 3y' - 4y = 3e^{2x}$$

通解 e^{-x} , e^{4x} 猜特解形式 $Y_p = Ae^{2x}$ 代人

$$4A + 6A - 4A = 3 (5.1)$$

通解为 $y = \frac{1}{2}e^{2x} + C_1e^{-x} + C_2e^{4x}$

- $y'' 3y' 4y = 3e^{2x}$ 原特解与齐次通解相同,特解取 $Y_p = Axe^{2x}$ 解 得 $A = -\frac{2}{5}$
- $y'' 3y' 4y = 3e^{2x} + 2\sin x 8e^x \cos 2x$ 分别计算
- $y''' 4y' = x + 3\cos x + e^{-2x}$ 齐次通解: 0,2,-2 $g(x) = x + 3\cos x + e^{-2x}$

1.
$$\ni 0 \equiv Y_{p1} = x(A_0 + A_1 x)$$

- $2. Y_{p2} = B\cos x + C\sin x$
- 3. 与 2 重 $Y_{p3} = Exe^{-2x}$
- $y^{(4)} + 2y'' + y = 3\sin x 5\cos x$ 齐次通解: $(r^2 + 1)^2 = 0 \Rightarrow r = \pm i$ $y_h = \cos x + \sin x + x\cos x + x\sin x$ 特解: $Y_p = x^2(A\cos x + B\sin x)$

5.2 常数变易法

使用已经解得的通解,视常数为含自变量的函数,代入方程继续求解。 简化思路: [核心] 有 n 个系数需要确定,所以需要 n 方程,可以自由 取这些方程。

技巧 使用 Wronski 行列式

1. **TODO** 为什么

约束方程,令所有 $c_i'y_i^n=0$,本质上是代入方程后使每次求导让系数 求导的项为 0。

最后结果是 Wronski 行列式

$$\sum c_i' y_i^1 = 0$$

$$\sum c_i' y_i^2 = 0$$

$$\cdots$$

$$\sum c_i' y_i^{n-1} = 0$$

可化为:

$$\begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & & \cdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
(5.2)

之后利用 Crammer 法则求解 $c_i = \frac{|W(i)|}{|W|}$ 。

5.3 归零因子法 (A)

概要 化非齐次方程为齐次方程消去方程右边项代价是方程阶数升高

举**例** 使用 D 微分算子

• $(D-2)^2(D+1)y = 3e^{2x} - xe^{-x}$ 右侧第一项 e^{2x} : D-2 第二项 xe^{-x} : $(D+1)^2$ 于是归零因子为: $(D+1)^2(D-2)$ 两边同乘归零因子得到: $(D+1)^3(D-2)^4y = 0$ 就解 7 阶齐次方程,注意可能有增根 7 阶通解: $\$y_h = (c_1)$

幂级数解法

6.1 幂级数

形式:

$$\sum_{i=0}^{\infty} = a_n (x - x_0)^n$$

原理定理保证: ref

收敛半径的计算

比值

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x - x_0)^{n+1}}{a_n(x - x_0)^n} \right| = (x - x_0) \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 (6.1)

根值

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = (x - x_0) \sqrt[n]{|a_n|}$$
 (6.2)

变换求和哑元,保证 x 的次方相同于是可以把 x 约掉,只解出系数的 递推关系

如果 x 次方相同,仇和其实不一样,把多出来的项取出来,令它们为 0,使得下标相同,去掉求和,得递推。

性质 条件: 收敛级数, $f(x) = \sum a_n(x - x_0)^n$

- 可加减乘除(保持收敛)
- 连续的 f(x) 在收敛区间上有各阶导数。
- 是解析的 → 可泰勒展开
- 两个级数相等,对应次方的系数相等

$$P(x)y'' + Q(x)y' + R(x)y = 0$$

PQR 多项式 → 解析的

常点: ordinary point $P(x_0)$

Wronski $W[Y, y](x_0)$

$$y'' + k^2 y = 0 (6.3)$$

6.2 特殊方程

1. Airy

$$x^2y' - y = 0 (6.4)$$

- 2. Legrendre
- 3. Berssel?

6.3 Euler 方程

形式:

$$x^{2}y'' + \alpha xy' + \beta y = 0, \quad x > 0$$
 (6.5)

引入中间变量 t

$$x = e^t, \quad t = \ln x$$

于是各项关系为

$$\frac{\mathrm{d}t}{\mathrm{d}t} = \frac{1}{x}, \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^t \to \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t}$$
(6.6)

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} (\frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t}) = -\frac{1}{x^2} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{x} (\frac{\mathrm{d}t}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t}) \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{x^2} (\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t})$$

代人得到

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} + \alpha \frac{\mathrm{d}y}{\mathrm{d}x} + \beta y = 0 \tag{6.7}$$

案例

1.

Laplace 变换求解

Part III

性质定理

要害点注:存在唯一: Picard 序列线性相关: Wronski 行列式收敛级数

形式定义

微分算子:

$$L[y] := \sum_{i}^{n} a_{i} y^{(i)} = \tag{8.1}$$

特征多项式:

$$Z(r) := \sum_{i}^{n} a_i r^i \tag{8.2}$$

特征方程:

$$Z(r) = 0$$

$$a_n(r - r_1)^{s_1} \cdots (r - r_k)^{s_k} (r - (\lambda_1 + i\mu_1))^{\tau_1} (r - (\lambda_1 - i\mu_1)^{\tau_1} \cdots (r - (\lambda_l \pm i\mu_l)^{\tau_l}) = 0$$

$$(8.4)$$

阶数

$$n = Deg \quad Z = s_1 + \dots + s_k + 2(\tau_1 + \tau_l)$$
 (8.5)

存在唯一性定理

多项式、代数基本定理

将一般的 $f(x, y^{(n)}, \dots, y) = 0$ 作因式分解如下:

$$a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_{1}y'a_{0}y = 0$$

$$a_{n}\frac{d^{n}y}{dx^{n}} + a_{n-1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}\frac{dy}{dx} + a_{0}y = 0$$

$$(b_{1}\frac{d}{dx} + c_{1})(b_{2}\frac{d}{dx} + c_{2}) \cdots (b_{n}\frac{d}{dx} + c_{n})y = 0$$
(9.1)

可以分解因式由?保证,然后可以利用代数基本定理确保我们必定得到。 直观上看,取最右边与 y 乘的项,得到为 0,于是(每一项可以交换下)

$$\left(b_i \frac{\mathrm{d}}{\mathrm{d}x} + c_i\right) y = 0 \tag{9.2}$$

可以解出 n 个解。(同时可以从一个角度说明使用 $\mathrm{e}^{\lambda x}$ 尝试方程的合理性: $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{c_i}{b_i}y$ 可以解出指数形式解) fn 完备

线性方程:整体非线性:局部解

皮卡序列

核心: 把初值条件代入反复积分函数叙列趋近

方法 条件: 初值田间

步骤

- 1. 代入初值
- 2. 积分

$$\varphi_{n+1} = \int_{0}^{t} f(s, \varphi_n(s)) ds$$

案例

•

Lipschitz 条件函数连续存在导函数有界 (分段?)偏导拆连续且存在? Langrange 中值定理 先收敛,再唯一 反例?

线性性质

线性: 方程中只有 y (因变量) 的一次项,换而言之没有 y''^2, y^3, y'^4, \cdots 类似的项。

10.1 叠加原理

解的线性组合仍然是解,于是可以使用线性独立的构成所有解 (通解)

Wronski 行列式判断线性相关性

11.1 **TODO**

现在假设解得齐次(通)解 y_1, \dots, y_n ,代入方程得到

$$a_n y_1^{(n)} + a_{n-1} y_1^{(n-1)} + \dots + a_1 y_1' + a_0 y_1 = 0$$

. . .

$$a_n y_n^{(n)} + a_{n-1} y_2^{(n-1)} + \dots + a_1 y_n' + a_0 y_n = 0$$

共 n 个方程。它们系数为原微分方程系数万们可以用矩阵改写为 Ax=0 的形式

$$\begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & & \cdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix}^T \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
(11.1)

因此根据线性方程的性质,我们要求 |A|=0 (理由是 a_0, \dots, a_n 不全为 0, 所以 A 存在线性相关部分),即(一般我们使用下面的形式所以上面

写转置,而转置矩阵的行列式相等因此是无所谓的细节,为便于观察)

$$\begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & & \cdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} = 0$$
 (11.2)

此即 Wronski 行列式,可以方便地在微分方程求解中判断解是否线性相关。

线性相关原始定义为:存在线性组合结果为 0。即一般的函数应当使用如下判据: $c_1y_1+\cdots+c_ny_n=0$ 当且仅当 $c_1=c_2=\cdots=c_n=0$

如果不是微分方程的解,使用 Wronski 行列式可能会有问题如: (此处存疑)

Abel 定理

效果:不需要解方程就可以得到 Wronski 行列式

内容: $W = e^{\int -p(x)dx}$

证明: 设 y_1, \dots, y_n 是方程的解

$$a_n y_1^{(n)} + a_{n-1} y_1^{(n-1)} + \dots + a_1 y_1' + a_0 y_1 = 0$$

. .

$$a_n y_n^{(n)} + a_{n-1} y_2^{(n-1)} + \dots + a_1 y_n' + a_0 y_n = 0$$

用二阶方程齐次说明 y'' + py' + qy = 0 y_1, y_2 为方程的解,我们有(它们代入方程成立):

$$y_1'' + py_1' + qy_1 = 0 (12.1)$$

$$y_2'' + py_2' + qy_2 = 0 (12.2)$$

将 ref 于是得到

$$y_2y_1'' - y_1y_2'' + p(y_2y_1' - y_1y_2') = 0 (12.3)$$

我们知道

$$W'[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}' = \begin{vmatrix} y_1 & y_2 \\ y_1'' & y_2'' \end{vmatrix} = y_2 y_1'' - y_1 y_2''$$
 (12.4)

代入 W 得到

$$W' = -pW \tag{12.5}$$

$$W = e^{\int -p dx} \tag{12.6}$$

得证 🗆

12.1 引申定理

如果 Wronski 行列式一点为 0,则函数处处为 0。? (于是线性相关不是通解)

证明: 假如有一点为 0,设 Wronski 在某点代入为 0。即 $W(x_0) = 0$ 于是可以代入 Wronski 定义

$$\begin{vmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y'_1(x_0) & y'_2(x_0) & \cdots & y'_n(x_0) \\ \vdots & & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{vmatrix} = 0$$
 (12.7)

也就是说,存在一个非全零的线性组合使得里面的项得到 0。而这个线性组合的系数也就对应原方程。(以上内容可从 Wronski 上文原始的定义的来源想明白)

$$\begin{pmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y'_1(x_0) & y'_2(x_0) & \cdots & y'_n(x_0) \\ \vdots & & & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ a_n \end{pmatrix}$$
(12.8)

我们希望通过构造法证明定理成立,也就是说明的确可以找到这个处处为 0 的函数。从已有的构造新函数,自然想到就取上面这个线性组合的结果即构

造 $y_s = a_0 y_1 + a_1 y_1 + \dots + a_n y_n^{-1}$ 因为线性叠加原理,这也是方程的解。由 $W(x_0) = 0$ 可以分别得到 y_s 的本身和 1 到 n 的各阶导数为 0。于是可以说明它就是 0,理由是解的唯一性(只有一个,因此不论方法我找到的就是解)所以得到定理内容,如果 W(x) 在一点为 0,那么处处为 0。

¹s pecial 无特殊之处

幂级数收敛

奇点

找正则每一项是有限的 无穷远意义? Part IV

求数值解

Euler 方法 (欧拉折线)

适用:初值条件问题 IVP

原理:解的唯一性

思想: 直线近似, 缩小步长逼近

效果:一阶?

方法:

• 已有条件:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \tag{15.1}$$

$$y(x_0) = y_0 (15.2)$$

(初值条件)

- 过程: 取步长 h 从方程得到在 (x_0, y_0) 的导数 $y' = f(x_0, y_0)$ 使用直线 方程 $y = f(x_0, y_0)(x x_0) + y_0$ 代入 $x_0 + h$ 计算得到 y 重复
- 公式

$$y_{n+1} = y_n + fh (15.3)$$

性质:收敛性略#(不会)