Week 09: Similarity-Based Search DS-GA 1004: Big Data Detailed Notes for Final Exams

Introduction to Similarity Search

The challenge of finding similar items in large datasets efficiently. Traditional brute-force approaches are computationally infeasible at scale. Key techniques include hashing, approximation, and locality-sensitive methods.

Core Concepts

Jaccard Similarity

For sets A and B, Jaccard similarity J(A, B) measures overlap:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Distance Metric: D(A, B) = 1 - J(A, B).

MinHash (Broder, 1997)

Approximates Jaccard similarity using hash functions. For a permutation π of all elements:

$$h(S|\pi) = \min\{\pi(k) \mid \pi(k) \in S\}$$

Key Property:

$$P[h(S_1) = h(S_2)] = J(S_1, S_2)$$

Locality-Sensitive Hashing (LSH)

Improves MinHash by grouping signatures into blocks. Parameters b (bands) and r (rows per band) control precision/recall:

$$P[\text{Collision in LSH}] = 1 - (1 - J^r)^b$$

Algorithms and Implementation

MinHash Signature Calculation

- 1. Generate m hash functions H_1, H_2, \ldots, H_m .
- 2. For each set S, compute $h_i(S) = \min_{x \in S} H_i(x)$.
- 3. Similarity is approximated by collision frequency.

LSH Workflow

- 1. Divide MinHash signatures into b bands of r rows.
- 2. Hash each band separately.
- 3. Candidate pairs are those sharing at least one band hash.

Extensions Beyond Sets

Ruzicka Similarity for Bags

Extends Jaccard to multisets by treating duplicates as unique elements:

$$R(A,B) = \frac{\sum \min(A_i, B_i)}{\sum \max(A_i, B_i)}$$

Cosine Similarity for Vectors

For vectors \mathbf{u}, \mathbf{v} :

$$sim(\mathbf{u}, \mathbf{v}) = cos \theta = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

LSH via random hyperplanes: $h_w(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$.

Tradeoffs and Optimization

Method	Advantages	Limitations
Brute Force	Exact results	$O(N^2)$ complexity
MinHash	Sub-linear time, scalable	Approximate, sensitive to
		hash collisions
LSH	Reduces candidate set size	Requires tuning b and r

Case Study: Plagiarism Detection

- Represent documents as sets of shingles (word n-grams).
- Compute MinHash signatures for all documents.
- Use LSH to identify candidate pairs.
- Verify with exact Jaccard similarity on candidates.

Failure Modes and Mitigations

- **Stop Words:** Common words (e.g., "the") cause spurious collisions. Mitigation: Remove stop words before hashing.
- **High Dimensionality:** Curse of dimensionality affects spatial methods. Mitigation: Dimensionality reduction (e.g., PCA).

Exam Tips

- Understand the relationship between Jaccard similarity and MinHash collision probability.
- Know how LSH parameters b and r affect precision/recall tradeoffs.
- Be able to contrast MinHash, LSH, and cosine similarity techniques.
- Practice calculating Jaccard/Ruzicka similarities and interpreting hash collisions.

Appendix: Key Formulas

Jaccard:
$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$
 MinHash Collision:
$$P[h(S_1) = h(S_2)] = J(S_1, S_2)$$
 LSH Collision:
$$P = 1 - (1 - J^r)^b$$
 Ruzicka:
$$R(A,B) = \frac{\sum \min(A_i, B_i)}{\sum \max(A_i, B_i)}$$

Cosine:
$$\cos \theta = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$