Índice general

L.	Grá	ficos Bivariados Varios	3
	1.1.	Función R que representa datos bivariados, junto con elipses de confianza	3
	1.2.	Función R que representa datos bivariados, junto con el vector de medias	4
	1.3.	Grafica de Superficies de Normaales Bivariadas	4
		1.3.1. Varios Ejemplos de Perpectivas	5
	1.4.	Grafica de Contornos de Superficies de Normaales Bivariadas	6
	1.5.	Prueba de Normalidad Univariada del Coeficiente de Correlación, Ejemplo	
		de notas de Clase	6
	1.6.	Ejemplo de Notas de Clases (Manual)	7
	1.7.	TRANSFORMACIONES DE POTENCIA INDIVIDUALES (Box-Cox) .	8
	1.8.	Cálclulo del coeficiente de asimetría de Fisher y el coeficiente de Kurtosis	
		para un conjunto de datos-univariado	11
	1.9.	Test Para Normalidad Univariada basado en el Coeficiente de Asimetría.	11
	1.10.	Test Para Normalidad Univariada basado en el Coeficiente de Kurtosis	11
	1.11.	Pruebas de Normalidad Multivariada	12
	1.12.	. Coeficientes de Asimetría y Kurtosis Multivariado-Distancia de Mahalanobis	14
	1.13.	Mas Ejemplos de NM1	15
	1.14.	Mas Ejemplos de NM2	15
	1.15.	Gráficos QQ-Plot	18
	1.16.	Pruena de NM de Shapiro-Wilk	19
	1.17.	Prueba de Norm. multivariada basada en Asimetría	19
	1.18.	Gráfico QQ-Plot (chi-Cuadrado)	20
	1.19.	Mas ejemplos de Prueba de NM3	20
	1.20.	Función R que representa datos bivariados, junto con elipses de confianza	26
	1.21.	Función R que representa datos bivariados, junto con el vector de medias	29
3i	bliog	grafía	33

Capítulo 1

Gráficos Bivariados Varios

1.1. Función R que representa datos bivariados, junto con elipses de confianza

Con esta función se realzia un gráfico de dispersión de dos variables junto con dos elipses de confianza del $(1 - \alpha_1)100 \%$ y $(1 - \alpha_2)100 \%$. El centro de la elipse está representado por un punto de color azul.

Con $\underline{\mu}$ y Σ dados, (1- α_1), (1- α_2)100%

Con μ y Σ dados, $(1-\alpha_1)$, $(1-\alpha_2)100\%$

Con μ y Σ dados, $(1-\alpha_1)$, $(1-\alpha_2)100\%$

Con μ y Σ dados, $(1-\alpha_1)$, $(1-\alpha_2)100\%$

1.2. Función R que representa datos bivariados, junto con el vector de medias

1.3. Grafica de Superficies de Normaales Bivariadas

1.3.1. Varios Ejemplos de Perpectivas

rho=0.5

rho=0.5

rho=0.5

1.4. Grafica de Contornos de Superficies de Normaales Bivariadas

1.5. Prueba de Normalidad Univariada del Coeficiente de Correlación, Ejemplo de notas de Clase

Prueba de Normalidad Univariada mediante la Prueba del Coeficiente de Correlación. En la tabla 1.1, están los datos de un ejemplo visto en clase.

Tabla 1.1: Datos

-1	-0.1	0.16	0.41	0.62	0.8	1.26	1.54	1.71	2.3

Resultados de la prueba de normalidad univariada vía la PH del coeficiente de Correlación:

Probability Plot Correlation Coefficient Test

data: ejemplo ppcc = 0.99387, n = 10, p-value = 0.9909 alternative hypothesis: ejemplo differs from a Normal distribution

1.6. Ejemplo de Notas de Clases (Manual)

Prueba del coeficiente de correlación realizada de manera manual.

Tamaño de	Nivel d	e Signific	ancia α
muestra n	0.01	0.05	0.10
5	0.8299	0.8788	0.9032
10	0.8801	0.9198	0.9351
15	0.9126	0.9389	0.9503
20	0.9269	0.9508	0.9604
25	0.9410	0.9591	0.9665
30	0.9479	0.9652	0.9715
35	0.9538	0.9682	0.9740
40	0.9599	0.9726	0.9771
45	0.9632	0.9749	0.9792
50	0.9671	0.9768	0.9809
55	0.9695	0.9787	0.9822
60	0.9720	0.9801	0.9836
75	0.9771	0.9838	0.9866
100	0.9822	0.9873	0.9895
150	0.9879	0.9913	0.9928
200	0.9905	0.9931	0.9942
300	0.9935	0.9953	0.9960

El Coeficiente de Correlación es r=:0.9943596

El Valor tabulado en la tabla es: $T_{tabla} = R(n, \alpha) = R(10, 0.05) = 0.9351$ luego, Como r > T-tabulado, luego no se rechaza H_0 : Los datos son Normales Univariados.

1.7. TRANSFORMACIONES DE POTENCIA IN-DIVIDUALES (Box-Cox)

Ahora se realizan transformaciones de Box-Cox para acercar los datos a la normalidad univariada.

Primero se tiene la prueba de Shapiro Wilk para Normalidad Univariada para los datos crudos.

En la tabla 1.2, están los datos de un segundo ejemplo visto en clase.

Tabla 1.2: Datos

0.15	0.07	0.10	0.10	0.30
0.09	0.02	0.05	0.20	0.05
0.18	0.01	0.03	0.11	0.30
0.10	0.10	0.05	0.30	0.05
0.05	0.10	0.15	0.02	0.30
0.12	0.10	0.10	0.20	0.05
0.08	0.02	0.15	0.20	0.30
0.05	0.10	0.09	0.30	0.05
0.08	0.01	0.08	0.30	0.30
0.10	0.40	0.18	0.40	0.05

Normal Q-Q Plot of Datos Crudos

Ahora se tiene la prueba de Shapiro Wilk para Normalidad Univariada para los datos transformados.

NPP de Datos Transformados

Normal Q-Q Plot of Datos Transformados

1.8. Cálclulo del coeficiente de asimetría de Fisher y el coeficiente de Kurtosis para un conjunto de datos-univariado

Tabla 1.3: Datos Normales Univariados Generados

-1.9558892	-0.6182407	-0.9989966	-1.3589767	0.8670805
-0.1027851	0.1752165	0.5266346	0.3359500	0.3339872
-0.8465783	0.6960973	-0.7454688	-0.0371016	-0.9414992
-1.0785444	0.7548290	0.5372370	-1.0538432	-0.7720197
-2.4064122	0.5904588	-0.3232703	0.4856435	0.1388017
1.5511416	0.8774540	1.1550991	1.2371208	-0.0604963
0.1320695	1.3233351	1.2596707	-0.1471149	0.2645309
-0.1257930	-0.0323891	0.6341736	-1.1467312	-0.9842817
-1.8885297	0.5762772	-1.2738255	0.6632382	-0.4763503
-0.3245916	-0.1327125	-0.1126334	1.1068267	-0.7818852
-0.9652668	-1.1295812	1.6306787	1.3053521	1.2837842
0.2238194	0.3120411	0.1627020	0.9490196	-0.0521461
0.9287641	0.1036083	1.4382415	0.2308489	0.1966243
0.9284115	1.0658761	0.4151407	1.2896325	0.2880140
-0.6933580	-1.8738397	0.0456712	2.1502289	-1.6386437
-0.3539311	-0.7166758	0.4432771	0.8111168	-0.1090804
-2.0642286	1.8009661	0.7239191	1.1786676	-2.3374300
-0.6752955	-1.4705738	1.2672777	1.1192569	0.4611194
1.2300339	1.4557791	-1.3073887	0.3791531	0.9269064
1.6484399	-0.5803178	-2.0311748	-1.1476013	-0.1120456

El coeficiente de Asimetría para el conjunto de datos Univariado Generados es: A = -0.377563

El coeficiente de Kurtosis para el conjunto de datos Univariado Generados es: K=2.4144556

1.9. Test Para Normalidad Univariada basado en el Coeficiente de Asimetría.

Ahora se tiene una PH de Normalidad Univariada basada en el Coeficiente de asimetría, cuyo estadístico de prueba es:

$$Z = \sqrt{n/6} * A \sim N(0,1)$$
, donde: A — Coeficiente de Asimetría.

El estadístico de prueba es: Z = -1.5414

El Valor-p de la prueba de Asimetria Normal Univariada es: $p_{-valor} = 0.1232$

1.10. Test Para Normalidad Univariada basado en el Coeficiente de Kurtosis.

Ahora se tiene una PH de Normalidad Univariada basada en el Coeficiente de Kurtosis, cuyo estadístico de prueba es:

$$Z = \sqrt{n/24 * (K-3)} \sim N(0,1)$$
, donde: K – Coeficiente de Kurtosis.

El estadístico de prueba es: Z = -1.1952

El Valor-p de la prueba de Kurtosis Normal Univariada es: $p_{-valor} = 0.232$

1.11. Pruebas de Normalidad Multivariada

Se utiliza la función mvn del paquete MVN para realizar pruebas de Normalidad Multivariada y Univariada con distintas opciones de visualización.

En la tabla 1.4, se encuentra el Conjunto de conjunto completos.

Tabla 1.4: Conjunto de Datos

	V1	V2	V3	V4	V5	V6	V7
1	8	98	7	2	12	8	2
2	7	107	4	3	9	5	3
3	7	103	4	3	5	6	3
4	10	88	5	2	8	15	4
5	6	91	4	2	8	10	3
6	8	90	5	2	12	12	4
7	9	84	7	4	12	15	5
8	5	72	6	4	21	14	4
9	7	82	5	1	11	11	3
10	8	64	5	2	13	9	4
11	6	71	5	4	10	3	3
12	6	91	4	2	12	7	3
13	7	72	7	4	18	10	3
14	10	70	4	2	11	7	3
15	10	72	4	1	8	10	3
16	9	77	4	1	9	10	3
17	8	76	4	1	7	7	3
18	8	71	5	3	16	4	4
19	9	67	4	2	13	2	3
20	9	69	3	3	9	5	3
21	10	62	5	3	14	4	4
22	9	88	4	2	7	6	3
23	8	80	4	2	13	11	4
24	5	30	3	3	5	2	3
25	6	83	5	1	10	23	4
26	8	84	3	2	7	6	3
27	6	78	4	2	11	11	3
28	8	79	2	1	7	10	3
29	6	62	4	3	9	8	3
30	10	37	3	1	7	2	3
31	8	71	4	1	10	7	3
32	7	52	4	1	12	8	4
33	5	48	6	5	8	4	3
34	6	75	4	1	10	24	3
35	10	35	4	1	6	9	2
36	8	85	4	1	9	10	2
37	5	86	3	1	6	12	2
38	5	86	7	2	13	18	2
39	7	79	7	4	9	25	3
40	7	79	5	2	8	6	2
41	6	68	6	2	11	14	3
42	8	40	4	3	6	5	2

En la tabla 1.5, se tienen las salidas básicas de la función mvn. La prueba multivariada

usada es la de Mardia. Favor ver la ayuda del R para esta función y explorar los distintos argumentos de la misma.

Tabla 1.5: Salidas Básicas de PH-NM

	Γ	Cest			Stati	stic	I	value			Result	
	Mardia Skewness			vness	20.8643968397274			0.000336886451736554			NO	
	Mardia Kurtosis			osis	1.511	1377048	7766 (0.13075	33699	68473	YES	
	N	IVN			NA		1	NA			NO	
		•	Test		V	ariable	Statisti	ic pv	alue	Normality	7	
			Shap	iro-Wil	k V	2	0.9388	0.0	26	NO		
		-	Shap	iro-Wil	k V	5	0.9300	0.0	13	NO		
	n	N	Mean .	Std.	Dev	Median	Min	Max	25th	75th	Skew	Kurtosis
V2	42	73.8	5714	17.335	5388	76.5	30	107	68.25	84.75	-0.7332377	0.3090125
V5	42	10.0	4762	3.370	984	9.5	5	21	8.00	12.00	0.9854394	1.2219732

En la tabla 1.6, se tienen las salidas de la función mvn para la prueba normal multivariada usada, en este caso la prueba de Mardia. Favor ver la ayuda del R para esta función y explorar los distintos argumentos de la misma.

Tabla 1.6: Prueba de Normalidad Multivariada

	Prueba	Valor Estadística	Valor-p	Resultado
1	Mardia Skewness	20.8643968397274	0.000336886451736554	NO
2	Mardia Kurtosis	1.51113770487766	0.130753369968473	YES
3	MVN	NA	NA	NO

En la tabla 1.7, se tienen las salidas de la función mvn para las pruebas normal univariada usada, en este caso la prueba de Shapiro-Wilk. Favor ver la ayuda del R para esta función y explorar los distintos argumentos de la misma.

Tabla 1.7: Prueba de Normalidad Univariada

	Prueba	Variables	Valor Estadística	Valor-p	Resultado
1	Shapiro-Wilk	V2	0.9388	0.026	NO
2	Shapiro-Wilk	V5	0.9300	0.013	NO

En la tabla 1.8, se tiene un resumen descriptivo de las variables del conjunto de datos p-variado usado, en este caso el conjunto de datos consta de dos variables. Favor ver la ayuda del R para esta función y explorar los distintos argumentos de la misma.

Tabla 1.8: Resumen Descriptivo

	n	Media	DesvEst	Mediana	Min	Máx	Per.25	Per.75	Asimetría	Kurtosis
V2	42	73.857	17.335	76.5	30	107	68.25	84.75	-0.733	0.309
V5	42	10.048	3.371	9.5	5	21	8.00	12.00	0.985	1.222

1.12. Coeficientes de Asimetría y Kurtosis Multivariado-Distancia de Mahalanobis

Los coeficientes de Asimetría y Kurtosis **UNIVARIADOS** son respectivamente: -0.7332377 y 0.3090125 para la variable V_2 y 0.9854394 y 1.2219732 para la variable V_5 .

En la tabla 1.9, se tienen las distnacias de Mahalanobis (al cuadrado) de cada Observación al vector de medias de los datos.

Tabla 1.9: Distancias de Mahalanobis a la media

2.1683	0.0279	2.1058	0.0279	0.2243
4.0383	1.2260	1.7170	2.1744	4.8939
5.8674	5.8510	0.8522	2.4754	0.2243
1.1933	0.1494	8.0632	0.0049	4.8939
1.5428	0.3794	0.2908	6.0668	0.2243
1.1190	0.1479	1.3312	0.5773	4.8939
0.6223	0.8914	0.1259	2.2085	0.2243
11.0559	3.3355	1.0045	1.1584	4.8939
0.2801	1.0422	0.5349	0.2138	0.2243
1.2518	0.1609	5.0802	0.5178	4.8939

luego, en este caso el Coeficiente de Asimetría Multivariado es $A_m = 2.9806281$.

El Coeficiente de Asimetría Multivariado esta dado por:

$$A_m = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n r_{ij}^3$$

donde:
$$r_{ij} = (\underline{\mathbf{x}}_i - \overline{\underline{\mathbf{x}}})^T \mathbf{S}^{-1} (\underline{\mathbf{x}}_j - \overline{\underline{\mathbf{x}}}).$$

Para i = j se tienen las distancias de Mahalanobis de cada observación al vector de medias, es decir,

$$d_M^2\left(\underline{\mathbf{x}}_i, \overline{\underline{\mathbf{x}}}\right) = r_{ii} = (\underline{\mathbf{x}}_i - \overline{\underline{\mathbf{x}}})^T \mathbf{S}^{-1} (\underline{\mathbf{x}}_i - \overline{\underline{\mathbf{x}}})$$

luego, en este caso el Coeficiente de Asimetría Multivariado es $A_m = 2.9806281$.

El Coeficiente de Kurtosis Multivariado esta dado por:

$$K_m = \frac{1}{n} \sum_{i=1}^n r_{ii}^2 = \frac{1}{n} \sum_{i=1}^n d_M^4 \left(\underline{\mathbf{x}}_i , \overline{\underline{\mathbf{x}}} \right)$$

luego, en este caso el Coeficiente de Kurtosis Multivariado es $K_m = 9.8653889 = 9.8653889$

1.13. Mas Ejemplos de NM1

En la tabla 1.10, están las Salidas básicas de la función mvn usando la prueba multivariada de Royston. Favor ver la ayuda del R para esta función y explorar los distintos argumentos de la misma.

Tabla 1.10: Salidas Básicas PH NM- Royston

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Test		Н р	value M	VN
Shapiro-Wilk V2 0.9388 0.026 NO		Royst	on 11.666	612 0.00)29292 N	O
-	Test		Variable	Statistic	e p value	Normality
Shapiro-Wilk V5 0.9300 0.013 NO	Shapiro	-Wilk	V2	0.9388	0.026	NO
	Shapiro	-Wilk	V5	0.9300	0.013	NO

	n	Mean	Std.Dev	Median	Min	Max	25th	75th	Skew	Kurtosis
V2	42	73.85714	17.335388	76.5	30	107	68.25	84.75	-0.7332377	0.3090125
V5	42	10.04762	3.370984	9.5	5	21	8.00	12.00	0.9854394	1.2219732

Tabla 1.11: Prueba de Normalidad Multivariada

	Prueba	Valor Estadística	Valor-p	Resultado
1	Royston	11.6661	0.0029	NO

Tabla 1.12: Prueba de Normalidad Univariada

	Prueba	Variables	Valor Estadística	Valor-p	Resultado
1	Shapiro-Wilk	V2	0.9388	0.026	NO
2	Shapiro-Wilk	V5	0.9300	0.013	NO

Tabla 1.13: Resumen Descriptivo

	n	Media	DesvEst	Mediana	Min	Máx	Per.25	Per.75	Asimetría	Kurtosis
V2	NA	73.857	17.335	76.5	30	107	68.25	84.75	-0.733	0.309
V5	NA	10.048	3.371	9.5	5	21	8.00	12.00	0.985	1.222

1.14. Mas Ejemplos de NM2

Salidas básicas de la función mvn. La prueba multivariada usada es la de Mardia. Favor ver la ayuda del R para esta función y explorar los distintos argumentos de la misma.

En la tabla 1.14, se encuentra el ancabezado del conjunto de datos Normal Multivariado generados a partir del R.

Tabla 1.14: Conjunto de Datos NM Generados

	X1	X2	Х3	X4	X5
1	-0.12651	1.15349	-2.07608	-0.56921	2.09629
2	-1.15924	4.12405	-1.55443	-0.12439	-1.34182
3	2.10118	-1.24583	-0.11335	2.92275	0.51255
4	-1.53386	1.49720	-2.12075	-0.64368	3.87208
5	1.51589	-3.21597	1.55624	1.87772	2.54877
6	-1.47037	1.08183	-1.63164	-0.12749	-3.86930
7	-1.82793	1.45398	-0.14473	-3.02381	-1.11086
8	0.72850	2.13021	-2.10432	-0.07318	-4.05240
9	-2.12984	1.13650	-2.55937	-1.24515	-0.29873
10	3.06272	-4.03182	1.44670	0.02586	1.54532
11	2.11524	-0.71190	3.86820	1.96445	3.13212
12	1.37722	2.07686	-0.62186	2.05581	1.39760
13	2.86946	-1.63146	2.46798	1.01506	-1.64197
14	-4.36755	1.95137	2.19307	-2.67303	0.15859
15	2.06160	-2.91344	-0.67888	1.66973	1.82420
16	2.50381	-2.25373	2.24721	-0.17385	2.39563
17	1.69536	-2.99563	1.49298	-1.87632	0.61115
18	-1.20527	-1.24887	2.74952	1.81232	3.75556
19	1.57924	0.57789	-2.09764	1.43542	-2.27135
20	-2.37426	-0.01574	-1.25540	0.43970	0.25500
21	-1.40193	-2.30671	1.04494	-1.69810	-0.55729
22	2.50916	2.36926	1.35534	2.73058	-3.13183
23	1.67054	1.61668	3.65060	1.57294	0.54685
24	-1.81231	4.62673	0.46870	-1.77194	-3.30589
25	3.22279	-0.30068	2.84286	1.76049	2.28118
26	-1.46040	-1.51144	-0.75443	-0.99483	-1.52753
27	3.85763	-0.34028	-1.34311	2.38769	0.88774
28	-0.62700	0.61093	3.24018	0.23453	0.60864
29	1.37338	-2.78332	2.55209	6.42069	-1.55958
30	-0.29560	1.56222	1.88269	0.82514	-0.99042
31	0.40884	-3.12947	0.88231	1.57384	4.51754
32	3.58060	2.49162	3.65514	1.97477	-2.04797
33	-1.35510	-0.06425	-0.63025	-0.62901	-0.24136
34	-0.39687	4.53944	0.18892	-0.05709	-1.10719
35	0.90064	1.02447	3.32663	1.20735	1.02611
36	-0.90713	2.14822	-2.12526	-0.56650	0.87048
37	2.40455	-0.11437	1.21499	3.47796	2.53575
38	-1.37788	3.47049	0.55843	-1.89370	0.75644
39	-1.06931	1.00299	-1.33958	-1.82330	-0.86297
40	-1.35394	0.94047	-0.10478	0.65238	-1.90831
41	0.89426	0.11751	-0.89311	2.17811	0.17174
42	-0.95753	1.74063	0.11924	0.02565	-2.05204
43	1.45469	-2.86137	2.90631	-1.20791	1.71101
44	-2.93410	1.66420	-1.12405	-2.03504	-1.05796
45	-0.69228	-0.41508	-1.55012	0.24910	1.35480
46	1.51753	1.84445	1.03754	-1.95260	1.54320
47	-1.41908	0.87019	-0.28559	1.39258	-3.67074
48	-0.02243	1.73347	-0.41580	-0.33193	-5.08398
49	-3.17784	0.90542	-3.73211	-0.06930	2.78866
50	-1.25191	0.63889	2.65937	-0.73976	-2.81051
51	1.48603	-1.29569	2.19526	-1.39803	-1.19089
52	-0.01621	-1.52071	-2.77913	-0.35133	0.12021
53	-0.50581	-0.21196	0.12602	1.09120	-0.64789
54	-1.65684 0.31748	1.13299 -0.61675	1.13111 -4.09074	-1.37176	-1.35465
55				-2.05560	-3.11063
56	-4.18648	1.55608	-0.94510	-0.61473	3.64237
57 58	-3.87134	-2.37608	-1.64919	0.87561	3.59509
58	0.92511	-0.03952	0.33173	0.06798	-0.31984

continúa en la siguiente página

Tabla 1.14: Conjunto de Datos NM Generados continuación

	X1	X2	X3	X4	X5
59 60	0.14324 2.36101	2.15738 1.10963	-0.27513 -0.74090	-0.89113 -0.69496	3.04492 -0.42237
00	2.30101	1.10905	-0.74090	-0.09490	-0.42237
61	3.93879	-0.96712	-1.71382	-0.55706	-0.62220
62	-1.40328	1.89366	-3.63458	0.30695	-3.29462
63	-5.31395	-3.30067	-0.39426	-3.43625	1.86362
64	1.74730	-1.35065	0.46792	-0.22382	3.17829
65	-0.17381	-0.31515	2.66281	-0.17164	-1.60682
66	-0.51334	-0.11148	0.37912	-0.99399	2.38058
67	-2.44975	3.41319	-1.59008	-4.75232	-0.93015
68	-0.80184	-1.73074	-1.13976	2.19459	-0.77497
69	0.93014	-0.44427	2.39661	1.12551	1.83686
70	-1.24570	-0.48938	-2.05350	1.92286	-0.77572
71	3.23985	-6.98417	3.08445	4.51629	0.34391
72	-3.07727	1.54754	-2.14716	-0.32114	1.74423
73	3.28733	-2.10652	-0.00081	-0.13041	-0.65634
74	1.76856	-2.66249	-0.55012	0.31889	3.09439
75	-0.15190	-1.44927	-1.71171	2.45349	-1.05752
76	-0.51439	-2.40088	2.36012	1.38598	-2.54153
77	-0.62392	-2.60680	-3.05906	-0.76495	3.23257
78	0.02625	1.83738	1.40535	1.56174	0.45666
79	2.15729	1.72735	-0.09488	-0.66829	0.95827
80	0.42404	-1.03221	-1.34532	-0.72772	2.46339
81	-0.75475	1.75493	1.24159	1.85270	-4.76018
82	-1.71369	2.07933	0.59312	-0.05588	-2.74580
83	0.28450	2.07561	2.28834	0.43381	-2.29103
84	3.47268	0.64351	-1.92519	1.06601	-2.06468
85	-1.87335	3.44170	-3.98143	-0.06189	0.98761
86	2.19826	-3.44763	1.43581	0.06714	0.98262
87	1.75001	-1.25461	-0.21449	0.09012	-0.58568
88	-0.09278	-0.17406	-0.08925	-2.88132	-1.72193
89	0.52938	1.21369	-0.04736	0.81079	-2.19801
90	0.32125	-0.01379	-0.95385	-0.97525	4.21696
91	1.71266	-0.43347	-1.76075	-0.86986	-0.76281
92	-2.57291	2.45806	-1.87481	-1.51770	0.00431
93	-0.40871	-1.39142	-1.30525	-2.86670	1.09146
94	-2.84480	2.91630	-2.36489	1.20026	-0.08171
95	-3.09839	1.01566	0.02251	-0.41467	-0.42692
96	-3.73114	-1.02984	-1.92981	-2.36068	0.35788
97	-2.93211	-0.18692	1.98071	-1.51696	0.16077
98	1.01275	-0.10736	-0.47596	1.93706	-0.07807
99	-1.74519	2.92726	-3.34775	-1.49251	-1.06841
100	2.16435	-2.24979	1.59957	-1.38693	-0.57664

En la tabla 1.18, se encuentran los resultados de la prueba de normalidad multivariada realizada según la prueba seleccionada de las disponibles en el argumento mvnTest de la función mvn.

Tabla 1.15: Prueba de Normalidad Multivariada

	Prueba	Valor Estadística	Valor-p	Resultado
1	Mardia Skewness	30.256729800418	0.69639315165067	YES
2	Mardia Kurtosis	-0.731092479531421	0.464722667566359	YES
3	MVN	NA	NA	YES

En la tabla 1.16, se encuentran los resultados de las pruebas de normalidad univariadas

para cada una de las variables del conjunto de datos p-variados.

Tabla 1.16: Prueba de Normalidad Univariada

	Prueba	Variables	Valor Estadística	Valor-p	Resultado
1	Shapiro-Wilk	V1	0.9861	0.3829	YES
2	Shapiro-Wilk	V2	0.9811	0.1631	YES
3	Shapiro-Wilk	V3	0.9793	0.1162	YES
4	Shapiro-Wilk	V4	0.9805	0.1452	YES
5	Shapiro-Wilk	V5	0.9913	0.7693	YES

En la tabla 1.17 aparece un resumen descriptivo de las variables del conjunto de datos p-variado.

Tabla 1.17: Resumen Descriptivo

	n	Media	DesvEst	Mediana	Min	Máx	Per.25	Per.75	Asimetría	Kurtosis
V1	100	-0.054	2.047	-0.139	-5.314	3.939	-1.407	1.602	-0.121	-0.599
V2	100	0.116	2.077	-0.015	-6.984	4.627	-1.309	1.680	-0.349	0.178
V3	100	-0.041	1.926	-0.129	-4.091	3.868	-1.563	1.439	0.092	-0.801
V4	100	0.063	1.732	-0.071	-4.752	6.421	-0.980	1.252	0.376	1.119
V5	100	0.003	2.117	-0.080	-5.084	4.518	-1.345	1.544	-0.022	-0.510

1.15. Gráficos QQ-Plot

Resultados con Gráfico Q
Q-Plot para la PH de Normalidad Multivariada utilizando la función
 ${\tt mvn}.$

1.16. Pruena de NM de Shapiro-Wilk

Prueba de Shapiro_Multivariada para normalidad con la función mshapiro.test del paquete: mvnormtest.

Shapiro-Wilk normality test

data: ZW = 0.95736, p-value = 0.00262

Tabla 1.18: Prueba de Normalidad Multivariada de Royston

	Prueba	Valor Estadística	Valor-p	Resultado
1	Royston	9.51937	0.08949	YES

1.17. Prueba de Norm. multivariada basada en Asimetría

A continuación se tienen los resultados de la PH para NM basada en Asimetría, utilizando la función mvnorm.skew.test del paquete *ICS*. Favor exlorar este paquete y sus funciones disponibles.

Multivariate Normality Test Based on Skewness

data: datos_gen U = 6.3709, df = 5, p-value = 0.2718

Multivariate Normality Test Based on Skewness

data: datos[, c(2, 5, 6)] U = 5.0067, df = 3, p-value = 0.1713

1.18. Gráfico QQ-Plot (chi-Cuadrado)

Gráfico qq-plot para Normalidad Multivariada con la función mqqnorm.

Gráfico QQ-Plot para Normalidad Multivariada

[1] 29 71

1.19. Mas ejemplos de Prueba de NM3

Resultados con Gráfico Box-Plot para la PH de Normalidad Multivariada utilizando la función mvn.

Tabla 1.19: Salidas sin Resumen Descriptivo

Test		Statistic		p value		Result
Mard	ia Skewness	30.25672980	0418	0.6963931	5165067	YES
Mard	ia Kurtosis	-0.73109247	9531421	0.4647226	67566359	YES
MVN		NA		NA		YES
	Test	Variable	Statistic	p value	Normalit	<u>y</u>
	Shapiro-Wilk	V1	0.9861	0.3829	YES	
	Shapiro-Wilk	V2	0.9811	0.1631	YES	

0.9793

0.9805

0.9913

0.1162

0.1452

0.7693

YES

YES

YES

En la tabla 1.20, se tienen los resultados de PH con la función mvn junto con Observaciones atípicas y transformaciones de Box-Cox.

Shapiro-Wilk

Shapiro-Wilk

 ${\bf Shapiro-Wilk}$

V3

V4

V5

Tabla 1.20: Salidas Obs. Atípicas y Tranf. de Box-Cox

Test		Statistic	1	p value		Result
	ia Skewness ia Kurtosis	17.02561382 0.373894975	940776	0.073799128 0.708482454		YES YES
101 0 10	Test	NA Variable	Statistic	p value	Normalit	YES ty
	Shapiro-Wilk Shapiro-Wilk		0.9694 0.9815	0.3155 0.7200	YES YES	
ean	Shapiro-Wilk Std.Dev	V6 Media	0.9729	0.4109 Min	YES	

	n	Mean	Std.Dev	Median	Min	Max	25th	75th	Skew	
V2	42	1205.1067598	424.7391971	1240.5067401	266.6349930	2152.3514225	1028.5059285	1467.7200408	-0.2782877	-0
V5	42	0.6827805	0.0375328	0.6824644	0.5962895	0.7608499	0.6557382	0.7024814	0.0573767	-C
V6	42	1.3709774	0.1262033	1.3798332	1.1099916	1.6235217	1.3096332	1.4347636	-0.1617803	-0

	Observation	Mahalanobis Distance	Outlier		X
24	24	13.876	TRUE	V2	1.6423277
35	35	12.438	TRUE	V5	-0.1698227
2	2	11.854	TRUE	V6	0.1505487
3	3	10.634	TRUE		

En la tabla 1.21, se muestran las observaciones atípicas en los datos.

Tabla 1.21: Observaciones Atípicas

	Observation	Mahalanobis Distance	Outlier
24	24	13.876	TRUE
35	35	12.438	TRUE
2	2	11.854	TRUE
3	3	10.634	TRUE

En la tabla 1.22, se muestran los valores de Lambda para las transformaciones de Box-Cox.

Tabla 1.22: Valores de lambda para Box-Cox

	X
V2	1.6423277
V5	-0.1698227
V6	0.1505487

En la tabla 1.23, se muestran los nuevos datos transfromados con Box-Cox.

Robust Squared Mahalanobis Distance

Tabla 1.23: Datos transformados con Box-Cox

	V2	V5	V6
1	1863.1410	0.6557382	1.367600
10	925.4211	0.6468851	1.392067
11	1097.4200	0.6763590	1.179859
12	1649.6353	0.6557382	1.340381
13	1122.9194	0.6121054	1.414323
4.4	1050 1500	0.005.1005	1.040001
14	1072.1502	0.6654997	1.340381
15	1122.9194	0.7024814	1.414323
16	1253.8222	0.6885698	1.414323
17	1227.1913	0.7185933	1.340381
18	1097.4200	0.6244722	1.232081
19	997.7304	0.6468851	1.109992
20	1047.1112	0.6885698	1.274175
21	878.4044	0.6387949	1.232081
22	1561.2690	0.7185933	1.309633
23	1335.0496	0.6468851	1.434764
25	1418.2575	0.6763590	1.603269
26	1446.4291	0.7185933	1.309633
27	1280.6763	0.6654997	1.434764
28	1307.7524	0.7185933	1.414323
29	878.4044	0.6885698	1.367600
30	376.2713	0.7185933	1.109992
31	1097.4200	0.6763590	1.340381
32	658.0211	0.6557382	1.367600
33	576.9644	0.7024814	1.232081
34	1200.7844	0.6763590	1.613575
-			4 44 4000
36	1474.8170	0.6885698	1.414323
37	1503.4202	0.7376532	1.453682
38	1503.4202	0.6468851	1.545182
39	1307.7524	0.6885698	1.623522
4	1561.2690	0.7024814	1.503346
40	1307.7524	0.7024814	1.309633
41	1022.3042	0.6654997	1.487812
42	427.6687	0.7376532	1.274175
5	1649.6353	0.7024814	1.414323
6	1619.9686	0.6557382	1.453682
7	1446.4291	0.6557382	1.503346
8	1122.9194	0.5962895	1.487812
9	1390.3031	0.6654997	1.434764

1.20. Función R que representa datos bivariados, junto con elipses de confianza

Con esta función se realzia un gráfico de dispersión de dos variables junto con dos elipses de confianza del $(1-\alpha_1)100\,\%$ y $(1-\alpha_2)100\,\%$. El centro de la elipse está representado por un punto de color azul.

Con μ y Σ dados, $(1-\alpha_1)$, $(1-\alpha_2)100\%$

Se utiliza la función gen Positive
Def Mat del paquete cluster Generation para generar Matrices Simétricas Definida-Positiva que se usan como Matrices de Var-Cov
 Σ de los datos Normales Multivariados generados posteriormente.

La matriz de Var-Cov Utilizada es:

Tabla 1.24: Matrix Var-Cov

3.4044333	-0.3668485
-0.3668485	7.4137224

Ahora para un conjunto de **datos bi-variados dado**, se utiliza la función anterior para representar los datos gráficamente junto a elipses de confianza específicas.

Tabla 1.25: Encabezado de Datos

V5	V6
12	8
9	5
5	6
8	15
8	10

El Vector de medias y La matriz de Var-Cov Utilizadas son:

Tabla 1.26: Vector de Medias

	X
V5	10.047619
V6	9.404762

Tabla 1.27: Matriz de var-Cov

	V5	V6
V5	11.363531	3.126597
V6	3.126597	30.978513

Con μ y Σ dados, $(1-\alpha_1)$, $(1-\alpha_2)100\%$

1.21. Función R que representa datos bivariados, junto con el vector de medias

Con esta función se realzia un gráfico de dispersión de dos variables junto con una elipse de confianza del $(1 - \alpha)100\%$. El centro de la elipse está representado por un punto de color azul.

Con esta función se realzia una elipse de confianza del $(1 - \alpha)100\%$. El centro de la elipse está representado por un punto de color azul.

Se utiliza la función gen Positive
Def Mat del paquete cluster Generation para generar Matrices Simétricas Definida-Positiva que se usan como Matrices de Var-Cov
 Σ de los datos Normales Multivariados generados posteriormente. La matriz de Var-Cov Utilizada es:

Tabla 1.28: Matriz de var-Cov

7.313265	-2.960951
-2.960951	5.665009

Con μ y Σ dados, $(1-\alpha)100\%$

Con esta función se realzia un gráfico de dispersión de dos variables junto con una elipse de confianza del $(1-\alpha)100\%$. El centro de la elipse está representado por un punto de color azul.

Tabla 1.29: Encabezado de Datos

V5	V6
12	8
9	5
5	6
8	15
8	10

El Vector de medias y La matriz de Var-Cov Utilizadas son:

Tabla 1.30: Vector de Medias

	X
V5	10.047619
V6	9.404762

Tabla 1.31: Matriz de var-Cov

	V5	V6
V5	11.363531	3.126597
V6	3.126597	30.978513

Con $\underline{\mu}$ y Σ dados, $(1-\alpha)100\%$

Ahora para un conjunto de **datos bi-variados dado**, se utiliza la función anterior para representar una elipse de confianza específica.

Tabla 1.32: Encabezado de Datos

V5	V6
12	8
9	5
5	6
8	15
8	10

El Vector de medias y La matriz de Var-Cov Utilizadas son:

Tabla 1.33: Vector de Medias

	X
	- A
V5	10.047619
V6	9.404762

Tabla 1.34: Matriz de var-Cov

	V5	V6
V5	11.363531	3.126597
V6	3.126597	30.978513

Con $\underline{\mu}$ y Σ dados, $(1-\alpha)100\%$

