2013年台風Yolanda(Haiyan)による 高潮災害の調査と分析

柴山 知也¹・松丸 亮²・高木 泰士³・Mario P. de Leon⁴・ Esteban Miguel⁵・三上 貴仁⁶・大山 剛弘⁷・中村 亮太⁸

¹フェロー 早稲田大学教授 理工学術院(〒169-8555 東京都新宿区大久保3-4-1) E-mail:shibayama@waseda.jp

²正会員 東洋大学教授 国際地域学部(〒112-8606 東京都文京区白山5-28-20)

³正会員 東京工業大学准教授 大学院理工学研究科(〒152-8550 東京都目黒区大岡山2-12-1)

⁴デラサール大学准教授 土木工学科(2401 Taft Avenue, Manila 1004, Philippines)

⁵東京大学特任准教授 大学院新領域創成科学研究科(〒277-8561 千葉県柏市柏の葉5-1-5)

⁶正会員 早稲田大学講師 理工学術院(〒169-8555 東京都新宿区大久保3-4-1)

⁷株式会社三菱総合研究所(〒100-8141 東京都千代田区永田町2-10-3)

⁸早稲田大学大学院創造理工学研究科(〒169-8555 東京都新宿区大久保3-4-1)

2013年11月にフィリピン中部を襲った台風Yolanda (Haiyan) は高潮と強風により沿岸域に甚大な被害をもたらした.本稿では、被害の大きかったレイテ島とサマル島を中心に、災害発生から約1か月後に実施した現地調査の結果を示し、今回の災害の規模と被災状況を明らかにするとともに、近年生じた他の地域における高潮災害と比較することで、今回の災害の特徴を分析した.高潮高さはレイテ湾の最奥部沿岸の広範な地域で5 mを超えており、高潮高さが概ね3 mを超えている地点で家屋の流失等の大きな被害が生じていた.今回の災害は、強風による被害と強風に伴う急速な変動をもつ高潮が海岸線から数百mの局所的な範囲に被害をもたらした点が特徴であった.

Key Words: storm surge, field survey, Typhoon Yolanda (Haiyan), Leyte, Samar, Philippines

1. はじめに

2013年11月にフィリピン中部を襲った台風Yolanda (Haiyan) は各所に甚大な被害をもたらし、National Disaster Risk Reduction and Management Council (NDRRMC) によればり、犠牲者の数はフィリピン全土で死者6,268人・行方不明者1,061人にもおよんだ(2014年3月14日時点). 特に、台風が強い勢力のまま接近したレイテ島(死者5,370人・行方不明者931人)とサマル島(死者492人・行方不明者74人)の二島における被害が大きかった。被害の主たる要因は、沿岸部での高潮と強風であった。

本稿では、レイテ島とサマル島を中心に、災害発生から約1か月後に筆者らが実施した現地調査の結果を示し、今回の災害の規模と被害状況を明らかにするとともに、近年生じた他の地域における高潮災害と比較することで、今回の災害の特徴を分析する. なお、台風の統計的特徴や数値解析による検証結果、社会科学的な影響分析については同調査団による別論文^{2,3}を参照されたい.

2. 台風Yolandaの概要

図-1に、Regional Specialized Meteorological Center (RSMC) Tokyoのベストトラックによる台風Yolandaの経路を示す。台風は中心気圧900 hPa前後の強い勢力のままレイテ島とサマル島に接近し、現地時間(UTC+8)11月8日朝にレイテ島に上陸している。その後は勢力を弱めながら西へと

図-1 台風 Yolanda の経路 (RSMC Tokyo) と現地調査地点

進んでいる. NDRRMCによれば¹⁾, 4:40にサマル島のGuiuan, 7:00にレイテ島のTolosa, 9:40にセブ島のDaanbantayanに上陸している.

経路を見ると、台風はレイテ島とサマル島に囲まれたレイテ湾の中央部を東から西へと通過したことがわかる。レイテ湾北部の浅海域では台風の接近に伴い、風向きが北よりから東より、南よりへと変化し、湾奥部の高潮の挙動に大きく影響を与えたと考えられる。

3. 現地調査

現地調査は、12月4日から13日にかけて実施した.調査範囲は、今回の災害で大きな被害を受けたレイテ島とサマル島のレイテ湾沿岸、および、台風の上陸地点のひとつであるセブ島北東部沿岸である(図-1中の赤丸). 高潮高さの計測は、目撃証言や痕跡等に基づいて、ハンディGPS、レーザー距離計、スタッフを用いて行った.

現地調査における計測結果の一覧を表-1に、レイテ湾沿岸の高潮高さの分布を図-2に示す。今回の現地調査では、風雨等の影響により高潮による浸水の明瞭な痕跡を見つけることが困難であったため、計測した高潮高さの多くは高潮の襲来を実際に目撃した住民の証言に拠るものとなっている。本稿に示す高潮高さは、潮位計算プロ

グラムWXTide32で求めた潮位をもとに、推定高潮襲来 時刻における高さに補正している。レイテ湾沿岸では Taclobanの11月8日8:00、セブ島沿岸ではBogo Bayの11月8 日10:00の推算潮位からの高さにそれぞれ補正している。 高潮高さの大まかな傾向として、レイテ湾の最奥部 (サンペドロ湾)沿岸で5 mを超えており、それ以外の 地点では概ね2-4 mであることがわかる。以下に、高潮 高さを含めた具体的な現地調査の結果について、フィリ ピンの行政単位であるCity / Municipalityごとに記述する (判明している場所については、最小の行政単位である Barangayの名も記載する).

(1) レイテ島

島の北東部沿岸を調査した.レイテ島とサマル島の属する地方 (Region VIII) の最大都市であるTacloban Cityを含む台風の上陸地点より北側の沿岸一帯において、特に大きな高潮被害が生じていた.台風の上陸地点より南側の地域では、北側の地域に比べて高潮の高さも低く、海岸近くの限られた範囲でのみ高潮被害が生じていた.

a) Tacloban City (図-2, 地点L1)

Tacloban Cityは、レイテ湾の最奥部であるサンペドロ湾に面しており、北に突き出た半島上にある空港や海岸沿いに立地する住宅密集地で大きな高潮被害が生じていた。市内では5箇所で調査を行った(図-3参照).

表-1 計測結果一覧 (I:浸水高, R:遡上高, P:湾内高潮高, -:コメントのみの地点)

No.	場所	緯度(北緯)	経度(東経)	高潮高 (m)	浸水深 (m)	種類	根拠/コメント
1	Tacloban Airport	11° 13′39.54″	125°01′33.84″	5.25	3.45	I	高潮襲来時に現地にいた人の証言
2	Tacloban City Hall	11° 14′35.34″	125° 00′ 33.30″	6.20	0.00	R	道路面の被害
3	Tacloban City Convention Center	11°13′08.82″	125° 00′ 18.96″	7.02	-	I	高潮襲来時に現地にいた人の証言
4	Tacloban City Convention Center	11° 13′08.10″	125° 00′ 18.36″	3.90	2.57	I	建物内壁面に付着した漂流物
5	Basey	11° 16′48.75″	125°04′08.85″	5.76	2.56	I	台座のタイルのはがれ+目撃証言
6	Basey	11° 16′49.53″	125° 04′ 08.85″	5.87	2.61	I	「1階が冠水した」という多数の証言
7	Basey	11° 16′ 50.70″	125°04′08.34″	5.22	0.00	R	高潮襲来時に現地にいた人の証言
8	San Juanico Bridge (Samar side)	11° 18′34.92″	124° 58′ 26.82″	4.07	2.82	I	高潮襲来時に現地にいた人の証言
9	San Juanico Bridge (Samar side)	11° 18′ 35.52″	124° 58′ 25.38″	4.76	3.57	I	高潮襲来時に現地にいた人の証言
10	Santo Nino, Quinapondan	11°07′45.60″	125° 31′ 03.24″	2.72	1.62	I	高潮襲来時に現地にいた人の証言
11	Santo Nino, Quinapondan	11°07′43.80″	125° 31′01.32″	2.22	0.00	R	高潮襲来時に現地にいた人の証言
12	Gigoso, Giporlos	11°05′16.14″	125° 30′ 43.38″	3.93	2.50	I	高潮襲来時に現地にいた人の証言(建物内)
13	Gigoso, Giporlos	11°05′16.14″	125° 30′ 43.38″	2.77	1.34	I	高潮襲来時に現地にいた人の証言
14	Gigoso, Giporlos	11°05′16.62″	125° 30′ 38.94″	2.85	1.36	I	高潮襲来時に現地にいた人の証言
15	Balangiga	11°06′25.62″	125° 23′ 07.38″	2.78	1.30	I	高潮襲来時に現地にいた人の証言
16	Balangiga	11°06′30.48″	125° 23′ 09.48″	1.04	0.13	I	高潮襲来時に現地にいた人の証言
17	Balangiga	11°06′31.56″	125° 23′ 10.02″	1.10	0.00	R	高潮襲来時に現地にいた人の証言
18	Bislig, Tanauan	11°04′37.80″	125° 01′ 58.38″	5.03	3.69	I	証言(第一波襲来時の高さ)
19	Bislig, Tanauan	11°04′37.86″	125° 01′ 58.14″	7.71	6.20	I	証言(第二波襲来時に波が砕けていた高さ)
20	Bislig, Tanauan	11°04′38.22″	125° 01′ 55.32″	4.49	2.53	I	高潮襲来時に現地にいた人の証言(建物内)
21	Bislig, Tanauan	11°04′35.04″	125° 01′ 50.40″	3.72	1.90	I	高潮襲来時に現地にいた人の証言(建物内)
22	Oil factory, Tanauan	11°06′19.92″	125° 01′ 16.44″	6.10	3.70	I	高潮襲来時に現地にいた人の証言
23	Anibong, Tacloban Clty	11° 15′08.28″	124° 59′ 26.76″	5.65	1.03	I	住居内壁面の浸水痕+住人の証言
24	Paterno Street, Tacloban City	11° 14′28.44″	125° 00′ 13.50″	4.31	0.55	I	高潮襲来時に現地にいた人の証言
25	Abuyog	10°44′48.84″	125°00′48.12″	2.56	0.49	I	高潮襲来時に現地にいた人の証言
26	Poblacion District 1, MacArthur	10°49′46.00″	125° 00′ 11.07″	-	-	-	聞き取りの結果、顕著な高潮被害なし
27	Luan, Dulag	10° 58′ 35.16″	125°02′09.00″	2.84	0.80	I	高潮襲来時に現地にいた人の証言
28	Telegrafo, Tolosa	11°02′14.94″	125° 02′ 15.66″	4.30	2.16	I	高潮襲来時に現地にいた人の証言
29	Bogo	11°03′14.58″	124° 00′ 19.14″	-	-	-	高潮は216m (岸壁高さ) 以下
30	Tindog, Medellin	11°07′17.40″	124° 01′ 17.16″	1.88	-	P	高潮襲来時に現地にいた人の証言
31	Bagay, Daanbantayan	11°11′48.12″	124° 02′ 15.30″	-	-	-	高潮は230m(住居床面高さ)以下

図-2 レイテ湾沿岸の調査地点と島別(レイテ島・サマル島)の高潮痕跡高分布

図-3 サンペドロ湾沿岸の調査地点

空港(図-3, 地点a) は、低平な半島上に立地しており、高潮被害を受けて通常の空港機能を停止していた。 高潮襲来時に空港へ残っていた空港職員の証言に基づく 管制塔における浸水高は5.25 mであった。

Tacloban City Convention Center (図-3, 地点b) は、北向きに開いた入り江の奥に位置し、調査時には避難所や救援物資の配布所となっており、周囲には仮設テントも多数見られた。Centerより約200 m南にある2軒の被災した建物で調査したところ、2階建ての建物では、高潮を目撃した住民より2階まで浸水したという証言が得られ、その高さは7.02 mであった。もう一方の隣接した1階建ての建物(写真-1)では、建物内の壁面に付着した漂流物から1階天井までの浸水は確認できたが(天井までの高さは3.90 m)、浸水の最大高さを明らかにすることはできなかった。

Paterno Street (図-3, 地点c) では、海岸線から約300 m の場所に位置するホテル (Alejandro Hotel) 周辺で調査を行った.このホテルは、Web上に投稿された高潮襲来時の様子を記録した映像4の撮影場所である.映像に映っているホテル前の家屋に住む家族から証言を得ることが

写真-1 Tacloban City Convention Center 近くの被災した建物

でき、浸水高と高潮襲来時の状況を知ることができた. 家屋前での浸水高は4.31 mであった. 家屋での浸水は7時半頃から始まり、最初は家屋内にとどまっていたが、水位が腰の高さ(約90 cm)まで上昇したところで、家族でホテルへと避難したという.

Tacloban City Hall (図-3, 地点d) は,高台の上にあり高潮被害を受けていなかったが,敷地の前を走る道路は路面の破壊状況より浸水したと考えられた.道路より内陸の部分は浸水していなかったことから,道路を遡上点とし,その高さは6.20 mであった.

Anibong (図-3, 地点e) は、港に隣接した小規模住宅の密集地であり高潮により家屋の流失等の被害を受けていた(写真-2). 全長50 m程の貨物船が複数打ち上げられており、うち1隻は沿岸の道路上まで達していたことから、船などの漂流物が被害を拡大したと考えられる.住宅地の背後は斜面になっており、斜面に隣接した家屋で聞き取りを行ったところ、住民は高潮襲来時には家の裏手から斜面へと避難したという.この家屋内壁面の浸水痕跡と住民の証言に基づく浸水高は5.65 mであった.

b) Tanauan (図-2, 地点L2)

Tanauanでは、製油所とそこから約3 km南に位置する 集落 (Bislig) の2箇所において調査を行った. ともに高潮 による被害を受けていたことを確認した.

製油所では、7個のオイルタンクのうち、最も海側にあるタンクでは海側の面にへこみが生じ(写真-3)、空であったタンクは約170 m陸側へ流されていた。高潮襲来時に製油所内の建物内にいた現地の工場責任者の証言に基づくこの建物での浸水高は6.10 mであった。

Bisligでは、海岸線から約300 mの位置を走る道路より海側の範囲で建物へ高潮と強風による被害が生じていた(図-4). 高潮襲来時に海岸近くの建物の2階にいた住民の証言に基づき、海岸近くでの第一波 (5.03 m) と第二波 (7.71 m) の高さを計測したが、この高さには風波の分を含んでいる可能性がある。海岸線から約100 mの場所にある家屋 (写真-4) での浸水高は4.49 mであり、海岸線から約300 mの場所にある道路よりも陸側の家屋での浸水高は3.72 mであった。住民の証言によると、襲来した高潮は多くの漂流物を含んでおり、流動も激しかったという。

c) Tolosa (図-2, 地点L3)

海岸線から約500 mの位置を海岸線と平行に走る道路 沿いに広がっている市街地では、顕著な高潮被害を確認 することはできなかった。海岸近くに位置する建物には 高潮によると思われる被害が見られ、高潮襲来時に建物 にいた住民に聞き取りを行ったところ、高潮の襲来を確

写真-2 Anibong, Tacloban City の被害状況

写真-3 Tanauan の製油所におけるオイルタンク被害

認することができた. 証言に基づく建物での浸水高は 4.30 mであった.

d) Dulag (図-2, 地点L4)

高潮により被害を受けたと見られる集落 (Luan) で聞き取りを行ったところ,地区の住民は高潮襲来時には地区の学校 (写真-5) に避難していたが,避難先の学校にも高潮が押し寄せていたことがわかった.証言に基づく学校での浸水高は2.84 m (床上浸水は80 cm) であった.学校は海岸線から約300 mの場所に位置し,地盤高は2 m程度である.集落の周囲には高台や高さのある強固な建物がなく,避難場所の確保が課題であると考えられる.

e) MacArthur (図-2, 地点L5)

海岸線から約800 mの位置を海岸線と平行に走る道路 沿いに広がっている市街地では、高潮の目撃証言は得ら れなかった。海岸近くにある企業の守衛詰所では、波が 来たとの証言を得たが、高潮によるものか風波によるも のかを判別することはできなった。

f) Abuyog (図-2, 地点L6)

台風襲来時に市役所で災害対応にあたっていた市の災

図-4 Bislig, Tanauan における調査範囲の平面概略図

写真-4 Bislig, Tanauan の被災した建物

写真-5 Luan, Dulag の避難先の学校

害担当官に聞き取りを行ったところ,海岸線から約100 mの場所で膝丈程度まで水位が上昇したとのことであり,その高さは2.56 mであった.海岸近くの建物の様子から顕著な高潮被害を確認することはできなかった.

(2) サマル島

レイテ島とサマル島を結ぶSan Juanico Bridgeから,島の南部沿岸を走る道路に沿って,高潮被害を受けた集落の調査を行った.調査期間の制約上,島の南東部や東部の外洋に面した地域での調査は実施できなかった.サンペドロ湾に面していない地域では,湾内の地域に比べて高潮高さは低いものの家屋の流失等の被害が生じていた.

a) San Juanico Bridge (図-2, 地点S1)

橋のサマル島側の付け根部分の海峡に面した場所に住む住民に聞き取りを行ったところ、水位は橋桁の下部まで上昇し(浸水高4.76 m)、家屋でも1階の天井付近まで水位が上昇した(浸水高4.07 m)ことがわかった.

b) Basey (図-2, 地点S2)

調査を行った市庁舎周辺では、高潮と強風により被害を受けた建物や瓦礫が多く見られた.3箇所で高潮高さを計測し、海岸から遡上点まで順に5.76 m,5.87 m,5.22 mであった(図-5).海岸線から遡上点までの距離は約100 mであり、海岸近くの限られた範囲でのみ高潮被害を受けたことがわかる。住民の証言によると、台風接近に伴って風が強くなった後、海水が沖へと引いていき遠浅な海底が露出した後に高潮が襲来し、押し寄せた海水は黒かったという。

c) Balangiga (図-2, 地点S3)

高潮襲来時に現地にいた住民の証言より、海岸線から 垂直に延びる道路に沿って200 m以上内陸まで高潮が押 し寄せたことが確認できた。海岸近くでは、住民の証言 に基づいて、建物の屋根に上がり大丈夫だと思い下りた ときの高潮高さを計測したところ、2.78 mであった。道 路沿いの高潮高さは、海岸線から約200 mの場所で1.04 m、 海岸線から約230 mの遡上点では1.10 mであった。

d) Giporlos (図-2, 地点S4)

道路沿いの市街地を調査したところ,道路から外れた岬の先端にある集落 (Gigoso) が大きな高潮被害を受けたとの情報を得,市長の案内によりその集落の調査を行った.海岸近くの多くの家屋が流失し,仮設テントが多数見られた.海岸近くで倒壊の被害を免れた2階建ての建物(写真-6)で住民から高潮襲来の状況を聞くことができた.高潮襲来時は2階に避難しており,高潮により1階は水没し,2階にも少し水が上がってきたとのことであった.この場所での浸水高は少なくとも1階天井まではあったと考えられ,その高さは3.93 mであった.高潮が襲来してからしばらくして大丈夫だと思い戻ってきた住民の証言に基づくこの建物前での浸水高は2.77 mであっ

図-5 Baseyにおける調査範囲の平面概略図

写真-6 Gigoso, Giporlos の被災した建物

た. 海岸線から約100 mの地点にある建物では、高潮襲来時に建物にとどまっていた住民に聞き取りを行い、証言に基づく建物内での浸水高は2.85 mであった.

e) Quinapondan (図-2, 地点S5)

海に面した集落 (Santo Nino) で高潮の目撃証言が得られ、高潮は海岸線から約80 mの道路にまで達したとのことであった. 証言に基づく海岸近くの建物での浸水高は2.72 mであり、遡上点(道路)の高さは2.22 mであった.

(3) セブ島

台風の上陸地点周辺である島北東部沿岸の3地点において調査を行った。台風襲来時は干潮時であったこともあり、いずれにおいても顕著な高潮被害を確認することはできなかった。また、セブ島北東部沿岸ではサンゴ礁のリーフやマングローブ林が発達しており、これらが高潮や風波の減勢に寄与した可能性も考えられる。以下に、各地点での調査結果について北から順に述べる。

Daanbantayanでは、海岸近くのマングローブ帯にある木造家屋に住む住民に聞き取りを行ったところ、台風襲来時には避難していたため高潮の襲来状況はわからないが、台風通過後に家屋に戻ってきたときに床上が浸水した痕跡はなかった、との証言を得た、仮にこの地点に高潮が襲来していたとしても、その高さは家屋床面の高さ(2.30 m)以下であると考えられる.

Medellinでは、台風襲来時に現地にいたリゾート施設の従業員に聞き取りを行ったところ、台風襲来時(9:30から10:00の間)は干潮であったが、遠浅な海岸の沖合で砕波した波が施設まで押し寄せ、通常の干潮の状況とは異なっていた、との証言を得た。陸上が浸水すること

はなかったが、岸壁の途中まで水位が上昇したとの証言があり、その高さは1.88 mであった.

Bogoでは、港の周辺に住む住民に聞き取りを行ったところ、高潮による陸上の浸水は発生しなかったことがわかった。そのため、高潮高さは港の岸壁の高さ (2.16 m) 以下であると考えられる.

4. 近年の高潮災害との比較

現地調査結果より、概ね3 m以上の高潮高さが計測された場所で、建物に全半壊の被害が見られたといえる。 倒壊を免れた建物では、写真-1、4、6のように、1階部分が浸水し、強風により屋根が破壊されているものが多数見られた。強風による影響は、各所で見られた多数の折れたヤシの木からも察せられた(例えば、写真-4).

ベンガル湾沿岸で生じた2007年サイクロンSidrや2008年サイクロンNargisによる高潮災害^{5,6}では、河口部の広大な低平地で被害が生じたのに対し、今回の災害で高潮被害を受けたのは海岸線から数百mの範囲に限られていた。一方で、同じく被害範囲が限られていた2012年ハリケーンSandyによるマンハッタン地区における高潮災害⁵と比較すると、水位が徐々に上昇するのではなく、引き潮も伴う運動量の大きい高潮が襲来したことが特徴的であった。高潮の減災策を講じるにあたっては、このような台風の経路や沿岸地形に伴って変化する高潮のさまざまな特徴を把握しておくことが必要であると考えられる。

5. おわりに

台風Yolandaによって発生した高潮災害の現地調査を 行い、被害の大きかったレイテ湾沿岸の高潮高さの分布 や高潮挙動の特徴、被害の状況について明らかにするこ とができた。今回の災害は、強風による被害と強風に伴 う急速な変動をもつ高潮が海岸線から数百mの局所的な 範囲に被害をもたらした点が特徴であった。 島嶼国であるフィリピンでは、台風の経路と島との位置関係や沿岸の水深分布などによって、生じ得る高潮の特徴が大きく異なると考えられる。今回の災害を含めたフィリピン各地での過去に生じた高潮災害の検証と同時に、各地域において将来生じ得る高潮の特徴について知見を蓄積していく必要がある。

謝辞:本研究は、私立大学戦略的研究基盤形成支援事業「減災研究の国際展開のための災害研究基盤の形成」、科学研究費補助金基盤 (B) No.22404011 (ともに、代表者:柴山知也) および国際緊急共同研究・調査支援プログラム (J-RAPID) 「台風Yolandaによる高潮災害の根源的検証と災害リスク軽減のための工学・社会科学融合研究」 (代表者:高木泰士) のもとに行われた.調査では、熊谷健蔵氏、Nguyen Danh Thao氏、Ven Paolo Valenzuela氏、Jakee Lim Gremio氏の協力を得た.記して謝意を表する.

参考文献

- NDRRMC: SitRep No.107 Effects of Typhoon "Yolanda" (Haiyan), 2014.
- 高木泰士ほか: 2013 年台風 Yolanda (Haiyan) の統計 的分析および高潮の調査と数値解析, 土木学会論文 集 B3 (海洋開発), Vol.70, No.2, 2014. (投稿中).
- 3) Esteban Miguel ほか: 2013 年台風 Yolanda (Haiyan) 時の災害情報の伝達と住民の避難行動に関する分析, 土木学会論文集 B3 (海洋開発), Vol.70, No.2, 2014. (投稿中)
- 4) iCyclone: Super Typhoon HAIYAN (YOLANDA) in Tacloban City, Philippines (2013), https://www.youtube.com/watch?v=4wrgrJwYdy8.
- 5) 柴山知也ほか: サイクロン Sidr によるバングラデシュ海岸・河川高潮災害の現地調査,海岸工学論文集,第55巻,pp.1396-1400,2008.
- 6) 柴山知也ほか: サイクロン Nargis による高潮被害の調査, 土木学会論文集 B2 (海岸工学), Vol.65, No.1, pp.1376-1380, 2009.
- 7) 三上貴仁ほか:2012年ハリケーンサンディによる高 潮災害のニューヨークにおける現地調査に基づく臨 海都市域の浸水災害と減災策に関する考察,土木学 会論文集B3 (海洋開発), Vol.69, No.2, pp.I_982-I_987, 2013.

FIELD SURVEY AND ANALYSIS OF STORM SURGE CAUSED BY THE 2013 TYPHOON YOLANDA (HAIYAN)

Tomoya SHIBAYAMA, Ryo MATSUMARU, Hiroshi TAKAGI, Mario P. de LEON, Miguel ESTEBAN, Takahito MIKAMI, Takahiro OYAMA and Ryota NAKAMURA

In November 2013, Typhoon Yolanda (Haiyan) struck the central part of the Philippines and caused severe damage to coastal areas due to storm surge and strong wind. In this paper, the results of the field survey conducted one month after the disaster were summarized. Storm surge heights were more than 5 m along the inner part of Leyte Gulf, and severe damage was observed in the areas where storm surge heights were more than 3 m. One of the characteristic features of this disaster was devastating storm surge induced by rapid change of wind direction.