

Berkeley @000

EECS151 L12 CMOS2

	A	В	Out	
	0	0	1	
	0	1	1	
	1	0	1	
	1	1	0	
Γr	uth Tabl	e of a 2 i	input NA	NI
		gate		

- □ PDN: G = AB ⇒ Conduction to GND
- \square PUN: F = \overline{A} + \overline{B} = \overline{AB} \Longrightarrow Conduction to V_{DD}
- $\ \ \, \square \quad \overline{\mathsf{G}(\mathsf{In}_1,\mathsf{In}_2,\mathsf{In}_3,\ldots)} \equiv \overline{\mathsf{F}(\mathsf{In}_1,\overline{\mathsf{In}_2},\overline{\mathsf{In}_3},\ldots)}$

EECS151 L12 CMOS2

Berkeley @000

Berkeley @000

Summary

- CMOS allows for convenient switch level abstraction
- CMOS pull-up and pull-down networks are complementary
 - Graph models for CMOS gates
- Transistor sizing affects gate performance
- $^{\bullet}$ Delay is a linear function of R and C

0

Nikolić Fall 202

43 Berkeley @@@@