I. Introduction to Functions

- A. A function is often referred to as a *mapping*.
- B. Example 1: The assignment of Social Security Numbers to all citizens of the USA.
 - 1. Let $C = \{c \mid x \text{ is a citizen of the USA}\}$ $S = \{s \mid y \text{ is a Social Security Number}\}$
 - 2. Then a function Assn that assigns to each citizen of the USA exactly one social security number is a mapping from the set S to the set C.
 - 3. Formally: The function $Assn: S \rightarrow C$ maps a unique social number to each citizen
 - 4. We can also write: Assn(s) = c where $s \in S \land c \in C$
 - 5. Graphic Representation:

- C. Example 2:
 - 1. The Java method declaration public static long flrTst(double X) $\{ \\ long \quad k = (long) \; X; \\ return \; k;$
 - a. Describes a function which accepts a real value as a parameter and matches it to an integer.
 - b. Therefore the declaration describes a function matches an element of the set of real numbers to a single element of the set of integers.
- D. Formal Definition of Functions:

If A and B are non-empty sets a function f from A to B is an assignment of exactly one element of B to each element of A.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of the set A.

In this case we have a function from the set A to set B so we can write: $f:A\to B$

- 1. In the expression $f: A \rightarrow B$
 - a. A is called the **domain** of f and B is called the **codomain** of f
 - b. f is said to map A to B.
 - c. B is said to be the range, or image, or codomain of f
- 2. In the expression f(a) = b
 - a. a is called the **preimage** of b under f
 - b. b is called the **image** of a under f.

E. Restriction: A function is single-valued mapping

1. In the case of

 $f:A\to B$

there is only a single $b \in B$ for which F(a) = b

2. The graphical representation of a function f shown below shows a single-valued mapping $f: X \to Y$.

3. The graphical representation of a mapping f shown below shows a multiple valued mapping and $f: X \to Y$ is **not** a function.

II. Ordered Pairs

A. Definition:

- 1. An ordered pair (a, b) consists of two elements a and b stored in a specified order.
- 2. Since the two elements are stored in a specified order, $(a, b) \neq (b, a)$

B. Representation

- 1. Collections are sets so a logical alternative would be to represent ordered pairs as sets.
- 2. Problem: Sets do not recognize order so $\{a, b\} = \{b, a\}$
- 3. Solution: Define $(a, b) \equiv \{\{a\}, \{a, b\}\}\}$ where a is the first coordinate and b the second.
- 4. Note: If a = b then

$$(a, b) = (a, a) = \{\{a\}, \{a, a\}\}\$$

= $\{\{a\}, \{a\}\} = \{\{a\}\}\$

III. Theorem: If (a, b) and (x, y) are ordered pairs and (a, b) = (x, y) then a = x and b = y.

Proof: (by cases)

A. If
$$a = b$$
 then $(a, b) = (a, a) = \{\{a\}, \{a, a\}\}\}$
= $\{\{a\}, \{a\}\} = \{\{a\}\}\}$

- 1. Then $(a, b) = (x, y) = \{\{a\}\}\$ so that $(x, y) = \{\{x\}, \{x, y\}\} = \{\{a\}\}\$
- 2. $\{\{a\}\}=\{\{x\}, \{x, y\}\}$ only if $\{\{x\}, \{x, y\}\}$ is a singleton
- 3. This is true only if: $\{\{x\},\,\{x,\,y\}\} = \{\{x\},\,\{x,\,x\}\}$ $= \{\{x\},\,\{x\}\} = \{\{x\}\}$
- 4. Therefore: $\{\{a\}\} = \{\{x\}\}$ so a = x

- B. If $a \neq b$ then $(a, b) = \{\{a\}, \{a, b\}\} = \{\{x\}, \{x, y\}\} = (x, y)$
 - 1. Since $\{\{a\}, \{a, b\}\} = \{\{x\}, \{x, y\}\}$ and the only singletons in each set are $\{a\}$ and $\{x\}$, respectively, we must have $\{a\} = \{x\}$ so a = x
 - 2. Since $\{\{a\}, \{a, b\}\} = \{\{x\}, \{x, y\}\}$ and the only duets in each set are $\{a, b\}$ and $\{x, y\}$, respectively, we must have $\{a, b\} = \{x, y\}$
 - 3. Then, since a = x we must have b = y
- C. Therefore: If (a, b) and (x, y) are ordered pairs and (a, b) = (x, y) then a = x and b = y.

IV. Ordered Pairs, Cartesian Products and Functions.

- A. Definition of Cartesian Product
 - 1. Given two sets, A and B, the Cartesian Product of A and B is denoted by $A \times B$
 - 2. $A \times B = \{(a, b) \mid a \in A \land b \in B\}$ where (a, b) is an *ordered pair*.
 - 3. Note: $A \times B \neq B \times A$
- B. Example:
 - 1. If $X = \{3.1415, 8.9032, 1.8037\}$ and $Y = \{10, 45, 32\}$

then
$$X \times Y = \{ (3.1415, 10), (3.1415, 45), (3.1415, 32), (8.9032, 10), (8.9032, 45), (8.9032, 32), (1.8037, 10), (1.8037, 45), (1.8037, 32) \}$$

- 2. Note: We have constructed a mapping of every element in X to every element in Y.
- 3. Therefore we have defined a function $f: X \to Y$
- 4. So: The Cartesian Product $X \times Y$ is a function $f: X \to Y$

V. Equal Functions

- A. Definition: Two functions are *equal* if and only if:
 - 1. they have the same domain.
 - 2. they have the same codomain.
 - 3. they map each element of their common domain onto the same element in their common codomain.
- B. Assuming $f_a: X \to Y$ and $f_b: A \to B$

then:
$$(f_a = f_b) \leftrightarrow (X = A) \land (Y = B)$$

$$\land$$

$$\left((f(x) = y) \land (f(a) = b) \right) \leftrightarrow \left((x = a) \land (y = b) \right) \right)$$

VI. One-to-One Functions

- A. Definition: A function f is said to be **one-to-one**, or an **injunction**, or an **injective function**, if and only if:
 - a. f(a) = f(b) implies that a = b for all a and b in X, the domain of f.
 - b. $f(a) \neq f(b)$ implies that $a \neq b$ for any a or b in the domain of f.
- B. Note that **b**. is the contrapositive expression of **a**. since the contrapositive of

$$(\forall a \in A)(\forall b \in B)\Big(\big(f(a) = f(b)\big) \to (a = b)\Big)$$

is:
$$\neg \Big((\forall a \in X) (\forall b \in X) (a = b) \Big) \rightarrow \neg \Big(f(a) = f(b) \Big)$$

or

$$\Big((\exists a \in X) \, \vee (\exists b \in X) \, (a \neq b)\Big) \to \Big(f(a) \neq f(b)\Big)$$

C. Examples

- 1. Set Definitions:
 - a. $Y = \{y \mid y \text{ is a student in this Discrete Math Class}\}$
 - b. $C = \{c \mid c \text{ is a mobile phone number}\}$
 - c. $ID = \{id \mid id \text{ is a student ID number}\}$
 - d. $G = \{g \mid g \text{ is a students grade for the class}\}\$ = $\{A, B, C, D, F, Inc\}$
 - e. $H = \{h \mid h \text{ is a city/town in the US}\}$
- 2. Consider $(\forall y \in Y)(\exists c \in C)(f(y) = c)$ where f assigns to each student in the class their mobile phone number.

f is almost certainly one-to-one, failing in this classification only if the phone providers have severely malfunctioned.

3. Consider: $(\forall y \in Y)(\exists id \in ID)(i(y) = id)$ where i assigns to each student in the class their student ID number.

i is almost certainly one-to-one. If not, the registrar's office is suffering from some severe problem.

4. Consider: $(\forall y \in Y)(\exists g \in G)(gr(y) = g)$ where gr assigns to each student their final grade.

Since |G| = 6 and |Y| = 80 non-empty subsets of Y class will receive the same grade. Therefore gr is not 1-to-1.

5. Consider: $(\forall y \in Y)(\exists h \in H)(ht(y) = h)$ where ht assigns to each student their home town.

Since |Y| = 80 the probability that at least two students came to CWRU from the same town is quite high. Therefore it is most likely that ht is not 1-to-1.

- D. To Prove a Function $f: A \rightarrow B$ is One-to-One
 - 1. For $f: A \to B$ show that if f(x) = f(y) for **arbitrary** $x, y \in A$ then x = y.
 - 2. Example: $z=f(x)=\sqrt{x}$ where A=N, the set of natural numbers and B=R, the set of real numbers
 - a. If $\sqrt{x} = \sqrt{y}$ then $(\sqrt{x})^2 = (\sqrt{y})^2$
 - b. $(\sqrt{x})^2 = x = y = (\sqrt{y})^2$
 - c. Therefore: $(f(x) = f(y)) \rightarrow x = y$
- E. To Prove a Function $f: A \rightarrow B$ is Not One-to-One
 - 1. For $f:A\to B$ find particular elements $x,\,y\in A$ such that $x\neq y$ and show that f(x)=f(y)
 - 2. Example: $z = f(x) = x^2$ where A = Z, the set of integers and B = R, the set of real numbers
 - a. Consider x = 2 and y = -2
 - b. Then $2 = x \neq y = -2$
 - c. But $f(x) = x^2 = 4 = y^2 = f(y)$
 - d. Therefore: $\neg \left(\left(f(x) = f(y) \right) \rightarrow x = y \right)$

VII. Strictly Increasing/Decreasing Functions

A. Definitions:

1. A function f whose domain and codomain is \mathbf{R} , the set of real numbers, is called *increasing* if $f(x) \leq f(y)$ whenever x < y and $x, y \in \mathbf{R}$

Alternatively, f is increasing if

$$\forall x \forall y \Big((x < y) \to (f(x) \le f(y)) \Big)$$

2. A function f whose domain and codomain is \mathbf{R} , the set of real numbers, is called *strictly increasing* if f(x) < f(y) whenever x < y and $x, y \in \mathbf{R}$

Alternatively, f is strictly increasing if

$$\forall x \forall y \Big((x < y) \to (f(x) < f(y)) \Big)$$

3. A function f whose domain and codomain is \mathbf{R} , the set of real numbers, is called *decreasing* if $f(x) \ge f(y)$ whenever x > y and $x, y \in \mathbf{R}$

Alternatively, f is decreasing if

$$\forall x \forall y \Big((x > y) \to (f(x) \ge f(y)) \Big)$$

4. A function f whose domain and codomain is \mathbf{R} , the set of real numbers, is called *strictly decreasing* if f(x) > f(y) whenever x > y and $x, y \in \mathbf{R}$

Alternatively, f is strictly increasing if

$$\forall x \forall y \Big((x > y) \to (f(x) > f(y)) \Big)$$

B. Example Problem 1:

Prove that a strictly increasing function f from R to itself must be one-to-one.

1. Premise: Definition of strictly increasing function, or:

$$\forall x \forall y \Big((x < y) \to (f(x) < f(y)) \Big)$$

2. x < y requires that $x \neq y$

3. Similarly, f(x) < f(y) requires that $f(x) \neq f(y)$

4. Therefore $\forall x \forall y \Big((x < y) \to (f(x) < f(y)) \Big)$ is a special case for: $\forall x \forall y \Big((x \neq y) \to (f(x) \neq f(y)) \Big)$

5. Therefore the definition of strictly increasing is a special case of a contrapositive statement of the definition of a 1-to-1 function.

6. Therefore a strictly increasing function f from R to itself must be one-to-one.

C. Example Problem 2:

Give an example of an increasing function from R to R that is not one-to-one.

1. A very simple example is f(x) = c where $c \in \mathbf{R}$ is some constant.

Then, if a>b we must have f(a)=c=f(b) so f cannot be 1-to-1 by definition.

2. A slightly more complicated example is defined as follows:

a.
$$f(x) = x$$
 for $x < -1$

b.
$$f(x) = 0$$
 for $-1 \le x \le 1$

c.
$$f(x) = x - 4$$
 $x > 1$

Then
$$f(2) = -2 = f(-2)$$

so f cannot be 1-to-1 by definition.

VIII. Onto Functions

- A. Definition: A function $f: A \to B$ is called **onto**, or a **surjection**, or a **surjective function**, if and only if for every element $b \in B$ there is an element $a \in A$ such that f(a) = b
- B. Alternative Definition:

$$f:A \to B \text{ is } \textit{onto} \leftrightarrow \forall a \in A \, \exists b \in B \Big(f(a) = b \Big)$$

- C. Example 1: (From V. One-to-One Functions)
 - 1. $Y = \{y \mid y \text{ is a student in this Discrete Math Class}\}$
 - 2. $ID = \{id \mid id \text{ is a student ID number}\}$
 - 3. $f: ID \rightarrow Y$ attaches a student ID number to a student in Y.
 - 4. Therefore: $f: ID \to Y$ is **onto** since, for every student $y \in Y$ there exists a student ID number $id \in ID$ such that f(y) = id
 - 5. Graphical Representation

- D. Example 2: (From V. One-to-One Functions)
 - 1. $Y = \{y \mid y \text{ is a student in this Discrete Math Class}\}$
 - 2. $G = \{g \mid g \text{ is a student's grade for the class}\}\$ = $\{A, B, C, D, F, Inc\}$
 - 3. $f: Y \to G$ assigns to a student in Y one of the grades in G.
 - 4. $f: Y \to G$ may not be **onto** since it is possible that no student in this class will be awarded a D (or an A).
 - 5. Therefore the statement: $\forall g \in G \ \exists y \in Y \Big(f(y) = g \Big)$ may not be true and, hence, the statement $f: Y \to G \text{ is } \textit{onto} \leftrightarrow \forall g \in G \ \exists y \in Y \Big(f(y) = g \Big)$ requires that $f: Y \to G$ is not onto.
- E. To Prove a Function $f: A \rightarrow B$ is surjective, or Onto
 - 1. For $f: A \to B$ consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = f(y).
 - 2. Example: $y = f(x) = x^2$ where A = R, the set of real numbers, and $B = Z^+$, the set of positive integers.
 - a. For any $y \in Bx = \sqrt{y}$ exists.
 - b. Then $x = \sqrt{y} = \sqrt{x^2}$
 - c. Therefore: An arbitrary selection of $y \in B$ leads to a value for $x \in A$ such that f(x) = y
- F. To Prove a Function $f: A \rightarrow B$ is surjective, or Onto
 - 1. For $f:A\to B$ find a particular $y\in B$ such that $f(x)\neq y$ for all $x\in A$
 - 2. Example: $y = f(x) = x^2$ where A = Z, the set of real numbers, and B = Z.
 - a. There is no integer x such that $x^2 = -1$
 - c. Therefore: There exists a $y \in B$ such that there is no x such that $f(x) \neq y$

IX. One-to-One and Onto Functions

- A. Definition: A function $f: X \to Y$ is a *one-to-one correspondence*, or a *bijection*, or is a *bijective function*, if it both one-to-one and onto
 - 1. Every element x in the domain X must be assigned by f to a unique element y in the codomain Y.
 - 2. Every element y in the codomain Y is an image under f of a unique element x of the domain X.
- B. Example: $A = \{2, 4, 6, 8\}$ and $B = \{4, 16, 36, 64\}$ 1. Let $f: A \to B$ be $f(a) = a^2$
 - 2. Therefore: $\forall a \in A, \exists b \in B \text{ such that } f(a) = b$ and $\forall b \in B, \exists a \in A \text{ such that } f(a) = b$

X. The Identity Function

- A. Definition: The *identity function* $\equiv \iota_A : A \to A$ where $\iota_A(a) = a$
- B. $\iota_A:A\to A$ maps each element of A onto itself.
- C. Theorem: $\iota_A:A\to A$ is one-to-one

Proof:
$$(\forall a, b) \in A \ \iota_A(a) = a \text{ and } \iota_A(b) = b$$

 $(\forall a, b) \in A \left(\iota_A(a) = \iota_A(b)\right) \to (a = b)$
 $(\forall a, b) \in A \ (a \neq b) \to \left(\iota_A(a) \neq \iota_A(b)\right)$

Therefore: $\iota_A:A\to A$ is one-to-one.

D. Theorem: $\iota_A:A\to A$ is onto

Proof: $(\forall a, b) \in A \iota_A(a) = a \text{ and } \iota_A(b) = b$

$$((\forall b) \in A)((\exists a) \in A)(\iota_A(a) = b)$$

since: $(a = b) \to \iota_A(a) = b$

Therefore: $\iota_A:A\to A$ is onto.

XI. Inverse Functions

A. The *inverse* of the one-to-one and onto function $f:A\to B$ is $f^{-1}:B\to A$.

 $f^{-1}: B \to A$ assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b.

Therefore: If: f(a) = b then $f^{-1}(b) = a$

B. Graphic Illustration:

- C. Conditions:
 - 1. $f: A \to B$ must be one-to-one for $f^{-1}: B \to A$ to exist.
 - a. If $f:A\to B$ is not one-to-one then $\exists (a_1,\,a_2)\in A$ such that $f(a_1)=b$ and $f(a_2)=b$
 - b. Therefore: $f^{-1}(b) = a_1$ and $f^{-1}(b) = a_2$
 - c. The definition of a function $f:A\to B$ states that f(a)=b specifies a unique element $b\in B$.
 - d. Therefore $f^{-1}(b) = a_1$ and $f^{-1}(b) = a_2$ is impossible and f^{-1} cannot be a function if f is not one-to-one.
 - 2. $f: A \to B$ must be onto for $f^{-1}: B \to A$ to exist.
 - a. If $f:A\to B$ is not onto then $\exists b\in B$ such that there is no $a\in A$ such that f(a)=b
 - b. Therefore: $f^{-1}(b)$ has no value.
 - c. Therefore $f: A \to B$ must be onto for $f^{-1}: B \to A$ to exist.

D. Example 1:

- 1. Theorem: If $f: R \to R^+$ where f(x) = |x| then f is not invertible.
- 2. Proof:

a. If
$$a, -a \in R$$
 then $f(a) = a$ and $f(-a) = a$

- b. Therefore, if $f^{-1}: R \to R^+$ exists we must have: $f^{-1}(a) = a$ and $f^{-1}(a) = -a$
- c. This contradicts the definition of a function.
- d. Therefore $f^{-1}(x)$ does not exist for f(x) = |x|
- e. Therefore $f: R \to R^+$ where f(x) = |x| is not invertible.

E. Example 2:

- 1. Theorem: If $f: R^+ \to R^+$ where f(x) = |x| then f is invertible.
- 2. Proof:
 - a. The domain of f is R^+ so $(\forall a \in R^+) f(a) = |a| = a$
 - b. The codomain of f is R^+ so $(\forall |a| \in R^+) f^{-1}(|a| = a) \equiv (\forall a \in R^+) f^{-1}(a) = a)$
 - c. $(\forall |a| \in R^+)f^{-1}(a) = a$ is the unique element of its domain R^+ assigned by f^{-1} to a unique element of its codomain R^+
 - d. Therefore $f^{-1}(x)$ exists for f(x) = |x| and $f: R^+ \to R^+$
- 3. Note: A much shorter proof would simply state that $f: R^+ \to R^+$ where f(x) = |x|

is the identity function and, therefore, invertible.

XII. Compositions of Functions

- A. Definition: If $g: A \to B$ and $f: B \to C$ then the **composition** of f and g, denoted by $f \circ g$, is defined by: $(f \circ g)(a) = f(g(a))$
- B. Alternative statement: $(f \circ g)(a)$ is the function that:
 - 1. Maps to $b \in B$ the value specified by g(a) = b
 - 2. Maps to $c \in C$ the value specified by f(b) = c
- C. Graphical Illustration:

