Lecture Notes: Section 2.4

Vedant Patil

September 30, 2024

1 Overview

Key Points

• Key point 3

2 Detailed Notes

2.1 Subtopic 1

When an experiament is performed there are a number of possible outcomes which may occur, we call those events.

For example say you toss a coin twice, these are some of the possible events

- A Get the same on both flips
- B Different on the 2 flips
- C First flip is H
- D First flip is T
- F Second flip is H
- G Second flip is T
- H Don't get TH

There is a difference between those events and these, we denote them with the letter E for special cases

- E₁- HH
- E₂- HT
- E₃- TH
- E_4 TT

Vedant Patil MATH 311

The sample space associated with a experiament is associated with all possible sample points

The sample space will be Denoate by $\mathbb S$ similar to the universal set

$$S = \{HH, HT, TH, TT\} \tag{1}$$

An event in discrete sample space $\mathbb S$ is a collection of sample poit ns that is a subset of $\mathbb S$

For the events described previously, we have

$$A = \{HH, TT\}$$

$$B = \{HT, TH\}$$

$$C = \{HH, HT\}$$

$$D = \{TH, TT\}$$

$$F = \{HH, TH\}$$

$$G = \{HT, TT\}$$

$$H = \{HH, HT, TT\}$$

$$E_1 = \{HH\}$$

$$E_2 = \{HT\}$$

$$E_3 = \{TH\}$$

$$E_4 = \{TT\}$$

Now we will talk about probablity associated with events

2.2 Subtopic 2

Your notes for subtopic 2

Vedant Patil MATH 311

3 Important Formulas/Theorems/Definitions

Key Formula/Theorem

- The discrete case is a probalistic model for an experiament
- Definition: An experiament is the process by which an observation is made
 - Tossing a coin or dye a number of times
 - Measuring the height of a group of people
 - Counting the number of bacteria in a certain sample
- Definition: A simple event is a event which cannot be decomposed. Each simple event corresponds to one and only one sample point. The letter E with a subscript is used to denote a single simple event/sample point.
- Definition: A discrete sample space is ore that contains either a finite or a countable number of distinct sample points
- Suppose \mathbb{S} is a sample space associated with a expierament. To every event, A in \mathbb{S} (for every $A \subsetneq S$) We assign a number, P(A) the probablity of A, so the following Axioms hold
 - Axiom 1: $P(A) \ge 0$ for all $A \subsetneq S$
 - Axiom 2: P(S) = 1
 - Axiom 3: If A_1 , A_2 are pairwise mutually exclusive

4 Questions/Topics for Further Study

• Question or topic for further study