Group project

• Course Weightage: 30% (Minor CA: 10%)

• Group Size: 4-6 members (typ.)

• Submission Dateline: Friday, 22 November 2019

• You choose your own group members

General Requirements

- Participation
- Programming, Debugging & Report preparation
- Group Submission
- Submit one program (executable + source code)
- Accompanying report
- Report:
- Hardcopy Report + Softcopy of files
 - Copy to Lab. Drive (Instructor PC)
 - One folder containing source & executables

Dr. Gerald Seet N3-2C-75 Subject Coordinator

Report Structure

- Full name of all members and a *group photograph* identifying individual members
- Description of the program and its use
 - Comment on any positive attributes of your program and its uniqueness
- Instructions for use
 - With screen shots of the computer display (as appropriate)
- Appendix:
 - Commented program listing with indentation
 - Flowchart
 - Page limit of report 10 to 15 pages (not inclusive of appendices)

Grading Scheme

Report: 40%

- Content as indicated in previous slide
- Credit given to quality of presentation

Program: 60%

- Functionality & comprehensiveness.
- Programming techniques and range of functions used
 - Scope of functions, modularity, structure etc.
- Novelty and comprehensive use of functions
 - "User Friendly", innovative features/interpretation
 - Error checking
- Robustness
 - Stable, does not crash or hang
- Ease of use
 - Precise instructions and contextual messages

Basic Requirements of Program

- Waveform Generator
 - Sine wave, square wave, triangular wave
 - Amplitude and frequency adjustment
 - Both accuracy of waveform and speed are desirable (Max. Hz)
- Use of command line arguments
 - Use this facility to initialise program setting and/or
 - Configure waveform and digital I/O
- Use digital switch and analogue potentiometer inputs
 - To terminate the program and/or
 - Configure program setting.
- Multi input/output options
 - Use Keyboard, switch and potentiometers for inputs.
 - Write codes as modular subroutines.
 - Do this now, as you learn how to perform multi-threaded processes

Additional Functionality

- Read/write data to file on hard-disk or portable drive.
 - Configuration/waveform etc.
- Adjust mean value of waveform
 - In addition to amplitude
- Highest waveform frequency
 - What is the highest frequency, you can achieve?
- Frequency adjustability (resolution)
 - What is the range of frequency possible?
- Friendly and informative User Interface.
 - Provide useful instruction when an input is incorrect

Demonstrate Programming Skills & Techniques

- Multi thredad/processes
- Inter-process/thread communication & synchronisation
- Use threads & processes
 - As appropriate
- Use of alarms/signals etc
- Trapping of Ctrl+C
 - SIGINT signal
 - Orderly shutdown of program
 - Clear display and release resources.

Others

- Esthetically pleasant report and program output display
- Comprehensive and appropriate comments in program listing

