Introduction to Machine Learning. Lec.4 Multiple Linear Regression

Aidos Sarsembayev, IITU, 2018

Regression is...

• a technique for determining the statistical **relationship between** two or more variables where a change in a dependent variable is associated with, and depends on, a change in one or more independent variables.

http://www.businessdictionary.com/definition/regression.html

Types of regression models

- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Support Vector Regression (SVR)
- Decision Tree Regression
- Random Forest Regression

SLR. Formula

MLR. Formula

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + ... + b_n x_n$$

MLR. Formula

A caveat. Assumptions of LR

- Linearity
- Homoscedasticity
- Multivariate normality
- Independence of errors
- Lack of multicollinearity

An assumption that all the errors of ind.vars are similar to each other

Significance level

Dummy variable trap

A caveat. Assumptions of LR

Linearity

Dummy variables

			R&D	
Profit	Administration	Marketing Spend	Spend	State
192261.83	136897.8	471784.1	165349.2	New York
191792.06	151377.59	443898.53	162597.7	California
191050.39	101145.55	407934.54	153441.51	New York
182901.99	118671.85	383199.62	144372.41	New York
166187.94	91391.77	366168.42	142107.34	California
156991.12	99814.71	362861.36	131876.9	New York
156122.51	147198.87	127716.82	134615.46	California

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + ???$$

Dummy variables

			R&D	
Profit	Administration	Marketing Spend	Spend	State
192261.83	136897.8	471784.1	165349.2	New York
191792.06	151377.59	443898.53	162597.7	California
191050.39	101145.55	407934.54	153441.51	New York
182901.99	118671.85	383199.62	144372.41	New York
166187.94	91391.77	366168.42	142107.34	California
156991.12	99814.71	362861.36	131876.9	New York
156122.51	147198.87	127716.82	134615.46	California

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + ???$$

Categorical variables cannot be fit in the equations

			R&D	
Profit	Administration	Marketing Spend	Spend	State
192261.83	136897.8	471784.1	165349.2	New York
191792.06	151377.59	443898.53	162597.7	California
191050.39	101145.55	407934.54	153441.51	New York
182901.99	118671.85	383199.62	144372.41	New York
166187.94	91391.77	366168.42	142107.34	California
156991.12	99814.71	362861.36	131876.9	New York
156122.51	147198.87	127716.82	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + ???$$

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	California
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	New York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + ???$$

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	Califorgia
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	Nev York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	X
0	1
1	0
0	1
	"

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^+ \dots$$

D1 is a dummy variable for New York

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	1	1
191050.39	153441.51	101145.55	15	
182901.99	144372.41	118671.85	14	8
166187.94	142107.34	91391.77	14	
156991.12	131876.9	99814.71	1518/0.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	X
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^* + \dots$$

This is like a light switch

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	California
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	Nev York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	X
0	1
1	0
0	1
_	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^2 + \dots$$

Aren't we suppressing the 'California' variable in this case? No, because of b_o

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	California
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	New York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	X
0	1
1	0
0	1
_	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^* + \dots + b_4^*D_1$$

Why should we bother about getting rid of one of the dummy variables?

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	California
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	Nev York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	X
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^* + \dots + b_4^*D_1$$

Because of the so called 'dummy variable trap'

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	Califorgia
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	New York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^* + \dots + b_4^*D_1 + b_5^*D_2$$

We don't need both, because they are simply duplicating each other ->>>

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	Califorgia
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	Nev York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + \dots + b_4^*D_1 + b_5^*D_2$$

D2 = 1 - D1. The phenomenon when one or several independent variables in a linear regression predict each other is called - multicollinearity

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	Califorgia
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	Nev York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + \dots + b_4^*D_1 + b_5^*D_2$$

As the consequence of this phenomenon the model cannot distinguish between the effects of D1 from the effects of D2

Pro	fit	R&D Spend	Administration	R&D Spend	State
19226	51.83	165349.2	136897.8	165349.2	New York
19179	06	162597.7	151377.59	162597.7	Califorgia
1910	39	153441.51	101145.55	153441.51	New York
18290	99	144372.41	118671.85	144372.41	New York
1661	94	142107.34	91391.77	142107.34	California
15699	12	131876.9	99814.71	131876.9	New York
15612	51	134615.46	147198.87	134615.46	California

New	York	Cal	ifornia	
1		0		
+b ₄ *D1+b ₅ *D2				

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^* + \dots$$

The reality is that you cannot have all of these three elements in your model

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	Califorgia
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	Nev York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3^* + \dots$$

You have to drop one of the dummy variables. If you have 10 (or 95), leave only 9 (or 94) etc.

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	Califorgia
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	New York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + \dots + b_4^*D_1 + b_5^*D_2$$

What if we would have not one, but two or more sets of dummy variables?

Profit	R&D Spend	Administration	R&D Spend	State
192261.83	165349.2	136897.8	165349.2	New York
191792.06	162597.7	151377.59	162597.7	Califorgia
191050.39	153441.51	101145.55	153441.51	New York
182901.99	144372.41	118671.85	144372.41	Nev York
166187.94	142107.34	91391.77	142107.34	California
156991.12	131876.9	99814.71	131876.9	New York
156122.51	134615.46	147198.87	134615.46	California

New York	California
1	0
0	1
1	0
1	0
0	1
1	0
0	1

$$y=b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + \dots + b_4^*D_1 + b_5^*D_2$$

We should repeat the same for the other sets of dummy variables as well

Model optimization

Among non-categorical variables not every independent variable is necessary for the optimal model building

We have to optimize the model by getting rid of the insignificant variables

Model optimization

Among non-categorical variables not every independent variable is necessary for the optimal model building

We have to optimize the model by getting rid of the insignificant variables

Model optimization

Among non-categorical variables not every independent variable is necessary for the optimal model building

We have to optimize the model by getting rid of the insignificant variables

Why?

1)

2)

Building a model

There are 5 ways of building the models:

- All in
- Backward elimination
- Forward elimination
- Bidirectional elimination
- Score Comparison

Building a model

There are 5 ways of building the models:

- All in
- Backward elimination
- Forward elimination
- Bidirectional elimination
- Score Comparison

All-in cases

- Prior knowledge; OR
- You have to; OR
- Preparing for Backward Elimination

Backward elimination

STEP 1: Select a significance level to stay in the model (e.g. SL = 0.05)

STEP 2: Fit the full model with all possible predictors

STEP 3: Consider the predictor with the <u>highest</u> P-value. If P > SL, go to STEP 4, otherwise go to FIN

STEP 4: Remove the predictor

STEP 5: Fit model without this variable*

FIN: Your Model Is Ready

Forward elimination

STEP 1: Select a significance level to enter the model (e.g. SL = 0.05)

STEP 2: Fit all simple regression models $y \sim x_n$ Select the one with the lowest P-value

STEP 3: Keep this variable and fit all possible models with one extra predictor added to the one(s) you already have

STEP 4: Consider the predictor with the <u>lowest</u> P-value. If P < SL, go to STEP 3, otherwise go to FIN

FIN: Keep the previous model

Bidirectional elimination _

STEP 1: Select a significance level to enter and to stay in the model e.g.: SLENTER = 0.05, SLSTAY = 0.05

STEP 2: Perform the next step of Forward Selection (new variables must have: P < SLENTER to enter)

STEP 3: Perform ALL steps of Backward Elimination (old variables must have P < SLSTAY to stay)

STEP 4: No new variables can enter and no old variables can exit

FIN: Your Model Is Ready

Score Comparison / All possible models

STEP 1: Select a criterion of goodness of fit (e.g. Akaike criterion)

STEP 2: Construct All Possible Regression Models: 2^N-1 total combinations

STEP 3: Select the one with the best criterion

FIN: Your Model Is Ready

Example: 10 columns means 1,023 models

Significance level. P-value

- How do we get the significance level?
- And what is the P-value?

Significance level. P-value

- How do we get the significance level?
- And what is the P-value?
- You can find the answer here (1.5x speed, first ~4 minutes):

https://www.youtube.com/watch?v=128yzoOC G-I

P-value is a **probability value** which indicates how likely it is that the result happened **by chance** alone

Significance level. P-value

- If the result happened not by chance, then the P-value will be low, meaning that the result has been caused by some clear factors.
- The significance level (or Sig.) is a value determined by a user. Usually it's 0.01 or 0.05
- If:

```
p<Sig. – the test is significant
```

p>Sig. – the test is NOT significant

De	ep. Variable:			у	ı	R-squared:	0.951
	Model:			OLS	Adj. l	R-squared:	0.945
	Method:	Le	ast S	Squares		F-statistic:	169.9
	Date:	Tue, 2	25 Se	ep 2018	Prob (F	-statistic):	1.34e-27
	Time:		1	3:23:04	Log-l	_ikelihood:	-525.38
No. Ob	servations:			50		AIC:	1063.
Di	f Residuals:			44		BIC:	1074.
	Df Model:			5			
Covar	riance Type:		no	nrobust			
	coef	std	err	t	P> t	[0.025	0.975]
const	5.013e+04		820	7.281	0.000	3.62e+04	6.4e+04
x1	198.7888	3371.	007	0.059	0.953	-6595.030	6992.607
x2	-41.8870	3256.	039	-0.013	0.990	-6604.003	6520.229
x 3	0.8060	0.	046	17.369	0.000	0.712	0.900
x4	-0.0270	0.	052	-0.517	0.608	-0.132	0.078
x 5	0.0270	0.	017	1.574	0.123	-0.008	0.062
	O:b	44.700		According to 187.	-4		
	Omnibus:	14.782		ourbin-Wa		1.283	
	Omnibus):	0.001		que-Bera	(JB):	21.266	
				que-Bera Prol	(JB):		

De	p. Variable:			у	ı	R-squared:	0.951
	Model:		OLS		Adj. I	R-squared:	0.945
	Method:	Le	ast S	quares		F-statistic:	169.9
	Date:	Tue, 2	25 Se	p 2018	Prob (F	-statistic):	1.34e-27
	Time:		1	3:23:04	Log-l	_ikelihood:	-525.38
No. Ob	servations:			50		AIC:	1063.
Df	f Residuals:			44		BIC:	1074.
	Df Model:			5			
Covar	iance Type:		noi	nrobust			
	coef	std	err	t	P> t	[0.025	0.975]
const	5.013e+04	6884.	820	7.281	0.000	3.62e+04	6.4e+04
x1	198.7888	3371.	007	0.059	0.953	6595.030	6992.607
x2	-41.8870	3256.	039	-0.013	0.990	6604.003	6520.229
х3	0.8060	0.	046	17.369	0.000	0.712	0.900
x4	-0.0270	0.	052	-0.517	0.608	-0.132	0.078
х5	0.0270	0.	017	1.574	0.123	-0.008	0.062
(Omnibus:	14.782	D	urbin-Wa	atson:	1.283	
Prob(C	Omnibus):	0.001	Jan	que-Bera	(JB):	21.266	
	Skew:	-0.948		-	b(JB):	2.41e-05	
	Kurtosis:	5.572		Con	d. No.	1.45e+06	

OLS Regression Results

De	p. Variable:		у	R	-squared:	0.950
	Model:		OLS		Adj. R-squared:	
	Method:		Least Squares		F-statistic:	
	Date:	Tue, 25	Sep 2018	Prob (F	-statistic):	2.16e-31
	Time:		13:23:36	Log-L	ikelihood:	-525.54
No. Ob	servations:		50		AIC:	1057.
Df	Residuals:		47		BIC:	1063.
	Df Model:		2			
Covari	iance Type:		nonrobust			
		-			7	
	coef	std e	rr t	P> t	[0.025	0.975]
const		std e 2689.93		P> t 0.000	[0.0 25 4.16e+04	0.975] 5.24e+04
	coef		3 17.464		-	-
const	coef 4.698e+04	2689.93	3 17.464 11 19.266	0.000	4.16e+04	5.24e+04
const x1 x2	coef 4.698e+04 0.7966 0.0299	0.04 0.01	3 17.464 11 19.266 16 1.927	0.000 0.000 0.060	4.16e+04 0.713 -0.001	5.24e+04 0.880
const x1 x2	coef 4.698e+04 0.7966 0.0299	2:689.93 0.04	3 17.464 11 19.266	0.000 0.000 0.060	4.16e+04 0.713	5.24e+04 0.880
const x1 x2	coef 4.698e+04 0.7966 0.0299	0.04 0.01 0.4	3 17.464 11 19.266 16 1.927	0.000 0.000 0.060 atson:	4.16e+04 0.713 -0.001	5.24e+04 0.880
const x1 x2	coef 4.698e+04 0.7966 0.0299 Omnibus:	0.04 0.01 0.4	3 17.464 1 19.266 6 1.927 Durbin-Wa	0.000 0.000 0.060 atson:	4.16e+04 0.713 -0.001 1.257	5.24e+04 0.880

Coefficients

- How to interpret coefficients?
- If the sign is positive then it means that your independent variable is correlated with the depended variable.
 - Means that if you increase this value, the output values will also increase
- The negative has opposite effect respectively

Coefficients

- Magnitude measures the impact as well.
- However, magnitude states that a variable A per unit has a bigger impact on the output than a variable B per unit has.
- The variables can be measured in different units (\$, hours, kg...)

```
Coefficients: Lower magnitude

Estimate Std Error t value Pr(>|t|)

(Intercept) 4.698e+04 2.690e+03 17.464 <2e-16 ***

R.D.Spend 7.966e-01 4.135e-02 19.266 <2e-16 ***

Marketing.Spend 2.991e-02 1.552e-02 1.927 0.06 .
```

De	ep. Variable:			у	1	R-squared:	0.951
	Model:		OLS		Adj. I	R-squared:	0.945
Method:		Le	Least Squares			F-statistic:	169.9
	Date:	Tue, 2	5 Se	p 2018	Prob (F-statistic):		1.34e-27
	Time:		1	3:23:04	Log-l	_ikelihood:	-525.38
No. Ol	servations:			50		AIC:	1063.
D	f Residuals:			44		BIC:	1074.
	Df Model:			5			
Cova	riance Type:		no	nrobust			
	coef	std	err	t	P> t	[0.025	0.975]
const	5.013e+04	6884.	820	7.281	0.000	3.62e+04	6.4e+04
x1	198.7888	3371.	007	0.059	0.953	-6595.030	6992.607
x2	-41.8870	3256.	039	-0.013	0.990	-6604.003	6520.229
x 3	0.8060	0.	046	17.369	0.000	0.712	0.900
x4	-0.0270	0.	052	-0.517	0.608	-0.132	0.078
x 5	0.0270	0.	017	1.574	0.123	-0.008	0.062
	Omnibus:	14.782	D	urbin-W	atson:	1.283	
Prob(0	Omnibus):	0.001	Jar	que-Bera	a (JB):	21.266	
	Skew:	-0.948		Pro	b(JB):	2.41e-05	
	Kurtosis:	5.572		Con	d. No.	1.45e+06	

Datasets sources

- http://archive.ics.uci.edu/ml/datasets.html?tas k=reg
- http://people.sc.fsu.edu/~jburkardt/datasets/re gression/regression.html
- https://www.quora.com/Where-can-I-find-data-sets-for-regression
- https://vincentarelbundock.github.io/Rdatasets/ /datasets.html