平成22年度 日本留学試験(第1回)

試験問題

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

数学-16

T

問 1 方程式

$$(x-1)^2 = |3x-5|$$

を考える。

- (1) 方程式 ① の解のうち $x \ge \frac{5}{3}$ を満たす解は、x = **A** , **B** である。ただし、 **A** < **B** とする。
- (2) 方程式 ① の解は全部で $oldsymbol{\mathbb{C}}$ 個ある。その解のうちで最小のものを α とすると, $m-1<\alpha \leq m$ を満たす整数 m は $oldsymbol{\mathbb{DE}}$ である。

問 2	実数 x,	y に関す	る次のは	3 つの条件	(a),	(b),	(c)	を考える。
-----	-------	-------	------	--------	------	------	-----	-------

- (a) x + y = 5, xy = 3 を満たす
- (b) x+y=5, $x^2+y^2=19$ を満たす
- (c) $x^2 + y^2 = 19$, xy = 3 を満たす
- (1) 等式 $x^2 + y^2 = (x+y)^2$ **F** xy を用いると

条件 (b) のとき $xy = \boxed{\mathbf{G}}$,

条件 (c) のとき x+y= **H** または x+y= **IJ**

が得られる。

- (2) 次の **K** ~ **M** には、下の ① ~ ③ のうちから適するものを一つずつ選びなさい。
 - (i) (a) は (b) であるための **K**。
 - (ii) (b) は (c) であるための **L**。
 - (iii) (c) は (a) であるための **M**。
 - ② 必要十分条件である
 - ① 十分条件であるが、必要条件ではない
 - ② 必要条件であるが、十分条件ではない
 - ③ 必要条件でも十分条件でもない

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{N}$ \sim $oxed{Z}$ はマークしないでください。

II

xy 平面上に 2 直線

$$y = 1, y = -1$$

および 点 A(0,3) が与えられている。

いま、直線 y=1 上に点 P を、直線 y=-1 上に点 Q をとり

$$\angle PAQ = 90^{\circ}$$

であるとする。2 点 P, Q がこれらの条件を満たして動くとき、線分 PQ の長さの最小値を求めよう。

まず、P の座標を $(\alpha, 1)$ 、Q の座標を $(\beta, -1)$ とする。このとき、 $\angle PAQ = 90^{\circ}$ を満たすことは、 $\alpha \neq 0$ 、 $\beta \neq 0$ で

$$lphaeta=oxedsymbol{\mathsf{A}}\,\mathbf{\mathsf{B}}$$

となることである。よって、 α 、 β は異符号であるから、 α < 0 < β としよう。

このとき

$$\begin{aligned} \mathrm{PQ}^2 &= (\beta - \alpha)^2 + \boxed{\mathsf{C}} \\ &= \alpha^2 + \beta^2 + \boxed{\mathsf{DE}} \\ &\geq 2|\alpha\beta| + \boxed{\mathsf{DE}} = \boxed{\mathsf{FG}} \end{aligned}$$

が成り立つ。したがって

$$PQ \ge H$$

である。よって、PQ は

$$lpha = \boxed{\mathsf{IJ}} \sqrt{\mathsf{K}}$$
 , $\beta = \boxed{\mathsf{L}} \sqrt{\mathsf{M}}$

のとき, 最小値 H をとる。

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{N}$ \sim $oxed{Z}$ はマークしないでください。

三角形 OAB を考える。辺 OA を 3:1 に内分する点 を M,辺 OB を 1:2 に内分する点 を N とし,線分 AN と線分 BM の交点を P とする。

(1) ベクトル \overrightarrow{OA} , \overrightarrow{OB} をそれぞれ \overrightarrow{a} , \overrightarrow{b} とおくとき, ベクトル \overrightarrow{OP} を \overrightarrow{a} , \overrightarrow{b} で表すことを考える。

AP: PN =
$$s : (1 - s)$$
 $(0 < s < 1)$
BP: PM = $t : (1 - t)$ $(0 < t < 1)$

とおくと

$$\overrightarrow{OP} = (\boxed{\mathbf{A}} - s)\overrightarrow{a} + \boxed{\frac{\mathbf{B}}{\mathbf{C}}} s \overrightarrow{b}$$

$$= \boxed{\frac{\mathbf{D}}{\mathbf{E}}} t \overrightarrow{a} + (\boxed{\mathbf{F}} - t) \overrightarrow{b}$$

が成り立つから

$$s = \frac{\boxed{\mathsf{G}}}{\boxed{\mathsf{H}}}, \quad t = \frac{\boxed{\mathsf{I}}}{\boxed{\mathsf{J}}}$$

である。したがって, $\overrightarrow{\mathrm{OP}}$ は \overrightarrow{a} , \overrightarrow{b} を用いて

$$\overrightarrow{OP} = \frac{\boxed{K}}{\boxed{L}} \overrightarrow{a} + \frac{\boxed{M}}{\boxed{N}} \overrightarrow{b}$$

と表される。

(問は次ページに続く)

注) 内分する: divide internally, 内積: inner product

OA = 6, OB = 9 のとき、線分 OP の長さと \angle AOB の大きさとの関係を調べよう。 OP の長さを ℓ とおくとき、 ℓ^2 を \overrightarrow{a} と \overrightarrow{b} の内積 $\overrightarrow{a \cdot b}$ を用いて表すと

$$\ell^2 = \frac{\bigcirc}{\boxed{PQ}} \vec{a} \cdot \vec{b} + \boxed{RS}$$

を得る。

したがって、例えば、 $\ell = 4$ のとき

$$\cos \angle AOB = \boxed{TU}$$

である。

一方、∠AOB の大きさを変えるとき、ℓのとり得る値の範囲は

$$W$$
 < ℓ < X

である。

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{Y}$, $oxed{Z}$ はマークしないでください。

IV

問 1 x の関数 $f(x) = \log (4x - \log x)$ がある。ここで、 \log は自然対数とする。f''(x) を求めて f(x) の極値を調べよう。

ただし、 $oldsymbol{\mathsf{K}}$, $oldsymbol{\mathsf{L}}$ には、下の $oldsymbol{\mathsf{0}}$ ~ $oldsymbol{\mathsf{6}}$ のうちから最も適するものを一つずつ選びなさい。

まず、f'(x)、f''(x) を求めると

$$f'(x) = \frac{\boxed{A} - \boxed{B}}{4x - \log x}$$

$$f''(x) = \frac{\frac{1}{\sqrt{C}} (4x - \log x) - \left(\boxed{A} - \boxed{B}}{x}\right)^{\boxed{D}}$$

$$(4x - \log x)^2$$

となる。これより

$$f'\left(\begin{array}{c} \boxed{\mathsf{E}} \\ \boxed{\mathsf{F}} \end{array}\right) = 0$$

$$f''\left(\begin{array}{c} \boxed{\mathsf{E}} \\ \boxed{\mathsf{F}} \end{array}\right) = \begin{array}{c} \boxed{\mathsf{GH}} \\ \boxed{\mathsf{I}} + \log \boxed{\mathsf{J}} \end{array}$$

となる。このとき

$$f''\left(\begin{array}{c|c}\hline {\sf E} \\\hline {\sf F}\end{array}\right)$$
 $lacktriangledown$ 0

であるから、f(x) は $x={\color{red} {\color{red} {\sf E}} {\color{red} {\color{red} {\sf F}} {\color{red} {\color{red} {\sf F}} {\color{red} {\color{red} {\sf V}}}}}$ で ${\color{red} {\color{red} {\color{red} {\sf L}} {\color{red} {\color{red} {\sf V}}}}}$ となる。また,そのときの値は

$$\log (\boxed{\mathbf{M}} + \log \boxed{\mathbf{N}})$$
 である。

- 問 2 曲線 $y=2\cos 2x$ と曲線 $y=4\cos x+k$ は、x=a $(0< a \leq \frac{\pi}{2})$ で共通の接線をもつとする。
 - (1) $f(x) = 2\cos 2x$, $g(x) = 4\cos x + k$ とおく。題意より、2 つの曲線 y = f(x) と y = g(x) は x = a で共通の接線をもつから

$$f'(a) = g'(a), \quad f(a) = g(a)$$

である。

$$f'(a) = g'(a)$$
 と $0 < a \leq \frac{\pi}{2}$ から $a = \frac{\pi}{2}$ であり、 $f(a) = g(a)$ から $k = -2$

を得る。

したがって、接点の座標は $\left(\begin{array}{c} \pi \\ \hline 0 \end{array}\right)$ であり、共通の接線の方程式は

$$y = -$$
 R $\sqrt{$ S $\left(x - \frac{\pi}{}\right) -$ U

である。

(2) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ の範囲において、この 2 つの曲線で囲まれた部分の面積 S を求めよう。 2 つの曲線はともに y 軸に関して対称であるから、 $b = \boxed{V}$ 、 $c = \frac{\pi}{Q}$ として

$$S = \boxed{\mathbf{W}} \int_{b}^{c} (2\cos 2x - 4\cos x - k) dx$$

であり、これを計算して

$$S = \boxed{\mathbf{X}} \pi - \boxed{\mathbf{Y}} \sqrt{\boxed{\mathbf{Z}}}$$

を得る。

IV の問題はこれで終わりです。

コース2の問題はこれですべて終わりです。解答用紙のV はマークしないでください。 解答用紙の解答コース欄に「コース2」が正しくマークしてあるか、 もう一度確かめてください。

この問題冊子を持ち帰ることはできません。