Question number		Scheme		Marks	
1.	(a)	x-2 -3=1 $x=6$			
		$-(x-2)-3=1 \Rightarrow x=-2$		(3)	
	(b)	$g(x) = x^2 - 4x + 11 = (x - 2)^2 + 7 \text{ or } g'(x) = 2x - 4$			
		$g'(x) = 0 \Rightarrow x = 2$			
		Range: $g(x) \ge 7$.		(3)	
	(c)	gf(-1) = g(0) correct order; = 11	M1 A1	(2)	
			(8 marks)		
2.	(a)	f(2) = 8 - 4 - 5 = -1 method shows change of sign	M1		
		$f(3) = 27 - 6 - 5 = 16$ \Rightarrow root with accuracy	A1	(2)	
	(b)	$x_1 = 2.121, x_2 = 2.087, x_3 = 2.097, x_4 = 2.094$		(1, 0) (3)	
	(c)	Choosing suitable interval, e.g. [2.09455, 2.09465]			
		f(2.09455) = -0.00001 shows change of sign	M1		
		f(2.09465) = +0.001(099) accuracy and conclusion	A1	(3)	
				(8 marks)	
3.	(a)	$\cos (A + B) = \cos A \cos B - \sin A \sin B \qquad \text{(formula sheet)}$			
		$\cos\left(\frac{1}{2}\theta + \frac{1}{2}\theta\right)$			
		$= \cos\left(\frac{1}{2}\theta\right)\cos\left(\frac{1}{2}\theta\right) - \sin\left(\frac{1}{2}\theta\right)\sin\left(\frac{1}{2}\theta\right) = \cos^2\left(\frac{1}{2}\theta\right) - \sin^2\left(\frac{1}{2}\theta\right)$			
		$= \{1 - \sin^2(\frac{1}{2}\theta)\} - \sin^2(\frac{1}{2}\theta) = 1 - 2\sin^2(\frac{1}{2}\theta)$	M1 A1	(3)	
	(b)	$\sin\theta + 1 - \cos\theta = 2\sin\left(\frac{1}{2}\theta\right)\cos\left(\frac{1}{2}\theta\right) + 2\sin^2\left(\frac{1}{2}\theta\right)$			
		$= 2 \sin\left(\frac{1}{2}\theta\right) \left[\cos\left(\frac{1}{2}\theta\right) + \sin\left(\frac{1}{2}\theta\right)\right]$		(3)	
		[M1 use of $\sin 2A = 2 \sin A \cos A$; M1 use of (a)]			
	(c)	$2\sin\left(\frac{1}{2}\theta\right)\left[\cos\left(\frac{1}{2}\theta\right) + \sin\left(\frac{1}{2}\theta\right)\right] = 0$			
		$\Rightarrow \sin\left(\frac{1}{2}\theta\right) = 0 \text{ or } \cos\left(\frac{1}{2}\theta\right) + \sin\left(\frac{1}{2}\theta\right) = 0$			
		$\theta = 0$			
		$\tan \frac{1}{2} \theta = -1; \Rightarrow \theta = \frac{3}{2} \pi$		(4)	
				(10 marks)	

Question number	Scheme	Marks	
4. (a)	$x^{2} + 2x - 3 = (x+3)(x-1)$	B1	
	$f(x) = \frac{x(x^2 + 2x - 3) + 3(x + 3) - 12}{(x + 3)(x - 1)} [= \frac{x^3 + 2x^2 - 3}{(x + 3)(x - 1)}]$	M1A1	
	$=\frac{(x-1)(x^2+3x+3)}{(x-1)(x+3)}$	M1	
	$=\frac{(x^2+3x+3)}{(x+3)}$	A1 (5)	
(b)	$f'(x) = \frac{(x+3)(2x+3) - (x^2+3x+3)}{(x+3)^2} \qquad [= \frac{x^2+6x+6}{(x+3)^2}]$	M1 A2, 1, 0	
	Setting $f'(x) = \frac{22}{25}$ and attempting to solve quadratic	M1	
	x = 2 (only this solution)	A1 (5)	
		(10 marks)	
ALT (b)	ALT: $f(x) = x + \frac{3}{x+3}$, $f'(x) = 1 - \frac{3}{(x+3)^2}$		

Question number	Scheme	Marks	
5. (a)	(i) y A Shape correct:	B1	
	$ \begin{array}{c c} & q \\ \hline & p & 0 \\ \hline & p & 0 \end{array} $ Intercepts	B1	(2)
	(ii) y ♠ Shape correct	B1	
	(2p, 0) on x	B1	
	(0,3q) on y	B1	(3)
(b)	$q = 3 \ln 3$	B1	(1)
(c)	$\ln(2p+3) = 0 \Rightarrow 2p+3 = 1;$ $p = -1$	M1 A1	(2)
(d)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{2x+3}; \text{ evaluated at } x = p (6)$	M1 A1	
	Equation: $y = 6(x + 1)$ any form	M1 A1ft	(4)
			rks)

Question number		Scheme		Marks	
6.	(a)	T = 80		B1	(1)
	(b)	$e^{-0.1 t} \ge 0$ or equivalent		B1	(1)
	(c)		Negative exponential shape	M1	
		T^{lack}	$t \ge 0$, "80"		
		80	clearly not $\rightarrow x$ -axis	A1	(2)
	(d)	$60 = 20 + 60 e^{-0.1 t} \Rightarrow 60 e^{-0.1 t} = 40$		M1	
		$\Rightarrow -0.1 \ t = \ln\left(\frac{2}{3}\right)$		M1A1	
		t = 4.1		A1	(4)
	(e)	$\frac{\mathrm{d}T}{\mathrm{d}t} = -6 \mathrm{e}^{-0.1t}$		M1A1	(2)
	(f)	Using $\frac{\mathrm{d}T}{\mathrm{d}t} = -1.8$		B1	
		Solving for t , or using value of $e^{-0.1 t}$ (0.3)		M1	
		T = 38		A1	(3)
				(13 marks)	

Question number	Scheme	Marks	
7. (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x - 2\sin x$	B1 B1	
	When $x = \frac{1}{4}\pi$, $\frac{dy}{dx} = 2 - \sqrt{2}$	B1	(3)
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2} \sec^2 \frac{1}{2} y$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sec^2\left(\frac{y}{2}\right)} = \frac{2}{1+\tan^2\left(\frac{y}{2}\right)} = \frac{2}{1+x^2}$	M1 M1 A1	(4)
(iii)	$\frac{dy}{dx} = 2e^{-x}\cos 2x - e^{-x}\sin 2x = e^{-x}(2\cos 2x - \sin 2x)$	M1 A1 A1	
	Method for R: $R = 2.24$ (allow $\sqrt{5}$)	M1 A1	
	Method for α : $\alpha = 0.464$	M1 A1	(7)
		(14 marks)	