

Universidade do Extremo Sul Catarinense

Curso de Ciência da Computação Comunicação de Dados - 23235 Professor: Paulo João Martins, MSc.

AVALIAÇÃO 2

	Não se esqueça de colocar o seu nome ;	
	A avaliação deve ser entregue totalmente escrita com a utilização do computador ;	
Leia atentamente todas as questões:		

Todas as questões que envolvem cálculo, os mesmos devem ser expressos na prova, caso contrário, a questão será anulada;

NOME DO ACADÊMICO: _Lucas Orestes Fabris______ DATA: 09/11/2021 Orientações:

Questões:

Unidades de Período e Frequência				
Unidade	Equivalência	Unidade	Equivalência	
Segundos (s)	1 s	hertz (Hz)	1 Hz	
Milissegundos (ms)	10 ⁻³ s	kilohertz (KHz)	10 ³ Hz	
Microssegundos	10 ⁻⁶ s	megahertz (MHz)	10 ⁶ Hz	
(μs)				
Nanossegundos (ns)	10 ⁻⁹ s	gigahertz (GHz)	10 ⁹ Hz	
Picossegundos (ps)	10 ⁻¹² s	terahertz (THz)	10 ¹² Hz	
T = 1 /f	dB = 10 log ₁₀ (S/N)	GdB = 10log(Pi/Po)		
Λ = c / f	299.792,458 km/s ~ 300.000 km/s = 300.000.000 m/s	V = Λ * f F = força de tração na corda, em N;μ _L = densidade linear da corda, em kg/m	$v = \sqrt{\frac{F}{\mu_L}}$	

- 1) (valor 0,2) Em um sistema básico de comunicação de dados, temos os seguintes elementos: Mensagem, Transmissor, Receptor, Meio (Canal) e Protocolo. E o sistema de comunicação possui os seguintes elementos: Fonte, Emissor, Sistema de Transmissão, Receptor e Destino. De posse destas informações, qual das seguintes funções não pertence a um sistema de Comunicação.
 - a) Utilização eficiente do sistema de transmissão
 - b) Interface com o sistema de transmissão
 - c) Endereçamento e Encaminhamento
 - d) Detecção e recuperação de anomalias
 - e) Gerenciamento da Rede Resposta: Letra e) Gerenciamento de Rede
- (valor 0,6) Cite os três tipos de fluxo de dados, quanto a direção.
 Resposta: Simplex, Half-duplex e full duplex.
- 3) (valor 0,5) Um sistema apresenta, em sua entrada, um sinal de 25W. Através de equipamentos específicos é identificado na sua saída um valor de 35 W. Qual o valor de ganho ou atenuação dada em dB?

4) (valor 0,5) Os sinais de rádio de um avião tinham 6 mw de potência e chegaram à antena do aeroporto enfraquecidos de 56 dB. Sendo que o sistema de rádio recepção do aeroporto amplificou esses sinais para 4 w, pede-se o ganho do sistema antena do aeroporto + amplificador do aeroporto.

Obs: A perda de 56 dB é um valor negativo, ou seja, atenuação!! 1 mw = 10-3

(valor 0,5) Sobre as ondas sonoras, considere as seguintes proposições:
 As ondas sonoras são ondas transversais; O eco é um fenômeno relacionado com a reflexão da onda sonora;

PORQUE

A altura de um som depende da frequência da onda sonora.

A respeito dessas asserções, assinale a opção correta.

- a) As asserções I e II são proposições verdadeiras, e a III é uma justificativa correta da II.
- b) A asserção I é uma proposição verdadeira, e a II e uma proposição falsa.
- c) As asserções II e III são proposições verdadeira e a I é uma proposição falsa.
- d) As asserções I e II são proposições falsas.
- e) As asserções I e II são proposições verdadeira, mas a III não é uma justificativa correta da II.

Resposta correta c

	·
6)	(valor 0,6) Cite as três categorias da codificação de linha. R:Sinal binário NRZ e RZ e HDBn.
7)	(valor 0,4) Cite os dois tipos de canais existentes na camada de enlace. R:LLC (Logic link Control) e MAC(Media Access Control).
8)	(valor 0,4) Cite duas formas de notificação de erros na camada de enlace. R: Ack/ Nack, me out, Paridade, FCS (Frame Check sequence), CRC(Ver)
9)	(valor 0,6) Cite três modulações de portadora analógica. R: Modulação em amplitude AM, Modulação em frequência FM, modulação em fase PM
10)	(valor 0,4) Cite duas modulações de portadora digital R: ASK – Modulação em Amplitude, FSK – Modulação em Frequência
11)	(valor 0,2) Qual o nome dado ao pacote da camada 2 que encapsula todos os datagramas? R: quadro/frame
12)	(valor 0,4) Cite dois serviços da camada de enlace. R: A detecção de erros e controle do fluxo de dados.
13)	 (valor 0,4) Na camada 2 são inseridos dois seguimentos no pacote, um no início e outro no final quais são os respectivos nomes? R: Cabeçalho e trailer
14)	(valor 0,4) Qual é o objetivo dos endereços físicos usados nos cabeçalhos dos pacotes da camada 2?
	R: O Endereços físicos é usado nos cabeçalhos dos quadros para identificar a fonte e o destino dos quadros
15)	(valor 0,4) Qual o objetivo do controle de fluxo? R: Evitar que o receptor envie mais dados do que transmissor consegue processar, diminuir a possibilidade de colisões em redes ethernet, controlar o acesso ao meio de transmissão, evitar que o transmissor envie mais dados do que o receptor consegue processar e manter o MTU
16)	(valor 0,4) Cite os dois tipos de enlace da camada 2. R: O Enlace ponto a ponto e o Enlace broadcast
17)	(valor 0,4) Cite dois tipos de chaveamento que acontece em comunicação. R: Chaveamento espacial e Chaveamento de frequências.
18)	 (valor 0,6) Existe a taxonomia dos protocolos MAC, ou seja, de controle de acesso ao meio. A taxonomia é uma classificação dos protocolos. Existem três classificações. Cite duas delas. R: Protocolos de Acesso Aleatório e Protocolos de Revezamento
19)	(valor 0,4) Cite quatro protocolos da camada de Enlace. R: 802.2(LLC), 802.3(Ethernet), 802.5(Token Ring) e 802.11(Wireless)
20)	(valor 0,4) Cite dois modelos de controle de fluxo?

R: Protocolo Stop-and-Wait ARQ e Protocolo Go-Back-N ARQ

(valor 0,4) Cite dois exemplos de delimitação e sincronização de quadros?

21)

R: Delimitacao: Contagem de caracteres Flags iniciais e finais (bit stuffing)

Sincronizaocao:

emissor e receptor em sincronia para não causar erros sincronização dos bits

(valor 0,2) Cite dois tipos de chaveamento que acontece em comunicação.

R: Chaveamento espacial

Chaveamento de frequências

Para transmissões de sinais em banda base, a largura de banda do canal limita a taxa de transmissão máxima. Como resultado do teorema de Nyquist, na ausência de ruído, a taxa de transmissão máxima C de um canal que possui largura de banda W, em hertz, é dada pela equação a seguir.

$$C = 2 * W * log_2 (L) bps$$

No entanto, em qualquer transmissão, o ruído térmico está presente nos dispositivos eletrônicos e meios de transmissão. Esse ruído, causado pela agitação dos elétrons nos condutores, é caracterizado pela potência de ruído N. De acordo com a lei de Shannon, na presença de ruído térmico, a taxa de transmissão máxima de um canal que possui largura de banda W, em hertz, e apresenta uma relação sinal-ruído S/N, expressa em decibel (dB), é definida pela equação abaixo.

$$C = W * log_2 (1 + S/N) bps$$

Considere que:

Tendo como referência inicial as informações acima, considere que seja necessário determinar a taxa de transmissão máxima de um canal de comunicação que possui largura de banda de 3 kHz, relação sinal-ruído de 30,1 dB e adota 16 diferentes níveis de sinalização. Nessa situação, responda aos seguintes questionamentos.

a) (valor 0,2) Na ausência de ruído, de acordo com o teorema de Nyquist, qual a taxa de transmissão máxima do referido canal, em bits por segundo. Apresente os cálculos necessários.

b) (valor 0,2) Na presença de ruído térmico, de acordo com a lei de Shannon, qual a taxa de transmissão máxima do canal, em bits por segundo? Apresente os cálculos necessário e considere que log₁₀ (1.023) = 3,01.

23b, \(\text{v} = 3 \text{kHz} \)
\(\text{S/N} \), \(\text{telaceao} \) \(\text{Signal - ruido} = 30,1 \)
\(\text{log 10} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1+10} \frac{3040b}{10} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1+10} \frac{3040b}{10} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + (lag (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{(1) + log 2 (1023)} \)
\(\text{C} = 3 \text{kHz} \cdot \log 2 \text{

c) (valor 0,3) Na presença de ruído térmico, é possível adotar mais de 16 níveis de sinalização no referido canal? Justifique.

R: Sim, pois tem 32 níveis de sinalização.