# Telco Customer Churn Project

```
In [1]: #Importing libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import plotly.express as px
        import plotly.graph_objects as go
        from plotly.subplots import make_subplots
        from sklearn.preprocessing import LabelEncoder
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score
        from sklearn import metrics
        from sklearn.metrics import classification_report
```

# **Data Preprocessing**

```
In [2]: # Define the file path
file_path = r'D:\Data Science data\Teclo\WA_Fn-UseC_-Telco-Customer-Churn.csv'

# Read the CSV data
df = pd.read_csv(file_path)

# Display the first few rows of the data
df.head()
```

| Out[2]: |   | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | Multipl |
|---------|---|----------------|--------|---------------|---------|------------|--------|--------------|---------|
|         | 0 | 7590-<br>VHVEG | Female | 0             | Yes     | No         | 1      | No           | No      |
|         | 1 | 5575-<br>GNVDE | Male   | 0             | No      | No         | 34     | Yes          |         |
|         | 2 | 3668-<br>QPYBK | Male   | 0             | No      | No         | 2      | Yes          |         |
|         | 3 | 7795-<br>CFOCW | Male   | 0             | No      | No         | 45     | No           | No      |
|         | 4 | 9237-<br>HQITU | Female | 0             | No      | No         | 2      | Yes          |         |

5 rows × 21 columns

In [3]: #Check the shape of the data
df.shape

Out[3]: (7043, 21)

In [4]: # Display the general info about dataframe and check data types
df.info()

```
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 7043 entries, 0 to 7042
      Data columns (total 21 columns):
       # Column
                            Non-Null Count Dtype
       --- -----
                            -----
          customerID
       0
                            7043 non-null object
       1
           gender
                            7043 non-null object
           SeniorCitizen 7043 non-null int64
       2
       3
           Partner
                          7043 non-null object
       4
                          7043 non-null object
           Dependents
       5
           tenure
                           7043 non-null int64
           PhoneService 7043 non-null object MultipleLines 7043 non-null object
       6
       7
           InternetService 7043 non-null object
       9
           OnlineSecurity
                            7043 non-null
                                           object
                            7043 non-null object
       10 OnlineBackup
       11 DeviceProtection 7043 non-null object
       12 TechSupport
                            7043 non-null
                                           object
                          7043 non-null object
       13 StreamingTV
       14 StreamingMovies 7043 non-null object
       15 Contract
                            7043 non-null object
       16 PaperlessBilling 7043 non-null
                                           object
       17 PaymentMethod
                            7043 non-null
                                           object
       18 MonthlyCharges
                            7043 non-null float64
       19 TotalCharges
                            7043 non-null
                                           object
       20 Churn
                            7043 non-null
                                           object
      dtypes: float64(1), int64(2), object(18)
      memory usage: 1.1+ MB
In [5]: # Convert 'TotalCharges' column to numeric
        df['TotalCharges'] = pd.to numeric(df.TotalCharges, errors='coerce')
        # Show the sum of null values in each column
        df.isnull().sum()
Out[5]: customerID
                            0
        gender
                            0
        SeniorCitizen
                            0
        Partner
                            0
        Dependents
                            0
        tenure
                            0
        PhoneService
        MultipleLines
                            0
        InternetService
        OnlineSecurity
                            0
        OnlineBackup
                            0
        DeviceProtection
                            0
        TechSupport
                            0
        StreamingTV
                            0
        StreamingMovies
                            0
        Contract
                            0
        PaperlessBilling
                            0
        PaymentMethod
                            0
        MonthlyCharges
                            0
        TotalCharges
                           11
        Churn
                            0
        dtype: int64
```

In [6]: # Show rows where 'TotalCharges' is NaN
 df[np.isnan(df['TotalCharges'])]

| Out[6]: |      | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | Mul |
|---------|------|----------------|--------|---------------|---------|------------|--------|--------------|-----|
|         | 488  | 4472-LVYGI     | Female | 0             | Yes     | Yes        | 0      | No           |     |
|         | 753  | 3115-<br>CZMZD | Male   | 0             | No      | Yes        | 0      | Yes          |     |
|         | 936  | 5709-<br>LVOEQ | Female | 0             | Yes     | Yes        | 0      | Yes          |     |
|         | 1082 | 4367-<br>NUYAO | Male   | 0             | Yes     | Yes        | 0      | Yes          |     |
|         | 1340 | 1371-<br>DWPAZ | Female | 0             | Yes     | Yes        | 0      | No           |     |
|         | 3331 | 7644-<br>OMVMY | Male   | 0             | Yes     | Yes        | 0      | Yes          |     |
|         | 3826 | 3213-<br>VVOLG | Male   | 0             | Yes     | Yes        | 0      | Yes          |     |
|         | 4380 | 2520-SGTTA     | Female | 0             | Yes     | Yes        | 0      | Yes          |     |
|         | 5218 | 2923-<br>ARZLG | Male   | 0             | Yes     | Yes        | 0      | Yes          |     |
|         | 6670 | 4075-<br>WKNIU | Female | 0             | Yes     | Yes        | 0      | Yes          |     |
|         | 6754 | 2775-SEFEE     | Male   | 0             | No      | Yes        | 0      | Yes          |     |

11 rows × 21 columns

```
In [7]: # Drop rows with NaN values
df.dropna(inplace = True)
```

```
In [8]: # Check again for null values in the dataset
df.isnull().sum()
```

```
Out[8]: customerID
       gender
       SeniorCitizen
                       0
       Partner
                        0
       Dependents
                       0
       tenure
       PhoneService 0
       MultipleLines
                       0
       InternetService 0
       OnlineSecurity
                       0
       OnlineBackup
       DeviceProtection 0
                       0
       TechSupport
                       0
       StreamingTV
       StreamingMovies 0
       Contract
                        0
       PaperlessBilling 0
                       0
       PaymentMethod
       MonthlyCharges
                       0
       TotalCharges
                       0
       Churn
                         0
       dtype: int64
In [9]: # Convert 'SeniorCitizen' column to 'Yes'/'No' from 1/0
       df["SeniorCitizen"]= df["SeniorCitizen"].map({0: "No", 1: "Yes"})
       df.head()
```

| Out[9]: |   | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | Multipl |
|---------|---|----------------|--------|---------------|---------|------------|--------|--------------|---------|
|         | 0 | 7590-<br>VHVEG | Female | No            | Yes     | No         | 1      | No           | No<br>: |
|         | 1 | 5575-<br>GNVDE | Male   | No            | No      | No         | 34     | Yes          |         |
|         | 2 | 3668-<br>QPYBK | Male   | No            | No      | No         | 2      | Yes          |         |
|         | 3 | 7795-<br>CFOCW | Male   | No            | No      | No         | 45     | No           | No      |
|         | 4 | 9237-<br>HQITU | Female | No            | No      | No         | 2      | Yes          |         |

5 rows × 21 columns

```
In [10]: #Remove customer IDs from the data set
df2 = df.iloc[:,1:]

#Converte the predictor variable in a binary numeric variable
df2['Churn'].replace(to_replace='Yes', value=1, inplace=True)
df2['Churn'].replace(to_replace='No', value=0, inplace=True)
```

```
#Convert all the categorical variables into dummy variables
df_dummies = pd.get_dummies(df2)
df_dummies.head()
```

#### Out[10]:

| • | tenure | MonthlyCharges | TotalCharges | Churn | gender_Female | gender_Male | SeniorCitiz |
|---|--------|----------------|--------------|-------|---------------|-------------|-------------|
| ( | 1      | 29.85          | 29.85        | 0     | 1             | 0           |             |
| 1 | 34     | 56.95          | 1889.50      | 0     | 0             | 1           |             |
| 2 | 2      | 53.85          | 108.15       | 1     | 0             | 1           |             |
| 3 | 3 45   | 42.30          | 1840.75      | 0     | 0             | 1           |             |
| 4 | 2      | 70.70          | 151.65       | 1     | 1             | 0           |             |

5 rows × 47 columns

```
In [11]: # Check statistical information of numerical columns
   numerical_cols = ['tenure', 'MonthlyCharges', 'TotalCharges']
   df[numerical_cols].describe()
```

#### Out[11]:

|       | tenure      | MonthlyCharges | TotalCharges |
|-------|-------------|----------------|--------------|
| count | 7032.000000 | 7032.000000    | 7032.000000  |
| mean  | 32.421786   | 64.798208      | 2283.300441  |
| std   | 24.545260   | 30.085974      | 2266.771362  |
| min   | 1.000000    | 18.250000      | 18.800000    |
| 25%   | 9.000000    | 35.587500      | 401.450000   |
| 50%   | 29.000000   | 70.350000      | 1397.475000  |
| 75%   | 55.000000   | 89.862500      | 3794.737500  |
| max   | 72.000000   | 118.750000     | 8684.800000  |

# **Data Visualization**

```
In [12]: #Get Correlation of "Churn" with other variables:
   plt.figure(figsize=(15,8))
   df_dummies.corr()['Churn'].sort_values(ascending = False).plot(kind='bar')
```

Out[12]: <Axes: >



### Gender and Churn Distributions



The difference in the percentage or number of customers who switched service providers is insignificant. Both males and females exhibited similar tendencies in migrating to a different service provider or company.

```
In [14]: # Contract feature histogram
fig = px.histogram(df, x="Churn", color="Contract", barmode="group", title="<b>Cust
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()
```

### **Customer contract distribution**



About 75% of customer with Month-to-Month Contract opted to move out as compared to 13% of customrs with One Year Contract and 3% with Two Year Contract

```
In [15]: # OnlineSecurity feature histogram
fig = px.histogram(df, x="Churn", color="OnlineSecurity", barmode="group", title="<fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()</pre>
```

# **Online Security distribution**



Most customers churn in the absence of online security

## **Tech Support distribution**



Customers with no tech support were most likely to churn comparing to other categories

#### **Internet service**



A lot of customers choose the Fiber optic service and it's also evident that the customers who use Fiber optic have high churn rate, this might suggest a dissatisfaction with this type of internet service. Customers having DSL service are majority in number and have less churn rate compared to Fibre optic service.

## **Payment method distribution**



Major customers who moved out were having Electronic Check as Payment Method. Customers who opted for Credit-Card automatic transfer or Bank Automatic Transfer and Mailed Check as Payment Method were less likely to move out.

## **Online Backup distribution**



Customers with no Online Backup were most likely to churn comparing to other categories

# **Data Manipulation**

```
In [20]: # Convert categorical data to numeric

le = LabelEncoder()

# Make a copy of the dataframe df_dummies into df3
df3 = df_dummies.copy()

# Loop over the columns and transform categorical columns
for col in df3.columns:
    if df3[col].dtype=='object':
        df3[col] = le.fit_transform(df3[col])

# Display the first few rows of the new dataset
df3.head()
```

| Ο. | . 4. 1 | 0     | ٦ |  |
|----|--------|-------|---|--|
| Uι | IΤΙ    | <br>U |   |  |

|   | tenure | MonthlyCharges | TotalCharges | Churn | gender_Female | gender_Male | SeniorCitiz |
|---|--------|----------------|--------------|-------|---------------|-------------|-------------|
| 0 | 1      | 29.85          | 29.85        | 0     | 1             | 0           |             |
| 1 | 34     | 56.95          | 1889.50      | 0     | 0             | 1           |             |
| 2 | 2      | 53.85          | 108.15       | 1     | 0             | 1           |             |
| 3 | 45     | 42.30          | 1840.75      | 0     | 0             | 1           |             |
| 4 | 2      | 70.70          | 151.65       | 1     | 1             | 0           |             |

5 rows × 47 columns

In [21]: #Check for null values df3.isnull().sum()

```
Out[21]: tenure
                                                      0
                                                      0
         MonthlyCharges
                                                      0
         TotalCharges
         Churn
                                                      0
          gender_Female
                                                      0
          gender_Male
                                                      0
          SeniorCitizen No
                                                      0
          SeniorCitizen_Yes
                                                      0
                                                      0
          Partner_No
          Partner_Yes
                                                      0
          Dependents_No
                                                      0
          Dependents_Yes
                                                      0
                                                      0
          PhoneService No
          PhoneService_Yes
                                                      0
                                                      0
         MultipleLines_No
         MultipleLines_No phone service
                                                      0
         MultipleLines_Yes
          InternetService_DSL
                                                      0
          InternetService Fiber optic
                                                      0
                                                      0
          InternetService_No
                                                      0
         OnlineSecurity_No
         OnlineSecurity_No internet service
                                                      0
         OnlineSecurity_Yes
         OnlineBackup_No
                                                      0
         OnlineBackup No internet service
                                                      0
                                                      0
         OnlineBackup_Yes
         DeviceProtection_No
                                                      0
         DeviceProtection_No internet service
                                                      0
         DeviceProtection_Yes
          TechSupport_No
                                                      0
          TechSupport_No internet service
                                                      0
                                                      0
         TechSupport_Yes
          StreamingTV_No
                                                      0
          StreamingTV_No internet service
                                                      0
          StreamingTV_Yes
          StreamingMovies_No
                                                      0
          StreamingMovies_No internet service
                                                      0
          StreamingMovies_Yes
                                                      0
          Contract_Month-to-month
                                                      0
          Contract_One year
                                                      0
          Contract_Two year
                                                      0
          PaperlessBilling_No
                                                      0
          PaperlessBilling_Yes
                                                      0
          PaymentMethod_Bank transfer (automatic)
                                                      0
          PaymentMethod_Credit card (automatic)
                                                      0
          PaymentMethod_Electronic check
          PaymentMethod_Mailed check
          dtype: int64
```

# **Machine Learning**

```
In [22]: # Define the features and target variables
X = df3.drop(columns = ['Churn'])
y = df3['Churn'].values
```

D:\Data Science\lib\site-packages\sklearn\ensemble\\_forest.py:424: FutureWarning:

`max\_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max\_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.

#### 0.8099526066350711

#### Out[25]: <Axes: >



```
In [26]: # Split the data into training and testing sets. Here, a different random_state is
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_sta
In [27]: # Running Logistic regression model
         model = LogisticRegression()
         # Fit the model to the training data
         result = model.fit(X_train, y_train)
         prediction_test = model.predict(X_test)
         # Print the prediction accuracy
         print (metrics.accuracy_score(y_test, prediction_test))
        0.8037914691943128
        D:\Data Science\lib\site-packages\sklearn\linear_model\_logistic.py:458: Convergence
        Warning:
        lbfgs failed to converge (status=1):
        STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max_iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html
        Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
In [28]: # To get the weights of all the variables
```

Axes(0.125,0.11;0.775x0.77)



In [29]: # and the last 10 items ([-10:]) represent the top 10 features with the lowest (mos
# These features have the greatest negative impact on the churn prediction(decrease
print(weights.sort\_values(ascending = False)[-10:].plot(kind='bar'))

Axes(0.125,0.11;0.775x0.77)



```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_sta

In [31]: #Decision Tree Classifier
    dt_model = DecisionTreeClassifier()

# Fit the model on the training data.
    dt_model.fit(X_train,y_train)

# Use the trained model to predict the target variable (churn) in the test dataset
    predictdt_y = dt_model.predict(X_test)

# Accuracy score of the Decision Tree model
    accuracy_dt = dt_model.score(X_test,y_test)
    print("Decision Tree accuracy is :",accuracy_dt)
```

In [30]: # Split the data into training and testing sets. Here, a different random\_state is

Decision Tree accuracy is : 0.7232227488151659

In [32]: print(classification\_report(y\_test, predictdt\_y))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0            | 0.82      | 0.80   | 0.81     | 1547    |
| 1            | 0.48      | 0.52   | 0.50     | 563     |
|              |           |        |          |         |
| accuracy     |           |        | 0.72     | 2110    |
| macro avg    | 0.65      | 0.66   | 0.65     | 2110    |
| weighted avg | 0.73      | 0.72   | 0.73     | 2110    |
|              |           |        |          |         |

```
In [33]: # Get the feature importances
   importances_dt = dt_model.feature_importances_

# Create a pandas series with the feature importances
weights_dt = pd.Series(importances_dt, index=X.columns.values)

# Plot the 10 features with the highest feature importance
weights_dt.sort_values()[-10:].plot(kind = 'barh')
plt.title("Top 10 Features that have the most positive impact on Churn prediction i
plt.show()
```

Top 10 Features that have the most positive impact on Churn prediction in the Decision Tree model

