#### Bài tập chương 5

#### I. Lý thuyết:

- 1. Kể tên 1 vài IC có khả năng thực hiện 1 số tác vụ sau:
  - a) Cộng và trừ 2 số 4-bit:
  - IC 74LS83 (4-bit Binary Full Adder)
  - IC 74HC283 (4-bit Adder/Subtractor)
  - b) Bộ tính toán số học và luận lý (ALU) giữa 2 số 4-bit:
  - IC 74181 (4-bit ALU Arithmetic Logic Unit)
  - c) Mạch giải mã (decoder) 2x4, 3x8:
  - IC 74LS139 (2-to-4 Line Decoder)
  - IC 74LS138 (3-to-8 Line Decoder)
  - d) Mạch mã hóa ưu tiên (priority encoder) 8x3:
  - IC 74LS148 (8-to-3 Line Priority Encoder)
- 2. Úng dụng của các mạch:
  - Mạch giải mã (decoder):
    - Chuyển đổi mã nhị phân sang điều khiển các thiết bị cụ thể (ví dụ: LED, 7-segment display).
    - Dùng trong chọn lựa bộ nhớ (Memory Address Decoding).
  - Mach mã hóa (encoder):
    - Chuyển đổi tín hiệu đầu vào sang dạng mã số nhị phân (ví dụ: phím nhấn trên bàn phím máy tính).
    - Dùng trong các hệ thống số hóa tín hiệu cảm biến.
  - Multiplexer (bộ chọn kênh):
    - Chọn 1 trong nhiều tín hiệu đầu vào để chuyển tới đầu ra.
    - Úng dụng trong truyền dữ liệu, hệ thống viễn thông.
  - Demultiplexer (bộ giải kênh):
    - Phân phối tín hiệu từ 1 đầu vào đến nhiều đầu ra.
    - Dùng trong các hệ thống điều khiển và chuyển mạch.

#### II. Bài tập:

- 1. Thiết kế mạch tổ hợp giúp chuyển đổi mã BCD sang mã Gray:
- Bảng chân trị:

|    | INF | ОИТРИТ |    |    |    |    |    |
|----|-----|--------|----|----|----|----|----|
| a0 | a1  | a2     | a3 | b0 | b1 | b2 | b3 |
| 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  |
| 0  | 0   | 0      | 1  | 0  | 0  | 0  | 1  |
| 0  | 0   | 1      | 0  | 0  | 0  | 1  | 1  |
| 0  | 0   | 1      | 1  | 0  | 0  | 1  | 0  |
| 0  | 1   | 0      | 0  | 0  | 1  | 1  | 0  |
| 0  | 1   | 0      | 1  | 0  | 1  | 1  | 1  |
| 0  | 1   | 1      | 0  | 0  | 1  | 0  | 1  |
| 0  | 1   | 1      | 1  | 0  | 1  | 0  | 0  |
| 1  | 0   | 0      | 0  | 1  | 1  | 0  | 0  |
| 1  | 0   | 0      | 1  | 1  | 1  | 0  | 1  |
| 1  | 0   | 1      | 0  | 1  | 1  | 1  | 1  |
| 1  | 0   | 1      | 1  | 1  | 1  | 1  | 0  |
| 1  | 1   | 0      | 0  | 1  | 0  | 1  | 0  |
| 1  | 1   | 0      | 1  | 1  | 0  | 1  | 1  |
| 1  | 1   | 1      | 0  | 1  | 0  | 0  | 1  |
| 1  | 1   | 1      | 1  | 1  | 0  | 0  | 0  |

- Biểu thức Boolean:
- b0 = a0
- $b1 = a1 \oplus a0$
- $b2 = a2 \oplus a1$
- $b3 = a3 \oplus a2$ 
  - Thiết kế mạch logic:



- Mô phỏng:



**Nhận xét**: Qua so sánh giữa kết quả mô phỏng và bảng chân trị của mạch số, ta có thể thấy kết quả hoàn toàn đúng với lý thuyết.

- 2. Thiết kế một mạch tổ hợp có 3 ngõ nhập A, B, C và một ngõ xuất Y. Ngõ xuất Y = 1 (HIGH) khi và chỉ khi giá trị thập phân tương đương của ngõ nhập (ABC) nhỏ hơn 4 hoặc lớn hơn 6 (với A là MSB, C là LSB).
- Bảng chân trị:

|   | OUTPUT |   |   |
|---|--------|---|---|
| Α | В      | С | Υ |
| 0 | 0      | 0 | 1 |
| 0 | 0      | 1 | 1 |
| 0 | 1      | 0 | 1 |
| 0 | 1      | 1 | 1 |
| 1 | 0      | 0 | 0 |
| 1 | 0      | 1 | 0 |
| 1 | 1      | 0 | 0 |
| 1 | 1      | 1 | 1 |

- Bìa Karnough 3 biến:



- Thiết kế mạch logic:



- Mô phỏng:

| Mas | er Time Bar: 0 | ps               |        | Pointer: 0 ps |         | Interval: 0 ps | Start: |          | End:   |                        |
|-----|----------------|------------------|--------|---------------|---------|----------------|--------|----------|--------|------------------------|
|     | Name           | Value at<br>0 ps | 0 ps 1 | 1.0 us 2.1    | 0 us 3. | 0 us 4.0       | us 5.  | 0 us 6.0 | us 7.0 | us 8.0 us <sup>4</sup> |
| 13  | A              | 80               |        |               |         |                |        |          |        |                        |
| is  | В              | B 0              |        |               |         |                |        |          |        |                        |
| is. | С              | 80               |        |               |         |                |        |          |        |                        |
| 25  | Y              | 8 1              |        |               |         |                |        |          |        |                        |
|     |                |                  |        |               |         |                |        |          |        |                        |

**Nhận xét**: Qua so sánh giữa kết quả mô phỏng và bảng chân trị của mạch số, ta có thể thấy kết quả hoàn toàn đúng với lý thuyết.

- 3. Cho hàm Boolean  $F(a, b, c) = \sum m(4,6,7)$ . Hãy trình bày thiết kế tối ưu nhất về tài nguyên cho hàm F theo từng cách sau:
  - a. Decoder 3x8 và một vài cổng luận lý(logic gate) cơ bản
  - b. Decoder 2x4 và một vài cổng luận lý(logic gate) cơ bản
  - c. Decoder 2x4 và Decoder 1x2 và vài cổng luận lý(logic gate) cơ bản
  - d. Chỉ sử dụng multipler 8:1
  - e. Chỉ sử dụng multipler 4:1
- Bảng chân trị:

|     |   | OUTPUT |   |            |
|-----|---|--------|---|------------|
| STT | а | b      | С | F(a, b, c) |
| 0   | 0 | 0      | 0 | 0          |
| 1   | 0 | 0      | 1 | 0          |
| 2   | 0 | 1      | 0 | 0          |
| 3   | 0 | 1      | 1 | 0          |
| 4   | 1 | 0      | 0 | 1          |
| 5   | 1 | 0      | 1 | 0          |
| 6   | 1 | 1      | 0 | 1          |
| 7   | 1 | 1      | 1 | 1          |

a. Decoder 3x8 và một vài cổng luận lý(logic gate) cơ bản:



b. Decoder 2x4 và một vài cổng luận lý(logic gate) cơ bản:



c. Decoder 2x4 và Decoder 1x2 và vài cổng luận lý(logic gate) cơ bản:



### d. Chỉ sử dụng multipler 8:1



### e. Chỉ sử dụng multipler 4:1



# 4. Chuyển mạch FA dưới đây sang mạch với các cổng NAND



# Chuyển thành:



## 5. Cho sơ đồ:



a. Viết hàm boolean:

$$y_1 = dsEx_0 + \bar{s}Ex_1 + \overline{(ds+\bar{s})}Ex_2 = dsEx_0 + \bar{s}Ex_1 + \overline{ds}. s. Ex_2$$
$$= dsEx_0 + \bar{s}Ex_1 + (\bar{d}+\bar{s}). s. Ex_2 = dsEx_0 + \bar{s}Ex_1 + \bar{d}s. Ex_2$$

b. Bảng chân trị cho hàm y1:

| INPUT |   |   |    |    |    |    |
|-------|---|---|----|----|----|----|
| Е     | S | d | х0 | x1 | x2 | у1 |
| 0     | х | х | Х  | Х  | Х  | 0  |
| 1     | 0 | х | Х  | 0  | Х  | 0  |
| 1     | 0 | х | Х  | 1  | Х  | 1  |
| 1     | 1 | 0 | Х  | Х  | 0  | 0  |
| 1     | 1 | 0 | Х  | Х  | 1  | 1  |
| 1     | 1 | 1 | 0  | Х  | Х  | 0  |
| 1     | 1 | 1 | 1  | Х  | Х  | 1  |

- 10. Mỗi phát biểu dưới đây liên hệ đến 1 decoder hay 1 encoder?
- a. Có nhiều input hơn output Encoder
- b. Được sử dụng để chuyển đổi 1 phím được bấm sang mã nhị phân (Binary) Encoder
  - c. Chỉ 1 output được tích cực tại một thời điểm Decoder
- d. Có thể được sử dụng để giao tiếp 1 input dạng BCD với 1 bộ hiển thị LED Decoder
  - 20. Cho hàm sau:  $F(A,B,C) = \Sigma(0,2,4,6,7) + d(1)$
  - a. Hiện thực hàm F sử dụng ít nhất các mạch 2-4 decoders và cổng OR
  - b. Hiện thực hàm F sử dụng ít nhất các mạch 4-1 MUX
  - c. Hiện thực hàm F sử dụng ít nhất các mạch 2-1 MUX

- Bảng chân trị:

|   | OUTPUT |            |   |
|---|--------|------------|---|
| Α | В      | F(A, B, C) |   |
| 0 | 0      | 0          | 1 |
| 0 | 0      | 1          | Х |
| 0 | 1      | 0          | 1 |
| 0 | 1      | 1          | 0 |
| 1 | 0      | 0          | 1 |
| 1 | 0      | 1          | 0 |
| 1 | 1      | 0          | 1 |
| 1 | 1      | 1          | 1 |

- 21. Mỗi phát biểu dưới đây liên hệ đến 1 decoder, 1 encoder, 1 MUX, hay 1 DEMUX?
  - a. Có nhiều inputs hơn outputs Encoder
  - b. Sử dụng chân input SELECT MUX
- c. Có thể được sử dụng để chuyển từ song song sang tuần tự (parallel-to-serial conversion) MUX
  - d. Tạo ra 1 mã nhị phân ở outputs Encoder
  - e. Chỉ một trong những outputs được tích cực tại một thời điểm Decoder
- f. Có thể được sử dụng để hướng 1 tín hiệu input tới 1 hoặc một vài outputs  ${\tt DEMUX}$ 
  - g. Có thể được sử dụng để sinh ra hàm logic bất kì Decoder