UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea _____

Iulie 2018

CHESTIONAR DE CONCURS

Numărul legitimației de bancă	
Numele	
Prenumele tatălui	
Prenumele	

DISCIPLINA: Algebră și Elemente de Analiză Matematică Mi

VARIANTA F

- 1. Să se calculeze determinantul $D = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 2 & 4 & 6 \end{vmatrix}$. (6 pct.)
 - a) D=1; b) D=11; c) D=4; d) D=0; e) D=14; f) D=3.
- 2. Să se determine $x \in \mathbb{R}$ astfel încât numerele 2, 4, x (în această ordine) să fie în progresie geometrică. (6 pct.)
 - a) x=11; b) x=8; c) x=5; d) x=9; e) x=14; f) x=18.
- 3. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Să se calculeze determinantul matricei A^2 . (6 pct.)
 - a) 4; b) 9; c) 16; d) 25; e) 15; f) 0.
- 4. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = |x|e^{-x}$. Fie n numărul punctelor de extrem local și m numărul punctelor de inflexiune ale funcției f. Care dintre următoarele afirmații este cea adevărată? (6 pct.)
 - a) n+2m=5; b) n-m=2; c) n+m=4; d) n-2m=1; e) 3n+2m=5; f) 3n-2m=4.
- 5. Fie $a,b \in \mathbb{R}$, a < b și fie funcția derivabilă $f:(a,b) \to \mathbb{R}$, cu derivata f' funcție continuă. Știind că $f'(x) + (f(x))^2 + 1 \ge 0$, $\forall x \in (a,b)$ și că $\lim_{\substack{x \to a \\ x > a}} f(x) = +\infty$, $\lim_{\substack{x \to b \\ x > b}} f(x) = -\infty$, decideți care dintre

următoarele afirmații este cea adevărată: (6 pct.)

a)
$$b-a \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$$
; b) $b-a \in \left[\frac{3\pi}{4}, \pi\right]$; c) $b-a \in \left[\pi, \infty\right)$; d) $b-a \in \left[0, \frac{\pi}{6}\right]$; e) $b-a \in \left[\frac{\pi}{2}, \frac{3\pi}{4}\right]$; f) $b-a \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.

- 6. Să se rezolve sistemul de ecuații $\begin{cases} x y = 2 \\ x 3y = 0 \end{cases}$ în mulțimea numerelor reale. (6 pct.)
 - a) x = 3, y = 1; b) x = 1, y = 2; c) x = 2, y = 1; d) x = y = 2; e) x = 1, y = 3; f) x = -3, y = 5.
- 7. Să se rezolve ecuația $\log_3(x-1) = 2$. (6 pct.)
 - a) x = 3; b) x = 10; c) x = 8; d) x = 11; e) x = 7; f) x = 14.

8. Să se rezolve inecuația 7x+2>5x+4. (6 pct.)

a)
$$x \in (1, \infty)$$
; b) $x \in (-3, 0)$; c) $x \in (-\infty, -4)$; d) $x \in (-4, -3)$; e) $x \in \emptyset$; f) $x \in (0, 1)$.

9. Suma soluțiilor reale ale ecuației $x^3 - 3x^2 - 5x = 0$ este: (6 pct.)

10. Fie polinomul $f = 1 + \sum_{k=0}^{100} \frac{(-1)^{k+1}}{(k+1)!} X(X-1)...(X-k)$. Dacă S este suma rădăcinilor reale ale lui f, iar T este suma rădăcinilor reale ale lui f', atunci S-T este egal cu: (6 pct.)

11. Suma pătratelor soluțiilor ecuației $x^2 + x - 2 = 0$ este: (6 pct.)

12. Fie $A = \left\{ \left| z^n + \frac{1}{z^n} \right| / n \in \mathbb{N}, z \in \mathbb{C}, z^4 + z^3 + z^2 + z + 1 = 0 \right\}$. Să se determine suma pătratelor elementelor mulțimii A. (6 pct.)

13. Multimea soluțiilor reale ale ecuației $\sqrt{x+3} - x = 1$ este: (6 pct.)

a)
$$\{3,4\}$$
; b) $\{-2,3\}$; c) $\{-1,3\}$; d) $\{-3,0\}$; e) $\{1\}$; f) \emptyset .

14. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^x$. Să se calculeze f'(0). (6 pct.)

15. Să se rezolve ecuația $2^{x+1} = 16$. (6 pct.)

a)
$$x = 2$$
; b) $x = 3$; c) $x = \frac{1}{2}$; d) $x = 6$; e) $x = 4$; f) $x = -1$.