Resumo: Corpo

A - Corpo

Um corpo é um conjunto K munido de duas operações chamadas adição e multiplicação que satisfazem os axiomas abaixo:

Axiomas da adição. Para todo $x, y, z \in K$:

- A1. Associatividade: (x + y) + z = x + (y + z).
- A2. Comutatividade: x + y = y + x.
- A3. Existência de elemento neutro: $\exists 0 \in K : x + 0 = x$
- A4. Existência de simétrico: $\forall x \in K$, $\exists (-x) \in K$: x + (-x) = 0

Axiomas da multiplicação. Para todo $x, y, z \in K$:

- M1. Associatividade: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- M2. Comutatividade: $x \cdot y = y \cdot x$
- M3. Existência de elemento neutro: $\exists 1 \in K : 1 \neq 0, x \cdot 1 = x$
- M4. Existência de inverso: $\forall x \in K, x \neq 0, \exists x^{-1} \in K : x \cdot x^{-1} = 1$

Axioma da distributividade.

D1. Distributividade: $x \cdot (y+z) = x \cdot y + x \cdot z$, $\forall x, y, z \in K$

B - Corpo Ordenado

Um corpo ordenado é um corpo K no qual se destaca um subconjunto $P \subset K$ tal que:

P1: Se $x, y \in P$, então $x + y \in P$ e $x \cdot y \in P$.

P2: Dado $x, y \in K$, uma das três alternativas ocorre: x = 0 ou $x \in P$ ou $(-x) \in P$.

Propriedades da relação de ordem x < y. Para todo $x, y, z \in K$:

- O1. Transitividade: Se x < y e y < z então x < z.
- O2. Tricotomia: Dados $x, y \in K$, verifica-se x = y ou x < y ou y < x.
- O3. Monotonia da adição: Se x < y, então x + z < y + z.
- O4. Monotonia da multiplicação: Se x < y e 0 < z, então $x \cdot z < y \cdot z$. Se x < y e z < 0, então $y \cdot z < x \cdot z$.

C - Corpo Ordenado Completo

Um corpo ordenado K diz-se completo quando todo o subconjunto não-vazio, limitado superiormente, possui um supremo em K.

Axioma: Existe um corpo ordenado completo, \mathbb{R} , chamado corpo dos números reais.