UNIDAD II: COORDENADAS POLARES

2.1 SISTEMA DE COORDENADAS POLARES

El sistema de coordenadas polares consta de un punto llamado polo y una semi recta, la cual se conoce como eje polar (lo representaremos en forma horizontal)

Un punto en el plano polar es un par ordenado (r, θ) , donde r es una longitud medida en unidades lineales y θ es un ángulo, medido en radianes, cuyo lado inicial se hace coincidir con el eje polar.

OBSERVACIONES:

- 1) Tanto r como θ pueden ser cualquier número real
- 2) $\theta > 0$ se mide en el sentido anti -horario
 - $\theta < 0$ se mide en sentido horario
- 3) Todo ángulo se mide haciendo coincidir el lado inicial con el eje polar 4) Las coordenadas del polo son $(0,\theta)$, donde θ es cualquier ángulo.

Por ejemplo: ubicar en el plano polar el punto $\left(3, \frac{\pi}{4}\right)$

Para representar un punto (r, θ) en el sistema polar se establecen los siguientes pasos:

- 1) Primero se escoge el origen o polo y de este polo, en forma horizontal, comienza el eje polar.
- 2) Luego se mide el ángulo θ en donde el eje polar será el lado inicial.
- 3) Si el valor de r es positivo entonces el punto se ubica sobre el lado terminal del ángulo θ y para ello se mide r unidades sobre el lado terminal.
- 4) Si el valor de r es negativo, entonces el punto se ubica sobre la prolongación del lado terminal, es decir, se mide r unidades sobre la prolongación del lado terminal.

Ejemplo: Localizar los puntos cuyas coordenadas polares se indican a continuación (en planos polares distintos)

a)
$$\left(4, \frac{2\pi}{3}\right)$$

b)
$$(3, -\frac{\pi}{4})$$

a)
$$\left(4, \frac{2\pi}{3}\right)$$
 b) $\left(3, -\frac{\pi}{4}\right)$ c) $\left(-5, \frac{7\pi}{4}\right)$ d) $\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$ e) $(-2, 2)$

d)
$$\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$$

Solución para a)

$$\left(4,\frac{2\pi}{3}\right)$$

Como no se tiene trasportador para ubicar ángulos en radianes hay que hacer la conversión a grados $\frac{2\pi}{3}$ es equivalente a 120°

Las unidades pueden ser centímetros o cualquier unidad de longitud.

Solución para b)

$$\left(3,-\frac{\pi}{4}\right)$$

$$-\frac{\pi}{4}$$
 equivale a -45°

Solución para c)

$$\left(-5, \frac{7\pi}{4}\right)$$

 $\frac{7\pi}{4}$ es equivalente a $315^{\rm o}$ o tendría el mismo lado terminal que $-\frac{\pi}{4}$

Solución para d)

 $\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$

Recuerde qué es un punto en el sistema polar, la primera componente es una longitud, entonces $\frac{\pi}{2} \approx \frac{3.14}{2} \approx 1.57$ y la segunda componente es un ángulo en radianes, o sea que $\theta = \frac{\pi}{6} = 30^{\circ}$. Por lo tanto, se mide desde el eje polar 30 grados con el trasportador y sobre ese lado terminal del ángulo se marca 1.57 de longitud y esa es la representación del punto

Solución para e)

(-2,2)

Igualmente, como este punto está en coordenadas polares la segunda componente es 2 radianes y como un radián equivale aproximadamente a 57.3°, 2 radianes es 114.6°.

Luego el punto queda en la prolongación del ángulo 114.6° , ya que r es negativo.

NOTA: Un punto en coordenadas polares no tiene representación única.

Así, por ejemplo, el punto (-2,2) se puede representar también como $(-2,2+\pi)\approx (-2,5.14)$ ó también como (2,-1.14)