קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(85 / 4א מועד - 2016 (סמסטר 15.2.2016 - מועד א א אריך הבחינה:

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

.C ו- B , A_3 , A_2 , A_1 :S נתונים חמישה מאורעות במרחב מדגם

. המאורעות למרחב המדגם שווה למרחב המדגם המ A_3 -ו A_2 , A_1 המאורעות

כמו כן, נתון כי

$$P(A_1) = P(A_2) = 2P(A_3)$$

$$P(A_1 \cap B) = 2P(A_2 \cap B) = 6P(A_3 \cap B)$$
 $P(B) = 0.6$

$$P(C \mid A_2 \cap B) = \frac{1}{2}$$
 $P(C \mid A_2 \cap B^C) = \frac{8}{11}$

$$P(C \mid A_3) = 0.6$$
 $P(B \mid C \cap A_3) = \frac{1}{6}$

$$P(B \cup C \mid A_1) = 0.95$$
 $P(B \cap C \mid A_1) = 0.15$

חשב את ההסתברויות שלהלן:

$$P(B \cap C \mid A_3)$$
 .ד. $P(A_2 \mid B \cup C)$.ג $P(A_1 \cap B^C \cap C^C)$.ב $P(C)$.א

שאלה 2 (25 נקודות)

$$f_X(x) = c(6-x)$$
 , $0 \le x \le 2$: נתונה פונקצית הצפיפות הבאה

- c א. חשב את הערך של 6)
- X ב. חשב את השונות של (X
- (7 נקי) ד. יהיו X_{30}, \dots, X_{1} משתנים מקריים בלתי-תלויים,

שלכל אחד מהם פונקציית הצפיפות המוגדרת בתחילת השאלה.

מהי בקירוב ההסתברות שסכומם גדול מ- 30!

שאלה 3 (25 נקודות)

 $.(\ p>0)\ p$ משתנה הפרמטרי עם היאומטרי מקרי מקרי איהי משתנה מקרי איאומטרי מ

- . שים לב לסימני אי-השוויון. $P\{X \le 16 \mid X > 7\}$ א. חשב את 8)
- $(n=1,2,\ldots)$ $X \leq n$ בהינתן $X \leq n$ בהינתן של ליות ההסתברות המחתנית של ווקציית ההסתברות (9 נקי)
 - n נקי) ג. יהי n שלם חיובי מסוים.

$$Y = egin{cases} X & , & X < n \\ n & , & X \geq n \end{cases}$$
 נגדיר את המשתנה המקרי Y על-ידי:

. $E[X] \square E[Y]$ השלם ב- >, < או = את הסימן החסר בביטוי השלם ב- >, < או בחירתך.

שאלה 4 (25 נקודות)

n עד n עד ממסופרים מ-1 עד n (ונתונים n כדורים ממסופרים מ-1 עד n

מכניסים באקראי את הכדורים לכדים – כדור אחד לכל כד.

; מספר הכדים שהמספר שהם נושאים שווה למספר שעל הכדור שהוכנס לתוכם X

. ויהי Y מספר הכדים שהמספר שהם נושאים \mathbf{k} מהמספר שעל הכדור שהוכנס לתוכם

- $P\{X=5\}$ א. נניח כי n=10: חשב את (9 נקי)
- E[Y] את בור (n > 1) כללי: חשב את (8 נקי)
- נקי) ג. עבור n > 1 כללי: האם המשתנים המקריים X ו-Y בלתי-תלויים זה בזה?

שאלה 5 (25 נקודות)

 $X_{1}=j$ בהינתן בהינתן, למשתנה המקרי המותנה , j=0,1,...,n

. $\frac{p_1}{1-p_2}$ -ו n-j יש התפלגות בינומית עם הפרמטרים

(12 נקי) ב. יהי p < 0 קבוע.

מספר הלקוחות הנכנסים לחנות במשך שעה הוא משתנה מקרי בינומי שלילי עם הפרמטרים מספר הלקוחות הנכנסים לחנות במשך שעה הוא משתנה מקרי בינומי שלילי עם הפרמטרים וp -1 $\,$

כל לקוח שנכנס לחנות, קונה בה מוצר/ים בהסתברות p, ואחרת, אינו קונה בה דבר כל לקוח שנכנס לחנות, קונה בה מוצר/ים בהסתברות p.

נניח שאין תלות בין לקוחות שונים הנכנסים לחנות.

יהי X מספר הלקוחות שקונים בחנות במשך שעה.

X מהן התוחלת והשונות של

בהצלחה!

$\Phi(z)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z) pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 נוסחת האינטרפולציה:

z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.0222	0.0245	0.0257	0.0270	0.0292	0.0204	0.0406	0.0410	0.0420	0.0441
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6 1.7	0.9452 0.9554	0.9463 0.9564	0.9474 0.9573	0.9484 0.9582	0.9495	0.9505 0.9599	0.9515 0.9608	0.9525 0.9616	0.9535 0.9625	0.9545 0.9633
			0.9373	0.9382	0.9591	0.9399			0.9623	0.9033
1.8 1.9	0.9641	0.9649		0.9664	0.9671		0.9686	0.9693	0.9699	
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9701	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	0.7771	0.2271	0.2221	0.2271	0.2271	0.7771	0.2271	0.2221	0.2221	0.7770

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

4

דף נוסחאות לבחינה - 20425

הפונקציה יוצרת המומנטים	<i>ה</i> שונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	np	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1, \dots, n$	בינומית
$pe^{t}/(1-(1-p)e^{t})$ $t<-\ln(1-p)$	$(1-p)/p^2$	1/ p	$(1-p)^{i-1} \cdot p$, $i=1,2,$	גיאומטרית
$\exp{\{\lambda(e^t-1)\}}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$\left(\frac{pe^t}{(1-(1-p)e^t)}\right)^r$ $t < -\ln(1-p)$	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i = r, r+1,$	בינומית שלילית
	$\left \frac{N-n}{N-1} n \frac{m}{N} (1 - \frac{m}{N}) \right $	nm/N	$ \left \binom{m}{i} \binom{N-m}{n-i} \middle/ \binom{N}{n} \right , i = 0, 1, \dots, m $	היפרגיאומטרית
	$(n^2-1)/12$	m+(1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a)$, $a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 נוסחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוסחת ההסתברות השלמה
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S$$
 נוסחת ההסתברות השלמה
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת בייס
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת הייס
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 תוחלת של פונקציה של מ"מ

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

שונות

תוחלת ושונות של פונקציה לינארית

$$P\{X>s+t ig|X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_x x p_{X\mid Y}(x\mid y)=\int x f_{X\mid Y}(x\mid y) dx$$
 תוחלת מותנית

5

 $Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$

E[aX + b] = aE[X] + b

 $Var(aX + b) = a^2 Var(X)$

 $Var(X | Y = y) = E[X^{2} | Y = y] - (E[X | Y = y])^{2}$ שונות מותנית $E[X] = E[E[X \mid Y]] = \sum_{y} E[X \mid Y = y] p_Y(y)$ נוסחת התוחלת המותנית (טענה מתרגיל ת26, עמוד 430) $E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$ Var(X) = E[Var(X | Y)] + Var(E[X | Y])נוסחת השונות המותנית $E\left|\sum_{i=1}^{n} X_{i}\right| = \sum_{i=1}^{n} E[X_{i}]$ תוחלת של סכום משתנים מקריים Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]שונות משותפת $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$ $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i \leq i} \operatorname{Cov}(X_{i}, X_{j})$ שונות של סכום משתנים מקריים $\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$ מקדם המתאם הלינארי $M_{\scriptscriptstyle X}(t) = E[e^{tX}] \qquad ; \qquad M_{aX+b}(t) = e^{bt} M_{\scriptscriptstyle X}(at)$ פונקציה יוצרת מומנטים $M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$: כאשר מיים ביית מתקיים א מיים מיים מיים אוים א $E \Big| \sum_{i=1}^{N} X_i \Big| = E[N]E[X]$ תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי $\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X) + (E[X])^{2}\operatorname{Var}(N)$ (כאשר X_i מיימ ביית שייה X_i $M_Y(t) = E\Big[\Big(M_X(t)\Big)^N\Big]$ $P\{X \ge a\} \le E[X]/a$, a > 0 , מיימ אי-שלילי Xאי-שוויון מרקוב $P\{\left|X-\mu\right|\geq a\}\leq\sigma^{2}\left/a^{2}\right.\qquad,\qquad a>0\ ,\ \mu,\sigma^{2}<\infty$ $Pigg\{ (\sum\limits_{i=1}^n X_i - n\mu) igg/\sqrt{n\sigma^2} \leq a igg\} igg. igg. \Phi(a) \quad , \quad \mu,\sigma^2 < \infty \; , \;$ משפט הגבול המרכזי X_i מיימ ביית ושייה X_i

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי המאורע A יתרחש לפני המאורע B היא P(A)/[P(A)+P(B)] .
- סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי). ullet
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.

$$\begin{split} \sum_{i=0}^{n} i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^{\infty} \frac{x^i}{i!} &= e^x \quad ; \quad \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \quad ; \quad \sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \quad , \quad -1 < x < 1 \quad ; \quad \sum_{i=1}^{\infty} \frac{x^i}{i} = -\ln(1-x) \quad , \quad 0 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)}(ax+b)^{n+1} \quad , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b) \\ \int e^{ax} dx &= \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \\ \log_n a &= \log_m a/\log_m n \qquad ; \qquad \log_n (a^b) = b \cdot \log_n a \qquad ; \qquad \log_n (ab) = \log_n a + \log_n b \end{split}$$

6