

Uncertainty modelling in spoken language assessment

Dr. Jeremy Wong

Aural and Language Intelligence department

Institute for Infocomm Research (I²R)

2nd October 2023

Content

About myself

Background:

- Spoken language assessment
- Uncertainty estimation
- Neural network
- Gaussian process

Recent developments:

- Learning data uncertainty in a neural network
- Learning data uncertainty in a Gaussian process
- Learning distributional uncertainty from a Gaussian process
- Improving model assumptions

About myself

PhD in University of Cambridge, UK – 2014 to 2019

Research topic: speech recognition

Senior applied scientist in Microsoft, USA – 2019 to 2021

Research topic: speaker diarisation

Senior scientist in I²R A*STAR, Singapore – 2021 to now

Research topic: spoken language assessment

ax

Spoken language assessment

Spoken language assessment

Spoken language assessment

Aspects to assess:

- Pronunciation accuracy
- Fluency, intonation, prosody
- Sentence completion
- Task completion
- Topic relevance

Applications:

- Automatic language tutoring
- Language practice
- Language examination

 $oldsymbol{v}^{\star}$ Creating growth, enhancing lives

Dataset

Speechocean762

Training set: 2500 sentence, 125 speakers

Test set: 2500 sentences, 125 speakers

Annotation levels: sentence, word, phone

Annotation types:

- Pronunciation accuracy
- Fluency
- Prosody
- Sentence completion
- Word stress

at

Evaluate model performance

Evaluation metrics:

- Pearson's correlation coefficient
- Mean squared error

 \boldsymbol{a}^{\star}

Uncertainty estimation

Uncertainty estimation

ARES PUBLIC

Types of uncertainty

	Data uncertainty	Model uncertainty	Distributional uncertainty
Caused by	Natural overlap in the input space.	Each model architecture has an intrinsic bias toward certain behaviour.	Finite coverage of the training data.
	Limited access to information.	When given a finite training data, the optimal model architecture or parameter set is not unique. Multiple non-equivalent optima.	
Alleviated by	Using more independent input features. (E.g. multi-modal)	Get more training data.	Increase the distributional support of the training data. (E.g. domain adaptation)
	Using models that can process more aspects of the data. (E.g. RNN vs DNN)	Combine multiple models.	

How to get a model to know that it does not know?

Use of uncertainty

- Take precaution
 - > Slow down
 - > If multiple teachers would disagree, then don't penalise student
- Seek clarification from user
 - ➤ Ask the student to repeat or rephrase

- Seek human intervention
 - > Ask a human teacher to assess the student instead

How to compute uncertainty

References about uncertainty

- A. Kendall and Y. Gal, "What uncertainties do we need in Bayesian deep learning for computer vision?," NIPS, 2017
- A. Malinin and M. Gales, "Predictive uncertainty estimation via prior networks," NeurIPS, 2018
- R. McAllister, Y. Gal, A. Kendall, M. van der Wilk, A. Shah, R. Cipolla, and A. Weller, "Concrete problems for autonomous vehicle safety: advantages of Bayesian deep learning," IJCAI, 2017

Neural networks and Gaussian processes

Neural network

<u>Inference</u>

ARES PUBLIC

Example model for spoken language assessment

- Y. Gong, Z. Chen, I.-H. Chu, P. Chang, and J. Glass, "Transformer-based multi-aspect multi-granularity non-native English speaker pronunciation assessment," ICASSP, 2022
- F.-A. Chao and T.-H. Lo and T.-I. Wu and Y.-T. Sung and B. Chen, "3M: an effective multi-view, multi-granularity, and multi-aspect modeling approach to English pronunciation assessment," APSIPA, 2022
- S. Banno and M. Matassoni, "Proficiency assessment of L2 spoken English using Wav2Vec 2.0," SLT, 2022

Training criteria

Cross-entropy

$$\arg\max_{\theta} \sum_{i} \log P(y_i^{\text{ref}}|x_i;\theta)$$

Mean squared error

$$\arg\min_{\theta} \sum_{i} (y_i^{\text{ref}} - y_i)^2$$

 x_i -> input y_i -> model output y_i^{ref} -> reference output θ -> model parameters

Inference decoding

Maximum a-posteriori

Mean

Median

Minimum expected risk

$$\arg\max_{y} P(y|x)$$

$$\sum_{y} y P(y|x)$$

$$\arg\min_{y} y : \sum_{y'}^{y} P(y'|x) \ge \frac{1}{2}$$

$$\arg\min_{y} \sum_{y'} R(y, y') P(y'|x)$$

ARES PUBLIC

Gaussian process

Inference

C. Rasmussen and C. Williams, "Gaussian processes for machine learning," MIT Press, 2006

ARES PUBLIC

Example model for spoken language assessment

Gaussian process formulation

Kernel

$$k_{ij}(\mathbf{x}, \mathbf{x}') = s^2 \exp \left[-\frac{\left(x_i - x_j'\right)^2}{2l^2} \right]$$

Prior

$$p(f|x) = \mathcal{N}(f; \mathbf{0}, K(x, x))$$

Output density function

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}; \mathbf{f}, \sigma^2 \mathbf{I})$$

Marginal likelihood

$$p(\mathbf{y}|\mathbf{x}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{x})d\mathbf{f}$$
$$= \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{x}, \mathbf{x}) + \sigma^2 \mathbf{I})$$

x -> input

y -> model output

f -> latent variable

 $s, l, \sigma \rightarrow$ hyper-parameters

I -> Identity matrix

0 -> Zero vector

 \mathcal{N} -> Gaussian

Gaussian process formulation

Joint prior

$$p(\hat{f}, \mathbf{y} | \hat{x}, \mathbf{x}) = \mathcal{N}\left(\begin{bmatrix} \hat{f} \\ \mathbf{y} \end{bmatrix}; \mathbf{0}, \begin{bmatrix} k(\hat{x}, \hat{x}) & \mathbf{k}^{\mathrm{T}}(\mathbf{x}, \hat{x}) \\ \mathbf{k}(\mathbf{x}, \hat{x}) & K(\mathbf{x}, \mathbf{x}) + \sigma^{2} \mathbf{I} \end{bmatrix}\right)$$

Latent posterior

$$p(\hat{f}|\mathbf{y}, \hat{x}, \mathbf{x}) = \frac{p(\hat{f}, \mathbf{y}|\hat{x}, \mathbf{x})}{p(\mathbf{y}|\mathbf{f})}$$
$$= \mathcal{N}(\hat{f}; \hat{\mu}, \hat{v})$$

$$\hat{\mu} = \mathbf{k}^{\mathrm{T}}(\mathbf{x}, \hat{\mathbf{x}}) [\mathbf{K}(\mathbf{x}, \mathbf{x}) + \sigma^{2} \mathbf{I}]^{-1} \mathbf{y}$$

$$\hat{\mathbf{v}} = k(\hat{\mathbf{x}}, \hat{\mathbf{x}}) - \mathbf{k}^{\mathrm{T}}(\mathbf{x}, \hat{\mathbf{x}}) [\mathbf{K}(\mathbf{x}, \mathbf{x}) + \sigma^{2} \mathbf{I}]^{-1} \mathbf{k}(\mathbf{x}, \hat{\mathbf{x}})$$

Output posterior

$$p(\hat{y}|\mathbf{y}, \hat{x}, \mathbf{x}) = \int p(\hat{y}|\hat{f})p(\hat{f}, \mathbf{y}|\hat{x}, \mathbf{x})d\hat{f}$$
$$= \mathcal{N}(\hat{y}; \hat{\mu}, \hat{v} + \sigma^2)$$

ARES PUBLIC

Training and inference

Training criterion

• Maximum marginal log-likelihood $\underset{\theta}{\operatorname{arg max}} \log p(\mathbf{y}|\mathbf{x})$

Inference decoding

• For Gaussian, max = mean = median = $\hat{\mu}$.

ar

Compare NN to GP

	NN	GP
Parameters	Many parameters to learn training data.	Only 3 hyper-parameters.
Inference	Training data not using during inference.	Training data used during inference. High computational cost.
Uncertainty	Data: to some extent Distributional: no Model: no	Data: no Distributional: yes Model: to some extent

Learning data uncertainty in a neural network

Subjective data uncertainty

Different human experts may not agree about what the correct output should be.

Importance of modelling data uncertainty

- If multiple teachers would disagree, then don't penalise student.
- Use uncertainty information to:
 - > Ask the student to repeat or rephrase.
 - > Ask a human teacher to assess the student instead.

 $\boldsymbol{\alpha}^{\star}$

Training to capture data uncertainty

- Collection of outputs from multiple humans forms reference of data uncertainty.
- Train and evaluate model using distance between reference and predicted distributions.

J. Wong, H. Zhang, and N. Chen, "Modelling inter-rater uncertainty in spoken language assessment," IEEE Transactions on Audio, Speech, and Language Processing, vol. 31, Jul 2023

ARES PUBLIC

Learning data uncertainty in a Gaussian process

Using multiple reference outputs in GP

- Standard GP assumes each training input has 1 reference output.
- Extend GP to consider multiple training reference outputs.
- Training, joint marginal log-likelihood:

$$\underset{\theta}{\operatorname{arg max}} \log p(\mathbf{y}_1, \cdots, \mathbf{y}_R | \mathbf{x})$$

• Inference, posterior:

$$p(\hat{y}|\mathbf{y}_1,\cdots,\mathbf{y}_R,\hat{x},\mathbf{x})$$

J. Wong, H. Zhang, and N. Chen, "Variational Gaussian process data uncertainty," ASRU, Dec 2023

ARES PUBLIC

Issues with using multiple reference outputs in GP

Standard GP does not have capacity to learn data uncertainty.

$$p(\mathbf{y}_1, \dots, \mathbf{y}_R | \mathbf{x}) \propto \mathcal{N}\left(\mathbb{E}_{r=1}^R(\mathbf{y}_r); \mathbf{0}, \mathbf{K}(\mathbf{x}, \mathbf{x}) + \frac{\sigma^2}{R}\mathbf{I}\right) \mathcal{N}\left(\sqrt{\mathbb{V}_{r=1}^R(\mathbf{y}_r)}; \mathbf{0}, \frac{\sigma^2}{R}\mathbf{I}\right)$$

Standard training criteria do not encourage GP to learn data uncertainty.

GP with multiple training outputs

ARES PUBLIC

Variational GP with multiple training outputs

z -> Inducing inputs

Variational approximation

Variational approximation:

$$p(\hat{f}|\mathbf{y},\hat{x},\mathbf{x}) \approx \int p(\hat{f}|\hat{x},\mathbf{u},\mathbf{z}) \mathcal{N}(\mathbf{u};\mathbf{m},\mathbf{S}) d\mathbf{u}$$

Approximate posterior:

$$p(\hat{y}|\mathbf{y},\hat{x},\mathbf{x}) \approx \mathcal{N}(\hat{y};\mathbf{a}^{\mathrm{T}}\mathbf{m},k(\hat{x},\hat{x}) + \mathbf{a}^{\mathrm{T}}[\mathbf{S} - \mathbf{K}(\mathbf{z},\mathbf{z})]\mathbf{a} + \sigma^{2})$$
$$\mathbf{a} = \mathbf{K}(\mathbf{z},\mathbf{z})\mathbf{k}(\mathbf{z},\hat{x})$$

- Able to learn about data uncertainty into $a^{T}[S K(z, z)]a$.
- Variational approximation originally allows for:
 - Non-Gaussian output density functions.
 - Mini-batch training.

J. Hensman, A. de G. Matthews, and Z. Ghahramani, "Scalable variational Gaussian process classification," AISTATS, 2015

ARES PUBLIC

Train GP to capture data uncertainty

Train GP by minimising distance to reference output distribution.

Variational GP with multiple training outputs

Minimise distance between distributions

Learning distributional uncertainty from a Gaussian process

Distributional uncertainty

Knowledge distillation

Knowledge distillation

Improving model assumptions

Bounded score range

- Standard model uses softmax, Gaussian, or scalar output.
- Preferred properties:
 - Bounded range of outputs (softmax: yes, Gaussian: no, scalar: maybe)
 - Probabilistic output (softmax: yes, Gaussian: yes, scalar: no)
 - Monotonicity (softmax: no, Gaussian: yes, scalar: yes)
- Using a beta density satisfies all 3 properties.

ARES PUBLIC

Beta-output neural network

J. Wong, H. Zhang, and N. Chen, "Modelling inter-rater uncertainty in spoken language assessment," IEEE Transactions on Audio, Speech, and Language Processing, vol. 31, Jul 2023

ARES PUBLIC

Beta-output Gaussian process

• Implement beta-GP using variational approximation.

B. Jensen, J. Nielsen, and J. Larsen, "Bounded Gaussian process regression," International Workshop on Machine Learning for Signal Processing, 2013

ARES PUBLIC

Other work

Multi-task learning

- Dataset for spoken language assessment is annotated with multiple score types at multiple levels.
- Learn from all score types and levels together.

Y. Gong, Z. Chen, I.-H. Chu, P. Chang, and J. Glass, "Transformer-based multi-aspect multi-granularity non-native English speaker pronunciation assessment," ICASSP, 2022

J. Wong, H. Zhang, and N. Chen, "Variations of multi-task learning for spoken language assessment," Interspeech, 2022

ARES PUBLIC

THANK YOU

www.a-star.edu.sg

