SSD1331

Advance Information

96RGB x 64 Dot Matrix **OLED/PLED Segment/Common Driver with Controller**

This document contains information on a new product. Specifications and information herein are subject to change without notice.

CONTENTS

CON	ITENTS		2
1	GERI	ENAL INFORMATION	6
2	FEA1	TURES	6
3	ORD	ERING INFORMATION	6
4		CK DIAGRAM	
5		331Z GOLD BUMP DIE PAD ASSIGNMENT	
6		DESCRIPTION	
7		CTIONAL BLOCK DESCRIPTIONS	
7.		U Interface Selection	
	7.1.1	6800-series Parallel Interface	
	7.1.2	8080-series Parallel Interface	
	7.1.3	Serial Interface	
7.3	2 Cor	MMAND DECODER	18
7.3	3 Osc	CILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	
	7.3.1	Oscillator	
	7.3.2	FR synchronization	
7.	4 Res	SET CIRCUIT	19
7.		APHIC DISPLAY DATA RAM (GDDRAM)	
	7.5.1 7.5.2	GDDRAM structure Data bus to RAM mapping under different input mode	
	7.5.2 7.5.3	RAM mapping and Different color depth mode	
7.0		AY SCALE DECODER	
7.		G / COM DRIVING BLOCK	
7.		MMON AND SEGMENT DRIVERS	
7.9		WER ON AND OFF SEQUENCE	
8	COM	MAND TABLE	28
8.	1 Dat	FA READ / WRITE	34
9	COM	MAND DESCRIPTIONS	35
9.	1 Fun	IDAMENTAL COMMAND	35
	9.1.1	Set Column Address (15h)	
	9.1.2	Set Row Address (75h)	35
	9.1.3	Set Contrast for Color A, B, C (81h, 82h, 83h)	
	9.1.4	Master Current Control (87h)	36
	9.1.5	Set Second Pre-charge Speed for Color A, B, C (8Ah)	
	9.1.6	Set Re-map & Data Format (A0h)	
	9.1.7	Set Display Start Line (A1h)	
	9.1.8	Set Display Mode (A4h - A7h)	
	9.1.9 9.1.10	Set Display Mode (A4h ~ A7h)	
	9.1.10	Dim mode setting (ABh)	
	9.1.12	Set Master Configuration (ADh)	
	9.1.13	Set Display ON/OFF (ACh / AEh / AFh)	
	9.1.14	Power Save Mode (B0h)	
	9.1.15	Phase 1 and 2 Period Adjustment (B1h)	
	9.1.16	Set Display Clock Divide Ratio/ Oscillator Frequency (B3h)	46
	9.1.17	Set Gray Scale Table (B8h)	
	9.1.18	Enable Linear Gray Scale Table (B9h)	
	9.1.19	Set Pre-charge voltage (BBh)	
	9.1.20	Set V _{COMH} Voltage (BEh)	
	9.1.21	NOP (BCh, BDh, E3h)	
9.:	9.1.22 2 GP	Set Command Lock (FDh)APHIC ACCELERATION COMMAND SET DESCRIPTION	47
	2 GR 9.2.1	Draw Line (21h)	
	9.2.1	Draw Rectangle (22h)	
	~· ~ ·~		+0

	9.2.3	Copy (23h)	49
	9.2.4	Dim Window (24h)	49
	9.2.5	Clear Window (25h)	50
	9.2.6	Fill Enable/Disable (26h)	
	9.2.7	Continuous Horizontal & Vertical Scrolling Setup (27h)	
	9.2.8	Deactivate scrolling (2Eh)	51
	9.2.9	Activate scrolling (2Fh)	51
10	MA	XIMUM RATINGS	
11	DC	CHARACTERISTICS	53
12	AC	CHARACTERISTICS	54
13		PLICATION EXAMPLE	
13	AF	FLICATION EXAMPLE	
14	PA	CKAGE OPTIONS	59
14	4.1	SSD1331Z DIE TRAY INFORMATION	59
14	4.2	SSD1331U1R1 COF PACKAGE DIMENSIONS	
14	4.3	SSD1331U1R1 COF PACKAGE PIN ASSIGNMENT	62
14	4.4	SSD1331U3R1 COF PACKAGE DIMENSIONS	
14	4.5	SSD1331U3R1 COF PACKAGE PIN ASSIGNMENT	

SSD1331 Rev 1.2 P 3/68 Nov 2007 **Solomon Systech**

TABLES

Table 1 - Ordering Information	6
Table 2 - SSD1331Z Die Pad Coordinates	9
Table 3 - Bus Interface selection	12
Table 4 - MCU interface assignment under different bus interface mode	15
Table 5 - Control pins of 6800 interface	15
Table 6 - Control pins of 8080 interface (Form 1)	16
Table 7 - Control pins of 8080 interface (Form 2)	16
Table 8 - Control pins of Serial interface	17
Table 9 - Data bus usage under different bus width and color depth mode	20
Table 10 - Command Table	
Table 11 - Address increment table (Automatic)	
Table 12 - Illustration of different COM output settings	39
Table 13 - Example of Set Display Offset and Display Start Line with no Remap	
Table 14 - Example of Set Display Offset and Display Start Line with Remap	44
Table 15 - Result of Change of Brightness by Dim Window Command	
Table 16 - Maximum Ratings	52
Table 17 - DC Characteristics	53
Table 18 - AC Characteristics	54
Table 19 - 6800-Series MPU Parallel Interface Timing Characteristics	55
Table 20 - 8080-Series MPU Parallel Interface Timing Characteristics	56
Table 21 - Serial Interface Timing Characteristics	
Table 22 - SSD1331U1R1 pin assignment	
Table 23 - SSD1331U3R1 pin assignment	67

 Solomon Systech
 Nov 2007
 P 4/68
 Rev 1.2
 SSD1331

FIGURES

Figure 1 - SSD1331 Block Diagram	7
Figure 2 - SSD1331Z Die Drawing	
Figure 3 - SSD1331Z Alignment mark dimensions	11
Figure 4 - Display data read back procedure - insertion of dummy readread	15
Figure 5 – Example of Write procedure in 8080 parallel interface mode	16
Figure 6 – Example of Read procedure in 8080 parallel interface mode	
Figure 7 - Display data read back procedure - insertion of dummy readread	17
Figure 8 - Write procedure in SPI mode	17
Figure 9 - Oscillator Circuit	18
Figure 10 - 65k Color Depth Graphic Display Data RAM Structure	20
Figure 11 - 256-color mode mapping	
Figure 12 - Relation between GDRAM content and gray scale table entry for three colors in 65K color mo	de21
Figure 13 - Illustration of relation between graphic display RAM value and gray scale control	22
Figure 14 - I _{REF} Current Setting by Resistor Value	23
Figure 15 - I _{SEG} current vs V _{CC} setting at constant I _{REF} , Contrast = FFh	
Figure 16 - Segment and Common Driver Block Diagram	
Figure 17 - Segment and Common Driver Signal Waveform	
Figure 18 - Gray Scale Control by PWM in Segment	
Figure 19 : The Power ON sequence	
Figure 20 : The Power OFF sequence	
Figure 21 - Example of Column and Row Address Pointer Movement	
Figure 22 - Effect of setting the second pre-charge under different speeds	
Figure 23 - Address Pointer Movement of Horizontal Address Increment Mode	
Figure 24 - Address Pointer Movement of Vertical Address Increment Mode	
Figure 25 - Example of Column Address Mapping	
Figure 26 - COM Pins Hardware Configuration (MUX ratio: 64)	
Figure 27 – Transition between different modes	
Figure 28 - Typical Oscillator frequency adjustment by B3 command (V _{DD} =2.7V)	
Figure 29 - Example of gamma correction by gray scale table setting	
Figure 30 – Typical Pre-charge voltage level setting by command BBh	
Figure 31 - Example of Draw Line Command	
Figure 32 - Example of Draw Rectangle Command	
Figure 33 - Example of Copy Command	
Figure 34 - Example of Copy + Clear = Move Command	
Figure 35 - Examples of Continuous Horizontal and Vertical Scrolling command setup Figure 36 - 6800-series parallel interface characteristics	
Figure 37 - 8080-series parallel interface characteristics (Form 1)	
Figure 38 - 8080-series parallel interface characteristics (Form 2)	
Figure 39 - Serial interface characteristics	
Figure 40 - Application Example for SSD1331U1R1	
Figure 41 - Die Tray Information	
Figure 42 - SSD1331U1R1 outline drawing	
Figure 43 - SSD1331U1R1 pin assignment drawing	
Figure 44 - SSD1331U3R1 outline drawing	
Figure 45 - SSD1331U3R1 pin assignment drawing	
. iga.o 10 CCD 100 COTT pin doorginion didming	00

SSD1331 Rev 1.2 P 5/68 Nov 2007 **Solomon Systech**

1 GERENAL INFORMATION

The SSD133 1 is a single chip CMOS OLED/PLED driver with 288 se gments and 64 co mmons output, supporting u p to 96 RGB x 64 dot matrix displa y. This chi p is d esigned for Common Cathod e type OLED/PLED panel.

The SSD1331 had embe dded Graphic Display Data RAM (GDDRAM). It support s with 8, 9, 16 bits 8080 / 6800 parallel interface as well as serial peripheral interface. It has 25 6-step contrast and 65K color control. To facilitate communication between lower operating voltages MCU, it has separate power for I/O interface logic. SSD1331 is suitable for mobile phones, MP3, MP4 and other industrial devices.

2 FEAT URES

- Resolution: 96RGB x 64 dot matrix panel
- 65k color depth support by embedded 96x64x16 bit GDDRAM display buffer
- Power supply:
 - \circ V_{DD} = 2.4V to 3.5V for IC logic
 - \circ V_{CC} = 8.0V to 18.0V for Panel driving
 - \circ V_{DDIO} = 1.6V to V_{DD} for MCU interface
- Segment maximum source current: 200uA
- Common maximum sink current: 60mA
- 256 step contrast control for the each color component plus 16 step master current control
- Pin selectable MCU interface
 - o 8/9/16 bits 6800-series parallel Interface
 - o 8/9/16 bits 8080-series Parallel Interface
 - o Serial Peripheral Interface
- Color swapping function (RGB <-> BGR)
- Graphic Accelerating Command (GAC) set with Continuous Horizontal, Vertical and Diagonal Scrolling
- Programmable Frame Rate
- Wide range of operating temperature: -40 to 85 °C

3 ORDERING INFORMATION

Table 1 - Ordering Information

Ordering Part Number	SEG	СОМ	Package Form	Reference	Remark
SSD1331Z 96	х3	64	COG	Page 8, 59	Min SEG pad pitch: 40.2 umMin COM pad pitch: 41.8 um
SSD1331U1R1	96x3	64	COF	Page 60	 35mm film, 5 sprocket hole 8 bit or SPI interface Output lead pitch: 0.06mm for SEG, 0.09mm for COM
SSD1331U3R1 96	х3	64	COF	Page 64	 35mm film, 4 sprocket hole 8 bit or SPI interface Output lead pitch: 0.06mm for SEG, 0.09mm for COM

Solomon Systech | Nov 2007 | P 6/68 | Rev 1.2 | SSD1331

4 BLOCK DIAGRAM

Figure 1 - SSD1331 Block Diagram

SSD1331 Rev 1.2 | P 7/68 | Nov 2007 **Solomon Systech**

5 SSD1331Z GOLD BUMP DIE PAD ASSIGNMENT

Figure 2 - SSD1331Z Die Drawing

Die size	13.1mm x 1.58mm	
Die height	457um	
Min I/O pad pitch	76.2 um	
Min SEG pad pitch	40.2 um	
Min COM pad pitch	41.8 um	
Bump height	Nominal 15um	

Bump size	
Pad 1-163	50um x 72um
Pad164-195, 486-517	72um x 28um
Pad 196-485	28um x 72um

Alignment mark				
+ shape	(5446.0, -402.0)	75um x 75um		
+ shape	(-5446.0, -402.0)	75um x 75um		

 Solomon Systech
 Nov 2007
 P 8/68
 Rev 1.2
 SSD1331

Table 2 - SSD1331Z Die Pad Coordinates

Pad no.	Pad Na me	X-Axis	Y-Axis
1	NC	-6319.4	-712.5
2	NC NC	-6243.2	-712.5 -712.5
3	NC NC	-6167.0 -6090.8	-712.5 -712.5
5	NC	-6014.6	-712.5
6	NC	-5791.2	-712.5
7	VCC	-5715.0	-712.5
8	VCC	-5638.8	-712.5
9	VCC	-5562.6	-712.5
10	VLSS	-5486.4	-712.5
11 12	VLSS VLSS	-5410.2 -5334.0	-712.5 -712.5
13	VLSS	-5257.8	-712.5
14	VLSS	-5181.6	-712.5
15	VLSS	-5105.4	-712.5
16	VLSS	-5029.2	-712.5
17 18	VLSS	-4953.0 -4876.8	-712.5 -712.5
19	VLSS VLSS	-4870.6 -4800.6	-7 12.5 -712.5
20	VLSS	-4724.4	-712.5
21	VLSS	-4648.2	-712.5
22	VSS	-4572.0	-712.5
23	VSS	-4495.8	-712.5
24	VSS	-44196	-7125
25	BGGND	-4343.4	-712.5
26 27	VDD VDD	-4267.2 -4191.0	-712.5 -712.5
28	VDD	-4 19 1.0 -4 114.8	-712.5
29	VDDIO	-4038.6	-712.5
30	VDDIO	-3962.4	-712.5
31	VDDIO	-3886.2	-712.5
32	VCC	-3810.0	-712.5
33	VCC	-3733.8	-712.5
34 35	VCC VSSB	-3657.6 -3581.4	-712.5 -712.5
36	VSSB	-3505.2	-712.5
37	VSSB	-3429.0	-712.5
38	GDR	-3352.8	-712.5
39	GDR	-3276.6	-712.5
40	GDR	-3200.4	-712.5
41	GDR	-3124.2	-712.5
42	GDR GDR	-3048.0 -2971.8	-712.5 -712.5
44	GDR	-2895.6	-712.5
45	VDDB	-2819.4	-712.5
46	VDDB	-2743.2	-712.5
47	VDDB	-2667.0	-712.5
48	VDDB	-2590.8	-712.5
49	VDDB VDD	-2514.6 -2438.4	-712.5 -712.5
50 51	VDDIO	-2438.4	-712.5 -712.5
52	VDD	-2286.0	-712.5
53	VDD	-2209.8	-712.5
54	FB	-2133.6	-712.5
55	VBREF	-2057.4	-712.5
56	VSS	-1981.2	-712.5
57 58	GPIO0 GPIO1	-1905.0 -1828.8	-712.5 -712.5
59	VDDIO	-1752.6	-7 12.5 -712.5
60	VCIR	-1676.4	-7 12.5
61	VCIR	-1600.2	-712.5
62	VCIR	-1524.0	-712.5
63	VCIR	-1447.8	-712.5
64	VCIR	-1371.6	-712.5
65 66	VDD VDD	-1295.4 -1219.2	-712.5 -712.5
67	VDD	-1143.0	-7 12.5 -712.5
68	VDD	-1066.8	-712.5
69	AVDD	-990.6	-712.5
70	AVDD	-914.4	-712.5
71	VDDIO	-838.2	-712.5
72 73	VDDIO	-762.0	-712.5
73 74	VDDIO VDDIO	-685.8 -609.6	-712.5 -712.5
75	VDDIO	-533.4	-7 12.5 -712.5
76	VDDIO	-457.2	-712.5
77	BS0	-381.0	-712.5
78	VSS	-304.8	-712.5
79	BS1	-228.6	-712.5
80	VDDIO	-152.4	-712.5

Pad no. Pad Na me X-Axis Y-Axis 81 BS2 -762 -725 82 VSS 0.0 -725 83 BS3 762 -725 84 VDDIO 524 -725 85 VDDIO 228.6 -725 86 IREF 304.8 -72.5 87 VCC 3810 -72.5 88 VCC 457.2 -72.5 89 VCC 533.4 -72.5 90 FR 609.6 -72.5 91 CL 685.8 -72.5 91 CL 685.8 -72.5 92 VSS 762.0 -72.5 93 CLS 838.2 -72.5 94 VDDIO 944.4 -72.5 95 VDDIO 90.6 -72.5 96 VDDIO 144.3 -72.5 97 VDDIO 144.3 -72.5				
82 VSS 0.0 -72.5 83 BS3 762 -72.5 84 VDDIO 52.4 -72.5 85 VDDIO 52.4 -72.5 86 IREF 304.8 -72.5 87 VCC 3810 -72.5 88 VCC 457.2 -72.5 89 VCC 533.4 -72.5 89 VCC 533.4 -72.5 90 FR 609.6 -72.5 91 CL 685.8 -72.5 91 CL 685.8 -72.5 92 VSS 76.20 -72.5 93 CLS 838.2 -72.5 94 VDDIO 99.6 -72.5 95 VDDIO 99.6 -72.5 96 VDDIO 99.6 -72.5 97 VDDIO 143.0 -72.5 98 CSB 29.2 -72.5 100 RESB 371.6 -72.5 101 VDDIO 152.4 -72.5 103 DC 600.2 -72.5 104 VSS 166.4 -72.5 105 RW 175.2 -72.5 106 E 12.28 -72.5 107 VDDIO 166.1 -72.5 108 VDD 167.4 -72.5 109 VDD 2057.4 -72.5 109 VDD 2057.4 -72.5 110 DD 2209.8 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 236.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D4 2514.6 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 289.4 -72.5 120 D9 2895.6 -72.5 131 TR 2432.2 -72.5 132 TR 7 330.8 -72.5 133 TR 2432.2 -72.5 144 D3 3200.4 -72.5 155 TR 7 330.8 -72.5 157 TR 7 330.8 -72.5 158 TR 7 343.2 -72.5 159 TR 7 343.2 -72.5 150 TR 7 343.2 -72.5 150 TR 7 343.2 -72.5 151 TR 7 343.2 -72.5 152 TR 7 343.2 -72.5 153 TR 7 343.2 -72.5 154 TR 7 350.4 -72.5 155 TR 7 350.4 -72.5 156 TR 7 350.4 -72.5 157 TR 7 350.4 -72.5 158 TR 7 350.4 -72.5 159 TR 7 350.4 -72.5 150 TR 7 350.0 -72.5 150 TR 7				
83 BS3 762 -72.5 84 VDDIO 52.4 -72.5 85 VDDIO 228.6 -72.5 86 IREF 304.8 -72.5 87 VCC 3810 -72.5 88 VCC 457.2 -72.5 89 VCC 533.4 -72.5 89 VCC 533.4 -72.5 90 FR 609.6 -72.5 91 CL 685.8 -72.5 92 VSS 762.0 -72.5 93 CLS 838.2 -72.5 94 VDDIO 990.6 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 106.8 -72.5 97 VDDIO 144.4 -72.5 98 CSB 29.2 -72.5 99 VSS 295.4 -72.5 99 VSS 295.4 -72.5 100 RESB 13716 -72.5 101 VDDIO 144.7 -72.5 102 VDDIO 152.40 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 1752.6 -72.5 106 E 132.8 -72.5 107 VDDIO 990.6 -72.5 108 VDD 9812 -72.5 109 VDD 2057.4 -72.5 100 VDD 2133.6 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2518.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 110 D9 2895.6 -72.5 111 D1 2936.7 -72.5 112 D1 3048.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2518.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 120 D9 2895.6 -72.5 131 TRB 3200.4 -72.5 144 D3 3200.4 -72.5 152 D1 3743.2 -72.5 153 TRS 4038.6 -72.5 154 D7 275.5 155 TRS 4038.6 -72.5 156 D15 TRS 4038.6 -72.5 157 VSS 3429.0 -72.5 158 TR1 3505.2 -72.5 159 TR1 3434.4 -72.5 150 TR9 3657.6 -72.5 151 TR9 3657.6 -72.5 152 D1 3743.2 -72.5 153 TR9 3657.6 -72.5 154 VSS 3429.0 -72.5 155 TR9 3434.4 -72.5 156 D16 TR9 3657.6 -72.5 157 TR9 3657.6 -72.5 158 TR9 3657.6 -72.5 159 TR1 3434.4 -72.5 150 TR9 3657.6 -72.5 151 TR9 3657.6 -72.5 151 TR9 3657.6 -72.5 151 VCC 5257.8 -72.5 151 VCC 5257.8 -72.5 152 VCC 5334.0 -72.5 153 VCC 5410.2 -72.5 156 VLSS 5638.8 -72.5 157 VLSS 5638.8 -72.5 159 VCC 581672.5 150 VCC 581672.5 150 VCC 581672.5				
84 VDDIO				
85 VDDIO 228.6 -72.5 86 IREF 304.8 -72.5 87 VCC 3810 -72.5 88 VCC 457.2 -72.5 89 VCC 533.4 -72.5 89 VCC 533.4 -72.5 90 FR 609.6 -72.5 91 CL 685.8 -72.5 91 CL 685.8 -72.5 92 VSS 762.0 -72.5 93 CLS 838.2 -72.5 94 VDDIO 91.4 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 106.8 -72.5 97 VDDIO 118.3 -72.5 98 CSB 219.2 -72.5 99 VSS 295.4 -72.5 99 VSS 295.4 -72.5 100 RESB 1371.6 -72.5 101 VDDIO 1524.0 -72.5 102 VDDIO 1524.0 -72.5 104 VSS 166.4 -72.5 105 RW 1752.6 -72.5 106 E 1328.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 1912 -72.5 109 VDD 2057.4 -72.5 110 VDD 2133.6 -72.5 110 VDD 2133.6 -72.5 111 D0 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 110 D9 2895.6 -72.5 111 D1 2971.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 110 T7 275.5 111 D1 2971.8 -72.5 112 D1 2986.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 110 T7.5 T7.5 T7.5 T7.5 T7.5 T7.5 T7.5 T7.5				
86 IREF 304.8 -72.5 87				
87 VCC 3810 -72.5 88 VCC 457.2 -72.5 89 VCC 533.4 -72.5 90 FR 609.6 -72.5 91 CL 685.8 -72.5 91 CL 685.8 -72.5 92 VSS 762.0 -72.5 93 CLS 38.2 -72.5 94 VDDIO 990.6 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 106.8 -72.5 97 VDDIO 143.0 -72.5 98 CSB 129.2 -72.5 99 VSS 1295.4 -72.5 100 RESB 13716 -72.5 101 VDDIO 1524.0 -72.5 102 VDDIO 524.0 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 752.6 -72.5 106 E 1328.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 19812 -72.5 109 VDD 2057.4 -72.5 110 VDD 2133.6 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2434.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 110 D9 2895.6 -72.5 111 D1 29718 -72.5 112 D1 29718 -72.5 113 D2 2362.2 -72.5 114 D3 2434.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 120 D9 2895.6 -72.5 131 TR8 3733.8 -72.5 121 D10 29718 -72.5 122 D11 3048.0 -72.5 123 D12 3742.2 -72.5 124 D13 3200.4 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 128 TR11 3505.2 -72.5 139 TR1 4343.4 -72.5 130 TR8 3733.8 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR8 3733.8 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR9 4496.8 -72.5 137 TR3 44910 -72.5 138 TR2 4267.2 -72.5 139 TR1 4343.4 -72.5 130 TR9 4567.6 -72.5 131 TR9 3733.8 -72.5 132 TR7 3810.0 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR9 4496.8 -72.5 137 TR3 44910 -72.5 138 TR2 4267.2 -72.5 144 VSS 3962.4 -72.5 155 VCC 5456.4 -72.5 156 VCC 5456.4 -72.5 157 VSS 5459.0 -72.5 158 VCC 5402 -72.5 159 NC 6044.6 -72.5				
88				
89 VCC 533.4 -72.5 90 FR 609.6 -72.5 91 CL 685.8 -72.5 92 VSS 762.0 -72.5 93 CLS 838.2 -72.5 94 VDDIO 914.4 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 1066.8 -72.5 97 VDDIO 1143.0 -72.5 98 CSB 279.2 -72.5 99 VSS 1295.4 -72.5 99 VSS 1295.4 -72.5 100 RESB 13716 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 752.6 -72.5 106 E 1828.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 1981.2 -72.5 109 VDD 2057.4 -72.5 109 VDD 2057.4 -72.5 110 VDD 2133.6 -72.5 111 DO 2209.8 -72.5 112 D1 2266.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 110 D9 29718 -72.5 111 D0 29718 -72.5 112 D1 29718 -72.5 113 D7 2743.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 120 D9 2895.6 -72.5 131 TRS 3733.8 -72.5 132 TRT 3810.0 -72.5 133 TRB 3886.2 -72.5 134 VSS 4495.8 -72.5 135 TRY 4343.4 -72.5 136 TRY 472.5 -72.5 137 TRS 4491.0 -72.5 138 TRR 3733.8 -72.5 139 TR1 4343.4 -72.5 130 TRP 3667.6 -72.5 131 TRS 3733.8 -72.5 132 TRT 3810.0 -72.5 134 VSS 4495.8 -72.5 135 TRS 4496.8 -72.5 144 VSS 4495.8 -72.5 145 VCOMH 4572.0 -72.5 146 VDD 4876.8 -72.5 147 VDD 4876.8 -72.5 148 VSS 3962.4 -72.5 149 VCC 505.4 -72.5 150 VCC 5334.0 -72.5 151 VCC 5257.8 -72.5 152 VCC 5334.0 -72.5 153 VCC 5486.4 -72.5 154 VSS 568.8 -72.5 155 VCS 5698.8 -72.5 156 VLSS 5638.8 -72.5 157 VLSS 5638.8 -72.5 158 VCC 5486.4 -72.5 159 VCC 5554.6 -72.5 150 VCC 5565.8 -72.5 150 VCC 5566.8 -72.5 150 VCC 5566.8 -72.5 150 VCC 5567.8 -72.5	_			
90 FR 609.6 -72.5 91 CL 685.8 -72.5 92 VSS 762.0 -72.5 93 CLS 838.2 -72.5 94 VDDIO 990.6 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 196.8 -72.5 97 VDDIO 144.7 -72.5 98 CSB 129.2 -72.5 99 VSS 129.4 -72.5 100 RESB 1371.6 -72.5 101 VDDIO 152.40 -72.5 102 VDDIO 152.40 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 1752.6 -72.5 106 E 182.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 1981.2 -72.5 109 VDD 2057.4 -72.5 110 VDD 2133.6 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2518.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2819.4 -72.5 120 D9 2895.6 -72.5 121 D10 2971.8 -72.5 122 D1 3276.6 -72.5 123 D12 312.2 -72.5 124 D13 320.4 -72.5 125 D14 3276.6 -72.5 127 VSS 3429.0 -72.5 128 TR11 3505.2 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 386.2 -72.5 134 VSS 396.2 -72.5 135 TR4 4118.8 -72.5 136 TR4 4118.8 -72.5 137 TR3 41910 -72.5 148 VSS 396.2 -72.5 149 VCOMH 4572.0 -72.5 140 TR9 3657.6 -72.5 141 VSS 3499.0 -72.5 142 VSS 3499.0 -72.5 143 VCOMH 4648.2 -72.5 144 VSS 396.2 -72.5 145 VSS 3499.0 -72.5 146 VDD 4876.8 -72.5 147 VSS 3499.0 -72.5 148 VSS 396.4 -72.5 149 VCO 5105.4 -72.5 150 VCC 5105.4 -72.5 151 VCOMH 4572.0 -72.5 152 VCOMH 4572.0 -72.5 153 VCC 5410.2 -72.5 155 VCS 5638.8 -72.5 156 VLSS 5638.8 -72.5 157 VSS 5638.8 -72.5 158 VCC 5534.0 -72.5 159 NC 6014.6 -72.5				
91 CL 685.8 -72.5 92 VSS 762.0 -72.5 93 CLS 838.2 -72.5 94 VDDIO 94.4 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 190.66.8 -72.5 97 VDDIO 1843.0 -72.5 98 CSB 129.2 -72.5 99 VSS 129.4 -72.5 101 VDDIO 1624.0 -72.5 102 VDDIO 1624.0 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 1752.6 -72.5 106 E 822.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 19812 -72.5 109 VDD 2057.4 -72.5 110 VDD 2133.6 -72.5 111 DO 2093 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 119 D8 2895.6 -72.5 120 D9 2895.6 -72.5 121 D10 29718 -72.5 122 D11 3048.0 -72.5 123 D12 3124.2 -72.5 124 D13 3200.4 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 128 TR10 35814 -72.5 129 TR10 35814 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 3886.2 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 4114.8 -72.5 137 TR3 41910 -72.5 138 TR6 3886.2 -72.5 139 TR1 4343.4 -72.5 141 VSS 3962.4 -72.5 142 VCOMH 472.4 -72.5 143 VCOMH 472.4 -72.5 144 VSS 3962.4 -72.5 145 VCOMH 472.4 -72.5 146 VDD 4876.8 -72.5 156 VLSS 5638.8 -72.5 157 VLSS 575.0 -72.5 158 VCC 5334.0 -72.5 159 NC 6014.6 -72.5				
92 VSS 7620 -772.5 93 CLS 838.2 -772.5 94 VDDIO 914.4 -72.5 95 VDDIO 990.6 -772.5 96 VDDIO 990.6 -772.5 97 VDDIO 1066.8 -772.5 98 CSB 129.2 -772.5 98 CSB 129.2 -772.5 99 VSS 1295.4 -772.5 100 RESB 3716 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -772.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -772.5 105 RW 1752.6 -772.5 106 E 828.8 -772.5 107 VDDIO 1905.0 -772.5 108 VDD 1981.2 -72.5 109 VDD 2057.4 -772.5 110 VDD 2133.6 -72.5 111 DO 2209.8 -772.5 112 D1 2286.0 -772.5 113 D2 2362.2 -772.5 114 D3 2438.4 -772.5 115 D4 2514.6 -72.5 116 D5 2590.8 -772.5 117 D6 2667.0 -72.5 118 D7 2743.2 -772.5 119 D8 2895.6 -772.5 120 D9 2895.6 -772.5 121 D10 29718 -772.5 122 D11 3048.0 -772.5 123 D12 3124.2 -772.5 124 D13 3200.4 -772.5 125 D14 3276.6 -772.5 126 D15 3352.8 -772.5 127 VSS 3429.0 -772.5 130 TRB 3733.8 -72.5 131 TRB 3733.8 -72.5 132 TR7 3810.0 -772.5 133 TRB 3733.8 -72.5 134 VSS 3962.4 -772.5 135 TRS 49910 -772.5 136 TRA 4148.8 -772.5 137 TRS 3733.8 -72.5 139 TR1 4343.4 -772.5 130 TRB 3733.8 -72.5 131 TRB 3733.8 -72.5 132 TR7 3810.0 -772.5 133 TRB 3733.8 -72.5 134 VSS 3962.4 -772.5 135 TRS 49910 -772.5 136 TRA 4148.8 -772.5 137 TRS 47910 -772.5 138 TRC 4267.2 -772.5 139 TR1 4343.4 -772.5 130 TRB 3733.8 -72.5 131 TRB 3733.8 -72.5 132 TR7 3810.0 -772.5 133 TRB 3733.8 -72.5 134 VSS 3962.4 -772.5 135 TRS 49910 -772.5 136 TRB 47910 -772.5 137 TRS 47910 -772.5 138 TRC 4267.2 -772.5 144 VSS 3962.4 -772.5 145 VDD 4800.6 -72.5 146 VDD 4876.8 -772.5 147 VDD 4800.6 -772.5 148 VDD 4800.6 -772.5 149 VCC 505.4 -772.5 140 TRD 4868.2 -772.5 141 TRB 3733.8 -772.5 142 VCOMH 4572.0 -772.5 143 VCOMH 4724.4 -772.5 144 VSS 3962.4 -772.5 145 VDD 4800.6 -772.5 146 VDD 4876.8 -772.5 147 VDD 4800.6 -772.5 148 VDD 4800.6 -772.5 149 VCC 505.4 -772.5 150 VCC 505.4 -772.5				
93 CLS 838.2 -72.5 94 VDDIO 94.4 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 990.6 -72.5 97 VDDIO 143.0 -72.5 98 CSB 29.2 -72.5 99 VSS 295.4 -72.5 100 RESB 1371.6 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -72.5 103 DC 600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 752.6 -72.5 106 E 182.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 1981.2 -72.5 109 VDD 2057.4 -72.5 110 VDD 2057.4 -72.5 111 DO 2209.8 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2894.6 -72.5 119 D8 2894.6 -72.5 120 D9 2956.6 -72.5 121 D10 2971.8 -72.5 122 D11 3048.0 -72.5 123 D12 312.2 -72.5 124 D13 3200.4 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 128 TR11 3505.2 -72.5 129 TR10 3581.4 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR9 3657.6 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 414.8 -72.5 137 TR3 41910 -72.5 138 TR2 4267.2 -72.5 149 VCOMH 4572.0 -72.5 140 VDD 4858.4 -72.5 151 TR9 3657.6 -72.5 152 VCOMH 4572.0 -72.5 153 VCC 5486.4 -72.5 156 VLSS 5638.8 -72.5 157 VLSS 5750.0 -72.5 158 VCC 5486.4 -72.5 159 NC 6014.6 -72.5				
94 VDDIO 914.4 -72.5 95 VDDIO 990.6 -72.5 96 VDDIO 1066.8 -72.5 97 VDDIO 1143.0 -72.5 98 CSB 219.2 -72.5 98 CSB 129.2 -72.5 99 VSS 1295.4 -72.5 100 RESB 3716 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -72.5 103 DC 1600.2 -72.5 105 RW 1752.6 -72.5 106 E 1828.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 19812 -72.5 109 VDD 2057.4 -72.5 109 VDD 2209.8 -72.5 110 DD 2209.8 -72.5 111 DD 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2518.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2819.4 -72.5 120 D9 2895.6 -72.5 121 D1 3048.0 -72.5 122 D11 3048.0 -72.5 123 D12 3124.2 -72.5 124 D13 3200.4 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 128 TR11 3505.2 -72.5 129 TR10 3687.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR8 4910 -72.5 134 VSS 3962.4 -72.5 135 TR9 3687.6 -72.5 136 TR9 3657.6 -72.5 137 TR3 41910 -72.5 138 TR1 3505.2 -72.5 139 TR1 3505.2 -72.5 131 TR8 3733.8 -72.5 131 TR8 3733.8 -72.5 132 TR7 3800.0 -72.5 133 TR6 3886.2 -72.5 134 VSS 3962.4 -72.5 135 TR7 3800.0 -72.5 136 TR9 3657.6 -72.5 137 TR3 41910 -72.5 138 TR1 4343.4 -72.5 139 TR1 4343.4 -72.5 130 TR9 3657.6 -72.5 131 TR9 3657.6 -72.5 132 TR7 3800.0 -72.5 133 TR6 3886.2 -72.5 134 VSS 3962.4 -72.5 135 TR7 4496.8 -72.5 144 VSS 3962.4 -72.5 145 VSS 3429.0 -72.5 146 VSS 3962.4 -72.5 147 VSS 3429.0 -72.5 148 VSS 3962.4 -72.5 149 VCOMH 4572.0 -72.5 140 TR9 468.2 -72.5 141 VSS 4495.8 -72.5 142 VCOMH 4572.0 -72.5 143 VCOMH 4572.0 -72.5 144 VCOMH 472.4 -72.5 145 VCO 5963.8 -72.5 146 VCC 5963.8 -72.5 147 VSS 5634.0 -72.5 148 VDDIO 4953.0 -72.5 149 VCC 5963.8 -72.5 150 VCC 5963.8 -72				
95 VDDIO 990.6 -72.5 96 VDDIO 1066.8 -72.5 97 VDDIO 1143.0 -72.5 98 CSB 129.2 -72.5 99 VSS 1295.4 -72.5 99 VSS 1295.4 -72.5 100 RESB 371.6 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 1752.6 -72.5 106 E 1828.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 1905.0 -72.5 109 VDD 2057.4 -72.5 110 VDD 2133.6 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2819.4 -72.5 120 D9 2895.6 -72.5 121 D10 2971.8 -72.5 122 D11 3048.0 -72.5 123 D12 3124.2 -72.5 124 D13 3200.4 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 3886.2 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 4118.8 -72.5 137 TR3 41910 -72.5 138 TR2 4267.2 -72.5 139 TR10 4343.4 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 3886.2 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 4118.8 -72.5 137 TR3 41910 -72.5 138 TR2 4267.2 -72.5 149 VCC 568.6 -72.5 150 VCC 568.6 -72.5 151 VCC 5257.8 -72.5 152 VCC 5334.0 -72.5 153 VCC 5480.4 -72.5 156 VLSS 5638.8 -72.5 156 VLSS 5638.8 -72.5 157 VLSS 575.0 -72.5 158 NC 57912 -72.5 159 NC 604.6 -72.5				
96 VDDIO 1066.8 -72.5 97 VDDIO 1143.0 -72.5 98 CSB 219.2 -72.5 99 VSS 1295.4 -72.5 100 RESB 13716 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 752.6 -72.5 106 E 1828.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 19812 -72.5 109 VDD 2057.4 -72.5 110 VDD 2133.6 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 289.6 -72.5 119 D8 289.6 -72.5 120 D9 289.6 -72.5 121 D10 29718 -72.5 122 D11 3048.0 -72.5 123 D12 3124.2 -72.5 124 D13 320.4 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 128 TR11 3505.2 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 3886.2 -72.5 134 VSS 3962.4 -72.5 135 TR7 3810.0 -72.5 136 TR9 3657.6 -72.5 137 TR3 41910 -72.5 149 VSC 4496.8 -72.5 140 TR9 4449.6 -72.5 141 VSS 4496.8 -72.5 142 TR1 VSS 4496.8 -72.5 143 TR1 4343.4 -72.5 144 TR1 4343.4 -72.5 145 TR1 4343.4 -72.5 146 VSS 3962.4 -72.5 147 TR1 4343.4 -72.5 148 VSS 3962.4 -72.5 149 VCC 5164.6 -72.5 140 TR1 4449.6 -72.5 141 VSS 4496.8 -72.5 142 VCOMH 4572.0 -72.5 144 VSS 5638.8 -72.5 145 VCC 5334.0 -72.5 146 VCC 5486.4 -72.5 147 VDDIO 4953.0 -72.5 148 VDDIO 5029.2 -72.5 149 VCC 5105.4 -72.5 150 NC 5562.6 -72.5 150 NC 5562.6 -72.5 150 NC 57912 -72.5 150 NC 6046.6 -72.5		_	_	
97 VDDIO 143.0 -72.5 98 CSB 129.2 -72.5 99 VSS 1295.4 -72.5 100 RESB 371.6 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 1752.6 -72.5 106 E 1828.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 1981.2 -72.5 109 VDD 2057.4 -72.5 109 VDD 2057.4 -72.5 110 VDD 2209.8 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 113 D2 2362.2 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2895.6 -72.5 120 D9 2895.6 -72.5 121 D10 2971.8 -72.5 122 D11 3048.0 -72.5 123 D2 372.4 -72.5 124 D10 2971.8 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 128 TR11 3505.2 -72.5 129 TR10 3686.2 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 3862 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 411.8 -72.5 137 TR3 41910 -72.5 138 TR2 4267.2 -72.5 139 TR1 4343.4 -72.5 140 TR9 449672.5 141 VSS 4495.8 -72.5 141 VSS 4495.8 -72.5 142 VCOMH 4572.0 -72.5 143 VCOMH 4672.0 -72.5 144 VSS 5638.8 -72.5 145 VCC 5402.4 -72.5 146 VCC 5486.4 -72.5 147 VDDIO 4975.0 -72.5 148 VSS 5638.8 -72.5 149 VCC 5486.4 -72.5 150 VCC 5587.8 -72.5 151 VCC 5257.8 -72.5 152 VCC 5486.4 -72.5 153 VCC 5486.4 -72.5 155 NC 5562.6 -72.5 1569 NC 6046.6 -72.5				
98		-		
99 VSS 1295.4 -72.5 100 RESB 13716 -72.5 101 VDDIO 1447.8 -72.5 102 VDDIO 1524.0 -72.5 103 DC 1600.2 -72.5 104 VSS 1676.4 -72.5 105 RW 1752.6 -72.5 106 E 1828.8 -72.5 107 VDDIO 1905.0 -72.5 108 VDD 19812 -72.5 109 VDD 2057.4 -72.5 111 DO 2209.8 -72.5 112 D1 2286.0 -72.5 114 D3 2438.4 -72.5 115 D4 2514.6 -72.5 116 D5 2590.8 -72.5 117 D6 2667.0 -72.5 118 D7 2743.2 -72.5 119 D8 2819.4 -72.5 120 D9 2895.6 -72.5 121 D10 3048.0 -72.5 122 D11 3048.0 -72.5 124 D13 3200.4 -72.5 125 D14 3276.6 -72.5 126 D15 3352.8 -72.5 127 VSS 3429.0 -72.5 128 TR11 3505.2 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 386.2 -72.5 134 VSS 349.0 -72.5 135 TR5 4038.6 -72.5 136 TR5 4038.6 -72.5 137 TR3 41910 -72.5 138 TR1 4343.4 -72.5 139 TR1 4343.4 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 133 TR6 4038.6 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 414.8 -72.5 137 TR3 41910 -72.5 138 TR1 4343.4 -72.5 139 TR1 4343.4 -72.5 139 TR1 4343.4 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 414.8 -72.5 137 TR3 41910 -72.5 138 TR1 4343.4 -72.5 139 TR1 4343.4 -72.5 130 TR9 3657.6 -72.5 131 TR8 3733.8 -72.5 132 TR7 3810.0 -72.5 134 VSS 3962.4 -72.5 135 TR5 4038.6 -72.5 136 TR4 414.8 -72.5 137 TR3 41910 -72.5 138 TR1 4343.4 -72.5 139 TR1 4343.4 -72.5 144 VSS 3962.4 -72.5 145 VSS 346.4 -72.5 146 VDD 4876.8 -72.5 147 VDDIO 4953.0 -72.5 148 VDDIO 5029.2 -72.5 149 VCC 5257.8 -72.5 150 VCC 5368.6 -72.5 151 VCC 5257.8 -72.5 152 VCC 5303.40 -72.5 153 VCC 540272.5 154 VCC 5486.4 -72.5 155 NC 5562.6 -72.5 156 VCC 5586.6 -72.5 157 VSS 575.0 -72.5 158 NC 5562.6 -72.5				
100 RESB 13716 -712.5 101 VDDIO 1447.8 -712.5 102 VDDIO 1524.0 -712.5 103 DC 1600.2 -712.5 104 VSS 1676.4 -712.5 105 RW 1752.6 -712.5 105 RW 1752.6 -712.5 106 E 1828.8 -712.5 107 VDDIO 1905.0 -712.5 108 VDD 1905.0 -712.5 109 VDD 2057.4 -712.5 109 VDD 2057.4 -712.5 110 VDD 2133.6 -712.5 111 DO 2209.8 -712.5 112 D1 2286.0 -712.5 113 D2 2362.2 -712.5 114 D3 2438.4 -712.5 115 D4 2546.6 -712.5 116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 119 D8 2819.4 -712.5 120 D9 2895.6 -712.5 121 D10 29718 -712.5 122 D11 3048.0 -712.5 122 D11 3048.0 -712.5 124 D13 3200.4 -712.5 126 D16 3352.8 -712.5 126 D16 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 35814 -712.5 130 TR9 3667.6 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 136 TR4 4148.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 144 VCOMH 4572.0 -712.5 144 VCOMH 4572.0 -712.5 145 VCOMH 4572.0 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 4953.0 -712.5 149 VCC 5105.4 -712.5 150 VCC 5486.4 -712.5 150				
101				
102				
103 DC				
104		_		
105 RW 1752.6 -712.5 106 E 1828.8 -712.5 107 VDDIO 1905.0 -712.5 108 VDD 1981.2 -712.5 109 VDD 2057.4 -712.5 110 VDD 2133.6 -712.5 111 D0 2209.8 -712.5 111 D0 2209.8 -712.5 112 D1 2286.0 -712.5 113 D2 2362.2 -712.5 114 D3 2438.4 -712.5 115 D4 2514.6 -712.5 116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 119 D8 2894.4 -712.5 119 D8 2894.4 -712.5 120 D9 2895.6 -712.5 121 D10 2971.8 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR10 3581.4 -712.5 129 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 414.8 -712.5 137 TR3 41910 -712.5 138 TR1 4343.4 -712.5 139 TR1 4343.4 -712.5 140 TR0 449.6 -712.5 141 VSC 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4724.4 -712.5 144 VCOMH 4724.4 -712.5 145 VCO 5105.4 -712.5 148 VDDIO 4953.0 -712.5 148 VDDIO 4963.0 -712.5 149 VCC 5105.4 -712.5 150 VCC 5334.0 -712.5 150 VCC 5334.0 -712.5 150 VCC 5334.0 -712.5 150 VCC 5486.4 -712.5 150 VCC 5486.4 -712.5 150 VCC 5334.0 -712.5 150 VCC 5486.4 -712.5 150 VC				
106 E 1828.8 -712.5 107 VDDIO 1905.0 -712.5 108 VDD 1981.2 -712.5 109 VDD 2057.4 -712.5 110 VDD 2133.6 -712.5 111 D0 2209.8 -712.5 111 D0 2209.8 -712.5 112 D1 2286.0 -712.5 113 D2 2362.2 -712.5 114 D3 2438.4 -712.5 115 D4 2514.6 -712.5 116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 119 D8 2819.4 -712.5 120 D9 2695.6 -712.5 121 D10 2971.8 -712.5 122 D11 3048.0 -712.5 124 D13 3200.4 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 129 TR 10 3681.4 -712.5 130 TR 9 3657.6 -712.5 131 TR 8 3733.8 -712.5 132 TR 7 3800.0 -712.5 134 VSS 3962.4 -712.5 136 TR 4 4114.8 -712.5 137 TR 3 4191.0 -712.5 138 TR 1 VSS 3495.8 -712.5 139 TR 1 4343.4 -712				
107				
108				
109				
110				
111 D0 2209.8 -712.5 112 D1 2286.0 -712.5 113 D2 2362.2 -712.5 114 D3 2438.4 -712.5 115 D4 2544.6 -712.5 116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 119 D8 2819.4 -712.5 120 D9 2895.6 -712.5 121 D10 2971.8 -712.5 121 D10 2971.8 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712				
112 D1 2286.0 -712.5 113 D2 2362.2 -712.5 114 D3 2438.4 -712.5 115 D4 2514.6 -712.5 116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 119 D8 289.4 -712.5 120 D9 2895.6 -712.5 120 D9 2895.6 -712.5 121 D10 2971.8 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3581.4 -712	-			
113 D2 2362.2 -742.5 114 D3 2438.4 -742.5 115 D4 2514.6 -742.5 116 D5 2590.8 -742.5 117 D6 2667.0 -742.5 118 D7 2743.2 -742.5 119 D8 2819.4 -742.5 120 D9 2895.6 -742.5 121 D10 2971.8 -742.5 121 D10 2971.8 -742.5 121 D10 2971.8 -742.5 122 D11 3048.0 -742.5 123 D12 3124.2 -742.5 124 D13 3200.4 -742.5 125 D14 3276.6 -742.5 126 D15 3352.8 -742.5 127 VSS 3429.0 -742.5 128 TR11 3505.2 -742.5 129 TR10 3581.4 -				
114 D3 2438.4 -712.5 115 D4 2514.6 -712.5 116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 119 D8 2819.4 -712.5 120 D9 2895.6 -712.5 120 D9 2895.6 -712.5 121 D10 29718 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 35814 -712				
115 D4 2514.6 -712.5 116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 118 D7 2743.2 -712.5 120 D9 2895.6 -712.5 120 D9 2895.6 -712.5 121 D10 2971.8 -712.5 121 D10 2971.8 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 128 TR11 3505.2 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8	-			
116 D5 2590.8 -712.5 117 D6 2667.0 -712.5 118 D7 2743.2 -712.5 119 D8 2819.4 -712.5 120 D9 2895.6 -712.5 121 D10 2971.8 -712.5 121 D10 2971.8 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 127 VSS 3429.0 -712.5 128 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 373.8 -712.5 131 TR8 373.8 -	114	D3	2438.4	
117 D6 2667.0 -742.5 118 D7 2743.2 -742.5 119 D8 2849.4 -742.5 120 D9 2895.6 -742.5 120 D9 2895.6 -742.5 121 D10 2971.8 -742.5 121 D10 2971.8 -742.5 122 D11 3048.0 -742.5 123 D12 3124.2 -742.5 124 D13 3200.4 -742.5 124 D13 3200.4 -742.5 126 D15 3352.8 -742.5 126 D15 3352.8 -742.5 127 VSS 3429.0 -742.5 128 TR11 3505.2 -742.5 129 TR10 3581.4 -742.5 130 TR9 3657.6 -742.5 131 TR8 3733.8 -742.5 132 TR7 3840.0 <t< td=""><td>115</td><td>D4</td><td>2514.6</td><td></td></t<>	115	D4	2514.6	
118 D7 2743.2 -712.5 119 D8 2819.4 -712.5 120 D9 2895.6 -712.5 121 D10 2971.8 -712.5 121 D10 2971.8 -712.5 121 D10 2971.8 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4		D5	2590.8	-712.5
119 D8 2819.4 -712.5 120 D9 2895.6 -712.5 121 D10 29718 -712.5 121 D10 29718 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 137 TR3 41910 <t< td=""><td>117</td><td>D6</td><td>2667.0</td><td>-712.5</td></t<>	117	D6	2667.0	-712.5
20 D9 2895.6 -712.5 121 D10 29718 -712.5 122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3881.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 134 VSS 3962.4 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 414.8 -712.5 137 TR3 41910 <t< td=""><td>118</td><td>D7</td><td>2743.2</td><td>-712.5</td></t<>	118	D7	2743.2	-712.5
121 D 10 29718 -712.5 122 D 11 3048.0 -712.5 123 D 12 3124.2 -712.5 124 D 13 3200.4 -712.5 125 D 14 3276.6 -712.5 125 D 14 3276.6 -712.5 126 D 15 3352.8 -712.5 127 VSS 3429.0 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 130 TR9 3657.6 -712.5 130 TR9 3657.6 -712.5 131 TR8 373.8 -712.5 131 TR8 373.8 -712.5 131 TR8 373.8 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8	119	D8	2819.4	-712.5
122 D11 3048.0 -712.5 123 D12 3124.2 -712.5 124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3881.4 -712.5 130 TR9 3657.6 -712.5 130 TR8 3733.8 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2	120	D9	2895.6	-712.5
123 D 12 3124.2 -712.5 124 D 13 3200.4 -712.5 125 D 14 3276.6 -712.5 126 D 15 3352.8 -712.5 126 D 15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 131 TR8 3733.8 -712.5 132 TR7 3840.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4	121	D10	2971.8	-712.5
124 D13 3200.4 -712.5 125 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4148.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4449.6 -712.5 141 VSS 4495.8 -712.5 143 VCOMH 4572.0	122	D11	3048.0	-712.5
25 D14 3276.6 -712.5 126 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3881.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 414.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 449.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0	123	D12	3124.2	-712.5
26 D15 3352.8 -712.5 127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 449.6 -712.5 141 VSS 4495.8 -712.5 141 VSS 4495.8 -712.5 143 VCOMH 4572.0 -712.5 144 VCOMH 4724.4	124	D13	3200.4	-712.5
127 VSS 3429.0 -712.5 128 TR11 3505.2 -712.5 129 TR10 35814 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4449.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4648.2 -712.5 144 VCOMH 4724.4	125	D14	3276.6	-712.5
28 TR11 3505.2 -712.5 129 TR10 3581.4 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4449.6 -712.5 141 VSS 4495.8 -712.5 141 VSS 4495.8 -712.5 143 VCOMH 4672.0 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4876.8	126	D15	3352.8	-712.5
129 TR 10 35814 -712.5 130 TR9 3657.6 -712.5 131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 132 TR7 3810.0 -712.5 134 VSS 3962.4 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 449.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4724.4 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 147 VDDIO 4953.0	127	VSS	3429.0	-712.5
TR9	128	TR11	3505.2	-712.5
131 TR8 3733.8 -712.5 132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4449.6 -712.5 141 VSS 4495.8 -712.5 141 VSS 4495.8 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4572.0 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0	129	TR10	3581.4	-712.5
132 TR7 3810.0 -712.5 133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 449.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4648.2 -712.5 144 VCOMH 4724.4 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8	130	TR9	3657.6	-712.5
133 TR6 3886.2 -712.5 134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4449.6 -712.5 141 VSS 4495.8 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4648.2 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 4953.0 -712.5 149 VCC 5105.4 -712.5 150 VCC 5334.0 <td>131</td> <td>TR8</td> <td>3733.8</td> <td>-712.5</td>	131	TR8	3733.8	-712.5
134 VSS 3962.4 -712.5 135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4419.6 -712.5 141 VSS 4495.8 -712.5 141 VSS 4495.8 -712.5 143 VCOMH 4572.0 -712.5 143 VCOMH 4572.0 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 148 VDDIO 4953.0 -712.5 148 VDDIO 4953.0 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8	132	TR7	3810.0	-712.5
135 TR5 4038.6 -712.5 136 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4419.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4572.0 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 4953.0 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5486.4	133	TR6	3886.2	-712.5
36 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4449.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4672.0 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4876.8 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 51816 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 540.2 -712.5 154 VCC 5486.4	134	VSS	3962.4	-712.5
36 TR4 4114.8 -712.5 137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4449.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4672.0 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 51816 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4	135		4038.6	
137 TR3 41910 -712.5 138 TR2 4267.2 -712.5 139 TR1 4343.4 -712.5 140 TR0 4419.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4648.2 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 5181.6 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6	136	TR4	4114.8	-712.5
139 TR1 4343.4 -712.5 140 TR0 4419.6 -712.5 141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4572.0 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5486.4 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 158 NC 57912	137	TR3	4191.0	-712.5
#40 TR0 44/9.6 -7/2.5 #11 VSS 44/9.6 -7/2.5 #12 VCOMH 4572.0 -7/2.5 #3 VCOMH 46/48.2 -7/2.5 #4 VCOMH 4724.4 -7/2.5 #45 VDD 4800.6 -7/2.5 #6 VDD 4876.8 -7/2.5 #7 VDDIO 4953.0 -7/2.5 #8 VDDIO 5029.2 -7/2.5 #9 VCC 5105.4 -7/2.5 #50 VCC 51816 -7/2.5 #51 VCC 5257.8 -7/2.5 #52 VCC 5334.0 -7/2.5 #53 VCC 5486.4 -7/2.5 #54 VCC 5486.4 -7/2.5 #55 NC 5562.6 -7/2.5 #56 VLSS 5638.8 -7/2.5 #57 VLSS 57/5.0 -7/2.5 #58 NC 57912	138	TR2	4267.2	-712.5
141 VSS 4495.8 -712.5 142 VCOMH 4572.0 -712.5 143 VCOMH 4572.0 -712.5 144 VCOMH 4648.2 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4953.0 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 150 VCC 51816 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 576.0 -712.5 158 NC 5791.2 <td>139</td> <td>TR1</td> <td>4343.4</td> <td>-712.5</td>	139	TR1	4343.4	-712.5
142 VCOMH 4572.0 -712.5 143 VCOMH 4648.2 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 5181.6 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 576.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5	140	TR0	4419.6	-712.5
143 VCOMH 4648.2 -712.5 144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 150 VCC 5105.4 -712.5 151 VCC 5251.8 -712.5 151 VCC 5334.0 -712.5 153 VCC 540.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 576.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5	141	VSS		-712.5
144 VCOMH 4724.4 -712.5 145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 540.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5715.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5				
145 VDD 4800.6 -712.5 146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 5181.6 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5745.0 -712.5 158 NC 5791.2 -712.5 159 NC 6014.6 -712.5	143	VCOMH	4648.2	-712.5
146 VDD 4876.8 -712.5 147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5776.0 -712.5 158 NC 5791.2 -712.5 159 NC 6014.6 -712.5	144	VCOMH	4724.4	-712.5
147 VDDIO 4953.0 -712.5 148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 57/6.0 -712.5 158 NC 5791.2 -712.5 159 NC 6014.6 -712.5	145	VDD	4800.6	-712.5
148 VDDIO 5029.2 -712.5 149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5470.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5745.0 -712.5 158 NC 57912 -712.5 159 NC 6046.6 -712.5	146	VDD	4876.8	
149 VCC 5105.4 -712.5 150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5715.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5	147	VDDIO	4953.0	-712.5
150 VCC 51816 -712.5 151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5776.0 -712.5 158 NC 5791.2 -712.5 159 NC 6014.6 -712.5	148	VDDIO	5029.2	-712.5
151 VCC 5257.8 -712.5 152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5745.0 -712.5 158 NC 5791.2 -712.5 159 NC 6014.6 -712.5	149	VCC	5105.4	-712.5
152 VCC 5334.0 -712.5 153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5776.0 -712.5 158 NC 5791.2 -712.5 159 NC 6014.6 -712.5	150	VCC	5181.6	-712.5
153 VCC 5410.2 -712.5 154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5776.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5	151	VCC	5257.8	-712.5
154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5715.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5	152	VCC	5334.0	-712.5
154 VCC 5486.4 -712.5 155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5715.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5	153	VCC	5410.2	-712.5
155 NC 5562.6 -712.5 156 VLSS 5638.8 -712.5 157 VLSS 5715.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5				
156 VLSS 5638.8 -712.5 157 VLSS 5715.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5	155			
157 VLSS 5715.0 -712.5 158 NC 57912 -712.5 159 NC 6014.6 -712.5				
158 NC 5791.2 -712.5 159 NC 6014.6 -712.5				
159 NC 6014.6 -712.5				

Pad no.	Pad Na me	X-Axis	Y-Axis
161	NC	6167.0	-712.5
162	NC	6243.2	-712.5
163 164	NC COM 31	6319.4 6420.1	-712.5 -647.9
165	COM 30	6420.1	-606.1
166	COM 29	6420.1	-564.3
167	COM 28	6420.1	-522.5
168 169	COM 27 COM 26	6420.1 6420.1	-480.7 -438.9
170	COM 25	6420.1	-397.1
171	COM 24	6420.1	-355.3
172	COM 23	6420.1	-313.5
173 174	COM 22 COM 21	6420.1 6420.1	-271.7 -229.9
175	COM 20	6420.1	-188.1
176	COM 19	6420.1	-146.3
177	COM 18	6420.1	-104.5
178 179	COM 17 COM 16	6420.1 6420.1	-62.7 -20.9
180	COM 15	6420.1	20.9
181	COM 14	6420.1	62.7
182	COM 13	6420.1	104.5
183 184	COM 12 COM 11	6420.1 6420.1	146.3 188.1
185	COM 10	6420.1	229.9
186	COM9	6420.1	271.7
187	COM 8	6420.1	313.5
188 189	COM 7 COM 6	6420.1 6420.1	355.3 397.1
190	COM 5	6420.1	438.9
191	COM4	6420.1	480.7
192	COM 3	6420.1	522.5
193 194	COM 2 COM 1	6420.1 6420.1	564.3 606.1
195	COM 0	6420.1	647.9
196	VLSS	5908.5	643.6
197	SA0	5828.1	643.6
198 199	SB0 SC0	5787.9 5747.7	643.6 643.6
200	SA1	5707.5	643.6
201	SB1	5667.3	643.6
202	SC1	5627.1	643.6
203	SA2 SB2	5586.9 5546.7	643.6 643.6
205	SC2	5506.5	643.6
206	SA3	5466.3	643.6
207	SB3	5426.1	643.6
208 209	SC3 SA4	5385.9 5345.7	643.6 643.6
210	SB4	5305.5	643.6
211	SC4	5265.3	643.6
212	SA5	5225.1	643.6
213 214	SB5 SC5	5184.9 5144.7	643.6 643.6
215	SA6	5104.5	643.6
216	SB6	5064.3	643.6
217	SC6	5024.1	643.6
218 219	SA7 SB7	4983.9 4943.7	643.6 643.6
220	SC7	4903.5	643.6
221	SA8	4863.3	643.6
222	SB8	4823.1	643.6 643.6
223 224	SC8 SA9	4782.9 4742.7	643.6
225	SB9	4702.5	643.6
226	SC9	4662.3	643.6
227	SA 10	4622.1	643.6
228 229	SB 10 SC 10	45819 45417	643.6 643.6
230	SA 11	4501.5	643.6
231	SB 11	44613	643.6
232	SC11	4421.1	643.6
233 234	SA 12 SB 12	4380.9 4340.7	643.6 643.6
235	SC12	4300.5	643.6
236	SA 13	4260.3	643.6
237	SB 13	4220.1	643.6
238 239	SC13 SA14	4179.9 4139.7	643.6 643.6
240	SB 14	4099.5	643.6

SSD1331 Rev 1.2 P 9/68 Nov 2007 **Solomon Systech**

Pad no. 241	Pad Name SC14	X-A xis 4059.3	Y-A xis 643.6
241	SA 15	4019.1	643.6
243	SB 15	3978.9	643.6
244	SC 15	3938.7	643.6
245	SA 16	3898.5	643.6
246	SB 16	3858.3	643.6
247	SC 16	3818.1	643.6
248	SA 17	3777.9	643.6
249	SB 17	3737.7	643.6
250	SC17	3697.5	643.6
251	SA 18	3657.3	643.6
252	SB 18	3617.1	643.6
253	SC 18	3576.9	643.6
254	SA 19	3536.7	643.6
255	SB 19	3496.5	643.6
256 257	SC 19 SA 20	3456.3 3416.1	643.6 643.6
258	SB 20	3375.9	643.6
259	SC20	3335.7	643.6
260	SA21	3295.5	643.6
261	SB21	3255.3	643.6
262	SC21	3215.1	643.6
263	SA 22	3174.9	643.6
264	SB 22	3134.7	643.6
265	SC22	3094.5	643.6
266	SA 23	3054.3	643.6
267	SB 23	3014.1	643.6
268	SC23	2973.9	643.6
269	SA 24	2933.7	643.6
270	SB 24	2893.5	643.6
271	SC24	2853.3	643.6
272	SA 25	2813.1	643.6
273	SB 25	2772.9	643.6
274	SC25 SA26	2732.7 2692.5	643.6
275			643.6
276 277	SB 26 SC 26	2652.3 2612.1	643.6 643.6
		2571.9	
278 279	SA 27 SB 27	257 1.9	643.6 643.6
280	SC27	2491.5	643.6
281	SA 28	2451.3	643.6
282	SB 28	2411.1	643.6
283	SC28	2370.9	643.6
284	SA 29	2330.7	643.6
285	SB 29	2290.5	643.6
286	SC29	2250.3	643.6
287	SA 30	2210.1	643.6
288	SB 30	2169.9	643.6
289	SC30	2129.7	643.6
290	SA31	2089.5	643.6
291	SB31	2049.3	643.6
292	SC31	2009.1	643.6
293	SA 32	1968.9	643.6
294	SB 32	1928.7	643.6
295	SC32	1888.5	643.6
296	SA 33	1848.3	643.6 643.6
297 298	SB 33 SC 33	1808.1	643.6
298	SC33 SA34	1767.9 1727.7	643.6
300	SB 34	1687.5	643.6
301	SC34	1647.3	643.6
302	SA 35	1607.1	643.6
303	SB 35	1566.9	643.6
304	SC35	1526.7	643.6
305	SA 36	1486.5	643.6
306	SB 36	1446.3	643.6
307	SC36	1406.1	643.6
308	SA 37	1365.9	643.6
309	SB 37	1325.7	643.6
310	SC37	1285.5	643.6
311	SA38	1245.3	643.6
312	SB38	1205.1	643.6
313	SC38	1164.9	643.6
314	SA39	1124.7	643.6
315	SB39	1084.5	643.6
316	SC39	1044.3	643.6
317	SA40	1004.1	643.6
318 319	SB40 SC40	963.9 923.7	643.6 643.6
320	SC40 SA41	923.7 883.5	643.6
		000.0	U4J.U

Pad no.	Pad Name	X-A xis	Y-A xis
321	SB41	843.3	643.6
322	SC41	803.1	643.6
323	SA42	762.9	643.6
324	SB42	722.7	643.6
325	SC42 SA43	682.5 642.3	643.6
326 327	SB43	602.1	643.6 643.6
328	SC43	561.9	643.6
329	SA44	521.7	643.6
330	SB44	481.5	643.6
331	SC44	4413	643.6
332	SA45	4011	643.6
333	SB45	360.9	643.6
334	SC45	320.7	643.6
335	SA46	280.5	643.6
336	SB46	240.3	643.6
337	SC46	200.1	643.6
338	SA47	159.9	643.6
339	SB47	119.7	643.6
340	SC47	79.5	643.6
341 342	SA48 SB48	-81.3 -121.5	643.6 643.6
343	SC48	-161.7	643.6
344	SA49	-201.9	643.6
345	SB49	-242.1	643.6
346	SC49	-282.3	643.6
347	SA 50	-322.5	643.6
348	SB 50	-362.7	643.6
349	SC50	-402.9	643.6
350	SA51	-443.1	643.6
351	SB51	-483.3	643.6
352	SC51	-523.5	643.6
353	SA52	-563.7	643.6
354	SB 52	-603.9	643.6
355	SC52	-644.1	643.6
356	SA53	-684.3	643.6
357	SB 53	-724.5	643.6
358	SC53	-764.7	643.6
359	SA 54	-804.9	643.6
360 361	SB 54 SC 54	-845.1 -885.3	643.6 643.6
362	SA55	-925.5	643.6
363	SB 55	-965.7	643.6
364	SC55	-1005.9	643.6
365	SA56	-1046.1	643.6
366	SB 56	-1086.3	643.6
367	SC56	-1126.5	643.6
368	SA 57	-1166.7	643.6
369	SB 57	-1206.9	643.6
370	SC57	-1247.1	643.6
371	SA 58	-1287.3	643.6
372	SB58	-1327.5	643.6
373 374	SC58 SA59	-1367.7 -1407.9	643.6
374 375	SA 59 SB 59	-1407.9 -1448.1	643.6 643.6
376	SC59	-1488.3	643.6
377	SA60	- H66.3 -1528.5	643.6
378	SB 60	-1568.7	643.6
379	SC60	-1608.9	643.6
380	SA61	-1649.1	643.6
381	SB61	-1689.3	643.6
382	SC61	-1729.5	643.6
383	SA62	-1769.7	643.6
384	SB62	-1809.9	643.6
385	SC62	-1850.1	643.6
386	SA 63	-1890.3	643.6
387	SB 63	-1930.5	643.6
388	SC63	-1970.7	643.6
389 390	SA 64	-2010.9 -20511	643.6 643.6
390	SB 64 SC 64	-2051.1 -2091.3	643.6
391	SA65	-2131.5	643.6
393	SB 65	-2171.7	643.6
394	SC65	-2211.9	643.6
395	SA66	-2252.1	643.6
396	SB66	-2292.3	643.6
397	SC66	-2332.5	643.6
398	SA67	-2372.7	643.6
399	SB67	-2412.9	643.6
400	SC67	-2453.1	643.6

Pad no . 401	Pad Name SA 68	X-A xis -2493.3	Y-A xis 643.6
401	SB 68	-2533.5	643.6
403	SC68	-2573.7	643.6
404	SA 69	-2613.9	643.6
405	SB 69	-2654.1	643.6
406	SC69	-2694.3	643.6
407	SA 70	-2734.5	643.6
408	SB 70	-2774.7	643.6
409 410	SC70 SA71	-2814.9 -2855.1	643.6 643.6
411	SB71	-2895.3	643.6
412	SC71	-2935.5	643.6
413	SA72	-2975.7	643.6
414	SB72	-3015.9	643.6
415	SC72	-3056.1	643.6
416	SA73	-3096.3	643.6
417	SB 73	-3136.5	643.6
418 419	SC73 SA74	-3176.7 -3216.9	643.6 643.6
420	SB 74	-3257.1	643.6
421	SC74	-3297.3	643.6
422	SA75	-3337.5	643.6
423	SB 75	-3377.7	643.6
424	SC75	-3417.9	643.6
425	SA 76	-3458.1	643.6
426	SB 76	-3498.3	643.6
427	SC76	-3538.5 3579.7	643.6
428 429	SA 77 SB 77	-3578.7 -3618.9	643.6 643.6
430	SC77	-3659.1	643.6
431	SA 78	-3699.3	643.6
432	SB 78	-3739.5	643.6
433	SC78	-3779.7	643.6
434	SA 79	-3819.9	643.6
435	SB 79	-3860.1	643.6
436 437	SC79	-3900.3	643.6
	SA 80	-3940.5	643.6
438 439	SB 80 SC 80	-3980.7 -4020.9	643.6 643.6
440	SA81	-4061.1	643.6
441	SB81	-4101.3	643.6
442	SC81	-4141.5	643.6
443	SA 82	-4181.7	643.6
444	SB 82	-42219	643.6
445 446	SC82 SA83	-4262.1 -4302.3	643.6 643.6
447	SB 83	-4342.5	643.6
448	SC83	-4382.7	643.6
449	SA 84	-4422.9	643.6
450	SB 84	-4463.1	643.6
451	SC84	-4503.3	643.6
452	SA 85	-4543.5	643.6
453 454	SB 85 SC 85	-4583.7 -4623.9	643.6 643.6
455	SA 86	-4623.9 -4664.1	643.6
456	SB 86	-4704.3	643.6
457	SC86	-4744.5	643.6
458	SA 87	-4784.7	643.6
459	SB 87	-4824.9	643.6
460	SC87	-4865.1	643.6
461	SA 88	-4905.3 4945.5	643.6
462 463	SB 88 SC 88	-4945.5 -4985.7	643.6 643.6
464	SA 89	-5025.9	643.6
465	SB 89	-5066.1	643.6
466	SC89	-5106.3	643.6
467	SA 90	-5146.5	643.6
468	SB 90	-5186.7	643.6
469	SC90	-5226.9	643.6
470 471	SA91 SB91	-5267.1 -5307.3	643.6 643.6
471	SC91	-5347.5	643.6
473	SA 92	-5387.7	643.6
474	SB 92	-5427.9	643.6
475	SC92	-5468.1	643.6
476	SA 93	-5508.3	643.6
477	SB 93	-5548.5	643.6
478 479	SC93 SA94	-5588.7 -5628.9	643.6 643.6
480	SB 94	-5626.9 -5669.1	643.6
.50	55 G	5555.1	0.0.0

 Solomon Systech
 Nov 2007
 P 10/68
 Rev 1.2
 SSD1331

Pad no.	Pad Name	X-Axis	Y-Axis
481	SC94	-5709.3	643.6
482	SA95	-5749.5	643.6
483	SB 95	-5789.7	643.6
484	SC95	-5829.9	643.6
485	VLSS	-5910.3	643.6
486	COM 32	-6420.1	647.9
487	COM 33	-6420.1	606.1
488	COM 34	-6420.1	564.3
489	COM 35	-6420.1	522.5
490	COM 36	-6420.1	480.7
491	COM 37	-6420.1	438.9
492	COM 38	-6420.1	397.1
493	COM 39	-6420.1	355.3
494	COM 40	-6420.1	313.5
495	COM 41	-6420.1	271.7
496	COM 42	-6420.1	229.9
497	COM 43	-6420.1	188.1
498	COM 44	-6420.1	146.3
499	COM 45	-6420.1	104.5
500	COM 46	-6420.1	62.7
501	COM 47	-6420.1	20.9
502	COM 48	-6420.1	-20.9
503	COM 49	-6420.1	-62.7
504	COM 50	-6420.1	-104.5
505	COM 51	-6420.1	-146.3
506	COM 52	-6420.1	-188.1
507	COM 53	-6420.1	-229.9
508	COM 54	-6420.1	-271.7
509	COM 55	-6420.1	-313.5
510	COM 56	-6420.1	-355.3
511	COM 57	-6420.1	-397.1
512	COM 58	-6420.1	-438.9
513	COM 59	-6420.1	-480.7
514	COM 60	-6420.1	-522.5
515	COM 61	-6420.1	-564.3
516	COM 62	-6420.1	-606.1
517	COM 63	-6420.1	-647.9

Figure 3 - SSD1331Z Alignment mark dimensions

SSD1331 Rev 1.2 P 11/68 Nov 2007 **Solomon Systech**

6 PIN DESCRIPTION

Pin Name	гштуре	Description
V_{DD}	Power	Power supply pin for core V _{DD}
AV_{DD}	Power	Analog power supply. It must be connected to V _{DD} during operation.
V _{DDIO}	Power	Power supply for interface logic level. It should be match with the MCU interface voltage level. V_{DDIO} must always be equal or lower than V_{DD} .
V _{CC}	Power	Power supply for panel driving voltage. This is also the most positive power voltage supply pin.
V_{SS}	Power	Ground pin
V_{LSS}	Power	Analog system ground pin.
V _{COMH}	0	COM signal deselected voltage level. A capacitor should be connected between this pin and V _{ss} .
BGGND	Power	Connect to Ground
V_{DDB}	Power	Reserved pin. It should be connect to V _{DD} externally.
V_{SSB}	Power	Reserved pin. It should be connected to V _{SS} externally.
GDR	0	Reserved pin. Keep NC (i.e. no connection).
FB	I	Reserved pin. Keep NC (i.e. no connection).
V_{BREF}	0	Reserved pin. Keep NC (i.e. no connection).
GPIO0	I/O	Reserved pin. Keep NC (i.e. no connection).
GPIO1	I/O	Reserved pin. Keep NC (i.e. no connection).
V_{CIR}	0	Reserved pin. Keep NC (i.e. no connection).
BS[3:0]	1	MCU bus interface selection pins.
		Table 3 - Bus Interface selection
		BS[3:0] Bus Interface Selection
		0000 SPI
		0100 8-bit 6800 parallel
		0101 16-bit 6800 parallel
		0110 8-bit 8080 parallel
		0111 16-bit 8080 parallel
		1100 9-bit 6800 parallel
		1110 9-bit 8080 parallel
I _{REF}	I -	This pin is the segment output current reference pin.
		A resistor should be connected between this pin an d V $_{\rm SS}$ to mai ntain the I $_{\rm REF}$ current at 10uA. Please refer to Figure 14 for the details formula of resistor value.

 Solomon Systech
 Nov 2007
 P 12/68
 Rev 1.2
 SSD1331

0	
	This pin outputs RAM write synchronization signal. Proper timing between MCU data writing and frame display timing can be achieve to prevent tearing effect. Keep NC if not used. Refer to section 7.3.2 for details usage.
I	This is external clock input pin. When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be connected to $V_{\rm SS}$. When internal clock is disabled (i.e. LOW in CLS pin), this pin is the external clock source input pin.
I	Internal clock selection pin. When this pin is pulled high (i.e. connect to V _{DDIO}), internal oscillator is enable (normal operation). When this pin is pulled low, an external clock signal should be connected to CL.
I	This pin is the chip select input connecting to the MCU.
I	This pin is reset signal input. When the pin is low, initialization of the chip is executed. Keep this pin high (i.e. connect to V_{DDIO}) during normal operation.
I	This pin is Data/Command control pin connecting to the MCU. When the pin is pulled high (i.e. conn ect to V _{DDIO}), the data at D[15:0]will be interpreted as data. When the pin is pulled low, the data at D[15:0] will be interpreted as command.
I	This pin is read / write control input pin connecting to the MCU interface.
	When interfa cing to a 68 00-series micr oprocessor, this pin will be used a s Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled high (i.e. connect to V_{DDIO}) and write mode when low. When 8080 interfa ce mode is selected, this pin will be the Write (WR#) input.
	Data write operation is initiated when this pin is pulled lowed and the chip is selected.
	When serial interface is selected, this pin R/W#(WR#) must be connected to $V_{\rm SS}$.
I	This pin is MCU interface input.
	When interfacing to a 6800-seri es microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high (i.e. connect to V_{DDIO}) and the chip is selected.
	When connecting to an 8 080-microprocessor, this p in receives the Read (RD#) signal. Read operation is initiated when this pin is pulled I ow and the chip is selected.
	When serial interface is selected, this pin E(RD#) must be connected to V_{SS} .
I/O	These pins are bi-directional data bus connecting to the MCU data bus.
	Unused pins are recommended to tie low. (Except for D2 pin in serial mode)
	Refer to Section 7.1 for different bus interface connection.
0	These pins provide the OLED segment driving signals. These pins are in high impedance state when display is OFF by command Set Display OFF.
	These 288 segment pins are divided in to 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C.
	I I/O

SSD1331 Rev 1.2 P 13/68 Nov 2007 **Solomon Systech**

Pin Name	Pin Type	Description
COM[63:0]	I/O	These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF by command Set Display OFF.
TR[11:0]	I	Testing reserved pins. These pins should be kept float.
NC	NC	Dummy pins. These pin s should be kept float and should not be connected to any other signal pins nor any electrical signal. Do not connect NC pins together.

 Solomon Systech
 Nov 2007
 P 14/68
 Rev 1.2
 SSD1331

7 FUNCTIONAL BLOCK DESCRIPTIONS

7.1 MCU Interface Selection

SSD1331 MCU interface consist of 16 data pin and 5 control pins. The pin assignment at different interface mode is summarized in Table 4. Different MCU mode can be set by hardware selection on BS[3:0] pins (refer to Table 3 for BS pins setting)

Table 4 - MCU interface assignment under different bus interface mode

Pin Name	Data / Co		Control Signal						
Bus Interface	D15 D14 D13 D12 D11 D10 D9 D8	8 D7 D6 D5 D4 D3	D2 D1 D	0	Е	R/W#	CS#	D/C#	RES#
8b / 8080	Tie Low	D7-D0	R	RD#	WR#	CS#	D/C#	RES#	
8ь / 6800	Tie Low	D7-D0		Е	R/W#	CS#	D/C#	RES#	
9ь / 8080	Tie Low	D8-D0	R	RD#	WR#	CS#	D/C#	RES#	
9ь / 6800	Tie Low	D8-D0		Е	R/W#	CS#	D/C#	RES#	
16b / 8080	,	D15-D0		R	RD#	WR#	CS#	D/C#	RES#
16b / 6800		•		Е	R/W#	CS#	D/C#	RES#	
SPI	Tie Low		NC SDIN SC	LK	Tie l	Low	CS#	D/C#	RES#

7.1.1 6800- series Parallel Interface

A low in R/W# indicates WRITE operation and high in R/W# indicates READ operation.

A low in D/C# indicates COMMAND read/write and high in D/C# indicates DATA read/write.

The E input serves as data latch signal while CS# is low. Data is latched at the falling edge of E signal.

Table 5 - Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	\downarrow	LL		L
Read status	\rightarrow	HL		L
Write data	\downarrow	LL		Н
Read data	\downarrow	HL		Н

Note

(1) ↓ stands for falling edge of signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 4

Figure 4 - Display data read back procedure - insertion of dummy read

SSD1331 | Rev 1.2 | P 15/68 | Nov 2007 | **Solomon Systech**

⁽²⁾ H stands for high in signal

⁽³⁾ L stands for low in signal

7.1.2 8080-series Parallel Interface

A low in D/C# indicates COMMAND read/write and high in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept low. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept low.

Figure 5 – Example of Write procedure in 8080 parallel interface mode

Figure 6 - Example of Read procedure in 8080 parallel interface mode

Table 6 - Control pins of 8080 interface (Form 1)

Function	RD#	WR#	CS#	D/C#
Write command	Н	\uparrow	L	L
Read status	1	Н	L	L
Write data	Н	\uparrow	L	Н
Read data	1	Н	L	Н

Note

Alternatively, E(RD#) and R/W#(WR#) can be keep stable while CS# is serve as the data/command latch signal.

Table 7 - Control pins of 8080 interface (Form 2)

Function	RD#	WR#	CS#	D/C#
Write command	Н	L	\uparrow	L
Read status	L	Н	1	L
Write data	Н	L	\uparrow	Н
Read data	L	Н	1	Н

Note

(1) ↑ stands for rising edge of signal

Solomon Systech Nov 2007 | P 16/68 | Rev 1.2 | **SSD1331**

 $^{^{(1)}}$ \uparrow stands for rising edge of signal

H stands for high in signal

⁽³⁾ L stands for low in signal

⁽⁴⁾ Refer to Figure 37 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics

⁽²⁾ H stands for high in signal

⁽³⁾ L stands for low in signal

⁽⁴⁾ Refer to Figure 38 for Form 2 8080-Series MPU Parallel Interface Timing Characteristics

In order to match the op erating frequency of displ ay RAM with that of the microprocessor, some pip eline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7.

Figure 7 - Display data read back procedure - insertion of dummy read

7.1.3 Serial Interface

The serial interface consists of serial clock SCLK (D0), serial data SDIN (D1), D/C# and CS#. SCLK is shifted into an 8-bit shift regi ster on every risi ng edge of SCLK in the order of D7, D6... D0. D/C# is sampled on every eighthelected and the data byte in the shift register is written to the Display Data RAM or commergister in the same clock.

Under serial mode, only write operations are allowed.

Table 8 - Control pins of Serial interface

Function	Е	R/W#	CS#	D/C#
Write command	Tie low	Tie low	L	L
Write data	Tie low	Tie low	L	Н

Figure 8 - Write procedure in SPI mode

SSD1331 | Rev 1.2 | P 17/68 | Nov 2007 | Solomon Systech

7.2 Command Decoder

This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin.

If D/C# pin is high, data is written to Graphic Display Data RAM (GDDRAM). If it is low, the inputs at D0-D15 are interpreted as a Command and it will be decoded and be written to the corresponding command register.

7.3 Oscillator Circuit and Display Time Generator

7.3.1 Oscillator

Figure 9 - Oscillator Circuit

This module is an On-Chip low power RC oscillator circuitry (Figure 9). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is high, internal oscillator is selected. If CLS pin is low, external clock from CL pin will be used for CLK. The frequency of internal oscillator F_{OSC} can be programmed by command B3h (Set oscillator frequency).

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command B3h.

$$DCLK = F_{osc} / D$$

The frame frequency of display is determined by the following formula.

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 16.
- K is the number of display clocks per row. The value is derived by
 K = Phase 1 period + Phase 2 period + PW63 (longest current drive pulse width)
 = 4 + 7 + 125 = 136 at reset
- Number of multiplex ratio is set by command A8h. The reset value is 64
- F OSC is the oscillator frequency. It can be adjusted by command B3h A[7:4]

Solomon Systech | Nov 2007 | P 18/68 | Rev 1.2 | SSD1331

7.3.2 FR synchronization

The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete(more than one frame but within two frames), it is a slow write one.

For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and should be finished well before the rising edge of the next FR pulse.

For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FR pulse and must be finished before the rising edge of the 3rd FR pulse.

7.4 Reset Circuit

When RES# input is pulled low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 64 MUX Display Mode
- 3. Display start line is set at display RAM address 0
- 4. Display offset set to 0
- 5. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00H and COM0 mapped to address 00H)
- 6. Column address counter is set at 0
- 7. Master contrast control register is set at 0FH
- 8. Individual contrast control registers of color A, B, and C are set at 80H
- 9. Shift register data clear in serial interface
- 10. Normal display mode (Equivalent to A4 command)

SSD1331 | Rev 1.2 | P 19/68 | Nov 2007 | **Solomon Systech**

7.5 Graphic Display Data RAM (GDDRAM)

7.5.1 GDDRAM structure

The GDDRAM is a bit ma pped static RAM holding the pattern to be displayed. The RAM si ze is $96 \times 64 \times 16$ bits.

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display.

Each pixel has 16-bit data. Three sub-pixels for color A, B and C have 6 bits, 5 bits and 6 bits respectively. The arrangement of data pixel in graphic display data RAM is shown below.

Figure 10 - 65k Color Depth Graphic Display Data RAM Structure

7.5.2 Data bus to RAM mapping under different input mode

Table 9 - Data bus usage under different bus width and color depth mode

				Data	Data bus														
Bus	width	Color Depth	Input order	D15	D14 D	13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D 0
8	bits	256		X	X	X	X	X	X	X	X	C_4	\mathbb{C}_3	C_2	B_5	B_4	\mathbf{B}_3	A_4	A_3
8	bits	65k format 1	1st	X	X	X	X	X	X	X	X	C ₄	C ₃	C_2	C ₁	C_0	B ₅	B_4	\mathbf{B}_3
		2nd		XX	Ĭ.	X	X	X	X	X	X	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	A_4	A_3	A_2	A_1	A_0
8	bits	65k format 2	1st	X	X	X	X	X	X	X	X	X	X	C ₄	C ₃	C_2	C_1	C_0	X
			2nd	X	X	X	X	X	X	X	X	X	X	B_5	B_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0
			3rd	X	X	X	X	X	X	X	X	X	X	A_4	A_3	A_2	A_1	A_0	X
16	bits	65k		C_4	C_3	C_2	C_1	C_0	B_5	B_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	A_4	A_3	A_2	A_1	A_0
9	bits	65k 1st		X	X	X	X	X	X	X	C_4	C_3	C_2	C_1	C_0	X	\mathbf{B}_{5}	B_4	\mathbf{B}_3
			2nd	X	X	X	X	X	X	X	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	A_4	A_3	A_2	A_1	A_0	X

Solomon Systech | Nov 2007 | P 20/68 | Rev 1.2 | SSD1331

7.5.3 RAM mapping and Different color depth mode

At 65k color depth mode, color A, B, C are directly mapped to the RAM content. At 256-color mode, the RAM content will be filled up to 65k format.

Figure 11 - 256-color mode mapping

				SCn			SBn							SAn					
ĺ	65k color	C_4	C_3	C_2	C_1	C_0	\mathbf{B}_{5}	B_4	\mathbf{B}_3	B_2	B_1	\mathbf{B}_0	A_4	A_3	A_2	A_1	A_0		
ĺ	256 color	C_4	C_3	C_2	*C ₄	*C ₄	B_5	B_4	\mathbf{B}_3	B_5	*B ₅	*B ₅	A_4	A_3	*A ₄	*A ₄	*A ₄		

Note:

 $^{(1)}$ n = 0 ~ 95

7.6 Gra y Scale Decoder

The gray scale effect is gene rated by controlling the pulse width of segment drivers in current drive phase. The gray scale table store s the corre sponding pulse widths of the 63 gray scale levels (G S0~GS63). The wider the pulse width, the brighter the pixel will be. A single gray scale table supports all the three colors A, B and C. The pulse widths can be set by software commands.

As shown in Figure 12, color B sub-pixel RAM data has 6 bits, represent the 64 gray scale levels from GS0 to GS63. color A and colo r C su b-pixel RAM data ha s only 5 bits, represent 32 gray scale levels from GS0, GS2, ..., GS62.

Figure 12 - Relation between GDRAM content and gray scale table entry for three colors in 65K color mode

Color A, C	Color B	Gray Scale	Default pulse width of GS[0:63]
RAM data (5 bits)	RAM data (6 bits)		in terms of DCLK
0000 0000	00	GS0	0
- 0000	01	GS1	1
00001 0000	10	GS2	3
- 0000	11	GS3	5
00010 0001	00	GS4	7
::		:	:
::		:	:
::		:	:
11110 1111	00	GS60	119
- 1111	01	GS61	121
11111 1111	10	GS62	123
- 1111	11	GS63	125

The duration of different GS are programmable.

SSD1331 | Rev 1.2 | P 21/68 | Nov 2007 | **Solomon Systech**

⁽²⁾ bits with * are copied from corresponding bits in order to fill up 65K format.

Figure 13 - Illustration of relation between graphic display RAM value and gray scale control

Gray scale table

Gray Scale	Value/DCLKs
GS0	0
GS1	1
GS2	3
:	:
GS62	123
GS63	125

 Solomon Systech
 Nov 2007
 P 22/68
 Rev 1.2
 SSD1331

7.7 SEG / COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V _{CC} is the most positive voltage supply.
- V COMH is the Common deselected level. It is internally regulated.
- V LSS is the ground path of the analog and panel current.
- I REF is a ref erence curre nt sou rce fo r segme nt current d rivers I SEG. The relation nship between reference current and segment current of a color is:

I_{SEG} = Contrast / 256 x I_{REF} x scale factor

in which

the contrast $(0\sim255)$ is set by Set Contrast command; and the scale factor $(1\sim16)$ is set by Master Current Control command.

For example, in order to achieve I_{SEG} = 160uA at maximum contrast 255, I_{REF} is set to aro und 10uA. This current value is obtained by connecting an appropriate resistor from I_{REF} pin to V_{SS} as shown in Figure 14.

Recommended range for $I_{REF} = 10uA +/- 2uA$

Figure 14 - I_{REF} Current Setting by Resistor Value

Since the voltage at I_{REF} pin is $V_{CC}-3V$, the value of resistor R1 can be found as below. R1 = (Voltage at $I_{REF}-V_{SS}$) / I_{REF} = ($V_{CC}-3$) / $10uA \approx 1.3M\Omega$ for V_{CC} = 16V.

SSD1331 Rev 1.2 P 23/68 Nov 2007 **Solomon Systech**

7.8 Common and Segment Drivers

Segment drivers consist of 288 (96 x 3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 160 uA with 256 step s by contrast setting command (81h,82h,83h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 16 - Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V_{COMH} as shown in Figure 17

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to I_{SEG} when the pixel is turned ON.

Solomon Systech | Nov 2007 | P 24/68 | Rev 1.2 | SSD1331

Figure 17 - Segment and Common Driver Signal Waveform

SSD1331 Rev 1.2 P 25/68 Nov 2007 **Solomon Systech**

There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to V_{LSS} in ord er to discharge the previor us data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0] from 1 to 15 DCLK. An OLED panel with larger capacitance requires a longer period for discharging.

In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level V_P from V_{LSS} . The amplitude of V_P can be programmed by the command BBh. The period of phase 2 can be programmed in length from 1 to 15 DCLK by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pix el is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of p hase 3 can be programmed by commands 8Ah, 8Bh and 8Ch.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs Pulse Width Modulation (PWM) method to control the gray scale of each pixel individually. The wider pulse widths in the current drive stage results in brighter pixels and vice versa. This is shown in the following figure.

Figure 18 - Gray Scale Control by PWM in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

The length of phase 4 is defined by command B8h "Set Gray Scale Table" or B9h "Enable Linear Gray Scale Table". In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

Solomon Systech | Nov 2007 | P 26/68 | Rev 1.2 | SSD1331

7.9 Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1331 (assume V_{DD} and V_{DDIO} are at the same voltage level).

Power ON sequence:

- 1. Power ON V_{DD}, V_{DDIO},
- 2. After V_{DD}, V_{DDIO} become stable, set RES# pin LOW (logic low) for at least 3us (t₁) and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 3us (t₂). Then Power ON V_{CC.}⁽¹⁾
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (t_{AF}).

Figure 19: The Power ON sequence

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF $V_{CC}^{(1),(2)}$
- 3. Wait for t_{OFF} . Power OFF $V_{DD_i}V_{DDIO_i}$ (where Minimum t_{OFF} =0ms, Typical t_{OFF} =100ms)

Figure 20: The Power OFF sequence

Note:

 $^{(1)}$ Since an ESD protection circuit is connected between V_{DD}, V_{DDIO} and V_{CC}, V_{CC} becomes lower than V_{DD} whenever V_{DD}, V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 19 and Figure 20 . $^{(2)}$ V_{CC} should be kept float (disable) when it is OFF.

SSD1331 | Rev 1.2 | P 27/68 | Nov 2007 | Solomon Systech

8 COMMAND TABLE

Table 10 - Command Table

D/C# 0 0 A[0 B[_	D7		D 5	D4	Undamental Commands											
0 A[6:0]	0 (0				UΖ	D1	D0	Comma nd	Description	Default					
I F	_		U		1 ()	1	0 1			Setup Column start and end address						
0 B[6:01	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[6:0] start address from 00d-95d	00d (00h)					
		*	B_6	B_5	B_4	B_3	$B_2 \\$	$B_{1} \\$	B_0		B[6:0] end address from 00d-95d	95d (5Fh)					
										Set Column Address							
0	75	0	1	1	1	0	1	0	1		Setup Row start and end address						
0 A[*	*	A ₅	А ₄	_	A ₂	_	A ₀		A[5:0] start address from 00d-63d	00d (00h)					
0 B[_	*	*	B ₅	, ₄ В ₄				B ₀		B[5:0] end address from 00d-63d	63d (3Fh)					
	.ee ₁			1	54	1	5 2]	10	Set Row Address		(0.11)					
0	81	1	0	0	0	0	0	0	1		Set contrast for all color "A" segment (Pins:SA0 – SA95)						
0 A[7:01	A ₇	A ₆	A ₅	A_4	A ₃	A_2	A ₁	A ₀		A[7:0] valid range: 00d to 255d	128d (80h)					
	,	,	- 40	,	,	, ,			- 40	Set Contrast for Color "A"		(,					
0	82	1	0	0	0	0	0	1	0		Set contrast for all color "B" segment						
	7.01					_					(Pins:SB0 – SB95).	400-1 (001-)					
0 A[/ :U]	Α ₇	A ₆	A 5	A4	A ₃	A ₂	Α ₁	A ₀	Set Contrast for Color "B"	A[7:0] valid range: 00d to 255d	128d (80h)					
0	83	1	0	0	0	0	0	1	1		Set contrast for all color "C" segment						
	7.01	^	^	^	^	_	^	^	^		(Pins:SC0 – SC95).	4004 (005)					
0 A[/:UJ	Α ₇	A ₆	A ₅	A4	A ₃	A ₂	Α ₁	A ₀	Set Contrast for Color "C"	A[7:0] valid range: 00d to 255d	128d (80h)					
0	87	1	0	0	0	0	1	1	1		Set master current attenuation factor						
0	A[3:0]	0 0	0		0	A ₃	A ₂	A ₁	A_0		A[3:0] from 00d to 15d corresponding to 1/16, 2/16 to 16/16 attenuation.	15d (0Fh)					
										Master Current Control							

 Solomon Systech
 Nov 2007
 P 28/68
 Rev 1.2
 SSD1331

Fund	Undamental Commands C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Comma nd Description Default											
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comma nd	Description	Default
0 0 A 0 A 0 A	8A [7:0] 8B [7:0] 8C [7:0]	1 (A ₇ 1 (A ₇ 1 (A ₇	0 A ₆ 0 A ₆ 0 A ₆	A ₅ A ₅	0 A ₄ 0 A ₄ 0 A ₄	A ₃ A ₃	0 A ₂ 0 A ₂ 1 A ₂	1 (A ₁ 1 f A ₁ 0 (A ₁	A ₀ A ₀	0.10	A[7:0]: Set Second Pre-charge Speed Ranges: 0000000b to 1111111b, a higher value of A[7:0] gives a higher Second Pre-charge speed. Note (1) The default values of A[7:0] in 8Ah, A[7:0] in 8Bh and A[7:0] in 8Ch are equal to the contrast values for color A, B and C(refer to commands: 81h, 82h, 83h) respectively. (2) All six bytes (8Ah A[7:0], 8Bh A[7:0] and 8Ch A[7:0]) must be inputted together. For example: the original value is like that Original value 8Ah A[7:0]: 80h 8Ch A[7:0]: 80h 1f it is wanted to change the value of 8Bh A[7:0] to 75h, then all the following 6 bytes must be inputted: 8Ah,80h, 8Bh,75h, 8Ch,80h.	A[7:0] of 81h
0 0	A0 A[7:0]	1 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁		Remap & Color Depth setting	Set driver remap and color depth A[0]=0, Horizontal address increment A[0]=1, Vertical address increment A[1]=0, RAM Column 0 to 95 maps to Pin Seg (SA,SB,SC) 0 to 95 A[1]=1, RAM Column 0 to 95 maps to Pin Seg (SA,SB,SC) 95 to 0 A[2]=0, normal order SA,SB,SC (e.g. RGB) A[2]=1, reverse order SC,SB,SA (e.g. BGR) A[3]=0, Disable left-right swapping on COM A[3]=1, Set left-right swapping on COM A[4]=0, Scan from COM 0 to COM [N -1] A[4]=1, Scan from COM [N-1] to COM0. Where N is the multiplex ratio. A[5]=0, Disable COM Split Odd Even (RESET) A[5]=1, Enable COM Split Odd Even A[7:6] = 00; 256 color format A[7:6] = 01; 65k color format	
0 0 A	A1 [5:0]	1 0	0 0	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀		A[7:6] = 10; 65k color format 2 If 9 / 18 bit mode is selected, color depth will be fixed to 65k regardless of the setting. Set display start line register by Row A[5:0]: from 00d to 63d Set vertical offset by Com	00d (00h)
	A2 [5:0]	0	0	A ₅	A ₄	О А ₃				Set Display Offset	A[5:0]: from 00d to 63d	00d (00h)

SSD1331 Rev 1.2 P 29/68 Nov 2007 **Solomon Systech**

Fund	undamental Commands VC# Hex D7 D6 D5 D4 D3 D2 D1 D0 Comma nd Description Default											
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comma nd	Description	Default
0 0 0	A4 / A5 / A6 / A7 /	1 (1		0.0)	1	X ₁	X ₀	A4h=Norma Set Display Mode	I Display A5h=Entire Display ON, all pixels turn ON at GS63 A6h=Entire Display OFF, all pixels turn OFF A7h=Inverse Display	A4h
0 0 A	A8 [5:0]	1 0	0	1 A ₅	0 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Set Multiplex Ratio	Set MUX ratio to N+1 Mux N = A[5:0] from 15d to 63d A[5:0] from 00d to 14d are invalid entry	63d (3Fh)
0 B	AB [7:0] [7:0] [7:0] [7:0] E[4:0]	B ₇ C ₇ D ₇	A ₆ B ₆	B ₅ C ₅	B ₄ C ₄ D ₄	B ₃ C ₃ D ₃	B ₂	B ₁ C ₁ D ₁	B ₀ C ₀ D ₀	Dim Mode Setting	Configure dim mode setting A[7:0] = Reserved. (Set as 00h) B[7:0] = Contrast setting for Color A, valid range 0 to 255d. C[7:0] = Contrast setting for Color B, valid range 0 to 255d. D[7:0] = Contrast setting for Color C, valid range 0 to 255d. E[4:0] = Precharge voltage setting, valid range 0 to 31d.	\
0 0	AD A[0]	1 (0		1 1	0 1	A ₀	Set Master Configuration	A[0]=0b, Select external V _{CC} supply A[0]=1b, Reserved (RESET) Note (1) Bit A[0] must be set to 0b after RESET. (2) The setting will be activated after issuing Set Display ON command (AFh)	A[0] = 1
0	AC AE AF	1 (1		0	1	1	A ₁	Α 0	Set Display ON/OFF	ACh = Display ON in dim mode AEh = Display OFF (sleep mode) AFh = Display ON in normal mode	AEh
0	B0 A[7:0]) 1 A ₆	A 5	1 (A 4		0 A ₂	0 (A ₁		Power Save Mode	A[7:0]=1Ah, Enable Power save mode (RESET) A[7:0]=0Bh, Disable Power save mode	1Ah
0 0 A	B1 [7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Phase 1 and 2 period adjustment	A[3:0] Phase 1 period in N DCLK. 1~15 DCLK allowed. A[7:4] Phase 2 period in N DCLK. 1~15 DCLK allowed Note (1) 0 DCLK is invalid in phase 1 & phase 2	74h
0 0 A	B3 [7:0]	1 (A ₇		A ₅	1 (A ₄		0 A ₂	1 A ₁	A ₀	Display Clock Divider / Oscillator Frequency	A[3:0]: Define the divide ratio (D) of the display clocks (DCLK): Divide ratio (D) = A[3:0] + 1 (i.e., 1 to 16) A[7:4] Fosc frequency. Frequency increases as setting value increases	D0h

 Solomon Systech
 Nov 2007
 P 30/68
 Rev 1.2
 SSD1331

Fund	undamental Commands C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description Default											
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	Default
0 B 0 C 0 A 0 A	B8 [6:0] [6:0] [6:0] E[6:0] F[6:0]	*	A ₆ B ₆ C ₆ AE ₆ AF ₆	B ₅ C ₅ ΑΕ _δ ΑF ₅	C ₄ . AE ₄ AF ₄	B ₃ C ₃ AE ₃ AF ₃	B ₂ C ₂ AE ₂ AF ₂	B ₁ C ₁ AE ₁ AF ₁	A ₀ B ₀ C ₀ AE ₀ AF ₀	Set Gray Scale Table	(4) Pn+1 should always be set to larger than Pn-1 (5) Max pulse stages width is 125	\
0	B9	1	0	1	1	1	0	0	1	Enable Linear Gray Scale Table	Reset built in gray scale table (Linear) Pulse width for GS1 = 1d; Pulse width for GS2 = 3d; Pulse width for GS3 = 5d; Pulse width for GS61 = 121d; Pulse width for GS62 = 123d; Pulse width for GS63 = 125d.	\
0 0 A	BB [5:0]	1	0	1 A ₅	1 A ₄	1 A ₃	0 A ₂	1 A ₁	1	Set Pre-charge level	Set pre-charge voltage level. All three color share the same pre-charge voltage. A[5:1] Hex code pre-charge voltage	3Eh
0	BC-BD	1 (1		1 1		1	0	X ₀	NOP	Command for No operation	/
0 A	BE [5:1]	1 (0	A ₅	1 1 A ₄	A ₃	1 A ₂	1 (A ₁	Ī	Set V _{COMH}	Set COM deselect voltage level (V COMH) A[5:1] Hex code V COMH 00000 00h 0.44 x V _{CC} 01000 10h 0.52 x V _{CC} 10000 20h 0.61 x V _{CC} 11000 30h 0.71 x V _{CC} 11111 3Eh 0.83 x V _{CC}	3Eh
0	E3	1 1	1		0.0		0	1 1		NOP	Command for No operation	\
0 0	FD A[2]	111	0		1 1		1 A ₂	0 1	1 0	Set Command Lock	A[2]: MCU protection status A[2] = 0b, Unlock OLED driver IC MCU interface from entering command [reset] A[2] = 1b, Lock OLED driver IC MCU interface from entering command Note (1) The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command.	12h

SSD1331 Rev 1.2 P 31/68 Nov 2007 **Solomon Systech**

Grap	raphic Acceleration Commands										
D/C#										Command	Description
0	21	0	0	1	0 0	0 0	1				A[6:0]: Column Address of Start
0 A[6	0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		B[5:0]: Row Address of Start
0	B[5:0]	* * E	B	5			B_2	B₁	B ₀		C[6:0]: Column Address of End
0 C[6	:0]	*	C_6	C ₅	C ₄	C ₃	C_2	C ₁	Co		D[5:0]: Row Address of End
_	D[5:0]	* * [_				D_0	Draw Line	E[5:1]: Color C of the line
	E[5:1]	* * E	<u> </u> E					E ₁ *			F[5:0]: Color B of the line
	F[5:0]	* * F	ļ						F_0		
	G[5:1]	* * (5	G ₄	_		G ₁	*		G[5:1]: Color A of the line
0	22	0	0	1	0	0	0	1	0		A[6:0]: Column Address of Start
0 A	[6:0]	*	A ₆	A ₅	A_4	A_3	A ₂	A ₁	A ₀		B[5:0]: Row Address of Start
	[5:0]	*	*	B ₅	B ₄	B ₃			B ₀		C[6:0]: Column Address of End
	[6:0]	*	C ₆	C ₅	C ₄	C ₃			C ₀		D[5:0]: Row Address of End
	[5:0]	*	*	D ₅	D ₄	D ₃			D_0		E[5:1]: Color C of the line
	[5:1]	*	*	E ₅	E ₄	E ₃			*	Drawing	F[5:0]: Color B of the line
0 F	Ī -	*	*	F ₅	F ₄	F ₃			F ₀	Rectangle	G[5:1]: Color A of the line
	[5:1]	*	*	G ₅	G ₄				*		H[5:1]: Color C of the fill area
	[5:1] [5:1]	*	*	H ₅	H ₄	H ₃			*		I[5:0]: Color B of the fill area
0 1[_	*	*	١.	I ₄	I ₃	l ₂	I ₁	10		J[5:1]: Color A of the fill area
	5:1]	*	*	Ι ₅ J ₅	J ₄	J ₃	J ₂	J ₁	*		5[5.1]. Color A of the fill area
0	23	0	0	1	0	0	0	1	1		A[6:0]: Column Address of Start
	[6:0]	*	A ₆	A ₅	A ₄	A ₃	_	-	A ₀		B[5:0]: Row Address of Start
	[5:0]	*	*	B ₅	B ₄	B ₃			B ₀		C[6:0]: Column Address of End
	[5.0] [6:0]	*	C.	C ₅	C ₄	C ₃				Conv	D[5:0]: Row Address of End
	T =	*	C ₆	D ₅					C ₀	Сору	E[6:0]: Column Address of New Start
	[5:0]	*	_		D ₄	D ₃			D ₀		
0 F	[6:0] [5:0]	*	E ₆	E ₅	E ₄	E ₃			F ₀		F[5:0]: Row Address of New Start
0	24	0	0	1	0	0	F ₂	0	0		A[6:0]: Column Address of Start
_	[6:0]	*									B[5:0]: Row Address of Start
		*	A ₆	A ₅					A ₀		
	[5:0]	*		B ₅			B ₂				C[6:0]: Column Address of End
	[6:0]	*	C ₆	C ₅				C ₁			D[5:0]: Row Address of End
ل ا	[5:0]			D ₅	D ₄	ا ا	D ₂	1	D ₀	Dim Window	The effect of dim window:
											GS15~GS0 no change
											GS19~GS16 become GS4
											GS23~GS20 become GS5
											 GS63~GS60 become GS15
0	25	0	0	1	0	0	1	0	1		A[6:0]: Column Address of Start
	[6:0]	*	A ₆	A ₅				-	A ₀		B[5:0]: Row Address of Start
	[5:0]	*	*	B ₅	B ₄				B ₀		C[6:0]: Column Address of End
	[5.0] [6:0]	*	C ₆	C ₅	C ₄			C ₁		Cicai Williauw	D[5:0]: Row Address of End
	[6.0] [5:0]	*	*	D ₅	D_4				D_0		S[0.0]. Now Addition of Ella
0	26	0	0	1	0	0	1	1	0		A0 0 : Disable Fill for Draw Rectangle
								'			Command (RESET)
0 A	[4:0]	*	*	*	A_4	0 (0		A_0		1 : Enable Fill for Draw Rectangle
										Fill Enable /	Command A[3:1] 000: Reserved values
										Disable	A4 0 : Disable reverse copy (RESET)
											1 : Enable reverse during copy
											command.

 Solomon Systech
 Nov 2007
 P 32/68
 Rev 1.2
 SSD1331

Grap	Graphic Acceleration Commands D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description										
D/C#	Hex	D7	D6	D5	D4	D3	D2 [)1 C	0	Command	Description
0 0 A	27 [6:0]	0 () 1 A ₆	A ₅	0 A ₄	0 A ₃	1 A ₂	1 A ₁	1 A ₀		A[6:0]: Set number of column as horizontal scroll offset Range: 0d-95d (no horizontal scroll if equals to 0)
0 B	[5:0]	*	*	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		B[5:0]: Define start row address
0 C	[6:0]	*	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		C[6:0]: Set number of rows to be horizontal scrolled B[5:0]+C[6:0] <=64
0 D	[5:0]	*	*	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Continuous Horizontal &	D[5:0]: Set number of row as vertical scroll offset Range: 0d-63d (no vertical scroll if equals to 0)
0	E[1:0]	*	* *		* *	*		E ₁	E ₀	Vertical Scrolling Setup	E[1:0]: Set time interval between each scroll step 00b 6 frames 01b 10 frames 10b 100 frames 11b 200 frames Note: (1) Vertical scroll is run with 64MUX setting only (2) The parameters should not be changed after scrolling is activated
0	2E	0	0	1	0 1	1 1	0			Deactivate scrolling	This command deactivates the scrolling action. Note (1) After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.
0	2F	0	0	1	0 1	11	1 1			Activate scrolling	This command activates the scrolling function according to the setting done by Continuous Horizontal & Vertical Scrolling Setup command 27h.

SSD1331 Rev 1.2 P 33/68 Nov 2007 **Solomon Systech**

8.1 Data Read / Write

To read data from the GDDRAM, input HIGH to R/W#(WR#)# pin and D/C# pin for 6800-series parallel mode, LOW to E (RD#) pin and HIGH to D/C# pin for 808 0-series parallel mode. No data read is provided in serial mode operation.

In normal data read mode, GDDRAM column address pointer will be increased by one a utomatically after each data read.

Also, a dummy read is required before the first data read.

To write data to the GDDRAM, input L OW to R/W#(WR#) pin and HIGH to D/C# pin for 6 800-series parallel mode AND 8080-series parallel mode. For serial interface mode, it is always in write mode. GDDRAM column address pointer will be increased by one automatically after each data write.

Table 11 - Address increment table (Automatic)

D/C#	R/W#(WR#)	Comment	Address Increment
0 0		Write Command	No
0 1		Read Status	No
1 0		Write Data	Yes
1 1		Read Data	Yes

Solomon Systech | Nov 2007 | P 34/68 | Rev 1.2 | SSD1331

9 COMMAND DESCRIPTIONS

9.1 Fundamental Command

9.1.1 Set Column Address (15h)

This command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horiz ontal address increment mode is enabled by command A0h, after finishin g read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset b ack to start column address.

9.1.2 **Set Row Address (75h)**

This command specifies row start address and end address of the display dat a RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

The figure below shows the way of column and row address pointer movement through the example: column start add ress is set to 2 and column end address is set to 93, row start address is set to 1 and row end address is set to 62. Ho rizontal address in crement mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 93 and from row 1 to row 62 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write on e pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (solid line in Figure 21). Whenever the column address pointer finishes accessing the end column 93, it is re set back to column 2 and row address is automatically increased by 1 (solid line in Figure 21). While the end row 62 and end column 93 RAM location is accessed, the row address is reset back to 1 (dotted line in Figure 21).

Figure 21 - Example of Column and Row Address Pointer Movement

SSD1331 | Rev 1.2 | P 35/68 | Nov 2007 | **Solomon Systech**

9.1.3 Set Contrast for Color A, B, C (81h, 82h, 83h)

This command is to set Contrast Setting of each color A, B and C. The chip has three contrast control circuits for color A, B and C. Ea ch contrast circuit has 256 contrast steps from 00 h to FFh. The se gment output current I_{SEG} increases with the contrast step, which results in brighter of the color.

9.1.4 Master Current Control (87h)

This command is to control the segment output current by a scaling factor. This factor is common to color A, B and C. The chip has 16 master control steps. The factor is ranged from 1 [0000b] to 16 [1111b]. RESET is 16 [1111b]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if original segment output current of a color is 160uA at scale factor = 16, setting scale factor to 8 to reduce the current to 80uA.

Solomon Systech | Nov 2007 | P 36/68 | Rev 1.2 | SSD1331

9.1.5 Set Second Pre-charge Speed for Color A, B, C (8Ah)

The value set should match with the contrast of the color A, B, C. An initial trial should be the value same as the contrast A, B, C. When faster speed is needed, higher value can be set and vice versa. Figure 22 shows the effect of setting second pre-charge under different speeds through using command 8Ah, 8Bh and 8Ch.

Segment Voltage

V_{LSS}

Different settings in Second Pre-charge speed

Phase2

Phase4

Phase3

Phase3

Phase3

Phase4

Phase4

Phase4

Phase4

Phase4

Phase5

Phase6

Phase7

Phase6

Phase6

Phase6

Phase6

Phase6

Phase7

Phase7

Phase7

Phase6

Phase6

Phase7

Phase7

Phase7

Phase7

Phase7

Phase8

Figure 22 - Effect of setting the second pre-charge under different speeds

9.1.6 Set Re-map & Data Format (A0h)

This command has multiple configurations and each bit setting is described as follows.

Address increment mode (A[0])
When it is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read/written, the column address point er is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 23.

Figure 23 - Address Pointer Movement of Horizontal Address Increment Mode

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read/written, the ro w address pointer is in creased automatically by 1. If the ero w address pointer reaches the ro w end add ress, the ro w address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 24.

Figure 24 - Address Pointer Movement of Vertical Address Increment Mode

SSD1331 | Rev 1.2 | P 37/68 | Nov 2007 | **Solomon Systech**

Column Address Mapping (A[1])

This command bit is made for flexible layout of segment signals in OLED module with segment arranged from left to right or vice versa. The display direction is either mapping display data RAM column 0 to SEG0 pin (A[1] = 0), or mapping display data RAM column 95 to SEG0 pin (A[1] = 1). The effects of both are shown in Figure 25.

Figure 25 - Example of Column Address Mapping

Column 0 maps to SEG0 pin

Column 95 maps to SEG0 pin

RGB Mapping (A[2])

This command bit is made for flexibl e layout of segment signals in OLED module to match filter design.

COM Left / Right Remap (A[3])

This command bit i s ma de for flexibl e layout of common signals i n O LED mo dule with COM 0 arranged on either left or right side. De tails of pin arrange ment can be found in Table 12 and Figure 26.

COM Scan Direction Remap (A[4])

This bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa. Details of pin arrangement can be found in Table 12 and Figure 26.

Odd Even Split of COM pins (A[5])

This bit can set the odd even arrangement of COM pins.

A[5] = 0: Disable COM split odd even, pin assignment of common is in sequential as COM63 COM62 COM 33 COM32..SC95..SA0..COM0 COM1.... COM30 COM31

A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM63 COM61.... COM3 COM1..SC95..SA0..COM0 COM2.... COM60 COM62 Details of pin arrangement can be found in Table 12 and Figure 26.

Display color mode (A[7:6])

Select either 65k or 256 color mode. The display RAM data format in different mode is described in section 7.5

Solomon Systech | Nov 2007 | P 38/68 | Rev 1.2 | SSD1331

Table 12 - Illustration of different COM output settings

		Case A	Case B	Case C	Case D	Case E	Case F	Case G	Case H
		A[5:3]=000	A[5:3]=001	A[5:3]=010	A[5:3]=011	A[5:3]=100	A[5:3]=101	A[5:3]=110	A[5:3]=111
IC Pad no.	Pin name				Output	t signal			
195	COM0	Row0	Row32	Row63	Row31	Row0	Row1	Row63	Row62
194	COM1	Row1	Row33	Row62	Row30	Row2	Row3	Row61	Row60
193	COM2	Row2	Row34	Row61	Row29	Row4	Row5	Row59	Row58
192	COM3	Row3	Row35	Row60	Row28	Row6	Row7	Row57	Row56
191	COM4	Row4	Row36	Row59	Row27	Row8	Row9	Row55	Row54
190	COM5	Row5	Row37	Row58	Row26	Row10	Row11	Row53	Row52
169	COM26	Row26	Row58	Row37	Row5	Row52	Row53	Row11	Row10
168	COM27	Row27	Row59	Row36	Row4	Row54	Row55	Row9	Row8
167	COM28	Row28	Row60	Row35	Row3	Row56	Row57	Row7	Row6
166	COM29	Row29	Row61	Row34	Row2	Row58	Row59	Row5	Row4
165	COM30	Row30	Row62	Row33	Row1	Row60	Row61	Row3	Row2
164	COM31	Row31	Row63	Row32	Row0	Row62	Row63	Row1	Row0
488	COM32	Row32	Row0	Row31	Row63	Row1	Row0	Row62	Row63
489	COM33	Row33	Row1	Row30	Row62	Row3	Row2	Row60	Row61
490	COM34	Row34	Row2	Row29	Row61	Row5	Row4	Row58	Row59
491	COM35	Row35	Row3	Row28	Row60	Row7	Row6	Row56	Row57
492	COM36	Row36	Row4	Row27	Row59	Row9	Row8	Row54	Row55
493	COM37	Row37	Row5	Row26	Row58	Row11	Row10	Row52	Row53
514	COM58	Row58	Row26	Row5	Row37	Row53	Row52	Row10	Row11
515	COM59	Row59	Row27	Row4	Row36	Row55	Row54	Row8	Row9
516	COM60	Row60	Row28	Row3	Row35	Row57	Row56	Row6	Row7
517	COM61	Row61	Row29	Row2	Row34	Row59	Row58	Row4	Row5
518	COM62	Row62	Row30	Row1	Row33	Row61	Row60	Row2	Row3
519	COM63	Row63	Row31	Row0	Row32	Row63	Row62	Row0	Row1

SSD1331 Rev 1.2 P 39/68 Nov 2007 **Solomon Systech**

Figure 26 - COM Pins Hardware Configuration (MUX ratio: 64)

 Solomon Systech
 Nov 2007
 P 40/68
 Rev 1.2
 SSD1331

 SSD1331
 Rev 1.2
 P 41/68
 Nov 2007
 Solomon Systech

9.1.7 Set Display Start Line (A1h)

This command is to set Display Start Line re gister to determine starting address of disp lay RAM to be displayed by selecting a value from 0 to 63. Table 13 and Table 14 show examples of this command. In there, "Row" means the graphic display data RAM row.

9.1.8 Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line regi ster equals to 0) to one of COM 0-63. For example, to move the COM1 6 towards the COM0 direction for 16 lines, the 6-bit d ata in the second command should be given by 001000 0b. Table 13 and Table 14 show examples of this command. In there, "Row" means the graphic display data RAM row.

Solomon Systech | Nov 2007 | P 42/68 | Rev 1.2 | SSD1331

Table 13 - Example of Set Display Offset and Display Start Line with no Remap

		64		64	6	4	-		-	56	-	6
ŀ		0		0	6			66 00	5	56		56 O
lardware pin		0		8)		08				0
name		0 DAMO		DAM9		BAM9		DO BAMO	Dowe.	DAMO		B DAMO
COM0 COM1	Row0 Row1	RAM0 RAM1	Row8 Row9	RAM8 RAM9	Row0 Row1	RAM8 RAM9	Row0 Row1	RAM0 RAM1	Row8 Row9	RAM8 RAM9	Row0 Row1	RAM8 RAM9
COM2	Row2	RAM2	Row10	RAM10	Row2	RAM10	Row2	RAM2	Row10	RAM10	Row2	RAM10
COM3 COM4	Row3 Row4	RAM3 RAM4	Row11 Row12	RAM11 RAM12	Row3 Row4	RAM11 RAM12	Row3 Row4	RAM3 RAM4	Row11 Row12	RAM11 RAM12	Row3 Row4	RAM11 RAM12
COM5	Row5	RAM5	Row12 Row13	RAM13	Row5	RAM13	Row5	RAM5	Row12 Row13	RAM13	Row5	RAM13
COM6	Row6	RAM6	Row14	RAM14	Row6	RAM14	Row6	RAM6	Row14	RAM14	Row6	RAM14
COM7 COM8	Row7 Row8	RAM7 RAM8	Row15 Row16	RAM15 RAM16	Row7 Row8	RAM15 RAM16	Row7 Row8	RAM7 RAM8	Row15 Row16	RAM15 RAM16	Row7 Row8	RAM15 RAM16
COM9	Row9	RAM9	Row16 Row17	RAM17	Row9	RAM17	Row9	RAM9	Row10	RAM17	Row9	RAM17
COM10	Row10	RAM10	Row18	RAM18	Row10	RAM18	Row10	RAM10	Row18	RAM18	Row10	RAM18
COM11 COM12	Row11 Row12	RAM11 RAM12	Row19 Row20	RAM19 RAM20	Row11 Row12	RAM19 RAM20	Row11 Row12	RAM11 RAM12	Row19 Row20	RAM19 RAM20	Row11 Row12	RAM19 RAM20
COM13	Row13	RAM13	Row21	RAM21	Row13	RAM21	Row13	RAM13	Row21	RAM21	Row13	RAM21
COM14 COM15	Row14 Row15	RAM14 RAM15	Row22 Row23	RAM22 RAM23	Row14 Row15	RAM22 RAM23	Row14 Row15	RAM14 RAM15	Row22 Row23	RAM22 RAM23	Row14 Row15	RAM22 RAM23
COM15	Row16	RAM16	Row24	RAM24	Row16	RAM24	Row15 Row16	RAM16	Row24	RAM24	Row15 Row16	RAM24
COM17	Row17	RAM17	Row25	RAM25	Row17	RAM25	Row17	RAM17	Row25	RAM25	Row17	RAM25
COM18 COM19	Row18 Row19	RAM18 RAM19	Row26 Row27	RAM26 RAM27	Row18 Row19	RAM26 RAM27	Row18 Row19	RAM18 RAM19	Row26 Row27	RAM26 RAM27	Row18 Row19	RAM26 RAM27
COM20	Row20	RAM20	Row28	RAM28	Row20	RAM28	Row20	RAM20	Row28	RAM28	Row20	RAM28
COM21	Row21	RAM21	Row29	RAM29	Row21	RAM29	Row21	RAM21	Row29	RAM29	Row21	RAM29
COM22 COM23	Row22 Row23	RAM22 RAM23	Row30 Row31	RAM30 RAM31	Row22 Row23	RAM30 RAM31	Row22 Row23	RAM22 RAM23	Row30 Row31	RAM30 RAM31	Row22 Row23	RAM30 RAM31
COM24	Row24	RAM24	Row32	RAM32	Row24	RAM32	Row24	RAM24	Row32	RAM32	Row24	RAM32
COM25	Row25	RAM25	Row33	RAM33	Row25	RAM33	Row25	RAM25	Row33	RAM33	Row25	RAM33
COM26 COM27	Row26 Row27	RAM26 RAM27	Row34 Row35	RAM34 RAM35	Row26 Row27	RAM34 RAM35	Row26 Row27	RAM26 RAM27	Row34 Row35	RAM34 RAM35	Row26 Row27	RAM34 RAM35
COM28	Row28	RAM28	Row36	RAM36	Row28	RAM36	Row28	RAM28	Row36	RAM36	Row28	RAM36
COM29 COM30	Row29 Row30	RAM29 RAM30	Row37 Row38	RAM37 RAM38	Row29 Row30	RAM37 RAM38	Row29 Row30	RAM29 RAM30	Row37 Row38	RAM37 RAM38	Row29 Row30	RAM37 RAM38
COM30	Row30	RAM31	Row39	RAM39	Row31	RAM39	Row30	RAM31	Row39	RAM39	Row30	RAM39
COM32	Row32	RAM32	Row40	RAM40	Row32	RAM40	Row32	RAM32	Row40	RAM40	Row32	RAM40
COM33 COM34	Row33 Row34	RAM33 RAM34	Row41 Row42	RAM41 RAM42	Row33 Row34	RAM41 RAM42	Row33 Row34	RAM33 RAM34	Row41 Row42	RAM41 RAM42	Row33 Row34	RAM41 RAM42
COM35	Row35	RAM35	Row43	RAM43	Row35	RAM43	Row35	RAM35	Row43	RAM43	Row35	RAM43
COM36 COM37	Row36 Row37	RAM36 RAM37	Row44 Row45	RAM44 RAM45	Row36 Row37	RAM44 RAM45	Row36 Row37	RAM36 RAM37	Row44 Row45	RAM44 RAM45	Row36 Row37	RAM44 RAM45
COM38	Row38	RAM38	Row46	RAM46	Row38	RAM46	Row38	RAM38	Row46	RAM46	Row38	RAM46
COM39	Row39	RAM39	Row47	RAM47	Row39	RAM47	Row39	RAM39	Row47	RAM47	Row39	RAM47
COM40 COM41	Row40 Row41	RAM40 RAM41	Row48 Row49	RAM48 RAM49	Row40 Row41	RAM48 RAM49	Row40 Row41	RAM40 RAM41	Row48 Row49	RAM48 RAM49	Row40 Row41	RAM48 RAM49
COM42	Row42	RAM42	Row50	RAM50	Row42	RAM50	Row42	RAM42	Row50	RAM50	Row42	RAM50
COM43	Row43	RAM43	Row51	RAM51	Row43	RAM51	Row43	RAM43	Row51	RAM51	Row43	RAM51
COM44 COM45	Row44 Row45	RAM44 RAM45	Row52 Row53	RAM52 RAM53	Row44 Row45	RAM52 RAM53	Row44 Row45	RAM44 RAM45	Row52 Row53	RAM52 RAM53	Row44 Row45	RAM52 RAM53
COM46	Row46	RAM46	Row54	RAM54	Row46	RAM54	Row46	RAM46	Row54	RAM54	Row46	RAM54
COM47 COM48	Row47 Row48	RAM47 RAM48	Row55 Row56	RAM55 RAM56	Row47 Row48	RAM55 RAM56	Row47 Row48	RAM47 RAM48	Row55	RAM55	Row47 Row48	RAM55 RAM56
COM49	Row49	RAM49	Row57	RAM57	Row49	RAM57	Row49	RAM49	-	-	Row49	RAM57
COM50	Row50	RAM50	Row58	RAM58	Row50	RAM58	Row50	RAM50	-	-	Row50	RAM58
COM51 COM52	Row51 Row52	RAM51 RAM52	Row59 Row60	RAM59 RAM60	Row51 Row52	RAM59 RAM60	Row51 Row52	RAM51 RAM52	-	-	Row51 Row52	RAM59 RAM60
COM53	Row53	RAM53	Row61	RAM61	Row53	RAM61	Row53	RAM53	-	-	Row53	RAM61
COM54	Row54	RAM54	Row62	RAM62	Row54	RAM62	Row54	RAM54	-	-	Row54	RAM62
COM55 COM56	Row55 Row56	RAM55 RAM56	Row63 Row0	RAM63 RAM0	Row55 Row56	RAM63 RAM0	Row55	RAM55	Row0	RAM0	Row55	RAM63
COM57	Row57	RAM57	Row1	RAM1	Row57	RAM1	-	-	Row1	RAM1	-	-
COM58 COM59	Row58 Row59	RAM58 RAM59	Row2 Row3	RAM2 RAM3	Row58 Row59	RAM2 RAM3	-	-	Row2 Row3	RAM2 RAM3	-	-
COM59 COM60	Row60	RAM60	Row4	RAM4	Row59 Row60	RAM4]	-	Row4	RAM4] -	-
COM61	Row61	RAM61	Row5	RAM5	Row61	RAM5	-	-	Row5	RAM5	-	-
COM62 COM63	Row62 Row63	RAM62 RAM63	Row6 Row7	RAM6 RAM7	Row62 Row63	RAM6 RAM7	-	-	Row6 Row7	RAM6 RAM7	-	-
				I								
es refer	(a)	(b))	(c))	(d)		(e)		(f)	
es:	`	,	(,	(-)		(-)		(-)		(-)	
,				l		l.		l				
Г		-		4								
	4						1					
	61	DLOMON			OLOMON YSTECH			SOLOMON Systech		5	OLOMON	
		YSTECH			-						CVCTECH	
_		(a) (b)						(c)			(d)	
Γ	-	1		4	1					1	2	\neg
	S	OLOMON		Si	DLOMON							
	-	VOTEOU			YSTECH					SOLOI	MON	- [
				9	IOILOII	- 1						
		1		3	TOTEON					SYST		

SSD1331 Rev 1.2 P 43/68 Nov 2007 **Solomon Systech**

Table 14 - Example of Set Display Offset and Display Start Line with Remap

		64	4	6	4	6	64	4	tput 8	4	18	4	8	4	8	Set MUX ratio(A8h)
		1		1			1				1					COM Scan Direction Remap (A0h
Hardw a	re	0)		8008							(08			Display offset (A2h)
pin nam	_	0			080						08				6	Display start line (A1h)
COMO	_	Row 63	RAM63	Row 7	RAM7	Row 63	RAM7	Row 47	RAM47	-	-	Row 47	RAM7	-	-	
COM1	_	Row 62	RAM62	Row 6	RAM6	Row 62	RAM6	Row 46	RAM46	-	-	Row 46	RAM6	-	-	
COM2		Row 61	RAM61	Row 5 Row 4	RAM5 RAM4	Row 61	RAM5 RAM4	Row 45 Row 44	RAM45 RAM44	-	-	Row 45 Row 44	RAM5 RAM4	-	-	
COM	_	Row 59	RAM60 RAM59	Row 3	RAM3	Row 60 Row 59	RAM3	Row 43	RAM43	-	-	Row 43	RAM3	-	-	
COME	_	Row 58	RAM58	Row 2	RAM2	Row 58	RAM2	Row 42	RAM42	_	-	Row 42	RAM2	-	-	
COM		Row 57	RAM57	Row 1	RAM1	Row 57	RAM1	Row 41	RAM41	-	-	Row 41	RAM1	-	-	
COM7	_	Row 56	RAM56	Row 0	RAM0	Row 56	RAM0	Row 40	RAM40	-	-	Row 40	RAM0	-	-	
COM	_	Row 55	RAM55	Row 63	RAM63	Row 55	RAM63	Row 39	RAM39	Row 47	RAM47	Row 39	RAM47	Row 47	RAM63	
COM		Row 54	RAM54	Row 62	RAM62	Row 54	RAM62	Row 38	RAM38	Row 46	RAM46	Row 38	RAM46	Row 46	RAM62	
COM1) F	Row 53	RAM53	Row 61	RAM61	Row 53	RAM61	Row 37	RAM37	Row 45	RAM45	Row 37	RAM45	Row 45	RAM61	
COM1	1 F	Row 52	RAM52	Row 60	RAM60	Row 52	RAM60	Row 36	RAM36	Row 44	RAM44	Row 36	RAM44	Row 44	RAM60	
COM1:	2 F	Row 51	RAM51	Row 59	RAM59	Row 51	RAM59	Row 35	RAM35	Row 43	RAM43	Row 35	RAM43	Row 43	RAM59	
COM1:	3 F	Row 50	RAM50	Row 58	RAM58	Row 50	RAM58	Row 34	RAM34	Row 42	RAM42	Row 34	RAM42	Row 42	RAM58	
COM1		Row 49	RAM49	Row 57	RAM57	Row 49	RAM57	Row 33	RAM33	Row 41	RAM41	Row 33	RAM41	Row 41	RAM57	
COM1		Row 48	RAM48	Row 56	RAM56	Row 48	RAM56	Row 32	RAM32	Row 40	RAM40	Row 32	RAM40	Row 40	RAM56	
COM1	_	Row 47	RAM47	Row 55	RAM55	Row 47	RAM55	Row 31	RAM31	Row 39	RAM39	Row 31	RAM39	Row 39	RAM55	
COM1	_	Row 46	RAM46	Row 54	RAM54	Row 46	RAM54	Row 30	RAM30	Row 38	RAM38	Row 30	RAM38	Row 38	RAM54	
COM1		Row 45	RAM45	Row 53	RAM53	Row 45	RAM53	Row 29	RAM29	Row 37	RAM37	Row 29	RAM37	Row 37	RAM53	
COM1	_	Row 44	RAM44	Row 52	RAM52	Row 44	RAM52	Row 28	RAM28	Row 36	RAM36	Row 28	RAM36	Row 36	RAM52	
COM2	_	Row 43	RAM43	Row 51	RAM51	Row 43	RAM51	Row 27	RAM27	Row 35	RAM35	Row 27	RAM35	Row 35	RAM51	
COM2		Row 42	RAM42	Row 50	RAM50 RAM49	Row 42	RAM50	Row 26	RAM26	Row 34	RAM34	Row 26	RAM34	Row 34	RAM50	
COM2:	_	Row 41	RAM41	Row 49		Row 41	RAM49	Row 25	RAM25	Row 33	RAM33	Row 25	RAM33	Row 33	RAM49	
COM2:	_	Row 40 Row 39	RAM40 RAM39	Row 48 Row 47	RAM48 RAM47	Row 40 Row 39	RAM48 RAM47	Row 24 Row 23	RAM24 RAM23	Row 32 Row 31	RAM32 RAM31	Row 24 Row 23	RAM32 RAM31	Row 32 Row 31	RAM48 RAM47	
COM2		Row 39	RAM38	Row 46	RAM46	Row 39	RAM46	Row 23	RAM23	Row 31	RAM30	Row 23	RAM30	Row 31	RAM46	
COM2	_	Row 37	RAM37	Row 45	RAM45	Row 37	RAM45	Row 21	RAM21	Row 29	RAM29	Row 21	RAM29	Row 29	RAM45	
COM2	_	Row 36	RAM36	Row 44	RAM44	Row 36	RAM44	Row 20	RAM20	Row 29	RAM28	Row 20	RAM28	Row 29	RAM44	
COM2		Row 35	RAM35	Row 44	RAM43	Row 35	RAM43	Row 19	RAM19	Row 27	RAM27	Row 19	RAM27	Row 27	RAM43	
COM2	_	Row 34	RAM34	Row 42	RAM42	Row 34	RAM42	Row 18	RAM18	Row 26	RAM26	Row 18	RAM26	Row 26	RAM42	
COM3	_	Row 33	RAM33	Row 41	RAM41	Row 33	RAM41	Row 17	RAM17	Row 25	RAM25	Row 17	RAM25	Row 25	RAM41	
COM3		Row 32	RAM32	Row 40	RAM40	Row 32	RAM40	Row 16	RAM16	Row 24	RAM24	Row 16	RAM24	Row 24	RAM40	
COM3	_	Row 31	RAM31	Row 39	RAM39	Row 31	RAM39	Row 15	RAM15	Row 23	RAM23	Row 15	RAM23	Row 23	RAM39	
COM3	3 F	Row 30	RAM30	Row 38	RAM38	Row 30	RAM38	Row 14	RAM14	Row 22	RAM22	Row 14	RAM22	Row 22	RAM38	
COM3-		Row 29	RAM29	Row 37	RAM37	Row 29	RAM37	Row 13	RAM13	Row 21	RAM21	Row 13	RAM21	Row 21	RAM37	
COM3	5 F	Row 28	RAM28	Row 36	RAM36	Row 28	RAM36	Row 12	RAM12	Row 20	RAM20	Row 12	RAM20	Row 20	RAM36	
COM3	3 F	Row 27	RAM27	Row 35	RAM35	Row 27	RAM35	Row 11	RAM11	Row 19	RAM19	Row 11	RAM19	Row 19	RAM35	
COM3	7 F	Row 26	RAM26	Row 34	RAM34	Row 26	RAM34	Row 10	RAM10	Row 18	RAM18	Row 10	RAM18	Row 18	RAM34	
COM3	3 F	Row 25	RAM25	Row 33	RAM33	Row 25	RAM33	Row 9	RAM9	Row 17	RAM17	Row 9	RAM17	Row 17	RAM33	
COM3) F	Row 24	RAM24	Row 32	RAM32	Row 24	RAM32	Row 8	RAM8	Row 16	RAM16	Row 8	RAM16	Row 16	RAM32	
COM4) F	Row 23	RAM23	Row 31	RAM31	Row 23	RAM31	Row 7	RAM7	Row 15	RAM15	Row 7	RAM15	Row 15	RAM31	
COM4		Row 22	RAM22	Row 30	RAM30	Row 22	RAM30	Row 6	RAM6	Row 14	RAM14	Row 6	RAM14	Row 14	RAM30	
COM4:	_	Row 21	RAM21	Row 29	RAM29	Row 21	RAM29	Row 5	RAM5	Row 13	RAM13	Row 5	RAM13	Row 13	RAM29	
COM4:	_	Row 20	RAM20	Row 28	RAM28	Row 20	RAM28	Row 4	RAM4	Row 12	RAM12	Row 4	RAM12	Row 12	RAM28	
COM4		Row 19	RAM19	Row 27	RAM27	Row 19	RAM27	Row 3	RAM3	Row 11	RAM11	Row 3	RAM11	Row 11	RAM27	
COM4	_	Row 18	RAM18	Row 26	RAM26	Row 18	RAM26	Row 2	RAM2	Row 10	RAM10	Row 2	RAM10	Row 10	RAM26	
COM4	_	Row 17	RAM17	Row 25	RAM25	Row 17	RAM25	Row 1	RAM1	Row 9	RAM9	Row 1	RAM9	Row 9	RAM25	
COM4		Row 16 Row 15	RAM16 RAM15	Row 24 Row 23	RAM24 RAM23	Row 16 Row 15	RAM24 RAM23	Row 0	RAM0	Row 8 Row 7	RAM8 RAM7	Row 0	RAM8	Row 8 Row 7	RAM24 RAM23	
COM4		Row 14	RAM14	Row 22	RAM22	Row 14	RAM22	-	-	Row 6	RAM6	-		Row 6	RAM22	
COM5		Row 13	RAM13	Row 21	RAM21	Row 13	RAM21	-	-	Row 5	RAM5	-	-	Row 5	RAM21	
COM5		Row 12	RAM12	Row 20	RAM20	Row 12	RAM20	-	-	Row 4	RAM4	-	-	Row 4	RAM20	
COM5	_	Row 11	RAM11	Row 19	RAM19	Row 11	RAM19	-	_	Row 3	RAM3	_	-	Row 3	RAM19	
COM5		Row 10	RAM10	Row 18	RAM18	Row 10	RAM18	-	-	Row 2	RAM2	-	-	Row 2	RAM18	
COM5		Row 9	RAM9	Row 17	RAM17	Row 9	RAM17	-	-	Row 1	RAM1	-	-	Row 1	RAM17	
COM5		Row 8	RAM8	Row 16	RAM16	Row 8	RAM16	-	-	Row 0	RAM0	-	-	Row 0	RAM16	
COM5		Row 7	RAM7	Row 15	RAM15	Row 7	RAM15	-	-	-	-	-	-	-	-	
COM5		Row 6	RAM6	Row 14	RAM14	Row 6	RAM14	-	-	-	-	-	-	-	-	
COM5	3 [Row 5	RAM5	Row 13	RAM13	Row 5	RAM13	-	-	-	-	-	-	-	-	
COM5		Row 4	RAM4	Row 12	RAM12	Row 4	RAM12	-	-	-	-	-	-	-	-	
COM6		Row 3	RAM3	Row 11	RAM11	Row 3	RAM11	-	-	-	-	-	-	-	-	
COM6		Row 2	RAM2	Row 10	RAM10	Row 2	RAM10	-	-	-	-	-	-	-	-	
COM6:		Row 1	RAM1	Row 9	RAM9	Row 1	RAM9	-	-	-	-	-	-	-	-	
COM6	3 F	Row 0	RAM0	Row 8	RAM8	Row 0	RAM8	-	-	-		-	-	-	-	
				1				1		1				1		_
													_			
es refe	r	(8	a)	(l	o)	(0	c)	(d)	(e)	(1	f)	(g)	
es:		•		`		,		1 `		1		`		`		
	亡			-										NOMO		
			KSTECH			7				_					.50	
			ОГОМОИ			ш	SYSTEC			ноя	ILSAS					
						NI N	SOLOMO			NUN	SYSTI					
				7		NI				.101	-5.03			-		
			(a)				(b)			(c)			(d)		
							_			,,	- /			(u)		
		IVI	OMO IOS	,		NU	MA IA9				TSYS				1	
	1					4										
							NOWOTOS				6017					
															SOL	OMON I
										_4						OMON STECH
		•	(e)				(f)			(9						STECH

 Solomon Systech
 Nov 2007
 P 44/68
 Rev 1.2
 SSD1331

9.1.9 Set Display Mode (A4h ~ A7h)

These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.

- Normal Display (A4h)
 - Reset the above effect and turn the data to ON at the corresponding gray level.
- Set Entire Display ON (A5h)
 - Forces the entire display to be at "GS63" regardless of the contents of the display data RAM.
- Set Entire Display OFF (A6h)
 - Forces the entire display to be at gray level "GS0" regardless of the contents of the display data RAM.
- Inverse Display (A7h)
 - The gray level of display data are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62",

9.1.10 Set Multiplex Ratio (A8h)

This command switches default 1:64 multiplex mode to any multiplex mode from 16 to 64. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h.

9.1.11 Dim mode setting (ABh)

This command contains multiple bits to configure the dim mode display parameters. Contrast setting of color A, B, C and precharge voltage can be set different to normal mode (AFh).

9.1.12 Set Master Configuration (ADh)

This command selects the external V_{CC} power supply. External V_{CC} power should be connected to the V_{CC} pin. A[0] bit must be set to 0b after RESET.

This command will be activated after issuing Set Display ON command (AFh)

9.1.13 Set Display ON/OFF (ACh / AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those ci rcuits will be turned OFF and the segment and common output are in high impedance state.

These commands set the display to one of the three states:

- o ACh: Dim Mode Display ON
- o AEh: Display OFF (sleep mode)
- AFh : Normal Brightness Display ON

where the dim mode settings are controlled by command ABh.

SSD1331 | Rev 1.2 | P 45/68 | Nov 2007 | Solomon Systech

9.1.14 Power Save Mode (B0h)

This command is used in enabling or disabling the power save mode.

9.1.15 Phase 1 and 2 Period Adjustment (B1h)

This command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 1 to 15 in the unit of DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 1 to 15 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_P for color A, B and C.

9.1.16 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h)

This command consists of two functions:

- Display Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to section 7.3.1 for the details relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings available as shown below. The default setting is 1101b

Figure 28 - Typical Oscillator frequency adjustment by B3 command (V_{DD} =2.7V)

Note

(1) There is 10% tolerance in the frequency values

9.1.17 Set Gray Scale Table (B8h)

This command is used to set the gray scale table for the display. Except gray scale entry 0, which is zero as it has no pre-charge and current drive, each odd entry gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter is the OLED pixel when it's turned ON. Please refer to section 7.6 for more detailed explanation of relation of display data RAM, gray scale table and the pixel brightness.

Following the command B8h, the user has to set the pulse width for GS1, GS3, GS5, ..., GS59, GS61, and GS63 one by one in sequence and complies the following conditions.

Afterwards, the driver automatically derives the pulse width of even entry of gray scale table GS2, GS4, ..., GS62 with the formula like below.

$$GSn = (GSn-1 + GSn+1)/2$$

For example, if GS1 = 3 DCLKs and GS3 = 7 DCLKs, GS2 = (3+7)/2 = 5 DCLKs

The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display

Solomon Systech Nov 2007 | P 46/68 | Rev 1.2 | **SSD1331**

data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table setting like example below can compensate this effect.

Figure 29 - Example of gamma correction by gray scale table setting

9.1.18 Enable Linear Gray Scale Table (B9h)

This command reloads the preset linear gray scale table as GS1 = 1, GS2 = 3, GS3 = 5, ..., GS62 = 123, GS63 = 125 DCLKs.

9.1.19 Set Pre-charge voltage (BBh)

This comma nd sets the pre -charge voltage le vel of segme nt pins. The le vel of $V_{\rm P}$ is programmed with reference to $V_{\rm CC}$. Figure 30 shows the details of setting Pre-charge voltage level by command BBh A[5:1].

Figure 30 - Typical Pre-charge voltage level setting by command BBh.

Note

9.1.20 Set V_{COMH} Voltage (BEh)

This command sets the high voltage level of common pins. The level of V_{COMH} is programmed with reference to V_{CC} .

9.1.21 NOP (BCh, BDh, E3h)

These are command for no operation.

9.1.22 Set Command Lock (FDh)

This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.

SSD1331 | Rev 1.2 | P 47/68 | Nov 2007 | **Solomon Systech**

 $^{^{(}l)}$ V_P ratio = 0.1 refers to V_P voltage = 0.1 x V_{CC.}

9.2 GRAPHIC ACCELERATION COMMAND SET DESCRIPTION

9.2.1 Dra w Line (21h)

This command draws a line by the given start, end column and row coordinates and the color of the line.

Figure 31 - Example of Draw Line Command

For example, the line above can be drawn by the following command sequence.

- 1. Enter into draw line mode by command 21h
- 2. Send column start address of line, column1, for example = 1h
- 3. Send row start address of line, row 1, for example = 10h
- 4. Send column end address of line, column 2, for example = 28h
- 5. Send row end address of line, row 2, for example = 4h
- 6. Send color C, B and A of line, for example = 35d, 0d, 0d for blue color

9.2.2 Draw Rectangle (22h)

Given the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2), specify the outline and fill area colors, a rectangle that will be drawn with the color specified. Remarks: If fill color option is disabled, the enclosed area will not be filled.

Figure 32 - Example of Draw Rectangle Command

The following example illustrates the rectangle drawing command sequence.

- 1. Enter the "draw rectangle mode" by execute the command 22h
- 2. Set the starting column coordinates, Column 1. e.g., 03h.
- 3. Set the starting row coordinates, Row 1. e.g., 02h.
- 4. Set the finishing column coordinates, Column 2. e.g., 12h
- 5. Set the finishing row coordinates, Row 2. e.g., 15h
- 6. Set the outline color C, B and A. e.g., (28d, 0d, 0d) for blue color
- 7. Set the filled color C, B and A. e.g., (0d, 0d, 40d) for red color

Solomon Systech | Nov 2007 | P 48/68 | Rev 1.2 | SSD1331

9.2.3 Cop y (23h)

Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new image will overlap the original one.

The following example illustrates the copy procedure.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1. E.g., 00h.
- 3. Set the starting row coordinates, Row 1. E.g., 00h.
- 4. Set the finishing column coordinates, Column 2. E.g., 05h
- 5. Set the finishing row coordinates, Row 2. E.g., 05h
- 6. Set the new column coordinates, Column 3. E.g., 03h
- 7. Set the new row coordinates, Row 3. E.g., 03h

Figure 33 - Example of Copy Command

9.2.4 Dim Window (24h)

This command will dim the window are a specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2). After the execution of this command, the selected window are a will become darker as follow.

Table 15 - Result of Change of Brightness by Dim Window Command

Original gray scale	New gray scale after dim window command
GS0 ~ GS15	No change
GS16 ~ GS19	GS4
GS20 ~ GS23	GS5
:	:
GS60 ~ GS63	GS15

Additional execution of this command over the same window area will not change the data content.

SSD1331 | Rev 1.2 | P 49/68 | Nov 2007 | Solomon Systech

9.2.5 Clear Window (25h)

This command sets the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to clear the win dow display. The graphic display data RAM content of the specified window area will be set to zero.

This command can be combined with Copy command to make as a "m ove" result. The fo llowing example illustrates the copy plus clear procedure and results in moving the window object.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1. E.g., 00h.
- 3. Set the starting row coordinates, Row 1. E.g., 00h.
- 4. Set the finishing column coordinates, Column 2. E.g., 05h
- 5. Set the finishing row coordinates, Row 2. E.g., 05h
- 6. Set the new column coordinates, Column 3. E.g., 06h
- 7. Set the new row coordinates, Row 3. E.g., 06h
- 8. Enter the "clear mode" by execute the command 25h
- 9. Set the starting column coordinates, Column 1. E.g., 00h.
- 10. Set the starting row coordinates, Row 1. E.g., 00h.
- 11. Set the finishing column coordinates, Column 2. E.g., 05h
- 12. Set the finishing row coordinates, Row 2. E.g., 05h

Figure 34 - Example of Copy + Clear = Move Command

9.2.6 Fill Enable/Disable (26h)

This command has two functions.

- Enable/Disable fill (A[0])
 - 0 = Disable filling of color into rectangle in draw rectangle command. (RESET)
 - 1 = Enable filling of color into rectangle in draw rectangle command.
- Enable/Disable reverse copy (A[4])
 - 0 = Disable reverse copy (RESET)
 - 1 = During copy command, the new image colors are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62", \dots

Solomon Systech | Nov 2007 | P 50/68 | Rev 1.2 | SSD1331

9.2.7 Continuous Horizontal & Vertical Scrolling Setup (27h)

This command setup the parameters required for horizontal and vertical scrolling. The parameters should not be changed after scrolling is activated

Figure 35 - Examples of Continuous Horizontal and Vertical Scrolling command setup

9.2.8 Deactivate scrolling (2Eh)

This command deactivates the scrolling action. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.

9.2.9 Activate scrolling (2Fh)

This command activates the scrolling function according to the setting done by Continuous Horizontal & Vertical Scrolling Setup command 27h.

SSD1331 | Rev 1.2 | P 51/68 | Nov 2007 | Solomon Systech

10 MAXIMUM RATINGS

Table 16 - Maximum Ratings

(Voltage Reference to V_{SS})

Symbol Para	meter	Value	Unit
V_{DD}		-0.3 to +4	V
V_{DDIO}	Supply Voltage	-0.3 to V _{DD} +0.5	V
V_{CC}		0 to 19.0	V
V_{SEG}	SEG output voltage	0 to V _{CC} V	
V_{COM}	COM output voltage	0 to 0.9* V _{CC}	V
V _{in} Input	voltage	V_{SS} -0.3 to V_{DD} +0.3	V
T_A	Operating Temperature	-40 to +85	°C
T_{stg}	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

 Solomon Systech
 Nov 2007
 P 52/68
 Rev 1.2
 SSD1331

^{*}This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 DC CHARACTERISTICS

Table 17 - DC Characteristics

Conditions (unless specified):

Voltage referenced to V_{SS} V_{DD} = 2.7, V_{DDIO} = 1.8V, V_{CC} = 11.0V, I_{REF} = 10uA, at T_A = 25°C.

	Parameter	Test Condition	Min	Тур	Max	Unit
V _{CC} Op		-	8	11	18	V
V_{DD} Lo	gi c Supply Voltage	-	2.4	2.7	3.5	V
V_{DDIO}	Power Supply for I/O pins	-	1.6	1.8	$V_{DD} V$	
V _{OH}	High Logic Output Level	I _{OUT} = 100uA, 3.3MHz	$0.9 \times V_{DDIO}$		$V_{DDIO} V$	
V _{OL}	Low Logic Output Level	I _{OUT} = 100uA, 3.3MHz	0	-	$0.1 \times V_{DDIO}$	V
V _{IH}	High Logic Input Level	-	$0.8 \times V_{DDIO}$		$V_{DDIO} V$	
V_{IL}	Low Logic Input Level	-	0	-	$0.2 \times V_{DDIO}$	V
I _{DD_SLEEP}	Sleep mode V _{DD} Current	Display OFF, No panel attached	-	0	10	uA
I _{DDIO} SLEEP	Sleep mode V _{DDIO} Current	Display OFF, No panel attached	-	0	10	uA
I _{CC_SLEEP}	Sleep mode V _{CC} Current	Display OFF, No panel attached	-	0	10	uA
I _{CC}	V _{CC} Supply Current	Display ON, All 1's pattern, Contrast = FFh, No panel attached	- 790		1200	uA
I _{DD}	V _{DD} Supply Current	Display ON, All 1's pattern, Contrast = FFh, No panel attached	- 170		500	uA
	Segment Output Current: $V_{DD} = V_{DDIO} = 2.7V$,	Contrast = FFh	126	140	154	uA
I _{SEG}	V _{CC} = 8V, Display ON, All 1's	Contrast = 7Fh	-	68	-	uA
SEG	pattern. (Segment pin under test is connected with a 20K Ω resistive load to V_{SS})	Contrast = 3Fh	-	33	-	uA
Dev	Segment Output Current Uniformity: Dev = $(I_{SEG} - I_{MID}) / I_{MID}$ $I_{MID} = (I_{MAX} + I_{MIN}) / 2$ I_{SEG} [0:287] = Segment current at contrast settings V_{CC} =12V	Contrast = FFh	-3	-	+3	%
Adj. Dev	Adjacent pin output current uniformity: Adj Dev = (I[n] - I[n+1]) / (I[n]+I[n+1])	Contrast = FFh	-2	-	+2	%
R _{COM_ON}	COM pin output resistance	COM[0:63], I = 20mA	-	25	30	Ω

Rev 1.2 P 53/68 Nov 2007 SSD1331 **Solomon Systech**

12 AC CHARACTERISTICS

Table 18 - AC Characteristics

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} $V_{DD} = V_{DDIO} = 2.4V$ to 3.5V $V_{CC} = 8.0V$ to 18.0V $T_A = 25^{\circ}C$

Symbol Pa	ar ameter	Test Condition	Min	Тур	Max	Unit
F _{osc}	Oscillation Frequency of Display Timing Generator	$V_{DD} = 2.7V, V_{CC} = 11.0V$	800	890	980	KHz
F _{FRM}	Frame Frequency	Display ON, Internal Oscillator Enabled	- F	_{OSC} x 1 / (D x K x N)	-	Hz
RES#	Reset low pulse width	-	3	-	-	us
IXLO#	Reset completion time	-	-	-	2	us

Nov 2007 | P 54/68 | Rev 1.2 SSD1331 Solomon Systech

Note

(1) Fosc stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4]=1101b [default value]
(2) D stands for divide ratio

⁽³⁾ K stands for total number of display clocks per row. (RESET=136, i.e. phase1 DCLK+phase2 DCLK+ phase3 DCLK =4+7+125)

⁽⁴⁾ N stands for number of MUX selected by command A8h

Table 19 - 6800-Series MPU Parallel Interface Timing Characteristics

(V_{DD} - V_{SS} = 2.4V to 3.5V, V_{DDIO} = 2.4V to V_{DD}, T_A = 25°C)

Symbol F	ara meter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	130	-	-	ns
PW _{CSL}	Control Pulse Low Width (write cycle)	60	-	-	ns
PW _{CSH}	Control Pulse High Width (write cycle)	60	-	ı	ns
t _{cycle}	Clock Cycle Time (read cycle)	200	-	ı	ns
PW _{CSL}	Control Pulse Low Width (read cycle)	100	-		ns
PW _{CSH}	Control Pulse High Width (read cycle)	100	-	-	ns
t _{AS} Add	ress Setup Time	0	-	-	ns
t _{AH} Add	ress Hold Time	10	-	-	ns
t _{DSW}	Data Setup Time	40	-	1	ns
t_{DHW}	Data Hold Time	10	-		ns
t _{ACC}	Data Access Time	-	-	140	ns
t _{OH}	Output Hold time	-	-	70	ns
t _R Ri	se Time	-	-	15	ns
t _F Fal	l Time	-	-	15	ns

Figure 36 - 6800-series parallel interface characteristics

SSD1331 Rev 1.2 P 55/68 Nov 2007 **Solomon Systech**

 $(V_{DD} - V_{SS} = 2.4 \text{V to } 3.5 \text{V}, V_{DDIO} = 2.4 \text{V to } V_{DD}, T_A = 25 ^{\circ}\text{C})$

Symbol F	Para meter	Min	Тур	Max	Unit
t_{cycle}	Clock Cycle Time	130	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	1	ns
t_{DHW}	Write Data Hold Time	10	-	ı	ns
t_{DHR}	Read Data Hold Time	20	-	ı	ns
t _{OH} O	utput Disable Time	-	-	70	ns
t _{ACC} Access	Time	-	-	140	ns
t _{PWLR} Read	Low Time	150	-	ı	ns
t _{PWLW}	Write Low Time	60	-	ı	ns
t _{PWHR}	Read High Time	60	-	ı	ns
t _{PWHW}	Write High Time	60	-	-	ns
t _R Ri	se Time			15	ns
t _F Fal	l Time			15	ns
t _{cs}	Chip select setup time	0	-	ı	ns
t _{CSH}	Chip select hold time to read signal	0	-	ı	ns
t _{CSF}	Chip select hold time	20	-	-	ns

Figure 37 - 8080-series parallel interface characteristics (Form 1)

Figure 38 - 8080-series parallel interface characteristics (Form 2)

 Solomon Systech
 Nov 2007
 P 56/68
 Rev 1.2
 SSD1331

Table 21 - Serial Interface Timing Characteristics

(V_{DD} - V_{SS} = 2.4V to 3.5V, V_{DDIO} = 2.4V to V_{DD}, T_A = 25°C)

Symbol F	ara meter	Min	Тур	Max	Unit
$t_{ m cycle}$	Clock Cycle Time	150	-	ı	ns
t _{AS}	Address Setup Time	40	-	ı	ns
t _{AH}	Address Hold Time	40	-	-	ns
t _{css}	Chip Select Setup Time	75	-	-	ns
t _{CSH}	Chip Select Hold Time	60	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	40	-	-	ns
t _{CLKL}	Clock Low Time	75	-	-	ns
t _{CLKH}	Clock High Time	75	-	•	ns
t _R	Rise Time			15	ns
t _F Fal	l Time			15	ns

Figure 39 - Serial interface characteristics

SSD1331 Rev 1.2 P 57/68 Nov 2007 **Solomon Systech**

13 APPLICATION EXAMPLE

Figure 40 - Application Example for SSD1331U1R1

 Solomon Systech
 Nov 2007
 P 58/68
 Rev 1.2
 SSD1331

14 PACKAGE OPTIONS

14.1 SSD1331Z Die Tray Information

Figure 41 - Die Tray Information

□68.50±0.1

SECTION A-A

S	рес	
	mm (mil)	
W1	76.00 ± 0.10	(2992)
W2	68.00 ± 0.10	(2677)
Н	4.20± 0.10	(165)
Dx	13.66±0.10 (53	8)
TPx	48.78±0.10 (19	20)
Dy	7.55±0.10 (29	7)
ТРу	61.00±0.10 (24	02)
Px	16.26 ± 0.05	(640)
Ру	3.05 ± 0.05	(120)
X	13.25 ± 0.01	(522)
Υ	1.73 ± 0.01	(68)
Ζ	0.62 ± 0.05	(24)
N	84 (Pocket number)	

SSD1331 Rev 1.2 P 59/68 Nov 2007 **Solomon Systech**

14.2 SSD1331U1R1 COF PACKAGE DIMENSIONS

Figure 42 - SSD1331U1R1 outline drawing

NOTE:

1. GENERAL TOLERANCE: ±0.05mm

2. MATERIAL PI: 38±4um CU: 8±2um

SR: 15±10um

(OTHER TOLERANCE: ±0.200mm)

3. SN PLATING: 0.23±0.05um 4. TAPSITE: 5 SPH, 23.75mm COPPER KAPTON

UN-WINDING DIRECTION

MAX 1.2mm

COPPER

KAPTON

MIRROR DESIGN

Solomon Systech Nov 2007 | P 60/68 | Rev 1.2 | **SSD1331**

DETAIL A (3:1)

SSD1331 Rev 1.2 P 61/68 Nov 2007 **Solomon Systech**

14.3 SSD1331U1R1 COF PACKAGE PIN ASSIGNMENT

Figure 43 - SSD1331U1R1 pin assignment drawing

Solomon Systech Nov 2007 | P 62/68 | Rev 1.2 | **SSD1331**

Table 22 - SSD1331U1R1 pin assignment

Pin no.	Pin name	Pin no.	Pin name	ГР	in no.	Pin name	1	Pin no.	Pin name	Pi	n no.	Pin name
1	NC	81	SA93	H	161	SB66	1	241	SC39		321	SA13
2	VCC	82	SC92		162	SA66	1	242	SB39		322	SC12
3	VCOMH	83	SB92		163	SC65	1	243	SA39		323	SB12
4	NC	84	SA92		164	SB65	1	244	SC38		324	SA12
5	D7	85	SC91		165	SA65		245	SB38		325	SC11
6	D6	86	SB91		166	SC64		246	SA38		326	SB11
7	D5	87	SA91		167	SB64	ł	247	SC37		327	SA11
8	D4	88	SC90		168	SA64		248	SB37		328	SC10
9	D3	89	SB90		169	SC63		249	SA37		329	SB10
10	D2	90	SA90	-	170	SB63	ł	250	SC36		330	SA10
11	D1	91	SC89	-	171	SA63		251	SB36		331	SC9
12	D0	92	SB89	-	172	SC62		252	SA36		332	SB9
13	E	93	SA89	-	173	SB62		253	SC35		333	SA9
14	R/W#	94	SC88	-	174	SA62	l	254	SB35		334	SC8
15	D/C#	95	SB88	-	175	SC61		255	SA35		335	SB8
16		96		_				256				
	RES#	97	SA88	<u> </u>	176	SB61			SC34		336	SA8
17	CS#		SC87	<u> </u>	177	SA61		257	SB34		337	SC7
18	IREF	98	SB87		178	SC60	ı	258	SA34		338	SB7
19	BS2	99	SA87		179	SB60		259	SC33		339	SA7
20	BS1	100	SC86		180	SA60		260	SB33		340	SC6
21	VDD	101	SB86	<u> </u>	181	SC59	ı	261	SA33		341	SB6
22	NC	102	SA86	<u> </u>	182	SB59	ı	262	SC32		342	SA6
23	NC	103	SC85	<u> </u>	183	SA59	ı	263	SB32		343	SC5
24	NC	104	SB85	<u> </u>	184	SC58		264	SA32		344	SB5
25	VBREF	105	SA85		185	SB58		265	SC31		345	SA5
26	NC	106	SC84		186	SA58		266	SB31		346	SC4
27	FB	107	SB84		187	SC57		267	SA31		347	SB4
28	VDDB	108	SA84		188	SB57		268	SC30		348	SA4
29	GDR	109	SC83		189	SA57		269	SB30		349	SC3
30	VSS	110	SB83		190	SC56		270	SA30		350	SB3
31	NC	111	SA83		191	SB56		271	SC29		351	SA3
32	NC	112	SC82		192	SA56		272	SB29	- ;	352	SC2
33	NC	113	SB82		193	SC55		273	SA29	- ;	353	SB2
34	NC	114	SA82		194	SB55	1	274	SC28	- ;	354	SA2
35	COM63	115	SC81		195	SA55	1	275	SB28		355	SC1
36	COM61	116	SB81		196	SC54	1	276	SA28		356	SB1
37	COM59	117	SA81		197	SB54	1	277	SC27		357	SA1
38	COM57	118	SC80		198	SA54	1	278	SB27		358	SC0
39	COM55	119	SB80		199	SC53	1	279	SA27		359	SB0
40	COM53	120	SA80		200	SB53	1	280	SC26		360	SA0
41	COM51	121	SC79		201	SA53	1	281	SB26		361	NC
42	COM49	122	SB79		202	SC52	1	282	SA26		362	NC
43	COM47	123	SA79		203	SB52	1	283	SC25		363	NC
44	COM45	124	SC78		204	SA52	1	284	SB25		364	NC
45	COM43	125	SB78		205	SC51	1	285	SA25		365	NC
46	COM41	126	SA78		206	SB51	1	286	SC24		366	NC
47	COM39	127	SC77		207	SA51	1	287	SB24		367	COM0
48	COM37	128	SB77		208	SC50	ł	288	SA24		368	COM2
49	COM35	129	SA77	-	209	SB50	1	289	SC23		369	COM4
50	COM33	130	SC76		210	SA50		290	SB23		370	COM6
51	COM31	131	SB76		211	SC49	1	291	SA23		371	COM8
52	COM29	132	SA76	-	212	SB49		292	SC22		372	COM10
53	COM27	133	SC75	- ⊢	213	SA49	ı	293	SB22		373	COM10
54	COM25	134	SB75		214	SC48		293	SA22		374	COM12 COM14
55	COM23	135	SA75		215	SB48	ı	295	SC21		375	COM14 COM16
56	COM21	136	SC74		216	SA48			SB21		376	
57	COM21	137	SB74		217	SC47	ı	296 297	SA21		377	COM18 COM20
58	COM19 COM17	138	SA74		218	SB47		297	SC20		378	COM22
59	COM17 COM15	139	SC73		219	SA47		290	SB20		379	COM24
60	COM15 COM13	140	SB73		220	SC46	ı	300	SB20 SA20		379 380	COM24 COM26
61	COM13 COM11				221	SB46		300	SAZU SC19		881	COM28
		141	SA73				ı					
62	COM9	142	SC72		222	SA46		302	SB19		382	COM30
63	COM7	143	SB72		223	SC45		303	SA19		383	COM32
64	COM5	144	SA72	-	224	SB45		304	SC18		384	COM34
65	COM3	145	SC71	<u> </u>	225	SA45		305	SB18		385	COM36
66	COM1	146	SB71		226	SC44	ı l	306	SA18		386	COM38
67	NC	147	SA71		227	SB44	Į į	307	SC17		387	COM40
68	NC	148	SC70		228	SA44		308	SB17		388	COM42
69	NC	149	SB70		229	SC43	ı	309	SA17		389	COM44
70 7 1	NC	150	SA70		230	SB43	ı	310	SC16		390	COM46
71	NC	151	SC69		231	SA43		311	SB16		391	COM48
72	NC	152	SB69		232	SC42		312	SA16		392	COM50
73	SC95	153	SA69		233	SB42		313	SC15		393	COM52
74	SB95	154	SC68		234	SA42		314	SB15		394	COM54
75	SA95	155	SB68		235	SC41		315	SA15		395	COM56
76	SC94	156	SA68		236	SB41	1	316	SC14		396	COM58
77	SB94	157	SC67		237	SA41	1	317	SB14		397	COM60
78	SA94	158	SB67		238	SC40	1	318	SA14		398	COM62
79	SC93	159	SA67		239	SB40	1	319	SC13		399	NC
80	SB93	160	SC66		240	SA40	1	320	SB13		100	NC
								-	-			

Pin no. 401 Pin name NC

SSD1331 Rev 1.2 P 63/68 Nov 2007 **Solomon Systech**

14.4 SSD1331U3R1 COF PACKAGE DIMENSIONS

Figure 44 - SSD1331U3R1 outline drawing

NOTE:

1. GENERAL TOLERANCE: ±0.05mm

2. MATERIAL

PI: KAPTON (150EN) 38±4um

CU: 8±2um

SR: SN9000 15±10um

(DTHER TOLERANCE: ±0,200mm)

3. SN PLATING: 0.23±0.05um

4. TAPSITE: 4 SPH, 19.00mm

Solomon Systech | Nov 2007 | P 64/68 | Rev 1.2 | SSD1331

SSD1331 Rev 1.2 P 65/68 Nov 2007 **Solomon Systech**

14.5 SSD1331U3R1 COF PACKAGE PIN ASSIGNMENT

Figure 45 - SSD1331U3R1 pin assignment drawing

Solomon Systech Nov 2007 | P 66/68 | Rev 1.2 | **SSD1331**

Table 23 - SSD1331U3R1 pin assignment

Pin no.	Pin name	Pin no.	Pin name	ſ	Pin no.	Pin name	1	Pin no.	Pin name	1	Pin no.	Pin name
1	NC	81	SA93		161	SB66		241	SC39	1	321	SA13
2	VCC	82	SC92		162	SA66]	242	SB39]	322	SC12
3	VCOMH	83	SB92		163	SC65		243	SA39		323	SB12
4	NC	84	SA92		164	SB65]	244	SC38		324	SA12
5	D7	85	SC91		165	SA65		245	SB38		325	SC11
6	D6	86	SB91	l.	166	SC64	4	246	SA38		326	SB11
7	D5	87	SA91		167	SB64		247	SC37		327	SA11
8	D4	88	SC90		168	SA64		248	SB37		328	SC10
9	D3	89	SB90		169	SC63	-	249	SA37		329	SB10
10 11	D2 D1	90 91	SA90 SC89	ı	170 171	SB63 SA63	-	250 251	SC36 SB36	ł	330 331	SA10 SC9
12	DI D0	92	SB89	ŀ	171	SC62	-	252	SA36	4	332	SB9
13	E/RD#	93	SA89	ŀ	173	SB62	-	253	SC35	•	333	SA9
14	R/W#	94	SC88	ŀ	174	SA62	-	254	SB35	1	334	SC8
15	D/C#	95	SB88	-	175	SC61	1	255	SA35	-	335	SB8
16	RES#	96	SA88	ŀ	176	SB61	1	256	SC34	1	336	SA8
17	CS#	97	SC87	ŀ	177	SA61	1	257	SB34	1	337	SC7
18	FR	98	SB87		178	SC60	1	258	SA34		338	SB7
19	IREF	99	SA87	ľ	179	SB60	1	259	SC33	1	339	SA7
20	BS2	100	SC86		180	SA60	1	260	SB33	1	340	SC6
21	BS1	101	SB86		181	SC59	1	261	SA33		341	SB6
22	VDDIO	102	SA86		182	SB59		262	SC32	1	342	SA6
23	VDD	103	SC85		183	SA59		263	SB32]	343	SC5
24	VCIR	104	SB85		184	SC58	1	264	SA32]	344	SB5
25	VBREF	105	SA85		185	SB58		265	SC31]	345	SA5
26	NC	106	SC84		186	SA58	_	266	SB31		346	SC4
27	FB	107	SB84		187	SC57	4	267	SA31	Į.	347	SB4
28	VDDB	108	SA84		188	SB57	4	268	SC30	l	348	SA4
29 30	GDR	109	SC83 SB83	ļ	189 190	SA57	4	269 270	SB30 SA30	ł	349 350	SC3 SB3
31	VSS NC	110		-	190	SC56	-	270	SC29	-		
32	NC NC	111 112	SA83 SC82	ŀ	191	SB56 SA56	-	271	SC29 SB29	-	351 352	SA3 SC2
33	NC NC	113	SB82	ŀ	192	SC55	-	273	SA29	•	353	SB2
34	NC NC	114	SA82	ŀ	194	SB55	-	274	SC28	1	354	SA2
35	COM63	115	SC81	ŀ	195	SA55	-	275	SB28	1	355	SC1
36	COM61	116	SB81	ŀ	196	SC54	1	276	SA28	1	356	SB1
37	COM59	117	SA81	ŀ	197	SB54	1	277	SC27	1	357	SA1
38	COM57	118	SC80	-	198	SA54	1	278	SB27	1	358	SC0
39	COM55	119	SB80	ľ	199	SC53	1	279	SA27	1	359	SB0
40	COM53	120	SA80	ľ	200	SB53	1	280	SC26	1	360	SA0
41	COM51	121	SC79		201	SA53	1	281	SB26	1	361	NC
42	COM49	122	SB79		202	SC52	1	282	SA26	1	362	NC
43	COM47	123	SA79	ľ	203	SB52	1	283	SC25	1	363	NC
44	COM45	124	SC78		204	SA52		284	SB25		364	NC
45	COM43	125	SB78		205	SC51		285	SA25		365	NC
46	COM41	126	SA78		206	SB51		286	SC24]	366	NC
47	COM39	127	SC77		207	SA51		287	SB24		367	COM0
48	COM37	128	SB77		208	SC50	_	288	SA24		368	COM2
49	COM35	129	SA77		209	SB50	_	289	SC23		369	COM4
50	COM33	130	SC76		210	SA50		290	SB23	4	370	COM6
51	COM31	131	SB76	-	211	SC49	-	291	SA23		371	COM8
52 53	COM29 COM27	132 133	SA76 SC75	ŀ	212 213	SB49 SA49	-1	292 293	SC22 SB22	ł	372 373	COM10 COM12
53 54	COM25	134	SB75		214	SA49 SC48	1	293	SB22 SA22	ł	373	COM12 COM14
54 55	COM25	135	SB75 SA75		214	SC48 SB48	-	294 295	SA22 SC21	ł	374	COM14 COM16
56	COM21	136	SC74	ŀ	216	SA48	1	296	SB21	ł	376	COM18
57	COM19	137	SB74	 	217	SC47	1	297	SA21	1	377	COM20
58	COM17	138	SA74	 	218	SB47	1	298	SC20	1	378	COM22
59	COM15	139	SC73		219	SA47	1	299	SB20	1	379	COM24
60	COM13	140	SB73	 	220	SC46	1	300	SA20	1	380	COM26
61	COM11	141	SA73		221	SB46	1	301	SC19	1	381	COM28
62	COM9	142	SC72		222	SA46	1	302	SB19	1	382	COM30
63	COM7	143	SB72		223	SC45	1	303	SA19	1	383	COM32
64	COM5	144	SA72		224	SB45	1	304	SC18	1	384	COM34
65	COM3	145	SC71		225	SA45	1	305	SB18]	385	COM36
66	COM1	146	SB71		226	SC44	1	306	SA18]	386	COM38
67	NC	147	SA71		227	SB44	1	307	SC17]	387	COM40
68	NC	148	SC70		228	SA44	1	308	SB17]	388	COM42
69	NC	149	SB70		229	SC43	1	309	SA17		389	COM44
70	NC	150	SA70		230	SB43	1	310	SC16		390	COM46
71	NC	151	SC69		231	SA43	4	311	SB16	Į.	391	COM48
72	NC 0005	152	SB69		232	SC42		312	SA16		392	COM50
73	SC95	153	SA69		233	SB42	4	313	SC15		393	COM52
74	SB95	154	SC68	ı I	234	SA42	4	314	SB15	l	394	COM54
75 76	SA95	155	SB68		235	SC41	4	315	SA15	ł	395	COM56
76 77	SC94	156	SA68		236	SB41	-	316	SC14	ł	396	COM58
77 78	SB94 SA94	157 158	SC67 SB67		237 238	SA41	-	317 318	SB14 SA14	ł	397 398	COM60
78 79	SA94 SC93			ŀ		SC40	-1			ł		COM62
80	SE93 SB93	159 160	SA67 SC66	ŀ	239 240	SB40 SA40	-1	319 320	SC13 SB13	ł	399 400	NC NC
60	೨೮೫೨	100	3000	L	24 U	3A4U	J	320	3013	J	400	INC

SSD1331 Rev 1.2 P 67/68 Nov 2007 **Solomon Systech**

Solomon Sy stech reserves the right to make changes without further notice to any products herein. Solomon Sy stech makes now arranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or manufacture of the part

All Sol omon Systech Products complied with six (6) hazard ous substances limitation requirement per Europ ean Union (EU) "Restriction of H azardous Substance (Ro HS) Di rective (2002/95/EC)" and C hina standard "电子信息产品污染控制标识要求 (SJ/T11364-2006)" with control Marking Symbol 🚱 . Hazardous Substances test report is available upon requested.

http://www.solomon-systech.com

Solomon Systech | Nov 2007 | P 68/68 | Rev 1.2 | SSD1331