Escuela Politécnica Nacional

Métodos Numéricos

Tarea 1

Nombre: Danny Iñaguazo Curso: GR1CC Fecha: 30/04/2024

1.- Calcule los errores absoluto y relativo en las aproximaciones de p por p*

a)
$$|p-p*| = \left|\frac{\pi - \frac{22}{7}}{\pi}\right|$$

 $= \frac{1,2644 \times 10^{-3}}{1,2644 \times 10^{-3}}$

b) $|p-p*| = \frac{|\pi - 3,1416|}{7,346 \times 10^{-6}}$

$$\frac{|p-p*|}{|p|} = \frac{\left|\frac{\pi - \frac{22}{7}}{\pi}\right|}{\left|\frac{\pi}{\pi}\right|}$$
 $= \frac{1}{2,338 \times 10^{-6}}$

c) $|p-p*| = |e-2,718|$
 $= \frac{1}{2,818 \times 10^{-4}}$

d) $|p-p*| = |\sqrt{2} - 1,414|$
 $= \frac{2,135 \times 10^{-4}}{1,036 \times 10^{-4}}$

$$\frac{|p-p*|}{|p|} = \frac{|e-2,718|}{|p|}$$
 $= \frac{|p-p*|}{1,036 \times 10^{-4}}$

$$\frac{|p-p*|}{|p|} = \frac{|\sqrt{2} - 1,414|}{|\sqrt{2}|}$$
 $= \frac{1,51 \times 10^{-4}}{1,51 \times 10^{-4}}$

2.- Calcule los errores absoluto y relativo en las aproximaciones de p por p*

a)
$$|p-p*| = |e^{10} - 22000|$$

 $= 26,465$

b) $|p-p*| = |10^{\pi} - 1400|$
 $= 14,544$

$$\frac{|p-p*|}{|p|} = \frac{|e^{10} - 22000|}{|e^{10}|}$$
 $= 1,2 \times 10^{-3}$
c) $|p-p*| = |8! - 39900|$
 $= 420$

$$\frac{|p-p*|}{|p|} = \frac{|9! - \sqrt{18\pi}(\frac{9}{e})^9|}{|9!|}$$
 $= 3343,12$

$$\frac{|p-p*|}{|p|} = \frac{|8! - 39900|}{|8!|}$$
 $= 0,01$

$$\frac{|p-p*|}{|p|} = \frac{|9! - \sqrt{18\pi}(\frac{9}{e})^9|}{|9!|}$$
 $= 9,21 \times 10^{-3}$

3.- Encuentre el intervalo más largo en el que se debe encontrar p * para aproximarse a <math>p con error relativo máximo de 10-4 para cada valor de p.

a)
$$\frac{|p-p*|}{|p|} = \frac{|\pi-p*|}{|\pi|} = 10^{-4} \qquad \frac{\pi-p*}{\pi} = 10^{-4} \quad \vee \frac{\pi-p*}{\pi} = -10^{-4}$$

$$p* = 3,141278494 \quad \vee \quad p* = 3,141906813$$

$$p* \in [3,141278494; 3,141906813]$$
b)
$$\frac{|p-p*|}{|p|} = \frac{|e-p*|}{|e|} = 10^{-4} \qquad \frac{e-p*}{e} = 10^{-4} \quad \vee \quad \frac{e-p*}{e} = -10^{-4}$$

$$p* = 2,71801 \quad \vee \quad p* = 2,718553657$$

$$p* \in [2,71801; 2,718553657]$$
c)
$$\frac{|p-p*|}{|p|} = \frac{|\sqrt{2}-p*|}{|\sqrt{2}|} = 10^{-4} \qquad \frac{\sqrt{2}-p*}{\sqrt{2}} = 10^{-4} \quad \vee \quad \frac{\sqrt{2}-p*}{\sqrt{2}} = -10^{-4}$$

$$p* = 1,414072141 \quad \vee \quad p* = 1,414354984$$

$$p* \in [1,414072141; 1,414354984]$$

d)
$$\frac{|p-p*|}{|p|} = \frac{\left|\frac{\sqrt[3]{7} - p*}{\sqrt[3]{7}}\right|}{\left|\frac{\sqrt[3]{7}}{\sqrt[3]}\right|} = 10^{-4} \qquad \frac{\sqrt[3]{7} - p*}{\sqrt[3]{7}} = 10^{-4} \qquad \sqrt{\frac{\sqrt[3]{7} - p*}{\sqrt[3]{7}}} = -10^{-4}$$

$$p* = 1,91273989 \qquad v \qquad p* = 1,913122476$$

$$p* \in [1,91273989; 1,913122476]$$

4.-Use la aritmética de redondeo de tres dígitos para realizar lo siguiente. Calcule los errores absoluto y relativo con el valor exacto determinado para por lo menos cinco dígitos.

a)
$$\frac{\frac{13}{14} - \frac{5}{7}}{2e - 5, 4}$$
 \rightarrow $p = 0,58606 \times 10^{1}$; $p *= 0,586 \times 10^{1}$ $|p - p *| = 6 \times 10^{-4}$ $\frac{|p - p *|}{|p|} = \frac{1,024 \times 10^{-4}}{|p|}$ b) $-10\pi + 6e - \frac{3}{61}$ \rightarrow $p = -0,15155 \times 10^{2}$; $p *= -0,152 \times 10^{2}$ $|p - p *| = 0,045$ $\frac{|p - p *|}{|p|} = \frac{2,9693 \times 10^{-3}}{|p - p *|}$ c) $\frac{2}{11}$ \rightarrow $p = 0,18182$; $p *= 0,182$ $|p - p *| = \frac{1,8 \times 10^{-4}}{|p|}$

a)
$$\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}$$
 \rightarrow $p = 0.23958 \times 10^2$; $p *= 0.240 \times 10^2$ $|p-p*| = 0.042$ $\frac{|p-p*|}{|p|} = 1.753 \times 10^{-3}$

5.- Calcule los errores absoluto y relativo en las siguientes aproximaciones de π mediante el polinomio en lugar del arco tangente:

$$f(x) = x - \frac{1}{3}x^3 + \frac{1}{5}x^5$$

a)
$$4\left[f\left(\frac{1}{2}\right) + f\left(\frac{1}{3}\right)\right] = 3,145576132 =$$
b) $16 \times f\left(\frac{1}{5}\right) - 4 \times f\left(\frac{1}{239}\right) =$
 $3,141621029 = p *$

$$|\pi - p *| = 3,98 \times 10^{-3}$$

$$|\pi - p *| = 2,83 \times 10^{-5}$$

$$\frac{|\pi - p *|}{|\pi|} = 1,267 \times 10^{-3}$$

$$\frac{|\pi - p *|}{|\pi|} = 9,03 \times 10^{-6}$$

6.- Calcule los errores absoluto y relativo en la siguiente aproximación de e:

a)
$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right) = 2,716666667 = p *$$
 $|e - p *| = 1,615 \times 10^{-3}$
b) $\sum_{n=0}^{10} \left(\frac{1}{n!}\right) = 2,718281801 = p *$
 $|p - p *| = 2,731 \times 10^{-8}$

$$\frac{|e - p *|}{|e|} = 5,94 \times 10^{-4}$$

$$\frac{|e - p *|}{|e|} = 1,004 \times 10^{-8}$$

7.- Suponga que dos puntos (x°, y°) y (x°, y°) se encuentran en línea recta con y° $\neq y^{\circ}$. Existen dos fórmulas para encontrar la intersección x de la línea:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}$$
; $x = x_0 - \frac{(x_1 - x_0) y_0}{y_1 - y_0}$

a. Use los datos (x2, y2) = (1.31, 3.24) y (xବ , yବ) = (1.93, 5.76) y la aritmética de redondeo de tres dígitos para calcular la intersección con x de ambas maneras. ¿Cuál método es mejor y por qué?

a)
$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0} = 0,5128571429$$
 b) $x = x_0 - \frac{(x_1 - x_0) y_0}{y_1 - y_0} = 0,5128571429$

En realidad, los dos métodos tienen como resultado el mismo dato. Entonces, ninguno es mejor y por lo tanto, el error al momento de redondear a 3 dígitos es el mismo.