ANIX CALLERSTERS

İTÜ-EEF ANALOG ELECTRONIC CIRCUITS 2013

Prof. Dr. Melih Pazarcı

FINAL EXAM

Jan. 5, 2014

The unloaded midband gain of the circuit is v_o/v_g =-60. When the load impedance R_L is connected to the output, the circuit gain drops to v_o/v_g =-48. Find R_g and the amplifier output resistance R_o .

The amplifier is connected to the source and load over coupling capacitors C_1 and C_2 , respectively. Find the C_1/C_2 ratio so that $f_{k2}=2f_{k1}^{\uparrow\uparrow}$ for the associated low frequency poles.

c/- Find C₁ and C₂ for a low frequency cutoff (-3dB) of 100Hz for the circuit.

Note: When poles are close $f_k = (f_{kl}f_{k2}f_{k3}...)^{\frac{1}{n}}$ and $f_L = \frac{f_k}{\sqrt{\frac{1}{2^n}-1}}$

FL1

- d)- Find the tilt at the output when a pulse with Tp=35 μ s is applied to the input (the pulse generator has the same R_g). Note: $\delta_T = \delta_1 + \delta_2 + ...$
- e)- If the amplifier input capacitance C_i=40pF, output capacitance C_o=2pF, and the feedback capacitance is C_r=0.5pF, find the high frequency poles and the high cutoff frequency for the circuit (assume generator has the same R_g).
 Note: Miller theorem: input: (1-K)C_r, output (1-1/K) C_r
- f)- A pulse with a rise time of 0.1 μs is applied to the input and the output rise time is measured using a scope with a rise time of 0.1 μs. Find the measured output rise time (the pulse generator has the same R_g).

$$t_r = \frac{0.35}{f_H}$$
, $t_r \approx \sqrt{t_1^2 + t_2^2 + \dots}$

- 2)- In the given circuit, $|V_{BE}|\approx 0.7V$, $V_T=25mV$, $\beta_1=\beta_2=200$, $\beta_3=500$.
- a)- Find the value for R_2 so that $V_{C3Q}=0V$.
- b)- Find the open loop midband gain of the circuit with β loading. What is the feedback topology?
- c)- Find v_o/v_i with feedback.
- d)- Find v_o/v_g with feedback when the source resistance is R_g =40k Ω .

 R_{2} R_{6} R_{6} R_{6} R_{6} R_{6} R_{6} R_{6} R_{6} R_{6} R_{7} R_{7} R_{7} R_{7} R_{7} R_{8} R_{8} R_{1} R_{1} R_{1} R_{2} R_{3} R_{4} R_{3} R_{5} R_{6} R_{7} R_{7} R_{7} R_{8} R_{1} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{7} R_{7} R_{7} R_{7} R_{7} R_{7} R_{8} R_{9} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{7} R_{7} R_{7} R_{8} R_{9} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7}

Note: Diff. Amp. Single ended gain is

$$K_d = -\frac{R_{Leff}}{2r_e}$$

CONTINUED ON THE BACK-TURN OVER

Cd Vc = Ic

3)- In the relaxation oscillator given in the figure, the noninverting Schmitt circuit has: V_{IH}=3.5V, V_{IL}=1.5V, V_{OH}=5V, V_{OL}=0V. Commutator switch K is connected to "1" when Vo is low, and to "0" when Vo is high.

a)- Briefly describe the operation of the circuit.

b)- For a square wave output (on/off ratio

 t_d/t_b =1) with a frequency of 10kHz, find R_2 and the current I_1 . What does the on-off ratio depend on? c)- Design a suitable PNP current mirror current source for I_1 . ($|V_{BE}|\approx 0.7V$)

- 4)- In the given circuit, T1 and T2 transistors are identical and both are biased in the forward conduction region. V_{BE} =0.7V, β_F =100, V_T =25mV, h_{oe1} ≈0, h_{oe2} ≈0, C_{be1} = C_{be2} =20pF, C_{cb1} = C_{cb2} =0.5pF
- a)- Find I_{C1} for $V_{B1}=5.7V$
- b)- Find the value range for V_{B2} for proper operation of the circuit.
- c)- Draw the small signal equivalent circuit and find the midband gain $v_{\rm o}/v_{\rm g}$.
- d)- Find the high frequency poles of the circuit. V_g
 What is the high frequency cutoff?

Hint: Do you recognize this circuit configuration!

$$h_{oe}=1/r_{ce}$$

Points: 30 + 30 + 20 + 20 = 100

Prof. Dr. Melih Pazarcı

Time 120".

Notes: Closed books & notes. No cellphones. You may make reasonable engineering approximations. All your approximations, roundings, and assumptions should be clearly visible. Be careful with your units.

ElektronDev2013_Final.wpd