01

Md Shadnan Azwad Khan, Chin-Te LIAO, Christina Repou, Anne Marin, Flavia Voicu, Christian Meng, Sacha Ulysse Jeoffret

Secure Quantum Digital Payments

WHY QUANTUM ENCRYPTION?

- Provides a more secure communication channel
- Realtime eavesdropping detection
- Various unique cryptographic methods
- Long time data security

Enhancing payment security through SquidASM-based quantum-digital transaction simulation

QUANTUM TOKEN

Quantum state with encoded data

MEASUREMENT CLIENT

Client side classical encryption

REQUEST + VERIFY TRANSACTION

Authentication by Trusted Third Party

Client

Bank (TTP)

Quantum token generation

Key (b)	0	1	0	1
Basis (B)	1	1	0	0
Quantum Token P>	+	-	0	1

|P> = Payment Token (Quantum state)

b = random bit string

 \mathbf{B} = random conjugate basis-string (1=+/-, 0=0/1)

Cryptogram formation

Quantum Token P>	+	_	0	1
Basis (m)	1	0	1	0
Cryptogram (K)	0	0	0	1

$$m_i = MAC(C, M_i)$$

$$\kappa_i \stackrel{m_i}{\longleftarrow} \ket{P}$$

Transaction Authentication

