TRIGONOMETRIC RATIOS

OBJECTIVES

- The equation $\sec^2 \theta = \frac{4xy}{(x+y)^2}$ is only possible when
 - (a) x = y
- (b) x < y
- (c) x > y
- (d) None of these
- $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \tan 4^{\circ}$ $\tan 89^{\circ} =$ 2.
 - (a) 1

(b)0

(c) ∞

- (d) 1/2
- If $\tan \theta = \frac{-4}{3}$, then $\sin \theta =$ 3.
 - (a) -4/5 but not 4/5 (b) -4/5 or 4/5
 - (c) 4/5 but not -4/5 (d) None of these
- If $\tan \theta = -\frac{1}{\sqrt{10}}$ and θ lies in the fourth quadrant, then $\cos \theta =$
 - (a) $1/\sqrt{11}$
- (b) $-1/\sqrt{11}$
- (c) $\sqrt{\frac{10}{11}}$
- (d) $-\sqrt{\frac{10}{11}}$
- Which of the following is correct 5.
 - (a) $\tan 1 > \tan 2$
- (b) $\tan 1 = \tan 2$
- (c) $\tan 1 < \tan 2$
- (d) $\tan 1 = 1$

- $(m+2)\sin\theta + (2m-1)\cos\theta = 2m+1, if$ 6.

 - (a) $\tan \theta = \frac{3}{4}$ (b) $\tan \theta = \frac{4}{3}$
 - (c) $\tan \theta = \frac{2m}{m^2 + 1}$ (d) None of these
- If $\tan \theta + \sec \theta = e^x$, then $\cos \theta$ equals
- (b) $\frac{2}{(e^x + e^{-x})}$
- (c) $\frac{(e^x e^{-x})}{2}$ (d) $\cos \theta = \frac{2}{e^x + e^{-x}}$.
- If $\tan \theta + \sin \theta = m$ and $\tan \theta \sin \theta = n$, then 8.

 - (a) $m^2 n^2 = 4mn$ (b) $m^2 + n^2 = 4mn$
 - (c) $m^2 n^2 = m^2 + n^2$ (d) $m^2 n^2 = 4\sqrt{mn}$

		www.sakshieducation.com
9.	If $(1 + \sin A)(1 + \sin B)(1 + \sin B)$	$(1 - \sin A)(1 - \sin B)(1 - \sin C)$, then each side is equal to
	$(a) \pm \sin A \sin B \sin C$	(b) $\pm \cos A \cos B \cos C$
	(c) $\pm \sin A \cos B \cos C$	$(d) \pm \cos A \sin B \sin C$
10.	If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3$	$\theta_3 = 3$, then $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 =$
	(a) 3	(b)2
	(c) 1	(d) 0
11.	The value of $2(\sin^6\theta)$	$(\theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) + 1$ is
	(a) 2	(b) 0
	(c) 4	(d) 6
12.	$\cos 1^\circ + \cos 2^\circ + \cos 3^\circ$	$++\cos 180^{\circ} =$
	(a) 0	(b) 1
	(c) - 1	(d) 2
13.	If $\pi < \alpha < \frac{3\pi}{2}$, then $\sqrt{\frac{1}{1}}$	$\frac{-\cos\alpha}{+\cos\alpha} + \sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} =$
	(a) $\frac{2}{\sin \alpha}$	(b) $-\frac{2}{\sin\alpha}$
	(c) $\frac{1}{\sin \alpha}$	$(d) - \frac{1}{\sin \alpha}$
14.	Given that $\pi < \alpha < \frac{3\pi}{2}$,	, then the expression $\sqrt{(4 \sin^4 \alpha + \sin^2 2\alpha)} + 4 \cos^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$ is equal to
	(a) 2	(b) $2+4\sin\alpha$
	(c) $-2-4\sin\alpha$	(d) None of these
15.	The value of cos(270°	$+\theta$)cos(90° $-\theta$) $-\sin(270° -\theta)\cos\theta$ is
	(a) 0	(b)-1
	(c) 1/2	(d) 1
16.	If angle θ be divid	led into two parts such that the tangent of one part is k times the
	tangent of the other	and ϕ is their difference, then $\sin \theta =$
	(a) $\frac{k+1}{k-1}\sin\phi$	(b) $\frac{k-1}{k+1}\sin\phi$
	$(c) \frac{2k-1}{2k+1}\sin\phi$	(d) None of these
17.	If $\sin \theta + \csc \theta = 2$, the	value of $\sin^{10}\theta + \csc^{10}\theta$ is
	(a) 10	(b) 2^{10}

(c) 2⁹

(d) 2

If $\sin(\alpha - \beta) = \frac{1}{2}$ and $\cos(\alpha + \beta) = \frac{1}{2}$, where α and β are positive acute angles, then 18.

(a)
$$\alpha = 45^{\circ}, \beta = 15^{\circ}$$

(b)
$$\alpha = 15^{\circ}, \beta = 45^{\circ}$$

(c)
$$\alpha = 60^{\circ}, \beta = 15^{\circ}$$

(d) None of these

If $\sin x + \sin y = 3(\cos y - \cos x)$, then the value of $\frac{\sin 3x}{\sin 3y}$ is

$$(b) - 1$$

(d) None of these

If $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$, then $\cos \theta + \sin \theta$ is equal to

(a)
$$\sqrt{2}\cos\theta$$

(b)
$$\sqrt{2} \sin \theta$$

(c)
$$2\cos\theta$$

(d)
$$-\sqrt{2}\cos\theta$$

If $x = \sec \phi - \tan \phi$, $y = \csc \phi + \cot \phi$, then

(a)
$$x = \frac{y+1}{y-1}$$

(b)
$$x = \frac{y-1}{y+1}$$

(c)
$$y = \frac{1-x}{1+x}$$

(d) None of these

If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n$, then

(a)
$$m^2 - n^2 = 4mn$$

(b)
$$m^2 + n^2 = 4mn$$

(c)
$$m^2 - n^2 = m^2 + n^2$$

(c)
$$m^2 - n^2 = m^2 + n^2$$
 (d) $m^2 - n^2 = 4\sqrt{mn}$

If $(\sec \alpha + \tan \alpha)(\sec \beta + \tan \beta)(\sec \gamma + \tan \gamma)$

= $\tan \alpha \tan \beta \tan \gamma$, then $(\sec \alpha - \tan \alpha)(\sec \beta - \tan \beta)$

$$(\sec \gamma - \tan \gamma) =$$

(a)
$$\cot \alpha \cot \beta \cot \gamma$$

(b)
$$\tan \alpha \tan \beta \tan \gamma$$

(c)
$$\cot \alpha + \cot \beta + \cot \gamma$$

(d)
$$\tan \alpha + \tan \beta + \tan \gamma$$

The value of $\sin 10^{\circ} + \sin 20^{\circ} + \sin 30^{\circ} + ... + \sin 360^{\circ}$ **is** 24.

$$(c) - 1$$

(d) None of these

The value of $\cos y \cos\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - y\right) \cos x + \sin y \cos\left(\frac{\pi}{2} - x\right) + \cos x \sin\left(\frac{\pi}{2} - y\right)$ is zero, if

(a)
$$x = 0$$

(b)
$$y = 0$$

(c)
$$x = y$$

(d)
$$x = n\pi - \frac{\pi}{4} + y$$
, $(n \in I)$

26.
$$\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} =$$

(a) 1

(b) - 1

(c)0

(d)2

27. If
$$\theta$$
 lies in the second quadrant, then the value of $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} + \sqrt{\frac{1+\sin\theta}{1-\sin\theta}}$

- (a) $2 \sec \theta$
- (b) $-2 \sec \theta$
- (c) $2\csc\theta$
- (d) None of these

28. If
$$\cos \theta = \frac{1}{2} \left(x + \frac{1}{x} \right)$$
, then $\frac{1}{2} \left(x^2 + \frac{1}{x^2} \right) =$

- (a) $\sin 2\theta$
- (b) $\cos 2\theta$
- (c) $\tan 2\theta$
- (d) $\sec 2\theta$

29. The value of
$$e^{\log_{10} \tan 1^{\circ} + \log_{10} \tan 2^{\circ} + \log_{10} \tan 3^{\circ} + \dots + \log_{10} \tan 89^{\circ}}$$
 is

(a) 0

- (b) *e*
- (c) 1/e
- (d) None of these

30. If
$$\sin x + \sin^2 x = 1$$
, then the value of $\cos^{12} x + 3\cos^{10} x + 3\cos^8 x + \cos^6 x - 2$ is equal to

(a) 0

- (b) 1
- (c) 1
- (d)2

31. If
$$\cos x + \cos^2 x = 1$$
, then the value of $\sin^2 x + \sin^4 x$ is

(a) 1

(c)0

32.
$$(\sec\theta - \cos\theta)^2 + (\csc\theta - \sin\theta)^2 - \tan^2\theta - \cot^2\theta =$$

4) - 7

33. If
$$\frac{\sin^4 A}{a} + \frac{\cos^4 A}{b} = \frac{1}{a+b}$$
, then $\frac{\sin^8 A}{a^3} + \frac{\cos^8 A}{b^3} =$

- 1) $\frac{2}{(a+b)^3}$ 2) $\frac{1}{(a+b)^3}$ 3) $\frac{1}{(a+b)^2}$ 4) $\frac{1}{(a-b)^2}$

34. The value of $(1+\cot\theta-\csc\theta)(1+\tan\theta+\sec\theta)$ is

- 1) 2
- 2) -2
- 3)3

4) -3

35. If $(1-\cos A)(1-\cos B)(1-\cos C) = \sin A \sin B \sin C$, then $(1+\cos A)(1+\cos B)(1+\cos B)$
--

1) cosA cosB cosC

2) sinA sinB sinC

3) - cosA cosB cosC

4) sin² A sin² B sin²C

36. If
$$tan\theta = 3/4$$
 and θ is not in the first quadrant, then

$$\frac{\sin\left(\frac{\pi}{2} + \theta\right) - \cot(\pi - \theta)}{\tan\left(\frac{3\pi}{2} - \theta\right) - \cos\left(\frac{3\pi}{2} + \theta\right)}$$

1) 0

2) 1

- 3) 8/29
- 4) 29/8

37. If
$$7 \sin^2 \theta + 3 \cos^2 \theta = 4$$
, then $\tan \theta =$

- 1) $\pm 1/\sqrt{3}$
- $2) \pm 1$
- 3) $\pm \sqrt{3}$
- 4) 1/3

38. If a
$$\cos\theta$$
 - b $\sin\theta$ = c, then a $\sin\theta$ + b $\cos\theta$ =

1)
$$\pm \sqrt{a^2 + b^2 - c^2}$$

3)
$$\pm \sqrt{c^2 - a^2 - b^2}$$

2) $\pm \sqrt{a^2 - b^2 - c^2}$

4)
$$\pm \sqrt{c^2 + a^2 + b^2}$$

39. If
$$5\cos\theta + 7\sin\theta = 7$$
, then $(7\cos\theta - 5\sin\theta)^2 =$

1) 25

- 2) 49
- 3) 24
- 4) -49

40. If
$$\sec\theta + \tan\theta = 1/5$$
 then $\sin\theta =$

- 1) 5/13
- 2) -12/13
- 3) 12/13
- 4) 5/13

41.
$$\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} =$$

1) 1

2) 2

3) 4

4) 3

42. If
$$\tan 20^0 = k$$
, then $\frac{\tan 250^0 + \tan 340^0}{\tan 20^0 - \tan 110^0} =$

- $\frac{1-k^2}{1+k^2}$
- $\frac{1+k^2}{1-k^2}$
- $\frac{2k}{1-k^2}$
- $\frac{1-k^2}{2k}$

43. Minimum value of $sec^2 \theta + cosec^2 \theta$ is

1) 1

2) 2

3) 3

4) 4

44. Minimum value of $\tan \theta + \cot \theta$ in $\left(0, \frac{\pi}{2}\right)$ is

1) 1

2) 2

3) 3

4) 4

TRIGONOMETRIC RATIOS

HINTS AND SOLUTIONS

1. (a)
$$\cos^2 \theta \le 1$$

$$\sec^2 \theta = \frac{4xy}{(x+y)^2} \ge 1 \Rightarrow 4xy \ge (x+y)^2 \Rightarrow (x-y)^2 \le 0$$

2. (a)
$$\tan 1^{\circ} \tan 2^{\circ} \tan 89^{\circ}$$

=
$$(\tan 1^{\circ} \tan 89^{\circ})(\tan 2^{\circ} \tan 88^{\circ})...$$
 = $1 \times 1 \times 1...$ = 1.

3. (b)
$$\csc^2\theta = 1 + \cot^2\theta = 1 + \frac{9}{16} = \frac{25}{16}$$

$$\sin^2 \theta = \frac{1}{\csc^2 \theta} = \frac{16}{25} \Rightarrow \sin \theta = \pm \frac{4}{5}$$

4. (c)
$$\tan \theta = -\frac{1}{\sqrt{10}}$$
, Therefore θ is in IV quadrant. So $\cos \theta = +ve$.

5. (b)
$$\sin 1 > \sin 1^{\circ}$$

6. (b) Squaring the given relation and putting $\tan \theta = t$,

$$(m+2)^2 t^2 + 2(m+2)(2m-1)t + (2m-1)^2 = (2m+1)^2 (1+t^2)$$

$$\Rightarrow 3(1-m^2)t^2 + (4m^2 + 6m - 4)t - 8m = 0$$

$$\Rightarrow (3t-4)[(1-m^2)t + 2m] = 0,$$

(b)
$$\tan \theta + \sec \theta = e^x$$
(i)

$$\therefore \sec \theta - \tan \theta = e^{-x} \qquad \qquad \dots (ii)$$

Adding
$$2 \sec \theta = e^x + e^{-x} \Rightarrow \cos \theta = \frac{2}{e^x + e^{-x}}$$
.

8. (d)
$$(m+n) = 2 \tan \theta, m-n = 2 \sin \theta$$

$$\therefore m^2 - n^2 = 4 \tan \theta . \sin \theta \qquad \qquad \dots$$
 (i)

$$4\sqrt{mn} = 4\sqrt{\tan^2\theta - \sin^2\theta} = 4\sin\theta \cdot \tan\theta \qquad \dots \qquad (ii)$$

From (i) and (ii),
$$m^2 - n^2 = 4\sqrt{mn}$$
.

9. (b)
$$(1-\sin^2 A)(1-\sin^2 B)(1-\sin^2 C)$$

$$= (1 - \sin A)^2 (1 - \sin B)^2 (1 - \sin C)^2$$

$$\Rightarrow$$
 $(1 - \sin A)(1 - \sin B)(1 - \sin C) = \pm \cos A \cos B \cos C$

Similarly, $(1 + \sin A)(1 + \sin B)(1 + \sin C) = \pm \cos A \cos B \cos C$.

$$\mathbf{10.} \quad (\mathbf{d}) \sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$$

$$\Rightarrow \sin \theta_1 = \sin \theta_2 = \sin \theta_3 = 1$$
, $(\because -1 \le \sin x \le 1)$

$$\Rightarrow \theta_1 = \theta_2 = \theta_3 = \frac{\pi}{2} \Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3 = 0 \ .$$

11. (b)
$$(\sin^2 \theta + \cos^2 \theta)^3 = (1)^3$$

$$\Rightarrow \sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta \cos^2 \theta = 1$$

and
$$\sin^4 \theta + \cos^4 \theta + 2\sin^2 \theta \cos^2 \theta = 1$$

Both gives,

$$2 (\sin^6 \theta + \cos^6 \theta) - 3 (\sin^4 \theta + \cos^4 \theta) + 1 = 0$$
.

12. (C)
$$(\cos 1^{\circ} + \cos 179^{\circ}) + (\cos 2^{\circ} + \cos 178^{\circ}) + ...$$

$$+(\cos 89^{\circ} + \cos 91^{\circ}) + \cos 90^{\circ} + \cos 180^{\circ} = -1$$
.

13. (b)
$$\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} + \sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} = \frac{1-\cos\alpha+1+\cos\alpha}{\sqrt{1-\cos^2\alpha}}$$

$$= \frac{2}{\pm \sin \alpha} = \frac{2}{-\sin \alpha}, \left(\text{since } \pi < \alpha < \frac{3\pi}{2}\right).$$

14. (a)
$$\alpha$$
 is in third quadrant $\sqrt{(4 \sin^4 \alpha + \sin^2 2\alpha)} + 4 \cos^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$

15. (d)
$$\cos(270 + \theta)\cos(90 - \theta) - \sin(270 - \theta)\cos\theta$$

$$= \sin \theta . \sin \theta + \cos \theta . \cos \theta = 1$$
.

16. (a) Let
$$A + B = \theta$$
 and $A - B = \phi$.

Then
$$\tan A = k \tan B$$
 or $\frac{k}{1} = \frac{\tan A}{\tan B} = \frac{\sin A \cos B}{\cos A \sin B}$

Applying componendo and dividendo

17. (d) We have,

$$\sin \theta + \csc \theta = 2 \implies \sin^2 \theta + 1 = 2 \sin \theta$$

$$\Rightarrow \sin^2 \theta - 2\sin \theta + 1 = 0$$

$$\Rightarrow (\sin \theta - 1)^2 = 0 \Rightarrow \sin \theta = 1$$

Required value of $\sin^{10} \theta + \csc^{10} \theta = (1)^{10} + \frac{1}{(1)^{10}} = 2$.

18. (a)
$$\sin(\alpha - \beta) = \frac{1}{2} = \sin 30^{\circ} \Rightarrow \alpha - \beta = 30^{\circ}$$
(i)

and
$$\cos(\alpha + \beta) = \frac{1}{2} \Rightarrow \alpha + \beta = 60^{\circ}$$
(ii)

Solving (i) and (ii), we get $\alpha = 45^{\circ}$ and $\beta = 15^{\circ}$.

19. (b) Standard problem.

20. (a)
$$\cos \theta - \sin \theta = \sqrt{2} \sin \theta$$

$$\Rightarrow \cos \theta = (\sqrt{2} + 1) \sin \theta \Rightarrow (\sqrt{2} - 1) \cos \theta = \sin \theta$$

$$\Rightarrow \sqrt{2} \cos \theta - \cos \theta = \sin \theta \Rightarrow \sin \theta + \cos \theta = \sqrt{2} \cos \theta.$$

21. (b) Standard problem

22. (d)
$$(m+n) = 2 \tan \theta, m-n = 2 \sin \theta$$

$$\therefore m^2 - n^2 = 4 \tan \theta \cdot \sin \theta \qquad \qquad \dots$$
 (i)

$$4\sqrt{mn} = 4\sqrt{\tan^2\theta - \sin^2\theta} = 4\sin\theta \cdot \tan\theta \qquad \dots \qquad \text{(ii)}$$

From (i) and (ii), $m^2 - n^2 = 4\sqrt{mn}$.

23. (a)
$$(\sec \alpha + \tan \alpha)(\sec \beta + \tan \beta)(\sec \gamma + \tan \gamma)$$

$$= \tan \alpha \tan \beta \tan \gamma \qquad \qquad \dots (i)$$

Let
$$x = (\sec \alpha - \tan \alpha)(\sec \beta - \tan \beta)(\sec \gamma - \tan \gamma)$$
 ... (ii)

Multiply (i) and (ii)

24. (b) Since
$$\sin 190^\circ = -\sin 10^\circ$$
, $\sin 200^\circ = -\sin 20^\circ$,

$$\sin 210^{\circ} = -\sin 30^{\circ}, \sin 360^{\circ} = \sin 180^{\circ} = 0$$

25. (d) The expression is equal to

$$\sin(x-y) + \cos(x-y) = \sqrt{2} \left\{ \sin\left(\frac{\pi}{4} + x - y\right) \right\},\,$$

Which is zero, if
$$\sin\left(\frac{\pi}{4} + x - y\right) = 0$$

i.e.,
$$\frac{\pi}{4} + x - y = n\pi(n \in I) \Rightarrow x = n\pi - \frac{\pi}{4} + y$$
.

26. (d)
$$\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8}$$

$$= \sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{\pi}{8} = 2 \left(\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} \right) = 2 \times 1 = 2.$$

28. (b)
$$\cos \theta = \frac{1}{2} \left(x + \frac{1}{x} \right) \Rightarrow x + \frac{1}{x} = 2 \cos \theta$$

We know that
$$x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2$$

$$=(2\cos\theta)^2-2=4\cos^2\theta-2=2\cos^2\theta$$

$$\therefore \frac{1}{2} \left(x^2 + \frac{1}{x^2} \right) = \frac{1}{2} \times 2 \cos 2\theta = \cos 2\theta$$

29. (d)
$$e^{\log_{10} \tan 1^o + \log_{10} \tan 2^o + \log_{10} \tan 3^o + \dots + \log_{10} \tan 89^o}$$

$$=e^{\log_{10}(\tan 1^o \tan 2^o \tan 3^o\tan 89^o)}=e^{\log_{10} 1}=e^o=1$$

30. (c) Standard problem

31. (a)
$$\cos x + \cos^2 x = 1 \Rightarrow \cos x = \sin^2 x$$

$$\therefore \sin^2 x + \sin^4 x = \cos x + \cos^2 x = 1.$$

- 32.(b)
- 33.(b)
- 34.(a)
- 35.(b)
- 36.(c)
- 37.(a)
- 38.(a)
- 39.(a)
- 40.(B)
- 41.(b)
- 42.(a)
- 43(d)
- 44. (b)