Learning CSPs via ILP solvers

Rishabh Ranjan, Yatin Nandwani, Mausam, Parag Singla

Motivation

- The learning aspect
- CSPs in the real world:
 - industrial scheduling
 - combinatorial optimization
 - program verification
 - ... and lots more
- Can neural networks learn CSPs from examples?

Approach 1: Neural Reasoner

Recurrent Relational Networks, Palm et. al., NeurIPS 2018

- Learns to reason from scratch
- Problem learning and solution learning are coupled together
- No match for decades old symbolic approaches

Approach 2: Symbolic Reasoner + RL

End-to-End Neuro-Symbolic Architecture for Image-to-Image Reasoning Tasks,
Agarwal et. al., unpublished, 2021

- Difficult to train: sparse rewards
- Problem specific solver: intractable action space for general-purpose solver

Approach 3: Symbolic Reasoner + Backprop

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints, Paulus et. al., ICML 2021

- Backprop via informative gradients for black-box ILP solvers
- Any problem in NP is reducible to ILP (NP-completeness)
- Industry-grade solvers available: Gurobi

Limitations of Demonstrated Tasks

- Naive parametrisation of constraint matrix
- Synthetic: random dense constraints
- Small: max 8 constraints over 16 variables
- Input dependence:
 - only 1 setting, with only 1 constraint
 - static constraints in most tasks
- Instance-size dependence
- Slow training: 6 hrs for 4000 weight updates on one task (prior art took 1 hr)

Real-World CSPs

(Toy CSP but representative)

- ILP for 4x4 Sudoku: 82 constraints over 64 variables
- Input dependent constraints
- Empirical Results:
 - 4x4, static constraints only:
 - 100% accuracy
 - 4x4, fully learnable / 9x9, static constraints only:
 - trivial baseline accuracy

Accuracy Curves

Smoothed Digit Accuracy vs Training Steps (BLUE: 4x4 sudoku, fully learnable, ORANGE: 9x9 sudoku, only static constraints learnable): stuck as trivial baseline accuracies of 25% and 40%

Smoothed Board Accuracy vs Training Steps (4x4 sudoku, only static constraints learnable): 100% generalisation accuracy

Technical Challenge 1: Solver Interaction

- Forward pass calls ILP solver
- Randomly learnt constraints at training
- Unaligned to solver heuristics
- Explosive solving times
- Extremely slow training
- GPU acceleration is useless

Digit Accuracy vs Training Steps (4x4 sudoku, fully learnable):
Observe how training steps slow down.

Tricks to Speed Up Training

- Initialisation with trivially feasible constraints
- Adaptive solver timeouts: low timeout initially, increase gradually
- Solution hinting:
 - solution of same training instance from last epoch
 - gold solution at later stages of training
 - advanced mini-batching: consecutive batches can have same instances
- Priors can help generate easier constraints

Technical Challenge 2: Parameterisation

- Each coefficient is learnt independently
- Example 1:
 - ONE-HOT constraint: x + y + z = 1 (x, y, z in {0, 1})
 - ILP form: (1) $x + y + z \le 1$, (2) $(-x) + (-y) + (-z) \le -1$
- Example 2:
 - ALL-DIFF constraint:
 - 9 rows, 9 columns, 9 boxes

The Real-World Redemption

- Priors:
 - Sparsity: ~99% for sudoku
 - Lifting: instantiations of the same constraints over variable permutations
 - High-level constraints:
 - Google OR Tools: AddAllDifferent, AddReservoirConstraint, AddAllowedAssignments, AddBoolOr, AddMaxEquality
 - Microsoft Z₃ SMT Solver: AtLeast(k), AtMost(k)
 - Compositionality: high-level from low-level constraints
- Heavily engineered solvers: Heuristics and optimisations for real-world instances

Proposed Architecture for Parameterisation

- Attention over variables (and values for input-dependence) as taking soft subsets
- Learnable or hand-crafted constraint modules
- Permutation invariance:
 - limitation in general
 - practically useful as high-level constraints tend to be permutation invariant

Alternative Solutions / Baselines / Directions

- L1 regularisation: sparsity prior
- Deconvolution networks: weight sharing in generation
- Restore generality using sequence selector modules
- · Add a compositionality prior by going deeper

A deconvolution filter

Desired/Expected Benefits

- Data efficiency: learn only to formulate the problem
- Faster forward pass: priors aligned with ILP heuristics
- Strong generalisation: train on easy instances, test on hard instances
- Domain knowledge: enforce hard constraints directly
- Instance size generalisation: train on small instances, test on larger instances

The Plan Ahead

• DONE:

- Problem formulation
- Major implementation
- Baseline Experiments

• TODO:

- Thorough experiments on proposed architecture
- Iterative development of more effective ideas

Thank You!

Questions?