

PROJET INDUSTRIEL

Micro-fluidique, EDP et FreeFEM++

28 mars 2023

Melissa Mansour, José Marques, Elyass Sayd

Sorbonne Université IMPE - Mécanique

SOMMAIRE

- 1. Introduction
- 2. Géométrie et maillage
- 3. Équations du problème
- 4. Paramètres de simulation
- 5. Simulations sur différentes géométries
- 6. Conclusion

INTRODUCTION

Équations de Navier-Stokes

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \mu \Delta \mathbf{u} + \nabla p = 0 & \text{dans } \Omega \times (0, T) \\ & \text{div}(\mathbf{u}) = 0 & \text{dans } \Omega \times (0, T) \end{cases}$$

Équation de concentration

$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = \mathsf{div}(\gamma \beta(\mathbf{x}, \theta) \nabla c)$$

Écoulements micro-fluidiques :

Mélange de produits dans ces micro-canaux favorisé par des chauffages locaux

ADIMENSIONNEMENT

Équations de Navier-Stokes

$$\frac{\rho \bar{x}^2}{\eta \bar{t}} \frac{\partial U}{\partial T} + \text{Re}(U \cdot \nabla_X) U = \frac{\rho \bar{x}^2}{\eta \bar{u}} g - \frac{\bar{x} \bar{p}}{\eta \bar{u}} \nabla_X P + \Delta_X U$$

Dimensions du système

•
$$\rho = 10^3 \, kg \, m^{-3}$$

•
$$\bar{x} = 10^{-6} \ m$$

•
$$\bar{u} = 10^{-3} \ ms^{-1}$$

•
$$n = 1.003 \cdot 10^{-3} \ kg \ m^{-1} s^{-1}$$

$$\operatorname{Re} = \frac{\rho \bar{x} \bar{u}}{n} = 10^{-3}, \ \frac{\rho \bar{x}^2}{n \bar{t}} = \sqrt{\operatorname{Re}} \implies$$

$$\bar{t} = \sqrt{\frac{\rho \bar{x}^3}{\eta \bar{u}}} = 10^{\frac{9}{2}} \approx 3 \cdot 10^{-5}$$

MAILLAGE: TUYAU DROIT

Figure – Tube section droite, chauffe définie géométriquement

Figure – Tuyau droit, chauffe non géométrique

MAILLAGE: SINUS SUPERPOSÉ

Figure – Géométrie sinus superposés

Le circuit comprend 4 parties :

- 1. Circuit d'injection où deux tubes viennent se joindre
- 2. Circuit de circulation où les fluides progressent
- 2.5 Circuit de chauffe où les fluides se mélangent
 - 3. Circuit de sortie

MAILLAGE: SINUS SECTION CONSTANTE - JONCTION DES TUBES

Figure – Jonction tubes 1 et 2

MAILLAGE: SINUS SECTION CONSTANTE - CONSTRUCTION

$$\Longrightarrow \left\{ \begin{array}{ll} \Delta x &= r \sin(\beta) \\ \Delta y &= r \cos(\beta) \end{array} \right.$$

Figure – Construction section constante

GÉOMÉTRIE SINUS SECTION CONSTANTE

Figure – Géométrie tube section constante

Formulation Forte

On cherche $(\mathbf{u}, p) \in H^1(\Omega) \times L^2(\Omega)$ tel que :

$$\begin{cases} \rho \frac{\partial \mathbf{u}}{\partial t} \ - \ \eta \nabla \cdot (\alpha(\mathbf{x}, \theta) \nabla \mathbf{u}) \ + \ \nabla p \ = 0 \quad \text{dans } \Omega \times (0, \, T) \\ & \text{div} \mathbf{u} = 0 \quad \text{dans } \Omega \times (0, \, T) \end{cases}$$

Avec α l'influence de la température θ sur la viscosité : $\alpha(\theta, \mathbf{x}) : \mathbb{R} \times \Omega \mapsto [0, 1]$

Formulation variationnelle

On cherche $(\mathbf{u},p) \in H^1(\Omega) \times L^2(\Omega)$ tel que :

$$\begin{split} \forall (v,q) \in H^1(\Omega,\mathbb{R}^2) \times L^2(\Omega,\mathbb{R}) \\ \left\{ \begin{aligned} \frac{\rho}{\tau} \int_{\Omega} \left[\mathbf{u}^{m+1} - \mathbf{u}^m \right] \cdot \mathbf{v} &= \int_{\Omega} \left[p \operatorname{div}(\mathbf{v}) - \alpha(\theta,\mathbf{x}) \eta \left[\nabla \mathbf{u}^{m+s} : \nabla \mathbf{v} \right] \right] \\ + \int_{\partial \Omega} \left[\alpha(\theta,\mathbf{x}) \eta \frac{\partial \mathbf{u}^{m+s}}{\partial \mathbf{n}} - p \mathbf{n} \right] \cdot \mathbf{v} \\ \int_{\Omega} \operatorname{div}(\mathbf{u}^{m+s}) \ q &= 0 \end{aligned} \right. \end{split}$$

Conditions limites

$$\left\{ \begin{array}{l} u = 0 \text{ sur } \Gamma_{\text{lat\'eraux}} \\ \alpha(\theta, \mathbf{x}) \eta \partial_{\mathbf{n}} \mathbf{u} - p \mathbf{n} = -p_{\text{entr\'ee}} \mathbf{n} \text{ sur } \Gamma_{\text{entr\'ee}} \\ \alpha(\theta, \mathbf{x}) \eta \partial_{\mathbf{n}} \mathbf{u} - p \mathbf{n} = -p_{\text{sortie}} \mathbf{n} \text{ sur } \Gamma_{\text{sortie}} \end{array} \right.$$

- ⇒ Conditions de pression imposées.
- \Rightarrow Espaces variationnels : $H^1_{0,\Gamma_{\mathrm{lat\'eraux}}}(\Omega,\mathbb{R}^2)$ pour la vitesse et $L^2(\Omega,\mathbb{R})$ pour la pression.

Méthode de Galerkin : on considère des sev de dimensions finies $X_h \subset H^1_{0,\Gamma_{\mathrm{latéraux}}}(\Omega)$ et $M_h \subset L^2(\Omega,\mathbb{R})$ tels que $X_h \xrightarrow[h \to 0]{} H^1_{0,\Gamma_{\mathrm{latéraux}}}(\Omega)$ et $M_h \xrightarrow[h \to 0]{} L^2(\Omega)$. La vitesse sera \mathbb{P}_2 -Lagrange et la pression \mathbb{P}_1 -Lagrange afin de ne pas avoir de terme de stabilisation.

Discrétisation élements finis, espaces \mathbb{P}_2 et \mathbb{P}_1

On cherche
$$(\mathbf{u_h^{m+1}}, p_h^{m+1}) \in X_h \times M_h$$
 tels que $\forall (\mathbf{v_h}, q_h) \in X_h \times M_h$

$$\begin{cases} \frac{\rho}{\tau} \int_{\Omega} \left[\mathbf{u}_h^{m+1} - \mathbf{u}_h^m \right] \cdot \mathbf{v}_h = \int_{\Omega} \left[p_h^{m+1} \operatorname{div}(\mathbf{v}_h) - \alpha_h(\theta, \mathbf{x}) \eta \left[\nabla \mathbf{u}_h^{m+s} : \nabla \mathbf{v}_h \right] \right] \\ + \int_{\Gamma_{\text{entrée}}} -p_{\text{entrée}} \, \mathbf{n} \cdot \mathbf{v}_h + \int_{\Gamma_{\text{sortie}}} -p_{\text{sortie}} \, \mathbf{n} \cdot \mathbf{v}_h \\ \int_{\Omega} \operatorname{div}(\mathbf{u}_h^{m+s}) \, q_h = 0 \end{cases}$$

Théorème de Ne \check{c} as :

Soient X et M des espaces de Hilbert, $f \in X'$ et des formes bilinéaires $a \in L(X \times X, \mathbb{R})$ et $b \in L(M \times X, \mathbb{R})$. Alors, si :

- (i) a est coercive
- (ii) la condition inf-sup est satisfaite

Le problème mixte $\forall q \in M, \forall v \in X$:

$$\left\{ \begin{array}{l} (u,p) \in X \times M \ \mathrm{tq} \ : \\ a(u,v) + b(p,v) = \ \langle f,v \rangle \\ b(q,u) = 0 \end{array} \right. \qquad \mathrm{avec} \left\{ \begin{aligned} a(u,v) &= \frac{\rho}{\tau} \int_{\Omega} uv + \int_{\Omega} \alpha(\theta,x) \eta \nabla u : \nabla v \\ b(q,v) &= -\int_{\Omega} \mathrm{div}(v) \ q \\ \langle f,v \rangle &= \frac{\rho}{\tau} \int_{\Omega} u^m v - \int_{\partial \Omega} p \ n \cdot v \ \mathrm{(ops} \ u^m \ \mathrm{connue}) \end{aligned} \right. \right.$$

admet une unique solution $(u, p) \in X \times M$.

ÉOUATION DE CONCENTRATION

Équation de concentration et conditions limites

$$\begin{cases} \begin{array}{l} \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = \operatorname{div}(\gamma \beta(\mathbf{x}, \theta) \nabla c) & \operatorname{sur} \Omega \\ \\ \frac{\partial c}{\partial \mathbf{n}} = \partial_{\mathbf{n}} c = 0 & \operatorname{sur} \operatorname{les} \operatorname{bords} \operatorname{lat\'{e}raux} / \operatorname{neutres} \\ \\ c(\mathbf{x}, t) = \bar{c} = 200 \, kg.m^{-3}, & \forall t \in [0, T] \operatorname{en} \operatorname{entr\'{e}e} \\ \end{array} \right.$$

Formulation variationnelle, discrétisation éléments finis, espace \mathbb{P}_2

À chaque pas de temps, on cherche $c_h^{m+1} \in P_h$ tel que, $\forall v_h \in P_h \subset H^1_{0,\Gamma_{\text{outrop}}}(\Omega)$:

$$\begin{split} \frac{1}{\tau} \int_{\Omega} \left[c_h^{m+1} - c_h^m \right] \cdot v_h &= -\int_{\Omega} \left[\gamma \theta(\mathbf{x_h}) \nabla c_h^{m+s} \cdot \nabla v_h + \nabla c_h^{m+s} \cdot \mathbf{u_h} v_h \right] \\ &+ \gamma \int_{\Gamma_{\text{cortio}}} \theta(\mathbf{x_h}) \partial_{\mathbf{n}} c_h^{m+s} v \end{split}$$

ÉQUATION DE STOKES

Pression à imposer

D'après le profil de Poiseuille

$$\bar{u} = \frac{\bar{x}^2 \bar{p}}{8\eta L} \implies \bar{p} = \frac{8\bar{u}\eta L}{\bar{x}^2}$$

$$\bar{p} \approx \frac{810^{-3}10^{-3} \cdot L}{10^{-12}} = 8 \cdot 10^6 L$$

La pression dépend uniquement de la longueur du circuit.

Tuyau droit : $L = 5\bar{x} \implies \bar{p} = 40Pa$

Temps de simulation T

Accélération caractéristique équation adimensionnée :

$$\bar{a} = \frac{\bar{u}}{T} \implies \frac{\rho \bar{u}}{\bar{t}} = \frac{\bar{u}}{T}$$

$$\implies T = \frac{\bar{t}}{\rho} = 3 \cdot 10^{-8} s$$

T temps caractéristique pour voir le fluide accélérer.

ÉQUATION DE CONCENTRATION

Coefficient de diffusion

D'après la loi de Stokes-Einstein

$$\gamma \beta(\mathbf{x}, \theta) = \frac{k\theta}{6\pi \eta r} \approx \frac{1,38 \cdot 10^{-23} \theta}{6\pi 10^{-3} r}$$
$$\approx 7,32 \cdot 10^{-22} \times \frac{1}{r} \times \theta(\mathbf{x})$$

$$r = 10^{-8} m \implies \frac{\gamma}{r} \approx 7.32 \cdot 10^{-14}$$

Temps de simulation T

Phénomène de convection prédomine

$$\bar{u} = \frac{L}{T} \implies T = \frac{L}{\bar{u}}$$

T temps caractéristique pour voir la concentration avancer.

Tuyau droit :
$$T=\frac{5\bar{x}}{\bar{u}}=5\cdot 10^{-3}s$$

e Introduction Géométrie et maillage Équations du problème Paramètres de simulation Simulations sur différentes géométries Conclusi

TUYAU DROIT : VITESSES IMPOSÉES, PROFIL DE POISEUILLE

Figure – Tuyau droit, vitesse/écoulement de poiseuille imposé

La vitesse imposée produit une surpression en entrée

naire Introduction Géométrie et maillage Équations du problème Paramètres de simulation **Simulations sur différentes géométries** Conclusion

TUYAU DROIT: PRESSIONS IMPOSÉES

Figure – Tuyau droit, pression imposée

La pression entraîne le mouvement du fluide.

TUYAU DROIT : VISCOSITÉ DYNAMIQUE ET DIFFUSION

Introduction Géométrie et maillage Équations du problème Paramètres de simulation Simulations sur différentes géométries Conclusion

TUYAU DROIT: IMPACT DE LA CHAUFFE

Figure – Tuyau droit, concentration imposée, effet diffusif exagéré, chauffe géométrique

Figure – Tuyau droit, concentration imposée, effet diffusif exagéré, chauffe non géométrique

TUYAU DROIT: IMPACT DE LA CHAUFFE

Figure – Effet diffusif exagéré, chauffe non géométrique, température lissée

Figure – Effet diffusif réel, chauffe non géométrique, température lissée

GÉOMÉTRIE DU PROJET : CIRCUIT À SECTION CONSTANTE

Figure – Fonctions adaptées sur la géométrie du projet

ÉQUATIONS DE STOKES : CHAMP DES VITESSES

Figure – Champ de vitesse P2, pressions imposées, temps initial

CHAMP DE PRESSION ET PROFIL DE VITESSES

(a) Chute de pression affine

(b) Profil de Poiseuille en sortie, régime permanent

ÉQUATION DE CONCENTRATION

Supposons que nous mélangeons des molécules de rayon $r = 10^{-8} m$

ÉQUATION DE CONCENTRATION

Figure – Produit trop diffusif, le système n'a pas d'intérêt

CHANGEONS DE SOLUTÉ/PRODUIT

Prenons $r = 10^{-7} m$:

Figure – Concentration, grandes molécules, pas de chauffe

CHAUFFE À 90 DEGRÉS

Figure – Concentration, grandes molécules, chauffe à 90 degrés Celsius

La chauffe n'est pas suffisante pour cette taille de circuit ...

CHAUFFE EXCESSIVE POUR CE PRODUIT

Figure – Concentration, grandes molécules, chauffe à 500 degrés Celsius

On a du exagérer la chauffe/diffusion pour bien mélanger ici. Peut-être aurait on du allonger le circuit?

TUBE LONG

On reprend nos grandes molécules sur une géométrie plus longue et sans chauffe :

CONCLUSION

- Le modèle et les équations tiennent en compte des dimensions du système
- Les simulations sont cohérentes avec un fluide newtonien visqueux réel en écoulement laminaire.
- Le mélange dépend fortement de la taille des molécules du produit, ainsi que de la longueur du système.
- Peut-être que la vitesse imposée est trop grande pour voir un intérêt de la chauffe contre l'allongement du système.
- Peut-être serait-il nécessaire d'ajouter un terme de tension de surface entre les deux fluides, ou bien de faire recours aux lois de la thermodynamique pour décrire le mélange des deux fluides...

MERCI BEAUCOUP!