

RDGAN: Retinex Decomposition based Adversarial Learning for Low-Light Enhancement

Junyi Wang, Weimin Tan, Xuejing Niu, and Bo Yan

School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

1. Low-Light Enhancement & Retinex Decomposition

Low-light image enhancement aims to improve the quality of photos taken under the low-light condition. Low-light images usually suffer from low contrast and loss of image details.

Retinex theory is a computational theory that decomposes an image P into two components, namely I (Illumination) and R (Reflectance), which can be formulated as $P = I \circ R$. The I component is a grayscale image which is relatively smooth on the surface of the same object. The R component is a sRGB image which is relatively consistent under varying light conditions.

As shown in Fig. 1, where RetinexNet is a learning-based low-light enhancement approach, decomposed **R** components by our proposed RDGAN have fewer distortions.

Fig. 1 Comparison on Retinex decomposition.

2. Motivation & Contribution

Motivation:

For traditional Retinex-based methods, the decomposition results are optimized by iterations. Thus, when combining with other computer vision tasks, the overall framework is not end-to-end. For existing learning-based methods, the decomposition results lack of accuracy. Moreover, most Retinex-based methods only adjust the decomposed I component to obtain the final enhanced result, which neglects the distortions in the R component.

Contribution:

- We propose a framework with two networks: RDNet and FENet (see Fig. 2). Our RDNet learns to decompose the input image (no matter low-light or well-exposed) into I & R components (guided by its own Bright Channel after a morphological closing operation). A simple CRM function (Camera Response Model) is applied to the low-light image for a rough enhanced result (guide by its decomposed I component).
- Our FENet combines the enhanced result by CRM, the decomposed **R** component and the low-light image to generate the final enhanced result. We also design a novel adversarial loss, which is not computed on the enhanced results and the reference images but on their decomposed **R** components. Our new adversarial loss helps the generator network with color and detail restoration.

3. Our Proposed Framework

Fig. 2 Overview of our proposed RDGAN framework.

Loss Functions for RDNet

Initialization loss

$$\mathcal{L}_{ini} = \frac{1}{N} \sum_{j=1}^{N} ||In_I^j - In_V^j||^2 + ||Lb_I^j - Lb_V^j||^2$$

Weighted total variation loss

$$\mathcal{L}_{wtv} = \frac{1}{N} \sum_{j=1}^{N} \frac{||\nabla I n_I^j||^2}{I n_W^j |\nabla I n_V^j| + \epsilon} + \frac{||\nabla L b_I^j||^2}{L b_W^j |\nabla L b_V^j| + \epsilon}$$

Decomposition loss

$$\mathcal{L}_{com} = \frac{1}{N} \sum_{j=1}^{N} ||In_{I}^{j} \circ In_{R}^{j} - Input^{j}||^{2} + ||Lb_{I}^{j} \circ Lb_{R}^{j} - Label^{j}||^{2}$$

Reflectance error loss

$$\mathcal{L}_{err} = \frac{1}{N} \sum_{j=1}^{N} ||In_R^j - Lb_R^j||^2$$

Loss Functions for FENet

Content perceptual loss

$$\mathcal{L}_{con} = \frac{1}{N} \sum_{i=1}^{N} ||V_{5_4}(Out^{j}) - V_{5_4}(Label^{j})||^{2}$$

RDGAN adversarial loss

 $\mathcal{L}_{RDGAN_d} = -\log \mathcal{D}_{real}(Lb_R^j) - \log \mathcal{D}_{fake}(Out_R^j)$ $\mathcal{L}_{RDGAN_g} = -\log \mathcal{D}_{real}(Out_R^j)$

CRM Function

$$k = \left(\frac{1}{In_I + \epsilon}\right)^a$$

$$CRM(In_I, Input) = e^{b(1-k)}Input^k$$

4. Experiment

Fig. 3 Visualization of state-of-the-art approaches on image Statue.

Method	PSNR	FSIMc	Time(s)
NPEA [3]	19.81	0.9160	18.61
SRIE [4]	19.33	0.9221	18.35
MF [5]	21.17	0.9371	0.58
LIME [6]	19.93	0.8979	0.33
JIEP [7]	20.70	0.9375	9.48
CRM [8]	21.33	0.9450	0.51
RobustR [9]	23.45	0.9296	41.54
GLADNet [11]	21.65	0.9357	0.31(GPU)
RetinexNet [14]	18.67	0.8535	0.27(GPU)
RDGAN	22.34	0.9583	0.58(GPU)

Fig. 4 Comparison of state-of-the-art approaches on 53 testing images (1024x682).

Limitation:

Noises and JPEG artifacts that do not look obvious in the original low-light images may be amplified. One possible reason is that our approach, as well as existing low-light enhancement methods, cannot perfectly deal with the noises and JPEG artifacts in low-light images.