数据挖掘大作业二:关联规则挖掘

1. 数据预处理

对数据集进行处理,转换成适合关联规则挖掘的形式数据集:dataset1:wine-reviews,来源https://www.kaggle.com/zynicide/wine-reviews 包含两个csv文件:winemag-data-130k-v2.csv:包含14个属性(3个数值属性,11个标称属性),129970条数据记录;winemag-data_first150k.csv:包含11个属性(3个数值属性,8个标称属性),150930条数据记录该数据集是包括了许多葡萄酒的点评,本次作业打算分析红酒产地、品种的关系。首先对数据集缺失值进行处理,采用的是用最高频率值来填补缺失值的方法对数值属性使用/属性=百分比的编码方式进行离散化,使用四分位数将原属性切分为四部分,使用0-0.25,0.25-0.5,0.5-0.75,0.75-1.0共4个离散化属性来替代原属性

```
import scipy.stats as stats
import pandas as pd
import matplotlib.pyplot as plt
import pylab
%matplotlib inline

df = pd.read_csv('assignment1/wine-reviews/winemag-data-130k-v2.csv', index_col=0)
df.head()
```

```
transactions = []
for index, row in df.iterrows():
    transactions += [(row['country'], row['variety'], row['winery'])]
transactions[:20]
```

```
[('Italy', 'White Blend', 'Nicosia'),
 ('Portugal', 'Portuguese Red', 'Quinta dos Avidagos'),
 ('US', 'Pinot Gris', 'Rainstorm'),
 ('US', 'Riesling', 'St. Julian'),
 ('US', 'Pinot Noir', 'Sweet Cheeks'),
 ('Spain', 'Tempranillo-Merlot', 'Tandem'),
 ('Italy', 'Frappato', 'Terre di Giurfo'), ('France', 'Gewürztraminer', 'Trimbach'),
 ('Germany', 'Gewürztraminer', 'Heinz Eifel'),
('France', 'Pinot Gris', 'Jean-Baptiste Adam'),
 ('US', 'Cabernet Sauvignon', 'Kirkland Signature'),
 ('France', 'Gewürztraminer', 'Leon Beyer'),
 ('US', 'Cabernet Sauvignon', 'Louis M. Martini'),
 ('Italy', 'Nerello Mascalese', 'Masseria Setteporte'),
 ('US', 'Chardonnay', 'Mirassou'),
 ('Germany', 'Riesling', 'Richard Böcking'), ('Argentina', 'Malbec', 'Felix Lavaque'),
 ('Argentina', 'Malbec', 'Gaucho Andino'),
 ('Spain', 'Tempranillo Blend', 'Pradorey'),
 ('US', 'Meritage', 'Quiévremont')]
```

```
# 把数值属性列作离散化
def ParticalDiscretization(df, nume_attr=[], bina_attr=[]):
    new_df = copy.deepcopy(df[bina_attr]);
    for i in nume_attr:
       new_attr = [i + '=0\sim0.25', i + '=0.25\sim0.5', i + '=0.5\sim0.75', i + '=0.75\sim1.0'];
        tmp = pandas.DataFrame(columns=new_attr, index=df.index);
        k = 0;
        for j in df[i]:
           if j \ge df[i].quantile(0.75):
               tmp[i + '=0.75\sim1.0'][k] = 1;
            elif j >= df[i].quantile(0.5):
                tmp[i + '=0.5\sim0.75'][k] = 1;
            elif j >= df[i].quantile(0.25):
                tmp[i + '=0.25\sim 0.5'][k] = 1;
            elif j >= df[i].guantile(0):
               tmp[i + '=0\sim 0.25'][k] = 1;
        new_df = pandas.concat([new_df, tmp], axis=1);
    new_df = new_df.fillna(value=0);
    return new_df;
```

2. 找出频繁模式

```
from collections import defaultdict
import itertools
def apriori(transactions, support=0.1, confidence=0.8, lift=1, minlen=2, maxlen=2):
    item_2_tranidxs = defaultdict(list)
    itemset_2_tranidxs = defaultdict(list)
    for tranidx, tran in enumerate(transactions):
        for item in tran:
            item_2_tranidxs[item].append(tranidx)
            itemset_2_tranidxs[frozenset([item])].append(tranidx)
    item_2_tranidxs = dict([(k, frozenset(v)) for k, v in item_2_tranidxs.items()])
    itemset_2_tranidxs = dict([
        (k. frozenset(v)) for k. v in itemset 2 tranidxs.items()])
    tran_count = float(len(transactions))
    # print('Extracting rules in {} transactions...'.format(int(tran_count)))
    valid_items = set(item
        for item, tranidxs in item_2_tranidxs.items()
            if (len(tranidxs) / tran_count >= support))
    pivot_itemsets = [frozenset([item]) for item in valid_items]
    freasets = []
    if minlen == 1:
        freqsets.extend(pivot_itemsets)
    for i in range(maxlen - 1):
        new_itemset_size = i + 2
        new_itemsets = []
        for pivot_itemset in pivot_itemsets:
            pivot_tranidxs = itemset_2_tranidxs[pivot_itemset]
            for item, tranidxs in item_2_tranidxs.items():
                if item not in pivot_itemset:
                    common tranidxs = pivot tranidxs & tranidxs
                    if len(common_tranidxs) / tran_count >= support:
                        new_itemset = frozenset(pivot_itemset | set([item]))
                        if new_itemset not in itemset_2_tranidxs:
                            new_itemsets.append(new_itemset)
                            itemset_2_tranidxs[new_itemset] = common_tranidxs
        if new_itemset_size > minlen - 1:
            freqsets.extend(new_itemsets)
        pivot_itemsets = new_itemsets
    # print('{} frequent patterns found'.format(len(freqsets)))
    for freaset in freasets:
        for item in frequet:
            rhs = frozenset([item])
            lhs = freqset - rhs
            support_rhs = len(itemset_2_tranidxs[rhs]) / tran_count
            if len(1hs) == 0:
                lift rhs = float(1)
                if support_rhs >= support and support_rhs > confidence and lift_rhs > lift:
                    yield (lhs, rhs, support_rhs, support_rhs, lift_rhs)
            else:
                confidence_lhs_rhs = len(itemset_2_tranidxs[freqset]) \
                    / float(len(itemset_2_tranidxs[lhs]))
                lift_lhs_rhs = confidence_lhs_rhs / support_rhs
                if confidence_lhs_rhs >= confidence and lift_lhs_rhs > lift:
                    support_lhs_rhs = len(itemset_2_tranidxs[freqset]) / tran_count
                    yield (lhs, rhs, support_lhs_rhs, confidence_lhs_rhs, lift_lhs_rhs)
```

```
rules = apriori(transactions, support=0.03, confidence=0.1, lift=1)
rules_sorted = sorted(rules, key=lambda x: (x[4], x[3], x[2]), reverse=True) # ORDER BY lift DESC, confidence
DESC. support DESC
for r in rules_sorted:
   print(r)
(frozenset({'Bordeaux-style Red Blend'}), frozenset({'France'}), 0.03635426364342815, 0.6832971800433839,
4.019771773295553)
(frozenset({'France'}), frozenset({'Bordeaux-style Red Blend'}), 0.03635426364342815, 0.2138686461775223,
4.019771773295553)
(frozenset({'Cabernet Sauvignon'}), frozenset({'US'}), 0.05628178593686284, 0.7722761824324325,
1.841580575864628)
(frozenset({'US'}), frozenset({'Cabernet Sauvignon'}), 0.05628178593686284, 0.13421033318655512,
1.841580575864628)
(frozenset({'Pinot Noir'}), frozenset({'US'}), 0.07605542774926714, 0.7448010849909584, 1.7760630745882846)
(frozenset(\{'us'\}), frozenset(\{'Pinot\ Noir'\}), 0.07605542774926714, 0.18136283575517392, 1.7760630745882844)) \\
(frozenset(\{'chardonnay'\}),\ frozenset(\{'us'\}),\ 0.052327057574381976,\ 0.5786607674636263,\ 1.3798825518863749)
(frozenset({'us'}), frozenset({'chardonnay'}), 0.052327057574381976, 0.12477983267283135, 1.3798825518863749)
```

3. 导出关联规则及其支持度,置信度

```
import csv

with open('result.csv', 'wt') as f:
    f_csv = csv.writer(f, delimiter=',')
    f_csv.writerow(['rule', 'sup', 'conf', 'lift'])
    for r in rules_sorted:
        f_csv.writerow([f'{str(list(r[0])[0])}} => {str(list(r[1])[0])}', r[2], r[3], r[4]])

pd.read_csv('result.csv')

.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	rule	sup	conf	lift
0	Bordeaux-style Red Blend => France	0.036354	0.683297	4.019772
1	France => Bordeaux-style Red Blend	0.036354	0.213869	4.019772
2	Cabernet Sauvignon => US	0.056282	0.772276	1.841581
3	US => Cabernet Sauvignon	0.056282	0.134210	1.841581
4	Pinot Noir => US	0.076055	0.744801	1.776063
5	US => Pinot Noir	0.076055	0.181363	1.776063
6	Chardonnay => US	0.052327	0.578661	1.379883
7	US => Chardonnay	0.052327	0.124780	1.379883

4. 对规则进行评价,使用Lift, Kulc

上一步已经计算了Lift,这里再计算一下Kulc。

```
res = []
for r in rules_sorted:
    conf1 = r[3]
    for r2 in rules_sorted:
        if r2[0] == r[1] and r2[1] == r[0]:
            conf2 = r2[3]
    kulc = (conf1 + conf2) / 2
    res.append(kulc)
```

```
[0.4485829131104531,
0.4485829131104531,
0.4532432578094938,
0.4532432578094938,
0.46308196037306615,
0.46308196037306615,
0.3517203000682288,
0.3517203000682288]
```

5. 对挖掘结果进行分析

这里以Bordeaux-style Red Blend => France为例。

由关联规则可知Bordeaux-style Red Blend这个品种的葡萄酒基本上产自法国,那么我们就来检验一下:

```
df[df['variety'] == 'Bordeaux-style Red Blend'].sample(20)
```

	country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_handle	title
109896	France	Named after the Swedish royal family, this est	NaN	89	NaN	Bordeaux	Haut- Médoc	NaN	Roger Voss	@vossroger	Château Bernadotte 2013 Haut- Médoc
31828	France	Ripe fruit, juicy acidity and a fine balance o	Boha	90	17.0	Bordeaux	Blaye Côtes de Bordeaux	NaN	Roger Voss	@vossroger	Château Magdeleine Bouhou 2015 Boha (Blaye Cô
64213	France	Wood and smoke aromas precede ripe and dusty t	Famille Lapalu	86	10.0	Bordeaux	Médoc	NaN	Roger Voss	@vossroger	Domaines Lapalu 2008 Famille Lapalu (Médoc)
116444	France	This is rounded, with its ripe fruit dominatin	Cuvée Prestige	87	14.0	Bordeaux	Bordeaux Supérieur	NaN	Roger Voss	@vossroger	Château de Cornemps 2009 Cuvée Prestige (Bord
77402	France	This wine is firm with plenty of structured ta	NaN	93	NaN	Bordeaux	Margaux	NaN	Roger Voss	@vossroger	Château Giscours 2013 Margaux
86644	France	This ripe, bold and generous Gonfrier Frères w	NaN	89	14.0	Bordeaux	Bordeaux	NaN	Roger Voss	@vossroger	Château Tassin 2015 Bordeaux
36585	US	This wine is made from a majority of Cabernet	Winston Hill	92	150.0	California	Rutherford	Napa	Virginie Boone	@vboone	Frank Family 2012 Winston Hill Red (Rutherford)
51398	US	Full bodied, with structured tannins and brigh	New World Red	85	34.0	Virginia	Monticello	NaN	NaN	NaN	Kluge Estate 2009 New World Red Red (Monticello)
103898	US	A proprietary blend of 36% Cabernet Sauvignon,	Contrarian	91	135.0	California	Napa Valley	Napa	Virginie Boone	@vboone	Blackbird Vineyards 2013 Contrarian Red (Napa
78741	France	This is a firmly structured wine, solid with f	NaN	92	NaN	Bordeaux	Pessac- Léognan	NaN	Roger Voss	@vossroger	Château Carbonnieux 2014 Pessac- Léognan
96518	US	Based on Merlot, this Bordeaux- style blend is 	Bastille	86	38.0	California	Sonoma County	Sonoma	NaN	NaN	De Novo 2009 Bastille Red (Sonoma County)
122324	US	After initial scents of smoke and dark toast s	Corchaug Estate Ben's Blend	89	48.0	New York	North Fork of Long Island	Long Island	Anna Lee C. Iijima	NaN	McCall 2007 Corchaug Estate Ben's Blend Red (N

	country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_handle	title
56833	US	This wine is a blend of Merlot (44%), Cabernet	Two Blondes Vineyard	91	64.0	Washington	Yakima Valley	Columbia Valley	Sean P. Sullivan	@wawinereport	Andrew Will 2013 Two Blondes Vineyard Red (Yak
63552	France	An impressive blend of Merlot and Malbec, this	Comtesse de Ségur	90	19.0	Southwest France	Montravel	NaN	Roger Voss	@vossroger	Château Laulerie 2012 Comtesse de Ségur (Mont
75613	France	94-96 Barrel sample. Full of blackcurrant frui	Barrel sample	95	NaN	Bordeaux	Margaux	NaN	Roger Voss	@vossroger	Château Giscours 2009 Barrel sample (Margaux)
33862	US	High alcohol, softness and tremendously ripe f	Maquette	87	38.0	California	Paso Robles	Central Coast	NaN	NaN	Sculpterra 2010 Maquette Red (Paso Robles)
99251	France	This structured wine has 25- year old vines as	NaN	88	10.0	Bordeaux	Bordeaux	NaN	Roger Voss	@vossroger	Château Arnaucosse 2012 Bordeaux
65728	Argentina	This is an elegant wine that shows that Argent	Pasionado Cuatro Cepas	91	50.0	Mendoza Province	Mendoza	NaN	Michael Schachner	@wineschach	Andeluna 2005 Pasionado Cuatro Cepas Red (Mend
57233	France	The vineyard surrounds a 14th century castle,	NaN	90	36.0	Bordeaux	Puisseguin Saint- Émilion	NaN	Roger Voss	@vossroger	Château Langlais 2010 Puisseguin Saint- Émilion
129193	France	Layered tannins and wood flavors have tended t	NaN	84	18.0	Bordeaux	Bordeaux Supérieur	NaN	Roger Voss	@vossroger	Château Laville 2015 Bordeaux Supérieur

再绘制一个直方图如下,可以看出,Bordeaux-style Red Blend这个品种的葡萄酒产自法国的确比较多。

df[df['variety'] == 'Bordeaux-style Red Blend'['country'].value_counts().plot(kind='bar')

对规则进行可视化如下

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('result.csv')
plt.scatter(df['sup'], df['conf'], c=df['lift'], s=20, cmap='Reds')
plt.xlabel('sup')
plt.ylabel('conf')
cb = plt.colorbar()
cb.set_label('lift')
plt.show()
```

