Shopify Summer 2022 Data Science Intern Challenge Q1

order_id shop_id user_id order_amount total_items payment_method

224

90

144

Applicant: Ester Tsai

Phone: 925-918-5938

Email: tsaiester@gmail.com

Project Portfolio: https://ester-tsai.github.io/

53

92

44

2

3

evaluate this data.

count

mean

25%

1602

1603

746

925

861

In [4]: quantitative data = data[['order amount', 'total items']]

8.78720

1.00000

116 32032

In [1]: import pandas as pd

Question 1: On Shopify, we have exactly 100 sneaker shops, and each of these shops sells only one model of shoe. We want to do some analysis of the

0

1

average order value (AOV). When we look at orders data over a 30 day window, we naively calculate an AOV of \$3145.13. Given that we know these shops are selling sneakers, a relatively affordable item, something seems wrong with our analysis.

data = pd.read_csv("2019 Winter Data Science Intern Challenge Data Set.csv") data

cash

created_at

cash 2017-03-13 12:36:56

cash 2017-03-03 17:38:52

2017-03-14 4:23:56

Out[2]:

In [2]:

	3	4	18	935	156	1	credit_card	2017-03-26 12:43:37
	4	5	18	883	156	1	credit_card	2017-03-01 4:35:11
	4995	4996	73	993	330	2	debit	2017-03-30 13:47:17
	4996	4997	48	789	234	2	cash	2017-03-16 20:36:16
	4997	4998	56	867	351	3	cash	2017-03-19 5:42:42
	4998	4999	60	825	354	2	credit_card	2017-03-16 14:51:18
	4999	5000	44	734	288	2	debit	2017-03-18 15:48:18
Ę	5000 rows	s × 7 colu	umns					
[3]:	average	_order_	_value =	data	.get('order_amou	nt')	.mean()	

2

1

V) is \${round(average_order_value, 2)}") Without considering the total_items in each order, it appears that the average order value (AOV) is \$3145.13

print(f"Without considering the total_items in each order, it appears that the average order value (AO

quantitative_data.describe() Out[4]: order_amount total_items

Part A: Think about what could be going wrong with our calculation. Think about a better way to

90.000000

50% 284.000000 2.00000 75% 390.000000 3.00000 max 704000.000000 2000.00000 A summary of the dataset reveals that there is at least one **extreme outlier** with *total_items* = 2000 and *order_amount* = 704000 data.sort values(by='order amount', ascending=False).head(20) order_id shop_id user_id order_amount total_items 2153 2154 42 607 704000 3332 3333 42 607 704000

42

607

In [6]: | data_with_avg_value_per_item = data.copy(deep=True)

387.742800

2441.963725

169.000000 25725.000000

data_with_avg_value_per_item[['avg_value_per_item']].describe()

704000

5000.000000 5000.00000

3145.128000

163.000000

520 521 607 704000 2000 credit_card 2017-03-02 4:00:00

2000

2000

2000

payment_method

credit_card

credit_card

credit_card

created_at

2017-03-12 4:00:00

2017-03-24 4:00:00

2017-03-17 4:00:00

In [5]:

Out[5]:

						0.0000	
60	61	42	607	704000	2000	credit_card	2017-03-04 4:00:00
2835	2836	42	607	704000	2000	credit_card	2017-03-28 4:00:00
4646	4647	42	607	704000	2000	credit_card	2017-03-02 4:00:00
2297	2298	42	607	704000	2000	credit_card	2017-03-07 4:00:00
1436	1437	42	607	704000	2000	credit_card	2017-03-11 4:00:00
4882	4883	42	607	704000	2000	credit_card	2017-03-25 4:00:00
4056	4057	42	607	704000	2000	credit_card	2017-03-28 4:00:00
15	16	42	607	704000	2000	credit_card	2017-03-07 4:00:00
1104	1105	42	607	704000	2000	credit_card	2017-03-24 4:00:00
1562	1563	42	607	704000	2000	credit_card	2017-03-19 4:00:00
2969	2970	42	607	704000	2000	credit_card	2017-03-28 4:00:00
4868	4869	42	607	704000	2000	credit_card	2017-03-22 4:00:00
1362	1363	42	607	704000	2000	credit_card	2017-03-15 4:00:00
691	692	78	878	154350	6	debit	2017-03-27 22:51:43
2492	2493	78	834	102900	4	debit	2017-03-04 4:37:34
3724	3725	78	766	77175	3	credit_card	2017-03-16 14:13:26

avg_value_per_item count 5000.000000

data_with_avg_value_per_item['avg_value_per_item'] = data.get('order_amount') / data.get('total_items')

min 90.000000 25% 133.000000 153.000000

In [8]:

Out[8]:

mean

std

50% 75%

max

3403

4918

2773

2492

In [7]:

Out[7]:

3404

4919

2774

2493

866

983

709

812

927

928

823

890

834

78

78

78

78

25725

51450

51450

25725

51450

77175

25725

25725

102900

a pair of sneakers. So I will take a look at whether these abnormal orders show any patterns. data_with_avg_value_per_item.sort_values(by='avg_value_per_item', ascending=False).head(50) order_id shop_id user_id order_amount total_items payment_method created_at avg_value_per_item 77175 25725.0 969 3 debit 2017-03-09 15:21:35 817 77175 3 25725.0 2017-03-16 3:45:46

2

2

1

2

3

1

debit 2017-03-22 22:06:01

cash 2017-03-16 21:39:35

cash 2017-03-27 11:04:04

cash 2017-03-12 12:23:08

cash 2017-03-15 13:26:46

cash 2017-03-26 10:36:43

2017-03-16 9:45:05

2017-03-04 4:37:34

credit_card 2017-03-17 18:09:54

debit

debit

25725.0

25725.0

25725.0

25725.0

25725.0

25725.0

25725.0

25725.0

25725.0

The table above shows that there is still something peculiar with the average value per item. The max of \$25725 seems abnormally large for

2495 1384 4079				102900	4	debit		25725.0
	2496	78	707	51450	2	cash	2017-03-26 4:38:52	25725.0
4070	1385	78	867	25725	1	cash	2017-03-17 16:38:06	25725.0
4079	4080	78	946	51450	2	cash	2017-03-20 21:14:00	25725.0
3705	3706	78	828	51450	2	credit_card	2017-03-14 20:43:15	25725.0
1259	1260	78	775	77175	3	credit_card	2017-03-27 9:27:20	25725.0
1193	1194	78	944	25725	1	debit	2017-03-16 16:38:26	25725.0
3151	3152	78	745	25725	1	credit_card	2017-03-18 13:13:07	25725.0
2564	2565	78	915	77175	3	debit	2017-03-25 1:19:35	25725.0
529	1530	78	810	51450	2	cash	2017-03-29 7:12:01	25725.0
440	3441	78	982	25725	1	debit	2017-03-19 19:02:54	25725.0
412	4413	78	756	51450	2	debit	2017-03-02 4:13:39	25725.0
548	2549	78	861	25725	1	cash	2017-03-17 19:36:00	25725.0
821	2822	78	814	51450	2	cash	2017-03-02 17:13:25	25725.0
192	4193	78	787	77175	3	credit_card	2017-03-18 9:25:32	25725.0
2512	2513	78	935	51450	2	debit	2017-03-18 18:57:13	25725.0
511	512	78	967	51450	2	cash	2017-03-09 7:23:14	25725.0
818	2819	78	869	51450	2	debit	2017-03-17 6:25:51	25725.0
490	491	78	936	51450	2	debit	2017-03-26 17:08:19	25725.0
3724	3725	78	766	77175	3	credit_card	2017-03-16 14:13:26	25725.0
204	1205	78	970	25725	1	credit_card	2017-03-17 22:32:21	25725.0
1419	1420	78	912	25725	1	cash	2017-03-30 12:23:43	25725.0
1311	4312	78	960	51450	2	debit	2017-03-01 3:02:10	25725.0
690	2691	78	962	77175	3	debit	2017-03-22 7:33:25	25725.0
617	618	78	760	51450	2	cash	2017-03-18 11:18:42	25725.0
101	3102	78	855	51450	2	credit_card	2017-03-21 5:10:34	25725.0
056	1057	78	800	25725	1	debit	2017-03-15 10:16:45	25725.0
780	3781	78	889	25725	1	cash	2017-03-11 21:14:50	25725.0
584	4585	78	997	25725	1	cash	2017-03-25 21:48:44	25725.0
160	161	78	990	25725	1	credit_card	2017-03-12 5:56:57	25725.0
922	2923	78	740	25725	1	debit	2017-03-12 20:10:58	25725.0
270	2271	78	855	25725	1	credit_card	2017-03-14 23:58:22	25725.0
715	4716	78	818	77175	3	debit	2017-03-05 5:10:44	25725.0
691	692	78	878	154350	6	debit	2017-03-27 22:51:43	25725.0
1040	4041	78	852	25725	1	cash	2017-03-02 14:31:12	25725.0
085	3086	78	910	25725	1	cash	2017-03-26 1:59:27	25725.0
697	3698	42	839	352	1	debit	2017-03-12 2:45:09	352.0
929	1930	42	770	352	1	credit_card	2017-03-17 8:11:13	352.0
911	1912	42	739	704	2	cash	2017-03-07 5:42:52	352.0
911	309	42	770	352	1	credit_card	2017-03-11 18:14:39	352.0

Part C: What is its value?

In [9]: median order amount = data with avg value per item.get('order amount').median() print(f"the median order amount is: \${median order amount}") the median order amount is: \$284.0

In [10]: median_avg_value_per_item = data_with_avg_value_per_item.get('avg_value_per_item').median() print(f"the median avg value per item is: \${median avg value per item}")

the median avg value per item is: \$153.0 Q1 Conclusion

The dataset appeared to have an abnormally high AOV of \$3145.13 because:

• There were nearly 50 orders with abnormally high average value per item.

• We did not take into account the effect of total items on order amount.

Solution:

Consider both AOV and avg_value_per_item

· Use median instead of mean

Additional Note (for fun!) • Please look into shop 78 for potential transaction fraud. All 46 orders at shop 78 have an average value per item of \$25725, which is abnormally expensive for a pair of sneakers.