				Bitte hier unbedin trikelnummer und se eintragen, sons Bearbeitung mögli
Postanschrif	: FernUnive	rsität ·580	84 Hagen	
/Name Vorn	amal			
(Name, Vorn	ame)			
(Name, Vorn	ame)			
(Name, Vorn	ame)			
(Straße, Nr.)	ame)			
	ame)			

FernUniversität in Hagen FAKULTÄT für Mathematik und Informatik

KLAUSUR zum Kurs Mathematische Grundlagen (01141) WS 2009/10

DATUM: 13.02.2010 **UHRZEIT:** 10.00 - 12.00 Uhr **KLAUSURORT:**

Bearbeitungshinweise

Korrektur

(Bitte vor Arbeitsbeginn durchlesen!)

- 1. Schreiben Sie Ihre Klausur bitte nicht mit Bleistift.
- 2. Füllen Sie bitte das Adressfeld leserlich und vollständig aus, und schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedes Lösungsblatt, das Sie abgeben.
- 3. Die Reihenfolge, in der Sie die Aufgaben/Teilaufgaben lösen, ist Ihnen freigestellt. Kreuzen Sie in der Tabelle (s.u.) an, welche Aufgaben Sie bearbeitet haben.
- 4. Bei jeder Aufgabe ist die erreichbare Höchstpunktzahl vermerkt. Sie haben die Klausur bestanden, wenn Sie 40 Punkte erreichen.
- 5. Erlaubt ist ein handgeschriebenes DIN-A4-Blatt mit eigenen Notizen.
- 6. Weitere Hilfsmittel wie Studienbriefe, Glossare, Bücher, Aufzeichnungen, Taschenrechner, etc. dürfen während der Klausur nicht benutzt werden. Ihre Benutzung sowie andere Täuschungsversuche führen dazu, dass Ihre Klausur mit 5 bewertet wird.

					Bemerkungen:				
Aufgabe	1	2	3	4	5	6	7	8	Summe
Bearbeitet									
max. Punktezahl	10	8	16	4	8	14	10	10	80
erreichte Punktezahl									

Prüfergebnis/Note	

Klausur am 13.02.2010:

Aufgabenstellungen

Die Lösungen aller Aufgaben müssen Sie begründen.

Aufgabe 1

Beweisen Sie mit vollständiger Induktion, dass $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ für alle $n \in \mathbb{N}$ gilt.

[10 Punkte]

Aufgabe 2

Sei
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in M_{33}(\mathbb{R})$$
. Bestimmen Sie die zu A inverse Matrix.

[8 Punkte]

Aufgabe 3

Sei
$$f: M_{22}(\mathbb{R}) \to M_{23}(\mathbb{R})$$
 definiert durch $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b+c & d \\ b & a+d & a \end{pmatrix}$ für alle $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{22}(\mathbb{R})$.

- 1. Beweisen Sie, dass f linear ist.
- 2. Bestimmen Sie eine Basis von Bild(f).
- 3. Beweisen Sie, dass f injektiv ist.

$$[4 + 8 + 4 = 16 Punkte]$$

Aufgabe 4

Sei $f:[0,4]\to\mathbb{R}$ definiert durch $x\mapsto |x-1|+3x-x^2.$

Beweisen Sie, dass f in [0,4] eine Nullstelle besitzt.

[4 Punkte]

Klausuraufgaben MG KL

Aufgabe 5

Begründen Sie, warum Sie bei der Berechnung des Grenzwertes

$$\lim_{x \to 0} \frac{\exp(x) - 1 - x}{\sin^2(x)}$$

die Regel von de l'Hospital verwenden dürfen, und berechnen Sie diesen Grenzwert.

[8 Punkte]

Aufgabe 6

- 1. Beweisen Sie, dass (-1,1) das Konvergenzintervall der Potenzreihe $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ ist.
- 2. Untersuchen Sie, ob diese Potenzreihe in den Punkten x=1 beziehungsweise x=-1 konvergent ist.

$$[6 + 8 = 14 \ Punkte]$$

Aufgabe 7

Seien A, B, C, D Atome für die folgende Aussagen gelten:

- 1. $A \to C \vee \neg D$
- 2. $B \lor C \to D$
- 3. $A \wedge B$

Weisen Sie mit einem formalen Beweises nach, dass dann auch C gilt. Erläutern Sie stichwortartig die einzelnen Beweisschritte.

[10 Punkte]

Aufgabe 8

Sei $x_0 \in (0,1)$ fest gewählt. Die Folge (a_n) sei definiert durch $a_1 = 1$ und $a_{n+1} = \frac{x_0 + a_n}{1 + a_n}$.

Sie dürfen im Folgenden ohne Beweis verwenden, dass $a_n > \sqrt{x_0}$ für alle $n \in \mathbb{N}$ ist.

- 1. Beweisen Sie mit Hilfe des Monotonieprinzips, dass (a_n) konvergent ist.
- 2. Bestimmen Sie den Grenzwert von (a_n) .

$$[4 + 6 = 10 \ Punkte]$$

Klausuraufgaben MG KL

Funktion	Definitionsbereich	Stammfunktion
$x \mapsto x^n, n \in \mathbb{N}_0$	R	$x \mapsto \frac{1}{n+1}x^{n+1}$
$x \mapsto x^{-n}, n \in \mathbb{N}, n \ge 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha+1} x^{\alpha+1}$
$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto \arctan(x)$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)}a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto \frac{1}{\cos^2(x)}$	$((k - \frac{1}{2})\pi, (k + \frac{1}{2})\pi), k \in \mathbb{Z}$	$x \mapsto \tan(x)$
$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi,(k+1)\pi),k\in\mathbb{Z}$	$x \mapsto -\cot(x)$