Chapitre 8

Application de la dérivation

I. Fonction dérivée et étude de fonction

1) <u>Interprétation graphique</u>

Dire que f est dérivable sur I signifie que, pour tout réel x de I, la courbe \mathcal{C}_f , représentant la fonction f, admet une seule tangente, de coefficient directeur :

Il semble donc exister un lien entre les variations de f et le signe de f.

2) Sens de variation

Propriété:

Soit f une fonction dérivable sur un intervalle I.

- Si la fonction f est **croissante** sur I, alors la dérivée est **positive** sur I.
- Si la fonction f est **décroissante** sur I, alors la dérivée est **négative** sur I.
- Si la fonction f est constante sur I, alors la dérivée est nulle sur I.

Démonstration :

On considère un réel h>0 et tel que $x+h \in I$.

Pour tout réel x de I, x+h>x:

• Si f est croissante sur I, alors $f(x+h) \ge f(x)$; donc $\frac{f(x+h)-f(x)}{h}$ est positif et alors la dérivée sera positive.

De même, si h < 0, on démontrerait que $\frac{f(x+h)-f(x)}{h}$ reste positif.

• Si f est décroissante sur I, alors $f(x+h) \le f(x)$; donc $\frac{f(x+h)-f(x)}{h}$ est négatif et alors la dérivée sera négative.

De même, si h < 0, on démontrerait que $\frac{f(x+h)-f(x)}{h}$ reste négatif.

Exemple:

f est croissante sur [-1; 1]:

Propriété:

Soit f une fonction dérivable sur un intervalle I.

- Si la dérivée est **positive** sur I, alors la fonction f est **croissante** sur I.
- Si la dérivée est **négative** sur I, alors la fonction f est **décroissante** sur I.
- Si la dérivée est **nulle** en toute valeur de I, alors la fonction f est **constante** sur I.

Remarque:

L'étude du signe de la dérivée permet donc de donner le sens de variation d'une fonction.

Exemple:

Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$, nous avons vu que f'(x)=2x, on a donc:

x			0		+∞
f'(x)=2x		_	0	+	
$f(x) = x^2$	+∞		0	A	+∞

Remarque:

Pour étudier les variations d'une fonction f, il n'est pas systématiquement nécessaire de déterminer la fonction dérivée f' et d'en étudier le signe.

Par exemple, soit g définie sur $]2;+\infty[$ par $g(x)=\frac{1}{x^3-8}$.

On sait que la fonction $x \mapsto x^3$ est croissante sur $]2;+\infty[$ donc g est décroissante sur $]2;+\infty[$.

II. Extremum

1) Extremum local

Définitions:

Soit I une fonction f définie sur un intervalle I.

- On dit que f admet un **minimum local** en a, s'il existe un intervalle ouvert J inclus dans I, contenant a et tel que pour tout x de J, $f(x) \ge f(a)$.
- On dit que f admet un **maximum local** en a, s'il existe un intervalle ouvert J inclus dans I, contenant a et tel que pour tout x de J, $f(x) \le f(a)$.

Exemple:

Soit f une fonction définie sur l'intervalle [-8 ; 7] dont voici le tableau de variations :

x	-8		-1		4		7
f(x)	10	_	-2	1	6	_	-5

D'après le tableau de variations, $f(x) \ge f(-1)$ pour tout x appartenant à l'intervalle]-8 ; 4[, donc la fonction f admet un minimum local en -1 qui vaut -2.

Ce n'est pas le minimum de la fonction car f(7) = -5.

2) Lien avec la dérivation

Propriété:

Soit f une fonction dérivable sur un intervalle ouvert I et a un nombre réel appartenant à I.

Si la fonction admet un **extremum** en a, alors f'(a) = 0.

Remarque:

Si f(a) est un extremum local, alors la tangente à la courbe représentative de f au point d'abscisse a est parallèle à l'axe des abscisses.

Propriété :

Soit f une fonction dérivable sur un intervalle ouvert I et a un nombre réel appartenant à I. Si la dérivée s'annule en **changeant de signe** en a, la fonction admet un extremum en a.

x	а	x	а
f'(x)	- 0 +	f'(x)	+ 0 –
f(x)	minimum	f(x)	maximum
			\mathscr{C}_f
	\mathcal{C}_f		
	a I		$a \qquad I \qquad \longrightarrow$
	$f'(x) < 0 \qquad f'(x) > 0$ $f'(q) \equiv 0$		$f'(x) > 0 \qquad f'(x) < 0$ $f'(a) = 0$
	$\int (dt) = 0$		$\int (a) = 0$

Remarques:

• L'hypothèse du changement de signe est nécessaire.

La fonction $x \mapsto x^3$ n'admet pas d'extremum sur \mathbb{R} , pourtant elle a une dérivée qui s'annule en x=0 (mais la dérivée ne change pas de signe).

• Pour l'intervalle I, l'hypothèse qu'il soit ouvert permet d'éviter que le nombre réel a soit une de ses extrémités. Si tel est le cas, l'étude des variations permet de conclure.

Par exemple, dans la situation ci-contre où f admet un maximum en a.

Propriété:

Soit f la fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec a, b et c des nombres réels et $a \neq 0$. Cette fonction f admet en $x = \frac{-b}{2a}$ un minimum si a > 0 et un maximum si a < 0.

Démonstration:

Soit f la fonction définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec a,b et c des nombres réels et $a\neq 0$. La dérivée de la fonction f est donnée par f'(x)=2ax+b et $f'(x)=0 \Leftrightarrow x=-\frac{b}{2a}$.

• Cas a > 0, $f'(x) > 0 \Leftrightarrow x > -\frac{b}{2a}$

Le tableau de variations de f est donc :

x	$-\infty$		$-\frac{b}{2a}$		+∞
f'(x)		-	0	+	
f(x)				1	

Donc f admet un minimum en $x = -\frac{b}{2a}$

• Cas a < 0, $f'(x) > 0 \Leftrightarrow x < -\frac{b}{2a}$

Le tableau de variations de f est donc :

x	$-\infty$		$-\frac{b}{2a}$		+∞
f'(x)		+	0	-	
f(x)		A			

Donc f admet un maximum en $x = -\frac{b}{2a}$