- 一、填空题(共6题,每题3分,共18分)
- 1. 若向量 $\alpha = (3,2,1)^T$, $\beta = (4,1,2)^T$, $\gamma = (-1,-2,1)^T$, 则 $2\alpha \beta + \gamma = ($).
- 2. 设 A 为 n 阶矩阵,且 $A^2 + 2A + 3I = 0$,则 $(A + 3I)^{-1} = ($).
- 3. 已知 $\alpha_1 = (1,2,1,2)^T$, $\alpha_2 = (1,1,3,3)^T$ 是四元非齐次线性方程组 Ax = b 的两个解,且系数矩阵的秩为 3,则方程组 Ax = b 的一般解为().
- 4. 设 A, B 均为 n 阶方阵,|A| = 3, |B| = 2, $|A^{-1} + B| = 1$, 则 $|B^{-1} + A| = ($).
- 5. 矩阵 $A = (a_{ij})_{3\times 3}$ 满足 $A^T = A^*$,若 $2a_{11} = a_{12} = a_{13} > 0$,则 $a_{11} = ($).
- 6. 矩阵 $A = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 2 & 0 \\ -1 & -2 & 0 \end{pmatrix}$,与矩阵 B 相似,则 |B 3I| = ().
- 二、选择题(共6题,每题3分,共18分)
- 1. 设矩阵 $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & -3 \\ 3 & 4 & a \end{pmatrix}$, 齐次线性方程组 Ax = 0 有非零解,则 a = ().
 - (A) 0 (B) 1 (C) 2 (D) 3
- 2. 已知向量组 α_1 , α_2 , α_3 线性无关,向量 β_1 可由向量 α_1 , α_2 , α_3 线性表示,向量 β_2 不能由向量 α_1 , α_2 , α_3 线性表示,则对任意常数 k 必有()
 - (A) α_1 , α_2 , α_3 , $k\beta_1 + \beta_2$ 线性无关; (B) α_1 , α_2 , α_3 , $k\beta_1 + \beta_2$ 线性相关;
 - (C) α_1 , α_2 , α_3 , $\beta_1 + k\beta_2$ 线性无关; (D) α_1 , α_2 , α_3 , $\beta_1 + k\beta_2$ 线性相关;
- 3. 设 A 为 3 阶方阵,B 为 2 阶方阵,C 为 3 × 2 矩阵,且 |A| = 3,|B| = 2,则 $|A \cap C| = ($).
 - (A) 3 (B) 2 (C) 6 (D) -6
- 4. 设 A 为 3 阶矩阵,将 A 的第 1 列加到第 3 列得 B, 再将 B 的第 3 行的 -1倍 加到第 1 行得 C,记 $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则一定有().
 - (A) $A = PCP^{T}$ (B) $A = PCP^{-1}$ (C) A = PCP (D) $A = P^{-1}CP$

- 5. 记 r(X) 表示矩阵 X 的秩,r(X,Y) 表示分块矩阵 (X,Y) 的秩;则对 n 阶矩阵 **A.B**, 下列一定成立的是().
 - (A) r(A, AB) = r(A);
- (B) r(A, BA) = r(A);
- (C) $r(A, B) = \max\{r(A), r(B)\};$ (D) $r(A, B) = r(A^T, B^T).$
- 6. 设 A 为 3 阶方阵,已知存在可逆矩阵 P,使得 $PAP^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,则下列

对角阵中与 A 相似的是().

$$\text{(A)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{(B)} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{(C)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{(D)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

- 三、计算题(共4题,每题8分,共32分)
- 1. 计算如下 n+1 阶行列式的值,其中 a_0 , a_1 , a_2 , …, a_n 均不为 0;

$$\begin{vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & 0 & \cdots & 0 \\ 1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a_n \end{vmatrix}.$$

2. 已知 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$, 矩阵 B 满足 $2BA^2 = A^*BA^2 + 3A$, A^* 为 A 的伴随矩阵,

求矩阵 B.

- 3. 设向量组 $\alpha_1 = (1,-1,1)^T$, $\alpha_2 = (-1,2,0)^T$, $\alpha_3 = (1,2,4)^T$, $\alpha_4 = (-1,1,1)^T$, 求向量组的秩及其一个极大线性无关组,并将其余向量用极大线性无关组线性 表出.
- 4. 己知 R^2 的两组基为 $\mathbf{B_1} = \{\alpha_1, \alpha_2\}, \ \mathbf{B_2} = \{\beta_1, \beta_2\}, \$ 其中

$$\alpha_1 = (1,1)^T$$
, $\alpha_2 = (1,-1)^T$; $\beta_1 = (3,-1)^T$, $\beta_2 = (5,-1)^T$;

(1) 求从基 B_1 到基 B_2 的过渡矩阵;

(2) 若向量 γ 在基 $\mathbf{B_1}$ 下的坐标为 $(3,4)^T$, 求 γ 在基 $\mathbf{B_2}$ 下的坐标.

四、证明题(共1题,8分)

设 α_1 , α_2 是 3 阶方阵 A 分别对应于特征值 -2, 1 的特征向量,向量 α_3 满足 $A\alpha_3 = 2\alpha_2 + \alpha_3$,证明: α_1 , α_2 , α_3 线性无关.

五、解方程组(共1题,12分)

$$\begin{cases} x_1 + x_2 - 4x_3 + x_4 = 6 \\ x_1 + 4x_3 - x_4 = -1 \\ 2x_1 + x_2 + (a-1)x_3 + (b-3)x_4 = b + 6 \\ -2x_1 - x_2 + (b-2)x_4 = b - 2 \end{cases}$$

- (1)讨论 a,b 取何值时,方程组无解,有无穷多解,有唯一解;
- (2) 当方程组有无穷多解时求其一般解.

六、二次型(共1题,12分)

- 二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + cx_3^2 2x_1x_2 + 4x_1x_3 4x_2x_3$ 的秩为 1,
- (1)求c的值;
- (2)利用正交变换法将二次型化为标准形,并写出对应的正交矩阵;
- (3) 写出规范形.