# Week 12

### Agenda

Today: Network Science discussion



## History

In the previous era, it was difficult to gather or uncover data.

**1950's Random Graphs** (Paul Erdos)

Choices independent of current network

### **1960's Small world experiment** (Stanley Milgram)

- https://en.wikipedia.org/wiki/Small-world experiment.
- Average path length is 5.5-6.
- FB has avg path length of 4.75, twitter 4.67, MS Messenger 6.6
- -> Small world (Watts-Strogatz) graphs: creates rings with clusters

### Book recommendation: Stanley Wasserman and Katherine Faust: "Social network Analysis"

http://www.amazon.com/Social-Network-Analysis-Applications-Structural/dp/0521387078/x



#### Table of Contents

Part I, Introduction: Networks, Relations, and Structure:

- Relations and networks in the social and behavioral sciences.
- 2. Social network data: collection and application

Part II. Mathematical Representations of Social Networks:

- 3. Notation
- 4. Graphs and matrixes

Part III. Structural and Locational Properties:

- 5. Centrality, prestige, and related actor and group measures
- 6. Structural balance, clusterability, and transitivity
- 7. Cohesive subgroups
- 8. Affiliations, co-memberships, and overlapping subgroups Part IV. Roles and Positions:
- Structural equivalence
- 10. Blockmodels
- Relational algebras
- 12. Network positions and roles

Part V. Dyadic and Triadic Methods:

- 13. Dyads
- 14. Triads

Part VI. Statistical Dyadic Interaction Models:

- 15. Statistical analysis of single relational networks
- 16. Stochastic blockmodels and goodness-of-fit indices Part VII. Epilogue:

17. Future directions.



### Recent History



networksciencebook.com

### 2000's Scale-free (follows power law) networks

- Long tail. Fault tolerant (random attacks). Hubs.
- Examples: www, travel/airlines (and disease), protein interactions, social networks
- Preferential attachment
- Scale-free (Barabasi): <a href="http://arxiv.org/pdf/cond-mat/0106096.pdf">http://arxiv.org/pdf/cond-mat/0106096.pdf</a>
   and <a href="https://barabasi.com/f/623.pdf">https://barabasi.com/f/623.pdf</a>





### Dense Representation



#### **Dense Representation**: Adjacency matrix

- Vertex-Vertex
- 0/1 or weight

#### **Sparse Representation**

- Version 1: V1:[V2,V3]
- Version 2: V1:V2:nonzero-weight:node1size:nod e1color

How might a sparse graph be represented?

## Statistics & Algorithms

### **General Language**

- Graph theory vs Network Science
- Vertices/nodes (N), edges (E)
- Path (L), hops, cycles
- Undirected, directed, DAG (directed acyclic graph), **Bipartite**
- Connectivity, component
- Hypergraphs

#### **Node Level**

### Edge Level

Weight

### **Graph Level**

- Avg degree: 2 \* E/N (<k>)
- Avg path length
- Diameter (longest shortest path between any two nodes)
- Density (ratio of edges to possible edges,  $2e / (N^*(N-1))$ )

Size: (N,E) (sum rows, columns in adj matrix)

Degree: (k), and in-degree or out-degree





$$\begin{pmatrix} 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ij} = 0 \qquad A_{ij} = A_{ji}$$

$$< k >= \frac{2L}{2}$$













## Statistics & Algos

### **General Language**

- Graph theory vs Network Science (not hard and fast)
- Vertices/nodes (N), edges (E)
- Path (L), hops, cycles
- Undirected, directed, DAG, Bipartite
- Connectivity, cuts, component
- Hypergraphs

#### **Node Level**

- Size: (N,E) (sum rows, columns in adj matrix)
- Degree: (k), and in-degree or out-degree

### **Edge Level**

Weight

### **Graph Level**

- Avg degree: 2 \* E/N (<k>)
- Avg path length
- Diameter (longest shortest path)
- Density (ratio of edges to possible edges, 2e / (N\*(N-1)))



# Statistics & Algos: Clustering

### **Clustering measures**

Partition a graph into natural groups so that the nodes in the same cluster are more close to each other than to those in other clusters.

Many algorithms for clustering exist: Min-Cut Tree, K-means, Greedy Merge, random walks, etc.

#### How to know if a cluster is "good"?

- Clustering Coefficient, number of intra-/inter-edges, etc
- e.g. for a node (2e / (k\*(k-1))) where k is number of neighbors, and e is number of connections between neighbors
- e.g. 3 \* number of triangles / number of connected triplets (Wasserman)

### **Connected components**

find the "hard" clusters, sub graphs that are not connected to the rest of the graph



Figure 4 - Example of three networks and respective clustering coefficients (see Eq. (1)). In (a),  $cc_i = \frac{10(2)}{5(4)} = 1$  (the vertices around *i* are fully connected), (b)  $cc_i = \frac{3(2)}{5(4)} = 0.3$  and (c)  $cc_i = \frac{0(2)}{5(4)} = 0$ . The maximum number of edges among the neighbors of *i* is given by  $k_i(k_i - 1)/2$ .

# Statistics & Algos - Centrality: how important is a node

#### **Centrality measures**

- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1
  -022-introduction-to-network-models-fall-2018/lecture-notes/MIT1
  \_022F18\_lec4.pdf
- Degree Centrality
- Closeness Centrality (1 / total distance)
- Betweenness Centrality (how many shortest paths pass through a node)
- Pagerank / Eigenvector

#### **Pagerank**

- https://graui.de/pageRank.htm
- https://medium.com/@sarthakanand/page-rank-b7072c61dd85
- PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + d(PR(Tn)/C(Tn)))
- C(X) is the vote
- PR(x) is the importance of the vote
- d is dampening
- Why hard to do in (original) MapReduce?



Breakout!

# Growth Modeling - Erdos Random Graph





(b)



#### **Erdos**

- Review algorithm
- Connect a set of nodes with uniform probability (p)

### **Descriptive Statistics**

- Properties depend on (Np) around value <k>
- Degree distribution is Poisson, giant component for large (N)
- Does not create hubs, triangle closures, Clustering coefficient approaches 0

# Growth Modeling - Watts-Strogatz



### Watts-Strogatz

- Algorithm
- Every node has same number of edges in a ring lattice
- Random rewiring with fixed probability

### **Descriptive Statistics**

Creates locally clustered graph

# Growth Modeling - Barabasi



#### **Barabasi Preferential Attachment**

- p(k) is probability that a node has degree k
- log scale / power law (p(k) ~ k^-3)



# **Graph libraries**

# GraphX

Scala

### GraphX (Apache Spark)

Offers a Graph API on top of Spark.

**Enabling cross-world manipulations** 











#### https://networkx.github.io/

# NetworkX (Python)

#### Contact

Mailing list Issue tracker Source

#### Releases

Stable (notes)

2.5 — August 2020 download | doc | pdf

Latest (notes)

2.6 development github | doc | pdf

Archive



NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.



### Software for complex networks

- · Data structures for graphs, digraphs, and multigraphs
- · Many standard graph algorithms
- Network structure and analysis measures
- · Generators for classic graphs, random graphs, and synthetic networks
- Nodes can be "anything" (e.g., text, images, XML records)

### https://graph-tool.skewed.de/

# Graph-tool (Python written in C++)



### Gunrock - for GPUs



### https://gephi.org/

# Gephi

Open Graph Viz Platform



D3 - JavaScript library for visualizing data



### D3 - "Force Directed"

"physical tools" - e.g., include physical forces



# Large Scale Visualization



http://wbpaley.com/brad/mapOfScience/scienceMapFullColorPrint2\_lowRes\_b.jpg