Семинар по функциональному анализу. 315 группа, 06.04.20 (21-ый день карантина)

"Гильбертово пространство"

Перед решением задач по этой теме рекомендуется самостоятельно прочитать параграф 6 (стр. 57-68) из книги В.А. Треногина "Функциональный анализ".

В любом евклидовом пространстве выполнено "равенство параллелограмма":

$$\forall x, y ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Евклидово пространство называется гильбертовым, если оно полно относительно нормы, согласованной со скалярным произведением.

Примеры гильбертовых пространств: \mathbb{R}^n , l_2 , L_2 .

Теорема 1. Пусть в гильбертовом пространстве H задано замкнутое выпуклое множество M, и точка $x \notin M$. Тогда существует единственное $y \in M$: $\rho(x, M) = ||x - y||$.

Следствие: для любого подпространства L гильбертова пространства H существует единственный элемент $y \in L$, реализующий расстояние от точки x до подпространства L (это проекция $y = \Pr_L(x)$).

Теорема 2. Пусть $||x-y|| = \rho(x,L)$, L – подпространство гильбертова пространства H. Тогда $(x-y) \perp L$.

Следствие: для любого $x \in H$ справедливо разложение $x = y + z, y \in L, z \perp L$, причем это разложение единственное.

Теорема 3 (Теорема Пифагора). Для элементов ортогонального разложения справедливо соотношение $||x||^2 = ||y||^2 + ||z||^2$.

Совокупность всех элементов H, ортогональных к подпространству L, называется ортогональным дополнением L и обозначается L^{\perp} .

Теорема 4. L^{\perp} является подпространством в H.

Теорема 5. Пусть L – линейное многообразие в гильбертовом пространстве H. L плотно в H тогда и только тогда, когда $L^{\perp}=\{0\}.$

Задача 1. Доказать, что в пространстве C[a,b] нельзя ввести скалярное произведение, согласующееся с нормой этого пространства.

Решение: Рассмотреть тождество параллелограмма, в котором

$$x(t) = \left\{ \begin{array}{ll} 0 & , & x \in [0,0.5] \\ 2x-1 & , & x \in [0.5,1] \end{array} \right., \; y(t) = \left\{ \begin{array}{ll} -2x+1 & , & x \in [0,0.5] \\ 0 & , & x \in [0.5,1] \end{array} \right.$$

Тогда ||x|| = ||y|| = 1, ||x - y|| = 1, ||x + y|| = 1. То есть тождество параллелограмма не выполнено, а значит согласованного с нормой скалярного произведения не существует.

Задача 2. Доказать, что в пространстве l_1 нельзя ввести скалярное произведение, согласующееся с нормой этого пространства.

Решение: Рассмотреть тождество параллелограмма, в котором

$$x = (1, 0, 0, ...), y = (0, 1, 0, ...).$$

Тогда ||x|| = ||y|| = 1, ||x - y|| = 2, ||x + y|| = 2. Снова не выполнено тождество параллелограмма.

Задача 3. Пусть L – подпространство гильбертова пространства X. До-казать, что $x \perp L$ тогда и только тогда, когда $||x|| \leq ||x-y||$, $\forall y \in L$.

Решение: $||x|| \le ||x-y||$, $\forall y \in L$ эквивалентно тому, что $\langle y,y \rangle \ge 2 \langle x,y \rangle$, $\forall y \in L$. Теперь, если $x \perp L$, то последнее условие очевидно выполняется. Обратно, если последнее условие выполняется, то рассмотрев векторы y и -y, получим, что $\langle x,y \rangle = 0$, $\forall y \in L$.

Задача 4. Доказать, что для произвольного множесства M в гильбертовом пространстве X имеет место включение $M \subseteq (M^{\perp})^{\perp}$. Возможно ли строгое включение? Доказать, что равенство имеет место тогда, и только тогда, когда M – подпространство X.

Pewenue: Вложение проверяется непосредственно. Из свойств ортогонального дополнения следует, что $M \subseteq (M^{\perp})^{\perp}$ — линейное подпространство, т.е. равенство возможно только в случае, если M — линейное подпространство.

Докажем, что если M — линейное подпространство, то $M=(M^{\perp})^{\perp}$. Пусть $x\in (M^{\perp})^{\perp}$. Поскольку M — линейное подпространство, то существует единственная пара векторов $y\in M,\ z\in M^{\perp}\colon x=y+z$. Для любого $w\in M^{\perp}\ \langle x,w\rangle=0$. В частности, при w=z получим, что $\langle y+z,z\rangle=||z||^2=0$. Следовательно, z=0 и $x\in M$.

Пример строго включения: $X=\{x\in l_2: \exists k\in \mathbb{N}: x_i=0, \forall i\geq k\}\subset l_2.$ Тогда $\bar{X}=l_2,$ $X\subset l_2=(X^\perp)^\perp.$

Задача 5. В пространстве l_2 привести пример такого множества M, что множество $M + M^{\perp}$ не совпадает со всем l_2 .

Решение: Пусть $M = \{(1,0,0,...)\}$. Тогда $M^{\perp} = \{x \in l_2 : x_1 = 0\}, M + M^{\perp} \neq l_2$.

Задача 6. В пространстве l_2 построить замкнутое множество, в котором нет элемента с наименьшей нормой.

Решение:

$$x^{(n)} = (0, ..., 0, 1 + 1/n, 0, ..., 0).$$

Домашнее задание: № 3.9, 3.11, 3.28, 3.36, 3.37, 3.44, 3.45.