金融机器学习算法

第四讲

金融机器学习的样本权重

本讲主要内容

- 确定样本权重的动机
- 样本重叠与独特度
- 去重序贯抽样算法
- 回报率归因权重计算

确定样本权重的动机

- 不同样本对应的因变量 y_i , y_j 很大可能不是独立的,但是机器学习的基础理论往往要求样本服从 i.i.d
- 因变量不独立(共享信息): $y_i \sim [t_{i,0} t_{i,1}], \ y_j \sim [t_{j,0} t_{j,1}], \$ 以下三种情况中,有两种情况会造成 y_i, y_i 不独立

- 在金融应用信息重叠很常见: 机器学习无法直接 P-A-P (血液检测)
- 通过设计权重来修正重叠

样本重叠度与独特度

■ 样本重叠 (concurrent):如果两个样本的因变量标签 y_i, y_j 包含一项或多项共同回报 $r_{t-1,t}$ 。

- 样本独特 (uniqueness): 样本 i 的因变量标签不予任何其他样本包含有共同回报 $r_{t-1,t}$
- 重叠矩阵: $[1_{t,i}]_{T\times N}$, $t=1\cdots T$, $i=1\cdots N$
- 重叠度:特定时点 t 上重叠的样本数量 $c_t = \sum_{i=1}^{N} 1_{t,i}$
- 独特度:特定样本 i 在特定时点上的独特程度 $u_{t,i}=rac{1_{t,i}}{c_t}$
- \blacksquare 平均独特度: 特定样本 i 的总体独特度评价 $ar{u}_i = rac{\sum_t u_{t,i}}{\sum_t 1_{t,i}}$

样本重叠度与独特度: $[t-1,t] \in [t_{i,0},t_{i,1}]$

样本重叠度与独特度:例1 (稀疏整齐)

	$u_{t,i}$				
c_t	1	2	3	4	5
1	1	0	0	0	0
2	0.5	0.5	0	0	0
3	0.33	0.33	0.33	0	0
2	0	0.5	0.5	0	0
1	0	0	1	0	0
1	0	0	0	1	0
2	0	0	0	0.5	0.5
2	0	0	0	0.5	0.5
	0.61	0.44	0.61	0.66	0.5

 \bar{u}_i

样本重叠度与独特度:例2 (稠密)

	$u_{t,i}$						
c_t	1	2	3	4	5	6	7
1	0	0	0	1	0	0	0
2	0	0	1/2	1/2	0	0	0
3	1/3	0	1/3	1/3	0	0	0
4	1/4	0	1/4	1/4	0	1/4	0
5	1/5	1/5	1/5	1/5	0	1/5	0
3	0	1/3	0	0	0	1/3	1/3
2	0	1/2	0	0	0	0	1/2
2	0	1/2	0	0	1/2	0	0
1	0	0	0	0	1/2	0	0
	<u>47</u> 180	<u>23</u> 60	77 240	137 360	1 2	<u>47</u> 180	<u>5</u> 12

 \bar{u}_i

去重序贯抽样算法

为什么抽样会重叠

- 假如一共有 N 个代抽样本,一共放回式抽取 I 次
- 假如非重叠的样本最大数量为 *K*
- 对于 K 个样本中的任意一个样本,放回式抽取 I 次后出现 i 次的概率是 $\mathbb{P}(i) = C_I^i \left(\frac{1}{K}\right)^i \left(1 \frac{1}{K}\right)^{I-i}$
- $I \to \infty$, $P(i) \to \frac{(\frac{I}{K})^i e^{-\frac{I}{K}}}{i!}$, 服从 $\lambda = \frac{I}{K}$ 的 Poisson 分布,均值为 I/K > 1

去重序贯抽样算法

Algorithm 1: 去重序贯抽样算法 (De-overlapping Sequential Bootstrap; DSB)

Result: 产生重叠度较低的抽样,尽量满足 i.i.d

确定重叠矩阵 $[1_{t,i}]_{T\times N}$, $t=1\cdots T$, $i=1\cdots N$, 按 $i\sim U[1,I]$ 抽出第一个样本 i_1 , 抽样

序列 $\phi^{(1)} = \{i_1\};$

while $k \leqslant I$ do

(1) 计算
$$u_{t,i}^{(k)} = \frac{1_{t,i}}{1 + \sum_{j \in \varphi^{(k-1)}} 1_{t,j}}, \ \ \bar{u}_i^{(k)} = \frac{\sum_t u_{t,i}^{(k)}}{\sum_t 1_{t,i}};$$

- (2) 更新抽样的概率 $p_i^{(k)} = \frac{ar{u}_k^{(k)}}{\sum_i ar{u}_i^{(2)}};$
- (3) 抽取 k 轮的样本 i_k , $\phi^{(k)} = \phi^{(k-1)} \cup \{i_k\}$

end

去重序贯抽样算法: 例子

t	1	2	3
1	×		
2	×		
3	×	×	
4		×	
5			×
6			×

	$\underbrace{u_{t,i}^{(1)}}_{}$			
	1	2	3	
1	1	0	0	
1	1	0	0	
1	1	1	0	
1	0	1	0	
1	0	0	1	
1	0	0	1	
	1	1	1	
	1/3	1/3	1/3	
	$\overline{oldsymbol{ar{u}}_i^{(1)}}, \overline{p_i^{(1)}}$			

$\underbrace{u_{t,i}^{(2)}}_{t}$					
	1	2	3		
1	1	0	0		
1	1	0	0		
2	0.5	0.5	0		
2	0	0.5	0		
1	0	0	1		
1	0	0	1		
	5/6 0.5 1				
	5/14	3/14	6/14		
$\overline{oldsymbol{ar{u}}_i^{(1)}}, \overline{p_i^{(1)}}$					

	$u_{t,i}^{(3)}$			
	1	2	3	
1	1	0	0	
1	1	0	0	
2	0.5	0.5	0	
2	0	0.5	0	
2	0	0	0.5	
2	0	0	0.5	
	5/6	0.5	0.5	
	10/22	6/22	6/22	
	$\overbrace{\bar{u}_i^{(1)}}, \overbrace{p_i^{(1)}}$			

$$\phi^{(1)} = \{2\}$$

$$\phi^{(2)} = \{2,3\}$$

回报归因权重计算

- 原理:回报的绝对值较大因变量对应的样本权重应该相应较大,但重叠性较大时权重 应该减小
- 算法无论对初始标签还是元标签都适用
- 对于第 i 个样本,标签的时间跨度为 $[t_{i,0}, t_{i,1}]$,则样本权重应该为

$$\tilde{w}_i = \left| \sum_{t=t_{i,0}}^{t_{i1}} \frac{r_{t-1,t}}{c_t} \right|$$

$$w_i = \frac{w_i I}{\sum_{j=1}^{I} \tilde{w}_j}$$

