

Problem R-07H (C₇H₁₄O₂). Interpret a proton NMR spectrum (next page).

- (a) Identify H_X (give δ and J values)
- (b) Below is reproduced the multiplet at δ 1.8. Which protons are these (circle: A, B, M, N, X). Label the spectrum and extract the coupling constants (you may use first-order analysis) and report the couplings (e.g., J_{PQ} = 33 Hz). Draw a coupling tree to show you understand the pattern

(c) Show the probable conformation looking down the bond marked with an arrow (fill in the Newman projection below).

$$H_N$$
 H_N

(d) Which of the couplings you extracted in part (a) using first-order analysis do you expect to be accurate?

Which will be only approximate? Explain, and predict the direction of the expected error for these couplings (be specific).

Problem R-07H (C₇H₁₄O₂). Interpret a proton NMR spectrum (next page).

- (a) Identify H_X (give δ and J values)
- 2 δ 3.09, dd, J = 10.8, 3.7
 - (b) Below is reproduced the multiplet at δ 1.8. Which protons are these (circle: A, B, M, N, X). Label the spectrum and extract the coupling constants (you may use first-order analysis) and report the couplings (e.g., J_{PQ} = 33 Hz). Draw a coupling tree to show you understand the pattern

(c) Show the probable conformation looking down the bond marked with an arrow (fill in the Newman projection below).

0

3 OH
$$J_{MX} = 10.8 \text{ Hz}$$
 $J_{NX} = 3.7 \text{ Hz}$
 $J_{NX} = 3.7 \text{ Hz}$
 $J_{NX} = 3.7 \text{ Hz}$

- (d) Which of the couplings you extracted in part (a) using first-order analysis do you expect to be accurate?
- 2 Only the J_{MN} coupling will be accurate.

Which will be only approximate? Explain, and predict the direction of the expected error for these couplings (be specific).

Since the AB protons are strongly coupled ($\Delta v_{AB} < J_{AB}$), then all couplings to them will be changed (virtual coupling effects will be seen). Thus the true values of J_{MA} and J_{MB} will be further apart than the measured numbers (true values might be 7 and 3 instead of 6 and 4). Similarly, the values for J_{MX} and J_{NX} will be affected since M and N are fairly close, but the errors here will be smaller, since $\Delta v_{MN} > J_{MN}$

See simulation and a more detailed analysis on next page.

Simulation with WINDNMR (http://www.chem.wisc.edu/areas/reich/plt/windnmr.htm)

$$\Delta v_{AB} = 8 \text{ Hz } (J_{AB} = -12.1)$$

 $\Delta v_{MN} = 20.2 \text{ Hz } (J_{MN} = -16 \text{ Hz})$

Simulation (actual <i>J</i>)	First order analysis <i>J</i>
$J_{MA} = 4.20$	$J_{MA} = 5.8 \text{ Hz}$
$J_{\rm MB} = 6.30$	$J_{\rm MB} = 4.8 \; {\rm Hz}$
$J_{NA} = 9.70$	$J_{\rm NB} = 8.8 \; {\rm Hz}$
$J_{\rm NB} = 4.90$	$J_{NA} = 5.6 \text{ Hz}$
$J_{\rm MX} = 3.00$ $J_{\rm NX} = 11.40$	$J_{MX} = 3.6 \text{ Hz}$ $J_{NX} = 10.8 \text{ Hz}$

For coupling to M, N J errors from a first order analysis are 1.6, 1.5, 0.9 and 0.7 Hz for coupling to A and B, but only 0.6 and 0.6 Hz for coupling to X. The errors are larger for coupling to A and B because v_{AB} (8 Hz) is smaller than J_{AB} . As is usual for virtual coupling effects, the errors are in

