TABLEAU RÉCAPITULATIF DES PRINCIPALES LOIS DE PROBABILITÉS

Lois Fondamentales Discrètes	Notation	Probabilité	Espérance	Variance	Approximation	Utilisation
Loi de Bernoulli	$\mathcal{B}(p)$	P(X=1)=p P(X=0)=1-p	E(X)=p	V(X)=pq=p(1-p)		Réalisation d'une experience à deux issues
Loi Binomiale	$\mathcal{B}(n;p)$	$P(X = k) = C_n^k p^k q^{n-k}$ $P(X = k) = \frac{n!}{k!(n-k)!} \cdot p^k \cdot q^{n-k}$	E(X)=np	V(X)=npq=np(1- p)	et np<15 $\mathcal{B}(n,p) \simeq \mathcal{P}(\lambda)$ avec λ =np Si n≥30 et np>5 et	Répétition n experiences indépendantes, identiques et aléaoires comportant deux issues
Loi géométrique	G (<i>p</i>)	$P(X=k) = pq^{k-1}$	$E(X) = \frac{1}{p}$	$V(X) = \frac{q}{p^2}$		Répétition n experiences indépendantes jusqu'au succès
Loi binomiale négative	BN (n; p)	$P(X = k) = C_{j-1}^{r-1} p^r q^{k-r}$	$E(X) = \frac{r}{p}$	$V(X) = \frac{rq}{p^2}$		Compte le nombre d'échecs avant d'arriver à n succès.
Loi uniforme	U(n)	$P(X=k) = \frac{1}{n}$	$E(X) = \frac{n+1}{2}$	$V(X) = \frac{n^2 - 1}{12}$		Chaque issue a la même probabilité de se réaliser
Loi de Poisson	$\mathcal{P}(\lambda)$	$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$	E(X)=λ	V(X)=λ	Si λ≥20 P(λ)≃Λ(λ,λ)	Phénomènes rares donc p ≪ et nombre essais ≫

Lois Fondamentale s	Notation	Probabilité	Espérance	Variance	Utilisation
Loi uniforme	% ([a;b])	$P(X \in I) = \frac{long \ I}{b - a}$	$E(X) = \frac{a+b}{2}$	$V(X) = \frac{(b-a)^2}{12}$	Tous les intervalles de même longeur ont la même probabilité
Loi Exponentiell e	<i>Έ</i> (λ)	Si k<0 et λ >0 \rightarrow $P(X) = 0$ Si k≥0 et λ >0 \rightarrow $P(X \le k) = 1 - e^{-\lambda k}$ et $P(X > k) = e^{-\lambda k}$ et $P(j \le X \le k) = e^{-\lambda j} - e^{-\lambda k}$	$E(X) = \frac{1}{\lambda}$	$V(X) = \frac{1}{\lambda^2}$	Modélisation de la durée de vie (atome radioactif ou composant électronique)
Loi Normale	$\mathcal{N}(\mu;\sigma)$	$= \frac{P(a \le X \le b)}{\sigma\sqrt{2\pi}} \int_{a}^{b} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} dx$	E(X)=μ	$V(X)=\sigma^2$	Nombreux facteurs rentrent en compte dont aucun n'est prépondérant. Approximation d'autres lois.
Centrée réduite	№ (0;1)	$\Pi(t) = P(T \le t)$ $= \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$	E(X)=0	V(X)=1	Changement d'unité (translation + homothétie) de la loi normale pour utilisation abaques.