Geographically Weighted Regression (GWR): An Introduction

Spatial Regression

- Appropriate when OLS assumptions are violated due to spatial distribution of values....
 - Independence
 - Linearity
 - Normality
 - Constant Variance
- Lag: $y = \rho Wy + X\beta + \varepsilon$
- Error: $y = X\beta + \varepsilon$; where: $\varepsilon = \lambda W \varepsilon + \xi$

Stationary v.s non-stationary

$$y_i = \beta_0 + \beta_I x_{Ii}$$

$$y_i = \beta_{i0} + \beta_{i1} x_{1i}$$

Assumed

More realistic

Simpson's paradox

Spatially disaggregated data

House density

House density

Some definitions

 Spatial non-stationarity: the same stimulus provokes a different response in different parts of the study region

Some definitions

- Global models: are statements about processes which are assumed to be stationary and as such are location independent
 - General approach to social science modeling
 - Exceptions include families of fixed effect models (most notably HLM/multilevel models)
- Local models: spatial decompositions of global models, the results of local models are location dependent – a characteristic we usually anticipate from geographic (spatial) data and, more generally, social data

Regression

- Regression establishes relationship among a dependent variable and a set of independent variable(s)
- A typical linear regression model looks like:
- $y=\beta_0+\beta_1x_1+\beta_2x_2+....+\beta_nx_n+\varepsilon$
 - This is an example of a Global

GWR

- Addresses the non-stationarity directly
 - Allows the relationships to vary over space, i.e., β s do not need to be everywhere the same
 - This is the essence of GWR, in the linear form:

$$- Y_{i} = \beta_{i0} + \beta_{i1} X_{1i} + \beta_{i2} X_{2i} + \dots + \beta_{in} X_{ni} + \varepsilon_{i}$$

– Instead of remaining the same everywhere, β s now vary in terms of locations (i)

Global v.s. local statistics

- Global statistics
 - Similarity across space
 - Single-valued statistics
 - Not mappable
 - GIS "unfriendly"
 - Search for regularities
 - aspatial

- Local statistics
 - Difference across space
 - Multi-valued statistics
 - Mappable
 - GIS "friendly"
 - Search for exceptions
 - spatial

Where does GWR fit?

Residuals from GWR are generally much lower and usually much less spatially dependent

- GWR models give much better fits to data, EVEN accounting for added model complexity and number of parameters (decrease in degrees of freedom)
- GWR residuals are usually much less spatially dependent

Where does GWR fit?

GWR as a "spatial microscope"

- A series of bandwidths are examined before the selection of an optimal bandwidth. This statistically identifies the optimal "catchment" areas in which the local regression models will be estimated.
 - In comparison to Geoda... where the neighborhood must by manually developed once at a time to compare different neighborhood definitions.

Calibration of GWR

- Weights are attached with locations
 - Can be fixed by user (not recommended)
 - Fixed by system
 - Adaptive by system
- Most schemes tend to be Gaussian or Gaussianlike reflecting the type of dependency found in most spatial processes

Fixed weighting scheme

Adaptive weighting schemes

Calibration

 Surprisingly, the results of GWR appear to be relatively insensitive (robust) to the choice of weighting functions as long as it is a continuous distance-based function (Gaussian or Gaussian-like functions)

Additionally, in most cases the results from Fixed vs.
Adaptive weighting schemes also do not vary significantly

An example

- Housing demand model in Milwaukee
 - Data: MPROP 2004 3430+ samples used
 - Master Property Record
 - Dependent variable: the assessed value (price)
 - Independent variables: air conditioner, floor size, fire place, house age, number of bathrooms, soil and Impervious surface (remote sensing acquired)

The global model

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	18944.05	4112.79	4.61	4.25e-06
Floor Size	78.88	2.00	39.42	<2e-16
House Age	-508.56	33.45	-15.20	<2e-16
Fireplace	14688.13	1609.53	9.13	<2e-16
Air Conditioner	13412.99	1296.51	10.35	<2e-16
Number of Bathrooms	19697.65	1725.64	11.42	<2e-16
Soil&Imp. Surface	-27926.77	5179.42	-5.39	7.44e-08

Residual standard error: 35230 on 3430 degrees of freedom Multiple R-Squared: 0.6252, Adjusted R-squared: 0.6246

F-statistic: 953.7 on 6 and 3430 DF, p-value: < 2.2e-16

Akaike Information Criterion: 81731.63

Spatially Varying GWR (Local) Regression Results: Model Fit and the Effect of TRI Exposure on Quality of Life

