Definition

Recall, let V be a vector space. We say that $\{v_1, \cdots, v_n\} \subset V$ is linearly independent if

$$a_1v_1 + \cdots + a_nv_n = 0$$
 for some $a_1, \cdots, a_n \in \mathbb{F} \implies a_1 = \cdots = a_n = 0$

Otherwise, we call them linearly dependent.

Introduction

In this tutorial, we will work on a few problems related to linearly independent. As we discussed before, the definition of linearly independent is a logical implication with hypothesis and conclusion, instead of an 'and' statement with two conditions.

Questions

- 1. Let V, W be vector spaces over \mathbb{F} . Let $T: V \to W$ be an injective linear transformation. Let $I = \{v_1, \dots, v_n\}$ be a linearly independent set of vectors in V. Prove that,
 - (a) T(0) = 0
 - (b) Show that $T(I) = \{T(v_1), \dots, T(v_n)\}$ is also linearly independent

2. Let V,W be vector spaces over \mathbb{F} . Let $T:V\to W$ be a linear transformation. Assume that $S=\{T(v_1),\cdots,T(v_n)\}$ are linearly independent for some $v_1,\cdots,v_n\in\mathbb{F}$. Show that v_1,\cdots,v_n are linearly independent.

Nick Huang

3. Let V be a vector space. Assume that $S = \{v_1, \dots, v_n\}$ be a set of linearly independent vectors in V. Assume $w \in V$ such that $w \notin span(S)$. Show that $A := S \cup \{w\}$ is also linearly independent

May.19 2021

- 4. Let $C^{\infty}(\mathbb{R})$ be the vector space of functions $f:\mathbb{R}\to\mathbb{R}$ with derivatives of all orders. Let $T: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ defined by T(f) = f - f''.
 - (a) What is Ker(T)?
 - (b) Find a set of two linearly independent functions in Ker(T). Check that the functions are in Ker(T) and the functions are linearly independent.