Midtveiseksamen i MAT1100 H-17: Løsningsforslag

Vær oppmerksom på at svaralternativene på eksamen vanligvis vil komme i en annen rekkefølge enn vist nedenfor. Det er fordi systemet automatisk bytter om på svaralternativene for hver enkelt kandidat.

Oppgave 1. Det komplekse tallet z har polarkoordinater $r=4, \theta=\frac{5\pi}{6}$. Da er z lik:

A)
$$-2\sqrt{3} + 2i$$

B)
$$-2 + 2i\sqrt{3}$$

C)
$$-2\sqrt{3} - 2i$$

D)
$$2\sqrt{3} + 2i$$

E)
$$-2\sqrt{3} - 2i$$

Riktig svar: A) $-2\sqrt{3} + 2i$

Begrunnelse:
$$z = r(\cos \theta + i \sin \theta) = 4\left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}\right) = 4\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = -2\sqrt{3} + 2i$$

Oppgave 2. Det komplekse tallet z = -4 - 4i har polarkoordinater:

A)
$$r = 4\sqrt{2}, \theta = \frac{7\pi}{4}$$

B) $r = 4, \theta = \frac{5\pi}{4}$
C) $r = 4\sqrt{2}, \theta = \frac{3\pi}{4}$
D) $r = 4\sqrt{2}, \theta = \frac{5\pi}{4}$
E) $r = 8, \theta = \frac{3\pi}{4}$

B)
$$r = 4, \theta = \frac{5\pi}{4}$$

C)
$$r = 4\sqrt{2}, \theta = \frac{3\pi}{4}$$

D)
$$r = 4\sqrt{2}, \theta = \frac{5\pi}{4}$$

E)
$$r = 8, \theta = \frac{3\pi}{4}$$

Riktig svar: D) $r = 4\sqrt{2}, \theta = \frac{5\pi}{4}$ Begrunnelse: $r = \sqrt{a^2 + b^2} = \sqrt{(-4)^2 + (-4)^2} = 4\sqrt{2}$. Videre er $\sin \theta = \sqrt{a^2 + b^2} = \sqrt{(-4)^2 + (-4)^2} = 4\sqrt{2}$. $\frac{b}{r} = -\frac{4}{4\sqrt{2}} = -\frac{\sqrt{2}}{2}$. Siden z ligger i tredje kvadrant, betyr det at $\theta = \frac{5\pi}{4}$.

Oppgave 3. Dersom $z = \overline{\left(\frac{1+4i}{4-i}\right)}$, så er:

A)
$$z = \frac{1}{5} - \frac{1}{3}i$$

A)
$$z = \frac{1}{5} - \frac{1}{3}i$$

B) $z = \frac{5}{17} - \frac{4}{17}i$
C) $z = \frac{2}{15} - \frac{2}{3}i$
D) $z = -i$
E) $z = \frac{4}{15} + \frac{3}{5}i$

C)
$$z = \frac{17}{15} - \frac{2}{3}i$$

$$D) z = -i$$

$$E)z = \frac{4}{15} + \frac{3}{5}i$$

Riktig svar: D) z = -i

Begrunnelse:
$$z = \overline{\left(\frac{1+4i}{4-i}\right)} = \frac{1-4i}{4+i} = \frac{(1-4i)(4-i)}{(4+i)(4-i)} = \frac{4-i-16i+4}{17} = -\frac{17i}{17} = -i.$$

Oppgave 4. Ligningen (1+i)z + 2i = 2iz har løsningen:

A)
$$\frac{2}{5} + \frac{3}{5}i$$

B) $2 + 4i$

B)
$$2 + 4i$$

C)
$$\frac{2}{5} - \frac{3}{5}i$$

C)
$$\frac{2}{5} - \frac{3}{5}i$$

D) $-\frac{1}{2} + 2i$
E) $1 - i$

E)
$$1 - i$$

Riktig svar: E) 1 - i.

Begrunnelse: $(1+i)z + 2i = 2iz \iff (1-i)z = -2i \iff z = \frac{-2i}{1-i} = -2i$ $\frac{-2i(1+i)}{(1-i)(1+i)} = \frac{2(-i+1)}{2} = 1-i$

Oppgave 5. Hvis det reelle polynomet $P(z) = z^3 + az^2 + bz + c$ har 1 og -i som røtter, så er P(z) lik:

A)
$$z^3 + 2z^2 + 2z + 1$$

B)
$$*z^3 - z^2 + z - 1$$

C)
$$z^3 - 1$$

D)
$$z^3 + 3z^2 - z + 1$$

E) Vi har ikke nok informasjon til å avgjøre hvilket polynom det er

Riktig svar: B) $z^{3} - z^{2} + z - 1$

Begrunnelse: Siden polynomet er reelt, er $\overline{-i} = i$ også en rot. Dermed er $P(z) = (z-1)(z-i)(z+i) = z^3 - z^2 + z - 1.$

Oppgave 6. Hvis $z = \sqrt{3} + i$, så er z^{38} lik:

A)
$$2^{38}i$$

B)
$$2^{37}(\sqrt{3}+i)$$

C) -2^{37}

C)
$$-2^{37}$$

$$\vec{D}$$
) 2^{38}

E)
$$*2^{37}(1+i\sqrt{3})$$

Riktig svar: E) *2³⁷(1 + $i\sqrt{3}$)

Begrunnelse: Vi har $z = \sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)$ som viser at r = 2, $\theta = \frac{\pi}{6}$. Ved De Moivres formel er da $z^{38} = 2^{38} \left(\cos \frac{38\pi}{6} + i \sin \frac{38\pi}{6}\right) = 2^{38} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$ der vi har brukt at $\frac{38\pi}{6} = 6\pi + \frac{\pi}{3}$. Videre får vi $z^{38} = 2^{38} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$ $2^{38} \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 2^{37} (1 + i \sqrt{3}).$

Oppgave 7. Grenseverdien $\lim_{n\to\infty} \frac{3n^4-2n^2+1}{7+3n^3+4n^4}$ er lik:

A) 0

- B) $\frac{3}{4}$
- C) ∞
- D) $\frac{1}{7}$ E) $\frac{3}{7}$

Riktig svar: B) $\frac{3}{4}$

Begrunnelse: Vi har $\lim_{n\to\infty} \frac{3n^4 - 2n^2 + 1}{7 + 3n^3 + 4n^4} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{n^4 \left(\frac{7}{n^4} + \frac{3}{n} + 4\right)} = \lim_{n\to\infty} \frac{3 - \frac{2}{n^2} + \frac{1}{n^4}}{\frac{7}{n^4} + \frac{3}{n} + 4} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^2} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^4} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^4} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^4} + \frac{1}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^4} + \frac{1}{n^4} + \frac{3}{n^4}\right)}{\frac{7}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}} = \lim_{n\to\infty} \frac{n^4 \left(3 - \frac{2}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}\right)}{\frac{3}{n^4} + \frac{3}{n^4} + \frac{3}{n^4} + \frac{3}{n^4} + \frac{3}{n^4}}$

Oppgave 8. Grenseverdien $\lim_{x\to 0} \frac{x^3+2x^4}{5x^3-4x^4}$ er lik:

- A) 0
- B) $\frac{2}{5}$
- C) $-\frac{1}{2}$ D) $\frac{1}{5}$
- E) ∞

Riktig svar: D) $\frac{1}{5}$

Begrunnelse: $\lim_{x\to 0} \frac{x^3 + 2x^4}{5x^3 - 4x^4} = \lim_{x\to 0} \frac{x^3(1+2x)}{x^3(5-4x)} = \lim_{x\to 0} \frac{1+2x}{5-4x} = \frac{1}{5}$

Oppgave 9. Grenseverdien $\lim_{x\to\infty} x\left(\sqrt{1+\frac{1}{x}}-1\right)$ er lik:

- A) 1
- B) 2
- C) ∞
- D) 0
- E) $*\frac{1}{2}$

Riktig svar: E) $\frac{1}{2}$

Begrunnelse: Denne oppgaven kan løses omtrent like greit ved å gange med det konjugerte uttrykket som ved å bruke L'Hôpitals regel. Velger den

første metoden:
$$\lim_{x\to\infty} x\left(\sqrt{1+\frac{1}{x}}-1\right) = \lim_{x\to\infty} x\frac{\left(\sqrt{1+\frac{1}{x}}-1\right)\left(\sqrt{1+\frac{1}{x}}+1\right)}{\left(\sqrt{1+\frac{1}{x}}+1\right)} =$$

$$\lim_{x \to \infty} x \frac{\frac{1}{x}}{\left(\sqrt{1 + \frac{1}{x}} + 1\right)} = \lim_{x \to \infty} \frac{1}{\left(\sqrt{1 + \frac{1}{x}} + 1\right)} = \frac{1}{2}.$$

Oppgave 10. Grenseverdien $\lim_{x\to 0} \frac{e^{x^2}-1}{1-\cos z}$ er lik:

- A) 0
- B) 2
- C) ∞
- D) $\frac{1}{2}$
- E) 1

Riktig svar: B) 2

Begrunnelse: Siden dette er " $\frac{0}{0}$ "-uttrykk, kan vi bruke L'Hôpitals regel: $\lim_{x\to 0} \frac{e^{x^2}-1}{1-\cos x} = \lim_{x\to 0} \frac{e^{x^2}\cdot 2x}{\sin x} = \lim_{x\to 0} 2e^{x^2}\cdot \frac{x}{\sin x} = 2\cdot 1 = 2.$

Oppgave 11. Grenseverdien $\lim_{x\to 1} x^{\frac{2}{x-1}}$ er lik:

- A) 1
- B) 2
- C) e^2
- D) $\frac{1}{2}$
- E) ∞

Riktig svar: C) e^2

Begrunnelse: Vi skriver $x^{\frac{2}{x-1}} = e^{\frac{2 \ln x}{x-1}}$. Eksponenten $\frac{2 \ln x}{x-1}$ er et " $\frac{0}{0}$ "-uttrykk, og vi bruker L'Hôpitals regel: $\lim_{x \to 1} \frac{2 \ln x}{x-1} = \lim_{x \to 1} \frac{\frac{2}{x}}{1} = 2$. Siden eksponentialfunksjonen er kontinuerlig, har vi
 dermed: $\lim_{x\to 1} x^{\frac{2}{x-1}} = \lim_{x\to 1} e^{\frac{2\ln x}{x-1}} =$ $e^{\lim_{x\to 1} \frac{2 \ln x}{x-1}} = e^2$.

Oppgave 12. Den omvendte funksjonen til $f(x) = 3 \ln(2x + 4)$ er:

- A) $g(x) = \frac{e^{3x+2}}{4}$ B) Det finnes ingen omvendt funksjon C) $g(x) = \frac{4e^{x-2}}{3}$ D) $g(x) = \frac{1}{3\ln(2x+4)}$

- E) $g(x) = \frac{1}{2}e^{\frac{x}{3}} 2$

Riktig svar: E) $g(x) = \frac{1}{2}e^{\frac{x}{3}} - 2$.

Begrunnelse: Vi løser ligningen $y = 3\ln(2x+4)$ med henyn på x: $y = 3\ln(2x+4) \iff \frac{y}{3} = \ln(2x+4) \iff e^{\frac{y}{3}} = 2x+4 \iff x = \frac{1}{2}e^{\frac{y}{3}} - 2$. Det betyr at $g(y) = \frac{1}{2}e^{\frac{y}{3}} - 2$, dvs. at $g(x) = \frac{1}{2}e^{\frac{x}{3}} - 2$.

Oppgave 13. Funksjonen $f:[-2,\infty)\to\mathbb{R}$ definert ved $f(x)=(x+1)e^x$ er injektiv. Hvis g er den omvendte funksjonen, er g'(1) lik:

- A) $\frac{1}{2e}$ B) 2
- C) 1
- D) $\frac{1}{2}$
- E) e

Riktig svar: D) $\frac{1}{2}$

Begrunnelse: Observer først at $f(0) = (0+1)e^0 = 1$ og at f'(x) =

 $1 \cdot e^x + (x+1)e^x = (x+2)e^x$. Dermed er $g'(1) = \frac{1}{f'(0)} = \frac{1}{(0+2)e^0} = \frac{1}{2}$ ved formelen for den deriverte til en omvendt funksjon.

Oppgave 14. Funksjonen $f: \mathbb{R} \to \mathbb{R}$ er gitt ved

$$f(x) = \begin{cases} e^{2x} + 2 & \text{for } x \ge 0\\ Ax + B & \text{for } x < 0 \end{cases}$$

der A og B er konstanter. Hva må A og B være for at f skal være deriverbar i x=0?

- A) A = 2, B = 3.
- B) A = 2, B kan være hva som helst
- C) A = 2, B = 0
- D) Ingen valg av A og B gjør f deriverbar i x = 0
- E) B = 3, A kan være hva som helst

Riktig svar: A) A = 2, B = 3.

Begrunnelse: For å være deriverbar i x = 0, må funksjonen være kontinuerlig x = 0, dvs. vi må ha $f(0) = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (Ax + B) = B$. Siden $f(0) = e^{2 \cdot 0} + 2 = 3$, betyr dette at B = 3. For at funksjonen i tillegg skal være deriverbar, må den høyre- og venstrederiverte være like. Den høyrederivert er lik den deriverte til $e^{2x} + 2$ i punktet x = 0, altså lik 2, mens den venstrederiverte er lik den deriverte til Ax + B i punktet x = 0, altså lik A. For å få likhet må vi ha A = 2.

Oppgave 15. Funksjonen $f(x) = x^{\frac{2}{3}}$ er:

- A) konkav på hele \mathbb{R}
- B) konveks på $(-\infty, 0]$ og konkav på $[0, \infty)$
- C) konkav på $(-\infty, 0]$ og konveks på $[0, \infty)$
- D) konkav på $(-\infty, 0]$ og på $[0, \infty)$, men ikke på hele \mathbb{R}
- E) konveks på $(-\infty, 0]$ og på $[0, \infty)$, men ikke på hele \mathbb{R}

Riktig svar: D) konkav på $(-\infty,0]$ og på $[0,\infty)$, men ikke på hele \mathbb{R} **Begrunnelse:** Deriverer vi to ganger, får vi: $f'(x) = \frac{2}{3}x^{-\frac{1}{3}}$ for $x \neq 0$, og $f''(x) = -\frac{2}{9}x^{-\frac{4}{3}}$ for $x \neq 0$ (legg merke til at f ikke er deriverbar i x = 0). Siden $f''(x) = \frac{2}{9}x^{-\frac{4}{3}} = -\frac{2}{9}(x^4)^{-\frac{1}{3}}$, er f''(x) < 0 på begge intervallene $(-\infty,0)$ og på $(0,\infty)$, og dermed er f konkav på $(-\infty,0]$ og $[0,\infty)$. Figuren nedenfor viser at funksjonen ikke er konkav på hele \mathbb{R} (hvis du forbinder et punkt på den "venstre" grenen med et punkt på den høyre "grenen", blir sekanten liggende over grafen).

Oppgave 16. Løsningene til annengradsligningen $z^2 - (1+i)z + i = 0$ er:

- A) Eneste løsning er i (dobbeltrot)
- B) 1 og -2i
- C) Eneste løsning er 1 (dobbeltrot)
- D) i og 2
- E) $1 \log i$

Riktig svar: E) 1 og i

Begrunnelse: Vi bruker annengradsformelen (abc-formelen):

$$z = \frac{1 + i \pm \sqrt{(1+i)^2 - 4 \cdot 1 \cdot i}}{2 \cdot 1} = \frac{1 + i \pm \sqrt{(1+2i-1) - 4i}}{2} = \frac{1 + i \pm \sqrt{-2i}}{2}$$

For å komme videre trenger vi kvadratrøttene til u=-2i. Siden u har modulus r=2 og argument $\theta=\frac{3\pi}{2}$, har den ene kvadratroten w_0 modulus lik $\sqrt{2}$ og argument lik $\frac{3\pi}{4}$. Dermed er $w_0=\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)=\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)=-1+i$. Setter vi dette inn i uttrykket for z, får vi:

$$z = \frac{1+i\pm\sqrt{-2i}}{2} = \frac{1+i\pm(-1+i)}{2} = \begin{cases} \frac{1+i+(-1+i)}{2} = i\\ \frac{1+i-(-1+i)}{2} = 1 \end{cases}$$

Oppgave 17. Asymptoten til $f(x) = \sqrt{x^2 + 3x}$ når $x \to \infty$ er:

- A) $y = x + \frac{3}{2}$
- $\vec{B}) \ y = x$
- C) Det finnes ingen asymptote
- D) y = x + 3
- E) $y = x + \frac{1}{3}$

Riktig svar: A) $y = x + \frac{3}{2}$

Begrunnelse: Vi bruker metoden fra seksjon 6.5. Først regner vi ut $\lim_{x\to\infty} \frac{\sqrt{x^2+3x}}{x} = \lim_{x\to\infty} \sqrt{1+\frac{3}{x}} = 1$, som vise at a=1. Deretter regner vi ut

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3x} - x \right) = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 3x} - x)(\sqrt{x^2 + 3x} + x)}{(\sqrt{x^2 + 3x} + x)}$$

$$= \lim_{x \to \infty} \frac{3x}{(\sqrt{x^2 + 3x} + x)} = \lim_{x \to \infty} \frac{3x}{x(\sqrt{1 + \frac{3}{x}} + 1)} = \lim_{x \to \infty} \frac{3x}{x(\sqrt{1 + \frac{3}{x}} + 1)} = \frac{3}{2}$$

som viser at $b = \frac{3}{2}$. Dermed er $y = ax + b = x + \frac{3}{2}$ en asymptote.

Oppgave 18. En orienteringsløper skal løpe fra punkt A til punkt B på figuren. Hun planlegger å følge veien fra A til C et stykke, og så løpe ut i terrenget i retning B (se pilene på figuren). Avstanden fra A til C er 500 m og avstanden fra C til B er 300 m. Langs veien kan hun løpe med en fart av 5 m/s, mens hun i terrenget løper med en fart av 3 m/s. Hvor langt må hun løpe langs veien for å bruke kortest tid fra A til B?

- A) 150 meter
- B) 350 meter
- C) 275 meter
- D) 200 meter
- E) 250 meter

Riktig svar: C) 275 meter

Begrunnelse: Innfører vi x som på figuren nedenfor, er tiden hun bruker

gitt ved $t(x) = \frac{500-x}{5} + \frac{\sqrt{300^2 + x^2}}{3}$. Deriverer vi, får vi $t'(x) = -\frac{1}{5} + \frac{x}{3\sqrt{300^2 + x^2}}$. Setter vi dette uttrykket lik null, får vi etter litt omstokking at $3\sqrt{300^2 + x^2}$ 5x. Vi kvadrerer og får at $9(300^2 + x^2) = 25x^2$, som gir $16x^2 = 9 \cdot 300^2$. Siden x må være positiv, betyr dette at $x=\frac{3\cdot300}{4}=225$. Det er lett å sjekke at dette er et minimumspunkt for t(x). Svaret blir dermed 500 m -225 m =275 m (husk hva det er spurt etter).

Oppgave 19. Et fly observeres fra et punkt på bakken. Flyet beveger seg horisontalt i en høyde av 8 km over bakken. I det flyets avstand fra observasjonspunktet er 10 km, endrer avstanden seg med 600 km/t. Hvor er farten til flyet i dette øyeblikket?

- A) 1000 km/t
- B) $\frac{2000}{3}$ km/t C) 750 km/t
- D) 800 km/t

E) 900km/t

Riktig svar: A) 1000 km/t

Begrunnelse: Figuren nedenfor viser den generelle situasjonen med

observasjonspunktet i A og flyet i C. Flyets hastighet er x'(t) og avstanden fra observasjonspunktet ender seg med en hastighet på y'(t). Bruker vi Pytagoras' setning på trekanten på figuren, får vi $y(t)^2 = x(t)^2 + 8^2$, som derivert mhp. t gir 2y(t)y'(t) = 2x(t)x'(t). Dette kan omformes til $x'(t) = \frac{y(t)y'(t)}{x(t)}$. I øyeblikket vi er interessert i, er y(t) = 10 og $x(t) = \sqrt{10^2 - 8^2} = 6$. Dermed blir $x'(t) = \frac{10\cdot600}{6} = 1000$. Altså er flyets hastighet 1000 km/t.

Oppgave 20. Anta at f er en funksjon fra \mathbb{R} til \mathbb{R} . Dersom det finnes positive tall M og b slik at

$$|f(x) - f(y)| \le M|x - y|^{1+b}$$

for alle $x, y \in \mathbb{R}$, så er:

- A) f strengt voksende.
- B) f strengt avtagende.
- C) f strengt avtagende for x < 0 og strengt voksende for x > 0
- D) Det finnes ingen slike funksjoner
- E) f er konstant

Riktig svar: E) f er konstant

Begrunnelse: Det holder å vise at f'(a) = 0 i et hvilket som helst punkt a, dvs. at $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = 0$. Ifølge antagelsen er

$$|f'(a)| = \lim_{x \to a} \left| \frac{f(x) - f(a)}{x - a} \right| \le \lim_{x \to a} |x - a|^b = 0,$$

så f'(a) = 0.