Laboratory Report

Growth of Thin Films by Electron-Beam and Thermal Evaporation System

Guide: Prof. Padmnabh Rai

A R Bathri Narayanan

Roll no: P0211501 UM DAE Centre for Excellence in Basic Sciences

Report presented for the Advanced Physics Laboratory Course (PL 701)

School of Physical Sciences UM-DAE Centre for Excellence in Basic Sciences Mumbai, MH, India August 28, 2024

Objectives:

Growth and characterization of thin films by electron-beam and thermal evaporation systems.

- 1. Chromium and copper thin film deposition on cover glass slips using electron-beam and thermal evaporation techniques, respectively.
- 2. Thickness determination of the deposited thin films using a profilometer.
- 3. To measure the resistivity of the thin films using the Four-probe or Van der Pauw method.

Theory:

1. Electron Beam Evaporation and Thermal Evaporation:

Electron Beam Evaporation is a form of Physical Vapor Deposition (PVD) in which the target material is bombarded with an electron beam from a charged tungsten filament. From crucible, material evaporates and converts into a gaseous state for deposition of the material to be coated onto the substrate. This is carried out in a high vacuum chamber. Thermal Evaporation is one of the simplest PVD techniques. Basically, target material is heated in a vacuum chamber until its surface atoms have sufficient energy to leave its surface. The atoms will traverse the vacuum chamber, at thermal energy and coat a substrate. The pressure in the chamber must be below the critical point where the mean free path is longer than the distance between the evaporation source and the substrate.

2. Vacuum system:

Turbo Molecular Pump (TMP): It is used to create high vacuum in the chamber. The ultimate vacuum of TMP is in the range of 5×10^{-10} mbar.

Rotary pump: It is a dry pump used to create fore vacuum in the chamber and to serve as a backing pump for the TMP. It achieves an ultimate vacuum in the range of 5.0×10^{-2} mbar.

Substrate heater: The heater is used to heat the substrate for better deposition. A 2-inch heater is equipped with this evaporation system which can be used to heat the substrate up to 800°C.

Quartz Crystal Microbalance (QCM): It is used to measure the thickness of the film deposited on a substrate. This is achieved by tracking the frequency response of a quartz crystal during the coating process. The change in frequency can be directly related to the amount of coating material on the crystal surface.

3. Thickness Profilometer:

A thickness profilemeter is an essential instrument used for measuring the thickness of thin films and coatings. It works by scanning the surface of a sample and recording the topographical variations with high precision. The device typically uses a stylus or optical method to trace the surface contours, providing detailed information about the film uniformity and thickness.

Observations: