CUSTOMIZATION OF AI-BASED BREAST CANCER RISK MODELS FOR VALIDATION IN **AANHPI WOMEN**

Cade Kane SURE Symposium 2024

Breast Cancer Risk Assessment

- Ultimate goal: catch breast cancer earlier, when there's a higher chance of survival for the patient.
- 5-year or lifetime risk assessments

5-year relative survival estimates the percentage of cancer patients who will have **not** died from their cancer **5 years** after diagnosis

https://www.cdc.gov/ca ncer/uscs/about/data-b riefs/no25-incidence-rel ative-survival-stage-dia

Clinical Breast Cancer Risk

- Demographics and clinical risk factors only
- Can be extended polygenic risk scores

Mammography

- Mammography is the recommended primary breast cancer screening modality for women in the U.S.
- Mammography consists of a low-dose x-ray of the breast tissue
- Mammography has four views: R-CC, R-MLO, L-CC, L-MLO

CC L-N

(Radswiki, 2011)

Breast Cancer Risk with Radiomics/Al

 BC risk can be found from radiomics through calculation of traditional computer vision features or Al-derived features from breast imaging.

Machine Learning and AI in Breast Cancer Risk Prediction

- Pattern recognition → Learning patterns and features
- A trained model can be given NEW data to evaluate its performance

(Chaitanya, n.d.)

Breast Cancer Risk by Ethnicity/Race

- Due to high proportion of women of Asian descent in HI we can disaggregate the "AANHPI" ethnicity group into specific subgroups: i.e., Japanese, Chinese, etc.
- In HI we have populations which aren't seen in statistically significant numbers on the continental US (NHPI), allowing us to do subgroup analysis.

BCSC	White	Filipina	Chinese	Japanese			
5-year risk	N=91,308	N=6,551	N=24,051	N=2,485			
	Invasive cancers %						
<1.67%	54	90	93	89			
<u>≥</u> 1.67%	46	10	7	11			

UCSF breast cancer surveillance consortium risk model

Overall Problem Statement

Examine clinical and radiomic risk factors (family history of breast cancer, BMI, BI-RADS breast density) and their association with breast cancer risk in women undergoing breast cancer screening by **Asian and Native Hawaiian/Pacific** Islander ancestry <u>compared</u> to non-Hispanic **White**, non-Hispanic **Black**, and **Hispanic** women.

Hawaii & Pacific Islands Mammography Registry (HIPIMR)

Collects breast imaging and breast health information (2009-present)

Linked to the Hawai'i Tumor Registry to identify cases

 Consist of imaging, metadata, clinical variables, patient characteristics, and biopsy-confirmed cancer status

Model	Required Views	Processed or Raw	File Format
Transpara	R/L MLO/CC	Processed	DICOM or JPEG
iCAD (ProFound AI)	R/L MLO/CC	Processed (Dimensions)	DICOM
Malkov Features	R/L CC	Processed	PNG
OpenBreast	R/L MLO/CC	Processed	DICOM
CaPTk	Any	Processed or Raw	DICOM
LIBRA	Any	Processed or Raw	DICOM
Geras Density	R/L MLO/CC	Processed	PNG
Xun	R/L MLO/CC	Raw (Proc2Pres)	DICOM
Mirai	R/L MLO/CC	Processed	DICOM or PNG
Geras Classifier (GMIC)	R/L MLO/CC	Processed	PNG
RADIFUSION	R/L MLO/CC	Processed	DICOM

An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization Yiqiu Shen^a, Nan Wu^a, Jason Phang^a, Jungkyu Park^a, Kangning Liu^a, Sudarshini Tyagi^d, Laura Heacock^{b,e}, S. Gene Kim^{b,c,e},

instance classifier

GMIC: globally-aware multiple

Linda Moy^{b,c,e}, Kyunghyun Cho^{a,d,f}, Krzysztof J. Geras^{b,c,a}

- Input: mammogram PNG + exam list
- Output: cropped mammograms, probability of malignant and benign

GMIC Pipeline Alterations

- Preprocessing:
 - DICOM conversion to PNG format
 - Bit difference 12 bit vs. 16 bit
 - CSV conversion to exam list

- Wrapper script
 - Base directory
 - DICOM directory
 - Path to CSV

Mammogram

CSV Input Data Example

Image_file	ANALYSIS_ID	CANCER_STATUS	ViewPosition	■ ImageLaterality	StudyInstanceUID 🗷 Visit	~
1.2.840.114191	6. 100685956	6 0	CC	R	1.2.840.114191.6.90	0
1.2.840.114191	6. 100685956	0	CC	L	1.2.840.114191.6.90	0
1.2.840.114191	6. 100685956	6 0	MLO	L	1.2.840.114191.6.90	0
1.2.840.114191	6. 100685956	0	MLO	R	1.2.840.114191.6.90	0
1.2.840.114191	6. 100689996	6 1	CC	R	1.2.840.114191.6.90	0
1.2.840.114191	6. 100689996	5 1	MLO	L	1.2.840.114191.6.90	0
1.2.840.114191	6. 100689996	5 1	CC	L	1.2.840.114191.6.90	0
1.2.840.114191	6. 100689996	5 1	MLO	R	1.2.840.114191.6.90	0
1.2.840.114191	6. 100689996	6 1	MLO	R	1.2.840.114191.6.90	1
1.2.840.114191	6. 100689996	3	MLO	L	1.2.840.114191.6.90	1
1.2.840.114191	6. 100689996	3 1	CC	L	1.2.840.114191.6.90	1
1.2.840.114191	6. 100689996	3	CC	R	1.2.840.114191.6.90	1
1.2.840.114191	6. 100985944	1 0	CC	R	1.2.840.114191.6.90	0
1.2.840.114191	6. 100985944	1 0	CC	L	1.2.840.114191.6.90	0
1.2.840.114191	6. 100985944	1 0	MLO	L	1.2.840.114191.6.90	0
1.2.840.114191	6. 100985944	1 0	MLO	R	1.2.840.114191.6.90	0

GMIC Pipeline Results Example

image_index	benign_pred	malignant_pred	benign_label	malignant_label
0_L-CC	0.1356	0.0081	0	0
0_R-CC	0.8928	0.3259	1	0
0_L-MLO	0.2368	0.0335	0	0
0_R-MLO	0.9509	0.1812	1	0
1_L-CC	0.0508	0.0144	0	0
1_R-CC	0.5679	0.9965	0	1
1_L-MLO	0.0545	0.0154	0	0
1_R-MLO	0.4722	0.7178	0	1
2_L-CC	0.0746	0.016	0	0
2_R-CC	0.3551	0.0884	1	0
2_L-MLO	0.0953	0.0086	0	0
2_R-MLO	0.2267	0.0395	1	0
3_L-CC	0.6162	0.8992	0	1
3_R-CC	0.2945	0.2116	0	0
3_L-MLO	0.6677	0.722	0	1

GMIC Pipeline Results Example

image_index	■ benign_pred	malignant_pred 🔻	benign_label 🥃	malignant_label 🥃
0_L-CC	0.1356	0.0081	0	0
0_R-CC	0.8928	0.3259	1	0
0_L-MLO	0.2368	0.0335	0	0
0_R-MLO	0.9509	0.1812	1	0
1_L-CC	0.0508	0.0144	0	0
1_R-CC	0.5679	0.9965	0	1
1_L-MLO	0.0545	0.0154	0	0
1_R-MLO	0.4722	0.7178	0	1
2_L-CC	0.0746	0.016	0	0
2_R-CC	0.3551	0.0884	1	0
2_L-MLO	0.0953	0.0086	0	0
2_R-MLO	0.2267	0.0395	1	0
3_L-CC	0.6162	0.8992	0	1
3_R-CC	0.2945	0.2116	0	0
3_L-MLO	0.6677	0.722	0	1
3_R-MLO	0.0722	0.0303	0	0

Deep Learning Predicts Interval and Screeningdetected Cancer from Screening Mammograms: A Case-Case-Control Study in 6369 Women

- ©Xun Zhu, ©Thomas K. Wolfgruber, ©Lambert Leong, Matthew Jensen, ©Christopher Scott, ©Stacey Winham, ©Peter Sadowski, ©Celine Vachon, ©Karla Kerlikowske, ©John A. Shepherd ⊠
 - Interval-based breast cancer
 - Clinical factors
 - Engineering differences (Xun uses Proc2Pres)

Xun Pipeline Alterations

- Preprocessing
 - Adjusting CSV column names and paths
 - Add acquisition date and acquisition time to patient metadata'
 - Use patient_id_acq_time as the unique identifier

- Convolutional Neural Network (CNN) Model
 - Use a MyDenseNet object that Arianna wrote instead of Xun's code

CSV Input Example for Xun

100689996

100689996

100689996

100689996

100689996

100689996

100985944

100985944

100985944

100985944

/mnt/srl-oahu-1/disk/a

path_to_dicom ~	patient_id ∨	CANCER_STATUS V	view_position ~	image_laterality ∨	dicom_id ∨ Visit	Y	acquisition_date ~	acquisition_time 🗸
/mnt/srl-oahu-1/disk/a	100685956	0	CC	R	1.2.840.114191	0	20200612	152301
/mnt/srl-oahu-1/disk/a	100685956	0	CC	L	1.2.840.114191	0	20200612	152301
/mnt/srl-oahu-1/disk/a	100685956	0	MLO	L	1.2.840.114191	0	20200612	152301
/mnt/srl-oahu-1/disk/a	100685956	0	MLO	R	1.2.840.114191	0	20200612	152301
/mnt/srl-oahu-1/disk/a	100689996	1	CC	R	1.2.840.114191	0	20210713	105623
/mnt/srl-oahu-1/disk/a	100689996	1	MLO	L	1.2.840.114191	0	20210713	105623

R

R

R

R

L

R

1.2.840.114191

1.2.840.114191

1.2.840.114191

1.2.840.114191

1.2.840.114191

1.2.840.114191

1.2.840.114191

1.2.840.114191

1.2.840.114191

1.2.840.114191

0

0

0

0

0

0

20210713

20210713

20221025

20221025

20221025

20221025

20170203

20170203

20170203

20170203

CC

MLO

1 MLO

1 MLO

CC

CC

CC

CC

MLO

MLO

1

105623

105623

90505

90505

90505

90505

131502

131502

131502

131502

Xun Output Example

patient_id_acq_time	label 🗸	group 🗸	LCC ~	RCC 🗸	LMLO ~	RMLO 🗸	n_dicoms ∨	prob_cancer ~
100685956_152301	0	test	1.2.840.1	1.2.840.1	1.2.840.114	1.2.840.114	4	0.19794065
100689996_105623	1	test	1.2.840.	1.2.840.1	1.2.840.114	1.2.840.114	4	0.11494599
100689996_90505	1	test	1.2.840.1	1.2.840.1	1.2.840.114	1.2.840.114	4	0.14777811
100985944_131502	0	test	1.2.840.	1.2.840.1	1.2.840.114	1.2.840.114	4	0.14504619

Acknowledgements

Maximizing Access to Research Careers (MARC) grant 1T34GM141986

- Dr. Peter Sadowski
- Arianna Bunnell

References

- Shen, Y., Wu, N., Phang, J., Park, J., Liu, K., Tyagi, S., Heacock, L., Kim, S. G., Moy, L., Cho, K., & Geras, K. J. (2021). An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization. *Medical Image Analysis*, 68, 101908. https://doi.org/10.1016/j.media.2020.101908
- Zhu, X., Wolfgruber, T. K., Leong, L., Jensen, M., Scott, C., Winham, S., Sadowski, P., Vachon, C., Kerlikowske, K., & Shepherd, J. A. (2021). Deep Learning Predicts Interval and Screening-detected Cancer from Screening Mammograms: A Case-Case-Control Study in 6369 Women. *Radiology*, 301(3), 550–558. https://doi.org/10.1148/radiol.2021203758

Images Cited

Chaitanya, N. (n.d.). *Critical steps to training and evaluating AI and ML models*. Retrieved July 31, 2024, from https://www.columbusglobal.com/en/blog/critical-steps-to-training-and-evaluating-ai-and-ml-models

Pacifici S, Murphy A, Hacking C, et al. Mediolateral oblique view. Reference article, Radiopaedia.org (Accessed on 30 Jul 2024) https://doi.org/10.53347/rID-15338

Pertuz, S., Torres, G. F., Tamimi, R., & Kamarainen, J. (2019). Open Framework for Mammography-based Breast Cancer Risk Assessment. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 1–4. https://doi.org/10.1109/BHI.2019.8834599

Scapicchio, C., Gabelloni, M., Barucci, A., Cioni, D., Saba, L., & Neri, E. (2021). A deep look into radiomics. *La Radiologia Medica*, 126(10), 1296–1311. https://doi.org/10.1007/s11547-021-01389-x

Mahalo! Questions?

BREAST DENSITY CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

Nan Wu¹, Krzysztof J. Geras¹, Yiqiu Shen¹, Jingyi Su¹, S. Gene Kim^{3,4}, Eric Kim³, Stacey Wolfson³, Linda Moy^{3,4} & Kyunghyun Cho^{1,2}