

4ème Math Classe: (Gr standard)

Série 23 Oscillations électriques forcées (2)

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5)

Un circuit électrique comporte en série :

- un résistor de résistance R,
- une bobine d'inductance L et de résistance interne $r = 10 \Omega$,
- un condensateur de capacité C,
- un générateur basse fréquence délivrant une tension sinusoïdale $\mathbf{u}(t) = \mathbf{U}_{m} \sin(2\pi N t)$ d'amplitude \mathbf{U}_{m} et de fréquence $\mathbf{N} = 222 \; \mathrm{Hz}$.

A l'aide d'un oscilloscope, on visualise simultanément la tension $\mathbf{u}(t)$ et la tension $\mathbf{u}_{R}(t)$ aux bornes du résistor \mathbf{R} . On obtient les oscillogrammes de la **figure 1**.

Figure 1

- 1. Faire le schéma du circuit en indiquant les connections à réaliser avec l'oscilloscope sachant qu'on visualise u(t) sur la voie X de l'oscilloscope et u_R(t) sur sa voie Y.
- 2. Préciser, en le justifiant, si le circuit est inductif, capacitif ou résistif.
- 3. a) Déterminer le déphasage $\Delta \phi = \phi_u \phi_{u_R}$ et déduire la valeur de ϕ_i .
 - b) Montrer que : $R = \frac{2 r U_{Rm}}{U_m 2U_{Rm}}$, U_{Rm} désignant l'amplitude de la tension $u_R(t)$.
 - c) Calculer la valeur de R.
 - d) Déduire l'amplitude I_m de l'intensité i(t) du courant.
- **4.** L'intensité **i(t)** du courant électrique qui parcourt le circuit, vérifie l'équation différentielle suivante :

$$L \frac{di}{dt} + (R + r) i + \frac{1}{C} \int i(t)dt = u(t)$$

a) Sur la figure 2 de la page 4/6, on a représenté le vecteur \overrightarrow{V}_1 associé à $\frac{1}{C}\int i(t)dt$ et le vecteur \overrightarrow{V} associé à u(t).

Compléter la construction en respectant l'échelle adoptée et en représentant dans l'ordre les vecteurs $\overrightarrow{V_2}$ et $\overrightarrow{V_3}$ associées respectivement à $(\mathbf{R} + \mathbf{r})$ i et $\mathbf{L} \stackrel{\underline{di}}{\underline{dt}}$.

b) En exploitant la construction de Fresnel, déterminer les valeurs de C, L ainsi que la phase initiale de la tension $u_c(t)$ aux bornes du condensateur.

Exercice 2

Entre deux points A et B, on branche, en série, un résistor de résistance $\bf R$, un condensateur de capacité $\bf C=5~\mu F$ et une bobine d'inductance $\bf L$ et de résistance $\bf r$.

On applique entre les point A et B, une tension alternative sinusoïdale $\mathbf{u}(t) = \mathbf{U}_{m} \sin(2\pi \mathbf{N}t + \mathbf{\phi}_{u})$ d'amplitude \mathbf{U}_{m} constante et de fréquence \mathbf{N} réglable.

Pour une fréquence $N = N_1$, on visualise, à l'aide d'un oscilloscope bicourbe, la tension $u_c(t)$ aux bornes du condensateur et la tension u(t) entre les points A et B respectivement sur ses voies Y_1 et Y_2 .

Les oscillogrammes observés sur l'écran de l'oscilloscope, sont représentés sur la figure 1.

Figure 1

 Parmi les deux schémas, figures 2 ou figure 3, reproduire sur la copie celui qui permet d'obtenir les oscillogrammes de la figure 1 en indiquant les branchements convenables à l'oscilloscope.

- Figure 2
- 2. a) À partir des oscillogrammes, déterminer :
 - */ la valeur de la fréquence N₁,
 - */ les valeurs des amplitudes U_m et U_{cm} (amplitude de $u_c(t)$),
 - */ le déphasage $\Delta \varphi = \varphi_{u_c} \varphi_u$ où φ_{u_c} représente la phase initiale de $u_c(t)$.
 - b) En déduire si le circuit est capacitif, inductif ou résistif.
- 3. Montrer que : R + r = $\frac{U_m}{U_{cm}} \cdot \frac{1}{2\pi N_1 C \sqrt{2}}$

Calculer la valeur de R + r.

4. On branche un voltmètre aux bornes de l'ensemble bobine-condensateur et on augmente la fréquence N jusqu'à la valeur N_2 = 318 Hz.

On constate que u(t) et uc(t) deviennent en quadrature de phase et que le voltmètre indique

$$U_1 = \frac{0.9}{\sqrt{2}} V$$
.

- a) Montrer que le circuit est le siège d'une résonance d'intensité.
- b) Déterminer la valeur de L.
- c) Déterminer la valeur de r et déduire celle de R.

Exercice 3

Un circuit électrique comporte les éléments suivants associés en série:

un générateur de basses fréquences GBF délivrant une tension sinusoïdale $\mathbf{u(t)=U_m sin(mt)}$ avec U_m , est constante et ω variable.

un condensateur de capacité C= 4,5 μF.

un résistor de résistance R

une bobine d'inductance L et de résistance négligeable.

un voltmètre branché aux bornes de l'ensemble {bobine, condensateur}

Physique

I- Pour une pulsation $m = m_1 = 1614 \text{ rad.s}^{-1}$, un oscilloscope bicourbe convenablement branché, permet de visualiser u(t) sur la voie Y_1 et une tension $u_X(t)$ sur la voie Y_2 ($u_X(t)$ peut être soit $u_R(t)$ soit $u_C(t)$) voir figure 3.

2- Montrer que $u_X(t)$ ne peut pas être $u_R(t)$. Faire alors le schéma du montage et les branchements à l'oscilloscope permettant de visualiser u(t) et $u_X(t)$.

b-calculer la valeur de l'intensité maximale Im.

- b- Déduire la valeur de l'inductance L de la bobine et celle de la résistance R.
- c- Déterminer l'expression de la tension u'(t) aux bornes de l'ensemble bobine- condensateur.
- II- On modifie la pulsation ω . Pour une autre pulsation $m=m_2$, le voltmètre indique une tension nulle.
- 1- Montrer que l'oscillateur est en état de résonance d'intensité.
- **2-** Déterminer alors le déphasage $\Delta \varphi = \varphi_u \varphi_{uc}$
- 3- Calculer le coefficient Q de surtension

Exercice 4

Un dipôle électrique est constitué par une association en série d'un résistor de résistance $R=20\Omega$, d'une bobine d'inductance L et de résistance ${\bf r}$, d'un condensateur de capacité C et un ampèremètre de résistance négligeable.

Un générateur basse fréquence (GBF) impose aux bornes de ce dipôle une tension sinusoïdale $\mathbf{u(t)=U_m.sin(2\pi Nt)}$ de fréquence N réglable et d'amplitude $\mathbf{U_m}$ maintenue constante (voir figure 2).

A l'aide d'un oscilloscope numérique on suit l'évolution temporelle des tensions :

- * u (t) aux bornes du GBF sur la voie YA
- * u1 (t) aux bornes du dipôle (résistor, bobine) sur la voie YB.

I- On fixe la fréquence du générateur basse fréquence à une valeur $N_1 = 200$ Hz. L'amplitude du courant qui circule dans le circuit est alors $I_m = 140$ mA.

On réalise un réglage fin de l'oscilloscope, on observe alors les deux chronogrammes (CyA) et (CyB) de la **figure 3**. Les deux voies YA et YBde l'oscilloscope ont la même sensibilité verticale 2V.div⁻¹.

1)a-Déterminer graphiquement les amplitudes U_m et U_{1m} respectivement des tensions u(t) et $u_1(t)$.

- **b** Montrer que la phase initiale de la tension $\mathbf{u}_1(\mathbf{t})$ vaut $\boldsymbol{\varphi}_{u_1} = \frac{2\pi}{3} rad$.
- 2)L'équation différentiellerégissant les variations de l'intensité du courant i(t) dans le circuit est :

$$(R+r).i(t)+L.\frac{di(t)}{dt}+\frac{1}{C}.\int i(t).dt=u(t).$$

Une solution de cette équation est :

$$\mathbf{i}(t) = \mathbf{I}_{\mathbf{m}} \sin(2\pi \mathbf{N}_{1}.t + \mathbf{\varphi}_{\mathbf{i}}).$$

Sur la **figure4** de la page annexe**5/5** à rendre avec la copie, on a représenté trois vecteurs de Fresnel

 \overrightarrow{V} , $\overrightarrow{V_1}$ et $\overrightarrow{V_2}$, correspondants respectivement aux

tensions
$$\mathbf{u}(t)$$
, $\mathbf{u}_1(t) = (\mathbf{R} + \mathbf{r}) \cdot \mathbf{i}(t) + \mathbf{L} \cdot \frac{\mathbf{d}\mathbf{i}(t)}{\mathbf{d}t}$ et

 $u_c(t) = \frac{1}{C} \cdot \int i(t) \cdot dt$ L'échelle adoptée est 1cm pour 1Volt.

a- Représenter sur la figure 4de la page annexe(page 5/5)

à remplir et à rendre avec la copie), dans l'ordre, les vecteurs correspondants à (R+r).i(t) et à L. di(t) dt

- b- Déduire de cette construction :
- le caractère (inductif, capacitif ou résistif) du circuit.
- la valeur de la phase initiale du courant φ_i.
- les valeurs de L, C et r.
- II-On prendra dans la suite de l'exercice L = 0.04H, $C = 8.10^{-6}F$ et $r = 8.5\Omega$.

On modifie la fréquence du GBF. Pour une fréquence N_2 on remarque que les amplitudes des tensions U_{1m} , U_m et U_{Cm} , U_{Cm} étant l'amplitude de la tensionaux bornes du condensateur, vérifient la relation :

$$U_{1m}^2 = U_m^2 + U_{Cm}^2$$

- 1) Montrer que le circuit est le siège d'une résonance d'intensité et calculer la fréquence N₂.
- 2) Calculer l'amplitude U_{Cm} de la tension aux bornes du condensateur et la comparer à U_m . Nommer le phénomène mis en évidence.

Figure 4

