DBW – Databases and Web development

Aims

- Review a number of technologies to handle bioinformatics data:
 - Computer communication, design of web applications, basic database design and optimization.
- The final objective is to built a fully operative application using the appropriate combination of the techniques reviewed.

Bioinformatics & Internet

- Tools and data should be available through web
- Ex. Nucleic Acid Research reviews:
 - Database Issue (January) 1170 DBs
 - Web Server Issue (July) 1200 Servers

Web applications by access type

Web interfaces

- Provide a user friendly interface (web based) to "human" users
 - Users known how to use the interface
 - There is no need to install software
 - Single operations (no large scale)
 - Must adapt to navigation uses (low latency, synchronous answers,...)

Web services

- Provide a programmatic interface (using Web protocols)
- Intented to interact with software, not humans
 - Well-defined data formats required.
 - Adequated for large scale operations
- Modern applications will normally offer both

Web application styles

- Access to data
 - Friendly interface to data repositories
- Web Interfaces to stand-alone software
 - Collect input parameters and redirect output
- Workbenches (e.g. Galaxy)
- On-purpose applications & DBs
- Web services (programmatic access)

Web interfaces to apps.

Special purpose applications & DBs

MD-Kit

Bioinformatics web-services and workflows

Building a (web) application

- 1. Define specifications
- Analyze data and built a data model
- 3. Decide/prepare Database implementation
- 4. Build ETL if necessary
- Define interfaces
- 6. Define and prepare files/scripts layout
- 7. Write application code
- 8. Test, debug, document...

Course logistics

- Web site(s)
 - Course materials:
 - http://mmb.pcb.ub.es/formacio/
 - Personal sites:
 - http://mmb.pcb.ub.es/formacio/~dbwXX
 - SSH Access
 - ssh mmb.pcb.ub.es –p 22021 –l dbwXX
 - Mysql Access (port 13306)
 - DB: DBWXX, same user/password

Subjects overview

Software to install

- Ideally Linux (may need root privileges)
- From Linux distribution
 - Apache Web Server (v. 2.x)
 - With PHP 5.x and mysql support
 - MYSQL server (v. 5.x)
 - MYSQL Workbench or phpMyAdmin
- Netbeans (PHP module) (optional)
- MongoDB (optional)

Evaluation

- Exercices, in-class projects (20%)
- Personal web site (20%)
- Web application project (60%)
 - Progress presentations
 - Fully operative web application using DBs

Evaluation

- Web application project
 - 3-4 people / group
 - Free subject (bioinformatics preferred)
 - Should include DB management, web interface, users management
 - May use fake data if necessary
 - Available at the personal web site
 - Preferred languages: PHP, Perl, Mysql

Evaluation

- Web application project
 - Steps:
 - Initial specification (15 Jan)
 - Data analysis & Database design (20 Jan)
 - Project Demo (5 Feb)
 - Final application (TBD)
- Installed on server
 - mmb.pcb.ub.es/formacio/~dbwXX
 - Account dbwXX . DB DBWXX

Basic computer communication protocols

Aim & Outline

- Understand the basic components of computer communication protocols
 - Concepts of client and server
 - Addressing servers and data
 - Computer addresses (MAC Address, IP Address)
 - Ports
 - Resource identification
 - DNS
 - URL/URI concept
 - Client/server transactions
 - HTTP protocol

Present internet

- Huge network of computers using common communication protocols (TCP/IP, HTTP)
- Distributed, no central servers
 - (Well, not really true in bioinformatics)
- Common language: HTML/CSS (XML)
- Content mostly static, but dynamic behaviour is possible through web applications

Components

- Client and Server logic and physical addresses
- Data
- Data meta-information
 - Nature of data
 - Request (what to do)
 - Applications involved (email, web, etc.)

How it works: TCP/IP

- Packet switching
 - Packet switching breaks the signal in small fragments ("packets") each of them containing the complete information about source and destination
 - Packets can share a single communication line
 - Users have the idea of a dedicated line but, in fact, it is not. Of course, the bandwidth is limited.
- Computers connected to internet should have addresses
 - MAC Address: Address of the physical interface
 - IP Address: Address of the computer

IP addresses

- Allow to find destination irrespective of the nature of the network media.
- Each device has a "unique" IP address
- IPv4: 32 bits (4 x 1 byte (0-255) numbers)
 - Max: 2^{32} : aprox 4.3 x 10^9
 - P.ex. 161.116.222.59 (mmb.pcb.ub.es)
 - 4 levels are hierarchical
- Some addresses are reserved, and some networks are "local"
- IPv6: 128 bits (16 bytes). Max: 2¹²⁸ (3.4 x 10³⁸)

Names vs addresses (Domain Name System)

 IP addresses are not easy. Most hosts have also a "name":

f. ex. www.ncbi.nlm.nih.edu

- Host names have a structure similar to IP addresses: Top domains (.es, .edu, correspond to full class domains and subnets are indicated by prefixes.
 - ub.es (161.116.x.x)
 - bq.ub.es (161.116.154.x)
 - www.bq.ub.es (161.116.154.18)

How to address applications in a server: Portids.

- Each host has one IP address but has several ports for known services
- Ports are 2-Byte numbers.
 - 0-1023 are "Well known ports" (Telnet: 23, FTP: 21, HTTP: 80, ...).
 - 1024-49151 are "Registered ports", usually managed by applications (MySQL: 3306)
 - 49,152-65,535 are "Dynamic and/or private ports" freely usable.
- Communication to ports triggers the specific application to deal with the data
- However, different ports from official ones can be used to:
 - Hide applications
 - Have more then one server in the same IP address
 - Hide servers in internal networks.

URI/URLs

 Resources must be identified in a way that includes all the necessary details:

http://mmb.pcb.ub.es:80/courses/master.htm#top

Missing parts of the URL are filled by default!!

Client – server communication

- Most Web Applications use HTTP (hypertext transfer protocol), although sometimes FTP, SMTP
- HTTP is a client-server communication protocol
 - Link between client and server is dynamic
 - Usually limited to a single transaction
 - Requests composed by a query operation and a variable set of headers.
 - Answers: headers + data
- Relevant Operations: GET, POST
 - GET: Simple retrieval, all information/parameters included in the URL
 - Simple queries, static information
 - Required to be used as hypertext links
 - POST: Query defines the resource, but input data follows
 - Input data can be of any type (including binaries, whole files) or size (within limits)
- Relevant HTTP headers
 - Content-type (POST): input data format
 - Content-type (Answer): Data MIME type (text/html, image/jpg, ...)
 - Set-cookie: Set a "cookie" on users' software.
 - Location: Redirects browser

Cookies

- Small information tags sent as HTTP headers and stored in the browser side
 - Are associated with a URL, and are sent back to the server whenever that URL is visited within a expiration date

```
Set-Cookie: PHPSESSID=bb56ee648aeac6923e3360a7b8284a6f;
path=/
```

 Useful to "remember" clients, but some people disables them!