Trial Higher School Certificate Examination

2006

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using blue or black pen
- · Write your Student Number on every page
- · All questions may be attempted.
- · Begin each question in a new booklet.
- · All necessary working must be shown.
- Marks may be deducted for careless or poorly presented work.
- · Board-approved calculators may be used.
- A list of standard integrals is included at the end of this paper.
- The mark allocated for each question is listed at the side of the question.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

Ouestion 1 - (15 marks) - Start a new booklet

Marks

a) Prove that for complex numbers z, z_1 and z_2

(i)
$$z\overline{z} = |z|^2$$

(ii)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

1, 1

b) Use the above two results to prove that $|z_1 z_2| = |z_1||z_2|$

2

1

1

c)

The points A, B, C, D and O are points in the Argand plane such that OD = OC and OA = OB. A corresponds to the complex number z and C corresponds to the complex number q. Let $w = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$.

- (i) Explain why B corresponds to zw.
- (ii) Find the complex number corresponding to D.
- (iii) Prove, using complex numbers, that BC = AD.
- (i) If α is a double zero of a polynomial P(x) show that α is a single zero of P'(x)
 - (ii) Find the integers 'a' and 'b' given that $(x+1)^2$ is a factor of $x^5 + 2x^2 + ax + b$
- e) (i) Show that z=1+i is a root of the equation $z^2-(3-2i)z+(5-i)=0$
 - (ii) Find the other root of the equation.

Question 2 - (15 marks) - Start a new booklet

Marks

3

a) (i) Express $\frac{3x+7}{(x+1)(x+2)(x+3)}$ in partial fractions (show <u>all</u> working)

(ii) Hence evaluate $\int_0^1 \frac{3x+7}{(x+1)(x+2)(x+3)} dx$

b) (i) Simplify $\sin(A+B) + \sin(A-B)$

3

ii) Hence evaluate $\int_0^{\frac{\pi}{4}} \sin 5x \cos 3x \, dx$

c) Consider the ellipse $E: \frac{x^2}{9-\lambda} + \frac{y^2}{\lambda - 4} = 1$ where λ is a real number.

(i) Find the range of possible values of λ

1

For this range of values of λ , find the volume $V(\lambda)$ in simplest factored form, when the area enclosed by this ellipse is rotated about the x-axis.

 \bigcirc

(iii) Sketch the ellipse E when $\lambda = 5$ clearly showing intercepts, foci and directrices.

Question 3 - (15 marks) - Start a new booklet

Marks

- Sketch $y = \left[\sin^{-1} x\right]^{-1}$ clearly demonstrating its relationship to $y = \sin^{-1} x$
 - 2
 - (ii) Sketch $y^2 = \tan^{-1} x$ clearly showing its relationship to $y = \tan^{-1} x$
- 2

3

- P(x) is an even monic polynomial of degree four with integer co-efficients. One zero is 3i and the product of the zeros is -18. Factor P(x) fully over the real field.
- The base of a solid is the circle $x^2 + y^2 = 16$

Find the volume of the solid if every cross-section perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.

The following graph is of y = f(x)

- Suggest a possible expression for f(x) giving a clear explanation of your choice.
- Sketch y = f'(x)

2

Question 4 - (15 marks) - Start a new booklet

Trial HSC Examination - Mathematics Extension 2-2006

Marks

- If α , β and γ are the roots of $x^3 2x^2 + 4x + 2 = 0$ find the polynomial equation with roots
 - (i) $\alpha 1$, $\beta 1$, $\gamma 1$
 - (ii) α^2 , β^2 , γ^2

St George Girls High School

Evaluate

2

(ii) $\int_0^2 x e^x \ dx$

2

- Consider the curve $C: x^2 + xy + y^2 = 3$
 - (i) Find $\frac{dy}{dx}$

- (ii) Find all stationary points and points where $\frac{dy}{dx}$ is not defined.
- (iii) Sketch C clearly showing the above features and intercepts on the x, y axes.

Ouestion 5 - (15 marks) - Start a new booklet

Marks

2

2

6

- (i) If $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$, $n \ge 0$ prove that for $n \ge 2$, $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$
 - (ii) Calculate $\int_0^{\frac{\pi}{2}} x \sin x \, dx$
 - (iii) Deduce that $\int_0^{\frac{\pi}{2}} x^3 \sin x \, dx = \frac{3}{4} \pi^2 6$

A particle starts from rest at the origin. The above sketch represents its acceleration \ddot{x} as a function of time.

- Carefully describe the velocity of the particle for $1 \le t \le 3$.
- (ii) Find the velocity of the particle at t=5

The region, in the first quadrant, bounded by the curve $y = \cos^{-1} x$ and the co-ordinate axes is rotated about the line x = -1. Use the method of cylindrical shells, clearly showing all working, to find the volume of the solid generated.

Question 6 - (15 marks) - Start a new booklet

Marks

- A solid is formed by rotating the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ about the line x = 2a. Find the volume of this solid by taking slices perpendicular to the axis of rotation.
- b) The point $P(x_1, y_1)$ lies on the hyperbola $H: \frac{x^2}{a^2} \frac{y^2}{h^2} = 1$. The foci of H are S and S'.

The tangent to H at P cuts the x-axis at T.

Prove that the equation of the tangent at P is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

Find the coordinates of T.

3

(iii) Prove that $\frac{PS}{PS^1} = \frac{TS}{TS^1}$

A particle of mass m kg is dropped from rest in a medium where the resistance force is

Find the equation of motion and the terminal velocity v_T

Find the time taken for the particle to reach a velocity of $\frac{v_T}{2}$.

4

3

1

2

- A mass m kg is projected vertically upwards with velocity V m/s in a medium with resistance force mkv. Find the maximum height reached.
- In any triangle ABC prove that $\tan A + \tan B + \tan C = \tan A \tan B \tan C$
- (i) If $t = \tan x$ prove that $\tan 4x = \frac{4t(1-t^2)}{t^4-6t^2+1}$ 2
 - (ii) If $\tan x \tan 4x = 1$ deduce that $5t^4 10t^2 + 1 = 0$
 - (iii) Use basic trigonometry to prove that both $x=18^{\circ}$ and $x=54^{\circ}$ satisfy the equation $\tan x \tan 4x = 1$
 - (iv) Deduce that $\tan 54^\circ = \sqrt{\frac{5 + 2\sqrt{5}}{5}}$ 3

St George Girls High School Trial HSC Examination - Mathematics Extension 2-2006

Page 9

Ouestion 8 – (15 marks) – Start a new booklet

Marks

Find the sum $1+10+10^2+...+10^n$

7

(ii) Use the method of mathematical induction to show that

$$1 \times 9^2 + 11 \times 9^2 + 111 \times 9^2 + \dots + \underbrace{111 \dots 1}_{nones} \times 9^2$$

 $=10^{n+1}-9n-10$ for all positive integers $n \ge 1$

b) It is given that $z^5 = 1$ where $z \ne 1$

(i) Show that
$$z^2 + z + 1 + z^{-1} + z^{-2} = 0$$

(ii) Show that
$$z+z^{-1}=2\cos\frac{2k\pi}{5}$$
 $k=1,2,3,4$

- (iii) By letting $x=z+z^{-1}$ reduce the equation in (i) above to a quadratic equation
- (iv) Hence deduce that $\cos \frac{\pi}{5} \cdot \cos \frac{2\pi}{5} = \frac{1}{4}$


```
= 19-3 W since |w = | cist
               - BC=AD.
 d) (1) Pa = (x-d)2 Q(x), where Q(d) #0.
P(b) = 2 (x-d) Q(x) + (x-d)2 Q(x)
              factor of x-x in 2000 + 61-x) Q'es.
               Pay only les a single zero of 21= a
(i) (x+1)^{2} is a factor of P(x) = 2L^{2} + 22L + 62L + 1

2+1 is a factor of P(x) for (1)

P(-1) = 0 (factor theorem)

Now, P(x) = 5x^{2} + 4x + 4x

P(-1) = 5 - 4 + 4x = 0
                     Paz= 25+22-21+6 = (2+1) Qai)
              P(-1) = 0
(-1)^{5} + 2(-1)^{2} - (-1) + 5
           Let P(3) = 32- (3-2i) 3.+(5-i) =0.
                P(1+i) = (1+i) - (8-2i) (1+i)+5-i
                      ? = 1ti is a root of 3-2-(3-2i)3+5 -2-
```

(ii) Let \angle be the other root $\begin{vmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{vmatrix}$ $\begin{vmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{vmatrix}$ $\begin{vmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{vmatrix}$ (or divide & P(3) by 3-1-i) a) (1) $\frac{3x+7}{(x+1)(x+3)} = \frac{a+b+c}{x+1}$ $\frac{1}{2} = \frac{3}{2} + 7 = \frac{a(x+2)(x+3) + b(x+1)(x+3)}{c(x+1)(x+2)}$., 1 = b(-1)(1) -- b=-1 4 = a(1)(2) ... a=2-2= &c(-2)-1) -1 c=-1 $\frac{3x+7}{(x+1)(x+2)(x+3)} = \frac{2}{x+1} - \frac{1}{x+2}$ (i) $\int_{0}^{1} \frac{3x+7}{(x+1)(x+3)} dx = \int_{0}^{2} \frac{2}{x+1} - \frac{1}{x+2} = \frac{1}{x+3}$ =[2h(x+1)-ln(x+2)-h($= 2 \ln 2 - \ln 3 - \ln 4 - 2 \ln 1 + \ln 2 +$ $= 3 \ln 2 - 2 \ln 2$ $= \ln 2$

b) (i) sin (A+B) + sin (A-B)
= sin A cosB + cosA sinB + sin A cosB - cosA sinB (ii) SinA cosB = 1 (Sin(A+B)+sin(A-B) · 5 4 sin 5 x cos 3 x dx = 1 / 4 sin 8 x + sin 2 x $(A=5\pi,B=3\pi)$ = \frac{1}{2} (-\frac{1}{8} cos 2\pi - \frac{1}{2} cos \frac{1}{2} + \frac{1}{8} + $=\frac{1}{2}\left(-\frac{1}{8}-0.+\frac{1}{8}\pm\frac{1}{2}\right)$ (i) We require 9-7,70 1 7-470 e 0<9 0 7.74 (1) $V = 2\pi \int \sqrt{q-n} y^2 dx$ $\frac{x^2 + y^2}{q-n} = \frac{x^2}{n} + \frac{y^2}{n} = \frac{x$ $=2\pi\int_{0}^{\sqrt{q-n}}(2-4)\left(1-\frac{x^{2}}{q-n}\right)dx$ $=2\pi\left[\frac{(\lambda-4)x-\lambda-4}{9-\lambda}\right]^{\frac{3}{3}}$ $=2\pi\left(\left(\frac{\lambda-4}{2}\right)\sqrt{9-\lambda}-\frac{\lambda-4}{2}\right)\sqrt{9-\lambda}-4$ $=2\pi(2-4)\left[\frac{2}{3}\sqrt{9-3}\right]$ = 47 (7-4) 19-7 Units3.

84
a) (1) P(x) = $x^3 - 2x^2 + 4x + 2 = 0$ has roots x, β, δ . We want equin x where $x = \alpha - 1$.
We want egin in x where x= x-1.
$\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \sqrt$
$P(2+1) = (x+1)^{3} - 2(x+1)^{2} + 4(x+1) + 2$ $= 2(x+1)^{3} + 3x + 1 - 2x^{2} - 4x - 2 + 4x + 6$
= 3C + 3C + 33C + 1 = 23C +
iè required egi is x ³ +71 + 3x + 5=0.
· ·
$(ii) \alpha = \lambda^{2}$ $\therefore \alpha = \pm \int_{2}^{\infty} x_{1} dx = \frac{1}{2} \int_{2}^{\infty} x_{2} dx = \frac{1}{2} \int_{2}^{\infty} x_{1} dx = \frac{1}{2} \int_{2}^{\infty} x_{2} dx = \frac{1}{2} \int_{2}^{\infty} x_{1} dx = \frac{1}{2} \int_{2}^{\infty} x_{1} dx = \frac{1}{2} \int_{2}^{\infty} x_{2} dx = \frac{1}{2} \int_{2}^{\infty} x_{1} dx = \frac{1}{2} \int_{2}^{\infty} x_{1$
$d = \pm 12$
$P(\alpha) \ge 0 - P(\pm \beta_1) = 0.$
(e (±151)3-2(±15x)2+45x+2=0.
$10^{\circ} + \sqrt{2} \left(2 + 4 \right) = 2 \times 2$
x(x+8x+16) = 4x - 8x + 4
$(2) \frac{x^3 + 8x^2 + 16x = 4x^2 - 8x + 4}{6x^3 + 4x^2 + 24x - 4 = 0}$
in the same of the
- - - - - - - - - -
$\frac{b}{b}(i)\int_{2}^{3} \frac{x^{3}}{x^{2}-i} dx = \int_{2}^{3} \frac{x(x^{2}-i) + x}{x^{2}-i} dx$
$= \int_{2}^{\infty} x + \frac{x}{x^{2}} dx$
$C(2^2)$
$= \left[\frac{1}{2}x^2 + \frac{1}{2}\ln(x^2 - 1)\right]_2^2$
$= \frac{9}{2} + \frac{1}{2} \ln 8 - 2 - \frac{1}{2} \ln 3$
= 2½ then 8/3
$ c + (n/\delta/2)$

a) (1) In= [x sin 2 dz, n >0. let u=1-12 x=0, u=1 = (= x d (-cos2) d) $=-x^{n}\cos x\int_{0}^{\infty}t\int_{0}^{\infty}\cos x\cdot n\cdot 2i^{n-1}dx$ 21 dx = -1 du. = n/ cosx xn-1 dx, .. I = f. - 2 und du. = n / = d (sinx) = n-1 dy. $= [-1, 2u^{+}]_{1}$ = n { >1 sinx [- - sinx (n-1)21 oh } ie In= n (=) 1-0-n(n-i) = 21 = sin2 dx (6) e In +n(n-i) In-2 = n(±) -1 :. [cos x dn = 0-0+1 (5)- (ii) I = 5 x sinx dx · V= 2T/x w= 1x + ws 1x dx, = 1 x. of (-cosz) dz $=2\pi\left(\frac{\pi}{8}+1\right)\sqrt{3}$ $= - \chi \cos \chi T^{\pm} + \int_{0}^{\pm} \cos \chi \cdot 1 \, d\chi$ = 0 + [sinx] a)(i) 1+10+10+10+10n G. P. / acl , 1=10. N= n+1. $-\int_{0}^{\frac{\pi}{2}} 2^{3} \sin x \, dx = T_{3} = \frac{3\pi^{2} - 3.2}{3}$ (ii) 1x92+11x94111x92+-.+(111/-.1)x92

QUESTION 6:

(a)

Volume of slice is

$$\delta V = \pi (2a + x)^2 \delta y - \pi (2a - x)^2 \delta y$$

$$= \pi \left[(2a + x + 2a - x)(2a + x - 2a + x) \right] \delta y$$

$$= \pi (4a)(2x) \delta y$$

$$= 8\pi a x \delta y$$

-: Volume of solid is

$$V = \lim_{\delta y \to 0} \int_{y=-b}^{b} 8\pi a x \, \delta y$$

$$= 8\pi a \int_{-b}^{b} x \, dy \quad \text{where } \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

$$= 8\pi a \int_{-b}^{b} \frac{a}{b} \left(b^{2} - y^{2}\right)^{\frac{1}{2}} dy \qquad \frac{x^{2}}{a^{2}} = 1 - \frac{y^{2}}{b^{2}}$$

$$= x^{2} \left(b^{2} - y^{2}\right)^{\frac{1}{2}} dy \qquad \frac{x^{2}}{a^{2}} = 1 - \frac{y^{2}}{b^{2}}$$

$$= x^{2} \left(b^{2} - y^{2}\right)^{\frac{1}{2}} dy \qquad \frac{x^{2}}{a^{2}} = 1 - \frac{y^{2}}{b^{2}}$$

$$= x^{2} \left(b^{2} - y^{2}\right)^{\frac{1}{2}} dy \qquad \frac{x^{2}}{a^{2}} = 1 - \frac{y^{2}}{b^{2}}$$

= 8Taxax + Tto (area of.

(-6)

Differentiating with respect to x $\Rightarrow \frac{2x}{a^2} + \frac{2y}{b^2} \frac{dx}{dx} = 0$ is $\frac{dx}{dx} = + \frac{b^2x}{a^2y}$

at
$$P(x_i, y_i)$$
 $\frac{dy}{dx} = + \frac{b^{T} x_i}{a^{T} y_i}$

: Langent at $P(x_i, y_i)$ is $y - y_i = + \frac{e^2 x_i}{a^2 y_i} (x - x_i)$

$$a^{2}yy_{1} - a^{2}y_{1}^{2} = +b^{2}xx_{1} + b^{2}x_{1}^{2}$$
ie $b^{2}xx_{1} + a^{2}yy_{1} = b^{2}x_{1}^{2} + a^{2}y_{1}^{2}$

(ii) at 7,
$$y = 0$$

$$\frac{xx_1}{a^{x}} = 1$$
ie $x = \frac{a^{x}}{x}$

$$T \equiv \left(\frac{a^2}{x_i}, o\right)$$

$$\frac{PS}{PS'} = \frac{ePM}{ePM'}$$

$$= \frac{PM}{PM'}$$

$$= \frac{x_1 - \frac{\alpha}{e}}{x_1 + \frac{\alpha}{e}}$$

$$= \frac{x_1 - \frac{\alpha}{e}}{x_1 + \frac{\alpha}{e}}$$

$$= \frac{x_2 - \alpha}{x_1 + \frac{\alpha}{e}}$$

$$= \frac{x_2 - \alpha}{x_2 + \alpha}$$

$$= \frac{x_1 - \alpha}{x_2 + \alpha}$$

$$= \frac{x_2 - \alpha}{x_2 + \alpha}$$

$$= \frac{x_2 - \alpha}{x_2 + \alpha}$$

$$= \frac{x_3 - \alpha}{x_2 + \alpha}$$

$$= \frac{x_3 - \alpha}{x_3 + \alpha}$$

$$= \frac{x_4 - \alpha}{x_4 + \alpha}$$

$$= \frac{x_5 - \alpha}{x_4 + \alpha}$$

$$= \frac{x_5 - \alpha}{x_5 - \alpha}$$

$$=\frac{\chi_{i}-\tilde{e}}{\chi_{i}+\tilde{e}} = \underbrace{a(\chi_{i}e-a)}_{a(\alpha+\chi_{i}e)}$$

$$=\frac{\chi_{i}e-a}{\chi_{i}e+a} = \underbrace{ps}_{ps'}$$

$$=\frac{ps}{ps'}$$

$$\Rightarrow mg - mkv = m\ddot{x}$$

$$=g - kv = \ddot{x} = 0$$

$$= g - kv = 0$$

$$= \frac{g}{k}$$

(ii)
$$0 \Rightarrow \frac{dv}{dt} = g - kv$$

$$\frac{dt}{dv} = \frac{1}{g - kv}$$

$$t = \int_{0}^{\frac{v}{2}} \frac{1}{g - kv} dv$$

$$= -\frac{1}{k} ln(g - kv) \int_{0}^{\frac{v}{2}} \frac{1}{k} lng$$

$$= -\frac{1}{k} ln(g - \frac{v}{2}) + \frac{1}{k} lng$$

$$= \frac{1}{k} ln(\frac{3}{2})$$

QUESTION 7:

$$R = m\ddot{w}$$

$$\Rightarrow m\ddot{x} = -mg - mkv$$

$$\dot{u} \ddot{x} = -g - kv$$

$$\frac{dv}{dx} = -g - kv$$

$$\frac{dv}{dx} = -\frac{g - kv}{v}$$

$$\frac{dx}{dx} = -\frac{v}{g + kv}$$

$$\therefore \chi = -\int_{0}^{v} \frac{v}{g + kv} dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{g + kv}{g + kv} - \frac{g}{k} \cdot \frac{i}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= -\int_{0}^{v} \left(\frac{1}{k} \cdot \frac{1}{k} - \frac{g}{k} \cdot \frac{k}{g + kv}\right) dv$$

$$= \frac{2}{k} lng + \frac{V}{k} - \frac{2}{k} lng$$

$$= \frac{V}{k} + \frac{2}{k} ln(\frac{g}{g+kV})$$

(b)
$$A + B + C = 180$$

 $A + B = 180 - C$
 $A + B = tan(180 - C)$
 $A + B = tan(180 - C)$

: fan A + fan B + fan C = fan A tan B fan C ie fan A + fan B + fan C = fan A tan B fan C

(c) (i)
$$tan 4x = \frac{2 tan 2x}{1 - tan^2 2x}$$

$$= \frac{2 \cdot \left(\frac{2tan x}{1 - tan^2 x}\right)}{1 - \left(\frac{2tan x}{1 - tan^2 x}\right)^2}$$

$$= \frac{2 \cdot \frac{2t}{1 - t}}{1 - \left(\frac{2t}{1 - t}\right)^2} \times \frac{(1 - t^2)^2}{(1 - t^2)^2}$$

$$= \frac{4t \cdot (1 - t^2)}{t^2 - 6t^2 + 1}$$

$$= \frac{4t \cdot (1 - t^2)}{t^2 - 6t^2 + 1}$$

(ii)
$$tan x tan 4x = 1$$

 $\Rightarrow t. \frac{4t(1-t)}{t^4-6t^4-1} = 1$
 $4t^2(1-t) = t^4-6t^4-1$
 $4t^4-4t^4 = t^4-6t^4-1$

(iii)
$$x = 18^{\circ}$$
: $tan 18^{\circ} tan 72^{\circ}$

$$= \cot 72^{\circ}. tan 72^{\circ}$$

$$= 1$$

$$x = 54^{\circ}: tan 54^{\circ} tan 216^{\circ}$$

$$= \cot 36^{\circ}. tan 36^{\circ}$$

$$= 1$$

$$\therefore Both $x = 18^{\circ} \text{ and } x = 54^{\circ} \text{ a}$$$

(iv)
$$5t^{4} - 10t^{6} + 1 = 0 \text{ has solutions}$$

$$t = tan 18^{\circ}, tan 54^{\circ}$$

$$\Rightarrow t^{2} = 10 \pm \sqrt{100 - 20}$$

$$= 10 \pm 4\sqrt{5}$$

$$= 10 \pm 4\sqrt{5}$$

$$= \frac{5 \pm 2\sqrt{5}}{5}$$

$$= \frac{5 - 2\sqrt{5}}{5}, \frac{5 + 2\sqrt{5}}{5}$$
i.e. $t = \pm \sqrt{\frac{5 - 2\sqrt{5}}{5}}, \pm \sqrt{\frac{5 + 2\sqrt{5}}{5}}$

since tan 18° and tan 54° are both positive with tan 54° > tan 18° Then fan 54° = $\left(\frac{5+2\sqrt{5}}{5}\right)^{\frac{1}{5}}$

QUESTION B:

(a) (i)
$$1+10+10^{2}+...+10^{n}$$

Semetric series $a=1, r=10, n=n+1$
 $S = 1 \underbrace{\int 10^{n+1} - 17}_{10-1}$
 $= 10^{n+1} - 1$

(ii) Let
$$5(n)$$
 be the assertion that $1 \times 9^2 + 11 \times 9^2 + \cdots + (11 \cdot \dots 1) 9^2 = 10^{n+1} - 9n - 10$

assume 5(k) is true for some integer n=k

ie 1x9 + 11x9 + ... + 111... 1 x 9 = 10 k = 9k - 10

$$= 10^{k+1} - 9k - 10 + 9^{2} \left[1 + 10 + 10^{2} + \dots + 10^{k} \right]$$

$$= 10^{k+1} - 9k - 10 + 9^{2} \cdot \left(\frac{10^{k+1}}{9} \right) \text{ from } \bigcirc$$

$$= 10^{k+1} - 9k - 10 + 9.10^{k+1} - 9$$

$$= 10^{k+1} [1+9] - 9(k+1) - 10$$

$$= 10^{k+2} - 9(k+1) - 10$$

$$= 10^{n+1} - 9n - 10$$
 where $n = k+1$

"Hence if S(n) is true for n=k them it is also true for n=k+1.

But there for $n=1 \Rightarrow$ there for n=2and there by the puriciple of mathematical induction S(n) is the for all $n \ge 1$

(b) (i)
$$3^5 = 1$$
 $3 \neq 1$
 $\Rightarrow 3^5 - 1 = 0$
 $(3^{-1})(3^4 + 3^3 + 3^7 + 3 + 1) = 0$
 $3 \neq 1 \Rightarrow 3^4 + 3^3 + 3^7 + 3 + 1 = 0$
 $\Rightarrow 3^7 + 3 + 1 + 3^{-7} + 3^{-7} = 0$

(ii)
$$3^{5} = 1$$

= $1 \text{ cis} (0 + 2k\pi)$
= $-13 = \text{ cis} \frac{2k\pi}{5}$ $k = 0, 1, 2, 3, 4$

but 3+1 => 3= cis of &=1,2,2,4

Then $3 + 3^{-1} = \cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5} + \cos \left(\frac{-2k\pi}{5}\right) + i \sin \left(\frac{-2k\pi}{5}\right)$ $= 2\cos \frac{2k\pi}{5} \qquad k = 1, 4, 4, 4$

(iii) If
$$x = 3 + 3^{-1}$$

$$x' = 3' + 2 + 3^{-1} \implies 3^{2} + 3^{-2} = x^{2} - 2$$

now
$$3+3^{-1}=2\cos\frac{2k\pi}{5}$$
 $k=(1^2,3,4)$
 $k=1 \Rightarrow 3+3^{-1}=2\cos\frac{2\pi}{5}$
 $k=2 \Rightarrow 3+3^{-1}=2\cos\frac{4\pi}{5}=-2\cos\frac{\pi}{5}$
 $k=3 \Rightarrow 3+3^{-1}=2\cos\frac{6\pi}{5}=-2\cos\frac{\pi}{5}$
 $k=4 \Rightarrow 3+3^{-1}=2\cos\frac{6\pi}{5}=2\cos\frac{2\pi}{5}$

Ance the solution of 2 are

 $2\cos\frac{2\pi}{5}$ and $2=-2\cos\frac{\pi}{5}$

Product of roots

 $2\cos\frac{2\pi}{5}$ $x-2\cos\frac{\pi}{5}=\frac{c}{a}$
 $=-1$
 $3\cos\frac{\pi}{5}\cos\frac{2\pi}{5}=-1$
 $3\cos\frac{\pi}{5}\cos\frac{2\pi}{5}=-1$
 $3\cos\frac{\pi}{5}\cos\frac{2\pi}{5}=\frac{c}{4}$