# $\begin{array}{c} \textbf{Discrete Structures} \\ \textbf{Graph Theory} \end{array}$

Nathan Warner



Computer Science Northern Illinois University August 31, 2023 United States

### Contents

| 1 | Graphs                              | 2 |
|---|-------------------------------------|---|
| 2 | Subgraphs                           | 3 |
| 3 | Degree                              | 4 |
|   | Sum of Degrees and Vertices Theorem |   |
| 5 | Adjacency and Incidence             | 7 |
| 6 | Adjacency Matrix                    | 8 |
| 7 | Incidence Matrix                    | 9 |

### 1 Graphs

Definition 1. A graph G consists of two finite sets: a nonempty set V(G) of vertices and a set E(G) of edges, where each edge is associated with a set consisting of either one or two vertices called its endpoints. Formally, a graph is defined as an ordered pair G = (V, E), where V is the set of vertices and E is the set of edges

$$G = (V, E)$$
 
$$V = \{v_1, v_2, v_3, ..., v_n\}$$
 
$$E = \{e_1, e_2, e_3, ..., e_m\}.$$



$$V = \{v_1, v_2, v_3, v_4\}$$
  
$$E = \{e_1, e_2, e_3, e_4, e_5\}.$$

We can also represent the edges by only stating the vertices which connect the edges

| Edges | Endpoints      |
|-------|----------------|
| $e_1$ | $\{v_1, v_2\}$ |
| $e_2$ | $\{v_1, v_3\}$ |
| $e_3$ | $\{v_2,v_3\}$  |
| $e_4$ | $\{v_3, v_4\}$ |
| $e_5$ | $\{v_4\}$      |

### 2 Subgraphs

Definition 2. Graph H is said to be a subgraph of a graph H iff every vertex in H is also a vertex in G, every edge in H is also an edge in G, and every edge in H has the same endpoints as it has in G.

Consider the graph:



Then the possible **sub graphs** could be:



Note:-

These graphs are not  ${f all}$  the possibilites, just a few.

#### Degree 3

**Definition 3.** In graph theory, the **degree** of a vertex refers to the number of edges that are connected to that vertex.

**Definition 4. Parallel edges** are two or more edges that have the same pair of end vertices.

**Definition 5. Multiple Edges** is a term used interchangeably with parallel edges.

**Definition 6.** An **isolated vertex** is a vertex that has a degree of zero

**Definition 7.** A **loop** is an edge that connects a vertex to itself.

Definition 8. A Degree Sequence is an n-tuple of the degrees on vertices, in increasing order and with repetition.

**Definition 9.** The **overall degree** is the sum of all the degrees.

Parallel (Multiple) Loop Isolated A В D Degree: 2 Degree: 2

Degree: 2

Degree: 0

## 4 Sum of Degrees and Vertices Theorem

Definition 10. To denote the number of vertices in a graph, we say ||V||, or just |v|. To denote the number of edges in a graph, we say ||E||, or just |E|

**Definition 11.** The number of vertices in a graph is called the **order** of the graph

**Definition 12.** The number of edges in a graph is called the **size** of the graph.

Consider the graphs:



Then we have:

$$\begin{aligned} ||V|| &= 4 \\ ||E|| &= 5 \\ \sum \ deg &= 10. \end{aligned}$$



$$||V|| = 3$$
 
$$||E|| = 6$$
 
$$\sum deg = 12.$$

So you might notice from these two examples that the total degree of the graph  $(\sum deg)$  is exactly **twice** the number of edges. Thus, we can conclude:

Theorem 1.

$$\sum \ deg = 2||E||.$$

*Proof.* Let G be a graph, that has n vertices  $v_1, v_2, v_3, v_4, ..., v_n$  and m edges, where n is a positive integer and m is a nonnegative integer.

If  $e_1$  is an edge, then

$$v_i, v_j = \begin{cases} 1 \ edge, \ 1V & \rightarrow degree = 2\\ 1 \ edge, \ 2V & \rightarrow degree = 2 \end{cases}$$
 (1)

(2)

Thus, no matter the case, the edge always contributes 2 to the total degree.

Corollary 1. The total degree of a graph is even.

Corollary 2. In any graph, there are an even number of vertices of odd degree.

## 5 Adjacency and Incidence

Definition 13. vertices that are connected by an edge are adjacent

Definition 14. A vertex with a loop is adjacent to itself

Definition 15. Two edges that share a vertex are adjacent

Definition 16. An edge is incident on its endpoints

Definition 17. A vertex on which no edges are incident is an isolated vertex.

### 6 Adjacency Matrix

**Definition 18.** Let G be a graph with vertices labeled  $\{1, 2, 3, ..., n\}$ . Then the **Adjacency Matrix** of G is the  $n \times n$  matrix whose  $ij^{th}$  term is the number of the edges joining vertex i and vertex j

Consider the graph:



Since we have 5 vertices, then we will have a  $5\times 5$  matrix. Thus, our matrix for this graph will be:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}.$$

To make things clearer, here is how the rows and columns are labeled:

|              | $v_1$ | $v_2$ | $v_3$ | $v_4$ | $v_5$ |
|--------------|-------|-------|-------|-------|-------|
| $v_1$        | 0     | 1     |       | 0     | 0     |
| $v_1 \\ v_2$ | 1     | 0     | 2     | 0     | 1     |
| $v_3$        | 0     | 2     | 0     | 0     | 0     |
| $v_4$        | 0     | 0     | 0     | 1     | 1     |
| $v_5$        | 0     | 1     | 0     | 1     | 0     |

## 7 Incidence Matrix