

Team 72: WIZARD (Weed Identification and Zapping via Autonomous Robot Device)
Bi-Weekly Update 3

Will Fenno Conner Mullen

Sponsor: Dr. Markus Zink

German Team: Leon Jaksch,

Michael Dachender, Lisa Krug

TA: Sabyasachi Gupta

Project Summary

- Organic farming does not allow the use of herbicides for weed control; an alternative method is required.
- WIZARD will use camera recognition through machine learning to accurately identify weeds and deliver a targeted electrical impulse.

Project/Subsystem Overview

Project Timeline

Will Fenno

Accomplishments since last update 25 hrs of effort	Ongoing progress/problems and plans until the next presentation
Increased Jetson Nano performance using parallel threading.	Integration: Write code that signals the High Voltage MCU upon confident weed detection.
Completed Built-In Test (BIT) with main() system reset using Jetson GPIO pins and LED.	

Will Fenno

System BIT:

Pin 2: +5V Source

Pin 6: Ground (GND)

Pin 12: LED Control

System Communication:

Pin 3: I2C (SDA)

Pin 5: I2C (SCL)

Pin 9: Ground (GND)

Alt Function	unction Linux(BCM) Board Label		Board Label	Linux(BCM)	Alt Function					
DAP4_DOUT	78(21)			39	GND					
DAP4_DIN	77(20)			37	D26	12(26)	SPI2_MOSI			
UART2_CTS	51(16)	D16	36	35	D19	76(19)	DAP4_FS			
		GND	34	33	D13	38(13)	GPIO_PE6			
LCD_BL_PWM	168(12)	D12	32	31	D6	200(6)	GPIO_PZ0			
		GND	30	29	D5	149(5)	CAM_AF_EN			
		D1/ID_SC	28	27	DO/ID_SD					
SPI1_CS1	20(7)	D7	26	25	GND					
SPI1_CSO	19(8)	D8	24	23	D11	18(11)	SPI1_SCK			
SPI2_MISO	13(25)	D25	22	21	D9	17(9)	SPI1_MISO			
		GND	20	19	D10	16(10)	SPI1_MOSI			
SPI2_CSO	15(24)	D24	18	18 17 3.3V						
SPI2_CS1	232(23)	D23	16	15	D22	194(22)	LCD_TE			
		GND	14	13	D27	14(27)	SPI2_SCK			
DAP4_SCLK	79(18)	D18	12	11	D17	50(17)	UART2_RTS			
		RXD/D15	10	9	GND					
		TXD/D14	8	7	D4	216(4)	AUDIO_MCLK			
		GND	6	5	SCL/D3					
		5V	4	3	SDA/D2					
		5V	2	1	3.3V					

Conner Mullen

Accomplishments since last update 20 hrs of effort	Ongoing progress/problems and plans until the next presentation					
PCB assembled and re-validated. Prepared I2C functions to send control signals from Jetson.	Integration: Validate I2C communication between Jetson and HV PCB.					

Conner Mullen

Register	Address
Configuration	0x03
Input	0x00
Output	0x01

WIZARD Integration

Full Team

Accomplishments since last update	Ongoing progress/problems and plans until the next presentation
Jetson I2C and BIT.	Validate I2C Communication between Jetson and HV PCB.
Confirm Jetson can send I2C and PCB can receive I2C.	Confirm that Jetson is powered by buck converter.

Execution Plan

WIZARD Project Schedule																
as established as	JAN FEB						MAR					APR				
Deliverable/Task	1/12	1/19	1/26	2/2	2/9	2/16	2/23	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	4/27
Complete Code Transfer to Jetson																
Set up Jetson & Install Software/Packages					9		S. 50				4		9		3 5	
Integrate CSI Camera with Jetson																
Status Update Presentation #1 (01/22)							(S) (C)				Ÿ				(S) V	
Test ML Code on Jetson & Fix Potential Issues							(2 10				Ŷ					
Update Schematics and PCB Layout						j	0 0							j	0 0	
Order PCB and Parts		1											ĵ.		0 0	
Adjust Power Supply Component Values							0 0]		
Computer Vision Subsystem Ready for Integration														,		
Status Update Presentation #2 (02/05)	l,					ļ	at 50								3 5	
Assemble Revised PCB, Quick Validation																
Begin Subsystem Integration	- 10						· · · · · · · · · · · · · · · · · · ·					2			20 0	
High Voltage Subsystem Complete for Integration	- 3					*	(E. 35)								12 3	
3D Model/Print Casing for Electronics														1	0 0	
Status Update Presentation #3 (02/19)							0							Ĭ	0 0	
Troubleshoot Any Integration Problems					1]	0	
Status Update Presentation #4 (03/05)														3		
Meet with Sponsor and Team in Germany					8	ļ	3 5g								32 S	
Make Small Changes from Sponsor Feedback																
Design Blitz	10						97 - 10								9 V	
Status Update Presentation #5 (03/26)							(C)								12 3	
Integrated System Validation						ĵ	ÜÜ								Ü	
Final Presentation 04/09						(
Implement Necessary Project Adjustments							0 0									
Generate Detailed Documentation																
Send Final Report Draft to Sponsor, Make Revisions					9		at 50									
Final Demo 04/24																
Final Report 04/28	10				3		9 - 0							^		
Annotations		Not Sta In Prog Comple Behind	ress	8			90.						10 10	100		

Validation Plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Owner
3.2.1.1.	Capacitor Charge and Discharge Time	Time between start of charge up and end of discharge is less than 8 seconds	Measure voltage across output electrodes throughout a charge and discharge cycle, calculate time delta	TO BE TESTED	Conner Mullen
3.2.1.2.	Electrode Discharge Mode	Electrodes are only connected to high voltage output after contact is detected	With no contact: confirm that the voltage across electrodes is low With contact: confirm that indicator LED is on, and that the voltage across electrodes is high	TO BE TESTED	Conner Mullen
3.2.1.3.	False Positive Rate	FPR of less than 5% to prevent unintended crop damage			Will Fenno
3.2.1.4.	False Negative Rate	FNR of less than 5% to prevent missed weeds	Conduct image classification test using a validation set with known crop and weed labels. Track the number of images where weeds are incorrectly identified and calculate results		
3.2.1.5.	Camera Field of View	System detects objects at a range of 62.2 degrees horizontally and 48.8 degrees vertically	Measure the system's response to objects placed inside and outside the specified field of view	COMPLETED	Will Fenno
3.2.2.1.	Electrode Placement	Arcing does not occur across electrodes	odes Charge system to maximum voltage, visually confirm that no arc forms		German Students
3.2.2.2.	Mounting	All components are secured properly	onents are secured properly Visually inspect all connections to the robot or other platform, then attempt to move mounted components around to test strength of mounts		Full Team
3.2.4.1.	Power Source	Before powering on: Perform continuity test for all 12V points 12V DC is converted to 5V, capable of 2A Before powering on: Perform continuity test for all 12V points Power on board with 12V DC source and test voltage at output of power converters C		COMPLETED	Conner Mullen
3.2.4.2.	Inputs	All control signals work as expected, as indicated by LEDs and relay clicking	Power system on, set to each combination and confirm that the proper LED indicators are on and listen for relay clicking	COMPLETED	Conner Mullen
3.2.4.3.	Outputs	LEDs all light up under correct circumstances Energy discharges through electrodes			Conner Mullen
3.2.4.4.	Interface Between Processor and Electronics	I2C signal sent from processor is received by MCU, correct output is observed (specific output and input signals will be updated as we finalize designs)	Send I2C commands from processor to microcontrollers, verifying that every necessary function is initiated properly	COMPLETED	Full Team
3.2.5.1.	Temperature (Thermal Resistance)	System functions in complete range of temperatures (10C to 45C)	Low end of temperature range exists outside in Texas, high end will be created with temperature chamber	TO BE TESTED	Full Team
3.2.5.2.	External Contamination	Large particles are kept out of the electronics casing	Bombard empty casing with dirt, grass, and other particles; open casing and visually inspect inside	TO BE TESTED	Full Team
3.2.6.1.	Built-In Test (BIT)	The system will activate a red LED in the case of camera failure during the startup process	Intentionally simulate camera failure via disconnection to verify LED activation response	COMPLETED	Will Fenno
3.2.6.2.	Isolation and Recovery	In the case of a BIT fault, the system will be reset and restore normal operations	Conduct a reset test in response to a camera detection failure	COMPLETED	Will Fenno
Note	Specific values and signals v	will be included as we continue to develop and finalize	our designs		

Thank You!