# Metody Numeryczne - Sprawozdanie 9

Piotr Moszkowicz 16 maja 2019

# Spis treści

| 1        | 1.1  | ęp Teoretyczny Metoda aproksymacji funkcji okresowych |   |
|----------|------|-------------------------------------------------------|---|
| <b>2</b> | Opis | s problemu                                            | 1 |
| 3        | Wyn  |                                                       | 2 |
|          | 3.1  | Funkcja 1                                             | 2 |
|          |      | Funkcja 2                                             |   |
|          | 3.3  | Funkcja 3                                             | 3 |
|          | 3.4  | Funkcja 1 z parametrem $\alpha$                       | 3 |
|          |      | Wnioski                                               |   |

### 1 Wstęp Teoretyczny

Na dziewiątych zajęciach zajęliśmy się aproksymacją funkcji okresowych.

#### 1.1 Metoda aproksymacji funkcji okresowych

Funkcje okresowe aproksymujemy w bazie (czyli z pomocą) funkcji trygonometrycznych takich jak:  $1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots$ 

Nasza aproksymacja przedstawia się wielomianem:

$$F(x) = \frac{1}{2}a_0 + \sum_{j=1}^{m} [a_j \cos(jx) + b_j \sin(jx)], m < N$$
(1)

Współczynniki  $a_i, b_i$  wyznacza się z pomocą minimalizacji poniższego wyrażenia:

$$\sum_{i=0}^{2N-1} [f(x_i) - F(x_i)]^2 \tag{2}$$

Finalnie uzyskujemy poniższe wzory na współczynniki:

Sinusowe:

$$b_j = \frac{1}{N} \sum_{i=0}^{2N-1} [f(x_i) sin(jx_i)]$$
 (3)

Cosinusowe:

$$a_{j=0} = \frac{1}{2N} \sum_{i=0}^{2N-1} [f(x_i)]$$
 (4)

$$a_{j>0} = \frac{1}{N} \sum_{i=0}^{2N-1} [f(x_i)\cos(jx_i)]$$
 (5)

Wyznaczając te współczynniki podstawiając do wzoru z punktu 1.2 uzyskujemy kolejne wartości aproksymacji badanej funkcji.

### 1.2 Wzór na wartość aproksymowaną

Poniższy wzór wykorzystujemy do uzyskania wartości aproksymowanej w danym punkcie.

$$F(x) = \sum_{k=0}^{Ms} a_k \sin(kx) + \sum_{j=0}^{Mc} b_j \cos(jx)$$
 (6)

gdzie: x - punkt, w którym wyznaczamy aproksymację Ms - liczba współczynników sinusowych Mc - liczba współczynników cosinusowych a - tablica współczynników sinusowych b - tablica współczynników cosinusowych

### 2 Opis problemu

Na zajęciach aproksymowaliśmy trzy funkcje dane poniższymi wzorami:

$$f_1(x) = 2\sin(x) + \sin(2x) + 2\sin(3x) + \alpha$$
 (7)

$$f_2(x) = 2\sin(x) + \sin(2x) + 2\cos(x) + \cos(2x) \tag{8}$$

$$f_3(x) = 2\sin(1.1x) + \sin(2.1x) + 2\sin(3.1x) \tag{9}$$

Parametr  $\alpha$  funkcji numer 1 został wykorzystane w podpunkcie 4 zadania - jest to liczba pseudolosowa (dla każdego x inna) z przedziału [-0.5, 0.5]. Przedział aproksymacji dla każdej z funkcji jest taki sam:  $[0, 2\pi)$ . Liczba węzłów n = 100.

Na początku alokujemy tablicę na argumenty naszych funkcji oraz jej wartości, wartości aproksymowane oraz po jednej dla każdego rodzaju współczynników. Następnie zgodnie z wzorami z punktu 1.1 wypełniamy tablicę współczynników. Finalnie, nasze wartości aproksymowane wyznaczamy według wzoru z punktu 1.2.

# 3 Wyniki

## 3.1 Funkcja 1



Rysunek 1: Wykres funkcji  $f_1$ oraz jej aproksymacji

Ilość współczynników sinusowych: 5. Ilość współczynników cosinusowych: 5.

## 3.2 Funkcja 2



Rysunek 2: Wykres funkcji  $f_2$ oraz jej aproksymacji

Ilość współczynników sinusowych: 5. Ilość współczynników cosinusowych: 5.

### 3.3 Funkcja 3



Rysunek 3: Wykres funkcji  $f_3$  oraz jej trzech aproksymacji

Approx1: Ilość współczynników sinusowych: 5. Ilość współczynników cosinusowych: 0. Approx2: Ilość współczynników sinusowych: 5. Ilość współczynników cosinusowych: 5. Approx3: Ilość współczynników sinusowych: 10. Ilość współczynników cosinusowych: 10.

#### 3.4 Funkcja 1 z parametrem $\alpha$



Rysunek 4: Wykres funkcji  $f_1$  (z parametrem  $\alpha$ ) oraz jej dwóch aproksymacji Approx1: Ilość współczynników sinusowych: 5. Ilość współczynników cosinusowych: 5. Poniżej tabela z kolejnymi współczynnikami:

| Nr. Współczynnika | Wartość współczynnika sinusowego | Wartość współczynnika cosinusowego |
|-------------------|----------------------------------|------------------------------------|
| 0                 | -0.0452017                       | -0.00361847                        |
| 1                 | 1.92646                          | -0.0129459                         |
| 2                 | 0.994851                         | 0.0273134                          |
| 3                 | 1.99885                          | 0.0394117                          |
| 4                 | 0.0168423                        | -0.052857                          |
| 5                 | 0.0228968                        | -0.0452017                         |

Approx2: Ilość współczynników sinusowych: 30. Ilość współczynników cosinusowych: 30. Poniżej tabela z kolejnymi współczynnikami:

| Nr. Współczynnika | Wartość współczynnika sinusowego | Wartość współczynnika cosinusowego |
|-------------------|----------------------------------|------------------------------------|
| 0                 | -0.0307241                       | 0.0283                             |
| 1                 | 1.92646                          | -0.0129459                         |
| 2                 | 0.994851                         | 0.0273134                          |
| 3                 | 1.99885                          | 0.0394117                          |
| 4                 | 0.0168423                        | -0.052857                          |
| 5                 | 0.0228968                        | -0.0452017                         |
| 6                 | 0.0706436                        | 0.0282495                          |
| 7                 | -0.00238744                      | -0.0180066                         |
| 8                 | -0.0710608                       | -0.0833183                         |
| 9                 | 0.0320917                        | -0.000425004                       |
| 10                | 0.0678075                        | -0.0103759                         |
| 11                | 0.0916186                        | -0.0972262                         |
| 12                | 0.0364132                        | -0.0162188                         |
| 13                | -0.0100376                       | -0.0533774                         |
| 14                | 0.00114293                       | -0.0206754                         |
| 15                | -0.0487017                       | -0.0119318                         |
| 16                | -0.0191274                       | -0.0468803                         |
| 17                | 0.0384369                        | -0.0372725                         |
| 18                | -0.0281439                       | 0.0199155                          |
| 19                | -0.0125692                       | -0.00851425                        |
| 20                | 0.0127544                        | 0.0565644                          |
| 21                | 0.00486813                       | 0.0415548                          |
| 22                | -0.0417515                       | -0.0722173                         |
| 23                | 0.0526188                        | 0.000685388                        |
| 24                | 0.0638102                        | 0.00573207                         |
| 25                | -0.0964                          | 0.027                              |
| 26                | 0.00543785                       | 0.0485935                          |
| 27                | -0.028078                        | -0.0957934                         |
| 28                | -0.005901                        | -0.0285553                         |
| 29                | -0.0239767                       | -0.0214709                         |
| 30                | -0.00361847                      | -0.0307241                         |

### 3.5 Wnioski

Jak widać powyżej, za każdym razem zwiększenie ilości współczynników diametralnie (w pozytywnym sensie) wpływa na dokładność aproksymacji. Również, co możemy zaobserwować przy funkcji trzeciej - nasza metoda nie radzi sobie tak dobrze, gdy w argumentach funkcji okresowych pojawiają się parametry. Z pomocą metody bez problemu natomiast jesteśmy w stanie wyznaczyć coraz dokładniej współczynniki przed kolejnymi składnikami okresowymi naszych funkcji.