

Université de Montréal

FICHE RÉCAPITULATIVE

Analyse I

Julien Hébert-Doutreloux

Contents

1	Les nombre réels	3
2	Les intervalles	3
3	Les points	3
4	Les ensembles	4
5	Les théorème	4
6	Les propriétés	5
7	Suites numériques	6
	a) Limite d'une suite et suite bornée	6
	b) Opération sur les limites	6
	c) Sous-suites et suites monotones	7
	d) Suites de Cauchy	7
	e) Limite supérieure et limite inférieure	7
8	Limite et continuité	8
	a) Limite d'une fonction	8
	b) Opérations sur les limites	8
	c) Continuité	9
	d) Opération sur les fonction continues	9
	e) Propriétés des fonctions continues	9
	f) Continuité uniforme	10
	g) Fonction réciproque	10
In	ndex	11

1 Les nombre réels

Théorème 1. Les nombres réels sont ordonné tel que

$$\forall a, b \in \mathbb{R}_{\geq 0}, a+b \geq 0$$

$$a \in \mathbb{R}, \begin{cases} a < 0 \\ a = 0 \\ a > 0 \end{cases}$$

Théorème 2. Soit $\mathbb{R} \supset E \neq \emptyset$,

E borné supérieurement (resp. inférieurement) possède un supremum (resp. infimum) dans $\mathbb R$

Proposition 1. Soit $x, y \in \mathbb{R}, x > 0, x < y \implies \exists n \in \mathbb{N} \ tel \ que \ nx > y$

Définition 1.

$$x \in \mathbb{R}, |x| \le b \Longleftrightarrow -b \le x \le b$$

$$x, y \in \mathbb{R}, |x \cdot y| = |x| \cdot |y|$$

$$\forall x, y \in \mathbb{R}, |x \pm y| \le |x| + |y|$$

$$\forall x, y \in \mathbb{R}, ||x| - |y|| \le |x \pm y|$$

2 Les intervalles

Définition 2. I est un intervalle $\subset \mathbb{R}$ si lorsque $x, y \in I : x < y \implies \forall z \in \mathbb{R} : x < z < y$ est dans I

Définition 3. I est borné s'il possède un sup I = b et un inf I = a où $a, b \in \mathbb{R}$

Définition 4.

- Non-borné sup. : $\sup I \notin \mathbb{R}$
- Non-borné inf. : $\inf I \notin \mathbb{R}$
- \bullet Non-borné:

Définition 5. Voisinage centré en $x \in \mathbb{R}$ de rayon $\delta > 0$: $V(x, \delta)$ est l'intervalle ouvert

$$(x-\delta,x+\delta)$$

Définition 6. Voisinage pointé...: $V'(x, \delta) = V(x, \delta) \setminus \{x\}$

3 Les points

Définition 7. Un point $a \in E \subset \mathbb{R}$ est un point intérieur de E si

$$\exists \delta_{>0} : V(a, \delta) \subset E$$

Définition 8. Un point $a \in \mathbb{R}$ est un point d'accumulation de $E \subset \mathbb{R}$ si

$$\forall \delta_{>0}: V'(a,\delta) \cap E \neq \emptyset$$

Remarque : $a \notin E \Rightarrow a \notin E'$

Définition 9. Un point $a \in \mathbb{R}$ est un point adhérent de $E \subset \mathbb{R}$ si,

$$\forall \delta_{>0}, V(a,\delta) \cap E \neq \emptyset$$

Remarque:

$$a \in \bar{E} \implies a \in E'$$

 $a \in E \implies a \in \bar{E}$

4 Les ensembles

Définition 10. Soit $E \subset \mathbb{R}$, l'ensemble de ses point intérieur noté int E est tel que

$$int \ E = \{x \in E | \exists \delta_{>0}, V(x, \delta) \subset E\}$$
$$int \ E \subset E \subset \mathbb{R}$$

Remarque: int E est un ouvert

Définition 11. Soit $E \subset \mathbb{R}$, l'ensemble de ses point d'accumulation noté E' est tel que

$$E' = \{x \in E | \forall \delta_{>0}, V'(x, \delta) \cap E \neq \emptyset \}$$

$$E' \subset \mathbb{R} \supset E$$

Remarque : "Ensemble dérivé de E"

$$E \ fini \implies E' = \emptyset$$

$$E infini \Rightarrow E' = \emptyset$$

Définition 12. *Soit* $E \subset \mathbb{R}$,

$$E \ ouvert \Longleftrightarrow int \ E = E$$

$$E \subset int \ E \subset E \subset \mathbb{R}$$

Définition 13. Ensemble fermé Soit $E \subset \mathbb{R}$,

$$E \ ferm\'e \iff E' \subset E$$

Définition 14. *Soit* $E \subset \mathbb{R}$,

$$E \ compact \iff E \ ferm\'e \ et \ born\'e$$

Ensemble compact si tout recouvrement ouvert de E possède un sous-recouvrement fini.

Définition 15. Recouvrement ouvert Ensemble O: collection d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

tel que

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 3. Soit O un recouvrement ouvert de $E \subset \mathbb{R}$

$$O' \subset O$$

sera appelé sous-recouvrement fini si O' est lui même un recouvrement ouvert de E et qu'il contient un nombre fini d'éléments.

Définition 16. Soit $E \subset \mathbb{R}$, la frontière de E noté Fr E = fr $E = \bar{E} \setminus \{int E\}$

$$\bar{E} \setminus \{int \ E\} \subset fr \ E \subset \bar{E} \setminus \{int \ E\}$$

5 Les théorème

Théorème 4 (Bolzano-Weierstrass). Tout ensemble borné et infini possède un point d'accumulation.

Théorème 5 (Heine-Borel). Soit $E \subset \mathbb{R}$, un recouvrement ouvert de E est un ensemble O d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

tel que

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 6 (Densité des nombres réels). Soit a < b deux nombres réels (resp. irrationels) dans les réels, alors

$$\exists x \in \mathbb{Q} \ (resp. \ \mathbb{Q}^C) : a < x < b$$

Théorème 7 (Corolaire). Soit a < b deux nombres réels, alors il existe un nombre infini de rationnels (resp. irrationels) entre a et b.

6 Les propriétés

Ouvert/Fermé/Compact

Proposition 2 ($\bigcup \bigcap$ ouvert). Soit $\{O_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble ouvert

- $\bigcup_{\lambda \in \Lambda} O_{\lambda} \ ouvert$
- $\bigcap_{\lambda \in \Lambda}^{n} O_{\lambda}$ ouvert $si |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 3 ($\bigcup \bigcap$ fermé). Soit $\{F_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble fermé

- $\bigcup_{\lambda \in \Lambda} F_{\lambda}$ fermé fermé si $|\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^{n} F_{\lambda} ferm\acute{e}$

(i.e) Un nombre fini d'ensemble

Proposition 4 ($\bigcup \bigcap$ compact). Soit $\{K_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble compact

- $\bigcup_{\lambda \in \Lambda} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^{n} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 5. • Ø ouvert

- $\bullet \ A, B \ ouverts \implies \begin{cases} A \cup B \ ouvert \\ A \cap B \ ouvert \end{cases}$
- $\bullet \ E \ ouvert \Longleftrightarrow E^C \ ferm\'e$
- $\bullet \ E \ ferm\acute{e} \Longleftrightarrow E' \subset E$
- $E \ compact \implies \sup E \in E$
- $\bullet \ F \ ferm\'e, E \ compact : F \subset E \subset \mathbb{R} \implies F \ compact$
- Soit $E \subset \mathbb{R}$

$$- int E = \bigcup_{O \subseteq E} O$$

(L'intérieur d'un ensemble E est la réunion de tous les ensembles ouvert contenue dans E)

- int E ouvert
- int E plus grand ouvert contenue dans E

Adhérence/Accumulation/Intérieur

Proposition 6. • $\bar{E} = E \cup E'$

- $(\bar{E}) = int (E^C)$
- \bullet \bar{E} $ferm\acute{e}$
- $A, B \subset \mathbb{R}$,

$$-A \subset B \implies \bar{A} \subset \bar{B}$$

$$-\overline{A \cup B} \implies \bar{A} \cup \bar{B}$$

$$-int (A \cap B) = int (A) \cap int (B)$$

$$-int (A \cup B) = int (A) \cup int (B)$$

• Soit $A \subset \mathbb{R}_{\neq\emptyset}$,

$$-d(x,A) = \inf\{|x-a| : a \in A\} \text{ la distance } x \text{ de } A$$
$$-x \in \bar{A} \Longleftrightarrow d(x,A) = 0$$
$$-A \text{ ferm\'e et } d(x,A) = 0 \Longrightarrow x \in A$$

Proposition 7 (Supremum/Infimum). Soit $E \subset \mathbb{R}$ non-vide et borné,

$$\forall \varepsilon_{>0}, \exists x, y \in E : \begin{cases} \sup E - \varepsilon < x \le \sup E \\ \inf E \ge x < \inf E + \varepsilon \end{cases}$$

7 Suites numériques

a) Limite d'une suite et suite bornée

Définition 17. Une suite de nombres réels est une fonction de domain $\mathbb N$ et de champ (ou image) un sous-ensemble de $\mathbb R$

Définition 18. La suite $\{x_n\}$ converge (ou tend) vers la limite x si,

$$\forall \varepsilon_{>0}, \exists N : n > N \implies |x_n - x| < \varepsilon$$

Notation: $\lim_{n\to\infty} x_n = x \text{ ou } x_n \longrightarrow x$

Théorème 8 (Unicité). $Si \lim_{n \to \infty} x_n = x \ et \lim_{n \to \infty} x_n = y, \ alors \ x = y$

Définition 19. Une suite est bornée supérieurement si,

$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, |x_n| < M$$

Une suite est bornée inférieurment si,

$$\exists m \in \mathbb{R} : \forall n \in \mathbb{N}, |x_n| > m$$

Théorème 9. Toute suite convergent est bornée

b) Opération sur les limites

Théorème 10. $Si \lim_{n \to \infty} x_n = x \ et \lim_{n \to \infty} y_n = y,$

1.
$$\lim_{n \to \infty} (x_n \pm y_n) = x \pm y$$

2.
$$\lim_{n \to \infty} k \cdot x_n = k \cdot x, k \in \mathbb{R}$$

3.
$$\lim_{n \to \infty} x_n \cdot y_n = x \cdot y$$

4.
$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}, y \neq 0$$

Théorème 11. Soit $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = x$. Si $x_n \le y_n \le z_n$ pour tout entier positif n, alors $\lim_{n\to\infty} y_n = x$.

Théorème 12. Un point x_0 est un point d'accumulation d'un ensemble $E \subset \mathbb{R}$ si et seulement si il existe une suite $\{x_n\}$ d'éléments de E, $x_n \neq x_0, \forall n \in \mathbb{N} : \lim_{n \to \infty} x_n = x_0$.

Théorème 13.

1.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} (x_n + y_n) = \pm \infty$$

2.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} (x_n \cdot y_n) = +\infty$$

3.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \mp \infty \implies \lim_{n \to \infty} (x_n \cdot y_n) = -\infty$$

4.
$$\lim_{n \to \infty} |x_n| = +\infty \iff \lim_{n \to \infty} \frac{1}{x_n} = 0$$

5.
$$\lim_{n \to \infty} x_n > 0 \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} x_n \cdot y_n = \pm \infty$$

Théorème 14. Soit $\{x_n\}$ une suite telle que $x_n \neq 0, \forall n \in \mathbb{N}$. Supposons que

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = L \in \mathbb{R}$$

a)
$$L < 1 \implies \lim_{n \to \infty} x_n = 0$$

b)
$$L > 1 \implies \lim_{n \to \infty} |x_n| = \pm \infty$$

c) Sous-suites et suites monotones

Définition 20. Soit $\{x_n\}$ une suite quelconque d'entiers positifs telle que $1 \le n_1 < n_2 < ...$ On appelle la suite $\{x_{n_k}\}$ une sous-suite de la suite $\{x_n\}$.

Théorème 15. Soit $\{x_n\}$ une suite convergente. Toute sous-suite de $\{x_n\}$ converge et a la même limite que la suite $\{x_n\}$.

Théorème 16 (Corollaire). Si une suite $\{x_n\}$ possède deux sous-suites qui convergent vers différentes valeurs, la suite $\{x_n\}$ diverge.

Théorème 17. Toute suite bornée possède une sous-suite convergente.

Définition 21. Une suite $\{x_n\}$ est dite croissante (resp. décroissante) si $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$ (resp. $x_n \geq x_{n+1}, \forall n \in \mathbb{N}$). Si pour tout entier positif $n, x_n < x_{n+1}$, la suite $\{x_n\}$ est dite strictement croissante. Si pour tout entier positif $n, x_n > x_{n+1}$, la suite $\{x_n\}$ est dite strictement décroissante. Une suite qui a une des ces propriétés est dite monotone

Théorème 18. Toute suite monotone bornée possède une limite (à partir d'un certain rang N).

Théorème 19. Un ensemble $E \subset \mathbb{R}$ est compact \iff toute suite $\{x_n\}$ d'éléments de E contient une soussuite qui converge vers un élément de E.

d) Suites de Cauchy

Définition 22. Une suite $\{x_n\}$ est appelée suite de Cauchy si

$$\forall \varepsilon_{>0}, \exists N_{(\varepsilon)} \in \mathbb{N} : \forall n > N \land \forall k \in \mathbb{N}, |x_{n+k} - X_n| < \varepsilon$$

ou pour tout couple d'entiers $n, m > N, |x_m - x_n| < \varepsilon$.

Théorème 20. Toute suite de Cauchy est bornée.

Théorème 21. Une suite convergente ⇐⇒ elle est de Cauchy.

e) Limite supérieure et limite inférieure

Définition 23. Un nombre réel x est appelé valeur d'adhérence d'une suite $\{x_n\}$ s'il existe une sous-suite de $\{x_n\}$ qui converge vers x.

Théorème 22. Soit $\{x_n\}$ une suite bornée et

$$A = \{x \mid \exists \{x_{n_k}\} \in \{x_n\} : \{x_{n_k}\} \longrightarrow x\}$$

L'ensemble A est non vide, borné et fermé.

Définition 24. On appelle limite supérieure (resp. limite inférieure) d'une suite bornée $\{x_n\}$ la plus petite borne supérieure (resp. la plus grande borne inférieure) de l'ensemble des valeurs d'adhérence de la suite.

8 Limite et continuité

a) Limite d'une fonction

Définition 25. Soit x_0 un point d'accumulation de D_f . On dit que f a pour limite L au point x_0 (ou encore tend vers L lorsque x tend vers x_0) si,

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall x \in D_f \cap V'(x_0, \delta), f(x) \in V(L, \varepsilon)$$

ou encore soit une suite $\{x_n\} \in D_f : \forall n \in \mathbb{N}, x_n \neq x_0$

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall n \in \mathbb{N}, |x_n - x_0| < \delta \implies |f(x_n) - L| < \varepsilon$$

ou encore

$$\forall \varepsilon_{>0}, \exists \delta_{>0}: \forall x \in D_f \backslash \{x_0\}, |x-x_0| < \delta \implies |f(x)-L| < \varepsilon$$

Notation

$$\lim_{x \to x_0} f(x) = L \quad ou \quad f(x) \xrightarrow[x \to x_0]{} L$$

Théorème 23. Si la limite d'une fonction f existe en un point, elle est unique.

Théorème 24. Soit $f: D_f \longrightarrow \mathbb{R}$ et x_0 un point d'accumulation de D_f . On a $\lim_{x \to x_0} f(x) = L \iff pour$ toute suite $\{x_n\}$ qui converge vers x_0 avec $x_n \in D_f, x_n \neq x_0, \forall n \in \mathbb{N}$, la suite $\{f(x_n)\}$ converge vers L.

Définition 26. Une fonction f est bornée si

$$\exists M \in \mathbb{R}_{>0} : \forall x \in D_f, |f(x)| \leq M$$

Une fonction f est localement bornée en un point $x_0 \in D_f$ si

$$\exists \delta_{>0} \land \exists M_{>0} : \forall x \in D_f \cap V(x_0, \delta) | f(x) | \leq M$$

Théorème 25. Si f possède une limite L au point x_0 , x_0 étant un point d'accumulation de D_f , elle est localement bornée au point x_0 .

Théorème 26. Soit x_0 un point d'accumulation de $D_f \cap (x_0, +\infty)$ (resp. $D_f \cap (-\infty, x_0)$). La fonction possède une limite à droite (resp. à gauche) au point x_0 si,

$$\forall \varepsilon_{>0}, \exists \delta_{>0}: \forall x \in D_f \cap (x_0, x_0 + \delta), |f(x) - L| < \varepsilon$$

resp.

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall x \in D_f \cap (x_0 - \delta, x_0), |f(x) - L| < \varepsilon$$

Notation

$$\lim_{x \to x_0^+} f(x) = L$$

resp.

$$\lim_{x \to x_0^-} f(x) = L$$

Théorème 27. Soit x_0 un point d'accumulation de $D_f \cap (-\infty, x_0)$ et de $D_f \cap (x_0, +\infty)$. Alors,

$$\lim_{x \to x_0} f(x) = L \Longleftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = L$$

b) Opérations sur les limites

Théorème 28. Soit $f, g: D \longrightarrow \mathbb{R}$ deux fonctions de domaine commun D qui possèdent une limites en x_0 , un point d'accumulation de D. On a

1.
$$(f+g)(x_0)$$
: $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$

2.
$$(f \cdot g)(x_0)$$
: $\lim_{x \to x_0} (f(x) \cdot g(x)) = (\lim_{x \to x_0} f(x)) \cdot (\lim_{x \to x_0} g(x))$

3.
$$(f/g)(x_0)$$
: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$, $si \ \forall x \in D, g(x) \neq 0$ et $\lim_{x \to x_0} g(x) \neq 0$

Théorème 29. Soit f, g, h trois fonctions de domaine commun D telles que

$$\exists \delta_{>0} : \forall x \in D \cap V'(x_0, \delta), f(x) \le g(x) \le h(x)$$

$$Si \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L \implies \lim_{x \to x_0} g(x) = L$$

c) Continuité

Définition 27. Une fonction f est continue au point $x_0 \in D_f$ si

$$\forall \varepsilon_{>0}, \exists \delta_{(\varepsilon)} : \forall x \in D_f \cap V(x_0, \delta), f(x) \in V(f(x_0), \varepsilon)$$

ou encore

$$\forall \varepsilon_{>0}, \exists \delta_{(\varepsilon)} : \forall x \in D_f, |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Théorème 30. Soit x_0 un point d'accumulation de D_f , $x_0 \in D_f$. Les énoncés suivants s'équivalent.

- a) f est continue en $x = x_0$
- b) $\lim_{x \to x_0} f(x) = f(\lim_{x \to x_0}) = f(x_0)$
- c) Pour toute suite $\{x_n\}$ qui converge vers x_0 avec $x_n \in D_f$ pour chaque n, la suite $\{f(x_n)\}$ converge vers $f(x_0)$.

d) Opération sur les fonction continues

Théorème 31. Soit $f, g: D \longrightarrow \mathbb{R}$ deux fonctions continues en $x_0 \in D$. On a

- a) f + g continue en x_0
- b) fg continue en x_0
- c) f/g continue en x_0 si $g(x_0) \neq 0$

Théorème 32. Soit $f: A \longrightarrow B$ et $g: C \longrightarrow D$ telles que $f(A) \subset C$. Si f est continue en $x_0 \in A$ et g continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

e) Propriétés des fonctions continues

Théorème 33. Soit D un ensemble compact et $f:D \longrightarrow \mathbb{R}$ une fonction continue. L'ensemble f(D) est compact.

Théorème 34 (Corollaire). Soit D un ensemble compact et $f: D \longrightarrow \mathbb{R}$ une fonction continue. La fonction f est bornée sur D.

Théorème 35 (Bornes atteintes). Soit D un ensemble compactet $f: D \longrightarrow \mathbb{R}$ une fonction continue.

$$\exists a, b \in \mathbb{R} : f(a) = \sup_{x \in D} f(x) \quad et \quad f(b) = \inf_{x \in D} f(x)$$

Théorème 36 (Valeurs intermédiaires). Soit f une fonction continuesur [a,b] telle que $f(a) \neq f(b)$ et g un nombre arbitraire compris entre g(a) et g(b). Alors,

$$\exists c \in (a,b) : f(c) = y$$

Théorème 37 (Corollaire). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue telle que $f(a) \neq f(b)$. L'image de f([a,b]) est un intervalle.

f) Continuité uniforme

Définition 28. Une fonction f est uniformément continue sur un ensemble $E \subset \mathbb{R}$ si

$$\forall \varepsilon_{>0}, \exists \delta_{(\varepsilon)} > 0 : \forall x, y \in E, |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Théorème 38. Soit $f: D \longrightarrow \mathbb{R}$ et D un ensemble compact. Toute fonction f continue sur D est uniformément continue.

Théorème 39. Soit $f: D \longrightarrow \mathbb{R}$, x_0 un point d'accumulation de D et f une fonction uniformément continue sur D. Alors, $\lim_{x\to x_0} f(x)$ existe.

g) Fonction réciproque

Définition 29. Soit $f: A \longrightarrow B$, la fonction f est injective si

$$\forall x, y, f(x) = f(y) \implies x = y \quad (ou \ x \neq y \implies f(x) \neq f(y))$$

Définition 30. Soit $f: A \longrightarrow B$, la fonction f est surjective si

$$\forall y \in B, \exists x \in A : f(x) = y \implies f(A) = B$$

Définition 31. Une fonction est bijective si elle est injective et surjective

Définition 32. La fonction identité est la fonction $f: A \longrightarrow A$ définie par f(x) = x.

Définition 33. Si $f: A \longrightarrow B$ et $g: B \longrightarrow A$ sont telles que la composée $f \circ g$ est la fonction identité sur B, et que $g \circ f$ est la fonction identité sur A, on dit que la fonction g est la fonction réciproque (ou inverse) de f. On note la réciproque de f par f^{-1} .

Théorème 40. Une fonction $f: A \longrightarrow B$ possède un fonction réciproque $\iff f$ est bijective.

Définition 34. Une fonction f est croissante (resp. strictement croissante) si $x, y \in D$ et $x > y \implies f(x) \ge f(y)$ (resp. f(x) > f(y)). Une fonction f est décroissante (resp. strictement décroissante) si $x, y \in D$ et $x > y \implies f(x) \le f(y)$ (resp. f(x) < f(y)). Une fonction qui a une de ces propriétés est monotone (resp. strictement monotone).

Théorème 41. Soit $f: A \longrightarrow f(A)$ une fonction strictement croissante (resp. strictement décroissante). On a

- a) f est injective, d'où f^{-1}
- b) f^{-1} est strictement croissante (resp. strictement décroissante)
- c) f continue $\implies f^{-1}$ continue

\mathbf{Index}

l
Infimum6
Intervalle
Inégalité triangulaire 3
L
Limite d'une fonction
Limite inférieure7
Limite supérieure
Limite à droite
Limite à gauche 8
N
Non-borné
Non-borne
0
Opération sur les fonction continues
Opération sur les limites
Opérations sur les limites8
P
Point adhérent 3
Point d'accumulation
Point intérieur3
6
S
Sous-recouvrement ouvert 4
Sous-suite
Suite convergente
Suite de Cauchy
Suite monotone .7 Suite numérique .6
Surremum
Supremum
Т
Trichotomie
-
V
Valeur absolue
Valeur d'adhérence
Voisinage 3
Vosinage pointé