7 Entwurf von FIR-Systemen

7.1 Entwurf linearphasiger FIR-Filter nach der Fenstermethode

7.1.1 Theorie

Ansatz:

entspricht

• Beschränkung auf geradzahlige N

• Entwurfsfilter: H₀(z)

• Zielfilter: $H(z) = z^{-N/2} H_0(z)$

Entwurfsfilter/Zielfilter:

$$H(z) = \underbrace{\frac{z^{-N/2}}{b_0 + b_1 z^{-1} + b_2 z^{-2} + + b_N z^{-N}}}_{\begin{array}{c} Verz\ddot{o}-\\ gerung \end{array}} \underbrace{\frac{b_0 z^{N/2} + b_1 z^{N/2-1} + + b_N z^{-N/2+1} + b_N z^{-N/2}}_{\begin{array}{c} Verz\ddot{o}-\\ gerung \end{array}}$$

Substitution: $B_{N/2-i} = b_i$:

$$\begin{split} H_0(z) &= B_{N/2} z^{N/2} + B_{N/2-1} z^{N/2-1} + ... + B_{-N/2+1} z^{-N/2+1} + B_{-N/2} z^{-N/2} \\ H_0(z) &= \sum_{n=0}^{N/2} B_n z^n \end{split}$$

Frequenzgang Entwurfsfilter:

Spezifikation eines Wunschfrequenzgangs:

 $H_{0, Wunsch}(e^{j\Omega}) = A(\Omega)$ (Nullphasen-Filter!), reellwertig, $\Omega = \omega \Delta t$ (diskrete Frequenz) Grafische Darstellung $A(\Omega)$ incl. der periodischen Fortsetzung

Entwicklung $A(\Omega)$ als Fourierreihe

Idee: $A(\Omega)$ periodisch, kann als Fourierreihe angegeben werden.

Komplexe Fourierreihe:

"periodische Zeit-Funktion x(t) kann als gewichtete Summe von Drehzeigern $e^{jn\omega_0t}$ (Harmonische der Grundfrequenz ω_0) dargestellt werden"

Angewendet auf $A(\Omega)$:

2a

$$x \to 4$$

$$t \to \infty$$

$$T \to 2 \pi$$

$$\omega_0 \to 1$$

$$\omega_b = \frac{2\pi}{7}$$

Darstellung des Wunschfrequenzgangs als Fourierreihe:

$$A(\Omega) = \sum_{n=-\infty}^{\infty} C_n e^{jnN}$$

$$C_n = \sum_{n=-\infty}^{\infty} A(N) e^{-jnN} olN$$

Vergleich mit Frequenzgang $H_0(e^{j\Omega})$ des Entwurfsfilters:

$$A(\Omega) = \sum_{n=-N/2}^{N/2} B_n e^{jn\Omega}$$

Fazit:

Die gesuchten Filterkoeffizienten B_n des Entwurfsfilters sind gerade die Fourierkoeffizienten C_n des Wunschfrequenzgangs

In der Praxis endliche Fourierreihe.

Vereinfachung

da $A(\Omega)$ i.a. achsensymmetrisch:

$$A(\Omega) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\Omega) \qquad \text{mit} \qquad a_n = \frac{2}{\pi} \int_{0}^{\pi} A(\Omega) \cos(n\Omega) d\Omega$$

Zusammenhang zwischen a_n und C_n : $C_n = C_{-n} = a_n/2$

Zuordnung a... -> Filterkoeffizienten b...

a ₂ /2	a ₁ /2	a ₀ /2	a ₁ /2	a ₂ /2
C ₋₂	C ₋₁	C ₀	C ₁	C_2
B ₋₂	B ₋₁	B ₀	B ₁	B ₂
b ₄	b ₃	b ₂	b ₁	b ₀
b ₀	b ₁	b 2	b ₃	b ₄
b ₀	b ₁	b ₂	b ₁	b ₀
	Sym	nmetrieli	nie	

Die letzten 2 Zeilen gelten, da für Nullphasenfilter $b_i = b_{N-i}$ gilt (Symmetrie bzgl. mittlerem Koeffizienten, hier b_2). Siehe nachfolgende Bemerkung.

Da A(Ω) reellwertig und gerade ist (Frequenzgang realer Filter ist immer "konjugiert komplex") sind die C_n und damit die B_n ebenfalls reellwertig und gerade. Für die b_n des linearphasigen Zielfilters bedeutet dies, dass sie um den Index N/2 (hier 2) symmetrisch sind.

Rezept für Filterentwurf

1) Spezifikation

За

Aufstellen des Wunschfrequenzgangs A(f) und $A(\Omega)$ incl. periodischer Fortsetzung. I.A. werden als Vorgabewerte nur ideale Filter zugrundegelegt (z.B. idealer Tiefpass).

2) Filterordnung N festlegen:

Beschränkung auf N+1 Koeffizienten b_0 b_N b_2 w_1 b_2 w_3 w_4 w_4 w_5 w_6 w_6 w_8 w_8

3) Bestimmung der Fourierkoeffizienten an

$$a_n = \frac{2}{\pi} \int_0^{\pi} A(\Omega) \cos(n\Omega) d\Omega$$

4) Fourierkoeffizienten -> Filterkoeffizienten

Umkopieren der Fourierkoeffizienten a... auf die

Filterkoeffizienten b... Bsp. N=4:

Fourier-koeffizienten $a_2/2$ $a_1/2$ $a_0/2$ $a_1/2$ $a_2/2$ Filterkoeffizienten

5) Fensterung der Filterkoeffizienten

Zur Reduktion der Welligkeit im Amplitudengang werden die Koeffizienten aus Schritt 4) mit einem Gewichtungsfenster (Hanning, Bartlett, Kaiser ...) multipliziert, siehe Abschnitt 7.1.3.

6) DC-Gain-Korrektur (Nur für Tiefpässe)

Falls für einen Tiefpass DC-Gain = 1 gewünscht wird, muss folgende Korrektur vorgenommen werden:

DC-Gain = H(1) = $b_0 + b_1 + b_2 + b_3 + b_4 + ... + b_N$ Summe der Filterkoeffizienten

Alle Filterkoeffizienten durch diesen Wert teilen
 neue DC-Gain = 1

7) Amplitudengang zeichnen/überprüfen

Achtung: reales Filter mit endlichem N ist nur Näherung an Wunschfrequenzgang => Aufzeichnen des tatsächlichen $A(\Omega)$, z.B. über Fourierreihe

$$A(\Omega) = \frac{a_0}{2} + \sum_{n=1}^{N/2} a_n \cos(n\Omega)$$

oder mit Programm (MATLAB) und Vergleich mit Wunsch. Evtl. N erhöhen und Entwurf noch mal wiederholen -> 3).

Anmerkung: Die Filterordnung N ist der einzige Freiheitsgrad für den Filterentwurf (unter der Annahme, dass Wunschfrequenzgang als "ideal" vorgegeben ist).

Merksatz

Die Filterkoeffizienten b_i entsprechen den Fourierkoeffizienten der Fourierreihe für den Wunschamplitudengang. Sie müssen ggf. zusätzlich gefenstert und DC-Gain-korrigiert werden.

<u>Anmerkungen</u>

- Hier: linearphasige Filter mit symmetrischem Koeffizientensatz $b_i = b_{N-i}$.
- Allgemein: auch antisymmetrischer Koeffizientensatz möglich: $b_i = -b_{N-i}$. Bsp.: "Primitiv-Differenzierer"

$$y(k) = \frac{1}{\Delta t} [x(k) - x(k-1)].$$

- FIR-Filter mit antisymmetrischem Koeffizientensatz haben immer DC-Gain=0.
- FIR-Filter mit symmetrischem Koeffizientensatz k\u00f6nnen (m\u00fcsen aber nicht) DC-Gain=0 haben.
 Bsp. f\u00fcr Hochpass mit symmetrischem Koeffizientensatz: Zweite Ableitung numerisch durch Reihenschaltung zweier Primitiv-Differenzierer.
- FIR-Filterentwurf nach der Fenstermethode mit MATLAB: Routine FIR1.

7.1.2 Beispiel

Parameter:

4a

- Abtastfrequenz = 20 kHz
- Wunsch: Idealer Tiefpass mit Grenzfrequenz 2 kHz

Wunschamplitudengang

Fourierkoeffizienten:

$$an = \frac{2}{\pi} \int cos(n. \pi) ol \pi = 3 Rechnar$$

$$\frac{2 \cdot sin(628,313.10^3 \cdot n)}{n. \pi}$$

$$A(\Omega) = 0.4 + 0.3741.665(\Omega) + 0.13.02.605(2\Omega)$$

$$N=0$$

$$+0.7.605(3\pi) + 0.0555(4\pi)$$

Filterkoeffizienten (N=8):

	a ₄ /2	a ₃ /2	a ₂ /2	a ₁ /2	a ₀ /2	a ₁ /2	a ₂ /2	a ₃ /2	a ₄ /2
1)	0,0468	0,1009	0,1514	0,1871	0,2000	0,1871	0,1514	0,1009	0,0468
2)	0,0399	0,0861	0,1291	0,1596	0,1706	0,1596	0,1291	0,0861	0,0399
3)	0.0051	0.0294	0.1107	0.2193	0.2710	0.2193	0.1107	0.0294	0.0051
	b ₀	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	b ₇	b ₈

- 1) DC-Gain=1,1723
- 2) nach DC-Gain Korrektur => DC-Gain=1
- 3) nach Koeffizienten-Fensterung und DC-Gain Korrektur

Filter-Übertragungsfunktion (Zielfilter):

$$H(z)=b_0+b_1z^{-1}+b_2z^{-2}+b_3z^{-3}+b_4^{-4}+b_5z^{-5}+b_6z^{-6}+b_7z^{-7}+b_8z^{-8}$$

Amplitudengänge (reales Filter):

Beispiel Filterordnung N=40

MATLAB-Programm

% Parameter

% Berechnung der Filterkoeffizienten

% realen Amplitudengang berechnen

% Wunschamplitudengang

% Amplitudengänge malen

7.1.3 Gewichtungsfenster für die Fenstermethode

<u>Tiefpass $f_D = 0.5 f_{SH}$ ohne Gewichtungsfenster</u>

N=50

Problembeschreibung:

Durch Abbruch der Fourierreihe entsteht Welligkeit insbesondere an steilen Übergängen. Die wellenförmigen Bereiche werden mit zunehmendem N zwar immer schmaler, die Amplitude aber bleibt (siehe oben N=20 -> N=50). Bekanntes Phänomen bei der Fourierreihe: "Gibbs-Phänomen"

Abhilfe:

Multiplikation der Fourierkoeffizienten bzw. Filterkoeffizienten mit einer Gewichtungsfunktion G(i), i=0..20, die am Rande des Koeffizientenbereichs Null wird.

Gewichtungsfunktionen ("Gewichtungsfenster"):

Alle Beispiele für N= 20, d.h. 21 Taps b₀ ... b₂₀

Anwendung (Filter Beispiel von oben)

Blackman

Bartlett

Filterkoeffizienten b_i mit Gewichtungsfenster *)

*)
$$b_{i,mit} = g_i \cdot b_{i,ohne}$$

Eigenschaften der Gewichtung:

- Rippel werden reduziert
- Übergang zwischen Durchlassbereich und Sperrbereich wird weniger steil
- Standard: <u>Hanning Fenster</u> (Formel siehe Kapitel 9)

Ähnliches Problem bei FFT, wenn Signal stationär -> Verwendung derselben Gewichtungsfenster!

7.2 Verfahren von Parks-Mc Clellan

7.2.1 Idee

Spezifikation:

- Einteilung der Frequenzachse in n Bereiche [f_{iA}, f_{iE}] i=1, 2 .. n (Vorgabebereiche).
- Vorgabe: Wunsch-Amplitudengang in den Vorgabebereichen als Geraden.
- Zwischen jeweils 2 benachbarten Vorgabebereichen liegt ein Übergangsbereich, in dem der Amplitudengang nicht spezifiziert wird.

Entwurfsidee:

- Ansatz: Optimierungsverfahren "In den Vorgabebereichen möglichst nah ran"
- Erinnerung an Botschaft des elliptischen Filters:
 Erlaube gleichmäßige Welligkeit in den Vorgabebereichen
 maximal steilflankiges Filter möglich
- Optimierungsziel 1: Minimale aber gleichmäßige Welligkeit in den Vorgabebereichen

• Verfeinerung:

Um die Vorgabereichen unterschiedlich zu gewichten, kann für jeden Vorgabebereich durch einen Faktor angegeben werden, mit welcher Gewichtung der Amplitudengangsfehler in diesem Vorgabebereich bei der Gesamt-Optimierung berücksichtigt wird. Beispiel Specs. für einen Tiefpass:

Amplitudengangschwankung Durchlassbereich +/- 0,1 Sperrdämpfung 40dB (Schwankung +0,01)

- => Gewichtungsfaktor 1 für Durchlassbereich Gewichtungsfaktor 10 für Sperrbereich
- => Der gewichtete Amplitudengangsfehler ist dann in beiden Bereichen 0.1.

7.2.2 Beispiel Tiefpass

Beispiel 1:

N=8
$$\tilde{f}_{1E}=0,4$$
 $\tilde{f}_{2A}=0,6$ $\underline{w}=[1\ 1]$

Amplitudengang [dB]

Beispiel 2:

N=8 $\tilde{f}_{1A}=0$ $\tilde{f}_{1E}=0,5$ $\tilde{f}_{2A}=0,6$ $\tilde{f}_{2E}=1$

(Frequenzen auf Shannon-Frequenz bezogen: $\tilde{f} = f/f_{SH}$) Fehlergewichtungsvektor $w = [1 \ 1]$

Amplitudengang [dB]

Fazit: Übergangsbereich breiter => Welligkeit kleiner

Beispiel 3:

N=8
$$\tilde{f}_{1E}=0.4$$
 $\tilde{f}_{2A}=0.6$ w = [1 5]

Amplitudengang [dB]

Fazit: Hohe Gewichtung im Vorgabereich 2 reduziert Fehler in 2 zu Lasten von Vorgabebereich 1

Beispiel 4:

N=20
$$\tilde{f}_{1E}=0.4$$
 $\tilde{f}_{2A}=0.6$ $\underline{w}=[1\ 1]$

Amplitudengang [dB]

Amplitudengang [dB]

Fazit: Filterordnung größer => Welligkeit kleiner

Beispiel 5:

N=20
$$\tilde{f}_{1E}=0.4$$
 $\tilde{f}_{2A}=0.6$ w = [1 100]

Amplitudengang [dB]

Fazit: Hohe Gewichtung im Vorgabereich 2 reduziert Fehler in 2 zu Lasten von Vorgabebereich 1

Daten für alle Beispiele:

14a

MATLAB-Programm

% Parameter

```
N=8:
                      % Filterordnung
OmegaD = 0.4;
                     % Endfrequenz Durchlassbereich
OmegaS = 0.6;
                      % Anfangsfrequenz Sperrbereich
                      % beide bezogen auf
                      % Shannonfrequenz
```

% Amplitudengangsvorgabe in den Durchlassbereichen

```
FS=[0 OmegaD OmegaS 1];
                             % 2 Vorgabebereiche
                             % Amplitudenwerte
AS=[1 \ 1 \ 0 \ 0];
                             % (Geradenendpunkte)
W = [1 \ 100];
                             % Gewichtung in
                             % 2 Durchlassbereichen
```

% Filterberechnung

```
b=remez(N,FS,AS,W);
                               % Berechnung Filter-
                               % Koeffizienten bi
                               % FIR-Filter \Rightarrow A(z)=1
a = [1];
```

% Amplitudengang berechnen

```
% Frequenzachse
Omega=linspace(0,1,201);
                           % bez. auf Shannonfrequ.
                           %(pos. + neg. Bereiche)
amp=abs(freqz(b,a,pi*Omega));
                           % A(Omega) für
                           % berechnetes Filter
```

% Amplitudengang zeichnen

```
plot(Omega, amp, 'r');
axis([0 1 0 1.5]);
ylabel('Amplitudengang');
xlabel('Omega/OmegaShannon');
grid;
```

7.2.3 Beispiel Bandsperre

$$\widetilde{f}_{1A} = 0$$
 $\widetilde{f}_{1E} = 0.2$
 $\widetilde{f}_{2A} = 0.3$ $\widetilde{f}_{2E} = 0.5$
 $\widetilde{f}_{3A} = 0.6$ $\widetilde{f}_{2F} = 1.0$

Fehlergewichtungsvektor \underline{w} =[1 1 1]

Für MATLAB:

Beispiel 1:

Zahl Filtertaps N=20

Amplitudengang

Beispiel 1:

Zahl Filtertaps N=40

Amplitudengang [dB]

7.3 Vergleich IIR/FIR-Systeme

	IIR	FIR
Entwurf allg.	Glatt:	Glatt:
	BW-Filter + Bilinertransformation	Fenstermethode (Fourierreihe mit Fensterung der Koeffizienten)
	Rippel:	Rippel:
	TS, Ellip. Filter + Bilinertransformation	Parks-Mc-Clellan ("Equi-Rippel")
Realisierungs- aufwand	Niedrig: Typ. 8. Ordnung ->	Hoch: Typ 100 Taps ->
	2x8 MAC ^{*)} - Operationen	100 MAC ^{*)} - Operationen
Abhängigkeit Realisierungs- aufwand von Δt	nicht abhängig	in 1. Näherung prop. 1/Δt
strukturstabil	Nein	Ja
linearphasig	Nein	Möglich (symm. Koeff.)
minimalphasig**)	Möglich	Nein

^{*)} Multiply and Accumulate

Spezialverfahren:

- Notch-Filter (nur IIR)
 Strauss-Artikel, Praktikum
- Analyse/Synthese-Filter für Datenkompression (nur FIR)
 => Übung 11

Lernziele

- Sie k\u00f6nnen anhand der DGL FIR-Systeme von IIR-Systemen unterscheiden. Ferner erkennen Sie linearphasige Systeme anhand der Filterkoeffizienten.
- Sie wissen, dass die Gruppenlaufzeit eines linearphasigen FIR-Filters der halben Ordnung (Ordnung=Tap- 1) entspricht.
- Sie kennen die DGL-Formeln für "Mittelwertfilter" und "Primitiv-Differenzierer".
- Sie k\u00f6nnen anhand eines Ersatzschaltbildes mit Hilfe einer Frequenzgangsberechnung das Prinzp des noise-shapings von Sigma-Delta-Wandlern erkl\u00e4ren.
- Sie k\u00f6nnen den Frequenzgang einfacher FIR-Filter von Hand berechnen.
- Sie wissen, wie man FIR-Koeffizienten nach dem Verfahren der Impulsantwort berechnet.
- Sie können das Prinzip des Filterentwurfs mit der Fenstermethode skizzieren. Sie können die Wirkung einer anschließenden Gewichtung (Fensterung) der Filterkoeffizienten erläutern.
- Sie k\u00f6nnen die Grundgedanken des Verfahrens von Parks-Mc-Clellan, insbesondere auch die Form der Spezifikation erl\u00e4utern.
- Sie können FIR-Filter und IIR-Filter in wichtigen Punkten miteinander vergleichen und können die wichtigsten Entwurfsverfahren benennen.
- Sie können unter Vorlage der wichtigsten MATLAB-Befehle einen MATLAB Skript-File schreiben, der FIR-Filterkoeffizienten nach der Fenstermethode bzw. nach dem Verfahren von Parks-Mc-Clellan bestimmt, sowie den Amplitudengang des gefundenen Filters anschließend in natürlichen Frequenzen grafisch darstellt.

Minimal mögliche Phasenverzögerung für vorgegebenen Amplitudengang (günstig für RET-Anwendungen)