COL703: Logic for Computer Science (Aug-Nov 2022)

Lectures 7 & 8 (Hilbert's Axiomatization, Soundness and Completeness)

Kumar Madhukar

madhukar@cse.iitd.ac.in

September 1st and 5th, 2022

Hilbert's proof system

Axioms and inference rule

Derivations

A derivation of α is a finite sequence of formulas $\beta_1, \beta_2, \dots, \beta_n$ such that:

- $\beta_n = \alpha$
- each β_i is either an instance of one of the axioms, or modus ponens applied to β_j and β_k such that j, k < i.

Example

derivation of $\alpha \to \alpha$

Soundness and Completeness

for all formulas α , $\vdash \alpha$ *iff* $\vDash \alpha$

Soundness is easy to prove

We need to prove that if α is a tautology, then α is derivable.

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO)

Then, it suffices to prove that if α is not derivable, then α is not a tautology.

We need to prove that if α is a tautology, then α is derivable.

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO)

Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that $\neg \neg \alpha \rightarrow \alpha$. (TODO)

Then, if α is not derivable, $\neg\neg\alpha$ is also not derivable.

We need to prove that if α is a tautology, then α is derivable.

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO)

Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that $\neg \neg \alpha \rightarrow \alpha$. (TODO)

Then, if α is not derivable, $\neg\neg\alpha$ is also not derivable.

Let us call α consistent if $\not\vdash \neg \alpha$.

So, $\neg \alpha$ is consistent. Suppose we prove that if β is consistent then β is satisfiable. (TODO).

We need to prove that if α is a tautology, then α is derivable.

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO)

Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that $\neg \neg \alpha \rightarrow \alpha$. (TODO)

Then, if α is not derivable, $\neg \neg \alpha$ is also not derivable.

Let us call α consistent if $\not\vdash \neg \alpha$.

So, $\neg \alpha$ is consistent. Suppose we prove that if β is consistent then β is satisfiable. (TODO).

So, $\neg \alpha$ is satisifiable. Therefore, α is not valid (it is not a tautology).

Deduction Theorem

For a set of formulas Γ , and formulas α, β , $\Gamma \cup \{\alpha\} \vdash \beta$ iff $\Gamma \vdash \alpha \to \beta$.

Our TODO list

•
$$(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$$

•
$$\neg \neg \alpha \rightarrow \alpha$$

ullet For all formulas eta, if eta is consistent then eta is satisfiable.

• Prove: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

- Prove: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
- Show that $\alpha \vee \beta$ is consistent iff either α is consistent or β is consistent.

- Prove: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
- Show that $\alpha \vee \beta$ is consistent iff either α is consistent or β is consistent.
- Show that if $\alpha \wedge \beta$ is consistent then both α and β are consistent.

- Prove: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
- Show that $\alpha \vee \beta$ is consistent iff either α is consistent or β is consistent.
- Show that if $\alpha \wedge \beta$ is consistent then both α and β are consistent.
- What about the converse?

Completeness Proof

$$\beta$$
 consistent \rightarrow β satisfiable

- every consistent set can be extended to a maximal consistent set (MCS)
- let X be an MCS; for all formulas α , $v_X \models \alpha$ iff $\alpha \in X$ (where v_X is the valuation that every atomic proposition in X to true)

Next week

- Compactness and Strong Completeness
- Horn-SAT, 2-SAT, DPLL
- Binary Decision Diagrams

Thank you!