Algebra 2: Exam presentations

Martin Sig Nørbjerg

 $\mathrm{June}\ 7,\ 2022$

1. Ideals, including maximal and prime ideals; ring homorphisms.

Proposition 0.1. Let R be a comm. ring and let $I \subset R$, be an ideal. Then I is a prime ideal if and only if R/I is a domain.

Proof. " \Longrightarrow " Ass. I is a prime ideal. Let $[a], [b] \in R/I$ st. [a][b] = 0, this implies $ab \in I$. I is prime, thus $a \in I$ or $b \in I$ this implies that [a] = 0 or [b] = 0 in R/I (thus we have no zero divisors.)

" \Leftarrow " Ass. I is not prime, then $\exists a,b \in R$ st. $ab \in I$ but $a,b \notin I$. Then $a+I \neq 0$ and $b+I \neq 0$ in R/I but ab+I=0. Hence R/I is not a domain.

Proposition 0.2. Let R be a comm. ring and $I \subset R$ and ideal. then I is max iff R/I is a field.

Proof. " \Longrightarrow " Ass. I is max and let $x \in R \setminus I$, then $x + I \neq 0$ in R/I since $x \notin I$. And I is thus strictly contained in xR + I, Since I is max, $xR + I = R \Longrightarrow 1 \in xR + I$. Thus $\exists r \in R, i \in I$ st.

$$1 = xr + i \implies (x + I)(r + I) = 1 + I = [1]$$

This next part can be skipped

" \Leftarrow " Ass. R/I is a field and let $I \subset J$. Let $x \in J \setminus I$, then $\exists y \in R$ st.

$$xy + I = (x + I)(y + I) = (1 + I).$$

then $1 - xy \in I \subset J$. But also $xy \in J$, hence $1 - xy + xy = 1 \in J$ which implies J = R

Remark 1. Every field is a domain, which implies that any maximal ideal is also prime.

2. Quotient rings, in particular $R[X]/\langle f \rangle$

Proposition 0.3. Let $f: R \to S$ be a ring hom., then ker(f) is an ideal.

Theorem 0.4 (Gauss). Let \mathbb{F} be a fin. field, and $G \subseteq \mathbb{F}^*$ a subgroup, then G is cyclic.

Proposition 0.5. Let $I \subset R$, be an ideal. I is maximal iff R/I is a field.

Lemma 0.6. Let \mathbb{F} be a fin. field. Then $|\mathbb{F}| = p^n$ where $n \geq 1$ and p prime. There $\exists irr. f \in \mathbb{F}_p[x]$ with deg(f) = n st. $\mathbb{F} \cong \mathbb{F}_p[x]/\langle f \rangle$.

Proof. $Char(\mathbb{F}) = p$ prime $\Longrightarrow \mathbb{F}_p$ is a subring of \mathbb{F} . \mathbb{F}^* is a cyclic group, by the theorem. Let $\gamma \in \mathbb{F}^*$ be the generator. (Thus every element in \mathbb{F} is either 0 or some power n of γ .) Consider the hom. $\varphi : \mathbb{F}_p[x] \to \mathbb{F}$, defined as $\varphi(x) = \gamma$, then

$$\varphi\left(\sum_{k=0}^{n} a_k x^k\right) = \sum_{k=0}^{n} a_k \gamma^k$$

which $\Longrightarrow \varphi$ is surj (since $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$, however $\varphi(0) = 0$). Now $ker(\varphi)$ is an ideal of $\mathbb{F}_p[x]$, but $\mathbb{F}_p[x]$ is a Euclidean domain and thus a PID. which $\Longrightarrow \exists f \in \mathbb{F}_p[x]$ st. $ker(\varphi) = \langle f \rangle$. Thus by the ring isomorphism theorem

$$\mathbb{F}_p[x]/\langle f \rangle \cong \mathbb{F}$$

which $\Longrightarrow \langle f \rangle$ is maximial, by the proposition. This $\Longrightarrow f$ is irr. (since $\langle x \rangle \subseteq R$ is max. ideal iff x irr. in R) Now $|\mathbb{F}| = p^n$ implies deg(f) = n

3. Types of rings: UFD, PID, Euclidian domains

Proposition 0.7. Let R be a ring st. all $r \in R \setminus R^*$, $r \neq 0$. has a fac. into irr. elem. Then every irr. elem in R is prime iff R is UFD.

Lemma 0.8. Let R be a PID and $r \in R \setminus R^*$ and $r \neq 0$. Then r has a fac. into irr. elem.

Proposition 0.9. Let R be PID, that is not a field. Then $x \in R$ is irr. iff $\langle x \rangle$ is max.

Skip the proof

Proof. " \Longrightarrow " Let x be irr. and $\langle x \rangle \subseteq \langle y \rangle$. then

$$\exists z \in R \text{ st. } zy = x \implies y | x \implies \exists s \text{ st. } sy = x$$

now x being irr. implies either $s \in R^* \implies \langle x \rangle = \langle y \rangle$ or $y \in R^* \implies \langle y \rangle = R$, since y unit implies $1 \in \langle y \rangle$. Thus $\langle x \rangle$ is max. " \Longleftarrow " Let $\langle x \rangle$ be max. Then $x = y \cdot s$ implies

$$\langle x \rangle \subseteq \langle y \rangle \implies \begin{cases} \langle y \rangle = \langle x \rangle \implies s \in R^* \text{ (x and y are associative)} \\ \langle y \rangle = R \implies y \in R^* \end{cases}$$

which implies x is irr.

Theorem 0.10. Let R be a PID, then R is a UFD.

 $Remark\ 2.$ Note here that a field is trivially a UFD, since all elems. are units. Thus we can assume R is not field.

Proof.

- i) By the pervius lemma, all $r \in R \backslash R^*$, $r \neq 0$, has a fac.
- ii) We show that this fac. is uniq. by showing that all irr. are prime and thus by the first prop. R is a UFD.
- iii) Let $x \in R$ be irr. and assume x|ab and $x \nmid a$, then $a \notin \langle x \rangle$ and hence $\langle x \rangle \subset \langle x, a \rangle$, by the previus lemma $\langle x \rangle$ is max. and hence $\langle x, a \rangle = R$. Hence $\exists r, s \in R$ st. rx + sa = 1 multiplying by b we get

$$b(rx + sa) = brx + sab = b$$

since x|ab it follows that x|b, thus x is prime.

4. Gaussian integers and Fermats two-square theorem.

Proposition 0.11. Let R be a ring st. all $r \in R \setminus R^*$, $r \neq 0$. has a fac. into irr. elem. Then every irr. elem in R is prime iff R is UFD.

Proposition 0.12. Let $\pi \in \mathbb{Z}[i]$, with $N(\pi) = p$, p prime. Then π is a prime in $\mathbb{Z}[i]$.

Proof. The gaussian integers is a Euclidian domain, \therefore it's a unq. fac. domain. Thus every irr element is a prime element. Thus it's sufficient to show that π is irr. Ass. $\pi = ab$, then

$$N(\pi) = N(ab) = N(a)N(b) = p$$

since N is a hom. Ass. WLOG that N(a) = p, then N(b) = 1 and b is thus a unit since $Z[i]^* = \{1, -1, i, -i\}$.

Theorem 0.13 (Fermat two-square). For prime numbers $p \equiv 1 \pmod{4}$ there $\exists ! a, b \in \mathbb{Z} \text{ st. } a^2 + b^2 = p$.

Proof. We prove the unq.:

Ass. $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$ and $p = c^2 + d^2$ for some other $c, d \in \mathbb{Z}$. Then

$$p = (a+ib)(a-ib) = (c+id)(c-id)$$

however by the proof of prop,

$$(a+ib), (a-ib), (c+id), (c-id)$$

are all irr. Since

$$N(a+ib) = N(a-ib) = N(c+id) = N(c-id) = p$$

gives two irr. fac. of p, however $\mathbb{Z}[i]$ being a Euclidian domain implies it is a UFD, and thus the fac. is the same upto multiplication by units.

5. Cyclotomic polynomials and roots of unity

Lemma 0.14. $\xi \in \mathbb{C}$ is a primitive n'th root of unity iff

$$\xi = e^{2k\pi i/n}$$

st. $1 \le k \le n$ and gcd(k,n) = 1. If ξ is a primitive n'th root of unity and $\xi^m = 1$ then n|m.

Theorem 0.15. Let R be a domain and $f \in R[X] \setminus \{0\}$. If $V(f) = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$ then.

$$f = q \prod_{k=1}^{r} (X - \alpha_k)^{v_{\alpha_k}(f)}$$

where $q \in R[X]$ and $V(q) = \emptyset$. And $\sum_{k=1}^{r} v_{\alpha_k}(f) \leq deg(f)$.

Proposition 0.16. Let
$$n \in \mathbb{N}$$
. Let $f = X^n - 1$ and $g = \prod_{d|n} \Phi_d(X)$ then $f = g$

Proof.

- i) Both f and g are monic \cdot , they are equal if they both have the same roots, with the same multiplicites, this follows from theorem. Since f monic \implies q=1 in the thm.
- ii) We will now proof that f and g have the same roots with the same multiplicites. The roots of g is the d'th primitive roots of unity st. d|n, these are also roots of f: Let x be a root of g then

$$d|n \implies \exists k \in \mathbb{Z} \text{ st. } d \cdot k = n \implies x^n = x^{d \cdot k} = 1^k = 1.$$

Now ξ begin a root of f means ξ is a n'th root of unity, however this implies that ξ is a d'th primitive root of unity, where d|n, consult the lemma. Thus ξ is also a root of g. Lastly none of the roots have multiplicty higher than one.

6. Quadratic reciprocity

Definition 0.17. Let p prime and $a \in \mathbb{Z}$ st. $p \nmid a$. Then a is a quadratic residue modulo p if there $\exists x \in \mathbb{Z}$ st. $x^2 = a \pmod{p}$. Also the legendre symbol is defined as

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \text{ is a QR} \\ -1 & \text{otherwise.} \end{cases}$$

Proposition 0.18. Let p prime, st. $p \neq 2$, then half the numbers $1, 2, \ldots, p-1$ are QR.

Proof. Let $\varphi : \mathbb{F}_p^* \to \mathbb{F}_p^*$ be defined by $\varphi : n \mapsto n^2$. Then φ is a group hom. (with \cdot as operation). Now $ker(\varphi) = \{-1, 1\}$. Now by the ring isomorphism theorem

$$Im(\varphi) \cong \mathbb{F}_n^*/ker(\varphi)$$

However this implies that $|Im(\varphi)| = \frac{p-1}{2}$.

Lemma 0.19. Let p be prime, and $x \in \mathbb{Z}$, then

$$x^2 \equiv 1 \pmod{p} \implies x \equiv \pm 1 \pmod{p}$$

Theorem 0.20. Let p prime, st. $p \neq 2$ and $p \nmid a$ then $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \pmod{p}$

Proof. If a is a quadratic residue then $\exists x \in \mathbb{Z} \text{ st. } x^2 \equiv a \pmod{p}$. Thus

$$a^{\frac{p-1}{2}} \equiv (x^2)^{\frac{p-1}{2}} = x^{p-1} \equiv 1 \pmod{p}$$

by Eulers theorem $(a^{\varphi(n)} \equiv 1 \pmod n)$, where $\varphi(p) = p-1$, this is also known as (Fermats little theorem). However $\left(\frac{a}{p}\right) = 1$ which concludes this case. $x^{\frac{p-1}{2}} - 1$ has at most $\frac{p-1}{2}$ roots, so non quadratic residues cannot be roots, since there are $\frac{p-1}{2}$ quadratic residues by the prop. However $\left(a^{\frac{p-1}{2}}\right)^2 = a^{p-1} \equiv 1 \pmod p$ for all $a \in \mathbb{Z}$. By the lemma this implies

$$a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$$

however the quadratic residues are the solutions to the equation $x^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, thus $x^{\frac{p-1}{2}} \equiv -1 \pmod{p}$, when x is not a quadratic residue.

7. Finite fields, including the existence and/or uniqueness

Theorem 0.21. For all $n \geq 1$ and p, prime, there \exists irr. $f \in \mathbb{F}_p[x]$, with deg(f) = n

Corollary 0.22. For all $n \geq 1$ and p, prime, there exists a fin. field \mathbb{F} with $|\mathbb{F}| = p^n$.

Proof. there \exists irr poly $f \in \mathbb{F}_p[x]$ with deg(f) = n, now let $\mathbb{F} = \mathbb{F}_p[x]/\langle f \rangle$, then $|\mathbb{F}| = p^n$ and \mathbb{F} is field, since f irr.

Lemma 0.23. Let \mathbb{F} be a fin. field. there \exists irr. $f \in \mathbb{F}_p[x]$ with deg(f) = n st. $\mathbb{F} \cong \mathbb{F}_p[x]/\langle f \rangle.$

Theorem 0.24. If $|\mathbb{F}| = |\mathbb{F}'| = p^n$ then $\mathbb{F} \cong \mathbb{F}'$.

Proof. We have that $\mathbb{F} \cong \mathbb{F}_p[x]/\langle f \rangle$ for f irr. with $deg(f) = p^n$. Let $\alpha = [x]$, so $f(\alpha) = 0$. Consider $I = \{g \in \mathbb{F}_p[x] \mid g(\alpha) = 0\} \subset F_p[x]$, then I is an ideal and $f \in I$. Which $\implies \langle f \rangle \subseteq I$ but f irr. $\implies \langle f \rangle$ max. and thus $\langle f \rangle = I$.

Since $\xi^{p^n} = \xi(\xi^{p^n-1}) = \xi \cdot 1 = \xi$ we have $x^{p^n} - x \in I$ and thus $f \mid x^{p^n} - x$. In $\mathbb{F}'[x]$ we can find $x^{p^n} - x = \prod_{\beta \in \mathbb{F}'} (x - \beta)$ since $\beta^{p^n} = \beta$ for all $\beta \in \mathbb{F}'$: $f \in \mathbb{F}_p[x] \subseteq \mathbb{F}'[x]$ has a root $\alpha' \in \mathbb{F}'$, since it devides $x^{p^n} - x$. Consider the hom. $\varphi: \mathbb{F}_p[x] \to \mathbb{F}', \text{ defined as } x \mapsto \alpha', \text{ then } \langle f \rangle \subseteq \ker(\varphi), \text{ since } \varphi(f) = f(\alpha') = 0.$ But $ker(\varphi) \neq \mathbb{F}_p[x]$ and by the maximality of $\langle f \rangle$ we have that $\langle f \rangle = ker(\varphi)$. ∴ we get an inj. ring hom.

$$\tilde{\varphi}: \mathbb{F}_p[x]/\langle f \rangle \to \mathbb{F}'$$

but since $|F_p[x]/\langle f \rangle| = |\mathbb{F}'|$, $\tilde{\varphi}$ must be surj. And thus we have

$$\mathbb{F} \cong \mathbb{F}_p[x]/\langle f \rangle \cong \mathbb{F}'$$

8. Berlekamps algorithm

Proposition 0.25. Let $f \in \mathbb{F}_p[x]$ be non constant, and let deg(f) = d. Then $\mathbb{F}_p[x] \setminus \langle f \rangle$ is a \mathbb{F}_p vec space of dim d.

Theorem 0.26. Let $f \in \mathbb{F}_p[x]$ be a non-constant poly, let $R = \mathbb{F}_p[x]/\langle f \rangle$ and $F: R \to R$ be the frobenius map. Then f is irr. iff $ker(F) = \{0\}$ and $ker(F - I) = \mathbb{F}_p$

Proof. " \Leftarrow " Assume $ker(f) = \{0\}$ and $ker(F - I) = \mathbb{F}_p$. We will proof that f is irr. by showing that R is a field. Let $a \in R$ st. $a \neq 0$, define $\varphi : R \to R$ as $x \mapsto a \cdot x$. Now let $x \in ker(\varphi) \cap Im(\varphi) \neq \emptyset$, since 0 is in the set. Then x = ay for some $y \in R$ and ax = 0.

$$F(x) = F(ay) = a^p y^p = (a^{p-1}y^{p-1})(ay) = (a^{p-2}y^{p-1})ax = 0$$

However $ker(F) = \{0\}$ by our ass. and thus $x = 0 \implies ker(\varphi) \cap Im(\varphi) = \{0\}$ and since $ker(\varphi) + Im(\varphi) = R$, by the fondemental theorem of linear maps. We have

$$ker(\varphi) \oplus Im(\varphi) = R$$

thus we can write $1 = \alpha + \beta$ where $\alpha \in ker(\varphi)$ and $\beta \in Im(\varphi)$. We have

$$\varphi(F(\alpha)) = a\alpha^p = \varphi(\alpha)\alpha^{p-1} = 0$$
, since $\alpha \in \ker(\varphi)$

which $\implies F(\alpha) \in ker(\varphi)$. Now $\beta \in Im(\varphi) \implies \exists y \in R \text{ st. } \beta = ay \text{ and}$

$$F(\beta) = \beta^p = a(a^{p-1}y^p) \in Im(\varphi)$$

Now since $F(\alpha) + F(\beta) = F(\alpha + \beta) = F(1) = 1$ thus since the sum is direct, we have $F(\alpha) = \alpha$ and $F(\beta) = \beta$. However this implies $F(\alpha) - \alpha = F(\beta) - \beta = 0$ which $\implies \alpha, \beta \in ker(F - I) = \mathbb{F}_p$ by our ass. Now $\alpha \in ker(\varphi) \implies \alpha = 0$ since $a \neq 0$ and we are dealing with a field, which is a domain. However $\beta = 1$ and $\beta \in Im(\varphi) \implies 1 \in Im(\varphi)$ and thus there $\exists y \in R$ st. $1 = a \cdot y$. Thus a is invertible which $\implies R$ is a field which $\implies f$ is irr.