$oxed{3}$ lpha を |lpha|=1 であるような複素数とし,複素数の列 $\{z_n\}$ を

$$z_1 = 1$$
, $z_2 = \frac{\alpha^4}{2}$, $\frac{z_n}{z_{n-1}} = \frac{\alpha^2}{4} \frac{\overline{z_{n-2}}}{\overline{z_{n-1}}}$ $(n = 3, 4, 5, \dots)$

で定める.ただし, $\overline{z_n}$ は複素数 z_n の共役な複素数とする.

- (1) 各nに対し, z_n を求めよ.
- (2) z_n の実部と虚部をそれぞれ x_n , y_n とし , $lpha=-rac{1}{2}+rac{\sqrt{3}}{2}i$ とおくとき , 無限級数の和 $\sum_{k=1}^\infty x_k$, $\sum_{k=1}^\infty y_k$ をそれぞれ求めよ .