Lineáris algebra

Vektorterek

1. Legyen \mathbb{K} egy test. Mutassuk meg, hogy $(\mathbb{K}, \mathbb{K}[X], +, \cdot)$ vektortér, ahol a vektorok összeadása a polinomok összeadását jelenti, a skalárral való szorzás pedig a következő módon történik:

$$k \cdot f = (ka_0) + (ka_1)X + (ka_2)X^2 + \dots + (ka_n)X^n$$

minden $k \in \mathbb{K}$ és minden $f = a_0 + a_1X + a_2X^2 + \cdots + a_nX^n \in \mathbb{K}[X]$ esetén.

Megoldlpha s. Ha $A=a_0+a_1X+a_2X^n+\cdots+a_nX^n\in\mathbb{K}[X]$ egy polinom, akkor minden $N\geq n$ esetén átírhatjuk $A=a_0+a_1X+a_2X^2+\cdots+a_nX^n+a_{n+1}X^{n+1}+\ldots+a_NX^N$ alakba, ahol $a_{n+1}=\cdots=a_N=0$. Ez alapján mikor több polinommal dolgozunk, akkor feltehetjük, hogy ugyanannyi együtthatójuk van.

- I. A $(\mathbb{K}[X], +)$ egy Abel-csoport, mert
 - (1) A $\mathbb{K}[X]$ -beli polinomok összeadása belső művelet: minden $A=a_0+a_1X+\cdots+a_nX^n, B=b_0+b_1X+\cdots+b_nX^n\in\mathbb{K}[X]$ polinomok esetén

$$A + B = (a_0 + a_1 X + \dots + a_n X^n) + (b_0 + b_1 X + \dots + b_n X^n)$$

= $(a_0 + b_0) + (a_1 + b_1)X + \dots + (a_n + b_n)X^n \in \mathbb{K}[X],$

mivel $a_0 + b_0, a_1 + b_1, \dots, a_n + b_n \in \mathbb{K}$.

(2) A polinomok összeadása asszociatív: minden $A = a_0 + a_1 X + \cdots + a_n X^n, B = b_0 + b_1 X + \cdots + b_n X^n, C = c_0 + c_1 X + \cdots + c_n X^n \in \mathbb{K}[X]$ polinomok esetén

$$A + (B + C) = (a_0 + a_1 X + \dots + a_n X^n) + ((b_0 + b_1 X + \dots + b_n X^n) + (c_0 + c_1 X + \dots + c_n X^n))$$

$$= (a_0 + a_1 X + \dots + a_n X^n) + ((b_0 + c_0) + (b_1 + c_1) X + \dots + (b_n + c_n) X^n)$$

$$= (a_0 + (b_0 + c_0)) + (a_1 + (b_1 + c_1)) X + \dots + (a_n + (b_n + c_n)) X^n$$

$$\stackrel{(*)}{=} ((a_0 + b_0) + c_0) + ((a_1 + b_1) + c_1) X + \dots + ((a_n + b_n) + c_n) X^n,$$

$$= ((a_0 + b_0) + (a_1 + b_1) X + \dots + (a_n + b_n) X^n) + (c_0 + c_1 X + \dots + c_n X^n)$$

$$((a_0 + a_1 X + \dots + a_n X^n) + (b_0 + b_1 X + \dots + b_n X^n)) + (c_0 + c_1 X + \dots + c_n X^n)$$

$$= (A + B) + C,$$

ahol a (*) egyenlőségben felhasználtuk, hogy az $a_0, b_0, c_0, \ldots, a_n, b_n, c_n$ együtthatók a \mathbb{K} testből vannak, ahol értelmezés szerint az összeadás asszociatív.

(3) A polinomok összeadás kommutatív:

minden $A = a_0 + a_1 X + \dots + a_n X^n, B = b_0 + b_1 X + \dots + b_n X^n \in \mathbb{K}[X]$ polinom esetén

$$A + B = (a_0 + a_1 X + \dots + a_n X^n) + (b_0 + b_1 X + \dots + b_n X^n)$$

$$= (a_0 + b_0) + (a_1 + b_1) X + \dots + (a_n + b_n) X^n$$

$$\stackrel{(*)}{=} (b_0 + a_0) + (b_1 + a_1) X + \dots + (b_n + a_n) X^n$$

$$= (b_0 + a_0) + (b_1 + a_1) X + \dots + (b_n + a_n) X^n$$

$$= (b_0 + b_1 X + \dots + b_n X^n) + (a_0 + a_1 X + \dots + a_n X^n)$$

$$= B + A.$$

ahol a (*) egyenlőségben kihasználtuk, hogy az $a_0, b_0, \ldots, a_n, b_n$ együtthatók a \mathbb{K} testből vannak, ahol az összeadás értelmezés szerint kommutatív.

(4) Létezik semleges elem: Legyen $O \in \mathbb{K}[X]$ a zéruspolinom, vagyis az a polinom, amelynek mindegyik együtthatója 0, a \mathbb{K} test zéruseleme. Ekkor, ha $A = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{K}[X]$ egy polinom, akkor a zéruspolinom felírható $O = 0 + 0X + \cdots + 0X^n$ alakba és

$$A + O = (a_0 + a_1 X + \dots + a_n X^n) + (0 + 0X + \dots + 0X^n)$$

= $(a_0 + 0) + (a_1 + 0)X + \dots + (a_n + 0)X^n = (a_0 + a_1 X + \dots + a_n X^n)$
= A .

Az összeadás kommutativitása miatt O + A = A + O = O.

(5) Létezik szimmetrikus az összeadásra nézve (ellentett polinom): minden $A = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{K}[X]$ esetén legyen $A' = (-A) = (-a_0) + (-a_1)X + \cdots + (-a_n)X^n \in \mathbb{K}[X]$, az a polinom, amelynek együtthatói az A polinom együtthatóinak ellentettjei. Ekkor

$$A + (-A) = (a_0 + a_1 X + \dots + a_n X^n) + ((-a_0) + (-a_1) X + \dots + (-a_n) X^n)$$

$$= (a_0 + (-a_0)) + (a_1 + (-a_1)) X + \dots + (a_n + (-a_n)) X^n)$$

$$= 0 + 0X + \dots + 0X^n$$

$$= O.$$

Az összeadás kommutativitása miatt (-A) + A = A + (-A) = O.

II. (1) Minden $k \in \mathbb{K}$ skalár és minden $A = a_0 + a_1 X + \cdots + a_n X^n, B = b_0 + b_1 X + \cdots + b_n X^n \in \mathbb{K}[X]$ polinomok esetén

$$k \cdot (A+B) = k \cdot ((a_0 + a_1 X + \dots + a_n X^n) + (b_0 + b_1 X + \dots + b_n X^n))$$

$$= k \cdot ((a_0 + b_0) + (a_1 + b_1) X + \dots + (a_n + b_n) X^n)$$

$$= k(a_0 + b_0) + k(a_1 + b_1) X + \dots + k(a_n + b_n) X^n$$

$$\stackrel{(*)}{=} (ka_0 + kb_0) + (ka_1 + kb_1) X + \dots + (ka_n + kb_n) X^n$$

$$= (ka_0 + ka_1 X + \dots + ka_n X^n) + (kb_0 + kb_1 X + \dots + kb_n X^n)$$

$$= k \cdot (a_0 + a_1 X + \dots + a_n X^n) + k \cdot (b_0 + b_1 X + \dots + b_n X^n)$$

$$= k \cdot A + k \cdot B.$$

ahol a (*) egyenlőségben kihasználtuk, hogy a $k, a_0, a_1, \ldots, a_n, b_n \in \mathbb{K}$ és a \mathbb{K} testben a szorzás disztributív az összeadásra nézve.

(2) Minden $k_1, k_2 \in \mathbb{K}$ skalár és minden $A = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{K}[X]$ polinom esetén

$$(k_1 + k_2) \cdot A = (k_1 + k_2) \cdot (a_0 + a_1 X + \dots + a_n X^n)$$

$$= (k_1 + k_2)a_0 + (k_1 + k_2)a_1 X + \dots + (k_1 + k_2)a_n X^n$$

$$\stackrel{(*)}{=} (k_1 a_0 + k_2 a_0) + (k_1 a_1 + k_2 a_1) X + \dots + (k_1 a_n + k_2 a_n) X^n$$

$$= (k_1 a_0 + k_1 a_1 X + \dots + k_1 a_n X^n) + (k_2 a_0 + k_2 a_1 X + \dots + k_2 a_n X^n)$$

$$= k_1 \cdot (a_0 + a_1 X + \dots + a_n X^n) + k_2 \cdot (a_0 + a_1 X + \dots + a_n X^n)$$

$$= k_1 \cdot A + k_2 \cdot A,$$

ahol a (*) egyenlőségben kihasználtuk, hogy a $k_1, k_2, a_0, a_1, \ldots, a_n \in \mathbb{K}$ és a \mathbb{K} testben a szorzás disztributív az összeadásra nézve.

(3) Minden $k_1, k_2 \in \mathbb{K}$ és minden $A = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{K}[X]$ polinom esetén $(k_1 k_2) \cdot A = (k_1 k_2) \cdot (a_0 + a_1 X + \dots + a_n X^n)$ $= (k_1 k_2) a_0 + (k_1 k_2) a_1 X + \dots + (k_1 k_2) a_n X^n$ $\stackrel{(*)}{=} k_1 (k_2 a_0) + k_1 (k_2 a_1) X + \dots + k_1 (k_2 a_n) X^n$ $= k_1 \cdot (k_2 a_0 + k_2 a_1 X + \dots + k_2 a_n X^n)$ $= k_1 \cdot (k_2 \cdot (a_0 + a_1 X + \dots + a_n X^n))$ $= k_1 \cdot (k_2 \cdot A),$

ahol a (*) egyenlőségben kihasználtuk, hogy $k_1, k_2, a_0, a_1, \ldots, a_n \in \mathbb{K}$ és a \mathbb{K} testben a szorzás asszociatív.

(1) Ha $1 \in \mathbb{K}$ a test egységeleme, akkor minden $A = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{K}[X]$ polinom esetén

$$1 \cdot A = 1 \cdot (a_0 + a_1 X + \dots + a_n X^n)$$

$$= (1 \cdot a_0) + (1 \cdot a_1) X + \dots + (1 \cdot a_n) X^n$$

$$\stackrel{(*)}{=} a_0 + a_1 X + \dots + a_n X^n$$

$$= A,$$

ahol a (*) egyenlőségben kihasználtuk, hogy $a_0, a_1, \ldots, a_n \in \mathbb{K}$ és 1 a \mathbb{K} test egységeleme, ezért $1 \cdot a_0 = a_0, 1 \cdot a_1 = a_1, \ldots, 1 \cdot a_n = a_n$.

Ezzel beláttuk, hogy $(\mathbb{K}, \mathbb{K}[X], +, \cdot)$ egy vektortér.

2. Legyen \mathbb{K} test és legyenek $m, n \in \mathbb{N}^*$. Mutassuk meg, hogy $(\mathbb{K}, \mathcal{M}_{m,n}(\mathbb{K}), +, \cdot)$ vektortér, ahol $\mathcal{M}_{m,n}(\mathbb{K})$ az $m \times n$ -es mátrixok halmazát jelöli.

Megoldás.

- I. Az $(\mathcal{M}_{m,n}(\mathbb{K}), +)$ egy Abel-csoport:
 - A mátrixok összeadása asszociatív:

$$\text{minden } A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}, C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix} \in$$

 $\mathcal{M}_{m,n}(\mathbb{K})$ mátrixok esetén

$$A + (B + C) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} + \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} + c_{11} & \dots & b_{1n} + c_{1n} \\ \vdots & & \vdots \\ b_{m1} + c_{m1} & \dots & b_{mn} + c_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + (b_{11} + c_{11}) & \dots & a_{1n} + (b_{1n} + c_{1n}) \\ \vdots & & \vdots \\ a_{m1} + (b_{m1} + c_{m1}) & \dots & a_{mn} + (b_{mn} + c_{mn}) \end{pmatrix}$$

$$\stackrel{(*)}{=} \begin{pmatrix} (a_{11} + b_{11}) + c_{11} & \dots & (a_{1n} + b_{1n}) + c_{1n} \\ \vdots & & \vdots \\ (a_{m1} + b_{m1}) + c_{m1} & \dots & (a_{mn} + b_{mn}) + c_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix} + \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

$$= \begin{bmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} \end{bmatrix} + \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

$$= (A + B) + C,$$

ahol a (*) összefüggésben felhasználtuk, hogy minden $1 \leq i \leq m$, $1 \leq j \leq n$ az a_{ij}, b_{ij}, c_{ij} együtthatók a \mathbb{K} testből vannak, ahol az összeadás asszociatív, ezért $(a_{ij} + b_{ij}) + c_{ij} = a_{ij} + (b_{ij} + c_{ij})$.

• A mátrixok összeadása kommutatív:

minden
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{K})$$
 mátrixok

esetén

$$A + B = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$\stackrel{(*)}{=} \begin{pmatrix} b_{11} + a_{11} & \dots & b_{1n} + a_{1n} \\ \vdots & & \vdots \\ b_{m1} + a_{m1} & \dots & b_{mn} + a_{mn} \end{pmatrix} = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} + \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

$$= B + A,$$

ahol a (*) összefüggésben felhasználtuk, hogy minden $1 \leq i \leq m$, $1 \leq j \leq n$ az a_{ij}, b_{ij}, c_{ij} együtthatók a $\mathbb K$ testből vannak, ahol az összeadás asszociatív, ezért $(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij})$.

• Létezik semleges elem (zéruselem) az összeadásra nézve. Legyen $O_{m,n} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix}$

a nullmátrix (minden együtthatója 0, a $\mathbb K$ test zéruseleme). Ekkor minden A=

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
mátrix esetén

$$A + O_{m,n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} a_{11} + 0 & \dots & a_{1n} + 0 \\ \vdots & & \vdots \\ a_{m1} + 0 & \dots & a_{mn} + 0 \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
$$= A.$$

A kommutativitás miatt $A + O_{m,n} = O_{m,n} + A = A$.

• Létezik ellentett elem:

minden
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
 mátrix esetén legyen $(-A) = \begin{pmatrix} -a_{11} & \dots & -a_{1n} \\ \vdots & & \vdots \\ -a_{m1} & \dots & -a_{mn} \end{pmatrix}$.

Ekkor

$$A + (-A) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} -a_{11} & \dots & -a_{1n} \\ \vdots & & \vdots \\ -a_{m1} & \dots & -a_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + (-a_{11}) & \dots & a_{1n} + (-a_{1n}) \\ \vdots & & \vdots \\ a_{m1} + (-a_{m1}) & \dots & a_{mn} + (-a_{mn}) \end{pmatrix} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

$$= O_{m,n}$$

A kommutativitás miatt $(-A) + A = A + (-A) = O_{m,n}$.

II. (1) Minden
$$k_1, k_2 \in \mathbb{K}$$
 és $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$ mátrix esetén
$$(k_1 + k_2) \cdot A = (k_1 + k_2) \cdot \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} (k_1 + k_2)a_{11} & \dots & (k_1 + k_2)a_{1n} \\ \vdots & & \vdots \\ (k_1 + k_2)a_{m1} & \dots & (k_1 + k_2)a_{mn} \end{pmatrix}$$

$$\stackrel{(*)}{=} \begin{pmatrix} k_1a_{11} + k_2a_{11} & \dots & k_1a_{1n} + k_2a_{1n} \\ \vdots & & \vdots \\ k_1a_{m1} + k_2a_{m1} & \dots & k_1a_{mn} + k_2a_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} k_1a_{11} & \dots & k_1a_{1n} \\ \vdots & & \vdots \\ k_1a_{m1} & \dots & k_1a_{mn} \end{pmatrix} + \begin{pmatrix} k_2a_{11} & \dots & k_2a_{1n} \\ \vdots & & \vdots \\ k_2a_{m1} & \dots & k_2a_{mn} \end{pmatrix}$$

$$= k_1 \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \\ \vdots & & \vdots \\ a_{n1} & \dots & \vdots \\ a_{n1} & \dots & a_{nn} \\ \vdots & & \vdots \\ a_{n1} & \dots & \vdots \\$$

ahol a (*) egyenlőségben felhasználtuk, hogy minden $1 \le i \le m$, $1 \le j \le n$ esetén $k_1, k_2, a_{ij} \in \mathbb{K}$ és a \mathbb{K} testben értelmezés szerint a szorzás disztributív az összeadásra nézve.

(2) Minden
$$k \in \mathbb{K}$$
 esetén és $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{K})$ mátrixok esetén

$$k \cdot (A+B) = k \cdot \left(\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} \right)$$

 $= k_1 A + k_2 A$,

$$= k \cdot \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix} = \begin{pmatrix} k(a_{11} + b_{11}) & \dots & k(a_{1n} + b_{1n}) \\ \vdots & & \vdots \\ k(a_{m1} + b_{m1}) & \dots & k(a_{mn} + b_{mn}) \end{pmatrix}$$

$$\stackrel{(*)}{=} \begin{pmatrix} ka_{11} + kb_{11} & \dots & ka_{1n} + kb_{1n} \\ \vdots & & \vdots \\ ka_{m1} + kb_{m1} & \dots & ka_{mn} + kb_{mn} \end{pmatrix} = k \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + k \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}$$

$$= kA + kB,$$

ahol a (*) egyenlőségben felhasználtuk, hogy minden $1 \le i \le m$, $1 \le j \le n$ esetén $k, a_{ij}, b_{ij} \in \mathbb{K}$ és a \mathbb{K} testben értelmezés szerint a szorzás disztributív az összeadásra nézve, ezért $k(a_{ij} + b_{ij}) = ka_{ij} + kb_{ij}$.

(3) Minden
$$k_1, k_2 \in \mathbb{K}$$
 és minden $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$ mátrix esetén

$$(k_{1}k_{2}) \cdot A = (k_{1}k_{2}) \cdot \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} (k_{1}k_{2})a_{11} & \dots & (k_{1}k_{2})a_{1n} \\ \vdots & & \vdots \\ (k_{1}k_{2})a_{m1} & \dots & (k_{1}k_{2})a_{mn} \end{pmatrix}$$

$$\stackrel{(*)}{=} \begin{pmatrix} k_{1}(k_{2}a_{11}) & \dots & k_{1}(k_{2}a_{1n}) \\ \vdots & & \vdots \\ k_{1}(k_{2}a_{m1}) & \dots & k_{1}(k_{2}a_{mn}) \end{pmatrix} = k_{1} \cdot \begin{pmatrix} k_{2}a_{11} & \dots & k_{2}a_{1n} \\ \vdots & & \vdots \\ k_{2}a_{m1} & \dots & k_{2}a_{mn} \end{pmatrix}$$

$$= k_{1} \cdot \begin{pmatrix} k_{2} \cdot \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \end{pmatrix}$$

$$= k_{1} \cdot (k_{2} \cdot A),$$

ahol a (*) egyenlőségben felhasználtuk, hogy minden $1 \le i \le m, \ 1 \le j \le n$ esetén $k_1, k_2, a_{ij} \in \mathbb{K}$ és a \mathbb{K} testben értelmezés szerint a szorzás asszociatív.

(4) Ha
$$1 \in \mathbb{K}$$
 a test egységeleme, akkor minden $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$ mátrix esetén

$$1 \cdot A = 1 \cdot \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} 1 \cdot a_{11} & \dots & 1 \cdot a_{1n} \\ \vdots & & \vdots \\ 1 \cdot a_{m1} & \dots & 1 \cdot a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = A.$$

Ezzel igazoltuk, hogy $(\mathbb{K}, \mathcal{M}_{m,n}(\mathbb{K}), +, \cdot)$ egy vektortér.

3. Legyen \mathbb{K} test, $M \neq \emptyset$ halmaz és $\mathbb{K}^M = \{f | f : M \to \mathbb{K}$ függvény $\}$. Értelmezzük a függvények összeadását és skalárral való szorzását a következőképpen: minden $f,g \in \mathbb{K}^M$ függvények és $k \in \mathbb{K}$ skalár esetén

$$f + g \in \mathbb{K}^M$$
, $(f + g)(x) = f(x) + g(x)$, $\forall x \in M$,
 $kf \in \mathbb{K}^M$, $(k \cdot f)(x) = kf(x)$, $\forall x \in M$.

Mutassuk meg, hogy ($\mathbb{K}, \mathbb{K}^M, +, \cdot$) egy vektortér. Sajátos esetben, ha $M = \mathbb{K} = \mathbb{R}$, akkor $\mathbb{R}^{\mathbb{R}} = \{f \mid f : \mathbb{R} \to \mathbb{R} \text{ függvény}\}$ is vektortér \mathbb{R} fölött (érdekes jelölés: $\mathbb{R}^{\mathbb{R}}$).

Megoldás. A gyűrűknél igazoltuk, hogy ha R egy gyűrű és $M \neq \emptyset$ halmaz, akkor $R^M = \{f \mid f : M \to R \text{ függvény}\}$ egy gyűrű. Egy $\mathbb K$ test egyben gyűrű is, ezért $\mathbb K^M = \{f \mid f : M \to \mathbb K \text{ függvény}\}$ Abel-csoport a függvények összeadásával.

(1) Minden $k \in \mathbb{K}$ esetén és minden $f_1, f_2 \in \mathbb{K}^M$ esetén

$$k \cdot (f_1 + f_2) = k \cdot f_1 + k \cdot f_2$$

$$\Leftrightarrow (k \cdot (f_1 + f_2))(x) = (k \cdot f_1 + k \cdot f_2)(x), \quad \forall x \in M$$

$$\Leftrightarrow k \cdot (f_1 + f_2)(x) = (k \cdot f_1)(x) + (k \cdot f_2)(x), \quad \forall x \in M$$

$$\Leftrightarrow k \cdot (f_1(x) + f_2(x)) = k \cdot f_1(x) + k \cdot f_2(x), \quad \forall x \in M,$$

ami teljesül, mert $k, f_1(x), f_2(x) \in \mathbb{K}$, minden $x \in M$ esetén, és a \mathbb{K} testben a szorzás disztributív az összeadásra nézve.

(2) Minden $k_1,k_2\in\mathbb{K}$ esetén és minden $f\in\mathbb{K}^M$ esetén

$$(k_1 + k_2) \cdot f = k_1 \cdot f + k_2 \cdot f$$

$$\Leftrightarrow ((k_1 + k_2) \cdot f)(x) = (k_1 \cdot f + k_2 \cdot f)(x), \quad \forall x \in M$$

$$\Leftrightarrow (k_1 + k_2)f(x) = (k_1 \cdot f)(x) + (k_2 \cdot f)(x), \quad \forall x \in M$$

$$\Leftrightarrow (k_1 + k_2)f(x) = k_1f(x) + k_2f(x), \quad \forall x \in M,$$

ami teljesül, mert $k_1, k_2, f(x) \in \mathbb{K}$, minden $x \in M$ esetén, és a \mathbb{K} testben a szorzás disztributív az összeadásra nézve.

(3) Minden $k_1,k_2\in\mathbb{K}$ esetén és minden $f\in\mathbb{K}^M$ esetén

$$(k_1k_2) \cdot f = k_1 \cdot (k_2 \cdot f)$$

$$\Leftrightarrow ((k_1k_2) \cdot f)(x) = (k_1 \cdot (k_2 \cdot f))(x), \quad \forall x \in M$$

$$\Leftrightarrow (k_1k_2)f(x) = k_1((k_2 \cdot f)(x)), \quad \forall x \in M$$

$$\Leftrightarrow (k_1k_2)f(x) = k_1(k_2f(x)), \quad \forall x \in M,$$

ami teljesül, mert $k_1, k_2, f(x) \in \mathbb{K}$, minden $x \in M$ esetén, és a \mathbb{K} testben a szorzás asszociatív.

(4) Ha 1 a $\mathbb K$ test egységeleme, akkor minden $f\in\mathbb K^M$ esetén

$$\begin{aligned} 1 \cdot f &= f \\ \Leftrightarrow & (1 \cdot f)(x) = f(x), \quad \forall \, x \in M \\ \Leftrightarrow & 1 \cdot f(x) = f(x)), \quad \forall \, x \in M, \end{aligned}$$

ami teljesül, mert $f(x) \in \mathbb{K}$ és 1 a \mathbb{K} test egységeleme.

Ezzel igazoltuk, hogy $(\mathbb{K}, \mathbb{K}^M, +, \cdot)$ egy vektortér.

4. Legyen $V = \{x \in \mathbb{R} \mid x > 0\}$ a következő műveletekkel:

$$x \perp y = xy$$
 és $k \top x = x^k$, $\forall k \in \mathbb{R}$, $\forall x, y \in V$.

Bizonyítsuk be, hogy $(\mathbb{R}, V, \bot, \top)$ vektortér.

Megoldás. I. A (V, \perp) Abel-csoport, mert $(V, \perp) = ((0, +\infty), \cdot)$ részcsoportja az (\mathbb{R}^*, \cdot) csoportnak.

- a $V = (0, +\infty) \neq \emptyset$;
- minden $x, y \in V = (0, +\infty)$ esetén $x \cdot y^{-1} \in (0, +\infty)$.

II. (1) Minden $k \in \mathbb{R}$ és minden $x, y \in V = (0, +\infty)$ esetén

$$k \top (x \perp y) = k \top (x \cdot y) = (x \cdot y)^k = x^k \cdot y^k = (k \top x) \cdot (k \top y)$$
$$= (k \top x) \perp (k \top y).$$

(2) Minden $k_1, k_2 \in \mathbb{R}$ és minden $x \in V = (0, +\infty)$ esetén

$$(k_1 + k_2) \top x = x^{k_1 + k_2} = x^{k_1} \cdot x^{k_2} = (k_1 \top x) \cdot (k_2 \top x)$$

= $(k_1 \top x) \perp (k_2 \top x)$.

(3) Minden $k_1, k_2 \in \mathbb{R}$ és minden $x \in V = (0, +\infty)$ esetén

$$(k_1k_2)\top x = x^{k_1k_2} = (x^{k_1})^{k_2} = k_2\top (x^{k_1})$$

= $k_2\top (k_1\top x)$.

(4) Minden $x \in V$ esetén

$$1 \top x = x^1 = x$$
.

Ezzel igazoltuk, hogy $(\mathbb{R}, V, \bot, \top)$ egy vektortér.

Lineáris részterek

5. A következő halmazok közül melyek részterei \mathbb{R}^3 valós vektortérnek?

(a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\};$

 $Megold\acute{a}s$. Az \mathbb{R}^3 vektortér egy vektora pontosan akkor van benne az A halmazban, ha az első komponense nulla, ezért $A = \{(0, y, z) \in \mathbb{R}^3 \mid y, z \in \mathbb{R}\}.$

- Az $A \neq \emptyset$, mert $(0,0,0) \in A$ (a vektor első komponense 0).
- Minden $k_1, k_2 \in \mathbb{R}$ skalárok és $(0, y_1, z_1), (0, y_2, z_2) \in B$ vektorok esetén

$$k_1(0, y_1, z_1) + k_2(0, y_2, z_2) = (k_10 + k_20, k_1y_1 + k_2y_2, k_1z_1 + k_2z_2)$$

= $(0, k_1y_1 + k_2y_2, k_1z_1 + k_2z_2) \in A$

(mivel a vektor első komponense 0).

Tehát A lineáris résztere az \mathbb{R}^3 valós vektortérnek $(A \leq_{\mathbb{R}} \mathbb{R}^3)$.

Megjegyzés. Az A halmaz az yOz koordinátasík a \mathbb{R}^3 térben.

(b) $B = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0 \text{ vagy } z = 0\};$

 $Megold\acute{a}s$. Az \mathbb{R}^3 vektortér egy vektora benne van a B halmazban pontosan akkor, ha az első vagy harmadik komponense 0.

- Az $B \neq \emptyset$, mert $(0,0,0) \in B$ (az első komponsense 0).
- A $k_1, k_2 = 1 \in \mathbb{R}$ skalárok és $(0, 1, 1), (1, 1, 0) \in A$ vektorok (az első vektor első komponense 0, míg a második vektor harmadik komponense 0) esetén

$$1 \cdot (0,1,1) + 1 \cdot (0,1,1) = (1,2,1) \notin B$$

mivel sem az első, sem a harmadik komponense nem 0.

Tehát B nem lineáris résztere az \mathbb{R}^3 valós vektortérnek ($B \nleq_{\mathbb{R}} \mathbb{R}^3$).

Megjegyzés. A B halmaz az yOz és xOy koordinátasíkok egyesítése a \mathbb{R}^3 térben. A koordinátasíkok külön-külön lineáris részterei az \mathbb{R}^3 valós vektortérnek, de az egyesítésük már nem az.

(c) $C = \{(x, y, z) \in \mathbb{R}^3 \mid x \in \mathbb{Z}\};$

 $Megold\acute{a}s.$ Az \mathbb{R}^3 vektortér egy vektora pontosan akkor van benne a Chalmazban, ha az első komponense egész.

- Az $C \neq \emptyset$, mert $(0,0,0) \in C$ (az első komponsense egész).
- A $k_1 = \frac{1}{2} \in \mathbb{R}$ skalár és a $(1,0,0) \in C$ vektor (az első komponense egész) esetén

$$\frac{1}{2} \cdot (1,0,0) = \left(\frac{1}{2},0,0\right) \notin C,$$

mivel az első komponens nem egész.

Tehát C nem lineáris résztere az \mathbb{R}^3 valós vektortérnek ($C \nleq_{\mathbb{R}} \mathbb{R}^3$).

(d)
$$D = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + 3z = 0\};$$

Megoldás.

- A $D \neq \emptyset$, mert $(0,0,0) \in D$, mivel $2 \cdot 0 0 + 3 \cdot 0 = 0$.
- Minden $k_1, k_2 \in \mathbb{R}$ skalárok és minden $v_1 = (x_1, y_1, z_1), v_2 = (x_2, y_2, z_2) \in D$ vektorok esetén be kell látni, hogy

$$k_1v_1 + k_2v_2 = k_1(x_1, y_1, z_1) + k_2(x_2, y_2, z_2)$$

$$= (k_1x_1, k_1y_1, k_1z_1) + (k_2x_2, k_2y_2, k_2z_2)$$

$$= (k_1x_1 + k_2x_2, k_1y_1 + k_2y_2, k_1z_1 + k_2z_2) \in D,$$

vagyis $2 \cdot (k_1 x_1 + k_2 x_2) - (k_1 y_1 + k_2 y_2) + 3 \cdot (k_1 z_1 + k_2 z_2) = 0$. Valóban,

$$2 \cdot (k_1 x_1 + k_2 x_2) - (k_1 y_1 + k_2 y_2) + 3 \cdot (k_1 z_1 + k_2 z_2) = 0 \Leftrightarrow 2k_1 x_1 + 2k_2 x_2 - k_1 y_1 - k_2 y_2 + 3k_1 z_1 + 3k_2 z_2) = 0 \Leftrightarrow (2k_1 x_1 - k_1 y_1 + 3k_1 z_1) + (2k_2 x_2 - k_2 y_2 + 3k_2 z_2) = 0,$$

mert $2x_1 - y_1 + 3z_1 = 0$, illetve $2x_2 - y_2 + 3z_2 = 0$, mivel $v_1, v_2 \in D$.

Tehát D lineáris résztere az \mathbb{R}^3 valós vektortérnek ($D \leq_{\mathbb{R}} \mathbb{R}^3$).

(e)
$$E = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + 3z = 4\};$$

Első megoldás. Az E halmaz nem lineáris résztere az \mathbb{R}^3 valós vektortérnek ($E \nleq_{\mathbb{R}} \mathbb{R}^3$), mivel az \mathbb{R}^3 vektortér $\vec{0} = (0, 0, 0)$ nullvektora nincs benne az E halmazban.

Második megoldás. Az E halmaz nem lineáris résztere az \mathbb{R}^3 valós vektortérnek ($E \nleq_{\mathbb{R}} \mathbb{R}^3$), mivel $(2,0,0) \in E$ (mert $2 \cdot 2 - 0 + 3 \cdot 0 = 4$), de $2 \cdot (2,0,0) = (4,0,0) \notin E$ (mert $2 \cdot 4 - 0 + 3 \cdot 0 \neq 4$), tehát E nem zárt a skalárral való szorzásra nézve.

(f) $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$

Megoldás. Megjegyezzük, hogy $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\} = \{(u, u, u) \in \mathbb{R}^3 \mid u \in \mathbb{R}\}$, tehát F olyan vektorokból áll, amelyek minden komponense egyenlő.

- $F \neq \emptyset$, mivel $(0,0,0) \in F$.
- Minden $k_1, k_2 \in \mathbb{R}$ skalárok és $v_1 = (x_1, x_1, x_1), v_2 = (x_2, x_2, x_2) \in F$ vektorok esetén

$$k_1v_1 + k_2v_2 = k_1(x_1, x_1, x_1) + k_2(x_2, x_2, x_2) = (k_1x_1 + k_2x_2, k_1x_1 + k_2x_2, k_1x_1 + k_2x_2) \in F$$

mivel minden komponense egyenlő.

Tehát F lineáris résztere az \mathbb{R}^3 valós vektortérnek ($F \leq_{\mathbb{R}} \mathbb{R}^3$).

- **6.** A következő állítások közül melyek igazak?
 - (a) $A = [-1, 1] \times \{0\}$ résztere az \mathbb{R}^2 valós vektortérnek;

Megoldás. Mivel $(1,0) \in A$, de $2 \cdot (1,0) = (2,0) \notin A$, ezért A nem lineáris résztere az \mathbb{R}^2 valós vektortérnek $(A \leq_{\mathbb{R}} \mathbb{R}^2)$.

- (b) $B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ résztere az \mathbb{R}^2 valós vektortérnek; Megoldás. Mivel $(1,0) \in B$ (mert $1^2 + 0^2 \le 1$), de $2 \cdot (1,0) = (2,0) \notin B$ (mert $2^2 + 0^2 \le 1$), ezért B nem lineáris résztere az \mathbb{R}^2 valós vektortérnek $(B \nleq_{\mathbb{R}} \mathbb{R}^2)$.
- (c) $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge 1\}$ résztere az \mathbb{R}^2 valós vektortérnek; Megoldás. Mivel $(1,0) \in C$ (mert $1^2 + 0^2 \ge 1$), de $\frac{1}{2} \cdot (1,0) = (\frac{1}{2},0) \notin C$ (mert $(\frac{1}{2})^2 + 0^2 \not \ge 1$), ezért C nem lineáris résztere az \mathbb{R}^2 valós vektortérnek $(C \not \le_{\mathbb{R}} \mathbb{R}^2)$.
- (d) $D = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Q} \right\}$ résztere az $\mathcal{M}_2(\mathbb{Q})$ racionális (\mathbb{Q} -feletti) vektortérnek;

Megoldás. A $D \neq \emptyset$, mivel $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in D.$ Továbbá minden $k_1, k_2 \in \mathbb{Q}$ skalárok és

$$v_1 = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}, v_2 = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} \in D$$
 esetén

$$k_1 \cdot v_1 + k_2 \cdot v_2 = k_1 \cdot \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} + k_2 \cdot \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} k_1 a_1 + k_2 a_2 & k_1 b_1 + k_2 b_2 \\ 0 & k_1 c_1 + k_2 c_2 \end{pmatrix} \in D,$$

mivel a második sor első eleme 0. Ezért D lineáris résztere az $\mathcal{M}_2(\mathbb{Q})$ racionális vektortérnek $(D \leq_{\mathbb{Q}} \mathcal{M}_2(\mathbb{Q}))$.

(e) $E = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Q} \right\}$ résztere az $\mathcal{M}_2(\mathbb{R})$ valós vektortérnek;

Megoldás. Az E nem lineáris résztere az $\mathcal{M}_2(\mathbb{R})$ valós vektortérnek, mert $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in E$

és
$$\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$$
, de $\sqrt{2} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \notin E$.

- (f) $F = \{(x,y) \in \mathbb{R}^2 \mid xy \geq 0\}$ résztere az \mathbb{R}^2 valós vektortérnek; Megoldás. Az F halmaz nem lineáris résztere az \mathbb{R}^2 valós vektortérnek, mert $(2,0) \in F$ és $(-1,-1) \in F$, de $(2,0)+(-1,-1)=(1,-1) \notin F$.
- (g) $C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ folytonos függvény} \}$ résztere $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ függvény} \}$ valós vektortérnek;

 $(Az\ f: \mathbb{R} \to \mathbb{R}\ f\ddot{u}ggv\acute{e}ny\ folytonos,\ ha\ minden\ (x_n)_{n\in\mathbb{N}}\ konvergens\ val\'os\ sz\'{a}msorozat\ eset\'{e}n\ \lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)).$

Megoldás. A $C(\mathbb{R})$ halmaz nem üres, mert az $f: \mathbb{R} \to \mathbb{R}$, f(x) = 0, minden $x \in \mathbb{R}$ konstans függvény folytonos (minden (x_n) konvergens valós számsorozat esetén az $(f(x_n)) = (0)$ konstans sorozat is konvergens és $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0 = 0 = f(\lim_{n \to \infty} x_n)$). Továbbá minden $k_1, k_2 \in \mathbb{R}$ skalár és $f_1, f_2 \in C(\mathbb{R})$ esetén $k_1 f_1 + k_2 f_2 \in C(\mathbb{R})$, mert minden (x_n) konvergens valós számsorozat esetén

$$(k_1 f_1 + k_2 f_2) \left(\lim_{n \to \infty} x_n\right) = k_1 f_1 \left(\lim_{n \to \infty} x_n\right) + k_2 f_2 \left(\lim_{n \to \infty} x_n\right)$$

$$= k_1 \lim_{n \to \infty} f_1(x_n) + k_2 \lim_{n \to \infty} f_2(x_n)$$

$$= \lim_{n \to \infty} k_1 f_1(x_n) + k_2 f_2(x_n)$$

$$= \lim_{n \to \infty} (k_1 f_1 + k_2 f_2)(x_n).$$

7. Bizonyítsuk be, hogy a következő homogén lineáris egyenletrendszer megoldásai részterét képezik \mathbb{R}^2 valós vektortérnek

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = 0 \\ a_{21}x_1 + a_{22}x_2 = 0 \end{cases}.$$

 $Megold\acute{a}s$. Jelölje \mathcal{M} a fenti egyenletrendszer megoldásainak halmazát. Belátjuk, hogy \mathcal{M} lineáris résztere az \mathbb{R}^2 valós vektortérnek. Az \mathcal{M} halmaz nem üres, mert $(x_1, x_2) = (0, 0) \in \mathcal{M}$. Legyenek $k', k'' \in \mathbb{R}$ és $(x_1', x_2'), (x_1'', x_2'') \in \mathcal{M}$ tetszőlegesek. Az $(x_1', x_2') \in \mathcal{M}$ alapján

$$(7.1) a_{11}x_1' + a_{12}x_2' = 0,$$

$$(7.2) a_{21}x_1' + a_{22}x_2' = 0,$$

illetve az $(x_1'', x_2'') \in \mathcal{M}$ alapján

$$a_{11}x_1' + a_{12}x_2' = 0,$$

$$a_{21}x_1' + a_{22}x_2' = 0.$$

A (7.1) egyenletet megszorozva k'-vel, a (7.3) egyenletet megszorozva k''-vel, majd összeadva őket kapjuk, hogy

$$(7.5) k'(a_{11}x_1' + a_{12}x_2') + k''(a_{11}x_1'' + a_{12}x_2'') = 0 \Leftrightarrow a_{11}(k'x_1' + k''x_1'') + a_{12}(k'x_2' + k''x_2'') = 0.$$

Hasonlóan, a (7.2) egyenletet megszorozva k'-vel, a (7.4) egyenletet megszorozva k''-vel, majd összeadva őket kapjuk, hogy

$$(7.6) k'(a_{21}x'_1 + a_{22}x'_2) + k''(a_{21}x''_1 + a_{22}x''_2) = 0 \Leftrightarrow a_{21}(k'x'_1 + k''x''_1) + a_{22}(k'x'_2 + k''x''_2) = 0.$$

A (7.5) és (7.6) alapján $k'(x_1', x_2') + k''(x_1'', x_2'') = (k'x_1' + k''x_1'', k'x_2' + k''x_2'') \in \mathcal{M}$. Ezzel beláttuk, hogy minden $k', k'' \in \mathbb{R}$ és minden $(x_1', x_2'), (x_1'', x_2'') \in \mathcal{M}$ esetén $k'(x_1', x_2') + k''(x_1'', x_2'') \in \mathcal{M}$, ezért a fenti egyenletrendszer \mathcal{M} megoldáshalmaza lineáris résztere az \mathbb{R}^2 valós vektortérnek. \square