UNCLASSIFIED

AD 295 976

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

UNION CARBIDE

CATALOGED BY ASTIA

ALKALINE · MnO₂ BATTERY

Report No.1
1st Quarterly Report
Dated
August 27, 1962

U.S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
Fort Monmouth, New Jersey
Contract DA·36·039·SC·89098
Covering the Period
May 1, 1962 · July 30, 1962
Project No. 3A99·09·002·02

UNION CARBIDE CONSUMER PRODUCTS COMPANY
DEVELOPMENT DIVISION
CLEVELAND, OHIO

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA.

For off 4 7 16 3 lb

ALKALINE-MnO2 BATTERY

REPORT NO. 1 1ST QUARTERLY REPORT

> Dated AUGUST 27, 1962

U.S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY FORT MONMOUTH, NEW JERSEY

CONTRACT DA-36-039-SC-89098

Covering the Period MAY 1, 1962 - JULY 30, 1962

PROJECT NO. 3A99-09-002-02

TECHNICAL GUIDLINES FOR PR&C NO. 62-ELP/N-4212
Dated
SEPTEMBER 25, 1961

OBJECT - RESEARCH AND DEVELOPMENT WORK ON ALKALINE-MnO2 BATTERY

PREPARED BY:

S-Winge

APPROVED BY:

F. B. DOLL

Project Supervisor

PRODUCT AND PROCESS DEVELOPMENT LABORATORY UNION CARBIDE CONSUMER PRODUCTS COMPANY CLEVELAND, OHIO

48

TABLE OF CONTENTS

	Page
PURPOSE	. 1
ABSTRACT	. 2
CONFERENCES	. 3
FACTUAL DATA	. 4-11
A. Factory Product E-95 Cell Analysis	. 4
B. Cathode Variations	. 7
C. Electrolyte Variations	. 9
D. Zinc Analysis	. 10
E. Anode Collector Variations	. 10
F. Separator Variations	. 11
G. General	. 11
H. Seal	. 11
CONCLUSIONS	. 12
FUTURE WORK OUTLINE	. 15
PERSONNEL IDENTIFICATION	. 16
<u>TABLE</u> <u>TITLE</u>	
l Sine Wave Evaluation, Factory Product	19
2 " " " " " " "	20
3 " " " " " " " " " " " " " " " " " " "	21
4 Factory Product Fresh Test Characteristic 5 Summary, Cathode Variations	22 23
6 " " " "	24
7 11 11 11	25
8 Summary, Electrolyte Variations	26
9 Summary, Zinc Variations	27
10 Summary, Anode Collector Variations 11 Summary, Separator Variations	28 29
11 Summary, Separator Variations 13 Control Lots, Fresh Service	30
14 Cathode Variations, Fresh Service	31-32
15 Electrolyte Variations, Fresh Service	33
16 Zinc Variations, Fresh Service	34
17 Anode Collector Variations, Fresh Service 18 Separator Variations, Fresh Service	35 36
TO DENOTORNI ACTIONTO' LICON DELATCE	<i>-</i>

TABLE OF CONTENTS - Page 2

		Page
FIGURE	TITLE	
1	Reference Electrode Assembly	17
2	Sine Wave Interrupted Current Diagram	18
3	Cathode Ore/Carbon Variations	37
4	11 11	38
5	Cathode Inside Diameter Variations, Discharge	
	Curves	39
6	Cathode Moisture Content, Discharge Curves	40
7	4/1 Ore to Carbon Variation with Air Spun	
•	Graphite, 2624 Graphite and Acetylene Black	41
8	Same as Fig. 7	42
9	Zinc Particle Size Variations	43
10	Zinc Particle Size Variations	44
11	4/1 Ore to Carbon Cathodes - Sine Wave Analysis	45
12	Zinc Variations - Sine Wave Analysis	46
13	RM-976 Zinc Analysis, Particle Size Variation	47

ABSTRACT CARDS

PURPOSE:

The purpose of this contract is to provide a substantially improved low temperature Alkaline-MnO₂ primary cell over the best existing commercial product, having significantly improved capacity performance at high rates. The cell shall also have design parameters optimized in all areas of performance and shall possess a high level of reliability.

In addition, the following conditions of shelf and service maintenance are to be met.

70% of 70°F. capacity after:

- A. 12 months storage at 113°F.
- B. 3 months storage at 130°F.
- C. 1 month storage at 160°F.

Seal improvement to provide a high degree of resistance to electrolyte leakage. The above will all be adaptable to a wide variety of sizes and shapes.

ABSTRACT:

This First Quarterly Report covers the initial effort to analyze the present factory product E-95 (D size) Alkaline-MnO₂ round cell with special emphasis placed on location of problem areas affecting low temperature, heavy drain service. In addition based on the above analysis empirical data was obtained from variations of electrode and electrolyte formulations as well as separator materials. From the above work, an optimized cell has been obtained for use in factory trials. This cell contains a cathode with a 4/1 ore to carbon ratio, an electrolyte with 40% KOH as dispensed into the cell (apporximately 32% equilibrium value in the anolyte), a Viskon-Vinyon separator and a powdered zinc anode. The work to date has indicated a need for a higher surface area zinc. In addition, more work to perfect the seal is needed.

Uniformity of cathode mix formulations will also be characterized with respect to solution volumes, packing, density, etc.

CONFERENCES:

1. May 18, 1962 at Fort Monmouth, New Jersey, to discuss work plans.

Persons Attending:

	UCCPC	Signal Corp
M.	R. Hatfield	D. Linden
F.	L. Granger	A. Daniel
E.	F. Sipp, Jr.	J. Murphy
R.	B. Klopfenstein	C. Nordell
P.	B. Doll	C. Trigg

August 21, 1962 at Cleveland, Ohio, to discuss first quarterly progress.
 Persons Attending:

UCCPC	Signal Corps
R. B. Klopfenstein	C. Nordell
J. Southworth	
P. B. Doll	
J. Winger	

FACTUAL DATA:

The work done in the first quarter of the contract was divided into two categories, namely:

- 1. Present E-95 cell analysis and characterization.
- 2. Substitution of various materials and electrode formulations in "D" size alkaline cells (E-95).

The goal for this quarter was to establish one or two cell models suitable for factory trials. The above categories of work were accomplished simultaneously and much information was relatable in both areas.

The following topics are a detailed account of the work done. Data and curves for these topics are presented in the Figures and Tables at the end of the text.

FACTORY PRODUCT E-95 CELL ANALYSIS.

This portion of the work consisted mainly of cell testing with the aid of reference electrodes and interrupted current techniques (Kordesch Sine Wave Apparatus) (Ref. K. Kordesch, Battery Conference of SCEL, May, 1955.) to determine gross factors affecting I.R. drop and polarization in the cell. For this use, three month old E-95 factory product cells were tested.

The reference electrode used was a zinc wire, polished with fine emery cloth, wrapped with two wraps of Viskon-Vinyon separator material and sealed at both ends to the wire by asphalt. The reference electrode was dipped in H₂O and then 45.2% KOH prior to insertion into the anode cavity of the E-95 cell (Figure 1)

Work reported was done on a sine wave pulser.

An oscilloscope was used to measure IR drops in each electrode. A vacuum tube voltmeter was used to measure open circuit (OCV) and closed circuit potentials (CCV) at each electrode with respect to a zinc reference wire. Since the scope measured only the voltage drop from open circuit to closed circuit associated with the <u>peak</u> pulse current, a VTVM was used to measure absolute voltages (OCV and CCV) associated with an <u>average</u> pulse current. (Figure 2) The average pulse current was read on an ammeter and the pulse current was calculated from the ammeter value by the relation:

Pulse Current = (π) X (Ave. Current).

Resistance values were calculated by the following relations:

It was obvious that the resistance value was dependent on the accuracy of the average current reading. Since this was the case, resistance values were not calculated; instead percentages of total cell IR drop were calculated for each electrode by the relation:

% Cathode IR = CR (IR of Cathode to Ref. from Oscilloscope)
AC (IR of Anode to Cathode from Oscilloscope)

The accuracy to which each IR loss was determined was within 10% of the estimated true value.

Testing three months old factory product cells at 70°F., 0°F., and -40°F. has shown that the per cent anode IR loss was increasingly greater with decreasing temperatures. The percentages for a given temperature were fairly

constant regardless of drain (Table 1). Tables 2 and 3 show full discharges at 0°F, and -40°F, and the values were consistant with Table 1.

It is not yet known how these relationships hold with cell age or mix formulation. It was apparent, however, that the cathode provided a fertile area for reduction of IR losses and, in fact, later testing of fresh development cells showed the cathode IR losses were as much as 80% of the total cell IR losses. Work will, of course, continue in this area with our best model cells.

Factory product cell testing by conventional techniques across fixed resistors at a variety of loads and temperatures has shown the following characterization. (Tables 4 and 13)

		% Room	Temperature	Service
Temp.	Load	1.0 V.	0.9 V.	0.8 V.
0°F.	1.0 ohm	3.5	5.6	8.2
	2.25 "	7.5	13.3	17.0
	10.0 "	27.6	39.6	48.7
-40°F.	2.25 ohm	1.6	2.2	3.2
	4.0 "	1.9*	3.5	5.3
	10.0 "	9.4	11.0	17.8

*Estimated from Table 13 data.

It can be seen that there is a good deal of service available at the lower voltage cutoffs on fairly heavy drains (2.25 and 4.0 ohm continuous). It is also seen that service decreases with decreasing temperature and increases with decreasing drain.

Intermittent service and delayed testing have not as yet been done.

Gains in service through intermittent discharge are no doubt possible. Simulated

BA - "A" section drains will be part of the future test schedule also.

CATHODE VARIATIONS.

Initial screening was done by varying cathode wall thicknesses and ore to carbon ratios in order to reduce cathode resistance.

Tables 5 and 14 show the effects from proceeding from 11.8/1 to 4/1 ore to carbon ratios. Definite improvements exist in going to 4/1 ore to carbon formulations on both 2.25 and 4.0 ohm tests. In addition, use of Air Spun Graphite (ASG) as sole conductor showed quite another improvement; however, the result was not entirely reproducible. (Figures 3 and 4)

Additional cell making and testing (Tables 6 and 14) confirmed the advantage of 4/1 ore to carbon ratio mixes over control.

Electrode thickness affected each formulation differently. 0.920 ID cathodes (approximately 0.160 inch thick electrodes) were best for 4/1 mixes. (Table 14) (Figure 5)

The most outstanding problem with the cell was uniformity of service levels from lot to lot with a given mix formulation. This was also true with the control product as shown in Table 13. Although substantial improvements have been made to high voltage cuts on heavy drains at -40°F., the level of service is not uniform for these conditions. This is partially a function of the limited (1.0-5.0%) capacity withdrawn to 1.0 volt and the differences in cell to cell IR values. Both of these factors even out as the cell approaches the lower (0.8 volt - 0.6 volt) but still usable cutoffs during heavy drain, low temperature discharge. (Tables 13, 14, 16)

It is not known what effect lighter drains, cell age or intermittancy of discharge have on the above situation.

This effect is within the performance range of present dry battery service variation under the same conditions. One factor affecting uniformity

of service was cathode mix moisture content (Fig. 6). Cathode density as well as electrolyte wetting are both affected by mix moisture. (Table 14, Lots 55, 59, 60)

Factors which affect uniformity are as follows:

- 1. Cathode density related to conductivity.
- 2. Cathode wetting availability of liquid at reaction sites.
- 3. Raw material uniformity with respect to:
 - a. Moisture content.
 - b. Particle size distribution.
- 4. Proper mixing of formulations.

Comparative cell analysis with the aid of zinc reference electrodes and the Kordesch Sine Wave Apparatus further confirm the advantage of the 4/1 ore to carbon cathodes over control. (Figures 11A, 11B, 11C, 11D) Figure 11A shows the terminal cell voltages during the 0.250 amp (approximate) average discharge (0.785 amp pulsed, 1/2 time discharged). It can be seen that the 4/1 ore to carbon cathodes display higher discharge curves than control. (Readings taken with VTVM) Figure 11B shows the IR free discharges for these same cells. Here, again, the 4/1 cathodes demonstrate superior discharge curves. Since the IR free curves are a measure of cell polarization, it is apparent that in addition to reducing IR losses the 4/1 cathodes also demonstrate reduced cathode polarization. Figures 11C and 11D compare cell IR losses (Figure 11C) with cathode IR losses (Figure 11D) for these same cells. It is clear that the reduction in cell IR losses with the 4/1 ore to carbon cathodes vs. control is almost entirely due to reduction in cathode IR.

Areas for future cathode work are:

1. Establishing the parameters affecting service uniformity at -40°F. temperature.

- 2. Determination of best possible conductor or conductor combination.
- Improvement of mixing operation through use of mullor-type mixing, if possible.
- 4. Establishing raw material specifications for more uniform electrode fabrication.
- 5. Determining a more precise measurement of moisture content.
- 6. Establish the effect of cell age prior to testing.

ELECTROLYTE VARIATIONS.

Work in this area (Tables 8 and 15) was centered around providing the correct electrolyte concentration for -40°F. performance by direct substitution into cells. All electrolyte concentrations were given as the concentration of the liquid being dispensed. From the table, it is apparent that between 37 and 40.5% KOH was the optimum value for balancing conductivity, eutectic and KOH availability.

Since the factory product is now 40.5%, it is felt that no large advantage is gained by going lower.

Other substitutions involved the use of Na₂SiO₃·5H₂O as a sequestering agent to limit the hydroxide reaction and promote the zincate reaction. It was hoped that this would provide a clean zinc surface. No elaborate trial of this material was attempted; therefore, no conclusions can be drawn other than the fact that the amount used gave 50% of control service to 0.9 V. on 4 ohm tests at -40°F. (The above general conclusions apply also to the use of Li(OH) in the electrolyte.)

ZINC VARIATIONS.

No full scale attempt has been made to correlate zinc surface area (particle size distribution) with cell performance at -40°F. The small amount of work done, however, has shown particle size to be a factor on IR losses to the high voltage cutoffs. It is expected that a higher surface area zinc would reduce anode polarization also.

Tables 9 and 16 show that screening of RM-976 zinc powder to various fractions has yielded as much as 150% of control service at -40°F, with the finer zincs. Figures 12A, 12B, and 12C demonstrate the effects of fine zinc by the use of the Kordesch sine wave, interrupted current technique. Cell closed circuit voltages (CCV) vs. cell IR free voltages (OCV) show decreases in cell IR and polarization (Figure 12B) with the use of finer zinces. Figure 12C shows that the cathode IR for the control lot 61 and the fine zinc lot 62 was essentially the same, therefore, improvements in total cell IR and polarization must be related to the finer zinc. Finer zincs possibly may show higher gassing rates on high temperature shelf. Future areas of work will be with various forms of zinc (fibre, foam, etc.), uniformity control of RM-976 zinc or fractions thereof (Fig. 13) and their effect on low temperature service and high temperature shelf.

ANODE COLLECTOR VARIATIONS.

Efforts to improve the particle to particle contact of the anode by restricting the space available for the paste anode expansion have demonstrated that no improvement can be expected in this area of approach. Although 70°F. flash current was improved, the -40°F. service was reduced by reducing the total anode surface exposed to electrolyte and by blocking the paths for electrolyte migration (Table 17).

SEPARATOR VARIATIONS. (Table 18)

Only limited work was done in this area to ascertain the effects of multiple wraps of Viskon-Vinyon on -40°F. service. Based on past data, use of two wraps of Viskon-Vinyon provides adequate shelf stability, as well as acceptable service performance. It is felt that more uniform, better wetting, thinner materials would contribute to lower IR losses. Work will continue in the area of other material substitutions.

Use of cellophane (LSD-195) indicated 67% of control performance on 4 ohm -40°F. service to 1.0 volt, however, it is not known whether this is due to the increased numbers of wraps (4) versus control (2) or the properties of cellophane.

GENERAL.

Typical curves of all the above variations are shown in the Appendix. In addition, curves showing IR losses by sine wave current techniques with 4/1 ore to carbon ratio cathodes are also in the Appendix.

SEAL.

Work is in progress to improve the reliability of the nylon seal so as to meet the requirements of high temperature shelf performance.

CONCLUSIONS:

I. Electrode analysis with reference cells and interrupted sinusoidal current techniques has shown the following on 3 month old factory product cells.

	Per Cent of Total Cel	l Internal Resistance
	% of Cell IR	% of Cell IR
Temp.	Due to Cathode	Due to Anode
70°F.	95-97	3-5
O°F.	70-80	20-30
-40°F.	50-70	30-50

Cathode factors play a dominant part in cell IR losses. However, the anode contributes increasingly at the lower temperatures to these losses.

Effects of separator contribution or cell age to IR losses have not been fully determined.

II. Factory Product characterization on 3 month old cells has shown the following. (Table 4)

		Pe:	c Cent of	Room	Temp.	Service	
		-40°F.				O°F.	
Load	1.0 V.	0.9 V.	0.8 V.		1.0 V.	0.9 V.	0.8 V.
1.0 ohm	-	-	•		3.5	5.6	8.2
2.25 "	1.6	2.2	3.2		7.5	13.3	17.0
4.0 "	1.9*	3.5	5.3		-	•	•
10.0 "	9.4	11.0	17.8		27.8	39.6	48.7

*Estimated from Table 13 data.

Thus it can be seen that considerable service is available to the lower voltage cutoffs at low temperatures, and that efficiency increases with decreasing drain and increasing temperature.

III. Formulating with varying ore to carbon ratios from 11.8/1 to 4/1 has shown that the more conductive 4/1 mixes (control = 5/1) offer between 50% and

- 100% improvement to 1.0 volt service at -40°F. (2.25 and 4.0 ohm loads) while maintaining the same extended low voltage service as control.

 (Table 5)
- IV. Varying cathode wall thicknesses from 0.175 to 0.145 has shown 0.160 inch thick electrodes to be optimum for 4/1 ore to carbon mixes. This corresponds to a 0.920 O.D. cathode molding ram. (Table 5)
- V. Additional work is needed to determine which conductor or mixture of conductors is best. Use of air spun graphite as sole conductor or mixtures of acetylene black and #2624 graphite have shown essentially equivalent results in 4/1 ore to carbon ratio mixes.
- VI. The electrolyte concentration should be 40% KOH prior to dispensing in the cell. This is approximately a 31-33% equilibrium value when mixed with the other analyte ingredients. (Table 15)
- VII. Use of finer powdered zincs with better control of particle size distribution shows indications of improving low temperature performance. It has not as yet been determined what effect this will have on high temperature shelf maintenance. (Table 16)
- VIII. Two wraps of Viskon-Vinyon separator material (approx. .008 inch/wrap) are optimum for overall cell performance. (Table 18)
- IX. Although substantial improvements have been made to high voltage cuts on heavy drains at -40°F. the level of service is not uniform for these conditions. This is partially a function of the limited (1.0-5.0%) capacity withdrawn to 1.0 volt and the differences in cell to cell IR values.

 Both of these factors even out as the cell approaches the lower (0.8 0.6 volt) but still usable cutoffs during heavy drain, low temperature discharge. (Tables 13, 14, 16)

It is not known what effect lighter drains, cell age, or intermittency of discharge have on the above situation. This non-uniformity effect is within the performance range of present day dry battery service variation under the same conditions.

FUTURE WORK OUTLINE:

In the next quarter, the following work will be done:

- 1. Establishment of final cathode formulations.
- 2. Resolution within the limits of the contract those parameters affecting uniformity of service levels.
- 3. Finalized seal configuration to meet contract requirements.
- 4. Investigation of various separator materials.
- 5. Investigation of various zinc anode forms and/or powdered zinc fractions best suited for low temperatures and high temperatures.
- 6. Factory trial of best model with subsequent characterization.

PERSONS WORKING DIRECTLY ON SC-89098 CONTRACT:

	Hours Worked from 5-1 to 7-31-62
Project Supervisor - P. B. Doll B.S., M.S. in Mechanical Eng. University of Illinois, 5 yrs. experience on alkaline batteries	56.4
Senior Engineer - J. Winger B.S. in Chemical Engineering Michigan State, 5 yrs. experience on alkaline batteries	364.2
Senior Technician - L. O. Smith 15 years experience on all types of battery development work.	62.0
Senior Lab Assistant - B. J. Gorman 4 years experience on alkaline batteries.	405.9

Average Current Current on 1/120 Sec. Pulse Current = (3.14) (Average Current) Current Off | 1/120 Sec. | 1.000+ .750 86. .250 6

Current (Amps)

FIGURE 2 SINE WAVE, INTERRUPTED CURRENT, CELL ANALYSIS

TABLE 1
SINE WAVE EVALUATION
LOT 18 ASHEBORO CELLS (PACTORY PRODUCT)
"D" SIZE CELLS FRESH TEST

-40°F.

Temp.

	Sec. 1	V		at (sms)	ء ا	•	٠
Current	0.C.V. C	C.C.V.	VC VC	CR	W	* E	A .
20 LA	1.56 V.	1.57 V.	0005	7000	000		
520	1.56	1.56	6000	900	900	4	\$
1020	1.56	1.56	.002	6000	.001	45	26
10.5 mA	1.55	1,55	.018	.0075	.0105	42	59
100.0	1,43	1.39	.140	.070	.062	20	4
500.0	1.20	0.98	9.	.370	.290	62	65
1000.0	0.95	0.45	1.40	.750	.70	24	20
22 µA	1.54	1.54	.0001	.0001	.0001	•	ı
	1.54	1.54	.0001	.0001	.0001	ı	1
200	1.54	1.54	.0003	.0002	.0001	99	ጽ
1000	1.54	1.54	.0005	.0003	.0002	09	40
9.7 mA	1.54	1.54	.005	.0036	.0016	73	32
102.0	•	•	.055	.037	.016	89	53
250.0	1.42	1,38	.124	060.	.031	73	25
500.0	1.32	1.24	.225	.175	.050	9/	22
1000.0	1.15	1.01	700	.310	980*	78	22
22 µA	1.57	1.57	0	0	0	•	•
	1,57	1.56	0	0	0	•	•
200	1.57	1.56	.0002	.0002	.0001	ı	•
1000			. 0004	.0004	.0001	i	ı
9.75 mA	1.57	1.56	.0032	.0032	.0001	100	2.7
102			.032	.027	.0005	85	1.5
250	1.52	1,50	.058	.052	.002	06	3.4
200	1	•	.108	.102	.0042	97	3.9
1000	1,41	1.34	.132	.129	.0057	86	4.3

0°F.

70°F.

Pulse Current = (τ) (Ave. Current) AC = Anode to Cathode Reading AR = Anode to Reference Reading CR = Cathode to Reference Reading

"D" SIZE ASHEBORO CELLS - FRESH TEST TABLE 2 SINE WAVE EVALUATION LOT 18 CELLS

,

	•
	Pulse
	- 1.57 Amp
	s Ave.
-40°F.	0.5 Amps
Temp.	Drain

	Amp. Min.	Out	0	0.5	1.0	2.0	2.5	3.5	4.5	0.9	7.0	8.0	0.6	
삚	7. CR	IR		63.6	64.5	63.6	7. 69	4.49	8.99	64.0	63.6	63.3	63.6	
scilloscor	æ	H	0 V.	.28	.25	.23	.26	.24	.26	.23	.26	.28	.28	
δi	క	Ħ	0 V.	.37	.40	.42	.54	.43	94.	94.	.47	.50	.51	
•	¥C	H	0 V.	.58	.62	99.	.78	.67	69.	.72	.74	.79	.80	
•	AC (Meter)	0.C.V.	157 volts	121	114	108	105	102	86	95	91	85	82	
		Time	0 min.	-	2	4	'n	7	6	12	14	16	18	

Drain 0.25 Amps. Ave. - 0.785 Amps Pulse

.37 .75 1.5 3.0 4.5 7.2 11.7 14.2 19.2
55.3 58.4 59.2 61.5 62.3 60.0 58.5 51.7
.145 .150 .150 .155 .155 .220 .240 .270
.180 .190 .195 .215 .230 .255 .300 .300
.325 .325 .330 .350 .370 .415 .500 .530
131 127 122 116 111 105 93 85
1.5 3.0 6.0 12.0 18.0 29.0 47.0 77.0

AC = Anode to Cathode AR = Anode to Reference CR = Cathode to Reference

Refer to Figure 1 and Figure 2 for explanation of cell construction and experimental theory.

27

TABLE 3
SINE WAVE EVALUATION
LOT 18 CELLS

1

Temp. 0°F.
Drain 0.5 Amps. Ave.
1.57 Amps. Pulse

	Amp. Mins.	Out	0.25	1,5	2.5	5,5	17.0	22.4	34.0	39.0				
	%	8	7.7	71	75	75	74	73	99	71	69	20	63	11
Oscilloscope	AR	IR	.054 V.	.051	.048	.045	.063	.073	.160	.190	.240	.265	.190	.195
0scil	CR	IR	.155 V.	.155	.165	.170	.200	.220	.305	.370	.430	.450	.380	.460
	V C	IR	.202 V.	.220	.220	.228	.270	.300	.460	.520	.620	.710	.540	009.
		I.R.	.08 V.	.07	80.	80.	60.	.11	.17	.19	.21	.23	.19	.20
	(Meter)	C.C.V.	1.28 V.	1,23	1.20	1.14	1.00	0.97	0.83	0.78	0.69	0.52	0.49	07.0
	AC	0.C.V.	1.36 V.	1,30	1.28	1.22	1.09	1.08	1.00	0.97	0.00	0.75	99.0	09.0
		Time	0.5 min.	3.0	5.0	11.0	35.0	45.0	68.0	78.0	95.0	119.0	175.0	185.0

AC = Anode to Cathode Reading
AR = Anode to Reference Reading
CR = Cathode to Reference Reading

Refer to Figures 1 and 2 for explanation of cell construction and experimental theory.

TABLE 4
ASHEBORO PRODUCT
FRESH TEST CHARACTERISTICS
LOT D-1026-18

	0.8 V.	Range		263- 290	825-	0/8			70.0-
		Ave		280	855				75.9
70°F. Temp.	0.9 V.	Range	(min.)	188- 210	-0/9	066		(hours)	67.2 65.0-
70°1	0	Ave.	•	195	677				67.2
•	.0 V.	Range		105- 128	470-	210	,		.5 12.6- 26.6 25.6- 36.9 33.4- 56.2 53.2- 16.9 27.4 38.9 58.2
	1.0	Ave.		113	492				56.2
	0.8 V.	Range		21-24	115-	707			33,4- 38.9
	0.8	Ave.		23					36.9
O'F. Temp.	V.	Ave. Range	(mih.)	10-12 23	80-95 146			(hours)	25.6- 27.4
0 F.	V 6.0	Ave.	(mt	11	06			E	26.6
	V.	Range		4-5	28-42				12.6-
	1.0 V.	Ave.		4	37			• In	21
	0.8 V.	Ave. Range			25-28 37		75-80		11.5-
	3*0	Ave.			27		78		13.5
-40°F. Temp.	0.9 V.	Range	(mdn.)		15 14-15	e e e e e e e e e e e e e e e e e e e	40-43	(hours)	7.5 13.5 11.5-
-40°F	0	Ave.	5		15		45	S	7.4
	1.0 V.	Range			7-8		15-18		3.8-
	1.	Ave.			∞		17		5.3
	Load	Otras		1.0	2.25		(Lab Test)		10.0 5.3

5-14-62 Manufacturing Date.

TABLE 5
LOW TEMPERATURE FRESH SERVICE SUMMARY RESULTS

+ CARBON CONDUCTORS	
+ CARBON	
WITH MnO2	
ATHODE VARIATIONS WITH MAG	
CATHODE VAR	

4 Ohm Cont. at -40°F.

								ļ	% of	% of	% of	% of
D-1026 Lot	Mix No.		Rem O.D.	Cond	Conductor	Other Variations	ions	Mix Moist.	Control 1.0 V.	70°F. 1.0 V.	Control 0.9 V.	70°F. 0.9 V.
39	Control		.920	8	AB + 2624	Cement	Dynel	10.8	100	1.9	100	3.5
22	211		.950	=	=	•	=	10.0	112	2.3	107	4.0
21	211	11.8/1	.920	=	=	•	=	10.0	138	2.6	119	4.4
23	212	7.63/1	.950	=	=	•	=	10.0	192	4.0	155	5.9
70	212		? ?	.	£	ı	=	10.0	158	3.0	131	6.4
77	212	7.63/1	.885	=	=	1	=	10.0	165	3.0	134	6.4
58	210	5.36/1	.950	=	=	ı	=	10.7	112	2.0	109	3.6
19	210	5.36/1	.920	=	=	•	=	10.7	162	3.0	138	6.4
26	210	5.36/1	.885	=	=	•	=	10.7	135	2.4	124	4.2
22	228	1/7	.920	=	=	•	2	10.8	138	2.6	122	4.4
27	228	4/1	.885	=	:	•	=	10.8	150	2.8	124	4.5
33	218	4/1	.920	ASG		•	•	12.4	208	4.0	171	6.0

TABLE 6

LOW TEMPERATURE FRESH SERVICE SUMMARY RESULTS

4 Ohm Cont. at -40°F.

CATHODE VARIATIONS WITH MnO2 + CARBON CONDUCTORS

Z of 70°F.	4.1	2.5	6.4	3.8	2.0	3.7	1.4	2.7	2.4	0	1.6	3.1	2.3	3.6
Z of Control 0.9 V.	100	61	126	82	100	197	7.7	150	127	0	100	166	150	188
Z of 70°F.	2.0	1.3	2.7	2.9	6.0	2.3	0.5	1.6	1.4	0	6.0	1.8	1.5	2.4
% of Control 1.0 V.	100	63	140	133	100	273	\$	200	164	0	100	208	167	267
Mix Moist.	10.8	8.6	8.6	8.6	10.6	11.0	11.0	9.5	7.0	11.2	7.6	7.6	8.6	9.7
rions	Dyne1	=	=	=	Dynel	=	ı			Dynel	Dynel	1	KOH	1
일법	ш												as	
Other Variations	Cement	1	•	1	Cement	1	ı			1	Cement	•	Flake	•
Otl Conductor Varis	AB + 2624 Cement	=	=	=	" " Cement	=	ASG -	ASG	ASG	ASG	AB + 2624 Ceme nt	ASG -	ASG Flak	VSG
	AB + 2624	:	:		:	:	ASG			ASG	AB + 2624	ASG	ASG	ASG
Conductor	.920 AB + 2624	., 056.	026.	056.	026.	056.	.920 ASG	.920	.920	.920 ASG	.920 AB + 2624	.920 ASG	.920 ASG	.920 ASG
Ram 0,D, Conductor	5/1 .920 AB + 2624	4/1 .950 "	4/1 .920 " "	4/1 .950 " "	5/1 .920 " "	4/1 .920 " "	4/1 .920 ASG	4/1 .920	4/1 .920	9/1 .920 ASG	5/1 .920 AB + 2624	4/1 .920 ASG	4/1 .920 ASG	4/1 .920 ASG

* 35% KOH electrolyte + 150-200 mesh zinc, .500 0.D. curtain rod collector.

TABLE 7
LOW TEMPERATURE FRESH SERVICE SUMMARY RESULTS

CATHODE VARIATIONS WITH MnO2 + CARBON CONDUCTORS

4 Ohm Cont. at -40°F.

7 J	100 1.2	137 1.6	121 1.4	179 2.3
•		0.8 1	0.6 1	1.2
% of Control	100	167	133	267
Mix Moist.	1 9.1	9.2	9.2	7.6
ions	Cement Dynel	•	Dynel	Dynel 9.4
Other Variations	Cement	ı	•	•
Conductors	AB + 2624	ASG	ASG	AB + 2624
Ram 0.D.	.920	.920	.920	.920
Ore/ Carbon	5/1	4/1	4/1	4/1
Mix No.	_			
D-1026 Lot	99	<i>L</i> 9	69	89

TABLE 8
LOW TEMPERATURE FRESH SERVICE SUMMARY RESULTS

ELECTROLYTE VARIATION

4 Ohm Cont. at -40°F.

% of 70°F. 0.9 V.	No Data	=	=	=	=	3.5	3.6	3.6	3.6	2.0	1.1	0.3	1.9	1.0
% of Control % 0.9 V.		51			78	100	102	86	97	100	57	13	10	52
Z of 70°F. Z of 1.0 V.	No Data	:	:	=	•	1.9	2.0	2.0	2.3	6.0	0.5	0.2	0.8	0.4
% of Control % 1.0 V.	100 Nc	20	, 22	88	100	100	104	104	115	100	55	18	100	50
Additive	Control	No CMC	=	=	=	Control				Control		Flake KOH	1% L10H	.4% S10 ₂
Z KOH	40.5	27.0	29.0	31.0	33.0	40.5	37.0	35.0	33.0	40.5	45.0	50.0	40.5	40.5
D-1026 Lot	10	17	16	15	14	39	29	93	31	64	8	51	48	52

TABLE 9
LOW TEMPERATURE FRESH SERVICE SUMMARY RESULTS

ZINC VARIATION

				4 Ohm Testing at -40°F.	g at -40°F.	
D-1026 Lot	Zinc Type	Screen	% of Control 1.0 V.	% of 70°F. 1.0 V.	% of Control 0.9 V.	Z of 70°F. 0.9 V.
86	34-976	Control	100	1.9	100	3.5
%	:	150-200	119	2.3	128	4.7
37		100-150	119	2.2	124	4.4
38	E	35-100	115	2.2	121	4.3
64		Control	100	6.0	100	2.0
53	:	150-Pan	155	1.4	140	2.8
19	2	Control	100	6.0	100	1.9
62		150-Pan	100	6.0	100	2.0
\$.	*	Control	100	1.8	100	3.1
**	*	150-Pan	128	2.4	95	3.6

* 4/1 ore to carbon cathodes with ASG (Mix 218).

TABLE 10
LOW TEMPERATURE FRESH SERVICE SUMMARY RESULTS

ANODE COLLECTOR VARIATIONS

4 Ohm Cont. at -40°F.

D-1026 Lot	Collector Type	Collector 0.D.	% of Control	% of 70°F.	% of Control	% of 70°F.
5	8	.396 Control	8	6.1	001	c.s
32*	Perforated tube.	.500	69	1.6	78	e. E
33*	Perforated tube.	.550	62	1,5	29	3.0

* Preamalgamated, perforated brass tubes.

TABLE 11
LOW TEMPERATURE FRESH SERVICE SUMMARY RESULTS

SEPARATION VARIATIONS

4 Ohm Cont. at -40°F.

D-1026 Lot	Separator Type	Wraps	% of Control 1.0 V.	% of 70°F. 1.0 V.	% of Control 0.9 V.	% of 70°F. 0.9 V.
10	Viskon-Vinyon	7	100	No Data	100	No Data
12*	Viskon-Vinyon	1	62	=	78	=
11*	Viskon-Vinyon	2	746	=	58	=
13*	Viskon-Vinyon	က	20	=	79	=
43	Control	2	100	2.0	100	4.07
\$	Viskon-Vinyon + ISD-195 Cellophane	4	29	1.4	06	3.2

* No CMC in electrolyte.

TABLE 13
LOW TEMPERATURE FRESH SERVICE RESULTS

CONTROL LOTS

			Cathode	% Cath.	7	,25 Ohr	2.25 Ohm Cont. (minutes)	(min	ites)			4 Ohn	Cont.	4 Ohm Cont. (minutes)	es)		
D-1026	26		Mix Wt.	Mix		70°F.			-40°F			70°F.			40°F		
Lot	Mfg. Date		gms.	Moist.	1:0	6:0	0	0.1	6:0	0.8	1.0	0.9	0.8	100	6.0	0.8	
6	5-23-62 Devel.	Devel.	46.11	12.8	558	740	910	7	2	14	1254	1510	1890	No	No data		
10	5-29-62	E	46.51	7.6	462	700	852	က	9	21	No	Test		26	29	112	
18	18 Rec. 6-1-62 Asheboro	Asheboro			492	677	855	œ	15	27	=	=		17	42	78	
39	7-6-62 Devel.	Devel.	50.60	10.8	652	846	1016	9	15	33	1380	1640	2010	26	28	108	
43	7-11-62	=	49.70	10.8	099	838	966	5	13	32	1344	1620	1960	27	99	137	-,
67	7-26-62	=	0.84	10.6	099	780	876	2	4	14	1268	1520	1934	11	30	29	JU-
61	8-3-62	=	51.81	6.7	618	800	952	7	m	10	1357	1650	2060	12	32	73	
99	8-7-62	=	50.38	9.1	626	808	926	0	-	5	1308	1580	1940	9	19	45	

TABLE 14
LOW TEMPERATURE PRESH SERVICE RESULTS

CATHORE VARIATIONS WITH MAD, AND CARBON CONDUCTORS

											2.25	2.25 Ohm Cont. (min.)	nt. (m	In.)			4	4 Other Cont. (min.)	: (e ta	∵	
D-1026	HES.	Mx	Ore/	3			Other	ier	Z Mix		100			-40 JE	1		4.0L			40 10 10	
10	Dete	2	Carbon	0.D		Conductor	Variations	lons	Moist.	1.0	69	8	1:0	6:0	8	01	65	81	2	6:3	
8	7-6-62	Control	1/5	.920	2	+ 2624	Cement	Dynel	10.8	652	846	1016	•	15	33	1380	1640	2010	56	50 00	108
8	z .	112	11.8/1	.950	=	:	1	=	10.0	550	114	844	-	14	37	1276	1540	1810	53	62	108
21		112	11.8/1	.920	=	=	•	=	10.0	620	748	794	4	11	35	1404	1578	1674	%	69	107
23	:	212	7.63/1	.950		:	•	:	10.0	576	736	940	0	11	31	1246	1530	1806	20	8	139
20	:	212	7.63/1	.920	=	:	•	=	10.0	564	726	830	•	16	33	1366	1544	1682	41	92	122
*	=	212	7.63/1	.885		=	•	=	10.0	909	760	802	7	14	33	1432	1590	1798	43	78	118
28		210	5.36/1	.950	=	=	•	=	10.7	629	98	980	0	7	56	1440	1740	2100	53	63	112
19	:	210	5.36/1	.920		=		=	10.7	929	810	848	7	16	38	1420	1620	1758	42	8	138
56		210	5.36/1	.885	=	E	•	=	10.7	879	803	826	7	14	35	1476	1720	1828	æ	72	125
22		228	1/4	.920	=		•	z	10.8	969	790	820	7	20	41	1380	1610	1850	8	11	117
23		222	4 ,	.86	=	:	•		10.8	809	*	35	•	7	22	1380	1590	1688	8	72	114
×		218	1 /4	.920	Ž	•	•	•	12.4	879	828	938	10	23	3	1360	1650	1882	*	8	163

TABLE 14, Cont'd.

CATHODE VARIATIONS WITH MAC. AND CARBON CONDUCTORS

										2.25	2.25 Ohm Cont. (min.)	it. (m)	(n.)	١		7	4 Ohm Cont. (min.)	u u		۱
D-1026 Lot	Mg. Date	KK N	Ore/ Carbon	0.D	Conductor	Other Variations		Z Mix Moist.	1.0	63	8.0	0.1	6.9	8.0	11.0		8.0	91	6:0	8.0
43	7-11-62	Control	5/1	.920	AB + 2624	Cement	Dynel	10.8	099	838	966	5	13	32	1334	1620	1960	27	99	137
41		228	1/4	.950	:	•	=	8.6	702	870	1066	-	7	20	1326	1610	2050	17	07	81
42	:	228	1/4	.920	:		:	9.8	869	872	1014	7	17	33	1400	1710	2024	88	83	154
* 0 *	<i>;</i>	228	1/4	.950	:	•	:	9.8	580	200	808	6	17	25	1242	1466	1880	%	26	02
		* 35% K	OH elect	rolyte	* 35% KOH electrolyte + 150-200 me	mesh zinc,	.500 0.	.500 O.D. Curtain Rod Collector	in Rod	Colle	ctor.									
64	7-26-62	Control	1/5	.920	AB + 2624	Cement.	Dynel	10.6	009	780	876	•	4	14	1268	1520	1934	11	8	29
*	:	228	4/1	.920	:		=	11.0	999	836	1060	7	17	28	1312	1578	2100	8	29	109
55	:	218	4/1	.920	ASG	•	•	11.0	624	826	1292	7	4	14	1370	1630	2060	7	23	57
86	:	218	4/1	.920	=	ı	ı	9.5	999	856	1050	0	01	22	1380	1640	2130	22	45	81
8	:	218	4/1	.920	:	•	• •	7.0	620	97/	816	0	9	14	1316	1552	1700	18	8	65
23	:	223	1/6	.920	:	•	Dynel	11.2	638	874	1070	0	0	0	1438	1830	2200	0	0	0
19	8-3-62	Control	5/1	.920	AB + 2624 (Cement	Dynel	7.6	618	8	952	7	m	01	1357	1650	2060	12	33	73
63	:	218	4/1	.920	V 8C	•	•	7.6	3 0	872	976	4	12	56	1380	1685	2150	25	53	*
5	:	230	4/1	.920	2	Flake	KOH	8.6	079	840	1060	7	9	18	1340	1690	2110	70	84	76
***	:	218	1/4	.920	2	•	•	9.7	902	906	1106	5	13	22	1358	1650	2016	32	3	95
		* Anode	we 150	-Pan sc	* Anode was 150-Pan screened RM-976	6 sinc.														
8	8-7-62	Control	5/1	.920	AB + 2624	Cement Dynel	Dynel	9.1	979	808	956	•	-	S	1308	1580	1940	9	19	45
29		218	4/1	.920	ASG	•	•	9.5	848	448	996	1	m	11	1308	1610	1955	91	56	20
\$		231	1/4	.920		•	Dynel	9.5	819	810	206	•	1	•	1308	1610	1980	©	23	48
2	:	228	4/1	.920	AB + 2624	•	=	4.6	528	654	752	7	4	13	1296	1508	1930	16	ጸ	62

TABLE 15
LOW TEMPERATURE FRESH SERVICE RESULTS

ELECTROLYTE VARIATION

								-55-								
		0.8	112	51	63	72	75	108	113	96	83	29	43	13	62	40
(-u	-40°F	6.0	29	30	40	4	97	28	59	57	26	30	17	4	53	15
nt. (mi		1.0	26	13	20	23	26	26	27	27	90	11	9	7	10	10
4 Ohm Cont. (min.)	•	0.8						2010	1980	1876	1870	1934	1952	1866	1938	1940
4	70°F	6.0	Data	=	=	=	=	1640	1620	1590	1570	1520	1506	1460	1534	1496
		0	No	=	=	=	=	1380	1380	1354	1318	1268	1238	1140	1274	1190
	•	8.0	21	4	11	18	54	15	31	28	16	14	∞	7	10	15
(-1	-40°F	6.0	9	7	ю	2	6	0	12	11	9	4	m		ო	9
t. (mir		1.0	က	0	-	က	4	0	٣	4	0	7	П	0	7	2
2.25 ohm Cont. (min.)	:	0.8	852	78 9	781	805	999	1016	972	916	870	876	938	978	936	970
2.25	70°F.	6.0	700	638	665	999	561	978	836	790	758	780	738	756	776	808
		0.1	462	492	510	518	436	652	670	626	009	600	563	240	009	622
		Additive	Control	No CMC	=		=	Control				Control		Flake KOH	1% L10H	.4% S10 ₂
	14	KOH	40.5	27	29	31	33	40.5	37	35	33	40.5	45.0	50.0	40.5	40.5
		Date	5-29-62	2	=	z	=	7-6-62	=	=	=	7-26-62	:	=	:	•
	D-1026	Lot	10	17	16	15	14	39	53	30	31	67	20	51	84	52

TABLE 16
LOW TEMPERATURE FRESH SERVICE RESULTS

ZINC VARIATION

D-102	6 Mfg.				2.25 0	2.25 Other Continues /	Linnon								
व	Date	Type	3		d. 05-			2000.	1.	1	4 Oh	4 Ohn Continuous (-1-	nuone	(171)	
		1	Tag Tag	기	6.0	0.8	-		ŀ		4.07-				
8	7-6-62	RM-076				1			0	1.0	0.9	C	1.	1	اند
	!	0/6-1	control	9	15	33	659	ò	,				김		0.8
36	:	2	150-200	(,)	700	6	1016	26	58	198	1380	164.0	
,	;		37-22-	>	01	5 6	530	763	040	?					7070
'n	•	2	100-150	c	c	;)	707	75	74	148	1334	1580	1970
38	:	=		•	h	\$	999	816	896	3	72	15.5			
			35-100	0	0	15	779	,	•		•	761	1386	1650	1950
49	7-26-62	=	Control	c	•		8	820	896	ଛ	20	137	1380	1620	0701
73	3			7	4	14	9	780	876		8		•		73/0
3	:	=	150-Pan	57	2	ŗ	,		2	;	Š	67	1268	1520	1934
61	8-3-62	:			?	57	612	792	960	17	42	8	1223		
;	ı ;		TOLING	~	٣	01	618	8	6	1		3	777	1203	1870
70	ŧ	2	150-Pan	~	*	•		3	726	12	32	73	1357	1650	2060
634	8-3-62	ŧ	,		†	77	688	880	1033	12	32	73	1367		}
	•		Control	4	12	26	25	6			1	,	1234	1610	1970
*	:	2	150-0-1		,	}	\$	2/9	926	23	53	*	1380	1606	
		-		n	13	23	708	906	1106	ç	;	,			0077
									}	70	3	95	1358	1650	2016

4/1 ore to carbon cathodes with ASG (Mix 218).

1358 1650 2016

TABLE 17
LOW TEMPERATURE FRESH SERVICE RESULTS

ANODE COLLECTOR VARIATIONS

					2.25	2.25 Ohm Cont. (min.)	ıt. (mj	n.)	1		7	The Cont	(min	.)	
D-1026	Mfg.	Collector			70°F			-40°F.			70°F			-40°F.	
Lot	Date	Type	Ce11 0.D.	1.0	6.0	0.8	1:0	1.0 0.9	8.0	1.0	6.0	0.0 0.1 0.8 0.0 0.1	1.0	6.0	9.0
39	7-6-62	Leg	.396 (control)	652	652 846	1016	9	15 33	33	1380	1380 1640	2010	56	26 58 108	108
32*	=	Perforated Tube	.500	552	714	836	1	9	15	1136	1136 1382	1720	18	45	87
33*	=	Perforated Tube	.550	979	716	838	0	м	6	1038	1294	1612	16	39	77

* Preamalgamated, Perforated Brass Tubes.

TABLE 18
LOW TEMPERATURE FRESH SERVICE RESULTS

SEPARATOR VARIATIONS

				2	.25 Oh	2.25 Ohm Continuous	snonu					4 Ohm Continuous	Contin	snoi	
D-1026	Mfg.	Separator			70°F.			-40°F.			70°F			-40°F	
Ipt	Lot Date	Type	Wraps	1.0	6.0	8.	1.0	1.0 0.9	0.8	1.0	1.0 0.9	0.8	0.1	0.9	0.8
10	5-29-62	Control	7	462	700	852	ю	9	21	Ž	No Data	æ	56	. 65	112
12*		V-V	-	582	732	819	4	12	28				16	97	86
11*	2	N-V	8	248	735	877	ო	7	20				12	*	80
13*	:	N-V	m	290	721	818	m	7	22				13	38	82
43	7-11-62	Control	2	099	838	966	5	13	32	1344	1620	1960	27	99	137
3	=	V-V + ISD-195	4	612	786	950	က	10	26	1318	1580	2030	18	51	112

* No CMC in clear gel.

ı

TYPICAL 4/1 ORE TO CARBON COMPARISON WITH ASG VS. AB + 2624 GRAPHITE E-95 CELLS FRESH SERVICE AT -40°F.

2,25 OHM CONTINUOUS

FIGURE 7

TYPICAL 4/1 ORE TO CARBON COMPARISON WITH ASG VS. AB + 2624 GRAPHITE E-95 CELLS FRESH SERVICE AT -40°F. FIGURE 8

1

FIGURE 9

FIGURE 10

20 50 40 40 IR FIGURE 11-D FIGURE 11-B Cathode 0 30 Minutes 30 Minutes .25 AMP. AVERAGE DISCHARGE Ce11 OCV 20 ---- D-1026-66 Control
---- D-1026-67 Mix 218 (4/1 Cathode with ASG)
---- D-1026-68 Mix 228 (4/1 Cathode with 2624 Graphite and Acetylene Black)
----- D-1026-69 Mix 231 (4/1 Cathode with ASG and Dynel Binder) 10 2 Voltage 009 200 1000 800 0 1.40 0.80 09.0 1.20 -40° SINE WAVE, 20 20 9 40 Cell CCV Cell IR FIGURE 11-C FIGURE 11-A 8 30 Minutes Minutes 10 10 1.40 ₽ Voltage 9 09.0 1000 88 **400** 200 0 1.20 0.80 Militvolts

-40° SINE WAVE, .25 AMP. AVERAGE DISCHARGE

UNCLASSIFIED 1. Present Product "P" size Alkalia-Neoge examination Alkalia-Neoge examination at low temperatures 2. Improvements in electrode formulation. 3. Service uniformity with modified cathode formula- rions ilations thom histon kited kited	UNCLASSITIO 1. Present Product "P" size Albaline-Moby examination at low temperatures 2. Improvements in electrode formulacion. 3. Service uniformity with modified cathode formulation times.
Modern Cartide Communer Products Company, Electrochandeal Product Development Laboratory, Glaveland, Ohio ANEALINE-Mac. MATTERY J. Winger F. B. Doll Report No. 1, First Quarterly Report I Noy 1962 to 30 July 1962 J. Pp. 13 Figures 18 Ebbles G. Communer En. 36-039-02-9998 Froject No. 1999-09-002-02 Knamination of present factory product E-95 TP size allialisms-Mac. enli et law temperatures with goal of optimizing said cell for low temperatures with goal of optimizing said cell for low temperatures with goal of optimizing said cell at law temperatures with goal of optimizing said cell for low temperatures with goal of optimizing said cell for low temperatures with goal of optimizing said cell at law temperatures with goal of optimizing said cell at law temperatures with mod filed sections of lot-lot service weiformity with modified cethods formulation.	Mariant Cartida Casamar Products Company, Electrochamical Product Development Laboratory, Claveland, Ohio AZZAINE-Mac, MATTERT J. Winger P. B. Bell Report No. 1, First Quarterly Report 1 May 1962 to 30 July 1962 47 pp. 13 Figures 18 Tables 50 Contract No. 3699-50-50-9009 Froject No. 3699-59-60-9009 Froject No. 3699-59-90-9009 Froject No. 3699-59-9009 Frojec
UNCLASSIFIED 1. Present Product "p" size Albaline-Mole examination at low temperatures 2. Improvements in electrode formulation. 3. Service uniformity with modified cathode formula- tions.	UNCLASSIVID 1. Present Product "P" size Albalise-Moly examination at low temperatures 2. Improvements in electroda formulation. 3. Service uniformity with medified cathoda formula- tions.
Union Carbide Communer Freducts Company, Electrochanical Freduct Development Laboratory, Cleveland, Obio ALEALINE-Many LATINITY J. Winger F. B. Bell Report No. 1, First Quertarily Report 1 May 1962 to 30 July 1962 47 pp. 13 Figures 18 Tables 20 Comerces Na. 24-029-60-3909 Froject No. 30 Freduct Cattory product E-95 mp. size alkalian-Many soil at law temperatures with goal of optimizing said onli for low temperatures with goal of optimizing said onli for low temperatures theory drain was. Dissumment of the company drain was. Dissumment at Mayber company phose cathedre and Migher area size manded outlands formulation.	Union Carbido Camenae Products Caspany, Electrochamical Product Bresignant Laboratory, Claveland, Obio Alizanae-inch, Marrier J. Winger F. B. Mil. Happer He. 1, First Quarterly Report 1 Mry 1962 to 30 July 1962 47 pp. 13 Figures 16 Tables 50 Camerae He. 26-09-0-2009 Freder He. 309-0-0-2009 Freder He. 309-0-0-2009 Freder He. 309-0-0-2009 Freder He. 309-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-

I

I

Present Product "D" size Alkaline-Hid2 examination at low temperatures Service uniformity with modified cathode formula-tions. Improvements in electrode formulation. Service uniformity with modified cathode formula-tions. Present Product "D" size Alkaline-MaO₂ examination at low temperatures Improvements in electrode formulation. UNCLASS IF IED UNICASSIFIED mperciures with goal of Fumperature, heavy drain a m electrode formulations through higher carbon rea size anodes. Balates uniformity with modified Examination of present factory product E-95 "P" size alkalize-Ma0, cell at law temperatures with goal of optimizing said cell for low temperature, heavy drain use. Discusses improvements in electrode formulations which improve -40", service through higher cerbon phose cathedes and higher area sinc anodes. Relates problems of Lot-Lot service uniformity with modified cethede formulation. Union Carbide Consumer Products Company, Electrochemical Product Development Laboratory, Cleveland, Ohio Union Carbide Concenny Products Company, Electrochemical Product Development Laboratory, Gleveland, Okio Report No. 1, First Quarterly Report 1 May 1962 to 30 July 1962 47 pp. 13 Figures 16 Tables 8C Gustract Na-36-09-6C-9998 Project No. 369-09-622 Accession No. mt factory pro Report No. 1, First Questorily Res 1 May 1962 to 30 July 1962 47 pp. 13 Figures 18 Tables 50 Contract NA-36-09-09-09 Project No. 3A99-09-002-02 Examination of present factory alkaline-Made cell at law temps optimizing said cell for low to ALEAL DE -No. DATTERY ALEALINE-Mod. BATTERY J. Winger P. B. Doll J. Winger P. B. Boll Improvements in electrode formulation. Present Product "D" size Albaline-Hade exemination of low temperatures Improvements in electrods formulation. Present Product "D" sise Alkalise-HoO₂ examination at low temperatures Service uniformity with modified esthode formula-tions. Service uniformity with modified cathode formula-tions. UNICLASS TFTED UNICLASS IT TED Ξ: ~i 7 'n ä 'n perstures with goal of temperature, heavy drain in electrode formisations through higher carbon a sinc sendes. Indeces afformity with modified Examination of present factory product E-95 "P" else alkalisa-Male coll at low temperatures with goal of optimizing said cell for low temperature, heavy deals wes. Recently said cells for low temperature, heavy deals wes. Recently for a section through higher carbon phase cells and higher area size mandes. Relates problems of lat-lat service uniformity with modified Union Carbide Consumer Products Compeny, Electrochemical Product Development Laboratory, Cleveland, Okio Union Caridde Compount Products Compony, Electrochemical Product Development Laboratory, Cleveland, Ohio Report No. 1, First Quarterly Report 1 May 1962 to 30 July 1962 47 pp. 13 Pigares 18 Tables SC Contract NA-36-039-2C-8998 Froject No. 369-69-602-02 Accession No. Accession No._ Report No. 1, First Quarterly No. 1 May 1962 to 30 July 1962 to 47 pp. 18 Tables SC Construct No. 36-679-62-69998 Project No. 3699-69-602-62 NIZALINE-Mos BATTERY ALKALING -Bad, BATTERY which impress 40° phase eathers and problems of let-le cathers formulation J. Winger P. B. Boll J. W. P. 1.

DISTRIBUTION LIST FOR FIRST QUARTERLY REPORT CONTRACT NO. DA-36-039-SC-89098

Commanda o Office		Common Stars Common 1	
Commanding Officer U.S.A. Electronics Research &		Commanding General	
Development Laboratory		U.S.A. Electronics Research	(1)
Fort Monmouth, N.J.		& Development Activity Attn: Technical Library	(1)
ATTN: Logistics Division (Marked		Fort Huachuca, Arizona	
for Project Engineer)	(19)	Fort Huachuca, Arizona	
ATTN: SELRA/S1-P	(1)	Commandina Offican	
ATTN: SELRA/SL-LNR	(1)	Commanding Officer Diamond Ordnance Fuze Labs.	
ATTN: SELRA/SL-LNE	(1)	Attn: Library, Room 211,	
ATTN: Dir. of Engineering	(1)	Bldg. 92	
ATTN: SELRA/SL-ADJ	(1)	Washington 25, D. C.	(1)
ATTN: Technical Document Center	(1)	washington 25, D. C.	(1)
ATTN: Technical Information Div.	(1)	Commanding Officer	
(Unclassified Reports Only		U.S.A. Electronics Material	
For Retransmittal to Accred-		Support Agency	
ited British and Canadian		Attn: SELMS-ADJ	
Government Representatives)	(3)	Fort Monmouth, N. J.	(1)
ooverment Representatives,		rolt Monmodell, N. 3.	(1)
OASD (R&D), Rm 3E1065		Deputy President	
Attn: Technical Library		U.S.A. Security Agency Board	
The Pentagon		Arlington Hall Station	
Washington 25, D. C.	(1)	Arlington 12, Virginia	(1)
Chief of Research & Development		Commander	
OCS, Department of the Army		Armed Services Technical	
Washington 25, D. C.	(1)	Information Agency	
	\- /	Attn: TIPCR	
Commanding General		Arlington Hall Station	
U.S.A. Electronics Command		Arlington 12, Virginia	(10)
Attn: AMSEL-AD			(,
Fort Monmouth, N. J.	(1)	Chief	
•	` '	U.S. Army Security Agency	
Director		Arlington Hall Station	
U.S. Naval Research Laboratory		Arlington 12, Virginia	(2)
Attn: Code 2027		· · · · · · · · · · · · · · · · · · ·	\- /
Washington 25, D. C.	(1)	Commander	
		Aeronautical Systems Division	
Commanding Officer & Director		Attn: ASAPRL	
U.S. Naval Electronics Laboratory		Wright-Patterson Air Force Base	2
San Diego 52, California		Ohio	(1)
Commander		Air Force Systems Command	
Air Force Command & Control		Attn: AFSC STLO (NARDAE)	
Development Division		Johnsville, Pennsylvania	(1)
Attn: CRZC		- , ,	
L. G. Hanscom Field		Commander	
Bedford, Massachusetts	(1)	Air Force Cambridge Research	•
•	•	Laboratories	
Commander		Attn: Research Library, CRXL-	R
Rome Air Development Center		L. G. Hanscom Field	
Attn: RACTL		Bedford, Massachusetts	(1)
Griffiss Air Force Base, New York	(1)		

DISTRIBUTION LIST FOR FIRST QUARTERLY REPORT CONTRACT NO. DA-36-039-SC-89098

		A	
Commander		Assistant Director, Material	
Air Force Command & Control		Sciences	
Development Division		Advanced Research Projects Agency	
Artn: CCRR	(1)	The Pentagon, Room 3E153	
Attn: CCSD	(1)	Washington 25, D. C.	
L. G. Hanscom Field		Attn: Mr. Charles F. Yost	(1)
Bedford, Massachusetts			
2002014, 00000000000000000000000000000000000		Advanced Research Projects Agency	
Chief		The Pentagon, Room 3E157	
West Coast Office		Washington 25, D. C.	
U.S.A. Electronics Research &		Attn: Dr. John H. Huth	(1)
		Actn: Dr. John n. nach	(1)
Development Laboratory		** 1	
75 South Grand Ave., Bldg. 13	411	Headquarters	
Pasadena, California	(1)	National Aeronautics & Space	
		Administration	
Power Information Center		Office of Nuclear Flight Systems	
Moore School Building		Washington 25, D. C.	
200 South Thirty-Third Street		Attn: Mr. David Novik (RNN)	(1)
Philadelphia 4, Pennsylvania	(1)		
, , , , , , , , , , , , , , , , , , , ,	•	National Aeronautics & Space	
Headquarters		Administration	
U.S. Army Materiel Command		1520 H Street N.W.	
Research & Development Directorate		Washington 25, D. C.	
Attn: AMCRD-DE-MO		Attn: Mr. Walter C. Scott	(1)
	(1)	Attn: Mr. waiter C. Scott	(1)
Washington 25, D.C.	(1)		
		Equipment & Supplies Division	
Commanding General		Office of Ordnance	
U.S. Army Electronics Command		Office, DODR&E	
Attn: AMSEL-RE-A		The Pentagon	
Fort Monmouth, N. J.	(1)	Washington 25, D. C.	
		Attn: Mr. G. B. Wareham	(1)
Army Research Office			
Office, Chief Research & Developmen	nt	Bright Star Industries	
Department of the Army		600 Getty Avenue	
Room 3D442, The Pentagon		Clifton, N. J.	
Washington 25, D. C.		Attn: Mr. F. Keller	(1)
•	/1\	Attn: Mr. F. Keller	(1)
Attn: Dr. Sidney J. Magram	(1)		
		Mallory Battery Company	
Director Advanced Concepts Div.		Tarrytown	
Bureau of Ships (Code 350)		New York	
Washington 25, D. C.		Attn: Mr. J. Dalfonso	(1)
Attn: LCDR. Frank W. Anders	(1)		
		Burgess Battery Company	
Office of Naval Research (Code 429))	Freeport, Illinois	
Department of the Navy		Attn: Mr. M. Wilke	(1)
Washington 25, D. C.			•
Attn: Mr. James R. Patton, Jr.	(1)	Electric Storage Battery Co.	
are the same of the total of the	\-/	Ray-O-Vac Division	
Compandon		· · · · · · · · · · · · · · · · · · ·	
Commander		212 East Washington Ave.	
Aeronautical Systems Division		Madison 10, Wisconsin	/11
Wright-Patterson Air Force Base		Attn: Mr. P. Albert	(1)
Ohio	445		
Attn: Mr. George W. Sherman	(1)		

Page 3

DISTRIBUTION LIST FOR FIRST QUARTERLY REPORT CONTRACT NO. DA-36-039-SC-89098

Marathon Battery Company Wausau Wisconsin Attn: Mr. G. Schroeder (1)

Radio Corporation of America Somerville New Jersey Attn: Dr. G. Lozier

(1)