课程信息

- 《随机过程》:64学时,4学分,60230014(课号)
- 授课教师: 陈斌, 信息大楼1608, cb17@tsinghua.org.cn
- 助教: 高英华、黄钰钧
- 成绩比例: 期中20%, 期末50%, 平时(作业+Project) 30%
- 教材:《随机过程及其应用》陆大金
- 其他参考书:
 - 1. 李贤平, 《概率论基础》, 高等教育出版社
 - 2. 林元烈, 《应用随机过程》, 高等教育出版社
 - 3. R.Gallager, Stochastic Processes: Theory for Applications, Cambridge University Press
 - 4. S. Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press

Project要求

- 组队人数: 3人以内, 默认姓氏排序, 除非特别说明贡献
- Topic (2选1):
 - 参考Maryland大学课程中与课程相关的主题: http://www.cs.umd.edu/class/fall2020/cmsc828W/
 - 自选随机过程相关的主题;
- Reference数量不少于10篇;
- Tutorial Presentation: (40%):
 - 内容:
 Motivation+ Theory+ Emperical Results (复现)+Conclusion+Thinking;
 - Q&A环节表现: 任课老师和同学提问;
- Technical Report (姓名+学号): (60%):
 English Writing in ICML Style (Latex模板在网络学堂)
 including Necessary Parts of An Academic Conference Paper.
- Deadline: 10.31, 网络学堂提交, 过期不能提交!

"应用"数学的基本素养与价值

- Mathematical Abstraction/ Theoretical Formulation: 学会用 数学的语言表达;
- Analog/Transfer Learning: 迁移/类比的能力;
- Empirical Observation/Induction; 发现现象/归纳能力;
- Deductive Inference/Logical Implication: 演绎/逻辑推理;
- "牛逼"的"三个代表":

香农传 AMAGATEAN AMAGATEAN

(a) **Newton,1643-1727** (b)

Shannon,1916-

(c) Lecun, 1960-

第一章概率基础

陈斌

Tsinghua Shenzhen International Graduate School (SIGS)

Outline

- 1 基本定义
- 2 常用分布
- 3 数字特征
- 4 随机向量
- 5 母函数
- 6 特征函数
- 7 概率不等式及其应用

基本定义

一个试验(或观察),若其结果预先无法确定,称之为随机试验。随机试验的可能结果成为样本点,记为 ω ,样本点的全体构成样本空间,记为 Ω . 我们即将在 Ω 的某些子集上定义概率,但事先要对子集进行如下限制。

定义:样本空间 Ω 的某些子集构成事件域F,若F满足

- $\mathbf{0} \ \phi \in \mathcal{F};$

则称F为 σ 域, (Ω, F) 为可测空间。

定义:设 (Ω, \mathcal{F}) 为可测空间,若定义在 \mathcal{F} 上的 \mathfrak{L} 基本处理

- ① $\forall A \in \mathcal{F}, P(A) \geq 0$: (非负性)
- ② $P(\Omega) = 1$; (规一性)
- ③ 设 $A_1, A_2, \ldots, \in \mathcal{F}$ 两两不相交, i.e., $A_i A_i \triangleq A_i \cap A_i = \phi$, $\forall i \neq j$, 则 $P(\bigcup_{n=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$. (可列可加性)

则称P为概率, (Ω, \mathcal{F}, P) 为概率空间。

性质:

- ① 不可能事件概率为 $\mathbf{0}$: $P(\phi) = 0$
- ② 有限可加性: $A_iA_j = \phi$, $\forall i \neq j \Rightarrow P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$, $P(\bar{A}) = 1 - P(A)$,
- ③ 若B⊂A, 则P(A-B) = P(A) P(B), P(B) < P(A) (单调性);
- **4** $P(A \cup B) = P(A) + P(B) P(AB)$: $P(A \cup B) < P(A) + P(B)$ (Union Bound);
- **⑤ 全概率公式** 设 $A_1, A_2, \ldots, 为\Omega$ 的划分, 即 A_i 两两不相交 $\mathbb{L} \bigcup_{i=1}^{\infty} A_i = \Omega, \ \mathbb{N} \ P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$

定义:设 (Ω, \mathcal{F}, P) 为概率空间, $\xi(\omega)$ 为定义在 Ω 上的单值实函 数: $\xi:\Omega\to\mathbb{R}$ 。 若 $\forall x\in\mathbb{R}$, $\{\omega:\xi(\omega)< x\}\in\mathcal{F}$, 则称 $\xi(\omega)$ 为随 机变量。

 $F(x) \triangleq P\{\xi(\omega) \leq x\}$ 称为随机变量 ξ 的分布函数。

性质(证明略):

- **1** $0 \le F(x) \le 1$, F(x)单调不减;
- ② $F(-\infty) = \lim_{x \to -\infty} F(x) = 0, F(+\infty) = 1;$
- ③ F(x)右连续, 且至多有可数个间断点.

离散型随机变量: 状态的数目可数

连续型随机变量:存在概率密度函数 f(x) 使得 F'(x) = f(x)

状态 ≜ 随机变量的取值 { 离散 连续

常用分布 (离散型)

检验概率分布: $p_i \geq 0$, $\sum p_i = 1$.

- 贝努力分布: $P\{\xi=1\}=p, \quad P\{\xi=0\}=1-p, \quad 0 \le p \le 1.$
- 二项分布: n次中恰好有i次成功 $P\{\xi = i\} = \binom{n}{i} p^i (1-p)^{n-i}, \quad i = 0, 1, \dots, n, n \geq 1, \quad 0 \leq p \leq 1.$
- 泊松分布: $\lambda > 0$, $P\{\xi = i\} = \frac{\lambda^i}{i!}e^{-\lambda}$, i = 0, 1, 2, ...
- 几何分布: 第i次首次成功 $0 , <math>P\{\xi = i\} = (1-p)^{i-1}p$, i = 1, 2, ...

常用分布 (连续性)

检验概率分布: $f(x) \ge 0$, $\int_{\mathbb{R}} f(x) dx = 1$.

• 指数分布:

$$\lambda > 0, \quad f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

• 均匀分布:

$$a < b$$
, $U(a,b)$, $f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & 其它. \end{cases}$

• 正态分布:

$$N(\mu, \sigma^2), \quad f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad N(0, 1).$$

均值? 方差?

数字特征

定义: 数学期望(均值)

若
$$\int_{-\infty}^{+\infty} |x| dF(x) < +\infty$$
, $\mu_{\xi} \triangleq E\xi \triangleq \int_{-\infty}^{+\infty} x dF(x)$.

注:针对离散型和连续型,统一用dF(x)来表示,若分开

写 $E\xi$ 就分别是 $\sum_n x_n \cdot p_n$ 和 $\int_{-\infty}^{+\infty} x f(x) dx$.

定义:方差(二阶矩)

若
$$\int_{-\infty}^{+\infty} x^2 dF(x) < +\infty$$
,

$$\sigma_{\xi}^2 \triangleq D\xi \triangleq E[\xi - E\xi]^2 = E\xi^2 - E^2\xi.$$

定义: r阶绝对矩 $E|\xi|^r \triangleq \int_{-\infty}^{+\infty} |x|^r dF(x)$.

性质: 1). 线性; 2). g(x)函数,则 $E g(\xi) = \int_{-\infty}^{+\infty} g(x) dF(x)$. 几个例子:

- 贝努力分布: $P\{\xi=1\}=p,\ P\{\xi=0\}=1-p,\ \mu=p,\ \sigma^2=p(1-p);$
- 二项分布: $P\{\xi = i\} = \binom{n}{i} p^i (1-p)^{n-i}, \ \mu = np, \ \sigma^2 = np(1-p);$
- 泊松分布: $\lambda > 0$, $P\{\xi = i\} = \frac{\lambda^i}{i!} e^{-\lambda}$, $\mu = \lambda$, $\sigma^2 = \lambda$;

注: 二项分布为n个独立贝努力分布之和。

$$I_{\{\mathrm{expression}\}} = \left\{ egin{array}{ll} 1, &$$
 当表达式expression成立时, $0, &$ 否则.

• 指数分布:

$$f(x) = \lambda e^{-\lambda x} \cdot I_{\{x \ge 0\}}, \ F(x) = (1 - e^{-\lambda x})I_{\{x \ge 0\}}.$$

 $\mu = 1/\lambda, \ \sigma^2 = 1/\lambda^2.$

- 正态分布:
 N(μ, σ²), 高斯分布由均值和方差唯一确定。
- 其它分布:
 Γ分布、χ²分布、Rayleigh分布、Rice分布等。

随机向量 复随机变量

定义: 设
$$(\xi_1, \dots, \xi_n)$$
 为 n 维随机变量(随机向量)。
分布函数 $F(x_1, \dots, x_n) \triangleq P\{\xi_1 \leq x_1, \dots, \xi_n \leq x_n\}$,若 $\frac{\partial^n F(x_1, \dots, x_n)}{\partial x_1 \dots \partial x_n}$ 存在,
$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(t_1, \dots, t_n) dt_1 \dots dt_n$$

$$F(x_1,\ldots,x_n)=\int_{-\infty}^{x_1}\ldots\int_{-\infty}^{x_n}f(t_1,\ldots,t_n)\,dt_1\ldots dt_n.$$

定义:
$$(\xi_1, \ldots, \xi_n)$$
, 协方差矩阵 $C \triangleq [C_{ij}]_{n \times n}$, 其中

$$C_{ij} \triangleq C(\xi_i, \xi_j) \triangleq E(\xi_i - E\xi_i)(\xi_j - E\xi_j)$$
称为 ξ_i 与 ξ_j 的协方差 C 对称,对角线 $c_{ii} = C(\xi_i, \xi_i) = D\xi_i = \sigma_{\xi_i}^2$.

二维随机变量 (η, ζ) :

$$C(\eta,\zeta) \triangleq E(\eta - E\eta)(\zeta - E\zeta) = E\eta\zeta - E\eta E\zeta.$$
 若 $C(\eta,\zeta) = 0$,称 η 与 ζ 不相关 $\iff E\eta\zeta = E\eta \cdot E\zeta.$ 若 η,ζ 独立,则 η 与 ζ 不相关。反之不然 $R(\eta,\zeta) \triangleq E\eta\zeta$ 相关函数 $r \triangleq \frac{C(\eta,\zeta)}{\sigma_{\eta},\sigma_{\zeta}}$ 相关系数(标准化的协方差)

定义:
$$\xi \triangleq \eta + j\zeta$$
, $j = \sqrt{-1}$ 称为 (Ω, \mathcal{F}, P) 上的复随机变量。
$$E\xi \triangleq E\eta + jE\zeta$$
, $D\xi \triangleq E|\xi - E\xi|^2 = E(\xi - E\xi)\overline{(\xi - E\xi)}$.

实质上, $\xi \in \mathbb{R}$ 发起成的二维随机变量。 $D\xi = Dn + D\zeta$, 证明?

母函数

定义:
$$\xi$$
, $P\{\xi = k\} = p_k$, $k = 0, 1, 2, ...$, 整值随机变量 称 $G(s) \triangleq E$ $s^k = \sum_{k=0}^{\infty} p_k s^k$ 为 ξ 的母函数。

性质:

- G(s)在 $|s| \le 1$ 时, 一致收敛且绝对收敛
- $p_k = G^k(0)/k!$ 反演公式或逆转公式
- G(s)与F(x) 一一对应
- $\eta = a\xi + b \ (a > 0, b \ge 0) \implies G_{\eta}(s) = s^b G(s^a).$
- 可用来求数字特征:

$$E\xi = G'(1), \ E\xi(\xi - 1) = G''(1), \ D\xi = G''(1) + G'(1) - [G'(1)]^2.$$

• 独立随机变量之和:

$$\xi_1, \dots, \xi_n$$
 相互独立, $G_1(s), \dots, G_n(s), \eta = \xi_1 + \dots + \xi_n$. 则 $G_{\eta}(s) = G_1(s) \dots G_n(s)$. 乘积

随机个 i.i.d.随机变量之和 ξ_1, \ldots, ξ_n 独立同分布, G(s), 整值随机变量 ν , H(s), 与 ξ_i 独立, $\eta = \xi_1 + \cdots + \xi_{\nu}$,则 $G_n(s) = H[G(s)]$. 复合

母函数主要用来处理离散型随机变量。

- 求数字特征:
- 求独立随机变量之和:
- 与分布一一对应, 且分析性质更好, 可用来处理分布。

例:二项分布(独立贝努力分布之和) 泊松分布 (独立泊松分布之和仍为泊松分布)

特征函数

定义:
$$\Phi(t) \triangleq E e^{jt\xi} = \int_{-\infty}^{+\infty} e^{jtx} dF(x) = \int_{-\infty}^{+\infty} e^{jtx} f(x) dx.$$

直观:
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-jtx} \Phi(t) dt$$

$$\Phi(t)$$
与 $f(x)$ 是一对Fourier变换。 $\begin{cases} \Phi(t): \mathbb{R} \to \mathbb{C} \\ f(x): \mathbb{R} \to \mathbb{R} \end{cases}$ 1-1对应

性质:

- $\Phi(0) = 1, |\Phi(t)| \le 1, \Phi(-t) = \overline{\Phi(t)}.$
- $\Phi(t)$ 在 $(-\infty, +\infty)$ 一致连续.
- $\eta = a\xi + b \Rightarrow \Phi_{\eta}(t) = e^{jbt}\Phi_{\xi}(at).$
- ξ_1, \dots, ξ_n 独立, $\eta = \xi_1 + \dots + \xi_n$, $\Phi_{\eta}(t) = \Phi_1(t) \dots \Phi_n(t)$.

证:
$$Ee^{jt\eta} = Ee^{jt(\xi_1 + \dots + \xi_n)} \stackrel{\dot{\underline{u}} = \underline{\dot{z}}}{=} Ee^{jt\xi_1} \dots Ee^{jt\xi_n}$$
.

- 若 ξ 的n 阶绝对矩存在,则 $\forall k < n$, $\Phi^k(0) = i^k E \xi^k$. i**E**: $\Phi^{(k)}(0) = \int (jx)^k e^{jtx} dF|_{t=0} = j^k \int x^k dF$
- 例: $N(\mu, \sigma^2)$ 正态分布 $\Phi(t) = \exp\left[jt\mu \frac{t^2\sigma^2}{2}\right]$.
- 非负定性:

$$\forall n \in \mathbb{N}, t_1, \dots, t_n \in \mathbb{R}, \lambda_1, \dots, \lambda_n \in \mathbb{C}$$
 (复数域), 则 $\sum_{k=1}^n \sum_{i=1}^n \lambda_k \Phi(t_k - t_i) \overline{\lambda_i} \ge 0.$

证:

 $\Phi(t)$ 非负定 ⇒ 其Fourier变换为非负实值函数。

Bochner-Khintchine 定理, Herglotz定理

多维随机变量的特征函数

随机向量 (ξ_1,\ldots,ξ_n) ,分布 $F(x_1,\ldots,x_n)$,密度 $f(x_1,\ldots,x_n)$, 特征函数

$$\Phi(t_1, \dots, t_n) \triangleq E e^{j(t_1 \xi_1 + \dots + t_n \xi_n)}$$

$$= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \exp[jt_1 x_1 + \dots + jt_n x_n] dF(x_1, \dots, x_n).$$

性质:与一维情形类似

• $\Phi(t_1,\ldots,t_n)$ 在 \mathbb{R}^n 中一致连续, $|\Phi(t_1,\ldots,t_n)| < 1, \quad \Phi(-t_1,\ldots,-t_n) = \overline{\Phi(t_1,\ldots,t_n)}.$

- $\eta_i = \sigma_i \xi_i + a_i$, 其中 $\sigma_i, a_i \in \mathbb{R}$ 为常数, η 为 n-维随机向量, $\mathbb{N} \Phi_n(t_1,\ldots,t_n) = \exp(j\sum_{i=1}^n a_i t_i) \Phi_{\varepsilon}(\sigma_1 t_1,\ldots,\sigma_n t_n).$
- $(\xi_1, \dots, \xi_n), \eta = a_1 \xi_1 + \dots + a_n \xi_n, \eta \to 1$ -维随机变量, 则 $\Phi_n(t) = \Phi_{\varepsilon}(a_1t_1, \dots, a_nt_n).$
- $E \xi_1^{k_1} \cdots \xi_n^{k_n} = j^{-\sum_{i=1}^n k_i} \cdot \frac{\partial^{k_1 + \cdots + k_n} \Phi(t_1, \dots, t_n)}{\partial t_n^{k_1} \cdots \partial t_n^{k_n}} |_{t_1 = \cdots = t_n = 0}.$
- (ξ_1, \ldots, ξ_n) , k < n, (ξ_1, \ldots, ξ_k) , 边际分布的特征函数 $\Phi_k(t_1,\ldots,t_k) = \Phi(t_1,\ldots,t_k,0,\ldots,0).$
- $(\xi_1,\ldots,\xi_n)\sim\Phi$, $\xi_i\sim\Phi_i(t_i)$. 则 ξ_i 两两独立 $\Leftrightarrow \Phi(t_1,\ldots,t_n) = \Phi_1(t_1)\cdots\Phi_n(t_n)$.
- 独立与相关: $E\xi\eta = E\xi \cdot E\eta \Leftrightarrow$ 不相关. $E e^{jt_1\xi+jt_2\eta} = E e^{jt_1\xi} \cdot E e^{jt_2\eta} \Leftrightarrow$ 独立 $F(x_1, x_2) = F_{\xi}(x_1) \cdot F_n(x_2) \Leftrightarrow f(x_1, x_2) = f_{\xi}(x_1) \cdot f_n(x_2).$
- 一般: 独立⇒ 不相关: **特殊:** 两个高斯随机变量 ξ, η , 则 ξ, η 独立 $\Leftrightarrow \xi, \eta$ 不相关;

离散分布的特征函数?

例: 求泊松分布的特征函数, 并计算期望和方差. 证:

国 为:
$$\Phi(t)$$
 = $Ee^{jt\xi} = \sum_{k} e^{jtk} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k} \frac{\left(\lambda e^{jt}\right)^k}{k!} = e^{\lambda \left(e^{jt}-1\right)}$
 $E\xi = \frac{1}{j}\Phi(0) = \lambda$
 $E\xi^2 = -\Phi''(0) = \lambda^2 + \lambda$
 $D\xi = E\xi^2 - E^2\xi = \lambda$

特征函数更具有通用性,且可以用来求解数字特征!

Empirical Average

- Let us look at 1D case.
- You have random variables X_1, X_2, \dots, X_N
- Assume independently identically distributed i.i.d.
- This implies

$$\mathbb{E}\left[X_{1}\right] = \mathbb{E}\left[X_{2}\right] = \ldots = \mathbb{E}\left[X_{N}\right] = \mu$$

You compute the empirical average

$$\nu = \frac{1}{N} \sum_{n=1}^{N} X_n$$

• How close is ν to μ ?

As N grows ...

As N grows ...

Empirical Average:
$$\nu = \frac{1}{N} \sum_{n=1}^{N} X_n$$

- \bullet ν is a random variable
- ullet u has CDF and PDF
- \bullet ν has mean:

$$\mathbb{E}[\nu] = \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}X_n\right] = \frac{1}{N}\sum_{n=1}^{N}\mathbb{E}\left[X_n\right]$$
$$= \frac{1}{N}N\mu = \mu$$

- Note that " $\mathbb{E}[\nu] = \mu$ " is not the same as " $\nu = \mu$ ".
- What is the probability ν deviates from μ ?

$$\mathbb{P}[|\nu - \mu| > \epsilon] = ?$$

- The Bad event: $\mathcal{B} = \{|\nu \mu| > \epsilon\}$: ν deviates from μ by at least ϵ
- $\mathbb{P}[\mathcal{B}]$ = probability that this bad event happens.
- ullet Want $\mathbb{P}[\mathcal{B}]$ small. So upper bound it by δ

$$\mathbb{P}[|\nu - \mu| > \epsilon] \le \delta$$

- With probability no greater than δ , bad event happens.
- Rearrange the equation:

$$\mathbb{P}[|\nu - \mu| \le \epsilon] > 1 - \delta$$

• With probability at least $1 - \delta$, the **Bad** event will not happen.

Markov Inequality

Theorem (Markov Inequality)

For any X>0 and $\epsilon>0$

$$\mathbb{P}[X \ge \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon}$$

Proof.

$$\begin{split} \epsilon \mathbb{P}[X \geq \epsilon] &= \epsilon \int_{\epsilon}^{\infty} p(x) dx \\ &= \int_{\epsilon}^{\infty} \epsilon p(x) dx \\ &\leq \int_{\epsilon}^{\infty} x p(x) dx \\ &\leq \int_{0}^{\infty} x p(x) dx = \mathbb{E}[X] \end{split}$$

Chebyshev Inequality

Theorem (Chebyshev Inequality)

Let X_1, \ldots, X_N be i.i.d. with $\mathbb{E}[X_n] = \mu$ and $\operatorname{Var}[X_n] = \sigma^2$. Define

$$\nu = \frac{1}{N} \sum_{n=1}^{N} X_n$$

Then,

$$\mathbb{P}[|\nu - \mu| > \epsilon] \le \frac{\sigma^2}{N\epsilon^2}$$

Proof.

$$\mathbb{P}\left[|\nu-\mu|^2 > \epsilon^2\right] \underbrace{\leq \frac{\mathbb{E}\left[|\nu-\mu|^2\right]}{\epsilon^2}}_{\mathsf{Markov}} \underbrace{= \frac{\mathrm{Var}[\nu]}{\epsilon^2}}_{\mathbb{E}\left[(\nu-\mu)^2\right] = \mathrm{var}[\nu]} \underbrace{= \frac{\sigma^2}{N\epsilon^2}}_{\mathsf{var}[\nu] = \frac{\sigma^2}{N\epsilon^2}}$$

How Good is Chebyshev Inequality?

Hoeffding Inequality

Let us revisit the Bad event:

$$\begin{split} \mathbb{P}[|\nu-\mu| \geq \epsilon] &= \mathbb{P}[\nu-\mu \geq \epsilon \quad \text{or} \quad \nu-\mu \leq -\epsilon] \\ &\leq \underbrace{\mathbb{P}[\nu-\mu \geq \epsilon]}_{\leq A} + \underbrace{\mathbb{P}[\nu-\mu \leq -\epsilon]}_{\leq A}, \quad \text{Union bound} \\ &\leq 2A, \quad \text{(What is A ? To be discussed.)} \end{split}$$

Theorem (Hoeffding Inequality)

Let X_1, \ldots, X_N be random variables with $0 \le X_n \le 1$, then

$$\mathbb{P}[|\nu - \mu| > \epsilon] \le 2 \underbrace{e^{-2\epsilon^2 N}}_{=A}$$

Chebyshev Inequality v.s. Hoeffding Inequality

Outline of Proof

Let us check one side:

$$\begin{split} \mathbb{P}[\nu - \mu \geq \epsilon] &= \mathbb{P}\left[\frac{1}{N}\sum_{n=1}^{N}X_{n} - \mu \geq \epsilon\right] = \mathbb{P}\left[\sum_{n=1}^{N}(X_{n} - \mu) \geq \epsilon N\right] \\ &= \mathbb{P}\left[e^{s\sum_{n=1}^{N}(X_{n} - \mu)} \geq e^{s\epsilon N}\right], \quad \forall s > 0 \\ &\leq \frac{\mathbb{E}\left[e^{s\sum_{n=1}^{N}(X_{n} - \mu)}\right]}{e^{s\epsilon N}}, \quad \text{Markov Inequality} \\ &= \left(\frac{\mathbb{E}\left[e^{s(X_{n} - \mu)}\right]}{e^{s\epsilon}}\right)^{N}, \quad \text{Independence} \end{split}$$

So now we have

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le \left(\frac{\mathbb{E}\left[e^{s(X_n - \mu)}\right]}{e^{s\epsilon}}\right)^N$$

Outline of Proof

Lemma (Hoeffding Lemma)

If $a \leq X_n \leq b$, then

$$\mathbb{E}\left[e^{s(X_n-\mu)}\right] \le e^{\frac{s^2(b-a)^2}{8}}$$

(Proof Omitted, see [3. Appendix B])

This leads to

$$\mathbb{P}[\nu - \mu \ge \epsilon] = \left(\frac{\mathbb{E}\left[e^{s(X_n - \mu)}\right]}{e^{s\epsilon}}\right)^N \le \left(\frac{e^{\frac{s^2}{8}}}{e^{s\epsilon}}\right)^N$$
$$= e^{\frac{s^2N}{8} - s\epsilon N}, \quad \forall s > 0.$$

Outline of Proof

Finally, we arrive at:

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le e^{\frac{s^2 N}{8} - s\epsilon N}$$

Since holds for all s>0, in particular it holds for the minimizer:

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le e^{\frac{s_{\min}^2 N}{8} - s_{\min} \epsilon N} = \min_{s > 0} \left\{ e^{\frac{\mathbf{s}^2 \mathbf{N}}{8} - \mathbf{s} \epsilon \mathbf{N}} \right\}$$

Minimizing the exponent gives:

$$\frac{d}{ds}\left\{\frac{\mathbf{s^2N}}{8} - \mathbf{s}\epsilon\mathbf{N}\right\} = \frac{sN}{4} - \epsilon N = 0$$
. So $s = 4\epsilon$, we have

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le e^{\frac{(4\epsilon)^2 N}{8} - (4\epsilon^2 N)} = e^{-2\epsilon^2 N}$$

Q(课后作业): What about another side $\mathbb{P}[\nu - \mu \leq -\epsilon]$?

Chebyshev:
$$\mathbb{P}[|\nu - \mu| \ge \epsilon] \le \frac{\sigma^2}{N\epsilon^2}$$
.

Hoeffding:
$$\mathbb{P}[|\nu - \mu| \ge \epsilon] \le 2e^{-2\epsilon^2 N}$$

Both are in the form of

$$\mathbb{P}[|\nu - \mu| \ge \epsilon] \le \delta$$

Equivalent to: For probability at least $1-\delta$, we have

$$\mu - \epsilon \le \nu \le \mu + \epsilon$$

Error bar / Confidence interval of ν

$$\delta = \frac{\sigma^2}{N\epsilon^2} \Rightarrow \epsilon = \frac{\sigma}{\sqrt{\delta N}}, \quad \delta = 2e^{-2\epsilon^2 N} \Rightarrow \epsilon = \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}$$

Chebyshev: For probability at least $1 - \delta$, we have

$$\mu - \frac{\sigma}{\sqrt{\delta N}} \le \nu \le \mu + \frac{\sigma}{\sqrt{\delta N}}$$

Hoeffding: For probability at least $1 - \delta$, we have

$$\mu - \sqrt{\frac{1}{2N}\log\frac{2}{\delta}} \le \nu \le \mu + \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}$$

Example:

- Alex: I have data X_1, \ldots, X_N . I want to estimate μ . How many data points N do I need?
- Bob: How much δ can you tolerate?
- ullet Alex: Alright. I only have limited number of data points. How good my estimate is? (ϵ)
- Bob: How many data points N do you have?

Numerical Result

Chebyshev: For probability at least $1 - \delta$, we have

$$\mu - \frac{\sigma}{\sqrt{\delta N}} \le \nu \le \mu + \frac{\sigma}{\sqrt{\delta N}}$$

Hoeffding: For probability at least $1 - \delta$, we have

$$\mu - \sqrt{\frac{1}{2N}\log\frac{2}{\delta}} \leq \nu \leq \mu + \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}$$

Let $\delta = 0.01, N = 10000, \sigma = 1.$

$$\epsilon = \frac{\sigma}{\sqrt{\delta N}} = 0.1, \quad \epsilon = \sqrt{\frac{1}{2N} \log \frac{2}{\delta}} = 0.016$$

Let $\delta = 0.01, \epsilon = 0.01, \sigma = 1$

$$N \ge \frac{\sigma^2}{\epsilon^2 \delta} = 1,000,000.$$
 $N \ge \frac{\log \frac{2}{\delta}}{2\epsilon^2} \approx 26,500$

应用: 机器学习的泛化

In-Sample Error

- ullet Let $oldsymbol{x}_n$ be a training sample
- *h* : Your hypothesis
- *f* : The unknown target function: Oracle
- If $h(x_n) = f(x_n)$, then say training sample x_n is correctly classified.

Definition (In-sample Error / Training Error)

Consider a training set $\mathcal{D}=\{x_1,\ldots,x_N\}$, and a target function f. The in-sample error (or the training error) of a hypothesis function $h\in\mathcal{H}$ is the empirical average of $\{h\left(x_n\right)\neq f\left(x_n\right)\}$:

$$E_{\text{in}}(h) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

where $\mathbb{I}(\cdot) = 1$ if the statement inside is true, and = 0 otherwise.

Out-Sample Error

- ullet Let $oldsymbol{x}$ be a testing sample drawn from $p(oldsymbol{x})$
- If h(x) = f(x), then say testing sample x is correctly classified.
- Since ${m x} \sim p({m x})$, you need to compute the probability of error, called the out-sample error

Definition (Out-sample Error / Testing Error)

Consider an input space $\mathcal X$ containing elements x drawn from a distribution $p_{\boldsymbol X}(x)$, and a target function f. The out-sample error (or the testing error) of a hypothesis function $h \in \mathcal H$ is

$$E_{\mathsf{out}}(h) \stackrel{\mathsf{def}}{=} \mathbb{P}[h(\boldsymbol{x}) \neq f(\boldsymbol{x})]$$

where $\mathbb{P}[\cdot]$ measures the probability of the statement based on the distribution $p_{X}(x)$.

In-sample VS Out-sample

In-Sample Error:

$$E_{\mathsf{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))$$

Out-Sample Error:

$$E_{\text{out}}(h) = \mathbb{P}[h(\boldsymbol{x}) \neq f(\boldsymbol{x})]$$

$$= \underbrace{\mathbb{I}(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))}_{=1} \mathbb{P}\{h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n)\}$$

$$+ \underbrace{\mathbb{I}(h(\boldsymbol{x}_n) = f(\boldsymbol{x}_n))}_{=0} (1 - \mathbb{P}\{h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n)\})$$

$$= \mathbb{E}\left\{\underbrace{\mathbb{I}(h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n))}_{=0}\right\}$$

A Mathematical Tool

Beside in-sample and out-sample error, we also need a mathematical tool.

Theorem (Hoeffding Inequality)

Let X_1, \ldots, X_N be random variables with $0 \le X_n \le 1$, then

$$\mathbb{P}[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

- We will use Hoeffding inequality to analyze the generalization error
- Hoeffding requires $0 \le X_n \le 1$
- $\nu = \frac{1}{N} \sum_{n=1}^{N} X_n$ is the empirical average
- ullet Probability of how close u compared to μ
- \bullet $\epsilon =$ tolerance level
- \bullet N = number of samples

Applying Hoeffinding Inequality to Our Problem

- $X_n = \mathbb{I}(h(x_n) \neq f(x_n))$: one sample training error = either 0 or 1
- $\nu=E_{\mathrm{in}}=rac{1}{N}\sum_{n=1}^{N}X_{n}$: training error
- $\mu = E_{\text{out}}$: testing error

Therefore, the inequality can be stated as

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(h)| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

- N = number of training samples
- \bullet ϵ = tolerance level
- Hoeffding is applicable because $\mathbb{I}(h(x) \neq f(x))$ is either 1 or 0.
- If you want to be more explicit, then

$$\mathbb{P}_{\boldsymbol{x}_n \sim \mathcal{D}} \left[\left| \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(h\left(\boldsymbol{x}_n\right) \neq f\left(\boldsymbol{x}_n\right)) - E_{\text{out}}(h) \right| > \epsilon \right] \leq 2e^{-2\epsilon^2 N}$$

ullet The probability is evaluated with respect to $oldsymbol{x}_n$ drawn from the dataset $\mathcal D$

Interpreting the Bound

Let us look at the bound again:

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(h)| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

Message 1:

- You can bound $E_{out}(h)$ using $E_{in}(h)$.
- $E_{\text{in}}(h)$: You know. $E_{\text{out}}(h)$: You don't know, but you want to know.
- They are close if N is large.

Message 2:

- The right hand side is independent of h and p(x)
- So it is a universal upper bound
- Works for any \mathcal{A} , any \mathcal{H} , any f, and any p(x)

Probably Approximately Correct (PAC)

Probably: Quantify error using probability:

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(h)| \le \epsilon\right] \ge 1 - \delta$$

 Approximately Correct: In-sample error is an approximation of the out-sample error:

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(h)| \le \epsilon\right] \ge 1 - \delta$$

• If you can find an algorithm $\mathcal A$ such that for any ϵ and δ , there exists an N which can make the above inequality holds, then we say that the target function is PAC-learnable.

One Hypothesis versus the Final Hypothesis

In this equation

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(h)| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

the hypothesis h is fixed.

- This h is chosen before we look at the dataset.
- If h is chosen after we look at the dataset, then Hoeffding is invalid.
- We have to choose a h from \mathcal{H} during the learning process.
- The h we choose depends on \mathcal{D} , i.e., This h is the final hypothesis g.
- When you need to choose g from h_1, \ldots, h_M , you need to repeat Hoeffding M times.

The Factor "M"

You can show that

- To have g, you need to consider h_1, \ldots, h_M
- ullet You don't know which h_m to pick; So it is a "OR"
- So there is a sequence of "OR"

The Factor "M"

$$\mathbb{P}\left\{|E_{\mathrm{in}}(g) - E_{\mathrm{out}}(g)| > \epsilon\right\} \overset{(a)}{\leq} \qquad \mathbb{P}\left\{|E_{\mathrm{in}}\left(h_{1}\right) - E_{\mathrm{out}}\left(h_{1}\right)| > \epsilon\right\}$$
or
$$|E_{\mathrm{in}}\left(h_{2}\right) - E_{\mathrm{out}}\left(h_{2}\right)| > \epsilon$$

$$\cdots$$
or
$$|E_{\mathrm{in}}\left(h_{M}\right) - E_{\mathrm{out}}\left(h_{M}\right)| > \epsilon\right\}$$

$$\overset{(b)}{\leq} \qquad \sum_{m=1}^{M} \mathbb{P}\left\{|E_{\mathrm{in}}\left(h_{m}\right) - E_{\mathrm{out}}\left(h_{m}\right)| > \epsilon\right\}$$

- We need two identities
 - (a) If-statement. $\mathbb{P}[A] \leq \mathbb{P}[B]$ if $A \subseteq B$
 - (b) Union Bound. $\mathbb{P}[A \text{ or } B] \leq \mathbb{P}[A] + \mathbb{P}[B]$

The Factor "M"

Change this equation

$$\mathbb{P}\left\{|E_{\mathsf{in}}\left(h\right) - E_{\mathsf{out}}\left(h\right)| > \epsilon\right\} \le 2e^{-2\epsilon^2 N}$$

to this equation

$$\mathbb{P}\left\{|E_{\rm in}(g) - E_{\rm out}(g)| > \epsilon\right\} \le 2Me^{-2\epsilon^2 N}$$

- So what? M is a constant.
- Bad news: M can be large, or even ∞ , e.g., A linear regression has $M=\infty$.
- ullet Good news: It is possible to bound M in machine learning.

Learning Goal

The ultimate goal of learning is to make

$$E_{\mathsf{out}}\left(g\right)\approx0$$

To achieve this we need

$$E_{\mathrm{out}}\left(g\right) \qquad \underset{\mathrm{Hoeffding\ Inequality}}{\approxeq} \qquad E_{\mathrm{in}}\left(g\right) \qquad \underset{\mathrm{Training\ Error}}{\approxeq} \qquad 0$$

- Hoeffding inequality holds when N is large;
- Training error is small when you train well;

Rewriting the Hoeffding Inequality

Recall the Hoeffding Inequality

$$\mathbb{P}\left\{|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon\right\} \le 2Me^{-2\epsilon^2 N}$$

This is the same as

$$\mathbb{P}\left\{|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| \le \epsilon\right\} > 1 - \delta$$

ullet Equivalently, we can say: with probability $1-\delta$,

$$E_{\mathsf{in}}(g) - \epsilon \le E_{\mathsf{out}}(g) \le E_{\mathsf{in}}(g) + \epsilon$$

Generalization Bound

Move around the terms, then we have

$$2Me^{-2\epsilon^2N} = \delta \Rightarrow \epsilon = \sqrt{\frac{1}{2N}\log\frac{2M}{\delta}}$$

• Plug this result into the previous bound:

$$E_{\mathsf{in}}(g) - \epsilon \le E_{\mathsf{out}}(g) \le E_{\mathsf{in}}(g) + \epsilon$$

This gives us

$$E_{\mathsf{in}}(g) - \sqrt{\frac{1}{2\mathbf{N}}}\log\frac{2\mathbf{M}}{\delta} \le E_{\mathsf{out}}(g) \le E_{\mathsf{in}}(g) + \sqrt{\frac{1}{2\mathbf{N}}}\log\frac{2\mathbf{M}}{\delta}$$

- This is called the generalization bound.
- Many unsolved problems in Deep Learning Generalization.
 (Interesting Project Topic!)