作业10

(数值算法与案例分析)

李维杰

2024年11月24日

题目1. 设A是一个Hermite阵.详细描述如何在应用隐式QR算法之前,把A酉相似变换为一个实三对角矩阵.

解答. 对于第k次循环,取Householder矩阵 H_k ,使得 $A \leftarrow H_kA$ 后,有

$$\begin{cases} A(k+1,k) \leftarrow ||A(k+1:n,k)||_2 \\ A(k+2:n,k) \leftarrow 0 \end{cases},$$

则对称地,在 $A \leftarrow AH_k$ 后,A阵上三角的对应部分同时会被消成0. 上述过程循环n-2次,每次均做迭代 $A \leftarrow H_kAH_k^*$,即得

$$T = (H_{n-2}H_{n-3}...H_1)A(H_1...H_{n-3}H_{n-2})$$

是一个三对角阵.

题目2. 设A, B均为 $n \times n$ 的实对称矩阵,其中B还是一个正定阵.证明:AB是可对角化的,并设计一种算法来计算AB的所有特征对.

解答. 对称正定阵B有Cholesky分解 $B = LL^T$,于是有

$$L^T A B (L^T)^{-1} = L^T A L.$$

这表明AB相似于一个实对称阵,故AB是可对角化的.

于是计算AB的所有特征对相当于计算实对称阵 L^TAL 的所有特征对,采用对称QR算法即可.

题目3. 实现计算矩阵指数的scaling-and-squaring算法(结合截断Taylor级数).通过一些已知谱分解的可对角化矩阵来测试算法的准确性.

解答. (图1代码见Problem3.m)

图 1: scaling-and-squaring算法的准确性 $\left\|(e^{\frac{A}{2^k}})^{2^k} - \exp(A)\right\|_{\mathsf{F}}$

题目4. 设A和E是满足AE = EA的Hermite矩阵.尝试给出

$$\|\exp(A+E) - \exp(A)\|_{2}$$

的上界.同时确保这个上界在 $\|E\|_2 \to 0$ 时趋于0.

解答. 由于A, E均为Hermite矩阵,故A, E均可酉对角化.又AE = EA,故存在酉阵U,使得

$$D_A = UAU^* D_E = UEU^*.$$

设 $D_A = \text{Diag}(a_1, a_2, ..., a_n), D_E = \text{Diag}(e_1, e_2, ..., e_n),$ 并规定a, e均按从大到小的顺序顺次排列,则

$$\|\exp(A + E) - \exp(A)\|_{2} = \|\exp(D_{A} + D_{E}) - \exp(D_{A})\|_{2}$$

$$= \|\exp(D_{A})(\exp(D_{E}) - I)\|_{2}$$

$$\leq \|\exp(D_{A})\|_{2} \|\exp(D_{E}) - I\|_{2}$$

$$= \exp(a_{1})(\exp(e_{1}) - 1)$$

$$= \exp(\|A\|_{2})(\exp(\|E\|_{2}) - 1).$$

题目5. 复现附件论文中包含的实验.

解答. (图2代码见Problem5_1.m)

图 2: The progression from P_0 to P_{18} to P_{200} for an n=20 example.

(图3代码见Problem5_2.m,其中使用Problem5_1.m的结果初始化c和s)

图 3: The vertices of P_{even} (red) and P_{odd} (blue) (n=12)