

Full resolution photo on my Instagram @feenafoto

# ECOR1043: Circuits

# Basics of Frequency Response & Filters

Transfer functions, logarithm, decibels, Bode plots, filters

## Time and Frequency Domains



# Time and Frequency Domains







#### The Logarithm

• In mathematics, the logarithm is the inverse function to exponentiation. Exponent 2

Exp:  $10^2 = ? \Rightarrow 100$ 



The log of a given number x is the exponent to which another number, the base b, must be raised, to produce x. It is denoted by:  $log_b(x)$ 



• Example 1: What is the logarithm of 1000 in base 10?

 $10^x = 1000 \qquad \Rightarrow \quad x = 3$ 

Mathematically speaking

 $\log_{10}(1000) = 3$ 

In other words, logarithms answers the question: How many of one number ("base") do we multiply to get another number?

6

The Logarithm

- Example 2:
  - a) What is the logarithm of 16, with a base of 2?

 $log_2(16) = 4$ 

a) What is the logarithm of 0.1, with a base of 10?

 $log_{10}(0.1) = -1$ 

7

7

#### Frequency Response and Transfer Functions

- Frequency response the variation in a circuit's behavior with change in signal frequency
- Transfer function H(ω) A frequency dependents ratio of output (response) to the input (source) of a circuit



$$\mathbf{H}(\omega) = \frac{\mathbf{Y}(\omega)}{\mathbf{X}(\omega)}$$

• Typically given as a ratio of voltages for our applications, comparing output voltage to input voltage



 $\mathbf{H} = \frac{\mathbf{V_o}}{\mathbf{V_s}}$ 

8

8

#### Transfer Functions - Concept

• Example 3: Find the transfer function  $(H=V_0/V_s)$  of the circuit below





#### **Transfer Functions**

• Example 4: Find the transfer function  $(H=V_0/V_s)$  of the circuit below



10

10

#### **Transfer Functions**

• Example 4(cont.): Find the transfer function ( $H=V_0/V_s$ ) of the circuit





#### Linear versus Decibel

- So far, we've calculated voltage in Volts and compared them that way, this is useful for comparing linear relationships, but what if we want to compare something non-linear or exponential?
- While a linear relationship can be plotted relatively easily, the exponential quickly becomes too large to reasonably plot for any large value of x



12

#### Linear versus Decibel

- To account for non-linear relationship, we introduce the units of dB
- The dB is a logarithmic way of describing a ratio. The ratio may be sound pressure, intensity, power, voltage, or other quantities
- If we're given a ratio of voltages e.g., output voltage/input voltage:

$$H = \frac{V_0}{V_s}$$

• We can calculate the equivalent in dB using the equation below:

$$\left(\frac{V_0}{V_s}\right)_{dB} = 20\log_{10}\left(\frac{V_0}{V_s}\right)$$

13

#### Calculating Decibels

- Example 5:
  - a) What is the value of  $\frac{V_o}{V_s} = 1$  in dB?

$$\left(\frac{V_0}{V_s}\right)_{dB} = 20log_{10}\left(\frac{V_0}{V_s}\right)$$

 $20log_{10}(1)=0\;dB$ 

b) What is the value of  $\frac{V_o}{V_s} = 1000$  in dB?

 $20log_{10}(1000) = 60 \ dB$ 

14

14

#### Bode Plots - Plotting In Decibels

- Once we have our values in dBs, we can plot our transfer function, this is called a Bode plot.
- Bode plot uses logarithmic axis for frequency and decibels for magnitude. This permits wider range of frequencies and magnitudes
- Let's generate Bode plot of the transfer function:  $H = \frac{V_0}{V_s} = \omega^2$

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB] = 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 | 1               | 0                                          |
| 10                | 100             | 40                                         |
| 100               | 10000           | 80                                         |
| 1000              | 1000000         | 120                                        |

16

## Plotting In Decibels

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB] = 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 | 1               | 0                                          |
| 10                | 100             | 40                                         |
| 100               | 10000           | 80                                         |
| 1000              | 1000000         | 120                                        |



16

# Plotting In Decibels

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB ]= 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 | 1               | 0                                          |
| 10                | 100             | 40                                         |
| 100               | 10000           | 80                                         |
| 1000              | 1000000         | 120                                        |



Bode Plot - Plotting In Decibels

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB] = 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 | 1               | 0                                          |
| 10                | 100             | 40                                         |
| 100               | 10000           | 80                                         |
| 1000              | 1000000         | 120                                        |



18

## **Bode Plot Example**

• Example 6: Create a bode plot for the following transfer function.

Use 
$$\boldsymbol{\omega} = 1, 10, 30, 100, 1000$$

$$H = \frac{V_0}{V_s} = \frac{1}{\omega^3}$$

#### 1) First we determine the Amplitude

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB] = 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 |                 |                                            |
| 10                |                 |                                            |
| 30                |                 |                                            |
| 100               |                 |                                            |
| 1000              |                 |                                            |

## **Bode Plot Example**

• Example 6: Create a bode plot for the following transfer function. Use  $\omega = 1, 10, 30, 100, 1000$ 

$$H = \frac{V_0}{V_S} = \frac{1}{\omega^3}$$

2) Next we convert it to dB

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB ]= 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 | 1               |                                            |
| 10                | 0.001           |                                            |
| 30                | 0.000037        |                                            |
| 100               | 0.000001        |                                            |
| 1000              | 0.000000001     |                                            |

20

20

#### **Bode Plot Example**

• Example 6: Create a bode plot for the following transfer function. Use  $\omega = 1, 10, 30, 100, 1000$ 

$$H = \frac{V_0}{V_S} = \frac{1}{\omega^3}$$

3) Now we have our final values, we can plot them

| $\left(\frac{V_0}{V_s}\right)_{dB} = 20 \log_{10}\left(\frac{V_0}{V_s}\right)_{dB}$ | $\left(\frac{V_0}{V_s}\right)$ |
|-------------------------------------------------------------------------------------|--------------------------------|
|-------------------------------------------------------------------------------------|--------------------------------|

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB] = 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 | 1               | 0                                          |
| 10                | 0.001           | -60                                        |
| 30                | 0.000037        | -88.63                                     |
| 100               | 0.000001        | -120                                       |
| 1000              | 0.000000001     | -180                                       |

## **Bode Plot Example**

| Frequency (rad/s) | Amplitude [V/V] | Amplitude [dB] = 20log <sub>10</sub> (V/V) |
|-------------------|-----------------|--------------------------------------------|
| 1                 | 1               | 0                                          |
| 10                | 0.001           | -60                                        |
| 30                | 0.000037        | -88.63                                     |
| 100               | 0.000001        | -120                                       |
| 1000              | 0.000000001     | -180                                       |



22

## **Bode Plot Example**

• Example 6: Create a bode plot for the following transfer function. Use  $\omega = 1, 10, 30, 100, 1000$ 

$$H = \frac{V_0}{V_S} = \frac{1}{\omega^3}$$



23

#### **Filters**

#### • Filter

 A filter is a circuit that is designed to pass signals with desired frequencies and reject or attenuate others.



https://www.allaboutcircuits.com/technical-articles/an-introduction-to-filters/

24

#### 24

#### **Filters**

#### • Categories of filters

- A passive filter is one that contains only R, L, and C components.
  - It is not necessary that all three be present. L is often omitted (on purpose) from passive filter design because of the size and cost of inductors etc.
- An active filter is one that, along with R, L, and C components, also contains an energy source, such as that derived from an operational amplifiers or transistors

## Filters

#### • Types of filters

- Ideal (red) vs. realistic (blue) responses



26

26

## Types of filters

#### • Low-pass Filters

- Passes frequencies from DC (0 Hz) to  $f_{\it c}$  and significantly attenuates all others



• High-pass of filters

- Passes frequencies from  $f_c$  to  $\infty$  (ideally) and significantly attenuates all others



#### Bode plots-Filters

#### · Useful terms

- Transfer function: ratio of output (response) to the input (source) of a circuit
- Passband: the range of frequencies that are allowed to pass through the filter with minimum attenuation (usually defined as less than-3dB (70.7%) of attenuation)
- **Stopband**: frequencies not in a circuit's passband are in its stopband
- cutoff frequency  $f_c$ : (also called the critical frequency) separates passband and stopband
- **Bandwidth (BW):** width of the passband
- Roll-off: rate at which attenuation increases/decreases after/before the cut-off frequency



28

28

# Thank You