MATH 137 Fall 2020: Practice Assignment 6

Q01. For $f(x) = \frac{x+1}{x-1}$, find f'(x) using the limit definition.

Solution. \Box

Q02. Let $f(x) = \frac{ax+b}{ax-b}$ where $a \neq 0, b \neq 0$.

(a) Find f'(x) using any method.

 \Box

(b) Show that for $x \neq \frac{b}{a}$, abf'(x) < 0.

Proof. \Box

Q03. In each case, find f'(x) using any method.

(a) $f(x) = 5^x \sin x + (x^3 + x^2) \cos x$.

 \Box

(b) $f(x) = \frac{x^2 + x - 2}{x^3 + 6}$.

 \Box

(c) $f(x) = \sqrt{2\tan^2 x + 3}$.

Solution. \Box

(d) $f(x) = 2^{\sin(\sec x)}$.

 \Box

Q04. In each case, determine the equation of the tangent to y = f(x) at the point where x = a.

(a) $f(x) = x^2$, a = 3.

 \Box

(b) $f(x) = \cos x, \ a = -\frac{3\pi}{4}$.

 \Box

(c) $f(x) = e^x$, $a = \ln \pi$.

Solution. \Box

(d) $f(x) = 4^x$, a = -3.

 \Box

Q05. Compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in each case.

(a) $y = \cos x^2$.

 \Box

(b) $y = \cos^2 x$.

 \Box

 $\mathbf{Q06}.$

(a) Use the Chain Rule to prove that the derivative of an even function is odd.

Proof.

(b) Using ONLY the Chain Rule and the Product Rule (and not the Reciprocal/Quotient rules), give an alternative proof of the Quotient Rule. [Hint: $\frac{f(x)}{g(x)} = f(x)(g(x))^{-1}$].

Proof.

Q07. If y = f(u) and u = g(x) where f and g are twice differentiable functions, prove that

 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 + \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}^2 u}{\mathrm{d}x^2}.$

Proof.