Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Łukasz Wala

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 29 maja 2022

1 Problem 1

1.1 Opis problemu

Dany jest układ równań liniowych $\mathbf{A}\mathbf{x}=\mathbf{b}$. Elementy macierzy \mathbf{A} o wymiarze $n \times n$ są określone wzorem:

$$\begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{1}{|i-j|+m} \ dla \ i \neq j \end{cases} \quad i, j = 1, ..., n$$

Gdzie k = 8, m = 3.

Za wektor ${\bf x}$ przyjęta zostanie dowolna n-elementowa permutacja ze zbioru $\{1,-1\}$ i obliczony zostanie wektor ${\bf b}$. Układ zostanie rozwiązany metodą Jakobiego. Obliczenia zostaną wykonane dla różnych n, dla różnych wektorów początkowych oraz różnych wartości ρ w kryteriach stopu. Wyznaczone zostaną: liczba iteracji, różnica w czasie obliczeń dla obu kryteriów stopu. Sprawdzona zostanie dokładność obliczeń.

Użyte kryteria stopu (norma euklidesowa):

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

2.
$$||Ax^{(i)} - b|| < \rho$$

1.2 Opracowanie problemu

Program użyty do rozwiązania układu został napisany w języku Python z użyciem pakietu numpy. Poniżej tabele zależności liczby n oraz precyzji (błąd wyniku, liczba iteracji oraz czas obliczeń) dla wektora początkowego zawierającego same zera:

	0.01	0.001	0.0001	0.00001	0.000001
3	1.21461e-04	6.45239e-06	3.63832e-07	3.63832e-07	2.10000e-08
5	4.45373e-04	4.56365e-05	4.74766e-06	4.94736e-07	5.15641e-08
7	9.07612e-04	1.82082e-05	2.58771e-06	3.67770e-07	5.22680e-08
9	2.49465e-04	4.35374e-05	7.59930e-06	1.32644e-06	4.04122e-08
11	4.02111e-04	8.15997e-05	1.65600e-05	6.82029e-07	1.38412e-07
13	5.79085e-04	1.32160e-04	6.88406e-06	1.57115e-06	8.18398e-08
15	7.74528e-04	1.94437e-04	1.22542e-05	7.72308e-07	1.93885e-07
17	9.83759e-04	7.26969e-05	1.97621e-05	1.46039e-06	1.07920e-07
19	1.20309e-03	1.01848e-04	8.62215e-06	7.29923e-07	2.12377e-07
21	1.42965e-03	1.36194e-04	1.29746e-05	1.23603e-06	1.17750e-07
23	1.66117e-03	1.75591e-04	1.85607e-05	1.96194e-06	2.07386e-07
25	1.89590e-03	2.19851e-04	8.68173e-06	1.00676e-06	1.16746e-07
27	2.13243e-03	9.54138e-05	1.20256e-05	1.51565e-06	1.91026e-07
29	2.36968e-03	1.18746e-04	1.61402e-05	2.19381e-06	1.09935e-07
31	2.60679e-03	1.44859e-04	2.10947e-05	1.17224e-06	1.70705e-07
33	1.11982e-03	1.73729e-04	2.69524e-05	1.64697e-06	2.55512e-07
35	1.24831e-03	2.05322e-04	1.36963e-05	2.25276e-06	1.50274e-07
37	1.37978e-03	2.39591e-04	1.73365e-05	1.25445e-06	2.17828e-07
39	1.51382e-03	2.76484e-04	2.15806e-05	1.68445e-06	1.31478e-07
41	1.65008e-03	1.38248e-04	2.64706e-05	2.21779e-06	1.85813e-07
43	1.78822e-03	1.60116e-04	1.43367e-05	2.86941e-06	2.56925e-07
45	1.92798e-03	1.83768e-04	1.75161e-05	1.66958e-06	1.59139e-07
47	2.06909e-03	2.09203e-04	2.11524e-05	2.13870e-06	2.16243e-07
49	2.21134e-03	2.36418e-04	2.52761e-05	2.70233e-06	2.88913e-07
51	2.35451e-03	2.65404e-04	2.99170e-05	1.62904e-06	1.83629e-07
53	2.49843e-03	2.96150e-04	1.72441e-05	2.04403e-06	2.42289e-07
55	2.64295e-03	3.28641e-04	2.03972e-05	2.53634e-06	3.15388e-07
57	2.78791e-03	1.83892e-04	2.39349e-05	3.11529e-06	2.05489e-07
59	2.93319e-03	2.05063e-04	2.78805e-05	1.94918e-06	2.65013e-07
61	3.07867e-03	2.27554e-04	3.22574e-05	2.38428e-06	3.37989e-07
63	3.22426e-03	2.51372e-04	1.95981e-05	2.89158e-06	2.25441e-07
65	3.36985e-03	2.76524e-04	2.26915e-05	3.47906e-06	2.85492e-07
67	1.90474e-03	3.03011e-04	2.61190e-05	2.25141e-06	1.94068e-07
69	2.00711e-03	3.30835e-04	2.98998e-05	2.70225e-06	2.44220e-07
71	2.11061e-03	1.99648e-04	3.40532e-05	3.22119e-06	3.04702e-07
73	2.21516e-03	2.18956e-04	2.16426e-05	2.13925e-06	2.11454e-07
75	2.32069e-03	2.39331e-04	2.46822e-05	2.54547e-06	2.62514e-07
77	2.42713e-03	2.60786e-04	2.80205e-05	3.01071e-06	3.23490e-07
79	2.53443e-03	2.83329e-04	3.16742e-05	3.54095e-06	2.28896e-07
81	2.64250e-03	3.06970e-04	3.56599e-05	2.41844e-06	2.80944e-07
83	2.75131e-03	3.31718e-04	2.35673e-05	2.84146e-06	3.42590e-07
85	2.86080e-03	3.57579e-04	2.65755e-05	3.32178e-06	2.46877e-07
87	2.97092e-03	2.30665e-04	2.98580e-05	2.31823e-06	3.00079e-07
89	3.08161e-03	2.49634e-04	3.34294e-05	2.70807e-06	3.62649e-07
91	3.19284e-03	2.69534e-04	3.73050e-05	3.14926e-06	2.65858e-07
93	3.30457e-03	2.90377e-04	2.55162e-05	3.64670e-06	3.20445e-07
95	3.41675e-03	3.12175e-04	2.85228e-05	2.60606e-06	2.38110e-07
97	3.52934e-03	3.34940e-04	3.17869e-05	3.01669e-06	2.86294e-07
99	3.64231e-03	3.58681e-04	3.53223e-05	3.47848e-06	3.42554e-07

Tabela 1: Błędy obliczeń (wiersze - $n,\,\mathrm{kolumny}$ - precyzja, kryterium stopu 1)

Jak nietrudno było się domyślić, błąd rozwiązania maleje wraz ze malejącą wartością ρ niezależnie od rozmiaru macierzy. Rozmiar macierzy na pierwszy rzut oka nie ma dużego znaczenia, jednak może być to spowodowane faktem, że program działa aż do uzyskania pewnej dokładności określonej przez kryteria stopu, więc uzyskanie tej samej dokładności dla dużych macierzy wymaga więcej iteracji lub czasu, co zostanie zbadane później.

Poniżej tabela błędów dla kryterium 2, można w niej zauważyć, że generalnie wyniki są odrobinę bardziej dokładne, co oznacza że kryterium 2 jest bardziej rygorystyczne, lecz zapewne wymaga więszej liczby iteracji/czasu.

	0.01	0.001	0.0001	0.00001	0.000001
9	2.49465e-04	4.35374e-05	7.59930e-06	2.31526e-07	4.04122e-08
11	4.02111e-04	8.15997e-05	3.36071e-06	6.82029e-07	2.80897e-08
13	5.79085e-04	3.01628e-05	6.88406e-06	3.58584e-07	8.18398e-08
15	7.74528e-04	4.88126e-05	3.07636e-06	7.72308e-07	4.86740e-08
17	2.67423e-04	7.26969e-05	5.37218e-06	3.96996e-07	2.93373e-08
19	3.50045e-04	2.96337e-05	8.62215e-06	7.29923e-07	6.17928e-08
21	4.41258e-04	4.20365e-05	4.00461e-06	3.81500e-07	3.63436e-08
23	5.40079e-04	5.70885e-05	6.03449e-06	6.37871e-07	6.74256e-08
25	6.45610e-04	7.48666e-05	8.68173e-06	3.42834e-07	3.97559e-08
27	7.57038e-04	3.38734e-05	4.26925e-06	5.38078e-07	6.78171e-08
29	8.73636e-04	4.37789e-05	5.95052e-06	8.08806e-07	4.05302e-08
31	3.79604e-04	5.52789e-05	8.04986e-06	4.47334e-07	6.51419e-08
33	4.41073e-04	6.84282e-05	4.18141e-06	6.48707e-07	3.96402e-08
35	5.06266e-04	8.32705e-05	5.55468e-06	3.70533e-07	6.09451e-08
37	5.74964e-04	4.16037e-05	7.22425e-06	5.22738e-07	3.78247e-08
39	6.46953e- 04	5.04971e-05	3.94149e-06	7.19874e-07	5.61889e-08
41	7.22030e-04	6.04939e-05	5.06836e-06	4.24643e-07	8.13071e-08
43	8.00004e-04	7.16319e-05	6.41388e-06	5.74295e-07	5.14221e-08
45	4.02297e-04	8.39446e-05	8.00132e-06	7.62659e-07	7.26941e-08
47	4.49061e-04	4.54042e-05	4.59079e-06	4.64171e-07	4.69320e-08
49	4.98125e-04	5.32558e-05	5.69371e-06	6.08729e-07	6.50808e-08
51	5.49420e-04	6.19319e-05	6.98111e-06	7.86927e-07	4.28497e-08
53	6.02877e-04	7.14621e-05	4.16107e-06	4.93232e-07	5.84653e-08
55	6.58429 e-04	8.18741e-05	5.08155e-06	6.31878e-07	7.85724e-08
57	7.16009e-04	4.72290e-05	6.14718e-06	8.00098e-07	5.27756e-08
59	7.75551e-04	5.42204e-05	7.37185e-06	5.15382e-07	7.00718e-08
61	4.36417e-04	6.18653 e-05	4.57272e-06	6.48217e-07	4.79124e-08
63	4.75711e-04	7.01884e-05	5.47220e-06	8.07391e-07	6.29478e-08
65	5.16654e-04	7.92133e-05	6.50024e-06	5.33410e-07	4.37716e-08
67	5.59221e-04	4.82039e-05	7.66842e-06	6.61005e-07	5.69775e-08
69	6.03390e-04	5.45324e-05	4.92846e-06	4.45418e-07	7.34192e-08
71	6.49136e-04	6.14036e-05	5.80834e-06	5.49428e-07	5.19720e-08
73	6.96434e-04	6.88387e-05	6.80434e-06	6.72572e-07	6.64801e-08
75	7.45259e-04	7.68584e-05	7.92640e-06	4.63240e-07	4.77739e-08
77	4.55497e-04	4.89416e-05	5.25860e-06	5.65019e-07	6.07093e-08
79	4.89990e-04	5.47775e-05	6.12374e-06	6.84591e-07	7.65325e-08
81	5.25806e-04	6.10815e-05	7.09568e-06	4.81226e-07	5.59028e-08
83	5.62938e-04	6.78724 e-05	4.82208e-06	5.81389e-07	7.00970e-08
85	6.01380e-04	7.51688e-05	5.58661e-06	6.98291e-07	5.18976e-08
87	6.41126e-04	4.97784e-05	6.44345e-06	5.00283e-07	6.47580e-08
89	6.82168e-04	5.52615e-05	7.40028e-06	5.99487e-07	4.85636e-08

Tabela 2: Błędy obliczeń (wiersze - $n,\,\mathrm{kolumny}$ - precyzja, kryterium stopu 2)

Teraz zbadane zostaną liczby iteracji/czas działania dla poszczególnych precyzji oraz wartości n.

	0.01	0.001	0.0001	0.00001	0.000001
3	3	4	5	5	6
6	3	4	4	5	6
9	4	5	6	7	9
12	3	4	5	5	6
15	4	5	7	9	10
18	3	4	5	6	6
21	4	6	8	10	12
24	3	4	5	6	7
27	4	7	9	11	13
30	3	4	5	7	8
33	5	7	9	12	14
36	3	4	6	7	8
39	5	7	10	13	16
42	3	5	6	7	9
45	5	8	11	14	17
48	4	5	6	8	9
51	5	8	11	15	18
54	4	5	7	8	10
57	5	9	12	15	19
60	4	5	7	9	10
63	5	9	13	16	20
66	4	5	7	9	11
69	6	9	13	17	21
72	4	5	7	9	11
75	6	10	14	18	22
78	4	6	7	9	11
81	6	10	14	19	23
84	4	6	8	10	12
87	6	11	15	20	24
90	4	6	8	10	12
93	6	11	16	20	25
96	4	6	8	10	12
99	6	11	16	21	26

Tabela 3: Iteracje (wiersze - n, kolumny - precyzja, kryterium stopu 1)

Lepsza precyzja wymaga wicej iteracji, co jest zgodne z intuicją. Oprócz tego potwierdzają się wcześniejsze przypuszczenia o tym, że przyczyną dobrej precyzji dla większych macierzy jest większa liczba iteracji. Można też zauważyć, że przyrost liczby iteracji w zależności od n jest większy dla lepszych precyzji.

	0.01	0.001	0.0001	0.00001	0.000001
3	3	4	4	5	6
6	3	3	4	5	5
9	4	5	6	8	9
12	3	4	4	5	6
15	4	6	8	9	11
18	3	4	5	5	6
21	5	7	9	11	13
24	3	4	5	6	7
27	5	8	10	12	14
30	3	4	6	7	8
33	6	8	11	13	16
36	3	5	6	7	9
39	6	9	12	14	17
42	3	5	6	8	9
45	7	9	12	15	18
48	4	5	7	8	10
51	7	10	13	16	20
54	4	5	7	9	10
57	7	11	14	17	21
60	4	6	7	9	11
63	8	11	15	18	22
66	4	6	8	9	11
69	8	12	16	20	23
72	4	6	8	10	12
75	8	12	16	21	25
78	4	6	8	10	12
81	9	13	17	22	26
84	4	6	9	11	13
87	9	14	18	23	27
90	5	7	9	11	13
93	9	14	19	24	28
96	5	7	9	11	13
99	10	15	20	25	30

Tabela 4: Iteracje (wiersze - n, kolumny - precyzja, kryterium stopu 2)

	0.01	0.001	0.0001	0.00001	0.000001
3	0.0000780	0.0000448	0.0000472	0.0000458	0.0000517
6	0.0000417	0.0000408	0.0000489	0.0000474	0.0000529
9	0.0000491	0.0000546	0.0000844	0.0000648	0.0000913
12	0.0000968	0.0000885	0.0000570	0.0000489	0.0000684
15	0.0000699	0.0000813	0.0001144	0.0001199	0.0001314
18	0.0000849	0.0000935	0.0000906	0.0000949	0.0000985
21	0.0000982	0.0001135	0.0001256	0.0001726	0.0001733
24	0.0001216	0.0001211	0.0000787	0.0000618	0.0001085
27	0.0000861	0.0001016	0.0000982	0.0000942	0.0001187
30	0.0000877	0.0000546	0.0000520	0.0000639	0.0000706
33	0.0001032	0.0000787	0.0000854	0.0001161	0.0001287
36	0.0000999	0.0000579	0.0000684	0.0001333	0.0001595
39	0.0001290	0.0001240	0.0001693	0.0003297	0.0002129
42	0.0000997	0.0000844	0.0000913	0.0001214	0.0001264
45	0.0001349	0.0001912	0.0001476	0.0001285	0.0001521
48	0.0001414	0.0000958	0.0000772	0.0000844	0.0000889
51	0.0001183	0.0000882	0.0001013	0.0001457	0.0001976
54	0.0001018	0.0001450	0.0000970	0.0001013	0.0001028
57	0.0000958	0.0002372	0.0002117	0.0001788	0.0001700
60	0.0000885	0.0000684	0.0000744	0.0000944	0.0000947
63	0.0000961	0.0000930	0.0001376	0.0001421	0.0001695
66	0.0000925	0.0001447	0.0001774	0.0003414	0.0001473
69	0.0001411	0.0001118	0.0001271	0.0001538	0.0001822
72	0.0001171	0.0000894	0.0000792	0.0000944	0.0001037
75	0.0001104	0.0001221	0.0001862	0.0002100	0.0002534
78	0.0001009	0.0000868	0.0000794	0.0000951	0.0001078
81	0.0001085	0.0001206	0.0001822	0.0002015	0.0002115
84	0.0000956	0.0001671	0.0001891	0.0001683	0.0001302
87	0.0001163	0.0001311	0.0002174	0.0002227	0.0002313
90	0.0001037	0.0000834	0.0000963	0.0001490	0.0001853
93	0.0001476	0.0002410	0.0002975	0.0003548	0.0002646
96	0.0003643	0.0001197	0.0001373	0.0001588	0.0032578
99	0.0001633	0.0001853	0.0002728	0.0038943	0.0006762

Tabela 5: Czas (wiersze - $n,\, {\rm kolumny}$ - precyzja, kryterium stopu 1)

	0.01	0.001	0.0001	0.00001	0.000001
3	0.0000796	0.0000470	0.0000427	0.0000479	0.0000536
6	0.0000727	0.0000520	0.0000446	0.0000494	0.0000730
9	0.0000932	0.0000651	0.0000727	0.0000725	0.0000756
12	0.0000398	0.0000472	0.0000443	0.0000937	0.0000641
15	0.0001044	0.0001171	0.0000820	0.0000830	0.0000987
18	0.0000865	0.0000930	0.0000558	0.0000536	0.0000610
21	0.0001142	0.0000925	0.0001504	0.0001948	0.0002241
24	0.0001163	0.0000813	0.0000603	0.0000808	0.0000703
27	0.0001273	0.0000923	0.0001111	0.0001063	0.0001755
30	0.0001392	0.0001013	0.0000725	0.0000694	0.0000761
33	0.0001624	0.0001304	0.0001061	0.0001149	0.0001380
36	0.0000765	0.0000594	0.0000627	0.0000708	0.0000842
39	0.0001023	0.0000927	0.0001106	0.0001523	0.0001698
42	0.0001166	0.0000808	0.0001507	0.0001431	0.0001223
45	0.0001380	0.0001066	0.0001152	0.0001347	0.0001695
48	0.0001228	0.0001440	0.0000966	0.0000846	0.0000963
51	0.0001216	0.0001040	0.0001245	0.0001481	0.0001786
54	0.0000899	0.0000670	0.0000882	0.0000932	0.0001025
57	0.0001216	0.0001216	0.0001619	0.0002038	0.0002418
60	0.0001149	0.0001762	0.0001841	0.0001338	0.0001216
63	0.0001347	0.0001431	0.0001636	0.0002277	0.0002177
66	0.0000963	0.0001159	0.0001125	0.0001028	0.0001273
69	0.0001595	0.0001693	0.0002151	0.0002468	0.0002868
72	0.0001111	0.0001543	0.0001426	0.0001285	0.0001285
75	0.0001392	0.0001483	0.0001729	0.0002184	0.0003138
78	0.0001016	0.0001028	0.0001259	0.0001574	0.0002811
81	0.0002005	0.0001626	0.0001955	0.0002406	0.0002906
84	0.0001760	0.0001116	0.0001228	0.0001292	0.0001526
87	0.0001578	0.0002213	0.0002964	0.0003011	0.0003417
90	0.0001230	0.0001068	0.0001328	0.0001445	0.0001645
93	0.0001602	0.0001922	0.0002785	0.0005682	0.0003817
96	0.0001633	0.0001636	0.0001891	0.0002031	0.0026112
99	0.0002365	0.0002961	0.0012593	0.0026395	0.0005212

Tabela 6: Czas (wiersze - n, kolumny - precyzja, kryterium stopu 2)

TODO TODO TODO TODO wnioski z czasu

Teraz pozostaje zbadanie wpływu wektora początkowego. Tutaj zostanie użyte tylko kryterium pierwsze. Zostaną użyte wektory początkowe $\mathbf{x}=[a,a,...,a]$, gdzie a będzie wartościami z zakresu [-2,2].

2 Problem 2

2.1 Opis problemu

Przy użyciu dowolnej metody zostanie znaleziony promień spektralny macierzy iteracji z poprzedniego problemu (dla różnych rozmiarów układu — takich, dla których znajdowane były rozwiązania układu). Sprawdzone zostanie, czy spełnione są założenia o zbieżności metody dla zadanego układu. Opisana zostanie metoda znajdowania promienia spektralnego.

2.2 Opracowanie problemu

Promień spektralny jest wartością maksymalną spośród wartości bezwzględnych wartości własnych macierzy, tj.:

$$\rho(A) = max\{|\lambda_1|, ..., |\lambda_n|\}$$

Wartościami własnymi macierzy nazywamy natomiast pierwiastki wielomianu charakterystycznego tej macierzy:

$$w_A(\lambda) = \det A - \lambda I$$

gdzie I jest macierzą jednostkową. Do policzenia wartości własnych wielomianu użyta zostanie funkcja numpy.linalg.eigvals.

Niech $\epsilon = x^{(t)} - x$, gdzie x jest wektorem rzeczywistych rozwiązać układu równań. Wówczas macierz M taka, że

$$\epsilon^{(t)} = M^t \cdot \epsilon^{(0)}$$

nazywamy macierzą iteracji. Macierz iteracji dla metody Jakobiego ma postać

$$M = D^{-1}(L+U)$$

Gdzie (niech A będzie macierzą układu równań)

$$A = D + L + U$$

Djest macierzą diagonalną, z diagonalnych elementów macierzy $A,\,L$ — poddiagonalną, U — naddiagonalną. Mając te informację, można łatwo obliczyć promienie spektralne dla macierzy iteracji.

n	promień	n	promień
3	0.05843	52	0.48718
4	0.08253	53	0.49123
5	0.10423	54	0.49521
6	0.12398	55	0.49913
7	0.14212	56	0.50299
8	0.15891	57	0.50678
9	0.17455	58	0.51052
10	0.18918	59	0.51421
11	0.20294	60	0.51784
12	0.21593	61	0.52141
13	0.22823	62	0.52494
14	0.23992	63	0.52841
15	0.25105	64	0.53184
16	0.26167	65	0.53522
17	0.27184	66	0.53855
18	0.28159	67	0.54184
19	0.29096	68	0.54509
20	0.29997	69	0.54829
21	0.30865	70	0.55146
22	0.31703	71	0.55458
23	0.32512	72	0.55766
24	0.33295	73	0.56071
25	0.34053	74	0.56372
26	0.34788	75	0.56669
27	0.35502	76	0.56963
28	0.36194	77	0.57253
29	0.36868	78	0.57540
30	0.37523	79	0.57823
31	0.38161	80	0.58104
32	0.38782	81	0.58381
33	0.39388	82	0.58655
34	0.39979	83	0.58926
35	0.40556	84	0.59194
36	0.41120	85	0.59460
37	0.41671	86	0.59722
38	0.42209	87	0.59982
39	0.42736	88	0.60239
40	0.43252	89	0.60493
41	0.43757	90	0.60745
42	0.44252	91	0.60994
43	0.44737	92	0.61241
44	0.45213	93	0.61485
45	0.45680	94	0.61727
46	0.46137	95	0.61967
47	0.46587	96	0.62204
48	0.47028	97	0.62439
49	0.47462	98	0.62672
50	0.47888	99	0.62903
51	0.48306	100	0.63131
			1

Tabela 7: Promienie spektralne

Warunkiem wystarczającym zbieżności metody iteracyjnej jest

$$\rho(M) < 1$$

Jak nietrudno zauważyć, dla wszystkich badanych wartości n promień spektralny macierzy iteracji jest mniejszy od jedynki, dla nich metoda jest zbieżna.

2.3 Wnioski