2013 年全国统一高考化学试卷 (新课标II)

- 一、选择题:本题共7小题,每小题6分.在每小题给出的四个选项中,只有一项是符合题目要 求的.
- 1. (6分)在一定条件下,动植物油脂与醇反应可制备生物柴油,化学方程式如图所示:

R ₁ COOCH ₂			R ₁ COO R'	CH ₂ OH
R ₂ COOCH+ 3R	OH —		R ₂ COO R'+	CHOH
R ₃ COOCH ₂		加热	R₃COO R³	CH ₂ OH

动植物油脂 短链醇 生物柴油 甘油

下列叙述错误的是(

- A. 生物柴油由可再生资源制得 B. 生物柴油是不同酯组成的混合物
- C. 动植物油脂是高分子化合物 D. "地沟油"可用于制备生物柴油
- 2. (6分)下列叙述中,错误的是(
 - A. 苯与浓硝酸、浓硫酸共热并保持 55~60℃反应生成硝基苯
 - B. 苯乙烯在合适条件下催化加氢可生成乙基环己烷
 - C. 乙烯和溴的四氯化碳溶液反应生成 1,2□二溴乙烷
 - D. 甲苯与氯气在光照下反应主要生成 2,4□二氯甲苯
- 3. (6分) N_A为阿伏加德罗常数的值。下列叙述正确的是(
 - A. 1.0 L 1.0 mol•L□¹ 的 NaAlO₂水溶液中含有的氧原子数为 2 N₄□
 - B. 12g 石墨烯(单层石墨)中含有六元环的个数为 0.5 N_{A□}
 - C. 25°C时 pH=13 的 NaOH 溶液中含有 OH□的数目为 0.1 N_A□
 - D. 1 mol 的羟基与 1 mol 的氢氧根离子所含电子数均为 $9 N_A \square$
- 4. (6分)能正确表示下列反应的离子方程式是(
 - A. 浓盐酸与铁屑反应: 2Fe+6H+—2Fe³⁺+3H₂↑
 - B. 钠与 CuSO₄溶液反应: 2Na+Cu²+—Cu↓+2Na+
 - C. NaHCO₃溶液与稀 H₂SO₄反应: CO₃^{2□}+2H⁺─H₂O+CO₂↑
 - D. 向 FeCl₃ 溶液中加入 Mg(OH)₂: 3Mg(OH)₂+2Fe³⁺=2Fe(OH)₃+3Mg²⁺
- 5. (6分)"ZEBRA"蓄电池的结构如图所示,电极材料多孔 Ni/NiCl₂和金属钠之间由钠离子导体

制作的陶瓷管相隔。下列关于该电池的叙述错误的是(

- A. 电池反应中有 NaCl 生成
- B. 电池的总反应是金属钠还原三价铝离子
- C. 正极反应为: NiCl₂+2e□—Ni+2Cl□
- D. 钠离子通过钠离子导体在两电极间移动
- 6. (6分) 在1200℃时, 天然气脱硫工艺中会发生下列反应:

$$H_2S (g) + \frac{3}{2}O_2 (g) = SO_2 (g) + H_2O (g) \triangle H_1$$

$$2H_2S (g) +SO_2 (g) = \frac{3}{2}S_2 (g) +2H_2O (g) \triangle H_2$$

$$H_2S (g) + \frac{1}{2}O_2 (g) = S (g) + H_2O (g) \triangle H_3$$

 $2S(g) = S_2(g) \triangle H_4$

则△H₄的正确表达式为(

- A. $\triangle H_4 = \frac{2}{3} (\triangle H_1 + \triangle H_2 \Box 3 \triangle H_3)$ B. $\triangle H_4 = \frac{2}{3} (3 \triangle H_3 \Box \triangle H_1 \Box \triangle H_2)$
- C. $\triangle H_4 = \frac{3}{2} (\triangle H_1 + \triangle H_2 \Box 3 \triangle H_3)$ D. $\triangle H_4 = \frac{3}{2} (\triangle H_1 \Box \triangle H_2 \Box 3 \triangle H_3)$
- 7. (6分) 室温时,M (OH)₂(s) \rightleftharpoons M²⁺ (aq) +2OH⁻ (aq) K_{sp}=a, c (M²⁺) =b mol•L⁻¹ 时, 溶液的 pH 等于(
- A. $\frac{1}{2} \lg (\frac{b}{a})$ B. $\frac{1}{2} \lg (\frac{a}{b})$ C. $14 + \frac{1}{2} \lg (\frac{a}{b})$ D. $14 + \frac{1}{2} \lg (\frac{b}{a})$

二、解答题(共6小题,满分58分)

8. (15分)正丁醛是一种化工原料。某实验小组利用如图所示装置合成正丁醛。

发生的反应如下: CH₃CH₂CH₂CH₂OH $\frac{Na_2Cr_2O_7}{H_2SO_4}$ CH₃CH₂CH₂CHO。

反应物和产物的相关数据列表如下:

	沸点/℃	密度/g•cm [®]	水中溶解性
正丁醇	117.2	0.8109	微溶
正丁醛	75.7	0.8017	微溶

实验步骤如下:

将 6.0gNa₂Cr₂O₇放入 100mL 烧杯中,加 30mL 水溶解,再缓慢加入 5mL 浓硫酸,将所得溶液小心转移至 B中。在 A中加入 4.0g 正丁醇和几粒沸石,加热。当有蒸汽出现时,开始滴加 B中溶液。滴加过程中保持反应温度为 90~95℃,在 E中收集 90℃以上的馏分。

将馏出物倒入分液漏斗中,分去水层,有机层干燥后蒸馏,收集 75~77℃馏分,产量 2.0g。 回答下列问题:

- (1) 实验中,能否将 $Na_2Cr_2O_7$ 溶液加到浓硫酸中,说明理由_____。
- (2) 加入沸石的作用是 , 若加热后发现未加入沸石, 应采取的正确方法是 。
- (3)上述装置图中,B仪器的名称是____,D仪器的名称是____。
- (4) 分液漏斗使用前必须进行的操作是_____(填正确答案标号)。
- a. 润湿
- b. 干燥
- c. 检漏
- d. 标定
- (5) 将正丁醛粗产品置于分液漏斗中分水时,水在_____层(填"上"或"下")。
- (6) 反应温度应保持在 90~95℃, 其原因是____。
- (7) 本实验中,正丁醛的产率为____%。

9. (14分)氧化锌为白色粉末,可用于湿疹、癣等皮肤病的治疗。纯化工业级氧化锌(含有 Fe (II)、Mn(II)、Ni(II)等杂质)的流程如图所示:

工业 Z_{n0} $\frac{\Re H_2SO_4}{\bigcirc}$ 浸出液 $\frac{@PH$ 约为5 过滤滤液 Z_n 过滤滤液 $\frac{Z_n}{\bigcirc}$ 过滤滤液 $\frac{Na_2CO_3}{\bigcirc}$ 过滤滤饼 $\frac{\& K}{\bigcirc}$ Z_{n0}

提示:在本实验条件下,Ni(II)不能被氧化;高锰酸钾的还原产物是 MnO_2 。

回答下列问题:

- (1) 反应②中除掉的杂质离子是_____,发生反应的离子方程式为_____,在加高锰酸钾溶液前,若pH 较低,对除杂的影响是_____。
- (2) 反应③的反应类型为_____,过滤得到的滤渣中,除了过量的锌外还有____。
- (3) 反应④形成的沉淀要用水洗,检查沉淀是否洗涤干净的方法是。
- (4) 反应④中产物的成分可能是 $ZnCO_3$ •xZn (OH) ₂. 取干燥后的滤饼 11.2g,锻烧后可得到产品 8.1g,则 x 等于_____。
- 10. (14分) 在 1.0L 密闭容器中放入 0.10molA(g), 在一定温度进行如下反应: A(g) ⇒B(g)+C(g) △H=+85.1kJ•mol□1

反应时间(t)与容器内气体总压强(p)的数据见下表:

时间 t/h	0	1	2	4	8	16	20	25	30
总压强	4.91	5.58	6.32	7.31	8.54	9.50	9.52	9.53	9.53
p/100kPa									

回答下列问题:

- (1) 欲提高 A 的平衡转化率,应采取的措施为____。
- (2) 由总压强 p 和起始压强 p_0 计算反应物 A 的转化率 α (A) 的表达式为______,

平衡时 A 的转化率为_____, 列式并计算反应的平衡常数 K_____。

- (3) ①由总压强 p 和起始压强 p_0 表示反应体系的总物质的量 n $_{\&}$ 和反应后 A 的物质的量 n (A) , n $_{\&}$ = mol, n (A) = mol.
- ②下表为反应物 A 浓度与反应时间的数据, 计算: a=。

反应时间 t/h	0	4	8	16
c (A) / (mol•L ²¹)	0.10	a	0.026	0.0065

分析该反应中反应物的浓度 c(A) 变化与时间间隔 ($\triangle t$) 的规律,得出的结论是 ,由此

规律推出反应在 12h 时反应物的浓度 c(A) 为 $mol \cdot L^{\square 1}$ 。

11. (15 分) 〔化学□□选修 2: 化学与技术〕

锌锰电池(俗称干电池)在生活中的用量很大.两种锌锰电池的构造如图(甲)所示.回答下列问题:

(1) 普通锌锰电池放电时发生的主要反应为: Zn+2NH₄Cl+2MnO₂—Zn (NH₃) ₂Cl₂+2MnOOH

①该电池中,负极材料主要是_____,电解质的主要成分是_____,正极发生的主要反应是

②与普通锌锰电池相比,碱性锌锰电池的优点及其理由是_____

(2)图(乙)表示回收利用废旧普通锌锰电池工艺(不考虑废旧电池中实际存在的少量其他金属).

①图(乙)中产物的化学式分别为 A_____, B_____.

②操作 a 中得到熔块的主要成分是 K_2MnO_4 . 操作 b 中,绿色的 K_2MnO_4 溶液反应生成紫色溶液和一种黑褐色固体,该反应的离子方程式为 .

③采用惰性电极电解 K_2MnO_4 溶液也能得到化合物 D,则阴极处得到的主要物质是_____(填化学式).

12. 〔化学□□选修 3: 物质结构与性质〕 (15 分)

前四周期原子序数依次增大的元素 A、B、C、D中, A和B的价电子层中未成对电子均只有一个, 并且 A□和 B⁺的电子数相差为 8; 与 B 位于同一周期的 C和 D, 它们价电子层中的未成对电子数分别为 4和 2, 且原子序数相差为 2。

回答下列问题:

(1)	D ²⁺ 的价层电子排布图为	o
\ _ /		

- (2) 四种元素中第一电离能最小的是_____, 电负性最大的是____。(填元素符号)
- (3) A、B和D三种元素组成的一个化合物的晶胞如图所示。
- ①该化合物的化学式为 ; D 的配位数为 ;
- ②列式计算该晶体的密度 _____g•cm^{□3}。
- (4) A^{\Box} 、 B^{\dagger} 和 $C^{3\dagger}$ 三种离子组成的化合物的 B_3CA_6 ,其中化学键的类型有 ; 该化合物中

存在一个复杂离子,该离子的化学式为,配位体是。

13. [化学□□选修 5: 有机化学基础] (15 分)

化合物 $I(C_{11}H_{12}O_3)$ 是制备液晶材料的中间体之一,其分子中含有醛基和酯基. I 可以用 E 和 H 在一定条件下合成:

己知以下信息:

- 1. A 的核磁共振氢谱表明其只有一种化学环境的氢;
- 2. $R \square CH = CH_2 \xrightarrow{\textcircled{0} B_2 H_6} R \square CH_2 CH_2 OH;$
- 3. 化合物 F 苯环上的一氯代物只有两种;
- 4. 通常在同一个碳原子上连有两个羟基不稳定,易脱水形成羰基.

回答下列问题:

- (1) A 的化学名称为____.
- (2) D 的结构简式为_____.
- (3) E 的分子式为_____.

- (4) F生成 G的化学方程式为,该反应类型为.
- (5) I 的结构简式为 .