

First Semester 2022-2023 Course Handout Part II

Date: 22/08/2022

In addition to the Part-I (General Handout) for all courses appended to the timetable, this portion gives further specific details regarding the course.

Course No. : CS G526

Course Title : Advanced Algorithms & Complexity
Instructor-in-Charge: Dr Sameera Muhamed Salam

Course Description: Advanced Algorithm Design Strategies such as Randomization, Approximation and Game-Theoretic Techniques. Design of Parallel and Distributed Algorithms. Design of algorithms for application domains such as Internet / Web, and Computational Biology.

1. Scope and Objectives:

The scope of this course includes algorithm design strategies such as Randomization and Approximation as well as specific techniques therein, NP-hard problems and approaches to handle them using approximation algorithms, Problem/application domains such as online social networks, Internet and the Web, number theory and cryptography, and distributed computing.

The objectives of this course are to enable each individual student to pursue some of these activities:

- explore advanced topics in algorithmic and complexity theory;
- engage in analysis and design of complex algorithms for real-world problems in current application domains;
- learn and evaluate advanced / novel algorithm design strategies and techniques
- understand sturdy / open problems in algorithmic or complexity theory by analyzing known approaches and their limitations.

2. Text Book:

T1. "Randomized Algorithms", by "Motwani, Rajiv & P. Raghavan", CUP, 1995.

T2. "Combinatorial Optimization.: Algorithms & Complexity", by "Papadimitnou, C.H. & Kenneth Steiglitz", PHI, 1982

3. Reference Books:

- R1. The Design of Approximation of Algorithms. Williamson and Shmoys, Cambridge Press, 2011.
- R2. Design and Analysis of Randomized Algorithms. Hromkovic, Springer, 2005.
- R3. Approximation Algorithms. Vijay Vazirani. Springer, 2003.
- R4. Complexity and Approximation, G. Auseiello, et.al. Springer, 1999.

4. Course Plan:

No. of			Reference	
Lecture s				
1 Lec	Importance of randomized algorithms and complexity classes	Introduction & Motivation – Advanced Algorithms & Complexity	-	
1 Lec	Review on Algorithm Complexity	Asymptotic Notations : Big Oh Big Omega Big Theta.	R5	
5 Lecs	Understanding of complexity classes and their definitions. How to prove a problem is NP-Complete?	Review of Design Techniques, Complexity Classes and Polynomial time reductions, vertex cover, independent set, Hamiltonian cycle., P vs. NP, NP-completeness, Graph 3- coloring Co-NP, PSPACE, PSPACE-complete,	R5	
1 Lec	Understanding different methods to cope with NP hard Problem	Introduction to Approximation algorithms, Exact Algorithms and parameterized algorithms	-	
8 Lecs	Design techniques for approximation algorithms	The greedy method, sequential algorithms, local search, linear programming, dynamic programming,	R1 and R4	
3 Lecs	Hardness of approximation	Absolute & relative approximation (additive & mutiplicative), approximation classes, APX, PTAS, FPTAS, limits to approximability: the gap technique	R4	
4 Lecs	Techniques in proving the hardness of approximation	NP, PCP, Non approximability results, reduction from NP-complete problems, reductions that preserve approximation, reductions from probabilistically checkable proofs, reduction from unique games	R1 & R4	
2 Lecs	Review of probability theory	Review of necessary basics in Probability	-	
4 Lecs	Understanding the classification of randomized algorithms	Randomized Algorithms : Las Vegas & Monte Carlo Techniques,	T1 – Ch 1	
4 Lecs	Understanding the success rate of the randomized algorithm	Chebyshev Inequality, Tail Inequalities	T1-Ch3, Ch4	
3 Lecs	Understanding how randomization helps in creating some advanced data structures	Data Structures for randomized algorithms - Skip Lists and Hash Tables	T1-Ch8	

2 Lecs	Understanding how randomization has helped to obtain algorithms better than deterministic counter parts.	Randomized graph algorithms	T1 – Ch 10
2 Lecs	Understanding the Minimax theorem and its implication in game theory.	Game Theoretic Techniques	T1 – Ch 4
2 Lecs	Understanding role of randomization in parallel algorithms.	Parallel and Distributed Algorithms; PRAM model, Maximal independent sets, Byzantine Agreement	T1-Ch12

5. Evaluation Scheme:

Sr.	Component	Duration	Weightage	Date & Time	Remarks
No. 1.	Midterm	90 min	(%) 25%	31/10 3.30 - 5.00PM	Closed Book
2.	Lab Evaluation	During Lab Hours	20% (best 4 out of 5, each of 5%)	Will be announced in Class	Open Book
3.	Term Project - Literature survey & Problem statement -Problem Scoping and Analysis, Mid- Term Progress & Re- port - Seminar - Conclusion, Viva and Report	Throughout the semester	20 % (10% will be covered before midsem)	Will be announced in Class	Open Book
4.	Comprehensive Exam	3 hrs.	35 %	19/12 AN	Closed Book

- **6. Chamber Consultation hours:** Dr Sameera Muhamed Salam, Room No: H107, Tuesday 5 PM (Drop me an email at least one day before).
- **7. Make-up Policy:** Prior Permission of the Instructor-in-Charge is usually required to take a make-up for a test. The regulations set by AGSRD office for make-ups must be followed.
- **8. Notices:** Notice regarding the course will be displayed on the CMS or Google Class Room or conveyed using BITS official email id only.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- **10. Disclaimer:** The dates of exams are tentative. Any kind of unfair means in exams and assignments will be strictly dealt.