第十二次作业参考解答

- 1. 考虑假设检验: $H_0: \lambda \geq \lambda_0$ vs. $H_1: \lambda < \lambda_0$. 由 $E(X_1) = \frac{1}{\lambda}$, 拒绝域的形式应为 $\{\bar{X} \geq c\}$. 由 $2\lambda X_1 \sim \chi^2(2)$ 与卡方分布的可加性可知 $2\lambda n \bar{X} \sim \chi^2(2n)$. 按第一类错误 $P_{\lambda \geq \lambda_0}(\bar{X} \geq c) \leq \alpha$ 可给出拒绝域为 $\{\bar{X} \geq \frac{\chi^2_{\alpha}(2n)}{2n\lambda_0}\}$. 双边: $H_0: \lambda = \lambda_0$ vs. $H_1: \lambda \neq \lambda_0$. 拒绝域为 $\{\bar{X} \geq \frac{\chi^2_{\frac{\alpha}{2}}(2n)}{2n\lambda_0}\}$ 或 $\bar{X} \leq \frac{\chi^2_{1-\frac{\alpha}{2}}(2n)}{2n\lambda_0}\}$
- **2.** (1) $\hat{\theta} = 2\bar{X}$, 拒绝域形式为 $\{2\bar{X} \geq c\}$. 利用大样本方法可给出临界值 $c = \frac{\theta_0}{\sqrt{3n}}z_{\alpha} + \theta_0$. 功效函数为: $P_{\theta}(X \in R) = 1 \Phi(\frac{\frac{c}{2} \frac{\theta}{2}}{\frac{1}{\sqrt{n}}\sqrt{\frac{\theta^2}{12}}})$.
- (2) $\hat{\theta} = \max\{X_1, \dots, X_n\} = X_{(n)}$,拒绝域形式为 $\{X_{(n)} \geq c\}$. 利用极大次序统计量的分布可给出临界值 $c = \theta_0 (1 \alpha)^{\frac{1}{n}}$. 功效函数为: $P_{\theta}(X \in R) = 1 (1 \alpha) \left(\frac{\theta_0}{\theta}\right)^n$.
- **3.** $H_0: \mu \le \mu_0$ vs. $H_1: \mu > \mu_0$. $\mu_0 = 5.1$. 方差未知的正态总体均值检验问题, 若取检验水平 $\alpha = 0.05$, 拒绝原假设.
- **4.** (1) $H_0: \mu \ge \mu_0$ vs. $H_1: \mu < \mu_0$. $\mu_0 = 1180$. 方差未知的正态总体均值检验问题, 取检验水平 $\alpha = 0.05$, 不拒绝原假设 (认为合格).
- (2) $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$. $\mu_0 = 1180$. 取检验水平 $\alpha = 0.05$, 不拒绝原假设 (认为不合格). NP 范式 倾向于保护原假设.
- (3) 当检验水平取很大时, 一定会拒绝原假设.
- **5.** $H_0: \mu \le \mu_0$ vs. $H_1: \mu > \mu_0$. $\mu_0 = 225$. 不拒绝原假设,即无理由认为元器件寿命大于 225.
- 6. 利用中心极限定理, 拒绝域为 $\{|rac{\sum\limits_{i=1}^{n}X_{i}-n\lambda_{0}}{\sqrt{n\lambda_{0}}}|>z_{\frac{\alpha}{2}}\}.$
- 7. (1) $\frac{200}{4000}$. (2) $\frac{200}{700}$. (3) $\frac{500}{1000}$. (4) H_1 成立时功效为 $\frac{500}{1000}$.
- 8. "第 i 个患者是否治愈"记为 $X_i \sim B(1,p)$. 通过假设检验判断.

 $H_0: p \le p_0$ vs. $H_1: p > p_0$. $p_0 = 2\%$. 拒绝域形为 $\{\sum_{i=1}^n X_i \ge c, c \in \mathbb{N}^+\}$.

控制第一类错误: $\sum_{i=c_0}^n \binom{n}{i} p_0^i (1-p_0)^{(n-i)} > \alpha > \sum_{i=c_0+1}^n \binom{n}{i} p_0^i (1-p_0)^{(n-i)}$. 取 $c=c_0+1$. 给定检验水平 $\alpha=0.05$ 时 c=7, 不拒绝原假设, 即不能认为更有效.

总结:

- 注意给清楚 H₀ vs. H₁, 这是关于总体参数的描述, 之后采样做决策.
- 注意区分 power function 与 power.
- NP 范式下 H₀ 与 H₁ 是不对等的, 倾向于保护原假设.