# CISC 372 Advanced Data Analytics L10 AutoDiff4DL

|   | name  | age | state      | num_children | num_pets |
|---|-------|-----|------------|--------------|----------|
| 0 | john  | 23  | iowa       | 2            | 0        |
| 1 | mary  | 78  | dc         | 2            | 4        |
| 2 | peter | 22  | california | 0            | 0        |
| 3 | jeff  | 19  | texas      | 1            | 5        |
| 4 | bill  | 45  | washington | 2            | 0        |
| 5 | lisa  | 33  | dc         | 1            | 0        |





wild DATAFRAME appeared!

## Tree[s]

- Tree Induction
- Information Gain/Gain Ratio/Gini Index
- ID3, CART, C4.5
- Splitting Numeric Attribute
- Feature Selection (is difficult)
- Random Forest (the easy way)
  - Built-in bootstrap sampling
- Regression Tree
- XGBoost



# Today

- AutoDiff
- Neural Network
- Convolutional Neural Network

# Logistic Regression



| P | assenger Class | Age | Survived |
|---|----------------|-----|----------|
|   | 1              | 29  | 1        |
|   | 1              | 2   | 0        |
|   | 2              | 21  | 1        |
|   | 2              | 19  | 1        |
|   |                |     |          |









a = w1 \* Class + w2 \* Age a' = -2 \* 1 + 0.1 \* 29 = 0.9 y = f(a) y' = f(0.9) = 0.71 Total cost:

$$\boldsymbol{J} = \boldsymbol{\Sigma} (\mathbf{y'} - \mathbf{y})^2$$

# Logistic Regression cont'd







Total cost:

$$J = \Sigma (y' - y)^2$$

# Logistic Regression cont'd









Total cost:

$$J = \Sigma (y' - y)^2$$

# Logistic Regression cont'd





Decision boundary made by a linear model (logistic regression)

# Nonlinearity

- XOR?
  - Not linearly separable
    - Convexity (convex set)
- Feature Map
  - Aka basis function, kernels etc
  - a,b -> class
  - a,b,ab -> class
  - Now it is linearly separable
  - Difficult to find the right function

| α | Ь | class |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

1

4

|   | α | b | ab | class |
|---|---|---|----|-------|
| 1 | 0 | 0 | 0  | 0     |
| 2 | 0 | 1 | 0  | 1     |
| 3 | 1 | 0 | 0  | 1     |
| 4 | 1 | 1 | 1  | 0     |

# Nonlinearity

- XOR?
  - Not linearly separable
    - Convexity (convex set)
- Feature Map
  - Aka basis function, kernels etc
  - a,b -> class
  - a,b,ab -> class
  - Now it is linearly separable
  - Difficult to find the right function

| a | b | class |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

1

4

| α | Ь | ab | class |
|---|---|----|-------|
| 0 | 0 | 0  | 0     |
| 0 | 1 | 0  | 1     |
| 1 | 0 | 0  | 1     |
| 1 | 1 | 1  | 0     |

#### Solution

- Learn the mapping function from data!
- Multi-layer perception



- Added multiple layer of interconnected regression node.
- Following the same way of training.



A logistic regression model.



A neural network model.



| F | Passenger Class | Gender | age | Survived |
|---|-----------------|--------|-----|----------|
|   | 1               | 1      | 29  | 1        |
| Г | 1               | 2      | 2   | 0        |
|   | 2               | 2      | 21  | 1        |
|   | 2               | 1      | 19  | 1        |

Randomly initialize weights.





| Passenger Class | Gender | age | Survived |
|-----------------|--------|-----|----------|
| 1               | 1      | 29  | 1        |
| 1               | 2      | 2   | 0        |
| 2               | 2      | 21  | 1        |
| 2               | 1      | 19  | 1        |





| F | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
| Г | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
|   | 2              | 1      | 19  | 1        |







| F | Passenger Class | Gender | age | Survived |
|---|-----------------|--------|-----|----------|
|   | 1               | 1      | 29  | 1        |
| Г | 1               | 2      | 2   | 0        |
|   | 2               | 2      | 21  | 1        |
|   | 2               | 1      | 19  | 1        |





# Automatically Differentiation engine

#### • Chain Rule:

$$z = \omega x + b$$

$$\hat{y} = \sigma(z)$$

$$L = \frac{1}{2} (y - \hat{y})^2 + \lambda \frac{1}{2} \omega^2$$

$$L = \frac{1}{2} (y - \sigma(\omega x + b))^2 + \lambda \frac{1}{2} w^2$$

$$\frac{\partial L}{\partial \omega} = \frac{\partial}{\partial \omega} \left( \frac{1}{2} (y - \sigma(\omega x + b))^2 + \lambda \frac{1}{2} w^2 \right)$$

$$\frac{\partial L}{\partial \omega} = (\sigma(\omega x + b) - t) \sigma'(w x + b) + \lambda w$$

$$\frac{\partial L}{\partial_b} = \frac{\partial}{\partial w} \left( \frac{1}{2} (y - \sigma(\omega x + b))^2 + \lambda \frac{1}{2} w^2 \right)$$

$$\frac{\partial L}{\partial_b} = (6(\omega x + b) - y)\sigma'(\omega x + b)$$

# Automatically Differentiation engine

#### • Chain Rule:

$$\frac{d}{dt}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dk}$$

#### computation graph





#### Approximate minimization





Decision boundary made by a linear model (logistic regression)



Decision boundary made by a neural network













A training sample.



A testing sample. The old hidden unit failed to find the curve.

### Position invariance



A training sample.

https://www.youtube.com/watch?v=f0t-OCG79-U

- kernel = filter = feature detector
  - Mapping window

- Pooling
  - Reduce the window
  - Average, Max, etc.



- kernel = filter = feature detector
  - Mapping window

- Pooling
  - Reduce the window
  - Average, Max, etc.



- Features:
  - Position Invariance
  - Receptive field of different granularity