L. Vandenberghe ECE133A (Spring 2021)

10. Multi-objective least squares

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Multi-objective least squares

we have several objectives

$$J_1 = ||A_1x - b_1||^2, \qquad \dots, \qquad J_k = ||A_kx - b_k||^2$$

- A_i is an $m_i \times n$ matrix, b_i is an m_i -vector
- we seek one x that makes all k objectives small
- usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find *x* that minimizes

$$|\lambda_1||A_1x - b_1||^2 + \dots + |\lambda_k||A_kx - b_k||^2$$

- coefficients $\lambda_1, \ldots, \lambda_k$ are positive weights
- weights λ_i express relative importance of different objectives
- without loss of generality, we can choose $\lambda_1 = 1$

Solution of weighted least squares

weighted least squares is equivalent to a standard least squares problem

minimize
$$\left\| \begin{bmatrix} \sqrt{\lambda_1} A_1 \\ \sqrt{\lambda_2} A_2 \\ \vdots \\ \sqrt{\lambda_k} A_k \end{bmatrix} x - \begin{bmatrix} \sqrt{\lambda_1} b_1 \\ \sqrt{\lambda_2} b_2 \\ \vdots \\ \sqrt{\lambda_k} b_k \end{bmatrix} \right\|^2$$

- solution is unique if the *stacked matrix* has linearly independent columns
- each matrix A_i may have linearly dependent columns (or be a wide matrix)
- it the stacked matrix has linearly independent columns, the solution is

$$\hat{x} = \left(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k\right)^{-1} \left(\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k\right)$$

Example with two objectives

minimize
$$||A_1x - b_1||^2 + \lambda ||A_2x - b_2||^2$$

 A_1 and A_2 are 10×5

plot shows weighted least squares solution $\hat{x}(\lambda)$ as function of weight λ

Example with two objectives

minimize
$$||A_1x - b_1||^2 + \lambda ||A_2x - b_2||^2$$

- left figure shows $J_1(\lambda) = ||A_1\hat{x}(\lambda) b_1||^2$ and $J_2(\lambda) = ||A_2\hat{x}(\lambda) b_2||^2$
- ullet right figure shows optimal trade-off curve of $J_2(\lambda)$ versus $J_1(\lambda)$

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Motivation

consider linear-in-parameters model

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

we assume $f_1(x)$ is the constant function 1

- we fit the model $\hat{f}(x)$ to examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$
- large coefficient θ_i makes model more sensitive to changes in $f_i(x)$
- keeping $\theta_2, \ldots, \theta_p$ small helps avoid over-fitting
- this leads to two objectives:

$$J_1(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2, \qquad J_2(\theta) = \sum_{j=2}^{p} \theta_j^2$$

primary objective $J_1(\theta)$ is sum of squares of prediction errors

Weighted least squares formulation

minimize
$$J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2$$

- λ is positive *regularization parameter*
- equivalent to least squares problem: minimize

$$\left\| \left[\begin{array}{c} A_1 \\ \sqrt{\lambda} A_2 \end{array} \right] \theta - \left[\begin{array}{c} y^{d} \\ 0 \end{array} \right] \right\|^2$$

with
$$y^{d} = (y^{(1)}, \dots, y^{(N)}),$$

$$A_{1} = \begin{bmatrix} 1 & f_{2}(x^{(1)}) & \cdots & f_{p}(x^{(1)}) \\ 1 & f_{2}(x^{(2)}) & \cdots & f_{p}(x^{(2)}) \\ \vdots & \vdots & & \vdots \\ 1 & f_{2}(x^{(N)}) & \cdots & f_{p}(x^{(N)}) \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- stacked matrix has linearly independent columns (for positive λ)
- value of λ can be chosen by out-of-sample validation or cross-validation

Example

- solid line is signal used to generate synthetic (simulated) data
- 10 blue points are used as training set; 20 red points are used as test set
- we fit a model with five parameters $\theta_1, \ldots, \theta_5$:

$$\hat{f}(x) = \theta_1 + \sum_{k=1}^{4} \theta_{k+1} \sin(\omega_k x + \phi_k) \qquad \text{(with given } \omega_k, \phi_k)$$

Result of regularized least squares fit

- minimum test RMS error is for λ around 0.08
- increasing λ "shrinks" the coefficients $\theta_2, \ldots, \theta_5$
- dashed lines show coefficients used to generate the data
- for λ near 0.08, estimated coefficients are close to these "true" values

Multi-objective least squares

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Control

$$y = Ax + b$$

- *x* is *n*-vector of *actions* or *inputs*
- *y* is *m*-vector of *results* or *outputs*
- relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y

Optimal input design

Linear dynamical system

$$y(t) = h_0 u(t) + h_1 u(t-1) + h_2 u(t-2) + \dots + h_t u(0)$$

- output y(t) and input u(t) are scalar
- we assume input u(t) is zero for t < 0
- coefficients h_0, h_1, \ldots are the *impulse response coefficients*
- output is convolution of input with impulse response

Optimal input design

- optimization variable is the input sequence $x = (u(0), u(1), \dots, u(N))$
- goal is to track a desired output using a small and slowly varying input

Input design objectives

minimize
$$J_{\rm t}(x) + \lambda_{\rm v} J_{\rm v}(x) + \lambda_{\rm m} J_{\rm m}(x)$$

• primary objective: track desired output y_{des} over an interval [0, N]:

$$J_{t}(x) = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^{2}$$

• secondary objectives: use a small and slowly varying input signal:

$$J_{\rm m}(x) = \sum_{t=0}^{N} u(t)^2, \qquad J_{\rm v}(x) = \sum_{t=0}^{N-1} (u(t+1) - u(t))^2$$

Tracking error

$$J_{t}(x) = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^{2}$$
$$= ||A_{t}x - b_{t}||^{2}$$

with

$$A_{t} = \begin{bmatrix} h_{0} & 0 & 0 & \cdots & 0 & 0 \\ h_{1} & h_{0} & 0 & \cdots & 0 & 0 \\ h_{2} & h_{1} & h_{0} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_{0} & 0 \\ h_{N} & h_{N-1} & h_{N-2} & \cdots & h_{1} & h_{0} \end{bmatrix}, \qquad b_{t} = \begin{bmatrix} y_{\text{des}}(0) \\ y_{\text{des}}(1) \\ y_{\text{des}}(2) \\ \vdots \\ y_{\text{des}}(N-1) \\ y_{\text{des}}(N) \end{bmatrix}$$

Input variation and magnitude

Input variation

$$J_{V}(x) = \sum_{t=0}^{N-1} (u(t+1) - u(t))^{2} = ||Dx||^{2}$$

with D the $N \times (N+1)$ matrix

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

Input magnitude

$$J_{\rm m}(x) = \sum_{t=0}^{N} u(t)^2 = ||x||^2$$

Example

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Estimation

Linear measurement model

$$y = Ax_{ex} + v$$

- n-vector x_{ex} contains parameters that we want to estimate
- *m*-vector *v* is unknown measurement error or noise
- *m*-vector *y* contains measurements
- $m \times n$ matrix A relates measurements and parameters

Least squares estimate: use as estimate of x_{ex} the solution \hat{x} of

minimize
$$||Ax - y||^2$$

Regularized estimation

add other terms to $||Ax - y||^2$ to include information about parameters

Example: Tikhonov regularization

minimize
$$||Ax - y||^2 + \lambda ||x||^2$$

- goal is to make ||Ax y|| small with small x
- equivalent to solving

$$(A^T A + \lambda I)x = A^T y$$

• solution is unique (if $\lambda > 0$) even when A has linearly dependent columns

Signal denoising

• observed signal *y* is *n*-vector

$$y = x_{\text{ex}} + v$$

- $x_{\rm ex}$ is unknown signal
- *v* is noise

Least squares denoising: find estimate \hat{x} by solving

minimize
$$||x - y||^2 + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$

goal is to find slowly varying signal \hat{x} , close to observed signal y

Matrix formulation

minimize
$$\left\| \begin{bmatrix} I \\ \sqrt{\lambda}D \end{bmatrix} x - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|^2$$

• D is $(n-1) \times n$ finite difference matrix

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

equivalent to linear equation

$$(I + \lambda D^T D)x = y$$

Trade-off

the two objectives $\|\hat{x}(\lambda) - y\|$ and $\|D\hat{x}(\lambda)\|$ for varying λ

Multi-objective least squares 10.20

Three solutions

- $\hat{x}(\lambda) \to \text{avg}(y)\mathbf{1} \text{ for } \lambda \to \infty$
- $\lambda \approx 10^2$ is good compromise

Image deblurring

$$y = Ax_{ex} + v$$

- $x_{\rm ex}$ is unknown image, y is observed image
- *A* is (known) blurring matrix, *v* is (unknown) noise
- images are $M \times N$, stored as MN-vectors

blurred, noisy image y

deblurred image \hat{x}

Least squares deblurring

minimize
$$||Ax - y||^2 + \lambda(||D_{v}x||^2 + ||D_{h}x||^2)$$

- 1st term is "data fidelity" term: ensures $A\hat{x} \approx y$
- 2nd term penalizes differences between values at neighboring pixels

$$||D_{h}x||^{2} + ||D_{v}x||^{2} = \sum_{i=1}^{M} \sum_{j=1}^{N-1} (X_{i,j+1} - X_{ij})^{2} + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (X_{i+1,j} - X_{ij})^{2}$$

if X is the $M \times N$ image stored in the MN-vector x

Differencing operations in matrix notation

suppose x is the $M \times N$ image X, stored column-wise as MN-vector

$$x = (X_{1:M,1}, X_{1:M,2}, \ldots, X_{1:M,N})$$

• horizontal differencing: $(N-1) \times N$ block matrix with $M \times M$ blocks

$$D_{h} = \begin{bmatrix} -I & I & 0 & \cdots & 0 & 0 & 0 \\ 0 & -I & I & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I & I \end{bmatrix}$$

• vertical differencing: $N \times N$ block matrix with $(M-1) \times M$ blocks

$$D_{V} = \begin{bmatrix} D & 0 & \cdots & 0 \\ 0 & D & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D \end{bmatrix}, \qquad D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

Deblurred images

$$\lambda = 10^{-6}$$

$$\lambda = 10^{-2}$$

$$\lambda = 10^{-4}$$

$$\lambda = 1$$

Tomography

$$y = Ax_{ex} + v$$

- $x_{\rm ex}$ represents values of some quantity in a region of interest of n voxels (pixels)
- Ax represents measurements of the integral along lines through the region

$$(Ax)_i = \sum_{j=1}^n A_{ij} x_j$$

 A_{ij} is the length of the intersection of the line in measurement i with voxel j

line for measurement *i*

Tomographic reconstruction

minimize
$$||Ax - y||^2 + \lambda(||D_{v}x||^2 + ||D_{h}x||^2)$$

 $D_{\rm v}$ and $D_{\rm h}$ are defined as in image deblurring example on page 10.23

Example

- left: 4000 lines (100 points, 40 lines per point)
- right: object placed in the square region at the center of the picture on the left
- region of interest is divided in 10000 pixels

Regularized least squares reconstruction

$$\lambda = 10^{-2}$$

$$\lambda = 10^{-1}$$

$$\lambda = 1$$

$$\lambda = 5$$

$$\lambda = 10$$

$$\lambda = 100$$

