

High-throughput computational search for new solar absorbers considering "defect tolerance"

Zhenkun Yuan, Diana Dahliah, Muhammad Rubaiat Hasan, Gideon Kassa, Andrew Pike, Shaham Quadir, Romain Claes, Cierra Chandler, Yihuang Xiong, Victoria Kyveryga, Philip Yox, Gian-Marco Rignanese, Ismaila Dabo, Andriy Zakutayev, David P. Fenning, Obadiah G. Reid, Sage Bauers, Jifeng Liu, Kirill Kovnir, and Geoffroy Hautier

2023 MRS Fall Meeting, Boston

Current solar cell technologies

What makes a good solar absorber?

- Light absorption
 - large absorption coefficients
 - suitable band gap
- Carrier transport
 - high mobilities
 - long carrier lifetime
- Good stability in operating conditions

The importance of long carrier lifetime

The importance of long carrier lifetime

Defect-assisted nonradiative recombination

Nonradiative lifetime

$$\tau = \frac{1}{N_{\rm d} * C}$$
deep-defect coefficient coefficient

Going to high-throughput (HT) search

HT Infrastructure:

PyCDT, Atomate, Fireworks, Materials Project, ...

Screening materials on their intrinsic defects

Best candidates among ~40,000 inorganic materials

High-efficiency, stable, and low-cost candidates

BaCd₂P₂ P. Klüfers, 1980

BaZrS₃

Y. Sun et al., Nano Lett. **15**, 581 (2015)

BaCd₂P₂ as a new solar absorber

Intrinsic defects in BaCd₂P₂

- Vacancies (V_{Ba} , V_{Cd} , and V_P) are major defect types, but they are all shallow
 - V_P is shallow in InP, but very deep in Zn₃P₂

Intrinsic defects in BaCd₂P₂

- Vacancies (V_{Ba} , V_{Cd} , and V_{P}) are major defect types, but they are all shallow
 - V_P is shallow in InP, but very deep in Zn₃P₂
- Deep-level defects (Cd_{Ba}, P_{Cd}, P_{Ba}, P_i, and Cd_P) are generally high in formation energy

Nonradiative recombination in BaCd₂P₂

Small carrier capture barriers

CH₃NH₃Pbl₃

 $\tau^{-1} \sim 10^7 \text{ s}^{-1}$

Synthesis and stability of BaCd₂P₂

Direct reaction of elements in sealed ampoule at 1000 °C and annealed at 800 °C

Oxidation starts

Thermal analysis in ambient air

Photoluminescence (PL) of BaCd₂P₂ powder

- Confirm the computed band gap
- Bright, stable PL

Carrier lifetime in BaCd₂P₂ powder pellet

Conclusions

- Expand the scope of high-throughput computational search for solar absorbers to include intrinsic defects
- Discover BaCd₂P₂ as a long carrier lifetime and highly stable solar absorber, confirmed by follow-up experiment

Search...

Help | Advanced

Condensed Matter > Materials Science

[Submitted on 27 Oct 2023]

Discovery of the Zintl-phosphide $BaCd_2P_2$ as a long carrier lifetime and stable solar absorber

Zhenkun Yuan, Diana Dahliah, Muhammad Rubaiat Hasan, Gideon Kassa, Andrew Pike, Shaham Quadir, Romain Claes, Cierra Chandler, Yihuang Xiong, Victoria Kyveryga, Philip Yox, Gian-Marco Rignanese, Ismaila Dabo, Andriy Zakutayev, David P. Fenning, Obadiah G. Reid, Sage Bauers, Jifeng Liu, Kirill Kovnir, Geoffroy Hautier

Acknowledgments

DE-SC0023509

BES-ERCAP0020966

Hautier's group at Dartmouth

Exploring the Family of AM₂Pn₂ Materials and Their Alloys for Use as Solar Absorbers

Chemical synthesis at Iowa State U & Ames Laboratory

M. Hasan, K. Kovnir

PL characterization at Dartmouth

G. Kassa, J. Liu

Thin film growth at NREL and U. Colorado Boulder

S. Quadir, S. Bauers, A. Zakutayev

Photo-activity characterization at UCSD

G. Esparza, D. Fenning

Surface & interface studies at Penn State

C. Chandler, I. Dabo