# → Data 144 Final Project: Spotify Song Recommender

#### **Davis Ulrich**

```
import pandas as pd
import collections
from sklearn.cluster import KMeans
from sklearn.cluster import SpectralClustering
from sklearn.metrics import silhouette_score
import numpy as np
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import matplotlib
import matplotlib.pyplot as plt
```

### → Main DataFrame

```
data_main = pd.read_csv('data.csv')
# Main data frame and its shape
print(data_main.shape)
data_main.head()
```

(170653, 19)

|   | valence | year | acousticness | artists                                                 | danceability | duration_ms | energy | explicit |               |
|---|---------|------|--------------|---------------------------------------------------------|--------------|-------------|--------|----------|---------------|
| 0 | 0.0594  | 1921 | 0.982        | ['Sergei<br>Rachmaninoff',<br>'James Levine',<br>'Berli | 0.279        | 831667      | 0.211  | 0        | 4BJqT0PrAfrxz |
| 1 | 0.9630  | 1921 | 0.732        | ['Dennis Day']                                          | 0.819        | 180533      | 0.341  | 0        | 7xPhfUan2yNty |

data\_main.hist(figsize=(15, 15));



# The release date is redundant and not in a usable type, the id is useless if we have a number instead

```
data_main = data_main.drop(columns = ['release_date', 'id'])
                  popularity
                                              speechiness
                                                                            tempo
```

# Replace song id string with a number and create a dictionary mapping the song number to the name (so we ca

```
data_main = data_main.reset_index()
song_dict = dict(zip(data_main['index'], data_main['name']))
for i in range(3):
    print(i, ': ', song_dict[i])
# data_main = data_main.drop(columns = ['name'])
data_main.head()
```

- 0 : Piano Concerto No. 3 in D Minor, Op. 30: III. Finale. Alla breve
- Clancy Lowered the Boom
- Gati Bali

|   | index | valence | year | acousticness | artists                                                 | danceability | duration_ms | energy | explicit | instrum |
|---|-------|---------|------|--------------|---------------------------------------------------------|--------------|-------------|--------|----------|---------|
| 0 | 0     | 0.0594  | 1921 | 0.982        | ['Sergei<br>Rachmaninoff',<br>'James Levine',<br>'Berli | 0.279        | 831667      | 0.211  | 0        |         |
| 1 | 1     | 0.9630  | 1921 | 0.732        | ['Dennis Day']                                          | 0.819        | 180533      | 0.341  | 0        |         |

# Lets replace the artist feature with a unique value for each artist (or list of artists)

```
unique_artists = data_main['artists'].unique()
artist_dict = dict(zip(range(len(unique_artists)), unique_artists))
```

```
for i in range(111, 114):
```

```
print(i, ': ', artist_dict[i])

111 : ['George Olsen']
    112 : ['Jailess']
    113 : ['Duke Ellington & His Washingtonians']

# We need a new dict to set up the artist_id column

dict_for_artists_column = dict(zip(unique_artists, range(len(unique_artists))))

data_main['artist_id'] = [dict_for_artists_column[artist] for artist in data_main['artists']]

data_main = data_main.rename(columns = {'index': 'song_id'})

data_main.head()
```

|   | song_id | valence | year | acousticness | artists                                                 | danceability | duration_ms | energy | explicit | instr |
|---|---------|---------|------|--------------|---------------------------------------------------------|--------------|-------------|--------|----------|-------|
| 0 | 0       | 0.0594  | 1921 | 0.982        | ['Sergei<br>Rachmaninoff',<br>'James Levine',<br>'Berli | 0.279        | 831667      | 0.211  | 0        |       |
| 1 | 1       | 0.9630  | 1921 | 0.732        | ['Dennis Day']                                          | 0.819        | 180533      | 0.341  | 0        |       |

# Model Designing:

#### → Model DF:

```
# The dataframe above seems to be too big for tsne to handle so I'm gonna reduce the number of rows based or
# Used for official model: model_df_with_names = data_main[data_main['popularity'] > 40].sample(9000, random
model_df_with_names = data_main[data_main['popularity'] > 40].sample(9000, random_state=42)
model_df_unnormalized = model_df_with_names.drop(columns = ['artists', 'song_id', 'name'])

model_df = model_df_unnormalized
model_df['duration_ms'] = (model_df['duration_ms'] - model_df['duration_ms'].mean()) / model_df['duration_ms
# model_df = (model_df_unnormalized - model_df_unnormalized.mean()) / model_df_unnormalized.std()
model_df
```

|       | valence | year | acousticness | danceability | duration_ms | energy | explicit | instrumentalness | key |
|-------|---------|------|--------------|--------------|-------------|--------|----------|------------------|-----|
| 90583 | 0.4250  | 2012 | 0.69300      | 0.615        | -0.730106   | 0.557  | 0        | 0.000000         | 8   |
| 38582 | 0.1390  | 2020 | 0.04350      | 0.764        | -0.383929   | 0.502  | 0        | 0.000000         | 5   |

#### ▼ PCA:

## ▼ Spectral Clustering model before t-SNE:

```
# The spectral clustering model
# spectral = SpectralClustering(n_clusters= 10, random_state = 42).fit(pca_reduced)
# Cluster labels
# spectral.labels_[:10]
# plt.hist(spectral.labels_)
```

# Choosing the best k:

```
# Taken from https://github.com/ciortanmadalina/high_noise_clustering/blob/master/spectral_clustering.ipynb
import scipy
from scipy.sparse import csgraph
# from scipy.sparse.linalg import eigsh
from numpy import linalg as LA
def eigenDecomposition(A, plot = True, topK = 5):
    """
    :param A: Affinity matrix
    :param plot: plots the sorted eigen values for visual inspection
    :return A tuple containing:
    - the optimal number of clusters by eigengap heuristic
    - all eigen values
    - all eigen vectors

This method performs the eigen decomposition on a given affinity matrix,
```

```
rorrowing the steps recommended in the paper:
   1. Construct the normalized affinity matrix: L = D-1/2AD^{-1/2}.
   2. Find the eigenvalues and their associated eigen vectors
   3. Identify the maximum gap which corresponds to the number of clusters
   by eigengap heuristic
   References:
   https://papers.nips.cc/paper/2619-self-tuning-spectral-clustering.pdf
   http://www.kyb.mpq.de/fileadmin/user upload/files/publications/attachments/Luxburg07 tutorial 4488%5b0%5
   L = csgraph.laplacian(A, normed=True)
   n_components = A.shape[0]
   # LM parameter : Eigenvalues with largest magnitude (eigs, eigsh), that is, largest eigenvalues in
    # the euclidean norm of complex numbers.
      eigenvalues, eigenvectors = eigsh(L, k=n_components, which="LM", sigma=1.0, maxiter=5000)
   eigenvalues, eigenvectors = LA.eig(L)
   if plot:
       plt.title('Largest eigen values of input matrix')
       plt.scatter(np.arange(len(eigenvalues)), eigenvalues)
       plt.grid()
   # Identify the optimal number of clusters as the index corresponding
   # to the larger gap between eigen values
    index_largest_gap = np.argsort(np.diff(eigenvalues))[::-1][:topK]
   nb_clusters = index_largest_gap + 1
   return nb_clusters, eigenvalues, eigenvectors
# optimal_k, _, _ = eigenDecomposition(spectral.affinity_matrix_)
# optimal k
# optimal_k, _, _ = eigenDecomposition(spectral_after_tsne.affinity_matrix_)
# optimal k
```

# Dimentionality Reduction: t-SNE

```
#dim reduc = TSNE(n components=2, perplexity=30, verbose=2, method='barnes hut', n iter = 500, random state=
dim reduc = TSNE(n components=2, perplexity=30, verbose=2, method='barnes hut', n iter = 500, random state=4
## Parameters
## n_components = number of dimensions you want your data to be reduced
## perplexity = Number of neighboours to fit the gaussian , normally 30
    [t-SNE] Computing 91 nearest neighbors...
    [t-SNE] Indexed 9000 samples in 0.016s...
    [t-SNE] Computed neighbors for 9000 samples in 0.157s...
    [t-SNE] Computed conditional probabilities for sample 1000 / 9000
    [t-SNE] Computed conditional probabilities for sample 2000 / 9000 \,
    [t-SNE] Computed conditional probabilities for sample 3000 / 9000
    [t-SNE] Computed conditional probabilities for sample 4000 / 9000
    [t-SNE] Computed conditional probabilities for sample 5000 / 9000
    [t-SNE] Computed conditional probabilities for sample 6000 / 9000
    [t-SNE] Computed conditional probabilities for sample 7000 / 9000
    [t-SNE] Computed conditional probabilities for sample 8000 / 9000
    [t-SNE] Computed conditional probabilities for sample 9000 / 9000
```

```
[t-SNE] Mean sigma: 10.447924
    [t-SNE] Computed conditional probabilities in 0.665s
    [t-SNE] Iteration 50: error = 88.4570923, gradient norm = 0.0276710 (50 iterations in 4.668s)
    [t-SNE] Iteration 100: error = 71.9435272, gradient norm = 0.0071518 (50 iterations in 3.294s)
    [t-SNE] Iteration 150: error = 66.8732300, gradient norm = 0.0055065 (50 iterations in 3.166s)
    [t-SNE] Iteration 200: error = 64.0362701, gradient norm = 0.0038939 (50 iterations in 3.098s)
    [t-SNE] Iteration 250: error = 62.1404572, gradient norm = 0.0033221 (50 iterations in 3.040s)
    [t-SNE] KL divergence after 250 iterations with early exaggeration: 62.140457
    [t-SNE] Iteration 300: error = 1.9775333, gradient norm = 0.0013072 (50 iterations in 3.145s)
    [t-SNE] Iteration 350: error = 1.3936312, gradient norm = 0.0006324 (50 iterations in 3.293s)
    [t-SNE] Iteration 400: error = 1.0951393, gradient norm = 0.0003801 (50 iterations in 3.341s)
    [t-SNE] Iteration 450: error = 0.9239067, gradient norm = 0.0002617 (50 iterations in 3.326s)
    [t-SNE] Iteration 500: error = 0.8146366, gradient norm = 0.0001945 (50 iterations in 3.293s)
    [t-SNE] KL divergence after 500 iterations: 0.814637
# Creating the dataframe to use in the more advanced visual tool
plot_tool_df = pd.DataFrame(dim_reduc).rename({0: 'x', 1: 'y'}, axis = 1)
# plot_tool_df['cluster'] = spectral.labels_
plot_tool_df
```

|      | x          | У          |
|------|------------|------------|
| 0    | 29.475552  | 13.745345  |
| 1    | -48.286602 | -4.050319  |
| 2    | -19.697844 | 10.872694  |
| 3    | -3.811779  | 48.944164  |
| 4    | 34.335938  | 8.841171   |
|      |            |            |
| 8995 | -27.986593 | 8.401427   |
| 8996 | -15.053980 | 15.359935  |
| 8997 | 6.647834   | 19.993357  |
| 8998 | 9.850985   | -48.479439 |
| 8999 | -1.939630  | 0.670322   |

9000 rows × 2 columns

```
# random state 42

x_axis= dim_reduc[:,0]
y_axis= dim_reduc[:,1]

plt.scatter(x_axis, y_axis, s=5)
plt.show() ## The plots vary each time you run them
```



## ▼ Spectral after t-SNE:

|      | x          | У          | cluster | artist                                           | song                        |
|------|------------|------------|---------|--------------------------------------------------|-----------------------------|
| 0    | 29.475552  | 13.745345  | 1       | ['Gyptian']                                      | Wine Slow                   |
| 1    | -48.286602 | -4.050319  | 11      | ['Future', 'Lil Uzi Vert']                       | Plastic                     |
| 2    | -19.697844 | 10.872694  | 4       | ['DJ Khaled', 'Drake', 'Rick Ross', 'Lil Wayne'] | No New Friends - SFTB Remix |
| 3    | -3.811779  | 48.944164  | 21      | ['Dave Koz', 'Chris Botti']                      | Love Is On The Way          |
| 4    | 34.335938  | 8.841171   | 1       | ['NEEDTOBREATHE']                                | HAPPINESS                   |
|      |            |            |         |                                                  |                             |
| 8995 | -27.986593 | 8.401427   | 8       | ['Joan Sebastian']                               | El Charro Viejo             |
| 8996 | -15.053980 | 15.359935  | 4       | ['Hans Zimmer']                                  | Homeland                    |
| 8997 | 6.647834   | 19.993357  | 18      | ['Big Mountain', 'Dave Way']                     | Lean on Me - Party Version  |
| 8998 | 9.850985   | -48.479439 | 9       | ['Bob Dylan']                                    | One More Cup of Coffee      |
| 8999 | -1.939630  | 0.670322   | 16      | ['Lady Gaga']                                    | You And I                   |
| 0000 |            |            |         |                                                  |                             |

9000 rows x 5 columns

```
\# Save the plot_tool_df just in case the PCA comes up with diff results
```

## → d3 Scatterplot tool:

```
# Create a tab separated file for visualization purposes

plot_tool_df.to_csv('dim_reduce.tsv', sep='\t', index=False)

https://colab.research.google.com/drive/1lNXY-IMhr1YGkWuRews9y0BOPeiWJt9W#scrollTo=1qZni3vrWB3n&printMode=true
```

<sup>#</sup> plot\_tool\_df.to\_csv('spectral\_model\_1.csv', index=False)

```
from google.colab.output import eval_js
from IPython.display import Javascript
!git clone https://github.com/CAHLR/d3-scatterplot.git
    Cloning into 'd3-scatterplot'...
    remote: Enumerating objects: 1022, done.
    remote: Total 1022 (delta 0), reused 0 (delta 0), pack-reused 1022
    Receiving objects: 100% (1022/1022), 1.91 MiB | 1.79 MiB/s, done.
    Resolving deltas: 100% (593/593), done.
def show_port(port, data_file, width=600, height=800):
 display(Javascript("""
  (async ()=>{
    fm = document.createElement('iframe')
   fm.src = await google.colab.kernel.proxyPort(%d) + '/index.html?dataset=%s'
   fm.width = '90%%'
   fm.height = '%d'
   fm.frameBorder = 0
   document.body.append(fm)
  })();
  """ % (port, data_file, height)))
port = 8000
height = 1600
data file = 'dim reduce.tsv'
get_ipython().system_raw('cd d3-scatterplot && python3 -m http.server %d &' % port)
show port(port, data file, height)
С→
```

