VI. Gitterschwingungen

- VI.1 Lineare Kette mit einatomiger Basis
 - VI.1.1 Näherungsannahmen
 - VI.1.2 Bewegungsgleichung & Ansatz ebener Wellen
 - VI.1.3 Dispersionskurve $\omega(k)$
 - VI.1.4 1. Brillouinzone
 - VI.1.5 Gruppengeschwindigkeit
- VI.2 Lineare Kette mit zweiatomiger Basis
- m M m M m M

m

m

m

m

- VI.2.1 Dispersionskurven: optischer & akustischer Zweig
- VI.2.2 Auslenkungsmuster des optischen Zweigs
- VI.2.3 Auslenkungsmuster des akustischen Zweigs
- VI.2.4 Verallgemeinerung: 3-dim. Kristall; N-atomige Basis
- VI.3 Quantisierung: Phononen
 - VI.3.1 Phononen-Impuls
- VI.4 Optische Eigenschaften im Infraroten
 - VI.4.1 Dielektrische Funktion
 - VI.4.2 Ausbreitung elektromagnetischer Wellen
 - VI.4.3 Einfluss der Bindungspolarität
- VI.5 Dispersionskurven verschiedener Materialien
 - VI.5.1 Messmethoden
 - VI.5.2 Beispiele Dispersionskurven
 - VI.5.3 Zahlenwerte Phononfrequenzen

Relevanz der Gitterschwingungen

genauer: Gitterauslenkungswellen

Gitterschwingungen entscheidend für viele FK-Eigenschaften:

- spezifische Wärme (Energie-Inhalt der Schwingungen)
- Wärmeleitfähigkeit (Ausbreitung der thermischen Auslenkungswellen)
- thermische Ausdehnung (anharmonisches Potential U(r))
- Schallausbreitung & elastische Wellen (siehe Kap. V.3.2)
- optisches Verhalten im Infrarotbereich (vgl. CO₂-Molekül: Treibhauseffekt)

zusätzlich (z.B. bei Metallen): Beiträge vom "freien Elektronengas", vgl. Vorlesung FK 1b

Grundlage für Gitterschwingungen:

lokale Auslenkung → Rückstellkraft

Elektronische Bindung: - Energie U = U(r)

- bei Atomauslenkung: Änderung der Elektronenzustände

=> andere optische, elektr., magnetische Eigenschaften

Gitterschwingungen sind mit elektronischen Eigenschaften gekoppelt

Konzept: getrennte Beschreibung der Atom- und Elektronenbewegung

weil Elektronen für jede Lage der Atome "beliebig" schnell den Zustand minimaler Energie einnehmen (wegen $m_{el} < 10^{-4} m_{Atom}$)

= Born-Oppenheimer-Näherung (adiabatische Näherung).

VI.1 Lineare Kette mit einatomiger Basis

Massenpunkte & elastische Federn

Modell geeignet für:

- eindimensionale Strukturen
- kubische Kristalle mit einatomiger Basis: Element-Kristalle (z.B. Metalle) Ausbreitung entlang hochsymmetrischer Richtungen,

z.B. <100>, <110>, <111> dann: Bewegung der Basisatome der Kette = Bewegung der Gitterebenen

VI.1.1 Näherungsannahmen

- elastische Auslenkung, d.h. Hooke'scher Bereich Rückstellkraft $F = -D \cdot u$ bzw. Energie $U \sim u^2$ u^3 -Terme irrelevant bei kleinen Auslenkungen,
- betrachte vorerst nur Wechselwirkung nächster Nachbarn,
 d.h. vernachlässige langreichweitige Wechselwirkungen

dann: Kraft auf Atom s (bzw. Ebene s) nur durch Atome (bzw. Ebenen) s -1 und s+1

aber wichtig bei hohen Temperaturen → thermische Ausdehnung

longitudinal $F_s = D(u_{s-1} - u_s) + D(u_{s+1} - u_s)$ D: effektive Kraftkonstante

transversal $F_s = D'(u_{s-1} - u_s) + D'(u_{s+1} - u_s)$ i.a. Kraftkonstante $D' \neq D$ lineare Kette: D' < D!

VI.1.2 Bewegungsgleichung & Ansatz ebener Wellen

```
longitudinal: Rückstellkraft F_s = D (u_{s-1} - u_s) + D (u_{s+1} - u_s)

\rightarrow Bewegungsgleichung: m \cdot d^2u_s/dt^2 = D (u_{s+1} + u_{s-1} - 2u_s) (transv.: analog, D´)

Ansatz: ebene Welle: u(x,t) = u_0 \cdot \exp(-i (\omega t - k x)) x_s = s \cdot a \quad x_{s\pm 1} = (s\pm 1) \cdot a Atome = diskrete x-Werte d.h. u_s = u_0 \cdot \exp(-i \omega t) \cdot \exp(i s k a) u_{s\pm 1} = u_0 \cdot \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(\pm i k a)

Einsetzen in Bewegungsgleichung, ...... (Übungen)

Lösung: \omega^2 = (4 D / m) \cdot \sin^2(k \cdot a/2)
```

VI.1.2 Bewegungsgleichung & Ansatz ebener Wellen

(negative ω-Werte physikalisch sinnlos).

(negative ω-Werte physikalisch sinnlos).

```
longitudinal: Rückstellkraft F_s = D (u_{s-1} - u_s) + D (u_{s+1} - u_s)

\rightarrow Bewegungsgleichung: m \cdot d^2 u_s / dt^2 = D (u_{s+1} + u_{s-1} - 2u_s) (transv.: analog, D´)

Ansatz: ebene Welle: u(x,t) = u_0 \cdot \exp(-i (\omega t - k x)) x_s = s \cdot a \quad x_{s\pm 1} = (s\pm 1) \cdot a Atome= diskrete x-Werte d.h. u_s = u_0 \cdot \exp(-i \omega t) \cdot \exp(i s k a) u_{s\pm 1} = u_0 \cdot \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(\pm i k a)

Einsetzen in Bewegungsgl. ergibt: -m \cdot \omega^2 \cdot u_0 \exp(-i \omega t) \cdot \exp(i s k a) = 0 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) + \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot \exp(-i k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(i s k a) \cdot 2 u_0 \exp(-i \omega t) \cdot \exp(-i \omega t) \cdot 2 u_0 \exp(-i \omega t) \cdot 2
```

VI.1.3 Dispersionskurve

Dispersions relation $\omega(k) = (4 D / m)^{1/2} \cdot |\sin(k \cdot a / 2)|$

 $\omega = 0$ für k = 0 $\lambda = \infty$, d.h. lediglich Verschiebung der gesamten Kette

für kleine k-Werte: sin ka/2 ≈ ka/2 → linearer Verlauf
(λ » a, d.h. Kristall ~ Kontinuum → elastische Wellen (Kap.V.3))

Maximalwert für k a / 2 = $\pm \pi$ / 2, d.h. k = $\pm \pi$ / a ω ($\pm \pi$ / a) = (4 D / m)^{1/2} d ω / dk = 0

 $k = \pm \pi / a$: Rand der 1. Brillouinzone

(Gruppengeschwindigkeit = 0)

Physikalisch relevanter Bereich der Dispersionskurve ist 1. Brillouinzone.

VI.1.4 1. Brillouinzone (1. BZ)

1. BZ (k-Bereich |k| $\leq \pi/a \equiv k_{BZ}$) beinhaltet alle ω -Werte der Dispersionskurve

wg. Wellenvektor k = $2\pi/\lambda$: Wellenlängenbereich der 1. BZ: $\lambda \ge 2a$

bei Kette mit Periodizität a:

λ-Werte ≥ 2a beschreiben **alle** möglichen Auslenkungsmuster der Atome, weil alle x-Werte irrelevant außer Positionen der Atome ($x_s = s \cdot a$)

äquivalente Beschreibungen der Atompositionen durch k und k + n·2π/a

1. Brillouinzone enthält alle unabhängigen k-Werte.

Äquivalenz von k und k + n·2π/a:

Rechnerischer Beweis

bei Wellenlänge λ: Phase $\varphi(x) = 2\pi \cdot x / \lambda = k \cdot x$

 $\Delta \phi = \phi_{s+1} - \phi_s = k \cdot \Delta x = k \cdot a$ Phasendifferenz $\Delta \phi$ benachbarter Atome in Kette:

Verhältnis der Auslenkungen benachbarter Atome: $u_{s+1}/u_s = \exp(ika)$

 $\exp(ika) = \exp(i(ka \pm n 2\pi)) = \exp(i(k \pm n 2\pi/a)\cdot a)$: wegen ergeben die Wellenvektoren k und $k \pm n \cdot 2\pi/a$ **am Ort der Atome** (d.h. bei $x = m \cdot a$) identische Auslenkungen.

1. Brillouinzone $(-\pi/a \le k \le \pi/a)$ enthält alle *unabhängigen* k-Werte

Durch Addition bzw. Subtraktion reziproker Gittervektoren $n \cdot 2 \pi/a$ (= Verschiebung) erhalten alle möglichen Wellenvektoren k ein Äquivalent in der 1. BZ, welches die Atomauslenkungen identisch beschreibt. Wird in der Literatur (fast) immer als "Rückfaltung" ("backfolding") bezeichnet.

für Wellen am Rand der 1. BZ:

$$k = \pm \pi / a \rightarrow \lambda = 2 a$$

stehende Welle

$$u_{s+1}/u_s = \exp(i k a) = \exp(\pm i \pi) = -1$$

benachbarte Atome (bzw. Ebenen) bewegen sich gegenphasig

VI.1.5 Gruppengeschwindigkeit v_G = Geschwindigkeit eines Wellenpakets = Geschwindigkeit des Energietransports

$$v_g \equiv d\omega / dk$$
 $(v_{Ph} = \omega / k)$

hier:
$$\omega(k) = (4 D / m)^{1/2} \sin(k a / 2)$$

 $\rightarrow v_a = (D a^2 / m)^{1/2} \cos(k a / 2)$

am Rand der BZ:
$$k = \pi / a$$
 $v_g = 0$

stehende Welle

$$v_{0} = (D / m)^{1/2} \cdot a$$

$$v_g = v_{Ph}$$

langwelliger Grenzfall ~ Kontinuumsmechanik.

Zu Phasen und Gruppengeschwindigkeit siehe (z.B.) http://vento.pi.tu-berlin.de/STROEMUNGSAKUSTIK/APPLETS/applets/gruppe.html

Äquivalenz von k und k + n·2π/a

Frage: Sind beide Wellen auch *zu späteren Zeiten* an den Atomorten deckungsgleich? Evt. Zweifel möglich, weil Welle 2 viel steilere Flanken hat.

Antwort: Welle 2 hat entsprechend geringere Phasengeschwindigkeit $v_{Ph} = \omega/k$ Daher bleiben beide Wellen an den Atomorten für alle Zeiten deckungsgleich. Gruppengeschwindigkeit $v_{Gr} = \partial \omega/\partial k$ hat für k_1 und k_2 den gleichen Wert.

VI.2 Lineare Kette mit zweiatomiger Basis

Bsp: Verbindungen (NaCl)

Auslenkungen: u, v

Kräfte

bei NN-WW:
$$F_{m,s} = C(v_s - u_s) + C(v_{s-1} - u_s) = C(v_s + v_{s-1} - 2u_s) = md^2u_s/dt^2$$

 $F_{M,s} = C(u_{s+1} - v_s) + C(u_s - v_s) = C(u_{s+1} + u_s - 2v_s) = Md^2v_s/dt^2$

Ansatz ebener

Wellen:
$$u_s = u_0 \cdot \exp(-i \omega t) \cdot \exp(i s k a)$$
; $v_s = v_0 \cdot \exp(-i \omega t) \cdot \exp(i s k a)$
d.h. gleiche Frequenz ω für M und m; unabh. Amplituden u_0 und v_0

$$\rightarrow -m\omega^2 \mathbf{u} = \mathbf{C} \left[1 + \exp\left(-\mathrm{i}k\mathbf{a} \right) \right] \mathbf{v} - 2\mathbf{C} \mathbf{u}$$

$$-\mathbf{M}\omega^2 \mathbf{v} = \mathbf{C} \left[\exp\left(\mathrm{i}k\mathbf{a} \right) + 1 \right] \mathbf{u} - 2\mathbf{C} \mathbf{v}$$

$$\left(-C(1 + e^{-ika}) - C(1 + e^{-ika}) \right) \left(\mathbf{u} \right) = 0$$

VI.2.1 Dispersionskurven $\omega(k)$

 $\begin{vmatrix} 2C - \omega^2 m & -C(1 + e^{-ika}) \\ -C(1 + e^{ika}) & 2C - \omega^2 M \end{vmatrix}$ Nicht-triviale Lösungen des Gl.-Systems: Det = 0:

 $Mm\omega^4 - 2C(M+m)\omega^2 + 4C^2 - C^2(2 + \exp(-iak) + \exp(iak)) = 0$

 $Mm\omega^4 - 2C(M+m)\omega^2 + 2C^2(1-\cos(ka)) = 0$

Mit * =>
$$\omega^2 = \frac{C(M+m)}{m \cdot M} \pm \sqrt{\frac{C^2(M+m)^2}{M^2 m^2} - \frac{2C^2(1-\cos ka)}{mM}}$$

Grenzwerte:

(i) Zentrum a) "+"-Term bei k=0: optischer Zweig ᢏ der BZ: $\omega^2 = 2C (1/M + 1/m)$

optisch anregbar (s.u.)

b) "-"-Term bei ka«1: ** akustischer Zweig ← elastische Welle = Schallwelle (Kap. V.3) $\omega^2 = C k^2 a^2 / 2 (M+m)$

(ii) Rand der BZ: a) "+"-Term: ω^2 = 2C/m optischer Zweig

für $2C/M < \omega^2 < 2C/m$: Frequenzlücke

 $ka = \pi$ b) "-"-Term: $\omega^2 = 2C/M$ akustischer Zweig

Transversale Wellen analog zu den longitudinalen, aber i.a. mit Kraftkonst. C'≠ C

T- optisch: TO T-akust: TA L-opt.: LO L-akust: LA

* $ax^2+bx+c=0 \rightarrow x = (-b\pm(b^2-4ac)^{\frac{1}{2}})/2a = -b/2a \pm (b^2/4a^2 - c/a)^{\frac{1}{2}}$ ** $x \ll 1 \rightarrow \cos x \approx 1 - \frac{1}{2} x^2 \text{ und } (1-x)^{\frac{1}{2}} \approx 1-x/2$

VI.2.2 Auslenkungsmuster des optischen Zweigs

bei $k \rightarrow 0$ ergibt das Gl-System:

u/v = -M/m

Atome der Basis schwingen gegenphasig Schwerpunkt in Ruhe, aber Basisverzerrung longitudinal

transversal

 $k \to 0$ d.h. $\lambda \to \infty$

→ im 3-dim: Schwingung der unverzerrten Untergitter gegeneinander

maximale Dehnung der Bindungen → höchste Frequenz der Dispersionskurve bei (teilweise) polarer Bindung: → Dipolmoment wg. Basisverzerrung

d.h. optisch anregbar

bei k ≠ 0

für transversale Auslenkung:

stehende Welle bei $k = \pi/a$: $\lambda = 2a$ Untergitter M in Ruhe, Untergitter m schwingt

VI.2.3 Auslenkungsmuster des akustischen Zweigs

ω LO TA K

<u>bei</u> k = 0 λ = ∞, d.h. keine Verformung, nur Verschiebung

bei k ≠ 0

beide Atomsorten schwingen in Phase im 3-dim: beide Untergitter in Phase

für transversale Auslenkung:

bei $k = \pi/a$: $\lambda = 2a$ stehende Welle Untergitter m in Ruhe, Untergitter M schwingt komplementäres Verhalten zum opt. Zweig

wg. m < M: ω_{akust} < ω_{opt}

<u>Anm.:</u> finden Sie die Analogie zu Elektronenbändern mit ihren Lücken am Zonenrand!

VI.2.3 Auslenkungsmuster des akustischen Zweigs

<u>bei k = 0</u> $\lambda = \infty$, d.h. keine Verformung, nur Verschiebung

bei k ≠ 0

beide Atomsorten schwingen in Phase im 3-dim: beide Untergitter in Phase

für transversale Auslenkung:

Rückstellkraft wg. Gradienten der Auslenkung:

 $\Delta u/\Delta s, \ \Delta v/\Delta s \ \rightarrow \ im \ akust. \ Zweig \ \omega \sim k \ für \ ka \ll 1$

vgl. optischen Zweig: Rückstellkraft im wesentlichen wg. Basisverzerrung u_s - v_s \rightarrow im optischen Zweig nur schwache k-Abhängigkeit

bei $k = \pi/a$: $\lambda = 2a$ stehende Welle

Untergitter m in Ruhe, Untergitter M schwingt

komplementäres Verhalten zum opt. Zweig

wg. m < M: ω_{akust} < ω_{opt}

SS 2008 nicht gezeigt

bisher: 2 unterschiedliche Massen m, M und feste Federkonstante C analog: feste Masse m und 2 alternierende Federkonstanten C₁ und C₂

VI.2.4 Verallgemeinerung: 3-dim. Kristall; N-atomige Basis

bisher: lineare Kette mit 2-atomiger Basis

<u>In 3 Dim.:</u> pro Atom: 3 mögliche Auslenkungsrichtungen u, v in x, y, z-Richtung

→ 6 mögliche Basiskonfigurationen

davon 3 mit "un"verzerrter Basis (u \approx v) 3 akustische Zweige LA, 2TA 3 mit Basisverzerrung (u \approx -v) 3 optische Zweige LO, 2TO

<u>Jetzt:</u> 3-dimensionaler Kristall mit N-atomiger Basis:

(i) 3 N mögliche Basiskonfigurationen (Auslenkung jedes Atoms in x,y,z)

davon 3 mit "un"verzerrter Basis 3 akustische Zweige LA, 2TA 3N-3 mit Basisverzerrung 3N-3 opt. Zweige (N-1) x (LO, 2TO)

- (ii) i.a. für jede Ausbreitungsrichtung unterschiedliche $\omega(k)$ -Beziehung wg. Richtungsabhängigkeit der Kraftkonstanten (z.B. in kub. Krist. ABER gleiche $\omega(k)$ -Bez. für *äquivalente* Richtungen [100], [010], [001])
- (iii) für akustische Phononen und kleine k: v_s = Steigung von $\omega(k)$ (Phononen und elastische Wellen identisch)
- (iv) am Rand der BZ: stehende Wellen d.h. je ein Atom in Ruhe und "verbotene Zone" ("Bandlücke") für ω

VI.3 Quantisierung: *Phononen* (wörtlich: "Phonon" = "Schallquant")

Phononen-Energie

bekannt: "Photon" = Lichtquant = Energiequant einer Lichtwelle

Quantisierung = *Diskretisierung* der möglichen Amplitudenwerte

des E- und B-Feldes

analog: "Phonon" = Energiequant einer Gitterauslenkungswelle

Quantisierung = *Diskretisierung* der möglichen Amplitudenwerte

der atomaren Auslenkung,

d.h. der harmonischen Schwingung

Quantenmechanik: für harmonischen Oszillator

Energie $E = \hbar \omega (n + \frac{1}{2})$

Besetzungs- Nullpunktszahl energie

Thermische Schwingungen im Festkörper Elastische Wellen im Festkörper

Angeregte Phononen

Phononen-Impuls

führt Wellenvektor \mathbf{k} zu einem Impuls $\mathbf{p} = \hbar \mathbf{k}$?

Phonon hat keinen reellen physikalischen Impuls,

weil Summe der Auslenkungen, bzw. $\partial u/\partial t$, $\partial v/\partial t$ über den gesamten Kristall = 0

(Ausnahme: akustische Phononen für $k \to 0$, entspricht Translation)

ABER: Wellenvektor k bestimmt relative Phase der Atomauslenkungen

Relevant für Wechselwirkungsprozesse,

z.B. Anregung von Phonon durch Lichtwelle (= Lichtabsorption)

Absorption der Energie aus Lichtwelle (ω , k) durch Atomauslenkungswelle (ω ', k') funktioniert <u>nur</u>, wenn sowohl die Frequenz passt (d.h. ω '= ω), als auch die *Phasen* von E-Feld und Atomauslenkungswelle *für alle Atome* übereinstimmen, d.h. auch die Wellenvektoren **k** und **k**' müssen gleich sein.

Analogon zur Energie- und Impulserhaltung

→ sinnvolle Def.: Quasi-Impuls = ħk

außerdem: weil k nur eindeutig bis auf \pm n·2 π /a: \hbar k ~ \hbar k \pm n· \hbar 2 π /a d.h. für Quasi-Impulserhaltung: statt $\mathbf{k}' = \mathbf{k}$ ergibt sich: $\mathbf{k}' = \mathbf{k} + \mathbf{G}$.

VI.4 Optische Eigenschaften im Infraroten ionischer Kristall + IR-Strahlung \rightarrow Anregung Gitterschwingungen d.h. Absorption (& Reflexion) Bewegungs-Gl. für 2-atomige Kette: $-m\omega^2 u = C \left[1 + \exp\left(-ika\right)\right] v - 2C u$ ionischer Kristall + IR-Strahlung \rightarrow Anregung Gitterschwingungen d.h. Absorption (& Reflexion) Bew.-Gl. nahe k= 0 Wellenlängen (IR): $-m\omega^2 u = 2C v - 2C u$

$$-M\omega^{2}v = C \text{ [exp (ika) + 1] } u - 2C v$$

$$\sim 10\mu\text{m} = \lambda_{\text{IR}} \gg 0,5 \text{ nm} = a$$

$$\text{lineare Kette mit Ladungen } \pm e$$

$$\text{unter Infrarotstrahlung}$$

$$\text{mit E-Feld } E_{0} \cdot \text{exp (-i\omega t)}$$

$$-m\omega^{2}u = 2C (v - u) + e E (i)$$

$$-M\omega^{2}v = 2C (u - v) - e E (ii)$$

$$\text{mit } \mu^{-1} = m^{-1} + M^{-1} \text{ Resonanz-Nenner}$$

Rel. Verschiebung \rightarrow Polarisation P der Ladungen \pm e = Dipolmoment / Volumen Resonanz bei TO-Frequenz, weil Licht transversale Welle $P(\omega) = N \cdot e \cdot (u - v)$ $= (Ne^2/\mu) \cdot (\omega_T^2 - \omega^2)^{-1} \cdot E(\omega) \equiv \epsilon_0 \chi(\omega) \cdot E(\omega)$ Def. der Suszeptibilität χ mit N = Anzahl der \pm -Ladungen / Volumen $\rightarrow \chi(\omega) = (Ne^2/\epsilon_0 \mu) \cdot (\omega_T^2 - \omega^2)^{-1}$

VI.4.1 Dielektrische Funktion $\varepsilon(\omega)$ für nichtleitende Materialien

E = Stärke des lokalen elektrischen Feldes

eines Oszillators - für $\omega < \Omega$: $\chi(\omega) > 0$ Phasensprung $- \text{für } \omega < \Omega$: $\chi(\omega) > 0$ Phasensprung $- \text{für } \omega > \Omega$: $\chi(\omega) \to \pm \infty$ Resonanz Federpendel: $\Omega = (k / m)^{1/2}$

- für $\omega \rightarrow \infty \colon \ \chi(\omega) \rightarrow 0$ Ladungsoszillatoren im FK:

(i) Gitteratome m_{Atom} (ii) Valenzelektronen $m_{El.}$ $m_{At.} \approx 10^4 \cdot m_{El.} \rightarrow \Omega_{At.} \approx 10^{-2} \cdot \Omega_{El}$ (Fern)-Infrarot sichtbar, UV $\Omega \leq 3 \cdot 10^{14} \, \mathrm{s}^{-1}$ $\Omega \approx 10^{15} \cdots 10^{16} \, \mathrm{s}^{-1}$

VI.4.2 Ausbreitung elektromagnetischer Wellen im IR

dielektrische Funktion $\varepsilon(\omega)$ entscheidend für Ausbreitung von elektromagn. Wellen im FK

Absorption: $\delta ext{-Peak}$ bei ω_{TO}

im Bereich n imaginär wo $\epsilon(\omega) < 0$: \rightarrow keine EM-Wellenausbreitung Reflexion $R(\omega) = 1$

für $\epsilon(\omega) > 0$: n reell \rightarrow EM-Wellenausbreitung möglich

Fresnel-GI. für \perp Einfall: $R(\omega) = (n(\omega) - 1)^2/(n(\omega) + 1)^2$ $R(\omega=0) = 1-2/\epsilon(0)^{\frac{1}{2}}$ $R(\omega) = 1-2/\epsilon(\infty)^{\frac{1}{2}} < R(\omega=0)$ $R(\omega) = 0$ für $\epsilon(\omega) = 1$

EM-Wellen = Transversalwellen wg. Maxwell-Gl. div $\mathbf{D} = \operatorname{div} \, \epsilon_0 \epsilon \, \mathbf{E} = 0$ Longitudinalwellen nur möglich bei $\epsilon(\omega) = 0$

für $\epsilon(\omega) = 0 \rightarrow \mathbf{D} = 0$, d.h. div $\mathbf{D} = 0$

 $\epsilon(\omega)$ = 0 bei ω_{LO} R = 1 für $\omega_{TO} < \omega \le \omega_{LO}$ "Reststrahlenbande".

VI.4.3 Einfluss der Bindungspolarität

bisherige Annahme : vollständig ionische Bindungen (nie ganz erfüllt) in Kap. VI.4 $\rightarrow P(\omega) = N \cdot e \cdot (u - v)$

tatsächlich teil-ionische Bindungen für III-V, II-VI

I-VII II-VI III-V IV abnehmende Bindungspolarität

quantitativ: effektive Ladung e* mit $0 \le e^* \le e$ z.B. $e^*_{ZnSe} > e^*_{GaAs}$

 \rightarrow P(ω) = N ·e*· (u-v) d.h. bei Abnahme von e* geringere Oszillatorstärke von χ_{At}

Folgen: (i) Abnahme von $\epsilon(0)$ - $\epsilon(\infty)$ "Schrumpfen" des Oszillators

quantitativ: $\varepsilon(0) / \varepsilon(\infty) = (\omega_{LO})^2 / (\omega_{TO})^2$ Lyddane-Sachs-Teller - Beziehung (FK2)

für Gruppe IV-Elemente: kovalente Bindungen, d.h. e* ≈ 0 \rightarrow Oszill.-Stärke $\rightarrow 0$ $\omega_{LO} \rightarrow \omega_{TO}$

<u>beachte:</u> Alle Überlegungen aus Kap. VI.4 gelten für $k \approx 0$, d.h. im Zentrum der BZ, weil für (F)-IR-Wellen $\lambda \gg \mu m$, d.h. Wellenvektor $k \ll a$.

Bsp. Infrarot-Reflexionsvermögen

verschiedene III-V-Halbleiter

x-Achse: Wellenzahl = $1/\lambda$ [cm⁻¹] = v/c= hv/hc

Bereich hoher Reflexion

≡ "Reststrahlenbande"

Lage → Atommassen, Bindungsstärke

Breite → Bindungspolarität

VI.5 Dispersionskurven verschiedener Materialien VI.5.1 Meßmethoden

(i) IR-Absorption Gesami

<u>Gesamt</u>energie und -Impuls von IR-Photon wird an Gitterschwingung übertragen.

Vorteil: Coulomb-WW, d.h. starke WW für polare Materialien

 $\omega_{IR} = \omega_{Schw.}$

bei Absorption:

Nachteil: a) keine WW für kovalente Bindungen

 $\mathbf{k}_{\mathsf{IR}} = \mathbf{k}_{\mathsf{Schw}}$

b) nur Zentrum der BZ erreichbar: $k_{IR-Photon} < 0,001 \pi/a$

(ii) Neutronenstreuung inelastisch

Neutron überträgt <u>Teil</u> seiner Energie und seines Impulses an Gitterschwingung im Kristall

Vorteil: gesamte Brillouinzone

erreichbar

Nachteil: sehr schwache WW

→ großes Probenvolumen erforderlich

Übertrag:

$$\Delta E = E - E' = \hbar \omega_{Schw.}$$

$$\Delta p = p - p' = \hbar k_{Schw.}$$

(iii) Elektronenstreuung, Elektron (He) überträgt <u>Teil</u> seiner Energie und seines He-Streuung, inelastisch Impulses an Gitterschwingung im Kristall (Oberfl.-Atome)

Vorteil: gesamte Brillouinzone erreichbar starke WW → Oberflächenphononen

$$\Delta E = E - E' = \hbar \omega_{Schw.}$$

 $\Delta p = p - p' = \hbar k_{Schw.}$

(iv) inelastische Lichtstreuung Ramanstreuung Lichtquant im sichtbaren Bereich ($E \approx 1,5 \cdot \cdot 3 \text{ eV}$) überträgt **Teil** seiner Energie und seines Impulses an Gitterschwingung im Kristall

Vorteil:

auch für kovalente Bindungen

Nachteil:

- a) oft ziemlich schwache WW
- b) nur Zentrum der BZ erreichbar

Übertrag:

$$\Delta \omega = \omega - \omega' = \omega_{Schw}$$

$$\Delta \mathbf{k} = \mathbf{k} - \mathbf{k}' = \mathbf{k}_{Schw.}$$

$$k_{vis-Photon} < 0.03 \pi/a$$

(v) inelastische Röntgenstreuung (NEU!) Lichtquant im Röntgenbereich (E ≈ 5 ·· 15 keV) überträgt *Teil* seiner Energie und seines Impulses an Gitterschwingung im Kristall

Vorteil: auch für kovalente Bindungen

gesamte Brillouinzone erreichbar

Nachteil: relativ schwache WW

hoher experimenteller Aufwand

Übertrag: $\Delta \omega = \omega - \omega' = \omega_{Schw}$.

 $\Delta k = k - k' = k_{Schw}$

(Messung von wenigen meV Energieverlust bei 10 keV Strahlung! Synchrotronstrahlung mit vielen experimentellen Tricks!!)

VI.5.2 Beispiele: Dispersionskurven

Experimentelle Daten aus Neutronen- oder Röntgenstreuung.

В

ΑI

Ga

Zn

C

Si

Ge

N

P

0

S

Se

CI

Br

VI.5.3 Zahlenwerte: Phononfrequenzen

hier: Werte bei k = 0, d.h. im Zentrum der BZ bestimmt mittels IR- und Ramanspektroskopie

Co	dTe	ZnSe		Cd	In	Sn	Sb	Те	1
•									
III-V	TO LO	Sb	TO LO GaAs						
Gr. IV			l Ge				ı	Si	
									_
	20	30	40	50		6	60 f	'nω (m	eV)

- Trends: (i) in Gruppe IV $\omega_{LO} = \omega_{TO} \ \ \, \text{wg. kovalenter Bindung}$ keine zusätzliche E-Feldkräfte für LO in Verbindungen $\omega_{LO} > \omega_{TO}$
 - (ii) Abnahme der Frequenz mit zunehmender Masse (vgl. $\omega = (k/\mu)^{1/2}$)
 - (iii) mit steigender Polarität (III-V \rightarrow II-VI): Zunahme Abstand $\,\omega_{LO}$ $\,\omega_{TO}$