

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2017

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 29 pages. *Hierdie nasienriglyne bestaan uit 28 bladsye.*

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

	GEOMETRY				
G	A mark for a correct statement (A statement mark is independent of a reason.)				
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede.)				
n	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)				
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is.)				
6/D	Award a mark if the statement AND reason are both correct.				
S/R	Ken 'n punt toe as beide die bewering EN rede korrek is.				

Time for 100 m sprint (in seconds) Tyd vir 100 m-naelloop (in sekondes)	10,1	10,2	10,5	10,9	11	11,1	11,2	11,5	12	12	12,2	12,5
Distance of best long jump (in metres) Afstand van beste sprong in verspring (in meter)	8	7,7	7,6	7,3	7,6	7,2	6,8	7	6,6	6,3	6,8	6,4

1.1	a = 14,343 = 14,34 b = -0,642 = -0,64	✓✓ value of a ✓ value of b
		(3)
1.2	y = 14,34 - 0,64(11,7)	✓ substitution correctly
	= 6,85	✓ answer
	OR/OF	(2)
	y = 6.83 (calculator / sakrekenaar)	✓✓answer
	y = 0.03 (Calculator / Sukrekendur)	(2)
1.3	The gradient increases / Die gradient neem toe	✓ increases/neem toe
	The point (12,3; 7,6) lies some distance above the current data.	✓ reasoning in words/
	/Die punt (12,3 ; 7,6) lê bokant die huidige data.	redenasie in woorde
		(2)
		[7]

12	13	13	14	14	16	17	18	18	18	19	20
21	21	22	22	23	24	25	27	29	30	36	

2.1.1	$\overline{x} = \frac{472}{23}$	$\checkmark \frac{472}{23}$
	$\bar{x} = 20,52$ seconds / sekonde	✓ answer
		(2)
2.1.2	$Q_1 = 16$	✓ Q ₁
	$Q_3 = 24$	✓ Q ₃
	$IQR/IKO = Q_3 - Q_1$	
	= 24 - 16 = 8	✓ answer
		(3)
2.2	20,52 + 5,94 = 26,46	✓ 26,46
	∴ > 26,46	
	∴ 4 girls/dogters	✓ answer
	4 giris/dogiers	(2)
2.3		
2.3		✓ whiskers ending at 12 & 36
	•	\checkmark Q ₁ = 16 & Q ₃ = 24 (box)
		$\sqrt{Q_1 - 10 \text{ at } Q_3 - 24 \text{ (box)}}$ $\sqrt{Q_2 = 20}$
		V Q2 - 20
	12 14 16 18 20 22 24 26 28 30 36	(3)
2.4.1	Girls / Meisies	✓ answer (1)
2.4.2	Five-number summary of boys: (15; 21; 23,5; 26; 38)	
	None of the boys / Nie een van die seuns nie	✓ answer
	5 girls completed in less than 15 seconds which was the	✓ reason/rede
	minimum time taken by the boys.	
	5 meisies voltooi in minder as 15 sekondes, wat die	
	minimumtyd is wat die seuns geneem het.	(2)
	minimumiya is wai are seams geneem nei.	[13]

3.1.1
$$m_{FC} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{3\frac{1}{2} - (-4)}{3 - 8}$$

$$= -\frac{3}{2}$$

$$y = mx + c$$

$$y = -\frac{3}{2}x + c$$

$$-4 = -\frac{3}{2}(8) + c$$

$$c = 8$$

$$y = -\frac{3}{2}x + 8$$

2.1.2	$m_{FC} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-4) - \left(3\frac{1}{2}\right)}{8 - 3}$ $= -\frac{3}{2}$ $y = mx + c$ $3\frac{1}{2} = -\frac{3}{2}(3) + c$ $c = 8$ OR/OF $\left(y - 3\frac{1}{2}\right) = -\frac{3}{2}x + \frac{9}{2}$ $y = -\frac{3}{2}x + 8$ $y = -\frac{3}{2}x + 8$ $y = -\frac{3}{2}x + 8$	✓ substitution of $(8; -4)$ & $(3; 3\frac{1}{2})$ ✓ gradient ✓ substitution of m and $(3; 3\frac{1}{2})$ ✓ equation of AC (4)
3.1.2	AC: $3x + 2y = 16$ and BG: $7x - 10y = 8$ 15x + 10y = 80 $\frac{7x - 10y = 8}{22x = 88}$ x = 4 3(4) + 2y = 16 y = 2 \therefore G(4; 2) OR/OF	 ✓ method /metode: solving simultaneously / los gelyktydig op ✓ x coordinate (x > 0) ✓ y coordinate (3)
	BG: $7x - 10y = 8$ $\therefore y = \frac{7}{10}x - \frac{8}{10}$ $\therefore \frac{7}{10}x - \frac{8}{10} = -\frac{3}{2}x + 8$ [CA from 3.1.1] $\frac{11}{5}x = \frac{44}{5}$ x = 4 3(4) + 2y = 16 y = 2 \therefore G(4; 2)	 ✓ method: equating metode: stel vgls gelyk ✓ x coordinate (x > 0) ✓ y coordinate (3)
3.2	$\frac{x_A + 4}{2} = 3 \text{ and } \frac{y_A + 2}{2} = 3\frac{1}{2}$ $\therefore A(2; 5)$ OR/OF by translation/deur translasie: $x_A = 3 - (4 - 3) = 2$ $y_A = 3\frac{1}{2} + (3\frac{1}{2} - 2) = 5$ $\therefore A(2; 5)$	✓ equation ito x ✓ equation ito y ✓ equation ito x ✓ equation ito y (2)

3.3	The coordinates of the midpt of AB / Die koordinaat van
	midpt van AB is:

$$\left(\frac{2+(-6)}{2}; \frac{5+(-5)}{2}\right) = (-2; 0)$$

But the y-coordinate of E is 0

- \therefore E(-2; 0) is the midpoint of AB
- ∴ EF || BG [midpoint theorem/middelpuntst OR/OF] line divides 2 sides of Δ in prop/lyn verdeel 2 sye van Δ in dies verh
- ✓ subst A & B into midpt formula
- \checkmark v coordinate = 0
- \checkmark E = midpt
- ✓ Reason

(4)

OR/OF

The coordinates of the midpt of AB / Die koordinaat van midpt van AB is:

$$\left(\frac{2+(-6)}{2}; \frac{5+(-5)}{2}\right) = (-2; 0)$$

AE =
$$\sqrt{(-2-2)^2 + (0-5)^2} = \sqrt{41}$$

EB = $\sqrt{(-2-(-6))^2 + (0-(-5))^2} = \sqrt{41}$

- \therefore In \triangle ABG: **AE** = **EB** and AF = FG
- ∴ EF || BG [midpoint theorem/middelpuntst]
- ✓ subst A & B into midpt formula
- ✓ lengths of AE & EB
- \checkmark AE = EB or E = midpt
- ✓ Reason

(4)

OR/OF

Equation of AB:

$$y - (-5) = \left(\frac{5 - (-5)}{2 - (-6)}\right)(x - (-6))$$
$$y + 5 = \frac{10}{8}x + \frac{15}{2} \qquad \therefore y = \frac{5}{4}x + \frac{5}{2}$$

x-intercept of AB:

$$0 = \frac{5}{4}x + \frac{5}{2} \quad \therefore x = -2$$

$$\therefore E(-2;0)$$

$$m_{\rm EF} = \frac{3\frac{1}{2} - 0}{3 - (-2)} = \frac{7}{10}$$

$$m_{\rm EF}=m_{\rm BG}=\frac{7}{10}$$

∴ EF || BG

$$m_{EF} = \frac{3\frac{1}{2} - 0}{3 - (-2)} = \frac{7}{10}$$

$$BG: 7x - 10y = 8$$

$$\therefore y = \frac{7}{10}x - \frac{8}{10}$$

$$\therefore m_{\rm BG} = \frac{7}{10}$$

✓ equation of AB

✓ coordinates of E

✓ gradient of EF

✓ gradient EF = gradient BG

(4)

NSC/NSS - Marking Guidelines/Nasienriglyne

3.4

Midpoint of AC = $\left(5; \frac{1}{2}\right)$

$$\frac{x_D + (-6)}{2} = 5$$
 and $\frac{y_D + (-5)}{2} = \frac{1}{2}$
 $\therefore D(16; 6)$

(4)

OR/OF

by translation/dmv translasie:

D(16;6)

 \checkmark method finding x

 \checkmark method finding y✓ x value ✓ y value

(4)

$$m_{\text{BC}} = \frac{-5 - (-4)}{-6 - 8} = \frac{1}{14}$$
 and $m_{\text{AB}} = \frac{5 - (-5)}{2 - (-6)} = \frac{5}{4}$

AD:
$$y-5 = \frac{1}{14}(x-2) \implies y = \frac{1}{14}x + \frac{34}{7}$$

CD:
$$y+4=\frac{5}{4}(x-8) \implies y=\frac{5}{4}x-14$$

$$\frac{5}{4}x - 14 = \frac{1}{14}x + \frac{34}{7}$$

$$\therefore x = 16$$

$$v = 6$$

 $\checkmark v$ value

(4) [17]

4.1.1	$m_{\text{PK}} = \frac{5 - (-3)}{-4 - 0} $ $= -2$	✓ substitution P & K into gradient formula ✓ gradient of PK
	$PK \perp SR$ [radius \perp tangent/raaklyn]	✓ PK \perp SR OR r \perp tangent
	$\therefore m_{\rm PK} \times m_{\rm RS} = -1$	
	$\therefore m_{\rm RS} = \frac{1}{2}$	✓ answer (4)
4.1.2	$y = \frac{1}{2}x + c$	
	$5 = \frac{1}{2}(-4) + c$ OR/OF $(y-5) = \frac{1}{2}(x-(-4))$	✓ substitution of m and P
	$c = 7$ $(y-5) = \frac{1}{2}x + 2$	
	$y = \frac{1}{2}x + 7 y = \frac{1}{2}x + 7$	✓ equation (2)

4.1.3	$M\left(\frac{-4+0}{2}; \frac{5+(-3)}{2}\right)$ $\therefore M(-2; 1)$ $r^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$ $r^{2} = (-2+4)^{2} + (1-5)^{2}$ $\therefore r^{2} = 20$	✓ x value of M ✓ y value of M ✓ $r^2 = 20$
	$\therefore r = 20$ $\therefore (x+2)^2 + (y-1)^2 = 20 \text{ or } (\sqrt{20})^2$ \mathbf{OR}/\mathbf{OF}	✓ equation (4)
	$M\left(\frac{-4+0}{2}; \frac{5+(-3)}{2}\right) \therefore M(-2; 1)$ $(x+2)^{2} + (y-1)^{2} = r^{2}$ $(-4+2)^{2} + (5-1)^{2} = r^{2}$ $\therefore r^{2} = 20$ $\therefore (x+2)^{2} + (y-1)^{2} = 20 \text{ or } (\sqrt{20})^{2}$	$\checkmark \checkmark M (-2; 1)$ $r^2 = 20$ $✓ equation$ (4)
	OR/OF $M\left(\frac{-4+0}{2}; \frac{5+(-3)}{2}\right) :: M(-2; 1)$ $PK = \sqrt{(-4-0)^2 + (5-(-3))^2} = \sqrt{80}$	✓✓ M (-2;1)
	$PK = \sqrt{(-4-0)^2 + (5-(-3))^2} = \sqrt{80}$ $r = \frac{\sqrt{80}}{2} = \sqrt{20}$ $\therefore (x+2)^2 + (y-1)^2 = 20 \text{ or } (\sqrt{20})^2$	$r^2 = 20$ \checkmark equation (4)

11 NSC/NSS - Marking Guidelines/Nasienriglyne

4.1.4 $\tan \theta = m_{\rm PK} = -2$

$$\therefore \theta = 180^{\circ} - 63,43^{\circ} \\ = 116,57^{\circ}$$

$$P\hat{K}R = 116,57^{\circ} - 90^{\circ}$$
 [ext ∠of ΔMOK]
= 26.57°

OR/OF

In ΔRPK:

$$PK = \sqrt{(0 - (-4))^2 + (-3 - 5)^2} = \sqrt{80}$$

$$PR = \sqrt{(-4-0)^2 + (5-7)^2} = \sqrt{20}$$

RK = 10

$$\cos P\hat{K}R = \frac{PK^2 + KR^2 - PR^2}{2.PK.KR} = \frac{(\sqrt{80})^2 + (10)^2 - (\sqrt{20})^2}{2(\sqrt{80})(10)}$$
 \(\sigma \text{ correct values into cos rule}

$$=\frac{2\sqrt{5}}{5}$$

$$P\hat{K}R = 26,57^{\circ}$$

OR/OF

$$\sin P\hat{K}R = \frac{\sqrt{20}}{10} \quad \mathbf{OR/OF} \quad \cos P\hat{K}R = \frac{\sqrt{80}}{10}$$

$$P\hat{K}R = 26,57^{\circ} \quad P\hat{K}R = 26,57^{\circ}$$

OR/OF

$$tanP\hat{K}R = \frac{\sqrt{20}}{\sqrt{80}}$$

$$\hat{PKR} = 26,57^{\circ}$$

 $\checkmark \tan \theta = -2$

✓ size of θ

✓ answer

(3)

✓ lengths of PK, PR & RK

✓ answer

(3)

✓ lengths of sides

✓ ratio

✓ answer

(3)

✓ lengths of sides

✓ ratio

✓ answer

(3)

12 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

$\therefore m_{\text{pS}} = m_{\text{tung}} = \frac{1}{2}$ $\therefore y = \frac{1}{2}x - 3$ OR/OF $m_{PK} = \frac{1 - 5}{-2 + 4} = -2$ $m_{PK} \times m_{\text{tung}} = \frac{1}{2}$ $\therefore y = \frac{1}{2}x - 3$ $4.2 \qquad t \in (-3; 7)$ OR/OF $-3 < t < 7$ $RS: y = \frac{1}{2}x + 7$ $SP = \sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$ $Area \Delta SMK = \frac{1}{2} \cdot MK \cdot SP$ $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= 25 \text{ square units}$ (2) $\Rightarrow \text{ equation}$ $\Rightarrow \text{ correct inequality}$ $\Rightarrow \text{ coordinates of S}$ $\Rightarrow \text{ length of SP}$ $\Rightarrow \text{ correct base \& height into Area rule}$ $\Rightarrow \text{ correct substitution}$ $\Rightarrow \text{ correct substitution}$ $\Rightarrow \text{ correct substitution}$	4.1.5	RS tangent at $K(0; -3)$	
OR/OF $m_{PK} = \frac{1-5}{-2+4} = -2$ $m_{PK} \times m_{tang} = -1 \qquad [radius \perp tangent/raaklyn]$ $\therefore m_{tang} = \frac{1}{2}$ $\therefore y = \frac{1}{2}x - 3$ $4.2 \qquad t \in (-3; 7)$ OR/OF $-3 < t < 7$ $SP = \sqrt{(-14 - (-4))^2 + (0-5)^2} = \sqrt{100 + 25} = \sqrt{125}$ $Area \Delta SMK = \frac{1}{2} \cdot MK \cdot SP$ $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= 25 \text{ square units}$ (2) $\Rightarrow \text{ gradient}$ $\Rightarrow \text{ equation}$ $\Rightarrow \text{ (2)}$ $\Rightarrow \text{ requation}$ $\Rightarrow \text{ (2)}$ $\Rightarrow \text{ or equation}$ $\Rightarrow \text{ (2)}$ $\Rightarrow \text{ or equation}$ $\Rightarrow \text{ (2)}$ $\Rightarrow \text{ or equation}$ $\Rightarrow \text{ (3)}$ $\Rightarrow \text{ or or ect inequality}$ $\Rightarrow \text{ coordinates of S}$ $\Rightarrow \text{ length of SP}$ $\Rightarrow \text{ correct base \& height into Area rule}$ $\Rightarrow \text{ correct substitution}$ $\Rightarrow \text{ answer}$		$\therefore m_{\rm PS} = m_{\rm tang} = \frac{1}{2}$	✓ gradient
$m_{PK} = \frac{1-5}{-2+4} = -2$ $m_{PK} \times m_{tang} = -1 \qquad [radius \perp tangent/raaklyn]$ $\therefore m_{tang} = \frac{1}{2} \qquad \qquad \checkmark \text{ gradient}$ $\therefore y = \frac{1}{2}x - 3 \qquad \qquad \checkmark \text{ equation}$ $4.2 \qquad t \in (-3; 7) \qquad \qquad \checkmark -3 \text{ (A)}$ $\forall \text{ CA from 4.1.2)}$ $\forall \text{ CA from 4.1.2)}$ $\forall \text{ correct inequality}$ $\forall \text{ CA from 4.1.2}$ $\forall \text{ correct inequality}$ $\forall \text{ CA from 4.1.2}$ $\forall \text{ correct inequality}$ (3) $\forall \text{ CA from 4.1.2}$ $\forall \text{ correct inequality}$ (3) $\forall \text{ Ca from 4.1.2}$ $\forall \text{ correct inequality}$ $\forall \text{ correct inequality}$ (3) $\forall \text{ Ca from 4.1.2}$ $\forall \text{ correct inequality}$ (3) $\forall \text{ coordinates of S}$ $\forall \text{ length of SP}$ $\forall \text{ correct base \& height into Area rule}$ $\Rightarrow \text{ correct substitution}$ $\Rightarrow \text{ answer}$		$\therefore y = \frac{1}{2}x - 3$	<u> </u>
$m_{PK} \times m_{tang} = -1 \qquad [radius \perp tangent/raaklyn]$ $\therefore m_{tang} = \frac{1}{2} \qquad \qquad \checkmark \text{ gradient}$ $\therefore y = \frac{1}{2}x - 3 \qquad \qquad \checkmark \text{ equation}$ $4.2 \qquad t \in (-3; 7) \qquad \qquad \checkmark -3 \text{ (A)}$ $\forall \text{ CA from 4.1.2}$ $\forall \text{ correct inequality}$ $\forall \text{ correct inequality}$ $\forall \text{ CA from 4.1.2}$ $\forall \text{ correct inequality}$ $\forall \text{ SP} = \sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$ $\text{Area } \Delta \text{SMK} = \frac{1}{2} \text{ MK . SP}$ $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= \frac{25}{25} \text{ course upits}$ $\forall \text{ correct base \& height into Area rule}$ $\forall \text{ correct substitution}$ $\forall \text{ correct substitution}$ $\forall \text{ answer}$		OR/OF	
$\therefore m_{tang} = \frac{1}{2}$ $\therefore y = \frac{1}{2}x - 3$ $4.2 \qquad t \in (-3; 7)$ OR/OF $-3 < t < 7$ $RS: y = \frac{1}{2}x + 7 \therefore \text{ S}(-14; 0)$ $SP = \sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$ $Area \Delta \text{SMK} = \frac{1}{2} \text{ MK . SP}$ $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= 25 \text{ equation}$ $\checkmark \text{ equation}$ $\checkmark - 3 \text{ (A)}$ $\checkmark - 3 \text{ (A)}$ $\checkmark 7 \text{ (CA from 4.1.2)}$ $\checkmark \text{ coordinates of S}$ $\checkmark \text{ length of SP}$ $\checkmark \text{ correct base \& height into Area rule}$ $\checkmark \text{ correct substitution}$ $\checkmark \text{ correct substitution}$ $\checkmark \text{ answer}$			
$\therefore y = \frac{1}{2}x - 3$ $4.2 \qquad t \in (-3; 7)$ OR/OF $-3 < t < 7$ $RS: y = \frac{1}{2}x + 7 \therefore \text{ S}(-14; 0)$ $SP = \sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$ $Area \Delta SMK = \frac{1}{2} \text{ MK . SP}$ $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= 25 \text{ gauge a unite}$ (2) $\checkmark - 3 \text{ (A)}$ $ \rightarrow - 3 \text{ (A)}$ $\checkmark - 3 \text{ (A)}$ $ \rightarrow - 3 \text{ (A)}$ $ \rightarrow - 3$		$m_{PK} \times m_{\tan g} = -1$ [radius \perp tangent/raaklyn]	
4.2 $t \in (-3; 7)$ OR/OF $-3 < t < 7$ RS: $y = \frac{1}{2}x + 7$ \therefore S(-14; 0) $SP = \sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$ Area Δ SMK = $\frac{1}{2}$. MK . SP $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= 25$ square units (2) \checkmark -3 (A) \checkmark 7 (CA from 4.1.2) \checkmark correct inequality (3) \checkmark coordinates of S \checkmark length of SP \checkmark correct base & height into Area rule \checkmark correct substitution \checkmark answer		$\therefore m_{\tan g} = \frac{1}{2}$	✓ gradient
4.2 $t \in (-3; 7)$ OR/OF $-3 < t < 7$ RS: $y = \frac{1}{2}x + 7$ \therefore S(-14; 0) SP = $\sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$ Area Δ SMK = $\frac{1}{2}$. MK . SP $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= \frac{1}{2}S$ square units Area Δ SMC = $\frac{1}{2}$ square units $\sqrt{-3}$ (A)		$\therefore y = \frac{1}{2}x - 3$	_
RS: $y = \frac{1}{2}x + 7$ \therefore S(-14; 0) SP = $\sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$ \checkmark length of SP Area \triangle SMK = $\frac{1}{2}$. MK . SP \checkmark correct base & height into Area rule \checkmark correct substitution \checkmark answer		OR/OF	✓ -3 (A) ✓ 7 (CA from 4.1.2) ✓ correct inequality (3) ✓ -3 (A) ✓ 7 (CA from 4.1.2) ✓ correct inequality
Area $\triangle SMK = \frac{1}{2}$. MK . SP $= \frac{1}{2}(\sqrt{20})(\sqrt{125})$	4.3		
= 25 square units		Area Δ SMK = $\frac{1}{2}$. MK . SP	_
Γ		$= \frac{1}{2}(\sqrt{20})(\sqrt{125})$ $= 25 \text{ square units}$	

OR/OF

Let β = inclination of SM/ *inklinasie* van SM

RS:
$$y = \frac{1}{2}x + 7$$
 :: S(-14; 0)

$$SM = \sqrt{(-14 - (-2))^2 + (0 - 1)^2} = \sqrt{145}$$

$$\tan \beta = \frac{1-0}{-2-(-14)} = \frac{1}{12}$$
 :: $\beta = 4,76^{\circ}$

:.
$$\hat{SMK} = 116,57^{\circ} - 4,76^{\circ}$$
 [ext \angle of Δ]
= 111,81°

Area
$$\Delta$$
SMK = $\frac{1}{2}$ (SM)(MK).sinSMK
= $\frac{1}{2}$ ($\sqrt{145}$)($\sqrt{20}$).sin111,81°
= 24,9985 = 25 square units

OR/OF

RS:
$$y = \frac{1}{2}x + 7$$
 :: S(-14; 0)

$$SK = \sqrt{(-14 - 0)^2 + (0 + 3)^2} = \sqrt{205}$$

$$\cos \hat{SMK} = \frac{(\sqrt{145})^2 + (\sqrt{20})^2 - (\sqrt{205})^2}{2(\sqrt{145})(\sqrt{20})} = -\frac{2\sqrt{29}}{29}$$

$$\hat{SMK} = 111,80^{\circ}$$

Area
$$\Delta$$
SMK = $\frac{1}{2}$ (SM)(MK).sinSMK
= $\frac{1}{2}$ ($\sqrt{145}$)($\sqrt{20}$).sin111,81°
= 24,9985 = 25 square units

- ✓ coordinates of S
- ✓ length of SM
- ✓ size of/grootte v SMK
- ✓ correct substitution into area rule
- ✓ answer

(5)

- ✓ coordinates of S
- ✓ length of SK
- ✓ size of /grootte v SMK
- ✓ correct substitution into area rule
- ✓ answer

(5)

OR/OF

Produce KS to T

RS:
$$y = \frac{1}{2}x + 7$$
 :: S(-14; 0)

$$SK = \sqrt{(-14-0)^2 + (0+3)^2} = \sqrt{205}$$

$$SM = \sqrt{(-14 - (-2))^2 + (0 - 1)^2} = \sqrt{145}$$

$$m_{SK} = -\frac{3}{14} \Rightarrow T\hat{S}O = 167,91^{\circ}$$

$$m_{SM} = \frac{1}{12} \implies M\hat{S}O = 4,76^{\circ}$$

$$M\hat{S}K = 180^{\circ} - 167,91^{\circ} + 4,76^{\circ} = 16,85^{\circ}$$

Area
$$\Delta$$
SMK = $\frac{1}{2}$ (SM)(SK).sinMŜK

$$= \frac{1}{2}(\sqrt{145})(\sqrt{205}).\sin 16,85^{\circ}$$

= 24,9985 = 25 square units

✓ coordinates of S

✓ length of SK & SM

✓ size of /grootte v MŜK

✓ correct substitution into area rule

✓ answer

(5)

5.1	$\sin(\Lambda - 2600) \cos(000 + \Lambda)$		
3.1	$\frac{\sin(A - 360^{\circ}).\cos(90^{\circ} + A)}{\cos(200^{\circ} + A)}$		
	$\cos(90^{\circ} - A).\tan(-A)$	✓ sin A	
	$=\frac{\sin A(-\sin A)}{\cos A}$	✓-sin A	
	sinA(-tanA)	✓ sin A	
	sin A	✓ –tan A	
	$-\frac{\sin A}{\cos A}$	$\sqrt{\tan \Lambda} = \frac{\sin A}{\sin A}$	
	$\left(\overline{\cos A} \right)$	$\checkmark \tan A = \frac{\sin A}{\cos A}$	
	$=\cos A$	✓ answer	
			(6)
5.2.1	$t^2 = (\sqrt{34})^2 - (3)^2$	✓ substitution	
	$\therefore t = -5$	✓ answer	(2)
5 2 2	5		(2)
5.2.2	$\tan \beta = \frac{-5}{3}$	✓ correct ratio	
	3	Correct ratio	(1)
5.2.3	20 2 2 0 1	/ 1 f1-	(1)
0.2.5	$\cos 2\beta = 2\cos^2 \beta - 1$	✓ compound formula	
	$=2\left(\frac{3}{\sqrt{34}}\right)^2-1$	✓ substitution	
	$=2\left(\frac{\sqrt{34}}{\sqrt{34}}\right)$	Substitution	
		✓ simplification	
	$=2\left(\frac{9}{34}\right)-1$	Simplification	
		✓ answer	
	$=-\frac{16}{34} \text{ OR } -\frac{8}{17}$		(4)
	J . 17		()
	OR/OF	d commound formula	
	$\cos 2\beta = 1 - 2\sin^2 \beta$	✓ compound formula	
	$(5)^2$	✓ substitution	
	$=1-2\left(-\frac{5}{\sqrt{34}}\right)^2$		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	✓ simplification	
	$=1-2\left(\frac{25}{34}\right)$	Simplification	
		✓ answer	
	$=-\frac{16}{34} \text{ OR } -\frac{8}{17}$		(4)
	34 17		
	OR/OF		
	$\cos 2\beta = \cos^2 \beta - \sin^2 \beta$	✓ compound formula	
	$(3)^2 (5)^2$	Z 1	
	$= \left(\frac{3}{\sqrt{34}}\right)^2 - \left(-\frac{5}{\sqrt{34}}\right)^2$	✓ substitution	
	$=\frac{9}{34}-\frac{25}{34}$	✓ simplification	
		d ongvyc-	
	$=-\frac{16}{34}$ OR $-\frac{8}{17}$	✓ answer	(4)
	34 17		(+)

5.3.1	LHS = $sin(A + B) - sin(A - B)$ = $sin A.cos B + cos A.sin B - (sin A. cos B - cos A. sin B)$ = $sin A.cos B + cos A.sin B - sin A. cos B + cos A. sin B$ = $2cos A.sin B$ = RHS	✓ compound formula ✓ compound formula	(2)
5.3.2	$\sin 77^{\circ} - \sin 43^{\circ} = \sin(60^{\circ} + 17^{\circ}) - \sin(60^{\circ} - 17^{\circ})$ $= 2\cos 60^{\circ}.\sin 17^{\circ}$ $= 2 \times \frac{1}{2} \times \sin 17^{\circ}$ $= \sin 17^{\circ}$	✓ 60° + 17° ✓ 60° - 17° ✓ simplify ✓ 1/2	(4)
	OR/OF $\sin 77^{\circ} - \sin 43^{\circ} = \sin(60^{\circ} + 17^{\circ}) - \sin(60^{\circ} - 17^{\circ})$ $= (\sin 60^{\circ} \cos 17^{\circ} + \cos 60^{\circ} \sin 17^{\circ}) - (\sin 60^{\circ} \cos 17^{\circ} - \cos 60^{\circ} \sin 17^{\circ})$ $= \frac{\sqrt{3}}{2} \cos 17^{\circ} + \frac{1}{2} \sin 17^{\circ} - \frac{\sqrt{3}}{2} \cos 17^{\circ} + \frac{1}{2} \sin 17^{\circ}$ $= \sin 17^{\circ}$	$ √ 60° + 17° $ $ √ 60° - 17° $ $ √ expansion $ $ √ \frac{1}{2}$	(4) [19]

7.1	ABC = 90°	✓ answer
		(1)
7.2	In Δ ABE:	
	AB ton u	
	$\frac{AB}{BE} = \tan y$	✓ correct ratio
	$AB = k \tan y$	✓ value AB
	In Δ ABC:	
	$\frac{AB}{AC} = \sin x$	✓ correct ratio
	AC	
	$AC = \frac{AB}{}$	✓ AC as subject and
	$AC = \frac{1}{\sin x}$	substitution
	$\underline{k} \tan y$	
	$-\frac{1}{\sin x}$	(4)

NSC/NSS - Marking Guidelines/Nasienriglyne

8.1.1	$\hat{E} = 50^{\circ} - 15^{\circ} = 35^{\circ} [\text{ext } \angle \text{ of } \triangle / \text{buite } \angle \text{ van } \triangle]$ $\hat{A} = 35^{\circ} [\text{alt } \angle \text{s } / \text{ verwiss } \angle \text{e; CE } \parallel \text{AB}]$	✓ S ✓S ✓ R
	OR/ <i>OF</i>	(3)
	$\hat{E} = 180^{\circ} - (130^{\circ} + 15^{\circ}) = 35^{\circ}$ [str line; \angle s of \triangle/rt lyn; \angle e van \triangle]	✓ S
	$\hat{A} = 35^{\circ}$ [alt $\angle s / verwiss \angle e$; CE AB]	\checkmark S \checkmark R (3)
	OR/OF	(3)
	$\hat{B} = 50^{\circ}$ [\(\sigma \) in same segment/\(\sigma \) in dieselfde segment] $\hat{C}_2 + 15^{\circ} = 50^{\circ}$ [alt \(\sigma \) / verwiss \(\sigma \) e; CE \(\Big \) AB	✓ S
	$\therefore \hat{C}_2 = 35^{\circ}$	
	$\hat{A} = 35^{\circ}$ [\(\sigma \) sin same segment/\(\section \) in dieselfde segment]	✓S ✓ R (3)
8.1.2	$\hat{C}_2 = 35^{\circ}$ [\(\sigma \) same segment/\(\section \) in dieselfde segment [✓ S ✓ R (2)
8.2	$\hat{C}_2 = \hat{E}$ [from 8.1.1 and 8.1.2]	✓ S
	∴ CF is a tangent to the circle [converse tan chord theorem] ∴ CF is 'n raaklyn aan die sirkel [omgekeerde raakl koordst]	✓ R (2) [7]

	C	
9.1.1	$\frac{AF}{BF} = \frac{3x}{2x} = \frac{3}{2} \& \frac{AG}{CG} = \frac{12y}{8y} = \frac{3}{2}$ $\therefore \frac{AF}{BF} = \frac{AG}{CG}$ $\therefore FG \parallel BC \text{ [conv prop th/omg eweredigh st. } \mathbf{OR} \text{ line divides 2 sides of } \Delta \text{ in prop/lyn verdeel 2 sye}$ $v \Delta \text{ in dies verh}$	$\checkmark \frac{AF}{BF} = \frac{AG}{CG}$ $\checkmark R$ (2)
9.1.2	$\frac{AG}{GC} = \frac{AH}{HK}$ [prop theorem/eweredigh st; $\underline{GH} \parallel \underline{CK} \mid \mathbf{OR}$] $\lim_{\Delta H} \ \mathbf{CK} \mid \mathbf{OR} \ \mathbf{CK} \mid \mathbf{OR} \ \mathbf{CK} \mid \mathbf{OR} \ \mathbf{CK} \mid \mathbf{CK}$	✓S ✓ R ✓ S
	$\therefore \frac{AH}{HK} = \frac{AE}{ED}$	(3)
9.2	$\frac{AE}{ED} = \frac{3}{2} \text{ and } \frac{AH}{HK} = \frac{3}{2}$ $\frac{AE}{12} = \frac{3}{2} \text{ and } \frac{15}{HK} = \frac{3}{2}$ ∴ AE = 18 and HK = 10 ∴ HE = AE – AH $= 18 - 15$ $= 3$ ∴ EK = HK – HE $= 10 - 3$ $= 7$ OR/OF $\frac{AD = 30}{KD = AD – AH – HK}$ $= 30 - 15 - 10$ $= 5$ $EK = ED – KD$ $= 12 - 5$ $= 7$	✓ use of ratios ✓ AE = 18 ✓ HK = 10 ✓ HE = 3 or KD = 5 ✓ EK = 7 (5) [10]

10.1	Line from centre to midpoint of chord/	✓ R
	lyn vanaf midpt na midpt van koord	(1)
10.2.1	$O\hat{W}T = O\hat{W}S = 90^{\circ}$ [radius \perp tangent/raaklyn] $\therefore MN \parallel TS$ [corresp \angle s =/ooreenkomstige \angle e =	✓ R ✓ R
	OR co-int \(\sigma \) 180°/ko-binne\(\sigma \) 180°	(2)
	OR alternate $\angle s/verwiss \angle e$]	
10.2.2	$\hat{\mathbf{M}}_1 = \hat{\mathbf{N}}_1$ [\(\sqrt{s opp} = \text{sides}/ \(\sqrt{e teenoor} = \text{sye} \)]	✓ S
	$\hat{\mathbf{M}}_1 = \hat{\mathbf{T}}$ [corresp $\angle s/ooreenk \angle e$; MN TS]	✓ S
	$\hat{N}_1 = \hat{T}$	✓ S
	∴ TMNS is a cyclic quadrilateral [conv: ext∠ cyclic quad]	✓ R
	TMNS is 'n koordevierhoek [omgek: buite∠kdvh]	(4)
	OR/OF	
	$\hat{\mathbf{M}}_1 = \hat{\mathbf{N}}_1$ [\(\simeq \text{s opp} = \text{sides}/\(\septimeq \text{teenoor} = \text{sye} \)]	✓ S
	$\hat{N}_1 = \hat{S}$ [corresp $\angle s/ooreenk \angle e$; MN TS]	✓ S
	$\therefore \hat{\mathbf{S}} = \hat{\mathbf{M}}_{1}$	✓ S
	∴ TMNS is a cyclic quadrilateral [conv: ext∠ cyclic quad] TMNS is 'n koordevierhoek [omgek: buite∠kdvh]	✓ R (4)

10.2.3	In ΔOVN and ΔOWS		
10.2.5	$\hat{O}_2 = \hat{O}_2$	[common/gemeenskaplik]	✓ S; S; S OR
	$0^{\circ}_{2} - 0^{\circ}_{2}$ $0\hat{V}N = 0\hat{W}S = 90^{\circ}$	[from 10.1]	S; S; R
	$\hat{O}NV = \hat{O}SW$	[sum \angle s \triangle /som \angle e \triangle]	
	∴ΔOVN ΔOWS	$[\angle, \angle, \angle]$	✓∆OVN ∆OWS
		[-, -, -]	***
	$\therefore \frac{VN}{WS} = \frac{ON}{OS}$		$\checkmark \frac{\text{VN}}{\text{WS}} = \frac{\text{ON}}{\text{OS}}$
	But $VN = \frac{1}{2}MN$	[given]	\checkmark VN = $\frac{1}{2}$ MN
	$\frac{1}{-MN}$ ON		2
	$\therefore \frac{\frac{1}{2}MN}{WS} = \frac{ON}{OS}$		✓ substitution
			Substitution
	os.iwiv – 2014. WS		(5)
	OR/OF		/ G G G OD
	In ΔOVM and ΔOWS		✓ S; S; S OR S; S; R
	$\hat{OVM} = \hat{OWS} = 90^{\circ}$	[from 10.1]	5, 5, K
	$\hat{OMV} = \hat{OSW}$	$[\operatorname{sum} \angle \operatorname{s} \Delta / \operatorname{som} \angle e \Delta]$	
	∴ΔOVM ΔOWS	$[\angle, \angle, \angle]$	✓∆OVM ∆OWS
	$\therefore \frac{OM}{OS} = \frac{VM}{WS}$		$\checkmark \frac{OM}{OS} = \frac{VM}{WS}$
	But $VN = \frac{1}{2}MN$	[given]	\checkmark VN = $\frac{1}{2}$ MN
	$\therefore \frac{\frac{1}{2}MN}{WS} = \frac{OM}{OS}$		2
	$\therefore \frac{2}{\text{WS}} = \frac{1}{\text{OS}}$		✓ substitution
	\therefore OS.MN = 2ON. WS	[VM = VN]	(-)
	OR/OF		(5)
	If any other 2 Δ s are used, fi	rst need to prove that	
	TW = WS by proving $\triangle OW$	$VT \equiv \Delta OWS$	✓ ✓ similarity
			Sililianty
	1 1		✓✓ congruency
		[from 10.1]	
		$[\operatorname{sum} \angle \operatorname{s} \Delta / \operatorname{som} \angle e \Delta]$	$\sqrt{VN = VM} =$
	***	$[\angle, \angle, \angle]$	
			$\frac{-MN}{2}$
	But $VN = VM = \frac{1}{2}MN$	[given]	
	and $WT = WS$ and $OT = OS$	$S \qquad [\Delta OWT \equiv \Delta OWS]$	
	$\frac{1}{2}MN$ ON		
	$\therefore \frac{2}{\text{WS}} = \frac{\text{O1}}{\text{OS}}$		(5)
	\therefore OS.MN = 2ON. WS		[12]
	∴ OS.MN = 2ON. WS OR/OF If any other 2 \triangle s are used, fi TW = WS by proving \triangle OW In \triangle OVM and \triangle OWT $\hat{O}_1 = \hat{O}_1$ $\hat{O}_2 = \hat{O}_3$ $\hat{O}_3 = \hat{O}_3$	rst need to prove that $T \equiv \Delta OWS$ [common/gemeenskaplik] [from 10.1] [sum \angle s Δ /som \angle e Δ] [\angle , \angle , \angle]	$✓ \checkmark \text{ similarity}$ $✓ \checkmark \text{ congruency}$ $✓ VN = VM = \frac{1}{2}MN$ (5)

11.1	Construction: Draw diameter NR and draw RM	✓ construction
	Konstruksie: Trek middellyn NR en verbind RM	
	$\hat{ONM} + \hat{MNQ} = 90^{\circ}$ [radius \perp tangent/raaklyn]	(2 /2
	$N\hat{M}R = 90^{\circ}$ [\(\neq \text{in semi circle}\)/semi-sirkel]	✓ S /R ✓ S/ R
	$\therefore M\hat{R}N = 180^{\circ} - (90^{\circ} + 90^{\circ} - M\hat{N}Q) [sum \angle s \Delta]$	V 5/ K
	= MÑQ	✓ S
	but $M\hat{R}N = M\hat{K}N$ [\(\angle s\) same segment/\(\angle e\) dieselfde segment]	✓ S/R
	$\therefore M\hat{N}Q = \hat{K}$	(5)
		, ,
	OR/OF	

11.1	Construction: Draw diameter NR and draw RK Konstruksie: Trek middellyn NR en verbind RK	✓ construction	
	$\hat{MNQ} + \hat{RNM} = 90^{\circ} \text{ [radius } \perp \text{ tangent/} raaklyn]$	✓ S/R ✓ S/ R	
	NKR = 90° [∠ in semicircle/semi-sirkel] ∴ MKN = 90° – RKM = 90° – RNM [∠s same segment/∠e dieselfde	✓ S ✓ S / R	
	segment]		(5)
	$\therefore M\hat{N}Q = \hat{K}$		

11.1	Construction: Draw radii ON and OM	✓ construction
	Konstruksie: Trek radiusse ON en OM	
	$\hat{MON} = 2\hat{K}$ [\(\alpha \) at centre = 2\(\alpha \) at circumf/midpts\(\alpha = 2 \) omtreks\(\alpha \)]	✓ S/R
	$O\hat{N}M + O\hat{M}N = 180^{\circ} - 2\hat{K} [\angle s \text{ of } \Delta/\angle e van \Delta]$	✓ S
	$O\hat{N}M = O\hat{M}N = \frac{180^{\circ} - 2\hat{K}}{2} = 90^{\circ} - \hat{K} \text{ [} \angle \text{s opp} = \text{sides} / \angle e$	✓ S/ R
	$teenoor = sye]$ $O\hat{N}Q = 90^{\circ} \qquad [radius \perp tangent/radius \perp raaklyn]$	✓ S / R
	$\therefore \hat{MNQ} = \hat{K}$	(5)

11.2

11.2.1(a)	Angle in a semi circle/ <i>Hoek in halfsirkel</i>	✓ R
		(1)
11.2.1(b)	Exterior \angle of quad = opp interior \angle / Buite \angle van vierh =	✓ R
	teenoorst binne ∠	
	OR/OF	
	Opp ∠s of quad supplementary/ Teenoorst ∠e van vierh i.	S
	supplementêr	(1)
11.2.1(c)	tangent chord theorem/ raaklyn koord stelling	✓ R
		(1)
11.2.2(a)	In ΔAEC	
	$\hat{\mathbf{E}} = 180^{\circ} - (90^{\circ} + x) \qquad [\text{sum } \angle \text{s } \Delta]$	/ 0
	$=90^{\circ} - x$	✓ S
	$\hat{D}_1 = 180^\circ - (90^\circ + x)$ [\(\angle \text{s on a straight line}\)]	
	$= \hat{E} = 90^{\circ} - x$	✓ S
	$\therefore AD = AE \qquad [sides opp = \angle s/ sye teenoor = A/ $	
	in the file [sides opp 25/ syc techool 2	(3)
11.2.2(b)	In ΔADB and ΔACD	
	$\hat{A}_2 = \hat{A}_2$ [common]	
	$\hat{D}_2 = \hat{C}$ [proven]	✓ S
		✓ S
	$\hat{\mathbf{B}}_2 = \hat{\mathbf{D}}_2 + \hat{\mathbf{D}}_3 \qquad [\operatorname{sum} \angle^{\mathbf{e}} \Delta]$	✓ S
	∴∆ADB ∆ACD	(3)
	07/07	
	OR/OF	
	In $\triangle ADB$ and $\triangle ACD$	
	$\hat{A}_2 = \hat{A}_2$ [common]	✓ S
	$\hat{D}_2 = \hat{C}$ [proven]	✓ S ✓ S
	$\therefore \triangle ADB \parallel \triangle ACD$ $[\angle, \angle, \angle]$	✓ R
		(3)

11.2.3(a)	AD AB	✓ ratio
	$\frac{AD}{AC} = \frac{AB}{AD} \qquad [\Delta s]$	
	$AD^2 = AC \cdot AB$ $= 3r \times r$	✓ substitution
	$=3r^2$	(2)
11.2.3(b)	$AD = AE = \sqrt{3}r$ [from 11.2.2(a) &11.2.3(a)]	() ~ .
	$AB = r$ and $BC = 2r$ $\therefore AC = 3r$ $In \triangle ACE$:	\checkmark AC ito r
		✓ trig ratio
	$\tan \hat{E} = \frac{AC}{AE}$	
	$=\frac{3r}{\sqrt{3}r}=\sqrt{3}$	✓ simplification
	$\therefore \hat{D}_1 = 60^{\circ}$ [from 11.2.2(a)]	✓ all $3 \angle s = 60^{\circ}$
	$\therefore \hat{A}_1 = 60^{\circ} \qquad [\angle s \text{ of } \Delta = 180^{\circ}]$	(4)
	∴ ∆ADE is equilateral/is gelyksydig	(4)
	OR/OF	
	$\frac{AD}{AC} = \frac{DB}{CD} \qquad [\Delta s]$	$\sqrt{3}r$ DB
	$\frac{\sqrt{3}r}{3r} = \frac{DB}{CD}$	$\checkmark \frac{\sqrt{3}r}{3r} = \frac{DB}{CD}$ $\checkmark \frac{1}{\sqrt{3}} = \tan x$
		$\checkmark \frac{1}{\sqrt{2}} = \tan x$
	$\tan x = \frac{1}{\sqrt{3}}$	$\sqrt{3}$ $\sqrt{x} = 30^{\circ}$
	$\therefore \text{In } \Delta \text{BDC} \colon \ x = 30^{\circ}$	$\lambda = 30$
	$\hat{E} = 60^{\circ}$	\checkmark all 3 \angle s = 60°
	$\therefore \hat{D}_1 = 60^{\circ} \qquad [from 11.2.2(a)]$	✓ an 3 ∠s – 00
	∴ $\hat{A}_1 = 60^\circ$ [∠s of $\Delta = 180^\circ$] ∴ ΔADE is equilateral/is gelyksydig	(4)
	AADE is equitaterallis getyksyatg	
	OR/OF	
	$\frac{AD}{AC} = \frac{DB}{CD} \qquad [\Delta s]$	
	$\frac{\sqrt{3}r}{3r} = \frac{DB}{CD} \therefore BD = \frac{CD}{\sqrt{3}}$	CD
	$\frac{1}{3r} = \frac{1}{CD}$ $\therefore BD = \frac{1}{\sqrt{3}}$	$\checkmark BD = \frac{CD}{\sqrt{3}}$
	$DC^2 = BC^2 - DB^2$	VS
	$=4r^2 - \frac{CD^2}{3}$	
	$3DC^2 = 12r^2 - CD^2$	
	$4CD^2 = 12r^2$	(DG
	$DC = \sqrt{3}r$	\checkmark DC = $\sqrt{3}$ r

	,
$EC^2 = EA^2 + AC^2$	
$=3r^2+9r^2$	
$EC = 2\sqrt{3}r$	$\checkmark \text{ EC} = 2\sqrt{3}r$
$\therefore ED = EC - DC$	
$=\sqrt{3}r$	\checkmark ED = EA = AD
\therefore ED = EA = AD	
∴ ∆ADE is equilateral/is gelyksydig	(4)
	[20]

TOTAL/TOTAAL: 150