

Computers deals with the binary systems through some tools (codes)....

For examples BCD, Gray, and excess-3 code We will discuss these three codes in the following slides

Binary Codes

Decimal Digit	8-4-2-1 Code (BCD)	Gray Code	Excees-3 Code
0	0000	0000	0011
1	0001	0001	0100
2	0010	0011	0101
3	0011	0010	0110
4	0100	0110	0111
5	0101	1110	1000
6	0110	1010	1001
7	0111	1011	1010
8	1000	1001	1011
9	1001	1000	1100

BCD (binary coded decimal)

Decimal Digit	8-4-2-1 Code (BCD)
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- · Code = 4 bit
- No of combination = $2^4 = 16$

Ex 1: convert each of the following decimal to BCD code:

a) 35 b) 98 c) 170 d) 2469


```
Solution
```

a) 35 5

0011 0101

Then $35 \rightarrow 00110101$

b) 98 9 8

1001 1000

Then $98 \rightarrow 10011000$

Then $170 \rightarrow 000101110000$

d) 2469 2 4 6 9
0010 0100 0110 1001
Then $2469 \rightarrow 0010010001101001$

- Ex2 Convert each of the following BCD code decimal:
- a) 10000110 b) 001101010001
- c) 1001010001110000

Solution

- a) Start from right and group each four digits
 - 1000 0110
 - 8 6
 - Then $10000110 \rightarrow 86$

c) 1001

 \rightarrow 351

1 - use binary addition rules

2 - if the 4-bit sum is greater than 9 then it is not a BCD valid numberadd 6(0110) to the 4-bit sum.

Add the following BCD numbers

- a) 0011 + 0100
- b) 001000111 + 00010101
- c) 1001 + 0100
- d) 00010110 + 00010101
- e) 01100111 + 01010011

Solutions

a) $0011 \rightarrow 3$ + $0100 \rightarrow 4$

- $0111 \rightarrow 7$
- b) $00100011 \rightarrow 23$
 - + 00010101 → 1 5

 $00111000 \rightarrow 38$ (each number < 9)

Solutions

```
c) 1001 \rightarrow 9
+ 0100 \rightarrow 4
```

1101 \rightarrow 13 \rightarrow invalid BCD number > 9

+ $0110 \rightarrow Add 6 (0110)$

 $10011 \rightarrow 0001 \ 10011 \rightarrow 13 \ in \ BCD$

Solutions

d)
$$00010110 \rightarrow 16$$

+ 00010101
$$\rightarrow$$
 1 5 6+5 = 11 > 9

$$0010\underline{1011} \rightarrow 1011 > 9 \text{ then add } 6(0110)$$

+ 0110
$$\rightarrow$$
 Add 6 (0110)

 $00110001 \rightarrow 0011\ 00001 \rightarrow 31\ in\ BCD$

Solutions

```
e) 01100111 \rightarrow 67
```

+ 01010011
$$\rightarrow$$
 5 3 6+5 = 11 > 9 & 7+3 > 9

$$1011 \ 1010 \rightarrow 1011 > 9 \text{ then add } 6(0110)$$

+ 0110 0110 \rightarrow Add 6 (0110) & 6(0110)

 $1\ 0010\ 0000\ \to\ 0001\ 0010\ 0000 \to 120$

Gray Code

Decimal Digit	8-4-2-1 Code (BCD)	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	1110
6	0110	1010
7	0111	1011
8	1000	1001
9	1001	1000

Gray Code

It is unweighted code and it is not arithmetic code

Binary to Gray Code

Convert the binary number 11000110 to Gray code Sol.

Binary
$$1+1+0+0+0+1+1+0$$

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
Gray $1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$

Shortcut

The first number will be the same...the second number in gray = first + second in binary...... the third in gray = second + third in binary and go on ...neglect carry.

Gray Code to binary

Convert the gray code number 10100101 to binary. Sol.

Shortcut

The first number will be the same...the second number in binary = first (binary) + second (gray).. the third in binary = second (binary)+ third (gray) and go on ...neglect carry.

Excess - 3 code

It is a digital code related to BCD derived by adding 3 to each decimal digit ... then converting the result to 4-bit binary ..

It is unweighted code.

Excess - 3 code

Convert each of the following decimal numbers to excess-3 code. a) 13 b) 430

a) 1 3

+ 3 + 3

4 6

 $0100 \ 0110 \rightarrow excess-3 \ code$

Excess - 3 code

0111 0110 0011 \rightarrow excess-3 code

Thank you

