Quotient Exercises

Sam Spiro

August 23, 2023

- 1. Let \sim be the equivalence relation on [0,1] with $0 \sim 1$ and $x \sim x$ for all $x \in [0,1]$. Prove that $[0,1]/\sim$ is homeomorphic to the circle S^1 .
- 2. Below we list several equivalence relations \sim for various spaces X. State (without proof) what familiar topological space X/\sim is homeomorphic to.
 - (a) X is a Euclidean disk $D^2 = \{(x,y) \in \mathbb{R}^2 : |x|^2 + |y|^2 \le 1\}$ with $(x,y) \sim (x',y')$ iff $|x|^2 + |y|^2 = |x'|^2 + |y'|^2$ (i.e. two points are identified if they have the same radius).
 - (a) $X = \mathbb{R}^2$ with $(x, y) \sim (x', y')$ iff $|x|^2 + |y|^2 = |x'|^2 + |y'|^2$.
 - (b) $X=D^2$ with $(x,y)\sim (x,y)$ for all $(x,y)\in D^2$ and $(x,y)\sim (x',y')$ whenever $|x|^2+|y|^2=|x'|^2+|y'|^2=1$ (i.e. all points on the boundary of D^2 are identified).
 - (c) $X = \mathbb{R}^n$ with $x \sim y$ iff $x y \in \mathbb{Z}^n$ (Hint: we saw n = 1 in class; solve n = 2 and guess the pattern).