ESPACES VECTORIELS DE DIMENSION FINIE

1 Familles de vecteurs

1.1 Opérations sur une famille engendrant un sous-espace vectoriel

Lemme 1.1

Soient E un K-espace vectoriel, A et B deux parties de E. Alors

$$\operatorname{vect}(A) = \operatorname{vect}(B) \iff A \subset \operatorname{vect}(B) \to B \subset \operatorname{vect}(A)$$

Proposition 1.1

Soient E un \mathbb{K} -ev et $(\mathfrak{u}_i)_{i\in I}$ une famille de vecteurs de E. Alors $\text{vect}(\mathfrak{u}_i)_{i\in I}$ n'est pas modifié si on effectue les opérations suivantes sur la famille $(\mathfrak{u}_i)_{i\in I}$:

- (i) permutation des u_i ;
- (ii) multiplication de l'un des u_i par un scalaire non nul ;
- (iii) ajout à l'un des ui une combinaison linéaire des autres vecteurs ;
- (iv) suppression d'un u_i combinaison linéaire des autres vecteurs (notamment les u_i nuls);
- (v) adjonction d'un vecteur combinaison linéaire des u_i.

Définition 1.1 Pivot de Gauss

Les opérations (i), (ii), (iii) de la proposition précédente seront appelées opérations du pivot de Gauss.

Exercice 1.1

Soient a = (1, 2, 1), b = (1, 3, 2), c = (1, 1, 0) et d = (3, 8, 5) des vecteurs de \mathbb{R}^3 . Montrer que vect(a, b) = vect(c, d).

1.2 Familles génératrices

Définition 1.2 Famille génératrice

Soient E un \mathbb{K} -espace vectoriel et $(u_i)_{i\in I}\in E^I$. On dit que la famille $(u_i)_{i\in I}$ est une *famille génératrice* de E ou encore qu'elle *engendre* E si tout vecteur de E peut s'écrire comme une combinaison linéaire des u_i , autrement dit si $\text{vect}(u_i)_{i\in I}=E$.

Remarque. L'espace vectoriel $\{0\}$ admet la famille vide pour famille génératrice puisqu'on a vu que vect $(\emptyset) = \{0\}$.

Exemple 1.1

Trois vecteurs non coplanaires de l'espace engendre l'espace vectoriel.

Exemple 1.2

Soit $n \in \mathbb{N}^*$. Posons $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0 \dots, 0)$, ..., $e_n = (0, \dots, 0, 1)$ des vecteurs de \mathbb{K}^n . Alors $(e_i)_{1 \leqslant i \leqslant n}$ engendre \mathbb{K}^n .

Exemple 1.3

La famille $(1,X,X^2,\ldots,X^n)$ est une famille génératrice de $\mathbb{K}_n[X]$. La famille $(X^n)_{n\in\mathbb{N}}$ est une famille génératrice de $\mathbb{K}[X]$.

Proposition 1.2

Une famille génératrice reste génératrice si :

- (i) on effectue les opérations du pivot de Gauss ;
- (ii) on lui ajoute un vecteur (i.e. une sur-famille d'une famille génératrice est génératrice);
- (iii) on lui enlève un vecteur qui est combinaison linéaire des autres vecteurs de la famille (notamment un vecteur nul).

Méthode Montrer qu'une famille est génératrice

Pour montrer qu'une famille finie (u_1,\ldots,u_n) d'un \mathbb{K} -espace vectoriel E est génératrice, on se donne $x\in E$ et on montre qu'il existe $(\lambda_1,\ldots,\lambda_n)\in\mathbb{K}^n$ tel que $x=\sum_{i=1}^n\lambda_iu_i$.

Pour montrer qu'une famille infinie $(u_i)_{i\in I}$ d'un \mathbb{K} -espace vectoriel E est génératrice, on se donne $x\in E$ et on montre qu'il existe $(\lambda_i)\in \mathbb{K}^{(I)}$ (famille presque nulle) telle que $x=\sum_{i\in I}\lambda_iu_i$.

1.3 Familles libres, familles liées

Définition 1.3 Famille libre, famille liée (cas d'une famille finie)

Soient E un \mathbb{K} -espace vectoriel et $\mathfrak{u}_1,\ldots,\mathfrak{u}_n\in E$. On dit que la famille $(\mathfrak{u}_1,\ldots,\mathfrak{u}_n)$ est *libre* ou encore que les \mathfrak{u}_i sont *linéairement indépendants* si

$$\forall (\lambda_1,\ldots,\lambda_n) \in \mathbb{K}^n, \; \sum_{i=1}^n \lambda_i u_i = 0_E \implies \forall i \in [\![1,n]\!], \lambda_i = 0$$

Dans le cas contraire, on dit que la famille $(u_1, ..., u_n)$ est liée ou encore que les u_i sont linéairement dépendants. De manière équivalente, la famille $(u_1, ..., u_n)$ est liée si et seulement si l'un des u_i est combinaison linéaire des autres.

Remarque. La famille vide \varnothing est toujours une famille libre.

Une famille qui contient le vecteur nul est liée.

Une famille qui contient plusieurs fois le même vecteur est liée. ■

ATTENTION! Le contraire de «libre» n'est pas «génératrice» mais «liée».

Méthode Montrer qu'une famille est libre

Pour montrer qu'une famille (u_1,\ldots,u_n) d'un \mathbb{K} -espace vectoriel E est libre, on se donne $(\lambda_1,\ldots,\lambda_n)\in\mathbb{K}^n$ tel que $\sum_{i=1}^n\lambda_iu_i=0_E$ et on montre que tous les λ_i sont nuls.

Exemple 1.4

Une famille à un vecteur est libre si et seulement si ce vecteur est non nul.

Une famille à deux vecteurs est libre si et seulement si ces deux vecteurs sont non colinéaires.

Une famille à trois vecteurs est libre si et seulement si ces trois vecteurs sont non coplanaires.

Exemple 1.5

Soit $n \in \mathbb{N}^*$. Posons $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_n = (0, \dots, 0, 1)$ des vecteurs de \mathbb{K}^n . Alors $(e_i)_{1 \leqslant i \leqslant n}$ est une famille libre de \mathbb{K}^n .

Exemple 1.6

La famille $(1, X, X^2, \dots, X^n)$ est une famille libre de $\mathbb{K}[X]$.

Attention ! Quand on considère une famille de fonctions $(f_i)_{1\leqslant i\leqslant n}$ du \mathbb{R} -espace vectoriel \mathbb{R}^I , dire que $\sum_{i=1}^n \lambda_i f_i = 0$

signifie que $\sum_{i=1}^{n} \lambda_i f_i(x) = 0$ pour tout $x \in I$ (le premier zéro désigne la fonction nulle et le second désigne le zéro de \mathbb{R}).

Exercice 1.2

Montrer que la famille (sin, cos) est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Définition 1.4 Famille libre, famille liée (cas d'une famille quelconque)

Soient E un \mathbb{K} -espace vectoriel et $(u_i)_{i\in I}\in E^I$. On dit que la famille $(u_i)_{i\in I}$ est *libre* ou encore que les u_i sont *linéairement indépendants* si

$$\forall (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)}, \ \sum_{i \in I} \lambda_i u_i = 0_E \ \implies \ \forall i \in I, \lambda_i = 0$$

Dans le cas contraire, on dit que la famille $(u_i)_{i \in I}$ est liée ou encore que les u_i sont linéairement dépendants. De manière équivalente, la famille $(u_i)_{i \in I}$ est liée si et seulement si l'un des u_i est combinaison linéaire des autres.

Remarque. Pour montrer qu'une famille infinie est libre, il est donc équivalent de montrer que toute sous-famille finie de cette famille est libre. ■

Remarque. Si $(u_i)_{i \in I}$ est une famille libre et si $(\lambda_i)_{i \in I}$ et $(\mu_i)_{i \in I}$ sont deux familles presque nulles de scalaires telles que $\sum_{i \in I} \lambda_i u_i = \sum_{i \in I} \mu_i u_i$, alors $\lambda_i = \mu_i$ pour tout $i \in I$.

Exemple 1.7

La famille $(X^n)_{n\in\mathbb{N}}$ est une famille libre de $\mathbb{K}[X]$.

Proposition 1.3

Une famille libre reste libre si:

- (i) on effectue les opérations du pivot de Gauss ;
- (ii) on lui enlève un vecteur (une sous-famille d'une famille libre est libre) ;
- (iii) on lui ajoute un vecteur qui n'est pas combinaison linéaire des vecteurs de cette famille.

Une famille liée reste liée si :

- (i) on effectue les opérations du pivot de Gauss ;
- (ii) on lui ajoute un vecteur (i.e. une sur-famille d'une famille liée est liée) ;
- (iii) on lui enlève un vecteur qui n'est pas combinaison linéaire des autres vecteurs de cette famille ;

1.4 Bases

Définition 1.5 Base

Soient E un \mathbb{K} -espace vectoriel et $(u_i)_{i\in I}\in E^I$. On dit que la famille $(u_i)_{i\in I}$ est une *base* de E si elle est à la fois génératrice de E et libre.

Remarque. La famille vide est une base de l'espace vectoriel nul. ■

Exemple 1.8

Une famille de trois vecteurs non coplanaires de l'espace est une base de l'espace vectoriel géométrique.

Exemple 1.9

(1,i) est une base du \mathbb{R} -espace vectoriel \mathbb{C} .

Exemple 1.10

Soit $n \in \mathbb{N}^*$. Posons $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_n = (0, \dots, 0, 1)$ des vecteurs de \mathbb{K}^n . Alors $(e_i)_{1 \leqslant i \leqslant n}$ est une base de \mathbb{K}^n . On l'appelle la *base canonique* de $\mathbb{K}^\mathbb{N}$.

Exemple 1.11

La famille $(1,X,X^2,\ldots,X^n)$ est une base de $\mathbb{K}_n[X]$. On l'appelle la *base canonique* de $\mathbb{K}_n[X]$. La famille $(X^n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.

Attenté»! Il n'y a pas unicité de la base pour un espace vectoriel donné.

Définition 1.6 Coordonnées dans une base finie

Soit (e_1,\ldots,e_n) une base d'un \mathbb{K} -espace vectoriel E. Soit $x\in E$. On appelle *coordonnées* de x dans la base (e_1,\ldots,e_n) l'unique n-uplet $(\lambda_1,\ldots,\lambda_n)\in \mathbb{K}^n$ tel que $x=\sum_{i=1}^n\lambda_ie_i$.

Définition 1.7 Coordonnées dans une base quelconque

Soit $(e_i)_{i\in I}$ une base d'un \mathbb{K} -espace vectoriel E. Soit $x\in E$. On appelle *coordonnées* de x dans la base $(e_i)_{i\in I}$ l'unique famille presque nulle $(\lambda_i)_{i\in I}\in \mathbb{K}^{(I)}$ telle que $x=\sum_{i\in I}\lambda_ie_i$.

Proposition 1.4 Base d'une somme directe de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels en somme directe d'un \mathbb{K} -espace vectoriel E. On suppose qu'il existe une base \mathcal{F} de F et une base \mathcal{G} de G. Alors la famille \mathcal{B} obtenue par concaténation des bases \mathcal{F} et \mathcal{G} est une base de F \oplus G. \mathcal{B} est dite base adaptée à la somme directe F \oplus G.

ATTENTAN ! Il est essentiel que F et G soient en somme directe. En effet, dans \mathbb{R}^3 , soit P le plan vectoriel d'équation x=0 et Que plan vectoriel d'équation y=0. Il est clair que ((0,1,0),(0,0,1)) est une base de P et que ((1,0,0),(0,0,1)) est une base Q. Or P et Q ne sont pas en somme directe puisque $P\cap Q$ est la droite vectorielle d'équations $\begin{cases} x=0\\ y=0 \end{cases}$. Et on voit bien que ((0,1,0),(0,0,1),(1,0,0),(0,0,1)) n'est pas une base puisqu'elle contient deux fois le même vecteur.

Proposition 1.5 Base d'une somme directe d'un nombre fini de sous-espaces vectoriels

Soient F_1, \ldots, F_p des sous-espaces vectoriels en somme directe d'un \mathbb{K} -espace vectoriel E. On suppose qu'il existe des bases $\mathcal{F}_1, \ldots, \mathcal{F}_p$ de F_1, \ldots, F_p . Alors la famille \mathcal{B} obtenue par concaténation des bases $\mathcal{F}_1, \ldots, \mathcal{F}_p$ est une base de $\bigoplus_{i=1}^p F_i$.

 \mathcal{B} est dite base adaptée à la somme directe $\bigoplus_{i=1}^p F_i$.

Proposition 1.6 Base d'un produit de deux espaces vectoriels (cas de bases finies)

Soient E et F deux espaces vectoriels. On suppose que E et F admettent des bases respectives (e_1, \ldots, e_n) et (f_1, \ldots, f_p) . Alors la famille $((e_1, 0_F), \ldots, (e_n, 0_F), (0_E, f_1), \ldots, (0_E, f_p))$ est une base de E \times F.

Proposition 1.7 Base d'un produit de deux espaces vectoriels (cas de bases quelconques)

Soient E et F deux espaces vectoriels. On suppose que E et F admettent des bases respectives $(e_i)_{i \in I}$ et $(f_j)_{j \in J}$. Alors la concaténation des familles $(e_i, 0_F)_{i \in I}$ et $(0_E, f_j)_{j \in J}$ est une base de E \times F.

Proposition 1.8 Base d'un produit d'un nombre fini d'espaces vectoriels (cas de base finies)

Soient E_1,\ldots,E_p des espaces vectoriels. On suppose que E_1,\ldots,E_p admettent des base respectives $(e_1^1,\ldots,e_{n_1}^1),\ldots,(e_1^p,\ldots,e_{n_p}^p)$. Pour tout $k\in [\![1,p]\!]$ et tout $i\in [\![1,n_k]\!]$, on pose $f_i^k=(0_{E_1},\ldots,0_{E_{i-1}},e_i^k,0_{E_{i+1}},\ldots,0_{E_p})$. Alors la concaténation des familles $(f_1^1,\ldots,f_{n_1}^1),\ldots,(f_1^p,\ldots,f_{n_p}^p)$ est une base de $\prod_{k=1}^p E_p$.

Proposition 1.9 Base d'un produit d'un nombre fini d'espaces vectoriels (cas de bases quelconques)

Soient E_1,\ldots,E_p des espaces vectoriels. On suppose que E_1,\ldots,E_p admettent des base respectives $(e_i^1)_{i\in I_1},\ldots,(e_i^p)_{i\in I_p}$. Pour tout $k\in [\![1,p]\!]$ et tout $i\in I_k$, on pose $f_i^k=(0_{E_1},\ldots,0_{E_{i-1}},e_i^k,0_{E_{i+1}},\ldots,0_{E_p})$. Alors la concaténation des familles $(f_i^1)_{i\in I_1},\ldots,(f_i^p)_{i\in I_p}$ est une base de $\prod_{k=1}^p E_p$.

1.5 Cas particulier de \mathbb{K}^n

Définition 1.8 Famille échelonnée de vecteurs de \mathbb{K}^n

Soit (u_1, \ldots, u_p) une famille de vecteurs de \mathbb{K}^n . Pour tout $i \in [1, p]$, on note a_i (resp. b_i) le nombre de zéros initiaux (resp. terminaux) dans le vecteur u_i . On dit que la famille (u_1, \ldots, u_p) est échelonnée si une des suites finies (a_1, \ldots, a_n) ou (b_1, \ldots, b_n) est strictement monotone.

Exemple 1.12

Les vecteurs (2,3,1,2), (-2,1,0,0) et (1,0,0,0) forment une famille échelonnée de \mathbb{R}^4 . Les vecteurs (3,2,1,-1), (0,2,-1,4), (0,0,2,3) et (0,0,0,0) forment une famille échelonnée de \mathbb{R}^4 .

Proposition 1.10 Liberté d'une famille échelonnée

Une famille échelonnée de \mathbb{K}^n est libre si et seulement si elle ne comporte pas le vecteur nul.

Proposition 1.11

Toute famille de \mathbb{K}^n peut être transformée à l'aide des opérations du pivot de Gauss en une famille échelonnée.

Méthode Montrer qu'une famille de \mathbb{K}^n est libre ou liée

Il suffit d'écrire la matrice dont les colonnes sont les vecteurs de la famille et de se ramener à une famille échelonnée en utilisant le pivot de Gauss sur les *colonnes*. Si le vecteur nul apparaît, c'est que la famille est liée. Sinon, elle est libre.

Exemple 1.13

Montrer que la famille ((1,2,1),(1,3,2),(1,1,0)) est liée. Montrer que la famille ((2,1,3,4),(1,3,2,0),(2,3,1,-1)) est libre.

Méthode Déterminer une base d'un sous-espace vectoriel de \mathbb{K}^n

Soit F un sous-espace vectoriel de \mathbb{K}^n .

- ▶ Si F est donné sous forme cartésienne (i.e. à l'aide d'un système d'équations linéaires), la méthode «mettre sous forme d'un vect» vu dans le chapitre *Espaces vectoriels* fournit une base de F.
- ▶ Si F est donné sous forme paramétrique (i.e. à l'aide d'une famille génératrice), la méthode du pivot de Gauss fournit une base de F après suppression des éventuels vecteurs nuls.

2 Dimension d'un espace vectoriel

Définition 2.1 Dimension finie

On dit qu'un espace vectoriel est de dimension finie s'il possède une famille génératrice finie.

Exemple 2.1

Pour $n \ge 1$, \mathbb{K}^n est de dimension finie puisque sa base canonique est une famille génératrice finie.

Exemple 2.2

 $\mathbb{K}[X]$ n'est pas de dimension finie. En effet, supposons qu'il admette une famille génératrice finie (P_1,\ldots,P_n) . Posons $d=\max_{1\leqslant i\leqslant n}\deg P_i$. Alors X^{d+1} n'est pas une combinaison linéaire des P_i .

2.1 Existence de bases

Théorème 2.1

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soient \mathcal{L} une famille libre finie de E et \mathcal{G} une famille génératrice finie de E. Alors on peut compléter \mathcal{L} en une base de E en lui ajoutant des vecteurs de \mathcal{G} .

Corollaire 2.1 Existence de bases

Tout K-espace vectoriel de dimension finie possède une base finie.

Corollaire 2.2 Théorème de la base incomplète/extraite

Soit E un K-espace vectoriel de dimension finie.

- (i) On peut compléter toute famille libre finie de E en une base de E.
- (ii) On peut extraire de toute famille génératrice finie de E une base de E.

Exemple 2.3

Soit F = vect((1, -5, 7), (2, 6, 8), (3, 1, 15), (1, 11, 1)). Alors ((1, -5, 7), (2, 6, 8)) est une base de F.

Remarque. Si on admet l'axiome du choix, les théorèmes précédents restent vraie en dimension infinie quitte à considérer des familles infinies. ■

2.2 Définition de la dimension

Lemme 2.1

Soit E un \mathbb{K} -espace vectoriel de dimension finie possédant une famille génératrice à \mathfrak{n} vecteurs. Alors toute famille libre de E comporte au plus \mathfrak{n} vecteurs.

Théorème 2.2 Dimension

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Toutes les bases de E ont même nombre d'éléments. On appelle cet entier la *dimension* de E (sur \mathbb{K}) et on le note dim E.

Remarque. La dimension de l'espace nul est 0. ■

Remarque. On appelle *droite vectorielle* un espace vectoriel de dimension 1 et *plan vectoriel* un espace vectoriel de dimension 2. ■

Méthode

Déterminer la dimension d'un espace vectoriel

Pour déterminer la dimension d'un espace vectoriel, il suffit de déterminer <u>une</u> base de E. Son nombre d'éléments donnera la dimension.

Exemple 2.4

- ♦ L'ensemble des solutions d'une équation différentielle linéaire homogène d'ordre 1 est une droite vectorielle.
- ♦ L'ensemble des solutions d'une équation différentielle linéaire homogène d'ordre 2 à coefficients constants est un plan vectoriel.

Exemple 2.5

⋄ L'ensemble des suites réelles vérifiant une relation de récurrence linéaire homogène d'ordre 2 à coefficients constantes est un plan vectoriel.

Exemple 2.6

- $\diamond \dim \mathbb{K}^n = n.$
- $\diamond \ \text{dim} \, \mathbb{K}_n[X] = n+1.$
- \diamond $\mathbb{K}[X]$ est de dimension infinie.

Remarque. Un ensemble E peut être muni d'une structure d'espace vectoriel pour différents corps de base. La dimension peut alors différer suivant le corps de base. En cas d'ambiguïté, la dimension d'un espace vectoriel E pour le corps de base \mathbb{K} est notée $\dim_{\mathbb{K}} \mathsf{E}$.

Exemple 2.7

 $dim_{\mathbb{C}}\,\mathbb{C}=1 \text{ et } dim_{\mathbb{R}}\,\mathbb{C}=2.$

Exercice 2.1

Soit E un \mathbb{C} -espace vectoriel de dimension finie. Montrer que E peut être muni d'une structure de \mathbb{R} -espace vectoriel et montrer que dim $_{\mathbb{R}}$ E = $2 \dim_{\mathbb{C}}$ E.

Corollaire 2.3

Soit E un \mathbb{K} -espace vectoriel de dimension finie \mathfrak{n} .

- (i) Toute famille libre de E possède au plus n vecteurs.
- (ii) Toute famille génératrice de E possède au moins n vecteurs.
- (iii) Toute famille possédant strictement plus de n vecteurs est liée.

ATTENTION! Les réciproques sont fausses.

Une famille d'un espace vectoriel de dimension n possédant moins de n vecteurs n'est pas forcément libre.

- ♦ Une famille d'un espace vectoriel de dimension n possédant plus de n vecteurs n'est pas forcément génératrice.
- Une famille liée peut possèder n vecteurs ou moins.

Corollaire 2.4

Soit E un espace vectoriel de dimension $\mathfrak n$ et $\mathcal B$ une famille de $\mathfrak n$ vecteurs. Les propositions suivantes sont équivalentes .

- (i) \mathcal{B} est une famille génératrice de E ;
- (ii) \mathcal{B} est une famille libre de E ;
- (iii) \mathcal{B} est une base de E.

Méthode Prouver qu'une famille est une base en dimension finie

Soit E un espace vectoriel de dimension $\mathfrak n$ et $\mathcal B$ une famille à $\mathfrak n$ vecteurs. Pour prouver que $\mathcal B$ est une base de E, pas besoin de prouver que $\mathcal B$ est génératrice \underline{et} libre. Le théorème précédent nous dit qu'il suffit de montrer que $\mathcal B$ est génératrice \underline{ou} libre (en pratique, on montre plus souvent la liberté). Le travail est donc divisé par deux si on connaît la dimension de l'espace vectoriel.

Exemple 2.8

La famille ((0, 1, 2), (1, 2, 0), (2, 0, 1)) est une base de \mathbb{R}^3 .

Proposition 2.1 Dimension d'un produit

Soient E_1, \ldots, E_p des \mathbb{K} -espaces vectoriels de dimension finie. Alors $\prod_{k=1}^p E_k$ est de dimension finie et dim $\left(\prod_{k=1}^p E_k\right) = \sum_{k=1}^p \dim E_k$.

3 Dimension et sous-espaces vectoriels

3.1 Dimension d'un sous-espace vectoriel

Proposition 3.1 Dimension d'un sous-espace vectoriel

Soit F un sous-espace vectoriel d'un espace vectoriel de dimension finie E. Alors F est de dimension finie et dim F \leq dim E. De plus, dim F = dim E si et seulement si E = F.

Exemple 3.1

Les sous-espaces vectoriels de \mathbb{R}^2 sont le sous-espace nul, les droites vectorielles et \mathbb{R}^2 . Les sous-espaces vectoriels de \mathbb{R}^3 sont le sous-espace nul, les droites vectorielles, les plans vectoriels et \mathbb{R}^3 .

Exemple 3.2 Équations différentielles linéaires homogènes d'ordre 1

Soit (E) l'équation différentielle $y'+\alpha y=0$ où $\alpha\in\mathcal{C}(I,\mathbb{K})$. On note $\mathcal S$ l'ensemble des solutions de (E) sur I à valeurs dans $\mathbb K$. Alors $\mathcal S$ est un sous-espace vectoriel de $\mathbb K^I$ de dimension 1.

Exemple 3.3 Équations différentielles linéaires homogènes d'ordre 2 à coefficients constants

Soient $(a,b) \in {}^2$ et (E) l'équation différentielle y'' + ay' + by = 0. On note $\mathcal S$ l'ensemble des solutions de (E) sur $\mathbb R$ à valeurs dans $\mathbb K$. Alors $\mathcal S$ est un sous-espace vectoriel de $\mathbb K^{\mathbb R}$ de dimension 2.

Exemple 3.4 Récurrences linéaires homogènes

Soient $(a,b) \in \mathbb{K}^2$ et \mathcal{S} l'ensemble des suites $(\mathfrak{u}_n)_{n \in \mathbb{N}}$ à valeurs dans \mathbb{K} telles que $\mathfrak{u}_{n+2} + \mathfrak{a}\mathfrak{u}_{n+1} + \mathfrak{b}\mathfrak{u}_n = 0$ pour tout $n \in \mathbb{N}$. Alors \mathcal{S} est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$ de dimension 2.

Méthode Montrer que deux sous-espaces vectoriels sont égaux

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E. Pour montrer que F = G, il suffit de montrer que $F \subset G$ (ou $G \subset F$) et que dim $F = \dim G$. Travail divisé par deux.

Exercice 3.1

Soient a = (1, 2, 1), b = (1, 3, 2), c = (1, 1, 0) et d = (3, 8, 5) des vecteurs de \mathbb{R}^3 . Montrer que vect(a, b) = vect(c, d).

Définition 3.1 Hyperplan

Soit E un espace vectoriel de dimension $\mathfrak n$. On appelle *hyperplan* de E tout sous-espace vectoriel de E de dimension $\mathfrak n-1$.

3.2 Dimension d'une somme

Proposition 3.2 Existence d'un supplémentaire

Soit F un sous-espace vectoriel d'un espace vectoriel E de dimension finie. Alors F possède <u>un</u> supplémentaire dans E.

ATTENTION! On rappelle qu'il n'y a pas unicité du supplémentaire.

Remarque. Si on admet l'axiome du choix, l'existence d'un supplémentaire est également garantie en dimension infinie.

Proposition 3.3 Dimension d'une somme directe de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels de dimension finie en somme directe d'un espace vectoriel E. Alors $F \oplus G$ est de dimension finie et dim $F \oplus G = \dim F + \dim G$.

Proposition 3.4 Formule de Grassmann

Soient F et G deux sous-espaces vectoriels de dimension finie d'un espace vectoriel E. Alors F+G est de dimension finie et

$$\dim F + G = \dim F + \dim G - \dim F \cap G$$

Exercice 3.2

Soient F et G deux sous-espaces vectoriels de dimension 3 de \mathbb{R}^5 . Montrer que F \cap G \neq $\{0\}$.

Corollaire 3.1 Caractérisation d'une somme directe

Soient F et G deux sous-espaces vectoriels de dimension finie d'un espace vectoriel E. Alors F et G sont en somme directe si et seulement si $\dim(F + G) = \dim F + \dim G$.

Corollaire 3.2 Caractérisation de la supplémentarité

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel de dimension finie E. Alors F et G sont supplémentaires *si et seulement si <u>au moins deux</u>* des trois assertions suivantes sont vraies :

- (i) $\dim F + \dim G = \dim E$.
- (ii) $F \cap G = \{0_E\}.$
- (iii) F + G = E.

Méthode Prouver que deux sous-espaces vectoriels sont supplémentaires

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel de dimension finie E. Si on connaît les dimensions de E, F et G, pour prouver que F et G sont supplémentaires dans E, il suffit de vérifier que dim F + dim G = dim E et de montrer, $\underline{au\ choix}$, que F \cap G = $\{0_E\}$ \underline{ou} F + G = E (en pratique, on montre plus souvent que la somme est directe). Travail divisé par deux grâce à la dimension.

Exercice 3.3

Soient $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$ et G = vect((0, 1, 0)). Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .

Proposition 3.5 Dimension d'une somme d'un nombre fini de sous-espaces vectoriels

Soient F_1, \ldots, F_p des sous-espaces vectoriels de dimension finie d'un espace vectoriel E. Alors

$$\dim\left(\sum_{k=1}^{p} F_k\right) \leqslant \sum_{k=1}^{p} \dim F_k$$

De plus, l'inégalité précédente est une égalité si et seulement si F_1, \ldots, F_p sont en somme directe.

Remarque. Soient F_1, \ldots, F_p des sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Pour montrer que $E = \bigoplus_{k=1}^p F_k$, il suffit de montrer que F_1, \ldots, F_p sont en somme directe et que $\sum_{k=1}^p \dim F_k = \dim E$.

4 Rang d'une famille de vecteurs

Définition 4.1 Rang d'une famille de vecteurs

Soit E un \mathbb{K} -espace vectoriel (pas nécessairement de dimension finie). Soit \mathcal{F} une famille *finie* de vecteurs de E. Alors $\operatorname{vect}(\mathcal{F})$ est de dimension finie et sa dimension est appelée le *rang* de \mathcal{F} noté $\operatorname{rg} \mathcal{F}$.

Proposition 4.1

Le rang d'une famille finie de vecteurs est invariant par opérations de pivot de Gauss sur cette famille.

Remarque. Si \mathcal{F} est une famille de p vecteurs, alors rg $\mathcal{F} \leqslant p$.

Si E est de dimension finie n, $rg \mathcal{F} \leqslant n$.

Si ces deux conditions sont réunies, on a donc $\operatorname{rg} \mathcal{F} \leqslant \min(n,p)$.

Exercice 4.1

Soient \mathcal{F}_1 et \mathcal{F}_2 deux familles finies d'un espace vectoriels E de dimension finie. Montrer que :

$$\max(\operatorname{rg} \mathcal{F}_1, \operatorname{rg} \mathcal{F}_2) \leqslant \operatorname{rg}(\mathcal{F}_1 \cup \mathcal{F}_2) \leqslant \operatorname{rg} \mathcal{F}_1 + \operatorname{rg} \mathcal{F}_2$$

Proposition 4.2 Rang, liberté, génération

Soit \mathcal{F} une famille finie de p vecteurs d'un espace vectoriel E .

Alors $\operatorname{rg} \mathcal{F} = \operatorname{card} \mathcal{F}$ si et seulement si \mathcal{F} est libre.

Si de plus E est de dimension finie, rg $\mathcal{F}=\dim \mathsf{E}$ si et seulement si \mathcal{F} engendre E.

Méthode Rang d'une famille de \mathbb{K}^n

Soit \mathcal{F} une famille de \mathbb{K}^n . On applique la méthode du pivot de Gauss pour déterminer une base de $\text{vect}(\mathcal{F})$. Son cardinal est est le rang de \mathcal{F} .

Exercice 4.2

Déterminer le rang de la famille de vecteurs de \mathbb{R}^4 :

$$((1,2,-3,0),(-4,-6,12,2),(-3,-6,12,3),(-2,-4,6,0),(-2,-2,3,1))$$