CS171: Cryptography

Lecture 4

Sanjam Garg

Defining Computationally Secure Encryption (syntax)

- A private-key encryption scheme is a tuple of algorithms (Gen, Enc, Dec):
 - $Gen(1^n)$: outputs a key k (assume |k| > n)
 - Enc_k (m): takes key k and message $m \in \{0,1\}^*$ as input; outputs ciphertext c

$$c \leftarrow Enc_k(m)$$

• Dec_k (c): takes key k and ciphertext c as input; outputs m or "error"

$$m := Deck(c)$$

Correctness: For all n, k output by $Gen(1^n)$, $m \in \{0,1\}^*$ it holds that $Dec_k(Enc_k(m)) = m$

Computational Indistinguishability

$PrivK_{A,\Pi}^{eav}$ (n)

- 1. A outputs $m_0, m_1 \in \mathcal{M}.\{0,1\}^*, |m_0| = |m_1|$
- 2. $b \leftarrow \{0,1\}, k \leftarrow Gen(1^n)$), $c \leftarrow Enc_k(m_b)$
- 3. c is given to A
- **4.** A output *b*'
- 5. Output 1 if b = b' and 0 otherwise

Encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space \mathcal{M}

is perfectly computationally indistinguishable if PPT $\forall A$ it holds that:

$$\Pr[\Pr[VK_{A,\Pi}^{eav}] = 1] \le \frac{1}{2}$$

+ negl(n)

Does not hide message length! A scheme that only supports messages of fixed length is called a fixed-length encryption scheme.

Constructing Secure Encryption

Pseudorandom Generators (a building block)

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

What does it mean to be random?

- Is this string random?
 - 010101010101010101
 - 010100010110101010

- Uniformity is a property of a distribution and not a specific string.
- A distribution on *n*-bit strings is a function $D_{1}(0,1)^{n} \rightarrow [0,1]$ such that $\sum_{n} D_{n}(x) = 1$
 - $D: \{0,1\}^n \rightarrow [0,1]$ such that $\Sigma_x D(x) = 1$
 - For *uniform* distribution on *n*-bit strings, denoted U_n , $\forall x \in \{0,1\}^n$ we set $D(x) = 2^{-n}$

What about pseudorandomness?

Intuitively: should be indistinguishable from uniform.

 As before: pseudorandomness is a property of a distribution and not a specific string

Pseudorandom Generators PRG

Stretches a short uniform ``seed'' into a larger
 ``uniform looking'' larger output

Useful when only a few random bits are available.

Pseudorandom Generators

• $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$, where $\ell(n) > n$

seed

expanded output

• G is pseudorandom generator if \forall PPT A we have \exists $negl(\cdot)$ such that,

$$|\Pr_{x \leftarrow U_{\ell(n)}}[A(x) = 1] - \Pr_{s \leftarrow U_n}[A(G(s)) = 1]| \le negl(n)$$

PRG (Predicting Game Style)

$$PRG_{A,G}(1^n)$$

- 1. $b \leftarrow \{0,1\}$,
- 2. If b = 0 set $x \leftarrow G(U_n)$ else set $x \leftarrow U_{\ell(n)}$.
- 3. Give x to A
- **4**. **A** output *b*'
- 5. Output 1 if b = b' and 0 otherwise

G is a PRG if

 $\forall PPT A \text{ it holds that:}$ $\Pr[PRG_{A,G}(1^n) = 1]$ $\leq \frac{1}{2} + negl(n)$

Seed must be kept secret. Analogous to the secret key in an encryption scheme.

Fixed-Length Encryption Scheme

Let G be a $PRG: \{0,1\}^n \to \{0,1\}^{\ell(n)}$.

- $Gen(1^n)$: Choose uniform $k \in \{0,1\}^n$ and output it as the key
- $Enc_k(m)$: On input a message $m \in \{0,1\}^{\ell(n)}$ output the ciphertext

$$c \coloneqq G(k) \oplus m$$

• $\operatorname{Dec}_{k}(\boldsymbol{c})$: On input a ciphertext $\boldsymbol{c} \in \{0,1\}^{\ell(n)}$ output the message

$$m \coloneqq G(k) \oplus c$$

Proof of Security

Theorem: If *G* is a PRG, then this construction is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.

Proof by Reduction (If X then Π)

• To Prove: If no PPT B breaks X, then no PPT A breaks Π

- Assume there exists a PPT A that ``breaks'' Π , then we construct PPT B that ``breaks'' X
- However, such a B cannot exist. Thus, our assumption that there exists A that ``breaks'' ∏ must have been false.

Proof by Reduction (If X then Π)

Important:

- 1. View of A: No change
- 2. B is PPT givenA is PPT
- B succeeds
 with degrades
 wrt. A's by
 1/poly(n)

Proof of Security

Theorem: If *G* is a PRG, then this construction is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.

Proof by reduction: Given a PPT adversary A
 ``breaking'' the encryption scheme construct a PPT adversary B ``breaking'' the PRG

Proof by Reduction (If *PRG* then Indistinguishable Encryption)

 $x \in \{0,1\}^{\ell(n)}$ which is either uniform or pseudorandom

Reduction/Adversary B

Given: $Pr[PrivK_{A,\Pi}^{eav}(n)=1] \ge \frac{1}{2} + \epsilon(n)$

Guess in $\{0,1\}$

To prove: $|\Pr[B(G(U_n)) = 1] - \Pr[B(U_{\ell(n)}) = 1]| \ge \delta(n)$

Proof by Reduction (If *PRG* then Indistinguishable Encryption)

(Point 3) Success of B

- 1. If x is sampled from $U_{\ell(n)}$, then $\Pr[b=b']=\frac{1}{2}$.
 - The scheme behaves like a one-time pad.
- 2. If x is sampled from $G(U_n)$, then $\Pr[b=b'] \ge \frac{1}{2} + \epsilon(n)$
- 3. Pr[B guesses correct] =
 Pr[B guesses correct] x is from $U_{\ell(n)}$] +
 Pr[B guesses correct] x is from $G(U_n)$] $= \frac{1}{2} \left(\frac{1}{2}\right) + \frac{1}{2} \left(\frac{1}{2} + \epsilon(n)\right)$

$$=\frac{1}{2}+\frac{\epsilon(n)}{2}$$

Lessons

- Pseudo OTP is secure
 - Assuming G is a PRG
 - With respect to our definition
- Gain: Pseudo OTP has a short key
 - n bits instead of $\ell(n)$ bits
- Does pseudo OTP allow encryption of multiple messages?
 - Let's first define it!

Practice Question

```
Step 2: Prove
H is not a
PRG!
```

• Let $G: \{0,1\}^n \to \{0,1\}^{2n}$ be a PRG, then is

 $H: \{0,1\}^n \to \{0,1\}^{2n}$ a PRG?

$$H(s) = (s||0^n) \oplus G(s)$$

For any G!

- Yes?
- No?

• No! Let $F: \{0,1\}^{n/2} \to \{0,1\}^{3n/2}$ be a PRG then

$$G(s = (s_0, s_1)) = s_0 || F(s_1)^\circ$$
, where $s_0, s_1 \in \{0,1\}^{n/2}$

Step 1: G is a PRG

- Given: F is a PRG
- To Prove: $G(s = (s_0, s_1)) = s_0 || F(s_1)$ is a PRG
- Proof:
- 1. Assume G is not a PRG
- 2. $\exists A$, such that $\left| \Pr_{x \leftarrow U_{2n}} [A(x) = 1] \Pr_{s \leftarrow U_n} [A(G(s)) = 1] \right| \ge \epsilon(n)$ 3. $\exists A$, such that $\left| \Pr_{x \leftarrow U_{2n}} [A(x) = 1] \Pr_{s_0 \leftarrow U_{\underline{n}}, s_1 \leftarrow U_{\underline{n}}} [A(s_0 | | F(s_1)) = 1] \right| \ge \epsilon(n)$
- 4. $\exists B$, such that $\left| \Pr_{x \leftarrow U_{3n/2}} [B(x) = 1] \Pr_{s_1 \leftarrow U_{\frac{n}{2}}} [B(F(s_1)) = 1] \right| \ge \epsilon(n)$
- 5. F is not a PRG, contradicting the given. Thus, G must be a PRG.

Step 2: *H* is not a PRG

```
H(s) = (s||0^n) \oplus G(s)
= (s_0||s_1||0^n) \oplus (s_0||F(s_1))
= 0^{\frac{n}{2}}||((s_1||0^n) \oplus F(s_1))
```

Thank You!