Computer Vision Exercise 1 report

Amrollah Seifoddini

- The images are taken from Rabeeh Karimi, as all my efforts for connecting my mobile camera to the laptop failed.
- All the data and images are available in the attached zip file.
- The results of bouget's toolbox are available as .mat file in the attachment.

Part 1) DLT:

32.0342557109819]

Error: 0.6012

K =	[4142.76483968464	90.8717322544668	512.236301383930
	0	3838.75395072845	776.611944924064
	0	0	1]
R =	[-0.638551202776751	0.762524982409825	0.103961592106222
	-0.611268834602189	-0.420473548765596	-0.670486693851972
	-0.467549754867272	-0.491688566055142	0.734601647652789]
t =	[1.56101540709755		
	4.26043521781777		

For the implementation, I followed the exercise slides guide. First, normalization and then forming the matrix equation system is obvious. Afterwards, by using the SVD, I got V matrix and extract P out of it.

^{*}Red circles are the original points and blue crosses are re-projected ones.

Part 2) Gold Standard Algorithm:

Error: 0.5984

K =	[4139.84780964289	90.7837266099746	515.218190235403
	0	3835.41490600405	779.112684068189
	0	0	1]
R =	[-0.638326013589452	0.762772761825715	0.103525910726592
	-0.610956517479677	-0.420217724726278	-0.670931589340505
	-0.468264918741629	-0.491522916701390	0.734256895257548]

- t = [1.53831516387587
 - 4.23965491846563
 - 32.0097919390351]

For this part, I also followed the slides of the course and exercise guides. After normalization and initialization with DLT, I used an iterative loop for finding the best P^.

As we can see, we have an improvement (although little!) compared to DLT. This comes from our iterative approach.

Part 3) Bouget's toolbox:

The result are as follows for 14 images that I used.

Focal Length: $fc = [3527.27973 \ 3604.87629] \pm [148.79011 \ 167.75616]$

Principal point: $cc = [1307.38494 651.10609] \pm [175.67058 181.79677]$

Skew: $alpha_c = [0.00000] \pm [0.00000] = angle of pixel axes = 90.00000 \pm 0.00000 degrees$

Distortion: $kc = [0.08274 -0.56439 -0.01693 0.00463 0.00000] \pm [0.17530 0.56595 0.01703]$

0.02165 0.00000]

Pixel error: $err = [5.28786 \ 7.02424]$

It can be seen that the error rate is much higher than DLT and Gold algorithms. I interpret this as a bad data issue. Because I used some steep angles and did not use the optional parameters that the toolbox offers, this is not a big surprise to see that much error. I mean the size of each square and window size and etc.

Some of the results are shown as pictures in the following.

