

Search and Rescue of Avalanche Victims

Autonomous Systems WS 2021

Technical University of Munich

Presenter: Group aerial screw

Date: 24. March 2022

Outline

- Motivation
- Problem Description
- Search Method
- Path Planner and Controller
- Experiment
- Conclusion

Motivation

- Requirement: fast and accurate positioning
- Properties of drones: high speed, wide detection range, no terrain restrictions

Fig. 1: Survival curve for people buried in avalanche [1]

Problem Description

Avalanche Scenario:

Search area: rectangle

Angle of slope: 7°

Flight height: 5m

Sensor Model:

Intensity signals with noise

$$\bar{i}_t = \frac{r}{dist_{to}}$$
 $i_t = \bar{i}_t + \epsilon_t$ $\epsilon_t \sim U([0,1]) \cdot \lambda e^{-\lambda \bar{i}_t}$

Intensity signals and direction signals

$$\hat{d}_t = \frac{\vec{d}_t}{\|\vec{d}_t\| + c}$$

Global Search Method

Global Search Method

Fig. 2: Path of global search "S-shape flight"

Cross Flight

Fig. 3: Cross flight

Cross Flight

Fig. 4: Projection from search plane to victim plane

• Iterative Cross Flight

Fig. 5: Iterative cross flight

• Iterative Cross Flight

Triangulation

Fig. 7: Triangulation

Signal assignment

$$v_x = \frac{1}{2}(m_{1x} + m_{2x}) = \frac{1}{2}(m_{3x} + m_{4x})$$

Assignment verification

$$(v_x - m_{1x})^2 + w_1^2 = (v_x - m_{3x})^2 + w_2^2$$
$$w_1 + w_2 = w_g$$

Triangulation

Fig. 8: Overlapping of type 1 handled by signal assignment

Fig. 9: Overlapping of type 2 handled by assignment verification

Triangulation

Fig. 10: Reducing grid width increases marginal points of each victim, which improves quality

Iterative Local Search

$$\vec{x}_{t+1} = \vec{x}_t + \alpha * \frac{r_t}{i_t} * \hat{d}_t$$

Path Planner and Controller

Potential Field

$$U_t = \frac{1}{2}\zeta(\vec{x}_{goal} - \vec{x}_t)^2$$

$$\vec{x}_{t+1} = \vec{x}_t + \nabla U_t$$

Fig. 11: Potential field

Path Planner and Controller

- Trajectory Generation
 - Straight line
 - Approaching target -> recursive judgment of the distance
 - Distance from target point increases -> replan the trajectory to prevent overshoot.
- Controller

Fig. 12: Controller

- Efficiency: covered area per second
 - covered area: 415*300m²
 - global search speed: 8m/s
 - o local search speed: 5m/s
- Robustness: 10 rescues, 10 victims each rescue
- Accuracy
 - <1m: highly accurate</p>
 - 1-5m: low accurate
 - > 5m: failure

Methods without direction

method		without direction	with direction	
	Cross Flight	Iterative Cross Flight	Triangulation	Directed Iterative Local Search
Error (m)	0.33	0.22	0.47	0.36
Covered Area (m^2)	415*300	415*300	415*300	415*300
Time (s)	733	796	864	702
Covered area per second (m^2/s)	186	172	158.5	195
Number of high accuracy	94	99	92	100
Number of low accuracy	5	0	8	0
Number of Failure	1	1	0	0

Table 1 Comparison between different local search methods

- Cross Flight and Triangulation
 - Triangulation needs smaller grid width and longer flight distance
 - Triangulation is more efficient than Cross Flight as victim number rises

Figure 13 Extreme cases of Cross Flight and Triangulation

	10 victims	15 victims	20 victims	25 victims
Time of Cross Flight [s]	194	307	409	521
Time of triangulation [s]	277	326	380	445

Table 2 Comparison between Cross Flight and Triangulation

Method with direction

method		without direction	with direction	
	Cross Flight	Iterative Cross Flight	Triangulation	Directed Iterative Local Search
Error (m)	0.33	0.22	0.47	0.36
Covered Area (m^2)	415*300	415*300	415*300	415*300
Time (s)	733	796	864	702
Covered area per second (m^2/s)	186	172	158.5	195
Number of high accuracy	94	99	92	100
Number of low accuracy	5	0	8	0
Number of Failure	1	1	0	0

Table 1 Comparison between different local search methods

Conclusion

- Compare different methods to achieve accurate and rapid positioning and rescue of victims in avalanche scenarios
- Prove the high efficiency, high accuracy and high robustness of victim rescue using drones
- Prove the coverage efficiency of drones is much higher than that of humans
- Prove drone has great application potential in avalanche rescue

Contribution

- Dongyue Lu: Sensor model, global search, Cross Flight, potential field, trajectory generation, controller, victim generation, visualization
- Xuhui Zhang: Triangulation: Victim Identification, Localization Verification and Victim Rescuing; Overlapping Handling
- Yamo Akrami: Sensor Models & ILS, potential field
- Yunfeng Kang: Theory of Cross Flight and Iterative Cross Flight, implementation of Iterative Cross Flight
- Yuhang Cai: Read related conference about Cross Flight

Reference

[1] Mario Silvagni, Andrea Tonoli, Enrico Zenerino, and Marcello Chiaberge. Multipurpose uav for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk, 8(1):18–33, 2017.

Thank You!