

Corso di Fisica 2 IBM/ 1° canale AA 2024/25 - Prof. Paolo Villoresi Compitino 18 novembre 2024

Campo e Forza Elettrica

 Si definisca il Campo Elettrico si discuta della forza elettrica sulle cariche, indicando le unità di misura.

Si consideri il sistema in figura: una sferetta di massa m= 2395 µg ha una carica q ed è appesa ad un filo di lunghezza l=300 mm (di massa trascurabile). Si trova entro un condensatore le cui armature sono cariche con una σ = 500 μC/m² in modulo. Nella posizione di equilibrio, la sferetta si è spostata dalla verticale di 150 mm. Determinare la carica, il segno di q, esprimendola anche in unità di cariche elementari.

3) Qual è l'energia potenziale elettrostatica conferita passando dalla verticale alla posizione di equilibrio?

2. Legame elettrostatico tra cariche isolate

1) Si definisca l'energia in un sistema di N cariche, con le relative unità di misura.

2) Si considerino quattro cariche uguali di carica q₀= 9 nC e poste ai vertici di un quadrato di lato l=42 µm. Si calcoli l'energia elettrostatica totale del sistema, giustificandone il procedimento.

3) Si consideri una carica q₁= -15 nC posta a distanza inizialmente molto grande dal sistema sopra descritto. Si calcoli il lavoro necessario per portarla nella posizione al

centro del quadrato, discutendo il segno risultante.

3. Resistività dei materiali

Qual'è l'origine della resistività e come è legata alla resistenza elettrica?

Un conduttore come in figura di lunghezza L= 20m è composto da una parte centrale in rame (resistività = $1.72 \cdot 10^{-8} \Omega$ m), di sezione circolare e raggio R=1,8 mm, indicata con colore pieno, e un guscio esterno di spessore pari ancora a R, di un materiale incognito. Si osserva che applicando una tensione di V =1.3 V, le correnti che fluiscono sono uguali. Determinare il valore della corrente totale e la resistività del materiale incognito.

3) Quanto vale la potenza dissipata da ciascuna parte e quella totale?

4. Condensatori ed energia elettrostatica

1) Si definisca la capacità di un condensatore con la relativa unità di misura.

3) Calcolare l'energia elettrostatica immagazzinata nel primo prima della chiusura dell'interruttore e di seguito nel sistema di due condensatori.

Supponendo che il secondo condensatore a questo punto venga staccato e collegato con gli elettrodi invertiti, come nello schema 2. Calcolare la carica presente al termine dell'operazione nei due condensatori e la variazione di energia Un dielettrico con k=12 va ora a riempire lo spazio tra le armature di destra (schema.