2020

CHEMISTRY — HONOURS

Paper : CC-5
Full Marks : 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest (Q. 2 to Q. 13)

1. Answer any ten questions from the following:

1×10

- (a) What should be the criteria for a thermodynamic process to qualify as a reversible one?
- (b) Arrange the following electrolytes in increasing order of their Λ_0 (equivalent conductance at infinite dilution) values:

NaCl, NaOH, HCl, LiCl

- (c) Which law of thermodynamics is related to the concept of temperature of a system? State the law.
- (d) Concentration is a mass dependent thermodynamic property. Yet it is an intensive property. Explain.
- (e) Why is \overline{C}_p of a gas greater than its \overline{C}_v ?
- (f) For an acid-buffer (HA/A^{-}) the pH is equal to the pK_a of the weak acid only when [HA]: $[A^{-}]$ = 2:1. Criticize the statement.
- (g) For a reversible isobaric process only $\Delta H = q$. Comment.
- (h) If the equivalent conductance at infinite dilution of an aqueous solution of $CaCl_2$ at a particular temperature be Λ_{eq}^o , then what will be the Λ_m^o (molar conductance) at the same temperature? Justify.
- (i) What will be the value of K_c / K_p for the reaction $CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO_2(g)$ in terms of RT? (Assume ideal gas behaviour).
- (j) Under what condition(s) do the transport numbers t_{\oplus} and t_{\odot} of a uni-univalent electrolyte approach equality?
- (k) Why are glass electrodes kept immersed in a slightly acidic solution when not in use?
- (l) What is the basic criterion of choosing a uni-univalent electrolyte in a salt-bridge in order to minimize the liquid junction potential?

Please Turn Over

- 2. (a) Show that the reversible work of expansion of an ideal gas is greater in magnitude than in the irreversible case.
 - (b) 1.00 moles of an ideal gas ($\overline{C}_p = 2.5R$) at 1.0 atm and 300 K undergoes a reversible change so that the volume is doubled. The enthalpy change is 2078.5 Jmol^{-1} and the heat absorbed is 1675 Jmol^{-1} . Calculate the final temperature, final pressure and the work done during the process.
- 3. The heat of combustion of methane is $(-881 \cdot 25) \, \text{k J·mol}^{-1}$ at 298 K. Calculate the *adiabatic* flame temperature when one mole of methane is completely burnt in air (4:1 mole ratio of $N_2: O_2$), in the theoretical ratio.

Data :
$$H_2O(l) \rightarrow H_2O(g)$$
; $\Delta H^o(298K) = 43.60 \text{kJ} \cdot \text{mol}^{-1}$
 $\overline{C}_p (CO_2) = 26.00 + 43.5 \times 10^{-3} \text{T}$
 $\overline{C}_p (H_2O, g) = 30.36 + 9.61 \times 10^{-3} \text{T}$
 $\overline{C}_p (N_2) = 27.30 + 5.23 \times 10^{-3} \text{T}$; in units of $J \cdot K^{-1} \cdot \text{mol}^{-1}$.

- **4.** (a) For an expansion process involving a gas the quantity $PV^{\gamma} = \text{constant}$. Identify the nature of the gas and the characteristics of the process. $[\gamma = C_p/C_v]$.
 - (b) Draw the P-V and T-S diagram of an ideal gas undergoing a Carnot cycle. What do the enclosed areas of the diagram signify in the two cases? Justify your answer. 2+3
- **5.** (a) For an ideal gas, the absolute entropy (S) is expressed as $S = \frac{n}{2} \left(\alpha + 5R \ln \frac{U}{n} + 2R \ln \frac{V}{n} \right)$ where n is the number of moles, α is a constant and other symbols have their usual significance. Calculate \overline{C}_V and comment on the atomicity of the gas.
 - (b) Calculate the difference between ΔG and ΔA at 27°C for the reaction (P = 1 atm)

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$$
. 3+2

- **6.** (a) Show that $(\partial u / \partial V)_T = 0$ for a gas obeying the equation-of-state P(V nb) = nRT. (Assume the relevant Maxwell relation).
 - (b) One mole of supercooled water at (-8°C) and 1 atm pressure turns into ice at (-8°C) . Calculate the entropy change of the system, surroundings and the net entropy change. Heat capacity of water and ice, at 1 atm, may be taken as $75.42 \text{ JK}^{-1}\text{mol}^{-1}$ and $37.20 \text{ JK}^{-1}\text{mol}^{-1}$ respectively.

$$\Delta H \text{ (fusion)} = 6008 \text{ Jmol}^{-1}, \text{ at } 273 \text{ K}.$$
 2+3

- 7. (a) Show that for the *i*-th component in a mixture $(\partial \mu_i / \partial P)_{T,n} = \overline{V_i}$
 - (b) Consider the reaction: $H_2(g) + I_2(g) \rightarrow 2HI(g)$. If there are 2 moles of H_2 , 1 mole of I_2 and 0 moles of HI present at the time of start, express the free energy of a reaction in terms of the degree of advancement, ξ . If the standard free energy change of a reaction is positive, can the reaction proceed in the forward direction? Comment.
- **8.** (a) Starting from the van't Hoff reaction isotherm show that the equilibrium for an exothermic reaction shifts to the right on lowering of temperature.
 - (b) Dinitrogen trioxide dissociates according to the equation $N_2O_3(g) \rightleftharpoons NO_2(g) + NO(g)$. At 25°C, 1 atm pressure (total), the degree of dissociation is 0·30. Calculate Δ_rG° for the reaction at 298 K. 2+3
- 9. A Hittorf cell fitted with silver-silver chloride electrodes, is filled with HCl solution that contains 0·3856mg HCl/gram of water. An electric current of 2 mA is passed through the solution for exactly 180 minutes. At the end of electrolysis the cathode solution weighs 51·7436 g and contains 0·0267 g HCl. The anode solution weighing 52·0461 g contains 0·0133 g HCl. What is the transport number of H[⊕]? 5
- **10.** (a) For a strong electrolyte like KCl, depict graphically the variation of specific conductance and equivalent conductance with concentration. Explain the plots.
 - (b) Calculate the mean ionic activity coefficient at 25°C of a 0.001 molar solution of K_3 Fe(CN)₆ in water. [A = 0.51, at 25°C] 3+2
- 11. (a) Derive the expression for the pH, in case of hydrolysis of a salt of weak acid and strong base, using an exact treatment.
 - (b) Find out the magnitude of K_w (the ionic product of water) at 25°C. [Given that $E^o(H_2/OH^-) = -0.83 \text{ V}$] 3+2
- 12. (a) Set up the electrochemical cell where the following process takes place:

$$ZnCl_2(a_1) \rightarrow ZnCl_2(a_2)$$

- (b) You are supplied with 0.1 (N) NH₄OH and 0.1 (N) HCl solutions. Show how you will use these solutions to prepare 100 ml of a buffer solution of pH = 9.0 (K_b for NH₄OH = 2×10^{-5}). 3+2
- 13. (a) Explain the principle of determination of pH of a buffer solution using the quinhydrone electrode.
 - (b) The solubility product of a sparingly soluble salt AB_2 is $7 \cdot 47 \times 10^{-9}$ at 288 K and $1 \cdot 39 \times 10^{-8}$ at 298 K. Calculate the molar heat of solution of the salt.