MATH 110 Notes

Jad Damaj

Spring 2022

Contents

1	1/19/2022	2
	1.1 Overview	2
	1.2 Ch1 - Vector Spaces	2
	1.3 1.A: \mathbb{R}^n and \mathbb{C}^n	2
2	1/24/2022	3
	2.1 1.A: \mathbb{R}^n and \mathbb{C}^n	3
	2.2 1B - Vector Spaces	5
3	1/26/2022	6
	3.1 1.C - Subspaces	6
	3.2 Direct Sums	8
	3.3 Chapter 2: Finite Dimensional Vector Spaces	8
	3.4 2.A: Span and Linear Independence	9
4	1/31/2022	9
	4.1 Chapter 2: Finite Dimensional Vector Spaces	9
	4.2 2.A: Span and Linear Independence	9
5	2/2/2022	11
	5.1 2.A: Span and Linear Independence	11
	5.2 2.B - Bases	13
6	2/7/2022	14
	6.1 2.B - Bases	14
	6.2 2C - Dimension	14
	6.3 Ch3 - Linear Maps	16
	6.4 3.A - Linear Maps as a Vector Space	16

1 1/19/2022

1.1 Overview

Linear Algebra is about:

- Vector spaces (also called linear spaces)
- Linear maps
- Extra structures on spaces/maps (inner products, etc.)

Motivation:

- Physics we live in a 3D space
- Geometry even for a curved object, locally it looks like a vector space (tangent space)
- Representation Theory and Group Theory the set of all matrices has a rich structure and interesting subsets (subgroups)
- Solving Differential Equations natural tool and solution spaces
- Normal Operators guaranteed good bases
- Statistics square matrices, ...
- Applied Math designing of algorithms, ...

1.2 Ch1 - Vector Spaces

 \mathbb{R} - set of reals, \mathbb{R}^2 - plane, \mathbb{R}^3 - 3D space

Key feature: Have addition and scalar multiplication by $\mathbb R$

Generalizations: Vector spaces over \mathbb{R} (or a general \mathbb{F})

1.3 1.A: \mathbb{R}^n and \mathbb{C}^n

```
Definition 1.1 (\mathbb{C}). Introduced i such that i^2 + 1 = 0 \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}
```

Addition: (a + bi) + (c + di) = (a + c) + (b + d)i

Multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i

eg: $(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)^2 = 0 + i \cdot i = i$ $\mathbb{R} \subset \mathbb{C}$: view x as x + 0i

Theorem 1.2 (Properties of \mathbb{C}).

Commutativity: $\alpha + \beta = \beta + \alpha$, $\alpha\beta = \beta\alpha \quad \forall \alpha, \beta \in \mathbb{C}$

Associativity: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$, $(\alpha\beta)\gamma = \alpha(\beta\gamma) \quad \forall \alpha, \beta, \gamma \in \mathbb{C}$

Additive Identity: $\alpha + 0 = \alpha \quad \forall \alpha \in \mathbb{C}$

Additive Inverse: $\forall \alpha \in \mathbb{C}, \exists ! \beta \in \mathbb{C} \text{ such that } \alpha + \beta = 0$

Multiplicative Identity: $\alpha \cdot 1 = \alpha \quad \forall \alpha \in \mathbb{C}$

Multiplicative Inverse: $\forall \alpha \neq 0 \in \mathbb{C} \exists ! \beta \in \mathbb{C}$ such that $\alpha\beta = 1$ Distributive Properties: $\lambda(\alpha + \beta) = \lambda\alpha + \lambda + \beta \quad \forall \lambda, \alpha, \beta \in \mathbb{C}$

$2 \quad 1/24/2022$

2.1 1.A: \mathbb{R}^n and \mathbb{C}^n

Example 2.1. Show existence and uniqueness of the multiplicative inverse of $\forall a \neq 0$

Idea: Assume $\alpha = a + bi$ want $(a + bi)(?+?i) = 1 \rightarrow ?+?i = \frac{1}{a+bi}$ " =" $\frac{a-bi}{(a+bi)(a-bi)} = \frac{1-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$

Proof. Assume $\alpha=a+bi,\ a,b\in\mathbb{R}$, not both zero. We see that $\beta=\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i$ satisfies $(a+bi)(\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i)=\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}=1$. Similarly, $(\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i)(a+bi)=1$. \rightarrow existence

Moreover, if there exists $\tilde{\beta}$ such that $\alpha \tilde{\beta} = 1$, then $\beta = \beta \alpha \tilde{\beta} = \tilde{\beta}$. \rightarrow uniqueness

Definition 2.2.

- For $\alpha \in \mathbb{C}$, let $-\alpha \in \mathbb{C}$ define the unique element such that $\alpha + (-\alpha) = 0$
- For $\alpha \in \mathbb{C}$, let $1/\alpha \in \mathbb{C}$ define the unique element such that $\alpha(1/\alpha) = 1$
- Subtraction: $\alpha \beta = \alpha + (-\beta)$
- Division: $\beta/\alpha = \beta \cdot (1/\alpha), \ \alpha \neq 0$

 \mathbb{F} : field(In the book, \mathbb{R} or \mathbb{C})

• In general, generalization of \mathbb{R} or \mathbb{C}

Definition 2.3. A set $\mathbb{F}(\text{with addition "+" and multiplication "<math>\times$ ") is a field if

- (i) $\exists 0, 1 \in \mathbb{F}, 0 \neq 1$
- (ii) $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ by $(a, b) \mapsto a + b$
- (iii) $\times : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ by $(a, b) \mapsto a \cdot b$

Satisfying:

- (a) Commutativity: a + b = b + a, ab = ba
- (b) Associativity: a + (b+c) = (a+b) + c, a(bc) = (ab)c
- (c) Inverses: $\forall a, \exists -a \text{ such that } a + (-a) = 0$ $\forall a, \exists 1/a \text{ such that } a \cdot (1/a) = 1$
- (d) Distributive: c(a+b) = ca + cb

Example 2.4.

- 1. \mathbb{R} . \mathbb{C}
- 2. $\{0,1\}$ +, $\times \mod 2$
- 3. $\mathbb{F}_p = \{0, \dots, p-1\} + \times \text{mod } p, p \text{ prime } p$
- 4. Q: rationals
- 5. $\{a+b\sqrt{2}: a,b,\in\mathbb{Q}\}$
- 6. $\{P(x)/Q(x): P, Q \text{ are polynomials over } \mathbb{F}, Q \neq 0\}$

We will define \cdot for \mathbb{F} . Elements of \mathbb{F} are known as scalars (as opposed to vectors)

Definition 2.5. An n-tuple of elements of \mathbb{F} is (x_1,\ldots,x_n) where each $x_i\in\mathbb{F}$

Definition 2.6. $\mathbb{F}^n = \{ \text{all } n\text{-tuples of elements in } \mathbb{F} \}$

Definition 2.7.

- Addition "+": $\mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n$ by $((x_1, \dots, x_n), (y_1, \dots, y_n)) \mapsto (x_1 + y_1, \dots, x_n + y_n)$
- Scalar Multiplication ":": $\mathbb{F} \times \mathbb{F}^n$ by $(\lambda, (x_1, \dots, x_n)) \mapsto (\lambda x_1, \dots, \lambda x_n)$

Theorem 2.8 (Properties of \mathbb{F}^n).

• Addition is commutative: $v_1 + v_2 = v_2 + v_1 \quad \forall v_1, v_2 \in \mathbb{F}^n$

Proof. Assume
$$v_1 = (x_1, \dots, x_n), v_2 = (y_1, \dots, y_n)$$
 then $v_1 + v_2 = (x_1 + y_1, \dots, x_n + y_n) = (y_1 + x_1, \dots, y_n + x_n) = v_2 + v_1$

- Existence of $0 \in \mathbb{F}^n$: Denote 0 = (0, ..., 0). Then $v + 0 = v \ \forall v \in \mathbb{F}^n$
- Additive Inverse: $\forall v \in \mathbb{F}^n, \ \exists ! (-v) \in \mathbb{F}^n \text{ such that } v + (-v) = 0$

Geometric Meaning for $\mathbb{F} = \mathbb{R}$

Descartes Coordinate System:

Geometric Meaning of Multiplication on \mathbb{C}

2.2 1B - Vector Spaces

Definition 2.9. Fix a field \mathbb{F} . A vector space over \mathbb{F} is a set V with addition "+" and scalar multiplication "·" denoted as $+: V \times V \to V$ by $(v_1, v_2) \mapsto v_1 + v_2$, $\cdot: \mathbb{F} \times V \to V$ by $(\lambda, v) \mapsto \lambda v$ Satisfies:

- (1) $u + v = v + u, \forall u, v \in V$
- (2) $(u+v) + w = u + (v+w), a(bv) = (ab)v \ \forall u, v \in \mathbb{V}, a, b \in \mathbb{F}$
- (3) $\exists 0 \in \mathbb{V} \text{ such that } v + 0 = v, \forall v \in V$
- (4) $\forall v \in V, \exists w \in V \text{ such that } v + w = 0.$ (we will show w is unique and denote it as -v)
- (5) $1 \cdot v = v, \forall v \in V$
- (6) a(u+v) = au + av, (a+b)v = av + bv, $\forall a, b \in \mathbb{F}$, $u, v \in V$

Definition 2.10. Elements in a vector space V are called points or vectors

Definition 2.11. A vector space over $\mathbb{F}(/\mathbb{F})$ is also called an \mathbb{F} -vector space

Example 2.12.

- (1) $\mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n$ are all vector spaces
- (2) \mathbb{C} is a vector space over \mathbb{R}

- (3) Let S be a set. Define F^s = the set of all functions from S to \mathbb{F} . \mathbb{F}^S is a vector space $/\mathbb{F}$ under the operations (f+g)(s) = f(s) + g(s), $(\lambda f)(s) = \lambda \cdot f(s)$. Each element has additive inverse (-f)(s) = -f(s) $\mathbb{F}^{\infty} = \mathbb{F}^{\{1,2,3,\ldots\}}$, consists of (a_1,a_2,a_3,\ldots) $\forall a_n \in \mathbb{F}$
- (4) the set of all sequences of real numbers that converge to 0
- (5) the set of all polynomials over \mathbb{F} , with deg $\leq n$ in k variables is a vector space $/\mathbb{F}$

Theorem 2.13. A vector space V has a unique additive identity

Proof. Assume 0 and 0' are both additive inverses. Then 0 = 0 + 0' = 0'

Theorem 2.14. $\forall v \in V$ has a unique additive inverse.

Proof. If w_1, w_2 are both additive inverses of v, then $w_1 = w_1 + (v + w_2) = (w_1 + v) + w_2 = w_2$

Definition 2.15. Let w - v = w + (-v)

Notation 2.16. V will be used to denote a vector space over \mathbb{F}

Theorem 2.17. $0 \cdot v = 0, \forall v \in V$

Proof. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$ so by the existence of additive inverses $0 = 0 \cdot v$

Theorem 2.18. $a \cdot 0 = 0, \forall a \in \mathbb{F}$

Proof.
$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$
 so $0 = a \cdot 0$

Theorem 2.19. $(-1) \cdot v = -v, \forall v \in V$

Proof. 0 = 0v = (1+(-1))v = 1v+(-1)v = v+(-1)v so by def (-1)v = -v

3 1/26/2022

3.1 1.C - Subspaces

Definition 3.1. Assuming V is a vector space $/\mathbb{F}$. $U \subset V$ is called a subspace of V if U is also a vector space $/\mathbb{F}$ under + and \cdot in V.

Example 3.2. $\{(x_1, x_2, 0) : x_1, x_2, \in \mathbb{F}\}\$ is a subspace of \mathbb{F}^3

Proposition 3.3. U is a subspace iff

- (i) $0 \in V$
- (ii) $u_1, u_2 \in U \to u_1 + u_2 \in U$
- (iii) $a \in \mathbb{F}, u \in U \to a \cdot u \in U$

 $Proof. \rightarrow$) Suppose conditions hold. Then properties of +, \cdot follow from V, U has identity by (i) and additive inverses by (iii). Finally, +, \cdot well defined by (ii), (iii) so U is a subspace.

 \leftarrow) Suppose U is a subspace. Then U is nonempty so $0 \cdot u = 0 \in U$ so (i) holds. Also, +, \cdot well defined so (ii), (iii) hold.

Example 3.4.

- (a) {0} is a subspace
- (b) $\{(x_1, x_2, x_3, x_3) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace iff b = 0
- (c) $C[0,1] = \{\text{continuous real valued functions on } [0,1]\}$ is a subspace of $\mathbb{R}^{[0,1]}$ (over \mathbb{R})
- (d) $C^{\infty}[0,1] = \{\text{smooth real-valued functions on } [0,1]\}$ is a subspace $\mathbb{R}^{[0,1]}$
- (e) The real sequences that converge to zero form a subspace of \mathbb{R}^{∞}
- (f) The only subspaces of \mathbb{F}^1 are $\{0\}$ and \mathbb{F} (over \mathbb{F})
- (g) If U is a subspace of V, W is a subspace of U, then W is a subspace of V
- (h) We will show the only subspace of \mathbb{R}^3 are $\{0\}$, lines through the origin, planes through the origin, and \mathbb{R}^3

Definition 3.5. For U_1, \ldots, U_n subspaces of V, define the sum

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}$$

also denoted as $\sum_{j=1}^{m} U_j$.

Example 3.6. In \mathbb{F}^3 , what is $\{(x, x, 0)\} + \{(0, y, y)\}$?

Proof.
$$\{(x, y, z) : y = x + z\}$$

Theorem 3.7. For subspaces $U_1, \ldots, U_m \subset V$, $\sum_{j=1}^m$ is a subspace. Moreover, it is the smallest subspace containing U_1, \ldots, U_n in the sense that if W contains U_1, \ldots, U_n , then $W \supset U$.

Proof. Subspace: (i) $0 \in U_i$ for i = 1, ..., n so $0 = 0 + \cdots + 0 \in W$

(ii)/(iii): follow from closedness of each U_j

Containing U_1, \ldots, U_n : Consider the sum $0 + \cdots + 0 + u_j + 0 + \cdots + 0$ for $j = 1, \ldots, m$

Smallest Subspace: Suppose W contains U_1, \ldots, U_m then W contains u_1, \ldots, u_m $\forall u_j \in U_j$ so $u_1 + \cdots + u_m \in W$.

3.2 **Direct Sums**

Definition 3.8. If U_1, \ldots, U_m are subspaces of V then the sum $U_1 + \cdots + U_m$ is a direct sum if each element in $U_1 + \cdots + U_m$ can be written as $u_1 + \cdots + u_m$ in a unique way with $u_j \in U_j$. In this case, we also use $U_1 \oplus \cdots \oplus U_m$ to denote $U_1 + \cdots + U_m$.

Example 3.9.

- (1) If $U_1 = \{(x_1, x_2, 0)x_1, x_2 \in \mathbb{F}\}, U_2 = \{(0, 0, x_3)x_3 \in \mathbb{F}\}, \text{ then } \mathbb{F}^3 = U_1 \oplus U_1 \oplus U_2 \oplus U_$
- (2) Let $U = \{(x, x, ...) \in \mathbb{R}^{\infty}, V = \{(x_1, x_2, ...) \in \mathbb{R}^{\infty} : \sum |x_n| < \infty, \sum x_n = 1\}$ 0}. Then U + V is a direct sum. (ex): Prove $U + V \neq \mathbb{R}^{\infty}$

Theorem 3.10. $U_1 + \cdots + U_m$ is a direct sum iff $\exists!$ way to write 0 as a sum of $u_1 + \cdots + u_m$, $\forall u_j \in U_j$ (which is $0 = 0 + \cdots + 0$).

Proof. \rightarrow) by def

$$\leftarrow$$
) For $u \in U_1 + \cdots + U_m$, assume $u = u_1 + \cdots + u_m = \tilde{u_1} + \cdots + \tilde{u_n}$, $u_j, \tilde{u_j} \in U_j$. Then $(u_1 - \tilde{u_1}) + (u_2 - \tilde{u_2}) + \cdots + (u_m - \tilde{u_m}) = 0$. Hence $u_1 - \tilde{u_1} = u_2 - \tilde{u_2} = \cdots = 0$. Thus there is only one way to write u as $\sum_{i=1}^m, \forall u_i \in U_j$.

Theorem 3.11. For subspaces $U_1, U_2 \in V, U_1 + U_2$ is a direct sum iff $U_1 \cap U_2 =$ $\{0\}.$

Proof.
$$\rightarrow$$
) If $v \in U_1 \cap U_2$, $\underbrace{v}_{\in U_1} + \underbrace{(-v)}_{\in U_2} = 0$ so $v = (-v) = 0$

$$\{0\}.$$

$$Proof. \rightarrow) \text{ If } v \in U_1 \cap U_2, \underbrace{v}_{\in U_1} + \underbrace{(-v)}_{\in U_2} = 0 \text{ so } v = (-v) = 0$$

$$\leftarrow) \text{ Take } u \in U_1 + U_2 \text{ assume } u = u_1 + u_2 = \tilde{u_1} + \tilde{u_2}. \text{ Then } \underbrace{u_1 - \tilde{u_1}}_{\in U_1} = \underbrace{-(u_2 - \tilde{u_2})}_{\in U_2}$$
so by assumptions, $u_1 = \tilde{u_1}$ and $u_2 = \tilde{u_2}$.

so by assumptions, $u_1 = \tilde{u_1}$ and $u_2 = \tilde{u_2}$.

Example 3.12. For subspaces U_1, \ldots, U_m of V, TFAE:

- (i) $U_1 + \cdots + U_m$ is a direct sum
- (ii) $\forall j \ U_j \cap (\sum_{k \neq j} U_k) = \{0\}$
- (iii) $\forall j > 1, U_j \cap (U_1 + \dots + U_{j-1}) = \{0\}$
- (iv) If $u_1 + \cdots + u_m = 0$, $u_i \in U_i$ then $u_1 = u_2 = \cdots = u_m = 0$

Chapter 2: Finite Dimensional Vector Spaces 3.3

 \mathbb{F} : field, V: Vector space $/\mathbb{F}$

3.4 2.A: Span and Linear Independence

Motivation: In some $V(\text{such as }\mathbb{F}^n)$, we can find vectors $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ such that every $v \in V$ can be written as $v = \sum_{j=1}^n a_j e_j$ and the choice of a_j is unique.

We will work with such vectors in a general setting.

$4 \quad 1/31/2022$

4.1 Chapter 2: Finite Dimensional Vector Spaces

- Main motivation: Find "coordinate systems" in a vector space
- Recall in \mathbb{F}^n , $(x_1, \dots, x_n) = x_1(1, 0, \dots, 0) + x_n(0, \dots, 0, 1) = x_1e_1 + \dots + x_ne_n$.

4.2 2.A: Span and Linear Independence

Definition 4.1. A linear combination of vectors $v_1, \ldots, v_m \in V$ is a vector of the form

$$v = \sum_{j=1}^{m} a_j v_j, \quad a_1, \dots, a_m \in \mathbb{F}.$$

Example 4.2. (1,2,-3) = (1,0,-1) + 2(0,1,-1)

Example 4.3. Is (1,2,3) a linear combination of (1,0,-1) and (0,1,1)? No, if $(1,2,-3) = a_1(1,0,-1) + a_2(0,1,1)$ then $a_1 = 1, a_2 = 2$ but $1(1,0,-1) + 2(0,1,1) = (1,2,1) \neq (1,2,-3)$.

Definition 4.4. The set

$$\{\sum_{j=1}^{m} a_j v_j, a_i \in \mathbb{F}, \, \forall 1 \le j \le m\}$$

is the span of v_1, \ldots, v_m , denoted by $\operatorname{span}(v_1, \ldots, v_m)$. Note $\operatorname{span}() = \{0\}$.

Example 4.5. $(1,2,-3) \in \text{span}((1,0,-1),(0,1,-1)).$

Theorem 4.6. span (v_1, \ldots, v_m) is the smallest subspace of V that contains v_1, \ldots, v_m .

Proof. Subspace: $0 = 0v_1 + \cdots, 0v_n \in \text{span}(v_1, \dots, v_m)$

Closed under addition: $(a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots + b_mv_m) = (a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m$.

Closed under multiplication: $\lambda(a_1v_1 + \cdots + a_mv_m) = (\lambda a_1)v_1 + \cdots + (\lambda a_m)v_m$. So it is a subspace.

Smallest: If $v_1, \ldots, v_m \in W$ for some subspace W, then $\forall a_1, \ldots, a_n \in \mathbb{F}$, $a_1v_1, \ldots, a_mv_m \in V$ so $a_1v_1 + \cdots + a_mv_m \in W$. Thus, $\operatorname{span}(v_1, \ldots, v_m) \subseteq W$.

Definition 4.7. If $V = \text{span}(v_1, \dots, v_m)$, then we say the list v_1, \dots, v_m spans V

Example 4.8. e_1, \ldots, e_n spans \mathbb{F}^n

Definition 4.9. V is called finite dimensional if some (finite) list of vectors spans V.

Example 4.10. \mathbb{F}^n is finite dimensional.

Definition 4.11. A finite expression

$$p(z) = a_0 + a_1 z^1 + \dots + a_m z^m, \quad a_0, \dots, a_m \in \mathbb{F}, a_m \neq 0,$$

also written as

$$\sum_{j=0}^{\infty} a_j x_j, a_{n+1} = a_{n+2} = \dots = 0,$$

is called a polynomial with coefficients in \mathbb{F} . (By definition p=0 is a polynomial.)

- Each polynomial over \mathbb{F} gives rise to a function from $\mathbb{F} \to \mathbb{F}$ defined by $p: \mathbb{F} \to \mathbb{F}$ by $z \mapsto p(z)$
- m is the degree of p if p has the form (*). The zero polynomial has degree $-\infty$ by definition.
- $\mathcal{P}(\mathbb{F}) = \{\text{all polynomials over } \mathbb{F}\}\$
- $\mathcal{P}_m(\mathbb{F}) = \{\text{all polynomials of deg } \leq m \text{ over } \mathbb{F}\}$

Example 4.12. $\mathcal{P}_m(\mathbb{F})$ and $\mathcal{P}(\mathbb{F})$ are vector spaces over \mathbb{F} (also subspaces of $\mathbb{F}^{\mathbb{F}}$ if viewed as functions.)

Example 4.13.

- (a) $\mathcal{P}_m(\mathbb{F})$ is finite dimensional
- (b) $\mathcal{P}(\mathbb{F})$ is infinte dimensional

Proof.

- (a) $1, z, \ldots, z^m$ spans $\mathcal{P}_m(\mathbb{F})$
- (b) For any $p_1, \ldots, p_m \in \mathcal{P}(\mathbb{F})$, assume N is larger than $\deg p_j$ for $1 \leq j \leq m$. Then every $\sum_{j=1}^m a_j p_j$ is not equal to z^N .

Definition 4.14. v_1, \ldots, v_m is called linearly independent if whenever $0 \sum_{j=1}^m a_j v_j$, $a_1, \ldots, a_m \in \mathbb{F}$, we must have $a_1 = \cdots = a_m = 0$. Otherwise, the list is linearly dependent. The empty list is linearly independent by definition.

Example 4.15.

- (a) v is linearly independent iff $v \neq 0$
- (b) e_1, \ldots, e_n is linearly independent in \mathbb{F}^n
- (c) v_1, v_2 is linearly independent iff neither vector is a scalar multiple of the other.
- (d) $1, z, \ldots, z^m$ is linearly independent in $\mathcal{P}_m(\mathbb{F})$.
- (e) (1,*,*),(0,1,*),(0,0,1) where each * is arbitrary is linearly independent in \mathbb{F}^3
- (f) $(1,1,\ldots,1),(a_1,a_2,\ldots,a_n),(a_1^2,a_2^2,\ldots,a_n^2),\ldots,(a_1^{n-1},a_2^{n-1},\ldots,a_n^{n-1})$ is linearly dependent iff at least two of the a_j 's are the same.
- (g) Any subset of a linearly independent list is linearly independent.

Example 4.16.

- (a) If some vector in a list is a linear combination of the others, then the list is linearly dependent.
- (b) Every list containing 0 is linearly dependent.

$5 \quad 2/2/2022$

5.1 2.A: Span and Linear Independence

Notation 5.1. $\mathcal{P}(\mathbb{F})$ can also be written as $\mathbb{F}[x]$

Lemma 5.2. For $v_1, \ldots, v_n \in V$, TFAE:

- (a) v_1, \ldots, v_n is linearly dependent.
- (b) $\exists 1 \leq j \leq n \text{ such that } v_j \in \text{span}(v_1, \dots, v_{j-1})$
- (c) $\exists 1 \leq j \leq n$ such that $v_j \in \text{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ (Note: here \hat{v}_j means v_j is excluded from the list)
- (d) $\exists 1 \leq j \leq n \text{ such that } \operatorname{span}(v_1, \dots, v_n) = \operatorname{span}(v_1, \dots, \hat{v}_i, \dots, v_n).$

Proof. $\mathbf{a} \to \mathbf{b}$) By def, $\exists a_1, \dots, a_n \in \mathbb{F}$, not all 0, such that $a_1v_1 + \dots + a_nv_n = 0$. Take the largest j such that $a_j \neq 0$. Then, $a_1v_1 + \dots + a_jv_j = 0$. Hence, $v_j = -\frac{a_1}{a_j}v_1 - \dots - \frac{a_{j-1}}{a_j}v_{j-1}$ so $v_j \in \operatorname{span}(v_1, \dots, v_{j-1})$. $\mathbf{b} \to \mathbf{c}$) Notice $\operatorname{span}(v_1, \dots, v_{j-1}) \subset \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ so $v_j \in \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$. $\mathbf{c} \to \mathbf{d}$) By assumption $v_j \in \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$. Also $v_k \in \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ for $k \neq j$ so $\operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ contains v_1, \dots, v_n . Thus, it contains $\operatorname{span}(v_1, \dots, v_n)$. Since $\operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n) \subset \operatorname{span}(v_1, \dots, v_n)$, the two are equal

d \to a) By assumption, $\exists b_k \in \mathbb{F}$, $1 \le k \le n$, $k \ne j$ such that $v_j = \sum_{j \ne k} b_k v_k$. So $\sum_{j \ne k} b_k v_k - v_j = 0$ so the set is linearly dependent.

Theorem 5.3. If v_1, \ldots, v_m spans V, and $u_1, \ldots, u_n \in V$ are linearly independent, then $n \leq m$.

Idea. If m = 2, why can't n = 3? Consider the functions:

$$u_1 = a_{1,1}v_1 + a_{1,2}v_2$$

$$u_2 = a_{2,1}v_1 + a_{2,2}v_2$$

$$u_3 = a_{3,1}v_1 + a_{3,2}v_2$$

We must rearrange u_1, u_2, u_3 to show they are linearly dependent (3 equations in 2 variables.)

Proof. We will proceed by induction on m.

Note that for m = 0, span() = $\{0\}$ so this is trivially true.

Basis: If m=1, $n\geq 2$. Let v_1 span V and let $u_1,u_2\in V$ be arbitrary. Then $u_1=\lambda_1v_1$ and $u_2=\lambda_2v_2$. If $\lambda_1=0$, then $u_1=0$ and the set is linearly dependent so assume $\lambda_1\neq 0$. Then $\lambda_2u_1-\lambda_1u_2=0$ so the list is linearly dependent.

Inductive Step: Assume that the theorem holds for m = k. It suffices to show the m = k + 1 case. Let v_1, \ldots, v_{k+1} be a spanning list of V. If $n \ge k + 2$, let

$$u_i = \sum_{j=1}^{k+1} a_{i,j} v_j, \quad 1 \le i \le k+2, \quad a_{i,j} \in \mathbb{F},$$

be a list of k+2 vectors.

If all $a_{i,k+1} = 0$, then the list of vectors can be represented using only the vectors v_1, \ldots, v_k so they would be linearly independent by the IH.

Otherwise, WLOG, assume $a_{k+2,k+1} \neq 0$ (if not we can relabel the vectors to achieve this). Then

$$u_i - \frac{a_{i,k+1}}{a_{k+2,k+1}} u_{k+2} \in \text{span}(v_1, \dots, v_k)$$

for $1 \le i \le k+1$.

By IH, $\exists b_1, \ldots, b_{k+1} \in \mathbb{F}$, not all 0, such that

$$b_1(u_1 - \frac{a_{1,k+1}}{a_{k+2,k+1}}u_{k+2}) + \dots + b_{k+1}(u_{k+1} - \frac{a_{k+1,k+1}}{a_{k+2,k+1}}u_{k+1}u_{k+2}) = 0$$

so

$$b_1u_1 + \dots + b_{k+1}u_{k+1} - \left(b_1\frac{a_{1,k+1}}{a_{k+2,k+2}} + \dots + b_{k+1}\frac{a_{k+1,k+1}}{a_{k+1,k+2}}\right)u_{k+2} = 0$$

so the list u_1, \ldots, u_{k+2} is linearly dependent.

Example 5.4. e_1, \ldots, e_n spans \mathbb{F}^n and is linearly independent so:

• (1,2,3), (4,5,8), (4,6,7), (-3,2,8) are linearly dependent in \mathbb{F}^3

• (1,2,3,-5), (4,5,8,-3), (4,6,7,-1) does not span \mathbb{F}^4

Proposition 5.5. Every subspace of a finite dimensional vector space is finite dimensional.

Proof. Assume V is spanned by v_1, \ldots, v_m , and U is a subspace of V.

Start from the empty list () in U and add vectors 1 by 1 so that no vector is in the span if the previous vectors in the list. This produces a linearly independent list in U.

By the thm, this process must terminate since the length of a list of linearly independent vectors in V cannot be greater than m.

Assume we have u_1, \ldots, u_n . Then each $u \in U$ is a linear combination of u_1, \ldots, u_n , otherwise we could add it to the list and it would produce a longer linearly independent list. Thus, u_1, \ldots, u_n spans U.

5.2 2.B - Bases

Definition 5.6. A basis of V is a list of vectors in V that is linearly independent and spans V.

Theorem 5.7. Every finitely dimensional vector space has a basis.

Proof. Take U = V in the proof of proposition 5.5. Then we can generate a linearly independent list in V that spans V. Thus V has a basis.

Example 5.8.

- (a) e_1, \ldots, e_n forms a basis of \mathbb{F}^n (standard basis)
- (b) (1,2,3), (3,4,6), (0,0,1) is a basis of \mathbb{F}^3 unless char $\mathbb{F}=3$
- (c) (1,-1,0), (0,1,-1) is a basis of $\{(x,y,z) \in \mathbb{F}^3 : x+y+z=0\}$
- (d) $1, z, \ldots, z^m$ is a basis of $\mathcal{P}_m(\mathbb{F})$
- (e) f_0, f_1, \ldots, f_m is a basis of $\mathcal{P}_m(\mathbb{F})$ if $\deg f_i = j, \ 0 \le j \le m$

Proposition 5.9. v_1, \ldots, v_m forms a basis of V iff $\forall v \in V$ can be uniquely represented as $v = \sum_{j=1}^n a_j v_j, a_j \in \mathbb{F}$.

Proof. If v_1, \ldots, v_n forms a basis of V, then they span V so all vectors can be represented in the desired form. Suppose $\exists a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{F}$ such that $a_1v_1 + \cdots + a_nv_n = v = b_1v_1 + \cdots + b_nv_n$, then $(a_1 - b_1)v_1 + \cdots + (a_n - b_n)v_n = 0$. Since the set is linearly independent, $a_1 - b_1 = \cdots = a_n - b_n = 0$ so $a_i = b_i$ for all i, thus the representation is unique.

If the stated conditions hold, then the list spans v. Also, 0 has a unique representation so the list is linearly independent and hence a basis.

Proposition 5.10. Every spanning list in a finite dimensional vector space contains a basis.

Proof 1. Starting from (), we can create a linearly independent list consisting of vectors in the spanning list by the same procedure as proposition 5.5. This process must terminate since the spanning list is finite. So we produce a linearly independent list that spans V, eg. a basis.

Proof 2. We can also start with the spanning list v_1, \ldots, v_m and at each step, if the list is linearly dependent, we can choose v_j such that $\mathrm{span}(v_1, \ldots, v_n) = \mathrm{span}(v_1, \ldots, \hat{v}_j, \ldots, v_n)$. This process must terminate in a linearly independent list since the spanning list is finite. So we produce a linearly independent list that spans V, eg. a basis.

$6 \quad 2/7/2022$

6.1 2.B - Bases

Proposition 6.1. Every linearly independent list of vectors in a finite dimensional vector space can be extended to a basis.

Proof. Starting with a linear independent list we can continue to add vectors that are not in the span of the previous vectors of the list to product a linearly independent list. This will eventually terminate since a linearly independent list cannot be longer than the spanning list. Thus, it will produce a linearly independent spanning list, eg. a basis. \Box

Proposition 6.2. If V is finite dimensional and U is a subspace of V, then there exists a subspace $W \subset V$ such that $V = U \oplus W$.

Proof. U is finite dimensional so take a basis u_1, \ldots, u_n of U. Extend this to a basis $u_1, \ldots, u_m, u_{m+1}, \ldots, u_n$ of V. We will show $W = \operatorname{span}(u_{m+1}, \ldots, u_n)$ suffices.

Since u_1, \ldots, u_n is a basis of V, every $v \in V$ can be written as $\underbrace{a_1u_1 + \cdots + a_mv_m}_{\in U} + \underbrace{a_1u_1 + \cdots + a_mv_m}_{\in U}$

$$\underbrace{a_{m+1}u_{m+1} + \dots + a_nu_n}_{\in W} \text{ so } U + W = V.$$

Moreover, if $w \in U \cap W$, then $w = \sum_{j=1}^{m} b_j v_j$ and $w = \sum_{j=m+1}^{n} b_j v_j$ for $b_1, \ldots, b_n \in \mathbb{F}$. Hence, since $\sum_{j=1}^{m} b_j v_j - \sum_{j=m+1}^{n} b_j v_j = 0$, all $b_j = 0$ so w = 0

6.2 2C - Dimension

Theorem 6.3. Any two bases of a finite dimensional vector space have the same length.

Proof. Bases are spanning lists and linearly independent lists so for two bases B_1 , B_2 , $len B_1 \le len B_2$ and $len B_2 \le len B_1$ so $len B_1 = len B_2$.

Definition 6.4. The dimension of a finite dimensional vector space is the length of every basis, denoted dim V

Example 6.5.

- (a) dim $\mathbb{F}^n = n$
- (b) \mathbb{C} as a vector space over \mathbb{R} has dimension 2. eg. $\dim_{\mathbb{R}} \mathbb{C} = 2$
- (c) dim $\mathcal{P}_m(\mathbb{F}) = m+1$
- (d) dim $\{(x_1, \dots, x_n) \in \mathbb{F}^n : x_1 + \dots + x_n = 0\} = n 1.$ A basis is $(1, -1, 0, \dots, 0), (0, 1, -1, 0, \dots, 0), \dots, (0, \dots, 0, 1, -1).$
- (e) Every subspace $U \subset V$ such that $U \neq V$ has $\dim U < \dim V$.

Proof. Take a basis of U and extend to a basis of V. We must add ≥ 1 element, otherwise U = V.

(f) Every vector space $\neq \{0\}$ has dim ≥ 1 .

Proof. Take a nonzero element (linearly independent) and extend to a basis. Thus dim ≥ 1 .

Theorem 6.6. If V is fin dim with dim V = n, then if a list of n vectors is linearly independent it is a basis.

Proof. Extend the list to a basis. Since the basis has length n no vectors were added so the list is already a basis.

Theorem 6.7. If V is finite dimensional with $\dim V = n$, then if a list of n vectors spans V, it must be a basis.

Proof. Refine the list to a basis. The basis has n vectors so no vectors were removed. Thus, the list is already a basis.

Example 6.8. $U = \{p \in \mathcal{P}_3(\mathbb{R}) : p'(5) = 0\}$, [for $p(x) = \sum_{j=0}^{\infty} a_j x_j$, define $p'(x) = \sum_{j=1}^{\infty} j a_j x^{j-1}$], has dim ≤ 3 . $1, (x-5)^2, (x-5)^3$ are linearly independent so dim $U \geq 3$. Thus, dim U = 3.

Theorem 6.9. If U_1, U_2 both subspaces of V, dim $V < \infty$. Then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Proof. Find a basis u_1, \ldots, u_n of $U_1 \cap U_2$. Extend to a basis $u_1, \ldots, u_n, v_1, \ldots, v_m$ of U_1 and a basis $u_1, \ldots, u_n, w_1, \ldots, w_k$ of U_2 . We claim $u_1, \ldots, u_n, v_1, \ldots, v_n, w_1, \ldots, w_k$ is a basis of $U_1 + U_2$.

First $\forall v \in U_1 + U_2$, $v = u_1 + u_2$ for $u_1 \in U_1$, $u_2 \in U_2$. Consider $u_1 = \sum_{j=1}^n a_j u_j + \sum_{j=1}^n b_j v_j$, $u_2 = \sum_{j=1}^n c_j u_j + \sum_{j=1}^k d_j w_j$. Then, $v = u_1 = u_2 + u_1 = \sum_{j=1}^n (a_j + u_j)$

 $(c_j)u_j + \sum_{j=1}^m b_j v_j + \sum_{j=1}^k d_j w_j$. Hence $u_1, \dots, u_n, v_1, \dots, v_n, w_1, \dots, w_k$ spans $U_1 + U_2$.

Moreover, if $\sum_{j} \alpha_{j} u_{j} + \sum_{j} \beta_{j} v_{j} + \sum_{j} \gamma_{j} w_{j} = 0$ for $\alpha_{j}, \beta_{j}, \gamma_{j} \in \mathbb{F}$, then

$$(\underbrace{\sum_{j} \alpha_{j} u_{j} + \sum_{j} \beta_{j} v_{j}}_{\in U_{1}}) = -\underbrace{\sum_{j} \gamma_{j} w_{j}}_{\in U_{2}}$$

so both in $U_1 \cap U_2$. So $\sum_j \gamma_j w_j = \sum_j \delta_j u_j$ for $\delta_1, \ldots, \delta_n \in \mathbb{F}$ so $\gamma_1 = \cdots = \gamma_n = 0$. Hence $\sum_j \alpha_j u_j + \sum_j \beta_j v_j = 0$ so all $\alpha_j, \beta_j = 0$. Hence, $u_1, \ldots, u_n, v_1, \ldots, v_m, w_1, \ldots, w_k$ is linearly dependent and the claim holds. Now, $\dim(U_1 + U_2) = n + m + k$, $\dim U_1 = n + m$, $\dim U_2 = n + k$, $\dim(U_1 \cap U_2) = n$ so theorem follows by a direct computation.

6.3 Ch3 - Linear Maps

Notation 6.10. U, V, W will represent subspaces.

6.4 3.A - Linear Maps as a Vector Space

Definition 6.11. $T:V\to W$ is called a linear map if $\begin{cases} T(u+v)=Tu+Tv & \forall u,v\in V\\ T(\lambda v)=\lambda Tv & \forall \lambda\in\mathbb{F},v\in V \end{cases}$. Note: V is called the domain of T.

Definition 6.12. {linear maps from V to W} is denoted by $\operatorname{Hom}(V, W)$ ($\mathcal{L}(V, W)$). $\operatorname{Hom}(V, V) = \operatorname{End}(V)$.

Example 6.13.

- (1) Zero map: $0 \in \text{Hom}(V, W)$ $0: V \to W$ by $v \mapsto 0$
- (2) Identity: $I \in \text{End}(V)$ $I: V \to W$ by $v \mapsto v$
- (3) Inclusion: "i". If $V \subseteq W$, $i: V \to W$ by $v \mapsto v$
- (4) Differentiation: $D: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ by $\sum_{j=0}^{\infty} a_j x^j \mapsto \sum_{j=1}^{\infty} j a_j x^{j-1}$. $D \in \operatorname{End}(\mathcal{P}(\mathbb{F}))$
- (5) Integration from 0 to $1 \in \text{End}(\mathcal{P}(\mathbb{R}))$
- (6) "Multiplication by f": Fix $f \in \mathcal{P}(\mathbb{F})$. Let $T : \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ by $g \mapsto g \cdot f$. $[(\sum_j a_j x^j)(\sum_j b_j x^j) = \sum_{k=0}^{\infty} (\sum_{j_1+j_2=k} a_{j_1} b_{j_2}) x^k]$. $T \in \text{End}(\mathcal{P}(\mathbb{F}))$.
- (7) For a matrix

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ & \cdots & \\ a_{m,1} & \cdots & a_{m_n} \end{pmatrix}$$

 $T: \mathbb{F}^m \to \mathbb{F}^m$ by $(x_1, \dots, x_n) \mapsto (a_{1,1}x_1 + \dots + a_{1,n}x_n, \dots, a_{1,m}x_1 + \dots + a_{n,m}x_n)$. $T \in \text{Hom}(\mathbb{F}^n, \mathbb{F}^m)$.