最小生成树

Lijie Wang

311

~-~

最小生成树

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

引子

最小生成权

Lijie Wang

引

Æ,

回顾生成树的学习中提到的构建一个包含 5 个信息中心 A,B,C,D,E 的通信系统的问题,如下左图所示。通常情况下,各中心之间的光纤连接长度并不相同,这会影响总体费用。所以我们建立一个带权图(以百公里为单位,如右图所示),希望能从这个图中找出一棵生成树,而目总权值最小。

无向树

最小生成权

Lijie Wang

51/\

疋乂

Definition

设 G=<V,E> 是连通的赋权图,T 是 G 的一棵生成树,T 的每个树枝所赋权值之和称为 T 的权,记为 w(T)。 G 中具有最小权的生成树称为 G 的最小生成树(minimal spanning tree)。

一个无向图的生成树不是惟一的,同样地,一个赋权图的最小生成树也不一定是惟一的。求赋权图的最小生成树的方法很多,这里主要介绍 Kruskal 算法和 Prim 算法。

Kruskal 算法

Kruskal 算法是克鲁斯克尔 (Kruskal) 于 1956 年将构造生成树的避圈法推广到求最 小牛成树, 其要点是, 在与已选取的边不构成回路的边中选取最小者。

Kruskal 算法

- ① 在 G 中选取最小权边 e_1 , 置 i=1 , $E_T=\{e_1\}$ 。
- ② 当 i = n 1 时,结束,否则转(3)。
- ③ 在 G 中选取不在 E_T 中的边 e_{i+1} ,使 $E_T \cup \{e_{i+1}\}$ 中无回路且 e_{i+1} 是满足此 条件的最小权边。
- **4** 置 i = i + 1 , $E_T = E_T \cup \{e_{i+1}\}$, 转 (2)。

Kruskal 算法

最小生成树

Lijie Wang

引入

定义

Prim 算法

最小生成校

Lijie Wang

317

正义

Prim 算法的要点是,从任意结点开始,每次增加一条最小权边构成一棵新树。

Prim 算法

- ① 在 G 中任意选取一个结点 v_1 , 置 $V_T = \{v_1\}$, $E_T = \emptyset$, k = 1 ;
- ② 在 $V-V_T$ 中选取与某个 $v_i \in V_T$ 邻接的结点 v_j , 使得边 (v_i,v_j) 的权最小 , 置 $V_T=V_T \cup \{v_j\}, \; E_T=E_T \cup \{(v_i,v_j)\}$, k=k+1 ;
- 重复步骤 2,直到 k = |V|。

Prim 算法

最小生成树

Lijie Wang

引入

定义

Example b 2 e o w(T) = 25 小生成树

Lijie Wang

引ん

Æ.X

*9*7-14

THE END, THANKS!