LH0084/LH0085 LH0086/LH0087

Z80 SIO Serial Input/Output Controller

Description

The LH0084/85/86/87, Z80 SIO (Z80 SIO for short below) is a dual-channel multi-function peripheral component designed to satisfy a wide variety of serial data communications requirements in microcomputer systems. Its basic function is a serial-to-parallel, parallel-to-serial converter/controller, but-within that role—it is configurable by systems software so its "personality" can be optimized for a given serial data communications application.

The Z80 SIO is capable of handling asynchronous and synchronous byte-oriented protocols such as IBM Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device can also be used to support virtually any other serial protocol for applications other than data communications (cassette or floppy disk interfaces, for example).

The Z80 SIO can generate and check CRC codes in any synchronous mode and can be programmed to check data integrity in various modes. The device also has facilities for modem controls in both channels. In applications where these controls are not needed, the modem controls can be used for

Pin Connections

*The GND pins must be connected to the GND level.

general-purpose I/O.

The Z80 SIO has six types as below according it's system clock and bonding option. The Z80A SIO and the Z80B SIO are a high speed version which can operate at the 4MHz and 6MHz system clock, respectively.

- LH0084 Z80 SIO/0
- LH0084B Z80B SIO/0
- LH0085 Z80 SIO/1
- LH0085B Z80B SIO/1
- LH0086 Z80 SIO/2
- LH0086B Z80B SIO/2
- LH0087 Z80 SIO
- LH0087B Z80B SIO
- LH0084A Z80A SIO/0
- LH0085A Z80A SIO/1
- LH0086A Z80A SIO/2
- LH0087A Z80A SIO

Features

- 1. N-channel silicon-gate process
- Single +5V power supply and single phase clock
- 3. Two independent full duplex channels
- 4. Data rates: 0.to 500K bits/second (at 2.5 MHz system clock)
 - : 0 to 800K bits/second (at 4MHz system clock)
 - : 0 to 1200K bits/second (at 6MHz system clock)
- 5. Asynchronous operation
 - 5, 6, 7 or 8 bits/character
 - 1, 1½ or 2 stop bits/character
 - · Even, odd or no parity

- $\times 1$, $\times 16$, $\times 32$ and $\times 64$ clock modes
- · Break generation and detection
- Parity, Overrun and Framing error detection
- 6. Binary synchronous operation
 - Internal or external character synchronization
 - One or two Sync characters in separate registers
 - Automatic Sync character insertion
 - · CRC generation and checking
- 7. HDLC or IBM SDLC operation
 - Abort sequence generation and detection
 - · Automatic zero insertion and detection
 - · Automatic flag insertion
 - · Address field recognition
 - · I-field residue handling
 - Valid receive messages protected from overrun
 - · CRC generation and checking
- 8. Vectored daisy chain priority interrupt logic
- 9. CRC-16 or CRC-CCITT block check
- Separate modem control inputs and outputs for both channels
- 11. Modem status can be monitored
- 12, 40-pin DIP (DIP40-P-600)

44-pin QFP (QFP44-P-1010A)

44-pin QFJ (QFJ44-P-S650)

Ordering Information

Product	Z80 SIO	Z80A SIO	Z80B SIO	Dealeans	Operating
Clock frequency	2.5MHz	4MHz	6MHz	Package	temperature
	LH008X	LH008XA	LH008XB	40 -:- DID	0° C to $+70^{\circ}$ C
M I I I M	LH008XH	LH008XAH		40-pin DIP	-20°C to+85°C
Model No.	LH0087M	LH0087AM		44-pin QFP	0°C to +60°C
	LH0087U	LH0087AU	LH0087BU	44-pin QFJ	0°C to + 70°C

X: It is the bonding option to select one of SIO/0, SIO/1 and SIO/2 on 40-pin DIP.

X = 4: SIO/0

X=5: SIO/1

X = 6: SIO/2

H: H affix indicates a wide temperature spec, packaged in 40-pin DIP.

Block Diagram

Pin Description

Pin	Meaning	I/O	Function
D ₀ -D ₇	Data bus	Bidirectional 3-state	System data bus
B/A	Channel A or B select	1	Defines which channel is accessed. Channel B at "High", channel A at "Low".
C/D	Control or data select	I	Defines the type of information transfer on the data bus. Control word at "High", data at "Low".
CE	Chip enable	I	Active "Low". A Low enables the CPU to transmit and receive control words and data.
CLOCK	System clock	I	Standard Z80 system clock used for internal synchronization signals.
M1	Machine cycle one	I	Active "Low". Indicates that the \overline{CPU} is acknowledging an interrupt, when both $\overline{M1}$ and \overline{IORQ} are active.
IORQ	Input/output request	Į	Active "Low". Read operation when \overline{RD} is active, and write operation when it is not active. Indicates that the \overline{CPU} is acknowledging an interrupt, when both \overline{IORQ} and $\overline{M1}$ are active.
RD	Read cycle status	I	Active "Low". Read operation when active.
RESET	Reset	I	Active "Low". Resets the interrupt bits.
IEI	Interrupt enable in	I	Active "High". Used to form a priority-interrupt daisy chain.
IEO	Interrupt enable out	0	Active "High." Used to form a priority-interrupt daisy chain.
INT	Interrupt request	Open drain, O	Active "Low". Active when requesting an interrupt.
$\frac{\overline{W}/\overline{RDYA}}{\overline{W}/\overline{RDYB}}$	Wait/ready	Open drain, O	Active "Low". READY when the DMA is a bus master, WAIT when the CPU is a bus master.
CTSA, CTSB	Clear to send	I	Active "Low". Enables the respective transmitters. Also applicable as general-purpose input pins.
DCDA, DCDB	Data carrier detect	I	Active "Low". Enables the respective receivers. Also applicable as general-purpose input pins.
RxDA, RxDB	Receive data	I	Active "Low". Data line for receiving
TxDA, TxDB	Transmit data	0	Active "Low". Data line for transmitting.
RxCA, RxCB	Receiver clock	I	Active "Low". Receiving synchronization clock.
TxCA, TxCB	Transmitter clock	I	Active "Low". Transmitting synchronization clock.
RTSA, RTSB	Request to send	0	Active "Low". Indicates that the transmitter is empty during transfer. Also applicable as general-purpose out put pins.
DTRA, DTRB	Data terminal ready	0	Active "Low". Also applicable as general-purpose output pins.
SYNCA, SYNCB	External character synchronization	1	Active "Low". Acts the same way as CTS and DCD in the asynchronous mode. Driven "Low" in the synchronous mode when a synchronizing pattern is achieved.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	V _{IN}	-0.3 to +7.0	V	
Output voltage	V _{OUT}	-0.3 to +7.0	V	
		0 to +70		1
Operating temperature	Topr	0 to +60	l c	2
**********	_	-20 to +85		3
Storage temperature	Tstg	-65 to +150	C	

Note 1: Specified for 40-pin DIP and 44-pin QFJ

Note 2: Specified for 44-pin QFP

Note 3: Specified for wide temperature type

DC Characteristics

 $(V_{CC} = 5V \pm 5\%, Ta = 0 \text{ to } + 70\%^{Note 1})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock input low voltage	V _{ILC}		-0.3		0.45	V
Clock input high voltage	V _{IEC}		Vcc-0.6		5.5	V
Input low voltage	VIL		-0.3		0.8	V
Input high voltage	V _{IH}		2.0		5.5	V
Output low voltage	Vol	$l_{OL} = 2.0 \text{mA}$			0.4	V
Output high voltage	V _{OH}	$l_{OH} = -250 \mu A$	2.4			V
Input leakage current	ILI	$0 < V_{IN} < V_{CC}$			10	μA
3-state output/data		$0 < V_{IN} < V_{CC}$			10	μA
bus input leakage curreut	+ 12	U V IN V CC			10	μΛ
SYNC pin leakage current	$I_{L(SY)}$	$0 < V_{IN} < V_{CC}$	-40		10	μA
Current consumption	I _{cc}				100	m A

Note 1: Ta=0 to +60°C for 44-pin QFP, Ta=-20 to +85°C for wide temperature types.

Capacitance

 $(f=1 \text{MHz}, Ta=25 ^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	C _{CLOCK}	IId -i-atd			40	рF
Input capacitance	C _{IN}	Unmeasured pins returned			5	рF
Output capacitance	C _{OUT}	to ground			10	pF

AC Characteristics

(1) AC characteristics (I)

 $(V_{CC} = 5V \pm 5\%, Ta = 0 \text{ to } +70 \text{°C}^{\text{Note 1}})$

	Danamakan	C b1	LH0084/5/6/7		LH0084A/5A/6A/7A		LH0084B/5B/6B/7B		Unit
No.	Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Ont
1	Clock cycle time	TcC	400	4000	250	4000	165	4000	ns
	Clock high width	TwCh	170	2000	105	2000	70	2000	ns
3	Clock fall time	TfC		30		30		15	ns
4	Clock rise time	TrC		30		30		15	ns
5	Clock low width	TwCl	170	2000	105	2000	70	2000	ns
6	CE, C/D, B/A to clock † setup time	TsAD(C)	160		145		60		ns
7	IORQ, RD to clock † setup time	TsCS(C)	240		115		60		ns
8	Clock † to data out delay	TdC(DO)		240		220		150	ns
9	Data in to clock † setup (Write or M1 cycle)	TsDI(C)	50		50		30		ns
10	RD to data out float delay	TdRD(DOz)		230		110		90	ns
11	IORQ ↓ to data out delay (INTACK cycle)	TdIO(DOI)		340		160		100	ns

No.	Parameter	Sumbal	LH008	4/5/6/7	LH0084A/	5A/6A/7A	LH0084B	/5B/6B/7B	Unit
INO.	rarameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
12	M1 to clock ↑ setup time	TsM1(C)	210		90		75		ns
13	IEI to IORQ↓setup time (INTACK cycle)	TsIEI(IO)	200		140		120		ns
14	M1 ↓ to IEO ↓ delay (interrupt before M1)	TdM1(IEO)		300		190		160	ns
15	IEI † to IEO † delay (after ED decode)	TdIEI(IEOr)		150		100		70	ns
16	IEI ↓ to INT ↓ delay	TdIEI(IEOf)		150		100		70	ns
17	Clock † to INT ↓ delay	TdC(INT)		200		200		150	ns
18	$\overline{IORQ} \downarrow \text{ or } \overline{CE} \downarrow \text{to} \overline{W} / \overline{RDY} \downarrow \text{delay}$ (wait mode)	TdIO(W/RWf)		300		210		175	ns
19	Clock † to W/RDY ↓ delay (ready mode)	TdC(W/PR)		120		120		100	ns
20	Clock \downarrow to $\overline{W}/\overline{RDY}$ float delay (wait mode)	TdC(W/RWz)		150		130		110	ns
21	Any unspecified hold when setup is specified	Th	0		0		0		ns

† Rising edge, ↓ Falling edge.

Note 1: Ta=0 to $+60\,^{\circ}\text{C}$ for 44-pin QFP Ta=-20 to $+85\,^{\circ}\text{C}$ for wide temperature types

(2) AC timing chart (I)

AC characteristics (I)

 $(V_{CC} = 5V \pm 5\%, Ta = 0 \text{ to } + 70\%^{\text{Note } 1})$

			LH0084	/5/6/7	LH0084A/	5A/6A/7A	LH0084B/5B/6B/7B		Unit
No.	Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
1	Pulse high width	TwPh	200		200		200		ns
$-\frac{1}{2}$	Pulse low width	TwPl	200		200		200		ns
3	TxC clock time	TcTxC	400	∞	400		330	∞	ns_
4	TxC low width	TwTxCl	180	∞	180	∞	100	∞	ns
5	TxC high width	TwTxCh	180	8	180_	-00	100		ns
6	TxC ↓ to TxD delay (xl mode)	TdTxC(TxD)		400		300		220	ns
7	TxC to W/RDY delay (ready mode)	TdTxC(W/RRf)	5	9	5	9	5	9	Clock period
8	TxC ↓ to INT ↓ delay	TdTxC(INT)	5	9	5	9	5	9	Clock period
9	RxC cycle time	TdRxC	400	∞	400	∞	330	∞	ns
10	RxC low width	TwRxCl	180	∞	180	∞	100	∞	ns
11	RxC high width	TwRxCh	180	∞	180	∞	100	∞	ns
$-\frac{11}{12}$	RxD to RxC † setup time (xl mode)	TsRxD(RxC)	0		0		0		ns
13	RxC † to RxD hold time (x1 mode)	ThRxD(RxC)	140		140		100		ns
14	RxC ↑ to W/RDY ↓ delay (ready mode)	TdRxC(W/RRf)	10	13	10	13	10	13	Clock period
15	RxC ↑ to INT ↓ delay	TdRxC(INT)	10	13	10	13	10	13	Clock period
16	RxC↑ to SYNC ↓ delay (output modes)	TdRxC(SYNC)	4	7	4	7	4	7	Clock period
17	SYNC ↓ to RxC ↓ setup (external sync modes)	TsSYNC(RxC)	-100		-100		100		ns

Rising edge, ↓ Falling edge

Note 1: Ta=0 to $+60^{\circ}\text{C}$ for 44-pin QFP Ta=-20 to $+85^{\circ}\text{C}$ for wide temperature types

Note 2: In all mode, the System Clock rate must be at least five times the maximum data rate.

(4) AC timing chart (II)

Fig. 1 Transmit and receive data path

Programming

The system program first issues a series of commands that initialize the basic mode of operation and then other commands that qualify conditions within the selected mode.

Both channels contain registers that must be programmed via the system program prior to operation.

(1) Read Registers

The SIO contains three read registers for Channel B and three read registers for Channel A (RRO-RR2) that can be read to obtain the status information. The status information includes error conditions, interrupt vector and standard communications-interface signals

• Read Register 0 (RR 0)

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
Break /abort	Tx under- run /EOM	CTS	Sync /hunt	DCD	empty	INT pending (ch.A) only	avail-

Read Register 1 (RR 1)

The RR1 contains the status bits for specific receiving coditions as well as the one-field fraction codes for the SDLC receive mode.

D_7	D_6	D_5	D_4	D_3	D_2	\mathbf{D}_1	D_0
		Rx overrun error		Fraction code 2	Fraction code	Fraction code 0	All sent

Read Register 2 (RR 2)

D_7	D_6	D_5	D4	D_3	D_2	\mathbf{D}_1	\mathbf{D}_0			
V_7	V ₆	V ₅	V ₄	V_3	V_2	V_1	V_0			
Valiable if "status affects										

vector" is programmed

(2) Write Registers

The SIO contains eight write registers for Channel B and eight write registers for Channel A (WR0-WR7) that are programmed separately to configure the functional personality of the channels.

Write Register 0 (WR 0)

D_7	D_6	\mathbf{D}_{5}	D_4	D_3	D_2	\mathbf{D}_1	D_0			
CRC reset code	CRC reset code 0	Command bit 2	Command bit 1	Command bit O	Pointer bit 2	Pointer bit 1	Pointer bit 0			
Control words Register pointers										

• Write Register 1 (WR 1)

D_7	D_6	D_5	D_4	D ₃	D_2	D_1	D_0
ready	ready	ready onR/T	inter- rupt	Receive inter- rupt mode 0	affects vector	INT	Ext INT enable

Write Register 2 (WR 2)

The WR2 contains the interrupt vector for both channels and is only in the Channel B. When the status affected vector (WR1, D_2) is 1, the vector from the SIO during the interrupt acknowledge cycle varies ($V_3 - V_1$) depending on the interrupt conditions. The WR2 contents do not vary then.

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	
V ₇	V ₆	V ₅	V ₄	V_3	V_2	V_1	V_0	l

• Write Register 3 (WR 3)

The WR 3 contains the bits and parameters to control the receivers.

Ι)7	D_6	D_5	D_4	D_3	D_2	D_1	\mathbf{D}_0
Rx ch act	ar-	Rx bits char- acter 0	enable	hunt	CRC	search	Sync charac- ter load inhibit	enable

• Write Register 4 (WR 4)

The WR4 has the bits control both receivers and transmitters.

In initializing for transmitting and receiving, these bits must be set up before the WR1, WR3, WR5, WR6, and WR7.

\mathbf{D}_7	D_6	\mathbf{D}_5	D_4	D_3	D_2	D_1	D_0
Clock rate 1	Clock rate 0	Sync mode 1	Sync mode 0	Stop bit 1	Stop bit 0	Parity Even /ODD	Parity enable

Write Register 5 (WR 5)

The WR5 contains the bits (except for D_2) to control the transmitters.

D_7	D_6	D_5	D_4	D_3	D_2	D_1	\mathbf{D}_0
	Tx bits /char- acter 1	/char-	Send break	Tx enable	CRC16 /SDLC	RTS	Tx CRC enable

Write Register 6 (WR 6)

D_7	D_6	D_5	D_4	D_3	D_2	D_1	\mathbf{D}_0
SYNC							
7	6	5	4	3	2	1	0

Write Register 7 (WR 7)

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
SYNC							
15	14	13	12	11	10	9	8

Timing

(1) Read cycle

The timing signals generated by a Z-80 CPU input instruction to read a data or status byte from the SIO are illustrated in Fig. 2.

(2) Write cycle

Fig. 3 illustrates the timing and data signals gener-

ated by a Z-80 CPU output instruction to write a data or control byte into the SIO.

(3) Interrupt cycle

The interrupt-acknowledging and return-from-interrupt cycles are of the same timing as for other Z80 peripherals. (Refer to the Z80 PIO.)

