MEE5114 Advanced Control for Robotics

Lecture 4: Exponential Coordinate of Rigid Body Configuration

Prof. Wei Zhang

SUSTech Insitute of Robotics

Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

V Rotation matrix

ullet Exponential Coordinate of SO(3)

• Euler Angles and Euler-Like Parameterizations

• Exponential Coordinate of SE(3) througeneous transformation matrix

• Exponential Coordinate of SO(3)

Euler Angles and Euler-Like Parameterizations

• Exponential Coordinate of SE(3)

Towards Exponential Coordinate of SO(3)

- Recall the polar coordinate system of the complex plane: ye
 - Every complex number $z=x+jy=\rho e^{j\phi}$
 - Cartesian coordinate $(x,y) \leftrightarrow \text{polar coorindate } (\rho,\phi)$ $\int_{-\infty}^{\infty} \frac{f(x,y)}{f(y,\phi)} dx$
 - For some applications, polar coordinate is preferred due to its geometric meaning.
- Consider a set $M = \{(t, \sin(2n\pi t)) : t \in (0, 1), n = 1, 2, 3, \ldots\}$

Exponential Coordinate

Exponential Coordinate of SO(3)

- **Proposition** [Exponential Coordinate \leftrightarrow SO(3)]

- For any unit vector
$$[\hat{\omega}] \in so(3)$$
 and any $\theta \in \mathbb{R}$,
$$\lim_{|\beta| \to 1} e^{[\hat{\omega}]\theta} \in SO(3)$$

- For any $R \in SO(3)$, there exists $\hat{\omega} \in \mathbb{R}^3$ with $\|\hat{\omega}\| = 1$ and $\theta \in \mathbb{R}$ such that

- The vector $\hat{\omega}\theta$ is called the <u>exponential coordinate</u> for R
- The exponential coordinates are also called the canonical coordinates of the rotation group SO(3)

Rotation Matrix as Forward Exponential Map

Exponential Map: By definition

$$\mathbb{R} \leftarrow e^{[\omega]\theta} = I + \theta[\omega] + \frac{\theta^2}{2!} [\omega]^2 + \frac{\theta^3}{3!} [\omega]^3 + \cdots$$

• Rodrigues' Formula: Given any unit vector $[\hat{\omega}] \in so(3)$, we have

$$e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\sin(\theta) + [\hat{\omega}]^2(1 - \cos(\theta))$$

$$\text{Fact} = \text{if } ||\hat{\omega}|| = ||\hat{\omega}|| \text{ then we have the following } ||\hat{\omega}|| = -[\hat{\omega}]^T, ||\hat{\omega}||^3 = -[\hat{\omega}], ||\hat{\omega}||^2 = -[\hat{\omega}]^T, ||\hat{\omega}||^3 = -[\hat{\omega}], ||\hat{\omega}||^3 = -[\hat{\omega}],$$

Examples of Forward Exponential Map

• Rotation matrix $R_{x}(\theta)$ (corresponding to $\hat{x}\theta$) $R_{x}(\theta) = R_{x}(\theta) \text{ (corresponding to } \hat{x}\theta)$ $R_{x}(\theta) = R_{x}(\theta) \text{ (corresponding to } \hat{x}\theta)$ $= I + Sin\theta \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix} + (I - En \times \theta) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & COS\theta & SinO \\ 0 & SANO & COS\theta \end{bmatrix}$

• Rotation matrix corresponding to $(1,0,1)^T$

Logarithm of Rotations From R→ N

① • If R = I, then $\theta = 0$ and $\hat{\omega}$ is undefined.

 $\mathfrak{D} \bullet \mathsf{lf} \operatorname{tr}(R) = -1$, then $\theta = \pi$ and set $\hat{\omega}$ equal to one of the following

$$\frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix}, \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{32} \end{bmatrix}, \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}$$

 \bigcirc • Otherwise, $\underline{\theta = \cos^{-1}\left(\frac{1}{2}(\operatorname{tr}(R) - 1)\right)} \in [0, \pi)$ and $[\hat{\omega}] = \frac{1}{2\sin(\theta)}(R - R^T)$

• Exponential Coordinate of SO(3)

Euler Angles and Euler-Like Parameterizations

• Exponential Coordinate of SE(3)

Euler Angle Representation of Rotation

- A common method of specifying a rotation matrix is through three independent quantities called **Euler Angles**.
- Euler angle representation
 - Initially, frame {0} coincides with frame {1}

 - ${}^{0}R_{1}(\alpha,\beta,\gamma)=R_{z}(\alpha)R_{y}(\beta)R_{z}(\gamma)$ $\operatorname{Rat}(\mathcal{A},\mathcal{Y})\cdot\operatorname{Art}(\mathcal{Y},\beta)\cdot\operatorname{Lot}(\mathcal{A},\mathcal{Y})$

Other Euler-Like Parameterizations

- Other types of Euler angle parameterization can be devised using different ordered sets of rotation axes
- Common choices include:
 - ZYX Euler angles: also called *Fick angles* or yaw, pitch and roll angles
 - YZX Euler angles (Helmholtz angles)

• Exponential Coordinate of SO(3)

Euler Angles and Euler-Like Parameterizations

• Exponential Coordinate of SE(3)

Exponential Map of se(3): From Twist to Rigid Motion

Theorem 1 [Exponential Map of se(3)]: For any $\underline{\mathcal{V}=(\omega,v)}$ and $\theta\in\mathbb{R}$, we have $e^{[\mathcal{V}]\theta}\in SE(3)$ Homogeneous transformation matrix

- Case $1 \ (\omega = 0)$: $e^{[\mathcal{V}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$
- Case 2 ($\omega \neq 0$): without loss of generality assume $\|\omega\| = 1$. Then

$$e^{[\mathcal{V}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix}, \text{ with } G(\theta) = I\theta + (1 - \cos(\theta))[\omega] + (\theta - \sin(\theta))[\omega]^2$$
 (1)
$$\exists e^{b} = \begin{bmatrix} \omega \\ v \end{bmatrix}, \quad \exists v \end{bmatrix} = \begin{bmatrix} \omega \\ v \end{bmatrix}$$

$$\exists e^{b} = \begin{bmatrix} \omega \\ v \end{bmatrix}, \quad \exists v \end{bmatrix} = \begin{bmatrix} \omega \\ v \end{bmatrix}$$

Log of SE(3): from Rigid-Body Motion to Twist

Theorem 2 [Log of SE(3)]: Given any $T=(R,p)\in SE(3)$, one can always find twist $\mathcal{S}=(\omega,v)$ and a scalar θ such that

$$e^{[\mathcal{S}]\theta} = T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right]$$

Matrix Logarithm Algorithm:

- If R = I, then set $\omega = 0$, v = p/||p||, and $\theta = ||p||$.
- Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R. Then v is calculated as $v = G^{-1}(\theta)p$, where

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cos\frac{\theta}{2}\right)[\omega]^2$$

Exponential Coordinates of Rigid Transformation

• To sum up, screw axis $\mathcal{S} = (\omega, v)$ can be expressed as a normalized twist; its matrix representation is

$$[\mathcal{S}] = \begin{bmatrix} 3 & 3 & 3 & 3 \\ [\omega] & v \\ 0 & 0 \\ [3 & 3 & 3 & 3 \end{bmatrix} \in se(3)$$

- A point started at p(0) at time zero, travel along screw axis $\mathcal S$ at unit speed for time t will end up at $\tilde p(t) = e^{[\mathcal S]t} \tilde p(0)$
- Given S we can use Theorem 1 to compute $e^{[S]t} \in SE(3)$;
- Given $T \in SE(3)$, we can use Theorem 2 to find $\mathcal{S}=(\omega,v)$ and θ such that $e^{[\mathcal{S}]\theta}=T.$
- We cal $(S\theta)$ the **Exponential Coordinate** of the homogeneous transformation $T \in SE(3)$

More Space

More Space