

Week 10.1: Recommender systems

DS-GA 1004: Big Data

This week

- Recommender systems
- Collaborative filtering algorithms
- Ranking and evaluation

Why recommendation?

Physical objects occupy space

- Brick-and-mortar shops must satisfy physical constraints
- Curators must prioritize for some notion of utility
- Serving the most customers, maximizing sales/profit, etc.

• This is not true for **digital items**!

- The web, e-books, news articles, movies, music, ... take up no physical space
- Without curation, this quickly becomes overwhelming

Search ⇒ Recommendation

- Early solutions relied on indexing and search
 - Users must describe what they want
 - Same query by different users gets same results
- Recommendation = search + personalization
 - A user's past history informs the ranking of results
 - Other users' histories are also informative!

Search ⇒ Recommendation

- Early solutions relied on indexing and search
 - Users must describe what they want
 - Same query by different users gets same results

Personalized
Yahoo!

Search options

Yellow Pages - People Search - City Maps -- Today's News - Stock Quotes - Sports
Scores

Arts and Humanities

Pacammondation - coarch + parconalization

Recommender systems are now the primary way that most people (unknowingly) interact with large collections!

ation and Sports [Xtra!]
Games, Travel, Autos,

nt Events, Magazines, TV,

News and Media [Xtra!]

pers...

April, 1997 [archive.org]

Personalization

- Traditional search / information retrieval:
 - Model the relevance of an item in response to a query
- Personalized search / recommendation
 - Same as above, but model can access a description of the user
- To model relevance per user, we'll need to collect data
 - This is known as feedback
- This approach works best in the big data regime

Implicit vs Explicit feedback

Explicit feedback

- Examples:
 - \$\$\$ (Purchases)
 - · ***
 - 0
 - +Subscribe / Conversion
- Strong signal (+/-)
- Relatively rare: users will not always provide explicit feedback

Implicit vs Explicit feedback

Explicit feedback

- Examples:
 - \$\$\$ (Purchases)
 - ★★★☆☆
 - 0
 - +Subscribe / Conversion
- Strong signal (+/-)
- Relatively rare: users will not always provide explicit feedback

Implicit feedback

- Examples:
 - Click-through
 - Downloads
 - Play counts
 - Abandonment / skipping
- Weak signal (+ only, usually)
- Much more abundant than explicit feedback

How is feedback collected?

• Explicit feedback makes sense when

Time/effort to rate item is much less than time to consume the item!

- Examples: movies, books, restaurants, ...
- Implicit feedback is the more common approach
 - Examples: Songs, news articles, short videos, search engine results, ...

Collaborative filtering

• Utility matrix (R): feedback for sparsely observed interactions

	Items							
Users			1			1		
					0	0		1
		1	1			1		
			1		0			

- **Task**: predict the missing entries
- Evaluation: depends on the feedback mechanism`

$$\rightarrow R_{ui} \approx f(User = u, Item = i)$$

Baseline #1: Popularity

- This should always be the first thing you try.
 - 1. Compute the **average utility** for each item

$$P[i] \leftarrow (\sum_{u} R[u, i]) / |R[:, i]|$$

- \circ 2. f = items ranked by descending P[i]
- This produces the same ranking for all users.
 Personalization should improve, but by how much?
- AKA: the short head; greatest hits; Starbucks mix, ...

Improving the popularity baseline

- Which would you rather have?
 - Item 1: 1000 ratings, avg = $\star \star \star \star \star \star$
 - Item 2: 1 rating, avg = ★★★★★
- Few interactions $|R[:,i]| \Rightarrow$ unstable estimates P[i]
- Quick fix 1: discard items with too few ratings
- Quick fix 2: use a prior:

$$P[i] \leftarrow (\sum_{u} R[u, i]) / (|R[:, i]| + \beta)$$

- Equivalent to having $\beta>0$ extra observations with R=0
- AKA "damping" or "pseudo-counts"

Model each interaction as a combination of global, item, and user terms:

$$R[u,i] \approx \mu + b[i] + b[u]$$

Model each interaction as a combination of global, item, and user terms:

$$R[u,i] \approx \mu + b[i] + b[u]$$

The average rating over all interactions:

$$\mu = (\sum_{u,i} R[u,i]) / (|R| + \beta_g)$$

Model each interaction as a combination of global, item, and user terms:

$$R[u,i] \approx \mu + b[i] + b[u]$$

The average rating over all interactions:

$$\mu = (\sum_{u,i} R[u,i])/(|R| + \beta_g)$$

• Average (users) difference from μ for item i:

$$b[i] = (\sum_{u} R[u, i] - \mu) / (|R[:, i]| + \beta_{i})$$

Model each interaction as a combination of global, item, and user terms:

$$R[u,i] \approx \mu + b[i] + b[u]$$

The average rating over all interactions:

$$\mu = (\sum_{u,i} R[u,i]) / (|R| + \beta_g)$$

• Average (users) difference from μ for item i:

$$b[i] = (\sum_{u} R[u, i] - \mu) / (|R[:, i]| + \beta_i)$$

• Average (items) difference from $\mu+b[i]$ for user u:

$$b[u] = (\sum_{i} R[u, i] - \mu - b[i]) / (|R[u]| + \beta_{u})$$

Predicting from the bias model

- $R[u, i] \approx \mu + b[i] + b[u]$ lets us estimate all interactions
- Predictions for user u: sort items i by descending $\mu + b[i] + b[u]$
- μ and b[u] are constant in this prediction, since u is fixed.
- Equivalently, we can sort by the item bias b[i]
- This isn't any more powerful than the original popularity model
 - but it is more interpretable!

Summary

part 1

- Recommender systems are everywhere you should know how they work.
- The utility matrix encodes interactions between users and items.

Not all entries are observed!

Always start with a non-personalized bias model.

This will let you measure the impact of personalization.