Задачи на отрезке. Введем какую-то произвольную операцию \oplus , и будем отвечать на запросы get(l, r) на массиве a, ответом на которые будет $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$. Также введем операцию изменения на отрезке $a_i := change(a_i, x)$.

Потребуем от \oplus ассоциативность $-a \oplus (b \oplus c) = (a \oplus b) \oplus c$.

Префиксные суммы. Если в задаче нет запросов изменения (и элементы образуют группу, то есть есть обратный элемент), то посчитаем $p_i = p_{i-1} \oplus a_i$. Тогда ответ на запрос — это $p_r \oplus p_{l-1}^{-1}$. Если операция некоммутативна, то нужно будет пострадать, но вроде бы можно просто сделать $p_{l-1}^{-1} \oplus p_r$. Построение за O(n), запрос за O(1).

Sparse table. Если элементы не образуют группу, но задача все еще статическая, то можно сохранить значения, соответствующие \oplus по всем отрезкам длины 2^k . Тогда, когда нужно ответить на запрос get(l, r), можно взять перекрывающиеся отрезки $[l, l+2^i)$ и $(r-2^i, r]$. От операции требуется $a \oplus b = b \oplus a$ и $a \oplus a = a$. Есть модификация, позволяющая обойтись без второго свойства. Построение за $O(n \log n)$, запрос за O(1).

Segment tree. Хотим к предыдущей задаче добавить обновление в точке. Хотим сохранить какоето множество отрезков S, чтобы потом по нему восстанавливать ответ на произвольном отрезке [l, r], склеивая не более чем $O(\log n)$ отрезков. Также должно быть не более $O(\log n)$ отрезков, содержащих какой-либо элемент.

Построим двоичное дерево над массивом, где вершина на глубине i будет отвечать за отрезок длины 2^{k-i} , где $n=2^k$. Разбивать запросы на отрезки будем таким образом: рассмотрим все отрезки внутри запроса, и выкинем вложенные. На каждой глубине мы возьмем не более двух отрезков, поэтому суммарно запросы будут работать за $O(\log n)$.

	1: [0, 16)															
2: [0, 8)									3: [8, 16)							
	4: [0, 4)				5: [4, 8)				6: [8, 12)			7: [12, 16)				
	8:		9:		10:		11:		12:		13:		14:		15:	
	[0, 2)		[2, 4)		[4, 6)		[6, 8)		[8, 10)		[10, 12)		[12, 14)		[14, 16)	
16	5:	17:	18:	19:	20:	21:	22:	23:	24:	25:	26:	27:	28:	29:	30:	31:
0)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Реализация будет такой — сделаем рекурсивную функцию get, которая хочет обойти дерево, зайти во все «ключевые» отрезки запроса, и посчитать итоговый ответ. Для get(v, l, r) бывает три случая:

- \bullet v не отвечает ни за что из отрезка [l, r], поэтому не делаем ничего и прекращаем работу.
- \bullet [l, r] содержит отрезок вершины v, и тогда можно обработать этот отрезок и прекратить работу.
- Иначе надо спуститься в детей, и повторить процесс

Lazy propagation. Пусть у нас появился запрос *change*, модифицирующий отрезок. Будем хранить в вершине пометки вида «мы хотели сделать со всеми детьми такую-то операцию изменения», которые мы изначально будем проставлять с запросом изменения на все «ключевые отрезки». При этом во время запроса изменения мы по сути не сделаем изменений, только проставим пометки. Но теперь мы при каждом обращении к вершине проталкиваем модификатор (если есть) вниз, и меняем текущее

значение *value*. Таким образом, после проталкивания все величины остаются валидными (кроме тех, которые находятся где-то глубоко в дереве, но к которым мы не спустились).

Иначе говоря, мы считаем, что перед тем, как обратиться к какой-то вершине, мы обязаны обратиться ко всем вершинам-предкам, и тогда можем гарантировать, что в ней будут храниться актуальные значения параметров.

Требования к lazy propagation — дистрибутивность операции change относительно \oplus , а также модификаторы также должны являться полугруппой.