## Linear Algebra I Summary of Lectures: Linear Transformations

## Dr Nicholas Sedlmayr

1. Definition 5.1: If V and W are two vectors spaces over the same field F, then a linear transformation from V to W (also called a linear map or homomorphism) is a map  $f: V \to W$  satisfying

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$$
,  $\forall u, v \in V$  and  $\forall \lambda, \mu \in F$ .

The space of V is called the domain of F and the space of W is called the co-domain.

- 2. Lemma 5.2: A linear transformation  $f: V \to W$  satisfies
  - (a) f(0) = 0,
  - (b)  $f(\lambda u) = \lambda u$ ,
  - (c) f(-u) = -f(u),
  - (d) f(u+v) = f(u) + f(v), and
  - (e)  $f(\sum_{i=1}^n \lambda_i u_i) = \sum_{i=1}^n \lambda_i f(u_i)$ .
- 3. Definition 5.3: Given  $f: V \to W$  as in definition 5.1, the image (or range) of f is  $\{f(v): v \in V\}$ . This is written as f(V) or  $\operatorname{im}(f)$ . The kernel (or nullspace) of f is  $\{v \in V: f(v) = 0\}$ , written  $\ker(f)$
- 4. Proposition 5.4: If  $f: V \to W$  is a linear transformation, then  $\operatorname{im}(f)$  is a subspace of W and  $\ker(f)$  is a subspace of V.
- 5. Proposition 5.5: A linear transformation  $f: V \to W$  is injective iff  $\ker(f)$  is the zero subspace  $\{0\}$  of V.
- 6. Definition 5.6: The rank of f is the dimension of im(f), written r(f). The nullity of f is the dimension of ker(f), written n(f).
- 7. Theorem 5.7: The rank-nullity formula. If  $f:V\to W$  is a linear transformation then

$$r(f) + n(f) = \dim(V)$$
.

- 8. Proposition 5.8: If  $f:V\to W$  is a linear transformation of finite dimensional vector spaces V,W over the same field F then
  - (a) f is injective iff n(f) = 0, and
  - (b) f is surjective iff  $r(f) = \dim(W)$ .

- 9. Corollary 5.9: If  $f:V\to W$  is a linear transformation of finite dimensional vector spaces V,W over the same field F then
  - (a) f is injective iff  $r(f) = \dim(V)$ , and
  - (b) f is surjective iff  $n(f) = \dim(V) \dim(W)$ .
- 10. Let  $f_{\mathbf{A}}: F^n \to F^m$  be  $f_{\mathbf{A}}(\mathbf{v}) = \mathbf{A}\mathbf{v}$  where  $\mathbf{v} \in F^n$  and  $\mathbf{A}$  is an  $m \times n$  matrix over the field F. Then
  - (a)  $\operatorname{im}(\mathbf{A}) = {\mathbf{A}\mathbf{v} : \mathbf{v} \in F^n},$
  - (b)  $\ker(\mathbf{A}) = {\mathbf{v} \in F^n : \mathbf{A}\mathbf{x} = 0}, \text{ and }$
  - (c)  $r(\mathbf{A})$  and  $n(\mathbf{A})$  are the rank and nullity of  $\mathbf{A}$ , i.e. the dimensions of  $im(\mathbf{A})$  and  $ker(\mathbf{A})$  respectively.
- 11. For a linear transformation the codomain is a vector space and therefore operations of addition and scalar multiplication must be defined. Any set S of functions from any set X to a vector space W, such that S is closed under addition and scalar multiplication forms a vector space.
- 12. Let  $\mathcal{L}[V, W]$  be the set of all linear transformations from a vector space V to a vector space W over the same field F. The zero element in  $\mathcal{L}[V, W]$  is the map that takes every element to the zero in W.
- 13.  $\mathcal{L}[V, V]$  allows additional operations, 'composition of functions',  $(f \cdot g)(x) = f(g(x))$ .  $\forall f, g, h \in \mathcal{L}[V, V]$  and  $\forall \lambda, \mu \in F$  we have
  - (1) (f+g)+h=f+(g+h),
  - (2) f + g = g + f,
  - (3) 0 + f = f + 0 (there is a zero element),
  - (4)  $\lambda(\mu f) = (\lambda \mu) f$ ,
  - (5)  $(\lambda + \mu)f = \lambda f + \mu f$ ,
  - (6) 0f = 0,
  - (7) f + (-1)f = 0,
  - (8)  $(f \cdot g) \cdot h = f \cdot (g \cdot h),$
  - (9)  $\mathbb{I} \cdot f = f \cdot \mathbb{I} = f$  ( $\mathbb{I}$  is the identity map  $\mathbb{I}(x) = x$ ),
  - (10)  $f \cdot (g+h) = f \cdot g + f \cot h$ , and
  - $(11) ((g+h)) \cdot f = g \cdot f + h \cdot f.$
- 14. If  $f: V \to W$  is a linear map,  $v_1, v_2, \dots v_n$  is a basis for V and  $w_1.w_2, \dots w_m$  is a basis for W then

$$f(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$

with  $a_{ij}$  some scalars. The matrix  $\mathbf{A} = (a_{ij})$  is called the matrix of f with respect to the ordered bases  $v_1, v_2, \ldots v_n$  of V and  $w_1, w_2, \ldots w_m$  of W. In coordinate form with  $\mathbf{\lambda} = (\lambda_1, \lambda_2, \ldots \lambda_n)^T$  the coordinates of  $v \in V$  with respect to the basis of V and  $\boldsymbol{\mu} = (\mu_1, \mu_2, \ldots \mu_m)^T$  the coordinates of f(v) with respect to the basis of W then

$$\mu = A\lambda$$
.

- If we change the basis  $v_1, v_2, \ldots v_n$  of V to  $v'_1, v'_2, \ldots v'_n$  related by the base change matrix  $\mathbf{P} = (p_{ij})$  so that  $v'_j = \sum_{i=1}^n p_{ij} v_i$  then the matrix of f with respect to the ordered bases  $v'_1, v'_2, \ldots v'_n$  of V and  $w_1, w_2, \ldots w_m$  of W is  $\mathbf{AP}$ .
- If we change the basis  $w_1, w_2, \ldots w_m$  of W to  $w'_1, w'_2, \ldots w'_m$  related by the base change matrix  $\mathbf{Q} = (q_{ij})$  so that  $w'_j = \sum_{i=1}^m q_{ij}w_i$  then the matrix of f with respect to the ordered bases  $v_1, v_2, \ldots v_n$  of V and  $w'_1, w'_2, \ldots w'_m$  of W is  $\mathbf{Q}^{-1}\mathbf{A}$ .
- Together we have  $\mathbf{Q}^{-1}\mathbf{AP}$  if we change the basis of both the domain and codomain.
- 15. Proposition 5.10: Let V be a vector space with ordered basis B given by  $v_1, v_2, \ldots v_n$  and B' given by  $v'_1, v'_2, \ldots v'_n$ . Let  $\mathbf{P} = (p_{ij})$  be the base change matrix so that  $v'_j = \sum_{i=1}^n p_{ij}v_i$ . Suppose  $f: V \to V$  is a linear map which has matrix  $\mathbf{A}$  with respect to the ordered basis B and matrix  $\mathbf{B}$  with respect to the ordered basis B'. Then

$$\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} .$$

- 16. Definition 5.11: If  $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$  then  $\mathbf{A}$  and  $\mathbf{B}$  are called similar matrices. If  $\mathbf{B} = \mathbf{P}^T\mathbf{A}\mathbf{P}$  then  $\mathbf{A}$  and  $\mathbf{B}$  are called congruent matrices.
- 17. Proposition 5.12: Let  $f, g \in \mathcal{L}[V, W]$  where V, W are finite dimensional vector spaces, and let f, g have matrix representations  $\mathbf{A}, \mathbf{B}$  respectively with respect to some ordered bases A, B of V, W respectively. Then
  - (a) The matrix representation of  $\lambda f$  with respect to A, B is the scalar product  $\lambda \mathbf{A}$  of the matrix  $\mathbf{A}$ .
  - (b) The matrix representation of the sum f+g with respect to A,B is the matrix sum  $\mathbf{A} + \mathbf{B}$ .
- 18. Proposition 5.13: (Composition of functions) Let U, V, W be finite dimensional vector spaces, with ordered bases A, B, C respectively, and let  $g: U \to V$  and  $f: V \to W$  be linear maps. If f and g are represented by the matrices  $\mathbf{A}$  and  $\mathbf{B}$  with respect to A, B, C then  $f \cdot g$  is represented (with respect to the same bases) by the matrix product  $\mathbf{AB}$ .
- 19. In the special case  $\mathcal{L}[V, V]$ , where V is an n-dimensional vector space over F, then given an ordered basis B of V we have a map from  $\mathcal{L}[V, V]$  to the set  $M_{n,n}(F)$  of  $n \times n$  matrices with entries taken from F, taking f to the matrix representing f (which is unique once B is specified). Additionally:
  - Every matrix is the matrix of some transformation f.
  - The zero transformation  $\leftrightarrow$  the zero matrix.
  - The identity transformation  $\leftrightarrow$  the identity matrix.
  - Scalar multiplication  $\leftrightarrow$  scalar multiplication.
  - Addition of transformations  $\leftrightarrow$  addition of matrices.

I.e.  $\mathcal{L}[V, V]$  and  $M_{n,n}(F)$  are isomorphic. Moreover composition in  $\mathcal{L}[V, V]$  and matrix multiplication in  $M_{n,n}(F)$  are isomorphic.

20. Polynomials over a field F are expressions like

$$f(x) = \sum_{r=0}^{n} a_r x^r$$
 with  $a_r \in F$ .

The degree of the polynomial is the largest r for which  $a_r \neq 0$  and is written  $\deg(f)$ .

21. Proposition 5.14: (Division algorithm) If f(x) and g(x) are two polynomials, and g(x) is not the zero polynomial then there exist polynomials g(x) and g(x) such that

$$f(x) = g(x)q(x) + r(x)$$

and either r(x) is the zero polynomial (i.e.  $a_r = 0 \, \forall r$ ) or else  $\deg(r) < \deg(g)$ .

- 22. It is generally true for polynomials p(x), q(x) in a single free variable that whenever there is a polynomial identity p(x) = q(x) and an  $n \times n$  matrix **A** that  $p(\mathbf{A}) = q(\mathbf{A})$  holds. For polynomials in more than one variable that is not the case.
- 23. Proposition 5.15: If p(x), q(x) are polynomials and **A** is an  $n \times n$  matrix then  $p(\mathbf{A})q(\mathbf{A}) = q(\mathbf{A})p(\mathbf{A})$ .
- 24. Proposition 5.16: If  $f \in \mathcal{L}[V, V]$  where V is a finite dimensional vector space, and if p(x), q(x) are polynomials, then p(f)q(f) = q(f)p(f).
- 25. Theorem 5.17: (Remainder theorem) Suppose p(x) is a polynomial of degree at least 1 with coefficients from  $\mathbb{R}$  or  $\mathbb{C}$  and  $\alpha \in \mathbb{C}$ . Then  $\alpha$  is a root of p(x) iff  $(x \alpha)$  divides p(x) exactly.
- 26. Corollary 5.18: A polynomial p(x) of degree  $d \ge 1$  has at most d roots.
- 27. Every polynomial in  $\mathbb{C}$  has its maximum number of roots, counting multiplicities. For any p(x) of degree  $d \geq 1 \; \exists \alpha_1, \alpha_2, \dots \alpha_d, c \in \mathbb{C}$  such that

$$p(x) = c \prod_{j=1}^{d} (x - \alpha_j).$$

The field of complex numbers is algebraically closed. The field of real numbers is not algebraically closed, but  $\mathbb C$  is the algebraic closure of  $\mathbb R$ . I.e.:

- (1)  $\mathbb{C}$  is algebraically closed.
- (2) Every element  $\xi \in \mathbb{C}$  satisfies a polynomial equation over  $\mathbb{R}$ .