Mesterséges Intelligencia

Metaheurisztikus algoritmusok alapjai

FONTOS

- Az alábbi anyag munkavázlat, hibákat tartalmazhat. Amennyiben hibát találnak, kérem, a portálon keresztül üzenetben jelezzék, hogy melyik heti előadás, vagy jegyzet melyik részében, milyen hibát véltek felfedezni!
- Az anyagok kizárólag a Széchenyi István Egyetem 2021-2022 tavaszi félévében Mesterséges Intelligencia kurzust felvett hallgatói számára készültek, kizárólag az adott félév kurzusaihoz használható fel!
- Az alábbi hivatkozásokon megnyitott minden fájl automatikusan begyűjti a hallgató különböző egyedi azonosítóit, mely alapján beazonosítható lehet. Ennek megfelelően a hivatkozásokat ne osszák meg egymással (különösen a kurzust nem hallgatókkal), mert abból az egyedi azonosítók visszakereshetők és a személyazonosság meghatározható!
- Az alábbi anyagra vonatkozóan minden jog fenntartva!
- Az anyagok bármely részének vagy egészének nyomtatása, másolása, megosztása, sokszorosítása, terjesztése, értékesítése módosítással vagy módosítás nélkül egyaránt szigorúan tilos!

A lecke főbb témakörei

- Keresés, optimalizálás
- Metaheurisztikus algoritmusok
 - Általános leírás
 - Tesztelés
 - Csoportosítás
- Konkrét módszerek

Metaheurisztikus algoritmusok alapjai

- Cél több alternatív lehetséges megoldás közül valamilyen szempont, vagy szempontok alapján a legjobb (optimális) megoldás kiválasztása
- A keresési tér
 - az egydimenzióstól szinte a végtelen dimenziósig terjedhet
 - · lehet diszkrét és folytonos is
- Globális optimum
 - ha a teljes keresési térre vonatkozó legjobb megoldásról van szó
 - Lehet belőle több is
 - jósága teljesen megegyezik, de elhelyezkedésük eltérő
- Lokális optimum
 - a keresési tér egy kisebb részére vonatkozó optimum
 - a megoldás (jelölt) szűk környezetére vonatkozó legjobb megoldás
 - Természetesen a globális optimum bizonyos szempontból lokális optimum is

- Egyes esetekben a keresési tér bonyolultsága miatt nem, vagy nagyon nehezen, sok idő alatt található meg az optimális megoldás
 - Pl. a különböző NP-nehéz feladatok köre
 - · utazóügynök probléma
 - ilyen esetekben a garantált optimális megoldást csak az összes megoldás összehasonlítása révén lehet előállítani
 - · egyáltalán nem hatékony
 - a valós problémák esetében a rendelkezésünkre álló erőforrások korlátosak
 - akár számítási teljesítményben, akár időben
 - előfordul, hogy kompromisszumként nem a globális optimumot keressük, hanem egy úgynevezett kvázi optimális megoldást
 - A kvázi optimum lehet az optimumot adott mértékben megközelítő megoldás, vagy az adott idő, számítási lépések alatt elérhető addigi legjobb.

Néhány híres NP-nehéz feladat:

- Hozzárendelési feladat (Assignment Problem)
- Utazó Ügynök Probléma (Traveling Salesman Problem)
- Ládapakolás (Bin Packing)
- Hátizsák probléma (Knapsack Problem)
- Halmazlefedési feladat (Set Cover Problem)

- A keresés során megkülönböztethetjük az informált és a nem informált keresést
 - Előbbi esetén az egyes megoldás jelöltekről rendelkezünk valamilyen minőségi leírással
 - A nem informált keresés esetén csak annyi információval rendelkezünk, hogy a kiválasztott megoldás megegyezike a keresett céllal

Metaheurisztikus algoritmusok alapjai

Metaheurisztikus módszerek

Determinisztikus algoritmusok

- Determinisztikus algoritmusok
 - konvencionális optimalizáló algoritmusok
 - hegymászó algoritmus, lineáris és nemlineáris programozás
 - két (vagy több) lefutás során azonos bemenetet feltételezve mindig ugyanazt az eredményt hozzák, a lépések nem térnek el

Determinisztikus algoritmusok

- Sztochasztikus algoritmusok
 - működésében nagy szerepet játszanak a véletlen számok
 - Heurisztikus
 - nem garantálják, hogy megtalálják az optimumot (persze ez nincs kizárva)
 - a probléma (keresési tér) valamilyen előzetes ismerete alapján felállított stratégia mentén kutatja át azt
 - kvázi optimális megoldást gyakran nagyságrendekkel gyorsabban talál meg a determinisztikus megoldásokhoz képest
 - metaheurisztikus
 - · nincs egységes meghatározása
 - felsőbb heurisztikát jelent
 - iteratív folyamatok irányítására szolgáló stratégiák, melyek célja (kvázi)optimum megoldásokat találni a keresési tér hatékony felderítése révén

Metaheurisztikus algoritmusok alapjai

- sztochasztikus jelleg
 - rendkívül nehéz objektíven összehasonlítani
 - egyetlen metaheurisztikus módszer sem jelent univerzálisan jó megoldást minden problémára
 - az egyedi jellegzetességeik, "viselkedésük" viszont egy-egy típusú probléma esetén előnnyel szokott járni
- empirikus teszteket végeznek
 - az elért eredmények alapján hasonlítják össze a különböző paramétereket, mint a futási idő, a számítási igény, vagy a keresési lépések száma, vagy a megtalált legjobb megoldás
- A legalapvetőbb megoldás a különböző, kimondottan optimalizációs algoritmusok tesztelésére szolgáló (benchmark) függvények
 - · (és egyéb adathalmazok, mint például gráfok)
 - különböző matematikai jellemzőkkel bírnak
- Például a COCO (COmparing Continuous Optimisers)
 - Folytonos Optimalizálók Összehasonlítása keretrendszer
 - · célja, hogy egységes tesztkörnyezetet biztosítson

- Benchmark függvények csoportosításának főbb szempontjai
 - Modalitás
 - a félrevezető csúcsok száma utal a függvény modalitására, aminek lényegében a célja, hogy minél több "lehetőséget" adjon arra (a nem kívánatos helyzetre), hogy lokális optimumba "ragadjon" az algoritmus a viselkedésétől függően;
 - tálak (basin)
 - egy nagyobb területet körbezáró nagy meredekségű alakra utal (melyből több is lehet egy függvényben), ami nagyon "vonzó" egyes algoritmusok számára, hiszen egyes heurisztikák a hirtelen javulás irányába indulnak;
 - völgyek (valley)
 - akkor beszélünk völgyről, ha kisebb változatosságú szűk területet meredek "falak" vesznek körül, hasonlóan a tálakhoz, ez is különösen vonzó az olyam megoldások számára, amely két megoldás jósága közötti eltérés nagysága alapján dönt a következő lépésről;

Metaheurisztikus keresőalgoritmusok tesztelése

Modalitás Unimodális multimodális

Metaheurisztikus keresőalgoritmusok tesztelése

Völgyek

Rosenbrock-függvény megoldása a Legmeredekebb lejtő (Gradient descent) módszerrel

$$p_{n+1} = p_n - \eta \nabla f(p_n)$$

ahol ∇f gradiens vektor

- szeparálhatóság (separability)
 - a különböző benchmark függvények bonyolultságára utal, a szeparálható problémákat jellemzően könnyű megoldani, hiszen minden függvényváltozó független a többi változótól, melynek köszönhetően független optimalizációs folyamatok végezhetőek el, vagyis minden változó (vagy azok egy csoportja) külön optimalizálható;
- dimenziók (dimensionality)
 - általánosságban elmondható, hogy egy probléma (függvény) dimenzióinak számával együtt nő annak bonyolultsága is, mivel a paraméterekkel együtt a keresési tér mérete exponenciálisan nő.

Metaheurisztikus keresőalgoritmusok tesztelése

Szeparálhatóság

Például z=x²+y²

Kérdés: $z=(x^2+y^2)^4$ esetén függetlenek –e a változók

egymástól?

Válasz: igen, mert a következő feltétel teljesül mindegyik

változóra $\frac{\partial f(\vec{x})}{\partial x_i} = g(x_i)h(\vec{x})$

Metaheurisztikus algoritmusok alapjai

Metaheurisztikus optimalizáló algoritmusok csoportosítása

- az algoritmusok e családja nagyszámú
 - tagjai eltérő jellemzőkkel rendelkezhetnek
- számos csoportosítási lehetőség is fellelhető a
 - Az egyik szerint 5 fő csoportba sorolhatok a különböző jellemzőik alapján

Koncepció

- természet inspirálta módszerek
 - bakteriális evolúciós algoritmus, az ősrobbanás nagy reccs (Big Bang – Big Crunch) algoritmus, a hangyakolónia algoritmus, vagy a mesterséges immunrendszer módszer
- nem természet inspirálta módszerek
 - tabu keresés, vagy az iterált lokális keresés

Iterált lokális keresés

```
algorithm ILS (x, f(\cdot), history)1  t := LocalSearch(x, f(\cdot)); x_b := t;2  while (stopping criterion not satisfied) \rightarrow3  s := perturbation(t, history);4  \hat{s} := LocalSearch(s, f(\cdot));5  t := AcceptanceCriterion(t, \hat{s}, history);6   if (f(t) < f(x_b)) then x_b := t;7   endif8   endwhile9   return (x_b);end ils
```

Tabu keresés

- minden lépésnél elfogadhatók a rosszabbodó lépések, ha nem áll rendelkezésre javító lépés (például amikor a keresés megakad egy lokális minimumon).
- Ezenkívül tiltásokat vezetnek be (a továbbiakban a tabu kifejezés), hogy megakadályozzák a keresést, hogy visszatérjen a korábban látogatott megoldásokhoz.
- A tabu keresés megvalósítása memóriastruktúrákat használ, amelyek leírják a felkeresett megoldásokat vagy a felhasználó által megadott szabálykészleteket. Ha egy lehetséges megoldást egy bizonyos rövid távú időszakon belül korábban meglátogattak, vagy szabályt sértett, akkor " tabu "-ként (tiltott) jelölik, hogy az algoritmus ezt a lehetőséget ne vegye figyelembe ismételten.

Egyidőben tárolt megoldások

- Populáció alapú
 - egyszerre több megoldásjelölttel rendelkeznek a
 - ezek fejlődés (evolúciója) során történik a megoldások optimalizálása
 - Lehetséges több párhuzamos populáció is
- Egypontos
 - egyetlen megoldással dolgoznak
 - trajektória módszerek (trajectory methods)
 - lényegében egy pont fejlődése során egy utat (trajektóriát) jár be
 - Például: tabu keresés, változó szomszéd kereső eljárás (Variable Neighborhood Search).

Célfüggvény időbeni változása

- Dinamikus célfüggvényű módszer
 - például az irányított lokális keresés (Guided Local Search)
 - az optimalizáció során változtatja
 - célja az, hogy elkerülje az esetleges lokális optimumokba való ragadást
- Statikus célfüggvényű módszer
 - A leggyakoribb

Szomszédsági struktúra

- Szomszédsági struktúrájú
 - amennyiben a fitnesz topológia nem változik a keresés során
- változó szomszédsági struktúrájú
 - például a változó szomszéd kereső eljárás eltérő szomszédsági struktúrákat alkalmaz
 - lehetővé teszi, hogy váltson a különböző fitnesz terepek között

Memória

- Memóriát használó
 - · keresési folyamat lépéseit tárolja
 - rövid távú memóriával rendelkező
 - például az előző lépések (vagy egy részük), bizonyos döntések, az addigi megoldások közül kiválasztottak
 - hosszú memóriával rendelkező
 - valamilyen akkumulált szintetikus paramétereket használnak
- Memória mentes
 - nem tárolnak visszamenőleges adatokat

Metaheurisztikus algoritmusok alapjai

- John Holland mutatta be az 1960-as években
- különösen nagy népszerűségnek örvendett az 1970es évek elejétől kezdve
- és mára szinte megszámlálhatatlan módosított változata létezik
- alapelve Darwin evolúciós elméletén alapul, pontosabban a természetes szelekción
 - a környezetükhöz legjobban alkalmazkodott egyedek tovább élnek és több (kisebb változással rendelkező) utódot hoznak létre

- az egyes megoldásokat (jelölteket) úgynevezett kromoszómákban kódolja
 - bináris vektorként reprezentálnak (ezeket hívják még egyedeknek is)
 - · általánosították tetszőleges n elemű vektorra
 - állhat karakterekből, egész számokból, vagy valós számokból
 - · ez reprezentálja a természetes genomot
- A populáció adott számú kromoszómából áll
 - különböző megoldásjelöltek
 - az együtt élő élőlényeknek feleltethető meg
- Az egy időben (ciklusban) "élő" megoldások alkotják a generációt
- Az egyes megoldások jóságának leírására a fitnesz függvény szolgál.

- három alapvető genetikus operátor
 - a szelekció
 - kiválasztja a továbbjutó, keresztezésre jelölt egyedeket
 - a keresztezés
 - Két kromoszómából állít elő egy (vagy több) új kromoszómát
 - lényegében két megoldást kombinálva új megoldást alkot
 - a mutáció
 - Adott valószínűséggel bármelyik egyedben végbe mehet
 - véletlenszerűen módosítja a kromoszóma egy részét
- Az egyes operátorokra több alternatív módszer is létezik.

Metaheurisztikus algoritmusok alapjai

Genetikus Algoritmus: szelekció

Fitnesz arányos kiválasztás

- Másnéven rulettkerék módszer
- A kromoszómák a jóságukkal arányos méretű szeletet kapnak a "rulettkerékből"
 - A kis jóságú kromoszómák is kiválasztásra kerülhetnek
 - Csak kisebb valószínűséggel
 - A jobb egyedek nagyobb valószínűséggel kerülnek kiválasztásra

Forrás: Shirani Faradonbeh, Roohollah & Hasanipanah, Mahdi & Bakhshandeh Amnieh, Hassan & Jahed Armaghani, Danial & Monjezi, Masoud. (2018). Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environmental Monitoring and Assessment. 190. 10.1007/s10661-018-6719-y.

További módszerek

- Random szelekció
- Levágó szelekció (truncation selection)
- Verseny szelekció (tournament selection)
 - Pár-verseny szelekció (binary tournament selection)
- Jutalom alapú szelekció (reward-based selection)
- Sztochasztikus univerzális szelekció
- Stb.

Verseny szelekció

Sztochasztikus univerzális szelekció

Genetikus Algoritmus: keresztezés

Keresztezés operátor

- Számos alternatív megoldás
- Nagyban függ a kódolástól
 - A kromoszómákat leíró adatszerkezet és az arra vonatkozó megkötések
 - Fák, gráfok, vektorok stb.
- Tipikus keresztező megoldások a vektor-jellegű kromoszómák esetén
 - Egy/többpontos keresztezés
 - Uniform keresztezés
 - Aritmetikai keresztezés

Egypontos keresztezés

 A két szülő kromoszómát egy véletlenszerűen kiválasztott pontban elvágjuk és a levágott részeket felcserélve megkapjuk az utódokat

Többpontos keresztezés

 A két szülő kromoszómát több (>2) véletlenszerűen kiválasztott pontban elvágjuk és a levágott részeket felcserélve megkapjuk az utódokat

Uniform keresztezés

- A két szülő kromoszómát minden második pontban (felváltva) felcserélve megkapjuk az utódokat
 - Lényegében egy "minden pontos keresztezés"

1.	Α	D	С	В	D	С	Α		
2.	В	С	C	Α	D	С	O		
			+						
1.	Α	С	C	Α	D	С	Α		

aritmetikai keresztezés

- A két szülő kromoszómát egy tetszőleges f függvény segítségével kombináljuk
 - Tipikus függvény: $z_i = f(x_i, y_i)$ $f(x_i, y_i) = \alpha * x_i + (1 \alpha) * y_i \mid \alpha \in [0; 1]$

		1	2	3	4	5	6	7					
	X	Α	D	C	В	D	С	Α					
I	У	В	С	C	Α	D	С	С					
	1												
	Z	$f(x_1,y_1)$	$f(x_2,y_2)$	f(x ₃ ,y ₃)	f(x ₄ ,y ₄)	f(x5,y5)	f(x ₆ ,y ₆)	f(x ₇ ,y ₇)					

Genetikus Algoritmus: mutáció

Mutációs operátor

- Kromoszómák véletlenszerű megváltoztatása
 - Több változata is van
 - Eredetileg
 - A populáció elemeit adott valószínűséggel kiválasztjuk és egy véletlenszerűen kiválasztott gént módosítunk

Genetikus Algoritmus: pszeudokód

Genetikus Algoritmus

```
kezdeti populáció létrehozása
generáció=0
amíg generáció < max. generáció
{
    egyedek rangsorolása az alkalmassági érték alapján
    szelekció
    keresztezés
    mutáció
    visszahelyettesítés
    generáció = generáció + 1
}</pre>
```

Visszahelyettesítés

Populáció mérete jellemzően fix, de a keresztezés és a mutáció során úgy egyedeket is létrehoztunk

Kérdés: Melyik egyedeket tartsuk meg a populációban a következő generációban?

Két nagy csoport:

- Fitnesz alapú módszerek
- Életkor alapú módszerek: adott esetben segíthet egy lokális optimumból kimászni

Életkor alapú módszerek

- Generációs modell: ugyanannyi egyedet (λ) hozunk létre a keresztezés és a mutáció során összesen amennyi a populáció mérete (μ)
 - Az újonnan létrehozott egyedek fogják a populációt alkotni
- λ < μ: legrégebbi (FIFO) stratégia

Fitnesz alapú módszerek

- Legrosszabb egyedek helyettesítése: μ egyedszámú populáció legrosszabb λ egyedét helyettesítjük a létrehozott λ utóddal
- (μ + λ) kiválasztás: μ elemú populáció és λ utód együttes rangsorolása, majd legjobb μ db egyed kiválasztása

Fitnesz alapú módszerek

• (μ, λ) kiválasztás: tipikusan $\lambda > \mu$ több utódot hozunk létre mint a populáció mérete

λ db utód rangsorolása, és a μ db legjobb fogja a populáció alkotni

- közvetlen elődjének az 1997-ben bemutatott pszeudo-bakteriális genetikus algoritmus
 - fuzzy logikai vezérlők generálására alkottak meg
 - A genetikus algoritmusokhoz képest annyiban volt új a módszer, hogy bakteriális mutációt használt
- A bakteriális evolúciós algoritmust 1999-ben N. E. Nawa és T. Furuhashi publikálták
 - céljuk fuzzy rendszerek optimális paramétereinek keresése volt
 - a baktériumok fejlődésének koncepcióját alkalmazták
 - A bakteriális mutáción felül a génátadás, vagy más néven a géntranszfer operátort alkalmazza.

- baktériumok, vagy egyedek
 - kódolt (megoldás) jelöltek az adott problémára.
- Az egyedek valamely tulajdonságait az úgynevezett gének tárolják
 - azok értékei az allélok
- Az egyes baktériumok jóságának, vagy alkalmassági mértékének meghatározására nincs szükség külön fitnesz függvényre
 - az adott probléma kiértékelése használatos erre a célra
- Az egyedek összessége alkotja a baktérium populációt
 - az azonos időben létező egyedek képezik az egyes generációkat

Bakteriális Evolúciós Algoritmus: bakteriális mutáció

Bakteriális mutáció

- A populáció minden egyedén (baktériumon) külön-külön végrehajtott operátor
- A baktérium jóságának "önálló", más egyedtől származó információátadás nélküli javítása a cél
- A módszer garantálja, hogy az eredeti baktérium jósága nem romolhat
- Lépései egy kiválasztott baktériumra vonatkozóan
 - A kiválasztott baktériumot n_k számban klónozzuk (identikus másolatokat hozunk létre)
 - Egy véletlenszerűen kiválasztott allélt véletlenszerűen megváltoztatunk az összes klónban (de az eredeti baktériumban nem)
 - Kiértékeljük a módosított klónokat és kiválasztjuk a legjobb egyedet a klónok és az eredeti baktérium közül
 - A legjobb egyed átadja a korábbi lépésben kiválasztott allélját minden másik egyednek (klónoknak és/vagy eredeti baktériumnak)
 - Ezt a lépéssorozatot addig ismételjük, amíg minden allél kiválasztásra nem került
 - A lépések végén a módosított baktériumot visszahelyezzük a populációba
 - legrosszabb esetben a kiindulási paraméterekkel fog rendelkezni

Bakteriális mutáció

Bakteriális Evolúciós Algoritmus: génátadás

Génátadás

- A célja, hogy a populáció egyedei közötti információcserével javítsa a baktériumok jóságát
- A lépéseit n_i (infekciók száma) alkalommal ismételjük meg
- Lépései
 - A populációban található baktériumokat jóság szerint sorbarendezzük
 - ullet Egy előre definiált n_c pontban elvágjuk a populációt
 - Ezzel a jó és rossz baktériumok csoportjára osztjuk azt
 - A jó és a rossz baktériumok csoportjából véletlenszerűen kiválasztunk egy-egy egyedet
 - A kiválasztott jó (forrás) baktérium átadja egy véletlenszerű allélját a kiválasztott rossz (cél) baktériumnak
 - Amennyiben rögzített hosszúságúak a baktériumok, akkor a célbaktérium felülírja az allélt
 - Eltérő hosszúságú baktériumok esetén hozzá is fűzheti az allélt

Génátadás

Bakteriális Evolúciós Algoritmus: pszeudokód

- Kezdeti populáció létrehozása /* Baktériumok véletlenszerű generálása*/
- Generáció = 0
- Amíg a terminálási feltétel nem teljesül /* Az aktuális generáció szám kisebb, mint a megengedett maximális generációk száma*/
- Minden egyedre
- Bakteriális mutáció
- Amíg el nem érjük a <u>maximális génátadások</u> számát
- Génátadás
- <u>Generáció</u> += 1

- particle swarm optimization
- R. Eberhart és J. Kennedy publikálták 1995–ben
 - céljuk nemlineáris függvények optimalizációja volt
 - két paradigmát is javasoltak, illetve vizsgáltak
 - Az egyik globálisan, míg a másik lokálisan orientált részecskesereg módszer

- Az algoritmus részecskék mozgásának az analógiáját alkalmazza
 - a füst gomolygásához hasonló az egyes egyedek (részecskék) mozgása
 - hasonlít például a madarak és a halak összehangolt mozgására is
- A részecskék a megoldás jelölteket jelképezik, amelyek a keresési térben mozognak.

Részecskesereg Optimalizáció: pszeudokód

- Kezdeti részecskék létrehozása a <u>D dimenzión</u> /*Részecskék pozícióinak és sebességeinek véletlenszerű generálása*/
- Amíg a <u>terminálási feltétel</u> nem teljesül, addig <u>minden részecskére</u>
- A kiválasztott minimalizálási függvény kiértékelése a <u>D</u> változókra
- Ha a <u>részecske</u> aktuális értéke jobb, mint a <u>részecske legjobb</u> értéke, akkor
- A <u>legjobb értéket</u> az <u>aktuális értékre</u> cseréljük
- Ha a <u>részecske legjobb értéke</u> jobb, mint a <u>globális legjobb</u> érték, akkor
- A <u>legjobb globális értéket</u> az <u>aktuális részecske értékre</u> cseréljük
- <u>Részecske sebességének</u> frissítése
- Részecske mozgatása az új pozícióba

- Big Bang Big Crunch
- O. K. Erol és I. Eksin publikálták 2005-ben
- céljuk egy általuk fejlesztett újszerű optimalizációs módszer bemutatása volt
- · lényege az univerzum fejlődési analógiájára épül
 - Ősrobbanás
 - · egyetlen pontból tágulással jött létre az ismert univerzum
 - · nagy reccs
 - · ahol az univerzum egyetlen pontba roskad
- Az univerzum maga a keresési tér
- Az univerzum pontjai (az égitestek) az egyes egyedek, vagyis a megoldás jelöltek.

- A jóság kiszámítsa valamilyen előre megadott fitnesz függvény alapján történik
 - az univerzum keletkezésének analógiájára ez jelképezi a világegyetemben (keresési térben) található égitestek (egyedek) tömegét
- benchmark jellegű tesztben összehasonlították algoritmusukat egy genetikus algoritmussal
 - az eredményeik alapján az új módszer több esetben felülmúlta a genetikus algoritmus által hozott eredményeket

Ősrobbanás – nagy reccs: pszeudokód

- Kezdeti populáció véletlenszerű létrehozása /*Egyedek generálása a probléma keresési terében*/
- Amíg a terminálási feltétel nem teljesül, addig
- Minden egyedre
- Jóság kiszámítása
- <u>Súlypont</u> meghatározása az <u>egyedek</u> alapján
- Új egyedek létrehozása a súlypont körül /*Az iterációnként módosított keresési térben*/

Ősrobbanás – nagy reccs

$$\overrightarrow{x}^c = \frac{\sum_{i=1}^{N} \frac{\overrightarrow{x}^i}{f_i}}{\sum_{i=1}^{N} \frac{1}{f_i}}$$

$$x^{new} = x^c + \frac{L\gamma}{k}$$

k iterációszám

Ősrobbanás – nagy reccs példa

Rosenbrock-függvény minimumának keresése

Kezdetben 4. iterációban 500. iterációban

Imperialista Kompetitív Algoritmus

Imperialista Kompetitív Algoritmus

- Imperialist Competitive Algorithm
- E. Atashpaz-Gargari és C. Lucas publikálta 2007-ben
- céljuk egy a birodalmak versengésének mintájára épített optimalizációs algoritmus létrehozása volt
- az egyes országok jelképezik a probléma egy-egy megoldását a keresési térben, vagyis az egyedeket
 - két csoportra oszthatóak, az erősebbek a birodalmak (imperialists), míg a gyengébbek a gyarmatok (colonies)
 - A gyarmatok a különböző birodalmak között szétosztásra kerülnek.

Imperialista Kompetitív Algoritmus

- Az országok erősségének meghatározására a költség függvény szolgál
 - · a fitnesz függvényhez hasonló
 - működése eltér
 - alacsony költségfüggvény = erős ország
 - nem csak az egyedek önálló költségfüggvényét határozza meg
 - · A birodalmak és gyarmataik együttes költségfüggvényét is felhasználja
- A gyarmatok közelítenek a felettük álló birodalmakhoz
 - A mozgás következtében azok költségfüggvény-értéke változhat és jobb lehet a hozzájuk tartozó birodaloménál
 - az egyes gyarmatok erősebbé válhatnak, mint a föléjük rendelt birodalom
 - Az ilyen esetekben az adott gyarmat "átveszi a hatalmat"
- A versengés során a gyengébb birodalmak elveszíthetik a gyengébb gyarmataikat
 - erősebb birodalomhoz kerülhetnek
- Az erőtlen birodalmak össze is omolhatnak
 - Eltűnnek, gyarmatai szétosztásra

Imperialista Kompetitív Algoritmus: pszeudokód

Imperialista Kompetitív Algoritmus

- Kezdeti országok véletlenszerű létrehozása /*Egyedek generálása a probléma keresési terében*/
- Minden országra
- Költség függvény kiszámítása
- A <u>birodalmak</u> és gyarmatok kiválasztása
- Amíg a terminálási feltétel nem teljesül, addig
- Minden gyarmatra
- Mozgatás a <u>birodalma irányába</u>
- Minden gyarmatra
- Ha a gyarmat erősebb, mint a <u>birodalma,</u> akkor
- Gyarmat és birodalom felcserélése
- Minden birodalomra
- A <u>birodalom</u> teljes erejének meghatározása /*A birodalom és a gyarmatai együttes, aggregált ereje*/
- A *leggyengébb* <u>birodalom</u> vagy <u>birodalmak</u> *leggyengébb* gyarmatának, vagy gyarmatainak kiválasztása
- A kiválasztott gyarmat(ok) véletlenszerű átadása valamely birodalomnak, vagy birodalmaknak /*A birodalmak ereje alapján eltérő valószínűséggel kaphatják meg a gyarmato(ka)t*/
- Az erőtlen birodalmak eliminálása, gyarmataik szétosztása

Imperialista Kompetitív algoritmus

Felhasznált források

- Botzheim János Dr. Kóczy T. László Dr. Tikk Domonkos: Intelligens rendszerek. Győr: Széchenyi István Egyetem, 2008. 287 p.
- S. Forrest, and M. Mitchell, Relative building-block fitness and the building-block hypothesis, In L. D. Whitley (Eds.): Foundations of Genetic Algorithms 2, Morgen Kauffman, San Mateo, CA, 1993.
- X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, Cambridge, UK, 2010.
- C. Blum and A. Roli, Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison, ACM Computing Surveys, 35(3), pp. 268–308, 2003.
- N. E. Nawa, T. Hashiyama, T. Furuhashi, and Y. Uchikawa, Fuzzy logic controllers generated by pseudo-bacterial genetic algorithm, In Proceedings of the IEEE International Conference on Neural Networks 1997, pp. 2408–2413. 1997.
- J. H. Holland, Adaptation in Natural and Artificial Systems, The MIT Press, Cambridge, Massachusetts, 1992.
- N. E. Nawa and T. Furuhashi, Fuzzy system parameters discovery by bacterial evolutionary algorithm, IEEE Transactions on Fuzzy Systems, 7(5), pp. 608–616, 1999.
- J. Kennedy and R. Eberhart, Particle Swarm Optimization, In Proceedings of IEEE International Conference on Neural Networks 1995, pp. 1942–1948, 1995.
- R. Eberhart and J. Kennedy, A New Optimizer Using Particle Swarm Theory, In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, 1995.

- O. K. Erol and I. Eksin, A new optimization method: Big Bang Big Crunch, Advances in Engineering Software, vol. 37, Elsevier, pp. 106-111, 2005.
- H. Tang, J. Zhou, S. Xue and L. Xie, Big Bang–Big Crunch optimization for parameter estimation in structural systems, Mechanical Systems and Signal Processing, vol. 24, Elsevier, pp. 2888-2897, 2010.
- A. Kaveh and S. Talatahari, Size optimization of space trusses using Big Bang-Big Crunch algorithm, Computers and Structures, vol. 87, Elsevier, pp. 1129-1140, 2009.
- E. Atashpaz-Gargari and C. Lucas, Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialist Competition, In Proceedings of IEEE Congress on Evolutionary Computation 2007, pp. 4661-4667, 2007.
- H. Duan, C. Xu, S. Liu and S. Shao, Template matching using chaotic imperialist competitive algorithm, Pattern Recognition Letters, vol. 31, Elsevier, pp. 1868-1875, 2010.
- T. Niknam, E. T. Fard, N. Pourjafarian and A. Rousta, An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering, Engineering Applications of Artificial Intelligence, vol. 24, Elsevier, pp. 306-317, 2011.
- S. Talatahari, B. Farahmand Azar, R. Sheikholeslami and A. H. Gandomi, Imperialist competitive algorithm combined with chaos for global optimization, Communications in Nonlinear Science and Numerical Simulation, vol. 17, Elsevier, pp. 1312-1319, 2012.
- http://www-optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
- http://www.sfu.ca/~ssurjano/optimization.html
- http://coco.gforge.inria.fr/
- https://www.toshiba.co.jp/rdc/rd/detail_e/e1904_01.html
- https://aisearch.github.io/#/
- https://github.com/fcampelo/EC-Bestiary