r2spss: Format R Output to Look Like SPSS

Andreas Alfons

Erasmus University Rotterdam

Abstract

The R package **r2spss** allows to create plots and LaTeX tables that look like SPSS output for use in teaching materials. Rather than copying-and-pasting SPSS output into documents, R code that mocks up SPSS output can be integrated directly into dynamic LaTeX documents with tools such as the R package **knitr**. Package **r2spss** provides functionality for methods that are typically covered in introductory statistics courses: descriptive statistics, common hypothesis tests, ANOVA, and linear regression, as well as boxplots, histograms, scatterplots, and line plots (including profile plots).

Keywords: R, SPSS, statistics, teaching.

1. Introduction

Many academic programs in the social sciences or economics require to teach statistics with SPSS (IBM Corp. 2021). Preparing teaching materials in this case typically involves copying-and-pasting SPSS output into documents or slides, which is cumbersome and prone to errors. Moreover, this approach is not scalable for regular updates of the materials, or for individualizing assignments and exams in order to combat fraud. On the other hand, tools such as package **knitr** (Xie 2015, 2021) for integrating the statistical computing environment R (R Core Team 2021) and the document preparation system LaTeX (e.g., Mittelbach, Goossens, Braams, Carlisle, and Rowley 2004) make preparing teaching materials easier, less errorprone, and more scalable. There are even specialized tools such as package **exams** (Grün and Zeileis 2009; Zeileis, Umlauf, and Leisch 2014; Zeileis, Grün, Leisch, and Umlauf 2020) that allow assignments and exams to be individualized in a scalable manner. Package **r2spss** (Alfons 2021) makes it possible to leverage those developments for creating teaching materials with SPSS output by mocking up such output with R.

2. Illustrations: Using package r2spss

We start by loading the package.

R> library("r2spss")

2.1. LaTeX requirements and knitr options

Some of the tables produced by **r2spss** require the LaTeX package **amsmath**, hence the following command should be included in the preamble of your LaTeX document.

% somewhere before \begin{document}
\usepackage{amsmath}

When creating LaTeX tables in R code chunks with **knitr**, the output of the chunk should be written directly into the output document by setting the chunk option results='asis'. For more information on **knitr** chunk options, in particular various options for figures, please see https://yihui.org/knitr/options/.

2.2. Example data sets

The following two data sets from package **r2spss** will be used to illustrate its functionality: Eredivisie and Exams. The former contains information on all football players in the Dutch Eredivisie, the highest men's football league in the Netherlands, who played at least one match in the 2013-14 season. The latter contains grades for an applied statistics course at Erasmus University Rotterdam for students who took both the regular exam and the resit.

```
R> data("Eredivisie")
R> data("Exams")
```

Among other information, the Eredivisie data contain the market values of the football players. In many examples, we will use the logarithm of the market values rather that the market values themselves, so we add those to the data set.

R> Eredivisie\$logMarketValue <- log(Eredivisie\$MarketValue)</pre>

2.3. Descriptive statistics and plots

Descriptive statistics can be produced with function descriptives(), for example of the age, minutes played, and logarithm of market value of football players in the Eredivisie data.

R> descriptives(Eredivisie, c("Age", "Minutes", "logMarketValue"))

Descriptive Statistics

					Std.
	N	Minimum	Maximum	Mean	Deviation
Age	417	16	38	24.36	3.99
Minutes	417	1	3060	1425.81	972.08
logMarketValue	417	10.82	16.12	13.50	1.09
Valid N (listwise)	417				

Functions histSPSS() and boxplotSPSS() can be used to create a histogram or boxplot, respectively, of a specified variable.

R> histSPSS(Eredivisie, "logMarketValue")

R> boxplotSPSS(Eredivisie, "logMarketValue")

A scatterplot or scatterplot matrix can be produced with function plotSPSS() by specifying the corresponding variables.

R> plotSPSS(Eredivisie, c("Age", "logMarketValue"))

R> plotSPSS(Eredivisie, c("Age", "Minutes", "logMarketValue"))

2.4. Analyzing one sample

With the Exams data, we can perform a one-sample t test on whether the average grade on the resit exam differs from 5.5, which is the minimum passing grade in the Netherlands. For this purpose, we can use function tTest() with a single variable as well as the value under the null-hypothesis.

R> tTest(Exams, "Resit", mu = 5.5)

One-Sample Statistics

			Std.	Std. Error
	N	Mean	Deviation	Mean
Resit	45	5.598	1.438	.214

One-Sample Test

			Test Value $= 5.5$								
						95% Confidence					
						Interva	al of the				
				Sig. (2-tailed)	Mean	Diffe	erence				
		\mathbf{t}	df	tailed)	Difference	Lower	Upper				
Ì	Resit	.456	44	.651	.098	334	.530				

2.5. Analyzing paired observations

Similarly, we can perform a paired-sample t test on whether the average grades differ between the regular exam and the resit by supplying the two corresponding variables to function ${\tt tTest}$ ().

R> tTest(Exams, c("Resit", "Regular"))

Paired Samples Statistics

			Std.	Std. Error
	N	Mean	Deviation	Mean
Resit	45	5.598	1.438	.214
Regular	45	3.971	1.142	.170

Paired Samples Test

	Paired Differences							
				95% Confidence				
			Std.	Interval of the				
		Std.	Error	Difference				Sig. (2-
	Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Resit - Regular	1.627	1.434	.214	1.196	2.057	7.610	44	.000

As nonparametric alternatives, we can perform a Wilcoxon signed rank test with function wilcoxonTest() or a sign test with function signTest().

R> wilcoxonTest(Exams, c("Regular", "Resit"))

1	3	a	r	ıl	<	ç

		N	Mean Rank	Sum of Ranks
Resit - Regular	Negative Ranks	3 ^a	14.00	42.00
	Positive Ranks	41 ^b	23.12	948.00
	Ties	1^{c}		
	Total	45		

- a. Resit < Regular
- b. Resit > Regular
- c. Resit = Regular

Test Statistics^a

	Resit - Regular
Z	-5.288 ^b
Asymp. Sig. (2-tailed)	.000

- a. Wilcoxon Signed Ranks Test
- b. Based on negative ranks.

R> signTest(Exams, c("Regular", "Resit"))

Frequencies

		N
Resit - Regular	Negative Differences ^a	3
	Positive Differences ^b	41
	$\mathrm{Ties^c}$	1
	Total	45

- a. Resit < Regular
- b. Resit > Regular
- c. Resit = Regular

Test Statistics^a

	Resit - Regular
Z	-5.578
Asymp. Sig. (2-tailed)	.000

a. Sign Test

Note that the order of the variables in the nonparametric test is reversed compared to the paired-sample t test, but all three tests compute the differences in the form Resit - Regular. This behavior is carried over from SPSS.

To check which of these tests are suitable for the given data, we can for example use a boxplot. Function boxplotSPSS() allows to specify multiple variables to be plotted.

R> boxplotSPSS(Exams, c("Regular", "Resit"))

2.6. Comparing two groups

An independent-samples t test can be performed with function $\mathsf{tTest}()$ by specifying the numeric variable of interest as well as a grouping variable. As an example, we test whether the average log market values differ between Dutch and foreign football players.

R> tTest(Eredivisie, "logMarketValue", group = "Foreign")

Group Statistics

				Std.	Std. Error
	Foreign	N	Mean	Deviation	Mean
logMarketValue	0	279	13.345	1.108	.066
	1	138	13.801	.994	.085

Independent Samples Test

			ne's Test							
		for E	Equality							
		of Va	ariances		t-test for Equality of Means					
									95% Co	nfidence
									Interva	al of the
						Sig. (2-	Mean	Std. Error	Diffe	erence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
logMarketValue	Equal	.979	.323	-4.085	415	.000	455	.111	675	236
	variances									
	assumed									
	Equal			-4.237	301.040	.000	455	.107	667	244
	variances									
	not									
	assumed									

As a nonparametric alternative, we can perform a Wilcoxon rank sum test with function wilcoxonTest() in a similar manner. Note that it is not necessary to use the logarithms of the market values here, as this test works with ranks instead of the observed values.

R> wilcoxonTest(Eredivisie, "MarketValue", group = "Foreign")

Ranks

	Foreign	N	Mean Rank	Sum of Ranks
MarketValue	0	279	192.08	53590.00
	1	138	243.21	33563.00
	Total	417		

Test Statistics^a

	MarketValue
Mann-Whitney U	14530.000
Wilcoxon W	53590.000
Z	-4.083
Asymp. Sig. (2-tailed)	.000

- a. Grouping Variable: Foreign
- b. Not corrected for ties.

We can again use a boxplot to check whether the t test is suitable for the given data, as function boxplotSPSS() allows to specify a grouping variable as well.

R> boxplotSPSS(Eredivisie, "logMarketValue", group = "Foreign")

2.7. Comparing multiple groups

For comparing the means of multiple groups, one-way ANOVA can be performed with function ANOVA(). Here we test whether there are differences among the average log market values for players on different positions.

R> oneway <- ANOVA(Eredivisie, "logMarketValue", group = "Position")
R> oneway

Descriptives

logMarketValue

					95% Confidence			
					Interval	for Mean		
			Std.	Std.	Lower	Upper		
	N	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
Goalkeeper	35	13.343	1.322	.223	12.889	13.797	10.820	15.425
Defender	137	13.396	.986	.084	13.230	13.563	10.820	15.687
Midfielder	121	13.568	1.115	.101	13.367	13.769	10.820	16.118
Forward	124	13.580	1.108	.100	13.383	13.777	10.820	16.118
Total	417	13.496	1.091	.053	13.391	13.601	10.820	16.118

Test of Homogeneity of Variances

 $\log {\rm MarketValue}$

Levene Statistic	df1	df2	Sig.
2.666	3	413	.047

ANOVA

 $\log {\rm MarketValue}$

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.687	3	1.229	1.032	.378
Within Groups	491.786	413	1.191		
Total	495.474	416			

The plot() method for the resulting object produces a profile plot.

R> plot(oneway)

A nonparametric alternative based on ranks is the Kruskal-Wallis test, which can be applied with function kruskalTest(). It is again not necessary to use the logarithms of the market values for this test.

R> kruskalTest(Eredivisie, "MarketValue", group = "Position")

Ranks

	Position	N	Mean Rank
MarketValue	Goalkeeper	35	196.01
	Defender	137	197.52
	Midfielder	121	217.17
	Forward	124	217.38
	Total	417	

 ${\bf Test~Statistics}^{a,b}$

	MarketValue
Chi-Square	2.814
df	3
Asymp. Sig.	.421

- a. Kruskal Wallis Test
- b. Grouping Variable: Position

Similarly, two-way ANOVA can be performed by supplying two grouping variables to function ANOVA().

```
R> twoway <- ANOVA(Eredivisie, "logMarketValue",
+ group = c("Position", "Foreign"))
R> twoway
```

Descriptives

 $Dependent\ variable:\ logMarketValue$

			Std.	
Position	Foreign	Mean	Deviation	N
Goalkeeper	0	13.254	1.465	24
	1	13.538	.972	11
	Total	13.343	1.322	35
Defender	0	13.289	1.033	99
	1	13.675	.795	38
	Total	13.396	.986	137
Midfielder	0	13.474	1.160	84
	1	13.781	.987	37
	Total	13.568	1.115	121
Forward	0	13.304	1.016	72
	1	13.963	1.126	52
	Total	13.580	1.108	124
Total	0	13.345	1.108	279
	1	13.801	.994	138
	Total	13.496	1.091	417

Levene's Test of Equality of Error Variances^a

Dependent variable: logMarketValue

	9					
F	df1	df2	Sig.			
2.658	7	409	.011			

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Position + Foreign + Position * Foreign

Tests of Between-Subject Effects

Dependent Variable: logMarketValue

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	23.914 ^a	7	3.416	2.963	.005
Intercept	48638.419	1	48638.419	42185.739	.000
Position	2.578	3	.859	.745	.525
Foreign	11.104	1	11.104	9.631	.002
Position * Foreign	2.158	3	.719	.624	.600
Error	471.560	409	1.153		
Total	49133.893	417			
Corrected Total	495.474	416			

a. R Squared = .048 (Adjusted R Squared = .032)

We can again produce a profile plot with the plot() method for the resulting object. Argument which can be used to specify which of the two grouping variables should be used on the x-axis of the profile plot.

R> plot(twoway)

The plot() method illustrated in this section calls function linesSPSS() to produce the plots. The latter is more generally applicable and can also be used, e.g., for plotting time series.

2.8. Linear regression

In this section, we compare two regression models to explain the log market values of football players. The first model uses only the player's age as a linear and a squared effect, while the second model adds the remaining contract length and a dummy variable for foreign players.

We first add the squared values of age to the data set.

R> Eredivisie\$AgeSq <- Eredivisie\$Age^2</pre>

We then estimate the regression models with function regression(). As usual in R, we specify the regression models with formulas.

```
R> regression(logMarketValue ~ Age + AgeSq,
+ logMarketValue ~ Age + AgeSq + Contract + Foreign,
+ data = Eredivisie)
```

Model	Summary

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.260a	.068	.063	1.055
2	$.453^{\rm b}$.206	.198	.976

- a. Predictors: (Constant), Age, AgeSq
- b. Predictors: (Constant), Age, AgeSq, Contract, Foreign

ANOVA^a

		Sum of				
Model		Squares	df	Mean Square	F	Sig.
1	Regression	33.193	2	16.596	14.919	.000b
	Residual	458.338	412	1.112		
	Total	491.530	414			
2	Regression	101.011	4	25.253	26.513	$.000^{c}$
	Residual	390.519	410	.952		
	Total	491.530	414			

- a. Dependent variable: logMarketValue
- b. Predictors: (Constant), Age, AgeSq
- c. Predictors: (Constant), Age, AgeSq, Contract, Foreign

 $Coefficients^{a}$

		Unstandardized		Standardized		
		Coefficients		Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.125	1.734		2.379	.018
	Age	.742	.136	2.719	5.456	.000
	AgeSq	014	.003	-2.719	-5.457	.000
2	(Constant)	4.007	1.607		2.494	.013
	Age	.684	.126	2.506	5.421	.000
	AgeSq	013	.002	-2.417	-5.223	.000
	Contract	.354	.048	.340	7.400	.000
	Foreign	.427	.102	.185	4.185	.000

a. Dependent variable: logMarketValue

Argument change can be set to TRUE in order to include a test on the change in \mathbb{R}^2 from one model to the next. If we then only want to print the corresponding table containing the model summaries, we can use the argument statistics of the print() method.

				Std. Error	Change Statistics				
			Adjusted	of the	R Square				Sig. F
Model	R	R Square	R Square	Estimate	Change	F Change	df1	df2	Change
1	.260a	.068	.063	1.055	.068	14.919	2	412	.000
2	$.453^{\rm b}$.206	.198	.976	.138	35.601	2	410	.000

Model Summary

- a. Predictors: (Constant), Age, AgeSq
- b. Predictors: (Constant), Age, AgeSq, Contract, Foreign

Of course, the print() methods for all objects returned by functions from package **r2spss** allow to select which tables to print. See the respective help files for details.

The plot() method of the regression results can be used to create a histogram of the residuals or a scatterplot of the standardized residuals against the standardized fitted values. Argument which can be used to select between those two plots. Mimicking SPSS functionality, the plot is created for the *last* specified model in the call to regression().

R> plot(fit, which = "histogram")

Regression Standardized Residual

R> plot(fit, which = "scatter")

Regression Standardized Predicted Value

References

Alfons A (2021). **r2spss**: Format R Output to Look Like SPSS. R package version 0.2.0, URL https://github.com/aalfons/r2spss/.

Grün B, Zeileis A (2009). "Automatic Generation of Exams in R." *Journal of Statistical Software*, **29**(10), 1–14. doi:10.18637/jss.v029.i10.

IBM Corp (2021). IBM SPSS Statistics, Version 28.0.

Mittelbach F, Goossens M, Braams J, Carlisle D, Rowley C (2004). *The LaTeX Companion*. 2nd edition. Addison-Wesley, Boston, MA. ISBN 0-201-36299-6.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Xie Y (2015). Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC, Boca Raton, FL. ISBN 978-1498716963, URL https://yihui.org/knitr/.

Xie Y (2021). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.36, URL https://CRAN.R-project.org/package=knitr.

Zeileis A, Grün B, Leisch F, Umlauf N (2020). exams: Automatic Generation of Exams in R. R package version 2.3-6, URL https://CRAN.R-project.org/package=exams.

Zeileis A, Umlauf N, Leisch F (2014). "Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond." Journal of Statistical Software, 58(1), 1–36. doi:10.18637/jss.v058.i01.

Affiliation:

Andreas Alfons
Econometric Institute
Erasmus School of Economics
Erasmus University Rotterdam
PO Box 1738

 $3000\mathrm{DR}$ Rotterdam, The Netherlands

E-mail: alfons@ese.eur.nl

URL: https://personal.eur.nl/alfons/