Problem 1. $C^1([a,b])$ is Banach space.

Proof. Given a Cauchy sequence (f_n) in $C^1([a,b])$, i.e., for any $\varepsilon > 0$, there exists a N such that $n, m \ge N$, we have

$$||f_n - f_m|| = ||f_n - f_m||_{\infty} + ||f'_n - f'_m||_{\infty} \le \varepsilon,$$

which yields (f_n) and (f'_n) are Cauchy sequence in C([a,b]). Since C([a,b]) is complete, then there exist f and g in C([a,b]) such that

$$||f_n - f||_{\infty} \to 0$$
 and $||f'_n - g||_{\infty} \to 0$,

which implies for any $x \in [a, b]$, $\lim_{n \to \infty} f_n(x) = f(x)$ and $\lim_{n \to \infty} f'_n(x) = g(x)$. What left to prove is f' = g.

For each n, by the fundamental theorem of calculus, we have

$$f_n(x) - f_n(a) = \int_a^x f'_n(t) dt.$$

By the uniform convergence of f'_n , we have

$$\left| \int_{a}^{x} f'_{n}(t) dt - \int_{a}^{x} g(t) dt \right| \leqslant \int_{a}^{x} |f'_{n}(t) - g(t)| dt \leqslant \varepsilon |x - a| \to 0.$$

Therefore,

$$f(x) - f(a) = \lim_{n \to \infty} f_n(x) - f_n(a) = \lim_{n \to \infty} \int_a^x f'_n(t) dt = \int_a^x g(t) dt.$$

Problem 2. Dini's monotone convergence theorem.

Proof. Let $g_n(x) = f_n(x) - f(x) \in C([0,1])$ and $U_n = \{x \in [0,1] : g_n(x) < \varepsilon\}$ is open in [0,1]. Furthermore, $U_1 \subset U_2 \subset \cdots$ by the monotone decreasing.

For each $x \in [0,1]$, since $g_n(x) \to 0$ as $n \to \infty$, so each x is in some U_n . That is, $[0,1] \subset \bigcup U_n$. Then there exists a finite subcover such that $[0,1] \subset \bigcup_{k=1}^N U_{n_k} = U_{n_N} \subset U_n \subset [0,1]$, for all $n \geqslant n_N$.

For any $\varepsilon > 0$, there exists a n_N such that for $n \ge n_N$ we have $f_n(x) - f(x) < \varepsilon$ for all $x \in [0,1]$. That is, f_n converges uniformly to f.

Problem 3.

Proof.

• Step 1 : Set of polynomials with rational coefficients is countable.

Let $\mathbb{Q}[x]$ denote the set of polynomials with rational coefficients. Define a map $f: \mathbb{Q}[x] \mapsto \mathbb{Q}$ by $f(a_0 + a_1x + \cdots a_nx^n) = 2^{a_0}3^{a_1} \cdots p_n^{a_n}$, where p_n is the n-th odd prime. Since f is injective and \mathbb{Q} is countable, $\mathbb{Q}[x]$ is countable.

Step 2: Set of polynomials with rational coefficients is dense in the set of polynomials with respect to $\|\|_{\infty}$, which is from $\mathbb Q$ is dense in $\mathbb R$ and take supremum.

Step 3: Set of polynomials with rational coefficients is one countable dense subset in C[0, 1], since by Weierstrass approximation, the set of polynomials is dense in C([0, 1]).

• Let $f_x(y) = 1$ if $y \neq x$ and $f_x(y) = 0$ if y = x.

Thus $(f_x)_{x\in[0,1]}$ is bounded and thus is a subspace of B([0,1]). Note $||f_x-f_y||_{\infty}=1$ if $x\neq y$. Thus (f_x) is not separable.

Recall every subspace of a separable metric space is separable. Thus it is impossible to have B([0,1]) separable.

Problem 4.

Proof. Since the set of polynomials is dense in C([0,1]), for any $\varepsilon>0$, there exist a polynomial p(x) such that $\|f-p\|_{\infty}<\varepsilon$, thus $|f(x)-p(x)|\leqslant \|f-p\|_{\infty}\leqslant \varepsilon$ for any $x\in [0,1]$. Since $\int_0^1 f(x)x^n\mathrm{d}x=0$, then $\int_0^1 f(x)p(x)\mathrm{d}x=0$. So

$$\int_0^1 f(x)f(x)dx = \int_0^1 f(x)f(x)dx - \int_0^1 f(x)p(x)dx = \int_0^1 f(x)(f(x) - p(x))dx$$

$$\leqslant \int_0^1 |f(x)||f(x) - p(x)|dx$$

$$\leqslant \varepsilon \int_0^1 |f(x)|dx \to 0,$$

which yields that f(x) = 0 on [0, 1].

Problem 5.

Proof.

• For any $f \in C([0,1])$, $f \circ \sqrt{\cdot} \in C([0,1])$. Since the set of polynomial is dense in C([0,1]), there exists a polynomial p(x) such that $|f(\sqrt{x}) - p(x)| \le \left\| f \circ \sqrt{-p} \right\|_{\infty} \le \varepsilon$ for any $x \in [0,1]$.

Let $y = \sqrt{x} \in [0, 1]$, then $f(\sqrt{x}) = f(y)$ and $p(x) = p(y^2) = q(y)$ for some even power polynomial $q(y) \in P^{\text{even}}([0, 1])$. Thus

$$||f - q||_{\infty} = \sup_{y \in [0,1]} |f(y) - q(y)| = \sup_{x \in [0,1]} |f(\sqrt{x}) - p(x)| \leqslant \varepsilon,$$

which implies that $P^{\text{even}}([0,1])$ is dense in $(C([0,1]), \|\cdot\|_{\infty})$.

• No, it is not.

For example, let f(x)=x on [-1,1]. Suppose there is a polynomial $q(x)\in P^{\mathrm{even}}([-1,1])$ such that $\|f-q\|_{\infty}\leqslant \varepsilon$, i.e., $|q(x)-x|\leqslant \varepsilon<1$ for any $x\in [-1,1]$. Take $\varepsilon=\frac{1}{2}$, then for any $x\in [-1,1]$, $-\frac{1}{2}+x< q(x)<\frac{1}{2}+x$. So $-\frac{3}{2}< q(-1)<-\frac{1}{2}$ and $\frac{1}{2}< q(1)<\frac{3}{2}$, contradicted with q(1)=q(-1).