Differentiation

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks

If $y = f\left(\frac{2x-1}{x^2+1}\right)$ and $f'(x) = \sin x^2$, then $\frac{dy}{dx} = \frac{1}{2}$

(1982 - 2 Marks)

If $f_r(x)$, $g_r(x)$, $h_r(x)$, r = 1, 2, 3 are polynomials in x 2. such that $f_r(a) = g_r(a) = h_r(a), r = 1, 2, 3$

and
$$F(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix}$$
 then $F'(x)$ at $x = a$ is

(1985 - 2 Marks)

- If $f(x) = \log_{x} (\ln x)$, then f'(x) at x = e is (1985 - 2 Marks)
- The derivative of $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$ with respect to $\sqrt{1-x^2}$

at $x = \frac{1}{2}$ is

- If f(x) = |x-2| and g(x) = f[f(x)], then $g'(x) = \dots$ for (1990 - 2 Marks)
- If $xe^{xy} = y + \sin^2 x$, then at x = 0, $\frac{dy}{dx} = \dots$

(1996 - 1 Mark)

True/False

The derivative of an even function is always an odd function. (1983 - 1 Mark)

MCQs with One Correct Answer

If $y^2 = P(x)$, a polynomial of degree 3, then

$$2\frac{d}{dx}\left(y^3\frac{d^2y}{dx^2}\right)$$
 equals

(1988 - 2 Marks)

- (a) P'''(x) + P'(x)
- (b) P''(x)P'''(x)
- (c) P(x) P'''(x)
- (d) a constant
- Let f(x) be a quadratic expression which is positive for all 2. the real values of x. If g(x) = f(x) + f'(x) + f''(x), then for any real x,
 - (a) g(x) < 0
- (b) g(x) > 0
- (c) g(x) = 0
- (d) $g(x) \ge 0$
- If $y = (\sin x)^{\tan x}$, then $\frac{dy}{dx}$ is equal to (1994)3.
 - (a) $(\sin x)^{\tan x} (1 + \sec^2 x \log \sin x)$
 - (b) $\tan x (\sin x)^{\tan x 1} .\cos x$
 - (c) $(\sin x)^{\tan x} \sec^2 x \log \sin x$
 - (d) $\tan x (\sin x)^{\tan x 1}$
- If $x^2 + y^2 = 1$ then

- (a) $yy'' 2(y')^2 + 1 = 0$
- (b) $yy'' + (y')^2 + 1 = 0$ (d) $yy'' + 2(y')^2 + 1 = 0$
- (c) $yy'' + (y')^2 1 = 0$
- Let $f:(0,\infty)\to R$ and $F(x)=\int_{0}^{x}f(t)dt$. If $F(x^2)=x^2(1+x)$,

then f(4) equals

(a) 5/4

- (c) 4
- (d) 2

(2001S)

- If y is a function of x and $\log(x+y) 2xy = 0$, then the value of y'(0) is equal to (2004S)
 - (a) 1
- (b) -1

(b) 7

- (c) 2
- (d) 0
- If f(x) is a twice differentiable function and given that f(1) = 1; f(2) = 4, f(3) = 9, then (2005S)
 - (a) f''(x) = 2 for $\forall x \in (1, 3)$
 - (b) f''(x) = f'(x) = 5 for some $x \in (2, 3)$
 - (c) f''(x) = 3 for $\forall x \in (2,3)$
 - (d) f''(x) = 2 for some $x \in (1,3)$
- $\frac{d^2x}{dx^2}$ equals

(2007 - 3 marks)

- (a) $\left(\frac{d^2y}{dx^2}\right)^{-1}$
- (b) $-\left(\frac{d^2y}{dx^2}\right)^{-1}\left(\frac{dy}{dx}\right)^{-3}$
- (c) $\left(\frac{d^2y}{dx}\right)\left(\frac{dy}{dx}\right)^{-2}$
- (d) $-\left(\frac{d^2y}{dx^2}\right)\left(\frac{dy}{dx}\right)^{-3}$

9. Let $g(x) = \log f(x)$ where f(x) is twice differentiable positive function on $(0, \infty)$ such that f(x + 1) = x f(x). Then, for $N = 1, 2, 3, \dots$ (2008)

$$g''\left(N+\frac{1}{2}\right)-g''\left(\frac{1}{2}\right)=$$

(a)
$$-4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N-1)^2}\right\}$$

(b)
$$4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N-1)^2}\right\}$$

(c)
$$-4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N+1)^2}\right\}$$

(d)
$$4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N+1)^2}\right\}$$

10. Let $f: [0, 2] \to R$ be a function which is continuous on [0, 2] and is differentiable on (0, 2) with f(0) = 1. Let

$$F(x) = \int_{0}^{x^2} f(\sqrt{t}) dt \text{ for } x \in [0,2]. \text{ If } F'(x) = f'(x) \text{ for all }$$

 $x \in (0,2)$, then F(2) equals

(JEE Adv. 2014)

- (a) $e^2 1$
- (b) $e^4 1$
- (c) e-1
- (d) e^4

D MCQs with One or More than One Correct

1. Let $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ be differentiable functions such that $f(x) = x^3 + 3x + 2$, g(f(x)) = x and h(g(g(x))) = x for all $x \in \mathbb{R}$. Then

(JEE Adv. 2016)

- (a) $g'(2) = \frac{1}{15}$
- (b) h'(1) = 666
- (c) h(0) = 16
- (d) h(g(3)) = 36
- 2. For every twice differentiable function $f : \mathbb{R} \to [-2, 2]$ with $(f(0))^2 + (f'(0))^2 = 85$, which of the following statement(s)

is (are) TRUE?

(JEE Adv. 2018)

- (a) There exist $r, s \in \mathbb{R}$, where r < s, such that f is one-one on the open interval (r, s)
- (b) There exists $x_0 \in (-4,0)$ such that $|f'(x_0)| \le 1$
- (c) $\lim_{x\to\infty} f(x) = 1$
- (d) There exists $\alpha \in (-4,4)$ such that $f(\alpha) + f''(\alpha) = 0$ and $f'(\alpha) \neq 0$

3. For any positive integer n, define $f_n:(0,\infty)\to\mathbb{R}$ as

$$f_n(x) = \sum_{j=1}^n \tan^{-1} \left(\frac{1}{1 + (x+j)(x+j-1)} \right) \text{ for all } x \in (0, \infty).$$

Here, the inverse trigonometric function $\tan^{-1} x$ assumes values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Then, which of the following statement(s) is (are) TRUE?

(JEE Adv. 2018)

(a)
$$\sum_{j=1}^{5} \tan^2(f_j(0)) = 55$$

(b)
$$\sum_{j=1}^{10} (1+f_j'(0)) \sec^2(f_j(0)) = 10$$

- (c) For any fixed positive integer n, $\lim_{x\to\infty} \tan(f_n(x)) = \frac{1}{n}$
- (d) For any fixed positive integer n, $\lim_{x\to\infty} \sec^2(f_n(x)) = 1$
- 4. Let $f: (0, \pi) \to \mathbb{R}$ be a twice differentiable function such that $\lim_{t \to x} \frac{f(x) \sin t f(t) \sin x}{t x} = \sin^2 x \text{ for all } x \in (0, \pi).$

If $f\left(\frac{\pi}{6}\right) = -\frac{\pi}{12}$, then which of the following statement(s)

is (are) TRUE?

(JEE Adv. 2018)

(a)
$$f\left(\frac{\pi}{4}\right) = \frac{\pi}{4\sqrt{2}}$$

- (b) $f(x) < \frac{x^4}{6} x^2 \text{ for all } x \in (0, \pi)$
- (c) There exists $\alpha \in (0, \pi)$ such that $f'(\alpha) = 0$
- (d) $f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) = 0$

Subjective Problems

- 1. Find the derivative of $\sin(x^2 + 1)$ with respect to x from first principle. (1978)
- 2. Find the derivative of

$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5} & \text{when } x \neq 1 \\ -\frac{1}{3} & \text{when } x = 1 \end{cases}$$

at x = 1

(1979)

3. Given
$$y = \frac{5x}{3\sqrt{(1-x)^2}} + \cos^2(2x+1)$$
; Find $\frac{dy}{dx}$. (1980)

1. Let
$$y = e^{x \sin x^3} + (\tan x)^x$$
. Find $\frac{dy}{dx}$ (1981 - 2 Marks)

Differentiation

Let f be a twice differentiable function such that

$$f''(x) = -f(x)$$
, and $f'(x) = g(x)$, $h(x) = [f(x)]^2 + [g(x)]^2$
Find $h(10)$ if $h(5) = 11$ (1982 - 3 Marks)

If α be a repeated root of a quadratic equation f(x) = 0 and A(x), B(x) and C(x) be polynomials of degree 3, 4 and 5

respectively, then show that
$$\begin{vmatrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix}$$
 is

divisible by f(x), where prime denotes the derivatives.

(1984 - 4 Marks)

- If $x = \sec \theta \cos \theta$ and $y = \sec^n \theta \cos^n \theta$, then show that $(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = n^2(y^2 + 4)$ (1989 - 2 Marks)
- Find $\frac{dy}{dx}$ at x = -1, when $(\sin y)^{\sin(\frac{\pi}{2}x)} + \frac{\sqrt{3}}{2}\sec^{-1}(2x) + 2^x\tan(\ln(x+2)) = 0$

If $y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx}{(x-b)(x-c)} + \frac{c}{x-c} + 1$,

prove that
$$\frac{y'}{y} = \frac{1}{x} \left(\frac{a}{a-x} + \frac{b}{b-x} + \frac{c}{c-x} \right)$$
.

(1998 - 8 Marks)

Assertion & Reason Type Questions

Let $f(x) = 2 + \cos x$ for all real x.

STATEMENT - 1: For each real t, there exists a point c in $[t, t + \pi]$ such that f'(c) = 0 because

STATEMENT - 2: $f(t) = f(t + 2\pi)$ for each real t.

(2007 - 3 marks)

- Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is False
- (d) Statement-1 is False, Statement-2 is True.
- Let f and g be real valued functions defined on interval (-1, 1) such that g''(x) is continuous, $g(0) \neq 0$. g'(0) = 0, $g''(0) \neq 0$, and $f(x) = g(x) \sin x$

STATEMENT - 1:
$$\lim_{x\to 0} [g(x) \cot x - g(0) \csc x] = f''(0)$$

and

STATEMENT - 2:
$$f'(0) = g(0)$$

(2008)

- Statement 1 is True, Statement 2 is True; Statement - 2 is a correct explanation for Statement - 1
- (b) Statement 1 is True, Statement 2 is True; Statement - 2 is NOT a correct explaination for Statement - 1
- Statement 1 is True, Statement 2 is False
- Statement 1 is False, Statement 2 is True

Integer Value Correct Type

- If the function $f(x) = x^3 + e^{\frac{x}{2}}$ and $g(x) = f^{-1}(x)$, then the 1. (2009)value of g'(1) is
- Let $f(\theta) = \sin\left(\tan^{-1}\left(\frac{\sin\theta}{\sqrt{\cos 2\theta}}\right)\right)$, where $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$.

Then the value of
$$\frac{d}{d(\tan \theta)}(f(\theta))$$
 is (2011)

Section-B

JEE Main / AIEEE

- If $y = (x + \sqrt{1 + x^2})^n$, then $(1 + x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx}$ is
 - (a) n^2v
 - (b) $-n^2v$
 - (c) -v
 - (d) $2x^2v$

If $f(y) = e^y$, g(y) = y; y > 0 and

$$F(t) = \int_{0}^{t} f(t - y)g(y) dy, \text{ then}$$
 [2003]

- (a) $F(t) = te^{-t}$ (b) $F(t) = 1 te^{-t}(1+t)$
- (c) $F(t) = e^t (1+t)$ (d) $F(t) = te^t$.

- If $f(x) = x^n$, then the value of
- [2003]

$$f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots + \frac{(-1)^n f^n(1)}{n!}$$
 is

- (b) 2^n (c) $2^n 1$ Let f(x) be a polynomial function of second degree. If f(1)=f(-1) and a,b,c are in A. P, then f'(a), f'(b), f'(c)are in
 - (a) Arithmetic -Geometric Progression
 - (b) A.P
 - (c) GP
 - (d) H.P.
- If $x = e^{y+e^y+e^{y+\dots x}}$, x > 0, then $\frac{dy}{dx}$ is
- [2004]
- (a) $\frac{1+x}{x}$ (b) $\frac{1}{x}$ (c) $\frac{1-x}{x}$ (d) $\frac{x}{1+x}$
- The value of a for which the sum of the squares of the roots of the equation $x^2 - (a-2)x - a - 1 = 0$ assume the least
 - (a) 1
- (b) 0
- (c) 3
- If the roots of the equation $x^2 bx + c = 0$ be two consecutive integers, then $b^2 - 4c$ equals [2005]

- (a) -2 (b) 3 (c) 2 Let $f: R \to R$ be a differentiable function having f(2) = 6,

$$f'(2) = \left(\frac{1}{48}\right)$$
. Then $\lim_{x \to 2} \int_{6}^{f(x)} \frac{4t^3}{x - 2} dt$ equals [2005]

- (b) 36 (c) 12
- (d) 18
- The set of points where $f(x) = \frac{x}{1 + |x|}$ is differentiable is

 - (a) $(-\infty,0) \cup (0,\infty)$ (b) $(-\infty,-1) \cup (-1,\infty)$
 - (c) $(-\infty, \infty)$ (d) $(0, \infty)$
- [2006]
- 10. If $x^m \cdot y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$ is

 - (a) $\frac{y}{x}$ (b) $\frac{x+y}{yy}$ (c) xy (d) $\frac{x}{y}$
- 11. Let y be an implicit function of x defined by $x^{2x} 2x^x \cot y$ -1=0. Then y'(1) equals [2009]

- (a) 1 (b) log 2 (c) -log 2 (d) -1

- Let $f: (-1, 1) \to \mathbb{R}$ be a differentiable function with f(0) = -1and f'(0) = 1. Let $g(x) = [f(2f(x) + 2)]^2$. Then g'(0) =
 - (a) -4 (b) 0
- (c) -2
- (d) 4

[201]

13. $\frac{d^2x}{dv^2}$ equals:

- (a) $-\left(\frac{d^2y}{dx^2}\right)^{-1} \left(\frac{dy}{dx}\right)^{-3}$ (b) $\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-2}$
- (c) $-\left(\frac{d^2y}{dx^2}\right)\left(\frac{dy}{dx}\right)^{-3}$ (d) $\left(\frac{d^2y}{dx^2}\right)^{-1}$
- 14. If $y = \sec(\tan^{-1}x)$, then $\frac{dy}{dx}$ at x = 1 is equal to:

[JEE M 2013]

- (a) $\frac{1}{\sqrt{2}}$
- (b) $\frac{1}{2}$

(c) 1

- (d) $\sqrt{2}$
- 15. If g is the inverse of a function f and $f'(x) = \frac{1}{1 + x^5}$, then

g'(x) is equal to:

[JEE M 2014]

- (a) $\frac{1}{1+\{g(x)\}^5}$ (b) $1+\{g(x)\}^5$
- (c) $1 + x^5$
- 16. If x = -1 and x = 2 are extreme points of

$$f(x) = \alpha \log |x| + \beta x^2 + x$$
 then

[JEE M 2014]

- (a) $\alpha = 2, \beta = -\frac{1}{2}$ (b) $\alpha = 2, \beta = \frac{1}{2}$
- (c) $\alpha = -6, \beta = \frac{1}{2}$ (d) $\alpha = -6, \beta = -\frac{1}{2}$
- [2006] 17. If for $x \in (0, \frac{1}{4})$, the derivative of $\tan^{-1}(\frac{6x\sqrt{x}}{1+6x^2})$ is

 $\sqrt{x \cdot g(x)}$, then g(x) equals:

[JEE M 2017]

- (a) $\frac{3}{1+9v^3}$
- (b) $\frac{9}{1+9x^3}$
- (c) $\frac{3x\sqrt{x}}{1-0x^3}$
- (d) $\frac{3x}{1-9x^3}$