HPVC FALL 22

Team 7: Darren Aguilar, Daniel Jang, Anisha Jayasekara, David Lozano, Sophia Shannon

PROBLEM DEFINITION

 Design, assemble and test an electric recumbent bike for and endurance race

RACE

- 2.5 hour relay
- 1.5km laps
- Patches of rough pavement
- 5% grade uphill, 7% grade downhill
- Cargo parcel
- Hairpin turns &
 Slalom sections

SAFETY

- 25km/hr to 0 within 6m
- 8m turning radius
- Brakes for each front wheel
- Rollover system with 2670N top load, 1330N side load

ELECTRICAL

- One electric motor (500W maximum rating)
- 10 Ah capacity battery
- Battery isolated from driver
- Fireproof

Current Design Decisions

- Front tadpole wheelbase
- Complex chain drive with mid-drive electric motor
- Hexagonal rollover-protection
- Aluminum 6061 square tubing
- Disc Brakes
- Track-rod steering

01. STATIC SUBSYSTEM

Keep the rider safe and comfortable

Bike Elements

Steering Breaking Drivetrain

RPB Rear Wheel Seat

Stable Can't tip over

Ergonomic
Riders must be comfortable

Safe Must keep rider safe

	Outer Diameter (in)	Wall Thickness (in)	Cost/in	Rank	Max stress (N/mm^2)	Rank	Max displacement(mm)	Rank	Max strain	Rank	Weight/in	Rank (weight	Mount-ability
	1	0.125	\$0.57	1	4.322E+07	17	1.563E-01	17	5.038E-04	17	0.405	1	17
С	1.25	0.125	\$1.38	5	2.435E+07	15	8.087E-02	15	3.099E-04	15	0.52	2	16
1	1.5	0.125	\$2.20	14	1.674E+07	13	4.913E-02	12	2.064E-04	13	0.635	4	14
R	1.75	0.125	\$2.62	16	1.289E+07	10	3.333E-02	7	1.491E-04	10	0.75	6	13
С	2	0.125	\$1.57	8	9.258E+06	5	2.435E-02	5	1.124E-04	6	0.866	8	11
U	2.5	0.125	\$1.88	11	1.337E+06	2	3.408E-03	2	1.607E-05	2	1.096	10	7
L	3	0.125	\$1.47	7	9.650E+05	1	2.422E-03	1	1.152E-05	1	1.33	13	6
Α	1.5	0.25	\$1.72	9	1.105E+07	7	2.980E-02	6	1.316E-04	8	1.156	12	12
R	1.75	0.25	\$1.89	12	8.201E+06	4	1.939E-02	4	8.895E-05	4	1.39	14	10
	2	0.25	\$2.70	17	6.035E+06	3	1.373E-02	3	7.209E-05	3	1.617	16	8
S	1	0.125	\$0.79	2	3.13E+07	16	9.92E-02	16	3.11E-04	16	0.526	3	15
Q	1.25	0.125	\$1.02	3	2.07E+07	14	5.59E-02	13	2.27E-04	14	0.654	5	9
U	1.5	0.125	\$1.12	4	1.45E+07	11	3.94E-02	10	1.50E-04	11	0.809	7	5
Α	1.75	0.125	\$1.76	10	1.13E+07	8	3.41E-02	8	1.35E-04	9	0.956	9	4
R	2	0.125	\$1.40	6	1.05E+07	6	3.43E-02	9	1.00E-04	5	1.102	11	3
E	2.5	0.125	\$2.03	13	1.20E+07	9	4.64E-02	11	1.24E-04	7	1.426	15	2
	3	0.125	\$2.44	15	1.45E+07	12	7.08E-02	14	1.57E-04	12	1.691	17	1

* This is a generalized chart

Main Frame #1 Mountability → Square Tubing

RPB #1 Weight → FEA on Square v. Circular

Rear Forks #1 Affordability → Use rear forks from salvaged bikes

Tadpole

Courtesy of RAD Innovations

Courtesy of HPVC - UW Madison

- 500m or 60sec penalty if tips over
- Must exit vehicle within 15sec without assistance

Seat

Courtesy of Jetrike

Crankshaft Placement

Original: Based off Jetrike Ratios

10.00

<u>Updated</u>: Based off our rider leg length & <u>Design of Human-Powered Vehicles</u> by March Archibald

RPS FRAME SHAPE

Rating: 1-4 (worst to best)

equal: height, length, applied load(2670N), cross-sectional area

		Concepts								
		Triangular		Circular		Square		Hexagonal		gonal
Selection Criteria	Weight (%)	Rating	Weight ed Score	Rating	Weight ed Score	Rating	Weight ed Score	Ra	nting	Weight ed Score
Weld-able & Prototype-a ble	50%	1	50	2	100	4	200	4		200
Rollover (minimal points of stress)	25%	1	25	4	100	2	50	3		75
Support top load (2670N)	25%	4	100	1	25	2	50	3		75
Total	100%	6	175	7	225	8	300	10		350
Continue?		No		No		No		Proceed		

Presentor: Sophia

02. DYNAMIC SUBSYSTEM

Control and drive the bike efficiently

MAJOR COMPONENTS

Drivetrain System

Design an efficient drivetrain that can adjust gearing for uphill/downhill riding and reach 30 mph

Braking System

Create a braking system that can go from 25 km/hr to 0 km/hr within 6 m.

Steering System

Construct steering system with maximum turning radius within 8 m and drive straight for 30m at speeds of 5~8 km/hr

Rear

8-Speed Flywheel Cassette 11-32T

700C Wheel

Hardware

Chain Drive

Motor and crankset on 68mm bottom brackets and shells

Derailleurs on crankset and cassette

Presentor(s): David Lozano

Drivetrain Configuration

Intermediate Gear

Bafang BBS02 500W Mid-Drive Electric Motor w/ two Chainrings

30T input/38T output Gear Ratio = 1.2667

Crank

3-Speed Crankset 42-34-24T

170mm Crank Arm

Front Wheels

20" Wheels with Disc Brake Mounts

Drivetrain Verification

Using Chosen Components

$$G_D = rac{N_{chainring}}{N_{freewheel}} * rac{N_{mid-output}}{N_{mid-input}} * D_{drive\ wheel} * \pi$$

- 2.0-2.5m development for 5% uphill grades
- 8m> development for speed and 7% downhill grades

GEAR DEVELOPMENT TABLE

	# of cassette teeth							
	32	28	24	21	18	15	13	11
# of crank teeth	nk Development in meters							
24	2.0	2.3	2.8	3.2	3.7	4.3	5.1	6.0
34	2.9	3.3	3.9	4.4	5.2	6.2	7.1	8.5
42	3.5	4.1	4.8	5.4	6.3	7.6	8.9	10.4

Speed @ max development and 100 RPM = 38.9 mph

BRAKING SYSTEM: MECHANICAL DISC BRAKES

	Power Rating	Durability	Brake Calipers	Disc Brake Rotor	Total Price (minus rotors)
B-type (Wide, Resin): B03S	4/5	5/5	BR-M375 (\$25.98)	180 mm (M) 160 mm (S)	\$41.98
(\$16)			BR-TX805 (\$18.99)	180 mm (M) 160 mm (S)	\$34.99
G-type (Narrow, Resin): G03S (\$18.99)	4/5	5/5	BR-TX805 (\$66)	160 mm (S) 140 mm (SS)	\$84.99
K-type (Narrow, Resin): K03S (\$12)	4/5	5/5	BR-RS305 (\$65)	160 mm (S) 140 mm (SS)	\$77

STEERING MECHANISM SELECTION

Track Rod Steering

- Less variables to control
- Cost-effective
- Stable, but potential avenues of bump steer

Six-bar Steering Mechanism

- Five variables to control
- Potential budget sink
- Greater stability and range of motion

Figure 11-5 Track rod steering parameters

Courtesy of Mark Archibald. Design of Human Powered Vehicles

DIRECT VS. INDIRECT STEERING

Direct Steering

Indirect Steering

Direct	Indirect
"Grounded"	"Weightless"
Similar effort as bike steering	Noticeably less effort to steer
Handlebars attached to wheels	Tie rods attached to wheels
Horizontal or vertical handlebars	Vertical handlebars

Presentor(s): Daniel Jang

Presentor(s): Daniel Jang

Electrical System Breakdown

Concerns

Bike Frame Design:

Continue FEA to determine the best tube size for the frame, apply mounts for seat & harness

Drivetrain:

Optimize mounting point for the motor to avoid interference with the seat, determine front derailleur mounting solution (braze-on or clamp)

Brakes:

Finalize the rotor selection and determine whether to use one brake lever versus two independent levers

Steering:

Find optimal placement of tie rods and connection points

Future Recommendations

- Utilize flow chart to improve workflow
- Keep better documentation of project additions and changes

Winter Quarter Outlook

- Optimize design
- Finalize hardware choices
- Assemble bike

THANK YOU

Questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

References

https://www.jetrike.com/ergonomics.html

https://sites.uwm.edu/bike-motorcycle-lab/tilting-narrow-track-recumbent-tricycle/

https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1372&context=honors_research_projects

https://grabcad.com/library/hpvc-2021-design-with-fairing-1

ASME Human Powered Vehicle Competition 2023 Rulebook

Design of Human Powered Vehicle by Mark Archibald