CQF 2009 Module 5.2

Live Lecture: May 5, 2009 Lecturer: Siyi Zhou

Reduced Form Models

In this lecture:

- Modeling default by Poisson Process
- Derivation of pricing PDE for a risky bond
- Fundamental pricing formula for general contingent claims subject to default risk
- Affine intensity models

By the end of this lecture, you will be able to:

- Understand what are reduced form (intensity based) models
- Its pros and cons relative to structural model
- Derive risky bond pricing equation when both interest rate and hazard rate (intensity) are stochastic
- Solve simple affine intensity models

Introduction	.4
A simple model for default event	.5
Definition of Poisson Process	.6
Distribution of function N (sub) t	
Construction of Poisson Process	9
Poisson Plot	10
Distribution of Tau	.11
Definition of Intensity	.12
Finding distribution of Tau	.13
Simulating Poisson Process	.14
Inhomogeneous Poisson Process	15
Cox Process	16
(Chart)	.17
Plan for risky bond pricing model	18
Risky bond with constant hazard rate	.19
Hedging interest rate risk	.20
No default occurs	.21
Default occurs	.22
Bond pricing PDE	.23
Feynman-Kac: 1 st call	.24
Yield Spread	.25
Forward Spread	.26
Implied default probability: no recovery	.27
PD chart	.28
Γο find the risky bond value	.29
Stochastic risk of default	30
Hedging default intensity	.31
Hedged portfolio	
No default	.33
If defaults	36
Fevnman-Kac: 2 nd call	37

Positive recovery	38
Feynman-Kac: 3 rd call	40
Affine intensity model	
Example: Vasicek intensity model	
Modified Vasicek	
Solution for risky bond price	46
Compare to structural approach	

Summary:

- Poisson process can be used to model default if intensity is constant
- Stochastic default intensity leads us to higher dimension bond pricing PDE
 Risky bond pricing PDE is consistent with fundamental pricing formula by Feynman-Kac
- Reduced form models can be tractable in affine term structure model