Perturbed Universes and Inflationary Models

MSci. Thesis

IMPERIAL COLLEGE LONDON

Author:

Thomas Fletcher

Supervisor:

Assessor:

Prof. João MAGUEIJO

Dr Carlo Contaldi

A thesis submitted in fulfilment of the requirements for the degree of MSci. Physics

in the

Theoretical Physics Department Imperial College London April 1, 2014

Contents

1	Ack	knowledgments	2
2	Abs	stract	3
3	Introduction		
	3.1	Cosmic Microwave Background (CMB)	4
	3.2	Cosmological Problems	4
4	Theory		
	4.1	Friedmann Equations	4
	4.2	Inflation	4
	4.3	Mukhanov Sasaki Equation	4
	4.4	Power Spectrum	4
	4.5	Spectral Index	4
5	Matching Conditions 4		
	5.1	Jacobi Elliptic	4
	5.2	Constant w	4
6	Hamiltonian Jacobi		
	6.1	Outline	4
	6.2	Intermediate Inflation	5
	6.3	$n_s = 1 \dots \dots$	5
	6.4	$n_s \neq 1$	5
	6.5	Proof of Slow roll	5
	6.6	Equation of State	5
	6.7	Potential	5
7	Conclusion 5		

1 Acknowledgments

blah blah

2 Abstract

The aim of this project is to investigate inflationary models and discover new models that give near scale invariance in accordance with Cosmic Microwave Background data.

3 Introduction

- 3.1 Cosmic Microwave Background (CMB)
- 3.2 Cosmological Problems
- 4 Theory
- 4.1 Friedmann Equations
- 4.2 Inflation
- 4.3 Mukhanov Sasaki Equation
- 4.4 Power Spectrum
- 4.5 Spectral Index
- 5 Matching Conditions
- 5.1 Jacobi Elliptic
- 5.2 Constant w

6 Hamiltonian Jacobi

6.1 Outline

The evolution of scalar fields is described by the Klein [1] Gordon Equation

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \tag{1}$$

$$H^{2} = \frac{8\pi}{3m_{pl}^{2}} \left[\frac{1}{2}\dot{\phi}^{2} + V(\phi) \right]$$
 (2)

- 6.2 Intermediate Inflation
- **6.3** $n_s = 1$
- **6.4** $n_s \neq 1$
- 6.5 Proof of Slow roll
- 6.6 Equation of State
- 6.7 Potential
- 7 Conclusion

References

[1] Herbert Goldstein. Classical mechanics. Addison-Wesley, Reading, Mass. ; Wokingham, 2nd ed. edition, 1980. ID: $44 \text{IMP}_A LM A_D S 2141267570001591$.