Course: Machine Learning - Foundations

Practice Questions - Solution Lecture Details: Week ■

- 1. (1 point) Given if $x_1, x_2, \frac{x_1+x_2}{2} \in S$ then $\frac{3}{4}x_1 + \frac{1}{4}x_2 \in S$. Is this a true statement?
 - A. Yes
 - B. No

Answer: A

$$x_1, x_2, \frac{x_1 + x_2}{2} \in S \text{ then } \frac{(x_1 + \frac{x_1 + x_2}{2})}{2} \in S \implies \frac{3}{4}x_1 + \frac{1}{4}x_2 \in S$$

It is clear that if the set is midpoint convex, then the set is a convex set.

By definition, For a convex set S, if $x_1, x_2 \in S \implies \lambda x_1 + (1 - \lambda)x_2 \in S, \lambda \in [0, 1]$

- 2. (1 point) Which of the following is a convex function?
 - A. f(x) = ax + b over \mathbb{R} where $a, b \in \mathbb{R}$
 - B. $f(x) = e^{ax}$ over \mathbb{R} where $a \in \mathbb{R}$
 - C. $f(x) = x^2$ over \mathbb{R}
 - D. $f(x) = x^3$ over \mathbb{R}

Answer: A, B, C

1. f(x) = ax + b over \mathbb{R} where $a, b \in \mathbb{R}$

$$\frac{\partial f(x)}{\partial x} = a, \ \frac{\partial^2 f(x)}{\partial x^2} = 0,$$

The second order partial derivative is non-negative. Hence, the function is a convex function.

2. $f(x) = e^{ax}$ over \mathbb{R} where $a \in \mathbb{R}$

$$\frac{\partial f(x)}{\partial x} = ae^{ax}, \ \frac{\partial^2 f(x)}{\partial x^2} = a^2e^{ax} \ge 0 \ \forall \ x \in \mathbb{R},$$

The second order partial derivative is non-negative (positive curvature). Hence, the function is a convex function.

3. $f(x) = x^2$ over \mathbb{R}

$$\frac{\partial f(x)}{\partial x} = 2x, \ \frac{\partial^2 f(x)}{\partial x^2} = 2 \ge 0,$$

The second order partial derivative is non-negative (positive curvature). Hence, the function is a convex function.

4. $f(x) = x^3$ over \mathbb{R}

$$\frac{\partial f(x)}{\partial x} = 3x^2, \ \frac{\partial^2 f(x)}{\partial x^2} = 6x,$$

The second order partial derivative depends on the x and can be negative or positive. Hence, the function is a non-convex function in nature.

- 3. (1 point) What is the value of a, the function $f: \mathbb{R} \to \mathbb{R}, f(x,y) = ax^4 + 8y$ is a convex function
 - A. a > 0
 - B. a < 1
 - C. $a \ge 1$
 - D. None of these

Answer: A

$$f: \mathbb{R} \to \mathbb{R}, f(x,y) = ax^4 + 8y$$

$$f_x = \frac{\partial f(x,y)}{\partial x} = 4ax^3, f_{xx} = \frac{\partial^2 f(x,y)}{\partial x^2} = 12ax^2,$$

$$f_y = \frac{\partial f(x,y)}{\partial y} = 8$$
, $f_{yy} = \frac{\partial^2 f(x,y)}{\partial y^2} = 0$,

$$f_{xy} = \frac{\partial^2 f(x,y)}{\partial x \partial y} = 0,$$

The hessian matrix,
$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = \begin{bmatrix} 12ax^2 & 0 \\ 0 & 0 \end{bmatrix}$$

The determinant of the hessian matrix, $D = f_{xx}f_{yy} - f_{xy}^{2} = 0$

For the function to be a convex function, the second order partial derivative with respect to x should be positive, in other words $f_{xx} > 0$

For this to be true, a > 0

4. (1 point) Which of the following hessian matrix corresponds to the convex function?

A.
$$\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

C.
$$\begin{bmatrix} -2 & 2 \\ 2 & 0 \end{bmatrix}$$

D.
$$\begin{bmatrix} -2 & 2 \\ 2 & 2 \end{bmatrix}$$

Answer: B

The hessian matrix is denoted as, $H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}$

A function f(x,y) is convex when $f_{xx} > 0$ and $D = f_{xx}f_{yy} - f_{xy}^{2} \ge 0$

- 5. (1 point) Function $f: \mathbb{R}^d \to \mathbb{R}, f(x) = x^T A x$ is a convex function if
 - A. A is positive definite matrix
 - B. A is positive semi-definite matrix

- C. A is negative definite matrix
- D. A is negative semi-definite matrix

Answer: A, B

The hessian matrix is denoted as, $H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}$

A function f(x,y) is positive semi-definite when $f_{xx} > 0$ and $D = f_{xx}f_{yy} - f_{xy}^2 \ge 0$

A function f(x,y) is positive definite when $f_{xx} > 0$ and $D = f_{xx}f_{yy} - f_{xy}^2 > 0$

In both cases, the function fulfills the criteria of convexity.

- 6. (1 point) A twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for all $x, y \in \mathbb{R}^n$
 - A. Hessian matrix is positive definite
 - B. Hessian matrix is positive semi-definite
 - C. Hessian matrix is negative definite
 - D. Hessian matrix is negative semi-definite

Answer: A, B

Please refer to the previous solution.

7. (1 point) Given a function $f: \mathbb{R}^n \to \mathbb{R}$, the linear approximation of a function f at the point $(x + \epsilon d)$ is:

A.
$$f(x) + \epsilon d^T \nabla f(x)$$

B.
$$f(x) + \epsilon \nabla f(x)$$

C.
$$f(x) + d^T \nabla f(x)$$

D. None of these

Answer: A

Please refer to the lecture videos.

- 8. (1 point) (multiple select) A function in one variable is said to be convex function if it has:
 - A. Positive curvature
 - B. Negative curvature
 - C. Non-positive curvature
 - D. Non-negative curvature

Answer: A, D

Since the function is convex, its second order partial derivative will be non-negative. Hence, both (A) and (D) are true answer.

- 9. (1 point) What is the relationship between eigenvalues of the hessian matrix of twice differentiable convex function?
 - A. All eigenvalues are non-negative
 - B. Eigenvalues are both positive and negative
 - C. All eigenvalues are non-positive
 - D. There is no relationship

Answer: A

For a positive definite function, the eigen values are always positive. For a positive semi-definite function, the eigen values are always non-negative.

For a convex function, the determinant of the hessian matrix is non-negative and positive semi-definite (or definite).

Therefore, in case of convex function option (A) is the true answer.

10. (1 point) A batch of cookies requires 4 cups of flour, and a cake requires 7 cups of flour. What would be the constraint limiting the amount of cookies(a) and cakes(b) that can be made with 50 cups of flour.

A.
$$4a + 7b \le 50$$

B.
$$7a + 4b \le 50$$

C.
$$11(a+b) \le 50$$

D.
$$4a.7b \le 50$$

Answer: A

Since we need min 4 cup for cookies $(a) \Rightarrow 4a$.

We need min 7 cup for cake $(b) \Rightarrow 7b$

and Max amt of flour available is \Rightarrow 50 cup. Hence equation becomes $4a + 7b \le 50$

11. (1 point) If objective function which is to be minimised is f(x, y, z) = x + z and the constrained equation is $g(x, y, z) = x^2 + y^2 + z^2 = 1$. The point where minimum value occurs will be

A.
$$(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}})$$

B.
$$(\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$

C.
$$\left(\frac{-1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)$$

D.
$$(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$

Answer: C

Given

$$f(x, y, z) = x + z$$

$$g(x, y, z) = x^2 + y^2 + z^2 = 1$$

To get critical point we need to solve $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$:

using above we get following equation:

- (i) diff w.r.t $x \Rightarrow 1 = 2\lambda x$
- (ii) diff w.r.t $y \Rightarrow 0 = 2\lambda y$
- (iii) diff w.r.t $z \Rightarrow 1 = 2\lambda z$

using above we get: $x = z = \frac{1}{2\lambda}$ and y = 0

Substituting above in $x^2 + y^2 + z^2 = 1$ we get critical point as

$$(\frac{-1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})$$
 and $(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$

Here
$$f(\frac{-1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}) \le f(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$

and since constrained equation shows a sphere, so:

 $f(\frac{-1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}})$ is constrained minimum point.

and $f(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$ is constrained maximum point.

- 12. (1 point) If objective function which is to be maximized is f(x, y, z) = x + z and the constrained equation is $g(x, y, z) = x^2 + y^2 + z^2 = 1$. The point where maximum value occurs will be
 - A. $(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}})$
 - B. $(\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$
 - C. $\left(\frac{-1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)$
 - D. $(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$

Answer: D

Refer Previous solution

- 13. (1 point) Find the points on the surface $y^2 = 1 + xz$ that are closest to the origin.
 - A. (0, -1, 0)
 - B. (1,1,1)
 - C. (0,0,0)
 - D. (0, 2, 0)

E.
$$(1, 2, 0)$$

Answer: A

To get the closest point on the surface from a point we can create distance function and try to minimise them.

Since, coordinate of origin = (0, 0, 0)

Our objective function will be distance between them, so:

$$d = \sqrt{(x-0)^2 + (y^2 - 0) + (z-0)^2}$$

Hence,

objective function= $f(x, y, z) = x^2 + y^2 + z^2$

constrained equation $g(x, y, z) = y^2 - 1 - xz = 0$

To get critical point we need to solve $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$:

using above we get following equation:

- (i) diff w.r.t $x \Rightarrow 2x = -\lambda z$
- (ii) diff w.r.t $y \Rightarrow 2y = 2\lambda y \rightarrow \lambda = 1$
- (iii) diff w.r.t $z \Rightarrow 2z = -\lambda x$

using above we get: x = z = 0

and By putting x = z = 0 in $y^2 - 1 - xz = 0$ we get y = 1, -1

so Point closet to origin are (0, 1, 0) and (0, -1, 0)

14. (1 point) The minimum value of the function $f(x,y) = xy^2$ on the circle $x^2 + y^2 = 1$ is (correct upto two decimal places) _____.

Answer: 0.39, Range 0.00 to 0.50

Given
$$f(x, y) = xy^2$$
, $g(x, y) = x^2 + y^2 = 1$

$$\nabla f(x,y) = \begin{bmatrix} y^2 \\ 2xy \end{bmatrix}, \nabla g(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

We find the values of $x, y\lambda$ that simultaneously satisfy the equations to get the extreme points

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
 and, $g(x,y) = x^2 + y^2 = 1$

Solving, $\nabla f(x,y) = \lambda \nabla g(x,y)$

$$\implies \begin{bmatrix} y^2 \\ 2xy \end{bmatrix} = \lambda \begin{bmatrix} 2x \\ 2y \end{bmatrix} \implies x = \lambda, 0, \ y = \sqrt{2}\lambda, 0$$

The point (0,0) does not lie on the circle, $g(x,y) = x^2 + y^2 = 1$.

Solving,
$$g(x,y) = x^2 + y^2 = 1 \implies \lambda^2 + 2\lambda^2 = 1 \implies \lambda = \pm \sqrt{3}/3$$

Therefore, the extreme point coordinates will be,

$$(x_1, y_1) = (\lambda, \sqrt{2}\lambda) = (\sqrt{3}/3, \sqrt{6}/3), f(\sqrt{3}/3, \sqrt{6}/3) = 0.39,$$

$$(x_2, y_2) = (-\lambda, \sqrt{2}\lambda) = (-\sqrt{3}/3, \sqrt{6}/3), f(\sqrt{3}/3, \sqrt{6}/3) = -0.39,$$

$$(x_3, y_3) = (\lambda, -\sqrt{2}\lambda) = (\sqrt{3}/3, -\sqrt{6}/3), f(-\sqrt{3}/3, -\sqrt{6}/3) = 0.39$$

$$(x_2, y_2) = (\lambda, \sqrt{2}\lambda) = (-\sqrt{3}/3, -\sqrt{6}/3), f(-\sqrt{3}/3, -\sqrt{6}/3) = -0.39$$

We can see the function f(x,y) has a minimum at the points $(-\sqrt{3}/3, \sqrt{6}/3), (-\sqrt{3}/3, -\sqrt{6}/3)$.

- 15. (1 point) (multiple select) The minimum value of the function $f(x,y)=xy^2$ on the circle $x^2+y^2=1$ occurs at the below points:
 - A. $(\sqrt{3}/3, \sqrt{6}/3)$
 - B. $(-\sqrt{3}/3, \sqrt{6}/3)$
 - C. $(\sqrt{3}/3, -\sqrt{6}/3)$
 - D. $(-\sqrt{3}/3, -\sqrt{6}/3)$

Answer: C, D

Refer to the solution of the previous question