Creation Calculator – Developer Note

Purpose

This calculator estimates the CO₂e emissions (grams or kg) from digital marketing asset creation, including:

- Al-generated images
- Al-generated text
- Al-generated videos
- Hardware (laptops)
- Cloud storage

The results can be used standalone or integrated with distribution & consumption phases later.

Inputs

Variable	Description	Default Unit	Notes
num_images	Number of AI-generated images	Integer	E.g. 50
num_queries	Number of text queries/prompts	Integer	E.g. 100
avg_tokens	Average tokens per query	Integer	Default: 300
video_seconds	Total video length generated	Seconds	E.g. 30 seconds
num_laptops	Number of laptops used	Integer	Usually 1
months_used	Number of months of hardware use	Integer	E.g. 1
usage_factor	% share of laptop used for AI tasks	Decimal	Default: 0.5 (50%)
storage_GB	Total GB stored	Integer	E.g. 100
storage_months	Storage duration in months	Integer	E.g. 1
green_cloud	If true, apply -30% factor	Boolean	Optional

Emission Factors (Default)

Activity	y Value	Uni	Source
		t	
Image	2 g CO ₂ e per image	g	Tomlinson et al. (2024), PlanBe Eco

Text 0.036 g CO₂e per prompt (300 g Sustainability by Numbers Tokens)

Video 4.4 g CO₂e per 2 sec (1080p) g OpenAl Sora Paper

Laptop 9,700 g CO₂e per laptop per month g ResearchGate LCA

Storage 2,000 g CO₂e per 100GB per month g Greenly/SRI France

What is a Token?

A Token is the smallest unit of text processed by AI models like ChatGPT. It's not exactly one word or character but a chunk:

- On average, 1 Token ≈ 4 English characters (including spaces).
- Or, 1 Token ≈ 0.75 English words.

So, 300 Tokens ≈ 1,200 characters or ~225 words.

This means:

A longer output generates more Tokens, which linearly increases CO₂e.

When calculating, multiply the number of queries by (average Tokens / 300) to scale up.

Calculation Logic

Example pseudo-code:

image_CO2 = num_images * 2

text_CO2 = num_queries * (avg_tokens / 300) * 0.036

video_CO2 = (video_seconds / 2) * 4.4

laptop_CO2 = num_laptops * months_used * usage_factor * 9700

storage_CO2 = (storage_GB / 100) * storage_months * 2000

if green_cloud: storage_CO2 *= 0.7

total_CO2_g = sum of all above

total_CO2_kg = total_CO2_g / 1000

Outputs

• Creation CO₂e in grams (total_CO2_g)

Developer Notes

- · Keep units consistent (g or kg).
- · Allow overwriting default factors.
- Support Low–Medium–High scenarios.
- · Use sliders/dropdowns for usage share, green cloud option.
- · Clearly display assumptions in output page.

References

Tomlinson, B., Silberman, M.S. and Patterson, D.J., 2024. The carbon emissions of writing and illustrating are lower for AI than for humans. Nature Scientific Reports, [online] Available at: https://www.nature.com/articles/s41598-024-54004-1 [Accessed 13 June 2025].

PlanBe Eco, 2024. Al's Carbon Footprint: How Does the Popularity of Artificial Intelligence Affect the Climate? [online] Available at:

https://planbe.eco/en/blog/ais-carbon-footprint-how-does-the-popularity-of-artificial-intelligence-affect-the-climate/ [Accessed 20 June 2025].

Greenly, 2024. What is the carbon footprint of data storage? Greenly Blog. [online] Available at:

https://greenly.earth/en-us/blog/industries/what-is-the-carbon-footprint-of-data-storage [Accessed 21 June 2025].

Luccioni, A., et al., 2023. The Growing Energy Footprint of Artificial Intelligence. [Preprint] arXiv. Available at: https://arxiv.org/abs/2303.06219 [Accessed 23 June 2025].

ResearchGate, 2022. Life Cycle Assessment of the Framework Laptop 2022. [online] Available at:

https://www.researchgate.net/publication/374615519 Life Cycle Assessment of the F ramework Laptop 2022 [Accessed 20 June 2025].

Sustainability by Numbers, 2024. Carbon Footprint of ChatGPT. [online] Available at: https://www.sustainabilitybynumbers.com/p/carbon-footprint-chatgpt [Accessed 20 June 2025].

OpenAI, 2024. Sora Research Preview. [online] Available at: https://openai.com/research/sora [Accessed 23 June 2025].

Calculation Logic—Detailed Explanation

```
image_CO2 = num_images * 2
```

Meaning:

This calculates the total CO₂e emissions for generating AI images.

- num_images = the number of images the user wants to generate.
- Each image emits about 2 grams of CO₂e on average (based on industry data).

So: Total image emissions = number of images × CO₂e per image

```
text_CO2 = num_queries * (avg_tokens / 300) * 0.036
```

Meaning:

This calculates the total CO₂e emissions for Al-generated text.

- num_queries = number of text prompts or queries.
- avg_tokens = average number of tokens per prompt (default is 300).
- 0.036 = grams of CO₂e for generating ~300 tokens.
 So: Text emissions scale linearly with text length → more tokens = higher CO₂e

Formula logic:

Total text emissions = number of queries × (average tokens / 300) × CO₂e per query

```
video_CO2 = (video_seconds / 2) * 4.4
```

Meaning:

This calculates the total CO₂e for Al-generated video content.

- video_seconds = total seconds of video generated.
- The factor 4.4 means every **2 seconds of 1080p video** emits about **4.4 grams CO**₂**e** (estimated from research).

So: Total video emissions = (video seconds ÷ 2) × CO₂e per 2 seconds

```
laptop_CO2 = num_laptops * months_used * usage_factor * 9700
```

Meaning:

This estimates the CO₂e emissions for using hardware (laptops) during creation.

- num_laptops = number of laptops used.
- months_used = number of months the laptop is used.
- usage_factor = the share of time the laptop is used for Al tasks (e.g., 50% = 0.5).

9700 = grams CO₂e per laptop per month (based on lifecycle assessments).
 So: Total laptop emissions = laptops × months × usage share × CO₂e per month

```
storage_CO2 = (storage_GB / 100) * storage_months * 2000
```

Meaning:

This estimates the CO₂e from cloud storage used to store files/assets.

- storage_GB = total GB stored.
- Divide by 100 because the emission factor is **per 100 GB per month**.
- storage_months = how many months the files are stored.
- 2000 = grams CO₂e per 100 GB per month (based on data centre averages).
 So: Total storage emissions = (GB ÷ 100) × months × CO₂e per 100 GB

```
if green_cloud: storage_CO2 *= 0.7
```

Meaning:

If the cloud service uses mostly renewable energy, apply a 30% reduction.

So: Cloud storage emissions are multiplied by 0.7 when "green cloud" is true.