Deber 01

Redes Neuronales Artificiales.

Preguntas

1. Suponga que tiene el siguiente conjunto de datos:

x	1	1.5	2.0	2.5	3	3.5	4	4.5	5	5.5	6	6.5
y	0.0913	2.0914	3.8927	2.6026	5.5346	1.3751	5.0639	4.8378	6.4789	5.4043	4.6668	85.5299

- (a) Haga un gráfico de puntos de los datos (scatter plot). Determine de manera visual si las variables podrían tener una relación lineal.
- (b) Asumiendo que y se relaciona linealmente con x, utilice el método de la mínimos cuadrados para encontrar la recta que mejor se ajusta a los datos. Piense que se puede expresar ycomo la combinacióin lineal $y = \alpha_0 + \alpha_1 x$.
- (c) Encuentre el vector y^* que aproxima y.
- (d) Encuentre el vector de error $\varepsilon = y y^*$. ¿Cuál es su magnitud?
- 2. En el archivo de datos adjunto cars. csv tiene datos de la distancia que le toma parar a un vehículo desde determinada velocidad.
 - (a) Si y es la distancia (variable dist) y x es la velocidad (variable speed), encuentre los coeficientes del modelo $y = \alpha_0 + \alpha_1 x$, calcule la norma del error.
 - (b) Encuentre los coeficientes del modelo $y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$, calcule la magnitud del error.
 - (c) En base a los cálculos del error de los dos modelos anteriores, diga cuál de ellos es mejor.
- 3. Para el conjunto de datos nolineal.csv utilice el método de los mínimos cuadrados para encontrar los parámetros del modelo $y = \alpha_0 \sin(\alpha_1 + \alpha_2 x) + \beta_0 \cos(\beta_1 + \beta_2 x)$. Haga un gráfico de la curva del modelo junto con los datos. Cálcule la magnitud del error.
- 4. Para el conjunto de datos nolineal2.csv utilice el método de los mínimos cuadrados, para encontrar los parámetros del modelo $y = \beta_0 e^{\beta_1 + \beta_2 x}$. Haga un gráfico de la curva del modelo junto con los datos. Calcule la magnitud del error.