Кластеризация

Лекция 4

Лектор: Шевляков Артём

Определение

Кластеризация (clustering).

Дано множество объектов. Их нужно разбить на несколько групп (кластеров), состоящих из похожих друг на друга объектов.

Для чего нужна кластеризация?

- 1. Для вычисления степени сходства объектов. Например: содержание каких веб-страниц близко друг к другу, какие пользователи соцсети близки друг к другу по интересам...
- 2. Упростить дальнейшую обработку данных, разбить множество М на группы схожих объектов чтобы работать с каждой группой в отдельности.
- 3. Сократить объём хранимых данных, оставив по одному представителю (эталону) от каждого кластера (задачи сжатия данных).
- 4. Поиск выбросов (об этом говорилось на прошлой лекции).
- 5. Разбить признаки на кластеры и оставить по одному признаку из каждого кластера (отбор признаков).

Алгоритмы кластеризации делятся на группы

- 1. Алгоритмы, разбивающие данные на заданное число кластеров (то есть число кластеров это входной параметр алгоритма). Пример: алгоритм k-means
- 2. Алгоритмы, в которых число кластеров не определено заранее, а вычисляется самим алгоритмом. Пример: алгоритм FOREL

Недостатки кластеризации каждого типа

1(тип). Человек может не угадать «нужное» число кластеров. Например, для объектов на картинке человек может запустить разбиение на 2 или 4 кластера.

2(тип). Алгоритм может выдать слишком много (мало) кластеров. Такая кластеризация бесполезна. Например, объекты на картинке могут быть разбиты на 1 или 10 кластеров (и это плохо).

Не забывайте, что

Если алгоритм кластеризации использует метрику на множестве объектов, то значения всех признаков необходимо предварительно нормализовать.

Кластеризация с помощью графов (будут рассмотрены 2 алгоритма, принадлежащие двум типам алгоритмов кластеризации)

Представление данных 2

Необходимо вычислить расстояние между всеми парами объектов. Представить эти данные в виде графа (см. картинку)

Описание алгоритма 2

На вход алгоритма подается число R. Удаляем все ребра в графе, метки которых >R. Например, для R=2 имеем картинку. Кластеры — это...

Описание алгоритма 🤰

На вход алгоритма подается число R. Удаляем все ребра в графе, метки которых >R. Например, для R=2 имеем картинку. Кластеры — это связные компоненты графа $\{A,B,C,D\}$ и

{E,F}

Описание алгоритма

Если на вход алгоритма подать число 1.4, то получим 4 кластера {A,B},{C,D},{E},{F}.

Как видно, данный алгоритм не позволяет разбивать данные на фиксированное число кластеров.

Описание 2-го алгоритма

На вход алгоритма подается число кластеров *k.*

1. Строим остовное дерево (это подграф, содержащий все вершины исходного графа и не имеющий циклов) минимальной длины.

Описание 2-го алгоритма

2. Удаляем из дерева k-1 самых длинных ребер. Например, для k=3 нужно удалить ребра AE и AC.

Описание 2-го алгоритма

2. Удаляем из дерева k-1 самых длинных ребер. Например, для k=3 нужно удалить ребра

АЕ и АС.

3. В один кластер попадают вершины из связных компонент.

F _______E

Алгоритм FOREL (формальный элемент)

Главное свойство алгоритма: количество кластеров не определено заранее.

Идея: найти точки сгущения объектов, и эти сгущения объявить кластерами.

Описание алгоритма FOREL

- Вход: число R.
- Представление данных: объекты представляются точками в пространстве R^m
- Шаг 1: В произвольную точку пространства добавляем новый формальный объект F (отсюда и название алгоритма).
- Шаг 2: Пусть K все объекты, до которых расстояние от F меньше R.
- Шаг 3: находим центр тяжести (что это см. ниже) объектов из множества K. Переносим туда объект F. Переходим на шаг 2.
- Нужно крутиться в цикле 2-3 до тех пор, пока множество K не стабилизируется.

Описание алгоритма FOREL

- Шаг 4: Когда множество K стабилизируется, оно объявляется новым кластером. Объекты, попавшие в K, из выборки удаляются.
- Шаг 5: Возвращаемся на шаг 1 если выборка не пуста, иначе конец работы.

Новые точки в шар не попадают. Точки внутри шара объявляются одним кластером. Этот кластер исключается из выборки. Процесс продолжается для оставшихся точек.

Как найти центр тяжести точек?

Да запросто!

Например, если объекты имеют 2 признака P,Q то центр тяжести будет обладать значениями признаков (\bar{p},\bar{q}), где \bar{p},\bar{q} - среднее значение признаков.

Как найти центр тяжести точек?

Например, центр тяжести объектов

Объекты	P	Q
Α	1	4
В	2	1
С	0	1

будет

	P	Q
Центр кластера	1	2

Алгоритм k-means (k-средних)

Главное свойство алгоритма: количество кластеров k определено заранее.

Идея реализации: одновременно происходит поиск всех центров кластеров.

Описание алгоритма k-means (одна из реализаций)

Вход: число кластеров k.

Представление данных: объекты представляются точками в пространстве R^m

Шаг 1: Генерируем k случайных точек – центры кластеров.

Шаг 2: Объект будет отнесен к тому кластеру, чей центр расположен ближе всех к этому объекту.

Шаг 3: Пересчитываются центры кластеров, возврат на Шаг 2.

Цикл 2-3 крутится, пока изменяются центры кластеров.

Пример работы алгоритма k-means

https://github.com/7bits/ml-course-7bits/tree/master/2017-fall/practises/04-clustering

Недостатки алгоритма k-means

Результат зависит от выбора исходных центров кластеров, их оптимальный выбор неизвестен.

https://ru.wikipedia.org/wiki/Метод_k-средних

Выбор оптимального числа кластеров

Эта проблема актуальна для алгоритмов, в которых «число кластеров» является входным параметром. В частности, это актуально для k-means.

Идея: будем перебирать значения k=1,2... пока «качество кластеризации» не стабилизируется.

А что понимать под «качеством кластеризации»?

- Пусть S_k сумма расстояний от объектов до центров их кластеров (при условии, что объекты разбиты на k кластеров).
- Тогда величину $|S_{k+1} S_k|$ можно рассматривать как увеличение качества кластеризации при переходе от k кластеров к (k+1) кластеру.

Выбор оптимального числа кластеров

Таким образом, «качество кластеризации» стабилизируется для такого k, где величина $|S_{k+1} - S_k|$ становится небольшой.

На следующем графике по верт. оси отложено значение S_k . Для этого графика оптимальное значение k=3.

Почему такое сложное правило для выбора k?

Попробуем разобраться: Чему равно S_k при k=n (число всех объектов)?

Напомню:

 S_k = сумма расстояний от объектов до центров их кластеров.

Почему такое сложное правило для выбора k?

Попробуем разобраться: Чему равно S_k при k=n (число всех объектов)?

Напомню:

 S_k = сумма расстояний от объектов до центров их кластеров.

Не знаете ответа? Посмотрите, к какому значению стремиться график...

Почему такое сложное правило для выбора k? Действительно, $S_n = 0$ (n число всех объектов)!!!

То есть искать число кластеров k с минимальным S_k бессмысленно!

Вот и приходится исхитряться: искать такое k что S_k уменьшается не так сильно (когда дальнейшее увеличение числа кластеров уже не приводит к существенному улучшению качества).

Кластеризация по столбцам

Кластеризация по столбцам

Дана таблица. Ее можно перевернуть (транспонировать)

Студент	Пол	Рост	Bec	Место на олимпиаде
Вася	1	172	107	3
Петя	1	185	64	4
Маша	0	168	61	2
Даша	0	201	85	1

А потом запускаем один из стандартных алгоритмов кластеризации!

	Вася	Петя	Маша	Даша
Пол	1	1	0	0
Рост	172	185	168	201
Вес	107	64	61	85
Место	3	4	2	1

Зачем это нужно делать?

- Мы можем найти близкие (по значению) друг к другу признаки. Можно из каждого кластера оставить по одному признаку и тем самым уменьшить размер данных.
- Это иногда оправданно, так как огромное число признаков часто мешает анализу данных (поподробнее об этом в теме «Отбор признаков»)
- Но есть и другое (неожиданное)приложение кластеризации по столбцам (см. след. слайды)

NMF

Non-negative matrix factorization (развитие идеи о кластеризации столбцов и применение ее в рекомендательных системах)

Идея!

А если мы сможем найти новые признаки (выразив их через старые признаки), которые дают нетривиальную кластеризацию объектов? Например, если для таблицы покупок найти 2 группы товаров, а потом разбить покупателей на 2 кластера — в зависимости от того, товары какой группы

он предпочитает.

	Мука	Возд.шары	Пиво	Сахар	Чипсы
Покупатель1	0	3	8	0	1
Покупатель2	0	2	5	1	0
Покупатель3	5	0	1	10	0
Покупатель4	0	20	40	2	1
Покупатель5	10	0	1	10	1

В этом примере ответ простой:

Признаки нужно разбить на 2 группы: «товары для выпечки» и «товары для праздника».

Соответственно покупатели распадаются на кластеры:

1-й кластер: {1,2,4} – они покупают товары для праздника.

2-й кластер: {3,5} – они покупают товары

для выпечки.

А как найти кластеры в общем случае?

	Мука	Возд.шары	Пиво	Сахар	Чипсы
Покупатель1	0	3	8	0	1
Покупатель2	0	2	5	1	0
Покупатель3	5	0	1	10	0
Покупатель4	0	20	40	2	1
Покупатель5	10	0	1	10	1

А для этого нужно знать, что такое матрицы

Спойлер: матрица – это таблица с числами. Например,

$$\begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix}$$
, $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ - это две матрицы.

Матрицы можно умножать. НО НЕ ТАК, как указано ниже:

$$\begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix} * \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 * 2 & 3 * 3 \\ 0 * 1 & 5 * 2 \end{pmatrix} = \begin{pmatrix} 2 & 9 \\ 0 & 10 \end{pmatrix}$$

А для этого нужно знать, что такое матрицы

На самом деле матрицы умножаются по правилу

$$\binom{1}{0} \binom{3}{5} * \binom{2}{1} \binom{3}{2} = \binom{1 * 2 + 3 * 1}{0 * 2 + 5 * 1} \binom{1 * 3 + 3 * 2}{0 * 3 + 5 * 2}$$

$$= \binom{5}{5} \binom{9}{10}$$

Правило умножения позволяет перемножать и неквадратные матрицы. Главное, чтобы строка первой матрицы полностью накладывалась на столбец второй матрицы.

Умножение неквадратных матриц

$$\begin{pmatrix} 5 & 1 \\ 1 & 4 \end{pmatrix} * \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 16 & 4 \\ 2 & 7 & 16 \end{pmatrix}$$

А что если представить нашу таблицу с данными в виде произведения других двух матриц?

	Признаки			Новые	*		Признаки
ЭКТЫ		=	<u> </u>	признаки	714	aKZ	
Объен			бъекты			Новые	
			90			- L	

Причем число новых признаков будет меньше чем старых.

Умножение неквадратных матриц

Первая матрица содержит описание объектов с помощью новых признаков, а вторая матрица содержит описание новых признаков через старые.

<u> </u>	Признаки			Новые признаки		_	Признаки
Объекть		=	Объекты		*	Новые признаки	

Nonnegative matrix factorization (NMF)

Итак, для матрицы A нужно найти матрицы B,C такие, что A=B*C, причем

- 1) Число столбцов в В должно быть меньше чем в А;
- 2) Все элементы матриц В,С должны быть неотрицательны.
- 3) Если таких матриц В,С не существует, то найти матрицы, удовл. пп 1-2, для которых равенство A=B*C выполняется приблизительно.

Это и называется неотрицательным разложением матрицы (NMF). Например,

$$\begin{pmatrix} 10 & 16 & 4 \\ 2 & 7 & 16 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 4 \end{pmatrix} * \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$

Смысл разложения

$$\begin{pmatrix} 10 & 16 & 4 \\ 2 & 7 & 16 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 4 \end{pmatrix} * \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$

Это означает, что таблицу с 2-мя объектами и 3-мя признаками можно представить таблицей с 2-мя признаками (1й множитель), а новые признаки описываются через старые (2й множитель):

	пр1	пр2	пр3
Объект1	10	16	4
Объект2	2	7	16

	нов1	нов2
Объект1	5	1
Объект2	1	4

		пр1	пр2	пр3
*	нов1	2	3	0
-	нов2	0	1	4

При чём тут кластеризация?

Новые признаки можно рассматривать как метки кластеров. То есть вероятность того, что первый объект принадлежит первому кластеру в пять раз выше чем ко второму. А вероятность принадлежности второго объекта второму кластеру в четыре раза выше чем к первому.

	нов1	нов2
Объект1	5	1
Объект2	1	4

Вернемся к задаче о покупателях

К матрице с данными можно применить NMF. Получим

	Мука	Возд.шары	Пиво	Сахар	Чипсы			нов1	нов2	
Покупатель1	0	3	8	0	1		Пок1	0	1.2850	
Покупатель2	0	2	5	1	0	=	Пок2	0.4711	0.8065	*
Покупатель3	5	0	1	10	0		Пок3	8.4380	0.0365	
Покупатель4	0	20	40	2	1		Пок4	0.0217	6.7563	
Покупатель5	10	0	1	10	1		Пок5	10.847	0	

	Мука	Возд.шары	Пиво	Сахар	Чипсы
нов1	0.8	0	0.09	1.02	0.06
нов2	0	2.93	5.93	0.29	0.17

Отметим, что это равенство лишь приблизительное. В методе NMF это допускается.

Получаем кластеризацию покупателей

	нов1	нов2
Пок1	0	1.2850
Пок2	0.4711	0.8065
Пок3	8.4380	0.0365
Пок4	0.0217	6.7563
Пок5	10.847	0

Новые признаки из первой таблицы задают кластеризацию покупателей (покупатель относится к і-му кластеру, если число в і-м столбце максимально). Получаем кластеры {1,2,4},{3,5}.

Смысл новых признаков

Новые признаки здесь имеют очевидную интерпретацию (см. вторую таблицу).

Признак «нов1»=«товары для выпечки».

Признак «нов2»=«товары для праздника».

	Мука	Возд.шары	Пиво	Сахар	Чипсы
нов1	0.8	0	0.09	1.02	0.06
нов2	0	2.93	5.93	0.29	0.17

Кстати, таблица не дает ответа, к какой группе товаров относятся чипсы)))))

Эта техника используется в рекомендательных системах (см. ниже)

Применение NMF в рекомендательных системах

Ранее было получено разложение.

	Мука	Возд.шары	Пиво	Сахар	Чипсы			нов1	нов2	
Покупатель1	0	3	8	0	1		Пок1	0	1.2850	
Покупатель2	0	2	5	1	0	=	Пок2	0.4711	0.8065	*
Покупатель3	5	0	1	10	0		Пок3	8.4380	0.0365	
Покупатель4	0	20	40	2	1		Пок4	0.0217	6.7563	
Покупатель5	10	0	1	10	1		Пок5	10.847	0	

	Мука	Возд.шары	Пиво	Сахар	Чипсы
нов1	0.8	0	0.09	1.02	0.06
нов2	0	2.93	5.93	0.29	0.17

Можем ли мы оценить, сколько в будущем потребуется муки и чипсов 2-му покупателю (пока он их не покупал)?

Нужно вспомнить, что это не точное равенство.

	Мука	Возд.шары	Пиво	Сахар	Чипсы			нов1	нов2	
Покупатель1	0	3	8	0	1	=	Пок1	0	1.2850	*
Покупатель2	0	2	5	1	0		Пок2	0.4711	0.8065	
Покупатель3	5	0	1	10	0		Пок3	8.4380	0.0365	
Покупатель4	0	20	40	2	1		Пок4	0.0217	6.7563	
Покупатель5	10	0	1	10	1		Пок5	10.847	0	

	Мука	Возд.шары	Пиво	Сахар	Чипсы
нов1	0.8	0	0.09	1.02	0.06
нов2	0	2.93	5.93	0.29	0.17

Чтобы получить оценки для товаров, которые человек еще не покупал, то нужно перемножить 2 матрицы справа...

Перемножаем и получаем не совсем исходную матрицу

	нов1	нов2
Пок1	0	1.2850
Пок2	0.4711	0.8065
Пок3	8.4380	0.0365
Пок4	0.0217	6.7563
Пок5	10.847	0

	Мука	Возд.шары	Пиво	Сахар	Чипсы
нов1	0.8	0	0.09	1.02	0.06
нов2	0	2.93	5.93	0.29	0.17

		Мука	Возд.шары	Пиво	Сахар	Чипсы
	Покупатель1	0	3.76505	7.62005	0.37265	0.21845
	Покупатель2	0.37688	2.363045	4.824944	0.714407	0.165371
=	Покупатель3	6.7504	0.106945	0.975865	8.617345	0.512485
	Покупатель4	0.01736	19.795959	40.066812	1.981461	1.149873
	Покупатель5	8.6776	0	0.97623	11.06394	0.65082

Можно сравнить обе матрицы. И хотя 2-й покупатель ни разу не покупал муку и чипсы, мы оцениваем, что муку он «любит» в 2

	Мука	Возд.шары	Пиво	Сахар	Чипсы
Покупатель1	0	3	8	0	1
Покупатель2	0	2	5	1	0
Покупатель3	5	0	1	10	0
Покупатель4	0	20	40	2	1
Покупатель5	10	0	1	10	1

	Мука	Возд.шары	Пиво	Сахар	Чипсы
Покупатель1	0	3.76505	7.62005	0.37265	0.21845
Покупатель2	0.37688	2.363045	4.824944	0.714407	0.165371
Покупатель3	6.7504	0.106945	0.975865	8.617345	0.512485
Покупатель4	0.01736	19.795959	40.066812	1.981461	1.149873
Покупатель5	8.6776	0	0.97623	11.06394	0.65082

раза больше чем чипсы

Использованная литература

- 1. Т.Сегаран «Программируем коллективный разум» (там пример про кластеризацию новостей)
- 2. Лекции Воронцова.
- 3. Википедия «k-means».
- 4. https://habrahabr.ru/company/ods/blog/325654/