DMCS

Computer Aided Design of Electronic Circuits

REPORT 1 EXERCISE 1 – RC CIRCUIT

Joanna Klinkiewicz

190097

IFE, TCS 2016

Plot 1. Circuit scheme.

DC ANALYSIS

Plot 2. V_{out} as a function of V_{in} .

Voltage gain was determined graphically from the plot using cursors.

$$V_{gain} = V_{out}/V_{in}$$

 V_{gain} =99.999m therefore V_{gain} =0.1

AC ANALYSIS

Plot 3. Ac magnitude analysis for both Cs=0.1 pF and Cs=10pF.

Capacitance Cs has an impact on magnitude analysis. The biggest Cs, the smallest cutoff frequency.

The decrease of the signal voltage to its halt value is at the -3dB and thus it specifies cutoff frequency F_{cut} that is:

0.707*100mV=70,7mV

F_{cut=} 18 kHz for circuit with Cs=0.1pF

0.707*500mV=353,3mV

 $F_{cut=}8.4 \text{ kHz}$ for circuit with Cs=10pF

Plot 4.Flat characteristics of V_{out} vs. time.

Depending on Cs value the circuit characteristic might change from low pass to high pass filter. Having exact value of Cs, the characteristic will be flat.

Cs*Rs=Co*Ro, therefore Cs= Co*Ro/Rs

Cs= $10pF*1M \Omega / 9M\Omega$

Cs=1,1pF

Having Cs=1,1pF the characteristic will be flat.

PROJECT II

In order to get the division ratio 1:50 one need to calculate:

Cs*Rs=Co*Ro , where from the ratio we know that $Rs=49M\Omega$

Cs=Co*Ro / Rs

 $Cs=10pF*1M\Omega / 49M\Omega$

Optimal values: Cs=0,2pF and Rs=49M Ω

Plot 4. Characteristics of V_{out} vs. time for Cs=0,2 pF.