Homework 2 (Due on 1/31)

Question 1 Let

$$A = P\Lambda P^{\top}$$
 and $B = P\Gamma P^{\top}$

where

$$P = \begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_k \end{bmatrix}$$

is a $k \times k$ orthogonal matrix, and

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & & & & \\ & \ddots & & \\ & & \lambda_k \end{bmatrix} \quad ext{and} \quad oldsymbol{\Gamma} = egin{bmatrix} \gamma_1 & & & \\ & \ddots & & \\ & & \gamma_k \end{bmatrix}$$

are two diagonal matrices. Find all pairs of eigenvalues and eigenvectors of AB.

Question 2 Consider a *p*-variate sample $\vec{x}_1, \ldots, \vec{x}_n$ with sample covariance S_X . For some $C \in \mathbb{R}^{q \times p}$ and $\vec{a} \in \mathbb{R}^q$, consider the linear transformation

$$\vec{y_i} = C\vec{x_i}, \quad i = 1, \dots, n.$$

For any $j=1,\ldots,q$ and $k=1,\ldots,p$, denote by s_{Y_j,X_k} the sample covariance between $\{y_{ij}\}_{i=1}^n$ and $\{x_{ik}\}_{i=1}^n$. Define the matrix

$$m{S}_{Y,X} = egin{bmatrix} s_{Y_1,X_1} & s_{Y_1,X_2} & \dots & s_{Y_1,X_p} \ s_{Y_2,X_1} & s_{Y_2,X_2} & \dots & s_{Y_2,X_p} \ dots & dots & \ddots & dots \ s_{Y_q,X_1} & s_{Y_q,X_2} & \dots & s_{Y_q,X_p} \end{bmatrix}.$$

Express $S_{Y,X}$ by S_X and C.

Question 3 Suppose we are given the data for two variates:

- (a) Fit the simple linear regression model $Y = \beta_0 + \beta_1 X + \epsilon$. Find $\hat{\beta}_0$ and $\hat{\beta}_1$.
- (b) Find the sample mean and sample covariance of $\begin{bmatrix} X \\ Y \end{bmatrix}$.
- (c) Find α such that $Y \alpha X$ and X have zero sample correlation.

Question 4 Suppose we are given the data

Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the solutions that fit the simple linear regression model $Y = \beta_0 + \beta_1 X + \epsilon$. Suppose α satisfies that $Y - \alpha X$ and X have zero sample correlation. Show that $\hat{\beta}_1 = \alpha$.

Question 5 A *p*-variate sample $\vec{x}_1, \ldots, \vec{x}_n$ is transformed into $\vec{y}_1, \ldots, \vec{y}_n$ by

$$y_{ij} = c_j x_{ij} + d_j, \ j = 1, \dots, p, \ i = 1, \dots, n.$$

Here $c_j > 0$ for j = 1, ..., p. In other words, the p variates $X_1, ..., X_p$ are transformed into $Y_1, ..., Y_p$ in that $Y_j = c_j X_j + d_j$. Denote by r_{jk}^x the sample correlation between X_j and X_k , and denote by r_{jk}^y the sample correlation between Y_j and Y_k . Prove that $r_{jk}^x = r_{jk}^y$.

Question 6 For a sample of $\overrightarrow{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$ with sample covariance matrix

$$m{S} = egin{bmatrix} 2 & 1 & 0 & 0 \ 1 & 2 & 1 & 0 \ 0 & 1 & 2 & 1 \ 0 & 0 & 1 & 2 \end{bmatrix}.$$

Find the sample covariance matrix of $\begin{bmatrix} \frac{1}{2}(X_1 + X_2) \\ \frac{1}{2}(X_2 + X_3) \\ \frac{1}{2}(X_3 + X_4) \end{bmatrix}.$

Question 7 Suppose we are given the data for two variates

$$X_1: 2 3 4 0 -1 -2 -3$$

 $X_2: 1 1 1 0 -1 -1 -1$

The sample mean and sample covariance matrix of $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ are denoted by \bar{x} and S, respectively. (a) Find the spectral decompositions of S and S^{-1} , respectively.

(b) Sketch the mean-centered ellipse

$$(\boldsymbol{x} - \bar{\boldsymbol{x}})^{\top} \boldsymbol{S}^{-1} (\boldsymbol{x} - \bar{\boldsymbol{x}}) \leq 4.$$

- (c) Determine the sample correlation matrix R. Find the spectral decompositions of R and R^{-1} , respectively.
- (d) Sketch the mean-centered ellipse

$$\boldsymbol{x}^{\top} \boldsymbol{R}^{-1} \boldsymbol{x} \leq 4.$$