МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 2

по дисциплине «Параллельные алгоритм»

Тема: Реализация потокобезопасных структур данных с блокировками

Студент гр. 0303	Сологуб Н.А.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

2023

Цель работы.

Реализовать итерационное (потенциально бесконечное) выполнение подготовки, обработки и вывода данных по шаблону "производитель-потребитель" (на основе лаб. 1 (части 1.2.1 и 1.2.2)).

Задание.

Обеспечить параллельное выполнение потоков обработки готовой порции данных, подготовки следующей порции данных и вывода предыдущих полученных результатов.

Использовать механизм "условных переменных".

2.1

Использовать очередь с "грубой" блокировкой.

2.2

Использовать очередь с "тонкой" блокировкой

Выполнение работы.

1.1) Класс QueueRoughLock

Был реализован класс QueueRoughLock, который реализует очередь с "грубой" блокировкой. Метод **void produce(Matrix& matrix)** блокирует очередь, добавляет матрицу в очередь и разблокирует очередь. Метод **Matrix consume()** блокирует очередь, извлекат из очереди матрицу и разблокирует очередь.

1.2) Класс QueueThinLock

Был реализован класс QueueThinLock, который реализует очередь с "тонкой" блокировкой. Метод std::unique_ptr<node> pop_head() блокирует изменения относительно головного узла, достаёт его из очереди и изменяет головной узел на новый. Метод node* get_tail() блокирует изменения хвостового узла и возвращает его значение. Метод Matrix consume() достаёт из очереди головной узел и возвращает матрицу из этого узла. Метод void

produce(Matrix new_value) получает на вход матрицу, формирует узел с заданной матрицей и передаём узел в хвост.

2) Сравнение потокобезопасных очередей с блокировками

Были проведены сравнение очередей. При измерениях очередь обрабатывала 600 задач по умножению матриц 10×10 . Результаты работы очередей при различных количествах производителей/потребителей представлены в табл. 1

Таблица 1 - зависимость времени работы очередей от количества производителей/потребителей

Количество потоков:	Время "грубой"	Время "тонкой"
Производители/Потребители	блокировки, с	блокировки, с
2/2	0.38057	0.350042
5/5	0.812425	0.805419
12/12	0.856847	0.824529
12/1	0.226718	0.224268
1/12	0.83228	0.826941

Из таблицы видно, что очередь с "тонкой" блокировкой работает быстрее ввиду блокировку отдельных узлов, а не всей очереди вцелом

Выводы.

В ходе выполнения работы были реализованы потокобезопасные структуры данных с блокировками. Были реализованы очереди с "грубой" и "тонкой" блокировкой, реализующие задачу "производитель-потребитель" на умножении матриц. Было выявлено, что очередь с "тонкой" блокировкой работает быстрее.