```
8天的课程
局域网回顾+网关冗余协议
路由------OSPF, ISIS, BGP
路由控制手段+路由引入
IPv6-----地址, 路由, 过渡======SRv6
VPN------总部+分部, 出差
SDN------大脑和躯干分离
```

```
网络======用途:获取远处的资源=====传输介质+<mark>网络设备+网络技术</mark>
网络设备:SW。R。FW,AC+AP=======F5,VPN,IPS。。。

二层交换-------同网段通信
三层路由-------跨网段通信------三层交换机

小型网络====设备数量极少====一台R/FW(对接外网--路由+NAT)+多台SW(端口多---24、48)------单点故障
中型网络=====设备数量适中-----成本高-----高可用性--冗余
大型网络=====-功能极其丰富
```

二层----交换机

局域网回顾:

1.交换机的工作原理====转发表项: MAC地址表 (接口+MAC地址+vlan)

空-----学习: SMAC+收到报文的接口+数据包的vlan

转发: DMAC====MAC地址表的匹配结果

====点对点转发: 只丢给匹配的目标接口

====泛洪: 向和源接口同vlan的其他接口进行泛洪

====丢弃:目标接口=源接口

2.vlan=====交换机必配的技术

====作用:隔离二层广播域

=====标记技术======untag报文变成一个tag报文====在二层头和三层头之间插入一个

标签

=====vlan id =====12bit====0-4095 (1-4094)

同vlan可以二层通信

不同vlan需要三层通信

====交换机上如果只是配置了vlan其实是没有作用的,要想vlan有作用需要将vlan和接口进行

绑定

绑定方 式	作用	收	发
access	只能绑定一个vlan 一般用于对接中终端	Untag===打上接口配置的vlan Tag=接口vlan则收,否则丢弃	剥离tag变成untga报文 发送
trunk	可以绑定一个乃至全 部的vlan PVID默认是1,可以 修改(native vlan) Allow vlan 一般用以交换机互联	Untag===打上PVID,如果PVID不被 allow,也不会收,只有PVID被allow,才 会接受 Tag===allow=则收 ===不被allow,则丢弃	Tag=PVID,则剥离标签 变成untag报文发送 Tag不等于PVID,则保留 tag通过
hybrid	可以绑定一个乃至全 部的vlan PVID默认是1,可以 修改 Allow tag vlan Allow untag vlan 适用于任何场景	Untag===打上PVID,如果PVID不被 allow,也不会收,只有PVID被allow,才 会接受 Tag===allow=则收 ===不被allow,则丢弃	Tag=allow untag vlan,则剥离标签变成 untag报文发送 Tag=allow tag vlan, 则保留tag通过

2.二层破环技术

STP+链路聚合

STP工作原理: =====自动计算

1.选根桥 (桥id小的)

桥ID=桥优先级 (默认是32768) +桥mac

2.选根端口(非根交换机上有且只有一个)

到根桥的cost

链路对端设备的桥ID

链路对端设备的端口ID=端口优先级(默认128)+端口号(g0/0/1)

3.选指定端口(每条链路上有且只有一个)

到根桥的cost=====根桥上的所有接口都是指定端口

4.block剩余接口

工业标准

STP=====所有vlan—棵树

RSTP====所有vlan一棵树, 快速收敛----P/A

MSTP(华为默认)====基于实例,一个实例一棵树,默认所有vlan都属于实例0 华为----region-name 必须配置

思科私有标准

PVST-----思科默认--一个vlan一颗树

R-PVST----一个vlan一棵树----快速收敛 MSTP====基于实例,一个实例一棵树,默认所有vlan都属于实例0

BPDU===配置BPDU---2s周期发送 ===TC BPDU===拓扑发生变化的时候

edge-port----边缘端口-----接入交换机下行口接PC的端口进行配置

链路聚合=====作用:加大带宽,附带着解决了链路冗余带来的环路问题 手工捆绑

动态捆绑----LACP (工业标准)

堆叠-----反向虚拟化====将两台设备虚拟成一台 M-lag (跨设备链路聚合)

广播:一个人说话,所有人都能收到,不管想不想收

组播:一个人说话,只有加组的人才能收到 单播:一个人说话,只有另一个人能收到

网关冗余技术

网关的作用: 跨网段通信=====DMAC

一台PC只能配置一个GW

VRRP---虚拟路由器冗余协议(工业标准----华为只有这种)

Hsrp---热备份路由器协议 (思科私有----思科常用)

GLBP---网关负载分担协议(思科私有)

VRRP的知识点:

1、工作原理

Master======1.实体地址和虚拟地址相等====优先级自动变成255====最少需要两个地址

2.优先级高的成为master (1-254, 默认是100)

3.IP地址大的成为master

Backup:

有且只有一台master, 多台backup

master: 负责应答虚拟IP地址的ARP请求, 数据处理

backup: 监听master状态, 随时随地接替master故障之后的处理

具备抢占功能

故障

1.master整机挂了=====master下行链路down

backup成为master,继续工作,数据包全部从新的master出去

会出现一段时间的丢包=====OSPF路由收敛问题

2。master上行链路down

不会影响VRRP角色

数据包依旧先前往master===再去backup====路径次优化

有没有办法不出现次优化=====路由重定向===VRRP会抑制重定向

-----探测===如果发现某个条件达成了(比如上行链路down),则降低优先级,条件如果不打成,则恢复===== track

3。master上上行链路down

不会影响VRRP角色

数据包依旧先前往master===再去backup====路径次优化

有没有办法不出现次优化=====路由重定向===VRRP会抑制重定向

BFD===双向链路检测机制

思科私有协议:

Hsrp====active/standby

有且只有一个active,有且只有一个standby,其余都是普通设备

不具备抢占====需要手动开启抢占功能

不能用实际地址充当物理地址(最少需要三个地址)

优先级(100,比大)-----IP地址大的

SLA=====单向

GLBP====负载均衡

====虚拟出4个虚拟mac对应着实体设备

AVG=====活动虚拟网关====虚拟出虚拟mac地址

AVF=====活动虚拟转发路由器====实际转发数据包

镜像技术=====交换机上====SPAN======数据采集