Examen de

Electrónica de Potencia

13 de Febrero de 2015

Grado en Ingeniería en Tecnologías de Telecomunicaciones

Nombre:	
Nombre:	DNI/NIE/PAS:

Este examen se compone de 6 ejercicios. La puntuación máxima total que puede obtenerse es de 10 puntos. Puede usarse material de escritura y calculadora no programable. No se permite usar formularios, apuntes o libros. Todas las preguntas se deben responder en folios numerados e identificados diferentes al de este enunciado. La duración máxima del examen es de 3h.

- 1. Cuestiones (2 ptos.)
 - 1.1. ¿Qué diferencia existe entre un DIAC y un TRIAC?
 - 1.2. ¿Es cierto que la región de operación segura (S.O.A.) de transistor Bipolar es mayor que la de un MOSFET? ¿por qué?
 - 1.3. ¿Cómo se denominan y qué características (tensiones y corrientes) tienen las regiones de operación en las que un transistor bipolar tiene un comportamiento similar a un interruptor?
 - 1.4. ¿Qué significa que un inversor tenga que operar en los cuatro cuadrantes I-V?
- En la figura se representa un circuito trifásico y de secuencia positiva de fases. El conjunto de las tres fuentes trifásicas proporciona 15kW.
 Se pide obtener la intensidad de línea a la salida del generador. (1.5 ptos.)
 Z_{L1}=1+2j Ω; Z_{L2}=1+2j Ω

3. Determinar el tiempo que tarda la resistencia R_S en recibir corriente desde que se cierra el interruptor. $K_{n(M1)}=20mA/V$, $V_{th}=5V$. (1 pto.)

4. En el circuito de la figura alimentado por un generador sinusoidal de frecuencia 50Hz y voltaje eficaz de 45V, determinar el ángulo de disparo de la señal aplicada a la puerta del SCR para suministrar a la carga R_L de 10 Ohmios, una potencia de 50W. ¿Cuál es la potencia máxima que este circuito puede suministrar? ¿En estas condiciones cuál es la potencia que está suministrando el generador AC? (1.5 ptos.)

$$\int \sin^2 x = \frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right)$$

- 5. Se desea diseñar un circuito para reducir una tensión DC suministrada por una batería ideal de 12V. La tensión de salida debe ser de 5V DC sobre una resistencia de 100Ω y con un rizado máximo del 5%. Diseñar, de la manera más detallada posible, un convertidor DC-DC conmutado para realizar la función. Dar valores numéricos a los elementos reactivos utilizados. (2 ptos.)
- 6. Para el circuito inversor del esquema, representar <u>de forma cualitativa</u> y razonada la caída de potencial (en estado estacionario) en el conjunto resistencia-bobina, y sobre la resistencia únicamente, cuando el circuito de control genera las señales mostradas sobre la base de los transistores bipolares. (2 ptos.)

1				-		
•••	Q2	Q1	Q2	Q1	Q1	
•••						
						Vo
	la ma	4			4	1
	Q3	Q4	Q3	Q4	Q3	F
	Q3	Q4	Q3	Q4:	Q3	