Wizualizacja Danych - Biblioteka matplotlib

Ostatnia aktualizacja: 2022-06-08 16:26:14

Matplotlib

https://matplotlib.org/

Import

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

Galerie wykresów

 $\rm https://matplotlib.org/gallery/index.html$

https://python-graph-gallery.com/

https://github.com/rasbt/matplotlib-gallery

https://seaborn.pydata.org/examples/index.html

JDEA:	
1) IMPORT BIBLIGTER	
2) WYODREBNIEWE " WENTORDW WY LAZES	NA WETGERZEPNE
3) "OPCJE WYLRESU"	
4) , FUNNEZE RYSUZACE"	
5) "DODAIREI"	
G1 2APIS DO PLIKU	
7) "SHOU ()"	

```
import matplotlib.pyplot as plt

x = [0, 7, 4, 5,8,-9]

plt.plot(x)

plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear')
plt.plot(x, x**2, label='quadratic')
plt.plot(x, x**3, label='cubic')

plt.xlabel('x label')
plt.ylabel('y label')

plt.title("Simple Plot")

plt.legend()

plt.show()
```


Location String	Location Code
'best'	0
'upper right'	1
'upper left'	2
'lower left'	3
'lower right'	4
'right'	5
'center left'	6
'center right'	7
'lower center'	8
'upper center'	9
'center'	10

Parametry lokalizacji legendy

```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(14)
y = np.cos(5 * x)

plt.plot(x, y + 2, 'blue', linestyle="-", label="niebieski")
plt.plot(x, y + 1, 'red', linestyle=":", label="czerwony")
plt.plot(x, y, 'green', linestyle="--", label="zielony")
plt.legend(title='Legenda:')
plt.show()
```


	Named linestyles
solid 'solid'	
dotted 'dotted'	
dashed 'dashed'	
dashdot 'dashdot'	
	Parametrized linestyles
loosely dotted $(0, (1, 10))$	
dotted (0, (1, 1))	
densely dotted $(0, (1, 1))$	
loosely dashed (0, (5, 10))	
dashed (0, (5, 5))	
densely dashed	
loosely dashdotted (0, (3, 10, 1, 10))	
dashdotted (0, (3, 5, 1, 5))	
densely dashdotted (0, (3, 1, 1, 1))	
dashdotdotted (0, (3, 5, 1, 5, 1, 5))	
loosely dashdotdotted 0, (3, 10, 1, 10, 1, 10))	
densely dashdotdotted (0, (3, 1, 1, 1, 1, 1))	

Linestyle	Description
'-' Or 'solid'	solid line
'' Or 'dashed'	dashed line
'' Or 'dashdot'	dash-dotted line
':' Or 'dotted'	dotted line
'None' Or' ' Or''	draw nothing

(offset, (on_off_seq))

(0, (3, 10, 1, 15)) - (3pt line, 10pt space, 1pt line, 15pt space)

(oddep)

(oddep)

```
import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 10, 0.2)
y = np.sin(x)
fig, ax = plt.subplots()
ax.plot(x, y)
plt.show()
```



```
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3)
ax.scatter([0.3, 3.8, 1.2, 2.5], [11, 25, 9, 26], color='darkgreen', marker='^')
ax.set_xlim(0.5, 4.5)
plt.show()
```

(0.5, 4.5)

Base Colors

Tableau Palette

CSS Colors

 ${\bf Markery\ https://matplotlib.org/stable/api/markers_api.html}$

marker	symbol	description	
"."	•	point	
","		pixel	
"o"	•	circle	
"v"	▼	triangle_down	
п,п	A	triangle_up	
"<"	◄	triangle_left	
">"	•	triangle_right	
"1"	Υ	tri_down	
"2"	Α.	tri_up	
"3"	≺	tri_left	
"4"	" > tri_ı		
"8"	•	octagon	
"s"	square		
"p"	•	pentagon	
"P"	+	plus (filled)	

****	*	star
"h"	•	hexagon1
"н"	•	hexagon2
"+"	+	plus
"x"	×	х
"X"	*	x (filled)
"D"	•	diamond
"d"	•	thin_diamond
" "	1	vline
"_"	_	hline
Ø (TICKLEFT)	_	tickleft
1 (TICKRIGHT)	_	tickright
2 (TICKUP)	I	tickup
3 (TICKDOWN)	1	tickdown
4 (CARETLEFT)	4	caretleft
5 (CARETRIGHT)	•	caretright
6 (CARETUP)	•	caretup
7 (CARETDOWN)	•	caretdown

8 (CARETLEFTBASE)	◀	caretleft (centered at base)
9 (CARETRIGHTBASE)	•	caretright (centered at base)
10 (CARETUPBASE)	•	caretup (centered at base)
11 (CARETDOWNBASE)	•	caretdown (centered at base)
"None", " " Or ""		nothing
'\$\$'	f	Render the string using mathtext. E.g "\$f\$" for marker showing the letter f.

```
import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3)
plt.scatter([0.3, 3.8, 1.2, 2.5], [11, 25, 9, 26], color='darkgreen', marker='^')
plt.xlim(0.5, 4.5)
plt.show()
```

(0.5, 4.5)


```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 10)
y = x ^ 2
# Labeling the Axes and Title
plt.title("Graph Drawing")
plt.xlabel("Time")
plt.ylabel("Distance")

# Formatting the line colors
plt.plot(x, y, 'r')

# Formatting the line type
plt.plot(x, y, '>')

# save in pdf formats
plt.savefig('timevsdist.pdf', format='pdf')
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-5, 5, 0.1)
x1 = x[x < 0]
y1 = 1 / x1
plt.plot(x1, y1)
x2 = x[x > 0]
y2 = 1 / x2
plt.plot(x2, y2)
plt.ylim(-10, 10)
plt.axhline(y=0, linestyle="--")
plt.axvline(x=0, linestyle=":")
plt.show()
```

(-10.0, 10.0)


```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-3, 3, 0.1)
y = x ** 2 + 2 * x
plt.plot(x, y)
plt.annotate(xy=[-1, 5], text="cos tam")
plt.xticks([-2, 1, 2], color="red")
plt.ylabel("abc", color="green")
plt.show()
```

 $\begin{tabular}{ll} ## ([\mbox{\tt matplotlib.axis.XTick object at } 0x0000000061243400), \mbox{\tt matplotlib.axis.XTick object at } 0x0000000061243400). \end{tabular}$


```
import numpy as np
from matplotlib import pyplot as plt
x = np.arange(0, 10)
y = x^2
z = x ^3
t = x ^4
# Labeling the Axes and Title
plt.title("Graph Drawing")
plt.xlabel("Time")
plt.ylabel("Distance")
plt.plot(x, y)
# Annotate
plt.annotate(xy=[2, 1], text='Second Entry')
plt.annotate(xy=[4, 6], text='Third Entry')
# Adding Legends
plt.plot(x, z)
plt.plot(x, t)
plt.legend(['Race1', 'Race2', 'Race3'], loc=4)
plt.show()
```



```
from matplotlib import pyplot as plt

x = [1, -3, 4, 5, 6]
y = [2, 6, -4, 1, 2]
area = [70, 60, 1, 50, 2]
plt.scatter(x, y, marker=">", color="brown", alpha=0.5, s=area)
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt

# Fixing random state for reproducibility
np.random.seed(19680801)

N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = (30 * np.random.rand(N)) ** 2 # 0 to 15 point radii

plt.scatter(x, y, s=area, c=colors, alpha=0.5)
plt.show()
```


([<matplotlib.patches.Wedge object at 0x000000006184BCA0>, <matplotlib.patches.Wedge object at 0x000 ## (-1.2142507666786346, 1.134711077927507, -1.1258468317413044, 1.101230806657754)

Wersja prostsza:

([<matplotlib.patches.Wedge object at 0x0000000060A7B100>, <matplotlib.patches.Wedge object at 0x000 ## (-1.2142507666786346, 1.134711077927507, -1.1258468317413044, 1.101230806657754)


```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0,3,0.1)
plt.subplot(2, 2, 1)
plt.plot(x, x)
plt.subplot(2, 2, 2)
plt.plot(x, x * 2)
plt.plot(x, x * x)
plt.subplot(2, 2, 3)
plt.plot(x, x * x)
plt.subplot(2, 2, 4)
plt.subplot(2, 2, 4)
plt.plot(x, x ** 3)
plt.tight_layout()
plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, np.pi * 2, 100)
plt.subplot(3, 1, 1)
plt.plot(x, np.sin(x), 'r')
plt.grid(True)
plt.xlim(0, np.pi * 2)
plt.subplot(3, 1, 2)
plt.plot(x, np.cos(x), 'g')
plt.grid(True)
plt.xlim(0, np.pi * 2)
plt.subplot(3, 1, 3)
plt.plot(x, np.sin(x), 'r', x, np.cos(x), 'g')
plt.grid(True)
plt.xlim(0, np.pi * 2)
plt.tight_layout()
plt.savefig("fig3.png", dpi=72)
plt.show()
```

```
## (0.0, 6.283185307179586)
## (0.0, 6.283185307179586)
## (0.0, 6.283185307179586)
```


T T	plot (ni	rous, ncols,	, index)	
Livster Liveter many		ר י ק	1	
news howm 7000	hist west			

```
import numpy as np
import matplotlib.pyplot as plt

fig, ax1 = plt.subplots()
x = np.arange(0.01, 10.0, 0.01)
y = x ** 2
ax1.plot(x, y, 'r')
ax2 = ax1.twinx()
y2 = np.sin(x)
ax2.plot(x, y2)
fig.tight_layout()
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
t = np.arange(0.01, 10.0, 0.01)
s1 = np.exp(t)
ax1.plot(t, s1, 'b-')
ax1.set_xlabel('time (s)')
ax1.set_ylabel('exp', color='b')
ax1.tick_params('y', colors='b')
ax2 = ax1.twinx()
s2 = np.sin(2 * np.pi * t)
ax2.plot(t, s2, 'r.')
ax2.set_ylabel('sin', color='r')
ax2.tick_params('y', colors='r')
fig.tight_layout()
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt

wys = [10, 15, 18, 22, 27]
x = np.arange(0, len(wys))
k = ["black", "red", "green", "yellow", "pink"]
plt.bar(x, wys, color=k, width=0.75)
etyk = ["Kategoria A", "Kategoria B", "Kategoria C", "Kategoria D", "Kategoria E"]
plt.xticks(x, etyk, rotation=45)
y2 = [20, 30, 40, 50, 60]
plt.plot(x, y2)
plt.title("tytulik")
plt.tight_layout()
plt.show()
```

<BarContainer object of 5 artists>

([<matplotlib.axis.XTick object at 0x0000000062BA2DF0>, <matplotlib.axis.XTick object at 0x000000006


```
import numpy as np
import matplotlib.pyplot as plt

height = [3, 12, 5, 18, 45]
bars = ('A', 'B', 'C', 'D', 'E')
y_pos = np.arange(len(bars))
plt.bar(y_pos, height, color=['black', 'red', 'green', 'blue', 'cyan'])
plt.xticks(y_pos, bars)
plt.show()
```

<BarContainer object of 5 artists>

([<matplotlib.axis.XTick object at 0x0000000062B44EE0>, <matplotlib.axis.XTick object at 0x000000006

([<matplotlib.axis.XTick object at 0x0000000062CF96D0>, <matplotlib.axis.XTick object at 0x000000006

```
## <BarContainer object of 4 artists>
## <BarContainer object of 4 artists>
## <BarContainer object of 4 artists>
```



```
import numpy as np
import matplotlib.pyplot as plt

N = 5

boys = (20, 35, 30, 35, 27)
girls = (25, 32, 34, 20, 25)
ind = np.arange(N)
width = 0.35

plt.bar(ind, boys, width, label="boys")
plt.bar(ind, girls, width,bottom=boys, label="girls")

plt.ylabel('Contribution')
plt.title('Contribution by the teams')
plt.xticks(ind, ('T1', 'T2', 'T3', 'T4', 'T5'))
plt.yticks(np.arange(0, 81, 10))
plt.legend()
plt.show()
```

<BarContainer object of 5 artists>
<BarContainer object of 5 artists>
([<matplotlib.axis.XTick object at 0x0000000062CBF5B0>, <matplotlib.axis.XTick object at 0x0000000066</pre>

([<matplotlib.axis.YTick object at 0x0000000062A946A0>, <matplotlib.axis.YTick object at 0x000000006


```
import numpy as np
import matplotlib.pyplot as plt

width = [3, 12, 5, 18, 45]
bars = ('A', 'B', 'C', 'D', 'E')
x_pos = np.arange(len(bars))
plt.barh(x_pos, width, color=['black', 'red', 'green', 'blue', 'cyan'])
plt.yticks(x_pos, bars)
plt.show()
```

<BarContainer object of 5 artists>

([<matplotlib.axis.YTick object at 0x0000000062C23E50>, <matplotlib.axis.YTick object at 0x000000006


```
## <BarContainer object of 4 artists>
## <BarContainer object of 4 artists>
## <BarContainer object of 4 artists>
```

([<matplotlib.axis.YTick object at 0x0000000062A18490>, <matplotlib.axis.YTick object at 0x000000006


```
import matplotlib.pyplot as plt
N = 5
boys = (20, 35, 30, 35, 27)
girls = (25, 32, 34, 20, 25)
ind = np.arange(N)
height = 0.35
plt.barh(ind, boys, height, label="boys")
plt.barh(ind, girls, height, left=boys, label="girls")
plt.xlabel('Contribution')
plt.title('Contribution by the teams')
plt.yticks(ind, ('T1', 'T2', 'T3', 'T4', 'T5'))
plt.xticks(np.arange(0, 81, 10))
plt.legend()
plt.show()
## <BarContainer object of 5 artists>
## <BarContainer object of 5 artists>
## ([<matplotlib.axis.YTick object at 0x0000000060A29790>, <matplotlib.axis.YTick object at 0x000000006
## ([<matplotlib.axis.XTick object at 0x0000000060A14970>, <matplotlib.axis.XTick object at 0x000000006
```

import numpy as np

W	UKRES StuPhouy
PIONOL	YNOISOT C- PL
BAR	-> BARH
width	-> height
height	-> width
×	→ y
9	→ ×
bot tom	→ left
xtich-	→ ير لازدلاه
yticks	-> xticks

```
import matplotlib.pyplot as plt

dane = [1, 4, 5, 6, 3, 9, 7, 20]
plt.boxplot(dane)
plt.show()
```

{'whiskers': [<matplotlib.lines.Line2D object at 0x0000000062A2BC10>, <matplotlib.lines.Line2D object

Q1: Quartile 1, or median of the *left* data subset after dividing the original data set into 2 subsets via the median (25% of the data points fall below this threshold)

Q3: *Quartile 3*, median of the *right* data subset (75% of the data points fall below this threshold)

IQR: Interquartile-range, Q3 - Q1

Outliers: Data points are considered to be outliers if value < Q1 - 1.5 x IQR or value > Q3 + 1.5 x IQR

Sebastian Raschka, 2016

This work is licensed under a Creative Commons Attribution 4.0 International License

```
import matplotlib.pyplot as plt
import numpy as np

# Creating dataset
np.random.seed(10)
data = np.random.normal(100, 20, 200)

# Creating plot
plt.boxplot(data)

# show plot
plt.show()
```

{'whiskers': [<matplotlib.lines.Line2D object at 0x0000000062A9C550>, <matplotlib.lines.Line2D object

(array([6., 3., 6., 5.]), array([1., 5.25, 9.5, 13.75, 18.]), <BarContainer object of 4 articles are also array([6., 3., 6., 5.]), array([6., 5.]), array(


```
## [[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26
## Length: 12
## Categories (4, interval[int64, left]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]
## (array([5., 0., 0., 3., 0., 0., 3., 0., 0., 1.]), array([0., 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4</pre>
```



```
import pandas as pd
import matplotlib.pyplot as plt

ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]
plt.hist(ages, bins=bins)
plt.show()
```

(array([4., 4., 3., 1.]), array([18, 25, 35, 60, 100]), <BarContainer object of 4 artists>)

(array([5., 4., 8., 3.]), array([0, 5, 10, 15, 20]), <BarContainer object of 4 artists>)
([<matplotlib.axis.XTick object at 0x000000006189BB20>, <matplotlib.axis.XTick object at 0x0000000066</pre>

(array([5., 9., 17., 20.]), array([0, 5, 10, 15, 20]), <BarContainer object of 4 artists>)
([<matplotlib.axis.XTick object at 0x000000006189B730>, <matplotlib.axis.XTick object at 0x00000000066</pre>

(array([0.05, 0.04, 0.08, 0.03]), array([0, 5, 10, 15, 20]), <BarContainer object of 4 artists>)
([<matplotlib.axis.XTick object at 0x000000005EA30D30>, <matplotlib.axis.XTick object at 0x0000000005EA30D30>,

Wykres warstwowy:

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(123)

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
  df.plot.area()
  plt.show()
```


Wykres pierścieniowy:

```
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(345)
data = np.random.randint(20, 100, 6)
total = sum(data)
data_per = data/total*100
explode = (0.2, 0, 0, 0, 0, 0)
plt.pie(data_per, explode = explode, labels = [round(i,2) for i in (list(data_per))])
circle = plt.Circle((0,0), 0.7, color='white')
p=plt.gcf()
p.gca().add_artist(circle)
plt.show()
```


Helisa:

$$\begin{cases} x = a\cos(t) \\ y = a\sin(t) \\ z = at \end{cases}$$

```
import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = plt.axes(projection='3d')
t = np.linspace(0, 15, 1000)
a = 3
xline = a * np.sin(t)
yline = a * np.cos(t)
zline = a * t
ax.plot3D(xline, yline, zline)
plt.show()
```


Torus

$$p(\alpha, \beta) = ((R + r\cos\alpha)\cos\beta, (R + r\cos\alpha)\sin\beta, r\sin\alpha)$$

```
import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = plt.axes(projection='3d')
r = 1
R = 5
alpha = np.arange(0, 2 * np.pi, 0.1)
beta = np.arange(0, 2 * np.pi, 0.1)
alpha, beta = np.meshgrid(alpha, beta)
x = (R + r * np.cos(alpha)) * np.cos(beta)
y = (R + r * np.cos(alpha)) * np.sin(beta)
z = r * np.sin(alpha)
ax.plot_wireframe(x, y, z)
plt.show()
```


Źródło:

- https://www.geeksforgeeks.org/bar-plot-in-matplotlib/
- Dokumentacja https://matplotlib.org/
- https://datatofish.com/plot-histogram-python/
- $\bullet \ https://jakevdp.github.io/PythonDataScienceHandbook/04.12-three-dimensional-plotting.html\\$