GOALS 挑战赛技术报告

AUTOMATE 团队

摘要: 百度公司在 MICCAI202 举办了 GOALS 挑战赛,该挑战围绕 OCT 图像设计了环扫 OCT 图像的层分割任务(任务一)和青光眼的自动诊断任务(任务二)。AUTOMATE 团队参加了 GOALS 挑战赛并提交了预测结果。在任务一中使用深度学习全监督语义分割技术,为每个非背景类训练相对应的分割模型,最后对每个类别的预测结果进行叠加融合以得到最终的 OCT 层预测掩膜。在任务二中使用深度学习图像分类技术,训练轻量级图像分类网络实现青光眼判别。由于 GOALS 数据集的少样本特点,在以上方法中增加了在线数据增强、交叉验证、测试时增强和后处理等优化策略。AUTOMATE 团队的方法在 GOALS 挑战赛最终分数上排名第 4,其中任务一在初赛和决赛中的排名分别为 4、7,而任务二在初赛和决赛中均保持与若干队伍的并列第 1。

关键词: 数据增强,交叉验证,模型融合,测试时增强

1 方法

1.1 OCT 层分割

我们从全监督语义分割角度来处理 OCT 层分割任务。对于每个非背景类别(共3类),都训练一个分割模型用于对该类别进行预测,部分模型预测时进行测试时增强,以提高鲁棒性,最后通过后处理步骤以及各类别结果的融合得到最终分割结果。团队最初的方案为 One VS Rest,但赛程结束时提交的预测结果定格在方案衔接处,所以本方法中的各个模型实验细节并不统一。

数据。无离线的数据处理步骤,使用完整图像 RGB 三 通道格式作为模型输入。在模型训练期间进行在线数据增强,各个模型采用的在线数据增强方式是以下内容的子集: 随机尺度、随机旋转、随机水平翻转、随机亮度、随机对比度、随机饱和度、随机滤波。

数据划分示意图如 Figure 1 所示,有两种策略:① 5 折交叉验证法;② 留出法。两种划分方式在训练集和验证集上均保持青光眼类别分布的均衡,留出法中的验证集会经过水平翻转扩充一倍,以提高单份验证集选出模型的鲁棒性。

Figure 1 OCT 层分割数据划分

模型。首先定义 OCT 层分割任务中的类别。类别包含:背景、视网膜神经纤维层 RNFL、神经节细胞-内网状层 GCIPL 和脉络膜层 Choroid,并按顺序将以上类别依次命名为类别 0 至类别 3。

FC-HardNet 70[1]用于分割类别 1, U^2 -Net [2]用于分割类别 2,以 HRNet-W18[3]为骨干网络的 FCN 用于分割类别 3。其中, U^2 -Net 的数据划分方式为 5 折交叉验证①,而 HardNet 和 HRNet 则是留出法②。以上分割模型的网络结构均为标准结构,具体代码实现参考 PaddleSeg[4]。

推理。对于使用留出法的 HarDNet 和 HRNet,在对图像进行预测时,会额外对该图像水平翻转后的图像进行预测,两个预测结果的 Softmax 均值作为此类别的预测结果。对于 U^2 -Net,5 折交叉验证训练得到的 5 个模型分别对图

像进行预测得到 5 个预测结果, 对这些结果进行硬投票得到类别 2 的预测结果。

后处理。在推理阶段得到各个类别的预测掩膜后会进行后处理,以下所列后处理方式是比赛提交方案中曾采用的操作:保留最大连通域、填充孔洞、去除小连通域。

完成后处理操作后的各个类别掩膜会进行叠加。由于单类别的预测思路丢失了类别 1 和类别 2 相邻的先验信息,为了防止预测冲突,考虑到 U²-Net 使用交叉验证更具鲁棒性,设定类别 2 的覆盖优先级高于类别 1;在初步合并后,若类别 1 和类别 2 之间的存在背景区域,则将该区域填充为类别 1,得到最终的 0CT 分割预测结果。本方法在模型预测阶段的示意图如 Figure 2 所示。

Figure 2 OCT 层分割预测步骤

1.2 青光眼分类

数据。无离线的数据处理步骤,使用完整图像 RGB 三 通道格式作为模型输入。在模型训练期间进行在线数据增强,具体包括:随机水平翻转、随机裁剪。

数据划分示意图如 Figure 3 所示。采用 10 折交叉验证,其中训练集、验证集中的类别保持均衡。

Figure 3 青光眼分类数据划分

模型。轻量级图像分类网络 PP-LCNet [5]作为青光眼检测模型,该模型的网络结构示意图如 Figure 4 所示。 PP-LCNet 是针对 Intel CPU 设备及 MKLDNN 加速库的网络模型,主要由以下优化策略构成:采用更好的激活函数,在合适的位置{添加通道注意力 SE 模块,采用更大的卷积核},在全局平均池化层后采用更大的 1×1 卷积层。

Operator	Kernel Size	Stride	Input	Output	SE
Conv2D	3×3	2	$224^{2} \times 3$	$112^2 \times 16$	-
DepthSepConv	3×3	1	$112^{2} \times 16$	$112^{2} \times 32$	-
DepthSepConv	3×3	2	$112^{2} \times 32$	$56^{2} \times 64$	-
DepthSepConv	3×3	1	$56^{2} \times 64$	$56^{2} \times 64$	-
DepthSepConv	3×3	2	$56^{2} \times 64$	$28^{2} \times 128$	-
DepthSepConv	3×3	1	$28^{2} \times 128$	$28^{2} \times 128$	-
DepthSepConv	3×3	2	$28^{2} \times 128$	$14^{2} \times 256$	-
$5 \times DepthSepConv$	5×5	1	$14^{2} \times 256$	$14^{2} \times 256$	-
DepthSepConv	5×5	2	$14^{2} \times 256$	$7^2 \times 512$	✓
DepthSepConv	5×5	1	$7^2 \times 512$	$7^2 \times 512$	✓
GAP	7×7	1	$7^2 \times 512$	$1^2 \times 512$	-
Conv2d, NBN	1×1	1	$1^2 \times 512$	$1^2 \times 1280$	-

Figure 4 PP-LCNet 网络结构^[5]

本方法使用标准网络PPLCNet-1x,具体代码实现参考PaddleX[6]。需要注意的是,在比赛中提交的模型权重为训练时的最后一次保存权重,而不是交叉验证集上的最优权重。

推理。10 折交叉验证训练得到的 10 个 PP-LCNet 青光眼检测模型。每张待检测图像都会由这 10 个检测模型预测得到 10 个类别预测结果,最后对这 10 个类别预测结果,进行硬投票,得到该图像的最终预测类别。

2 实验

- 编程语言为 Python 3.7.4, 深度学习框架为 PaddlePaddle 2.2.2。
- 任务一采用的开发套件为 PaddleSeg 2.5.0, 任务二采用的开发套件为 PaddleX 2.1.0。

2.1 OCT 层分割

所用数据增强的参数配置如 Table 1 所列。其中,随机模糊 RandomBlur 被定义为从 3 种滤波方式中等概率选择一种对输入图像进行操作;归一化 Normalize 有两种系数,一种是初赛所有训练集图像的均值和标准差(100 张),另一种是本地留出法划分出的训练集中的均值和标准差(90 张)。

Table 1 OCT 层分割-数据增强配置表

Operations	HarDNet (RNFL)		U2-Net (GCIPL)		HRNet (Choroid)		
Operations	comments	prob	comments	prob	comments	prob	
ResizeStepScaling	/	/	/	/	uniform(min=0.75, max=1.25)	1.0	
RandomRotation	max_range=20	-	max_range=20	-	max_range=30	-	
RandomHorizontalFlip	-	0.5	-	0.5	-	0.5	
RandomBrightness	range=[0.8, 1.2]	0.5	range=[0.7, 1.3]	0.5	range=[0.8, 1.2]	0.5	
RandomContrast	range=[0.6, 1.4]	0.5	range=[0.7, 1.3]	0.5	range=[0.6, 1.4]	0.5	
RandomSaturation	range=[0.6, 1.4]	0.5	range=[0.7, 1.3]	0.5	range=[0.6, 1.4]	0.5	
RandomBlur	{gaussian, median, mean}	0.1	{gaussian, median, mean}	0.1	{gaussian, median, mean}	0.1	
(randomly select one)	filter	0.1	filter	0.1	filter		
Name - Para	mean=0.22894311		mean=0.2297999174664977		mean=0.22894311		
Normalize	std=0.16314624	_	std=0.16316278003205756	_	std=0.16314624		

模型训练期间的超参数和损失函数配置情况如 Table 2 所列。

Table 2 OCT 层分割-训练超参数表

Parameters	HarDNet	U2-Net	HRNet	
iters	5000	4000	5000	
batch size		2		
learning rate	0.0001	0.0005	0.0001	
optimizer		AdamW (weight decay=0.01)		
LR sche.	cosine (min=0)	warmup (step=200, start=0) &	warmup (step=250, start=0) &	
		cosine (min=0)	cosine (min=0)	
pretrained	CITYSCAPES	-	CITYSCAPES	
less	Weighted Dice Loss	Disc Loss	Weighted Dice Loss	
loss	(weight=[1, 1, 2, 1])	Dice Loss	(weight=[0.95, 1.05])	

模型预测时设置及后处理的方法如 Table 3 所列。其中,后处理方法在初赛和决赛中有所不同:初赛中对各类别掩膜保留最大连通域,而决赛中则是去除类别掩膜中的小区域和孔洞。

Table 3 OCT 层分割-模型预测与后处理的配置表

Schedule	HarDNet	U2-Net	HRNet	Post-processing
Preliminary	TTA	5 Fold Cross Validation	TTA	Keep the largest connected domain.
Finals	(Flip Horizontal)	(Hard-Voting)	(Flip Horizontal)	Remove small objects (threshold=128) &
Finals				Remove small holes (threshold=860)

2.2 青光眼分类

数据读取与在线增强操作的配置情况如 Table 4 所列。在训练阶段,输入图像会经过随机水平翻转和随机裁剪。 其中,随机裁剪的计算逻辑是:随机在原图像 S 上裁剪出一块区域 s (s 的面积除以 S 的面积 \in [0.3, 1.0]、s 的宽高比 \in [0.5, 2.0]),并将区域 s 缩放到固定尺度 224×224。在推理阶段,输入图像会被缩放至 352×256,然后在已缩放图像的中央裁剪出固定尺寸 224×224 作为输入。图像归一化系数采用 IMAGENET 数据集系数。

Table 4 青光眼分类-数据处理配置表

Mode	Operations	Comments		
	Random Horizontal Flip	prob=0.5		
		crop_size=224		
Train	RandomCrop	aspect_ratio=[0.5, 2.0]		
ITalli		scaling=[0.3, 1.0]		
	Normalina	mean=[0.485, 0.456, 0.406]		
	Normalize	std=[0.229, 0.224, 0.225]		
	ResizeByShort	short_size=256		
Infor	CenterCrop	crop_size=224		
Infer		mean=[0.485, 0.456, 0.406]		
	Normalize	std=[0.229, 0.224, 0.225]		

模型训练相关的超参数及配置情况如 Table 5 所列。

Table 5 青光眼分类-模型训练相关参数配置表

Parameters	Configs		
epoch	50		
batch size	10		
learning rate	0.0005		
ontimizor	SGD (momentum=0.9,		
optimizer	weight decay=3e-5)		
LR sche.	warm-up (epoch=5, start=0) &		
	cosine (min=0)		
pretrained	IMAGENET		
loss	Cross Entropy Loss		

3 评估

AUTOMATE 团队方法在 GOALS 挑战赛中各项评估指标的表现如 Table 6 所列。

Table 6 GOALS 挑战赛评估结果表

Tasks	La da [7]	Preliminary		Finals		GOALS
Tasks	Index [7]	Details	Score (Rank)	Details	Score (Rank)	Score (Rank)
	RNFL_DICE	0.9481	6.83262 (4th)	0.9561	6.86407 (7th)	
	RNFL_ED	1.0922		1.1014		
OCT Lover Segmentaion	GCIPL_DICE	0.8909		0.8966		
OCT Layer Segmentaion	GCIPL_ED	1.2546		1.2848		
	Choroid_DICE	0.9454		0.9569		
	Choroid_ED	1.7114		1.6767		8.85463 (4th)
Glaucoma Classification	AUC	1		1		
	F1	1	2 (1st)	1	2 (1st)	
	ACC	1		1		
	SEN	1		1		
	SPE	1		1		

4 参考文献

- [1] Chao, Ping, et al. "Hardnet: A low memory traffic network." Proceedings of the IEEE/CVF international conference on computer vision. 2019.
- [2] Qin, Xuebin, et al. "U2-Net: Going deeper with nested U-structure for salient object detection." Pattern recognition 106 (2020): 107404.
- [3] Wang, Jingdong, et al. "Deep high-resolution representation learning for visual recognition." IEEE transactions on pattern analysis and machine intelligence 43.10 (2020): 3349-3364.
- [4] "GitHub PaddlePaddle/PaddleSeg at release/2.5." https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.5.
- [5] Cui, Cheng, et al. "PP-LCNet: A Lightweight CPU Convolutional Neural Network." arXiv preprint arXiv:2109.15099 (2021).
- [6] "GitHub PaddlePaddle/PaddleX at release/2.1." https://github.com/PaddlePaddle/PaddleX/tree/release/2.1.
- [7] Fang, Huihui, et al. "Dataset and Evaluation algorithm design for GOALS Challenge." International Workshop on Ophthalmic Medical Image Analysis. Springer, Cham, 2022.