Propensity Score Weighting using machine learning

Young Geun Kim ygeunkim.github.io

2019711358, Department of Statistics

03 Dec, 2020

Propensity Score Weighting

Introduction

Propensity Score Estimation

Evaluation

Related Contents

Introduction

Introduction

Reviewed Paper

Estimation

Reviewed and apply Lee et al. (2010): estimate propensity score using

- ► Logistic regression: glm()
- Random forests: randomForest::randomForest()
- SVM (Pirracchio et al., 2014): e1071::svm()

Evaluation

- Average standardized absolute mean distance
- Emprical distribution of IPTW
- ► IPW and SIPW

Custom Package

```
# remotes::install_github("ygeunkim/propensityml")
library(propensityml)
```


Simulation study

Simulation setting by Setoguchi et al. (2008):

- ▶ 10 covariates: confounders, exposure predictors, outcome predictors
- Treatment, (true) treatment probability
- Continuous outcome

A: exposure
Y: outcome
W₁-W₄: confounders
W₃-W₇: exposure predictors
W₈-W₁₀: outcome predictors

Binary variables: A, W_1 , W_3 , W_6 , W_8 , W_9 Continuous variables: Y, W_2 , W_4 , W_7 , W_{10}

Correlation Matrix

of covariates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0.2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0.9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0.2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0.9 & 0 \\ 0.2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.9 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0.2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0.9 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0.9 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Scenarios

1. Additivity and linearity:

$$P(Z = 1 \mid X_i) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 X_1 + \dots + \beta_7 X_7))}$$

2. Moderate non-linearity: 3 quadratic term

$$P(Z = 1 \mid X_i) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 X_1 + \dots + \beta_7 X_7 + \beta_2 X_2^2))}$$

- 3. Moderate non-linearity: 10 two-way interaction terms
- **4.** Moderate non-additivity and non-linearity: *10 two-way interaction terms and 3 quadratic terms*

Here,

$$(\beta_0, \beta_1, \dots, \beta_7)^T = (0, 0.8, -0.25, 0.6, -0.4, -0.8, -0.5, 0.7)^T$$

Outcome

As in Figure @ref(fig:setoguchifig),

$$Y = \alpha_0 + \alpha_1 X_1 + \dots + \alpha_4 X_4 + \alpha_5 X_8 + \dots + \alpha_7 X_{10} + \gamma Z$$

where

- $(\alpha_0, \alpha_1, \dots, \alpha_7)^T = (-3.85, 0.3, -0.36, -73, -0.2, 0.71, -0.19, 0.26)^T$
- $ightharpoonup \gamma = -0.4$: True effect

Function to reproduce Setoguchi et al. (2008)

```
sim outcome(n = 1000, covmat = build covariate()) %>%
 glimpse(width = 50)
#> Rows: 1.000
#> Columns: 13
#> $ w1
                  <fct> 0, 1, 1, 1, 0, 1, 1, 1, ...
#> $ w2
                  <dbl> -0.2801, 0.3065, 0.6329...
#> $ w3
                  <fct> 0, 0, 0, 1, 1, 1, 1, 1, ...
#> $ w4
                  <dbl> 1.6575, -1.4404, -1.939...
#> $ w5
                  <fct> 1, 1, 1, 0, 0, 1, 0, 0, ...
#> $ w6
                  <fct> 0, 1, 1, 0, 0, 1, 1, 0,...
#> $ w7
                  <dbl> 0.4874, -0.0162, -0.155...
#> $ w8
                  <fct> 1, 1, 0, 0, 1, 0, 1, 1,...
#> $ w9
                  <fct> 1, 0, 0, 1, 1, 0, 1, 0,...
#> $ w10
                 <dbl> -0.3054, 0.5939, 0.4179...
#> $ exposure <fct> 1, 1, 1, 1, 1, 0, 1, 1,...
#> $ u
           <dbl> -120.253, 0.942, -51.95...
#> $ exposure_prob <dbl> 0.5000, 0.9072, 0.3465,...
```

Sample Sizes

Monte Carlo simulation

► For simulation, 1000 replicates

Sample size

- **1000**
- **1500**

Propensity Score Estimation

Propensity Score Estimation

Covariate Balance

For example,

```
compute balance(
 small list[mcname == 1 & scenario == "A"],
 treatment = "exposure", trt_indicator = 1, outcome = "y",
 exclude = c("exposure_prob", "mcname", "scenario")
  variable balance
#>
     w1 0.024098
#> 2: w2 -0.059650
#> 3:
     w3 0.022855
#> 4:
      w4 −0.077968
     w5 0.037466
#> 6:
        w6 −0.092068
#> 7:
      w7 0.069232
#> 8:
      w8 0.039684
#> 9:
        w9 -0.000728
          w10 0.039634
#> 10:
```

Lee et al. (2010): under 0.2 is acceptable.

Propensity Score Estimation

Logistic Regression

__ Evaluation

Evaluation

Average standardized absolute mean distance (ASAM)

- Covariate balancing: standardized mean differece, which is standardized by pooled sd
- Average the abs(covariate balancing) across all the covariates
- ► Lower: treatment and control groups are more similar w.r.t. the given covariates.

```
doMC::registerDoMC(cores = 8)
logit_asam <-
small_list %>%
compute_asam(
   treatment = "exposure", outcome = "y", exclude = "exposure_prob",
   formula = exposure ~ . - y - exposure_prob, method = "logit",
   mc_col = "mcname", sc_col = "scenario", parallel = TRUE
)
```

ASAM for each model

Table 1: ASAM performance for small

Scenarios	Logistic regression	Random forests	SVM
Α	0.011	0.011	0.010
В	0.032	0.029	0.042
F	0.034	0.033	0.041
G	0.077	0.074	0.081

Effect estimator

IPTW

 Estimating ATE: using inverse probability of treatment weighing (IPTW)

$$IPTW_i = \frac{Z_i}{\hat{\mathbf{e}}_i} + \frac{1 - Z_i}{1 - \hat{\mathbf{e}}_i}$$

Evaluation

- Empirical distribution
 - Histogram
 - ▶ Bias: difference between true effect ($\gamma = -0.4$)
 - Standard deviation
 - Confidence interval

How it works?

```
doMC::registerDoMC(cores = 8)
iptw_logit <-
    small_list %>%
    add_iptw(
    treatment = "exposure",
    formula = exposure ~ . - y - exposure_prob, method = ":
    mc_col = "mcname", sc_col = "scenario", parallel = TRUI
)
```

Empirical Distribution

Figure 2: Empirical Distribution of IPTW

Table

```
iptw_logit[,
            estimate = mean(iptw),
            bias = mean(abs(iptw)) / .4,
            se = sd(iptw),
           lb = quantile(iptw, .25),
           ub = quantile(iptw, .75)
          by = scenario]
#> scenario estimate bias se lb ub
#> 1:
                 2 5 0.215 1.85 2.13
                2 5 0.420 1.68 2.25
         B
#> 2:
                2 5 0.340 1.75 2.19
#> 3:
                   2 5 0.607 1.54 2.34
#> 4:
```

Other Models

Weighting

Methods

- Inverse probability weighting (IPW): weighted regression of outcome on treatment $\hat{\Delta}_{IPW}$
- ▶ Stabilized inverse probability weighting (SIPW): $\hat{\Delta}_{SIPW}$

```
doMC::registerDoMC(cores = 8)
ipw_logit <-
small_list %>%
compute_lpw(
    treatment = "exposure", outcome = "y",
    formula = exposure ~ . - y - exposure_prob, method = "logit",
    mc_col = "mcname", sc_col = "scenario", parallel = TRUE
)
```

Our data

- weight of treatment: 1
- weight of control: $\frac{p_i}{1-p_i}$
- ► If ê is proper
 - then two weights are similar
 - ► ATE estimate: difference of weighted means

Empirical Distribution of IPW

#> Warning: Removed 1 rows containing non-finite values (s

Figure 3: Empirical Distribution of IPW

Empirical Distribution of SIPW

Figure 4: Empirical Distribution of SIPW

Related Contents

Related Contents

About this project

Project repository

https://github.com/ygeunkim/psweighting-ml

Project package

https://github.com/ygeunkim/propensityml

References I

- Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. *Statistics in Medicine*, 29(3):337–346.
- Pirracchio, R., Petersen, M. L., and van der Laan, M. (2014). Improving propensity score estimators' robustness to model misspecification using super learner. *American Journal of Epidemiology*, 181(2):108–119.
- Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., and Cook, E. F. (2008). Evaluating uses of data mining techniques in propensity score estimation: a simulation study. *Pharmacoepidemiology and Drug Safety*, 17(6):546–555.