HOMEWORK 10: GRAND FINALE DUE: WEDNESDAY MAY 8TH

- 1) Recall every Noetherian ring R has only finitely many associated primes (Theorem 27.3). Let $W = \{r \in R \mid r \text{ is not a zero-divisor}\}$. Show that $W^{-1}R$ has only finitely many maximal ideals.
- 2) Prove the following Lemma using ideas of Lemma 29.4:

Lemma 0.1 (Fitting Lemma). If $\varphi: M \to M$ is a homomorphism, with M a Noetherian Module, show that there exists $n \gg 0$ such that $\operatorname{im}(\varphi^n) \cap \ker(\varphi^n) = 0$.

- 3) Show that if R is a Noetherian local ring with maximal ideal \mathfrak{m} , then \mathfrak{m} is principal if and only if $\mathfrak{m}/\mathfrak{m}^2$ is a 1-dimensional \mathbb{R}/\mathfrak{m} -vector space. This allows us to say R is a DVR if and only if R is local Noetherian with $\operatorname{Spec}(R) = \{0, \mathfrak{m}\}$ and $\mathfrak{m}/\mathfrak{m}^2$ a 1-dimensional vector space.
- 4) If R = K[x, y] with K algebraically closed, let f is an irreducible polynomial of the form

$$f = f' + f''$$

where f' = ax + by and $f'' \in \langle x, y \rangle^2$. Consider $\mathfrak{m} = \langle x, y \rangle \subseteq A = R/\langle f \rangle$. Show that $A_{\mathfrak{m}}$ is a DVR if and only if $f' \neq 0$.

This shows f is smooth (in the case of \mathbb{C}) at $P = (0,0) \in K^2$ if and only if $A_{\mathfrak{m}}$ is a DVR.

- 5) If R is an intermediate ring $K[x] \subseteq R \subseteq K[x]$ which is local, maximal ideal $\langle x \rangle$, show R is a DVR and thus in particular Noetherian.
- 6) Given R a DVR with maximal ideal $\mathfrak{m} = \langle t \rangle$, consider the sequence

$$\dots \xrightarrow{\pi_4} R/\mathfrak{m}^3 \xrightarrow{\pi_3} R/\mathfrak{m}^2 \xrightarrow{\pi_2} R/\mathfrak{m}$$

of ring homomorphisms. Given such an arrangement, we can take the inverse limit:

$$\hat{R} = \varprojlim(R/\mathfrak{m}^n) = \{(a_1, a_2, \ldots) \in \prod_{n=1}^{\infty} R/\mathfrak{m}^n \mid \pi_i(a_i) = a_{i-1} \ \forall i \ge 2\}$$

This is called the **completion** of R with respect to \mathfrak{m} , which is a ring with coordinate-wise addition and multiplication. Show \hat{R} is also a DVR with maximal ideal $\mathfrak{m} = \langle \hat{t} \rangle$, where $\hat{t} = (t, t, t, t, \ldots)$.

¹This is what it means to be **regular** for dimension 1 rings.