

Mathematical Formulas

A-1 Quadratic Formula

If
$$ax^{2} + bx + c = 0$$
then
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

A-2 Binomial Expansion

$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)}{2!}x^2 \pm \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$
$$(x+y)^n = x^n \left(1 + \frac{y}{x}\right)^n = x^n \left(1 + n\frac{y}{x} + \frac{n(n-1)}{2!}\frac{y^2}{x^2} + \cdots\right)$$

A-3 Other Expansions

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots$$

$$\sin \theta = \theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \cdots$$

$$\cos \theta = 1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \cdots$$

$$\tan \theta = \theta + \frac{\theta^{3}}{3} + \frac{2}{15}\theta^{5} + \cdots \quad |\theta| < \frac{\pi}{2}$$
In general: $f(x) = f(0) + \left(\frac{df}{dx}\right)_{0} x + \left(\frac{d^{2}f}{dx^{2}}\right)_{0} \frac{x^{2}}{2!} + \cdots$

A-4 Exponents

$$(a^{n})(a^{m}) = a^{n+m}$$
 $\frac{1}{a^{n}} = a^{-n}$ $(a^{n})(b^{n}) = (ab)^{n}$ $a^{n}a^{-n} = a^{0} = 1$ $a^{\frac{1}{2}} = \sqrt{a}$

A-5 Areas and Volumes

Object	Surface area	Volume
Circle, radius r	πr^2	_
Sphere, radius r	$4\pi r^2$	$\frac{4}{3}\pi r^3$
Right circular cylinder, radius r , height h Right circular cone, radius r , height h	$2\pi r^2 + 2\pi rh$ $\pi r^2 + \pi r \sqrt{r^2 + h^2}$	$\pi r^2 h$ $\frac{1}{3}\pi r^2 h$

A-6 Plane Geometry

FIGURE A-1 If line a_1 is parallel to line a_2 , then $\theta_1 = \theta_2$.

FIGURE A-2 If $a_1 \perp a_2$ and $b_1 \perp b_2$, then $\theta_1 = \theta_2$.

- 3. The sum of the angles in any plane triangle is 180°.
- 4. Pythagorean theorem:

In any right triangle (one angle = 90°) of sides a, b, and c:

$$a^2 + b^2 = c^2$$

FIGURE A-3

where c is the length of the hypotenuse (opposite the 90° angle).

- 5. Similar triangles: Two triangles are said to be similar if all three of their angles are equal (in Fig. A-4, $\theta_1 = \phi_1$, $\theta_2 = \phi_2$, and $\theta_3 = \phi_3$). Similar triangles can have different sizes and different orientations.
 - (a) Two triangles are similar if any two of their angles are equal. (This follows because the third angles must also be equal since the sum of the angles of a triangle is 180°.)
 - (b) The ratios of corresponding sides of two similar triangles are equal (Fig. A-4):

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}.$$

- **6.** Congruent triangles: Two triangles are congruent if one can be placed precisely on top of the other. That is, they are similar triangles and they have the same size. Two triangles are congruent if any of the following holds:
 - (a) The three corresponding sides are equal.
 - (b) Two sides and the enclosed angle are equal ("side-angle-side").
 - (c) Two angles and the enclosed side are equal ("angle-side-angle").

A-7 Logarithms

Logarithms are defined in the following way:

if
$$y = A^x$$
, then $x = \log_A y$.

That is, the logarithm of a number y to the base A is that number which, as the exponent of A, gives back the number y. For **common logarithms**, the base is 10, so

if
$$y = 10^x$$
, then $x = \log y$.

The subscript 10 on \log_{10} is usually omitted when dealing with common logs. Another important base is the exponential base e = 2.718..., a natural number. Such logarithms are called **natural logarithms** and are written ln. Thus,

if
$$y = e^x$$
, then $x = \ln y$.

For any number y, the two types of logarithm are related by

$$\ln y = 2.3026 \log y$$
.

Some simple rules for logarithms are as follows:

$$\log(ab) = \log a + \log b, \tag{i}$$

which is true because if $a = 10^n$ and $b = 10^m$, then $ab = 10^{n+m}$. From the

definition of logarithm, $\log a = n$, $\log b = m$, and $\log(ab) = n + m$; hence, $\log(ab) = n + m = \log a + \log b$. In a similar way, we can show that

$$\log\left(\frac{a}{b}\right) = \log a - \log b \tag{ii}$$

and

$$\log a^n = n \log a. {(iii)}$$

These three rules apply to any kind of logarithm.

If you do not have a calculator that calculates logs, you can easily use a log table, such as the small one shown here (Table A-1): the number N whose log we want is given to two digits. The first digit is in the vertical column to the left, the second digit is in the horizontal row across the top. For example, Table A-1 tells us that $\log 1.0 = 0.000$, $\log 1.1 = 0.041$, and $\log 4.1 = 0.613$. Table A-1 does not include the decimal point. The Table gives logs for numbers between 1.0 and 9.9. For larger or smaller numbers, we use rule (i) above, $\log(ab) = \log a + \log b$. For example, $\log(380) = \log(3.8 \times 10^2) = \log(3.8) + \log(10^2)$. From the Table, $\log 3.8 = 0.580$; and from rule (iii) above $\log(10^2) = 2\log(10) = 2$, since log(10) = 1. [This follows from the definition of the logarithm: if $10 = 10^1$, then $1 = \log(10)$.] Thus,

$$\log(380) = \log(3.8) + \log(10^2)$$

= 0.580 + 2
= 2.580.

Similarly,

$$\log(0.081) = \log(8.1) + \log(10^{-2})$$

= 0.908 - 2 = -1.092.

The reverse process of finding the number N whose log is, say, 2.670, is called "taking the antilogarithm." To do so, we separate our number 2.670 into two parts, making the separation at the decimal point:

$$\log N = 2.670 = 2 + 0.670$$
$$= \log 10^2 + 0.670.$$

We now look at Table A-1 to see what number has its log equal to 0.670; none does, so we must **interpolate**: we see that $\log 4.6 = 0.663$ and $\log 4.7 = 0.672$. So the number we want is between 4.6 and 4.7, and closer to the latter by $\frac{7}{9}$. Approximately we can say that $\log 4.68 = 0.670$. Thus

$$\log N = 2 + 0.670$$

= $\log(10^2) + \log(4.68) = \log(4.68 \times 10^2),$

so $N = 4.68 \times 10^2 = 468$.

If the given logarithm is negative, say, -2.180, we proceed as follows:

$$\log N = -2.180 = -3 + 0.820$$

= $\log 10^{-3} + \log 6.6 = \log 6.6 \times 10^{-3}$,

so $N = 6.6 \times 10^{-3}$. Notice that we added to our given logarithm the next largest integer (3 in this case) so that we have an integer, plus a decimal number between 0 and 1.0 whose antilogarithm can be looked up in the Table.

TABLI	E A-1	Short 1	Table o	f Com	mon L	ogarith	ms			
N	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	000	041	079	114	146	176	204	230	255	279
2	301	322	342	362	380	398	415	431	447	462
3	477	491	505	519	531	544	556	568	580	591
4	602	613	623	633	643	653	663	672	681	690
5	699	708	716	724	732	740	748	756	763	771
6	778	785	792	799	806	813	820	826	833	839
7	845	851	857	863	869	875	881	886	892	898
8	903	908	914	919	924	929	935	940	944	949
9	954	959	964	968	973	978	982	987	991	996

A-8 Vectors

Vector addition is covered in Sections 3–2 to 3–5. Vector multiplication is covered in Sections 3–3, 7–2, and 11–2.

θ 90° \

Second Quadrant

 $\cos\theta > 0$

 $\tan \theta < 0$

FIGURE A-5

A-9 Trigonometric Functions and Identities

The trigonometric functions are defined as follows (see Fig. A-5, o = side opposite, a = side adjacent, h = hypotenuse. Values are given in Table A-2):

$$\sin \theta = \frac{o}{h} \qquad \qquad \csc \theta = \frac{1}{\sin \theta} = \frac{h}{o}$$

$$\cos \theta = \frac{a}{h} \qquad \qquad \sec \theta = \frac{1}{\cos \theta} = \frac{h}{a}$$

$$\tan \theta = \frac{o}{a} = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{1}{\tan \theta} = \frac{a}{o}$$

and recall that

$$a^2 + o^2 = h^2$$

[Pythagorean theorem].

Figure A-6 shows the signs (+ or -) that cosine, sine, and tangent take on for angles θ in the four quadrants (0° to 360°). Note that angles are measured counterclockwise from the x axis as shown; negative angles are measured from below the x axis, clockwise: for example, $-30^{\circ} = +330^{\circ}$, and so on.

The following are some useful identities among the trigonometric functions:

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sec^2\theta - \tan^2\theta = 1, \quad \csc^2\theta - \cot^2\theta = 1$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$$

$$\sin(A \pm B) = \sin A\cos B \pm \cos A\sin B$$

$$\cos(A \pm B) = \cos A\cos B \mp \sin A\sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin(180^\circ - \theta) = \sin\theta$$

$$\cos(180^\circ - \theta) = -\cos\theta$$

$$\sin(90^\circ - \theta) = \cos\theta$$

$$\cos(90^\circ - \theta) = \sin\theta$$

$$\cos(-\theta) = -\sin\theta$$

$$\cos(-\theta) = -\sin\theta$$

$$\sin(-\theta) = -\tan\theta$$

$$\sin(-\theta) = -\tan\theta$$

$$\sin\frac{1}{2}\theta = \sqrt{\frac{1 - \cos\theta}{2}}, \quad \cos\frac{1}{2}\theta = \sqrt{\frac{1 + \cos\theta}{2}}, \quad \tan\frac{1}{2}\theta = \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$$

$$\sin A \pm \sin B = 2\sin\left(\frac{A \pm B}{2}\right)\cos\left(\frac{A \mp B}{2}\right).$$
For any triangle (see Fig. A-7):

FIGURE A-7

 $\cos \theta < 0$ $\tan \theta > 0$

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$
 [Law of sines]
$$c^2 = a^2 + b^2 - 2ab\cos \gamma.$$
 [Law of cosines]

Values of sine, cosine, tangent are given in Table A-2.

FIGURE A-6 First Quadrant

TABLE A-2 Trigonometric Table: Numerical Values of Sin, Cos, Tan									
Angle	Angle				Angle	Angle			
in Degrees	in Radians	Sine	Cosine	Tangent	in Degrees	in Radians	Sine	Cosine	Tangent
0°	0.000	0.000	1.000	0.000					
0 1°	0.000	0.000	1.000	0.000	46°	0.803	0.719	0.695	1.036
2°	0.017	0.017	0.999	0.017	40 47°	0.803	0.713	0.682	1.072
3°	0.052	0.052	0.999	0.052	48°	0.838	0.743	0.669	1.111
4°	0.070	0.070	0.998	0.070	49°	0.855	0.755	0.656	1.150
5°	0.087	0.087	0.996	0.087	50°	0.873	0.766	0.643	1.192
C 0	0.105	0.105	0.005	0.105	510	0.000	0.777	0.600	
6°	0.105	0.105	0.995	0.105	51°	0.890	0.777	0.629	1.235
7°	0.122	0.122	0.993	0.123	52°	0.908	0.788	0.616	1.280
8° 9°	0.140	0.139	0.990	0.141	53° 54°	0.925	0.799	0.602	1.327
10°	0.157 0.175	0.156	0.988	0.158 0.176	55°	0.942 0.960	0.809 0.819	0.588	1.376
10-	0.175	0.174	0.985	0.176	33-	0.900	0.819	0.574	1.428
11°	0.192	0.191	0.982	0.194	56°	0.977	0.829	0.559	1.483
12°	0.209	0.208	0.978	0.213	57°	0.995	0.839	0.545	1.540
13°	0.227	0.225	0.974	0.231	58°	1.012	0.848	0.530	1.600
14°	0.244	0.242	0.970	0.249	59°	1.030	0.857	0.515	1.664
15°	0.262	0.259	0.966	0.268	60°	1.047	0.866	0.500	1.732
16°	0.279	0.276	0.961	0.287	61°	1.065	0.875	0.485	1.804
1 7 °	0.297	0.292	0.956	0.306	62°	1.082	0.883	0.469	1.881
18°	0.314	0.309	0.951	0.325	63°	1.100	0.891	0.454	1.963
19°	0.332	0.326	0.946	0.344	64°	1.117	0.899	0.438	2.050
20°	0.349	0.342	0.940	0.364	65°	1.134	0.906	0.423	2.145
21°	0.367	0.358	0.934	0.384	66°	1.152	0.914	0.407	2.246
22°	0.384	0.375	0.927	0.404	67°	1.169	0.921	0.391	2.356
23°	0.401	0.391	0.921	0.424	68°	1.187	0.927	0.375	2.475
24°	0.419	0.407	0.914	0.445	69°	1.204	0.934	0.358	2.605
25°	0.436	0.423	0.906	0.466	70°	1.222	0.940	0.342	2.747
26°	0.454	0.438	0.899	0.488	71°	1.239	0.946	0.326	2.904
20°	0.434	0.454	0.899	0.466	71 72°	1.257	0.940	0.320	3.078
28°	0.471	0.454	0.883	0.510	72 73°	1.274	0.951	0.309	3.078
29°	0.506	0.485	0.875	0.554	74°	1.292	0.961	0.276	3.487
30°	0.524	0.500	0.866	0.577	75°	1.309	0.966	0.259	3.732
31°	0.541	0.515	0.857	0.601	76°	1.326	0.970	0.242	4.011
32°	0.559	0.530	0.848	0.625	77°	1.344	0.974	0.225	4.331
33°	0.576	0.545	0.839	0.649	78°	1.361	0.978	0.208	4.705
34°	0.593	0.559	0.829	0.675	79°	1.379	0.982	0.191	5.145
35°	0.611	0.574	0.819	0.700	80°	1.396	0.985	0.174	5.671
36°	0.628	0.588	0.809	0.727	81°	1.414	0.988	0.156	6.314
37°	0.646	0.602	0.799	0.754	82°	1.431	0.990	0.139	7.115
38°	0.663	0.616	0.788	0.781	83°	1.449	0.993	0.122	8.144
39°	0.681	0.629	0.777	0.810	84°	1.466	0.995	0.105	9.514
40°	0.698	0.643	0.766	0.839	85°	1.484	0.996	0.087	11.43
41°	0.716	0.656	0.755	0.869	86°	1.501	0.998	0.070	14.301
42°	0.733	0.669	0.743	0.900	87°	1.518	0.999	0.052	19.081
43°	0.750	0.682	0.731	0.933	88°	1.536	0.999	0.035	28.636
44°	0.768	0.695	0.719	0.966	89°	1.553	1.000	0.017	57.290
45°	0.785	0.707	0.707	1.000	90°	1.571	1.000	0.000	∞

Derivatives and Integrals

B-1 Derivatives: General Rules

(See also Section 2-3.)

B–2 Derivatives: Particular Functions

$$\frac{da}{dx} = 0 [a = constant]$$

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}\sin ax = a\cos ax$$

$$\frac{d}{dx}\cos ax = -a\sin ax$$

$$\frac{d}{dx}\tan ax = a\sec^2 ax$$

$$\frac{d}{dx}\ln ax = \frac{1}{x}$$

$$\frac{d}{dx}e^{ax} = ae^{ax}$$

B–3 Indefinite Integrals: General Rules

(See also Section 7-3.)
$$\int dx = x$$

$$\int a f(x) dx = a \int f(x) dx \qquad [a = \text{constant}]$$

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int u dv = uv - \int v du \qquad [integration by parts: see also B-6]$$

B–4 Indefinite Integrals: Particular Functions

(An arbitrary constant can be added to the right side of each equation.)

$$\int a \, dx = ax \qquad [a = \text{constant}] \qquad \int \frac{dx}{(x^2 \pm a^2)^2} = \frac{\pm x}{a^2 \sqrt{x^2 \pm a^2}}$$

$$\int x^m \, dx = \frac{1}{m+1} x^{m+1} \qquad [m \neq -1] \qquad \int \frac{x \, dx}{(x^2 \pm a^2)^2} = \frac{-1}{\sqrt{x^2 \pm a^2}}$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax \qquad \int \sin^2 ax \, dx = \frac{x}{2} - \frac{\sin 2ax}{4a}$$

$$\int \cos ax \, dx = \frac{1}{a} \ln|\sec ax| \qquad \int xe^{-ax} \, dx = -\frac{e^{-ax}}{a^2} (ax + 1)$$

$$\int \frac{1}{x} \, dx = \ln x \qquad \int xe^{-ax} \, dx = -\frac{e^{-ax}}{a^3} (a^2x^2 + 2ax + 2)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{x^2 \pm a^2}) \qquad \int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{x^2 \pm a^2}) \qquad [x^2 > a^2]$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \sin^{-1}\left(\frac{x}{a}\right) = -\cos^{-1}\left(\frac{x}{a}\right) \qquad [if \ x^2 \le a^2]$$

B-5 A Few Definite Integrals

$$\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}} \qquad \qquad \int_{0}^{\infty} x^{2} e^{-ax^{2}} dx = \sqrt{\frac{\pi}{16a^{3}}}$$

$$\int_{0}^{\infty} e^{-ax^{2}} dx = \sqrt{\frac{\pi}{4a}} \qquad \qquad \int_{0}^{\infty} x^{3} e^{-ax^{2}} dx = \frac{1}{2a^{2}}$$

$$\int_{0}^{\infty} x e^{-ax^{2}} dx = \frac{1}{2a} \qquad \qquad \int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}$$

B-6 Integration by Parts

Sometimes a difficult integral can be simplified by carefully choosing the functions u and v in the identity:

$$\int u \, dv = uv - \int v \, du. \qquad [Integration by parts]$$

This identity follows from the property of derivatives

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

or as differentials: d(uv) = u dv + v du.

For example $\int xe^{-x} dx$ can be integrated by choosing u = x and $dv = e^{-x} dx$ in the "integration by parts" equation above:

$$\int xe^{-x} dx = (x)(-e^{-x}) + \int e^{-x} dx$$
$$= -xe^{-x} - e^{-x} = -(x+1)e^{-x}.$$

More on Dimensional Analysis

An important use of dimensional analysis (Section 1-7) is to obtain the form of an equation: how one quantity depends on others. To take a concrete example, let us try to find an expression for the period T of a simple pendulum. First, we try to figure out what T could depend on, and make a list of these variables. It might depend on its length ℓ , on the mass m of the bob, on the angle of swing θ , and on the acceleration due to gravity, g. It might also depend on air resistance (we would use the viscosity of air), the gravitational pull of the Moon, and so on; but everyday experience suggests that the Earth's gravity is the major force involved, so we ignore the other possible forces. So let us assume that T is a function of ℓ , m, θ , and g, and that each of these factors is present to some power:

$$T = C\ell^w m^x \theta^y g^z.$$

C is a dimensionless constant, and w, x, y, and z are exponents we want to solve for. We now write down the dimensional equation (Section 1-7) for this relationship:

$$[T] = [L]^w [M]^x [L/T^2]^z.$$

Because θ has no dimensions (a radian is a length divided by a length—see Eq. 10-1a), it does not appear. We simplify and obtain

$$[T] = [L]^{w+z}[M]^x[T]^{-2z}$$

To have dimensional consistency, we must have

$$1 = -2z
0 = w + z
0 = x.$$

We solve these equations and find that $z = -\frac{1}{2}$, $w = \frac{1}{2}$, and x = 0. Thus our desired equation must be

$$T = C\sqrt{\ell/g} f(\theta), \tag{C-1}$$

where $f(\theta)$ is some function of θ that we cannot determine using this technique. Nor can we determine in this way the dimensionless constant C. (To obtain C and f, we would have to do an analysis such as that in Chapter 14 using Newton's laws, which reveals that $C = 2\pi$ and $f \approx 1$ for small θ). But look what we have found, using only dimensional consistency. We obtained the form of the expression that relates the period of a simple pendulum to the major variables of the situation, ℓ and g (see Eq. 14–12c), and saw that it does not depend on the mass m.

How did we do it? And how useful is this technique? Basically, we had to use our intuition as to which variables were important and which were not. This is not always easy, and often requires a lot of insight. As to usefulness, the final result in our example could have been obtained from Newton's laws, as in Chapter 14. But in many physical situations, such a derivation from other laws cannot be done. In those situations, dimensional analysis can be a powerful tool.

In the end, any expression derived by the use of dimensional analysis (or by any other means, for that matter) must be checked against experiment. For example, in our derivation of Eq. C-1, we can compare the periods of two pendulums of different lengths, ℓ_1 and ℓ_2 , whose amplitudes (θ) are the same. For, using Eq. C-1, we would have

$$\frac{T_1}{T_2} = \frac{C\sqrt{\ell_1/g} f(\theta)}{C\sqrt{\ell_2/g} f(\theta)} = \sqrt{\frac{\ell_1}{\ell_2}}.$$

Because C and $f(\theta)$ are the same for both pendula, they cancel out, so we can experimentally determine if the ratio of the periods varies as the ratio of the square roots of the lengths. This comparison to experiment checks our derivation, at least in part; C and $f(\theta)$ could be determined by further experiments.

Gravitational Force due to a Spherical Mass Distribution

In Chapter 6 we stated that the gravitational force exerted by or on a uniform sphere acts as if all the mass of the sphere were concentrated at its center, if the other object (exerting or feeling the force) is outside the sphere. In other words, the gravitational force that a uniform sphere exerts on a particle outside it is

$$F = G \frac{mM}{r^2}$$
, [m outside sphere of mass M]

where m is the mass of the particle, M the mass of the sphere, and r the distance of m from the center of the sphere. Now we will derive this result. We will use the concepts of infinitesimally small quantities and integration.

First we consider a very thin, uniform spherical shell (like a thin-walled basketball) of mass M whose thickness t is small compared to its radius R (Fig. D-1). The force on a particle of mass m at a distance r from the center of the shell can be calculated as the vector sum of the forces due to all the particles of the shell. We imagine the shell divided up into thin (infinitesimal) circular strips so that all points on a strip are equidistant from our particle m. One of these circular strips, labeled AB, is shown in Fig. D-1. It is $R d\theta$ wide, t thick, and has a radius $R \sin \theta$. The force on our particle m due to a tiny piece of the strip at point A is represented by the vector $\vec{\mathbf{F}}_A$ shown. The force due to a tiny piece of the strip at point B, which is diametrically opposite A, is the force $\vec{\mathbf{F}}_B$. We take the two pieces at A and B to be of equal mass, so $F_A = F_B$. The horizontal components of $\vec{\mathbf{F}}_A$ and $\vec{\mathbf{F}}_B$ are each equal to

$$F_{\rm A}\cos\phi$$

and point toward the center of the shell. The vertical components of \vec{F}_A and \vec{F}_B are of equal magnitude and point in opposite directions, and so cancel. Since for every point on the strip there is a corresponding point diametrically opposite (as with A and B), we see that the net force due to the entire strip points toward the center of the shell. Its magnitude will be

$$dF = G \frac{m \, dM}{\ell^2} \cos \phi,$$

where dM is the mass of the entire circular strip and ℓ is the distance from all points on the strip to m, as shown. We write dM in terms of the density ρ ; by density we mean the mass per unit volume (Section 13-2). Hence, $dM = \rho dV$, where dV is the volume of the strip and equals $(2\pi R \sin \theta)(t)(R d\theta)$. Then the force dF due to the circular strip shown is

$$dF = G \frac{m\rho 2\pi R^2 t \sin\theta \, d\theta}{\rho^2} \cos\phi. \tag{D-1}$$

FIGURE D-1 Calculating the gravitational force on a particle of mass *m* due to a uniform spherical shell of radius *R* and mass *M*.

FIGURE D-1 (repeated)

Calculating the gravitational force on a particle of mass m due to a uniform spherical shell of radius R and mass M.

To get the total force F that the entire shell exerts on the particle m, we must integrate over all the circular strips: that is, we integrate

$$dF = G \frac{m\rho 2\pi R^2 t \sin\theta \, d\theta}{\rho^2} \cos\phi \qquad \qquad (D-1)$$

from $\theta = 0^{\circ}$ to $\theta = 180^{\circ}$. But our expression for dF contains ℓ and ϕ , which are functions of θ . From Fig. D-1 we can see that

$$\ell\cos\phi = r - R\cos\theta.$$

Furthermore, we can write the law of cosines for triangle CmA:

$$\cos\theta = \frac{r^2 + R^2 - \ell^2}{2rR}.$$
 (D-2)

With these two expressions we can reduce our three variables (ℓ, θ, ϕ) to only one, which we take to be ℓ . We do two things with Eq. D-2: (1) We put it into the equation for $\ell \cos \phi$ above:

$$\cos \phi = \frac{1}{\ell} (r - R \cos \theta) = \frac{r^2 + \ell^2 - R^2}{2r\ell}$$

and (2) we take the differential of both sides of Eq. D-2 (because $\sin \theta \, d\theta$ appears in the expression for dF, Eq. D-1), considering r and R to be constants when summing over the strips:

$$-\sin\theta \, d\theta = -\frac{2\ell \, d\ell}{2rR}$$
 or $\sin\theta \, d\theta = \frac{\ell \, d\ell}{rR}$.

We insert these into Eq. D-1 for dF and find

$$dF = Gm\rho\pi t \frac{R}{r^2} \left(1 + \frac{r^2 - R^2}{\ell^2} \right) d\ell.$$

Now we integrate to get the net force on our thin shell of radius R. To integrate over all the strips ($\theta = 0^{\circ}$ to 180°), we must go from $\ell = r - R$ to $\ell = r + R$ (see Fig. D-1). Thus,

$$F = Gm\rho\pi t \frac{R}{r^2} \left[\ell - \frac{r^2 - R^2}{\ell} \right]_{\ell=r-R}^{\ell=r+R}$$
$$= Gm\rho\pi t \frac{R}{r^2} (4R).$$

The volume V of the spherical shell is its area $(4\pi R^2)$ times the thickness t. Hence the mass $M = \rho V = \rho 4\pi R^2 t$, and finally

$$F = G \frac{mM}{r^2}$$
 particle of mass m outside a thin uniform spherical shell of mass M

This result gives us the force a thin shell exerts on a particle of mass m a distance r from the center of the shell, and *outside* the shell. We see that the force is the same as that between m and a particle of mass M at the center of the shell. In other words, for purposes of calculating the gravitational force exerted on or by a uniform spherical shell, we can consider all its mass concentrated at its center.

What we have derived for a shell holds also for a solid sphere, since a solid sphere can be considered as made up of many concentric shells, from R = 0 to $R = R_0$, where R_0 is the radius of the solid sphere. Why? Because if each shell has

mass dM, we write for each shell, $dF = Gm \, dM/r^2$, where r is the distance from the center C to mass m and is the same for all shells. Then the total force equals the sum or integral over dM, which gives the total mass M. Thus the result

$$F = G \frac{mM}{r^2}$$
 [particle of mass m outside solid sphere of mass M] (D-3)

is valid for a solid sphere of mass M even if the density varies with distance from the center. (It is not valid if the density varies within each shell—that is, depends not only on R.) Thus the gravitational force exerted on or by spherical objects, including nearly spherical objects like the Earth, Sun, and Moon, can be considered to act as if the objects were point particles.

This result, Eq. D-3, is true only if the mass m is outside the sphere. Let us next consider a point mass m that is located inside the spherical shell of Fig. D-1. Here, r would be less than R, and the integration over ℓ would be from $\ell = R - r$ to $\ell = R + r$, so

$$\left[\ell - \frac{r^2 - R^2}{\ell}\right]_{R-r}^{R+r} = 0.$$

Thus the force on any mass inside the shell would be zero. This result has particular importance for the electrostatic force, which is also an inverse square law. For the gravitational situation, we see that at points within a solid sphere, say 1000 km below the Earth's surface, only the mass up to that radius contributes to the net force. The outer shells beyond the point in question contribute zero net gravitational

The results we have obtained here can also be reached using the gravitational analog of Gauss's law for electrostatics (Chapter 22).

Differential Form of Maxwell's Equations

Maxwell's equations can be written in another form that is often more convenient than Eqs. 31–5. This material is usually covered in more advanced courses, and is included here simply for completeness.

We quote here two theorems, without proof, that are derived in vector analysis textbooks. The first is called **Gauss's theorem** or the **divergence theorem**. It relates the integral over a surface of any vector function $\vec{\mathbf{F}}$ to a volume integral over the volume enclosed by the surface:

$$\oint_{\text{Area }A} \vec{\mathbf{F}} \cdot d\vec{\mathbf{A}} = \int_{\text{Volume }V} \vec{\nabla} \cdot \vec{\mathbf{F}} \ dV.$$

The operator $\vec{\nabla}$ is the **del operator**, defined in Cartesian coordinates as

$$\vec{\nabla} = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

The quantity

$$\vec{\nabla} \cdot \vec{\mathbf{F}} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

is called the **divergence** of $\vec{\mathbf{F}}$. The second theorem is **Stokes's theorem**, and relates a line integral around a closed path to a surface integral over any surface enclosed by that path:

$$\oint_{\text{Line}} \vec{\mathbf{F}} \cdot d\vec{\boldsymbol{\ell}} = \int_{\text{Area } A} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{\mathbf{A}}.$$

The quantity $\vec{\mathbf{v}} \times \vec{\mathbf{F}}$ is called the **curl** of $\vec{\mathbf{F}}$. (See Section 11–2 on the vector product.) We now use these two theorems to obtain the differential form of Maxwell's equations in free space. We apply Gauss's theorem to Eq. 31–5a (Gauss's law):

$$\oint_{A} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \int \vec{\nabla} \cdot \vec{\mathbf{E}} \ dV = \frac{Q}{\epsilon_{0}}.$$

Now the charge Q can be written as a volume integral over the charge density ρ : $Q = \int \rho \, dV$. Then

$$\int \vec{\nabla} \cdot \vec{\mathbf{E}} \ dV = \frac{1}{\epsilon_0} \int \rho \ dV.$$

Both sides contain volume integrals over the same volume, and for this to be true over *any* volume, whatever its size or shape, the integrands must be equal:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$
 (E-1)

This is the differential form of Gauss's law. The second of Maxwell's equations, $\oint \vec{B} \cdot d\vec{A} = 0$, is treated in the same way, and we obtain

$$\vec{\nabla} \cdot \vec{\mathbf{B}} = 0. \tag{E-2}$$

Next, we apply Stokes's theorem to the third of Maxwell's equations,

$$\oint \vec{\mathbf{E}} \cdot d\vec{\boldsymbol{\ell}} = \int \vec{\mathbf{v}} \times \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = -\frac{d\Phi_B}{dt}.$$

Since the magnetic flux $\Phi_B = \int \vec{\bf B} \cdot d\vec{\bf A}$, we have

$$\int \vec{\nabla} \times \vec{E} \cdot d\vec{A} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{A}$$

where we use the partial derivative, $\partial \vec{\mathbf{B}}/\partial t$, since B may also depend on position. These are surface integrals over the same area, and to be true over any area, even a very small one, we must have

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}.$$
 (E-3)

This is the third of Maxwell's equations in differential form. Finally, to the last of Maxwell's equations,

$$\oint \vec{\mathbf{B}} \cdot d\vec{\boldsymbol{\ell}} = \mu_0 I + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt},$$

we apply Stokes's theorem and write $\Phi_E = \int \vec{E} \cdot d\vec{A}$:

$$\int \vec{\nabla} \times \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = \mu_0 I + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \int \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}.$$

The conduction current I can be written in terms of the current density \vec{j} , using Eq. 25-12:

$$I = \int \vec{\mathbf{j}} \cdot d\vec{\mathbf{A}}.$$

Then Maxwell's fourth equation becomes:

$$\int \vec{\nabla} \times \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = \mu_0 \int \vec{\mathbf{j}} \cdot d\vec{\mathbf{A}} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \int \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}.$$

For this to be true over any area A, whatever its size or shape, the integrands on each side of the equation must be equal:

$$\vec{\nabla} \times \vec{\mathbf{B}} = \mu_0 \vec{\mathbf{j}} + \mu_0 \epsilon_0 \frac{\partial \vec{\mathbf{E}}}{\partial t}.$$
 (E-4)

Equations E-1, 2, 3, and 4 are Maxwell's equations in differential form for free space. They are summarized in Table E-1.

TABLE E-1 Maxwell's Equations in Free Space [†]							
Integral form	Differential form						
$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q}{\epsilon_0}$	$\vec{\mathbf{v}} \cdot \vec{\mathbf{E}} = \frac{ ho}{\epsilon_0}$						
$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$	$\vec{\nabla} \cdot \vec{\mathbf{B}} = 0$						
$\oint \vec{\mathbf{E}} \cdot d\vec{\boldsymbol{\ell}} = -\frac{d\Phi_B}{dt}$	$\vec{\mathbf{\nabla}} imes \vec{\mathbf{E}} = -rac{\partial \vec{\mathbf{B}}}{\partial t}$						
$\oint \vec{\mathbf{B}} \cdot d\vec{\boldsymbol{\ell}} = \mu_0 I + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$	$\vec{f v} imes ec{f B} = \mu_0 ec{f j} + \mu_0 \epsilon_0 rac{\partial ec{f E}}{\partial t}$						
$^{\dagger}\vec{\nabla}$ stands for the <i>del operator</i> $\vec{\nabla} = \hat{i} \frac{\partial}{\partial x}$							

Selected Isotopes

(1) Atomic Number	(2)	(3)	(4) Mass Number	(5) Atomic	(6) % Abundance (or Radioactive	(7) Half-life
Z	Element	Symbol	\boldsymbol{A}	\mathbf{Mass}^{\dagger}	Decay [‡] Mode)	(if radioactive)
0	(Neutron)	n	1	1.008665	eta^-	10.23 min
1	Hydrogen	Н	1	1.007825	99.9885%	
	Deuterium	d or D	2	2.014082	0.0115%	
	Tritium	t or T	3	3.016049	$oldsymbol{eta}^-$	12.312 yr
2	Helium	He	3	3.016029	0.000137%	
			4	4.002603	99.999863%	
3	Lithium	Li	6	6.015123	7.59%	
			7	7.016005	92.41%	
4	Beryllium	Be	7	7.016930	EC, γ	53.22 days
			9	9.012182	100%	
5	Boron	В	10	10.012937	19.9%	
			11	11.009305	80.1%	
6	Carbon	C	11	11.011434	$oldsymbol{eta}^+$, EC	20.370 min
			12	12.000000	98.93%	
			13	13.003355	1.07%	
			14	14.003242	$oldsymbol{eta}^-$	5730 yr
7	Nitrogen	N	13	13.005739	β^+ , EC	9.9670 min
			14	14.003074	99.632%	
			15	15.000109	0.368%	
8	Oxygen	О	15	15.003066	β^+ , EC	122.5 min
			16	15.994915	99.757%	
			18	17.999161	0.205%	
9	Fluorine	F	19	18.998403	100%	
10	Neon	Ne	20	19.992440	90.48%	
			22	21.991385	9.25%	
11	Sodium	Na	22	21.994436	β^+ , EC, γ	2.6027 yr
			23	22.989769	100%	
			24	23.990963	$eta^-\!,\gamma$	14.9574 h
12	Magnesium	Mg	24	23.985042	78.99%	
13	Aluminum	Al	27	26.981539	100%	
14	Silicon	Si	28	27.976927	92.2297%	
			31	30.975363	$oldsymbol{eta}^-, \gamma$	157.3 min
15	Phosphorus	P	31	30.973762	100%	
			32	31.973907	eta^-	14.284 days

 $^{^\}dagger \mbox{The masses given in column (5)}$ are those for the neutral atom, including the Z electrons.

[‡]Chapter 41; EC = electron capture.

(1) Atomic Number	(2)	(3)	(4) Mass Number	(5)	(6) % Abundance (or Radioactive	(7) Half-life
Z	Element	Symbol	A	Mass	Decay Mode)	(if radioactive)
16	Sulfur	S	32	31.972071	94.9%	
			35	34.969032	$oldsymbol{eta}^-$	87.32 days
17	Chlorine	Cl	35	34.968853	75.78%	
			37	36.965903	24.22%	
18	Argon	Ar	40	39.962383	99.600%	
19	Potassium	K	39	38.963707	93.258%	
			40	39.963998	0.0117%	
					β^- , EC, γ , β^+	$1.265 \times 10^{9} \mathrm{yr}$
20	Calcium	Ca	40	39.962591	96.94%	
21	Scandium	Sc	45	44.955912	100%	
22	Titanium	Ti	48	47.947946	73.72%	
23	Vanadium	V	51	50.943960	99.750%	
24	Chromium	Cr	52	51.940508	83.789%	
25	Manganese	Mn	55	54.938045	100%	
26	Iron	Fe	56	55.934938	91.75%	
27	Cobalt	Co	59	58.933195	100%	
			60	59.933817	β^- , γ	5.2710 yr
28	Nickel	Ni	58	57.935343	68.077%	
			60	59.930786	26.223%	
29	Copper	Cu	63	62.929598	69.17%	
	**		65	64.927790	30.83%	
30	Zinc	Zn	64	63.929142	48.6%	
			66	65.926033	27.9%	
31	Gallium	Ga	69	68.925574	60.108%	
32	Germanium	Ge	72	71.922076	27.5%	
			74	73.921178	36.3%	
33	Arsenic	As	75	74.921596	100%	
34	Selenium	Se	80	79.916521	49.6%	
35	Bromine	Br	79	78.918337	50.69%	
36	Krypton	Kr	84	83.911507	57.00%	
37	Rubidium	Rb	85	84.911790	72.17%	
38	Strontium	Sr	86	85.909260	9.86%	
			88	87.905612	82.58%	
			90	89.907738	$oldsymbol{eta}^-$	28.80 yr
39	Yttrium	Y	89	88.905848	100%	·
40	Zirconium	Zr	90	89.904704	51.4%	
41	Niobium	Nb	93	92.906378	100%	
42	Molybdenum	Mo	98	97.905408	24.1%	
43	Technetium	Tc	98	97.907216	eta^-, γ	$4.2 \times 10^{6} \mathrm{yr}$
44	Ruthenium	Ru	102	101.904349	31.55%	·
45	Rhodium	Rh	103	102.905504	100%	
46	Palladium	Pd	106	105.903486	27.33%	
47	Silver	Ag	107	106.905097	51.839%	
			109	108.904752	48.161%	
48	Cadmium	Cd	114	113.903359	28.7%	
49	Indium	In	115	114.903878	95.71%; <i>β</i> ⁻	$4.41 \times 10^{14} \mathrm{yr}$
50	Tin	Sn	120	119.902195	32.58%	
51	Antimony	Sb	121	120.903816	57.21%	
J1	Anumony	30	121	120.903010	J1.41/0	

(1) Atomic	(2)	(3)	(4) Mass	(5)	(6) % Abundance	(7)
Number Z	Element	Symbol	Number A	Atomic Mass	(or Radioactive Decay Mode)	Half-life (if radioactive)
52	Tellurium	Te	130	129.906224	$34.1\%; \beta^{-}\beta^{-}$	$>$ 9.7 \times 10 ²² yr
53	Iodine	I	127	126.904473	100%	
			131	130.906125	$oldsymbol{eta}^-, \gamma$	8.0233 days
54	Xenon	Xe	132	131.904154	26.89%	
			136	135.907219	$8.87\%; \beta^{-}\beta^{-}$	$> 8.5 \times 10^{21} \mathrm{yr}$
55	Cesium	Cs	133	132.905452	100%	
56	Barium	Ba	137	136.905827	11.232%	
			138	137.905247	71.70%	
57	Lanthanum	La	139	138.906353	99.910%	
58	Cerium	Ce	140	139.905439	88.45%	
59	Praseodymium	Pr	141	140.907653	100%	
60	Neodymium	Nd	142	141.907723	27.2%	
61	Promethium	Pm	145	144.912749	EC, α	17.7 yr
62	Samarium	Sm	152	151.919732	26.75%	
63	Europium	Eu	153	152.921230	52.19%	
64	Gadolinium	Gd	158	157.924104	24.84%	
65	Terbium	Tb	159	158.925347	100%	
66	Dysprosium	Dy	164	163.929175	28.2%	
67	Holmium	Но	165	164.930322	100%	
68	Erbium	Er	166	165.930293	33.6%	
69	Thulium	Tm	169	168.934213	100%	
70	Ytterbium	Yb	174	173.938862	31.8%	
71	Lutetium	Lu	175	174.940772	97.41%	
72	Hafnium	Hf	180	179.946550	35.08%	
73	Tantalum	Ta	181	180.947996	99.988%	
74	Tungsten (wolfram)	W	184	183.950931	$30.64\%; \alpha$	$> 8.9 \times 10^{21} \mathrm{yr}$
75	Rhenium	Re	187	186.955753	$62.60\%; oldsymbol{eta}^-$	$4.35 \times 10^{10} \mathrm{yr}$
76	Osmium	Os	191	190.960930	eta^-, γ	15.4 days
			192	191.961481	40.78%	•
77	Iridium	Ir	191	190.960594	37.3%	
			193	192.962926	62.7%	
78	Platinum	Pt	195	194.964791	33.832%	
79	Gold	Au	197	196.966569	100%	
80	Mercury	Hg	199	198.968280	16.87%	
	·		202	201.970643	29.9%	
81	Thallium	T1	205	204.974428	70.476%	
82	Lead	Pb	206	205.974465	24.1%	
			207	206.975897	22.1%	
			208	207.976652	52.4%	
			210	209.984188	β^-, γ, α	22.23 yr
			211	210.988737	$oldsymbol{eta}^-, oldsymbol{\gamma}$	36.1 min
			212	211.991898	β^-, γ	10.64 h
			214	213.999805	β^- , γ	26.8 min
83	Bismuth	Bi	209	208.980399	100%	
			211	210.987269	$\alpha, \gamma, oldsymbol{eta}^-$	2.14 min
84	Polonium	Po	210	209.982874	α, γ, EC	138.376 days
			214	213.995201	$\alpha, \gamma, \Sigma $	162.3 μs
85	Astatine	At	218	218.008694	$lpha,oldsymbol{eta}^-$	1.4 s

(1) Atomic	(2)	(3)	(4) Mass	(5)	(6) % Abundance	(7)
Number			Number	Atomic	(or Radioactive	Half-life
Z	Element	Symbol	A	Mass	Decay Mode)	(if radioactive)
86	Radon	Rn	222	222.017578	α, γ	3.8232 days
87	Francium	Fr	223	223.019736	$oldsymbol{eta}^-, \gamma, lpha$	22.00 min
88	Radium	Ra	226	226.025410	α, γ	1600 yr
89	Actinium	Ac	227	227.027752	$oldsymbol{eta}^-, \gamma, lpha$	21.772 yr
90	Thorium	Th	228	228.028741	α, γ	698.60 days
			232	232.038055	100% ; α , γ	$1.405 \times 10^{10} \mathrm{yr}$
91	Protactinium	Pa	231	231.035884	α, γ	$3.276 \times 10^4 \mathrm{yr}$
92	Uranium	U	232	232.037156	α, γ	68.9 yr
			233	233.039635	α, γ	$1.592 \times 10^{5} \mathrm{yr}$
			235	235.043930	$0.720\%; \alpha, \gamma$	$7.04 \times 10^{8} \mathrm{yr}$
			236	236.045568	α, γ	$2.342 \times 10^{7} \text{yr}$
			238	238.050788	99.274%; α , γ	$4.468 \times 10^9 \text{yr}$
			239	239.054293	eta^-, γ	23.46 min
93	Neptunium	Np	237	237.048173	α, γ	$2.144 \times 10^{6} \mathrm{yr}$
		_	239	239.052939	$oldsymbol{eta}^-, \gamma$	2.356 days
94	Plutonium	Pu	239	239.052163	α, γ	24,100 yr
			244	244.064204	α	$8.00 \times 10^{7} \mathrm{yr}$
95	Americium	Am	243	243.061381	α, γ	7370 yr
96	Curium	Cm	247	247.070354	α, γ	$1.56 \times 10^7 \mathrm{yr}$
97	Berkelium	Bk	247	247.070307	α, γ	1380 yr
98	Californium	Cf	251	251.079587	α, γ	898 yr
99	Einsteinium	Es	252	252.082980	α , EC, γ	471.7 days
100	Fermium	Fm	257	257.095105	α, γ	100.5 days
101	Mendelevium	Md	258	258.098431	α, γ	51.5 days
102	Nobelium	No	259	259.10103	α , EC	58 min
103	Lawrencium	Lr	262	262.10963	α , EC, fission	$\approx 4 \text{ h}$
104	Rutherfordium	Rf	263	263.11255	fission	10 min
105	Dubnium	Db	262	262.11408	α , fission, EC	35 s
106	Seaborgium	Sg	266	266.12210	α , fission	≈21 s
107	Bohrium	Bh	264	264.12460	α	$\approx 0.44 \text{ s}$
108	Hassium	Hs	269	269.13406	α	≈10 s
109	Meitnerium	Mt	268	268.13870	α	21 ms
110	Darmstadtium	Ds	271	271.14606	α	$\approx 70 \text{ ms}$
111	Roentgenium	Rg	272	272.15360	α	3.8 ms
112		Uub	277	277.16394	α	$\approx 0.7 \text{ ms}$

Preliminary evidence (unconfirmed) has been reported for elements 113, 114, 115, 116 and 118.

Answers to Odd-Numbered Problems

CHAPTER 1

- **1.** (a) 1.4×10^{10} y;
 - (b) 4.4×10^{17} s.
- 3. (a) 1.156×10^{0} ;
 - (b) 2.18×10^{1} ;
 - (c) 6.8×10^{-3} ;
 - (d) 3.2865×10^2 ;
 - (a) 3.2003×10^{-1} ;
 - $(f)4.44 \times 10^2$.
- **5.** 4.6%.
- 7. 1.00×10^5 s.
- 9. 0.24 rad.
- **11.** (a) 0.2866 m;
 - (b) 0.000085 V;
 - (c) 0.00076 kg;
 - (d) 0.0000000000600 s;
 - (e) 0.000000000000225 m;
 - (f) 2,500,000,000 V.
- 13. $5'10'' = 1.8 \,\mathrm{m}$, $165 \,\mathrm{lbs} = 75.2 \,\mathrm{kg}$.
- **15.** (a) $1 \text{ ft}^2 = 0.111 \text{ yd}^2$;
 - (b) $1 \text{ m}^2 = 10.8 \text{ ft}^2$.
- 17. (a) 3.9×10^{-9} in.;
 - (b) 1.0×10^{8} atoms.
- **19.** (a) 1 km/h = 0.621 mi/h;
 - (b) 1 m/s = 3.28 ft/s;
 - (c) 1 km/h = 0.278 m/s.
- **21.** (a) 9.46×10^{15} m;
 - (b) $6.31 \times 10^4 \text{ AU}$;
 - (c) 7.20 AU/h.
- **23.** (a) $3.80 \times 10^{13} \,\mathrm{m}^2$;
- _____
 - (b) 13.4.
- **25.** 6×10^5 books.
- **27.** 5×10^4 L.
- **29.** (a) 1800.
- 31. 5×10^4 m.
- 33. 6.5×10^6 m.
- **35.** $[M/L^3]$.
- **37.** (a) Cannot;
 - (b) can;
 - (c) can.
- **39.** $(1 \times 10^{-5})\%$, 8 significant figures.

- **41.** (a) 3.16×10^7 s;
 - (b) $3.16 \times 10^{16} \,\mathrm{ns}$;
 - (c) 3.17×10^{-8} y.
- **43.** 2×10^{-4} m.
- **45.** $1 \times 10^{11} \, \text{gal/y}$.
- 47. 9 cm/y.
- **49.** $2 \times 10^9 \, \text{kg/v}$.
- **51.** 75 min.
- 53. 4×10^5 metric tons, 1×10^8 gal.
- **55.** 1×10^3 days
- **57.** 210 yd, 190 m.
- **59.** (a) 0.10 nm;
 - (b) 1.0×10^5 fm;
 - (c) $1.0 \times 10^{10} \text{ Å}$;
 - (d) $9.5 \times 10^{25} \text{ Å}$.
- **61.** (a) 3%, 3%;
 - (b) 0.7%, 0.2%.
- 63. $8 \times 10^{-2} \,\mathrm{m}^3$.
- 65. L/m, L/y, L.
- **67.** (a) 13.4;
 - (b) 49.3.
- **69.** 4×10^{51} kg.

- 1. 61 m.
- 3. 0.65 cm/s, no.
- 5. 300 m/s, 1 km every 3 sec.
- 7. (a) 9.26 m/s;
 - (b) 3.1 m/s.
- **9.** (a) 0.3 m/s;
 - (b) $1.2 \,\mathrm{m/s}$;
 - (c) $0.30 \,\mathrm{m/s}$;
 - (c) 0.50 m/s,
 - (d) 1.4 m/s;
 - (e) -0.95 m/s.
- 11. 2.0×10^1 s.
- 11. 2.0 \ 10 3.
- **13.** (a) 5.4×10^3 m;
- (1) 50
 - (b) 72 min.
- **15.** (a) 61 km/h;
 - (b) 0.
- **17.** (a) 16 m/s;
 - (b) +5 m/s.
- **19.** 6.73 m/s.
- 21. 5 s.
- **23.** (a) 48 s;
 - (b) 90 s to 108 s;
 - (c) 0 to 42 s, 65 s to 83 s, 90 s to 108 s;
 - (d) 65 s to 83 s.

- **25.** (a) 21.2 m/s;
 - (b) 2.00 m/s^2 .
- 27. 17.0 m/s².
- **29.** (a) m/s, m/s²;
 - (b) $2B \text{ m/s}^2$;
 - (c) (A + 10B) m/s, 2B m/s²;
 - (d) $A 3Bt^{-4}$.
- 31. 1.5 m/s^2 , 99 m.
- **33.** 240 m/s^2 .
- **35.** 4.41 m/s², 2.61 s.
- **37.** 45.0 m.
- **39.** (a) 560 m;
 - (b) 47 s;
 - (c) 23 m, 21 m.
- **41.** (a) 96 m;
 - (b) 76 m.
- 43. 27 m/s.
- **45.** 117 km/h.
- **47.** 0.49 m/s^2 .
- **49.** 1.6 s.
- **51.** (a) 20 m;
 - (b) 4 s.
- **53.** 1.16 s.
- **55.** 5.18 s.
- **57.** (a) 25 m/s;
 - (b) 33 m;
 - (c) 1.2 s;
 - (d) 5.2 s.
- **59.** (a) 14 m/s;
 - (b) fifth floor.
- **61.** 1.3 m.
- **63.** 18.8 m/s, 18.1 m.
- **65.** 52 m.
- **67.** 106 m.
- **69.** (a) $\frac{g}{h}(1-e^{-kt})$;
 - $(b)\frac{g}{h}$.
- **71.** 6.
- **73.** 1.3 m.
- **75.** (*b*) 10 m;
 - (c) 40 m.
- 77. $5.2 \times 10^{-2} \,\mathrm{m/s^2}$.
- **79.** 4.6 m/s to 5.4 m/s, 5.8 m/s to 6.7 m/s, smaller range of velocities.
- **81.** (a) 5.39 s;
 - (b) 40.3 m/s;
 - (c) 90.9 m.

- **83.** (a) 8.7 min;
- (b) 7.3 min.
- **85.** 2.3.
- **87.** Stop.
- 89. 1.5 poles.
- **91.** 0.44 m/min, 2.9 burgers/min.
- 93. (a) Where the slopes are the same;
 - (b) bicycle A;
 - (c) when the two graphs cross; first crossing, B passing A; second crossing, A passing B;
 - (d) B until the slopes are equal, A after that;
 - (e) same.
- **95.** (c)

97. (b) 6.8 m.

CHAPTER 3

1. 286 km, 11° south of west.

- **3.** 10.1, −39.4°.
- 5. (a)

- (b) -22.8, 9.85;
- (c) 24.8, 23.4° above the -x axis.
- 7. (a) 625 km/h, 553 km/h;
 - (b) 1560 km, 1380 km.
- **9.** (a) 4.2 at 315°;
 - (b) $1.0\hat{i} 5.0\hat{i}$ or 5.1 at 280° .
- **11.** (a) $-53.7\hat{\mathbf{i}} + 1.31\hat{\mathbf{j}}$ or 53.7 at 1.4° above -x axis:
 - (b) $53.7\hat{\mathbf{i}} 1.31\hat{\mathbf{j}}$ or 53.7 at 1.4° below +x axis, they are opposite.
- **13.** (a) $-92.5\hat{\mathbf{i}} 19.4\hat{\mathbf{j}}$ or 94.5 at 11.8° below -x axis;
 - (b) $122\hat{\mathbf{i}} 86.6\hat{\mathbf{j}}$ or 150 at 35.3° below +x axis.
- **15.** $(-2450 \text{ m})\hat{\mathbf{i}} + (3870 \text{ m})\hat{\mathbf{j}} + (2450 \text{ m})\hat{\mathbf{k}}, 5190 \text{ m}.$
- 17. $(9.60\hat{\mathbf{i}} 2.00t\hat{\mathbf{k}}) \text{ m/s},$ $(-2.00\hat{\mathbf{k}}) \text{ m/s}^2.$
- 19. Parabola.
- **21.** (a) 4.0t m/s, 3.0t m/s;
 - (b) 5.0t m/s;
 - (c) $(2.0t^2\hat{\mathbf{i}} + 1.5t^2\hat{\mathbf{j}})$ m;
 - (d) $v_x = 8.0 \text{ m/s}, v_y = 6.0 \text{ m/s},$ v = 10.0 m/s, $\vec{\mathbf{r}} = (8.0\hat{\mathbf{i}} + 6.0\hat{\mathbf{j}}) \text{ m}.$
- **23.** (a) $(3.16\hat{\mathbf{i}} + 2.78\hat{\mathbf{j}})$ cm/s;
 - (b) 4.21 cm/s at 41.3° .
- **25.** (a) $(6.0t\hat{\mathbf{i}} 18.0t^2\hat{\mathbf{j}}) \,\text{m/s},$ $(6.0\hat{\mathbf{i}} 36.0t\hat{\mathbf{j}}) \,\text{m/s}^2;$
 - (b) $(19\hat{\mathbf{i}} 94\hat{\mathbf{j}}) \text{ m}, (15\hat{\mathbf{i}} 110\hat{\mathbf{j}}) \text{ m/s}.$
- **27.** 414 m at -65.0° .
- 29. 44 m, 6.9 m.
- **31.** 18°, 72°.

- **33.** 2.26 s.
- 35. 22.3 m.
- **37.** 39 m.
- **41.** (a) 12 s; (b) 62 m.
- **43.** 5.5 s.

- **45.** (a) $(2.3\hat{\mathbf{i}} + 2.5\hat{\mathbf{j}})$ m/s;
 - (b) 5.3 m;
 - (c) $(2.3\hat{i} 10.2\hat{j})$ m/s.
- **47.** No, 0.76 m too low; 4.5 m to 34.7 m.
- **51.** $\tan^{-1} gt/v_0$.
- **53.** (a) 50.0 m;
 - (b) 6.39 s;
 - (c) 221 m;
 - (d) 38.3 m/s at 25.7°.

55.
$$\frac{1}{2} \tan^{-1} \left(-\frac{1}{\tan \phi} \right) = \frac{\phi}{2} + \frac{\pi}{4}.$$

- **57.** $(10.5 \text{ m/s})\hat{i}$, $(6.5 \text{ m/s})\hat{i}$.
- **59.** 1.41 m/s.
- **61.** 23 s. 23 m.
- **63.** (*a*) 11.2 m/s, 27° above the horizontal;
 - (b) 11.2 m/s, 27° below the horizontal.
- **65.** 6.3°, west of south.
- **67.** (a) 46 m;
 - (b) 92 s.
- **69.** (a) 1.13 m/s;
 - $(b) 3.20 \,\mathrm{m/s}.$
- **71.** 43.6° north of east.
- 73. $(66 \text{ m})\hat{\mathbf{i}} (35 \text{ m})\hat{\mathbf{j}} (12 \text{ m})\hat{\mathbf{k}}$, 76 m, 28° south of east, 9° below the horizontal.
- **75.** 131 km/h, 43.1° north of east.
- **77.** 7.0 m/s.
- **79.** 1.8 m/s^2 .
- 81. 1.9 m/s, 2.7 s.
- **83.** (a) $\frac{Dv}{(v^2-u^2)}$;

$$(b) \frac{D}{\sqrt{v^2 - u^2}}$$

- 85. 54
- 87. $[(1.5 \text{ m})\hat{\mathbf{i}} (2.0t \text{ m})\hat{\mathbf{i}}]$ + $[(-3.1 \text{ m})\hat{\mathbf{j}} + (1.75t^2 \text{ m})\hat{\mathbf{j}},$ $(3.5 \text{ m/s}^2)\hat{\mathbf{j}}, \text{ parabolic.}$
- **89.** Row at an angle of 24.9° upstream and run 104 m along the bank in a total time of 862 seconds.
- **91.** 69.9° north of east.
- **93.** (a) 13 m;
 - (b) 31° below the horizontal.
- **95.** 5.1 s.
- **97.** (a) 13 m/s, 12 m/s;
 - (b) 33 m.
- **99.** (a) x = (3.03t 0.0265) m, 3.03 m/s;
 - (b) $y = (0.158 0.855t + 6.09t^2) \text{ m},$ 12.2 m/s².

CHAPTER 4

- 1. 77 N.
- 3. (a) 6.7×10^2 N:
 - (b) $1.2 \times 10^2 \,\mathrm{N}$;
 - (c) $2.5 \times 10^2 \,\mathrm{N}$;
 - (d) 0.
- 5. 1.3×10^6 N, 39%, 1.3×10^6 N.
- 7. 2.1×10^2 N.
- 9. m > 1.5 kg
- 11. 89.8 N.
- 13. 1.8 m/s^2 , up.
- 15. Descend with $a \ge 2.2 \,\mathrm{m/s^2}$.
- 17. -2800 m/s^2 , 280 g's, $1.9 \times 10^5 \text{ N}$.
- **19.** (a) 7.5 s, 13 s, 7.5 s;
 - (b) 12%, 0%, -12%;
 - (c) 55%.
- **21.** (a) 3.1 m/s^2 ;
 - (b) 25 m/s;
 - (c) 78 s.
- **23.** 3.3×10^3 N.
- 25. (a) 150 N;
 - (b) 14.5 m/s.
- **27.** (a) 47.0 N;
 - (b) 17.0 N;
 - (c) 0.
- **29.** (a)

- (b)
- **31.** (a) 1.5 m;
 - (b) 11.5 kN, no.
- **33.** (a) 31 N, 63 N;
 - (b) 35 N, 71 N.
- 35. 6.3×10^3 N, 8.4×10^3 N.
- **37.** (a) 19.0 N at 237.5°, 1.03 m/s² at 237.5°;
 - (b) 14.0 N at 51.0° , 0.758 m/s^2 at
- 39. $\frac{5}{2} \frac{F_0}{m} t_0^2$.
- **41.** 4.0×10^2 m.
- 43. 12°.
- **45.** (a) 9.9 N;
 - (b) 260 N.
- **47.** (a) $m_{\rm E} g F_{\rm T} = m_{\rm E} a$; $F_{\rm T} - m_{\rm C}g = m_{\rm C}a;$
 - (b) 0.68 m/s^2 , 10,500 N.
- **49.** (a) 2.8 m;
 - (b) 2.5 s.

51. (a)

(b)
$$g \frac{m_{\rm B}}{m_{\rm A} + m_{\rm B}}, g \frac{m_{\rm A} m_{\rm B}}{m_{\rm A} + m_{\rm B}}$$
.

53.
$$g \frac{m_{\rm B} + \frac{\ell_{\rm B}}{\ell_{\rm A} + \ell_{\rm B}} m_{\rm C}}{m_{\rm A} + m_{\rm B} + m_{\rm C}}$$

- **55.** $(m+M)g \tan \theta$.
- **57.** 1.52 m/s², 18.3 N, 19.8 N.

59.
$$\frac{(m_{\rm A}+m_{\rm B}+m_{\rm C})m_{\rm B}}{\sqrt{(m_{\rm A}^2-m_{\rm B}^2)}}g$$
.

61. (a)
$$\left(\frac{2y}{\ell}-1\right)g;$$

$$(b)\sqrt{2gy_0\left(1-\frac{y_0}{\ell}\right)};$$

- (c) $\frac{2}{3}\sqrt{g\ell}$.
- 63. 6.3 N.
- 65. 2.0 s, no change.

67. (a)
$$g \frac{\left(m_{\rm A} \sin \theta - m_{\rm B}\right)}{\left(m_{\rm A} + m_{\rm B}\right)}$$
;

(b) $m_{\rm A} \sin \theta > m_{\rm B}$ $(m_{\rm A}$ down the plane), $m_{\rm A} \sin \theta < m_{\rm B}$ $(m_A \text{ up the plane}).$

69. (a)
$$\frac{m_{\rm B}\sin\theta_{\rm B}-m_{\rm A}\sin\theta_{\rm A}}{m_{\rm A}+m_{\rm B}}g;$$

- (b) 6.8 kg, 26 N;
- (c) 0.74.
- **71.** 9.9°.

73. (a)
$$41 \frac{N}{m/s}$$
;

- (b) 1.4×10^2 N.
- **75.** (a) Mg/2;
 - (b) Mg/2, Mg/2, 3Mg/2, Mg.
- 77. $8.7 \times 10^2 \,\mathrm{N}$ 72° above the horizontal.
- **79.** (a) $0.6 \,\mathrm{m/s^2}$;
 - (b) 1.5×10^5 N.
- 81. $1.76 \times 10^4 \,\mathrm{N}$.
- 83. $3.8 \times 10^2 \,\mathrm{N}$, $7.6 \times 10^2 \,\mathrm{N}$.
- 85. 3.4 m/s.
- **87.** (a) 23 N;
 - (b) 3.8 N.

89. (a) $g \sin \theta$, $\sqrt{\frac{2\ell}{g \sin \theta}}$,

 $\sqrt{2\ell g} \sin \theta$, $mg \cos \theta$;

(b) Acceleration (m/s2) 10 15 30 90 45 60 75 Angle (degrees)

The graphs are all consistent with the results of the limiting cases.

- 1. 65 N. 0.
- **3.** 0.20.
- 5. $8.8 \,\mathrm{m/s^2}$.
- 7. 1.0×10^2 N, 0.48.
- **9.** 0.51.
- 11. 4.2 m.
- 13. 1.2×10^3 N.
- **15.** (a) 0.67;
 - (b) $6.8 \,\mathrm{m/s}$;
 - (c) $16 \,\mathrm{m/s}$.
- **17.** (a) 1.7 m/s^2 ;
- - (b) 4.3×10^2 N;
 - (c) 1.7 m/s^2 , $2.2 \times 10^2 \text{ N}$.
- **19.** (a) 0.80 m;
 - (b) 1.3 s.
- 21. (a) A will pull B along;
 - (b) B will eventually catch up to A;

(c)
$$\mu_{\rm A} < \mu_{\rm B}$$
: $a =$

$$g \left[\frac{(m_{A} + m_{B}) \sin \theta - (\mu_{A} m_{A} + \mu_{B} m_{B}) \cos \theta}{(m_{A} + m_{B})} \right], \quad \frac{(b) 570 \text{ N.}}{71. \frac{mg}{b} \left[t + \frac{m}{b} \left(e^{-\frac{b}{m}t} - 1 \right) \right], ge^{-\frac{b}{m}t}.$$

$$F_{T} = g \frac{m_{A} m_{B}}{(m_{A} + m_{B})} (\mu_{B} - \mu_{A}) \cos \theta, \qquad 75. \quad 10 \text{ m.}$$

$$77. \quad 0.46$$

$$F_{\rm T} = g \frac{m_{\rm A} m_{\rm B}}{\left(m_{\rm A} + m_{\rm B}\right)} \left(\mu_{\rm B} - \mu_{\rm A}\right) \cos \theta,$$

$$\mu_{\rm A} > \mu_{\rm B}$$
: $a_{\rm A} = g(\sin \theta - \mu_{\rm A} \cos \theta)$,
 $a_{\rm B} = g(\sin \theta - \mu_{\rm B} \cos \theta)$, $F_{\rm T} = 0$.

- **23.** (a) 5.0 kg;
 - (b) 6.7 kg.

25. (a)
$$\frac{v_0^2}{2dg\cos\theta} - \tan\theta$$

- (b) $\mu_s \ge \tan \theta$.
- **27.** (a) 0.22 s;
 - $(b) 0.16 \,\mathrm{m}$
- **29.** 0.51.
- **31.** (a) 82 N;
 - (b) 4.5 m/s^2 .

33.
$$(M + m)g \frac{(\sin \theta + \mu \cos \theta)}{(\cos \theta - \mu \sin \theta)}$$
.

- **35.** (a) 1.41 m/s^2
 - (b) 31.7 N.
- 37. \sqrt{rg} .
- **39.** 30 m.
- 41. 31 m/s.
- **43.** 0.9 g's.
- 45. 9.0 rev/min.
- 47. (a) 1.9×10^3 m;
 - (b) 5.4×10^3 N;
 - (c) 3.8×10^3 N.
- **49.** 3.0×10^2 N.
- **51.** 0.164.
- **53.** (a) 7960 N;
 - (b) 588 N;
 - (c) 29.4 m/s.
- **55.** 6.2 m/s.
- **57.** (b) $\vec{\mathbf{v}} = (-6.0 \,\mathrm{m/s}) \sin (3.0 \,\mathrm{rad/s} \,t) \,\hat{\mathbf{i}}$ + $(6.0 \text{ m/s}) \cos (3.0 \text{ rad/s } t) \hat{\mathbf{j}}$, $\vec{\mathbf{a}} = (-18 \,\mathrm{m/s^2}) \cos(3.0 \,\mathrm{rad/s}\,t)\,\hat{\mathbf{i}}$ $+(-18 \text{ m/s}^2) \sin(3.0 \text{ rad/s } t)\hat{\mathbf{j}};$
 - (c) $v = 6.0 \,\mathrm{m/s}$, $a = 18 \,\mathrm{m/s^2}$.
- **59.** $17 \text{ m/s} \le v \le 32 \text{ m/s}.$
- **61.** (a) $a_t = (\pi/2) \text{ m/s}^2$, $a_c = 0$;
 - (b) $a_t = (\pi/2) \text{ m/s}^2$, $a_c = (\pi^2/8) \text{ m/s}^2$;
 - (c) $a_t = (\pi/2) \text{ m/s}^2$, $a_c = (\pi^2/2) \text{ m/s}^2$.
- **63.** (a) 1.64 m/s;
 - (b) 3.45 m/s.
- **65.** m/b.

67. (a)
$$\frac{mg}{b} + \left(v_0 - \frac{mg}{b}\right)e^{-\frac{b}{m}t};$$

$$(b)-\frac{mg}{b}+\left(v_0+\frac{mg}{b}\right)e^{-\frac{b}{m}t}.$$

- **69.** (a) 14 kg/m:
 - (b) 570 N.

71.
$$\frac{mg}{b} \left[t + \frac{m}{b} \left(e^{-\frac{b}{m}t} - 1 \right) \right], ge^{-\frac{b}{m}t}$$

- 77. 0.46.
- **79.** 102 N, 0.725.
- 81. Yes, 14 m/s.
- 83. 28.3 m/s, 0.410 rev/s.
- 85. 3500 N, 1900 N.
- 87. 35°.
- 89. 132 m.
- **91.** (a) 55 s;
 - (b) centripetal component of the normal force.

93. (a)
$$\theta = \cos^{-1} \frac{g}{4\pi^2 r f^2}$$
;

- (b) 73.6°;
- (c) no.
- 95, 82°.
- **97.** (a) 16 m/s;
 - (b) 13 m/s.
- **99.** (a) $0.88 \,\mathrm{m/s^2}$;
 - (b) $0.98 \,\mathrm{m/s^2}$.
- **101.** (a) 42.2 m/s;
 - (b) 35.6 m, 52.6 m.
- **103.** (a)

(c) speed: -12%, position: -6.6%.

CHAPTER 6

- 1. 1610 N.
- 3. 1.9 m/s^2 .
- 5. $\frac{2}{9}$.
- **7.** 0.91 g's.
- **9.** 1.4×10^{-8} N at 45°.

11.
$$Gm^2 \left\{ \left[\frac{2}{x_0^2} + \frac{3x_0}{(x_0^2 + y_0^2)^{3/2}} \right] \hat{\mathbf{i}} + \left[\frac{4}{y_0^2} + \frac{3y_0}{(x_0^2 + y_0^2)^{3/2}} \right] \hat{\mathbf{j}} \right\}.$$

- **13.** $2^{1/3} \approx 1.26$ times larger.
- 15. 3.46×10^8 m from the center of the Earth.
- 19. (b) g decreases as r increases:
 - (c) 9.42 m/s^2 approximate. $9.43 \text{ m/s}^2 \text{ exact.}$
- **21.** 9.78 m/s^2 , 0.099° south of radially inward.
- 23. 7.52×10^3 m/s.
- **25.** $1.7 \text{ m/s}^2 \text{ upward.}$
- **27.** 7.20×10^3 s.
- 29. (a) 520 N;
 - (b) 520 N;
 - (c) 690 N;

 - (d) 350 N;
 - (e) 0.
- **31.** (a) 59 N, toward the Moon;
 - (b) 110 N, away from the Moon.
- 33. (a) They are executing centripetal motion;
 - (b) $9.6 \times 10^{29} \,\mathrm{kg}$.

35.
$$\sqrt{\frac{GM}{\ell}}$$
.

- 37. 5070 s, or 84.5 min.
- **39.** 160 y.
- **41.** 2×10^8 y.
- **43.** Europa: 671×10^3 km; Ganymede: 1070×10^3 km; Callisto: 1880×10^3 km.
- 45. (a) 180 AU;
 - (b) 360 AU;
 - (c) 360/1.
- **47.** (a) $\log T = \frac{3}{2} \log r + \frac{1}{2} \log \left(\frac{4\pi^2}{Gm_s} \right)$, slope = $\frac{3}{2}$,

y-intercept =
$$\frac{1}{2}\log\left(\frac{4\pi^2}{Gm_{\rm J}}\right)$$
;

slope = 1.50 as predicted, $m_{\rm I} = 1.97 \times 10^{27} \, \rm kg.$

- **49.** (a) $5.95 \times 10^{-3} \,\mathrm{m/s^2}$;
 - (b) no, only by about 0.06%.
- **51.** 2.64×10^6 m.
- **53.** (a) $4.38 \times 10^7 \,\mathrm{m/s^2}$;
 - (b) $2.8 \times 10^9 \,\mathrm{N}$;
 - (c) $9.4 \times 10^3 \,\mathrm{m/s}$.
- **55.** $T_{\rm inner} = 2.0 \times 10^4 \, \rm s$, $T_{\rm outer} = 7.1 \times 10^4 \, \rm s.$

- 57. 5.4×10^{12} m, it is still in the solar system, nearest to Pluto's orbit.
- **59.** 2.3 g's.
- **61.** 7.4×10^{36} kg, 3.7×10^{6} M_{Sup} .
- **65.** 1.21×10^6 m.
- **67.** $V_{\text{deposit}} = 5 \times 10^7 \,\text{m}^3$, $r_{\text{deposit}} = 200 \,\text{m};$ $m_{\rm deposit} = 4 \times 10^{10} \,\mathrm{kg}$.
- 69. 8.99 days.
- **71.** 0.44*r*.
- 73. (a) 53 N;
 - (b) 3.1×10^{26} kg.
- 77. $1 \times 10^{-10} \,\mathrm{m}^3/\mathrm{kg} \cdot \mathrm{s}^2$.
- **79.** (a)

(b) 39.44 AU.

CHAPTER 7

- 1. 7.7×10^3 J.
- 3. $1.47 \times 10^4 \, \text{J}$.
- 5. 6000 J.
- 7. 4.5×10^5 J.
- 9. 590 J.
- **11.** (a) 1700 N;
 - (b) -6600 J;
 - (c) 6600 J;
 - (d) 0.
- **13.** (a) 1.1×10^7 J;
 - (b) 5.0×10^7 J.
- **15.** −490 J, 0, 490 J.
- **21.** $1.5\hat{i} 3.0\hat{j}$.
- **23.** (a) 7.1;
 - (b) -250;
 - (c) 2.0×10^{1} .
- **25.** $-1.4\hat{i} + 2.0\hat{j}$.
- **27.** 52.5°, 48.0°, 115°.
- **29.** 113.4° or 301.4°.
- **31.** (a) 130°;
 - (b) negative sign says that the angle is obtuse.
- **35.** 0.11 J.

37. 3.0×10^3 J.

- 39. 2800 J.
- 41. 670 J.
- **43.** $\frac{1}{2}kX^2 + \frac{1}{4}aX^4 + \frac{1}{5}bX^5$.
- **45.** 4.0 J.
- **47.** $\frac{\sqrt{3}\pi RF}{2}$.
- **51.** (a) $\sqrt{3}$;
 - $(b)^{\frac{1}{4}}$.
- **53.** -4.5×10^5 J.
- **55.** 3.0×10^2 N.

57. (a)
$$\sqrt{\frac{Fx}{m}}$$
;

$$(b)\,\sqrt{\frac{3Fx}{4m}}.$$

- **59.** $8.3 \times 10^4 \,\mathrm{N/m}$.
- 61. 1400 J.
- **63.** (a) 640 J;
 - (b) $-470 \,\mathrm{J}$;
 - (c) 0;
 - (d) 4.3 m/s.
- 65. 27 m/s.

67. (a)
$$\frac{1}{2}mv_2^2\left(1+2\frac{v_1}{v_2}\right)$$
;

- $(b) \frac{1}{2} m v_2^2;$
- (c) $\frac{1}{2}mv_2^2\left(1+2\frac{v_1}{v_2}\right)$ relative to

Earth, $\frac{1}{2}mv_2^2$ relative to train;

- (d) the ball moves different distances during the throwing process in the two frames of reference.
- **69.** (a) 2.04×10^5 J:
 - (b) $21.0 \,\mathrm{m/s}$;
 - (c) 2.37 m.
- **71.** 1710 J.
- **73.** (a) 32.2 J;
 - (b) 554 J;
 - (c) -333 J;
 - (d) 0;
 - (e) 253 J.
- **75.** 12.3 J.

- 77. $\frac{A}{k}e^{-0.10k}$.
- 79. 86 kJ, 42°.
- **81.** 1.5 N.
- 83. $2 \times 10^7 \,\text{N/m}$.
- **85.** 6.7°, 10°.
- **87.** (a) 130 N, yes (\approx 29 lbs);
 - (b) 470 N, perhaps not (\approx 110 lbs).
- **89.** (a) 1.5×10^4 J;
 - (b) 18 m/s.
- **93.** (a) F = 10.0x;
 - (b) $10.0 \,\mathrm{N/m}$;
 - (c) 2.00 N.

CHAPTER 8

- 1. 0.924 m.
- 3. 54 cm.
- **5.** (a) 42.0 J;
 - (b) 11 J;
 - (c) same as part (a), unrelated to part (b).
- 7. (a) Yes, the expression for the work depends only on the endpoints;

(b)
$$U(x) = \frac{1}{2}kx^2 - \frac{1}{4}ax^4 - \frac{1}{5}bx^5 + C.$$

9.
$$U(x) = -\frac{k}{2x^2} + \frac{k}{8 \,\mathrm{m}^2}$$
.

- 11. 49 m/s.
- 13. 6.5 m/s.
- 15. (a) 93 N/m;
 - (b) 22 m/s^2 .
- **19.** (a) 7.47 m/s;
 - (b) 3.01 m.
- **21.** No, D = 2d.

23. (a)
$$\sqrt{v_0^2 + \frac{k}{m} x_0^2}$$
;

(b)
$$\sqrt{x_0^2 + \frac{m}{k} v_0^2}$$
.

- 25. (a) 2.29 m/s;
 - (b) 1.98 m/s;
 - (c) 1.98 m/s;
 - (d) 0.870 N, 0.800 N, 0.800 N;
 - (e) 2.59 m/s, 2.31 m/s, 2.31 m/s.

27.
$$k = \frac{12Mg}{h}$$

29. 3.9×10^7 J.

- **31.** (a) 25 m/s; (b) 370 m.
- **33.** 12 m/s.
- **35.** 0.020.
- **37.** 0.40.
- **39.** (a) 25%;
 - (b) 6.3 m/s, 5.4 m/s;
 - (c) primarily into heat energy.
- **41.** For a mass of 75 kg, the energy change is 740 J.
- **43.** (a) 0.13 m;
 - (b) 0.77;
 - (c) 0.5 m/s.
- **45.** (a) $\frac{GM_{\rm E}m_{\rm S}}{2r_{\rm S}}$

$$(b) - \frac{GM_{\rm E}m_{\rm S}}{r_{\rm S}}$$

- $(c) -\frac{1}{2}$
- 47. $\frac{1}{4}$.
- **49.** (a) 6.2×10^5 m/s;
 - (b) $4.2 \times 10^4 \,\mathrm{m/s}$, $v_{\rm esc\ at\ Earth\ orbit} = \sqrt{2}v_{\rm Earth\ orbit}$.
- **53.** (a) 1.07×10^4 m/s;
 - (b) $1.16 \times 10^4 \,\mathrm{m/s}$;
 - (c) $1.12 \times 10^4 \,\mathrm{m/s}$.

55. (a)
$$-\sqrt{\frac{GM_{\rm E}}{2r^3}}$$
;

- (b) $1.09 \times 10^4 \,\mathrm{m/s}$.
- 57. $\frac{GMm}{12r_{\rm E}}$
- **59.** 1.12×10^4 m/s.
- 63. 510 N.
- **65.** $2.9 \times 10^4 \,\mathrm{W}$ or $38 \,\mathrm{hp}$.
- 67. 4.2×10^3 N, opposing the velocity.
- **69.** 510 W.
- **71.** 2×10^6 W.
- 73. (a) -2.0×10^2 W;
 - (b) 3800 W;
 - (c) -120 W;
 - (d) 1200 W.
- **75.** The mass oscillates between $+x_0$ and $-x_0$, with a maximum speed at x = 0.

77. (a)
$$r_{U\min} = \left(\frac{2b}{a}\right)^{\frac{1}{6}}, r_{U\max} = 0;$$

(b) $r_{U=0} = \left(\frac{b}{a}\right)^{\frac{1}{6}};$

(c)

- (d) E < 0: bound oscillatory motion between two turning points, E > 0: unbounded;
- $(e) r_{F>0} < \left(\frac{2b}{a}\right)^{\frac{1}{6}},$

$$r_{F<0}>\left(\frac{2b}{a}\right)^{\frac{1}{6}},$$

$$r_{F=0} = \left(\frac{2b}{a}\right)^{\frac{1}{6}};$$

$$(f)F(r) = \frac{12b}{r^{13}} - \frac{6a}{r^7}.$$

- **79.** 2.52×10^4 W.
- **81.** (a) 42 m/s;
 - (b) $2.6 \times 10^5 \,\mathrm{W}$.
- **83.** (a) 28.2 m/s;
 - (b) 116 m.
- **85.** (a) $\sqrt{2g\ell}$;
 - (b) $\sqrt{1.2g\ell}$.
- **89.** (a) 8.9×10^5 J;
 - (b) $5.0 \times 10^{1} \,\mathrm{W}$, $6.6 \times 10^{-2} \,\mathrm{hp}$;
 - (c) 330 W, 0.44 hp.
- **91.** (a) 29°;
 - (b) 480 N;
 - (c) 690 N.
- 93. 5800 W or 7.8 hp.
- **95.** (a) 2.8 m;
 - (b) 1.5 m;
 - (c) 1.5 m.
- **97.** $1.7 \times 10^5 \,\mathrm{m}^3$.
- 99. (a) 5220 m/s;
 - (b) 3190 m/s.
- **101.** (a) 1500 m;
 - (b) 170 m/s.
- **103.** 60 m.
- **105.** (a) 79 m/s;
 - (b) $2.4 \times 10^7 \,\mathrm{W}$.
- **107.** (a) 2.2×10^5 J;
 - (b) 22 m/s;
 - (c) -1.4 m.

109.
$$x = \sqrt{\frac{a}{b}}$$
.

- 1. 5.9×10^7 N.
- 3. $(9.6t\hat{\mathbf{i}} 8.9\hat{\mathbf{k}})$ N.
- 5. $4.35 \text{ kg} \cdot \text{m/s} (\hat{\mathbf{j}} \hat{\mathbf{i}}).$
- 7. 1.40×10^2 kg.
- **9.** 2.0×10^4 kg.
- 11. $4.9 \times 10^3 \,\mathrm{m/s}$.
- 13. -0.966 m/s.
- **15.** 1:2.
- 17. $\frac{3}{2}v_0\hat{\mathbf{i}} v_0\hat{\mathbf{j}}$.
- **19.** $(4.0\hat{\mathbf{i}} + 3.3\hat{\mathbf{j}} 3.3\hat{\mathbf{k}}) \text{ m/s}.$
- **21.** (a) $(116\hat{\mathbf{i}} + 58.0\hat{\mathbf{j}})$ m/s;
 - (b) 5.02×10^5 J.
- **23.** (a) $2.0 \text{ kg} \cdot \text{m/s}$, forward;
 - (b) 5.8×10^2 N, forward.
- 25. $2.1 \text{ kg} \cdot \text{m/s}$, to the left.
- **27.** 0.11 N.
- **29.** $1.5 \text{ kg} \cdot \text{m/s}$.
- **31.** (a) $\frac{2mv}{\Delta t}$;
 - $(b)\,\frac{2mv}{t}.$
- **33.** (a) 0.98 N + (1.4 N/s)t;
 - (b) 13.3 N;
 - (c) $[(0.62 \text{ N/m}^{\frac{1}{2}}) \times$

$$\sqrt{2.5 \text{ m} - (0.070 \text{ m/s})t}$$
]
+ $(1.4 \text{ N/s})t$, 13.2 N.

- 35. 1.60 m/s (west), 3.20 m/s (east).
- **37.** (a) 3.7 m/s;
 - (b) 0.67 kg.
- **39.** (a) 1.00;
 - (b) 0.890;
 - (c) 0.286;
 - (d) 0.0192.
- **41.** (a) 0.37 m;
 - $(b) -1.6 \,\mathrm{m/s}, 6.4 \,\mathrm{m/s};$
 - (c) yes.
- **43.** (a) $\frac{-M}{m+M}$;
 - (b) -0.96.
- **45.** 3.0×10^3 J, 4.5×10^3 J.
- **47.** 0.11 kg·m/s, upward.
- **49.** (b) $e = \sqrt{\frac{h'}{h}}$
- **51.** (a) 890 m/s;
 - (b) 0.999 of initial kinetic energy lost.

- **53.** (a) $7.1 \times 10^{-2} \,\mathrm{m/s}$;
 - (b) -5.4 m/s, 4.1 m/s;
 - (c) 0, 0.13 m/s, reasonable;
 - (d) $0.17 \,\mathrm{m/s}$, 0, not reasonable;
 - (e) in this case, -4.0 m/s, 3.1 m/s, reasonable.
- 55. $1.14 \times 10^{-22} \text{ kg} \cdot \text{m/s}$, 147° from the electron's momentum, 123° from the neutrino's momentum.
- **57.** (a) 30°;
 - (b) $v'_{A} = v'_{B} = \frac{v}{\sqrt{3}};$
- **59.** 39.9 u.
- 63. 6.5×10^{-11} m.
- **65.** $(1.2 \text{ m})\hat{\mathbf{i}} (1.2 \text{ m})\hat{\mathbf{j}}$
- **67.** $0\hat{\mathbf{i}} + \frac{2r}{\pi}\hat{\mathbf{j}}$.
- **69.** $0\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + \frac{3}{4}h\hat{\mathbf{k}}$.
- **71.** $0\hat{\mathbf{i}} + \frac{4R}{3\pi}\hat{\mathbf{j}}$.
- 73. (a) 4.66×10^6 m from the center of the Earth.
- **75.** (a) 5.7 m;
 - $(b) 4.2 \,\mathrm{m};$
 - (c) 4.3 m.
- 77. 0.41 m toward the initial position of the 85-kg person.
- **79.** $v \frac{m}{m+M}$, upward, balloon also stops.
- **81.** 0.93 hp.
- 83. -76 m/s.
- 85. Good possibility of a "scratch" shot.
- **87.** 11 bounces.
- **89.** 1.4 m.
- **91.** 50%.
- **93.** (a) $v = \frac{M_0 v_0}{M_0 + \frac{dM}{dt}t}$;
 - (b) 8.2 m/s, yes.
- 95. 112 km/h or 70 mi/h.
- **97.** 21 m.
- **99.** (a) 1.9 m/s;
 - (b) -0.3 m/s, 1.5 m/s;
 - $(c) 0.6 \, \text{cm}, 12 \, \text{cm}.$
- **101.** $m < \frac{1}{3}M$ or m < 2.33 kg.
- **103.** (a) 8.6 m;
 - (b) 40 m.
- 105. 29.6 km/s.
- **107.** 0.38 m, 1.5 m.
- **109.** (a) 1.3×10^5 N;
- $(b) -83 \text{ m/s}^2$.
- 111. 12 kg.

113. 0.2 km/s, in the original direction of m_A .

CHAPTER 10

- 1. (a) $\frac{\pi}{4}$ rad, 0.785 rad;
 - (b) $\frac{\pi}{3}$ rad, 1.05 rad;
 - (c) $\frac{\pi}{2}$ rad, 1.57 rad;
 - (d) 2π rad, 6.283 rad;
 - (e) $\frac{89\pi}{36}$ rad, 7.77 rad.
- 3. 5.3×10^3 m.
- **5.** (a) 260 rad/s;
 - (b) 46 m/s, $1.2 \times 10^4 \text{ m/s}^2$.
- 7. (a) $1.05 \times 10^{-1} \, \text{rad/s}$;
 - (b) $1.75 \times 10^{-3} \,\text{rad/s}$;
 - (c) $1.45 \times 10^{-4} \, \text{rad/s}$;
 - (d) 0.
- **9.** (a) 464 m/s;
 - (b) 185 m/s;
 - (c) 328 m/s.
- 11. 36,000 rev/min.
- **13.** (a) $1.5 \times 10^{-4} \, \text{rad/s}^2$;
 - (b) $1.6 \times 10^{-2} \,\mathrm{m/s^2}$, $6.2 \times 10^{-4} \,\mathrm{m/s^2}$.
- 15. (a) $-\hat{i}$, \hat{k} ;
 - (b) 56.2 rad/s, 38.5° from -x axis towards +z axis;
 - (c) 1540 rad/s^2 , $-\hat{\mathbf{j}}$.
- 17. 28,000 rev.
- **19.** (a) -0.47 rad/s^2 ;
 - (b) 190 s.
- **21.** (a) 0.69 rad/s^2 ;
 - (b) 9.9 s.
- **23.** (a) $\omega = \frac{1}{3}5.0t^3 \frac{1}{2}8.5t^2$;
 - (b) $\theta = \frac{1}{12}5.0t^4 \frac{1}{6}8.5t^3$;
 - (c) $\omega(2.0 \text{ s}) = -4 \text{ rad/s},$ $\theta(2.0 \text{ s}) = -5 \text{ rad}.$
- 25. 1.4 m · N, clockwise.
- **27.** $mg(\ell_2 \ell_1)$, clockwise.
- 29. 270 N, 1700 N.
- **31.** $1.81 \text{ kg} \cdot \text{m}^2$.
- 33. (a) $9.0 \times 10^{-2} \,\mathrm{m \cdot N}$;
 - (b) 12 s.
- 35. 56 m·N.
- 37. (a) $0.94 \text{ kg} \cdot \text{m}^2$;
 - (b) $2.4 \times 10^{-2} \,\mathrm{m} \cdot \mathrm{N}$.
- **39.** (a) 78 rad/s^2 ;
 - (b) 670 N.
- **41.** $2.2 \times 10^4 \,\mathrm{m} \cdot \mathrm{N}$.

- **43.** 17.5 m/s.
- **45.** (a) $14M\ell^2$;
 - (b) $\frac{14}{3}M\ell\alpha$;
 - (c) perpendicular to the rod and the axis.
- **47.** (a) $1.90 \times 10^3 \,\mathrm{kg \cdot m^2}$;
 - (b) $7.5 \times 10^3 \,\mathrm{m} \cdot \mathrm{N}$.
- **49.** (a) R_0 ;
 - (b) $\sqrt{\frac{1}{2}R_0^2 + \frac{1}{12}w^2}$;
 - (c) $\sqrt{\frac{1}{2}}R_0$;
 - (d) $\sqrt{\frac{1}{2}(R_1^2 + R_2^2)}$;
 - (e) $\sqrt{\frac{2}{5}}r_0$;
 - (f) $\sqrt{\frac{1}{12}}\ell$;
 - (g) $\sqrt{\frac{1}{3}}\ell$;
 - (h) $\sqrt{\frac{1}{12}(\ell^2 + w^2)}$.

51.
$$a = \frac{(m_{\rm B} - m_{\rm A})}{(m_{\rm A} + m_{\rm B} + I/R^2)} g$$
,

compared to

$$a_{I=0} = \frac{\left(m_{\rm B} - m_{\rm A}\right)}{\left(m_{\rm A} + m_{\rm B}\right)} g.$$

- **53.** (a) 9.70 rad/s^2 ;
 - (b) 11.6 m/s^2 :
 - (c) 585 m/s^2 ;
 - (d) $4.27 \times 10^3 \,\mathrm{N}$;
 - (e) 1.14°.
- **57.** (a) $5.3Mr_0^2$; (b) -15%.
- **59.** (a) 3.9 cm from center along line connecting the small weight and the center;
 - (b) $0.42 \text{ kg} \cdot \text{m}^2$.
- **61.** (b) $\frac{1}{12}M\ell^2$, $\frac{1}{12}Mw^2$.
- **63.** 22,200 J.
- **65.** 14,200 J.
- **67.** 1.4 m/s.
- **69.** 8.22 m/s.
- **71.** $7.0 \times 10^1 \, \mathrm{J}$.
- 73. (a) 8.37 m/s, 32.9 rad/sec.
 - $(b)^{\frac{5}{2}}$
 - (c) the translational speed and the energy relationship are independent of both mass and radius, but the rotational speed depends on the radius.
- 75. $\sqrt{\frac{10}{7}g(R_0-r_0)}$.
- **77.** (a) 4.06 m/s;
 - (b) 8.99 J;
 - (c) 0.158.
- **79.** (a) 4.1×10^5 J;
 - (b) 18%;
 - (c) 1.3 m/s^2 ;
 - (d) 6%.
- **81.** (a) 1.6 m/s;
 - (b) 0.48 m.

83.
$$\frac{\ell}{2}, \frac{\ell}{2}$$
.

- **85.** (a) 0.84 m/s;
 - (b) 96%.
- 87. $2.0 \text{ m} \cdot \text{N}$, from the arm swinging the sling.

89. (a)
$$\frac{\omega_R}{\omega_F} = \frac{N_F}{N_R}$$
;

- (b) 4.0;
- (c) 1.5.
- **91.** (a) 1.7×10^8 J;
 - (b) $2.2 \times 10^3 \,\text{rad/s}$:
 - (c) 25 min.

93.
$$\frac{Mg\sqrt{2Rh-h^2}}{R-h}.$$

95.
$$\frac{\lambda_0 \ell^3}{6}$$
.

- **97.** $5.0 \times 10^2 \,\mathrm{m} \cdot \mathrm{N}$.
- **99.** (a) 1.6 m:
 - (b) 1.1 m.

101. (a)
$$\frac{x}{y}g$$
;

- (b) x should be as small as possible, y should be as large as possible, and the rider should move upward and toward the rear of the bicycle;
- (c) $3.6 \,\mathrm{m/s^2}$.

103.
$$\sqrt{\frac{3g\ell}{4}}$$

105. $\tau =$

$$[(0.300 \,\mathrm{m})\cos\theta + 0.200 \,\mathrm{m}](500 \,\mathrm{N})$$

CHAPTER 11

- 1. $3.98 \text{ kg} \cdot \text{m}^2/\text{s}$.
- 3. (a) L is conserved: If I increases, ω must decrease:
 - (b) increased by a factor of 1.3.
- 5. 0.38 rev/s.
- 7. (a) $7.1 \times 10^{33} \,\mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}$;

(b)
$$2.7 \times 10^{40} \,\mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}$$
.

$$9. (a) - \frac{I_{\mathrm{W}}}{I_{\mathrm{P}}} \omega_{\mathrm{W}};$$

$$(b)-\frac{I_{\mathrm{W}}}{2I_{\mathrm{P}}}\omega_{\mathrm{W}};$$

(c)
$$\omega_{\rm W} \frac{I_{\rm W}}{I_{\rm P}}$$
;

(d) 0.

- **11.** (a) 0.55 rad/s: (b) 420 J, 240 J.
- 13. 0.48 rad/s, 0.80 rad/s.
- 15. $\frac{1}{2}\omega$.
- 17. (a) 3.7×10^{16} J:
 - (b) $1.9 \times 10^{20} \,\mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}$.
- **19.** -0.32 rad/s.
- 23, 45°.
- 27. $(25\hat{i} \pm 14\hat{i} \mp 19\hat{k}) \text{ m} \cdot \text{kN}$.
- **29.** (a) $-7.0\hat{\mathbf{i}} 11\hat{\mathbf{j}} + 0.5\hat{\mathbf{k}}$; (b) 170° .
- 37. $(-55\hat{i} 45\hat{j} + 49\hat{k}) \text{ kg} \cdot \text{m}^2/\text{s}$.
- **39.** (a) $(\frac{1}{6}M + \frac{7}{9}m)\ell^2\omega^2$;
 - (b) $(\frac{1}{3}M + \frac{14}{9}m)\ell^2\omega$.

41. (a)
$$\left[(M_{\rm A} + M_{\rm B}) R_0 + \frac{I}{R_0} \right] v;$$

$$(b) \frac{M_{\rm B} g}{M_{\rm A} + M_{\rm B} + \frac{I}{R_0^2}}.$$

45.
$$F_{\rm A} = \frac{(d + r_{\rm A}\cos\phi)m_{\rm A}r_{\rm A}\omega^2\sin\phi}{2d}$$
$$F_{\rm B} = \frac{(d - r_{\rm A}\cos\phi)m_{\rm A}r_{\rm A}\omega^2\sin\phi}{2d}.$$

47.
$$\frac{m^2v^2}{g(m+M)(m+\frac{4}{3}M)}$$
.

49.
$$\Delta \omega / \omega_0 = -8.4 \times 10^{-13}$$
.

$$51. \ v_{\rm CM} = \frac{m}{M+m} v,$$

$$\omega \text{ (about cm)} = \left(\frac{12m}{4M + 7m}\right) \frac{v}{\ell}.$$

- **53.** $8.3 \times 10^{-4} \,\mathrm{kg} \cdot \mathrm{m}^2$.
- 55. 8.0 rad/s.
- 57. 14 rev/min, CCW when viewed from above.
- **59.** (a) 9.80 m/s^2 , along a radial line;
 - (b) 9.78 m/s^2 , 0.0988° south from a radial line;
 - (c) 9.77 m/s^2 , along a radial line.
- 61. Due north or due south.

63.
$$(mr\omega^2 - F_{fr})\hat{\mathbf{i}}$$

 $+ (F_{spoke} - 2m\omega v)\hat{\mathbf{j}}$
 $+ (F_N - mg)\hat{\mathbf{k}}.$

- **65.** (a) $(-24\hat{\mathbf{i}} + 28\hat{\mathbf{j}} 14\hat{\mathbf{k}}) \text{ kg} \cdot \text{m}^2/\text{s}$; (b) $(16\hat{\mathbf{j}} - 8.0\hat{\mathbf{k}}) \text{ m} \cdot \text{N}$.
- **67.** (b) 0.750.
- 69. $v[-\sin(\omega t)\hat{\mathbf{i}} + \cos(\omega t)\hat{\mathbf{j}}]$

$$\vec{\boldsymbol{\omega}} = \left(\frac{v}{R}\right)\hat{\mathbf{k}}.$$

71. (a) The wheel will turn to the right;

(b)
$$\Delta L/L_0 = 0.19$$
.

- 73. (a) $820 \text{ kg} \cdot \text{m}^2/\text{s}^2$;
 - (b) $820 \,\mathrm{m} \cdot \mathrm{N}$;
 - (c) 930 W.
- 75. $\vec{\mathbf{a}}_{\tan} = -R\alpha \sin\theta \hat{\mathbf{i}} + R\alpha \cos\theta \hat{\mathbf{j}};$
 - (a) $mR^2\alpha\hat{\mathbf{k}}$;
 - (b) $mR^2\alpha\hat{\mathbf{k}}$.
- **77.** 0.965.
- **79.** (a) There is zero net torque exerted about any axis through the skater's center of mass:
 - (b) $f_{\text{single axel}} = 2.5 \text{ rad/s},$ $f_{\text{triple axel}} = 6.5 \text{ rad/s}.$
- **81.** (a) 17,000 rev/s;
 - (b) 4300 rev/s.

83. (a)
$$\omega = \left(12 \frac{\text{rad/s}}{\text{m}}\right) x;$$

(b)

- **1.** 528 N, $(1.20 \times 10^2)^{\circ}$ clockwise from
- 3. 6.73 kg.
- 5. (a) $F_A = 1.5 \times 10^3 \,\mathrm{N}$ down, $F_{\rm B} = 2.0 \times 10^3 \,\rm N \ up;$
 - (b) $F_A = 1.8 \times 10^3 \,\text{N} \, \text{down}$, $F_{\rm B} = 2.6 \times 10^3 \,\rm N$ up.
- 7. (a) 230 N;
 - (b) 2100 N.
- 9. $-2.9 \times 10^3 \,\mathrm{N}, 1.5 \times 10^4 \,\mathrm{N}.$
- 11. 3400 N. 2900 N.
- 13. 0.28 m.
- 15. 6300 N, 6100 N.
- 17. 1600 N.
- 19. 1400 N, 2100 N.
- 21. (a) 410 N;
 - (b) 410 N, 328 N.
- 23. 120 N.
- 25. 550 N.
- 27. (a)

- (b) $F_{AH} = 51 \text{ N}, F_{AV} = -9 \text{ N};$
- (c) 2.4 m.

- **29.** $F_{\text{top}} = 55.2 \text{ N}$ right, 63.7 N up, $F_{\text{bottom}} = 55.2 \text{ N}$ left, 63.7 N up.
- 31. 5.2 m/s^2 .
- 33. 2.5 m at the top.
- 35. (a) $1.8 \times 10^5 \,\mathrm{N/m^2}$;
 - (b) 3.5×10^{-6} .
- 37. (a) $1.4 \times 10^6 \,\mathrm{N/m^2}$;
 - (b) 6.9×10^{-6} ;
 - (c) 6.6×10^{-5} m.
- 39. $9.6 \times 10^6 \,\mathrm{N/m^2}$.
- **41.** (a) $1.3 \times 10^2 \,\mathrm{m \cdot N}$, clockwise;
 - (b) the wall;
 - (c) all three are present.
- **43.** (a) 393 N;
 - (b) thicker.
- **45.** (a) $3.7 \times 10^{-5} \,\mathrm{m}^2$;
 - (b) 2.7×10^{-3} m.
- **47.** 1.3 cm.
- **49.** (a) $F_{\rm T} = 150 \, \rm kN$;

 $\mathbf{F}_{\mathbf{A}} = 170 \,\mathrm{kN}, \,\, 23^{\circ} \,\, \mathrm{above \, AC};$

(b) $F_{DE} = F_{DB} = F_{BC} = 76 \text{ kN},$ tension;

> $F_{\rm CE} = 38$ kN, compression; $F_{\rm DC} = F_{\rm AB} = 76$ kN, compression; $F_{\rm CA} = 114$ kN, compression.

- **51.** (a) $5.5 \times 10^{-2} \,\mathrm{m}^2$;
 - (b) $8.6 \times 10^{-2} \,\mathrm{m}^2$.
- **53.** $F_{AB} = F_{BD} = F_{DE} = 7.5 \times 10^4 \,\text{N},$ compression;

 $F_{\rm BC} = F_{\rm CD} = 7.5 \times 10^4 \,\rm N$, tension; $F_{\rm CE} = F_{\rm AC} = 3.7 \times 10^4 \,\rm N$, tension.

55. $F_{AB} = F_{JG} = \frac{3\sqrt{2}}{2} F$, compression;

 $F_{AC} = F_{JH} = F_{CE} = F_{HE} = \frac{3}{2}F$, tension;

 $F_{\rm BC} = F_{\rm GH} = F$, tension;

$$F_{\rm BE} = F_{\rm GE} = \frac{\sqrt{2}}{2} F$$
, tension;

 $F_{\text{BD}} = F_{\text{GD}} = 2F$, compression; $F_{\text{DE}} = 0$.

- **57.** 0.249 kg, 0.194 kg, 0.0554 kg.
- **59.** (a) $Mg\sqrt{\frac{h}{2R-h}}$;
 - $(b) Mg \frac{\sqrt{h(2R-h)}}{R-h}$

- (b) mg = 65 N, $F_{\text{right}} = 550 \text{ N}$, $F_{\text{left}} = 490 \text{ N}$;
- (c) 11 m·N.

- **63.** 29°.
- **65.** 3.8.
- 67. 5.0×10^5 N. 3.2 m.
- **69.** (a) 650 N;
 - (b) $F_{\rm A} = 0, F_{\rm B} = 1300 \,\rm N;$
 - (c) $F_A = 160 \,\mathrm{N}, F_B = 1140 \,\mathrm{N};$
 - (d) $F_A = 810 \text{ N}, F_B = 490 \text{ N}.$
- **71.** He can walk only 0.95 m to the right of the right support, and 0.83 m to the left of the left support.
- **73.** $F_{\text{left}} = 120 \,\text{N}, F_{\text{right}} = 210 \,\text{N}.$
- **75.** F/A =

 $3.8 \times 10^5 \,\mathrm{N/m^2} < \mathrm{tissue} \,\mathrm{strength}.$

- 77. $F_A = 1.7 \times 10^4 \,\mathrm{N},$ $F_B = 7.7 \times 10^3 \,\mathrm{N}.$
- **79.** 2.5 m.
- **81.** (a) 6500 m;
 - (b) 6400 m.
- **83.** 570 N.
- **85.** 45°.
- **87.** (a) 2.4w;
 - (b) 2.6w, 32° above the horizontal.
- **89.** (a) $(4.5 \times 10^{-6})\%$;
 - (b) 9.0×10^{-18} m.
- 91. 150 N, 0.83 m.
- 93. (a) $mg\left(1-\frac{r_0}{h}\cot\theta\right)$;
 - $(b)\,\frac{h}{r_0}-\cot\theta.$
- **95.** (b) 46°, 51°, 11%.
- **97.** (a)

(b)

Elastic Modulus = $2.02 \times 10^{11} \text{ N/m}^2$.

- **CHAPTER 13**
 - 1. 3×10^{11} kg.
 - 3. $6.7 \times 10^2 \,\mathrm{kg}$.
 - **5.** 0.8547.
 - 7. (a) 5510 kg/m^3 ;
 - (b) 5520 kg/m^3 , 0.3%.
 - **9.** (a) $8.1 \times 10^7 \,\mathrm{N/m^2}$;
 - (b) $2 \times 10^5 \,\text{N/m}^2$.
- 11. 13 m.
- 13. 6990 kg.
- **15.** (a) $2.8 \times 10^7 \,\mathrm{N}, 1.2 \times 10^5 \,\mathrm{N/m^2};$
 - (b) $1.2 \times 10^5 \,\mathrm{N/m^2}$.
- 17. 683 kg/m^3 .
- 19. $3.35 \times 10^4 \,\mathrm{N/m^2}$.
- **21.** (a) 1.32×10^5 Pa;
 - (b) $9.7 \times 10^4 \, \text{Pa}$.
- **23.** (c) 0.38h, no.
- **27.** 2990 kg/m^3 .
- **29.** 920 kg.
- 31. Iron or steel.
- 33. $1.1 \times 10^{-2} \,\mathrm{m}^3$.
- **35.** 10.5%.
- **37.** (b) Above.
- **39.** 3600 balloons.
- **43.** 2.8 m/s.
- **45.** $1.0 \times 10^1 \,\mathrm{m/s}$.
- 47. $1.8 \times 10^5 \,\mathrm{N/m^2}$.
- **49.** 1.2×10^5 N.
- **51.** $9.7 \times 10^4 \, \text{Pa}$.
- 57. $\frac{1}{2}$.
- **59.** (b) $h = \left[\sqrt{h_0} t \sqrt{\frac{gA_1^2}{2(A_2^2 A_1^2)}} \right]^2$ (c) 92 s.
- **63.** $7.9 \times 10^{-2} \, \text{Pa} \cdot \text{s}$.
- **65.** $6.9 \times 10^3 \, \text{Pa}$.
- **67.** 0.10 m.
- **69.** (a) Laminar;
 - (b) turbulent.
- **71.** 1.0 m.
- **73.** 0.012 N.
- **75.** 1.5 mm.
- **79.** (a) 0.75 m;
 - $(b) 0.65 \,\mathrm{m};$
 - (c) 1.1 m.
- 81. 0.047 atm.
- **83.** 0.24 N.
- **85.** 1.0 m.
- **87.** 5.3 km.
- -4 **89.** (a) 88 Pa/s; (b) 5.0×10^{1} s.
- **91.** 5×10^{18} kg.

- **93.** (a) 8.5 m/s;
 - (b) 0.24 L/s;
 - (c) $0.85 \,\mathrm{m/s}$.

95.
$$d\left(\frac{v_0^2}{v_0^2+2gy}\right)^{\frac{1}{4}}$$
.

- 97. 170 m/s.
- **99.** 1.2×10^4 N.
- **101.** 4.9 s.

CHAPTER 14

- 1. 0.72 m.
- 3. 1.5 Hz.
- 5. 350 N/m.
- 7. $0.13 \text{ m/s}, 0.12 \text{ m/s}^2, 1.2\%.$
- 9. (a) 0.16 N/m;
 - (b) 2.8 Hz.

11.
$$\frac{\sqrt{3k/M}}{2\pi}$$

- **13.** (a) 2.5 m, 3.5 m;
 - (b) 0.25 Hz, 0.50 Hz;
 - (c) 4.0 s, 2.0 s;
 - (d) $x_A = (2.5 \text{ m}) \sin(\frac{1}{2}\pi t),$ $x_B = (3.5 \text{ m}) \cos(\pi t).$
- **15.** (a) $y(t) = (0.280 \text{ m}) \sin[(34.3 \text{ rad/s})t];$
 - (b) $t_{\text{longest}} = 4.59 \times 10^{-2} \text{ s} + n(0.183 \text{ s}),$ $n = 0, 1, 2, \dots;$ $t_{\text{shortest}} = 1.38 \times 10^{-1} \text{ s} + n(0.183 \text{ s}),$
- 17. (a) $1.6 \text{ s}, \frac{5}{8} \text{Hz}$;
 - (b) 3.3 m, -7.5 m/s;

 $n = 0, 1, 2, \cdots$

- (c) $-13 \text{ m/s}, 29 \text{ m/s}^2$.
- **19.** 0.75 s.
- 21. 3.1 s, 6.3 s, 9.4 s.
- 23. 88.8 N/m, 17.8 m.
- **27.** (a) 0.650 m;
 - (b) 1.18 Hz;
 - (c) 13.3 J;
 - (d) 11.2 J, 2.1 J.

29.

- (a) 0.011 J;
- (b) 0.008 J;
- (c) 0.5 m/s.

- 31. 10.2 m/s.
- 33. $A_{\text{high energy}} = \sqrt{5}A_{\text{low energy}}$.
- 35. (a) 430 N/m;
 - (b) 3.7 kg.
- 37. 309.8 m/s.
- **39.** (a) 0.410 s, 2.44 Hz;
 - $(b) 0.148 \,\mathrm{m};$
 - (c) 34.6 m/s^2 ;
 - (d) $x = (0.148 \,\mathrm{m}) \sin(4.87\pi t)$;
 - (e) 2.00 J;
 - (f) 1.68 J.
- **41.** 2.2 s.
- **43.** (a) -5.4°;
 - (b) 8.4°;
 - (c) -13° .
- 45. $\frac{1}{3}$.
- **47.** $\sqrt{2g\ell(1-\cos\theta)}$.
- 49. 0.41 g.

51. (a)
$$\theta = \theta_0 \cos(\omega t + \phi), \omega = \sqrt{\frac{K}{I}}$$
.

- **53.** 2.9 s.
- 55. 1.08 s.
- 57. Decreased by a factor of 6.
- **59.** (a) $(-1.21 \times 10^{-3})\%$;
 - (b) 32.3 periods.
- **63.** (a) 0° ;
 - (b) $0, \pm A;$
 - (c) $\frac{1}{2}\pi$ or 90°.
- 65. 3.1 m/s.
- **67.** 23.7.
- **69.** (a) 170 s;
 - (b) 1.3×10^{-5} W;
 - (c) 1.0×10^{-3} Hz on either side.
- 71. 0.11 m.
- **73.** (a) 1.22 f;
 - (b) 0.71 f.
- **75.** (a) 0.41 s;
 - (b) 9 mm.
- 77. 0.9922 m, 1.6 mm, 0.164 m.

79.
$$x = \pm \frac{\sqrt{3}A}{2} \approx \pm 0.866A$$
.

- **81.** $\rho_{\text{water}} g(\text{area}_{\text{bottom side}}).$
- **83.** (a) 130 N/m;
 - (b) 0.096 m.

85. (a)
$$x = \pm \frac{\sqrt{3}x_0}{2} \approx \pm 0.866x_0;$$

- (b) $x = \pm \frac{1}{2}x_0$.
- 87. 84.5 min.
- **89.** 1.25 Hz. **91.** ~ 3000 N/m.

- **93.** (a) $k = \frac{4\pi^2}{\text{slope}}$, y-intercept = 0;
 - (b) slope = $0.13 \text{ s}^2/\text{kg}$, y-intercept = 0.14 s^2

(c)
$$k = \frac{4\pi^2}{\text{slope}} = 310 \,\text{N/m},$$

y-intercept =
$$\frac{4\pi^2 m_0}{k}$$
,

$$m_0=1.1\,\mathrm{kg};$$

(d) portion of spring's mass that is effectively oscillating.

- 1. 2.7 m/s.
- **3.** (a) 1400 m/s;
 - (b) 4100 m/s;
 - (c) 5100 m/s.
- **5.** 0.62 m.
- **7.** 4.3 N.
- **9.** (a) 78 m/s;
 - (b) 8300 N.
- 11. (a)

- (b) -4 cm/s.
- 13. 18 m.
- 15. $A_{\text{more energy}}/A_{\text{less energy}} = \sqrt{3}$.
- **19.** (a) 0.38 W;
 - (b) 0.25 cm.
- **21.** (b) 420 W.
- 23. $D = A \sin \left[2\pi \left(\frac{x}{\lambda} + \frac{t}{T} \right) + \phi \right].$
- **25.** (a) 41 m/s;
 - (b) $6.4 \times 10^4 \,\mathrm{m/s^2}$;
 - (c) $35 \text{ m/s}, 3.2 \times 10^4 \text{ m/s}^2$.

27. (b)
$$D =$$

$$(0.45 \text{ m})\cos[2.6(x-2.0t)+1.2];$$

$$(d) D =$$

$$(0.45 \text{ m})\cos[2.6(x+2.0t)+1.2].$$

$$(d) D =$$

$$(0.45 \text{ m})\cos[2.6(x+2.0t)+1.2]$$

29.
$$D = (0.020 \, \mathrm{cm}) \times$$

$$\sin[(9.54 \text{ m}^{-1})x - (3290 \text{ rad/s})t + \frac{3}{2}\pi]$$

- 31. Yes, it is a solution.
- 35. Yes, it is a solution.
- **37.** (a) 0.84 m;
 - (b) 0.26 N;
 - (c) 0.59 m.

39. (a)
$$t = \frac{2}{v} \sqrt{D^2 + \left(\frac{x}{2}\right)^2}$$
;

(b) slope =
$$\frac{1}{v^2}$$
,

y-intercept =
$$\frac{4}{v^2}D^2$$
.

41. (a)

- (c) all kinetic energy.
- 43. 662 Hz.

45.
$$T_n = \frac{(1.5 \text{ s})}{n}, \ n = 1, 2, 3, \dots,$$

 $f_n = n(0.67 \text{ Hz}), \ n = 1, 2, 3, \dots.$

- **47.** $f_{0.50}/f_{1.00} = \sqrt{2}$.
- 49. 80 Hz.
- **53.** 11.

55. (a)
$$D_2 = 4.2 \sin(0.84x + 47t + 2.1)$$
; (b) $8.4 \sin(0.84x + 2.1) \cos(47t)$.

- 57. 315 Hz.
- 59. (a)

- **61.** n = 4, n = 8, and n = 12.
- **63.** $x = \pm (n + \frac{1}{2}) \frac{\pi}{2}$ m, $n = 0, 1, 2, \dots$
- 65. 5.2 km/s.
- 67. $(3.0 \times 10^1)^{\circ}$.
- 69. 44°.
- **71.** (a) 0.042 m;
 - (b) 0.55 radians.
- 73. The speed is greater in the less dense rod, by a factor of $\sqrt{2.5} = 1.6$.
- **75.** (a) 0.05 m;
 - (b) 2.25.
- 77. 0.69 m.
- **79.** (a) t = 0 s;

(b)
$$D = \frac{4.0 \text{ m}^3}{(x - 2.4t)^2 + 2.0 \text{ m}^2}$$

(c) t = 1.0 s, moving right;

(d)
$$D = \frac{4.0 \,\mathrm{m}^3}{(x + 2.4t)^2 + 2.0 \,\mathrm{m}^2}$$

 $t = 1.0 \,\mathrm{s}$, moving left.

- 81. (a) G: 784 Hz, 1180 Hz, B: 988 Hz, 1480 Hz:
 - (b) 1.59:
 - (c) 1.26;
 - (d) 0.630.
- 83. 6.3 m from the end where the first pulse originated.

85.
$$\lambda = \frac{4\ell}{2n-1}$$
, $n = 1, 2, 3, \dots$.

$$87. D(x,t) =$$

 $(3.5 \text{ cm}) \cos(0.10\pi x - 1.5\pi t)$, with x in cm and t in s.

- 89. 12 min.
- 93. speed = $0.50 \,\mathrm{m/s}$; direction of motion = +x, period = 2π s, wavelength = π m.

- 1. 340 m.
- **3.** (a) 1.7 cm to 17 m;
 - (b) 2.3×10^{-5} m.
- **5.** (a) 0.17 m;
 - (b) 11 m;
 - (c) 0.5%.
- 7. 41 m.
- 9. (a) 8%;
 - (b) 4%.
- **11.** (a) 4.4×10^{-5} Pa;
 - (b) 4.4×10^{-3} Pa.
- 13. (a) 5.3 m;
 - (b) 675 Hz;

 - (c) $3600 \,\mathrm{m/s}$;
 - (d) 1.0×10^{-13} m.
- 15. 63 dB.
- **17.** (a) 10^9 ;
 - (b) 10^{12} .
- **19.** 2.9×10^{-9} J.
- 21. 124 dB.
- **23.** (a) 9.4×10^{-6} W;
 - (b) 8.0×10^6 people.
- 25. (a) 122 dB, 115 dB;
 - (b) no.
- 27. 7 dB.

- **29.** (a) The higher frequency wave, 2.6;
 - (b) 6.8.
- 31. (a) 3.2×10^{-5} m;
 - (b) $3.0 \times 10^{1} \, \text{Pa}$.
- **33.** 1.24 m.
- **35.** (a) 69.2 Hz, 207 Hz, 346 Hz, 484 Hz; (b) 138 Hz, 277 Hz, 415 Hz, 553 Hz.
- 37. 8.6 mm to 8.6 m.
- **39.** (a) 0.18 m;
 - (b) 1.1 m;
 - (c) 440 Hz, 0.78 m.
- **41.** -3.0%.
- **43.** (a) 1.31 m;
 - (b) 3, 4, 5, 6.
- 45. 3.65 cm, 7.09 cm, 10.3 cm, 13.4 cm, 16.3 cm, 19.0 cm.
- 47. 4.3 m, open.
- 49. 21.4 Hz, 42.8 Hz.
- **51.** 3430 Hz, 10,300 Hz, 17,200 Hz, relatively sensitive frequencies.
- **53.** \pm 0.50 Hz.
- 55. 346 Hz.
- **57.** 10 beats/s.
- **59.** (a) 221.5 Hz or 218.5 Hz;
 - (b) 1.4% increase, 1.3% decrease.
- **61.** (a) 1470 Hz;
 - (b) 1230 Hz.
- **63.** (a) 2430 Hz, 2420 Hz, difference of 10 Hz:
 - (b) 4310 Hz, 3370 Hz, difference of 940 Hz;
 - (c) 34,300 Hz, 4450 Hz, difference of 29,900 Hz;
 - (d) $f'_{\text{source moving}} \approx f'_{\text{observer moving}}$ $= f \bigg(1 + \frac{v_{\text{object}}}{v_{\text{sound}}} \bigg)$
- **65.** (a) 1420 Hz, 1170 Hz;
 - (b) 1520 Hz, 1080 Hz;
 - (c) 1330 Hz, 1240 Hz.
- 67. 3 Hz.
- **69.** (a) Every 1.3 s;
 - (b) every 15 s.
- 71. 8.9 cm/s.
- **73.** (a) 93;
 - (b) 0.62° .
- 77. 19 km.
- **79.** (a) 57 Hz, 69 Hz, 86 Hz, 110 Hz, 170 Hz.
- 81. 90 dB.
- 83. 11 W.

- 85. 51 dB.
- **87.** 1.07.
- 89. (a) 280 m/s, 57 N;
 - $(b) 0.19 \,\mathrm{m};$
 - (c) 880 Hz, 1320 Hz.
- **91.** 3 Hz.
- 93. 141 Hz, 422 Hz, 703 Hz, 984 Hz.
- 95. 22 m/s.
- **97.** (a) No beats;
 - (b) 20 Hz;
 - (c) no beats.
- 99. 55.2 kHz.
- 101. 11.5 m.
- 103, 2.3 Hz.
- 105. 17 km/h.
- **107.** (a) 3400 Hz;
 - (b) 1.50 m;
 - $(c) 0.10 \,\mathrm{m}.$
- **109.** (a)

- 1. $N_{\rm Au} = 0.548 N_{\rm Ag}$.
- 3. (a) 20°C;
 - (b) 3500°F.
- 5. 102.9°F.
- 7. 0.08 m.
- 9. 1.6×10^{-6} m for Super InvarTM, 9.6×10^{-5} m for steel, steel is $60\times$ as much.
- 11. 981 kg/m^3 .
- **13.** −69°C.
- 15. 3.9 cm^3 .

- 17. (a) $5.0 \times 10^{-5}/\text{C}^{\circ}$;
 - (b) copper.
- **21.** (a) 2.7 cm;
 - (b) 0.3 cm.
- 23. 55 min.
- **25.** $3.0 \times 10^7 \,\mathrm{N/m^2}$.
- **27.** (a) 27°C;
 - (b) 5500 N.
- **29.** −459.67°F.
- 31. 1.35 m^3 .
- 33. 1.25 kg/m^3 .
- 35. 181°C.
- **37.** (a) 22.8 m³;
 - (b) 1.88 atm.
- 39. 1660 atm.
- 41. 313°C.
- **43.** 3.49 atm.
- **45.** −130°C.
- **47.** 7.0 min.
- **49.** Ideal = $0.588 \,\mathrm{m}^3$, $actual = 0.598 \, m^3$ (nonideal behavior).
- **51.** 2.69×10^{25} molecules/m³.
- **53.** 4×10^{-17} Pa.
- 55. $300 \text{ molecules/cm}^3$.
- 57. 19 molecules/breath.
- **59.** (a) 71.2 torr;
 - (b) 180°C.
- 61. 223 K.
- **63.** (a) Low;
 - (b) 0.025%.
- **65.** 20%.
- 67. 9.9 L, not advisable.
- 69. (a) 1100 kg;
 - (b) 100 kg.
- **71.** (a) Lower;
 - (b) 0.36%.
- **73.** 1.1×10^{44} molecules.
- 75. 3.34 nm.
- **77.** 13 h.
- **79.** (a) $0.66 \times 10^3 \,\mathrm{kg/m^3}$;
 - (b) -3%.
- **81.** \pm 0.11 °C.
- 83. 3.6 m.
- **85.** 3% increase.

87.

Slope of the line: $4.92 \times 10^{-2} \,\mathrm{ml/^{\circ}C}$, relative β : $492 \times 10^{-6}/^{\circ}\mathrm{C}$, β for the liquid: $501 \times 10^{-6}/^{\circ}\mathrm{C}$, which liquid: glycerin.

CHAPTER 18

- 1. (a) $5.65 \times 10^{-21} \,\mathrm{J}$;
 - (b) 3.7×10^3 J.
- **3.** 1.29.
- 5. $3.5 \times 10^{-9} \,\mathrm{m/s}$.
- **7.** (a) 4.5;
 - (b) 5.2.
- **9.** $\sqrt{3}$.
- **13.** (b) 5.6%.
- **15.** 1.004.
- **17.** (a) 493 m/s;
 - (b) 28 round trips/s.
- 19. Double the temperature.
- **21.** (a) 710 m/s;
 - (b) 240 K;
 - (c) 650 m/s, 240 K, yes.
- 23. Vapor.
- 25. (a) Vapor;
 - (b) solid.
- **27.** 3600 Pa.
- **29.** 355 torr or 4.73×10^4 Pa or 0.466 atm.
- **31.** 92°C.
- 33. 1.99×10^5 Pa or 1.97 atm.
- **35.** 70 g.
- **37.** 16.6°C.
- **39.** (a) Slope = -5.00×10^3 K, y intercept = 24.9.

Let $P_0 = 1$ Pa in this graph:

- **41.** (a) 3.1×10^6 Pa:
 - (b) 3.2×10^6 Pa.
- **43.** (b) $a = 0.365 \text{ N} \cdot \text{m}^4/\text{mol}^2$, $b = 4.28 \times 10^{-5} \text{ m}^3/\text{mol}$.
- **45.** (a) 0.10 Pa;
 - (b) $3 \times 10^7 \, \text{Pa}$.
- **47.** 2.1×10^{-7} m, stationary targets, effective radius of $r_{\rm H2} + r_{\rm air}$.
- **49.** (b) $4.7 \times 10^7 \,\mathrm{s}^{-1}$.
- 51. $\frac{1}{40}$.
- **53.** 3.5 h, convection is much more important than diffusion.
- **55.** (b) $4 \times 10^{-11} \,\mathrm{mol/s}$;
 - (c) 0.6 s.
- **57.** 260 m/s, 3.7×10^{-22} atm.
- **59.** (a) 290 m/s;
 - (b) 9.5 m/s.
- **61.** 50 cm.
- **63.** Kinetic energy = 6.07×10^{-21} J, potential energy = 5.21×10^{-25} J, yes, potential energy can be neglected.
- **65.** 0.07%.
- 67. 1.5×10^5 K.
- **69.** (a) 2800 Pa;
 - (b) 650 Pa.
- 71. 2×10^{13} m.
- 73. 0.36 kg.
- **75.** (b) 4.6×10^9 Hz, 2.3×10^5 times larger.
- **77.** 0.21.

- **1.** 10.7°C.
- 3. (a) 1.0×10^7 J;
 - (b) $2.9 \, \text{kWh}$;
 - (c) \$0.29 per day, no.
- 5. 4.2×10^5 J, 1.0×10^2 kcal.
- 7. 6.0×10^6 J.
- **9.** (a) 3.3×10^5 J;
 - (b) 56 min.
- 11. 6.9 min.
- 13. 39.9°C.

- 15. $2.3 \times 10^3 \,\mathrm{J/kg \cdot C^{\circ}}$.
- 17. 54 C°.
- **19.** 0.31 kg.
- **21.** (a) 5.1×10^5 J;
 - (b) $1.5 \times 10^5 \,\text{J}.$
- 23. 4700 kcal.
- 25. 360 m/s.

- **29.** (a) 0;
 - (b) -365 kJ.
- **31.** (a) 480 J;
 - (b) 0;
 - (c) 480 J into gas.
- **33.** (a) 4350 J;
 - (b) 4350 J;
 - (c) 0.
- 35. -4.0×10^2 K.
- **37.** 236 J.
- **39.** (a) $3.0 \times 10^1 \,\mathrm{J}$;
 - (b) 68 J;
 - (c) -84 J;
 - (d) -114 J;
 - (e) -15 J.

41.
$$RT \ln \frac{(V_2 - b)}{(V_1 - b)} + a \left(\frac{1}{V_2} - \frac{1}{V_1}\right)$$
.

- **43.** 43 C°.
- **45.** 83.7 g/mol, krypton.
- **47.** 48 C°.
- **49.** (a) 6230 J;
 - (b) 2490 J;
 - (c) 8720 J.
- **51.** 0.457 atm, −39°C.
- **53.** (a) 404 K, 195 K;
 - (b) $-1.59 \times 10^4 \,\mathrm{J}$;
 - (c) 0;
 - $(d) -1.59 \times 10^4 \,\mathrm{J}.$

55. (a)

- (b) 209 K;
- (c) $Q_{1\to 2} = 0$, $\Delta E_{1\to 2} = -2480 \,\text{J},$ $W_{1\to 2} = 2480 \,\text{J},$ $Q_{2\to 3} = -3740 \,\text{J},$ $\Delta E_{2\to 3} = -2240 \,\mathrm{J},$

$$W_{2\to 3} = -1490 \,\mathrm{J},$$

$$Q_{3\to 1} = 4720 \,\text{J},$$

 $\Delta E_{3\to 1} = 4720 \,\text{J},$

$$\Delta E_{3\to 1} = 4720 \,\mathrm{J}$$

$$W_{3\to 1}=0;$$

- (d) $Q_{\text{cycle}} = 990 \,\text{J}$, $\Delta E_{\text{cycle}} = 0$, $W_{\text{cycle}} = 990 \text{ J}.$
- **57.** (a) $5.0 \times 10^1 \,\mathrm{W}$;
 - (b) 17 W.
- **59.** 21 h.
- **61.** (a) Ceramic: 14 W, shiny: 2.0 W; (b) ceramic: $11 \,\mathrm{C}^{\circ}$, shiny: $1.6 \,\mathrm{C}^{\circ}$.
- **63.** (a) 1.73×10^{17} W; (b) 278 K or 5°C.
- **65.** 28%.
- **67.** (b) $4.8 \,\mathrm{C}^{\circ}/\mathrm{s}$;
 - (c) $0.60 \, \text{C}^{\circ}/\text{cm}$.
- 69. 6.4 Cal.
- **71.** 4×10^{15} J.
- **73.** 1 C°.
- 75. 3.6 kg.
- **77.** 0.14 C°.
- **79.** (a) 800 W;
 - (b) 5.3 g.
- 81. 1.1 days.
- **83.** (a) 4.79 cm;

(b)

- (c) $Q = 4.99 \text{ J}, \Delta E = 0, W = 4.99 \text{ J}.$
- 85. 110°C.
- 87. 305 J.

- **89.** (a) 1.9×10^5 J:
 - (b) $4.4 \times 10^5 \,\mathrm{J}$;
 - (c) P(atm)

91. 2200 J.

- 1. 0.25.
- **3.** 0.16.
- **5.** 0.21.
- **7.** (b) 0.55.
- **9.** 0.74.
- 13. $1.4 \times 10^{13} \,\mathrm{J/h}$.
- **15.** 1400 m.
- 17. 660°C.
- **19.** (a) $4.1 \times 10^5 \, \text{Pa}, 2.1 \times 10^5 \, \text{Pa};$
 - (b) 34 L, 17 L;
 - (c) 2100 J;
 - (d) -1500 J;
 - (e) 600 J;
 - (f) 0.3.
- **21.** 8.55.
- **23.** 5.4.
- **25.** (a) -4° C;
 - (b) 29%.
- **27.** (a) 230 J;
 - (b) 390 J.
- **29.** (a) 3.1×10^4 J;
 - (b) 2.7 min.
- 31. 91 L.
- 33. 0.20 J/K.
- 35. $5 \times 10^4 \, \text{J/K}$.
- 37. $5.49 \times 10^{-2} \frac{\text{J/K}}{}$
- 39. 9.3 J/K.
- **41.** (a) 93 m J/K, yes;
 - (b) $-93 \, m \, J/K$, no; m in kg (SI).
- **43.** (a) 1010 J/K;
 - (b) 1020 J/K;
 - (c) $-9.0 \times 10^2 \,\mathrm{J/K}$.
- 45. (a) Adiabatic;
 - (b) $\Delta S_{\text{adiabatic}} = 0$, $\Delta S_{\text{isothermal}} = -nR \ln 2;$
 - (c) $\Delta S_{\text{environment adiabatic}} = 0$, $\Delta S_{\text{environment isothermal}} = nR \ln 2.$
- **47.** (a) All processes are reversible.

- **53.** 2.1×10^5 J.
- **55.** $(a) \frac{5}{16}$;
 - $(b)^{\frac{1}{64}}$.
- **57.** (a) $2.47 \times 10^{-23} \,\mathrm{J/K}$;
 - (b) $-9.2 \times 10^{-22} \,\mathrm{J/K}$;
 - (c) these are many orders of magnitude smaller, due to the relatively small number of microstates for the coins.
- **59.** (a) 1.79×10^6 kWh;
 - (b) $9.6 \times 10^4 \,\text{kW}$.
- 61. 12 MW.
- **63.** (a) 0.41 mol;
 - (b) 396 K;
 - (c) 810 J;
 - (d) -700 J;
 - (e) 810 J;
 - (f) 0.13;
 - (g) 0.24.
- **65.** (a) 110 kg/s;
 - (b) $9.3 \times 10^7 \, \text{gal/h}$.
- **67.** (a) $18 \text{ km}^3/\text{days}$;
 - (b) 120 km^2 .
- **69.** (a) 0.19;
 - (b) 0.23.
- **71.** (a) 5.0 °C;
 - (b) $72.8 \, \text{J/kg} \cdot \text{K}$.
- 73. 1700 J/K.
- 75. 57 W or 0.076 hp.
- 77. $e_{\text{Sterling}} =$

$$\left(\frac{T_{\rm H}-T_{\rm L}}{T_{\rm H}}\right) \left[\frac{\ln\!\left(\frac{V_{\rm b}}{V_{\rm a}}\right)}{\ln\!\left(\frac{V_{\rm b}}{V_{\rm a}}\right) + \frac{3}{2}\!\left(\frac{T_{\rm H}-T_{\rm L}}{T_{\rm H}}\right)}\right]$$

- $e_{\text{Sterling}} < e_{\text{Carnot}}$.
- **79.** (a)

- (b) W_{net} .
- 81. 16 kg.
- 83. $3.61 \times 10^{-2} \,\mathrm{J/K}$.

CHAPTER 21

- 1. 2.7×10^{-3} N.
- 3. 7200 N.
- 5. $(4.9 \times 10^{-14})\%$.
- 7. 4.88 cm.
- 9. -5.8×10^8 C. 0.
- **11.** (a) $q_1 = q_2 = \frac{1}{2}Q_T$;

(b)
$$q_1 = 0, q_2 = Q_T$$
.

13. $F_1 = 0.53 \,\mathrm{N}$ at 265°,

$$F_2 = 0.33 \,\mathrm{N} \,\mathrm{at} \,112^\circ,$$

$$F_3 = 0.26 \,\mathrm{N}$$
 at 53°.

- **15.** $F = 2.96 \times 10^7 \,\text{N}$, away from center of square.
- **17.** 1.0×10^{12} electrons.

19. (a)
$$\pi \sqrt{\frac{md^3}{kQq}}$$
;

- (b) 0.2 ps.
- **21.** 3.08×10^{-16} N west.
- **23.** 1.10×10^7 N/C up.
- **25.** $(172 \hat{j})$ N/C.
- **27.** 1.01×10^{14} m/s², opposite to the field.
- 29.

31. $(-4.7 \times 10^{11} \,\hat{\mathbf{i}}) \,\text{N/C}$ - $(1.6 \times 10^{11} \,\hat{\mathbf{j}}) \,\text{N/C};$

or

$$5.0 \times 10^{11} \, \text{N/C}$$
 at 199°.

33. $E = 2.60 \times 10^4 \,\text{N/C}$, away from the center.

$$35. \frac{4kQxa}{(x^2-a^2)^2}, \text{ left.}$$

37.
$$\frac{\lambda}{2\pi\varepsilon_0}\sqrt{\frac{1}{x^2}+\frac{1}{y^2}}$$
, $\tan^{-1}\frac{x}{y}$.

39.

41. $\frac{1}{4}$.

43. (a)
$$\frac{Qy}{2\pi\varepsilon_0(y^2+\ell^2)^{3/2}}$$
.

45. 1.8×10^6 N/C, away from the wire.

47.
$$\frac{8\lambda \ell z}{\pi \varepsilon_0 (\ell^2 + 4z^2)\sqrt{4z^2 + 2\ell^2}}$$
, vertical.

$$49. - \frac{2\lambda \sin \theta_0}{4\pi \varepsilon_0 R} \hat{\mathbf{i}}.$$

51. (a)
$$\frac{\lambda}{4\pi\varepsilon_0 x(x^2 + \ell^2)^{1/2}} \times (\ell \hat{\mathbf{i}} + [x - (x^2 + \ell^2)^{1/2}]\hat{\mathbf{j}}).$$

53.
$$\frac{Q}{4\pi\varepsilon_0 x(x+\ell)}$$

55.
$$\frac{Q(x\hat{\mathbf{i}} - \frac{2a}{\pi}\hat{\mathbf{j}})}{4\pi\varepsilon_0(x^2 + a^2)^{3/2}}$$

57. (a)
$$(-3.5 \times 10^{15} \text{ m/s}^2) \hat{\mathbf{i}}$$

- $(1.41 \times 10^{16} \text{ m/s}^2) \hat{\mathbf{j}};$

- (b) 166° counterclockwise from the initial direction.
- **59.** −23°.

61. (b)
$$2\pi\sqrt{\frac{4\pi\varepsilon_0 mR^3}{qQ}}$$
.

- **63.** (a) 3.4×10^{-20} C;
 - (b) no;
 - (c) $8.5 \times 10^{-26} \,\mathrm{m \cdot N}$;
 - (d) 2.5×10^{-26} J.
- **65.** (a) θ very small;

(b)
$$\frac{1}{2\pi}\sqrt{\frac{pE}{I}}$$
.

- **67.** (a) In the direction of the dipole.
- **69.** 3.5×10^9 C.
- **71.** 6.8×10^5 C, negative.
- **73.** 1.0×10^7 electrons.
- **75.** 5.71×10^{13} C.
- **77.** 1.6 m from Q_2 , 3.6 m from Q_1 .

79.
$$\frac{1.08 \times 10^7}{[3.00 - \cos(13.9t)]^2}$$
 N/C (upwards).

- **81.** 5×10^{-9} C.
- **83.** 8.0×10^{-9} C.
- **85.** 18°.
- 87. $E_{\rm A} = 3.4 \times 10^4 \, \text{N/C}$, to the right; $E_{\rm B} = 2.3 \times 10^4 \, \text{N/C}$, to the left; $E_{\rm C} = 5.6 \times 10^3 \, \text{N/C}$, to the right;

 $E_{\rm D} = 3.4 \times 10^3 \, {\rm N/C}$, to the left.

- **89.** -7.66×10^{-6} C, unstable.
- **91.** (a) 9.18×10^6 N/C, down;
 - (b) $1.63 \times 10^{-4} \text{ C/m}^2$.
- **93.** (a) $\frac{a}{\sqrt{2}} = 7.07 \text{ cm};$
 - (b) yes;

(c) and (d)

(e) 37 cm.

- 1. (a) 31 N·m²/C;
 - (b) 22 N·m²/C;
 - (c) 0.
- **3.** (a) 0;
 - (b) $0, 0, 0, 0, E_0 \ell^2, -E_0 \ell^2$.
- 5. 1.63×10^{-8} C.
- 7. (a) $-1.1 \times 10^5 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}$;
 - (b) 0.
- 9. -8.3×10^{-7} C.
- 11. 4.3×10^{-5} C/m.
- 13. -8.52×10^{-11} C.
- **15.** (a) -2.6×10^4 N/C (toward wire);
 - (b) -8.6×10^4 N/C (toward wire).

- 17. (a) $-(1.9 \times 10^{11} \text{ N/C} \cdot \text{m})r$:
 - (b) $-(1.1 \times 10^8 \,\mathrm{N \cdot m^2/C})/r^2$ $+ (3.0 \times 10^{11} \text{ N/C} \cdot \text{m})r$
 - (c) $(4.1 \times 10^8 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C})/r^2$;
 - (d) yes.

19.

- **21.** (a) 5.5×10^7 N/C (outward);
 - (b) 0;
 - (c) $5.5 \times 10^5 \,\text{N/C}$ (outward).
- **23.** (a) $-8.00 \mu C$;
 - (b) $+1.90 \,\mu\text{C}$.
- **25.** (a) 0;
 - $(b) \frac{\sigma}{a}$ (outward, if both plates are positive);
 - (c) same.
- **27.** (a) 0;
 - (b) $\frac{r_1^2\sigma_1}{\varepsilon_0 r^2}$;
 - $(c) \frac{\left(r_1^2\sigma_1+r_2^2\sigma_2\right)}{\varepsilon_0 r^2};$
 - (d) $\sigma_1 = -\left(\frac{r_2}{r}\right)^2 \sigma_2;$
 - (e) $\sigma_1 = 0$, or place $Q = -4\pi\sigma_1 r_1^2$ inside r_1 .
- **29.** (a) 0;

$$(b) \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_0^3 - r_1^3} \right) \left(\frac{r^3 - r_1^3}{r^2} \right);$$

- $(c) \frac{kQ}{2}$
- **31.** (a) -q;
 - (b) Q + q;
 - $(c) \frac{kq}{2}$;
 - (d) 0:

(e)
$$\frac{k(q+Q)}{r^2}$$
.

- 33. (a) $\frac{\sigma R_0}{\epsilon_0 R}$, radially outward;

 - (c) same for $R > R_0$ if $\lambda = 2\pi R_0 \sigma$.
- - $(b)\,\frac{1}{2\pi\varepsilon_0}\frac{(^{Q}\!/\iota)}{r};$

 - $(d) \frac{e}{4\pi a} \left(\frac{Q}{\ell}\right).$
- **37.** (a) 1.9×10^7 m/s:
 - (b) 5.5×10^5 m/s.
- **39.** (a) $\frac{\rho_E r}{3\varepsilon_0}$;
 - $(b)\,\frac{\rho_E r_0^3}{3\varepsilon_0 r^2};$

 - $(d)\left(\frac{\rho_{\rm E}r_0^3}{3\varepsilon_0}+\frac{Q}{4\pi\varepsilon_0}\right)\frac{1}{r^2}.$
- **41.** (a) 0;
 - $(b)\,\frac{Q}{2500\pi\varepsilon_0\,R_0^2}$
- **43.** (a) $\frac{\rho_{\rm E} d}{2\epsilon_0}$ away from surface.
- 45. (a) 13 N (attractive);
 - (b) 0.064 J.
- **47.** (a) 0;
 - $(b) \frac{\rho_0(d-x)}{\varepsilon_0} \hat{\mathbf{i}};$
 - $(c) \frac{\rho_0(d+x)}{\varepsilon_0} \hat{\mathbf{i}}.$
- **49.** $\frac{Q}{4\pi\varepsilon_0} \frac{r^2}{r_0^4}$, radially outward.
- 51. $\Phi = \oint \vec{\mathbf{g}} \cdot d\vec{\mathbf{A}} = -4\pi G M_{\rm enc}$
- 53. $a\ell^3\varepsilon_0$.
- 55. $475 \text{ N} \cdot \text{m}^2/\text{C}$, $475 \text{ N} \cdot \text{m}^2/\text{C}$.
- **57.** (a) 0;

(b)
$$E_{\text{max}} = \frac{Q}{\pi \epsilon_0 r_0^2}$$
, $E_{\text{min}} = \frac{Q}{25\pi \epsilon_0 r_0^2}$;

- (c) no;
- (d) no.
- **59.** (a) 1.1×10^{-19} C:
 - (b) $3.5 \times 10^{11} \,\text{N/C}$
- **61.** (a) $\frac{\rho_{\rm E} r_0}{6a}$, right;
 - $(b) \frac{17}{54} \frac{\rho_{\rm E} r_0}{\varepsilon_0}$, left.
- **63.** (a) 0;
 - (b) 5.65×10^5 N/C, right;
 - (c) 5.65×10^5 N/C, right;
 - $(d) -5.00 \times 10^{-6} \,\mathrm{C/m^3}$
 - (e) $+5.00 \times 10^{-6} \,\mathrm{C/m^3}$.

- 65. (a) On inside surface of shell.
 - (b) $r < 0.10 \,\mathrm{m}$

$$E = \left(\frac{2.7 \times 10^4}{r^2}\right) \text{N/C};$$

67. $-46 \text{ N} \cdot \text{m}^2/\text{C}$. $-4.0 \times 10^{-10} \text{ C}$.

CHAPTER 23

- 1. -0.71 V.
- 3. 3280 V, plate B has a higher potential.
- 5. 30 m.
- 7. 1.4 µC.
- 9. 1.2 cm, 46 nC.
- **11.** (a) 0;
 - (b) -29.4 V:
 - (c) -29.4 V.
- **13.** (a) $-9.6 \times 10^8 \text{ V}$;
 - (b) $9.6 \times 10^8 \,\text{V}$.
- 15. (a) They are equal;

$$(b) Q\bigg(\frac{r_2}{r_1+r_2}\bigg).$$

- **17.** (a) 10–20 kV:
 - (b) $30 \,\mu\text{C/m}^2$.
- 19. (a) $\frac{Q}{4\pi\varepsilon_0 r}$;

$$(b)\,\frac{Q}{8\pi\varepsilon_0r_0}\bigg(3-\frac{r^2}{r_0^2}\bigg);$$

(c) Let $V_0 = V$ at $r = r_0$, and $E_0 = E$ at $r = r_0$:

- **21.** $\frac{\rho_0}{\varepsilon_0} \left(\frac{r_0^2}{4} \frac{r^2}{6} + \frac{r^4}{20r_0^2} \right)$
- **23.** (a) $\frac{R_0 \sigma}{\epsilon_0} \ln \left(\frac{R_0}{R} \right) + V_0;$

 - (c) no, from part (a) $V \rightarrow -\infty$ due to length of wire.
- **25.** (a) 29 V:
- (b) $-4.6 \times 10^{-18} \,\mathrm{J}$.
- 27. 0.34 J.

31. 9.64×10^5 m/s.

(b)
$$E_x = 0$$
,

$$E_y = \frac{Q}{4\pi\varepsilon_0} \frac{R}{(x^2 + R^2)^{3/2}}, \text{ looks}$$
like a dipole.

35.
$$\frac{\sigma}{2\varepsilon_0}(\sqrt{R_1^2+x^2}-\sqrt{R_2^2+x^2})$$
.

37. 29 m/s.

$$39. \frac{Q}{8\pi\varepsilon_0\ell} \ln\left(\frac{x+\ell}{x-\ell}\right).$$

41.
$$\frac{a}{6\varepsilon_0}(R^2-2x^2)\sqrt{R^2+x^2}+\frac{a|x|^3}{3\varepsilon_0}$$
.

- **43.** 2 mm.
- **45.** (a) 2.6 mV;
 - (b) 1.8 mV;
 - (c) -1.8 mV.
- **49.** $-7.1 \times 10^{-11} \text{ C/m}^2 \text{ on } x = 0 \text{ plate,}$ $7.1 \times 10^{-11} \text{ C/m}^2 \text{ on other plate.}$

51.
$$(-2.5y + 3.5yz)\hat{\mathbf{i}}$$

+ $(-2y - 2.5x + 3.5xz)\hat{\mathbf{j}}$
+ $(3.5xy)\hat{\mathbf{k}}$.

53. (a)
$$\frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{y\sqrt{\ell^2 + y^2}} \right) \hat{\mathbf{j}};$$

$$(b) \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{x^2 - \ell^2} \right) \hat{\mathbf{i}}.$$

- **55.** −62.5 kV.
- 57. 1.3 eV.

59. (a)
$$\frac{1}{4\pi\varepsilon_{0}} \left(\frac{Q_{1}Q_{2}}{r_{12}} + \frac{Q_{1}Q_{3}}{r_{13}} + \frac{Q_{1}Q_{4}}{r_{14}} + \frac{Q_{2}Q_{3}}{r_{23}} + \frac{Q_{2}Q_{4}}{r_{24}} + \frac{Q_{3}Q_{4}}{r_{34}} \right);$$
(b)
$$\frac{1}{4\pi\varepsilon_{0}} \left(\frac{Q_{1}Q_{2}}{r_{12}} + \frac{Q_{1}Q_{3}}{r_{13}} + \frac{Q_{1}Q_{4}}{r_{14}} + \frac{Q_{1}Q_{5}}{r_{15}} + \frac{Q_{2}Q_{3}}{r_{23}} + \frac{Q_{2}Q_{4}}{r_{24}} + \frac{Q_{2}Q_{5}}{r_{25}} + \frac{Q_{3}Q_{4}}{r_{34}} + \frac{Q_{3}Q_{5}}{r_{35}} + \frac{Q_{4}Q_{5}}{r_{15}} \right).$$

- **61.** (a) 1.33 keV
 - (b) $v_{\rm e}/v_{\rm p} = 42.8$.
- **63.** 250 MeV, same order of magnitude as observed values.
- **65.** 1.11×10^5 m/s, 3.5×10^5 m/s.
- **67.** 0.26 MV/m.
- **69.** 600 V.
- **71.** 1.5 J.
- 73. Yes, 2.0 pV.
- 75. $1.03 \times 10^6 \,\mathrm{m/s}$.

77.
$$-\frac{\sqrt{3}Q}{2\pi\varepsilon_0\ell}, \frac{Q}{\pi\varepsilon_0\ell}\left(\frac{\sqrt{3}}{6}-2\right),$$

 $-\frac{Q}{\pi\varepsilon_0\ell}\left(1+\frac{\sqrt{3}}{6}\right).$

- **79.** (a) 1.2 MV;
 - (b) 1.8 kg.
- **81.** (a) $\frac{\rho_{\rm E}(r_2^3-r_1^3)}{3\varepsilon_0 r}$

(b)
$$\frac{\rho_{\rm E}}{\varepsilon_0} \left(\frac{r_2^2}{2} - \frac{r^2}{6} - \frac{r_1^3}{3r} \right);$$

(c)
$$\frac{\rho_{\rm E}}{2\varepsilon_0} (r_2^2 - r_1^2)$$
; yes.

- 83. $\vec{\mathbf{E}} = \frac{\lambda}{2\pi\varepsilon_0 R}$, radially outward.
- **85.** (a) 23 kV;

(b)
$$\frac{4Bx\hat{i}}{(x^2+R^2)^3}$$
;

- (c) $(2.3 \times 10^5 \text{ N/C})\hat{i}$.
- **87.** (a) and (b)

89. (a) Point charge;

(b) 1.5×10^{-11} C;

(c) x = -3.7 cm.

CHAPTER 24

- 1. $3.0 \, \mu F$.
- **3.** 3.1 pF.
- 5 50 E
- 5. $56 \,\mu\text{F}$.
- **7.** 1.1 C.
- 9. 83 days.
 11. 130 m².
- 13. 7.10×10^{-4} F.
- 15. 18 nC.
- 17. $5.8 \times 10^4 \, \text{V/m}$.

- **19.** (a) $0.22 \, \mu \text{m} \le x \le 220 \, \mu \text{m}$;
 - $(b)\,\frac{x^2\,\Delta C}{\varepsilon_0\,A};$
 - (c) 0.01%, 10%.
- 21. 3600 pF, yes.
- 23. 1.5 μ F in series with the parallel combination of 2.0 μ F and 3.0 μ F, 2.8 V.
- 25. Add 11 μF connected in parallel.
- **27.** $C_{\text{max}} = 1.94 \times 10^{-8} \,\text{F}$, all in parallel, $C_{\text{min}} = 1.8 \times 10^{-9} \,\text{F}$, all in series.
- **29.** (a) $\frac{3}{5}C$;

(b)
$$Q_1 = Q_2 = \frac{1}{5}CV$$
, $Q_3 = \frac{2}{5}CV$,
 $Q_4 = \frac{3}{5}CV$, $V_1 = V_2 = \frac{1}{5}V$,
 $V_3 = \frac{2}{5}V$, $V_4 = \frac{3}{5}V$.

31.
$$Q_1 = \frac{C_1 C_2}{C_1 + C_2} V_0, Q_2 = \frac{C_2^2}{C_1 + C_2} V_0.$$

33. (a)
$$Q_1 = 23 \mu \text{C}, Q_2 = Q_4 = 46 \mu \text{C};$$

(b)
$$V_1 = V_2 = V_3 = V_4 = 2.9 \text{ V};$$

- (c) 5.8 V.
- **35.** 2.4 μ F.

37. (a)
$$C_1 + \frac{C_2C_3}{C_2 + C_3}$$
;

(b)
$$Q_1 = 8.40 \times 10^{-4} \,\mathrm{C}$$
,

$$Q_2 = Q_3 = 2.80 \times 10^{-4} \,\mathrm{C}.$$

39.
$$C = \frac{\varepsilon_0 A}{d} \left(1 - \frac{\theta \sqrt{A}}{2d} \right).$$

- **41.** $6.8 \times 10^{-3} \, \text{J}.$
- **43.** 2.0×10^3 J.
- **45.** 1.70×10^{-3} J.

47. (a)
$$\frac{U_{\rm f}}{U_{\rm i}} = \frac{\ln\left(\frac{3R_{\rm a}}{R_{\rm b}}\right)}{\ln\left(\frac{R_{\rm a}}{R_{\rm b}}\right)} > 1$$
,

work done to enlarge cylinder;

$$(b) \frac{U_{\rm f}}{U_{\rm i}} = \frac{\ln\left(\frac{R_{\rm a}}{R_{\rm b}}\right)}{\ln\left(\frac{3R_{\rm a}}{R_{\rm b}}\right)} < 1,$$

charge moved to battery.

49. (a)
$$-\frac{\varepsilon_0 A\ell V_0^2}{2d(d-\ell)}$$
;

$$(b)\,\frac{\varepsilon_0\,A\ell V_0^2}{2(d-\ell)^2}\cdot$$

- **53.** 2200 batteries, no.
- 55. 1.1×10^{-4} J.

- **57.** (a) $0.32 \,\mu\text{m}^2$:
 - (b) 59 megabytes.
- 59. $\frac{\varepsilon_0 A}{2d}(K_1 + K_2)$.
- **61.** $\frac{\varepsilon_0 A K_1 K_2}{(d_1 K_2 + d_2 K_1)}$
- **63.** (a) $\frac{\varepsilon_0 \ell^2}{d} \left[1 + (K-1) \frac{x}{\ell} \right]$;
 - $(b) \frac{V_0^2 \varepsilon_0 \ell^2}{2d} \left[1 + (K-1) \frac{x}{\ell} \right];$
 - (c) $\frac{V_0^2 \varepsilon_0 \ell}{2L} (K-1)$, left.
- 67. $\frac{\varepsilon_0 A}{d-\ell+\frac{\ell}{\kappa}}$
- **69.** $E_{\rm air} = 2.69 \times 10^4 \, {\rm V/m}$ $E_{\rm glass} = 4.64 \times 10^3 \, {\rm V/m}$

 $Q_{\text{free}} = 0.345 \,\mu\text{C}, Q_{\text{ind}} = 0.286 \,\mu\text{C}.$

- 71. 43 μ F.
- 73. 15 V.
- 75. 840 V.
- 77. 3.76×10^{-9} F, 0.221 m².
- **79.** $\frac{1}{2K}$, work done by the electric
 - field, $\frac{1}{\kappa}$.
- **81.** 1.2.
- 83. (a) 25 J;
 - (b) 940 kW.
- **85.** (a) Parallel;
 - (b) 7.7 pF to 35 pF.
- 87. 5.15 pF.
- **89.** $Q_1 = 11 \,\mu\text{C}, Q_2 = 13 \,\mu\text{C},$

$$Q_3 = 13 \,\mu\text{C}, V_1 = 11 \,\text{V},$$

- $V_2 = 6.3 \text{ V}, V_3 = 5.2 \text{ V}.$
- 91. $\frac{Q^2x}{2\varepsilon_0A}$
- 93. 9×10^{-16} m, no.
- **95.** (a) $0.27 \mu C$, 15 kV/m, 5.9 nF, $6.0 \, \mu J$;
 - (b) $0.85 \mu C$, 15 kV/m, 19 nF, $19 \mu J$.

- 97. (a) 32 nF;
 - (b) $14 \mu C$;
 - (c) 7.0 mm;

(d) 450 V.

CHAPTER 25

- 1. 8.13×10^{18} electrons/s.
- 3. 5.5×10^{-11} A.
- 5. (a) 28 A;
 - (b) 8.4×10^4 C.
- 7. 1.1×10^{21} electrons/min.
- **9.** (a) $2.0 \times 10^1 \Omega$;
 - (b) 430 J.
- 11. 0.47 mm.
- **13.** 0.64.
- **15.** (a) Slope = 1/R, y-intercept = 0;

(b) yes, $R = 1.39 \Omega$;

- (c) $1.0 \times 10^{-6} \,\Omega \cdot m$, nichrome.
- **17.** At 1/5.0 of its length, 2.0Ω , 8.0Ω .
- 19. 2400°C.
- **21.** $\sqrt{2}$.
- 23. 44.1°C.
- 25. One-quarter of the original.
- **27.** $\frac{1}{4\pi\sigma}\left(\frac{1}{r_1}-\frac{1}{r_2}\right)$.
- **29.** (a) 0.14Ω ;
 - (b) 0.60 A;
 - (c) $V_{A1} = 52 \text{ mV}, V_{Cu} = 33 \text{ mV}.$
- 31. 0.81 W.
- 33. 29 V.
- 35. (b) As large as possible.
- **37.** (a) 0.83 A;
 - (b) 140 Ω .

- 39. 0.055 kWh, 7.9 cents/month.
- **41.** $0.90 \text{ kWh} = 3.2 \times 10^6 \text{ J}.$
- 43. 24 lightbulbs.
- 45. 11 kW.
- 47. 0.15 kg/s = 150 mL/s.
- 49. 0.12 A.
- **51.** (a) ∞ ;
 - (b) 96 Ω .
- 53. (a) 930 V;
 - (b) 3.9 A.
- **55.** (a) 1.3 kW;
 - (b) $\max = 2.6 \,\text{kW}, \min = 0.$
- **57.** (a) 5.1×10^{-10} m/s:
 - (b) 6.9 A/m^2 :
 - (c) $1.2 \times 10^{-7} \text{ V/m}$.
- **59.** 2.5 A/m^2 , north.
- 61. 35 m/s, delay time from stimulus to action.
- 63, 11 hr.
- 65. 1.8 m, it would generate 540 W of heat and could start a fire.
- 67. 0.16 S.
- 69. (a) \$35/month;
 - (b) 1300 kg/year.
- **71.** (a) -19% change;
 - (b) % change would be slightly less.
- **73.** (a) 190 Ω ;
 - (b) 15 Ω .
- 75. (a) 1500 W;
 - (b) 12 A.
- 77. 2:1.
- **79.** (a) 21 Ω ;
 - (b) 2.0×10^1 s.
 - (c) 0.17 cents.
- 81. 36.0 m, 0.248 mm.
- 83. (a) 1200 W;
 - (b) 100 W.
- **85.** 1.4×10^{12} protons.
- 87. (a) 3.1 kW;
 - (b) 24 W;
 - (c) 15 W;
- (d) 38 cents/month.
- 89. (a) \$55/kWh;
 - (b) \$280/kWh, D-cells and AA-cells are $550 \times$ and $2800 \times$, respectively, more expensive.
- **91.** $1.34 \times 10^{-4} \,\Omega$.

- 93. $\frac{4\ell\rho}{ab\pi}$.
- **95.** $f = 1 \frac{V}{V_0}$

CHAPTER 26

- **1.** (a) 5.93 V;
 - (b) 5.99 V.
- **3.** 0.060 Ω.
- 5. 9.3 V.
- 7. (a) $2.60 \text{ k}\Omega$;
 - (b) 270 Ω .
- 9. Connect nine $1.0-\Omega$ resistors in series with battery; then connect output voltage circuit across four consecutive resistors.
- **11.** 0.3Ω .
- **13.** 450 Ω , 0.024.
- 15. Solder a 1.6-k Ω resistor in parallel with 480- Ω resistor.
- **17.** 120 Ω .
- 19. $\frac{13}{8}$ R.
- **21.** R = r.
- 23. (a) V_{left} decreases, V_{middle} increases, $V_{\text{right}} = 0$;
 - (b) I_{left} decreases, I_{middle} increases, $I_{\text{right}} = 0$;
 - (c) terminal voltage increases;
 - (d) 8.5 V;
 - (e) 8.6 V.
- **25.** (a) V_1 and V_2 increase, V_3 and V_4 decrease;
 - (b) I_1 and I_2 increase, I_3 and I_4 decrease;
 - (c) increases;
 - (d) before: $I_1 = 117 \text{ mA}$, $I_2 = 0$, $I_3 = I_4 = 59 \text{ mA}$; after: $I_1 = 132 \text{ mA}$, $I_3 = I_3 = I_4 = 44 \text{ mA}$, yes.
- 27. 0.38 A.
- **29.** 0.
- **31.** (*a*) 29 V; (*b*) 43 V, 73 V.
- **33.** $I_1 = 0.68$ A left, $I_2 = 0.33$ A left.
- **37.** 0.70 A.
- **39.** 0.17 A.

- **41.** (a) $\frac{R(5R'+3R)}{8(R'+R)}$;
 - $(b) \frac{R}{2}$
- **43.** $1-15 \text{ M}\Omega$.
- **45.** 5.0 ms.
- **47.** 44 s.
- **49.** (a) $I_1 = \frac{2\mathscr{E}}{3R}$, $I_2 = I_3 = \frac{\mathscr{E}}{3R}$;
 - (b) $I_1 = I_2 = \frac{\mathscr{E}}{2R}$, $I_3 = 0$;
 - (c) $\frac{\mathscr{E}}{2}$.
- **51.** (a) 8.0 V;
 - (b) 14 V;
 - (c) 8.0 V;
 - (d) $4.8 \,\mu\text{C}$.
- 53. $29 \mu A$.
- **55.** (a) Place in parallel with $0.22\text{-m}\Omega$ shunt resistor;
 - (b) place in series with 45-k Ω resistor.
- **57.** 100 kΩ.
- **59.** $V_{44} = 24 \text{ V}, V_{27} = 15 \text{ V};$ -15%, -15%.
- 61. 0.960 mA, 4.8 V.
- **63.** 12 V.
- **65.** Connect a 9.0-k Ω resistor in series with human body and battery.
- 67. 2.5 V, 117 V.
- **69.** 92 kΩ.
- **71.** (a) $\frac{R_2 R_3}{R_1}$;
 - (b) 121 Ω .
- 73. Terminal voltage of mercury cell (3.99 V) is closer to 4.0 V than terminal voltage of dry cell (3.84 V).
- **75.** 150 cells, 0.54 m², connect in series; connect four such sets in parallel to total 600 cells and deliver 120 V.
- 77. Counterclockwise current: -24 V, clockwise current: +48 V.
- **79.** 10.7 V.
- **83.** 9.0 Ω.
- **85.** (b) 1.39 V;
 - (c) 0.42 mV;
 - (d) no current from "working" battery is needed to "power" galvanometer.
- **87.** 1.0 mV, 2.0 mV, 4.0 mV, 10.0 mV.

- **89.** (a) 6.8 V, 15 μ C;
 - (b) $48 \,\mu s$.
- **91.** 200 M Ω .
- 93. 4.5 ms.

- 1. (a) 8.5 N/m;
 - (b) $4.9 \,\mathrm{N/m}$.
- 3. 2.6×10^{-4} N.
- **5.** (*a*) South pole;
 - (b) 3.41 A;
 - (c) $7.39 \times 10^{-2} \,\mathrm{N}$.
- 7. 2.13 N, 41.8° below negative y axis.
- **9.** $(-2IrB_0 \sin \theta_0)\hat{\bf j}$.
- 13. 6.3×10^{-14} N, north.
- **15.** 1.8 T.
- **17.** (a) Downward;
 - (b) into page;
 - (c) right.
- **19.** (a) 0.031 m;
 - (b) 3.8×10^{-7} s.
- 23. 1.8 m.
- **25.** $(0.78\hat{\mathbf{i}} 1.0\hat{\mathbf{j}} + 0.1\hat{\mathbf{k}}) \times 10^{-15} \,\mathrm{N}.$
- 27. $L_{\text{final}} = \frac{1}{2}L_{\text{initial}}$.
- **29.** (a) Negative;

$$(b) qB_0\bigg(\frac{\ell^2+d^2}{2d}\bigg).$$

- **31.** $1.3 \times 10^8 \,\mathrm{m/s}$, yes.
- **33.** (a) 45°;
 - (b) 2.3×10^{-3} m.
- **35.** (a) 2NIAB;
 - (b) 0.
- 37. (a) $4.85 \times 10^{-5} \,\mathrm{m} \cdot \mathrm{N}$;
 - (b) north.
- **39.** (a) $(-4.3 \hat{\mathbf{k}}) \, \mathbf{A} \cdot \mathbf{m}^2$;
 - (b) $(2.6\hat{\mathbf{i}} 2.4\hat{\mathbf{j}}) \text{ m} \cdot \text{N};$
 - (c) -2.8 J.
- **41.** 12%.
- **43.** 39 μ A.

- 45. 6 electrons.
- **47.** (b) 0.05 nm, about $\frac{1}{6}$ the size of a typical metal atom;
 - (c) 10 mV.
- **49.** 0.820 T.
- 51. 70 u, 72 u, 73 u, and 74 u.
- **53.** 1.5 mm, 1.5 mm, 0.77 mm, 0.77 mm.
- 55. ²H, ⁴He.
- 57. 2.4 T, upwards.
- **59.** (a) $\frac{IBd}{m}t$;

(b)
$$\left(\frac{IBd}{m} - \mu_k g\right)t;$$

- (c) east.
- **61.** 1.1×10^{-6} m/s, west.
- **63.** $3.8 \times 10^{-4} \,\mathrm{m} \cdot \mathrm{N}$.

65.
$$\pi \left[\frac{mb(3a+b)}{3NIBa(a+b)} \right]^{1/2}$$
.

- 67. They do not enter second tube, 12°.
- 69. 1.1 A, down.
- **71.** $7.3 \times 10^{-3} \,\mathrm{T}$.
- **73.** $-6.9 \times 10^{-20} \,\mathrm{J}.$
- 75. 0.083 N, northerly and 68° above the horizontal.
- **77.** (a) Downward;
 - (b) 28 mT;
 - (c) 0.12 T.

- 1. 0.37 mT, 7.4 times larger.
- 3. 0.15 N, toward other wire.
- 7. 0.12 mT, 82° above directly right.
- **9.** 3.8×10^{-5} T, 17° below the horizontal to north.
- **11.** (a) $(2.0 \times 10^{-5})(25 I)$ T; (b) $(2.0 \times 10^{-5})(25 + I)$ T.
- 15. Closer wire: 0.050 N/m, attractive, farther wire: 0.025 N/m, repulsive.
- 17. 17 A, downward.
- 19. $\frac{\mu_0 I}{2\pi} \left(\frac{d-2x}{x(d-x)} \right) \hat{\mathbf{j}}$.
- **21.** 46.6 μT.
- 23. (b) $\frac{\mu_0 I}{2\pi y}$, yes, looks like B from long straight wire.
- 25. 0.160 A.
- 27. (a) 5.3 mT;
 - (b) 3.2 mT;
 - (c) 1.8 mT.
- **29.** (a) 0.554 m;
 - (b) 10.5 mT.

- **31.** (a) $\frac{\mu_0 I_0 R}{2\pi R_1^2}$;
 - (b) $\frac{\mu_0 I_0}{2\pi R}$;
 - (c) $\frac{\mu_0 I_0}{2\pi R} \left(\frac{R_3^2 R^2}{R_2^2 R_2^2} \right)$;
 - (d) 0;
 - (e)

- 33. $3.6 \times 10^{-6} \,\mathrm{T}$.
- **35.** $0.075 \mu_0 I/R$.
- 37. (a) $\frac{\mu_0 I}{4} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$, into the page;
 - (b) $\frac{\pi I(R_1^2 + R_2^2)}{2}$, into the page.
- **39.** (a) $\frac{Q\omega R^2}{4}\hat{\mathbf{i}}$;
 - (b) $\frac{\mu_0 Q \omega}{2\pi R^2} \left(\frac{R^2 + 2x^2}{\sqrt{R^2 + x^2}} 2x \right) \hat{\mathbf{i}};$
 - (c) yes.
- **41.** (b) $\frac{\mu_0 I}{4\pi y} \left(\frac{d}{\sqrt{d^2 + y^2}} \right) \hat{\mathbf{k}}$.
- 43. (a) $\frac{n\mu_0 I \tan(\pi/n)}{2\pi R}$, into the page.
- **45.** $\frac{\mu_0 I}{4\pi} \left[\frac{\sqrt{x^2 + y^2}}{xy} + \frac{\sqrt{y^2 + (b x)^2}}{(b x)y} \right]$ $+ \frac{\sqrt{(a-y)^2 + (b-x)^2}}{(a-y)(b-x)}$ $+\frac{\sqrt{(a-y)^2+x^2}}{x(a-y)}$, out of
- **47.** (a) $16 \text{ A} \cdot \text{m}^2$;
 - (b) $13 \text{ m} \cdot \text{N}$.
- **49.** 2.4 T.
- **51.** $(\vec{\mathbf{F}}/\ell)_{\rm M} = 6.3 \times 10^{-4} \,\rm N/m$ at 90°,
 - $(\vec{\mathbf{F}}/\ell)_{N} = 3.7 \times 10^{-4} \text{ N/m at } 300^{\circ},$
 - $(\vec{\mathbf{F}}/\ell)_{\rm P} = 3.7 \times 10^{-4} \,\rm N/m \, at \, 240^{\circ}.$
- **53.** 170 A.

- **55.** (a) 2.7×10^{-6} T;
 - (b) 5.3×10^{-6} T;
 - (c) no, no Newton's third-law-type of relationship;
 - (d) both $1.1 \times 10^{-5} \,\text{N/m}$, yes, Newton's third law holds.
- 57. $\frac{\mu_0 tj}{2}$, to the left above sheet (with current coming toward you).
- **61.** (a) $\frac{N\mu_0 IR^2}{2}$

$$\times \left(\frac{1}{(R^2+x^2)^{3/2}}+\frac{1}{(R^2+(x-R)^2)^{3/2}}\right);$$

- (b) 4.5 mT.
- **63.** 3×10^9 A.
- **65.** (a) 46 turns;
 - (b) 0.83 mT;
 - (c) no.
- 67. $\frac{\mu_0 I \sqrt{5}}{2\pi a}$, into the page.
- 69. 0.10 N, south.
- 71. $\frac{2}{3}$.
- **73.** (c) 1.5 A.
- **75.**

- 1. -460 V.
- 3. Counterclockwise.
- 5. 1.2 mm/s.
- 7. (a) 0.010 Wb;
 - (b) 55° ;
 - (c) 5.8 mWb.
- 9. Counterclockwise.
- 11. (a) Clockwise;
 - (b) 43 mV;
 - (c) 17 mA.
- **13.** (a) 8.1 mJ;
 - (b) $4.2 \times 10^{-3} \,\mathrm{C}^{\circ}$.
- **15.** (a) 0.15 A;
 - (b) 1.4 mW.
- **17.** 8.81 C.
- **19.** 21 μJ.
- 21. 23 mV, 26 mV.
- **23.** (a) 0;
 - (b) 0.99 A, counterclockwise.

25. (a)
$$\frac{\mu_0 Ia}{2\pi} \ln \left(1 + \frac{a}{b}\right)$$
;

$$(b)\,\frac{\mu_0\,Ia^2v}{2\pi b(a+b)};$$

(c) clockwise;

$$(d) \frac{\mu_0^2 I^2 a^4 v}{4\pi^2 b^2 (a+b)^2 R}.$$

- **27.** 1.0 m/s.
- **29.** (a) 0.11 V;
 - (b) 4.1 mA;
 - (c) 0.36 mN.
- **31.** 0.39 m/s.
- **33.** (a) Yes;
 - $(b) v_0 e^{-B^2\ell^2t/mR}.$

$$35. (a) \frac{v\mu_0 I}{2\pi} \ln\left(1 + \frac{a}{b}\right);$$

$$(b) -\frac{v\mu_0 I}{2\pi} \ln \left(1 + \frac{a}{b}\right).$$

- **37.** 57.2 loops.
- **41.** 150 V.
- **43.** 13 A.
- **45.** (a) 2.4 kV;
 - (b) 190 V.
- **47.** 50, 4.8 V.
- **49.** (a) Step-up;
 - (b) 3.5.
- **51.** (a) R;

$$(b) \left(\frac{N_{\rm P}}{N_{\rm s}}\right)^2 R.$$

- **53.** 98 kW.
- **55.** (*b*) Clockwise;
 - (c) increase.
- **57.** (a) $\frac{IR}{\ell}$;

$$(b)\frac{\mathscr{E}_0}{\ell}e^{-B^2\ell^2t/mR}.$$

- **59.** 10.1 mJ.
- **61.** 0.6 nC.
- **63.** (a) 41 kV;
 - (b) 31 MW;
 - (c) 0.88 MW;
 - (d) $3.0 \times 10^7 \,\mathrm{W}$.
- **65.** (a) Step-down;
- (b) 2.9 A;
 - (U) 2.9 A,
 - (c) 0.29 A;
 - (d) 4.1Ω .
- **67.** 46 mA, left to right through resistor.
- **69.** 2.3×10^{17} electrons.
- **71.** (a) 25 A;
 - (b) 98 V;
 - (c) 600 W;
 - (d) 81%.

- 73. $\frac{1}{2}B\omega \ell^2$.
- 77. $B\omega R$, radially in toward axis.

79. (a)
$$\frac{\pi d^2 B^2 \ell v}{16\rho}$$
;

- (b) $16\rho\rho_{\rm m}g/B^2$;
- (c) 3.7 cm/s.

- **1.** (a) 31.0 mH;
 - (b) 3.79 V.
- 3. $\frac{\mu_0 N_1 N_2 A_2 \sin \theta}{\ell}$.
- **5.** 12 V.
- **7.** 0.566 H.
- 9. 11.3 V.
- **11.** 46 m, 21 km, 0.70 k Ω .
- **15.** 18.9 J.
- 17. $1.06 \times 10^{-3} \,\mathrm{J/m^3}$.

19.
$$\frac{\mu_0 N^2 I^2}{8\pi^2 r^2}$$
, $\frac{\mu_0 N^2 I^2 h}{4\pi} \ln\left(\frac{r_2}{r_1}\right)$.

- **21.** $\frac{\mu_0 I^2}{16\pi}$.
- 23. 3.5 time constants.
- **25.** (a) $\frac{LV_0^2}{2R^2} (1 e^{-t/\tau})^2$;
 - (b) 7.6 time constants.
- **27.** (b) 6600 V.
- **29.** $(12 \text{ V})e^{-t/8.2 \,\mu\text{s}}, 0, 12 \text{ V}.$
- **31.** (a) 0.16 nF;
 - (b) $62 \, \mu H$.
- 33. (c) $(2 \times 10^{-4})\%$.
- **35.** (a) $\frac{Q_0}{\sqrt{2}}$;
 - $(b)^{\frac{1}{8}}T$

37.
$$\frac{L}{R} \ln(\frac{4}{3}) = (0.29) \frac{L}{R}$$

- **39.** 3300 Hz.
- 41.

- **43.** (a) R + R';
 - (b) R'.
- **45.** (a) 2800Ω ;
 - (b) 660 Hz, 11 A.
- 47. 2190 W.
- **49.** (a) $0.40 \text{ k}\Omega$;
 - (b) 75 Ω .
- **51.** 1600 Hz.

- 53. 240 Hz, voltages are out of phase.
- **55.** (a) 0.124 A;
 - (b) 5.02° ;
 - (c) 14.8 W;
 - (d) 0.120 kV, 10.5 V.
- **57.** 7.8 μ F.
- **59.** $I_0V_0\sin\omega t\sin(\omega t+\phi)$.
- **61.** 130 Ω , 0.91.
- **63.** 265 Hz, 324 W.
- **65.** (b) 130 Ω .

67. (a)
$$\frac{V_0^2 R}{2 \left[R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2 \right]}$$
;

- $(c) \frac{R}{I}$
- **69.** 37 loops.
- **71.** (a) 0.040 H;
 - (b) 28 mA;
 - (c) $16 \mu J$.
- 73. 2.4 mA, 0, 2.4 mA.

77. (a)
$$\frac{Q_0^2}{2C}e^{-Rt/L}$$
;

$$(b)\frac{dU}{dt}=-I^2R.$$

- **81.** (a) 0;
 - (b) $0,90^{\circ}$ out of phase.
- 83. 2.2 kHz.
- **85.** 69 mH, 18 Ω.
- **89.** (a)

$$(b) \frac{V_0}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \sin(\omega t - \phi),$$

91. (a)
$$\left(\frac{V_{20}}{\omega L - \frac{1}{\omega C}}\right) \sin(\omega t - \frac{1}{2}\pi);$$

$$(b)\left(\frac{V_{20}}{\omega^2 LC-1}\right)\sin(\omega t-\pi);$$

(c)
$$\frac{1}{\omega^2 LC}$$
;

$$(d) V_{1 \text{ out}} = V_{1}.$$

93. (a)
$$\frac{V_0}{R}\sin \omega t$$
;

$$(b) \frac{V_0}{X_I} \sin(\omega t - \frac{1}{2}\pi);$$

$$(c) \frac{V_0}{X_C} \sin(\omega t + \frac{1}{2}\pi)$$

$$(d)\frac{V_0}{R}\sqrt{1+\left(R\omega C-\frac{R}{\omega L}\right)^2}\sin(\omega t+\phi),$$

$$\phi = \tan^{-1}\left(R\omega C - \frac{R}{\omega L}\right);$$

$$(e) \frac{R}{\sqrt{1 + \left(R\omega C - \frac{R}{\omega L}\right)^2}};$$

$$(f)\frac{1}{\sqrt{1+\left(R\omega C-\frac{R}{\omega L}\right)^2}}\cdot$$

- 95. 0.14 H
- **97.** 54 mH, 22 Ω.

99.
$$\sqrt{6.0} f_0 = 2.4 f_0$$
.

- **101.** (a) 7.1 kHz, $V_{\rm rms}$;
 - (b) 0.90.

103. (b) For
$$f \rightarrow 0$$
 $A \rightarrow 1$; for $f \rightarrow \infty$, $A \rightarrow 0$;

(c) f is in s⁻¹:

105.

CHAPTER 31

- 1. $110 \, kV/m \cdot s$.
- 3. $1.2 \times 10^{15} \, \text{V/m} \cdot \text{s}$.

7. (b) With R in meters, for $R \leq R_0$,

$$B_0 = (6.3 \times 10^{-11} \,\mathrm{T/m})R;$$

for
$$R > R_0$$
, $B_0 = \frac{5.7 \times 10^{-14} \,\mathrm{T \cdot m}}{R}$.

(c)

- 9. 3.75 V/m.
- 11. (a) $-\hat{k}$;

$$(b)\frac{E_0}{c}, -\hat{\mathbf{j}}.$$

- 13. 2.00×10^{10} Hz.
- **15.** $5.00 \times 10^2 \,\mathrm{s} = 8.33 \,\mathrm{min}$.
- 17. (a) 3.00×10^5 m;
 - (b) 34.1 cm;
 - (c) no.
- **19.** (a) 261 s;
 - (b) 1260 s.
- 21. 3.4 krad/s.
- **23.** 2.77×10^7 s.
- **25.** 4.8 W/m^2 , 42 V/m.
- **27.** 4.50 μJ.
- **29.** 3.80×10^{26} W.
- **31.** (a) 5 cm^2 , yes;
 - (b) 20 m^2 , yes;
 - (c) 100 m^2 , no.
- **33.** (a) 2×10^8 ly;
 - (b) 2000 times larger.
- 35. $8 \times 10^6 \,\mathrm{m/s^2}$.
- **37.** 27 m².
- 39. 16 cm.
- **41.** 3.5 nH to 5.3 nH.
- 43. $6.25 \times 10^{-4} \text{ V/m}$: $1.04 \times 10^{-9} \,\mathrm{W/m^2}$.
- 45. 3 m.
- **47.** 1.35 s.
- **49.** 34 V/m, 0.11μ T.
- **51.** Down, 2.2 μ T, 650 V/m.
- **53.** (a) 0.18 nJ;
 - (b) $8.7 \mu V/m$, $2.9 \times 10^{-14} T$.

- **57.** 4×10^{10} W.
- 59. 5 nodes, 6.1 cm.
- **61.** (a) +x;
 - (b) $\beta = \alpha c$;
 - (c) $\frac{E_0}{c}e^{-(\alpha x-\beta t)^2}$.
- 63. (d) Both \vec{E} and \vec{B} rotate counterclockwise.

CHAPTER 32

1.

- 3. 7°.
- 7.

- 9. 37.6 cm.
- 11. 1.0 m.
- 13. 2.1 cm behind front surface of ball; virtual, upright.
- 15. Concave, 5.3 cm.
- **17.** −6.0 m.
- **19.** Convex, -32.0 cm.
- 21.

- **23.** -3.9 m.
- 25. (a) Convex;
 - (b) 20 cm behind mirror;
 - (c) -91 cm;
 - (d) -1.8 m.
- **27.** (b)

- (c) 0.90 m;
- (d) just beyond focal point.
- 31. Because the image is inverted.
- 33. (a) 2.21×10^8 m/s;
 - (b) $1.99 \times 10^8 \,\mathrm{m/s}$;
 - (c) $1.97 \times 10^8 \,\mathrm{m/s}$.
- 35. 8.33 min.
- **37.** 3 m.
- **39.** 35°.
- **41.** 38.6°.
- **43.** 2.6 cm.
- **45.** 4.4 m.
- **47.** 3.2 mm.
- **49.** 38.9°.
- **53.** 0.22°.
- **55.** 0.80°.
- **57.** 33.3°, diamond.
- **59.** 82.1 cm.
- **61.** $n \ge 1.5$.
- **63.** (a) 2.3 μ s;
 - (b) 17 ns.
- **65.** $n \ge 1.72$.
- **67.** 17.3 cm.
- **71.** 0.25 m, 0.50 m.
- **73.** (a) 3.0 m, 4.4 m, 7.4 m;
 - (b) toward, away, toward.
- **75.** 3.80 m.
- **77.** 31 cm for real image, 15 cm for virtual image.
- 83. $\frac{d}{n-1}$
- **85.** The light would totally internally reflect only if $\theta_i \le 32.5^\circ$.

87. A = 1.5005, B = 5740 nm².

CHAPTER 33

1. (a)

- (b) 508 mm.
- **3.** (a) 4.26 D, converging;
 - (b) -14.8 cm, diverging.
- **5.** (a) 106 mm;
 - (b) 109 mm;
 - (c) 117 mm;
 - (d) an object 0.513 m away.
- 7. (a) Virtual, upright, magnified;

- (b) converging;
- (c) 6.7 D.
- **9.** (a) 0.02 m;
 - (b) 0.004 m.
- 11. 50 cm.

13. 21.3 cm, 64.7 cm.

- **15.** (c) Real, upright; (d) real, upright.
- 17. 0.107 m, 2.2 m.
- **19.** (b) 182 cm; (c) 182 cm.
- **21.** 18.5 cm beyond second lens, $-0.651 \times$.
- 23. (a) 7.14 cm beyond second lens;
 - (b) $-0.357 \times$; (c)

25. (a) 0.10 m to right of diverging lens; (b) $-1.0\times$;

27. (a) 30 cm beyond second lens, half the size of object;

- (b) 29 cm beyond second lens, 0.46 times the size of object.
- **29.** 1.54.
- 31. 8.6 cm.
- 33. 34 cm.
- **35.** *f*/2.8.
- 37. $\frac{1}{6}$ s.
- 39. 41 mm.
- **41.** +2.5 D.
- 43. 41 cm, yes.

- **45.** (a) -1.3 D; (b) 37 cm.
- **47.** −24.8 cm.
- 49. 18.4 cm, 1.00 m.
- **51.** 6.6 cm.
- **53.** (a) 13 cm;
 - (b) 8.3 cm.
- 55. (a) -234 cm:
 - (b) $4.17 \times$.
- **57.** (a) -66 cm; (b) $3.0\times$.
- **59.** 4 cm, toward.
- 61. 2.5 cm. 91 cm.
- **63.** $-26 \times$.
- 65, 16×.
- 67. 3.7 m, 7.4 m.
- **69.** $-9 \times$.
- **71.** $8.0 \times$.
- 73. 1.6 cm.
- **75.** (a) $754 \times$;
 - (b) 1.92 cm, 0.307 cm;
 - (c) 0.312 cm.
- **77.** (a) 0.85 cm;
 - (b) $250\times$.
- **79.** $410 \times, 25 \times$.
- 81. 79.4 cm. 75.5 cm.
- **83.** 6.450 m $\leq d_0 \leq \infty$.
- 85. 116 mm, 232 mm.
- **87.** −19.0 cm.
- 89. 3.1 cm, 25 cm.
- **91.** (a) 0.26 mm;
 - (b) 0.47 mm:
 - (c) 1.3 mm;
 - (d) $0.56 \times, 2.7 \times$.
- 93. 20.0 cm.
- 95. 47 m.
- 97. $2.8 \times, 3.9 \times$, person with normal eye.
- **99.** 1.0×.
- **101.** +3.4 D.
- **103.** $-19 \times$.
- **105.** (a) 28.6 cm;
 - (b) 120 cm;
 - (c) 15 cm.
- **107.** -6.2 cm.
- **109.** (a) -1/f, 1;
 - (b) 14 cm, yes, y-intercept = 1.03;

(c)
$$f = -1/\text{slope}$$
.

- 3. $3.9 \mu m$.
- 5. 0.2 mm.
- 7. 660 nm.
- 9. 3.5 cm.
- 11. Inverted, starts with central dark line, and every place there was bright fringe before is now dark fringe and vice versa.
- 13. 2.7 mm.
- 15, 2.94 mm.
- 17. $\frac{1}{4}$.

21.
$$I_0 \left[\frac{3 + 2\sqrt{2}\cos\left(\frac{2\pi d\sin\theta}{\lambda}\right)}{3 + 2\sqrt{2}} \right]$$

- 23. 634 nm.
- **25.** (a) 180 nm;
 - (b) 361 nm, 541 nm.
- **27.** (b) 290 nm.
- **29.** 8.68 μm.
- 31. 113 nm, 225 nm.
- **35.** 1.32.
- **37.** (c) 571 nm.
- 39. 0.191 mm.
- **41.** $80.1 \, \mu \text{m}$.
- **43.** 0.3 mm.
- **45.** (a) 17 lm/W;
 - (b) 160 lamps.
- **47.** (a) Constructive;
 - (b) destructive.
- **49.** 440 nm.
- **51.** $I_0 \cos^2 \left(\frac{2\pi x}{100} \right)$
- **53.** (a) 81.5 nm;
 - (b) $0.130 \, \mu \text{m}$.

55.
$$\theta = \sin^{-1} \left(\sin \theta_{\rm i} \pm \frac{m\lambda}{d} \right)$$

- 57. 340 nm, 170 nm.
- **59.** Constructive: 90°, 270°; destructive: 0°, 180°; exactly switched.
- **61.** 240 nm.
- 63. 0.20 km.
- 65. 126 nm.

- 1. $37.3 \text{ mrad} = 2.13^{\circ}$.
- **3.** 2.35 m.
- 5. Entire pattern is shifted, with central maximum at 23° to the normal.
- 7. 4.8 cm.
- 9. 953 nm.
- **11.** (a) 63°;
 - (b) 30° .

- **13.** 0.15.
- **15.** d = 5D.
- 17. 265 fringes.
- **19.** (a) 1.9 cm;
 - (b) 12 cm.
- **21.** 0.255.

23. (a)
$$I_{\theta} = I_0 \left(\frac{1 + 2\cos\delta}{3} \right)^2$$
.

- **25.** 1.5×10^{11} m.
- **27.** 1.0×10^4 m.
- 29. 730 lines/mm, 88 lines/mm.
- 31. $0.40 \mu m$, $0.50 \mu m$, $0.52 \mu m$, $0.62 \mu m$.
- 33. Two full orders, plus part of a third order.
- 35. 556 nm.
- **37.** 24°.
- **39.** $\lambda_2 > 600$ nm overlap with $\lambda_3 < 467 \text{ nm}.$
- **41.** $\lambda_1 = 614 \text{ nm}, \lambda_2 = 899 \text{ nm}.$
- 43. 7 cm, 35 cm, second order.
- **45.** (c) -32° , 0.9° .
- **47.** (a) 16,000 and 32,000;
 - (b) 26 pm, 13 pm.
- **49.** 14.0°.
- 51. No.
- **53.** 45°.
- **55.** 61.2°. **57.** (a) 35.3°;
 - (b) 63.4° .
- 59. 36.9°, smaller than both angles.

61.
$$I = \frac{I_0}{4} \sin^2(2\theta), 45^\circ.$$

- **63.** 28.8 μm.
- 65, 580 nm.
- **67.** 0.6 m.
- 69. 658 nm, 853 lines/cm.
- **71.** (a) 18 km;
 - (b) 23", atmospheric distortions make it worse.
- **73.** 5.79×10^5 lines/m.
- 75. 36.9°.
- **77.** (a) 60° ;
 - (b) 71.6°;
 - (c) 84.3°.
- **79.** 0.4 m.
- 81. 0.245 nm.
- 83, 110 m.
- **85.** -0.17 mm.
- 87. Use 24 polarizers, each rotated 3.75° from previous axis.

- 1. 72.5 m.
- **3.** 1.00, 1.00, 1.01, 1.02, 1.05, 1.09, 1.15, 1.25, 1.40, 1.67, 2.29, 7.09.

- 5. $2.42 \times 10^8 \,\mathrm{m/s}$.
- **7.** 27 yr.
- 9. $(6.97 \times 10^{-8})\%$.
- **11.** (a) 0.141c;
 - (b) 0.140c.
- **13.** (*a*) 3.4 yr; (*b*) 7.4 yr.
- **15.** 0.894*c*.
- 17. Base: 0.30\ell, sides: 1.94\ell.
- **19.** 0.65*c*.
- **21.** (a) (820 m, 20 m, 0);
 - (b) (2280 m, 20 m, 0).
- **23.** (a) 0.88c;
 - (b) 0.88c.
- **25.** (a) 0.97c;
 - (b) 0.55c.
- **27.** 0.93c at 35° .
- **29.** (a) $\ell_0 \sqrt{1 \frac{v^2}{c^2} \cos^2 \theta}$;

$$(b) \tan^{-1} \left[\frac{\tan \theta}{\sqrt{1 - \frac{v^2}{c^2}}} \right].$$

31.
$$t'_{\rm B} - t'_{\rm A} = -\frac{v\ell}{c^2 \sqrt{1 - \frac{v^2}{c^2}}}$$

B is turned on first.

- **33.** Not possible in boy's frame of reference.
- **35.** (a) -0.5%; (b) -20%.
- **37.** 0.95*c*.
- **39.** 8.20×10^{-14} J. 0.511 MeV.
- 41. 900 kg.
- **43.** $1.00 \,\mathrm{MeV}/c^2$, or $1.78 \times 10^{-30} \,\mathrm{kg}$.
- **45.** $9.0 \times 10^{13} \,\mathrm{J}$, $9.2 \times 10^9 \,\mathrm{kg}$.
- **47.** 0.866*c*.
- **49.** $1670 \,\mathrm{MeV}, 2440 \,\mathrm{MeV}/c.$
- **51.** 0.470*c*.

- **53.** 0.32*c*.
- **55.** 0.866*c*, 0.745*c*.
- **57.** (a) $2.5 \times 10^{19} \,\mathrm{J}$;
 - (b) -2.4%.
- **59.** 237.04832 u.
- 61. 240 MeV.
- 65. 230 MHz.
- 67. (a) $1.00 \times 10^2 \,\mathrm{km/h}$;
 - (b) 67 Hz.
- **69.** 75 μs.
- 71. 8.0×10^{-8} s.
- **73.** (a) 0.067 c;
 - (b) 0.070c.

75. (a)
$$\tan^{-1}\sqrt{\frac{c^2}{v^2}-1}$$
;

(c)
$$\tan^{-1}\frac{c}{v}$$
, $u = \sqrt{c^2 + v^2}$.

- **77.** (a) 0.77 m/s;
 - (b) 0.21 m.
- **79.** 1.022 MeV.
- **83.** (a) $4 \times 10^9 \,\mathrm{kg/s}$;
 - (b) $4 \times 10^7 \, \text{yr}$;
 - (c) 1×10^{13} yr.
- 85. 28.32 MeV.
- 87. (a) $2.86 \times 10^{-18} \,\mathrm{kg \cdot m/s}$;
 - (b) 0;
 - (c) $3.31 \times 10^{-17} \,\mathrm{kg \cdot m/s}$.
- **89.** $3 \times 10^7 \,\mathrm{kg}$.
- **91.** 0.987*c*.
- **93.** 5.3×10^{21} J, 53 times as great.
- **95.** (a) 6.5 yr;
 - (b) 2.3 ly.
- 99.

- 1. (a) $10.6 \mu m$, far infrared;
 - (b) 829 nm, infrared;
 - (c) 0.69 mm, microwave;
 - (d) 1.06 mm, microwave.
- 3. 5.4×10^{-20} J, 0.34 eV.
- 5. (b) $6.62 \times 10^{-34} \,\mathrm{J \cdot s}$.

- **7.** $2.7 \times 10^{-19} \,\mathrm{J} < E < 4.9 \times 10^{-19} \,\mathrm{J},$ $1.7 \,\mathrm{eV} < E < 3.0 \,\mathrm{eV}.$
- 9. 2×10^{13} Hz, 1×10^{-5} m.
- 11. 7.2×10^{14} Hz.
- 13. 3.05×10^{-27} m.
- 15. Copper and iron.
- **17.** 0.55 eV.
- 19. 2.66 eV.
- 21. 3.56 eV.
- **23.** (a) 1.66 eV;
 - (b) 3.03 eV.
- **25.** (a) 1.66 eV;
 - (b) 3.03 eV.
- **27.** 0.004, or 0.4%.
- **29.** (a) 2.43 pm;
 - (b) 1.32 fm.
- **31.** (a) 8.8×10^{-6} ;
 - (b) 0.049.
- **33.** (a) 229 eV;
 - (b) 0.165 nm.
- **35.** 1.65 MeV.
- 37. 212 MeV, 5.86 fm.
- 39. 1.772 MeV, 702 fm.
- **41.** 4.7 pm.
- **43.** 4.0 pm.
- **45.** 1840.
- **47.** (a) $1.1 \times 10^{-24} \,\mathrm{kg} \cdot \mathrm{m/s}$;
 - (b) $1.2 \times 10^6 \,\mathrm{m/s}$;
 - (c) 4.2 V.
- **51.** 590 m/s.
- **53.** 20.9 pm.
- **55.** 1.51 eV
- **57.** 122 eV.
- **59.** 91.4 nm.
- **61.** 37.0 nm.
- 63.

- **65.** −27.2 eV, 13.6 eV.
- **67.** Yes: $v = 7 \times 10^{-3} c$; $1/\gamma = 0.99997$.
- 69. 97.23 nm, 102.6 nm, 121.5 nm, 486.2 nm, 656.3 nm, 1875 nm,
- 71. Yes.
- 73. 3.28×10^{15} Hz.
- **75.** 5.3×10^{26} photons/s.
- **77.** 6.2×10^{18} photons/s.
- **79.** 0.244 MeV for both.
- 81. 28 fm.
- 83. 4.4×10^{-40} , yes.
- 85, 2.25 V.
- **87.** 9.0 N.
- 89. 1.2 nm.
- **91.** (a)

- (b) Ground state, 0.4 eV, 2.2 eV, 2.5 eV, 2.6 eV, 4.7 eV, 5.1 eV.
- **93.** (a) $E_n = -\frac{2.84 \times 10^{165} \,\mathrm{J}}{n^2}$ $r_n = n^2 (5.17 \times 10^{-129} \,\mathrm{m});$
 - (b) no, because $n \approx 10^{68}$ so $\Delta n = 1$ is negligible compared to n.
- **95.** 1.0×10^{-8} N.
- **97.** (a) $\sqrt{\frac{Gh}{c^5}}$; (b) 1.34×10^{-43} s; (c) $\sqrt{\frac{Gh}{c^3}}$; (d) 4.05×10^{-35} m.
- **99.** (a) 6.0×10^{-3} m/s; (b) 1.2×10^{-7} K.
- **101.** (a) 6 $I(\lambda, T) (10^{12} \text{ kg/m·s}^3)$ 5 3300 K 4 3 2700 K 2 400 1200 1600 λ (nm)
 - (b) 4.8 times more intense.

- **103.** (a) $\frac{hc}{e}$, $-\frac{W_0}{e}$;
 - (b)

- (c) $1.2 \times 10^{-6} \,\mathrm{V} \cdot \mathrm{m}$, $-2.31 \,\mathrm{V}$;
- (d) 2.31 eV;
- (e) $6.63 \times 10^{-34} \,\mathrm{J \cdot s}$.

- 1. 2.8×10^{-7} m.
- 3. 5.3×10^{-11} m.
- 5. 4500 m/s.
- 7. 1.0×10^{-14} .
- 9. $\Delta x_{\text{electron}} \ge 1.4 \times 10^{-3} \,\text{m}$ $\Delta x_{\text{baseball}} \ge 9.3 \times 10^{-33} \,\text{m}$ $\frac{\Delta x_{\rm electron}}{1.5 \times 10^{29}} = 1.5 \times 10^{29}.$ $\Delta x_{\rm baseball}$
- 11. 1.3×10^{-54} kg.
- **13.** (a) 10^{-7} eV;
 - (b) $1/10^8$;
 - (c) 100 nm, 10^{-6} nm .
- **19.** (a) $A \sin[(2.6 \times 10^9 \,\mathrm{m}^{-1})x]$ + $B\cos[(2.6 \times 10^9 \,\mathrm{m}^{-1})x];$ (b) $A \sin[(4.7 \times 10^{12} \,\mathrm{m}^{-1})x]$ $+ B\cos[(4.7 \times 10^{12} \,\mathrm{m}^{-1})x].$
- **21.** $1.8 \times 10^6 \,\mathrm{m/s}$.
- **23.** (a) 46 nm;
 - (b) 0.20 nm.
- 25. $\Delta p \ \Delta x \approx h$, which is consistent with the uncertainty principle.
- **27.** n = 1: 0.094 eV, $(1.0 \text{ nm}^{-1/2}) \sin[(1.6 \text{ nm}^{-1})x];$ n = 2: 0.38 eV, $(1.0 \text{ nm}^{-1/2}) \sin[(3.1 \text{ nm}^{-1})x];$ n = 3: 0.85 eV, $(1.0 \text{ nm}^{-1/2}) \sin[(4.7 \text{ nm}^{-1})x];$ n = 4: 1.5 eV. $(1.0 \text{ nm}^{-1/2}) \sin[(6.3 \text{ nm}^{-1})x].$
- 29. (a) 940 MeV;
 - $(b) 0.51 \,\mathrm{MeV};$
 - (c) $0.51 \,\mathrm{MeV}$.
- **31.** (a) $4.0 \times 10^{-19} \,\text{eV}$;
 - (b) 2×10^8 ;
 - (c) $1.4 \times 10^{-10} \,\mathrm{eV}$.

33. *n* odd:

$$\psi = \left[(-1)^{(n-1)/2} \right] \sqrt{\frac{2}{\ell}} \cos\left(\frac{n\pi x}{\ell}\right),$$

$$E_n = \frac{n^2 h^2}{8m\ell^2};$$

$$\psi = \left[(-1)^{n/2} \right] \sqrt{\frac{2}{\ell}} \sin\left(\frac{n\pi x}{\ell}\right),$$

$$E_n = \frac{n^2 h^2}{8m\ell^2}.$$

35.

- 37. 0.020 nm.
- 39. 17 eV.
- **41.** (a) 6.1%;
 - (b) 93.9%.
- **43.** (a) 12% decrease;
 - (b) 6.2% decrease.
- 45. (a) 32 MeV;
 - (b) 57 fm:
 - (c) $1.4 \times 10^7 \,\mathrm{m/s}, 8.6 \times 10^{20} \,\mathrm{Hz},$ $7 \times 10^{9} \, \text{vr}$.
- 47. 14 MeV.
- **49.** 25 nm.
- **51.** $\Delta x = r_1$ (the Bohr radius).
- **53.** 0.23 MeV, 3.3×10^6 m/s.
- **55.** 27% decrease.
- 57.

- **59.** (a) $\Delta \phi > 0$ so $\phi \neq 0$ exactly;
 - (b) 4 s.

61. (a)

(b) 10%: $E/U_0 = 0.146$; 20%: $E/U_0 = 0.294$; 50%: $E/U_0 = 0.787$; 80%: $E/U_0 = 1.56$.

CHAPTER 39

1. 0, 1, 2, 3, 4, 5, 6.

3. 18 states,
$$(3, 0, 0, -\frac{1}{2})$$
, $(3, 0, 0, +\frac{1}{2})$, $(3, 1, -1, -\frac{1}{2})$, $(3, 1, -1, +\frac{1}{2})$,

$$(3, 1, 0, -\frac{1}{2}), (3, 1, 0, +\frac{1}{2}), (3, 1, 1, -\frac{1}{2}), (3, 1, 1, +\frac{1}{2}),$$

$$(3, 1, 1, -\frac{1}{2}), (3, 1, 1, +\frac{1}{2}),$$

 $(3, 2, -2, -\frac{1}{2}), (3, 2, -2, +\frac{1}{2}),$

$$(3, 2, -2, -\frac{1}{2}), (3, 2, -2, +\frac{1}{2}), (3, 2, -1, -\frac{1}{2}), (3, 2, -1, +\frac{1}{2}),$$

$$(3, 2, 0, -\frac{1}{2}), (3, 2, 0, +\frac{1}{2}),$$

$$(3, 2, 1, -\frac{1}{2}), (3, 2, 1, +\frac{1}{2}),$$

$$(3, 2, 2, -\frac{1}{2}), (3, 2, 2, +\frac{1}{2}).$$

5. $n \ge 6$; $m_{\ell} = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5$; $m_{\chi} = -\frac{1}{2}, +\frac{1}{2}.$

7. (a) 7;

$$(b) -0.278 \text{ eV};$$

(c)
$$4.72 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}, 4;$$

$$(d)$$
 -4, -3, -2, -1, 0, 1, 2, 3, 4.

11. $n \ge 7$, $\ell = 6$, $m_{\ell} = 2$.

13. (a)
$$\frac{1}{\sqrt{\pi r_0^3}}e^{-1.5}$$
;

$$(b)\,\frac{1}{\pi r_0^3}\,e^{-3}$$

$$(c) \frac{4}{r_0} e^{-3}$$

15. 1.85.

17. (a) $1.3r_0$;

(b)
$$2.7r_0$$
;

(c)
$$4.2r_0$$
.

21.
$$\frac{r^4}{24r_0^5}e^{-r/r_0}$$
.

23. 1.1%

27. (a)
$$\frac{4r^2}{27r_0^3} \left(1 - \frac{2r}{3r_0} + \frac{2r^2}{27r_0^2}\right) e^{-2r/3r_0};$$

29. (a) $(1, 0, 0, -\frac{1}{2}), (1, 0, 0, +\frac{1}{2}),$ $(2, 0, 0, -\frac{1}{2}), (2, 0, 0, +\frac{1}{2}),$

 $(2, 1, -1, -\frac{1}{2}), (2, 1, -1, +\frac{1}{2});$

(b) $(1, 0, 0, -\frac{1}{2}), (1, 0, 0, +\frac{1}{2}),$ $(2, 0, 0, -\frac{1}{2}), (2, 0, 0, +\frac{1}{2}),$

 $(2, 1, -1, -\frac{1}{2}), (2, 1, -1, +\frac{1}{2}),$

 $(2, 1, 0, -\frac{1}{2}), (2, 1, 0, +\frac{1}{2}),$

 $(2, 1, 1, -\frac{1}{2}), (2, 1, 1, +\frac{1}{2}),$

 $(3, 0, 0, -\frac{1}{2}), (3, 0, 0, +\frac{1}{2}),$ $(3, 1, -1, -\frac{1}{2}).$

31. $n=3, \ell=2.$

33. (a) $1s^22s^22p^63s^23p^63d^84s^2$;

(b) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^1$:

(c) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$ $4f^{14}5s^25p^65d^{10}6s^26p^65f^36d^17s^2$.

35. 5.75×10^{-13} m, 115 keV.

39. 0.0383 nm, 1 nm.

41. 0.194 nm.

43. Chromium.

47. $2.9 \times 10^{-4} \, \text{eV}$.

49. (a) 0.38 mm; (b) 0.19 mm.

51. (a) $\frac{1}{2}$, $\frac{3}{2}$; (b) $\frac{5}{2}$, $\frac{7}{2}$; (c) $\frac{3}{2}$, $\frac{5}{2}$;

(d) $4p: \frac{\sqrt{3}}{3}\hbar, \frac{\sqrt{15}}{2}\hbar; 4f: \frac{\sqrt{35}}{2}\hbar, \frac{\sqrt{63}}{2}\hbar;$ $3d: \frac{\sqrt{15}}{2}\hbar, \frac{\sqrt{35}}{2}\hbar.$

53. (a) 0.4 T; (b) 0.5 T.

55. $4.7 \times 10^{-4} \, \text{rad}$; (a) 180 m; (b) 1.8×10^5 m.

57. 634 nm.

59. 3.7×10^4 K.

61. (a) 1.56;

(b) 1.36×10^{-10} m.

63. (a) $1s^22s^22p^63s^23p^63d^54s^2$; (b) $1s^22s^22p^63s^23p^63d^{10}4s^24p^4$;

(c) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^15s^2$.

65. (a) 2.5×10^{74} ;

(b) 5.1×10^{74} .

67. $5.24r_0$.

69. (a) 45°, 90°, 135°;

(b) 35.3°, 65.9°, 90°, 114.1°, 144.7°;

(c) 30°, 54.7°, 73.2°, 90°, 106.8°, 125.3°, 150°;

(d) 5.71°, 0.0573°, yes.

71. (b) $\overline{K} = -\frac{1}{2}\overline{U}$.

73. (a) Forbidden; (b) allowed;

(c) forbidden; (d) forbidden;

(e) allowed.

75. 4, beryllium.

77. (a) 3×10^{-171} , 1×10^{-202} ;

(b) 1×10^{-8} , 6×10^{-10} ;

(c) 7×10^{15} , 4×10^{14} ;

(d) 4×10^{22} photons/s, 7×10^{23} photons/s.

CHAPTER 40

1. 5.1 eV.

3. 4.7 eV.

5. 1.28 eV.

9. (a) 18.59 u;

(b) 8.00 u;

(c) 0.9801 u.

11. 1.10×10^{-10} m.

13. (a) 1.5×10^{-2} eV, 0.082 mm;

(b) 3.0×10^{-2} eV, 0.041 mm;

(c) $4.6 \times 10^{-2} \,\text{eV}$, $0.027 \,\text{mm}$.

15. (a) 6.86 u;

(b) 1850 N/m, $k_{\text{CO}}/k_{\text{H}_2} = 3.4$.

17. 2.36×10^{-10} m.

19. $m_1 x_1 = m_2 x_2$.

21. 0.2826 nm.

23. 0.34 nm.

25. (b) $-6.9 \,\mathrm{eV}$;

(c) -11 eV;(d) -2.8%.

27. 9.0×10^{20} .

29. (a) 6.96 eV;

(b) 6.89 eV.

31. 1.6%.

33. 3.2 eV, $1.1 \times 10^6 \text{ m/s}$.

 $(b)\frac{h^2(N+1)}{8m\ell^2};$

(c) $\frac{4}{N}$

43. 1.09 μm.

45. (a) 2N;

(b) 6N:

(c) 6N:

(d) $2N(2\ell + 1)$.

47. 4×10^6 .

49. 1.8 eV.

51. 8.6 mA.

53. (a) 1.7 mA; (b) 3.4 mA.

55. (a) 35 mA; (b) 70 mA.

57. 3700 Ω.

59. 0.21 mA.

61. $I_{\rm B} + I_{\rm C} = I_{\rm E}$.

63. (a) 3.1×10^4 K; (b) 930 K.

65.

- **67.** (a) 0.9801 u;
 - (b) 482 N/m, $k_{HCl}/k_{H_2} = 0.88$.
- 71. Yes, 1.09 μ m.
- 73. 1100 J/mol.
- 75. 5.50 eV.
- 77. 3×10^{25}
- **79.** $6.47 \times 10^{-4} \, \text{eV}$.
- 81. 1.1 eV.
- 83. (a) 0.094 eV; (b) 0.63 nm.
- **85.** (a) $150 \text{ V} \le V \le 486 \text{ V}$;
 - (b) $3.16 \text{ k}\Omega \leq R_{\text{load}} < \infty$.
- **87.** (a)

89. 32 mA.

CHAPTER 41

- 1. 0.149 u.
- **3.** 0.85%.
- **5.** 3727 MeV/ c^2 .
- 7. (b) 180 m; (c) 2.58×10^{-10} m.
- 9. 30 MeV.
- 11. 6×10^{26} nucleons, no, mass of all nucleons is approximately the same.

- 13. 550 MeV.
- 15. 7.94 MeV.
- 17. ²³Na: 8.11 MeV/nucleon; ²⁴₁₁Na: 8.06 MeV/nucleon.
- 19. (b) Yes, binding energy is positive.
- 21. 0.782 MeV.
- **23.** 2.6×10^{-12} m.
- **25.** (a) β^- ;
 - (b) $^{24}_{11}$ Na $\rightarrow ^{24}_{12}$ Mg + β^- + $\bar{\nu}$, 5.52 MeV.
- **27.** (a) ²³⁴₉₀Th; (b) 234.04367 u.
- 29. 0.078 MeV.
- **31.** (a) $^{32}_{16}$ S;
 - (b) 31.97207 u.
- 33. 0.862 MeV.
- 35. 0.9612 MeV, 0.9612 MeV, 0, 0.
- 37. 5.31 MeV.
- **39.** (a) $1.5 \times 10^{-10} \,\mathrm{vr}^{-1}$; (b) 6.0 h.
- **41.** 0.16.
- **43.** 0.015625.
- **45.** 6.9×10^{19} nuclei.
- **47.** (a) $3.59 \times 10^{12} \,\mathrm{decays/s}$;
 - (b) $3.58 \times 10^{12} \,\text{decays/s}$;
 - (c) $9.51 \times 10^7 \text{ decays/s}$.
- **49.** 0.76 g.
- **51.** 2.30×10^{-11} g.
- **53.** 4.3 min.
- 55. 2.98×10^{-2} g.
- 57. 35.4 d.
- **59.** ²²⁸₈₈Ra, ²²⁸₈₈Ac, ²²⁸₉₀Th, ²²⁴₈₈Ra, ²²⁰₈₆Rn; ²³¹₉₀Th, ²³¹₉₁Pa, ²²⁷₈₉Ac, ²²⁷₉₀Th, ²²³₈₈Ra.
- **61.** $N_{\rm D} = N_0(1 e^{-\lambda t}).$
- **63.** $2.3 \times 10^4 \, \mathrm{yr}$.
- **65.** 41 yr.
- **69.** $6.64T_{1/2}$.
- **71.** (b) 98.2%.
- 73. 1 MeV.
- **75.** (a) $^{191}_{77}$ Ir;

- (c) The higher excited state.
- 77. 550 MeV, 2.5×10^{12} J.
- 79. 2.243 MeV.
- **81.** (a) 2.4×10^5 yr;
 - (b) no significant change, maximum age is on the order of 10^5 yr.
- 83. 5.49×10^{-4} .

- **85.** (a) 1.6%;
 - (b) 0.66%.
- 87. $1.3 \times 10^{21} \, \text{yr}$.
- **89.** 8.33×10^{16} nuclei.

- 1. ${}^{28}_{13}$ Al, β^- , ${}^{28}_{14}$ Si.
- **3.** Yes, because $Q = 4.807 \,\text{MeV}$.
- 5. 5.701 MeV released.
- 7. (a) Yes:
 - (b) 20.8 MeV.
- 9. 4.730 MeV.
- 11. $n + {}^{14}_{7}N \rightarrow {}^{14}_{6}C + p$, 0.626 MeV.
- 13. (a) The He has picked up a neutron from the C;
 - (b) ${}^{11}_{6}$ C;
 - (c) 1.856 MeV, exothermic.
- 15. 18.000938 u.
- 17. 0.671 MeV.
- 19. $\pi(R_1 + R_2)^2$.
- **21.** 10 cm.
- 23. 173.3 MeV.
- **25.** 6×10^{18} fissions/s.
- **27.** 0.34 g.
- **29.** 5×10^{-5} kg.
- 31. 25 collisions.
- **33.** 0.11.
- 35. 3000 eV.
- **39.** (a) $5.98 \times 10^{23} \,\mathrm{MeV/g}$, $4.83 \times 10^{23} \,\mathrm{MeV/g}$ $2.10 \times 10^{24} \,\mathrm{MeV/g};$
 - (b) $5.13 \times 10^{23} \,\text{MeV/g}$; Eq. 42–9a gives about 17% more energy per gram, 42-9b gives about 6% less, and 42-9c gives about 4× more.
- **41.** 0.35 g.
- 43. 6100 kg/h.
- **45.** 2.46×10^9 J, 50 times more than gasoline.
- **47.** (b) 26.73 MeV;
 - (c) 1.943 MeV, 2.218 MeV, 7.551 MeV, 7.296 MeV, 2.752 MeV, 4.966 MeV;
 - (d) larger Coulomb repulsion to overcome.
- 49. 4.0 Gy.
- **51.** 220 rad.

- **53.** 280 counts/s.
- **55.** 1.6 days.
- **57.** (a) $^{131}_{53}I \rightarrow ^{131}_{54}Xe + \beta^- + \bar{\nu};$
 - (b) 31 d;
 - (c) 8×10^{-12} kg.
- **59.** $8.3 \times 10^{-7} \, \text{Gy/d}$.
- **61.** (a) ²¹⁸₈₄Po;
 - (b) radioactive, alpha and beta decay, 3.1 min;
 - (c) chemically reactive;
 - (d) 9.1×10^6 Bq, 4.0×10^4 Bq.
- 63. 7.041 m, radio wave.
- **65.** (a) ${}^{12}_{6}$ C;
 - (b) 5.701 MeV.
- **67.** 1.0043:1.
- **69.** $6.5 \times 10^{-2} \, \text{rem/yr}$.
- **71.** 4.4 m.
- **73.** (a) 920 kg;
 - (b) 3×10^6 Ci.
- **75.** (a) 3.7×10^{26} W;
 - (b) $3.5 \times 10^{38} \, \text{protons/s}$;
 - (c) 1.1×10^{11} yr.
- 77. $8 \times 10^{12} \,\mathrm{J}$.
- **79.** (a) 3700 decays/s;
 - (b) 4.8×10^{-4} Sv/yr, yes (13% of the background rate).
- **81.** 7.274 MeV.
- 83. 79 yr.
- 85. 2 mCi.

- 1. 5.59 GeV.
- 3, 2.0 T.
- 5. 13 MHz.
- 7. Alpha particles, $\lambda_{\alpha} \approx d_{\text{nucleon}}$, $\lambda_{\text{p}} \approx 2d_{\text{nucleon}}$.
- **9.** 5.5 T.
- 11. 1.8×10^{-19} m.
- 15. 33.9 MeV.
- 17. 1879.2 MeV.
- 19. 67.5 MeV.
- 21. (a) 178.5 MeV;
 - (b) 128.6 MeV.
- 23. (a) Charge, strangeness;
 - (b) energy;
 - (c) baryon number, strangeness, spin.
- **25.** (b) The photon exists for such a short time that the uncertainty principle allows energy to not be conserved during the exchange.

- 27. 69.3 MeV.
- **29.** $K_{\Lambda^0} = 8.6 \,\mathrm{MeV}, \ K_{\pi^-} = 57.4 \,\mathrm{MeV}.$
- 31. 52.3 MeV.
- 33. 9 keV.
- 35. 7.5×10^{-21} s.
- **37.** (a) 700 eV;
 - (b) 70 MeV.
- **39.** (a) uss;
 - (b) dss.
- **41.** (a) Proton;
 - (b) $\overline{\Sigma}^-$;
 - (c) K⁻;
 - (d) π^{-} ;
 - (e) D_S^- .
- 43. $c\bar{s}$.
- 45.

- **47.** (a) 0.38 A;
 - (b) $1.0 \times 10^2 \,\mathrm{m/s}$.
- **49.** 2.1×10^9 m, 7.1 s.
- **51.** (a) Possible, strong interaction;
 - (b) possible, strong interaction;
 - (c) possible, strong interaction;
 - (d) not possible, charge is not conserved:
 - (e) possible, weak interaction.
- **55.** 64.
- **57.** (b) 10^{29} K.
- 59. 798.7 MeV. 798.7 MeV.
- **61.** 16 GeV, 7.8×10^{-17} m.
- 63. Some possibilities:

or [see Example 43-9b]

- **65.** $v/c = 1 (9.0 \times 10^9)$.
- 67

 $2.3 \,\mu s$, 3.1%.

CHAPTER 44

- **1.** 3.1 ly.
- **3.** 0.050", 20 pc.
- 5. Less than, a factor of 2.
- **7.** 0.037.
- 9. $2 \times 10^{-3} \,\mathrm{kg/m^3}$.
- 11. -0.092 MeV, 7.366 MeV.
- 13. $1.83 \times 10^9 \,\mathrm{kg/m^3}$, $3.33 \times 10^5 \,\mathrm{times}$.
- **15.** $D_1/D_2 = 0.15$.
- **19.** 540°.
- **21.** 3.1×10^{-16} m.
- 23. 200 Mly.
- **25.** (a) 656 nm;
 - (b) 659 nm.
- **27.** 0.0589 *c*.
- 31. 1.1×10^{-3} m.
- **33.** 6 nucleons/m³. **35.** (a) 10^{-5} s;
 - (b) 10^{-7} s;
 - (c) 10^{-4} s.
- **37.** (a) 6380 km, 20 km, 8.85 km;
 - (b) 700:2:1.
- **39.** 8×10^9 .
- **41.** A: Temperature increases, luminosity stays the same, and size decreases;

B: Temperature stays the same, and luminosity and size decrease;

C: Temperature decreases, and luminosity and size increase.

- 43. 2×10^{28} N.
- **45.** $d_{480}/d_{660} = 1.7$.
- **47.** 2×10^{16} K, hadron era.
- **49.** (a) 13.93 MeV;
 - (b) 4.7 MeV;
 - (c) 5.5×10^{10} K.
- **51.** $R_{\min} = GM/c^2$.
- **53.** $\approx 10^{-15}$ s.
- **55.** Venus, $b_{\text{Venus}}/b_{\text{Sirius}} = 16$.

57.
$$\frac{h^2}{4m_n^{8/3}GM^{1/3}} \left(\frac{9}{4\pi^2}\right)^{2/3}$$
.

Index

Activation energy, 481, 1075, 1077

Active galactic nuclei (AGN), 1197

Active solar heating, 550 Note: The abbreviation defn means the polarizing, 943–44 page cited gives the definition of the Activity, 1118 radian measure of, 249 term; fn means the reference is in a and half-life, 1120 of reflection, 410, 838 footnote; pr means it is found in a source, 1147 of refraction, 415, 850 Problem or Question; ff means "also the Addition of vectors, 52-58 solid, 7 fn, 915 fn following pages." Addition of velocities: Angstrom (Å) (unit), 17 pr, 852 fn classical, 71-74 Angular acceleration, 251-56, 258-63 relativistic, 970-71 constant, 255 A (atomic mass number), 1105 Adhesion, 360 Angular displacement, 250, 381 Aberration: Adiabatic lapse rate, 525 pr Angular frequency, 373 chromatic, 889 fn, 892, 932 Adiabatic processes, 508, 514-15 Angular magnification, 886 of lenses, 891-92, 929, 931 ADP, 1076-77 Angular momentum, 285-89, 291-300, 1003 spherical, 843, 857, 891, 892, 932 AFM, 1039 in atoms, 1004, 1046-49, 1057-60 Absolute pressure, 345 AGN, 1197 conservation, law of, 285-89, 297-98, Absolute space, 953, 957 Air bags, 31 Absolute temperature scale, 457, Air cleaner, electrostatic, 645 pr directional nature of, 288-89, 291 ff 464, 469-70 Air columns, vibrations of, 434-36 nuclear, 1107 Absolute time, 953 Air conditioners, 537–38 of a particle, 291–92 Absolute zero, 464, 549 Air parcel, 525 pr quantized in atoms, 1046-47 Absorbed dose, 1148 Air pollution, 551 quantized in molecules, 1080-81 Absorption lines, 936, 1002, 1081, 1084–85 Air resistance, 34-35, 129-30 relation between torque and, 292-97 Absorption spectra, 936, 1002, 1084 Airplane wing, 356–57 total, 1059 Absorption wavelength, 1008 Airy disk, 929 and uncertainty principle, 1023 Abundances, natural, 1105 Alkali metals, 1054 vector, 288, 291 Ac circuits, 664-65, 677 fn, 790-803 Allowed transitions, 1048-49, 1080-81, Angular position, 249, 1023 Ac generator, 766-67 1083, 1084 Angular quantities, 249 ff Ac motor, 720 Alpha decay, 1111-14, 1117 vector nature, 254 Accelerating reference frames, 85, 88, and tunneling, 1038, 1113 Angular velocity, 250-55 155-56,300-2 Alpha particle (or ray), 1038, 1111-14 of precession, 299-300 Acceleration, 24-42, 60-62 Alternating current (ac), 664–65, 677 fn, Anisotropy of CMB, 1214, 1220 angular, 251-56, 258-63 796-803 Annihilation (e^-e^+ , particle–antiparticle), average, 24-26 Alternators, 768 996, 1175, 1217 centripetal, 120 ff AM radio, 830 Anode, 620 constant, 28-29, 62 Amino acids, 1079 Antenna, 812, 817, 824, 831, 909 constant angular, 255 Ammeter, 695-97, 721 Anthropic principle, 1225 Coriolis, 301-2 digital, 695, 697 Anticodon, 1079 cosmic, 1223 Amorphous solids, 1085 Antilogarithm, A-3 in g's, 37 Ampère, André, 654, 737 Antimatter, 1175, 1188, 1190 pr (see also due to gravity, 34–39, 87 fn, 92, 143–45 Ampere (A) (unit), 654, 736 Antiparticle) instantaneous, 27-28, 60-61 operational definition of, 736 Antineutrino, 1115–16, 1179 of the Moon, 121, 140 Ampère's law, 737-43, 813-17 Antineutron, 1175 motion at constant, 28-39, 62-71 Amplifiers, 1097 Antinodes, 412, 433, 434, 435 radial, 120 ff, 128 Amplitude, 371, 397, 404 Antiparticle, 1116, 1174-76, 1179 (see also related to force, 86-88 intensity related to, 430 Antimatter) tangential, 128-29, 251-52 pressure, 427 Antiproton, 1164, 1174-75 uniform, 28-39, 62-71 of vibration, 371 Antiquark, 1179, 1183 variable, 39-43 of wave, 371, 397, 402, 404, 426, 430, 1019 Apparent brightness, 1197-98 Accelerators, particle, 1165-71 Amplitude modulation (AM), 830 Apparent magnitude, 1228 pr Accelerometer, 100 Analog information, 775 Apparent weight, 148-49, 350 Acceptor level, 1094 Analog meters, 695-97, 721 Apparent weightlessness, 148-49 Accommodation of eye, 883 Analyzer (of polarized light), 941 Approximations, 9-12 Accuracy, 3-5 Anderson, Carl, 1174 Arago, F., 922 precision vs., 5 Andromeda, 1196 Arches, 327-28 Achromatic doublet, 892 Aneroid barometer, 347 Archimedes, 349-50 Achromatic lens, 892 Aneroid gauge, 347 Archimedes' principle, 348-52 Angle, 7 fn, 249Actinides, 1054 and geology, 351 Action at a distance, 154, 568 attack, 356 Area, 9, A-1, inside back cover Action potential, 670 Brewster's, 943, 949 pr under a curve or graph, 169-71 Action-reaction (Newton's third law), critical, 854 Arecibo, 931 89-91 of dip, 709 Aristotle, 2, 84

of incidence, 410, 415, 838, 850

phase, 373, 405, 800

Armature, 720, 766

Arteriosclerosis, 359

Average position, 1034 Artificial radioactivity, 1111 Bell, Alexander Graham, 428 ASA number, 879 fn Average speed, 20, 480–82 Bernoulli, Daniel, 354 Associative property, 54 Average velocity, 20-22, 60 Bernoulli's equation, 354-58 Asteroids, 159 pr, 162 pr, 210 pr, Average velocity vector, 60 Bernoulli's principle, 354-57 247 pr, 308 pr Avogadro, Amedeo, 468 Beta decay, 1111, 1114–16, 1117, 1121, 1185 Astigmatism, 884, 892, 892 fn Avogadro's hypothesis, 468 inverse, 1202 Astronomical telescope, 888-89 Avogadro's number, 468-69 Beta particle (or ray), 1111, 1114 (see also Astrophysics, 1193-1225 Axial vector, 254 fn Électron) Asymptotic freedom, 1185 Axis, instantaneous, 268 Betatron, 782 pr ATLAS, 1170 Axis of rotation (defn), 249 Bethe, Hans, 1143 Atmosphere, scattering of light by, 945 Axis of lens, 867 Biasing and bias voltage, 1095, 1097 Atmosphere (atm) (unit), 345 Axon, 669-70 Bicycle, 181 pr, 281 pr, 283 pr, 289, 295, Atmospheric pressure, 344-48 decrease with altitude, 344 Big Bang theory, 1188, 1193, 1212-25 Atom trap, 1013 pr, 1016 pr Back, forces in, 337 pr Big crunch, 1220, 1221 Atomic bomb, 1141, 1144 Back emf, 768-69 Bimetallic-strip thermometer, 457 Atomic emission spectra, 936, 1002 Background radiation, cosmic Binary system, 1203, 1209 Atomic force microscope (AFM), 1039 microwave, 1193, 1213-15, 1219. Binding energy: Atomic mass, 455, 1024-27 1220, 1224 in atoms, 1006 Atomic mass number, 1105 Bainbridge-type mass spectrometer, 724 in molecules, 211 pr, 1073, 1075, 1077 Atomic mass unit, 7, 455 Balance, human, 318 of nuclei, 1108-9 unified, 1106 Balance a car wheel, 296 in solids, 1086 Atomic number, 1052, 1054-56, 1105 Ballistic galvanometer, 783 pr total, 985 pr, 1108 Atomic spectra, 1001-3, 1006-8 Ballistic pendulum, 226 Binding energy per nucleon (defn), 1108 Atomic structure: Balloons: Binoculars, 855, 889 Bohr model of, 1003-9, 1017, 1044-46 helium, 467 Binomial expansion, A-1, inside back of complex atoms, 1052-54 hot air, 454 cover early models of, 1000-1 Balmer, J. J., 1002 Biological damage by radiation, 1146-47 of hydrogen atoms, 1045-51 Balmer formula, 1002, 1007 Biological evolution, and entropy, 545 nuclear model of, 1001 Balmer series, 1002, 1007-8 Biot, Jean Baptiste, 743 planetary model of, 1001 Band gap, 1091-92 Biot-Savart law, 743-45 Bismuth-strontium-calcium-copper oxide quantum mechanics of, 1044-65 Band spectra, 1080, 1084-85 shells and subshells in, 1053-54 Band theory of solids, 1090-92 (BSCCO), 669 Atomic theory of matter, 455-56, 559 and doped semiconductors, 1094 Bits, 775 Atomic weight, 455 fn Banking of curves, 126-27 Blackbody, 988 Atoms, 455-56, 468-69, 476-82, 486-90, Bar (unit), 345 Blackbody radiation, 987-88, 1198, 1214 Bar codes, 1063 Black holes, 156, 160 pr, 161 pr, 1197, angular momentum in, 1004, 1046-49, Barn (bn) (unit), 1136 1202, 1203, 1208-9, 1221, 1228 pr 1057-60 Barometer, 347 Blood flow, 353, 357, 359, 361, 366 pr, binding energy in, 1006 Barrel distortion, 892 Bohr model of, 1003-9 Barrier, Coulomb, 1038, 1113, 1200 Blood-flow measurement, as cloud, 1045 Barrier penetration, 1036-39, 1113 electromagnetic, 453 pr, 765 complex, 1052-54 Barrier tunneling, 1036-39, 1113 Blue sky, 945 crystal lattice of, 1085 Baryon, 1179-80, 1183, 1184, 1222 Blueshift, 1211 and de Broglie's hypothesis, 1009-10 and quark theory, 1183, 1184 Body fat, 368 pr Bohr, Niels, 997, 1003-4, 1009, 1017, distance between, 456 Baryon number, 1175, 1179–80, 1182–83, electric charge in, 561 1187, 1217 1024-25, 1115 energy levels in, 1003-9, 1046-47, conservation of, 1175 Bohr magneton, 1057, 1107 1052-53, 1055 Base, nucleotide, 581, 1078 Bohr model of atom, 1003-9, 1017, hydrogen, 1002-10, 1045-51 Base, of transistor, 1097 1044-45, 1046 ionization energy in, 1006-8 Base bias voltage, 1097 Bohr radius, 1005, 1044, 1045, 1049–50 Bohr theory, 1017, 1044-45, 1046 neutral, 1106 Base quantities, 7 probability distributions in, 1045, Base semiconductor, 1097 Boiling, 485 (see also Phase, changes of) 1049-51 Boiling point, 457, 485, 503 Base units (defn), 7 quantum mechanics of, 1044-65 Baseball, 82 pr, 163, 303 pr, 310 pr, 357, Boltzmann, Ludwig, 546 shells and subshells in, 1053-54 Boltzmann constant, 468, 547 1023 vector model of, 1069 pr Baseball curve, and Bernoulli's principle, Boltzmann distribution, 1061 (see also Atomic structure; Kinetic Boltzmann factor, 1061, 1088 theory) Basketball, 82 pr, 105 pr Bomb: ATP. 1076-77 Battery, 609, 652-53, 655, 658, 678 atomic, 1141, 1144 Attack angle, 356 automobile, charging, 678 fn, 686-87 fission, 1141 Attractive forces, 1074-75, 1171 chargers, inductive, 780 pr fusion, 1144 Atwood's machine, 99, 279 pr, 295 Beam splitter, 914 hydrogen, 1144 Audible range, 425 Beams, 322, 323-26 Bond (defn), 1072–73 Aurora borealis, 717 Beat frequency, 438-39 covalent, 1072-73, 1074, 1085, 1086 Autofocusing camera, 426 Beats, 438-39 dipole-dipole, 1077 Autoradiography, 1152 Becquerel, Henri, 1110 dipole-induced dipole, 1077 Average acceleration, 24-26 Becquerel (Bq) (unit), 1147 hydrogen, 1077-80 Average acceleration vector, 60 Bel (unit), 428 ionic, 1073, 1075, 1085, 1086

Bond (continued)	Cable television, 832	Cell (biological):
metallic, 1086	Calculator errors, 4	energy in, 1077
molecular, 1071–74 partially ionic and covalent, 1074	Calculator LCD display, 944 Caloric, 497	radiation taken up by, 1147
in solids, 1085–86	Calories (unit), 497	Cell (electric), 653, 678 Cell phone, 771, 812, 824, 832
strong, 1072–74, 1077–78, 1085–86	relation to joule, 497	Celsius temperature scale, 457–58
van der Waals, 1077–80, 1086	Calorimeter, 501, 1124, 1125	Center of buoyancy, 364 pr
weak, 1077-80, 1086	Calorimetry, 500–5	Center of gravity (CG), 232
Bond energy, 1072–73, 1077	Camera, digital and film, 878–82	Center of mass (CM), 230–36
Bond length, 1077, 1099 pr	autofocusing, 426	and angular momentum, 293
Bonding:	gamma, 1152	and moment of inertia, 259, 264,
in molecules, 1071–74	Camera flash unit, 636	268–71
in solids, 1085–86	Cancer, 1147, 1150–51, 1166	and sport, 192, 193
Born, Max, 1017, 1019	Candela (cd) (unit), 915	and statics, 313
Bose, Satyendranath, 1053 Bose–Einstein statistics, 1087 fn	Cantilever, 315 Capacitance, 629–42	and translational motion, 234–36, 268–9
Bosons, 1053, 1087 fn, 1178, 1179,	of axon, 670	Centi- (prefix), 7
1183–86	Capacitance bridge, 646 pr	Centigrade scale, 457–58
Bottomness and bottom quark, 1179 fn,	Capacitive reactance, 798–99	Centiliter (cL) (unit), 7
1182–83	Capacitor discharge, 690–91	Centimeter (cm) (unit), 7
Bound charge, 641	Capacitor microphone, 699 pr	Centipoise (cP) (unit), 358
Bound state, 1035	Capacitors, 628–42, 1098	Centrifugal (pseudo) force, 123, 300
Boundary conditions, 1030, 1035	charging of, 813–15	Centrifugal pump, 361
Bow wave, 443–44	in circuits, 633–35, 687–92,	Centrifugation, 122
Box, rigid, 1030–34	798–99	Centripetal acceleration, 120 ff
Boyle, Robert, 464	energy stored in, 636–38	Centripetal force, 122–24
Boyle's law, 464, 477 Bragg, W. H., 939	as filters, 798–99 reactance of, 798–99	Cepheid variables, 1204, 1226 pr
Bragg, W. L., 939, 1017	with R or L , 687–92, 793 ff	CERN, 1168, 1169, 1186 Cgs system of units, 7
Bragg equation, 939	in series and parallel, 633–35	Chadwick, James, 1105, 1162 pr
Bragg peak, 1151	uses of, 799	Chain reaction, 1137–39, 1141
Bragg scattering of X-rays, 1065	Capacity, 629–42, 670	Chamberlain, Owen, 1175
Brahe, Tycho, 149	Capillaries, 353, 360	Chandrasekhar limit, 1201
Brake, hydraulic, 346	Capillarity, 359–60	Change of phase (or state), 482–86,
Braking a car, 32, 174, 272–73	Capture, electron, 1116	502–5
LED lights to signal, 1096	Car:	Characteristic expansion time, 1213
Branes, 1189	battery charging, 686–7	Characteristic X-rays, 1055
Brayton cycle, 557 pr	brake lights, 1096	Charge, 506 ff (see Electric charge)
Breakdown voltage, 612 Break-even (fusion), 1145	power needs, 203 stopping of, 32, 174, 272–73	Charge, free and bound, 641 Charge density, 596
Breaking point, 319	Carbon (CNO) cycle, 1143, 1161 pr	Charge-coupled device (CCD), 878
Breaking the sound barrier, 444	Carbon dating, 1104, 1122–24	Charging a battery, 678 fn, 686–87
Breath, molecules in, 469	Carnot, N. L. Sadi, 533	Charging by induction, 562–63
Breeder reactor, 1140	Carnot cycle, 533	Charles, Jacques, 464
Bremsstrahlung, 1056	Carnot efficiency, 534	Charles's law, 464
Brewster, D., 943, 949 pr	and second law of thermodynamics,	Charm, 1179 fn, 1182–84
Brewster's angle and law, 943,	534–35	Charmed quark, 1182
949 pr	Carnot engine, 533–35	Chemical bonds, 1072–80
Bridge circuit, 704 pr	Carnot's theorem, 535	Chemical lasers, 1063
Bridge-type full-wave rectifier, 1099 pr	Carrier frequency, 830 Carrier of force, 1171–73, 1185	Chemical reactions, rate of, 481
Bridges, 324–27, 335 pr, 386	Caruso, Enrico, 386	Chemical shift, 1157 Chernobyl, 1139
Brightness, apparent, 1197–98	Cassegrainian focus, 889	Chimney, and Bernoulli effect, 357
British engineering system of units, 7	CAT scan, 1153–54, 1156	Chip, computer, 16 pr, 1071, 1094, 1098
Broglie, Louis de, 997, 1009	Catalysts, 1077	Cholesterol, 359
Bronchoscope, 856	Cathedrals, 327	Chord, 23, 250
Brown, Robert, 455	Cathode, 620	Chromatic aberration, 889 <i>fn</i> , 892, 932
Brownian motion, 455	Cathode ray tube (CRT), 620–21, 723,	Chromatography, 490
Brunelleschi, Filippo, 328	831	Chromodynamics, quantum (QCD),
Brushes, 720, 766	Cathode rays, 620, 721–22 (see also	1173, 1184–87
BSCCO, 669	Electron)	Circle of confusion, 880, 881
Btu (unit), 497 Bubble chamber 1125, 1174	Causal laws, 152	Circuit, digital, 1097
Bubble chamber, 1125, 1174 Bulk modulus, 319, 321	Causality, 152 Cavendish, Henry, 141, 144	Circuit, electric (see Electric circuits) Circuit breaker, 662–63, 694, 747, 776
Buoyancy, 348–52	CCD, 878	Circular apertures, 929–31
center of, 364 pr	CD player, 1063	Circular motion, 119–29
Buoyant force, 348–49	CDs, 44 pr, 45 pr, 920 pr, 935, 1063	nonuniform, 128–29
Burglar alarms, 992	CDM model of universe, 1224	uniform, 119–25
Burning (= fusion), 1200 fn	CDMA cell phone, 832	Circulating pump, 361

Classical physics (<i>defn</i>), 2, 952, 1018	Compass, magnetic, /U/-8, /U9	Confinement:
Clausius, R. J. E., 529, 539	Complementarity, principle of, 997	in fusion, 1145–46
Clausius equation of state, 487	Complementary metal oxide	of quarks, 1185, 1217
Clausius statement of second law of	semiconductor (CMOS), 647 pr,	Conical pendulum, 125
thermodynamics, 529, 537	878	Conservation of energy, 183 ff, 189–201,
Closed system (defn), 500	Complete circuit, 654	506–7, 1026, 1112, 1115, 1117, 1176
Closed tube, 434		in collisions, 222–25
	Completely inelastic collisions, 225	
Cloud, electron, 1045, 1051, 1072–74	Complex atoms, 1052–56	Conservation laws, 163, 190
Cloud chamber, 1125	Complex quantities, $1019 fn$, $1025 fn$,	of angular momentum, 285–89, 297–98
Cloud color, 945	1028	apparent violation of, in beta decay,
Clusters, of galaxies, 1196, 1220, 1224	Complex wave, 408, 436	1115
of stars, 1196	Components of vector, 55–59	of baryon number, 1175, 1187, 1217
•		
CM, 230–36 (see Center of mass)	Composite particles, 1178, 1179, 1183	and collisions, 217–19, 222–29
CMB, 1193, 1213–15, 1219, 1220, 1224	Composite wave, 408, 436	of electric charge, 560, 1117, 1175
CMB anisotropy, 1214, 1220, 1224	Composition resistors, 657	in elementary particle interactions,
CMB uniformity, 1220	Compound lenses, 892	1172, 1175–76
CMOS, 647 pr, 878	Compound microscope, 890–91	of energy, 189–201, 506–7, 1026, 1112,
CNO cycle, 1143, 1161 pr	Compound nucleus, 1136–37	1115, 1117, 1176
CO molecule, 1082	Compounds, 455 fn	of lepton number, 1175–76, 1187, 1217
Coal, energy in, vs. uranium, 1140	Compression (longitudinal wave), 398, 401	of mechanical energy, 189–95
Coating of lenses, optical, 913–14	Compressive stress, 321	of momentum, 217–29, 1175–76
Coaxial cable, 740, 789, 825	Compton, A. H., 994, 1017, 1138	in nuclear and particle physics, 1117,
COBE, 1214	Compton effect, 994–95, 996, 1146	1175
Coefficient:		
	Compton shift, 994	in nuclear processes, 1115
of kinetic friction, 113–14	derivation of, 995	of nucleon number, 1117, 1175–76, 1180
of linear expansion, 459–63	Compton wavelength, 994	of strangeness, 1181
of performance (COP), 537, 538	Computed tomography (CT), 1153–54,	Conservative field, 775
of restitution, 243 pr	1156	Conservative forces, 184–85
of static friction, 113–14	Computer:	Conserved quantity, 163, 190
of viscosity, 358	and digital information, 775	Constant acceleration, 28–29, 62
of volume expansion, 460, 461	disks, 775	Constant angular acceleration, 255
Coherence, 906	hard drive, 253, 775	Constant, normalization, 1032
Coherent light, 906, 1061, 1064	keyboard, 631	Constants, values of: inside front cover
Cohesion, 360	memory, 644 <i>pr</i>	Constant-volume gas thermometer, 458
Coil (see Inductor)	monitor, 621, 943	Constructive interference, 410–11, 437,
Cold dark matter (CDM) model of	printers, 582–83	904 ff, 913, 1072
universe, 1224	Computer chips, 16 pr, 1071, 1094, 1098	Contact force, 84, 92, 95
Collector (of transistor), 1097	Computer-assisted tomography (CAT),	Contact lens, 885
	1150 54 1156	
Collider Detector at Fermilab (CDF),	1133-34,1130	Continental drift, 351
Collider Detector at Fermilab (CDF), 1125	1153–54, 1156 Computerized axial tomography (CAT).	Continental drift, 351 Continuity, equation of, 353
1125	Computerized axial tomography (CAT),	Continuity, equation of, 353
1125 Colliding beams, 1169–71	Computerized axial tomography (CAT), 1153–54, 1156	Continuity, equation of, 353 Continuous laser, 1063
1125 Colliding beams, 1169–71 Collimated beam, 1152 <i>fn</i> , 1153	Computerized axial tomography (CAT), 1153–54,1156 Concave mirror, 842, 846–48, 889	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision:	Computerized axial tomography (CAT), 1153–54,1156 Concave mirror, 842, 846–48, 889	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced,	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum	Computerized axial tomography (CAT), 1153–54,1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489,516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29	Computerized axial tomography (CAT), 1153–54,1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics),
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover
1125 Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction:	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color:	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conduction electrons, 561	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conductivity:	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction electrons, 561 Conductivity: electrical, 659, 668	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187 Color-corrected lens, 892	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conductivity: electrical, 659, 668 thermal, 515	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction electrons, 561 Conductivity: electrical, 659, 668	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187 Color-corrected lens, 892 Coma, 892	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conductivity: electrical, 659, 668 thermal, 515	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883 Corona discharge, 612, 645 pr
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1185–86, 1187 Color-corrected lens, 892 Common logarithms, A-2–A-3	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conductivity: electrical, 659, 668 thermal, 515 Conductors: charge of, 1094	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883 Corona discharge, 612, 645 pr Corrective lenses, 883–85
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187 Color-corrected lens, 892 Common logarithms, A-2–A-3 Commutative property, 53, 167, 290	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conduction electrons, 561 Conductivity: electrical, 659, 668 thermal, 515 Conductors: charge of, 1094 electric, 561, 577, 654 ff	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883 Corona discharge, 612, 645 pr Corrective lenses, 883–85 Correspondence principle, 980, 1009,
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187 Color-corrected lens, 892 Common logarithms, A-2–A-3 Commutative property, 53, 167, 290 Commutator, 720	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conduction electrons, 561 Conductivity: electrical, 659, 668 thermal, 515 Conductors: charge of, 1094 electric, 561, 577, 654 ff heat, 516	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883 Corona discharge, 612, 645 pr Corrective lenses, 883–85 Correspondence principle, 980, 1009, 1018
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187 Color-corrected lens, 892 Common logarithms, A-2–A-3 Commutative property, 53, 167, 290 Commutator, 720 Compact disc (CD) player, 1063	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conductivity: electrical, 659, 668 thermal, 515 Conductors: charge of, 1094 electric, 561, 577, 654 ff heat, 516 quantum theory of, 1091–92	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883 Corona discharge, 612, 645 pr Corrective lenses, 883–85 Correspondence principle, 980, 1009, 1018 Cosmic acceleration, 1223
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187 Color-corrected lens, 892 Common logarithms, A-2–A-3 Commutative property, 53, 167, 290 Commutator, 720 Compact disc (CD) player, 1063 Compact disc (or disk), 44 pr, 45 pr, 920 pr,	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conductivity: electrical, 659, 668 thermal, 515 Conductors: charge of, 1094 electric, 561, 577, 654 ff heat, 516 quantum theory of, 1091–92 Cones, 882	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883 Corona discharge, 612, 645 pr Corrective lenses, 883–85 Correspondence principle, 980, 1009, 1018 Cosmic acceleration, 1223 Cosmic Background Explorer (COBE),
Colliding beams, 1169–71 Collimated beam, 1152 fn, 1153 Collimated gamma-ray detector, 1152 Collision: completely inelastic, 225 conservation of energy and momentum in, 217–19, 222–29 elastic, 222–25 and impulse, 220–21 inelastic, 222, 225–27, 238 nuclear, 225, 228–29 Colloids, 340 Colonoscope, 856 Color: in digital camera, 878 of light related to frequency and wavelength, 852–4, 903, 906, 912 of quarks, 1184–85 of star, 988, 1199 Color charge, 1184–85 Color force, 1185–86, 1187 Color-corrected lens, 892 Common logarithms, A-2–A-3 Commutative property, 53, 167, 290 Commutator, 720 Compact disc (CD) player, 1063	Computerized axial tomography (CAT), 1153–54, 1156 Concave mirror, 842, 846–48, 889 Concentration gradient, 489, 516 fn Concordance model, 1216 Concrete, prestressed and reinforced, 323 Condensation, 484 Condensed-matter physics, 1085–98 Condenser microphone, 699 pr Condition, boundary, 1030, 1035 Conductance, 675 pr Conduction: charging by, 562–63 electrical, 561, 651–97 of heat, 515–17, 525 pr in nervous system, 669–70 Conduction band, 1091–92 Conduction current (defn), 816 Conductivity: electrical, 659, 668 thermal, 515 Conductors: charge of, 1094 electric, 561, 577, 654 ff heat, 516 quantum theory of, 1091–92	Continuity, equation of, 353 Continuous laser, 1063 Continuous spectrum, 935, 988 Continuous wave, 397 Control rods, 1139 Convection, 517 Conventional current (defn), 655 Conventions, sign (geometric optics), 845–46, 849, 871 Converging lens, 866 ff Conversion factors, 8, inside front cover Converting units, 8–9 Convex mirror, 842, 848–49 Conveyor belt, 236–37, 244 pr Coordinate axes, 19 Copenhagen interpretation of quantum mechanics, 1024 Copier, electrostatic, 569, 582–83 Cord, tension in, 97 Core, of reactor, 1139 Coriolis acceleration, 301–2 Coriolis force, 301 Cornea, 883 Corona discharge, 612, 645 pr Corrective lenses, 883–85 Correspondence principle, 980, 1009, 1018 Cosmic acceleration, 1223

Cosmic microwave background radiation	Dark energy, 1175, 1219, 1221-23	Detergents and surface tension, 360
(CMB), 1193, 1213–15, 1219, 1220,	Dark energy, 1173, 1219, 1221–23 Dark matter, 1189, 1219, 1221–23	
1224		Determinism, 152, 1024–25
	Dating, geological, 1123–24	Deuterium, 1105, 1132, 1138, 1142–45
anisotropy of, 1214, 1220, 1224	Dating, radioactive, 1122–24	Deuterium-tritium fusion (d-t), 1144-45
uniformity of, 1214, 1220	Daughter nucleus (defn), 1111	Deuteron, 1132
Cosmic rays, 1165	Davisson, C. J., 998	Dew point, 486
Cosmological constant, 1223, 1224	dB (unit), 428–31	Diagrams:
Cosmological model, 1216–19, 1224	Dc (<i>defn</i>), 664	Feynman, 1172, 1185
Cosmological principle, 1212	Dc circuits, 677–97	force, 95
perfect, 1213	Dc generator, 767, 768	free-body, 95–96, 102
Cosmological redshift, 1211	Dc motor, 720	H–R, 1199, 1204
Cosmology, 1188, 1193–1225	de Broglie, Louis, 997, 1009, 1017, 1018	phase, 483
Coulomb, Charles, 563	de Broglie wavelength, 997–98, 1009–10,	phasor, 800, 907, 925, 937
Coulomb (C) (unit), 564, 737	1019, 1025, 1165–66	potential, energy, 1074–77
operational definition of, 737	applied to atoms, 1009–10	PT, 483
Coulomb barrier, 1038, 1113, 1200	Debye (unit), 617	PV, 482–83, 487, 507
Coulomb potential (defn), 613	Debye equation, 527 pr, 558 pr	ray, 844, 849, 871
Coulomb's law, 563–67, 593–94, 600, 817,	Decay, 1110	for solving problems, 30, 58, 64, 96,
1076	alpha, 1038, 1111–14, 1117	102, 125, 166, 198, 229, 261, 314, 571,
vector form of, 567	beta, 1111, 1114–16, 1117, 1121, 1185, 1202	849,871
Counter emf, 768–70	of elementary particles, 1175–86	Diamagnetism, 749–50
Counter torque, 769	exponential, 688–90, 791, 1118–19	Diamond, 855
Counters, 1124–25	gamma, 1111, 1116–17	Dielectric constant, 638
Covalent bond, 1072–73, 1074, 1085, 1086	proton, 1179, 1187–88	Dielectric strength, 638
Creativity in science, 2–3		
	radioactive, 1110–26	Dielectrics, 638–40
Credit card swipe, 776	rate of, 1118–20	molecular description of, 640–42
Crick, F., 939	types of radioactive, 1111, 1117	Diesel engine, 508, 527 pr, 553 pr
Critical angle, 854	Decay constant, 1117–18	Differential cross section, 1136
Critical damping, 383	Decay series, 1121–22	Differential equation (defn), 372
Critical density, of universe, 1221–22	Deceleration, 26	Diffraction, 901, 921–39, 1062
Critical mass, 1138–41	Decibels (dB) (unit), 428–31	by circular opening, 929–30
Critical point, 483	Declination, magnetic, 709	as distinguished from interference,
Critical reaction, 1138–41	Decommissioning nuclear power plant,	929
Critical temperature, 483, 668	1140	in double-slit experiment, 927–29
Cross product, vector, 289–91	Decoupled photons, 1215, 1219	of electrons, 998–9
Cross section, 1135–37	Dee, 1166–67	Fraunhofer, 922 fn
Crossed Polaroids, 941–42	Defects of the eye, 883–85, 892	Fresnel, 922 fn
CRT, 620–21, 723, 831	Defibrillator, heart, 638, 692 fn	of light, 901, 921–39
Crystal lattice, 456, 1085	Definite integrals, 41, A-7	as limit to resolution, 929–33
Crystallography, 939	Degeneracy:	by single slit, 922–27
CT scan, 1153–54, 1156	electron, 1201	X-ray, 938–39
Curie, Marie, 1017, 1110	neutron, 1202	of water waves, 416
Curie, Pierre, 750, 1110	Degradation of energy, 545–46	Diffraction factor, 928
Curie (Ci) (unit), 1147	Degrees of freedom, 512–13	Diffraction grating, 933–35
Curie temperature, 746, 750	Dehumidifier, 558 pr	resolving power of, 937–38
Curie's law, 750	Del operator, 618 fn, A-12	Diffraction limit of lens resolution,
Curl, A-12	Delayed neutrons, 1139	929–30
Current, electric (see Electric current)	Delta particle, 1181	Diffraction patterns, 922
Current, induced, 758–76, 785 ff	Demagnetization, 749	of circular opening, 929
Current density, 666–68	Demodulator, 831	of single slit, 922–27
Current gain, 1097	Dendrites, 669	X-ray, 938–39
Current sensitivity, 695	Density, 340–41	Diffraction spot or disk, 929–30
Curvature of field, 892	charge, 596	Diffuse reflection, 839
Curvature of space, 155–56, 1207–9,	and floating, 351	Diffusion, 489–90
1220–22	probability, 1019, 1028, 1031, 1036,	Fick's law of, 489
Curvature of universe (space-time),	1045, 1048–49, 1051, 1072	Diffusion constant, 489
1207–9, 1220–21	Density of occupied states, 1088	Diffusion equation, 489
Curves, banking of, 126–27	Density of states, 1087–90	Diffusion time, 490
Cutoff wavelength, 1055–56	Density of universe, 1221–22	Digital ammeter, 695, 697
Cycle (defn), 371	Depth of field, 880	Digital artifact, 878
Cyclotron, 731 pr, 1166–67	Derivatives, 22–23, 27, A-6, inside back	Digital camera, 878–82
Cyclotron frequency, 715, 1167	cover	Digital circuits, 1097
Cygnus X-1, 1209	partial, 189, 406	Digital information, 775
- J G	Derived quantities, 7	Digital video disk (DVD) players, 1063
	Destructive interference, 410, 437, 904,	Digital voltmeter, 695, 697
DAC, 706 pr	913, 914, 1072	Digital zoom, 882
Damage, done by radiation, 1146–47	Detection of radiation, 1124–26, 1149	Digital-to-analog converter (DAC),
Damping and damped harmonic motion,	Detection of radiation, 1124–20, 1149 Detectors, of particles and radiation,	706 pr
382–85	1124–26	Dilation, time, 960–64, 970
JOE 05	1127 20	~ manon, mno, 200-04, 270

Dimensional analysis, 12–13, 16 <i>pr</i> , 134 <i>pr</i> ,	Doppler, J. C., 439 <i>fn</i>	Einstein cross, 1207
135 pr, 418 pr, 1015 pr, 1228 pr, A-8	Doppler effect:	Einstein ring, 1207
Dimensions, 12–13	for light, 443, 978–80, 1210	EKG, 609, 621
Diodes, 1038, 1095–96, 1125	for sound, 439–43	Elapsed time, 20–21
forward-biased, 1095	Doppler flow meter, 442, 453 <i>pr</i>	Elastic collisions, 222–25
junction, 1097 lasers, semiconductor, 1063	Dose, 1147–50 effective, 1148	Elastic cross section, 1135 Elastic limit, 319
light-emitting (LED), 1096	Dosimetry, 1147–50	Elastic moduli, 319
photo-, 992, 1096	Dot (scalar) product, 167–68	and speed of sound waves, 400
reverse-biased, 1095	Double-slit experiment (electrons), 1018,	Elastic potential energy, 188 ff
semiconductor, 1094–96	1019–20	Elastic region, 319
tunnel, 1038	Double-slit experiment (light), 903-6	Elastic scattering, 1135
zener, 1095	intensity in pattern, 906–9, 927–29	Elasticity, 318–22
Diopter (D) (unit), 868	Down quark, 1182	El Capitan, 77 pr, 363 pr
Dip, angle of, 709	Drag force, 129–30, 356, 368 pr	Electric battery, 609, 652–53, 655, 658,
Dipole antenna, 817–18	DRAM, 644 pr, 647 pr	678
Dipole layer, 669	Drift velocity, 666–68, 723, 724	Electric car, 675 pr
Dipole–dipole bonds, 1077	Dry cell, 653	Electric cell, 653, 678
Dipole–induced dipole bonds, 1077	Dry ice, 483	Electric charge, 560 ff
Dipoles and dipole moments: of atoms, 1057–60	d-t (deuterium-tritium) fusion, 1144-45	in atom, 561
electric, 576, 579–80, 617, 641	Duality, wave-particle, 997–9, 1009–10	bound and free, 641 conservation of, 560, 1117, 1175
magnetic, 718–19, 745	Dulong and Petit value, 513	continuous charge distributions, 572–75
of nuclei, 1107	Dust, interstellar, 1196	and Coulomb's law, 563–67
Dirac, P. A. M., 1017, 1047, 1087 fn, 1174	DVD player, 1063	of electron, 564
Dirac equation, 1174	Dwarfs, white, 1197, 1199, 1201–2	elementary, 564
Direct current (dc), 664 (see also Electric	Dye lasers, 1063	free, 641
current)	Dynamic lift, 356–57	induced, 562–63, 641
Discharge, capacitor, 690–91	Dynamic random access memory	motion of, in electric field, 578–79
Discharge, corona, 612, 645 pr	(DRAM), 644 pr, 647 pr	motion of, in magnetic field, 714–17
Discharge tube, 1002	Dynamics, 19, 84 ff	point $(defn)$, 565
Discovery in science, 722	fluid, 352–61	quantization of, 564
Disintegration, 1110	hydro-, 352	test, 568
Disintegration energy (defn), 1112 Disorder and order, 544–45	of rotational motion, 258 ff	types of, 560 Electric circuits, 654–5, 662–5, 677–97,
Dispersion, 409, 853	of uniform circular motion, 122–25 Dynamo, 766–68	790–803
Displacement, 20–21, 371, 380, 404	Dyna (unit), 87	ac, 664–5, 677 fn, 796–803
angular, 250, 381	Dynodes, 1124	complete, 654
resultant, 52–53		containing capacitors, 633–35, 687–92,
vector, 20, 52–54, 59–60		798 ff
in vibrational motion, 371	Ear:	dc, 677–97
of wave, 404 ff, 1019	discomfort, altitude, 367 pr	digital, 1097
Displacement current, 816	response of, 431	impedance matching of, 802–3
Dissipative forces, 196–98	Earth:	induced, 758–76, 785 ff
energy conservation with, 197–99	as concentric shells, 142–43, A-9–A-11	integrated, 1098
Dissociation energy, 1073 Distance:	estimating radius of, 11, 15 pr as inertial frame, 85, 137 pr, 145–46	and Kirchhoff's rules, 683–86 LC, 793–96
astronomical, 1194, 1197, 1199, 1203–4	magnetic field and magnetic poles of,	LR, 790–92
image, 840, 845, 857, 870–71	709	LRC, 795–803
object, 840, 845, 857, 870–71	mass, radius, etc.: inside front cover	open, 654
relativity of, 964–70	mass determination, 144	parallel, 633, 663, 680
Distortion, by lenses, 892	precession of axis, 303 pr	RC, 687–92
Distribution, probability:	rocks and earliest life, 1124	rectifier, 1096
in atoms, 1019, 1028, 1031, 1036, 1045,	Earthquake waves, 401, 402, 403, 416	resonant, 802
1048–49, 1051	Eccentricity, 150	series, 634, 679
in molecules, 1072	ECG, 609, 621	time constants of, 688, 791
Distributive property, 167, 290 Diver, 286	Echolocation, 400 Eddy currents (electric), 770	Electric conductivity, 659, 668 in nervous system, 669–70
Divergence, A-12	Eddy currents (fluids), 352	Electric current, 651, 654–58, 662–69,
Divergence theorem, A-12	Edison, Thomas, 620	683 ff
Diverging lens, 867 ff	Effective cross section, 1135	alternating (ac), 664–65, 677 fn,
DNA, 581–82, 936, 939, 1077–80, 1147,	Effective dose, 1148	796–803
1152	Effective values, 664–65	conduction (defn), 816
Domains, magnetic, 746	Efficiency, 203, 531, 534	conventional, 655
Domes, 328	Carnot, 534	density, 666–68
Donor level, 1094	and Otto cycle, 536	direct (dc) (<i>defn</i>), 664
Door opener, automatic, 992	Einstein, Albert, 155, 455, 513, 952, 954,	displacement, 816
Doorbell, 747 Paring of semiconductors 1003 ff	957–58, 961, 969, 989, 1017, 1141,	eddy, 770
Doping of semiconductors, 1093 ff	1205–8, 1223	hazards of, 692–94

Electric current (continued)	Electricity, 559–836	Electrostatics, 560–642
induced, 759	hazards of, 692–94	Electroweak force, 155, 559 fn, 1186–88
leakage, 694	Electricity, static, 559 ff	Electroweak theory, 1186–88
magnetic force on, 710–19	Electrocardiogram (ECG, EKG), 609, 621	Elementary charge, 564
microscopic view of, 666–68	Electrochemical series, 652	Elementary particle physics, 1164–89
and Ohm's law, 655–58	Electrode, 653	Elementary particles, 1164–89
peak, 664	Electrolyte, 653	Elements, 455 fn, 1053–54
produced by magnetic field, 759–60 produces magnetic field, 710–13, 746	Electromagnetic energy 1168	in compound lenses, 892
rms, 664–65	Electromagnetic energy, 1168 Electromagnetic force, 155, 717, 1118,	origin of in universe, 1201–2 Periodic Table of, 1053–54, inside back
(see also Electric circuits)	1171–73, 1178–79, 1186–88, 1205	cover
Electric dipole, 576, 579–80, 617, 641	Electromagnetic induction, 758 ff	production of, 1201–2
Electric energy, 607–9, 619–20, 636–38,	Electromagnetic oscillations, 793–96,	transmutation of, 1111, 1132–35
660–62	802	transuranic, 1134
stored in capacitor, 636–38	Electromagnetic pumping, 726 pr	Elevator and counterweight, 99
stored in electric field, 637–38	Electromagnetic spectrum, 823, 852–54	Ellipse, 150
Electric energy resources, 550	Electromagnetic (EM) waves, 817–32	EM waves, 817–32 (see also Light)
Electric field, 568–83, 591–600, 610–12,	(see also Light)	Emf, 678–79, 758–66, 767, 768
617–19,775	Electrometer, 563	back, 768–69
calculation of, 568–75, 595–600, 610–11,	Electromotive force (emf), 678–79,	counter, 768–69
617–19	758–67, 768 (see also Emf)	of generator, 766–69
and conductors, 577, 655 fn continuous charge distributions,	Electron: as beta particle, 1111, 1114	Hall, 723–24
572–75	as cathode rays, 620, 721	induced, 758–69, 789 motional, 765–66
in dielectric, 639–40	charge on, 564, 722–23	and photons, 1172
of and by dipole, 579–80	cloud, 1045, 1051, 1072–74	RC circuit with, 689
in EM wave, 817–18	conduction, 561	series and parallel, 686–87
energy stored in, 637-38	defined, 999	sources of, 678, 758–68
and Gauss's law, 591–600	discovery of, 721–23	Emission spectra, 987–88, 1001–3, 1005–8
inside a wire, 668	in double-slit experiment, 1019–20	atomic, 936, 1002
motion of charged particle in, 578–79	as elementary particle, 1175–76	Emission tomography, 1156
produced by changing magnetic field,	free, 561, 1029, 1086, 1092	Emissivity, 518
759–60,773–75	mass of, 723, 1107	Emitter (transistor), 1097
produces magnetic field, 813–16	measurement of charge on, 723	Emulsion, photographic, 1125
relation to electric potential, 610–12, 617–19	measurement of e/m , 722–23 momentum of, 972	Endoergic reaction (defn), 1133 Endoscopes, 856
Electric field lines, 575–76, 616	motion of, in electric field, 578–79	Endoscopes, 636 Endothermic reaction (defn), 1133
Electric flux, 592–93, 814	in pair production, 996	Energy, 163, 172–76, 183–200, 222–29,
Electric force, 559, 563–67, 717	path in magnetic field, 715	265–69, 505–7, 607 <i>ff</i>
Coulomb's law for, 563-67	photoelectron, 992	activation, 481, 1075, 1077
and ionization, 1146	speed of, 666–68	and ATP, 1076–77
in molecular biology, 581–82, 1077–80	spin, 746	binding, 985 pr, 1006, 1073, 1075, 1077,
Electric generator, 766–68	wave nature, 1020	1108–9
Electric hazards, 692–94	wavelength of, 998	bond, 1072–73, 1077
Electric motor, 720	Electron capture, 1116	conservation of, 189–201, 506–7, 1026,
counter emf in, 768–69	Electron cloud, 1045, 1051, 1072–74	1112, 1115, 1117, 1176
Electric plug, 693–94	Electron configuration, 1053–54	dark, 1165, 1175, 1219, 1222, 1223
Electric potential, 607–18 of dipole, 617	Electron degeneracy, 1201 Electron diffraction, 998–99	degradation of, 545–46 disintegration, 1112
due to point charges, 612–15	Electron gun, 621	dissociation, 1073
equipotential surfaces, 616–17	Electron lepton number, 1176, 1179, 1183	electric, 607–9, 619–20, 636–38, 660–63
relation to electric field, 610–12,	Electron microscope, 987, 1000, 1021,	in EM waves, 817, 818, 826–27, 1168
617–19	1038–39, 1043 pr	equipartition of, 512–13
(see also Potential difference)	Electron neutrino, 1178, 1179	Fermi, 1087–89, 1092
Electric potential energy, 607–10, 619–20,	Electron sharing, 1072	and first law of thermodynamics,
636–38	Electron spin, 746, 1047, 1058–60, 1072	505–7
Electric power, 660–63	Electron volt (eV) (unit), 619–20, 1107	geothermal, 550
in ac circuits, 665, 790, 792, 797, 798,	Electrons, sea of, 1174	gravitational potential, 186–88, 191,
801, 802, 803	Electronic circuits, 1095–98	194–95, 199–201
generation, 766–68	Electronic devices, 1093–98	internal, 196, 498–99
in household circuits, 662–63 and impedance matching, 802–3	Electronic pacemakers, 692, 787 Electroscope, 562–63, 652 fn	ionic cohesive, 1086 ionization, 1006, 1008
transmission of, 770–73	Electroscope, 302–03, 032 jn Electrostatic air cleaner, 645 pr	kinetic, 172–73, 265–69, 974–6
Electric quadrupole, 589 pr	Electrostatic arr cicaner, 643 pr	and mass, 974–78
Electric shielding, 577, 740	Electrostatic force, 563–67, 581–82, 1077	mechanical, 189–95
Electric shock, 692–94	defined, 565	molecular kinetic, 478–79
Electric stove burner, 660	potential energy for, 607–8	nuclear, 530 fn, 550, 1131–59
Electric vehicle, 675 pr	Electrostatic potential energy, 619–20	nucleotide, 1078
Electrical grounding, 562, 655	Electrostatic unit (esu), 564 fn	photon, 989–93

Energy (continued)	second condition for, 313	Fahrenheit temperature scale, 457–58
potential, 186–89, 607–10, 619–20,	stable, 204–5, 317	Falling objects, 34–39
636–38 (see also Electric potential;	static, 311–24	Fallout, radioactive, 1141
Potential energy)	thermal, 459	False-color image, 1154
quantization of, 989, 1003–9, 1031	unstable, 205, 317	Fan-beam scanner, 1153–54
reaction (defn), 1133	Equilibrium distance, 1077, 1099 pr	Far field, 818
relation to work, 172–76, 186, 197–99,	Equilibrium position (vibrational	Far point of eye, 883
265–67, 978	motion), 370	Farad (F) (unit of capacitance), 629
relativistic, 974–8	Equilibrium state, 463	Faraday, Michael, 154, 568, 758–60
rest, 974–76, 1023	Equipartition of energy, 512–13	Faraday cage, 577
		• • •
rotational, 265–67 and ff, 499, 1080–82, 1084–85	Equipotential lines, 616–17 Equipotential surface, 616–17	Faraday's law of induction, 760–61, 773–74, 817
in simple harmonic motion, 377–78	Equivalence, principle of, 155–56, 1205–6	Farsightedness, 883, 884
solar, 550	Erg (unit), 164	Femtometer (fm) (unit), 1106
thermal, 196, 498		
	Escape velocity, 201, 1222	Fermat's principle, 864 pr
threshold, 1134, 1163 pr	Escher drawing, 206 pr	Fermi, Enrico, 12, 997, 1018, 1053, 1087 fn,
total binding, 985 pr	Estimated uncertainty, 3	1115, 1134, 1138, 1180–81
transformation of, 196, 201	Estimating, 9–12	Fermi (fm) (unit), 1106
translational kinetic, 172–74	Eta (particle), 1179	Fermi–Dirac probability function, 1088,
unavailability of, 545–46	Ether, 954–57	1092
and uncertainty principle, 1022–23, 1036	Euclidean space, 1207–8	Fermi–Dirac statistics, 1087–90
units of, 164, 173, 256	European Center for Nuclear Research	Fermi energy, 1087–90, 1092
vacuum, 1223	(CERN), 1168, 1169, 1186	Fermi factor, 1088
vibrational, 377–78, 499, 1082–85	Evaporation, 484	Fermi gas, 1087
zero-point, 1031, 1036–37, 1042 pr, 1083	and latent heat, 505	Fermi level, 1087–90
Energy bands, 1090–92	Event, 958 ff	Fermi speed, 1089
Energy conservation, law of, 189–201,	Event horizon, 1209	Fermi temperature, 1102 pr
506-7, 1026, 1112, 1115, 1117, 1176	Everest, Mt., 6, 8, 144, 161 pr, 364 pr, 485	Fermilab, 1164, 1168, 1169
Energy density:	Evolution:	Fermions, 1053, 1087, 1184
in electric field, 638, 639	and entropy, 545	Ferromagnetism and ferromagnetic
in magnetic field, 790, 826	stellar, 1200–3	materials, 708, 746–49
Energy gap, 1091–92	Exact differential, 506 fn	Feynman, R., 1172
Energy levels:	Exchange particles (carriers of force),	Feynman diagram, 1172, 1185
in atoms, 1003–9, 1046–48	1171–73	Fiber optics, 855–56
for fluorescence, 1060	Excited state:	Fick's law of diffusion, 489
for lasers, 1061–64	of atom, 996, 1005 ff	Fictitious (inertial) forces, 300–1
in molecules, 1080–85	of nucleon, 1181	Field, 154
nuclear, 1116–17	of nucleus, 1116–17	conservative and nonconservative, 775
in solids, 1090–91	Exclusion principle, 1052–53, 1072, 1087,	electric, 568–83, 591–600, 610–12,
in square well, 1031	1089, 1184, 1201, 1202	617–19, 775 (see also Electric field)
Energy states, in atoms, 1003–9	Exoergic reaction (defn), 1133	in elementary particles, 1171
Energy transfer, heat as, 497	Exothermic reaction (defn), 1133	gravitational, 154, 156, 576, 1205–9
Engine:	Expansion:	Higgs, 1186
diesel, 508, 527 pr, 553 pr	free, 510–11, 542, 548	magnetic, 707–17, 733–50 (see also
internal combustion, 530–32, 535–36	linear and volume, 318–21	Magnetic field)
power, 202–3	thermal, 459–62	vector, 575
steam, 530	of universe, 1209–13, 1221–23	Film badge, 1125
Enriched uranium, 1138	Expansions, mathematical, A-1	Film speed, 879 fn
Entire universe, 1216	Expansions, in waves, 398	Filter circuit, 799, 810 <i>pr</i> , 811 <i>pr</i>
Entropy, 539–48	Exponential curves, 688–90, 791, 1118–19	Fine structure, 1017, 1044, 1047, 1060
and biological evolution, 545	Exponential decay, 688–90, 791, 1118–19	Fine structure constant, 1060
as order to disorder, 544–45	Exponents, A-1, inside back cover	Finite potential well, 1035–36
and second law of thermodynamics,	Exposure time, 879	First law of motion, 84–85
541–48	Extension cord, 663	First law of thermodynamics, 505–7
as a state variable, 540	External force, 218, 234	applications, 507–11
statistical interpretation, 546–48	Extragalactic (defn), 1196	extended, 507
and time's arrow, 544	Extraterrestrials, possible communication	Fission, 550
Enzymes, 1077	with, $834 pr$	nuclear, 1136–41
Equally tempered chromatic scale, 431	Eye:	Fission bomb, 1141
Equation of continuity, 353	aberrations of, 892	Fission fragments, 1136–40
¥ .	accommodation, 883	
Equation of motion, 372		Fitzgerald, G. F., 957
Equation of state, 463	defects of, 883–85, 892	Flasher unit, 691
Clausius, 487	far and near points of, 883	Flashlight, 659
ideal gas, 466	lens of, 883	Flatness, 1220
van der Waals, 486–87	normal (defn), 883	Flavor (of elementary particles), 1177,
Equilibrium (defn), 204–5, 311, 312–13, 317	resolution of, 930, 932–33	1184
first condition for, 312	structure and function of, 882–85	Flavor oscillation, 1177
force in, 312–13	Eyeglass lenses, 883–85	Flip coil, 783 pr
neutral, 205, 317	Eveniece, 888	Floating, 351

Flow:	in Newton's laws, 83–102, 215, 218,	of vibration, 371, 382, 412
of fluids, 352–61	234–35	of wave, 397
laminar, 352	nonconservative, 185	Frequency modulation (FM), 830,
meter, Doppler, 442, 453 pr	normal, 92–94	831 <i>fn</i>
streamline, 352	nuclear, 155, 212 pr, 1110, 1115,	Fresnel, A., 922
in tubes, 353–55, 357, 358–59	1171–89, 1205	Fresnel diffraction, 922 fn
turbulent, 352, 357	pseudoforce, 300-1	Friction, 85, 113–19
Flow rate, 353	relation of momentum to, 215–16, 218,	coefficients of, 113–14
Fluid dynamics, 352–61	220–21, 235, 236, 972, 974	force of, 85–87, 113–19
Fluids, 339–61 (see also Flow of fluids;	repulsive, 1074–75, 1171	helping us to walk, 90
Gases; Liquids; Pressure)	resistive, 129–30	
		kinetic, 113 ff
Fluorescence, 1060	restoring, 170, 370	rolling, 113, 273–74
Fluorescent lightbulb, 1060	short-range, 1110, 1205	static, 114, 270
ballast, 773	strong nuclear, 155, 1110, 1134 fn,	Fringe shift, 956
Flux:	1171–89, 1205	Fringes, interference, 904–6, 956, 1065
electric, 592–93, 814	types of, in nature, 155, 559 fn, 1173,	Frisch, Otto, 1136
magnetic, 760 ff, 773–75, 816, 820	1188	f-stop $(defn)$, 879
Flying buttresses, 327	units of, 87	Fulcrum, 313
Flywheel, 266, 281 pr	van der Waals, 1077-80, 1086	Full-scale current sensitivity, 695
FM radio, 830–31, 831 fn	velocity-dependent, 129-30	Full-wave rectifier, 1096, 1099 pr
f-number, 879	viscous, 358–59	Fundamental constants: inside front cover
Focal length:	weak nuclear, 155, 1110, 1115, 1173–89,	
		Fundamental frequency, 413, 432, 433–35
of lens, 867–68, 875, 876–77, 882, 883	1205	Fundamental particles, 1178–79, 1183, 1186
of spherical mirror, 842–43, 848	(see also Electric force; Magnetic force)	Fuse, 662–63
Focal plane, 867	Force diagrams, 95	Fusion, nuclear, 1141–46
Focal point, 842–43, 848, 867–68, 883	Force pumps, 348, 361	in stars, 1142–44, 1200–1
Focus, 843	Forced oscillations, 385–87	Fusion bomb, 1144
Focusing, of camera, 879–80	Forward biased diode, 1095	Fusion reactor, 1144–46
Football kicks, 66, 69	Fossil-fuel power plants, 550	
Foot-candle (defn), 915 fn	Foucault, J., 902	
Foot-pounds (unit), 164	Four-dimensional space-time, 967, 1207	g-factor, 1058
Forbidden energy gap, 1091	Fourier analysis, 436	Galaxies, 1194–97, 1209–12, 1219, 1220,
Forbidden transitions, 1049, 1061 fn,	Fourier integral, 408	1222–24
1083 fn, 1084	Fourier's theorem, 408	
		black hole at center of, 160 pr, 161 pr,
Force, 83–102, 155, 184–85, 215, 234–35,	Fovea, 882	1197, 1209
1173,1188	Fracture, 322–23	clusters of, 1196, 1220, 1224
addition of, 95, 143	Frame of reference, 19, 85, 300–2, 952 ff	mass of, 1195
attractive, 1074-75, 1171	accelerating, 85, 88, 155–56, 300–2	origin of, 1220, 1224
buoyant, 348–49	inertial, 85, 88, 300, 952 ff	redshift of, 1210–11
centrifugal (pseudo), 123, 300	noninertial, 85, 88, 156, 300–2, 952	superclusters of, 1196–97
centripetal, 122–24	rotating, 300–2	Galilean telescope, 887, 887 fn, 889
color, 1185–86, 1187	transformations between, 968–71	Galilean transformation, 968–69
conservative, 184–85	Franklin, Benjamin, 560, 600	Galilean–Newtonian relativity, 952–54,
contact, 84, 92, 95	Franklin, Rosalind, 939	968–69
Coriolis, 301	Fraunhofer diffraction, 922 fn	Galileo, 2, 18, 34, 51, 62, 84–85, 346, 348,
definition of, 87	Free-body diagrams, 95–96, 102	
		380, 457, 825, 839, 887, 887 fn, 952,
diagram, 95	Free charge, 641	968, 1194
dissipative, 196–98	Free-electron theory of metals, 1086–90	Galvani, Luigi, 652
drag, 129–30, 356, 368 pr	Free electrons, 561, 1029, 1086, 1092	Galvanometer, 695–96, 721, 783 pr
electromagnetic, 155, 717, 1118,	Free expansion, 510–11, 542, 548	Gamma camera, 1152
1171–73, 1178–79, 1186–88, 1205	Free fall, 34–39, 148	Gamma decay, 1111, 1116–17
electrostatic, 563-67, 581-82, 1077	Free particle, and Schrödinger equation,	Gamma particle, 1111, 1116–17, 1146,
electroweak, 155, 559 fn, 1188	1025–29	1171
in equilibrium, 312–13	Freezing (see Phase, changes of)	Gamma ray, 1111, 1116–17, 1146, 1171
exerted by inanimate object, 90	Freezing point, 457 fn, 503	Gamow, George, 951, 1214
external, 218, 234	Frequency, 121, 253, 371, 397	Gas constant, 466
fictitious, 300–1	angular, 373	Gas laws, 463–65
of friction, 85–87, 113–19	of audible sound, 425, 431	Gas lasers, 1063
of gravity, 84, 92–94, 140–156, 1173,	beat, 438–39	· · · · · · · · · · · · · · · · · · ·
		Gas vs. vapor, 483
1188, 1189, 1193, 1202, 1205–9, 1221,	of circular motion, 121	Gas-discharge tube, 1002
1223	collision, 494 pr	Gases, 340, 463–90
impulsive, 221	cyclotron, 1167	adiabatic expansion of, 514–15
inertial, 300–1	fundamental, 413, 432, 433–35	Fermi, 1087
long-range, 1110, 1205	infrasonic, 426	ideal, 465–70, 476 ff
magnetic, 707, 710-19	of light, 823, 853, 854	kinetic theory of, 476–90
measurement of, 84	natural, 374, 385, 412	molar specific heats for, 511–12
in muscles and joints, 278 pr, 315, 330 pr,	resonant, 385, 412–13	real, 482–87
331 pr, 332 pr, 336 pr, 337 pr	of rotation, 253	Gate, 1097
net, 85–88, 95 ff	ultrasonic, 426, 445	Gauge bosons, 1165, 1178–79, 1183–85

Cours massums 245	Cravitational lancing 1206 7	Hoomt 261
Gauge pressure, 345	Gravitational lensing, 1206–7	Heart, 361
Gauge theory, 1186	Gravitational mass, 155–56, 1205–6	defibrillator, 638, 648 pr, 692
Gauges, pressure, 347	Gravitational potential, 609, 617	pacemaker, 692, 787
Gauss, K. F., 591	Gravitational potential energy, 186–88,	Heartbeats, number of, 12
Gauss (G) (unit), 712	199–201	Heat, 196, 496–528
Gauss's law, 591–600	and escape velocity, 201	calorimetry, 500–5
for magnetism, 816, 817	Gravitational redshift, 1211	compared to work, 505
Gauss's theorem, A-12	Gravitational slingshot effect, 246 pr	conduction, 515–17
Gay-Lussac, Joseph, 464	Gravitino, 1189	convection, 517
Gay-Lussac's law, 464, 468, 469	Graviton, 1173, 1189	distinguished from internal energy and
Geiger counter, 627 pr, 1124	Gravity, 34–39, 92, 139 ff, 1173, 1188,	temperature, 498
Gell-Mann, M., 1182	1193, 1202, 1223	as energy transfer, 497
General motion, 230, 267–74, 292–93	acceleration of, 34–39, 87 fn, 92,	in first law of thermodynamics, 505–7
General theory of relativity, 155–56, 1193,	143–45	of fusion, 502
1205–7	center of, 232	latent, 502–5
Generator:	and curvature of space, 1205–9	mechanical equivalent of, 497
ac, 766–67	effect on light, 1206–7, 1209	radiation, 517–20
dc, 767, 768	force of, 84, 92–94, 140–56, 1173,	of vaporization, 502
electric, 766–68	1188, 1189, 1193, 1202, 1205–9,	Heat capacity, 522 pr (see also Specific heat)
emf of, 766–69	1221, 1223	Heat conduction to skin, 525 pr
Van de Graaff, 607, 627 <i>pr</i>	free fall under, 34–39, 148	Heat death, 546
Genetic code, 1079	specific, 341	Heat engine, 529, 530–32, 1139
Geodesic, 1207	Gravity anomalies, 144	Carnot, 533–35
Geological dating, 1123–24	Gravity waves, 1224	efficiency of, 531–32
Geometric optics, 838–91	Gray (Gy) (unit), 1148	internal combustion, 530–31, 532
Geometry, A-2	Greek alphabet: inside front cover	operating temperatures, 530
Geosynchronous satellite, 147	Grimaldi, F., 901, 906	steam, 530–31
Geothermal energy, 550	Ground fault, 776	temperature difference, 531
Germanium, 1093	Ground fault circuit interrupter (GFCI),	Heat of fusion, 502
Germer, L. H., 998	694,776	Heat of vaporization, 502
GFCI, 694, 776	Ground state, of atom, 1005	Heat pump, 536, 538–39
		Heat reservoir, 508
Glaser D. A. 1125	Ground wire, 693, 694	· · · · · · · · · · · · · · · · · · ·
Glaser, D. A., 1125	Grounding, electrical, 562, 655	Heat transfer, 515–20
Glashow, S., 1186	Groves, Leslie, 1141	conduction, 515–17
Glasses, eye, 883–85	GSM, 832	convection, 517
Global positioning satellite (GPS), $16 pr$,	GUT, 155, 1187–88	radiation, 517–20
160 pr, 964	Guth, A., 1219	Heating element, 665
Global System for Mobile	Gyration, radius of, 279 pr	Heavy elements, 1201–2
Communication (GSM), 832	Gyromagnetic ratio, 1058	Heavy water, 1138
Global warming, 551	Gyroscope, 299–300	Heisenberg, W., 987, 1017, 1018
Glueballs, 1185 fn		Heisenberg uncertainty principle,
Gluino, 1189		1020–23, 1036, 1072
Gluons, 1165, 1173, 1178, 1179, 1183,	h -bar (\hbar) , 1022, 1048	and particle resonance, 1181
1184–86	Hadron era, 1217–18	and tunneling, 1113
Golf putt, 48 pr	Hadrons, 1179, 1182–85, 1217	Helicopter drop, 51, 70
GPS, 16 pr, 160 pr, 964	Hahn, Otto, 1136	Helium, 1052, 1108, 1111, 1133, 1142
Gradient:	Hair dryer, 665	I and II, 483
concentration, 489, 516 fn	Hale telescope, 889	balloons, 467
of electric potential, 618	Half-life, 1119–21	primordial production of, 1218, 1219 fn
pressure, 359, 516 fn	Half-wave rectification, 1096	and stellar evolution, 1200–1
temperature, 516	Hall, E. H., 723	Helium–neon laser, 1062
velocity, 358	Hall effect, Hall emf, Hall field, Hall	Helmholtz coils, 756 pr
Gradient operator (del), 618 fn	probe, 723–24, 1094	Henry, Joseph, 758
Gram (g) (unit), 7, 87	Hall voltage, 1094	Henry (H) (unit), 786
Grand unified era, 1217	Halley's comet, 160 pr	Hertz, Heinrich, 823
Grand unified theories (GUT), 155,	Halogens, 1054	Hertz (Hz) (unit of frequency), 253, 371
1187–88	Hard drive, 253	Hertzsprung–Russell diagram, 1199,
Graphical analysis, 40–43	Harmonic motion:	1204
Grating, 933–38	damped, 382–85	Higgs boson, 1186
Gravitation, universal law of, 139–43,	forced, 386	Higgs field, 1186
199–201, 564, 1205	simple, 372–79	High-energy accelerators, 1165–71
Gravitational collapse, 1209	Harmonic oscillator, 372–79, 1036,	High-energy physics, 1165–89
Gravitational constant (G), 141	1042	High-pass filter, 799, 811 pr
Gravitational field, 154, 156, 576, 1205–9	Harmonic wave, 405	Highway curves, banked and unbanked,
Gravitational force, 84, 92–94, 140–43	Harmonics, 413, 432–35	126–27
	· ·	
and ff, 155, 1118, 1173, 1188, 1193,	Hazards, electric, 692–94	Hiroshima, 1141
1202, 1205–9, 1223	Headlights, 609, 661, 677	Hologram and holography 1064, 65
due to spherical mass distribution,	Hearing, 424–44 (see Sound) threshold of, 431	Hologram and holography, 1064–65
142–43, A-9–A-11	un conoid of, 431	Homogeneous (universe), 1212

Hooke, Robert, 318, 910 fn	as tiny diffraction pattern, 929–30	Instantaneous velocity, 22–24, 60
Hooke's law, 170, 188, 318, 370	ultrasound, 445–46	Instantaneous velocity vector, 60
Horizon, 1216	virtual, 840, 870	Insulators:
event, 1209	Image artifact, 878	electrical, 561, 658, 1091–92
Horizontal $(defn)$, 92 fn	Image distance, 840, 845, 857, 870–71	thermal, 516, 1091–92
Horizontal range (defn), 68	Imaging, medical, 445–46, 1107, 1152–59	Integrals, 39–43, 169–70, A-6, A-7, A-12,
Horsepower, 202–3	Imbalance, rotational, 296–97	A-13, inside back cover
Hot air balloons, 454	Impedance, 798, 800-3	definite, A-7
Hot wire, 693, 694	Impedance matching, 802–3	Fourier, 408
Household circuits, 662–63	Impulse, 220–21	indefinite, A-6, A-7
H–R diagram, 1199, 1204	Impulsive forces, 221	line, 169
HST (see Hubble Space Telescope)	Inanimate object, force exerted by, 90	surface, A-13
Hubble, Edwin, 979, 1196, 1210	Inch (in.) (unit), 6	volume, A-12
Hubble age, 1213	Incidence, angle of, 410, 415, 838, 850	Integrated circuits, 1098
Hubble parameter, 1210, 1213	Incident waves, 410, 415	Integration by parts, 1034, 1050, A-6, A-7
Hubble Space Telescope (HST), 930, 1207,	Inclines, motion on, 101	Intensity, 402–3, 427 ff
1211	Incoherent source of light, 906	in interference and diffraction
Hubble Ultra Deep Field, 1211	Indefinite integrals, A-6–A-7	patterns, 906–9, 924–28
Hubble's constant, 1210	Indeterminacy principle, 1021 (see	of light, 915, 1019
Hubble's law, 1210, 1213, 1223	Uncertainty principle)	of Poynting vector, 827
Humidity, 485–86	Index of refraction, 850	of sound, 427–31
Huygens, C., 901	dependence on wavelength	Interference, 410–11, 437–8, 903–14
Huygens' principle, 901–3	(dispersion), 853	constructive, 410–11, 437, 904, 913, 914,
Hydraulic brake, 346	in Snell's law, 851	1072
Hydraulic lift, 346	Induced current, 758–76, 785 ff	destructive, 410, 437, 904, 913, 914, 1072
Hydraulic press, 364 pr	Induced electric charge, 562–63, 641	as distinguished from diffraction, 929
Hydrodynamics, 352	Induced emf, 758–66, 789	of electrons, 1019–20, 1072
Hydroelectric power, 550	counter, 768–69	of light waves, 903–14, 928–29
Hydrogen atom:	in electric generator, 766–68	of sound waves, 437–39
Bohr theory of, 1003–9	in transformer, 770–73	by thin films, 909–14
magnetic moment of, 719	Inductance, 786–89	of water waves, 411
populations in, 1070 pr	in ac circuits, 790-803	wave-phenomenon, 903
quantum mechanics of, 1045-51	of coaxial cable, 789	of waves on a string, 410
spectrum of, 936, 1002-3	mutual, 786–87	Interference factor, 928
Hydrogen bomb, 1141, 1144	self-, 788–89	Interference fringes, 904–6, 956, 1065
Hydrogen bond, 581, 1077, 1079	Induction:	Interference pattern:
Hydrogen isotopes, 1105	charging by, 562-63	double-slit, 903–9, 1019–20
Hydrogen molecule, 1072–75, 1080, 1083	electromagnetic, 758 ff	including diffraction, 927-29
Hydrogen-like atoms, 1004 fn, 1008, 1010	Faraday's law of, 760–61, 773–74, 817	multiple slit, 933–36
Hydrometer, 351	Induction stove, 762	Interferometers, 914, 954–57
Hyperopia, 883	Inductive battery charger, 780 pr	Intermodulation distortion, 408 fn
Hysteresis, 748–49	Inductive reactance, 797	Internal combustion engine, 530–31, 532
hysteresis loop, 748	Inductor, 788, 1098	Internal conversion, 1117
1,	in circuits, 790–803	Internal energy, 196, 498–99
	energy stored in, 790	distinguished from heat and
Ice skater, 284, 286, 309 pr	reactance of, 797	temperature, 498
Ideal gas, 465–70, 476 ff, 1089	Inelastic collisions, 222, 225–29	of an ideal gas, 498–99
kinetic theory of, 476–90, 1089	Inelastic scattering, 1135	Internal reflection, total, 421 pr, 854–56
Ideal gas law, 465–66, 482	Inertia, 85	Internal resistance, 678–79
internal energy of, 498–99	moment of, 258–60	International Linear Collider (ILC),
in terms of molecules, 468–69	Inertial confinement, 1145, 1146	1170
Ideal gas temperature scale, 469–70, 534	Inertial forces, 300–1	International Thermonuclear
Identical (electrons), 1053	Inertial mass, 155, 1205–6	Experimental Reactor (ITER), 1131,
Ignition:	Inertial reference frame, 85, 88, 137 pr,	1146
automobile, 609, 772	300, 952 ff	Interpolation, A-3
fusion, 1145	Earth as, 85, 137 pr, 145–46	Interstellar dust, 1196
ILC, 1170	equivalence of all, 952-53, 957	Intrinsic luminosity, 1197, 1204
Illuminance, 915	transformations between, 968–71	Intrinsic semiconductor, 1091, 1093
Image:	Infinitely deep square well potential,	Invariant quantity, 977
CAT scan, 1153–54, 1156	1030–34	Inverse square law, 140 ff, 403, 429, 563–4
false-color, 1154	Inflationary scenario, 1217, 1219–21	Inverted population, 1062–63
formed by lens, 867 ff	Infrared (IR) radiation, 823-24, 852, 936	Ion (defn), 561
formed by plane mirror, 838-41	Infrasonic waves, 426	Ionic bonds, 1073, 1075, 1085, 1086
formed by spherical mirror, 842-49, 889	Initial conditions, 373	Ionic cohesive energy, 1086
MRI, 1107, 1158–59	Inkjet printer, 583	Ionization energy, 1006, 1008
NMR, 1107, 1156–59	In-phase waves, 411, 904, 910–14, 933	Ionizing radiation (defn), 1146
PET and SPECT, 1156	Instantaneous acceleration, 27–28, 60–61	IR radiation, 823–24, 852, 936
real, 840, 844, 869	Instantaneous acceleration vector, 60	Irreversible process, 533
seeing, 847, 848, 869	Instantaneous axis, 268	Iris, 882

ISO number, 879 fn	molecular, relation to temperature,	combination of, 874-75
Isobaric processes, 508	478–79, 498–99, 512–13	compound, 892
Isochoric processes, 508	of photon, 993	contact, 885
Isolated system, 218, 500	relativistic, 974–78	converging, 866 ff
Isomer, 1117	rotational, 265–69	corrective, 883–85
Isotherm, 507	translational, 172–73	cylindrical, 884
Isothermal processes, 507–8	Kinetic friction, 113 ff	diverging, 867 ff
Isotopes, 725, 1105–6, 1110–11 mean life of, 1119 <i>fn</i> , 1129 <i>pr</i>	coefficient of, 113 Kinetic theory, 455, 476–90	of eye, 883
in medicine, 1151–52	basic postulates, 477	eyeglass, 883–85 eyepiece, 888
table of, A-14–A-17	boiling, 485	focal length of, 867, 868, 875, 877
Isotropic (universe), 1212	diffusion, 489–90	magnetic, 1000
Isovolumetric (isochoric) process, 508	evaporation, 484	magnification of, 871
ITER, 1131, 1146	ideal gas, 476–82	negative, 871
Iterative technique, 1155	kinetic energy near absolute zero, 480	normal, 882
	of latent heat, 505	objective, 888, 889, 890
	mean free path, 487–88	ocular, 890
J (total angular momentum), 1059	molecular speeds, distribution of,	positive, 871
J/ψ particle, 1023, 1183	480–82	power of (diopters), 868
Jars and lids, 461, 465	of real gases, 482–84	resolution of, 881, 929–32
Jeans, J., 988	van der Waals equation of state,	spherical, 858
Jets (particle), 1164	486–87 Kirahhaff G. B. 683	telephoto, 882
Jeweler's loupe, 887 Joints, 324	Kirchhoff, G. R., 683 Kirchhoff's rules, 683–86, 816 <i>fn</i>	thin (<i>defn</i>), 867 wide-angle, 882, 892
method of, 325	junction rule, 684 ff	zoom, 882
Joule, James Prescott, 497	loop rule, 684 ff	Lens aberrations, 891–92, 929, 931
Joule (j) (unit), 164, 173, 256, 619, 620, 661		Lens elements, 892
relation to calorie, 497		Lensmaker's equation, 876–77
Joyce, James, 1182 fn	Ladder, forces on, 317, 338 pr	Lenz's law, 761–64
Jump start, 687	Lagrange, Joseph-Louis, 153	Lepton era, 1216, 1218
Junction diode, 1097	Lagrange Point, 153	Lepton number, 1175–77, 1179–80, 1182,
Junction rule, Kirchhoff's, 684 ff	Lambda (particle), 1179, 1181	1187
Junction transistor, 1097	Laminar flow, 352	Leptons, 1165, 1171, 1175–76, 1178, 1179,
Jupiter, moons of, 150, 151, 158 pr,	Land, Edwin, 940	1182–83, 1185–87, 1189, 1217
159–60, 825, 887	Lanthanides, 1054	Level:
	Large Hadron Collider (LHC), 1168–70, 1189	acceptor, 1094 donor, 1094
K-capture, 1116	Laser printer, 583	energy (see Energy levels)
K lines, 1056	Lasers, 1061–64	Fermi, 1087–90
K particle (kaon), 1179, 1181	chemical, 1063	loudness, 431
Kant, Immanuel, 1196	gas, 1063	sound, 428–30
Kaon, 1179, 1181	helium–neon, 1062	Level range formula, 68-69
Karate blow, 221	surgery, 1064	Lever, 177 pr, 313
Keck telescope, 889	Latent heats, 502–5	Lever arm, 256
Kelvin (K) (unit), 464	Lateral magnification, 845–46, 871	LHC, 1168–70, 1189
Kelvin temperature scale, 464, 548–49	Lattice structure, 456, 1085, 1093, 1097	Lids and jars, 461, 465
Kelvin-Planck statement of the second	Laue, Max von, 939	Lifetime, 1179 (see also Mean life)
law of thermodynamics, 532, 535 Kepler, Johannes, 149–50, 887 fn	Law (<i>defn</i>), 3 (<i>see proper name</i>) Lawrence, E. O., 1166	Lift, dynamic, 356–57 Light, 823, 825–6, 837–946
Keplerian telescope, 887 fn, 888	Lawson, J. D., 1145	coherent sources of, 906
Kepler's laws, 149–53, 298	Lawson, 3. D., 1143 Lawson criterion, 1145	color of, and wavelength, 852–54, 903,
Keyboard, computer, 631	LC circuit, 793–96	906, 912
Kilo-(prefix), 7	LC oscillation, 793–96	dispersion of, 853
Kilocalorie (kcal) (unit), 497	LCD, 831, 878 fn, 943-44	Doppler shift for, 443, 978–80, 1210
Kilogram (kg) (unit), 6, 86, 87	Leakage current, 694	as electromagnetic wave, 823–26
Kilometer (km) (unit), 7	LED, 1096	frequencies of, 823, 853, 854
Kilowatt-hour (kWh) (unit), 661	Length:	gravitational deflection of, 1206–7,
Kinematics, 18–43, 51–74, 248–55	focal, 842–43, 848, 867–68, 875, 876–77,	1209
for rotational motion, 248–55	882, 883	incoherent sources of, 906
translational motion, 18–43, 51–74	Planck, 13, 1216	infrared (IR), 823, 824, 852, 936, 948 pr
for uniform circular motion, 119–22	proper, 965	intensity of, 915, 1019
vector kinematics, 59–74 Kinetic energy 172, 75, 189 ff 265, 69	relativity of, 964–70	monochromatic (defn), 903
Kinetic energy, 172–75, 189 ff, 265–69, 974–76	standard of, 6, 914 Length contraction, 964–67, 970	as particles, 902, 989–97 photon (particle) theory of, 989–97
of CM, 268–69	Length contraction, 304–07, 370 Lens, 866–92	polarized, 940–43, 949 pr
in collisions, 222–23, 225–26	achromatic, 892	ray model of, 838 ff, 867 ff
and electric potential energy, 608	axis of, 867	scattering, 945
of gas atoms and molecules, 478–79,	coating of, 913–14	from sky, 945
498–99, 512–13	color-corrected, 892	spectrometer, 935–36

Light (continued)	<i>LR</i> circuit, 790–92	Magnetic resonance imaging (MRI),
speed of, 6, 822, 825–26, 850, 902, 953,	LRC circuit, 795–96, 799–801	1107, 1158–59
957, 975	Lumen (lm) (unit), 915	Magnetic susceptibility (defn), 749
total internal reflection of, 1038	Luminosity (stars and galaxies), 1197,	Magnetic tape and disks, 775
ultraviolet (UV), 823, 824, 852	1204	Magnetism, 707–90
unpolarized (defn), 940	Luminous flux, 915	Magnetization vector, 750
velocity of, 6, 822, 825–26, 850, 902, 953,	Luminous intensity, 915	Magnification:
957, 975	Lyman series, 1002–3, 1006, 1007, 1054	angular, 886
visible, 823, 852–54 wave, tunneling of, 1038		lateral, 845–46, 871
wave, tunnering of, 1038 wave theory of, 900–45	Mach, E., 443 fn	of lens, 871 of lens combination, 874–75
wavelengths of, 823, 852–54, 903, 906,	Mach number, 443	of magnifying glass, 885–87
912	Macroscopic description of a system, 454,	of microscope, 890–91, 932, 933, 1000
wave-particle duality of, 997	456	of mirror, 845
white, 852–53	Macroscopic properties, 454, 456	sign conventions for, 845–46, 849, 871
(see also Diffraction; Intensity;	Macrostate of system, 546–47	of telescope, 888, 931
Interference; Reflection; Refraction)	Madelung constant, 1085–86	useful, 932–33, 1000
Light meter (photographic), 992	Magellanic clouds, 1196 fn	Magnifier, simple, 866, 885–87
Light pipe, 855	Magnet, 707–9, 746–47	Magnifying glass, 866, 885–87
Light rays, 838 ff, 867 ff	domains of, 746	Magnifying mirror, 848
Lightbulb, 651, 653, 656, 657, 660, 704 pr,	electro-, 747	Magnifying power, 886 (see also
773,915,991	permanent, 746	Magnification)
fluorescent, 1060	superconducting, 747	total, 888
Light-emitting diode (LED), 1096 Light-gathering power, 889	Magnetic bottle, 1145	Magnitude, apparent, of star, 1228 pr
Lightning, 425, 662	Magnetic circuit breakers, 747 Magnetic confinement, 1145	Magnitude of vector, 52 Main sequence (stars), 1199–1201
Lightning rod, 612	Magnetic damping, 778 pr	Majorana, Ettore, 1177 fn
Light-year (ly) (unit), 15 pr, 1194	Magnetic declination, 709	Majorana particles, 1177
Linac, 1169	Magnetic deflection coils, 621	Manhattan Project, 1141
Line integral, 169	Magnetic dipoles and magnetic dipole	Manometer, 346
Line spectrum, 935–36, 1002 ff, 1017	moments, 718–19, 745, 1057–59	Marconi, Guglielmo, 829
Line voltage, 665	Magnetic domains, 746	Mars, 150, 151
Linear accelerator, 1169	Magnetic field, 707–17, 733–50	Mass, 6, 86–88, 155
Linear expansion (thermal), 459–61	of circular loop, 744–45	atomic, 455, 1024–27
coefficient of, 459–60	definition of, 708	center of, 230–33
Linear momentum, 214–35	determination of, 712–13, 738–45	critical, 1138–41
Linear waves, 402	direction of, 708, 710, 716	of electron, 723, 1107
Linearly polarized light, 940 ff Lines of force, 575–76, 708	of Earth, 709	of Galaxy, 1195
Liquefaction, 463–66, 476, 482	energy stored in, 790 hysteresis, 748–49	gravitational vs. inertial, 155, 1205–6 and luminosity, 1198
Liquid crystal, 340, 483, 943–44	induces emf, 759–73	molecular, 455, 465
Liquid crystal display (LCD), 878 fn,	motion of charged particle in, 714–17	of neutrinos, 1177–78
943–44	produced by changing electric field,	nuclear, 1106–7
Liquid scintillators, 1125	813–16	of photon, 993
Liquid-drop model, 625 pr, 1136–37	produced by electric current, 710,	precise definition of, 88
Liquid-in-glass thermometer, 457	741–42, 743–46 (see also Ampère's	reduced, 1081
Liquids, 340 ff, 455–56 (see also Phase,	law)	in relativity theory, 974
changes of)	produces electric field and current,	rest, 974
Lloyd's mirror, 919 pr	773–75	standard of, 6–7
Logarithms, A-2–A-3, inside back cover Log table, A-3	of solenoid, 741–42 sources of, 733–51	table of, 7
Longitudinal waves, 398 ff	of straight wire, 711–12, 734–35	units of, 6–7, 87 variable, systems of, 236–38
and earthquakes, 401	of toroid, 742	Mass excess (defn), 1129 pr
velocity of, 400–1	uniform, 709	Mass number, 1105
(see also Sound waves)	Magnetic field lines, 708	Mass spectrometer (spectrograph),
Long-range force, 1110, 1205	Magnetic flux, 760 ff, 773–75, 816, 820	724–25
Lookback time, 1197, 1215	Magnetic force, 707, 710–19	Mass-energy, distribution in universe,
Loop rule, Kirchhoff's, 684 ff	on electric current, 710–14, 718–19	1221–23
Lorentz, H. A., 957, 1017	on moving electric charges, 714–17	Mass-energy transformation, 974–78
Lorentz equation, 717	Magnetic induction, 710 (see also	Mathematical expansions, A-1
Lorentz transformation, 969–71	Magnetic field)	Mathematical signs and symbols: inside
Los Alamos laboratory, 1141	Magnetic lens, 1000	front cover
Loudness, 425, 427, 429 (see also Intensity)	Magnetic moment, 718–19, 745	Mather, John, 1214
Loudness control, 431 Loudness level, 431	Magnetic monopole, 708, 1221 Magnetic permeability, 734, 748	Matter: anti-, 1175, 1188, 1190 pr
Loudspeakers, 375, 428–29, 720–21, 799	Magnetic permeability, 734, 748 Magnetic poles, 707–9	dark, 1165, 1189, 1219, 1222, 1223
concert time delay, 452 pr	of Earth, 709	passage of radiation through, 1146–47
Loupe, jeweler's, 887	Magnetic quantum number, 1046–47,	states of, 340, 455–56
Low-pass filter, 799, 811 pr	1057	wave nature of, 997–99, 1009–10

Matter waves, 997–99, 1009–10, 1019 ff	Microscope, 890-91, 931-33	Moment of inertia, 258–60
Matter–antimatter problem, 1188	atomic force, 1039	determining, 263–65, 382
Matter-dominated universe, 1218, 1219	compound, 890–91	parallel-axis theorem, 264–65
Maxwell distribution of molecular	electron, 987, 1000, 1021, 1038–39,	perpendicular-axis theorem, 265
speeds, 480–82, 547, 1145	1043 pr	Momentum, 214–38
Maxwell, James Clerk, 480, 813, 817,	magnification of, 890-91, 932, 933, 1000	angular, 285–89, 291–300, 1003
819–20, 822, 823, 953–54	resolving power of, 932	center of mass (CM), 230–33
Maxwell's equations, 813, 817, 819–22,	scanning tunneling electron (STM),	in collisions, 217–29
911 fn, 951, 953, 954, 958, 969	1038–39, 1043 pr	conservation of angular, 285–87,
differential form of, A-12–A-13	useful magnification, 932–33, 1000ar	297–98
in free space, A-13	Microscopic description of a system, 454,	conservation of linear, 217–20, 222–29.
Maxwell's preferred reference frame,	456, 476 ff	235, 1175–76
953–54	Microscopic properties, 454, 456, 476 ff	linear, 214–38
Mean free path, 487–88	Microstate of a system, 546	of photon, 993
Mean life, 1119, 1129 pr, 1179	Microwave background radiation,	relation of force to, 215–16, 218,
of proton, 1188	cosmic, 1193, 1213–15, 1219, 1220,	220–21, 235, 236, 972, 974
Measurements, 3–5	1224	relativistic, 971–73, 977, 978
of astronomical distances, 1194, 1199,	Microwaves, 824, 1213-14	uncertainty in measurement of, 1021
1203–4	Milliampere (mA) (unit), 654	Monochromatic aberration, 892
of charge on electron, 723	Millikan, R. A., 723, 991	Monochromatic light (defn), 903
electromagnetic, of blood flow, 453 pr,	Millikan oil-drop experiment, 723	Moon, 1194
765	Millimeter (mm) (unit), 7	centripetal acceleration of, 121, 140
of e/m , 722–23	Milky Way, 1194–95	force on, 140, 142
of force, 84	Mirage, 903	work on, 167
precision of, 3–5, 1020–22	Mirror equation, 845–49	Morley, E. W., 954–57
of pressure, 346–48	Mirrors, 839–49	Morse Potential, 1102 pr
of radiation, 1147–50	aberrations of, 889 fn, 891–92	Moseley, H. G. J., 1055
of speed of light, 825–26	concave, 842–49, 889	Moseley plot, 1055
uncertainty in, 3–5, 1020–23	convex, 842, 848–49	Motion, 18–300, 951–80
Mechanical advantage, 100, 313, 346	focal length of, 842–43, 848	of charged particle in electric field,
Mechanical energy, 189–95	Lloyd's, 919 <i>pr</i>	578–79
Mechanical equivalent of heat, 497	plane, 838–42	circular, 119–29
Mechanical oscillations, 369	used in telescope, 889	at constant acceleration, 28–39,
Mechanical waves, 395–416	Missing orders, 948 pr	62–71
Mechanics, 18–445 (see also Motion)	Mr Tompkins in Wonderland (Gamow),	damped, 382–85
definition, 19	951, 982	description of (kinematics), 18–43,
Mediate, of forces, 1172	MKS (meter-kilogram-second) system	51–74
Medical imaging, 445–46, 1107, 1152–59	(defn),7	in free fall, 34–39, 148
Meitner, Lise, 1018, 1136	mm-Hg (unit), 346	harmonic, 372–77, 382–85
Melting point, 503–5 (see also Phase,	Models, 2–3	on inclines, 101
changes of)	Moderator, 1138–39	Kepler's laws of planetary, 149–53, 298
Mendeleev, Dmitri, 1053	Modern physics (defn), 2, 952	linear, 18–43
Mercury barometer, 347	Modulation:	Newton's laws of, 84–91, 95–96, 112 ff,
Mercury-in-glass thermometer, 457–58	amplitude, 830	215, 218, 234, 235, 259–63, 292–93,
Meson exchange, 1172–73	frequency, 830, 831 fn	972, 1018, 1024, 1025
Meson lifetime, 1023	Moduli of elasticity, 319, 400	nonuniform circular, 128–29
Mesons, 1172, 1173, 1175–76, 1178–79,	Molar specific heat, 511–13	oscillatory, 369 ff
1180, 1181, 1183–84, 1185	Mole (mol) (unit), 465	periodic (defn), 370
Messenger RNA (m-RNA), 1079–80	volume of, for ideal gas, 465	projectile, 51, 62–71
Metal detector, 770	Molecular biology, electric force in,	rectilinear, 18–43
Metallic bond, 1086	581–82, 1077–80	and reference frames, 19
Metals:	Molecular kinetic energy, 478–79, 498–99,	relative, 71–74, 951–80
alkali, 1054	512–13	rolling, 267–73
free-electron theory of, 1086–90	Molecular mass, 455, 465	rotational, 248–302
Metastable state, 1061, 1117	Molecular rotation, 1080–81, 1083–85	simple harmonic (SHM), 372–77
	Molecular spectra, 1080–85	translational, 18–239
Meter (m) (unit), 6 Meters, electric, 695–97, 721	Molecular speeds, 480–82	uniform circular, 119–25
correction for resistance of, 697	Molecular speeds, 480–82 Molecular vibration, 1082–85	uniformly accelerated, 28–39
	· · · · · · · · · · · · · · · · · · ·	at variable acceleration, 39–43
Metric (SI) multipliers: inside front cover	Molecular weight, 455 fn	
Metric (SI) system, 7	Molecules, 455, 468–69, 476–82, 486–90, 1071–85	vibrational, 369 ff
Mho (unit), 675 pr		of waves, 395–416
Michelson, A. A., 826, 914, 954–57	bonding in, 1071–74	Motion sensor, 448 pr
Michelson interferometer, 914, 954–57	polar, 561, 579, 1074	Motional emf, 765–66
Michelson-Morley experiment, 954–57	potential energy diagrams for,	Motor:
Microampere (A) (unit), 654	1074–77	ac, 720
Micrometer, 10–11	spectra of, 1080–85	electric, 720
Microphones:	weak bonds between, 1077–80	back emf in, 768–69
capacitor, 699 pr	Moment arm, 256	Mountaineering, 106 pr, 110 pr, 137 pr,
magnetic, 775	Moment of a force about an axis, 256	182 <i>pr</i>

Mt. Everest, 6, 8, 144, 161 pr, 364 pr, 485 Newton (N) (unit), 87 Nucleon number, conservation of, 1117, MP3 player, 677 Newtonian focus, 889 1175-76 MRI, 1107, 1158-59 Newtonian mechanics, 83-156 Nucleosynthesis, 1200-1, 1218 m-RNA, 1079-80 Newton's first law of motion, 84-85 Nucleotide bases, 581, 1078 Newton's law of universal gravitation, Mu meson (see Muon) Nucleus, 1105 ff 139, 140-43, 199-201, 564, 1205 Multimeter, 696 compound, 1136-37 Newton's laws of motion, 84-91, 95-96, daughter and parent (defn), 1111 Multiplication factor, 1138-39 half-lives of, 1117-21 Multiplication of vectors, 55, 167-68, 112 ff, 215, 218, 234-35, 259-63, 292-93, 972, 1018, 1024, 1025 liquid-drop model of, 625 pr 289 - 91Muon, 1164, 1175-76, 1178, 1179 Newton's rings, 910-11 masses of, 1105-7 Newton's second law, 86-88, 90, 95-96, Muon lepton number, 1176-79, 1183 radioactive decay of unstable, 1110-24 Muon neutrino, 1178, 1179 215, 218, 234-35, 953, 972 size of, 1106 Muscles and joints, forces in, 278 pr, 315, for rotation, 259-63, 292-93 structure and properties of, 1105-7 330 pr, 331 pr, 332 pr, 336 pr, 337 pr for a system of particles, 234-35, Nuclide (defn), 1105 Musical instruments, 413, 422 pr, 424, 292-93 Null result, 954, 957, 969 431-36 Newton's synthesis, 152 Numerical integration, 40-43 Musical scale, 431 Newton's third law of motion, 89-91 Mutation, 1147 NMR, 1107, 1156-59 Mutual inductance, 786-87 Noble gases, 1054, 1086 Object distance, 840, 845, 857, 870–71 Nodes, 412, 433, 434, 435 Myopia, 883 Objective lens, 888, 889, 890, 932 Nonconductors, 561, 638-42, 658 Observable universe, 1215-16 Nonconservative field, 775 Observations, 2, 952 n-type semiconductor, 1093-96 Nonconservative forces, 185 and uncertainty, 1021 Nagasaki, 1141 Non-Euclidean space, 1207-8 Occhialini, G., 1173 Natural abundances, 1105 Noninductive winding, 788 Occupied states, density of, 1088 Oersted, H. C., 710 Natural frequency, 374, 385, 412 (see also Noninertial reference frames, 85, 88, 156, Resonant frequency) 300 - 2Off-axis astigmatism, 892 Nonlinear device, 1096 Natural logarithms, A-2 Ohm, G. S., 655 Natural radioactive background, 1114, 1148 Nonohmic device, 656 Ohm (Ω) (unit), 656 Natural radioactivity, 1111 Nonreflecting glass, 913-14 Ohmmeter, 696, 721 Nd:YAG laser, 1063 Nonrelativistic quantum mechanics, 1026, Ohm's law, 655-58, 668, 680, 685 Near field, 818 Oil-drop experiment, 723 Near point, of eye, 883 Nonuniform circular motion, 128–29 Omega (particle), 1179 Nearsightedness, 883, 884-85 Normal eye (defn), 883 One-dimensional Schrödinger equation, Normal force, 92-94 Nebulae, 1196 1025 - 37Normal lens, 882 One-dimensional wave equation, 407 Negative, photographic, 878 fn Negative curvature, 1208, 1221 Normalization condition, 1026–27, Onnes, H. K., 668 Negative electric charge (defn), 560, 655 1029 fn, 1031-34 Open circuit, 654 Negative lens, 871 Normalization constant, 1032 Open system, 500 Neon tubes, 1044 North pole, Earth, 709 Open tube, 434 Neptune, 150, 152 North pole, of magnet, 708 Open-tube manometer, 346-47 Neptunium, 1134 Nova, 1197, 1203 Operating temperatures, heat engines, 530 Nerve pulse, 669-70, 715 npn transistors, 1097 Operational definitions, 7, 737 Nervous system, electrical conduction in, *n*-type semiconductor, 1093–96 Oppenheimer, J. Robert, 1141 669 - 70Nuclear angular momentum, 1107 Optical coating, 913-14 Nuclear binding energy, 1108-9 Net force, 85–88, 95 ff Optical illusion, 851, 903 Optical instruments, 878-92, 914, 929-38 Net resistance, 679 Nuclear collision, 225, 227–29 Neuron, 669 Nuclear decay, 976 Optical pumping, 1062 Optical sound track, 992 Neutral atom, 1106 Nuclear energy, 530 fn, 550, 1131-59 Neutral equilibrium, 205, 317 Nuclear fission, 1136-41 Optical tweezers, 105 pr, 829 Neutral wire, 694 Nuclear forces, 155, 212 pr, 1110, 1115, Optical zoom, 882 Neutrino flavor oscillation, 1177 1171-89, 1205 Optics: Neutrinos, 1114-16, 1165, 1175-79, 1218 Nuclear fusion, 1141-46, 1200-1 fiber, 855-56 mass of, 1177-78, 1179 geometric, 838-91 Nuclear magnetic moments, 1107 types of, 1175-78 Nuclear magnetic resonance (NMR), physical, 900-45 Neutron, 561, 1105, 1165, 1179 Orbital angular momentum, in atoms, 1107, 1156-59 delayed, 1139 Nuclear magneton, 1107 1046-47, 1059-60 in nuclear reactions, 1136-42 Nuclear masses, 1105 and ff Orbital quantum number, 1046 role in fission, 1136 ff Nuclear medicine, 1150-52 Order and disorder, 544-45 thermal, 1136 Nuclear physics, 1104-64 Order of interference or diffraction Neutron activation analysis, 1163 pr Nuclear power, 1139-41 pattern, 904-6, 933-34, 936, 939, 948 pr Nuclear power plants, 767, 1139-40 Order-of-magnitude estimate, 9–12, 102 Neutron cross section, 1136 Neutron degeneracy, 1202 Nuclear radius, 1106 Organ pipe, 435 Neutron number, 1105 Nuclear reactions, 1132-38 Orion, 1196 Neutron physics, 1134 Nuclear reactors, 1138-41, 1144-46 Oscillations, 369-89 Neutron star, 287, 1100 pr, 1197, 1202 Nuclear spin, 1107 of air columns, 434-6

Nuclear structure, 1105-7

Nuclear weapons testing, 1141

Nucleon, 1105, 1165, 1186, 1217-18

Newton, Isaac, 18, 85-86, 89, 139-40, 155,

1208 fn

568, 889 fn, 902, 910 fn, 952, 1205,

damped harmonic motion, 382-85

displacement, 371

forced, 385-87

Oscillations (continued)	Peaks, tallest, 8	mediation of (force), 1172
mechanical, 369	Pendulum:	momentum of, 993
of molecules, 512–13	ballistic, 226	virtual, 1172
of physical pendulum, 381–82	conical, 125	Photon exchange, 1171–73
simple harmonic motion (SHM), 372–77	physical, 381–82	Photon interactions, 996
as source of waves, 397	simple, 13, 195, 379–81 torsion, 382	Photon theory of light, 989–97 Photosynthesis, 993
of a spring, 370–71	Pendulum clock, 380	Photovoltaic (solar) cells, 550
on strings, 412–14, 431–33	Penetration, barrier, 1036–39, 1113	Physical pendulum, 381–82
of torsion pendulum, 382	Penzias, Arno, 1213–14	Physics:
Oscillator, simple harmonic, 372–79,	Percent uncertainty, 3–4, 5	classical (<i>defn</i>), 2, 952
1036, 1042	and significant figures, 5	modern (<i>defn</i>), 2, 952
Oscilloscope, 620, 621	Perfect cosmological principle, 1213	Pi meson, 1172–73, 1179, 1180, 1183–85
Osteoporosis, diagnosis of, 995	Performance, coefficient of (COP), 537,	Piano tuner, 12
Otto cycle, 535–36	538	Pick-up nuclear reaction, 1160 pr
Out-of-phase waves, 411, 904, 914, 933	Perfume atomizer, 356	Pin, structural, 323
Overdamped system, 383	Period, 121, 253, 371, 397	Pincushion distortion, 892
Overexposure, 879	of circular motion, 121	Pion (see Pi meson)
Overtones, 413, 432, 433	of pendulums, 13, 380, A-8	Pipe, light, 855
	of planets, 150–51	Pipe, vibrating air columns in, 431 ff
p-type semiconductor, 1093–96	of rotation, 253–54 of vibration, 371	Pitch of a sound, 425 Pixel, 878, 881, 943–4, 1154
Pacemaker, heart, 692, 787	of wave, 397	Planck, Max, 989, 1017
Packet, wave, 1029	Periodic motion, 370 ff	Planck length, 13, 1216
Packing of atoms, 1085	Periodic Table, 1053–54, 1105 <i>fn</i> , inside	Planck time, 16 pr, 1015 pr, 1188, 1216
Page thickness, 10–11	back cover	Planck's constant, 989, 1022
Pair production, 996	Periodic wave, 397	Planck's quantum hypothesis,
Pantheon, dome of, 328	Permeability, magnetic, 734, 748	988–89
Parabola, 51, 71, 326	Permittivity, 565, 639	Plane:
Parabolic mirror, 843	Perpendicular-axis theorem, 265	focal, 867
Parallax, 1203–4	Personal digital assistant (PDA), 647 pr	mirror, 838–42
Parallel aircuits 622, 662, 680	Perturbations, 152	polarization of light by, 940–44
Parallel circuits, 633, 663, 680 Parallel emf, 686–87	PET, 1156 Phase:	Plane geometry, A-2 Plane waves, 410, 818, 819, 1028–29
Parallelogram method of adding vectors,	in ac circuit, 796–802	Plane-polarized light, 940
54	changes of, 482–83, 502–5	Planetary motion, 149–53, 298
Paramagnetism, 749–50	of matter, 340, 456	Planets, 149–53, 158 pr, 247 pr,
Paraxial rays (defn), 843	of waves, 404, 411, 904, 910-14, 933	309 pr
Parent nucleus (defn), 1111	Phase angle, 373, 405, 800	Plasma, 340, 1131, 1145
Parsec (pc) (unit), 1204	Phase constant, 1028 fn, 1030	Plasma globe, 810 pr
Partial derivatives, 189, 406	Phase diagram, 483	Plastic region, 319
Partial ionic character, 1074	Phase shift, 911, 913, 914	Plate tectonics, 351
Partial pressure, 485–86	Phase transitions, 482–83, 502–5	Plum-pudding model of atom, 1001
Partially polarized, 945	Phase velocity, 404	Pluto, 150, 152, 1194
Particle (defn), 19	Phasor diagram:	Plutonium, 1134, 1138, 1140, 1141
Particle accelerators, 1165–71 Particle classification, 1178–80	ac circuits, 800 interference and diffraction of light,	PM tube, 1124–25 pn junction, 1094–96
Particle detectors, 1096, 1124–25, 1164,	907, 925, 937	<i>pn</i> junction, 1034–30 <i>pn</i> junction diode, 1094–96, 1125
1170	Phon (unit), 431	pn junction laser, 1063
Particle exchange, 1171–73, 1185	Phosphor, 1124	pnp transistor, 1097
Particle interactions, 1175 ff	Phosphorescence, 1061	Point:
Particle physics, 1164–89	Photino, 1189	boiling, 457, 485, 503
Particle resonance, 1180–81	Photocathode, 1124	breaking, 319
Particles, elementary, 1164–89	Photocell, 626 pr, 990	critical, 483
Particle-antiparticle pair, 1175	Photocell circuit, 990, 992	dew, 486
Particulate pollution, 15 pr	Photoconductivity, 582	far, 883
Pascal, Blaise, 341, 346, 363 pr	Photocopier, 569, 582–83	focal, 842–43, 848, 867–68, 883
Pascal (Pa) (unit of pressure), 341	Photodiode, 992, 1096	freezing, 457 fn, 503
Pascal's principle, 346 Pascal aprinciple, 346 Pascal aprinciple, 346	Photoelectric effect, 989–92, 996, 1146	Lagrange, 153
Paschen series, 1003, 1006, 1007 Passive solar heating, 550	Photographic emulsion, 1125 Photographic film, 878, 879	melting, 503–5 near, 883
Pauli, Wolfgang, 1017, 1018, 1052, 1115	Photomultiplier (PM) tube, 1124–25	sublimation, 483
Pauli exclusion principle, 1052–53, 1072,	Photon, 989–97, 1019, 1053, 1165, 1171–72,	triple, 469, 483
1087, 1089, 1184, 1201, 1202	1175, 1178–79, 1183, 1217–19	turning, 204
PDA, 647 pr	absorption of, 1060–61	Point charge (defn), 565
Peak current, 664	decoupled (early universe), 1215, 1219	potential, 612–15
Peak voltage, 664	and emf, 1172	Point particle, 19, 96
Peak widths, of diffraction grating,	energy of, 993	Point rule, Kirchhoff's, 816 ff
937–38	mass of, 993	Poise (P) (unit), 358

Poiseuille, J. L., 358	Precipitator, 645 pr	Projectile, horizontal range of, 68-69
Poiseuille's equation, 358–59	Precision, 5	Projectile motion, 51, 62, 71
Poisson, Siméon, 922	Presbyopia, 883	kinematic equations for (table), 64
Polar molecules, 561, 579, 641, 1073–74	Prescriptive laws, 3	parabolic, 71
Polarization of light, 940–44, 949 pr	Pressure, 341–45	Proper length, 965
by absorption, 940–42	absolute, 345	Proper time, 962, 1191 pr
plane, 940–44	atmospheric, 344–48	Proportional limit, 318–19
by reflection, 942–43	in fluids, 341–45	Proteins:
of skylight, 945	in a gas, 345, 463–65, 478, 482–87	shape of, 1080
Polarizer, 941–44	gauge, 345	synthesis of, 1079–80
Polarizing angle, 943	head, 343	Proton, 1105 ff, 1132, 1141–43, 1151, 1164,
Polaroid, 940–42	hydraulic, 346	1165, 1179
Pole vault, 183, 192–93	measurement of, 346–48	decay of, 1179, 1187–88
Poles, magnetic, 707–9	partial, 485	mean life of, 1188
of Earth, 709	and Pascal's principle, 346	Proton–antiproton collision, 1164
Pollution, 549–50	radiation, 828–29	Proton centers, 1151
Poloidal field, 1145	units for and conversions, 341, 345, 347	Proton decay, 1179, 1187–88
Pool depth, apparent, 852	vapor, 484–85, 491	Proton-proton collision, 228–29
Pope, Alexander, 1208 fn	Pressure amplitude, 427, 430–31	Proton–proton cycle, 1142–43, 1200
Population, inverted, 1062–63	Pressure cooker, 485, 493 pr	Proton therapy, 1151
Position, 19	Pressure gauges, 347	Protostar, 1200
		Proxima Centauri, 1194
angular, 249, 1023 average, 1035	Pressure gradient, 359 Pressure head, 343	Pseudoforce, 300–1
	*	
uncertainty in, 1021–23	Pressure waves, 401, 426 ff	Pseudovector, 254 fn
Position vector, 59–60, 62	Prestressed concrete, 323	Psi (in Schrödinger equation, defn),
Positive electric charge (defe) 560	Primary coil, 770	1025–27
Positive belog 1003	Princeton Plasma Physics Laboratory	p-type semiconductor, 1093–96
Positive long 871	(PPPL), 1146	PT diagram, 483
Positive lens, 871	Principal axis, 843	Pulley, 99–100
Positron, 996, 1116, 1156, 1165, 1174–75	Principal quantum number, 1004 ff,	Pulse, wave, 396
Positron emission tomography (PET), 1156	1046–48	Pulsed laser, 1063
Post-and-beam construction, 321	Principia (Newton), 85, 139	Pulse-echo technique, 445–46, 1158
Potential (see Electric potential)	Principle, 3 (see proper name)	Pumps, 348, 361
Potential difference, electric, 608 ff (see	Principle of correspondence, 980, 1009,	centrifugal, 361
also Electric potential; Voltage)	1018	heat, 538–39
Potential energy, 186–89 and ff	Principle of complementarity, 997	Pupil, 882
diagrams, 204–5, 1074–77	Principle of equipartition of energy,	PV diagrams, 482–83, 487, 507
elastic, 188, 193, 194, 377–78	512–13	P waves, 401, 403, 416
electric, 607–10, 619–20, 636–38	Principle of equivalence, 155–56,	Pythagorean theorem, A-2, A-4
gravitational, 186–88, 199–201	1205–6	
in metal crystal, 1090	Principle of superposition, 407–9, 436,	OCD 1172 1104 07
for molecules, 1074–77, 1082, 1085–86	565,569 B: 11: 11: 502	QCD, 1173, 1184–87
for nucleus, 1038, 1113	Printers, inkjet and laser, 583	QED, 1172
related to force, 188–89	Prism, 852–53	QF, 1148
in Schrödinger equation 1027, 1028,	Prism binoculars, 855, 889	QSOs, 1197
1030–36	Probability:	Quadratic equation, 36
for square well and barriers, 1030–36	and entropy, 546–48	Quadratic formula, 38, A-1, inside back
Potential well, 1030–36	in kinetic theory, 476–82	cover
Potentiometer, 705 pr	in nuclear decay, 1117	Quadrupole, electric, 589 pr
Pound (lb) (unit), 87	in quantum mechanics, 1019, 1020,	Quality factor (QF) of radiation, 1148
Powell, C. F., 1173	1024–25, 1033, 1045, 1049–51,	Quality factor (Q-value) of a resonant
Power, 201–3, 660–65, 801	1072–74	system, 387, 392 pr, 810 pr
rating of an engine, 202–3	Probability density (probability	Quality of sound, 436
Power, magnifying, 886	distribution):	Quantities, base and derived, 7
total, 888	in atoms, 1019, 1028, 1031, 1036, 1045,	Quantization:
(see also Electric power)	1048–49, 1051	of angular momentum, 1004, 1046–47
Power factor (ac circuit), 801	in molecules, 1072–74	of electric charge, 564
Power generation, 549–50, 766–67	Probability function, Fermi–Dirac, 1088,	of energy, 989, 1003–9, 1031
Power of a lens, 868	1092	Quantum chromodynamics (QCD), 1173,
Power plants:	Problem-solving strategies, 30, 58, 64, 96,	1184–87
fossil-fuel, 550	102, 125, 166, 198, 229, 261, 314, 504,	Quantum condition, Bohr's, 1004, 1010
nuclear, 767, 1139–40	551, 571, 685, 716, 740, 763, 849, 871,	Quantum electrodynamics (QED),
Power reactor, 1139	913	1172
Power transmission, 770–73	Processes:	Quantum fluctuations, 1220
Powers of ten, 5	isobaric, 508	Quantum hypothesis, Planck's, 988–89
Poynting, J. H., 826 fn	isochoric, 508	Quantum mechanics, 1017–98
Poynting vector, 826–27	isothermal, 507–8	of atoms, 1044–65
Precession, 299–300	isovolumetric, 508	Copenhagen interpretation of, 1024
of Earth, 303 <i>pr</i>	reversible and irreversible $(defn)$, 533	of molecules and solids, 1071–98

Quantum numbers, 989, 1004-5, 1031, Radiation therapy, 1150-51 Receivers, radio and television. 1046-49, 1052-53, 1080-85 Radio, 829-32 830 - 31principal, 1004 ff Radio waves, 823-24, 931 Recoil, 220 Quantum (quanta) of energy, 989 Radioactive background, natural, 1114, Recombination epoch, 1219 Quantum theory, 952, 987-1010, 1017-98 Rectifiers, 1096, 1099 pr of atoms, 1003-10, 1044-65 Radioactive dating, 1122–24 Recurrent novae, 1203 of blackbody radiation, 987-88 Red giants, 1197, 1199, 1201 Radioactive decay, 1110-26 of light, 987-97 Radioactive decay constant, 1117-18 Redshift, 443, 979, 1204, 1210-11, 1215 of specific heat, 513 Radioactive decay law, 1118, 1119 Redshift parameter, 1211 Quarks, 564 fn, 1107, 1165, 1171–73, 1179, Radioactive decay series, 1121-22 Reduced mass, 1081 1182-85, 1217-18 Radioactive fallout, 1141 Reference frames, 19, 85, 300-2, 952 ff confinement, 1185, 1217 accelerating, 85, 88, 155-56, 300-2 Radioactive tracers, 1151-52 inertial, 85, 88, 300, 952 ff Quartz oscillator, 450 pr Radioactive waste, 1139-41 Quasars (quasi-stellar objects, QSOs), Radioactivity, 1104-26 noninertial, 85, 88, 156, 300-2, 952 1197, 1207 (Fig.) artificial (defn), 1111 rotating, 300-2 Quasistatic process (defn), 508 natural (defn), 1111 transformations between, 968-71 Ouintessence, 1223 Radiofrequency (RF) signal, 830, 1157-58 Reflecting telescope, 889 O-value (disintegration energy), 1112 Radioisotope (defn), 1111 Reflection: Q-value (quality factor) of a resonant Radionuclide (defn), 1111, 1147 angle of, 410, 838 system, 387, 392 pr, 810 pr Radiotelescope, 931 diffuse, 839 Radius, of nuclei, 1106 law of, 409-10, 838 Q-value (reaction energy), 1133 Radius of curvature (defn), 129 and lens coating, 913 Radius of Earth estimate, 11, 15 pr of light, 837, 838-42 Radius of gyration, 279 *pr* Radon, 1111, 1148, 1150 Rad (unit), 1148 phase changes during, 909-14 Rad equivalent man (rem), 1148 polarization by, 942-43 Radar, 446 fn, 823 Rainbow, 853 specular, 839 Radial acceleration, 120 ff, 128 RAM (random access memory), 629, from thin films, 909-14 Radial probability distribution, 1049-51 644 pr total internal, 421 pr, 854-56 Radian (rad), measure for angles, Raman effect, 1016 of waves on a cord, 409 249-50 Ramp vs. stair analogy, 989 Reflection coefficient, 1037, 1043 pr Radiant flux, 915 Random access memory (RAM), 629, Reflection grating, 933 Radiation, electromagnetic: 644 pr Reflectors, 865 pr blackbody, 987-88, 1198, 1214 Refracting telescope, 888 Range of projectile, 68–69 cosmic microwave background, 1193, Rapid estimating, 9–12 Refraction, 415–16, 850–92, 902–3 1213-15, 1219, 1220, 1224 Rapid transit system, 49 pr angle of, 415, 850 emissivity of, 518 Rare-earth solid-state lasers, 1063 of earthquake waves, 416 gamma, 1111, 1116-17, 1146 Rarefactions, in waves, 398 index of, 850 infrared (IR), 823-24, 852, 936 Rate of nuclear decay, 1117-21 law of, 415, 851, 902-3 microwave, 823-24 Ray, 410, 838 ff, 867 ff of light, 850-52, 902-3 seasons and, 519 paraxial (defn), 843 and Snell's law, 850-52 solar constant and, 519 Ray diagram, 844, 849, 871 at spherical surface, 856-58 synchrotron, 1168 Ray model of light, 838 ff, 867 ff by thin lenses, 867-70 thermal, 517-20 Ray tracing, 838 ff, 867 ff of water waves, 415 ultraviolet (UV), 823-24, 852 Rayleigh, Lord, 930, 988 Refrigerators, 536-38 X-ray, 823-4, 938-39, 950 pr, 1056 (see Rayleigh criterion, 930 coefficient of performance (COP) of, also X-rays) Rayleigh-Jeans theory, 988 Radiation, nuclear: RBE, 1148 Regelation, 491 pr activity of, 1118, 1120, 1147 RC circuit, 687-92 Reinforced concrete, 323 Reactance, 788, 797, 798 alpha, 1111-14, 1117 Relative biological effectiveness (RBE), beta, 1111, 1114-16, 1117, 1202 capacitive, 798-99 1148 damage by, 1146-47 inductive, 797 Relative humidity, 485 detection of, 1124-26, 1149 Relative motion, 71-74, 951-80 (see also Impedance) dosimetry for, 1147-50 Reaction energy, 1133 Relative permeability, 749 Relative velocity, 71–74, 959 ff, 968 ff gamma, 1111, 1116-17, 1146 Reaction time, 791 human exposure to, 1148-50 Reactions: Relativistic addition of velocities, 970-71 chain, 1137-39, 1141 Relativistic energy, 974–78 ionizing (defn), 1146 measurement of, 1147-50 chemical, rate of, 481 Relativistic mass, 974 medical uses of, 1150-52 endoergic, 1133 Relativistic momentum, 971-73, 977 types of, 1111, 1117 endothermic, 1133 derivation of, 972-73 Radiation biology, 1150-52 exoergic, 1133 Relativity, Galilean-Newtonian, 952-54, Radiation damage, 1146-47 exothermic, 1133 968-69 Relativity, general theory of, 155-56, Radiation-dominated universe, nuclear, 1132-38 slow-neutron, 1133 1218-19 1193, 1205-7 Radiation dosimetry, 1147-50 subcritical, 1139, 1141 Relativity, special theory of, 951–80, 1205 Radiation era, 1218-19 supercritical, 1139, 1141 constancy of speed of light, 957 Radiation field, 818 Reactors, nuclear, 1138-41, 1144-46 four-dimensional space-time, 967 Radiation film badge, 1149 Read/Write head, 775 impact of, 980 Radiation pressure, 828–29 Real image, 840, 844, 869 and length, 964-67

Rearview mirror, curved, 849

and Lorentz transformation, 968-71

Radiation sickness, 1149

Relativity, special theory of (continued)	Rifle recoil, 220	Satellites, 139, 146–49
and mass, 974	Right-hand rule, 254, 710, 711, 714, 716,	geosynchronous, 147
mass-energy relation in, 974-78	735, 763	global positioning, 16 pr, 160 pr, 964
postulates of, 957–58	Rigid box, particle in, 1030–34	Saturated vapor pressure, 484
simultaneity in, 958–59	Rigid object (defn), 249	Saturation (magnetic), 748
and time, 959–64, 967	rotational motion of, 248–74, 294–97	Savart, Felix, 743
Relativity principle, 952–53, 957 ff	translational motion of, 234–36,	Sawtooth oscillator, 691, 706 pr
Relay, 751 pr	268–70	Sawtooth voltage, 691
Rem (unit), 1148	Ripple voltage, 1096, 1103 pr	Scalar (defn), 52
Repulsive forces, 1074–75, 1171	Rms (root-mean-square):	Scalar components, 55
Research reactor, 1139	current, 664–65	Scalar (dot) product, 167–68
Resistance and resistors, 656–58, 661, 796	speed, 479–82	Scalar quantities, 52
in ac circuit, 796 ff	voltage, 664–65	Scale, musical, 431
with capacitor, 687–92, 795–802	RNA, 1079–80	Scale factor of universe, 1211
color code, 657	Rock climbing, 106 pr, 110 pr, 137 pr,	Scanner, fan-beam, 1153–54
and electric currents, 651 ff	182 pr Booket propulsion 82 00 210 228	Scanning electron microscope (SEM), 987, 1000
with inductor, 790–92, 795–802 internal, in battery, 678–79	Rocket propulsion, 83, 90, 219, 238 Rocks, dating oldest Earth, 1124	Scanning tunneling electron microscope
in <i>LRC</i> circuit, 795–803	Roemer, Ole, 825	(STM), 1038–39, 1043 pr
of meter, 697	Roentgen (R) (unit), 1148	(S1W), 1038–39, 1043 pt Scattering:
net, 679	Roentgen, W. C., 938	elastic, 1135
in series and parallel, 679–83	Roller coaster, 191, 198	of light, 945
shunt, 695	Rolling friction, 113, 273–74	of X-rays, Bragg, 1065
and superconductivity, 668–69	Rolling motion, 267–73	Schrödinger, Erwin, 987, 1017, 1018
Resistance thermometer, 660	instantaneous axis of, 268	Schrödinger equation, 1025–36, 1045–46,
Resistive force, 129–30	total kinetic energy, 268	1082, 1090
Resistivity, 658–60	without slipping, 267–71	Schwarzschild radius, 1209, 1228 pr
temperature coefficient of, 659–60	Root-mean-square (rms) current,	Scientific notation, 5
Resistor, 657	664–65	Scintigram, 1152
shunt, 695	Root-mean-square (rms) speed, 479–82	Scintillation counter, 1124
wire-wound, 657	Root-mean-square (rms) voltage,	Scintillator, 1124, 1125, 1152
Resolution:	664–65	Scuba diving, 473 pr, 475 pr, 495 pr,
of diffraction grating, 937–39	Rotating reference frames, 300–2	527 pr
of electron microscope, 1000	Rotation, 248–302	SDSS, 1224
of eye, 930, 932–33	axis of $(defn)$, 249	Sea of electrons, 1174
of high-energy accelerators, 1165-66	frequency of (defn), 253	Search coil, 783 pr
of lens, 881, 929–32	of rigid body, 248–74, 294–97	Seasons, 519
of light microscope, 932–33	Rotational angular momentum quantum	Second (s) (unit), 6
limits of, 929–32	number, 1080–81, 1084–85	Second law of motion, 86–88, 90, 95–96,
and pixels, 881	Rotational imbalance, 296–97	215, 218, 234–35, 953, 972
of telescope, 931	Rotational inertia, 258, 259-60 (see also	for rotation, 259–63, 292–93
of vectors, 55–58	Moment of inertia)	for a system of particles, 234–35,
Resolving power, 932, 938	Rotational kinetic energy, 265–67	292–93
Resonance, 385–87	molecular, 499, 512–13	Second law of thermodynamics, 529–48
in ac circuit, 802	Rotational motion, 248–302	and Carnot efficiency, 534–35
elementary particle, 1180–81	Rotational plus translational motion,	Clausius statement of, 529, 537
nuclear magnetic, 1107, 1156–59	267–68	and efficiency, 531–32
Resonant frequency, 385, 412–13, 432–35,	Rotational transitions, 1080–81	and entropy, 539–48, 551
802	Rotational work, 266	general statement of, 543, 544, 548
Resonant oscillation, 385–86	Rotor, 720, 768	heat engine, 529, 530–32
Resonant peak, width of, 387	Rough calculations, 9–12	and irreversible processes, 533
Rest energy, 974–76, 1023	Rubidium–strontium dating, 1128 pr	Kelvin-Planck statement of, 532, 535
Rest mass, 974	Ruby laser, 1062	refrigerators, air conditioners, and heat
Resting potential, 669–70	Runway, 29	pumps, 536–39
Restitution, coefficient of, 243 pr	Russell, Bertrand, 999	reversible processes, 533
Restoring force, 170, 370	Rutherford, Ernest, 1001, 1106, 1111,	and statistical interpretation of
Resultant displacement, 52–53 Resultant vector, 52–54, 57–58	1132, 1163 pr Rutherford's model of the atom, 1001	entropy, 546–48 and time's arrow, 544
Retentivity (magnetic), 749	R-value, 517	Secondary coil, 770
Retina, 882	Rydberg constant, 1002, 1007	Seesaw, 314
Reverse-biased diode, 1095	Rydberg states, 1070 pr	Segrè, Emilio, 1175
Reversible cycle, 533–35, 540	Rydoeig states, 1070 pr	Seismograph, 776
Reversible process, 533		Selection rules, 1048–49, 1080, 1083,
Revolutions per second (rev/s), 253	S wave, 401	1084
Reynold's number, 366 pr	SAE, viscosity numbers, 358 fn	Self-inductance, 788–89
RF signal, 830, 1157–58	Safety factor, 322	Self-sustaining chain reaction, 1138–41
Rho (particle), 1179	Sailboats, and Bernoulli's principle, 357	SEM, 987, 1000
Ribosome, 1079	Salam, A., 1186	Semiconductor detector, 1125
Richards, P., 1214	Satellite dish, 831	Semiconductor diode lasers, 1063
	·	,

Semiconductor diodes, 1094-96 SLAC, 1169 tone color of, 436 Semiconductor doping, 1093-94 Slepton, 1189 ultrasonic, 425, 445-46 Semiconductors, 561, 658, 1091–98 Slingshot effect, gravitational, 246 pr Sound barrier, 444 intrinsic, 1091, 1093 Sloan Digital Sky Survey (SDSS), 1224 Sound level, 428-31 n and p types, 1093-96 Sound spectrum, 436 Slope, of a curve, 23 resistivity of, 658 Slow-neutron reaction, 1133 Sound track, optical, 992 Sound waves, 424–46 (see also Sound) silicon wafer, 1125 SLR camera, 882 Sensitivity, full-scale current, 695 Slug (unit), 87 Sounding board, 433 Smoke detector, 1114 Sensitivity of meters, 696, 697 Sounding box, 433 Separation of variables, 1027 Smoot, George, 1214 Soundings, 444 Series circuit, 634, 679 Snell, W., 851 Source activity, 1147 Series emf, 686-87 Snell's law, 851-52, 856, 876, 902 Source of emf, 678, 758-68 Shear modulus, 319, 321 SNIa (type Ia) supernovae, 1203, 1204, 1223 South pole, Earth, 709 Shear stress, 321 SN1987a, 1177, 1202 South pole, of magnet, 708 Shells, atomic, 1053 Snowboarder, 51, 133 pr Space: Shielded cable, 740, 789, 825 Soap bubble, 900, 909, 912-13 absolute, 953, 957 Shielding, electrical, 577, 740 curvature of, 155-56, 1207-9, 1220-22 Soaps, 360 SHM, see Simple harmonic motion Sodium chloride, bonding in, 1073, Euclidean and non-Euclidean, 1207-8 SHO, see Simple harmonic oscillator 1075-76, 1085 relativity of, 964-70 Solar and Heliospheric Observatory Shock absorbers, 369, 371, 383 Space-time (4-D), 967 Shock waves, 443-44 (SOHO) satellite, 153 curvature of, 1207-9, 1220-21 Short circuit, 663 Solar (photovoltaic) cell, 550 Space-time interval, 967 Short-range forces, 1110, 1205 Solar absorption spectrum, 936, 1002 Space quantization, 1047 Shunt resistor, 695 Solar cell, 1096 Space shuttle, 139 Shutter speed, 879, 881 Solar constant, 519 Space station, 131 pr, 149 SI (Système International) units, 7 Solar energy, 550 Space travel, 963 SI derived units: inside front cover Solar neutrino problem, 1177 Spark plug, 785 Siemens (S) (unit), 675 pr Speaker wires, 659 Solar pressure, 828 Sievert (Sv) (unit), 1148 Solar sail, 829 Special theory of relativity, 951–80, 1205 Solenoid, 733, 741-42, 747, 748-49, (see also Relativity, special theory of) Sigma (particle), 1179 Sign conventions (geometric optics), 788-89 Specific gravity, 341, 351 845-46, 849, 871 Solid angle, 7 fn, 915 fn Specific heat, 499-500 Solid-state lighting, 1096 Significant figures, 4–5 for gases, 511-13 percent uncertainty vs., 5 Solid-state physics, 1085–98 for solids, 513 Silicon, 1091 ff Solids, 318 ff, 340, 455–56, 1085–93 (see SPECT, 1156 Silicon wafer semiconductor, 1125 also Phase, changes of) Spectrometer: Simple harmonic motion (SHM), 372-79 amorphous, 1085 light, 935-36 applied to pendulums, 379-82 band theory of, 1090-92 mass, 724-25 related to uniform circular motion, bonding in, 1085-86 Spectroscope and spectroscopy, 935-36, energy levels in, 1090-92 948 pr sinusoidal nature of, 372 specific heats for, 513 Spectroscopic notation, 1059 Solvay Conference, 1017 Simple harmonic oscillator (SHO), Spectrum, 934 Sonar, 444-45 372–79, 1036, 1042 pr absorption, 936, 1002, 1084 Sonic boom, 444 acceleration of, 374 atomic emission, 936, 1001-3, 1006-8 energy in, 377-78, 1042 pr Sonogram, 445 band, 1080, 1084-85 molecular vibration as, 1082-83 Sound, 424-46 continuous, 935, 988 velocity and acceleration of, 374 audible range of, 425 electromagnetic, 823, 852-54 Simple machines: and beats, 438-39 emitted by hot object, 987-88 line, 935-36, 1002 ff, 1017 lever, 177 pr, 313 dBs of, 428-31 pulley, 99-100 Doppler effect of, 439-43 molecular, 1080-85 Simple magnifier, 885-87 ear's response to, 431 visible light, 852-54 Simple pendulum, 13, 195, 379-81 infrasonic, 426 X-ray, 1054-56 with damping, 384 intensity of, 427-31 Specular reflection, 839 Simultaneity, 958-60 interference of, 437-39 Speed, 20 Single-lens reflex (SLR) camera, 882 level of, 428-31 average, 20, 480-82 Single photon emission computed of EM waves, 821-22, 825 loudness of, 425, 427, 429 tomography (SPECT), 1156 loudness level of, 431 Fermi, 1089 mathematical representation of wave, Single photon emission tomography instantaneous, 22 (SPET), 1156 426-27 of light (see separate entry below) Single-slit diffraction, 922-27 pitch of, 425 molecular, 480-82 pressure amplitude of, 427, 430-31 Singularity, 1209 most probable, 480-82 Sinusoidal curve, 372 ff rms (root-mean-square), 479, 480, 482 quality of, 436 Sinusoidal traveling wave, 404-6 shock waves of, 443-44 of sound (see separate entry on next page) Siphon, 362 pr, 368 pr and sonic boom, 444 (see also Velocity) Skater, 284, 286, 309 pr Speed of light, 6, 822, 825-26, 850, 902, sound level of, 428-31 Skidding car, 126-27 sources of, 431-36 953, 957, 975 Skier, 112, 117, 149, 183, 211 pr speed of, 425-26, 824 constancy of, 957 measurement of, 825-26 Sky color, 945 supersonic, 426, 443-44 Sky diver, 77 pr, 105 pr, 138 pr timbre of, 436 as ultimate speed, 974

Speed of sound, 425–26	H-R diagram, 1199, 1201, 1204	Strength of materials, 319, 322
infrasonic, 426	magnitude of, 1228 pr	Stress, 320–21
supersonic, 426, 443–44	neutron, 287, 1100 pr, 1197, 1202	compressive, 321
SPET, 1156	quasars, 1197, 1207 (Fig.)	shear, 321
Spherical aberration, 843, 891, 892, 929,	red giants, 1197, 1199, 1201	tensile, 320–21
932 Spherical long 959	size of, 520	thermal, 463
Spherical lens, 858 Spherical mirrors, image formed by,	source of energy of, 1142–43, 1200–2 Sun (see Sun)	String theories, 1189 Stringed instruments 413, 432, 33
842–49, 889, 892	supernovae, 1177–78, 1197, 1201–4	Stringed instruments, 413, 432–33 Strings, vibrating, 412–15, 431–33
Spherical shells, Earth, 142–43,	temperature of, 1198	Stripping nuclear reaction, 1160 pr
A-9-A-11	types of, 1197 and ff	Strong bonds, 1072–74, 1077–78,
Spherical wave, 403, 410	variable, 1204	1085–86
Spiderman, 179 pr	white dwarfs, 1197, 1199, 1201, 1228 pr	Strong nuclear force, 155, 1110, 1134 fn,
Spin:	State:	1171–89, 1205
boson, 1184	bound, 1035	and elementary particles, 1171–89
down, 1047, 1156–57	changes of, 482–83, 502–5	Strongly interacting particles (defn),
electron, 746, 1047, 1058–60, 1072	energy, in atoms, 1003–9	1179
fermion, 1184	equation of, 463	Structure:
nuclear, 1107	for an ideal gas, 466, 468	fine, 1017, 1044, 1047, 1060
up, 1047, 1156–57	van der Waals, 486–87	of universe, 1219–20
Spin angular momentum, 1047	of matter, 340, 456	Struts, 324
Spin quantum number, 1047 Spin-echo technique, 1158	metastable, 1061, 1117 as physical condition of system, 454,	Subcritical reactions, 1139, 1141 Sublimation, 483
Spin-orbit interaction, 1047, 1060	463	Sublimation point, 483
Spinning top, 299–300	of a system, 454	Subshells, atomic, 1053, 1054
Spiral galaxy, 1196	State variable, 455, 506, 539, 540	Subtraction of vectors, 54–55
Splitting of atomic energy levels, 1090,	Static electricity, 559–642	Suction, 348
1156–57	Static equilibrium, 311–24	Sun, 1142–43, 1195, 1197–1201
Spring:	Static friction, 114, 270	energy source of, 1142-43, 1200
potential energy of, 188, 193–94, 377–78	coefficient of, 113-14	mass determination, 152
vibration of, 370 ff	Statics, 311–28	surface temperature of, 988
Spring constant, 170, 370	Stationary states in atom, 1003–10	Sunglasses, polarized, 941, 942
Spring equation, 170, 370	Statistics:	Sunsets, 945
Spring stiffness constant, 170, 370	Bose–Einstein, 1087 fn	Supercluster, 1196–97
Spyglass, 889	and entropy, 546–48	Superconducting magnets, 747
Square wave, 409	Fermi–Dirac, 1087–90	Superconductivity, 668–69
Square well potential, infinitely deep, 1030–34	Stator, 768 Standy state model of universe 1213	Supercritical reactions, 1139, 1141
Squark, 1189	Steady-state model of universe, 1213 Steam engine, 528, 530–31	Superdome (New Orleans, LA), 328 Superfluidity, 483
Stability, of particles, 1180–81	Steam power plants, 1140	Supernovae, 1177–78, 1197, 1201–4
Stable equilibrium, 204–5, 317	Stefan-Boltzmann constant, 518	as source of elements on Earth, 1201,
Stable nucleus, 1110	Stefan-Boltzmann law (or equation), 518,	1202
Standard candle, 1204	1198	type Ia, 1203, 1204, 1223
Standard conditions (STP), 466	Stellar evolution, 1200–3	Superposition, principle of, 407, 408–9,
Standard length, 6, 914	Stellar fusion, 1142–44	436, 565, 569, 1141 <i>pr</i>
Standard mass, 6	Step-down transformer, 771	Supersaturated air, 486
Standard Model:	Step-up transformer, 771	Supersonic speed, 426, 443
cosmological, 1216–19	Stereo, 689, 831 fn	Superstring theory, 1189
elementary particles, 1165, 1184–86	Sterilization, 1151	Supersymmetry, 1189
Standard to magneture and prossure	Stern-Gerlach experiment, 1058–59	Surface area formulas, A-1, inside back
Standard temperature and pressure (STP), 466	Stimulated emission, 1061–64	cover Surface charge density, 641
Standards and units, 6–7	Stirling cycle, 557 <i>pr</i> STM, 1038–39, 1043 <i>pr</i>	Surface charge density, 641 Surface of last scattering, 1215
Standing waves, 412–15	Stokes's theorem, A-12–A-13	Surface tension, 359–60
fundamental frequency of, 413	Stopping a car, 32, 174, 272–73	Surface waves, 402, 410
mathematical representation of, 414–15	Stopping potential, 990	Surfactants, 360
natural frequencies of, 412	Stopping voltage, 990	Surge protector, 792
resonant frequencies of, 412-13	Storage rings, 1169	Surgery, laser, 1064
and sources of sound, 431–35	Stove, induction, 762	Suspension bridge, 326
Stanford Linear Accelerator Center	STP, 466	SUSYs, 1189
(SLAC), 1169	Strain, 320–21	SUV rollover, 308 pr
Star clusters, 1196	Strain gauge, 673	S wave, 401
Stars: 1142–43, 1194–1204 and ff	Strange quark, 1182	Symmetry, 10, 37, 140, 228, 233, 296, 313,
black holes, 156, 160 pr, 161 pr, 1197,	Strange particles, 1181, 1182 Strangeness 1170 fg. 1181, 82	323, 325, 563 fn, 565, 571, 572, 573, 570, 580, 503, 505, 506, 507, 508, 600
1202, 1203, 1208–9, 1221, 1228 <i>pr</i> clusters of, 1196	Strangeness, 1179 fn, 1181–82 conservation of, 1181	579, 580, 593, 595, 596, 597, 598, 600, 635, 637, 713, 738, 739, 740, 742, 743
color of, 988, 1199	Strassman, Fritz, 1136	635, 637, 713, 738, 739, 740, 742, 743, 744, 774, 813, 815, 819, 847, 877, 907,
distance to, 1203–4	Streamline (<i>defn</i>), 352	972, 997, 1187, 1189, 1217
evolution of, 1200–3	Streamline flow, 352	Symmetry breaking, 1187, 1217

Synapse, 669 Terminal velocity, 35 fn, 129-30 TIA, 357 Synchrocyclotron, 1167 Terminal voltage, 678-79 Tidal wave, 397 Synchrotron, 1168 Terrestrial telescope, 889 Timbre, 436 Synchrotron radiation, 1168 Tesla (T) (unit), 712 Time: Système International (SI), 7, inside front absolute, 953 Test charge, 568 Testing, of ideas/theories, 2 cover characteristic expansion, 1213 Tevatron, 1168, 1169 Systems, 98, 454, 500 lookback, 1215 closed, 500 TFTR, 1145 Planck, 16 pr, 1015 pr, 1188, 1216 proper, 962, 1191 pr isolated, 218, 500 Theories (general), 3 relativity of, 958-64, 967, 968-71 open, 500 Theories of everything, 1189 as set of objects, 98, 454 Thermal conductivity, 515 standard of, 6 of units, 7 Thermal contact, 459 Time constant, 688, 791, 1119 Time dilation, 960-64, 970 of variable mass, 236-38 Thermal energy, 196, 498 distinguished from heat and Time intervals, 6, 21 temperature, 498 Time-dependent Schrödinger equation, transformation of electric to, 660 1027 - 28Tacoma Narrows Bridge, 386 (see also Internal energy) Tail-to-tip method of adding vectors, Time-independent Schrödinger equation, $53 - \bar{5}4$ Thermal equilibrium, 459 1025 - 27Tangential acceleration, 128-29, 251-52 Thermal expansion, 459–62 Time's arrow, 544 Tape recorder, 749, 775 anomalous behavior of water below Tire pressure, 468 Tau lepton, 1176, 1178, 1179, 1183 4°C, 462 Tire pressure gauge, 347 Tau lepton number, 1176-77, 1179, 1183 coefficients of, 460 Tokamak, 1145–46 Tau neutrino, 1178, 1179 linear expansion, 459-61 Tokamak Fusion Test Reactor (TFTR), Technetium-99, 1152 volume expansion, 461–62 1145 Telephone, cell, 771, 812, 824, 832 Thermal neutron, 1136 Tomography, 1153-56 Thermal pollution, 549-50 Telephoto lens, 882 Tone color, 436 Telescope(s), 887-89, 930-31 Thermal radiation, 519 Toner, 583 Arecibo, 931 Thermal resistance, 517 Top, spinning, 299–300 astronomical, 888-89 Thermal stress, 463 Top quark, 1164, 1182 Galilean, 887, 887 fn, 889 Thermionic emission, 620 Topness, 1183 Hale, 889 Thermistor, 660 Topographic map, 617 Hubble Space (HST), 930, 1207, 1211 Thermodynamic probability, 547 Toroid, 742, 748 Keck, 889 Thermodynamic temperature scale, 548–49 Toroidal field, 1145 Keplerian, 887 fn, 888 Thermodynamics, 455, 496-520, 528-51 Torque, 256–60 and ff, 290 ff magnification of, 888 first law of, 505-7 counter, 769 reflecting, 889 second law of, 529-48 on current loop, 718-19 third law of, 539 fn, 548-49 refracting, 888 vector, 290 resolution of, 930-31 zeroth law of, 459 Torr (unit), 346-47 space, 930, 1207, 1211 Thermography, 519 Torricelli, Evangelista, 346, 347-48, 356 terrestrial, 889 Thermoluminescent dosimeter (TLD) Torricelli's theorem, 356 Television, 621, 830-32, 943-44 badge, 1149 Torsion balance, 563 Temperature, 456-59, 464, 469, 548-59 Thermometers, 457-58 Torsion pendulum, 382 absolute, 464, 469-70, 548-59 bimetallic-strip, 457 Total angular momentum, 1059 Celsius (or centigrade), 457-58 constant-volume gas, 458-59 Total binding energy, 985 pr, 1108 critical, 483 liquid-in-glass, 457 Total cross section, 1135 Curie, 746, 750 mercury-in-glass thermometer, 457-58 Total internal reflection, 854–56, 1038 distinguished from heat and internal resistance, 660 Total magnifying power, 888 Thermonuclear devices, 1144 Total reaction cross reaction, 1135 energy, 498 Fahrenheit, 457-58 Townsend, J. S., 723 Thermonuclear runaway, 1203 Tracers, 1151-52 Fermi, 1102 pr Thermos bottle, 521 pr human body, 458, 505 Thermostat, 471 pr Traffic light, LED, 1096 ideal gas scale, 469-70, 534 Thin lens equation, 870-73 Transfer-RNA (t-RNA), 1079-80 Kelvin, 464, 469-70, 548-49 Thin lenses, 867–77 and ff Transformation of energy, 196, 201 molecular interpretation of, 476-80 Thin-film interference, 909-14 Transformations: operating (of heat engine), 530 Third law of motion, 89-91 Galilean, 968-69 Lorentz, 969-71 Third law of thermodynamics, 539 fn, relation to molecular kinetic energy, 478-79, 498-99, 512-13 548-49 Transformer, 770-73, 787 Transformer equation, 771 relation to molecular velocities, 476-82 Thomson, G. P., 998 scales of, 457-58, 464, 469-70, 534 Thomson, J. J., 722–23, 998, 999 Transient ischemic attack (TIA), 357 of star, 1198 Thought experiment, 958 and ff Transistors, 1094, 1097–98 transition, 668 definition, 958 Transition elements, 1054 Temperature coefficient of resistivity, Three Mile Island, 1139 Transition temperature, 668 Three-dimensional waves, 402-3 Transitions, atoms and molecules, allowed 658, 659-60 Tennis serve, 81 pr, 216, 220 Three-phase ac, 803 and forbidden, 1048-49, 1061 fn, Tensile strength, 322 Three-way lightbulb, 704 pr 1080-81, 1083, 1084 Translational kinetic energy, 172-73 Tensile stress, 320-21 Threshold energy, 1134, 1163 pr Tension (stress), 320-21 Threshold of hearing, 431 Translational motion, 18-239 Tension in flexible cord, 97 Threshold of pain, 431 and center of mass (CM), 234-36, Terminal, of battery, 653, 655 Thrust, 237 268-69

Transmission coefficient, 1037, 1143 pr	Unified atomic mass units (u), 7, 455,	Vaporization, latent heat of, 502, 503,
Transmission electron microscope, 1000	1106, 1107	505 Variable appelaration 30, 43
Transmission grating, 933 ff Transmission lines, 772–73, 825	Unified theories, grand (GUT), 155, 1187–88	Variable acceleration, 39–43 Variable mass systems, 236–38
Transmission of electricity, 772–73	Uniform circular motion, 119–25	Variable stars, 1204
Transmutation of elements, 1111, 1132–35	dynamics of, 122–25	Vector cross product, 289–90
Transuranic elements, 1134	kinematics of, 119–22	Vector displacement, 20, 52–54, 59–60
Transverse waves, 398 ff	Uniformly accelerated motion, 28 ff,	Vector field, 575
EM waves, 819	62 ff	Vector form of Coulomb's law, 567
and earthquakes, 401 velocity of, 399	Uniformly accelerated rotational motion, 255	Vector kinematics, 59–74 Vector model (atoms), 1069 pr, 1070 pr
Traveling sinusoidal wave, mathematical	Unit conversion, 8–9, inside front cover	Vector product, 289–90
representation of, 404–6	Unit vectors, 59	Vector sum, 52–58, 95, 143, 217
Triangle, on a curved surface, 1207	Units of measurement, 6	Vectors, 20, 52–62, 167–68, 289–90
Triangulation, 11, 1203 fn	converting, 8–9, inside front cover	addition of, 52–58
Trigonometric functions and identities,	prefixes, 7	angular momentum, 288, 291
56, 57, A-4–A-5, inside back cover Trigonometric table, A-5	in problem solving, 9, 30, 102 Units and standards, 6–7	average acceleration, 60 components of, 55–59
Triple point, 469, 483	Universal gas constant, 466	cross product, 289–90
Tritium, 1105, 1129 pr, 1144–45	Universal law of gravitation, 139, 140–43,	instantaneous acceleration, 60
Tritium dating, 1129 pr	199–201, 564, 1205	instantaneous velocity, 60
t-RNA, 1079–80	Universe:	kinematics, 59–74
Trough, 397 Trusses, 324–27	age of, 1188 fn, 1213	magnetization, 750 multiplication of, 55, 167–68, 289–90
Tsunami, 397	Big Bang theory of, 1188, 1212 ff CDM model of, 1224	multiplication of, 33, 107–08, 289–90 multiplication, by a scalar, 55
Tubes:	critical density of, 1221–22	parrallelogram method of adding,
flow in, 353–55, 357, 358–59	curvature of, 1207–8, 1220–21	54
vibrating column of air in, 431 ff	entire, 1216	position, 59–60, 62
Tunnel diode, 1038	expanding, 1209–13, 1221–23	Poynting, 826–27
Tunneling:	finite or infinite, 1194, 1208–9, 1213, 1221	pseudo-, 254 fn
of light wave, 1038 through a barrier, 1036–39, 1113	future of, 1221–23	resolution of, 55–58 resultant, 52–54, 57–58
Turbine, 549, 767	homogeneous, 1212	scalar (dot) product, 167–68
Turbulent flow, 352, 357	inflationary scenario of, 1217, 1219–21	subtraction of, 54–55
Turn signal, automobile, 691	isotropic, 1212	sum, 52–58, 95, 143
Turning points, 204	matter-dominated, 1219–21	tail-to-tip method of adding, 53–54
Twin paradox, 963	observable, 1215–16	torque, 290
Two-dimensional waves, 402 Tycho Brahe, 149	origin of elements in, 1201–2 radiation-dominated, 1218–19	unit, 59 vector (cross) product, 289–90
Type Ia supernovae (SNIa), 1203, 1204,	Standard Model of, 1216–19	Velocity, 20–24, 60
1223	steady-state model of, 1213	addition of, 71–74, 970–71
Tyrolean traverse, 106 pr, 338 pr	Unobservable (universe), 1221	angular, 250–55
	Unpolarized light (defn), 941	average, 20–22, 60
UA1 detector, 1173	Unstable equilibrium, 205, 317 Unstable nucleus, 1110 ff	drift, 666–68, 723, 724 escape, 201, 1222
Ultimate speed, 974	Up quark, 1182	of EM waves, 819–22
Ultimate strength, 319, 322	Uranium:	gradient, 358
Ultracapacitors, 644 pr	in dating, 1121–24	instantaneous, 22–24, 60
Ultracentrifuge, 122	enriched, 1138	of light, 6, 822, 825–26, 850, 902, 953,
Ultrasonic frequencies, 426, 445	fission of, 1136–41	957, 975
Ultrasonic waves, 426, 442, 445–46 Ultrasound, 445	in reactors, 1136–41 Uranus, 150, 152	molecular, and relation to temperature, 479–82
Ultrasound imaging, 445–46	Useful magnification, 932–33	phase, 404–5
Ultraviolet (UV) light, 823, 824, 852	UV light, 823, 824, 852	relative, 71–74
Unavailability of energy, 545–46		relativistic addition of, 970–71
Uncertainty (in measurements), 3–5,	1000	rms (root-mean-square velocity),
1020–23	Vacuum energy, 1223	479–82
estimated, 3 percent, 3–4, 5	Vacuum pump, 361 Vacuum state, 1174–75, 1220	of sound, 425 supersonic, 426, 443
Uncertainty principle, 1020–23, 1036,	Valence, 1054	terminal, 35 fn, 129–30
1072	Valence band, 1091–92	of waves, 397, 399–401
and particle resonance, 1181	Van de Graaff generator, 607, 627 pr	Velocity selector, 717
and tunneling, 1113	van der Waals, J. D., 486	Velocity-dependent forces, 129–30
Underexposure 879	van der Waals bonds and forces, 1077–80, 1086	Ventricular fibrillation, 638, 692 Venturi meter, 357
Underexposure, 879 Underwater vision, 885	van der Waals equation of state, 486–87	Venturi tube, 357
Unification distance, 1192 pr	van der Waals gas, 487	Venus, 150, 158 pr, 887
Unification scale, 1187	Vapor (defn), 483 (see also Gases)	Vertical (defn), 92 fn
Unified (basis of forces), 1186	Vapor pressure, 484–85	Vibrating strings, 412–15, 431–33

Vibration, 369–86	saturated vapor pressure, 484	square, 409
of air columns, 434–36	specific gravity of, 341, 351	standing, 412–15, 431–35
forced, 385–87	thermal expansion of, 462	on a string, 412–15, 431–33
molecular, 499, 512–13, 1082–85	triple point of, 469, 483	surface, 402, 410
as source of waves, 397	Watson, J., 939	three-dimensional, 402–3
of spring, 370 ff	Watt, James, 202 fn	tidal, 397
on strings, 412–14, 431–3 (see also Oscillations)	Watt (W) (unit), 202, 661	transmission of, 409
Vibrational energy, 377–78	Wave(s), 395–416, 817 ff, 823 ff, 900–45	transverse, 398 ff, 399, 401, 819, 940 traveling, 404–6
molecular, 499, 513, 1082–85	amplitude of, 371, 397, 402, 404, 426,	two-dimensional, 402
Vibrational quantum number, 1083	430, 1019	and tunneling, 1038
Vibrational transition, 1082–85	bow, 443–44	types of, 398–99 (see also Light)
Virtual image, 840, 870	complex, 408, 436	ultrasonic, 426, 442, 445–46
Virtual particles, 1172	composite, 408, 436	velocity of, 397, 399-401, 819-22
Virtual photon, 1172	compression, 398, 401	water, 395 ff
Viscosity, 352, 353 fn, 358–59	continuous (defn), 397	(see also Light)
coefficient of, 358	diffraction of, 416, 901, 921–39	Wave displacement, 404 ff, 1019
Viscous force, 358–59	dispersion, 409, 853	Wave equation, 406–8, 822
Visible light, wavelengths of, 823, 852–54	displacement of, 404 ff	Schrödinger, 1025–36, 1045–46, 1082,
Visible spectrum, 852–54	earthquake, 401, 402, 403, 416	1090
Volt (V) (unit), 608	electromagnetic, 817–32 (see also	Wave front, 410, 901
Volt-Ohm-Meter/Volt-Ohm- Milliammeter (VOM), 696	Light) energy in, 402–3	Wave function, 1018–20, 1025–39 for H atom, 1045, 1046, 1049–51, 1072
Volta, Alessandro, 608, 629, 652	expansions in, 398	for square well, 1030–36
Voltage, 607, 608 ff, 653 ff, 678 ff	frequency, 397	Wave intensity, 402–3, 427–31, 826–27,
base bias, 1097	front, 410, 901	906–9, 924–29
bias, 1095	function, 1018–20, 1025–37, 1045,	Wave motion (see Wave(s); Light;
breakdown, 612	1049–51	Sound)
electric field related to, 610–11,	gravity, 1224	Wave nature of electron, 1020
617–19	harmonic (defn), 405	Wave nature of matter, 997–99,
Hall, 1094	incident, 410, 415	1009–10
hazards of, 692–94	infrasonic, 426	Wave number $(defn)$, 404
measuring, 695–97	in-phase, 411	Wave packet, 1029
peak, 664 ripple, 1096	intensity, 402–3, 427–31, 826–27	Wave theory of light, 900–45 Wave velocity, 397, 399–401, 819–22
rms, 664	interference of, 410–11, 437–38, 903–14	(see also Light; Sound)
terminal, 678–79	light, 821–26, 900–45, 1038 (see also	Wave interference phenomenon, 903
(see also Electric potential)	Light)	Wave-particle duality:
Voltage drop, 684 (see Voltage)	linear, 402	of light, 997
Voltage gain (defn), 1097	longitudinal (defn), 398	of matter, 997–99, 1009–10, 1018–22
Voltaic battery, 652	mathematical representation of, 404-6,	Wavelength:
Voltmeter, 695–97, 721	426–27	absorption, 1008
digital, 695, 697	of matter, 997–99, 1009–10, 1019 ff	Compton, 994
Volume change under pressure, 321	mechanical, 395–416	cutoff, 1055–56
Volume expansion (thermal), 460,	motion of, 395–416	de Broglie, 997–98, 1009–10, 1019,
461–62	number, 404	1025, 1165–66
coefficient of, 461 Volume formulas, A-1, inside back cover	one-dimensional, 402–3 out-of-phase, 411	definition, 397 depending on index of refraction, 853,
Volume holograms, 1065	P, 401, 403, 416	902
Volume rate of flow, 353	packet, 1029	as limit to resolution, 932, 1165–66
VOM, 696	period of, 397	of material particles, 997–9, 1009–10
von Laue, Max, 939	periodic (defn), 397	Weak bonds, 1077–80, 1086
	phase of, 404, 411	Weak charge, 1185
	plane, 410, 818, 819, 1028–29	Weak nuclear force, 155, 1110, 1115,
W [±] particles, 1173, 1178–80, 1183,	power, 402	1173–89, 1205
1185	pressure, 401, 426 ff	Weather, 302, 525 pr
Walking, 90	pulse, 396	Weber (Wb) (unit), 760
Water:	radio, 823–24, 931	Weight, 84, 86, 92–94, 143
anomalous behavior below 4°C, 462	rarefactions in, 398	as a force, 86, 92
cohesion of, 360 density of, 340–41, 351	reflection of, 409–10 refraction of, 415–16	force of gravity, 84, 92–94, 143 mass compared to, 86, 92
dipole moment of, 617	S, 401	Weightlessness, 148–49
and electric shock, 693	shock, 443–44	Weinberg, S., 1186
expansion of, 462	sinusoidal traveling, 404–6	Well, finite potential, 1035–36
heavy, 1138	sound, 424–46, 824	Well, infinite potential, 1030–34
latent heats of, 503	source of, oscillations as, 397	Wess, J., 1189
molecule, 1074, 1075	speed of (see Speed of light; Speed of	Wheatstone bridge, 704 pr
polar nature of, 561, 579, 617, 1074	sound)	Wheel balancing, 296
properties of: inside front cover	spherical, 403, 410	Whirlpool galaxy, 1196

White dwarfs, 1197, 1199, 1201, 1228 pr White light, 852-53 White-light holograms, 1065 Whole-body dose, 1149 Wide-angle lens, 882, 892 Width, of resonance, 1181 Wien, W., 988 Wien's displacement law, 988, 1198 Wien's radiation theory, 988 Wilkinson, D., 1214 Wilkinson Microwave Anisotropy Probe (WMAP), 1193, 1214 Wilson, Robert, 1168 fn, 1213-14 Wind instruments, 433-36 Wind power, 550 Windings, 720 Windshield wipers, 691 Wing of an airplane, lift on, 356-57 Wire, ground, 693, 694 Wire drift chamber, 1125, 1164 Wireless communication, 812, 829-32 Wire-wound resistors, 657 WMAP, 1193, 1214 Work, 163-76, 199, 266, 497, 505-10 to bring positive charges together, 613 compared to heat, 505 defined, 164, 169, 505 ff done by a constant force, 164-66 done by a gas, 508 ff done by a spring force, 170-71

done by a varying force, 168-71 in first law of thermodynamics, 505-7 from heat engines, 530 ff and power, 201 relation to energy, 172-74, 186-89, 197, 201,266 rotational, 266 units of, 164 Work function, 990-91, 1090 Work-energy principle, 172-73, 176, 266, 974,978 energy conservation vs., 197 general derivation of, 176 as reformulation of Newton's laws, Working substance (defn), 530

Xerox (see Photocopier)
Xi (particle), 1179
X-rays, 823, 824, 938–39, 1054–56, 1117, 1153–54
and atomic number, 1054–56
characteristic, 1055
in electromagnetic spectrum, 823
spectra, 1054–56
X-ray crystallography, 939
X-ray diffraction, 938–39
X-ray scattering, 994–95

Wright, Thomas, 1194

YBCO superconductor, 668
Yerkes Observatory, 888
Young, Thomas, 903, 906
Young's double-slit experiment, 903–9, 927–29, 1019–20
Young's modulus, 319
Yo-Yo, 271, 281 pr
Yttrium, barium, copper, oxygen superconductor (YBCO), 668
Yukawa, Hideki, 1171–73
Yukawa particle, 1171–73

Z (atomic number), 1052, 1054–56, 1105 Z^0 particle, 1042 pr, 1173, 1178–80, 1183, 1185 Z-particle decay, 1173 Z-particle decay, 1173 Z-particle decay, 1173 Z-particle decay, 1175 Z-particle decay, 1175 Z-particle decay, 1175 Z-particle decay, 1175 Z-particle decay, 1105 Z-particle decay, 1105 Z-particle decay, 1105 Z-particle decay, 1105 Z-particle decay, 11047, 1057, 1059 Z-particle decay, 11041, 1057, 1059 Z-particle decay, 11041, 1057, 1059 Z-particle decay, 11042, 1105, 1057, 1059 Z-particle decay, 1105, 1057, 1059

Photo Credits

Cover photos top left clockwise NASA/John F. Kennedy Space Center; Mahaux Photography/Getty Images, Inc.-Image Bank; The Microwave Sky: NASA/WMAP Science Team; Giuseppe Molesini, Istituto Nazionale di Ottica Florence CO-1 © Reuters/Corbis 1-1a Philip H. Coblentz/World Travel Images, Inc. 1-1b Antranig M. Ouzoonian, P.E./Weidlinger Associates, Inc. 1-2 Mary Teresa Giancoli 1-3a/b Douglas C. Giancoli 1-4 Paul Silverman/Fundamental Photographs, NYC 1-5a Oliver Meckes/Ottawa/Photo Researchers, Inc. 1-5b Douglas C. Giancoli 1-6 Douglas C. Giancoli 1-7a Douglas C. Giancoli 1-8 Larry Voight/Photo Researchers, Inc. 1-13 David Parker/Science Photo Library/Photo Researchers, Inc. 1-14 The Image Works CO-2 George D. Lepp/Corbis/Bettmann 2-8 John E. Gilmore III 2-21 SuperStock, Inc. 2-25 Justus Sustermans (1597-1681), "Portrait of Galileo Galileo," Galleria Palatina, Palazzo Pitti, Florence, Italy. Nimatallah/Art Resource, NY 2-26 © Harold & Esther Edgerton Foundation, 2007, courtesy of Palm Press, Inc. CO-3 Lucas Kane Photography, LLC 3-19 @ Berenice Abbott/Commerce Graphics Ltd., Inc. 3-21 Richard Megna/ Fundamental Photographs, NYC 3-30a Don Farrall/PhotoDisc/Getty Images 3-30b Robert Frerck/Stone/Allstock/Getty Images 3-30c Richard Megna/Fundamental Photographs, NYC CO-4 NASA/John F. Kennedy Space Center 4-1 Daly & Newton/Getty Images 4-4 Bettmann/Corbis 4-5 Gerard Vandystadt/Agence Vandystadt/Photo Researchers, Inc. 4-7 David Jones/Photo Researchers, Inc. 4-10 NASA/John F. Kennedy Space Center 4-29 Lars Ternbald/Amana Japan 4-32 Kathleen Schiaparelli 4-34 Brian Bahr/Allsport Concepts/Getty Images 4-60 Tyler Stableford/The Image Bank/Getty Images CO-5 left Agence Zoom/ Getty Images; right Grant Faint/Getty Images 5-16c Jay Brousseau 5-22 © Guido Alberto Rossi/TIPS Images 5-42 C. Grzimek/ Tierbild Okapia/Photo Researchers, Inc. 5-45 Photofest 5-49 Daniel L. Feicht/Cedar Point Photo CO-6 Earth Imaging/Stone/ Allstock/Getty Images 6-8 Douglas C. Giancoli 6-10 NASA/Johnson Space Center 6-14 NASA Headquarters 6-15a AP Wide World Photos 6-15b Mickey Pfleger/Lonely Planet Images 6-15c Dave Cannon/Getty Images 6-20 NASA Headquarters CO-7 Ben Margot/AP Wide World Photos 7-22 U.S. Department of Defense photo by Airman Kristopher Wilson, U.S. Navy 7-27 Columbia Pictures/Phototest CO-8 and 8-10 © Harold & Esther Edgerton Foundation, 2007, courtesy of Palm Press, Inc. 8-11 © 2004 David Madison Sports Images, Inc. 8-15 © naglestock.com/Alamy 8-21 Nick Rowe/PhotoDisc/Getty Images 8-24 M. C. Escher's "Waterfall," Copyright © 2005 The M. C. Escher Company-Holland 8-48 R. Maisonneuve/Publiphoto/Photo Researchers, Inc. 8-49 Bettmann/Corbis CO-9 Richard Megna, Fundamental Photographs, NYC 9-1 Kevin Lamarque/Reuters/ Landov LLC 9-8 Loren M. Winters/Visuals Unlimited 9-11 Comstock Images/Comstock Premium/Alamy Images Royalty Free 9-14 D. J. Johnson 9-17 Science Photo Library/Photo Researchers, Inc. 9-20 Lawrence Berkeley Laboratory/Science Photo Library/ Photo Researchers, Inc. 9-22 Berenice Abbott/Photo Researchers, Inc. CO-10 David R. Frazier/The Image Works 10-8a Mary Teresa Giancoli 10-12a Photoquest, Inc. 10-12b Richard Megna/Fundamental Photographs, NYC 10-31b Richard Megna/ Fundamental Photographs, NYC 10-42 Lynn Images/Davis/Corbis 10-43 Regis Bossu/Sygma/Corbis 10-45 Karl Weatherly/ Photodisc/Getty Images 10-51 Tom Stewart/Bettmann/Corbis CO-11 Kai Pfaffenbach/Reuters Limited 11-27c NOAA/Phil Degginger/ Color-Pic, Inc. 11-28 Stephen Dunn/Getty Images 11-48a Michael Kevin Daly/The Stock Market/Corbis CO-12 Jerry Driendl/ Taxi/Getty Images 12-1 AP Wide World Photos 12-17 Douglas C. Giancoli 12-19a/b Mary Teresa Giancoli 12-22 Grant Smith/ Construction Photography.com 12-30 Esbin/Anderson/Omni-Photo Communications, Inc. 12-32 Douglas C. Giancoli 12-33 Christopher Talbot Frank/@ Ambient Images, Inc./Alamy 12-35 Douglas C. Giancoli 12-37 Giovanni Paolo Panini (Roman, 1691-1765), "Interior of the Pantheon, Rome," c. 1734. Oil on canvas, $1.280 \times .990$ (50 $1/2 \times 39$); framed, 1.441×1.143 (56 $3/4 \times 45$). Samuel H. Kress Collection. Photograph ©2001 Board of Trustees, National Gallery of Art, Washington. 1939.1.24.(135)/PA. Photo by Richard Carafelli 12-38 © acestock/Alamy 12-48a James Lemass/Index Stock Imagery, Inc. CO-13 Marevision/AGE Fotostock America, Inc. 13-12 Bettmann/Corbis 13-21a/b David C. Hazen, Princeton University and Embry-Riddle Aeronautical University 13-34 Rod Planck/Tom Stack & Associates, Inc. 13-36 Alan Blank/Bruce Coleman Inc. 13-45 Douglas C. Giancoli 13-47 Adam Jones/Photo Researchers, Inc. 13-53 National Oceanic and Atmospheric Administration NOAA CO-14 Ford Motor Company 14-4 Ford Motor Company 14-9 Judith Collins/Alamy Images 14-13 Paul Silverman/Fundamental Photographs, NYC 14-15 Douglas C. Giancoli 14-24 Martin Bough/Fundamental Photographs, NYC 14-25a AP Wide World Photos 14-25b Paul X. Scott/Sygma/Corbis 14-27 Gallant, Andre/Image Bank/Getty Images CO-15a-d Douglas C. Giancoli 15-23a Douglas C. Giancoli 15-29 Martin G. Miller/ Visuals Unlimited 15-31 Richard Megna/Fundamental Photographs, NYC 15-39 Richard Megna/Fundamental Photographs, NYC CO-16 Fra Angelico (1387-1455), Music-making angel with violin. Linaioli altarpiece, detail. Museo di San Marco, Florence, Italy. Scala/Art Resource, N.Y. 16-5 Yoav Levy/Phototake, NYC 16-9a Ben Clark/Photonica Amana America, Inc./Getty Images 16-9b Tony Gale/Pictorial Press/Alamy Images 16-10 © Richard Hutchings/Corbis 16-23 Bill Bachmann/PhotoEdit, Inc. 16-24b Settles, Gary S./Photo Researchers, Inc. 16-27 GE Medical Systems/Photo Researchers, Inc. 16-34 Nation Wong/Zefa/Corbis CO-17 left Niall Edwards/Alamy Images; right Richard Price/Photographer's Choice/Getty Images 17-3 Bob Daemmrich/ Stock Boston 17-4 Franca Principe/Istituto e Museo di Storia della Scienza, Florence, Italy 17-6 Leonard Lessin/Peter Arnold, Inc. 17-11 Mark and Audra Gibson Photography 17-15 Leonard Lessin/Peter Arnold, Inc. 17-16 Stockbyte/Getty Images 17-19 © Royalty-Free/Corbis CO-18 © Dave G. Houser/Post-Houserstock/Corbis, All Rights Reserved 18-8 Paul Silverman/ Fundamental Photographs, NYC 18-9 Hans Peter Merten/Stone/Allstock/Getty Images 18-14a-c Mary Teresa Giancoli 18-16 Kennan Harvey/Stone/Allstock/Getty Images CO-19 Mike Timo/Stone/Getty Images 19-26a/b Science Photo Library/ Photo Researchers, Inc. 19-28 Phil Degginger/Color-Pic, Inc. 19-36 Taxi/Getty Images CO-20 Frank Herholdt/Stone/Getty Images

20-1a-c Leonard Lessin/Peter Arnold, Inc. 20-15a Corbis Digital Stock 20-15b Warren Gretz/NREL/US DOE/Photo Researchers, Inc. 20-15c Lionel Delevingne/Stock Boston Table 20-2 top-bottom @ Royalty-Free/Corbis; Billy Hustace/Stone/Allstock/Getty Images; Michael Collier; Inga Spence/Visuals Limited 20-19 Geoff Tompkinson/Science Photo Library/Photo Researchers, Inc. 20-22 Inga Spence/Visuals Unlimited 20-23 Michael Collier CO-21 Richard Megna/Fundamental Photographs, NYC 21-39 Michael J. Lutch/Boston Museum of Science 21-46 Dr. Gopal Murti/Science Photo Library/Photo Researchers, Inc. CO-23 Lester V. Bergman/Corbis 23-19 Douglas C. Giancoli 23-24 Jon Feingersh CO-24 Tom Pantages 24-13 Tom Pantages 24-14 J. Reid/Custom Medical Stock Photo, Inc. CO-25 Mahaux Photography/Image Bank/Getty Images 25-1 J.-L. Charmet/ Photo Researchers, Inc. 25-6a Dave King/Dorling Kindersley Media Library 25-12 Tom Pantages 25-15 Richard Megna/ Fundamental Photographs, NYC 25-16 Mark C. Burnett/Photo Researchers, Inc. 25-18 A&J Verkaik/Bettmann/Corbis 25-33 Alexandra Truitt & Jerry Marshall 25-34 Scott T. Smith/Bettmann/Corbis 25-37 Jim Wehtje/Photodisc/Getty Images CO-26 Dino Vournas/Reuters Ltd. 26-15a Alamy Images 26-22 Charles O'Rear/Corbis 26-25a Photodisc/Getty Images 26-25b William E. Ferguson 26-25c Ed Degginger/Color-Pic, Inc. 26-27a Paul Silverman/Fundamental Photographs, NYC 26-27b Paul Silverman/Fundamental Photographs, NYC CO-27 Richard Megna/Fundamental Photographs, NYC 27-1 Michael Newman/ PhotoEdit, Inc. 27-4a Stephen Oliver/Dorling Kindersley Media Library 27-6 Mary Teresa Giancoli 27-8a Richard Megna/ Fundamental Photographs, NYC 27-18 Richard Megna/Fundamental Photographs, NYC 27-2b Steven Hausler/Hays Daily News/ AP Wide World Photos CO-28 Richard Megna/Fundamental Photographs, NYC 28-24 Richard Megna/Fundamental Photographs, NYC 28-32 Clive Streeter/Dorling Kindersley Media Library CO-29 Richard Megna/Fundamental Photographs, NYC 29-8 Diva de Provence/ DIVA Induction froid 29-13 Jeff Hunter/Image Bank/Getty Images 29-17 Rick Bowmer/AP Wide World Photos 29-22 Jack Hollingsworth/Photodisc/Getty Images 29-23 Robert Houser 29-29b Terence Kearey 29-32a Richard Megna/ Fundamental Photographs, NYC 29-32b Christian Botting CO-30 Corbis Royalty Free CO-31 Douglas C. Giancoli 31-1 American Institute of Physics 31-13 The Image Works 31-22 Spencer Grant/PhotoEdit, Inc. 31-25 World Perspectives/Stone/ Allstock/Getty Images CO-32 Douglas C. Giancoli 32-6 Douglas C. Giancoli 32-11a Mary Teresa Giancoli and Suzanne Saylor 32-11b Francesco Campani 32-20 Travel Pix Ltd./Super Stock, Inc. 32-23 Giuseppe Molesini, Istituto Nazionale di Ottica Florence 32-27 David Parker/Science Photo Library/Photo Researchers, Inc. 32-30b Lewis Kemper/Photolibrary.com 32-35b Mitterer/ Mauritus, GMBH/Phototake NYC 32-41 Douglas C. Giancoli 32-44 Mary Teresa Giancoli CO-33 Richard Megna/Fundamental Photographers, NYC 33-1 Douglas C. Giancoli 33-2c Douglas C. Giancoli 33-2d Douglas C. Giancoli 33-2d Douglas C. Giancoli 33-3c Douglas C. Giancoli 30-3c Douglas C. Giancoli Marttila Photography 33-7a Douglas C. Giancoli 33-7b Douglas C. Giancoli 33-13a Scott Dudley 33-13b Scott Dudley 33-21 Mary Teresa Giancoli 33-22a Mary Teresa Giancoli 33-22b Mary Teresa Giancoli 33-35a Franca Principe/Istituto e Museo di Storia della Scienza 33-35b Franca Principe/Istituto e Museo di Storia della Scienza 33-37 Yerkes Observatory 33-38c Sandy Huffaker/ Getty Images 33-38d Roger Ressmeyer/Corbis 33-40b Olympus America Inc. 33-45 Ron Chapple/Ron Chapple Photography 33-49 NOAA Space Environment Center CO-34 Giuseppe Molesini, Istituto Nazionale di Ottica Florence 34-4a John M. Duany IV/Fundamental Photographs, NYC 34-9a Giuseppe Molesini, Istituto Nazionale di Ottica Florence 34-16a/b/c Giuseppe Molesini, Istituto Nazionale di Ottica Florence 34-18b Giuseppe Molesini, Istituto Nazionale di Ottica Florence 34-20b/c Bausch & Lomb Inc. 34-22 Kristen Brochmann/Fundamental Photographs, NYC CO-35 Richard Megna/Fundamental Photographs, NYC 35-2a P. M. Rinard/American Journal of Physics 35-2b Ken Kay/Fundamental Photographs, NYC 35-2c Ken Kay/Fundamental Photographs, NYC 35-11a/b Richard Megna/Fundamental Photographs, NYC 35-12a/b Springer-Verlang GmbH & Co. KG 35-15 Space Telescope Science Institute 35-16 David Parker/Photo Researchers, Inc. 35-20 Spike Mafford/Photodisc/Getty Images 35-22 Wabash Instrument Corp./Fundamental Photographs, NYC 35-27 Burndy Library 35-30 Rosalind Franklin/Photo Researchers, Inc. 35-37 Diane Schiumo/Fundamental Photographs, NYC 35-40a/b Douglas C. Giancoli 35-45 Texas Instruments Inc. CO-36 Cambridge University Press; "The City Blocks Became Still Shorter" photo from page 4 of the book "Mr Tompkins in Paperback" by George Gamow. Reprinted with the permission of Cambridge University Press 36-1 Albert Einstein and related rights TM/© of The Hebrew University of Jerusalem, used under license. Represented exclusively by Corbis Corporation 36-15 Cambridge University Press; "Unbelievably Shortened" photo from page 3 of the book "Mr Tompkins in Paperback" by George Gamow. Reprinted with the permission of Cambridge University Press CO-37 P. M. Motta & F. M. Magliocca/Science Photo Library/Photo Researchers, Inc. 37-10 Photo by Samuel Goudsmit, courtesy AIP Emilio Segrè Visual Archives, Goudsmit Collection 37-11 Education Development Center, Inc. 37-15a Lee D. Simon/Science Source/Photo Researchers, Inc. 37-15b Oliver Meckes/ Max Planck Institut Tubingen/Photo Researchers, Inc. 37-19b Richard Megna/Fundamental Photographs, NYC 37-20 Wabash Instrument Corp./Fundamental Photographs, NYC. CO-38 Institut International de Physique/American Institute of Physics/Emilio Segrè Visual Archives 38-1 Niels Bohr Archive, courtesy AIP Emilio Segrè Visual Archives 38-2 Photograph by F. D. Rasetti, courtesy AIP Emilio Segrè Visual Archives, Segrè Collection 38-4 Advanced Research Laboratory/Hitachi, Ltd. CO-39 @ Richard Cummins/Corbis 39-16 Paul Silverman/Fundamental Photographs, NYC 39-23 Yoav Levy/Phototake NYC 39-24b Philippe Plaily/ Photo Researchers, Inc. CO-40 Intel Corporation Pressroom Photo Archives 40-41 © Alan Schein Photography/CORBIS All Rights Reserved CO-41 Reuters Newmedia Inc./Corbis/Bettmann 41-3 French Government Tourist Office 41-8 Enrico Fermi Stamp Design © 2001 United States Postal Service. All Rights Reserved. Used with Permission from the U.S. Postal Service and Rachel Fermi 41-16 Fermilab Visual Media Services CO-42 ITER International Fusion Energy Organization (IIFEO) 42-7 Archival Photofiles, Special Collections Research Center, University of Chicago Library 42-10 Igor Kostin/Corbis/Sygma 42-11 Novosti/ZUMA

Press-Gamma 42-12 Corbis/Bettmann 42-19a Robert Turgeon, Cornell University 42-19b Courtesy of Brookhaven National Laboratory 42-20b Sovereign/Phototake NYC 42-24a Martin M. Rotker 42-24b Scott Camazine/Alamy Images 42-27 ISM/ Phototake NYC 42-31b Southern Illinois University/Peter Arnold, Inc. 42-33 Sovereign/Phototake NYC CO-43 Fermilab/Science Photo Library/Photo Researchers, Inc. 43-1 Smithsonian Institution, Science Service Collection, photograph by Watson Davis/ Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, courtesy AIP Emilio Segrè Visual Archives, Fermi Film 43-3a/b Fermilab Visual Media Services 43-5 CERN/ Science Photo Library/Photo Researchers, Inc. 43-6 ATLAS Experiment/CERN-European Organization for Nuclear Research 43-10a/b Science Photo Library/Photo Researchers 43-12a Brookhaven National Laboratory 43-13 Lawrence Berkeley National Laboratory CO-44 WMAP Science Team/NASA Headquarters 44-1a Space Telescope Science Institute 44-1b Allan Morton/ Dennis Milon/Science Photo Library/Photo Researchers, Inc. 44-2c NASA/Johnson Space Center 44-3 U.S. Naval Observatory Photo/NASA Headquarters 44-4 National Optical Astronomy Observatories 44-9a/b © Anglo-Australian Observatory 44-9c The Hubble Heritage Team (AURA/STScI/ NASA) 44-9c (inset) STScI/NASA/ Science Source/Photo Researchers, Inc. 44-15a NASA Headquarters 44-22 NASA, ESA, S. Beckwith (STScI) and the HUDF Team 44-22 (inset) NASA, ESA, R. Bouwens and G. Illingworth (University of California, Santa Cruz) 44-24 © Roger Ressmeyer/CORBIS All Rights Reserved 44-26 Fredrik Persson/AP Wide World Photos 44-27 NASA/WMAP Science Team

Table of Contents Photos p. iii left © Reuters/Corbis; right Agence Zoom/Getty Images p. iv left Ben Margot/AP Wide World Photos; right Kai Pfaffenbach/Reuters Limited p. v Jerry Driendl/Taxi/Getty Images p. vi left Richard Price/Photographer's Choice/Getty Images; right Frank Herholdt/Stone/Getty Images p. viii Richard Megna/Fundamental Photographs, NYC p. ix left Richard Megna/Fundamental Photographs, NYC; right Giuseppe Molesini, Istituto Nazionale di Ottica Florence p. x © Richard Cummins/Corbis p. xi left Fermilab/Science Photo Library/Photo Researchers, Inc.; right The Microwave Sky: NASA/WMAP Science Team p. xvii Douglas C. Giancoli