# Chapter 1. Single-multivariable calculus

Phan Quang Sang sang.phanquang@phenikaa-uni.edu.vn

Department of Mathematics - Phenikaa University

October 12, 2022

# Content

- Differentiation
  - Differentiable functions
  - The mean-value theorem
  - Taylor expansion
- 2 Series, Taylor Series, Maclaurin series
- Function of several variables
  - Definition
  - Limits and continuity
  - Differentiability
  - Vector-valued function

# The derivative as an Instantaneous Rate of Change

#### Definition

The derivative of a function f at x = c, denoted by f'(c), is

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h},$$

provided that the limit exists. In this case we say that f is differentiable at c.

Leibniz notation  $\frac{df}{dx}(c)$ .

# Geometric interpretation of the derivative

#### Proposition

If f is differentiable at x = c, then f'(c) is the slope of the tangent line at the point (c, f(c)) to the graph of f. The equation of the tangent line is

$$y = f'(c)(x-c) + f(c).$$

**Example**: find the tangent line to  $f(x) = \frac{1}{x}$  at x = 2.

# Differentiation of fundamental functions

- $(x^n)' = nx^{n-1}$ , for any  $n \in \mathbb{R}$ ; For example:  $\sqrt{x'} = \frac{1}{\sqrt{x}}$ .
- $(e^x)' = e^x$ ;  $(a^x)' = (\ln a)a^x$ , for  $0 < a \ne 1$ ;
- $(\ln x)' = \frac{1}{x};$  $(\log_a x)' = \frac{1}{x \ln a}.$
- $(\sin x)' = \cos x$ ;
- $\bullet (\cos x)' = -\sin x;$
- $(\tan x)' = \frac{1}{\cos^2 x}$ ;
- $\bullet (\cot x)' = -\frac{1}{\sin^2 x};$

# nth Derivative of a function (n times differentiable)

f': the first derivative; f'': the second derivative; f''': the third derivative

For higher derivatives we denote  $f^{(4)}$ ,  $f^{(5)}$  etc.

**Example**: Find some higher derivatives of  $f(x) = \sqrt{x}, x \ge 0$ .

# nth Derivative of a function (n times differentiable)

f': the first derivative; f'': the second derivative; f''': the third derivative

For higher derivatives we denote  $f^{(4)}$ ,  $f^{(5)}$  etc.

**Example**: Find some higher derivatives of  $f(x) = \sqrt{x}, x \ge 0$ . Solution: we rewrite  $f(x) = x^{1/2}$ , then

$$f'(x) = \frac{1}{2}x^{1/2-1} = \frac{1}{2}x^{-1/2}$$

$$f''(x) = (\frac{1}{2})(-\frac{1}{2})x^{-1/2-1} = -\frac{1}{4}x^{-3/2},$$

$$f'''(x) = -\frac{1}{4}(-\frac{3}{2})x^{-3/2-1} = \frac{3}{8}x^{-5/2}, \dots$$

$$f^{(n)}(x) = (-1)^{(n+1)}\frac{1 \cdot 3 \cdot \dots (2n-3)}{2n}x^{1/2-n}, n \in \mathbb{N}.$$

#### Global extrema and Local extrema

#### Definition of extrema

Let f be a function defined on the domain D.

Then f has a global (or absolute) maximum (respectively minimum), f(c), at  $x = c \in D$  if  $f(c) \ge f(x)$  (respectively  $f(c) \le f(x)$ ) for all  $x \in D$ .

If the above inequality is right for only x in a neighborhood of c in D, we say that f has a local (or relative) maximum (respectively minimum) at c.

Remark: global extrema are points at which a function is either largest or smallest.

The global maximum (resp. minimum) corresponds to the highest (resp. lowest) point on the graph of f on D.

The local maximum (resp. minimum) is higher (resp. lower) than all nearby points.

#### The extreme value theorem-EVT

If f is continuous on a closed interval [a, b],  $a, b \in \mathbb{R}$ , then f has a global max. and a global min. on [a, b].

#### The extreme value theorem-EVT

If f is continuous on a closed interval [a, b],  $a, b \in \mathbb{R}$ , then f has a global max. and a global min. on [a, b].

#### Fermat's theorem

if f has a local extremum at an interior point  $c \in (a, b)$  and f'(c) exists, then f'(c) = 0.

In the case of the last theorem, we have a horizontal tangent line to the graph of f at the point (c, f(c)).

# The Mean Value Theorem (MVT) (Lagrange's theorem)

If f is continuous on a closed interval [a, b],  $a, b \in \mathbb{R}$ , and differentiable on the open interval (a, b), then there exists some point  $c \in (a, b)$  such that

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

A special case of the theorem, called **Roll's theorem**, when f(b) = f(a), and then f'(c) = 0.

(Geometrical significance of the theorem)

Another form:

$$f(x + h) = f(x) + f'(c)h$$
,  $c = x + \theta h$ , for  $0 < \theta < 1$ 



#### **Proof ideas:**

Prove the Roll's theorem then apply it by considering the function

$$g(x) := f(x) - \frac{f(b) - f(a)}{b - a}x$$

(or 
$$g(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a} [x - a]$$
)

## Cauchy's theorem

Let two functions f and g be continuous on a closed interval [a,b]  $(a,b\in\mathbb{R})$ , with  $g(a)\neq g(b)$  and differentiable on the open interval (a,b) with  $g'(x)\neq 0$ , for every  $x\in(a,b)$ . Then there exists some point  $c\in(a,b)$  such that

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Proof ideas: Apply the Roll's theorem for the function

$$h(x) := f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x)$$
(or  $h(x) := f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}[g(x) - g(a)]$ )

#### L'Hospital's Rule

for limits the **indeterminate form**  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$ .

## L'Hospital's Rule

Suppose that f and g are differentiable functions near the point a such that

$$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0 \text{ (or }\infty), \text{ and }$$

$$g'(x) \neq 0$$
 for x near a.

If 
$$\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$$
 then  $\lim_{x\to a} \frac{f(x)}{g(x)} = L$ .

The rule works for  $a = \pm \infty$  as well, also for one-sided limits.

Discuss about limits of the form  $0 \cdot \infty$ ,  $\infty - \infty$ ,  $0 \cdot \infty$ ,  $0^{\infty}$ ,  $\infty^0$ ,  $0^0$ ,  $1^{\infty}$ .



## Some examples

$$\begin{split} \lim_{x \to 0} \frac{\sin x}{x} &= 1, \\ \lim_{x \to 0} \frac{e^x - 1}{x} &= 1, \\ \lim_{u \to 0} \frac{\ln(u + 1)}{u} &= 1, \\ \lim_{x \to \infty} \frac{\ln x}{x} \\ \lim_{x \to \infty} \frac{e^x}{x} \end{split}$$

### Taylor polynomial

Let the function f be continuous on [a,b]  $(a,b\in\mathbb{R})$ , (n+1) times differentiable on (a,b), and  $c\in(a,b)$  be a fixed point. **Problem**: find a polynomial  $P_n$  with degree not exceeding n so that

$$f(c) = P_n(c), \ f'(c) = P'_n(c), \dots, f^{(n)}(c) = P^{(n)}_n(c)$$

#### Taylor polynomial

Let the function f be continuous on [a,b]  $(a,b \in \mathbb{R})$ , (n+1) times differentiable on (a,b), and  $c \in (a,b)$  be a fixed point. **Problem**: find a polynomial  $P_n$  with degree not exceeding n so that

$$f(c) = P_n(c), \ f'(c) = P'_n(c), \dots, f^{(n)}(c) = P^{(n)}_n(c)$$

Find  $P_n(x)$  of the form

$$P_n(x) = a_0 + a_1(x-c) + a_2(x-c)^2 + \cdots + a_n(x-c)^n.$$

Result:

$$a_0 = f(c), \ a_1 = \frac{f'(c)}{1!}, \ldots, a_n = \frac{f^{(n)}(c)}{n!}.$$

 $P_n(x)$  is called the *n*-th order **Taylor polynomial** of f at the point c.



Consider the difference

$$R_n(x) = f(x) - P_n(x), x \in (a, b),$$

and let  $G(x) = (x - c)^{n+1}$ . Then we have some remarks:

② 
$$G(c) = G'(c) = \ldots = G^{(n)}(c) = 0;$$

#### **Proposition**

For  $x \in (a, b)$  and  $x \neq x$ , there exists  $\overline{c}$  between x and c so that

$$R_n(x) = \frac{f^{(n+1)}(\overline{c})}{(n+1)!}(x-c)^{n+1}.$$

**Proof ideas**: Apply successively the Cauchy's theorem (n+1) times for the functions  $R_n$  and G (with c has the same role as a in the theorem).

#### Taylor's formula

### Taylor's theorem

If the function f is continuous on [a,b], (n+1) times differentiable on (a,b), then for any fixed point  $c \in (a,b)$  we have

$$f(x) = f(c) + \frac{f'(c)}{1!}(x-c) + \cdots + \frac{f^{(n)}(c)}{n!}(x-c)^n + R_n(x),$$

where

$$R_n(x) = \frac{f^{(n+1)}(\overline{c})}{(n+1)!}(x-c)^{n+1},$$

for some point  $\overline{c}$  between x and c.

The above formula is called the finite Taylor expansion of order n of f at the point c.

In particular if c = 0, it is called the Maclaurin expansion.  $R_n(x)$  is called the approximation error, or the remainder.

#### Little-o notation

It is a notation representing the asymptotic behavior of a function at a given point. The statement

$$f(x) = o(g(x))$$
 as  $x \to a$ ,

can be intuitively interpreted as saying that f(x) goes to zero much faster than f(x) at a, or, more mathematically,

$$\lim_{x\to a}\frac{f(x)}{g(x)}=0.$$

Write f(x) = h(x) + o(g(x)) as  $x \to a$  means

$$\lim_{x\to a}\frac{f(x)-h(x)}{g(x)}=0.$$

## Some examples:



Using the little-o notation, the statement in Taylor's theorem reads as

$$f(x) = P_n(x) + o((x - c)^n)$$
, as  $x \to c$ .

**Some examples**: write Taylor expansions of the following functions at 0:

$$\frac{1}{x+1} = 1 - x + x^2 - \dots + (-1)^n x^n + \frac{(-1)^{n+1}}{(1+\theta x)^{n+1}} x^{n+1}$$

$$\frac{1}{x-1} = 1 + x + x^2 + \dots + x^n + o(x^n), \ x \to 0$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1}$$

$$\ln(x+1) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n), \ x \to 0$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2), \ x \to 0$$

**Example**: consider the infinite sequence (progression)

$$S_0 = 1,$$
 $S_1 = 1 + \frac{1}{2},$ 
 $S_2 = 1 + \frac{1}{2} + \frac{1}{2^2},$ 
.....
 $S_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n},\dots$ 

What happens for  $S_n$  as n is very large (i.e.  $n \to \infty$ )?

**Example**: consider the infinite sequence (progression)

$$S_0 = 1,$$
 $S_1 = 1 + \frac{1}{2},$ 
 $S_2 = 1 + \frac{1}{2} + \frac{1}{2^2},$ 
.....
 $S_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n}, \cdots$ 

What happens for  $S_n$  as n is very large (i.e.  $n \to \infty$ )? We say that the infinite sum

$$1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} + \dots$$

is a series and its value is the limit of  $S_n$  if it exists. Here

$$\lim_{n\to\infty} S_n = 2$$

**Definition**: A series is an infinite sum, represented by an infinite expression of the form

$$a_0 + a_1 + a_2 + \cdots$$
, denoted by  $\sum_{n=0}^{\infty} a_n$ ,

where  $(a_n)$  is any ordered sequence of terms, such as numbers, functions, or anything else that can be added.

The *n*th partial sums of the series:

$$S_n = a_0 + a_1 + a_2 + \cdots + a_n.$$

The value of the series is the limit of  $S_n$  as  $n \to \infty$  (if the limit exists).

$$\sum_{n=0}^{\infty} a_n = \lim_{n \to \infty} S_n \quad \text{(convergent, or divergent)}$$

**Geometric series**: for  $a \in \mathbb{R}$  and  $q \neq 1$ ,

$$\sum_{n=0}^{\infty} aq^n$$

If  $a \neq 0$ , then the series is convergent iff -1 < q < 1, and

$$\sum_{n=0}^{\infty} aq^n = \frac{a}{1-q}.$$

Remark:

$$S_n = a + aq + aq^2 + ... + aq^{n-1} = a\left(\frac{q^n - 1}{q - 1}\right) = \frac{u_{n+1} - u_1}{q - 1}$$

## **Absolute convergence**

A series converges absolutely if the series of absolute values

$$\sum_{n=0}^{\infty} |a_n|$$

converges.

A series converges absolutely then converges.

## Taylor/ Maclaurin series

The function f is said to be infinitely differentiable, smooth, or of class  $C^{\infty}$ , if it has derivatives of all orders.

#### Taylor's theorem

Let f be an infinitely differentiable function for x near a fixed point  $c \in \mathbb{R}$ .

Then the Taylor series of f at c is the power series

$$f(c) + \frac{f'(c)}{1!}(x-c) + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n + \dots$$
, or

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n.$$

The Taylor series at c = 0 is also called a Maclaurin series.

Some examples...

**HW**: write the Taylor series of the following function at 0:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Differentiation

Let  $\mathbb{R}^n$  be the set of all n- tuples  $(x_1, x_2, \ldots, x_n)$ ,

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, \dots, x_n \in \mathbb{R}\}.$$

#### Definition

Suppose  $D \subseteq \mathbb{R}^n$ . We write a real-valued function f of n independent variables on D as

$$f: D \longrightarrow \mathbb{R}$$
  
 $(x_1, x_2, \dots, x_n) \mapsto f(x_1, x_2, \dots, x_n)$ 

D is called the domain of f, and the set

$$\{w \in \mathbb{R} : w = f(x_1, x_2, \dots, x_n), (x_1, x_2, \dots, x_n) \in D\}$$

is the range of f.

**Example 1**: Give the domain of the function

$$f(x,y,z)=\frac{x+y}{z^2}.$$

Evaluate the function at the point (1,2,3) and (-1,2,-3).

**Example 1**: Give the domain of the function

$$f(x,y,z)=\frac{x+y}{z^2}.$$

Evaluate the function at the point (1,2,3) and (-1,2,-3).

Example 2: considering the function

$$f(x,y) = \sqrt{4 - x^2 - y^2}$$
.

Give and then graph the domain of f in x-y plane. Find the range of f.

**Example 1**: Give the domain of the function

$$f(x,y,z)=\frac{x+y}{z^2}.$$

Evaluate the function at the point (1,2,3) and (-1,2,-3).

**Example 2**: considering the function

$$f(x,y) = \sqrt{4 - x^2 - y^2}.$$

Give and then graph the domain of f in x - y plane. Find the range of f.

**Example 3** The same above question for the function

$$f=\sqrt{y^2-x}.$$

# The graph of a function of two variables

Let z = f(x, y),  $(x, y) \in D \subseteq \mathbb{R}^2$ . The graph of f is a 3D-set (a surface) given by

$$G(f) = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y), (x, y) \in D\}$$

**Example 1**: z = x + y - 1.

**Example 2**:  $z = \sqrt{4 - x^2 - y^2}$ . (an upper hemisphere)

**Example 3**:  $z = 4x^2 + y^2$ . (an elliptic paraboloid)

**Example 4**:  $z = 2x^2 - y^2$ . (a hyperbolic paraboloid)

**Example 5**:  $z = \sqrt{4 - 2x^2 - y^2}$ . (an hemi-ellipsoid)





## a hemisphere

$$z = \sqrt{4 - x^2 - y^2}$$



an elliptic paraboloid

$$z = 4x^2 + y^2$$



a hyperbolic paraboloid

$$z=2x^2-y^2$$

### Informal definition of limits

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L.$$

**Remark** (x, y) can approach  $(x_0, y_0)$  along any path that ends up at the point  $(x_0, y_0)$ .

### Example 1:

$$\lim_{(x,y)\to(1,1)}(2x+y)=2+1=3.$$

#### Example 2:

$$\lim_{(x,y)\to(0,1)} (x^2 - y^2) = 0^2 - 1^2 = -1.$$

\* Limit laws (similarly as of function of single variable)



**Remark** If (x, y) approaches  $(x_0, y_0)$  along two paths, however f(x, y) approaches two different values, then there is not limit.

**Example**: show that the following limits don't exist

$$\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2}.$$

$$\lim_{(x,y)\to(0,0)}\frac{xy}{xy+y^2}.$$

$$\lim_{(x,y)\to(0,0)} \frac{4xy}{xy+y^3}.$$

### Continuity

A function f(x, y) is continuous at  $(x_0, y_0)$  if the following hold,

- f(x, y) is defined at  $(x_0, y_0)$ ;
- **2**  $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$  exists;

**Example 1**: The function  $f(x, y) = x^2 + 2x + y^2 - 1$  is continuous at (0, 0).

Example 2: The function

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$

continuous at any point except (0,0).

**Remark** The composition of continuous functions is also continuous. Example  $f(x,y) = e^{x^2+y^2}$ .  $(f=e^u)$ , with  $u=x^2+y^2$ 

### Partial derivatives

#### Definition

Let f is a function of x, y. Then its partial derivatives at  $(x_0, y_0)$  are

$$\frac{d}{dx}f(x,y_0)|_{x=x_0} := f_x(x_0,y_0) = \frac{\partial f}{\partial x}(x_0,y_0) \text{ (w.r.t. } x),$$

$$\frac{d}{dy}f(x_0,y)|_{y=y_0} := f_y(x_0,y_0) = \frac{\partial f}{\partial y}(x_0,y_0) \text{ (w.r.t. } y)$$

Example: find the partial derivatives of

$$f(x,y) = x^3 + 2x^2 + xy^2 + 3y - 1$$

**Remark** To compute  $f_x$ , we treat y as constant, and differentiate f with respect to x.



# Higher-order partial derivatives

We can define the second partial derivatives

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}, f_{yy} = \frac{\partial^2 f}{\partial y^2}, f_{xy} = \frac{\partial^2 f}{\partial y \partial x}, f_{yx} = \frac{\partial^2 f}{\partial x \partial y}.$$

**Example 1**: 
$$f(x, y) = x^3 + 2x^2 + xy^2 + 3y - 1$$

# Higher-order partial derivatives

We can define the second partial derivatives

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}, f_{yy} = \frac{\partial^2 f}{\partial y^2}, f_{xy} = \frac{\partial^2 f}{\partial y \partial x}, f_{yx} = \frac{\partial^2 f}{\partial x \partial y}.$$

**Example 1**: 
$$f(x,y) = x^3 + 2x^2 + xy^2 + 3y - 1$$

#### The mixed derivative theorem

If the function f(x, y) has the mixed derivatives  $f_{xy}$ ,  $f_{yx}$  which are both continuous in a neighborhood of  $(x_0, y_0)$ , then we have

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

# Differentiability

Consider the function z = f(x, y) and the  $(x_0, y_0) \in Df$ .

Let 
$$\triangle x = x - x_0$$
,  $\triangle y = y - y_0$  and

$$\triangle z = f(x, y) - f(x_0, y_0) = f(x_0 + \triangle x, y_0 + \triangle y) - f(x_0, y_0).$$

#### Definition

The function z = f(x, y) is called differentiable at  $(x_0, y_0)$  if  $\triangle z$  can be expressed in the form

$$\triangle z = [A\triangle x + B\triangle y] + \varepsilon_1 \triangle x + \varepsilon_2 \triangle y,$$

where  $\varepsilon_1$  and  $\varepsilon_2 \to 0$  as  $(\triangle x, \triangle y) \to (0,0)$ .

Then, the **differential** (also called the total differential) of f is denoted by dz, or df, and defined by

$$dz(x_0, y_0) = [A\triangle x + B\triangle y].$$

**Remark**:  $\triangle z \cong dz(x_0, y_0)$  as  $\triangle x, \triangle y$  small.



#### Theorem

If z = f(x, y) has the derivatives  $\frac{\partial f}{\partial x}$ ,  $\frac{\partial f}{\partial y}$  which are defined in a neighborhood of  $(x_0, y_0)$  and continuous at  $(x_0, y_0)$ , then f is differentiable at  $(x_0, y_0)$ .

Moreover  $A = \frac{\partial f}{\partial x}(x_0, y_0)$ ,  $B = \frac{\partial f}{\partial y}(x_0, y_0)$ , and so

$$dz(x_0, y_0) = \left\lceil \frac{\partial f}{\partial x}(x_0, y_0) \triangle x + \frac{\partial f}{\partial y}(x_0, y_0) \triangle y \right\rceil.$$

**Remark**: if x and y are independent variable then  $dx = \triangle x$ ,  $dy = \triangle y$ , so we get the small increments formula

$$\triangle z \cong dz = f_x dx + f_y dy.$$

**Example**: Give the total differential of the function

$$f(x, y) = x^2 + 2xy + xy^2 + 1$$

### Tangent plane



Figure 10.37 The surface z = f(x, y) and its tangent plane at  $P = (x_0, y_0, z_0)$ .

If there exists the partial derivative  $f_x(x_0, y_0)$ ,  $f_y(x_0, y_0)$ , then the tangent plane to the surface z = f(x, y) at the point  $(x_0, y_0, z_0)$ , where  $z_0 = f(x_0, y_0)$ , has the equation

$$z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$



**Example**: find the tangent plane to the surface

$$z = f(x, y) = 4x^2 + y^2$$

at the point (1,2,8).

**Solution**:  $z'_x = 8x$ , z'y = 2y then z(1,2) = 8,  $z_x(1,2) = 8$ ,  $z_y(1,2) = 4$ .

The equation of the tangent plane at the point (1,2,8) is

$$z = 8 + 8(x - 1) + 4(y - 2),$$

or

$$z = 8x + 4y - 8$$
.

# Linearization of z = f(x, y)

Since  $\triangle z \cong dz(x_0, y_0)$  then

$$f(x,y)\approx f(x_0,y_0)+dfx_0,y_0),$$

$$f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0),$$

which is the **standard linear approximation** of f at the point  $(x_0, y_0)$  by its tangent plane

**Example**: find the linearization of  $f(x, y) = \ln(x - 2y^2)$  at (3, 1) and use it to find an approximation for f(3.05, 0.95).

# Partial derivatives of composite function

Example: 
$$z = e^{u} \ln v$$
,  $u = x^{2}y$ ,  $v = x^{2} + y^{2}$ 

Generalizing ...

#### Implicit differentiation

Example: consider the equation  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ .

Under certain assumption, the equation

$$F(x,y) = c$$
, for a constant  $c \in \mathbb{R}$ ,

can determine an unique **implicit function** y = y(x) on some domain and we can express a **implicit derivative** 

$$y'(x) = \frac{dy}{dx} = -\frac{F_x}{F_y}.$$

Similarly, the equation  $F(x, y, z) = c, c \in \mathbb{R}$ , can determine an unique **implicit function** z = z(x, y) on some domain and

$$z_x = \frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \ z_y = \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}.$$

A vector-valued function is a function from domain  $\mathbb{R}^n$  to codomain  $\mathbb{R}^m$ .

$$(x_1, x_2, \dots, x_n) \mapsto \begin{bmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_m(x_1, x_2, \dots, x_n) \end{bmatrix}$$

#### Examples:

$$f(x,y) = \begin{bmatrix} 4x^2 + y^2 \\ 2x + y \end{bmatrix}$$
, or also  $f(x,y) = (4x^2 + y^2, 2x + y)$ ;

$$g(x,y) = \begin{bmatrix} x \sin y \\ \cos(xy) \\ \sin(x+y) \end{bmatrix}; \quad h(x,y,z) = \begin{bmatrix} \frac{x}{yz} \\ x+y+z \end{bmatrix}.$$

### Jacobi matrix

The Jacobi matrix or the derivative matrix of f at  $x_0 \in \mathbb{R}^n$  is

$$Df(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} (x_0) \tag{1}$$

**Example**: find the Jacobi matrix of the function

$$f(x,y) = (4x^2 + y^2, 2x + y).$$