Fig. 1: 8-tubulin genes in Physcomitrella patens

Analysis of expression promoting regions of ß-tubulins in Physcomitrella patens Fig. 2:

35 S polyA X 1,5	X 1	× 3	5,
TAG 35.8 TP. VEGET 35.8 T	150 100 100 150 100 100 100 100 100 100	400 350 250 200 150 100 60 35S 3-0 3-5 3-4 3-4	x 2,5
ATG S. UIIR S. UIIR			
5' -1307 - 985 - 416 - 248 - 83 - 83	- 1075 - 676 - 425 - 245 - 67	- 1274 - 767 - 272 + 53	. 419
1-0 1-1 1-3 1-5	2-0 2-1 2-2 2-3 2-4	3-0 3-2 3-3 3-4	4-0
Pptub 1	Pptub 2	Pptub 3	Pptub 4

2/19

Analysis of expression promoting regions of Pptub 1 by transient transformation of rhVEGF constructs Fig. 3:

										3	/1	9															
SD	19						41						12						97						3		
MV	165						111						6 E						34						2		
absolut %	184	120	173	148	187	148	150	88	56	119	\$	164	4	4	જ	9	အ	18	9	တ	25	36	29	20	2	0	0
	1-2 a	1-2 a	1-2 a	1-2 c	1-2 c	1-2 c	1-3 d	13 d	1-3 d	1-3 в	13 e	1-3 в	14 C	<u>4</u>	14 c	14 f	4	14 f	1-5 f	1.5 f	1-5 f	1-5 e	1-5 e	1-5 e	delta 35S e	delta 35S e	delta 35S e

SD	\$																		23						8						
€																			212						155						
absolut %	122	8	88	86	309	119	107	88	104	133	66	69	83	88	139	147	78	75	247	197	195	234	195	204	145	129	165	135	144	119	179
	35S a	35S a	35S a	35S b	35S b	35S b	35S c	36S c	35S c	95S d	35S d	35S d	35S e	35S e	35S e	35S f	35S f	35S f	1-0 a	10 a	1-0 a	1-0 c	10 c	1-0 c	1-1 a	1-1 a	1-1 b	1-1 b	1-1 b	1-1 d	1-1 d

a - f: different transformations SD = standard deviation 35S mean value (MV)

of each transformation was set to 100%

Analysis of expression promoting regions of Pptub 2 by transient transformation of rhVEGF constructs Fig. 4:

SD	14							28						7					
MV	131	•						35						18					
absolut %	143	115	136	141	110	143	127	69	ន	127	66	117	88	17	17	16	18	80	34
	2-2 a	2-2 a	2-2 p		2-2 b	2-2 c	2-2 c	2-3 f	2-3 f	2-3 f	2-3 g	2-3 g	2-3 g	24 f	24 f	24 †	24 g		

4/19

SD	19													31						77					
ΜV	100													113						125					
absolut %	113	87	1 2	119	80	\$	116	02	120	114	127	26	76	134	82	160	119	192	78	155	132	86	66	137	129
	1	35S a	35S b	35S b	35S b	35S c	35S c	35S f	35S f	35S f	35S g	35S g	35S g	2-0 a			2-0 b	2-0 c	2-0 c	2-1 a	2-1 a	2-1 b	2-1 b	2-1 c	2-1 c

35S mean value (MV) of each transformation was set to 100% a - b, f and g: different transformations SD = standard deviation

5/19

SD													63	70						69						Ġ,	4 D						,	15					
MV	100												285	200						287						ŀ	712							37					
absolut %	100	92	105	118	. œ	101	94	112	94	93	80	118	000	282	251	353	387	330	379	231	239	247	399	348	259		138	104	191	44	96	101		27	9	46	52	20	07
	Q	35S a		35S b								35S e	- 1	မ ၇-၈	-	- 1		3-0 p		3-2 a	3-2 a	ļ		3-2 b	- 1	ı					3-3 d	3-3 d	ı	3-4 a	3-4 a	3-4 a	4	3-4 b	4

TSS ATG +113
-1274 rhVEGF
-272 3-3
53 413

a - b, d and e: different transformations
SD = standard deviation
35S mean value (MV) of each transformation was set to 100%

Fig. 5:

Analysis of expression promoting regions of Pptub 3 by transient transformation of rhVEGF constructs

Analysis of expression promoting regions of Pptub 4 by transient transformation of rhVEGF constructs

Fig. 6:

6/19

i	absolut %	MV	SD
35S a	63	100	30
35S a	92		
	141		
ľ	70		
	. 121		
35S c	109		
	290	265	45
4-0 a	322		
	229		
	210		
4-0 c	273		
i .	25	20	8
4-1 a	75		
	2		
	19		
4-1 c	30		
	18		

a and c: different transformations SD = standard deviation 35S mean value (MV) of each transformation was set to 100%

5'sequences resulting from iPCR:

2973 bp until ATG: 1824 bp promoter / 955 bp 5' intron Ppact1:

3091 bp until ATG: 2270 bp promoter / 434 bp 5' intron Ppacधः 3095 bp until ATG: 1909 bp promoter / 1006 bp 5' intron Ppact5: 3069 bp until ATG: 1805 bp promoter / 1055 bp 5' intron Ppact7:

Fig. 7: Genomic structure of Physcomitrella patens actin genes.

Fig. 8: Comparison of the expression activity of the different 5'actin regions.

Fig. 9: Ppact1 contructs.

Fig. 10: Ppact 5 constructs.

Fig. 11: Ppact 7 constructs.

Fig. 13: Ppact1 promoter:5' intron substitutions.

14/19

Fig. 14: Ppact1 promoter:vegf deletion constructs.

15/19

Fig. 15: Ppact3 promoter:vegf deletion constructs.

16/19

Fig. 16: Ppact5 promoter:vegf deletion constructs.

17/19
Fig. 17: Ppact7 promoter:vegf deletion constructs.

Fig.: 19 Comparison of promoter sequences of homologous actin genes from *Physcomitrella patens* and *Funaria hygrometrica*

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED-TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.