

1. Introduction

COMP3314
Machine Learning

What is AI? ML? DL?

COMP 3314

original program was described by Joseph Weizenbeum in 19 s implementation by Norbert Landsteiner 2005.

ZA: Is something troubling you ? : Men are all alike.

History of AI

"Can machines think?" AlphaGo First AI Winter Second AI Winter 1950 1966 1975 1980 1987 2016 First Chatbot: ELIZA **Expert System** Asia-Oceania J. Obstet. Gynaecol. Vol. 20, No. 1: 19-23 19 Development and Evaluation of a Computer Expert System for the Management of Fetal Distress za is a mock Rogerian psychotherapist.

K. K. Wong,1 K. H. Ng,2 S. H. Nah,2 K. Yusof,1 and K. Rajeswari¹

Department of Obstetrics and Gynaccology, University of Malaya, Kuala Lumpur, Malaysia
 Department of Radiology, University of Malaya, Kuala Lumpur, Malaysia
 Berkeley Systems Sah Blid, Petaling Jaya, Malaysia

ChatGPT (November 2022)

ChatGPT: Optimizing Language Models for Dialogue

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response.

Hi, I'm writing an article about you and all of the cool things you can do.

Could you say hello to my readers and give us a quick self-introduction? I'd like it to be friendly and casual, include a silly joke, and end with a note about how great the rest of my article is.

Hello readers! My name is Assistant, and I'm a large language model trained by OpenAl. I'm here to help answer your questions and provide you with information on a wide variety of topics. I'm a bit of a jokester, so here's a quick one for you: Why was the math book sad? Because it had too many problems! But seriously, I'm excited to be featured in your article and I hope you enjoy learning more about me and all the cool things I can do. And trust me, the rest of the article is going to be great!

Large Language Models

Multimodal Large Language Models

COMP 3314

<u>AlphaGo</u>

AlphaFold

Multi-Agent Hide and Seek

DALL·E 2

GPT4

Outline

- Motivation
- Types of ML
 - Supervised Learning
 - Classification
 - Regression
 - Reinforcement Learning
 - Chess
 - Unsupervised Learning
 - Clustering
 - Dimensionality Reduction

- Terminology and Notation
- Roadmap
 - Preprocessing
 - Learning
 - Evaluation and Prediction
- Python
 - Installation
- Linear Algebra Review
- References

Motivation

- Nowadays large amount of structured and unstructured data is available
- ML algorithms can turn this data into knowledge
 - Powerful open source libraries available to do this
- In this course you will understand how these algorithms work
- You will also learn how to utilize them to make predictions

Motivation

- ML algorithms are self-learning
 - Automatically derive knowledge from data to make predictions
 - No need for humans to manually derive rules
 - ML offers a more efficient alternative for capturing the knowledge in data to gradually improve the performance of predictive models
- ML becomes increasingly relevant in CS research
 - More importantly
 - Plays an ever greater role in our everyday lives

How do you use machine learning everyday?

COMP 3314

Examples of Machine Learning

- Basket analysis
- Credit scoring
- Medical diagnosis
- Biometrics
- Object recognition
- Service recommendations
- Understanding human learning

Machine Learning Definition

- Subfield of Artificial Intelligence (AI)
- Arthur Samuel (1959)
 - Field of study that gives computers the ability to lean without being explicitly programmed
- Tom Mitchell (1998)
 - A computer program is said to learn from experience E
 with respect to some task T and some performance
 measure P, if its performance on T, as measured by P,
 improves with experience E

Types of Machine Learning

• In the following we will consider three types of machine learning

Supervised Learning

- Learn from labeled training data
 - Make predictions about unseen / future data
- Supervised refers to a set of samples where the desired output signals (labels) are already known

Supervised Learning:

Classification vs. Regression

- Two subcategories of supervised learning
 - Classification
 - A supervised learning task with discrete class labels
 - E.g., spam email classifier
 - Regression
 - Outcome is a continuous value
 - E.g., student exam score prediction

Supervised Learning - Classification

- Goal: Predict class labels of new instances, based on past observations
- Class labels are discrete, unordered values
- Two subcategories of classifiers:
 - Binary classification
 - Only two possible class labels can be assigned
 - E.g., spam vs. non-spam emails
 - Multiclass classification
 - Any fixed number > 2 of class labels can be assigned
 - E.g., handwritten character recognition

Classification - Example

- Given 30 training samples
 - o 15 labeled as negative class
 - 15 labeled as positive class
- Let each sample have 2 dimensions
- Classifier will learn the decision boundary
 - Represented as a dashed line
 - Able to separate the two classes

Regression

- Prediction of continuous outcome
 - The term regression was devised by Francis Galton in his article <u>Regression towards Mediocrity</u> in 1886
- Example:
 - Predicting the exam scores given time spent studying

Regression - Example

- Given
 - Predictor variable x
 - Response variable y
- I.e., 1D data set
- Fit a line to it minimizing the distance between sample points and the fitted line
 - Average squared distance is most commonly used
- Use the line to predict outcome of new data

COMP 3314

• Consider the following supervised ML tasks. Label each task with Classification Task or Regression Task

- a. You are working for an investment bank and your task is to predict investors sentiment for certain stocks by analyzing popular online investments forums
- b. You are working for a property agency and your task is to predict the housing price for a property based on past data that the agency has available in their database
- c. Your task is to analyze a video stream of the western harbour tunnel and count how many Tesla pass by every day

Reinforcement Learning

- The system (aka agent) improves its performance based on interactions with an environment
- Trial-and-Error approach
 - Learning by doing
- The agent receives feedback (reward) from the environment
 - This reward is not the correct ground truth
 - It is a sample experience
 - Extensive interaction with the environment allows agent to learn a series of actions that maximizes this reward

Reinforcement Learning - Example: Chess

- Agent decides upon a series of moves depending on state of board
 - Environment is the board
 - Reward can be defined as win or lose at the end of the game
- Outcome of each move results in different state of the environment
 - Removing an opponent's chess piece from the board or threatening the queen is associated with a positive event
 - Losing a chess piece to the opponent is associated with a negative event
- Note: Not every turn results in the removal of a chess piece
 - Reinforcement learning is concerned with learning the series of steps by maximizing a reward based on immediate and delayed feedback

Reinforcement Learning - Example

• Learning to walk

Unsupervised Learning

- Unlabeled data / data of unknown structure
- Explores the structure of data
 - Extract meaningful information without guidance of known outcome variable / reward function
- Examples
 - Clustering
 - Dimensionality reduction

Clustering

- Exploratory data analysis technique
- Organizes information into meaningful subgroups (clusters) without having any knowledge of group memberships
- Each cluster defines a group of objects that share a certain degree of similarity but are more dissimilar to objects in other clusters

Clustering - Example

Clustering - More Examples

- Human genetic clustering
- Sequence clustering
- Social network analysis
- Market research
- Grouping of shopping items

Dimensionality Reduction

- Often we are working with data of high dimensionality
 - I.e., each observation comes with a high number of measurements
- High dimensional data can present a challenge
 - Computational performance
 - Predictive performance
 - Visualization
- Dimensionality reduction is a commonly used approach in feature preprocessing
 - Compress data onto a smaller dimensional subspace
 - Retaining most relevant information

Dimensionality Reduction - Example

- High-dimensional feature set can be projected onto 1D, 2D or 3D feature spaces
 - o 3D to 2D example

Types of machine learning

• In the following we will consider three types of machine learning

Terminology and Notations

- <u>Iris flower data set</u> contains measurements of 150 Iris flowers from three different species
 - Setosa, Versicolor, and Virginica
- Introduced in <u>Fisher</u>'s 1936 paper <u>The use of multiple measurements</u> <u>in taxonomic problems</u>
- Row
 - A single flower sample
- Column
 - Flower features (measurements in centimeters)

Terminology and Notations

- We will use a matrix and vector notation to refer to our data
- ullet Each sample is a separate row in a feature matrix ${\bf X}$, where each feature is stored as a separate column
- Iris dataset example
 - o 150 samples and four features are written as a 150 x 4 matrix **X**

$$\begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_4^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & x_4^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ x_1^{(150)} & x_2^{(150)} & x_3^{(150)} & x_4^{(150)} \end{bmatrix}$$

Terminology and Notations

- We will use the superscript *i* to refer to the *i*th training sample, and the subscript *j* to refer to the *j*th dimension of the dataset
- For example $x_j^{(i)} = x_I^{(150)}$ refers to the first dimension of the flower and sample 150
- We use lowercase, bold-face letters to refer to vectors and uppercase, bold-face letters to refer to matrices
- Note that each row in the iris dataset X can be written as a four-dimensional row vector and each feature dimension is a 150-dimensional column vector $\begin{bmatrix} x \\ \end{bmatrix}$

$$\mathbf{x}^{(i)} = \begin{bmatrix} x_1^{(i)} & x_2^{(i)} & x_3^{(i)} & x_4^{(i)} \end{bmatrix} \qquad \mathbf{x}_j = \begin{bmatrix} x_j^{(1)} \\ x_j^{(2)} \\ \vdots \\ x_j^{(150)} \end{bmatrix}$$

Roadmap

• Typical workflow for using ML in predictive modeling

Preprocessing

- Preprocessing of the data is a crucial steps in any ML application
- Feature selection, extraction and scaling
 - Select and extract useful features from raw data
 - Many algorithms also require that the selected features are on the same scale
- Dimensionality reduction
 - May improve
 - Computational performance
 - Predictive performance
- Sampling
 - Randomly divide the dataset into a separate training and test set to determine whether our algorithm not only performs well on the training set but also generalizes well to new data
 - Keep the test set until the very end to evaluate the final model

Learning

- Model selection
 - Compare algorithms and select the best performing model
- Cross-validation
 - O How de we know which model performs well on the final test dataset if we don't use this test set for model selection?
 - Cross-validation splits the training dataset further into training and validation subsets
- Performance metric
 - Decide upon a metric to measure performance
- Hyperparameter optimization
 - Fine-tune parameters of the model based on performance on validation set

Evaluation and Prediction

- After model selection and training we use the test dataset to estimate how well it performs on unseen data
 - Estimate the generalization error
- If we are satisfied with its performance, we can now use this model to predict new data
- Important
 - Parameters for the previously mentioned procedures, such as feature scaling and dimensionality reduction, are solely obtained from the training dataset
 - The same parameters are later reapplied to the test data and any new data samples

Python

- We assume that you are familiar with the basics of python
 - Recommended textbook

Programming Environment: Local

- In this course we are going to use
 - Python 3, NumPy, MatPlotLib, SciPy and Jupyter

Programming Environment: Cloud

Google CoLab

Installation

Linear Algebra Review

- We will only use basic concepts from linear algebra
- However, if you need a quick refresher, please take a look at Zico Kolter's excellent <u>videos</u>

Python Review

- We assume that your are familiar with the libraries/tools, follow these links if you need a refresher
 - NumPy
 - Pandas
 - Matplotlib
 - Jupyter

References

- Materials in this chapter are based on
 - o <u>Book</u>
 - o <u>Code</u>

References

- Some materials in this chapter are based on
 - o <u>Book</u>
 - o <u>Code</u>

Exercise 1

- How would you define Machine Learning?
- Can you name four types of problems where it shines?
- What is a labeled training set?
- What are the two most common supervised tasks?
- Can you name four common unsupervised tasks?
- What type of Machine Learning algorithm would you use to allow a robot to walk in various unknown terrains?
- What type of algorithm would you use to segment your customers into multiple groups?
- Would you frame the problem of spam detection as a supervised learning problem or an unsupervised learning problem?

- What is an online learning system?
- What is out-of-core learning?
- What type of learning algorithm relies on a similarity measure to make predictions?
- What is the difference between a model parameter and a learning algorithm's hyperparameter?
- What do model-based learning algorithms search for? What is the most common strategy they use to succeed? How do they make predictions?
- Can you name four of the main challenges in Machine Learning?

Exercise 3

- If your model performs great on the training data but generalizes poorly to new instances, what is happening? Can you name three possible solutions?
- What is a test set, and why would you want to use it?
- What is the purpose of a validation set?
- What can go wrong if you tune hyperparameters using the test set?

COMP 3314

Boston Dynamics

