

Fundamentos da Análise da Eficiência de Algoritmos

Notação Assintótica

Aula 2 Alessandro L. Koerich

Pontificia Universidade Católica do Paraná (PUCPR)

Ciência da Computação – 7º Período Engenharia de Computação – 5º Período

Programa do PA

- 3. Notação Assintótica e Classe de Eficiência

 4. Análise Matemática de Algoritmos

 5. Análise Empírica de Algoritmos

 Fundamentos da Análise da Eficiência de Algoritmos
- 15. Teorema do Limite Inferior

 16. Árvores de Decisão

 17. Problemas P, NP e NPC

 Limitações

Koerich (alekoe@ppgia.pucpr.br)

Ciência/Eng. de Computação

Draiata a Apálica da Algarit

2007

Plano de Aula

- Introdução
- Estrutura da Análise de Algoritmos
- * Crescimento de Funções e Notação Assintótica
- * Comparação de Funções
- * Resumo

Introdução

- Como avaliar um algoritmo?
- * Dado um algoritmo, podemos perguntar se:
 - Ele de fato fornece uma solução para o problema em questão ?
 - * Quão eficiente é o algoritmo ?
 - Qual o espaço em memória necessário para a execução?
 - * Existem maneiras melhores de se resolver o problema?

.

/Eng. de Computação

Projeto e

eto e Análise de Algoritmos

2006

oerich (alekoe@ppgia.pucpr.br)

cia/Eng. de Computação Projeto e Análise de Algor

Introdução

- Assim, um dos principais objetivos é o de desenvolver habilidades para avaliar algoritmos
- Existem vários critérios sobre os quais podemos avaliar um algoritmo.
- * Quais são eles?

. Koerich (alekoe@ppgia.pucpr.br)

Ciência/Eng. de Computação Projeto e Análise de Algoritmos

2006

PUCPR

Análise de Algoritmos

- * Critérios
 - * Correção
 - * Eficiência temporal
 - * Eficiência espacial
 - * Otimalidade
- * Dois métodos:
 - * Análise teórica
 - * Analise empírica

Introdução

Abordagem Experimental

- Implementar o algoritmo e executar o programa para um conjunto de dados de teste
- * Porém
 - * não podemos testar todas as possíveis entradas.
 - podemos esquecer algum caso em que o algoritmo falha ou caso em que o desempenho do algoritmo é particularmente bom ou ruim
 - Os resultados dependem de aspectos de implementação

Introdução

Abordagem Teórica

- * Estudar o algoritmo em termos gerais e tentar prever aspectos gerais do seu comportamento:
 - * Correção: Ele fornece uma solução válida para o problema ?
 - * Eficiência: Quanto tempo ele gasta? Quanto de memória ele usa?

Análise de Algoritmos

- * Analisar = Prever os recursos que um algoritmo necessitará. Exemplo:
 - Memória
 - * Largura de banda de comunicação
 - * Hardware
- * Objetivo: Prever o comportamento, especialmente o tempo de execução sem implementá—lo em uma plataforma específica

Alessa

Computação I

2004

Estrutura da Análise

- Como analisar a eficiência de algoritmos?
- * Existem dois tipos de eficiência: eficiência temporal e eficiência espacial.
 - * A **eficiência temporal** indica quão rápido um algoritmo em questão é executado.
 - * A **eficiência espacial** está relacionada com o espaço extra que o algoritmo necessita.

Estrutura da Análise

- Antigamente, ambos recursos tempo e espaço
 eram valiosos.
- * Atualmente, a quantidade extra de espaço requerida por um algoritmo não é tão importante, ainda que exista uma diferença entre memória principal, secundária e *cache*.
- * Porém, o tempo continua sendo importante, pois, problemas cada vez mais complexos são tratados → abordaremos somente eficiência temporal

L. Koerich (alekoe@ppgia.pucpr.br)

Cia--i-/F-- d- C-----t---

Projeto e Análise de Algoritr

e de Algoritmos 2006

2006 11

alekoe@ppgia.pucpr.br)

a/Eng. de Computação Projeto e Análise de Algoritmos

Tamanho da Entrada

- Quase todos os algoritmos levam mais tempo para ser executados sobre entrada maiores.
- Assim, é obvio investigar a eficiência de algoritmos como função do parâmetro **n** que indica o tamanho da entrada do algoritmo.

Tempo de Execução?

- * Por que não utilizar unidade "física" de tempo?
 - * Dependência do hardware, qualidade da implementação, compilador, etc.
- Métrica que não dependa de fatores externos. Alternativas:
 - * Contar o número de vezes que cada operação do algoritmo é realizada
 - * Identificar a operação mais importante do algoritmo (operação básica), a operação que mais contribui para o tempo de execução total e contar o número de vezes que esta operação é realizada.

Eficiência de Algoritmos

Geralmente, a operação que consome mais tempo está no laço (loop) mais interno do algoritmo.

Eficiência de Algoritmos

- * Eficiência temporal é analisada determinando o número de repetições de operações básicas com uma função do tamanho da entrada
- * Operação básica: a operação que contribui mais para o tempo de execução do algoritmo.

para operação básica

tamanho da entrada eficiência ou tempo tempo de execução

número de vezes que operação básica é executada

de execução

Eficiência de Algoritmos

- * Atenção, pois, *C*(*n*) não contém informação sobre operações que não são básicas.
- \bullet C(n) é calculado com aproximação
- * A constante c_{op} também é uma aproximação.

ência/Eng. de Computação Projeto e Análise de Algoritmos

2006

PUCPR

Eficiência de Algoritmos

* Na análise da eficiência de algoritmos, ignoramos constantes multiplicativas e nos concentramos na ordem de crescimento da contagem da operação básica.

Tamanho da Entrada e Operação Básica

Problema	Medida do Tamanho da Entrada	Operação Básica	
Busca por uma chave em uma lista de <i>n</i> itens	Número de itens na lista	Comparação de chaves	
Multiplicação de duas matrizes de números de pontos flutuantes	Dimensões das matrizes	Multiplicação de Ponto Flutuante	
Calcular <i>a</i> ⁿ	n	Multiplicação de Ponto Flutuante	
Grafos	Número de vértices e/ou arestas	Visitar um vértice ou atravessar uma aresta	

Ordens de Crescimento

\overline{n}	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

- * A função logarítmica cresce mais lentamente
- * As funções exponenciais e fatoriais crescem rapidamente

Alessa

I. Koerich (alekoe@ppgia.pucpr.br)

Eng. de Computação Projeto e Análise de Algoritmos

2006

Crescimento de Funções

- Ordem de crescimento do tempo de execução de um algoritmo
 - * Caracterização simples da eficiência do algoritmo
 - Comparar o desempenho relativo de algoritmos alternativos
- * Em geral podemos determinar o tempo de execução exato de um algoritmo, porém.... a precisão extra não vale o esforço de calculá—lo.

L. Koerich (alekoe@ppgia.pucpr.br)

iência/Eng. de Computação

Projeto e Análise de Algoritmos

2006

21

(

Crescimento de Funções

Para entradas grandes:

- * As constantes multiplicativas e
- * Os termos de mais baixa ordem

são dominados pelos efeitos do tamanho da entrada

Melhor Caso, Caso Médio, Pior Caso

- * Para alguns algoritmos, eficiência depende não somente do tipo da entrada, mas também das especificidades de uma entrada em particular.
- * Exemplo: Algoritmo Busca Seqüencial

Exemplo: Busca Sequencial

- Problema: Dado uma lista de n elementos e um chave de busca K, encontre um elemento igual a K, se presente.
- * Algoritmo: Varrer a lista e comparar os elementos sucessivos com *K* até encontrar um elemento similar (busca bem sucedida) ou percorrer toda a lista (busca mal sucedida)
 - * Pior caso?
 - * Melhor caso?
 - * Caso médio ?

Koerich (alekoe@ppgia.pucpr.br)

Ciência/Eng. de Computação

Projeto e Análise de Algoritmos

006

(alekoe@ppgia.pucpr.br)

cia/Eng. de Computação Projeto e Análise de Algoritmos

Algoritmo Busca Següencial

ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search //Input: An array A[0..n-1] and a search key K//Output: Returns the index of the first element of A that matches K or -1 if there are no matching elements while i < n and $A[i] \neq K$ do $i \leftarrow i + 1$ if i < n return ielse return -1

Melhor Caso, Caso Médio, Pior Caso

Para alguns algoritmos, eficiência depende do tipo da entrada:

- * Pior Caso: W(n) máximo sobre entradas de tamanho
- * Melhor Caso: B(n) mínimo sobre entradas de tamanho n
- **☀** Caso Médio: *A*(*n*) − "média" sobre entradas de tamanho
 - * Número de vezes que a operação básica será executada sobre entrada típica
 - Não é a média entre pior melhor casos
 - Número esperado de repetições das operações básicas

Notação Assintótica

- A análise da eficiência de algoritmos se concentra na ordem de crescimento da operação básica de um algoritmo, como o principal indicador de sua eficiência.
- Para comparar e classificar estas ordens de crescimento, são utilizadas notações assintóticas.
- Objetivo: Resumir o comportamento de um algoritmo em fórmulas simples e de fácil compreensão

Taxa de Crescimento Assintótica

Um modo de comparar funções, que ignora fatores constantes e entradas de tamanho pequeno

- * O(g(n)): classe de funções f(n) que crescem não mais rapidamente que q(n)
- * $\Theta(g(n))$: classe de funções f(n) que cresce na mesma taxa que q(n)
- * $\Omega(g(n))$: classe de funções f(n) que crescem pelo menos tão rapidamente quanto q(n)

Notação Assintótica

- Eficiência Assintótica
 - * Maneira como o tempo de execução de um algoritmo aumenta com o tamanho da entrada no limite, a medida que a entrada aumenta indefinidamente
- * Em geral:
 - * Um algoritmo que é assintoticamente mais eficiente será a melhor escolha para todas as entradas (exceto as muito pequenas)

Notação Assintótica

- * Notação Θ (Theta)
- * Notação O (O maiúsculo)
- * Notação Ω (Ômega maiúsculo)
- * Notação o (o minúsculo)
- * Notação w (ômega minúsculo)

Notação ⊕

* Para uma dada função q(n) denotamos por $\Theta(q(n))$ o conjunto de funções:

 $\Theta(g(n))=\{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e} \\ n_0 \text{ tais que } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ para todo } n \geq 0$

* Uma função f(n) pertence ao conjunto $\Theta(g(n))$ se existem constantes positivas c_1 e c_2 tais que ela possa ser "imprensada" entre $c_{i}g(n)$ e $c_{2}g(n)$, para um valor de n suficientemente grande.

Notação ⊕

- * Como $\Theta(q(n))$ é um conjunto, poderíamos escrever " $f(n) \in \Theta(g(n))$ " para indicar que f(n) é um membro de (ou pertence a) $\Theta(g(n))$
- * Em vez disso, geralmente escreveremos $f(n) = \Theta(g(n))$

Notação ⊕

* A figura abaixo apresenta as funções f(n) e g(n) onde $f(n) = \Theta(g(n))$

* Para todos os valores de n à direita de n_o , o valor de f(n) reside em $c_1g(n)$ ou acima dele, e em $c_2g(n)$ ou abaixo deste valor

Koerich (alekoe@ppqia.pucpr.br)

Ciência/Eng. de Computação

Projeto e Análise de Algoritmos

2006

Notação ⊕

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

L. Koerich (alekoe@ppgia.pucpr.br)

Ciência/Eng. de Computação Pro

Projeto e Análise de Algoritmos

2006

Notação ⊕

- * Em outras palavras, para todo $n \ge n_o$, a função f (n) é igual a g (n) dentro de um fator constante.
- * Dizemos que g(n) é um limite assintóticamente restrito para f(n).
- * A definição de Θ (g (n)) exige que todo membro $f(n) \in \Theta$ (g (n)) seja assintóticamente não negativo, isto é, que f(n) seja não negativo sempre que n for suficientemente grande.

Notação ⊕

- * Os termos de mais baixa ordem de uma função assintoticamente positiva podem ser ignorados na determinação de limites assintoticamente restritos.
- Eles são insignificantes para grandes valores de n.

Notação ⊕

- * Qualquer constante é um polinômio de grau o
- * Qualquer função constante pode ser expressa como $\Theta(n^o)$ ou $\Theta(1)$

iencia/Eng. de Computação

Projeto e Análise de Algoritmos

2006

PUCPR

Notação O

* Como vimos, a notação Θ limita assintoticamente uma função acima e abaixo.

* Quando temos apenas um limite assintótico superior, usamos a notação *O*.

sandro L. Ko

)

mputação Projeto e

Proieto e Análise de Algoritmos

___.

Notação O

* Para uma dada função g(n) denotamos por O(g(n)) o conjunto de funções:

 $O(g(n))=\{f(n): \text{ existem constantes positivas } c \in n_o \text{ tais que } 0 \le f(n) \le c g(n) \text{ para todo } n \ge n_o \}$

* Usamos a notação *O* para dar um limite superior sobre uma função, dentro de um fator constante.

Notação O

* A figura abaixo apresenta as funções f(n) e g(n) onde f(n) = O(g(n))

* Para todos os valores de n à direita de n_o , o valor de f(n) está em ou abaixo de g(n).

Koerich (alekoe@ppgia.pucpr.br)

Ciência/Eng. de Computação

Projeto e Análise de Algoritmos

2006

39 Alessandro L. Koerich (alekoe@ppgia.

Ciência/Eng. de Computação Projeto e Anális

ojeto e Análise de Algoritmos

Notação O

- * Para indicar que uma função f(n) é um membro de O(g(n)), escrevemos f(n) = O(g(n))
- * Note que $f(n) = \Theta(g(n))$ implica f(n) = O(g(n)), pois a notação Θ é uma noção mais forte que a notação O.

. Koerich (alekoe@ppgia.pucpr.br

Tag de Computação - Projeto e Apólico de Algeritmos

___.

Notação O

* Quando escrevemos f(n) = O(g(n)), estamos simplesmente afirmando que:

algum múltiplo constante de g (n) é um limite assintótico superior sobre f (n) sem qualquer menção sobre o quanto um limite superior é restrito.

Notação O

- * Usando a notação *O* podemos descrever a estrutura de um algoritmo apenas inspecionando sua estrutura global.
- * Ex: Algoritmo de Ordenação por Inserção
 - * A estrutura de *loop* duplamente aninhado produz um limite superior $O(n^2)$ sobre o tempo de execução do pior caso.

n I. Kaariah (alakaa@nnaia nuanr hr

Ciência/Eng. de Computação

Projeto e Análise de Algoritmos

2006

h (alekoe@ppgia.pucpr.br)

cia/Eng. de Computação Projeto e Análi

itmos 2

,

Notação Ω

- * Como vimos, a notação *O* fornece um limite assintótico superior sobre uma função.
- * A notação Ω fornece um limite assintótico inferior.

Notação Ω

* Para uma dada função g(n) denotamos por $\Omega(g(n))$ o conjunto de funções:

$$\begin{split} &\Omega\left(g\left(n\right)\right) = &\{f(n): \text{existem constantes positivas} \\ &c \ \text{e} \ n_o \ \text{tais que o} \le cg\left(n\right) \le f(n) \ \text{para todo} \\ &n \ge n_o \} \end{split}$$

ência/Eng. de Computação Projeto e Análise de Algoritmos

2006

Notação Ω

* A figura abaixo apresenta as funções f(n) e g(n) onde $f(n) = \Omega(g(n))$

* Para todos os valores de n à direita de n_o , o valor de f(n) está em ou acima de g(n).

Notação Ω

* TEOREMA: Para duas funções quaisquer f(n) e g(n), temos $f(n) = \Theta(g(n))$ se e somente se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$.

. Koerich (alekoe@ppqia.pucpr.br

ência/Eng. de Computação Proj

Projeto e Análise de Algoritmos

2006

PUCPR

Notação Ω

- * Considerando—se que a notação Ω descreve um limite inferior, quando a usamos para limitar o tempo de execução do melhor caso de um algoritmo, por implicação também limitamos o tempo de execução do algoritmo sobre entradas arbitrárias.
- * Ex: o tempo de execução no melhor caso da ordenação por inserção é $\Omega(n) \rightarrow$ o tempo de execução da ordenação por inserção é $\Omega(n)$.

A

Computação Pro

Projeto e Análise de Algoritmos

2004

Notação Ω

- * Assim, o tempo de execução da ordenação por inserção recai entre Ω (n) e O (n^2).
- * Quando afirmamos que o tempo de execução de um algoritmo é Ω (q (n)), queremos dizer que:
 - * independentemente da entrada específica de tamanho n escolhida para cada valor de n, o tempo de execução sobre esta entrada é pelo menos uma constante vezes g(n), para um valor de n suficientemente grande.

Notação o

- * A notação *o* indica um limite superior que não é assintóticamente restrito.
- * Para uma dada função g(n) definimos o(g(n)) o conjunto de funções:

 $o(g(n))=\{f(n): \text{ para qualquer constante positiva}$ c>0, existe uma constante $n_o>0$ tal que $0 \le f(n) < cg(n)$ para todo $n \ge n_o\}$

Notação o

- As definições da notação O e da notação o são semelhantes. A principal diferença é que em f(n)=O(q(n)), o limite $0 \le f(n) \le cq(n)$ se mantém válido para alguma constante c > 0.
- * Mas, em f(n)=o(g(n)), o limite $o \le f(n) < cg(n)$ é válido para todas as constantes c > 0.
- Note que isto é exatamente o mesmo que a definição de O, exceto que "alguma constante" foi trocado para "para todas".

Notação o

* Intuitivamente, na notação o, a função f(n) se torna insignificante em relação a g(n) à medida que n se aproxima do infinito, isto é:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Notação ω

* Por exemplo, $n^2/2 = \omega(n)$, mas $n^2/2 \neq \omega(n^2)$. A relação implica $f(n) = \omega(g(n))$ implica que:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

se o limite existe. Isto é, f(n) se torna arbitrariamente grande em relação a g(n) à medida que *n* se aproxima do infinito.

Notação ω

- * A notação ω indica um limite inferior que não é assintóticamente restrito.
- * Para uma dada função g(n) definimos $\omega(g(n))$ o conjunto de funções:
 - $\omega(q(n)) = \{f(n) : \text{para qualquer constante positiva}\}$ c > 0, existe uma constante $n_o > 0$ tal que $0 \le c q(n) < f(n)$ para todo $n \ge n_0$

Comparação de Funções

- Muitas das propriedades relacionais de números reais também se aplicam a comparações assintóticas:
 - * Transitividade
 - * Reflexividade
 - * Simetria:
 - * Simetria de Transposição

Ciência/Eng. de (

ação Projeto e Análise de Algorit

mos 2006

Comparação de Funções

$$f(n) = O(g(n)) \qquad \approx \qquad a \leq b,$$

$$f(n) = \Omega(g(n)) \qquad \approx \qquad a \geq b,$$

$$f(n) = \Theta(g(n)) \qquad \approx \qquad a = b,$$

$$f(n) = O(g(n)) \qquad \approx \qquad a < b,$$

$$f(n) = O(g(n)) \qquad \approx \qquad a > b.$$

. Koerich (alekoe@ppgia.pucpr.br)

Ciência/Eng. de Computação

icão Proieto e Análise

nos 200

2006

Comparação de Funções

- **▶** Dizemos que f(n) é assintóticamente menor que g(n) se f(n) = o(g(n)), pois f(n) = o(g(n)) ≈ a < b
- * Dizemos que f(n) é assintóticamente maior que g(n) se $f(n) = \omega(g(n))$, pois $f(n) = \omega(g(n)) \approx a > b$

Funções Assintóticas Básicas

1	Constante
$\log n$	Logarítmica
n	Linear
$n \log n$	$n \log n$
n^2	Quadrática
n^3	Cúbica
2 ⁿ	Exponencial
n!	Fatorial

ucpr.br) Ciência/Eng.

Ciência/Eng. de Computação Pro

ojeto e Análise de Algoritm

nos 2006

006

(alekoe@ppgia.pucpr.br)

cia/Eng. de Computação Projeto e Análise de Algoritmos

Resumo

- * Tanto eficiência temporal quanto espacial são medidas como funções do tamanho da entrada do algoritmo
- Eficiência temporal é medida contando o número de vezes que a operação básica do algoritmo é executada
- * Eficiência espacial é medida contando o número de unidades de memória consumidas pelo algoritmo

Koerich (alekoe@ppgia.pucpr.br)

ência/Eng. de Computação Projeto e Análise de Algoritmos

2006

Resumo

- As eficiências de alguns algoritmos podem ser significativamente diferentes para entradas do mesmo tamanho
- * Para tais algoritmos precisamos distinguir entre as eficiências no pior caso, no caso médio e no melhor caso.
- * O interesse principal é na ordem de crescimento do tempo de execução do algoritmo a medida que o tamanho da entrada tende a infinito.

Resumo

- * As notações Θ, ΩeO são usadas para indicar e comparar as ordens de crescimento assintóticos de funções que expressam eficiências de algoritmos.
- * As eficiências de um grande número de algoritmos recaem nas classes: constante, logarítmica, linear, n-log-n, quadrática, cúbica e exponencial.