Part III Local Fields

Based on lectures by Dr C. Johansson

Michaelmas 2016 University of Cambridge

Contents

1 Basic Theory

1

1 Basic Theory

Definition (Absolute value). Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ s.t.

$$i. |x| = 0 \iff x = 0$$

$$ii. |xy| = |x| |y| \quad \forall x, y \in K$$

iii.
$$|x+y| \le |x| + |y|$$

Definition (Valued field). A valued field is a field with an absolute value.

Definition (Equivalence of absolute values). Let K be a field and let $|\cdot|$, $|\cdot|'$ be absolute values on K. We say that $|\cdot|$ and $|\cdot|'$ are **equivalent** if the associated metrics induce the same topology.

Definition (Non-archimedean absolute value). An absolute value $|\cdot|$ on a field K is called **non-archimedean** if $|x+y| \leq \max(|x|,|y|)$ (the **strong triangle inequality**).

Metrics s.t. $d(x, z) \leq \max(d(x, y), d(y, z))$ are called **ultrametrics**.

Assumption: unless otherwise mentioned, all absolute values will be non-archimedean. These metrics are weird!

Proposition 1. Let K be a valued field. Then $\mathcal{O} = \{x \mid |x| \leq 1\}$ is an open subring of K, called the **valuation ring** of K. $\forall r \in (0,1], \{x \mid x < r\}$ and $\{x \mid x \leq r\}$ are open ideals of \mathcal{O} .

Moreover,
$$\mathcal{O}^x = \{x \mid |x| = 1\}.$$

Proposition 2. Let K be a valued field.

i. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) is Cauchy

Assume that K is complete

ii. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) converges

iii. Let $\sum_{n=0}^{\infty} y_n$ be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges

Definition. Let $R \subseteq S$ be rings. Then $s \in S$ is **integral over** R if \exists monic $f(x) \in R[x]$ s.t. f(s) = 0.

Proposition 3. Let $R \subseteq S$ be rings. Then $s_1, \ldots, s_n \in S$ are all integral over $R \iff R[s_1, \ldots, s_n] \subseteq S$ is a finitely generated R-module.

Corollary 4. let $R \subseteq S$ be rings. If $s_1, s_2 \in S$ are integral over R, then $s_1 + s_2$ and s_1s_2 are integral over R. In particular, the set $\tilde{R} \subseteq S$ of all elements in S integral over R is a ring, called the **integral closure** of R in S.

Definition. Let R be a ring. A topology on R is called a **ring topology** on R if addition and multiplication are continuous maps $R \times R \to R$. A ring with a ring topology is called a **topological ring**.

Definition. Let R be a ring, $I \subseteq R$ an ideal. A subset $U \subseteq R$ is called *I-adically open* if $\forall x \in U \exists n \geq 1 \text{ s.t. } x + I^n \subseteq U$.

Proposition 5. The set of all I-adically open sets form a topology on R, called the I-adic topology.

Definition. Let $R_1, R_2, ...$ be topological rings with continuous homomorphisms $f_n: R_{n+1} \to R_n \ \forall n \geq 1$. The **inverse limit** of the R_i is the ring

$$\varprojlim_{n} R_{n} = \left\{ (x_{n}) \in \prod_{n} R_{n} \mid f_{n}(x_{n+1}) = x_{n} \forall n \ge 1 \right\}$$

$$\subseteq \prod_{n} R_{n}$$

Proposition 6. The inverse limit topology is a ring topology.

Definition. Let R be a ring, I an ideal. The **I-adic completion** of R is the topological ring $\varprojlim_n R/I^n$ (R/I^n has the discrete topology, and $R/I^{n+1} \to R/I^n$ is the natural map).