[Total Marks: 60]

Total No. of Printed Pages:2

[Duration: Two Hours]

Instructions:

F.E. Semester –II (Revised Course 2016-17) EXAMINATION AUGUST 2021 Engineering Mathematics-II

1) Answer THREE FULL QUESTIONS with ONE QUESTION FROM

	2) Assume suitable data, if necessary 3) Figures to the right indicate full marks	
	PART-A	
Q.1 a)	Evaluate $\int_0^\infty \frac{\log_e(1+\alpha t^2)dt}{t^2}$ by applying differentiation under the integral sign.	7
	Find the length of the Cycloid $x = (\theta + \sin \theta)$, $y = (1 - \cos \theta)$ between $\theta = 0$ and $\theta = \pi$.	6
c)	Change the order of integration and evaluate $\int_0^1 \int_x^{2-x} 2x + 1 dy dx$	7
Q.2 a)	Evaluate $\int_0^1 (3t\overline{i} + 2\overline{k}) \times (t\overline{i} + 5\overline{j}) dt$	5
b)	Evaluate $\iiint \frac{dxdydz}{(x^2+y^2+z^2)}$ over the region $x^2+y^2+z^2 \le 4$, and $y \ge 0$, $z \ge 0$.	8
c)	Write a single integral and evaluate $\int_{-1}^{0} \int_{0}^{x+1} 3y + 2dxdy + \int_{0}^{1} \int_{0}^{1-x} 3y + 2dxdy$	7
Q.3 a)	Define curvature. Show that the curvature of $\overline{r(t)}$ =2cost \overline{t} +2sint \overline{j} is constant.	6
b)	Find the area of the surface generated by revolution of the curve $y = \sqrt{x+1}$, $0 \le x \le 4$ about the x-axis.	7
c)	Evaluate $\int_{-1}^{1} \int_{0}^{x} \int_{0}^{(x+y)} 2y + x \ dz dy dx$	6
	PART-B	
Q.4 a)	Find the directional derivative of $f(x, y, z) = x^2y + 2yz$ in the direction of $\hat{i} - \hat{j} + \hat{k}$ at the point $(1,-1,0)$.	5
b)	Find the work done in moving a particle in the force field $\bar{F} = (2y+3)\hat{i} + xz\hat{j} + (yz-2)\hat{k}$ along the curve $x = 2t^2$, $y = t$ and $z=t^2$ from $t=0$ to $t=1$.	5
c)	Solve the following i) $\frac{dy}{dx} = e^{2x-y} + 2xe^{-y}$ ii) $(1+x)\frac{dy}{dx} + y = x^2$	10

- Q.5 a) Verify Green's Theorem in a plane for $\oint (x + 4y^2)dx + (x^2 + 3)dy$ along the boundary 10 of the region $y \ge 0$, $y^2 \le x$ and $x \le 1$.
 - b) Solve the following 10
 - i) $(D^2 6D + 9)y = 2e^{3x}$
 - ii) $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = (\log_e x)^2$
- Q.6 a) Define curl of vector field. Find the curl of $\varphi(x, y, z) = 2xy\overline{\imath} + z\overline{\jmath} + y^2\overline{k}$.
 - b) Show that for a scaler field f and vector field φ div $(f\varphi)$ =fdiv $\varphi+\nabla f.\varphi$
 - c) Solve
 - i) $(D^2 + 4D + 3)y = xe^{2x}$
 - ii) $(D^2 + 4)y = 3sin2x$

PART-C

- Q.7 a) Find the length of $x = a(2cost cos2t) dy = a(2sint sin2t) om t = 0 to <math display="block"> t = \frac{\pi}{2}$. Where a is a constant.
 - b) Evaluate $\int_0^1 \int_0^x x e^{y/x} dy dx$ 5
 - c) Find the equation of the line normal to the surface $2x + 3z^2 y^2 = 10$ at the point (1,-2,2).
 - d) Solve $-(D^2 + 4D 12)y = \sin^2 x$
- Q.8 a) If $\overline{r(t)} = 2\cos t \hat{\imath} + 3t \hat{\jmath} + \sin t \hat{k}$ is the position vector of a particle in space at time 't' then 5 find it's velocity and acceleration vectors at $t = \frac{\pi}{2}$.
 - b) Evaluate $\int_0^{\pi/2} \int_0^{\pi} \int_0^{1+\cos\varphi} 3\rho \sin\varphi \, dp d\theta d\varphi$
 - c) Prove that for a scalar field φ , $Curl(\nabla \varphi) = 0$.
 - d) Solve $\frac{dy}{dx} y \tan x = y^4 \sec x$