Summary statistics

DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

Summarizing numerical data

```
dogs["height_cm"].mean().min(), .max()49.714285714285715.var(), .std().sum().quantile()
```

aggregate func

Summarizing dates

Oldest dog:

```
dogs["date_of_birth"].min()
```

```
'2011-12-11'
```

Youngest dog:

```
dogs["date_of_birth"].max()
```

'2018-02-27'

The .agg() method

```
def pct30(column):
    return column.quantile(0.3)

dogs["weight_kg"].agg(pct30)
```

22.59999999999998

quantile(0.10) -> the value below which the lowest 10% of the data lies

quantile(0.20) -> the value below which the lowest 20% of the data lies

Summaries on multiple columns

```
dogs[["weight_kg", "height_cm"]].agg(pct30)
```

```
weight_kg 22.6
height_cm 45.4
dtype: float64
```


Multiple summaries

Cumulative sum

dogs["weight_kg"]

```
0
     24
     24
     24
3
     17
     29
5
6
     74
Name: weight_kg, dtype: int64
```

```
dogs["weight_kg"].cumsum()

0    24
1    48
2    72
3    89
4    118
5    120
6    194
```

Name: weight_kg, dtype: int64

Cumulative statistics

- .cummax()
- .cummin()
- .cumprod()

Walmart

sales.head()

store type	dept date	weekly_sales	is_holiday	temp_c	fuel_price	unemp
0 1 A	1 2010-02-05	24924.50	False	5.73	0.679	8.106
1 1 A	2 2010-02-05	50605.27	False	5.73	0.679	8.106
2 1 A	3 2010-02-05	13740.12	False	5.73	0.679	8.106
3 1 A	4 2010-02-05	39954.04	False	5.73	0.679	8.106
4 1 A	5 2010-02-05	32229.38	False	5.73	0.679	8.106

Let's practice!

DATA MANIPULATION WITH PANDAS

Counting DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

Avoiding double counting

Vet visits

print(vet_visits)

	d o + o	nome	bbood	wojabt ka
	date	name	breed	weight_kg
0	2018-09-02	Bella	Labrador	24.87
1	2019-06-07	Max	Labrador	28.35
2	2018-01-17	Stella	Chihuahua	1.51
3	2019-10-19	Lucy	Chow Chow	24.07
	• • •	• • •	• • •	• • •
71	2018-01-20	Stella	Chihuahua	2.83
72	2019-06-07	Max	Chow Chow	24.01
73	2018-08-20	Lucy	Chow Chow	24.40
74	2019-04-22	Max	Labrador	28.54

Dropping duplicate names

vet_visits.drop_duplicates(subset="name")

	date	name	breed	weight_kg
0	2018-09-02	Bella	Labrador	24.87
1	2019-06-07	Max	Chow Chow	24.01
2	2019-03-19	Charlie	Poodle	24.95
3	2018-01-17	Stella	Chihuahua	1.51
4	2019-10-19	Lucy	Chow Chow	24.07
7	2019-03-30	Cooper	Schnauzer	16.91
10	2019-01-04	Bernie	St. Bernard	74.98
(6	2019-06-07	Max	Labrador	28.35)

Dropping duplicate pairs

```
unique_dogs = vet_visits.drop_duplicates(subset=["name", "breed"])
print(unique_dogs)
```

	date	name	breed	weight_kg
0	2018-09-02	Bella	Labrador	24.87
1	2019-03-13	Max	Chow Chow	24.13
2	2019-03-19	Charlie	Poodle	24.95
3	2018-01-17	Stella	Chihuahua	1.51
4	2019-10-19	Lucy	Chow Chow	24.07
6	2019-06-07	Max	Labrador	28.35
7	2019-03-30	Cooper	Schnauzer	16.91
10	2019-01-04	Bernie	St. Bernard	74.98

Easy as 1, 2, 3

```
unique_dogs["breed"].value_counts()
```

```
Labrador 2
Schnauzer 1
St. Bernard 1
Chow Chow 2
Poodle 1
Chihuahua 1
Name: breed, dtype: int64
```

```
unique_dogs["breed"].value_counts(sort=True)
```

```
Labrador 2
Chow Chow 2
Schnauzer 1
St. Bernard 1
Poodle 1
Chihuahua 1
Name: breed, dtype: int64
```

Proportions

```
unique_dogs["breed"].value_counts(normalize=True)
```

```
Labrador 0.250
Chow Chow 0.250
Schnauzer 0.125
St. Bernard 0.125
Poodle 0.125
Chihuahua 0.125
Name: breed, dtype: float64
```

Let's practice!

DATA MANIPULATION WITH PANDAS

Grouped summary statistics

DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

Summaries by group

```
dogs[dogs["color"] == "Black"]["weight_kg"].mean()
dogs[dogs["color"] == "Brown"]["weight_kg"].mean()
dogs[dogs["color"] == "White"]["weight_kg"].mean()
dogs[dogs["color"] == "Gray"]["weight_kg"].mean()
dogs[dogs["color"] == "Tan"]["weight_kg"].mean()
```

```
26.0
24.0
74.0
17.0
2.0
```

Grouped summaries

```
dogs.groupby("color")["weight_kg"].mean()
```

```
color
Black    26.5
Brown    24.0
Gray    17.0
Tan     2.0
White    74.0
Name: weight_kg, dtype: float64
```

Multiple grouped summaries

```
dogs.groupby("color")["weight_kg"].agg([min, max, sum])
```

```
min
           max
                SUM
color
Black
       24
            29
                 53
            24
Brown
       24
                 48
      17
            17 17
Gray
Tan
White
       74
            74
                 74
```

```
counted_df = licenses_owners.groupby("title").agg({'account':'count'})
-> apply the count func on the account col..for each title group
```

Grouping by multiple variables

```
dogs.groupby(["color", "breed"])["weight_kg"].mean()
```

```
color
      breed
Black Chow Chow
                     25
      Labrador
                     29
      Poodle
                     24
      Chow Chow
Brown
                     24
      Labrador
                     24
      Schnauzer
                     17
Gray
Tan
      Chihuahua
White St. Bernard
                     74
Name: weight_kg, dtype: int64
```

Many groups, many summaries

```
dogs.groupby(["color", "breed"])[["weight_kg", "height_cm"]].mean()
```

		weight_kg	height_cm
color	breed		
Black	Labrador	29	59
	Poodle	24	43
Brown	Chow Chow	24	46
	Labrador	24	56
Gray	Schnauzer	17	49
Tan	Chihuahua	2	18
White	St. Bernard	74	77

Let's practice!

DATA MANIPULATION WITH PANDAS

Pivot tables

DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

Group by to pivot table

```
dogs.groupby("color")["weight_kg"].mean()
```

```
color
Black 26
Brown 24
Gray 17
Tan 2
White 74
Name: weight_kg, dtype: int64
```

Different statistics

```
import numpy as np
dogs.pivot_table(values="weight_kg", index="color", aggfunc=np.median)
```

```
      weight_kg

      color

      Black
      26.5

      Brown
      24.0

      Gray
      17.0

      Tan
      2.0

      White
      74.0
```

Multiple statistics

```
dogs.pivot_table(values="weight_kg", index="color", aggfunc=[np.mean, np.median])
```

```
median
           mean
      weight_kg weight_kg
color
Black
           26.5
                      26.5
           24.0
                      24.0
Brown
           17.0
                      17.0
Gray
                       2.0
Tan
            2.0
White
           74.0
                      74.0
```

Pivot on two variables

```
dogs.groupby(["color", "breed"])["weight_kg"].mean()
```

```
dogs.pivot_table(values="weight_kg", index="color", columns="breed")
```

color Black NaN NaN 29.0 24.0 NaN NaN
Black NaN NaN 29.0 24.0 NaN NaN
Beach Hait 2710 2110 Hait Hait
Brown NaN 24.0 24.0 NaN NaN NaN
Gray NaN NaN NaN 17.0 NaN
Tan 2.0 NaN NaN NaN NaN NaN
White NaN NaN NaN NaN 74.0

Filling missing values in pivot tables

```
dogs.pivot_table(values="weight_kg", index="color", columns="breed", fill_value=0)
```

breed	Chihuahua	Chow Chow	Labrador	Poodle	Schnauzer	St. Bernard	
color Black	0	0	29	24	0	0	
Brown	0	24	24	0	0	0	
Gray	0	0	0	0	17	0	
Tan	2	0	0	0	0	0	
White	0	0	0	0	0	74	

Summing with pivot tables

~ column

breed color	Chihuahua	Chow Chow	Labrador	Poodle	Schnauzer	St. Bernard	All
Black	0	0	29	24	0	0	26.500000
Brown	0	24	24	0	0	0	24.000000
Gray	0	0	0	0	17	0	17.000000
Tan	2	0	0	0	0	0	2.000000
White	0	0	0	0	0	74	74.000000
All	2	24	26	24	17	74	27.714286

Let's practice!

DATA MANIPULATION WITH PANDAS

