### Week 8 Angles, triangles, and trigonometry Continued Lecture Note

Notebook: Computational Mathematics

**Created:** 2020-04-21 2:48 PM **Updated:** 2020-05-14 4:31 PM

Author: SUKHJIT MANN

#### **Cornell Notes**

### Topic:

Sequences and Series Continued Course: BSc Computer Science

Class: Computational Mathematics[Lecture]

Date: May 14, 2020

#### **Essential Question:**

What are angles and what is trigonometry and how are these related to the study of triangles?

#### **Questions/Cues:**

- What is an example of Pythagoras theorem applied?
- What is an example of the Law of Sines applied?
- What is an example of the Law of Cosines applied?

#### Notes

# Examples: Triangle Rectangle Isosceles



$$a^2+b^2=2a^2=h^2$$
 Pithagora's theorem

$$\rightarrow$$
 a=h/√2  
a/h=1/√2= Sin(45°)

→Sin(45°)= 
$$1/\sqrt{2} = \sqrt{2}/2$$

What is the length of the righthand side of the larger triangle?



- → 1cm/X=2.5cm/5cm
- → X=2cm

# **Examples: Generic Triangle**

a=8 cm b=3 cm 
$$\alpha$$
=58° c? Note: Sin(58°)= 0.848

Use sine ratio: a/  $Sin(\alpha) = b/Sin(\beta) = c/Sin(\gamma)$ 

$$\rightarrow$$
 Sin( $\beta$ )=b Sin( $\alpha$ )/a  $\rightarrow$  Sin( $\beta$ )= 3×0.848/8=0.318

$$\rightarrow \beta = Sin^{-1}(0.318) = 18.54^{\circ}$$

$$\rightarrow \gamma = 180^{\circ} - 18.54^{\circ} - 58^{\circ} = 103.46^{\circ}$$

but  $c/Sin(\gamma) = a/Sin(\alpha)$ 

$$\rightarrow$$
 c=a Sin( $\gamma$ )/Sin( $\alpha$ )=8×0.97/0.848=9.15cm



# **Examples: Generic Triangle**

a=6 cm b=4 cm c=3cm 
$$\alpha$$
=?

Use cosine rule: 
$$a^2=b^2+c^2-2bc Cos(\alpha)$$

$$\rightarrow$$
 Cos( $\alpha$ )= $\frac{b^2+c^2-a^2}{2bc}$ = $\frac{16+9-36}{24}$ = $-0.458$ 

$$\rightarrow \alpha = \text{Cos}^{-1}(-0.458) = 117.3^{\circ}$$



### Summary

In this week, we learned how apply Pythagoras theorem, Sine law and Cosine law to a triangle.