軟X線を用いた高エネルギー電子分布計測と 二次元画像再構成手法の開発

小野靖研究室 奥西 衛門

東京大学工学部工学部電気電子工学科

目次[·]

- 1. 背景
- 2. 目的
- 3. 実験装置
- 4. 再構成原理
- 5. シミュレーション
- 6. TS実験結果
- 7. 結論

1.背景

核融合と磁気リコネクション

究極の次世代エネルギー源

 $D + T \rightarrow He(3.5MeV) + n(14.1MeV)$

十分なプラズマ加熱が課題

磁力線のつなぎ替わり過程:Sweet-Parkerモデル

再結合磁場のエネルギーの一部が,荷電粒子の熱・運動エネルギーに変換される:

- アルヴェン速度に近いアウトフローによるプラズマ加速(イオン)
- 電流シート電界によるプラズマ加速とオーム加熱(電子)

2.目的

リコネクションによる電子の局所加熱

目的

加熱領域が最大であるダウンストリーム加熱に加えて、未知の小さな加熱である X点加熱、セパラトリクス加熱、波乗り加速を観測し、加熱機構を解明したい。

従来より解像度の高い再構成手法の開発

X線によるエネルギー別の電子密度測定 静電プローブによる電子温度,電子密度計測 本日の発表

今後に予定

3.実験装置

プラズマ合体装置TS-6

TS-6断面

大円周方向(トロイダル方向)と 小円周方向(ポロイダル方向)に磁場を印加

z+,z - それぞれの領域に トーラスプラズマを生成

中間部z=0において合体

ポロイダル断面の磁場分布 | 黒線は磁力線

開発中の多視点軟X線ステレオカメラ

4.再構成原理

正則化による偽ピークの抑制

プラズマの軸対称性を仮定し、二次元ラドン変換によって再構成を行う:

観測信号
$$g = Hf + e$$
 雑音
重み行列 再構成対象

ペナルティ関数正則化法は、以下の量Qを最小化するfを再構成像として選択する:

$$Q(f) = (粗さ) + (二乗誤差) = \gamma P(f) + \frac{1}{M} ||Hf - g||^2$$

Tikhonov-Phillips正則化法(線形再構成)

$$P(f) \rightarrow \int_{D} |\nabla^{2} f(r)|^{2} dr \sim |Cf|^{2}$$
 未定乗数法より, $\hat{f} = (H^{T}H + M\gamma C^{T}C)^{-1}H^{T}g$

最小Fishier情報量法(非線形再構成)

$$P(f) \to \int_D \frac{|\nabla^{\mathrm{n}} f(r)|^2}{f(r)} dr$$

 $f \sim 0$ において強い正則化 \rightarrow 誤差による偽ピークの抑制

$$f^{(n+1)} = \left(H^T H + M \gamma C^T W^{(n)} C\right)^{-1} H^T g$$
 $W_{i,j}^{(n)} = rac{\delta_{i,j}}{f_i^{(n)}} for \ f > 0;$ $W_{i,j}^{(n)} = W_{max} for \ f \leq 0;$

フィルタリングによるノイズの低減

非線形平均(NLM)フィルタ

注目画素pに対して検索ウィンドウSを定め、S中の画素qの重み付けを行う:

$$p \to \Sigma_{q \in S} w(p,q) * q$$

$$w(p,q) = \frac{1}{Z(p)} \exp\left(-\frac{\max\left(\left||v(p)-v(q)|\right|^2 - 2\sigma^2, 0\right)}{\sigma^2}\right), (Zは規格化定数)$$

小さな加熱のスムージングを抑えな がらノイズを低減することが期待でき る

- 類似度の高い画素に大きな重み
- ノイズの分散 σ^2 の推定が必要
- エッジ保存型フィルタ

5.シミュレーションによる評価

フィルタリングと非線形再構成の有効性

6.実験における再構成結果

新手法による改善(1):局所判別性の向上

従来手法との比較

黒線は磁力線, 色は発光分布を表す; TF4kV, PF38kV: Mylar 1μm

- ① 偽ピークの低減:X点付近まで広がっていた発光が抑えられている
- ② 判別性の改善:ダウンストリーム加熱の大きなピークの中でも, z軸負の領域が高温である ことが見て取れる

新手法による改善(2):局所加熱の検出

フィルタと非線形再構成による時間発展:Mylar 1μm

7.結論

結論

従来より解像度の高い再構成手法を開発

- 最小Fisher情報量を用いた非線形再構成がオフ ピーク領域の再構成誤差を27%低下させる
- NLMフィルタがピーク領域の再構成誤差を20%低下 させる

今後の研究

再構成ソフトウェアの空間分解能試験

• ピーク幅とノイズS/Nの影響

静電プローブによる電子温度, 電子密度計測

• トリプルプローブの作成

X線によるエネルギー別の電子密度測定

X線フィルタの厚さをパラメータとしたスキャン

MCPの増設による6視点X線計測

フィルタなし,線形 NLM,非線形 0.8 「ne of the property of

お聞きいただきありがとうございました。

8.補足

再構成原理(1): 非線形再構成

重み行列Hの決定

i番目の投影像画素に対するj番目の分布画素の重みを H_{ij} にもつ行列Hは、視線を点列とみなしたときの、画素中に含まれる点の数によって決定する。

正則化パラメータγの決定:最小GCV基準

γは次の量が最小になる値に定める:

$$GCV(\gamma) = \frac{\epsilon}{1 - \frac{1}{M} \sum \frac{\sigma_i^2}{\sigma_i^2 + \gamma M}}$$

 γ が大きすぎると二乗誤差 ϵ が増加, GCVが増大

 γ が小さすぎると分母がOに近づき、GCVが増大

再構成原理(2):非線形平均フィルタ

ノイズの標準偏差の推定: John Immerkærの方法

画像のエッジに対して不感となるノイズ推定作用素Nを考える

各ピクセルのノイズがもつ標準偏差 σ_n を推定する

$$I_{xy} * N \equiv \sum_{\substack{j=-1,0,1\\i=-1,0,1}} I(x+i,y+j) * N_{ij}$$
$$\sigma_n^2 = \frac{\sum (I_{xy} * N)^2}{36(W-2)(H-2)}$$

ファントムテスト: 単純平均フィルタ

フィルタリング

画像再構成

