MADAB DATA VISUALIZATION

GRAPH LAYOUTS

Instructor: Rossano Schifanella

MOTIVATION

http://vidi.cs.ucdavis.edu/projects/AggressionNetworks/

 $\underline{http://vidi.cs.ucdavis.edu/projects/AggressionNetworks/}$

http://vidi.cs.ucdavis.edu/projects/AggressionNetworks/

http://vidi.cs.ucdavis.edu/projects/AggressionNetworks/

CONSIDERATIONS

What considerations should we make when visualizing graphs?

Hairballs

http://www.michelecoscia.com/?p=171

Hairballs

http://www.nytimes.com/imagepages/2008/11/20/science/20mammoth.ready.html

Considerations

- Node Layout
 - Place randomly?
 - -Place on grid?
 - Place by metric?
 - Place using physics?
- Node Attributes
 - -Color?
 - -Size?
 - -Shape?

- Edge Layout
 - -Straight edges?
 - -Curved edges?
 - -Edge crossings?
 - -Edge bundling?
- Edge Attributes
 - -Color?
 - -Width?
 - -Arrows?

Considerations

- Non overlapping nodes?
- Visible labels?
- Minimize edge crossings?
- Minimize distance between nodes?
- View overall structure?
- View connections and connectivity?
- View detailed subgraphs?

MATRIX DIAGRAMS

Matrix Diagrams

Figure 3: Data dependent topology demonstrated by molecular dynamics simulator NAMD under different molecular arrangements. The number of bytes sent between ranks is linearly mapped from dark blue (lowest) to red (highest), with white indicating an absence of communication.

Les Misérables Co-Occurrence

http://bost.ocks.org/mike/miserables/

Compressed Adjacency Matrix

NODE LAYOUT

Common Graph Layouts

- Arc Diagrams
- Circle Layout
- Spring and Force-Directed Layouts
- Self-Organizing Map Layout
- Fruchterman Reingold Layout
- Kamada Kawai Layout
- Hive Plots
- Multi-Level Layouts

Arc Diagram

http://www.turbulence.org/Works/song/method/method.html

Arc Diagram

THE SHAPE OF SONG

What the diagrams mean | Image gallery | Home | Contact

http://www.turbulence.org/Works/song/mono.html

Arc Diagram in Protovis

http://mbostock.github.io/protovis/ex/arc.html

Similar Diversity

http://similardiversity.net/about/

aNETmation

Stopping Random Spider visualization. Click "Start Visualization" to restart.

http://www.phien.org/ucdavis/grad/projects/anetmation/

Force Directed Layout in D3

http://bl.ocks.org/mbostock/4062045

HIVE PLOTS

Hive Plots

- What are hive plots?
 - Network layout algorithm using per-node network properties for no deplacement
 - A radially-arranged parallel coordinate plot
- Why use hive plots?
 - -Repeatable, comparable network layouts
 - Shows network properties with topology

Motivation

Subset of the human protein-protein interaction network rendered by Cytoscape. Each visualization uses the same layout (spring embedded), using the previous as a starting point.

Rual et al., Nature 437(7062):1173-8.

http://www.hiveplot.net/talks/hive-plot.pdf

Initial Network

Simple network with node weights and a self-loop.

Axis Layout

Three axis bars guarantee no edge crossings across axes. Divide node weight range between axes.

Node Layout

Place nodes on axis lines according to weight.

Edge Layout

Connect nodes together accordingly.

Self Loops

Clone axis lines to show self-loops in network.

Final Layout

Hive Plots

http://dl.acm.org/citation.cfm?id=2379698

Hive Panels

http://dl.acm.org/citation.cfm?id=2379698

Hive Plots in D3

http://bost.ocks.org/mike/hive/

EDGE LAYOUT

Edge Crossings

- Planar Graph
 - -"A graph is planar if it can be drawn in a plane without graph edges crossing."
- If the graph is not planar, it is impossible to draw without edge crossings.
- Trees are planar graphs.

http://mathworld.wolfram.com/PlanarGraph.html

Planarity Game

http://www.planarity.net/

Planarity Game

Score: 0 Level: 1

http://www.planarity.net/

Planarity Game

http://www.planarity.net/

Curved Edges

Figure 1: Two interacting edges P and Q. The spring forces $\mathbf{F_s}$ and the electrostatic force $\mathbf{F_e}$ that are exerted on subdivision point p_2 by p_1 , p_3 , and q_2 are shown.

Figure 4: Bundling edges that differ considerably in length can result in noticeable stretching and curving of short edges. Original edges, curved edges and attracting forces are shown in black, blue, and red, respectively.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

Figure 7: US airlines graph (235 nodes, 2101 edges) (a) not bundled and bundled using (b) FDEB with inverse-linear model, (c) GBEB, and (d) FDEB with inverse-quadratic model.

http://mbostock.github.io/d3/talk/20111116/bundle.html

http://mbostock.github.io/d3/talk/20111116/bundle.html

QUESTIONS?

Thanks to Sophie J. Engle San Francisco University

for ideas, suggestions, slides, links, and much other stuff