

Grado en Física

Facultad de Ciencias

Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal

Electromagnetismo II

1 de julio de 2020

- 1.- Dado el circuito de la figura, determinar:
 - (a) Las intensidades que circulan por cada rama utilizando el método de las corrientes de malla.
 - (b) El circuito equivalente de Thevenin de la parte de circuito entre los terminales A y B (al eliminar la autoinducción de reactancia i).
 - (c) La intensidad que circula por la reactancia j entre A y B utilizando el equivalente de Thevenin calculado en el apartado (a).
 - (d) Comprobar que se cumple el teorema de Boucherot o principio de conservación de las potencias complejas en el circuito de una malla correspondiente al apartado (b).

(2 puntos)

- **2.-** La conductividad del agua de mar para una onda electromagnética plana de muy baja frecuencia de 100 Hz es alrededor de 4.3 $(\Omega \cdot m)^{-1}$. Suponiendo que $\mu = \mu_0$ y $\varepsilon \approx 80\varepsilon_0$, determinar:
 - (a) Si el agua de mar se comporta como un buen o como un mal conductor a esa frecuencia.
 - (b) La profundidad de penetración en el agua de mar de una onda a esa frecuencia.
 - (c) La profundidad a la cual la intensidad de la onda electromagnética vale un 20% de su valor inicial.
 - (d) El ángulo de desfase entre los campos eléctrico y magnético de la onda electromagnética.

(1.5 punto)

- 3.- Una onda electromagnética plana de frecuencia angular ω se propaga en la dirección positiva del eje x en el vacío. La onda está polarizada linealmente en la dirección del eje y, y la amplitud del campo eléctrico es E_0 .
 - (a) Escribir los vectores campo eléctrico $\mathbf{E}(x,y,z,t)$ y magnético $\mathbf{B}(x,y,z,t)$ en función de E_0 , ω y constantes de la naturaleza. Tomar la fase inicial igual a cero.
 - (b) La misma onda se observa desde otro sistema inercial S' que se mueve en la dirección del eje x con velocidad constante v respecto al sistema original S. Utilizando las ecuación de transformación de los campos entre los sistemas S y S', escribir los vectores campo eléctrico $\mathbf{E}'(x',y',z',t')$ y magnético $\mathbf{B}'(x',y',z',t')$.

- (c) ¿Cuál es la frecuencia ω ' de la onda en el sistema S' en función de la frecuencia ω en el sistema S? Interpretar el resultado. ¿Cuál es la longitud de onda λ ' de la onda en el sistema S'? A partir de los valores de λ ' y ω ', determinar la velocidad de propagación de la onda electromagnética en el sistema S'.
- (d) Sabiendo que la intensidad I es proporcional a la amplitud del campo eléctrico al cuadrado, ¿cuál es la relación de intensidades I' e I en los sistemas S' y S? ¿Qué le sucede a la amplitud, la frecuencia y a la intensidad de la onda cuando la velocidad v tiende a la velocidad de la luz c?

(2 puntos)

4.- Analogías y diferencias entre las ondas electromagnéticas planas que se propagan en un medio dieléctrico y en uno conductor, considerando éstos como medios ilimitados.

(1 punto)

- 6.- Un anillo circular aislado de radio b se encuentra en el plano xy, centrado en el origen. El anillo transporta una densidad lineal de carga $\lambda = \lambda_0 \cos \phi$, donde λ_0 es constante y ϕ es el ángulo azimutal usual. El anillo ahora gira con velocidad angular constante ω alrededor del eje z., en sentido antihorario. Determinar:
 - (a) El momento dipolar eléctrico del anillo $\vec{\mathbf{p}}_0$ en el instante t = 0.
 - (b) El momento dipolar eléctrico del anillo $\vec{\mathbf{p}}(t)$ en un instante cualquiera t > 0.
 - (c) La potencia radiada.

(1.25 punto)

7.- Determinar la potencia radiada por un electrón ultrarrelativista que se mueve en una órbita circular en función de su velocidad v y su radio R. Sustituir los valores numéricos de las constantes. Evaluar numéricamente esta expresión para un electrón de energía 10 GeV en una órbita de radio 20 m y encontrar la energía perdida por radiación en cada revolución. ¿Sería fácil suministrar varias veces esta energía perdida para obtener una aceleración neta a esta velocidad? [Energía del electrón $E = m\gamma c^2$ con $mc^2 = 0.511$ MeV.]

(1.25 punto)

8.- Invariancia gauge de la acción y ley conservación de la carga.

(1 punto)