Sliced Inverse Regression for Dimension Reduction

Ker-Chau Li

JASA, 1991

Outline

- 1 Introduction
- 2 A model for dimension reduction
- 3 The inverse regression curve
- 4 Sliced inverse regression
- 5 Sampling properties
- 6 Simulation results
- 7 Descriptive statistics and SIR (Conclusion)

Introduction

- Why dimension reduction?
 - ► MLE for parametric model
 - ▶ Then nonparametric model for more flexible assumptions
 - ▶ Local smoothing in nonparametric theme
 - lacktriangle Dimensionality grows ightarrow need dimension reduction
- ▶ In this paper, consider the ideal case

$$y = f(\beta_1^T \mathbf{x}, \beta_2^T \mathbf{x}, \dots, \beta_K^T \mathbf{x}, \epsilon)$$
 (1)

 \triangleright β 's unknown, ϵ independent of \mathbf{x} , f arbitrary unknown function

Introduction

- ▶ When K is small, we achieve the goal of data reduction
- ▶ Call the linear space \mathcal{B} generated by the β 's the effective dimension reduction (e.d.r.) space, and any direction within \mathcal{B} the e.d.r. direction
- ▶ This serves as a pre-analysis step of data reduction
- Goal in this paper: estimate the e.d.r. directions
- \blacktriangleright Method: inverse regression, regress \mathbf{x} against y
- ▶ $E(\mathbf{x}|y)$ coincides with the e.d.r. space \mathcal{B} , under some conditions

A model for dimension reduction

- ► This section describes what to implement after SIR data reduction
- Let $\sum_{\mathbf{x}\mathbf{x}}$ be the covariance matrix of \mathbf{x} . Let $\mathbf{z} = \sum_{\mathbf{x}\mathbf{x}}^{-1/2} (\mathbf{x} E(\mathbf{x}))$ be the standardized version. Let $y = f(\eta_1^T \mathbf{z}, \dots, \eta_K^T \mathbf{z}, \epsilon)$, where $\eta_k = \sum_{\mathbf{x}\mathbf{x}}^{1/2} \beta_k$. Call the space generated by the η 's a standardized e.d.r. space
- ► The criterion to evaluate the effectiveness of an estimated e.d.r. direction, which is invariant under scale change

$$R^{2}(\mathbf{b}) = \max_{\beta \in \mathcal{B}} \frac{(\mathbf{b}^{T} \sum_{\mathbf{xx}} \beta)^{2}}{\mathbf{b}^{T} \sum_{\mathbf{xx}} \mathbf{b} \cdot \beta^{T} \sum_{\mathbf{xx}} \beta}$$
(2)

The inverse regression curve

- ▶ Condition 3.1 For any **b**, the conditional expectation $E(\mathbf{b}^T\mathbf{x}|\beta_1^T\mathbf{x},\ldots,\beta_K^T\mathbf{x})$ is linear in $\beta_1^T\mathbf{x},\ldots,\beta_K^T\mathbf{x}$. That is, for some constants, c_0,c_1,\ldots,c_K , $E(\mathbf{b}^T\mathbf{x}|\beta_1^T\mathbf{x},\ldots,\beta_K^T\mathbf{x}) = c_0 + c_1\beta_1^T\mathbf{x} + \cdots + c_K\beta_K^T\mathbf{x}$
- ► The above condition is satisfied when the distribution of **x** is elliptically symmetric (normal distribution)
- ▶ **Theorem 3.1** Under (1) and Condition 3.1, the centered inverse regression curve $E(\mathbf{x}|y) E(\mathbf{x})$ is contained in the linear subspace spanned by $\sum_{\mathbf{x}\mathbf{x}} \beta_k$
- ► Corollary about the standardized version

The inverse regression curve

- ▶ An important consequence: $cov[E(\mathbf{z}|y)]$ is degenerate in any direction orthogonal to \mathcal{B}
- ▶ Thus, the eigenvectors associated with the largest K eigenvalues of $cov[E(\mathbf{z}|y)]$ are the standardized e.d.r. directions
- ▶ By law of total variation, $E[cov(\mathbf{z}|y)] = I cov[E(\mathbf{z}|y)]$, we can estimate $E[cov(\mathbf{z}|y)]$ by the SIR algorithm introduced later, and eigenvalue decompose it. Then the eigenvectors associated with the smallest K eigenvalues are the e.d.r. directions

Sliced inverse regression

- ▶ The SIR algorithm, based on the sample (y_i, \mathbf{x}_i) ; i = 1, ..., n, is
 - 1 Standardize x
 - 2 Divide range of y into H slices, I_1, \ldots, I_H ; let the proportion of the y_i that falls in slice h be \hat{p}_h . That is, $\hat{p}_h = \frac{1}{n} \sum_{i=1}^n \delta_h(y_i)$, where $\delta_h(y_i)$ is the indicator function of whether y_i falls into the h^{th} slice or not.
 - 3 Within each slice, compute the sample mean of the \mathbf{x}_i 's, $\hat{\mathbf{m}}_h$.
 - 4 Conduct a (weighted) PCA for the data $\hat{\mathbf{m}}_h$ in the following way: Form the weighted covariance matrix $\hat{V} = \sum_{h=1}^{H} \hat{p}_h \hat{\mathbf{m}}_h \hat{\mathbf{m}}_h^T$, then find the eigenvalues and the eigenvectors for \hat{V} .
 - 5 Let the K largest eigenvectors be $\hat{\eta}_k$. Output $\hat{\beta}_k = \hat{\sum}_{xx}^{-1/2} \hat{\eta}_k$.

Sampling properties

- ▶ It is shown the output of SIR provides a root *n* consistent estimates for the e.d.r. directions, in this section
- The method used is basic statistics
- ▶ A simple approximation to $R^2(\mathbf{b})$ is given by

$$E[R^{2}(\hat{\mathcal{B}})] = 1 - \frac{p - K}{n} \left(-1 + \frac{1}{K} \sum_{k=1}^{K} \frac{1}{\lambda_{k}}\right) + o\left(\frac{1}{n}\right)$$
(3)

- ▶ In practice, substitute the k^{th} largest eigenvalue of \hat{V} for λ_k
- ▶ **Theorem:** If **x** is normally distributed, then $n(p-K)\bar{\lambda}_{(p-K)}$ asymptotically follows a χ^2 distribution with df (p-K)(H-K-1). Here $\bar{\lambda}_{(p-K)}$ is the average of the smallest p-K eigenvalues of V

- Behavior of the SIR estimates
- ▶ Model 1 setup: K = 1, $y = x_1 + x_2 + x_3 + x_4 + 0x_5 + \epsilon$
- ▶ n = 100, p = 5, ϵ follows *i.i.d.* normal distribution, independent of **x**
- ▶ 100 replicates, *H* = 5, 10, 20
- $\beta = (0.5, 0.5, 0.5, 0.5, 0)^T$

Table 1. Mean and Standard Deviation* of $\hat{\beta}_1 = (\hat{\beta}_{11}, ..., \hat{\beta}_{15})$ for the linear model (6.1), n = 100; the Target is (.5, .5, .5, .5, .0)

Н	\hat{eta}_{11}	\hat{eta}_{12}	\hat{eta}_{13}	\hat{eta}_{14}	$\hat{eta}_{\scriptscriptstyle 15}$
5	.505	.498	.494	.488	.002
	(.052)	(.049)	(.056)	(.056)	(.066)
10	.502	.500	.492	.491	.001
	(.046)	(.045)	(.055)	(.049)	(.060)
20	.500	.502	.497	.487	003
	(.048)	(.046)	(.053)	(.054)	(.060)

- Behavior of the SIR estimates
- ► Model 2 setup: $y = x_1(x_1 + x_2 + 1) + \sigma \cdot \epsilon$
- ▶ n = 400, p = 10, the rest x_i 's follow i.i.d. normal distribution, independent of x_1 and x_2
- $\sigma = 0.5$ and 1
- ► Model 3 setup: $y = \frac{x_1}{0.5 + (x_2 + 1.5)^2} + \sigma \cdot \epsilon$

Table 2. Mean and Standard Deviation of $R^2(\hat{\beta}_1)$ and $R^2(\hat{\beta}_2)$ for the Quadratic Model (6.2), p=10, n=400

Н	$\sigma = 0.5$		$\sigma = 1$	
	$R^2(\hat{\beta}_1)$	R²(β̂₂)	$R^2(\hat{\beta}_1)$	$R^2(\hat{\beta}_2)$
5	.91	.75	.88	.52
	(.05)	(.15)	(.07)	(.21)
10	.92	.80	.89	(.21) .55
	(.04)	(.13)	(80.)	(.24)
20	.93	`.77	.88	(.24) .49
	(.04)	(.15)	(80.)	(.26)

Figure:

- Eigenvalues
- Recall the only theorem in the paper
- ▶ The big table 4 in the paper assures that under the normal distribution, the theorem can be applied in practice to help determine what *K* should be, after the SIR algorithm.

- Graphics
- ▶ Due to lack of powerful plot tools, I cannot tell too much from the figures in the paper...

