Gibbs Sampling for the Un-initiated

As if this needs a subtitle

Prof. Dr. FirstName LastName

email@some-cool-place.ext
http://www.cool-url.com

February 12, 2021

unilogo

Outline

Introduction

Awesome subsection

Some nice subsection

Another Section

- 1 Introduction
 - Awesome subsection
 - Some nice subsection

2 Another Section

unilogo

Some awesome frame title but not too long That is what the subtitle is for

Introduction

Awesome subsection Some nice subsection

Another Section

- First thing
 - small point
 - fine print
- Second thing
 - 1 point 1
- Third thing

Research the scientific pursuit for knowledge

Blocks

Introduction
Awesome subsection

Awesome subsection Some nice subsection

Another Section

Definition (Greetings)

Hello World

Theorem (Fermat's Last Theorem)

 $a^n + b^n = c^n, n \le 2$

Uh-oh.

By the pricking of my thumbs.

Uh-oh.

Something evil this way comes.

Notation

roduction

Awesome subsection Some nice subsection

Another Section

Definition (Random Variable)

Consider Ω, F, μ , with Ω being the set of events, F the σ -algebra on Ω and some arbitrary measure μ . Further consider an observation space $\Omega', F', \mu'...$ A random variable is a deterministic function that 'transports/maps' events from Ω to Ω' and effectively induces a new measure μ' . When $\mu'(\Omega')=1$, it is a probability measure.

unilogo