Shadows and Transparency

Foley & Van Dam, Chapter 16

Shadows and Transparency

- Shadows
 - Object and Image Precision Algorithms
 - Two-Pass z-Buffer Shadow Algorithm
- Transparency
 - Nonrefractive Transparency
 - Refractive Transparency

Shadows

 A shadow covers surfaces that are not "visible" by the light source while being visible by the viewer

Shadows

- Intuition: hidden surface detection and shadow generation are in practice the same problem
- Illumination equation for m sources, and including attenuation and shadows:

$$I = I_a K_a + \sum_{1 \le i \le m} S_i f_{att_i} I_p \left(K_d \left(\overline{N} \cdot \overline{L} \right) + K_s \left(\overline{R} \cdot \overline{V} \right)^n \right)$$

where

$$S_i = \begin{cases} 0, & \text{if light } i \text{ is blocked at this point;} \\ 1, & \text{otherwise} \end{cases}$$

Observation: ambient light is not affected by shadows and attenuation

Shadows and Transparency

- Problem: to compute for each point and for each light source, the function S_i in illumination equation
- As in the case of hidden surface detection, shadow algorithms can be object or image precision
- A hidden surface detection algorithm can be easily adapted to shadows calculation

Z-Buffer Shadow Generation

Algorithm:

- Render the scene from the light source "view point" and save the Z depth z_L
- Render the scene again from the observer view point and save the Z depth z₀
- Transform each pixel into light source coordinates and compare the Z values z_L and z₀
- If z_L is closer to the light than z₀, than there is something blocking the light and the pixel is shaded (S_i=0).
 Otherwise the pixel is illuminated (S_i=1)

Z-Buffer Shadows Generation

Example:

Overview

Light's Z-buffer

Observer's Z-buffer

Observer's Image

With shadows

Transparency

- A transparent surface produces both, reflected and transmitted light
- The relative contribution of transmitted light depends on the degree of transparency of the surface

$$I = (1-K_1)I_1 + K_1I_2$$

K₁ is the transmission coefficient

- $-K_1=0$ for an opaque surface
- K₁= 1 if the surface is completely transparent

NonrefractiveTransparency

Interpolated transparency

$$I = (1-K_1) I_1 + K_1 I_2$$

K₁ is the transmission coefficient of surface 1

Filtered transparency

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{K}_{1\lambda} \mathbf{I}_2$$

 $\mathbf{K}_{1\lambda}$ is the transparency color of surface 1. Depends on wavelength λ

RefractiveTransparency

- Geometrical and optical lines of sight are different
- Harder to model than nonrefractive transparency

Refraction angle depends on both material and wavelength

Geometrical of Optical

• Snell's Law: $\frac{\sin \theta_i}{\sin \theta_t} = \frac{\eta_{t\lambda}}{\eta_{i\lambda}}$

where $\eta_{i\lambda}$ and $\eta_{t\lambda}$ are the refraction indices of the materials for the wavelength λ

Transparency

• Example:

