

FORECASTING DEMAND

Austin Dowd

- Student at Western Governor's University
- Master of Science, Data Analytics
- Current Role: Marketing Analytics
- IoT Connectivity enabling wireless smart device infrastructure

THE SUPPLY CHAIN

- Perishable goods have a limited shelf life and getting them through production to customers right when they need them is a challenge at every level of the supply chain.
- The ability to foresee demand for perishable goods gives business partners insights to reduce revenue loss from spoilage in cases of over stocking or missed sales through stock outs.
- Additional benefits to demand forecasting include better plan to account for:
 - Labor
 - Materials
 - Equipment
 - Budgeting and Cash Flow

THE DATA AND HYPOTHESIS

_										
	household_code	fruit_paid	vege_paid	In_fruit_paid	In_vege_pa	id super5_cat	con5_10	regional_10000	dest5_10	mix5_10
0	1	166.260000	148.790000	5.113553	5.0025	36 1	0.2	1.548161	27.900000	2.966195
1	2	14.030000	39.890000	2.641198	3.6861	26 1	0.2	1.548161	27.900000	2.966195
2	3	245.490000	425.100000	5.503256	6.0523				27.900000	
3	4	9.720000	142.570000	2.274186	4.1	:lass 'pan				
4	5	330.579999	480.969999	5.800848	2	ngeIndex: ata column				2447
5	6	36.860001	39.220000	3.607127	3.				umns). ull Cour	nt Dty
6	7	35.340000	93.950000	3.565016						
7	8	79.999999	92.490000	4.382027	4. 6	househ	old co	de 22448	non-nul	ll inte
8	9	233.260000	170.889999	5.452154	5. 1				non-nul	ll floa
9	10		213.180001	4.407451	5. 2	vege_p	aid		non-nul	ll floa
10	11	309.529995	44.140000	5.735055	3 3	_	_		non-nul	
11	12	17.790000	132.450000	2.878637	. 4		_		non-nul	
							_		non-nul	
12	13	93.120000	177.249999	4.533889		_			non-nul	
13	14		342.770000	6.061037			_		non-nul	
14	15	63.010000	31.630000	4.143293	31 6	_			non-nul	
15	16	156.240000	286.240001	5.051393	5.	0 design			non-nul	
16	17	46.490000	469.729999	3.839237	6. 1	1 auto b	_		non-nul	
17	18	39.490000	192.059999	3.676048	5.1	2 povert	_	0 22448	non-nul	ll floa
18	19	24.810000	76.430000	3.211247	4. 1	.3 edu		22448	non-nul	ll int@
19	20	161.919998	233.590001	5.087102	5. 1	.4 income		22448	non-nul	ll int@
						5 race			non-nul	
						l6 hh_siz	e		non-nul	
						7 age	1		non-nul	
						18 marita 19 childr	_		non-nul	
						19 childr 10 employ			non-nul	
						empioy 1 urban	eu_new		non-nul	
						22 msa			non-nul	
						23 zip			non-nul	
					dtypes: float64(11), int64(13)					
		memory usage: 4.1 MB								

Question:

Can a regression model be built to predict a household's expenditures on perishable goods (fruits and vegetables) based on the available research data?

Hypothesis:

It is possible to build a regression model to statistically significantly predict household expenditures on perishable goods based on the available variables in the research data.

THE ANALYSIS PROCESS - PREPARATION

- Preparation
 - Download and load data into Pandas Dataframe
 - Drop unnecessary and unexplained variables
 - Sum fruit & vegetable expenditures into total expenditures variables
 - Convert Categorical Variables to Dummy Data
 - Examine distributions of continuous numerical variables
 - Logarithmically Transform skewed data

THE ANALYSIS PROCESS – INITIAL MODELING

OLS Regression Results						
Dep. Variable:	total expenditure	R-squared:	0.121	ш		
Model:	OLS	Adj. R-squared:	0.120			
Method:	Least Squares	F-statistic:	123.3	(0.025 0.008	0.975]	
Date:	Mon, 05 Sep 2022	Prob (F-statistic):	0.00	-0.015 0.013	0.003 0.043	
Time:	12:53:27	Log-Likelihood:	-27900.	0.001 -0.033	0.030	
No. Observations:	22448	AIC:	5.585e+04	-0.021 -0.047	0.028	
Df Residuals:	22422	BIC:	5.606e+04	-0.022 0.070	-0.009 0.114	
Df Model:	25			0.138	0.220	
Covariance Type:	nonrobust			7.19e-07		
		college or higher 0.7701	0.012 64.096 0.000	0.747	0.794	

R-squared: 0.121

Condition Number: 1.33e+16

Reduce number of variables:

P-values below 0.05

T-statistic above 0

THE ANALYSIS FINDINGS – FINAL MODEL

Dep. Variable	e: 1	total exp	enditure	R	d:	0.106		
Mode	l:		OLS	Adj. R	d:	0.105		
Method	l:	Least	Squares	F	c:	235.8		
Date	: M	on, 05 S	ep 2022	Prob (F-	c):	0.00		
Time	e:		12:53:27	Log-Li	kelihoo	d: -:	22499.	
No. Observations	:		17958		C: 4.50	4.502e+04		
Df Residuals:			17948		Ble	C: 4.51	4.510e+04	
Df Mode	l:		9					
Covariance Type	e:	ne	onrobust					
		coef	std err	t	P> t	[0.025	0.975]	
inter	cept	4.3484		94 906	0.000	4 259	4 438	
	000+	0.4024		16.012	0.000	0.353	0.452	
college or hig	her	0.3561	0.025	14.372	0.000	0.308	0.405	
20000-59	9999	0.1560	0.025	6.207	0.000	0.107	0.205	
non-ur	ban	0.0697	0.033	2.133	0.033	0.006	0.134	
high school or be	elow	0.2414	0.028	8.769	0.000	0.187	0.295	
urbanized	area	0.1074	0.032	3.338	0.001	0.044	0.170	
mar	ried	0.3219	0.018	17.469	0.000	0.286	0.358	
w	hite	0.0401	0.017	2.338	0.019	0.006	0.074	
divo	rced	0.0082	0.022	0.381	0.703	-0.034	0.050	
Omnibus:	1430	0.606	Durbin-\	Natson:	1.9	163		
Prob(Omnibus):			Jarque-Be		2013.3			
Skew:		0.662	Prob(JB):			.00		
Kurtosis:	3.967		Cond. No.		18.4			
		0.001						

Test and Training Data

R-squared: 0.106

Condition Number: 18.4

Not statistically significant

Can not reject the null hypothesis

TOOLS & TECHNIQUES

Python

programming language

- Widely used in data science
- Large selection of libraries for data management, statistics and machine learning

Pandas

Data management library

- Data frame management
- Functions for exploring and manipulating data frames

Matplotlib

Data visualization library

Ideal for visualizing data and analysis results

Statsmodels

Statistical modeling library

- Suited for statistical modeling
- Multiple functions for predictive modeling

Ordinary Least Squares

Regression Model

- Capable of multivariate regression
- Works with numerical and categorical data

PROPOSED ACTION

- I. Seek more data
 - The results of this regression model indicate the data available was not well suited for regression modeling. Additional variables for these households can provide more options for modeling and discovering better predictors.
- 2. Study further with a different model
 - Regression modeling did not result in accurate predictions. Developing new research questions and examining the capabilities of other modeling techniques like classification may result in a statistically significant model that can provide actionable insights
- 3. Examine predictive modeling by groups
 - Regression modeling may be more successful at examining expenditures by groups within the data. Exploring predictive options with regression modeling for zip codes or metropolitan statistical areas. Having area wide forecasting for demand still meets the needs of most companies within a supply chain.

EXPECTED BENEFITS

- I. Production planning for future demand
- 2. Labor management at all levels of the supply chain
- Reduced costs by minimizing storage needs during shipping and distribution
- 4. Retail inventory management
- 5. Planned downtime for equipment maintenance during off peak times

THANK YOU