Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 EN3ES03 Basic Mechanical Engineering

Programme: B. Tech. Branch/Specialisation: All

Maximum Marks: 60 Duration: 3 Hrs.

of

lote: A	All que	estions are compulsory. Internal choic	ces, if any, are indicated. Answers		
Q .1 (M	CQs) s	should be written in full instead of onl	y a, b, c or d.		
Q.1	i.	The product of blast furnace is called	1		
		(a) Cast iron (b) Wrought iron	(c) Pig iron (d) Steel		
	ii.	Identify the most important parameter	er by which lathe machine is 1		
		specified			
		(a) Distance between centers			
		(b) Length of bed			
		(c) Maximum speed of spindle			
		(d) Maximum diameter of job it can	swing		
	iii.	Which one of the following proj	perties given below is an 1		
		extensive property of the system?			
		(a) Pressure (b) Temperature	(c) Volume (d) Density		
	iv.	The capacity of refrigeration machin	e is expressed as 1		
		(a) The lowest temperature attainable			
		(b) Rate of abstraction of heat from space being cooled			
		(c) Inside volume of the cabin			
		(d) Gross weight of the machine in to	ones		
	v.	Identify the boiler mounting	1		
		(a) Super heater	(b) Feed check valve		
		(c) Air preheater	(d) Economizer		
	vi.	Which of the following process	is not associated with a 1		
		theoretical diesel cycle			
		(a) Constant volume	(b) Constant pressure		
		(c) Isothermal	(d) Adiabatic		

P.T.O.

5

3

5

5

	vii.	The centroid of a body		1	
		(a) Must be a point on that body			
		(b) Is a point which can lie on or our	(b) Is a point which can lie on or outside the body by changing		
		the coordinate system			
		(c) Is a unique point fixed with resp	ect to the body		
		(d) None of these			
	viii.	Moment of inertia "I" of a triangula	ar section of height "h" and	1	
		base "b" about an axis passing through its base is given by			
		(a) $I = bh^3 / 12$	(b) $I = bh^3 / 36$		
		$(c) I = bh^3 / 4$	(d) $I = bh^3 / 16$		
	ix.	Law of machine gives		1	
		(a) Relation between load and effort			
		(b) Relation between load and efficient	ency		
		(c) Relation between efficiency and	effort		
		(d) None of these			
	х.	Power transmitted by a belt or rope is given by			
		(a) $P = (T_1 - T_2) V$	(b) $P = (T_{max} - T_{(C)} V)$		
		(c) $P = (T_1 + T_2) V$	(d) None of these		
0.2		D. C		4	
Q.2	i.	Define accuracy and precision.	Alexander and the second	2	
	ii.	State the principle of working in a lathe machine. A steel wire 2 m long and 3 mm in diameter is extended by 0.75			
	iii. A steel wire 2 m long and 3 mm in diameter is extended by 0. mm due to weight suspended from the wire. If the same weight				
			_		
		is suspended from the brass wire,	•		
		diameter, it is elongated by 4.65	• •		
OD :		modulus of elasticity of brass if that of steel is 2 x 10 ⁵ N/mm ² . Sketch the iron carbon equilibrium diagram and point out salient			
OR	iv.	features.	nagram and point out sanent	2	
		reatures.			
Q.3	i.	List the limitations of the first law of	f thermodynamics.	2	
	ii.	Define the following terms	,	3	
		(a) Triple point (b) Dryness fraction	(c) Latent heat	_	
	iii.	Explain the process of steam genera	` '	5	
		pressure. Show the various stages on			
		1			

OR	iv.	A cold storage is to be maintained at - 5°C while the		
		surroundings are at 35 °C. The heat leakage from the		
		surroundings in to the cold storage is to be 29 kJ/s and the actual		
		COP of the refrigeration plant is one third of an ideal plant		
		working between the same temperature limits, finds the power		
		required in kW to drive the plant.		

- Q.4 i. Differentiate between SI engine and CI engine.(any three point) 3
 - ii. Obtain an expression for draught produced in mm of water column when the discharge is maximum.
- OR iii. Derive an expression for the air standard efficiency of Otto cycle. 7 State the assumption made.
- Q.5 i. Distinguish between centre of gravity and centroid.
 - ii. Find the position of centroid of an unequal angle section (L-Section) with dimensions 200 mm x 150 mm x 10 mm. Longer leg is vertical.
- OR iii. Determine the moment of inertia of the section shown in figure 7 about an axis passing through its centroid and parallel to the base.

- Q.6 Attempt any two:
 - i. Derive the ratio of tension on tight side and slack sides of a pulley.
 - ii. Derive the expression for length of an open belt drive.
 - iii. Find the length of the belt required for driving pulleys in a cross belt drive 600 mm and 300 mm diameter when 2.4 m apart. Take thickness of belt as 5 mm.

Marking Scheme EN3ES03 Basic Mechanical Engineering

Q.1	i.	(c) Pig iron		1	
	ii.	(d) Maximum diameter of job it can swing		1	
	iii.	(c) Volume		1	
	iv.	(b) Rate of abstraction of heat from space being cooled			
	v.	(b) Feed check valve		1	
	vi.	(c) Isothermal		1	
	vii.	(c) Is a unique point fixed with respect to the	e body	1	
	viii.	(a) $I = bh^3 / 12$		1	
	ix.	(a) Relation between load and effort		1	
	х.	(a) $P = (T_1 - T_2) V$		1	
Q.2	i.	Accuracy	1 mark	2	
		Precision	1 mark		
	ii.	Definition of lathe machine	1 mark	3	
		Diagram	1 mark		
		Principle of working	1 mark		
	iii.	Sketch of wire	1 mark	5	
		Calculation for steel wire	2 marks		
		Calculation for brass wire	2 marks		
OR	iv.	Introduction of iron carbon diagram	1 mark	5	
		Sketch of iron carbon diagram	3 marks		
		features of iron carbon diagram	1 mark		
Q.3	i.	Any two limitations	(1 mark *2)	2	
	ii.	Define the terms		3	
		a) Triple point	1 mark		
		b) Dryness fraction	1 mark		
		c) Latent heat	1 mark		
	iii.	What is steam	1 mark	5	
		Process of steam generation	2 marks		
		Stages on T – h diagrams.	2 marks		
OR	iv.	Given data's with sketch of system	2 marks	5	
		Actual COP and Ideal COP	1 mark		
		Power required in kW	2 marks		

Q.4	i.	Each rite difference one mark	(1 mark *3)	3
	ii.	What is drought	1 mark	7
		Sketch of drought	1 mark	
		Derivation for maximum discharge	5 marks	
OR	iii.	What is Otto cycle	1 mark	7
		P-V and T-S diagram of Otto cycle	2 marks	
		Derivation for air standard efficiency	3 marks	
		Assumptions(any two)	1 mark	
Q.5	i.	Difference between centroid and centre of gravity		3
		Each rite difference one mark	(1 mark*3)	
	ii.	Sketch of L-section with dimensions	2 marks	7
		Distances of centroid from X axis	3 marks	
		Distances of centroid from Y axis	2 marks	
OR	iii.	Sketch of T-section with dimensions	1 mark	7
		Distances of centroid from Y axis	2 marks	
		The moment of inertia of the section	4 marks	
Q.6		Attempt any two:		
	i.	Sketch of Pulley with parameters	1 mark	5
		Derivation for ratio of tensions	4 marks	
	ii.	Sketch of open belt drive	1 mark	5
		Derivation for length of belt	4 marks	
	iii.	Given data with diagram of cross belt	1 mark	1
		Formula	1 mark	1
		Calculations	3 marks	3
