Project Proposal

Suction Pump for Medical Fluid Extraction

ARISTON TEAM

ASSOCIATED WITH:

PT. STECHOQ ROBOTIKA INDONESIA

Jl. Bunga J5, Kentungan, Condongcatur, Depok,
Sleman, D.I. Yogyakarta 55281

OUR TEAM

SUCTION PUMP FOR MEDICAL FLUID EXTRACTION

Ainun Najib Khasbunallah Project Manager and Electronics Engineer Universitas Diponegoro Semarang

Aurelia Alika Putri Widiyanta Administratif and Support Engineer Politeknik Negeri Semarang

Sholich Ibnu Damar 3D Design Universitas Negeri Malang

Sri Aji Eka Mahendra Electronics Engineer Universitas Merdeka Malang

Tri Rejeki Andani 3D Design Universitas Negeri Surabaya

ARISTON

Jl. Bunga J5, Kentungan, Condongcatur, Kab. Depok, Kab. Sleman, Daerah Istimewa Yogyakarta

HALAMAN PENGESAHAN

1. Nama Proyek: Project Proposal Suction Pump for Medical Fluid Extraction

2. Bidang Riset : Hardware Engineering

3. Nama Tim : ARISTON

4. Anggota Tim : - Ainun Najib Khasbunallah

- Aurelia Alika Putri Widiyanta

- Sholich Ibnu Damar

- Sri Aji Eka Mahendra

- Tri Rejeki Andani

Sleman, 24 Mei 2024

Menyetujui,

Koordinator Lapangan

Project Manager

(Nama)

Ainun Najib Khasbunallah

Mengetahui,

Direktur Utama PT. Stechoq Robotika Indonesia

Person In charge

Malik Khidir, S.Si

Febri Hari Natoro, S.Psi

Daftar Isi

ANGGOTA TIM	01
HALAMAN PENGESAHAN	02
DAFTAR ISI	03
BAB 1 – PENDAHULUAN	04
Latar Belakang	04
Rumusan Masalah	04
Tujuan dan Sasaran	04
Scope Of Work	04
BAB 2 – DETAIL PROYEK	05
Deskripsi Produk	05
Sistem Kerja Alat	05
Spesifikasi Alat	06
Skema Elektronik	06
BAB 3 - METODE DAN TAHAPAN	07
Timeline	07
Work Breakdown Structure	08
Rencana Anggaran Biaya	09
BAB 4 – PENUTUP	10
Penutup	10
LAMPIRAN	11

BAB 1 PENDAHULUAN

LATAR BELAKANG

Suction pump adalah perangkat medis yang dirancang khusus untuk menghisap cairan tubuh. Suction pump medis dapat digunakan dalam berbagai penerapan pada bidang medis, termasuk di ruang operasi, unit perawatan intensif, ruang gawat darurat, atau klinik medis. Dalam industri perawatan kesehatan, mesin suction pump telah menjadi bagian penting dalam proses penghisapan cairan tubuh pasien selama prosedur medis. Dalam produk ini penggunaannya dilengkapi dengan kontrol yang memungkinkan pengaturan tingkat hisap yang diperlukan sesuai dengan kebutuhan spesifik prosedur atau kondisi pasien untuk membantu meningkatkan efisiensi, keamanan, dan kualitas perawatan pasien.

Berdasarkan hal ini, kami dari peserta studi independen PT Stechoq Robotika Indonesia berusaha untuk memberikan kontribusi dalam menyelesaikan permasalahan yang terjadi dan meningkatkan efisiensi dalam industri perawatan kesehatan. Pada program studi independen MSIB batch VI, dirancang sebuah inovasi "Suction Pump for Medical Fluid Extraction" yang merupakan produk inovatif dalam industri perawatan kesehatan dengan mesin suction pump. Penggunaan inovasi ini diharapkan dapat mempermudah operator perawatan kesehatan dalam memantau kinerja mesin suction pump Dengan ini diharapkan produk inovasi Suction Pump for Medical Fluid Extraction memberikan solusi yang canggih dan efisien dalam pemantauan dan pemeliharaan mesin suction pump, yang dapat meningkatkan efisiensi, kebersihan, dan keamanan dalam industri perawatan kesehatan.

RUMUSAN MASALAH

Berdasarkan latar belakang tersebut, didapatkan rumusan masalah, yaitu:

- 1. Bagaimana merancang suction pump yang efisien untuk digunakan dalam berbagai prosedur medis?
- 2. Bagaimana menghubungkan teknologi IoT dalam suction pump?

TUJUAN DAN SASARAN

Tujuan dari produk ini yaitu:

- 1. Mengembangkan desain rancangan suction pump yang mampu bekerja untuk berbagai kebutuhan medis, termasuk pembedahan dan perawatan pasien dengan gangguan cairan.
- 2. Menghubungkan suction pump dengan teknologi Internet of Things (IoT) untuk meningkatkan kinerja, pemantauan, dan manajemen perangkat medis secara real-time.

SCOPE OF WORK

Ruang lingkup dari pengerjaan ini adalah:

- 1. Pembuatan desain mekanik dan elektrik
- 2. Pembuatan program
- 3. Peragaan simulasi alat

BAB 2 DETAIL PROYEK

DESKRIPSI PRODUK

Suction Pump for Medical Fluid Extraction adalah perangkat medis yang dirancang khusus untuk mengeluarkan cairan tubuh seperti darah, lendir, dan cairan lainnya dari tubuh pasien atau area operatif secara cepat dan efisien. Alat ini sangat penting dalam berbagai prosedur medis, termasuk pembedahan, perawatan pasien dengan gangguan cairan, dan situasi darurat medis. Suction pump ini menawarkan solusi andal untuk meningkatkan kualitas pelayanan kesehatan. Selain itu, suction pump ini dilengkapi dengan layanan IoT (Internet of Things) yang memungkinkan pemantauan kinerja alat secara real-time yang optimal dan mengurangi downtime.

SISTEM KERJA ALAT

Sistem ini dimulai dengan pemeriksaan status alat. Jika status alat baik, kemudian menkoneksikan Wi_Fi untuk terhubung dengan API Cloud. Pengguna dapat memilih mode kontrol mesin suction pump via keypad atau via IoT dengan menu slider. Setelah memasukkan RPM motor yang diinginkan dan menekan tombol untuk memulai pengisian. Motor kemudian memompa cairan ke dalam tabung sesuai RPM yang ditentukan.

Hasil pengisian ditampilkan pada layar LCD dan dikirim ke cloud melalui API. Data hasil pengisian dikirim ke database dan dapat dipantau melalui platform cloud. Sistem memastikan pengisian cairan otomatis dengan pemantauan real-time melalui LCD dan cloud, serta penyimpanan data yang efisien. Proses diakhiri setelah semua langkah selesai.

ARISTON | PAGE 5

BAB 2 DETAIL PROYEK

SPESIFIKASI ALAT

Spesifikasi	Keterangan
Mikrokontroler	ESP 28
Interface	LCD 16X2
Dimensi	360 mm x 150 mm x 200 mm
Bahan	Cover (Stainless Steel)
Fitur	Cocok untuk banyak jenis cairan
	2. Bentuk barang efisien
	3. Berbasis IoT
	4. Pemantauan dan tampilan real-time

SKEMA ELEKTRONIK

BAB 3 METODE DAN TAHAPAN

TIMELINE

Persiapan (1 Maret - 16 Maret)

Analisis tujuan dari project ARISTON, Pengumpulan data dan informasi produk, Analisis cara kerja dan komponen yang digunakan

Perancangan (17 Maret - 6 April)

Perancangan design 3d suction pump, Perancangan bahasa pemrograman C++, Perancangan design elektronika suction pump

Pelaksanaan (7 April - 30 April)

Membuat part-part design 3D suction pump, Membuat bahasa program arduino C++, pembuatan 3D animasi suction pump, Assembly design schematic rangkaian elektronika suction pump, Assembly design layout rangkaian elektronika suction pump, Assembly design 3D suction pump, Integrasi sistem suction pump dengan bahasa program

Pengujian (1 Mei - 25 Mei)

Pengujian fungsi dan kinerja sistem suction pump, Finishing dan evaluasi suction pump

Pelaporan (19 Mei- 10 Juni)

Pembuatan dan penyusunan laporan akhir, Presentasi project

BAB 3 METODE DAN TAHAPAN

WORK BREAKDOWN STRUCTURE

WORK BREAKDOWN STRUCTURE				
Level WBS	Kode WBS	Nama WBS		
1	0	Suction Pump for Medical Fluid Extraction		
2	1	Perencanaan Project		
3	1.1	Identifikasi Tujuan dan Batasan Project		
2	1.2	Penjadwalan Kegiatan Project		
2	1.3	Penentuan Anggaran Project		
2	1.4	Perencanaan Manajemen Risiko		
3	1.5	Analisis Cara Kerja Komponen Yang Digunakan		
2	2	Perancangan Project		
3	2.1	Perancangan Design 3D Suction Pump		
3	2.2	Perancangan Design Elektronika Suction Pump		
3	2.3	Perancangan Bahasa Pemrograman C++		
3	3	Pelaksanaan Project		
3	3.1	Membuat part-part Design 3D Suction Pump		
3	3.2	Assembly Design 3D Suction Pump		
2	3.3	Assembly Design Schematic Rangkaian Elektronika Suction Pump		
3	3.3	Membuat Bahasa Program Arduino C++		
2	3.4	Assembly Design Layout Rangkaian Elektronika Suction Pump		
3	3.5	Integrasi Sistem Suction Pump dengan Bahasa Program		
3	3.6	Pembuatan 3D Animasi Suction Pump		
3	4	Pengujian Project		
2	4.1	Pengujian Fungsi dan Kinerja Sistem Suction Pump		
2	4.2	Finishing dan Evaluasi Suction Pump		
3	5	Laporan akhir		
3	5.1	Pembuatan dan Penyusunan Laporan Akhir		
3	5.2	Presentasi project		

BAB 3 METODE DAN TAHAPAN

RENCANA ANGGARAN BIAYA

No	Nama	Harga	
1.	Biaya elektrikal	Rp. 637.528	
2.	Biaya mekanikal	Rp. 1.500.000	
	Total	Rp. 2.137.528	

BAB 4 PENUTUP

PENUTUP

Demikian proposal suction pump for medical fluid extraction dibuat dengan harapan alat ini tidak hanya meningkatkan efisiensi operasional dan kontrol yang presisi, tetapi juga memastikan keamanan dan kenyamanan bagi pengguna. Dengan kemampuan pemantauan real-time, pengendalian jarak jauh, analisis data yang mendalam, dan integrasi dengan sistem medis lainnya, perangkat ini siap mendukung para profesional medis dalam memberikan perawatan yang lebih baik dan responsif. Inovasi ini memperkuat komitmen terhadap kemajuan teknologi medis yang berpusat pada keselamatan dan kesejahteraan pasien, menjadikannya aset berharga dalam lingkungan medis modern.

LAMPIRAN

Komponen	Spesifikasi	Harga	Unit	Shipping	Total
ESP32-S	NodeMCU ESP32	Rp74.000	1	Rp21.000	Rp91.000
Motor DC Pump	Taffware DP-538	Rp85.438	1	Rp25.000	Rp110.438
Potensiometer Linear	B2Kohm	Rp1.500	1	Rp0	Rp1.500
Elco 100nF	DIP IC SMD	Rp750	2	Rp20.450	Rp21.700
Elco 1000uF	ELCO	Rp195	2	Rp20.200	Rp20.590
Saklar kecil	Switch Mini	Rp1.000	1	Rp0	Rp1.000
kabel jumper	female to male	Rp15.000	15	Rp0	Rp15.000
kabel jumper	female to female	Rp8.500	15	Rp0	Rp8.500
kabel jumper	male to male	Rp9.500	15	Rp0	Rp9.500
IC	Driver motor AG 16	Rp27.200	1	Rp6.000	Rp34.200
Dioda	ELCO	Rp100	13	Rp0	Rp1.300
Terminal Block	KF350	Rp500	8		Rp2.500
Header	Header female	Rp1.850	4	Rp0	Rp7.400
LED	-	Rp1.000	2	Rp20.200	Rp21.200
IC	-	Rp3.500	1	Rp0	Rp3.500
Resistor	-	Rp1.000	2	Rp7.200	Rp8.200
Resistor	-	Rp700	2	Rp0	Rp700
Kabel Power	-	Rp15.000	1	Rp0	Rp15.000
Sensor Tekanan	presure tranducer transmitter	Rp192.500	1	Rp14.300	Rp206.800
Keypad	4x4 Matrix 16 Key	Rp5.000	1	Rp0	Rp5.000
LCD Keypad	20 x 4	Rp25.500	1	Rp0	Rp25.500
Spacer PCB	M3x20mm	Rp1.500	8	Rp0	Rp15.000
Power Supply	Adaptor DC 12 V 15 A	Rp105.000	1	Rp0	Rp105.000
DC Step Down	LM2596	Rp10.700	1	Rp0	Rp10.700
Push Button	DS-134	Rp10.700	1	Rp0	Rp10.700
Jasa Pembuatan Mekanil	k Bahan Alumunium	Rp1.500.000	1	Rp0	Rp1.500.000

For inquiries, contact ARISTON.

aristonhwstechoq@gmail.com

+62 857-1358-7044 (Ainun Najib)