

"KNOWLEDGE OF SEQUENCES COULD CONTRIBUTE MUCH TO OUR UNDERSTANDING OF LIVING MATTER"

— FREDRICK SANGER

NEXT GENERATION SEQUENCING

FROM DNA TO SEQUENCING

POLYMERASE CHAINREACTION

AMPLIFYING DNA SO WE HAVE ENOUGH!

POLYMERASE CHAIN REACTION

POLYMERASE CHAIN REACTION

POLYMERASE CHAIN REACTION

GEL ELECTROPHORESIS

- Load samples into wells with dye in agarose gel
- Load ladder for a size metric
- Phosphate backbone of DNA is attracted to positive node
- Shorter strands will "run" faster along the gel
- Longer strands will "run" much slower

SANGER SEQUENCING. METHODS

1. Primer

- 1. Primer
- 2. DNA Polymerase

- 1. Primer
- 2. DNA Polymerase

- 1. Primer
- 2. DNA Polymerase
- 3. dNTPS (A, C, G, T)

- 1. Primer
- 2. DNA Polymerase
- 3. dNTPS (A, C, G, T)
- 4. ddNTPs

Samples 1 - 4

Dideoxynucleotide (ddNTP)

Deoxynucleotide (dNTP)

- Time consuming
- No automation

Leroy Hood and Michael Hunkapiller Improve Sanger Method

- 1. DNA labeled with fluorescent dyes instead of radioactive molecules
 - 2. Data acquisition/analysis made easier with computers

CYCLE SEQUENCING - 1989

Sanger Sequencing

- 1. DNA Polymerase
- 2. Much more DNA than Polymerase
- 3. A bunch of wasted DNA fragments

Cycle Sequencing

- 1. **Taq Polymerase** Vincent Murray
- 2. Taq can withstand high temps
- 3. Can use our normal PCR process!

DNA Polymerase

Polymerase Denaturation

CYCLE SEQUENCING - 1989

Sanger Sequencing

- 1. DNA Polymerase
- 2. Much more DNA than Polymerase
- 3. A bunch of wasted DNA fragments

Cycle Sequencing

- 1. **Taq Polymerase** Vincent Murray
- 2. Taq can withstand high temps
- 3. Can use our normal PCR process!

Functional Polymerase

CYCLE SEQUENCING - 1989

Sanger Sequencing

- 1. DNA Polymerase
- 2. Much more DNA than Polymerase
- 3. A bunch of wasted DNA fragments

Cycle Sequencing

- 1. **Taq Polymerase** Vincent Murray
- 2. Taq can withstand high temps
- 3. Can use our normal PCR process!

Two Major Improvements

- 1. Higher Fluorescent Signal
- 2. Less DNA needed per reaction

SEQUENCING METHODS

2ND GENERATION

ILLUMINA

DYE SEQUENCING

- Follows core principles of Sanger Methods
 - Amplify > Sequence > Analyze
 - Sequence by Synthesis (SBS)
- Massive Parallel Sequencing

DYE SEQUENCING

DYE SEQUENCINO

Oligonucleotides

DYE SEQUENCING

- Follows core principles of Sanger Methods
 - Amplify > Sequence > Analyze
 - Sequence by Synthesis (SBS)
- Massive Parallel Sequencing
- HUGE SPEED IMPROVENT

DYE SEQUENCING

SoleXa

Solexa 1G Genome Analyzer

Cost per Raw Megabase of DNA Sequence

SEQUENCING METHODS

3RD GENERATION AND ONWARDS

PACBIO AND OXFORD NANOPORE

WHAT MAKES 3RD GEN 3RD GEN?

• 1st and 2nd generation sequencing methods typically use the same framework

Amplify

Sequence

Analyze

- 2nd generation sequencing breaks DNA into small segments (50 400 bp) for sequencing
- Smaller chunks are easier to manage and result in fewer errors but take longer to sequence and analyze

WHAT MAKES 3RD GEN 3RD GEN?

- 3rd generation makes two improvements over general 2nd generation methods
 - Sequence without breaking DNA into smaller parts (short-reads) and sequence longer length of DNA (long reads, 1,500 – 100k bp)
 - 2. Skipping the amplification step in typical 1st and 2nd gen sequencing frameworks
- 3rd generation is **not strictly better** than 2nd generation but is just **different**
 - Long reads can tell us different information but is overall less accurate than 2nd generation

PACBIO SMRT SEQUENCING - 2011

Single Molecule, Real-Time (SMRT) Sequencing

NANOPORE

NANOPORE MINION

LONG READS VS SHORT READS

SHORT READS

- Shorter read length can't capture complex genomic structures
- Struggles to reconstruct entire genomes
- Very accurate
- Low DNA input requirement
- Inexpensive per base but can scale fast

LONG READS

- Long reads capture complex genomic structures
- Facilitates complete genome assembly
- Less accurate but improving
- Need more DNA input
- Higher operating cost

SEQUENCING METHODS

Cost per Raw Megabase of DNA Sequence

Cost per Human Genome

