Facial Expression Recognition

Emmeline Tsen Jacky Chow Jerry Huang

Abstract

- Human face conveys a lot of information
- Facial detection has been a popular topic within Al
- Determine a person's facial expression in an image
 - Help better understand what the person is feeling based on the image

Introduction

- Facial Expression Recognition (FER) has received a lot of attention in recent years within several fields
 - Medical
 - Security
 - Communications
 - o Etc.
- Project consists of:
 - CNN Model & Model Tuning
 - Generative Adversarial Networks (GANs) to generate faces
 - CNN model to determine emotions from faces generated using GAN
 - TFX for Tensorflow Serving Model

Related Work

- Mainstream methods
 - Traditional manual methods
 - Local Binary Patterns (LBP)
 - Shallow learning
 - SVM
 - Adaboost
 - Deep learning
 - CNN
 - RNN

Data

- Dataset
 - Fer2013 dataset
 - Amalgamation
 - Google image search:
 Embarrassed males and females
- Data Pre-processing
 - Image to Array
 - Converted images to black and white
 - Converted images to 48 * 48

show_img(data_valid)

Methods -- CNN

- Reshape the data into the fitting size (4 dimension array)
- Build the model
 - With data generator (rotation, shift, zoom)
 - Early stopping
- Hyperparameter Tuning
 - BatchNormalization
 - Dropout
 - Learning Rate
 - CNN Layers
 - Epochs
 - Optimizer

Colab - https://github.com/emmelinetsen/faceAl/blob/master/Main_CNN_FER.ipynb

Experiments

CNN Model	Drop out	Zoom	Epochs	Batch Normalize	Max Accuracy
1	0.25	yes	25	no	0.60
2	0.25	no	50	yes	0.61
3	0.25 (each layer)	no	50	yes	0.60
4 Be	odel 0.5	no	75	yes	0.64
5	0.75	no	50	yes	0.25

Accuracy

epoch_accuracy

Tensorboard:

https://tensorboard.dev/experiment/GkvcQqC8SI2UVUIHvxPaDg/#scalars

Loss

epoch_loss

Tensorboard:

https://tensorboard.dev/experiment/GkvcQqC8SI2UVUIHvxPaDg/#scalars

Visualizing Edges

ResNet

```
Train on 29141 samples, validate on 3643 samples
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
Epoch 5/20
29141/29141 [==============] - 38s lms/step - loss: 0.0672 - accuracy: 0.9856 - val loss: 2.6464 - val accuracy: 0.4774
Epoch 6/20
Epoch 7/20
Enoch 8/20
```

OverFitting!!

Generative Adversarial Networks (GANs)

- Generates new images that look very realistic
- Two parts to GANs:
 - Generative network generates candidates
 - Discriminative network evaluates to real/fake
- Using a generative and discriminative network to generate faces would take a long time to generate several faces - <u>Colab</u>
- Used pretrained model and Nvidia's SyleGAN2 to generate very realistic faces
 - Colab

CNN Model on Faces using GANs


```
[ ] pred_df['label'].value_counts()
```

Happy 290
Neutral 209
Angry 1

Name: label, dtype: int64

Hosting on TFX Serving Model

Make Predictions using TFX Serving Model

```
1 import requests
 2 headers = {"content-type": "application/json"}
 3 json response = requests.post('http://localhost:8502/v1/models/cnn model 2:predict', data=data, headers=headers)
 4 predictions = json.loads(json response.text)['predictions']
 5 output = predictions[0]
 1 from keras.preprocessing import image
 3 classes = ['angry','disgust','fear','happy','sad','surprise','neutral','embarrassed']
 5 img = image.load_img("/content/drive/My Drive/CMPE 258 - Deep Learning/258 final project/data/stylegan2/image900.png", target_size=(48,48))
 6 img = np.asarray(img)
 7 plt.imshow(img)
 8 img = np.expand dims(img, axis=0)
10 print(output)
11 classes[np.argmax(output)]
[0.0458349213, 3.94001631e-09, 0.012209137, 0.00210829754, 0.109127142, 2.6029853e-05, 0.830694497, 1.98055497e-14]
'neutral'
```

Conclusion

- A lot to learn about a human's face
- CNN was able to detect facial expression
 - Best accuracy: 64.53%
- Utilized GANs to help with testing
- TFX serving model to host our best model

References

- [1]https://arxiv.org/pdf/1902.01019.pdf
- [2]https://www.researchgate.net/publication/261498182_Face_expression_recognition_A_brief_overview_of_the_last_decade
- [3] https://www-sciencedirect-com.libaccess.sjlibrary.org/science/article/abs/pii/S0030402616302807
- [4]https://www-sciencedirect-com.libaccess.sjlibrary.org/science/article/pii/S0925231217313644

Dataset:https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

Thank you