2018级 "概率论与数理统计"期中考试试卷

2018年11月17日

系别 _____ 学号 _____ 姓名 ____

题号	— 36	二 10	三 10	四 12	五 10	六 12	七10	合计
得分								

一. (8分×6=48分)

1. 设在三次独立事件中 A 出现的概率相等, 若已知 A 至少出现一次的概率等于 19/27, 则 A 在一次试验中出现的概率是多少? 1/3

2. 设A和B是两个相互独立的事件,且 $P(\overline{A} \cap \overline{B}) = \frac{1}{9}$, $P(\overline{AB}) = P(A\overline{B})$,求P(A)是多少?对立事件也相互独立

3. 设随机变量 X 的密度函数为 $p(x) = \begin{cases} \frac{2}{\pi(1+x^2)}, & x > 0 \\ 0, & x \le 0 \end{cases}$ 数.

_		圆盘	比的	面和	识成	正	七,	并证	殳射											的概的距
D[5. (3X-2			变量	₹ X	, Y 7	相互	独 3	立,且	∄ X.	~ N((4,9)), Y^	~P(3	3),分	≻别∶	求 E	[(3]	X-2Y	Y)+ 9]
	6.	将加	ı 只	球	(1	~n;			的放	进	n 只	盒	子(1∼n	ւ号]) ‡	・去	, –	- 只	盒子
	一只数,				只球	装)	(与	球同	号	的盒	5 子口	† , ;	称为	J — /	`配]	对。	记	ХŸ	可总	的配

二. (10 分)某厂有甲,乙,丙三个分厂生产同一品牌的产品,已知其产量分别占全厂的 20%,10%,70%.设甲,乙,丙三个车间的次品率分别为1%,2%,3%.现从全厂产品中任取一件,(1)求取得次品的概率;(2)已知取得次品,求该产品是乙车间生产的概率.

三. (10 分)设 $X \sim P(\lambda_1), Y \sim P(\lambda_2), X$ 与 Y 相互独立,证明: $X+Y \sim P(\lambda_1+\lambda_2)$.

四. (10分)设二维连续型随机变量(X,Y)的联合密度函数为

因是什么?

五.(8分)设随机变量 X,Y 独立同分布,它们的密度函数为 $p(x) = \begin{cases} xe^{-x}, & x>0 \\ 0, & x\leq 0 \end{cases}$,求 Z=X+Y 的密度函数.

六(10分)设随机变量(X,Y)具有概率密度

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & 其他. \end{cases}$$
 求 $E(X), E(Y), Cov(X,Y), \rho_{XY}.$

七(4分)对于两个随机变量 V,W, 若 $E(V^2)$, $E(W^2)$ 都存在,证明 $[E(VW)]^2 \leq E(V^2)E(W^2)$.