bmcbluergb0, 0.2, 0.4

bmcbluebmcbluewhiteRESEARCH

A sample article title

Jane E Doe??????, John RS Smith??,??

?? Correspondence:

??Department of Zoology, Cambridge, Waterloo Road, London, UK Full list of author information is

available at the end of the article ?? Equal contributor

Abstract

First part title: Text for this section.

Second part title: Text for this section.

bmcbluewhite Keywords: sample; article; author

Content

Text and results for this section, as per the individual journal's instructions for authors.

Section title

Text for this section ...

Sub-heading for section

Text for this sub-heading . . .

Sub-sub heading for section

Text for this sub-sub-heading ...

Sub-sub-sub heading for section Text for this sub-sub-heading ... In this section we examine the growth rate of the mean of Z_0 , Z_1 and Z_2 . In addition, we examine a common modeling assumption and note the importance of considering the tails of the extinction time T_x in studies of escape dynamics. We will first consider the expected resistant population at vT_x for some v > 0, (and temporarily assume $\alpha = 0$)

$$E[Z_1(vT_x)] = E\left[\mu T_x \int_0^{v \wedge 1} Z_0(uT_x) \exp(\lambda_1 T_x(v-u)) du\right].$$

If we assume that sensitive cells follow a deterministic decay $Z_0(t) = xe^{\lambda_0 t}$ and approximate their extinction time as $T_x \approx -\frac{1}{\lambda_0} \log x$, then we can heuristically estimate the expected value as

$$E[Z_1(vT_x)] = \frac{\mu}{r} \log x \int_0^{v \wedge 1} x^{1-u} x^{(\lambda_1/r)(v-u)} du$$

$$= \frac{\mu}{r} x^{1-\lambda_1/\lambda_0 v} \log x \int_0^{v \wedge 1} x^{-u(1+\lambda_1/r)} du$$

$$= \frac{\mu}{\lambda_1 - \lambda_0} x^{1+\lambda_1/r v} \left(1 - \exp\left[-(v \wedge 1)\left(1 + \frac{\lambda_1}{r}\right)\log x\right]\right). \quad (1)$$

Thus we observe that this expected value is finite for all v > 0 (also see [?, ?, ?, ?, ?]).

Competing interests

The authors declare that they have no competing interests.

Author's contributions

Text for this section ...

Doe and Smith Page 2 of ??

Figures

 $bmcbluewhite \textbf{Figure 1 Sample figure title.} \ A \ short \ description \ of \ the \ figure \ content \ should \ go \ here.$

 ${\sf bmcbluewhite} \textbf{Figure 2 Sample figure title.} \ {\sf Figure legend text}.$

Tables

 $\begin{tabular}{ll} \textbf{Table 1} & \textbf{Sample table title. This is where the description of the table should go.} \end{table}$

	В1	B2	В3
A1	0.1	0.2	0.3
A2			
A3			-

Additional Files

Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if it is in a non-standard format or the file extension). This might refer to a multi-page table or a figure.