

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201

Email: info@thapar.edu

Dr. Kishore Khanna

Mechanical Engineering Department

Thapar Institute of Engineering and Technology, Patiala

Disclaimer

The content of this presentation for the course "*Mechanics*" posted by Thapar Institute of Engineering & Technology is only for the purpose of education (class teaching) & its not being used for the sale or promotion of production.

Equilibrium of Rigid Bodies

Supports

In case of rigid bodies, particularly the beams, to prevent not only translating motion but also rotational motion, these bodies are held by various supports.

Fi

Hinge Support

Hinge or pin-support

The pin support restrains the beam from translating both horizontally and vertically, but it does not prevent rotation.

Roller of frictionless support

At the roller support, translation is prevented in the vertical direction but not in the horizontal direction.

Fixed or built-in support

Fixed or built-in support

At the fixed support, both translations as well as rotation are prevented.

Problem: Determine the support reactions for the beam AB loaded and supported as shown (Neglect the weight of the beam).

Solution: Draw FBD of the beam

Applying the condition of equilibrium;

$$\Sigma F_{\chi}=0;$$

$$B_x + 600 \cos 45^\circ = 0;$$

$$B_x = -424.26 N;$$

$$\Sigma F_{\nu} = 0;$$

$$A_Y + B_Y - 600 \sin 45^\circ - 100 - 200 = 0$$

$$A_Y + B_Y = 724.26 N;$$

Taking summation of moments about point B;

$$\Sigma M_B = 0;$$

$$(A_Y \times 7) - (600 \sin 45^\circ \times 5) - (100 \times 2) = 0;$$

$$A_{Y} = 331.62 N$$

$$A_Y + B_Y = 724.26 N$$

$$B_Y = 724.26 - 331.62 = 392.64 N$$

$$B_Y = 392.64 N$$

1.5 m

Problem: A smooth pulley supported a load of 3000 N is mounted at B on a horizontal beam as shown in the figure. If the beam weighs 1000 N, find the support reactions at A and C. Also find reactions at the pin supporting the pulley. (Neglect the weight and size of the pulley).

Solution: Draw FBD's for the block, pulley and the beam separately.

$$\Sigma F_y = 0;$$

 $T-3000 = 0;$
 $T=3000 N;$

In triangle *BDE*

FBD of the pulley

$$\Sigma F_{x} = 0; \qquad B_{x} + T\cos\theta = 0$$

$$B_x = -3000 \times 0.8 = -2400 N;$$

$$\Sigma F_y = 0; \quad B_y + T \sin \theta - T = 0;$$

$$B_y = 3000 - 3000 \times 0.6 = 1200 N;$$

$$A_x = -2400 + 3000 \times 0.8 = 0;$$

$$\Sigma F_y = 0$$
; $A_y - B_y - 1000 + C_y - T \sin \theta = 0$

$$A_y + C_y = 1200 + 1000 + 1800 = 4000 N$$

$$A_y + C_y = 4000 N$$

$$\Sigma M_A = 0$$
;

$$(B_y \times 2) + (1000 \times 3) + (T \sin \theta \times 4) - (T \cos \theta \times 1.5) - (C_y \times 6) = 0$$

$$(C_y \times 6) = (1200 \times 2) + (1000 \times 3) + (1800 \times 4) - (2400 \times 1.5);$$

$$C_{\nu} = 1500 N$$

$$A_y + C_y = 4000 \, N$$

$$A_{y}=2500\,N$$

THAPAR INSTITUTE
OF ENGINEERING & TECHNOLOGY
(Deemed to be University)

Problem: A smooth pulley supported a load of 3000 N is mounted at Boon a horizontal beam as shown in the figure. If the beam weighs 1000 N, find the support reactions at A and C. (Neglect the weight and size of the pulley).

$$\overline{z} \, F_{x} = 0$$
 $A_{x} = 0$
 $A_{y} + C_{1} = 3000 + 1000 = 4000 N.$
 $A_{x} - 0$
 $(3000 \times 2) + 1000 \times 3 - C_{1} \times 6 = 0$
 $C_{1} = \frac{9000}{6} = 1500 N$
 $A_{1} = \frac{9000}{6} = 1500 N$

