ECSE-2210 Microelectronics Technology Homework 5 – Solution

1) a) The contact potential, $V_{\rm bi}$

$$N_{\rm A}$$
= 2x10¹⁵ cm⁻³ $N_{\rm D}$ = 10¹⁵ cm⁻³

p-side:
$$E_i - E_F = kT \ln(\frac{p}{n_i}) = 0.0258 \text{ eV } \ln(\frac{2 \times 10^{15}}{10^{10}}) = 0.315 \text{ eV}$$

n-side:
$$E_i - E_F = kT \ln \left(\frac{n}{n_i}\right) = 0.0258 \text{ eV } \ln \left(\frac{10^{15}}{10^{10}}\right) = 0.297 \text{ eV}$$

$$V_{\text{bi}} = \frac{1}{q} \left[E_{\text{i} \mid \text{p-side}} - E_{\text{i} \mid \text{n-side}} \right] = \frac{1}{q} \left[E_{\text{F}} + 0.315 - (E_{\text{F}} - 0.297) \right] = 0.61 \text{ V}$$

Note:
$$V_{bi} = \frac{kT}{q} \ln (n_n p_p / n_i^2) = 0.0258 \text{ V} \ln (\frac{10^{15} \times 2x10^{15}}{10^{20}}) = 0.61 \text{ V}$$

b) Total depletion layer width: $W = \left[\frac{2\varepsilon V_{\text{bi}}}{q} \left(\frac{1}{N_{\text{A}}} - \frac{1}{N_{\text{D}}}\right)\right]^{1/2}$

$$W = \left[(2 \times 11.8 \times 8.85 \times 10^{-14} \,\text{F/cm} \times 0.61 \,\text{V}) \,/\, (1.6 \times 10^{-19} \,\text{C}) \times \right] \times \left(\frac{1}{2 \times 10^{15}} - \frac{1}{10^{15}} \right) \,\text{cm}^{3} \,]^{1/2} = 1.09 \times 10^{-4} \,\text{cm} = 1.09 \,\mu\text{m}$$

see page 214 in the textbook:

$$x_p = W \times [N_D / (N_A + N_D)] = 0.09 \ \mu\text{m} \times 10^{15} / (2 \times 10^{15} + 10^{15}) = 0.36 \ \mu\text{m}$$

 $x_n = W \times [N_A / (N_A + N_D)] = 1.09 \ \mu\text{m} \times 2 \times 10^{15} / (2 \times 10^{15} + 10^{15}) = 0.72 \ \mu\text{m}$

N _A		+++	$N_{ m D}$
----------------	---------	-----	------------

Note that, $N_A x_p = N_D x_n$

c) The maximum electric field occurs at the metallurgical junction.

$$\begin{split} \mathcal{E}_0 &= q/\varepsilon\,N_D\,x_n = -q/\varepsilon\,N_A\,x_p = \\ &= -\left[(1.6\times10^{-19}\,\mathrm{C})\,/\,(11.8\times8~85\times10^{-14}\,\mathrm{F/cm}) \right]\times10^{15}\,\mathrm{cm}^{-3}\times0.72\times10^{-4}\;\mathrm{cm} = \\ &= -1.08\times10^4\,\mathrm{V/cm} \end{split}$$

d) The potential at the metallurgical junction V(0).

$$V(0) = -\int \mathcal{E} dx = \mathcal{E}_0 \times 0.36 \ \mu\text{m} \times 0.5 =$$

= 1.08 ×10⁴ V/cm × 0.36 × 10⁴ cm = 0.194 V

e)

Note:

- Depletion layer extends further to lightly doped side.
- \mathcal{E} field points in the negative x direction everywhere.
- \mathcal{E} field varies linearly with x since doping constant everywhere: $d\mathcal{E}/dx = |qN_A/\mathcal{E}|$
- The potential varies as x^2 since \mathcal{E} -field varies linearly with x, $V = -\int \mathcal{E} dx$
- 2. a) $V_{\rm bi} = (kT/q) \ln \left[(10^{17} \times 10^{15})/10^{20} \right] = 0.712 \text{ V}$ Larger than before. Follows directly from band diagram.
 - b) $W = [(2\varepsilon V_{\rm bi}/q) (1/N_{\rm A} + 1/N_{\rm D})]^{1/2} = 0.95 \ \mu m$ Narrower now, since the width on the p – side is very small.

$$x_p = 9.4 \times 10^{-3} \text{ } \mu\text{m}$$

Much narrower depletion width on p-side since $N_A >>> N_D$

$$x_n = 0.94 \mu m$$

c)
$$\mathcal{E}_0 = q \, N_D \times_n =$$

= -(1.6 × 10⁻¹⁹ C) /(11.8 × 8.85 × 10⁻¹⁴ F/cm) × 10¹⁵ cm⁻³ × 0.94 × 10⁻⁴ cm =
= -1.44 × 10⁴ V/cm

d)
$$V(x = 0) = 1.44 \times 10^4 \text{ V/cm} \times 0.94 \times 10^{-4} \text{ cm} \times 0.5 = 6.7 \times 10^{-3} \text{ V}$$

e)

3. a) Refer to Eq. 5.8: The built-in voltage depends only on the majority carrier concentration at the edges of the depletion region.

Note (Eq. 5.9a,b): $n(x_n) = N_D$ (since $x_n > x_0$) and $n(-x_p) = (n_i)^2/N_A$ (assuming the semiconductor is non-degenerately doped)

$$\Rightarrow V_{\text{bi}} = (kT/q) \ln (N_{\text{A}} N_{\text{D}} / n_{\text{i}}^2)$$

b)
$$\rho$$
 (charge density) = 0 for $x < -x_p$ and $x_p > x_n$
= -q N_A for $-x_p < x < 0$
= q $N_D / 2$ for $0 < x < x_0$
= q N_D for $x_0 < x < x_0$

$$d\mathcal{E}/dx = \rho/\varepsilon$$
 (Poisson's equation)

$$d\mathcal{E}/dx = -qN_A/\varepsilon$$
 for $-x_p < x < 0$

$$= qN_D/(2\varepsilon)$$
 for $0 < x < x_0$

$$= qN_D/\varepsilon$$
 for $x_0 < x < x_n$

$$= 0$$
 for $x < x_0 > x_0$

4. Charge density as a function of x:

Note: The banddiagram corresponds to the V-vs-x. curve plotted an upside-down

b. The built in voltage will be equal to $kT/q \ln [N_A N_D/n_i^2]$ where N_A and N_D are the dopant concentrations at the depletion region edges. This is the same reasoning as in problem 3 except that there is an undoped region.