What is claimed is:

5

10

15

20

- 1. A manufacturing method of a dispersion flattened fiber with high negative dispersion ranging from about -20 ps/nm/km to about -60 ps/nm/km, comprising the steps of:
 - (a) preparing a silica tube;
 - (b) cleaning the silica tube;
 - (c) forming a cladding on an inner peripheral surface of the silica tube;
 - (d) forming a first ring-type core on an inner peripheral surface of the cladding;
 - (e) forming a first low refractive region on an inner peripheral surface of the first ring-type core, wherein the refractive index of the first low refractive region is lower than that of the cladding;
 - (f) forming a second ring-type core on an inner peripheral surface of the first low refractive region;
 - (g) forming a second low refractive region on an inner peripheral surface of the second ring-type core, wherein the refractive index of the second low refractive region is lower than that of the cladding;
 - (h) forming the a central core on an inner peripheral surface of the second low refractive region;
 - (i) heating the silica tube, thereby forming a preform of the dispersion flattened fiber; and
- (j) extracting the dispersion flattened fiber from the perform.

2. The method of claim 1, wherein the silica tube is prepared on a board for a modified chemical vapor deposition at step (a).

5

25

- 3. The method of claim 1, wherein the silica tube is heated under the temperature of about 1900°C at step (b).
- 4. The method of claim 1, wherein the cladding has the same refractive index as the silica tube.
 - 5. The method of claim 1, wherein the cladding is formed using SiCl₄.
- 6. The method of claim 1, wherein the first ring-type core having a refractive index higher than that of the cladding is formed by using GeCl₄ or POCl₃ together with SiCl₄.
- 7. The method of claim 1, wherein C_2F_6 or SiF_4 flows together with $SiCl_4$ into the silica tube in order to form the first low refractive region.
 - 8. The method of claim 1, wherein the second ring-type core having a refractive index higher than that of the cladding is formed by having GeCl₄ or POCl₃ with SiCl₄ gas flow into the silica tube.

9. The method of claim 1, wherein the second low refractive region is formed by having C_2F_6 or SiF_4 flow together with $SiCl_4$.

5

- 10. The method of claim 1, wherein $SiCl_4$ and $GeCl_4$ are provided into the silica tube to form the central core at step (h).
- 10 11. The method of claim 1, wherein the silica tube is heated under the temperature of 2000°C or beyond at step (i).
 - 12. The method of claim 1, further comprising the step of (k) jacketing the silica tube on the preform after the step

15 (i).