PES UNIVERSITY 3rd SEMESTER

Errata for DIGITAL DESIGN AND COMPUTER ORGANISATION Slides Uploaded to PESU ACADEMY Portal

Errata Last updated 9th October 2020

This list is a work in progress. Some of the following corrections may be revised, and additional corrections will probably be added.

SI. No	Lecture Number	Content in the slide	To be Corrected as
1.	UNIT3 Lecture 34 Slide 16	CARRY-LOOKAHEAD AND PREFIX ADDERS - 4 Associative Ripple Carry? Ripple Carry Adder • $c_{i+1} = ab + bc_i + c_i a$ • Generate and Propagate: • g_i carry generated in position i • $g_{0:i}$ carry propagated in positions 0 to i • $p_{0:i}$ carry propagated in positions 0 to i • $p_{0:i}$ carry propagated in positions 0 to i	In the figure the labels p0: i and g0:1 need to be interchanged.
2.	UNIT3 Lecture 31 Slide 5	 Time requirements: For an n-bit ripple carry adder, critical path delay is composed of: ▶ Propagation delay from c₀ to c_{n-1} ★ Signal passes through two gates in each of the n - 1 stages ★ 2(n - 1)t_g time required ▶ Sum computation ★ 2t_g time required for three input XOR gate ♠ An n-bit ripple carry adder thus occupies 2nt_g time 	Propagation delay from c0 to c(n-1) should be 3(n-1)tg instead of 2(n-1) tg because although the carry signal passes through two gates in each stage, one of the gates has three inputs which counts as two two input gates

6.	UNIT1,	а	Ь	С	У		а	b	С	Y	
	Lecture 3, Slide 12	O	0	0	0		0	0	0	0	
		О	0	1	0		0	0	1	0	
		O	1	O	O		0	1	0	0	
		O	1	1	1		0	1	1	1	
		1	0	O	O		1	0	0	1	
		1	0	1	1		1	0	1	0	
		1	1	O	1		1	1	0	1	
		1	1	1	1		1	1	1	1	
		Truth table					1	1	1	•	
7.	UNIT1, Lecture 4, Slide 13	Boolear	n Algebra	a			Set f0; 1g				
		○ Set {0, 1}					Operations AND, OR, NOT				
		Operations AND, OR, NOT					Identity elements 1 (for AND),				
		@ Ide	antity al	ements 0	Ifor AND	١	0 (for OR)				
			-	ements o	(IOI AIVD	1,	Laws/Ide	entities Con	nmutative,		
		Ι (for OR)					e, distributi			
		Q Lav	ws/Iden	tities Con	nmutativ	2,	associativ	c, distribut			
		associative, distributive,									
		ass	rociative	, alserisa							
8.	UNIT1,	а	Ь	c d	у						
	Lecture 8 Slide 4 till Slide 16,Also same error in Slide 40	0		0 0	1		0 0	b 0		у 1	
		0		0 0	0		0	0 0		0	
		0		1 0	1		0	0 1		1	
		0		1 0 0 0	0		0	0 1	1 1	0	
		0		0 0	1		0	1 (0	
		0		1 1	0		0	1 (1	
		0		1 1	1		0	1 1		0	
		1		0 1	1		1	0 0		1	
		1	0	0 1	0		1	0 0		0	
		1		1 0	1		1	0 1		1	
		1		1 0	0		1	0 1		0	
		1		0 1	0		1	1 (0	
		1		0 1	1		1	1 (1	
		1		1 1 1 1	0		1	1 1		0	
							1	1 1	l 1	1	
		rour	mbut	Truth Ta	able		The min to	erms for table a	re F(a ,b, c, d)=	Σ(0,2,5,7,8,10,13,15)	