МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа информационных технологий и робототехники

15.03.06 «Мехатроника и робототехника»

КУРСОВАЯ РАБОТА ВАРИАНТ 40

по дисциплине: «Основы мехатроники и робототехники»

Исполнитель:

студент 8Е32 Сорокин Иван Сергеевич 09.06.25

Руководитель: Беляев Александр Сергеевич

Преподаватель

Томск – 2025

Оглавление

Цель работы:	3
1. Расчет координат основных точек	6
2. Определение требуемой рабочей зоны работы промышленного робота	8
3. Решение по использованию робота для роботизации производства	11
4. Расчет прямой задачи кинематики	12
5. Определение требуемой рабочей зоны на основании параметров промышленного робота.	14
6. Расчет координат всех требуемых по заданию точек, в пространстве координат робота. Определение матрицы преобразования между глобаль системой координат робота	
7. Разработка алгоритма работы робота манипулятора	18
8. Создание имитационной модели робота в среде Simulink Simscape Multibody	19
9. Решение обратной задачи кинематики по положению. Нахождение численных решений для всех требуемых точек	23
11. Демонстрация полученных траекторий	25

Цель работы:

- 1. Рассчитать координаты всех основных ключевых точек в глобальной системе координат. Сделать Чертеж схемы по варианту.
- 2. Определить требуемую рабочую зону работы промышленного робота. Рассчитать точку/и установки промышленных роботов на основе рабочей зоны.
- 3. Предложить решение по использованию робота для роботизации производство (взять структурно известное решение) промышленных роботов. За каждую последовательную степень свободы в структуре робота баллы за работу уменьшаются.
- 4. Рассчитаться прямую задачу кинематики для выбранного робота.
- 5. На основании требуемой рабочей зоны определить параметры промышленного робота.
- 6. Рассчитать координаты всех требуемых по заданию точек, в пространстве координат робота. Определить матрицу преобразования между глобальной системой координат и системой координат робота
- 7. Разработать алгоритм работы робота манипулятора
- 8. Создать имитационную модель робота в среде Simulink Simscape Multibody. Дополнительными телами (выделить разным цветом) указать все точки по заданию. В качестве базовой системы координат взять глобальную систему координат.
- 9. Привести решение обратной задачи кинематики по положению. Найти численные решения для всех требуемых точек. (Геометрический метод обязательная база, метод обратных преобразований + дополнительные баллы)
- 10. Произвести симуляцию работы робота с использованием единичной обратной связи по положению, согласно разработанному алгоритму.
- 11. Продемонстрировать полученные траектории.

Общие параметры:

- Размер производства 10 на 10 метров
- Крайние положения деталей посередине ширины конвейера и 0,3 м от края
- Зеленые линии- линейные конвейеры.
- Синие круги- круговые конвейеры
- Точки с номера показывают точки последовательного перемещения деталей
- То есть деталь из точки 1 должна переместиться в точку 2.
- Точки In (input) обозначают точки появления деталей.
- Все точки расположены на конвейерах.
- Количество сегментов на любом круговом конвейере -8.
- R1- радиус расположения детали на конвейере, R2 радиус конвейера.
- Расположение осей координат приведены на рисунке 1, оно применительно и для остальных схем.

Исходные данные, координаты основных точек и скорости конвейеров записаны в таблице 1:

TD 7		U
	TOO STILLION I II OLOSOONII I	COTIDATIONA
таошина г	координаты и скорости к	СОНКСИСНОК
т иолици т	ROOPHINGIBI II CROPOCIII I	Compeniepob
,	1''	1

Номер варианта	Конвейер 1			Конвейер 2 (Круговой)			Конвейер 3 (Круговой)			Конвейер 4 (Круговой)						
	X ₁	Y ₁	L	Н	X ₂	\mathbf{y}_2	R1 ₂	R2 ₂	X ₃	\mathbf{y}_3	R1 ₃	R2 ₃	X ₄	\mathbf{y}_4	R14	R24
4	4,2	1,3	7	1	1,2	2	0,8	1	1,5	7,5	1	1,4	7,3	7,4	1,4	2
		V_1			\mathbf{V}_2				V_3			V_4				
4	0,3 м/мин 4 Сег/мин				Н		3 Сег/мин				3 Сег/мин					

Высоты конвейеров -0.4 м, 0.5 м, 0.6 м, 0.4 м.

По координатам таблицы 1, строим схему расположения конвейеров в плоскости, отметим основные размеры и номера конвейеров.

Рисунок 1-Расположение конвейеров в плоскости

1. Расчет координат основных точек

Рассчитаем координаты для основных точек в роботизированной ячейке. Координаты запишем в формате:

 $A_{i}(x,y,z)$, где i – порядковый номер основной точки.

Точка А1:

$$A_1(x) = X_2 + R1_2 \cdot \cos 45^\circ = 1.2 + 0.8 \cdot \cos 45^\circ = 1.766 \text{ M},$$

$$A_1(y) = Y_2 + R1_3 \cdot \sin 45^\circ = 2 + 0.8 \cdot \sin 45^\circ = 2.566 \text{ M},$$

$$A_1(z) = 0.4 \text{ M}.$$

Точка А2:

$$A_2(x) = X_1 = 4.2 \text{ M},$$

$$A_2(y) = Y_1 + 0.3 = 1.6 \text{ M},$$

$$A_2(z) = 0.5 \text{ M}.$$

Точка А3:

$$A_3(x) = X_3 - R1_3 \cdot \cos 45^\circ = 1.5 - \cos 45^\circ = 0.793 \text{ M},$$

$$A_3(y) = Y_3 + R1_3 \cdot \sin 45^\circ = 7.5 + \sin 45^\circ = 8.207 \text{ M},$$

$$A_3(z) = 0.6 \text{ M}.$$

Точка А4:

$$A_4(x) = X_1 = 4.2 \text{ M},$$

$$A_4(y) = Y_1 + L - 0.3 = 1.3 + 7 - 0.3 = 8 \text{ M},$$

$$A_4(z) = 0.5 \text{ M}.$$

Точка А5:

$$A_5(x) = X_4 - R1_4 \cdot \cos 45^{\circ} = 7.3 - 1.4 \cdot \cos 45^{\circ} = 6.31 \text{ M},$$

$$A_5(y) = Y_4 - R1_4 \cdot \sin 45^{\circ} = 7.4 - 1.4 \cdot \sin 45^{\circ} = 6.41 \text{ M},$$

$$A_5(z) = 0.4 \text{ M}.$$

Опираясь на полученные координаты точек, отметим их на схеме, рисунок 2.

Рисунок 2 — Расположение основных точек

2. Определение требуемой рабочей зоны работы промышленного робота

Для определения рабочей зоны манипулятора необходимо определить точку установки. Для этого используем метод центра масс многоугольника. Центр масс многоугольника — это точка, в которой равномерно распределена масса фигуры. Эта точка минимизирует суммарные перемещения к ключевым точкам при равной важности всех точек.

Соединим основные точки на рисунке 3.

Рисунок 3 – Фигура, образованная соединением основных точек

Разделим полученную фигуру на треугольники и найдем их центры масс O₁, O₂, O₃.

Определим координаты точки О₁:

$$X_{O1} = \frac{X_1 + X_2 + X_3}{3} = \frac{1.766 + 4.2 + 0.793}{3} = 2.253 \text{ M},$$

$$Y_{O1} = \frac{Y_1 + Y_2 + Y_3}{3} = \frac{2.566 + 1.6 + 8.207}{3} = 4.124 \text{ M}.$$

Определим координаты точки О2:

$$X_{O2} = \frac{X_2 + X_3 + X_5}{3} = \frac{4.2 + 0.793 + 6.31}{3} = 3.768 \text{ M},$$

$$Y_{O2} = \frac{Y_2 + Y_3 + Y_5}{3} = \frac{1.6 + 8.207 + 6.41}{3} = 5.406 \text{ M}.$$

Определим координаты точки О3:

$$X_{O3} = \frac{X_3 + X_4 + X_5}{3} = \frac{0.793 + 4.2 + 6.31}{3} = 3.768 \text{ M},$$

$$Y_{O3} = \frac{Y_3 + Y_4 + Y_5}{3} = \frac{8.207 + 8 + 6.41}{3} = 7.539 \text{ M}.$$

Определим площадь каждого треугольника по формуле Герона:

$$\begin{cases} S_1 = 6.397 \text{ m}^2, \\ S_2 = 15.165 \text{ m}^2, \\ S_3 = 2.490 \text{ m}^2. \end{cases}$$

Суммарная площадь:

$$S = S_1 + S_2 + S_3 = 6.397 + 15.165 + 2.490 = 24.052 \text{ m}^2.$$

Теперь определим центр масс пятиугольника:

$$\begin{split} X_c &= \frac{S_1 \cdot X_{O1} + S_2 \cdot X_{O2} + S_3 \cdot X_{O3}}{S} = \\ &= \frac{6.397 \cdot 2.253 + 15.165 \cdot 3.768 + 2.490 \cdot 3.768}{24.052} = 3.365 \text{ m}^2; \end{split}$$

$$Y_c = \frac{S_1 \cdot Y_{O1} + S_2 \cdot Y_{O2} + S_3 \cdot Y_{O3}}{S}$$

$$= \frac{6.397 \cdot 4.124 + 15.165 \cdot 5.406 + 2.490 \cdot 7.539}{24.052} = 5.286 \text{ m}^2;$$

Значит, центр масс пятиугольника расположен по координатам:

0(3.365; 5.286);

Изобразим примерный вид рабочей зоны на рисунке 4 таким образом, чтобы все основные точки лежали внутри области.

Рисунок 4 – Рабочая зона манипулятора

3. Решение по использованию робота для роботизации производства

Необходимо выбрать конструкцию робота, имеющую минимальное число последовательных степеней свободы. Для выполнения перемещений объектов по осям X, Y, Z потребуется минимум три степени свободы.

Поставленным требованиям удовлетворяет робот с цилиндрической системой координат. В основе конструкции используются: два модуля кругового движения, один модуль поступательного движения и один модуль для удержания и захвата объекта.

Рисунок 5 – Структурная схема робота

4. Расчет прямой задачи кинематики

Прямая кинематика вычисляет координаты точки захвата (X, Y, Z) и её ориентацию при заданных обобщённых координатах манипулятора. Одним из методов решения прямой задачи кинематики является метод Денавита – Хартенберга:

Таблица 1	параметр	ы Денавита	– Хартенберга
-----------	----------	------------	---------------

Звено,	Θ_i – угол вокруг	d _i расстояние	а _і – расстояние	α_i — угол вокруг	
i	оси z_{i-1} от x_{i-1}	вдоль оси \mathbf{z}_{i-1} от	вдоль оси x_i от	оси x_i z_{i-1} до z_i	
	до X _i	X _{i-1} до X _i	\mathbf{z}_{i-1} до \mathbf{z}_i		
1	Θ_1	d_1	a ₁	0	
2	Θ_2	0	a ₂	π	
3	0	$d_3 + L_3$	0	0	

При помощи метода Денавита — Хартенберга получены четыре параметра для каждого звена манипулятора. Построим из этих параметров матрицу переноса для каждого звена манипулятора:

Матрица однородного преобразования для звена 0 - 1:

$$T(\theta_{1}, d_{1}, a_{1}, 0) \rightarrow \begin{pmatrix} \cos(\theta_{1}) & -\sin(\theta_{1}) & 0 & a_{1} \cdot \cos(\theta_{1}) \\ \sin(\theta_{1}) & \cos(\theta_{1}) & 0 & a_{1} \cdot \sin(\theta_{1}) \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Матрица однородного преобразования для звена 1 - 2:

$$T(\theta_2, 0, a_2, \pi) \rightarrow \begin{pmatrix} \cos(\theta_2) & \sin(\theta_2) & 0 & a_2 \cdot \cos(\theta_2) \\ \sin(\theta_2) & -\cos(\theta_2) & 0 & a_2 \cdot \sin(\theta_2) \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Матрица однородного преобразования для звена 2 - 3:

$$T(0,d_3 + L_3,0,0) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_3 + d_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Рисунок 6 — Матрицы однородного преобразования для звеньев манипулятора

Для получения итоговой матрицы преобразования, связывающей базу робота и рабочий инструмент, нужно перемножить полученные матрицы:

$$T\left(\theta_{1}^{},d_{1}^{},a_{1}^{},0\right)\cdot T\left(\theta_{2}^{},0,a_{2}^{},\pi\right)\cdot T\left(0^{},d_{3}^{}+L_{3}^{},0,0\right) \text{ simplify } \rightarrow \begin{pmatrix} \cos\left(\theta_{1}^{}+\theta_{2}^{}\right) & \sin\left(\theta_{1}^{}+\theta_{2}^{}\right) & 0 & a_{2}\cdot\cos\left(\theta_{1}^{}+\theta_{2}^{}\right) + a_{1}\cdot\cos\left(\theta_{1}^{}\right) \\ \sin\left(\theta_{1}^{}+\theta_{2}^{}\right) & -\cos\left(\theta_{1}^{}+\theta_{2}^{}\right) & 0 & a_{2}\cdot\sin\left(\theta_{1}^{}+\theta_{2}^{}\right) + a_{1}\cdot\sin\left(\theta_{1}^{}\right) \\ 0 & 0 & -1 & d_{1}^{}-L_{3}^{}-d_{3}^{} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Рисунок 7 – Матрица прямой кинематики

Элементы последнего столбца матрицы (кроме 1) образуют вектор указывающий положение и ориентацию конечного устройства относительно базовой системы координат:

$$X = a_2 \cdot \cos\left(\theta_1 + \theta_2\right) + a_1 \cdot \cos\left(\theta_1\right) \qquad Y = a_2 \cdot \sin\left(\theta_1 + \theta_2\right) + a_1 \cdot \sin\left(\theta_1\right) \qquad Z = d_1 - L_3 - d_3$$

Рисунок 8 — Зависимость положения инструмента от длин звеньев и углов в суставах

5. Определение требуемой рабочей зоны на основании параметров промышленного робота.

Определим необходимые параметры робота для выполнения перемещений объекта:

Параметры, ограничивающие длину в горизонтальной проекции:

Рассчитаем расстояние от базы до ближайшей основной точки от манипулятора:

Координаты базы: O(3.365; 5.286).

Координаты точки 4: $A_4(4.2; 8)$.

Расстояние между точками: $\sqrt{(4.2 - 3.365)^2 + (8 - 5.286)^2} = 2.84$ м.

Следовательно, робот должен иметь возможность оказаться на расстоянии 2.84 м от базы.

Рассчитаем расстояние от базы до самой удаленной основной точки:

Координаты точки 3: $A_3(0.793; 8.207)$.

Расстояние между точками: $\sqrt{(3.365 - 0.793)^2 + (8.207 - 5.286)^2} = 3.892 м.$

Следовательно, робот должен иметь возможность оказаться на расстоянии 3.892 м от базы.

Таким образом, длины a_1 и a_2 должны обеспечить возможность нахождения схвата на удалении в 2.8 м 3.9 м от базы. Так как звенья вращательные, нельзя допускать перекрытия, пусть наименьший возможный угол между двумя звеньями будет равен 50 градусов. Суммируя условия, получаем систему уравнений:

Given
$$a_1 + a_2 = 3.9$$

$$a_1 + a_2 \cdot \cos(130 \cdot \deg) = 2.8$$

$$\binom{a_1}{a_2} := \operatorname{Find}(a_1, a_2) \rightarrow \begin{pmatrix} \frac{39.0 \cdot \cos(130.0 \cdot \deg) - 28.0}{10.0 \cdot \cos(130.0 \cdot \deg) - 10.0} \\ \frac{11.0}{10.0 \cdot \cos(130.0 \cdot \deg) - 10.0} \end{pmatrix}$$

$$\binom{a_1}{a_2} = \binom{3.23}{0.67}$$

Рисунок 9 Длины звеньев в проекции на горизонтальную плоскость Оптимальные длины звеньев равны: 3.23 м и 0.67 м.

Параметры, ограничивающие длину в вертикальной проекции.

Высота самого низкого конвейера равна 0.4 метра.

Высота самого высокого конвейера равна 0.6 метра

Модуль поступательного движения, установлен на манипуляторе в вертикальной плоскости. Для захвата и перемещения объекта с самого высокого конвейера на самый низкий, необходим ход модуля минимум на 0.2м. Возьмем с запасом 0.25 м. Пусть высота d_1 равна 0.8 м. Тогда из условия:

$$0.8 - d_3 = 0.4 \text{ solve } \rightarrow 0.4$$

Рисунок 10 – высота d_3

Исходя из приведенных расчетов, получаем следующие параметры робота:

$$a_1 = 3.23 \text{ M}, \quad a_2 = 0.67 \text{ M}, \quad d_1 = 0.8 \text{ M}, \quad d_3 = 0.4 \text{ M}, \quad l_3 = 0.25 \text{ M}.$$

6. Расчет координат всех требуемых по заданию точек, в пространстве координат робота. Определение матрицы преобразования между глобальной системой координат и системой координат робота.

Рассчитаем координаты для основных точек в роботизированной ячейке относительно базы робота O(3.365; 5.286). Координаты запишем в формате:

 $A_{i}(x, y, z)$, где i – порядковый номер основной точки.

Точка А₁*:

$$A_1^*(x) = X_2 + R1_2 \cdot \cos 45^\circ - O(x) = 1.2 + 0.8 \cdot \cos 45^\circ - 3.365 = -1.599 \text{ M}$$

$$A_1^*(y) = Y_2 + R1_3 \cdot \sin 45^{\circ} - O(y) = 2 + 0.8 \cdot \sin 45^{\circ} - 5.286 = -3.52 \text{ M},$$

$$A_1^*(z) = A_1(z) = 0.4 \text{ M}.$$

Точка А₂:

$$A_2^*(x) = X_1 - O(x) = 4.2 - 3.365 = 0.835 \text{ M},$$

$$A_2^*(y) = Y_1 + 0.3 - O(y) = 1.6 - 5.286 = -3.686 \text{ M},$$

$$A_2^*(z) = A_2(z) = 0.5 \text{ M}.$$

Точка А*:

$$A_3^*(x) = X_3 - R1_3 \cdot \cos 45^{\circ} - O(x) = 1.5 - \cos 45^{\circ} - 3.365 = -2.572 \text{ M},$$

$$A_3^*(y) = Y_3 + R1_3 \cdot \sin 45^{\circ} - O(y) = 7.5 + \sin 45^{\circ} - 5.286 = 2.921 \text{ M},$$

$$A_3^*(z) = A_3(z) = 0.6 \text{ M}.$$

Точка A_4^* :

$$A_4^*(x) = X_1 - O(x) = 4.2 - 3.365 = 0.835 \text{ M},$$

$$A_4^*(y) = Y_1 + L - 0.3 - O(y) = 1.3 + 7 - 0.3 - 5.286 = 2.714 \text{ M},$$

$$A_4^*(z) = A_4(z) = 0.5 \text{ M}.$$

Точка A_5^* :

$$A_5^*(x) = X_4 - R1_4 \cdot \cos 45^{\circ} - O(x) = 7.3 - 1.4 \cdot \cos 45^{\circ} - 3.365 = 2.945 \text{ M},$$

$$A_5^*(y) = Y_4 - R1_4 \cdot \sin 45^\circ - O(y) = 7.4 - 1.4 \cdot \sin 45^\circ - 5.286 = 1.124 \text{ M},$$

$$A_5^*(z) = A_5(z) = 0.4 \text{ M}.$$

Определим матрицу преобразования между глобальной системой координат и локальной системой координат робота. Для этого нужно выполнить параллельный перенос глобальной системы координат на вектор s(3.365; 5.286).

Так как перенос координат осуществляется в плоскости ОХУ можем использовать матрицу для двумерного случая размером 3 на 3.

Матрица параллельного переноса на вектор s(3.365; 5.286) выглядит следующим образом:

$$T_{xy} = \begin{pmatrix} 1 & 0 & 3.365 \\ 0 & 1 & 5.286 \\ 0 & 0 & 1 \end{pmatrix}.$$

Найдем координаты точки (0,0) после параллельного переноса плоскости на вектор s(3.365; 5.286).

$$T_{xy} := \begin{pmatrix} 1 & 0 & 3.365 \\ 0 & 1 & 5.286 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{v} := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad T_{xy} \cdot \mathbf{v} = \begin{pmatrix} 3.365 \\ 5.286 \\ 1 \end{pmatrix}$$

Рисунок 10 – Перенос точки начала координат в точку расположения манипулятора

7. Разработка алгоритма работы робота манипулятора

Известно, что точки с номера показывают точки последовательного перемещения деталей. То есть деталь из точки 1 должна переместиться в точку 2. Точки In (input) обозначают точки появления деталей.

На основе этого начертим блок-схему алгоритма.

Рисунок 11 – Алгоритм перемещения робота

Алгоритм демонстрирует последовательность перемещения робота-манипулятора от первой до последней точки.

8. Создание имитационной модели робота в среде Simulink Simscape Multibody

Для создания модели робота использовался MatLab Simulink с библиотекой Simscape Multibody.

На первом этапе разработки модели была создана схема, описывающая конструкцию робота, и расставлены основные точки маршрута манипулятора.

Рисунок 12 – Схема робота манипулятора в MatLab Simulink

На втором этапе была решена обратная и прямая задача кинематики.

Написаны функции управления узлами робота.

```
function [L3, q1, q2] = inverseKinematics(x, y, z, oldq1, oldq2) % параметры манипулятора a1 = 3.23; a2 = 0.67; d1 = 0.8; d3 = 0.4; % ограничение рабочей зоны r = \text{sqrt}(\ (x^2 + y^2)\ ); if (r < 2.8 \ \| \ r > 3.9) r = \text{max}(2.8, \text{min}(r, 3.9)); x = 2.8; y = 0;
```

```
end
  % Решение для q2
  q2 = a\cos((-a1^2 - a2^2 + r^2)/(2*a1*a2));
  %Решение для q1
  phi = atan2(y,x);
  gamma = a\cos((a1^2 + r^2 - a2^2) / (2*a1*r));
  q1 = phi - gamma;
  L3 = d1-d3-z;
  % Оптимизация траектории
  % Блок q1
  for angle = (q1-6*pi()):2*pi():(q1+6*pi)
    if abs(angle - oldq1) < pi()
       q1 = angle;
       break;
    end
  end
  % Блок q2
  for angle = (q2-6*pi()):2*pi():(q2+6*pi)
    if abs(angle - oldq2) < pi()
       q2 = angle;
       break:
    end
  end
end
```

Листинг 1 – Функция обратной задачи кинематики

Пояснение работы: Данная функция решает обратную задачу кинематики для 3-звенного манипулятора. Принимает на вход желаемые декартовы координаты конечного эффектора (x, y, z) и вычисляет соответствующие углы поворота суставов q1, q2 и линейное перемещение L3.

```
function [x,y,z] = forwardKinematics(q1, q2, L3) % параметры манипулятора a1 = 3.23; a2 = 0.67; d1 = 0.8; d3 = 0.4; % прямоугольная система координат x = a2 * cos(q1 + q2) + a1 * cos(q1); y = a2 * sin(q1 + q2) + a1 * sin(q1); z = d1 - d3 - L3; end
```

Листинг 2 – Функция прямой задачи кинематики

Пояснение работы: Функция решает прямую задачу кинематики – обратную операцию к листингу 1. Принимает углы суставов (q1, q2) и

линейное перемещение L3, а возвращает декартовы координаты положения конечного TCP (x, y, z).

Для автоматического обхода по всем основным точкам потребовалось добавить еще одну функцию

```
function [x,y,z] = point(time)
delay = 0.5;
 if mod(time,delay) < 0.1
     x = 1.766; y = 2.566; z = 0.4;
     return;
 elseif mod(time,delay) < 0.2
     x = 4.2; y = 1.6; z = 0.5;
     return;
 elseif mod(time,delay) < 0.3
     x = 0.793; y = 8.207; z = 0.6;
     return;
 elseif mod(time,delay) < 0.4
     x = 4.2; y = 8; z = 0.5;
     return;
 elseif mod(time,delay) < 0.5
     x = 6.31; y = 6.41; z = 0.4;
     return;
 else
     x = 1.766; y = 2.566; z = 0.4;
 end
end
```

Листинг 3 – Функция обхода по точкам

Пояснение работы: Функция обеспечивает автоматический циклический обход по заранее заданным опорным точкам. Работает по принципу временных интервалов с задержкой 0.5 секунды между переключениями точек.

Соединив, созданные блоки, получаем готовую модель робота, функцией с автоматического обхода по точкам

Рисунок 13 – Собранная модель робота манипулятора

Модель на рисунке 13 работает по следующему принципу. Функция Point в качестве аргумента принимает время с начала симуляции. Функция возвращает глобальные координаты точки, в которой должен оказаться манипулятор в данный момент времени. Далее глобальные координаты преобразуются в локальные координаты робота манипулятора в функции ForwardTransform, после чего передаются в функцию inverseKinematics как аргументы. inverseKinematics работает напрямую с узлами манипулятора, задает и углы вращения (для Revolute Joint) и дальность перемещения (для Prismatic Joint). Узлы манипулятора возвращают свое положение в каждый момент времени, это свойство используется для настройки обратной связи и для расчета положения робота в локальной системе координат. Функция forwardKinematics преобразует углы и расстояния, полученные с модели робота в локальные координаты. После чего рассчитанные величины принимает функция inverseTransform, которая возвращает координаты робота в глобальной системе координат. Координаты выводятся на блоки Display для наглядности.

9. Решение обратной задачи кинематики по положению. Нахождение численных решений для всех требуемых точек

Для решения обратной задачи кинематики рассмотрим робота в двух проекциях: вид сверху и вид сбоку

Рисунок 14 — Схематическое изображения манипулятора вид сверху Используя рисунок найдем q2:

По теореме косинусов:

$$r^2 = a_1^2 + a_2^2 - 2a_1a_2 \cdot cos(q_2).$$

Вектор соединяющий начало робота и центр рабочего инструмента, r. Найдем по теореме Пифагора:

$$r = x_3^2 + y_3^2$$
.

Выразим из теоремы косинусов угол q2:

$$q_2 = a\cos\left(\frac{r^2 - a_1^2 - a_2^2}{-2a_1a_2}\right).$$

Найдем угол q1:

$$q_1 = atan \frac{y_3}{x_3}.$$

Для нахождения расстояния для удлинения схвата, построим вид сбоку:

Рисунок 15 — Схематическое изображения манипулятора вид сбоку Параметр L_3 определим по формуле:

$$L_3 = d_1 - d_3 - z_3.$$

Применим полученные формулы для расчета решения всех точек.

11. Демонстрация полученных траекторий

Используя Data Inspector в MatLab получены траектории движения точки TCP манипулятора в трех видах.

Рисунок 12 — Траектория движения манипулятора вид сверху (XY)

Рисунок 13 — Траектория движения манипулятора вид спереди (XZ)

Рисунок 14 — Траектория движения манипулятора вид справа (YZ)