CS2102 Lecture 4 Entity-Relationship Model

Database Design Process

- Requirement Analysis find out the data/application/performance requirements of the enterprise
- 2. Conceptual Database Design capture data requirements using a conceptual schema
- Logical Database Design map conceptual schema to logical schema supported by DBMS
- 4. Schema Refinement improve logical schema design using data constraints
- 5. **Physical Database Design** use performance requirements to design physical schema
- 6. Application & Security Design specify access control policies

CS2102: Sem 2, 2021/22 Database Design 2

Requirement Analysis: Example
I would like my customers to be able to browse my catalog of books and place

orders over the Internet. Currently, I take orders over the phone. I have mostly corporate customers who call me and give me the ISBN number of a book and a quantity; they often pay by credit card. I then prepare a shipment that contains the books they ordered. If I don't have enough copies in stock, I order additional copies and delay the shipment until the new copies arrive; I want to ship a customer's entire order together. My catalog includes all the books I sell. For each book, the catalog contains its ISBN number, title, author, purchase price, sales price, and the year the book was published. Most of my customers are regulars, and I have records with their names and addresses. New customers have to call me first and establish an account before they can use my website. On my new website, customers should first identify themselves by their unique customer identification number. Then they should be able to browse my catalog and to place orders online.

3

Conceptual Data Models

- Entity-Relationship (ER) Model
 - Developed by Peter Chen in 1976
 - Designed for conceptual data model specifications
- Unified Modelling Language (UML)
 - Developed by Grady Booch & James Rumbaugh in 1997
 - Goes beyond conceptual data modelling software design specifications
 - Standardized by Object Management Group (OMG)

CS2102: Sem 2, 2021/22 Database Design 4

Entity-Relationship (ER) Model

- The entity-relationship (ER) model is the most common data model used for conceptual database design
- Data is described in terms of entities and their relationships
- Information about entities & relationships are described using attributes
- Certain data constraints are represented using additional annotations
- ER schemas are presented as ER diagrams

Entities & Attributes

- Entity = real-world object distinguishable from other objects
- Attribute = specific information describing an entity
 - Each attribute has an atomic domain (e.g., integer, string)
- Entity Set = a collection of similar entities
- Entity sets are represented by rectangles
- Attributes are represented by ovals

Entity Keys

- Each entity set has a key = minimal set of attributes whose values uniquely identify an entity
- An entity set could have multiple keys called candidate keys

• Example:

- One of the candidate keys is chosen as the primary key
- The attributes that formed a primary key are underlined

ER Model: Relationships

- Relationship is an association among two or more entities
- Relationship set is a collection of similar relationships
- Attributes are used to describe information about relationships
- Relationship sets are represented by diamonds

Entities, Relationships & Attributes I would like my customers to be able to browse my catalog of books and place

orders over the Internet. Currently, I take orders over the phone. I have mostly corporate customers who call me and give me the ISBN number of a book and a quantity; they often pay by credit card. I then prepare a shipment that contains the books they ordered. If I don't have enough copies in stock, I order additional copies and delay the shipment until the new copies arrive; I want to ship a customer's entire order together. My catalog includes all the books I sell. For each book, the catalog contains its ISBN number, title, author, purchase price, sales **price**, and the **year** the book was published. Most of my customers are regulars, and I have records with their **names** and **addresses**. New customers have to call me first and establish an account before they can use my website. On my new website, customers should first identify themselves by their unique customer **identification number**. Then they should be able to browse my catalog and to place orders online.

Many-to-Many Relationship Sets

- Many-to-many relationship between Students and Courses
- Each student can enroll in 0 or more courses
- Each course can by enrolled by 0 or more students

Many-to-Many Relationship Sets (cont.)

Relationship Roles

- Each entity set participating in a relationship set plays a certain role
- The role is typically named the same as the entity set name & is not shown explicitly

Relationship Roles (cont.)

 Roles are shown explicitly when one entity set appears two or more times in a relationship set

Degree of Relationship Sets

- An n-ary relationship set involves n entity roles
- n = degree of relationship set
- When n=2, we have a binary relationship set

When n=3, we have a ternary relationship set

Relationship Keys

 Consider a n-ary relationship set R involving entity sets E_1, \dots, E_n with relationship attributes $\{A_1, \dots, A_k\}$

- Let $Key(E_i)$ denote the set of attributes that define the primary key of entity set E_i
- Each instance of R involves one instance of each E_i & have the following attributes:
 - $Key(E_1), \cdots, Key(E_n)$
 - A_1, \dots, A_k

Relationship Keys (cont.)

- The key for R (denoted by Key(R)) is specified by some subset $A' \subseteq \{A_1, \dots, A_k\}$ and some subset $E' \subseteq \{E_1, \dots, E_n\}$ such that
 - $Key(R) = A' \cup Key(E_i)$ is a minimal subset of attributes whose values uniquely identify a relationship instance of R
- Relationship attributes in $\{A_1, \dots, A_k\}$ that form part of the relationship key are underlined.
 - Each attribute in A' is underlined in ER diagram

Relationship Keys: Example 1

- Each instance of Enrolls has attributes {sid, cid, grade}
- $A' = \emptyset$, $E' = \{ \text{Students}, \text{Courses} \}$
- Key(Enrolls) = $\{sid, cid\}$
- Each (sid,cid) appears at most once in Enrolls relationship set

Relationship Keys: Example 2

- Each instance of Enrolls has attributes {sid, cid, year, semester, grade}
- $A' = \{ \text{year, semester} \}, \quad E' = \{ \text{Students, Courses} \}$
- Key(Enrolls) = {sid, cid, year, semester}
- Each (sid,cid,year,semester) appears at most once in Enrolls relationship set

Relationship Keys: Example 3

- Each instance of Enrolls has attributes {sid, cid, year, semester, grade}
- $A' = \emptyset$, $E' = \{ \text{Students}, \text{Courses}, \text{Semesters} \}$
- Key(Enrolls) = { sid, cid, year, semester }
- Each (sid,cid,year,semester) appears at most once in Enrolls relationship set

Relationship Constraints

- Let R be a relationship set that involves entity set E
- Key constraint on E wrt R
 - Each instance of E can participate in at most one instance of R

- Total participation constraint on E wrt R
 - Each instance of E must participate in at least one instance of R

Key Constraints

- Each student can be supervised by <u>at most one</u> professor
- one-to-many relationship from Profs to Students / many-to-one relationship from Students to Profs
 - Each professor can supervise many students
 - Each student can be supervised by one professor

Key(Supervises) = {sid}

Key Constraints (cont.)

Key Constraints: 1-to-1 Relationships

- One-to-one relationship between Students and Projects
- Each student can work on at most one project
- Each project can be worked on by at most one student

Key(Works) = {sid} or {pid}

Key Constraints: 1-to-1 Relationships (cont.)

Key Constraints: N-ary Relationships

 Each professor can work in at most one department located at some building

• $Key(Works) = \{pid\}$

Buildings AS6 COM2 COM1 disalice MA dcsbob IS dbaeve dcsjoe CS Works **Departments Profs**

Participation Constraints

- Participation constraint Is the participation of an entity set in a relationship set mandatory?
- Partial participation constraint: each student can enroll in 0 or more courses

 Total participation constraint: each student must enroll in at least one course

Partial Participation Constraints

Total Participation Constraints

Key & Total Participation Constraints

Weak Entity Sets

- Weak entity set is an entity set that does not have its own key
- A weak entity can only be uniquely identified by considering the primary key of another entity (called owner entity)
 - There must be a many-to-one relationship (called identifying relationship) from the weak entity set to an owner entity set
 - Weak entity set must have total participation in identifying relationship

Weak Entity Sets (cont.)

- Partial key of a weak entity set is a set of attributes of weak entity set that uniquely identifies a weak entity for a given owner entity
- A weak entity's existence is dependent on the existence of its owner entity
 - If an owner entity is deleted, then all the weak entities that are dependent on that owner entity will be deleted
- Weak entity sets are represented by dark lined rectangles
- Identifying relationship sets are represented by dark lined

Weak Entity Sets: Another Example

Summary of Relationship Constraints

Each instance of E participates in 0 or more instances of R

Each instance of E participates in at most one instance of R

Each instance of E participates in at least one instance of R

Each instance of E participates in exactly one instance of R

E is a weak entity set with identifying owner E' & identifying relationship set R

Database Design Process

- Requirement Analysis find out the data/application/performance requirements of the enterprise
- 2. Conceptual Database Design capture data requirements using a conceptual schema
- Logical Database Design map conceptual schema to logical schema supported by DBMS
- 4. Schema Refinement improve logical schema design using data constraints
- 5. **Physical Database Design** use performance requirements to design physical schema
- 6. Application & Security Design specify access control policies

Entity Sets


```
create table Students (
sid char(20),
name char(30),
dob date,
primary key (sid)

create table Offices (
building char(10),
roomNumber char(7),
area integer,
primary key (building, roomNumber)
);
```

Entity Sets with Candidate Keys

Assume that (building, roomNumber) is a candidate key of Offices

```
create table Offices (
officeId char(10) primary key,
building char(10) not null,
roomNumber char(7) not null,
area integer,
unique (building, roomNumber)
);
```

CS2102: Sem 2, 2021/22 ER to Relational Mapping 37

Relationship Sets w/o Constraints


```
create table Enrolls (
sid char(20) references Students,
cid char(5),
grade numeric,
primary key (sid, cid),
foreign key (cid) references Courses
);
```

Relationship Sets w/o Constraints

```
qty
create table Supplies (
                                                   price
                                       name
                                 sid
         char(10),
 sid
                                                                      name
                                                               pid
     char(10),
  pid
  pjid
         char(10),
                                                                       Parts
                                    Suppliers
                                                      Supplies
 price
         real,
         integer,
 qty
  primary key (sid, pid, pjid),
 foreign key (sid)
     references Suppliers,
 foreign key (pid)
                                                    Projects
     references Parts,
                                              pjid
 foreign key (pjid)
                                                              budget
     references Projects
```

Relationship Sets with Key Constraints

- First approach: Represent Supervises using a separate table
 - Profs (pid, name, room)
 - Students (sid, name, dob)
 - Supervises (sid, pid, since)
- Second approach: Combine Supervises & Students into one table
 - Profs (pid, name, room)
 - Students (sid, name, dob, pid, since)

Relationship Sets with Key Constraints (cont.)

First approach: Represent Supervises using a separate table

```
create table Supervises (
                            create table Students (
create table Profs (
       big
              char(7),
                                   sid
                                          char(20),
                                                                sid
                                                                       char(20),
              char(30),
                                   name char(30),
                                                                       char(7) not null,
                                                                big
       name
              char(6),
                                   dob
                                          date.
                                                               since date.
       room
       primary key (pid)
                                   primary key (sid)
                                                               primary key (sid),
);
                            );
                                                               foreign key (sid)
                                                                 references Students,
                                                               foreign key (pid)
                                                                 references Profs
                                                        );
```

Relationship Sets with Key Constraints

Second approach: Combine Supervises & Students into one table

```
create table Profs (
                              create table Students (
      pid
                                            char(20),
              char(7),
                                     sid
       name char(30),
                                     name char(30),
             char(6),
                                            date,
       room
                                     dob
      primary key (pid)
                                     pid
                                            char(7),
);
                                     since date,
                                     primary key (sid),
                                     foreign key (pid) references Profs
                               );
```

Key & Total Participation Constraints

First approach: Represent Supervises using a separate table

```
create table Profs (
                           create table Students (
                                                        create table Supervises (
                                                                      char(20),
       big
                                   sid
                                          char(20),
                                                               sid
              char(7),
       name char(30),
                                   name char(30),
                                                               pid
                                                                      char(7) not null,
              char(6),
                                          date.
                                   dob
                                                               since date.
       room
                                   primary key (sid)
       primary key (pid)
                                                               primary key (sid),
                                                               foreign key (sid)
);
                            );
                                                                 references Students.
                                                               foreign key (pid)
                                                                 references Profs
                                                        );
```

Total participation constraint of Students w.r.t. Supervises is not enforced by database schema!

CS2102: Sem 2, 2021/22 ER to Relational Mapping 43

Key & Total Participation Constraints

(cont.)

Second approach: Combine Supervises & Students into one table

```
create table Profs (
                              create table Students (
             char(7),
                                            char(20),
      pid
                                     sid
       name char(30),
                                     name char(30),
             char(6),
                                            date,
                                     dob
      room
       primary key (pid)
                                     pid
                                            char(7) not null,
);
                                     since date,
                                     primary key (sid),
                                     foreign key (pid) references Profs
                               );
```

Roles in Relationships


```
create table Students (
    sid char(20),
    name char(30),
    dob date,
    primary key (sid),
);
```

```
create table Mentors (
    seniorSid char(20),
    juniorSid char(20),
    primary key (seniorSid, juniorSid),
    foreign key (seniorSid)
        references Students(sid),
    foreign key (juniorSid)
        references Students(sid),
        check (juniorSid <> seniorSid)
```

45

CS2102: Sem 2, 2021/22 ER to Relational Mapping

Weak Entity Sets

 Weak entity set & its identifying relationship set are represented by a single relation


```
create table Books (
                                create table Chapters (
               char(30),
                                                   integer,
       isbn
                                       number
       title
               char(50),
                                                   char(50),
                                       title
                                                   char(30),
       author char(60),
                                       isbn
       primary key (isbn)
                                       primary key (isbn, number),
                                       foreign key (isbn) references Books
                                                    on delete cascade
                                );
```

ER Design & Relational Mapping

Guidelines for ER Design

- ER design should capture as many of the application's constraints as possible
- ER design must not impose any constraint that is not required in the application

Guidelines for relational mapping

- Relational schema should enforce as many of the application's constraints as possible using column/table constraints
- Relational schema must not impose any constraint that is not required in the application

Aggregation

How to model a relationship between entities & relationships?

• Example:

- Every project is sponsored by at least one department
 - Each sponsorship has a "since" attribute
- Each sponsorship might be monitored by 0 or more employees
 - Each monitoring has a "until" attribute

The connected to Sponsors relationship denotes that Sponsors is participating in the Monitors relationship as an aggregation

CS2102: Sem 2, 2021/22 Entity-Relationship Model 48

Aggregation (cont.)

- Each instance of Monitors has the following attributes:
 - Key(Employees) = {eid}
 - Key(Sponsors) = {pid, did}
 - Relationship attributes = {until}

Aggregation: Relational Mapping


```
create table Sponsors (
                                                   create table Monitors (
    pid
           char(30)
                                                       eid
                                                               char(20) references Employees,
           references Projects,
                                                               char(30),
                                                       pid
           char(30),
                                                       did
                                                               char(30),
    did
           references Departments,
                                                               date.
                                                       until
           date.
    since
                                                       primary key (eid,pid,did),
    primary key (pid,did)
                                                       foreign key (pid,did)
);
                                                               references Sponsors (pid,did)
                                                   );
```

50

Aggregation: Is it necessary?


```
create table Monitors (
                                                       create table Monitors (
                                                                  char(20) references Employees,
           char(20) references Employees,
    eid
                                                           eid
           char(30),
                                                           pid
                                                                  char(30), references Projects,
    pid
                                                                  char(30) references Departments,
    did
           char(30),
                                                           did
    until
           date.
                                                           until
                                                                   date.
    primary key (eid,pid,did),
                                                           primary key (eid,pid,did),
    foreign key (pid,did)
                                                       );
           references Sponsors (pid,did)
);
```

51

ISA Hierarchies

- Sometimes useful to classify an entity set into subclasses
- Every entity in a subclass entity set is an entity in its superclass entity set
- Each subclass has specific attribute(s) and/or relationship(s)

CS2102: Sem 2, 2021/22 Entity-Relationship Model 52

Constraints on ISA Hierarchies

- Overlap constraint: Can an entity belong to multiple subclasses?
 - A ISA hierarchy satisfies the overlap constraint if an entity in a superclass could belong to multiple subclasses
 - Satisfies: Undirected edge from superclass to ISA triangle
 - Does not satisfy: Directed edge from superclass to ISA triangle
- Covering constraint Does an entity in a superclass have to belong to some subclass?
 - A ISA hierarchy satisfies the covering constraint if every entity in a superclass has to belong to some subclass
 - Satisfies: thick edge from superclass to ISA triangle
 - Does not satisfy: thin edge from superclass to ISA triangle

ISA Hierarchies: Notation

CS2102: Sem 2, 2021/22 Entity-Relationship Model 54

ISA Hierarchies: Example

Lecturer

TA

ISA Hierarchies: Relational Mapping

Simplest approach: One relation per subclass/superclass

```
name
                                          sid
                                                Students
 create table Students (
                                 satScore
                                                   ISA
          char(20)
   sid
                                  Undergrads
                                                            Grads
          primary key,
                                                          Supervises
   name char(30);
                                                                    pid
                                                            Profs
create table Undergrads (
           char(20) primary key references Students
  sid
           on delete cascade.
  satScore numeric);
create table Grads (
            char(20) primary key references Students
  sid
            on delete cascade,
  supervisor char(7) references Profs(pid));
```

Summary

- ER model has expressive constructs for conceptual data design
 - Concepts: entities, relationships, attributes, weak entities, aggregation, ISA hierarchies
 - Constraints: key constraints, participation constraints
- Rules for mapping entity-relationship model to relational model
 - Entity & relationship sets
 - Key constraints
 - Participation constraints
 - Relationship roles
 - Weak entity sets
 - Aggregation
 - ISA hierarchies

References

- R. Ramakrishnan & J. Gehrke, *Introduction to database design*, Database Management Systems, chapter 2. McGraw Hill, third edition, 2003.
- R. Ramakrishnan & J. Gehrke, *The relational model*, Database Management Systems, chapter 3. McGraw Hill, third edition, 2003.

ER Model: R & G's vs Lecture's Notation

Lecture's ER model uses different notation for aggregation

R & G's Notation

Lecture's Notation

Lecture's ER model allows relationship attributes to form part of relationship key