В-РАСПАД СИЛЬНОИОНИЗОВАННЫХ ЯДЕР

Д.Е.Ланской

Энергия β-распада

$$Q_c = B(A(Z+1)) - B(AZ) + M_n - M_p - m_e$$

$$Z=66$$
 $Z=67$ 163 Dy \leftarrow 163 Ho e-захват, $T_{\frac{1}{2}}=4.6\cdot10^3$ лет $Q_c=-2.6$ кэВ $5/2^ 7/2^-$

$$163 \mathrm{Dy}^{66+} \longrightarrow 163 \mathrm{Ho}^{66+} + \widetilde{\mathrm{V}}_{\mathrm{e}}$$
 $\mathrm{Q}_{\mathrm{b}} = \mathrm{Q}_{\mathrm{c}} + \mathrm{S}_{\mathrm{e}} - \Delta \mathrm{B}_{\mathrm{e}} = 52 \mathrm{ кэ}\mathrm{B}$
 $\mathrm{T}_{\frac{1}{2}} = 47 \pm 5 \mathrm{\ дней}$
Jung et al., Phys.Rev.Lett. 69(1992)2164

GSI - Gesellschaft für Schwerionenforschung, c 2008 – GSI Helmholtzzentrum für Schwerionenforschung Darmstadt (Vixhausen), Deutschland

Yu.Litvinov, F.Bosch. Beta decay of highly charged ions. Rep.Prog.Phys. 74(2011)016301.

F.Bosch, Yu.Litvinov, T.Stoehlker. Nuclear physics with unstable ions at storage rings. Prog.Part.Nucl.Phys. 73(2013)84.

β-распад на связанное состояние R.Daudel, M.Jean, M.Lecoin. J.Phys.Radium, 8(1947)238. J.N.Bahcall. Phys.Rev. 124(1961)495.

Доля распадов на связанное состояние $n \rightarrow (pe) + v_e$ --- теория $\sim 10^{-6}$, эксперимент $< 3 \cdot 10^{-2}$ $^3H \rightarrow (^3He~e) + v_e$ --- теория $\sim 10^{-3}$

Ядерные космические часы (?!)

$$T_{\frac{1}{2}}$$
=33±2 года

K.Takahashi, K. Yokoi, Nucl.Phys. A404(1983)375: время жизни ионизованного рения будет на много порядков отличаться от времени жизни нейтрального (~14 лет)

Эксперимент: F.Bosch et al., Phys.Rev.Lett. 77(1996)5190

Neutral ¹⁸⁷Re atoms

$$\frac{5/2^{+}}{187} Q_{\beta} = 2.66 \text{ keV} \xrightarrow{\frac{3/2^{-}}{1/2^{-}}} \frac{9.75}{0} \text{ keV}$$

$$T_{1/2} = 43 \cdot 10^{9} \text{ y}$$

 $T_{\frac{1}{2}}$ =43·10⁹ лет

Возраст нашей галактики (14±2)·10⁹ лет (Takahashi, 1997)

$$^{207}\text{Tl}^{81+} \longrightarrow ^{207}\text{Pb+e+}\widetilde{\nu}_e$$

Q=1.4 M9B
 $\lambda(\text{bound})/\lambda(\text{cont})=0.188\pm0.018$

T.Ohtsubo et al., Phys.Rev.Lett. 95(2005)052501

Электронный захват в многозарядных ионах

Litvinov et al., Phys.Rev.Lett. 99(2007)262501

Ion	λ_{β^+} (s ⁻¹)	$\lambda_{EC}\;(s^{-1})$
¹⁴⁰ Pr ⁵⁸⁺	0.00161(10)	0.002 19(6)
¹⁴⁰ Pr ⁵⁷⁺	0.001 54(11)	0.00147(7)
140 Pr $^{0+}$	0.001 74(5)	0.00165(5)

Водородободобный ион 140 Pr $^{58+}$

основное состояние $F=\frac{1}{2}$

Гелиеподобный ион $^{140}{\rm Pr}^{57+}$ момент ${\rm F=}1$

 $|1(\frac{1}{2}\frac{1}{2}:0)1> = \sqrt{(2/3)}|(1\frac{1}{2}:3/2)\frac{1}{2}:1> -\sqrt{(1/3)}|(1\frac{1}{2}:1/2)\frac{1}{2}:1>$

Легчайшее Λ -гиперядро ${}^{3}_{\Lambda}$ H (p+n+ Λ), ${}^{1}\!/_{2}$ +, B_{Λ} =0.13 МэВ Существует ли ${}^{4}_{\Lambda\Lambda}$ H (p+n+ Λ + Λ)?! $|1({}^{1}\!/_{2}{}^{1}\!/_{2}:0)1>=\sqrt{(2/3)}|(1{}^{1}\!/_{2}:3/2){}^{1}\!/_{2}:1>-\sqrt{(1/3)}|(1{}^{1}\!/_{2}:1/2){}^{1}\!/_{2}:1>$

 64 Cu(1⁺)+e \rightarrow 64 Ni(0⁺)+v_e($T_{\frac{1}{2}}$ =12.7 часа) μ (64 Cu)=-0.22 μ N Следовательно, основное состояние водородоподобного иона 64 Cu имеет F=3/2, и е-захват должен быть *подавлен*

CПАСИБО 3A ВНИМАНИЕ!

193
Ir(3/2+) \leftarrow 193 Pt(1/2-), Q= 57 кэВ, $T_{\frac{1}{2}}$ =50 лет 193 Ir⁷⁷⁺ \rightarrow 193 Pt⁷⁷⁺, Q=26 кэВ

243
Am(5/2-) \leftarrow 243 Cm(5/2+), Q= 8 кэВ 243 Am $^{95+}$ \rightarrow 243 Cm $^{95+}$, Q= 117 кэВ

