NSR Search Results Page 1 of 3

Visit the <u>Isotope Explorer</u> home page!

17 reference(s) found:

Keynumber: 2000RE01

Reference: Astrophys.J. 528, 573 (2000) **Authors:** R.Reifarth, K.Schwarz, F.Kappeler

Title: The Stellar Neutron-Capture Rate of ³⁴S: The origin of ³⁶S challenged

Keyword abstract: NUCLEAR REACTIONS 34 S(n, γ),E <100 keV; measured σ ; deduced implications

for ³⁶S nucleosynthesis. Activation technique,quasi-stellar neutron spectrum.

Keynumber: 1997REZZ

Reference: Proc.Intern.on Nuclear Data for Science and Technology, Trieste, Italy, 19-24 May, 1997,

G.Reffo, A.Ventura, C.Grandi, Eds., Editrice Compositori, Italy, Pt.2, p.1621 (1997)

Authors: R.Reifarth, K.Schwarz, F.Kappeler **Title:** The Stellar (n, γ) Cross Section of 34 S

Keyword abstract: NUCLEAR REACTIONS 34 S(n, γ), E not given; measured σ . Activation technique.

Keynumber: 1997BE42

Reference: Nucl.Phys. A621, 235c (1997)

Authors: H.Beer, C.Coceva, R.Hofinger, P.Mohr, H.Oberhummer, P.V.Sedyshev, Yu.P.Popov

Title: Measurement of Direct Neutron Capture by Neutron-Rich Sulfur Isotopes

Keyword abstract: NUCLEAR REACTIONS ³⁴, ³⁶S(n, γ), E=reactor; measured Eγ, Iγ; deduced capture

 σ . ³⁵, ³⁷S deduced levels,J, π ,spectroscopic factors. Direct capture model.

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: <u>1985RA15</u>

Reference: Phys.Rev. C32, 18 (1985)

Authors: S.Raman, R.F.Carlton, J.C.Wells, E.T.Jurney, J.E.Lynn

Title: Thermal Neutron Capture Gamma Rays from Sulfur Isotopes: Experiment and theory

Keyword abstract: NUCLEAR REACTIONS ³⁴, ³³, ³², ³⁶S(n,γ),E=thermal; measured Εγ,Ιγ; deduced model dependent effects. ³³, ³⁴, ³⁵, ³⁷S deduced levels,γ-branching,J, π ,E1 transition. Potential capture

theory.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low;

NSR Search Results Page 2 of 3

compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983RA04

Reference: Phys.Rev. C27, 1188 (1983)

Authors: S.Raman, E.T.Jurney, D.A.Outlaw, I.S.Towner

Title: ³⁴Cl Superallowed β Decay

Keyword abstract: RADIOACTIVITY 34 Cl(β^+) [from 33 S(p, γ)]; 35 S(β^-); analyzed data. 34 Cl deduced $Q(\beta^++EC)$, $T_{1/2}$, ft. ³⁵S deduced $Q(\beta^-)$.

Keyword abstract: NUCLEAR REACTIONS ³², ³³, ³⁴S(n,γ),E=thermal; measured Eγ. ³³, ³⁴, ³⁵S deduced neutron separation energy. 33 , 34 S(p, γ),E=0.9-1.4 MeV; measured E γ . 34 Cl, 35 Cl deduced resonances, proton separation energy.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko
Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, 32, 33, 34S,Cl, 35, 36, 37Cl,Ar, 36, 38, 40Ar,K, 39, 40, 41K,Ca, 40, 42, 43, 44, 46, 48Ca, 45, 46Sc,Ti, 46, 47, 48, 49, 50Ti,V, 50, 51V,Cr, 50, 52, 53, 54Cr,Fe, 54, 56, 57, 58Fe, 59Co,Ni, 58, 59, 60, 61, 62, 64Ni,Cu, 63, 65Cu,Zn, 64, 66, 67, 68, 70Zn,Ga, 69, 71Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980CAZX

Coden: JOUR BAPSA 25 543,EG12,Carlton

Keyword abstract: NUCLEAR REACTIONS 34 S(n, γ),E=thermal; measured E γ ,I γ . 35 S deduced

levels, γ -branching, S(n).

Keynumber: 1973IS08

Reference: Nucl.Instrum.Methods 109, 493 (1973)

Authors: H.Ishikawa

Title: Measurements of Neutron Reaction Cross Sections Using a Liquid Scintillation Spectrometer

Keyword abstract: NUCLEAR REACTIONS ${}^{2}H$, ${}^{31}P$, ${}^{34}S$, ${}^{44}Ca$, ${}^{62}Ni(n,\gamma)$; measured $\sigma(E)$.

Keynumber: 1972JAZK

Coden: REPT INDC(SEC)-28/L,P139,12/1/72,NDP

Keyword abstract: NUCLEAR REACTIONS 30 Si, 34 S(n, γ),E=thermal; measured E γ ,I γ ; deduced Q.

³⁵S. ³¹S: deduced transitions.

Keynumber: 1972DZ13

Reference: Yad.Fiz. 15, 1093 (1972); Sov.J.Nucl.Phys. 15, 605 (1972)

Authors: J.D.Jafar, A.A.Abdullah, N.K.Al-Kuraishi, M.S.Alvash, M.A.Khalil, A.M.Demidov

Title: Spectra of γ Rays Produced in Si³⁰ and S³⁴ Capture of Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS 30 Si, 34 S(n, γ),E=thermal; measured E γ ,I γ ; deduced Q.

³¹Si. ³⁵S deduced levels, J, π , γ -branching.

Kevnumber: 1970JAZO

Reference: Nucl.Research Inst., Tuwaitha, Baghdad, Iraq Report No.PH-9 (1970)

Authors: J.D.Jafar, A.A.Abdulla, N.H.Al-Quraishi, M.S.Alwash, M.A.Khalil, A.M.Demidov

NSR Search Results Page 3 of 3

Title: Gamma Rays from Thermal Neutron Capture in ³⁰Si and ³⁴S

Keyword abstract: NUCLEAR REACTIONS 30 Si, 34 S(n, γ),E=thermal; measured E γ ,I γ ; deduced Q.

³¹Si, ³⁵S deduced levels,γ-branching.

Keynumber: 1970JAZN **Coden:** REPT PH-7,J Jafar

Keyword abstract: NUCLEAR REACTIONS ²⁰Ne, ²⁴Mg, ³⁰Si, ³²S, ³⁴S, ³⁶Ar, ⁴⁰Ca, ²⁷Al

 (n,γ) , E=thermal; surveyed, analyzed E γ , I γ data. ²¹Ne, ²⁵Mg, ³¹Si, ³³, ³⁵S, ³⁷Ar, ⁴¹Ca, ²⁸Al deduced

levels,γ-branching.

-----Kevnumber: 1970IA

Keynumber: 1970JAZM **Coden:** REPT IAEA TA 523

Keyword abstract: NUCLEAR REACTIONS 30 Si, 34 S(n, γ),E=thermal; measured E γ ,I γ ; deduced Q.

 31 Si, 35 S deduced levels,J, π .

Keynumber: 1967KO30

Reference: Nukleonik 10, 278 (1967)

Authors: W.Kohler, K.Knopf

Title: Gemittelter Wirkungsquerschnitt der Reaktion 34 S(n, γ) 35 S fur thermische Neutronen

Keyword abstract: NUCLEAR REACTIONS 34 S(n, γ),E=thermal; measured σ .

Keynumber: 1967KE07

Reference: Nucl.Phys. A96, 658(1967)

Authors: T.J.Kennett, N.P.Archer, L.B.Hughes **Title:** Study of Thermal Neutron Capture in Sulphur

Keyword abstract: NUCLEAR REACTIONS 32 , 34 S(n, γ), E = thermal; measured E γ , I γ , $\gamma\gamma$ - coin. 33 S,

³⁵S deduced levels, branching, Q. Natural target, Ge(Li) detector.
