7th Grade Math CCSS Exit Slips/Exit Tickets Ratios & Proportional Relationships

7.RP.1
7.RP.2
7.RP.3

30 Exit Slips
10 Questions per Standard

By: Math in the Midwest

	Exit Slip	
• • • •	Name: Date: Explain how to convert a complex rate to a unit rate. Give an example.	• • • •
• • • •		• • • •
		• • •
	7.RP.1	

	Exit Slip
	Date: convert a complex rate to a unit e. Give an example.
7.RP.1	
	• • • • • • • • • • • •

•	• • • • • • • • • • • • • • • • • • • •	•
	Exit Slip	
•	Name: Date: Explain how unit rates can be helpful when	
	solving different types of mathematical and real world problems.	
•		
•		•
	7.RP.1	
•	7.NF.1	•

	í
Exit Slip	
Name: Date: Explain how unit rates can be helpful when solving different types of mathematical and real world problems.	
7.RP.1	

•	Exit Slip	•
• • • •	Name: Date: Explain how unit rates can be helpful when solving different types of mathematical and real	
•	world problems.	•
•		•
•		•
•	7.RP.1	

•	Exit Slip	
• • • • • • • • •	Name: Date: Explain how unit rates can be helpful when solving different types of mathematical and real world problems.	
	7.RP.1	
•) (

		Exi	it Slip		
calories	every	thirty m	ninutes	mowei Comp	te: burns 160 lete the table n situation.
Time (hours)	1	2	3	4	
Calories burned					
7.RP.1			•	•	_

calorie	s every	ws with	minute	Da n mowe s. Comp	ate: or burns 160 olete the table on situation.
Time (hours)	1	2	3	4	
Calories burned					
7.RP.1		•			_

calorie	s every	ws with	minute	Da n mowe s. Comp	ate: r burns 160 plete the table n situation.
Time (hours)	1	2	3	4	
Calories burned					
7.RP.1					-

Exit Slip Name: Date: A box of paper clips plus another half box of paper clips contains 630 paper clips. Complete the table and write a unit rate for the given situation. $\frac{1}{2}$ $1\frac{1}{2}$ # of boxes 1 2 # of paper clips 7.RP.1

paper clip	s contai	ns 630 p	us anoth	os. Com	olete the
# of boxes	write a $\frac{1}{2}$	unit rat	e for the $1\frac{1}{2}$	given si 2	tuation.
# of paper clips			_		-

		Exit	Slip		
Name: A box paper clip table and	os conta	ins 630		ips. Com	plete the
# of boxes	$\frac{1}{2}$	1	$1\frac{1}{2}$	2	
# of paper clips					
7.RP.1			l		I

		Exit	Slip			
	os contai	ins 630	paper cl	-	plete the	
# of boxes	$\frac{1}{2}$	1	$1\frac{1}{2}$	2		
# of paper clips						
7.RP.1					•	

Exit Slip Name: _____ Date: ____ Rewrite each given rate as an equivalent ratio of fractions by converting one or both units of measure. A. One fourth inch of rain fell in half an hour. B. The baby gained 4 ounces every week. 7.RP.1

•							
•	Exit Slip						
	Name: Date: Rewrite each given rate as an equivalent ratio of						
•	fractions by converting one or both units of measure.						
•	A. One fourth inch of rain fell in half an hour.						
	B. The baby gained 4 ounces every week.						
	7.RP.1						
•	• • • • • • • • • • • • • • • • • • • •						

	Exit Slip
•	Date: en rate as an equivalent ratio of nverting one or both units of measure.
A. One fourth in	ch of rain fell in half an hour.
B. The baby gain	ned 4 ounces every week.
7.RP.1	

Name:		Ex	kit Slij		ite:
Alex needs a rate table for his dog sitting job so he can look up his prices easily. Complete the rate table.					
Time (hours)	1	$1\frac{1}{2}$	4	$5\frac{1}{2}$	
Charge (\$)			48		
7.RP.1			•	•	

		ate tab		Da is dog si ly. Comp	ate: itting job so he plete the rate
Time (hours)	1	$1\frac{1}{2}$	4	$5\frac{1}{2}$	
Charge (\$)			48		
7.RP.1			•	•	•

Exit Slip Name: _____ Date: ____ Ali uses $2\frac{1}{2}$ scoops of drink mix to make 10 cups of drinks. A. How much drink mix would she need to use to make 1 cup of drinks? B. If Ali only has $6\frac{3}{4}$ scoops of drink mix left. How many cups of drinks can she make? 7.RP.1

••••••

	Exit Slip
Name:	Date:
Ali uses $2\frac{1}{2}$ scoops	of drink mix to make 10 cups of drinks.
A. How much drind cup of drinks?	k mix would she need to use to make 1
B. If Ali only has 6 2 cups of drinks ca	scoops of drink mix left. How many an she make?
7.RP.1	

Exit Slip
Name: Date:
Ali uses $2\frac{1}{2}$ scoops of drink mix to make 10 cups of drinks.
A. How much drink mix would she need to use to make 1 cup of drinks?
B. If Ali only has $6\frac{3}{4}$ scoops of drink mix left. How many cups of drinks can she make?
7.RP.1

Exit	t Slip
Name:	Date:
Ali uses $2\frac{1}{2}$ scoops of drink	mix to make 10 cups of drinks.
A. How much drink mix we cup of drinks?	ould she need to use to make 1
-	of drink mix left. How many
cups of drinks can she n	nake?
7.RP.1	

Ex	it Slip
Name:	Date:
Determine whether e	ach statement is true or false.
1. Any complex fra	ction can be written as a ratio.
2. You always scale a unit rate.	down to write a complex rate as
3. Adding the numer way to convert a rate to a 7.RP.1	erator by the denominator is one unit rate.

	Exit Slip
Name:	Date:
Determine wheth	er each statement is true or false.
1. Any complex	x fraction can be written as a ratio.
2. You always s a unit rate.	scale down to write a complex rate as
3. Adding the r way to convert a rate 7.RP.1	numerator by the denominator is one to a unit rate.

•	• • • • • • • • • • • • • • • • • • • •	
•	Exit Slip	•
•	Name: Date: Determine whether each statement is true or false.	
	1. Any complex fraction can be written as a ratio.	
• • •	2. You always scale down to write a complex rate as a unit rate.	
	3. Adding the numerator by the denominator is one way to convert a rate to a unit rate. 7.RP.1	
• •] • •

Ex	kit Slip
Name:	Date:
Determine whether	each statement is true or false.
1. Any complex fra	action can be written as a ratio.
2. You always scale a unit rate.	e down to write a complex rate a
	nerator by the denominator is on
way to convert a rate to	a unit rate.
7.RP.1	

•	• • • • • • • • • • • • • • • • • • • •	
•••••	Exit Slip Name: Date: Fill in the blanks:	• • • • •
••••••	If a person walks $\frac{3}{4}$ a mile in $\frac{1}{2}$ hour, compute the unit rate as a complex fraction miles per hour which is equivalent to miles per hour.	••••••
• • •	7.RP.1	• • •

••••	••••••		
	Exit Slip		
Name:	Date:		
	Fill in the blanks:		
16 0 100	3 mile in 1 have account the		
іт а реі	If a person walks $\frac{3}{4}$ a mile in $\frac{1}{2}$ hour, compute the		
unit rate	e as a complex fraction		
miles	per hour which is equivalent to		
	miles per hour.		
7.RP.1			
7.KF.1			

•	• • • • • • • • • • • • • • • • • • • •	•
•	Exit Slip	
	Name: Date:	
•	Fill in the blanks:	•
	3 1	
•	If a person walks $\frac{3}{4}$ a mile in $\frac{1}{2}$ hour, compute the	
	unit rate as a complex fraction	
•	miles per hour which is equivalent to	
	miles per hour.	
•		•
	7.RP.1	

•	• • • • • • • • • • • • • • • • • • • •	
•	Exit Slip	•
•	Name: Date:	•
•	Fill in the blanks:	•
•	2 1	•
•	If a person walks $\frac{3}{4}$ a mile in $\frac{1}{2}$ hour, compute the	•
•	unit rate as a complex fraction	:
•	miles per hour which is equivalent to	ě
•	miles per hour.	:
•		ě
•	7.RP.1	:
•		•

•	••••••	
	Exit Slip	
	Name: Date: Fill in the blanks:	
	i iii iii tile blatiks.	
	If a person walks $\frac{1}{2}$ a mile in $\frac{3}{4}$ hour, compute the	
	unit rate as a complex fraction	
•	miles per hour which is equivalent to	•
	miles per hour.	
•		•
	7.RP.1	
	7.111.1	•

	Exit Slip
Name:	Date:
	Fill in the blanks:
	son walks $\frac{1}{2}$ a mile in $\frac{3}{4}$ hour, compute the as a complex fraction
miles p	er hour which is equivalent to
	miles per hour.
7.RP.1	
7.	

•	• • • • • • • • • • • • • • • • • • • •	
	Exit Slip	
	Name: Date:	
•	Fill in the blanks:	•
•		
	If a person walks $\frac{1}{2}$ a mile in $\frac{3}{4}$ hour, compute the	
•	unit rate as a complex fraction	•
• • • •	miles per hour which is equivalent to	
•	miles per hour.	•
	·	
		•
•	7.RP.1	•

•	• • • • • • • • • • • • • • • • • • • •	•
•	Exit Slip	•
	Name: Date:	:
	Fill in the blanks:	:
•	If a person walks $\frac{1}{2}$ a mile in $\frac{3}{4}$ hour, compute the	•
•	unit rate as a complex fraction	•
	miles per hour which is equivalent to	:
•	miles per hour.	:
•		•
•	7.RP.1	•

Exit Slip Name: _____ Date: ____ Describe how all graphs that display proportional relationships are the same. Sketch a graph that shows a proportional relationship. 7.RP.2

		1
	Exit Slip	9
	Name: Date: Describe how all graphs that display proportional relationships are the same. Sketch a graph that shows a proportional relationship.	
•	7.RP.2	

Exit Slip	•
Name: Date: Describe how all graphs that display proportional	
relationships are the same. Sketch a graph that shows a proportional relationship.	• • •
	•
	•
7.RP.2	•
	Name: Date: Describe how all graphs that display proportional relationships are the same. Sketch a graph that shows a proportional relationship.

	Exit Slip
relationships	Date: all graphs that display proportional are the same. Sketch a graph that a proportional relationship.
7.RP.2	

Exit Slip Name: ______ Date: ____ Fill in the blanks: For a graph to represent a proportional relationship the points of the graph must form a _____ line and pass through the _____ of the graph. Draw an example of a graph that is proportional and one that is not. 7.RP.2

: ;		
•1	Exit Slip	•
• 1	Name: Date:	1
•	Fill in the blanks:	•
•	For a graph to represent a proportional	•
:	relationship the points of the graph must form a	
•	line and pass through the	•
•	of the graph. Draw an example of a	9
	graph that is proportional and one that is not.	
•	8. ap	•
•		•
:	7 00 3	<u></u>
• L	7.RP.2	•
• =		í

•	• • • • • • • • • • • • • • • • • • • •	•
	Exit Slip	•
	Name: Date:	
•	Fill in the blanks:	•
•	For a graph to represent a proportional	•
	relationship the points of the graph must form a	
•	line and pass through the	•
•••••••	of the graph. Draw an example of a	•
	graph that is proportional and one that is not.	
•		•
•		•
	7.RP.2	
•	/ · I \ I · E	•
•	• • • • • • • • • • • • • • • • • • • •	•

	- 4. 611
	Exit Slip
Name:	Date:
	Fill in the blanks:
For a graph	to represent a proportional
relationship the	points of the graph must form a
•	line and pass through the
of	the graph. Draw an example of a
	roportional and one that is not.
graph that is p	
7.RP.2	

Exit Slip Name: _____ Date: ____ At a local college there are 8 women enrolled for every 3 men. A. If there are 60 men enrolled how many women are enrolled? B. Write an equation to determine the number of women enrolled if you know the number of men enrolled. C. What is the constant of proportionally in this situation? 7.RP.2

Exit Slip	
Name: Date: At a local college there are 8 women enrolled for every 3 men.	
A. If there are 60 men enrolled how many women are enrolled?	
B. Write an equation to determine the number of women enrolled if you know the number of men enrolled.	
C. What is the constant of proportionally in this situation? 7.RP.2	

•	• • • • • • • • • • • • • • • • • • • •
	Exit Slip
	Name: Date:
•	At a local college there are 8 women enrolled for every 3
•	men.
•	A. If there are 60 men enrolled how many women are enrolled?
••••••••	B. Write an equation to determine the number of women enrolled if you know the number of men enrolled.
• • •	C. What is the constant of proportionally in this situation? 7.RP.2
•	

	Exit Slip
Name:	Date:
At a local college there	e are 8 women enrolled for every 3 men.
A. If there are 60 men of enrolled?	enrolled how many women are
•	o determine the number of women ne number of men enrolled.
C. What is the constant 7.RP.2	of proportionally in this situation?

Exit Slip Name: _____ Date: ____ Identify the constant of proportionally in each equation and describe its meaning. P = 4s, where P represents the perimeter and s represents the sides of a square.7.RP.2

••••••

Name: _____ Date: ____ Solve each equation for the unknown value.

·

$$A. \quad \frac{3}{4}x = 6$$

B.
$$\frac{k}{4} = 1.5$$

7.RP.2

Exit Slip

Name: ____ Date: ____ Solve each equation for the unknown value.

$$A. \quad \frac{3}{4}x = 6$$

B.
$$\frac{k}{4} = 1.5$$

7.RP.2

Exit Slip

Name: _____ Date: ____

Solve each equation for the unknown value.

•••••••

$$A. \quad \frac{3}{4}x = 6$$

B.
$$\frac{k}{4} = 1.5$$

7.RP.2

Exit Slip

Name: _____ Date: ____

••••••

Solve each equation for the unknown value.

A.
$$\frac{3}{4}x = 6$$

B.
$$\frac{k}{4} = 1.5$$

Exit Slip Name: _____ Date: ____ The constant of proportionality between the number of children (c) at a day care and the number of adults (a) that work there is $\frac{7}{3}$. A. Write an equation to represent this situation. B. If there are 70 children at the day care. How many adults work there? 7.RP.2

	Exit Slip
	me: Date: The constant of proportionality between the number of children (c) at a day care and the number of adults (a) that work there is $\frac{7}{2}$.
Α.	Write an equation to represent this situation.
В.	If there are 70 children at the day care. How many adults work there?
7.RI	P.2

	Exit Slip
	me: Date: The constant of proportionality between the number of children (c) at a day care and the number of adults (a) that work there is $\frac{7}{3}$.
А.	Write an equation to represent this situation. If there are 70 children at the day care. How many adults work there?
7.R	•

.......

Name: _____ Date: ____ Solve for the unknown value using the equation for the constant of proportionality.

A.
$$k = 1.5$$
 and $x = 50$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$

7.RP.2

Exit Slip

Name: _____ Date: ____ Solve for the unknown value using the equation for the constant of proportionality.

A.
$$k = 1.5$$
 and $x = 50$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$

7.RP.2

Exit Slip

••••••

Name: Date: Solve for the unknown value using the equation for the constant of proportionality.

••••••

A.
$$k = 1.5$$
 and $x = 50$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$

7.RP.2

Exit Slip

••••••

Name: _____ Date: ____ Solve for the unknown value using the equation for the constant of proportionality.

••••••

A.
$$k = 1.5$$
 and $x = 50$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$

Exit Slip Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 30%. If the store's cost for a printer is \$25, what is the customer's cost? 7.RP.3

•		
•	Exit Slip	9
	Name: Date: A store is selling electronics and mark up all the prices by 30%. If the store's cost for a printer is \$25, what is the customer's cost?	
	7.RP.3	

•	Exit Slip	
	Name: Date: A store is selling electronics and mark up all the prices by 30%. If the store's cost for a printer is \$25, what is the customer's cost?	••••••
	7.RP.3	

Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5. Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$
$$5 = x$$

The customer's cost Is \$5

7.RP.3

Exit Slip

••••••

Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5. Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$

$$5 = x$$

The customer's cost Is \$5

•••••

7.RP.3

Exit Slip

Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5. Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$

$$5 = x$$

The customer's cost Is \$5

7.RP.3

Exit Slip

Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5. Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$

$$5 = x$$

The customer's cost Is \$5

	Exit Slip
	Date: O for an iPhone that was 75% of e. What was the original price of the iPhone?
7.RP.3	

	Fivit Cline	ŀ
•	Exit Slip Name: Date: Write each proportion with a variable in the	
• • •	appropriate place, to calculate the unknown: A. Calculate the Percent	
• • •	B. Calculate the Whole	•
• • •	7.RP.3	•
•		

	Exit Slip	
	Name: Date: Write each proportion with a variable in the appropriate place, to calculate the unknown:	
•	A. Calculate the Percent	•
•	B. Calculate the Whole	•
	7.RP.3	

	Exit Slip
	Date: ortion with a variable in the e, to calculate the unknown: ercent
B. Calculate the V7.RP.3	Vhole

Name: _____ Date: ____ Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

- a. Write an equation to represent the relationship between tip(t) and the bill (b).
- b. How much tip is added if there is a party of 12 and the total bill is \$216.

••••••

••••••

7.RP.3

Exit Slip

Name: _____ Date: ____ Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

- a. Write an equation to represent the relationship between tip(t) and the bill (b).
- b. How much tip is added if there is a party of 12 and the total bill is \$216.

••••••

7.RP.3

Exit Slip

Name: Date: Date: Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

- a. Write an equation to represent the relationship between tip(t) and the bill (b).
- b. How much tip is added if there is a party of 12 and the total bill is \$216.

••••••

7.RP.3

Exit Slip

Name: _____ Date: ____ Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

- a. Write an equation to represent the relationship between tip(t) and the bill (b).
- b. How much tip is added if there is a party of 12 and the total bill is \$216.

••••••

Exit Slip Name: _____ Date: ____ If a salesperson earns a 13% commission and sells a furniture set for \$950. Determine the commission the salesperson will make. 7.RP.3

Exit Slip	
Name: Date: If a salesperson earns a 13% commission and sells a furniture set for \$950. Determine the commission the salesperson will make.	
7.RP.3	

	Exit Slip
a furniture s	Date: arns a 13% commission and sells et for \$950. Determine the the salesperson will make.
7.RP.3	

•		•
	Exit Slip	
•	Name: Date: If a car salesman earns a 10% commission and	
•	earned \$1475 on a sale. What was the price of the car?	
	cai:	
•		•
	7.RP.3	
•		

•		
:	Exit Slip	9
•	Name: Date: If a car salesman earns a 10% commission and earned \$1475 on a sale. What was the price of the	
	car?	
•		
	7.RP.3	

	• • • • • • • • • • • • • • • • • • • •	
	Exit Slip	
	Name: Date: If a car salesman earns a 10% commission and	
• • • •	earned \$1475 on a sale. What was the price of the	
	car?	•
	7.RP.3	•

	Exit Slip	
•••••••	Name: Date: If a car salesman earns a 10% commission and earned \$1475 on a sale. What was the price of the car?	
	7.RP.3	

••••••	Name: 1.	Exit Slip Date: How would you describe a 25 percent decrease?	•••••••
• • • •	2.	How would you describe a 100 percent increase?	• • • • •
•	7.RP.3	••••••	• • •

	Exit Slip
Name:	Date:
1.	How would you describe a 25 percent
	decrease?
2.	How would you describe a 100 percent increase?
7.RP.3	

Exit Slip Name: _____ Date: ____ Answer the following questions and show your work. A. A pair of jeans originally cost \$32, but its price decreases by 20%. B. Erica is making \$34,000 per year. She gets a 9% increase in pay. 7.RP.3

Ex	kit Slip
Name: Answer the following q	Date: uestions and show your work.
A. A pair of jeans originally decreases by 20%.	y cost \$32, but its price
B. Erica is making \$34,000 in pay.	per year. She gets a 9% increase
7.RP.3	

Answer Keys

	Evit Clin	
• • • •	Exit Slip Name: Date: Explain how to convert a complex rate to a unit rate. Give an example.	••••
•••••	Answers will vary	•••••
• • • •	7.RP.1	

	Exit Slip	
• • •	Name: Date: Explain how to convert a complex rate to a unit rate. Give an example.	•
• • • •	Answers will vary	
•		
	7.RP.1	

•		
	Exit Slip	
	Name: Date:	
	Explain how unit rates can be helpful when	
•••••	solving different types of mathematical and real world problems.	
	Answers will vary	
	Answers will vary	
•		
	7.RP.1	
	· · · · · ·	

Exit Slip	
Name: Date: Explain how unit rates can be helpful when solving different types of mathematical and real world problems.	• • • •
Answers will vary	• • • • •
7.RP.1	

7.RP.1 320 calories per hour or 53.33 calories per minute

•••••••••

960

1280

Calories

burned

320

640

•••••• **Exit Slip** Name: Date: Mowing laws with a push mower burns 160 calories every thirty minutes. Complete the table and write a unit rate for the given situation. Time 2 3 1 4 (hours) Calories 320 640 960 1280 burned 7.RP.1 320 calories per hour or 53.33 calories per minute

calorie	es every	ws witly thirty	minute	Da h mowe es. Comp	nte: r burns 160 plete the table n situation.
Time (hours)	1	2	3	4	
Calories burned	320	640	960	1280	
7.RP.1	320 ca	lories pe	er hour o	or 53.33 ca	alories per minute

	s every	y thirty	minute	s. Comp	r burns 160 plete the table n situation.
Time (hours)	1	2	3	4	
Calories burned	320	640	960	1280	

Exit Slip Name: Date: A box of paper clips plus another half box of paper clips contains 630 paper clips. Complete the table and write a unit rate for the given situation. $\frac{1}{2}$ $1\frac{1}{2}$ # of boxes 1 2 210 # of paper 420 630 840 clips 7.RP.1

Name: Date: A box of paper clips plus another half box of paper clips contains 630 paper clips. Complete the table and write a unit rate for the given situation.							
# of boxes	$\frac{1}{2}$	1	$1\frac{1}{2}$	2			
		420	630	840	7		

paper cli	ps conta	er clips pains 630	paper c	•	box of nplete the situation.
# of boxes	$\frac{1}{2}$	1	$1\frac{1}{2}$	2	
# of paper clips	210	420	630	840	
7.RP.1		1	ı	1	

Exit Slip Name: Date: A box of paper clips plus another half box of paper clips contains 630 paper clips. Complete the								
	•			-	ituation.			
# of paper clips	210	420	630	840				
7.RP.1		• • •	• • • •		• • • •			

	Exit Slip
Name Rew	e: Date: rite each given rate as an equivalent ratio of fractions by converting one or both units of measure.
А.	One fourth inch of rain fell in half an hour. $\frac{\frac{1}{4}inch}{\frac{1}{2}hour}$
Α.	The baby gained 4 ounces every week. $\frac{\frac{1}{4}ounce}{1 week}$
7.RP	

•	• • • • • • • • • • • • • • • • • • • •	•			
	Exit Slip				
	Name: Date: Rewrite each given rate as an equivalent ratio of fractions	•			
•	by converting one or both units of measure. A. One fourth inch of rain fell in half an hour. $\frac{1}{4}inch$	• • •			
•	$\frac{\frac{4}{4}thch}{\frac{1}{2}hour}$	• • •			
•	A. The baby gained 4 ounces every week. $\frac{1}{4}ounce$	•			
	1 week 7.RP.1	• •			
•		•			

	Exit Slip
by converting A. One fourth incomparing $\frac{1}{4}$ inch $\frac{1}{2}$ hour	Date: rate as an equivalent ratio of fractions ag one or both units of measure. ch of rain fell in half an hour. ed 4 ounces every week. $\frac{1}{4}ounce$
7.RP.1	1 week

•••••• **Exit Slip** Date: Name: Alex needs a rate table for his dog sitting job so he can look up his prices easily. Complete the rate table. $1\frac{1}{2}$ $5\frac{1}{2}$ Time 4 1 (hours) Charge **12** 18 48 66 (\$) 7.RP.1

Exit Slip Name: Date: Alex needs a rate table for his dog sitting job so he can look up his prices easily. Complete the rate					
		•	table	•	_
Time (hours)	1	$1\frac{1}{2}$	4	$5\frac{1}{2}$	
Charge (\$)	12	18	48	66	
7.RP.1	•	•	•	•	_

		rate tab		Da Dis dog s ly. Com	ate: itting job so he plete the rate
Time (hours)	1	$1\frac{1}{2}$	4	$5\frac{1}{2}$	
Charge (\$)	12	18	48	66]
7.RP.1	•	•	•	•	_

Exit Slip Name: _____ Date: ____ Ali uses $2\frac{1}{2}$ scoops of drink mix to make 10 cups of drinks. A. How much drink mix would she need to use to make 1 cup of drinks? $\frac{1}{4}$ scoop B. If Ali only has $6\frac{3}{4}$ scoops of drink mix left. How many cups of drinks can she make? 27 drinks 7.RP.1

	Exit Slip
4	Date: Date: sof drink mix to make 10 cups of drinks. The mix would she need to use to make 1 $\frac{1}{4}$ scoop
cups of drinks	$5\frac{3}{4}$ scoops of drink mix left. How many can she make? $27~drinks$
7.RP.1	

•	••••••
•	Exit Slip
	Name: Date:
•	Ali uses $2\frac{1}{2}$ scoops of drink mix to make 10 cups of drinks.
• • •	A. How much drink mix would she need to use to make 1 cup of drinks? $\frac{1}{4} scoop$
• • • •	B. If Ali only has $6\frac{3}{4}$ scoops of drink mix left. How many cups of drinks can she make?
	27 drinks
•	7.RP.1
•	

	Exit Slip
Name:	Date:
Ali uses $2\frac{1}{2}$ scoops of	f drink mix to make 10 cups of drinks.
cup of drinks?	mix would she need to use to make 1 $\frac{1}{4} scoop$
B. If Ali only has $6\frac{3}{4}$ cups of drinks can	scoops of drink mix left. How many n she make?
	27 drinks
7.RP.1	

Exit Slip Name: _____ Date: ____ Determine whether each statement is true or false. True 1. Any complex fraction can be written as a ratio. True 2. You always scale down to write a complex rate as a unit rate. False 3. Adding the numerator by the denominator is one way to convert a rate to a unit rate.

	Exit Slip
Nan	ne: Date: Determine whether each statement is true or false.
Tru	e 1. Any complex fraction can be written as a ratio.
True a ui	e 2. You always scale down to write a complex rate as nit rate.
Fals way	3. Adding the numerator by the denominator is one to convert a rate to a unit rate.

••••••	
Exit Slip	
Name: Date: Determine whether each statement is true or false.	
<u>True</u> 1. Any complex fraction can be written as a ratio.	
True 2. You always scale down to write a complex rate as a unit rate.	
False 3. Adding the numerator by the denominator is one 7.RP.1	
	Name: Date: Determine whether each statement is true or false. True 1. Any complex fraction can be written as a ratio. True 2. You always scale down to write a complex rate as a unit rate. False 3. Adding the numerator by the denominator is one

	Exit Slip
Name: Determine wheth	Date: er each statement is true or false.
True 1. Any complex	k fraction can be written as a ratio.
True 2. You always s a unit rate.	scale down to write a complex rate as
False 3. Adding the rate 7.RP.1	numerator by the denominator is one to a unit rate.

	• • • • • • • • • • • • • • • • • • • •	, (
•	Exit Slip	
•	Name: Date:	1
	Fill in the blanks: $\frac{3}{4}$ mile	Ì
	If a person walks $\frac{3}{4}$ a mile in $\frac{1}{2}$ hour, compute the unit rate as a complex fraction	
	miles per hour which is equivalent to <u>1.5 mph</u> miles per hour.	
	7.RP.1	

•	• • • • • • • • • • • • • • • • • • • •	
	Exit Slip	•
	Name: Date: Fill in the blanks: $\frac{3}{4}$ mile	•
•	$\frac{4}{\frac{1}{2}hour}$	•
	If a person walks $\frac{3}{4}$ a mile in $\frac{1}{2}$ hour, compute the unit rate as a complex fraction	•
	miles per hour which is equivalent to <u>1.5 mph</u>	
	miles per hour.	•
•	7.RP.1	•

Exit S	Slip
Name:Fill in the	Date: e blanks: $\frac{3}{4}$ mile
If a person walks $\frac{3}{4}$ a milurit rate as a complex fra	e in $\frac{1}{2}$ hour, compute the action
-	equivalent to <u>1.5 mph</u> er hour.
7.RP.1	
7.RP.1	

Exit Slip

Name: _______ Date: ______

Fill in the blanks: ½ mile

a hour

If a person walks ½ a mile in ¾ hour, compute the
unit rate as a complex fraction _____ miles per hour which is equivalent to 0.67 mph
miles per hour.

7.RP.1

•	• • • • • • • • • • • • • • • • • • • •	
	Exit Slip	3
•	Name: Date:	
•	Fill in the blanks: $\frac{1}{2}$ mile	
•	$\frac{\overline{3}}{4}hour$	1
•	If a person walks $\frac{1}{2}$ a mile in $\frac{3}{4}$ hour, compute the	[
	unit rate as a complex fraction	
•	miles per hour which is equivalent to 0.67 mph	1
•	miles per hour.	•
	p or size with	Ľ
		1
•	7.RP.1	9

•	• • • • • • • • • • • • • • • • • • • •	•
	Exit Slip	
	Name: Date: Fill in the blanks:	
•	If a person walks $\frac{1}{2}$ a mile in $\frac{3}{4}$ hour, compute the	•
•	unit rate as a complex fraction miles per hour which is equivalent to <u>0.67 mp</u> h	•
•	miles per hour.	•
•	7.RP.1	•

	Exit Slip	
Name:	Date of the blanks:	ate: $\frac{\frac{1}{2}mile}{\frac{1}{2}}$
If a person unit rate as	walks $\frac{1}{2}$ a mile in $\frac{3}{4}$ hour a complex fraction	, compute the
	nour which is equivalen miles per hour.	t to <u>0.67 m</u> ph
7.RP.1		
7.RP.1		

Exit Slip Name: _____ Date: ____ Describe how all graphs that display proportional relationships are the same. Sketch a graph that shows a proportional relationship. Answers will vary 7.RP.2

3	Exit Slip	
	Name: Date: Describe how all graphs that display proportional relationships are the same. Sketch a graph that shows a proportional relationship.	
	Answers will vary	
	7.RP.2	

Exit Slip Name: ______ Date: ____ Fill in the blanks: For a graph to represent a proportional relationship the points of the graph must form a straight line and pass through the _____ origin of the graph. Draw an example of a graph that is proportional and one that is not. 7.RP.2

Exit Slip
Fill in the blanks: For a graph to represent a proportional relationship the points of the graph must form a straight line and pass through the Origin of the graph. Draw an example of a graph that is proportional and one that is not.
7.RP.2

	Exit Slip	
••••	Name: Date: Fill in the blanks: For a graph to represent a proportional	• • • •
••••	relationship the points of the graph must form a straight line and pass through the origin of the graph. Draw an example of a graph that is proportional and one that is not.	• • • •
• • • •	7.RP.2	• • • •

Name:	Exit Slip Date: Fill in the blanks:
relationship straigh origin	taph to represent a proportional the points of the graph must form a time. In and pass through the of the graph. Draw an example of a is proportional and one that is not.
7.RP.2	

Exit Slip Name: At a local college there are 8 women enrolled for every 3 men. A. If there are 60 men enrolled how many women are enrolled? 160 women B. Write an equation to determine the number of women enrolled if you know the number of men enrolled. $W = \frac{8}{3}m$ C. What is the constant of proportionally in this situation? 7.RP.2

	Exit Slip	
Name: At a local college	Date:e there are 8 women enrolled for every 3 men.	
A. If there are 60 men enrolled how many women are enrolled? 160 women		
B. Write an equation to determine the number of women enrolled if you know the number of men enrolled. $W = \frac{8}{2}m$		
C. What is the co	nstant of proportionally in this situation? $\frac{8}{3}$	

Exit Slip		
Name: Date:		
At a local college there are 8 women enrolled for every 3 men.		
A. If there are 60 men enrolled how many women are enrolled? 160 women		
Name: Date: At a local college there are 8 women enrolled for every 3 men. A. If there are 60 men enrolled how many women are enrolled? 160 women B. Write an equation to determine the number of women enrolled if you know the number of men enrolled. $W = \frac{8}{3}m$ C. What is the constant of proportionally in this situation?		
C. What is the constant ${}_{0}^{3}$ proportionally in this situation? 7.RP.2 $\frac{8}{3}$		

E	xit Slip
Name:	Date:
At a local college there a	are 8 women enrolled for every 3 men.
enrolled?	rolled how many women are women
•	letermine the number of women number of men enrolled.
C. What is the constant o	f proportionally in this situation? $\frac{8}{3}$

Exit Slip Name: _____ Date: ____ Identify the constant of proportionally in each equation and describe its meaning. P = 4s, where P represents the perimeter and s represents the sides of a square.The constant of proportionality is 4. The perimeter divided by the side length always equals 4 7.RP.2

	Exit Slip
Name:	Date:
Identify the const	tant of proportionally in each
equation an	d describe its meaning.
${\sf P}=4s$,where P rep	presents the perimeter and s
epresents the side	s of a square.
The constant	of proportionality is 4.
The perimete	r divided by the side
length always	s equals 4
.RP.2	

	Exit Slip
Name:	Date:
-	nt of proportionally in each describe its meaning.
P = 4s, where P represents the sides	esents the perimeter and s of a square.
The constant of	f proportionality is 4.
•	divided by the side
length always 6 7.RP.2	equals 4
7.RP.Z	

••••••

Name: _____ Date: ____ Date: ____

A.
$$\frac{3}{4}x = 6$$
 X = 8

B.
$$\frac{k}{4} = 1.5$$
 K = 6

7.RP.2

Exit Slip

••••••

Name: _____ Date: ____ Date: ____

A.
$$\frac{3}{4}x = 6$$
 X = 8

B.
$$\frac{k}{4} = 1.5$$
 K = 6

7.RP.2

Exit Slip

Name: _____ Date: ____

Solve each equation for the unknown value.

$$A \quad \frac{3}{4}x = 6 \qquad \mathbf{X} = \mathbf{8}$$

B.
$$\frac{k}{4} = 1.5$$
 K = 6

7.RP.2

Exit Slip

Name: _____ Date: ____

Solve each equation for the unknown value.

A.
$$\frac{3}{4}x = 6$$
 X = 8

B.
$$\frac{k}{4} = 1.5$$
 K = 6

Name: _____ Date: ____ The constant of proportionality between the number of children (c) at a day care and the number of adults (a) that work there is $\frac{7}{3}$.

A. Write an equation to represent this situation.

$$C = \frac{7}{3}a$$

B. If there are 70 children at the day care. How many adults work there? 30 adults7.RP.2

••••••

Exit Slip

Name: _____ Date: ____ The constant of proportionality between the number of children (c) at a day care and the number of adults (a) that work there is $\frac{7}{3}$.

A. Write an equation to represent this situation.

$$C = \frac{7}{3}a$$

B. If there are 70 children at the day care. How many adults work there?7.RP.2

••••••

••••••

Exit Slip

Name: _____ Date: ____ The constant of proportionality between the number of children (c) at a day care and the number of adults (a) that work there is $\frac{7}{3}$.

A. Write an equation to represent this situation.

$$C = \frac{7}{3}a$$

B. If there are 70 children at the day care. How many adults work there? 30 adults

7.RP.2

Exit Slip

Name: _____ Date: ____ The constant of proportionality between the number of children (c) at a day care and the number of adults (a) that work there is $\frac{7}{3}$.

A. Write an equation to represent this situation.

$$C = \frac{7}{3}a$$

B. If there are 70 children at the day care. How many adults work there?30 adults

••••••

Name: _____ Date: ____ Solve for the unknown value using the equation for the constant of proportionality.

A.
$$k = 1.5 \text{ and } x = 50$$

 $\frac{y}{50} = 1.5 \text{ and } y = 75$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$
.RP.2 $\frac{3\frac{3}{4}}{x} = \frac{1}{4}$ and $x = 15$

Exit Slip

Name: _____ Date: ____ Solve for the unknown value using the equation for the constant of proportionality.

A.
$$k = 1.5$$
 and $x = 50$

$$\frac{y}{50} = 1.5 \ and \ y = 75$$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$

7.RP.2
$$\frac{3\frac{3}{4}}{x} = \frac{1}{4}$$
 and $x = 15$

Exit Slip

••••••

Name: _____ Date: ____ Solve for the unknown value using the equation for the constant of proportionality.

A.
$$k = 1.5$$
 and $x = 50$

$$\frac{y}{50} = 1.5$$
 and $y = 75$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$

7.RP.2
$$\frac{3\frac{3}{4}}{x} = \frac{1}{4}$$
 and $x = 15$

Exit Slip

Name: _____ Date: ____ Solve for the unknown value using the equation for the constant of proportionality.

A.
$$k = 1.5$$
 and $x = 50$

$$\frac{y}{50} = 1.5 \text{ and } y = 75$$

B.
$$k = \frac{1}{4}$$
 and $y = 3\frac{3}{4}$

$$\frac{3\frac{3}{4}}{x} = \frac{1}{4}$$
 and $x = 15$

				Exit	t Slip		•••	•••	7:
• • • •	Name: Date: Determine which tables display proportional relationships. Explain your answer. Table A Table B Table C								
•	х	у		х	у]	х	у	:
•	1	5		1	4		0	0	
	2	10		2	6		1	10	
	3	15		4	10		2	20	
	7.RP.2 Table A and Table C								
•		• • •	•	• • •	• • •		• • •	• • •	<u> </u>

Exit Slip Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 30%. If the store's cost for a printer is \$25, what is the customer's cost? The customer's cost is \$30 7.RP.3

: 	Exit Slip	
	Name: Date: A store is selling electronics and mark up all the prices by 30%. If the store's cost for a printer is \$25, what is the customer's cost?	• • • • •
	The customer's cost is \$30	
	7.RP.3	

Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5. Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$
$$5 = x$$

The customer's cost Is \$5

7.RP.3 Drew only figured out the markup and forgot toadd the store's cost for the printer to the mark up.

Exit Slip

Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5.

Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$

$$5 = x$$

The customer's cost Is \$5
Drew only figured out the markup and forgot to add the store's cost for the printer to the mark up.

••••••

Exit Slip

••••••

Name: _____ Date: ____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5. Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$

$$5 = x$$

The customer's cost Is \$5

7.RP.3 Drew only figured out the markup and forgot to add the store's cost for the printer to the mark up.

Exit	Sli	n
EXIL	ЭII	μ

Name: ______ Date: _____ A store is selling electronics and mark up all the prices by 20%. The store's cost for a printer is \$25, and Drew figured out the customer's cost is \$5. Explain what Drew did wrong.

$$\frac{20}{100} = \frac{x}{25}$$

$$5 = x$$

The customer's cost Is \$5

Drew only figured out the markup and forgot to add the store's cost for the printer to the mark up

7.RP.3

	• • • • • • • • • • • • • • • • • • • •	! ●
	Exit Slip	
	Name: Date: If Sullie paid \$450 for an iPhone that was 75% of	•
• • • • •	the original price. What was the original price of the iPhone?	•
•	\$600	•
•		•
•	7.RP.3	•
		•

•	Exit Slip	
• • • •	Name: Date: If Sullie paid \$450 for an iPhone that was 75% of the original price. What was the original price of the iPhone?	• • • •
• • • •	\$600	
	7.RP.3	

	• • • • • • • • • • • • • • • • • • • •	
	Exit Slip	
• • • •	Name: Date: Video games that usually sell for \$36.40 are on	
•	sale for \$30.94. What percent off are they?	•
	15 percent	•
		•
		•
	7.RP.3	
•		

Exi	it Slip
	Date: ally sell for \$36.40 are on at percent off are they?
15 pe	ercent
7.RP.3	

••••••

Name: _____ Date: ____ Write each proportion with a variable in the appropriate place, to calculate the unknown:

A. Calculate the Percent

$$\frac{x}{100} = \frac{part}{whole}$$

B. Calculate the Whole

$$\frac{percent\ part}{100} = \frac{part}{x}$$

••••••

7.RP.3

Exit Slip

••••••

Name: _____ Date: ____ Write each proportion with a variable in the appropriate place, to calculate the unknown:

A. Calculate the Percent

$$\frac{x}{100} = \frac{part}{whole}$$

B. Calculate the Whole

$$\frac{percent\ part}{100} = \frac{part}{x}$$

7.RP.3

Exit Slip

Name: ____ Date: ____ Write each proportion with a variable in the appropriate place, to calculate the unknown:

A. Calculate the Percent

$$\frac{x}{100} = \frac{part}{whole}$$

B. Calculate the Whole

$$\frac{percent\ part}{100} = \frac{part}{x}$$

7.RP.3

Exit Slip

••••••

Name: _____ Date: ____ Write each proportion with a variable in the

appropriate place, to calculate the unknown:

A. Calculate the Percent

$$\frac{x}{100} = \frac{part}{whole}$$

B. Calculate the Whole

$$\frac{percent\ part}{100} = \frac{part}{x}$$

Name: _____ Date: ____ Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

a. Write an equation to represent the relationship between tip(t) and the bill (b).

t = 0.19b

b. How much tip is added if there is a party of 12 and the total bill is \$216.

••••••

7.RP.3 \$41.04

Exit Slip

Name: _____ Date: ____ Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

a. Write an equation to represent the relationship between tip(t) and the bill (b).

t = 0.19b

 How much tip is added if there is a party of 12 and the total bill is \$216.

••••••

7.RP.3 \$41.04

Exit Slip

Name: _____ Date: ____ Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

a. Write an equation to represent the relationship between tip(t) and the bill (b).

t = 0.19b

 How much tip is added if there is a party of 12 and the total bill is \$216.

7.RP.3

\$41.04

Exit S	li
--------	----

Name: _____ Date: ____ Italian Eatery has a policy of adding a 19% automated tip if you have a party of 10 or more.

a. Write an equation to represent the relationship between tip(t) and the bill (b).

t = 0.19b

b. How much tip is added if there is a party of 12 and the total bill is \$216.

••••••

7.RP.3

\$41.04

Exit Slip Name: _____ Date: ____ If a salesperson earns a 13% commission and sells a furniture set for \$950. Determine the commission the salesperson will make. \$123.50 7.RP.3

Exit Slip	Ŀ
Name: Date: If a salesperson earns a 13% commission and sells	
a furniture set for \$950. Determine the	
commission the salesperson will make.	ľ
\$123.50	
7.RP.3	

	• • • • • • • • • • • • • • • • • • • •	
	Exit Slip	
	Name: Date: Date: If a salesperson earns a 13% commission and sells	
• • • •	a furniture set for \$950. Determine the commission the salesperson will make.	
•	\$123.50	•
•		•
•	7.RP.3	•
	• • • • • • • • • • • • • • • • • • • •	•

	Exit Slip
a furniture set	Date: ns a 13% commission and sells for \$950. Determine the ne salesperson will make.
\$:	123.50
7.RP.3	••••••

•	• • • • • • • • • • • • • • • • • • • •	•
	Exit Slip	•
	Name: Date: If a car salesman earns a 10% commission and	•
•	earned \$1475 on a sale. What was the price of the	•
•	car? \$14,750	•
	Ş14,730	
	7.RP.3	•
	/.IXE.3	•

	Exit Slip	
	Name: Date: If a car salesman earns a 10% commission and	
•••••	earned \$1475 on a sale. What was the price of the	
	car?	
•	\$14,750	
	. ,	
	7.RP.3	
•	• • • • • • • • • • • • • • • • • • • •	•

•	Exit Slip	
	Name: Date: If a car salesman earns a 10% commission and earned \$1475 on a sale. What was the price of the car?	
• • • • • •	\$14,750	
	7.RP.3	

••••••	Name: 1.	Exit Slip Date: How would you describe a 25 percent decrease?	•••••••
• • • •	2.	How would you describe a 100 percent increase?	•••••
•	7.RP.3	••••••	• • •

	Exit Slip
Name:	Date:
1.	How would you describe a 25 percent
	decrease?
2.	How would you describe a 100 percent increase?
7.RP.3	

.......

Name: _____ Date: _____ Date: _____

A. A pair of jeans originally cost \$32, but its price decreases by 20%.

$$32 \times 0.8 = 25.6$$

B. Erica is making \$34,000 per year. She gets a 9% increase in pay.

7.RP.3

Exit Slip

••••••

A. A pair of jeans originally cost \$32, but its price decreases by 20%.

$$32 \times 0.8 = 25.6$$

B. Erica is making \$34,000 per year. She gets a 9% increase in pay.

••••••

••••••

7.RP.3

Exit Slip

Name: Date: ______ Date: ______

A. A pair of jeans originally cost \$32, but its price decreases by 20%.

$$32 \times 0.8 = 25.6$$

B. Erica is making \$34,000 per year. She gets a 9% increase in pay.

7.RP.3

Exit Slip

Name: _____ Date: ____
Answer the following questions and show your work.

A. A pair of jeans originally cost \$32, but its price decreases by 20%.

$$32 \times 0.8 = 25.6$$

B. Erica is making \$34,000 per year. She gets a 9% increase in pay.

••••••

Check out my other products!

Ultimate Bundles:

Digital Bundles:

Escape Rooms:

PDF Bundles:

Visit my store & follow me!

© Math in the Midwest 2020

https://www.teacherspayteachers.com/Store/Math-In-The-Midwest

Terms of Use

Terms of Use Permission is granted to copy pages specifically for student or teacher use only by the original purchaser or licensee. The reproduction of this product for any other use is strictly prohibited. Copying any part of the product and placing it on the Internet is strictly prohibited. Doing so violates the Digital Millennium Copyright Act (DMCA).

© Math in the Midwest 2020

Be the first to know about my new discounts, freebies, and product launches. Click the link below to become a follower!

https://www.teacherspayteachers.com/Sellers-Im-Following/Add/Math-In-The-Midwest

Get TPT Credit on Future Purchases by:

• Leaving feedback on the products you purchase. TpT gives you feedback credits that you use to lower the cost of your future purchases. I truly love hearing what you think about my products so please consider leaving feedback! Thank you ©

Credit & many thanks to:

