Interpolation et polynômes factoriels

Notations:

n est un entier naturel fixé, $n \ge 2$.

 ${\mathcal F}\,$ est l'espace vectoriel des fonctions réelles définies sur ${\mathbb R}\,$.

E est le sous-espace vectoriel des fonctions polynômes à coefficients réels.

 E_n est le sous-espace vectoriel des fonctions polynômes à coefficients réels de degré inférieur ou égal à n.

Partie I

Si $f \in \mathcal{F}$, on note $\Delta(f)$ et T(f) les fonctions réelles définies par :

$$\forall x \in \mathbb{R}, \Delta(f)(x) = f(x+1) - f(x) \text{ et } T(f)(x) = f(x+1).$$

On admettra (aisément !) que Δ et T sont des endomorphismes de ${\mathcal F}$.

On note $\Delta^0 = T^0 = \operatorname{Id}_{\mathcal{F}}$ (donc si $f \in \mathcal{F}$, $\Delta^0(f) = T^0(f) = f$), et, si $j \in \mathbb{N}^*$:

$$\Delta^j = \Delta^{j-1} \circ \Delta = \Delta \circ \Delta^{j-1}$$
 et $T^j = T^{j-1} \circ T = T \circ T^{j-1}$.

1. Soit $P \in E$, non constant. $\Delta(P)$ est une fonction polynôme.

Comparer les degrés de $\Delta(P)$ et de P.

Calculer le coefficient dominant de $\Delta(P)$ en fonction de celui de P.

- 2. On note Δ_n la restriction de Δ au départ de E_n .
- 2.a Vérifier que Δ_n réalise un endomorphisme de E_n .
- 2.b Déterminer $\ker \Delta_n$. En déduire le rang de Δ_n et déterminer $\operatorname{Im} \Delta_n$.
- 3. Déduire des questions précédentes que l'endomorphisme Δ est surjectif.

Partie II

1. Pour $k\in\mathbb{N}$, on définit les fonctions polynômes $\,N_{\scriptscriptstyle k}\,$ par :

2.
$$\forall x \in \mathbb{R}, N_0(x) = 1 \text{ et } N_k(x) = \frac{x(x-1)...(x-k+1)}{k!}$$
.

- 1.a Pour $k \ge 1$, exprimer $\Delta(N_k)$ en fonction de l'un des polynômes $(N_i)_{i \ge 0}$.
- 1.b Calculer, pour $j \in \mathbb{N}$ et $k \in \mathbb{N}$, $\Delta^{j}(N_{k})$ puis $(\Delta^{j}(N_{k}))(0)$.
- 2.a Montrer que la famille $(N_0, N_1, ..., N_n)$ est une base de E_n .
- 2.b Soit $P \in E_n$, P s'écrit $P = a_0 N_0 + a_1 N_1 + ... + a_n N_n$ où $(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$. Exprimer les a_i en fonction des $(\Delta^j(P))(0)$.
- 3. Applications:

On pose $P(x) = x^2$. Déterminer les coefficients $a, b, c \in \mathbb{R}$ tels que :

$$\forall x \in \mathbb{R} : P(x) = aN_0(x) + bN_1(x) + cN_2(x)$$

et en déduire une fonction polynôme Q telle que $\Delta(Q) = P$.

Exploiter celle-ci pour exprimer $\sum_{k=1}^{n} k^2$.

- 4. Soit $f \in \mathcal{F}$.
- 4.a Déterminer pour $x \in \mathbb{R}$ et $k \in \mathbb{N}$, $(T^k(f))(x)$.
- 4.b Etant donné $n \in \mathbb{N}$, expliciter $\Delta^n(f)$ en fonction des $T^k(f)$, $0 \le k \le n$.

(on pourra remarquer que $\Delta = T - \operatorname{Id}_{\scriptscriptstyle{\mathcal{F}}}$).

4.c En déduire que $(\Delta^n(f))(0)$ ne dépend que des valeurs de f aux points $0,1,\ldots,n$.

Partie III

On se donne une fonction f de ${\mathcal F}$. On cherche les polynômes solutions du problème $({\mathcal P})$ suivant :

$$(\mathcal{P}): \begin{cases} \deg P \le n \\ \forall k \in \{0, 1, \dots, n\}, P(k) = f(k) \end{cases}$$

On pose:

$$N(x) = \prod_{j=0}^{n} (x-j) = x(x-1)...(x-n).$$

1. Soit l'application linéaire :

$$\varphi: E_n \to \mathbb{R}^{n+1}$$

$$P \mapsto (P(0), \dots, P(n))$$

Montrer que φ est un isomorphisme.

- 1.b En déduire que le problème (\mathcal{P}) possède une unique solution notée $P_{\scriptscriptstyle f}$.
- 2.a Pour $j \in \{0,1,...,n\}$, comparer $(\Delta^{j}(f))(0)$ et $(\Delta^{j}(P_{f}))(0)$.
- 2.b En déduire l'expression de P_f en fonction des $(\Delta^j(f))(0)$ et des polynômes N_j .
- 3. Dans cette question, on suppose que f est de classe C^{n+1} . On note :

$$M_{n+1} = \sup \{ |f^{(n+1)}(t)|, t \in [0, n] \}.$$

3.a Soit $x \in [0, n]$, non entier. Montrer que :

$$\exists \xi \in [0, n], f(x) - P_f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} N(x) .$$

On pourra poser $\varphi(t)=f(t)-P_f(t)-KN(t)$, où K est tel que $\varphi(x)=0$ et appliquer judicieusement le théorème de Rolle.

3.b En déduire que $\forall x \in [0, n], |f(x) - P_f(x)| \le \frac{1}{n+1} M_{n+1}$

On pourra majorer |N(x)| sur chaque intervalle [j,j+1], où $j \in \{0,1,\ldots,n-1\}$.