Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Naţională de Matematică Etapa naţională, Iaşi, 6 aprilie 2010

CLASA a IX-a SOLUȚII ȘI BAREME ORIENTATIVE

Problema 1. Se consideră triunghiul ABC și punctele D, E, F în care bisectoarele unghiurilor $\not \subset BAC, \not \subset ABC$, respectiv $\not \subset ACB$ taie cercul său circumscris.

- a) Arătați că ortocentrul triunghiului DEF coincide cu centrul cercului înscris în triunghiul ABC.
- b) Arătați că, dacă $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$, atunci triunghiul ABC este echilateral.

Problema 2. Demonstrați că există o asemănare între un triunghi ABC și triunghiul având ca laturi medianele sale dacă și numai dacă pătratele lungimilor laturilor triunghiului ABC sunt în progresie aritmetică.

Soluţie. Folosim $m_a^2 = \frac{1}{4} \left(2(b^2 + c^2) - a^2 \right)$ şi analoagele **1 punct** Dacă pătratele laturilor sunt în progresie aritmetică, atunci, de exemplu, $2b^2 = a^2 + c^2$, de unde $m_a^2 = \frac{3}{4}c^2$, $m_b^2 = \frac{3}{4}b^2$, $m_c^2 = \frac{3}{4}a^2$, ceea ce arată că

$$\frac{m_a}{c} = \frac{m_b}{b} = \frac{m_c}{a} = \frac{\sqrt{3}}{2}$$

$$\frac{m_a}{c} = \frac{m_b}{b} = \frac{m_c}{a} = k$$
 2 puncte

Problema 3. Pentru orice număr natural $n \geq 2$ notăm A_n mulțimea soluțiilor reale ale ecuației

$$x = \left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] + \ldots + \left[\frac{x}{n}\right].$$

- a) Determinați $A_2 \cup A_3$.
- b) Arătați că mulțime
a $A=\bigcup_{n\geq 2}A_n$ este finită și determinați maxA.

Soluţie. Observăm că $A_n \subset \mathbb{Z}, \forall n \in \mathbb{N}, n \geq 2 \ldots 1$ punct

Elementele din A_3 îndeplinesc inegalitățile $5x - 12 < 6x \le 5x$, de unde, prin verificare, $A_3 = \{-7, -5, -4, -3, -2, 0\}$, iar $A_2 \cup A_3 = \{-7, -5, -4, -3, -2, -1, 0\}$. **1 punct**

b) Pentru $n \geq 4$, dacă $x \in A_n$, atunci $x \leq \left(\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}\right) x$, iar din $\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} > 1$ reiese $x \geq 0 \ldots 1$ punct

Apoi, pentru $x, n \in \mathbb{Z}$ şi $n \geq 2$, $\left[\frac{x}{n}\right] \geq \frac{x-(n-1)}{n}$. Astfel, dacă $n \geq 4$ şi $x \in A_n$, atunci

$$x \ge \left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] + \left[\frac{x}{4}\right] \ge \frac{x-1}{2} + \frac{x-2}{3} + \frac{x-3}{4},$$

Observație. Pentru mărginirea superioară a lui A este suficient să folosim $\left[\frac{x}{k}\right] > \frac{x}{k} - 1$ pentru $k \in \{2, 3, 4\}$, dar aceasta îngreunează aflarea lui max A.

Problema 4. Se consideră mulțimea \mathcal{F} a funcțiilor $f: \mathbb{N} \to \mathbb{N}$ care au proprietatea:

$$f(a^2 - b^2) = f^2(a) - f^2(b)$$
, pentru orice $a, b \in \mathbb{N}, a \ge b$.

- a) Determinați $\{f(1) \mid f \in \mathcal{F}\}.$
- b) Arătați că \mathcal{F} are exact două elemente.