CASO A – CONDUÇÃO EM ESTADO NÃO ESTACIONÁRIO NUM SÓLIDO SEMI-INFINITO

Temperatura adimensional:
$$\theta = \frac{T - T_0}{T_a - T_0}$$

(T: temperatura do sólido no instante t)

x: distância da superfície do sólido no instante t à temperatura T

difusividade térmica do sólido

$$D_H = \frac{k}{\rho Cp}$$

CASO B – SÓLIDO SUBMERSO NUM MEIO COM RESISTÊNCIA TÉRMICA DESPRESÁVEL (relativamente à do sólido)

B.1. Determinação da temperatura no centro do sólido

(T=Tm)

Variáveis:

$$\theta = \frac{T_a - T}{T_a - T_0}$$

(T₀: temperatura uniforme do sólido no instante inicial)

(T_a: temperatura ambiente constante)

(T: temperatura no centro do sólido no instante t)

x₁: distância do centro do sólido à superfície (metade da espessura do sólido)

$$\tau = \frac{D_H t}{x_1^2}$$

Número de Fourier

$$D_H = rac{k}{
ho Cp}$$
 : difusividade térmica do sólido

$$\frac{T_a - T}{T_a - T_0}$$

$$\frac{D_{\scriptscriptstyle H}t}{a^{\scriptscriptstyle 2}}; \frac{D_{\scriptscriptstyle H}t}{b^{\scriptscriptstyle 2}}; \frac{D_{\scriptscriptstyle H}t}{c^{\scriptscriptstyle 2}}$$

CASO C – CONDUÇÃO EM ESTADO NÃO ESTACIONÁRIO EM SÓLIDOS

Variáveis:

Temperatura adimensional: $\Theta = rac{T_a - T}{T_a - T_0}$

(Ta:temperatura ambiente)

(T: temperatura do sólido à distância x da superfície, no instante t)

(T₀: temperatura uniforme do sólido no instante inicial)

Distância adimensional: $n = \frac{x}{x_1}$

(x: distância do interior do sólido até à superfície)

(x₁: distância do centro do sólido à superfície - metade da espessura do sólido)

Coeficiente adimensional de transferência de calor: $Bi = rac{hx_1}{k}$

tempo adimensional: $au = \frac{D_H t}{x_{_1}^2}$

Número de Fourier

 $D_H = rac{k}{
ho Cp}$: difusividade térmica do sólido

CASO C1 – CONDUÇÃO EM ESTADO NÃO ESTACIONÁRIO NUMA PLACA PLANA

Condução em estado não estacionário através de uma placa plana. (Gurney and Lurie (1923) Ind. Eng. Chem., 15, 1170)

CASO C2 –CONDUÇÃO EM ESTADO NÃO ESTACIONÁRIO NUM CILINDRO (condução unidimensional dá-se unicamente na direção radial; r)

Condução em estado não estacionário através de um cilindro semi-infinito (Gurney and Lurie (1923) Ind. Eng. Chem., 15, 1170)

CASO C3 – CONDUÇÃO EM ESTADO NÃO ESTACIONÁRIO NUMA ESFERA

Condução em estado não estacionário através de uma esfera (Gurney and Lurie (1923) Ind. Eng. Chem., 15, 1170)

CASO C1 – CONDUÇÃO EM ESTADO NÃO ESTACIONÁRIO NUMA PLACA PLANA temperatura no centro da placa

Gráfico para a determinação da temperatura no centro de uma placa plana para condução em estado não estacionário (Heisler, H.P. (1947) Trans. A.S.M.E., 69, 227)

CASO C2 - CONDUÇÃO EM ESTADO NÃO ESTACIONÁRIO NUM CILINDRO (temperatura no centro do cilindro)

Gráfico para a determinação da temperatura no centro de um cilindro semi-infinito para condução em estado não estacionário (Heisler, H.P. (1947) Trans. A.S.M.E., 69, 227)

Gráfico para a determinação da temperatura no centro de uma esfera para condução em estado não estacionário (Heisler, H.P. (1947) Trans. A.S.M.E., 69, 227)

Plane wall: $\theta(x, t)_{\text{wall}} = A_1 e^{-\lambda_1^2 \tau} \cos(\lambda_1 x/L), \quad \tau > 0.2$

Cylinder: $\theta(r, t)_{\text{cyl}} =: A_1 e^{-\lambda_1^2 \tau} J_0(\lambda_1 r/r_o), \quad \tau > 0.2$

Sphere: $\theta(r, t)_{\text{sph}} = A_1 e^{-\lambda_1^2 \tau} \frac{\sin(\lambda_1 r/r_o)}{\lambda_1 r/r_o}, \quad \tau > 0.2$

T0: T T1: T0 T∞: Ta R: x R0:x1

Center of plane wall (x = 0): $\theta_{0, \text{wall}} = \frac{T_o - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau}$

Center of cylinder (r = 0): $\theta_{0, \text{ cyl}} = \frac{T_o - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau}$

Center of sphere (r = 0): $\theta_{0, sph} = \frac{T_o - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau}$

for a plane wall of thickness 2L, and Bi $= hr_o/k$ for a cylinder or sphere of radius r_o)

radius 1 ₀)							0.0	1.0000	0.0000
	Plane Wall		Cylinder		Sphere		0.1	0.9975	0.0499
Bi	λ ₁	A ₁	λ ₁	A ₁	λ ₁	A ₁	0.2	0.9900	0.0995
0.01	0.0998	1.0017	0.1412	1.0025	0.1730	1.0030	0.3	0.9776	0.1483
0.02	0.1410	1.0033	0.1995	1.0050	0.2445	1.0060	0.4	0.9604	0.1960
0.04	0.1987	1.0066	0.2814	1.0099	0.3450	1.0120			
0.06	0.2425	1.0098	0.3438	1.0148	0.4217	1.0179	0.5	0.9385	0.2423
0.08	0.2791	1.0130	0.3960	1.0197	0.4860	1.0239	0.6	0.9120	0.2867
0.1	0.3111	1.0161	0.4417	1.0246	0.5423	1.0298	0.7	0.8812	0.3290
0.2	0.4328	1.0311	0.6170	1.0483	0.7593	1.0592	0.8	0.8463	0.3688
0.3	0.5218	1.0450	0.7465	1.0712	0.9208	1.0880	0.9	0.8075	0.4059
0.4	0.5932	1.0580	0.8516	1.0931	1.0528	1.1164	1.0	0.7652	0.4400
0.5	0.6533	1.0701	0.9408	1.1143	1.1656	1.1441	1.1	0.7196	0.4709
0.6	0.7051	1.0814	1.0184	1.1345	1.2644	1.1713	1.2	0.6711	0.4983
0.7	0.7506	1.0918	1.0873	1.1539	1.3525	1.1978	1.3	0.6201	0.5220
0.8	0.7910	1.1016	1.1490	1.1724	1.4320	1.2236	1.4	0.5669	0.5419
0.9	0.8274	1.1107	1.2048	1.1902	1.5044	1.2488	2	0.0003	0.0113
1.0	0.8603	1.1191	1.2558	1.2071	1.5708	1.2732	1.5	0.5118	0.5579
2.0	1.0769	1.1785	1.5995	1.3384	2.0288	1.4793	1.6	0.4554	0.5699
3.0	1.1925	1.2102	1.7887	1.4191	2.2889	1.6227	1.7	0.3980	0.5778
4.0	1.2646	1.2287	1.9081	1.4698	2.4556	1.7202	1.8	0.3400	0.5815
5.0	1.3138	1.2403	1.9898	1.5029	2.5704	1.7870	1.9	0.2818	0.5812
6.0	1.3496	1.2479	2.0490	1.5253	2.6537	1.8338			
7.0	1.3766	1.2532	2.0937	1.5411	2.7165	1.8673	2.0	0.2239	0.5767
8.0	1.3978	1.2570	2.1286	1.5526	2.7654	1.8920	2.1	0.1666	0.5683
9.0 10.0	1.4149	1.2598	2.1566	1.5611	2.8044	1.9106	2.2	0.1104	0.5560
20.0	1.4289	1.2620 1.2699	2.1795	1.5677 1.5919	2.8363 2.9857	1.9249	2.3	0.0555	0.5399
30.0	1.4961 1.5202	1.2699	2.2880 2.3261	1.5919	3.0372	1.9781 1.9898	2.4	0.0025	0.5202
40.0	1.5202	1.2717	2.3455	1.5973	3.0632	1.9898	2.6	-0.0968	-0.4708
50.0	1.5400	1.2727	2.3572	1.6002	3.0788	1.9962	2.8	-0.1850	-0.4097
100.0	1.5552	1.2731	2.3809	1.6015	3.1102	1.9990	3.0	-0.1650	-0.3391
∞	1.5708	1.2732	2.4048	1.6021	3.1416	2.0000	3.2	-0.3202	-0.2613
-	1.0700	1.2702	2.7070	1.0021	3.1410	2.0000	U.E	0.0202	0.2010

ξ

 $J_o(\xi)$

 $J_1(\xi)$