

09	120	174	222	270	318	366	414	462
GGCGGCCGCA GCCTCGGCTA CAGCTTCGGC GGCGAAGGTC AGCGCCGACG GCAGCCGGCA	CCTGACGGCG TGACCGACCC GAGCCGATTT CTCTTGGATT TGGCTACACA CTTATAGATC	TTCTGCACTG TTTACAGGCA CAGTTGCTGA TATGTGTTCA AG ATG AGT GGG ATG Met Ser Gly Met 1	GGA GAA AAT ACC TCT GAC CCC TCC AGG GCA GAG ACA AGA AAG CGC AAG Gly Glu Asn Thr Ser Asp Pro Ser Arg Ala Glu Thr Arg Lys 5	GAA TGT CCT GAC CAA CTT GGA CCC AGC CCC AAA AGG AAC ACT GAA AAA Glu Cys Pro Asp Gln Leu Gly Pro Ser Pro Lys Arg Asn Thr Glu Lys 30	CGT AAT CGT GAA CAG GAA AAT AAA TAT ATA GAA GAA CTT GCA GAG TTG Arg Asn Arg Glu Gln Glu Asn Lys Tyr Ile Glu Glu Leu Ala Glu Leu 45	ATT TTT GCA AAT TTT AAT GAT ATA GAC AAC TTT AAC TTC AAA CCT GAC Ile Phe Ala Asn Phe Asn Asp Ile Asp Asn Phe Asn Phe Lys Pro Asp 60	AAA TGT GCA ATC TTA AAA GAA ACT GTG AAG CAA ATT CGT CAG ATC AAA Lys Cys Ala Ile Leu Lys Glu Thr Val Lys Gln Ile Arg Gln Ile Lys 75	GAA CAA GAG AAA GCA GCA GCT GCC AAC ATA GAT GAA GTG CAG AAG TCA Glu Gln Glu Lys Ala Ala Ala Ala Asn Ile Asp Glu Val Gln Lys Ser 85

FIG.1A

Founto" or natage

510	558	909	654	702	750	798	846
						•	
666 61y	CTG Leu	AGG Arg	CAT His	ATA I1e 180	CAT His	GAG Glu	cAG G1n
CTG Leu 115	AAC Asn	CTA	TTG Leu	TCT Ser	AGC Ser 195	GAA G1u	ATG Met
GCG Ala	GTG Val 130	TAT Tyr	ATC Ile	AAG Lys	AAC Asn	TCA Ser 210	ACT
GAT Asp	GTA Val	CAG G1n 145	AGC Ser	CCA Pro	CGG Arg	GAT Asp	GAA G1u 225
AAG Lys	TTT Phe	ACA Thr	TAT Tyr 160	CTG Leu	AGG Arg	CCT Pro	TAT Tyr
GAC Asp	TTC Phe	GTG Val	GTA Val	CTG Leu 175	CCG Pro	TTA	AAA Lys
ATC Ile 110	TTC	AAT Asn	AGT Ser	AAC Asn	CCT Pro 190	CCT Pro	CAG G1n
GTC Val	666 61y 125	GAG G1u	AAA Lys	AAA Lys	GAA G1u	AAA Lys 205	CAT His
66T 61 <i>y</i>	GAT Asp	TCA Ser 140	AAC Asn	GTC Val	66C 61y	GTA Val	GCT Ala 220
CAG G1n	CTT	GTG Val	ATG Met 155	TTT	TCT Ser	CTG Leu	GAA G1u
666 61y	GCC Ala	TTT Phe	CTG Leu	GAA G1u 170	TGG Trp	ATG Met	CAG G1n
ACA Thr 105	GAG Glu	GTG Val	GAG G1u	ACG Thr	TCT Ser 185	CGG Arg	AAC Asn
TCT Ser	CTT Leu 120	GTT Val	GAA G1u	CAC His	GGA G1y	TGT Cys 200	GAT Asp
TCC Ser	ATG	AAC Asn 135	CAA G1n	GAC Asp	666 61y	AAT Asn	CAT His 215
GTA Val	ATG Met	66C 61y	AAC Asn 150	666 61y	AAT Asn	TTC	GGT Gly
GAT Asp	CCT Pro	GAA Glu	TAT	GTT Val 165	GTA Val	ACC Thr	GAG G1u

FIG.1B

Control of the contro

894	942	066	1038	1086	1134	1182	1230
A GAT u Asp	6 GAA s G1u 260	T CTC 5 Leu 5	c ATG a Met	C CAT e His	r CAT s His	7CC Ser 340	ATC
GGA GAA Gly Glu	ATG AAG Met Lys	CAG GAT Gln Asp 275	GCA GCC Ala Ala 290	AAG TTC Lys Phe	CAT CAT His His	CGT TTT Arg Phe	AAA CTC Lys Leu 355
GAA G1u	CCC	CGC	AGA. Arg	CAG / G1n 305	AGG Arg	TAT	AGC
AAA GAA Lys Glu 240	AGA GTT Arg Val 255	ACT ACT Thr Thr	ACC ATG Thr Met	TGT ATT Cys Ile	GCT AAG Ala Lys 320	VA ATC In Ile	ACG AAG Thr Lys
ATC A Ile L	AGA AGA Arg Arg Arg 23	TTT A(Phe TI	AGC A(Ser Ti	AGG T(Arg C)	TAT G(Tyr A)	AGT CAA Ser Gln 335	CAA AC G1n Th 350
3 TCC 5 Ser	GCA Ala	A AGT J. Ser	ACC Thr 285	AGA	Ser	TTC	GCA
CCA AAG Pro Lys 235	TGC GTG Cys Val	TCA GAA Ser Glu	CTG GAT Leu Asp	CTG GTA Leu Val 300	77 GTG er Val 5	G GCA tu Ala	T GCT
CAA C	ATT T(11e C 250	TCA T(Ser Se	TCT C	GAC CT Asp Le	GAA TCT Glu Ser 315	GGA TTG GTy Leu 330	CTT GTT Leu Val
Ser	Leu	CCC Pro 265	ACG Thr	GAG	66A 61y	CAA G1n	ACT Thr 345
T GTC a Val	c TGC r Cys	r ctt I Leu	3 ATC 5 Ile 280	71GG 7 Trp	r GAA s Glu	AGA Arg	- 66C 61y
TTC GCT Phe Ala 230	CAG TCC Gln Ser	CCA GTT Pro Val	ic AAG y Lys	7A GGC 70 G1y 295	G CAT n His 0	A CTG 1 Leu	T.GAT r Asp
TGC T Cys Pt	TTG C/ Leu G1 245	AGA CC Arg Pr	CAA GGC Gln Gly	AAA CCA Lys Pro	GCG CAG Ala Gln 310	GAA GTA Glu Val 325	TTG TCT Leu Ser

FIG.1C

Togsto " asstage

1278	1326	1374	1422	1470	1518	1566	1614
GTA ATA TCT TTA CAT ATG Val Ile Ser Leu His Met 370	AAT CCG GAT CTG ACT GGA Asn Pro Asp Leu Thr Gly 385	AGC TCT AAC AGC CCT GCC Ser Ser Asn Ser Pro Ala 400	CAG GAC ATG ACC CTC AGT Gln Asp Met Thr Leu Ser 415	AAG GAA CAA ATG GGC ATG Lys Glu Gln Met Gly Met 435	ATG AAC CAT GTG TCA GGC Met Asn His Val Ser Gly 450	TAT GCA CTC AAA ATG AAC Tyr Ala Leu Lys Met Asn 465	CCA GGA CAG CCC ACC TCC Pro Gly Gln Pro Thr Ser 480
CCT CAA CTT Pro Gln Leu 365	TGT GTG ATG Cys Val Met 380	AAT CCA ATT Asn Pro Ile	AAC CCA GGT Asn Pro Gly	AAT GGC CCA Asn Gly Pro 430	TCT GGG GGA Ser Gly Gly 445	GGT AGT AAC Gly Ser Asn 460	GGC ATG AAT Gly Met Asn
r ACT AAT GAA Thr Asn Glu	GCAG AAT GTG Gln Asn Val	AAG CCA CTG	7 TGC AGT GGG Cys Ser Gly 410	TTT CCC ATA Phe Pro Ile 425	TTT GGT GGT Phe Gly Gly	ACT CCT CAG Thr Pro Gln	AGC AGC CCT Ser Ser Pro 475
CGT TCT CAG ACT Arg Ser Gln Thr 360	CTT CAC AGA GAG Leu His Arg Glu 375	CAA ACG ATG GGG Gln Thr Met Gly 390	CAT CAG GCC CTG His Gln Ala Leu 405	AGC AAT ATA AAT Ser Asn Ile Asn	CCC ATG GGC AGG Pro Met Gly Arg 440	ATG CAA GCA ACC Met Gln Ala Thr 455	AGC CCC TCA CAA Ser Pro Ser Gln 470

FIG. 1D

osetsse "otesor

1662	1710	1758	1806	1854	1902	1950	1998
AGC CCT GGA GTG GCT GGC AGC CCT	CCT GCA GGA AGC TTG CAT TCC CCT	AAT AGC CAT AGT TAT ACC AAC AGC	AGC GAG GGG CAC GGG GTC TCA TTA	CTA AAA ATG GGC AAT TTG CAA AAC	CCA CTC AGC AAG ATG GGA AGC TTG	TAT GGG GAG CCC TCT GAA GGT ACA	CAT CCT GGA GAG CAA AAG GAA ACA
Ser Pro Gly Val Ala Gly Ser Pro	Pro Ala Gly Ser Leu His Ser Pro	Asn Ser His Ser Tyr Thr Asn Ser	Ser Glu Gly His Gly Val Ser Leu	Leu Lys Met Gly Asn Leu Gln Asn	Pro Leu Ser Lys Met Gly Ser Leu	Tyr Gly Glu Pro Ser Glu Gly Thr	His Pro Gly Glu Gln Lys Glu Thr
495	510	525	545	560	575	590	605
TCA CCA AGG CAT CGC ATG	CCA CCC AGT CAG TTT TCC	GTT TGC AGC AGC ACA GGA	AAT GCA CTT CAG GCC CTC	TCG TTG GCT TCA CCA GAC	GTT AAT ATG AAT CCT CCC	AAA GAC TGT TTT GGA CTA	CAA GCA GAG AGC AGC TGC
Ser Pro Arg His Arg Met	Pro Pro Ser Gln Phe Ser	Val Cys Ser Ser Thr Gly	Asn Ala Leu Gln Ala Leu	Ser Leu Ala Ser Pro Asp	Val Asn Met Asn Pro Pro	Lys Asp Cys Phe Gly Leu	Gln Ala Glu Ser Ser Cys
490	505	520	535	555	570	585	600
ATG CTT Met Leu 485	CGA ATC Arg Ile	GTG GGA Val Gly	TCC CTC Ser Leu	GGG TCA Gly Ser 550	TCC CCA Ser Pro 565	GAC TCA Asp Ser	ACT GGA (Thr Gly (

FIG.1E

COBATO, BENEFACO

2046	2094	2142	2190	2238	2286	2334	2382
U >		- LO	(a >	< m	4 8	- 0	T 100
666 61y	CTG Leu	TCT Ser 660	666 61y	AGA Arg	GCA Ala	CCT Pro	AAA Lys 740
GAC Asp	CAG G1n	AGC Ser	TCT Ser 675	CAC His	ACA Thr	GCT Ala	AAG Lys
GCT Ala	CTG	GCC	G1y	TTG Leu 690	TTA Leu	ACA Thr	AAG Lys
AGA Arg 625	CTC	TTA	CCT Pro	ATT Ile	AAG Lys 705	AGC Ser	CCC Pro
GAG G1u	AAA Lys 640	CCC Pro	TTG Leu	AAA Lys	GCC Ala	AGC Ser 720	AGC
AGT Ser	ACC Thr	TCG Ser 655	AGC Ser	CAT His	TTG Leu	TCC Ser	GTG Va1 735
AGC Ser	CAG Gln	CCC Pro	GGT G1y 670	AAG Lys	GAC Asp	GAG G1u	CCG Pro
GTG Val	666 G1y	GAG G1u	ACA Thr	GAG G1u 685	GTG Val	CAG G1n	GAG G1u
GCC A1a 620	AAA Lys	ATG Met	TCC Ser	AAG Lys	CCT Pro 700	AGC Ser	CAA G1n
CCG Pro	AGC Ser 635	CAG G1n	GAC Asp	CTC Leu	TCC Ser	CTG Leu 715	AAA Lys
CCC Pro	GAC Asp	GAT Asp 650	AAA Lys	TCG Ser	AGT Ser	GAC Asp	ATT 11e 730
CTG Leu	CAT His	TCT	AAC Asn 665	ACC Thr	AGC Ser	AAA	ACT Thr
AAC	CTG Leu	AAA Lys	ACA Thr	GGA G1y 680	GAC Asp	66C 61y	GTG Val
CCC Pro 615	AGA Arg	ACC Thr	GAT Asp	CAT His	CAG G1n 695	ACA Thr	GAA G1u
GAC Asp	AGC Ser 630	ACC Thr	TCG Ser	ACA Thr	TTG Leu	GCC Ala 710	TCA Ser
AAT Asn	CAG G1n	CTG Leu 645	TTG	TCT Ser	CTC	GAA G1u	GGA G1y 725

FIG.1F

COSTACT SETABLE

FIG.1G

TOBETO BETTERED

2814	2862	2910	. 5328	3006	3054	3102	3150
ACT TTT AAT AAC CCA CGA CCA GGG CAA CTG GGC AGG TTA TTG CCA AAC Thr Phe Asn Asn Pro Arg Pro Gly Gln Leu Gly Arg Leu Leu Pro Asn 870	CAG AAT TTA CCA CTT GAC ATC ACA TTG CAA AGC CCA ACT GGT GCT GGA Gln Asn Leu Pro Leu Asp Ile Thr Leu Gln Ser Pro Thr Gly Ala Gly 885	SCT TTC CCA CCA ATC AGA AAC AGT AGT CCC TAC TCA GTG ATA CCT CAG Pro Phe Pro Pro Ile Arg Asn Ser Ser Pro Tyr Ser Val Ile Pro Gln 915	CCA GGA ATG ATG GGT AAT CAA GGG ATG ATA GGA AAC CAA GGA AAT TTA Pro Gly Met Met Gly Asn Gln Gly Met Ile Gly Asn Gln Gly Asn Leu 920	GGG AAC AGT AGC ACA GGA ATG ATT GGT AAC AGT GCT TCT CGG CCT ACT Gly Asn Ser Ser Thr Gly Met Ile Gly Asn Ser Ala Ser Arg Pro Thr 935	ATG CCA TCT GGA GAA TGG GCA CCG CAG AGT TCG GCT GTG AGA GTC ACC Met Pro Ser Gly Glu Trp Ala Pro Gln Ser Ser Ala Val Arg Val Thr 950	T GCT GCT ACC ACC AGT GCC ATG AAC CGG CCA GTC CAA GGA GGT ATG s Ala Ala Thr Thr Ser Ala Met Asn Arg Pro Val Gln Gly Gly Met 5	T CGG AAC CCA GCA GCC AGC ATC CCC ATG AGG CCC AGC AGC CAG CCT e Arg Asn Pro Ala Ala Ser Ile Pro Met Arg Pro Ser Ser Gln Pro 985
< ⊢	OOO	O.L.	OL	99	Σ	TGT Cys 965	ATT Ile

FIG.1H

TOBETO: SEZETBED

3198	3246	3294	3342	3390	3438	3486	3534
GGC CAA AGA CAG ACG CTT CAG TCT CAG GTC ATG AAT ATA GGG CCA TCT Gly Gln Arg Gln Thr Leu Gln Ser Gln Val Met Asn Ile Gly Pro Ser 1000	GAA TTA GAG ATG AAC ATG GGG GGA CCT CAG TAT AGC CAA CAA CAA GCT Glu Leu Glu Met Asn Met Gly Gly Pro Gln Tyr Ser Gln Gln Gln Ala 1015	AGC Ser	AG CCA TTT GGC AGT TCT CCA lln Pro Phe Gly Ser Ser Pro 1055	GAT GAC TTG CTA TGT CCA CAT CCT GCA GCT GAG TCT CCG AGT GAT GAG Asp Asp Leu Leu Cys Pro His Pro Ala Ala Glu Ser Pro Ser Asp Glu 1075	AT TTT GAT GGC sn Phe Asp Gly 1090	CTG GAG GAG ATT GAT AGA GCC TTA GGA ATA CCC GAA CTG GTC AGC CAG Leu Glu Glu Ile Asp Arg Ala Leu Gly Ile Pro Glu Leu Val Ser Gln 1095	AGC CAA GCA GTA GAT CCA GAA CAG TTC TCA AGT CAG GAT TCC AAC ATC Ser Gln Ala Val Asp Pro Glu Gln Phe Ser Ser Gln Asp Ser Asn Ile 1110

FIG.11

DOBHESS . OHESO1

3582	3630	3678	3726	3774	3822	3870	3918
ATG CTG GAG CAG AAG GCG CCC GTT TTC CCA CAG CAG TAT GCA TCT CAG	GCA CAA ATG GCC CAG GGT AGC TAT TCT CCC ATG CAA GAT CCA AAC TTT	CAC ACC ATG GGA CAG CGG CCT AGT TAT GCC ACA CTC CGT ATG CAG CCC	AGA CCG GGC CTC AGG CCC ACG GGC CTA GTG CAG AAC CAG CCA AAT CAA	CTA AGA CTT CAA CTT CAG CAT CGC CTC CAA GCA CAG CAG AAT CGC CAG	CCA CTT ATG AAT CAA ATC AGC AAT GTT TCC AAT GTG AAC TTG ACT CTG	AGG CCT GGA GTA CCA ACA CAG GCA CCT ATT AAT GCA CAG ATG CTG GCC	CAG AGA CAG AGG GAA ATC CTG AAC CAG CAT CTT CGA CAG AGA CAA ATG
Met Leu Glu Gln Lys Ala Pro Val Phe Pro Gln Gln Tyr Ala Ser Gln	Ala Gln Met Ala Gln Gly Ser Tyr Ser Pro Met Gln Asp Pro Asn Phe	His Thr Met Gly Gln Arg Pro Ser Tyr Ala Thr Leu Arg Met Gln Pro	Arg Pro Gly Leu Arg Pro Thr Gly Leu Val Gln Asn Gln Pro Asn Gln	Leu Arg Leu Gln Leu Gln His Arg Leu Gln Ala Gln Gln Asn Arg Gln	Pro Leu Met Asn Gln Ile Ser Asn Val Ser Asn Val Asn Leu	Arg Pro Gly Val Pro Thr Gln Ala Pro Ile Asn Ala Gln Met Leu Ala	Gln Arg Gln Arg Glu Ile Leu Asn Gln His Leu Arg Gln Arg Gln Met
1125	1150	1160	1175	1190	1205	1235	1245

FIG.1J

Togato: assateo

3966	4014	4062	4110	4158	4206	4254	4302
CAT CAG CAA CAG CAA GTT CAG CAA CGA ACT TTG ATG ATG AGA GGA CAA	GGG TTG AAT ATG ACA CCA AGC ATG GTG GCT CCT AGT GGT ATG CCA GCA	ACT ATG AGC AAC CCT CGG ATT CCC CAG GCA AAT GCA CAG CAG TTT CCA	3GC TTT ACT	GA ATG GCA CAT	ACA CAG AGT CCC ATG ATG CAA CAG TCT CAG GCC AAC CCA GCC TAT CAG	GGG AAC ATG GGC GGA AAC	AGC ATG TTT TCC CAG CAG TCC CCA CCA CAC TTT GGG CAG CAA GCA AAC
His Gln Gln Gln Val Gln Gln Arg Thr Leu Met Met Arg Gly Gln	Gly Leu Asn Met Thr Pro Ser Met Val Ala Pro Ser Gly Met Pro Ala	Thr Met Ser Asn Pro Arg Ile Pro Gln Ala Asn Ala Gln Gln Phe Pro	31y Phe Thr	rg Met Ala His	Thr Gin Ser Pro Met Met Gin Gin Ser Gin Aia Asn Pro Aia Tyr Gin	Gly Asn Met Gly Gly Asn	Ser Met Phe Ser Gln Gln Ser Pro Pro His Phe Gly Gln Gln Ala Asn
1255	1270	1285	1315	1330	1335	1360	1365

FIG.1K

TO9240 95224860

AAI GIG TCC A ASn Val Ser Me ATG ACA GGA C/ Met Thr Gly G GGG CTG TCC TC Gly Leu Ser Se GGA GGC AAC C7 GGA GGC AAC C7	ACC AGC ATG TAC AGT AAC ATG AAC ATG AAC TG GGG ACC Thr Ser Met Tyr Ser Asn Asn Met Asn Ile Asn Val Ser Met Ala Thr 1395 AAC ACA GGT GGC ATG AGC ATG AAC CAG ATG ACA GGA CAG ATC AGG Asn Thr Gly Gly Met Ser Ser Met Asn Gln Met Thr Gly Gln Ile Ser 1410 ATG ACC TCA GTG ACC TCC GTG TCT ACG TCA GGG CTG TCC TCC ATG GGT Met Thr Ser Val Thr Ser Val Ser Thr Ser Gly Leu Ser Ser Met Gly 1415 CCC GAG CAG GTT AAT GAT CCT GCT CTG AGG GGA GGC AAC CTG TTC CCA Pro Glu Gln Val Asn Asp Pro Ala Leu Arg Gly Gly Asn Leu Phe Pro 1435
Ile 139 CAG Gln TCA Ser AGG	Asn Asn Met Asn AGC AGC ATG AAC Ser Ser Met Asn TCC GTG TCT ACG Ser Val Ser Thr 1420 GAT CCT GCT CTG / Asp Pro Ala Leu /

FIG. 11

Togato asztabo

5794	AATTTATATG	TITITIAGCA GTGCTGACTA AGCCGAAGTT TTGTAAGGTA CATAAAATCC AATTTATATG	TTGTAAGGTA	AGCCGAAGTT	GTGCTGACTA	TTTTTAGCA
5734	TTTTATTTG	GTTTAAATTG ATAGCAGATA TCACGACAGA TTTAACCTCT GCCATGTGTT TTTTATTTTG	TTTAACCTCT	TCACGACAGA	ATAGCAGATA	GTTTAAATTG
5674	ACGCCAGTGT	AAGCATGTTT ATTCTGTTCC CCAGCAACTC TGGCCTCCAA AATGGGAGAA ACGCCAGTGT	TGGCCTCCAA	CCAGCAACTC	ATTCTGTTCC	AAGCATGTTT
5614	сствстттвв	GGCAAGGAGA AGAGCAAAGT TAAGGCTTGA TACCAATCGA GCTAAGGATA CCTGCTTTGG	TACCAATCGA	TAAGGCTTGA	AGAGCAAAGT	GGCAAGGAGA
5554	TGCATTTACT	TTTGCCAGCC ACTTACCAAT TGCTAAGTAT TGAATTTCAG AAAAAAAAA TGCATTTACT	TGAATTTCAG	TGCTAAGTAT	ACTTACCAAT	TTTGCCAGCC
5494	CCTTAAATGT	CITITITAAA AAAIAATAIA AGCTACAGAA ACCAGGTAAG CCCITIAITI CCTTAAATGI	ACCAGGTAAG	AGCTACAGAA	AAATAATA	CTTTTTAAA
5434	ATTTTCATTC	CCCTGTCAGC CTGACTCTTC CCTTCCCCTC TCTCATTCCC CATACTCCCT ATTTTCATTC	TCTCATTCCC	ссттсссстс	CTGACTCTTC	CCCTGTCAGC
5374	ATCTCTTCTT	TCATTICTAA ATTAAGICCC TTTTAGITTG ATCAGACAGC TTGAATCAGC ATCTCTTCTT	ATCAGACAGC	TTTTAGTTTG	ATTAAGTCCC	TCATTTCTAA
5314	GAAATAATTT	ITITITICITI GITAAAACCA AACTGGITCA CCTGAATCAT GAATTGAGAA GAAATAATTI	CCTGAATCAT	AACTGGTTCA	GTTAAAACCA	TTTTTCTTT
5254	TTTTTCCTTG	TGAACAGATG AAAAGGAGCC TGTGAGAGGG CTGTTAACAT TAGCAAATAT TTTTTCCTTG	CTGTTAACAT	TGTGAGAGGG	AAAAGGAGCC	TGAACAGATG
5194	CTCCAGTTAC	AAGTCACAGT CGTATCTCTA GAAAGCTCTA AAGACCATGT TGGAAAGAGT CTCCAGTTAC	AAGACCATGT	GAAAGCTCTA	CGTATCTCTA	AAGTCACAGT
5134	AAGACCAACA	AGGACAGACA CCGTGGACAG CGCTGTATTT ACAGACACAC CCAGTGCGTG AAGACCAACA	ACAGACACAC	CGCTGTATTT	CCGTGGACAG	AGGACAGACA
5074	GGATGGAAGC	ATTITITAAA AAATTAAACT AAAGATGTIT TAAGCTAAAG CCTGAATTTG GGATGGAAGC	TAAGCTAAAG	AAAGATGTTT	AAATTAAACT	ATTTTTAAA
501	AAAGAAAAGA	ITTICCCTGG CTAACAGICT AGTGCCAAAG ATTAAGATTT TATCTGGGGG AAAGAAAGA	ATTAAGATTT	AGTGCCAAAG	CTAACAGTCT	TTTTCCCTGG
495	TCTTGCTTTG	AAGGAGAACC ATGCTCTTGT TCTGTTCCTG TTCGGTTCCA GACACTGGTT TCTTGCTTTG	TTCGGTTCCA	тстаттсста	ATGCTCTTGT	AAGGAGAACC
489	GTATGTATTT	AATGTTGACA GGCCAATTTC ATACCCATGT CAGATTGAAT GTATTTAAAT GTATGTATTT	CAGATTGAAT	ATACCCATGT	GGCCAATTTC	AATGTTGACA

FIG.1M

Togeto" ssetatos

6156		
6154	TTTCTTAATG AACCTTAGAA AGACTACATG TTACTAAGCA GGCCACTTTT ATGGTTGTTT	TTTCTTAATG AACCTTAGAA A
6094	AATCTATATG ATATGCAGCC GCTGTAGGAA CCAATTCTTG ATTTTTATAT GTTTATATTC	AATCTATATG ATATGCAGCC G
6034	TGTAGACTTA AGACTTTTTA TTTTCTAAAC CTTGTGATTC TGCTTATAAG TCATTTATCT	TGTAGACTTA AGACTTTTTA T
5974	ATÀGCAATGT CTCCTAAAGG TGTTTTGTAA AGGATATCAA TGCCTTGATT AGACCTAATT	ATÄGCAATGT CTCCTAAAGG 1
5914	TATACATATT GTGGAATTGA CTCAAAAATG AGGTACTTCA GTATTAAATT AGATATCTTC	TATACATATT GTGGAATTGA C
5854	TAAACAAGCA ATAATITAAG TIGAGAACTT ATGTGTTITA ATTGTATAAT TITTGTGAGG	TAAACAAGCA ATAATTTAAG 1

FIG.1N

FIG.2C

		•				
JRKRKE CPDOLGPSPKRA SPMALE ALDGF F VVNLE SNOE AHOKYE TMQCF AVS /SYAKRHHHEVLRQGLAF	SRC-1 401 NSPAHQALCSGNPGQDMTLSSNINFPINGPKEQMGMPMGRFGGSGGMNHVSGMQATTPQCSNYALKMNSPSQSSPGMNPGQPTSMLSPRHRMSPGV 1	497 AGSPRIPPSQFSPAGS.LHSPVGVCSSTGNSHSYTNSSLNALQALSEGHCVSLGSSLASPDLKMGNLQNSPVNMNPPPLSKMGSLDSKDCFGLYGEPS	594 EGTTGQAESSCHPGEQKETNDPNLPPAVSSERADGQSRLHDSKGQTKLLQLLTTKSDQMEPSPLASSLSDTNKDSTGSLPGSGSTHGTSLKE ::::::::::::::::::::::::::::::::::::	686 KHKILHRLLQDSSSPVDLAKLTAEATGKDLSQESSSTAPGSEVTIKQEPVSPKKKENALLRYLLDKDDTKDIGLPEITPKLERLDSKTDP 	776 ASNTKLIAMKTEKEEMSFEPGDQPGSELDNLEEILDDLON.SQLPQLFPDTRPGAPAGSVDKQAIINDLMQLTAENSPVTPVGAQKTALRISQSTFNNPR	

FIG.3A

DOBTED COTTO

875 PCQLGRLLPNQNLPLDITLQSPTGAGPFPPIRNSSPYSVIPQPGMAGNQGMIGNQGNLGNSSTGMIGNSASRPTMPSGEWAPQSSAVRVTCAATTSAMNR
- 1 1 - 1 1 481
975 PVQCGMIRNPAASIPMRPSSQPGQRQTLQSQVMNIGPSELEMNMCGPQYSQQQAPPNQTAPWPESILPIDQASFASQNRQPFGSSPDDLLCPHPAAESPS
488
EIDRALGIPELV. SOSOAVDPEOFSSODSNIMLEOKAPVFPOOYASOAOMAGGSYSPWODPNFHT
11 111:11 : 1 : 1:11:11 : 1 : 1:11:11 : 1:11:1
1170 MQ. PRPCLRPTGLVQNQPNQLRLQLQHRLQAQQNRQPLMNQISNVSNVNLTLRPGVPTQAPINAQMLAQRQREILNQHLR
643 VQVTPPRGAFSPGMGMQPRQTLNRPPAAPNQLRLQCQQRLQCQQQLIHQNRQAILNQFAATAPVGINMRSGMQQQITPQPPLNAQMLAQRQRELYSQQHR
NMTPSM
1307ISQQPDPGFTGATTPQSPLMSPRMAHTQSPNAMQQSQANPAYQAPSDINGWAQGNMSGGN <u>SMFQQSPPHFGQQANTSMYSN</u>
837 FGTGINPOMOQNVFQYPGAGMVPQCEANFAPSLSPGSSMVPMPIPPPQSSLLQQTPPASGYQSP.DMKAWQQGAIGNNNVFSQAVQNQ.PTPAQPGVY.N
^L —dnSRC—1 1387 <u>INMN INVSMATNTGCMSSMNQMTGQISMTSVTSVSTSGLSS</u> MCPEQVNDPALRCGNLFPNQLPCMDMIKQECDTTRKYC∗

FIG.3B

FIG.3C

1 2 3 4 Induction 1 12 32 47

FIG.5A

FIG.5B

FIG.5C

FIG.5E

FIG.6A

RECEPTORS			
RAR α1	1 462 A1 B C D E/F	RXRα	AB CD E
RAR β2	1 448 A2 B C D E/F	$RXRoldsymbol{eta}$	1 448 AB CD E
RAR 71	1 458 A1 B C D E/F	$RXR\gamma$	1 463 AB CD E
RARa∆A	61 462 B C D E/F	RXRαΔAB	140 467 CD E
RARα1∆B	1 60 86 462 A1 C D E/F	RXRαC160A	1 160C → A 467 AB C D E
RARαΔAB	84 462 C D E/F	dnRXRα	1 448 AB CD E
RARα1C88G	1 880 C 462 A1 B C D E/F 1 396	dnRXRαΔAB	140 448 [C D E] 130 463
dnRARα1	A1 B C D E	RXRγΔAB	139 463 CDE
RAR a1 – ER.Cos	1 83 154 462 A1 B C D E	dnRXRβ	1 429 [AB C D E
	RARα1 / ER\ RARα 185 250	dnRXR <i>β</i> ΔAB	123 429 [C D E]
RAR α1 (AB) – ER(C	RARα1 ER	RXRα(AB)-ER(C)	1 139 176 282 AB C RXR\(\alpha\) ER
RARβ2(AB)-ER(C	1 80 176 ₂₈₂) <u>A2 B C </u> RAR γ2 ER	$RXR\beta(AB)-ER(C)$	1 122 176 282 <u>AB</u> <u>C</u> RXRβ ER
RARy1(AB)-ER(C	1 89 176 282) <u>A1 B C</u> RAR γ1 ER	RXRγ(AB)–ER(C)	1 138176 282 AB C RXRy ER

FIG.6B

FIG.6C

FIG.7A

FIG.7B

FIG.7D

FIG.7E

FIG.8A

NR box

TIFΙα	724	- RSILTSLLLNSS - 735
RIP140	933	- FNYLKQLLLSEN - 944
TRIP3	95	- SATURSLLUNPH - 106
TIF2(1)	638	- QTKLLQLLTTKS - 648
TIF2(II)	687	- HKILHRLLQDSS - 698
TIF2(111)	742	- NALLRYLLDKDD - 753

FIG.8B

		P	(GST-		
TIF2 construct	Mutated motif	INPUT	ER E2	RAR - RA	RXR - RA	Ligand
TIF2.1		-	(77)	-		
TIF2.1m1	(I)	<u> </u>				
TIF2.1m2	(II)	<u> </u>				
TIF2.1m3	(111)	_		-		
TIF2.1m12	(I +II)	_	-		<u></u>	•
TIF2.1m13	(I + III)	-	•			
TIF2.1m23	(II + III)	_			·:	
TIF2.1m123	(I + II + III)					

1 2 3 4 5 6 7 8

FIG.8D

FIG.8E

FIG.8F

AELDRALGIDKLVOGCCLD-967 EEIDRALGIPELV. SOSOA-1111 RANSCRIPTIONAL EEIDRALGIPELV. NOCOA-1094 SCHMITY ACTIMITY AC	± + ±	S1107 ## nd ### ##		+ + + 10S9	pu (+)
909-ISSQLDELLCPPTTVEGRNDEKALLEQLVSFLSGKDETELAELD 1056-FGSSPDDLLCPHPAAESPSDEGALLDQLYLAL RNFDGLEEID 1037-LRNSLDDLLGPPSNAEGQSDERALLDQLHTFLSNTDATGLEEID	-AAA				DEGALLDOLYLAL DEGAADQAYLAL DEGALLAALYLAL FIG.9A
909-1SSQLDELLCP	1011P	1011P	1011P——————————————————————————————————		
SRC-1 11F2 p/CIP	T1F2.13 T1F2.13(LLL) T1F2.13(00)	TIF2.14 TIF2.15 TIF2.16 TIF2.17	11F2.19 11F2.20 11F2.21 11F2.24 11F2.27	11F2.29 11F2.30 11F2.31	11F2.32 11F2.32(LLL) 11F2.32(00)

Fold Induction of (17m)5-TATA-CAT

	(**************************************	
GAL-TIF	Cos-1	HeLa
2.13	462 ± 9	704 ± 33
2.14	392 ± 13	674 ± 23
2.15	279 ±21	316 ± 49
2.16	390 ±34	597 ± 54
2.17	389 ±50	581 ± 58
2.18	314 ±16	432 ± 19
2.19	341 ±67	777 ± 30
2.20	107 ±11	314 ± 27
2.21	129 <u>+</u> 8	173 <u>+</u> 22
2.24	< 2	< 2
2.27	< 2	< 2
2.29	< 2	< 2
2.30	98 ±13	117 ± 6
2.31	35 ± 3	34 ± 3
2.32	2.8 ± 0.2	5.9 ± 0.9
2.32(LLL) 1.4 ± 0.2	1.5 ± 0.1
2.32(DQ)	1.7 ± 0.3	1.2 ± 0.2

FIG.9B

FIG.9C

FIG.10C

FIG.12B

FIG. 12A

GAL-RAR (DEF) Cos-1 HeLa TIF2 TIF2.1 TIF2.5 TIF2 TIF2.1 TIF2.5 ٦٢ 7 T-RA $(1\mu M)$ 2 3 6 8 10 11 12 13 14 relative CAT 1.0 1.7 0.8 1.8 2.0 0.4 0.1 1.0 1.5 0.9 1.4 1.1 0.3 0.1 activity

FIG.12D