

Module

Machine Learning and Computational Intelligence

MLCI

Unité d'enseignement: UEF3

Crédit: 5

Coefficient: 3

Cours: 1H30/semaine

TP: 1H30/semaine

Dr. Fergani

Baha.fergani@univ-constantine2.dz

Machine Learning

Deep Learning

Apprentissage automatique (Machine Learning)

Apprentissage automatique (Machine Learning)

Apprentissage

Apprentissage automatique (Machine Learning)

Apprentissage

Automatique

Apprentissage

L'apprentissage:

- Est un comportement humain naturel
- Qui est devenu un aspect essentiel des machines.

 Apprentissage automatique est un champ d'étude de l'intelligence artificielle.

• Il vise à donner aux ordinateurs la capacité d'apprendre à partir des **données** sans **assistance**.

 Apprentissage automatique est un champ d'étude de l'intelligence artificielle.

 Il vise à donner aux ordinateurs la capacité d'apprendre à partir des données sans assistance.

• L'apprentissage automatique nécessite deux ensembles de données:

- Ensemble de données pour l'entraînement: c'est les données utilisées pour entraîner l'algorithme d'apprentissage.

Pendant cette phase, les paramètres du modèle peuvent être réglés (ajustés) en fonction des performances obtenues.

• L'apprentissage automatique nécessite deux ensembles de données:

- Ensemble de données pour l'entraînement: c'est les données utilisées pour entraîner l'algorithme d'apprentissage.

Pendant cette phase, les paramètres du modèle peuvent être réglés (ajustés) en fonction des performances obtenues.

- L'apprentissage automatique nécessite deux ensembles de données:
 - Ensemble de données pour le test: il est utilisé pour évaluer les performances du modèle sur les données non-vues.

Les méthodes d'apprentissage peuvent être classées en **trois** principales catégories:

Les méthodes d'apprentissage peuvent être classées en **trois** principales catégories:

Apprentissage supervisé

Les méthodes d'apprentissage peuvent être classées en **trois** principales catégories:

Apprentissage supervisé

Apprentissage nonsupervisé

Les méthodes d'apprentissage peuvent être classées en **trois** principales catégories:

Apprentissage supervisé

Apprentissage nonsupervisé

Apprentissage par renforcement

Les méthodes d'apprentissage peuvent être classées en **trois** principales catégories:

Apprentissage supervisé

• L'apprentissage supervisé (supervised learning) s'intéresse aux données étiquetées.

Objectif:

- Est de prédire l'étiquette inconnu y
- Associée à une nouvelle observation x,
- A partir de la connaissance fournie par les N
 observations étiquetées du jeu de données.

Objectif:

Lors de l'apprentissage supervisé, l'algorithme reçoit:

- Un ensemble de données qui est étiqueté
- Sur lequel il va pouvoir s'entraîner et définir

un modèle de prédiction.

- Cet algorithme pourra par la suite être utilisé sur de nouvelles données.
- Afin de prédire leurs valeurs de sorties correspondantes.

Exemples d'algorithmes d'apprentissage supervisé: les algorithmes d'apprentissage supervisé les plus utilisés sont :

- Support Vector Maching (SVM).
- · L'arbre de décision.
- K-Nearest Neighbors (KNN).

Exemples d'algorithmes d'apprentissage supervisé: les algorithmes d'apprentissage
supervisé les plus utilisés sont :

- Support Vector Maching (SVM).
- L'arbre de décision.
- K-Nearest Neighbors (KNN).

Exemples d'algorithmes d'apprentissage supervisé: les algorithmes d'apprentissage
supervisé les plus utilisés sont :

- Support Vector Maching (SVM).
- L'arbre de décision.
- K-Nearest Neighbors (KNN).

Exemples d'algorithmes d'apprentissage supervisé: les algorithmes d'apprentissage
supervisé les plus utilisés sont :

- Support Vector Maching (SVM).
- L'arbre de décision.
- K-Nearest Neighbors (KNN).

Algorithme k plus proches voisins (k Nearest Neighbors: KNN)

KNN

- L'algorithme KNN est utilisé pour la classification ou la régression.
- En classification, l'algorithme détermine à quelle classe appartient un échantillon en fonction de ses voisins les plus proches.

KNN

- L'algorithme KNN est utilisé pour la classification ou la régression.
- En classification, l'algorithme détermine à quelle classe appartient un échantillon en fonction de ses voisins les plus proches.

KNN

- L'algorithme KNN est utilisé pour la classification ou la régression.
- En classification, l'algorithme détermine à quelle classe appartient un échantillon en fonction de ses voisins les plus proches.
- En régression, l'algorithme calcule la moyenne des valeurs cibles des k plus proches voisins.

KNN Principe

 L'algorithme kNN suppose que des objets similaires existent à proximité.

En d'autres termes, les éléments similaires sont proches les uns des autres.

KNNPrincipe

 L'algorithme kNN suppose que des objets similaires existent à proximité.

En d'autres termes, les éléments similaires sont proches les uns des autres.

Etapes de KNN Algorithme

Algorithme

Etape 1: Charger les données

Etape 2: Initialiser k: le nombre de voisins.

Etape 3: Calculer toutes les distances entre cette observation en entrée et les autres observations du jeu de données,

Etape 4: Conserver les **k** observations du jeu de données qui sont les plus « proches » de l'observation à prédire,

Algorithme

Etape 1: Charger les données

Etape 2: Initialiser k: le nombre de voisins.

Etape 3: Calculer toutes les **distances** entre **l'observation en entrée** et les autres **observations** du jeu de données.

Etape 4: Conserver les **k** observations du jeu de données qui sont les plus « proches » de l'observation à prédire,

Algorithme

Etape 1: Charger les données

Etape 2: Initialiser k.

Etape 3: Calculer toutes les distances entre cette observation en entrée et les autres observations du jeu de données,

Etape 4: Conserver les **k** observations du jeu de données qui sont les plus « **proches** » de l'observation à prédire,

Algorithme

Etape 5: Prendre les valeurs des observations retenues:

- Si on effectue une **régression**: l'algorithme calcule la moyenne (ou la médiane) des valeurs des observations retenues.
- Si on effectue une classification, l'algorithme assigne une étiquette (label) de la classe majoritaire à la donnée qui était inconnue.

Algorithme

Etape 5: Prendre les valeurs des observations retenues:

- Si on effectue une régression: l'algorithme calcule la moyenne (ou la médiane) des valeurs des observations retenues.
- Si on effectue une classification, l'algorithme assigne une étiquette (label) de la classe majoritaire à la donnée qui était inconnue.

Algorithme

Etape 5: Prendre les valeurs des observations retenues:

- Si on effectue une **régression**: l'algorithme calcule la moyenne (ou la médiane) des valeurs des observations retenues.
- Si on effectue une **classification**, l'algorithme assigne une étiquette (label) de la classe majoritaire à la donnée qui était inconnue.

Algorithme

Etape 1: Charger les données.

Un ensemble de données regroupées en deux groupes: rouge et bleu.

Etape 2: k=3.

Algorithme

But: assigner le point **vert** à un des deux groupes.

Algorithme

Etape 4: Conserver les **k=3** observations du jeu de données qui sont les plus « proches » de l'observation représentée par le point vert.

Remarques

Pour cet algorithme,

• Le choix du nombre k.

et

• Le choix de la fonction de similarité

Sont des étapes qui peuvent conduire à une forte variabilité des résultats.

Pour cet algorithme,

• Le choix du nombre k.

et

Le choix de la fonction de similarité

Sont des étapes qui peuvent conduire à une forte variabilité des résultats.

Distance

$$\sum_{i=1}^n |x_i - y_i|$$

$$\sqrt{\sum_{i=1}^n (x_i-y_i)^2}$$

Euclidienne

- L'algorithme est simple et facile à mettre en œuvre.
- Il n'est pas nécessaire de construire un modèle, d'ajuster plusieurs paramètres ou de faire des hypothèses supplémentaires.
- L'algorithme est polyvalent. Il peut être utilisé pour la classification, la régression et la recherche d'informations.

- L'algorithme est simple et facile à mettre en œuvre.
- Il n'est pas nécessaire de construire un modèle, d'ajuster plusieurs paramètres ou de faire des hypothèses supplémentaires.
- L'algorithme est polyvalent. Il peut être utilisé pour la classification, la régression et la recherche d'informations.

- L'algorithme est simple et facile à mettre en œuvre.
- Il n'est pas nécessaire de construire un modèle, d'ajuster plusieurs paramètres ou de faire des hypothèses supplémentaires.
- L'algorithme est polyvalent. Il peut être utilisé pour la classification, la régression et la recherche d'informations.

Inconvénients

Inconvénients

L'algorithme ralentit si:

- Le nombre d'observations et/ou de variables augmente.
- Parce que, KNN parcourt l'ensemble des observations pour calculer chaque distance.

Inconvénients

L'algorithme ralentit si:

- Le nombre d'observations et/ou de variables augmente.
- Parce que, KNN parcourt l'ensemble des observations pour calculer chaque distance.

Inconvénients

L'algorithme ralentit si:

- Le nombre d'observations et/ou de variables augmente.
- Parce que, KNN parcourt l'ensemble des observations pour calculer chaque distance.

Types d'apprentissage automatique

Types d'apprentissage automatique

Les méthodes d'apprentissage peuvent être classées en trois principales catégories:

Apprentissage supervisé

Apprentissage nonsupervisé

Apprentissage non supervisé

- Aucun expert n'est disponible.
- L'algorithme doit découvrir par lui-même la structure des données.
- Le clustering est un algorithme d'apprentissage non supervisés.

Apprentissage non supervisé

- Aucun expert n'est disponible.
- L'algorithme doit découvrir par lui-même la structure des données.
- Le clustering est un exemple d'application des algorithmes d'apprentissage non supervisés.

Apprentissage non supervisé

- Aucun expert n'est disponible.
- L'algorithme doit découvrir par lui-même la structure des données.
- Le clustering est un exemple d'application des algorithmes d'apprentissage non supervisés.

Exemple de Clustering

Exemple de Clustering

Exemple de clustering

	Apprentissage supervisé	Apprentissage non- supervisé
Données d'entrée	Données connues en entrée	Données inconnues en entrée
Complexité informatique	Complexe	Moins complexe
Domaines d'activités	Classification et régression	Clustering
Précision	Produit des résultats précis	Génère des résultats modérés

	Apprentissage supervisé	Apprentissage non- supervisé
Données d'entrée	Données connues en entrée	Données inconnues en entrée
Complexité informatique	Complexe	Moins complexe
Domaines d'activités	Classification et régression	Clustering
Précision	Produit des résultats précis	Génère des résultats modérés

	Apprentissage supervisé	Apprentissage non- supervisé
Données d'entrée	Données connues en entrée	Données inconnues en entrée
Complexité informatique	Complexe	Moins complexe
Domaines d'activités	Classification et régression	Clustering
Précision	Produit des résultats précis	Génère des résultats modérés

	Apprentissage supervisé	Apprentissage non- supervisé
Données d'entrée	Données connues en entrée	Données inconnues en entrée
Complexité informatique	Complexe	Moins complexe
Domaines d'activités	Classification et régression	Clustering
Précision	Produit des résultats précis	Génère des résultats modérés

Exemple 1:

Supposons que l'on dispose d'une collection d'articles de journaux.

Comment identifier des groupes d'articles portant sur un même sujet?

• Exemple 1: discussion

On cherche à regrouper les articles portant sur un même sujet, sans disposer d'exemples d'articles dont on sait a priori qu'ils portent sur ce sujet, et sans connaître à l'avance les sujets à identifier.

On parlera donc de problème d'apprentissage non-supervisé.

Exemple 2:

- Supposons que l'on dispose d'un certain nombre d'images représentant des chiens, et d'autres représentant des chats.
- Comment classer automatiquement une nouvelle image dans une des catégories « chien » ou « chat » ?

• **Exemple 3**:

Supposons que l'on dispose d'une base de données regroupant les caractéristiques de logements dans une ville :

superficie, quartier, étage, prix, année de construction, nombre d'occupants, montant des frais de chauffage.

Exemple 3:

Comment prédire la facture de chauffage à partir des autres caractéristiques pour un logement qui n'appartiendrait pas à cette base ?

Exemple 2 et exemple 3:

Dans les exemples 2 et 3, on cherche à prédire une caractéristique qui est soit une catégorie (exemple 2), soit un montant de facture (exemple 3), à partir d'exemples pour lesquels on connaît la valeur de cette caractéristique. Il s'agit de problèmes d'apprentissage supervisé.

Algorithme de k-moyennes

Algorithme des centres mobiles

K-means

• But: assigner les éléments aux groupes

Avant k-means

Après K-means

Etapes

K-means

Etape 1: initialisation des centroïdes

Choisir aléatoirement K points.

Ces points sont les centres des clusters initiaux (nommé centroïde).

Etape 1: initialisation des centroïdes

Choisir aléatoirement K points.

Ces points sont les centres des clusters initiaux

(nommé centroïde).

REPETER

 Affecter chaque point au cluster du centroïde le plus proche.

- Reca

REPETER

- Affecter chaque point au cluster du centroïde le plus proche.
- Recalculer le centre de chaque cluster.

REPETER

- Affecter chaque point au cluster du centroïde le plus proche.
- Recalculer le centre de chaque cluster.

JUSQU'A CONVERGENCE

Remarque:

La convergence correspond au fait que les centroïdes ne changent pas après une mise à jour.

Attention: La convergence des centroïdes n'est pas garantie dans cet algorithme. Il faut en tenir compte dans lors de l'implémentation et ajouter une autre condition de sortie pour la boucle principale.

Remarque:

La convergence correspond au fait que les centroïdes ne changent pas après une mise à jour.

Attention: La convergence des centroïdes n'est pas garantie dans cet algorithme. Il faut en tenir compte dans lors de l'implémentation et ajouter une autre condition de sortie pour la boucle principale.

K-means pour la segmentation d'images

K-means pour la segmentation d'images

K-means pour la segmentation d'images

 K-means pour la segmentation d'images médicales.

L'algorithme de k-means est:

- 1) Très facile à comprendre et à mettre en œuvre.
- 2) Simple et rapide.
- 3) Applicable à des données de grandes tailles, et aussi à tout type de données (mêmes textuelles), en choisissant une bonne notion de distance.

L'algorithme de k-means est:

- 1) Très facile à comprendre et à mettre en œuvre.
- 2) Simple et rapide.
- 3) Applicable à des données de grandes tailles, et aussi à tout type de données (mêmes textuelles), en choisissant une bonne notion de distance.

L'algorithme de k-means est:

- 1) Très facile à comprendre et à mettre en œuvre.
- 2) Simple et rapide.
- 3) Applicable à des données de grandes tailles, et aussi à tout type de données (mêmes textuelles), en choisissant une bonne notion de distance.

- 1) Le nombre de classe doit être fixé au départ.
- 2) Le résultat dépend de l'initialisation des centres des classes.
- 3) Les clusters sont construits par rapports à des objets inexistants (les milieux)

- 1) Le nombre de classe doit être fixé au départ.
- 2) Le résultat dépend de l'initialisation des centres des classes.
- 3) Les clusters sont construits par rapports à des objets inexistants (les milieux)

- 1) Le nombre de classe doit être fixé au départ.
- 2) Le résultat dépend de l'initialisation des centres des classes.
- 3) Les clusters sont construits par rapports à des objets inexistants (les milieux)

Types d'apprentissage automatique

Les méthodes d'apprentissage peuvent être classées en trois principales catégories:

Apprentissage supervisé

Apprentissage nonsupervisé

Apprentissage par renforcement

Apprentissage par renforcement

L'apprentissage par renforcement (reinforcement learning) est:

- Un processus
- Dans lequel un agent (robot,...)
- Apprend à prendre des décisions
- A partir d'expérimentations et d'erreurs.

Apprentissage par renforcement

L'apprentissage par renforcement est:

 Une technique de machine learning (ML) qui entraîne les logiciels à prendre des décisions en vue d'obtenir les meilleurs résultats.

Apprentissage par renforcement

- Collection des données: Il s'agit de regrouper les données d'un problème à résoudre.
 - => La construction du Dataset.

- **2. Prétraitement des données**: Afin de rendre la Dataset utilisable à l'apprentissage, il faut le nettoyer:
- La suppression de données inutiles.
- La suppression de données répétées.
- La suppression de données incomplètes et manquantes.
- L'enrichissement par d'autres données, décomposition des données.

- **2. Prétraitement des données**: Afin de rendre la Dataset utilisable à l'apprentissage, il faut le nettoyer:
- La suppression de données inutiles.
- La suppression de données répétées.
- La suppression de données incomplètes et manquantes.
- L'enrichissement par d'autres données, décomposition des données.

- **2. Prétraitement des données**: Afin de rendre la Dataset utilisable à l'apprentissage, il faut le nettoyer:
- La suppression de données inutiles.
- La suppression de données répétées.
- La suppression de données incomplètes et manquantes.
- L'enrichissement par d'autres données, décomposition des données.

- **2. Prétraitement des données**: Afin de rendre la Dataset utilisable à l'apprentissage, il faut le nettoyer:
- La suppression de données inutiles.
- La suppression de données répétées.
- La suppression de données incomplètes et manquantes.
- L'enrichissement par d'autres données, décomposition des données.

3. Choix du modèle:

Selon le problème traité, on peut choisir:

- La régression: s'il s'agit d'un problème de prédiction.
- Le clustering: pour les problèmes tels que la détection d'anomalies, la segmentation d'images, etc.
- Naïve bayes: s'il s'agit d'un problème de classification.

3. Choix du modèle:

Selon le problème traité, on peut choisir:

- La régression: s'il s'agit d'un problème de prédiction.
- Le clustering: pour les problèmes tels que la détection d'anomalies, la segmentation d'images, etc.
- Naïve bayes: s'il s'agit d'un problème de classification.

3. Choix du modèle:

Selon le problème traité, on peut choisir:

- La régression: s'il s'agit d'un problème de prédiction.
- Le clustering: pour les problèmes tels que la détection d'anomalies, la segmentation d'images, etc.
- Naïve bayes: s'il s'agit d'un problème de classification.

4. Entrainement:

Les données de Dataset sont séparées en:

- 80% pour entraîner l'algorithme choisi.
- 20% pour tester et vérifier la performance du résultat.

- 5. Evaluation: L'évaluation (l'étude des valeurs prédictives) permet:
- De définir si le modèle du machine learning est fiable.
- Dans quels cas il commet des erreurs.
- Dans quelle mesure.

Merci pour votre attention