PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06-202314

(43) Date of publication of application: 22.07.1994

(51) Int. CI.

G03F 7/00 B41C 1/00 C08F 2/50 C23C 18/54 C25D 5/02 G02F 1/1343 GO3F 7/34 // H01L 21/3205

(21) Application number : 05-000240

(71) Applicant: G T C:KK

(22) Date of filing:

05.01.1993

(72) Inventor: AKIMOTO YASUMASA

KOBAYASHI MASAYOSHI

(54) PRINTING PLATE, ITS PRODUCTION AND PATTERN FORMING METHOD USING THE PLATE

(57) Abstract:

PURPOSE: To produce a printing plate having a fine pattern and uniform depth, capable of preventing the misregistration in printing even if a body to be printed is contracted by heat treatment, capable of filling the recess of the . plate with an ink, which is irradiated with OV from the glass substrate side and cured, and capable of precisely printing while preventing the sagging of the ink.

CONSTITUTION: A transparent conductive layer 2 is formed on a glass substrate 1, and an unplated pattern 3 is formed thereon by photolithography. When a protrusion consisting of a metalic layer is formed on the part except the unplated pattern 3, the same metal as an electroless plating material is firstly deposited by electroplating to form an electroplating layer 5 having a thickness of ≤ 30% of the height of the protrusion, and an

[.63 10) 141 (F 1

electroless plating layer 7 having a thickness of ≥ 70% of the height of the protrusion is formed by electroless plating. A material having the same linear expansion coefficient and flexibility when the substrate 1 is heat-treated as those of a substrate to be printed is used for the substrate 1.

LEGAL STATUS

[Date of request for examination]

24. 12. 1993

[Date of sending the examiner's

06.08.1996

decision of rejection]

[Kind of final disposal of application other than the examiner's decision of

特開平6-202314

(43)公開日 平成6年(1994)7月22日

·
H 0 1 L 21/88 B
審査請求 有 請求項の数10 (全 9 頁) 最終頁に続く
(71)出願人 390028004
株式会社ジーティシー
東京都中央区東日本橋1丁目6番5号
(72)発明者 秋本 靖国····································
東京都中央区東日本橋1-6-5 株式会
社ジーティシー内・
(72)発明者 小林 正芳
東京都中央区東日本橋1-6-5 株式会
社ジーティシー内
(74)代理人 弁理士 志賀 正武 (外2名)

(54) 【発明の名称】 印刷版とその製造方法および印刷版を用いたパターンの形成方法

(57)【要約】

【構成】 ガラス基板1上に透明導電層2を形成し、その上にフォトリソグラフ法で非メッキパターン3を形成する。この非メッキパターン3以外の部分に金属層からなる凸部を形成する際に、まず電気メッキ法により、無電解メッキする金属と同一の金属を折出させて凸部の高さの30%以下の電気メッキ層5を形成し、次いで無電解メッキ法により該凸部の高さの70%以上の無電解メッキ層7を形成する。ガラス基板1として、その線膨張率および該ガラス基板1を熱処理した時の伸縮挙動が、被印刷体の基体のそれと等しいものを用いる。

【特許請求の範囲】

【請求項1】 凹版または平凹版であって、印刷版の基 体がガラス基板からなり、該ガラス基板上に、メッキ法 により金属層からなる凸部が形成されてなることを特徴 とする印刷版。

上記ガラス基板上に導電層が形成され、 【請求項2】 該導電層上にメッキ法により金属層からなる凸部が形成 されてなることを特徴とする請求項1記載の印刷版。

【請求項3】 上記ガラス基板の線膨張率および該ガラ ス基板を熱処理した時の伸縮挙動が、被印刷体の基体の 線膨張率および該基体を熱処理した時の伸縮挙動と等し いことを特徴とする請求項1または2のいずれかに記載 の印刷版。

【請求項4】 上記導電層が透明導電層であることを特 徴とする請求項2記載の印刷版。

凸部形成方法としてメッキ法を用いる凹 【請求項5】 版または平凹版の製造方法において、印刷版の基体とし てガラス基板を用い、該ガラス基板上にフォトリソグラ フ法で非メッキパターンを形成し、この非メッキパター ン以外の部分にメッキ法により金属層からなる凸部を形 20 成した後、上記非メッキパターンを除去することを特徴 とする印刷版の製造方法。

【請求項6】 上記金属層からなる凸部を形成する際 に、無電解メッキ法により、該凸部の高さの70%以上 を形成することを特徴とする請求項5記載の印刷版の製

【請求項7】 上記請求項6記載の製造方法において、 上記ガラス基板上に導電層を形成した後、該導電層上に フォトリソグラフ法で非メッキパターンを形成し、この 非メッキパターン以外の部分に金属層からなる凸部を形 成する際に、まず電気メッキ法により、無電解メッキす る金属と同一の金属を析出させて凸部の高さの30%以 下を形成し、次いで無電解メッキ法により該凸部の高さ の70%以上を形成することを特徴とする印刷版の製造 方法。

【請求項8】 請求項2記載の印刷版を用い、導電層を アースした状態で、被印刷体にパターンを形成すること を特徴とするパターンの形成方法。

【請求項9】 請求項2記載の印刷版を用い、導電層と 被印刷体とを電気的に接続した状態で、被印刷体にバタ 40 ーンを形成することを特徴とするパターンの形成方法。

【請求項10】 請求項4記載の印刷版を用い、印刷版 の凹部にUV硬化性インキを充填した後に、印刷版のガ ラス基板側からUV光を照射して該インキを硬化させ、 この後に該インキを被印刷体に転写することを特徴とす るパターンの形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は薄膜トランジスタ回路な

スタ回路基板等の被印刷体上へ、微細なパターンを印刷 により形成するための印刷版およびパターンの形成方法 に関する。

[0002]

【従来の技術】近年、ガラス基板上へサイズが30~1 0 0 μmという微細なパターンを形成する際に、印刷技 術を用いたパターン形成方法が盛んに用いられている。 例えば、薄膜トランジスタ回路製造の際のレジストパタ -ンの形成や、液晶テレビに使用されるカラーフィルタ ーのパターン形成が印刷により行われている。このよう な微細パターンの形成には、以前はフォトリソグラフ法 と呼ばれる方法が専ら使用されていた。しかし最近で は、生産コスト低下、大面積化対応のため、印刷法が使 用され始めている。

【0003】これらの印刷に要求される仕様の特徴は、 インキの厚さが通常の印刷より厚いこと、およびインキ の厚さをコントロールする必要があることである。一般 的に、印刷されるインキの厚さは使用する印刷版に盛ら れるインキの厚さによって決まる。そのため印刷版とし ては、インキの盛り量が多く、しかもその量を、版深を 変えることによってコントロールすることができるもの が望ましく、実際には製法に工夫をこらした凹版または 平凹版が好適に用いられている。凹版とは、インキが凹 部に充填される版であり、平凹版とは凹版の一種であっ て、凹部表面が親インキ性であり、凸部表面が撥インキ 性であるものである。そして工夫の要点は、パターンの サイズによらず版深を一定に形成できること、版深のコ ントロールが容易であること、および印刷版の全面にわ たって版深を一定にできること等である。ここで版深と は版の凹部の深さのことである。実際には、印刷版の製 法としてエッチング法が用いられ、例えば、特公昭62 -3306号には、エッチングストップ層を設けて、エ ッチングする幅によらず版深が一定になるような方法が 提案されている。

【0004】しかし最近では、薄膜トランジスタ回路の 微細な部分においても、コストダウンのため、また大面 積化対応のため、印刷法によりレジストパターンをガラ ス基板上に形成することが要求されている。例えば、対 角20インチ~40インチの大きさの基板に対し、線巾 5~30μm、位置精度±1~数μm程度の印刷を行う ことが求められている。その理由は、線巾を細くすれ ば、コンパクトになるだけでなく、回路特性も向上する からである。また、アクティブマトリクス型液晶ディス プレイパネル上の画素部の薄膜トランジスタ回路におい ては、線巾が細くなると開口率が向上するという大きな 利点がある。さらに、周辺駆動回路を同一基板上に組み 込むことも可能になる。このため、さらに微細なパター ンを欠陥なく印刷する必要が生じている。

【0005】このような目的に適した凹版、平凹版をエ どの電子部品の製造に用いられ、詳しくは薄膜トランジ 50 ッチング法で形成することは、エッチングに伴ってサイ

30

20

3

ドエッチングが発生することから困難である。一般的に、エッチングに伴い、エッチング深さ、すなわち版深の2倍程度のサイドエッチングが生じることが知られている。版深は一般に $1\sim10~\mu$ mは必要であるので、線巾が数 $\sim30~\mu$ mのパターンを精度良く形成することは難しい。そこで実際には、原版のパターンの寸法を予めサイドエッチングの分だけ細くしておく等の種々の工夫が必要である。しかし、種々の線巾が混在しているパターンの場合においては、対策には限度があった。また、印刷版が大面積になれば、均一にエッチングすることは 10 さらに難しかった。

【0006】印刷版の版深を形成する他の方法として電気メッキ法がある。すなわちメッキしないパターンを版基板上のフォトレジストで形成した後、電気メッキ法によって凸部を形成し、版深を得る方法である。この方法よれば、得られた版の解像力はフォトレジストの解像力に近い程度まで高く、1μm程度のパターンを得ることができる。またこの方法は製作工程が非常に簡単であるという利点を有する。

[0007]

【発明が解決しようとする課題】しかしながら、上記の ような電気メッキによる方法では、大きな面積に均一な メッキ膜厚すなわち版深を得ることが難しいという問題 があった。版深のムラは全面にわたって±5%以内であ ることが望ましい。そして版深のムラは、インキ厚のム ラにつながるだけでなく、線幅のムラや、場合によって は解像力のムラの原因になるものである。電気メッキに おいては得られるメッキ膜の厚さはその部分の電流密度 を通電時間で積分したものにほぼ比例するが、大小のバ ターンが種々の密度で分布しているパターンにおいて は、パターンの大小、疎密の程度差等の原因によって電 流密度が部分部分で異なり、この積分値を全面にわたっ て一定にすることが非常に困難であり、版深ムラの原因 となっていた。これに対して、電流密度を通電時間で積 分した値をできるだけ均一にするために、遮蔽板、ダミ ーパターン、陽極の配置の工夫等の方法を用いる方法も あるが、これらの方法は、形成すべきパターンがほぼ同 ーサイズのパターンの集合であって、基板上にほぽ均一 に分布している場合には有効であるが、そうでない場合 には適用できないものであった。

【0008】また、薄膜トランジスタ回路の製造分野におけるパターンを形成する目的で印刷法が用いられる場合には、印刷位置の精度も要求される。すなわち、薄膜トランジスタ回路の形成においては、製造プロセス中にガラス基板上に数回に分けて薄膜トランジスタの構成層が成膜され、その都度ガラス基板は加熱され、収縮する。このとき、ガラス基板上に既に形成されていたパターンも収縮する。一方、印刷は薄膜トランジスタの各構成層を成膜した後に行われ、しかもパターンの寸法が以前に印刷したパターンの寸法と数μm以内で一致するこ 50

とが要求される。この点の対策として、ガラス基板の収縮に見合った分だけパターンの寸法を収縮させた年 利版を用いることが行われているが、そのためには設計寸法 データを全面的に変更して原版を作成する必要があり、問題であった。

【0009】従来の技術における他の問題点として、印 刷されたインキパターン周辺部にインキがダレた部分が 発生することが挙げられる。すなわち、インキがダレた 部分は、遮光性や耐エッチング液性が低い部分となり、 微細なパターンを欠陥なく印刷するという最近の要求に は応えられなかった。例えば、通常は線巾のばらつきは 線巾の±5%程度以内に納める必要があるが、必要なイ ンキの厚さが2μmである場合、ダレの巾も2μm程度 であるとすると、このダレの幅はパターンの幅には依存 しないので、50μmの線幅に対しては±4% (ダレは 両側に発生する)、20μmの線幅に対しては±10% となる。そしてダレを少なくするために、インキの粘度 を高くすると、インキ中の気泡が抜けなくなってピンホ ールの発生が多くなることから、薄膜トランジスタ回路 形成のためのレジストパターンを形成する際には使用で きなかった。

【0010】このインキダレの問題を解決する手段として、印刷版上のインキを硬化する方法がある。例えば、特願平2-81624号、特願平3-32451号には、UV光を照射したりして印刷版上のインキを硬化する方法が提案されている。しかしながら、使用するインキの種類によっては、インキの表面しか硬化せず、目的を達成することが難しい場合があった。

【0011】本発明は前記課題に鑑みてなされたもので、パターンの形状や位置によらず版深が均一に形成され、また印刷時の位置ずれやインキダレ等の問題を解消して、印刷法により微細なパターンを精度良く形成できるようにした印刷版、その製造方法およびパターン形成方法を提供することを目的とする。

[0012]

【課題を解決するための手段】前記課題を解決するために、本発明の請求項1記載の印刷版は、凹版または平凹版であって、印刷版の基体がガラス基板からなり、該ガラス基板上に金属層からなる凸部が形成されたものである。請求項2記載の印刷版は、上記請求項1記載の印刷版においてガラス基板上に導電層が形成されたものである。請求項3記載の印刷版は、上記請求項1または2記載の印刷版において、ガラス基板の線膨張率および該方ラス基板を熱処理した時の伸縮挙動が、被印刷体の基体の線膨張率および該基体を熱処理した時の伸縮挙動と等しいものである。請求項4記載の印刷版は、上記請求項2の印刷版版において導電層が透明導電層であるものである。

【0013】また、本発明の請求項5記載の印刷版の製) 造方法は、凸部形成方法としてメッキ法を用いる凹版ま 10

30

5

たは平凹版の製造方法において、印刷版の基体としてガ ラス基板を用い、該ガラス基板上にフォトリソグラフ法 で非メッキパターンを形成し、この非メッキパターン以 外の部分にメッキ法により金属層からなる凸部を形成し た後、上記非メッキパターンを除去するものである。請 求項6記載の印刷版の製造方法は、上記請求項5の方法 において、金属層からなる凸部を形成する際に、無電解 メッキ法により、該凸部の高さの70%以上を形成する ものである。請求項7記載の印刷版の製造方法は、上記 請求項6記載の製造方法において、上記ガラス基板上に 導電層を形成した後、該導電層上にフォトリソグラフ法 で非メッキパターンを形成し、この非メッキパターン以 外の部分に金属層からなる凸部を形成する際に、まず電 気メッキ法により、無電解メッキする金属と同一の金属 を析出させて凸部の高さの30%以下を形成し、次いで 無電解メッキ法により該凸部の高さの70%以上を形成 するものである。

【0014】また本発明の請求項8記載のパターンの形成方法は、上記請求項2記載の印刷版を用い、導電層をアースした状態で、被印刷体にパターンを形成するものである。請求項9記載のパターンの形成方法は、上記請求項2記載の印刷版を用い、導電層と被印刷体とを電気的に接続した状態で、被印刷体にパターンを形成するものである。請求項10記載のパターンの形成方法は、上記請求項4記載の印刷版を用い、印刷版の凹部にUV硬化性インキを充填した後に、印刷版のガラス基板側からUV光を照射して該インキを硬化させ、この後に該インキを被印刷体に転写するものである。尚、本発明において、メッキ法とは電気メッキ法と無電解メッキ法を包括するものである。

[0015]

【作用】本発明によれば、ガラス材を基板とし、メッキ ・法を用いて凸部を形成することにより、最少線幅3μm 程度の微細なパターンを有する印刷版を得ることができ る。そして印刷版の凸部形成の手法として、電気メッキ 法で必要な均一性が得られない場合には、版深を形成す る主な工程において電気メッキ法でなく、無電解メッキ 法を使用することにより、均一な厚さの金属層を得るこ とができる。ガラス基板に無電解メッキを行うための前 処理法としては、予め真空成膜法等の適宜の手段でガラ ス基板上に金属層を形成して無電解メッキを行うか、あ るいはまず導電性膜を形成した後に、その上に電気メッ キ法で金属膜を形成し、次に無電解メッキを行うことが 望ましい。これに対して、通常の無電解メッキの前処理 法を用いた場合には、線幅の細い部分の方がメッキの開 始時間が線幅の広い部分より遅いため、メッキの厚さに ムラが生じる。また、無電解メッキの開始が不安定にな り、欠陥も多いことが認められる。これは無電解メッキ の前処理後に、フォトリソグラフ法で非メッキパターン を形成する工程が行われるので、微妙な無電解メッキ開 50

始条件に影響を及ぼすためと考えられる。したがって、 無電解メッキに先だって、無電解メッキの触媒層となる 金属層を形成することによって、これらの問題を解決す ることができ、版深のムラを、基板のサイズやパターン の位置や形状によらず、全面において±5%以内に抑え ることができる。

【0016】なお、無電解メッキに先だって電気メッキにより金属層が形成される場合には、その金属層の厚さが、印刷版の凸部により形成される版深の30%以下とされる。この理由は、印刷版における版深のムラの許容範囲を±5%とし、無電解メッキにおけるメッキ厚さムラが最大±2.5%であるとすると、電気メッキに許容される厚さムラは、電気メッキ層の厚さが全体の厚さの30%のとき±10%程度となり、もし電気メッキによるメッキ厚さのムラがこれ以下であれば、無電解メッキ法を用いる効果が少なくなるからである。また電気メッキを行うことを可能にするために、電気メッキの際の電気伝導層として、ガラス基板上に導電層が形成される。

【0017】本発明の印刷版において、印刷版の基体と して使用するガラス基板の線膨張率、および熱処理した 時の伸縮挙動と、被印刷体基板の線膨張率、および熱処 理した時の伸縮挙動とを等しくすることにより、被印刷 体の収縮に対しても容易に対応することができる。例え ば薄膜トランジスタ回路のように、被印刷体基板が何度 も加熱されて収縮し、その上に形成されているパターン も同時に収縮する場合において、印刷版に対しても同様 の条件で熱処理を行って印刷版の基板も同様に収縮させ ることによって、回路ガラス基板と印刷版との収縮の差 による薄膜トランジスタ回路パターンの位置ずれを 2 μ m以下に抑えることができる。このように、位置ずれを 防止するために印刷版のパターンを原版から縮小させた 寸法で形成する必要がないので、経済的な効果が大き い。また、回路基板の収縮に印刷版を容易に対応させる ことができるので、現在かなりの長時間を必要としてい る薄膜トランジスタ回路用の基板の予備熱処理が、短時 間で間に合う場合が増える。また場合によっては予備熱 処理が不要になるという利点も得られる。

【0018】さらに印刷にUV硬化性インクを用いる場合には、ガラス基板上の導電層を透明導電層とすることが好ましい。このことにより、印刷版の裏面、すなわちガラス基板側からもUV光を照射してインキを硬化させることができ、インキタレを防止することができる。

【0019】さらには、印刷版の基体としてガラス板を用いた場合には静電気発生の問題が生じることが最近判明しているが、導電層を基板の必要部分の全面に設けてアースを取る、あるいは導電層と被印刷体とを電気的に接続することによって、この問題を解消することができる。すなわち、ガラス基板は電気伝導性が低いので、印刷版として使用した際、印刷条件によってはインキの転写相手である薄膜トランジスタ回路基板との間に静電気

が発生し、薄膜トランジスタが破壊されてしまう場合が あった。また、この現象はパターンの種類によっても発 生し易い場合と、し難い場合があった。金属部分が連続 しているパターンの場合には発生し難く、金属が全くな い印刷版や、金属パターンがあっても孤立している印刷 版の場合には、発生し易かった。対策として、部屋の湿 度を高くすれば防止できた。しかし、クリーンルームの 通常の湿度では、発生することがあり問題であった。し たがって本発明によれば、静電気の発生による薄膜トラ ンジスタの破損が通常のクリーンルームの温度において - 10 防止できるので、クリーンルームの管理が容易になると いう利点が得られる。

【0020】以下、本発明を詳細に説明する。図1は本 発明の印刷版の製造例を工程順に示した断面図である。 図中符号1はガラス基板である。本発明の印刷版は、基 体としてガラス基板1を用いてなるものである。またそ のガラス材料としては、被印刷体と同一の対熱処理挙動 を有するものが好適に用いられる。被印刷体と同一の対 熱処理挙動を有するガラス材料とは、被印刷体と印刷版 を同一条件で熱処理した時に、収縮の程度が実質的に同 じで、既に被印刷体上に形成されているパターンと、該 印刷版のパターンの寸法の差が薄膜トランジスタ回路の 作動に影響しない程度であるガラス材料を意味する。例 えば、アクティブマトリックス型液晶テレビジョン用の **薄膜トランジスタは予備熱処理を施した低膨張ガラス上** に形成されることが多いが、その場合には印刷版の基体 として、同一のガラス材で、同一の予備熱処理を施した ガラス基板1が使用される。薄膜トランジスタの予備熱 処理は、この後に行われる薄膜トランジスタ各層の成膜 時の加熱による収縮を予め生じせしめて、成膜時の収縮 30 を減少させる目的で行われ、例えば600℃に1時間保 持した後、5時間かけて200℃まで冷却するという条 件で行われる。なお、印刷版の基体として回路基板のガ ラス材料と同一の対熱処理挙動を有するガラス基板1を 用いることにより、上記のような薄膜トランジスタの予 備熱処理は短時間の熱処理で間に合うようになる可能性 が高く、また場合によっては熱処理不要の可能性もあ

【0021】このようなガラス基板1上に、まず図1 (b) に示すように、導電層2を形成する。本発明にお 40 いて、導電層2は後述する電気メッキのための電気伝導 層として用いることを目的として形成され、電気メッキ を行わない構成とする場合には形成しないこともでき る。この導電層2のシート抵抗値は、後述の電気メッキ 工程におけるメッキ膜の厚さムラが所定の範囲におさま る程度であればよく、パターンの大きさや分布の状態に よって異なり、実験によって定めることが望ましい。一 般的には、シート抵抗値が100Ω/口以下であれば問 題ない。 導電層 2 を形成する導電物質としては、銅、二

ITO、酸化亜鉛、酸化スズでもよい。導電層2の材質 は、後工程の電気メッキ時に溶解等の不都合を生じない ものであれば特に限定されない。

【0022】ここで、導電層2として透明導電性の物質 を用いることにより、印刷工程において、印刷版のガラ ス基板1側からもUV光を照射して印刷版内のインキを 硬化することが可能となる。またUV光照射の必要がな い場合にも、例えば、印刷版の欠陥を検査する際に透過 光でパターンを検査できる、あるいは、被印刷体上のす でに形成してあるパターンと寸法が一致しているか否か を、両者を重ねあわせて調べることができる等の利点を 得ることができる。そして本発明において、透明導電層 2とは、これらの効果を奏し得る程度の透明度を有する ものをいう。

【0023】導電層2を形成する方法は、この層として 金属層を形成する場合は通常知られている方法を用いる ことができる。スパッター法をはじめ、電子ビーム蒸着 法、イオンプレーティング法、無電解メッキ法を使用す ることができるが、この導電層2の形成方法の違いによ って次工程の電解メッキには差が認められない。また、 導電層2として透明導電層を形成する場合、その形成方 法は多数知られている。例えば、スパッター法、蒸着 法、溶液法である。本発明においては、導電層2は電気 メッキのために形成されるものであるので、ピンホール 等の非伝導欠陥部が形成されない方法なら、方法は限定 されない。ただし、メッキ膜は等方的に成長するのでピ ンホールを覆う作用があり、導電層にメッキ膜厚の数分 の1程度の微小なピンホールがあっても問題とならない 場合がある。

【0024】次に、図1(c)および(d)に示すよう に、フォトレジスト3、フォトマスク4を用いたフォト リソグラフ法を行って、図1(e)に示すように、導電 性膜2上の非メッキ部分にフォトレジスト3からなるレ ジストパターンを形成する。ここで使用可能なフォトレ ジスト3は、所定の微細パターンを得るに充分な解像度 を有し、この後の電気メッキ工程および無電解メッキエ 程において、電気メッキ液および無電解メッキ液中でし っかりパターンを維持するものが用いられる。半導体デ パイス形成に使用されるフォトレジストは大部分が使用 可能である。例えば、東京応化製のOMR-85、OF PR-800、ヘキスト製のAZLP-10等が使用可 能である。ただし、無電解メッキ液は酸性のものとアル カリ性のものがあるので、フォトレジスト3の選択時に 注意する必要がある。剥離液が強アルカリ性であるフォ トレジスト3には、アルカリ性の無電解メッキ液を使用 することはできない。また、フォトレジスト3の厚さ は、目的とする版深より厚く形成されることが望まし い。その理由は、印刷版において版深を得るための凸部 を形成するメッキバターンがレジストより上に出ると、 ッケル等の金属でもよいし、透明導電性の物質、例えば 50 メッキの際に等方向に広がるので、所望の線幅を得るこ とが難しくなるからである。なお図1の例においてはポジ型フォトレジスト3を使用しているが、一ガ型フォトレジストも同様に使用できる。

【0025】次に、図1(f)に示すように、電気メッキ法を用いて無電解メッキの触媒層となる金属触媒層5を形成する。この金属触媒層5は、導電層2を、銅、ニッケル等の無電解メッキ開始の触媒作用を有する金属を用いて形成した場合は、原理的には不要である。しかし実際には、無電解メッキに先立ち電気メッキを行ったほうが、無電解メッキにおける欠陥が少なく、メッキ層0厚さも均一となる。その理由は、例えば、導電層2として銅層を形成した場合、無電解メッキをする前に銅表面が若干酸化されている可能性が高く、そのためメッキ層の欠陥や厚さ不均一といった現象が発生すると考えられる。導電層2に他の金属を用いた場合も同様であると考えられる。無電解メッキ工程においては、メッキ期始時の基板の表面状態をできる限り均一にするのが、均一なメッキ膜を得るための要点である。

【0026】電気メッキ法で析出する金属としては、金属パラジウムまたは無電解メッキする金属と同種の金属が用いられる。金属パラジウムは無電解メッキ時の触媒作用に優れているので、種々の金属を無電解メッキする場合に万能的に使用できる。無電解メッキする金属が凹版または平凹版に普通に使用される銅、ニッケルおよび、それを主成分とする合金である場合には、触媒として金属パラジウムでなくても、銅、ニッケルおよびそれらを主成分とする合金でもかまわない。この場合、実際に電気メッキを行う方法として、わざわざ別にメッキ槽やメッキを準備しなくとも、無電解メッキを行うメッキ槽において、基板に電圧を印加して電気メッキを行い、引き続いて無電解メッキを行うことができるので好ましい。

【0027】次いで、このようにして金属触媒層 5 が形成された基板 1 を、目的とする金属の無電解メッキ液に所定の条件で浸漬して、無電解メッキ層 6 を形成する。金属触媒層 5 を形成する際の電気メッキ液として無電解メッキ液を使用した場合は、電気メッキのための電圧印加を止め、液温を所定の温度に保てば、引き続き無電解メッキを行うことができる。無電解メッキ層 6 を形成する金属としては、凹版および平凹版に一般的に使用され40 る銅、ニッケル以外に、例えば対磨耗性を向上するために、それらおよびそれらの合金とタングステン、モリブデン、コパルト、カーボン、カーボランダム、アルミナ等を共析させても良い。

【0028】また平凹版の場合には、印刷版へのインキの付着性をコントロールするため、例えば親油性金属である銅と親水性金属であるニッケルを使い分けて2層のメッキにするのが好ましい。ニッケルは親水性であって、油性インキが載らない。銅は逆に親油性であって油性インキが載る。さらに耐久性を考慮して、無電解メッ

キ層 6 上に電気メッキ層 7 を形成することもできる。例えば、クロムを電気メッキすれば、対磨耗性が強く、インキが載らない部分となる。また、亜鉛を電気メッキすれば、インキが載る部分となる。ただし、インキが水性タイプの場合は、逆に飼や亜鉛はインキが載らない部分となり、クロム、ニッケル、ITO、酸化スズ、酸化亜鉛は、水性インキが載る部分となる。

10

【0029】ここで、無電解メッキ法によればメッキ膜 の厚さムラは、基板の大きさやパターンの形状や、基板 上の位置によらずメッキ厚の±5%以内に収めることが できる。また、電気メッキにより形成された金属触媒層 5上に無電解メッキを行った場合の厚さムラは、基板の 大きさが400×600mmであっても、パターンの形 状や位置によらずメッキ膜の厚さの5%以下になること が認められる。そして、基板のサイズがメッキ膜の厚さ に寄与する要因がないので、さらに大きな基板であって も、同様に5%以内の厚さムラになると考えられる。な お、電気メッキによって形成される金属触媒層5の厚さ は0.1 μm程度で充分であるが、無電解メッキの速度 が遅いので、製造時間を短縮するため、この層5の厚さ をある程度厚くしてもよい。通常のパターンの場合、版 深の30%程度まで電気メッキで金属触媒層5を形成し ても、その後無電解メッキ層6を形成すれば、版深のム ラを±5%以内に抑えることができる。

【0030】このようにして電気メッキおよび無電解メッキを行った後、フォトレジスト3を溶解等の適宜の手段を用いて除去し、図1(g)に示すようにメッキパターンを得る。このようにして得られた印刷版11は、薄膜トランジスタ回路基板を被印刷体とする回路パターンの形成に好適に用いることができる。

【0031】本発明の印刷版を用いて薄膜トランジスタ回路基板を被印刷体とする回路パターンを形成するに先立って、まず熱処理を行って印刷版を収縮させる。この熱処理条件は、薄膜トランジスタ回路基板が成膜プロセス中に受ける熱処理と同じ条件で、最初から印刷版のパターンが印刷される膜を成膜する工程までを順次行う。このような処理を行うことによって、印刷版に最初に設計通りの寸法に形成されたパターンが収縮する。一方、薄膜トランジスタ回路基板上にすでに形成されている薄膜トランジスタ回路がターンも、その上に成膜が行われる際に収縮する。この印刷版と薄膜トランジスタ回路基板とは収縮する。この印刷版と薄膜トランジスタ回路基板とは収縮する程度が等しいので、位置ずれを防止できる。また熱処理を真空中または不活性ガス中で行うことによって、印刷版を構成する金属膜が酸化されるのを防止することができる。

【0032】またこの印刷版11の熱処理工程は、印刷版11のガラス基板1または透明導電層2と、その上の電気メッキ金属層5の間の接着力を高める効果を有している。すなわち、電気メッキ金属層5は、析出したままでは透明導電層2との接着力が弱く、印刷工程中に剥離

50

する場合があるが、上記の熱処理工程を経ると剥離しなくなる。なお、接着力を向上するには少なくとも200 でで1時間の熱処理が必要であるが、薄膜トランジスタ 回路製造プロセスにおける熱処理条件がこれ以下である 場合は、この条件の熱処理を印刷版に対して行うことが できる。この程度の熱処理では、ガラス基板はほとんど 収縮しない。このようにして、所望の寸法のパターンを 有する印刷版11を得ることができる。

【0033】図2は本発明の印刷版を用いて薄膜トランジスタ回路基板にパターンを形成する工程を順に示した 10 断面図である。図中符号11は印刷版、Aはインキをそれぞれ示す。まず、図2(a)に示すような、ガラス基板21上に、後にエッチングによりパターンが形成されるパターン形成層22が形成され、その上に粘着性を有するフォトレジスト層23が形成されてなる回路基板24を用意する。

【0034】一方、図2(b)に示すように、印刷版1 1の表面の凹部にUV硬化性インキAを充填した後、U V光を照射してインキAを硬化させる。ここで、UV光 照射によるインキの硬化とは、完全な硬化の意味ではな 20 く、インキのダレを少なくして微細パターンが必要な精 度で形成できればよい程度の硬化を意味する。さらに、 印刷版11の導電層2として、透明導電性膜を用いて形 成された印刷版11においては、裏面からUV光を照射 してインキAを硬化させることができる。したがって、 使用するUV硬化インキAがUV光を通し難く、表面か らUV光を照射しても内部までなかなか硬化しない場合 に、印刷版11の基板側からもUV光を照射してインキ Aを硬化することができるので好ましい。また低粘度の インキAを使用することもできる。このようにすること 30 によって、インキAを被印刷体に転写する工程でのイン キAのダレの少ない印刷が可能になり、高精細な印刷を 可能とすることができる。

【0035】次いで、図2(c)に示すように、回路基 板24の粘着性フォトレジスト層23表面と、印刷版1 1のインキAが充填された面とが接するように、回路基 板24と印刷版11とを所定の合わせ位置に重ね合せ る。続いて、図2 (d) および (e) に示すように、ロ ール等で加圧して回路基板24と印刷版11とを貼り合 わせる。この後、回路基板24と印刷版11とを剥離さ せると、図2(f)に示すように、インキAは印刷版1 1から、回路基板24の粘着性フォトレジスト層23上 へと転写され、回路基板24上にパターンが形成され る。また、このような印刷を行う際には、印刷版11に 形成された導電層2をアースしたり、あるいはこの導電 層2とインキ転写相手の薄膜トランジスタ回路基板24 の所定の部分と直接に電気的に接続したりすることによ って、静電気の発生による薄膜トランジスタの破損を防 止することができる。

[0036]

【実施例】

(実施例1) 凹版を製造した。印刷版の基体として、薄 膜トランジスタ回路を形成する基板と同一の材質で、同 ーのアニール処理を行った厚さ×縦×横=1.1×40 0×400mmの低膨張ガラス (コーニング社 #70 59) 板を用いた。この基板に透明導電性膜である I T O膜をスパッタ法で形成した。膜厚は約0.2μmでシ ート抵抗は約10Ω/cmであった。次にこのITO上 にフォトレジスト(ヘキスト社製AZLP-15)を乾 燥膜厚10μmとなるようにスピンコータで塗布した。 このフォトレジストに薄膜トランジスタ回路のテストバ ターン(線幅5~50μm)を含むフォトマスクを密着 露光した後、現像し、フォトレジストのパターン(線幅 5~50μm)を形成した。次に、基板をニッケル無電 解メッキ液(上村工業製、ニムデンLPX)に浸漬する と同時に、電圧を印加してニッケルを厚さ約2 μmにな るまで電気メッキし、その後は電圧印加を止め、ニッケ ルを厚さ約6μm無電解メッキした。フォトレジストを 専用の剥膜液で剥離し、水洗・乾燥後、230℃で約1 時間加熱しITO層とニッケル層の間の密着性を向上さ せ、目的とする凹版を得た。得られた印刷版(凹版)に おいて、ニッケルの凹部のパターンは線幅5~50μm まで ± 0 . 5μ mの精度に入っていた。また版深は8. $0\pm0.5\mu m$ であった。

12

【0037】この印刷版の表面に、シリコーンオイルの 離型層を形成し、ついでアクリル樹脂系のUV硬化性黒 色インキを充填した。印刷版の表面および裏面からUV 光を照射してインキを硬化した。このようにしてインキ が充填された印刷版から、以下のようにして被印刷体で ある薄膜トランジスタ回路基板へインキを転写した。ま ず、薄膜トランジスタ回路用ガラス基板上に、パターン エッチングが必要な層が形成され、その上に粘着性を有 するフォトレジストが塗布された回路基板を用意した。 印刷版の導電層をアースし、回路基板の粘着性フォトレ ジストと凹版のインキが充填されている面を所定の合わ せ位置に合うようにしながら、重ね合わせた。続いて、 ロールで加圧して両者を貼りあわせた。この後、印刷版 と回路基板とを引き離すと、インキAは印刷版から剥離 して粘着性フォトレジストの方へ転写した。このように してパターンが形成された回路基板において、インキダ レは認められなかった。

【0038】(実施例2) 平凹版を作成した。ガラス基板上に金属膜を付け、電気メッキのための電気伝導層とした。すなわち、印刷版基板として、実施例1とおなじ低膨張率のガラス板を用い、スパッタ法で銅を0.3 μ m形成した。次にフォトレジストを乾燥膜厚約3.5 μ mの厚さにコートした。フォトレジストは東京応化製、OMR-85を使用した。テストバターンを露光現像した後、基板を銅無電解メッキ液(上村工業製、スルカッ プELC-SR)に浸漬すると同時に、電圧を印加して

鋼を厚さ約 0.1μ mになるまで電気メッキし、その後は電圧印加を止め、鋼を厚さ約 2.8μ mに無電解メッキした。水洗後、引き続きニッケルを厚さ約 0.5μ mに無電解メッキした。レジストを剥離した後、薄膜トランジスタ回路の成膜工程と同一の熱処理を施し、ガラス基板上にメッキにからなるパターンが形成されてなる印刷版を得た。得られた印刷版において、メッキパターンは線幅 $3\sim50\mu$ mまで± 0.3μ mの精度に入っており、版深は $3.4\pm0.1\mu$ mであった。

(00391

【発明の効果】以上説明したように本発明によれば、基板としてガラス基板を用い、凸部パターンの形成法としてパターンメッキ法を用いた、微細パターンを有する凹版または平凹版を得ることができる。そして、パターンメッキ法に無電解メッキ法を用いることにより版深のムラを少なくすることができ、インキの厚さを一定にできる。そのため、薄膜トランジスタ回路のような微細パターンのエッチングが精度よくできるようになり、微細化を進めることができるようになり、収率も向上する。

【0040】印刷版の基体として使用するガラス基板の 20 線膨張率および熱処理した時の伸縮挙動が、被印刷体基板のそれと等しくすることにより、例えば薄膜トランジスタ回路のように、被印刷体基板が何度も加熱されて収縮し、その上に形成されているパターンも同時に収縮する場合において、あとから印刷するパターンの寸法を原印刷版から縮小する必要がないので、経済的な効果が大きい。さらに、回路基板の収縮に印刷版を容易に対応させることができるので、現在かなりの長時間を必要とし

ている薄膜トランジスタ回路用の基板の予備熱処理が、 短時間で間に合う場合が増える。また場合によっては予 備熱処理が不要になるという利点も得られる。

14

【0041】また、印刷版に導電層を形成し、導電層をアースする、あるいは導電層と被印刷体とを電気的に接続することにより、静電気の発生による薄膜トランジスタの破損を通常のクリーンルームの湿度において防止できるので、クリーンルームの管理が容易になる。さらに、導電層を透明導電層とすることにより、印刷版内のインキを、ガラス基板側からもUV光を照射して硬化でき、インキのダレを防止できるので、微細なパターンを精度よく印刷することができる。また本発明は、当然、必要とする印刷面積の大小によらず、上に述べた作用効果が必要な場合には、レジスト以外の微細なパターン、版深のムラが少ない版、インキダレが少ない印刷パターン等を得るのに好適に用いることができる。

【図面の簡単な説明】

【図1】 本発明の印刷版の製造例を工程順に示した断面図である。

【図2】 本発明の印刷版を用いて薄膜トランジスタ回路基板にパターンを形成する例を工程順に示した断面図である。

【符号の説明】

1…ガラス基板、2…導電層、3…フォトレジスト(非 メッキパターン)、5…金属触媒層(電気メッキ層)、 6…無電解メッキ層、11…印刷版、24…回路基板 (被印刷体)、A…インキ

