Math 200A Homework Question Compendium

D. Zack Garza

August 17, 2019

Contents

1	One	1
2	Two	2
3	Three	3
4	Four	4
5	Five	4
6	Six	5
7	Seven	6
8	Eight	6

1 One

- 1. Given: $\forall x \in G, x^2 = e \text{ Show: } G \in \mathbf{Ab}$
- 2. Given: $|G| < \infty, |G| = 0 \mod 2$ Show: $\exists g \in G \ni o(g) = 2$
- 3. Given: $G \in \mathbf{Ab}$ Show: $T(G) \leq G$ (where $T(G) = \{g \in G : |g| < \infty\}$
- 4. Show: Every finite group is finitely generated.
 - 1. Show: \mathbb{Z} is finitely generated
 - 2. Show: $H \leq (\mathbb{Q}, +) \implies H$ is cyclic
 - 3. Show: \mathbb{Q} is not finitely generated
- 5. Show: \mathbb{Q}/\mathbb{Z} has, for each coset, exactly one representative in $[0,1) \cap \mathbb{Q}$
 - 1. Show: Every element of \mathbb{Q}/\mathbb{Z} has finite order.
 - 2. Show: There are elements in \mathbb{Q}/\mathbb{Z} of arbitrarily large order.
 - 3. Show: $\mathbb{Q}/\mathbb{Z} = T(\mathbb{R}/\mathbb{Z})$
 - 4. Show: $\mathbb{Q}/\mathbb{Z} \cong \mathbb{C}^x$
- 6. Given: G/Z(G) is cyclic Show: G is abelian

- 7. Given: $H \subseteq G, K \subseteq G, H \cap K = e$ Show: $\forall h \in H, \forall k \in K, hk = kh$
- 8. Given: $|G| < \infty, H \le G, N \le G, (|H|, [G:N]) = 1$ Show: $H \le N$
- 9. Given: $|G| < \infty, N \leq G, (|N|, [G:N]) = 1$ Show: N is the unique subgroup of order |N|

2 Two

- 1. Given: For every triplet in G, two elements commute Show: G is abelian
- 2. Given: $H_1, H_2, H_3 \leq G, G = H_1 \cup H_2$ Show: $G = H_1 \vee G = H_2$
- 3. Given: $G = H_1 \cup H_2 \cup H_3$, G finite Show: $G = H_i \vee \forall i, [G:H_i] = 2$
- 4. Show: TFAE clos(H) is:
 - 1. The smallest normal subgroup of G containing H.
 - 2. The subgroup generated by all conjugates of H.
 - 3.

$$\bigcap_{H \leq N \unlhd G} N$$

- 4. $\phi: G \to -, \phi(H) = e$, then ϕ factors through $G/\operatorname{clos}(H)$
- 5. Given: $H, K \subseteq HK \subseteq G$ Show:

$$\frac{HK}{H\cap K}\cong \frac{HK}{H}\times \frac{HK}{K}$$

6. Given: $H \leq G, N \subseteq G, H \in Hall(G)$ Show:

$$H \cap N \in \operatorname{Hall}(N) \wedge \frac{HN}{N} \in \operatorname{Hall}(\frac{G}{N})$$

- 7. Given: $|G| = n, G \text{ cyclic}, \sigma_i : G \to G \ni x \mapsto x^i$
 - 1. Show $\sigma_i \in End(G)$
 - 2. Show $\sigma_i \in Aut(G)$ iff (i, n) = 1
 - 3. $\sigma_i = \sigma_j \text{ iff } i = j \mod n$
 - 4. $\tau \in Aut(G) \implies \exists i \ni \tau = \sigma_i$
 - 5. $\sigma_i \circ \sigma_j = \sigma_{ij}$
 - 6. The map

$$\psi: Z_n^{\times} \to Aut(G)i \mapsto \sigma_i$$

is an isomorphism.

- 8. Given: G is cyclic Show: Aut(G) is abelian of order $\phi(n)$
- 9. Show: $D_{\infty} \cong \langle a, b \mid b^2 = e, ba = a^{-1}b \rangle$
- 10. Show: $Q_8 \cong \langle a, b \mid a^2 = b^2, a^{-1}ba = b^{-1} \rangle$
- 11. Show: $\langle x, y \mid xy^2 = y^3, yx^2 = x^3y \rangle = \{e\}$

3 Three

- 1. Given: $G \sim X$ transitively, $H \leq G$
 - 1. Show: $H \sim X$, but possibly not transitively
 - 2. Show: G acts transitively on $\{\mathcal{O}_{\ell}: h \in H\}$
 - 3. Show: $\forall i, j, |\mathcal{O}_{h_i}| = |\mathcal{O}_{h_i}|$
 - 4. Given: $x \in \mathcal{O}_h$ Show: $|\mathcal{O}_h| = |H: H \cap G_x|$
 - 5. Show: $|\{\mathcal{O}_h\}_{h\in H}| = [G: HG_x]$
- 2. Given: \mathcal{K} a conjugacy class in S_n , $\{\mathcal{O}_s : s \in S_n\}$ orbits of an A_n -action on S_n Show: $\mathcal{K} = \mathcal{O}_s \vee \mathcal{K} = \mathcal{O}_{s_i} \cup \mathcal{O}_{s_j}$ Show: Case 2 occurs iff $\{k_i\}$, the cycle lengths in disjoint cycle form, are odd and distinct
- 3. i: $|G| < \infty, H < G$
 - 1. Show: $\{gHg^{-1}: g \in G\} = [G:N_G(H)]$
 - 2. *Show*:

$$G \neq \bigcup_{g \in G} gHg^{-1}$$

4. Prove Cauchy's Theorem. Given $p \mid o(G) < \infty$,

$$X = \{(a_i)_{i=1}^p \in G^p \mid \prod_{i=1}^p a_i = e\}$$

- 1. Show: $(a_1a_2\cdots a_p)=e \implies (a_2a_3\cdots a_pa_1)=e$
- 2. Show: $(Z_p, +) \sim X$ and $\bar{1} \sim (a_1 a_2 \cdots a_p) = (a_2 a_3 \cdots a_p a_1)$
- 3. Show: $|X| = |G|^{p-1}$
- 4. Show: $\{\mathcal{O}_x : |\mathcal{O}_x| = 1\} > 1 \text{ and } \exists a \in G \ni a^p = e$
- 5. Given: $G \sim X, |G| < \infty, 1 < |X| < \infty$ Show: $\exists g \ inG \ni \forall x \in X, g \sim x \neq x$ Show: This holds if $|G| = \infty$, but not if $|X| = \infty$ as well.
- 6. Given: $H \leq G$. Show: core(H) is
 - 1. The largest $N \subseteq G, N \subseteq H$
 - 2. Generated by all normal subgroups contained in H
 - 3.

$$= \bigcap_{g \in G} gHg^{-1}$$

- 4. The kernel of $G \sim \frac{G}{H} \ni x \sim gH = (xg)H$
- 7. Given: $[H:G] = n < \infty$
 - 1. Show: [core(H):G] divides n!
 - 2. Show: G simple $\implies o(G) \mid n! \land |G| < \infty$
- 8. Given: A_n is simple for $n \ge 5$ Show: $\not\exists H \in A_n \ni [H : A_n] < n$ Show: $\exists H[H : A_n] = n$
- 9. Given: r beads of n colors Show: how many distinct circular bracelets can be made

4 Four

- 1. Given: H char G Show: $H \subseteq G$
- 2. Given: H char $K \triangleleft G$ Show: $H \triangleleft G$
- 3. Given: $K = \langle k \rangle \subseteq G$ Show: $H \subseteq K \implies H \subseteq G$
- 4. Show $H \subseteq K \subseteq G \iff H \subseteq G$
- 5. Given: $P \leq H \leq K \leq G < \infty, P \in \operatorname{Syl}_p(G)$ Show: $P, H \subseteq K \implies P \subseteq K$
- 6. Show: $N_G(N_G(P)) = N_G(P)$
- 7. Given: $\sigma \in Aut(G)$ Show: $\sigma Inn(G)\sigma^{-1} = Inn(G)$ iff $\forall g \in G, g^{-1}\sigma(g) \in Z(G)$
- 8. Show: Inn(G) char Aut(G)
- 9. Given: $H \subseteq G, P \in Syl_n(G)$
 - 1. Show: $\exists g \in G \ni gPg^{-1} \in Syl_p(H)$
 - 2. Given: $H \subseteq G$ Show: $P \cap H \in Syl_p(H)$
 - 3. Given: $P \subseteq G$ Show: $P \cap H \in \operatorname{Syl}_n(H)$ and $|\operatorname{Syl}_n(H)| = 1$
- 10. Given: $|G| = pqr, p < q < r \text{ Show: } \exists P_i \in Syl_i(G) \subseteq G$
- 11. Given: |G| = 595 Show: All sylow subgroups are normal
- 12. Given: |G| = p(p+1) Show: $\exists N \subseteq G$ where |N| = p or p+1

5 Five

1. Given:
$$G = H \rtimes_{\psi} K$$

$$\psi: K \to Aut(H)k \mapsto \psi(k)$$

$$\theta \in Aut(H) \ \rho : K \to K$$

$$\phi_{\theta}: Aut(H) \to Aut(H)\rho \mapsto \theta \circ \rho \circ \theta^{-1}$$

$$\psi_2: K \to Aut(H)k \mapsto (\phi_\theta \circ \psi)(k)$$

$$\psi_3: K \to Aut(H)k \mapsto (\psi \circ \rho)(k)$$

Show: $H \rtimes_{\psi} K \cong H \rtimes_{\psi_2} K \cong H \rtimes_{\psi_3} K$

- 2. Classify groups of order $pq, p < q, p \mid q-1$
- 3. Classify groups of order 20.
- 4. Classify groups of order 75.
- 5. Show: $|G| < 60 \implies G$ is not simple.
- 6. Show: $|G| < 60 \implies G$ is solvable
- 7. Given: $|G| < \infty$, $H \le G$ maximal $\implies [G:H] = p$, a prime. Show: |G| is solvable
 - 1. Given: $P \in Syl_p(G) \land \exists H \ni N_G(P) \leq H \leq G$ Show: $[G:H] = 1 \mod p$

- 2. Given: $p \mid o(G)$, the largest such prime Show: $\exists P \subseteq G \in Syl_p(G)$,
- 8. $|G| < \infty$
 - 1. Given: G is characteristically simple Show: $\exists H \text{ (simple)} \ni G \cong H^n$. Show: Whether or not the converse holds
 - 2. Given: $N \triangleleft G$ minimal Show: N is characteristically simple, $N \cong H^n$

6 Six

- 1. Given: G is nilpotent Show: $H \leq G \implies H, G/H$ are nilpotent
- 2. Show: G/Z(G) is nilpotent $\implies G$ is nilpotent
- 3. Given: $|G| < \infty$ Show: |G| is nilpotent iff $a, b \in G, (a, b) = 1 \implies ab = ba$
- 4. Show: D_{2n} is nilpotent iff $n = 2^i$
- 5. Given: $|G| < \infty$
 - 1. Show $\Phi(G)$ char G
 - 2. Show $\Phi(G)$ is nilpotent
 - 3. Given: $|P| = p^e$ Show: $P/\Phi(P)$ is an elementary abelian p-group Show: $N \leq P, P/N$ is elementary abelian $\implies \Phi(P) \subseteq N$
- 6. Given: R a commutative ring, $x, y \in R$ nilpotent
 - 1. Show: x + y is nilpotent Show: $\{x \in R : x \text{ is nilpotent}\} \subseteq R$
 - 2. Given: $u \in R^{\times}, x \in R$ nilpotent Show: $u + x \in R^{\times}$
 - 3. Show: An counterexample to 1 when R is noncommutative.
- 7. Given: R a commutative ring, R[[x]] its formal power series
 - 1. Show: $\sum_{i=0}^{\infty} a_i x^i \in R[[x]]^{\times} \iff a_0 \in R^{\times}$
 - 2. Show: R a domain $\implies R[[x]]$ a domain
 - 3. Given: R a field Show: $I = \{r \in R[[x]] : r_0 = 0\}$ is a maximal ideal of R[[x]] Show: I is the unique maximal ideal
- 8. Given: R a commutative ring, G a finite group, RG a group ring.
 - 1. Given: $\mathcal{K} = \{k_1, k_2, \dots k_m\}$ a conjugacy class in G Show:

$$K = \sum_{i=1}^{m} k_i \in RG \implies K \in Z(RG)$$

- 2. Given: $\mathcal{K}_1 \cdots \mathcal{K}_r$ distinct conjugacy classes in G, $K_i = \sum_j k_j \ni k_j \in \mathcal{K}_i$ Show: $Z(RG) = \{\sum a_l K_l : \forall 1 \leq l \leq r, a_l \in R\}$ (All R-linear combinations of the \mathcal{K}_i)
- 9. Given: R a ring, $M_n(R)$ its matrix ring
 - 1. Given: $I \subseteq R$ (two-sided) Show: $M_n(I) \subseteq M_n(R)$ Show:

$$\frac{M_n(R)}{M_n(I)} \cong M_n(\frac{R}{I})$$

2. Show: $\forall I_M \leq M_n(R), I$ is of the form $M_n(I)$ for some $I \leq R$ Show: R a division ring $\implies M_n(R)$ is a simple ring.

- 7 Seven
- 8 Eight