

Podział zbioru

Zadanie polega na opracowaniu i zaimplementowaniu struktury danych umożliwiającej wykonywanie następujących operacji na podziale zbioru $\{1, 2, \ldots, n\}$:

• init(): inicjuje podział singletonowy:

$$\{\{1\}, \{2\}, \ldots, \{n\}\};$$

- find(x): znajduje sumę, element najmniejszy i element największy zbioru podziału zawierającego element x;
- union(x, y): łączy zbiory zawierające element x oraz y, jeśli są to różne zbiory. Jeśli x i y należą do tego samego zbioru, operacja nic nie robi.

Wejście

Na wejściu znajdują się dwie liczby całkowite n i m ($1 \le n \le 200\,000, \, 2 \le m \le 300\,000$) oznaczające liczbę elementów zbioru oraz liczbę operacji. Pierwszą wykonywaną operacją jest operacja init(). W m-1 kolejnych wierszach znajdują się opisy operacji:

- find x oznacza operację find(x) $(1 \le x \le n)$,
- union x y oznacza operację union(x, y) $(1 \le x, y \le n)$.

Wyjście

Dla każdej operacji find(x) proszę wypisać trzy liczby całkowite – sumę elementów, element najmniejszy oraz element największy zbioru podziału zawierającego element x.

Przykład

Wejście	Wyjście
5 8	4 4 4
find 4	7 2 5
union 2 5	4 4 4
find 5	11 1 5
union 1 3	
union 2 3	
find 4	
find 2	