Quantum Technologies, 2018/19
Physics Department, University of Aveiro

Coherent One Way (COW) QKD Protocol

João António¹, Daniel Pereira^{2,3}, Armando N. Pinto^{2,3}

Physics Department¹,
Department of Electronics, Telecommunications and Informatics²,
University of Aveiro, Aveiro, Portugal
Instituto de Telecomunicações,³, Aveiro, Portugal

INSTITUIÇÕES ASSOCIADAS

© 2018, Instituto de Telecomunicações

Quantum Key Distribution

- Quantum Key Distribution (QKD) is a secure way of sharing a unique random key between two spatially distant parties.
- Polarization QKD vs Time Bin QKD.

They use:

- One quantum channel (with one way transmission)
- And one authenticated classic channel (can be eavesdropped but can't be modified).

Time Bin QKD

- The Coherent One Way (COW) protocol was elaborated by Nicolas Gisin et al in 2004.
- Uses time bin encoding.
- It is has a very simple setup (Bob's apparatus is passive).

Alice - COW protocol

Step 1 Alice creates a random key using:

$$|0\rangle = |\alpha\rangle |\emptyset\rangle = Logical \ 0$$

 $|1\rangle = |\emptyset\rangle |\alpha\rangle = Logical \ 1$
 $|d\rangle = |\alpha\rangle |\alpha\rangle = DecoyState$

Where $|\emptyset\rangle$ is the vacuum state and $|\alpha\rangle$ is a coherent state of light with intensity $\mu = |\alpha|^2 << 1$.

Bob - COW protocol

Step 2 A fraction t_B^{\bullet} of the photons go into the photon counter D_B , where the bits are discriminated by the time of arrival.

Half of the other photons are delayed by $0.5 t_{bit}$ interacting with the half of non-delayed bits.

Therefore D_{M2} (constructive photon counter) should only click when:

Monitoring line - COW protocol

Testing Visibility and Errors - COW protocol

- **Step 3** Alice tell the times of the decoy. Bob checks if the D_{M2} has fired during a decoy time.
- **Step 4** Bob reveals the other times that he had a detection in D_{M2} , Alice verifies if they belong to a $|1\rangle : |0\rangle$.
- **Step 5** Bob reveals the times that D_B fired, and they use those as key.
- Step 6 They calculate QBER and then run error correction and privacy amplification.

E-mail: joaoantonio@ua.pt

- Ouellette, Jennifer. "Quantum key distribution." Industrial Physicist 10.6 (2004): 22-25.
- Gisin, Nicolas, et al. "Towards practical and fast quantum cryptography." arXiv preprint quant-ph/0411022 (2004).
- Branciard, Cyril, et al. "Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography." arXiv preprint quant-ph/0609090 (2006).
- Kronberg, Dmitry Anatol'evich, et al. "Analysis of coherent quantum cryptography protocol vulnerability to an active beam-splitting attack." Quantum Electronics 47.2 (2017): 163.

