Amendments to the Claims

•

- 1. (Currently Amended) Method for interference suppression for time-division multiple access (TDMA) and/or frequency division multiple access (FDMA) transmission, which at least approximately can be described as pulse amplitude modulation, with an arbitrary number of receive antennas, which comprises the following steps:
- a) filtering of at least one complex-valued received signal $r_i(k)$ of one receive antenna with a filter with complex-valued coefficients $f_i(k)$ for generation of at least one output signal $y_i(k)$;
- b) forming at least one <u>orthogonal</u> projection of at least one output signal $y_i(k)$ onto a vector \boldsymbol{p}_i which is assigned to this output signal $y_i(k)$; and if the number of output signals $y_i(k)$ is one:
- c1) feeding the output signal $y_i(k)$ into a device for detection, especially equalization; or if the number or output signals $y_i(k)$ is two or more:
- d1) summing of a majority, especially all of the output signals $y_i(k)$ for forming a sum signal s(k); and
- d2) feeding the sum signal s(k) into a device for detection, especially equalization.

2. (Previously Presented) Method as recited in Claim 1, $\text{wherein at least two received signals } r_i(k) \text{ are available}$ and the corresponding at least two outputs $y_i(k)$ are projected onto identical vectors in step b).

. . .

3. (Currently Amended) Method as recited in Claim 1, wherein feedforward filters of a <u>decision-feedback-equalization (DFE)</u> with real-valued feedback filter are used for filtering of the received signals in step a), which are optimized systematically,

in particular according to the criteria <u>zero-forcing</u> (ZF), minimum mean-squared (MMSE), or impulse truncation.

- 4. (Original) Method as recited in Claim 1, wherein the signals after the projections are utilized for optimization of the filter coefficients.
- 5. (Original) Method as recited in Claim 1,

 wherein an arbitrary adaptive algorithm is used for
 adjustment of the filter coefficients of the at least one
 complex-valued filter.
- 6. (Original) Method as recited in Claim 5, wherein the adaptive algorithm for adjustment of the

filter coefficients utilizes a training sequence which is known at the receiver.

- 7. (Original) Method as recited in Claim 5, wherein a blind adaptive algorithm is used for adjustment of the filter coefficients.
- 8. (Previously Presented) Method as recited in Claim 1, wherein the corresponding orthogonal complements of the projections of at least one filtered output signal $y_i(k)$ are calculated.
- 9. (Original) Method as recited in Claim 1,

wherein for the case of transmit antenna diversity, at least a part of the transmit signals is interpreted as interference and treated with a method according to claim 1.

- 10. (Previously Presented) System for interference suppression for time-division multiple access (TDMA) and/or frequency division multiple access (FDMA) transmission, which at least approximately can be described as pulse amplitude modulation, comprising
- an arbitrary number of receive antennas;
- at least one filter device with complex-valued

coefficients $f_i(k)$ for filtering of at least one complex-valued received signal $r_i(k)$ of one receive antenna for forming at least one output signal $y_i(k)$;

- at least one projection device for forming a <u>an</u> <u>orthogonal</u> projection of the at least one output signal $y_i(k)$ onto a vector \mathbf{p}_i which is assigned to this output signal; and if the number of output signals $y_i(k)$ is one:
- a detection device which processes the output signal s(k); or

if the number or output signals $y_i\left(k\right)$ is two or more:

- a summation device for summing a majority, in particular all output signals $y_i\left(k\right)$ for forming a sum signal $s\left(k\right)$; and
- a detection device which processes the sum signal s(k).
- 11. (Currently Amended) Receiver designed for acting in concert with one or several receiving antennae for interference suppression for time-division multiple access

 (TDMA) and/or frequency division multiple access
 (FDMA)

 transmission comprising at least pulse amplitude modulation or binary continuous phase modulation (CPM), Continuous Phase

 Modulation, comprising:
- at least a filtering device including complex-valued coefficients $f_i(k)$, with the at least one filtering

device being designed for filtering at least one complex-valued received signal $r_i(k)$ of a receiving antennae for generating at least one output signal $y_i(k)$;

wherein

the receiver further comprises

.

at least one projection device to which the at least one output signal $y_i(k)$ is coupled for forming a <u>an</u> <u>orthogonal</u> projection P_i of the at least one output signal $y_i(k)$ onto a direction vector \mathbf{p}_i assigned to this output signal $y_i(k)$, with the dimension of the direction vector \mathbf{p}_i irrespective of the number of receiving antennae being two; and

in case the number of the projections P_i is one:

a device for detection to which the output signal of the $$\operatorname{projection}\ P_i$$ is coupled;

or

in case the number of the projections is two or more:

- a device for summing a majority of the projections P_i for forming a sum signal s(k); and
- a device for detection to which the sum signal s[k] is coupled.