A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EO

1 Bookmark

Show all steps: ON

Problem

The purpose of this exercise is to prove a property of cosets which is needed in Exercise Q. Let G be a finite abelian group, and let a be an element of G such that ord(a) is a multiple of ord(x)for every $x \in G$. Let $H = \langle a \rangle$. We will prove:

For every $x \in G$, there is some $y \in G$ such that Hx = Hy and ord(y) = ord(Hy).

This means that every coset of H contains an element y whose order is the same as the coset's order.

Let x be any element in G, and let ord (a) = t, ord(x) = s, and ord (Hx) = r.

Explain why r is the least positive integer such that xr equals some power of a, say $x^r = a^m$.

Step-by-step solution

Step 1 of 3

Consider that G is a finite abelian group. Let $a, x \in G$ and $H = \langle a \rangle$ is a subgroup of G. Suppose that order of the elements are:

 $\operatorname{ord}(a) = t$,

 $\operatorname{ord}(x) = s$,

ord(Hx) = r.

Objective is to explain the reason that r is the least positive integer such that x^r equals some power of a, say $x^r = a^m$.

Comment

Step 2 of 3

Observe that the H_X denotes the coset of the quotient group G/H. By the definition of quotient group, one have that the identity of group G/H is equal to H.

Since
$$\operatorname{ord}(Hx) = r$$
, so
$$(Hx)^r = H$$
$$Hx^r = H.$$

Since Ha = H if and only if $a \in H$, therefore the equation $Hx^r = H$ implies that $x^r \in H$.

Since $H = \langle a \rangle$, therefore every element of H will be some power of a. So, χ^r will also be equal to some power of a, say a^m .

Since r is the order of coset H_X , therefore r will be the least positive integer such that $H_{X}^r = H$.

Comment

Step 3 of 3

Hence, the *r* is the least positive integer such that $x' = a^m$.

Comment