

Chap. 7 – REACTIONS DE PRECIPITATION EN SOLUTIONS AQUEUSES

1. Dissolution d'un composé ionique

a. Solutions saturées

Il existe des composés **fortement solubles dans l'eau** (sels) et des composés **peu solubles**. Quelque soit la solubilité des composés, il existe un seuil de solubilité au-delà duquel les composés ioniques ne se dissolvent plus. Il y a formation de **solutions saturées** avec présence d'un précipité.

Exemples:

NaCl_(s) est très soluble dans l'eau

BaSO_{4(s)} est très peu soluble dans l'eau

1. Dissolution d'un composé ionique

b. Produit de solubilité/solubilité

Lors du mélange de deux solutions contenant des ions susceptibles de former un précipité, deux situations peuvent se rencontrer :

- Le mélange des deux solutions ne donne pas lieu à la formation d'un précipité.
- Il y a précipitation d'un solide.

Considérons les ions Ag⁺(aq) et Cl⁻(aq). En présence, il peuvent former un précipité, le chlorure d'argent AgCl(s). On écrit généralement l'équilibre suivant :

$$AgCl(s)$$
 \Longrightarrow $Ag^+(aq) + Cl^-(aq)$

Cet équilibre est caractérisé par la constante d'équilibre $K_s(T)$ que l'on nomme produit de solubilité :

$$K_s(T) = [Ag^+(aq)].[Cl^-(aq)]$$

Avec
$$pK_s = -log K_s$$

La solubilité s (en mol.L⁻¹) est la quantité d'un précipité dissous par litre de solution.

1. Dissolution d'un composé ionique

c. Critère d'évolution

Lorsque nous mélangeons les solutions d'ions Ag⁺(aq) et Cl⁻(aq), on peut calculer le quotient de réaction initial, Q_{r,i}:

$$Q_{r,i} = [Ag^{+}(aq)]_{i}.[Cl^{-}(aq)]_{i}$$

- Si Q_{r,i} < K_s(T), il n'y a pas de précipitation.
- Si Q_{r,i} > K_s(T), il y a précipitation

Lorsqu'il y a précipitation, les concentrations des ions évoluent jusqu'à ce que le quotient de réaction, à l'équilibre, $Q_{r,éq}$, soit égal à $K_s(T)$.

Exemples:

- 1- On mélange 10mL d'une solution contenant des ions Ag^+ à 10^{-5} mol. L^{-1} et 10 mL d'une solution contenant des ions Cl^- à 10^{-5} mol. L^{-1} . $Ks(T) = 1,8.10^{-10}$. Y a-t-il précipitation ?
- 2- On mélange 10mL d'une solution contenant des ions Ag⁺ à 10⁻⁵ mol.L⁻¹ et 10 mL d'une solution contenant des ions Clara 10⁻⁴ mol.L⁻¹. Y a-t-il précipitation ? 4

1. Dissolution d'un composé ionique

c. Critère d'évolution

En généralisant :

$$C_nA_m(s)$$
 \rightleftharpoons $n C^{m+}(aq) + m A^{n-}(aq)$

$$Q_{r,i} = [C^{m+}(aq)]_i^n.[A^{n-}(aq)]_i^m$$

$$K_s(T) = [C^{m+}(aq)]_{\acute{e}q}^{n}.[A^{n-}(aq)]_{\acute{e}q}^{m}$$

- Si Q_{r,i} < K_s(T), il n'y a pas de précipitation.
- Si Q_{r,i} > K_s(T), il y a précipitation de C_mA_n(s)

2. Domaines de prédominance et d'existence

a. Cas des précipités simples

Soit le mélange d'une solution de cations C⁺(aq) à la concentration c_0 et d'une solution concentrée d'anions A⁻(aq). Lorsque le premier grain de CA(s) apparaît, le quotient de réaction Q_r est égal à K_s et la concentration en anion A⁻(aq) est égale à $[A^-(aq)]_{lim}$, telle que :

$$c_0 \cdot [A^-]_{lim} = K_s$$

 $pA_{lim} = pK_s + log c_0$

- Si pA > pA_{lim}: pas de précipitation ; domaine de prédominance de C+.
- Si pA < pA_{lim}: précipitation ; domaine d'existence de CA(s).

2. Domaines de prédominance et d'existence

a. Cas des précipités simples

Application : Précipitation des hydroxydes

a) Sur une axe en pOH, positionner les domaines de prédominance des ions Co^{2+} et Co^{3+} et d'existence des précipités $Co(OH)_2$ et $Co(OH)_3$.

Données : $c_0 = 10^{-3} \text{ mol.L}^{-1}$; $pK_{s1}[Co(OH)_2] = 14.8 \text{ et } pK_{s2}[Co(OH)_3] = 44.5$

b) Quelles sont les valeurs des concentrations en ions Co^{2+} et Co^{3+} à pH = 4.

2. Domaines de prédominance et d'existence

b. Cas des précipités amphotères

La réaction entre le cation métallique C⁺(aq) (à c₀) et l'anion A⁻(aq) peut donner lieu à la formation du précipité CA(s), mais ce précipité peut aussi se redissoudre par formation d'un complexe soluble CA₂-(aq).

On a ainsi deux réactions successives :

•
$$C^+(aq) + A^-(aq) \iff CA(s)$$

(1)
$$K_1 (K_s = 1/K_1)$$

•
$$C^{+}(aq) + A^{-}(aq)$$
 \rightleftharpoons $CA(s)$ (1) K_{1} $(K_{s} = 1/K_{1})$
• $CA(s) + A^{-}(aq)$ \rightleftharpoons $CA_{2}^{-}(aq)$ (2) K_{2} $(K_{1}K_{2} = K_{2}/K_{s} = \beta_{2})$

(2)
$$K_2 (K_1 K_2 = K_2/K_s = \beta_2)$$

- L'apparition du 1^{er} cristal de CA(s) se fera à pA_{1,lim} = pK_s + log c₀
- La disparition du dernier cristal de CA(s) se fera à pA_{2,lim} = log β₂ pK_s log c₀

2. Domaines de prédominance et d'existence

b. Cas des précipités amphotères

Application : Réactions entre les ions Ag+ et les ions cyanure CN-

L'ion Ag^+ donne avec les ions cyanure CN^- un précipité AgCN(s), $pK_s = 15,9$ et un complexe soluble $Ag(CN)_2^-$, $\beta_2 = 10^{21}$.

En déduire les limites du domaine d'existence de AgCN(s) lorsque l'on part d'une solution de Ag+ à 10⁻² mol.L⁻¹.

1. Titrage des ions halogénures par la méthode de Mohr

a. Principe

Une solution d'un halogénure alcalin Na⁺, X^{-} (C_0 , V_0) est titrée par une solution de nitrate d'argent Ag^{+} , NO_3^{-} (C, V).

1. Titrage des ions halogénures par la méthode de Mohr

a. Principe

Une solution d'un halogénure alcalin Na⁺, X^{-} (C_0 , V_0) est titrée par une solution de nitrate d'argent Ag^{+} , NO_3^{-} (C, V).

b. Réactions

1. Titrage des ions halogénures par la méthode de Mohr

c. Mise en évidence par colorimétrie

Le dosage est réalisé en présence de chromate de potassium (K_2CrO_4). CrO_4^- forme avec Ag^+ des cristaux rouges Ag_2CrO_4 . Les cristaux rouges apparaissent dès l'ajout de la première goutte de Ag^+ en excès (à l'équivalence).

• Ag⁺(aq) + X⁻(aq)
$$\longrightarrow$$
 AgX(s) $K_1 = 1/K_{s1}$

• Ag⁺(aq) + CrO₄⁻(aq)
$$\longrightarrow$$
 Ag₂CrO₄(s) $K_2 = 1/K_{s2}$

$$K_1 >> K_2$$

1. Titrage des ions halogénures par la méthode de Mohr

d. Suivi potentiométrique (Cf chap. 6)

Le saut de potentiel permet d'obtenir le point d'équivalence.

e. Dosage gravimétrique

Le précipité est filtré, séché et pesé.

2. Titrage des ions halogénures par la méthode de Volhard

a. Principe

A la solution de concentration inconnue d'halogénure alcalin, on ajoute un excès de solution de nitrate d'argent de titre connu. Il se produit la réaction quantitative :

$$Ag^{+}(aq) + X^{-}(aq) \longrightarrow AgX(s)$$
 $K_R = 1/K_s$

L'excès d'ions Ag⁺ est titré par une solution de titre connu de thiocyanate de potassium K⁺, SCN⁻ en présence d'ions Fe³⁺. L'équivalence lors de ce second dosage est mise en évidence par l'apparition de la couleur rouge persistante de l'ion complexe [Fe(SCN)]²⁺, visible dès que sa concentration atteint 10⁻⁵ mol.L⁻¹.

2. Titrage des ions halogénures par la méthode de Volhard

a. Principe

A la solution de concentration inconnue d'halogénure alcalin, on ajoute un excès de solution de nitrate d'argent de titre connu. Il se produit la réaction quantitative :

$$Ag^{+}(aq) + X^{-}(aq) \longrightarrow AgX(s)$$
 $K_R = 1/K_s$

L'excès d'ions Ag⁺ est titré par une solution de titre connu de thiocyanate de potassium K⁺, SCN⁻ en présence d'ions Fe³⁺. L'équivalence lors de ce second dosage est mise en évidence par l'apparition de la couleur rouge persistante de l'ion complexe [Fe(SCN)]²⁺, visible dès que sa concentration atteint 10⁻⁵ mol.L⁻¹.

b. Réactions

Réaction de titrage :

$$Ag^{+}(aq) + SCN^{-}(aq) \longrightarrow AgSCN(s)$$
 $K_{R}' = 1/K_{s}' = 10^{12}$

• Réaction de détection du point d'équivalence :

$$Fe^{3+}(aq) + SCN^{-}(aq) \longrightarrow [Fe(SCN)]^{2+}(aq)$$
 $K_f = 100$

