Europäisch s Pat ntamt

European Pat nt Office

Office eur péen des br v ts

(11) EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Builetin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int CI.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

- (83) Deciaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
 - Nakagawa, Satochi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
 - Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Ochial, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Tatelshi, Naoko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Slebertstrasse 4 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

D scription

5

10

15

20

25

35

40

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polyneptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as Escherichia coli, Mycobacterium tuberculosis, yeast, and the like, have been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

10

20

25

35

40

45

50

55

[0009] An object of the pr sent invention is to provid a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, s quence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotid sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

15 BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
 - (c) det cting any hybridization, and
 - (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium callunae*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

5

10

15

20

25

30

35

40

45

50

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- 55 (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
 - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - (18) The polypeptide according to (16) or (17), wherein at least one amino acid is dileted, riplaced, insirted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid s quence having a homology of at least 60% with the amino acid s quence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at I ast one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

- (li) at least temporarily storing said information;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information:
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence Information selected from SEQ ID NOS: 3502 to 7001, function Information based on the amino acid sequence, and target amino acid sequence information:
 - (ii) a data storing device for at least temporarily storing the Input Information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
 - (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
 - (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

5

10

15

20

25

30

35

40

45

50

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (32) The m thod according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the g nus Corynebacterium, the g nus Brevibacterium, or the genus Microbacterium.
- (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium callunae*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
 - (37) The recording medium or storage device according to
 - (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which th Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
 - (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
 - (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.(43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser
 - (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
 - (45) A DNA encoding the polypeptide of any one of (38) to (44).
 - (46) A recombinant DNA comprising the DNA of (45).
 - (47) A transformant comprising the recombinant DNA of (46).
 - (48) A transformant comprising in its chromosome the DNA of (45).
 - (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
 - (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
 - (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and
 - recovering the L-lysine from the culture.
 - (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the f rmentation method of the compound sill ct d in (i) of the coryneform

5

10

20

25

30

35

40

45

50

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamiriogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovening the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

10

15

20

25

30

45

50

55

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and companing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the companson with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium callunae*, *corynebacterium herculis*, *Corynebacterium lilium Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- 35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

10 [0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 × g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "Molecular Cloning, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved In 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 μ l of the ligation solution. Examples of the transformation m thod include the electroporation method using ELECTRO MAX DHIOB

15

20

25

35

45

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed *Escherichia coli* is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100,mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

10

15

20

30

35

40

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with <code>SauSAI</code>, the partially digested product can be ligated to, for example, the <code>BamHI</code> site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed *Escherichia coli is* spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino *et al.* (*DNA Research*, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

15

20

25

30

35

40

45

55

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (*DNA Research*, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and Gene Amp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, died and then used for the analysis. The died reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

50 [0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready R action Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, their sults are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

[0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of th inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

15 [0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the pres int invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the pr sence of the EMF. Examples of the EMF include a promoter, an operator, an operator, and

10

20

25

35

40

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually pr s nt in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, nbosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotid sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

5 [0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the prot ins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

5

10

20

25

30

35

40

45

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determin d. As a r sult, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information d riv d from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the g neral method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of Ix SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach,* Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide Includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotid s includ analogous oligonucleotides in which a phosphodiester

10

25

35

40

45

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiest r bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as prob s for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

10

15

20

25

30

35

40

50

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the targit isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, sacchandes, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] Howev r, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene *pyc* of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with senine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of *Corynebacterium glutamicum* free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene *zwf* of the B-6 strain. [0138] Furthermore, the lysine-productivity of *Corynebacterium glutamicum* was improved by replacing the base at the 932-position of aspartokinase gene *lysC* of the *Corynebacterium glutamicum* ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is gen rally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

10

15

20

25

30

35

40

45

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the pres nt invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32*: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtain d in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

5

10

20

25

30

45

50

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

5 [0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present Invention.

15 [0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light Irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array

10

20

25

40

45

50

55

[0162] The following procedures (a) and (b) can be carned out using the polynucleotide array prepared in the above (1).

35 (a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the m thod of the hybridization, a mutation point of a useful mutant, which is us ful in producing an amino acid, a nucl ic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

expression amount and the expression profile thereof can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method describ d in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

⁵ [0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96.* 12833-38 (1999)); and the like.

15 [0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (J. Bacteriol., 181: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol., 14*: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

²⁵ [0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like.)

30 [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acld molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

40 (b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the

like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately sell cted, depending on the type of the recording medium

10

20

35

45

50

and the access device utilized. Also, various data processing programs, software, comparator and formats are us d for recording and utilizing the polynucle otide sequence information or the like, of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

9. System based on a computer using the recording medium of the present invention which is readable by a computer

20 [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

25 [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used; although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

[0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for r cording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the targ t sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

50

55

10

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

- 10. Production of polypeptide using ORF derived from coryneform bacteria
- [0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.
 - [0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.
- [0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.
 - [0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.
 - [0198] The recombinant vector is introduced to a host cell suitable for the expression vector.
 - [0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.
 - [0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.
 - [0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.
 - [0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Pat nt Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.
- [0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{trp}), *lac* promoter, P_L promoter, P_R promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P*trp* are linked in series (P_{+rp}×2), *tac* promoter, *lac*T7 promoter *let* promoter and the like, can be used.
 - [0204] It is preferred to use a plasmid in which the space between Shine-Dalgarno sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).
- [0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.
 - [0206] One of ordinary skill in the art will appr ciate that the codons of the above-described elements may be opti-

5

20

30

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus *Escherichia*, the genus *Serratia*, the genus *Bacillus*, the genus *Brevibacterium*, the genus *Corynebacterium*, the genus *Microbacterium*, the genus *Pseudomonas*, and the like. Specific examples include *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* DH1, *Escherichia coli* MC1000, *Escherichia coli* KY3276, *Escherichia coli* W1485, *Escherichia coli* JM109, *Escherichia coli* HB101, *Escherichia coli* No. 49, *Escherichia coli* W3110, *Escherichia coli* NY49, *Escherichia coli* Gl698, *Escherichia coli* TB1, *Serratia ficaria*, *Serratia fonticola*, *Serratia liquefaciens*, *Serratia marcescens*, *Bacillus subtilis*, *Bacillus amyloliquefaciens*, *Corynebacterium ammonia genes*, *Brevibacterium lmmariophllum* ATCC 14068, *Brevibacterium saccharolyticum* ATCC 14066, *Corynebacterium glutamicum* ATCC 13032, *Corynebacterium glutamicum* ATCC 13869, *Corynebacterium glutamicum* ATCC 14067 (prior genus and species: *Brevibacterium flavum*), *Corynebacterium lactofermentum*), *Corynebacterium acetoacidophilum* ATCC 13870, *Corynebacterium thermoaminogenes* FERM 9244, *Microbacterium ammoniaphilum* ATCC 15354, *Pseudomonas putida*, *Pseudomonas* sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in *Microbiology*, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Scl. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular* & *General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; *Cytotechnology, 3*:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (*Nature, 329*: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (*J. Biochem., 101*: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors, A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the lik

[0219] Specifically, a recombinant gene transf rv ctor and bacurovirus are simultaneously insert d into ins ct cells

10

20

25

35

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.

[0222] Examples of the insect cells include *Spodoptera frugiperda* oocytes Sf9 and Sf21 (*Bacurovirus Expression Vectors, A Laboratory Manual, W.H.* Freeman and Company, New York (1992)), *Trichoplusia ni* oocyte High 5 (manufactured by Invitrogen) and the like.

[0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

[0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

5

15

20

30

35

40

45

50

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

15 [0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been add d, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

35 [0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

50 [0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

10

20

25

40

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template! The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene Integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carned out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carned out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

10

15

20

30

40

45

50

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polyp ptid comprising an amino acid sequence in which at least on amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, *Nuc. Acids. Res.*, 10: 6487 (1982), *Proc. Natl. Acad. Sci. USA*, 79: 6409 (1982), *Gene*, 34: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

15

20

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosubenc acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, It is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculat d, for xampl , using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, sacchandes, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bactenum; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular ClonIng*, 2nd ed.; Spector *et al.*, *Cells/a laboratory manual*, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.
[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous pl xus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

5

10

15

20

25

30

35

40

45

50

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

(2) Production of monoclonal antibody

5

10

20

25

30

35

40

45

50

- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
- (b) Preparation of myeloma cells

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10-5 mol/l 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.

(c) Production of hybridoma

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 108 antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10⁻⁴ mol/l hypoxanthine, 1.5×10⁻⁵ mol/l thymidine and 4×10⁻⁷ mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μ l/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

[0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the label d substance. A hybridoma which specifically reacts with the polypeptide of the present invintion is selected as a hybridoma capable of producing a monoclonal antibody of the prisent

invention.

5

20

25

35

40

45

50

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

(d) Preparation of monoclonal antibody

[0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10⁶ to 20×10⁶ cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

[0309] A monoclonal antibody can be purified and Isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

[0311] The antibody obtained in the above is within the scope of the antibody of the present invention.

[0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976): Antibodies - A Laboratory Manual. Cold Spring Harbor laboratory

Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem., 18*: 315 (1970); *Meth. Enzym., 62*: 308 (1979); *Immunol., 109*: 129 (1972); *J. Immunol., Meth., 13*: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

12. Production and use of polypeptide array

(1) Production of polypeptide array

[0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth.*

Enzym., 34 (1974); *Advances in Experimental Medicine and Biology, 42* (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

20

25

35

40

45

50

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of corynerorm bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

[0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional lectrophoresis means an electrophoretic method which is perform d by combining two

lectrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid singular quence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer disigned on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

10

15

25

30

40

45

50

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochlonde, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

10

20

25

30

35

40

45

55

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml amplcillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino *et al.* (*DNA Research, 5*: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the timplate in the sequincing reaction.

[0351] Some nucleotide sequences were d t rmined using a double-stranded DNA plasmid as a template.

- [0352] The double-stranded DNA plasmid as the template was obtained by the following method.
- [0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.
- 5 [0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.
 - [0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.
- 10 [0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.
 - (4-2) Sequencing reaction
- [0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.
- [0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was punified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus punified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.
 - [0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.
 - [0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.
 - (5) Assembly

- [0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.
 - (6) Determination of nucleotide sequence in gap part
- [0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.
- [0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.
 - [0364] The sequence in the region which was not covered with the contigs was determined by the following method.
 [0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had be in determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the significant statement of the inserted fragment in two contigs was identified, the full nucleotide sequence.

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequence of at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:

1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

35

10

15

25

35

40

45

50

5
10
15
20
25
30
35
40
45
50

Table 1	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein -	DNA topoisomerase (ATP- hydrolyzing)			*	-	NAGC/XYLR repressor	1		DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Matched length (a.a.)	524		390	392	174	704 -			,		422			854	112	329	268		265	155	117
	Similarity (%)	8.66		81.8	6'62	58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
	Identity (%)	99.8		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523		sp.DP3B_MYCSM	sp.RECF_MYCSM	sp.YREG_STRCO	pir.S44198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	sp:YEIH_ECOLI	gp:A8042619_1		gp:AF156103_2	pir.A49232	pir:F70664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369
	Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8628	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ NO.	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
	SEQ NO DNA)	2	3	4	r.	ဖ	2	æ	6	9	=	12	13	14	15	9	17	8		20	21	22

	_																			
5		Function	hypothetical membrane protein	2,5-diketo-D-gluconic acid reduclase	5'-nucleotidase precursor	5-nucleotidase family protein	ase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicase		glucan 1,4-alpha-glucosidase	يا	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP- biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein
			hypotheti	2,5-diketo	5'-nucleo	5'-nucleo	transposase	organic h enzyme	ATP-dep		glucan 1,	lipoprotein	ABC 3 tra	iron(III) dicitra biding protein	sugar AE sugar-bir	high affin	ribose tra	neurofila	peptidyl-	hypothet
15		Matched length (a.a.)	321	26	196	270	51	139	2.17		449	311	266	222	283	312	236	347	169	226
20		Similanty (%)	50.8	88.5	56.1	56.7	72.6	79.9	8.09		54.1	63.7	74.1	70.3	56.5	68.3	76.7	44.4	89.9	53.1
		Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
<i>25</i>	(panuli)	gene	e)	ATCC	cus nutA	rans	iatum ORF1	estris	dans recG		evisiae 1	pathiae	enes SF370	fecE	a MSB8	rbsC	rbsA		ae H37RV -	уадР
30	lable 1 (continued)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoti ohr	Thiobacillus ferrooxidans recG	1	Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae ewlA	Streptocaccus pyogenes SF370 mtsC	Escherichia coli K12 fecE	Thermotoga mantima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yqgP
40		db Match	gp:MLCB1788_6	pir:140838	sp:5NTD_VIBPA	gp:AE001909_7	prf:2513302C	prf.2413353A	sp.RECG_THIFE		sp:AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp:FECE_ECOLI	pir.A72417	prf.1207243B	sp.RBSA_BACSU	pir.151116	sp.CYPA_MYCTU	sp:YQGP_BACSU
		ORF (bp)	993	180	528	1236	165	435	1413	438	1278	954	849	657	981	1023	759	816	- 261	687
45		Terminal (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
50		Initial (nt)	20073	21253	21597	22164	23779	24295	26297	26338	28099	29117	29965	29995	30697	31677	32699	34280	34339	34982
		SEQ NO. (a.a.)	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
55		NO.	23	24	25	26	27	28	29	90	31	32	33	34	35	36	37	38	39	40

5	'
10	
15	
20	
25	
30	
35	
40	
45	
50	

	- Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semlaldehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
	Matched length (a.a.)	332		253	260	95	648	486	492	375	469	155	. 929					117	490	242	262
	Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	65.6	70.8	66.5	38.8					63.3	78.2	57.0	64.1
	Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae vluC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c	,	-			Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
	db Match	sp.FEPG_ECOLI		gp:VCU52150_9	sp:ViUB_ViBVU	sp:YO11_MYCTU	Sp.PKNB_MYCLE	gp:AF094711_1	gp:AF241575_1	sp.SP5E_BACSU	pir.H70699	plr.A70700	pir:B70700 -					sp:PH2M_TRICU	sp:GABD_ECOLI	sp:YRKH_BACSU	sp:Y441_METJA
	ORF (bp)	978	986	777	822	270	1938	1407	1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789
	Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46669	48024	48505	49455	49897	50754	99605	54008	51626	55546	55629
	Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
	SEQ NO. (a.a.)	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
	SEQ NO.	41	42	43	44	45	46	47	48	49	90	51	52	53	54	55	26	57	58	69	09

	_					-1				—-т	—т	_				7				- 1		
5		Function	hypothetical protein	hypothetical protein	hypothetical protein	1	hypothetical protein			magnesium and cobalt transport protein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
15		Matched length (a.a.)	74 hy	179 hy	62_ hy	_	310 hy		-	390 pr		400 ct	241 re	340 pt				497 tr	563 h		229 tr	293 . d
								_				_			\dashv	4						
20		Similarity (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	0.09				68.8	9.09		63.3	73.7
		Identity (%)	40.5	36.3	53.2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
25	_					"						۾	ပ္									E
30	lable i (collinued)	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766	-	Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA	l	Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB	4	Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
40		db Match	Sp.YRKF_BACSU	sp:YC61_SYNY3	pir:G70988	1	gp:LMFL4768_11			pir.F70952		gp:AF179611_12	Sp.PNUC_SALTY	sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		sp:DPIA_ECOLI	gp:AF134895_1
		ORF (bp)	291	591	174	855	840	711	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
45	_	Terminal (nt)	56386	56680	57651	58941	59930	60662	62321	62390	63594	Τ	65508	67972	68301	68251	69824	68720	72158	71474	72814	72817
50		Initial (nt)	56676	57270	57478	58087	59091	59952	69909	63508	64040	64190	66197	66851	68170	68634	09069	70186	70506	72043	72161	73728
		SEQ NO	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
55		SEO S NO 1		i	63	64	T	99	67		69		1	1	73	74	75		11	78	1	1

5	ı	Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacylglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
15		Matched length (a.a.)	127	334	43	85		42	84	507	394			279	251	262		171	100	162	570
20		Similarity (%)	76.4	99.7	79.1	63.5		75.0	0.99	29.0	99.8			50.2	59.0	56.1		94.7	100.0	100.0	100.0
		Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			Ż6.2	30.7	29.4		90.6	100.0	100.0	100.0
25	Table 1 (continued)	Homologous gene	oelicolor A3(2)	n glutamicum	tuberculosis	cerevisiae		darum Nigg	ımoniae	irginiae varS				Saccharomyces cerevisiae hst2	um acnes	um acnes		m glutamicum	m glutamicum	m glutamicum eB	m glutamicum eC
<i>30</i>	Tahte 1	Homolog	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
40		db Match	gp:SCM2_3	sp:BIOB_CORGL	pir:H70542	sp:YKI4_YEAST		PIR:F81737	GSP: Y35814	prf.2512333A	gp:D38505_1			sp:HST2_YEĀST	prf.2316378A	prf.2316378A		gp:AB029154_1	gp:AB029154_2	gp:CGL251883_2	gp:CGL251883_3
		ORF (bp)	429	1002	237	339	117	141	273	1449	1245	306	615	924	972	900	888	513	300	486	1710
45		Terminal (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	85098	85663	87241	87561	88545	90445	90461	91473	91988	93701
50		Initial (nt)	73844	74490	75506	75697	76353	80753	81274	83568	84935	85403	86277	86318	88532	89444	89558	90973	91174	91503	91992
		SEO NO.	3581	3582	3583	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
55		SEO No.	<u>8</u>	82	83	84	85	98	87	88	89	8	91	92	93	94	95	96	97	86	66

EP 1 108 790 A2

į																								
5		Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanímycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
15		Matched length (a.a.)	157	226	205	283	279		347			899	481		196		1297		338	513	352		106	
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		26.7			52.7	68.2		28.7		50.4		60.7	71.4	49.2		70.8	
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0	-	29.6		25.8		30.2	36.5	23.0		35.9	
30	Table 1 (continued)	Homalogaus gene	m glutamicum reE	m glutamicum reF	m glutamicum reG	m glutamicum reD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			i K12 htpG	i K12 amn	•	Aeropyrum pernix K1 APE2509		nimurium putA		Phanerochaete chrysosporium aad	K12 ydaH	glomerans		K12 yidH	!
35	Table	Homalo	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium		Streptomyces v			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum per		Salmonella typhimurium putA		Phanerochaete aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
40		db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf.2318326B		gp:AF148322_1			sp:HTPG_ECOLI	sp:AMN_ECOLI		pir:E72483		sp:PUTA_SALTY		sp:AAD_PHACH	sp:YDAH_ECOLI	prf.2422424A		sp:YIDH_ECOLI	
		ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	552	960	3456	114	945	1614	1332	669		315
45		Terminal (nt)	94199	94879	95513	36365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
50		Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	111161	111374	112470	114147	115262	115578	115949
	!	SEQ NO. (a.a.)	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
55		SEQ NO. (DNA)	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	130	121

galactitol utilization operon repressor DNA-3-methyladenine glycosylase xylose operon repressor protein pantoate-beta-alanine ligase 3-methyl-2-oxobutanoate hydroxymethyltransferase mannitot dehydrogenase transcriptional repressor macrolide efflux protein carbonate dehydratase D-arabinitol transporter Function hypothetical protein methylglyoxalase xylulose kinase esterase Matched length (a.a.) Similarity (%) 100.0 100.0 78.6 64.8 70.4 68.3 64.6 53.2 49.3 61.2 59.7 68.1 69.3 67. Identity 0.001 29.5 43.5 30.3 27.3 45.0 42.0 30.9 57.9 37.0 39.3 24.1 21.1 Pseudomonas fluorescens mtlD Petroleum-degrading bacterium HD-1 hde Streptomyces rubiginosus xylB Corynebacterium glutamicum ATCC 13032 panC Corynebacterium glutamicum ATCC 13032 panB Table 1 (continued) Methanosarcina thermophila Mycobacterium tuberculosis Klebsiella pneumoniae dalT Agrobacterium tumefaciens accR Lactococcus lactis mef214 Escherichia coli K12 gatR Bacillus subtilis W23 xylR Homologous gene Arabidopsis thallana mag Bacillus subtilis yurT H37Rv Rv1276c sp:ACCR_AGRTU sp:YC76_MYCTU Sp:GATR_ECOLI Sp:XYLB_STRRU Sp:XYLR_BACSU 9p:LLLPK214_12 sp:3MG_ARATH 558 sp.CAH_METTE 9p:AB029896_1 gp:CGPAN_2 db Match prf.2321326A gp:CGPAN_1 prf 2309180A pir.C70019 유(현 **Ferminal** £ SEQ (a.a.) ġ. (DNA)

EP 1 108 790 A2

DNA-3-methyladenine glycosylase

166 217

65.1

39.8

threonine efflux protein hypothetical protein

61.3 72.7 52.1

34.1

Escherichia coli K12 rhtC Escherichia coli K12 tag

Bacillus subtilis yaaA

sp:YAAA_BACSU

prf 2510326B

160013 159159

159162

3667

158869

158154

3665 3666

sp.3MG1_ECOLI SP. RHTC_ECOLI

525

158138 158831

157614

3664

164 165 166 167

678 291 852

50.9 31.0

Streptomyces peucetius dnrV

doxorubicin biosynthesis enzyme

284 왔

5	Function			, (†)	cellulose synthase	hypothetical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein	1		ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA
15	Matched length (a.a.)				420	593	-			303	198			361	248	-		829		188	219
20	Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	60.7
	Identity (%)				24.3	25.1				34.7	30.3			32.4	34.7	1		33.8		40.4	34.7
% 52 72 Table 1 (continued)	s gene			٠	refaciens celA	revisiae 				uginosa rarD	12 yadS			12 abrB	12 yfcA			12 hrpB		nosarum bv. .1JI nodL	373#1 alkB
εε Table 1 (c	Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA	•		Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodt	Escherichia coll o373#1 alkB
35	db Match									 	ECOLI		,	_							
40	육				pir.139714	sp.HKR1_YEAST	1			sp:RARD_PSEAE	sp:YADS_			SP. ABRB_ECOLI	sp:YFCA_ECOLI			SP. HRPB_ECOLI		Sp:NODL_RHILV	sp.ALKB_ECOLI
	ORF (bp)	1941	1539	636	1461	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069
45	Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537
50	Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848
	SEQ NO.	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663
55	SEQ NO. (DNA)	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163

5		. Function	methyltransferase				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inositol 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase		
15		Matched length (a.a.)	104 me			į	118 rib			722 ne		238 tra	332 fru	296 hy	498 me	268 m)	586 m)	290 rhi	335 m)	287 m)	457 me		354 ox		
20		Similarity (%)	26.7				76.3			57.2		65.6	63.0	80.7	86.1	58.2	8.69	51.0	72.2	72.1	61.5		65.5		
		Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1		
25 6	inea)	e L	ротре				MC58					Æ		or A3(2)	or msdA			ပ္ပ	olG		cens tcmA				
30	fanie (commune	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c	1			Neisseria meningitidis MC58 NMB0662			Mus musculus n11		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iolB	Bacillus subtilis iolD	Rhizobium meliloti mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	Streptomyces glaucescens tcmA		Bacillus subtilis yvaA		٠.
35 40		db Match	gp:SPAC1250_3 S				gp:AE002420_13			gp:AF176569_1 N		sp:FARR_ECOLI E	pir:T14544 B	gp:SC8F11_3	prf.2204281A S	sp:10LB_BACSU B	sp:IOLD_BACSU B	sp:MOCC_RHIME R	sp:MI2D_BACSU B	sp:IOLH_BACSU B	sp:TCMA_STRGA S		sp:YVAA_BACSU B		
	ŀ	ORF (bp)	342	930	657	933	405	639	741	2067	963	759	1017	921	1512	888	1728	954	1011	970	1374	621	1023	456	
45		Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	169991	170916	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297	
50		Initial (nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	168595	168975	169996	170933	172468	173548	175319	176308	177334	178285	179081	179689	180842	
		SEQ NO (a a.)	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	[
55		SEO NO.	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	

												_	
transcriptional regulator, Gritk family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inositol 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase		
238	332	296	498	268	586	290	335	287	457		354		
65.6	63.0	80.7	86.1	58.2	8.69	51.0	72.2	72.1	61.5		65.5		
29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1		
Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iolB	Bacillus subtilis iolD	Rhizobium meliloti mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	sp:TCMA_STRGA Streptomyces glaucescens tcmA		Bacillus subtilis yvaA		
sp:FARR_ECOLI	7 pir:T14544	gp:SC8F11_3	prf.2204281A	sp:10LB_BACSU	8 sp:IOLD_BACSU	sp:MOCC_RHIME	sp:MI2D_BACSU	sp:IOLH_BACSU	sp:TCMA_STRGA		3 sp:YVAA_BACSU		
759	1017	921	1512	888	1728	954	1011	870	1374	621	1023	456	
167837	169991	170916	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297	
168595	168975	169996	170933	172468	173548	175319	176308	177334	178285	179081	179689	180842	
3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	
		_	_	1_	آم ا	آ ــــ ا	I	١. ـ	٠. ا		ا ـــ ا	آ ہا	i

EP 1 108 790 A2

caffeoyl-CoA 3-O-methyltransferase signal-transducing histidine kinase glutamine 2-oxoglutarate aminotransferase small subunit aminotransferase large subunit amylase D-xylose proton symporter glutamine 2-oxoglutarate Function transposase (ISCg2) hypothetical protein glucose-resistance a regulator hypothetical protein regulatory protein cold shock protein oxidoreductase Matched length (a.a.) Similarity 100.0 100.0 70.5 52.5 58.2 60.7 72.8 O, 64.7 92.2 62.1 œ Identity 100.0 36.0 27.6 32.0 24.4 70.3 30.6 28.7 99.9 99.4 44.6 33.7 Rhizobium sp. NGR234 y4hM Streptomyces coelicolor A3(2) csp Corynebacterium glutamicum ATCC 13032 tnp Corynebacterium glutamicum gltB Corynebacterium glutamicum gltD Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv3698 Streptomyces reticuli cebR Homologous gene Lactobacillus brevis xyIT Rhizobium meliloti fixL Bacillus subtilis ccpA Bacillus subtilis yfiH Stellaria longipes sp.ccPA_BACSU Sp:XYLT_LACBR SP. Y4HM_RHISN SPLYFIH_BACSU sp:CSP_ARTGO SP.FIXL_RHIME gp:AB024708_1 gp:AF189147_1 gp:AB024708_ db Match gp: SRE9798 prf:2113413A pir.C70793 ORF (pb) Terminal <u>E</u> (a.a.) ON (S)

-			—,																	
5	Function		arabinosyl transferase	hypothetical membrane protein	acetoacetyl CoA reductase_	oxidoreductase			,	proteaphosphoglycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase
15	Matched length (a.a.)		1122	651	223	464				350	124		206	302		214	236	262	416	302
20	Similarity (%)		9.02	66.1	56.5	85.1				57.4	83.9		73.8	79.1		55.1	78.4	75.6	63.0	71.5
	Identity (%)		39.8	35.0	31.4	66.0				24.3	60.5		43.2	63.6		31.3	47.0	31.3	36.5	41.1
52 ST Continued)	Homologous gene		avium embB	tuberculosis	p. phbB	tuberculosis		:		or ppg1	tuberculosis		tuberculosis	tuberculosis rfbE	,	umefaciens (URA tlorf100	olitica rfbE	olitica rfbD	tubercutosis	ig3
	Homolog		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg1	Mycobacterium fuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rfbE		Agrobacterium tumefaciens plasmid pTi-SAKURA tlorf100	Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD	Mycobacterium tuberculosis H37Rv Rv3778c	Homo sapiens pig3
40	db Match		pri:2224383C	pir.D70697	prf:2504279B	pir. B70697				gp:LMA243459_1	sp:Y0GN_MYCTU		pir:H70666	pir.B70696		gp:AB016260_100	sp:RFBE_YEREN	sp.RFBD_YEREN	pir.F70695	gp:AF010309_1
	ORF (bp)	318	3471 p	1983	759	1464 p	234	202	453	1002 g	396 s	402	633	939	342	597	789 s	804 s	1173	954 g
45	Terminal (nt)	206385	203541	207007	209210	209992	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	220154
. 50	Initial (nt)	206068	207011	208989	209968	211455	211768	211777	212283	212656	213712	214121	214527	216100	216264	216712	217929	218746	218979	221107
	SEQ NO. (a.a.)	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
55	SEQ NO.	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230

	50	45		40	35	30		20	15	10	
						Table 1 (continued)					
.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match		Homologous gene	Identit (%)		Matched length (a.a.)	Function	
731	221712	221131	582								
732	221911	222207	297	PIR:A70606	Myco H37R	oacterium tuberculosis v Rv3571	35.0	51.0	78	probable electron transfer prot	Ę
733	223685	222210	1476	sp:ALST_BACSU	Bacill	us subtilis alsT	46.7	75.8	475	amino acid carrier protein	
3734	224336	225244	606						1		
3735	226324	225242	1083	gp:SYPCCMOEB_	 	thococcus sp. PCC 7942	43.8	70.1	368	molybdopterin biosynthesis pro moeB (sulfurylase)	tein
37.36	226767	226312	456	prf.2403296D	Arthre	bacter nicotinovorans	44.7	75.3	150	molybdopterin synthase, large subunit	
1737	227230	226760	471	sp:MOCB_SYNP7	Syne	thococcus sp. PCC 7942	33.5	63.3	158	molybdenum cofactor biosynth protein CB	esis
3738	227685	227218	468	pri:2403296C	Arthro	bacter nicotinovorans	61.7	84.4	154	co-factor synthesis protein	
3739	228887	227703	1185	gp:ANY10817_2-	Arthromoe	bacter nicotinovorans	34.5	58.6	377	molybdopterin co-factor synthe protein	sis
3740	229613	228891	723	prf.2403296F	Arthr	bacter nicotinovorans	44.1	70.5	227	hypothetical membrane proteil	
3741	230514	229711	804	prf.2403296E	Arthr mod/	bacter nicotinovorans	34.0	68.0	256	molybdate-binding periplasmic protein	
3742	230608	230928	321	pir.D70816	Myco H37F	bacterium tuberculosis v moaD2	37.5	70.8	96	molybdopterin converting facte	
3743	231842	230931	912	prf.2518354A	Therr	nococcus litoralis malK	34.3	60.8	365	maltose transport protein	
3744	232267	231848	420	sp:YPT3_STRCO	Strep ORF.	tomyces coelicolor A3(2)		76.9	121	hypothetical membrane protei	
3745	233282	232260	1023	sp:HIS8_ZYMMO	Zymo	monas mobilis hisC	37.3	65.8	330	histidinol-phosphate aminotransferase	
3746	233913	234818	906								
3747	235203	234910	294			ı					
3748	235290	235409	120								
	SEO NO. (3.4.) 3731 3732 3733 3734 3735 3736 3736 3736 3737 3736 3740 3745 3745 3746 3745 3746 3747 3746		221712 221712 221712 223685 224336 226324 226767 226767 226767 227685 227685 227685 227685 227685 227685 227685 223613 233913 233267 233267 233267 233267 233267 233267	8 \$ \$\frac{5}{6}\$\$ [intial] Terminal (int) (in	S	S	S	Table 1 (continued) Terminal ORF	Table 1 (continued) Terminal ORF Table 1 (continued) Tab	Table 1 (continued) Table 1 (continued)	Table 1 (continued) Table 2 (continued) Table 3 Table 4 (continued) Table 4 (continued) Table 5 (continued) Table 6 Table 6 Table 6 (continued) Table 6 Table 6 Table 7 (continued) Table 7 (continued) Table 6 Table 7 (continued) Table 6 Table 7 (continued) Table 7 (continued) Table 6 Table 7 (continued) Table 6 Table 7 (continued) Table 6 Table 7 (continued) Table 7 (continued) Table 6 Table 7 (continued) Table 8 (continued)

Table 1 (continued)

		r		-							- 1	1			-1				1	-		
. Function	transcription factor	alcohol dehydrogenase	putrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	glutamyi-tRNA synthetase		transposase		
Matched length (a.a.)	252	335	451	444		267	317	160	144			997	400	203			526	316		360		
Similarity (%)	57.1	0.99	38.1	68.5		59.6	69.1	73.8	70.1			45.7	0.89	62.1			49.6	63.3		55.0		
Identity (%)	29.4	34.0	21.5	30.9		33.2	46.1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
 Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
db Match	gp:BAU81286_1	sp:ADH2_BACST	sp:PUO_MICRU	prf.2305239A		prf:2320140A	pir.C70800	pir:B70800	gp:RHBNFXP_1			sp:YV34_MYCTU	Sp.TGT_ZYMMO	sp:YPDP_BACSU			pir.S65588	sp:SYE_BACSU		gp:PSESTBCBAD_		
ORF (bp)	762	1017	901	1350	174	1530	1020	525	417	201	351	2403	1263	738	1080	648	1437	879	066	1110	303	138
Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	256204
Initial (nt)	236212	236326	237345	238176	239772	239986	242902	242910	243494	244015	244466	244902	247310	249294	249428	250369	250503	251952	253819	255438	255794	256067
SEQ NO. (a.a.)	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
SEQ NO. (DNA)	249	250	251	252	253	254	255	256	257	258	259	260	261	292	263	264	265	266	267	268	269	270

branched-chain amino acid transport

203 143

68.0

30.5

Bacillus subtilis 1A1 azlC

SP:AZLC_BACSU

753

276829

3789 3788

72.0

37.1

Klebsiella pneumoniae Irp

Sp:LRP_KLEPN

462

276302 277581

276763

288

291

275957

276247

3787

287

leucine-responsive regulatory protein

extracytoplasmic function alternative sigma factor DNA polymerase III holoenzyme tau subunit DNA polymerase III epsilon chain UDP-N-acetylmuramyl tripeptide hypothetical membrane protein aspartate kinase alpha chain 5 aspartate transaminase Function recombination protein cobyric acid synthase hypothetical protein vegetative catalase 10 synthetase Matched 15 length (a.a.) 214 248 270 89 492 132 642 444 421 101 Similarity 100.0 60.6 55.2 99.8 76.4 72.4 S 74.3 61.7 % 8 53.1 63 20 Identity 100.0 99.5 52.9 41.6 42.5 38.3 31.3 31.2 25.7 Θ 8 9 98. 등 Mycobacterium smegmatis sigE Brevibacterium lactofermentum aspC 25 Corynebacterium glutamicum (Brevibacterium flavum) ATCC Corynebacterium glutamicum lysC-alpha Table 1 (continued) Mycobacterium tuberculosis H37Rv dnaQ Thermus thermophilus dnaX Heliobacillus mobilis cobQ Heliobacillus mobilis murC Homologous gene Bacillus subtilis yaaK Bacillus subtilis recR Bacillus subtilis katA 30 13032 orfX 35 BACSU sp:RECR_BACSU Sp:YAAK_BACSU sp:AKAB_CORGL sp:YLEU_CORGL gp:AF025391_1 db Match prf.2503462B prf:2503462C prf:2312309A gsp:W69554 pir:H70794 sp:CATV_ 40 1506 1269 1263 2325 339 654 1080 1053 1296 750 1434 579 342 ORF (bp) 630 717 867 260875 273542 276232 258529 262055 262546 264599 268258 269524 275871 Terminal 263298 270633 273194 257894 258596 261295 45 Ê 259312 269371 260987 261402 263295 264566 269124 270576 274120 274366 275891 256599 257900 265678 271761 258551 Initial (nt) 50 3775 3780 3782 3783 3784 3785 3786 3772 3774 3776 3777 3779 3781 3771 SEO NO (a.a.) 285 272 274 275 282 283 286 273 276 277 280 284 281

49

EP 1 108 790 A2

Function			netalloregulatory protein	rsenic oxyanion-translocation pump nembrane subunit	rsenate reductase				a+/H+ antiporter or multiple ssistance and pH regulation related rotein D	a+/H+ antiporter	a+/H+ antiporter or multiple ssistance and pH regulation related rotein A	_			anscriptional activator	vo-component system sensor stidine kinase	kaline phosphatase		hosphoesterase	hypothetical protein
Matched length (a.a.)			۳ 06	341 a	119 a	,			503 re P	119 N	824 re	-			223 tr	521 N	180 a		307 p	149 h
Similarity (%)			6.89	84.2	689				70.4	9.07	64.3				70.4	8.95	0.09		54.7	71.8
Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.6	26.7	28.3		26.1	37.6
nologous gene			um sp. As4 arsR	um sp. As4 arsB	ccus xylosus arsC				nus OF4 mrpD	ccus aureus mnhC	nus OF4 mrpA			•	eutrophus CH34	rium tuberculosis	is lactis MG1363 apt		otilis ykuE.	otilis yqeY
Ноп			Sinorhizobi	Sinorhizobi	Staphyloco				Bacillus fim	Staphyloco	Bacillus firn				Alcaligenes czcR	Mycobacter mtrB	Lactococcu		Bacillus sut	Bacillus subtilis yqeY
db Match			gp:AF178758_1	gp:AF178758_2	SP. ARSC_STAXY				gp:AF097740_4	prt.2504285D	gp:AF097740_1				sp:czcR_ALCEU	prf.2214304B	SP:APL_LACLA		pir. B69865	sp:YQEY_BACSU
ORF (bp)	324	315	345	1080	387	318	270	453	1530	381	2886	1485	603	864	999	1467	603	561	915	453
Terminal (nt)	277904	277987	278388	279893	280279	280349	280670	280949	281404	282937	283317	287857	287059	287966	289131	289777	292417	291273	292597	293991
Initial (nt)	277581	278301	278732	278814	279893	280666	280939	281401	282933	283317	286202	286373	287661	288829	289796	291243	291815	291833	293511	293539
SEQ NO. (a.a.)	3790	3791	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807	3808	3809
SEO NO. (DNA)	290	291	292	293	294	295	296	297	298	299	300	30.1	302	303	304	305	306	307	308	309
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) (bp) (aa)	SEQ Initial NO. Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial (a.a.) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (a.a.) Function (a.a.) 3790 277581 277904 324 324 324 277987 315 315 315 315 315 316 317 317 318	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 3.790 2.77581 27790.4 324 A. A	SEQ Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (SEQ Initial NO. (nt) Terminal (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) <	SEQ Initial (a.a.) Terminal (nt) (bp) QRF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) <	SEO Initial NO. (nt) Terminal (DRF (bp)) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEO (nti) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEC (nt) (nt) (nt) Initial (nt) (pp) OSF (pp) About (pp) (pp) About (pp) (pp) (pp) About (pp) (pp) (pp) About (pp) (pp) (pp) About (pp) (pp) <	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (mt) (mt) (mt) (mt) (mt) (mt) (mt) (mt)	SEO Initial (nt) Terminal (nt) ORF (nt) db Match (bp) Homologous gene (%) Identity (%) Similarity length (%) Matched (SEO Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (n1) (n1) (pp) 324 Pontity (%) (%)	SEG Inritial Terminal ORF db Match Homologous gene (%) (%) Matched (%) NO (n1) (bp) (bp)	SED Initial Terminal (mt) ORF (mt) Ab Match Homologous gene Identity (%) Similarity (%) Matched (%) M	SEO Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) <td>SEO Inrital Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) Apple (%) Matched (%)<!--</td--></td>	SEO Inrital Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) Apple (%) Matched (%) </td

	_												— т	—т						_		
5		Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein	- 1	long-chain-fatty-acid-CoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl ČoA oxidase	nodulation prolein	hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
15	ŀ	Matched length (a.a.)	782	71		50	149	440		534	127	251	254	394	153	272			207		240	211
20		Similarity (%)	77.1	63.4		96.0	89.9	68.9		59.9	65.4	72.5	52.0	66.5	72.6	72.4			65.7		77.1	58.3
		Identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
25	ontinued)	s gene	rae pon1	icolor A3(2)		coelicolor A3(2)	erculosis	12 shiA		A	licolor A3(2)	ပ္မ	s fluG	na atg6	nosarum nodN	berculosis	,				s pdg.	berculosis
30	Table 1 (continued)	Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coel SCH17.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
35		db Match	prf.2209359A N			gp.SCH17_10		ECOLI		sp:LCFA_BACSU E		sp:FABG_BACSU E	Sp.FLUG_EMENI E		sp:NODN_RHILV F			-	prf.2323349A		sp:UVEN_MICLU	
40				pir:S20912	<u> </u> 		pir:G70790	3 sp. SHIA_		+	gp:SCJ4_28	1	1	:) pir:F70790	3	•	-	01		9 pir.B70790
		ORF (bp)	2385	339	192	153	459	1353	609	1536	525	933	942	1194	471	843	1173	705	681	192	780	558
45		Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303099	304074	305263	305758	306700	305195	307504	306782	307727	308734	309302
50		Initial (nt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	303133	304070	305288	305858	306367	306800	307462	307918	307955	308745
		SEQ NO.	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829
55		SEQ NO.		311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329

EP 1 108 790 A2

conjugal transfer region protein hypothetical membrane protein hypothetical membrane protein ATP-dependent RNA helicase 5 phosphoserine phosphatase Function DNA topoisômerase I hypothetical protein hypothetical protein hypothetical protein hypothetical protein epoxide hydrolase cold shock protein serine proteinase 10 Matched 15 length (a.a) 319 192 280 56 349 396 262 764 287 201 977 59 67 Similarity 56.3 71.0 77.6 64.2 60.2 ω 8 52. 66.1 83 88 65. 66. 84 2. 20 dentity 38.6 29.6 32.9 33.8 30.7 35.0 30.5 33.8 47.5 61.7 8 46. 29 89 25 Corynebacterium sp. C12 cEH **SIS**5 Fable 1 (continued) Mycobacterium tuberculosis H37Rv Rv3658c Mycobacterium tuberculosis H37Rv Rv3657c Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv3656c Mycobacterium tuberculosis H37Rv Rv3646c topA Escherichia coli K12 yeaB Homologous gene Arthrobacter globiformis : csp Mycobacterium leprae MTCY20G9.32C. serB Bacillus subtilis yprA Escherichia coli trbB 30 H37Rv Rv3671c H37Rv Rv3660c H37Rv Rv3669 35 Sp:YPRA_BACSU Sp:YEAB_ECOLI sp:CSP_ARTGO db Match prf:2411250A pir:H70789 pir:S72914 pir:C70788 pir:F70789 pir.E70788 pir.C44020 pir:B70788 pir.A70788 pir:G70563 40 1023 2355 1191 2988 1023 993 615 345 201 (pp) 699 549 546 318 414 996 86 225 711 45 319013 318545 319335 319336 310038 311325 312909 316002 317132 318465 316350 322207 325897 326614 Terminal 311899 313625 317893 321992 318689 Ę 322216 318958 322910 310135 313457 314590 314980 316110 318492 318696 321690 309370 316964 317078 317920 318991 322007 325904 312891 <u>E</u> 50 3835 3840 3842 3843 3844 3845 3830 3841 3846 3832 3834 3836 3838 3848 3831 3837 3847 9 (a.a.) (DNA) 330 331 332 336 341 342 348 334 337 343 347 55

	٢	т		r	_		П		Т	ī		Т			П		T		Т		\neg	
5		· Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-{acyl-carrier-protein} reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase	
15		Matched length (a.a.)	263	423 E		144 h	172 h	314 ri	258 b	101 b	362 N		160 п	251 3	415 v	320 d	108 h	230 d		260 n	286 L	
20	-	Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9	66.5		57.3	54.4	
		Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1	
30 · 1 difference 20 · 1 diffe	lable 1 (columned)	Homologous gene	ella aurantiaca B17R20	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vImF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222	. 1	Escherichia coli K12 yefJ	Salmonella typhimurium ushA	
35	-	_	Stigmatella cyaB	Bacillus	,	Ureapla	Deinocc DR0202	Escheri	 	Azospir	Amycol		Rhodoc	Escheri	Strepto	Actinop	Mycoba H37Rv	Methanoc 1 MJ1222		Escheri	Salmon	
40		db Match	sp:CYAB_STIAU	sp.DP3X_BACSU		gp:AE002103_3	gp:AE001882_8	sp:RLUC_ECOLI	sp.BGLX_ERWCH	gp: AF090429_2	sp.FADH_AMYME		sp:YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322_1	prf.2512357B	pir:A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	SP:USHA_SALTY	
		ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162
45		Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	343451	345717	345814
50		Initial (nt)	327735	328283	329748	329933	330973	331552	332919	332965	335009	335805	336212	336781	337539	338793	340569	341327	341347	342417	343636	345975
		SEO NO (a.a.)	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868
55		NO.	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368

		·				,	_														
5	Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regutated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase
15	Matched length (a.a.)		343	285	192	343_ (206	325		423	461	708		258	363	453 k	102 р		613 C	06	394 li
20	Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	76.6	57.2	68.6		65.7	51.0	68.3
	Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
os Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rml©	Streptococcus mutans XC rmIB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A.19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
35 40	db Match		Sp.ADH_MYCTU H	AN	gp:D78182_5 SI	3MC	THETH T	prf:2510361A St		sp:Y17M_MYCTU M	gp:SC5F2A_19 St	prf.2502226A Sp		gp:SCF43_2 St	gsp:W56155 Cc	prf:2404346B Ac	prf:2404346A Ac		sp:CAPD_STAAU St	PRF:2109288X Vil	prf:2423410L Ca
	ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	1092	1095	1434	603	984	1812	942	1155
45	Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801
50	Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855	366832	368642	368647
	SEQ NO. (a.a.)	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888
55	SEQ NO. (DNA)	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388

	ſ		_									_							_	7	
5		- Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinyltransferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		transposase (insertion sequence IS31831)		hypothetičal protein	acetyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
15		Matched length (a.a.)	196	380	504	427	273	356	53		70		404	354	65	388			243	221	
20		Similarily (%)	75.0	69.2	69.8	64.6	68.5	57.3	79.3		94.3		57.4	60.2	53.0	89.7			65.0	62.0	
		Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7	-		32.1	33.0	
30	Table 1 (continued)	Homologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhH	
<i>40</i>		db Match	gp.AF014804_1 h	sp:CAPM_STAAU	pir:S67859	sp:MURA_ENTCL E	sp.MURB_BACSU E	gp:VCLPSS_9	prf 2211295A (pir:S43613		pir.G70539 - N	gsp:W37352	PIR:S60890	sp:UDG8_ECOLI E			gp:AF172324_3 E	gp:AB008676_13 E	
		ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
45		Terminal (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200	387463
50		Initial (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
		SEQ NO. (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	3906	3907
55		SEQ NO. (DNA)	386	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407

5		
10		
15		
20		
25		
3 <i>0</i>		
35		
40		
45		
50		

Table 1 (continued)

Function	dihydrolipoamide dehydrogenase	UTPglucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprôtein	succinate dehydrogenase subunit B					•	hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter
th (,															
Matched length (a.a.)	469	295	153	477	230	809	258						259	431			197		499
Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
Identity (%)	9.66	41.7	43.8	57.0	34.8	32.4	27.5				_		26.3	32.7			26.4		36.1
Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR		Streptomyces fradiae Ī#2717 urdJ
db Match	gp:CGLPD_1	pir.JC4985	gp:PAU49666_2	pir.E70828	gp:SCM10_12	pir.A27763	gp:BMSDHCAB_4		-				\$_87558.qg	sp:YJIN_ECOLI			sp:TCMR_STRGA		gp:AF164961_8
ORF (bp)	1407	921	498	1422	77.1	1875	837	336	261	630	96	339	975	1251	420	303	879	204	1647
Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
Initial (nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400038	400473	401050	401150
SEQ NO. (a.a.)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
SEQ NO. (DNA)	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

	[П						В					Ë					
5		Function	-	formyltetrahydrofolate deformylase	deoxyribose-phosphate aldolase	,	j	itein	stein		cation-transporting P-type ATPase		a-glucosidase	hemin-binding penplasmic protein		ABC transporter ATP-binding protein	itein	ıtein			
10		ι <u>τ</u>	tránsporter	formyltetrahydro	deoxyribose-ph		1	hypothetical protein	hypothetical protein	1	cation-transport		glucan 1,4-alpha-glucosidase	hemin-binding p	ABC transporter	ABC transporter	hypothetical protein	hypothetical protein			
15		Matched length (a.a.)	508	286	208	1		280 -	92		748		626	348	330	254	266	258			
20		Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	90.3	85.0	56.4	61.6			
		Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
25	Table 1 (continued)	us gene	Jiae T#2717	sp. P-1 purU	. Jos		1	vium GIR 10	iberculosis		prae ctpB		erevisiae sta1	diphtheriae	diphtheriae	diphtheriae	licolor C75A	elicolor C75A		-	
30	Table 1 (Homologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtilis deoC			Mycobacterium avium GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctp8		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A 17c			
35								ΣE	ΣI												
40		db Match	gp:AF164961_8	sp:PURU_CORSP	sp.DEOC_BACSU		d	prf:241 ³ 441K	pir.A70907		SP:CTPB_MYCLE		Sp:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
		ORF (pp)	1632	912	999	150	897	867	300	900	2265	450	1863	1077	1068	813	957	837	810	813	201
45		Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
50		Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
		SEQ NO.	3927	3928	3929	3930	3931	3932	3933	3934	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
55		SEQ NO.	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

EP 1 108 790 A2

5		- Function	UDP-N-acetylpyruvoylglucosamine reductase				long-chain-fatty-acidCoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetica <u>l</u> protein	
15		Matched length (a.a.)	356				558	416 ti	246 p	417 h	231 h		921 . A	269	30E	302 h	269	394 m	55 h	
20		Similarity (%)	58.4				68.1	58.7	84.2	74.8	6'06		60.7	6.99	57.8	57.3	100.0	52.0	94.6	
		Identity (%)	30.1				35.5	33.9	7.07	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
25	ntinued)	gene	0012 murB					olor	olor A3(2)	s senX3	s BCG		olor A3(2)	rculosis	jinosa ppx	rculosis	ıtamicum	I ORF71	91	
30	Table 1 (continued)	Homologous gene	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
40		db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp:SC2G5_6	sp.PMGY_STRCO	prf:2404434A	prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf.2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp:D88733_1	pir.S72921	
		ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	810	1122	198	219
45		Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50		Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
		SEQ NO. (a.a.)	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55		SEQ NO.	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463

	1			1															a)			e e	
10		- Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cal operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	
15		Matched length (a.a.)	29			296	74		455	308		321	417	309	282		363		578		347	486	
20		Similarity (%)	100.0			77.4	66.2		74.3	75.3		57.6	72.2	67.9	98.6		9.89		29.5		6'69	71.6	
		Identity (%)	89.7			51.0	40.5		44.4	50.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
<i>25</i>	lable i (collinaed)	sr gene	licolor			prae serB	berculosis		prae hemA	prae hem3b		oaceticus	12 shiA	a qa4	glutamicum		12 potG		ins sfuB		senteriae bitĀ	orae cysG	
30) i aluei	Homologous gene	Streptomyces coelicolor SCE68.25c	1		Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterlum leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitĀ	Mycobacterium leprae cysG	
35			St S(-	ΣΣ				Σ			ŭ		υ¥	:					ā	Ž	
40		db Match	gp:SCE68_25			pir:S72914	sp:YV35_MYCTU		SP:HEM1_MYCLE	pir:S72887		SP. CATM_ACICA	SP:SHIA_ECOLI	Sp:3SHD_NEUCR	gp:AF124518_2		Sp:POTG_ECOLI		sp:SFUB_SERMA		gp:SHU75349_1	pir:S72909	
		ORF (bp)	66	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
45		Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
50		Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758	444185	446538	447670	449179	449714	450826	450849	451895	452661	454450
		SEQ NO. (a.a.)	3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
55		SEQ NO. (DNA)	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484

					·		-						,								
5		Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomūtase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
15		Matched length (a.a.)	337			858		364 1	464	425	161	208	245	533 h	338		144 tr	90 Z		82 h	301
20		Similarity (%)	83.1			56.5		76.7	59.9	83.5	62.7	71.2	85.3	76.0	8.77		69.4	72.2		78.1	61.5
		Identity (%)	8.09			27.4		55.0	28.0	61.7	28.0	44.7	53.5	- 50.7	44.1		38.9	31.1		39.0	33.6
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB	11	Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae hemL	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR	·	Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
40		db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE	.1	sp: DCUP_STRCO	sp. PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir.A70545	pir.B70545	pir.C70545	pir:D70545		pir:G70790	prf:2420312A		pir.F70545	sp:MENA_ECOL!
		ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
45		Terminal (nt)	455983	456597	457150	429900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
50		Initial (nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
		SEQ NO. (a.a.)	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
55		SEQ NO. (DNA)	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200	501	502	503

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

	_							·	_	7	_							,	
Function	glycosyl transferase -	malonyl-CoA-decarboxylase -	hypothetical membrane protein_	ketoglutarate semialdehyde – dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphate transporter			naphthoate synthase	peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
Matched length (a.a.)	238	421	139	520	303	293	94		267				410			293	202	11	335
Similarity (%)	62.6	51.5	65.5	0.97	75.6	66.2	64.9		54.7				83.2		!	70.3	82.7	68.8	76.7
Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				60.0			48.5	57.9	37.7	54.0
Homalogous gene	Bacteroides fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yqjF	Pseudomonas putida-	Pseudomonas putida KDGDH	Bacillus subtilis 168 atsR	Mycobacterium tuberculosis H37Rv Rv0543c	ı	Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA	ı		Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex agolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOLI	pir.S27612	sp:KDGD_PSEPU	Sp:ALSR_BACSU	pir:B70547		gp:SSP277295_9	,			pir.D70547			sp: MENB_BACSU	gp:AE001957_12	pir.C70304	pir.D70548
ORF (bp)	864	1323	411	1560	948	879	315	444	750	417	378	261	1275	222	306	957	603	309	1014
Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
SEQ NO. (a.a.)	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
SEQ NO.	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522

		T .					т		,						
5	Function	2-oxoglutarate decarboxylase and 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosamal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
		Succession synt	hyp	aph form	D-se trans	ubiq bios		oxide	hept:	prep	trans	508	50S	regul	4-am
15	Matched length (a.a.)	909	148	408	447	237		412	316	=======================================	318	145	236	564	443
20	Similarity (%)	54.0	64.9	54.2	89.9	66.7		76.7	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
25 (Perioditi	gene	0	culosis	culosis	cycA	ubiE		culosis	philus	amicum	amicum	amicum	amicum	or -	ulosis
os Table 1 (continued)	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glufamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 mIK	Corynebacterium glutamicum ATCC 13032 rpIA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
35	db Match	sp:MEND_BACSU									3		S.		
40	ф	sp:MENC	pir:G70548	pir:H70548	sp:CYCA_ECOLI	sp:UBIE_ECO⊔		pir.D70549	sp:HEP2_BACST	gp:AF130462_2	gp:AF130462_	gp:AF130462_4	gp:AF130462_	gp:SC5H4_2	sp.GABT_MYCTU
	ORF (bp)	1629	441	1239	1359	069	699	1272	1050	333	954	435	802	1512	1344
45	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920 1
50	Initial (nt)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
	SEQ NO. (a.a.)	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
55	SEQ NO. (DNA)	523	524	525	526	527	528	529	530	531 ,	532 4	533 4	534 4	535 4	536 4

		,															
5	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12	h.	hypothetical membrane protein	ONA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		DNA-binding protein	hypothetical protein
15	Matched tength (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
20	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
	Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
Table 1 (continued)	s gene	2 gabD	ense carR	2 0341#7	erculosis tpG	ans P49		us N2-3-11	erculosis L		erculosis	erculosis 18	erculosis IC	erculosis		color A3(2)	erculosis
so Table 1 (c	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A, 15c	Mycobacterium tuberculosis H37Rv RV2908C
<i>35</i>	db Match	Sp.GABD_ECOLI	GP.ABCARRA_2	SP.TYRP_ECOLI	SP.CTPG_MYCTU	sp.P49_STRLI		sp.RL10_STRGR	SP.RL7_MYCTU		pir:A70962	SP.RPOB_MYCTU	SP.RPOC_MYCTU	GP:AF121004_1		9p:SCJ9A_15	sp:YT08_MYCTU N
	ORF (bp)	1359 sp:(468 GP	1191 sp.T	1950 sp.C	1413 sp:F	603	513 sp.F	384 sp.F	138	972 pir.A	3495 sp.R	3999 sp:R	582 GP.	180	780 gp:S	798 sp: Y
45	Terminal C (nt)	504283 1	503272 4	505569 1	507647	509081	509696	510510 5	510974 3	510989 1	512507 9	516407 34	520492 39	518696 5	520850 1	521644 7	521679
50	Initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
	SEQ NO (a.a.)	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
55	SEQ NO.	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

EP 1 108 790 A2

ferric enterobactin transport protein ferric enterobactin transport protein ferric enterobactin transport ATPbutyryl-CoA acetate coenzyme A transferase 5 30S ribosomal protein S12 30S rlbosomal protein S10 30S ribosomal protein S19 50S ribosomal protein L23 30S ribosomal protein S7 50S ribosomal protein L4 50S ribosomal protein L2 50S ribosomal protein L3 Function O elongation factor binding protein 10 poprotein 15 Matched length 329 212 709 335 212 280 258 145 တ္တ 121 3 44 5 92 Similarity 77.8 78.0 90.6 94.8 80.6 79.3 89.6 92.9 99.0 90.1 98.9 83.7 8 97 88 20 Identity (%) 74.0 87.0 90.9 56.0 45.6 48.1 66.5 71.2 56.2 84.2 80.7 58. 25 Mycobacterium bovis BCG rplD Mycobacterium bovis BCG rplW Mycobacterium bovis BCG rplB Mycobacterium bovis BCG rplC Mycobacterium intracellulare Table 1 (continued) Thermoanaerobacterium thermosaccharolyticum actA Mycobacterium tuberculosis H37Rv Rv0705 rpsS Mycobacterium smegmatis LR222 rpsG Planobispora rosea ATCC 53733 rpsJ Escherichia coli K12 fepC Escherichia coli K12 fepG Escherichia coli K12 fepD Homologous gene Micrococcus luteus fusA Chlamydia trachomatis 30 35 gp:CTACTAGEN_1 Sp. RL23_MYCBO sp:RS19_MYCTU sp:RS10_PLARO sp. FEPG_ECOLI sp.RS7_MYCSM Sp:FEPC_ECOLI sp.FEPD_ECOU Sp:RL4_MYCBO sp:RS12_MYCIT sp:RL3_MYCBO sp:RL2_MYCLE sp:EFG_MICLU db Match GSP: Y37841 40 2115 1035 1035 2160 228 792 516 303 654 303 840 276 유 (학 366 465 144 153 729 654 687 327 Terminal (nt) 526010 526894 528768 528779 534090 534743 535048 535915 45 526013 529592 530748 532523 533401 536210 523533 527607 534746 523059 523911 533401 528040 534746 535076 522694 523069 523896 527759 529570 530626 531782 532008 533099 533437 534087 534090 535935 526070 526156 527121 535072 Initial (nt) 50 4055 4058 4059 4060 4063 4069 4070 4071 4072 4053 4054 4056 4057 4061 4062 4064 4065 4066 4067 406B SEO. (a.a.) SEO NO. 960 554 555 556 557 558 559 563 564 566 267 568 569 570 562 553 561 55

535899

536183

4073

	1						_																r	
5		Function	otein L22	otein S3	otein L16	oteln L29	otein S17				otein L14	oteln L24	otein L.5		2,5-diketo-D-gluconic acid reductase		genase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
10		. Fu	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluc		formate dehydrogenase chain D	molybdopterin-guani biosynthesis protein	formate dehydrog			ABC transporter		
		Matched length (a.a.)	109	239	137	29	82				122	105	183		260		298	94	756			624		
20		Similarity (%)	2.18	91.2	88.3	1.88	0.68			-	95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6		
		Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3			26.9		
25	Table 1 (continued)	ans gene	berculosis V	vis BCG rpsC	vis BCG rpIP	ivis BCG rpmC	wis BCG rpsQ				perculosis N	serculosis X	s rplE		ds.		enes fdhD	icolor A3(2)	i i :			ppD		
<i>30</i>	Table 1 (Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rplP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rplE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
35		٩													-		_			 				
40		db Match	sp.RL22_MYCTU	sp:RS3_MYCBO	Sp. RL 16_MYCBO	sp:RL29_MYCBO	sp:RS17_MYCBO				sp:RL14_MYCTU	sp:RL24_MYCTU	SP:RL5_MICLU		sp:2DKG_CORSP		SP. FDHD_WOLSU	gp:SCGD3_29	Sp.FDHF_ECOLI			sp:YC81_MYCTU		
		ORF (bp)	360	744	414	228	276	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1146	1074
45		Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
50		Initial (nt)	536217	536579	537328	537744	537977	538267	838698	539413	539741	540112	540426	541048	542896	543412	544329	544670	546889	547329	248990	550651	551844	552927
	i	SEQ NO. (a.a.)	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
55		SEQ NO.	574	575	576	572	578	579	580	581	582	583	584	585	586	587	588	589	290	591	592	593	594	595

						,										•								
5		Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8 📑	50S ribosomal protein L6	50S ribosomal protein L18-	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
45		ed .						308	208						ald			red	2Fe	p-c	hyp	bho	pho	cyto
15		Matched length (a.a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	90	629	378	422
20		Similarity (%)	50.4	66.7	5.76	2.78	6'06	88.3	76.4	87.4		68.8		52.0	71.5			71.6	66.4	8.02	96.0	45.0	2.99	65.2
		Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
25	Table 1 (continued)	ıs gene	gidus AF1398	durans	S	s	s rplR _	s rpsE	12 rpmJ	s rplO		icolor msdA		ense carR	lochrous 5			redA2	ulatus fdxE	ida cymB	K1 APE0029	IS Vc1 DSM	is Vc1 DSM	ropolis thcB
30	Table 1 (c	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces coelicolor msdA	i i	Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis theB
35					-	_					-							0,				<u> </u>	п.	<u> </u>
40		db Match	pir.E69424	gp:AE001931_13	pir.S29885	pir.S29886	sp:RL18_MICLU	SP.RS5_MICLU	SP.RL30_ECOLI	Sp:RL15_MICLU		prf.2204281A		GP: ABCARRA_2	prf.2516398E			prf:2411257B	prf.2313248B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	prf.2104333G
		ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
45		Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
50		Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560634	561368	562632	562633	562963	563736	563871	565471	566759	568088
		SEQ NO.	4096	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
55		SEQ NO.	296	597	598	599	909	601	602	603	604	605	909	607	809	609	610	611	612	613	614	615	616	617
											_	-								_				

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	transcriptional repressor	adenylate kinase	,	methionine aminopeptidase		transtation initiation factor tF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein	,		hypothetical protein	cett elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein
	Matched length (a.a.)	256	184		253		72	122	134	132	311		122	265	786			485	505	423	100
	Similarity (%)	0.99	81.0		74.7		96.0	91.0	93.3	93.9	77.8		77.t	61.1	51.2			53.8	50.9	56.0	59.0
	Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
Table 1 (continued)	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus Inteus adk		Bacillus subtilis 168 map =		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV DtM	Escherichia coli K12 cfa_	Streptomyces coelicolor A3(2) SCL2.30c
	db Match	prf.2512309A	sp:KAD_MICLU		sp:AMPM_BACSU	-	pir.F69644	prf:2505353B	sp.RS11_STRCO	prf.2211287F	sp.RPOA_BACSU		sp:RL17_ECOLI	sp.TRUA_ECOLI	pir.G70695			pir.A70836	sp:DIM_ARATH	sp:CFA_ECOLI	gp:SCL2_30
	ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	303	1257	1545	1353	426
	Terminal (nt)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	582662	584228	585620	586248
	Initial (nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684	584268	585823
	SEQ NO.	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
	SEQ NO.	618	619	620	T		623	624	625	929	627	628	629	630	631	632	633	634	635	636	637

5	- Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT- 6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
15	hed oth			i								, 							
	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
20	Similarity (%)	58.0	9.03	38.4				6.69	81.3	82.1	72.4	76.4		45.6			72.2	68.5	78.6
	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3		-	44.0	41.6	48.7
25 Ontinued)	s gene	18	icolor A3(2)	erculosis				erculosis	erculosis	icolor A3(2)	icolor A3(2)	reus		PCC6803			rae	erculosis If	erculosis
& Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 slr1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
<i>35</i>		 	တ တ	≥I				≥I	2			S		S			≥ 8		
40	db Match	SP:ELYA_BACAO	pir.T10930	pir.E70977				pir.C70977	prf:2111376A	sp:RL13_STRCO	sp:RS9_STRCO	prf.2320260A		pir.S75138	-		pir:S73000	sp:ALR_MYCTU	sp:Y097_MYCTU
	ORF (bp)	1359	1371	3567	822	663	96	324	288	441	546	1341	303	1509	573	234	855	1083	495
45	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
50	Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
	SEQ NO.	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
55	SEQ NO.	638	629	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

EP 1 108 790 A2

5	•
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyltransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
	Matched length (a.a.)	550	411	207	132	319	571			100	537	92	138	94	174		116	504	146
	Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		69.8	93.9	53.0
	Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			76.0	63.3	20.0	34.0	64.9	55.2		41.4	80.8	39.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1		GP:MSGTCWPA_3 Mycobacterium tuberculosis	Mycobacterium smegmatis whiB3	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
	db Match	sp.YIDE_ECOLI	gp:PSJ00161_1	sp:Y098_MYCTU	sp:RIMI_ECOLI	sp:GCP_PASHA	sp Y115_MYCTU			sp:CH10_MYCTU	Sp.CH61_MYCLE	GP:MSGTCWPA_1	1	gp:AF073300_1	sp.Y09F_MYCTU		Sp:Y09H_MYCLE	gp:AB003154_1	PIR:F71456
	ORF (bp)	1599	1239	675	507	1032	1722	429	453	297	1614	255	1158	297	564	1026	378	1518	627
	Terminal (nt)	604409	605708	606392	606898	607936	609679	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	615605
	Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
	SEQ NO.	4156	4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
	SEQ NO. (DNA)	656	657	658	659	099	661	662	663	664	999	999	299	899	699	670	671	672	673

EP 1 108 790 A2

					:									,							
5		Function	enase	hypothetical membrane protein	glutamate synthetase positive regulator	. ·				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				otein	otein		otein	hypothetical membrane protein	
10			IMP dehydrogenase	hypothetical m	glutamate synt regulator	GMP synthetase				hypothetical m	two-component histidine kinase	transcriptional regulator or extracellular proteinase re regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical m	
15		Matched length (a.a.)	381	274	262	517	•			. 513	411	218				201	563		275	288	
20		Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
		Identity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
25 :	lable 1 (continued)	us gene	TCC 6872	12 ybiF	ţc	÷ = s				licolor A3(2)	licolor A3(2)	38 degU				berculosis	berculosis		licolor A3(2)	odurans	
·	lable 1 (Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium _ ammoniagenes gūaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
40		db Match	gp:AB003154_2	sp:YBIF_ECOLI	prf:1516239A	sp.GUAA_CORAM	=			gp:SCD63_22	gp:SC6E10_15	sp:DEGU_BACSU				pir.B70975	pir.A70975		gp:SC588_20	gp: AE001935_7	
		ORF (bp)	1122	921	606	1569	663	441	189	1176	1140	069	324	489	963	825	1590	099	861	861	390
45		Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
50		Initial (nt)	616973	619013	619086	620004	620926	621717	62229	623635	623800	624985	625677	626558	627539	627727	628551	630810	630949	632684	633079
		SEQ NO. (a.a.)	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
55		SEQ NO. (DNA)	674	675	929	677.	678	629	089	681	682	683	684	685	686	687	688	689	069	691	269

	_																			—,	
5		Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranyigeranyi pyrophosphale (GGPP) synthase	transcriptional regulator (MarR famity)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
15		Matched length (a.a.)	95	524	288	722	367	188	145	462	497	205	897	223		206		346	268	1101	159
20		Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
		Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
25	(panu	90	'n	VTCC	\TCC	r A3(2)	뜊		OS60 bic		чтсс	1K	r A3(2)	δ		٥		abc	a)	аE	ır A3(2)
<i>30</i> ·	Table 1 (continued)	Homologous gene	Mycobacterium marinum	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A.29c	Brevibacterium linens crtE	Brevibacterium linens	Citrobacter freundii blc OS60 blc	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
<i>35</i> <i>40</i>		db Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF139916_11	gp.AF139916_14	sp.BLC_CITFR	gp:AF139916_1	gp:AF139916_5	gp:AF155804_7	gp:SCE25_30_	prf:2420410P		prf.2320284D		sp:ABC_ECOLI	sp.HLPA_HAEIN	prf:2517386A	gp:SCE126_11
		ORF (bp)	396	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1080	897	3012	447
45		Terminal (nt)	633079	633532	635178	636089	638317	640208	640232	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
5 0		Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644026	647590	648309	648467	649105	649342	650193	651288	651601	654676
		SEQ NO.	4193	4194	4195	4196	4197	4198	4199	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
55		SEQ NO.	693	694	695	969	697	869	669	700	701	702	703	704	705	90/	707	708	709	710	711

EP 1 108 790 A2

	ſ	 -		-1	' 1	 1		\overline{a}				—т			\neg						_
5		Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homosenne O-acetyltransferase	O-acetylhomoserine sulfhydrylase	carbon starvation protein		hypothetical protein	
15		Matched length (a.a.)	468		203	264	'	245	157	357	151	278	_80	489		379	429	069		50	
20		Similarity (%)	26.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		0.99	
		Identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	67.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
25	ontinued)	s gene	color A3(2)		ercutosis ?	color A <u>3</u> (2)		idus AF1676	color A3(2)	iphtheriae	erculosis IU	erculosis D	ae.	color A3(2)		lutamicum	netY	2 cstA		2 yjiX	
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCE9.01		Mycobacterium tuberculosis H37Rv Rv2788 sirR	Streptomyces coelicolor A <u>3</u> (2) SCG8A.05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spo∪	Mycobacterium tuberculosis H37Rv Rv3356c folD	Mycobacterium leprae MLCB1779.16c	Streptomyces caelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 cstA		Escherichia coli K12 yjiX	
35			SS		ΣI	SS		⋖	SS	0 =	≥ I	≥ I	22	တ တ		OE		Ш		Ш	\dashv
40		db Match	gp:SCE9_1		pir.C70884	gp.SCG8A_5	ļ	pir.C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779_8	gp:SC66T3_18		gp:AF052652_1	prf.2317335A	SP:CSTA_ECOLI	;	sp:YJIX_ECOLI	
		ORF (bp)	1413	738	699	798	138	774	492	966	471	852	255	1380	963	1131	1311	2202	609	20	609
45		Terminal (nt)	656534	260559	657215	657205	658142	658928	659424	660538	660650	662017	562374	662382	664126	665183	666460	670465	669445	670672	671045
50		Initial (nt)	655122	655834		658002	658005	658155	658933	659543	661120	661166	662120	663761	665088	666313	022299	668264	670053	670472	671653
		SEQ NO.	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
55		SEQ NO. (DNA)	712	713	714	715.	716	717	718	719	720	721	722	723	724	725	726		728	729	730

EP 1 108 790 A2

ABC transporter ATP-binding protein catabolite repression control protein iron-regulated lipoprotein precursor chloramphenicol resistance protein carboxy phosphoenolpyruvate -mutase vibriobactin utilization protein 5 L-malate dehydrogenase Function hypothetical protein hypothetical protein hypothetical protein regulatory protein citrate synthase ABC transporter ABC transporter 10 Matched length 15 (a.a) 317 380 338 226 395 219 281 284 269 339 23 330 356 303 Similarity (%) 76.2 81.3 62.3 67.5 62.8 54.2 86.4 86.4 9.69 85.8 82.3 85.1 88 58. 20 Identity (%) 34.0 71.0 37.6 26.1 63.0 56.1 25.4 55.4 53.1 32.2 30.4 56.2 56 Bacillus stearothermophilus T-6 uxuR 25 Methanothermus fervidus V24S mdh Streptomyces venezuelae cmlv Pseudomorias aeruginosa crc Table 1 (confinued) Streptomyces hygroscopicus Corynebacterium diphtheriae irp1D Corynebactenum diphtheriae irp1C Corynebacterium diphtheriae irp1B Vibrio cholerae OGAWA 395 viuB Corynebacterium diphtheriae irp1 Mycobacterium tuberculosis H37Rv Rv1130 Haemophilus influenzae Rd HI1240 Mycobacterium smegmatis ATCC 607 gltA Escherichia coli K12 yneC Homologous gene 30 35 Sp:CISY_MYCSM Sp:YNEC_ECOLI SP:MDH_METFE gp:CDU02617_1 Sp:YICG_HAEIN sp:VIUB_VIBCH gp:AF176902_3 gp:AF176902_2 gp: AF176902_1 db Match prf:1902224A prf.2202262A prf.2222220B prf:2514353L pir:C70539 40 1149 1272 104 1050 912 192 1059 ORF (bp) 930 672 720 897 912 954 702 966 657 807 Terminal (nt) 674799 676218 45 672653 67357g 675846 675082 681846 683876 686380 687346 674756 672710 688335 677047 680131 681040 688007 682871 676122 688141 676937 684925 685109 671700 672665 673608 673639 674990 675175 677748 681846 682904 683866 586435 687351 681027 Initial (nt) 50 4232 4233 4234 4235 4236 4239 4245 SEO No. 4231 4237 4238 4240 4241 4242 4243 4244 4246 4248 4247 (DNA) 735 736 737 739 740 743 744 745 746 748 731 732 733 734 742 738 741 747 55

5	Function		ferrichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		penicillin-binding protein 6B precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, lacl family	N-acyl-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
15	Matched length (a.a.)		244 fe	346 he	331 tn	278 hy		301	417 hy	323 hy			209 ur	77 ba	385 N.	561 pt	468 di	1140 py	263 hy	127 hy
20	Similarity (%)		73.8	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66.2	80.5	53.8	65.0	100.0	60.1	6.9
	Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.6	51.4	22.1	31.6	100.0	26.2	30.7
os Sapela (Continued)	s gene		diphtheriae	itica hemU	12 trpS	12 yhjD		iurium LT2	berculosis	licolor A3(2)			ddn	licolor A3(2)	berculosis imiA	n BER manB	canii ATCC	glutamicum	berculosis	licolor A3(2)
Table 1 (0)	Homologous gene		Corynebaclerium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus factis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
35			6	7					ΣÏ					क्र छ	Σï		i	\ \frac{1}{2} \frac{1}{2}		·
40	db Match		gp:AF109162_	pir.S54438	sp:SYW_ECOLI	Sp:YHJD_ECOL!		sp:DACD_SALTY	pir.F70842	gp:SC6G10_8			Sp.UPP_LACLA	gp:SC1A2_11	pir.H70841	Sp:MANB_MYCPI	Sp.DLDH_HALVO	pri:2415454A	sp:YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	780	1017	1035	1083	903	1137	1227	858	195	351	633	384	1182	1725	1407	3420	870	486
45	Terminal (nt)	688916	689917	690706	692916	694110	695074	695077	696769	698065	699266	698922	699913	700381	703262	700384	704811	708630	709708	710278
50	Initial (nt)	689890	969069	691722	691882	693028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108	703405	705211	708839	709793
	SEQ NO. (a.a.)	4249	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4267
55	SEQ NO (DNA)	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767

hypothetical membrane protein 6 detergent sensitivity rescuer or carboxy phosphoenolpyruvate detergent señsitivity rescuer carboxyl transferase PrpD protein for propionate catabolism thiosulfate sulfurtransferase 5 Function thioredoxin reductase carboxyl transferase hypothetical protein citrate synthase 10 mutase Matched length 15 305 (a.a) 381 718 383 456 225 352 133 192 543 537 521 96 63 Similarity 100.0 100.0 100.0 69.0 59.3 74.5 47.0 72.6 79.8 66.2 69.8 S 6 76. 49 8 63. 20 dentity 100.0 44.6 24.6 42.5 39.0 54.6 40.8 31.8 24.0 61.1 33.3 99.8 51.1 ø, 8 35.1 99 Aeropyrum pernix K1 APE0223 25 Corynebacterium glutamicum ATCC 13032 thtR Mycobacterium leprae B1308-Corynebacterium glutamicum AJ11060 dtsR1 Corynebacterium glutamicum Salmonella typhimurium LT2 prpD Streptomyces hygroscopicus Campylobacter jejuni Cj0069 Fable 1 (continued) Mycobacterium tuberculosis H37Rv Rv1129c Mycobacterium tuberculosis Mycobacterium smegmatis ATCC 607 gttA Escherichia coli K12 yceF Homologous gene Bacillus subtilis IS58 trxB Bacillus subtilis 168 yciC Mycobacterium leprae MLCB4.27c H37Rv Rv1565c AJ11060 dtsR2 30 cá-211 35 62 sp:TRXB_BACSU sp:CISY_MYCSM Sp:THTR_CORGL sp:PRPD_SALTY ECOLI gp:AB018531_2 gp:CJ11168X1_ prf.2323363CF gp:MLCB4_16 db Match prf:1902224A PIR:E72779 pir:G70539 pir:B69760 pir.B70539 sp:YCEF_ pir.JC4991 40 1086 1323 2148 1494 1182 1359 1065 1611 1629 ORF (bp) 924 888 378 375 246 903 414 591 246 710520 712647 716286 720547 722841 722925 725559 725872 726470 726742 728696 714231 716687 Terminal 715145 714380 716283 718350 720016 45 3 714258 718009 718105 721449 723412 726462 726715 711605 711724 712738 716660 723338 714757 715102 718658 721777 728352 730324 Initial (nt) 50 4275 4276 4278 4285 4268 4269 4270 4272 4273 4274 4277 4279 4280 4281 4283 4282 (a.a.) 4284 SEO S 4271 (DNA) 768 772 775 774 776 779 780 782 692 783 785 771 781 g 777 784 55

EP 1 108 790 A2

5	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein			5'-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate.monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
		bifun repre carbo	һуро	5'-ph imida	X +-			5'-ph imida	hypo	hуро	nitrik	trans	aluc	ηλ		hypo	Ауро	
15	Matched length	293	165	394	628			147	152	255	426	303	256	96		175	142	
20	Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	70.6	73.0	52.5	64.8	68.8		66.3	76.8	
	Identity (%)	28.7	23.0	0.69	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
<i>25</i>	le le	d	osis	872				872	E	A3(2)	TCC .		A 1030	SB8		В	A3(2)	
Table 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzil ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium tAM 1030 9dhll	Thermotoga maritima MSB8 TM1408		Bacillus subtills 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
40	db Match	sp.BIRA_ECOL!	pir.G70979	sp.PURK_CORAM	sp:KUP_ECOLI			sp:PUR6_CORAM	gp:APU33059_5	gp:SCF43A_36	sp:NTAA_CHEHE	pir.A69426	sp:DHG2_BACME	pir.A72258		sp:YWJB_BACSU	gp:SCJ9A_21	
	ORF (bp)	864	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	267	420	222
45	Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	736351	737204	737216	738673	740228	741765	742195	741818	742828	742831
50	Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409	743052
	SEO	4286	4287	4288	4289	4290	4291	4292	4293	4294	4295	4296	4297	4298	4299	4300	4301	4302
55		786	787	788.	789	790	791	792	793	794	795	967	797	798	799	800	108	802

EP 1 108 790 A2

										,												
5		Function	trehalose/maltose-binding protein	trehalose/maltose-binding protein		trehalose/maltose-binding protein	1	ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	ONA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
15		Matched length (a.a.)	27.1 t	306 t		417 (-	332 - (1783			240	720	701					2033	869	873
20		Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
		Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
25	ned)	e e	nalG	nalF		nalE .		» Xis		ıs R1			losis	jhp0462	Ð	1					33.7	- bA
30	Table 1 (continued)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135	1		Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces coelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC 100 H1130	Escherichia coli K12 hepA
35 40		db Match	prf:2406355C	prf:2406355B		prf.2406355A		prf.2308356A		pir.B75633		1	pir.E70978	pir.C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	sp:HEPA_ECOLI
		ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
45		Terminal (nt)	743067	743900	745046	745622	748442	747031	748814	748886	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
50		Initial (nt)	743900	744931	745513	746893	748020	748026	748446	753685	757063	757395	758262	760796	762468	762497	762730	762977	768191	769443	774142	777035
		SEQ NO.	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
55		SEQ NO.			! 	908	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822

EP 1 108 790 A2

																		-	
5		Function	nie	icNAc- prenol, a-3-L- grase	phate se		gin	ii	ıutase	in.	phate isomerase			onsive protein		nocysteine			e
10		Fu	hypothetical protein	dTDP-Rha:a-D-GlcNAcdiphosphoryl polyprenol, rhamnosyl transferase	mannose-1-phosphate guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosyl-L-homocysteine hydrolase			thymidylate kinase
15		Matched length (a.a.)	527	289	353	94	139	136	460	327	420 ·			180		476			209
20		Similarity (%)	71.4	77.9	69.9	81.9	74.8	71.3	66.3	56.3	66.2			57.8		83.0			56.0
		Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	-36.9			35.6		59.0			25.8
25	ontinued)	s gene	erculosis	egmatis	revisiae	egmatis	erculosis	color A3(2)	ideo M40	erculosis	2 manA			alis plasmid		alis WAA38	+		idus VC-16
	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
35 40		db Match	pir.D70978	gp:AF187550_1	sp.MPG1_YEAST	gp:AF164439_1	pir.B70847	gp:SCE34_11	sp:MANB_SALMO	pir.B70594	sp: MANA_ECOLI			prf.1804279K		sp:SAHH_TRIVA			sp.KTHY_ARCFU
		ORF (bp)	1554	897	1044 s	408	456 p	390	1374 s	1005	1182 s	150	360	564	351	1422 8	708	720	s 609
45		Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
50		Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788196	788672	789426	789721	790096
		SEO NO.	4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
55		SEQ NO.	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

									_							
Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	hypothetical protein		30S ribosomal protein or chloroplast precursor	preprotein translocase SecA subunit		hypothelical protein	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
Matched length (a.a.)	224		484	595	213		503	845		170	322	461	180	23	380	188
Similarity (%)	90.6		78.9	65.6	72.8		61.6	9.66		78.8	82.9	99.0	63.9	100.0	42.4	87.2
Identity (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	99.0	38.3	100.0	21.6	61.2
Homologous gene	Mycobaclerium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis= H37Rv Rv3244c IpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3226c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
db Match	prf:2214304A		prf:2214304B	pir.F70592	pir.D70592		sp.RR30_SPIOL	gsp:R74093		pir.A70591	pir.F70590	gp:AF114233_1	pir.D70590	GP. AF114233_1	pir.G70506	prf:2515333D
ORF (bp)	678	684	1497	1704	588	156	663	2535	672	504	987	1413	480	123	1110	618
Terminal (nt)	791409	790738	793008	7947-11	795301	795292	796110	798784	799691	800200	800208	801190	803128	802565	803131	805025
Initial (nt)	790732	791421	791512.	793008	794714	795447	795448	796250	799020	799697	801194	802602	802649	802687	804240	804408
SEQ NO.	4340	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
SEQ NO. (DNA)	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855

EP 1 108 790 A2

										,		_			_	_		
5	Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical proteln	DNA helicase II		hypothetical protein	
15	e q	regu																_
13	Matched length (a.a.)	84	129	415	458		291	249	1155		1126		302	230	099		280	
20	Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	58.8		49.3	
	Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		-41.4		26.2	30.4	32.6		26.8	
30 Denuitoo) L elder	us gene	berculosis hiB1	Jberculosis	uberculosis	oniae CG43		berculosis	uberculosis	uberculosis		uberculosis		annaschil JAL-	uberculosis	(12 uvrD		ıberculosis-	
30 de	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tubercutosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c	•	Methanococcus jannaschil JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis- H37Rv Rv3196	
35	_	ZI	21	ΣI			ZI	2I	≥I		≥I			ΣI			≥ I	
40	db Match	pir.D70596	pir.B70596	pir.E70595	sp:DEAD_KLEPN		pir:H70594	pir:F70594	pir:G70951		pir:G70951 -		sp:Y138_METJA	pir.E70951	sp:UVRD_ECOL		pir:870951	
	ORF (bp)	258	420	1200	1272	225	846	759	3048	780	3219	1332	1005	714	2034	591	816	603
45 ·	Terminal (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	817422	814210	818523	819236	821287	822669	821290	823391
50	Initiat (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	818523	819254	822079	822105	822789
	SEQ NO.	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
55	SEQ NO.	856	857	858	859	860	861	862	863	864	865	998	867	868	698	870	871	872

major secreted protein PS1 protein precursor alpha-lytic proteinase precursor **DNA-directed DNA polymerase** ethylene-inducible protein Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein monophosphatase regulatory protein Matched length (a.a) Similarity 74.9 73.5 89.0 53.0 73.6 51.4 51.5 74.9 44.4 57.7 Identity 49.0 51.8 67.4 40.8 25.0 27.0 34.3 47.2 26.7 43.4 Lysobacter enzymogenes ATCC 29487 Neurospora intermedia LaBelle-Aeropyrum pernix K1 APE0247 Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1 Hevea brasiliensis laticifer er1 Streptomyces alboniger pur3 Fable 1 (continued) Mycobacterium tuberculosis H37Rv Rv3194 Mycobacterium tuberculosis H37Rv Rv3195 Mycobacterium tuberculosis Deinococcus radiodurans DR0840 1b mitochondrion plasmid Homologous gene Bacillus subtilis 168 yaaE H37Rv Rv3193c sp:YAAE_BACSU sp:CSP1_CORGL sp:ER1_HEVBR gp:AE001938_5 db Match prf.2207273H PIR:F72782 pir.TRYXB4 pir:G70950 pir:H70950 pir:S03722 pir:A70951 ORF (bp) Terminal Ê E SEQ NO. (DNA) SEO

	_				·														
5		Function	phosphatase	ase factor Ž	inding protein	2	-	SRA-binding	c				lion protein	nic	orane protein	binding protein	ransporter	ransporter	ransporter (ATP-
10		Func	myo-inositol monophosphatase	peptide chain release factor.2	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein		:		vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrame ABC transporter (ATP-binding protein)
15		Matched length (a.a.)	243	359	226	72	301	145	-116				272	319	191	325	313	312	250
20		Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
		Identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
25	linued)	gene	ersicus	olor A3(2)	culosis	APE2061	culosis	вдшѕ	yeaO				WA 395	us sirA	j j	75 fatB	yciN	yelO	yclP
	Table 1 (continued)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO	1			Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
<i>35</i>		db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp:SMPB_ECOLI	sp:YEAO_ECOLI			,	sp:VIUB_VIBCH	prf.2510361A	gp:MLCB1243_5	sp:FATB_VIBAN	pir.869763	pir.C69763	pir.D69763
		ORF (bp)	819	1104	687	264	006	492	351	537	300	405	825	918	588	1014	666	942	753
45		Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
50		Initial (nt)	843124	843257	844495	845105	845198	846137	846632	846805	847727	848122	849323	850243	850999	851351	852618	853783	854724
		SEQ NO.	4392	4393	4394	4395	4396	4397	4398	4399	4400	1401	4402	4403	4404	4405	4406	4407	4408
55		SEQ NO.	892	893	894	895	969	897	868	899	98	901	905	903	904	905	906	907	806

EP 1 108 790 A2

						\Box														
5		Function	iin	in	/glưtamine		Se	Ė	in .		noting factor	-	- sin	ansferase					2'-0-)-	
10		Fun	hypothetical protein	hypothetical protein	kynurenine aminotransferase/glutamine transaminase K	4	DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting factor	cold shock protein	hypothetical protein	glutamine cyclotransferase			permease		rRNA(adenosine-2'-0-)- methyltransferase	
15	Matched	length (a.a.)	48	84	442		613	764	57		198	61	159	273			477		319	
20		Similarity (%)	72.0	0.99	64.9		62.3	65.2	62.0		64.7	75.4	58.5	67.8			79.3		51.7	
		identity (%)	66.0	61.0	33.5		30.7	36.1	44.0		39.4	42.6	-28.3	41.8			43.6		27.9	
30 February 100)	(505)	s gene	um Nigg	oniae	(Rat)		erevisiae AD25	berculosis	berculosis		s rpf	cspB	prae	odurans			licolor A3(2)	,	reus tsnR	
30 1.	200	Homologous gene	Chlamydia mundarum Nigg TC0129	Chlamydia pneumoniae	Rattus norvegicus (Rat)		Saccharomyces cerevisiae S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		Micrococcus luteus rpf	Lactococcus lactis cspB	Mycobacterium leprae MLCB57.27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus tsnR	
35			υĻ	0.	<u>«</u>			≥I	≥ I				22				0, 0,			
40		db Match	PIR:F81737	GSP: Y35814	pir.S66270	.1	sp:RA25_YEAST	pir.F70815	pir.G70815		prf 2420502A	prt.2320271A	gp:MLCB57_11	gp:AE001874_1			gp:Sc6c5_9		sp.TSNR_STRAZ	
		ORF (bp)	147	273	1209	639	1671	2199	219	843	597	381	525	774	669	138	1473	912	828	876
45		Terminal (nt)	860078	860473	862752	862753	863396	865119	867571	868630	867803	869318	869379	869918	870721	871660	873210	872016	874040	874069
50		Initial (nt)	860224	860745	1	863391	865066	867317	867353	867788	868399	868938	869903	870691	871419	871523	871738	872927	873213	874944
	0.0	SEQ (a a)	4409	4410	4411	4412	4413	4414	4415	4416	4417	4418	4419	4420	4421	4422	4423	4424	4425	4426
55	010	SEO NO.	606	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926

EP 1 108 790 A2

o sse lit beta lit beta	as e
	ammonium transporter ATP dependent DNA helicase formamidopyrimidine-DNA
Function hypothetical protein phosphoserine transamin acetyl-coenzyme A carbo carboxy transferase subu hypothetical protein sodium/proline symporter hypothetical protein fatty-acid synthase homoserine O-acetyltrans dihydrofolate reductase thymidylate synthase	ammonium transporter ATP dependent DNA h formamidopyrimidine-C glycosidase
Matched length (a.a.) 316 374 236 236 3026 62 62 171 2611	202 1715 298
Similanty (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	56.4 68.1 51.0
1dentity (%) 32.6 32.6 36.0 36.0 36.0 49.0 49.0 43.6 43.6 64.8	32.2 47.4 29.2
Table 1 (continued) Induction 1 (continued) Induction 2 (continued) Induction 3 (continued) Induction 43(2) Induction 43	12 cysQ licolor A3(2)
Table 1 (continued) Homologous gene Homologous gene Mycobacterium tuberculosis H37Rv Rv0883c Bacillus circulans ATCC 21783 Escherichia coli K12 accD Streptomyces coelicolor A3(2) SCI8.08c Science accidente	Escherichia coli K12 cysQ Streptomyces coelicolor A3(2) SC7C7.16c Synechococcus elongatus naegeli mutM
	<u>ш</u>
db Malch sp:YZ11_MYCTU pir:S71439 sp:ACCD_ECOLI gp:SCI8_8 pir:JC2382 pir:JC2382 pir:A70657 pir:S55505 pir:S55505 pir:S55505 pir:S55505	sp:cYSQ_ECOLI gp:SC7C7_16 sp:FPG_SYNEN
ORF (bp) 933 339 933 339 8907 8907 8907 237 237 237 237 896 798	756 4560 768
Terminal (nt) 874951 874951 875965 875965 884549 884549 894578 895596 895596 896719 897727	899253 904602 905382
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	900008 900043 904615
SEO NO. NO. 4427 4429 4431 4433 4433 4443 4443 4443 4443 444	4443
SEO NO. (DNA) 927 928 929 933 933 934 936 940 940 942	943 944 945

EP 1 108 790 A2

5		Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein	,	hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		5-phosphoribosylglycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole-4-carboxamide formyltransferase	citrate lyase (subunit)
15		Matched length (a.a.)	128	196	403		557	195		78	763	885	217		236	434		189	525	217
20		Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	8.78	100.0
		Identity (%)	52.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
25	ontinued)	gene	erculosis	MG1363 apl	color A3(2)		101 pgi	erculosis		erculosis	nophilus	color A3(2)	3 yvrO		erculosis	erculosis		2	Į Į	lutamicum
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicalor A3(2) SCI28.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO	•	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
35 40		db Match	pir:F70816	sp. APL_LACLA			pir:NUEC	pir.G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf.2420410P -		pir.D70716	sp:YT19_MYCTU		gp:AB003159_2	gp:AB003159_3	gp:CGL133719_3
		ORF (bp)	408	e00 s	1173 p	717	1620 p	1176 p	381	309 s	2289 s	2223 g	999	202	711 p	1425 s	228	627 9	1560 g	819 9
45		Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
50		Initial (nt)	905389	906391	907731	908612	909378	910696	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
		SEO NO. (a.a.)	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
55		SEO NO.	946	947	948	949	950	951	952	953	954	955	956	957	958	959	096	961	362	963

EP 1 108 790 A2

5
10
15
20
25
30
35
40
45
50

Table 1 (continued)

	nity (methyl)	1,1,	,	80	. 4	3	8	orter)		1	2		ponent	ensor		is cnx1 actor 1)				
Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein		30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32	•	copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)		large-conductance mechanosensitive channel	hypothetical protein	
Matched length		109		29	100	49	77	529	- 80	7.8	55		227	484	406	188		131	210	
Similarity (%)	100.0	100.0		76.1	80.0	83.7	81.8	71.1	2.77	65.4	78.2		73.6	60.1	6.65	54.3		77.1	0.09	
Identity (%)	100.0	100.0		52.2	54.0	55.1	52.0	34.4	37.5	37.2	60.0		48.0	24.4	33.3	27.7		50.4	28.6	
Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps.18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A 14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thaliana CV cnx1		Mycobacterium tuberculosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	
db Match	gp:CGL133719_2	gp:CGL133719_1.		sp:RR18_CYAPA	sp:RS14_ECOLI	sp:RL33_ECOLI	pir:R5EC28	pir:B70033	prf:2420312A	sp:RL31_HAEDU	gp:SC51A_14		sp:COPR_PSESM	sp:BAES_ECOLI	pir:S45229	sp:CNX1_ARATH		sp:MSCL_MYCTU	pir.A70601	
ORF (bp)	999	327	321	249	303	162	234	1611	312	264	171	447	969	1365	1239	585	198	405	651	
Terminal (nt)	922396	923438	923981	924159	924425	924734	924901	925325	926931	927737	927922	927339	928812	930248	931648	932290	932487	932570	933060	
Initial (nt)	66	923464	923661	924407	924727	924895	925134	926935	927242	927474	927752	927785	928117	928884	930410	931706	932290	932974	933710	
SEQ NO.		4465	4466	4467	4468	4469	4470	4471	4472	4473	4474	4475	4476	4477	4478	4479	4480	4481	4482	
SEQ.	964	965	996	196	968	696	970	971	972	973	974	975	976	977	978	979	980	981	982	

EP 1 108 790 A2

,													- T			- 1		_
5	_ Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypotheti <u>c</u> al membrane protein	hypothetical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
15	Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		94
20	Similarity (%)	68.9	62.6	54.9	54.8	62.4	-	9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	59.0		59.6
	tdentity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
25 (panujuo	s gene	pestris	ovorans	2 rimJ	erculosis	2 cynX		nzae Rd	erculosis	, E-244	erculosis	erculosis	um Delta H	g	um Delta H	8 ухаG		iom
S Same Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX	•	Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
40	db Match	pir.JC4985	prf.2403296B	sp:RIMJ_ECOLI	pir:G70601	Sp.CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp.CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	sp:SYM_METTH	prf: 1306383A	pir.869206	sp:YXAG_BACSU		9p:AF029727_1
	ORF (bp)	897	1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
45	Terminal (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
50	Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	951460	952991	953573	953973
	SEQ NO.	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	4500
55	SEQ	984	985	986	987	988	986	066	991	992	993	994	995	966	766	938	666	1000

5		u C			1.1	nase -	thyltransferase	,			tor	protein				ansferase	sphate kinase					
10		Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothelical protein	hypothetical protein
15		Matched length (a.a.)	139	112		565	231		94	139	91	205		263	362	265	315		478	242	159	108
20		Similarity (%)	67.6	88.4		75.6	62.8		59.6	67.6	84.6	66.8		70.7	63.5	65.3	67.0		85.8	67.4	58.5	78.7
		Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
25	ntinued)	gene		s tnpA		-	ae OK8		E		rculosis	us cadD		rculosis	rculosis	ksgA	rculosis		erythraea	pdxK	rculosis	olor A3(2)
	Table 1 (continued)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coli did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02
35		£	u	1					-	B				,	2.4	ECOLI	21	_	0, 0	ECOLI		0, 0,
40		db Match	pir:TQEC13	gp:AF052055_		prf:2014253AE	sp MTK1_KLEPN	• .1	gp: AF029727	pir.TQECI3	sp:YJ94_MYCTU	prf:2514367A		pir.C70603	pir.D70603	sp.KSGA_EC	pir.F70603		pir.S47441	sp.PDXK_EC	sp:YX05_MYCTU	gp:SCF1_2
		ORF (bp)	477	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
45		Terminal (nt)	954753	955354	956774	955686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
50		Initial (nt)	954277	954941	955911	957398	958683	959403	960081	960385	961297	961629	961662	962809	963864	964974	965852	966591	966828	968667	969940	970029
		SEQ NO. (a.a.)	4501	4502	4503	4504	4505	4506	4507	4508	4509	4510	4511	4512	4513	4514	4515	4516	4517	4518	4519	4520
55		SEO NO.	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	101	1012	1013	1014	1015	1016	1017	1018	1019	1020

EP 1 108 790 A2

5		Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase			,	major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethioñine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
15		Matched length (a.a.)	107	261	276.	337				440	100	802	157 c		121	482		546	404
20		Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0	0.07	75.8		63.6	48.3		68.0	72.8
		Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
25	ontinued)	s gene	color A3(2)	color A3(2)	3 ухеН	erculosis =				lutamicum vum) ATCC	color A3(2)	color A3(2)	nzae Rd		dis NMA1953	erculosis		2 prfC	ylatrophus
<i>30</i>	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd HI0508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
40		db Match	gp:SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir:E70893				sp:CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA622491_21	pir.A70539		pir:159305	prf:2406311A
		ORF (bp)	321	096	792	1017	654	777	1212	1386	579	2373	498	999	381	1551	936	1647	1269
45		Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
50		Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	860963	981622	982674	983100	984910	986510	986739
		SEO NO. (a.a.)	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
55		SEQ NO.	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

EP 1 108 790 A2

5	•	
10		
15		
20		
25		nued)
30		Table 1 (continued
35		
40		
45		
50		

ଚ	
ä	
₽	
5	
ဗ	
Ξ	
흙	
<u>ख</u>	

Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding prolein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufi protein precursor	nodulation ATP-binding protein I
Matched length (a.a.)	7.7	234	253	236	187	361	342	51	174	194	143	208	316	452		909	310
Similarity (%)	61.0	68.0	70.0	69.1	9.07	54.0	72.8	61.0	63.2	65.0	54.6	62.5	79.1	71.9		61.7	64.8
Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufi	Rhizobium sp. N33 nodl
db Match	prf.2406311B	prf:2406311C	sp:BRAF_PSEAE	sp:BRAG_PSEAE	Sp.PTH_ECOLI	SP.ZNPD_WILMR	sp:G3P_ZYMMO	GSP: Y75094	sp:PTH_ECOLI	pir.B70622 -	sp:LGUL_SALTY	prf:2516401BW	sp:KPRS_BACCL	pir.S66080		sp:SUFI_ECOLI	sp:NODI_RHIS3
ORF (bp)	882	1077	726	669	612	1023	1065	369	531	900	429	624	975	1455	1227	1533	918
Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	1003930
Initial (nt)	988023	988904	08686	990716	992028	992028	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	1003013
SEQ NO. (a.a.)	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
SEQ NO. (DNA)	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052		1054

EP 1 108 790 A2

I	ſ																			T		tein	7
5		tion	rane protein	tem sensor	nscriptional ily)		rane protein				ınspeptidase					n fragment	28 TnpB)				ulator (TetR-	-coupling pro	
10		Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-glutamyltranspeptidase precursor				-	transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR- family)	transcription/repair-coupling protein	
15		Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
20		Similarity (%)	63.2	48.4	67.3		64.5	57.0	1	74.0	58.6					72.0	100.0				59.6	65.1	
		Identity (%)	30.2	24.6	36.6		31.5	28.6		44.0	32.4					64.0	9.66		-		23.0	36.2	
25	uned)	e e	ORF2	Bdı	s dnrN		ır A3(2)	ens strV		natis exiT	jt.					micum	micum 1 tnpB			į	I		
	Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	
35 40		db Match	pir.JN0850	COLI	prf.2107255A		gp:SCF15_7	pir.S65587		pir.T14180	sp:GGT_ECOLI					GPU.AF164956_23	gp:AF121000_8				sp:TETC_ECOU	sp.MFD_ECOL1	
		ORF (bp)	831	†-: -	609	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	265	312	651	3627	1224
45		Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022716	1019390
50		Initial (nt)	1003953	1004829	1006089	1006937	1006998	1008622	1008686	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	1018416	1019090	1020613
		SEQ NO.			4557	4558	4559	4560	4561	4562	4563	4564	4565	4566	4567	4568	4569	4570	4571	4572	4573	4574	4575
55		SEQ NO.			1057	1058	1059	1060	1061	1062		1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

1				i	 1		-		П				 1				Т	\neg
5	Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	er	hypothetical membrane protein		rotein	•			enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)	rotein	rotein	rotein	guanosine pentaphosphatase or exopolyphosphatase		/dratase	
10	_	Neisserial poly be useful antig diagnostics	multidrug resis binding proteir protein	ABC transporter	hypothetical m		hypothetical protein			IpqU protein	enolase (2-phosphoglycerat dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothetical protein	hypothetical protein	guanosine pentaphos exopolyphosphatase		threonine dehydratase	
15	Matched length (a.a.)	9/	632	574	368		183			241	422	41	191	153	329		314	
20	Similarity (%)	69.0	62.7	81.9	100.0		57.4			68.9	86.0	58.0	55.0	8.77	55.0		64.7	
	identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	. 64.5	68.0	31.9	59.5	25.2		30.3	
55 Intinued)	gene	9ae		erculosis	utamicum		Z			erculosis J		1 APE2459	erculosis	erculosis	٧		8 -	
se	Homologous gene	Neisserla gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutamicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 lpqU	Bacillus subtilis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		Escherichia coli tdcB	
40	db Match	GSP:Y75301	sp:MDLB_ECOLI	sp:YC73_MYCTU	sp:YLI3_CORGL		sp:YABN_BACSU			pir:A70623	sp:ENO_BACSU	PIR:872477	pir.C70623	pir:D70623	sp:GPPA_ECOLI		sp:THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	426	378	786	1275	144	540	546	963	984	930	195
45	Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032760	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
50	Initial (nt)	1021305	1024666	1026396	1028886	1031885	1032196	1033185	1033646	1033954	1034949	1036159	1036316	1036900	1037448	1037481	1039650	1039783
	SEQ NO.		4577	4578	4579	4580	4581	4582	4583	4584	4585	4586	4587	4588	4589	4590	4591	4592
55	SEQ NO (DNA)	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

5	
10	
15	
20	•
25	
30	
35	
40	
45	
50	

	Function	٠	hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein	,	hypothetical protein	transcription elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7- phosphate synthase		hypothetical protein or undecaprenyl pyrophosphate synthetase	hypothetical protein		r	pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
	Matched length (a.a.)		56	242	282		140	143	140	300		367	•	6	28			308	434	969	
	Similarity (%)		74.1	55.8	80.1		57.1	60.1	72.1	56.3		99.5		97.3	100.0			6.62	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2	_ =	0.96	100.0			6.63	99.5	47.6	
Table 1 (continued)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces fincolnensis ImbE		Corynebacterium glutamicum aroG	•	Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)	•		Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
	db Match		pir:B72287	sp.RHAR_ECOLI	pir.F70893	· .1	gp:SCF55_39	sp.GREA_ECOU	pir:G70894	pir.S44952		sp:AROG_CORGL		sp:YARF_CORGL	SP:YARF_CORGL			sp:COAA_ECOLI	gsp:R97745	sp:PABS_STRGR	
	ORF (bp)	330	189	993	816	387	450	525	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
	Initiat (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	1046610	1047452	1047827	1048356	1048525	1049385	1050362	1050624	1052021	1112 4612 1053880
	SEQ NO. (a.a.)	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	4604	4605	4606	4607	4608	4609	4610	4611	4612
	SEQ NO. (DNA)	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112

EP 1 108 790 A2

55		50	45		40	35	30	25	20	15	5
						Tabl	Table 1 (continued)				
SEQ NO.	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Hom	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1113	4613	1054859	1055722	864							
1114	4614	1055032	1054640	393							
1115	4615	1055783	1056319	537	gp:A01504_1	Alcaligenes	Alcaligenes faecalis ptcR	30.3	58.8	165	phosphinothricin resistance protin
1116	4616	1057200	1056322	879	sp:YBGK_ECOLI	Escherichia coli ybgK	coli ybgK	30.3	59.0	300	hypothetical protein
1117	4617	1057573	1058628	1056							
1118	4618	1057868	1057200	699	sp:YBGJ_ECOLI	Escherichia coli ybgJ	coli ybgJ	37.8	8.73	225	hypothetical protein
1119	4619	1058598	1057843	756	SP:LAMB_EMENI	Emericella n	Emericella nidulans lamB	30.8	52.2	276	lactam utilization protein
1120	4620	1059214	1058624	591	sp.YCSH_BACSU	Bacillus subtilis yesH	tilis ycsH	40.6	81.2	165	hypothetical membrane protein
1121	4621	1059218	1059889	672					٠		
1122	4622	1059360	1059962	603							
1123	4623	1060112	1060792	681	sp.YDHC_BACSU	Bacillus subtilis ydhC	tilis ydhC	26.0	63.2	204	transcriptional regulator
1124	4624	1060869	1062146	1278							
1125	4625	1063629	1062211	1419	Sp:FUMH_RAT	Rattus norve	Rattus norvegicus (Rat) fumH	52.0	79.4	456	fumarate hydratase precursor
1126	4626	1063936	1064424	489	gp:AF048979_1	Rhodococcu IGTS8 dszD	Rhodococcus erythropolis IGTS8 dszD	32.7	65.4	159	NADH-dependent FMN oxydoreductase
1127	4627	1064738	1064478	261	ŀ						1
1128	4628	1065200	1064754	447							
1129	4629	1065867	1065304	564	gp:SCAH10_16	Streptomyce StAH10.16	Streptomyces coelicolor A3(2) StAH10.16	55.4	81.0	184	reductase
1130	4630	1066083	1067570	1488	sp:SOXA_RHOSO	Rhodococc	Rhodococcus sp. IGTS8 soxA	39.1	67.7	443	dibenzothiophene desulfurization enzyme A
1131	4631	1067570	1068649	1080	sp:SOXC_RHOSO	Rhodococcu	Rhodococcus sp. IGTS8 soxC	25.8	51.3	372	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1132	4632	1068649	1069845	1197	sp.SOXC_RHOSO	Rhodococc	Rhodococcus sp. IGTS8 soxC	28.9	61.6	391	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1133	4633	1069692	1068913	780							1
1134	4634	4634 1069808	1069119	690							

5		Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics	_	permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyltransferase	hypothetical protein
15		Matched length (a.a.)	397	325	211	227		82 (62	466	311	131	,	338		552	412	361 (75	301 .	143
20		Similarity (%)	73.1	75.7	56.4	66.1		78.1	67.7	55.6	78.8	47.0		63.9		61.4	0.09	98.6	80.0	58.8	6.69
		Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0	1	26.3		30.3	29.9	70.1	57.3	29.6	39.2
25	ontinued)	s gene	2 ssuD	2 glpX	erculosis .	nD.		color A3(2)	2 MG1655	2 MG1655	2 lytB	eae		2 perM	1	Rat) SLC6A7	lutamicum vum) ATCC	. 4	sus intA	iginosa argF	ykkB
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD.		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
35 40		db Match	gp:ECO237695_3 E	sp:GLPX_ECOLI E	pir:B70897	pir:H70062		gp:SCH24_37	sp:EX7S_ECOLI x	sp:EX7L_ECOLI k	sp:LYTB_ECOLI E	GSP:Y75421		Sp.PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL ((sp:YYAF_BACSU B	Sp.VAPI_BACNO	sp.OTCA_PSEAE F	sp:YKKB_BACSU B
		ORF (bp)	1176 gp:	963 sp.	570 pir.	1902 pir	285	225 gp:	243 sp.	1251 sp:	975 sp.	429 GS	828	1320 sp.	180	1737 sp:	1233 sp:	1083 sp:	297 sp.	822 sp.	501 sp.
45		Terminal (1071134 1	1071479	1073245	1073340 1	1075641	1075329	1075667	1075933 1	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462 1	1086087 2	1086917	1087044
50		Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	4653 1087544
		SEQ NO (a.a.)	4635	4636	4637	4638	4639	4640	4641	4642	4643	4644	4645	4646	4647	4648	4649	4650	4651	4652	4653
55		SEQ NO.	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153

EP 1 108 790 A2

						\neg										Γ		
5	Function	ydrogenase or	grase (IS110)	mbrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)						or morpyine-6- (naloxone	olactone			frenolicin gene cluster protein involved in frenolicin blosynthetic
10	, F	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosa			transposase (ins IS31831)	transposase	transposase	-			oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			frenolicin gene cluster protein involved in frenolicin blosynt
15	Matched length (a.a.)	198	396	1153	259			26	125	48	•			264	108			146
20	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	identity (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5	-			37.5	33.3	į		34.9
25 30 F	us gene	DH4	elicolor	(12 yegE	ti nodC			glutamicum	glutamicum actofermentum)	glutamicum actofermenium)				tida M10 norA	coacetícus			eofulvus frnS
30	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutarnicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermenlum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
<i>35</i>	db Match	gp:AF013288_1	Sp.YIS1_STRCO	ECOLI	RHIME			pir.S43613	pir.JC4742	pir.JC4742 (ŀ			sp:MORA_PSEPU	sp.DC4C_ACICA			gp:AF058302_19
40	H (0	1		12 Sp: YEGE	1	6	3		-		_	9	80	i		8	2	
	ORF (bp)	630	1206	3042	765	219	333	291	375	144	141	366	498	843	321	963	195	654
45	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
50	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099088	1099209	1099768
	SEQ NO.	4654	4655	4656	4657	4658	4659	4660	4661	4662	4663	4664	4665	4666	4667	4668	4669	4670
55	SEQ NO.	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

	,							 ,											
5		د								subunit	tase		olpyruvate	P-binding		ake protein	or	efflux pump	ı sednence
10		Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
15		Matched length (a.a.)	563						655	329	160	262	248	593	136	111	134	367	436
20		Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	99.8
		Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
25	ontinued)	s gene	PCC 7942						erculosis	eroides ATCC	hanolica pgm	erculasis	oscopicus	ae tirC	erculosis	2 MG1655	yxaD	ımoniae	lutamicum tofermentum)
30 ·	Table 1 (continued)	Homologous gene	Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae tIrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
35			Syne						j		A.	H3	St. St.	<u> </u>		-		Strep	ATC GO
40		db Match	gp:SPU59234_3						sp.YT15_MYCTU	sp.BCHI_RHOSH	gp:AMU73808_1	pir.A70577	gp:STMBCPA_1	sp.TLRC_STRFR	sp:Y06C_MYCTU	sp:PHNA_ECOL!	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
		ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
45		Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
50		Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1106993	1109792	1111820	1111889	1112957	1113102	1114486
		SEQ NO. (3. a.)	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
55		SEQ NO. (DNA)	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187

EP 1 108 790 A2

		—-т		_	—														— ₁
5	Function	cysteine desulphurase	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein Ilgase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothelical protein	hypothetical membrane protein
45	D	.ck	토 호	8	á	È	È	È	Ē	ala	tra 4-l	Ϋ́E	호	AE	Ē	-	ပိ	Ę	2
15	Matched length (a.a.)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
20	Similarity (%)	73.4	68.9	77.6	6.09	54.7	66.4	74.1	60.7	8.09	64.3	68.6	9.69	47.6	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
25 (D		ns ene	sis		ы	; R1		1655		80	¥	а рһһу							
os Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 IplA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
35	tch	7				r.								COLI					-
40	db Match	gp:RFAJ3152_	sp:NADC_MYCTU	pir.E69663	gp.SC5B8_7	gp:AE001961_	gp:SC3A7_8	sp:YBDF_ECOLI	gp:AAA21740_1	sp.PHNB_ECOLI	sp:PCAK_PSEPU	Sp.PHHY_PSEAE	pir.A69859	Sp:YJJK_ECOLI	pir.G69858		sp:CHAA_ECOLI	pir.C75001	sp:YWAF_BACSU
	ORF (bp)	1074	837	1182	642	909	900	342	789	411	1293	1185	588	1338	753	531	1050	708	723
45	Terminal (nl)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129632	1130704	1131428	1131401
50	Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809	1122606	1123051	1124826	1126020	1126422	1127013	1128350	1129102	1129655	1130721	4705 1132123
	SEO NO.	. 	4689	4690	4691	4692	4693	4694	4695	4696	4697	4698	4699	4700	4701	4702	4703	4704	4705
55	SEQ NO ONA)	$\dot{-}$	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	_	1202	1203		1205

EP 1 108 790 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Identity Similarity (%)	philus unrA 35.5 58.7 946 excinuclease ABC subunit A	uberculosis 57.3 81.7 164 thioredoxin peroxidase		1	yed!. = 39.9 72.0 318 hypothetical membrane protein	relicolor A3(2) 34.0 49.0 282 biosynthesis protein		,			nei 28.8 51.3 271 chymotrypsin BII	43.2 72.1 111 arsenate reductase (arsenical pump modifier)	yaD 23.5 62.4 340 hypothetical membrane protein	uberculosis 43.5 71.4 147 hypothetical protein	uberculosis 35.8 62.9 221 hypothetical protein	K12 typA 46.3 76.7 614 GTP-binding protein (tyrosine phsphorylated protein A)	uberculosis 27.9 54.9 506 hypothetical protein	uberculosis 38.7 61.9 315 hypothetical protein		
lable 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yed	Streptomyces coelicolor A3(2)				1	Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		
	db Match	Sp:UVRA_THETH	sp:TPX_MYCT∪			sp. YEDI_ECOLI	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	pir:F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	pir:B70875		
	ORF (bp)	2340	495	216	1776	954	900	366	297	261	387	834	345	1200	537	714	1911	1506	870	438	
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	
	Initiat (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140361	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	
0	(a.a.)	4706	4707	4708	4709	47.10	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	
0.10	NO.	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	T

99

EP 1 108 790 A2

		\neg	\neg	\neg	5	T	I		П		δ.					7		
5	- Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6- dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucose-starch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyllransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
15	Matched length (a.a.)	397			229		211	273	245	66	47	286	524	433	400	93	194	
20	Similarity (%)	52.9			100.0		100.0	69.0	73.1	2.79	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	Identity (%)	25.9			100.0		100.0	59.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
Table 1 (continued)	us gene	YM-2 aat			glutamicum D		glutamicum	elicolor A3(2)	sprae u17561	berculosis	uberculosis	griseorubida	tosaceus scrB	(12 MG1655	elicolor A3(2)	carofaciens	poE	
30	Homologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coeliculor A3(2) dhpS	Mycobacterium leprae u17561	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora gnseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicolor A3(2) glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
35		B					OA			21					t	i e		
40	db Match	sp. AAT_BACSP			9p:CGAJ4934_1		pir.S60064	gp:SCP8_4	gp:MLU15180_14	pir.G70609	gsp:W32443	sp:MYRA_MICGR	sp:SCRB_PEDPE	sp:GLGA_ECOLI	sp:GLGC_STRCO	sp:MDMC_STRMY	sp:RPOE_ECOLI	
	ORF (bp)	101	621	1185	168	663	768	831	729	306	165	864	1494	1227	1215	639	639	492
45	Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1160728	1160738	1162379	1164916	1164974	1166384	1167067
50	Initial (nt)	1149279	1150408	1151186	1153263	1156537	1156902	1157694	1158524	1159267	1159635	1159865	1162231	1163605	1163702	1165612	1165746	1166576
	SEQ NO.	4726	4727	4728	4729	4730	4731	4732	4733	4734	4735	4736	4737	4738	4739	4740	4741	4742
55	SEQ NO.		1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237		1239	1240	1241	1242

5	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
15	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501				409	444	
20	Similarity (%)	73.2	72.0	83.8	77.0	87.1			93.8	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7			,	27.1	32.4	
75 Table 1 (continued)	Homologous gene	tuberculosis	mrp	tuberculosis	tuberculosis	tuberculosis	,		n glutamicum	us (Chinese	tuberculosis c	aroE	pnbA				transposon	Streptomyces glaucescens tomA	
Table 1	Homolog	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces g	
<i>40</i>	db Match	pir:C70508	Sp.MRP_ECOLI	pir.B70509	pir.C70509	pir.A70952			prf.2306367A	sp:MDR2_CRIGR	pir.H70953 -	sp: AROE_ECOLI	sp:PNBA_BACSU				sp:TCR1_ECOLI	sp.TCMA_STRGA	
	ORF (bp)	468 р	1125 s	579 р	1290 р	516 p	999	594	3771	3741 8	717	804	1611	651	876	525	1215	1347	705
45	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
50	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1181675	1181993	1183607	1184280	1185742	1185825	1187043	1189822
	SEQ NO.	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
55	SEQ NO.	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

EP 1 108 790 A2

5	Function	5- methyltetrahydropteroyltriglutamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTPpyrophosphohydrolase)		proline-specific permease
15	Matched length	774		444						. 526	551	333	512	402		98		433
20	Similarity (%)	72.2		79.5						63.5	58.4	93.0	99.0	55.0		65.6		85.0
	Identity (%)	45.2		55.2						28.7	29.4	92.0	99.6	26.4		36.9		51.3
25 30	ons gene	seus metE		des strain KGB1	h					<12 MG1655	K12 MG1655	glutamicum actofermentum)	glutamicum actofermentum)	<12 MG1655		mutT	-	nurium proY
30 T	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium gkutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mutT		Salmonella typhimurium proY
<i>35</i>	db Match	pir:S57636		gsp: Y29930		• .1				sp:CYDC_ECOLI	sp:CYDD_ECOLI	gp:AB035086_2	gp:AB035086_1	sp:YEJH_ECOLI		sp:MUTT_PROVU		sp.PROY_SALTY
	ORF (bp)	2235 pir.	456	1398 gsp	324	945	792	1647	192	1554 sp:(1533 sp:	.db 666	1539 gp:	2265 sp:`	342	393 sp:/	765	1404 sp:
4 5	Terminal (1188388 2	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990 1	1199543 1	1201090	1202094 1	1203916 2	1206657	1206831	1208138 7	1208212 1
50	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316	1207223	1207374	1209615
	SEO.		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
55	SEQ	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

						_													
5		- Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothelical protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
15		Matched length (a.a.)	643	247	265	354	278		185	878		203	395	915			220		
20		Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
		Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7		-	37.3		
25 30	lable I (commueu)	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orf2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HO-1 hde		
35	1			Myc B13					Myc H37				Myc H37				Petr HO-		
40		db Match	sp:DEAD_KLEPN	prf:2323363BT	sp:PCPB_FLAS3	sp:CLCE_PSESB	sp:CATA_ACICA		pir.A70672	sp.SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU			9p:AB029896_1		
		ORF (bp)	2196	687	1590	1068	885	471	540	3102	1065	858	1173	2628	306	318	774	378	786
45		Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1228636	1229095	1229935
50		Initiat (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219895	1222905	1222986	1223887	1225066	1227587	1227657	1227863	1228718	1229150
		SEQ NO.	4778	4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
55		SEQ NO.	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

EP 1 108 790 A2

5	Function	short-chain fatty acids transporter	protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3-pyrophosphotransferase) (ppGpp synthetase I)	tnpeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	al protein	al protein	nitrate reductase alpha chaln	nitrate extrusion protein
		short-chair	regulatory protein			fumarate (and nitr regulatory protein	mercuric tr componen	zinc-transp translocatii	GTP pyropho: 3-pyrophosph synthetase I)	tripeptidyl			homoserin			nitrate red	nitrate red	nitrate red	hypothetical protein	hypothetical protein	nitrate red	nitrate extr
15	Matched length (a.a.)	122	166		-	228	18	605	137	601		t.	24			220	175	505	137	83	1271	461
20	Similarity (%)	69.7	56.6			57.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
25 (panultud	gene	color	mi recS			2 MG1655 fnr	ciens merP	2 MG1655		ins tap			lutamicum				ſ	I	(1 APE1291	(1 APE1289	Ġ	2 narK
So Solution Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia cali K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 rēlA	Streptomyces lividans tap		•	Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subfilis narG	Escherichia coli K12 narK
<i>35</i>	db Match	sp:ATOE_ECOLI	sp:PECS_ERWCH			sp.FNR_ECOLI	SP:MERP_SHEPU	sp:ATZN_ECOLI	sp:RELA_VIBSS	gsp:R80504			GSP:P61449			sp:NARI_BACSU	sp:NARJ_BACSU	sp:NARH_BACSU	PIR: D72603	PIR: B72603	sp:NARG_BACSU	Sp:NARK_ECOLI
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	069	777	732	1593	594	273	3744	1350
45	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	1247199	1250444	1251817	1248794	1252557
50	initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	1242156	1242275	4806 1243621	1245201	1245532	1246496	1247239	1248791	1249851	1251545	1252537	1253906
	SEQ NO.	4795	4796	4797	4798	4799	4800	4801	4802	4803	4804	4805	4806	4807	4808	4809	4810	4811	4812	4813	4814	4815
55	SEQ NO.	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

5		Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor	-	hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase					peptide chain release factor 1	protoporphyrinogen oxidase		ırotein	undecaprenyl-phosphate alpha-N- acetylglucosaminyltransferase
10			molybdoplerii protein (molyl biosynthesis	extracellular s precurosor	_	hypothetical r	hypothetical r	molybdoptērir synthase	molybdoptein	molybdopterir Moybdenume cofastor biosy	edium-chain f	Rho factor				peptide chain	protoporphyri		hypothelical protein	undecaprenyl acetylglucosa
15		Matched length (a.a.)	157	738		334 -	472	1.78	366	354	57.2	753				363	280		215	322
20		Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	6'29		86.0	58.4
		Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	-36.7	50.7				41.9	31.1		62.3	31.1
25	ontinued)	s gene	ia CV cnx1	ns strain IFO-	11	erculosis	serculosis	da mobA	perculosis noeA	ia cnx2	vorans	tho	,			2 RF-1	2		ercutosis	2 rfe
30	Table 1 (continued)	Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium Iuberculosis H37Rv Rv1841c	Mycobacterium Iuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium Iuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnxZ	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tubercutosis H37Rv Rv1301	Escherichia coli K12 rfe
40		db Match	sp:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp:Y0D2_MYCTU	gp:PPU242952_2	sp:MOEA_ECOLI	sp:CNX2_ARATH	SP:ALKK_PSEOL	Sp:RHO_MICLU				sp:RF1_ECOLI	sp:HEMK_ECOLI		sp:YD01_MYCTU	sp:RFE_ECOLI
		ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
45		Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
50		Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
		SEQ NO. (a.a.)	4816	4817	4818	4819	4820	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831	4832	4833
55		SEQ NO. (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

ſ					4	Ē	æ	p4		æ							
! 5	Function		lein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	ATP synthase	H+-transporting ATP synthase beta chain	ATP synthase	ein	eln	putative ATP/GTP-binding protein	ein	ein	
10	<u>ਂ</u>		hypothetical protein	ATP synthase c	H+-transporting ATP synthase binding protein. ATP synthase chane	H+-transporting b	H+-transporting chain	H+-transporting chain	H+-transporting ATP synthase gamma chain	H+-transporting , chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothetical protein	putative ATP/GT	hypothetical prolein	hypothetical protein	thioredoxin
15	Matched length (a.a.)		08	245	7.1	151	274	516	320	483	122	132	230	92	134	101	301
20	Similarity (%)		0.66	2.95	85.9	6.99	67.2	88.4	76.6	100.0	73.0	67.4	85.7	26.0	68.7	79.2	71.4
	Identity (%)		98.0		54.9	27.8	34.3	66.9	46.3	99.8	41.0	38.6	70.0	45.0	35.8	54.5	37.9
52 Table 1 (continued)	Homologous gene		n glutamicum	K12 atpB	idans atpL	idans atpF	idans atpD.	idans atpA	idans atpG	glutamicum	idans atpE	uberculosis	uberculosis	elicolor A3(2)	qjC	uberculosis-	uberculosis
Table 1	Homolog		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis- H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
35	db Match		GPU:AB046112_1	ECOLI	sp.ATPL_STRLI	STRLI	Sp.ATPD_STRLI	sp.ATPA_STRLI	sp:ATPG_STRLI	CORGL	STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
40		-	9 GPU:/	0 sp.ATP6_		sp:ATPF	3 sp:AT	4 sp:AT	5 sp:ATI	9 sp:ATPB_	sp:ATPE_	sp:Y02	sp: Y03	5 GP:SC	sp:YQJC		sp:YD;
ļ	ORF (bp)	486	246	8	240	564	813	167	975	144	372	471	969	285	453	312	921
45	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
50	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1282194
	SEQ NO. (a.a.)	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
55	SEQ NO. (DNA)	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

nitrogenase cofactor sythesis protein 1,4-atpha-glucan branching enzyme (glycogen branching enzyme) electron transfer flavoprotein alpha subunit for various dehydrogenases sulfonate binding protein precursor electron transfer flavoprotein betaferric enterobactin transport ATP-binding protein or ABC transport ATP-binding protein 5 alphatic sulfonates transport permease protein alphatic sulfonates transport permease protein FMNH2-dependent aliphatic sulfonate monooxygenase Function hypothetical protein hypothetical protein hypothetical protein alpha-amylase 10 subunit Matched 15 length 375 366 240 228 311 211 290 244 335 397 467 367 Similarity 87.6 68.5 70.0 74.3 75.8 50.5 64.8 61.8 72.8 62.1 67.7 55.7 72.7 8 20 39.6 35.2 8 50.3 50.4 35.1 22.9 31.8 43.1 31.2 S 33 6 8 Rhizobium sp. NGR234 plasmid 25 Table 1 (continued) Mycobacterium tuberculosis Dictyoglomus thermophilum amyC Mycobacterium tuberculosis H37Rv Rv3040c Mycobacterium tuberculosis H37Rv Rv3037c Azotobacter vinelandii nifS Escherichia coli K12 ssuD Escherichia coli K12 ssuC Escherichia coli K12 ssuB Escherichia coli K12 ssuA Homologous gene Escherichia coli K12 fepC Rhizobium meliloti fixA Rhizobium meliloti fixB H37Rv Rv1326c glgB pNGR234a y4mE 30 35 sp:AMY3_DICTH Sp:Y4ME_RHISN sp:SSUC_ECOLI sp:GLGB_ECOL! sp:SSUA_ECOLI Sp.FEPC ECOLI sp:SSUB_ECOLI SP.FIXA_RHIME gp:ECO237695_ Sp:FIXB_RHIME sp:NIFS_AZOVI db Match pir.C70860 pir:H70859 40 2193 1128 1146 1143 1494 1056 ORF (bp) 768 729 957 348 879 612 786 951 615 312 804 1289514 1298339 1297093 1299000 1287281 1284466 1286030 1286999 1291373 1292577 1294025 1295206 1294436 1298342 Terminal 1285284 1296220 1297203 45 3 1291007 1289473 1296253 1296479 1297212 1298653 1300145 1285302 1286043 1291699 1293222 1294151 1295047 1295435 1283324 1284517 1291026 <u>f</u> 50 4863 4850 4852 4853 4855 4856 4857 4859 4860 4861 4862 4864 4865 4866 4854 4858 4851 (a.a.) 1365 DNA) 1350 1353 1354 1359 1360 1362 1363 1364 1366 1356 1357 1351 1361 55

5		Function	al regulator	rase	,	•		tRNA (5-methylaminomethyl-2- thioundylate)-methyltransferase		protein .	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	protein	glutamyl-tRNA(GIn) amidotransferase subunit C	glutamyl-tRNA(GIn) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphatefructose 6- phosphate 1-phosphotransrefase
			transcriptional regulator	acetyltransferase		,		tRNA (5-met thioundylate		hypothetical protein	tetracenomy export protin	•	DNA ligase (polydeoxyri) [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase s	glutamyl-tRNA(GIn) amidotransferase si	vibriobactin t	hypothetical	pyrophospha phosphate 1-
15		Matched length (a.a.)	59	181	1		•	361		332	200		2.19	220	26	484	263	96	358
20		Similarity (%)	76.3	55.3				6.08	•	0.99	65.8		70.6	70.9	64.0	83.0	54.0	79.2	6.77
		Identity (%)	47.5	34.8				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
25	Table 1 (continued)	ena gene	SR234 plasmid	(12 MG1655		u		iberculosis		ıberculosis	ucescens tcmA		arinus dnlJ	iberculosis	elicolor A3(2)	berculosis	8n.	ilicolor A3(2)	ethanolica pfp
30	Table 1	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
<i>35</i>		db Match	sp:Y4MF_RHISN p	sp:YHBS_ECOLI y		-1		pir.C70858		pir.B70857	sp:TCMA_STRGA S		SP:DNLJ_RHOMR R	pir.H70856	sp.GATC_STRCO g	SP.GATA_MYCTU	V UVBIVLBUIN:qs	gp:SCE6_24	SP.PFP_AMYME A
40				:			1	95 pir.C.					O sp.D		sp:G/				!
		ORF (bp)	225	204	942	1149	396	90	654	066	1461	735	204	663	297	1491	849	306	1071
45		Terminal (nt)	1300145	1301055	1300988	130,1975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
50		Initial (nt)	1300369	1300552	1301929	1303123	1303299	4872 1303829	4873 1304536	1304932	1307384	1308196	1308330	1311097	1311320	1311625	1313270	1314775	1315013
		SEO NO.	4867	4868	4869	4870	4871	4872	4873	4874	4875	4876	4877	4878	4879	4880	4881	4882	4883
55		SEQ NO. (DNA)	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383

5	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity nbose transport protein	periplasmic ribose-binding protein	high affinity nbose transport protein	hypothetical protein	iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
15	Matched length (a.a.)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
20	Similarity (%)		31.4	76.2	76.9	7.77	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	9.89
	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
25 00 Table 1 (continued)	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34 13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yajG -	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis - H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
40	db Match		sp.CCPA_BACME	sp RBSA_ECOLI	sp:RBSC_ECOLI	sp.RBSB_ECOLI	sp:RBSD_ECOL	sp:YW2_YEAST	gp:SCF34_13	sp.NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir.A70672	pir:H70855		gp:AJ012293_1	pir:G70855
	ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
45	Terminat (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
50	Initiat (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
	SEO NO.	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
55	SEQ NO.	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	maltose/maltodextrin transport ATP-binding proteln	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
	Matched length (a.a.)	62	99		167	87	324			142	304	٠		642		530	105			620	
	Similarity (%)	100.0	55.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		93.8	29.0			32.9	
- Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrlD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01		•	Rhodobacter capsulatus strain SB1003	
	db Match	sp:YILV_CORGL	GP:SSU18930_26 3		sp NRTD_SYNP7	sp:MALK_ENTAE	sp.NRTA_ANASP			Sp.DIM6_STRCO	sp:CZCD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pir. T03476	
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	867	1062	1866	402
-	Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
	Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345486	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1356452
	SEQ NO. (a.a.)	4901	4902	4903	4904	4905	4906	4907	4908	4906	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
	SEQ NO. (DNA)	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

10	Function		homoprotocatechivate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase); 5- carboxymethyl-2-oxo-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransferase or 3- demethylubiquinone-9 3-O- methyltransferase	isochorismate synthase	glutamy-tRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
	Matched length (a.a.)		228	192	371	485	67			'									T	599
20	Similarity (%)		59.2	55.7	70.4	69.7	90.0													81.0
	Identity (%)		33.3	23.4	38.0	37,3	77.0													65.1
25 Q			· li				3(2)													S
Se Se Table 1 (continued)	Homologous gene		Escherichia coli C hpc <u>E</u>	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus subtilis gitX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
40	db Match		sp.HPCE_ECOLI	sp:UBIG_ECOLI	sp.DHBC_BACSU	sp.SYE_BACSU	gp:SCJ33_10													sp:THIC_BACSU
	ORF (bp)	654	804	618	1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
45	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50	Initial (nt)	1357557	1358259	1359052	1361295	1361361	1363138	1363657	1364253	1364915	1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	1369551	4939 1371637
	SEQ NO.	4921	4922	4923	4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	4938	
	SEQ NO. (DNA)	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

												<u>.:</u>		ge	Ē		,			
5	uo			i		ase				ine protein		iphosphate) 3	otein	hydratase lar	hydratase sm		((7,8-dihydro sphatase)(8- se)		osphate	ligase
10	Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3',5'-bis(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3-isopropylmalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ((7,8-dihydro- 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
15	Matched length (aa)			44		767			299	256		178	257	473	195		294		331	374
20	Similarity (%)			74.0		74.0			52.8	64.8		60.1	60.7	87.5	89.2		71.4		72.2	67.4
	Identity (%)			61.0		44.2			25.4	25.4		29.8	26.1	68.1	67.7		45.9		45.0	40.4
25 (pan	<u>au</u>		_							hii Y441		11		eticus			osis			1655
% Table 1 (continued)	Homologous gene			Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddlA
35			<u>'</u>	Chlam		Rattus			Bacille	Metha		Esche	Esche	Actino leu2	Salmo		Mycob H37Rv		Bacillu	Esche
40	db Match			GSP:Y37857		sp.PHS1_RAT			Sp:YRKH_BACSU	Sp:Y441_METJA		sp:SPOT_ECOU	Sp:ICLR_ECOLI	sp:LEU2_ACTTI	sp:LEUD_SALTY		gp:MLCB637_35		sp:GPDA_BACSU	sp:DDLA_ECOLI
	ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	1080
45	Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
50	Initial (nt)	1372326	1372601	1373798	1374556	1375776	1375987	1376088	1377555	1378415	1378942	1379003	1380259	1380440	1381902	1382819	1383798	1383930	1384130	1385153
	SEO NO. (a.a.)	4940	4941	4942	4943	4944	4945	4946	4947	4948	4949	4950	4951	4952	4953	4954	4955	4956	4957	4958
55	SEQ NO.	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
į	Matched length (a.a.)		335	245	568	693	108	67	167	155		65	252	220	234		322		223
	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
{	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		0.79	56.4	32.7	27.4		28.6		26.9
- Table 1 (continued)	Homologous gene		Escherichia coli K12 thiL	Mus musculus ung	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Neisseria meningitidis	Propionibacterium freudenreichii. subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdt8		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens noct/	Escherichia coli K12 MG1655 ginH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		sp:THIL_ECOLI	sp.UNG_MOUSE	sp:Y369_MYCGE	sp:RECG_ECOLI	GSP Y75303	sp:BCCP_PROFR	Sp:YHHF_ECOLI	sp:KDTB_ECOLI		GSP:Y75358 ⁻	sp:GLNQ_BACST	sp:NOCM_AGRT5	sp:GLNH_ECOLI		pir:H69160		sp.VINT_BPL54
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
1	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
	Initial (nt)	1387270	1387332	1388312	1389208	1390796	1391961	1392939	1393154	1393742	1394854	1394894	1395549	1396410	1397421	1397662	1399534	1400926	1400940
	SEQ NO.	4959	4960	4961	4962	4963	4964	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974	4975	4976
	SEQ NO.	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476

			_		_																			
5		Function					r	insertion element (IS3 related)	8441	hypothetical protein										DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	
15		Matched length (a.a.)				,		26 - in		37 h							-			896 DN	456 се	283 DN	284 mc	
20		Similarity (%)						96.2		97.0										80.8	67.8	65.4	76.1	
		Identity (%)						88.5		89.0										56.3	33.8	41.3	46.5	
25	Table 1 (continued)	ous gene					1	glutamicum		glutamicum										berculosis	amdurans	licolor A3(2)	ida morA	
30	Table 1	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum			!							Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A. 15c	Pseudomonas putida morA	
<i>35</i> <i>40</i>		db Match						pir.S60890		PIR:S60890				,						sp.DPO1_MYCTU	SP.CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU F	
		ORF (bp)	744	432	507	864	219	192 p	855	111 P	369	315	321	375	948	306	564	222	291	2715 sp	1422 sp	606	873 sp	159
45		Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50		fnitial (nt)	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1420036
		SEQ NO.	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	1995	4996	4997	4998
55		SEQ NO. (DNA)	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

EP 1 108 790 A2

5	Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein				t	inosine-undine prefering nucleoside hypotase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator	1	excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
15	Matched length (a.a.)	163	451		195					310	517	293	337	'	671	152	121	279		839	150	214
20	Similarity (%)	58.3	71.4		93.9					81.0	53.8	9.29	9:59		83.3	59.2	80.2	77.1		47.2	0.89	58.4
	Identity (%)	31.9	39.5		80.5	,				61.9	23.6	35.5	30.0	ı	57.4	33.6	38.8	53.8		23.2	32.7	30.4
30 Paricitaes)	Homologous gene	Streptomyces coelicolor SCH5 13 yafE	Escherichia coli K12 rpsA	·	Brevibacterium lactofermentum ATCC 13869 yacE =					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG	•	Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 ytfH	Escherichia coli K12 ytfG		Bacillus subtilis yvgS	Streptomyces coelicolor_A3(2) SC9H11.26c	Escherichia coli K12 ycbL
35		Streptor SCH5.1	Escheric		Breviba ATCC 1					Crithidia	Staphyl	Escheri	Escheri			Methan MJ0531	Escheri	Escheri		Bacillus	Strepto SC9H1	Escheri
40	db Match	sp:YAFE_ECOLI	sp:RS1_ECOLI		sp.YACE_BRELA	.1				sp:IUNH_CRIFA	SP. QACA_STAAU	SP. RBSK_ECOLI	sp.ASCG_ECOL!		sp.UVRB_STRPN	sp:Y531_METJA	SP:YTFH_ECOLI	sp:YTFG_ECOLI		pir:H70040	gp.SC9H11_26	sp.YCBL_ECOLI
	ORF (bp)	654	1458	1476	909	1098	582	246	957	936	1449	921	1038	798	2097	441	381	846	684	2349	912	909
45	Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440026	1438212	1440675	1441793
50	Initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	1428290	1429159	1430642	1431579	1432612	1432750	1434105	1436335	1437249	1437356	1439343	1440560	1441586	1442392
	SEQ NO.	4999	2000	5001	5005	5003	5004	5005	2006	2005	5008	5009	5010	5011	5012	5013	5014	+	5016	5017	5018	5019
55	SEO	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

phenylalanyl-tRNA synthetase alpha chain sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport ATP-binding protein hypothetical protein 1246 (uvrA region) hypothetical protein 1246 (uvrA region) translation initiation factor IF-3 5 excinuclease ABC subunit A 50S ribosomal protein L35 50S ribosomal protein L20 glycerophosphoryl diester phosphodiesterase system permease protein system permease proein tRNA(guanosine-2'-0-)-Function hypothetical protein methlytransferase 10 system protein 15 Matched length 952 8 142 179 117 270 436 244 53 9 292 393 7 Similarity 80.6 78.2 76.7 71.6 57.0 71.2 71.3 56.0 50.0 92.7 8 6 47. 57 20 dentity 56.2 31.0 75.0 33.2 44.0 47.0 34.0 40.0 33.3 26.2 41.7 8 52 8 25 Aeropyrum pernix K1 APE0042 Rhodobacter sphaeroides intC Escherichia coli K12 MG1655 ugpA Escherichia coli K12 MG1655 ugpC Escherichia coli K12 MG1655 trmH Escherichia coli K12 MG1655 upgE Escherichia coli K12 MG1655 ugp8 Table 1 (continued) Pseudomonas syringae pv. syningae Escherichia coli K12 uvrA Homologous gene Mycoplasma fermentans Bacillus subtilis 168 syfA Bacillus subtilis glpQ Micrococcus luteus Micrococcus luteus 30 35 SP:UVRA_ECOLI sp:RL35_MYCFE sp:GLPQ_BACSU sp:SYFA_BACSU sp:UGPE_EGOLI Sp:TRMH_ECOL! sp:RL20_PSESY sp:UGPA_ECOLI sp:UGPB_ECOLI sp:UGPC_ECOL! Sp:IF3_RHOSH db Match PIR: JQ0406 PIR: JQ0406 PIR:E72756 40 2847 1314 1020 ORF (bp) 2124 1224 306 267 192 381 249 717 594 450 717 822 903 834 567 1454071 1449119 1445333 1446874 1445323 1448358 1449025 1450692 1451820 1452653 1455350 45 Terminal 1443810 1444944 1448581 1455338 1454102 1456948 1458066 E 1449940 1448645 1444115 1450126 1445393 1446158 1447446 1447792 1448390 1450918 1451820 1452758 1454115 1456355 1442487 1454350 1456066 1457047 3 50 5020 5022 5023 5033 5024 5025 5026 5027 5028 5029 5030 5032 5035 5036 5037 SEO NO. (a.a.) 5021 5031 5034 1520 1523 1524 1525 (DNA) 1521 1522 1526 1527 1528 1529 1531 1532 1534 1535 1536 1537 55

5	tion	synthetase beta			transferase		-5-semialdehyde	Itransferase	inotransferase	synthetase		lyase				C	nase (tyrosine-	C		<u>u</u>
10	- Function	phenylalanyl-tRNA synthetase beta chain		esterase	macrolide 3-O-acytransferase		N-acetyiglutamate-5-semialdehyde dehydrogenase	giutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase				hypothetical protein	tyrosyl-tRNA synthase (tyrosine-tRNA ligase)	hypothetical protein	'	hypothetical protein
15	Matched length (a.a.)	343		363	423		347	388	391	401		478				20	417	149		42
20	Similarity (%)	71.7		55.1	56.3		99.1	2.66	99.2	99.5		0.06				72.0	79.6	64.4		75.0
,	Identity (%)	42.6		26.5	30.0		98.3	99.5	0.66	99.5		83.3				48.0	48.4	26.9		71.0
<i>25</i> (p ə nu	J.e	G1655		estA	aciens		micum	micum	micum	micum		micum				caR		schii		Nigg
6 Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH	1			Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
40	db Match	Sp.SYFB_ECOLI S		sp.ESTA_STRSC S	SP.MDMB_STRMY 8		gp:AF005242_1	sp.ARGJ_CORGL	SP.ARGD_CORGL	sp.ASSY_CORGL		gp:AF048764_1				Sp:YCAR_ECOLI E	sp.SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF (bp)	2484 s	17.1	972	1383 s	402	1041 g	1164 s	1173 s	1203 s	1209	1431 g	1143	1575	612	177	1260 s	465 8	330	141
45	Terminal (nt)	1460616	1458196	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	1483335
50	Initial (nt)	1458133	1458966	5040 1461157	5041 1462134	5042 1463533	1464083	1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	1483475
	SEO NO.	<u> </u>	5039	5040	5041	5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5056
55	SEO NO (DNA)	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

5

Table 1 (continued)

Function	hypothetical protein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein	ONA repair protein	hypothetical protein	hypothetical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding protein	chromosome partitioning protein or ATP ase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
Matched fength (a.a.)	84	182	311		260	225	574	394	313	549	157	300	551	258	251		270	172	229
Similarity (%)	0.99	0.79	60.1		9.69	31.6	63.4	73.1	68.1	7.97	71.3	71.7	59.7	73.6	64.5		0.79	65.7	72.5
Identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	55.0	36.3	39.7	30.5	44.6	28.3		35.6	33.1	45.9
Homologous gene	Chlamydia pneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgD		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Mycobacterium tuberculosis H37Rv Rv1697	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Bacillus subtilis yqkG	Staphylococcus aureus xerD	Streptomyces fradiae tIrC	Caulobacter crescentus parA	Bacillus subtilis ypuG		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB
db Match	GSP: Y35814	sp:IF2 BORBU	984 Sp.YZGD_BACSU		sp:YQXC_BACSU	sp:YFJB_HAEIN	sp:RECN_ECOLI	pir:H70502	pir.A70503	sp.PYRG_ECOLI	sp:YQKG_BACSU	gp:AF093548_1	sp:TLRC_STRFR	gp.CCU87804_4	sp.YPUG_BACSU		9p.AF109156_1	Sp:YPUH_BACSU	sp:RLUB_BACSU
ORF (bp)	273	1353	984	162	819	873	1779	1191	963	1662	657	912	1530	783	765	561	867	543	756
Terminal (nt)	1483724	1486027	1487025	1487193	1488056	1489018	1490881	1492134	1493109	1495174	1495861	1496772	1496795	1499645	1500695	1500911	1502576	1503176	1504238
Initial (nt)	1483996	1484675	1486042	1487032	1487238	5062 1488146	1489103	5064 1490944	1492147	1493513	1495205	1495861	1498324	1498863	1499931	1501471	1501710	1502634	1503483
SEO NO.	5057	5058		2060	5061	5062	5063	5064	5905	9905	5067	5068	5069	5070	5071	5072	5073	5074	5075
SEO		$\overline{}$		1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575

EP 1 108 790 A2

5		
10		
15		
20		
25		
30	•	
35		
40		
45		
50		

	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoate hydrolase	preprotein transtocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	220	435			232	499	602		257		499			130	210	805	132	234	133
	Similarity (%)	73.6	74.0			67.2	60.1	56.3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
	Identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
- Table 1 (continued)	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG	•		Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
	db Match	sp.KCY_BACSU	sp.YPHC_BACSU			sp:YX42_MYCTU	554 prf.2513302B	prf.2513302A		sp:YGIE_ECOLI		gp.AB029555_1	in the second		sp.YCHJ_ECOLI	pir.C69334	sp.SECA_BACSU	gp.AF173844_2	sp.YODF_MYCTU	sp:YODE_MYCTU
	ORF (bp)	9	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1164	2289	429	756	633
	Terminal (nt)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
	Initial (nt)	1504256	5077 1505017	1507327	1507902	1508729	1508813	1510366	1511667	1512189	1514505	5086 1514527	1515159	1515396	1515782	1516962	1517170	1519601	1520190	1520957
	SEQ NO.	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085		5087	5088	5089	2090	5091	5092	5093	5094
	SEQ NO.	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594

5	u.		1,7	-	-	ğ				ase	-binding protein	dehydrogenase			ng protein l	ne protein	or	ort system	ort system	ort ATP-binding		
10	Function	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenase	thioesterase		nodulation ATP-binding protein	hypothetical membrane protein	transcriptional regulator	phosphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
15	Matched length (a.a.)	178			-		342	65		374	245	492	121		235	232	277	281	268	250		
20	Similarity (%)	84.3					69.0	65.5		69.5	66.1	99.2	67.8		68.1	76.3	63.9	63.4	62.3	72.0		
	identity (%)	71.4					33.9	31.4		41.2	34.3	99.0	39.7		_ 39.6	43.1	26.7	29.9	27.2	44.8		
55 Table 1 (continued)	s gene	perculosis		•		11	dР	dT		nilus herA	oerculosis	vum	oerculosis		3 nod!	oerculosis	12 yfhH	12 phnE	12 phnE	12 phnC	,	
30 Table 1 (c	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828				•	Bacillus subtilis yhdP	Bacillus subtilis yhdT		Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nod!	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
40	db Match	sp.YODE_MYCTU N					sp:YHDP_BACSU_B	80 sp:YHDT_BACSU B		gp.TTHERAGEN_1	sp.YD48_MYCTU N	gsp:W27613	pir.G70664 H		sp:NODI_RHIS3 R	pir.E70501	Sp:YFHH_ECOU	sp:PHNE_ECOL! E	sp:PHNE_ECOL! E	sp.PHNC_ECOLI E		
	ORF (bp)	573 sp	510	1449	009	930	1062 sp	1380 sp	219	1344 gp	735 sp	1476 gs	462 pii	675	741 sp	741 pir	873 sp	846 sp	4	804 sp	210	1050
45	Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
50	Initial (nt)	5095 1521771	1522941	1524500	1525374	1525497	1526534	1527913	1527968	1529330	1529486	1531816	1531933	1532322	1533041	1533781	1535401	1536227	1537030	1537833	1538759	1538919
	SEQ NO.	.	9609	5097	5098	5099	5100	5101	5102	5103	5104	5105	5106	5107	5108	5109	5110	5111	5112	5113	5114	5115
55	SEQ NO.	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615

5
10
15
20
25
30
35
40
45
50

	Function		phosphomethylpyrimidine kinase	hydoxyethylthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o-phthalate/phthalate permease	purine phosphoribosyttransferase	hypothetical protein	arsenic oxyanion-transfocation pump membrane subunit		hypothelical protein	sulfate permease	hypothetical protein	,			1	hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory lipase
	Matched length (a.a.)		262	249	451-	468	156	206	361		222	469	97					110	217	527		392
	Similarity (%)		70.2	77.5	55.0	66.9	29.0	68.5	54.6		83.8	83.6	50.0					87.3	71.0	55.6		55.6
	Identity (%)		47.3	46.6	28.6	32.5	36.5	39.8	23.3		62.2	51.8	39.0					71.8	39.2	25.1		23.7
Table 1 (continued)	Homologous gene		Salmonella typhimurium thiD	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis H37Rv ufaA1	Burkholderia cepacia Pc701 mopB	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp. R9 ORFA	Pseudomonas sp. R9 ORFG		-			Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 Int		Candida albicans lip1
	db Match		Sp. THID SALTY	Sp:THIM_SALTY	pir.H70830	prf.2223339B	prf.2120352B	Sp. YEBN ECOLI	gp:AF178758_2		gp:SCI7_33	gp:PSTRTETC1_6	GP PSTRTETC1_7			-		pir.A70945	prf.2317468A	sp:LNT_ECOLI		gp:AF188894_1
	ОЯР (фр)	702	1584	804	1314	1386	474	669	986	483	693	1455	426	615	207	189	750	396	810	1635	741	1224
	Terminal (nt)	1538963	1539820	1542119	1546289	1546307	1547967	1549349	1550398	1550951	1552237	1553972	1553297	1554070	1555067	1554891	1555086	1556771	1557014	1557859	1559497	1561660 1560437
	Initial (nt)	1539664	1541403	1542922	1544976	1547692	1548440	1548651	1549403	1550469	1551545	1552518	1553722	1554684	1554861	1555079	1555835	1556376	1557823	1559493	1560237	
	SEQ NO.	5116	5117		5119	5120	5121	5122	5123	5124	5125	5126	5127	5128	5129	5130	5131	5132	5133	5134	5135	5136
	SEQ NO.	1616	1617		1619	1620	1621	o		1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636

5	- Function	precorrin 2 methyltransferase	precorrin-6Y C5, 15- methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
15	79	precorr	precorr			oxidore	dipeptic		ATP-de	sec-ind protein	hypoth	hypoth	hypoth	hypoth		hypoth	hypoth	hypothe
	Matched length (a.a.)	291	411			244	382		1030	268	82	317	324	487		61	516	159
20	Similarity (%)	56.7	8.09			75.4	61.3		2'39	62.7	69.4	61.2	64.8	77.3		80.3	74.2	50.0
	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
25 (panui	ane e	ulosis	cans			Josis	LT11		siae	tc		ulosis		losis		sisol	losis	PE2014
56 05 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobl.			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
40	db Match	pir:C70764	sp:COBL_PSEDE			sp:YY12_MYCTU	gp:AF014460_1		sp:MTR4_YEAST	sp:TATC_ECOLI	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir:B70512	pir:C70512	PIR:H72504
	ORF (bp)	774	1278	366	246	738	1137	639	2787	1002	315	981	972	1425	249	192	1542	480
45	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	1567106	1567117	1569932	1571068	1571506	1572492	1573491	1575205	1574945	1575406	1577806
50	Initial (nt)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
	SEQ NO.	5137	5138	5139	5140	5141	5142	5143	5144	5145	5146	5147	5148	5149	5150	5151	5152	5153
55	SEQ NO. (DNA)	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

cysteinyl-tRNA synthetase

387

64.

35.9

Escherichia coli K12 cysS

ECOLI

sp:SYC_1

1212

1596249

1597460

1670 1669

378

1595844

1596221

5169 5170

arsenate reductase

129

64.3

32.6

Staphylococcus aureus plasmid pl258 arsC

sp. ARSC_STAAU

420

1594951

1594532

5167

1667

arsenate reductase

123

75.6

47.2

Mycobacterium tuberculosis H37Rv arsC

pir.G70964

639

1595668

1595030

5168

AAA family ATPase (chaperone-like function) 5-methyltetrahydrofolate-homocysteine methyltransferase ATP phosphoribosyltransferase alkyl hydroperoxide reductase subunit F 5 virulence-associated protein arsenical-resistance protein quinolon resistance protein beta-phosphoglucomutase aspartate ammonia-lyase aspartyl aminopeptidase Function protein-beta-aspartate hypothetical protein methyltransferase 10 15 Matched length (a.a.) 1254 385 195 545 436 269 526 366 388 281 281 69 Similarity 61.0 78.5 79.0 72.5 62.4 67.2 71.4 63.1 8 99 97 6 63 20 Identity (%) 21.8 33.0 8.66 96.8 30.8 31.6 22.4 51.6 57.3 40.6 38.1 5. 25 Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA Xanthomonas campestris ahpF Staphylococcus aureus norA23 Corynebacterium glutamicum ASO19 hisG Rhodococcus erythropolis arc Dichelobacter nodosus A198 Table 1 (continued) Thermotoga maritima MSB8 TM1254 Mycobacterium tuberculosis H37Rv Rv2119 Mycobacterium leprae pim T Saccharomyces cerevisiae S288C YPR201W acr3 Escherichia coli K12 metH Homologous gene 30 Homo sapiens vapl 35 SP. AHPF_XANCH sp:ASPA_CORGL Sp. VAPI_BACNO sp:ACR3_YEAST Sp:METH_ECOLI gp:AF050166_1 gp. AF 005050 db Match prf.2422382Q prf:2513299A pir.B70513 pir:H72277 pir:S72844 40 1026 1209 1578 3663 1176 1323 ORF (bp) 1581 834 834 264 843 693 570 1591912 1583913 1591941 1594512 1582273 1587573 1579449 1582114 1585603 1586812 45 1581640 Terminal 1576951 1578567 Ē 1593337 1581851 586445 1591235 591343 1580807 1585490 1592966 1579400 1580771 1583481 1587504 1578531 Ē 50 5156 5162 5159 5160 5165 5155 5158 5161 5163 5164 5166 5154 5157 SEQ. 1665 (DNA) 1658 1659 1663 1664 1656 1657 1662 199

123

	Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase	,		transposase	- 11	bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter -		ABC transporter		puromycin N-acetyttransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)transport system kinase	methylmalonyl-CoA mutase alpha subunit
	Matched length (a.a.)	255	326	359	334		1	360		152	198		597		535		95	339	741
	Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		58.7		1.79		58.4	72.3	87.5
	identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
Table 1 (continued)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae InpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB	•	Corynebacterium striatum M82B tetA	•	Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
	db Match	sp:BACA_ECOLI	prf.2214302F	pir.F70577	Sp:PYRD_AGRAE	-		gp:PSESTBCBAD_		sp:YBHB_ECOLI	GSP:Y74829		prf.2513302A		prf.2513302B		pir.JU0052	sp:ARGK_ECOLI	sp.MUTB_STRCM
	ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	2211
	Terminal (nt)	1597745	1599614	1600677	1601804	1601931	1603466	1604629	1604830	1605281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	1612234
	Initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	5177 1603520	1605315	1605811	5180 1605961	1607645	1607657	1609087	1609247	1610192	1610236	1612238	1614444
	SEQ NO.	5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5186	5187	5188
	SEQ NO.	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688

5	Function	methylmalonyl-CoA mutase beta	subunit	hypothetical membrane protein-		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
15	Matched length	\top	610 sut	224 hyp		370 hyp	141 hyp	261 hyp		364 fer	611 inv		959 ac	174 tra	235 GN	221 hy	86 hy		446 hy
20	Similarity		68.2	70.1		87.0	78.7	72.8		65.7	56.5		85.9	81.6	51.9	62.0	80.2		86.1
	Identity	(ov)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
30 February 20	Homologous gene		Streptomyces cinnamonerisis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis = H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichil subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv ach	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
35	토		A3823.5 mutA	Mycobacte H37Rv Rv1		Mycobacterium H37Rv Rv1488	Mycobacterium H37Rv Rv1487	Streptomy SCC77.24		Propioniba subsp. She	Streptococ		Mycobacter H37Rv acn	Mycobacterium t H37Rv Rv1474c	Methanoc MJ1575 gi	Streptomyc SCD82.04c	Methanoc MJ1558		Neisseria NMR1652
40	db Match		sp:MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir.B70711	gp:SCC77_24		sp:HEMZ_PROFR	sp.P54_ENTFC		pir.F70873	pir.E70873	pir.F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9
	ORF	(gb)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
45	Terminal	(£)	1614451	1617300	1617994	1618321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
50	Initial	Ê	1616298	1616578	1617398	1619616	1620106	1621009	1621056	1622950	1624826	1625925		1629298	1629913	1631329	1631660	1631745	5205 1631933
	SEQ	(a.a.)	5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	
55		DNA)	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705

10	
15	
20	
25	
30	
35	
40	
45	

	- Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein		sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitragen fixation protein	
	Matched length (a.a.)	113	152	883		120					107	154	497		387	236	37	88		107	149	
	Similarity (%)	0.09	0.69	73.2		58.3					73.8	60.4	64.4	1	72.4	100.0	72.0	43.0		70.1	85.2	
	Identity (%)	54.0	59.0	42.6		35.8					43.0	34.4	32.8		51.9	93.6	64.0	32.0		32.7	63.8	
Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae ORF24	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sli1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yijK		Micromonospora viridifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7	
	db Match	GSP:Y38838	GSP:Y38838	sp:ATA1_SYNY3		gp:SC3D11_2		٠			prf:2408488H	prf.2510491A	sp:YJJK_ECOLI	ı	sp:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS_5		pir:B75015	pir.S72754	
	ORF (bp)	480	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	708	243	261	585	423	447	
	Terminal (nt)	1632109	1632682	1636241	1633781	1636244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645601	1647133	1647212	1647651	
	Initial (nt)	1632588	1633137		1634563	5210 1636732	1637081	1639132	1639365	1639656	1639781	1640546	1642674	1644218	1645499	1645661	5221 1645821	1645861	1646549	1647634	1648097	
	SEQ NO.	5206		5208	5209	5210	5211	5212	5213	5214	5215	5216	5217	5218	5219	5220		5225	5223	5224	5225	
	SEQ NO.	1706	_	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1

5					oinding protein	1	,		e protein						Se	ol oxidase me O			
10		Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly factor // heme O synthase	transketolase	transaldolase	
15		Matched length (a.a.)	52	411	252	37.7	493	217	518	317	266	291		418	323	295	675	358	
20		Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	74.6		51.0	70.9	8.99	100.0	85.2	
		Identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
25	Table 1 (continued)	is gene	K1 APE2025	orae nifS	licolor A3(2)	berculosis _	PCC6803	licolor A3(2)	berculosis	prae 2	prae	berculosis		oshii PH0450	.12 qor	radskyi coxC	glutamicum	prae	
30	Table 1 (c	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
35		db Match						ω,			1				ECOLI	gp:NWCOXABC_3 N			
40		db A	PIR:C72506	pir S72761	gp:SCC22_4	pir.A70872	sp. Y074_SYNY3	gp. SCC22	pir.F70871	pir.S72783	pir.S72778	pir:C70871		pir.C71156	Sp:QOR		gp:AB023377_1	sp:TAL_MYCLE	
		ORF (bp)	162	1263	756	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100	1080	1164
45		Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601
50		Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	1656712	1657677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
		SEQ NO.	5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238		5240	5241	5242
55		SEQ.	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

excinuclease ABC subunit C

701

61.5

34.4

Synechocystis sp. PCC6803 uvrC

2088 sp:UVRC_PSEFL

1689190 1687103

5259

1759

٠,

hypothetical protein

281

76.2

52.0

Mycobacterium tuberculosis H37Rv Rv1421

sp:YR39_MYCTU

927

1686152

1687078

5258

1758

hypothetical protein

309

82.5

56.3

Mycobacterium tubercutosis H37Rv Rv1422

1023 sp:YR40_MYCTU

1685110

1686132

5257

1757

5	- Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein
15	Matched length (a.a.)	484	318	258	128	200	205				259	128	405	333	324
20	Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				9.66	51.0	98.5	99.7	87.4
	Identity (%)	93.8	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99.1	63.9
25 D			.s				ш				um	o)	E.n.	um	is
s & S Table 1 (continued)	Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterlum glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423
40	db Match	gsp:W27612	pir.A70917	sp.SOL3_YEAST	sp:SAOX_BACSN	gp.AF126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP:YCQ3_YEAST	sp:PGK_CORGL	sp:G3P_CORGL	pir.D70903
	ORF (bp)	1452	957	705	405	1401	840	174	687	981	777	408	1215	1002	981
45	Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117
50	Initial (nt)	1667950	1669419	1670395	1671677	1671723	1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097
	SEQ NO.		5244	5245	5246	5247	5248	5249	5250	5251	5252	5253	5254	5255	5256
55	SEQ NO.	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756

														_					
5			mazine	y rib operon	protein	y rib operon	and 3, 4- 4-phosphate inthesis)	sha chain	minase	epimerase	.1/NOP2	/Itransferase	se		e synthetase	etabolism			
10	Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4- dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ributose-phosphate 3-epimerase	nucleolar protein NOL 1/NOP2 (eukaryotes) family	methionyl-(RNA formyltransferase	polypeptide deformylase	primosomal protein n	S-adenosylmethionine synthetase	DNA/pantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
15	Matched length (a.a.)	150	154	72	217	106	404	211	365	234	448	308	150	725	407	409	81	186	103
20	Similarity (%)	68.7	72.1	0.89	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	80.9	87.7	74.7	90.3
	Identity (%)	32.7	43.5	59.0	26.0	44.0	9.29	47.4	37.3	43.6	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	80.6
25 Q	gene	culosis					rculosis ribA	SU-178 ribE	ribO	evisiae 31	sun .	ginosa fmt	def		ım MJ-233	rculosis	rculosis	evisiae guk1	erculosis IF
30 · Shering	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subtilis	Bacillus subtilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevisiae \$2288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae gukt	Mycobacterium tuberculosis H37Rv Rv1388 mIHF
35	ļ	Myo H37	Esc	Bac	Bac	Bac	Myg	Pet Pet	Esc	Sac	Esc	Pse	Bac	Esc	Bre	H3.		Sa	₹£
40	db Match	sp:YR35_MYCTU	sp.RISB_ECOLI	GSP:Y83273	GSP-Y83272	GSP:Y83273		sp:RISA_ACTPL	Sp. RIBD_ECOLI	sp:RPE_YEAST	SP. SUN_ECOLI	SP. FMT PSEAE		2064 SP.PRIA_ECOLI	gsp:R80060		sp:YD90_MYCTU	pirKIBYGU	pir:B70899
	ORF (bp)	579	477	228	714	336	1266	633	984	657	1332	945	507	2064	1221	1260	291	627	318
45	Terminal	1689201	1689869	1690921	1691421	1691347	1690360	1691639	1692275	1693262	1693967	1695499	1696466	1697084	1699177	1700508	1702322 1702032	1702411	1702991
50	Initial (nt)	1689779	1690345	1690694	1690708	1691012		1692271	1693258		1695298	1696443				1701767		1703037	
	SEO	(a.a.) 5260	5261	5262	5263	5264	5265	5266	5267		5269	5270	_		_		5275	5276	
55	SEQ.	(DNA)	1761	1762			1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777

5	Function	orotidine-5'-phosphat <i>e</i> decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotase	aspartate carbamoyltransferase	phosphoribosyl transferase or pyrimidinë operon regulatory protein	cell divisian inhibitar				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-like protein specific leader peptidase
15	Matched length (a.a.)	276 o	1122 Ci	387: 6	402 d	311 a	176 P	297				137 (r	187 e	217 C	361 3	166 si	142 ty
20	Similarity (%)	73.6	77.5	70.1	67.7	79.7	80.1	73.4				69.3	98.4	100.0	99.7	100.0	54.9
	Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
25 (pənu	91	losis		5.8	M 405	Sa	M 405	fosis				,	mentum	nlcum	nicum	nicum	tapD
s & Santinued)	Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamlcum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
40	db Match	SP:DCOP_MYCTU	pir;SYECCP E	sp.CARA_PSEAE	sp:PYRC_BACCL E	Sp.PYRB_PSEAE	Sp.PYRR_BACCL	sp:Y00R_MYCTU				sp:NUSB_BACSU_E	sp:EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp:AF124600_2	sp.LEP3_AERHY
	ORF (bp)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	411
45	Terminal (nt)	1703517	1704359	1707706	1709017	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
50	Initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714299	1714741	1716062	1716692	1717868	1719032	1719598	1721381
	SEO NO.	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
55	SEQ NO.	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793

									$\neg \tau$			\neg	$\neg \tau$				T	
5	Function	bacterial regulatory protein, arsR family	ABC transporter	,	iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthetase	hypothelical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
15	Matched length (a.a.)	83 fr	340 A	'	373 li	230 fr	259 s	395	161	894	454		591	297	839	742		192
20	Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	69.6	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
25 (banu	ane.	or A3(2)	theriae		say	S ₂	ulosis	ulosis	ulosis	ans ATCC	ulosis	_	aspS	ulosis	risiae			lor A3(2)
so Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
35					<u>a</u> a	 -	ΣI	ZI	ZI,			-				BACSU B		
40	db Match	gp:SC1A2_22	gp:AF109162_2		pir. A75_169	sp.FHUC_BACSU	pir.D70660	pir:E70660	pir:F70660 ·	Sp.SYA_THIFE	sp:Y0A9_MYCTU		Sp.SYD_MYCLE	sp:Y08Q_MYCTU	SP.AMYH_YEAST	sp:YHGE_BA		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
45	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
50	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740569	1741219	1741313
	SEQ.	5294	5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	+	5307	5308	5309	5310
55	SEQ.	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

EP 1 108 790 A2

5	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-tRNA synthetase	hydrolase	cyclaphilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
45	р ₄ _			-			<u> </u>		histic	hydre	cyclo		hypo		GTP	aden	dipeb	hypot	prote	
15	Matched length (a.a.)		371		116	462		598	421	211	175		128		760	185	49	£58	332	
20	Simitarity (%)		88.1		9'22	71.4		53.9	72.2	62.1	61.1		100.0		99.9	100.0	98.8	60.9	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		6:66	99.5	0.86	30.7	25.9	
So Garage 20 Carable 1 (continued)	Homologous gene		selicolor A3(2)		Pseudomonas aeruginosa PAO1 slfA	K12 sdaA		Enterococcus casseliflavus glpO	aureus	ejuni 809c	ırysomallus		n glutamicum 4		ı glutamicum	glutamicum	glutamicum AE	uberculosis_	(12 secF	
 Table 1	Homolog		Streptomyces coelicolor A3(2) SCE15.13c		Pseudomonas a slfA	Escherichia coli K12 sdaA		Enterococcus ca	Staphylococcus aureus SR17238 hisS	Campylobacter Jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis_ H37Rv Rv2585c	Escherichia coli K12 secF	
35	db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOL!		prf.2423362A	sp.SYH_STAAU	gp:CJ11168X3_12 7	prf.2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp:Y0BG_MYCTU	sp:SECF_ECOLI	
	ORF (bp)	714	1113	126	495	1347	861	1686	1287 8	639	507 p	237	555 9	342	2280 g	555 g	150 g	1743 s	1209 s	630
45	Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
50	Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755748	1757228	1758797	1759707
	SEQ NO. (a.a.)	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5325	5323	5324	5325	5326	5327 1	5328 1	5329 1
55	SEQ NO.	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

EP 1 108 790 A2

			_	, -	_	_			_											
5		Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acytransferase	CDP-diacylglycerol-glycerol-3- phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
15		Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	78	194	647	400			
20		Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	9.89	61.3	61.2	49.3	67.8	78.0	78.4	6.89	61.8			
		Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
25 30 ·	- Table 1 (continued)	Homologaus gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces-coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
35 40		db Match	prf.2313285A	sp:Y08D_MYCLE	sp:RUVB_ECOLI	sp.RUVA_MYCLE	sp:RUVC_ECOLI	sp:YEBC_ECO⊔	sp.TESB_ECOLI	gp:SC10A5_9	pir:H70570	sp.GPI3_YEAST	gp:SCL2_16	pir:C70571	pir.D70571	sp:SYT2_BACSU	sp:YWBN_BACSU			
		ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	657	999	2058	1206	564	546	735
45		Terminal (nt)	1758803	1761005	1781419	1762517	1763177	1763990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
50		Initial (nt)	1760734	1761367		1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
		SEQ NO.	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5346	5347
		SEQ NO. (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

EP 1 108 790 A2

		T		_	_	_		_			_	_	_		_	_	_	,		_					
5	- L		 		,	-	ansferase											inding protein					lism		
10	Function						puromycin N-acetyltransferase											ferric transport ATP-binding protein					pantothenate metabolism flavoprotein		
15	Matched length (a.a.)				i		190											202		 			129		
20	Similarity (%)						64.2											28.7					2.99		
	Identity (%)						36.3											28.7					27.1		
25 19 19	gene					ij	tus pac											fec		 			dfp		
30 Section (Continued)	Homologous gene						Streptomyces anulatus pac					1						Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis díp	!	
<i>35</i>	db Match						SP.PUAC_STRLP							•				Sp.AFUC_ACTPL P					gp:AF088896_20 Z		
	ORF (bp)	378	594	1407	615	399	567 sp.	980	101	669	2580	113	923	483	189	312	429	765 zer	666	159	1107	420	591 gp:/	864	420
45	Terminal O	1777646	1778037	1778102 1	1779554 6	1780507	1781019	1782790 10	1784381 11	1783382 6	1782894 2	1785732 11	1786907 19	1789562	1789768	1790057	1790461 4	1792438 5	1793426 9	1793496 1	1794820 1	1795621 4	1796181 5	1797049 8	1797769 4
50	Initial (nt)	1777269	1777444	1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	1786844	1788829	1789080	1789580	1789746	5363 1790889	1791842	1792428	1793654	1793714	1795202	1795591	1796186	5371 1797350
	SEQ NO.	5348	5349	5350	5351	5352	5353	5354	5322	5356	5357	5358	5359	5360	5361	5362	-	5364	5365	5366	2367	5368	5369	5370	
55	SEQ NO (DNA)	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

EP 1 108 790 A2

5	- Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
15	Matched length (a.a.)																			186			164		
20	Similarity (%)																			78.0			51.8		
	Identity (%)															-				51.1			29.3		
S S S S S S S S S S S S S S S S S S S	us gene															-				pR			erevisiae vh1		
So Table 1 (Homologous gene		ı																	Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
35																-									
40	db Match																			sp:TNP2_ECOL			sp:PVH1_YEAST		
	ORF (bp)	120	735	225	894	156	474	753	423	687	429	465	237	681	096	480	681	285	375	612	_	375	477	726	423
45	Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
50	Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
	SEQ NO. (a.a.)	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391		5393	5394	5395
55	SEQ NO.	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

						_					, .													
5			factor		,	,	t											lated)	lated)			ecific		
10		Function	sporulation transcription factor	•								hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
15		Matched length (a.a.)	216			,						545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	92.6	84.2			50.6		64.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
25	Table 1 (continued)	ans gene	licolor A3(2)				1					ima MSB8					glutamicum	glutamicum	glutamicum	,		emi recJ		1ge phi-01205
	Table 1 (Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB8 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamlcum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
35		db Match	gp:SCA32WHIH_6											,				,,,,,				SP.RECJ_ERWCH E		_
40			gp:SCA					1				pir.C72285					PIR:S60891	pir.S60890	pir.S60889					pir.T13302
		ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	459	534	894	294	213	1299	1878	780	1650
45		Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		tnitial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825506	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
		SEQ NO. (a.a.)	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55		SEQ NO. (DNA)	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

	•		_	7	_		_																		
5		Function				helicase	1	phage N15 protein ap57								t.		actin binding protein with SH3 domains		1			ATP/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
15		Matched length (a.a.)				620		109				,					'	422					347		630
20		Similarity (%)				44.7		64.2										49.8					52.5		61.0
		Identity (%)				22.1		36.7										28.7					23.6		30.2
25 6	lincu)	e L				ae ATCC	11	1657										ompe				İ			∀
30 Southern Factorian	lino) - oran	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SC5C7.14		Escherichia coli K12 clpA
40		db Match				sp. Y018_MYCPN		pir.T13 <u>1</u> 44										gp:SPAPJ760_2					gp:SC5C7_14 S		sp:CLPA_ECOLI E
		ORF (bp)	3789	447	534	1839	375	336	366	618	537	528	798	186	372	438	576	1221	852	1395	594	180	1257	1854	1965
45		Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
50		Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1858763
	0.0	(a.a.)	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5438	5439	5440
55	0	NO (bud)	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

EP 1 108 790 A2

5	- Function					ATP-dependent helicase					hypothetical protein	deoxynucleatide monophasphate kinase		-			type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical-protein	
15	Matched length (a.a.)					693					224	208		٠			363	358			504	
20	Similarity (%)					45.9					47.8	61.5					99.7	2.66			45.8	
1	Identity (%)					21.4					25.9	31.7		,			99.2	2.66			24.6	
25 (panujuu	gene					eus SA20					olor A3(2)	331 gp52					utamicum	utamicum		_	olor A3(2)	
Table 1 (continued)	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52			•		Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
40	db Match					sp:PCRA_STAAU					gp:SCH17_7	prf.2514444Y		_			prf:2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355	558	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
45	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50	Initiat (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
	SEQ NO. (a.a.)	5441	5442		5444	5445	5446	5447	5448	5449	5450	5451	5452	5453	5454	5455	5456	5457	5458	5459	5460	5461
55	SEQ NO.	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961

EP 1 108 790 A2

		ī -	т-	_	т-	Τ-		T	Τ	T	Т	1	-	Τ-	_	Т-	_	_		_	_		_		
5	Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein							,		
	79		hypoth		hypoth				endoper chain B	 - 		_		-	_	nuclear									
15	Matched length	8	163		537				724							1004		Ĺ							
20	Similarity (%)	70.0	56.4		47.9			,	52.5							49.1									
	Identity (%)	46.7	33.1		20.7		į į		25.3							20.1									
25 (Parini	gene	rans	ohi-gle		02-16																	-			
Table 1 (continued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli clpB							Homo sapiens numA									
35 40	db Match	gp:AE001973_4	pir:T13226		gp:AF188935_16				sp.CLPB_ECOLI	-				ı		plr.S23647									
	ORF (bp)	351 g	864 p	330	1680 g	1206	1293	2493	1785 s	621	1113	846	186	879	198	2766 pl	009	1251	969	714	1008	1659	1488	366	1509
45	Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
50	Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	1909498	1910508	1912300	1913820	1914371	1916233
	SEQ NO. (a.a.)	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482	5483	5484	5485
55	SEQ NO.	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978			1981	1982	1983	1984	1985

EP 1 108 790 A2

				T	T	T	Τ		Τ	T	Τ	T	T	Т	T	Τ	Т	T	T	T	\top	T	\top	T	T
5	Ę			.,.																					
10	Function										submaxillary apomucin			modification methytase			,		hypothetical protein			hypothetical protein			
15	Matched length (a.a.)					ļ					1408			61					114			328	 		
20	Similarity (%)										49.2			65.6					58.8			54.6			
	Identity (%)										23.2			42.6					38.6			27.1			
25 (juned)	ene																		losis			chii			
S S Table 1 (continued)	Homologous gene						+				Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137		1	
35										<u></u> 	S				-				Σï					_	
40	db Match							.1			pir.T03099			sp:MTE1_ECOLI					pir:H70638			sp:Y137_METJA			
	ORF (bp)	360	222	312	645	759	549	930	306	357	4464	579	945	17	375	1821	201	468	381	507	837	942	624	210	534
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEQ NO. (a.a.)	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5500	5501	5502	5503	5504	5505	9055	5507	5508	5509
55	SEQ NO. (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

EP 1 108 790 A2

5	Function					1					surface protein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein precursor	
15	Matched length (a.a.)							i			304 s				270 P	1		597 E	<u> </u>				344 Pi	
20	Similarity (%)										44.1				54.4			50.9					54.7	
	Identity (%)										23.0				30.7			23.8					29.7	
55 Continued)	us gene										calis esp				glutamicum avum) ATCC		,	Bd					glutamicum avum) ATCC	
Table oc	Homologous gene	ļ.									Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
35	db Match			:			-1				prf.2509434A			,	sp.CSP1_CORGL (sp:TOP3_ECOLI E					sp.CSP1_CORGL (I	
	ORF (bp)	1191	534	588	444	753	303	216	309	885	828 prf.	297	381	429	1581 sp.(2430	867	2277 sp:	2085	891	432	744	1887 sp:(291
45	Terminat (nt)	1940135 1	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070 1	1949021 2	1951619	1952546 2	1956203 2	1958450 8	1959765 4	1960371 7	1961114	1963139 2
50	Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	5520 1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
	SEQ NO.	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519		5521	5522	5523	5524	5255	5526	5527	5528	5529	5530	5531	5532
55	SEQ NO.	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

EP 1 108 790 A2

| 1 | T | $\overline{}$ | $\overline{}$ | _ | _ | _ | _ | $\overline{}$ |

 | _
 | | _ | _

 | _ | | | | | _ | |
 | |
 | |
 | |
|-----------------------------|--|---|---|---|--|--|---|---
--
--
---|---|--|--
--
--|---|--
--|--|--|---|--

---|---
---|--|---|
| uo | | | | | | | | |

 |
 | | |

 | -binding protein | | | | | | |
 | |
 | |
 | |
| - Functi | | | | thermonuclease | | | | |

 |
 | | |

 | single stranded DNA | | | | | | |
 | serine protease |
 | |
 | |
| Matched
length
(a.a.) | | | | 227 | | | | |

 |
 | | |

 | 225 | | | | | | |
 | 249 |
 | - |
 | |
| Similarity (%) | | | | 57.7 | | | | |

 |
 | | |

 | 59.1 | | | | | | |
 | 52.6 |
 | |
 | |
| Identity (%) | | | | 30.4 | | | | |

 |
 | | |

 | 24.9 | | | | | | |
 | 25.7 |
 | |
 | |
| us gene | ! | | | reus nuc | | | | |

 |
 | | |

 | | | | | | | |
 | AgSP24D |
 | |
 | |
| Homologo | | | • | staphylococcus at | | | | |

 |
 | | |

 | hewanella sp. ssl | | | | | | |
 | nopheles gambia |
 | |
 | |
| Match | | | | | | | | |

 |
 | | |

 | | | ı | | | | |
 | \vdash |
 | | 1
 | |
| | | | | sp:NUC | | | | |

 |
 | | |

 | prf.23133 | | | | | | |
 | sp:S24D_ |
 | |
 | |
| ORF
(bp) | 1230 | 1176 | 357 | 684 | 147 | 564 | 1452 | 459 | 1221

 | 1419
 | 591 | 396 | 237

 | 624 | 579 | 462 | 205 | 588 | 333 | 558 | 570
 | 912 | 693
 | 366 | 747
 | 180 |
| Terminal
(nt) | 1963514 | 1964727 | 1965911 | 1966984 | 1967289 | 1968167 | 1969715 | 1970203 | 1971474

 | 1973090
 | 1973737 | 1974204 | 1974503

 | 1975794 | 1976494 | 1976983 | 1977549 | 1978329 | 1978721 | 1979217 | 1979808
 | 1980885 | 1981657
 | 1982028 | 1982817
 | 1981912 |
| Initial
(nt) | 1964743 | 1965902 | 1966267 | 1966301 | 1967435 | 1967604 | 1968264 | 1969745 | 1970254

 | 1971672
 | 1973147 | 1973809 | 1974267

 | 1975171 | 1975916 | 1976522 | | | 1978389 | |
 | 1979974 | -
 | |
 | 1982091 |
| SEQ
NO. | 5533 | 5534 | 5535 | 5536 | 5537 | | | |

 |
 | | |

 | | | | | | | 5552 |
 | |
 | |
 | 5558 1 |
| SEQ
NO.
(DNA) | 2033 | 2034 | 2035 | 2036 | | 2038 | 2039 | 2040 | 2041

 |
 | _ | |

 | $\overline{}$ | | | | | _ | |
 | _ | _
 | |
 | 2058 5 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (a.a.) | SEQ Initial (a.a.) Initial (ht) Terminal (ht) Ab Match (ht) Homologous gene (%) Identity (%) Matched (ht) 5533 1964743 1963514 1230 | SEQ Initial NO. (nt) Terminal ORF (a.a.) db Match Homologous gene (36) Identity Similarity length (1230) Matched (38) Homologous gene (38) Identity (38) Matched (38) Indicated (38) Indicate | SEQ Initial (a.a.) Terminal (bp) db Match Homologous gene (%) Identity (%) Matched (%) S533 1964743 1963514 1230 (aa) (aa) (aa) 5534 1965902 1964727 1176 (aa) (aa) (aa) 5535 1965907 1965911 357 136 (aa) (aa) | SEQ Initial (a.a.) Terminal (nt) (bp) db Match Homologous gene (36) Identity (%) Matched (%) Matched (aa) 55.34 196.5902 196.4727 1176 (aa) (aa) | SEO Initial NO. Initial (tr) (tr) Terminal (DRF) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Initial (%) Matched (%) Matched (%) Initial (%) Matched (%) Initial (%) Initial (%) Matched (%) Initial (%) Ini | SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ Initial (a.a.) Terminal (bp) ORF (bp) db Match Homologous gene (choice) Identity (choice) Matched (choice) | SEO Initial (a.a.) Initial (nt) (nt) Terminal (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) <th>SEQ Initial (a) Intial (a) Terminal (b) ORF (b) db Match Homologous gane (3%) (%)</th> <th>SEQ
NO.
(at) Initial
(nt) Terminal
(nt) ORF
(nt) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</th> <th>SEO (ntial) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</th> <th>SEO (ntital) Intital (nt) (nt) (hp) Matched (pb) <th< th=""><th>SEO (nitial) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</th><th>SEO NO. (nt) (a.a.) (nt) (nt) (hp) (pp) (hp) (nb) (hp) (nb) (hp) (ngth (hp) (hp) (ngth (hp) (hp) (hp) (ngth (hp) (hp) (hp) (ngth (hp) (hp) (hp) (hp) (ngth (hp) (hp)</th><th>SEC
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) db Match
(bp) Homologous gene
(cb) Identity
(cb) Similarity
(cb) Matched
(cb) Ma</th><th>SEQ Initial NO. (mt) (mt) (pp) db Match Homologous gene (pb) Identity (pb) Matched (pa) Matched (pa)</th></th<><th>SEO (nt) (nt) (nt) (nt) (nt) (pp) db Match Homologous gene (%) Identity (%) Simlarity (%) Alatched (%) 5533 1964743 1965314 1230 1230 C C C C C C C Caa) Caa)<</th><th>SEC NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</th><th>SEC
NO. Inflial
(as) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</th><th>SEO (nnii a) (nn) Infinial (a) (b) Terminal (b) ORF (b) db Match (b) Homologous gene (c) Identity (similarity (b) Matched (c) 55.33 1964743 1965514 1220 176 C<th>SED (int) (in</th><th>SEO (11) Initial (11) Terminal (11) ORF (11) db Match (11) Homologous gane (14) Ghanth (12) Matched (14) Matched (14) Amatched (14)<th>SED
(10.3.) Initial
(m) Terminal
(m) OR
(m) db Match Homologous gone
(94) Homologous gone
(94)<th>SEO (10.11) Inftial (10.11) Terminal (10.11) ORF (10.11) db Match (10.11) Homologous gane (10.11) Identity (10.11) Similarity (10.11) Matched (10.11) 55.33 196473 1965314 1963514 1230 177 227<th>SEAD (Initial Note) Initial (Initial Note) Terminal (Initial Note) ORP (Initial Note) Homologous gane (Initial Note) Identity (Initial Note) Indentity (Initi</th></th></th></th></th></th> | SEQ Initial (a) Intial (a) Terminal (b) ORF (b) db Match Homologous gane (3%) (%) | SEQ
NO.
(at) Initial
(nt) Terminal
(nt) ORF
(nt) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)< | SEO (ntial) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt | SEO (ntital) Intital (nt) (nt) (hp) Matched (pb) Matched (pb) <th< th=""><th>SEO (nitial) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</th><th>SEO NO. (nt) (a.a.) (nt) (nt) (hp) (pp) (hp) (nb) (hp) (nb) (hp) (ngth (hp) (hp) (ngth (hp) (hp) (hp) (ngth (hp) (hp) (hp) (ngth (hp) (hp) (hp) (hp) (ngth (hp) (hp)</th><th>SEC
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) db Match
(bp) Homologous gene
(cb) Identity
(cb) Similarity
(cb) Matched
(cb) Ma</th><th>SEQ Initial NO. (mt) (mt) (pp) db Match Homologous gene (pb) Identity (pb) Matched (pa) Matched (pa)</th></th<> <th>SEO (nt) (nt) (nt) (nt) (nt) (pp) db Match Homologous gene (%) Identity (%) Simlarity (%) Alatched (%) 5533 1964743 1965314 1230 1230 C C C C C C C Caa) Caa)<</th> <th>SEC NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</th> <th>SEC
NO. Inflial
(as) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<</th> <th>SEO (nnii a) (nn) Infinial (a) (b) Terminal (b) ORF (b) db Match (b) Homologous gene (c) Identity (similarity (b) Matched (c) 55.33 1964743 1965514 1220 176 C<th>SED (int) (in</th><th>SEO (11) Initial (11) Terminal (11) ORF (11) db Match (11) Homologous gane (14) Ghanth (12) Matched (14) Matched (14) Amatched (14)<th>SED
(10.3.) Initial
(m) Terminal
(m) OR
(m) db Match Homologous gone
(94) Homologous gone
(94)<th>SEO (10.11) Inftial (10.11) Terminal (10.11) ORF (10.11) db Match (10.11) Homologous gane (10.11) Identity (10.11) Similarity (10.11) Matched (10.11) 55.33 196473 1965314 1963514 1230 177 227<th>SEAD (Initial Note) Initial (Initial Note) Terminal (Initial Note) ORP (Initial Note) Homologous gane (Initial Note) Identity (Initial Note) Indentity (Initi</th></th></th></th></th> | SEO (nitial) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt | SEO NO. (nt) (a.a.) (nt) (nt) (hp) (pp) (hp) (nb) (hp) (nb) (hp) (ngth (hp) (hp) (ngth (hp) (hp) (hp) (ngth (hp) (hp) (hp) (ngth (hp) (hp) (hp) (hp) (ngth (hp) (hp) | SEC
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) db Match
(bp) Homologous gene
(cb) Identity
(cb) Similarity
(cb) Matched
(cb) Ma | SEQ Initial NO. (mt) (mt) (pp) db Match Homologous gene (pb) Identity (pb) Matched (pa) Matched (pa) | SEO (nt) (nt) (nt) (nt) (nt) (pp) db Match Homologous gene (%) Identity (%) Simlarity (%) Alatched (%) 5533 1964743 1965314 1230 1230 C C C C C C C Caa) Caa)< | SEC NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEC
NO. Inflial
(as) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)< | SEO (nnii a) (nn) Infinial (a) (b) Terminal (b) ORF (b) db Match (b) Homologous gene (c) Identity (similarity (b) Matched (c) 55.33 1964743 1965514 1220 176 C <th>SED (int) (in</th> <th>SEO (11) Initial (11) Terminal (11) ORF (11) db Match (11) Homologous gane (14) Ghanth (12) Matched (14) Matched (14) Amatched (14)<th>SED
(10.3.) Initial
(m) Terminal
(m) OR
(m) db Match Homologous gone
(94) Homologous gone
(94)<th>SEO (10.11) Inftial (10.11) Terminal (10.11) ORF (10.11) db Match (10.11) Homologous gane (10.11) Identity (10.11) Similarity (10.11) Matched (10.11) 55.33 196473 1965314 1963514 1230 177 227<th>SEAD (Initial Note) Initial (Initial Note) Terminal (Initial Note) ORP (Initial Note) Homologous gane (Initial Note) Identity (Initial Note) Indentity (Initi</th></th></th></th> | SED (int) (in | SEO (11) Initial (11) Terminal (11) ORF (11) db Match (11) Homologous gane (14) Ghanth (12) Matched (14) Matched (14) Amatched (14) <th>SED
(10.3.) Initial
(m) Terminal
(m) OR
(m) db Match Homologous gone
(94) Homologous gone
(94)<th>SEO (10.11) Inftial (10.11) Terminal (10.11) ORF (10.11) db Match (10.11) Homologous gane (10.11) Identity (10.11) Similarity (10.11) Matched (10.11) 55.33 196473 1965314 1963514 1230 177 227<th>SEAD (Initial Note) Initial (Initial Note) Terminal (Initial Note) ORP (Initial Note) Homologous gane (Initial Note) Identity (Initial Note) Indentity (Initi</th></th></th> | SED
(10.3.) Initial
(m) Terminal
(m) OR
(m) db Match Homologous gone
(94) Homologous gone
(94) <th>SEO (10.11) Inftial (10.11) Terminal (10.11) ORF (10.11) db Match (10.11) Homologous gane (10.11) Identity (10.11) Similarity (10.11) Matched (10.11) 55.33 196473 1965314 1963514 1230 177 227<th>SEAD (Initial Note) Initial (Initial Note) Terminal (Initial Note) ORP (Initial Note) Homologous gane (Initial Note) Identity (Initial Note) Indentity (Initi</th></th> | SEO (10.11) Inftial (10.11) Terminal (10.11) ORF (10.11) db Match (10.11) Homologous gane (10.11) Identity (10.11) Similarity (10.11) Matched (10.11) 55.33 196473 1965314 1963514 1230 177 227 <th>SEAD (Initial Note) Initial (Initial Note) Terminal (Initial Note) ORP (Initial Note) Homologous gane (Initial Note) Identity (Initial Note) Indentity (Initi</th> | SEAD (Initial Note) Initial (Initial Note) Terminal (Initial Note) ORP (Initial Note) Homologous gane (Initial Note) Identity (Initial Note) Indentity (Initi |

	_																					
5		Function					_			integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
15		Matched length (a.a.)					ı		_	406	124	117		31	43	270					153	223
20		Similarity (%)								55.9	94.4	84.6		8.96	88.4	53.7					37.0	56.1
		Identity (%)								29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
25 (Family 1997) 1 alvert	Olivingen)	s gene						h 1		age L5 int	tofermentum	tofermentum		tofermentum	lutamicum	icolor A3(2)	,				lutamicum vum) ATCC	age L5 int
30 de 1	ומחוב ו (ר	Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL 2005 ISaB 1	Brevibacterium lactofermentum CGL2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
35		db Match						•		sp:VINT_BPML5	gsp:R23011	9sp:R23011		gsp:R21601	pir.S60889	gp:SCJ11_12					sp:CSP1_CORGL	sp:VINT_BPML5
	Ì	ORF (bp)	363	273	264	234	342	273	303	1149	390	417	202	114	135	828	354	168	432	744	1584	687
45		Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
50		Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
		SEO NO.	5559	5560	5561	5562	5563	5564	5955	5566	5567	5568	5569	5570	5571	5572	5573	5574	5575	5576	5577	5578
55		SEQ NO. (DNA)	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

10	Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxlde reductase		hypothetical protein
15	Matched Jength (a.a.)	88	92			233	384	126		232
20	identity Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2
	Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2
30 He	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv RV2671 nbD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis
<i>35</i>	db Match	306 pir.F64546	sp:YXAA_BACSU			pir.C70968	1254 pir.E70968	gp:AF128264_2		606 nir.H70068
	ORF (bp)	306	432	345	336	969	1254	408	426	909
45	Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2000521
50	Initial (nt)	1996088	1996106	1996768	1997168	1997545	5584 1998289	1999542	5586 2000132	5507 2001218
	SEQ NO.		5580	5581	5882	5583	5584	5585	5586	7020
	NO ON O		080	081	082	083	084	085	086	700

	Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxlde reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
	B. C	sodi	hypo		-	ribof	pote				hypo	ribor							
	Matched length (a.a.)	88	92			233	384	126		232	201	371	618	472		268	140	150	
	Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	78.6	52.8	78.5	52.3		62.7	82.1	7.07	
	Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	
Table 1 (continued)	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 H10390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9 09 dut	Mycobacterium tuberculosis H37Rv Rv2698	
	db Match	pir.F64546	sp:YXAA_BACSU			pir.C70968	pir:E70968	gp:AF128264_2		pir:H70968	pir:C70528	sp:RND_HAEIN	gp:AB026631_1	pir.E72298		pir.C70530	sp:DUT_STRCO	pir:E70530	
	ORF (bp)	306	432	345	336	969	1254	408	426	969	624	1263	1908	1236	282	861	447	549	207
	Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2000521	2002112	2003334	2003402	2005462	2006979	2006777	2007738	2008798	2008876
	Initial (nt)	1996088	1996106	1996768	1997168	1997545	1998289	1999542	2000132	2001216	2001489	2002072	2005309	2006697	2006698	2007637	2008184	2008250	2009082
	SEQ NO.	5579	5580	5581	5582	5583	5584	5885	5586	5587	5588	5589	5590	5591	5592	5593	5594	5655	2096 5596
	SEQ SEQ NO. NO. (DNA) (a.a.)	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2002	2093	2094	2095	2096

sigma factor or RNA polymerase transcription factor hypothetical membrane protein hypothetical membrane protein extragenic suppressor protein ATP-dependent RNA helicase 5 iron dependent repressor or diphtheria toxin repressor polyphosphate glucokinase putative sporulation protein UDP-glucose 4-epimerase Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 transferase Matched 15 length (a.a) 8 198 248 500 422 578 523 144 228 329 305 661 127 76 77 Similarity 68.2 51.4 100.0 64.0 81.0 80.2 61.2 79.0 % 98 8 29 66 20 85. 8 20 dentity 58.0 38.4 23.9 98.0 61.3 32.3 97.2 62.0 54.4 24.4 8 45.3 98 55. 33. 66 25 Streptomyces coelicolor A3(2) SCH5.08c Corynebacterium glutamicum sigA Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE Corynebacterium glutamicum ATCC 13869 ORF1 Corynebacterium glutamicum Fable 1 (continued) Mycobacterium tuberculosis H37Rv Rv2699c Mycobacterium tuberculosis H37Rv RV2702 ppgK Mycobacterium tuberculosis H37Rv Rv2917 Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv2708c Mycobacterium tuberculosis Streptomyces aureofaciens Escherichia coli K12 suhB cerevisiae Homologous gene Bacillus subtilis yrkO ATCC 13869 dbrR Saccharomyces YJL050W dob1 30 H37Rv Rv2709 H37Rv Rv2714 35 Sp. PPGK_MYCTU sp:YRKO_BACSU sp:Y065_MYCTU SP. SUHB_ECOLI Sp.GALE_BRELA GP: AF010134 1 sp.MTR4_YEAST db Match prf.2204286A prf.2204286C 9p:SCH5_8 pir.F70530 pir:H70531 pir.G70531 pir.E70532 pir:140339 40 1335 1710 1494 816 828 1533 684 234 1323 2550 ORF (bp) 636 432 291 537 237 987 957 2013356 2009280 2009724 2011382 2014162 2015585 2016257 2018754 2017966 2020276 2020724 2022949 2022313 2023945 2023948 2026379 2029043 Termina 45 Ê 2016121 2011863 2009570 2010539 2010555 2015496 2017966 2018119 2018202 2018744 2020293 2025270 2022959 2025423 2022266 2022546 2026494 in (it) 50 5598 5613 5599 5600 5601 5602 5603 5605 5606 5607 5608 5609 5610 5611 5612 SEQ. (a.a.) 5597 5604 2098 2099 2100 2102 2103 2097 2101 2104 2105 2106 2108 2109 2113 2107 55

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	hydrogen peroxide-inducible genes activator	1	ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
	Matched length (a.a.)	299		1298	145		222	245	320	592	. 262	345	549	81		407	419			269
	Similarity (%)	65.6		76.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	69.6	71.6		70.5	80.0			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
Table 1 (continued)	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
	db Match	sp.OXYR_ECOLI		SP.HRPA_ECOLI	gp:SCAJ4870_3	•	sp:LEXA_BACSU	Sp.GATR_ECOLI	9p:SCE22_14	sp:PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp:PTHP_BACST		sp:PYRP_BACCL	9p:AF145049_8			sp:DAPF_HAEIN
	ORF (bp)	981	1089	3906	450	420	969	777	096	1704	792	066	1836	267	582	1287	1458	786	537	831
İ	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
	Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812	2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	2052675
	SEQ NO. (a.a.)	5614	5615	5616	5617	5618	5619	5620	5621	5622	5623	5624	5625	5626	5627	5628	5629	5630	5631	5632
	SEQ NO. (DNA)	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

5
10
15
20
25
30
35
40
45
50

	Function	tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein		-	hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transpart ATP-binding protein	hypothetical membrane protein
	Matched length (a.a.)	300		445_			190	494	242	7.1	225_	273	142	29		197	223	228
	Similarity (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
	Identity (%)	40.0		48.5			29.0	68.4	9.66	0.99	100.0	99.3	34.5	40.3		33.0	33.2	24.6
Table 1 (continued)	Homologous gene	Escherichia coli K12 miaA	•	Mycobacterium tuberculosis H37Rv Rv2731	E -		Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium g <u>i</u> utamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis - H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp.MIAA_ECO∐		pir:B70506	•1	1	pir:C70506	sp:Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp.GLUC_CORGL	sp:GLUD_CORGL	sp:RECX_MYCLE	pir:A70878		sp:BIOY_BACSH	sp.POTG_ECOLI	pir:F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	265	234	738	929	669	609
	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
	initial (nt)	2053586	2054283	2054403	2055743	2022202	2057788	2059420	2059774	2060414	2061629	2062441	2063894	2065627	2066404	2066566	2067168	2067866
	SEQ NO. (a.a.)	5633	5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647	5648	5649
	SEQ NO. (DNA)	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

5		Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypotheti <u>c</u> al protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
15		Matched length (a.a.)	228 h	269 h	83	165 C	160	117 h	30		358 t	845 s	216 - 1	645 1	250 1			742 5	89	319 г
20		Similarity (%)	78.5	9.68	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
		Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
25 30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium Iuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spollIE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces anlibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
40		db Match	pir:B60176	sp:35KD_MYCTU	pir.H70878	sp:CINA_STRPN	prt:2421334D	pir.T10688	gp:AF071810_1		prf:2119295D	sp:SP3E_BACSU	gp:SC4G6_14	sp:YOR4_CORGL	sp:YDAP_BRELA			prf:2217311A	pir.F69700	prf.2518365A
		ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
45		Terminal (nt)	2069392	2068556	2069618	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
50		Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066	2072905	2076056	2077024	2079275	2081136	2082115	2082368	2085190	2085702	2086826
		SEQ NO.	5650	5651	5652	5653	5654	5655	5656	5657	5658	5659	2660	5661	2999	5663	5664	5995	5666	5667
55		SEQ NO.	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167

10	
15	
20	
25	
3 0	
35	
40	
45	
50	

SEC SEC Control	_								Т	\neg	$\overline{}$				- 1			T	
Table 1 (continued) GRF Ab Match Homologous gene Identity Similarity (Bas) (Ms)		- Function	bifunctional protein (nboflavin kinase and FAD synthetase)	tRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2	hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
Table 1 (continued) SEC Initial Terminal CRF db Match Homologous gene (%) (%) (nt) (nt) (ht) (h		Matched length (a.a.)	329	303	47	237	273	433	308	108	1103	83	352		165	534	337	292	552
Table 1 (continued) SEC Initial Terminal ORF db Match Homologous gene Continued Cont		Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	70.8	70.4	62.9	66.3	71.0		65.5	60.9	69.4	69.2	81.3
SEO (nt) (nt) (nt) (hp) (nt) (hp) db Match (nt) NO (nt) (nt) (nt) (nt) (nt) (hp) (nt) (hp) db Match (nt) 5668 2087941 2086919 1023 sp.RIBF_CORAM (see) 5669 2087973 2088863 891 sp.TRUB_BACSU 5670 2088181 2087954 228 PIR.PC4007 5671 2089868 2089218 651 gp.SC5A7_23 5671 2089868 2089218 651 gp.SC5A7_23 5673 2090664 2089861 804 pir.B70693 5673 2092055 2090751 1305 pir.G70693 5674 2093046 2093055 447 sp.RBFA_BACSU 5676 2093501 2093055 447 sp.RBFA_BACSU 5676 2093644 336 gp.SC5H4_29 5677 2093752 2093712 3012 sp.IF2_STIAU 5678 209844 336 gp.SC5H4_29 5678 2098562 2099815 1254 534 pir.E70588 5680 2098945 2098412 534 pir.T09239C 5683 2102975 2103973 999 prf.1709239C 5681 2102975 2103973 2105703 1731 pir.H70788		Identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	44.6	42.3		34.6	25.3	37.7	38.4	57.6
SEO (nt) (nt) (pp) 5668 2087941 2086919 1023 5669 2087943 208863 891 5670 2088181 2087954 228 5671 2089868 2089218 651 5672 2090664 2089861 804 5673 2092055 2090751 1305 5674 2093046 2089205 896 5675 2093501 2093055 447 5675 2093501 2093055 447 5676 2096723 2093055 447 5676 2098723 2097380 996 5677 209875 2097380 996 5678 2098862 2099815 1254 5680 2098945 2098812 534 5681 2102023 2102976 3131	Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872 ribF	Bacillūs subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Bacillus subtilis 168 rbfA	Stigmatella aurantiaca DW4 infB	Streptomyces coalicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Bacillus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
SEO Initial Terminal NO (nt)	db Match		sp:TRUB_BACSU	PIR:PC4007	gp:SC5A7_23	pir:B70885		pir:H70693	sp:RBFA_BACSU		gp:SC5H4_29	sp:NUSA_BACSU				sp:DPPB_ECOLI		pir.H70788	
SEQ Initial NO (nt) (nt)		ORF (bp)	1023	891	228	651	8	1305	986	447	3012	336	966	1254	534	1602	924	666	1731
SEO NO. 10.0. S668 S669 S670 S671 S672 S675 S675 S675 S675 S676 S676 S676 S676		Terminal (nt)	2086919	2088863	2087954	2089218	2089861	2090751	2092051	2093055	2093712	2096844	2097380	2099815	2098412	2101841	2102946	2103973	<u>'</u>
		Initial (nt)			2088181	2089868			2093046		2096723			,	2098945		-		
		SEO NO.	5668	5669	5670	5671	5672	5673	5674	5675	5676	5677	5678	5679	5680	5681	5682	5683	5684
		SEQ NO.	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184

5		Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase		-			methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
15		Matched length (a.a.)	878	243	37	342	237 -	488	151	338	466		'			252	630	216	424	360
20		Similarity (%)	84.6	65.0	60.7	9.69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
		Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
25	lable 1 (continued)	is gene	serculosis roS	icolor A3(2)	eroides ATCC	is bchl =	freudenreichii	gens NCIB	icolor A3(2)	oerculosis	cia AC1100					12 тар	uligerus pcbR	diphtheriae	Jiphtheriae	durans
30	lable 1 (c	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
35				ត ភ			<u> </u>		ភ ភ	.≱I	1-			!			S	ਹ ਰ	0 ಕ	
40		db Match	sp:SYP_MYCTU	gp:ScC30_5	sp.BCHD_RHOSH	prf 2503462AA	prf.2108318B	sp:YPLC_CLOPE	gp:SC5H1_10	pir.A70590	sp.GSHR_BURCE					SP. AMPM_ECOLI	prf.222426BA	prf.2518330B	prf.2518330A	gp:AE001863_70
		ORF (bp)	1764	735	759	1101	750	1422	006	1014	1395	942	474	357	729	789	1866	630	1149	957
45		Terminal (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
50		Initial (nt)	2107564	2107652	2109147	2110255	2111183	2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628	2121147	2123161	2123848	2124996	5702 2125089
		SEQ NO.	5685	5686	5687	5688	5689	2690	5691	5695	5693	5694	5695	9699	5697	5698	5699	5700	5701	
55		SEQ NO (DNA)	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

ABC transporter ATP-binding protein pyruvate formate-lyase 1 activating enzyme hypothetical protein (gcpE protein) phosphatidate cytidylyltransferase 1-deoxy-D-xylulose-5-phosphate reductoisomerase hypothetical membrane protein hypothetical membrane protein polypeptides can be used as vaccines against Chlamydia ribosome recycling factor Function 30S ribosomal protein elongation factor Ts uridylate kinase ABC transporter trachomatis Matched length Similarity 73.8 73.6 43.0 42.0 74.5 56.5 84.3 43.1 76.8 83.5 71.1 Identity 41.5 47.0 43.0 66.0 33.3 28.4 49.6 54.7 37.3 44.3 36.0 37.1 Pseudomonas aeruginosa pyrH Streptomyces coelicolor A3(2) SC2E1.42 tsf Table 1 (continued) Thermotoga maritima MSB8 Mycobacterium tuberculosis H37Rv Mycobacterium tuberculosis H37Rv Rv2869c Mycobacterium tuberculosis H37Rv Rv3760 Escherichia coli K12 gcpE Pseudomonas aeruginosa ATCC 15692 cdsA Homologous gene Bacillus subtilis 168 yvrO Escherichia coli K12 dxr Chlamydia trachomatis Bacillus subtilis 168 frr Bacillus subtilis rpsB TM0793 SP:YS80_MYCTU sp:CDSA_PSEAE sp.EFTS_STRCO sp:GCPE_ECOL! Sp.RRF_BACSU sp:DXR_ECOLI db Match prf:2510355C prf:2420410P GSP: Y37145 pir.A69699 pir:G70886 pir: B72334 pir.A70801 Terminal (nt) Š (DNA)

molybdopterin biosynthesis protein thiamine biosynthetic enzyme thiG thiamine biosynthetic enzyme thiS Mg(2+) chelatase family protein 5 13 site-specific recombinase Function 50S ribosomal protein Fe-regulated protein thiamine phosphate hypothetical protein hypothetical protein hypothetical protein hypothetical protein pyrophosphorylase signal peptidase ribonuclease HII oxidoreductase (thIG1) protein 10 protein 15 Matched length 119 Ξ 120 395 190 285 323 225 376 297 504 5 437 62 251 Similarity 88.3 56.8 75.8 72.3 60.9 74.2 61.1 64.1 8 68.7 59. **S**8. 9 96 66 76 20 Identity (%) 46.0 32.3 25.4 70.3 30.2 40.1 46.6 28.4 34.0 48.2 68.3 37.1 6 ₫ 39. Bacillus stearothermophilus rplS 25 Streptomyces coelicolor A3(2) SC6E10.01 Fable 1 (continued) Mycobacterium tuberculosis. H37Rv Rv2897c Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv2896c Mycobacterium tubercutosis H37Rv Rv2898c Mycobacterium tuberculosis H37Rv Rv2901c æ Staphylococcus aureus sirA Streptomyces lividans TK21 sipY Homologous gene Escherichia coli K12 thiG Escherichia coli K12 thiS Emericella nidulans cnxF Haemophilus influenzae H11059 rnhB Bacillus subtilis 168 thiE Proteus mirabilis xerD 30 H37Rv Rv2891 35 sp:YS91_MYCTU sp:YX27_MYCTU sp:YX28_MYCTU sp:YX29_MYCTU Sp:YT01_MYCTU sp:RNH2_HAEIN Sp.RL19_BACST sp:THIE_BACSU sp:THIG_ECOLI SP:THIS_ECOLI db Match gp:SC6E10_1 prf:2514288H prf:2417318A prf:2510361A prf:2417383A 40 1134 ORF (bp) 1182 786 936 339 1080 780 504 663 924 1521 195 366 303 627 792 2149634 2153113 2149166 2149359 2152118 2154191 2145576 2146566 2148022 2147261 45 Terminal 2141763 2142885 2144066 2150997 2152329 2141760 2146264 £ 2148046 5731 2148231 2147192 2149972 5734 2150335 5737 2152334 2142686 2149571 2151039 2153058 2152135 2141257 2144066 2145586 2145941 2146566 2147231 Initial (nt) 50 5730 5732 5722 5723 5725 5728 5729 5733 5735 5738 5724 5726 5736 5727 8 2231 2232 2238 2234 2222 2227 2237 55

5	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase		-	1	tRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
15	Matched length (aa)	776	334	456	65	350 -				273	210	172	69	83	196	256	318	529				505
20	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	57.6	72.1	2.99	79.5	61.7	69.1	63.8	78.2				66.1
	Identity (%)	9.95	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26. 6	35.5	58.7	-			37.0
S 52	eue gene	sis TOHAMA I	68 degA	pneumoniae	a-chloroplast	utida pcaB				K12 trmD	elicolor A3(2)	eprae NM	ni J99 jhp0839	68 rpsP	^	alactiae cylB	oshii OT3 mtrA	68 ffh			-	(12 ftsY
Table 1	Hamologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pi CWL029 ybhl	Spinacia oferacea-chloroplāst	Pseudomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 M				Escherichia coli K12 ftsY
<i>35</i>	db Match	sp.TEX_BORPE	pir.A36940	pir:H72105	prf.21 <u>0</u> 8268A	sp.PCAB_PSEPU				sp:TRMD_ECOLI	gp:SCF81_27	SP:RIMM_MYCLE	pir:B71881	pir.C47154	pir.T14151	prf.2512328G	prf:2220349C	sp.SR54_BACSU				sp:FTSY_ECOLI
	ORF (bp)	2274 S	975 p	1428 p	219 p	1251 s	66	393	069	819 S	648 g	513 s _l	348 p	495 p	576 p	867 p	876 p	1641 sı	633	417	699	1530 s _l
45	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	
50	Initial (nt)	2156733	2157721	2159181	2159237	2160537	2160670	2161503	2162196	2163014	2163098	2164260	2164390	2165309	2165523	2166990	2167865	2169584	2170426	2171715	2172209	2175288 2173759
	SEQ NO. (a.a.)	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754	5755	5756	5757	5758	5759
55	SEQ NO.	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259

•	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

_																					
	. Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acyiphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical grotein	
	Matched length (a.a.)			1144		1206	95		305	257			188	285	221	176	238	559	541	388	
	Similarity (%)			46.2		72.6	73.9		0.09	73.5			76.6	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
	Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	50.0	28.3	26.6	35.3	
	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium fuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
	db Match			sp.AMYH_YEAST		sp:Y068_MYCTU	sp.ACYP_MYCTU		Sp:YFER_ECOLI	pir:S72748			gp.DNINTREG_3	sp:FPG_ECOLI	pir.B69693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf.2104260G	sp:CYDC_ECOLI	gp:SC9C7_2	
	ORF (bp)	159	702	3393	963	3465	282	1854	858	831	183	447	615	858	741	534	789	1644	1530	1122	441
	Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694	2198004	2198007
	Initial (nt)	2176046	2176402	2179502	2180918	2183092	2183391	2185258	2186208	2186299	2187160	2187679	2188306	2189170	2189906	2190439	2191328	2191522	2193165	2196883	2198447
	SEQ NO.	5760	5761	5762	5763	5764	5765	5766	5767	8929	5769	5770	5771	5772	5773	5774	5775	5776	5777	5778	5779
	SEQ NO. (DNA)	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

5	·						ase /		eryl	nate synthase	protein	clohydrolase			o-5- amide	rase	nce protein sport protein
10	Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase / glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribōsyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
15	Matched length (a a.)	405	353	133			814	295	264	169	228	89	258	241	245	210	402
20	Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	97.7	94.0	97.6	92.4	54.0
	Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52.8	97.3	94.0	95.9	86.7	25.6
25		38	ပ္	-			<u>-</u>		DA 485		sis	S ATCC	cum	cum	cum	- Wino	cmIR
30 30 Chauciton) LakeT	Homologous gene	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485 lgt	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebactenum glutamicum AS019 hisA	Corynebacterium glutamicum AS019 hisH	Streptomyces lividans 66 cmlR
40	db Match	pir.A72322	sp.HIPO_CAMJE	pir.S38197			prf.2513410A	Sp. YFIE BACSU	STAAU	sp:TRPG_EMENI	pir. H70556	sp. HIS3_RHOSH	sp.HIS6_CORG	prt:2419176B	gp:AF051846_1	gp.AF060558_1	SP.CMLR_STRLI
	ORF (bp)	1284	1263	336	135	276	2550	900	948	801	657	354	774	825	738	633	1266
45	Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2208920	2210273	2211051	2211882	2212641	2214321
50	Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	2205490		2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
	SEO	5780	5781	5782	5783	5784	5785	5786	5787	5788	5789	5790	5791	5792	5793	5794	5795
55	SEQ.	(DNA)	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295

!			1				1		0)		_				_					
5	uo		osphate	,,,	nase .	protein			cid phosphatas	•	ig enzyme			Irogenase	peron represso	t ATP-binding e ABC				
10	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	Iron-binding protein	iron-binding protein	hypothelical protein
15	Matched length (a.a.)		198	362	439	342 -			211	204	722	258	268	343	329	246	332	103	182	113
20	Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	60.9	64.4	68.3	71.1	68.0	9'.29	73.5
	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	-29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
25 (panulluced)	gene		color A3(2)	olor A3(2)	egmatis 	es pombe			ni SAcP-1	smid RP1	darius treX	erculosis	color A3(2)	oti idhA	galŘ	fhuC		yvrC	yvrC	ytfH
\$ & S Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterlum smegmatls ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichla coll K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherlchia coli K12 ytfH
40	db Match		sp:HIS7_STRCO	sp.HIS8_STRCO	sp.HISX_MYCSM	gp.SPBC215_13			prf:2321269A	pir.RPECR1	pri:2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	Sp.GALR_ECOLI	sp:FHUC_BACSU_E	prf:2423441E	pir.G70046	pir.G70046	sp:YTFH_ECOU
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	774	1011	966	798	1038	348	594	441
45	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
50	Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	2222528	2225149	2226763	2227779	2227906	2229896	2230937	2231294	2231932	2232456
	SEQ NO. (a.a.)	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5806	5807	5808	5809	5810	5811	5812	5813	5814
55	SEO NO.	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

. 10	Function	DNA polymerase III epsilon chain		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		maltooligosyttrehalose trehalohydrolase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
15	Matched length (a.a.)	355		814	322-					375	120		568	214	436			415	1183	279	149	198
20	Similarity (%)	50.1		68.6	52.8					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
	Identiity (%)	23.4		42.0	27.6					20.5	58.3		46.3	36.5	99.3			22.7	53.3.	37.6	21.5	22.7
55 55 Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCI8 12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coelicolor A3(2) dnaE	Escherichia coli K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF2388
40	db Match	gp:SCI8_12		pir:S65769	gp:AE002006_4	.1	1			sp:LXA1_PHOLU	9p:SC7H2_5		pir.S65770	sp:YVYE_BACSU	sp.THD1_CORGL			pir.S57636	prf.2508371A	sp.RARD_ECOLI	sp:HISJ_CAMJE	pir.D69548
	ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	507	156	1203	3582	840	468	918
45	Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247006	2248358	2252856	2253659	2254642
50	tnitial (nt)	2232928	2234158	2234852	2237331	2239092	2240042	2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386	2246450	2248208	2251939	2252017	2253192	2253725
	SEQ NO. (a a.)	5815	5816	5817	5818	5819	5820	5821	5852	5823	5824	5825	5826	5827	5828	5829	5830	5831	5832	5833	5834	5835
55	SEQ NO (DNA)	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335

					- 1						_		_			_				
5	Function	drogenase or otein	(DAP)	0		ubunit nthase D	peptidase		sistance protein		in		ucible protein P	ibrane protein	gulator		jin	nthetase		
10	- Fu	short chain dehydrogenase or general stress protein	dlaminoplmetate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	Ilpoprotein signal peptidase		ofeandomycin resistance protein		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucyl-tRNA synthetase		,
15	Matched length (a.a.)	280	445	314		326	154		250		158	321	371	286	334		212	1066		
20	Similarity (%)	80.0	47.6	64.3		61.0	61.7		. 0.43		57.6	62.0	60.7	61.5	73.1		67.0	65.4		
	identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		42.0	38.5		
Table 1 (continued)	is gene	8 ydaD	uginosa lysA	hus CH34		2 rluD	rescens NCIB		oioticus oleB		ropolis or17	sir	2 dinP	2 ybiF	icolor A3(2)		icolor A3(2)	revisiae -S1	t	
	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 IspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
40	db Match	sp.GS39_BACSU	sp.DCDA_PSEAE	sp.CYSM_ALCEU		sp:RLUD_ECOLI	sp.LSPA_PSEFL		pir.S67863		prf:2422382P	sp:ASPG_BACLI	sp.DINP_ECOLI	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp.SYIC_YEAST		
	ORF (bp)	876	1287	951	579		534	1002	1650	303	900	975	1401	828	1002	132	627	3162	216	1095
45	Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509	2266394	2266897	2268388	2269260	2270435	2270258	2270988	2274473	2274767
50	Initial (nt)	2255558	2257024	2259312	2259999	2260931	2261467	2261688	2262850	2264996	2265108	2265420	2268297	2269245	2270261	2270304	2270884	2274149	2274688	2275861
	SEO NO.	5836	5837	5838	5839	5840	5841	5842	5843	5844	5845	5846	5847	5848	5849	5850	5851	5852	5853	5854
55	SEQ NO.	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

5		Function	hypothetical membrane protein	hypothetical protein (putative YAK protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramate-alanine ligase	UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylni i cosamine pyrophosphoryl-
15		Matched length (a.a.)	82	152	221 -	246	117	442	222	486	372
20		Identity Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	8.66	99.5
		Identity (%)	46.3	99.3	7.78	99.2	39.0	98.6	93.6	99.4	98.9
<i>30 35</i>	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum fts.2	Corynebacterium glutamicum ftsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG
40		db Match	pir.F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL	pri:2420425C	GP.AB028868_1	1326 sp.FTSZ_BRELA	gsp:W70502	gp:AB015023_1	1116 gp:BLA242646_3
45		ORF (bp)	285	456	663	738	486	1326	999	1458	1116
45		Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661
50		Initial (nt)	2276637	2277336	2278078	5858 2278859	2279155	5860 2280215	2281135	2282623	2363 5863 2283776 2282661
		SEO NO. (a.a.)	5855	5856	5857	5858	5859	5860	5861	5862	5863
55		SEQ NO. (DNA)	2355	2356	2357	2358	2359	2360	2361	2362	2363
			_								

UDP-N-acetylglucosamine-N-acetylmuramyi-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D-glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase
372	490	110			365	494
99.5	9.66	99.1			63.8	64.2
98.9	99.4	99.1			38.6	35.0
Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	1542 sp.MURF_ECOL! Escherichia coli K12 murF
gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			sp:MRAY_ECOLI	sp.MURF_ECOL!
1116	1650	468	384	333	1098	1542
2282661	2283782	2285437	2286655	2286831	2286862	2287969
2283776	2285431	2285904	2286272	2286499	2287959	2369 5869 2289510
	5864	5865	5866	5867	5868	5869
2363	2364	2365	2366	2367	2368	2369
	5863 2283776 2282661 1116 gp:BLA242646_3 ATCC 13869 murG	5863 2283776 2282661 1116 gp:BLA242646_3 Brevibacterium lactofermentum 98.9 99.5 372 5864 2285431 2283782 1650 gp:BLA242646_2 Brevibacterium lactofermentum 99.4 99.6 490	5863 2283776 2282661 1116 gp:BLA242646_3 Brevibacterium lactofermentum 98.9 99.5 372 5864 2285431 2283782 1650 gp:BLA242646_2 Brevibacterium lactofermentum 99.4 99.6 490 5865 2285904 2285437 468 gp:BLA242646_1 Brevibacterium lactofermentum 99.1 110	5863 2283776 2282661 1116 gp:BLA242646_3 Brevibacterium lactofermentum 98.9 99.5 372 5864 2285431 2283782 1650 gp:BLA242646_2 Brevibacterium lactofermentum 99.4 99.6 490 5865 2285904 2285437 468 gp:BLA242646_1 ATCC 13869 murD 99.1 99.1 110 5866 2286572 2286655 384 ATCC 13869 murD 99.1 99.1 110	5863 2283776 2282661 1116 gp:BLA242646_3 Brevibacterium lactofermentum 98.9 99.5 372 5864 2285431 2283782 1650 gp:BLA242646_2 Brevibacterium lactofermentum 99.4 99.6 490 5865 2285904 2285437 468 gp:BLA242646_1 Brevibacterium lactofermentum 99.1 110 5866 2286272 2286655 384 ATCC 13869 murD 99.1 110 5867 2286499 2286831 333 ATCC 13869 murD 99.1 99.1 110	5863 2283776 2282661 1116 gp.BLA242646_3 Brevibacterium lactofermentum 98.9 99.5 372 5864 2285431 2283782 1650 gp.BLA242646_2 Brevibacterium lactofermentum 99.4 99.6 490 5865 2285904 2285437 468 gp.BLA242646_1 Brevibacterium lactofermentum 99.1 110 5866 22866252 328 ATCC 13869 murD 99.1 110 5867 2286499 2286855 384 ATCC 13869 murD 99.1 110 5868 2286899 2286865 1098 sp.MRAY_ECOLI Escherichia coli K12 mraY 38.6 63.8 365

EP 1 108 790 A2

UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanyl ligase protein 5,10-methylenetetrahydrofolate reductase hypothetical membrane protein hypothetical membrane protein eukaryotic-type protain kinase 5 dimethylallyltranstransferase penicillin binding protein penicillin-binding protein hypothetical membrane Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 15 Matched length (a.a) 303 650 323 43 329 184 125 137 98 584 411 191 57 Similarity 100.0 67.6 Φ, 79.3 0 m 65.3 9.07 62.0 ω 8 69 69 8 89 89 62 89 20 dentity 100.0 28.2 72.0 36.3 39.4 42.6 30.1 34.2 30.7 37.7 55.1 35.7 43.2 8 25 Pseudomonas aeruginosa pbpB Brevibacterium lactofermentum ORF2 pbp Streptomyces coelicolor A3(2) pkaF Myxococcus xanthus DK1050 ORF1 Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv2165c Mycobacterium tuberculosis H37Rv Rv2169c Mycobacterium tuberculosis H37Rv Rv2175c Streptomyces lividans 1326 metF Bacillus subtills 168 murE Homologous gene Mycobacterium leprae MLCB268.13 Mycobacterium leprae MLCB268.23 Mycobacterium leprae MLCB268.17 Mycobacterium leprae MLCB268.11c 30 35 sp:MURE_BACSU gp:MLCB268_13 gp: MLCB268_16 gp:MLCB268_11 Sp:METF_STRLI gp:MLCB268_21 gp: AB019394_1 db Match GSP:Y33117 pir.A70936 pir.S54872 pir.C70935 pir.S32168 pir:A70581 40 1551 1113 1470 2148 1953 1011 1236 225 ORF (bp) 573 8/6 369 795 429 387 423 507 651 2291212 2303040 45 Terminal 2289523 2290973 2293323 2294117 2295376 2296512 2297231 2298438 2300636 2302175 2302685 2304980 2306218 2302251 2298451 Ē 2303690 2294117 2296898 2297653 2297866 2299428 2302179 2302619 2302833 2291073 2291197 2293164 2295804 2299524 2300706 2304983 2295127 Initial (nt) 50 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 SEQ. (a.a.) 2370 2371 2372 2373 2376 2378 2379 2381 2385 SEO NO. (DNA) 2375 2380 2382 2383 2374 2377 2384 55

5	. uo	ane protein	eptulosonate-7-		ane protein	sin PS1 protein			ane protein			or (invasion-	or (invasion-	e c reductase it	e c reductase Rieske (eFe-2S) roB	e c reductase
10	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske [eFe-2S] iron-sulfur protein cyoß	ubiquinol-cytochrome c reductase cytochrome c
	Matched length (a.a.)	434	462	166	428	440			249	245	383	296	191	201	203	278
20	Similarity (%)	62.0	87.9	77.7	64.5	57.1-			100.0	100.0	7.57	8.09	61.3	. 64.7	57.1	83.1
05	Identity (%)	30.4	6.99	58.4	35.1	28.2			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
	gene	erculosis	iterranei	ае	erculosis	utamicum rum) ATCC			utamicum	utamicum	color A3(2)			s petB	ns qcrA	erculosis C
30 Tahla 1 Continued	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268,21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
35		ΣÏ			ΣÏ							<u> </u>		Ī		
40	db Match	pir.G70936	gp:AF260581_2	9p:MLCB268_20	pir:G70936	sp:CSP1_CORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5	sp:P60_LISIV	sp:P60_LISGR	prf:2503462K	gp:AF107888_1	sp:Y005_MYCTU
45	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
45	Terminat (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
50	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092	2315423	2316412	2318775	2319850	2320594	2323073	2323759	2325195
	SEQ NO	2885	5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	5899	2900	5901
55	SEQ NO.	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401

fipoyltransferase

210

65.7

36.7

Arabidopsis thaliana

gp:AB020975_1

753

2341412

2339440

2340804

5918 5919

2418

cobalamin (5'-phosphate) synthase dihydrolipoamide acetyltransferase glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity clavulanate-9-aldehyde reductase cytochrome c oxidase subunit III hypothetical membrane protein hypothetical membrane protein cytochrome c oxidase subunit 5 branched-chain amino acid aminotransferase phosphoribosyltransferase Function nicotinate-nucleotide-dimethylbenzimidazole leucyl aminopeptidase hypothetical protein hypothetical protein cobinamide kinase 10 protein) 15 Matched length 188 145 317 640 246 172 7 305 341 241 364 493 691 97 Similarity 53.9 100.0 64.0 71.0 70.7 60.2 8 0 68.5 99 99 69 68 6 65. 67 20 Identity 38.6 43.0 36.7 28.7 35.0 99.7 37.8 25.3 38.6 8 36.3 40.2 48.9 40.1 8 Pseudomonas denitrificans cobV 25 Rhodobacter sphaeroides ctaC pd hB Rhodobacter capsulatus cobP ca Corynebacterium glutamicum KY9611 ltsA Corynebacterium glutamicum KY9611 orf1 Table 1 (continued) Saccharopolyspora erythraea ORF1 Mycobacterium tuberculosis H37Rv Rv2199c Pseudomonas putida ATCC 12633 pepA Pseudomonas denitrificans cobU Streptomyces clavuligerus Homologous gene Synechococcus vulcanus Streptomyces seoulensis Mycobacterium leprae MLCB22.07 Mus musculus BCAT1 30 35 sp.COX2_RHOSH SYNVU Sp:Y00A MYCTU Sp:COBU_PSEDE sp:COBV_PSEDE gp:PPU010261_1 Sp:ILVE_MYCTU gp:AB029550_2 gp:AB029550_1 gp:AF047034_2 2 db Match prf.2414335A prf:2110282A gp:MLCB22 pir.S52220 sp:COX3 40 615 1077 1089 (PP) 429 1920 714 342 522 921 1137 1500 2025 153 393 768 2325273 2335028 2326472 2330435 2333600 **Terminal** 2326121 2326921 2332495 2334535 2330586 2331967 2335915 2338748 2341293 2338734 2334481 45 Ē 2325887 2326273 2326900 2328516 2331200 2331974 2332512 5911 2333615 2327997 5912 2334717 5913 2335741 2337235 2339140 2339269 2330927 2337051 £ 50 5902 5903 Š. (a.a.) 5904 5905 5906 8069 5909 5910 5914 5907 5915 5916 5917 (DNA) 2403 2402 2404 2405 2406 2409 2410 2411 2412 2413 2417 2407 2408 2415 2416 2414 55

10	Function	lipoic acid synthetase
15	Identity Similarity Matched (%) (%) (aa)	285
20	Similarity (%)	70.9
	Identity (%)	44.6
Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD 1 lipA
35	db Match	1044 sp.LIPA_PELCA 1
	ORF (bp)	1044
45	Terminal (nt)	
50	Initial (nt)	2420 5920 2342304 2343347
	SEQ SEQ NO. NO. (DNA) (a.a.)	5920
55	SEO NO.	2420

Function	lipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	transposase (ISCg2)		hypothetical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)		ı	4-hydroxyphenylacetate permease	transmembrane transport protein	fransmembrane transport protein		
Matched length (a.a.)	285	257	_655	401		157	,	145	128		220	=======================================			433	158	118		
Similarity (%)	6.07	7.97	67.8	100.0		63.7		44.0	65.6		6'09	73.0			53.4	72.8	66.1		
Identity (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
Homologous gene	Pelobacter carbinolicus GRA BD 1 lipA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolar A3(2) SC5F7.04c		ı	Thermotoga maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3.10c		
db Match	sp LIPA_PELCA	sp:Y00U_MYCTU	sp:YIDE_ECOLI	9p:AF189147_1		71 gp:SC5F7_34			pir.B72308		sp:LUXA_VIBHA	pir.A72404			prf:2203345H	gp:SCGD3_10	gp:SCGD3_10		
ORF (bp)	1044	780	1617	1203	300	471	213	975	399	900	849	393	243	261	1323	561	444	195	405
Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351996	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
Initial (nt)	2342304	2343479	2344431	2347491	2347505	2348548	2350620	2351022	2351310	2351909	2351980	2352833	2355156	2355440	2355521	2356794	2357264	2357484	2357726
SEQ NO. (a.a.)	5920	5921	5922	5923	5924	5925	5926	5927	5928	5929	5930	5931	5932	5933	5934	5935	5936	5937	5938
SEO NO (DNA)	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

blfunctional protein (ribonuclease H and phosphoglycerate mutase) phosphoglycolate phosphatase 5 low molecular weight proteinvirulence-associated protein glutamate-ammonia-ligase adenylyltransferase Insertion element (IS402) Function glutamine synthetase lyrosine-phosphatase hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein heme oxygenase 10 galactokinase 15 Matched length 129 (a.a.) 214 374 358 382 249 378 204 156 80 441 392 3 281 54 Similarity 58.6 56.6 78.0 55.6 76.2 67.0 73.0 58.2 53.7 54.4 75.1 8 54 54 63 65. 20 Identity (%) 24.9 32.6 26.0 57.9 54.7 26.5 40.9 43.5 26.8 38.9 49.2 46.2 43.4 33.4 27.1 25 Corynebacterium diphtheriae C7 Streptomyces coelicolor A3(2) SCQ11.04c ptpA Streptomyces coelicolor A3(2) gInE Streptomyces coelicolor A3(2) SCC75A.11c. Streptomyces coelicolor A3(2) SCE9.39c Table 1 (continued) Thermotoga maritima MSB8 gInA Mycobacterium tuberculosis H37Rv Rv2228c Mycobacterium tuberculosis H37Rv Rv2229c Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv2226 Homologous gene Escherichia coli K12 gph Brucella abortus vacB Burkholderia cepacia Homo sapiens galK1 30 H37Rv Rv2230c H37Rv Rv2235 Dump 35 1293 | sp.GAL1_HUMAN sp:HMUO_CORDI Sp.GLNA_THEMA sp:Y01G_MYCTU sp:Y01B_MYCTU Sp:PTPA_STRCO Sp:Y01A_MYCTU Sp:Y017_MYCTU sp:Y019_MYCTU Sp:Y121_BURCE gp:SCY17736_4 gp;AF174645_1 gp:SCC75A_11 Sp:GPH_ECOLI Match gp:SCE9_39 용 40 1266 1140 1146 1338 104 393 3135 1827 645 180 486 717 654 471 954 ORF (bp) 543 729 45 2367473 2369083 2369116 2371412 2376998 2370908 2372573 2373323 2359614 2362818 2365455 2367413 2373289 2376720 **Ferminal** 2358153 2358772 2375197 2375684 £ 5956 2377390 2370423 2370381 2374462 2374544 2375214 2358695 2359416 2362748 2364155 2364352 2367652 2367791 2372557 2373289 2375767 2365587 2372561 Initial (nt) 50 5946 5947 5948 5939 5949 5943 5944 5945 5950 5952 5953 5954 5955 5940 SEO NO. (a.a.) 5941 5942 5951 2456 2448 2439 2446 2447 2449 2450 2452 2455 SEQ NO. 2443 2444 2451 2453 2454 55

EP 1 108 790 A2

1							nponent				lease						phate		
10	Function		transcriptional regulator		hypothetical protein		pyruvate dehydrogenase component		ABC transporter or glutamine transport ATP-binding protein		ribose transport system permease protein	hypothetical protein	calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase	hypothetical protein	
	Matched length (a.a.)		135		134		910		261		283	286	125		352	52	253	289	
20	Similarity (%)		57.8		77.6		78.9		62.8		28.7	67.9	55.2		55.7	0.08	75.5	65.7	
	Identity (%)		30.4		55.2		55.9		33.7		25.4	26.2	41.6		29.6	42.7	43.9	33.6	
<i>25</i>	G a		A3(2)		sis		pdhA		~			drid E	n AX2		A3(2)	ဥ	0	s	
30 ·	Homologous gene		s coelicolor		um tuberculo 39c		Streptomyces seoulensis pdhA	·	Escherichia coli K12 glnQ		Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E RP367	Dictyostelium discoideum AX2 cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	Deinococcus radiodurans DR1192	
35	Hom		Streptomyces coelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyce		Escherichia		Bacillus sub	Rickettsia pi RP367	Dictyosteliur cbpA		Streptomyce SC6G4.24	Myxococcus 25232 acpP	Escherichia	Deinococcu DR1192	
40	db Match		gp:SC8F4_22		sp:Y01K_MYCTU		gp:AF047034_4		sp:GLNQ_ECOLI		sp:RBSC_BACSU	pir.H71693	sp:CBPA_DICDI		gp:SC6G4_24	sp.ACP_MYXXA	sp:NAGD_ECOL	gp:AE001968_4	
	ORF (bp)	243		198	429	345	2712	1476	789	963	888	939	810	372	1014	291	825	1032	471
45	Terminal (nt)	2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827	2385426	2383622	2384509	2386580	2385913	2386614	2387957	2388821	2389869	2390434
50	initial (nt)	2377726	2377899	2378292	2379312	2379426	2380033	2382240	2383615	2384464	2384509	2385447	2385771	2386284	2387627	2387667	2387997	2388838	2390904
	SEQ NO	5957	5958	5959	2960	5961	5965	5963	5964	5965	9969	5967	5968	5969	5970	5971	5972	5973	5974
55	SEQ NO.	2457	2458	2459	2460	2461	2462	2463	2464	2465	2466	2467	2468	2469	2470	2471	2472	2473	2474

					_	_															
5	Function	hypothetical protein	,,,	C		,		alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa.			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
15	Matched length (a.a.)	1.22			,		ı	530		594	68		633	98			929			414	171
20	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2		44.4	41.2		59.1	- 49.0			59.1			54.6	30.4
39 Table 1 (continued)	ous gene	elicolor A3(2)				li i		68 phoD		elicolor A3(2)	sperculosis		negmatis	eofaciens BMK		-	negmatis			negmatis dgt	tidis NMA0251
	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
40	db Match	gp:SC4A7_8				.1	.1	sp:PPBD_BACSU		gp:SCI51_17	pir.G70661		prf.2413330B	gp:XXU39467_1			gp:AF058788_1			prf:2413330A	gp:NMA1Z2491_23 5
	ORF (bp)	825	492	771	546	465	342	1560	714	1836	240	675	1899	462	243	989	1869	324	1152	1272	675
45	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	2406936
	SEQ NO. (a.a.)	5975	5976	5977	5978	5979	2980	5981	5982	5983	5984	5985	5986	5987	5988	5989	2990	5991	5992	5993	5994
55	SEQ NO.	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

5	- Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetase	bacteriat regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C. glutamicum?)	hypothelical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
15	Matched length (a.a.)	692	138		508	68	132	529	224	233	245	296	432	157	85	344	248	
20	Similarity (%)	9.E9	54.4		6.69	73.0	70.5	46.7	67.0	71.2	74.3	70.3	82.4	0.98	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	0.39	45.0	61.1	44.0	
Table 1 (continued)	ous gene	uberculosis	nogaster		us HBB	uberculosis urB	<12 fur	uberculosis	elicolor A3(2)	us B-P 26 uppS	uberculosis	neumoniae era	uberculosis	uberculosis	gitidis	uberculosis phoH	elicolor A3(2)	
Table 1	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aqualicus HBB	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
40	db Match	pir.B70662	gp:AE003565_26		pir. S58522	pir.E70585	sp:FUR_ECOLI	pir.A70539	gp:AF162938_1	sp:UPPS_MICLU	pir.A70586	gp:AF072811_1	sp:Y1DE_MYCTU	sp:YN67_MYCTU	GSP:Y75650	sp:PHOL_MYCTU	gp:SCC77_19	
	ORF (bp)	2037 p	486 9	582	1383 p	369 p	432 s	1551 p	792 g	729 s	726 р	915 g	1320 s	S 885	264 0	1050 s	723 g	942
45	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
50	Initlal (nt)	2406993	2410264	2410861	2412338	2412580	2412992	2413568	2416089	2417099	2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
	SEQ NO. (a.a.)	5665	5996	5997	5998	2999	9009	6001	6002	6003	6004	6005	9009	6007	6008	6009	6010	6011
55	SEQ NO. (DNA)	2495	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511

glycosyl hydrolase or trehalose synthase

594

84.9

65.2

Mycobacterium tuberculosis H37Rv Rv0126

pir:G70983

1794

2439906

2438113

6027

hypothetical protein

449

œ

58.

32.1

Mycobacterium tuberculosis H37Rv Rv0127

pir:H70983

1089

2440994

2439906

6028

2528

Neisserial polypeptides predicted to be useful antigens for vaccines and polypeptides predicted to be useful antigens for vaccines and ABC transporter, Hop-Resistance prolein long-chain-fatty-acid--CoA ligase oxygen-independent coproporphyrinogen III oxidase (groEL repressor) 5 agglutinin attachment subunit precursor heat-Inducible transcriptional 4-alpha-glucanotransferase heat shock protein dnaJ Function peptidyl-dipeptidase carboxylesterase 10 diagnostics diagnostics repressor 15 Matched length 380 (a.a.) 738 334 320 069 34 8 453 6 68 Similarity 51.0 77.4 64.9 79.6 53.0 64.4 68.3 45.7 8 20 4 75 55 Identity (%) 47.1 48.0 28.3 44.0 40.3 47.0 24.1 8 89 38 8 25 Streptomyces coelicolor A3(2) SC6G10.04 Table 1 (continued) Salmonella typhimurium dcp Lactobacillus brevis plasmid horA Bacillus stearothermophilus hemN Anisopteromalus calandrae Saccharomyces cerevisiae YNR044W AGA1 Streptomyces albus dnaJ2 Escherichia coli K12 malQ Homologous gene Streptomyces albus hrcA Neisseria gonorrhoeae Neisseria meningitidis 30 35 sp:AGA1_YEAST 2118 Sp: MALQ_ECOLI gp: AB005752_1 2034 SP.DCP_SALTY gp:AF064523 1 db Match gp:SC6G10_4 prf.2421342A prf.2421342B prf:2318256A GSP: Y74827 GSP:Y74829 40 1146 1845 1023 1863 1179 ORF (bp) 519 378 255 990 333 204 693 8 2432413 45 2422700 2423915 2434805 2438049 2424965 2426699 2426776 2428184 2434370 2433875 2434440 2434573 Terminal 2427807 2433614 3 2423845 2430296 2427468 2430028 2432508 2424937 2426181 2428184 2433868 2434619 2434776 2436838 2425954 2434207 2436871 E 50 6019 6012 6013 6015 6016 6018 SEO (a.a.) 6014 6017 6020 6023 6024 6025 6022 6026 6021 (DNA) 2515 2516 2518 2519 2520 2524 2525 2514 2517 2522 2523 2526 2521

168

		i	<u> </u>		Γ	$\overline{}$		I	Έ	≘	Γ-	Г		_	Ι-	Γ-	Τ-	r			
5		ate Delta-	1:			,		dation of	acid transpo (isoleucine	se alpha chai			nit.					A precursor lein)	sporter	tem	ATP-binding
10	Function	isopentenyl-diphosphate Delta- isomerase				1		beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carner protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
15	Matched length (a.a.)	189			ł			325	426	343		324	483	203		467		546	315	271	372
20	Similarity (%)	57.7						100.0	100.0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
	Identity (%)	31.8						99.4	99.8	21.6		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
% (panujun	gene	inhardtii ipt1] - -			11		utamicum	utamicum			oti mdcF	glcD	ydfH		ium ygiK		zae Rd	вдде	дырС	Oddo
S Table 1 (continued)	Homologous gene	Chlamydomonas reinhardtii ipl1						Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutamicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD
<i>40</i>	db Match	pir.T07979		i i		-1	_	gp:CORCSLYS_1	sp:BRNQ_CORGL	sp:LUXA_VIBHA			sp:GLCD_ECOLI			sp:YGIK_SALTY		SP:HBPA_HAEIN	sp:APPB_BACSU	Sp.DPPC_ECOLI	prf:2306258MR
	ORF (bp)	585 pii	222	438	1755	099	519	975 gp	1278 sp	978 sp	522	927 gp	2844 sp	711 sp	282	1347 sp	423	1509 sp	ds 996	828 sp	1437 prf
45	Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794 2	2455435	2455452	2455720 1	2457337	2459371 1	2460336	2461167	2462599 1
50	Initial (nt)	2441589	2441669	2442355	2443356	2444015	2444551	2444735	2445716	2447021	2450844	2451785	2454637	2454725	2455733	2457066	2457759	2457863	2459371	2460340	2461163
	SEQ NO. (a.a.)	6028	6030	6031	6032	6033	6034	6035	6036	6037	6038	6039	6040	6041	6042	6043	6044	6045	6046	6047	6048
5 5	SEQ NO. (DNA)	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548

EP 1 108 790 A2

(g
continued
<u>0</u>
Se 1
Table

_								_		_	_		_	_						
	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine blosynthesIs protein x	hypothetical protein	glycine betaine transporter	•			large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin !	GTP-binding protein
	Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	. 94	603
	Similarity (%)	44.0	58.0	65.0	64.6		61.6	51.2		100.0	65.5	7.17				71.9	73.7	.0.65	73.0	83.6
	Identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8	1			34.6	33.9	28.2	63.0	58.7
(Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutarnicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
	db Match	PIR:G72536	pir:D70367	prf:2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp:BETP_CORGL	ı			prf.2320266C	gp:AF186091_1	sp: OCTP_RHOCA	PRF:1806416A	sp.LEPA_BACSU
	ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
	Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
	Initial (nt)	2462049	2463150	2463241	2464344	2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379	2481208	2481692	2482480	2483845	2484392
	SEO NO. (a.a.)	6049	6050	6051	6052	6053	6054	6055	6056	6057	6058	6029	909	6061	6062	6063	6064	6065	9909	6067
	SEQ NO. (DNA)	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567

	_				_								•						
5		- Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for ONA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate reductase or glutamate-5-semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase	-	GTP-binding protein
15		Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
20		Similarity (%)	69.7	72.9	67.1	80.6	74.1	49.7	63.6		6.3	66.4	86.3	65.3		96.8	100.0		78.2
		Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.B	55.6	0.89		99.1.	99.3		58.9
25	inued)	ane	ulosis)sT	ıtc	or A3(2)	ulosis	mEC	·mEA		or A3(2)	ulosis	ulosis	or A3(2)		ımicum	micum _		or A3(2)
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Eschérichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC 123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
40		db Match	pir.H70683	sp:RS20_ECOLI	sp:RHTC_ECOLI	gp:SC6D7_25	pir.H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:SCC123_7	pir.F70685	pir.G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
		ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	678	1023	1296	912	711	1503
45		Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
50		Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511
		SEQ NO. (a.a.)	6068	6909	0209	6071	6072	6073	6074	6075	9209	6077	6078	6209	0809	6081	6082	6083	6084
55		SEQ NO (DNA)	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584

EP 1 108 790 A2

	_																				
5		Function	xanthine permease	2,5-diketo-D-gluconic acid reductase	1		50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E		•		hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical proteln
		7	xanth	2,5-di	_		50S r	50S r	ribon				hypot	transpose (S31831)	hypot	hypot	nucle		hypo	hypo	hypo
15		Matched length (a.a.)	422	276			18	101	986				195	436	117	143	134		92	112	118
20		Similarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100.0	76.9	67.8	9.68		67.4	64.3	68.6
		Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.6	33.9
25	nued)	eu:	χn	тсс			FO13189	FO13189	je.				or A3(2)	micum	or A3(2)	ōr A3(2)	natis ndk		ns R1	ulosis	ulosis
30	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobactenum tuberculosis H37Rv Rv2446c
<i>35</i>		db Match	sp:PBUX_BACSU B	pir. 40838 3			Sp.RL27_STRGR	prf:2304263A 0	Sp:RNE_ECOLI E				gp:SCF76_8	pir:S43613 C	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1 N		9p:AE002024_10 C	pir:H70515	pir.E70863
		# G	1~	 	-	9			m	61	73	12	 				 	00		:	
45		lal ORF (bp)	188	35 843	55 621	65 396	94 264	303	31 226	63 549	10 573	40 747	30 609	23 1306	23 378	76 450	49 408	99 360	44 342	54 465	92 423
		Termina (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50		Initial (nt)	2499783	2502577	2502735	2503870	2504247	2504602	2507098	6092 2507115	6093 2507138	2508094	2508922	2510830	2511046	2511427	2512356	2512768	2512803	2513618	2514114
		SEQ NO.		6086	6087	6088	6009	0609	6091			6094	6095	9609	6097	6098	6609	6100	6101	6102	6103
55		SEQ NO.	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603

5	Function	folyl-polyglutamate synthetase			đ.	hetase	oligopeptide ABC transport system substrate-binding protein	ein dnaK	ylase	genase	egulator	otein	vanillate demethylase (oxygenase)	nol 4- e reductase		porter	class-III heat-shock protein or ATP- dependent protease	otein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
10	ŭ.	folyl-polyglutam				valyl-tRNA synthetase	oligopeptide ABC transposubstrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demet	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock i dependent protease	hypothetical protein	succinyl CoA: 3-oxoadipa transferase beta subunit	succinyl CoA:3-oxoadipat transferase alpha subunit
15	Matched length	451			1 .	915	521	805	170	319	207	208	357	338	444	286	430	366	210	251
20	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
30 (bennimon) 1 eller	ous gene	elicolor A3(2)				68 balS =	68 oppA	68 dnaK	ans ATCC	us ATCC 33923	elicolor A3(2)	phA	. vanA	ava ATCC	vanK	oniae mdcF	Xql	elicolor A3(2)	2065 pcaJ	. 2065 pcal
30 da	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp.	Streptomyces sp.
40	db Match	prf.2410252B				sp:SYV_BACSU	pir.A38447	sp:DNAK_BACSU	gp:ECU89166_1	sp:MOH_THEFL	gp:SC4A10_33 -	gp:AF065442_1	prf:2513416F	gp:FSU12290_2	prf.2513416G	gp:KPU95087_7	prf.2303274A	gp:SCF55_28	gp.AF109386_2	gp:AF109386_1
	ORF (bp)	1374 p	612	714	663	2700 s _l	1575 p	1452 sı	585 g	984 s	g 777	576 g	1128 p	975 91	1425 pi	930 gi	1278 pi	1086 91	633 gr	750 gl
45	Terminat (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
50	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
	SEQ.	_ :	6105	6106	6107	6108	6109	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
55	SEQ.	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

1 5	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomeras e	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
15	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	26		372		285		437
20	Similarity (%)	82.5	71.9		76.6	43.0	9.68		63.4	70.6	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		8.09		72.3		62.2
50 50 50 50 50 50 50 50 50 50 50 50 50 5	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcal.	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcal.		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	terium tuberculosis v0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
35	I	Rhodoco	Raistonia		Rhodoco	Streptom) SCM1.10	Rhodoco		Rhodoco	Rhodoco	Rhodoco	Mycobacterium H37Rv Rv0336	Mycobac catC		Rhodoco		Rhodoco		Pseudomo pDK1 xylX
40	db Match	prf.2408324F	prf:2411305D		prf:2408324E	gp:SCM1_10	pri:2408324E		prf:2408324D	prf:2408324C	prf:2408324B	pir.G70506	prf:2515333B		Sp:CATB_RHOOP		prf.2503218A		gp:AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	829	1116	612	690	1164	291	177	1119	909	855	141	1470
45	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
50	Initiat (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	2545315
	SEQ NO.	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
55	SEQ NO.	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

5	u(se subunit	se subunit	xa-3,5-diene jenase	ily with ATP-	sport protein or ansporter	transport	orotease	protease		somerase)		ein						
10	Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP-binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
15	Matched iength (a.a.)	161	342	772	979	435	388	197	198	42	417	160	336	115		142		35	75
20	Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
	Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	-32.1	32.5	25.3	27.8		54.2		57.1	50.7
25 (continued)	us gene	tida plasmid	tida plasmid	tida plasmid	thropolis thcG	coaceticus	coaceticus	elicolor M145	elicolor M145	icus ORF154	68 tig	elicolor A3(2)	urans LC411	oa1		striatum ORF1		striatum ORF1	striatum ORF1
Table 1	Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xylL	Rhodocaccus erythropalis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptomyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
35		:								4.		0, 0,		4		J		U	
40	db Match	gp.AF134348_2	gp:AF134348_3	gp:AF134348_4	gp:REU95170_1	sp:PCAK_ACICA	sp:BENE_ACICA	gp:AF071885_2	gp:AF071885_	gp:SIS243537_	sp:TiG_BACSU	gp:SCD25_17	sp.PBP4_NOCLA	prf:2301342A		prf:2513302C		prf:2513302C	prf.2513302C
	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45	Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	6154 2561115	2561920	2562093	2562115	2562341
	SEQ NO (a.a.)	6141	6142	6143	6144	6145	6146	6147	6148	6149	6150	6151	6152	6153		6155	6156	6157	6158
55	SEQ NO.	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

EP 1 108 790 A2

; 5	·			nerase													orter		ng protein		nease	
10	. Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
15	Matched length (a.a.)			140	248	199	890	358				104		•	381	290	392		538	286	316	
20	Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
	identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
52 Gontinued)	us gene			ureus NCTC	ulyticus ORF2	bercutosis	dans pepN	ri 880852				iens ATCC		,	hus DK1050	eus JA3933	genes IItB		longatus	-4 dppC	12 nikB	
So Table 1 (Homologous gene			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 ctl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes IItB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
35						2 1		ш									۳.		2		ш	
40	db Match			sp:LACB_STAAU	Sp:YAMY_BACAD	pir.A70866	SP: AMPN_STRLI	pir:B70206 ·				gp:AF139916_3			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627		gp:SYOATPBP	sp:DPPC_BACFI	pir.S47696	
	ORF (bp)	390	885	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1641	882	939	1707
45	Terminat (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
50	Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345	2569211	2571460	2571510	2572193	2572677	2572977	0223770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	2582417
	SEQ NO.	6159	6160	6161	6162	6163	6164	6165	6166	6167	6168	6169	6170	6171	6172	6173	6174	6175	6176	6177	6178	6179
55	SEQ NO.	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

5		- Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	franscriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromale t <u>r</u> ansport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
15		Matched length (a.a.)		411	482	218	235	240	94	238	126	396	196	127		55	563	172	700	536
20		Similarity (%)		63.5	47.9	79.4	0.09	55.0	47.0	65.1	0.77	60.4	68.9	61.4		60.0	79.6	62.2	26.7	52.6
		Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27:3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
30	lable I (confined)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actll	Neisseria meningilidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa - Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjjK	Mycobacterium tuberculosis H37Rv RV2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
<i>35</i>		db Match		sp:ARGD_CORGL C	M pir.A70539 H	sp:YA26_MYCTU H	Sp:PHBB_CHRVI CI	pir.A40046 SI	GSP:Y74375 N	gp:AF106002_1 tt	gp:MLCB1610_9 M	Sp.CHRA_PSEAE	м ріг.А70867	gp:SC6D10_19		pir.B72589 A	sp:YJJK_ECOLI E	pir.E70867	Sp.Y05L_MYCLE M	pir.C69676 B
		ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	1419
45		Terminat (n1)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
50		Initial (nt)	2582564	2584613	2586180	2587976	2589432	2589565	2590697	2592365	2592402	2592838	2594594	2595061	2595808	2595983	2597715	2598483	2600764	2601461
		SEQ NO.	6180	6181	6182	6183	6184	6185	6186	6187	6188	6189	6190	6191	6192	6193	6194	6195	6196	6197
55		SEQ NO.	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697

										_		_						,	,
5	_			transport ein	transport ein		_		onding protein port protein) ransport		nnose		se	a		protein	ein		
10	Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase	•	aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
15	Matched length (a.a.)			279	292	İ	462		386		154	t	202	183		412	255	258	179
20	Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
	Identity (%)			39.1	27.4		28.8		59.1		37.7	ı	67.2	48.6		35.0	41.2	40.0	48.0
52 52 Table 1 (continued)	Homologous gene			nutans IG	nutans F =		acterium		t <u>i</u> culi msiK		myces pombe		odochrous orf5	sp. PCC7942		itima MSB8	K12 gip	uberculosis	K12 orn
30 Table 1	Homolog			Streptococcus mutans INGBRITT msmG	Streptococcus mutans		Thermoanaerobacterium thermosul amyE		Streptomyces re <u>t</u> iculi msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga mantima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
40	db Match			SP.MSMG_STRMU	Sp.MSMF_STRMU		prf.2206392C		prf.2308356A	,	prf.2317468A		prf.2516398E	prf.2513418A		pir.A72312	sp:GIP_ECOLI	pir.E70761	sp:ORN_ECOLI
					ų:ds						prf.2		prf:2	prf.2			Sp:G	pir.E	Sp.O
	ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	069	789	762	345	1182	750	798	6 27
45	Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
50	Initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426	2610639	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
i	SEQ NO.	6198	6199	6200	6201	6202	6203	6204	6205	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
55	SEQ NO.	2698	2699	2700	2701	2702	2703	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	ferric enterochelin esterase	lipoprotein			1	transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronate isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
	Matched length (a a)	454	398		1		436			131	358	6	1	335		291	185	75	141	114
	Similarity (%)	50.9	71.9				8.66			63.4	69.3	72.2		6.09		45.0	74.6	80.0	73.8	61.4
	Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3	-	29.0		32.0	48.1	42.7	46.8	32.5
Table 1 (continued)	Homologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2518c lppS			= +	Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 degA	,	Escherichia coli K12 uxaC	ŀ	Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SCI11.01c
	db Match	prf.2409378A	pir:C70870			al .	gp:SCU53587_1			gp:AF085239_1	sp.GLSK_RAT	pir.A36940		sp:UXAC_ECOL!		prf.1814452C	prf:232444A	pir.E70870	sp:BCP_ECOU	gp:SCI11_1
	ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	636
	Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
-	Initial (nt)	2620728	2622181	2622961	2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	2628926	2630636	2631270	2632543	2633418	2633600	2634116
	SEQ NO.	6216	6217	6218	6219	6220	6221	6222	6223	6224	6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
	SEQ NO. (DNA)	2716	2717	2718	2719	2720		2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

EP 1 108 790 A2

10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetica protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		arylsufatase
	Matched length (a.a.)	145	473	113		3029	404	230	112	113	202	236				428	175		250
	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	67.9	69.0	7.97	81.4				58.2	97.2		74.4
	Identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
- Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum - 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
	db Match	gp:BAY15081_1	gp:AF237667_1	pir:S76537		pir:S2047	gp:SC4A7_14	pir:D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	sp:RNPH_PSEAE				sp:Y029_MYCTU	gp:AF121000_8		sp:Y03O_MYCLE
	(dd)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	582	1362	534	099	765
	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650302	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
	Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	6244 2652037	2652801	2653254	2654018	2654660	2656236	2656452	2657633	2658500
	SEQ NO. (a.a.)	6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	6248	6249	6250	6251	6252
	SEQ NO. (DNA)	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

_																		· · · · · · · · · · · · · · · · · · ·	
	uu	96		rotein, marR	ne protein		exanoate						ase	ine protein		phatase		e chain I	
	- Function	D-glutamate racemas		bacterial regulatory p family	hypothetical membra		endo-type 6-aminohe oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helic	hypothetical membra	hypothetical protein	phosphoserine phos		cytochrome c oxidas	
	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
	Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identify (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
(continued)	ons gene	glutamicum irl		elicolor A3(2)	uberculosis		sp. nylC	uberculosis	uberculosis		luberculosis		dinG	tuberculosis	oelicolar A3(2)	K12 serB		luberculosis	
Table 1	Homolog	Corynebacteriun ATCC 13869 mu	-	Streptomyces co SCE22.22	Mycobacterium t H37Rv Rv1337	•	Flavobacterium	Mycobacterium 1 H37Rv Rv1332	Mycobacterium H37Rv Rv1331		Mycobacterium H37Rv Rv1330c		Escherichia coli	Mycobacterium H37Rv Rv2560	Streptomyces co SC1B5.06c	Escherichia coli		Mycobacterium H37Rv Rv3043c	
	db Match						oir.A47039						orf:1816252A	sp:Y0A8_MYCTU	pir:T34684	sp.SERB_ECOLI		pir:D45335	
	ORF (bp)	852	636	492	747	891	096	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
	Initial (nt)	2659457	2659496	2660638	2661417	2661565	2662376	2662867	2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	2672950
	SEQ NO (a.a.)	6253	6254	6255	6256	6257	6258	6229	6260	6261	6262	6263	6264		6266	6267	6268		6270
	SEQ NO.	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770
	Table 1 (continued)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (hp) (h	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Initial NO (nt) SEQ Initial Terminal ORF db Match Homologous gene 1 (continued) 1 (%) (%	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO (nt) (nt) (nt) (nt) (hp) SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Identity Table 1 (continued) SEO NO (nt) (nt) (nt) (bp) (Dp) (bp) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) 8253 2659457 2658606 852 prf.2516259A Corynebacterium glutamicum (%) 99.3 99.3 284 6254 2659496 2660131 636 ATCC 13869 murl (%) ATCC 13869 murl (%) 44.2 70.8 147 6255 2660638 2660147 492 gp:SCE22_22 Streptomyces coelicolor A3(2) 44.2 70.8 147 6256 2661417 2660671 77 sp:Y03M_MYCTU H37Rv Rv1337 38.2 69.3 225 6257 2661565 2662456 891 H37Rv Rv1337 A1.2 70.8 147 6258 2661566 2661417 960 pir.A47039 Flavobacterium sp. nylC 30.2 58.3 321	SEG Initial Terminal ORF db Match Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) Homologous gene (%) (%) (%) Homologous gene (%)	Table 1 (continued) SEO Initial Terminal ORF db Match Homologous gene (%) (Mt) Table 1 (continued) SEO Initial Terminal ORF db Match Homologous gene (%) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)	SEC	Table 1 (continued) SEC Initial Terminal (ltp) Chromosous gene (ltp)	SEG Initial Terminal ORF db Match Homologous gene (%) (%	Table 1 (continued) SEC (n.i) (n.i) (n.i) (n.i) (n.i) (hp) db Match Homologous gene (%) Identity (%) (%) Similarity (%) Matched (%) 6253 2659457 (a.s.) (a.s.) (a.s.) (a.s.) (a.s.) (a.s.) (a.s.) 6254 2659456 (a.s.) (a.s.) (a.s.) (a.s.) (a.s.) (a.s.) 6254 2659456 (a.s.) (a.s	SEC Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (Author) (Auth	SEC Initial Terminal ORF db Match Homologous gene (%) (%	SEO Initial Terminal ORF db Match Homologous gene (%) (%	Table 1 (continued) 1dentity Smilanty Matched 1dentity Smilanty Smilanty Matched 1dentity Smilanty Smila				

5		Function	ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor or – diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase			hypothesical protein
15		Matched length (a.a.)	334 ribo	159 ferr	256 spc	225 iror dip	124 col	50 hyp	707 ribonu chain		41 508	279 NH			757
20		Identity Similarity (%)	99.7	64.2	60.2	60.4	62.1	96.0	100.0		79.0	78.1			26.4
		Identity (%)	99.7	31.5	32.8	27.6	24.2	20.0	99.9		58.0	55.6		. 1	20.7
25	ntinued)	gene	ıtamicum	finA	olor A3(2)	tamicum	visiae TIR2	lus AF0251	tamicum			nadE			CC6803
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 finA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamlcum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE		•	Synechocystis sp. PCC6803
<i>35</i>		db Match	gp:AF112536_1 C	SP.FTNA_ECOLI E	gp:SCA32WHIH_4		sp:TIR2_YEAST	pir.C69281	2121 gp.AF112535_3 A		SP:RL36_RICPR R	SP:NADE_BACSU B			8 00235301
			2 gp:Af) pir:140 <u>3</u> 39			1 gp.Al		i			8	
		ORF (bp)	1002	486	750	099	438	276		315	14	831	93	498	747
45		Terminal (nt)	2673338	2675289	2676240	2676243	7577377	2676918	2677478	2680784	2681223	2682376	2681464	2683616	OFCCOSC
50	•	Initial (nt)	6271 2674339	2674804	2675491	2676902	2676940	2677193	2679598	2680470	2681363	6280 2681546	2681556	6282 2683119	2003 2603436
		SEQ NO (a.a.)	6271	6272	6273	6274	6275	6276	6277	6278	6279	6280	6281	6282	
		g o ₹	7	72	73	74	75	9/	77	78	79	80	18	82	5

											_	—								
Function		ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor or - diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomai protein L36	NH3-dependent NAD(+) synthetase			hypothetical protein	hypothetical protein	alcohol dehydrogenase	Bacillus subtilis mmg (for mother cell metabolic genes)	hypothetical protein		phosphoglucomutase
Matched	(a.a.)	334	159	256	225	124	50	707		41	279		_	257	96	337	459	284		556
Similarity	(%)	99.7	64.2	60.2	60.4	62.1	96.0	100.0		79.0	78.1			56.4	68.8	52.8	56.0	66.2		9.08
Identity	(%)	99.7	31.5	32.8	27.6	24.2	50.0	99.9		58.0	55.6		1	30.7	41.7	26.1	27.0	33.8		61.7
Homologous gene	anag spokoromon	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 finA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE	-	Rickettsia prowazekii	Bacillus subtilis 168 nadE		•	Synechocystis sp. PCC6803 str1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T6K22.50		Escherichia coli K12 pgm
dh Maich	do Maion	gp:AF112536_1	SP:FTNA_ECOLI	gp:SCA32WHIH_4	pir.140 <u>3</u> 39	sp:TIR2_YEAST	pir:C69281	gp.AF112535_3		SP:RL36_RICPR	sp:NADE_BACSU			pir:S76790	pir.G70922	sp.ADH2_BACST	sp:MMGE_BACSU	pir:T05174		1662 sp.PGMU_ECOLI
ORF	(pb)	1002	486	750	099	438	276	2121	315	141	831	93	498	747	288	1020	1371	834	792	1662
Terminal	(nt)	2673338	2675289	2676240	2676243	2677377	2676918	2677478	2680784	2681223	2682376	2681464	2683616	2682379	2683131	2683627	2686289	2687148	2687449	2688389
Initial	(te)	2674339	2674804	2675491	2676902	2676940	2677193	2679598	2680470	2681363	2681546	2681556	2683119	6283 2683125	2683418	2684646	2684919	2686315	2688240	2690050
SEO	(a.a.)	6271	6272	6273	6274	6275	6276	6277	6278	6279	6280	6281	6282	6283	6284	6285	6286	6287	6288	6289
SEQ	(DNA)	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783	2784	2785	2786	2787	2788	2789

			, —,		 ,											_				
5	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1676)		proton/sodium-glutamate symport protein	1	ABC transporter		ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
15	Matched length (a.a.)	84	122	254	496	355				200		438		873		218	84	42		196
20	Similarity (%)	64.3	61.5	79.1	48.6	49.6				46.6		2.99		0.69		79.8	0.78	75.0		54.1
	Identity (%)	41.7	25.4	51.2	24.2	24.8				24.6		30.8		33.0		45.4	0'09	71.0		28.1
52 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 yesl	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Rhodococcus erythropolis		Bacillus subtilis 168	r	Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129	-	Streptomyces collinus Tu 1892 ansG
35 40	db Match	pir.F70650	pir:D71843	sp:YCSI_BACSU	gp:AF126281_1	sp:CSP1_CORGL (•			gp:AF126281_1		sp.GLTT_BACCA 1		gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf.2509388L
	ORF (bp)	288	324	792	1365	1620	354	165	447	1401	768	1338	693	2541	891	708	273	141	878	672
45	Terminal (nt)	2690437	2690760	2691564	2693053	2694918	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
50	Initial (nt)	2690150	2690437	2690773	2691689	2693299	2694926	2695554	2695766	2695812	2698150	2699531	2700920	2702466	2702466	2703194	2704314	2704835	2709878	2710637
	SEQ NO. (a.a.)	6290	6291		6293	6294	6295	6296	6297	6298	6299	6300	6301	6302	6303	6304	6305	6306	6307	6308
55	SEQ NO.	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808

Iranscriptional regulator

321

68

38

Azospirillum brasilense ATCC 29145 ntrC

sp:NIR3_AZOBR

1143

2732518

2731376

6327

2

77

Clostridium kluyveri cat1 cat1

Sp:CAT1_CLOKL

1539

2729378

2730916

6326

succinyl-CoA synthetase beta chain succinyl-CoA synthetase alpha chain 5 UDP-N-acetylglucosamine carboxyvinyltransferase succinyl-CoA coenzyme A transferase frenolicin gene E product O-acetylserine synthase transcriptional regulator Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein methyltransferase cysteine synthase 10 15 Matched length 213 (a.a) 417 8 305 172 400 205 281 291 72 83 84 42 Similarity 84.6 43.0 73.0 71.8 51.2 75.0 84.2 69.0 79.7 75.3 79.4 65.1 8 96 20 Identity (%) 61.0 42.0 39.8 25.9 71.0 57.1 61.1 52.9 S 36.1 5 44. 99 38. 25 Aeropyrum pernix K1 APE1069 Streptomyces roseofulvus frnE Streptomyces coelicolor A3(2) SC2G5.15c Coxiella burnetii Nine Mile Ph sucD Deinococcus radiodurans R1 DR1844 Azotobacter vinelandii cysE2 fable 1 (continued) Mycobacterium tuberculosis H37Rv Rv1314c Mycobacterium tuberculosis H37Rv Rv0089 Acinetobacter calcoaceticus NCIB 8250 murA Chlamydia muridarum Nigg TC0129 Homologous gene Bacillus subtilis 168 cysK Bacillus subtilis 168 sucC Chlamydia pneumoniae 30 35 sp.CYSK_BACSU sp:SUCD_COXBU sp.SUCC_BACSU Sp:MURA_ACICA sp:Y02Y_MYCTU gp:AE002024_10 sp:Y089_MYCTU S gp:SC2G5_15 db Match gp:AF058302 prf:2417357C GSP: Y35814 PIR:F72706 PIR:F81737 40 546 924 1194 1254 225 735 525 141 843 408 288 882 273 570 819 유 (한 2726786 2720385 2721295 2722857 2723609 2723770 2724478 2725843 2725384 2727399 45 2713453 2713842 2718436 2720319 2728207 2712374 **Terminal** 2717993 E 2721934 2723064 2725359 2725619 2727145 2721702 2728133 2729025 2718187 2724057 2713702 2719689 2719750 2721227 2726577 2711850 2713181 Ē 50 6318 6316 6317 6319 6309 6313 6315 6320 6321 6322 6323 6324 6325 6310 6311 6312 6314 SEQ NO. 2816 2818 2823 2824 2815 2817 2819 2812 2814 2820 2821 2822 (DNA) 2813 55

5	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
15	P		phosph regulate	phosphate- component	phosph permea	phosph	phosphate precursor	acetyltr		hypothe	hypothe	branche	hypothe	hypothe	5'-phospho synthetase	amidop
	Matched length (a.a.)		213	255	292	325	369	315		344	225	259	352	58	347	482
20	Similarity (%)		81.7	82.8	82.2	78.5	26.0	0.09		55.2	74.2	0.95	79.0	81.0	94.2	89.0
	Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
30 1 older 52	us gene		berculosis shoY-2	ruginosa pstB	berculosis = stA1	berculosis stC2	berculosis	licolor A3(2)		38 bmrU	berculosis	ım BCAT2	TCC 6872	berculosis	TCC 6872	TCC 6872
·	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
40	db Match		pir.E70810	pir.S68595 P	gp:MTPSTA1_1	pir.A70584	pir.H70583	gp:SCD84_18		sp:BMRU_BACSU B	pir.E70809	gp:AF193846_1	gp:AB003158_6 a	Pir.B70809	gp:AB003158_5 a	Cgp:AB003158_4 a
	ORF (bp)	807	732 pir	897 pir.	921 gp	1014 pir	1125 pir	876 gp	783	1095 sp.	687 pir.	942 gp.	1101 gp.	213 pir.	1074 gp.	1482 gp
45	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
50	Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954	2747564
	SEQ NO.		6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
55	SEQ NO.	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

5'-phosphoribosyl-N-formylglycinamidine synthetase formylglycinamidine synthetase hypothetical membrane protein 5 C4-dicarboxylate transporter dipeptidyl aminopeptidase Function gluthatione peroxidase extracellular nuclease 5'-phosphoribosyl-Nhypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 15 Matched ength 414 315 217 23 158 211 124 42 763 965 697 79 Similarity 75.8 94.0 71.0 S 93.3 93.7 77.9 68.7 81.6 70.6 3 87 83 20 5 dentity 57.3 75.9 64.0 77.6 80.3 81.0 46.2 49.0 41.8 28.0 67.7 8 37. 25 WO24 dapb1 Aeromonas hydrophila JMP636 nucH Table 1 (continued) Salmonella typhimurium LT2 dctA 6872 Corynebacterium ammoniagenes ATCC 6872 Corynebacterium ammoniagenes ATCC 6872 purd Corynebacterium ammoniagenes ATCC 6872 Mycobacterium tuberculosis H37Rv Rv0807 ammoniagenes ATCC 6872 Mycobacterium tuberculosis Homologous gene Corynebacterium ammonlagenes ATCC Lactococcus lactis gpo Sulfolobus solfataricus Pseudomonas sp. Corynebacterium 30 H37Rv Rv0784 ORF2 puror ORF1 35 GP:SSU18930_21 Sp. DCTA_SALTY gp:AB003158_2 gp:AB003162_3 gp:AB003162_2 gp: AB003158_1 gp:AB003162_1 db Match prf:2420329A prf:2408266A prf:2216389A pir.C70709 pir:H70536 40 1017 2286 2748 1338 2118 ORF (bp) 375 699 243 477 276 720 522 741 186 687 2757126 2753328 2756739 2757863 2759532 2753121 2753819 45 2749111 Terminal 2747683 2749162 2752103 2750027 2752327 2752995 2757129 Ξ 2753298 2753804 2752312 2759200 2757815 2761649 2748095 2751918 2752402 2752995 2753237 2753992 2756851 2749902 2748057 50 6344 6347 6348 6349 6350 6351 6345 6352 6353 6354 6355 6356 6357 6343 6346 SEO NO. 2845 2848 2849 2850 2851 2843 2844 2846 2847 2852 2853 2854 2856 2857 SEQ NO. 55

		_			· · · · · · · · · · · · · · · · · · ·						_	— т						
5					-amino		rase	amide	nily protein				amino-7- ansferase or acid	4	sensor	regulatory		al enzyme or dolase
10			- Function		5'-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-/Inpeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
15			Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
20			Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4	67.6	98.8	93.6	70.5	72.7	69.5	53.9
	•		Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
25 30 ·		Table 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barken orf3	Lactococcus factis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
35		;	Ĭ		Corynebacterium ammoniagenes A purC	Corynebacterium ammoniagenes A purB	Sulfolobu 49255	Corynebacterium ammoniagenes A purD	Mycobact		Methanos	Lactococ dipT	Coryneba (Brevibac bioA	Corynebs (Brevibac bioD	Lactococ pND306	Thermoto	Streptom	Arthrobac
40			db Match		gp:AB003161_3	gp:AB003161_2	sp:AAT_SULSO	gp:AB003161_1	Sp:YHIT_MYCLE		pir.S62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp.BIOD_CORGL	gp:AF049873_3	prf.2222216A	sp:TIPA_STRLI	prf.2419350A
			ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
45			Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
50			Initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2769095	2770511	2770714	2771989	2774098	2774814	2775689	2776879
			SEQ NO. (a.a.)	6358	6329	6350	6351	6362	6363	6364	6365	6366	6367	6368	6369	6370	6371	6372
55			SEQ NO (DNA)	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872

high-affinity zinc uptake system protein

353

46.7

22.4

Haemophilus influenzae Rd H10119 znuA

sp:ZNUA_HAEIN

942

2797806

6390 2796865

2890

Bacillus megaterium ccpA

1074 Sp.CCPA_BACME

glucose-resistance amylase regulator

344

60.2

trehalose-phosphatase

245

57.6

27.4 24.7

Escherichia coli K12 otsB

768 SP.OTSB ECOLI

513

6387 2794300 2794812

2887 2888 2889

-															
5	Function	pyruvate oxidase	mullidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription Initiation factor sigma	trehalose-6-phosphate synthase
15	Matched length (a.a.)	574 py	504 m	92 tra	421 hy	-	303 3-	232 tra	278 hy	288 h		140 h	464 h	155 tr	487 tr
20	Similarity (%)	75.8	6.89	68.5	78.4		62.1	0.69	6.29	55.6		50.7	64.0	50.3	66.7
	Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8
S S Table 1 (continued)	us gene	.12 poxB	ureus plasmid	.12 ycdC	berculosis_		thropolis SQ1	58 alsR	uberculosis IpqC	68 ykrA		culus kidney	ıberculosis	seus hrdB	yces pombe
	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis_ H37Rv Rv2508c _		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtills 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1
<i>35</i>	db Match	gp:ECOPOXB8GE	prf.2212334B	sp.YCDC_ECOLI E	pir.D70 <u>5</u> 51		gp:AF096929_2	SP. ALSR_BACSU	pir.C70982	pir. C69862	,	pir.A45264	pir.B70798	pir.S41307	sp.TPS1_SCHPO
	ш	7	12	1-	0	42	0	1	18	3	69	6	<u></u>	327 pir.S	rō.
45	nat ORF	768 173	148	969 53	315 132	340 214	929	351 705	594 81	587 81	477 45	550 39	448 150	 	327 145
	Terminal (nt)	2776768	2780445	2780969	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327
50	Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873
	SEQ NO.	6373	6374	6375	6376	6377	6378	6379	6380	6381	6382	6383	6384	6385	6386
55	SEO	2873	2874	2875	2876.	2877	2878	2879	2880	2881	2882	2883	2884	2885	2886

	,		— т						Т			T						 -	
5		no		ane protein	63-5)	í	rogenase		biosynthesis ictase or	or myo-inositol 2-	protein	protein	ator	se methylase or ransferase	hetase	ne II sucrose ecific IIABC	e hydrolase or	sphate	e-6-phosphate
10		Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)	-	3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or n dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
15		Matched length (a.a.)	223	135	303		561		204	128	767	130	212	334	464	899	473	248	368
20		Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	8.89	77.0	6'99	69.4	60.3
•		Identity (%)	31.4	0.09	23.4		32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35,3	38.3	30.2
25	Table 1 (continued)	euab sr	reus 8325-4	oerculosis .	gidus	=	hropolis SQ1		ma MSB8	8 idh or iolG	12 shiA	12 shiA	licolor A3(2)	erevisiae _	12 cysS	sacB	outylicum	12 nagB	1514 manD
30	Table 1 (c	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodacoccus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bplA	Bacillus subtilis 168 idh or iolG	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7 19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
35				ŹΪ	Ā				古岩		•		क क						
40		db Match	9p.AF121672_2	pir.E70507	pir.A69426		gp:AF096929_2		pir.B72359	sp:MI2D_BACSU	Sp.SHIA_ECOLI	Sp. SHIA_ECOL!	gp:SC5A7_19	sp:PT56_YEAST	sp.SYC_ECOLI	prf.2511335C	gp.AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU
		ORF (bp)	069	555	1500	201	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152
45		Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	280467Ē	2805113	2806016	2806599	2807426	2808399	2809824	2811960	2813279	2814081
50		Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	2805967	2806441	2807252	2808364	2809778	2811806	2813258	2814037	2815232
		SEQ NO.	6391	6392	6393	6394	6395	6396	6397	6398	6388	6400	6401	6402	6403	6404	6405	6406	6407
55		SEQ NO.	2891	2892	2893	2894	2895	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907

5	
10	
15	
20	
25	
30	
35	
35 40	
40	

	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeplide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding proteln -	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
	Matched length (a.a.)	298	321	220		439	222	260	342	314	258	193	142		152	235 .	157
	Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora vindifaciens ATCC 31146 nadA	Rhizoblum etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis - H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp:DAPA_ECOLI	sp:GLK_STRCO	prf.2516292A		1215 sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp. DPPB_BACFI	sp:OPPD_BACSU	sp:OPPF_LACLA	sp:RHTB_ECOU	prf:2309303A		pir.C70607	sp:Y18T_MYCTU	pir:H70803
	ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
	SEO NO.	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
	SEQ NO. (DNA)	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

5
10
15
20
25
30
35
40
45
50

	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase	_	mitochondrial carbonate dehydratase bela	A/G-specific adenine glycosylase		1	L-2.3-butanediol dehydrogenase				hypothetical protein	virulence factor	virulence factor
	Matched length (a.a.)	223	341		463	345	231	471	•	210	283		ı	258				26	66	72
	Similarity (%)	70.0	67.7		74.3	73.3	53.3	85.1		66.2	7.07			9.66				69.1	63.0	55.0
	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		36.7	48.4		1	99.2				48.5	57.0	54.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA =	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum	· ·			Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
	db Match	prf.2214304A	sp.BAES_ECOLI		sp.RADA_ECOLI	sp:YACK_BACSU	pir.D70804	gp.PPU96338_1		pir. T08204	gp:AF121797_1			gp:AB009078_1				pir.E70552	GSP:Y29188	GSP: Y29193
	ORF (bp)	723	1116	582	1392	1098	687	1452	147	621	879	1155	306	774	324	741	312	291	420	213
	Terminal (nt)	2830779	2831894	2832666	2834181	2835285	2835283	2836048	2837591	2837956	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
	Initial (nt)	2830057	2830779	2832085	2832790	2834188	2835969	2837499	2837737	2838576	2838643	2839562	2841063	2841075	2842130	2842493	2843405	2843722	2845139	2845889
	SEQ NO.	6424	6425	6426	6427	6428	6459	6430	6431	6432	6433	6434	6435	6436	6437	6438	6439	6440	6441	6442
	SEO NO. (DNA)	2924	2925	2926	2927	2928	2929	2930	2931	2832	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942

. . 191

	. Function	virulence factor	CIpC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protetn	hypothetical protein	lysyl-tRNA synthetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase
	Matched length (a.a.)	55	832	469	316 t	089					481	240	511	268			138	158	118	268
	Similarity (%)	75.0	86.2	70.2	62.7	6.09					100.0	55.8	71.2	52.6			69.6	0.69	69.5	75.0
	Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
ומסופ ו (בסוומוותבת)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacilius cereus ts-4 impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens_ AM1 folK	Bacillus subtilis 168 folB	Mycobacterium leprae folP
	db Match	GSP: Y29193	sp:MECB_BACSU	gp:AB035643_1	pir.JC6117	sp.PH2M_TRICU					gp:AF237667_1	pir.G70807	gp:AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	sp:HPPK_METEX	sp.FOLB_BACSU	gp: AB028656_1
	ORF (bp)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	390	837
	Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	2865346	2865731
	Initial (nt)	2846186	2846940	2847229	2848769	2850031	2852017	2853769	2855795	2859044	2859055	2860145	2862082	2862929	2863621	2864421	2864848	2865343	2865735	2866567
	SEQ NO.	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	6456	6457	6458	6459	6460	6461
	SEQ NO.	2943	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959	2960	2961

5		Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
15	1	Matched length (a.a.)	188		782	165	310	459	159		507	132	144	173	202	68		411	97	135
20		Similarity (%)	86.2		0.69	83.0	66.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	59.6		9 69	73.2	59.3
		Identity (%)	9.09		26.0	51.5	41.0	27.2	49.7		56.0	38.6	36.8	36.4	44.6	30.3	,	38.0	46.4	26.7
30	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 mtrA			Salmonella typhimurlum GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv RV2599	Mycobacterium tuberculosis H37Rv RV2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bglP		Nocardioides sp. KP7 phdD	Streptomyces coelicalor A3(2) - SCH69.09c	Burkholderia pseudomallei ORF E
35			1					<u> </u>		-	₹ E				<u> </u>			7 N	क्र छ	<u>ფ</u> ო
40		db Match	sp:GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp.DAC_ACTSP	SP. IPYR_ECOLI		pir:H70886	sp.Y0B1_MYCTU	sp.Y0B2_MYCTU	sp.Y083_MYCTU	sp:Y0B4_MYCTU	sp:PTBA_BACSU		3 gp:A8017795_	9p:SCH69_9	prf.2516298U
		ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	411	498	609	249	264	123	288	444
45		Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	2880252	2880987
50		Initial (nt)	2867173	2867471	2869748	2870444	2871389	2872677	2872926		2875443	2875832	2876280	2876777	2877385	2877703	2877858	+	2879965	2880544
		SEQ	1	6463	6464	6465	6466	6467	6468	6469		6471	6472	6473	6474	6475	6476			6479
55		SEQ		2963	_		2966	2967	2968	2969	2970	2971	2972	2973	2974	2975	2976	2977	2978	2979

EP 1 108 790 A2

10
15
20
25
30
35
40
45
50

Table 1 (continued)

O Initial	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2880998	2884882	3885	prf.2413335A	Streptomyces roseosporus cpsB	28.4	51.6	1241	peptide synthase
11 2883304	2881844	1461						
2886497	2884935	1563	prf. 23 10295A	Escherichia coli K12 padA	35.0	63.7	488	phenylacetaldehyde dehydrogenase
3 2887833	2886916	918	gp:CJ11168X2_25 4	Campylobacter jejuni Cj0604	57.3	79.7	241	hypothetical protein
14 2890185	2890346	162	GP.MSGTCWPA_1	Mycobacterium tuberculosis	62.0	63.0	54	hypothetical protein
15 2890377	2890553	177	GP_MSGTCWPA_1	Mycobacterium tuberculosis	74.0	80.0	31	hypothetical protein
16 2890540	2888897	1644	gsp:R94368	Brevibacterium flavum MJ-233	99.5	100.0	548	heat shock protein or chaperon or groEL protein
7 2890930	2890751	180						
18 2892138	2890930	1209						1
9 2893100	2892138	963						•
0 2895085	2893100	1986						
1 2897525	2895072	2454	,					
2 2900326	2897528	2799						,
3 2903920	2900330	3591	prf:2309326A	Homo sapiens MUC5B	21.7	42.3	1236	hypothetical protein
4 2906738	2903964	2775						The state of the s
5 2907250	2906639	612						
16 2907515	2908885	1371	pir.G70870	Mycobacterium tuberculosis H37Rv RV2522c	37.1	68.0	447	peptidase
7 2909210	2909788	579						
18 2909830	2909231	009						
9 2910172	2913228	3057	pri:2504285B	Staphylococcus aureus mnhA	35.6	68.3	797	Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
	SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	Initial (nt) (nt) 2880998 288783304 2886497 2887833 2887833 2890377 2890377 2890377 2890370 2890540 2895085 2895085 2895085 2907515 2907515 2909210 2909210 2909830 2909830 2909830	Initial Terminal ORF (nt) (nt) (bp) 2880998 2884882 3885 2887833 2884935 1563 2887833 2886916 918 2890377 2890346 162 2890377 2890353 177 2890377 2890553 177 2890377 2890551 180 2890310 2890571 180 2893100 2893100 1986 2895085 2893100 1986 2895085 2893100 1986 2895085 2893100 1986 2895085 2893100 1986 2897525 2895072 2454 2907545 2906330 3591 2907250 2906639 612 2907250 2906639 612 2909830 2909231 600 2909830 2909231 600 2909830 2909231 600	Initial Terminal ORF (nt) (nt) (nt) (bp) 2880998 2884882 3885 2880998 2884935 1563 2887833 2886916 918 2890785 2890346 162 289077 2890353 177 2890540 2888897 1644 2890377 2890553 177 2890540 2898897 1644 2890540 2890930 1209 2897525 28950751 180 2897525 2895075 2454 2900326 2897528 2759 2907250 2906339 612 2907250 2906336 579 2909510 2909531 600 2909772 2909231 600	Initial Terminal (hp) CRF (ht) db Match (ht) 2880998 2884882 3885 prf.2413335A 2880304 2881844 1461 H.2413335A 2886497 2881844 1461 H.2310295A 2887833 2886916 918 4 2890377 2890346 162 GP.MSGTCWPA_1 2890377 2890353 177 GP.MSGTCWPA_1 2890377 2890751 180 H.24 2890377 2890751 180 H.2 2890370 2890751 180 H.2 2890370 2890751 180 H.2 2890370 2892138 963 H.2 2897528 285 275 H.2 2897529 2895 2895 H.2 2907250 2906639 612 H.C 2907250 2906639 612 H.C 2909830 2909231 600 H.C 2909830 2909231 600 H.C	Initial Terminal (hb) ORF (hb) db Match (hb) Homologous gene 288C998 2884882 3885 prf.2413335A Streptomyces roseosporus cpsB 288C998 2881844 1461 Acceptable (hb) 2886497 288C993 2881844 1461 Acceptable (hb) 2886497 288C991 2881844 1461 Acceptable (hb) 2886497 288C993 2886497 2886916 918 Acceptable (hb) 288C903 2890346 162 GP:MSGTCWPA_1 Mycobacterium tuberculosis 2880530 2890751 180 Brevibacterium flavum MJ-233 2890730 1209 Brevibacterium tuberculosis 2893100 2892138 963 Brevibacterium tuberculosis 2893100 2892138 963 Brevibacterium tuberculosis 2893100 2892138 963 Brevibacterium tuberculosis 2893202 2890330 1209 Brevibacterium tuberculosis 2890320 28903364 2775 Brevibacterium tuberculosis 2890320 <	Initial Terminal ORF (nt) db Match Homologous gene Identity (%) 2880398 28848B2 3885 prf.2413335A Streptomyces roseosporus cpsB 28 4 2880398 2881844 1461 Escherichia coli K12 padA 35.0 2886497 2881844 1461 Escherichia coli K12 padA 35.0 2880783 2886916 918 Pr.CJ1168X2_25 Campylobacter jejuni Cj0604 57.3 2890785 162 GP.MSGTCWPA_1 Mycobacterium tuberculosis 74.0 2890787 2890786 177 GP.MSGTCWPA_1 Mycobacterium flavum MJ-233 99.5 2890787 2890787 180 Brewibacterium flavum MJ-233 99.5 2890787 180 Brewibacterium flavum MJ-233 99.5 2890787 180 Brewibacterium flavum MJ-233 99.5 2890780 1986 Brewibacterium flavum MJ-233 99.5 2897782 289778 Brewibacterium flavum MJ-233 99.5 2807818 579 Brewibacterium flavum MJ-233 99.5	Initial Terminal ORF

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothelical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
	Matched length (a.a.)	104	523	161	77	121	178	334		184	7.1	339			31	513
	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		60.9	70.4	54.2			59.9	62.0
	Identity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0		37.5	47.9	31.3			30.8	27.9
- Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
	db Match	9p.AF097740_3	gp.AF097740_4	gp. AF097740_5	prf.2416476G	prf.2504285H	pir.D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir.D70631	pir:870631			gp:AF108767_1	1500 gp.BFU88888_2
	ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920220	2922108	2923617
	Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
	SEQ NO. (a.a.)	6500	6501	6502	6503	6504	6505	9209	6507	6508	6203	6510	6511	6512	6513	6514
	SEQ NO. (DNA)	3000	3001		3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

5	Function		membrane transport protein or bicyclomycin resistance prote <u>i</u> n	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serineAhreonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) famlly				phosphoribosylgiychamide formyltransferase	
15	Matched length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
20	Similarity (%)		67.2	68.9	56.4		60.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
	Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	_41.2		37.2	34.0				59.1	
30 F 946	Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30-84 phzC		Streptomyces coelicolor A3(2) SCE8 16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG	•	Bos taurus	Escherichia coli K12 elaA			•	Bacillus subtilis 168 purT	
35 40	db Match		sp:BCR_ECOLI	gp:VCAJ10968_1	sp:PHZC_PSEAR		gp:SCE8_16	sp:BCRA_BACI.I	pir.C70629	pir.B70629	sp:GLNH_BACST	pir.H70628		sp:ADRO_BOVIN	sp:ELAA_ECOLI				sp:PURT_BACSU [
	ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	399	1194	988
45	Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
50	Initial (nt)	2924191	2925147	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	2946526
	SEO NO (a.a.)	-		6517	6518	6519	6520	6521	6522	6523	6524	6525	6526	6527	6528	6259	6530	6531	6532	6533
55	SEQ NO.	3015	3016	3017	3018	3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

		т				-	— т							Т			\neg	Т	\neg
5		related)	related)	n sensor),		thetase			ne protein	aldolase			yltransferase					
10	Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor histidine kinase	transcriptional regulator		adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothetical protein-	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase			
15	Matched length (a.a.)	295	89	349 -	218		427	204		359	344	304-	182	174	250	294			
20	Similarity (%)	90.9	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	0.09	56.1			
	Identity (%)	77.6	67.4	22.4	31.7		89.7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6-			
25 (panultu	gene	utamicum	utamicum	noviolaceus	36 degU		A	erculosis		lutamicum 9 ORF3	lutamicum 9 fda	lutamicum 9 ORF1	erculosis	pyrE	erculosis	<u> </u>		ş	
so Table 1 (continued)	Homologous gene	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum AS019 ATCC 13059 ORF3	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tubercutosis H37Rv Rv0383c	Homo sapiens mpsT			
35		Con	9.5	Stre	Bac		Cor	Myc H37		Cor	Cor AS(Cor	₹ E	Pyr	My H3	훈			
40	db Match	pir.S60890	pir.S60889	gp:AB016841_1	sp. DEGU_BACBR		gp:AB003160_1	pir.G70575		sp:YFDA_CORGL	pir:S09283	gp:CGFDA_1	pir.G70833	gp:AF058713_1	pir:B70834	SP.THTM_HUMAN			
	ORF (bp)	894	267	1140	618	225	1290	759	264	1167	1032	951	618	552	972	852	720	279	399
45	Terminal (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952972	2952975	2954241	2955523	2956830	2957485	2958139	2959520	2960468	2962730	2963198
50	Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709	2954141	2955272	2956473	2957447	2958036	2959110	2960371	2961187	2963008	2963596
	SEQ NO.	6534	6535	6536	6537	6538	6539	6540	6541	6542	6543	6544	6545	6546	6547	6548	6249	6550	6551
55	SEQ NO.		3035	3036	3037	3038	3039	3040	3041		3043	3044	3045	3046	3047	3048	3049	3050	3051

Table 1 (confinued) Table 2 (confinued) Table 3 (confinued) Table 4 (confinued) Table 4 (confinued) Table 5 (confinued) Table 6 (confinued) Table 7 (confinued) Table 7 (confinued) Table 7 (confinued) Table 7 (confinued) Table 7 (confinued) Table 7 (confinued)										.	١	\exists	\Box	I					
SEG Initial Terminal ORF Carolinued Table 1 (continued) Carolinued Ca	5		u.				mport carrier	protein	orotein	xidoreductas: enase	ase alpha cha		1-lyase	ırolein, lacl	transferase	transferase			
SEG Initial Terminal ORF ORF	10		. Functio	virulence factor	virulence factor	virulence factor	sodium/glutamate sy protein	cadmium resistance	cation efflux system (zinc/cadmium)	monooxygenase or o or sterold monooxyge	alkanal monooxygen		cystathionine gamme	bacterial regulatory p family	rifampin ADP-nbosyl	rifampin ADP-ribosyl	hypothefical protein	hypothetical protein	oxidoreductase
SEC Initial CMF	15		Matched length (a.a.)	59	200	132		108	283	476	389		375	184	89	56	361	204	386
SED	20		Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	6.79	65.2	87.5	56.2	64.7	60.6
SEQ (N.1) Initial (III) Terminal (III) ORF (III) Table 1 (continued) SEQ (NO) (III) (IIII) (IIIII) (IIIIIIIII) (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
SEQ Initial (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (nt) (bp) db Match (552 2964258 2964434 177 GSP-Y29188 6553 2965076 2965837 762 GSP-Y29182 6555 2967804 2966458 1347 pir.S76683 6556 2968403 2968789 387 sp.CADF_STAAU 6555 2967804 2971003 1170 gp.AB010439_1 6555 2971017 2972057 1041 sp.LUXA_KRYAS 6560 2972099 2971338 762 6561 2973205 2973205 1146 sp.METB_ECOLI 6562 2973205 2973205 1146 sp.METB_ECOLI 6564 2974200 2974382 183 gp.SCE20_34 6568 297467 2973205 1125 pir.E70812 6566 2975629 2977774 1179 pir.D70834	25	ned)	ev	sa	şa	B	803	cadC	À	Sn	ymbiont		92	A3(2)	A3(2)	A3(2)	osis	osis	osis
SEQ Initial (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (nt) (bp) db Match (552 2964258 2964434 177 GSP-Y29188 6553 2965076 2965837 762 GSP-Y29182 6555 2967804 2966458 1347 pir.S76683 6556 2968403 2968789 387 sp.CADF_STAAU 6555 2967804 2971003 1170 gp.AB010439_1 6555 2971017 2972057 1041 sp.LUXA_KRYAS 6560 2972099 2971338 762 6561 2973205 2973205 1146 sp.METB_ECOLI 6562 2973205 2973205 1146 sp.METB_ECOLI 6564 2974200 2974382 183 gp.SCE20_34 6568 297467 2973205 1125 pir.E70812 6566 2975629 2977774 1179 pir.D70834	30	(contin	gous gen	aeruginos	aeruginos	aeruginos	sp. PCC6	s aureus	yssi Orsa	hodochro	n alfredi s		i K12 me	coelicolor	soelicolor	coelicolor	tubercul	tubercul	tubercul
SEQ Initial (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (nt) (bp) db Match (a.a.) (nt) (nt) (nt) (bp) db Match (552 2964258 2964434 177 GSP-Y29188 6553 2965076 2965837 762 GSP-Y29182 6555 2967804 2966458 1347 pir.S76683 6556 2968403 2968789 387 sp.CADF_STAAU 6555 2967804 2971003 1170 gp.AB010439_1 6555 2971017 2972057 1041 sp.LUXA_KRYAS 6560 2972099 2971338 762 6561 2973205 2973205 1146 sp.METB_ECOLI 6562 2973205 2973205 1146 sp.METB_ECOLI 6564 2974200 2974382 183 gp.SCE20_34 6568 297467 2973205 1125 pir.E70812 6566 2975629 2977774 1179 pir.D70834	25	Table	Homolo	seudomonas DRF24222	seudomonas DRF23228	seudomonas DRF25110	ynechocystis Ir0625	staphylococcu	yrococcus ab	Shadacaccus r FO3338	(ryptophanaro uxA		scherichia co	Streptomyces (SC1A2.11	streptomyces (SCE20.34c arr	Streptomyces (SCE20.34c arr	Aycobacterlum 137Rv Rv0837	Mycobacterium 137Rv Rv0836	Aycobacterium 137Rv Rv0385
SEQ Initial Terminal ORF NO. (nt) (nt) (hp) (hp) (a.a.) (nt) (nt) (hp) (bb) (a.a.) (nt) (nt) (hp) (bc) (a.a.) (nt) (nt) (hp) (bc) (a.a.) (nt) (nt) (hp) (bc) (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	35		_	<u> </u>	<u> </u>	<u>a 0</u>	S &		4.4		i						~ 1	< T	ez 1.
SEQ Initial Terminal OF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	40		db Match	GSP: Y29188	GSP: Y29182	GSP: Y29193	pir.S76683		pir:H75109	gp:AB010439				gp:SC1A2_11	9p:SCE20_34	gp:SCE20_34	pir.E70812	pir.D70812	
SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			ORF (bp)	177	762	396	1347	387	828		1041	762	1146	267	240	183		732	1179
SEQ NO. (a.a.) 6552 6553 6555 6555 6556 6559 6556 6556 6556	45		Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
SEQ NO. (a.a.) 6552 6553 6553 6555 6556 6556 6559 6560 6561 6562 6565 6565 6565 6565 6565 6565	50		Initial (nt)	2964258	2965076	2965188			2968951	2969834				1		2974200		·	
SEQ NO. (ONA) 3053 3054 3055 3055 3055 3055 3055 3065 3065 3065				6552	6553	6554	6555	6556	6557	6558		6560	6561	6562	6563	6564	6565	9959	/959
	55		SEQ NO.	3052	3053	3054	3055	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

5			p			ulatory		regulator		or grpE 'ase domain ne DnaK		orotein	ucleosidase			n protein			
10		Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5'-methylthioadenosine nucleosidase and S- adenosylhomocysteine nucleosidase			chromosome segregation protein		, 1	alcohol dehydrogenase
		Matched length (a.a.)	275		289	108	507	135	397	212	618	338	195			1311			334
20		Similarity (%)	67.3		55.4	44.0	90.3	70.4	1.08	66.5	8.66	79.0	90.09			48.4			81.7
		Identity (%)	32.0		28.0	38.0	9.69	47.4	56.7	38.7	99.8	42.6	27.2	-		18.9			20.0
25	ned)	ne	lelta H		r A3(2)	carR	olis thcA	hspR	losis	ır grpE	MJ-233	ır A3(2)	3089 mtn			ротре	(hilus
	Table 1 (continued)	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Rhodococcus erythropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
35			Z # Z		SS	7.	<u>«</u>		5		00	<i>S S</i>							
40		db Match	pir.B69109		gp:SC4A7_3	GP:ABCARRA_	prf:2104333D	gp.SAU43299_2	sp:DNAJ_MYCTU	sp:GRPE_STRCO	gsp.R94587	gp:SCF6_8	sp.PFS_HELPY			sp.CUT3_SCHPO			sp:ADH2_BACST
		ORF (bp)	798	243	1134	330	1518	438	1185	636	1854	1332	633	1200	885	3333	636	1485	1035
45		Terminal (nt)	2977847	2978979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747
50		Initial (nt)	2978644	2978737	2978982	2980887	2981698	2982460	2983679	2984522	2986397	2986833	2988846	2990045	2991718	2993286	2993921	2995405	2996781
		SEQ NO.	6999	6959	6570	6571	6572	6573	6574	6575	6576	6577	6578	6259	6580	6581	6582	6583	6584
55		SEQ NO.	3068	3069	3070	3071	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084

321

			_	_														
Function					pothetical membrane protein	pothetical protein		ifate adenylyltransferase, subunit	lfate adenylyltransferase small ain .	osphoadenosine phosphosulfate Juctase	redoxinnitrate reductase	redoxin/ferredoxin-NADP fuctase	ntingtin interactor			ylphosphonate uptake protein d C-P lyase activity	pothetical protein	ammonia monooxygenase
	_	_	_	4	<u> </u>	-+		sul 1	Sul Ch	를 들	ē	ءَ ءَ	로	_	_	8 g	Ě	E
Matched length (a.a.)			İ		301	252		414	308	212	502	487	144			142	80	161
Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	59.7			59.9	66.3	76.4
tdentity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	50.0	39.1
											12						2)	Q
Homologous gene		-			cillus subtills ytnM	reptomyces coelicolor A3(2 27A8.10c		scherichia coli K12 cysN	cherichia coli K12 cysD	acillus subtilis cysH	nechacaccus sp. PCC 794	accharomyces cerevisiae 200 arh1	omo sapiens hypE	l		scherichia coli K12 phnB	reptomyces coelicolor A3(2) 2E68.10	Pseudomonas putida DSMZ ID 88-260 amoA
					Be	SC		Ē	ш	1	S		Ĭ			ŭ	% छ	8 8
db Match					pir.F69997	gp SC7A8_10		sp.CYSN_ECOL!	sp:CYSD_ECOLI	sp:CYH1_BACSU	SP.NIR_SYNP7		prf:2420294J			sp. PHNB_ECOL!	gp:SCE68_10	gp:PPAMOA_1
ORF (bp)	216	207	6 8	261	927	723	915	1299	912	693	1683	1371	1083	237	534	414	366	525
Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710
Initial (nt)	2997151	2997687	2997688	2998223	2999454	3000200	3001512	3001539	3002453	3003145	3005162	3005545	3007294	3008689	3008770	3009162	3009242	3010231
SEO NO.	6585	9299	65 87	6588	9289	6590	6591	6592	6593	6594	6595	6596	6597	6598	6299	0099	6601	6602
SEQ NO.	3085	3086	3087	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (aa)	SEO Initial (a.a.) Initial (ht) Terminal (ht) ORF (ht) db Match Homologous gene (%) Identity (%) Matched (%) (a.a.) (a.a.) (a.b.) (a.a.) (a.a.) (a.a.)	SEO Initial (nt) Terminal (nt) ORF (hp) db Match Homologous gene (3.8) Identity (%) Matched (9.8) Hength (a.a.) 6586 2997151 2997366 216 307	SEO Initial NO. (at a) Terminal (bp) ORF (bp) db Match Homologous gene (m) Identity (m) Impliantly (m) Matched (m) 65.85 2997.61 2997.88 2397.81 207	SEO NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (nt) (a.a.) Initial (a.a.) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (aa) 6586 299756 216 Color (above) Color (above	SEO (a.a.) Initial (bp) Terminal (bp) GB Match Homologous gene (cs.a.) Identity (cs.a.) Similarity (smilarity length (a.a.) Matched (cs.a.) 6586 2997687 2997481 207 207 2007 <td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEO (n1) (a.a.) Initial (n1) (bp) CRF (bp) db Match (bp) Homologous gene (ga) Identity (ga) Similarity (ga) Matched (ga) NO (n1) (n1) (hp) (hp)<!--</td--><td>SEO (ntitial NO) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO (a.a.) (nt) (nt) (hp) db Match Homologous gene (%) (%)</td><td>SEO (n1) inal (n1) Terminal (n1) ORF (n2) db Match (n2) Homologous gene (n2) Identity (n2) Similarity (n2) Matched (n2) 6586 2997151 2997366 216 216 Control (n2) Contr</td><td>SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (a.a.) (5585 (nt) (nt) (hb) db Match Homologous gene 1696 (%) 189 6586 2997687 2997887 296 296 296 296 296 297 189 297 6588 2999684 2997863 261 Bacillus subtilis ymM 43.5 70.1 301 6589 2999464 2998628 927 pir F69997 Bacillus subtilis ymM 43.5 70.1 301 6590 3000200 2999478 723 pir F69997 SC7AB.10c 25.2 252 - 6591 3001542 915 Exchain Escherichia coli K12 cysN 47.3 78.3 414 6592 3001542 912 sp. CYSD_ECOLI Escherichia coli K12 cysN 46.1 70.1 308 6595 30005462 3003480 1683 sp. CYH1_BACSU</td><td>SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (bp) Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td><td>SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td><td>SED Initial Terminal ORF db Match Homologous gene (%) (%) (%) Match (%) NO (nt) (nt)</td><td>SED Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)</td></td>	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (n1) (a.a.) Initial (n1) (bp) CRF (bp) db Match (bp) Homologous gene (ga) Identity (ga) Similarity (ga) Matched (ga) NO (n1) (n1) (hp) (hp) </td <td>SEO (ntitial NO) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO (a.a.) (nt) (nt) (hp) db Match Homologous gene (%) (%)</td> <td>SEO (n1) inal (n1) Terminal (n1) ORF (n2) db Match (n2) Homologous gene (n2) Identity (n2) Similarity (n2) Matched (n2) 6586 2997151 2997366 216 216 Control (n2) Contr</td> <td>SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (a.a.) (5585 (nt) (nt) (hb) db Match Homologous gene 1696 (%) 189 6586 2997687 2997887 296 296 296 296 296 297 189 297 6588 2999684 2997863 261 Bacillus subtilis ymM 43.5 70.1 301 6589 2999464 2998628 927 pir F69997 Bacillus subtilis ymM 43.5 70.1 301 6590 3000200 2999478 723 pir F69997 SC7AB.10c 25.2 252 - 6591 3001542 915 Exchain Escherichia coli K12 cysN 47.3 78.3 414 6592 3001542 912 sp. CYSD_ECOLI Escherichia coli K12 cysN 46.1 70.1 308 6595 30005462 3003480 1683 sp. CYH1_BACSU</td> <td>SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (bp) Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SED Initial Terminal ORF db Match Homologous gene (%) (%) (%) Match (%) NO (nt) (nt)</td> <td>SED Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)</td>	SEO (ntitial NO) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO (a.a.) (nt) (nt) (hp) db Match Homologous gene (%) (%)	SEO (n1) inal (n1) Terminal (n1) ORF (n2) db Match (n2) Homologous gene (n2) Identity (n2) Similarity (n2) Matched (n2) 6586 2997151 2997366 216 216 Control (n2) Contr	SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (a.a.) (5585 (nt) (nt) (hb) db Match Homologous gene 1696 (%) 189 6586 2997687 2997887 296 296 296 296 296 297 189 297 6588 2999684 2997863 261 Bacillus subtilis ymM 43.5 70.1 301 6589 2999464 2998628 927 pir F69997 Bacillus subtilis ymM 43.5 70.1 301 6590 3000200 2999478 723 pir F69997 SC7AB.10c 25.2 252 - 6591 3001542 915 Exchain Escherichia coli K12 cysN 47.3 78.3 414 6592 3001542 912 sp. CYSD_ECOLI Escherichia coli K12 cysN 46.1 70.1 308 6595 30005462 3003480 1683 sp. CYH1_BACSU	SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (bp) Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SED Initial Terminal ORF db Match Homologous gene (%) (%) (%) Match (%) NO (nt) (nt)	SED Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)

					!'1	,		golomo								t ATP-				eoside		lase	
10		Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-undine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
15		Matched length (a.a.)	68		337	199 –	211	416			466				114	373		179	231	317	276	179	406
20		Similarity (%)	58.0		57.9	64.8	73.0	67.8			48.5				46.0	50.1		9.79	71.4	59.3	59.4	78.8	63.8
		Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
25	ontinued)	s gene	ORF23		us H16	nzae hmcB	nzae hmcB⁼	S.			2 msgB					2 malK		Plasmid biM	frp	iunH	color A3(2)	2 tag -	ius H16 fhp
30	Table 1 (continued)	Homologous gene	Agrobacterium vitis ORF23		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidla fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
35						3 Ha		Ba						,							SC		
40		db Match	SP:YTZ3_AGRVI		sp:YGB7_ALCEU	gp: HIU68399_	gp:H!U68399_3	pir.A69778			sp:DAPE_ECOL!				GPU:DCA297422_1	sp:MALK_ECOLI		gp:AF036485_6	sp:FRP_VIBHA	Sp:IUNH_CRIFA	gp.SCE20_8	sp:3MG1_ECOLI	1158 sp:HMPA_ALCEU
		ORF (bp)	285	564	1002	693	714	1209	822	289	1323	1905	774	762	954	1068	642	618	816	903	975	588	1158
45		Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
50		Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
		SEQ NO. (a.a.)	9099	9099	2099	6608	6099	6610	6611	6612	6613	6614	6615	6616	6617	6618	6619	6620	6621	6622	6623	6624	6625
55		SEQ NO.	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125

	_																				
5						nator or beta- ulatory protein		sidase		sidase	erase			e protein		genase	hate				ninidase
10		Function		oxidoreductase		transcription antiterminator or betaglucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
15		Matched length (a.a.)		210		192		167		99	402		401	399		442	188		229		410
20		Similanty (%)		63.8		69.3		59.9	•	78.8	80.9		100.0	70.2		72.2	72.3		59.4		58.1
		Identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
25 30 4	(continued)	Homologous gene		oelicolor A3(2)		K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	flagellatus aat		m glutamicum p	oelicolor Á3(2)		neliloti rkpK	K12 dcd		oelicolor A3(2)	1	nermoviolaceus
35	ומחוב	Homolog		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium long abgA		Clostridium long abgA	Methylobacillus flagelfatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor Á3(2) SCQ11.10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A.16c		Streptomyces thermoviolaceus nagA
40		db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp.ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp.DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1
		ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	567	237	771	1689	1185
45		Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
50		Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	3041932
		SEO NO.	9299	6627	6628	6239	6630	6631	6632	6633	6634	6635	6636	6637	6638	6639	6640	6641	6642	6643	6644
55		SED NO. (DNA)	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

5				111	,	,	e protein	crolide 3-O-		e protein				carboxykinase	sporter			stein	
10	Function			hypothetical protein		ı	hypothetical membrane protein	acyltransferase or macrolide 3-O-acyltransferase	_	hypothetical membrane protein		hexosyltransferase	methyl transferase_	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
15	Matched length (a.a.)			1416	1		363	408		529		369	251-	601	332	241	207	768	
20	Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	2.87	52.7	67.2	85.0	72.3	
	Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
25 (pənuji	ene					ju .		¥		4		culosis	ulosis	s pepck	say	ggH	culosis	oulosis L3	
& Table 1 (continued)	Homologous gene			Mycobacterium lepraė MLCB1883.13c		_	Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04:		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
40	db Match			gp:MLCB1883_7 N		.4	gp:MLCB1883_4 N	pir:JC4001		gp:MLCB1883_3 N		N pir.G70961	pir.F70961	sp:PPCK_NEOFR N	pir:E75125	sp:YGGH_ECOLI	Pir:E70959 H	pir.C70839	
	ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699	1137	177	1830	1011	765	705	2316	1422
45	Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
50	Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	3057328	3059517
	SEQ NO.	6645	6646	6647	6648	6649	6650	6651	6652	6653	6654	6655	6656	6657	6658	6999	0999	6661	9999
55	SEQ NO (DNA)	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162

,				X Se		$ \top $			ein									
5	ion	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit					major secreted proteIn PS1 protein precursor				hypothetical membrane protein	!				phosphatidic acid phosphatase
10	Function	membr	membr	oA carb	ynthase	nthase	protein		ted prot			6	memb	protein	protein	l protein		c acid p
	,	hypothetica	hypothetica	propionyl-C B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secre precursor			antigen 85-C	hypothetica	nodulation protein	hypothetical protein	hypothetical protein		phosphatidi
15	Matched length (a.a.)	364	108	523	1747	592	319		657			331	667	295	168	959	·	170
20	Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4	į	99.5			62.5	61.2	51.5	75.0	74.7		56.5
	Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
<i>25</i>		sis	sis	(3(5)	eryA	(2)	sis		oum VTCC			Sis	sis	s	sis	sis		ပ္ပ
continu	ons gene	berculo	uberculo	elicolor A	thraeus	ovis BC	uberculo		ı glutami Tavum) A			uberculo 129C fbp	uberculo	ulinodan	uberculo	uberculo		rmis ATC
S Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbpC	Mycobacterlum tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus licheniformis ATCC 9945A bcrC
<i>35</i>	_	Mycoba H37Rv	Mycoba H37Rv	Streptor pccB	Streptor	Mycoba	Mycoba H37Rv		Corynebactor (Brevibacter 17965 cop1			Mycoba ERDMA	Mycoba H37Rv	Azorhizobium o ORS571 noeC	Mycoba H37Rv	Mycoba H37Rv		Bacillus lich 9945A bcrC
	db Match	1839	633	gp:AF113605_1	SP.ERY1_SACER	0345A	. 288		sp:CSP1_CORGL			sp:A85C_MYCTU	988	sp:NOEC_AZOCA	1888	1888		sp:BCRC_BACLI
40		pir.A70839	pir:H70633			prf:2310345A	pir.F70887						pir:A70888	sp:NO	pir:C70888	pir:D70888		
	ORF (bp)	1083	363	1548	4830	1788	927	498	1971	1401	219	1023	2058	966	504	1968	1494	477
	Terminal (nt)	3060733	3061095	3061380	3052951	3068143	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
50	Initial (nt)	3059651	3060733	3062927	3067780	3069930	3071140	3071644	3073620	3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
	SEQ NO.	6999	6664	6665	9999	2999	8999	6999	9670	6671	6672	6673	6674	6675	9299	2299	6678	6679
55	SEQ NO (DNA)	3163	3164	3165	3166	3167	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179

5	- Function			dimethylaniline monooxygenase (Noxide-forming)		UDP-galactopyranose mutase	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryl-tRNA synthetase	transcriptional regulator, GntR family or fatty acyl-responsive regulator	hypothetical protein	hypothetical protein		2,3-PDG dependent phosphoglycerate mutase		nicotinamidase or pyrazinamidase	
15	Matched length (a.a.)			377		377	659	499	279	261	419	235	356	113		218		460	
20	Similarity (%)			50.4		72.9	47.8	78.8	70.3	72.0	9.78	61.7	61.2	79.7		62.8		50.9	
	Identity (%)			24.4		43.2	29.6	51.7	41.6	46.7	70.2	27.7	32.6	46.0		37.2		27.4	
25 (pənu	ene					=	ulosis	nosa	ulosis	ulosis	cutosis	arR	ulosis	sulosis		nolica pgm	1	matis pzaA	
cs os Table 1 (continued)	Homologous gene			Sus scrofa fmo1		Escherichia coli K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis H37Rv	Escherichia coli K12 farR	Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycolatopsis methanolica pgm		Mycobacterium smegmatis pzaA	
40	db Match			sp:FMO1_PIG		sp.GLF_ECOLI	pir:G70520	sp.GLPK_PSEAE	pir.A70521	pir.D70521	gsp:W26465	sp.FARR_ECOU	pir:H70652	pir:A70653		gp:AMU73808_1		prf:2501285A	
	ORF (bp)	777	510	1302	612	1203	2049	1527	834	876	1266	714	1113	342	66	699	630	1143	729
45	Terminal (nt)	3084424	3085218	3087048	3088276	3087101	3090664	3090760	3092342	3093175	3094078	3096287	3097423	3097764	3097780	3097904	3099454	3100698	3101426
50	Inilial (nt)	3085200	3085727	3085747	3087665	3088303	3088616	3092286	3093175	3094050	3095343	3095574	3096311	3097423	3097878	3098572	3098825	3099556	3100698
	SEO NO.	9999	6681	6682	6683	6684	6685	9899	6687	9899	6899	0699	6691	6692	6693	6694	6695	9699	6697
55	SEQ NO (DNA)	3180	3181	3182	3183	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197

EP 1 108 790 A2

				_				_												
5	Function	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport proteln
15	9	transc	•			hypoth	glucar		glycer	glucor	_ 		pyruv	L-lact	hypoti	hydro dehal	efflux	transc	phosp	Shikin
	Matched length (a.a.)	380			1	107	432		259	456			491	314	526	224	188	221	255	422
20	Similarity (%)	57.1				81.3	55.3		54.1	71.9			47.7	99.7	64.8	58.5	67.6	57.0	68.6	74.4
	Identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
<i>25</i> (par	d	A3(2)				ir Ga	ae						icum	ţ.	sis	A3(2)	₹ <u>+</u>	1655	osis	4
& Table 1 (continued)	Homologous gene	Streptomyces coelicalor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gñtP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
35		8 8				St.				 	,	<u></u>	i — —	ag B	H. W.	म्ह ठ्ड			¥£	
40	db Match	gp:SC6G4_33				pir:826872	sp.AMYH_YEAST		sp:GLPQ_BACSU	SP.GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir.C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir:B70885	sp:SHIA_ECOLI
	ORF (bp)	1035	120	552	870	327	1314	918	819	138g	642	159	1617	942	1776	636	543	693	786	1299
45	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
50	Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	3108131	3109464	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336	3118284
	SEQ NO.	8699	6699	6700	6701	6702	6703	6704	6705	9029	6707	6708	6029	6710	6711	6712	6713	6714	6715	6716
55	SEQ NO.	3198	3199	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

5		Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase	' 4	immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase-	-	peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
			L-lac depo		Ē		' {	photran		pep hyd		pep	sup	tran	E I				hyp	E E	tran	two
15		Matched length (a.a.)	376		55	1		569		122		210	164	292	384				216	447	137	212 -
20		Similarity (%)	68.9		80.0	ļ		51.3		63.1		69.1	92.7	65.8	49.0				64.8	59.3	65.0	75.5
		Identity (%)	40.4		45.5			29.5		36.9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
25	Table 1 (continued)	ns gene	itidis IIdA		i-105 ORF1		11	egans		ına ill1		s msrA	pos uno	ıtc	glutamicum				ıberculosis	anogenus land	68 ухаD	diphtheriae
30	Table 1 (Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1.			Caenorhabditis elegans Y51B11A.1		Arabidopsis thaliana ill1		Escherichia coli B msrA	Corynebaclenum pseudodiphtheriticum sod	Bacillus subtilis gltC	Corynebaclenum glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus lanJ	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
35			2		<u> </u>					Q	-	,	O B	i –				·	< 1	0)		00
40		db Match	prf.2219306A		sp:RPC_BPPH1		.1	gp:CELY51B11A_1		sp.ILL1_ARATH		sp:PMSR_ECOL	pir:140858	sp:GLTC_BACSU	gp:AF121000_10				pir.G70654	prf:2508244AB	sp:YXAD_BACSU	prf.2518330B
		ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	909	924	1134	1611	111	1521	633	1491	456	636
45		Terminat (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
50		Initial (nl)	3119665	3120909	3121598	3122129	3123222	3124172	3124886	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
		SEO NO.	6717	6718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
55		SEQ NO.	-	3218	3219	3220	3221	3222	3223	3224	3225	+	3227	3228	3229	3230	3231	3232	3233	3234	+	3236

EP 1 108 790 A2

5	Function			two-component system sensor histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	hypothetical protein	hypothetical protein		bacterial regulatory protein, gntR family or glc operon transcriptional activator	hypothetical protein	hypothetical protein
15	Matched length (a.a.)			408	48	772	265	192	87	296	314	334	2	42		109	488	267
20	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	9.69	73.9	51.2	0.99	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	61.0	71.0		30.3	26.0	48.3
<i>25</i>				riae	43(2)	43(2)		sis	1655	sis	1655	bc5		99		1655	-	Sis
30 (Continued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spolliJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coli K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
40	db Match			prf.2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pir.C70948	sp:TAG1_ECOLI	sp:YW12_MYCTU	Sp:YHBW_ECOLI	sp:YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp:GLCC_ECOL!	gp:SC4G6_31	sp:35KD_MYCTU
	ORF (bp)	639	588	1311	150	822	1302	639	261	903	987	996	273	141	207	363	1416	873
45	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
50	Initial (nt)	3136920	3137884	3137903	3138630	3139455	3139651	3141523	3141969	3143356	3144482	3144661	3146569	3147090	3151575	3152204	3152413	3154766
	SEQ NO.	6737	6738	6739	6740	6741	6742	6743	6744	6745	6746	6747	6748	6749	6750		6752	6753
55	SEQ NO.	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247	3248	3249	3250	3251	3252	3253

EP 1 108 790 A2

		Т	Π	Τ	Г	Г	<u> </u>	T-	T	T	1	\top	Γ	Τ-	Γ	1		Γ		Γ	i	$\overline{}$
5	Function							ted protein				01 resolvase		ursor	otein		otein fragment		-3-phosphate (pseudogene)		copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
10	,						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/potassium-trans ATPase B or cation trar ATPase (E1-E2 family)	
15	Matched length (a.a.)						217	241				56		62	55	27	46		38	180	717	
20	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	0.06		84.2	59.4	73.4	
	Identity (%)					!	32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
52 Garlinued)	Homologous gene						elicolor A3(2)					eruginosa TNP5		ora enythraea fer	elicolor A3(2)	ı glutamicum	glutamicum		sei gap). PCC6803	ılgidus AF0152	
Table 1	Homolog		ı				Streptomyces coelicolor A3(2) SCD35, 11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesei gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus fulgidus AF0152	
<i>35</i>	db Match						gp:SCD35_11	sp.NO21_SOYBN				sp.TNP5_PSEAE		sp:FER_SACER	gp:SCD31_14	GPU:AF164956_8	GPU:AF164956_23		Sp.G3P_PYRWO	pir.S77018	pir. H69268	
	ORF (bp)	153	1452	1068	249	308	711 gr	720 sp	204	378	186	216 sp	483	321 sp	333 gr	111	162 GF	1038	126 sp	660 pir	2217 pir	171
45		 			\vdash				_		-				-							
	Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
50	Initiat (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800		3160688	3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
	SEQ NO.	6754	6755	6756	6757	6758	6229	6760	6761	6762	6763	6764	6765	9929	6767	6768	6929	6770	6771	6772	6773	6774
55	SEQ NO. (DNA)	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

																	_	
10	Function		two-component system sensor histidine kinase		Wo-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disuliide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH.quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
15			ŽΞ		ੋਂ ਨੂੰ ਨੂੰ		lac Pr	₹ 5	355		zir tra			zir tra	μ̈́		tra	tra
	Matched length (a.a.)		301	i	233		630	101	325		8:2			909	72		73	70
20	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			68.5	54.0		73.0	77.0
	Identity (%)		37.5		43.4		26.7	31.7	31.4		- 37.2			39.8	45.0		58.0	75.0
55 (Daninued)	s gene		2 baeS		- = 0P		ngae pv.	onicum tlpA			PCC6803			2 MG1655	(1 APE2572		lutamicum	lutamicum
S Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
40	db Match		sp.BAES_ECOLI -		sp.PHOP_BACSU		sp.COPA_PSESM	sp:TLPA_BRAJA	sp:QOR_MOUSE		sp.ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU.AF164956_8	GPU AF164956_8
	78 (g	192	97	828	756 s	72	79	363	18	71	234 s	15	207	75	390 P	60	16	258 G
	0=	1				9 0	2 14		65	4		3	<u> </u>	1 18		30	9 2.	
45	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
50	Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEQ NO.	6775	9229	5777	6778	6779	6780	6781	6782	6783	6784	6785	6786	6787	6788	6849	6790	6791
55	SEQ NO.	3275	3276	3277		3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291
		نـــــن		ــــــــــــــــــــــــــــــــــــــ		ــــــــــــــــــــــــــــــــــــــ		L		ــــــــــــــــــــــــــــــــــــــ		<u> </u>			ــــــــــــــــــــــــــــــــــــــ	لتنا	L	لسننسا

_																							
5	Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoale transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand ONA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
15	Matched length (a.a.)	53	100		421		208	461		154	229	92		480		647	107	137	296		71	298	433
20	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaК		Escherichia coli K12 yqjl	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
35 40	db Match	gp:AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp.DNAB_ECOLI		sp:RL9_ECOLI	sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:YOHC_MYCTU	pir:B70912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	1263 sp:YBJZ_ECOLI
	ORF (bp)	159	447	564	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	174	942	495	321	936	1263
45	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
50	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
	SEO NO. (a.a.)	6792	6793	6794	6795	96/9	6797	6798	6239	68 00	6801	6802	6 8 03	6804	6805	9089	6807	6808	6089	6810	6811	6812	6813
	SEQ NO. (DNA)	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304 6804	3305	3306	3307	3308	3309	3310	3311		3313

10	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein	•		DNA protection during starvation protein	formamidopynmidine-DNA glycosylāse	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase (NAD) (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein
15	Matched length (a.a.)		237	360		'	154	268	404			166	231		398	392	486	169	159
20	Similarity (%)	80.1	42.0	0.06			64.9	55.6	9.99			63.3	63.6		66.3	99.5	53.7	50.4	159.0
	identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
% (panulu	gene	MG1655	i Cj0606	rculosis	, 		sdp	mutM or	rtcB			1	nea pig) qor		rculosis	elassecola utamicum)		m vanZ	m vanZ
S Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c	•		Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faeclum vanZ	Enterococcus faecium vanZ
35			č ·	ΣÏ							,	NAN	<u> </u>	-		_			\Box
40	db Match	sp:YBJZ_ECOLI	pir.E81408	pir.F70912	il .	ı	sp:DPS_ECOLI	Sp:FPG_ECOLI	sp:RTCB_ECOL			sp:MGMT_HUMAN	011 sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_	sp:GNTK_BACSU	sp:VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	069	1977	1089	98	1485	495	813	1149	1089	573	474	1011	=	1176	1176	1482	291	525
45	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	3211246	3211904
50	Initial (nt)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952	3204067	3204156	3205204	3206232	3206646	3206849	3208279	3211186	3211836	3212428
	SEQ NO.		6815	6816	6817	6818	6819	6820	6821	6822	6823	6824	6825	6826	6827	6828	6829	6830	6831
55	SEO NO (DNA)	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3329	3330	3331

5
10
15
20
25
30
35
40
45
50

Table 1 (continued)	Similarity Matched Function (%) (aa)	65.6 448 mercury(II) reductase	54.5 444 D-amino acid dehydrogenase small subunit		1	1	55.2 194 NAD(P)H nitroreductase			68.1 943 leucyl-tRNA synthetase	40.4 104 hypothetical membrane protein	81.4 86 virulence-associated protein		53.8 247 hypothetical protein	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)	64.3 339 gentisate 1,2-dioxygenase or 1-hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lacl family or pectin degradation repressor protein	60.8 454 transmembrane transport protein or 454 4-hydroxybenzoale transporter
	Identity (%)	29.9	27.3				25.8			47.7	40.4	55.8		31.6	28.5	34.2	25.3	27.5
	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA			_	Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcĒ	Pseudomonas alcaligenes xInE	Pectobactenum chrysanthemi kdgR	Pseudomonas putida pcaK
	db Match	sp:MERA_STAAU				-1	sp:NOX_THETH			sp:SYL_BACSU	sp:YBAN_ECOLI	sp:VAPI_BACNO	,	gp:SCC54_19	sp:HPCE_ECOLI	gp:AF173167_1	sp:KDGR_ERWCH	sp:PCAK_PSEPU
	ORF (bp)	1344	1230	1503	330	321	609	924	1452	2856	429	357	774	723	837	1125	780	1356
	Terminal (nt)	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
	Initial (nt)	3212588	3215163	6834 3216759	3217215	3217777	3217993	6838 3218777	3221044	3222633	6841 3222722	3223445	3224601	3224714	6845 3225554	3226687	3227689	6848 3227724
	SEQ NO.	6832	6833	6834	6835	6836	6837	6838	6839	6840	6841	6842	6843	6844		6846	6847	
	SEQ NO.	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345	3346	3347	3348

_											_					
10	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	Iryptophan-specific permease	anthranilate synthase component I		anthranilate synthase component tt	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
15	Matched length (a.a.)	476 s	507	170 %	515 a		208	348	474 S		417 to	283 t	521	152 6	305	547
20	Similarity (%)	49.4	54.4	99.4	99.8		100.0	99.4	98.3		97.9	96.5	86.8	71.7	63.6	57.2
	Identity (%)	28.2	25.4	99.4	99.2		0.66	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
Table 1 (continued)	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium tactofermentum trpB	Brevibacterium tactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21.17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
<i>35</i>		Pse		Cor			Brevi trpG						Stre SC.	Esc		Stre
40	db Match	prf:1706191A	sp:EAT2_HUMAN	pir.JC2326	sp:TRPE_BRELA		TRPG_BRELA	sp.TRPD_CORGL	Sp.TRPC_BRELA		sp:TRPB_BRELA	sp:TRPA_BRELA	gp:SCJ21_17	sp.PTXA_ECOLI	sp:NOSF_PSEST	gp:SCH10_12
	ORF (bp)	1326	1251	510	1554	171	624	1044	1422	969	1251	840	1539	810	98	1584
45	Terminat (nt)	3230444	3231054	3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
50	Initial (nt)	3229119	3232304	3232596	3233403	3233420	3234956	3235602	3236641	3237213	3238082	3239332	3241851	3242688	3242854	3243759
	SEQ NO.	6849	6850	6851	6852	6853	6854	6855	6856	6857	6858	6889	0989	6861	6862	6863
55	SEQ NO. (DNA)	3349	3350	3351	3352	3353	3354	3355	3356	3357	3358	3359	3360	3361	3362	3363

													•						
5		Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tnpeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase
15		Matched length (aa)	305	336	328	262	102	347	226					238	58	469		188	246
20		Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6	,	50.5	62.2
	•	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					56.9	53.5	34.5		26.1	31.7
25 30 ·	Table 1 (continued)	Homologous gene	icola petC	bacter brockii	i K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	bacter brockii	s cerevisiae			1		lena budC	tuberculosis c	Lactococcus lactis subsp. lactis		i K12 acrR	alcoaceticus
35	Table	Homolo	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces of SCI11.36c	Streptomyces o	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lad		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
40		db Match	Sp.UCRI_CHLLT	sp:NADO_THEBR	Sp.YFEH_ECOLI	gp:SCI11_36	pir.A29606	sp:NADO_THEBR	sp:YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	sp.DTPT_LACLA		sp.ACRR_ECOLI	sp:CATA_ACICA
		ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753 8	180	1359 8	171	555	903
45		Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
50		Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
		SEQ NO. (a.a.)	6864	6865	9989	6867	6868	6989	6870	6871	6872	6873	6874	6875	6876	6877	6878	6839	6880
55		SEQ NO. (DNA)	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

sugar transporter or D-xylose-proton ó dehydrogenase or myo-inositol 2bacterial transcriptional regulator phosphomethylpyrimidine kinase symporter (D-xylose transporter) dehydrogenase or streptomycin **DEAD box RNA helicase family** mercuric ion-binding protein or heavy-metal-associated domain hypothetical membrane protein myo-inositol 2-dehydrogenase ectoine/proline uptake protein 5 diagnostic fragment protein acetate operon repressor maleylacetate reductase Function biosynthesis protein containing protein phosphoesterase oxidoreductase 10 seguence stomatin 15 Matched length 1242 1660 270. (a.a.) 513 280 332 343 206 125 351 357 141 297 67 Similarity 75.5 58.3 59.6 62.4 61.0 76.8 58.2 57.3 80.2 8 55.7 62.7 62.3 60.7 5. 20 Identity 43.0 26.5 31.4 27.2 25.9 33.3 28.6 34.8 50.4 25.7 34.1 58.4 46.3 8 59 25 Mycobacterium leprae u2266k Caenorhabditis elegans unc1 (confinued) Corynebacterium glutamicum proP Salmonella typhimurium icIR Listeria innocua strain 4450 Sinorhizobium meliloti idhA Mycobacterium bovis BCG RvD1-Rv2024c Escherichia coli K12 ydgJ Homologous gene Escherichia coli K12 xylE Streptomyces griseus strl Pseudomonas sp. P51 Bacillus subtilis yvnB Bacillus subtilis yvgY Bacillus subtilis thiD 30 35 sp:TCBF_PSESQ gp:MBO18605_3 sp:MI2D_BACSU Sp:STRI_STRGR Sp. UNC1_CAEEL sp:YDGJ_ECOLI sp:THID_BACSU prf:2323363AAM Sp:XYLE_ECOLI Sp:ICLR_SALTY db Match prf:2501295A gsp:W61761 pir:C70044 pir F70041 40 1089 1083 1524 1005 4032 744 4929 1077 1086 유(학 879 645 618 909 696 507 243 861 360 837 3271093 3267913 3268618 3264115 3265146 3266266 3274488 3276671 3257403 3283101 Terminal 3258561 3261989 3263221 3272477 3275602 3281666 3282347 3283383 3283473 45 Ē 3261129 3262145 3263237 3264142 3265184 3267062 3268557 3269235 3271392 3275231 3276570 3281599 3282172 3282742 3282946 3283141 3284309 3260084 3258491 Ē 50 6888 6889 6882 6883 6885 0689 6892 6893 6895 6897 SEQ. (a.a.) 6881 6884 6886 6887 6891 6894 6896 6898 6689 (DNA) 3389 3391 3383 3384 3385 3388 3390 3392 3381 3382 3386 3387 3393 3395 3396 3399 3394 3397 55

														•						
5		Function	iron(III) dicitrate-binding periplasmic protein precursor or Iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase	1		phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
15		Matched length (a.a.)	279	324		1	249		67	102	212	169	471	234		858	1201		189	308 t
20		Similarity (%)	9.09	58.0			75.5		70.1	2.29	67.0	56.2	51.8	69.2		54.3	60.1		60.9	82.5
		Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
<i>25</i>	Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1) 		ilis thiD		ilis yvgY	ilis azlD	ilis azıD	Escherichia coli K12 yqgE	coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908	-	Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
	Tabl	Home	Escherichia	Schizosacch mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azlD	Bacillus subtilis azID	Escherichia	Escherichia coli K12 cca	Mycobacterium H37Rv Rv3908		Mycobacterium H37Rv Rv3909	Mycobacterium H37Rv Rv3910		Pseudomona	Streptomyce
. 40		db Match	sp.FECB_ECOLI	sp.MRF1_SCHPO	41	.1	sp:THID_BACSU		pir.F70041	sp:AZLD_BACSU	sp:AZLC_BACSU	sp:Yage_ecoli	sp:cca_Ecol	pir.E70600		pir.F70600	pir.G70600		sp.RPSH_PSEAE	Sp:TRXB_STRCL
		ORF (bp)	957 8	1122	384	219	798	345	201	345	711	567	1320	996	273	2511 p	3249 p	723	603	951
45		Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301321
50		Initial (nt)	3285355	3285455	3286622	3287297	3288190	3288265	3288685	3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706	3299661	3300371
		SEO NO.	0069	6901	6902	6903	6904	6905	9069	6907	8069	6069	6910	6911	6912	6913	6914	6915	6916	6917
==		SEQ NO. (DNA)		3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417
<i>55</i>		L	•			1				1		1		<u> </u>		<u> —</u>	<u> </u>			ــــــــــــــــــــــــــــــــــــــ

			_	_																	
5		Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucase inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
15		Matched length (a.a.)		119 th	196 N.			212 hy	367 hy	272 pa	153 gl	313 hy	123 rib	47 50			136 L-	616 2-	85 hy	344 as	149 3-0
20		Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25 (Continuo) 1 eldel	(nonlinear)	Homologous gene		Chlamydomonas reinhardtii thi2	cwlB			tubercutosis c	outida ygi2	tuberculosis	K12 gidB	tuberculosis c	гпрА	avium rpmH	,		n glutamicum	n glutamicum JA	n glutamicum flavum) ATCC	n glutamicum	n glutamicum
30 6	200	Homoto		Chlamydomona	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichla coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
<i>35</i>		db Match		sp:THI2_CHLRE	sp.CWLB_BACSU			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	sp:GIDB_ECOLI	pir.A70852	sp:RNPA_BACSU	gp:MAU19185_1	-		gp:AF116184_1	sp.LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp.AF124518_1
	-	ORF (bp)	1185	372 s	1242 sı	777	1041	618 pi	1152 s _l	837 84	699 sı	951 pi	399	336 98	294	222	408 91	1848 sp	255 sp	1032 ѕр	447 gF
45		Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154 1	268814	271691 1	446521
50		Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
		SEQ NO. (a.a.)	6918	6919	6920	6921	6922	6923	6924	6925	6926	6927	6928	6359	6930	6931	6932	6933	6934	6935	9869
55	0.0	SEQ NO.	3418	3419	3420	3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436
- -																					

5	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	rthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
	B _	elongation	preprote	isocitrate (oxalosu	acyl-CoA carbo binding protein	citrate synthase	putative proly1 cis	glycine	hypothel	L-lysine	аготаціс	hypothet	succinyl diamir desuccinylase	proline tr	arginyl-tf
15	Matched length (a.a.)	396	440	738	591	437	118	595	426	501	463	316	369	524	550
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25 Table 1 (continued)	Homologous gene	n glutamicum	n glutamicum flavum) MJ233	n glutamicum J	n glutamicum cBC	n glutamicum A	n glutamicum oA	n.glutamicum tP	n glutamicum 2	n glutamicum	n glutamicum oP	n glutamicum 3	n glutamicum pE	n glutamicum tP	n glutamicum 1059 argS
Table 1	Homolog	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 lkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
40	db Match	sp.EFTU_CORGL	sp.SECY_CORGL	sp:IDH_CORGL	prf.2223173A	sp.CISY_CORGL	SP.FKBP_CORGL	sp.BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp:AROP_CORGL	pir:S52753	prf.2106301A	gp:CGPUTP_1	sp:SYR_CORGL
	ORF (bp)	1188	1320 s	2214 s	1773 p	1311 s	354 s	1785 s	1278 s	1503 s	1389 s	948 p	1107 p	1572 g	1650 s
45	Terminal (nt)	527563	5707271	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
50	Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	6950 1238274
	SEO NO.	6937	6938	6833	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	
55	SEQ (DNA)	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

acetohydroxy acid isomeroreductase PTS system, phosphoenolpyruvate acetohydroxy acid synthase, large subunit acetohydroxy acid synthase, small subunit 3-isopropylmalate dehydrogenase mannose and glucose transport) dlaminopimelate decarboxylase) ornithine carbamoyltransferase lysine export regulator protein 5 homoserine dehydrogenase sugar phosphotransferase diaminopimelate (DAP) acetylglutamate kinase Function decarboxylase (mesolysine exporter protein ion channel subunit homosenne kinase arginine repressor 10 Matched length 15 (a.a) 216 445 309 338 236 230 626 172 340 319 683 294 171 Similarity 100.0 100.0 0.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00 100.0 8 8 8 20 dentity 100.0 100.0 100.0 100.0 100.0 1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 8 25 Corynebacterium glutamicum AS019 ATCC 13059 hom Corynebacterium glutamicum AS019 ATCC 13059 thrB Corynebacterium glutamicum AS019 ATCC 13059 lysA (continued) Corynebacterium glutamicum Corynebacterium glutamicum ATCC 13032 ilvB Corynebacterium glutamicum ATCC 13032 ilvN Corynebacterium glutamicum Corynebacterium glutamicum ATCC 13032 leuB Corynebacterium glutamicum KCTC1445 ptsM Corynebacterium glutamicum ASO 19 argR Corynebacterium glutamicum R127 lysE Corynebacterium glutamicum R127 tysG Corynebacterium glutamicum ATCC 13032 argB Corynebacterium glutamicum ATCC 13032 argF Homologous gene ATCC 13032 ilvC 30 R127 orf3 35 Sp.DCDA_CORGL Sp:DHOM_CORGL sp:KHSE_CORGL sp:ARGB_CORGL sp:OTCA_CORGL Sp:LYSE_CORGL sp:LYSG_CORGL sp:LEU3_CORGL sp:ILVB_CORGL gp:AF041436_1 db Match prf.2014259A gsp:W37716 pir.B48648 pir.C48648 40 1335 1335 1878 516 1014 1020 2049 (bp) 513 708 870 927 627 882 957 1241263 **Ferminal** 1243841 1328243 1328246 1340008 1340540 1329884 1425265 1470040 1244781 1341737 1354508 1467372 1469521 45 <u>E</u> 1243855 1328953 1329015 1340025 1423217 1239929 1242507 1327617 1338131 1340724 1353489 1468565 1466491 1469528 in (in the state of the state o 50 6952 SEQ No. 6951 6953 6954 6955 6956 6957 6958 6989 6962 (a.a.) 0969 6961 6963 6964 SEO NO. (DNA) 3452 3459 3451 3453 3454 3455 3457 3458 3461 3462 3460 3464

5		- Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chonsmate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinale reductase	L-malate dehydrogenase (acceptor)
15		Matched length (a.a.)	467	87	362	452	77	919	410	632	331	295	376	301	248	200
20		Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0.	100.0	100.0
<i>25</i>	ladie i (cominued)	us gene	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum G	glutamicum	glutamicum	glutamicum IR	glutamicum 3	glutamicum 3	glutamicum	glutamicum actofermentum) A	glutamicum actofermentum) iB	glutamicum
30	ladie I	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum ASO19 aroC	Corynebacterium glutamicum ATCC 13032 cglIIR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mgo
35		db Match	gp:CGL238250_1	gp:AF086704_1	gp.CGL007732_4	gp:CGL007732_3	gp:CGL007732_2		gp:AF124600_1		prf.2204286D -	sp:GLUB_CORGL	sp.RECA_CORGL	sp:DAPA_BRELA	sp:DAPB_CORGL (gp:CGA224946_1
40						<u> </u>		prf. 1509267A		pir:855225	-					
	į	ORF (bp)	1401	261	1086	1356	231	2757	1230	1896	993	885	1128	903	744	1500
45	,	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
50		Initial (nt)	1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
		SEQ NO. (a.a.)	6965	9969	2969	6968	6969	6970	6971	6972	6973	6974	6975	6976	6977	6978
55		SEQ NO.	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

5	Function	ase, uridilylyl- ne	nitrogen regulatory protein P-II	sporler	glutamate dehydrogenase (NADP+)			etasė	ase	glycine betaine	es.		888	cystathionine gamma-synthase	eductase	
10	L.	uridilylyltransferase, removing enzyme	nitrogen regulat	ammonium transporter	glutamate dehy	pyruvate kinase	glucokinase	glutamine synthetasė	threonine synthase	ectolne/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine ga	ribonucleotide reductase	glutaredoxin
15	Matched length (a.a.)	692	112	438	447	475	323	477	481	615	662.	432	369	386	148	77
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
30 Signal of the state of the s	Homologous gene	n glutamicum nD	n glutamicum ₁ B	n glutamicum ntP	n glutamicum Ih A	n glutamicum	n glutamicum k	n glutamicum nA	n glutamicum	n glutamicum :tP		n glutamicum eA	n glutamicum oB	n glutamicum	n glutamicum d1	n glutamicum dH
30 E	Homolog	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamlcum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
<i>35</i>	db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	pir.S32227	Sp:KPYK_CORGL	gp.AF096280_1	prf:2322244A	sp:THRC_CORGL	prt:2501295B	pir:140715	pir.140713	sp.PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
	ORF (bp)	2076 91	336 91	1314 gl	1341 pi	1425 Sp	696	1431 pi	1443 sj	1845 pr	2217 pi	1296 pi	1107 sp	1158 91	444 91	231 91
45	Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
50	Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
	SEO NO.		6980	6981	6982	6983	6984	6985	9869	6987	6988	6889	0669	6991	6992	6993
55	SEQ	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

5	
10	
15	
20	
<i>2</i> 5	
30	
35	
40	
45	
50	

r									
	Function	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acetate kināse	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	26£	329	459	852	315	504
	Identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	-100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
•	db Match	sp. DDH_CORGL	gp:CGL238703_1	sp:ACKA_CORGL	prf.2516394A	7 prf.2309322A	2556 sp.CLPB_CORGL	prf.1210266A	2 prf:2501295A
	ORF (bp)	096	135	1191	987	1377	2556	945	1512
n	Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2963606	3098578	3272563
	Initial (nt)	2787715	6995 2888078	2936505	2937494	2961342	2966161	3099522	3274074
	SEO NO.	6994	6995	9669	2669	8669	6669	7000	7007
	SEQ NO.	3494	3495	3496	3497	3498	3499	3500	3501

Example 2

5

10

15

20

25

30

35

40

45

50

55

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cystelne (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and IysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homosenne imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Alda *et al.*, Japan Sclentific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*l. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters,* 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 μg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allow d

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had be no integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito *et al.* PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the *hom* gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the *pyc* gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the prim r set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the *hom* or *pyc* gene of the second recombinant was a wild type or a mutant. As a r sult, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated *hom* gene and *pyc* gene, respectively.

10

15

25

35

40

45

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gene into the lysine-producing No. 58 strain) were subjected to a culture test In a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate hep $tahydrate, 1\,mg\,of\,copper\,sulfate\,pentahydrate, 10\,mg\,of\,zinc\,sulfate\,heptahydrate, 10\,mg\,of\,\beta-alanine, 5\,mg\,of\,nicotinic$ acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chlonde hexahydrate, 1.3 mg of cobalt chlonde hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	O ·
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

15

20

25

30

35

40

45

50

55

Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311lle, in lysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations In the wild type strain and for constructing of an industrially Important lysine-producing strain was carried out according to the method shown below.

- (2) Construction of plasmid for gene replacement having mutated gene
- [0389] The plasmid for gene replacement, pChom59, having the mutated *hom* gene and the plasmid for gene replacement, pCpyc458, having the mutated *pyc* gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated *lysC* and *zwf* were produced as described below.
 - [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmld for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above
 - method of Saito et al. Using the chromosomal DNA was prepared from the lyshe-producing B-6 strain according to the above method of Saito et al. Using the chromosomal DNA as a template, PCR was carned out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and punfied using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.
 - [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkall SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
 - (3) Introduction of mutation, Thr311lle, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
 - [0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide significant quences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that this nucleotide significant quence of the PCR

15

20

25

45

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

Table 3

Strain	L-Lysine hydrochlonde (g/l)	Productivity (g/l/h)
HD-1	8 .	0.3
AHD-2	73	2.5
AHP-3	, 80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

5

10

15

20

25

30

35

40

45

50

55

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (G nBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

10

20

30

35

40

50

55

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

5 [0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of th DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nuclotid sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

5

10

15

20

25

35

40

45

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/μl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/ I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 µl.

(3) Hybridization

[0433] UltraHyb (110 μl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

50 [0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Tabl 5

SEQ ID NO	Cy3 int nsity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493,	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology, 168*: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

10

15

20

25

35

40

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotid sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

5

10

20

25

30

35

40

45

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein; of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carned out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Eschenchia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carner and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Eschenchia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP deh dyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

50 (1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 I jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	. 0
FERM BP-7134	4 5
FERM BP-158	60

[0444] After culturing, cells of each strain were recovered by centifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehrlinger Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1,6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/I urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 µg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG stnp gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/I Tris-HCI, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/I Tris-HCI, pH 6.8, 6 mol/I urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described b low to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

5

10

15

20

25

30

35

40

45

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

15

20

25

35

40

45

- [0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, *9*: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.
- [0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.
 - (4) In-gel digestion of detected protein spot
 - [0459] The detected spots were each cut out from the gel and transferred into sillconized tube, and 400 μl of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dned as such. To the dried gel, 10 μl of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μl of 0.1% tnfluoroacetic acid was added, followed by thoroughly stirning, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carners of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- 30 [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
 - [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of *Corynebacterium glutamicum* ATCC 13032 as constructed in Example 1 to identify the protein.
 - [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

 [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 correspond d to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to trios phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- [0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described abov, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
- [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- 20 (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
- [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Flg. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.
 - [0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genom sequence database of *Corynebacterium glutamicum* constructed in Example 1.
- 40 [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- 45 [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expr ssion patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bact rium,

said method comprising:

5

10

15

20

25

30

35

45

50

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- 2. The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected
 from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium
 acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium
 melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bactenium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
- 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
- 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solld support adhered thereto.

- A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- **8.** A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. Apolynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
 - 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and r covering the polypeptide from the medium.

5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharde, an organic acid, and analogues thereof, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

22. A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucl otide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence select d from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

238

5

10

15

20

25

30

35

45

50

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- **30.** A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence Information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - **32.** The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - **38.** A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

239

5

10

15

25

30

35

45

50

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.

5

10

20

30

35

40

45

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- **52.** A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- **54.** The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 50 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- **56.** The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- **57.** The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharlde, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known blosynthesis or signal transmission pathway:
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence Information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophllum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lillum, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein r lating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

241

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharlde, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the companson with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

55

5

10

20

25

30

35

40

45

FIG. 4

