

Nomenclatura

$\boldsymbol{Z}[\Omega]$	Impedancia	I [A]	Corriente
V[V]	Tensión	j	Unidad imaginaria
<i>t</i> [s]	Tiempo	P[W]	Potencia activa
Q [VAr]	Potencia reactiva	S [VA]	Potencia aparente
m	Relación de transformación	I_{exc} o I_0 [A]	Corriente de excitación
I_{Fe} [A]	Corriente debido a pérdidas en el Fe	I_{μ} [A]	Corriente magnetizante

Unidad 1

ACÁ QUIERO PONER LO DE LAS BOBINAS Y ESO... VER

UNIDAD 2

TRANSFORMADORES

Transformador Ideal en vacío

SIN PÉRDIDAS

Autoinducción $L = \frac{\mu N^2 S}{I}$

CON PÉRDIDAS

Transformador Ideal en carga

Fem $\mathscr{F} = N_1 \mathbf{I}_1 - N_2 \mathbf{I}_2$ $\mathbf{I}_0 = \mathbf{I}_1 - \frac{N_2}{N_1} \mathbf{I}_2$

Corriente reducida

Transformador Real

$$V_1 \approx E_1; V_2 \approx E_2 \mid \frac{V_1}{V_2} \approx m \mid Z'_L = m^2 Z_L \mid \frac{E_1}{E_2} = \frac{V_1}{V_{20}} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = m$$

$$RV = \frac{V_{20} - V_2}{V_2}$$

Eficiencia

Eficiencia
$$\eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_p} = \frac{P_{out}}{P_{out} + P_{fe} + P_{\mu}}$$

$$= \frac{S Cos(\phi)}{S Cos(\phi) + P_{fe} + P_{\mu}} = \frac{S}{S + \left(\frac{P_{fe} + P_{\mu}}{Cos(\phi)}\right)}$$
Assigned a corá máxima quanda $Cos(\phi) = 1$ y P_{fe}

La Eficiencia será máxima cuando $Cos(\phi)=1$ y $P_{fe}=P_{\mu}.$