ORF 524: Statistical Theory and Methods Homework 3

Lecturer: Samory Kpotufe AI: Zhuoran Yang Due: Oct. 28th

Exercise 1 (10 points). Suppose $\theta \in \mathbb{R}^d$. Show that the following loss functions \mathcal{L} are convex.

- (1). $\mathcal{L}(a) = ||a \theta||_p, \ p \ge 1$,
- (2). $\mathcal{L}(a) = ||a \theta||_p^q, \ p, q \ge 1.$

Exercise 2 (10 points). Let $X \sim Ber^n(p)$ where $p \in (0,1)$. Consider the naive estimator $\widehat{p} = X_1$, and let $\widetilde{p} = \mathbb{E}(\widehat{p}|T)$, where $T(X) = \sum_{i=1}^n X_i$.

- (1). Derive \widetilde{p} .
- (2). Compute and compare $\mathbb{E}(\widehat{p}-p)^2$ and $\mathbb{E}(\widetilde{p}-p)^2$.

Exercise 3 (10 points). Let us prove Rao-Blackwell theorem in a different way. Denote the ℓ_2 loss by $R(\widehat{\theta}) = \mathbb{E} \|\widehat{\theta} - \theta\|^2$.

(1). Show that for any two random variables X, Y defined on the same space $(\Omega, \Sigma, \mathbb{P})$,

$$Var(X) = Var[\mathbb{E}(X|Y)] + \mathbb{E}[Var(X|Y)]. \tag{1}$$

Recall that by definition, $\mathbb{E}(X|Y)$ is a function of Y, and Var(X|Y) is defined to be $\mathbb{E}\{[X - \mathbb{E}(X|Y)]^2|Y\}$. Hint: use the fact that $\mathbb{E}X = \mathbb{E}[\mathbb{E}(X|Y)]$.

(2). Use the decomposition of variance in (1) to prove Rao-Blackwell theorem.

Exercise 4 (10 points). *In K-means algorithm, we do the following steps:*

- Step 1: start with $\{c_j\}^0$, with each of K initial centers in \mathbb{R}^d .
- Step 2: for l = 0, 1, ...
 - Assign each x_j to the nearest center $c_j^l \in \{c_j\}^l$. In a tie appears, x_j is assigned to one of its nearest centers in an arbitrary way.
 - Updating the centers: compute the mean of points in class C_j^l , where C_j^l consists of points that are assigned to the center c_j^l . Let c_j^{l+1} be that mean.

Show that K-means algorithm converges (not necessarily to its global minimizer), i.e. $\lim_{l\to\infty} \phi(\{c_j\}^l)$ exists, where

$$\phi(\{c_j\}^l) = \sum_{j=1}^K \sum_{x_i \in C_i^l} ||x_i - c_j^l||^2.$$

Exercise 5 (Cramer-Rao Theorem in the general case (10points)). Suppose that $\theta \in \mathbb{R}^p$, and a statistic T(X) is also in \mathbb{R}^p , with $\mathbb{E}_{\theta}T(X) = g(\theta)$ for some function $g \colon \mathbb{R}^d \to \mathbb{R}^d$. Cramer-Rao Theorem states that under the same regularity condition as in the univariate case, we have

$$Cov(T) \succeq \nabla_{\theta} g(\theta)^T I(\theta)^{-1} \nabla_{\theta} g(\theta),$$

where $A \succeq B$ means A - B is a positive semi-definite matrix, $(\nabla_{\theta}g(\theta))_{ij} = \frac{\partial}{\partial_{\theta}}g_{j}(\theta)$, and

$$I(\theta) = \mathbb{E}\nabla_{\theta} \log f_{\theta}(x) (\nabla_{\theta} \log f_{\theta}(x))^{T}$$
. (assuming existence and invertibility)

You can prove this theorem using the following ideas.

- (1). Let $a(x) = \nabla_{\theta} \log f_{\theta}(x)$. Derive $Cov((T, a)^T)$ in terms of Cov(T), $\nabla_{\theta} g(\theta)$ and $I(\theta)$.
- (2). Find a matrix B such that

$$B^T \operatorname{Cov} \begin{pmatrix} T \\ a \end{pmatrix} B = \operatorname{Cov}(T) - \nabla_{\theta} g(\theta)^T I(\theta)^{-1} \nabla_{\theta} g(\theta).$$

(3). Conclude the proof of Cramer-Rao Theorem.

Exercise 6 (10 points). Suppose that $f_{\theta}(x)$ is the density function of $P_{\theta} \in \mathcal{P}$, where $\theta \in \mathbb{R}^k$. We assume that $f_{\theta}(x)$ is twice differentiable in θ , satisfying the regular condition, meaning that

$$\nabla_{\theta} \int h_{\theta}(x) \, dx = \int \nabla_{\theta} h_{\theta}(x) \, dx$$

holds for $h_{\theta} = f_{\theta}$ and $h_{\theta} = \nabla_{\theta} f_{\theta}$. Show that

$$I(\theta) = -\mathbb{E}\left[\nabla_{\theta}^2 \log f_{\theta}(X)\right].$$

Exercise 7 (10 points). Let

$$f_{\alpha}(x) = h(x)l(\alpha)e^{\alpha T(x)}$$
 $x \in \mathbb{R}$

be the density function of probability measure P_{α} in the exponential family $\mathcal{P} = \{P_{\alpha} : \alpha \in \mathcal{A}\}$. Suppose that \mathcal{A} is an open set in \mathbb{R} .

(1) Show that

$$\left| \frac{e^{az} - 1}{z} \right| \le \frac{e^{\delta|a|}}{\delta}$$

holds for $|z| \leq \delta$.

(2) Use the Dominated Convergence Theorem to show the following. Let g be a Borel function such that $\mathbb{E}g < \infty$. Show that $\frac{d}{d\alpha}\mathbb{E}g = \int g(x)\frac{d}{d\alpha}f_{\alpha}(x)\,dx$ (you may assume the l.h.s. is differentiable).

Exercise 8 (10points). Consider the fixed design model $y = X\beta + \eta$, where $y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^d$, and $X \in \mathbb{R}^{n \times d}$. Here, 'fixed design' means that X is a deterministic matrix. Suppose that $n \geq d$, X^TX is invertible, and $\eta \sim N(0, \sigma^2 I_n)$, where σ^2 is known.

- (1) Show that $\hat{\beta} = (X^T X)^{-1} X^T y$ is a UMVUE of β .
- (2) Derive the mean square error $R_2(\widehat{\beta})$ in terms of σ^2 and $(X^TX)^{-1}$ only. What would $R_2(\widehat{\beta})$ be if $n^{-1}X^TX$ is equal to the identity matrix?

Exercise 9 (10 points). In a Bayesian setting where the prior distribution of θ is π . The Bayesian risk is defined as $\overline{R}_{\mathcal{L}}(\widehat{\theta}) = \mathbb{E}_{\theta} R_{\mathcal{L}}(\widehat{\theta}, \theta)$. Recall that the risk function $R_{\mathcal{L}}(\widehat{\theta}, \theta)$ is defined as $R_{\mathcal{L}}(\widehat{\theta}, \theta) = \mathbb{E}_{X|\theta} \mathcal{L}(\widehat{\theta}(X), \theta)$. We assume that all the integrals exist. Answer the following questions.

- (1) Let X be a continuous random variable with distribution P_X . Show that $\mathbb{E}|X-c|$ is minimized at $c = Median(P_X)$, where $Median(P_X)$ is the median of P_X . Assume for simplicity that the cdf is strictly increasing, in which case the median is unique, and is just $F_X^{-1}(1/2)$.
- (2) Let θ, X be jointly continuous, where $\theta \in \mathbb{R}$, and $X \in \mathbb{R}^d$. Find a minimizer $\widehat{\theta}$ for $\overline{R}_{\mathcal{L}}(\widehat{\theta})$ where

$$\mathcal{L}(\widehat{\theta}(X), \theta) = |\widehat{\theta}(X) - \theta|.$$

(3) Let $\theta \in \Theta$ and $X \in \mathbb{R}^d$, where $\Theta = \{1, 2, ..., K\}$. Find a minimizer $\widehat{\theta}$ for $\overline{R}_{\mathcal{L}}(\widehat{\theta})$ where

$$\mathcal{L}(\widehat{\theta}(X), \theta) = 1\{\widehat{\theta}(X) \neq \theta\}.$$

(4) Let $\theta \in \mathbb{R}^k$, and $X \in \mathbb{R}^d$. Find a minimizer $\widehat{\theta}$ for $\overline{R}_{\mathcal{L}}(\widehat{\theta})$ where $\mathcal{L}(\widehat{\theta}(X), \theta) = \|\widehat{\theta}(X) - \theta\|_2^2$.

Exercise 10 (10 points). Let $\mathcal{P} = \{\mathbb{P}_{\theta} = Unifrom[0, \theta], \theta > 0\}$, that is, \mathcal{P} is the family of uniform distributions. Let $X = \{X_i\}_{i=1}^n$ be n i.i.d. realizations of some $\mathbb{P}_{\theta} \in \mathcal{P}$. Show that

$$T(X) = \max_{1 \le i \le n} X_i$$

is both sufficient and complete.

Hint: consider $\frac{d}{d\theta}\mathbb{E}[h(T)]$ for some Borel measurable function h.

Exercise 11 (10 points). An ancillary statistic S for a family $\mathcal{P} = \{\mathbb{P}\}$ is one that has no information on \mathbb{P} . That is, the distribution of S(X), when $X \sim \mathbb{P}$, is the same for all $\mathbb{P} \in \mathcal{P}$. Show that if T is complete for \mathcal{P} , then T and any ancillary statistic S are uncorrelated. Assume that both S and T are in \mathbb{R}^d . Note: As an example of ancillary statistic, we consider

$$\mathcal{P} = \{N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 \text{ fixed and known}\}.$$

Then statistic

$$T(X) = \frac{(n-1)S_{n-1}^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2,$$

which is an ancillary statistic.

Hint: Consider any statistic S' that is an unbiased estimator of zero vector, i.e., $\mathbb{E}S' = 0 \in \mathbb{R}^d$ for any $\mathbb{P} \in \mathcal{P}$. First show that $Cov(S',T) = \mathbb{E}(S' - \mathbb{E}S')(T - \mathbb{E}T)^\top = 0$. Now noticing that $\mathbb{E}S$ is a constant for any $\mathbb{P} \in \mathcal{P}$, conclude that Cov(S,T) = 0.