My Project

Generated by Doxygen 1.8.15

1 Class Index	1
1.1 Class List	1
2 Class Documentation	3
2.1 FA_Params Struct Reference	3
2.2 functions Class Reference	3
2.2.1 Member Function Documentation	4
2.2.1.1 Ackley_One()	4
2.2.1.2 Ackley_Two()	4
2.2.1.3 Alpine()	5
2.2.1.4 Egg_Holder()	5
2.2.1.5 first_De_Jong()	5
2.2.1.6 Greiwangk()	6
2.2.1.7 Levy()	6
2.2.1.8 Masters_Cosine_Wave()	7
2.2.1.9 Michalewicz()	7
2.2.1.10 Pathological()	7
2.2.1.11 Quartic()	8
2.2.1.12 Rana()	8
2.2.1.13 Rastrigin()	8
2.2.1.14 Rosenbrock()	9
2.2.1.15 Schwefel()	9
2.2.1.16 Sine_Envelope_Sine_Wave()	10
2.2.1.17 Step()	10
2.2.1.18 Stretched_V_Sine_Wave()	10
2.3 HS_Params Struct Reference	11
2.4 matrix Class Reference	11
2.4.1 Constructor & Destructor Documentation	12
2.4.1.1 matrix() [1/2]	12
2.4.1.2 matrix() [2/2]	12
2.5 PSO_Params Struct Reference	13
2.6 utilities Class Reference	13
2.6.1 Member Function Documentation	13
2.6.1.1 simulate()	14
2.6.1.2 str_to_tok()	14
2.6.1.3 write_to_file()	15
Index	17

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

FA_Params					 																		
functions .					 					 													
HS_Params					 					 													. 1
matrix					 					 													. 1
PSO_Param	S				 					 													13
utilities					 					 													. 13

2 Class Index

Chapter 2

Class Documentation

2.1 FA_Params Struct Reference

Public Attributes

- matrix * std_devs
- · double * gBests
- · double gamma
- double B0
- · double alpha
- double **I_b**
- double u_b
- int func_id
- int **nf**
- int dim
- int num_iters
- int std_devs_row

The documentation for this struct was generated from the following file:

• FA.h

2.2 functions Class Reference

Public Member Functions

- double Schwefel (double *X, int dimension)
- double first_De_Jong (double *X, int dimension)
- double Rosenbrock (double *X, int dimension)
- double Rastrigin (double *X, int dimension)
- double Greiwangk (double *X, int dimension)
- double Sine_Envelope_Sine_Wave (double *X, int dimension)
- double Stretched_V_Sine_Wave (double *X, int dimension)
- double Ackley_One (double *X, int dimension)
- double Ackley_Two (double *X, int dimension)

- double Egg_Holder (double *X, int dimension)
- double Rana (double *X, int dimension)
- double Pathological (double *X, int dimension)
- double Michalewicz (double *X, int dimension)
- double Masters_Cosine_Wave (double *X, int dimension)
- double Quartic (double *X, int dimension)
- double Levy (double *X, int dimension)
- double Step (double *X, int dimension)
- double Alpine (double *X, int dimension)

2.2.1 Member Function Documentation

2.2.1.1 Ackley_One()

```
double functions::Ackley_One ( \label{double} \mbox{double } * \ \mbox{$X$,} \mbox{int $dimension$ )}
```

Ackley's One function

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Ackley's One function

2.2.1.2 Ackley_Two()

Ackley's Two function

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Ackley's Twofunction

2.2.1.3 Alpine()

```
double functions::Alpine ( \label{eq:double} \mbox{double * $\it{X}$,} \\ \mbox{int $\it{dimension}$ )}
```

Alpine's function

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Alpine's function

2.2.1.4 Egg_Holder()

```
double functions::Egg_Holder ( \label{eq:double} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Egg Holder's function

Parameters

Χ	the input space
dimension	the size of the input space

Returns

: result of Egg Holder's function

2.2.1.5 first_De_Jong()

1st De Jong's function

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of 1st De Jong's function

2.2.1.6 Greiwangk()

Greiwangk's function

Parameters

Χ	the input space
dimension	the size of the input space

Returns

: result of Greiwangk's function

2.2.1.7 Levy()

```
double functions::Levy ( \label{double} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Levy's function

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Levy's function

2.2.1.8 Masters_Cosine_Wave()

Masters Cosine Wave's function

Parameters

X	the input space
dimension	the size of the input space

Returns

: Masters Cosine Wave's function

2.2.1.9 Michalewicz()

Michalewicz's function

Parameters

X the input space	
dimension	the size of the input space

Returns

: result of Michalewicz's function

2.2.1.10 Pathological()

```
double functions::Pathological ( \label{eq:double} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Pathological's function

Parameters

X the input space	
dimension	the size of the input space

Returns

: result of Pathological's function

2.2.1.11 Quartic()

```
double functions::Quartic ( \label{eq:double} \mbox{double } * \ \mbox{$X$,} \mbox{int $dimension$ )}
```

Quartic's function

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Quartic's function

2.2.1.12 Rana()

```
double functions::Rana ( \label{double} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Rana's function

Parameters

Χ	the input space	
dimension	the size of the input space	

Returns

: result of Rana's function

2.2.1.13 Rastrigin()

Rastrigin's function

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Rastrigin's function

2.2.1.14 Rosenbrock()

Rosenbrock's function

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Rosenbrock's function

2.2.1.15 Schwefel()

```
double functions::Schwefel ( \label{eq:double} \mbox{double} \ * \ \mbox{$X$,} int \mbox{dimension} )
```

Schwefel's function

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Schwefel's function

2.2.1.16 Sine_Envelope_Sine_Wave()

```
double functions::Sine_Envelope_Sine_Wave ( \label{eq:constraint} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Sine Envelope Sine Wave's function

Parameters

Χ	the input space	
dimension	the size of the input space	

Returns

: result of Sine Envelope Sine Wave's function

2.2.1.17 Step()

```
double functions::Step ( \label{eq:double} \mbox{double * $\it{X}$,} \\ \mbox{int $\it{dimension}$ )}
```

Step's function

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Step's function

2.2.1.18 Stretched_V_Sine_Wave()

Stretched V Sine Wave's function

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Stretched V Since Wave's function

The documentation for this class was generated from the following files:

- · functions.h
- · functions.cpp

2.3 HS_Params Struct Reference

Public Attributes

- matrix * std_devs
- double * gBests
- double * gWorsts
- · double HMCR
- · double PAR
- · double HMS
- double EOR
- double **I_b**
- double u b
- double **bw**
- int func_id
- int **nh**
- int dim
- int num_iters
- int std_devs_row

The documentation for this struct was generated from the following file:

• HS.h

2.4 matrix Class Reference

Public Member Functions

- matrix (int num_rows, int num_columns, int l_b, int h_b, mt19937 &mt_rand)
- matrix (int num_rows, int num_columns)

Public Attributes

- · const int num_rows
- const int num_columns
- · const int I b
- · const int h_b
- mt19937 mt rand
- double ** mat

2.4.1 Constructor & Destructor Documentation

2.4.1.1 matrix() [1/2]

```
matrix::matrix (
    int num_rows,
    int num_columns,
    int l_b,
    int h_b,
    mt19937 & mt_rand )
```

generate an empty matrix and fill it up with randomly generated numbers within some range

Parameters

num_rows	integer respresenting the number of rows in the matrix
dim	integer representing the dimension or number of columns in the matrix
I_b	double representing the lowest bound for the random generator
h_b	double representing the highest bound for the random generator

Returns

: a matrix of randomly generated numbers

2.4.1.2 matrix() [2/2]

generate an empty matrix

Parameters

ſ	num_rows	integer respresenting the number of rows in the matrix
ſ	dim	integer representing the dimension or number of columns in the matrix

Returns

: an empty matrix

The documentation for this class was generated from the following files:

- matrix.h
- matrix.cpp

2.5 PSO_Params Struct Reference

Public Attributes

- matrix * std_devs
- double * gBests
- double c1
- · double c2
- double k
- double I b
- double u_b
- int func_id
- int np
- int dim
- · int num iters
- int std_devs_row

The documentation for this struct was generated from the following file:

• PSO.h

2.6 utilities Class Reference

Public Member Functions

- double * str_to_tok (char *string, char *delim, int num_tokens)
- void write_to_file (matrix *mat, string file_name)
- int get_algorithm_id ()
- int get_selection_id ()
- double find_lowest (const double *list, int len)
- void simulate (int dim, int ns, int num_functions, double *ranges, int algo_id, int num_iters, int num_exp, double c1, double c2, double k, double gamma, double BO, double alpha, double HMCR, double PAR, double bw, mt19937 &mt_rand)

2.6.1 Member Function Documentation

2.6.1.1 simulate()

```
void utilities::simulate (
            int dim,
             int ns,
             int num_functions,
             double * ranges,
             int algo_id,
             int num_iters,
             int num_exp,
             double c1,
             double c2,
             double k,
             double gamma,
             double B0,
             double alpha,
             double HMCR,
             double PAR,
             double bw,
             mt19937 & mt_rand )
```

simulate the Particle Swarm Optimization, the Firefly algoritm and the Harmony Search algorithm

Parameters

dim	: an integer for the dimension of the solutions	
ns	: an integer the number of solutions	
num_functions	: an integer for the number of objective functions to be simulated (the 18 functions)	
ranges	an array of doubles containing the lower and upper bound for each of the objective functions	
algo_id	an integer for the evolutionary algorithm to be simulated	
num_iters	: an integer for the number of iterations for the swarm algorithms	
num_exp	an integer for the number of experimentations to be run	
c1,c2	doubles	
k	a double	
gamma	a double	
B0	a double	
alpha	a double	
HMCR	a double	
PAR	a double	
bw	a double	
mt_rand	a seeded random generator to generate random numbers (seeded once in main.cpp)	

Returns

: None

2.6.1.2 str_to_tok()

```
char * delim,
int num_tokens )
```

split a string into double tokens

Parameters

string	the string to be splitted
delim	the character that separates the tokens in the string
num_tokens	number of tokens to expect

Returns

: an array of doubles

2.6.1.3 write_to_file()

write a 2d array to a csv file

Parameters

mat	a matrix containing the elements to write to the csv file
file_name	the name of the file where data will be saved

Returns

: None

The documentation for this class was generated from the following files:

- · utilities.h
- · utilities.cpp

Index

PSO_Params, 13

Ackley_One functions, 4	Quartic functions, 8
Ackley_Two functions, 4	Rana
Alpine functions, 5	functions, 8 Rastrigin functions, 8
Egg_Holder functions, 5	Rosenbrock functions, 9
FA_Params, 3 first_De_Jong functions, 5 functions, 3 Ackley_One, 4 Ackley_Two, 4 Alpine, 5 Egg_Holder, 5 first_De_Jong, 5 Greiwangk, 6 Levy, 6 Masters_Cosine_Wave, 6 Michalewicz, 7 Pathological, 7 Quartic, 8 Rana, 8 Rastrigin, 8 Rosenbrock, 9 Schwefel, 9 Sine_Envelope_Sine_Wave, 9 Step, 10 Stretched_V_Sine_Wave, 10	Schwefel functions, 9 simulate utilities, 13 Sine_Envelope_Sine_Wave functions, 9 Step functions, 10 str_to_tok utilities, 14 Stretched_V_Sine_Wave functions, 10 utilities, 13 simulate, 13 simulate, 13 str_to_tok, 14 write_to_file utilities, 15
Greiwangk functions, 6	
HS_Params, 11	
Levy functions, 6	
Masters_Cosine_Wave functions, 6 matrix, 11 matrix, 12 Michalewicz functions, 7	
Pathological functions, 7	