

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/55, 9/14, C07K 16/40, C12O

A1

(11) International Publication Number:

WO 98/31816.

٠,

(43) International Publication Date:

23 July 1998 (23.07.93)

(21) International Application Number:

PCT/US98/00944

(22) International Filing Date:

1/34, C12N 11/00

16 January 1998 (16.01.98)

(30) Priority Data:

60/035,404

17 January 1997 (17.01.97)

US

(71) Applicant (for all designated States except US): REGENTS
OF THE UNIVERSITY OF MINNESOTA [US/US]; 100
Church Street, S.E., Minneapolis, MN 55455 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): WACKETT, Lawrence, P. [US/US]; 1575 Merrill Street, St. Paul, MN 55108 (US). SADOWSKY, Michael, J. [US/US]; 710 Lovell Avenue, Roseville, MN 55113 (US). De SOUZA, Mervyn, L. [IN/US]; 1029 Raymond Avenue #10, St. Paul, MN 55114-11334 (US). MINSHULL, Jeremy, S. [GB/US]; 11 Homer Lane, Menlo Park, CA 94025 (US).
- (74) Agent: MCCORMACK, Myra, H.; Mueting, Raasch & Gebhardt, P.A., P.O. Box 581415, Minneapolis, MN 55458-1415 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasizn patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Europezn patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DNA MOLECULES AND PROTEIN DISPLAYING IMPROVED TRIAZINE COMPOUND DEGRADING ABILITY

(57) Abstract

This invention relates to the identification of homologs of atrazine chlorohydrolase and the use of these homologs to degrade s-triazine-containing compounds. In particular, this invention includes the identification of homologs of atrazine chlorohydrolase encoded by a DNA fragment having at least 95 % homology to the sequence from the nucleic acid sequence beginning at position 236 and ending at position 1655 of SEQ ID NO:1, where the DNA fragment is capable of hybridizing under stringent conditions to SEQ ID NO:1 and has altered catalytic acitivity as compared with wild-type atrazine chlorohydrolase.

,, WO 98/31816 PCT/US98/00944

DNA MOLECULES AND PROTEIN DISPLAYING IMPROVED TRIAZINE COMPOUND DEGRADING ABILITY

Background of the Invention

5

10

15

20

25

30

More than 8 million organic compounds are known and many are thought to be biodegradable by microorganisms, the principle agents for recycling organic matter on Earth. In this context, microbial enzymes represent the greatest diversity of novel catalysts. This is why microbial enzymes are predominant in industrial enzyme technology and in bioremediation, whether used as purified enzymes or in whole cell systems.

There is increased interest in engineering bacterial enzymes for improved industrial performance. For example, site directed mutagenesis of subtilisin has resulted in the development of enzyme variants with improved properties for use in detergents. Most applied enzymes, particularly those used in biodegrading pollutants, however, are naturally evolved. That is, they are unmodified from the form in which they were originally present in a soil bacterium.

For example, most bioremediation is directed against petroleum hydrocarbons, pollutants that are natural products and thus have provided selective pressure for bacterial enzyme evolution over millions of years. Synthetic compounds not resembling natural products are more likely to resist biodegradation and hence accumulate in the environment. This changes over a bacterial evolutionary time scale; compounds considered to be non-biodegradable several decades ago, for example PCBs and tetrachloroethylene, are now known to biodegrade. This is attributed to recent evolution and dispersal of the newly evolved gene(s) throughout microbial populations by mechanisms such as conjugative plasmids and transposable DNA elements.

A better understanding of the evolution of new biodegradative enzymes will reveal how nature cleanses the biosphere. Furthermore, the ability to emulate the process in the laboratory may shave years off the lag period between the introduction of a new molecular compound into the environment and the development of a dispersed microbial antidote that will remove it.

10

15

20

25

Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine)] is a widely used s-triazine (i.e., symmetric triazine) herbicide for the control of broad-leaf weeds. Approximately 800 million pounds were used in the United States between 1980 and 1990. As a result of this widespread use, for both selective and nonselective weed control, atrazine and other s-triazine-containing compounds have been detected in ground and surface water in several countries.

Numerous studies on the environmental fate of atrazine have shown that atrazine is a recalcitrant compound that is transformed to CO₂ very slowly, if at all, under aerobic or anaerobic conditions. It has a water solubility of 33 mg/l at 27°C. Its half-life (i.e., time required for half of the original concentration to dissipate) can vary from about 4 weeks to about 57 weeks when present at a low concentration (i.e., less than about 2 parts per million (ppm)) in soil. High concentrations of atrazine, such as those occurring in spill sites have been reported to dissipate even more slowly.

As a result of its widespread use, atrazine is often detected in ground water and soils in concentrations exceeding the maximum contaminant level (MCL) of 3 µg/l (i.e., 3 parts per billion (ppb)), a regulatory level that took effect in 1992. Point source spills of atrazine have resulted in levels as high as 25 ppb in some wells. Levels of up to 40,000 mg/l (i.e., 40,000 parts per million (ppm)) atrazine have been found in the soil at spill sites more than ten years after the spill incident. Such point source spills and subsequent runoff can cause crop damage and ground water contamination.

There have been numerous reports on the isolation of s-triazine-degrading microorganisms (see, e.g., Behki et al., J. Agric. Food Chem., 34, 746-749 (1986); Behki et al., Appl. Environ. Microbiol., 59, 1955-1959 (1993); Cook, FEMS Microbiol. Rev., 46, 93-116 (1987); Cook et al., J. Agric. Food Chem., 29, 1135-1143 (1981); Erickson et al., Critical Rev. Environ. Cont., 19, 1-13 (1989); Giardina et al., Agric. Biol. Chem., 44, 2067-2072 (1980); Jessee et al., Appl. Environ. Microbiol., 45, 97-102 (1983); Mandelbaum et al., Appl. Environ. Microbiol., 61, 1451-1457 (1995); Mandelbaum et al., Appl. Environ. Microbiol., 59, 1695-1701 (1993); Mandelbaum et al., Environ. Sci. Technol.,

10

15

20

25

30

27, 1943-1946 (1993); Radosevich et al., Appl. Environ. Microbiol., 61, 297-302 (1995); and Yanze-Kontchou et al., Appl. Environ. Microbiol., 60, 4297-4302 (1994)). Many of the organisms described, however, failed to mineralize atrazine (see, e.g., Cook, FEMS Microbiol. Rev., 46, 93-116 (1987); and Cook et al., J. Agric. Food Chem., 29, 1135-1143 (1981)). While earlier studies have reported atrazine degradation only by mixed microbial consortia, more recent reports have indicated that several isolated bacterial strains can degrade atrazine. In fact, research groups have identified atrazine-degrading bacteria classified in different genera from several different locations in the U.S. (e.g., Minnesota, Iowa, Louisiana, and Ohio) and Switzerland (Basel).

An atrazine-degrading bacterial culture, identified as *Pseudomonas* sp. strain ADP (Mandelbaum et al., Appl. Environ. Microbiol., 61, 1451-1457 (1995); Mandelbaum et al., Appl. Environ. Microbiol., 59, 1695-1701 (1993); de Souza et al., J. Bact., 178, 4894-4900 (1996); and Mandelbaum et al., Environ. Sci. Technol., 27, 1943-1946 (1993)), was isolated and was found to degrade atrazine at concentrations greater than about 1,000 µg/ml under growth and nongrowth conditions. See also, Radosevich et al., Appl. Environ. Microbiol., 61, 297-302 (1995) and Yanze-Kontchou et al., Appl. Environ. Microbiol., 60, 4297-4302 (1994). *Pseudomonas* sp. strain ADP (Atrazine Degrading *Pseudomonas*) uses atrazine as a sole source of nitrogen for growth. The organism completely mineralizes the s-triazine ring of atrazine under aerobic growth conditions. That is, this bacteria is capable of degrading the s-triazine ring and mineralizing organic intermediates to inorganic compounds and ions (e.g., CO₂).

The genes that encode the enzymes for MELAMINE (2,4,6-triamino-s-triazine) metabolism have been isolated from a *Pseudomonas* sp. strain. The genes that encode atrazine degradation activity have been isolated from *Rhodococcus* sp. strains; however, the reaction results in the dealkylation of atrazine. In addition, the gene that encodes atrazine dechlorination has been isolated from a *Pseudomonas* sp. strain. See, for example, de Souza et al., Appl. Environ. Microbiol., 61, 3373 (1995). The protein expressed by the gene disclosed by de Souza et al., degrades atrazine, for example, at a V_{max} of about 2.6 µmol of hydroxyatrazine per min per mg protein. Although this is

significant, it is desirable to obtain genes and the proteins they express that are able to dechlorinate triazine-containing compounds with chlorine moieties at an even higher rate and/or under a variety of conditions, such as, but not limited to, conditions of high temperature (e.g., at least about 45 °C and preferably at least about 65 °C), various pH conditions, and/or under conditions of high salt content (e.g., about 20-30 g/L), or under other conditions in which the wild type enzyme is not stable, efficient, or active. Similarly, it is desirable to obtain genes and proteins encoded by these genes that degrade triazine-containing compounds such as those triazine containing compounds available under the trade names; "AMETRYN", "PROMETRYN", "CYANAZINE", "MELAMINE", "SIMAZINE", as well as TERBUTHYLAZINE and desethyldesisopiopylatriazine. It is also desirable to identify proteins expressed in organisms that degrade triazine-containing compounds in the presence of other nitrogen sources such as ammonia and nitrate.

15

20

25

10

5

Summary of the Invention

The present invention provides isolated and purified DNA molecules that encode atrazine degrading enzymes similar to, but having different catalytic activities from a wild type (i.e., from an isolated but naturally occurring atrazine chlorohydrolase). The term "altered enzymatic activities" is used to refer to homologs of atrazine chlorohydrolase having altered catalytic rates as quantitated by k_{cat} and K_m , improved ability to degrade atrazine, altered substrate ranges, altered activities as compared to the native sequence in aqueous solutions, altered stability in solvents, altered active temperature ranges or altered reaction conditions such as salt concentration, pH, improved activity in a soil environment, and the like, as compared with the wild-type atrazine chlorohydrolase (AtzA) protein.

In one preferred embodiment, the present invention provides DNA fragments encoding a homolog of atrazine chlorhydrolase and comprising the sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NOS:7-11 and SEQ ID NOS: 17-21. In one embodiment the invention relates to these DNA fragments in a vector, preferably an expression vector.

10

15

20

25

Further, the invention relates to the DNA fragment in a cell. In one embodiment the cell is a bacterium and in a preferred embodiment, the bacterium is *E. coli*.

The invention also relates to s-triazine-degrading proteins having at least one amino acid different from the protein of SEQ ID NO:2, wherein the coding region of the nucleic acid encoding the s-triazine degrading protein has at least 95% homology to SEQ ID NO:1 and wherein the s-triazine-degrading protein has an altered catalytic activity as compared with the protein having the sequence of SEO ID NO:2. In one embodim it, the protein is selected from the group consisting of SEO ID NOS: 5, 6 and 22-26. In one embodiment the substrate for the s-triazine degrading protein is ATRAZINE. In another embodiment the substrate for the s-triazine degrading protein is TERBUTHYLAZINE and in yet another embodiment the substrate for the striazine degrading protein is MELAMINE. In another embodiment this invention relates to a remediation composition comprising a cell producing at least one s-triazine-degrading protein having at least one amino acid different from the protein of SEQ ID NO:2, wherein the coding region of the nucleic acid encoding the s-triazine degrading protein has at least 95% homology to SEQ ID NO:1 and wherein the s-triazine-degrading protein has an altered catalytic activity as compared with the protein having the sequence of SEQ ID NO:2. In a preferred embodiment the composition is suitable for treating soil or water. In another embodiment the remediation composition comprises at least one striazine-degrading protein having at least one amino acid different from the protein of SEQ ID NO:2, wherein the coding region of the nucleic acid encoding the s-triazine degrading protein has at least 95% homology to SEQ ID NO:1 and wherein the s-triazine-degrading protein has an altered catalytic activity as compared with the protein having the sequence of SEQ ID NO:2. In a preferred embodiment this composition is also suitable for treating soil or water. In one embodiment the remediation composition comprises the protein bound to an immobilization support. In yet another embodiment, these proteins are homotetramers, such as the homotetramers formed by AtzA.

10

15

20

25

In another embodiment the invention relates to a protein selected from the group consisting of proteins comprising the amino acid sequences of SEQ ID NOS: 5, 6 and 22-26.

In another aspect of this invention, the invention relates to a DNA fragment having a portion of its nucleic acid sequence having at least 95% homology to a nucleic acid sequence consisting of position 236 and ending at position 1655 of SEQ ID NO:1, wherein the DNA fragment is capable of hybridizing under stringent conditions to SEQ ID NO:1 and wherein there is at least one amino acid change in the protein encoded by the DNA fragment as compared with SEQ ID NO:2 and wherein the protein encoded by the DNA fragment is capable of dechlorinating at least one s-triazine-containing compound and has a catalytic activity different from the enzymatic activity of the protein of SEQ ID NO:2. In one embodiment the s-triazine-containing compound is ATRAZINE, TERBUTHYLAZINE, or MELAMINE. In one embodiment.

The invention also relates to a method for treating a sample comprising an s-triazine containing compound comprising the step of adding a adding a protein to a sample comprising an s-triazine-containing compound wherein the protein is encoded by gene having at least a portion of the nucleic acid sequence of the gene having at least 95% homology to the sequence beginning at position 236 and ending at position 1655 of SEQ ID NO:1, wherein the gene is capable of hybridizing under stringent conditions to SEQ ID NO:1, wherein there is at least one amino acid change in the protein encoded by the DNA fragment as compared with SEQ ID NO:2 and wherein the protein has an altered catalytic activity as compared to the protein having the amino acid sequence of SEQ ID NO:2. In one embodiment, the composition comprises bacteria expressing the protein. In one embodiment the s-triazine -containing compound is atrazine, in another the s-triazine-containing compound is TERBUTHYLAZINE and in another the s-triazine containing compound is (2,4,6-triamino-s-triazine). In one embodiment, the protein encoded by the gene is selected from the group consisting of SEQ ID NOS: 5, 6 and 22-26.

10

15

In another aspect, this invention relates to a method for obtaining homologs of an atrazine chlorohydrolase comprising the steps of obtaining a nucleic acid sequence encoding atrazine chlorohydrolase, mutagenizing the nucleic acid to obtain a modified nucleic acid sequence that encodes for a protein having an amino acid sequence with at least one amino acid change relative to the amino acid sequence of the atrazine chlorohydrolase, screening the proteins encoded by the modified nucleic acid sequence; and selecting proteins with altered catalytic activity as compared to the catalytic activity of the atrazine chlorohydrolase. Preferably, the atrazine chlorohydrolase nucleic acid sequence is SEQ ID NO:1. In one embodiment the altered catalytic activity is an improved ability to degrade ATRAZINE. In another embodiment, the altered catalytic activity is an altered substrate activity.

Other homologs with an improved rate of catalytic activity for atrazine include clones A40, A42, A44, A46 and A60 having nucleic acid sequences (SEQ ID NOS:17-21, respectively). Other homologs capable of better degrading TERBUTHYLAZINE include A42, A44, A46 and A60 as well as A11 and A13.

20

25

Brief Description of the Drawings

- Fig. 1. Nucleotide sequence alignment of wild type atzA (bottom sequence) from Pseudomonas sp. strain ADP and clone (A7) (SEQ ID NO:1 and SEQ ID NO:3).
- Fig. 2. Nucleotide sequence alignment of wild type atzA (bottom sequence) from Pseudomonas sp. strain ADP and clone (T7) (SEQ ID NO: 1 and SEQ ID NO:4).
 - Fig. 3. Amino acid sequence alignment of wild type AtzA (bottom sequence) from *Pseudomonas sp.* strain ADP and clone (A7) (SEQ ID NO:2 and SEQ ID NO:5).
- Fig. 4. Amino acid sequence alignment of wild type AtzA from

 Pseudomonas sp. strain ADP and clone (T7) (SEQ ID NO:2 and SEQ ID NO:6).

10

15

20

25

Fig. 5. Nucleotide sequence alignment of wild type atzA (SEQ ID NO:1, bottom sequence) from Pseudomonas sp. strain ADP and clone (A11). Fig. 5(a) provides the sequence from nucleic acids 11-543 (SEQ ID NO:7), Fig. 5(b) provides the sequence from nucleic acids 454-901 (SEQ ID NO:8), Fig. 5(c) provides the sequence from 1458-1851 (SEQ ID NO:9; N in this sequence indicates that this nucleotide has not been verified) and Fig. 5(d) provides the sequence from nucleic acids 1125-1482 (SEQ ID NO:10) of clone A11. The "N" in these sequences refer to nucleic acids that are being verified.

Fig. 6. Nucleotide sequence alignment of a portion of the nucleic acid sequence of wild type atzA from Pseudomonas sp. strain ADP and nucleic acids 436-963 of clone (A13) (SEQ ID NO:11 and SEQ ID NO:1).

Fig. 7. is a histogram illustrating the TERBUTHYLAZINE degradative ability of two homologs of this invention (T7= sample 3 and A7 = sample 4). Fig. 7(a) illustrates the % of TERBUTHYLAZINE remaining after exposure to AtzA or a homolog. Fig. 7(b) illustrates the relative amount of hydroxyterbuthylazine as a measure of TERBUTHYLAZINE degradation.

Fig. 8. is another set of histograms illustrating the terbutylazine degradative ability of three homologs A7, All, and T7. Figure 8(a) provides the % of TERBUTHYLAZINE remaining after a 15 minute exposure to the homolog in the presence or absence of the metals and additives of Samples 1-10. Figure 8(b) provides the relative amount of hydroxterbuthylazine in the presence or absence of the metals and compounds of Samples 1-10.

Fig. 9. is a comparison of PCR amplified fragments using two primers of the atrazine hydrochlorase gene from 6 different types of bacteria; *Pseudomonas* sp. strain ADP; *Ralstonia* strain M91-3; *Clavibacter* (*Clav.*); *Agrobacterium* strain J14(a); ND (an organism with no genus assigned) strain 38/38; and *Alcaligenes* strain SG1 (SEQ ID NOS: 12-16).

Detailed Description of the Invention

The present invention provides isolated and purified DNA molecules, and isolated and purified proteins, involved in the degradation of striazine-containing compounds. The proteins encoded by the genes of this

10

15

20

invention are involved in the dechlorination and/or the deamination of s-triazine-containing compounds. The wild type AtzA protein can catalyze the dechlorination of s-triazine-containing compounds but not the deamination of these compounds. The dechlorination reaction occurs on s-triazine containing compounds that include a chlorine atom and at least one alkylamino side chain. Such compounds have the following general formula:

$$\begin{array}{c|c}
R^1 \\
\downarrow \\
C \\
\downarrow \\
R^3
\end{array}$$

wherein $R^1 = Cl$, $R^2 = NR^4R^5$ (wherein R^4 and R^5 are each independently H or a $C_{1.3}$ alkyl group), and $R^3 = NR^6R^7$ (wherein R^6 and R^7 are each independently H or a $C_{1.3}$ alkyl group), with the proviso that at least one of R^2 or R^3 is an alkylamino group. As used herein, an "alkylamino" group refers to an amine side chain with one or two alkyl groups attached to the nitrogen atom. Examples of such compounds include atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-s-triazine), desethylatrazine (2-chloro-4-amino-6-isopropylamino-s-triazine), desisopropylatrazine (2-chloro-4-ethylamino-6-amino-s-triazine), and SIMAZINE (2-chloro-4,6-diethylamino-s-triazine).

Triazine degradation activity is encoded by a gene that is localized to a 21.5-kb EcoRI fragment, and more specifically to a 1.9-kb Aval fragment, of the genome of Pseudomonas sp. ADP (ADP is strain designiation for Atrazine-degrading Pseudomonas) bacterium. Specifically, these genomic fragments encode proteins involved in s-triazine dechlorination. The rate of degradation of atrazine that results from the expression of these fragments in E. coli is comparable to that seen for native Pseudomonas sp. strain ADP; however, in contrast to what is seen with native Pseudomonas sp. strain ADP, this degradation in E. coli is unaffected by the presence of inorganic nitrogen sources like ammonium chloride. This is particularly advantageous for regions

10

15

20

25

contaminated with nitrogen-containing fertilizers or herbicides, for example. The expression of atrazine degradation activity in the presence of inorganic nitrogen compounds broadens the potential use of recombinant organisms for biodegradation of atrazine in soil and water.

Hydroxyatrazine formation in the environment was previously thought to result solely from the chemical hydrolysis of atrazine (Armstrong et al., Environ. Sci. Technol., 2, 683-689 (1968); deBruijn et al., Gene, 27, 131-149 (1984); and Nair et al., Environ. Sci. Technol., 26, 1627-1634 (1992)). Previous reports suggest that the first step in atrazine degradation by environmental bacteria is dealkylation. Dealkylation produces a product that retains the chloride moiety and is likely to retain its toxicity in the environment. In contrast to these reports, AtzA dechlorinates atrazine and produces a detoxified product in a one-step detoxification reaction that is amenable to exploitation in the remediation industry. There remains a need for atrazine-degrading enzymes with improved activity.

As used herein, the gene encoding a protein capable of dechlorinating atrazine and originally identified in *Pseudomonas* sp. strain ADP and expressed in *E. coli* is referred to as "atzA", whereas the protein that it encodes is referred to as "AtzA." Examples of the cloned wild type gene sequence and the amino acid sequence derived from the gene sequence are provided as SEQ ID NO:1 and SEQ ID NO:2 respectively. As also used herein, the terms atrazine chlorohydrolase (AtzA) protein, atrazine chlorohydrolase enzyme, or simply atrazine chlorohydrolase, are used interchangeably, and refer to an atrazine chlorohydrolase enzyme involved in the degradation of atrazine and similar molecules as discussed above.

A "homolog" of atrazine chlorohydrolase is an enzyme derived from the gene sequence encoding atrazine chlorohydrolase where the protein sequence encoded by the gene is modified by amino acid deletion, addition, substitution, or truncation but that nonetheless is capable of dechlorinating or deaminating s-triazine containing compounds. In addition, the homolog of atrazine chlorohydrolase (AtzA) has a nucleic acid sequence that is different

10

from the atzA sequence (SEQ ID NO:1) and produces a protein with modified biological properties or, as used herein, "altered enzymatic activities." These homologs include those with altered catalytic rates as quantitated by k_{cat} and K_{m} , altered substrate ranges, altered activities as compared to the native sequence in aqueous solutions, altered stability in solvents, altered active temperature ranges or altered reaction conditions such as salt concentration, pH, improved activity in a soil environment, and the like, as compared with the wild-type atrazine chlorohydolase (AtzA) protein. Thus, provided that two molecules possess enzymatic activity to an s-triazine-containing substrate and one molecule has the gene sequence of atzA (SEQ ID NO:1), the other is considered a homolog of that sequence where 1) the gene sequence of the homolog differs from SEQ ID NO:1 such that there is at least one amino acid change in the protein encoded by SEQ ID NO:1 (i.e., SEQ ID NO:2); 2) the homolog has different enzymatic characteristics from the protein encoded by SEQ ID NO:1 such as, but not limited to, an altered substrate preference, altered rate of activity, or altered conditions for enzymatic activity such as temperature, pH, salt concentration or the like, as discussed supra; and 3) where the coding region of the nucleic acid sequence encoding the variant protein has at least 95% homology to SEQ ID NO:1.

20

15

As used herein, the terms "isolated and purified" refer to the isolation of a DNA molecule or protein from its natural cellular environment, and from association with other coding regions of the bacterial genome, so that it can be sequenced, replicated, and/or expressed. Preferably, the isolated and purified DNA molecules of the invention comprise a single coding region. Thus, the present DNA molecules are preferably those consisting of a DNA segment encoding a homolog of atrazine chlorohydrolase.

25

Using the nucleic acid encoding the wild-type atzA sequence and the amino acid sequence of the wild-type enzyme AtzA, similar atrazine degrading enzymes were identified in other bacteria. In fact, sequencing of the atzA gene in the other bacteria demonstrated a homology of at least 99% to the atzA sequence, suggesting little evolutionary drift (see SEQ ID NOS:12-16).

10

15

20

25

30

Homologs of the atzA gene could not be identified in the genomes of bacteria that did not metabolize atrazine. This information supports the theory that the atzA gene evolved to metabolize s-triazine-containing compounds.

The studies assessing the prevalence and homology of the atzA gene in a variety of bacterial genera also suggest that atzA is likely to be a relatively young, i.e. recently evolved gene. That the gene is recently evolved is supported by the attributes of the gene and the protein encoded by the gene. For example: (i) the gene has a limited s-triazine range that includes atrazine and the structurally analogous herbicide SIMAZINE, but does not act on all s-triazines; (ii) the gene has a high sequence homology to genes isolated from other bacteria that produce proteins with atrazine-degrading activity; (iii) is not organized with the atzB and atzC genes in a contiguous arrangement such as an operon; (iv) the gene lacks the type of coordinate genetic regulation seen, for example, in aromatic hydrocarbon biodegradative pathway genes; (v) the wild-type gene was isolated from a spill site containing high atrazine levels and (vi) it is suggested to have been environmentally undetectable until the last few years.

Genes involved in reactions common to most bacteria and mammals are more highly evolved and have attained catalytic proficiency closer to theoretical perfection. Genes that have evolved more recently have not had the evolutionary opportunity to maximize the level of catalytic efficiency that they could theoretically obtain. These enzymes are suboptimal. Suboptimal enzymes include enzymes that have a second order rate constant, k_{ca}/K_M that is orders of magnitude below the diffusion-controlled limit of enzyme catalysis, 3×10^8 M⁻¹s⁻¹. These enzymes have the potential to evolve higher k_{cat} , lower K_m , or both. Enzymes with higher k_{cat} , lower K_m , or both would appear to have selective advantage as a biodegradative enzyme because less enzyme with higher activity would serve the same metabolic need and conserve ATP expended in enzyme biosynthesis. Optimized enzymes have the further advantage of having an improved commercial value resulting from their improved efficiency or improved activity under a defined set of conditions.

the entries of the product of the gradients

The state of the

WO 98/31816 PCT/US98/00944

13

Thus, the atzA gene is, potentially, an s-triazine compound-degrading progenitor with the potential for improvement and modification.

AtzA is a candidate for studies to generate homologs with improved activity, i.e., enhanced rate, altered pH preference, salt concentration and the like. The k_{ex}/K_M for atrazine chlorohydrolase purified from Pseudomonas ADP is 5 x 10³ M⁻¹s⁻¹, 3 orders of magnitude below the theoretical catalytic limit. That all of the atzA homologous genes from a survey of atrazine-degrading bacteria are so structurally and catalytically similar suggest that the atzA gene and the AtzA protein can be improved and will be improved naturally over time. Indeed, most biodegradative enzymes are orders of magnitude below diffusion limiting enzyme rates and, under this hypothesis, are also candidates for gene and protein modifications.

5

10

15

20

25

In one embodiment of this invention, a method is disclosed for selecting or screening modified and improved atzA gene sequences that encode protein with improved enzymatic activity, whether the activity is enzymatic rate, using atrazine as a substrate, as compared to the wild-type sequence, or improved activity under any of a variety of reaction conditions including, but not limited to, elevated temperature, salt concentration, altered substrate range, solvent conditions, pH ranges, tolerance or stability to a variety of environmental conditions, or other reaction conditions that may be useful in bioremediation processes. The method preferably includes the steps of obtaining the wild-type atzA gene sequence, mutagenizing the gene sequence to obtain altered atzA sequences, selecting or screening for clones expressing altered AtzA activity and selecting gene sequences encoding AtzA protein with improved s-triazine-degrading activity.

As a first step for practicing the method of this invention, the wild-type atzA sequence (SEQ ID NO:1) is incorporated into a vector or into nucleic acid that is suitable for a particular mutagenesis procedure. The wild type atzA gene was first obtained as a 1.9-kb AvaI genomic fragment that encodes an enzyme that transforms atrazine to hydroxyatrazine, termed atrazine chlorohydrolase. Methods for obtaining this fragment are disclosed by de Souza

25

et al. (Appl. Environ. Microb. 61:3373-3378, (1995)). The gene, atzA, has one large ORF (open reading frame) and produces a translation product of about 473 amino acids. A particularly constant portion of this gene appears to occur at position 236 and end at position 1655 of SEQ ID NO:1. The wild-type atzA gene from Pseudomonas strain ADP includes 1419 nucleotides and encodes a polypeptide of 473 amino acids with an estimated M, of 52,421 and a pI of 6.6. The gene also includes a typical Pseudomonas ribosome binding site, beginning with GGAGA, located 11 bp upstream from the proposed start codon. A potential stop codon is located at position 1655.

The wild-type atzA sequence can be obtained from a variety of sources including a DNA library, containing either genomic or plasmid DNA, obtained from bacteria believed to possess the atzA DNA. Alternatively the original isolate identified as containing the atzA DNA is described in U.S. Pat. No. 5,508,193 and can be accessed as a deposit from the American Type Culture Collection (ATCC No. 55464 Rockville, Maryland). Libraries can be screened using oligonucleotide probes, for example, to identify the DNA corresponding to SEQ ID NO:1. SEQ ID NO:1 can also be obtained by PCR (polymerase chain reaction) using primers selected using SEQ ID NO:1 and the nucleic acid obtained from the atzA-containing organism (ATCC No. 55464) deposited with the American Type Culture Collection.

Screening DNA libraries or amplifying regions from prokaryotic DNA using synthetic oligonucleotides is a preferred method to obtain the wild-type sequence of this invention. The oligonucleotides should be of sufficient length and sufficiently nondegenerate to minimize false positives. In a preferred strategy, the actual nucleotide sequence(s) of the probe(s) is designed based on regions of the *atzA* DNA, preferably outside of the reading frame of the gene (the translated reading frame begins at position 236 and ends at position 1655 of SEQ ID NO:1) that have the least codon redundancy.

Cloning of the open reading frame encoding atzA into the appropriate replicable vectors allows expression of the gene product, the AtzA enzyme, and makes the coding region available for further genetic engineering.

The types of mutagenesis procedures that are capable of generating a variety of gene sequences based on a parent sequence, atzA or a previously mutagenized or altered sequence of atzA, are known in the art and each method has a preferred vector format. In general, the mutagenesis procedures selected is one that generates at least one modified atzA sequence and preferably a population of modified atzA gene sequences. Selecting or screening procedures are used to identify preferred modified enzymes (i.e., homologs) from the pool of modified sequences.

There are a number of methods in use for creating mutant proteins 10 in a library format from a parent sequence. These include the polymerase chain reaction (Leung, D.W. et al. Technique 1:11-15, (1989)), Bartel, D.P. et al. Science 261:1411-1418 (1993)), cassette mutagenesis (Arkin, A. et al. Proc. Natl. Acad. Sci. USA 89:7811-7815 (1992), Oliphant, A.R. et al., Gene 44:177-183 (1986), Hermes, J.D. et al., Proc. Natl. Acad. Sci. USA 87:696-700 (1990), 15 Delgrave et al. Protein Engineering 6:327-331, (1993), Delgrave et al. Bio/Technology 11:1548-1552 (1993), and Goldman, ER et al., Bio/Technology 10:1557-1561 (1992)), as well as methods that exploit the standard polymerase chain reaction, including, but not limited to, DNA recombination during in vitro PCR (Meyerhans, A. et al., Nucl. Acids Res. 18:1687-1691 (1990), and Marton 20 et al. Nucl. Acids Res. 19:2423-2426, 1991)), in vivo site specific recombination (Nissim et al. EMBO J. 13:692-698 (1994), Winter et al. Ann. Rev. Immunol. 12:433-55 (1994)), overlap extension and PCR (Hayashi et al. Biotechniques 17:310-315 (1994)), applied molecular evolution systems (Bock, L. C. et al., Nature 355:564-566 (1992), Scott, J. K. et al., Science 249: 386-390 (1990), 25 Cwirla, S.E. et al. Proc. Natl. Acad. Sci. USA 87:6378-6382 (1990), McCafferty, J. et al. Nature 348:552-554 (1990)), DNA shuffling systems, including those reported by Stemmer et al. (Nature 370:389-391 (1994) and Proc. Natl. Acad. Sci. (USA) 91:10747-10751 (1994) and International Patent Application Publication Number WO 95/22625), and random in vivo recombination (see Caren et al. Bio/Technology 12: 433-55 (1994), Caloger et al. FEMS

10

15

20

25

30

Microbiology Lett. 97:41-44 (1992), International Patent Application Publication Numbers WO91/01087, to Galizzi and WO90/07576 to Radman, et al.).

Preferably, the method produces libraries with large numbers of mutant nucleic acid sequences that can be easily screened or selected without undue experimentation. Those skilled in the art will recognize that screening and/or selection methods are well documented in the art and those of ordinary skill in the art will be able to use the cited methods as well as other references similarly describing the afore-mentioned methods to produce pools of variant sequences. Preferred strategies include methods for screening for degradative activity of the s-triazine-containing compound on nutrient plates containing the homolog-encoding bacteria or by use of colormetric assays to detect the release of chlorine ions. Preferred selection assays include methods for selecting for homolog-containing bacterial growth on or in a s-triazine containing medium.

In a preferred method of this invention, gene shuffling, also termed recursive sequence recombination, is used to generate a pool of mutated sequences of the atzA gene. In this method the atzA gene, alone or in combination with the atzB gene, is amplified, such as by PCR, or, alternatively, multiple copies of the gene sequence (atzA and atzB) are isolated and purified. The gene sequence is cut into random fragments using enzymes known in the art, including DNAase I. The fragments are purified and the fragments are incubated with single or double-stranded oligonucleotides where the oligonucleotides comprise an area of identity and an area of heterology to the template gene or gene sequence. The resulting mixture is denatured and incubated with a polymerase to produce annealing of the single-stranded fragments at regions of identity between the single-stranded fragments. Strand elongation results in the formation of a mutagenized double-stranded polynucleotide. These steps are repeated at least once. In this gene shuffling technique, recombination occurs between substantially homologous, but non-identical, sequences of the atzA gene. In the studies provided in Example 2, the atzB gene was not geneshuffled.

In the technique, published by Stemmer et al. (Nature, supra), the reassembled product is amplified by PCR and cloned into a vector. Clones containing the shuffled gene are next used in selection or screening assays. Example 2 discloses the use of a gene shuffling technique to generate pools of modified atzA sequences. The gene shuffling technique of Example 2 was modified based on the Stemmer et al. references. In this technique, an entire plasmid containing the atzA and atzB gene in a vector was treated with DNAase I and fragments between 500 and 2000 bp were gel purified. The fragments were assembled in a PCR reaction as provided in Example 2.

10

5

Once intact gene sequences are reassembled, they are incorporated into a vector suitable for expressing protein encoded by the reassembled nucleic acid, or as provided in Example 1, where the gene sequences are already in a vector, the vector can be incorporated directly into an organism suitable for replicating the vector. The vector containing the atzA gene is also preferably incorporated into a host suitable for expressing the atzA gene. The host, generally an E. coli species, is used in assays to screen or select for clones expressing the AtzA protein under defined conditions. The type of organism can be matched to the mutagenesis procedure and in Example 2, a preferred organism was the E. coli strain NM522.

20

25

15

The assays suitable for use in this invention can take any of a variety of forms for determining whether a particular protein produced by the organism containing the variant atzA sequences expresses an enzyme capable of dechlorinating or deaminating s-triazine compounds. Therefore, the types of assays that could be used in this invention include assays that monitor the degradation of s-triazine-containing compounds including ATRAZINE, SIMAZINE or MELAMINE using any of a variety of methods including, but not limited to, HPLC analysis to assess substrate degradation; monitoring clearing of precipitable s-triazine containing substrates, such as atrazine or TERBUTHYLAZINE, on solid media by bacteria containing the homologs of this invention; growth assays in media containing soluble substrate, monitoring the amount of chlorine released, as described by Bergman et al., Anal. Chem.

10

15

20

25

30 ...

Salar Control Control

29, 241-243 (1957) or the amount of nitrogen released; evaluating the derivitized product using gas chromatography and/or mass spectroscopy, solid agar plate assays with varied salt, pH substrate, solvent, or temperature conditions, colorimetric assays such as those provided by Epstein, J. ("Estimation of Microquantitation of Cyanide", (1947) Analytical Chemistry 19(4):272-276) and Habig and Jakoby ("Assays for Differentiation of Glutathione s-transferases, Methods in Enzymology 77:398-405) as well as radiolabelled assays to assess, for example, the release of radiolabel as a result of enzymatic activity.

In a preferred assay, clones are tested for their ability to degrade s-triazine-containing compounds such as atrazine, SIMAZINE,
TERBUTHYLAZINE (2-chloro-4-(ethylamino)-6-(tertiary butyl-amino)-1,3,5-triazine), desethylatrazine, desisopropylatrazine, MELAMINE, and the like. In these assays, atrazine, or another insoluble s-triazine-containing substrate, is incorporated into a nutrient agar plate as the sole nitrogen source.

Concentrations of atrazine or other s-triazine-containing compounds can vary in the plate from about 300 µg/ml to at least about 1000 µg/ml and in a preferred embodiment about 500 µg/ml atrazine is used on the plate. Many s-triazines are relatively insoluble compounds in water and a suspension in an agar plate produces a cloudy appearance. Bacteria capable of metabolizing the insoluble s-triazine-containing compounds produce a clearing on the cloudy agar plate. An exemplary assays is a modified assay disclosed by Mandelbaum et al. (Appl. Environ. Microbiol. 61:1451-1453, (1995)) and provided in Example 2. In these assays LB medium can be used with the atrazine because E. coli expressing AtzA homologs support atrazine-degrading activity in the presence of other nitrogen sources. The assay demonstrates atrazine degradation by observing clearing zones surrounding clones expressing homologs of AtzA.

Clones are selected from the insoluble substrate assay based on their ability to produce, for example, a clearing in the substrate-containing plates. Similarly, assay conditions can be modified such as, but not limited to, salt, pH, solvent, temperature, and the like, to select clones encoding AtzA homologs capable of degrading a substrate under a variety of test conditions. For example,

WO 98/31816 PCT/US98/00944

19

the pH of the assay can be altered to a pH range of about 5 to about 9. These assays would likely use isolated homolog protein to permit an accurate assessment of the effect of pH. The assay, or a modification of the assay, suitable for elevated temperatures (such as a soluble assay) can employ elevated temperature ranges, for example, between about 50° to about 80°C. The assays can also be modified to include altered salt concentrations including conditions equivalent to salt concentrations of about 2% to at least about 5% and preferably less than about 10% NaCl.

5

10

15

20

25

Clones identified as having altered enzymatic activity as compared with the native enzyme are further assessed to rule out if the apparent enhanced activity of the enzyme is the result of a faster or more efficient AtzA protein production or whether the effect observed is the result of an altered atzA gene sequence. For example, in Example 2, the atzA was expressed to a high level using pUC18 as a preferred method to rule out higher in vivo activity due to increased expression.

Once triazine-degrading colonies are identified with the desired characteristics, the AtzA homologs are isolated for further analysis. Clones containing putative faster enzyme(s) can be picked, grown in liquid culture, and the protein homolog can be purified, for example, as described (de Souza et al. J. Bacteriology, 178:4894-4900 (1996)). The genes encoding the homologs can be modified, as known in the art, for extracellular expression or the homologs can be purified from bacteria. An exemplary method for protein purification is provided in Example 4. In a preferred method, protein was collected from bacteria using ammonium sulfate precipitation and further purified by HPLC (see for example, de Souza et al., App. Envir. Microbio. 61:3373-3378 (1995)).

Using these methods, a number of homologs were identified.

Homologs can be identified using the assays discussed in association with this invention including the precipitable substrate assays on solid agar as described by Mandelbaum, et al. (supra). Homologs identified using the methods of Example 2 were separately screened for atrazine-degrading activity, for enhanced TERBUTHYLAZINE-degrading activity and for activity against other

10

15

20

s-triazine-containing compounds. An assay for TERBUTHYLAZINE degrading activity is provided in Example 6. Two homologs were found to have at least a 10 fold higher activity and contained 8 different amino acids than the native AtzA protein (A7 and T7, see Figs. 1-4). A subsequent round of DNA shuffling starting with the homolog gene sequence yielded further improvements in activity (A11 and A13 corresponding to nucleic acid SEQ ID NOS: 7-10 and SEQ ID NO:11 respectively). This enzyme and other AtzA homologs (clones A40, A42, A44, A46, A60 corresponding to nucleic acid SEQ ID NOS: 17-21 and to protein SEQ ID NOS: 22-26, respectively) represent catabolic enzymes modified in their biological activity. Preferred homologs identified in initial studies include A7, T7, A11, A44, and A46.

Homologs were also identified with altered substrate activity. Both homologs T7 and A7 were able to degrade TERBUTHYLAZINE better than the wild-type enzyme. Other homologs capable of degrading TERBUTHYLAZINE include A42, A44, A46 and A60.

Atrazine chlorohydrolase converts a herbicide to a non-toxic, non-herbicidal, more highly biodegradable compound and the kinetic improvement of the homologs has important implications for enzymatic environmental remediation of this widely used herbicide. Less protein is required to dechlorinate the same amount of atrazine. Importantly, the protein can also be used for degradation of the *s*-triazine-compound TERBUTHYLAZINE.

This invention also relates to nucleic acid and protein sequences identified from the homologs of this invention. Peptide and nucleic acid
fragments of these sequences are also contemplated and those skilled in the art can readily prepare peptide fragments, oligonucleotides, probes and other nucleic acid fragments based on the sequences of this invention. The homologs of this invention include those with an activity different from the native atrazine chlorohydrolase (AtzA) protein. As noted supra, an activity that is different from the native atrazine chlorohydrolase protein includes enzymatic activity that is improved or is capable of functioning under different conditions such as salt

10

15

20

25

30

concentration, temperature, altered substrate, or the like. Preferably, the DNA encoding the homologs hybridize to a DNA molecule complementary to the wild-type coding region of a DNA molecule encoding wild-type AtzA protein, such as the sequence provided in SEQ ID NO:1, under high to moderate stringency hybridization conditions. The homologs preferably have a homology of at least 95% to SEQ ID NO:1. As used herein, "high stringency hybridization conditions" refers to, for example, hybridization conditions in buffer containing 0.25 M Na₂HPO₄ (pH 7.4), 7% sodium dodecy. Lulfate (SDS), 1% bovine serum albumin (BSA), 1.0 mM ethylene diamine tetraacetic acid (EDTA, pH 8) at 65°C, followed by washing 3x with 0.1% SDS and 0.1x SSC (0.1x SSC contains 0.015 M sodium chloride and 0.0015 M trisodium citrate, pH 7.0) at 65°C.

A number of homologs have been identified using the methods of

this invention. For example, SEQ ID NO:3 is the gene sequence of a homolog A7 of the atzA gene that shows enhanced atrazine degradation activity and, surprisingly, also demonstrated enhanced TERBUTHYLAZINE degradation activity. TERBUTHYLAZINE degradation experiments are provided in Example 6. The amino acid sequence of the enzyme encoded by SEO ID NO:3 identified as SEQ ID NO:5. SEQ ID NO: 4 is the gene sequence of the homolog T7 of the atzA gene that shows enhanced atrazine degradation activity and enhanced TERBUTHYLAZINE degradation activity. A summary of the TERBUTHYLAZINE degradation activity for T7 and A7 is provided in Example 6. SEQ ID NO:6 provides the amino acid sequence of the homolog encoded by SEO ID NO:4. Fig. 1 provides the nucleotide sequence alignment of wild type atzA from SEQ ID NO:1 with SEQ ID NO:3 and Fig.2 provides the nucleotide sequence alignment of SEQ ID NO:1 with SEQ ID NO:4. Fig. 3 provides the amino acid sequence alignment of SEQ ID NO:2, the amino acid sequence of the protein encoded by SEQ ID NO:1, with SEQ ID NO:5 and Fig. 4 provides the amino acid sequence alignment of SEQ ID NO:2 with SEQ ID NO:6. A review of the sequences encoding A7 and T7 indicate that both homologs have a total of 8 amino acid changes relative to native AtzA (SEO ID NO:2). Seven amino acid changes are common to both A7 and T7. The nucleic

10

15

20

25

acid sequences of other homologs with altered activity include A40 (nucleic acid SEQ ID NO:17; amino acid sequence SEQ ID NO:22); A42 (nucleic acid SEQ ID NO:18; amino acid sequence SEQ ID NO:23); A44 (nucleic acid SEQ ID NO:19; amino acid sequence SEQ ID NO:24); A46 (nucleic acid SEQ ID NO:20; amino acid sequence SEQ ID NO:25); and A60 (nucleic acid SEQ ID NO:21; amino acid sequence SEQ ID NO:26).

Without intending to limit the scope of this invention, the success attributed to the identification of homologs of AtzA may be based on the recognition that this protein is not evolutionarily mature. Therefore, not all gene sequences are good candidates as the starting material for identifying a number of biological variants of a particular protein and similarly, not all enzymes are amenable to the order of magnitude of rate enhancement by directed evolution using DNA shuffling or other methods. Without intending to limit the scope of this invention, it is believed that some enzymes are already processing substrates at their theoretical rate limit. In these cases, catalysis is limited by the physical diffusion of the substrate onto the catalytic surface of the enzyme. Thus, changes in the enzyme would not likely improve the rate of catalysis. Examples of enzymes that operate at or near catalytic "perfection" are triosephosphate isomerase, fumarase, and crotonase (available from the GenBank database system). Even biodegradative enzymes that hydrolyze toxic substrates fall into this class. For example, the phosphotriesterase that hydrolyzes paraoxon operates near enough to the diffusion limit and suggests that it would not be a good candidate for mutagenic methods to improve the catalytic rate constant of the enzyme with its substrate (see Caldwell et al., Biochem. 30:7438-7444 (1991)).

The gene sequences of this invention can be incorporated into a variety of vectors. Preferably, the vector includes a region encoding a homolog of AtzA and the vector can also include other DNA segments operably linked to the coding sequence in an expression cassette, as required for expression of the homologs, such as a promoter region operably linked to the 5' end of the coding DNA sequence, a selectable marker gene, a reporter gene, and the like.

10

15

20

25

The present invention also provides recombinant cells expressing the homologs of this invention. For example, DNA that expresses the homologs of this invention can be expressed in a variety of bacterial strains including *E. coli* sp. strains and *Pseudomonas* sp. strains. Other organisms include, but are not limited to, *Rhizobium*, *Bacillus*, *Bradyrhizobium*, *Arthrobacter*, *Alcaligenes*, and other rhizosphere and nonrhizosphere soil microbe strains.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable hosts for vectors encoding atzA or its homologs. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccaromyces pombe, Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis, K. bulgaricus, K. thermotolerans, and K. marxianus, Pichia pastoris, Candida, Trichoderma reesia, Neurospora crassa, and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans.

Prokaryotic cells used to produce the homologs of this invention are cultured in suitable media, as described generally in Maniatis et al., Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Press: Cold Spring Harbor, NY (1989). Any necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. In general the *E. coli* expressing the homologs of this invention are readily cultured in LB media (see Maniatis, *supra*). The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art. Induction of cells to express the AtzA protein is accomplished using the procedures required by the particular expression system selected. The host cells referred to in this disclosure are generally cultured *in vitro*. Cells are harvested, and cell extracts are prepared, using standard laboratory protocols.

This invention also relates to isolated proteins that are the product of the gene sequences of this invention. The isolated proteins are protein

gravan big aller kildika kildi bili aller kalendar

10

15

20

25

compound.

homologs of the wild-type atrazine chlorohydrolase enzyme despite their potential for altered substrate preference. The protein can be isolated in a variety of methods disclosed in the art and a preferred method for isolating the protein is provided in Examples 4 and 5 and in the publications of de Souza et al. (supra).

The wild-type AtzA protein acts on Atrazine, desethylatrazine, Desisopropylatrazine and SIMAZINE but did not degrade

Desethyldesisopropylatrazine or MELAMINE and only poorly degraded

TERBUTHYLAZINE. Homologs identified in this invention have a spectrum of substrate preferences identical to the wild-type AtzA protein and in addition, for example, are able to degrade other substrates such as TERBUTHYLAZINE.

That homologs were identified that were capable of degrading two different s-triazine-containing compounds suggests that the methods of this invention can be used on the wild-type progenitor atzA gene or on the homologs produced by this invention to produce even more useful proteins for environmental remediation of s-triazine-containing compounds. Example 7 provides an assay for detecting degradation, including deamination, of a soluble s-triazine-containing

Various environmental remediation techniques are known that utilize high levels of proteins. Bacteria or other hosts expressing the homologs of this invention can be added to a remediation mix or mixture in need of remediation to promote contaminate degradation. Alternatively, isolated AtzA homologs can be added. Proteins can be bound to immobilization supports, such as beads, particles, films, etc., made from latex, polymers, alginate, polyurethane, plastic, glass, polystyrene, and other natural and man-made support materials. Such immobilized protein can be used in packed-bed columns for treating water effluents. The protein can be used to remediate liquid samples, such as contaminated water, or solids. The advantage of some of the homologs identified thus far indicate that the homologs demonstrate an ability to degrade more than one substrate and to degrade the substrate at a faster rate or under different reaction conditions from the native enzyme.

All references and publications cited herein are expressly to incorporated by reference into this disclosure. The invention will be further

10

15

20

25

described by reference to the following detailed examples. Particular embodiments of this invention will be discussed in detail and reference has been made to possible variations within the scope of this invention. There are a variety of alternative techniques and procedures available to those of skill in the art which would similarly permit one to successfully perform the intended invention that do not detract from the spirit and scope of this invention.

Example 1 Isolation of Wild-type atzA gene from *Pseudomonas* sp. strain ADP Bacterial strains and growth conditions.

Pseudomonas sp. strain ADP (Mandelbaum et al., Appl. Environ. Microbiol., 59, 1695-1701 (1993)) was grown at 37°C on modified minimal salt buffer medium, containing 0.5% (wt/vol) sodium citrate dihydrate. The atrazine stock solution was prepared as described in Mandelbaum et al., Appl. Environ. Microbiol., 61, 1451-1457 (1995)). Escherichia coli DH5α was grown in Luria-Bertani (LB) or M63 minimal medium, which are described in Maniatis et al., Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Press: Cold Spring Harbor, NY (1989). Tetracycline (15 μg/ml), kanamycin (20 μg/ml), and chloramphenicol (30 μg/ml) were added as required.

To construct the *Pseudomonas* sp. strain ADP genomic library, total genomic DNA was partially digested with *EcoRI*, ligated to the *EcoRI*-digested cosmid vector pLAFR3 DNA, and packaged *in vitro*. The completed genomic DNA library contained 2000 colonies.

To identify the atrazine degrading clones, the entire gene library was replica-plated onto LB medium containing 500 μg/ml atrazine and 15 μg/ml tetracycline. Fourteen colonies having clearing zones were identified. All fourteen clones degraded atrazine, as determined by HPLC analysis. Cosmid DNA isolated from the fourteen colonies contained cloned DNA fragments which were approximately 22 kb in length. The fourteen clones could be subdivided into six groups on the basis of restriction enzyme digestion analysis using *EcoRI*. All fourteen clones, however, contained the same 8.7 kb *EcoRI*

fragment. Thirteen of the colonies, in addition to degrading atrazine, also produced an opaque material that surrounded colonies growing on agar medium. Subsequent experiments indicated that the opaque material only was observed in *E. coli* clones which accumulated hydroxyatrazine. Thus, the cloudy material surrounding *E. coli* pMD2-pMD4 colonies was due to the deposition of hydroxyatrazine in the growth medium. The one colony that degraded atrazine without the deposition of the opaque material was selected for further analysis. The clone from this colony was designated pMD1.

10

25

30

5

Example 2 Mutagenesis Procedure

Gene Shuffling. Atz A and B genes were subcloned from pMD1 into pUC18. The two inserts were reduced in size to remove extraneous DNA.

A 1.9 kb Aval fragment containing atzA was end-filled and cloned into the end-filled Aval site of pUC18. A 3.9 kb Clal fragment containing atzB was end-filled and cloned into the HincII site of pUC18. The gene atzA was then excised from pUC18 with EcoRI and BamHI, AtzB with BamHI and HindIII, and the two inserts were co-ligated into pUC18 digested with EcoRI and HindIII. The result was a 5.8 kb insert containing AtzA and AtzB in pUC18 (total plasmid size 8.4 kb).

Recursive sequence recombination was performed by modifications of existing procedures (Stemmer, W., Proc. Natl. Acad. Sci. USA 91:10747-10751 (1994) and Stemmer, W. Nature 370:389-391 (1994)). [Mervyn, do you know more now about what was done?] The entire 8.4 kb plasmid was treated with DNAase I in 50 mM Tris-Cl pH 7.5, 10 mM MnCl₂ and fragments between 500 and 2000 bp were gel purified. The fragments were assembled in a PCR reaction using Tth-XL enzyme and buffer from Perkin Elmer, 2.5 mM MgOAc, 400 µM dNTPs and serial dilutions of DNA fragments. The assembly reaction was performed in an MJ Research "DNA Engine" thermocycler programmed with the following cycles:

10

15

20

25

30

- 1 94°C, 20 seconds
- 2 94°C, 15 seconds
- 3 40°C, 30 seconds
- 4 72°C, 30 seconds + 2 seconds per cycle
- 5 go to step 2 39 more times
- 6 4°C

The atzA gene could not be amplified from the assembly reaction using the polymerase chain reaction, so instead DNA from the reaction was purified by standard phenol extraction and ethanol precipitation methods and digested with KpnI to linearize the plasmid (the KpnI site in pUC18 was lost during subcloning, leaving only the KpnI site in atzA). Linearized plasmid was gel-purified, self-ligated overnight and transformed into E coli strain NM522.

Serial dilutions of the transformation reaction were plated onto LB plates containing 50 μ g/ml ampicillin, the remainder of the transformation was stored in 25% glycerol and frozen at -80°C. Once the transformed cells were titered, the frozen cells were plated at a density of between 200 and 500 on 150 mm diameter plates containing 500 μ g/ml atrazine or another substrate and grown at 37°C.

Atrazine at 500 µg/ml forms an insoluble precipitate creating a cloudy appearance on the agar plate. The solubility of atrazine is about 30 µg/ml, therefore for precipitable substrate assays, such as the assay disclosed here, the atrazine concentration should be preferably greater than 30 µg/ml. Atrazine or hydroxyatrazine were incorporated in solid LB or minimal medium, as described in Mandelbaum et al., Appl. Environ. Microbiol., 61, 1451-1457 (1995), at a final concentration of 500 µg/ml to produce an opaque suspension of small particles in the clear agar. AtzA and the homologs with atrazine-degrading activity convert atrazine into a soluble product. The degradation of atrazine or hydroxyatrazine by wild-type and recombinant bacteria was indicated by a zone of clearing surrounding colonies. The more active the homolog, the more rapidly a clear halo formed on atrazine-containing plates. Positive colonies that most rapidly formed the largest clear zones were selected initially for further analysis. The (approximately) 40 best colonies were picked, pooled, grown in the presence of 50 µg/ml ampicillin and plasmid prepared from them. More

10

15

20

efficient enzymes can also be tested using atrazine concentrations greater than $500 \mu g/ml$.

The entire process (from DNAase-treatment to plating on atrazine plates) was repeated 4 times as a method for further improving on the rate of enzymatic activity. In several experiments, cells were plated on plates containing 500 μ g/ml atrazine and on plates containing 500 μ g/ml of the atrazine analogue TERBUTHYLAZINE.

Other compounds can be tested in similar assays replacing atrazine (2-chloro-4-ethlyamino-6-isopropylamino-1,3,5-s-triazine) for the following compounds: desethylatrazine (2-chloro-4-amino-6-isopropylamino-s-triazine), deisopropylatrazine (2-chloro-4-ethylamino-6-amino-s-triazine), hydroxyatrazine (2-hydroxy-4-ethylamino-6-isopropylamino-s-triazine), desethylhydroxyatrazine (2-hydroxy-4-amino-6-isopropylamino-s-triazine), desisopropylhydroxyatrazine (2-hydroxy-4-amino-6-isopropylamino-s-triazine), desethyldesisopropylatrazine (2-chloro-4,6-diamino-s-triazine), SIMAZINE (2-chloro-4,6-diethylamino-s-triazine), TERBUTHYLAZINE (2-chloro-4-ethylamino-6-terbutylamino-s-triazine, and MELAMINE (2,4,6-triamino-s-triazine) were obtained from Ciba Geigy Corp., Greensboro, N.C. Ammelide (2,4-dihydroxy-6-amino-s-triazine), ammeline (2-hydroxy-4,6,-diamino-s-triazine) were obtained from Aldrich Chemical Co., Milwaukee. WI.

Example 3 DNA Sequencing of Wild-Type atzA and Homolog atzA genes

25 DNA Sequencing. The nucleotide sequence of the approximately
1.9-kb AvaI DNA fragment in vector pACYC184, designated pMD4, or the
homologs in pUC18 or another vector was determined using both DNA strands.
DNA was sequenced by using a PRISM Ready Reaction DyeDeoxy Terminator
Cycle Sequencing kit (Perkin-Elmer Corp., Norwalk, CT) and a ABI Model
373A DNA Sequencer (Applied Biosystems, Foster City, CA). Nucleotide
sequence was determined initially by subcloning and subsequently by using
primers designed based on sequence information obtained from subcloned DNA
fragments. The GCG sequence analysis software package (Genetics Computer

Group, Inc., Madison, WI) was used for all DNA and protein sequence comparisons. Radiolabelled chemicals were obtained from Ciba Geigy Corp., Greensboro, N.C.

5

10

15

20

25

Example 4 Protein Purification of AtzA or Homologs

E. coli transformed with a vector containing the wild type atzA gene or alternatively with a homolog, in a vector capable of directing expression of the gene as a protein, was grown overnight at 37°C in eight liters of LB medium containing 25 µg/ml chloramphenicol. The culture medium was centrifuged at 10,000 x g for 10 minutes at 4°C, washed in 0.85% NaCl, and the cell pellet was resuspended in 50 ml of 25 mM MOPS buffer (3-[Nmorpholino]propane-sulfonic acid, pH 6.9), containing phenylmethylsulfonylfluoride (100 µg/ml). The cells were broken by three passages through an Amicon French Pressure Cell at 20,000 pounds per square inch (psi) at 4°C. Cell-free extract was obtained by centrifugation at 10,000 x g for 15 minutes. The supernatant was clarified by centrifugation at 18,000 x g for 60 minutes and solid NH₄SO₄ was added, with stirring, to a final concentration of 20% (wt/vol) at 4°C. The solution was stirred for 30 minutes at 4°C and centrifuged at 12,000 x g for 20 minutes. The precipitated material was resuspended in 50 ml of 25 mM MOPS buffer (pH 6.9), and dialyzed overnight at 4°C against 1 liter of 25 mM MOPS buffer (pH 6.9).

Where purified protein was desired, the solution was loaded onto a Mono Q HR 16/10 Column (Pharmacia LKB Biotechnology, Uppsala, Sweden). The column was washed with 25 mM MOPS buffer (pH 6.9), and the protein was eluted with a 0-0.5 M KCl gradient. Protein eluting from the column was monitored at 280 nm by using a Pharmacia U.V. protein detector. Pooled fractions containing the major peak were dialyzed overnight against 1 liter 25 mM MOPS buffer (pH 6.9). The dialyzed material was assayed for atrazine degradation ability by using HPLC analysis (see above) and analyzed for purity by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoreses (Laemlli).

10

15

20

25

30

Protein Verification: Protein subunit sizes were determined by SDS polyacrylamide gel electrophoresis by comparison to known standard proteins, using a Mini-Protean II gel apparatus (Biorad, Hercules, CA). The size of the holoenzyme was determined by gel filtration chromatography on a Superose 6 HR (1.0 x 30.0 cm) column, using an FPLC System (Pharmacia, Uppsala, Sweden). The protein was eluted with 25 mM MOPS buffer (pH 6.9) containing 0.1 M NaCl. Proteins with known molecular weights were used as chromatography standards. Isoelectric point determinations were done using a Pharmacia Phast-Gel System and Pharmacia IEF 3-9 media. A Pharmacia broadrange pI calibration kit was used for standards.

Enzyme Kinetics. Purified AtzA protein and homologs of the protein at 50 μg/ml, were separately added to 500 μl of different concentrations of atrazine (23.3 μM, 43.0 μM, 93 μM, 233 μM, and 435 μM in 25 mM MOPS buffer, pH 6.9) or another s-triazine-containing compound and reactions were allowed to proceed at room temperature for 2, 5, 7, and 10 minutes. The reactions were stopped by boiling the reaction tubes at specific times, the addition of 500 μl acetonitrile and rapid freezing at -80°C. Thawed samples were centrifuged at 14,000 rpm for 10 minutes, the supernatants were filtered through a 0.2 μM filter, and placed into crimp-seal HPLC vials. HPLC analysis was done as described above. Based on HPLC data, initial rates of atrazine degradation and hydroxyatrazine formation were calculated and Michaelis Menton and Lineweaver Burke plots were constructed.

Effect of simple nitrogen sources on atrazine degradation.

From experiments done with *Pseudomonas* species strain ADP on solid media with 500 ppm atrazine and varying concentrations of ammonium chloride, ammonium chloride concentrations as low as 0.6-1.2 mM were sufficient to inhibit visible clearing on the plates, even after 2 weeks of incubation either at 28°C or 37°C. With similar experiments using *E. coli* DH5α (pMD1 or pMD2) and other *E. coli* strains, atrazine degradation was observed in the presence of ammonium chloride concentrations as high as 48 mM. This value is almost 40-80 fold higher than the wild-type tolerance for ammonium chloride with

10

15

20

25

30

concomitant atrazine degradation. Therefore, it was not necessary to use media free of exogenous ammonia in the screening assays.

Example 5 Further characterization of the enzymatic activity of the homologs

Analysis of atrazine metabolism by E. coli clones. The extent and rate of atrazine degradation was determined in liquid culture. E. coli clones containing plasmids capable of expressing the homologs were compared to Pseudomonas sp. strain ADP for their ability to transform ring-labelled [14C]-atrazine to water-soluble metabolites. This method, which measures [14C]-label partitioning between organic and aqueous phases, had previously been used with Pseudomonas sp. ADP to show the transformation of atrazine to metabolites that partition into the aqueous phase, in Mandelbaum et al., Appl. Environ. Microbiol., 61, 1451-1457 (1995). When Pseudomonas sp. strain ADP or E. coli capable of expressing the homologs of this invention were incubated for 2 hours with [14C]-atrazine, 98%, 97%, 88%, and 92%, respectively, of the total recoverable radioactivity was found in the aqueous phase. Greater than 90% of the initial radioactivity was accounted for as atrazine plus water soluble metabolites, indicating that little or no ¹⁴CO₂ was formed. In contrast, forty-four percent of the radioactivity was lost from the Pseudomonas ADP culture after 18.5 hours. In previous studies done with Pseudomonas sp. strain ADP and ringlabelled ¹⁴C-atrazine, radiolabel was lost from culture filtrates as ¹⁴CO₂ (see, e.g., Mandelbaum et al., Appl. Environ. Microbiol., 61, 1451-1457 (1995)). Retention of the radiolabel is indicative of lack or inhibition of enzymatic activity. While these studies were performed for AtzA, similar studies are used to assess the activity of the homologs of this invention.

Example 6 Assays to detect homologs of AtzA on TERBUTHYLAZINE

TERBUTHYLAZINE was incorporated in solid LB medium at a final concentration of about 400-500 µg/ml to produce an opaque suspension of sample particles in the clear agar. The degradation of terbuthyalazine by

10

recombinant bacteria was indicated by a zone of clearing surrounding the colonies. HPLC analysis was performed with a Hewlett Packard HP 1090 Liquid Chromatograph system equipped with a photodiode array detector and interfaced to an HP 79994A Chemstation. TERBUTHYLAZINE and its metabolites were resolved by using an analytical C18 reverse-phase Nova-Pak HPLC column (4-μm-diameter spherical packing, 150 by 3.9 mm; Waters Chromatography, Milford, Mass.) and an acetonitrile (ACN) gradient, in water, at a flow rate of 1.0 ml min⁻¹. Linear gradients of 0 to 6 min, 10 to 25% ACN; 6 to 21 min, 25 to 65% ACN; 21 to 23 min, 65 to 100% ACN; and 23 to 25 min, 100% ACN were used. Spectral data of the column eluent were acquired between 200 and 400 nm (12-nm bandwidth per channel) at a sampling frequency of 640 ms. Spectra were referenced against a signal of 500 nm.

Comparative results of an assay to assess TERBUTHYLAZINE degradation is provided in Figures 7 and 8 Figure 7 (a) provides a histogram 15 demonstrating the relative percentage of TERBUTHYLAZINE remaining in samples tested while Figure 7(b) provides a measure of the production of hydroxyterbuthylazine as a measure of TERBUTHYLAZINE degradation. Sample 1 is a control sample without enzyme. Sample 2 uses a two fold excess of AtzA protein as compared to the concentration of homolog added in Sample 3 20 and Sample 4. Sample 3 employed the T7 homolog (SEQ ID NO:6) and Sample 4 employed the A7 homolog (SEQ ID NO:5). Results were determined by HPLC as described above. Figure 8(a) provides the percentage of TERBUTHYLAZINE remaining after a 15 minute exposure to homologs A7, A11, and T7. Samples 1-10 refer to the effect of homolog activity in the 25 presence of 50 uM of: Manganese (1); Mangnesium (2), EDTA (3); cobalt (4); zinc (5); iron (6); copper (7); nickel (8); no metal (9); or no eznyme (10). Figure 8(b) provides the relative amount of hydroxyterbuthylazine as a measure of TERBUTHYLAZINE degradation for homologs A7 (solid bar), A11 (hatched bar), or T7 (open bar) in the presence or absence of additives 1-10 (supra). 30

Example 7 Assays to detect homologs of AtzA on "MELAMINE"

5

"MELAMINE" (2, 4, 6-triamino -s-triazine) at a concentration of at least about 1 mM to about 5 mM and preferably about 2 mM MELAMINE is incorporated into solid minimal nutrient media as the sole nitrogen source. Bacteria are distributed on the plate and growth of the organisms is indicative of their ability to degrade MELAMINE, thereby releasing ammonia for growth. Growth is evidence of the ability of the organisms expressing the homologs of this invention to deaminate MELAMINE. There is more than one nitrogencontaining group in MELAMINE. Therefore the selection of larger colonies on MELAMINE containing solid minimal nutrient media could be used to select for faster MELAMINE-degrading homologs.

15

20

10

A comparison of the nucleic acid sequence from a wild type MELAMINE degrading *Pseudomonas* NRRLB 12227 strain as compared to the atzA gene sequence indicated a homology of more than 90% over a 500 base pair sequence obtained from NRRLB using primer selected that were internal to atzA suggesting that homologs of atzA could be identified that degrade "MELAMINE." This strain did not degrade atrazine. Moreover, homologs identified using the methods of Example 2 are subjected to further mutagenesis and colonies capable of growing in MELAMINE can be identified. Colonies containing the protein AtzA are tested for growth in MELAMINE under identical conditions. Other s-triazine containing compounds such as the pesticides available under the tradenames "AMETRYN", "PROMETRYN", "PROMETRYN", "PROMETRON", "ATRATON" and "CYROMAZINE" could also function as substrates for other homologs of this invention.

3(

25

It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited and that numerous other embodiments, examples, uses, modifications and departures from the

embodiments, examples and uses may be made without departing from the inventive scope of this application.

tonto encrementali lancionimi ne vicappedra care i della come come della come

PCT/US98/00944

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: REGENTS OF THE UNIVERSITY OF MINNESOTA
- (ii) TITLE OF INVENTION: DNA MOLECULES AND PROTEIN DISPLAYING
 IMPROVED TRIAZINE COMPOUND DEGRADING ABILITY
- (iii) NUMBER OF SEQUENCES: 26
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: MUETING, RAASCH & GEBHARDT, P.A.
 - (B) STREET: 119 North Fourth Street
 - (C) CITY: Minneapolis
 - (D) STATE: Minnesota
 - (E) COUNTRY: USA
 - (F) ZIP: 55401
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) PRIORITY APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/035,404
 - (B) FILING DATE:

17-JAN-1997

- (C) CLASSIFICATION:
- (vii) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: Not Assigned
 - (B) FILING DATE:

16-JAN-1998

THE RESIDENCE OF COMMENCE OF THE PROPERTY OF T

- (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: MCCORMACK, MYRA M.
 - (B) REGISTRATION NUMBER: 36,602
 - (C) REFERENCE/DOCKET NUMBER: 110.00400201
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 612-305-1225
 - (B) TELEFAX. 612-305-1228

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1858 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CTCGGGTAAC TTCTTGAGCG CGGCCACAGC AGCCTTGATC ATGAAGGCGA GCATGGTGAC 60 CTTGACGCCG CTCTTTTCGT TCTCTTTGTT GAACTGCACG CGAAAGGCTT CCAGGTCGGT 120 GATGTCCGCG TCGTCGTGGT TGGTGACGTG CGGGATGACC ACCCAGTTGC GGTGCAGGTT 180 TTTCGATGGC ATAATATCTG CGTTGCGACG TGTAACACAC TATTGGAGAC ATATCATGCA AACGCTCAGC ATCCAGCACG GTACCCTCGT CACGATGGAT CAGTACCGCA GAGTCCTTGG 300 GGATAGCTGG GTTCACGTGC AGGATGGACG GATCGTCGCG CTCGGAGTGC ACGCCGAGTC 360 GGTGCCTCCG CCAGCGGATC GGGTGATCGA TGCACGCGGC AAGGTCGTGT TACCCGGTTT 420 CATCAATGCC CACACCCATG TGAACCAGAT CCTCCTGCGC GGAGGGCCCT CGCACGGACG 480 TCAATTCTAT GACTGGCTGT TCAACGTTGT GTATCCGGGA CAAAAGGCGA TGAGACCGGA 540 GGACGTAGCG GTGGCGGTGA GGTTGTATTG TGCGGAAGCT GTGCGCAGCG GGATTACGAC 600 GATCAACGAA AACGCCGATT CGGCCATCTA CCCAGGCAAC ATCGAGGCCG CGATGGCGGT 660 CTATGGTGAG GTGGGTGTGA GGGTCGTCTA CGCCCGCATG TTCTTTGATC GGATGGACGG 720 GCGCATTCAA GGGTATGTGG ACGCCTTGAA GGCTCGCTCT CCCCAAGTCG AACTGTGCTC 780 GATCATGGAG GAAACGGCTG TGGCCAAAGA TCGGATCACA GCCCTGTCAG ATCAGTATCA 840 TGGCACGGCA GGAGGTCGTA TATCAGTTTG GCCCGCTCCT GCCACTACCA CGGCGGTGAC 900 AGTTGAAGGA ATGCGATGGG CACAAGCCTT CGCCCGTGAT CGGGCGGTAA TGTGGACGCT 950 TCACATGGCG GAGAGCGATC ATGATGAGCG GATTCATGGG ATGAGTCCCG CCGAGTACAT 1020 GGAGTGTTAC GGACTCTTGG ATGAGCGTCT GCAGGTCGCG CATTGCGTGT ACTTTGACCG 1080 GAAGGATGTT CGGCTGCTGC ACCGCCACAA TGTGAAGGTC GCGTCGCAGG TTGTGAGCAA 1140 TGCCTACCTC GGCTCAGGGG TGGCCCCCGT GCCAGAGATG GTGGAGCGCG GCATGGCCGT 1200 GGGCATTGGA ACAGATAACG GGAATAGTAA TGACTCCGCA AACATGATCG GAGACATGAA 1260 GTTTATGGCC CATATTCACC GCGCGGTGCA TCGGGATGCG GACGTGCTGA CCCCAGAGAA 1320

GATTCTTGAA	ATGGCGACGA	TCGATGGGGC	GCGTTCGTTG	GGAATGGACC	ACGAGATTGG	1380
TTCCATCGAA	ACCGGCAAGC	GCGCGGACCT	TATCCTGCTT	GACCTGCGTC	ACCTCAGACG	1440
ACTCTCACAT	CATTTGGCGG	CCACGATCGT	GTTTCAGGCT	TACGGCAATG	AGGTGGACAC	1500
TGTCCTGATT	GACGGAAACG	TTGTGATGGA	GAACCGCCGC	TTGAGCTTTC	TTCCCCCTGA	1560
ACGTGAGTTG	GCGTTCCTTG	AGGAAGCGCA	GAGCCGCGCC	ACAGCTATTT	TGCAGCGGGC	1620
GAACATGGTG	GCTAACCCAG	CTTGGCGCAG	CCTCTAGGAA	ATGACGCCGT	TGCTGCATCC	1680
GCCGCCCCTT	GAGGAAATCG	CTGCCATCTT	GGCGCGGCTC	CGATTGGGGG	GCGGACATGA	1740
CCTTGATGGA	TACAGAATTG	CCATGAATGC	GGCACTTCCG	TCCTTCGCTC	GTGTGGAATC	1800
GTTGGTAGGT	GAGGGTCGAC	TGCGGGCGCC	AGCTTCCCGA	AGAGGTGAAA	GGCCCGAG	1858

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 473 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

. . .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gln Thr Leu Ser Ile Gln His Gly Thr Leu Val Thr Met Asp Gln

Tyr Arg Arg Val Leu Gly Asp Ser Trp Val His Val Gln Asp Gly Arg 25

Ile Val Ala Leu Gly Val His Ala Glu Ser Val Pro Pro Pro Ala Asp 35

Arg Val Ile Asp Ala Arg Gly Lys Val Val Leu Pro Gly Phe Ile Asn

Ala His Thr His Val Asn Gln Ile Leu Leu Arg Gly Gly Pro Ser His

Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro Gly Gln 90 85

Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu Tyr Cys

Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn Ala Asp 125 115

. . . .

- Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val Tyr Gly
 130 135 140
- Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp Arg Met 145 150 155 160
- Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg Ser Pro 165 170 175
- Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala Lys Asp 180 185 190
- Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly Gly Arg
 195 200 205
- Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr Val Glu 210 215 220
- Gly Met Arg Trp Ala Gln Ala Phe Ala Arg Asp Arg Ala Val Met Trp
 235 230 235 240
- Thr Leu His Met Ala Glu Ser Asp His Asp Glu Arg Ile His Gly Met
 245 250 255
- Ser Pro Ala Glu Tyr Met Glu Cys Tyr Gly Leu Leu Asp Glu Arg Leu 260 265 270
- Gln Val Ala His Cys Val Tyr Phe Asp Arg Lys Asp Val Arg Leu Leu 275 280 285
- His Arg His Asn Val Lys Val Ala Ser Gln Val Val Ser Asn Ala Tyr
 290 295 300
- Leu Gly Ser Gly Val Ala Pro Val Pro Glu Met Val Glu Arg Gly Met 305 310 315 320
- Ala Val Gly Ile Gly Thr Asp Asn Gly Asn Ser Asn Asp Ser Ala Asn 325 330 335
- Met Ile Gly Asp Met Lys Phe Met Ala His Ile His Arg Ala Val His 340 345 350
- Arg Asp Ala Asp Val Leu Thr Pro Glu Lys-Ile Leu Glu Met Ala Thr 355 360 365
- Ile Asp Gly Ala Arg Ser Leu Gly Met Asp His Glu Ile Gly Ser Ile 370 375 380
- Glu Thr Gly Lys Arg Ala Asp Leu Ile Leu Leu Asp Leu Arg His Leu 385 390 395 400
- Arg Arg Leu Ser His His Leu Ala Ala Thr Île Val Phe Gln Ala Tyr
 405
 410
 415
- Gly Asn Glu Val Asp Thr Val Leu Ile Asp Gly Asn Val Val Met Glu
 420 425 430

1.0

: . ;

Asn Arg Arg Leu Ser Phe Leu Pro Pro Glu Arg Glu Leu Ala Phe Leu 435

Glu Glu Ala Gln Ser Arg Ala Thr Ala Ile Leu Gln Arg Ala Asn Met 455

Val Ala Asn Pro Ala Trp Arg Ser Leu

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1808 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GCGAGCATGG TGACCTTGAC GCCGCTCTTT TCGTTCTCTT TGTTGAACTG CACGCGAAAG 60 GCTTCCAGGT CGGTGATGTC CGCGTCGTCG TGGTTGGTGA CGTGCGGGAT GACCACCCAG 120 TTGCGGTGCA GGTTTTTCGA TGGCATAATA TCTGCGTTGC GACGTGTAAC ACACTATTGG 180 AGACATATCA TGCAAACGCT CAGCATCCAG CACGGTACCC TCGTCACGAT GGATCAGTAC 240 CGCAGAGTCC TTGGGGATAG CTGGGTTCAC GTGCAGGATG GACGGATCGT CGCGCTCGGA 300 GTGCACGCCG AGTCGGTGCC TCCGCCAGCG GATCGGGTGA TCGATGCACG CGGCAAGGTC 360 GTGTTACCCG GTTTCATCAA TGCCCACACC CATGTGAACC AGATCCTCCT GCGCGGAGGG 420 CCCTCGCACG GGCGTCAATT CTATGACTGG CTGTTCAACG TTGTGTATCC GGGACAAAAG 480 GCGATGAGAC CGGAGGACGT AGCGGTGGCG GTGAGGTTGT ATTGTGCGGA AGCTGTGCGC 540 AGCGGGATTA CGACGATCAA CGAAAACGCC GATTCGGCCA TCTACCCAGG CAACATCGAG 600 GCCGCGATGG CGGTCTATGG TGAGGTGGGT GTGAGGGTCG TCTACGCCCG CATGTTCTTT 660 GATCGGATGG ACGGGCGCAT TCAAGGGTAT GTGGACGCCT TGAAGGCTCG CTCTCCCCAA 720 GTCGAACTGT GCTCGATCAT GGAGGGAACG GCTGTGGCCA AAGATCGGAT CACAGCCCTG CONTRACTOR OF CARDON ASSESSMENT ASSESSMENT TCAGATCAGT ATCATGGCAC GGCAGGAGGT CGTATATCAG TTTGGCCCGC TCCTGCCACT840 ্তি সংঘাৰ্থক সামান্ত্ৰী হয় সংঘাৰ্থক কৰে কৰে কৰিছে ACCACGGCGG TGACAGTTGA AGGAATGCGA TGGGCACAAG CCTTCGCCCG TGATCGGGCG a un energies, especial compression a real engage (especial) and a compression of the com GTAATGTGGA CGCTTCACAT GGCGGAGAGC GATCATGATG AGCGGATTCA TGGGATGAGT 960

. 1020
1020
1080
1140
1200
1260
1320
1200
1380
1440
1500
1560
1620
1020
1680
1740
1800
1808

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1846 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAGCGCCGCC ACAGCAGCCT TGATCATGAA GGCGAGCATG GTGACCTTGA CGCCGCTCTT TTCGTTCTCT TTGTTGAACT GCACGCGAAA GGCTTCCAGG TCGGTGATGT CCGCGTCGTC 60 GTGGTTGGTG ACGTGCGGGA TGACCACCCA GTTGCGGTGC AGGTTTTTCG ATGGCGTAAT 120 ante di la la lacció della personalità del presenta del presenta del presenta del presenta del presenta del pr ATCTGCGTTG CGACGTGTAA CACACTATTG GAGACATATC ATGCAAACGC TCAGCATCCA CONTROL OF SEASON OF A CONTROL OF A CONTROL OF SEASON OF GCACGGTACC CTCGTCACGA TGGATCAGTA CCGCAGAGTC CTTGGGGATA GCTGGGTTCA CGTGCAGGAT GGACGGATCG TCGCGCTCGG AGTGCACGCC GAGTCGGTGC CTCCGCCAGC 360

25,000

made great that the

1130 27 -

GG	ATCGGGTG	ATCGATGCAC	GCGGCAAGGT	CGTGTTACCC	GGTTTCATCA	ATGCCCACAC	420
CC	ATGTGAAC	CAGATCCTCC	TGCGCGGAGG	GCCCTCGCAC	GGGCGTCAAT	TCTATGACTG	480
GC	TGTTCAAC	GTTGTGTATC	CGGGACAAAA	GGCGATGAGA	CCGGAGGACG	TAGCGGTGGC	540
GG	TGAGGTTG	TATTGTGCGG	AAGCTGTGCG	CAGCGGGATT	ACGACGATCA	ACGAAAACGC	600
CG.	ATTCGGCC	ATCTACCCAG	GCAACATCGA	GGCCGCGATG	GCGGTCTATG	GTGAGGTGGG	660
TG	TGAGGGTC	GTCTACGCCC	GCATGTTCTT	TGATCGGATG	GACGGGCGCA	TTCAAGGGTA	720
TGʻ	TGGACGCC	TTGAAGGCTC	GCTCTCCCCA	AGTCGAACTG	TGCTCGATCA	TGGAGGAAAC	780
GG	CTGTGGCC	,AAAGATCGGA	TCACAGCCCT	GTCAGATCAG	TATCATGGCA	CGGCAGGAGG	840
TC	GTATATCA	GTTTGGCCCG	CTCCTGCCAC	TACCACGGCG	GTGACAGTTG	AAGGAATGCG	900
AT(GGGCACAA	GCCTTCGCCC	GTGATCGGGC	GGTAATGTGG	ACGCTTCACA	TGGCGGAGAG	960
CG	ATCATGAT	GAGCGGATTC	ATGGGATGAG	TCCCGCCGAT	TACATGGAGT	GTTACGGACT	1020
CT:	rggatgag	CGTCTGCAGG	TCGCGCATTG	CGTGTACTTT	GACCGGAAGG	ATGTTCGGCT	1080
GC'	rgcaccgc	CACAATGTGA	AGGTCGCGTC	GCAGGTTGTG	AGCAATGCCT	ACCTCGGCTC	1140
AG	GGTGGCC	CCCGTGCCAG	AGATGGTGGA	GCGCGGCATG	GCCGTGGGCA	TTGGAACAGA	1200
TA	ACGGGAAT	AGTAATGACT	CCGTAAACAT	GATCGGAGAC	ATGAAGTTTA	TGGCCCATAT	1260
TC	ACCGCGCG	GTGCATCGGG	ATGCGGACGT	GCTGACCCCA	GAGAAGATTC	TTGAAATGGC	1320
GA(CGATCGAT	GGGGCGCGTT	CGTTGGGGAT	GGACCACGAG	ATTGGTTCCA	TCGAAACCGG	1380
CA	AGCGCGCG	GACCTTATCC	TGCTTGACCT	GCGTCACCCT	CAGACGACTC	CTCACCATCA	1440
TT'	rggcggcc	ACGATCGTGT	TTCAGGCTTA	CGGCAATGAG	GTGGACACTG	TCCTGATTGA	1500
CG	GAAACGTT	GTGATGGAGA	ACCGCCGCTT	GAGCTTTCTT	CCCCTGAAC	GTGAGTTGGC	1560
GT'	TCCTTGAG	GAAGCGCAGA	GCCGCGCCAC	AGCTATTTTG	CAGCGGGCGA	ACATGGTGGC	1620
TA	ACCCAGCT	TGGCGCAGCC	TCTAGGAAAT	GACGCCGTTG	CTGCATCCGC	CGCCCCTTGA	1680
GG.	AAATCGCT	GCCATCTTGG	CGCGGCTCGG	ATTGGGGGC	GGACATGACC	TTGATGGATA	1740
CA	GAATTGCC	ATGAATGCGG	CACTTCCGTC	CTTCGCTCGT	GTGGAATCGT	TGGTAGGTGA	1800
GG	GTCGACTG	CGGGCGCCAG	CTTCCCGAAG	AAGTGAAAGG	CCCGAG		1846

(2) INFORMATION FOR SEQ ID NO:5:

- NFORMATION FOR SEQ ID NO:5:

 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

1988

· 大声声音:

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
- Ala Ser Met Val Thr Leu Thr Pro Leu Phe Ser Phe Ser Leu Leu Asn 1 10 15
- Cys Thr Arg Lys Ala Ser Arg Ser Val Met Ser Ala Ser Ser Trp Leu 20 25 30
- Val Thr Cys Gly Met Thr Thr Gln Leu Arg Cys Arg Phe Phe Asp Gly 35 40 45
- Ile Ile Ser Ala Leu Arg Arg Val Thr His Tyr Trp Arg His Ile Met 50 55 60
- Gln Thr Leu Ser Ile Gln His Gly Thr Leu Val Thr Met Asp Gln Tyr
 75 80
- Arg Arg Val Leu Gly Asp Ser Trp Val His Val Gln Asp Gly Arg Ile
 85 90 95
- Val Ala Leu Gly Val His Ala Glu Ser Val Pro Pro Pro Ala Asp Arg
 100 105 110
- Val Ile Asp Ala Arg Gly Lys Val Val Leu Pro Gly Phe Ile Asn Ala 115 120 125
- His Thr His Val Asn Gln Ile Leu Leu Arg Gly Gly Pro Ser His Gly 130 135 140
- Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro Gly Gln Lys
 145 150 155 160
- Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu Tyr Cys Ala 165 170 175
- Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn Ala Asp Ser 180 185 190
- Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val Tyr Gly Glu
 195 200 205
- Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp Arg Met Asp 210 215 220
- Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg Ser Pro Gln 230 235 240
- Val Glu Leu Cys Ser Ile Met Glu Gly Thr Ala Val Ala Lys Asp Arg
 245 250 255

- Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly Gly Arg Ile
 260 265 270
- Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr Val Glu Gly 275 280 285
- Met Arg Trp Ala Gln Ala Phe Ala Arg Asp Arg Ala Val Met Trp Thr 290 295 300
- Leu His Met Ala Glu Ser Asp His Asp Glu Arg Ile His Gly Met Ser 305 310 315 320
- Pro Ala Giu Tyr Met Glu Cys Tyr Gly Leu Leu Asp Glu Arg Leu Glr.
 325 330 335
- Val Ala His Cys Val Tyr Phe Asp Arg Lys Asp Val Arg Leu Leu His 340 345 350
- Arg His Asn Val Lys Val Ala Ser Gln Val Val Ser Asn Ala Tyr Leu
 . 355 360 365
- Gly Ser Gly Val Ala Pro Val Pro Glu Met Val Glu Arg Gly Met Ala 370 375 380
- Val Gly Ile Gly Thr Asp Asn Gly Asn Ser Asn Asp Ser Val Asn Met 385 390 395 400
- Ile Gly Asp Met Lys Phe Met Ala His Ile His Arg Ala Val His Arg
 405 410 415
- Asp Ala Asp Val Leu Thr Pro Glu Lys Ile Leu Glu Met Ala Thr Ile 420 425 430
- Asp Gly Ala Arg Ser Leu Gly Met Asp His Glu Ile Gly Ser Ile Glu
 435 440 445
- Thr Gly Lys Arg Ala Asp Leu Ile Leu Leu Asp Leu Arg His Pro Glr 450 455 460
- Thr Thr Pro His His Leu Ala Ala Thr Ile Val Phe Gln Ala Tyr 465 470 475 480
- Gly Asn Glu Val Asp Thr Val Leu Ile Asp Gly Asn Val Val Met Glu 485 490 495
- Asn Arg Arg Leu Ser Phe Leu Pro Pro Glu Arg Glu Leu Ala Phe Leu 500 505 510
- Glu Glu Ala Gln Ser Arg Ala Thr Ala Ile Leu Gln Arg Ala Asn Met 515 520 525
- Val Ala Asn Pro Ala Trp Arg Ser Leu Glu Met Thr Pro Leu Leu His
 530
 540
- Pro Pro Pro Leu Glu Glu Ile Ala Ala Ile Leu Ala Arg Leu Gly Leu 545

and the state of t

Gly Gly His Asp Leu Asp Gly Tyr Arg Ile Ala Met Asn Ala Ala

Leu Pro Ser Phe Ala Arg Val Glu Ser Leu Val Gly Glu Gly Arg Leu

Arg Ala Pro Ala Ser Arg Arg Ser Glu

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 614 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
 - Ser Ala Ala Thr Ala Ala Leu Ile Met Lys Ala Ser Met Val Thr Leu
 - Thr Pro Leu Phe Ser Phe Ser Leu Leu Asn Cys Thr Arg Lys Ala Ser
 - Arg Ser Val Met Ser Ala Ser Ser Trp Leu Val Thr Cys Gly Met Thr
 - Thr Gln Leu Arg Cys Arg Phe Phe Asp Gly Val Ile Ser Ala Leu Arg
 - Arg Val Thr His Tyr Trp Arg His Ile Met Gln Thr Leu Ser Ile Gln 75
- His Gly Thr Leu Val Thr Met Asp Gln Tyr Arg Arg Val Leu Gly Asp
- Ser Trp Val His Val Gln Asp Gly Arg Ile Val Ala Leu Gly Val His
- Ala Glu Ser Val Pro Pro Pro Ala Asp Arg Val Ile Asp Ala Arg Gly
- Lys Val Val Leu Pro Gly Phe Ile Asn Ala His Thr His Val Asn Gln
- Ile Leu Leu Arg Gly Gly Pro Ser His Gly Arg Gln Phe Tyr Asp Trp 145
 - Leu Phe Asn Val Val Tyr Pro Gly Gln Lys Ala Met Arg Pro Glu Asp 165 170 175

- Val Ala Val Arg Leu Tyr Cys Ala Glu Ala Val Arg Ser Gly 180 185 190
- Ile Thr Thr Ile Asn Glu Asn Ala Asp Ser Ala Ile Tyr Pro Gly Asn 195 200 205
- Ile Glu Ala Ala Met Ala Val Tyr Gly Glu Val Gly Val Arg Val Val 210 215 220
- Tyr Ala Arg Met Phe Phe Asp Arg Met Asp Gly Arg Ile Gln Gly Tyr 225 230 235 240
- Val Asp Ala Leu Lys Ala Arg Ser Pro Gln Val Glu Leu Cys Ser Ile 245 250 255
- Met Glu Glu Thr Ala Val Ala Lys Asp Arg Ile Thr Ala Leu Ser Asp 260 265 270
- Gln Tyr His Gly Thr Ala Gly Gly Arg Ile Ser Val Trp Pro Ala Pro 275 280 285
- Ala Thr Thr Thr Ala Val Thr Val Glu Gly Met Arg Trp Ala Gln Ala 290 295 300
- Phe Ala Arg Asp Arg Ala Val Met Trp Thr Leu His Met Ala Glu Ser 305 310 315 320
- Asp His Asp Glu Arg Ile His Gly Met Ser Pro Ala Asp Tyr Met Glu
 325 330 335
- Cys Tyr Gly Leu Leu Asp Glu Arg Leu Gln Val Ala His Cys Val Tyr 340 345 350
- Phe Asp Arg Lys Asp Val Arg Leu Leu His Arg His Asn Val Lys Val 355 360 365
- Ala Ser Gln Val Val Ser Asn Ala Tyr Leu Gly Ser Gly Val Ala Pro 370 380
- Val Pro Glu Met Vai Glu Arg Gly Met Ala Val Gly Ile Gly Thr Asp 385 390 395 400
- Asn Gly Asn Ser Asn Asp Ser Val Asn Met Ile Gly Asp Met Lys Phe 405 410 415
- Met Ala His Ile His Arg Ala Val His Arg Asp Ala Asp Val Leu Thr
 420 425 430
- Pro Glu Lys Ile Leu Glu Met Ala Thr Ile Asp Gly Ala Arg Ser Leu
 435 440 445
- Gly Met Asp His Glu Ile Gly Ser Ile Glu Thr Gly Lys Arg Ala Asp
 450
 455

and the grant of the second of the state of

	46 · · · ·
	Leu Ile Leu Leu Asp Leu Arg His Pro Gln Thr Thr Pro His His 465 470 475 480
	Leu Ala Ala Thr Ile Val Phe Gln Ala Tyr Gly Asn Glu Val Asp Thr 485 490 495
•	Val Leu Ile Asp Gly Asn Val Val Met Glu Asn Arg Arg Leu Ser Phe 500 505 510
	Leu Pro Pro Glu Arg Glu Leu Ala Phe Leu Glu Glu Ala Gln Ser Arg 515 520 525
	Ala Thr Ala Ile Leu Gln Arg Ala Asn Met Val Ala Asn Pro Ala Trp 530 540
	Arg Ser Leu Glu Met Thr Pro Leu Leu His Pro Pro Pro Leu Glu Glu 545 550 560
	Ile Ala Ala Ile Leu Ala Arg Leu Gly Leu Gly Gly Gly His Asp Leu 565 570 575
	Asp Gly Tyr Arg Ile Ala Met Asn Ala Ala Leu Pro Ser Phe Ala Arg 580 585 590
	Val Glu Ser Leu Val Gly Glu Gly Arg Leu Arg Ala Pro Ala Ser Arg 595 600 605
	Arg Ser Glu Arg Pro Glu 610
(2)	INFORMATION FOR SEQ ID NO:7:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 545 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

		X	CRIPTION: S	EQ ID NO:7:			
	CGGTATCGGG	GAATTCTTGA	GCGCGGCCAC	AGCAGCCNTG	ATCATGAAGG	CGAGCATGGT	60
	GACCTNGACG	CCGTNTTTTN	GTTNTTTTTT	GTTGAACTGC	ACGCGAAAGG	TTCCAGGTCG	120
	GTGATGTCCG	CGTCGTCGTG	GTTGGTGACG	TGCGGGATGA	CCACCCAGNT	GCGGTGCAGG	180
	CARACCOMO	GCATAATATC	TGCGTTGCGA	CGTGTAACAC	ACTANTGGAG	ACATATCATG	240
. <i>,</i> .		- LICCHGCA	CGGTACCCTC	GTCACGATGG	ATCAGTACCG	CAGAGTCCTT	300 take
	IIAGC1			COGNICGICG	CGCTCGGAGT	GCACGCCGAG	360

CGTCAATTCT	ATGACTGGCT	GTTCAACGTT	GTGTATCCGG	GACAAAAGGC	GATGAGACCG	540
TTCATCAATG	,					400
	0000000000	mcmax	******************************	CCCCAACCCCC	CTCCCACCCC	480
TCGGTGCCTC	CGCCAGCGGA	TCGGGTGATC	GATGCACGCG	GCAAGGTCGT	GTTACCCGGT	420

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 499 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CCTGCGCGGA	GGGCCTCCGC	ACGGGCGTCA	ATTCTATGAC	TGGCTGTTCA	ACGTTGTGTA	60
TCCGGGACAA	AAGGCGATGA	GACCGGAGGA	CGTAGCGGTG	GCGGTGAGGT	TGTATTGTGC	120
GGAAGCTGTG	CGCAGCGGGA	TTACGACGAT	CAACGAAAAC	GCCGATTCGG	CCATCTACCC	180
AGGCAACATC	GAGGCCGCGA	TGGCGGTCTA	TGGTGAGGTG	GGTGTGAGGG	TCGTCTACGC	240
CCGCATGTTC	TTTGATCGGA	TGGACGGGCG	CATTCAAGGG	TATGTGGACG	CCTTGAAGGC	300
TCGCTCTCCC	CAAGTCGAAC	TGTGCTCGAT	CATGGAGGAA	ACGGCTGTGG	CCAAAGATCG	360
GATCACAGCC	CTGTCAGATC	AGTATCATGG	CACGGCAGGA	GGTCCTATAT	CAGTTTGGCC	. 420
CGCTCCTGCC	ACTACCACGG	CGGTGACATT	TAAANGAATC	CATGGGCCAA	CCTCCCCCGT	480
GATCCGGCGG	TAATGTGAC					499

The second secon

1 (1965-1961) 1 (1964-1967) 1 (1964-1964)

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 360 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

TNGCAGGTTG	TGAGCATGCT	^ ACTTCCCTTT				
		ACTICGGTTC	AGGNGTGGCC	CCCGTGCCAG	AGATGGTGGA	.60
GCGCGGCATG	GCCGTGGGCA	TTGGAACAGA	TAACGGGAAT	ACTA ACCA CO	CCGTAAACAT	•
GATCGGAGAC	ATCAACmms			AGIAAIGACT	CCGTAAACAT	120
	ATGAAGITIA	TGGCCCATAT	TCACCGCGCG	GTGCATCGGG	ATGCGGACGT	
GCTGACCCCA	GAGAAGATTN	TTGAAATGGC	Chcchman-			180
TGGAGGAGGA			GACGATCGAT	GGGGCGCGTT	TCGTTGGGGA	240
TGGACCACGA	GATTGGTTCC	ATCGAAACCG	GCAAGCGCGC	GGACCTTATC	CTCCTTTC	
TGCGTCACCC	TCAGACGACT	CCTC) cas ==	_	- Inches	CIGCIIGACC	300
TGCGTCACCC		CCICACCATC	ATTTGGCGGC (CACGATCGTG :	TTTCAGGCTT	360
						0

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 443 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CGGCCACGAT COTO	Times on a				
CGGCCACGAT CGTG	TTTCAG GCTTACGGCA	ATGAGGTGGA	CACTGTCCTG	ATTGACGGAA	۲۵
ACGTTGTGAT GGAGA	AACCGC CGCTTGAGCT	ТТСТТСССС	MC2 2 00000		60
TTGAGGAAGC GCAGA	\CCCCC ====		IGAACGTGAG	TTGGCGTTCC	120
TTGAGGAAGC GCAGA	GCCACAGCTA	TTTTGCATCG	GGCGAAACAT	GGTGGCTAAC	180
CCAGCTTGGC GCAGC	CTCTA GGAAATGACG	CCGTTGCTGC	ATCCGCCGC	COMMON AND	
ATCGCTGCCA TCTTG	GCGCG GCTCGG7mmo			CCTTGAGGAA	240
ATCGCTGCCA TCTTG	ocicedalic	GGGGGCGAC	ATGACCTTGA	TGGATACAGA	300
ATTGCCATGA ATGCG	GCACT TCCGTCCTTC	GCTCGTGTGG	AATCGTTGGT	AGGTGAGGG	
CGACTGCGGG CGCCAC	GCTTC CCGAAGAGGT	CARAGGGGG		GGTGAGGGT	360
TTTCCGATCT GATCA		GHANGCCCCGA	GGATCCTCTA	GAGTCCGATT	420
TTTCCGATGT CATCAC	CCGGC GCG				
(2) TATEODAS					443

्रा । १९४८ वर्षः १८० वर्षः । १९४६ । १९४४ वर्षः स्टब्स्ट्रेस्ट्र

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 505 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(vi) CE	QUENCE DESC	RIPTION: SE	EO ID NO:11:	;		
(XI) SE	CODMC DOC		- R			
CCTGCGCGGA	GGCCTCCGCA	CGGGCGTCAA	TTCTATGACT	GGCTGTTCAA	CGTTGTGTAT	60
CCGGGACAAA	AGGCGATGAG	ACCGGAGGAC	GTANCGGTGG	CGGTGAGGTT	GTATTGTGCG	120
GAAGCTGTGC	GCAGCGGGAT	TACGACGATC	AACGAAAACG	CCGATTCGGC	CATCTACCCA	180
GGCAACATCG	AGGCCGCGAT	GGCGGTCTAT	GGTGAGGTGG	GTGTGAGGGT	CGTCTACGCC	240
CGCATGTTCT	TTGATCGGAT	GGACGGGCGC	ATTCAAGGGT	ATGTGGACGC	CTTGAAGGCT	300
CGCTCTCCCC	AAGTCGAACT	GTGCTCGATC	ATGGAGGAAA	CGGCTGTGGC	CAAAGATCGG	360
ATCACANCCC	TGTCAGATCA	NTATCATGGC	ACGGCANGAG	GTCCTATATC	ANTTTGGCCC	420
GCTCCTGCCA	CTACCACNGC	GGTGACATTT	NAANGAATTC	CATNGGCACA	ACCTTCCCCC	480
GTGATCNGGC	GGTAATGTNG	ACCCA				509
(2) TNFORM	ATTON FOR S	EO ID NO:12	:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 144 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Pro His Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Leu Tyr Pro

Gly Gln Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu 20

Tyr Cys Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn 35

Ala Asp Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val

Tyr Gly Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp 80

Arg Met Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg ાં અંત્રોપૂર્ણ 95 ને મુખ્યાલ The first management of the state of the sta 85

Ser Pro Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala
100 105 110 12

or problems

2 × 2000

- Lys Asp Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly
- Gly Arg Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr
- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 144 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
 - Ser His Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Leu Tyr Pro
 - Gly Gln Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu
 - Tyr Cys Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn
 - Ala Asp Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val
 - Tyr Gly Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp
 - Arg Met Asp Gly Arg Ile Gln Gly Tyr Val Asp Thr Leu Lys Ala Arg 90
 - Ser Pro Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala
 - Lys Asp Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly
- Gly Arg Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr 140
- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 144 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

en de la companya de la co

- an Aldrian and Edward St.

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Pro His Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro 1

Gly Gln Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu 20

Tyr Cys Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asz

Ala Asp Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val 50

Tyr Gly Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp

Arg Met Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg

Ser Pro Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala 105 110

Lys Asp Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly 115

Gly Arg Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr 135

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 145 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Stranger and Stranger Stranger and Stranger

with the lite big the part of the west of her had not been been been been been Ser His Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Leu Tyr Pro

- Gly Gln Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu 20 25 30
- Tyr Cys Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn 35 40 45
- Asn Ala Asp Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala 50 55 60
- Val Tyr Gly Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe 65 70 75 80
- Asp Arg Met Asp Gly Arg Ile Gln Gly Tyr Val Asp Thr Leu Lys Ala 85 90 95
- Arg Ser Pro Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val
- Ala Lys Asp Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala 115 120 125
- Gly Gly Arg Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val

Thr -

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 144 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
 - Ser His Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro 1 10 15
 - Gly Gln Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu 20 25 30
 - Tyr Cys Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn 35 40 45
 - Ala Asp Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val
 - Tyr Gly Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp
 70 75 80

Arg Met Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg 85 90 95

Ser Pro Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala 100 105 110

Lys Asp Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly
115 120 125

Gly Arg Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr 130 135 140

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1633 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CGCGAAAGGC TTCCAGGTCG GTGATGTCCG CGTCGTCGTG GTTGGTGACG TGCGGGATGA 60 CCACCCAGTC GCGGTGCAGG TTTTTCGATG GCATAATATC TGCGTTGCGA CGTGTAACAC 120 ACTATTGGAG ACATATCATG CAAACGCTCA GCATCCAGCA CGGTACCCTC GTCACGATGG 180 ATCAATACCG CAGAGTCCTT GGGGATAGCT GGGTTCACGT GCAGGATGGA CGGATCGTCG 240 CGCTCGGAGT GCACGCCAAG TCGGTGCCTC CGCCAGCGGA TCGGGTGATC GATGCACGCG 300 GCAAGGTCGT GTTACCCGGT TTCATCAATG CCCACACCCA TGTGAACCAG ATCCTCCTGC 360 420 GCGGAGGGCC CTCGCACGGG CGTCAATTCT ATGACTGGCT GTTCAACGTT GTGTATCCGG GACAAAAGGC GATGAGACCG GAGGACGTAG CGGTGGCGGT GAGGTTGTAT TGTGCGGAAG 480 CTGTGCGCAG CGGGATTACG ACGATCAACG AAAACGCCGA TTCGGCCATC TACCCAGGCA 540 ACATCGAGGC CGCGATGGCG GTCTATGGTG AGGTGGGTGT GAGGGTCGTC TACGCCCGCA 600 TGTTCTTTGA TCGGATGGAC GGGCGCATTC AAGGGTATGT GGACGCCTTG AAGGCTCGCT 660 CTCCCCAAGT CGAACTGTGC TCGATCATGG AGGAAACGGC TGTGGCCAAA GATCGGATCA 720 · 本门特别的实际的特别的特别的人们是有特别。 CAGCCCTGTC AGATCAGTAT CATGGCACGG CAGGAGGTCG TATATCAGTT TGGCCCGCTC 780 CTGCCACTAC CACGGCGGTG ACAGTTGAAG GAATGCGATG GGCACAAGCC TTCGCCCGTG 840

ATCGGGCGGT AATGTGGACG CTTCACATGG CGGAGAGCGA TCATGATGGG CGGATTCATG	
GGATGAGTCC CGCCGAGTAC AMORA - CATGATGGG CGGATTCATG	900
GGATGAGTCC CGCCGAGTAC ATGGAGTGTT ACGGACTCTT GGATGAGCGT CTGCAGGTCG	960
CGCATTGCGT GTACTTTGAC CGGAAGGATG TTCGGCTGCT GCACCGCCAC AATGTGAAGG	500
TCGCGTCGCA GGTTGTGAGC AATGCCTACC TCGGCTCAGG GGTGGCCCCC GTGCCAGAGA	1020
TGGTGGAGCG CGCATGGGG	1080
TGGTGGAGCG CGGCATGGCC GTGGGCATTG GAACAGATAA CGGGAATAGT AATGACTCCG	1140
TAAACATGAT CGGAGACATG AAGTTTATGG CCCATATTCA CCGCGCGGTG CATCGGGATG	1140
CGGACGTGCT GACCCCAGAG AAGATTCTTG AAATGGCGAC GATCGATGGG GCGCGTTCGT	1200
TGGGGATGGA COAGGATGGATGGT AAATGGCGAC GATCGATGGG GCGCGTTCGT	1260
TGGGGATGGA CCACGAGATT GGTTCCATCG AAACCGGCAA GCGCGCGGAC CTTATCCTGC	1320
TTGACCTGCG TCACCCTCAG ACGACTCCTC ACCATCATTT GGCGGCCACG ATCGTGTTTC	1320
AGGCTTACGG CAATGAAGTG GACACTGTCC TGATTGACGG AAACGTTGTG ATGGAGAACC	1380
GCTGCTTGAG GTTTTGAGGGCG AAACGTTGTG ATGGAGAACC	1440
GCGCCACAGG CTTTCTTCCC CCTGAACGTG AGTTGGCGTT CCTTGAGGGA GCGCAGAGCC	1500
GCGCCACAGC TATTTTGCAG CGGGCGAACA TGGTGGCTAA CCCAGCTTGG CGCAGCCTCT	1500
AGGAAATGAC GCCGTTGCTG CATCCCCCGC	1560
AGGAAATGAC GCCGTTGCTG CATCCGCCGC CCCTTGAGGA AATCGCTGCC ATCTTGGCGC GGCTCGGATT GGG	1620
	1622
(2)	1633

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1598 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TCGTGGTTGG TGACGTGGG GATGACCACC CAGTCGCGGT GCAGGTTTTT CGATGGCATA 60

ATATCTGCGT TGCGACGTGT AACACACTAT TGGAGACATA TCATGCAAAC GCTCAGCATC 120

CAGCACGGTA CCCTCGTCAC GATGGATCAG TACCGCAGAG TCCTTGGGGA TAGCTGGGTT 180

CACGTGCAGG ATGGACGGAT CGTCGCGCTC GGAGTGCACG CCGAGTCGGT GCCTCCGCCA 240

GCGGATCGGG TGATCGATGC ACGCGGCAAG GTCGTGTTAC CCGGTTTCAT CAATGCCCAC 300

ACCCATGTGA ACCAGATCCT CCTGCGCGA GGGCCCTCGC ACGGGCGTCA ATTCTATGAC 360

TGGCTGTTCA ACGTTGTGTA TCCGGGACAA AAGGCGATGA GACCGGAGGA CGTAGCGGTG 420

GCGGTGAGGT	TGTATTGTGC	GGAAGCTGTG	CGCAGCGGGA	TTACGACGAT	CAACGAAAAC	480
GCCGATTCGG	CCATCTACCC	AGGCAACATC	GAGGCCGCGA	TGGCGGTCTA	TGGTGAGGTG	540
GGTGTGAGGG	TCGTCTACGC	CCGCATGTTC	TTTGATCGGA	TGGACGGGCG	CATTCAAGGG	600
TATGTGGACG	CCTTGAAGGC	TCGCTCTCCC	CAAGTCGAAC	TGTGCTCGAT	CATGGAGGAA	660
ACGGCTGTGG	CCAAAGATCG	GATCACAGCC	CTGTCAGATC	AGTATCATGG	CACGGCAGGA	720
GGTCGTATAT	CAGTTTGGCC	CGCTCCTGCC	ACTACCACGG	CGGTGACAGT	TGAAGGAATG	780
CGATGGGCAC	AAGCCTTCGC	CCGTGATCGG	GCGGTAATGT	GGACGCTTCA	CATGGCGGAG	840
AGCGATCATG	ATGAGCGGAT	TCATGGGATG	AGTCCCGCCG	AGTACATGGA	GTGTCACGGA	900
CTCTTGGATG	AGCGTCTGCA	GGTCGCGCAT	TGCGTGTACT	TTGACCGGAA	GGATGTTCGG	960
CTGCTGCACC	GCCACAATGT	GAAGGTCGCG	TCGCAGGTTG	TGAGCAATGC	CTACCTCGGC	1020
TCAGGGGTGG	CCCCGTGCC	AGAGATGGTG	GAGCGCGGCA	TGGCCATGGG	CATTGGAACA	1080
GATAACGGGA	ATAGTAATGA	CTCCGTAAAC	ATGATCGGAG	ACATGAAGTT	TATGGCCCAT	1140
ATTCACCGCG	CGGTGCATCG	GGATGCGGAC	GTGCTGACCC	CAGAGAAGAT	TCTTGAAATG	1200
GCGACGATCG	ATGGGGCGCG	TTCGTTGGGA	ATGGACCACG	AGATTGGTTC	CATCGAAACC	1260
GGCAAGCGCG	CGGACCTTAT	CCTGCTTGAC	CTGCGTCACC	CTCAGACGAC	TCCTCACCAT	1320
CATTTGGCGG	CCACGATCGT	GTTTCAGGCT	TACGGCAATG	AGGTGGACAC	TGTCCTGATT	1380
GACGGAAACG	TTGTGATGGA	GAACCGCCGC	TTGAGCTTTC	TTCCCCCTGA	ACGTGAGTTG	1440
GCGTTCCTTG	AGGAAGCGCA	GAGCCGCGCC	ACAGCTATTT	TGCAGCGGGC	GAACATGGTG	1500
GCTAACCCAG	CTTGGCGCAG	CCTCTAGGAA	ATGACGCCGT	TGCTGCATCC	GCCGCCCCTT	1560
GAGGAAATCG	CTGCCATCTT	GGCGCGGCTC	GGATTGGG		•	1598

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1586 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

AND THE STREET OF THE STREET O

TO THE PROPERTY OF THE PROPERT

CGACGTGTAA CACACTATTG GAGACATATC ATGGALAGO	
CGACGTGTAA CACACTATTG GAGACATATC ATGCAAACGC TCAGCATCCA GCACGGTAC	C 120
CTCGTCACGA TGGATCAGTA CCGCAGAGTC CTTGGGGATA GCTGGGTTCA CGTGCAGGA	T 180
GGACGGATCG TCGCGCTCGG AGTGCACGCC GAGTCGGTGC CTCCGCCAGC GGATCGGGTC	G 240
ATCGATGCAC GCGGCAAGGT CGTGTTACCC GGTTTCATCA ATGCCCACAC CCATGTGAAC	300
CAGATCCTCC TGCGCGGAGG GCCCTCGCAC GGGCGTCAAT TCTATGACTG GCTGTTCAAC	360
GTTGTGTATC CGGGACAAAA GGCGATGAGA CCTGAGGACG TAGCGGTGGC GGTGAGGTTG	420
TATTGTGCGG AAGCTGTGCG CAGCGGGATT ACGACGATCA ACGAAAACGC CGATTCGGCC	480
ATCTACCCAG GCAACATCGA GGCCGCGATG GCGGTCTATG GTGAGGTGGG TGTGAGGGTC	540
GTCTACGCCC GCATGTTCTT TGATCGGATG GACGGGCGCA TTCAAGGGTA TGTGGACGCC TTGAAGGCTC GCTCTGGGACGCC	600
TTGAAGGCTC GCTCTCCCCA AGTCGAACTG TGCTCGATCA TGGAGGAAAC GGCTGTGGCC	660
AAAGATCGGA TCACAGCCCT GTCAGATCAG TATCATGGCA CGGCAGGAGG TCGTATATCA	720
GTTTGGCCCG CTCCTGCCAC TACCACGGCG GTGACAGTTG AAGGAATGCG ATGGGCACAA	780
GCCTTCGCCC GTGATCGGGC GGTAATGTGG ACGCTTCACA TGGCGGAGAG CGATCATGAT	840
GAGCGGATTC ATGGGATGAG TCCCGCCGAG TACATGGAGT GTTACGGACT CTTGGATGAG	900
CGTCTGCAGG TCGCGCATTG CGTGTACTTT GACCGGAAGG ATGTTCGGCT GCTGCACCGC	960
CACAATGTGA AGGTCGCGTC GCAGGTTGTG AGCAATGCCT ACCTCGGCTC AGGGGTGGCC	1020
CCCGTGCCAG AGATGGTGGA GCGCGGCATG GCCGTGGGCA TTGGAACAGA TAACGGGAAT	1080
AGTAATGACT CCGTAAACAT GATCGGAGAC ATGAAGTTTA TGGCCCATAT TCACCGCGCG	1140
GTGCATCGGG ATGCGGACGT GCTGACCCCA GAGAAGATTC TTGAAATGGC GACAATCGAT	1200
GGGGCGCGTT CGTTGGGAAT GGACCACGAG ATTGGTTCCA TCGAAACCGG CAAGCGCGCG	1260
GACCTTATCC TGCTTGACCT GCGTCACCCT CAGACGACTC CTCACCATCA TTTGGCGGCC ACGATCGTGT TTCACCCTTA	1320
ACGATCGTGT TTCAGGCTTA CGGCAATGAG GTGGACACTG TCCTGATTGA CGGAAACGTT	1380
GTGATGGAGA ACCGCCGCTT GAGCTTTCTT CCCCCTGAAC GTGAGTTGGC GTTCCTTGAG GAAGCGCAGA GCCCCCGCAGA A TO	1440
GAAGCGCAGA GCCGCCCAC AGCTATTTTG CAGCGGGCGA ACATGGTGGC TAACCCAGCT	1500
TGGCGCAGCC TCTAGGAAAT GACGCCGTTG CTGCATCCGC TGCCCCTTGA GGAAATCGCT	1560
GCCATCTTGG CGCGGCTCGG ATTGGG	3.500

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1597 base pairs

* > 7.-

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

	CGTGGTTGGT	GACGTGGGGG	ATGACCACCC	AGTCGCGGTG	CAGGTTTTTC	GATGGCATAA	60
•	TATCTGCGTT	GCGACGTGTA	ACACACTATT	GGAGACATAT	CATGCAAACG	CTCAGCATCC	120
	AGCACGGTAC	CCTCGTCACG	ATGGATCAGT	ACCGCAGAGT	CCTTGGGGAT	AGCTGGGTTC	180
	ACGTGCAGGA	TGGACGGATC	GTCGCGCTCG	GAGTGCACGC	CGAGTCGGTG	CCTCCGCCAG	240
	CGGATCAGGT	GATCGATGCA	CGCGGCAAGG	TCGTGTTACC	CGGTTTCATC	AATGCCCACA	300
	CCCATGTGAA	CCAGATCCTC	CTGCGCGGAG	GGCCCTCGCA	CGGGCGTCAA	TTCCATGACT	360
	GGCTGTTCAA	CGTTGTGTAT	CCGGGACAAA	AGGCGATGAG	ACCGGAGGAC	GTAGCGGTGG	420
	CGGTGAGGTT	GTATTGTGCA	GAAGCTGTGC	GCAGCGGGAT	TACGACGATT	AACGAAAACG	480
	CCGATTCGGC	CATCTACCCA	GGCAACATCG	AGGCCGCGAT	GGCGGTCTAT	GGTGAGGTGG	540
	GTGTGAGGGT	CGTCTACGCC	CGCATGTTCT	TTGATCGGAT	GGACGGGCGC	ATTCAAGGGT	600
	ATGTGGACGC	CTTGAAGGCT	CGCTCTCCCC	AAGTCGAACT	GTGCTCGATC	ATGGAGĠAAA	660
	CGGCTGTGGC	CAAAGATCGG	ATCACAGCCC	TGTCAGATCA	GTATCATGGC	ACGGCAGGAG	720
	GTCGTATATC	AGTTTGGCCC	GCTCCTGCCA	CTACCACGGC	GGTGACAGTT	GAAGGAATGC	780
	GATGGGCACA	AGCCTTCGCC	CGTGATCGGG	CGGTAATGTG	GACGCTTCAC	ATGGCGGAGA	840
	GCGATCATGA	TGGGCGGATT	CATGGGATGA	GTCCCGCCGA	GTACATGGAG	TGTTACGGAC	900
	TCTTGGATGA	GCGTCTGCAG	GTCGCGCATT	GCGTGTACTT	TGACCGGAAG	GATGTTCGGC	960
	TGCTGCACCG	CCACAATGTG	AAGGTCGCGT	CGCAGGTTGT	GAGCAATGCC	TACCTCGGCT	1020
	CAGGGGTGGC	CCCCGTGCCA	GAGATGGTGG	AGCGCGGCAT	GGCCGTGGGC	ATTGGAACAG	1080
**	ATAACGGGAA	TAGTAATGAC	TCCGTAAACA	TGATCGGAGA	CATGAAGTTT	ATGGCCCATA	1140
	TTCACCGCGC	GGTGCATCGG	GATGCGGACG	TGCTGACCCC	AGAGAAGATT	CTTGAAATGG	
	CAACGATCGA		TCGTTGGGAA	TGGACCACGA	GATTGGTTCC	ATCGAAACCG	1260
	CCARCCCCC	GGACCTTATO				ייריתר אריראיזיר	1320
	ATTTGGCGGC	CACGATCGTG	TTTCAGGCTT	' ACGGCAATGA	GGTGGACACT	GTCCTGATTG	1380
	et e service de la companya de la c La companya de la co		•	:	: , ^{**}	, 13	्रेडिया है। इ.स.

ACGGAAACGT TGTGATGGAG AACCGCCGCT TGAGCTTTCT TCCCCCTGAA	
CGTTCCTTGA GGARCGCCCC	CGTGAGTTGG 144
CGTTCCTTGA GGAAGCGCAG AGCCGCGCCA CAGCTATTTT GCAGCGGGCG	AACATGGTGG 1500
CTAACCCAGC TTGGCGCAGC CTCTAGGAAA TGACCCGTT GCTGCATCCG	1500
AGGADATCCC TOGGATCCG	CCGCCCCTTG 1560
AGGAAATCGC TGCCATCTTG GCGCGGCTCG GATTGGG	150-
(2) INFORMATION FOR SEQ ID NO:21:	1597
2 10:21:	

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1674 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

					- ·		
	GTGACCTTG	A CGCCGCTCT	T TTCGTTCTC	T TTGTTGAAC	T GCACGCGAA	T GGCTTCCAGT	60
	TCGATGATG	T CCGCGTCGT	GTGGTTGGT	G ACGTGCGGG	A TGACCACCC	A GTCGCGGTGC	120
	AGGTTTTTC	G ATGGCATAA	T ATCTGCGTT(G CGACGTGTA	A CACACTATTO	G GAGACATATO	180
	ATGCAAACG	TCAGCATCCA	GCACGGTACC	CTCGTCACG	A TGGATCAGTI	A CCGCAGAGTC	240
	CITGGGGATA	GCTGGGTTCA	CGTGCAGGAT	GGACGGATC	TCGCGCTCGC	AGTGCACGCC	300
	GAGTCGGTGC	CTCCGCCAGC	GGATCGGGTG	ATTGATGCAC	GCGGCAAGGI	CGTGTTACCC	360
	GGTTTCATCA	ATGCCCACAC	CCATGTGAAC	CAGATCCTCC	TGCGCGGAGG	CCTCGCACGG	420
	GCGTCAATTC	TATGACTGGC	TGTTCAACGT	TGTGTATCCG	GGACAAAAGG	CGATGAGACC	480
	GGAGGACGTA	GCGGTGGCGG	TGAGGTTGTA	TTGTGCGGAA	GCTGTGCGCA	GCGGGATTAC	540
	GACGATCAAC	GAAAACGCCG	ATTCGGCCAT	CTACCCAGGC	AACATCGAGG	CCGCGATGGC	600
	GGTCTATGGT	GAGGTGGGTG	TGAGGGTCGT	CTACGCCCGC	ATGTTCTTTG	ATCGGATGGA	660
	CAGGCGCATT	CAAGGGTATG	TGGACGCCTT	GAAGGCTCGC	TCTCCCCAAG	TCGAACTGTG	720
	CTCGATCATG	GAGGAAACGG	CTGTGGCCAA	AGATCGGATC	ACAGCCCTGT	CAGATCAGTA	780
	TCATGGCACG	GCAGGAGGTC	GTATATCAGT	TTGGCCCGCT	CCTGCCACTA	CCACCCCC	840
	GACAGTTGAA	GGAATGCGAT	GGGCACAAGC	CTTCGCCCGT	GATCGGGCGG	TAATGTCGAG	900
		GCGGAGAGCG)	ATCATGATGA	GCGGATTCAT	GGGATGAGTC	CCGCCGACTA	
•	CATGGAGTGT	TACGGACTCT	rggatgagcg :	ICTGCAGGTC	GCGCATTGCG	TGTACTTTGA 1	.020
							4.44.4

CCGGAAGGAT	ATTCGGCTGC	TGCACCGCCA	CAATGTGAAG	GTCGCGTCGC	AGGCTGTGAG	1030
CAATGCCTAC	CTCGGCTCAG	GGGTGGCCCC	CGTGCCAGAG	ATGGTGGAGC	GCGGCATGGC	1140
CGTGGGCATT	GGAACAGATA	ACGGGAATAG	TAATGACTCC	GTAAACATGA	TCGGAGACAT	1200
GAAGTTTATG	GCCCATATTC	ACCGCGCGGT	GCATCGGGAT	GCGGACGTGC	TGACCCCAGA	1260
GAAGATTCTT	GAAATGGCGA	CGATCGATGG	GGCGCGTTCG	TTGGGAATGG	ACCACGAGAT	1320
TGGTTCCATC	GAAACCGGCA	AGCGCGCGGA	CCTTATCCTG	CTTGACCTGC	GTCACCCTCA	1380
GACGACTCCT	.CACCATCATT	TGGCGGCCAC	GATCGTGTTT	CAGGCTTACG	GCAATGAGGT	1440
GGACACTGTC	CTGATTGACG	GAAACGTTGT	GATGGAGAAC	CGCCGCTTGA	GCTTTCTTCC	1500
CCCTGAACGT	GAGTTGGCGT	TCCTTGAGGA	AGCGCAGAGC	CGCGCCACAG	CTATTTTGCA	1560
GCGGGCGAAC	ATGGTGGCCA	ACCCAGCTTG	GCGCAGCCTC	TAGGAAATGA	CGCCGTTGCT	1620
GCATCCGCCG	CCCCTTGAGG	AAATCGCTGC	CATCTTGGCG	CAGCTCGGAT	TGGG	1674

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 496 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met Gln Thr Leu Ser Ile Gln His Gly Thr Leu Val Thr Met Asp Gln
1 5 10 15

Tyr Arg Arg Val Leu Gly Asp Ser Trp Val His Val Gln Asp Gly Arg 20 . 25 30

The Val Ala Leu Gly Val His Ala Lys Ser Val Pro Pro Pro Ala Asp

Arg Val Ile Asp Ala Arg Gly Lys Val Val Leu Pro Gly Phe Ile Asn 50 55 60

Ala His Thr His Val Asn Gln Ile Leu Leu Arg Gly Gly Pro Ser His
65 70 75 80

Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro Gly Gln
85 90 95

er bese that have

• di 3.•

- Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu Tyr Cys
- Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn Ala Asp
- Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val Tyr Gly
- Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp Arg Met
- Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg Ser Pro
- Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala Lys Asp
- Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly Gly Arg
- Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr Val Glu
- Gly Met Arg Trp Ala Gln Ala Phe Ala Arg Asp Arg Ala Val Met Trp 235
- Thr Leu His Met Ala Glu Ser Asp His Asp Gly Arg Ile His Gly Met
- Ser Pro Ala Glu Tyr Met Glu Cys Tyr Gly Leu Leu Asp Glu Arg Leu
- Gln Val Ala His Cys Val Tyr Phe Asp Arg Lys Asp Val Arg Leu Leu
- His Arg His Asn Val Lys Val Ala Ser Gln Val Val Ser Asn Ala Tyr
- Leu Gly Ser Gly Val Ala Pro Val Pro Glu Met Val Glu Arg Gly Met 320
- Ala Val Gly Ile Gly Thr Asp Asn Gly Asn Ser Asn Asp Ser Val Asn
- Met Ile Gly Asp Met Lys Phe Met Ala His Ile His Arg Ala Val His 345
- Arg Asp Ala Asp Val Leu Thr Pro Glu Lys Ile Leu Glu Met Ala Thr 360 365
- Ile Asp Gly Ala Arg Ser Leu Gly Met Asp His Glu Ile Gly Ser Ile 1.2370 (1.300 Sept. 1.300 1.30
- Glu Thr Gly Lys Arg Ala Asp Leu Ile Leu Leu Asp Leu Arg His Pro Figure 1 of the second 395 400 A 44 14 44 5

a la a filipso de servicio

Gln Thr Thr Pro His His His Leu Ala Ala Thr Ile Val Phe Gln Ala 405 410 415

Tyr Gly Asn Glu Val Asp Thr Val Leu Ile Asp Gly Asn Val Val Met
420 425 430

Glu Asn Arg Cys Leu Ser Phe Leu Pro Pro Glu Arg Glu Leu Ala Phe 435 440 445

Leu Glu Gly Ala Gln Ser Arg Ala Thr Ala Ile Leu Gln Arg Ala Asn 450 455 460

Met Val Ala Asn Pro Ala Trp Arg Ser Leu Glu Met Thr Pro Leu Leu 465 470 475 480

His Pro Pro Pro Leu Glu Glu Ile Ala Ala Ile Leu Ala Arg Leu Gly
485 490 495

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 496 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Gln Thr Leu Ser Ile Gln His Gly Thr Leu Val Thr Met Asp Gln 10 15

Tyr Arg Arg Val Leu Gly Asp Ser Trp Val His Val Gln Asp Gly Arg

Ile Val Ala Leu Gly Val His Ala Glu Ser Val Pro Pro Pro Ala Asp 35 40 45

Arg Val Ile Asp Ala Arg Gly Lys Val Val Leu Pro Gly Phe Ile Asn

Ala His Thr His Val Asn Gln Ile Leu Leu Arg Gly Gly Pro Ser His 65 70 75 80

Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro Gl; Gln 85 90 95

Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu Tyr Cys 100 105 110

The state of the s

- Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn Ala Asp 115 120 125
- Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val Tyr Gly
 130 135 140
- Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp Arg Met
 145 150 155 160
- Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg Ser Pro 165 170 175
- Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala Lys Asp 180 185 190
- Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly Gly Arg
 195 200 205
- Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr Val Glu 210, 215 220
- Gly Met Arg Trp Ala Gln Ala Phe Ala Arg Asp Arg Ala Val Met Trp
 230
 235
 240
- Thr Leu His Met Ala Glu Ser Asp His Asp Glu Arg Ile His Gly Met 245 250 255
- Ser Pro Ala Glu Tyr Met Glu Cys His Gly Leu Leu Asp Glu Arg Leu 260 265 270
- Gln Val Ala His Cys Val Tyr Phe Asp Arg Lys Asp Val Arg Leu Leu 275 280 285
- His Arg His Asn Val Lys Val Ala Ser Gln Val Val Ser Asn Ala Tyr
 290 295 300
- Leu Gly Ser Gly Val Ala Pro Val Pro Glu Met Val Glu Arg Gly Met 305 310 315 320
- Ala Met Gly Ile Gly Thr Asp Asn Gly Asn Ser Asn Asp Ser Val Asn 325 330 335
- Met Ile Gly Asp Met Lys Phe Met Ala His Ile His Arg Ala Val His 340 345 350
- Arg Asp Ala Asp Val Leu Thr Pro Glu Lys Ile Leu Glu Met Ala Thr 355 360 365
- Ile Asp Gly Ala Arg Ser Leu Gly Met Asp His Glu Ile Gly Ser Ile
 370 380
- Glu Thr Gly Lys Arg Ala Asp Leu Ile Leu Leu Asp Leu Arg His Pro
 395 395 400

Gln Thr Thr Pro His His His Leu Ala Ala Thr Ile Val Phe Gln Ala 405 410 415

Tyr Gly Asn Glu Val Asp Thr Val Fee Ile Asp Gly Asn Val Val Met
420 425 430

Glu Asn Arg Arg Leu Ser Phe Leu Pro Pro Glu Arg Glu Leu Ala Phe 435 440 445

Leu Glu Glu Ala Gln Ser Arg Ala Thr Ala Ile Leu Gln Arg Ala Asn 450 455 460

Met Val Ala Asn Pro Ala Trp Arg Se. Leu Glu Met Thr Pro Leu Leu 465 470 475 480

His Pro Pro Pro Leu Glu Glu Ile Ala Ala Ile Leu Ala Arg Leu Gly
485 490 495

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 496 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

AND THE RESERVE OF THE PARTY OF

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Gln Thr Leu Ser Ile Gln His Gly Thr Leu Val Thr Met Asp Gln
1 5 10 15

Tyr Arg Arg Val Leu Gly Asp Ser Trp Val His Val Gln Asp Gly Arg

Ile Val Ala Leu Gly Val His Ala Glu Ser Val Pro Pro Pro Ala Asp 35 40 45

Arg Val Ile Asp Ala Arg Gly Lys Val Val Leu Pro Gly Phe Ile Asn 50 55 60

Ala His Thr His Val Asn Gln Ile Leu Leu Arg Gly Gly Pro Ser His 65 70 75 80

Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro Gly Gln 85 90 95

Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu Tyr Cys

100

105

110

- Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn Ala Asp 115 120 125
- Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val Tyr Gly
 130 135 140
- Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp Arg Met
 145 150 155 160
- Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg Ser Pro 165 170 175
- Gln Val Glu Leu Cys Ser Ile Met Glu Gl: Thr Ala Val Ala Lys Asp 180 185 190
- Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly Gly Arg
 195 200 205
- Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr Val Glu 210 215 220
- Gly Met Arg Trp Ala Gln Ala Phe Ala Arg Asp Arg Ala Val Met Trp 235 230 235
- Thr Leu His Met Ala Glu Ser Asp His Asp Glu Arg Ile His Gly Met 245 250 255
- Ser Pro Ala Glu Tyr Met Glu Cys Tyr Gly Leu Leu Asp Glu Arg Leu 260 265 270
- Gln Val Ala His Cys Val Tyr Phe Asp Arg Lys Asp Val Arg Leu Leu 275 280 285
- His Arg His Asn Val Lys Val Ala Ser Gln Val Val Ser Asn Ala Tyr
 290 295 300
- Leu Gly Ser Gly Val Ala Pro Val Pro Glu Met Val Glu Arg Gly Met 305 310 315 320
- Ala Val Gly Ile Gl, Thr Asp Asn Gly Asn Ser Asn Asp Ser Val Asn 325 330 335
- Met Ile Gly Asp Met Lys Phe Met Ala His Ile His Arg Ala Val His 340 345 350
- Arg Asp Ala Asp Val Leu Thr Pro Glu Lys Ile Leu Glu Met Ala Thr 355 360 365
- Ile Asp Gly Ala Arg Ser Leu Gly Met Asp His Glu Ile Gly Ser Ile
 370 380
- Glu Thr Gly Lys Arg Ala Asp Leu Ile Leu Leu Asp Leu Arg His Pro
- Gln Thr Thr Pro His His Leu Ala Ala Thr Ile Val Phe Gln Ala
 405
 410
 415

Tyr Gly Asn Glu Val Asp Thr Val Leu Ile Asp Gly Asn Val Val Met

Glu Asn Arg Arg Leu Ser Phe Leu Pro Pro Glu Arg Glu Leu Ala Phe 435

Leu Glu Glu Ala Gln Ser Arg Ala Thr Ala Ile Leu Gln Arg Ala Asn 455

Met Val Ala Asn Pro Ala Trp Arg Ser Leu Glu Met Thr Pro Leu Leu 475 470

His Pro Leu Pro Leu Glu Glu Ile Ala Ala Ile Leu Ala Arg Leu Gly 490

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 496 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Gln Thr Leu Ser Ile Gln His Gly Thr Leu Val Thr Met Asp Gln

Tyr Arg Arg Val Leu Gly Asp Ser Trp Val His Val Gln Asp Gly Arg

Ile Val Ala Leu Gly Val His Ala Glu Ser Val Pro Pro Pro Ala Asp 40

Gln Val Ile Asp Ala Arg Gly Lys Val Val Leu Pro Gly Phe Ile Asn

Ala His Thr His Val Asn Gln Ile Leu Leu Arg Gly Gly Pro Ser His

Gly Arg Gln Phe His Asp Trp Leu Phe Asn Val Val Tyr Pro Gly Gln 85

Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu Tyr Cys 100 大大學 (1994年) 中国 (1994年) 中国 (1994年) (1994年) (1994年) (1994年) (1994年) (1994年) (1994年) (1994年) (1994年) (1994年)

Ala Glu Ala Val Arg Ser Gly Ile Thr Thr Ile Asn Glu Asn Ala Asp 115 120 125

- Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val Tyr Gly
 130 135 140
- Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp Arg Met
 145 150 155 160
- Asp Gly Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg Ser Pro 165 170 175
- Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala Lys Asp 180 185 190
- Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly Gly Arg
 195 200 205
- Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr Val Glu
 210 215 220
- Gly Met Arg Trp Ala Gln Ala Phe Ala Arg Asp Arg Ala Val Met Trp
 230 235 240
- Thr Leu His Met Ala Glu Ser Asp His Asp Gly Arg Ile His Gly Met
 245 250 255
- Ser Pro Ala Glu Tyr Met Glu Cys Tyr Gly Leu Leu Asp Glu Arg Leu 260 265 270
- Gln Val Ala His Cys Val Tyr Phe Asp Arg Lys Asp Val Arg Leu Leu 275 280 285
- His Arg His Asn Val Lys Val Ala Ser Gln Val Val Ser Asn Ala Tyr
 290 295 300
- Leu Gly Ser Gly Val Ala Pro Val Pro Glu Met Val Glu Arg Gly Met 305 315 320
- Ala Val Gly Ile Gly Thr Asp Asn Gly Asn Ser Asn Asp Ser Val Asn 325 330 335
- Met Ile Gly Asp Mct Lys Phe Met Ala Hıs Ile His Arg Ala Val His 340 345 350
- Arg Asp Ala Asp Val Leu Thr Pro Glu Lys Ile Leu Glu Met Ala Thr 355 360 365
- Ile Asp Gly Ala Arg Ser Leu Gly Met Asp His Glu Ile Gly Ser Ile 370 375 380
- Glu Thr Gly Lys Arg Ala Asp Leu Ile Leu Leu Asp Leu Arg His Pro
 395
 400
- Gln Thr Thr Pro His His Leu Ala Ala Thr Ile Val Phe Gln Ala
- Tyr Gly Asn Glu Val Asp Thr Val Leu Ile Asp Gly Asn Val Val Met
 420
 425
 430

ting the state of the state of

Glu Asn Arg Arg Leu Ser Phe Leu Pro Pro Glu Arg Glu Leu Ala Phe 435 440 445

Leu Glu Glu Ala Gln Ser Arg Ala Thr Ala Ile Leu Gln Arg Ala Asn 450 455 460

Met Val Ala Asn Pro Ala Trp Arg Ser Leu Glu Met Thr Pro Leu Leu 465 470 475 480

His Pro Pro Pro Leu Glu Glu Ile Ala Ala Ile Leu Ala Arg Leu Gly
485 490 495

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 496 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:26:

Met Gln Thr Leu Ser Ile Gln His Gly Thr Leu Val Thr Met Asp Gln

1 10 15

Tyr Arg Arg Val Leu Gly Asp Ser Trp Val His Val Gln Asp Gly Arg
20 25 30

Ile Val Ala Leu Gly Val His Ala Glu Ser Val Pro Pro Pro Ala Asp 35 40 45

Arg Val Ile Asp Ala Arg Gly Lys Val Val Leu Pro Gly Phe Ile Asn 50 55 60

Ala His Thr His Val Asn Gln Ile Leu Leu Arg Gly Gly Pro Ser His 65 70 75 80

Gly Arg Gln Phe Tyr Asp Trp Leu Phe Asn Val Val Tyr Pro Gly Gln 85 90 95

Lys Ala Met Arg Pro Glu Asp Val Ala Val Ala Val Arg Leu Tyr Cys
100 105 110

Ser Ala Ile Tyr Pro Gly Asn Ile Glu Ala Ala Met Ala Val Tyr Gly
130 135 140

- Glu Val Gly Val Arg Val Val Tyr Ala Arg Met Phe Phe Asp Arg Met
 145 150 155 160
- Asp Arg Arg Ile Gln Gly Tyr Val Asp Ala Leu Lys Ala Arg Ser Pro 165 170 175
- Gln Val Glu Leu Cys Ser Ile Met Glu Glu Thr Ala Val Ala Lys Asp 180 185 190
- Arg Ile Thr Ala Leu Ser Asp Gln Tyr His Gly Thr Ala Gly Gly Arg
- Ile Ser Val Trp Pro Ala Pro Ala Thr Thr Thr Ala Val Thr Val Glu 210 215 220
- Gly Met Arg Trp Ala Gln Ala Phe Ala Arg Asp Arg Ala Val Met Trp 225 230 235 240
- Thr Leu His Met Ala Glu Ser Asp His Asp Glu Arg Ile His Gly Met 245 250 255
- Ser Pro Ala Glu Tyr Met Glu Cys Tyr Gly Leu Leu Asp Glu Arg Leu 260 265 270
- Gln Val Ala His Cys Val Tyr Phe Asp Arg Lys Asp Ile Arg Leu Leu 275 280 285
- His Arg His Asn Val Lys Val Ala Ser Gln Ala Val Ser Asn Ala Tyr
 290 295 300
- Leu Gly Ser Gly Val Ala Pro Val Pro Glu Met Val Glu Arg Gly Met 305 310 315 320
- Ala Val Gly Ile Gly Thr Asp Asn Gly Asn Ser Asn Asp Ser Val Asn 325 330 335
- Met Ile Gly Asp Met Lys Phe Met Ala His Ile His Arg Ala Val His 340 345 350
- Arg Asp Ala Asp Val Leu Thr Pro Glu Lys Ile Leu Glu Met Ala Thr 355 360 365
- Ile Asp Gly Ala Arg Ser Leu Gly Met Asp His Glu Ile Gly Ser Ile 370 375 380
- Glu Thr Gly Lys Arg Ala Asp Leu Ile Leu Leu Asp Leu Arg His Pro 385 390 395 400
- Gln Thr Thr Pro His His Leu Ala Ala Thr Ile Val Phe Gln Ala 405 410 415
- Tyr Gly Asn Glu Val Asp Thr Val Leu Ile Asp Gly Asn Val Val Met
- Glu Asn Arg Arg Leu Ser Phe Leu Pro Pro Glu Arg Glu Leu Ala Phe
 435 440 445

Leu Glu Glu Ala Gln Ser Arg Ala Thr Ala Ile Leu Gln Arg Ala Asn 450 455 460

Met Val Ala Asn Pro Ala Trp Arg Ser Leu Glu Met Thr Pro Leu Leu 465 470 475 480

His Pro Pro Pro Leu Glu Glu Ile Ala Ala Ile Leu Ala Gln Leu Gly 485 490 495

What Is Claimed Is:

- A DNA fragment encoding a homolog of atrazine chlorohydrolase and comprising the sequence of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NOS:7-11 and SEQ ID NOS:17-21.
- 2. A s-triazine-degrading protein having at least one amino acid different from the protein of SEQ ID NO:2, wherein the coding region of the nucleic acid encoding the s-triazine degrading protein has at least 95% homology to SEQ ID NO:1 and wherein the s-triazine-degrading protein has an altered catalytic activity, as compared with the protein having the sequence of SEQ ID NO:2.
- 3. The protein of Claim 2 wherein the protein is selected from the group consisting of SEQ ID NOS: 5, 6 and 22-26.
- 4. The protein of Claim 2 wherein the substrate for the s-triazine degrading protein is 2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine.
- 5. The protein of Claim 2 wherein the substrate for the s-triazine degrading protein is 2-chloro-4-(ethylamino)-6-(tertiary butyl-amino)-1,3,5-triazine.
- 6. The protein of Claim 2 wherein the substrate for the s-triazine degrading protein is 2,4,6-triamino-s-triazine.
- 7. A protein selected from the group consisting of proteins comprising the amino acid sequences of SEQ ID NOS: 5, 6 and 22-26.
- 8. A remediation composition comprising a cell producing the protein of Claim 2

L

- 9. The composition of Claim 8, wherein the composition is suitable for treating soil or water.
 - 10. A remediation composition comprising the protein of Claim 2.
- 11. The composition of Claim 10 wherein the composition is suitable for treating soil or water.
 - 12. The DNA fragment of Claim 1 in an expression vector.
 - 13. The DNA fragment of Claim 12 in a cell.
 - 14. The DNA fragment of Claim 13 wherein the cell is a bacterium.
 - 15. The DNA fragment of Claim 14 wherein the cell is E. coli.
- 16. A DNA fragment having a portion of its nucleic acid sequence as having at least 95% homology to a DNA fragment consisting of position 236 and ending at position 1655 of SEQ ID NO:1, wherein the DNA fragment is capable of hybridizing under stringent conditions to SEQ ID NO:1 and wherein there is at least one amino acid change in the protein encoded by the DNA fragment as compared with SEQ ID NO:2 and wherein the protein encoded by the DNA fragment is capable of dechlorinating at least one s-triazine-containing compound and has an enzymatic activity different from the enzymatic activity of the protein corresponding to SEQ ID NO:2.
- 17. The fragment of Claim 16, wherein the s-triazine-containing compound is 2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine.

that the property of the property of the control of

18. The fragment of Claim 16, wherein the s-triazine-containing compound is 2-chloro-4-(ethylamino)-6-(tertiary butyl-amino)-1,3,5-triazine.

- 19. The fragment of Claim 16, wherein the s-triazine containing compound is (2,4,6-triamino-s-triazine).
- 20. The fragment of Claim 16 wherein the enzymatic activity is an improved ability to degrade atrazine.
- 21. The fragment of Claim 20 wherein the enzymatic activity is a 10-fold improvement in the ability to degrade atrazine.
- 22. The fragment of Claim 16, wherein the enzymatic activity is an altered substrate.
 - 23. The protein of Claim 2 which is a homotetramer.
 - 24. The protein of Claim 2 bound to an immobilization support.
- 25. A method for treating a sample comprising an s-triazine-containing compound comprising the step of:

adding a composition to a sample comprising an s-triazine-containing compound, wherein the composition comprises a protein encoded by a gene having at least a portion of the nucleic acid sequence of the gene having at least 95% homology to the sequence beginning at position 236 and ending at position 1655 of SEQ ID NO:1, wherein the gene is capable of hybridizing under stringent conditions to SEQ ID NO:1, wherein there is at least one amino acid change in the protein encoded by the DNA fragment as compared with SEQ ID NO:2 and wherein the protein has an altered catalytic acitivity as compared to the protein having the amino acid sequence of SEQ ID NO:2.

পরিক্রের বিপ্রায়র কর্মানর বিভাগর বাব ক্রিয়ার প্রান্ত করে। প্রতিবাদি বিভাগর বিভাগর বিভাগর বিভাগর বিভাগর বিভাগ

- 26. The method of Claim 25 wherein the composition comprises bacteria expressing the protein.
- 27. The method of Claim 25 wherein the s-triazine -containing compound is 2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine.
- 28. The method of Claim 25 wherein the s-triazine-containing compound is 2-chloro-4-(ethylamino)-6-(tertiary butyl-amino)-1,3,5-triazine.
- 29. The method of Claim 25 wherein the s-triazine containing compound is (2,4,6-triamino-s-triazine).
- 30. The method of Claim 25 wherein the protein encoded by the gene is selected from the group consisting of SEQ ID NOS: 5, 6 and 22-26.
- 31. A method for obtaining homologs of an atrazine chlorohydrolase comprising the steps of:

obtaining a nucleic acid sequence encoding atrazine chlorohydrolase;

mutagenizing the nucleic acid to obtain a modified nucleic acid sequence that encodes for a protein having an amino acid sequence with at least one amino acid change relative to the amino acid sequence of the atrazine chlorohydrolase;

screening the proteins encoded by the modified nucleic acid sequence; and

selecting proteins with altered catalytic activity as compared to the catalytic activity of the atrazine chlorohydrolase.

Barran Barran

32. The method of Claim 31 wherein the atrazine chlorohydrolase nucleic acid sequence is SEO ID NO:1.

- 33. The method of Claim 31 wherein the altered catalytic activity is an improved ability to degrade atrazine.
- 34. The method of Claim 31 wherein the selected proteins have an altered substrate activity.

MATERIAL SECTION

1/16

1		4
1	CTCGGGTAACTTCTTGAGCGCGGCCACAGCAGCCTTGATCATGAAGGCGA	50
5	GCATGGTGACCTTGACGCCGCTCTTTTCGTTCTCTTTTGTTGAACTGCACG	54
51	COLMOGRACIO COMPONICIONAL CONTRACTOR CONTRAC	100
55	CGAAAGGCTTCCAGGTCGGTGATGTCCGCGTCGTCGTGGTTGGT	104
101		150
105	CGGGATGACCACCCAGTTGCGGTGCAGGTTTTTCGATGGCATAATATCTG	154
151	CGGGATGACCACCCAGTTGCGGTGCAGGTTTTTCGATGGCATAATATCTG	
155	CGTTGCGACGTGTAACACACTATTGGAGACATATCATGCAAACGCTCAGC	_
201		
	ATCCAGCACGGTACCCTCGTCACGATGGATCAGTACCGCAGAGTCCTTGG	
	ATCCAGCACGGTACCCTCGTCACGATGGATCAGTACCGCAGAGTCCTTGG	
	GGATAGCTGGGTTCACGTGCAGGATGGACGGATCGTCGCGCTCGGAGTGC	
	ACGCCGAGTCGCTCCGCCAGCGGATCGGGTGATCGATGCACGCGGC	
355		404
401	AAGGTCGTGTTACCCGGTTTCATCAATGCCCACACCCATGTGAACCAGAT	450
405	CCTCCTGCGCGGAGGCCCTCGCACGGGCGTCAATTCTATGACTGGCTGT	454
451	CCTCCTGCGCGGAGGCCCTCGCACGGACGTCAATTCTATGACTGGCTGT	500
455	TCAACGTTGTGTATCCGGGACAAAAGGCGATGAGACCGGAGGACGTAGCG	504
501	TCAACGTTGTGTATCCGGGACAAAAGGCGATGAGACCGGAGGACGTAGCG	550
505	GTGGCGTGAGGTTGTATTGTGCGGAAGCTGTGCGCAGCGGGATTACGAC	554
551	GTGGCGGTGAGGTTGTATTGTGCGGAAGCTGTGCGCAGCGGGATTACGAC	600
555	GATCAACGAAAACGCCGATTCGGCCATCTACCCAGGCAACATCGAGGCCG	
601	GATCAACGAAAACGCCGATTCGGCCATCTACCCAGGCAACATCGAGGCCG	

	\mathcal{F}_{iq} 1B	
	GAGACATGAAGTTTATGGCCCATATTCACCGCGCGGTGCATCGGGATGCG	eran eran eran eran eran eran eran eran
	GAGACATGAAGTTTATGGCCCATATTCACCGCGCGCGCGTGCATCGGGATGCG	Parties in the
	GGGCATTGGAACAGATAACGGGAATAGTAATGACTCCGTAAACATGATCG	
	GGCTCAGGGGTGGCCCCGTGCCAGAGATGGTGGAGCGCGGCATGGCCGT	
	GGCTCAGGGGTGGCCCCCGTGCCAGAGATGGTGGAGCGCGGCATGGCCGT	•
	ACCGCCACAATGTGAAGGTCGCGTCGCAGGTTGTGAGCAATGCCTACCTC	
L055	ACCGCCACAATGTGAAGGTCGCGTCGCAGGTTGTGAGCAATGCCTACCTC	1104
1051	GCAGGTCGCGCATTGCGTGTACTTTGACCGGAAGGATGTTCGGCTGCTGC	1100
1005	GCAGGTCGCGCATTGCGTGTACTTTGACCGGAAGGATGTTCGGCTGCTGC	1054
1001	ATGAGTCCCGCCGAGTACATGGAGTGTTACGGACTCTTGGATGAGCGTCT	1050
955	ATGAGTCCCGCCGAGTACATGGAGTGTTACGGACTCTTGGATGAGCGTCT	1004
951		1000
	TGTGGACGCTTCACATGGCGGAGAGCGATCATGATGAGCGGATTCATGGG	
	AGTTGAAGGAATGCGATGGGCACAAGCCTTCGCCCGTGATCGGGCGGTAA AGTTGAAGGAATGCGATGGGCACAAGCCTTCGCCCGTGATCGGGCGGTAA	
	GGAGGTCGTATATCAGTTTGGCCCGCTCCTGCCACTACCACGGCGGTGAC AGTTGAAGGAATGCGATGGGCACAAGCCTTCGCCCGTGATCGGGCGGTAA	
	GGAGGTCGTATATCAGTTTGGCCCGCTCCTGCCACTACCACGGCGGTGAC	
	TGGCCAAAGATCGGATCACAGCCCTGTCAGATCAGTATCATGGCACGGCA	
	TGGCCAAAGATCGGATCACAGCCCTGTCAGATCAGTATCATGGCACGGCA	
	GGCTCGCTCTCCCCAAGTCGAACTGTGCTCGATCATGGAGGAAACGGCTG	
	GGCTCGCTCTCCCCAAGTCGAACTGTGCTCGATCATGGAGGGAACGGCTG	
701	TTCTTTGATCGGATGGACGCCCTTGAA	750
655	TTCTTTGATCGGATGGACGCCCTTGAA	704
651		700
605	CGATGCCGCTCTATGGTGAGGTGGGTGTGAGGGTCGTCTACGCCCGCATG	654

1255	GACGTGCTGACCCCAGAGAAGATTCTTGAAATGGCGACGATCGAT	1304
1301	GACGTGCTGACCCCAGAGAAGATTCTTGAAATGGCGACGATCGAT	1350
1305	GCGTTCGTTGGGAATGGACCACGAGATTGGTTCCATCGAAACCGGCAAGC	1354
1351		1400
1355	GCGCGGACCTTATCCTGCTTGACCTGCGTCACCCTCAGACGACTCCTCAC	1404
1401	GCGCGGACCTTATCCTGCTTGACCTGCGTCA.CCTCAGACGACTCTCA	1447
1405	CATCATTTGGCGGCCACGATCGTGTTTCAGGCTTACGGCAATGAGGTGGA	1454
1448		1497
1455	CACTGTCCTGATTGACGGAAACGTTGTGATGGAGAACCGCCGCTTGAGCT	1504
1498		1547
1505	TTCTTCCCCTGAACGTGAGTTGGCGTTCCTTGAGGAAGCGCAGAGCCGC	1554
1548	TTCTTCCCCCTGAACGTGAGTTGGCGTTCCTTGAGGAAGCGCAGAGCCGC	1597
1555	GCCACAGCTATTTTGCAGCGGGCGAACATGGTGGCTAACCCAGCTTGGCG	1604
1598	GCCACAGCTATTTTGCAGCGGGCGAACATGGTGGCTAACCCAGCTTGGCG	1647
1605	CAGCCTCTAGGAAATGACGCCGTTGCTGCATCCGCCGCCCCTTGAGGAAA	1654
1648	CAGCCTCTAGGAAATGACGCCGTTGCTGCATCCGCCGCCCCTTGAGGAAA	1697
1655	TCGCTGCCATCTTGGCGCGGCTCGGATTGGGGGGGGGACATGACCTTGAT	1704
1698	TCGCTGCCATCTTGGCGCGCGCTCGGATTGGGGGGCGGACATGACCTTGAT	1747
1705	GGATACAGAATTGCCATGAATGCGGCACTTCCGTCCTTCGCTCGTGTGGA	1754
1748	GGATACAGAATTGCCATGAATGCGGCACTTCCGTCCTTCGCTCGTGTGGA	1797
1755	ATCGTTGGTAGGTGAGGGTCGACTGCGGGCGCCAGCTTCCCGAAGAAGTG	1804
1798	ATCGTTGGTAGGTGAGGGTCGACTGCGGGCGCCAGCTTCCCGAAGAGGTG	1847
1805	AAAG 1808	
1848	 AAAGGCCCGAG 1858	

Fig. 1C

_	GAGCGCCGCCACAGCAGCCTTGATCATGAAGGCGA	35
. 1	CTCGGGTAACTTCTTGAGCGCGCCACAGCAGCCTTGATCATGAAGGCGA	50
36	GCATGGTGACCTTGACGCCGCTCTTTTCGTTCTCTTTGTTGAACTGCACG	85
51	GCATGGTGACCTTGACGCCGCTCTTTTCGTTCTCTTTGTTGAACTGCACG	100
86	CGAAAGGCTTCCAGGTCGGTGATGTCCGCGTCGTCGTGGTTGGT	135
101	CGAAAGGCTTCCAGGTCGGTGATGTCCGCGTCGTCGTGGTTGGT	150
136	CGGGATGACCACCCAGTTGCGGTGCAGGTTTTTCGATGGCGTAATATCTG	185
151	CGGGATGACCACCCAGTTGCGGTGCAGGTTTTTCGATGGCATAATATCTG	200
186	CGTTGCGACGTGTAACACACTATTGGAGACATATCATGCAAACGCTCAGC	235
201	CGTTGCGACGTGTAACACACTATTGGAGACATATCATGCAAACGCTCAGC	250
	ATCCAGCACGGTACCCTCGTCACGATGGATCAGTACCGCAGAGTCCTTGG	
	ATCCAGCACGGTACCCTCGTCACGATGGATCAGTACCGCAGAGTCCTTGG	300
		335
	GGATAGCTGGGTTCACGTGCAGGATGGACGGATCGTCGCGCTCGGAGTGC	350
		385
	ACGCCGAGTCGGTGCCTCCGCCAGCGGATCGGTGATCGATGCACGCGGC	400
		435
		450
	CCTCCTGCGCGAGGGCCCTCGCACGGGCGTCAATTCTATGACTGGCTGT	
	TCAACGTTGTGTATCCGGGACAAAAGGCGATGAGACCGGAGGACGTAGCG	
	TCAACGTTGTGTATCCGGGACAAAAGGCGATGAGACCGGAGGACGTAGCG	
	GTGGCGGTGAGGTTGTATTGTGCGGAAGCTGTGCGCAGCGGGATTACGAC	
	GATCAACGAAAACGCCGATTCGGCCATCTACCCAGGCAACATCGAGGCCG	
	GATCAACGAAAACGCCGATTCGGCCATCTACCCAGGCAACATCGAGGCGC	i e e e e e La Transia

5/16

636	CGATGGCGGTCTATGGTGAGGTGGGTGTGAGGGTCGTCTACGCCCGCATG	685
651		700
686	TTCTTTGATCGGATGGACGGCGCATTCAAGGGTATGTGGACGCCTTGAA	735
701		750
736	GGCTCGCTCTCCCCAAGTCGAACTGTGCTCGATCATGGAGGAAACGGCTG	785
751	GGCTCGCTCTCCCCAAGTCGAACTGTGCTCGATCATGGAGGAAACGGCTG	800
786	TGGCCAAAGATCGGATCACAGCCCTGTCAGATCAGTATCATGGCACGGCA	835
801	TGGCCAAAGATCGGATCACAGCCCTGTCAGATCAGTATCATGGCACGGCA	850
836	GGAGGTCGTATATCAGTTTGGCCCGCTCCTGCCACTACCACGGCGGTGAC	885
851	GGAGGTCGTATATCAGTTTGGCCCGCTCCTGCCACTACCACGGCGTGAC	900
886	AGTTGAAGGAATGCGATGGGCACAAGCCTTCGCCCGTGATCGGGCGGTAA	935
901		950
936	TGTGGACGCTTCACATGGCGGAGAGCGATCATGATGAGCGGATTCATGGG	985
951	TGTGGACGCTTCACATGGCGGAGAGCGATCATGAGCGGATTCATGGG	1000
986	ATGAGTCCCGCCGATTACATGGAGTGTTACGGACTCTTGGATGAGCGTCT	1035
1001	ATGAGTCCCGCCGAGTACATGGAGTGTTACGGACTCTTGGATGAGCGTCT	1050
1036	GCAGGTCGCGCATTGCGTGTACTTTGACCGGAAGGATGTTCGGCTGCTGC	1085
1051	GCAGGTCGCGCA1 GCGTGTACTTTGACCGGAAGGATGTTCGGCTGCTGC	1100
1086	ACCGCCACAATGTGAAGGTCGCGTCGCAGGT_GTGAGCAATGCCTACCTC	1135
1101	ACCGCCACAATGTGAAGGTCGCGTCGCAGGTTGTGAGCAATGCCTACCTC	1150
1136	GGCTCAGGGGTGGCCCCCGTGCCAGAGATGGTGGAGCGCGGCATGGCCGT	1185
1151		1200
1186	GGGCATTGGAACAGATAACGGGAATAGTAATGACTCCGTAAACATGATCG	1235
1201	GGGCATTGGAACAGATAACGGGAATAGTAATGACTCCGCAAACATGATCG	1250
1236	GAGACATGAAGTTTATGGCCCATATTCACCGCGCGGTGCATCGGGATGCG	1285
	GAGACATGAAGTTTATGGCCCATATTCACCGCGCTGCATCGGGATGCG	• •

1286	GACGTGCTGACCCCAGAGAAGATTCTTGAAATGGCGACGATCGAT	1335
1301	GACGTGCTGACCCCAGAGAAGATTCTTGAAATGGCGACGATCGAT	1350
1336	GCGTTCGTTGGGGATGGACCACGAGATTGGTTCCATCGAAACCGGCAAGC	1385
1351		1400
1386	GCGCGGACCTTATCCTGCTTGACCTGCGTCACCCTCAGACGACTCCTCAC	1435
1401	GCGCGGACCTTATCCTGCTTGACCTGCGTCA.CCTCAGACGACTCTCA	1447
1436	CATCATTTGGCGGCCACGATCGTGTTTCAGGCTTACGGCAATGAGGTGGA	1485
1448	CATCATTTGGCGGCCACGATCGTGTTTCAGGCTTACGGCAATGAGGTGGA	1497
1486	CACTGTCCTGATTGACGGAAACGTTGTGATGGAGAACCGCCGCTTGAGCT	1535
1498		1547
1536	TTCTTCCCCTGAACGTGAGTTGGCGTTCCTTGAGGAAGCGCAGAGCCGC	1585
1548	TTCTTCCCCCTGAACGTGAGTTGGCGTTCCTTGAGGAAGCGCAGAGCCGC	1597
1586	GCCACAGCTATTTTGCAGCGGGCGAACATGGTGGCTAACCCAGCTTGGCG	1635
1598	GCCACAGCTATTTGCAGCGGGCGAACATGGTGGCTAACCCAGCTTGGCG	1647
1636	CAGCCTCTAGGAAATGACGCCGTTGCTGCATCCGCCGCCCCTTGAGGAAA	1685
1648	CAGCCTCTAGGAAATGACGCCGTTGCTGCATCCGCCGCCCCTTGAGGAAA	1697
1686	TCGCTGCCATCTTGGCGCGGCTCGGATTGGGGGGGGGGACATGACCTTGAT	1735
1698		1747
1736	GGATACAGAATTGCCATGAATGCGGCACTTCCGTCCTTCGCTCGTGTGGA	1785
1748	GGAL'ACAGAATTGCCATGAATGCGGCACTTCCGTCCTTCGCTCGTGTGGA	1797
1786	ATCGTTGGTAGGTGAGGGTCGACTGCGGGCGCCAGCTTCCCGAAGAAGTG	1835
1798	ATCGTTGGTAGGTGAGGGTCGACTGCGGGCGCCAGCTTCCCGAAGAGGTG	1847
1836	AAAGGCCCGAG 1846	
1848	AAAGGCCCGAG 1858	

Fig. 2C SUBSTITUTE SHET (RULE 28)

7/16

1	ASMVTLTPLFSFSLLNCTRKASRSVMSASSWLVTC	35
1	SGNFLSAATAALIMKASMVTLTPLFSFSLLNCTRKASRSVMSASSWLVTC	50
36	GMTTQLRCRFFDGIISALRRVTHYWRHIMQTLSIQHGTLVTMDQYRRVLG	85
51	GMTTQLRCRFFDGIISALRRVTHYWRHIMQTLSIQHGTLVTMDQYRRVLG	100
86	DSWVHVQDGRIVALGVHAESVPPPADRVIDARGKVVLPGFINAHTHVNQI	135
	DSWVHVQDGRIVALGVHAESVPPPADRVIDARGKVVLPGFINAHTHVNQI	150
	LLRGGPSHGRQFYDWLFNVVYPGQKAMRPEDVAVAVRLYCAEAVRSGITT	185
		200
	INENADSAIYPGNIEAAMAVYGEVGVRVVYARMFFDRMDGRIQGYVDALK	
201	INENADSAIYPGNIEAAMAVYGEVGVRVVYARMFFDRMDGRIQGYVDALK	250
		285
	ARSPQVELCSIMEETAVAKDRITALSDQYHGTAGGRISVWPAPATTTAVT	300
	VEGMRWAQAFARDRAVMWTLHMAESDHDERIHGMSPAEYMECYGLLDERL	335
336	QVAHCVYFDRKDVRLLHRHNVKVASQVVSNAYLGSGVAPVPEMVERGMAV	350 385
		400
386		435
401		450
436	RSLGMDHEIGSIETGKRADLILLDLRHPQTTPHHHLAATIVFQAYGNEVD	485
451		499
486	TVLIDGNVVMENRRLSFLPPERELAFLEEAQSRATAILQRANMVANPAWR	535
500	TVLIDGNVVMENRRLSFLPPERELAFLEEAQSRATAILQRANMVANPAWR	549
536	SL*EMTPLLHPPPLEEIAAILARLGLGGGHDLDGYRIAMNAALPSFARVE	585
550		599
586	SLVGEGRLRAPASRRSE 602) 354
600	SINGEGRIRAPASERGERPE 619	A

Fig. 3

1	SAATAALIMKASMVTLTPLFSFSLLNCTRKASRSVMSASSWLVTC	45
1		50
46		95
51		100
96	DSWVHVQDGRIVALGVHAESVPPPADRVIDARGKVVLPGFINAHTHVNQI	145
101		150
146	LLRGGPSHGRQFYDWLFNVVYPGQKAMRPEDVAVAVRLYCAEAVRSGITT	195
151		200
196	INENADSAIYPGNIEAAMAVYGEVGVRVVYARMFFDRMDGRIQGYVDALK	245
201		250
246	ARSPQVELCSIMEETAVAKDRITALSDQYHGTAGGRISVWPAPATTTAVT	295
251		300
296	VEGMRWAQAFARDRAVMWTLHMAESDHDERIHGMSPADYMECYGLLDERL	345
301		350
346	QVAHCVYFDRKDVRLLHRHNVKVASQVVSNAYLGSGVAPVPEMVERGMAV	395
351		400
396	GIGTDNGNSNDSVNMIGDMKFMAHIHRAVHRDADVLTPEKILEMATIDGA	445
401		450
446	RSLGMDHEICSIETGKRADLILLDLRHPQTTPHHHLAATIVFQAYGNEVD	495
451		499
496	TVLIDGNVVMENRRLSFLPPERELAFLEEAQSRATAILQRANMVANPAWR	545
500	TVLIDGNVVMENRRLSFLPPERELAFLEEAQSRATAILQRANMVANPAWR	549
546	SL*EMTPLLHPPPLEEIAAILARLGLGGGHDLDGYRIAMNAALPSFARVE	595
550		599
596	SLVGEGRLRAPASRRSERPE 615	
600		en tota

Fig. 4

545		496
ı	:	47
495	CGAGCATGGTGACCTNGACGCCGTNTTTTNGTTNTTTTTTGTTGAACTGC	446
48	CGAGCATGGTGACCTTGACGCCGCTCTTTTCGTTCTTTTTTTT	97
445	ACGCGAAAGG.TTCCAGGTCGTGATGTCCGCGTCGTCGTGGTTGGTGAC	397
98	ACGCGAAAGGCTTCCAGGTCGGTGATGTCCGCGTCGTCGTGGTGAC	147
396	GTGCGGGATGACCACCCAGNTGCGGTGCAGGTTTTTCGATGGCATAATAT	347
148	GTGCGGGATGACCACCCAGTTGCGGTGCAGGTTTTTCGATGGCATAATAT	197
346	CTGCGTTGCGACGTGTAACACACTANTGGAGACATATCATGCAAACGCTC	297
198		247
296	AGCATCCAGCACGGTACCCTCGTCACGATGGATCAGTACCGCAGAGTCCT	247
	AGCATCCAGCACGGTACCCTCGTCACGATGGATCAGTACCGCAGAGTCCT	297
246	TGGGGATAGNTGGGTTCACGTGCAGGATGGACGGATCGTCGCGCTCGGAG	197
298		347
196		147
	TGCACGCCGAGTCGGTGCCTCCGCCAGCGGATCGGGTGATCGATGCACGC	
	GGCAAGGTCGTGTTACCCGGTTTCATCAATGCCCACACCCATGTGAACCA	
	GGCAAGGTCGTGTTACCCGGTTTCATCAATGCCCACACCCATGTGAACCA	447
	GATCCTCCTGC~~GGAGGGCCNTCGCACGGGCGTCAATTNTATGACTGGC	47
	GATCCTCCTGCGCGGAGGCCCTCGCACGGACGTCAATTCTATGACTGGC	
	TGTTCAACGTTGTGTATCCGGGACAAAAGGCGATGAGACCGGAGGA	1
498	ATƏCAŞƏAŞƏC AZAÇƏTAŞCƏŞƏAAAAC AZAŞƏC TATÇETTƏCAACTTŞT 🗜	547

Fig.5A

1	CCTGCGCGGAGGCCTCCGCACGGGCGTCAATTCTATGACTGGCTGT	47
451		500
48	TCAACGTTGTGTATCCGGGACAAAAGGCGATGAGACCGGAGGACGTANCG	97
501	TCAACGTTGTGTATCCGGGACAAAAGGCGATGAGACCGGAGGACGTAGCG	550
98	GTGGCGGTGAGGTTGTATTGTGCGGAAGCTGTGCGCAGCGGGATTACGAC	147
551	GTGGCGGTGAGGTTGTATTGTGCGGAAGCTGTGCGCAGCGGGATTACGAC	600
148	GATCAACGAAAACNCCGATTCGGCCATCTACCCAGGCAACATCGAGGCCG	197
601		650
198	CGATGGCGGTCTATGGTGAGGTGGGTGTGAGGGTCGTCTACGCCCGCATG	247
651	CGATGGCGTCTATGGTGAGGTGGGTGTGAGGGTCGTCTACGCCCGCATG	700
248	TTCTTTGATCGGATGGACGCCATTCAAGGGTATGTGGACGCCTTGAA	297
701		750
298	GGCTCGCTCTCCCCAAGTCGAACTGTGCTCGATCATGGANGAAACNGCTG	347
751	GGCTCGCTCTCCCCAAGTCGAACTGTGCTCGATCATGGAGGAAACGGCTG	800
348	TGGCCAAAGATCGGATCACANCCCTGTCANATCANTATCATGGCACNGCA	397
801	TGGCCAAAGATCGGATCACAGCCCTGTCAGATCAGTATCATGGCACGGCA	850
398	NGAGGTCCTATATCANTTTGGCCCGCTCCTGCCACTACCACNGCGGTGAC:	447
851	CCL CCMCCCML MA MCL CCMMMCCCCCCCCCCCCCCC	900
448	ATTTAAANGAATCCATGGGCCAACCTCCCCGTGATCCGGCGGTAA	493
	AGTTGAAGGAATGCGATGGGCACAAGCCTTCGCCCGTGATCGGGCGGTAA	950
494	TGTGAC	499
951	TGTGGACGCTTCACATGGCGGAGAGCGATCATGATGAGCGGATTCATGGG	1000

Fig. 5B

SUBSTITUTE SHEET (RULE 28)

360	TNGCAGGTTGTGAGCATGCTACTTC	336
1101	:	1150
335	GGTTCAGGNGTGGCCCCCGTGCCAGAGATGGTGGACCGCGGCATGGCCGT	286
1151	:	1200
285	GGGCATTGGAACAGATAACGGGAATAGTAATGACTCCGTAAACATGATCG	236
1201	GGGCATTGGAACAGATAACGGGAATAGTAATGACTCCGCAAACATGATCG	1250
235	GAGACATGAAGTTTATGGCCCATA. TCACCGCGCGCTGCATCGGGATGCG	186
1251	GAGACATGAAGTTTATGGCCCATATTCACCGCGCGCGTGCATCGGGATGCG	1300
185	GACGTGCTGACCCCAGAGAAGATTNTTGAAATGGCGACGATCGATGGGGC	136
1301	GACGTGCTGACCCCAGAGAAGATTCTTGAAATGGCGACGATCGAT	1350
135	GCGTTTCGTTGGGGATGGACCACGAGATTGGTTCCATCGAAACCGGCAAG	86
1351	GCG.TTCGTTGGGAATGGACCACGAGATTGGTTCCATCGAAACCGGCAAG	1399
85	CGCGCGGACCTTATCCTGCTTGACCTGCGTCACCCTCAGACGACTCCTCA	36
1400	CGCGCGGACCTTATCCTGCTTGACCTGCGTCA.CCTCAGACGACTCTC	1446
35	CCATCATTTGGCGGCCACGATCGTGTTTCAGGCTT.	1
1447	ACATCATTTGGCGGCCACGATCGTGTTTCAGGCTTACGGCAATGAGGTGG	1405

Fig. 5C

12/16

1 CGGCCACCA TCCTCCT
1CGGCCACGATCGTGTTTCAGGCTTACGGCAATGAGGTGGACAC 43
150CTTACGCAATGAGGTGGACAC 150
44 TGTCCTGATTGACGGAAACGTTGTGATGGAGAACCGCCGCTTGAGCTTTC 93 1501 TGTCCTGATTGACGGAAACGTTGTGATGGAGAACCGCCGCTTGAGCTTTC 93
1550 TOURS OF THE PROPERTY OF
94 TTCCCCCTGAACCTCACTTCCCCCCC
144 ACAGCTATTTTCCATCCCCCCCC
194 GCCTCTAGGAAATGACGCCCTTCCTTCCTTCCTTCCTTCC
244 GCTGCCATCTTGCCCCCCCCCCCCCCCCCCCCCCCCCCC
244 GCTGCCATCTTGGCGCGGCTCGGATTGGGGGGGCGGACATGACCTTGATGG 293 1700 GCTGCCATCTTGGCGCGGCTCGGATTGGGGGGGCGGACATGACCTTGATGG 1749
294 ATACAGAATTCCCATTCATTCATTCATTCATTCATTCATT
294 ATACAGAATTGCCATGAATGCGGCACTTCCGTCCTTCGCTCGTGTGGAAT 343
TOTAL TECHTOLOGICAL TOTAL TOTA
344 CGTTGGTAGGTGAGGGTCGACTGCGGGCGCCAGCTTCCCGAAGAGGTGAA 393
1800 CGTTGGTAGGTGAGGGTCGACTGCGGGCGCCAGCTTCCCGAAGAGGTGAA 1840
394 AGCCCGAGGATCCTCTAGAGTCCGATTTTTCCCATGGGG
1850 AGGCCCGAG
1950

Fig.5D

,	1CCTGCGCGGA.GGCCTCCGCACGGGCGTCAATTCTATGACTGGCTG	T 4	16
45		 T 5	500
41 501			6
		G 5	50
551	GTGGCGGTGAGGTTGTATTGTGCGGAAGCTGTGCGCAGCGGGATTACGAG		46 00
147 601	GATCAACGAAAACGCCGATTCGGCCATCTACCCAGGCAACATCGAGGCCC		96
197	•		50
651	CGATGGCGGTCTATGGTGAGGTGGGTGTGAGGGTCGTCTACGCCCGCATG		
247 701	TTCTTTGATCGGATGGACGGCGCATTCAAGGGTATGTGGACGCCTTGAA		
297	GGCTCGCTCTCCCCAAGTCGAACTGTGCTCGATCATGGAGGAAACGGCTG		0
			-
347	TGGCCAAAGATCGGATCACANCCCTCTCACATCANTATTCATTCA		
801			
397	NGAGGTCCTATATCANTTTGGCCCGCTCCTCCCA CTTA COLOR	44	
851	: :	90	-
	ATTTNAANGAATTCCATNGGCACAA (CTTCCCCCCTCATCATCCCCCCTCATCATCCCCCCTCATCCCCCC		-
	: : :		
496	TGTNGACCCA	50	5
951	TGTGGACGCTTCACATGGCGGAGAGCGATCATGATGAGCGGATTCATGGG		

Fig. 6

WO 98/31816 PCT/US98/00944

14/16

TERBUYLAZINE DEGRADATION BY SHUFFLED PROTEINS A7, A11 AND T7 - 1,ug/ml ptn conc -EFFECT OF METAL IONS

Bacterium Tra		nslation of PCR amplified DNA sequence				
ADP SG1 M91-3 J14a 38/38 Clav.	79 SHGR(PHGR(SHGR(PHGR(SHGR(SHGR(92 O FYDWLFNVVY O FYDWLFNVLY O FYDWLFNVVY O FYDWLFNVVY O FYDWLFNVVY	PGQKAMRPEI PGQKAMRPEI PGQKAMRPEI PGQKAMRPEI PGQKAMRPEI	O VAVAVRLYCA O VAVAVRLYCA O VAVAVRLYCA O VAVAVRLYCA O VAVAVRLYCA	EAVRSGITTI EAVRSGITTI EAVRSGITTI EAVRSGITTI EAVRSGITTI EAVRSGITTI	
ADP SG1 M91-3 J14a 38/38 Clav.	NE.NADSAIY NE.NADSAIY NE.NADSAIY NE.NADSAIY NE.NADSAIY NE.NADSAIY NE.NADSAIY	PGNIEAAMAV PGNIEAAMAV PGNIEAAMAV	YGEVGVRVVY YGEVGVRVVY YGEVGVRVVY YGEVGVRVVY	ARMFFDRMDG ARMFFDRMDG ARMFFDRMDG ARMFFDRMDG	170 RIQGYVDALK RIQGYVDALK RIQGYVD <u>T</u> LK RIQGYVDALK	
ADP SG1 M91-3 J14a 38/38 CLav.	ARSPQVELCS ARSPQVELCS ARSPQVELCS ARSPQVELCS ARSPQVELCS ARSPQVELCS	IMEETAVAKD		GTAGGRISVW GTAGGRISVW GTAGGRISVW GTAGGRISVW	PAPATTTAVT PAPATTTAVT PAPATTTAVT PAPATTTAVT PAPATTTAVT PAPATTTAVT	

Fig. 9

INTERNATIONAL SEARCH REPORT

Yonal Application No PCI/US 98/00944

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/55 C12N9/14

C07K16/40

C12Q1/34 -

C12N11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K C12Q

C. DOCUMENTS CONSIDERED TO BE RELEVANT

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
P,X	WO 97 15675 A (UNIV MINNESOTA) 1 May 1997 see the whole document	1-34	
X	SOUZA DE M L ET AL: "ATRAZINE CHLOROHYDROLASE FROM PSEUDOMONAS SP. STRAIN ADP: GENE SEQUENCE, ENZYME PURIFICATION, AND PROTEIN CHARACTERIZATION" JOURNAL OF BACTERIOLOGY, vol. 178, no. 16, August 1996, pages 4894-4900, XP000614970 see the whole document	1-34	
	-/		

Hillenbrand, G

INTERNATIONAL SEARCH REPORT

Intr Honal Application No PCI/US 98/00944

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/US 98/00944		
ategory '	Citation of document, with indication where appropriate, of the relevant passages			
	pussages		Relevant to clam No.	
(SOUZA DE M L ET AL: "CLONING, CHARACTERIZATION, AND EXPRESSION OF A GENE REGION FROM PSEUDOMONAS SP. STRAIN ADP INVOLVED IN THE DECHLORINATION OF ATRAZINE" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 61, no. 9, September 1995, pages 3373-3378, XP000616901 see the whole document		1-34	
	MANDELBAUM R T ET AL: "ISOLATION AND CHARACTERIZATION OF A PSEUDOMONAS SP. THAT MINERALIZES THE S-TRIAZINE HERBICIDE ATRAZINE" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 61, no. 4, April 1995, pages 1451-1457, XP000617154 see the whole document		1,2,16, 25	
	MULBRY W W: "PURIFICATION AND CHARACTERIZATION OF AN INDUCIBLE S-TRIAZINE HYDROLASE FROM RHODOCOCCUS CORALLINUS NRRL B-15444R" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 60, no. 2, February 1994, pages 613-618, XP000645496 see the whole document		1,2,16, 25	
	EP 0 141 784 A (CIBA GEIGY AG) 15 May 1985 see the whole document		1,2,16, 25	
İ				
·			***, ···	
		A Section 1975	andre State (1995) State of the State (1995) State of the State (1995)	
	en e			
		7.00-2-X	ARREA	
in de la company	े कियन होते हैं किया के किया है ने क्या के किया है ने किया किया किया किया किया किया किया किया	American St.		

INTERNATIONAL SEARCH REPORT

information on patent family members

Int tional Application No PCT/US 98/00944

	Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
	WO 9715675	Α	01-05-1997	UA	7466996 A	15-05-1997	
	EP 0141784	A	15-05-1985	AU	3493084 A	09-05-1985	
				· BR	8405592 A	10 - 09-1985 -	
l				DE	3466668 A	12-11-1987	
				JP	60114191 A	20-06-1985	
				US	4745064 A	17-05-1988	
1							