Leveraging Machine Learning for Predicting Customer Satisfaction

Ziad El Harairi, Juan Saavedra, Juan Ocampo

Methodology

EDA

Model Testing

MAE TEST:

Best: SVR/RFECV 0.59(2272)

Worst: Decision Tree/PCA 0.68(2412)

Final Model

- XGBoost (Gradient Boosting)
- All predictors (45 numerical, 14 categorical dummies)

- MAE in tests 0.607 (2293)
- R2 in test 0.184

Objective

Identify potentially popular negative reviews to prevent negative feedback

How

Define what is a Negative review

2 Define what is a Popular review

3 Prediction Model

1 Define what is a Negative review

Rule

- Global sentiment polarity > mean + std -> Positive
- Global sentiment polarity < mean std -> Negative

2 Define what is a Popular review

Hypothesis: Popularity hinges on sentiment polarity, with extreme values garnering less attention than moderate ones. Outliers indicate what's trending.

Cluster 1 - Interesting: Comments with a larger number of shares than usual for a given sentiment polarity

Cluster 0 - Not Interesting: Comments with a low amount of shares

Cluster -1 - Normal behaviour

3 Prediction Model

Classification Tree: Classify new comments to assign a level of urgency to be reviewed based on Clusters and Polarity

- Critical: Negative comment with potential to become popular
 - High: Average negative comment
- Moderate: Neutral comment with potential to become popular
- Low: Average Neutral comment