Complex Bode Plots

n-complex poles

$$\frac{1}{(1+\frac{2\varepsilon}{wn}\cdot 5+5^{2})^{n}}$$

GWHW =
$$\left(\frac{\omega^2}{5^2 + 2\varepsilon\omega^2 + \omega^2}\right)$$

$$\left[\frac{1}{2}\omega_{n}^{2}\right]GH(\omega) = \frac{1}{\left(1 + \frac{26}{\omega_{n}}.S + \frac{5^{2}}{\omega_{n}^{2}}\right)^{n}}$$

n-complex zeros

S-30
$$GH(j\omega) = \frac{1}{[1 + \frac{2}{N}(j\omega) + (-\frac{N^2}{N})]^{\frac{N}{N}}}$$

$$= \frac{1}{[1 - (\frac{N}{N})^2] + j} \frac{2}{2} \frac{2}{N} \frac{N}{N}$$

$$M = \frac{1}{(1 - (\frac{N}{N})^2)^2 + (\frac{N}{N})^2} \frac{N}{N}$$

$$M = \frac{1}{(\frac{N}{N})^2} \frac{N}{N}$$

$$M = \frac{1}{(\frac{N}{N})^2}$$

1	5	4 ¢
<< f	0	0°
>CF	+400	+1887

MGBJ = -201
$$\log \sqrt{(1-(\omega_n)^2)^2+(2\varepsilon(\frac{\omega}{\omega n}))^2}$$
Actual

Actual

2 $\varepsilon(\omega_n)$

$$\oint actual = -n \cdot tan^{\tau} \left(\frac{2 \mathcal{E}(w_n)}{1 - (\frac{w_n}{w_n})^2} \right)$$

$$\begin{cases}
Mcorrection \\
\text{at } w=wn
\end{cases} = -20n \log \sqrt{(2\epsilon)^2}$$

$$= -20n \log(2\epsilon)$$

The correction at CF is depends on & m the magni-tude plot, where as in the phase plot, the correction
at CF is independent of & Zw.

*> Other than corner frequencies, the correction depends on E&W in both the Plots.

Prob! - Draw the Bode Plot to the given TF of a Mps.

GIS) H(S) = $\frac{S'(1+\frac{5}{20}+\frac{5}{100})^4}{(1+\frac{5}{3}+\frac{5}{4})^3(1+\frac{5}{20})^4}$

G(S) H(S) =
$$\frac{1.5(1+5/20+5/20)^{4}}{(1+5/3+5/2)^{3}(1+5/20)^{4}}$$
 $\frac{2\varepsilon}{1277/2} = \frac{1}{20}$
 $\frac{2\varepsilon}{1277/2} = \frac{1}{20}$

$$w_{n}^{2} = 100$$
 $w_{n}^{2} = 10$
 $w_{n}^{2} = 10$

$$M_{W=0.1} = 20 \log 1 + 20 \log |w^2|$$

$$= 20 \log 1 + 40 \log |w^2|$$

$$= 20 \log 1 + 40 \log |w^2|$$

$$= -40 dB$$

$$|W=0.1|$$

POLAR PLOTS

Purpose: - O to draw the frequency response of OLTF GODHAD.

- (2) To find the closed loop system stability.
- (3) To find the range of K Valley for CL Stability.
- (rous-over freg, phase cross-over freg.
- (5) TO find Relative Stability by using GM&PM.

Polar Plot: - It is a frequency resonse, it consist magnitude verses phase Plot.

- => The frequency range for polar plot is (0 to 00).

 Where for nyquist plot is (-00 to +00)
 - => Polar Plots are not a complete frequency response plot.

 The complete frequency response plot is Hyquist plot.

$$\frac{501}{5} = \frac{9}{5} = \frac{1}{5} = \frac{$$

w	M	< \$
0 -	→ ∞ <u> </u>	→-90°
1-	→ I. —	→-90°
2 —	→ O·5 -	→~90°
5—	→ 0·2 -	>-90°
10 —	→ 0·1 <i>-</i>	→ -9B
1		
•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, 90
00 –	 1 0	3-10

Prob:- Draw the Polar Plot for GWHW) = 1 (ST+1)

$$M = \frac{1}{\sqrt{(\omega T)^2 + 1}}, \ \ \zeta \beta = \frac{\langle 1 \rangle}{\langle (\beta \omega T + 1) \rangle}$$

W		M	<(3
O		-> I -	- 0	
17	' 	0.707		45°
2/7		0.44 -		30
5/1		0.19	 	
10/7	' +	0.1 -	→-8L	+
00	-	0 -	-9	o°

$$5 \rightarrow j\omega$$

$$GH(j\omega) = \left(\frac{j\omega+1}{j\omega+10}\right)$$

$$M = \sqrt{\frac{\omega^2 + 1}{\omega^2 + 100}}$$

$$\widehat{II}) GUNHON = \left(\frac{S+10}{S+1}\right)$$

ACE

$$\xrightarrow{5 \to j\omega} GH(j\omega) = \left(\frac{j\omega + 10}{j\omega + 1}\right)$$

$$\angle \phi = \frac{\angle (3\omega + 10)}{\angle (3\omega + 1)} = -\tan^2(\omega) + \tan^2(\omega)$$

$$M = \sqrt{\frac{\omega^2 + 1}{\omega^2 + 100}}$$

$$\langle \phi = \frac{\langle (i+\omega) \rangle}{\langle (i+\omega) \rangle} = \pm \frac{\langle (i+\omega) \rangle}{\langle (i+\omega) \rangle} = \phi >$$

W	П	<β
0 -	-> 0·1 -	→ 0° → +39°
1 - 2 -	→ 0·14 -	→ ±52°
5-	O.HH -	- +52° 7
10 -		→ +39°
00 -	- i -	→ 0°

$$\langle \phi = \frac{\langle (i\omega + i0) \rangle}{\langle (i+\omega i) \rangle} = -\frac{\langle (i\omega + i0) \rangle}{\langle (i+\omega i) \rangle} = \phi \rangle$$

$ igcup_{ } $	ω	M	~& <u>"</u>
	0 -	→ 10 —	→ 0° → -39°
	ースー	→ 4°1 —	-520
	5 -	2.2 -	-520
	10		→ -390
\	•		\ ;
	∞	, ,	→ ob

00

-39°

Short Cut procedure to draw Polar Plot:-> → this procedure is valid only when Mw=0 Mw=00 ACE = If M/w=0 M/w=00, then draw the plot by Stadard procedure. → This case [M/w=o< M/w=w] may occurs if TF consists of 1) only zeros [No Poles] (ii) Any zero at origin (ii) If the number of poles < number of zeros, then verify 6 magnitude et w=0 & w=00. = 4f M/w=0 < M/w=00, then draw the Plot by using std procedure Draw Plot by Std Procedure.

Short cut procedure:_

(61) Frond

deceded by "tan" terms in Lo = - trans Pueh the plot in clock wisk direction.

→ "+ tan" pun the Plot in anticlock wise direction.

63 starting direction:

$$\beta = \pm 90$$
n $-\pm 20$ n' (w) $+\pm 20$ n' (½) $+\pm 20$ n' (½) $+\pm 20$ n' is large $\rightarrow cw$ '+ ± 20 n' is large $\rightarrow Acw$

- > For starting direction, observe the large "tan" term in the phase angle 9.
 - = If I tam' value large, then direction is ACW.
 - = 9f "Lan" value large, then direction is cw.

(S4) Ending direction:

φ= ±90η - μανη(η) +τανη(η) +τανη(η)

20 & 10 + ton" terms one more -> con.

For evading direction, count the number of "+ ve" & "-ve" town terms. If "tom" terms are more, then direction is Cw.

If "tam" terms are more, then direction is Acw.

MOTE: - If the number of +tam terms = number of -tam terms, then draw the plot by using starting direction. In this case ending direction is not consider.

Prob :- Draw the Polar Plot Gwhw =
$$(8+1)$$

Sol GH(S) = $\frac{1}{(S+1)}$
 $S \rightarrow jw \Rightarrow GH(jw) = \frac{1}{(jw+1)}$
 $M = \frac{1}{\sqrt{w^2+1}} \cdot \langle \phi = \frac{\langle 1 \rangle}{\langle (jw+1)} \rangle = -\frac{1}{\sqrt{w^2+1}}$
 $w = 0 \quad 1 < 0^0$
 $w = \infty \quad 0 \ (-9^0)$
 $w = \infty \quad 0 \ (-9^0)$

ACE

Prob :- Draw the polar plot to the following TP.

$$\Rightarrow G(S)H(S) = \frac{1}{(S+1)(S+2)}$$

Sol, $S \rightarrow \hat{J}\omega \Rightarrow GH(\hat{J}\omega) = \frac{1}{(\hat{J}\omega+1)(\hat{J}\omega+2)}$

$$M = \frac{1}{\sqrt{\omega^2+1}\sqrt{\omega^2+4}}$$

$$< \emptyset = -\tan^2(\omega) - \tan^2(\frac{\omega}{2})$$

$$\omega = \infty$$

$$\omega =$$

IP with -90 = 0.235 <-90 (Polar)

Rectangular M(coso, Jsino)

Intersection point with -90

$$\infty = \left(\frac{\omega + \omega/2}{1 - \omega^2/2}\right) \Rightarrow \left(1 - \omega^2/2\right) = 0$$

$$\Rightarrow \omega^2 = 2 \Rightarrow \omega = \sqrt{2} \quad \text{rad/see}$$

$$\Rightarrow \omega^2 = 2 \Rightarrow \omega = \sqrt{2} \text{ rad/see}$$

$$M_{l\omega=\sqrt{a}} = \frac{1}{\sqrt{a+1}\sqrt{a+4}} = \frac{1}{\sqrt{18}} = 0.235$$

$$\Rightarrow GUSHUS = \frac{K}{(ST_1+1)(ST_2+1)}$$

GHEST =
$$\frac{1}{(S+1)(S+2)}$$

= $\frac{0.5}{(I+S)(I+0.55)}$
 $K=0.5$, $T_1=1$, $T_2=0.5$
 $W=\frac{1}{VI\times0.5}$
 $M=\frac{0.5\sqrt{I\times0.5}}{(I+0.5)}$
= 0.235 .

$$S \rightarrow j\omega \Rightarrow GH(j\omega) = \frac{1}{(j\omega+1)(j\omega+2)(j\omega+3)}$$

$$M = \frac{1}{\sqrt{(\omega^2+1)(\omega^2+4)(\omega^2+4)}}$$

$$< \phi = -\tan^2(\omega) - \tan^2(\frac{\omega}{3}) - \tan^2(\frac{\omega}{3})$$

$$\omega = 0$$

$$\omega =$$

Rectangular
$$\frac{1}{60}(-1, j_0)$$

$$= \left(-\frac{1}{60}, j_0\right)$$

conclusion: The addition of each finite Pole, shift the ending angle by -90° in the clockwise direction.

$$= M = \frac{1}{\omega \sqrt{\omega^2 + 1}}, \quad \angle 6 = -90^\circ - \tan^2(\omega)$$

$$\omega = 0 \quad \infty < -90^\circ$$

$$\omega = 0 \quad 20$$

$$\omega = 0 \quad 20$$

$$\omega = 0 \quad 20$$

$$\omega = 0$$

Rationalization; -

$$= \frac{(\omega \dot{c} - 1)\dot{c}}{(\omega \dot{c} + 1)\omega \dot{c}} = \frac{(\omega \dot{c} - 1)}{(\omega \dot{c} + 1)\omega \dot{c}}$$

$$\Rightarrow \frac{-1}{1+\omega^2} - \frac{f}{\omega(1+\omega^2)}$$

$$\Rightarrow \frac{-1}{1+\omega^2} - \frac{f}{\omega(1+\omega^2)}$$

$$\Rightarrow \frac{-1}{1+\omega^2} - \frac{\cancel{3}}{\omega(1+\omega^2)}$$

$$\Rightarrow \omega = 0 \Rightarrow (-1 - j\infty)$$
 (Rectangular)

- At w=0, the polar plot easymptotic to the straight line of x=-1

$$\frac{K}{S(ST+1)}$$

$$\chi = -KT$$

$$W = 0$$

$$W = 0$$

Prob :-
$$9 + cos = \frac{1}{(3co)^2(3co + 1)}$$

$$S \rightarrow 3co \qquad GH(3co) = \frac{1}{(3co)^2(3co + 1)}$$

$$M = \frac{1}{(3co)^2(3co + 1)}$$

$$C = -180^{\circ} - ton^{3}(co)$$

$$L = 0 \qquad 0 < -180^{\circ}$$

$$L = 0 \qquad 0 < -270^{\circ}$$

Rationalization :-

-w2 (1+w2)

$$-\frac{1}{\omega^{2}(1+\omega^{2})} + \frac{j\omega}{\omega^{2}(1+\omega^{2})} - \frac{1}{\omega^{2}(1+\omega^{2})} + \frac{j}{\omega(1+\omega^{2})}$$

$$W=0 \Rightarrow (-\infty + j\infty)(\text{Rectangular})$$

$$\frac{\text{prob}}{\text{s}^3(\text{s+1})}$$

$$S \rightarrow i\omega \Rightarrow GH(i\omega) = \frac{1}{(i\omega)^3(i\omega+1)}$$

$$S^{3}(S+1)$$

$$CH(J\omega) = \frac{1}{(J\omega)^{3}(J\omega+1)}$$

$$M = \frac{1}{\omega^{3}\sqrt{\omega^{3}+1}} < 6 = -270 - \frac{1}{\omega^{3}(\omega)} < \omega$$

→ The addition each pole at origin, shift total plot by -90° in the clockwise direction.