Introduction à l'optimisation globale

Rodolphe Le Riche, Charlie Sire CNRS et Ecole des Mines de Saint-Etienne

cours majeure data science 2020-21 Exploitation mathématique de simulateurs numériques

Organisation de la partie « optimisation globale » de l'UP4

Cours 1 (mercredi 9/12, 13h30-16h45)

- introduction à l'optimisation globale
- algo 1 : recherche aléatoire pure
- algo 2 : recherche locale à point initial aléatoire
- algo 3 : ES-(1+1) à pas constant

TP 1 (jeudi 10/12, 10h-11h30)

code à trou et test pour les algos 1, 2 et 3

Cours 2 (mardi 15/12, 8h15-9h45)

- CMA-ES simplifié (algo 4),
- Optimisation et processus Gaussien : EGO (début)

TP 2 (mardi 15/12, 10h-11h30)

• suite et fin du TP 1, début EGO

Cours 3 (mercredi 16/12, 8h15-9h45)

- Optimisation et processus Gaussien : EGO (fin)
- recuit simulé

TP3 (mercredi 16/12, 10h-11h30)

• fin EGO

Evaluation : compte rendu de TP (par groupes) + entretien individuel le jeudi 7 janvier matin (soyez disponibles).

AN : mercredi 6 janvier après-midi, les enseignants vous fournissent des questions types pour vous entrainer et sont à votre disposition pour vous répondre.

L'optimisation, un modèle quantitatif pour l'aide à la décision

Formulation mathématique : $min_{x \in S \subset \mathbb{R}^n} f(x)$

f(.), la fonction coût (efforts, masse, violation de contraintes, distance à un but, coût, risque, ...).

Les contraintes, $g(x) \le 0$, ne sont pas explicitement discutées dans ce cours (cf. « optimisation locale »). Si nécessaire, on peut penser à une pénalisation :

$$\begin{array}{ccc} \min & f(x) \\ g(x) \leq 0 \end{array} & \rightarrow & \min & f(x) + p \times \max^2(0, g(x)) \\ & & & p \text{ , scalaire(s) positif(s).} \end{array}$$

Difficultés de l'optimisation

Optimisation globale et locale

Problématique de ce cours :

$$\min f(x)$$
$$x \in S \subset \Re^n$$

et accroître les chances de trouver *x**

Exemples où l'optimisation globale est nécessaire

Exemple: optimisation de structures composites

Exemple: optimisation de structures composites (2)

 max_{θ_i} A_{11} , la raideur longitudinale

Pour les composites, les optima locaux sont nombreux.

Expl., $N_y/N_x=0.5$, long=20 in., larg=5 in., graphite-epoxy

séquence	flambement	rupture
$(90_2/\pm 45_2/90_2/\pm 45/90_2/\pm 45_6)_s$	9998.19	10394.81
$((90_2/\pm 45_2)_2/90_2/\pm 45/90_2/\pm 45_3)_s$	9997.60	10187.93
$(\pm 45/90_4/\pm 45/90_2/\pm 45_5/90_2/\pm 45)_s$	9976.58	10187.93

Exemple: optimisation de filtres optiques (1)

(d'après T. Bäck)

filtres (matériau, épaisseur, nombre)

$$\min_{\mathrm{nb.,\ mat.,\ épais.}} \int_{\lambda_{m}}^{\lambda_{\scriptscriptstyle M}} \left[R_{\mathrm{calc.}}(\lambda) - R_{\mathrm{souhait}}(\lambda) \right]^{2} d\,\lambda$$

Exemple: optimisation de filtres optiques (2)

Aperçu de la topologie de la fonction écart. Deux épaisseurs varient (x et y), z l'écart :

→ de quoi piéger un optimiseur local!

Exemple: contrôle d'un système bruité

Synthèse : utilité de l'optimisation globale

De nombreux problèmes réels présentent des optima locaux (dont un ou plusieurs peuvent être optima globaux).

- Les problèmes pour lesquels il y a surabondance de variables d'optimisation.
- Les f à structure (pseudo-)périodique.
- Les f bruitées.
- •... en fait c'est le cas général des fonctions qui ne sont pas unimodales (notamment pas strictement convexes).

Formulation du problème de l'optimisation globale

Soit f la profondeur d'un canal. Pour savoir si le canal est navigable, on cherche

la profondeur minimale, f*,

$$P(f^*)$$
 $f^* = \{ \min f(x) \mid x \in S \subset \mathbb{R}^n \}$

• les emplacements de profondeur minimale, X^* ,

$$P(X^*)$$
 $X^* = \{x \in S \subset \mathfrak{R}^n \mid f(x) = f^*\}$

(on notera x^* un des X^*)

Stratégie de résolution

- Par sondage du canal.
- Le **coût** de la recherche est le nombre d'analyses (sondages).
- **Phase globale** (ou d'exploration) : en l'absence d'information a priori, on couvrira le canal de sondages uniformément répartis.
- **Phase locale** (ou d'exploitation ou d'intensification) : certaines régions plus hautes ou plus chahutées pourront être davantage sondées.
- Souvent, des **informations auxiliaires** existent qui peuvent guider la recherche : régularité du fond par régions, bornes sur f^* (trivial ici, $f^*>0$).

L'optimisation globale : une utopie dans l'absolu

• Problème non résoluble : si il existe un optimum isolé, on ne peut pas le trouver avec une probabilité > 0 (aiguille dans une botte de foin, mat d'un voilier qui a coulé dans le canal).

 Problème instable : il peut y avoir des solutions X* arbitrairement éloignées pour une petite variation de f.

Optimum global essentiel

On s'intéresse aux problèmes que l'on a une chance de résoudre, c'est à dire ceux pour lesquels les optima globaux sont essentiels

$$f^* = min\{y \mid \forall \epsilon > 0 , v(x \in S \mid f(x) < y + \epsilon) > 0\}$$

où v est une mesure d'ensemble , $v(E) = Vol.(E)/Vol.(S)$

→ pas de pic isolé.

Problèmes résolubles

Si on connait f^* ou le nombre d'optima locaux, on peut savoir si on a résolu le problème.

La connaissance de bornes sur la variation de *f* rend le problème résoluble. Expl.: problèmes Lipschitziens,

$$\exists L \mid \forall x_1, x_2, |f(x_2) - f(x_1)| \le L ||x_2 - x_1||$$

En effet, avec *N* points calculés, on peut estimer la qualité de la solution :

$$d_{N} = \max_{x \in S} \min_{1 \le i \le N} ||x - x_{i}||$$

$$\widehat{f}_{N}^{*} - f^{*} \le L d_{N}$$

Si $Ld_N \le \epsilon$, la solution est connue à S ϵ près. DIRECT est un algo, qui utilise L et tous les $f(x_i)$.

Région d'attraction

Soient k minima locaux, x_1^*, \ldots, x_k^* , t.q.

$$f(x_1^*) = f_1^* = f^* \le \dots \le f(x_k^*) = f_k^*.$$

Région d'attraction, $attr(f^*_i)$: ensemble des points de départ d'un gradient de pas infinitésimal (GI) qui mène à f^*_i .

Problèmes résolubles en probabilités

 p_i , la proba. qu'un GI converge vers f_i^* , $p_i = v[attr(f_i^*)]/v(S)$.

Pour des fonctions suffisament régulières, $v[attr(f_i^*)] \uparrow$ quand $f_i^* \downarrow$, ainsi $p_1 = max_{1 \le i \le k} p_i$.

 $p_1 = 1$ pour une fonction unimodale.

 $p_{\scriptscriptstyle 1} \approx 1$, prbl. facile puisque la plupart des recherches locales trouvent $f^{^\star}$.

 $p_1 \geq \delta > 0$, prbl. résoluble en probabilité, car la proba. de trouver $f_1^* \rightarrow 1$ pour une infinité d'évaluations de f .

La proba. d'avoir au moins un point aléatoire dans $attr(f^*)$ en μ coups est $P_{1,\mu}=1-(1-p_1)^\mu$.

Si $p_1 \approx 0$, optimum instable. A éviter, car le modèle f n'est pas la réalité, erreurs de fabrication.

En pratique

II y a

- un but, trouver $f(\hat{x}^*)$ le plus bas possible,
- des ressources, un nombre maximal d'analyses,
- et le problème est d'utiliser ces ressources de manière optimale.
- Il n'existera jamais d'algorithme optimal pour tous les problèmes (Th. du « No Free Lunch », D. Wolpert): quand un algorithme progresse sur une classe de fonctions, il régresse sur une autre.
- Utiliser toute connaissance a priori sur le problème : formulation du problème (choix des variables et critères), contraintes
- Un problème résoluble peut être trop coûteux pour être résolu, en particulier en grandes dimensions (n>>1).

Classification des méthodes d'optimisation globales (1)

Deux composantes dans toutes les méthodes :

- Composante **globale** ou **exploratrice**, nécessaire pour les fonctions chahutées.
- Composante locale ou exploitatrice ou d'intensification, plus efficace une fois dans attr(f*).

Classification des méthodes d'optimisation globales (2)

Méthodes stochastiques :

- Rech. aléatoires pures. Expl. pseudo-code fait en cours.
- Descentes par perturbations. Expl. *ES-(1+1)* à pas constant, pseudo-code fait en cours.
- Recuits simulés
- Méthodes avec perturbations et populations (algo. évolutionnaires dont CMA-ES, PSO).
- Optimisation statistique

Toutes ces méthodes construisent (implicitement, sauf opt. statistique) une densité de probabilité d'instancier un nouveau x à chaque itération, p(x).

Ces méthodes $\rightarrow f^*$ avec proba. 1 quand coût $\rightarrow \infty$ (si p(x)>0).

Recherche aléatoire pure, pseudo-code

· Initializer zon xmoor troom

t=0, &=+ 00 Tours que tetmax poinc, o x' \le 26[xmin, xmin] o coloner f(x'), tett o Si f(x') \ p*, \ \times x' \ p* \le p(x')

Organigramme simplifié d'un ES-(1+1)

Initialisations : x, f(x), m, C, t_{max} .

Tant que $t < t_{max}$ faire,

Instancier $N(m,C) \longrightarrow x'$

Calculer f(x'), t = t+1

Si f(x') < f(x), x = x', f(x) = f(x') Fin si

Mettre à jour m (e.g., m=x) et C

Fin tant que

Loi normale

N(m,C)

Classification des méthodes d'optimisation globales (3)

Méthodes énumératives déterministes : Elles construisent une approximation globale de f et, souvent, de l'incertitude associée (métamodèle).

Expl. : DIRECT (et méthodes Lipschitziennes), EGO .

Classification des méthodes d'optimisation globales (4)

Méthodes ré-utilisant les recherches locales :

- (local puis global) Redémarrage aléatoire de recherches locales. *pseudo-code fait en cours*.
- (local puis global) Séquence de recherches locales guidées pour ne pas converger vers un optimum local déjà trouvé ;
 - Expl. en pénalisant $f \rightarrow f + P(x_1^*, ..., x_c^*)$ (descentes généralisées).
 - Expl. analyse de proximité permet d'interrompre recherches locales convergeant vers des zones déjà explorées.
- (global puis local) Analyse de proximité (clustering) appliquée aux meilleurs points échantillonnés pendant la phase globale pour identifier les régions prometteuses (puis recherches locales).

redémarrage aléatoire de recherches locales

x' offiniern Bocal, f(a') sh fd. cont, t' nombre d'opprels à f de RECH-LOC D Si f(x') < fx 2x L x', fx L f(x') Fin Si

Nous allons voir

- 2 méthodes stochastiques, CMA-ES et le recuit simulé
- et 1 méthode énumérative déterministe, EGO.

Ce sont des méthodes de recherche dans le volume, contrairement aux méthodes qui cherchent à réduire la dimension du problème (par exemple les méthodes basées sur les gradients).

De nombreuses méthodes ne seront pas discutées (DIRECT, PSO, recuit simulé, couplage local/global, transformation de f, Tabu, ...).

Tests des méthodes d'optimisation globale

- La plupart des méthodes d'optimisation globales utilisent des nombres aléatoires. Expl., choix pts initiaux.
- Typiquement, le coût d'une optimisation est le nombre d'évaluations de la fonction objectif, f.
- Ne pas juger les méthodes en 1 exécution, mais qualifier la distribution des résultats (moy., σ^2) à un coût donné.
- La plupart des méthodes possèdent des paramètres dont le réglage optimal dépend de f . cf. Th. ``No Free Lunch''.

Cours 2

Algorithmes stochastiques : CMA simplifié, recuit simulé

Organigramme simplifié d'un ES-(1+1)

```
Initialisations : x, f(x), m, C, t_{max}.

Tant que t < t_{max} faire,

Instancier N(m,C) \longrightarrow x'

Calculer f(x'), t = t+1

Si f(x') < f(x), x = x', f(x) = f(x') Fin si Mettre à jour m (e.g., m=x) et C

Fin tant que
```

Loi normale

N(m,C)

Adapter le pas (C^2) est important

Ici ES(1+1) à pas isotrope : $C = \sigma^2 I$, σ est le pas. Avec un pas optimal ($\approx ||x||/n$) sur la fonction sphère, la performance ne se dégrade qu'en O(n) (à comparer à DIRECT)! ici, théorie sur le choix du pas optimal dans le cadre de ES-(1+1) pour les fonctions quadratiques

Méthode stochastique : CMA-ES

(N. Hansen et al., à partir de 1996, puis développements avec A. Auger)

CMA-ES = Covariance Matrix Adaptation Evolution Strategy = optimisation par échantillonage et mise à jour d'une gaussienne.

La méthode état de l'art en optimisation stochastique. Fonctionne sur un principe fondamentalement différent d'EGO et DIRECT ← un point de vue complémentaire.

Caractéristiques de CMA-ES

CMA-ES est une stratégie d'évolution $ES-(\mu,\lambda)$:

```
Initialisations : m, C, t_{max}, \mu , \lambda

Tant que t < t_{max} faire,

Instancier N(m,C) \longrightarrow x^1,...,x^{\lambda}

Calculer f(x^1),...,f(x^{\lambda}) , t = t + \lambda

Classer : f(x^{1:\lambda}),...,f(x^{\lambda:\lambda})

Mettre à jour m et C avec les \mu

meilleurs, x^{1:\lambda} ,...,x^{\mu:\lambda}

Fin tant que
```

m et C sont mis à jour en utilisant

- les pas qui ont le mieux réussi,
- un **cumul dans le temps** de ces pas.

Ici:

expliquer la différence entre la covariance des bons points et la covariance des bons pas

introduire la moyenne temporelle des matrices de covariance

introduire la mise à jour de rang 1

introduire la notion de pas cumulé

CMA-ES simplifié : adaptation de C^2 par les derniers bons pas

(A. Auger et N. Hansen, 2008)

Initialisation: $m \in S$, C = I, $c_1 \approx 2/n^2$

échantillonage

$$x^{i} = m + y^{i}$$

$$y^{i} \propto N(0, C)$$

$$i = 1, ..., \lambda$$

sélection

$$y_w = \frac{1}{\mu} \sum_{i=1}^{\mu} y^{i:\lambda}$$

m.à j. C de rang 1

$$C \leftarrow (1-c_1)C + c_1 y_w y_w^T$$

m.à j. *m*

$$m \leftarrow m + y_w$$

CMA-ES simplifié : cumul temporel des bons pas

Lorsque les pas respectifs sont anti-corrélés, il faut pouvoir réduire le pas. Impossible avec $y_w y_w^T$ car = $(-y_w) (-y_w)^T$.

Cumul (amortissement exponentiel dans le temps) :

Le CMA-ES état de l'art

(A. Auger and N. Hansen, A restart CMA evolution strategy with increasing population size, 2005)

Caractéristiques supplémentaires (/ transparents précédents) :

- Facteurs de pondération, $y_w = \sum_{i=1}^{\mu} w_i y^{i:\lambda}$
- Mises à jour de rangs 1 et m simultanées.
- Pas global adapté par cumul temporel, $C \rightarrow \sigma^2 C$.
- Redémarrage avec taille de population croissante ou double population (une grande, une petite).

Méthode stochastique : les recuits simulés

Simulated annealing, Kirkpatrick, Gelatt and Vecchi, 1983.

"Le**s"** car de nombreuses implémentations sont possibles, il s'agit donc d'une famille d'algorithmes.

le recuit simulé : introduction

• Comme les algos évolutionnaires (dont CMA-ES), on peut les présenter à travers une métaphore, celle du recuit (annealing) en métallurgie :

des atomes cherchant un état minimal d'énergie libre (f ici) et dont les transitions (x vers x') sont liées à la température. Un état d'énergie minimal (métal sans défauts $\approx min f$) est atteint en maîtrisant la décroissance de température.

- Populaire car peut être utilisé avec des nombres réels et discrets.
- (nouveau) L'algorithme change de comportement en fonction du nombre d'appels t à la fonction coût f.

le recuit simulé : principe

 $\min_{x \in S \subset \mathbb{R}^n} f(x)$, x `position des atomes", X position vue comme une variable aléatoire, f(x) ou f(X) énergie associée

Perturbation de $x \rightarrow x'$ (position candidate) Si f(x') < f(x), accepter x'Sinon $|f(x') \ge f(x)|$, accepter x' avec probabilité

$$P_{\text{acc}} = \exp\left(-\frac{f(x') - f(x)}{k_B T}\right)$$

(critère de Metropolis, 1953) k_B constante de Boltzmann

le recuit simulé : analyse mathématique

Algo. populaire du fait de résultats mathématiques

- Une adaptation des algorithmes de Metropolis-Hastings (Markov Chain Monte Carlo).
- *T* constante : l'application répétée du recuit simulé (accepte si meilleur ou critère de Metropolis) produit la densité limite

$$p(X=x) = k_T \exp\left(-\frac{f(x)}{k_B T}\right)$$

(k_T constante de normalisation)

(cf. Introduction to stochastic search and optimization, J.C. Spall, chap.8, 2003)

• T variable : convergence asymptotique (t grand) vers les optima globaux si la température

$$T > const / log(t)$$
 (schéma trop lent en pratique)

le recuit simulé : algorithme générique

1. Initialisations

à choisir,
-> diff.
version
s de
l'algo
(dont
non
continu
es)

T(t) (décroissance en température en fonction de t), V(x) (perturbation stochastique dans un voisinage de x), t^{\max} , \hat{x}^* , $\hat{f}^* = f(\hat{x}^*)$, $t \leftarrow 1$, $T \leftarrow T(1)$

Tant que $t < t^{max}$ faire

- 2. Perturbation de \hat{x}^* , $x' = V(\hat{x}^*)$ (position candidate)
- 3. Calculer f(x'), $t \leftarrow t+1$
- 4. Acceptation ou non de la perturbation

Si
$$f(x') < f(x)$$
, $\hat{x}^* \leftarrow x'$, $\hat{f}^* \leftarrow f(x')$
Sinon $|f(x') \ge f(x)|$,
 $P_{\text{acc}} = \exp(-\frac{f(x') - f(x)}{T})$, $u \sim U[0,1]$
Si $u < P_{\text{acc}}$, $\hat{x}^* \leftarrow x'$, $\hat{f}^* \leftarrow f(x')$ Fin Si

Fin Si

5. Mise à jour température, $T \leftarrow T(t)$

Fin tant que

le recuit simulé : version standard dans \mathbb{R}^n

Perturbations gaussiennes

$$V(x) = x + \sigma N(0,1)$$

$$\Rightarrow \text{ choisir } \sigma$$

Décroissance de la température linéaire

$$T(t) = a \times t + b$$
 a et b tels que $P_{\rm acc} = P_0$ au début et $P_{\rm acc} = P_f$ à la fin (2 éq. à 2 inc.)

le recuit simulé : exemple

Décroissance de la température linéaire

$$T(t)=a\times t+b$$
 a et b tels que $P_{\rm acc}=P_0$ au début et $P_{\rm acc}=P_f$ à la fin (2 éq. à 2 inc.)

(expl.) $P_{\text{acc}}(t=10 \text{ , } \Delta f=0.1)=0.9 \text{ et } P_{\text{acc}}(t=100000 \text{ , } \Delta f=0.1)=10^{-3}$

Cours 3

Krigeage et optimisation : EGO

Méthode déterministe : EGO

(D.R. Jones et al., 1998)

EGO = Efficient Global Optimization = utilisation d'un métamodèle de krigeage et maximisation du progrès espéré à chaque itération.

[Comme DIRECT, construit une suite de points dense dans S. Le krigeage remplace les rectangles.]

Améliorations : J. Villemonteix et al., 2006; D. Ginsbourger et al., 2007.

Krigeage (1/2)

f a été observées aux points $x_{_{\!1}},\,\dots\,,\,x_{_{\!t}}$. Mais de nombreuses fonctions restent possibles :

Krigeage (2/2)

Krigeage = processus gaussien conditionnel.

$$[F(x) | f(x^1),..., f(x^t)] \sim N(m_{OK}(x), s_{OK}^2(x))$$

$$m_{OK}(x) = \hat{\mu} + \vec{c}^{T}(x)C^{-1}(\vec{f} - \hat{\mu}\vec{I})$$

$$s_{OK}^{2}(x) = \sigma^{2} - \vec{c}^{T}(x)C^{-1}\vec{c}(x) + \frac{(1 - \vec{c}^{T}(x)C^{-1}\vec{I})^{2}}{\vec{I}^{T}C^{-1}\vec{I}}$$

!!! *C* est une matrice *t*×*t* à inverser. Si *n* est grand, *t* doit l'être aussi ...

Progrès espéré (EI)

EI = Expected Improvement, quantifie le compromis entre exploration et exploitation.

$$I(x) = \max(f_{\min} - Y(x), 0) \text{ où } Y(x) = [F(x)|\vec{f}]$$

$$EI(x) = (f_{\min} - m_{OK}(x)) \Phi\left(\frac{f_{\min} - m_{OK}(x)}{s_{OK}(x)}\right) + s_{OK}(x) \Phi\left(\frac{f_{\min} - m_{OK}(x)}{s_{OK}(x)}\right)$$

demo en cours

lci:

- · preuve de la formule de l'El
- · preuve de la monotonie de l'El avec la moyenne et la variance
- \dot{q} que se passe-t-il quand var=0 ? El(xi) = 0

Une itération d'EGO

A chaque itération, EGO ajoute aux t points connus celui qui maximise EI,

 $x^{t+1} = arg \, max_x EI(x)$

puis le krigeage est mis à jour ...

EGO: exemple

EGO: exemple en 6D

Fonction de Hartman, $f(x^*)=-3.32$, 10 points dans le plan d'expérience initial.

Discussion: EGO vs. CMA-ES

EGO a un métamodèle \leftarrow adapté aux fonctions coûteuses. CMA-ES peut appeler des millions de fois f, pas EGO (pb. d'inversion de mat. cov)

En présence d'une vallée étroite,

EGO raccourcit les portées et augmente σ , donc augmente s_{OK} et continue à affecter des ressources dans tout S,

CMA-ES adapte *C* pour la rendre proportionnelle à l'inverse du Hessien de *f* → la recherche devient plus locale, moins de ressources affectées loin de la vallée.

Iso-densité de probabilité de C correctement adaptée

→ EGO est plus global que CMA-ES (dont les versions les plus robustes sur les cas tests académiques utilisent le redémarrage avec population croissante) mais CMA-ES converge (précision) mieux. CMA-ES a été utilisé en hautes dimensions (de l'ordre de 100), EGO jusqu'en dimension 20. La robustesse d'EGO en dimension est un sujet de recherche (fonctions de covariance, krigeage additif).