

Agriculture and Global Methane Emissions

农业与全球甲烷排放

Yuzhong Zhang 张羽中

Acknowledgement

Harvard

Daniel Jacob, Jianxiong Sheng, Xiao Lu, Tia Scarpelli, Lu Shen, Zhen Qu

JPL John Worden, Anthony Bloom, Shuang Ma

SRON Bram Maasakkers

Methane: a potent greenhouse gas

Sources of atmospheric methane

Sources of atmospheric methane

Agricultural activity

Sink of atmospheric methane

Source $550 \pm 60 \text{ Tg a}^{-1}$

What drives the increase of methane concentration?

CH4 concentration in last 35 years

Theories proposed to explain 2007 regrowth

Increasing fossil fuel (oil/gas) emissions	Rice et al., PNAS; Hausmann et al., ACP
Increasing wetland/agriculture emissions	Nisbet et al., GBC; Schaefer et al., Science
Decreasing OH concentrations	Rigby et al., PNAS; Turner et al., PNAS
Increasing fossil fuel emissions with decreased biomass burning emissions	Worden et al., Nature Communications

What drives the increase of methane concentration?

Long-term Satellite Methane Observations

GOSAT Satellite

Inversion Analysis Framework

Zhang et al., ACP, 2021

Anthropogenic Methane Emissions

Zhang et al., ACP, 2021

Anthropogenic Emissions: Sector Attribution

Anthropogenic Emission Trend, 2010-2018

2010-2018 emission trends (% a⁻¹)

Anthropogenic Emission Trend: Sector Attribution

Anthropogenic Emission Trend: Sector Attribution

(a) 2010-2018 emission trends (% a^{-1})

Top 5 counties with fastest growing cattle population

UNFAO

Country	Trend (million head per year)
Pakistan	1.4
Ethiopia	1.2
Tanzania	1.1
Brazil	0.9
Argentina	0.7

Increasing livestock emissions

Compare with livestock inventories

Increasing Rice Emissions

Increase in southern & northeast China

China: rice paddies & aquaculture

Global Methane Budget

Wetland Emissions

Summary

Methane emissions from agriculture systems (livestock and rice cultivation) are

- underestimated in current emission inventory;
- largest anthropogenic contributor to increasing methane emissions

Knowledge gap in methane emissions from agriculture systems over developing regions is huge, compared to fossil fuel emissions in the North America.

