Capgemini test: forecasting water levels

Stefano Petrucci petrucci.ste@gmail.com

- 1 Software
- 2 Data set
- 3 Strategy
- 4 Results
- 5 Conclusions

 Stefano Petrucci
 | February 9, 2022
 2 / 8

Software

- Written in Python and available on GitHub
- Used standard libraries:
 - Pandas
 - Seaborn
 - Statsmodels
- One class for the data set (with methods for plotting and split data into train/test)
- Some functions for the statistical models
- Everything is documented within the code (it should be Doxygen friendly as well)

Stefano Petrucci | February 9, 2022 3 / 8

Data set

- Chosen Lake Bilancino
- Two target variables:
 - I ake level
 - Flow rate
- Most variables missing before 01/01/2004
 - \Rightarrow removed (\sim 8% of the total)
- Missing data not replaced^a

^aApplied an interpolation only when computing the autocorrelation.

Forecasting strategy

- Simple AutoRegressive (AR) model
- 2 More complex AutoRegressive Integrated Moving Average (ARIMA) model
- Multivariate analysis (not implemented)

Both models used in this project require to setup the lag. ⇒ chosen from autocorrelation plots.

Flow rate - autocorrelation

Lake level - autocorrelation

Stefano Petrucci | February 9, 2022 5 / 8

Predictions - 13 samples

AutoRegressive model

Lake level

Flow rate

ARIMA model

Lake level

Flow rate

Stefano Petrucci | February 9, 2022 6 /

Conclusions

- Implemented a toy script to compute AR and ARIMA algorithms
- Both algorithms showed better performance on Lake_level
- The behavior of Flow_rate requires additional investigation Optimizing ARIMA's parameters might improve performance

Stefano Petrucci | February 9, 2022 7 / 8

Thank you for your attention