

SiMPLeR: A Series-Elastic Manipulator with Passive Variable Stiffness for Legged Robots

• • •

Sajiv Shah¹, Brad Saund²

¹Saratoga High School, ²University of Michigan, Ann Arbor

Introduction

- Collaborative environments are dangerous
- Compliant actuators address these issues'
 - Active compliance
 - o Passive compliance
- Fixed compliance is limiting for robots
 - Payload
 - o Speed
 - Energy efficiency
 - Tuned locomotion
- VSAs address these issues
 - Add in method for controlling stiffness

Previous Work

Active VSA

- Software based
- Commercial robot: ASIMO

Equilibrium controlled

- Simulated through impedance control
- o SEA
- o Commercial arms: KUKA iiwa, Franka

Antagonistic controlled

- Non-linear springs, pneumatics
- Additional actuator
- VSA-cube, AMASC

Structure controlled

- Variation of material structure
- Making spring coils inactive

Contributions

- Passive VSA
 - Low-cost torsion springs
 - Biomimetic approach
 - o Energy efficient stiffness control
- Simple Design
- Legged Robot Application

Traditional SEA

- Linear Springs
- Fixed Compliance
- Torque is reliant on 3 variables
 - o pulley radius
 - spring constant
 - deflection
- To modify for VSA
 - Control k,r independently
 - changing radius would change torque characteristics

Torsion Springs

- Low-cost
- Linear torque/angular displacement relationship
- Non-linear inward force/horizontal displacement relationship
 - o Can be applied in antagonistic fashion
- Acts analogous to rigid belt
 - o When pulled 180, essentially a metal rod
- Stiffness can be varied by pretension of springs

SiMPLeR Design

- Place torsion spring pair in belt transmission
 - Antagonistic
 - Similar to muscle-pair
 - Simple design
- Change pretension using additional actuator
 - Inefficient acme screw for low energy cost

Theoretical Model

- Torque is varied by pretension
- As pretension approaches torsion spring length, actuator becomes rigid
 - Allows for actuation similar to standard belt transmission
- In low range, pretension has small impact
 - Inefficient to design for actuation in this stiffness range

Application

Leg FBD

$$F_N = mg$$

$$\tau_1 = F_N L \cos(\frac{\pi}{2} - \theta_1) \cos(\theta_2)$$

$$\tau_2 = F_N L \cos(\theta_1)$$

Oscillation-less landing

$$mg(h_1 + h_2) = \int_{x_i}^{x_i + x_c} x[\sigma(x)]dx - \int_{x_i - x_c}^{x_i} x[\sigma(x)]dx$$

Experiments

Robot Design

- Single legged platform
- Cardan gear system
 - Use one motor for two joints
 - o keeps motion vertical
- Isolated movement in vertical direction

Characterization

Hopping

Oscillation-less Landing

Thank You For Listening! Email or contact me with questions!

sajiv.shah@gmail.com

