# Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр



# Занятие 8. Асимптотическое сравнение функций

І. сравнение БМ и ББ функций

II. замена на эквиваленты

Составили: Шиманская Г.С., Правдин К.В.

Редакторы: Правдин К.В.

## В аудитории

### І. Сравнение БМ и ББ функций

**Задача 1.** Является ли функция  $f(x) = \frac{e^x - 1}{x^2 + 1}$  бесконечно малой при: 1)  $x \to 0$ ; 2)  $x \to 1$ ?

**Задача 2.** Сравните между собой бесконечно малые функции при  $x \to +0$ :  $x^3$ ,  $x^2$ , x,  $\sqrt{x}$ ,  $\sqrt[3]{x}$ .

**Задача 3.** Сравните функции f и g при: 1)  $x \to 0$ ; 2)  $x \to +\infty$ . Являются ли они при этом БМ или ББ функциями? Если да, то чей порядок больше?

a) 
$$f(x) = 3x^2 + x$$
,  $g(x) = 2x^3 + x$ .

6) 
$$f(x) = x^2 + 3x$$
,  $g(x) = (2x + 1)^2$ 

**Задача 4.** Определите порядки следующих БМ функций относительно x при  $x \to 0$ :

a) 
$$2\sin^4 x - x^5$$
; 6)  $\sqrt{\sin^2 x + x^4}$ .

#### II. Замена на эквиваленты

**Задача 5.** Подберите эквивалентную функцию для данной при  $x \to 0$ :

a) 
$$3\sin x - 5x^3$$
; 6)  $(1 - \cos x)^2 + 16x^3 + 5x^4 + 6x^5$ 

Задача 6. Вычислите, используя замену на эквиваленты:

a) 
$$\lim_{x\to 0} \frac{\sin 5x}{\ln(1+4x)}$$
; 6)  $\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-1}{\sin 4x}$ .

Задача 7. Вычислите, заменяя на эквиваленты и о-малые:

$$\lim_{x \to 0} \frac{\sin 2x + 2 \arctan 3x + 3x^2}{\ln(1 + 3x + \sin^2 x) + xe^x}.$$

#### Консультация

### І. Сравнение БМ и ББ функций

**Задача 8.** Определите порядки следующих БМ функций относительно x при  $x \to 0$ :

a) 
$$\sin 2x - 2\sin x$$
; 6)  $2\sqrt{\sin x}$ ; B)  $tg x + x^2$ ;  $\Gamma$ )  $e^x - \cos x$ .

#### II. Замена на эквиваленты

**Задача 9.** Подберите эквивалентную функцию для  $f(x) = \sqrt{x + \sqrt{x}}$  при а)  $x \to +0$ ; б)  $x \to +\infty$ .

Задача 10. Вычислите, используя замену на эквиваленты:

a) 
$$\lim_{x \to 0} \frac{\ln \cos x}{\sqrt[4]{1 + x^2} - 1}$$
; 6) 
$$\lim_{n \to +\infty} \frac{\operatorname{tg}^3 \frac{1}{n} \cdot \operatorname{arctg} \frac{3}{n\sqrt{n}}}{\sin \frac{2}{n^3} \cdot \operatorname{tg} \frac{1}{\sqrt{n}} \cdot \operatorname{arcsin} \frac{5}{n}}$$
.

#### Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр



Задача 11. Вычислите, заменяя на эквиваленты и о-малые:

$$\lim_{x\to 0} \frac{\sqrt[5]{1+10x}-\sqrt[3]{1+3x}}{\arcsin(3x+x^2)-\sin(2x+x^3)} \ \left(\text{докажите, что } \sin x = \frac{e^x-e^{-x}}{2} \sim x \ \text{при } x\to 0\right).$$

#### Самостоятельно

## І. Сравнение БМ и ББ функций

**Задача 12.** Сравните между собой бесконечно большие функции при  $x \to +\infty$ :  $x^3$ ,  $x^2$ , x,  $\sqrt{x}$ ,  $\sqrt[3]{x}$ .

**Задача 13.** Определите порядки следующих БМ функций относительно x при  $x \to 0$ :

a) 
$$\sqrt{1+x^3}-1$$
; 6)  $\frac{x}{x-1}$ .

#### II. Замена на эквиваленты

Задача 14. Вычислите, используя замену на эквиваленты:

$$\lim_{x\to 0} \frac{\sin \sqrt[3]{x} \cdot \ln(1+3x)}{(\operatorname{arctg} x)^2 \cdot \left(e^{5\cdot \sqrt[3]{x}}-1\right)}.$$

Задача 15. Вычислите, заменяя на эквиваленты и о-малые:

$$\lim_{x \to +\infty} x \left( \ln \left( 1 + \frac{x}{2} \right) - \ln \left( \frac{x}{2} \right) \right).$$