Energiemessung Sensortag

Autor: Katrin Bächli

Messdaten: 10.3.16, 16.3.16, 24.4.16, 3.6.16

1 Aufgabenstellung

Die Firmwareentwicklung wird begleitete von Energieverbrauch-Messungen. Das Ziel sind Ergebnisse im Sendemodus unteren μ Watt-Bereich. Zu messen ist auch die Initalisierung (mit erstem Versenden), da dies wichtig für die Berechnung des STS-Kondensators ist.

Versionen der Firmware

VO: Programm SimpleBroadcastBLE von Dario Dündars: Auf Knopfdruck werden drei BLE-Packete sendet

V1: Ausweitung der simplen BLE-Packete durch Einlesen der GPIO.

V2: BLE + RTC+GPIO: not working

V3: BLE+RTC+GPIO: working, power optimisation

V4: BLE+RTC+GPIO+3 Sensors, no power optimisation

2 Messschaltung/Messverfahren

Bemerkung

Die Referenzspannung der Messungen ist 2.2 V, die der eingestellten V ULP LDO auf dem EM-Board entspricht. EM8500 regelt den Ausgang, sobald das Applikations-Maxium, 3.8 V erreicht ist auf diese Ausgangsspannung. Vor diesem Regeleingriff steigt die Spannung von 1.8 V zum Applikations-Maximum.

Der Energieverbrauch für einen Refresh, wird nicht gemessen, da dieser mit weniger als 2 μ J für die Grundkonfiguration nicht wichtig ist.

Vorgehen

- Der Power-Analyser wird als Spannungsquelle mit 2.2 V eingestellt. Getriggert wird auf den Strom, der bei einem Refreshzyklus und beim Senden von Daten ansteigt.
- Um die Genauigkeit zu erhöhen, wird mit 4 Messleitungen direkt am Sensortag gemessen.
- Der Reed-Relais-Impuls wird manuell über den Schalter an einer 1.5 V-Batterie ausgelöst

4 Messresultate nach Versionen

Version	Datum	IO Abfrage	Standby-	Sensoren	Energie Senden	Energie Init + Senden
			Mode			
V0	10.3.16	Nein	Ja	Nein	33 μJ	
V1	16.3.16	Ja	Ja	Nein	32 <i>μJ</i>	126 μJ / Δt = 12.8 ms
V3	22.4.16	Ja	Ja.	Nein	29 μͿ	93.2 μ J / Δ t = 6.2 ms
V4	3.6.16	Ja	Ja. Nicht optimiert	Ja		93.2 μJ / Δt = 6.2 ms

5 Inventar

- TI Sensortag
- TI DevPack (mit abgelötetem JTAG-Adapter). Dient als Adapter für die Board-Eingänge DPO bis DP3, die auf dem DevPack einfach über die Ausgänge angelötet werden kann.
- Agilent Technologies: DC Power Analyser, N6705B

Detaillierte Messresultate V3

	Δt [ms]	$ar{P}$ [mW]	Ε [μ <i>J</i>]
C laden	0.7	32.4	24.2
Init kurz	2	12.8	26.6
Init lang	3.5	11.4	40
BLE senden	2	14.3	29
Init + Senden	5.5	12.4	69
Total Init + Senden	6.2		93.2

Senden V0

Abbildung 1: VO Sendevorgang

Der Stromverbrauch während des Sendevorgangs durchschnittlich 5 mA, der Leistungsverbrauch 11 mW. Der Energieverbrauch insgesamt 33 μ J.

Senden V1

Messung V1: mit GPIO Abfrage

Abbildung 2 V1

Der Energieverbrauch wird durch die GPIO-Abfrage nicht erhöht. Beim Senden wurde nur der Button gebraucht. Nicht GPIO-Interrupt.

Init und Senden V1

Beim ersten Senden, das wichtig für die Berechnung des STS ist, ist der Energieverbrauch rund 4-mal höher und liegt bei $126 \, \mu J$.

Energieverbrauch Refresh-Zyklus

Abbildung 3: VO - Standby Modus mit einem Refreshpeak

Der maximale Stromverbrauch beim Refreshen beträgt 10.56 mA. Der Energieverbrauch liegt unter 2 uJ.

Laden der Kondensatoren

Initalisierung

Senden BLE

Alles (Init und BLE)

V4

Überblick (BLE senden ist bei 2.079 -> siehe dieses Bild später)

Init

Temperatursensor

BLE Paket versenden

