Momentum

- The momentum of an object is the product of its mass and velocity
- · Unit of momentum is kgms or Ns
- The Principle of Conservation of Momentum States that for a System of interacting objects the total momentum will remain constant providing no external resultant force acts on the system
- · MAUX + MBUB = MAVA + MBVB

e.g. A bullet of mass O.Olkg is fired from a gun of mass 8kg.

The bullet travels at 500ms'. Calculate the velocity the gun recoils.

$$m_A U_A + m_B U_B = m_A V_A + m_B V_B$$

 $(0.01)(0) + (8)(0) = (0.01)(500) + (8)(V_B)$
 $0 = 5 + 8V_B$
 $8V_B = -5$
 $V_B = -\frac{5}{8} = -0.625 \text{ ms}^{-1}$

Newton's Laws of Motion

- O An object remains at constant velocity unless acted on by a resultant force
- 2) The rate of change of momentum of an object is proportional to the resultant force on it
- 3 When two objects interact they exert equal and opposite forces on each other
- · The first law explains how a change in momentum is needed for a change in velocity
- The Second law explains the equation: force = mass x acceleration
 - The third law explains the normal force when an object is in contact with the ground

www.	cw	thompson.	Com

Circular Motion

Angular Speed

The angle as object rotates through per second

· Unit is rad s-1, radians per second

W = 0

· Even if angular speed, w, is constant linear speed, v, might not be

V = 2th

· V= rw

• $\omega = 2\pi f$ and $\omega = \frac{2\pi}{E}$

Centripetal Acceleration

· Velocity of object is always changing as direction changes

· Therefore object is always accelerating

The acceleration is called centripetal acceleration.

Always directed toward centre of circle

· a = -

a a = w2r

Centripetal Force

· Centripetal acceleration causes centripetal force due to Newton's Second law of motion

F = mv2 = mw2r

· Without centripetal force object would fly off at a tangent

· Acts towards centre of circle

· Examples of Centripetal forces are:

· for a ball on a String the centripetal force will be the tension in the String

. for a planet orbiting a Star the centripetal force will be gravity

Simple Harmonic Motion

- Simple harmonic motion (SHM) is an oscillation in which the acceleration of an object is directly proportional to its displacement and is directed to the midpoint
- There is a restoring force pushing or pulling the object back to the centre, and its magnitude is dependent on displacement.

f = frequency c = displacement v = velocity A = amplitude t = time

- · Gravitational potential energy for pendulums, elastic potential energy for masses on springs
- · As the object moves towards midpoint, restoring force does work to transfer Ep to Ex
- · When moving away, Ex transferred to Ex
- · At midpoint all energy is kenetic
- · At amplitude all energy is potential
- · lotal energy is mechanical energy and is constant if there is no damping
- · Frequency does not depend on amplitude

	WWW. Cwthompson. Com
	Mass on a Spring
	F = - K2e
9	K is Spring constant (Styrness) and unit is Nm-1
0	$T = 2\pi \int_{\mathbb{R}}^{\mathbb{R}}$
	The fall of the state of the state of the state of
	Simple Pendulum
	Massless String with dense bob
	Isochronous - constant time period $T = 2\pi J \frac{L}{g}$
	1 - 211/9
1	T 1/1
	Free Vibrations
0	Oscillates at natural frequency
	If no energy transfer with surroundings, complitude is constant
	Doesn't happen in practice
0	Forced vibrations have external driving force
	Resonance (rapidly increasing amplitude) occur when driving frequency equals
SHEND	natural frequency
	Damping
	Energy lost to Surroundings
	Due to damping forces like air resistance
	O_{i}
	Slows oscillations or minimises effects of resonance
	Critical damping reduces amplitude in Shortest possible time
•	Light damping and overdamping occur on either Side of it
	Sh. Hight
	The state of the s
	The state of the s

Gravitational Fields

- · Mass in gravitational field experiences citractive force
- . Field strength is force per unit mass
- · g=m (unit is Nkg-1 or ms-2)
- " g is also acceleration due to gravity
- · q = 9.81 ms-2 near Earth Surface
- · Always towards centre of Earth for centre of mass of object whose field it is). In a radial field $g = \frac{GM}{r^2}$
- · g connected to r by inverse Square law

Field Lines

- · Describes gravitational lines of force
- · Arrows Show direction of force
- · Closer the lines the Stronger the force
- · Earth's gravitational field is radial like in image 1
- · However field will appear uniform near the Surface like image 2

Newton's Law of Gravitation F = Gm.mz

- · G is gravitational constant, 6.67 × 10-11 Nm2 kg-2
- · M, and mz are masses of objects
- or is distance between centres of masses
- This law assumes the gravitational force between two objects is:
 - · always an attractive force
 - · proportional to mass of each object
 - · proportional to +2

Electric Fields

- · Charge can be positive or negative
- · Measured in Coulombs (C)
- · Every charged object has an electric field around it
- · Like charges repel, unlike charges attract
- · An electrical conductor has free electrons not attached to any atoms and they can move about
- . An electrical insulator closs not have gree electrons, they are all attatched to atoms

Gold Leaf Electroscope

- · Used to detect charge
- · If a charged object is brought near the metal cap some charge is transferred to the electroscope
- · This causes gold leaf to rise as it repels the Stem
- · The greater the charge the more the leag rises

Coulomb's Law

- · Coulomb's law States the force between two point charges is proportional to the product of the charges and inversely proportional to the Square of the distance between them
- Negative force is attractive $F = \frac{1}{4\pi \epsilon_0} \frac{Q_1}{r^2}$
- · E = 8.85 × 10-12 Fm-1 and is permittivity of free space

Electric Field Strength

- The force per unit charge on a small positive charge at that point $E = \frac{1}{2}Q$
- · In a radial field, E = ARE ?
- . In a uniform field, E= d
- · Electric field Strength is constant anywhere on a field

Capacitors

- · Capacitors Store charge
- Capacitance is the amount of charge Stored per volt
- C = Q
- The unit of capacitance (c) in Farad, F

Energy Stored

· When charge builds up on the plates, energy is stored by the Capacitor

. The energy stored is the area under a potential difference against charge graph

- · E = 1 QV.
- · E = 1 CV2
- $E = \frac{1}{2} \frac{Q^2}{E}$

e.g. a 600 nF capacitor is charged to a potential difference of 320 V. Calculate the energy stored.

$$E = \frac{1}{2} C V^2$$

$$=\frac{1}{2} \times 600 \times 10^{-6} \times 320^{2}$$

Charging and Discharging

- · When a capacitor is connected to a battery current will flow until the capacitor is charged
- · Electrons flow onto the plate connected to the negative terminal
- · Electrons on the other plate are repelled to the positive terminal
- · This builds up a potential difference
- · Charge cannot flow between the plates as there is an insulator
- · When potential difference across the capacitor and battery is equal, current Stops flowing
- · A capacitor can be discharged by connecting it to a circuit

- Q = Qo e * (discharging) or Q = Qo Qo e * (charging)
 V = Vo e * (discharging) or V = Vo Vo e * (charging)
- The time constant (T=RC) is the time for charge to fall to 37% of Qo
 on a discharging capacitor and rise to 63% on a charging capacitor
 In practice it takes 5RC to fully charge or discharge

Magnetic Fields

- · A magnetic field is a region where a force is exerted on magnetic materials
- * Field can be represented by field lines
- · Field lines go from north to South

Magnetic Field of a Wire carrying a Churrent

- When a current flows in a wire, a
 magnetic field is induced around it
 Direction of field is Shown by right-hand rule
- . The field lines are concentric circles centred on the wire

Wire in a Magnetic Field

- · When a current-carrying wire is placed in an external magnetic field the two fields interact
- · This creates a force on the wire
 - Current must not be parallel to field lines for force to act
- · Direction of force can be Shown by Fleming's left hand rule

· F=BII

F= force, B= magnetic flux density, I= current, L= length of wire in field

· Magnetic flux density, Strength of field, is the force on one metre of wire carrying a current of one comp at right angles to the magnetic field. Flux density is measured in teslas, Tor Wbm-2 or Nm-1A-1

WWW. Cwthompson. Com Charged Particles in Magnetic Fields · Forces act on charged particles in magnetic fields torce always perpendicular to direction of travel This causes circular motion gor charged particle · Used in cyclotrons to accelerate particles to high energies What is the force acting on an electron travelling at 2×10⁴ ms⁻¹ through a uniform magnetic field of Strength 2T? = 2 x 106x10-19 x 2x10+ = 6.4 × 10-15 N

	WWW. Cwthompson. Com
	Electromagnetic Incluction
	too poliston jud panas la circula de pones ment homo) in
	Faraday's Law and Magnetic Flax
9	Faraday's Law states the induced emof is directly proportional to the
	rate of change of flux linkage
,	Tate of change of flux linkage $E_{\bullet}M_{\bullet}F = \frac{Flux}{Time} \stackrel{\triangle \Phi}{=} N \stackrel{\triangle \Phi}{\Delta t}$
	Magnetic flux density, B, is Strength of field per unit area
	Magnetic flux, $\Phi = BA$
	Unit is Wb
	Flux Linkage, = No = BAN
	When conductor moved through magnetic field, force on electrons causes
	charge and emof to build.
	Lenz's Law
0	Lenz's law States the induced emof is always in such a direction as to
	oppose the change that it caused
	E.M.F = - N Ab
,	Opposes motion of conductor
	Transformers
p	Use electromagnetic induction to change voltage of alternating current
	Alternating current through primary coil produces magnetic flux
	As Joseph Jack Jack Jack Jack

- · Magnetic field passed through iron core to secondary coil where it induces alternating voltage of Same frequency
- · efficiency = VPIP
- · National grid tries to transfer at lowest possible current to minimise loss, so uses high voltage

	WWW. Cwthompson. Com	
	Generator	
0		
	Convert kinetic energy to electrical energy by notating coil	
	in magnetic field	
	Output voltage and current changes direction every haif turn,	
	Creating alternating Current	
•	T = BAN COS O	
		*
9	Flux linkage and induced voltage = out of phase	*
	Flux Luxaga Q = NA - Ban	
73	When conductor month hearth magnetic gold gare on electrons cours	
	charge and comp to build.	
	I as shown in a second second second second second	
	Lenz's law States the which emy is disays in such a direction as to	
	SA II STORES	
	A.M. S. M. S. M. S.	
	Oppose when g conductor	
	T T	
	WinStangers.	
inssau	The electromogenic induction to thenge values of alternating a	
	Alterating current through promony col produces magnetic flux	<u> </u>
-	Magnetic field enseed through non core to secondary coil whose	9
	roduces alternation voltage of same frequency	,
	$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}}$	
	PERIODON = WIT	
	Matical and these to broken at lowest meshe and to be	
	anather but and a series	
	loss so uses high voltage	