KATHMANDU UNIVERSITY

End Semester Examination August, 2018

Level: B.Sc. Course: COMP 409

Year : III Semester : II
Time : 2 hrs. 30 mins. F. M. : 40

 $\frac{\text{SECTION "B"}}{[6Q. \times 4 = 24 \text{ marks}]}$

Attempt ANY SIX questions.

- 1. Draw the block diagram of compiler? Explain different steps in analysis phase.
- 2. Construct nondeterministic finite automata for the regular expression (a | b)*abb(a | b)* and convert it into DFA. Show the sequence of moves for processing the input string ababbab.
- 3. Define annotated parse tree. Given a syntax-directed definition of a simple desk calculator.

Production	Semantic Rules
$L \rightarrow E \mathbf{n}$	Print (E.val)
$E \rightarrow E_1 + T$	$E.val := E_1.val + T.val$
$E \rightarrow T$	E.val := T.val
$T \rightarrow T_1 * F$	$T.val := T_1.val \times F.val$
$T \rightarrow F$	T.val := F.val
$F \rightarrow (E)$	F.val := E.val
F→digit	F.val := digit.lexval

For the input expression (4*7+1)*2, construct an annotated parse tree.

- 4. Differentiate between recursive decent parsing and non recursive predictive parsing.
- 5. What is type checking? Write the type expression for the following types:
 - a) Function whose domains are functions from two characters and whose range is a pointer of integer.
 - b) An array of pointers to real where the array index ranges from 1 to 50.

6. Consider the following flow graph

- a) Show the local common sub expression elimination for block B₅
- b) Eliminate the common sub expression from block B_5 and B_6
- c) Eliminate the dead code from the graph with explanation if any

- 7. Write short notes on
 - a. Three-address code
 - c. Activation tree

- b. Equivalence of type expression
- d. Dead code elimination

$$\frac{\text{SECTION "C"}}{[2 \text{ Q} \times 8 = 16 \text{ marks}]}$$

Attempt ANY TWO questions.

- 8. Consider the grammar
 - $S \rightarrow AA$
 - $A \rightarrow bA$
 - $B \rightarrow c$
 - a. Describe the language that the grammar defines.
 - b. Is the grammar ambiguous? Justify your answer.
 - c. Construct a Canonical LR(1) and LALR(1) parse table for the grammar.
- 9. Construct the LL(1) parsing table for the following grammar
 - $E \rightarrow TE'$
 - $E' \rightarrow +TE' \mid \epsilon$
 - $T \rightarrow FT$
 - $T' \rightarrow *FT' \mid \epsilon$
 - $F \rightarrow (E)$ | id

Also trace for the input string id+id*id showing input and stack content.

- 10. Consider the following grammar and give the syntax directed definition to construct parse tree. For the input expression 7*2+5*4, construct an annotated parse tree along with dependency graph according to your syntax directed definition.
 - $E \rightarrow TE'$
 - $E' \rightarrow +TE'$
 - Ε' →ε
 - $T \rightarrow FT$
 - $T' \rightarrow *FT'$
 - T' →ε
 - $F \rightarrow digit$

KATHMANDU UNIVERSITY

End Semester Examination August, 2018

	: B.Sc. : III			Course Semester	: COMP 409	
			30 mins.	F. M.	: 10	
Regist	ration No.:			Date	:	
		<u>SECTIO</u>				
		$[20 \text{ Q} \times 0.5 =$	10 marks]			
Tick (v) the correct answer(s	s) or fill in the blanks	with most appropriate	word/phra	se.	
1.	During compilation v	st specializ	zed technique?			
	[A] Semantic Analysi	[B] Analysis				
	[C] Lexical Analysis		[D] Synthesis			
2.	into commands to sea [A] Query Interpreter	[B] Silicon Compiler		lean operators		
	[C] Test Formatters		[D] Linear Analysis			
3.	A major advantage of matching algorithms.		s that it can utilize the	best-know	n pattern-	
	[A] Lexical Analyzer	Generator	[B] Semantic Analysi	is		
	[C] Syntax Analyzer		[D] Code Optimizer	[D] Code Optimizer		
4.	The number of tokens in the following C statement is printf("a=%d, &a=%x",a,&a);					
	[A] 3	[B] 26	[C] 21	[D] 10		
5.	What a compiler can	check?				
	[A] Logical Error		[B] Syntax Error			
	[C] Both Logical and	Syntax Error	[D] Not Logical and Syntax Error			
6.	 abaabaaabaa aaaabaaaa baaaaabaaaab 		ch of the following stri	ngs are in	L*?	
	4) baaaaabaa [A] 1, 2 and 3	[B] 2, 3 and 4	[C] 1, 2 and 4	[D] 1, 3 a	and 4	
	[11] 1, 2 und 3	[D] 2, 3 and 1	[C] 1, 2 and 1	[D] 1, 3	and i	
7.		_	o's and 1's with no two			
	[A](0+1)	[B] (0+1)*	$[C] (0+\epsilon) (1+10)*$	[D] (0+1))* 011	
8.	Consider the gramma $S \rightarrow AA$ $A \rightarrow aA \mid b$ The grammar [A] LL(1)		[B] SLR(1) but not L	I (1)		
	[A] LL(1) [C] LR(1) but not LA	J R(1)	[D] LAI R(1) but not SI R(1)			

9.	Consider the grammar $S \rightarrow (S) \mid a$							
	Let the number of states in SLR(1), LR(1) and LALR(1) parsers for the grammar be n1, n2, n3 respectively. The following relationship holds true							
	n2, n3 respectively. [A] n1 <n2<n3< td=""><td></td><td>llowing relation 1=n3<n2< td=""><td>-</td><td></td><td>[D] 1</td><td>n1≥n3≥n2</td><td></td></n2<></td></n2<n3<>		llowing relation 1=n3 <n2< td=""><td>-</td><td></td><td>[D] 1</td><td>n1≥n3≥n2</td><td></td></n2<>	-		[D] 1	n1≥n3≥n2	
		ו נען	11-113<112	[C] i	11-112-113	ונטו	1121132112	
10.	Consider the grammar with non-terminals $N = \{ S, C, S1 \}$, terminals $T = \{ a, b, i, t, e \}$, with S as the start symbol, and the following set of rules: $S \rightarrow iCtSS1 \mid a$ $S1 \rightarrow eS \mid \epsilon$ $C \rightarrow b$ The grammar is NOT LL(1) because: [A] It is left recursive [B] It is right recursive [C] It is ambiguous [D] It is not context-free					,		
11.	A bottom up parser [A] Rightmost deriva [C] Leftmost deriva	vation i			Rightmost de Leftmost deri		reverse	
12. Which of the following statement is false? [A] LALR is more powerful than SLR [B] An ambiguous grammar can never be LR(k) for any k [C] An ambiguous grammar has same leftmost and rightmost deriva [D] An LL(1) parser is a top-down parser				derivatio	1			
	Consider the follow $S \rightarrow AS'$ $S' \rightarrow +AS'$ $A \rightarrow BT'$ $A' \rightarrow *BA'$ $B \rightarrow (S)$	ε ε	mmar					
	Question (13 and 14) are based on the given grammar							
13.	FIRST(S) is:							
	[A] $\{+, \epsilon\}$	[B]	{+,), \$}	[C]	$\{*,\epsilon\}$	[D]	{ (, id}	
14.	FOLLOW(A) is: [A] {+, ε }	[B]	{+,), \$}	[C]	{*, ε}	[D]	{ (, id}	
15.	Consider the translation scheme as shown below $S \rightarrow TR$ $R \rightarrow +T$ {print('+');} $R \mid \epsilon$ $T \rightarrow$ num {print(num.val);} Here num is a token that represents an integer and num.val represents the corresponding integer value. For an input '6+3+2', this translation scheme will print [A] 6+3+2 [B] 63+2+ [C] 632++ [D] ++ 632				ing			

9.

16.	Consider the following translation scheme					
	$S \rightarrow ER$					
	$R \rightarrow^* E\{print\{``*"\}; R \mid \epsilon$					
	$E \rightarrow F + E\{print("+");\} F$					
	$F \rightarrow (S) \mid id\{print(id.value);$					
	Here id is a token that r					
	integer value. For an in					
	[A] 2*3+4 [I	B] 2*+34	[C] 23*4+	[D] 234+*		
17.	The identification of common sub-expression and replacement of run-time computations					
	by compile-time computations is					
	[A] Constant Folding		[B] Loop Optimizati	on		
	[C] Local Optimization	ı	[D] Data flow analys			
18.	The method which merges the bodies of two loops is					
	[A] Loop Rolling		[B] Constant folding	[B] Constant folding		
	[C] Loop Jamming		[D] Algebraic Simpli	ification		
19.	Optimization of the program that works within a single basic block is called					
	[A] Global optimization	n	[B] Loop un-controll	ling		
	[C] Loop controlling		[D] Local optimizati	on		
20.	The optimization technic	ique which is typica	ally applied on loops is	S		
	[A] Removal of invaria	nt computation	[B] Peephole optimiz	zation		
	[C] Constant folding	-	[D] All of above			

Solution to MCTI problems

MCTI	Answer
1	D
2	A
3	A
4	D
5	В
6	C
7	C
8	A
9	В
10	C
11	A
12	C
13	D
14	В
15	В
16	D
17	A
18	C
19	D
20	D