Multivariable Calculus Problem Set 1

Topics: dot and cross products, projections, lines and planes, space curves

0 —

Exercise 1. Let $\mathbf{a} = \langle 3, -4, 5 \rangle$ and $\mathbf{b} = \langle 2, -1, 1 \rangle$.

- (a) Compute $\mathbf{a} \cdot \mathbf{b}$. Are \mathbf{a} and \mathbf{b} orthogonal/perpendicular?
- (b) Compute the angle between **a** and **b** using the dot product.
- (c) Compute the area of the parallelogram formed by **a** and **b** without actually computing their cross product. *Hint: there might be a useful theorem you can use.
- (d) Compute the scalar and vector projections of **b** onto **a**.

Exercise 2. On the same set of axes (in \mathbb{R}^3) draw $\mathbf{a} = \langle 3, 0, 0 \rangle$ and $\mathbf{b} = \langle 1, 3, 0 \rangle$. Without computing the cross product, does the vector $\mathbf{a} \times \mathbf{b}$ point upwards or downwards? *Hint: use the righthand rule.

Exercise 3. Compute $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{a})$ and $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})$.

Exercise 4.

- (a) Construct a nonzero vector **b** that is orthogonal/perpendicular to the vector $\mathbf{a} = \langle \alpha, -\alpha, 3\alpha \rangle$, where α is a constant.
- (b) Using your answer from part (a), construct another vector that is orthogonal/perpendicular to both **a** and **b**.
- **Exercise 5.** Compute the parametric, symmetric, and vector equations of the line that passes through the points P(1,2,3) and Q(0,3,-1).
- **Exercise 6.** Find an equation for the plane that passes through the point (6, -1, 3) and contains the line $\frac{x}{3} = y + 4 = \frac{z}{2}$.
- **Exercise 7.** Find parametric, symmetric, and vector equations for the line that is perpendicular to the plane x y z = 2 and passes through the point (1, 0, 1).

Exercise 8. Consider the following two lines:

$$L1: x = 2 + t, y = 3 - 2t, z = 1 - 3t$$

$$L2: x = 3 + s, y = -4 + s, z = 2 - 7s$$

1

Are these lines parallel, skew, or intersecting? If intersecting, what is the point of intersection?

Exercise 9.

- (a) Find the domain of the curve $\mathbf{r}(t) = \left\langle e^t, \ln(t+1), \frac{1}{t-1} \right\rangle$.
- (b) Compute the unit tangent vector at t = 0, that is, compute $\mathbf{T}(0)$.
- (c) TRUE or FALSE: $\lim_{t\to -1^+} \mathbf{r}(t)$ exists.