2020 北京密云初三二模

数

2020. 6

1. 本试卷共 8 页, 共三道大题, 28 道小题, 满分 100 分. 考试时间 120 分钟.

生

2. 在试卷和答题卡上准确填写学校、班级、姓名和考号.

须

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用 2B 铅笔. 知

4. 考试结束,请将本试卷和答题纸一并交回.

一、选择题 (本题共16分,每小题2分)

下面各题均有四个选项,其中只有一个选项是符合题意的.

1. 港珠澳大桥作为世界首例集桥梁、隧道和人工岛于一体的超级工程, 创下了多项"世界

之最". 它是世界上总体跨度最长的跨海大桥,全长55000米. 其中海底隧道部分全长6700米,是世界最长的公路沉 管隧道和唯一的深埋沉管隧道,也是我国第一条外海沉管隧道.其中,数字6700用科学记数法表示为(

- A. 67×10^2
- B. 6.7×10^3
- C. 6. 7×10^4
- D. 0.67×10^4

2. 第二十四届冬季奥林匹克运动会将于 2022 年在北京举行,北京将成为历史上第一座既举办过夏奥会,又举办过 冬奥会的城市. 下面的图形是各届冬奥会会徽中的部分图案, 其中是轴对称图形, 但不是中心对称图形的是(

3. 如图,小林利用圆规在线段 CE 上截取线段 CD, 使 CD=AB. 若点 D 恰好为 CE 的中点, 则下列结论中错误的是(

- A. *CD=DE*:
- B. AB = DE:
- C. $CE = \frac{1}{2}CD$;
- 4. 如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()

- A. $(a+b)^2 = a^2 + 2ab + b^2$
- B. $(a+b)^2 = a^2 + 2ab b^2$
- C. $(a-b)^2 = a^2 2ab + b^2$
- D. $(a-b)^2 = a^2 2ab b^2$
- 5. 如图,在数轴上,点 B在点 A的右侧. 已知点 A对应的数为-1,点 B对应的数为 m 若在 AB之间有一点 C,点 C到原点的距离为 2,且 AC-BC=2,则 m的值为(
 - A. 4
- В. 3
- C. 2 D. 1

6. 如果 $x^2+2x-2=0$,那么代数式 $\frac{1}{x-2} \cdot \frac{x^2-4x+4}{x} - \frac{x}{x+2}$ 的值为(

- A. -2
- B. -1
- C. 1
- D. 2
- 7. 新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最 初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升, 真正体现了"大国速度".以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:

抽检数量 n/个	20	50	100	200	500	1000	2000	5000	10000
合格数量 m/个	19	46	93	185	459	922	1840	4595	9213
口罩合格率 <u>m</u> n	0.950	0.920	0.930	0.925	0.918	0.922	0. 920	0. 919	0. 921

下面四个推断合理的是()

- A. 当抽检口罩的数量是 10000 个时, 口罩合格的数量是 9213 个, 所以这批口罩中"口罩合格"的概率是 0.921;
- B. 由于抽检口罩的数量分别是 50 和 2000 个时, 口罩合格率均是 0.920, 所以可以估计这批口罩中"口罩合格"的 概率是 0.920:
- C. 随着抽检数量的增加,"口罩合格"的频率总在 0.920 附近摆动,显示出一定的稳定性,所以可以估计这批口罩 中"口罩合格"的概率是 0.920;
- D. 当抽检口罩的数量达到 20000 个时,"口罩合格"的概率一定是 0.921.
- 如图, 点 C、A、M、N在同一条直线 I上. 其中, $\triangle ABC$ 是等腰直角三 角形, $\angle B$ =90°,四边形 MNPQ为正方形,且 AC=4,MN=2,将等腰 Rt △ABC沿直线 I 向右平移.若起始位置为点 A 与点 M 重合,终止位置为点 C 与点 N

重合. 设点 A 平移的距离为 x,两个图形重叠部分的面积为 y,则 y 与 x 的函数图象大致为(

- 二、填空题(本题共16分,每小题2分)
- 9. 分解因式: 3ax²-12a=_____.
- 10. 若 $\sqrt{x-4}$ 在实数范围内有意义,则实数 x 的取值范围是______.

12. 如图, \angle 1, \angle 2, \angle 3, \angle 4 是五边形 *ABCDE* 的四个外角,若 \angle *A*=120°,则 \angle 1+ \angle 2+ \angle 3+ \angle 4=____°.

- 13. 已知 "若 a > b,则 ac < bc" 是真命题,请写出一个满足条件的 c 的值是 .

(结果精确到 0.1, 参考数据: $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$)

已知:点A、点B在直线MV的两侧.

(点 A 到直线 MV 的距离小于点 B 到直线 MV 的距离).

如图,

- (1) 作点 B关于直线 MV的对称点 C;
 - $\frac{1}{2}BC$
- (2) 以点 *C* 为圆心,
- 的长为半径作 \odot *C*,交 *BC*于点 *E*;

- (3) 过点 A作 \odot C的 切线, 交 \odot C 于点 F, 交直线 MV 于点 P;
- (4) 连接 PB、PC.

根据以上作图过程及所作图形,下列四个结论中:

- ① *PE*是⊙*C*的切线;
- ② PC平分 \widehat{EF} ;
- ③ *PB=PC=PF*;
- (4) $\angle APN=2 \angle BPN$.

所有正确结论的序号是	

16. 某校举办初中生数学素养大赛,比赛共设四个项目: 七巧拼图、趣题巧解、数学应用和魔方复原,每个项目得分都按一定百分比折算后记入总分,并规定总分在85分以上(含85分)设为一等奖. 下表为甲、乙、丙三位同学的得分情况(单位:分),其中甲的部分信息不小心被涂黑了.

项目得分 项目 学生	七巧拼图	趣题巧解	数学应用	魔方复原	折算后总分
甲	66	95	**	68	**
Z	66	80	60	68	70
丙	66	90	80	68	80

三、解答题 (共 68 分,其中 17^2 22 题每题 5 分, 23^2 26 题每题 6 分,27、28 题每题 7 分)

17. 计算:
$$\sqrt[3]{8} - \left(\frac{1}{3}\right)^{-1} + \left|5 - \sqrt{3}\right| - 6\tan 30^{\circ}$$
.

18. 解不等式组:
$$\begin{cases} 5x - 3 \ge 2x \\ \frac{3x - 1}{2} < 4 \end{cases}$$

19. 在□ ABCD中, DB=DC, ∠C=70°, AE⊥BD于点 E, 求∠DAE的度数.

- 20. 已知关于 x 的一元二次方程 $x^2 + 2x + m 4 = 0$ 有两个实数根.
- (1) 求 加的取值范围;
- (2) 写出一个满足条件的 加的值,并求出此时方程的根.

- 21. 如图,在 \triangle AOC中,OA=OC,OD是 AC边中线. 延长 AO至点 B,作 \angle COB的角平分线 OH,过点 C作 CF \bot OH于点 F.
- (1) 求证: 四边形 CDOF 是矩形;
- $\cos A = \frac{3}{5}$ (2) 连接 *DF*,若 $\cos A = \frac{3}{5}$, *CF*=8,求 *DF* 的长.

- 22. 在平面直角坐标系 xOy 中,直线 I: y=x+b 与反比例函数 $y=\frac{4}{x}$ 在第一象限内的图象交于点 A (4, m).
- (1) 求 m、b的值;
- (2) 点 B在反比例函数的图象上,且点 B的横坐标为 1. 若在直线 I上存在一点 P (点 P不与点 A重合),使得 AP < AB,结合图象直接写出点 P的横坐标 x_p 的取值范围.

23. 如图, \odot 0是 \triangle ABC的外接圆,AB是 \odot 0的直径,点 D在 \odot 0上,AC平分 \angle BAD,过点 C的切线交直径 AB的延长线于点 E,连接 AD、BC.

- (1) 求证: ∠BCE=∠CAD;
- (2) 若 AB=10, AD=6, 求 CE的长.

24. "垃圾分类就是新时尚". 树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义. 为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取 20 名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.

a. 甲、乙两校学生样本成绩频数分布表及扇形统计图如下:

甲校学生样本成绩频数分布表(表1)

乙校学生样本成绩扇形统计图(图1)

成绩 m(分)	频数	频率
50≤m<60	а	0. 10
60≤m<70	b	С
70≤⊯<80	4	0.20
80≤ <i>m</i> <90	7	0.35
90≤⊯≤100	2	d
合计	20	1.0

学校	平均分	中位数	众数	方差
甲	76. 7	77	89	150. 2
Z	78. 1	80	п	135. 3

b. 甲、乙两校学生样本成绩的平均分、中位数、众数、方差如下表所示: (表 2)

其中, 乙校 20 名学生样本成绩的数据如下:

54 72 62 91 87 69 88 79 80 62 80 84 93 67 87 87 90 71 68 91

请根据所给信息,解答下列问题:

- (1) 表 1 中 c=_____; 表 2 中的众数 n=_____;
- (2) 乙校学生样本成绩扇形统计图(图1)中,70≤ m<80 这一组成绩所在扇形的圆心角度数是 度;
- (3) 在此次测试中,某学生的成绩是 79 分,在他所属学校排在前 10 名,由表中数据可知该学生是_____校的学生(填"甲"或"乙"),理由是_____;
- (4) 若乙校 1000 名学生都参加此次测试,成绩 80 分及以上为优秀,请估计乙校成绩优秀的学生约为_____

25. 有这样一个问题: 探究函数

的图象与性质。

文文根据学习函数的经验,对函数 $y = \frac{1}{2}x^3 - 4x + 1$ 的图象与性质进行了探究.

下面是文文的探究过程,请补充完整:

- (1) 函数 $y = \frac{1}{2}x^3 4x + 1$ 的自变量 x 的取值范围是______;
- (2) 下表是 y与 x的几组对应值:

则 // 的值为 ;

X	•••	-3	-2	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	1/2	1	$\frac{3}{2}$	2	3	•••
У	•••	$-\frac{1}{2}$	5	$\frac{85}{16}$	$\frac{9}{2}$	$\frac{47}{16}$	1	$-\frac{15}{16}$	m	$-\frac{53}{16}$	-3	$\frac{5}{2}$	•••

(3) 如图,在平面直角坐标系 xOy中,描出以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4) 请你根据探究二次函数与一元二次方程关系的经验,结合图象直接写出方程 $\frac{1}{2}x^3 - 4x = -1$ 的正数根约

为_____. (结果精确到 0.1)

- 26. 在平面直角坐标系 xOy中,抛物线 C_1 : $y=x^2+bx+c$ 与 x 轴交于 A、B两点(点 A在点 B的左侧),与 y 轴交于点 C. 点 B的坐标为(3,0),将直线 y=kx 沿 y 轴向上平移 3 个单位长度后,恰好经过 B、C两点.
- (1) 求 k 的值和点 C的坐标;
- (2) 求抛物线 G 的表达式及顶点 D的坐标;
- (3) 已知点 E是点 D关于原点的对称点,若抛物线 C_2 : $y=ax^2-2$ ($a\neq 0$) 与线段 AE恰有一个公共点,结合函数的图象,求 a 的取值范围.

27. 已知: MN是经过点 A的一条直线,点 C是直线 MN左侧的一个动点,且满足 60° 〈 $\angle CANN$ 120°,连接 AC,将线段 AC绕点 C顺时针旋转 60° ,得到线段 CD,在直线 MN上取一点 B,使 $\angle DBN$ = 60° .

- (1) 若点 C位置如图 1 所示.
 - ① 依据题意补全图 1;
 - ② 求证: ∠CDB=∠MAC;
- (2) 连接 BC, 写出一个 BC的值, 使得对于任意一点 C, 总有 AB+BD=3, 并证明.

- 28. 在平面直角坐标系 xOy 中,点 A 的坐标为(x_1 , y_1),点 B 的坐标为(x_2 , y_2),且 $x_1 \neq x_2$, $y_1 = y_2$. 给出如下定义: 若平面上存在一点 P,使 $\triangle APB$ 是以线段 AB 为斜边的直角三角形,则称点 P 为点 A、点 B的"直角点".
- (1) 已知点 A 的坐标为 (1,0).
- ② 点 B在 x 轴的正半轴上,且 $AB = 2\sqrt{2}$,当直线 y=-x+b 上存在点 A、点 B的"直角点"时,求 b 的取值范围。
- (2) $\odot 0$ 的半径为 r, 点 D(1, 4) 为点 E(0, 2)、点 F(m, n) 的"直角点", 若使得

 $\triangle DEF$ 与⊙0有交点,直接写出半径r的取值范围.

2020 北京密云初三二模数学

参考答案

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
选项	В	С	С	A	В	A	С	D

二、填空题(本题共16分,每小题2分)

9. 3a (x+2) (x-2); 10. $x \ge 4$; 11. 1.8 $(\pm 0.1);$ 12. $300^{\circ};$

13. -1 (答案不唯一, 负数即可);

14. 3.5; 15. 124;

16. 80x+60y=70-20 (\vec{y} 80x+60y=50); 90.

三、解答题(本题共 68 分. 第 17~22 题,每题各 5 分:第 23~26 题,每题各 6 分:第 27、28 题,每题各 7 分)

说明:与参考答案不同,但解答正确相应给分.

原式=
$$2-3+(5-\sqrt{3})-6\times\frac{\sqrt{3}}{3}$$

$$= 2 - 3 + 5 - \sqrt{3} - 2\sqrt{3}$$

$$=4-3\sqrt{3}$$

18. 解:由①得: *x*≥1

......2 分

由②得: 水3

不等式组的解集: $1 \leq x \leq 3$

19. 解: ∵*DB=DC*, ∠*C=*70°

∴ ∠*DBC=*∠*C=*70°

∵□ABCD中, AD//BC ∴∠ADB=∠DBC=70°

∵ AE⊥BD

∴ ∠*AED=*90°

------4分

• /- ^	AED中,	/ DAE-00
• • 1T / \	$AED + \bullet$	$\angle DAE = 20^{\circ}$

------5 分

20. (1) 解: *a*=1, *b*=2, *c=m*-4

 $=2^{2}-4 (m-4)$

= 20-4m

::一元二次方程 $x^2+2x+m-4=0$ 有两个实数根,

m≤5. 3 分

21. (1)证明: ∵在△AOC中, OA=OC, OD 是 AC边中线

*∴∠AOC+∠COB=*180°,

-----2分

- : CF⊥ OH
- *∴∠CFO*=90°
- ∴四边形 CDOF 是矩形

·····3分

(2)解: :: OA=OC,

- ∴ ∠A=∠ACO
- : CD//OF

$$COS \angle COF = COSA = \frac{3}{5}$$

:

$$\therefore \frac{OF}{OC} = \frac{3}{5}$$

······4 分

∴设 *OF=*3*x*, *OC=*5*x*,则 *CF=*4*x*

∵*CF=*8

∴*x=*2

∴ *OC=*10

∴在矩形 CDOF中, DF=OC=10

------5 分

22. 解: (1) : $y = \frac{4}{x}$ 经过点 A(4, m)

∴ *m*=1

∴A (4, 1),

∵*y=x+b* 经过点 *A* (4, 1)

∴4+*b=*1

b=-3

(2) $1 \leq x_p \leq 7 \perp x_p \neq 4$

-----5分

23. (1) 证明: 连接 0℃

......1分

∵CE是⊙0的切线

∴ OC⊥ CE

∴ ∠ OCB +∠BCE=90°

∵AB是⊙O的直径

∴∠ACB =90°

∴ ∠ CAB +∠ OBC=90°

∵ OC=OB

 \therefore \angle OCB= \angle OBC,

	∴∠CAB=∠BCE		2 分
	:AC平分 Z DAB		
	∴∠CAD=∠CAB		
	∴∠CAD=∠BCE		3 分
(2)	解: 连接 <i>BD</i>		4分
	∵ <i>AB</i> 是⊙ <i>0</i> 的直径	D C	
	∴∠ <i>ADB=</i> 90°,	H	
	∴ <i>AB=</i> 10, <i>AD=</i> 6	A	B E
	:.BD=8		
	∵AC平分∠DAB		
	$\therefore \widehat{CD} = \widehat{BC}$		
	∴ OC⊥BD, DH=BH=4		5 分
	∴ <i>OH=</i> 3		
	∵ OC⊥ CE		
	:.BD//CE		
	∴ △ OHB~ △ OCE		
	$\therefore \frac{OH}{OC} = \frac{BH}{CE}$		
	$\therefore \frac{3}{5} = \frac{4}{CE}$		
	$\therefore CE = \frac{20}{3}$		6分
24. 解:	(1) c=0.25, n=87;		·····2 <i>5</i>
	(2) 54°		3 分
	(3) 甲,因为该学生的成	绩是 79 分,略高于甲校	的样本成绩数据的中位数 77 分,符
	合该生的成绩在甲校	排名是前 10 名的要求;	5 分

(4) 550人

------6分

25. (1) x取任意实数

$$m = -\frac{5}{2}$$

(3)

(4) 0.3 或 2.7

-----6分

- 26. (1) 解: ∵直线 *y=kx*+3 经过点 *B* (3, 0)
 - ∴3*k*+3=0

k=1

- (2) 解: : 抛物线 $y=x^2+bx+c$ 经过点 B(3, 0) 和点 C(0, 3)
 - : $y=x^2+bx+3$
 - ∴ 9+3*b*+3=0

b = -4

∴ 抛物线 G 的函数表达式为 $y=x^2-4x+3$

- $\therefore y = (x-2)^{2}-1$
- ∴顶点 D的坐标为 (2, -1)

- (3) 解: : 点 E 是点 D 关于原点的对称点
 - ∴点 *E*的坐标为 (-2, 1)

当 $y=ax^2-2$ 经过点 E(-2, 1) 时,a=4

当 $y=ax^2-2$ 经过点 A(1, 0) 时,a=2

∴ a 的取值范围是 4 ≤ a<2

.....6分

------2分

② 证明: : ∠C=60° , ∠DBN=60°

- ∴∠C=∠DBN
- ∵∠*DBN +∠ABD=*180°
- ∴ ∠ C+∠ ABD=180°

在四边形 ACDB中, ∠CDB+∠BAC=180°

- : ∠BAC +∠MAC=180°
- ∴∠CDB=∠MAC

------4 分

(2) BC=3 时,对于任意一点 C,总有 AB+BD=3

-----5分

证明:连接 BC,在直线 MN上截取 AH=BD,连接 CH

- ∴ ∠MAC=∠CDB, AC=CD
- $\therefore \Delta ACH \cong \Delta DCB$
- ∴∠ACH=∠DCB, CH=CB
- **∵** ∠*DCB* +∠*ACB*=∠*ACD*=60°

 $\therefore \triangle HCB$ 是等边三角形.

28. (1) ① P_2 , P_3

······7 ゟ

-----2分

- ② :: A(1, 0), $AB = 2\sqrt{2}$
 - ∴线段 AB的中点 $C(\sqrt{2}+1, 0)$

- ∴点 A、B的 "直角点"在以点 C为圆心, $\sqrt{2}$ 的长为半径的 $\odot C$ 上
- ∴当直线 y=-x+b 与⊙C相切于点 D,与两坐标轴相交于点 M、N时,
- \therefore \angle M=45°, CD= $\sqrt{2}$
- ∴ CM=23 分
- : $OM = OC + CM = \sqrt{2} + 1 + 2 = \sqrt{2} + 3$,
- $\therefore ON = OM = \sqrt{2} + 3$

即 *b=*√2 +3 ······4 分

同理: 当直线 y=-x+b 与 $\odot C$ 相切于点 E时,

*CH=*2

 $\therefore OH = OC - CH = \sqrt{2} - 1$

即 $b = \sqrt{2} - 1$

综上所述: $\sqrt{2}-1 \le b \le \sqrt{2}+3$ 5 分

