AMENDMENTS TO THE CLAIMS:

Please amend claims 1-8, 10 and 13, as shown below.

This listing of claims will replace all prior versions and listings of claims in the Application:

Claim 1 (currently amended): A method for driving a plasma display panel in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step of:

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode by a predetermined number with relation to an image data during a sustaining period,

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode, and

wherein said neighboring display cells are adjacent in a direction intersecting with a direction where scanning electrodes and sustaining electrodes extend.

Claim 2 (currently amended): The method for driving a plasma display panel according to claim 1 in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step of:

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

175 CANAL STREET MANCHESTER, NH 03101 TEL 603.668.1400 FAX. 603.668.8567

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode by a predetermined number with relation to an image data during a sustaining period, wherein said changing at least one condition comprises the step of, in case of an interlace method, making a width of said sustaining discharge pulse when said shared electrode functions as a positive electrode wider than that when said shared electrode functions as a negative electrode, and

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode.

Claim 3 (currently amended): The method for driving a plasma display panel according to claim 1 in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step of:

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode by a predetermined number with relation to an image data during a sustaining period, wherein said changing at least one condition comprises the step of, in case of an interlace method, making a width of said

HAYES SOLOWAY P.C. 130 W. CLISHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

175 CANAL STREET MANCHESTER, NH 03101 TEL 603,668,1400 FAX. 603.668.8567

sustaining discharge pulse when said shared electrode functions as a positive electrode narrower than that when said shared electrode functions as a negative electrode, and

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode.

Claim 4 (currently amended): The method for driving a plasma display panel according to claim 1 in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step of:

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode by a predetermined number with relation to an image data during a sustaining period, wherein said changing at least one condition comprises the step of, in case of an interlace method, making a difference in potential between row electrodes when said shared electrode functions as a positive electrode larger than that when said shared electrode functions as a negative electrode, and

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode.

HAYES SOLOWAY P.C. 130 W. CLISHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

175 CANAL STREET
MANCHESTER, NH 03101
TEL. 603.668.1400
FAX. 603.668.8567

Claim 5 (currently amended): The method for driving a plasma display panel according to claim 1 in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step $\mathfrak{O}_{\mathbf{f}}$:

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode by a predetermined number with relation to an image data during a sustaining period, wherein said changing at least one condition comprises the step of, in case of an interlace method, making a difference in potential between row electrodes when said shared electrode functions as a positive electrode smaller than that when said shared electrode functions as a negative electrode, and

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode.

Claim 6 (currently amended): The method for driving a plasma display panel according to claim 1 in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step of:

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL 520.882.7623 FAX. 520.882.7643

175 CANAL STREET MANCHESTER, NH 03101 TEL 603,668,1400 FAX. 503.668.8567

applied to said scanning electrode and sustaining electrode by a predetermined number with relation to an image data during a sustaining period.

wherein said changing at least one condition comprises the step of, in case of a progressive method, making a width of said sustaining discharge pulse when said shared electrode functions as a positive electrode narrower than that when said shared electrode functions as a negative electrode, and

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode.

Claim 7 (currently amended): The method for driving a plasma display panel according to claim 1 in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step of:

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode by a predetermined number with relation to an image data during a sustaining period, wherein said changing at least one condition comprises the step of, in case of a progressive method, making a difference in potential between row electrodes when said shared electrode functions as a positive electrode smaller than that when said shared electrode functions as a negative electrode, and

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 320.882.7643

175 CANAL STREET MANCHESTER, NH 03101 YEL 603.668.1400 FAX. 603.668.8567

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode.

Claim 8 (currently amended): A method for driving a plasma display panel in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising step of:

assigning one or more sub-fields with an interlace method in which lines emitting light are changed in each field, and one or more sub-fields with a progressive method in which all lines emit light, in a plurality of sub-fields constituting one field,

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode, and

wherein said neighboring display cells are adjacent in a direction intersecting with a direction where scanning electrodes and sustaining electrodes extend.

Claim 9 (original) The method of driving a plasma display panel according to claim 8, further comprising the steps of:

making a width of said sustaining discharge pulse when said shared electrode functions as a positive electrode wider than that when said shared electrode functions as a negative electrode, in case of said interlace method; and

MAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL, 520.882.7623 FAX. 520.882.7643

175 CANAL STREET MANCHESTER, NH 03101 TEL, 603,668,1400 FAX, 603,668,8567

making a width of said sustaining discharge pulse when said shared electrode functions as a positive electrode narrower than that when said shared electrode functions as a negative electrode, in case of said progressive method.

Claim 10 (currently amended): A method for driving a plasma display panel in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the step of:

executing sustaining discharge of said neighboring display cells at an interval of one cycle alternately.

wherein on both sides of one of the sustaining electrode or the scanning electrode, the other one of the sustaining or scanning electrode is arranged, and two of the other one of the sustaining or scanning electrode are arranged between each of the one of the sustaining or scanning electrode, and

wherein said neighboring display cells are adjacent in a direction intersecting with a direction where scanning electrodes and sustaining electrodes extend.

Claim 11 (original): The method for driving a plasma display panel according to claim 10, further comprising the step of

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode alternately in every cycle by a predetermined number with relation to an image data during a sustaining period.

Claim 12 (original): The method for driving a plasma display panel according to claim 11, wherein said changing at least one condition comprises the step of making a width of

HAYES, SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.892.7623 FAX. 520.882.7643

175 CANAL STREET
MANCHESTER, NH 03101
TEL. 603.668.1400
FAX. 603.668.8567

said sustaining discharge pulse when said shared electrode functions as a positive electrode wider than that when said shared electrode functions as a negative electrode.

Claim 13 (currently amended): The method for driving a plasma display panel according to claim 11 in which any one of a scanning electrode and a sustaining electrode is shared by neighboring display cells interposed therebetween, the method comprising the steps of:

executing sustaining discharge of said neighboring display cells at an interval of one cycle alternately, and

changing at least one condition selected from the group consisting of a voltage of a sustaining pulse, a pulse width of a sustaining pulse, and a pulse applying interval of a sustaining pulse in relation to a polarity of said sustaining pulse, said sustaining pulse being applied to said scanning electrode and sustaining electrode alternately in every cycle by a predetermined number with relation to an image data during a sustaining period.

wherein said changing at least one condition comprises the step of making a difference in potential between row electrodes when said shared electrode functions as a positive electrode larger than that when said shared electrode functions as a negative electrode.

Claim 14 (previously presented): The method for driving a plasma display panel according to claim 2, wherein when the width of said sustaining discharge pulse to be applied to one of said sustaining electrode and said scanning electrode when that electrode functions as a positive electrode is wider than when said electrode functions as a negative electrode, the width of said sustaining discharge pulse to be applied to the other one of said sustaining electrode or said scanning electrode when the other one of the sustaining electrode or the

MAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL \$20.892.7623 FAX. 520.892.7643

175 CANAL STREET
MANCHESTER, NH 03101
TEL 603.668.1400
FAX. 603.668.8567

scanning electrode functions as a positive electrode is narrower than when the other electrode of the sustaining electrode or the scanning electrode functions as a negative electrode.

Claim 15 (previously presented): The method for driving a plasma display panel according to claim 3, wherein when the width of said sustaining discharge pulse to be applied to one of said sustaining electrode and said scanning electrode when that electrode functions as a positive electrode is narrower than when said electrode functions as a negative electrode, the width of said sustaining discharge pulse to be applied to the other one of said sustaining electrode and scanning electrode when the other one of the sustaining electrode and scanning electrode functions as a positive electrode is wider than when the other electrode of the sustaining electrode and scanning electrode functions as a negative electrode.

Claim 16 (previously presented): The method for driving a plasma display panel according to claim 6, wherein when the width of said sustaining discharge pulse to be applied to one of said sustaining electrode and said scanning electrode when that electrode functions as a positive electrode is narrower than when said electrode functions as a negative electrode, the width of said sustaining discharge pulse to be applied to the other one of said sustaining electrode and said scanning electrode when the other one of the sustaining electrode and scanning electrode functions as a positive electrode is wider than when the other electrode of the sustaining electrode and scanning electrode functions as a negative electrode.

Claim 17 (previously presented): The method for driving a plasma display panel according to claim 9, wherein when the width of said sustaining discharge pulse to be applied to one of said sustaining electrode and said scanning electrode when that electrode functions as a positive electrode is wider than when said electrode functions as a negative electrode, the width of said sustaining discharge pulse to be applied to the other one of said sustaining

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL 520.882,7623 FAX, 520.882,7643

175 CANAL STREET MANCHESTER, NM 03101 TEL 603.668.1400 FAX, 603.668.8567

electrode and said scanning electrode when the other one of the sustaining electrode and scanning electrode functions as a positive electrode is narrower than when the other electrode of the sustaining electrode and scanning electrode functions as a negative electrode.

Claim 18 (previously presented): The method for driving a plasma display panel according to claim 13, wherein when the width of said sustaining discharge pulse to be applied to one of said sustaining electrode and said scanning electrode when that electrode functions as a positive electrode is wider than when said electrode functions as a negative electrode, the width of said sustaining discharge pulse to be applied to the other one of said sustaining electrode and said scanning electrode when the other one of the sustaining electrode and scanning electrode functions as a positive electrode is narrower than when the other electrode of the sustaining electrode and scanning electrode and scanning electrode functions as a negative electrode.

MAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL 520.882.7623 FAX. 520.882.7643

175 CANAL STREET
MANCHESTER, NH 03101
TEL. 503.669.1400
FAX. 603.668.8567