Laboratorium techniki cyfrowej

Sprawozdanie z ćwiczenia 07 – Pamięci i układy wejścia-wyjścia

Imię i nazwisko	Ocena	Data
		Podpis prowadzącego zajęcia

			•	-
7 9	d	ar		
a	u	aı	110	

Zadanie 1 Zmieniając adres i obserwując stan sygnałów <i>CS_ROM i CS_RAM</i> , wyznaczyć mapę pamięci systemu:
Pamięć EPROM (8KB) – adresy od do
Pamięć RAM (8KB) – adresy od do
Rodzaj dekodowania adresów pamięci: pełny / niepełny
Uzasadnienie (gdy niepełny, podać linie adresowe nie są wykorzystywane przy dekodowaniu):

Zadanie 2

Zmieniając adres i obserwując stan sygnałó	w CS_SIO	, CS_PIO,	RD_{-}	DI i WR	DO,	wyznaczyć	mapę
wejścia-wyjścia w systemie:							

Układ PIO (4 adresy)	- adresy od	. do
Układ PIO (8 adresów) -	- adresy od d	0
Wejście bezpośrednie -	- adres	
Wyjście bezpośrednie -	- adres	

Rodzaj dekodowania adresów wejścia-wyjścia: pełny / niepełny

Uzasadnienie (gdy niepełny, podać linie adresowe nie są wykorzystywane przy dekodowaniu):

Zadanie 3

Wykonać odczyt danych z pięciu komórek pamięci EPROM i RAM o kolejnych adresach począwszy od adresów podanych przez prowadzącego. Zapisać wartości sygnałów sterujących, przy których następuje odczyt pamięci.

Adres EPROM (hex)	Zawartość pamięci EPROM (hex)	Adres RAM (hex)	Zawartość pamięci RAM (hex)

Odczyt EPROM:	<i>CS_ROM</i> =	<u>MREQ</u> =	<i>IORQ</i> =	<i>RD</i> =	<i>WR</i> =
Odczyt RAM:	$\overline{CS_RAM} = \dots$	<i>MREQ</i> =	<i>IORQ</i> =	<i>RD</i> =	WR =

Zadanie 4

Wykonać zapis danych do pięciu komórek pamięci RAM o kolejnych adresach począwszy od adresu jak w zad. 3. **Zapisywane dane to mniej znaczący bajt adresu**. Zapisać wartości sygnałów sterujących, przy których następuje zapis pamięci.

Adres RAM (hex)	Zawartość zapisana (hex)	Zawartość odczytana (hex)

$CS RAM = \dots$	$MREQ = \dots$	$IORO = \dots$	$RD = \dots$	$WR = \dots$

Zadanie 5

Wyłączyć i włączyć zasilanie stanowiska, następnie powtórzyć odczyty pamięci jak w zadaniu 3. Porównać wyniki z wynikami zadań 3 i 4.

Adres EPROM (hex)	Zawartość pamięci EPROM (hex)	Adres RAM (hex)	Zawartość pamięci RAMM (hex)

Komentarz:

Zadanie 6

Wykonać odczyt wejścia bezpośredniego i zapis wyjścia bezpośredniego. Zapisać wartość adresu i sygnałów sterujących, przy których następuje wykonanie operacji.

Odczyt:

$$A = \dots$$
, $RD_DI = \dots$, $MREQ = \dots$, $IORQ = \dots$, $RD = \dots$,

 $A = \dots$

$$WR_DO = \dots$$
, $\overline{MREQ} = \dots$, $\overline{IORQ} = \dots$, $\overline{RD} = \dots$, $\overline{WR} = \dots$

Zadanie 7

Wykonać polecenia z zad.7.7 skryptu laboratoryjnego. Zapisać zmierzone czasy dostępu do pamięci EPROM.

$t_{AA} = \dots,$	t_{ACS} =,	$t_{AOE} = \dots,$

Komentarz: