

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

078231471

COMBINED SCIENCE

0653/32

Paper 3 (Core)

February/March 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 shows diagrams of two plant cells as seen using a light microscope.

Fig. 1.1

(1)	Name parts E and F in the potato cell.	
	E	
	F	
		[2]
(ii)	Use Fig. 1.1 to describe one difference between the starch grains and the chloroplas	sts.
		[1]
(iii)	Describe a chemical test and the positive result for starch.	
	test	
	positive result	[2]
(b) (i)	Starch is a carbohydrate.	
	Name the smaller molecules that join together to make a starch molecule.	
		[1]
(ii)	Explain why starch must be broken down by chemical digestion.	
		[2]

(c) Fig. 1.2 shows a food chain in a garden.

Fig. 1.2

Table 1.1 shows some words to describe some of the organisms in the food chain.

Place a tick (✓) in **all** boxes that correctly describe each organism.

Table. 1.1

organism	carnivore	consumer	herbivore	producer
lettuce				
snail				
hedgehog				

[3]

[Total: 11]

2 (a) Petroleum is a fossil fue

(i)	State the name of one other fossil fuel.
	[1]
(ii)	State the name of the industrial process used to separate petroleum into useful products.
	[1]

(iii) State one use for naptha.

(b) Compound X and compound Y are obtained from petroleum.

The structures of molecules of these compounds are shown in Fig. 2.1.

Fig. 2.1

(i)	Name the group of saturated hydrocarbons that includes compound X .
	[1]
(ii)	Describe the changes, if any, that occur when compound ${\bf X}$ and compound ${\bf Y}$ are added to separate samples of aqueous bromine.
	compound X
	compound Y
	[3]
	[Total: 7]

BLANK PAGE

3 Fig. 3.1 shows a boy throwing a ball up in the air.

The ball moves vertically upwards, then falls down and the boy catches it.

Fig. 3.1

Fig. 3.2 shows a graph of the motion of the ball from the time it leaves the boy's hand until he catches it.

Fig. 3.2

(a) On Fig. 3.2, label with a letter **X** a point when the ball is moving upwards. [1]

(b)	(i)	Use Fig. 3.2 to state how much time passes from when the ball is thrown to when it caught. $ \\$	is
		s [1]
	(ii)	Use Fig. 3.2 to describe the motion of the ball between 3.0s and 4.0s.	
		[2]
(c)	The	ball has a mass of 0.62 kg.	
	Cal	culate the weight of the ball.	
	Gra	vitational field strength, g = 10 N/kg	
			4-
		weight =N [1
(d)		nplete the sequence of energy transfers from when the boy throws the ball to when the reaches its maximum height.	ıe
		energy in the boy	
	\rightarrow	kinetic energy as the ball moves upwards	
	\rightarrow	energy of the ball at its maximum height	2
		[Total:	7

4 Fig. 4.1 shows a diagram of the internal structure of the heart.

Fig. 4.1

(a)	(i)	Name structure A and state its function.
		A
		function
		[2
	(ii)	Name blood vessel B .
		[1
(b)	(i)	The blood in the left side of the heart contains more oxygen than blood in the right side of the heart.
		Explain why there is this difference.
		[1
	(ii)	Describe how oxygen is transported by the blood.
		[2

(c)	A pe	erson's pulse can be taken to measure their heart rate.
	(i)	State what causes a person's pulse rate to increase when they are frightened.
		[1]
	(ii)	Suggest one other situation when a person's pulse rate increases.
		[1]
		[Total: 8]

5 (a) Sodium is a Group I metal.

An atom of sodium is represented by the symbol

(i) State the numbers of electrons, neutrons and protons in this atom.

electrons

neutrons

protons

[2]

(ii) The electronic structure of a sodium atom is shown in Fig. 5.1a.

Fig. 5.1a

Fig. 5.1b

Complete Fig. 5.1b to show the electronic structure of a sodium **ion**.

[1]

(b) Apparatus used in the electrolysis of concentrated aqueous sodium chloride is shown in Fig. 5.2.

		FIG. 5.2	
	Con	nplete the sentences about the electrolysis of concentrated aqueous sodium chloride.	
	The	concentrated aqueous sodium chloride is known as the	
	The	positive electrode is called the, and the negative	
	elec	strode is called the	
	At th	ne positive electrode forms and at the negative	
	elec	etrode forms.	[5]
(c)	Whe	en a teacher adds a piece of sodium to a bowl of water, an exothermic reaction occurs	
	The	teacher uses Universal Indicator to test the solution in the bowl after the reaction.	
	(i)	Describe a simple method that the teacher can use to show that the reaction exothermic.	ı is
			[2]
	(ii)	Describe and explain the effect of the solution in the bowl on the Universal Indicator.	
		effect	
		explanation	
			[2]

[Total: 12]

- **6** The bathroom in a house has an electric heater under the floor.
 - (a) Fig. 6.1 shows part of the circuit used for the heater.

Fig. 6.1

A small lamp is connected in parallel with the heater to show that the circuit is switched on.

- (i) Complete the circuit diagram in Fig. 6.1 using circuit symbols to show:
 - 1. a fuse to protect the circuit from overload
 - 2. the small lamp connected in parallel with the heater. [3]
- (ii) When the circuit is switched on, the current in the heater is 3A.

The current in the small lamp is 0.1A.

Draw a circle around the most suitable fuse to use in this circuit.

1A 3A 10A 13A [1]

(b)	The	heater is placed underneath a wooden floor.
	The	heater is switched on, and the temperature of the heater quickly reaches 70 °C.
		temperature of the upper surface of the wooden floor increases slowly from 20 $^{\circ}\text{C}$ 5 $^{\circ}\text{C}$.
	The	temperature of the air in the bathroom also increases slowly from 20 °C to 25 °C.
	Nar	ne the method of thermal energy transfer:
	(i)	through the wooden floor
		[1]
	(ii)	in the air in the bathroom.
		[1]
(c)	The	floor of the bathroom gets wet.
	Wh	en the heater is switched on, the floor dries quickly.
	Des	scribe in terms of moving molecules how the floor dries.
		[2]
(d)		en the heater is switched off and the temperature drops, a small gap slowly appears ween the edge of the wooden floor and the walls of the bathroom.
	Pre	dict what will happen when the heater is switched on again.
	Ехр	lain your answer.
	pred	diction
	ехр	lanation
		[2]
		[Total: 10]

7 (a) Fig. 7.1 shows two diagrams of insect-pollinated flowers of the same species.

Fig. 7.1

(i)	Name structures A and B .	
	A	
	В	[2]
(ii)	During pollination, an insect takes pollen from flower 1 to flower 2.	
	On Fig. 7.1 draw an arrow (———) to show a possible path of the pollen from whe it is produced in flower 1 to where it lands on flower 2 .	ere [2]
(iii)	If pollination is successful fertilisation can follow.	
	State where fertilisation takes place in the flower.	
		[1]

(b) Seeds produced after fertilisation can germinate and produce new plants.

Fig. 7.2 shows the environmental conditions of three dishes **D**, **E** and **F**. Each dish contains cress seeds, on damp cotton wool.

Fig. 7.2

After a few days the seeds in dish **D** germinate.

Predict whether the seeds germinate in dishes **E** and **F**.

Explain your answers.

dish **E**

prediction	
explanation	
dish F	
prediction	
explanation	
	[2]

(c) The germinated seeds in dish **D** are allowed to grow for a few days. They develop into seedlings as shown in Fig. 7.3.

Fig. 7.3

Suggest why the seedlings do not grow straight upwards.	
	[1]
[To	tal: 8]

8

(a)	AII	is a mixture of elements and compounds.
	(i)	Describe the difference between an element and a compound. Use ideas about the atoms they contain in your answer.
		element
		compound
		[2]
	(ii)	Name one common pollutant in air.
		State one adverse effect of this pollutant.
		pollutant
		effect[2]
(b)	Iron	nails rust when they are not protected from the air.
	(i)	Identify two substances in clean air required for iron to rust.
		and[2
	(ii)	Suggest one change that increases the rate of rusting of an iron nail.
		[1]
		[Total: 7

In r ligh	•	cities, sodium street lamps are used at night. These lamps produce an intense yellow
(a)	A so	odium lamp is lit using mains voltage of 240 V. The current in the lamp is 0.5A.
	Cal	culate the resistance of the lamp.
	Sho	ow your working, and state the unit of your answer.
		resistance = unit [3]
(b)		treet is lit by four identical sodium lamps all connected to the same electricity supply. ee of the lamps are working, but one of the lamps is not.
		duce the type of circuit connection used to connect the lamps to the electricity supply. Give eason for your answer.
	type	e of circuit connection:
	rea	son:
		[2]
(c)	A so	odium street lamp emits yellow light with a single wavelength.
	(i)	State the meaning of the term wavelength.
		[1]
	(ii)	Complete the sentences below using phrases from the list.
		greater than less than the same as
		Each phrase may be used once, more than once or not at all.
		The frequency of visible light from the sodium lamp is than the frequency of infra-red radiation.
		The speed of this visible light is the speed of infra-red radiation. [2]

(d) Fig. 9.1 shows a man looking at the reflection of a street lamp in a large puddle of water.

Fig. 9.1

On Fig. 9.1, use a ruler and protractor to draw a light ray travelling from the lamp to the man's eye to show how the light ray is reflected by the puddle. [2]

[Total: 10]

The Periodic Table of Elements

	IIIA	2	Не	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	IIA				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	н	iodine 127	82	¥	astatine -			
	IN				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Б	tellurium 128	84	Ъо	polonium –	116	^	livermorium -
	^				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209			
	<u>\</u>				9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ъ	lead 207	114	Εl	flerovium -
	≡				2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	g	cadmium 112	80	£	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
dno											28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Group											27	ဝိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	¥	meitherium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	В	bohrium
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Оþ	dubnium –
						ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	껖	rutherfordium -
											21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium _
	_				3	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ъ́	francium -

rı Lu	lutetium 175	103	ئ	lawrencium	ı
V ₀	ytterbium 173	102	8	nobelium	ı
69 Tm	thulium 169	101	Md	mendelevium	ı
88 Ē	erbium 167	100	Fn	fermium	ı
67 Ho	holmium 165	66	Es	einsteinium	ı
® Dy	dysprosium 163	86	ರ	californium	ı
65 Tb	terbium 159	6	益	berkelium	ı
Gd Gd	gadolinium 157	96	Cm	curium	ı
63 Eu	europium 152	92	Am	americium	ı
ss Sm	samarium 150	94	Pu	plutonium	ı
e1 Pm	promethium -	93	ď	neptunium	ı
°9 Z	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Ce Ce	cerium 140	06	모	thorium	737
57 La	lanthanum 139	88	Ac	actinium	

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.