## Homework Two

## Theory of Computation 2016

## Important Note:

Please remember that you should return your answer at 4/14 (Thursday) 6:10pm. We will take your HW during the class. Please handwriting the answer. After 4/14 6:10pm, you must upload your HW to moodle. But remember penalty for late submission: 20% per day.

**Q1:** Find an nfa that accepts the languages  $L(aa^*(ab+b))$ .

**Q2:** Find a regular expression for the set  $\{a^nb^m : n \geq 3, m \text{ is odd}\}$ .

Q3: Give regular expressions for the following languages.

- (a)  $L_1 = \{a^n b^m : n \ge 3, m \le 4\}.$
- (b)  $L_2 = \{a^n b^m : n < 4, m \le 4\}.$
- (c) The complement of  $L_1$ .
- (d) The complement of  $L_2$ .

**Q4:** Write regular expressions for the following languages on  $\{0,1\}$ :

- (a) All strings ending in 10.
- (b) All strings not ending in 10.
- (c) All strings containing an odd number of 0's.

**Q5:** Use the construction in Theorem 3.1 to find an nfa that accepts the language  $L(a^*a + ab)$ .

**Q6:** Give an nfa that accepts the language  $L((a+b)^*b(a+bb)^*)$ .

Q7: What language is accepted by the following generalized transition graph?



**Q8:** Find a regular expression for the following languages on  $\{a, b\}$ .

- (a) $L = \{w : n_a(w) \text{ and } n_b(w) \text{ are both odd}\}.$
- (b) $L = \{w : (n_a(w) n_b(w)) \mod 3 = 2\}.$
- (c) $L = \{w : (n_a(w) n_b(w)) \mod 3 = 0\}.$
- $(d)L = \{w : 2n_a(w) + 3n_b(w) \text{ is even}\}.$

Q9: Construct a dfa that accepts the language generated by the grammar

$$S \to abA$$
,

$$A \rightarrow baB$$
,

$$B \rightarrow aA|bb$$
.

**Q10:** Find a regular grammar that generates the language on  $\Sigma = \{a, b\}$  consisting of all strings with no more than two a's.