More Brownian Motion

Math 365

April 26, 2022

Submit your completed lab to Gradescope.

In this lab we will do some further exploration of Brownian motion.

Multi-Dimensional Brownian Motion

Multi-dimensional Brownian motion can be constructed using independent one-dimensional Brownian motions for the coordinates of a vector-valued function $B_t = (B_t^{(1)}, \dots, B_t^{(n)})$.

Exercise 1

Update the R code from last week's lab to run simulations of 2-dimensional Brownian motion by generating two standard Brownian motions X_t and Y_t . Plot the resulting path (X_t, Y_t) in the xy-plane.

```
duration <- 1  # total time
numsteps <- 10000 # number of steps
steps <- seq(0,1,duration/numsteps)
deltax <- sample(c(-1,1),size=numsteps,replace=TRUE)/sqrt(numsteps)
deltay <- sample(c(-1,1),size=numsteps,replace=TRUE)/sqrt(numsteps)
x <- c(0, cumsum(deltax)) # compute cumulative sum
y <- c(0, cumsum(deltay)) # compute cumulative sum
plot(y, x, type = "l", main = "Random walk")</pre>
```

Random walk

Exercise 2

Add a third standard Brownian motion Z_t to run simulations of 3-dimensional Brownian motion. Plot the resulting path using plot3D, which requires loading the plot3D package: in the RStudio window, click on Install in the Packages tab, then choose plot3D. It should then download and install the package; you may need to click on the box next to plot3D in the list of packages to actually load it.

```
library("plot3D")

duration <- 1  # total time
numsteps <- 10000 # number of steps
steps <- seq(0,1,duration/numsteps)
deltax <- sample(c(-1,1),size=numsteps,replace=TRUE)/sqrt(numsteps)
deltay <- sample(c(-1,1),size=numsteps,replace=TRUE)/sqrt(numsteps)
deltaz <- sample(c(-1,1),size=numsteps,replace=TRUE)/sqrt(numsteps)
x <- c(0, cumsum(deltax)) # compute cumulative sum
y <- c(0, cumsum(deltay)) # compute cumulative sum
z <- c(0, cumsum(deltaz)) # compute cumulative sum</pre>
lines3D(x,y,z,ticktype="detailed",main="3D Brownian motion simulation",colkey=FALSE)
```

3D Brownian motion simulation

Martingales and Brownian Motion

For continuous-time stochastic processes, we say that $(Y_t)_{t\geq 0}$ is a martingale with respect to stochastic process $(X_t)_{t\geq 0}$ if for all $t\geq 0$ we have $E(Y_t\,|\,Y_r,0\leq r\leq s)=E(Y_s)$ for all $0\leq s\leq t$ and $E(|Y_t|)<\infty$.

Geometric Brownian motion can be defined as

$$G_t = e^{\mu t + \sigma B_t},$$

where B_t is a standard Brownian motion.

Exercise 3

Show that $e^{-(\mu+\sigma^2/2)t}G_t$ is a martingale with respect to $(B_t)_{t\geq 0}$

Figure 1: Problem 3