Package

August 23, 2019

8
Title PRIME Papillomavirus Rapid Interface for Modelling and Economics
Version 2.0.8
Author Modelling and Economic Evaluation of Vaccines group, LSHTM (http://meev.lshtm.ac.uk/)
Description PRIME is a static model of HPV vaccination that uses proportional impact to estimate the health impact and cost-effectiveness of HPV vaccination in low- and middle-income countries.
Depends R (>= $3.4.3$)
Imports data.table, foreach
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
ageCoverage . analyseCosts BatchRun checkSize data.cecx_1y_prevalence data.cecx_3y_prevalence data.cecx_5y_prevalence
data.costcecx

 data.countryname
 8

 data.disability_weights
 9

 data.global
 9

 data.incidence
 11

 data.mortall
 11

 data.mortall.unwpp.mx
 12

 data.mortcecx
 12

 data.pop
 13

 data.popproj
 13

 data.quality
 14

2 ageCoverage

	data.sexual_debut	
	data.valid	1.
	dtAggregate	16
	dtColMatch	17
	getISO3	18
	lifeTable	18
	monetary_to_number	19
	OutputGavi	19
	prime	20
	propSexDebut	20
	RegisterBatchData	2
	RegisterBatchDataGavi	
	RunCohort	
	RunCountry	24
	writelog	25
Index		27

ageCoverage

Get age-specific coverage-rates

Description

Get age-specific coverage-rates

Usage

```
ageCoverage(ages, routine_coverage, vaccine_efficacy_nosexdebut,
  vaccine_efficacy_sexdebut, campaigns, lifetab, cohort, agevac,
  country_iso3 = NULL)
```

Arguments

ages Numeric vector (required): ages in model
routine_coverage
Number (required): proportion of population that receives routine vaccination
campaigns List or number (required): if a list, applies MAC vaccination (needs to change)
lifetab Data.table (required): lifetable generated with lifeTable()
cohort Number (required): cohort-size (only used in MAC campaigns)
agevac Number (required): target age for vaccination
vaccine_efficacy
Number (required): proportion indicating vaccine-efficacy

Value

Data.table with coverage and effective coverage by age. Used in RunCohort()

analyseCosts 3

Examples

```
ages <- c(0:100)
routine_coverage <- 0.75
vaccine_efficacy <- 0.8
lifetab <- lifeTable(unlist(data.mortall[iso3=="AFG", as.character(0:100),
    with=F], use.names=F), 9)
cohort <- unlist(data.popproj[iso3=="AFG", "2020"], use.names=F)
agevac <- 9
ageCoverage (ages, routine_coverage, vaccine_efficacy, -1,
    lifetab, cohort, agevac)</pre>
```

analyseCosts

Returns cost-effectiveness for a single birthcohort in a single country

Description

Usually called using RunCountry(..., analyseCosts=TRUE)

Usage

```
analyseCosts(results, vaccine_cost, gdp_per_capita)
```

Arguments

```
results Data.table (required): results from RunCohort()
vaccine_cost Number (required): cost of a single vaccine
gdp_per_capita Number (required): GDP per capita
```

Value

Data.table with cost-analysis

Examples

```
analyseCosts(RunCountry("AFG"), 100, 561)
```

BatchRun

Run multiple cohorts in a batch

Description

Runs multiple cohorts in one batch, based on the data in .data.batch

4 BatchRun

Usage

```
BatchRun(countries = -1, coverage = -1, agevac = -1,
   agecohort = -1, canc.inc = "2018", sens = -1,
   unwpp_mortality = TRUE, year_born = -1, year_vac = -1, runs = 1,
   vaccine_efficacy_beforesexdebut = 1,
   vaccine_efficacy_aftersexdebut = 0, log = -1,
   by_calendaryear = FALSE, use_proportions = TRUE,
   analyseCosts = FALSE, canc.cost = "unadj", discounting = FALSE,
   disc.cost = 0.03, disc.ben = 0.03, psa = 0,
   psa_vals = ".data.batch.psa", disability.weights = "gbd_2017",
   wb.indicator = "NY.GDP.PCAP.PP.CD", wb.year = 2017)
```

Arguments

countries ignore, read from .data.batch
coverage ignore, read from .data.batch
agevac ignore, read from .data.batch
agecohort ignore, read from .data.batch

canc.inc year from where incidence data is read (2018; old data: 2012) – with updated

2018 Globocan data, DALY weights from GBD, and DALY estimation based on

prevalence instead of age of incidence

sens ignore, does not do anything anymore

unwpp_mortality

logical, whether to create lifetables based on UNWPP mx estimates or WHO

data

year_born ignore year_vac ignore runs ignore

 ${\tt vaccine_efficacy_beforesexdebut}$

vaccine efficacy before sexual debut

vaccine_efficacy_aftersexdebut

vaccine efficacy after sexual debut

log name of log file

by_calendaryear

logical, output values by calendar year or by year of birth cohort

 $use_proportions$

logical, output data as rates per capita or in totals

analyseCosts logical, directly run cost-effectiveness analysis on output or not

canc.cost Character (optional): Is cost of cancer adjusted ("adj" for International \$) or not

("unadj" for US\$)

discounting Logical (optional): If TRUE, run cost-effectiveness analysis undiscounted and

discounted. If FALSE, only uses undiscounted

disc.cost Number (optional): Discounting for health costs (only if discounting=TRUE)

disc.ben Number (optional): Discounting for health outcomes (only if discounting=TRUE)

psa integer, number of runs for probabilistic sensitivity analysis (PSA)

checkSize 5

psa_vals data table with values to use in probabilistic sensitivity analysis, usually .data.batch.psa,

generated by RegisterBatchData* functions (currently only RegisterBatchdata-

Gavi)

disability.weights

character, disability weights for cervical cancer from GBD 2017 or GBD 2001

wb.indicator character, World Bank indicator for GDP/GNI per capita in I\$/US\$ and cur-

rent/constant data

wb.year numeric, year of the World Bank indicator value

Value

Returns combined results

Examples

#

checkSize

Checks whether the size of a variable is larger than 0

Description

Used to determine that all required variables are passed to a function Checks whether a vector has length > 0 or a data.table/data.frame has nrow > 0

Usage

```
checkSize(v)
```

Arguments

V

Variable (required)

Value

Logical: TRUE if size is not 0, false if size is 0

Examples

```
x <- c()
checkSize(x)

x <- c(2,5)
checkSize(x)

A <- c()
B <- c(1,2,3)
sapply(c("A","B"),function(x){checkSize(get(x))})</pre>
```

data.cecx_1y_prevalence

1-year prevalence of cervical cancer

Description

A dataset containing the 1-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

```
data.cecx_1y_prevalence
```

Format

A data table containing 185 observations of 103 variables.

Country Country name **0..100** Age 0-100 **iso3** ISO3 country code

Details

As per IARC definition – The (1-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 1 year) and who are still alive at a given point in time (i.e. the survivors).

Source

```
https://gco.iarc.fr/today/online-analysis-table
```

```
data.cecx_3y_prevalence
```

3-year prevalence of cervical cancer

Description

A dataset containing the 3-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

```
data.cecx_3y_prevalence
```

Format

A data table containing 185 observations of 103 variables.

Country Country name **0..100** Age 0-100 **iso3** ISO3 country code

Details

As per IARC definition – The (3-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 3 years) and who are still alive at a given point in time (i.e. the survivors).

Source

https://gco.iarc.fr/today/online-analysis-table

data.cecx_5y_prevalence

5-year prevalence of cervical cancer

Description

A dataset containing the 5-year prevalence (proportion) of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

data.cecx_5y_prevalence

Format

A data table with 185 observations of 103 variables.

Country Country name

0..100 Age 0-100

iso3 ISO3 country code

Details

As per IARC definition – The (5-year) prevalence of a given cancer is the number of individuals within a defined population who have been diagnosed with that cancer (within 5 years) and who are still alive at a given point in time (i.e. the survivors).

Source

https://gco.iarc.fr/today/online-analysis-table

8 data.countryname

data.costcecx

Cost of cervical cancer treatment

Description

A dataset containing the cost of cervical cancer treatment.

Usage

data.costcecx

Format

A data table with 194 observations of 7 variables.

country Country name

cancer_cost cost per cancer episode, in 2017 US\$

cancer_cost_adj cost per cancer episode – adjusted, in 2017 US\$ – "adjusted" cancer costs are based on a GDP/capita based adjustment within the region

iso3 ISO3 country code

cancer_cost_2011 cost per cancer episode, in 2011 US\$

cancer_cost_adj_2011 cost per cancer episode – adjusted, in 2011 US\$ – "adjusted" cancer costs
are based on a GDP/capita based adjustment within the region

inflation_factor Inflation factor from 2011 to 2017 estimated from Inflation, GDP deflator (annual %) – https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG

data.countryname

Country names and codes

Description

A dataset containing the country names and codes (ISO/WHO/WB/UN).

Usage

data.countryname

Format

A data table with 251 observations of 13 variables.

name1, name2, name3, name4 Country names

iso2, iso3 ISO2 and ISO3 country codes

isonum ISO number

WHOcode WHO country code

who_region WHO region

who_mort WHO mortality stratum - A/B/C/D/E

WBincome WB income classification of countries

UNgroup UN group classification of countries

GDPpc2011id GDP per capita (2011)

data.disability_weights

Disability weights and duration of cervical cancer stages

Description

A dataset containing disability weights and duration of different phases of cervical cancer.

Usage

```
data.disability_weights
```

Format

A data table with 13 observations of 8 variables.

Source Source of disability weights - IHME / WHO **Sequela** Sequelae / stage / phase of cervical cancer

Duration Duration of cervical cancer phase

WHO_MortalityStratum WHO moratlity stratum – applicable only for long term sequelae from WHO source

Mid Disability weight (mid)

Low Disability weight (low)

High Disability weight (high)

Description Description of cervical cancer phase

data.global

Global data table

Description

A dataset containing a global range of variables.

Usage

data.global

Format

A data table with 194 observations of 35 variables.

Country Country name

iso2 ISO2 country code

WHO Region WHO regions

WHO Mortality Stratum WHO mortality stratum

World Bank Income Group (2011) World Bank income group levels

GAVI Eligibility GAVI eligibility status

10 data.global

PAHO Revolving Fund PAHO revolving fund status

Cohort size (2010) [1] Cohort size

Coverage (3 doses at year 10) [2] Vaccination coverage at age 10

Vaccine efficacy vs vaccine type infection [2] Vaccine efficacy

Duration of protection [2] Duration of vaccine protection

Age group [3] Age group

Vaccine price [4] Vaccine price

Vaccine delivery/ operational/ admin costs [5] Vaccine delivery, operational and administration costs

Cancer treatment costs - primary level hospital i\$ (per episode, over lifetime) [6] Cancer treatment costs - primary level hospital i\$ (per episode, over lifetime)

Cancer treatment costs - primary level hospital US\$ (per episode, over lifetime) [6] Cancer treatment costs - primary level hospital US\$ (per episode, over lifetime)

Cancer treatment costs - secondary level hospital i\$ (per episode, over lifetime) [6] Cancer treatment costs - secondary level hospital i\$ (per episode, over lifetime)

Cancer treatment costs - secondary level hospital US\$ (per episode, over lifetime) [6] Cancer treatment costs - secondary level hospital US\$ (per episode, over lifetime)

Cancer treatment costs - teaching hospital i\$ (per episode, over lifetime) [6] Cancer treatment costs - teaching hospital i\$ (per episode, over lifetime)

Cancer treatment costs - teaching hospital US\$ (per episode, over lifetime) [6] Cancer treatment costs - teaching hospital US\$ (per episode, over lifetime)

Discount rate [2] Discount rate

Perspective [2] Perspective

Costs [2]

Time horizon [2] Time horizon

"Percent" CeCx due to 16/18 Percentage of cervical cancer due to HPV strains 16 and 18

Vaccine programme Vaccine programme

Vaccine programme Oct2013 Vaccine programme Oct2013

Econ evaluation Economic evaluation

GDP per capita (2011 US\$) [7] GDP per capita (2011 US\$)

GDP per capita (2011 i\$) [7] GDP per capita (2011 i\$)

GNI per capita (2011 i\$) [7] GNI per capita (2011 i\$)

GNI per capita (2011 US\$) [7] GNI per capita (2011 US\$)

V33 International\$

V34 US\$

iso3 ISO3 country code

data.incidence 11

data.incidence

Incidence of cervical cancer

Description

A dataset containing the incidence of cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

data.incidence

Format

A data table with 185 observations of 103 variables.

Country Country name

0..100 Age 0-100

iso3 ISO3 country code

Source

https://gco.iarc.fr/today/online-analysis-table

data.mortall

WHO life table

Description

A dataset containing the WHO life table.

Usage

data.mortall

Format

A data table with 196 observations of 107 variables.

Country | Age [12] Country name

0..100 Age 0-100

V103..V106 na

iso3 ISO3 country code

Source

https://www.who.int/gho/mortality_burden_disease/life_tables/life_tables/en/

12 data.mortcecx

```
{\tt data.mortall.unwpp.mx} \quad \textit{UNWPP life table}
```

Description

A dataset containing the UNWPP life table (World Population Prospects 2017).

Usage

```
data.mortall.unwpp.mx
```

Format

A data table with 115710 observations of 8 variables.

```
country_code_numeric Country code numeric
country_code ISO3 country code
country Country name
age_from age from (start-age)
age_to age to (end-age)
year Year
gender Gender
value mx mortality rate in year = proportion of individuals of age x dying by age x+1
```

Source

```
https://population.un.org/wpp/
```

data.mortcecx

Mortality from cervical cancer

Description

A dataset containing the mortality from cervical cancer in 185 countries, as reported by IARC's Globocan 2018 database.

Usage

```
data.mortcecx
```

Format

A data table with 185 observations of 103 variables.

```
Country Country name 0..100 Age 0-100 iso3 ISO3 country code
```

Source

```
https://gco.iarc.fr/today/online-analysis-table
```

data.pop

data.pop

UNWPP population estimates

Description

A dataset containing the UNWPP population estimates – World Population Prospects 2017.

Usage

```
data.pop
```

Format

A data table with 3306163 observations of 8 variables.

```
country_code_numeric Country code numeric
country_code ISO3 country code
country Country name
age_from age from (start-age)
age_to age to (end-age)
year Year
gender Gender
```

Source

```
\label{lem:lem:lem:norg/wpp/Download/Standard/Population/VIMC} $$\operatorname{VIMC}$$
```

data.popproj

value Population size

Population projections of 5-year old girls

Description

A dataset containing population projections of 5-year old girls.

Usage

```
data.popproj
```

Format

A data table with 98 observations of 91 variables.

```
iso3 ISO3 country code 2011..2100 Year – 2011..2100
```

14 data.sexual_debut

data.quality

Data quality of incidence and mortality

Description

A dataset indicating data quality of cervical cancer incidence and mortality.

Usage

```
data.quality
```

Format

A data table with 186 observations of 4 variables.

Country Country name

Incidence Quality of cervical cancer incidence data

Mortality Quality of cervical cancer mortality data

iso3 ISO3 country code

data.sexual_debut

Sexual debut data

Description

A dataset containing sexual debut data and (2) parameters for the sexual debut curve (logistic model).

Usage

```
data.sexual_debut
```

Format

A data table with 94 observations of 14 variables.

V1 Row number

iso2 ISO2 country code

country Country name

iso3 ISO3 country code

who WHO region

X15 Proportion of people who have sexually debuted at age 15

X18 Proportion of people who have sexually debuted at age 18

X20 Proportion of people who have sexually debuted at age 20

X22 Proportion of people who have sexually debuted at age 22

X25 Proportion of people who have sexually debuted at age 25

data.valid 15

Never Proportion of people who had not sexually debuted **cluster.id** Clustering countries with similar characteristics

a Parameter for sexual debut curve (logistic model)

b Parameter for sexual debut curve (logistic model)

data.valid

Model validation

Description

A dataset containing data for validation.

Usage

data.valid

Format

A data table with 26 observations of 49 variables.

Country Country name

iso2 ISO2 country code

WHO Region WHO region

World Bank Income Group (2011) World Bank income group classification (2011)

Author Author

Year Year of publication

Title Title of publication

Currency Currency

Currency year Currency year

Conversion to I\$2011 International dollar (I\$2011)

ICER vs no prevention Incremental cost-effectiveness ratio of vaccination versus no prevention (CHECK)

ICER vs screen Incremental cost-effectiveness ratio of vaccination versus no prevention (CHECK)

Denominator Denominator for health impact

Vaccine total costs Vaccine total costs

Vaccine coverage Vaccine coverage

Vaccine efficacy vs vaccine type infection Vaccine efficacy versus vaccine type infection

Duration of protection Duration of protective immunity from vaccination

Cohort size Cohort size

Age at vaccination Age at vaccination, years

Cancer treatment cost per episode Cancer treatment cost per episode, dollars

Discount rate: costs Discount rate for costs

Discount rate: benefits Discount rate for benefits **Perspective** Perspective of economic evaluation

16 dtAggregate

Comparator is no screening Comparator refers to no scereening, logical (Y/N)

Time horizon Time horizon of analysis

GDP per capita GDP per capita

Cervical cancer due to 16/18 Proportion of cervical cancer due to HPV types 16 and 18

CeCx cost low original Cervical cancer cost / low / original

CeCx cost high original Cervical cancer cost / high / original

CeCx cost low Cervical cancer cost / low

CeCx cost high Cervical cancer cost / high

CeCx data available Cervical cancer data available, logical (Y/N)

0-4 0-4 years

5-9 5-9 years

9-14 9-14 years

15-19 15-19 years

20-24 20-24 years

25-29 25-29 years

30-34 30-34 years

35-39 35-39 years

40-44 40-44 years

45-49 45-49 years

50-54 50-54 years

55-59 55-59 years

60-64 60-64 years

65-69 65-69 years

70-74 70-74 years

75-79 75-79 years

80+ 80+ years

 ${\tt dtAggregate}$

Collapse data-tables

Description

Collapse data-tables

Usage

```
dtAggregate(DT, aggr_on, measure.vars = c(), id.vars = c(),
func = "sum", na.rm = TRUE)
```

dtColMatch 17

Arguments

DT Data-table (required)

aggr_on Character string (required): column-name that will be used to collapse on (i.e.

combine all age-strata)

measure.vars Character string (optional): column-names that will be collapsed (function will

be applied to all these columns)

id.vars Character string (optional): column-names that will remain stratified

N.b. if measure.vars is not provided, all columns that are not in id.vars and

aggr_on will be assumed to be assumed

func Character string (optional): function that will be applied to data (if optional,

values will be summed)

na.rm Logical (optional): if TRUE, removes NA from measure.vars columns before

applying function (or passes na.rm=TRUE to function)

Value

Returns collapsed data.table

Examples

```
dtAggregate (data.popproj, "iso3", id.vars="")
```

dtColMatch

Match two data-tables on multiple columns

Description

Returns vector with column-of-interest where columns match

Usage

```
dtColMatch(input, input_match_on, reference, reference_match_on,
  reference_return)
```

Arguments

input Data.table (required): input-table to match

input_match_on Character vector (required): column-names in input-table to match

reference Data.table (required): reference-table to match

reference_match_on

Character vector (required): column-names in reference-table to match

reference_return

Character string (required): column-name in reference-table that is returned

(where values match)

Details

If at least one value in any of the input_match_on columns matches with a value in any of the reference_match_on columns, the two rows will match

18 lifeTable

Value

Character vector with values from reference_return column in reference_match_on data.table where values match

Examples

```
dtColMatch (data.global, c("Country"), data.countryname,
    c("name1", "name2", "name3", "name4"), "iso3")
```

getISO3

Retrieve ISO3-code of country

Description

Retrieve ISO3-code of country

Usage

```
getISO3(countryname, name = FALSE)
```

Arguments

countryname Character string (required): Full name of the country

name Logical (optional): If TRUE, returns full name and alternative names of returned

country (may be useful to double-check that it is the correct country)

Value

Character string with ISO3 code. Will also return full name if name=TRUE.

Examples

```
getIS03("Afghanistan")
getIS03("Congo",name=TRUE)
```

lifeTable

Construct lifetable based on qx-column

Description

```
qx = age-specific probability of dying
```

Usage

```
lifeTable(qx = NULL, mx = NULL, agecohort = 0)
```

Arguments

qx Numeric vector (required): Age-specific probabilities of dying

agecohort Number (optional): Age at which cohort is started

monetary_to_number 19

Value

Data.table with lifetable

Examples

```
qx <- unlist(data.mortall[iso3=="AFG", as.character(0:100), with=F], use.names=F) lifeTable(qx, 9)
```

monetary_to_number

Convert monetary character-strings to numeric values

Description

Convert monetary character-strings to numeric values

Usage

```
monetary_to_number(x)
```

Arguments

Х

Character string to convert

Value

Returns number with value, stripped from any currency symbols and thousand-seperators (i.e. "B#2,010.50" becomes 2010.5)

Examples

```
monetary_to_number ("$2,200.20")

# Note that values using German or Dutch notation (i.e. using a comma to separate decimals and a dot to seperate thousands) are converted as well. monetary_to_number ("$2.200,20")
```

OutputGavi

Formatting output for VIMC Montagu

Description

OutputGavi takes result of BatchRun and outputs it in format to be uploaded to VIMC Montagu.

Usage

```
OutputGavi(DT, age_stratified = TRUE, calendar_year = FALSE, gavi_template = -1)
```

20 propSexDebut

Arguments

DT data table with results

age_stratified logical, whether output should be stratified by age

calendar_year logical, whether output should be given by calendar year of event OR by year of

birth of cohort

gavi_template data table with template file downloaded from montagu

Value

#

Examples

#

prime: Papillomavirus Rapid Interface for Modelling and Economics

(PRIME).

Description

PRIME stands for "Papillomavirus Rapid Interface for Modelling and Economics". The R package is based of the spreadsheet-based tool (see http://primetool.org).

PRIME provides estimates of

The magnitude of the burden of cervical cancer.

The impact of introducing HPV vaccination for girls prior to sexual debut.

Healthcare costs incurred as a result of cervical cancer treatment.

Costs associated with vaccination.

Long-term savings which may result from a vaccination program.

propSexDebut Proportion of girls sexually debuted

Description

propSexDebut returns proportion of girls sexually debuted in country_iso3 at age age.

Usage

```
propSexDebut(age, country_iso3)
```

Arguments

age age of girls

country_iso3 ISO3 country code

RegisterBatchData 21

Value

Returns proportion of girls in a given country that has sexually debuted at a given age.

Examples

```
propSexDebut (20, "IND")
propSexDebut (30, "ETH")
```

RegisterBatchData

Creates .data.batch for running multiple birth cohorts

Description

Creates .data.batch which is used when running/looping over multiple birth cohorts (runCohort()) at once.

Usage

```
RegisterBatchData(coverage_data, reporting_years = -1, force = FALSE)
```

Arguments

coverage_data Data table with columns country_code, year (of vaccination), age_first, age_last,

coverage.

reporting_years

Numeric_vector, years that should be reported (parameter: not required)

force Logical, whether .data.batch should be overwritten if it already exists (parame-

ter: not required)

Details

.data.batch is based on the data.table (DT) coverage_data, which is a DT with columns country_code (ISO3), year (of vaccination), age_first (age at vaccination), age_last (age at vaccination), coverage (in proportion, for all the agegroups specified).

If you only want to run 1 age in this country/coverage combination, age_first==age_last

Value

None

Examples

#

RegisterBatchDataGavi Creates .data.batch for running multiple birth cohorts (Gavi runs)

Description

Creates .data.batch which is used when running/looping over multiple birth cohorts (runCohort()) at once. Similar to RegisterBatchData, but for when we make runs for Gavi.

Usage

```
RegisterBatchDataGavi(gavi_coverage, gavi_template, use_campaigns,
  use_routine, restrict_to_coverage_data = FALSE, force = FALSE,
  psa = 0)
```

Arguments

gavi_coverage	data table with coverage estimates as downloaded from VIMC montagu	
<pre>gavi_template</pre>	data table with reporting template as downloaded from VIMC montagu	
use_campaigns	logical, whether campaigns as stated in coverage files should be modelled	
use_routine	logical, whether routine vaccination as stated in coverage file should be modelled	
restrict_to_coverage_data		
	logical, whether the first birth-cohort should be the first cohort that is mentioned in the coverage data. If TRUE, restrict to coverage data. If FALSE, restrict to cohorts provided in gavi_template.	
force	logical, whether .data.batch should be overwritten if it already exists	
psa	integer, indicating how many runs for probabilistic sensitivity analysis (PSA). 0 to run no PSA.	

Details

.data.batch is based on the data.table (DT) coverage_data, which is a DT with columns country_code (ISO3), year (of vaccination), age_first (age at vaccination), age_last (age at vaccination), coverage (in proportion, for all the age groups specified).

Value

None

Examples

#

RunCohort 23

RunCohort	Run PRIME for a single birth-cohort
RunCohort	Run PRIME for a single birth-cohort

Description

Runs PRIME for one birth-cohort. Usually called by another function such as RunCountry().

Usage

```
RunCohort(lifetab, cohort, incidence, mortality_cecx, prevalence, agevac,
  coverage, campaigns, vaccine_efficacy_nosexdebut,
  vaccine_efficacy_sexdebut, cost_cancer, discounting = FALSE,
  disc.cost = 0.03, disc.ben = 0.03, country_iso3 = NULL,
  run_country = FALSE, disability.weights = "gbd_2017")
```

Arguments

lifetab	Data.table: The life-table for this cohort. Can be created using the lifeTable() function.
cohort	Number: The cohort-size of this birth-cohort at the time where the lifetable starts.
incidence	Numeric vector: Age-specific CeCx(16/18) incidence-rates.
mortality_cecx	Numeric vector: Age-specific CeCx(16/18) mortality-rates.
prevalence	Numeric vector: Age-specific CeCx(16/18) prevalence rates (5-year prevalence) – referring to people who are alive within 5 years of diagnosis.
agevac	Number: Age at which the cohort is vaccinated.
coverage	Number: Proportion of the cohort that will receive a vaccination.
campaigns	List or number: MAC cohort-vaccinations (needs to be changed).
vaccine_efficad	cy_nosexdebut Number: proportion indicating vaccine-efficacy before sexual debut.
vaccine_efficac	cy_sexdebut Number: proportion indicating vaccine-efficacy after sexual debut.
cost_cancer	Number: total per capita cost of cancer.
discounting	Logical (optional): If TRUE, run cost-effectiveness analysis undiscounted and discounted. If FALSE, only uses undiscounted
disc.cost	Number (optional): Discounting for health costs (only if discounting=TRUE)
disc.ben	Number (optional): Discounting for health outcomes (only if discounting=TRUE)

Value

Returns a data.table with size of the birth-cohort and age-specific incidence-rates, mortality-rates, years-of-life-lost, years-of-healthy-life-lost, and cancer-costs before and after vaccination. Also displays whether discounting has been used ("type" column).

24 RunCountry

Examples

```
lifetab <- lifeTable(unlist(data.mortall[iso3=="AFG",</pre>
  as.character(0:100), with=F], use.names=F), 9)
cohort <- unlist(data.popproj[iso3=="AFG", "2020"], use.names=F)</pre>
incidence <- unlist(data.incidence[iso3=="AFG", as.character(0:100), with=F],</pre>
 use.names=F)
mortality_cecx <- unlist(data.mortall[iso3=="AFG", as.character(0:100), with=F],</pre>
 use.names=F)
prevalence <- unlist(data.cecx_5y_prevalence[iso3=="AFG",</pre>
 as.character(0:100), with=F], use.names=F)
agevac <- 9
coverage <- 0.8
campaigns <- -1
vaccine_efficacy_nosexdebut <- 0.95</pre>
vaccine_efficacy_sexdebut <- 0</pre>
cost_cancer <- 100
RunCohort(lifetab, cohort, incidence, mortality_cecx, prevalence, agevac,
  coverage, campaigns, vaccine_efficacy_nosexdebut, vaccine_efficacy_sexdebut,
  cost_cancer, disc.cost=0.03, disc.ben=0.03,
  discounting=FALSE, country_iso3="AFG", run_country=FALSE)
```

RunCountry

Run PRIME for a specific country

Description

Runs RunCohort() using country-specific estimates. If year_born and year_vac are not provided, assumes vaccination occurs in the current year.

Usage

```
RunCountry(country_iso3, vaceff_beforesexdebut = 1,
  vaceff_aftersexdebut = 0, cov = 1, agevac = 10, agecohort = 10,
  cohort = -1, canc.inc = "2018", sens = -1,
  unwpp_mortality = TRUE, year_born = -1, year_vac = -1,
  campaigns = -1, analyseCosts = FALSE, canc.cost = "unadj",
  discounting = FALSE, disc.cost = 0.03, disc.ben = 0.03,
  run_batch = FALSE, psadat = -1, disability.weights = "gbd_2017",
  wb.indicator = "NY.GDP.PCAP.PP.CD", wb.year = 2017)
```

Arguments

country_iso3	Character string (required): ISO3 code of the country
cov	Number (optional): Proportion with routine coverage
agevac	Integer (optional): Target age for HPV vaccination
agecohort	Integer (optional): Reference age for cohort-size (only used when 'cohort' is not provided)
cohort	Integer (optional): Cohort-size1 if unknown

writelog 25

canc.inc	Integer (optional): Reference year for cancer incidence rates (Globocan: 2018	
canc. The	or 2012)	
sens	Numeric-vector (optional): Specific values to be used in a PSA1 if PSA's are not used	
unwpp_mortality	y	
	Logical (optional): If TRUE, uses year-specific UNWPP mortality estimates to construct life-tables. If FALSE, use WHO based mortality estimates.	
year_born	Integer (optional): Year in which cohort is born	
year_vac	Integer (optional): Year in which cohort is vaccinated	
campaigns	List (optional): Multi-Age-Cohort campaigns (needs to be changed)	
analyseCosts	Logical (optional): If FALSE, returns result from RunCohort() function. If TRUE, runs analyseCosts() with country-specific results.	
canc.cost	Character (optional): Is cost of cancer adjusted ("adj" for International \$) or not ("unadj" for US\$)	
discounting	Logical (optional): If TRUE, run cost-effectiveness analysis undiscounted and discounted. If FALSE, only uses undiscounted	
disc.cost	Number (optional): Discounting for health costs (only if discounting=TRUE)	
disc.ben	Number (optional): Discounting for health outcomes (only if discounting=TRUE)	
disability.weights		
	character, disability weights for cervical cancer from GBD 2017 or GBD 2001	
wb.indicator	character, World Bank indicator for GDP/GNI per capita in I\$/US\$ and current/constant data	
wb.year	numeric, year of the World Bank indicator value	
vaceff	Number (optional): Proportion indicating vaccine-efficacy	

Value

data.table with country-specific results of HPV vaccination. Returns cost-analysis if analyseCosts=TRUE

Examples

```
RunCountry("AFG")
RunCountry("AFG", year_vac=2020, agevac=10, cov=0.75, vaceff=0.88)
RunCountry("AFG", year_vac=2020, agevac=10, cov=0.75, vaceff=0.88, analyseCosts=TRUE)
```

writelog Simulation log reporting

Description

Appends message of simulation run (x) to log file (logname).

Usage

```
writelog(logname, x)
```

26 writelog

Arguments

logname log filename

x message of simulation run

Value

None

Examples

#

Index

*Topic datasets
data.cecx_1y_prevalence, 6
<pre>data.cecx_3y_prevalence, 6</pre>
data.cecx_5y_prevalence,7
data.costcecx, 8
data.countryname, 8
data.disability_weights,9
data.global,9 data.incidence,11
data.mortall, 11
data.mortall.unwpp.mx, 12
data.mortcecx, 12
data.pop, 13
data.popproj,13
data.quality, 14
data.sexual_debut, 14
data.valid, 15
ageCoverage, 2
analyseCosts, 3
BatchRun, 3
checkSize, 5
data.cecx_1y_prevalence, 6
data.cecx_3y_prevalence, 6
data.cecx_5y_prevalence,7
data.costcecx, 8
data.countryname, 8
data.disability_weights,9
data.global, 9
data.incidence, 11 data.mortall, 11
data.mortall.unwpp.mx, 12
data.mortcecx, 12
data.pop, 13
data.popproj, 13
data.quality, 14
data.sexual_debut, 14
data.valid, 15
dtAggregate, 16
dtColMatch, 17
getIS03, 18

```
lifeTable, 18

monetary_to_number, 19

OutputGavi, 19

prime, 20
prime-package (prime), 20
propSexDebut, 20

RegisterBatchData, 21
RegisterBatchDataGavi, 22
RunCohort, 23
RunCountry, 24

writelog, 25
```