

Face recognition model with gender and age estimation

Project ID:31104

Student 1: Aman Kumar

Roll No: 202110244

Student 2: Kishan Raj

Roll No: 202116425

Student 3: Saurav Kumar

Roll No: 202116379

Student 4: Gautam Kumar

Roll No: 202116424

Under the guidance of

Prof. Ashutosh Parida

CONTENTS

- > PROJECT OVERVIEW
- > BACKGROUND AND MOTIVATION
- > DATASET AND VISUALISATION
- > MODEL TRAINING
- > MODEL EVALUATION AND OUTCOMES
- > METHODOLOGY
- > CONCLUSION
- > REFERENCE

Project Overview

Problem Statement:

Despite significant advancements in facial recognition technology, accurately identifying and classifying individuals by gender and age remains a challenging task due to variations in facial features, lighting conditions, and demographic diversity.

Objective:

- Develop a machine learning-based system that performs facial recognition with high accuracy.
- Accurately estimate the gender of individuals based on facial features.
- Precisely predict the age of individuals from their facial characteristics.

Background and Motivation

- Face recognition technology is widely used for identifying or verifying individuals from images or videos, playing a crucial role in security systems, social media, and personal devices.
- Estimating age and gender from facial images adds valuable information that can be utilized for personalized user experiences, targeted marketing, and demographic analysis.
- The motivation for this project stems from the need to build a reliable model that achieves high accuracy in both age and gender estimation, which remains a challenge due to the variability in facial features, lighting conditions, and diverse datasets.

Background and Motivation

Solution:

Our solution involves developing a machine learning model capable of accurately predicting age and gender from facial images with 88.17% accuracy, using advanced techniques in data preprocessing, model architecture design, and rigorous evaluation to ensure reliability and practical applicability.

Dataset and visualization

- Dataset Source: The project utilized three main datasets: VGGFace2,
 Labelled Faces in the Wild (LFW), and UTKFace.
- VGGFace2: A large-scale face recognition dataset known for its diversity in pose, age, and ethnicity, containing millions of images of different identities.
- UTKFace: A comprehensive dataset with over 20,000 facial images covering a wide age range from 0 to 116 years and annotations for age, gender, and ethnicity.
- **Data Diversity**: These datasets collectively provided a broad range of age groups, gender distributions, and ethnic backgrounds, crucial for training a robust and unbiased model.

Dataset and visualization

Preprocessing Steps: Images were resized and normalized, and data augmentation techniques were applied to enhance model performance and reduce overfitting.

Age: 58 Gender: Male

Age: 58 Gender: Male

Age: 16 Gender: Male

Age: 23 Gender: Female

Age: 35 Gender: Female

Age: 32 Gender: Male

Age: 34 Gender: Male

Age: 47 Gender: Female

Age: 39 Gender: Male

Age: 46 Gender: Male

Model Training

Training Process:

- The model was trained using a combination of datasets (VGGFace2, LFW, UTKFace) to ensure diversity and robustness.
- Data preprocessing included resizing, normalization, and data augmentation to increase model generalizability.

Training Configuration:

- Optimizer: Adam optimizer was used for its efficient handling of sparse gradients.
- Loss Functions: Categorical cross-entropy for gender classification and mean squared error for age estimation.
- **Hyperparameters**: The model was trained over multiple epochs with a batch size optimized for performance.

Model Training

Code Implementation:

- Python libraries such as TensorFlow and Keras were utilized for constructing and training the model.
- Key steps included defining the CNN model, setting up callbacks for early stopping, and monitoring training progress through accuracy and loss plots.

```
x = x / 255.0

y_gender = np.array(df['Genders'])
y_age = np.array(df['Ages'])

input_shape = (128,128,1)
inputs = Input((input_shape))
conv_1 = Conv2D(32, kernel_size=(3, 3), activation='relu')(inputs)
max_1 = MaxPooling2D(pool_size=(2, 2))(conv_1)
conv_2 = Conv2D(64, kernel_size=(3, 3), activation='relu')(max_1)
max_2 = MaxPooling2D(pool_size=(2, 2))(conv_2)
conv_3 = Conv2D(128, kernel_size=(3, 3), activation='relu')(max_2)
max_3 = MaxPooling2D(pool_size=(2, 2))(conv_3)
conv_4 = Conv2D(256, kernel_size=(3, 3), activation='relu')(max_3)
max_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)

flatten = Flatten()(max_4)
```

Model Training

Model Training

 Key steps included defining the CNN model, setting up callbacks for early stopping, and monitoring training progress through accuracy and loss plots.

```
dense_1 = Dense(128, activation='relu')(flatten)
dense_2 = Dense(128, activation='relu')(flatten)
dropout_1 = Dropout(0.5)(dense_1)
dropout_2 = Dropout(0.5)(dense_2)
output_1 = Dense(1, activation='sigmoid', name='gender_out', kernel_regularizer=l2(0.001))(dropout_1)
output_2 = Dense(1, activation='relu', name='age_out', kernel_regularizer=l2(0.001))(dropout_2)
model_all = Model(inputs=[inputs], outputs=[output_1, output_2])
model_all.compile(
    loss={'gender_out': 'binary_crossentropy', 'age_out': 'mae'},
    optimizer='adam',
    metrics={'gender_out': 'accuracy', 'age_out': 'mae'}
)
model_all.summary()
```


Model Training

Solution:

Our solution involves developing a machine learning model capable of accurately predicting age and gender from facial images with up to 92.17% accuracy and previously, we had achieved an accuracy of 88.2% using advanced techniques in data preprocessing, model architecture design, and rigorous evaluation to ensure reliability and practical applicability.

Precision:

$$Precision = \frac{True\ Positives\ (TP)}{True\ Positives\ (TP) + False\ Positives\ (FP)}$$

Recall:

$$ext{Recall} = rac{ ext{True Positives (TP)}}{ ext{True Positives (TP)} + ext{False Negatives (FN)}}$$

F1 Score:

$$ext{F1-Score} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Test Gender Accuracy: 88.17% Mean Absolute Error for Age: 41.18 Root Mean Absolute Error for Age: 6.42 Classification Report									
		cision	recall t	1-score	support				
	0	0.81	0.95	0.88	1326				
	1	0.95	0.83	0.89	1674				
accur	асу			0.88	3000				
macro	avg	0.88	0.89	0.88	3000				
weighted	avg	0.89	0.88	0.88	3000				

As we have changed the hyper-parameters, that lead us to the final gender accuracy of **92.17**%.

Test Gender Accuracy: 92.17% Mean Absolute Error for Age: 41.18									
Root Mean Absolute Error for Age: 6.42									
Classification Report									
	precision	recall	f1-score	support					
	0.01	0.05	0.00	1226					
0	0.81	0.95	0.88	1326					
1	0.95	0.83	0.89	1674					
accuracy			0.88	3000					
accuracy									
macro avg	0.88	0.89	0.88	3000					
weighted avg	0.89	0.88	0.88	3000					

Age Estimation Performance:

The model's age prediction accuracy was evaluated using the Mean Squared Error, ensuring reasonable performance across different age groups.

Predicted Age: 42 Actual Age: 51 Predicted Gender: Female Actual Gender: Female

Predicted Age: 18
Actual Age: 19
Predicted Gender: Female
Actual Gender: Female

Predicted Age: 39 Actual Age: 65 Predicted Gender: Female Actual Gender: Female

Predicted Age: 4 Actual Age: 2 Predicted Gender: Male Actual Gender: Female

Predicted Age: 27 Actual Age: 34 Predicted Gender: Female Actual Gender: Female

Predicted Age: 2 Actual Age: 3 Predicted Gender: Male Actual Gender: Male

Predicted Age: 13 Actual Age: 15 Predicted Gender: Female Actual Gender: Female

Predicted Age: 35 Actual Age: 36 Predicted Gender: Male Actual Gender: Male

Predicted Age: 2 Actual Age: 1 Predicted Gender: Male Actual Gender: Female

Predicted Age: 77 Actual Age: 80 Predicted Gender: Male Actual Gender: Male

Model Evaluation and Outcomes

Confusion Matrix Analysis:

- The confusion matrix revealed the distribution of correct and incorrect predictions, providing insights into any classification biases.
- •Analysis showed that while the model performed well overall, there were some challenges in classifying certain age groups accurately.

Model Evaluation and Outcomes

Limitations:

- Age estimation accuracy varied, particularly in predicting extreme age ranges.
- Minor misclassifications in gender were observed in cases with ambiguous facial features or low-quality images.

Visual Results: Graphs such as the loss and accuracy plots and a visual representation of the confusion matrix illustrate the model's training progress and final outcomes.

Outcome: The model demonstrated the capability to perform accurate gender classification and age estimation with promising results for future development and

application.

Model Evaluation and Outcomes

Challenges Faced:

 Overfitting: One of the main challenges encountered during model training was overfitting, where the model performed well on the training data but struggled to generalize to new, unseen data.

Mitigation Strategies:

- Data Augmentation: Applied techniques such as random rotations, flips, and brightness adjustments to artificially expand the training dataset and reduce overfitting.
- **Dropout Layers**: Introduced dropout layers in the model architecture to prevent the network from becoming too dependent on specific neurons, thereby improving generalization.

Planned Additions for 8th Semester

- Real-Time Face Recognition: Implementing a model capable of recognizing faces in real-time through video streams.
- Face Recognition with Occlusions: Improving the robustness of face recognition models to handle partially covered faces

Conclusion

- We successfully developed a machine learning model for face recognition with gender and age estimation, achieving **92.17% accuracy** for gender classification.
- Leveraged diverse datasets (VGGFace2, LFW, UTKFace) to train a robust and generalizable model.
- Implemented effective preprocessing, data augmentation, and training techniques to mitigate overfitting and enhance model performance.

References

[1] Dalvi, C., Rathod, M., Patil, S., Gite, S., & Kotecha, K. (2021). A Survey of Al-Based Facial Emotion Recognition: Features, ML DL Techniques, Age-Wise Datasets and Future Directions.

[2] EL Karazle, K., Raman, V., & Then, P. (2022). Facial Age Estimation Using Machine Learning Techniques: An Overview. Big Data and Cognitive Computing.

[3] Anusha, K., Vasumathi, D., & Mittal, P. (2023). A Framework to Build and Clean Multilanguage Text Corpus for Emotion Detection using Machine Learning. Journal of Theoretical and Applied Information Technology.

Thank

You