2.2 Дефиниция на многомерния интеграл

В настоящия параграф ще дадем дефиниция на двоен интеграл (която лесно се прехвърля и за интеграл върху пространство с по-висока от две размерност). Ще напомним, че в едномерния случай имаме две еквивалентни дефиниции на определения интеграл - дефиниция на Риман и дефиниция на Дарбу. В многомерния случай ситуацията е по-сложна - въвеждат се четири дефиниции, специална дефиниция - съответно на Риман и Дарбу, и обща дефиниция - също на Риман и Дарбу. (Смисълът на тези думи ще бъде обяснен по-долу.)

Специална дефиниция на двойния интеграл. Нека f(x,y) е функция, дефинирана в измеримо (и следователно ограничено) подмножество на равнината. Ще започнем с частния случай, когато дефиниционното множество е правоъгълник.

Двоен интеграл върху правоъгълник: дефиниция на Риман. Нека f(x,y) е дефинирана в правоъгълника $\Delta=[a,b]\times[c,d]$. Да изберем делящи точки $x_0,\ldots,x_n,\ y_0,\ldots,y_m$ така че $a=x_0< x_1<\ldots< x_n=b,\ c=y_0< y_1<\ldots< y_m=d$. Ще означим с Δ_{ij} правоъгълника $\Delta_{ij}=[x_{i-1},x_i]\times[y_{j-1},y_j]$; тогава

$$\Delta = \bigcup_{i=1}^n \bigcup_{j=1}^m \Delta_{ij}.$$

Да изберем по една точка $P_{ij}=(\xi_{ij},\eta_{ij})\in\Delta_{ij}$; това означава, че $\xi_{ij}\in[x_{i-1},x_i],\ \eta_{ij}\in[y_{j-1},y_j].$

Съвокупността от всички делящи и междинни точки ще наричаме разбиване на Δ . За всяко такова разбиване τ ще означаваме с $R_{\tau}(f)$ (или просто R_{τ}) съоветната риманова сума:

$$R_{\tau}(f) = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_{ij}, \eta_{ij}) (x_i - x_{i-1}) (y_j - y_{j-1}) = \sum_{i=1}^{n} \sum_{j=1}^{m} f(P_{ij}) \mu(\Delta_{ij}).$$

Ще въведем понятието диаметър на разбиването τ :

diam
$$\tau = \max_{i=1,\dots,n,j=1,\dots,m} \sqrt{(x_i - x_{i-1})^2 + (y_j - y_{j-1})^2}$$
.

(Ще отбележим, че диаметърът не зависи от избора на междинните точки, а само от делящите.)

Разбиване на правоъгълника $\Delta = [a,b] \times [c,d]$

Дефиниция. Казваме, че <u>двойният интеграл</u> от f(x,y) по правозголника Δ е равен на числото $\overline{I(f)}$, ако

$$I(f) = \lim_{diam \ \tau \to 0} R_{\tau}(f).$$

Забележка. Лесно се вижда, че изискването "diam au o 0" е равносилно с това, максималната дължина на подинтервалите $[x_{i-1},x_i],$ $[y_{j-1},y_j],$ $i=1,\ldots,n,$ $j=1,\ldots,m$ също да клони към нула.

Двойният интеграл се означава по следния начин:

$$I(f) = \iint_{\Lambda} f(x, y) \, dx dy.$$

Ще опишем по-подробно понятието за граница, използвано в горната дефиниция:

Равенството $I(f) = \lim_{diam \ \tau \to 0} R_{\tau}(f)$ означава, че за всяко $\varepsilon > 0$ съществува $\delta > 0$, така че за всяко разбиване τ , за което diam $\tau < \delta$, да имаме $|I(f) - R_{\tau}(f)| < \varepsilon$.

Разбира се, тази граница не е длъжна да съществува; ако тя съществува, функцията f(x,y) се нарича интегруема по Риман в Δ .

Двоен интеграл върху правоъгълник: дефиниция на Дарбу. Тук ще предположим предварително, че f(x,y) е ограничена в Δ , и ще положим

$$m_{ij} = \inf f(P) : P \in \Delta_{ij}, \quad M_{ij} = \sup f(P) : P \in \Delta_{ij}.$$

Както в едномерния случай, за всяко разбиване τ ще образуваме съответната малка и голяма сума на Дарбу:

$$s_{\tau}(f) = \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} \cdot \mu(\Delta_{ij}), \quad S_{\tau}(f) = \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} \cdot \mu(\Delta_{ij}).$$

Лесно се вижда, че множествата от всички малки и от всички големи суми на Дарбу са ограничени; наистина, ако m и M са съответно долна и горна граница за функцията f(x,y) върху Δ , то за всяко τ имаме неравенствата $m \leq m_{ij} \leq M_{ij} \leq M$ и следователно

$$m.\mu(\Delta) \le s_{\tau}(f) \le S_{\tau}(f) \le M.\mu(\Delta)$$
.

Тогава можем да дефинираме числата $\underline{I}(f)$, $\overline{I}(f)$, наречени долен и горен интеграл от f(x,y), с формулите

$$\underline{I}(f) = \sup_{\tau} s_{\tau}(f), \quad \overline{I}(f) = \inf_{\tau} S_{\tau}(f).$$

Малко по-надолу ще докажем, че винаги $\underline{I}(f) \leq \overline{I}(f)$; за нас е важен случая, когато те съвпадат.

Дефиниция. Казваме, че функцията f(x,y) е интегруема по Дарбу в Δ , ако $\underline{I}(f)=\overline{I}(f)$; общата им стойност се бележи с I(f) и се нарича интеграл от f върху Δ .

Двоен интеграл върху произволно измеримо множество – специална дефиниция. Нека f(x,y) е дефинирана за $(x,y) \in \mathbf{D}$, където \mathbf{D} е измеримо подмножество на равнината. Тъй като \mathbf{D} е и ограничено, можем да изберем правоъгълник Δ , съдържащ \mathbf{D} . Да означим с $\widetilde{f}(x,y)$ или $\widetilde{f}(P)$, продължението на функцията f с нулеви стойности върху цялото Δ :

$$\widetilde{f}(P) = \begin{cases} f(P), & P \in \mathbf{D} \\ 0, & P \in \Delta \setminus \mathbf{D} \end{cases}$$

Дефиниция. Ще дефинираме двойния интеграл от f(x,y) върху $\mathbf D$ като равен на двойния интеграл от $\widetilde f(x,y)$ върху Δ , определен в предния абзац:

$$\iint\limits_{\mathbf{D}} f(x,y) \ dxdy \ \stackrel{def}{=} \ \iint\limits_{\Delta} \widetilde{f}(x,y) \ dxdy.$$

Лесно се вижда, че стойността на интеграла не зависи от избора на правоъгълника $\Delta.$

По този начин дефинициите на Риман и Дарбу се пренасят към случая на произволно измеримо дефиниционно множество; ще ги наричаме специални дефиниции, съответно на Риман и Дарбу.

Обща дефиниция на двойния интеграл. Ще дадем една по-обща дефиниция на разбиване. Нека $\mathbf D$ е измеримо множество в равнината, и нека $\mathbf D_i,\ i=1,\dots,n,$ са измерими подмножества на $\mathbf D,$ такива, че

$$\mathbf{D} = \cup_{i=1}^n \mathbf{D}_i$$
 и $\mathbf{D}_i^o \cap \mathbf{D}_j^o = \emptyset$ за $i \neq j$

- ще казваме, че в този случай имаме измеримо разбиване на **D** на непресичащи се множества. Ще казваме, че разбиването е специално, ако то се получава чрез разрязване по хоризонтални и вертикални линии, както беше направено в предишните точки на този параграф. Всъщност, разликата между общите и специални дефиниции (на Риман и

Дарбу) се състои в това, дали се използват произволни разбивания на дефиниционната област, или само специални.

Обща дефиниция на Риман. Нека **D** е измеримо множество в равнината, и f(x,y) е функция, дефинирана в **D**. Нека $\tau: \mathbf{D} = \bigcup_{i=1}^n \mathbf{D}_i$ е разбиване на измеримото множество **D**. Да изберем по една точка $P_i \in \mathbf{D}_i, i = 1, \ldots, n$. Под риманова сума, съответстваща на разбиването τ и точките $\{P_i\}$, разбираме израза

$$R_{\tau}(f) = \sum_{i=1}^{n} f(P_i) \mu(\mathbf{D}_i).$$

Нуждаем се от определение на понятието диаметър на разбиването. Ще напомним, че ако ${\bf A}$ е ограничено подмножество в равнината, неговия диаметър е максималното разстояние * между две негови точки.

$$\operatorname{diam} \mathbf{A} = \sup_{P,Q \in \mathbf{A}} \rho(P,Q).$$

Ако τ е горното разбиване, дефинираме

diam
$$\tau = \max_{i=1,\dots,n} (\text{diam } \mathbf{D}_i)$$
.

Лесно се вижда, че за специални разбивания тази дефиниция съвпада с дадената по-горе. Сега можем да възпроизведем дефиницията на Риман. Отново дефинираме

$$I(f) = \lim_{\text{diam } \tau \to 0} R_{\tau}(f),$$

като тук се разглеждат произволни измерими разбивания на D.

Обща дефиниция на Дарбу. Аналогично на горното, полагаме

$$m_i = \inf f(P) : P \in \mathbf{D}_i, \ M_{ij} = \sup f(P) : P \in \mathbf{D}_i,$$

$$s_{\tau}(f) = \sum_{i=1}^{n} m_{i} \mu\left(\mathbf{D}_{i}\right), \quad S_{\tau}(f) = \sum_{i=1}^{n} M_{i} \mu\left(\mathbf{D}_{i}\right),$$

^{*}Така, диаметърът на един правоъгълник е равен на неговия диагонал, а диаметърът на един кръг е равен на неговия диаметър.

и отново

$$\underline{I}(f) = \sup_{\tau} s_{\tau}(f), \quad \overline{I}(f) = \inf_{\tau} S_{\tau}(f).$$

Ще покажем, че $\underline{I}(f) \leq \overline{I}(f)$. Ще казваме, че разбиването τ' следва разбиването τ (записва се $\tau' \succ \tau$), ако τ' е получено от τ чрез допълнително разбиване на някои от неговите делящи множества.

Лема 1. При допълнително разбиване малките суми се увеличават, а големите намаляват. По-точно, ако $\tau' \succ \tau$, то

$$s_{\tau'}(f) \ge s_{\tau}(f), \quad S_{\tau'}(f) \le S_{\tau}(f).$$

Доказателство. Достатъчно е да докажем твърдението, когато τ' е получено от τ чрез разбиване на едно от делящите множества на τ на две части. Наистина, в общия случай може да се счита, че τ' се получава от τ чрез краен брой такива стъпки; ако на всяка стъпка е доказано, че големите суми намаляват, оттук се вижда, че $S_{\tau'}(f) \leq S_{\tau}(f)$, и аналогично за малките суми.

Така, нека имаме разбиването $\tau: \mathbf{D} = \bigcup_{i=1}^n \mathbf{D}_i$, нека \mathbf{D}_1 е разбито на две измерими подмножества с непресичащи се вътрешности: $\mathbf{D}_1 = \mathbf{D}' \cup \mathbf{D}''$, и нека разбиването τ' се определя с $\mathbf{D} = \mathbf{D}' \cup \mathbf{D}'' \cup \mathbf{D}_2 \cup \ldots \cup \mathbf{D}_n$. Да означим с m', m'' точните долни граници на f върху множествата \mathbf{D}' , \mathbf{D}'' , и съответно с M', M'' - нейните точни горни граници върху същите множества. Очевидно имаме m', $m'' \geq m_1$ и M', $M'' \leq M_1$. Тогава имаме

$$s_{\tau'}(f) - s_{\tau}(f) = m'.\mu(\mathbf{D}') + m''.\mu(\mathbf{D}'') - m_1.\mu(\mathbf{D}_1) =$$

$$= m'.\mu(\mathbf{D}') + m''.\mu(\mathbf{D}'') - m_1.(\mu(\mathbf{D}') + \mu(\mathbf{D}'')) =$$

$$= (m' - m_1)\mu(\mathbf{D}') + (m'' - m_1)\mu(\mathbf{D}'') \ge 0,$$

и по същия начин доказателството протича за големите суми (направете го!).

Лема 2. Ако τ' , τ'' са две разбивания на \mathbf{D} , то $s_{\tau'}(f) \leq S_{\tau''}(f)$ (т.е. коя да е малка сума на Дарбу не надминава коя да е голяма).

Доказателство. Нека $\tau': \mathbf{D} = \cup_{i=1}^n \mathbf{D}_i'$ и $\tau'': \mathbf{D} = \cup_{j=1}^m \mathbf{D}_j''$. Да означим с τ разбиването

$$\tau: \mathbf{D} = \cup_{i=1}^n \cup_{j=1}^m \left(\mathbf{D}_i' \cap \mathbf{D}_j'' \right).$$

Очевидно τ е измеримо разбиване, и лесно се вижда, че $\tau \succ \tau'$ и $\tau \succ \tau''$. От лема 1 имаме

$$s_{\tau'}(f) \le s_{\tau}(f) \le S_{\tau}(f) \le S_{\tau''}(f).$$

Забележка. Ако τ и τ' са специални разбивания, то τ'' е също специално разбиване. Следователно твърдението на лема 2, както и следващото следствие, са валидни и за специалната дефиниция на Дарбу.

Следствие. За всяка функция f е изпълнено неравенството $\underline{I}(f) \leq \overline{I}(f)$.

Наистина, в лявата страна на неравенството $s_{\tau'}(f) \leq S_{\tau''}(f)$ можем да вземем супремума по всички разбивания τ' , с което получаваме $\underline{I}(f) \leq S_{\tau''}(f)$. Вземайки отдясно инфимума по всички τ'' , получаваме исканото неравенство.

От горните твърдения непосредствено следва:

Критерий за интегруемост по Дарбу. Функцията f(x,y) е интегруема (в общия или специалния смисъл) по Дарбу точно тогава, когато за всяко $\varepsilon > 0$ съществува разбиване τ (общо или специално) на дефиниционната област такова. че

$$S_{\tau}(f) - s_{\tau}(f) < \varepsilon.$$

Наистина, ако горното условие е изпълнено, то веднага се вижда, че $\underline{I}(f)=\overline{I}(f)$; обратно, ако долният и горният интеграл съвпадат и са равни на I, то можем да намерим разбивания τ' , τ'' , така че

$$s_{ au'}(f) > I - arepsilon/2, \quad S_{ au''}(f) < I + arepsilon/2,$$
 и следователно $S_{ au''}(f) - s_{ au'}(f) < arepsilon.$

Да изберем разбиването τ такова, че $\tau \succ \tau', \tau''$. Тогава от установените в лема 2 неравенства следва, че $S_{\tau}(f) - s_{\tau}(f) < \varepsilon$.

Еквивалентност на различните дефиници на двойния интеграл*. По-горе изложихме четири различни дефиниции на двойния (и изобщо многомерния) интеграл: дефиниции на Риман

^{*}Читателят, който не се интересува от доказателството на този факт, може да прескочи остатъка на параграфа.

и на Дарбу, всяка от тях в общ и специален вариант. Ще докажем, че тези дефиниции са еквивалентни, и по-точно, че е в сила твърдението:

Теорема (еквивалентност на дефинициите). Ако една функция е интегруема по една от горните дефиниции, тя е интегруема и по всички останали, и съответните стойности на интеграла по всяка от тях съвпадат.

Доказателство. Доказателството ще проведем по следната схема:

Ще докажем всяка от горните импликации.

1/ Риман обща \Rightarrow Риман специална: Принципът на доказателството може да бъде формулиран така: ако границата съществува за общи разбивания с диаметър, клонящ към нула, то тя съществува и за частния случай на специални разбивания. Това разсъждение е вярно в случая, когато дефиниционната област е правоъгълник, но в общия случай то трябва да бъде проведено по-прецизно. Римановите суми за f(x,y) и за нейното продължение $\widetilde{f}(x,y)$ могат да се различават близо до контура на дефиниционната област. Ще използваме следната

Лема 3. Нека \mathbf{D} е измеримо подмножество на равнината, и Δ е правотетник, съдържащ \mathbf{D} . Тогава за всяко $\varepsilon > 0$ може да се намери $\delta > 0$ такова, че за всяко специално разбиване $\tau : \Delta = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} \Delta_{ij}$ с diam $\tau < \delta$ сумата от лицата на тези правоътелници Δ_{ij} , които имат общи точки с контура $b\mathbf{D}$ на \mathbf{D} , да бъде по-малка от ε .

Доказателство. Тъй като \mathbf{D} е измеримо, то $b\mathbf{D}$ е пренебрежимо по Пеано-Жордан. Да изберем елементарно множество \mathbf{E} такова, че $b\mathbf{D} \subset \mathbf{E}^0$ и $\mu(\mathbf{E}) < \varepsilon$. Тогава двете компактни множества $b\mathbf{D}$ и $b\mathbf{E}$ не се пресичат, и следователно разстоянието между тях $\rho(b\mathbf{D}, b\mathbf{E})$ е положително (виж §1.3, упр. 3). Да го означим с δ . Тогава, ако diam $\tau < \delta$, то за всеки правоъгълник Δ_{ij} , който има общи точки с $b\mathbf{D}$, е изпълнено $\Delta_{ij} \subset E$. Следователно сумата на лицата на всички такива правоъгълници не надминава лицето на \mathbf{E} , т.е е по-малко от ε . (Да отбележим, че доказателството е в сила и за общи разбивания. Освен това, твърдението остава вярно, ако вместо $b\mathbf{D}$ се разглежда произволно затворено и пренебрежимо подмножество на \mathbf{D} .)

Доказателство на импликацията 1/. Нека f е интегруема върху $\mathbf D$ в смисъл на общата дефиниция на Риман, и нека I да е съответния интеграл. Да изберем правоъгълник Δ , съдържащ $\mathbf D$, и нека $\widetilde f(x,y)$ е продължението на f с нула върху цялото Δ , което беше използвано по-горе в специалните дефиниции. Да фиксираме $\varepsilon>0$, и да вземем такова $\delta_1>0$, така че за всяко разбиване τ на $\mathbf D$ с diam $\tau<\delta_1$ да имаме $|I-R_{\tau}(f)|<\varepsilon$. Да изберем δ , съответстваща на ε както в лема 3.

Нека сега $\tilde{\tau}$: $\Delta = \bigcup_{i=1}^n \bigcup_{j=1}^m \Delta_{ij}$ е специално разбиване на правоъгълника Δ с diam $\tilde{\tau} < \min{(\delta, \delta_1)}$, и $\tilde{P}_{ij} \in \Delta_{ij}$. Нека означим с τ съответното разбиване на \mathbf{D} , породено от множествата $\mathbf{D}_{ij} = \mathbf{D} \cap \Delta_{ij}$, и да изберем точките $P_{ij} \in \mathbf{D}_{ij}$ така, че $P_{ij} = \tilde{P}_{ij}$ в случая, когато Δ_{ij} се съдържа във вътрешността на \mathbf{D} (ако Δ_{ij} пресича $b\mathbf{D}$, то може да имаме $\tilde{P}_{ij} \notin \mathbf{D}$). Нека $R_{\tau}f$ да е римановата сума, съответстваща на общото разбиване τ и на междинните точки P_{ij} . По построение $|I - R_{\tau}f| < \varepsilon$. От друга страна,

$$R_{\widetilde{\tau}}\widetilde{f} - R_{\tau}f = \sum_{\Delta_{ij} \cap b\mathbf{D} \neq \emptyset} \left(\widetilde{f}\left(\widetilde{P}_{ij}\right) - f\left(P_{ij}\right)\right) \mu\left(\Delta_{ij}\right)$$

и следователно, ако означим с C една горна граница за |f(P)|, получаваме

$$\left| R_{\widetilde{\tau}} \widetilde{f} - R_{\tau} f \right| \le 2C \sum_{\Delta_{ij} \cap b\mathbf{D} \neq \emptyset} \mu\left(\Delta_{ij}\right) < 2C\varepsilon$$

В крайна сметка получаваме

$$\left|I - R_{\widetilde{\tau}}\widetilde{f}\right| \le \left|I - R_{\tau}f\right| + \left|R_{\widetilde{\tau}}\widetilde{f} - R_{\tau}f\right| < (1 + 2C)\varepsilon$$

и може да бъде направено произволно малко.

2/ Риман специална \Rightarrow Дарбу специална: Да изберем $\varepsilon>0$. За всички разбивания τ на дефиниционната област Δ на \widetilde{f} с достатъчно малък диаметър имаме

$$R_{\tau}\widetilde{f} = \sum_{i,j} \widetilde{f}(P_{ij}) \mu(\Delta_{ij}) \in (I - \varepsilon, I + \varepsilon)$$

независимо от избора на междинните точки P_{ij} . Променяйки тези точки, можем да накараме функционалните стойности $\widetilde{f}(P_{ij})$ да клонят

към минималната m_{ij} или максималната M_{ij} стойности на функцията в Δ_{ij} ; тогава римановата сума $R_{\tau}\widetilde{f}$ ще клони съответно към малката $s_{\tau}\widetilde{f}$ или към голямата $S_{\tau}\widetilde{f}$ суми на Дарбу за τ . Чрез граничен преход получаваме, че

 $I - \varepsilon \le s_{\tau} \widetilde{f} \le S_{\tau} \widetilde{f} \le I + \varepsilon,$

откъдето $S_{\tau}\widetilde{f}-s_{\tau}\widetilde{f}\leq 2\varepsilon$. Според критерия на Дарбу, доказан по-горе, това означава, че \widetilde{f} е интегруема по Дарбу върху Δ .

3/ Дарбу специална \Rightarrow Дарбу обща: Нека, както и по-горе, е дадена функцията f с дефиниционна област \mathbf{D} , Δ е правоъгълник, съдържащ \mathbf{D} , и \widetilde{f} е продължението на f с нулеви стойности. Предполагаме, че \widetilde{f} е интегруема по специалната дефиниция на Дарбу в Δ . Да фиксираме $\varepsilon > 0$, и нека $\widetilde{\tau}$: $\Delta = \bigcup_{i=1}^n \bigcup_{j=1}^m \Delta_{ij}$ е специално разбиване на Δ такова, че $S_{\widetilde{\tau}}\widetilde{f} - s_{\widetilde{\tau}}\widetilde{f} < \varepsilon$. Отново ще означим с τ съответното разбиване на \mathbf{D} : τ : $\mathbf{D} = \bigcup_{i,j} (\Delta_{ij} \cap \mathbf{D})$. Очевидно имаме

$$s_{\widetilde{\tau}}\widetilde{f} \le s_{\tau}f, \quad S_{\widetilde{\tau}}\widetilde{f} \ge S_{\tau}f$$

(докажете!) и следователно $S_{\tau}f - s_{\tau}f < \varepsilon$, т.е. критерият на Дарбу е удовлетворен.

4/ Дарбу обща \Rightarrow Риман обща: В това доказателство основната тежест се носи от следната теорема, чието доказателство ще дадем по-нататък:

Теорема на Дарбу. Ако f(x,y) е ограничена функция върху измеримото множество \mathbf{D} , и τ пробягва всички разбивания на \mathbf{D} от общ вид, то са налице съотношенията

$$\lim_{\operatorname{diam} \tau \to 0} s_{\tau} f = \underline{I}(f), \quad \lim_{\operatorname{diam} \tau \to 0} S_{\tau} f = \overline{I}(f).$$

Ако сметнем теоремата на Дарбу за доказана, то твърдението се получава чрез прилагане на лемата за полицаите към очевидното неравенство

$$s_{\tau}f \leq R_{\tau}f \leq S_{\tau}f.$$

По-подробно, нека f е интегруема върху ${\bf D}$ според общата дефиниция на Дарбу. Тогава по горната теорема за всяко $\varepsilon>0$ можем да намерим $\delta>0$, така че за всяко разбиване τ с diam $\tau<\delta$ да имаме

 $s_{\tau}f > I(f) - \varepsilon$, $S_{\tau}f < I(f) + \varepsilon$, и следователно за всяко такова τ ще бъде изпълнено $I(f) - \varepsilon < R_{\tau}f < I(f) + \varepsilon$.

Доказаните импликации позволяват да се твърди, че ако една от дефинициите е изпълнена, то са изпълнени и останалите три, и, разбира се, стойността на интеграла се получава една и съща. Остава само да докажем теоремата на Дарбу.

Доказателство на теоремата на Дарбу. Ще докажем твърдението за малките суми, за големите то се доказва аналогично.

Да фиксираме $\varepsilon > 0$. По дефиниция можем да намерим измеримо разбиване τ^* на \mathbf{D} : τ^* : $\mathbf{D} = \cup_{i=1}^k \mathbf{D}_i^*$ такова, че

$$s_{\tau^*}f = \sum_{i=1}^k m_i^* \mu\left(\mathbf{D}_i^*\right) > \underline{I}(f) - \varepsilon,$$

където $m_i^* = \inf_{P \in \mathbf{D}_i^*} f(P).$

Нека **A** е обединението на контурите на всички \mathbf{D}_{i}^{*} :

$$\mathbf{A} = \bigcup_{i=1}^k b \mathbf{D}_i^*$$
.

Тъй като всички множества \mathbf{D}_i^* са измерими, то по критерия за измеримост от предния параграф получаваме, че \mathbf{A} е пренебрежимо множество. Лесно се вижда, че то е и затворено. Нека изберем $\delta>0$ както в лема 3. Това означава, че ако $\tau:\mathbf{D}=\cup_{j=1}^n\mathbf{D}_j$ е произволно покритие на \mathbf{D} с diam $\tau<\delta$, то

$$\sum_{\mathbf{D}_{j}\cap\mathbf{A}\neq\emptyset}\mu\left(\mathbf{D}_{j}\right)<\varepsilon.$$

Теоремата ще бъде доказана, ако успеем да покажем, че за всички такива τ съответната малка сума $s_{\tau}f$ е достатъчно близко до $\underline{I}(f)$.

В доказателството на лема 2 ние видяхме как се конструира разбиване, което да следва две дадени разбивания. Тук ще намерим разбиване τ_1 , което да следва τ и τ^* . Това разбиване има вида

$$\tau_1: \mathbf{D} = \cup_{j=1}^n \cup_{i=1}^k (\mathbf{D}_i^* \cap \mathbf{D}_j).$$

От една страна, от факта, че $\tau_1 \succ \tau^*$ според лема 2 следва, че

$$s_{\tau_1} f > s_{\tau^*} f > I(f) - \varepsilon.$$

От друга страна, след като $\tau_1 \succ \tau$, ние можем да разгледаме разбиването τ_1 като получено от разбиването τ чрез раздробяване на неговите делящи множества. Важно е да отбележим, че при това се раздробяват само тези множества от τ , които имат общи точки с някои от контурите на \mathbf{D}_i^* , т.е. с множеството \mathbf{A} .

Да напишем сумата $s_{ au}f$ във вида

$$s_{\tau}f = \sum_{j=1}^{n} m_j \mu(\mathbf{D}_j) = \Sigma' + \Sigma'',$$

където в Σ' участват само тези j, за които $\mathbf{D}_j \cap \mathbf{A} \neq \emptyset$, а в Σ'' – всички останали. Ако числото C е горна граница за стойностите на |f(P)|, то

$$|\Sigma'| < C.\varepsilon.$$

Ще направим същото и за сумата $s_{\tau_1}f,$ съответстваща на разбиването $\tau_1.$ Имаме

$$s_{\tau_1} f = \widetilde{\Sigma}' + \widetilde{\Sigma}'',$$

където във $\widetilde{\Sigma}'$ участват събираемите, получени от множества, имащи общи точки със \mathbf{A} , а в $\widetilde{\Sigma}''$ – всички останали. Тъй като множествата, участващи във Σ'' , не се раздробяват, то

$$\Sigma'' = \widetilde{\Sigma}''$$

Оценявайки сумата $\widetilde{\Sigma}'$ по същия начин, както Σ' , получаваме, че

$$\left|\widetilde{\Sigma}'\right| < C.\varepsilon.$$

Следователно,

$$s_{\tau_1}f - s_{\tau}f = \widetilde{\Sigma}' - \Sigma' \le \left|\widetilde{\Sigma}'\right| + |\Sigma'| < 2C.\varepsilon.$$

Комбинирайки това с неравенството $s_{\tau_1}f>\underline{I}(f)-\varepsilon,$ получаваме неравенството

$$s_{\tau}f > s_{\tau_1}f - 2C.\varepsilon > \underline{I}(f) - (2C+1)\varepsilon,$$

изпълнено за всички разбивания τ с diam $\tau < \delta$.

Теоремата на Дарбу е доказана, с което приключва и доказателството на еквивалентността на четирите дефиниции на двойния интеграл.

2.3 Основни свойства на многомерния интеграл

Тук ще изброим и докажем основните свойства на двойния интеграл. Те не се различават особено от свойствата на едномерния риманов интеграл, изучени в първата част. В предния параграф ние въведохме няколко еквивалентни дефиниции на интеграла, и при доказателството на всяко свойство ще използваме тази от тях, която е най-удобна за случая. Интеграла от f(x,y) върху $\mathbf D$ ще означаваме с $\iint_{\mathbf D} f(x,y) \, dx dy$ или просто с I(f).

Свойство 1. Линейност и хомогенност. Ако функциите f(x,y) и g(x,y) са интегруеми върху **D**, то и $f(x,y)+g(x,y), \ \lambda f(x,y)$ са също интегруеми, и

$$\iint_{\mathbf{D}} (f(x,y) + g(x,y)) \, dx dy = \iint_{\mathbf{D}} f(x,y) dx dy + \iint_{\mathbf{D}} f(x,y) dx dy,$$
$$\iint_{\mathbf{D}} \lambda f(x,y) dx dy = \lambda \iint_{\mathbf{D}} f(x,y) \, dx dy.$$

Доказателство. Ще използваме дефиницията на Риман (без значение - обща или специална). Нека $\tau: \mathbf{D} = \cup_{i=1}^n \mathbf{D}_i$ е какво да е разбиване на \mathbf{D} и $P_i \in \mathbf{D}_i$. Имаме

$$R_{\tau}(f+g) = \sum_{i=1}^{n} (f(P_i) + g(P_i)) \mu(\mathbf{D}_i) = R_{\tau}(f) + R_{\tau}(g), \ R_{\tau}(\lambda f) = \lambda R_{\tau}(f),$$

откъдето чрез граничен преход при $\dim \tau \to 0$ получаваме исканите равенства.

Свойство 2. Позитивност. Ако $f(x,y) \geq 0$ навсякъде върху ${\bf D},$ то и $I(f) \geq 0.$

Доказателство. Очевидно за всяко разбиване τ ще имаме $R_{\tau}(f) \geq 0$, откъдето чрез граничен преход получаваме $I(f) \geq 0$.

Позитивността на интеграла автоматично влече след себе си още няколко свойства.

Свойство 3. Монотонност. Ако $f(x,y) \ge g(x,y)$ навсякъде върху **D**, то $I(f) \ge I(g)$ (с други думи, неравенствата могат да се интегрират).

Доказателство. Тъй като $f(x,y)-g(x,y)\geq 0$, то по свойство 2 имаме $I(f-g)\geq 0$, откъдето по свойство 1 получаваме $I(f)-I(g)\geq 0$.

Свойство 4. Ако функцията f(x,y) е интегруема върху **D**, то нейният модул |f(x,y)| е също интегруем, и $|I(f)| \leq I(|f|)$.

Доказателство. Нека предположим, че вече сме доказали, че |f(x,y)| е интегруема. Ще докажем исканото неравенство. Наистина, навсякъде е изпълнено неравенството

$$-|f(x,y)| \le f(x,y) \le |f(x,y)|,$$

откъдето по свойство 3 следва, че

$$-I(|f|) \le I(f) \le I(|f|)$$
.

Следователно,

$$|I(f)| = \max(I(f), -I(f)) \le I(|f|).$$

Малко по-трудно е да докажем, че от интегруемостта на f следва интегруемостта на |f|. За целта ще използваме критерия на Дарбу за интегруемост, доказан в предния параграф. Нека $\tau: \mathbf{D} = \cup_{i=1}^n \mathbf{D}_i$ е произволно разбиване на \mathbf{D} . Да означим с m_i, M_i съответно точната долна и горна граница на f(x,y) върху \mathbf{D}_i , а с $\widetilde{m_i}, \widetilde{M_i}$ - точната долна и горна граница на |f(x,y)| върху същото множество. Очевидно имаме $\widetilde{M_i} - \widetilde{m_i} \leq M_i - m_i$ (докажете!), откъдето

$$S_{\tau}(|f|) - s_{\tau}(|f|) = \sum_{i=1}^{n} \left(\widetilde{M}_{i} - \widetilde{m}_{i} \right) \mu\left(\mathbf{D}_{i}\right) \leq$$

$$\leq \sum_{i=1}^{n} \left(M_i - m_i \right) \mu \left(\mathbf{D}_i \right) = S_{\tau}(f) - s_{\tau}(f).$$

Тъй като f е интегруема, по критерия на Дарбу за всяко $\varepsilon > 0$ съществува разбиване τ такова, че $S_{\tau}(f) - s_{\tau}(f) < \varepsilon$. Тогава за това разбиване ще имаме и $S_{\tau}(|f|) - s_{\tau}(|f|) < \varepsilon$, т.е функцията |f| удовлетворява условието на критерия на Дарбу и следователно е интегруема.

Забележка. В част I беше даден пример на неинтегруема по Риман функция f(x) такава, че |f(x)| е интегруема. Подобен пример лесно може да се построи и за функция на две (или повече) променливи.

Свойство 5. (Връзка между интеграла и мярката). За всяко измеримо множество D имаме:

$$\iint_{\mathbf{D}} 1 \, dx dy = \mu(\mathbf{D}).$$

Доказателство. Очевидно за произволно разбиване $\tau: \mathbf{D} = \bigcup_{i=1}^n \mathbf{D}_i$ е в сила $R_{\tau}(1) = \sum_{i=1}^n \mu\left(\mathbf{D}_i\right) = \mu(\mathbf{D}).$

Свойство 6. (Теорема за средните стойности). Нека **D** е затворено, измеримо и линейно свързано множество (виж §1.3. за дефиниция на линейно свързано множество), и f(x,y) е непрекъсната* върху D. Тогава съществува точка $P_0 \in \mathbf{D}$ такава, че

$$\iint_{\mathbf{D}} f(x,y) \, dx dy = f(P_0) \, \mu(\mathbf{D}).$$

Доказателство. Да означим с m и M съответно точната долна и горна граница на стойностите на f(x,y) върху \mathbf{D} . Според теоремите на Вайерщрас (теореми 7 и 8 на §1.3) тези граници се достигат, т.е. съществуват точки $P_{min}, P_{max} \in \mathbf{D}$ такива, че $f(P_{min}) = m$, $f(P_{max}) = M$. Интегрирайки неравенствата $m \leq f(x,y) \leq M$, получаваме $m\mu(\mathbf{D}) \leq \iint_{\mathbf{D}} f(x,y) dx dy \leq M\mu(\mathbf{D})$, (виж свойство 5), откъдето

$$f(P_{min}) = m \le \frac{1}{\mu(\mathbf{D})} \iint_{\mathbf{D}} f(x, y) \, dx dy \le M = f(P_{max}).$$

По теоремата за междинните стойности (теорема 11 на §1.3) всяко число, намиращо се между две стойности на функцията, е също стойност на функцията, откъдето следва съществуването на точка $P_0 \in \mathbf{D}$ такава, че $f(P_0) = \frac{1}{\mu(\mathbf{D})} \iint_{\mathbf{D}} f(x,y) dx dy$.

Забележка. Числото $f(P_0) = \frac{1}{\mu(\mathbf{D})} \iint_{\mathbf{D}} f(x,y) dx dy$ се нарича средна стойност на функцията f(x,y) върху \mathbf{D} .

Свойство 7. (Адитивност по множество). Нека $\mathbf{D} = \mathbf{D}' \cup \mathbf{D}''$ е разбиване на измеримото множество \mathbf{D} на две измерими подмножества \mathbf{D}' и \mathbf{D}'' с непресичащи се вътрешности, и f(x,y) е функция, дефинирана върху \mathbf{D} . Тогава

 $^{^*}$ По-долу ще покажем, че всяка непрекъсната функция върху затворено и измеримо множество е интегруема.

1/f(x,y) е интегруема върху ${f D}$ точно тогава, когато тя е интегруема върху ${f D}'$ и ${f D}''$, и

2/ имаме

$$\iint_{\mathbf{D}} f(x,y) \ dxdy = \iint_{\mathbf{D}'} f(x,y) \ dxdy + \iint_{\mathbf{D}''} f(x,y) \ dxdy.$$

Доказателство. И тук ще докажем най-напред лесната част, т.е. 2/. Да предположим, че е известно, че f е интегруема върху \mathbf{D} , \mathbf{D}' и \mathbf{D}'' . Нека $\tau': \mathbf{D}_1 = \bigcup_{i=1}^n \mathbf{D}_i'$ е разбиване на \mathbf{D}' , и $\tau'': \mathbf{D}'' = \bigcup_{j=1}^m \mathbf{D}_i''$ е разбиване на \mathbf{D}'' . Елементите на тези две разбивания образуват разбиване на \mathbf{D} :

$$\tau: \mathbf{D} = (\cup_{i=1}^n \mathbf{D}_i') \cup (\cup_{j=1}^m \mathbf{D}_j'').$$

Да изберем и междинните точки $P_i' \in \mathbf{D}_i', P_j'' \in \mathbf{D}_j''$. Тогава, чрез граничен преход в равенството

$$R_{\tau}(f) = R_{\tau'}(f) + R_{\tau''}(f)$$

при diam τ' и diam τ'' клонящи към нула (тогава очевидно и diam τ клони към нула) получаваме по дефиницията на Риман равенството 2/.

За доказателството на твърдението 1/ ще използваме критерия на Дарбу за интегруемост. Нека е дадено, че f е интегруема върху \mathbf{D}' и върху \mathbf{D}'' . Нека τ' , τ'' са разбивания съответно на \mathbf{D}' и \mathbf{D}'' такива, че

$$S_{\tau'}(f) - s_{\tau'}(f) < \varepsilon$$
, $S_{\tau''}(f) - s_{\tau'}(f) < \varepsilon$.

Нека τ е разбиването на ${\bf D},$ образувано от елементите на τ_1 и τ_2 както по-горе. Тогава

$$S_{\tau}(f) = S_{\tau'}(f) + S_{\tau''}(f), \ s_{\tau}(f) = s_{\tau'}(f) + s_{\tau''}(f)$$

и следователно

$$S_{\tau}(f) - s_{\tau}(f) < 2\varepsilon,$$

т.е. функцията f(x,y) е интегруема върху ${f D}.$

Обратно, нека f да е интегруема върху \mathbf{D} , и нека $\tau: \mathbf{D} = \bigcup_{i=1}^n \mathbf{D}_i$ е разбиване на \mathbf{D} такова, че $S_{\tau}(f) - s_{\tau}(f) < \varepsilon$. Да образуваме породеното от него разбиване τ' на \mathbf{D}' : $\tau': \mathbf{D}' = \bigcup_{i=1}^n \mathbf{D}'_i$, където $\mathbf{D}'_i = \mathbf{D}_i \cap \mathbf{D}'$. Да означим с m_i , M_i съответно точната долна и горна граница на f(x,y) върху \mathbf{D}_i , а с m'_i , M'_i - точната долна и горна граница на тази функция върху \mathbf{D}'_i . Лесно се вижда, че $M'_i - m'_i \leq M_i - m_i$, и следователно

$$S_{\tau'}(f) - s_{\tau'}(f) \le S_{\tau}(f) - s_{\tau}(f) < \varepsilon,$$

т.е. f е интегруема върху \mathbf{D}' . Абсолютно по същия начин се вижда, че f е интегруема и върху \mathbf{D}'' .

Упражнения.

- **1.** Докажете неравенствата:
- а) (интегрално неравенство на Хьолдер)

$$\iint_{\mathbf{D}} |f(x,y) g(x,y)| dxdy \le$$

$$\le \left(\iint_{\mathbf{D}} |f(x,y)|^p dxdy \right)^{\frac{1}{p}} \cdot \left(\iint_{\mathbf{D}} |g(x,y)|^q dxdy \right)^{\frac{1}{q}},$$

Където
$$f(x,y)$$
 и $g(x,y)$ са интегруеми функции върху $\mathbf{D},\,p>1,\,q>1$ и $\frac{1}{p}+\frac{1}{q}=1.$

Упътване: Можем да считаме, че $\mathbf{D} = [a,b] \times [c,d]$ е правоъгълник. Вземете специално разбиване на \mathbf{D} , при което интервалите [a,b] и [c,d] се делят на равни части. Разгледайте съответната риманова сума за интеграла, стоящ отляво, и приложете неравенството на Хьолдер за суми (виж част I, §2.10. зад. 10).

б) (интегрално неравенство на Йенсен)

$$\varphi\left(\frac{\iint_{\mathbf{D}} p(x,y) f(x,y) dxdy}{\iint_{\mathbf{D}} p(x,y) dxdy}\right) \leq \frac{\iint_{\mathbf{D}} p(x,y) \varphi\left(f(x,y)\right) dxdy}{\iint_{\mathbf{D}} p(x,y) dxdy},$$

където $\varphi(x)$ е изпъкнала и непрекъсната функция на една променлива, f(x,y) е непрекъсната в ${\bf D}$ и взема стойности в дефиниционното множество на $\varphi(x)$, p(x,y) е интегруема и неотрицателна в ${\bf D}$.

Упътване: приложете неравенството на Йенсен (част I, §2.10) за изпъкналата функция $\varphi(x)$ към римановите суми (образувани както в точка а/) за интеграла $\iint_{\mathbf{D}} p(x,y) f(f(x,y)) dx$.

^{*}Неравенствата, както и тяхните доказателства, са напълно идентични с тези в едномерния случай, разгледани в част I, §4.2, зад. 2.

в) (интегрално неравенство на Минковски)

$$\left(\iint_{\mathbf{D}} |f(x,y) + g(x,y)|^p dxdy\right)^{\frac{1}{p}} \le$$

$$\le \left(\iint_{\mathbf{D}} |f(x,y)|^p dxdy\right)^{\frac{1}{p}} + \left(\iint_{\mathbf{D}} |g(x,y)|^p dxdy\right)^{\frac{1}{p}},$$

където f(x,y) и g(x,y) са интегруеми функции в **D** и p>1.

Упътване: подинтегралната функция в левия интеграл се мажорира от сумата $|f(x,y)+g(x,y)|^{p-1}\cdot|f(x,y)|+|f(x,y)+g(x,y)|^{p-1}\cdot|g(x,y)|$. Приложете към всяко от събираемите неравенството на Хьолдер от точка а/.

2.4 Класове интегруеми функции.

Използвайки критерия на Дарбу, ще дадем някои достатъчни условия за интегруемост. Най-просто, и най-често използвано, е следното твърдение:

Теорема 1. Ако функцията f(x,y) е непрекъсната върху затвореното и измеримо множество D, тя е интегруема върху него.

Доказателство. Най-напред ще отбележим, че \mathbf{D} е ограничено (това влиза в дефиницията на измеримост) и затворено, т.е. то е компактно, и за функцията f са в сила теоремите на Вайерщрас и Кантор (виж §1.3). Специално, теоремата на Кантор (виж §1.3, теор. 10) гласи, че всяка непрекъсната функция върху \mathbf{D} е и равномерно непрекъсната.

Приложено към функцията f, това означава следното: за всяко $\varepsilon > 0$ можем да намерим $\delta > 0$, така че за всеки две точки $P,Q \in \mathbf{D}$, за които $\rho(P,Q) < \delta$, е изпълнено $|f(P) - f(Q)| < \varepsilon$.

Нека сега фиксираме $\varepsilon > 0$, и нека $\tau : \mathbf{D} = \bigcup_{i=1}^n \mathbf{D}_i$ е измеримо разбиване на \mathbf{D} с diam $\tau < \delta$. Тогава за всеки две точки P,Q, принадлежащи на едно и също множество \mathbf{D}_i , ще имаме $\rho(P,Q) < \delta$ и следователно $|f(P) - f(Q)| < \varepsilon$. Ако накараме f(P) да се доближава към максималната стойност M_i на f върху \mathbf{D}_i , а f(Q) - към минималната и стойност m_i , получаваме, че за всяко $i=1,\ldots,n$ е изпълнено $M_i - m_i \leq \varepsilon$. Следователно

$$S_{\tau}(f) - s_{\tau}(f) = \sum_{i=1}^{n} (M_i - m_i) \mu(\mathbf{D}_i) \le \varepsilon \sum_{i=1}^{n} \mu(\mathbf{D}_i) = \varepsilon \mu(\mathbf{D})$$

и по критерия на Дарбу получаваме твърдението на теоремата.

В някои случаи изискването за непрекъснатост навсякъде е прекалено силно и не обхваща някои важни случаи като например стъпаловидните функции. Оказва се, че то може съществено да се отслаби, като се поиска функцията да е ограничена и множеството на нейните точки на прекъсване да е пренебрежимо:

Теорема 2. Нека функцията f(x,y) е дефинирана и ограничена върху измеримото множество **D**. Да предположим, че съществува пренебрежимо подмножество **A** на **D**, така че f(x,y) е непрекъсната във всички точки на **D** \ **A**. Тогава f е интегруема върху **D**.