Ecuaciones Diferenciales

Hugo Del Castillo Mola

9 de octubre de 2022

Índice general

1.	Teoremas de Existencia y Continuidad			2
	1.1.	Prelim	inares	2
	1.2.	Teorema Picard		
		1.2.1.	Unicidad Solución PVI	5
		1.2.2.	Teorema del Punto Fijo de Banach	5
		1.2.3.	Teorema Existencia y Unicidad Picard	6
	1.3.	Teoren	na de Peano	7
		1.3.1.	Equicontinuidad y Compacidad Relativa	7
		1.3.2.	Teorema de Existencia de Peano	10
	1.4.	Teoren	na de Extensión	11

Capítulo 1

Teoremas de Existencia y Continuidad

1.1. Preliminares

Nota. El objetivo principal de este capítulo es demostrar los siguientes resultados sobre las soluciones de un PVI

- (I) Unicidad: Si f(t,x) es Lipschitz continua respecto a x en D. Entonces, el PVI tiene solución única.
- (II) Existencia: Si f(t,x) es continua en D entonces existe una solución x(t) del PVI en un intervalo $[t_0,t_0+a]$.
- (III) Estabilidad: Si f(t,x) es continua respecto a t y es Lipschitz continua respecto a x, entonces la solución del PVI varia continuamente respecto a x_0 .

Definición 1.1 (Espacio Banach). Un espacio de Banach es un espacio vectorial normado completo.

Observación. Sea $A \subset \mathbb{R}^p$. Entonces, $C(A; \mathbb{R}, d)$ es un espacio de Banach. **Observación.** La convergencia de la norma del supremo equivale a convergencia uniforme en un espacio de Banach.

Lema 1.0.1 (Lema de Gronwall). Sea $J \subset \mathbb{R}$, $t_0 \in J$ y $a, \beta, u \in C(J, \mathbb{R}_+)$. Si

$$u(t) \le a(t) + \Big| \int_{t_0}^t \beta(s)u(s)ds \Big|, \forall t \in J,$$

Entonces,

$$u(t) \le a(t) + \left| \int_{t_0}^t a(s)\beta(s)e^{\left| \int_s^t \beta(\sigma)d\sigma \right|} ds \right|, \forall t \in J.$$

Demostración. Sea $v(t) = \int_{t_0}^t \beta(s) u(s) ds$. Entonces,

$$\dot{v}(t) = \beta(t)u(t)$$

$$\leq \beta(t)a(t) + \beta(t) \Big| \int_{t_0}^t B(s)u(s)ds \Big|, \forall t \in J.$$

$$\leq a(t)\beta(t) + \operatorname{sgn}(t - t_0)\beta(t)v(t), \forall t \in J.$$

Ahora, sea $\gamma = \exp\left\{-\left|\int_{t_0}^t \beta(s)ds\right|\right\} = \exp\left\{-\int_{t_0}^t \operatorname{sgn}(t-t_0)\beta(s)ds\right\}$, $\gamma \dot{v} \leq a\beta\gamma - \dot{\gamma}v \Rightarrow \dot{\gamma}v - a\beta\gamma \leq 0$ donde integrando tenemos que

$$\operatorname{sgn}(t-t_0)v(t) \le \operatorname{sgn}(t-t_0) \int_{t_0}^t \frac{a\beta\gamma}{\gamma(t)} ds, \forall t \in J.$$

$$= \Big| \int_{t_0}^t \frac{a(s)\beta(s)\gamma(s)}{\gamma(t)} ds \Big|, \forall t \in J.$$

Sustituyendo en la hipótesis inicial, nos queda

$$u(t) \le a(t) + \operatorname{sgn}(t - t_0)v(t)$$

$$\leq a(t) \Big| \int_{t_0}^t a(s)\beta(s) \exp\Big\{ \Big| \int_s^t \beta(\sigma)dgks \Big| \Big\} ds \Big|, \forall t \in J.$$

Corolario 1.0.1. Sea $a(t)=a_0(|t-t_0|)$ donde $a_0\in C(\mathbb{R}_+,\mathbb{R}_+)$ es una función monótona crecient tal que

$$u(t) \le a(t) + \left| \int_{t_0}^t \beta(s) u(s) ds \right|, \forall t \in J.$$

Entonces,

$$u(t) \le a(t)e^{\left|\int_{t_0}^t \beta(\sigma)ds\right|}, \forall t \in J.$$

Definición 1.2 (Función uniformemente Lipschitz continua). Sean X,Y espacios métricos y T un espacio topológico. Una función $f:T\times X\to Y$ se llama uniformemente Lipschitz continua respecto a $x\in X$, si $\exists \lambda\in\mathbb{R}_+$ tal que

$$|f(t,x) - f(t,x')| \le \lambda |x - x'|, \forall x, x' \in X, \forall t \in T.$$

Notación. Conjunto de funciones localmente Lipschitz continuas

$$C^{0,1-}(T \times X, Y) = \{ f : T \times X \to Y : f \in C(T \times X, Y),$$

f Lipschitz continua respecto a $x \in X$

Si $f: X \to Y$, entonces

$$C^{1-}(X,Y) = \{f: X \to Y: f \text{ es Lipschitz continua } \}.$$

Conjunto de funciones continuas con dereivas parciales respecto a $x \in X$

$$C^{0,1}(T \times X, Y) = \{ f \in C(T \times X, Y) : D_2 f \in C(T \times X, \mathcal{L}(E, F)) \}.$$

Observación.
$$C^{-1}(X,Y) = C(X,Y)$$
 y $C^{0,1-}(T \times X,Y) \subset C(T \times X,Y)$.

Proposición 1.1. Sea X,Y espacios métricos, T un e.t. compacto. Supongamos que $K\subset X$ es compacto y $f\in C^{0,1-}(T\times X,Y)$. Entonces, existe un entorno abierto W de K en X tal que $f|_{T\times W}$ es uniformemente Lipschitz continua respecto a $x\in W$.

Definición 1.3 (Solución ecuación diferencial). Sea $U \subset \mathbb{R}^d$ abierto, $u \in C^1([0,T] \times \overline{U},\mathbb{R}^d)$. Entonces, decimos que u es solución de la ecuación diferencial $\dot{x} = f(t,x)$ Si se verifica

$$\dot{u}(t) = f(t, u(t)), \forall t \in [0, T]$$

Lema 1.0.2 (Forma Integral Solución PVI). Sea $U \subset \mathbb{R}^d$ abierto, $u \in C^1([0,T] \times \overline{U},\mathbb{R}^d)$. Entonces u es una solución de la ecuación diferencial $\dot{x} = f(t,x) \Leftrightarrow u \in C(J_u,D)$ y

$$u(t) = u_0 + \int_0^t f(s, u(s)) ds, \forall t \in [0, T]$$

1.2. Teorema Picard

1.2.1. Unicidad Solución PVI

CAMBIAR NOTACIÓN

Teorema 1.1 (Unicidad Solución PVI). Sea $J \subset \mathbb{R}$; $D \subset E$ abierto donde E es un espacio de Banach; $f \in C^{0,1-}(J \times D, E)$; $(t_0, x_0) \in J \times D$; $a, b, \lambda \in \mathbb{R}$ y $R = [t_0 - a, t_0 + a] \times \overline{\mathbb{B}}(x_0, b) \subset J \times D$. Entonces, el PVI

$$\dot{x} = f(t, x), \ x(t_0) = x_0,$$

tiene solución única.

Revisar notación $t \in J$

Demostración. Sean u(t), u'(t) dos soluciones del PVI en $[t_0, t_1]$. Entonces,

$$u(t) = x_0 + \int_{t_0}^t f(s, u(s))ds, \forall t \in J,$$

$$u'(t) = x_0 + \int_{t_0}^t f(s, u'(s))ds, \forall t \in J,$$

$$\Rightarrow u(t) - u'(t) = \int_{t_0}^t f(s, u(s)) - f(s, u'(s))ds, \forall t \in J$$

$$\Rightarrow |u(t) - u'(t)| = |\int_{t_0}^t f(s, u(s)) - f(s, u'(s))ds, \forall t \in J$$

$$\leq \int_{t_0}^t |f(s, u(s)) - f(s, u'(s))|ds, \forall t \in J$$

$$\int_{t_0} |f(s, u(s)) - f(s, u'(s))| ds, \forall t \in J$$

$$\leq \lambda \int_{t_0}^t |u(t) - u'(t)| ds, \forall t \in J$$

 $\Rightarrow \textit{(Teo. Gronwall } a=0\textit{)} \ |u(t)-u'(t)|=0, \ \forall t\in J \Rightarrow u(t)=u'(t), \ \forall t\in J.$

1.2.2. Teorema del Punto Fijo de Banach

Definición 1.4 (Función Contractiva). Sea X un espacio de Banach, $A \subset X$ cerrado $y \ f: A \to A$. Entonces, se dice que f es una contracción si $\exists \alpha \in (0,1)$ tal que

$$||f(x) - f(y)|| \le \alpha ||x - y||, \ \forall x, y \in A.$$

Observación. Si f es contracción decimos que $x \in X$ es un punto fijo si f(x) = x. Además,

Teorema 1.2 (del Punto Fijo de Banach). Sea (X,d) un espacio métrico completo, $f:X\to X$ una aplicación contractiva. Entonces, $\exists!x^*\in X:f(x^*)=x^*$. Además, $\forall x_0\in X$, $x_{n+1}=f(x_n), n\in\mathbb{N}$. Entonces, $x_n\xrightarrow[n\to\infty]{}x^*$.

Demostración. Sea $|x_1 - x_0| = d$. Entonces,

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le \alpha |x_n - x_{n-1}| \le \dots \le \alpha^n d$$

donde $\alpha \in (0,1)$

$$\Rightarrow \lim_{k \to \infty} \sum_{n=0}^{k} \alpha^{n} = \frac{1}{1 - \alpha}$$
$$\Rightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} : \alpha^{N} < \frac{\epsilon}{d}$$
$$\Rightarrow |x_{n+1} - x_{n}| \le \epsilon, \forall n \ge N$$

Entonces, la sucesión (x_n) es de Cauchy y X completo $\Rightarrow \lim_{n\to\infty} x_n = x^*$. Además

$$x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f(\lim_{n \to \infty} x_{n-1}) = f(x^*)$$

 $\Rightarrow x^*$ es un punto fijo de f.

Si x_1^*, x_2^* son dos puntos fijos, entonces

$$|f(x_1^*) - f(x_2^*)| = |x_1^* - x_2^*| \ge d|x_1^* - x_2^*| \Rightarrow |x_1^* - x_2^*| = 0.$$

es contradicción

1.2.3. Teorema Existencia y Unicidad Picard

Teorema 1.3. Sea $U \subset \mathbb{R}^d$ abierto, $u_0 \in U$, $f \in \mathcal{C}^{0,1-}([0,T] \times U,\mathbb{R}^d)$. Entoces, $\forall T_E$ existe, a lo sumo, una solución del PVI. Además, $\exists T_E : 0 < T_E \leq T$ tal que la soulución es única.

Demostración. Sea $T:C([0,T];U)\to C([0,T],\mathbb{R}^d):u\mapsto u_0+\int_0^T f(s,u(s))ds.$ Dado que f es Lipschitz continua $\Rightarrow \exists T_E\in (0,T), L\geq 0$ y $\overline{B}(u_0,R)\subset U$ tales que

$$|f(t,x) - f(t,y)| \le L|x-y|, \quad \forall t \in [0,T_1], \ x,y \in B(u_0,R)$$

Sea $M=\sup |f(t,x)|, t\in [0,T_1], \ x\in B(u_0,R).$ Para que el dominio y la imagen de T sean iguales, $T:C([0,T_2],\overline{B}(u_0,R))\to C([0,T_2],\overline{B}(u_0,R))$, entonces

$$|T[u](t) - u_0| \le \int_0^t |f(s, u(s))| ds \le MT_2$$

donde $T_2 \leq T_1$ tal que $MT_2 \leq R, \forall t \in [0, T_2], T[u](t) \in B(u_0, R)$. Ahora, para que T sea contractiva

$$|T[u](t) - T[v](t)| \le \int_0^t |f(s, u(s)) - f(s, v(s))| ds$$

$$\le L \int_0^t |u(s) - v(s)| ds$$

$$\le Lt||u - v||$$

entonces, T sería contractiva para T_3 tal que $LT_3 < 1$. Por tanto, podemos aplicar el teorema del punto fijo de Banach.

1.3. Teorema de Peano

Nota. Demostramos que existe al menos una solución del PVI sin la condición Lipschitz.

1.3.1. Equicontinuidad y Compacidad Relativa

CAMBIAR NOTACIÓN

Definición 1.5 (Solución Aproximada de ecuación diferencial). Sea $\epsilon>0$, $u:J_u\to D$. Entonces, decimos que u es solución ϵ -aproximada de la ecuación diferencial

$$\dot{x} = f(t, x)$$

Si se verifica

- (I) $J_u \subset J : (\mathring{J_u}) \neq \emptyset$.
- (II) $u \in C(J_u, D)$ y u es continuamente diferenciable a trozos.
- (III) $\forall I \subset J_u : u$ es continuamente diferenciable se tiene que

$$||\dot{u}(t) - f(t, u(t))|| \le \epsilon, \forall t \in I.$$

Observación. Sea $u:J_u\to D$ una solución ϵ -aproximada de $\dot{x}=f(t,x)$. Entonces,

$$||u(t) - u(t_0) - \int_{t_0}^t f(s, u(s))ds|| \le \epsilon |t - t_0|, \ \forall t \in J_u$$

donde $t_0 \in J_u$.

Definición 1.6 (Compacto Relativo). Un subconjunto de un espacio topológico es compacto relativo si su adherencia es compacto.

Proposición 1.2 (Caracterización Compacto Relativo). *Sea* (X, \mathcal{T}) *e.t.*, $K \subset X$. *Entonces,* K *es compacto relativo* $\Leftrightarrow K = \overline{K}$.

Definición 1.7 (Equicontinuidad). Sea (X,d) un espacio métrico, $D \subset X$, F espacio de Banach y $\mathcal{F} \subset C(D,F)$. entonces, decimos que $f \in \mathcal{F}$ es equicontinua en $x_0 \in D$ si

$$\forall \epsilon > 0, \exists \delta > 0 : x \in D, |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon, \forall f \in \mathcal{F}.$$

Decimos que \mathcal{F} es equicontinuo en D si es equicontinuo $\forall x \in D$.

Teorema 1.4 (Ascoli). Sea (K,d) espacio métrico compacto, F espacio de Banach y $\mathcal{M} \subset C(K,F)$. Entonces, \mathcal{M} es relativamente compacto \Leftrightarrow

- (I) \mathcal{M} es equicontinuo.
- (II) $\mathcal{M}(y) = \{f(y) : f \in \mathcal{M}\}\$ es relativamente compacto en F, $\forall y \in K$.

Observación. Para el caso de \mathbb{R} : Si F es finito, entonces \mathcal{M} es precompacto $\Leftrightarrow \mathcal{M}$ es equicontinuo y acotado.

Lema 1.4.1. Sea $M=\max|f(R)|$ y $\alpha=\min(a,\frac{b}{M})$. Entonces, $\forall \epsilon>0$ existe una solución ϵ -aproximada

$$u \in C([t_0 - \alpha, t_0 + \alpha], \overline{\mathbb{B}}(x_0, b)),$$

 $de \dot{x} = f(t,x) con u(t_0) = x_0 y$

$$|u(t) - u(s)| \le M|t - s|, \forall t, s \in [t_0 - \alpha, t_0 + \alpha].$$

Demostración. f uniformemente continua en $R \Rightarrow \exists \delta > 0$ tal que

$$|f(t,x) - f(\overline{t}, \overline{x})| \le \epsilon, \ \forall (t,x), (\overline{t}, \overline{x}) \in R$$

 $con \; |t - \overline{t}| \; y \; |x - \overline{x}| \leq \delta.$

Dividimos el intervalo $[t_0 + \alpha, t_0 - \alpha]$ en subintervalos

$$t_0 - \alpha = t_{-n} < t_{-n+1} < \dots < t_{-1} < t_0 < t_1 < \dots < t_n = t_0 + \alpha,$$

tal que $\max |t_{i-1} - t_i| \leq \min(\delta, \frac{\delta}{M})$.

Desde (t_0,x_0) construimos una recta con pendiente $f(t_0,x_0)$ hacia la derecha de t_0 y hasta que corte a $t=t_1$. Entonces, esta linea está en la región triangular acotada por por la rectas con pendiente M y -M desde (t_0,x_0) .

De forma inductiva definimos

$$u(t) = \begin{cases} u(t_i) + (t - t_i) f(t_i, u(t_i)) & \text{si } i \ge 0 \\ u(t_{i+1}) + (t - t_{i+1}) f(t_{i+1}, u(t_{i+1})) & \text{si } i \le -1 \end{cases}$$

donde $t_i \leq t \leq t_{i+1}$.

Por tanto,

$$\dot{u}(t) = f(t_i, u(t_i)), \ \forall t \in [t_i, t_{i+1}] \ \mathbf{y} \ \forall t \in [t_{i-1}, t_i] \cap (-\infty, t_0],$$

 $|u(t) - u(t_i)| \le \delta, \ \forall t \in [t_i, t_{i+1}] \ \mathbf{y} \ \forall t \in [t_{i-1}, t_i] \cap (-\infty, t_0].$

De manera que, por continuidad uniforme tenemos que

$$|\dot{u}(t) - f(t, u(t))| = |f(t_i, u(t_i)) - f(t, u(t))| \le \epsilon$$

entonces, u es una solución ϵ -aproximada de $\dot{x} = f(t,x)$.

1.3.2. Teorema de Existencia de Peano

CAMBIAR NOTACIÓN

Teorema 1.5 (Peano). Sea $f \in C([0,T] \times \overline{\mathbb{B}}(u_0,R),\mathbb{R}^d)$. Entonces, el PVI

$$\dot{x} = f(t, x), \ x(t_0) = x_0$$

tiene al menos una solución u en $[t_0 - \alpha, t_0 + \alpha]$ con $u([t_0 + \alpha, t_0 + \alpha]) \subset \overline{\mathbb{B}}(x_0, b)$.

Demostración. Por el teorema anterior $\forall n \in \mathbb{N}$ existe una solución $\frac{1}{n}$ -aproximada en \overline{J}_{α} tal que $u_n(\overline{J}_{\alpha}) \subset \overline{\mathbb{B}}(x_0,b)$ y

$$|u_n(t) - u_n(s)| \le M|s - t|, \ \forall s, t \in \overline{J}_{\alpha}.$$

 $\Rightarrow \{u_n\}_{n\in\mathbb{N}}\subset C(\overline{J}_{lpha},E)$ es una familia equicontinua. Además,

$$|u_n(t)| \le |u_n(t_0)| + M|t - t_0| \le |x_0| + b, \ \forall n \in \mathbb{N}, \forall t \in \overline{J}_{\alpha}$$

 $\Rightarrow \{u_n\}_{n\in\mathbb{N}}$ está acotada en $C(\overline{J}_{\alpha},E)$. Por tanto, $\{u_n\}_{n\in\mathbb{N}}$ es precompacto.

Entonces, por el teorema de Ascoli, $\exists \{u_{n_k}\} : u_{n_k} \xrightarrow{k \to \infty} u \in C(\overline{J}_\alpha, E) \Rightarrow u_{n_k} \to u$ uniformemente.

Sea

$$\begin{split} \Delta_{n_k}(t) &= \begin{cases} \dot{u}_{n_k} - f((t, u_{n_k}(s))), & \textit{si} \ \exists \dot{u}_{n_k} \\ 0, & \textit{otrocaso} \end{cases} \\ \Rightarrow \dot{u}_{n_k} &= f(t, u_{n_k}(t)) + \Delta_{n_k}(t) \end{split}$$

$$\Rightarrow u_{n_k} = y_0 + \int_{t_0}^t f(s, u_{n_k}(s)) + \Delta_{n_k}(s) ds$$

donde $|\Delta_{n_k}| \leq \frac{1}{n}$.

Por tanto, $u_{n_k} \to u$ uniformemente $\Rightarrow f(t, u_{n_k}(t)) \to f(t, u(t))$ uniformemente, dado que $f \in C(J \times D, E)$.

$$\Rightarrow \int_{t_0}^t f(s, u_{n_k}(s)) ds \xrightarrow{k \to \infty} \int_{t_0}^t f(s, u(s)) ds$$

$$\Rightarrow u_{n_k}(t) \xrightarrow{k \to \infty} u(t) = x_0 + \int_{t_0}^t f(s, u(s)) ds$$

que satisface la forma integral del PVI.

1.4. Teorema de Extensión

Definición 1.8 (Prolongación). Sea u(t) solución de x'=f(t,x) en I_u . Se dice que v(t) es una prolongación de u(t) si v(t) es solución de x' en I_v tal que $I_u \subset I_v$ y $u(t) = v(t), \forall t \in I_u \cap I_v$.

Definición 1.9 (Solución Maximal). Se dice que x(t) es una solución maximal del PVI si no admite ninguna prolongación.

Observación. El intervalo de definición de una solución maximal ha de ser abierto. Si fuera (a,b] entonces se pordría prolongar a la derecha (b,x(b)).

Teorema 1.6. Sea $f \in C^{0,1-}(J \times D, E)$, $u: J_u \to D$ y $v: J_v \to D$ soluciones de $\dot{x} = f(t,x)$ tal que $\exists t_0 \in J_u \cap J_v: u(t_0) = v(t_0)$ Entonces, u = v en $J_u \cap J_v$.

Ejemplo (Método de Prolongación). Sea $(t_0, x_0) \in J \times D$. Entonces, por el teorema de Picard, $\exists \alpha > 0$ tal que el PVI

$$\dot{x} = f(t, x), \ x(t_0) = x_0$$

tiene solución única u en $\overline{J}_{\alpha}=[t_0-\alpha,t_0+\alpha]$. Usando de nuevo el teorema de Picard, $\exists \beta>0$ tal que el PVI

$$\dot{x} = f(t, x), \ x(t_0 + \alpha) = u(t_0 + \alpha)$$

tiene solución única v en $\overline{J}_{\alpha,\beta}=[t_0+\alpha-\beta,t_0+\alpha-\beta]$. Por el teorema de Unicidad u(t)=v(t) en $\overline{J}_{\alpha}\cap\overline{J}_{\alpha,\beta}$ y la función

$$u_1 = egin{cases} u, & ext{en } \overline{J}_{lpha} \ v, & ext{en } \overline{J}_{lpha,eta} \end{cases}$$

es una prolongación de la solución u.

Teorema 1.7 (de Prolongación caso Lipschitz). Sea $U \subset \mathbb{R}^d$ abierto