嵌入式体系结构基于ZYNQ 第四讲

ZYNQ-SoC Zynq中断系统

- Zynq中断概述
- 中断硬件
- 中断编程模式

ZYNQ-SoC

中断概述

ZYNQ-SoC 中断概述

- 私有、共享和软件中断
- 通用中断控制器功能
- 中断优先级和处理

ZYNQ-SoC 私有、共享和软件中断

- 全局定时器、私有看门狗、私有定时器、 PL部分产生的FIG/IRQ(PPI)
- 对通用中断控制器寄存器读写而产生的中断(SGI)
- 位于PS和PL的I/O及内存控制器产生的中断(SPI)

ZYNQ-SoC 通用中断控制器GIC

ZYNQ-SoC 通用中断控制器GIC

- 允许、禁止中断和管理中断优先级
- 基于ARM的GIC V1.0
- 所有CPU均通过私有总线访问GIC

ZYNQ-SoC 中断信号传递

ZYNQ-SoC 中断信号传递

FIQEn (ICCICR[3])	SecureS (ICCICR[0])	SecureNS (ICCICR[1])	IRQ to CPU x	FIQ to CPU x	
0	0	0	pass through	pass through	
0	0	1	driven by GIC	pass through	
0	1	0	driven by GIC	pass through	
0	1	1	driven by GIC	pass through	
1	0	0	pass through	pass through	
1	0	1	driven by GIC	pass through	
1	1	0	pass through	driven by GIC	
1	1	1	driven by GIC	driven by GIC	

ZYNQ-SoC 软件生成中断(SGI)

- 通过写相关寄存器产生
- 中断CPU自身,其它CPU或者所有CPU
- 每个CPU有自己的SGI寄存器组

ZYNQ-SoC 软件生成中断(SGI)

IRQ ID#	Name	SGI#	Туре	Description	
0	Software 0	0	Rising edge	A set of 16 interrupt sources that are private to each	
1	Software 1	1	Rising edge	destinations where each destination can be one or	
~	•••	~	•••	more CPUs.	
15	Software 15	15	Rising edge		

ZYNQ-SoC CPU私有外设中断(PPI)

IRQ ID#	Name	PPI#	Туре	Description
26:16	Reserved	~	~	Reserved
27	Global Timer	0	Rising edge	Global timer
28	nFIQ	1	Active Low level (active High at PS-PL interface)	Fast interrupt signal from the PL: CPU0: IRQF2P[18] CPU1: IRQF2P[19]
29	CPU Private Timer	2	Rising edge	Interrupt from private CPU timer
30	AWDT{0, 1}	3	Rising edge	Private watchdog timer for each CPU
31	nIRQ	4	Active Low level (active High at PS-PL interface)	Interrupt signal from the PL: CPU0: IRQF2P[16] CPU1: IRQF2P[17]

ZYNQ-SoC 共享外设中断(SPI)

Source	Interrupt Name	IRQ ID#	Status Bits (mpcore Registers)	Required Type	PS-PL Signal Name	1/0
APU	CPU 1, 0 (L2, TLB, BTAC)	33:32	spi_status_0[1:0]	Rising edge	~	~
	L2 Cache	34	spi_status_0[2]	High level	~	~
	ОСМ	35	spi_status_0[3]	High level	~	~
Reserved	~	36	spi_status_0[3]	~	~	~
PMU	PMU [1,0]	38, 37	spi_status_0[6:5]	High level	~	~
XADC	XADC	39	spi_status_0[7]	High level	~	~
DevC	DevC	40	spi_status_0[8]	High level	~	~
SWDT	SWDT	41	spi_status_0[9]	Rising edge	~	~
Timer	TTC 0	44:42	spi_status_0[12:10]	High level	~	~
D1446	DMAC Abort	45	spi_status_0[13]	High level	IRQP2F[28]	Output
DMAC	DMAC [3:0]	49:46	spi_status_0[17:14]	High level	IRQP2F[23:20]	Output
Memory	SMC	50	spi_status_0[18]	High level	IRQP2F[19]	Output
	Quad SPI	51	spi_status_0[19]	High level	IRQP2F[18]	Output
Reserved	~	~	~	Always driven Low	IRQP2F[17]	Output
IOP	GPIO	52	spi_status_0[20]	High level	IRQP2F[16]	Output
	USB 0	53	spi_status_0[21]	High level	IRQP2F[15]	Output
	Ethernet 0	54	spi_status_0[22]	High level	IRQP2F[14]	Output
	Ethernet 0 Wake-up	55	spi_status_0[23]	Rising edge	IRQP2F[13]	Output
	SDIO 0	56	spi_status_0[24]	High level	IRQP2F[12]	Output
	I2C 0	57	spi_status_0[25]	High level	IRQP2F[11]	Output
	SPI 0	58	spi_status_0[26]	High level	IRQP2F[10]	Output
	UART 0	59	spi_status_0[27]	High level	IRQP2F[9]	Output
	CAN 0	60	spi_status_0[28]	High level	IRQP2F[8]	Output

ZYNQ-SoC 共享外设中断(SPI)

Source	Interrupt Name	IRQ ID#	Status Bits (mpcore Registers)	Required Type	PS-PL Signal Name	I/O
PL	PL [2:0]	63:61	spi_status_0[31:29]	Rising edge/ High level	IRQF2P[2:0]	Input
	PL [7:3]	68:64	spi_status_1[4:0]	Rising edge/ High level	IRQF2P[7:3]	Input
Timer	TTC 1	71:69	spi_status_1[7:5]	High level	~	٠
DMAC	DMAC[7:4]	75:72	spi_status_1[11:8]	High level	IRQP2F[27:24]	Output
	USB 1	76	spi_status_1[12]	High level	IRQP2F[7]	Output
	Ethernet 1	77	spi_status_1[13]	High level	IRQP2F[6]	Output
	Ethernet 1 Wake-up	78	spi_status_1[14]	Rising edge	IRQP2F[5]	Output
IOP	SDIO 1	79	spi_status_1[15]	High level	IRQP2F[4]	Output
	I2C 1	80	spi_status_1[16]	High level	IRQP2F[3]	Output
	SPI 1	81	spi_status_1[17]	High level	IRQP2F[2]	Output
	UART 1	82	spi_status_1[18]	High level	IRQP2F[1]	Output
	CAN 1	83	spi_status_1[19]	High level	IRQP2F[0]	Output
PL	PL [15:8]	91:84	spi_status_1[27:20]	Rising edge/ High level	IRQF2P[15:8]	Input
SCU	Parity	92	spi_status_1[28]	Rising edge	~	~
Reserved	?	95:93	spi_status_1[31:29]	~	~	?

ZYNQ-SoC

中断编程模式

- 中断优先级
- 中断处理
- ARM编程相关
 - GIC寄存器访问
 - 分发器和CPU接口
 - GIC安全扩展的影响
 - PU接口寄存器
 - 保存和存储控制器状态
- 延迟中断和安全扩展
 - GIC中只有IRQ会抢占
 - FIQ采用安全模式

思考题