Tagery morfosyntaktyczne dla języka polskiego

Łukasz Kobyliński Witold Kieraś

Instytut Podstaw Informatyki Polskiej Akademii Nauk ul. Jana Kazimierza 5, 01-248 Warszawa, Poland

7.12.2015

Wprowadzenie

Cele prezentacji

- podsumowanie obecnego stanu narzędzi do tagowania morfosyntaktycznego w języku polskim,
- porównanie dokładności i wykorzystywanych algorytmów z narzędziami dla innych języków europejskich,
- analiza jakościowa wyników działania poszczególnych tagerów,
- przegląd problemów, które nie zostały zaadresowane przez istniejące tagery,
- stwierdzenie, czy wśród dostępnych narzędzi dostępny jest tager o pozadanych cechach (następny slajd),
- rekomendacje dotyczące dalszych kroków.

Wprowadzenie

Cechy pożądanego tagera (M. Woliński)

Chciałbym tager, który:

- nie jest nadgorliwy, można kazać zostawić interpretacje częściowo nieujednoznacznione (np. usunąć tylko bardzo złe interpretacje),
- informuje o poziomie pewności podjętych decyzji,
- działa na niejednoznacznej segmentacji (stworzonej przez Morfeusza lub np. będącej wynikiem zastosowania po Morfeuszu słownika wyrażeń wieloczłonowych),
- daje się (względnie?) łatwo zainstalować i uruchomić na wszystkich platformach, na których jest Morfeusz,
- da się rozszerzyć o uwzględnianie informacji o czasie powstania tekstu.

Plan

- Tagery jezyka polskiego przeglad rozwiązań
- Tagery morfosyntaktyczne dla innych języków europejskich
- Tagery języka polskiego analiza ilościowa
- Tagery języka polskiego analiza jakościowa
- Dyskusja i rekomendacje

Tagery języka polskiego – przegląd rozwiązań

Czym jest tagowanie – przypomnienie

Segment (token) – wyraz lub jego fragment, znak interpunkcyjny, ciąg cyfr lub symboli. Segmenty sa ciagłe oraz rozłączne.

Znacznik morfosyntaktycnzy (tag) – symbol, który można przypisać segmentowi, określający jego własności morfologiczno-składniowe.

Znakowanie morfosyntaktyczne (tagowanie) – zadanie przypisania ciagowi segmentów ciagu znaczników morfosyntaktycznych.

Segmentacja ⇒ Analiza morfosyntaktyczna ⇒ Ujednoznacznianie morfosyntaktyczne

Pełny stos przetwarzania

TAGOWANIE Podział na tokeny -Toki Analiza morfosyntaktyczna -Maca + Morfeusz Ujednoznacznianie morfosyntaktyczne

UCZENIE Ponowna analiza morfosyntaktyczna otagowanego tekstu - Toki + Maca + Morfeusz + synchronizacja Uczenie modelu statystycznego na podstawie wzorca

Tagery morfostynaktyczne dla języka polskiego

Tagery historyczne

- tager Łukasza Dębowskiego,
- TaKIPI.

Tagery morfostynaktyczne dla języka polskiego

Tagery uwzględniające tagset NKJP

- Pantera [Acedański 2010] adaptacja algorytmu Brilla do języków bogatych morfologicznie, takich jak polski,
- WMBT [Radziszewski and Śniatowski 2011] tager oparty na uczeniu pamięciowym, rozbudowany o wielowarstwowość dla uwzględnienia wielu atrybutów znakowania w języku polskim,
- Concraft [Waszczuk 2012] tager warstwowy, oparty na Conditional Random Fields (CRF); wyniki dezambiguacji morfosyntaktycznej przekazywane są z jednej warstwy do drugiej,
- WCRFT [Radziszewski 2013] również oparty na CRF; osobne modele wykorzystywane są do dezambiguacji poszczególnych atrybutów opisu morfosyntaktycznego,

Tagery morfostynaktyczne dla języka polskiego

Modele dla tagerów zaimplementowanych dla innych języków

- TnT Tagger
- OpenNLP

Tager Brilla – zasada działania

TODO

Tager CRF – zasada działania

TODO

Przenośność i łatwość wykorzystania

- Concraft instalowany i uruchamiany z wykorzystaniem Haskell Platform, która dostępna jest pod wszystkie główne systemy operacyjne,
- WCRFT, Pantera wymagają kompilacji, proces kompilacji dostosowany do środowiska Linuksowego,
- WMBT Python.

Concraft, WCRFT, WMBT – silnie zależą od stosu Corpus2 / Toki / Maca, których kompilacja pod Windows jest możliwa, ale nietrywialna (Visual Studio).

Tagery morfosyntaktyczne dla innych języków europejskich

Tagowanie języka angielskiego

System name	Short description	Main publication	All tokens
BI-LSTM-CRF	Bidirectional LSTM-CRF Model	Huang et al. (2015)	97.55
SCCN	Semi-supervised conden- sed nearest neighbor	Søgaard (2011)	97.50
Morče/COMPOST	Averaged Perceptron	Spoustová et al. (2009)	97.44
structReg	CRFs with structure regularization	Sun(2014)	97.36
LTAG-spinal	Bidirectional perceptron learning	Shen et al. (2007)	97.33
Stanford Tagger 2.0	Maximum entropy cyclic dependency network	Manning (2011)	97.32
Stanford Tagger 2.0	Maximum entropy cyclic dependency network	Manning (2011)	97.29
Stanford Tagger 1.0	Maximum entropy cyclic dependency network	Toutanova et al. (2003)	97.24

4 D > 4 A > 4 B > 4 B > 9 Q (

Tagowanie języka angielskiego

System name	Short description	Main publication	All tokens
Morče/COMPOST	Averaged Perceptron	Spoustová et al. (2009)	97.23
LAPOS	Perceptron based training	Tsuruoka, Miyao,	97.22
	with lookahead	and Kazama (2011)	
SVMTool	SVM-based tagger and	Giménez and	97.16
	tagger generator	Márquez (2004)	
Maxent easiest-first	Maximum entropy bidi-	Tsuruoka and	97.15
	rectional easiest-first infe-	Tsujii (2005)	
	rence		
Averaged Perceptron	Averaged Perception di-	Collins (2002)	97.11
	scriminative sequence mo-		
	del		
GENiA Tagger**	Maximum entropy cyclic	Tsuruoka, et al	97.05
	dependency network	(2005)	
MEIt	MEMM with external lexi-	Denis and Sagot	96.96
	cal information	(2009)	
TnT*	Hidden markov model	Brants (2000)	96.46

Tagowanie języka słoweńskiego

TODO

Tagowanie języka czeskiego

TODO

Tagery języka polskiego – analiza ilościowa

Metoda ewaluacji

Miara jakości znakowania

- ze względu na możliwość wystąpienia różnic w segmentacji pomiędzy wynikiem znakowania, a złotym standardem, wykorzystujemy dolne ograniczenie trafności (accuracy lower bound, Acc_{lower}) do oceny dokładności tagerów,
- miara ta karze wszelkie zmiany segmentacyjne w stosunku do złotego standardu i traktuje takie tokeny jako sklasyfikowane błędnie,
- token traktowany jest jako oznakowany prawidłowo, jeśli zbiór jego interpretacji ma niepuste przecięcie ze zbiorem interpretacji zwracanych przez tager,
- niezależne sprawdzamy dokładność dla znanych (Acc_{lower}^K) i nieznanych słów (Acc_{lower}^U), aby ocenić skuteczność ew. modułów odgadywania.

Ewaluacja pojedynczych tagerów

Eksperymenty na milionowym podkorpusie Narodowego Korpusu Jezyka Polskiego, ver. 1.1, 10-krotna walidacja krzyżowa.

n	Tager	Acc_{lower}	Acc_{lower}^{K}	Acc_{lower}^{U}
1	Pantera	88.95%	91.22%	15.19%
2	WMBT	90.33%	91.26%	60.25%
3	WCRFT	90.76%	91.92%	53.18%
4	Concraft	91.07%	92.06%	58.81%

- Acc_{lower} łączna dokładność,
- Acck dokładność dla znanych słów,
- Acc^U_{lower} dokładność dla słów nieznanych.

Analiza rezultatu działania tagerów

Porównanie wyników

- Wszystkie zwracają prawidłowy tag: 82,78%
 <u>unikam</u> fin:sg:pri:imperf
 fin:sg:pri:imperf+ fin:sg:pri:imperf+ fin:sg:pri:imperf+
- Większość zwraca prawidłowy tag: 7,95%
 kapitalistów subst:pl:gen:m1
 subst:pl:gen:m1+ subst:pl:gen:m1+ subst:pl:gen:m1+ subst:pl:acc:m1-
- Równowaga w głosowaniu: 2,71%
 powolny adj:sg:nom:m3:pos

 adj:sg:nom:m3:pos+ adj:sg:acc:m3:pos- adj:sg:acc:m3:pos-
- Prawidłowy tag w mniejszości: 2,38%
 twarzy subst:sg:loc:f subst:sg:gen:f- subst:sg:gen:f- subst:sg:gen:f- subst:sg:loc:f+
- Wszystkie się mylą: 4.18%
 <u>biurka</u> subst:pl:nom:n subst:pl:acc:n- subst:pl:acc:n- subst:sg:gen:n- subst:pl:acc:n- (Peggy) <u>McCreary</u> subst:sg:nom:f
 subst:sg:gen:f- subst:sg:gen:n- subst:sg:nom:n- subst:sg:acc:m1-

Podział na klasy gramatyczne

		Acc_{lower} (%)			
klasa	liczność	PANTERA	WMBT	WCRFT	Concraft
subst	331570	85,21	86,25	87,36	88,29
interp	223542	99,63	99,97	99,97	99,97
adj	128703	76,53	81,10	81,56	82,52
prep	115818	97,04	97,28	97,54	98,05
qub	68079	92,98	93,82	92,91	92,92
fin	59458	98,64	98,70	98,81	98,94
praet	53326	90,90	88,96	89,80	89,69
conj	44840	95,17	95,41	94,61	93,96
adv	42750	95,31	95,59	95,29	94,77
inf	19213	98,91	99,20	99,09	99,14
comp	17842	97,26	97,29	96,84	96,88
num	16160	33,40	56,40	60,32	55,99

7.12.2015

Rozmiar danych treningowych

TnT Tagger – NEGRA corpus, 30 000 tokenów testowych.

Rozmiar danych treningowych

MBT Tagger – WSJ corpus, kroswalidacja krzyżowa

Rozmiar danych treningowych

Concraft - NKJP 1M, 100 000 tokenów testowych.

Na czym polega problem?

Jak często występują niejednoznaczności?

Korpus NKJP 1M, Morfeusz 1 SGJP: 645 wystąpień na 1 095 118 segmentów (0.0589%)

مُن مان خ	1 224 / 1	-ii	3		
kiedyś	234 / 1	pis-owi	_	ipn-em	1
gdzieś	172 / <mark>1</mark>	winnym	2	sms-ów	1
miałem	99 / 98	prl-em	2		1
udziałem	40 / 0	wyłom	2	pgr-ach	1
	.′	,	_	zus-em	1
musiałem	28 / 28	rozdziałem	2	vat-em	1
sms-a	6 / 0	hiv-em	2	siadłem	1
działam	6 / 0	pit-ów	2		1
doń	5 / 4	działem	1	msz-ów	1
	l '.		1	zoz-ów	1
tyłem	4 / 0	rop-em	1	mosir-em	1
pis-em	4 / 0	tir-a	1		1
podziałem	3 / 0	kor-owcy	1	vip-om	1
piekłem	3 / 0	urm-em	1	msz-ecie	1
•	l '.		1	zoz-owi	1
czekałem	3 / 3	kor-em	1	czemuś	1
iadłem	3/3	di-a	1	CZCIIIUS	-

Jak często występują niejednoznaczności?

Próbka 100M NKJP, Morfeusz 1 SGJP:

40 354 wystąpień na 101 052 527 segmentów (0.0399%)

kiedyś	12751	czemuś	171	pit-ów	65
miałem	8350	działam	153	Łks-em	60
gdzieś	6171	działem	151	pis-em	44
udziałem	4988	piekłem	130	siadłem	43
musiałem	2173	zus-em	95	skok-i	39
czekałem	537	sms-em	95	gks-em	39
tyłem	523	tir-ów	93	padłem	36
doń	414	zoz-ów	86	pgr-ów	30
podziałem	411	tir-a	85	vip-a	30
sms-a	357	zus-owi	82	pis-owi	28
vip-ów	305	azs-em	81	skok-ów	24
winnym	256	vat-em	76	pks-em	24
sms-ów	207	rozdziałem	76	dj-ów	20
jadłem	199	wyłom	65	dj-e	20

Jak często występują niejednoznaczności?

Korpus NKJP 1M, Morfeusz 2:

2583 wystąpień na 1 095 118 segmentów (0.2359%)

coś	777	komuś	31		
ktoś	382	gdybyśmy	19	czekałem	3
czym	334	tom	19	jadłem	3
kiedyś	234	żebyśmy	12	rozdziałem	2
gdzieś	172	gdybyś	7	wyłom	2
miałem	99	działam	6	bom	2
czegoś	97	jam	5	żebyście	2
kogoś	82	doń	5	coście	1
czymś	63	oścież	5	czyżbyś	1
kimś	42	gdybyście	4	czyżem	1
gdybym	40	tyłem	4	siadłem	1
udziałem	40	musiałem	3	czemuś	1
żebym	39	podziałem	3	działem	1
żebyś	34	piekłem	3		1

Możliwe rozwiązania: tagset pośredni Pomysł od Adama Radziszewskiego

Możliwe rozwiązania: dostosowanie metody uczenia maszynowego do reprezentacji grafowej Pomysł od Jakuba Waszczuka - CRFy

Poziom pewności ujednoznaczniania morfosyntaktycznego

Concraft - marginals

Problem lematyzacji

Tagery języka polskiego – analiza jakościowa

Dyskusja i rekomendacje

Różne tagsety dla języka polskiego?

Obecnie funkcjonują równolegle dwa tagsety języka polskiego

- tagset NKJP, używany do anotacji korpusu, a także w większości innych zasobów językowych,
- tagset SGJP, używany w słowniku Morfologicznym i w Morfeuszu.

Skutkuje to sytuacją, w której w sposób niejawny dokonywana jest ciągła konwersja pomiędzy tagsetami:

```
tagset_from=sgjp
                       tagset_from=morfeusz2; tagset_to=nkjp
tagset_to=nkjp
                       override=dig:num; override=nie:conj
override=n1:n
                       override=romandig:num
override=n2:n
                       override=prefa:ign
override=n3:n
                       override=prefppas:ign
override=p1:m1
                       override=prefs:ign; override=prefv:ign
                       override=naj:ign; override=cond:ign
override=p2:n
override=p3:n
                       override=substa:ign
```

Struktura danych treningowych w NKJP1M

TODO

Podziękowania

Podziękowania za sugestie i uwagi dla:

- Adama Radziszewskiego
- Jakuba Waszczuka
- Szymona Acedańskiego

Dziękujemy za uwagę!

Bibliografia I

陯 Acedański, Szymon, 2010.

A morphosyntactic Brill tagger for inflectional languages.

In Advances in Natural Language Processing.

Brill, Eric and Jun Wu, 1998.

Classifier combination for improved lexical disambiguation.

In Proceedings of the 17th international conference on Computational linguistics - Volume 1, COLING '98. Stroudsburg, PA, USA:

Association for Computational Linguistics.

Bibliografia II

Śniatowski, Tomasz and Maciej Piasecki, 2012.

Combining Polish morphosyntactic taggers.

In Pascal Bouvry, Mieczysław A. Kłopotek, Franck Leprévost, Małgorzata Marciniak, Agnieszka Mykowiecka, and Henryk Rybiński (eds.), Security and Intelligent Information Systems, volume 7053 of LNCS. Springer-Verlag.

Radziszewski, Adam, 2013.

A tiered CRF tagger for Polish.

In R. Bembenik, Ł. Skonieczny, H. Rybiński, M. Kryszkiewicz, and M. Niezgódka (eds.), Intelligent Tools for Building a Scientific Information Platform: Advanced Architectures and Solutions. Springer Verlag.

Bibliografia III

Radziszewski, Adam and Szymon Acedański, 2012.

Taggers gonna tag: an argument against evaluating disambiguation capacities of morphosyntactic taggers.

In Proceedings of TSD 2012, LNCS. Springer-Verlag.

Radziszewski. Adam and Tomasz Śniatowski. 2011a.

A Memory-Based Tagger for Polish.

In Proceedings of the LTC 2011.

van Halteren, Hans, Walter Daelemans, and Jakub Zavrel, 2001.

Improving accuracy in word class tagging through the combination of machine learning systems.

Comput. Linguist., 27(2):199-229.

Bibliografia IV

Waszczuk, Jakub, 2012.

Harnessing the CRF complexity with domain-specific constraints. The case of morphosyntactic tagging of a highly inflected language. In Proceedings of the 24th International Conference on Computational

Linguistics (COLING 2012). Mumbai, India.