148. Последовательность чисел x_n ($n=1, 2, \ldots$) определяется следующими формулами:

$$x_1 = a, x_2 = b, x_n = \frac{x_{n-1} + x_{n-2}}{2} (n = 3, 4, ...)$$

Найти lim x_n.

149 (н). Пусть x_n ($n=1, 2, \ldots$) — последовательность чисел, определяемая следующей формулой:

$$x_0 > 0$$
, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right)$ $(n = 0, 1, 2, \dots)$.

Доказать, что $\lim_{n\to\infty} x_n = 1$.

150. Доказать, что последовательности x_n и y_n ($n=1, 2, \ldots$), определяемые следующими формулами:

$$x_1 = a$$
, $y_1 = b$, $x_{n+1} = \sqrt{x_n y_n}$, $y_{n+1} = \frac{x_n + y_n}{2}$,

имеют общий предел

$$\mu(a, b) = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$$

(арифметико-геометрическое среднее чисел а и b).

§ 3. Понятие функции

1°. По нятие функции. Переменная у называется однозначной функцией f, от переменной x в данной области изменения $X=\{x\}$, если каждому значенню $x\in X$ ставится в соответствие одно определенное действительное значение $y=\{(x),$ принадлежащее некоторому множеству $Y=\{y\}$.

Множество X носит название области опребеления или области существования функции f (x); Y называется множеством

значений этой функции.

В простейших случаях множество X представляет собой или открытый промежуток (интервал)]a, b[=(a, b): a < x < b или полуоткрытые промежутки

$$[a, b] = (a, b]: a < x \le b, [a, b] = [a, b): a \le x < b,$$

или замкнутый промежуток (сегмент) [a, b]: $a \le x \le b$, где a и b — некоторые вещественные числа или символы — ∞ и $+\infty$ (в последних случаях равенства исключаются). Если каждому значению x из X соответствует одно или несколько значений y = f(x), то y называется многозначной функцией от x.

чений y=f(x), то у называется многозначной функцией от x. 2°. Обратная функция. Если под x понимать

любое значение, удовлетворяющее уравнению

$$f(x) = y$$

где у - фиксированное число, принадлежащее множеству зна-