

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny	
Przedmiot:	Matematyka	
Poziom:	Poziom podstawowy	
	MMAP-P0-100,	
	MMAP-P0-200, MMAP-P0-300,	
Formy arkusza:	MMAP-P0-400, MMAP-P0-600,	
	MMAP-P0-700, MMAP-P0-Q00,	
	MMAP-P0-K00, MMAU-P0-100	
Termin egzaminu:	20 sierpnia 2024 r.	

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2024¹		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: I.7) [] rozwiązuje równania i nierówności typu: [] $ x-2 < 3$.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022, poz.1246).

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	I.1) wykonuje działania ([] potęgowanie
rzeczywistych, także przy użyciu	[]) w zbiorze liczb rzeczywistych.
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 3. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt
uzasadniających poprawność rozumowania,	z dzielenia nie trudniejsze niż dowód
odróżnianie dowodu od przykładu.	podzielności przez 24 iloczynu czterech
	kolejnych liczb naturalnych.

Zasady oceniania

- 2 pkt przekształcenie wyrażenia $(2n+5)^2+3$ do postaci $4(n^2+5n+7)$ *ALBO*
 - przekształcenie wyrażenia $(2n+5)^2+3$ do postaci $4n^2+20n+28$ oraz zapisanie, że składniki $4n^2$, 20n, 28 są podzielne przez 4, *ALBO*
 - przekształcenie wyrażenia $(2n+5)^2+3$ do postaci (2n+4)(2n+6)+4 oraz zapisanie, że liczba (2n+4)(2n+6) jest podzielna przez 4 jako iloczyn dwóch liczb parzystych.
- 1 pkt przekształcenie wyrażenia $(2n+5)^2+3$ do postaci $4n^2+20n+25+3$ *ALBO*
 - przekształcenie wyrażenia $(2n+5)^2+3$ do postaci (2n+4)(2n+6)+4.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający sprawdza prawdziwość tezy tylko dla wybranych wartości n, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający przyjmuje np. n=4k+r, gdzie $k\in\mathbb{N}$ i r jest resztą z dzielenia liczby n przez 4 (lub n=2k+r, gdzie $k\in\mathbb{N}$ i r jest resztą z dzielenia liczby n przez 2), i przeprowadzi pełne rozumowanie dla wszystkich przypadków, to otrzymuje **2 punkty**. Gdy przeprowadzi pełne rozumowanie dla co najmniej połowy przypadków, ale nie przeprowadzi pełnego rozumowania dla wszystkich przypadków, to otrzymuje **1 punkt** za całe rozwiązanie.
- **3.** Jeżeli zdający rozpatruje <u>tylko</u> jeden przypadek n=4k, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy równoważnie dane wyrażenie

$$(2n+5)^2 + 3 = 4n^2 + 20n + 25 + 3 = 4n^2 + 20n + 28 = 4(n^2 + 5n + 7)$$

Ponieważ n jest liczbą naturalną, więc n^2+5n+7 jest liczbą naturalną. Zatem liczba $(2n+5)^2+3=4(n^2+5n+7)$ jest podzielna przez 4. To należało wykazać.

Sposób II

Przekształcamy równoważnie dane wyrażenie

$$(2n+5)^2 + 3 = (2n+5)^2 - 1 + 4 = (2n+5-1)(2n+5+1) + 4$$

= $(2n+4)(2n+6) + 4$

Ponieważ n jest liczbą naturalną, więc liczby 2n+4 oraz 2n+6 są parzyste. Stąd wynika, że iloczyn (2n+4)(2n+6) jest liczbą podzielną przez 4. Zatem suma (2n+4)(2n+6)+4 dwóch liczb podzielnych przez 4 jest podzielna przez 4. To należało wykazać.

Zadanie 4. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	I.1) wykonuje działania ([]
Stosowanie obiektów matematycznych	logarytmowanie) w zbiorze liczb
i operowanie nimi, interpretowanie pojęć	rzeczywistych;
matematycznych.	I.9) [] posługuje się wzorami na logarytm
	iloczynu, logarytm ilorazu i logarytm potęgi.

Zasady oceniania

- 2 pkt wybranie dwóch odpowiedzi, z których obie są poprawne.
- 1 pkt wybranie jednej lub dwóch odpowiedzi, z których jedna jest poprawna.
- 0 pkt odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

CE

Zadanie 5. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: III.3) rozwiązuje nierówności liniowe z jedną niewiadomą.	

Zasady oceniania

- 1 pkt odpowiedź poprawna.
- 0 pkt odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	III.6) rozwiązuje równania wymierne postaci	
Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć	$\frac{V(x)}{W(x)} = 0$, gdzie wielomiany $V(x)$ i $W(x)$	
matematycznych.	są zapisane w postaci iloczynowej.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt - odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 7. (0-3)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
4. Stosowanie i tworzenie strategii przy	III.5) rozwiązuje równania wielomianowe	
rozwiązywaniu zadań, również w sytuacjach	postaci $W(x) = 0$ dla wielomianów []	
nietypowych.	takich, które dają się doprowadzić do	
	postaci iloczynowej [] metodą	
	grupowania.	

Zasady oceniania

- 3 pkt poprawna metoda rozwiązania równania i obliczenie wszystkich rozwiązań równania: $(-5), (-\sqrt{2}), \sqrt{2}$.
- 2 pkt przekształcenie lewej strony równania do postaci iloczynu wielomianów stopnia co najwyżej drugiego **oraz** rozwiązanie jednego z równań wynikającego z tego rozkładu, np.:

$$(x+5)(x^2-2) = 0$$
 i $x = -5$,
 $(x+5)(x^2-2) = 0$ i $x = -\sqrt{2}$ oraz $x = \sqrt{2}$
ALBO

– przekształcenie równania $x^3 + 5x^2 - 2x - 10 = 0$ do postaci alternatywy dwóch równań: kwadratowego i liniowego **oraz** rozwiązanie jednego z nich, np.:

$$(x+5=0, \ x^2-2=0)$$
 oraz $x=-5,$ $(x+5=0, \ x^2-2=0)$ oraz $(x=-\sqrt{2}, \ x=\sqrt{2}),$ *ALBO*

- rozłożenie wielomianu $W(x)=x^3+5x^2-2x-10$ na czynniki liniowe: $W(x)=(x+5)(x-\sqrt{2})(x+\sqrt{2}),$ ALBO
- przekształcenie równania $x^3+5x^2-2x-10=0$ do postaci alternatywy trzech równań liniowych: $(x+5=0,\ x-\sqrt{2}=0,\ x+\sqrt{2}=0),$ *ALBO*
- obliczenie jednego z pierwiastków wielomianu $W(x) = x^3 + 5x^2 2x 10$ oraz poprawne podzielenie wielomianu W przez odpowiedni dwumian, np. x = -5 i $(x^3 + 5x^2 2x 10)$: $(x + 5) = x^2 2$.
- 1 pkt zapisanie wielomianu $W(x)=x^3+5x^2-2x-10\,$ w postaci iloczynu wielomianów stopnia co najwyżej drugiego, np. $W(x)=(x+5)(x^2-2)$
 - przekształcenie równania $x^3+5x^2-2x-10=0$ do postaci alternatywy dwóch równań: $(x+5=0,\ x^2-2=0),$ *ALBO*
 - przekształcenie równania $x^3+5x^2-2x-10=0$ do postaci $x^2(x+5)-2(x+5)=0$ lub do postaci $x^2(x+5)=2(x+5)$, lub do postaci $x(x^2-2)=-5(x^2-2)$ oraz zapisanie rozwiązania x=-5, *ALBO*
 - zapisanie jednego z rozwiązań równania $x^3 + 5x^2 2x 10 = 0$ oraz zapisanie sprawdzenia, że ta liczba spełnia to równanie.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisze tylko trzy poprawne rozwiązania równania, to otrzymuje **1 punkt** za całe rozwiązanie.
- **2.** Jeżeli zdający uzyska trzy poprawne pierwiastki wielomianu, lecz traktuje równanie jako nierówność (podaje zbiór rozwiązań w postaci przedziału / sumy przedziałów), to otrzymuje **2 punkty** za całe rozwiązanie.
- **3.** Jeżeli przy przekształcaniu lewej strony równania do postaci iloczynu zdający zapisuje czynnik (x + 5) z wykładnikiem 2, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania $(x + 5)^2 = 0$ i **1 punkt** za rozwiązanie równania $x^2 2 = 0$).
- **4.** Jeżeli zdający zamiast równania $(x+5)(x^2-2)=0$ zapisze $(x+5)\pm(x^2-2)=0$, ale z dalszego rozwiązania wynika, że traktuje lewą stronę równania jak iloczyn i rozwiąże zadanie do końca, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania x+5=0 i **1 punkt** za rozwiązanie równania $x^2-2=0$).
- **5.** Jeżeli zdający przy przekształcaniu równania do postaci $(x+5)(x^2-2)=0$ popełni błąd i zapisze:

$$x^{2}(x-5) - 2(x+5) = 0$$
lub
$$x^{2}(x+5) + 2(x+5) = 0$$
lub

$$x^{2}(x+5) - 2(x-5) = 0$$

lub
 $x(x^{2}+2) + 5(x^{2}-2) = 0$
lub
 $x(x^{2}-2) - 5(x^{2}-2) = 0$
lub
 $x(x^{2}-2) + 5(x^{2}+2) = 0$
a następnie:

- **5.1.** zapisze równanie $(x+5)(x^2-2)=0$ lub poprawną alternatywę (x+5=0) lub $x^2-2=0$) i konsekwentnie rozwiąże zadanie do końca, to otrzymuje co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania x+5=0 i **1 punkt** za rozwiązanie równania $x^2-2=0$).
- **5.2.** zapisze równanie $(x + 5)(x^2 + 2) = 0$ lub błędną alternatywę $(x + 5 = 0 \text{ lub } x^2 + 2 = 0)$ i rozwiąże poprawnie równanie x + 5 = 0, to otrzymuje **1 punkt** za całe rozwiązanie.
- **5.3.** zapisze równanie $(x-5)(x^2-2)=0$ lub błędną alternatywę (x-5=0) lub $x^2-2=0$) i rozwiąże poprawnie równanie $x^2-2=0$, to otrzymuje **1 punkt** za całe rozwiązanie.
- **5.4.** zapisze błędne równanie (w którym jedna ze stron jest równa 0, a druga jest iloczynem wielomianów stopni dodatnich), inne niż w uwagach 5.2 oraz 5.3, np. $(x-5)(x+5)(x^2\pm 2)=0$ lub błędną alternatywę inną niż w uwagach 5.2 oraz 5.3, np. (x-5=0) lub x+5=0 lub $x^2\pm 2=0$, to otrzymuje **0 punktów** za całe rozwiązanie.
- **6.** Jeżeli zdający, przekształcając równanie $x^3 + 5x^2 2x 10 = 0$, popełni jeden błąd (który nie jest błędem znaku) albo dwa błędy znaku i otrzyma równanie trzeciego stopnia, które ma trzy rozwiązania rzeczywiste, oraz konsekwentnie rozwiąże zadanie do końca, to otrzymuje **1 punkt** za całe rozwiązanie.
- **7.** Jeżeli zdający dzieli obustronnie równanie $x^2(x+5) = 2(x+5)$ przez dwumian (x+5) z podaniem odpowiedniego założenia i uzyska tylko dwa poprawne rozwiązania $x=\sqrt{2}$ oraz $x=-\sqrt{2}$, to otrzymuje **2 punkty** za całe rozwiązanie, a jeżeli uzyska tylko jedno z tych rozwiązań, to otrzymuje **1 punkt** za całe rozwiązanie.
- **8.** Jeżeli zdający dzieli obustronnie równanie $x^2(x+5)=2(x+5)$ przez dwumian (x+5) bez podania odpowiedniego założenia i uzyska tylko dwa poprawne rozwiązania $x=\sqrt{2}$ oraz $x=-\sqrt{2}$, to otrzymuje **1 punkt** za całe rozwiązanie, a jeżeli uzyska tylko jedno z tych rozwiązań, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$x^{3} + 5x^{2} - 2x - 10 = 0$$
$$x^{2}(x+5) - 2(x+5) = 0$$
$$(x+5)(x^{2} - 2) = 0$$

$$(x+5)(x-\sqrt{2})(x+\sqrt{2}) = 0$$

 $x+5=0$ lub $x-\sqrt{2}=0$ lub $x+\sqrt{2}=0$
 $x=-5$ lub $x=\sqrt{2}$ lub $x=-\sqrt{2}$

Rozwiązaniami równania są liczby: (-5), $\left(-\sqrt{2}\right)$, $\sqrt{2}$.

Sposób II

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$x^{3} + 5x^{2} - 2x - 10 = 0$$

$$x(x^{2} - 2) + 5(x^{2} - 2) = 0$$

$$(x + 5)(x^{2} - 2) = 0$$

$$(x + 5)(x - \sqrt{2})(x + \sqrt{2}) = 0$$

$$x + 5 = 0 \quad \text{lub} \quad x - \sqrt{2} = 0 \quad \text{lub} \quad x + \sqrt{2} = 0$$

$$x = -5 \quad \text{lub} \quad x = \sqrt{2} \quad \text{lub} \quad x = -\sqrt{2}$$

Rozwiązaniami równania są liczby: (-5), $(-\sqrt{2})$, $\sqrt{2}$.

Sposób III

Obliczamy W(-5) = 0 i stwierdzamy, że liczba (-5) jest pierwiastkiem wielomianu $W(x) = x^3 + 5x^2 - 2x - 10$.

Zatem wielomian W jest podzielny przez dwumian (x+5). Dzielimy wielomian W przez dwumian (x+5) i otrzymujemy

$$(x^3 + 5x^2 - 2x - 10) : (x + 5) = x^2 - 2$$

Zatem
$$W(x) = (x+5)(x^2-2) = (x+5)(x-\sqrt{2})(x+\sqrt{2})$$
.

Obliczamy pierwiastki wielomianu W:

$$(x+5)(x-\sqrt{2})(x+\sqrt{2}) = 0$$

 $x+5=0$ lub $x-\sqrt{2}=0$ lub $x+\sqrt{2}=0$
 $x=-5$ lub $x=\sqrt{2}$ lub $x=-\sqrt{2}$

Rozwiązaniami równania są liczby: $(-5), \ \left(-\sqrt{2}\right), \ \sqrt{2}$.

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie	IV.1) rozwiązuje układy równań liniowych
informacjami przedstawionymi w tekście,	z dwiema niewiadomymi, podaje
zarówno matematycznym, jak	interpretację geometryczną układów
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	oznaczonych [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 9. (0-2)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie	V.3) odczytuje i interpretuje wartości funkcji	
informacjami przedstawionymi w tekście,	określonych za pomocą tabel [].	
zarówno matematycznym, jak		
i popularnonaukowym, a także w formie		
wykresów, diagramów, tabel.		

Zasady oceniania

2 pkt – dwie poprawne odpowiedzi.

1 pkt – jedna poprawna odpowiedź.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

С

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.	Zdający: V.5) interpretuje współczynniki występujące
Stosowanie obiektów matematycznych	we wzorze funkcji liniowej;
i operowanie nimi, interpretowanie pojęć	V.11) wykorzystuje własności funkcji
matematycznych.	liniowej [] do interpretacji zagadnień geometrycznych [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 $\frac{1}{2}$

Zadanie 11.1. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymagania szczegółowe	
II. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie	V.1) określa funkcje jako jednoznaczne	
informacjami przedstawionymi w tekście,	przyporządkowanie za pomocą opisu	
zarówno matematycznym, jak	słownego [];	
i popularnonaukowym, a także w formie	V.3) odczytuje i interpretuje wartości funkcji	
wykresów, diagramów, tabel.	[];	
	V.11) wykorzystuje własności funkcji	
	liniowej [] do interpretacji zagadnień	
	geometrycznych, fizycznych itp., także	
	osadzonych w kontekście praktycznym.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

FΡ

Zadanie 11.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.1) określa funkcje jako jednoznaczne
informacjami przedstawionymi w tekście,	przyporządkowanie za pomocą opisu
zarówno matematycznym, jak	słownego [];
i popularnonaukowym, a także w formie	V.3) odczytuje i interpretuje wartości funkcji
wykresów, diagramów, tabel.	[];
	V.11) wykorzystuje własności funkcji
	liniowej [] do interpretacji zagadnień
	geometrycznych, fizycznych itp., także
	osadzonych w kontekście praktycznym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 11.3. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.1) określa funkcje jako jednoznaczne
informacjami przedstawionymi w tekście,	przyporządkowanie za pomocą opisu
zarówno matematycznym, jak	słownego [];
i popularnonaukowym, a także w formie	V.6) wyznacza wzór funkcji liniowej na
wykresów, diagramów, tabel.	podstawie informacji o jej wykresie lub o jej
	własnościach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 12.1. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji. 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	Zdający: V.4) odczytuje z wykresu funkcji: [] zbiór wartości [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 12.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.11) wykorzystuje własności funkcji []
informacjami przedstawionymi w tekście,	kwadratowej do interpretacji zagadnień
zarówno matematycznym, jak	geometrycznych [].
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 12.3. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
2. Używanie języka matematycznego do	V.9) wyznacza wzór funkcji kwadratowej na
tworzenia tekstów matematycznych, w tym	podstawie informacji [] o jej wykresie.
do opisu prowadzonych rozumowań	
i uzasadniania wniosków, a także do	
przedstawiania danych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VI.1) oblicza wyrazy ciągu określonego wzorem ogólnym; VI.4) stosuje wzór [] na sumę <i>n</i> początkowych wyrazów ciągu arytmetycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 14. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VI.5) stosuje wzór na <i>n</i> -ty wyraz [] ciągu geometrycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.2) w prostych przypadkach bada, czy
2. Dobieranie i tworzenie modeli	ciąg jest rosnący, czy malejący;
matematycznych przy rozwiązywaniu	VI.6) wykorzystuje własności ciągów []
problemów praktycznych i teoretycznych.	arytmetycznych [] do rozwiązywania
	zadań [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

A2

Zadanie 16. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VII.2) korzysta z wzorów $\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 17. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VII.4) oblicza kąty trójkąta i długości jego
rozwiązywaniu zadań, również w sytuacjach nietypowych.	boków przy odpowiednich danych [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 18. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VII.4) oblicza kąty trójkąta i długości jego
1. Stosowanie obiektów matematycznych	boków przy odpowiednich danych
i operowanie nimi, interpretowanie pojęć	(rozwiązuje trójkąty m.in. z wykorzystaniem
matematycznych.	twierdzenia cosinusów).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	VIII.5) stosuje własności kątów wpisanych
kilkuetapowych, podawanie argumentów	i środkowych.
uzasadniających poprawność rozumowania,	
odróżnianie dowodu od przykładu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 20. (0-2)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne Wymaganie szczegółowe		
IV. Rozumowanie i argumentacja.	Zdający:	
4. Stosowanie i tworzenie strategii przy	VIII.8) korzysta z cech podobieństwa	
rozwiązywaniu zadań, również w sytuacjach trójkątów.		
nietypowych.		

Zasady oceniania

2 pkt – poprawna metoda i obliczenie długości odcinka BE: |BE| = 20.

1 pkt – obliczenie długości odcinka DE: |DE| = 8 ALBO

– obliczenie długości odcinka AE: |AE| = 16.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeżeli zdający zapisze tylko |BE|=20 albo stosując błędną metodę, uzyskuje |BE|=20, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Trójkąty ABE oraz DCE są podobne na podstawie cechy kąt – kąt podobieństwa trójkątów. Stąd

$$\frac{|AE|}{|AB|} = \frac{|DE|}{|CD|}$$

$$\frac{|AE|}{12} = \frac{24 - |AE|}{6}$$

$$|AE| = 48 - 2|AE|$$

$$3|AE| = 48$$

$$|AE| = 16$$

Korzystamy z twierdzenia Pitagorasa i obliczamy długość odcinka BE:

$$|BE|^2 = |AB|^2 + |AE|^2$$

 $|BE|^2 = 12^2 + 16^2$
 $|BE|^2 = 400$
 $|BE| = 20$

Sposób II

Trójkąty ABE jest podobny do trójkąta DCE (na podstawie cechy kąt – kąt – kąt podobieństwa trójkątów) w skali $k=\frac{12}{6}=2$. Stąd |AE|=2|DE|.

Obliczamy długość odcinka AE:

$$|AD| = 24$$
 $|AE| + |DE| = 24$
 $2|DE| + |DE| = 24$
 $3|DE| = 24$
 $|DE| = 8$
 $|AE| = 2|DE| = 16$

Korzystamy z twierdzenia Pitagorasa i obliczamy długość odcinka BE:

$$|BE|^2 = |AB|^2 + |AE|^2$$

 $|BE|^2 = 12^2 + 16^2$
 $|BE|^2 = 400$
 $|BE| = 20$

Zadanie 21. (0-4)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymagania szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
4. Stosowanie i tworzenie strategii przy	IX.1) [] znajduje wspólny punkt dwóch	
rozwiązywaniu zadań, również w sytuacjach	prostych [];	
nietypowych.	IX.2) posługuje się równaniem prostej na	
	płaszczyźnie w postaci kierunkowej, w tym	
	wyznacza równanie prostej o zadanych	
	własnościach (takich jak na przykład []	
	równoległość [] do innej prostej []).	

Zasady oceniania

- 4 pkt poprawna metoda obliczenia współrzędnych punktu B oraz podanie poprawnego wyniku: B = (6, 2).
- 3 pkt wyznaczenie równania prostej BC: y = 2x 10
 - obliczenie współrzędnych punktu D: D=(12,20), ALBO
 - obliczenie współrzędnych punktu A: A=(2,0) oraz obliczenie współrzędnych środka M_{AB} boku AB: $M_{AB}=(4,1)$, ALBO
 - obliczenie współrzędnych punktu C: C=(16,22) oraz obliczenie współrzędnych środka M_{BC} boku BC: $M_{BC}=(11,12)$, ALBO
 - zapisanie układu równań pozwalającego obliczyć jedną ze współrzędnych punktu B, np.:

$$\frac{x_b + x_d}{2} = 9 \text{ oraz } \frac{\frac{1}{2}x_b - 1 + 2x_d - 4}{2} = 11,$$

$$\frac{x_b + x_d}{2} = 9 \text{ oraz } \frac{y_b + y_d}{2} = 11 \text{ oraz } y_b = \frac{1}{2}x_b - 1 \text{ oraz } y_d = 2x_d - 4.$$

- 2 pkt obliczenie współrzędnych punktu C: C = (16, 22)
 - obliczenie współrzędnych środka $\it M_{AB}$ boku $\it AB$: $\it M_{AB}=(4,1),$ $\it ALBO$
 - obliczenie współrzędnych środka $\it M_{BC}$ boku $\it BC$: $\it M_{BC}=(11,12)$, $\it ALBO$
 - obliczenie współrzędnych punktu A: A=(2,0) oraz wyznaczenie równania prostej SM_{AB} (gdzie M_{AB} jest środkiem boku AB): y=2x-7, ALBO

- obliczenie współrzędnych punktu A: A=(2,0) oraz obliczenie współrzędnych środka M_{AD} boku AD: $M_{AD}=(7,10)$, ALBO
- zapisanie zależności pomiędzy odpowiednimi współrzędnymi punktów B, D oraz S: $\frac{x_b + x_d}{2} = 9 \quad \text{oraz} \quad \frac{y_b + y_d}{2} = 11 \quad \text{oraz} \quad \text{zapisanie współrzędnych punktu} \quad B$ w zależności od jednej zmiennej $(x_b \quad \text{lub} \quad y_b)$, np. $B = \left(x_b, \frac{1}{2}x_b 1\right)$, ALBO
- zapisanie zależności pomiędzy odpowiednimi współrzędnymi punktów B, D oraz S: $\frac{x_b+x_d}{2}=9 \quad \text{oraz} \quad \frac{y_b+y_d}{2}=11 \quad \text{oraz} \quad \text{zapisanie współrzędnych punktu} \quad D$ w zależności od jednej zmiennej $(x_d \quad \text{lub} \quad y_d)$, np. $D=(x_d, \ 2x_d-4)$, ALBO
- zapisanie współrzędnych punktu B w zależności od jednej zmiennej $(x_b \mid \text{lub} \mid y_b)$ oraz zapisanie współrzędnych punktu D w zależności od jednej zmiennej $(x_d \mid \text{lub} \mid y_d)$, np. $B = \left(x_b, \frac{1}{2}x_b 1\right)$ oraz $D = (x_d, 2x_d 4)$.
- 1 pkt obliczenie współrzędnych punktu A: A = (2,0)
 - ALBO
 - wyznaczenie równania prostej SM_{AB} (gdzie M_{AB} jest środkiem odcinka AB): y=2x-7, ALBO
 - obliczenie współrzędnych środka M_{AD} boku AD: $M_{AD}=(7,10)$,
 - zapisanie zależności pomiędzy odpowiednimi współrzędnymi punktów $B,\ D$ oraz S: $\frac{x_b+x_d}{2}=9 \quad \text{oraz} \quad \frac{y_b+y_d}{2}=11,$ ALBO
 - zapisanie współrzędnych punktu B w zależności od jednej zmiennej, np. $B=\left(x_b,\ \frac{1}{2}x_b-1\right),$ ALBO
 - zapisanie współrzędnych punktu D w zależności od jednej zmiennej, np. $D=(x_d,\ 2x_d-4).$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeżeli jedynym błędem zdającego jest:

- a) zastosowanie niepoprawnego wzoru na współczynnik kierunkowy prostej
- b) zastosowanie niepoprawnego związku między współczynnikami kierunkowymi prostych równoległych
- c) zastosowanie niepoprawnego wzoru na współrzędne środka odcinka, i rozwiązanie zostanie doprowadzone konsekwentnie do końca, to zdający może otrzymać **2 punkty** za całe rozwiązanie. Jeżeli zdający popełni więcej niż jeden z wymienionych błędów a)–c), to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Punkt A jest punktem wspólnym prostych AB i AD, zatem współrzędne tego punktu są rozwiązaniem układu równań

$$\begin{cases} y = \frac{1}{2}x - 1\\ y = 2x - 4 \end{cases}$$

Stad

$$2x - 4 = \frac{1}{2}x - 1$$
$$\frac{3}{2}x = 3$$
$$x = 2$$
$$y = 0$$

Zatem A = (2, 0).

Punkt S jest środkiem odcinka AC, więc

$$\frac{2+x_c}{2} = 9 \quad \text{oraz} \quad \frac{0+y_c}{2} = 11$$
$$x_c = 16 \quad \text{oraz} \quad y_c = 22$$

Zatem C = (16, 22).

Prosta BC jest równoległa do prostej AD, zatem współczynnik kierunkowy prostej BC jest równy 2. Wyznaczamy równanie prostej BC:

$$y = 2(x - 16) + 22$$
$$y = 2x - 10$$

Punkt B jest punktem wspólnym prostych AB i BC, zatem współrzędne tego punktu są rozwiązaniem układu równań

$$\begin{cases} y = \frac{1}{2}x - 1\\ y = 2x - 10 \end{cases}$$

Stad

$$2x - 10 = \frac{1}{2}x - 1$$
$$\frac{3}{2}x = 9$$
$$x = 6$$
$$y = 2$$

Zatem B = (6, 2).

Sposób II

Punkt A jest punktem wspólnym prostych AB i AD, zatem współrzędne tego punktu są rozwiązaniem układu równań

$$\begin{cases} y = \frac{1}{2}x - 1\\ y = 2x - 4 \end{cases}$$

Stad

$$2x - 4 = \frac{1}{2}x - 1$$
$$\frac{3}{2}x = 3$$
$$x = 2$$
$$y = 0$$

Zatem A = (2,0).

Oznaczmy przez M_{AB} środek odcinka AB. Prosta SM_{AB} jest równoległa do prostej AD, zatem współczynnik kierunkowy prostej SM_{AB} jest równy 2.

Wyznaczamy równanie prostej SM_{AB} :

$$y = 2(x - 9) + 11$$
$$y = 2x - 7$$

Punkt M_{AB} jest punktem wspólnym prostych AB i SM_{AB} , zatem współrzędne tego punktu są rozwiązaniem układu równań

$$\begin{cases} y = \frac{1}{2}x - 1\\ y = 2x - 7 \end{cases}$$

Stąd

$$2x - 7 = \frac{1}{2}x - 1$$
$$\frac{3}{2}x = 6$$
$$x = 4$$
$$y = 1$$

Zatem $M_{AB} = (4, 1)$.

Punkt M_{AB} jest środkiem odcinka AB, więc

$$\frac{2+x_b}{2} = 4 \text{ oraz } \frac{0+y_b}{2} = 1$$
$$x_b = 6 \text{ oraz } y_b = 2$$

Zatem B = (6, 2).

Sposób III

Punkt B leży na prostej o równaniu $y = \frac{1}{2}x - 1$, stąd $y_b = \frac{1}{2}x_b - 1$.

Punkt D leży na prostej o równaniu y=2x-4, stąd $y_d=2x_d-4$.

Punkt S jest środkiem odcinka BD, więc

$$\frac{x_b + x_d}{2} = 9$$
 oraz $\frac{y_b + y_d}{2} = 11$

Zatem

$$\frac{x_b + x_d}{2} = 9 \text{ oraz } \frac{\frac{1}{2}x_b - 1 + 2x_d - 4}{2} = 11$$

$$x_b + x_d = 18 \text{ oraz } \frac{1}{2}x_b + 2x_d = 27$$

$$x_d = 18 - x_b \text{ oraz } \frac{1}{2}x_b + 2(18 - x_b) = 27$$

Stąd otrzymujemy

$$-\frac{3}{2}x_b = -9$$

$$x_b = 6$$

$$y_b = \frac{1}{2}x_b - 1 = \frac{1}{2} \cdot 6 - 1 = 2$$

Zatem B = (6, 2).

Zadanie 22. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: IX.2) posługuje się równaniem prostej na płaszczyźnie w postaci kierunkowej, w tym wyznacza równanie prostej o zadanych własnościach (takich jak na przykład [] równoległość [] do innej prostej []).	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 23. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: IX.4) posługuje się równaniem okręgu $(x-a)^2+(y-b)^2=r^2$.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 24. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	Zdający:	
Interpretowanie i operowanie	XI.1) zlicza obiekty w prostych sytuacjach	
informacjami przedstawionymi w tekście,	kombinatorycznych.	
zarówno matematycznym, jak		
i popularnonaukowym, a także w formie		
wykresów, diagramów, tabel.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 25. (0-1)

Wymagania egzaminacyjne 2024			
Wymaganie ogólne Wymaganie szczegółowe			
II. Wykorzystanie i tworzenie informacji.	Zdający:		
1. Interpretowanie i operowanie X.4) oblicza [] pola powierzchni			
informacjami przedstawionymi w tekście,	graniastosłupów [].		
zarówno matematycznym, jak			
popularnonaukowym, a także w formie			
wykresów, diagramów, tabel.			

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 26. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	X.3) rozpoznaje w graniastosłupach []	
2. Dobieranie i tworzenie modeli	kąty między odcinkami (np. krawędziami,	
matematycznych przy rozwiązywaniu	krawędziami i przekątnymi), oblicza miary	
problemów praktycznych i teoretycznych.	tych kątów.	
	VIII.11) stosuje funkcje trygonometryczne	
	do wyznaczania długości odcinków [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 27. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: XI.1) zlicza obiekty w prostych sytuacjach kombinatorycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 28. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach	XII.2) oblicza średnią arytmetyczną [].	
rzeczywistych, także przy użyciu		
kalkulatora, stosowanie praw działań		
matematycznych przy przekształcaniu		
wyrażeń algebraicznych oraz		
wykorzystywanie tych umiejętności przy		
rozwiązywaniu problemów w kontekstach		
rzeczywistych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 29. (0-2)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: XII.1) oblicza prawdopodobieństwo w modelu klasycznym.	

Zasady oceniania

- 2 pkt zastosowanie poprawnej metody obliczenia prawdopodobieństwa zdarzenia A i uzyskanie poprawnego wyniku: $P(A)=\frac{4}{15}$.
- 1 pkt wypisanie wszystkich zdarzeń elementarnych lub obliczenie/podanie liczby tych zdarzeń: $|\Omega|=5\cdot3$, lub sporządzenie tabeli o 15 polach odpowiadających zdarzeniom elementarnym, z których co najmniej jedno pole jest wypełnione, lub sporządzenie pełnego drzewa stochastycznego *ALBO*
 - wypisanie (lub zaznaczenie w tabeli) wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A i niewypisanie żadnego niewłaściwego,
 ALBO
 - podanie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=4, o ile nie zostały zliczone błędne pary, ALBO
 - sporządzenie fragmentu drzewa stochastycznego, który zawiera wszystkie gałęzie sprzyjające zdarzeniu A oraz zapisanie prawdopodobieństwa na co najmniej jednym odcinku każdego z etapów doświadczenia, ALBO
 - podanie prawdopodobieństwa jednoelementowego zdarzenia (elementarnego): $\frac{1}{15}$,
 - zapisanie tylko $P(A) = \frac{4}{15}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeżeli zdający zapisuje tylko liczby 4 lub 15 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (x, y), gdzie $x \in \{0, 4, 5, 7, 9\}$ oraz $y \in \{1, 2, 3\}$.

Liczbę wszystkich zdarzeń elementarnych obliczamy, korzystając z reguły mnożenia.

Moc zbioru Ω jest równa $5 \cdot 3 = 15$.

Zdarzeniu A sprzyjają następujące zdarzenia elementarne: (7,3),(9,1),(9,2),(9,3), więc moc zbioru A jest równa 4.

Zatem prawdopodobieństwo zdarzenia A jest równe $\frac{4}{15}$.

Sposób II

W tabeli literą A zaznaczamy zdarzenia elementarne sprzyjające zdarzeniu A (pary liczb, których suma jest liczbą większą od 9).

C	0	4	5	7	9
1					Α
2					A
3				Α	A

Moc zbioru Ω jest równa 15.

Zdarzeń sprzyjających wylosowaniu liczb, których suma jest większa od 9, jest 4.

Zatem prawdopodobieństwo zdarzenia A jest równe $\frac{4}{15}$.

Sposób III (drzewo stochastyczne)

Rysujemy fragment drzewa stochastycznego rozważanego doświadczenia z uwzględnieniem wszystkich istotnych gałęzi.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{1}{5} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{3} = \frac{4}{15}$$

Zadanie 30. (0-3)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.	Zdający: XIII) rozwiązuje zadania optymalizacyjne	
Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	w sytuacjach dających się opisać funkcją kwadratową.	

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody i poprawny wynik: x=4, y=8, najmniejsza wartość wyrażenia $2x^2+y^2$ jest równa 96.
- 2 pkt zapisanie poprawnego wzoru opisującego wyrażenie $2x^2+y^2$ jako funkcję zmiennej x, np. $f(x)=2x^2+(12-x)^2$ oraz obliczenie argumentu, dla którego ta funkcja przyjmuje wartość najmniejszą: x=4 ALBO
 - zapisanie poprawnego wzoru opisującego wyrażenie $2x^2 + y^2$ jako funkcję zmiennej x, np. $f(x) = 2x^2 + (12 x)^2$ oraz obliczenie wartości najmniejszej tej funkcji: 96, *ALBO*
 - zapisanie poprawnego wzoru opisującego wyrażenie $2x^2+y^2$ jako funkcję zmiennej y, np. $f(y)=2(12-y)^2+y^2$ oraz obliczenie argumentu, dla którego ta funkcja przyjmuje wartość najmniejszą: y=8, ALBO
 - zapisanie poprawnego wzoru opisującego wyrażenie $2x^2 + y^2$ jako funkcję zmiennej y, np. $f(y) = 2(12 y)^2 + y^2$ oraz obliczenie wartości najmniejszej tej funkcji: 96.
- 1 pkt zapisanie poprawnego wzoru opisującego wyrażenie $2x^2 + y^2$ jako funkcję jednej zmiennej, np.: $f(x) = 2x^2 + (12 x)^2$, $f(y) = 2(12 y)^2 + y^2$.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisze poprawnie wyrażenie $2x^2 + y^2$ jako funkcję f jednej zmiennej i otrzyma wartość pierwszej współrzędnej wierzchołka paraboli zawierającej wykres funkcji f, która leży poza przedziałem [0,12], to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie (za zapisanie wzoru funkcji jednej zmiennej).
- **2.** Jeżeli zdający zapisze poprawnie wyrażenie $2x^2 + y^2$ jako funkcję f jednej zmiennej, a następnie obliczy wartości tej funkcji dla pierwszej współrzędnej wierzchołka i dwóch argumentów leżących symetrycznie względem pierwszej współrzędnej wierzchołka, i nie odwoła się do własności wykresu funkcji kwadratowej, to otrzymuje co najwyżej **2 punkty** za całe rozwiązanie.

- **3.** Jeżeli zdający nie zapisze poprawnie wyrażenia $2x^2 + y^2$ jako funkcji f jednej zmiennej, a jedynie obliczy wartości wyrażenia $2x^2 + y^2$ dla wybranych par liczb x oraz y i na tej podstawie wskazuje najmniejszą wartość wyrażenia $2x^2 + y^2$, to za całe rozwiązanie otrzymuje **0 punktów**, o ile nie nabył prawa do innej liczby punktów.
- **4.** Jeżeli zdający oblicza najmniejszą wartość funkcji f, korzystając z rachunku różniczkowego, i nie uzasadni, że w punkcie będącym miejscem zerowym pochodnej funkcji f jest najmniejsza wartość funkcji f, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.

Za poprawne uzasadnienie, że w punkcie będącym miejscem zerowym pochodnej funkcji f jest najmniejsza wartość funkcji f, można uznać sytuację, gdy zdający bada znak pochodnej (np. szkicując wykres funkcji, która w ten sam sposób jak pochodna zmienia znak, i zaznaczając na rysunku, np. znakami "+" i "-", znak pochodnej) **oraz**:

- -opisuje (słownie lub graficznie np. przy użyciu strzałek) monotoniczność funkcji $\,f\,$ LUB
- zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja $\,f\,\,$ ma minimum lokalne i jest to jednocześnie jej najmniejsza wartość, LUB
- zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja f ma minimum lokalne i jest to jedyne ekstremum tej funkcji.

Przykładowe pełne rozwiązania

Sposób I

Ponieważ x + y = 12, więc y = 12 - x.

Wyrażenie $2x^2+y^2$ zapisujemy jako funkcję f jednej zmiennej x. W tym celu podstawiamy y=12-x i otrzymujemy

$$f(x) = 2x^2 + (12 - x)^2 = 2x^2 + 144 - 24x + x^2 = 3x^2 - 24x + 144$$

Wyznaczamy dziedzinę funkcji f. Z warunków zadania wynika, że

$$x \ge 0$$
 i $y \ge 0$

Zatem

$$x \ge 0$$
 oraz $12 - x \ge 0$
 $x \ge 0$ oraz $x \le 12$

Zmienna x może przyjmować wartości z przedziału [0,12].

Wykresem funkcji f jest fragment paraboli skierowanej ramionami do góry. Obliczamy pierwszą współrzędną wierzchołka paraboli:

$$p = -\frac{-24}{2 \cdot 3} = 4 \in [0, 12]$$

Zatem funkcja f przyjmuje wartość najmniejszą dla argumentu 4.

Wobec tego wartość wyrażenia $2x^2 + y^2$ jest najmniejsza dla x = 4 oraz y = 12 - 4 = 8.

Obliczamy najmniejszą wartość wyrażenia $2x^2 + y^2$:

$$f(4) = 3 \cdot 4^2 - 24 \cdot 4 + 144 = 96$$

Sposób II

Ponieważ x + y = 12, więc x = 12 - y.

Wartość wyrażenia $2x^2 + y^2$ zapisujemy jako funkcję f jednej zmiennej y. W tym celu podstawiamy x = 12 - y i otrzymujemy

$$f(y) = 2(12 - y)^2 + y^2 = 2(144 - 24y + y^2) + y^2 = 288 - 48y + 2y^2 + y^2$$
$$f(y) = 3y^2 - 48y + 288$$

Wyznaczamy dziedzinę funkcji f. Z warunków zadania wynika, że

$$x \ge 0$$
 i $y \ge 0$

Zatem

$$12 - y \ge 0$$
 oraz $y \ge 0$
 $y \le 12$ oraz $y \ge 0$

Zmienna y może przyjmować wartości z przedziału [0, 12].

Wykresem funkcji f jest fragment paraboli skierowanej ramionami do góry. Obliczamy pierwszą współrzędną wierzchołka paraboli:

$$p = -\frac{-48}{2 \cdot 3} = 8 \in [0, 12]$$

Zatem funkcja f przyjmuje wartość najmniejszą dla argumentu 8.

Wobec tego wartość wyrażenia $2x^2 + y^2$ jest najmniejsza dla y = 8 oraz x = 12 - 8 = 4.

Obliczamy najmniejszą wartość wyrażenia $2x^2 + y^2$:

$$f(8) = 3 \cdot 8^2 - 48 \cdot 8 + 288 = 96$$

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. **ogólnych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią – egzamin maturalny z matematyki, poziom podstawowy, termin poprawkowy 2024.

Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania
 - przestawienia cyfr
 - zapisania innej cyfry, ale o podobnym wyglądzie
 - przestawienia położenia przecinka
 - przestawienia położenia znaku liczby.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.

- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania</u> zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

Zadanie 3.

- 1 pkt zastosowanie wzoru skróconego mnożenia do wyrażenia $(2n+5)^2$ ALBO
 - przekształcenie wyrażenia $(2n+5)^2$ do postaci $4n^2+10n+10n+25$.

Zadanie 7.

- 1 pkt przekształcenie wielomianu $x^3+5x^2-2x-10$ do postaci $x^2(x+5)-2(x+5)$ lub $x(x^2-2)+5(x^2-2)$ *ALBO*
 - zapisanie jednego z rozwiazań równania $x^3 + 5x^2 2x 10 = 0$.

Zadanie 10.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 20.

- 1 pkt zapisanie, że trójkąty *ABE* oraz *DCE* są podobne *ALBO*
 - zapisanie równości $|BE|^2 = 12^2 + |AE|^2$.

Zadanie 21.

- 1 pkt poprawne narysowanie w kartezjańskim układzie współrzędnych prostej
 - o równaniu $y = \frac{1}{2}x 1$

ALBO

– poprawne narysowanie w kartezjańskim układzie współrzędnych prostej o równaniu y=2x-4.

Zadanie 29.

1 pkt – zapisanie jedynie liczby 15 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

Uwagi:

- 1. W ocenie rozwiązania tego zadania (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi ze standardowych zasad oceniania.
- 2. Jeżeli zdający poprawnie wypisze/zaznaczy wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, lecz popełni błąd w ich zliczeniu (np. |A|=5) i konsekwentnie zapisze wynik (np. $\frac{5}{15}$), to otrzymuje **2 punkty**.

Zadanie 30.

1 pkt – zapisanie równości x + y = 12.

Uwagi:

- 1. W ocenie rozwiązania tego zadania (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi 2. ze standardowych zasad oceniania.
- 2. Jeżeli zdający nie zapisze poprawnie wyrażenia $2x^2 + y^2$ jako funkcji f jednej zmiennej a jedynie obliczy wartości wyrażenia $2x^2 + y^2$ dla wybranych par liczb x oraz y i na tej podstawie wskazuje najmniejszą wartość wyrażenia $2x^2 + y^2$, to za całe rozwiązanie otrzymuje **2 punkty**. W ocenie rozwiązania tego zadania (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi 3. ze standardowych zasad oceniania.

