Students' Union of Southeast University

附录四 05~07级高等数学(B)(下册)试卷 2005 级高等数学(B)(下)期中试卷

— .	埴空颞 (本题共5小题	. 每小颗4分	. 满分 20 分)
•	今工 (2) \		, 44/11/62 7/1	・ パツノン ゲワ ノン ノ

1. 设
$$a = \{1, 4, 5\}, b = \{1, 1, 2\}$$
 , 若 $(a + \lambda b) \perp (a - \lambda b)$, 则 $\lambda =$ _______ 。

2. 函数
$$u = \ln(x^2 + y^2 + z^2)$$
 在点 $M(1, 2, -2)$ 处的方向导数的最大值是______。

3. 曲线
$$\begin{cases} x^2 + 3z^2 = 9 \\ y = 0 \end{cases}$$
 绕 z 轴旋转一周所生成的旋转曲面的方程为_______。

二. 选择题(本题共4小题,每小题4分,满分16分)

6. 级数
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{\lambda}{n}\right)$$
 (常数 $\lambda > 0$)

[1

]

(D) 敛散性与
$$\lambda$$
的取值有关

7. 已知两直线
$$L_1$$
: $\frac{x-4}{2} = \frac{y+1}{3} = \frac{z+2}{5}$ 和 L_2 : $\frac{x+1}{-3} = \frac{y-1}{2} = \frac{z-3}{4}$,则 L_1 与 L_2 []

8. 设二元函数
$$z = (x, y)$$
 在点 (x, y) 处可微,下列结论不正确的是

(A)
$$f(x,y)$$
在点 (x,y) 连续

(A)
$$f(x,y)$$
在点 (x,y) 连续 (B) $f(x,y)$ 在点 (x,y) 的某邻域内有界

(C)
$$f(x,y)$$
在点 (x,y) 处两个偏导数 $f_x(x,y),f_y(x,y)$ 都存在

(D)
$$f(x,y)$$
在点 (x,y) 处两个偏导数 $f_x(x,y), f_y(x,y)$ 都连续.

9. 设函数
$$f(x) = x^2$$
, $0 \le x < 1$, 而 $S(x) = \sum_{n=1}^{+\infty} b_n \sin n\pi x$, $-\infty < x < +\infty$, 其中

$$b_n = 2\int_0^1 f(x) \sin n\pi x \, dx, (n = 1, 2, \dots), \, \mathbb{N} S\left(-\frac{1}{2}\right) =$$

Students' Union of Southeast University

(A)
$$-\frac{1}{2}$$

(A) $-\frac{1}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{4}$

(D) $\frac{1}{2}$

三. 计算下列各题 (本题共 5 小题,每小题 7 分,满分 35 分)

10. 求点
$$A(4,1,-2)$$
 到直线 $\begin{cases} x-y+z+5=0 \\ 2x+z-4=0 \end{cases}$ 的距离。

- 11. 讨论级数 $\sum_{n=1}^{\infty} \frac{q^n n!}{n^n}$ (q>0) 的敛散性。
- 12. 求 $\sum_{n=1}^{+\infty} \frac{n^2+1}{n} x^n$ 的收敛域及和函数。
- 13. 将 $f(x) = \frac{12-5x}{6-5x-x^2}$ 展成 x 的幂级数。
- 14. 设 $z = f\left(x \sin y, \frac{x}{v}\right)$, f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}$
- **四. (本题满分 7 分)** 试证直线 $\frac{x+3}{5} = \frac{y+1}{2} = \frac{z-2}{4}$ 和直线 $\frac{x-8}{3} = \frac{y-1}{1} = \frac{z-6}{2}$ 相交,并 写出由此两直线决定的平面方程。
- 五. (本题满分 8 分)设z = z(x, y)是由方程 $z^5 xz^4 + yz^3 = 1$ 所确定的隐函数,求 $\frac{\partial^2 z}{\partial \mathbf{r} \partial \mathbf{v}}\Big|_{(0,0)}$.

六.(本题满分 7 分) 设正数列 $\left\{a_n\right\}$ 单调递减,级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,判断级数 $\sum_{n=1}^{\infty} \left(1 - \frac{a_{n+1}}{a_n}\right)$

是否收敛?并给出证明。

七. (本题满分 7 分) 已知 $f_n(x)$ 满足 $f'_n(x) = f_n(x) + x^{n-1} e^x$ (n为正整数), 且 $f_n(1) = \frac{e}{n}$,

求函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 的和函数。

2006 级高等数学 (B)(下)期中试卷

- 一.填空题(本题共5小题,每小题4分,满分20分)
- 1. 设 $\mathbf{a} = \mathbf{m} + \mathbf{n}$, $\mathbf{b} = \mathbf{m} 2\mathbf{n}$, $|\mathbf{m}| = 3$, $|\mathbf{n}| = 2$, $(\mathbf{m}, \mathbf{n}) = \frac{\pi}{3}$, 则以 \mathbf{a} , \mathbf{b} 为边的三角形的面
- 2 . 幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x = -1 处条件收敛 , 幂级数 $\sum_{n=0}^{\infty} n a_n (x-1)^{n-1}$ 的收敛半径

东南大学学牛会

Students' Union of Southeast University

4. 设空间两直线 $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{\lambda}$ 与 x+1 = y-1 = z-7 相交 , 则 $\lambda = \underline{\hspace{1cm}}$;

5.幂级数 $\sum_{n=1}^{\infty} \frac{3^n}{\ln(n+1)} x^n$ 的收敛域为______.

二.选择题(本题共4小题,每小题4分,满分16分)

6. 下列反常积分中收敛的是

(A)
$$\int_{2}^{+\infty} \frac{dx}{x \ln x}$$
 (B) $\int_{0}^{1} \frac{\arctan x}{x^{\frac{5}{2}}} dx$ (C) $\int_{1}^{+\infty} \frac{dx}{x^{\frac{3}{2}} x^{\frac{2}{2}+1}}$ (D) $\int_{1}^{2} \frac{dx}{\ln x}$.

7. 级数 $\sum_{n=1}^{\infty} \sin\left(n\pi + \frac{k\pi}{n}\right) \quad (k \neq 0)$

(D) 敛散性与有关.

(A) 发散 (B)条件收敛

(C)绝对收敛

8. 设 $f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2} \\ 2 - 2x, & \frac{1}{2} < x < 1 \end{cases}$, $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x, -\infty < x < +\infty$,其中 $a_n = 2 \int_0^1 f(x) \cos n\pi x dx \quad (n = 0, 1, 2, \cdots), \quad \text{別 } S\left(-\frac{5}{2}\right) =$

(A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (D) $-\frac{3}{4}$

9. 函数 $f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$ 在(0, 0) 点处

(A)连续且偏导数存在

(B)连续但偏导数不存在

(C) 不连续但偏导数存在

(D) 不连续且偏导数不存在

三. 计算下列各题(本题共5小题,每小题8分,满分40分)

10. 求过点 A(-1,2,3), 垂直于直线 $L:\begin{cases} 5x-2y-2=0\\ 3x-z+2=0 \end{cases}$ 且平行于平面

 $\Pi: 7x + 8y + 9z + 10 = 0$ 的直线方程.

11. 设平面 Π 经过原点及点 A(6,-3,2) , 且与平面 $\Pi_1:4x-y+2z=8$ 垂直 , 求 Π 的方 程.

Students' Union of Southeast University

12.设 f(x,y), g(x,y) 有连续的二阶偏导数,令 $\varphi(x) = f(x,g(x,x^2))$,求 $\frac{d^2\varphi}{dx^2}$.

13.将
$$f(x) = \frac{3x-2}{x^2-2x}$$
 展成 $x-1$ 的幂级数,并写出收敛域.

14. 求级数
$$\sum_{n=1}^{\infty} \frac{1}{1+x^{2n}}$$
 的收敛域.

四 (15).(本题满分 8 分)将 $f(x) = \frac{\pi - x}{2} (0 \le x \le \pi)$ 展成正弦级数.

五 (16).(本题满分 8 分) 求数项级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} \left(\frac{1}{3}\right)^n$$
 的和.

六 .(17)(本题满分 8 分)设级数
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{a} - \sqrt{1 + \frac{1}{n}} \right)$$
, 其中常数 $a > 0$,且 $a \neq 1$,讨论当 a

满足什么条件时,该级数收敛;当a满足什么条件时,该级数发散?

2007 级高等数学(B)(下)期中试卷

一. 单项选择题(本题共 4 小题,每小题 4 分,满分 16 分)

1. 级数
$$\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{a}{\sqrt{n^3}} \right)$$
 (常数 $a > 0$)

- (A) 绝对收敛
- (B) 条件收敛
- (C) 发散
- (D) 敛散性与a的取值有关

2. 下列反常积分发散的是

(A)
$$\int_{1}^{+\infty} \frac{\sqrt{x} \arctan x}{1+x^3} dx$$
 (B) $\int_{1}^{2} \frac{1}{x\sqrt{x^2-1}} dx$ (C) $\int_{2}^{3} \frac{1}{\ln(x-1)} dx$ (D) $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x^3}} dx$

3. 已知直线
$$L_1$$
: $\frac{x-4}{2} = \frac{y+1}{3} = \frac{z+2}{5}$ 与 L_2 : $\frac{x-1}{-3} = \frac{y-1}{2} = \frac{z-3}{4}$,则 L_1 与 L_2

(A)相交

(B) 显面

(C) 平行但不重合

(D) 重合

4. 设函数
$$f(x) = \begin{cases} 1 + x^2, 0 \le x < 1 \\ 0, -1 \le x < 0 \end{cases}$$
 , $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x)$,

 $-\infty < x < +\infty$, 其中 $a_n = \int_{-1}^{1} f(x) \cos n\pi x dx$ $(n = 0, 1, 2, \dots)$,

$$b_n = \int_{-1}^{1} f(x) \sin n\pi x dx \quad (n = 1, 2, \dots) \quad \text{, } \text{.}$$

(A) $\frac{1}{2}$

(B)

(C) (

(D) 2

二.填空题(本题共5小题,每小题4分,满分20分)

Students' Union of Southeast University

5. 若 $2\mathbf{a} - 3\mathbf{b}$ 垂直于 $\mathbf{a} + \mathbf{b}$, 且 $|\mathbf{a}| = \sqrt{2} |\mathbf{b}|$,则 \mathbf{a} 与 \mathbf{b} 的夹角为________;

6. 曲线
$$\begin{cases} 2x^2 + 3y^2 = 4 \\ z = 0 \end{cases}$$
 绕 y 轴旋转一周所成的曲面方程是______;

7. 曲线
$$\begin{cases} 2x^2 + 3y^2 + z^2 = 5 \\ x^2 - y^2 - 2z^2 = 0 \end{cases}$$
 在 yOz 面上的投影曲线方程是______;

9. 幂级数
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} (x-2)^{2n+1}$$
 的收敛域为______.

三. 计算下列各题(本题共 4 小题,每小题 10 分,满分 40 分)

10. 求过点
$$(1,2,1)$$
 且与直线
$$\begin{cases} x+2y-z+1=0\\ x-y+z-1=0 \end{cases}$$
 及直线 $\frac{x}{0}=\frac{y+2}{-1}=-z$ 都平行的平面方程.

11 . 求过点 (-4,6,-2) ,与平面 6x-2y-3z+1=0 平行,且与直线 $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-5}$ 相交的直线方程.

12.将函数
$$f(x) = \ln(2x^2 + x - 3)$$
展开为 $x - 3$ 的幂级数,并求收敛域。

13. 求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} nx^{2n}$$
 的和函数,并指明收敛域.

四 (14).(本题满分 8 分) 求母线平行于向量 $\mathbf{j}+\mathbf{k}$, 准线为 $\begin{cases} 4x^2-y^2=1 \\ z=1 \end{cases}$ 的柱面方程.

五(15)。(本题满分8分)判断级数
$$\sum_{n=1}^{\infty} \int_{n}^{n+1} e^{-\sqrt{x}} dx$$
 的敛散性.

六 (16). (本題满分 8 分) 将函数 $f(x) = \frac{\pi - 2x}{4} (0 \le x \le \pi)$ 展开成正弦级数,并求级数

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$$
 的和.

2005 级高等数学(B)(下)期末试卷

- 一. 填空题(本题共9小题,每小题4分,满分36分)
- 1. 设函数 z = z(x, y) 由方程 $z = xe^{yz}$ 确定,则 dz =

Students' Union of Southeast University

3. 曲面 $e^z + z + xy = 3$ 在点 M(2,1,0) 处的切平面方程为______。

6.
$$\iint_{|x|+|y| \le 1} x (x^2 + \sin y^2) dx dy = \underline{\hspace{1cm}}$$

二. 计算下列各题 (本题共 4 小题,每小题 8 分,满分 32 分)

10. 设
$$z = \int_0^{x^2 y} f(t, e^t) dt$$
 , 其中 f 具有一阶连续偏导数 , 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$.

11. 计算二次积分:
$$\int_0^1 dx \int_{\sqrt{x}}^1 e^{\frac{x}{y}} dy$$

12. 问通过两直线 $\frac{x-2}{1} = \frac{y+2}{-1} = \frac{z-3}{2}$ 和 $\frac{x-1}{-1} = \frac{y+1}{2} = \frac{z-1}{1}$ 能否决定一平面?若能,则求此平面的方程。

13. 设半球体 $\Omega: 0 \le z - 2 \le \sqrt{1 - x^2 - y^2}$ 的密度函数为 $\mu = z$, 试求半球体 Ω 的质量。

三. (14)(本题满分 10 分)设三角形的三边长分别为a、b、c,其面积记为S,试求该三角形内一点到三边距离之乘积的最大值。

四. (15)(本题满分10分)计算第二型曲线积分
$$I = \int_I x \sqrt{x^2 + y^2} dx + y \left(x + \sqrt{x^2 + y^2}\right) dy$$
,

其中 L 是从点 A(2,1) 沿曲线 $y = \sqrt{x-1}$ 到点 B(1,0) 的一段。

五.(16)(本题满分6分)计算第二型曲面积分:

$$\iint_{S} (yf(x, y, z) + x) dy \wedge dz + (xf(x, y, z) + y) dz \wedge dx + (2xyf(x, y, z) + z) dx \wedge dy ,$$

其中 S 是曲面 $z=\frac{1}{2}\left(x^2+y^2\right)$ 介于平面 z=2 与平面 z=8 之间的部分,取上侧, f(x,y,z) 为连续函数。

Students' Union of Southeast University

六. (17)(本题满分 6分)设函数 f(x) 在区间 [a,b] 上连续,且 f(x) > 0, $\int_a^b f(x) dx = A$,

试证: $\int_a^b f(x)e^{f(x)}dx \int_a^b \frac{1}{f(x)}dx \ge (b-a)(b-a+A)$

2006 级高等数学(B)(下)期末试卷

- 一。填空题(本题共10小题,每小题3分,满分30分)
- 1 . 已知曲面 z=xy 上一点 $M_0(x_0,y_0,z_0)$ 处的法线垂直于平面 x+3y+z+9=0 ,则 $x_0=$ _____, $y_0=$ _____;
- 2. 已知三角形 $\triangle ABC$ 的顶点坐标为 A(0,-1,2), B(3,4,5), C(6,7,8) ,则 $\triangle ABC$ 的面积为______;
- 3. 曲线 $\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$ 在点 (1,3,4) 处的法平面为 Π ,则原点到 Π 的距离为______
- 5. 交换积分次序 $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y) dy = _______;$
- 6.设 $\mathbf{r} = \{x, y, z\}, r = \sqrt{x^2 + y^2 + z^2}$,则 $\operatorname{div} \frac{\mathbf{r}}{r^3} = \underline{\hspace{1cm}}$;
- 7. 设正向闭曲线 C: |x|+|y|=1 , 则曲线积分 $\oint_C x^2 y dx + xy^2 dy = ______;$
- 8.设 $f(x) = e^{x^2}$,则 $f^{(2n)}(0) = _____$;
- 9. 设 $f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ 1+x, & 0 < x \le \pi \end{cases}$,则其以 2π 为周期的 Fourier 级数的和函数 S(x) 在点

 $x = 3\pi$ 处收敛于_____;

- 二.(本题共2小题,每小题9分,满分18分)
- 11.计算二重积分 $\iint_D (x^2 + y^2 y) d\sigma$,其中 D 为由 y = x , $y = \frac{1}{2}x$ 及 y = 2 围成的区域。
- 12.计算三重积分 $\iint_{\Omega} \frac{\mathrm{e}^z}{\sqrt{x^2+y^2}} \mathrm{d}v$,其中 Ω 是 yoz 平面上的直线 $z=2y-1, y=\frac{1}{3}$ 以及

东南大学学生会 Students' Union of Southeast University

z=1围成的平面有界区域绕z轴旋转一周得到的空间区域。

三.(本题共2小题,每小题8分,满分16分)

13. 计算曲线积分 $\int_{T}z\mathrm{d}s$, 其中 L 为圆锥螺线 $x=t\cos t$, $y=t\sin t$, z=t $(0\leq t\leq 2\pi)$.

14. 求全微分方程 $(\cos x + 2xy + 1)dx + (x^2 - y^2 + 3)dy = 0$ 的通解.

四 (15)(本题满分 9分)求函数 f(x,y) = xy 在圆周 $(x-1)^2 + y^2 = 1$ 上的最大值和最小值.

五.(16)(本题满分 10 分) 已知流体的流速函数 $\mathbf{v}(x,y,z) = \left\{ y^3 - z^3, z^3 - x^3, 2z^3 \right\}$,求该 流体流过由上半球面 $z=1+\sqrt{1-x^2-y^2}$ 与锥面 $z=\sqrt{x^2+y^2}$ 所围立体表面的外侧的流

六.(17)(本題满分9分) 计算曲线积分 $\int_{\Gamma} \sqrt{x^2 + y^2} dx + y \left(xy + \ln \left(x + \sqrt{x^2 + y^2} \right) \right) dy ,$

其中 Γ 是曲线 $y = \sqrt{x} + 1$ 上从点 A(1,2) 到点 C(0,1) 的部分.

七.(18)(本题满分8分)设函数 $f \in C([0,1])$,且 $0 \le f(x) < 1$,利用二重积分证明不等 式:

$$\int_{0}^{1} \frac{f(x)}{1 - f(x)} dx \ge \frac{\int_{0}^{1} f(x) dx}{1 - \int_{0}^{1} f(x) dx}$$

2007 级高等数学 (B)(下)期末试卷

- 一. 填空题(本题共9小题,每小题4分,满分36分)

- 3. 曲线 $\begin{cases} x+y+z=4 \\ z=x^2+y^2 \end{cases}$ 在点 (1,1,2) 处的切线的方向向量为_____
- 4. 设C为曲线 $\begin{cases} x^2 + y^2 + z^2 = 4z \\ z = 1 \end{cases}$, 则曲线积分 $\oint_C (x^2 + y^2 + z^2) ds =$ ______;
- 5. 交换二次积分的次序 $\int_0^2 dx \int_{-\sqrt{2}x-y^2}^{\sqrt{2}x} f(x,y) dy =$ _______;

Students' Union of Southeast University

6. 将三次积分 $\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_0^{\sqrt{1-x^2-y^2}} f(x^2+y^2+z^2) dz$ (其中 f 连续) 化成球面坐标系下的三次积分______;

7. 散度
$$\operatorname{div}(x^3\mathbf{i} + y\cos(y-2z)\mathbf{j} + \mathbf{k})\Big|_{(2,0,\pi)} =$$
;

8. 已知第二型曲线积分
$$\int_L (x^4 + 4xy^n) dx + (6x^{n-1}y^2 - 5y^4) dy$$
 与路径无关,则 $n =$ _____;

9. 平面 5x + 4y + 3z = 1 被椭圆柱面 $4x^2 + 9y^2 = 1$ 所截的有限部分的面积为

二. 计算下列各题(本题共 4 小题,每小题 7 分,满分 28 分)

10.设
$$z = z(x, y)$$
 是由方程 $xy + yz + xz = 1$ 所确定的隐函数 , $x + y \neq 0$, 试求 $\frac{\partial^2 z}{\partial x \partial y}$

11. 计算二重积分
$$\iint_D (x+y)^2 dxdy$$
 , 其中区域 $D = \{(x,y) | 2y \le x^2 + y^2 \le 4y \}$.

12.设立体
$$\Omega$$
 由曲面 $z=x^2+y^2$ 及平面 $z=4$ 围成,密度 $\rho=1$,求它对 z 轴的转动惯量

13. 计算曲面积分
$$\iint_{\Sigma} \frac{1}{z} dA$$
 , Σ 为球面 $x^2 + y^2 + z^2 = R^2$ 上满足 $0 < h \le z \le R$ 的部分.

三(14).(本题满分7分)求函数 $f(x,y) = x - x^2 - y^2$ 在区域 $D = \{(x,y) | 2x^2 + y^2 \le 1\}$ 上的最大值和最小值.

四 (15) (本题满分 8分) 计算
$$I = \int_C \sqrt{x^2 + y^2} dx + y \left(xy + \ln \left(x + \sqrt{x^2 + y^2} \right) \right) dy$$
,

其中 C 是由点 $B(1+\pi,0)$ 沿曲线 $y = \sin(x-1)$ 到点 A(1,0) 的一段弧.

五(16). **(本题满分8分)** 计算 $\iint_{\Sigma} y dz \wedge dx - (z+1) dx \wedge dy$,其中 Σ 为圆柱面 $x^2 + y^2 = 4$ 被平面 x + z = 2 和 z = 0 所截出部分的外侧.

六 (17)(本题满分 7 分) 设 $a_1=1, a_2=2$, 当 $n\geq 3$ 时,有 $a_n=a_{n-1}+a_{n-2}$,

(1) 证明不等式
$$0 < \frac{3}{2}a_{n-1} < a_n < 2a_{n-1}$$
, $n \ge 4$;

(2) 证明级数
$$\sum_{n=1}^{\infty} \frac{1}{a_n}$$
 收敛,且满足不等式 $2 \le \sum_{n=1}^{\infty} \frac{1}{a_n} \le \frac{5}{2}$.

七(18)(本题满分 6分)设C是圆周 $x^2+y^2=x+y$,取逆时针方向,连续函数f(x)>0,证明

$$\oint_C x f(y) dy - \frac{y}{f(x)} dx \ge \pi$$