

Tutorial Sheet-III

1. Solve:

a.
$$25r - 40s + 16t = 0$$

b.
$$(D^4 + D'^4)Z = 0$$

c.
$$r+s-2t=(2x+y)^{\frac{1}{2}}$$

$$d. \quad r - t = x - y$$

e.
$$(D_x^3 - 7D_xD_y^2 - 6D_y^3)z = \sin(x + 2y) + e^{3x+y}$$

f.
$$\frac{\partial^3 z}{\partial x^2 \partial y} - 2 \frac{\partial^3 z}{\partial x \partial^2 y} + \frac{\partial^3 z}{\partial y^3} = \frac{1}{x^2}$$

g.
$$(D^2 - 2DD' - 15D'^2)z = 12xy$$

h.
$$(D^2 - DD' - 2D'^2)z = (2x^2 + xy - y^2)\sin xy - \cos xy$$

i.
$$r + s - 6t = y \cos x$$

j.
$$(D^2 + DD' - 6D'^2)z = x^2 \sin(x + y)$$

k.
$$(D^3 + D^2D' - DD'^2 - D'^3)z = e^y \cos 2x$$

- 2. Find a real function V of x and y, satisfying $(D^2 + D'^2)V = -4\pi(x^2 + y^2)$ and reducing to zero, when y = 0.
- 3. Find the solution of the equation $(D^2 + D'^2)z = e^{-x}\cos y$ which $\to 0$ as $x \to \infty$ and has the value $\cos y$ when x = 0.
- 4. Find a surface satisfying r 2s + t = 6 and touching the hyperbolic paraboloid z = xy along its section by the plane y = x.
- 5. A surface is drawn satisfying r + t = 0 and touching $x^2 + z^2 = 1$ along its section by y = 0. Obtain its equation in the form $x^2(x^2 + z^2 - 1) = y^2(x^2 + z^2)$

6. Solve:

a.
$$r + 2s + t + 2p + 2q + z = 0$$

b.
$$(D - D'^2)z = 0$$

c.
$$(D-2D'-1)(D-2D'^2-1)z=0$$

d.
$$(DD' + aD + bD' + ab)z = e^{mx+ny}$$

e.
$$(D^2 - 4DD' + D - 1)z = e^{3x-2y}$$

f.
$$(D^2 + DD' + D' - 1)z = \sin(x + 2y)$$

g.
$$(D - D'^2)z = \cos(x - 3y)$$

h.
$$(D^2 - D')z = 2y - x^2$$

i.
$$(3D^2 - 2D'^2 + D - 1)z = 4e^{x+y}\cos(x+y)$$

j.
$$(D^2 + DD' + D' - 1)z = 4 \sinh x$$

7. Find a surface satisfying r + s = 0 and touching the elliptic paraboloid $z = 4x^2 + y^2$ along its section by the plane y = 2x + 1.