Saradha Venkatachalapathy

saradhavpathy@gmail |+1(650)283-6035 Website | LinkedIn

SUMMARY

I specialize in microscopy, computer vision and genomics and have extensive experience in developing computer vision and machine learning models to interpret causal relationships in highly variable processes.

EDUCATION

Ph.D, Mechanobiology National University of Singapore	Sep 2016 - Present
B.Tech Biotechnology (Distinction) SASTRA University	Jul 2011 - May 2015

WORK EXPERIENCE

Visiting Researcher Paul Scherrer Institute & ETH Zürich	Sep 2020 - Present
Consultant, Computer Vision Qritive	Sep 2019 - Dec 2019
Research Assistant, National University of Singapore	Sep 2015 - Jul 2016

SKILLS

Statistics: Multivariate Statistics, Linear Algebra, Diffusion maps, Pattern recognition and Machine Learning.

Computer Vision: Segmentation, Feature generation and Particle tracking

Computational Biology: Analysis of bulk and single cell Microarray, RNA-Seq and HiC data.

Experimental Skills: Microscopy, Tissue engineering and mechanical manipulation of cells.

Tools: R, ImageJ, MATLAB, Python, QuPath, Git, LaTeX and Inkscape.

SELECTED RESEARCH PROJECTS

Automated segmentation and feature generator for 3D images

- Built an automatic image processing pipelines for segmentation and feature generation that reduced the processing time by 60%.
- Engineered features for morphology, textural and spatial distribution of objects in images.
- Integrated multimodal features such as protein expression, RNA seq and image features to enable deduction of functional links.

Digital pathology platform for grading breast cancer stages at single cell resolution

- Performed instance segmentation of singe nuclei from patient tissue biopsies using U-Net based CNN and extracted geometric and textural features of nuclei.
- Built machine learning models to diagnose breast cancer stages at single cell resolution from patient breast tissue biopsies with 80% accuracy.
- Developed a single cell tumorigenesis score that characterises tumor progression.
- Identified regions of tissue tension using spatial statistics of nuclear images.

Deconvolving cell variability in cancer

- Developed a 3D in-vitro organoid tissue model for cancer progression amenable to high-resolution imaging.
- Implemented a classifier to predict cell shape with an accuracy of 95% and used the latent feature vectors along with regression models to show that cell shape is coupled to its function.
- Demonstrated a causal relationship between cell shape and activation by cancer cells using multimodalmultivariate analysis.
- Established the use of tissue model to assay the treatment efficacy of radiotherapy.

Trajectory inference to accelerate reprogramming of skin cells to stem cells

- Developed a novel technique to reprogram skin cells to stem cells with high efficiency.
- Performed statistical tests and pathway analysis on RNA seq data to characterize the temporal changes in the transcription profile during reprogramming.
- Modeled trajectories of reprogramming cells using clustering and diffusion models of single cell image features.
- Identified sources of low efficiency in large noisy image data which were experimentally validated to accelerate stem cell generation.