SIFT descriptor to set landmark on biological images

Van Linh LE^{1,3}, Marie BEURTON-AlMAR¹, Adrien KRAHENBUHL¹, Nicolas PARISEY²

¹LaBRI - UMR 5800, Univ. Bordeaux, ²INRA - IGEPP UMR 1349, France ³ IT - DLU, Vietnam van-linh.le, beurton, adrien.krahenbuhl@labri.fr,nparisey@rennes.inra.fr

Context

- Morphometry analysis is a way to characterize the shape variations of the organisms,
- Morphometric characteristics have been used to evaluate the evolution of an organism or classification.
- ...

Manual landmarks

- Morphometric landmarks are points that are a kind of points of interest,
- Landmarks are along an image outline and contain a lot of important information,
- They are defined by the biologists.

How to locate the landmarks automatically?

SIFT

SIFT[4] is used to extract distinctive features from the images. It includes four steps:

- Scale-space extrema detection
- Keypoints localization
- Orientation assigment
- Keypoint descriptor

The original SIFT outputs many candidates for landmarks. **Solution:** Limiting the coarching space before

Solution: Limiting the searching space before computing the SIFT descriptors.

Proposed method

Segmentation

- Converting the image to binary by applying binary threshold. The threshold value is determined by analysing histogram[3].
- Contours points are extracted by Canny algorithm[1].
- The threshold ratio in Canny: $T_{lower} = (1/3) \times T_{upper}$

Registration

Two lists of contours points from segmentation step are registered by applying Principal Component Analysis[2] Iteration (PCAI).

- 1. Compute the centroid point and principal axis of contours.
- 2. Compute the transformation values between two images.
- 3. Register two images
- 4. Select a subset of contour points and repeat step 1.
- 5. PCAI stop automatically when the angle difference between two lists of contour points is less than 1.5 degree.

SIFT and landmarks

- 1. A patch P_m is initialized at each manual landmark of source image (size of 9×9),
- 2. Calculate the SIFT descriptor for P_m ,
- 3. At the same position in target image, a patch P_s is created (size of 36×36),
- 4. For each pixel in P_s , a patch P_s' is extracted with the same size of P_m ,
- 5. Calculate the SIFT descriptor for P'_{s} ,
- 6. Compute the distance between the descriptor of P_m and each P_m' . Keep the pixel that have the minimum distance,
- 7. The process stops when all the pixels in P_s are considered.

Results on left and right mandibles

Bibliography

References

- [1] John Canny. A computational approach to edge detection. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, (6):679–698, 1986.
- [2] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.
- [3] L Lê Vãnh, M Beurton-Aimar, JP Salmon, A Marie, and N Parisey. Estimating landmarks on 2d images of beetle mandibles. *WSCG*, 2016.
- [4] David G Lowe. Distinctive image features from scale-invariant keypoints. *International* journal of computer vision, 60(2):91–110, 2004.