# **SBML Model Report**

# Model name: "Heiland2012\_CircadianClock\_C.reinhardtii"



May 5, 2016

# 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah<sup>1</sup> and Ines Heiland<sup>2</sup> at April second 2012 at 3:49 p. m. and last time modified at February fifth 2014 at 12:45 a. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 10       |
| events            | 0        | constraints          | 0        |
| reactions         | 13       | function definitions | 5        |
| global parameters | 12       | unit definitions     | 2        |
| rules             | 3        | initial assignments  | 0        |

#### **Model Notes**

This model is from the article:

Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>Dept. of Bioinformatics Friedrich Schiller University Jena, heiland.ines@uni-jena.de

Ines Heiland, Christian Bodenstein, Thomas Hinze, Olga Weisheit, Oliver Ebenhoeh, Maria Mittag and Stefan Schuster <u>Journal of Biological Physics</u> 4 March 2012; pp 1-16; doi: 10.1007/s10867-012-9264-x,

#### **Abstract:**

Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2012 The BioModels.net Team. For more information see the terms of use .

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

## 2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

#### 2.1 Unit time

Name time

**Definition** 3600 s

#### 2.2 Unit substance

Name substance

**Definition** nmol

# 2.3 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

# 2.4 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

# 2.5 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

# 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id      | Name    | SBO     | Spatial Dimensions | Size | Unit  | Constant | Outside |
|---------|---------|---------|--------------------|------|-------|----------|---------|
| default | default | 0000290 | 3                  | 1    | litre | Ø        |         |

# 3.1 Compartment default

This is a three dimensional compartment with a constant size of one litre.

Name default

SBO:0000290 physical compartment

# 4 Species

This model contains ten species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id                          | Name        | Compartment | Derived Unit                        | Constant     | Boundary<br>Condi-<br>tion |
|-----------------------------|-------------|-------------|-------------------------------------|--------------|----------------------------|
| s2                          | C3_Gene     | default     | $nmol \cdot 1^{-1}$                 | $\checkmark$ |                            |
| <b>s</b> 9                  | C3_mRNA     | default     | $nmol \cdot l^{-1}$                 |              |                            |
| s10                         | C_3         | default     | $nmol \cdot l^{-1}$                 |              |                            |
| s11                         | C_3_P       | default     | $nmol \cdot l^{-1}$                 |              |                            |
| s13                         | C_3_pre     | default     | $nmol \cdot l^{-1}$                 | $\square$    |                            |
| ${	t species\_1}$           | C1          | default     | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ |              | $\Box$                     |
| species_2                   | C1_mRNA     | default     | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ | $\square$    |                            |
| species_3                   | C1_phos     | default     | $nmol \cdot l^{-1}$                 |              |                            |
| ${	t species}_{	extsf{-}}4$ | c1c3complex | default     | $nmol \cdot l^{-1}$                 |              |                            |
| ${\sf species\_12}$         | junk        | default     | $nmol \cdot l^{-1}$                 |              | $\Box$                     |

# **5 Parameters**

This model contains twelve global parameters.

Table 4: Properties of each parameter.

| Id                   | Name       | SBO     | Value     | Unit | Constant                     |
|----------------------|------------|---------|-----------|------|------------------------------|
| T                    | T          | 0000147 | 291.000   |      |                              |
| T2                   | T2         |         | 296.000   |      |                              |
| $parameter_1$        | v_phos     |         | 1.000     |      |                              |
| $parameter_2$        | V_dephos   |         | 0.500     |      | $   \overline{\mathscr{L}} $ |
| $parameter_3$        | R          |         | 8.314     |      | $\mathbf{Z}$                 |
| ${\tt parameter\_4}$ | amplitude  |         | 10.000    |      | $\mathbf{Z}$                 |
| $parameter_5$        | entrperiod |         | 24.000    |      |                              |
| $parameter_6$        | EAlow      |         | 50000.000 |      |                              |
| $parameter_7$        | EAhigh     |         | 84000.000 |      |                              |
| $parameter_8$        | vphosdegr  |         | 1.000     |      |                              |
| $parameter_9$        | Ephos      |         | 60000.000 |      | $\mathbf{Z}$                 |
| parameter_10         | Edephos    |         | 67000.000 |      | $\square$                    |

# 6 Function definitions

This is an overview of five function definitions.

# **6.1 Function definition** function\_2

Name arhenius neg feedb tempvar

Arguments v, E, R, T2, T1, k, S, h

**Mathematical Expression** 

$$\frac{v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right)}{k + S^{h}} \tag{1}$$

#### **6.2 Function definition** function\_1

Name arhenius mass action tempvar

Arguments v, E, R, T2, T1, S

**Mathematical Expression** 

$$v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right) \cdot S \tag{2}$$

# 6.3 Function definition function\_4

Name arhenius tranls temp var

Arguments v, E, R, T2, T1, S

**Mathematical Expression** 

$$v \cdot \exp\left(\frac{\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right) \cdot S \tag{3}$$

#### **6.4 Function definition** function\_3

Name arhenius michaelis menten temp var

Arguments v, E, R, T2, T1, S, Km

**Mathematical Expression** 

$$\frac{\mathbf{v} \cdot \exp\left(\frac{\frac{E}{R} \cdot (\mathbf{T2} - \mathbf{T1})}{\mathbf{T1} \cdot \mathbf{T2}}\right) \cdot \mathbf{S}}{\mathbf{Km} + \mathbf{S}} \tag{4}$$

## 6.5 Function definition function\_5

Name arhenius complexf temp var

**Arguments** v, E, R, T2, T1, S1, S2, a

**Mathematical Expression** 

$$v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right) \cdot S1 \cdot S2^{a} \tag{5}$$

# 7 Rules

This is an overview of three rules.

# **7.1 Rule T2**

Rule T2 is an assignment rule for parameter T2:

$$T2 = 296 + \frac{\text{parameter}_4}{2} \cdot \sin\left(\frac{2 \cdot \pi \cdot \text{time}}{\text{parameter}_5}\right)$$
 (6)

# **7.2 Rule** parameter\_6

Rule parameter\_6 is an assignment rule for parameter parameter\_6:

$$parameter_6 = 50000 \tag{7}$$

# **7.3 Rule** parameter\_7

Rule parameter\_7 is an assignment rule for parameter parameter\_7:

$$parameter_{7} = 84000 \tag{8}$$

# 8 Reactions

This model contains 13 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| Nº | Id                  | Name             | Reaction Equation                           | SBO     |
|----|---------------------|------------------|---------------------------------------------|---------|
| 1  | re12                | C3_phos          | s10 → s11                                   | 0000216 |
| 2  | re13                | C3_transk        | $s2 \xrightarrow{s11} s9$                   | 0000183 |
| 3  | re14                | C3_mRNADegr      | $s9 \longrightarrow species_12$             | 0000179 |
| 4  | re15                | C3_degr          | $s10 \longrightarrow species_12$            | 0000179 |
| 5  | re16                | C3_phos_degr     | $s11 \longrightarrow species_12$            | 0000179 |
| 6  | re18                | C3_transl        | $s13 \xrightarrow{s9} s10$                  | 0000184 |
| 7  | ${\tt reaction\_1}$ | C1_transl        | $species_2 \longrightarrow species_1$       | 0000184 |
| 8  | $reaction_2$        | complexformation | $species_3 + s11 \longrightarrow species_4$ | 0000526 |
| 9  | reaction_3          | C1_phos          | $species_1 \longrightarrow species_3$       | 0000216 |
| 10 | ${\tt reaction\_4}$ | C1_degr          | $species_1 \longrightarrow species_12$      | 0000179 |
| 11 | $reaction_5$        | complexdegr      | species_4 → species_12                      | 0000179 |
| 12 | ${\tt reaction\_6}$ | C1_dephos        | species_3 → species_1                       | 0000330 |
| 13 | ${\tt reaction\_7}$ | C1_phos_degr     | species_3 → species_12                      | 0000179 |

# 8.1 Reaction re12

This is an irreversible reaction of one reactant forming one product.

Name C3\_phos

SBO:0000216 phosphorylation

# **Reaction equation**

$$s10 \longrightarrow s11$$
 (9)

# Reactant

Table 6: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| s10 | C_3  |     |

#### **Product**

Table 7: Properties of each product.

| Id  | Name  | SBO |
|-----|-------|-----|
| s11 | C_3_P |     |

# **Kinetic Law**

$$v_1 = \text{vol}\left(\text{default}\right) \cdot \text{function}_1\left(v, \text{parameter}_6, \text{parameter}_3, \text{T2}, \text{T}, [\text{s}10]\right)$$
 (10)

$$function_{-}1\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S \tag{11}$$

$$function_{-}1\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2 - T1\right)}{T1 \cdot T2}\right) \cdot S \tag{12}$$

Table 8: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant     |
|----|------|----------------|--------------|
| v  | v    | 0.1            | $\checkmark$ |

# 8.2 Reaction re13

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name C3\_transk

SBO:0000183 transcription

# **Reaction equation**

$$s2 \xrightarrow{s11} s9 \tag{13}$$

# Reactant

Table 9: Properties of each reactant.

| Id | Name    | SBO |
|----|---------|-----|
| s2 | C3_Gene |     |

# **Modifier**

Table 10: Properties of each modifier.

| Id  | Name  | SBO |
|-----|-------|-----|
| s11 | C_3_P |     |

# **Product**

Table 11: Properties of each product.

| Id | Name    | SBO |
|----|---------|-----|
| s9 | C3_mRNA |     |

# **Kinetic Law**

$$v_2 = \text{vol}(\text{default}) \cdot \text{function}_2(v, \text{parameter}_7, \text{parameter}_3, \text{T2}, \text{T}, k, [\text{s}11], h)$$
 (14)

$$\text{function} 2\left(v, E, R, T2, T1, k, S, h\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right)}{k + S^{h}} \tag{15}$$

$$\text{function} 2\left(v, E, R, T2, T1, k, S, h\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot (T2 - T1)\right)}{k + S^{h}} \tag{16}$$

Table 12: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant       |
|----|------|----------------|----------------|
| v  | V    | 2.6            | $\overline{Z}$ |
| k  | k    | 0.4            |                |
| h  | h    | 2.0            |                |

#### 8.3 Reaction re14

This is an irreversible reaction of one reactant forming one product.

Name C3\_mRNADegr

SBO:0000179 degradation

# **Reaction equation**

$$s9 \longrightarrow species_12$$
 (17)

#### Reactant

Table 13: Properties of each reactant.

| Id | Name    | SBO |
|----|---------|-----|
| s9 | C3_mRNA |     |

# **Product**

Table 14: Properties of each product.

| Id         | Name | SBO |
|------------|------|-----|
| species_12 | junk |     |

| Id | Name | SBO |
|----|------|-----|
|    |      |     |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_3 = \text{vol}(\text{default}) \cdot \text{function}_3(v, \text{parameter}_6, \text{parameter}_3, \text{T2}, \text{T}, [\text{s9}], \text{Km})$$
 (18)

$$\text{function\_3}\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{19}$$

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{20}$$

Table 15: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant        |
|----|------|----------------|-----------------|
| V  | v    | 3.0            | $ \mathcal{L} $ |
| Km | Km   | 2.0            | $\square$       |

# 8.4 Reaction re15

This is an irreversible reaction of one reactant forming one product.

Name C3\_degr

SBO:0000179 degradation

# **Reaction equation**

$$s10 \longrightarrow species_12$$
 (21)

# Reactant

Table 16: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| s10 | C_3  |     |

## **Product**

Table 17: Properties of each product.

| Id         | Name | SBO |
|------------|------|-----|
| species_12 | junk |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_4 = \text{vol} (\text{default}) \cdot \text{function}_3 (v, \text{parameter}_6, \text{parameter}_3, \text{T2}, \text{T}, [\text{s}10], \text{Km})$$
 (22)

$$\text{function\_3}\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{23}$$

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S}{Km+S} \tag{24}$$

Table 18: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| v  | V    | 2.2            |          |
| Km | Km   | 0.2            |          |

## 8.5 Reaction re16

This is an irreversible reaction of one reactant forming one product.

Name C3\_phos\_degr

SBO:0000179 degradation

# **Reaction equation**

$$s11 \longrightarrow species_12$$
 (25)

#### Reactant

Table 19: Properties of each reactant.

| Id  | Name  | SBO |
|-----|-------|-----|
| s11 | C_3_P |     |

# **Product**

Table 20: Properties of each product.

| Id         | Name | SBO |
|------------|------|-----|
| species_12 | junk |     |

# **Kinetic Law**

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{default}) \cdot \text{function}_3(v, \text{parameter}_6, \text{parameter}_3, \text{T2}, \text{T}, [\text{s11}], \text{Km})$$
 (26)

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{27}$$

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{28}$$

Table 21: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant  |
|----|------|----------------|-----------|
| v  | V    | 1.5            |           |
| Km | Km   | 1.4            | $\square$ |

# 8.6 Reaction re18

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name C3\_transl

SBO:0000184 translation

# **Reaction equation**

$$s13 \xrightarrow{s9} s10 \tag{29}$$

#### Reactant

Table 22: Properties of each reactant.

| Id  | Name    | SBO |
|-----|---------|-----|
| s13 | C_3_pre |     |

#### **Modifier**

Table 23: Properties of each modifier.

| Id | Name    | SBO |
|----|---------|-----|
| s9 | C3_mRNA |     |

#### **Product**

Table 24: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| s10 | C_3  |     |

#### **Kinetic Law**

$$v_6 = \text{vol}\left(\text{default}\right) \cdot \text{function\_4}\left(v, \text{parameter\_7}, \text{parameter\_3}, \text{T2}, \text{T}, [\text{s9}]\right)$$
 (30)

$$function\_4\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S \tag{31}$$

$$\text{function\_4}\left(v, E, R, T2, T1, S\right) = v \cdot \text{exp}\left(\frac{\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right) \cdot S \tag{32}$$

Table 25: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| v  | v    | 5.0            |          |

#### 8.7 Reaction reaction\_1

This is an irreversible reaction of one reactant forming one product.

Name C1\_transl

SBO:0000184 translation

# **Reaction equation**

$$species_2 \longrightarrow species_1$$
 (33)

#### Reactant

Table 26: Properties of each reactant.

| Id        | Name    | SBO |
|-----------|---------|-----|
| species_2 | C1_mRNA |     |

# **Product**

Table 27: Properties of each product.

| Id        | Name | SBO |
|-----------|------|-----|
| species_1 | C1   |     |

#### **Kinetic Law**

$$v_7 = \text{vol}(\text{default}) \cdot \text{function}_1(v, E, \text{parameter}_3, T2, T, [\text{species}_2])$$
 (34)

$$function_{-}1\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S \tag{35}$$

$$function_{-}1\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S \tag{36}$$

Table 28: Properties of each parameter.

| Id | Name | SBO Value | Unit | Constant                  |
|----|------|-----------|------|---------------------------|
| V  | V    | 19.0      | )    | $\overline{\square}$      |
| E  | E    | 67000.0   | 0    | $ \overline{\checkmark} $ |

#### 8.8 Reaction reaction\_2

This is an irreversible reaction of two reactants forming one product.

Name complexformation

SBO:0000526 protein complex formation

# **Reaction equation**

$$species_3 + s11 \longrightarrow species_4$$
 (37)

#### Reactants

Table 29: Properties of each reactant.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| species_3<br>s11 | C1_phos<br>C_3_P |     |

#### **Product**

Table 30: Properties of each product.

| Id        | Name        | SBO |
|-----------|-------------|-----|
| species_4 | c1c3complex |     |

## **Kinetic Law**

$$v_8 = \text{vol}\left(\text{default}\right) \cdot \text{function\_5}\left(v, \text{parameter\_7}, \text{parameter\_3}, \text{T2}, \text{T}, [\text{species\_3}], [\text{s11}], a\right)$$
 (38)

$$\text{function\_5}\left(v, E, R, T2, T1, S1, S2, a\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right) \cdot S1 \cdot S2^{a} \tag{39}$$

$$\text{function\_5}\left(v, E, R, T2, T1, S1, S2, a\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2 - T1)}{T1 \cdot T2}\right) \cdot S1 \cdot S2^{a} \tag{40}$$

Table 31: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant  |
|----|------|----------------|-----------|
| V  | V    | 10.0           | $\square$ |
| a  | a    | 2.0            |           |

# 8.9 Reaction reaction\_3

This is an irreversible reaction of one reactant forming one product.

Name C1\_phos

SBO:0000216 phosphorylation

# **Reaction equation**

$$species_1 \longrightarrow species_3$$
 (41)

#### Reactant

Table 32: Properties of each reactant.

| Id        | Name | SBO |
|-----------|------|-----|
| species_1 | C1   |     |

#### **Product**

Table 33: Properties of each product.

| Id        | Name    | SBO |
|-----------|---------|-----|
| species_3 | C1_phos |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

 $v_9 = \text{vol}(\text{default}) \cdot \text{function\_1}(\text{parameter\_1}, \text{parameter\_9}, \text{parameter\_3}, \text{T2}, \text{T}, [\text{species\_1}])$  (42)

$$function_{-}1\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2 - T1\right)}{T1 \cdot T2}\right) \cdot S \tag{43}$$

$$\text{function\_1}\left(v,E,R,T2,T1,S\right) = v \cdot \text{exp}\left(\frac{\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S \tag{44}$$

# 8.10 Reaction reaction\_4

This is an irreversible reaction of one reactant forming one product.

Name C1\_degr

SBO:0000179 degradation

#### **Reaction equation**

$$species_1 \longrightarrow species_12$$
 (45)

#### Reactant

Table 34: Properties of each reactant.

| Id        | Name | SBO |
|-----------|------|-----|
| species_1 | C1   |     |

#### **Product**

Table 35: Properties of each product.

| Id         | Name | SBO |
|------------|------|-----|
| species_12 | junk |     |

#### **Kinetic Law**

$$v_{10} = \text{vol}\left(\text{default}\right) \cdot \text{function}_{3}\left(v, E, \text{parameter}_{3}, T2, T, [\text{species}_{1}], Km\right)$$
 (46)

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{47}$$

$$\text{function\_3}\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{48}$$

Table 36: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant       |
|----|------|----------------|----------------|
| v  | v    | 30.0           | $\overline{Z}$ |
| Е  | E    | 67000.0        |                |
| Km | Km   | 2.0            | $\checkmark$   |

# 8.11 Reaction reaction\_5

This is an irreversible reaction of one reactant forming one product.

Name complexdegr

SBO:0000179 degradation

# **Reaction equation**

$$species_4 \longrightarrow species_12$$
 (49)

# Reactant

Table 37: Properties of each reactant.

|           | N.T.        | CDC |
|-----------|-------------|-----|
| Id        | Name        | SBO |
| species_4 | c1c3complex |     |

#### **Product**

Table 38: Properties of each product.

| Id         | Name | SBO |
|------------|------|-----|
| species_12 | junk |     |

# **Kinetic Law**

$$v_{11} = \text{vol}(\text{default}) \cdot \text{function}_3(v, E, \text{parameter}_3, T2, T, [\text{species}_4], Km)$$
 (50)

$$\text{function\_3}\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S}{Km+S} \tag{51}$$

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{52}$$

Table 39: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant     |
|----|------|----------------|--------------|
| V  | V    | 20.0           |              |
| E  | E    | 67000.0        |              |
| Km | Km   | 4.0            | $\checkmark$ |

# 8.12 Reaction reaction\_6

This is an irreversible reaction of one reactant forming one product.

Name C1\_dephos

SBO:0000330 dephosphorylation

# **Reaction equation**

$$species_3 \longrightarrow species_1 \tag{53}$$

# Reactant

Table 40: Properties of each reactant.

| Id        | Name    | SBO |
|-----------|---------|-----|
| species_3 | C1_phos |     |

# **Product**

Table 41: Properties of each product.

| Id        | Name | SBO |
|-----------|------|-----|
| species_1 | C1   |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{12} = \text{vol} (\text{default}) \cdot \text{function\_1} (\text{parameter\_2}, \text{parameter\_10}, \text{parameter\_3}, \text{T2}, \text{T}, [\text{species\_3}])$$
(54)

$$function_{-}1\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S \tag{55}$$

$$function_{-}1\left(v,E,R,T2,T1,S\right) = v \cdot exp\left(\frac{\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S \tag{56}$$

#### **8.13 Reaction** reaction\_7

This is an irreversible reaction of one reactant forming one product.

Name C1\_phos\_degr

SBO:0000179 degradation

# **Reaction equation**

$$species_3 \longrightarrow species_12$$
 (57)

## Reactant

Table 42: Properties of each reactant.

| Id        | Name    | SBO |
|-----------|---------|-----|
| species_3 | C1_phos |     |

#### **Product**

Table 43: Properties of each product.

| Id         | Name | SBO |
|------------|------|-----|
| species_12 | junk |     |

#### **Kinetic Law**

 $v_{13} = \text{vol}(\text{default}) \cdot \text{function}_3(\text{parameter}_8, \text{E}, \text{parameter}_3, \text{T2}, \text{T}, [\text{species}_3], \text{Km})$  (58)

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot (T2-T1)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{59}$$

$$function\_3\left(v,E,R,T2,T1,S,Km\right) = \frac{v \cdot exp\left(\frac{E}{R} \cdot \left(T2-T1\right)}{T1 \cdot T2}\right) \cdot S}{Km + S} \tag{60}$$

Table 44: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant  |
|----|------|----------------|-----------|
| E  | Е    | 67000.0        | $\square$ |
| Km | Km   | 1.0            |           |

# 9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

# 9.1 Species s2

Name C3\_Gene

SBO:0000243 gene

Initial concentration 1 nmol·1<sup>-1</sup>

This species takes part in one reaction (as a reactant in re13), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}2 = 0\tag{61}$$

# 9.2 Species s9

Name C3\_mRNA

SBO:0000278 messenger RNA

Initial concentration  $1 \text{ nmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in re14 and as a product in re13 and as a modifier in re18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}9 = |v_2| - |v_3| \tag{62}$$

# **9.3 Species** s10

Name C<sub>-3</sub>

SBO:0000252 polypeptide chain

Initial concentration  $1 \text{ nmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in re12, re15 and as a product in re18).

$$\frac{d}{dt}s10 = |v_6| - |v_1| - |v_4| \tag{63}$$

# 9.4 Species s11

Name C\_3\_P

SBO:0000252 polypeptide chain

Initial concentration  $1 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in four reactions (as a reactant in re16, reaction\_2 and as a product in re12 and as a modifier in re13).

$$\frac{d}{dt}s11 = |v_1| - |v_5| - |v_8| \tag{64}$$

# 9.5 Species s13

Name C\_3\_pre

SBO:0000252 polypeptide chain

Initial concentration 1 nmol·1<sup>-1</sup>

This species takes part in one reaction (as a reactant in re18), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}13 = 0\tag{65}$$

# **9.6 Species** species\_1

Name C1

SBO:0000252 polypeptide chain

Initial concentration  $1 \text{ nmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in reaction\_3, reaction\_4 and as a product in reaction\_1, reaction\_6).

$$\frac{d}{dt} \text{species}_{-1} = |v_7| + |v_{12}| - |v_9| - |v_{10}| \tag{66}$$

# 9.7 Species species\_2

Name C1\_mRNA

SBO:0000278 messenger RNA

Initial concentration  $1 \text{ nmol} \cdot l^{-1}$ 

This species takes part in one reaction (as a reactant in reaction\_1), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{2} = 0 \tag{67}$$

# 9.8 Species species\_3

Name C1\_phos

SBO:0000252 polypeptide chain

Initial concentration 1 nmol·l<sup>-1</sup>

This species takes part in four reactions (as a reactant in reaction\_2, reaction\_6, reaction\_7 and as a product in reaction\_3).

$$\frac{d}{dt} \text{species}_{3} = |v_{9}| - |v_{8}| - |v_{12}| - |v_{13}| \tag{68}$$

# 9.9 Species species\_4

Name c1c3complex

SBO:0000297 protein complex

Initial concentration  $1 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_5 and as a product in reaction\_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{4} = |v_{8}| - |v_{11}| \tag{69}$$

# 9.10 Species species\_12

Name junk

**SBO:0000291** empty set

Initial concentration  $1 \text{ nmol} \cdot l^{-1}$ 

This species takes part in six reactions (as a product in re14, re15, re16, reaction\_4, reaction\_5, reaction\_7).

$$\frac{d}{dt} \text{species}_{12} = |v_3| + |v_4| + |v_5| + |v_{10}| + |v_{11}| + |v_{13}|$$
(70)

# A Glossary of Systems Biology Ontology Terms

**SBO:0000147 thermodynamic temperature:** Temperature is the physical property of a system which underlies the common notions of ho and col; the material with the higher temperature is said to be hotter. Temperature is a quantity related to the average kinetic energy of the particles in a substance. The 10th Conference Generale des Poids et Mesures decided to define the thermodynamic temperature scale by choosing the triple point of water as the fundamental fixed point, and assigning to it the temperature 273,16 degrees Kelvin, exactly (0.01 degree Celsius)

SBO:0000179 degradation: Complete disappearance of a physical entity

**SBO:0000183 transcription:** Process through which a DNA sequence is copied to produce a complementary RNA

**SBO:0000184 translation:** Process in which a polypeptide chain is produced from a messenger RNA

**SBO:0000216 phosphorylation:** Addition of a phosphate group (-H2PO4) to a chemical entity

**SBO:0000243 gene:** A locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions and/or other functional sequence regions. Sequence Ontology SO:000070

**SBO:0000252** polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

**SBO:0000278 messenger RNA:** A messenger RNA is a ribonucleic acid synthesized during the transcription of a gene, and that carries the information to encode one or several proteins

**SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

- **SBO:0000291 empty set:** Entity defined by the absence of any actual object. An empty set is often used to represent the source of a creation process or the result of a degradation process.
- **SBO:0000297 protein complex:** Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608
- **SBO:0000330 dephosphorylation:** Removal of a phosphate group (-H2PO4) from a chemical entity.
- **SBO:0000526 protein complex formation:** The process by which two or more proteins interact non-covalently to form a protein complex (SBO:0000297)

SBML2LATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany