Outline

- 1. One-Way ANOVA--- Fixed Effects
 - 1 One-Way ANOVA
 - 2 Post-hoc Test After One-Way ANOVA
- 2. Two-Way ANOVA
- 3. The Kruskal-Wallis Test
- 4. One-Way ANOVA--- Random Eeffects
- 5. Meta Analysis
- 6. Mixed Model

Random-Effects One-way ANOVA

Example:

Endocrinology

- Source: blood samples were obtained from a subset of nurses and serum levels of various hormones were recorded.
- Each blood sample was split into two equal aliquots, which were sent in a blinded fashion to one laboratory for analysis.
- The goal of the study was to assess how much variation in the analyses was attributable to between-person vs. within-person variation (or estimate the overall mean of the population).

Reproducibility data for plasma estradiol (pg/mL), Nurses' Health Study

Subject	Replicate		Absolute value of difference between	Mean
	1	2	replicates	value
1	25.5	30.4	4.9	27.95
2	11.1	15.0	3.9	13.05
3	8.0	8.1	0.1	8.05
4	20.7	16.9	3.8	18.80
5	5.8	8.4	2.6	7.10

ANOVA model

One-way ANOVA

$$y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

- y_{ij}: jth replicate for the ith subject
- α_i : between-subject variability;
 - $-\alpha_i \sim N(0, \sigma_A^2), \sigma_A^2$ is the population variance effect
- e_{ij} : within-subject variability;
 - $-e_{ij} \sim N(0, \sigma^2), \sigma^2$ is the measurement variance
 - independent of α_i and any of the other e_{ij}
- Hierarchical structure

Testing in One-way ANOVA

 An important goal in the random-effects ANOVA is to test

$$H_0: \sigma_A^2 = 0$$
 vs $H_1: \sigma_A^2 > 0$

- Under H_0 , there is no underlying between-subject variation; all variation seen between individual subjects is attributable to within-person variation(or "noise").
- Under H_1 there is a true underlying difference among means for individual subjects.

- Can we use the same F statistics (MSB/MSW)for fixed effect models?
- Easy to check

$$E(MSW) = \sigma^2$$

$$E(MSB) = \sigma^2 + n_0 \sigma_A^2$$

where

$$n_0 = \begin{cases} n_1 = \cdots = n_k, & \text{balanced case} \\ \left(\sum n_l - \sum n_l^2 / \sum n_l\right) / (k-1), & \text{unbalanced case} \end{cases}$$

- If H_0 is true($\sigma_A^2 = 0$), then F will be small;
- If H_1 is true($\sigma_A^2 > 0$), then F will be large; ==> F test will work

Inference for variance components

- 1. the unbiased estimate of σ^2 is given by MSW
- And since

$$E\left(\frac{\text{MSB-MSW}}{n_0}\right) = \frac{\sigma^2 + n_0 \sigma_A^2 - \sigma^2}{n_0} = \sigma_A^2$$

- \Rightarrow an unbiased estimate of σ_A^2 is given by $\hat{\sigma}_A^2 = (\text{MSB} \text{MSW})/n_0$.
- ⇒Problem: this estimate can be negative. If it is, set to 0.

Coefficient of variation

- Another parameter that is often of interest in reproducibility studies, such as the Endocrinology example, is the Coefficient of variation(CV).
- Generally speaking, CVs of <20% are desirable, whereas CVs of >30% are undesirable.

$$CV = 100\% \times \frac{\text{within-person standard deviation}}{\text{within-person mean}}$$

 based on the assumption that the standard deviation is independent of the mean value. If not, see next slide...

Estimation of the CV in Reproducibility Studies

- Suppose we have k subjects enrolled in a reproducibility study where there are n_i replicates for the ith subject, $i=1,\ldots,k$. To estimate the CV,
- ① Apply the In transformation to each of the values.
- Estimate the between- and within-subject variance components using a one-way random-effects model ANOVA.
- ③ The CV in the original scale is estimated by

$$100\% \times \sqrt{MSW}$$

The Intraclass Correlation

- In some instances, correlation between variables that are not readily distinguishable from each other.
- In Endocrinology example, the replicate-sample determinations are indistinguishable from each other, since each plasma sample was split into two halves at random.
- Thus a special type of correlation is needed between repeated measures on the same subject, called an intraclass correlation coefficient (the magnitude of σ_A^2 comparing to σ^2).

The Intraclass Correlation Coefficient

Definition: the correlation between two replicates from the same subject—i.e., between y_{ij} and y_{il} where $j \neq l$ and $1 \leq j \leq n_i$, $1 \leq l \leq n_i$

denoted by ρ_I

Interpretation of Intraclass Correlation

- ρ_I < 0.4 indicates poor reproducibility
- $0.4 \le \rho_I < 0.75$ indicates fair to good reproducibility
- $\rho_I \ge 0.75$ indicates excellent reproducibility

• If y_{ij} follows a one-way random-effects ANOVA model,

$$\rho_I = \sigma_A^2/(\sigma_A^2 + \sigma^2)$$

- 1 indicating perfect reproducibility
- 0 indicating no reproducibility at all
- A point estimate of ρ_I is given by

$$\hat{\rho}_I = \max[\hat{\sigma}_A^2/(\hat{\sigma}_A^2 + \hat{\sigma}^2), 0]$$

Back to Endocrinology

```
> rep < -c(25.5, 30.4, 11.1, 15.0, 8.0, 8.1,
+ 20.7, 16.9, 5.8, 8.4)
> rep <- log(rep)</pre>
> sub <- factor(rep(1:5,c(2,2,2,2)),</pre>
+ labels = c("Sub1", "Sub2", "Sub3", "Sub4", "Sub5")))
> plasma.lm <- lm(rep ~ sub)</pre>
> print(anova(plasma.lm))
                                significant differences among the
Analysis of Variance Table
                                 underlying mean In(plasma estradiol)
                                 values for different subjects.
Response: rep
           Df Sum Sq Mean Sq F value Pr(>F)
          4 2.65775 0.66444 22.146 0.002221
Sub
Residuals 5 0.15001 0.03000
```

```
> # Estimate sigma^2_A
> MSB <- anova(plasma.lm)$Mean[1]</pre>
> MSW <- anova(plasma.lm)$Mean[2]</pre>
> n <- 2
> sigma.A.2 <- (MSB - MSW)/n</pre>
> print(sigma.A.2)
[1] 0.3172171
                          Thus the between-person variance
                          is about 10 times as large as the
> print(MSW)
                          within-person variance, which
[1] 0.03000244
                          indicates good reproducibility.
```

```
> ## estimation of the coefficent of variation
> # the correct way
> sqrt(MSW) # in the original scale
[1] 0.1732121
> # incorrect way
> sqrt(MSW)/mean(rep) # CV for ln scale
[1] 0.06744243
> aov.raw <- anova(lm(repl ~ sub))</pre>
> sqrt(aov.raw$Mean[2])/mean(repl) # for raw scale
 # not appropriate because the standard deviation
      #appears to increase as the mean increases
[1] 0.1639928
```

```
> ## the Intraclass Correlation Coefficient
> sigma.A.2/(sigma.A.2+MSW)
# p_I
[1] 0.9135923
```

Thus there is excellent reproducibility for In(plasma estradiol).

Meta-Analysis

REF: Prognostic immune-related gene models for breast cancer: a pooled analysis, Oncotargets and Therapy, 2017

Motivation

- We have examined methods of analysis for a single study.
- However, often more than one investigation is performed to study a particular research question, often by different research groups.
- Many of the studies are small and individually are likely to yield nonsignificant results.
- The question is, What is the appropriate way to combine evidence across all the studies so as to reduce sampling error and increase the power of the investigation and, in some instances, to resolve the inconsistencies among the study results?

Meta-analysis

	True value of targeted parameter(unknwon)	Results from the Estimation	i-th study variance
Study 1	$ heta_1$	y_1	σ_1^2
Study 2	$ heta_2$	y_2	σ_{2}
		•••	
Study K	$ heta_K$	${\mathcal Y}_K$	σ_{K}^{2}

$$y_i = \theta_i + \epsilon_i$$
,

Known from the literature

- $\epsilon_i \sim N(0, \sigma_i^2)$, ϵ_i : within-study variation
- Fixed-effect model, $\theta_1 = \theta_2 = ... = \theta_K = \theta$, $y_i = \theta + \epsilon_i \sim N(\theta, \sigma_i^2)$
- Random-effect model, θ_i i.i.d. $\sim N(\theta, \sigma_A^2)$,

$$y_i = \theta_i + \epsilon_i \sim N(\theta, \sigma_A^2 + \sigma_i^2),$$

where σ_A^2 is unknown and needs to be estimated.

Meta-analysis: Estimation

• Fixed-effect model, $y_i \sim N(\theta, \sigma_i^2)$

MLE of
$$\theta$$
: $\hat{\theta} = \frac{\sum_{i=1}^{K} w_i y_i}{\sum_{i=1}^{K} w_i}$, where $w_i = \frac{1}{{\sigma_i}^2}$

Random-effect model

MLE of
$$\theta$$
: $\hat{\theta} = \frac{\sum_{i=1}^{K} w_i^* y_i}{\sum_{i=1}^{K} w_i^*}$, where $w_i^* = \frac{1}{\widehat{\sigma_A}^2 + \sigma_i^2}$ and $\widehat{\sigma_A}^2$ is the MLE of σ_A^2 .

Test of Homogeneity

- Some investigators feel the (random effect) procedure should only be used if there is no significant heterogeneity among the k study-specific θ_i s
- So to test

 H_0 : $\theta_1 = \cdots = \theta_k = \theta$ vs H_1 : at least two θ_i s are different

The test statistic

$$Q_{w} = \sum_{i=1}^{k} w_{i} (y_{i} - \hat{\theta})^{2}$$

• $Q_w \sim \chi_{k-1}^2$ under H_0

Mixed model

Mixed model

Two-way ANOVA model-balanced design with one fixed effect and one random effect

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ijk}$$

- y_{ijk} : kth replicate for the ith subject at the time point j
- α_i : a random effect; $\alpha_i \sim N\left(0, \sigma_A^2\right)$
- β_i : a fixed effect
- $(\alpha\beta)_{ij}$: interaction effect
- e_{ij} : error term; $e_{ij} \sim N(0, \sigma^2)$

Example: Ophthalmology

- A study was performed among dry eye patients comparing an active drug with placebo.
- Measurement: tear break-up time (TBUT, the time it takes for a tear to dissolve); a smaller number indicates worse symptoms (more tearing).
- The TBUT was measured at baseline (bas), immediately after drop instillation (im), and at 5 minutes (pst5), 10 minutes (pst10), and 15 minutes (pst15) after instillation.

Contd. Endocrinology

Table 12.24 Tear break-up time over 15 minutes among 14 dry eye patients in the placebo group of a clinical trial after a 3 second nonblink period

	od bas 1	od bas 2	od im 1	od im 2	od pst5 1	od pst5 2	od pst10 1	od pst10 2	od pst15 1	od pst15 2
1	5.44	4.59	4.34	5.31	4.81	6.53	6.00	4.63	6.47	7.03
2	3.28	3.00	10.87	19.06	13.34	12.31	10.34	9.71	5.81	7.25
3	3.18	2.43	14.78	16.28	12.53	16.84	5.53	6.68	6.78	6.43
4	2.47	1.40	11.12	6.44	8.46	3.84	1.93	2.46	2.62	3.21
5	4.40	4.90	12.93	14.84	7.43	9.78	5.93	6.81	6.28	7.65
6	4.93	4.87	10.56	11.71	4.53	5.50	5.37	3.75	4.56	3.31
7	7.21	6.15	14.34	15.50	10.56	10.87	10.43	8.57	3.15	2.78
8	4.93	4.15	15.31	14.00	7.51	6.59	4.01	3.59	3.90	3.62
9	3.18	2.84	6.90	5.75	8.09	7.03	5.31	6.81	4.09	4.06
10	3.47	1.37	6.91	3.57	7.06	5.09	1.53	1.06	2.96	1.34
11	9.46	8.50	12.03	10.75	17.03	14.93	12.31	14.62	13.06	15.09
12	3.03	3.12	7.12	7.19	5.68	4.32	2.41	3.10	4.47	4.25
13	2.47	2.62	18.97	10.60	2.06	2.66	1.87	2.91	2.22	2.40
14	2.66	2.32	12.97	14.81	5.03	3.03	2.35	1.31	1.32	1.19

Contd. Endocrinology

 We wish to test whether there are differences in TBUT among subjects and over time.

A random effect

A fixed effect

This type of design is called a mixed model

Analysis of Mixed model

Table 12.25 Analysis of two-way ANOVA table with one fixed effect and one random effect

Effect	SS	df	MS	F Stat	df
Row (random)	$RSS = \sum_{i=1}^{r} y_{i.}^{2} / (nc) - y_{}^{2} / (nrc)$	r-1	RMS = RSS / (r - 1)	RMS / EMS	r -1, rc(n-1)
Column (fixed)	$CSS = \sum_{j=1}^{c} y_{,j}^{2} / (nr) - y_{}^{2} / (nrc)$	c-1	CMS = CSS/(c-1)	CMS / IMS	c-1, (r-1)(c-1)
Interaction	$ISS = \sum_{i=1}^{r} \sum_{j=1}^{o} y_{ij}^{2} / n$	(r -1)(c -1)	IMS = ISS / [(r - 1)(c - 1)]	IMS / EMS	(r-1)(c-1), rc(n-1)
	$-RSS-CSS-y_{}^2/(nrc)$				
Error	$ESS = \sum_{i=1}^{r} \sum_{j=1}^{o} (y_{ijk} - \overline{y}_{ij})^{2}$	rc(n -1)	EMS = ESS / [rc(n-1)]		

General two way ANOVA

Table 12.26 Computation of the F statistics for tests of significance in a two-factor ANOVA with replication

Hypothesized effect	Model I (factors A and B both fixed)	Model II (factors A and B both random)	Model III (factor A random; factor B fixed)
Factor A	factor A MS	factor A MS	factor A MS
raciol A	error MS	A×B MS	error MS
Fratas D	factor B MS	factor B MS	factor B MS
Factor B	error MS	A×B MS	A×B MS
A×B interaction	A×B MS	A×B MS	A×B MS
A V D IIII AIGCIOII	error MS	error MS	error MS

Back to:

Ophthalmology

```
> # read data into R
> tear <- read.table("tear.txt",header= F)</pre>
> tea <- as.matrix(tear[,2:11])</pre>
> tear <- read.table("tear.txt",header= F)</pre>
> tea <- as.matrix(tear[,2:11])</pre>
> tear.m <- as.vector(tea)</pre>
> time <- factor(rep(1:5,rep(14*2,5),
+ labels = paste("time.",1:5,sep="")))
> sub <- factor(rep(1:14,10,label =</pre>
          paste("sub.",1:14,sep="")))
> tear.lm <- lm(tear.m ~ sub+time+sub*time)</pre>
```

R codes

Another method for multiple comparison, like FDR and Bonferroni

> TukeyHSD(tear.aov, "time")
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = tear.lm)

R codes

\$time

```
diff
                      lwr
                                 upr
                                         p adj
2-1 7.2353571 6.1406971
                           8.3300171 0.0000000
3-1 3.9667857 2.8721257
                          5.0614457 0.0000000
4-1 1.3914286 0.2967686 2.4860886 0.0058827
5-1 0.8903571 -0.2043029 1.9850171 0.1645008
3-2 -3.2685714 -4.3632314 -2.1739114 0.0000000
4-2 -5.8439286 -6.9385886 -4.7492686 0.0000000
5-2 -6.3450000 -7.4396600 -5.2503400 0.0000000
4-3 -2.5753571 -3.6700171 -1.4806971 0.0000001
5-3 -3.0764286 -4.1710886 -1.9817686 0.0000000
5-4 -0.5010714 -1.5957314 0.5935886 0.7031749
```