Heterogeneity in the relationship between BMI and risk biomarkers

Authors:

- Daniel E. Coral
- Femke Smit
- Elena Santos
- Ali Farzaneh

Introduction

This is a guideline to be followed by analysts in SOPHIA who are participating in the cross-sectional clustering project in the general population in Working Group 1. The idea is to standardize every step of the analysis across cohorts.

Not everyone has to follow all the steps, as we require different things from every cohort. We have divided the participating cohorts into 4 groups:

Cohort group Cohorts

This guideline is designed to be applied in discovery and validation cohorts. We will then apply what we learn in these cohorts to the mental health and intervention cohorts.

As a background, generally the relationship between BMI and multiple diseases is assumed to follow a continuum -- the higher the BMI, the higher the risk. However, it has also been found that in certain groups of people this relationship is disproportionally stronger or weaker for any given BMI. Our objective is to test the hypothesis that clustering-based approaches can be used to better capture these subgroups. An overview of the steps of our pipeline to test this hypothesis is shown in Figure 1.

Figure 1. Pipeline overview

Software

All steps are intended to be followed in the R environment. To facilitate the analyses we have put together a list of functions that can be used to run every step of this guideline. They are located in the accompanying file <code>cross_sectional_FX.R</code>, which you can load like this:

```
In [1]: source("cross_sectional_FX.R")
```

These functions have dependencies on the following packages:

```
In [2]:
    suppressMessages({
        library(tibble)
        library(qplyr)
        library(tidyr)
        library(purrr)
        library(uwot)
        library(igraph)
        library(mvtnorm)
        library(survival)
})
```

The environment where discovery analysis in UK Biobank was executed is then the following:

```
In [3]: sessionInfo()

R version 4.1.2 (2021-11-01)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux

Matrix products: default
BLAS/LAPACK: /gpfs/gpfs0/Home/daniel_c/miniconda3/envs/NewR/lib/libopenblasp-r0.3.18.so
```

```
locale:
[1] C
attached base packages:
              graphics grDevices utils
                                            datasets methods
[1] stats
                                                                base
other attached packages:
 [1] survival 3.3-1
                      mvtnorm 1.1-3
                                       igraph 1.3.0
                                                        uwot 0.1.11.9000
 [5] Matrix_1.4-1
                      purrr_1.0.1
                                       tidyr_1.3.0
                                                        dplvr 1.1.1
 [9] readr 2.1.2
                      tibble 3.2.1
loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3
                      pillar_1.9.0
                                       compiler_4.1.2
                                                        base64enc 0.1-3
 [5] tools_4.1.2
                      digest_0.6.31
                                       uuid_1.0-4
                                                        jsonlite_1.8.4
 [9] evaluate_0.20
                      lifecycle_1.0.3
                                       lattice_0.20-45
                                                        pkgconfig_2.0.3
[13] rlang_1.1.0
                      IRdisplay_1.1
                                                        IRkernel_1.3
                                       cli_3.6.0
[17] fastmap_1.1.1
                      repr_1.1.4
                                       generics_0.1.2
                                                        vctrs_0.6.1
                                       tidyselect_1.2.0 glue_1.6.2
[21] hms_1.1.1
                      grid_4.1.2
[25] R6_2.5.1
                      fansi_1.0.4
                                       pbdZMQ_0.3-7
                                                        tzdb_0.3.0
[29] magrittr_2.0.3
                      splines_4.1.2
                                       ellipsis_0.3.2
                                                        htmltools_0.5.4
[33] utf8_1.2.3
                      crayon_1.5.1
```

Initial input

We have selected 10 traits, based on biological systems that are commonly affected by obesity:

• Blood pressure: SBP and DBP.

• Lipids: HDL, LDL, TG.

• Fat distribution: WHR.

• Glycemia: Fasting glucose.

Liver metabolism: ALT.

• Kidney function: Creatinine.

• Inflammation: CRP.

The covariates that will be needed are:

- Sex.
- Age.
- Current smoking status, coded as 1 if current smoker, 0 otherwise.

The initial input table should look like the following:

In [4]: recoded_dat <- read_tsv("../data/recoded_dat.tsv", show_col_types = FALSE)
head(recoded_dat)</pre>

						A tibble	: 6 × 15							
eid	age	sex	bmi	whr	sbp	dbp	alt	scr	crp	hdl	tg	ldl	fg	smoking
<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>											
1000039	44	Male	36.6959	0.9911504	124.5	64.5	34.97	93.0	3.60	1.158	2.800	3.956	5.427	0
1000071	67	Male	39.4807	0.8857143	179.5	103.0	46.74	68.7	9.41	1.372	1.127	2.311	7.079	0
1000088	60	Male	24.2786	0.8761905	152.0	89.0	13.14	80.6	1.20	0.983	1.590	4.200	5.401	0
1000096	41	Male	26.5744	0.9587629	143.0	90.0	30.32	80.1	6.13	1.041	2.713	4.029	4.239	0
1000109	62	Male	33.8719	1.0818182	156.5	104.5	16.26	89.3	14.42	0.890	2.437	3.525	6.100	0
1000117	47	Female	23.8408	0.7254902	147.5	84.0	14.07	61.0	0.24	1.972	0.591	2.252	4.395	0

The units of the contiuous variables we expect to run the analysis:

- Age in years.
- Sex as a string of either "Female" or "Male".
- BMI in kg/m2.
- WHR is unitless, calculated by dividing waist and hip circumferences measured in cm.
- SBP and DBP in mmHg.
- ALT in U/L.
- sCr in umol/L.
- CRP in mg/L.
- HDL in mmol/L.
- TG in mmol/L.
- LDL in mmol/L.
- FG in mmol/L.
- Smoking as a dummy variable: 1 if currently smoking, 0 otherwise.

Note:

For the functions included in the cross_sectional_FX.R to work, the input table should be *exactly* as shown above.

Missing data

Since our clustering method ignores individuals with missing values for any biomarker, the input data should only contain individuals who have all biomarker values. From the previous analyses, we know that:

• Only including complete cases without losing too much data is possible in UK Biobank, Maastricht, GHS and ABOS.

- In Rotterdam the initial input table contains some values have been imputed using a random forest algorithm.
- In Girona only a small subset of individuals have CRP values.
- In SCALE there are values for waist but not for hip circumference, so it is not possible to calculate WHR.

Based on these observations we have made the following decisions on how to deal with missing values:

How to handle missing values	Cohorts
Only include complete cases.	UK Biobank
	Maastricht
	GHS
	ABOS
Use data that has been imputed.	Rotterdam
Retain all individuals.	Girona
	SCALE

For the cohorts in the last group, to be able to apply our method, we will assume that BMI explains the variability in the biomarkers that are missing. This assumption is based on what we have observed in the other cohorts. In practice, this means that the clustering method will focus on the biomarkers that are available to group individuals into clusters. The input table should still have the same columns so that the functions in cross_sectional_FX.R work properly.

Remove possible errors in measurement

In discovery and validation cohorts we will exclude biomarker measurements that are 5 SD away from the mean, under the assumption that these are most likely measurement errors. This can be done using the remove_outliers function that we have provided, which replaces outliers with NA values. Then we again make sure to have only complete cases:

Stratify by sex

All the pipeline is applied separately in each sex group. The functions we have designed work on a list containing two dataframes for each sex group, which we can obtain like this:

```
In [6]: strat_dat <- split(recoded_dat, ~sex)</pre>
```

To see the first lines of the two elements in the list:

```
In [7]: lapply(strat_dat, head)
```

SFemale A tibble: 6 × 15													
	eid	age	sex	bmi	whr	sbp	dbp	alt	scr	crp	hdl	tg	ldl
	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>									
	1000117	47	Female	23.8408	0.7254902	147.5	84.0	14.07	61.0	0.24	1.972	0.591	2.252
	1000132	43	Female	35.6559	0.8403361	137.0	100.5	18.89	60.5	4.31	1.236	2.037	3.686
	1000176	69	Female	38.1271	0.8897638	137.5	93.5	36.39	68.9	3.69	1.601	1.988	4.551

1000223	63	Female	25.4603	0.7789474	163.0	94.0	6.10	67.1	1.29	1.453	2.829	3.491	\$Mate	(
1000282	48	Female	25.4297	0.7708333	135.5	89.0	9.63	46.2	0.16	2.185	0.722	3.584	5.212	(
1000367	42	Female	19.3280	0.6777778	107.0	72.5	9.34	57.1	0.69	2.346	0.395	3.072	4.649	(
						A tibble	e: 6 × 15							
eid	age	sex	bmi	whr	sbp	dbp	alt	scr	crp	hdl	tg	ldl	fg	smoking
<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>											
1000039	44	Male	36.6959	0.9911504	124.5	64.5	34.97	93.0	3.60	1.158	2.800	3.956	5.427	0
1000071	67	Male	39.4807	0.8857143	179.5	103.0	46.74	68.7	9.41	1.372	1.127	2.311	7.079	0
1000088	60	Male	24.2786	0.8761905	152.0	89.0	13.14	80.6	1.20	0.983	1.590	4.200	5.401	0
1000096	41	Male	26.5744	0.9587629	143.0	90.0	30.32	80.1	6.13	1.041	2.713	4.029	4.239	0
1000109	62	Male	33.8719	1.0818182	156.5	104.5	16.26	89.3	14.42	0.890	2.437	3.525	6.100	0
		Male												

Summary of initial input

We need a table summarising the initial input, which can be generated like this:

```
In [8]: gendesc_tab <- get_general_descriptives(strat_dat)
gendesc_tab</pre>
A data.frame: 28 × 7
```

Summary2	Summary1	N_miss	N	Туре	Variable	sex
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>

Female	bmi	Numeric	76051	0	27.04 (5.01)	26.14 (19.66 - 23.49 - 29.69 - 39.47)
Female	age	Numeric	76051	0	57.43 (7.85)	59 (42 - 51 - 64 - 69)
Female	smoking	Categorical	76051	0	0	69334 (91.17%)
Female	smoking	Categorical	76051	0	1	6717 (8.83%)
Female	whr	Numeric	76051	0	0.82 (0.07)	0.81 (0.7 - 0.77 - 0.86 - 0.96)
Female	sbp	Numeric	76051	0	137.47 (19.47)	135.5 (105 - 123 - 149.5 - 180)
Female	dbp	Numeric	76051	0	81.47 (9.91)	81 (63.5 - 74.5 - 88 - 102)
Female	alt	Numeric	76051	0	19.82 (9.26)	17.54 (8.96 - 13.95 - 22.92 - 45.39)
Female	scr	Numeric	76051	0	64.28 (10.58)	63.2 (47 - 57.2 - 70 - 87.9)
Female	crp	Numeric	76051	0	2.36 (2.71)	1.4 (0.21 - 0.67 - 2.91 - 10.91)
Female	hdl	Numeric	76051	0	1.61 (0.38)	1.57 (0.99 - 1.34 - 1.84 - 2.46)
Female	tg	Numeric	76051	0	1.53 (0.79)	1.33 (0.6 - 0.98 - 1.87 - 3.62)
Female	ldl	Numeric	76051	0	3.68 (0.87)	3.62 (2.14 - 3.06 - 4.24 - 5.54)
Female	fg	Numeric	76051	0	4.95 (0.54)	4.91 (4.06 - 4.62 - 5.21 - 6.22)
Male	bmi	Numeric	66341	0	27.84 (4.18)	27.32 (21.01 - 25.02 - 30.07 - 37.69)
Male	age	Numeric	66341	0	57.72 (8.03)	60 (41 - 52 - 64 - 69)
Male	smoking	Categorical	66341	0	0	58346 (87.95%)
Male	smoking	Categorical	66341	0	1	7995 (12.05%)
Male	whr	Numeric	66341	0	0.94 (0.06)	0.94 (0.81 - 0.89 - 0.98 - 1.07)
Male	sbp	Numeric	66341	0	142.28 (17.65)	140.5 (112 - 130 - 153 - 181)
Male	dbp	Numeric	66341	0	84.94 (9.98)	84.5 (66 - 78 - 91.5 - 105.5)
Male	alt	Numeric	66341	0	26.28 (11.64)	23.56 (11.24 - 18.31 - 31.23 - 58.02)
Male	scr	Numeric	66341	0	81.38 (12.68)	80.2 (59.9 - 72.9 - 88.3 - 110.2)

Male	crp	Numeric	66341	0	2.09 (2.43)	1.28 (0.22 - 0.67 - 2.5 - 9.65)
Male	hdl	Numeric	66341	0	1.3 (0.32)	1.26 (0.81 - 1.08 - 1.47 - 2.04)
Male	tg	Numeric	66341	0	1.88 (0.99)	1.64 (0.65 - 1.16 - 2.34 - 4.51)
Male	ldl	Numeric	66341	0	3.51 (0.86)	3.49 (1.92 - 2.9 - 4.08 - 5.28)
Male	fg	Numeric	66341	0	4.99 (0.6)	4.94 (3.99 - 4.63 - 5.27 - 6.47)

For smoking:

- Summary1 contains the categories.
- Summary2 contains the proportion of each category.

For the rest (continuous) variables:

- Summary1 contains the mean and standard deviation.
- Summary2 contains the median and percentiles 2.5, 25, 75 and 97.5.

Estimates of BMI-biomarker associations

The first step of the pipeline is to generate sex-specific linear models of BMI for each variable, adjusting for age, and smoking. To do that we have the following function:

```
In [9]: mods <- get_bmimods(strat_dat)</pre>
```

The result is a table with a column that contains the models specific for each sex and biomarker:

```
In [10]: print(mods)
```

```
# A tibble: 20 x 3
   sex
          Biomarker mod
   <chr> <chr>
                    st>
 1 Female whr
                    <1m>
 2 Female sbp
                    <1m>
 3 Female dbp
                    <1m>
 4 Female alt
                    <1m>
 5 Female scr
                    <1m>
 6 Female crp
                    <1m>
 7 Female hdl
                    <1m>
 8 Female tq
                    <1m>
 9 Female 1dl
                    <1m>
10 Female fg
                    <1m>
11 Male
          whr
                    <1m>
12 Male
                    <1m>
          sbp
13 Male
                    <1m>
          dbp
14 Male
                    <1m>
          alt
15 Male
          scr
                    <1m>
16 Male
          crp
                    <1m>
17 Male
          hdl
                    <1m>
18 Male
                    <1m>
          tg
19 Male
          ldl
                    <1m>
20 Male
          fg
                    <1m>
```

As an example, we can print the summary of the female model for CRP:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.992832    0.079321   -62.94    <2e-16 ***

bmi    0.231435    0.001771    130.67    <2e-16 ***

age    0.018077    0.001134    15.94    <2e-16 ***

smoking    0.641565    0.031328    20.48    <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.441 on 76047 degrees of freedom Multiple R-squared: 0.1903, Adjusted R-squared: 0.1903 F-statistic: 5957 on 3 and 76047 DF, p-value: < 2.2e-16

We then use this table to generate a table containing the estimates of the effect of BMI as well as the covariates on every biomarker:

In [12]: bmicoefs_tab <- get_bmicoefs(mods)
bmicoefs_tab</pre>

sex	Biomarker	term	Estimate	SE	lowerCI	upperCl
<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Female	whr	(Intercept)	0.57215	0.00197	0.56830	0.57600
Female	whr	bmi	0.00626	0.00004	0.00617	0.00634
Female	whr	age	0.00130	0.00003	0.00125	0.00136
Female	whr	smoking	0.02074	0.00078	0.01922	0.02226
Female	sbp	(Intercept)	69.33712	0.57696	68.20628	70.46797
Female	sbp	bmi	0.60205	0.01288	0.57680	0.62730
Female	sbp	age	0.90658	0.00825	0.89041	0.92276
Female	sbp	smoking	-2.48505	0.22788	-2.93168	-2.03842

 Δ tibble: 80×7

Female	dbp	(Intercept)	62.83402	0.30771	62.23091	63.43714
Female	dbp	bmi	0.56666	0.00687	0.55319	0.58013
Female	dbp	age	0.05894	0.00440	0.05031	0.06756
Female	dbp	smoking	-0.84250	0.12153	-1.08070	-0.60429
Female	alt	(Intercept)	1.25111	0.28923	0.68423	1.81799
Female	alt	bmi	0.46317	0.00646	0.45051	0.47583
Female	alt	age	0.10671	0.00414	0.09861	0.11482
Female	alt	smoking	-0.94035	0.11423	-1.16424	-0.71646
Female	scr	(Intercept)	53.57293	0.34088	52.90481	54.24105
Female	scr	bmi	0.22335	0.00761	0.20844	0.23827
Female	scr	age	0.08323	0.00487	0.07368	0.09279
Female	scr	smoking	-1.29110	0.13463	-1.55498	-1.02722
Female	crp	(Intercept)	-4.99283	0.07932	-5.14830	-4.83736
Female	crp	bmi	0.23144	0.00177	0.22796	0.23491
Female	crp	age	0.01808	0.00113	0.01585	0.02030
Female	crp	smoking	0.64156	0.03133	0.58016	0.70297
Female	hdl	(Intercept)	2.16422	0.01135	2.14197	2.18646
Female	hdl	bmi	-0.02796	0.00025	-0.02846	-0.02747
Female	hdl	age	0.00375	0.00016	0.00343	0.00407
Female	hdl	smoking	-0.11486	0.00448	-0.12364	-0.10607
Female	tg	(Intercept)	-0.79687	0.02385	-0.84361	-0.75013
Female	tg	bmi	0.04919	0.00053	0.04815	0.05023
:	:	:	÷	:	:	:

Male di	bp	age	-0.03539	0.00473	-0.04466	-0.02612
Male di	bp	smoking	-0.66157	0.11669	-0.89028	-0.43285
Male	alt	(Intercept)	16.26830	0.41738	15.45023	17.08637
Male	alt	bmi	0.87115	0.01011	0.85134	0.89096
Male	alt	age	-0.24332	0.00528	-0.25367	-0.23297
Male	alt	smoking	-1.59591	0.13031	-1.85131	-1.34051
Male s	scr	(Intercept)	67.41059	0.48064	66.46854	68.35264
Male s	scr	bmi	0.24886	0.01164	0.22605	0.27167
Male s	scr	age	0.12970	0.00608	0.11778	0.14161
Male s	scr	smoking	-3.71049	0.15005	-4.00460	-3.41638
Male c	rp	(Intercept)	-3.31415	0.08935	-3.48928	-3.13902
Male c	rp	bmi	0.14446	0.00216	0.14022	0.14870
Male c	rp	age	0.02197	0.00113	0.01975	0.02418
Male c	rp	smoking	0.97408	0.02790	0.91940	1.02876
Male h	ndl	(Intercept)	1.91015	0.01140	1.88780	1.93249
Male h	ndl	bmi	-0.02494	0.00028	-0.02548	-0.02440
Male h	ndl	age	0.00159	0.00014	0.00130	0.00187
Male h	ndl	smoking	-0.04800	0.00356	-0.05498	-0.04103
Male	tg	(Intercept)	0.39145	0.03650	0.31991	0.46299
Male	tg	bmi	0.06482	0.00088	0.06309	0.06655
Male	tg	age	-0.00585	0.00046	-0.00676	-0.00495
Male	tg	smoking	0.17350	0.01140	0.15117	0.19583
Male	ldl	(Intercept)	4.58423	0.03276	4.52001	4.64845

Male	ldl	bmi	-0.00427	0.00079	-0.00583	-0.00272
Male	ldl	age	-0.01649	0.00041	-0.01730	-0.01567
Male	ldl	smoking	-0.02619	0.01023	-0.04624	-0.00614
Male	fg	(Intercept)	4.02744	0.02274	3.98287	4.07200
Male	fg	bmi	0.01482	0.00055	0.01374	0.01590
Male	fg	age	0.00968	0.00029	0.00911	0.01024
Male	fg	smoking	-0.04157	0.00710	-0.05548	-0.02766

Generate table with residual values

The next step in the pipeline is to calculate for each individual how much they deviate from the expected given the BMI. To do that we have the following function:

eid	whr	sbp	dbp	alt	scr	crp	hdl	tg
<dbl></dbl>								
1000117	-0.9418402	1.1938755	0.5159529	-0.3638692	-0.1724967	-0.4646662	0.8537702	-0.7958077
1000132	-0.1792318	0.4062052	1.5761452	-0.3892039	-0.4399567	0.1120275	-0.2644245	0.4751430
1000176	-0.1770372	-0.9768242	0.5273488	1.1364654	0.1018258	-0.5687282	0.6992130	-0.3596230
1000223	-0.5698414	1.1949817	1.3753895	-1.5352973	0.2475230	-0.3065696	-0.6740994	1.7741363

1000282	-0.3781328	0.4131752	0.9426128	-0.9573206	-1.6249405	-0.6554686	1.5799995	-0.7469813 \$ 1	V134 0274 0	73413804	
1000367	-1.1562861	-0.6785952	-0.3972053	-0.6004841	-0.4084902	0.1845008	1.6168411	-0.6445614 -0	.2512526 -0	.08102865	
	A tibble: 6 × 11										
eid	whr	sbp	dbp	alt	scr	crp	hd	l tg	ldl	fg	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1000039	-0.1434963	-0.8936365	-2.6219406	-0.2353730	0.85840152	0.2777242	0.31393849	0.30219615	0.2974455	0.7257948	
1000071	-3.3845181	1.5170327	1.2684506	1.1383582	-1.37538141	2.3833741	1.14528403	-1.50513167	-1.1712396	3.0688036	
1000088	-0.5801301	0.6085712	0.6033637	-0.8899948	-0.05064503	-0.1335900	-1.40276253	-0.02527338	0.8300850	0.7311632	
1000096	1.1595253	0.6229005	0.5165162	0.0806867	0.06057083	2.0206701	-0.91346782	0.88210053	0.2743749	-0.9772074	
1000109	1.6924144	0.5010277	1.6986367	-1.3267979	0.43268229	4.9303647	-0.92118662	0.22376839	0.1260865	1.6383562	
1000125	0.4998882	0.2572578	1.4582960	-0.4119699	0.59514853	-1.0377080	-0.01753134	-1.26104815	-0.9108525	-1.0610050	

Obtaining clusters and probabilities of allocation

We use this residuals to run UMAP, which we use not only to obtain a projection of residual data in 2 dimensions, but also to run a probabilistic network clustering algorithm. We have wrapped all the clustering steps in a single function that we apply to the residtab object:

```
In [15]: cluster_results <- get_cluster_results(residtab)

Starting analysis for the Female subset:

1. Setting parameters...
```

```
2. Running UMAP...
        3. Extracting graph...
        4. Initializing graph clustering using the leading eigen vector method...
        5. Optimizing graph clustering using the Leiden algorithm...
           10 clusters found. Modularity = 0.65.
        6. Extracting cluster membership...
        7. Calculating eigen centrality in clusters...
        8. Calculating Gaussian subdistributions weighted by eigen centralities...
        9. Adding central/concordant subdistribution...
        10. Fitting a mixture of Gaussians with subdistributions found...
                Convergence reached in 34 iterations.
        11. Organizing results...
Done!
Starting analysis for the Male subset:
        1. Setting parameters...
        2. Running UMAP...
        3. Extracting graph...
        4. Initializing graph clustering using the leading eigen vector method...
```

```
    Optimizing graph clustering using the Leiden algorithm...
    9 clusters found. Modularity = 0.64.
    Extracting cluster membership...
    Calculating eigen centrality in clusters...
    Calculating Gaussian subdistributions weighted by eigen centralities...
    9. Adding central/concordant subdistribution...
    10. Fitting a mixture of Gaussians with subdistributions found...
    Convergence reached in 31 iterations.
    11. Organizing results...
```

The result is a list containing the UMAP model, the parameters of the clusters found, the modularity score, which is a measure of the quality of the network partition, and the allocation probabilities of individuals to all clusters:

```
In [16]: lapply(cluster_results, names)
```

\$Female 'umap_model' · 'probs' · 'clusters' · 'modularity'

\$Male 'umap_model' · 'probs' · 'clusters' · 'modularity'

Table summarising clusters

To understand what characterizes the clusters found, we will need a table with descriptives of the distribution of residuals per cluster, which can be generated like this:

```
In [17]: clustersummary <- get_clustersummary(cluster_results)</pre>
In [18]: head(clustersummary)
```

		Α	tibble: 6 × 6		
sex	cluster	trait	center	SD	weight
<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Female	cluster_1	whr	-0.3245417	0.7614419	0.08720774
Female	cluster_1	sbp	0.9723763	0.6966866	0.08720774
Female	cluster_1	dbp	0.9797456	0.6483376	0.08720774
Female	cluster_1	alt	-0.2261096	0.5425986	0.08720774
Female	cluster_1	scr	-0.2058427	0.7207990	0.08720774
Female	cluster_1	crp	-0.2872325	0.4185867	0.08720774

We also need the distribution of the biomarkers in the clusters in their natural scale. To calculate this for a specific cluster, we use all individuals, and weigh each individual by their corresponding cluster allocation probability. The function for this is the following:

```
In [19]: cluster_descriptives <- get_cluster_descriptives(cluster_results, strat_dat)
In [20]: head(cluster_descriptives)</pre>
```

A tibble: 6 × 9

sex	cluster	TotalN	Weighted_N	N80Perc	Variable	Туре	Summary1	Summary2
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Female	cluster_1	76051	6632.24	2998	bmi	Numeric	25.97 (4.4)	25.22 (19.54 - 22.91 - 28.21 - 36.77)
Female	cluster_1	76051	6632.24	2998	age	Numeric	57.49 (7.43)	58.97 (42 - 52.01 - 63.05 - 69)
Female	cluster_1	76051	6632.24	2998	smoking	Categorical	0	91.58 %
Female	cluster_1	76051	6632.24	2998	smoking	Categorical	1	8.42 %
Female	cluster_1	76051	6632.24	2998	whr	Numeric	0.8 (0.06)	0.79 (0.69 - 0.76 - 0.83 - 0.91)
Female	cluster_1	76051	6632.24	2998	sbp	Numeric	150.38 (15.63)	149.22 (123.42 - 139.15 - 160.37 - 183.35)

Relationship between BMI and biomarkers in each cluster

Given that the relationship between BMI and biomarkers is expected to be different in these clusters compared to the overall relationship found above, we will quantify how much it changed by comparing models weighted by probabilities of each cluster. The function is the following:

Female	cluster_1	whr	bmi	0.00560	0.00004	0.00552	0.00568
Female	cluster_1	whr	age	0.00089	0.00002	0.00084	0.00094
Female	cluster_1	whr	smoking	0.01886	0.00066	0.01756	0.02016
Female	cluster_1	sbp	(Intercept)	77.23063	0.47744	76.29486	78.16641
Female	cluster_1	sbp	bmi	0.54534	0.01102	0.52375	0.56693

Disease prevalence

The next step is to check whether the prevalence of certain diseases differ in the clusters found, which would give us an initial idea of the clinical relevance of these subgroups. To do that we expect a table where each column represents a disease, coded as 1 or 0 depending on the presence or absence of the disease for each individual *included in the clustering analysis*:

A tibble: 6×22

eid	HT	CHD	Stroke	T2D	T1D	Hypothyroidism	Hyperthyroidism	Asthma_COPD	Sleep_Apnea	•••	Liver_disease	(
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<						
1000039	0	0	0	0	0	0	0	0	0		0	
1000071	1	0	0	1	0	0	0	0	0		0	

1000096	0	0	0	0	0	0	0	1	0	0
1000109	1	0	0	0	0	0	0	1	0	0
1000117	0	0	0	0	0	0	0	0	0	0
1000125	0	0	0	0	0	0	0	0	0	0

Diseases in this table are commonly associated with obesity; the list includes:

In [24]: colnames(disease_dat)[-1]

'HT' · 'CHD' · 'Stroke' · 'T2D' · 'T1D' · 'Hypothyroidism' · 'Hyperthyroidism' · 'Asthma_COPD' · 'Sleep_Apnea' · 'IBS' · 'IBD' · 'Liver_disease' · 'CKD' · 'Osteoarthrosis' · 'Osteoporosis' · 'Lumbar_pain' · 'Depression' · 'PCOS' · 'BPH' · 'RA' · 'AnyCancer'

Note: We don't expect to have all diagnoses available in all validation cohorts, but the more the better!

The first thing we need is a table summarising the sex-specific prevalence of each disease:

In [25]: overall_diseasesum <- get_diseasesummary(disease_dat, strat_dat)</pre>

In [26]: head(overall_diseasesum)

A data.frame: 6 × 6

	sex	Disease	N	N_miss	Summary1	Summary2
	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
1	Female	HT	76051	0	0	57600 (75.74%)
2	Female	HT	76051	0	1	18451 (24.26%)
3	Female	CHD	76051	0	0	73935 (97.22%)
4	Female	CHD	76051	0	1	2116 (2.78%)

```
5 Female
           Stroke 76051
                                          0 74953 (98.56%)
6 Female
           Stroke 76051
                                               1098 (1.44%)
```

Then, we will need a table summarising the prevalence within each cluster, which is again calculated using the cluster probabilites as weights:

```
In [27]: cluster_diseasesum <- get_diseasesummary_clusters(disease_dat, cluster_results)</pre>
         Warning message in dplyr::inner join(probs, dxdf, by = "eid"):
         "Detected an unexpected many-to-many relationship between `x` and `y`.
         i Row 1 of `x` matches multiple rows in `y`.
         i Row 1 of `y` matches multiple rows in `x`.
         i If a many-to-many relationship is expected, set `relationship =
           "many-to-many" \ to silence this warning."
         Warning message in dplyr::inner_join(probs, dxdf, by = "eid"):
         "Detected an unexpected many-to-many relationship between `x` and `y`.
         i Row 1 of `x` matches multiple rows in `y`.
         i Row 1 of `y` matches multiple rows in `x`.
         i If a many-to-many relationship is expected, set `relationship =
           "many-to-many" to silence this warning."
```

In [28]: head(cluster_diseasesum)

A tibble: 6×5

sex	cluster	disease	Summary1	Summary2
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
Female	cluster_1	HT	0	74.54 %
Female	cluster_1	HT	1	25.46 %
Female	cluster_1	CHD	0	99.07 %
Female	cluster_1	CHD	1	0.93 %

Female	cluster_1	Stroke	0	99.3 %
Female	cluster_1	Stroke	1	0.7 %

Some of the prevalences may be affected by subtle residual differences in the covariates we adjusted for before clustering (i.e., age, smoking and most importantly, BMI), and also certain medications. To control for that:

- We will treat 'cluster 0', the cluster characterized by all biomarkers being aligned with BMI, as the reference cluster.
- For each disease, we will calculate the increase in disease OR that corresponds to a unit increase in cluster allocation probability of every cluster relative to 'cluster 0', while all other covariates remain equal.

To do that we need an additional table containing medication data, which should look like this:

```
In [29]: meds_dat <- read_tsv("../data/selected_meds.tsv", show_col_types = FALSE)
head(meds_dat)</pre>
```

A tibble: 6 × 5
eid Insulin AntiDM AntiHT LipidLower

Ciu	IIISUIIII	AIILIDIN	Allum	LipiuLowei
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1000064	0	1	1	0
1000071	0	0	1	1
1000109	0	0	1	0
1000125	0	0	0	1
1000132	0	0	1	0
1000148	0	0	1	0

We defined people receiving medications using the following ATC codes:

Medication group	ATC codes
Insulin	A10A
Other antidiabetic	A10B
Antihypertensives	C01
	C02
	C03
	C07
	C08
	C09
Lipid lowering	C10

The function to run an adjusted analysis is the following:

In [30]: cluster_adjdiseasesum <- get_adjdiseasesummary_clusters(cluster_results, disease_dat, meds_dat, strat_c

In [31]: head(cluster_adjdiseasesum)

A tibble: 6 × 8

sex	disease	model	cluster	Estimate	SE	lowerCl	upperCl
<chr></chr>							
Female	HT	Unadjusted	cluster_1	0.04201	0.00419	0.0338	0.05022
Female	HT	Unadjusted	cluster_10	0.02662	0.00246	0.02179	0.03145
Female	HT	Unadjusted	cluster_2	0.0039	0.00433	-0.00459	0.01239
Female	HT	Unadjusted	cluster_3	-0.1108	0.00406	-0.11876	-0.10285
Female	НТ	Unadjusted	cluster_4	-0.05066	0.00252	-0.0556	-0.04572

These latter estimates represent the change in the logarithm of the OR for a disease per each unit change in the logarithm of cluster probability. The rationale for using this transformation is to back-transform the estimates so that they represent the change in the OR for a certain percent increase/decrease in probability.

As a complementary analysis, we would calculate these OR by allocating individuals to a certain cluster based on different thresholds. The function for that is the following:

```
In [32]: cluster_adjdiseasesum_thresh <- get_adjdiseasesummary_clustersthresh(cluster_results, disease_dat, meds
```

```
Warning message in dplyr::inner_join(joindf, dxdf, by = "eid"):
"Detected an unexpected many-to-many relationship between `x` and `y`.
i Row 1 of `x` matches multiple rows in `y`.
i Row 81 of `y` matches multiple rows in `x`.
i If a many-to-many relationship is expected, set `relationship =
  "many-to-many" to silence this warning."
Warning message:
"There was 1 warning in `dplyr::transmute()`.
i In argument: `data = purrr::map(...)`.
i In group 19: `disease = "T1D"`.
Caused by warning:
! glm.fit: fitted probabilities numerically 0 or 1 occurred"
Warning message:
"There was 1 warning in `dplyr::transmute()`.
i In argument: `data = purrr::map(...)`.
i In group 19: `disease = "T1D"`.
Caused by warning:
 glm.fit: fitted probabilities numerically 0 or 1 occurred"
Warning message in dplyr::inner_join(joindf, dxdf, by = "eid"):
"Detected an unexpected many-to-many relationship between `x` and `y`.
i Row 1 of `x` matches multiple rows in `y`.
i Row 1 of `y` matches multiple rows in `x`.
```

i If a many-to-many relationship is expected, set `relationship =
 "many-to-many"` to silence this warning."

In [33]: head(cluster_adjdiseasesum_thresh)

A tibble: 6×11

sex	disease	thresh	cluster	N	model	Estimate	SE	lowerCI	upperCl	N0	
<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	
Female	HT	0.6	cluster_1	4779	Unadjusted	-0.27613	0.03799	-0.35058	-0.20168	12037	
Female	HT	0.6	cluster_1	4779	Adjusted	0.70818	0.05433	0.6017	0.81466	12037	
Female	HT	0.6	cluster_10	1486	Unadjusted	0.30459	0.05649	0.19388	0.4153	12037	
Female	НТ	0.6	cluster_10	1486	Adjusted	0.10232	0.09379	-0.0815	0.28614	12037	
Female	НТ	0.6	cluster_2	5590	Unadjusted	0.23552	0.03372	0.16943	0.30162	12037	
Female	НТ	0.6	cluster_2	5590	Adjusted	1.25071	0.04895	1.15477	1.34666	12037	

These estimates represent the change in the logarithm of the OR for change in cluster membership relative to cluster 0 - the concordant cluster.

MACE incidence - UK Biobank, Rotterdam (GHS?)

Next, we will calculate the risk of future disease given the probability of cluster allocation. The table we expect to able to run this part looks like the following:

```
In [34]: survmacedat <- read_tsv("../data/survmacedat.tsv", show_col_types = FALSE)
head(survmacedat)</pre>
```

A tibble: 6 × 5

eid	outcome_value	outcome_date	date0	outcome_timeyrs
<dbl></dbl>	<dbl></dbl>	<date></date>	<date></date>	<dbl></dbl>
1000071	0	2018-02-28	2008-01-29	10.083504
1000223	1	2016-07-23	2009-09-07	6.874743
1000324	1	2010-10-20	2007-09-13	3.101985
1000583	1	2012-05-31	2008-08-26	3.761807
1001175	1	2013-11-13	2009-04-30	4.539357
1001892	1	2017-07-10	2008-05-03	9.185489

The first thing we need, as done before, is a sex-specific summary of the data available:

In [35]: macesum <- get_incidencesummary(survmacedat, strat_dat)</pre>
In [36]: macesum

A data.frame: 2 × 12 ntotal ncases personyrs casesper1e5py avgtime sdtime medtime timeq2.5 timeq25 timeq75 timeq97.5 <chr> <int> <dbl> Female 74423 3357 655191.8 512.369 8.80362 1.287503 8.941821 5.712663 8.098563 9.604381 10.57358 Male 61821 5827 530647.4 1098.093 8.58361 1.693026 8.867899 2.622861 7.994524 9.582478 10.55989

And again, we would run similar cluster-specific analyses as done for prevalence:

• Crude incidence per cluster:

In [37]: cluster_macesum <- get_incidencesummary_clusters(survmacedat, cluster_results)</pre>

In [38]: cluster_macesum

A tibble: 21×5

sex	cluster	ncases	personyrs	casesper1e5py
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Female	cluster_0	1018.3495	165904.11	613.8181
Female	cluster_1	223.5762	58041.63	385.1998
Female	cluster_10	114.7603	15917.97	720.9483
Female	cluster_2	367.1736	65794.28	558.0631
Female	cluster_3	137.9937	46309.62	297.9805
Female	cluster_4	356.7161	57251.53	623.0682
Female	cluster_5	229.7102	32920.41	697.7745
Female	cluster_6	294.5343	77447.42	380.3023
Female	cluster_7	173.6153	30082.79	577.1250
Female	cluster_8	251.3105	44638.47	562.9910
Female	cluster_9	189.2602	60883.59	310.8559
Male	cluster_0	1478.1484	113911.35	1297.6305
Male	cluster_1	362.1966	29841.55	1213.7324
Male	cluster_2	255.1562	15765.75	1618.4204
Male	cluster_3	549.4803	51384.06	1069.3594
Male	cluster_4	566.7756	55778.04	1016.1269
Male	cluster_5	361.7580	24250.02	1491.7843

Male	cluster_6	543.7276	59310.41	916.7490
Male	cluster_7	518.2012	68427.45	757.3001
Male	cluster_8	552.9734	53428.17	1034.9848
Male	cluster 9	638.5827	58550.57	1090.6515

• Unadjusted and adjusted survival models with cluster probabilities as predictors:

In [39]: cluster_adjmacesum <- get_adjincidencesummary_clusters(cluster_results, survmacedat, meds_dat, strat_da

In [40]: head(cluster_adjmacesum)

	A tibble: 6 × 7											
sex	model	cluster	Estimate	SE	lowerCl	upperCl						
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>						
Female	Unadjusted	cluster_1	0.00285	1.00286	-0.01158	0.01728						
Female	Unadjusted	cluster_10	0.01365	1.01374	0.00525	0.02204						
Female	Unadjusted	cluster_2	-0.00366	0.99635	-0.01824	0.01092						
Female	Unadjusted	cluster_3	-0.04398	0.95697	-0.05776	-0.0302						
Female	Unadjusted	cluster_4	-0.01866	0.98151	-0.02756	-0.00975						
Female	Unadjusted	cluster_5	0.00186	1.00186	-0.00571	0.00943						

• Unadjusted and adjusted survival models with hard cluster allocation at different thresholds as predictor:

In [41]: cluster_adjmacesum_thresh <- get_adjincidencesummary_clustersthresh(cluster_results, survmacedat, meds_</pre>

In [42]: head(cluster_adjmacesum_thresh)

A data.frame: 6 × 10

	sex	thresh	cluster	N	model	Estimate	SE	IowerCI	upperCl	N0
	<chr></chr>	<dbl></dbl>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>
1	Female	0.6	cluster_1	4751	Unadjusted	-0.62642	0.5345	-0.80023	-0.45261	11685
2	Female	0.6	cluster_1	4751	Adjusted	-0.28883	0.74914	-0.46573	-0.11194	11685
3	Female	0.6	cluster_10	1414	Unadjusted	0.13079	1.13972	-0.08239	0.34396	11685
4	Female	0.6	cluster_10	1414	Adjusted	-0.04453	0.95645	-0.26513	0.17607	11685
5	Female	0.6	cluster_2	5516	Unadjusted	-0.19444	0.8233	-0.33299	-0.05589	11685
6	Female	0.6	cluster_2	5516	Adjusted	0.094	1.09856	-0.04764	0.23564	11685

We want to know whether a simple survival model using all biomarkers is able to capture the risk we observe in the clusters. To do that we first construct this simple survival model:

In [43]: globalmod_mace <- global_survivalmodel(strat_dat, survmacedat)</pre>

The result is a sex specific survival model:

In [44]: lapply(globalmod_mace, class)

\$Female 'coxph' \$Male 'coxph'

Each model includes all variables, e.g.:

In [45]: summary(globalmod_mace\$Female)\$coefficients

A matrix: 13×5 of type dbl

	coef	exp(coef)	se(coef)	Z	Pr(> z)
bmi	1.465949e-02	1.0147675	0.004098008	3.57722405	3.472625e-04
age	8.353594e-02	1.0871243	0.003111155	26.85045928	8.331066e-159
smoking	6.533949e-01	1.9220549	0.051945413	12.57849080	2.772765e-36
whr	1.894749e+00	6.6508785 0	0.287375543	6.59328533	4.301986e-11
sbp	1.035408e-02	1.0104079	0.001188302	8.71334232	2.950440e-18
dbp	-4.933364e-03	0.9950788	0.002361447	-2.08912759	3.669624e-02
alt	-4.231542e-05	0.9999577	0.001875557	-0.02256152	9.820000e-01
scr	8.148241e-03	1.0081815	0.001441293	5.65342475	1.572820e-08
crp	2.920288e-02	1.0296335	0.005913643	4.93822221	7.883798e-07
hdl	-3.248821e-01	0.7226125	0.057609680	-5.63936707	1.706763e-08
tg	7.214975e-02	1.0748163	0.023871679	3.02239941	2.507794e-03
ldl	-1.034617e-01	0.9017106	0.020658551	-5.00817608	5.494825e-07
fg	5.411103e-02	1.0556018	0.029918077	1.80863987	7.050697e-02

We then extract the probability assigned by these models to each individual to be free of MACE events after 5 years of follow-up, and then we assess both the overall and the cluster-specific predictive performance. For the first we have the following function:

```
In [46]: global_survmetrics_mace <- global_survmetrics(globalmod_mace, strat_dat, survmacedat)</pre>
```

This function returns for each sex a list containing 2 elements:

- A table containing multiple thresholds of survival probabilities, and their corresponding number of true/false positives and true/false negatives, which we can use to calculate ROC curves.
- A calculation of the variance parameters around the ROC AUC estimate, which we will use to formally compare 2 ROC AUCs using Delong's method.

For example, these is how this object looks like for females:

```
In [47]: str(global_survmetrics_mace$Female)
         List of 2
          $ roctab
                    :'data.frame':
                                        74424 obs. of 5 variables:
           ..$ thresholds: num [1:74424] 0.999 0.999 0.999 0.999 ...
                        : num [1:74424] 0 1 2 3 4 5 6 7 8 9 ...
           ..$ TN
           ..$ TP
                        : num [1:74424] 1591 1591 1591 1591 ...
                        : num [1:74424] 72832 72831 72830 72829 72828 ...
           ..$ FP
                        : num [1:74424] 0 0 0 0 0 0 0 0 0 0 ...
           ..$ FN
          $ rocaucvar:List of 5
           ..$ theta: num 0.726
           ..$ X
                   : num [1:1591] 0.956 0.507 0.484 0.847 0.271 ...
           ..$ n
                   : num 72832
           ..$ Y
                   : num [1:72832] 0.488 0.263 0.957 0.981 0.263 ...
           ..$ m
                   : num 1591
```

We will also calculate these same estimates for each cluster. We will do this by weighting individuals by their cluster probabilities:

```
In [48]: cluster_survmetrics_mace <- cluster_survmetrics(globalmod_mace, strat_dat, survmacedat, cluster_results
```

The result is similar as before, for each cluster identified:

```
In [49]: str(cluster_survmetrics_mace$Female$cluster_1)
```

```
List of 2
$ roctab
           :'data.frame':
                              74424 obs. of 5 variables:
  ..$ thresholds: num [1:74424] 0.999 0.999 0.999 0.999 ...
 ..$ TN
             : num [1:74424] 0 0.000307 0.002209 0.002214 0.002214 ...
 ..$ TP
            : num [1:74424] 102 102 102 102 102 ...
  ..$ FP
         : num [1:74424] 6485 6485 6485 6485 ...
 ..$ FN
           : num [1:74424] 0 0 0 0 0 0 0 0 0 0 ...
$ rocaucvar:List of 5
  ..$ theta: num 0.663
  ..$ X
         : num [1:1591] 7.82e-22 1.83e-04 1.92e-14 4.47e-09 4.87e-04 ...
  ..$ n
          : num 6485
  ..$ Y
        : num [1:72832] 9.25e-08 1.64e-04 3.03e-12 1.01e-05 2.22e-03 ...
  ..$ m
        : num 102
```

Diabetes risk - UK Biobank, Rotterdam (GHS?)

Given the strong link between BMI and T2D, we will also test whether one of the clusters identified is associated with higher or lower risk of developing diabetes over time. The data we need looks just like the one we used above for MACE:

```
In [50]: survdmdat <- read_tsv("../data/survdmdat.tsv", show_col_types = FALSE)
head(survdmdat)</pre>
```

eid	outcome_value	outcome_date	date0	outcome_timeyrs
<dbl></dbl>	<dbl></dbl>	<date></date>	<date></date>	<dbl></dbl>
1000109	1	2013-02-07	2009-07-03	3.600274
1000132	1	2011-01-01	2009-10-02	1.248460
1004267	1	2012-10-02	2008-03-15	4.550308
1006281	1	2011-08-04	2009-08-19	1.957563

A tibble: 6×5

1007454	0	2018-02-28	2008-09-26	9.423682
1010295	1	2016-05-23	2009-07-16	6.852841

We will then apply the same functions as we did for MACE:

• Sex-specific summary of the data available:

```
In [51]: timetodmsum <- get_incidencesummary(survdmdat, strat_dat)</pre>
```

In [52]: timetodmsum

	A data.frame: 2 × 12										
sex	ntotal	ncases	personyrs	casesper1e5py	avgtime	sdtime	medtime	timeq2.5	timeq25	timeq75	timeq97.5
<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Female	34221	1104	301498.1	366.1715	8.810324	1.215402	8.873374	6.403833	8.208077	9.607118	10.37098
Male	28563	1486	249099.8	596.5481	8.721065	1.403724	8.856947	4.115537	8.120465	9.593429	10.34908

• Crude incidence per cluster:

```
In [53]: cluster_timetodmsum <- get_incidencesummary_clusters(survdmdat, cluster_results)</pre>
In [54]: head(cluster_timetodmsum)
```

 sex
 cluster
 ncases
 personyrs
 casesper1e5py

 <chr>
 <chr>
 <dbl>
 <dbl>

 Female
 cluster_0
 385.87710
 76370.678
 505.26866

```
28.48103 27140.185
                                            104.94044
Female
         cluster 1
Female
       cluster 10
                   73.48986
                              5727.767
                                           1283.04559
Female
         cluster_2
                   69.02017 30768.279
                                            224.32249
                                             72.18608
Female
         cluster 3
                   14.87157 20601.709
        cluster 4 175.84176 26939.404
                                            652.73069
Female
```

• Unadjusted and adjusted survival models with cluster probabilities as predictors (here ignoring medication):

```
In [55]: cluster_adjtimetodmsum <- get_adjincidencesummary_clusters(cluster_results, survdmdat, meds_dat[,"eid"]
In [56]: head(cluster_adjtimetodmsum)</pre>
```

sex	model	cluster	Estimate	SE	lowerCI	upperCI
<chr></chr>						
Female	Unadjusted	cluster_1	-0.03545	0.96517	-0.05711	-0.01379
Female	Unadjusted	cluster_10	0.09592	1.10067	0.08405	0.10779
Female	Unadjusted	cluster_2	-0.01603	0.9841	-0.03707	0.00501
Female	Unadjusted	cluster_3	-0.03484	0.96576	-0.05708	-0.0126
Female	Unadjusted	cluster_4	-0.00219	0.99781	-0.01556	0.01118
Female	Unadjusted	cluster_5	0.01526	1.01537	0.0032	0.02731

A tibble: 6×7

• Unadjusted and adjusted survival models with hard cluster allocation at different thresholds as predictor:

In [57]: cluster_adjtimetodmsum_thresh <- get_adjincidencesummary_clustersthresh(cluster_results, survdmdat, med

In [58]: head(cluster_adjtimetodmsum_thresh)

		A data.frame: 6 × 10										
	sex	thresh	cluster	N	model	Estimate	SE	lowerCI	upperCl	N0		
	<chr></chr>	<dbl></dbl>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>		
1	Female	0.6	cluster_1	2219	Unadjusted	-2.08334	0.12451	-2.58606	-1.58062	5374		
2	Female	0.6	cluster_1	2219	Adjusted	-1.4431	0.23619	-1.94932	-0.93689	5374		
3	Female	0.6	cluster_10	508	Unadjusted	0.87288	2.3938	0.60504	1.14073	5374		
4	Female	0.6	cluster_10	508	Adjusted	1.28638	3.61966	1.0157	1.55706	5374		
5	Female	0.6	cluster_2	2535	Unadjusted	-1.05651	0.34767	-1.35309	-0.75992	5374		
6	Female	0.6	cluster_2	2535	Adjusted	-0.40627	0.66613	-0.70973	-0.10281	5374		

Overall survival model:

In [59]: globalmod_timetodm <- global_survivalmodel(strat_dat, survdmdat)</pre>

In [60]: lapply(globalmod_timetodm, class)

\$Female 'coxph' \$Male 'coxph'

• Overall predictive performance at 5 years:

In [61]: global_survmetrics_timetodm <- global_survmetrics(globalmod_timetodm, strat_dat, survdmdat)</pre>

• Cluster-specific predictive performance at 5 years, weighted by probabilities:

```
In [62]: cluster_survmetrics_timetodm <- cluster_survmetrics(globalmod_timetodm, strat_dat, survdmdat, cluster_r</pre>
```

Gathering and saving results

We'll save all results in a single file:

```
result_file <- list(</pre>
In [63]:
             General descriptives = gendesc tab.
             BMI coefficients = bmicoefs_tab,
             Cluster_results = cluster_results,
             Cluster_summary = clustersummary,
             Cluster descriptives = cluster descriptives.
             Cluster_BMI_coefficients = clusbmicoefs,
             Disease_summary = overall_diseasesum,
             Cluster_Disease_summary = cluster_diseasesum,
             Cluster_Disease_summary_Adjusted = cluster_adjdiseasesum,
             Cluster_Disease_summary_Threshold = cluster_adjdiseasesum_thresh,
             MACE_summary = macesum,
             Cluster_MACE_summary = cluster_macesum,
             Cluster_MACE_summary_Adjusted = cluster_adjmacesum,
             Cluster_MACE_summary_Threshold = cluster_adjmacesum_thresh,
             Global_SurvMetrics_MACE = global_survmetrics_mace,
             Cluster_SurvMetrics_MACE = cluster_survmetrics_mace,
             TimetoDM summary = timetodmsum,
             Cluster_TimetoDM_summary = cluster_timetodmsum,
             Cluster_TimetoDM_Adjusted = cluster_adjtimetodmsum,
             Cluster_TimetoDM_Threshold = cluster_adjtimetodmsum_thresh,
             Global SurvMetrics TimetoDM = global survmetrics timetodm,
```

```
Cluster_SurvMetrics_TimetoDM = cluster_survmetrics_timetodm
)

In [64]: save(result_file, file = "../data/ukb/result_file.RData")
```

Uploading results

The results shown do not contain any individual level data. We require that you upload this 'result_file.RData' file to the Teams folder in SOPHIA, which would be located here:

CrossWP > Analyst working groups > WG1 > UMAP_project > cohort_name > data