Home Assignment 5, IE1206 & IF1330, VT2020

Problem 1

The switch has been closes for a long time. At t=0 s the switch opens. Plot $I_1(t)$ in the interval -1 $\mu s < t < 5 \ \mu s$. R_1 =1 $k\Omega$, R_2 =3 $k\Omega$, C= 0.5 nF, V_A =1 V and V_B =2 V.

Problem 2

The switch has been closed for a long time and at t=o s it opens.

- (A) What is the energy stored in the capacitor at t=o s?
- (B) At what time is the energy stored in the capacitor 1 nJ?

Problem 3

The switch has been closed for a long time. At t=0 s it opens. $V_A=10 \text{ V}$, $R_1=1 \text{ k}\Omega$, $R_2=100 \text{ k}\Omega$, L=1 mH.

- (A) What is the voltage over R_2 at $t=0^+$ s?
- (B) What is the time constant τ for the inductor to release its stored energy?

Problem 4

The switch has been in position A for a long time. At t=0 s the switch moves to position B. At what time is the voltage V_L over the inductor equal to V_A ? $R_1=3~k\Omega,~R_2=100~\Omega,~L=10~mH,~I_0=2~mA,~V_A=8~V.$

Problem 5

Assume the capacitor is discharged at t<0 s. At t=0 s the switch closes. Draw a graph showing the voltage over the capacitor, $V_C(t)$, in the interval -2 ms < t < 2 ms. I_0 = 1 mA and C= 1 μ F.

Problem 6

The graph shows an ac voltage (blue) and an ac current (red) as a function of time. Determine the frequency of the voltage and current. Using $cos(\omega t)$ as reference determine $V(t)=V_ocos(\omega t+\phi_o)$ and $I(t)=I_1cos(\omega t+\phi_1)$. That is determine the amplitud, ω and phase angle. Finally write down their representation as complex V and complex I.