4: Logic paradigm

Programming Languages, Technologies and **Paradigms**

Summary

- 1 Introduction
- 2 Syntax of logic programs
- 3 Computational model of logic programming
- 4 Some practical issues

Objectives

- Understanding the logic programming computational model: inversion of definitions, logic variables, nondeterminism, etc.
- Understanding bidirectional parameter passing and its implementation by means of the unification mechanism.
- Understanding the resolution principle and the different computation rules and search strategies that can be applied.
- Solving small problems using the logic paradigm.

Monty Python's Knights of the round table (Monty
 Python and the Holy Grail) (1975)

http://www.youtube.com/watch?v=yp_l5ntikaU

```
□ Prolog solution
                      witch(X):-burns(X), woman(X).
                      burns(X):-wooden(X).
                      wooden(X):- floats(X).
                      wooden(wooden bridge).
                      stone(stone bridge).
                      floats(bread).
                      floats(apple).
                      floats(green sauce).
                      floats(duck).
                      floats(X):- same weight(duck,X).
                      /* Observation */
                      same weight(duck,woman-on-the-scene).
                      woman(woman-on-the-scene).
```

```
000
                            Terminal - swipl - 80×24
Last login: Mon Dec 10 16:08:00 on ttys000
millenium:~ mramirez$ cd /Users/mramirez/Documents/DOCENCIA/LTP/TEORIA/Tema\ 4/2
012-13
millenium:2012-13 mramirez$ swipl
% library(swi_hooks) compiled into pce_swi_hooks 0.00 sec, 2,284 bytes
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 5.10.4)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
?- [bruia].
% bruja compiled 0.00 sec, 2,248 bytes
true.
?- bruja(Quien).
Quien = la_mujer_de_la_escena .
```

?- 🛮

Some distinctive features

- □ Use of logic as a programming language
- Logical variables
 - Answer extraction
 - Invertible definitions
 - Non-determinism

Use of logic as a programming language

- Logic programming implements the revolutionary idea of using *logic* as a programming language.
- Writing a logic program consists of expressing a relation (or set of relations) by using a logic notation based on the **predicate logic**.
- The essential idea of the logic paradigm is that of COMPUTATION as DEDUCTION. This is in contrast to more standard notions like COMPUTATION as CALCULATION.

Use of logic as a programming language

PROGRAM

Express the <u>knowledge of the problem</u> ⇒ **WRITE LOGIC FORMULAS**

Use of logic as a programming language

PROGRAM

Express the <u>knowledge of the problem</u> ⇒ **WRITE LOGIC FORMULAS**

PROGRAM EXECUTION

Express the problem to solve ⇒

GOAL FORMULA; DEDUCTION USING QUERIES

```
arc(0,3). arc(3,4). arc(4,6). arc(6,8). arc(0,1). arc(1,2). arc(4,3). arc(7,6). arc(7,8). connected(X,Y) \leftarrow arc(X,Y). connected(X,Y) \leftarrow arc(X,Z) \land connected(Z,Y).
```

Are 0 and 8 connected? Are 4 and 7 connected?

connected(0,8)? yes connected(4,7)? no

Logical variables

- Program variables are unknowns (mathematical variables, like in an equation).
- Implicitly, logic formulas in programs are universally quantified.

```
connected(X,Y) \leftarrow arc(X,Z) \land \\ connected(Z,Y)

\forall X,Y,Z(connected(X,Y) \leftarrow arc(X,Z) \land \\ connected(Z,Y))

\forall X,Y(connected(X,Y) \leftarrow \exists Z(arc(X,Z) \land \\ connected(Z,Y)))
```

Answer extraction

Variables in queries are existentially quantified.

READ: Are there X and Y such that connected(X,Y) holds (w.r.t. the logic program)?

The mechanism that is used to prove the goal is constructive: When succeeding, values for the unknowns X and Y are given

This is the outcome or **answer** to the query

Invertibility

The predicate arguments can be both input or output arguments.

```
member(H,[H \mid L]) .
member(H,[X \mid L]) :- member(H,L) .
```

- Check for membership: member(2,[1,2])
- Return the elements of a list: member(X,[1,2])
- □ Generate the lists containing an element: member(1,L)

Non-determinism

A query can deliver several answers that the interpreter obtains by exhaustively exploring the computation space.

```
?-member(X, [1,2,a]).
```

Answer 1: X=1

Answer 2: X=2

Answer 3: X=a

2. Syntax of logic programs: Terms

- Data in logic programs are called terms and can be either:
 - Variables:
 - Prolog: variable identifiers begin with a **capital** letter. Anonymous variables are represented using "_"
 - Example: X, Y, SquareArea, Result
 - Constants:
 - Prolog: numeric and symbolic (with identifiers beginning with a lower case letter or written in quotes)
 - Example: 42, 'a', peter, 'Peter', 'Hello World', ...
 - Structured **data** $f(t_1,...,t_n)$ where f is a function symbol and $t_1,...,t_n$ are terms
 - Prolog: f is a data constructor beginning with a lower case letter
 - Example: hour(h,m,s), name('Peter')

Lists (Prolog notation)

- Lists are a particular kind of terms built out from:
 - the empty list: []
 - the list constructor symbol [_|_]
- Examples: [1 | [2 | []]] (shortly: [1,2])
 [1 | [2 | X]] (equivalent to [1,2 | X])
 [1 | 2] ERROR
- □ Similar to Haskell's [] and (_:_)

2. Syntax of logic programs: Atoms

- \square Atoms are expressions $p(t_1,...,t_n)$ where
 - p is a predicate symbol of arity n (often written p/n),
 i.e., a sequence of characters beginning by a lower
 case letter
 - \Box $t_1,...,t_n$ are terms
- Atoms express properties or relations (p) concerning data represented by terms t₁,...,t_n
- □ Example: arc(1,2)

Syntax of logic programs: Prolog programs

- A logic program is a set of sentences/declarations that can be of two types: facts or rules.
 - □ FACTS: single **atoms** followed by a dot **A**.

Example: arc(0,1).

Note that ',' is ' \wedge '

 \blacksquare RULES: having the form $A := B_1, ..., B_n$.

where n>0

Example: connected(X,Y) :- arc(X,Z), connected(Z,Y).

where A and each B_i are atoms.

NOTE: facts can be seen as rules with an empty body, as follows:

A:- true.

Syntax of logic programs: goals

The 'call' that serves to execute a logic program is called the **goal** and is written as a clause without head, i.e.,

$$?- B_1, ..., B_n$$
 with $n>0$

Example: ?- connected(X,Y)

Note that, in sharp contrast to FP, terms are *not evaluated* because goals rather consist of atoms

A clause without head nor body is called an empty clause and is represented as ?-

The empty clause witnesses that the computation was successfully finished.

From Haskell to Prolog

- Both Haskell and Prolog are rule-based languages. From a syntactic point of view, the main differences are that, in Prolog:
 - There is no function (only procedures)
 - Calls to such procedures cannot be nested

Example:

Functions become procedures with an extra parameter which is used to return the result

From Haskell to Prolog

- Both Haskell and Prolog are rule-based languages. From a syntactic point of view, the main differences are that, in Prolog:
 - There is no function (only procedures)
 - Calls to such procedures cannot be nested

Example:

The guard is just another relation

From Haskell to Prolog

- Both Haskell and Prolog are rule-based languages. From a syntactic point of view, the main differences are that, in Prolog:
 - There is no function (only procedures)
 - Calls to such procedures cannot be nested

Example:

Calls to subtraction and fibonacci cannot be nested! (essentially "X is E" evaluates expression E; its value i then bound to variable X)

```
Length of a list:
■ Haskell code:
              length [] = 0
              length(x:xs) = length(xs + 1)
■ Prolog code:
              length ([], 0).
              length ([_|T], N) :- length(T, N1),
                                   N is N1+1.
```

List concatenation

Haskell:

$$[] ++ y = y$$

(x:xs) ++ y = x : (xs ++ y)

Prolog:

```
append([], Y, Y).

append([X | R], Y, Z) := append(R, Y, RY), Z = [X | RY].
```

List concatenation

Haskell:

$$[] ++ y = y$$

(x:xs) ++ y = x : (xs ++ y)

Prolog:

```
append([], Y, Y) . \\ append([X \mid R], Y, Z) :- append(R, Y, RY), Z = [X \mid RY] . \\
```

or better:

append([], Y, Y).

The parameter that represents the outcome of the function is replaced by the returned expression

append([X | R], Y, [X | RY]) :- append(R, Y, RY).

Last element of a list

Haskell:

```
last [x] = x
last (x:y:xs) = last (y:xs)
```

□ In Prolog:

```
last([X],X) .
last([X,Y | XS],Z):- last([Y | XS],Z) .
```

But also, using append, we have:

Exercise

Specify the relationship "ancestor" by using a logic program

X is an ancestor of Y if

X is the father of Y

X is the mother of Y

X is the father of Z and Z is an ancestor of Y

X is the mother of Z and Z is an ancestor of Y

Procedural interpretation

PROGRAM CLAUSE DEFINITION OF A METHOD OR SUBPROGRAM $m(t1,...,tn) := A_1,..., A_n$ m(t1,...,tn) { call A call A ATOMS WITHIN A GOAL CALLS TO METHODS ?- C₁,..., C_k call C₁ call C_k **RESOLUTION STEP** AN EXECUTION STEP UNIFICATION **MECHANISM FOR:** Parameter passing Data construction and selection

3. Computational model of LP

- The computational model of LP is based on the **Resolution** inference rule
- Basic idea: in order to execute a call A (an atom):
 - If the program contains a fact A_0 that unifies with A then we say that A succeeds (and conclude that it is **true**).
 - If the program contains a clause $A_0 := A_1$, ..., A_n such that A_0 and A *unify*, then we have to further check A_1 to A_n as new independent goals.

¿How to deal with variables in queries?

Unification or bidirectional parameter passing

- The unification of two expressions A and B consists of finding the least (most general) substitution σ for their variables such that $\sigma(A) = \sigma(B)$.
- Informally:

	X	С	$f(t_1,,t_n)$
X'	Yes, {X/X'}	Yes, {X'/c}	Yes, $\{X'/ f(t_1,,t_n)\}$
c'	Yes, {X/c'}	Only if c=c'	No
f'(t' ₁ ,,t' _m)	Yes,	No	Only if $f=f'$, $n=m$ and
	$\{X/f'(t'_1,,t'_m)\}$		t_i and t'_i unify for all i

- expressions with different root symbol or different arity (i.e., number of arguments) do not unify
- 2. no binding for a variable can contain the same variable (otherwise, an infinite term would be created). This is know as the "occur check" problem.

Unification (bidirectional parameter passing)

- □ **Notation**: A substitution $\{x_1 \rightarrow t_1, ..., x_n \rightarrow t_n\}$ is traditionally denoted (in LP) as $\{x_1/t_1, ..., x_n/t_n\}$
- Example:

A unifies	with B	using θ
flies(theFly)	flies(theFly)	{}
X	Υ	{X/Y}
X	а	$\{X/a\}$
f(X,g(t))	f(m(h),g(M))	${X/m(h), M/t}$
f(X,g(t))	f(m(h),t(M))	impossible (1)
f(X,X)	f(Y,h(Y))	impossible (2)

Lists unification

Examples:

```
[a,b] and [X|R] unify using {X/a, R/[b]}
[a] and [X|R] unify using {X/a, R/[]}
[a|X] and [Y,b,c] unify using {Y/a, X/[b,c]}
[a] and [X,Y|R] do not unify
[] and [X] do not unify
```

■ IMPORTANT: both lists must have a *uniform format* before any unification test!

MGU (most general unifier)

 During the program execution, we need to compute the MGU of the clause heads and the atoms in the goal

How to compute the mgu? (I)

- □ Given expressions t_1 and t_2 , if one of them is a variable, for instance, t_1 is X:
 - \blacksquare Return $\{X/t_2\}$ as the mgu
 - \blacksquare exception 1: if $t_1 = t_2 = X$, then the mgu is $\{\}$ (empty substitution)
 - \blacksquare exception 2: if t_2 is not a variable, and X occurs in t_2 , failure! (there is no mgu)

Note: Dealing with different variables, e.g., X and Y, both $\{X/Y\}$ and $\{Y/X\}$ are valid MGUs.

MGU (most general unifier)

 During the program execution, we need to compute the MGU of the clause heads and the atoms in the goal

How to compute the mgu? (II)

- \square If the expressions are $p(t_1,...,t_n)$ and $q(s_1,...,s_m)$
 - \square Check that p=q and n=m (otherwise, failure)
 - Consider the terms t_i and s from left to right (i.e., i=1,...,n), and unify t_i and s_i using this algorithm for i=1,...,n
 - For each i, the computed unifier θ_i for t_i and s_i , must be applied to all $t_1, \ldots, t_n, s_1, \ldots, s_m$ and all terms of previously computed mgu's before attempting the unification of t_{i+1} and s_{i+1}
 - If some of the unifications fail we end with failure
 - If we reach the end without failure (both expressions are now identical), the union of all the θ_i is the MGU of the expressions

MGU (most general unifier): Example

- □ Which is the MGU of p([X,c], X) and p([f(Y)|R], f(a))?
- Write the lists in the same format:

```
p([X|[c]], X) and p([f(Y)|R], f(a))
```

2. Both predicate symbol and arity (num of arguments) coincide, so can compute the unifiers from left to right:

```
p([X | [c]], X)
p([f(Y) | R], f(a))
```

1st argument: does $[X \mid [c]]$ and $[f(Y) \mid R]$ unifiy? Yes: $\{X/f(Y),R/[c]\}$

MGU (most general unifier): Example

- □ Which is the MGU of p([X,c], X) and p([f(Y)|R], f(a))?
- 1. Write the lists in the same format:

$$p([X|[c]], X)$$
 and $p([f(Y)|R], f(a))$

2. Both predicate symbol and arity (num of arguments) coincide, so can compute the unifiers from left to right:

$$p([X | [c]], X)) => p([f(Y) | [c]], f(Y))$$

 $p([f(Y) | R], f(a)) => p([f(Y) | [c]], f(a))$
 $\{X/f(Y), R/[c]\}$

Now apply $\{X/f(Y),R/[c]\}$ to all terms

MGU (most general unifier): Example

- □ Which is the MGU of p([X,c], X) and p([f(Y)|R], f(a))?
- 1. Write the lists in the same format:

$$p([X|[c]], X)$$
 and $p([f(Y)|R], f(a))$

2. Both predicate symbol and arity (num of arguments) coincide, so can compute the unifiers from left to right:

```
p([X | [c]], X) => p([f(Y) | [c]], f(Y))

p([f(Y) | R], f(a)) => p([f(Y) | [c]], f(a))

\{X/f(Y), R/[c]\}
```

2nd argument: does f(Y) and f(a) unify? Yes: $\{Y/a\}$

MGU (most general unifier): Example

- □ Which is the MGU of p([X,c], X) and p([f(Y)|R], f(a))?
- 1. Write the lists in the same format:

$$p([X | [c]], X)$$
 and $p([f(Y) | R], f(a))$

2. Both predicate symbol and arity (num of arguments) coincide, so can compute the unifiers from left to right:

$$p([X | [c]], X) => p([f(Y) | [c]], f(Y)) => p([f(a) | [c]], f(a))$$

$$p([f(Y) | R], f(a)) => p([f(Y) | [c]], f(a)) => p([f(a) | [c]], f(a))$$

$$\{X/f(a), R/[c]\}$$

$$\{Y/a\}$$

Now apply $\{Y/a\}$ to all terms (including the previously computed mgu)

MGU (most general unifier): Example

- □ Which is the MGU of p([X,c], X) and p([f(Y)|R], f(a))?
- 1. Write the lists in the same format:

$$p([X | [c]], X)$$
 and $p([f(Y) | R], f(a))$

2. Both predicate symbol and arity (num of arguments) coincide, so can compute the unifiers from left to right:

$$p([X | [c]], X) => p([f(Y) | [c]], f(Y)) => p([f(a) | [c]], f(a))$$

 $p([f(Y) | R], f(a)) => p([f(Y) | [c]], f(a)) => p([f(a) | [c]], f(a))$
 $\{X/f(a), R/[c]\}$ $\{Y/a\}$

The MGU is
$$\{X/f(a),R/[c]\}\ U\ \{Y/a\} = \{X/f(a),R/[c],Y/a\}$$

Exercises MGU

Which (if any) is the MGU of p(f(X, b), Z) y p(f(a, Y), g(c))?

- Which (if any) is the MGU ofp([a,X], Y) y p([H|R], b) ?
- Which (if any) is the MGU of p(f(X),b,X) y p(f(a),Y,b)

3. The computational model of logic programming: Resolution

Given a logic program P and a goal $?-A_1,...,A_m$

If P contains a clause A :- B₁, .., B_n (with variables renamed to avoid unification clashes) and A and A₁ unify with mgu σ
then the application of the resolution rule yields a new goal

A:-
$$B_1,..., B_n$$

?- $A_1,A_2,...,A_m$
?- $(B_1,..., B_n, A_2,..., A_m)\sigma$

- The successive application of this rule generates a search tree.
- A computation or derivation is a sequence of resolution steps that corresponds to one of the branches in the tree.

Search tree

The computational model of logic programming

Types of computation

- Finite: the computation terminates in a finite number of steps, i.e., it is finite.
 Two kinds of finite computations are considered:
 - **Failure:** no clause unifies with the selected atom A_1
 - Successful: an empty clause (?-) is obtained. This is also called a refutation.

Each successful branch yields a **computed answer** which is obtained as the (restriction to the variables of the initial goal of the) composition $\theta_1\theta_2\cdots\theta_n$ of the sequence of mgu's that are obtained along the branch.

Infinite: in any goal of the sequence, the selected atom A₁ unifies with (a variant of) a program clause

Types of derivations

INFINITE

$${p(f(X)) \leftarrow p(X)}$$

FAILED

$$\{p(0) \leftarrow q(X)\}$$

SUCCESSFUL

$$\{p(0) \leftarrow q(X)\}$$
$$q(1) \leftarrow\}$$

Renaming is important!

Example:

wrong because X is bound to two different terms in the same derivation. The problem is that the second clause was used without the appropriate renaming: the variable X in the initial goal has nothing to do with X in the second clause.

Renaming is important!

Exercise: Which is the answer to the goal

with respect to the following program?

$$r(0)$$
.
 $p(Y) := q$.
 $q := r(Y)$.

- A. $\{X/0, Y'/0\}$
- B. {X/Y'}
- c. $\{X/0\}$
- D. {Y'/0}

Predefined search

The search rule determines:

- 1) The order for trying the clause programs and,
- 2) The strategy for traversing the obtained tree.

Two main strategies:

- * depth-first: completeness of SLD resolution gets lost.
- * breadth-first: the search tree is traversed from top to bottom, covering each level before changing to the next one. It is complete, but costly.

PROLOG: automatic predefined search

- 1) top-down,
- 2) depth-first search with backtracking.

Exercise

Compute the search tree for the goal

```
?- pair(Person1,Person2).
```

using the previously proposed program and the following facts:

Exercise

Obtain the search tree for the goal

```
?- length([1,2],L).
with respect to the logic program
length ([], 0).
length ([_|T], N) :- length(T, N1),
N is N1+1.
```

4. Some practical issues

Aplications of LP

- Software and hardware verification
- Program certification
- Automated prototyping
- Automated software engineering (automated debugging, program synthesis, program transformation,...)
- Modelling Information Systems and Data Bases
- Learning
- Robotics and scheduling
- Expert systems
- Natural language processing

LTP: References

BASIC

- Pascual Julián Iranzo, María Alpuente Frasnedo. *Programación lógica: teoría y práctica*. Pearson Educación, 2007.
- W.F. Clocksin, C.S. Mellish. Programming in PROLOG, 5th Edition. Springer-Verlag, 2003.

ADDITIONAL

- Krzysztof R. Apt. From logic programming to Prolog. Prentice Hall, 1997.
- Leon Sterling. The art of Prolog: Advanced programming techniques. MIT Press, 1997.