AFRL-ML-WP-TP-2004-413

MILITARY AEROSPACE FLUIDS AND LUBRICANTS WORKSHOP PROCEEDINGS

Carl E. Snyder, Jr. Lois J. Gschwender Dr. Shashi K. Sharma

Final Report for 15 June 2004 – 17 June 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

MATERIALS AND MANUFACTURING DIRECTORATE AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750

NOTICE

Using government drawings, specifications, or other data included in this document for any purpose other than government procurement does not in any way obligate the U.S. Government. The fact that the government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Air Force Research Laboratory Wright Site Office of Public Affairs (AFRL/WS/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

CARL E SNYDER, Jr.

Project Engineer

Nonstructural Materials Branch
Nonmetallic Materials Division

CARL E SNYDER, Jr.

JEFFREY S. ZABINSKI
Chief
Nonstructural Materials Branch
Nonstructural Materials Branch
Nonmetallic Materials Division

/s/

ROBERT M. SUSNIK
Deputy Chief
Nonmetallic Materials Division
Materials and Manufacturing Directorate

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)	2. REPORT TYPE	3. DATES COVERED (From - To)									
November 2004	Final	06/15/2004 - 06/17/2004									
4. TITLE AND SUBTITLE MILITARY AEROSPACE FLUIDS	S AND LUBRICANTS WORKSHOP	5a. CONTRACT NUMBER In-House									
PROCEEDINGS		5b. GRANT NUMBER									
6. AUTHOR(S)		5d. PROJECT NUMBER									
Carl E. Snyder, Jr.		N/A									
Lois J. Gschwender		5e. TASK NUMBER									
Dr. Shashi K. Sharma		N/A									
		5f. WORK UNIT NUMBER									
		N/A									
7. PERFORMING ORGANIZATION NAME(S) AI	ND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER									
Nonstructural Materials Branch (AF	FRL/MLBT)										
Nonmetallic Materials Division		AFRL-ML-WP-TP-2004-413									
Materials and Manufacturing Direct											
Air Force Research Laboratory, Air											
Wright-Patterson Air Force Base, O											
9. SPONSORING/MONITORING AGENCY NAM		10. SPONSORING/MONITORING AGENCY									
Materials and Manufacturing Direct	orate	ACRONYM(S) AFRL/MLBT									
Air Force Research Laboratory		AFKL/WILD1									
Air Force Materiel Command		11. SPONSORING/MONITORING AGENCY									
Wright-Patterson AFB, OH 45433-	//50	REPORT NUMBER(S) AFRL-ML-WP-TP-2004-413									

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; release is unlimited.

13. SUPPLEMENTARY NOTES

Report contains color.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. This technical paper is comprised of numerous PowerPoint slideshows that were presented at the workshop.

14. ABSTRACT

The Military Aerospace Fluids and Lubricants Workshop was presented by the Materials and Manufacturing Directorate of the Air Force Research Laboratory in order to disseminate information about military lubricant changes and related issues. Major topics included hydraulic fluids: conversion of aircraft from MIL-PRF-5606 to MIL-PRF-87257, system seals, actuator rod tests, T.O. 42B2-3-1 revision status, DoD contamination issues, elimination of storage fluids for hydraulic components, condition monitoring,. Also topics of the workshop were gas turbine engine oils: R&D, test methodology and future trends. Lastly, the topics of the workshop presented were greases: R&D, problem solving and evaluation of MIL-PRF-32014.

15. SUBJECT TERMS

fire resistant hydraulic fluid, military hydraulic fluid, fluid purification, red oil, synthetic hydrocarbon, polyalphaolefin, aerospace hydraulic fluid, gas turbine engine oil, military grease

16. SECURITY CLASSIFICATION OF:	17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT Unclassified Unclassified Unclassified Unclassified Unclassified	OF ABSTRACT: SAR	OF PAGES 778	Carl E. Snyder, Jr. 19b. TELEPHONE NUMBER (Include Area Code) (937) 255-9036

15 June 2004

Session I Hydraulics, Ed Snyder Chair

Welcome and Introductory Remarks 0800 - 0815

Col. Timothy Sakulich, Deputy Director,

Materials and Manufacturing Directorate,

Air Force Research Laboratory, WPAFB

Overview, Ed Snyder, AFRL 0815 - 0845

AF Lubricant Specs & Conversion, 0845 - 0915

Lois Gschwender, AFRL

Re-oiling in the German Air Force 0915 - 1015

Status of GAF future fleet reduction

- Results of Cold Soak Flight Trials, Dec 2002

- Decision pending on future usage of H537/H538

Wolfgang Frey, Frank Weber and Dieter Bendowski

1015 - 1030 Bres

Workshop2004

15 June 2004

Session I Hydraulics, Ed Snyder Chair

1030 – 1100 New O-Ring Material, Al Fletcher, AFRL

NAVAIR PAX NAS Hydraulics Liaison Report, Jeff Gribble, Naval Air Warfare Center 1100 - 1145

1145 - 1215 Future Trends in Flight Control Actuation, Raymond Levek, The Boeing Co.

1215-1330 Lunch

15 June 2004

Session II Hydraulic Fluid Contamination, Shashi Sharma Chair

1330 - 1400 Future Trends in Flight Control Actuation,

Raymond Levek, The Boeing Co.

BSN Hydraulic Fluid Contamination Overview 1400 - 1410

Shashi Sharma, AFRL

Elimination of Barium Containing Fluids in DoD 1410 - 1440

Aircraft Systems, Program and Static Tests

Lois Gschwender, AFRL

Pump Tests, Shashi Sharma, AFRL

1440 - 1500 Break

Aircraft Fluid System Health Monitoring

Gary Rosenberg, PALL Corporation

15 June 2004

Session II Hydraulic Fluid Contamination, Shashi Sharma Chair

Marcie Roberts, Univ. of Dayton Research Institute 1530 - 1600 Lubricant Cleaning and Compatibility Study for Ed Snyder and Lois Gschwender, AFRL Candidate Chlorofluorocarbon and Hydrochlorofluorocarbon Solvent

Oxygen Sensor Development for Fuel Tanks, Ed Snyder, AFRL 1600 - 1615

16 June 2004

Session Chair: Lewis Rosado, AFRL, Propulsion Directorate Session III Turbine Engine Lubrication

Lubrication for Gas Turbine Engines, 0800 - 0830

Nelson Forster, AFRL

Research and Development of Optimal Ester Turbine 0830 - 0800

Engine Lubricant,

Lynne Nelson and Lois Gschwender, AFRL

Oil Development Strategy for High Performance Gas **Furbines**, 0900 - 0930

Lynne Nelson, AFRL

MIL-PRF-23699 Gas Turbine Oil,

John Shimski, Naval Air Warfare Center

1000 - 1015 Break

Workshop2004

16 June 2004

Session III Turbine Engine Lubrication

Session Chair: Lewis Rosado, AFRL, Propulsion Directorate

1015 - 1045 Future Propulsion System Mechanical Considerations Curt Genay, Ron Yungk, Bill Ogden and Herb Chin,

Pratt & Whitney

Seals for HTS Oils,

Al Fletcher, AFRL

Gas Turbine Engine Oil Anti-wear Additives for 1100 - 1145

Advanced Bearing Steels, SBIR Contracts

1100-1122 Vern Wedeven, Wedeven Associates

Rich Sapienza, METSS Corp. 1122-1145

Engine Oil Condition Monitoring,

Robert Kauffman, Univ. of Dayton Research Institute

Lunch

Workshop2004

16 June 2004

Session IV Maintainer Issues, MSgt Kurt Hinxman Chair

1315 – 1645 Topics include:

Hydro AFSC Training/CEETP,

HCT-20 Test Stand,

Hydraulic Fluid Purification/Recycling,

Landing Gear Strut Servicing,

Aerospace Hoses Discussion

1645 Adjourn

_

17 June 2004

Session Chair: Lois Gschwender, AFRL Session V Hydraulic Fluid Purification

Chief Durkee, Carolyn Tucker, Alan Herman, George USAF Hydraulic Fluid Purification Program, 0800 - 0915

Fultz and Ed Snyder

Effect of Purification on Fluid Properties and 0915 - 0935

Performance,

Shashi Sharma, AFRL

Columbia Helicopters Hydraulic Purification,

Robert Peterson, Columbia Helicopters, Inc.

1000 - 1015 Break

17 June 2004

Session VI Hydraulic Fluid/Pump Condition Monitoring Session Chair: Lois Gschwender, AFRL 1015 - 1045 Malabar International Purification Briefing,

Dave Sweeetland, Malabar International, and

Bert Jacobs, Warner-Robbins AFB

In-line Hydraulic Fluid Contamination Multi-sensor, 1045 - 1115

Brad Grunden, METSS

In-line Health Monitoring System for Aircraft 1115 - 1145

Hydraulic Pumps,

Shashi Sharma, AFRL

Bruce Pilvelait, Creare, Inc.

1145 – 1300 Lunch

Workshop2004

AGENDA

17 June 2004

Session VII Aerospace Greases

Session Chair: Shashi Sharma, AFRL

1300 - 1330 Aerospace Greases - Background,

Ed Snyder, AFRL

Alaska Airline Flight 261 Investigation of 1330 - 1400

Lubricating Grease,

Jeff Kolly, National Transport Safety Board, and

Todd Standish, Naval Air Warfare Center

Presented by Ed Snyder

Carrying, PAO Based Grease, MIL-PRF-32014 Multipurpose, Moisture Resistant, High Load

Lois Gschwender, AFRL

17 June 2004

Session VII Aerospace Greases Session Chair: Shashi Sharma, AFRL The Lubrication Solution to C-5 Landing Gear Wear and Corrosion Problems 1430 - 1500

Dave Marosok, Hill AFB, UT

1500 – 1600 Discussion/Open Items

1600 Adjourn

E-MAIL	kakin@nyelubricants.com	conchita.allen@wpafb.af.mil	paul.antonopoulos@navy.mil	francisco.araujo-02@spangdahlem.af.mil	yadira.ayala-marrero@wpafb.af.mil	chad.barr@littlerock.af.mil	dieterbendowski@bundeswehr.org	terry.benson@littlerock.af.mil	claybielo@earthlink.net	kenneth.binns@wpafb.af.mil	angela.campo@wpafb.af.mil	carrozzg@hurlburt.af.mil	jeff.chapman@ai-engsvcs.com	acholli@polnox.com	<u>loucip@juno.com</u>
PHONE	(508) 996-6721	(937) 255-8038	(619) 545-2223	011-40-6565-61-6514	(937) 255-1036	(501) 987-6756	049-2203-908-2425	(501) 987-5653	(918) 299-4019	(937) 252-8878	(937) 255-9047	(805) 884-2352	(478) 923-0500	(978) 934-4356	(610) 865-9177
SS	12 Howland Road Fairhaven MA 02719	2430 C Street, Bldg 70 WPAFB OH 45433		Unit 3635 APO AE 90126-3635	2590 Loop Road West WPAFB OH 45433-7142	Bldg 344 Littlerock AFB AR 72099	Flughafenstrasse 1 51127 Koln, Germany	Bldg 344 Littlerock AFB AR 72099	6721 East 106th Street Tulsa OK 74133	300 College Park Drive Dayton OH 45469-0116	300 College Park Drive Dayton OH 45469-0116	100 Barley St, Suite 321 Hurlburt Field FL 32544	813 Park Drive Warner Robbins GA 31088	6 Rosemary Lane Chelmsford MA 01824	26 W. Broad Street Bethlehem PA 18018
COMPANY NAME	Nye Lubricants, Inc.	Det 3 WR-ALC/AFTT	NAVAIR F/A-18	52d CMS/MXMCP	ASC/YC	314 MXG	Luftwaffen Material	314 MXG	PAMAS	University of Dayton Research Institute	University of Dayton Research Institute	HQ AFSOC/LGMWF	AI-ES Aeronautics	Polnox Corp	NYCO
NAME	Akin, Kevin D.	Allen, Conchita F.	Antonopoulos, Paul T.	Araujo, Francisco R.	Ayala-Marrero, Yadira	Barr, Chad G.	Bendowski, Dieter	Benson, Terry	Bielo, Clay	Binns, Kenneth	Campo, Angela	Carrozza, Greg	Chapman, Jeff	Cholli, Ashok	Cipriani, Lou

tcook@pti-sales.com	michael.corson@mcguire.af.mil	joseph.cruz@navy.mil	Rdamiani@RadcoInd.com	hugh.darsev@robins.af.mil	larry.daugherty@dobbins.af.mil	mark.davie@BP.com	kdelaney@kingindustries.com	jon.dell@wpafb.af.mil	cdenison@nyelubricants.com	<u>repstein@halocarbon.com</u>	<u>be1@anderol.com</u>	<u>alan.fletcher@wpafb.af.mil</u>	<u>lf1@anderol.com</u>	nelson.forster@wpafb.af.mil	wfrey@esg.de	
(817) 281-6072	(609) 754-7609	(732) 323-2966	(305) 451-0768	(478) 926-5374	(678) 655-5062	(630) 836-7606	(203) 866-5551	(937) 255-7230	(937) 885-2312	(201) 262-8899	(973) 887-7410, x1211	(937) 255-7481	(973) 887-7410, x1106	(937) 255-4347	49-89-9216-2965	
2833 Naples Drive Hurst TX 76054	5656 Texas Avenue Fort Dix NJ 08640	Code 4.8.2.4, Hwy 547 Lakehurst NJ 08733-5130	569 Hazel Street Key Largo FL 33037	296 Cochran Street Robins AFB GA 31098	1552 Warehouse Road Dobbins AFB GA 30069	28301 Ferry Road Warrenville IL 60555	Science Road Norwalk CT 06852	1790 Loop Road N WPAFB AFB OH 45433-7103	10534 Success Lane Centerville OH 45458	P.O. Box 661 River Edge NJ 07661	215 Merry Lane P.O. Box 518 East Hanover NJ 07936	2179 12th Street WPAFB OH 45433-7718	P.O. Box 518 215 Merry Lane East Hanover NJ 07936	WPAFB OH 45433	Einstein Strasse 174 81675 Munich, Germany	13
PTI Technologies	Air Mobility Lab	Naval Air Warfare Center Aircraft Div	Radco Industries, Inc.	WR-ALC/LFEF	94th MXS	Air BP	King Industries	AFRL/PRTM	Nye Lubricants, Inc.	Halocarbon Products	Anderol Inc.	AFRL/MLSA	Anderol Inc.	AFRL/PRTM	Elektronik System	
Cook Thomas R.	Corson, Michael	Cruz, Joseph A.	Damiani, Robert A.	Darsey, Hugh	Daugherty, Larry S.	Davie, Mark	Delaney, Kevin M.	Dell, Jonathan	Denison, Chuck	Epstein, Ronald	Ernhoffer, Robert E.	Fletcher, Alan	Fletcher, Lucian	Forster, Nelson	Frey, Wolfgang	

george.fultz@wpafb.af.mil	curtis.genay@pw.utc.com	godici@bp.com	ltiinc@zoomnet.net	timothy.gooden@dobbins.af.mil	jan.govaerts@mil.be	grantig@navair.navy.mil	kirk.s.grassett@boeing.com	<u>bgrunden@metss.com</u>	lois.gschwender@wpafb.af.mil	gunderson@udri.udayton.edu	keith.hammack@ramstein.af.mil	jvharrison@verizon.net	kheater@metss.com	hellmapt@notes.udayton.edu	alan.herman@wpafb.af.mil
	(860) 557-1426	(630) 420-4576	(740) 574-5150	(678) 655-4896	32150558536	(252) 464-7164	(610) 591-2501	(614) 797-2200	(937) 255-7530	(937) 229-2872	011-40-6371-4760	(617) 484-5564	(614) 797-2200		(937) 255-7210, x3915
300 College Park Drive Dayton OH 45469-0116	400 Main Street M/S 163-04 East Hartford CT 06108	150 W. Warrenville Road Naperville IL 60563	7595 Gallia Pike Franklin Furnace OH 45629	1552 Warehouse Road Dobbins AFB GA 30069	NAVCME Graff Jansotijk 1 8380 Zeebrugget Belgium	PSC Box 8021 Cherry Point NC 28533	P.O. Box 16858, MS P38021 Philadelphia PA 19142	300 Westdale Avenue Westerville OH	2941 Hobson Way, Rm 136 WPAFB OH 45433-7750	300 College Park Drive Dayton OH 45469-0116	PSC1 Box 4893 APO AE 09009	31 Payson Road Belmont MA 02478	300 Westdale Avenue Westerville OH 43802	2941 Hobson Way, Rm 136 WPAFB OH 45433-7750	2145 Monahan Way WPAFB OH 45433
University of Dayton Research Institute	Pratt & Whitney	Air BP	Lubrication Technology	94 MXS	MOD Belgium	Naval Air Depot	The Boeing Company	METSS Corporation	AFRL/MLBT	University of Dayton Research Institute	86 MXS Ramstein	Polnox Corp	METSS Corporation	AFRL/MLBT	ASC/AAAT/LOGTEC
Fultz, George	Genay, Curtis S.	Godici, Patrick	Goodan, Gary D.	Gooden, Timothy D.	Govaerts, Jan	Grant, Jacqueline	Grassett, Kirk Steven	Grunden, Bradley	Gschwender, Lois	Gunderson, Steve	Hammack, Keith	Harrison, James V.	Heater, Kenneth	Hellman, Patrick	Herman, Alan L.

herzmark@westar.com	kevin.hibbs@selfridge.af.mil	kurt.hinxman@scott.af.mil	hopedk@epchem.com	terry.hotz@maguire.af.mil	jerry.hoyt@hill.af.mil	richard.james2@lackland.af.mil	tim.jenney@wpafb.af.mil	dave.jones@bp.com	steffenjustus@rp-eg.com	kauffman@udri.udayton.edu	daniel.kenan@wpafb.af.mil	raymond.j.levek@boeing.com	ltiinc@zoomnet.net	<u>kilovstad@mil.no</u>	andrew.markson@bp.com
(636) 498-6004, x421	(586) 307-5179	(618) 229-2630	(281) 359-6519	(609) 754-7612	(801) 775-5443	DSN 945-7477	(937) 255-7527	(630) 420-4878		(927) 229-3942	(937) 656-6175	(314) 233-0957	(740) 547-5150	47-63-80-87-46	(630) 836-5886
#4 Research Park Drive St. Charles MO 63304		4535A Split Rock Drive Scott AFB IL 62225	1862 Kingwood Drive Kingwood TX 77339	5656 Texas Avenue Fort Dix NJ 08640	6067 Box Elder Lane Hill AFB UT 84056	209 Galaxy Road Lackland AFB TX 78236	300 College Park Drive Dayton OH 45469-0116	150 W. Warrenville Road Naperville IL 60563		300 College Park Drive Dayton OH 45469-0116	1981 Monohan Way WPAFB OH 45433-7205	P.O. Box 516 Lambert Field IL 63166	7595 Gallia Pike Franklin Furnace OH 45629	P.O. Box 10 N- 2027 Kjeller, Norway	28301 Ferry Road Warrenville IL 60555
Westar Corporation	927 MSX/MXMC	НО АМС	Chevron Phillips Chemical Company	Air Mobility Lab	00-ALC/LCAE	433 MSX/MXMLP	University of Dayton Research Institute	Air BP Lubes	Roeder Praecicion	University of Dayton Research Institute	ASC/YPVF	The Boeing Company	Lubrication Technology	FLO/TV/LHK	Air BP
Herzmark, Ralph A.	Hibbs, Kevin	Hinxman, Kurt	Hope, Ken	Hotz, Terry	Hoyt, Jerry D.	James, Richard D.	Jenney, Tim	Jones, David G. V.	Justus, Steffen	Kauffman, Robert	Kenan, Daniel	Levek, Raymond J.	Lodwick, David L.	Lovstad, Kjersti	Markson, Andrew J.

kevin.moughan@nyscot.ang.af.mil	oliviu.muja@afrc.af.mil	<u>faraz.muzaffar@bp.com</u>	john.nash@busakshamban.com	lynne.nelson@wpafb.af.mil	jason.peaster@robins.af.mil	ronald.pendleton@hill.af.mil	<u>brp@creare.com</u>	chris@treble-one.com	eddie.preston@robins.af.mil	bradr@nyelubricants.com	rriemer@gtweed.com	marcie.roberts@wpafb.af.mil	proberts@gtweed.com	lewis.rosado@wpafb.af.mil	gary rosenberg@pall.com
(518) 344-2468	(478) 327-2003	(630) 420-3643	(260) 748-5763	(937) 255-3100	(478) 926-5365	(801) 775-6097	(603) 643-3800, x2316	(937) 256-2285	(478) 222-1361	(847) 398-3114	(410) 472-1111	(937) 255-0485	(215) 256-9521	(937) 255-6519	(727) 849-9999
1 ANG Road Scotia NY 12302	155 Richard Ray Blvd. Robins AFB GA 31098	150 W. Warrenville Road Naperville IL 60563		1790 Loop Road N WPAFB AFB OH 45433-7103	25 Ocmulgee Court Robins AFB GA 31098-1647	6080 Gum Lane Hill AFB UT 84056	P.O. Box 71 Hanover NH 03755	5100 Springfield Street, Ste 420 Dayton OH 45431	295 Bryon Street Robins AFB GA 31098		201 Clay Hill Circle Hunt Valley MD 21030	300 College Park Drive Dayton OH 45469-0116	1510 Gehman Road Kulpsville PA 19443-0305	1790 Loop Road N WPAFB AFB OH 45433-7103	10540 Ridge Road New Port Richey FL
109 MXS	HQ AFRC/LGMS	Air BP Lubricants	Busak+Shamban Aerospace Group	AFRL/PRTM	WR-ALC/LBR	00-ALC/YPVS	Creare Inc.	Treble One LLC	WR-ALC/LEEG	Nye Lubricants, Inc.	Greene, Tweed & Co.	University of Dayton Research Institute	Greene, Tweed & Co.	AFRL/PRTM	Pall Aeropower Corp
Moughan, Kevin J.	Muja, Oliviu	Muzaffar, Syed Faraz	Nash, John	Nelson, Lynne	Peaster, Jason	Pendleton, Ron	Pilvelait, Bruce R.	Pomfret, Chris	Preston, Eddie	Richardson, Brad	Riemer, Ron	Roberts, Marcie B	Roberts, Paul	Rosado, Lewis	Rosenberg, Gary

<u>rsapienza@metss.com</u>	tschaefer@hatcocorporation.com	gerhard.schreck@pamas.de	michael.schumacher@pamas.de	ed seaman@pall.com	shashi.sharma@wpafb.af.mil	john.shimski@navy.mil	ed.snyder@wpafb.af.mil		donald.streeter@wpafb.af.mil	david.sweetland@malabar.com		<u>frank.tavernier@mil.be</u>	MelanieAThom@cs.com	carolyn.tucker@wpafb.af.mil	philippe.vanexem@mil.be	
(631) 744-0960	(732) 738-3509	49-71-52-99-63-0	49-71-52-99-63-0	(850) 215-1482	(937) 255-9029	(301) 757-3412	(937) 255-9036	(850) 452-5627, x107	(937) 255-3550	(805) 581-1200	(610) 865-8019	0032-2-701-4965	(765) 743-9812	(937) 255-7210, X3622	0032-2-701-4965	
300 Westdale Avenue Westerville OH 43082	1020 King George Post Road Fords NJ 08863	Dieselstrasse 10 D-71277 Rudesheim, Germany	Dieselstrasse 10 D-71277 Rudesheim, Germany	116 Queens Circle Panama City FL 32405	2941 Hobson Way, Rm 136 WPAFB OH 45433-7750	22229 Elmer Rd, Unit 4 Patuxent River MD 20670	2941 Hobson Way, Rm 136 WPAFB OH 45433-7750	85 Millington Avenue Pensacola FL 32508-5010	1801 Tenth St, Suite 200 WPAFB OH 45433-7626		126 W. Broad Street Bethlehem PA 18018	Everestratt 1 B-1140 Brussels, Belgium	80 N. Sharon Chapel Road West Lafayette IN 47906	2145 Monahan Way, Bldg 28 WPAFB OH 45433-7017	Everestratt 1 B-1140 Brussels, Belgium	ļ
METSS Corporation	Hatco Corporation	PAMAS	PAMAS	Pall Corporation	AFRL/MLBT	Naval Air Systems Command	AFRL/MLBT	JOAP-TSC	ASC/ENVV	Malabar	NYCO S.A.	MRSys-M/D/P	Baere Aerospace Consulting, Inc.	Aeronautical Enterprise Program Office	MRSys-M/D/P	
Sapienza, Richard S.	Schaefer, Thomas G.	Schreck, Gerhard	Schumacher, Michael	Seaman, Edward B.	Sharma, Shashi K.	Shimski, John T.	Snyder, Ed	Squalls, Marilyn S.	Streeter, Donald E.	Sweetland, David	Szydywar, Jean	Tavernier, Frank	Thom, Melanie	Tucker, Carolyn D.	Van Exem, Philippe	

mark.wabler@busakshamban.com	ryan.wagner@wpafb.af.mil	sara.wallace@wpafb.af.mil	frank.weber@m.eads.net	vwedeven@wedeven.com	njwills@qinetiq.com	dieterwitte@bundeswehr.org	jeffrey.zabinski@wpafb.af.mil	KonradZuber@bundeswehr.org
(937) 432-9901	(937) 605-5401		49-89-607-21470	(610) 356-7161	44-01252-374713	049-2203-908-2724	(937) 255-4860	49-8122/9590-3423
6450 Fieldson Road Dayton OH 45459		2941 Hobson Way, Rm 136 WPAFB OH 45433-7750	P.O. Box 81663 Munich, Germany	5072 West Chester Pike Edgmont PA 19028-0646	Bldg 442, Rm G08 Farnborough Hampshire UK GU14OLX	Flughafenstrasse 1 51127 Koln, Germany	2941 Hobson Way, Rm 136 WPAFB OH 45433-7750	Institutsweg 1 85435 Erding, Germany
Busak & Shamban	ASC/FBAV	AFRL/MLBT	EADS	Wedeven Associates	QINETIQ	Luftwaffen Material Kommando	AFRL/MLBT	WIWEB
Wabler, Mark	Wagner, Ryan	Wallace, Sara	Weber, Frank	Wedeven, Vern	Wills, Nina	Witte, Dieter	Zabinski, Jeffrey S.	Zuber, Konrad

Military Aircraft Hydraulic Fluids and Lubricants Workshop

Welcome and ML Overview

15 June 2004

Col Timothy J. Sakulich
Deputy Director
Materials & Manufacturing
Directorate

Air Force Research Laboratory

Air Force Research Laboratory

Major General Paul D. Nielsen Commander

10 Technology Directorates

Materials & Manufacturing Directorate **Human Effectiveness Directorate Directed Energy Directorate** Information Directorate **AFOSR Space Vehicles Directorate** Air Vehicles Directorate **Propulsion Directorate Munitions Directorate** Sensors Directorate

Facts and Figures

- 5266 government personnel
- 4106 civilian
- · 1160 military
- 3198 on-site contractors
- \$1.6B annual S&T budget
- \$1.5B annual customer budget

As of Jan 04

ML Mission / Vision

Organization AFRL/ML

Dr. C. E. Browning DIRECTOR

CHIEF SCIENTIST Dr. B. L. Farmer

DIRECTOR FOR

ASSOCIATE

MFG TECH &

AFFORDABILITY

G. K. Waggoner

T. J. Sakulich

M. D. Weaver

Contracting Division (MLK)

R&D

င်

DIRECTOR DEPUTY

R. L. Enghauser Management Financial Division (MLF)

Mfg Technology Division (MLM)

(Acting) J. P. Mistretta

Airbase

Metals, Ceramics

Division (MLL) Dr. W. M. Griffith & NDE

> Division (MLB) R. L. Rapson

Nonmetallic Materials

Col J. L. Pollard Division (MLQ) **Technologies**

Sensor Materials

Survivability &

Dr. K. A. Stevens Division (MLP)

Division (MLO) G. F. Schmitt

Integration & Operations

Systems Support (MLS) R. D. Griswold Division

Materials & Manufacturing Personnel

Locations & Facilities

Tyndall AFB

- 128,000 net square feet
 - 15 Lab Modules
- Specialized test sites
- airbase technologies R&D Designed specifically for

Fechnical Program Structure & Integrating Application Areas

Pervasive Enablers to Air and Space Capabilities

Nonstructural Materials (MLBT) Organization

Nonstructural Materials (MLBT) Mission

- Advanced nonstructural M&P
- Extend life
- Improve performance
- Enhance survivability
- Advanced tribomaterials
- Nonstructural materials for space
- Aircraft coatings
- Operational system support

MLBT Fluids and Lubricants Group

- Interdisciplinary team of mechanical and materials engineers
- Long heritage in fluids and lubricants research, development and technology transition

MLBT Fluids and Lubricants Group: Analytical and Test Facilities

- **Unique Hydraulic Pump Test Facility**
- Unique Grazing Angle Infrared Microscope
- High Speed Bearing Tester
- Lubricity Test Equipment
- Extreme Temperature Rheological **Property Capability**
- Analysis Capability e.g., XPS, ICP, In-House Fluid and Component SEM, XRD, TEM

Non-Government/International Organizations and International Standardization Activities

- American Society for Testing and Materials (ASTM)
- Society of Automotive Engineers Aerospace Fluid Power and Control Technologies Committee (SAE A-6)
- Society of Tribologists and Lubrication Engineers (STLE)
- International Standards Organization (ISO)
- North Atlantic Treaty Organization (NATO)
- Air Standardization and Coordinating Committee (ASCC)
- Other Government Agencies (Army, Navy, NASA, DLA, FAA)
- Industry (Prime contractors, component designers and suppliers, and fluid suppliers)

Recent Successes

- MIL-PRF-83282 (1980s)
- MIL-PRF-87257 (1990s)
- Multi-purpose grease
- MIL-PRF-32014
- Cruise missile engine
- C-5/135 Landing gear
- Seeking other applications

Other Key Areas of Impact

Uncommanded Flight Control Inputs

Cross contamination of hydraulic/lube systems

Landing gear corrosion

Other performance anomalies

Value of this Workshop

- Improved communication
- **Understand user needs**
- Status of newer technology
- Establish new and enhance existing relationships
- Awareness of ML skills/capabilities

Materials & Manufacturing Directorate Summary

- Our Goal is a Full Spectrum, Balanced Program
- Our Technologies are Fundamental to Virtually All **Systems**
- We are Focused on the Needs of Today's AF and the Technological Superiority of Tomorrow's AF

leadership for the Air Force and the nation." "Aerospace materials and manufacturing

Air Force Research Laboratory (AFRL)

2004 Materials and Manufacturing rectorate (WIL) Roadmap

Daylon Convention Center

Register online at: www.mlroadmap.utcdayton.com

Ed Snyder

Materials and Manufacturing Directorate Air Force Research Laboratory

The Air Force uses three hydraulic fluids

Fire resistant hydraulic fluids

• MIL-PRF-83282, -40 to 400°F

MIL-PRF-87257, -65 to 400°F

- MIL-PRF-5606 -65 to 275°F (non fire resistant)

- What does *PRF* in MIL-PRF-83282 or MIL-PRF-87257 stand for?
- It stands for PERFORMANCE
- government standards, those that survived had to be for materials When MIL specs were being discontinued in favor of nonconsidered to be safety of flight materials
- were; e.g., H for hydraulic, L for lubricant, G for grease, they were In order to show that they had been reviewed, revised if necessary materials, the designation was changed from showing what they and approved as being continued as military specification all changed to PRF.
- In most cases, no changes in materials occurred, just a change in designation

- the large commercial aircraft switched to the fire resistant military and commercial aircraft until the mid '50s when phosphate ester hydraulic fluids commonly known as MIL-PRF-5606 was the standard hydraulic fluid for Skydrol
- Since these fluids were not compatible with the existing military aircraft hydraulic systems, the military did not change at that time

- In the mid-'80s, a need was identified for a more fire resistant hydraulic fluid for the military
- It had to be
- Compatible with MIL-PRF-5606
- Compatible with existing system design
- Compatible with existing seal technology
- It had to be a no-retrofit, drop-in replacement for MIL-PRF-5606

The major concern was about survivability against enemy gunfire

- But there was also considerable concern around the non-combat fire threat
- High pressure hydraulic systems (3000 to 5000 psi)
- Widely distributed throughout aircraft
- Hot surface ignition source
- Spark ignition sources
- Propagation of the fire to the fuel system

Widely distributed hydraulic systems

Fire Hazards – Electrical Arcing

3 A-10s lost to hydraulic fires in 2 months

Fire Hazards – Hot Brakes

History

- MIL-H-83282 Specification issued in 1971
- Navy converted to 83282 in 1976
- Army aviation converted to 83282 in 1976
- NASA designed it into the Space Shuttle
- Air Force converted A-10s in 1980
- Planned to convert balance of fleet in 1982 if no problems arose
- demonstrated that poorer low temperature properties could limit In '80 to '82 time frame, low temperature aircraft testing deployment in northern tier bases with aircraft on alert
- A need was developed for a -65°F version of MIL-H-83282
- MIL-PRF-87257 was developed and validated

USAF Hydraulic Fire Loss History

USAF Hydraulic Fire Loss History

Summary

- Nearly all DoD aircraft are using either MIL-PRF-83282 or MIL-PRF-87257 fire resistant hydraulic fluids
- All aircraft are working fine
- No operational problems
- Conversion accomplished by low cost attrition method
- Let's get the last few Air Force aircraft still using MIL-PRF-5606 converted

One recent event

MIL-PRF-46170 Type II has been cancelled

This has traditionally been used as a storage fluid for many Air Force, Navy and Army Aviation hydraulic system components It is recommended that the aircraft functional hydraulic fluid (83282, 87257 or 5606) be substituted wherever MIL-PRF-46170 Type II was used

Specifications & Conversions Air Force Lubricant

Lois Gschwender AFRL/MLBT June 2004

Specifications (AFRL/MLBT)

Hydraulic Fluid*

- MIL-PRF-27601 (hi temp PAO) One company qualifying now - EHA fluid?

MIL-PRF-87257 (PAO) (Revised 2004)

- MIL-PRF-5606 (mineral oil) (Revised 2002)

*Qualified Products List on these

Available through ASSIST PUBLIC: WWW.assistdocs.com or http://assist.daps.dla.mil (select QuickSearch)

- Coolant*
- MIL-PRF-87252 (PAO, dielectric)
- · Lubricating Oils*
- MIL-PRF-6085 (instrument)
- MIL-PRF-6086 (gear)
- MIL-PRF-7870 (general purpose)
- Fastener Lubricant
- MIL-L-87132 (cetyl alcohol)
- Thread compound
- MIL-PRF-83483 (antiseize, MoS₂)
- * Qualified Products List on these

Specifications (AFRL/MLBT)

- Grease
- MIL-PRF-27617* (perfluoropolyalkylether)
- MIL-PRF-32014* (PAO, Li soap)
- MIL-PRF-83261 (fluorosilicone, extreme pressure, antiwear)
- MIL-PRF-83363 (extreme pressure antiwear helicopter transmission)
- * Qualified Products List on these

- Dated 7 June 2002
- Remains inactive for new design
- Current fluids grandfathered
- Lots of re-qualification activity on MIL-PRF-5606 due to base stock supplier changes

• MIL-PRF-5606 extensive revisions

- New bulk modulus procedure added as an appendix, part of ASTM D6793
- Barium limit 10 ppm max, ASTM D5185
- Up to 3% antiwear additive allowed
- Low temperature stability changed to FTMS 3458
- Gravimetric, two filters (not changed)
- − Dry filters 15 min, 70°C

- Pre-wash and dry filters before use

Cover petri dishes

 Water test method changed from ASTM D 1744 to D 6304

Alternative pour point ASTM D5949 added

Copper strip corrosion changed from testing 3 strips to 2 strips

Copper corrosion rinse agent changed from acetone to isooctane

Interchangeability with other fluids statement

Send final formulation only unless ingredients requested

Sampling plan simplified

Performance oriented

• Multiple sampling plans (A through D) deleted

Notes section 6 more extensive

- change in basic materials or properties should be MIL-PRF-87257 extensive revisions but no "invisible" to aircraft
- New requirements
- Bulk modulus per ASTM D6793
- Barium limit 10 ppm max
- Biodegradability limit of Class I max
- Format changes
- Consolidated requirements and tables into comprehensive table I and revised table II
- Hyperlinks in electronic version goes directly to footnotes in

• MIL-PRF-87257 extensive revisions

- Changed requirements
- automatic equipment that has a lower data bias Lowered flash point to 160°C due to use of
- Added referee particle count method
- Raised thermal stability test to 200°C and allowed use of test tube to conduct test
- Changed temperature range in scope from "-54°C to 135°C" to "-54°C to 200°C" to allow use in EHAs

polypropylene and added two stacked filter method Changed filter material in gravimetric procedure to better repeatability

Changed limit in gravimetric particulate test to 1.0 mg/100 ml fluid max Require only 1 gallon of final formulation – additives on request only

Current fluids grandfathered

- Published April 2004

- MIL-PRF-5606 & MIL-PRF-87257 extensive spec revisions
- Acknowledgments to Glenna Dulsky, David Patrick Hellman for technical work and to Vowell, George Fultz, Angie Campo and Sue Breslin, our spec writer

Other specifications will be revised on an urgency basis

Air Force Grease Specification

• MIL-PRF-27617 – perfluoropolyalkylether based greases

- Type I, -65-300°F

- Type II, -40 to $400^{\circ}F$

- Type III, -30 to 400° F

Type IV, −100 to 400°F

Type V, -100 to 450°F (none currently qualified)

Air Force Grease Specification

- MIL-PRF-27617 is expensive ~\$200 to \$1000/lb
- Has some wear and corrosion issues
- Should only be used where hydrocarbon based greases are unacceptable
- LOX & GOX
- Extreme temperature
- Specification in pretty good shape, not high priority for revision

- MIL-PRF-32014 Multipurpose, Nearly Universal Grease
- Currently working on this document
- Bomb Oxidation Stability ASTM D942, 500 hr Change Induction Time ASTM D5483 to time and < 35 psi limit
- Fix panel separation test, establishing and writing method
- May change low temperature torque requirement per ASTM D1478

Air Force Grease Specification

- MIL-PRF-32014 multipurpose grease (con't)
- Establish two allowable particle contamination
- Cruise missile requirement (30,000 rpm bearings)
- Less critical particle count version (C-5 landing gears)
- Establish two NLGI grades, 1 and 2
- This grease currently in C-5 landing gear flight
- Nye Lubricants Rheolube 374A and Air BP Aeroplex 3214 qualified

Air Force Coolant Specification

• MIL-PRF-87252 coolant - minor changes

Minor revisions planned

• Table III fluid properties revised to correct errors

Air Force Specifications

- QPL-5606-31, 6 September 2002
- 10 qualified suppliers
- QPL-6085-15, 6 January 2003
- 5 qualified suppliers
- QPL-6085-13, 10 February 2003
- 4 qualified suppliers
- QPL-32014-2, Amendment 1, 1 August 2003
- 2 qualified sources
- QPL-27617-8 (perfluoropolyalkylether grease), 26 May 2004
- 4 qualified suppliers
- Types I through IV
- QPL-87252 and -87257 to be updated
- Products need to be re-qualified every 5 years

Air Force Coolant Specification

specifications we control, please contact Any issues or concerns with military AFRL/MLBT Web sites for access to MIL documents via ASSIST:

PUBLIC: www.assistdocs.com

or http://assist.daps.dla.mil

(select QuickSearch)

Enter partial document info requested.

Full text available for most documents and QPLs.

T.O. 42B2-1-3

Fluids for Hydraulic Equipment

- Owner of aircraft (SPO) approves use of purified fluid
- Fluid purification process is approved by AFRL/MLBT - Pall Corp and Malabar approved
- Components no longer required to be stored in preservative fluid - may be stored in operational fluid

Recent Conversions.

- B-2 and trainers only aircraft using flammable MIL-PRF-5606 MIL-PRF-32014 replacing MIL-PRF-81322 as grease for main landing gear in C-5 and KC/C-135 aircraft

Military Aerospace Fluids and Lubricants Workshop

Wright Patterson AFB Dayton, Ohio 14 – 17. June 2004

GAF TORNADO FLEET DEVELOPMENT

EADS

Review: OUTLOOK / TIMESCALE 2002

Conduct Cold Soak Flight Trials / 3. Q. 2002

Qualification of MIL-PRF-83282 for WS TORNADO / End 2002

Fleetwide Conversion by Attrition / Complete End 2003

Proposal to Partner Nations UK, IT & Saudi

MIL-PRF-83282

Status Holloman AFB, June 2004:

- 35 A/C's converted yet
- > 32.000 F/H s operated with MIL-PRF- 83282
- No further problems after solving initial leakages

Improvement of

the Defect Rate

Better Defect-Behaviour aftegze-oiling to MIL-PRF-83282

Flight Test

Cold Soak

Location of Temperature Gauges and Lowest Recorded Bay Temperatures (°C)

Zone 11 – Radar Compartment - 8,2 °C / 17,2 °F

Zone 13 - Refuelling Probe Bay

- 24,8 °C / - 12,6 °F

 ∞

Zone 21 - Main Landing Gear Bay

- 24,3 °C / - 11,7 °F

- 18,3 °C / - 1 °F

Zone 29 – Auxillary Air Intake

- 32,4 °C / - 26,3 °F

Zone 46 – Outer Wing

- 32,8 °C / - 27 °F

Zone 55 – Rudder Compartment

- 4,6 °C / 23,7 °F

Temperature Measurements Tornado

Further Proceeding

Selection of suitable type of oil for WS Tornado

- i.e. MIL-PRF-83282 or MIL-PRF-87257

Performance:

Maximum Level Speed G Attained to Date

Data Sunnay

Mannohohoor Myphroxom

Mach 2,0 +9 / -3

General Dimensions:

10,95 m 15,96 m

Wing Span Length Height

5,28 m

Masses:

Operational Mass Empty

Max. Take-off Mass

Engines: 2x Eurojet EJ 200

Thrust Dry

Thrust Reheated

90 KN

60 kN

15

5

EADS

Thyshrocon

Jaint Venture 4-national

30.0% 37.5% 19.5% 13.0%

BAE SYSTEMS EADS (DASA)

■ Alenia ■ EADS (CASA)

United Kingdom Garman

232 aircraft

180 aircraft

121 aircraft 87 aircraft

- SLAT POWER DRIVE UNIT INCL. HYDRAULIC MOTORS LANDING GEAR VALVE MANIFOLD

ACTUATOR, MAIN LANDING GEAR DOOR

- DOOR LOCK, REAR, NLG
 - UPLOCK, NLG
- ACTUATOR, NLG DOOR

ß 8 72 83 얾 17 18 19 20 21 OUTBOARD FLAPERON ACTUATOR HYDRAULIC FILTER PACKAGE UNIT NO. 2

FOREPLANE ACTUATOR, RH AIR-INTAKE ACTUATOR, RH

PARKING BRAKE MODULE HYDRAULIC DRIVE, LINKLESS AMMUNITION BOX CANOPY ACTUATOR

WHEEL BRAKE

AIRBRAKE ACTUATOR DOOR LOCK, MLG

UPLOCK, MLG

BRAKE AND ANTI-SKID CONTROL MANIFOLD NO. 2 ACTUATOR, MLG

INBOARD FLAPERON ACTUATOR

RIPPLE DAMPER

HYDRAULIC PUMP NO. 2

FUEL-COOLED OIL COOLER

HYDRAULIC ACCUMULATOR NO. 2 HYDRAULIC RESERVOIR NO. 2

NITROGEN BOTTLE, HYDRAULIC ACCUMULATOR NO. 2 RUDDER ACTUATOR 83 X3

NITROGEN BOTTLE, HYDRAULIC ACCUMULATOR NO. 1

HYDRAULIC ACCUMULATOR NO. 1 HYDRAULIC RESERVOIR NO. 1

HYDRAULIC FILTER PACKAGE HYDRAULIC HAND PUMP HYDRAULIC PUMP NO. 1 3888

BRAKE AND ANTI-SKID

CONTROL MANIFOLD NO. 1

93

Hydraulic Sechnical Data

Maurolighicer Ulyphicom

Hydraulic Fluid

Mil-PRF-5606

(CR099 Introduction of Mil-PRF-87257 and Mil-PRF-83282)

Temperature Range

-31°C to 135°C

-54°C

operational

non operational

Filtration Standard

NAS 1638 Class 7 to 9

HP 15 μm abs., LP 5 μm abs.

to Mil-G-5514

Seals Grooves

Materials Mil-P-83461, Mil-R-8791

Service Life

6000 FH

Maintenance Concept

On Condition

95

19

Qualification of Hydraulic Fluids

- Qualification completed Mil-PRF-5606

Threshiesem

- No restrictions determined

- Ongoing, completion expected in Nov 2004 Mil-PRF-83282

Problems within the low-temperature range (-10°C)

Undercarriage - Retraction time exceeding 31s (A/C Spec demands 6s)

Undercarrige doors are overspeeded and damaged at 500kts (25s after Take-off)

- The introduction of MIL-PRF-83282 would entail limitations in the A/C Spec

- Ongoing, completion expected in Nov 2004 Mil-PRF-87257 Minor Problems within the high-temperature range (+50°C)

Increased Leakages due to low viscosity

No restrictions determined yet

- UK and GE decided the introduction of MIL-PRF-87257 in June 2004 **Decisions**

Decision from Spain and Italy outstanding

EADS

NEW O-RING MATERIALS

15 June 2004

Directorate Alan Fletcher Program Manager Materials & Manufacturing Alg-Force Research Laboratory

Problem - Existing Materials

- temperature ranges beyond the capabilities of current o-Aircraft service conditions have expanded operational ring materials (i.e., nitrile, fluorosilicone)
- Current materials are reasonably compatible with jet fuels and hydraulic fluids, but fail at low and high temperature extremes after prolonged fluid exposure
- Low Temperature
- Loss of elasticity with prolonged service
- High compression set
- Low sealing capacity
- High Temperature
- Thermal-chemical degradation
- Physical breakdown of elastomer material
- Loss of sealing capacity

Requirements - New Materials

Performance across broad temperature range

-- -40 °F (-65 °F) to 225 °F/275 °F

Low compression set at low temperature extremes

Before and after high temperature fluid exposure

Primary fluid compatibility

— MIL-H-83282 (275°F)

— MIL-H-87257 (275°F)

− JP-8 (225 °F)

- JP-8+100 (225 °F)

Also JRF, MLI-PRF-5606 and MIL-PRF-23699

Materials/systems compatibility

Program Goals

- Identify candidate materials with potential of meeting performance requirements
- Test candidate materials against performance
- MIL-P-83461 and MIL-P-5315
- Support development efforts required to enhance materials performance
- Work with material providers
- Identify best performers
- materials technologies and/or suppliers to the Make recommendations for replacement **Air Force**
- Qualify best performers

Materials

- Over 80 compounds identified for evaluation
- -Industry suppliers
- -Commercial materials
- -Experimental compounds
- -In-house efforts
- Blending of existing materials
- Synthesis of new materials
- Additive technglogies

Material Classifications

- Nitrile Rubbers (NBR)
- **Hydrogenated Nitrile Rubbers (HNBR)**
- **Epichlorohydrin Rubbers (ECO)**
- Fluorosilicones (FVMQ)
- Fluoroelastomers (FKM)
- Perfluoroethers (PFE)
- **PFE-Vinylidene Fluoride Rubbers (PFE-VF)**
- Experimental Fluoroelastomers (X-FKM)

Testing and Evaluation

- Tier I Screening Tests
- -43 materials tested extensively
- Compression molded test plaques
- Greater sample availability
- Tier II O-ring Testing
- Best performers from Tier I
- -23 materials tested extensively
- Tier III Final Qualification Testing
- -Three (3) best performing o-ring materials

Tier I Testing - Plaques

- High temperature fluid aging
- 3 and 28-day immersion in jet fuels at 225 °F
- JP8, JP8+100
- 3 and 28-day immersion in hydraulic fluids at 275 °F
- MIL-PRF-83282, MIL-PRF-87257
- Material characterization before and after fluid aging
- Volume swell, weight gain, % extracted material, hardness
- ASTM D471, Test Method for Rubber Property Effects of Liquids
- Tensile property characterization
- ASTM D412, Rubber Properties in Tension
- Compression set measurements
- Room Temperature (RT) ASTM D 395, Standard Test Methods for Rubber Property Compression Set
- -40 °F ASTM D 1229, Standard Test Methods for Rubber Property 8 Compression Set at Low Temperatures

Tier II Testing – O-rings

- High temperature fluid aging
- 3 and 28-day immersion in jet fuels at 225 °F
- JP8, JP8+100
- 3 and 28-day immersion in hydraulic fluids at 275 °F
- MIL-PRF-83282, MIL-PRF-87257
- O-ring characterization before and after fluid aging
- Volume swell, weight gain, % extracted material, hardness
- ASTM D471, Test Method for Rubber Property Effects of
- Physical property characterization
- ASTM D 1414, Standard Test Method for Rubber O-Rings
- Tensile properties
- Compression set @ RT, -40 °F and -65 °F
- Compression stress relaxation (CSR) measurements
- ASTM D6147, Test Method of Vulcanized Rubber and Thermoplastic Elastomer Determination WilForce Decay (Stress Relaxation) in Compression.

19

Tier III Testing – Final

- High temperature fluid aging
- 3 day immersion in jet fuels at 225 °F
- JRF, JP8+100, JRF
- 3 day immersion in hydraulic fluids at 275 °F
- MIL-PRF-83282, MIL-PRF-87257, MIL-PRF-5606, MIL-PRF-23699
- O-ring testing before and after fluid aging
- Volume swell, weight gain, % extracted material, hardness
- Physical property characterization
- Compression set @ RT and -40 °F
- Repeated after 60-day aging in air
- Corrosion and adhesion testing
 - MIL-P-83461, Section 4.6.3
- Compression stress relaxation measurements
- Dynamic testing
- MIL-P-83461, Section 3.3.3
- Third party data verification

Performance Criteria

- High temperature fluid resistance
- < 15% volume swell</p>
- Minimal amount of extracted material
- Good physical property performance
- > 1000 psi tensile
- > 125% elongation
- > 50% retention of properties after fluid aging
- Reasonable hardness values
- Shore A 60 to 80
- < 10 point hardness change after fluid aging
- Good low temperature compression set resistance
- **Good sealing performance**

- < 50% before and after fluid aging

Based on CSR testing 109

Summary of Performance

- Best Performers
- PFE-VF
- PFE
- X-FKM
- General comments on other materials
- NBR and HNBR weight loss, volume swell, property retention, poor low T performance (CS and CSR)
- FVMQ weight loss, properties/property retention
- FKM poor low T performance (CS and CSR), properties/property retention
- ECO high CS after aging, weight loss, property retention 110

NBR-L (3-Day Fluid Aging)

Sample		Weight Gain	Volume	K-C-Set	C-Set	Break Stress	∆Break Stress	Elong @Break	∆Elong @Break
		%	9/6	9,	%	į		00	0,000
	Mean			9.8	81.0	2442.66		324.29	
	b			6.0	7	356.62		42.98	1
The second secon	Mean	14.0	60.00	73.5	86.8	1600.86	-34.5	267.40	-17.5
The second secon	0	00	0.0	8.1	6.2	122.81	A CONTRACTOR OF THE CONTRACTOR	7.05	A CONTROL OF THE CONT
Comments of the Comments of th	Mean	10.7	4,4	52.4	20.0	664.66	-72.8	191.31	41.0
		2 2 3 3 3 3 3 3 3 3 3 3	0.3	8		77.96		13.28	WATER TO THE PARTY OF THE PARTY
	Mean	2.3	9.3	87.5	101.7	1761.76	-27.9	237.20	-26.9
A CHARLEST OF THE PROPERTY OF	b		0.2	7	9	91.13		10.60	
	Mean	8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	12.6	82.6	66.3	623.89	-74.6	113.85	4
Control of the Contro	b		0.2	**************************************	1.2	919	The second secon	3.60	
	Mean		15.6	44.6	82.9	793.64	-67.5	164.40	-49.3
	b	The second secon	0.1	7	7.2	301.82		37.90	
PARTY AND	Mean	525	26.4	28.7	29.5	884.21	-63.8	185.57	-42.8
88967	6	4.0	9.6	2.1		231.98		31.97	

PFE-VF (3-Day Fluid Aging)

Sample		Weight Gain	Volume Change	RT C-Set	-40 °F C-Set	Break Stress	∆Break Stress		Elong @Break
		• • • • • • • • • • • • • • • • • • •	900 mm m m m m m m m m m m m m m m m m m			į	90		%
	Mean			AND THE PROPERTY OF THE PROPER	73.8	1588.49	AND THE PROPERTY OF THE PROPER	209.21	21
	b			Control of the contro	£ 6	197.39		15.41	Σ
	Mean	Simply solution of the control of th	4.8	22.4		1378.44	13.2	205.84	34
A CONTROL OF THE CONT				0.2		139.94		21.14	4
	Mean		10.8	15.7	67.1	1273.91	8	16.761	-
	b	0.02	West of the control o	1.5	6,0	103.97		7.78	
	Mean			80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77.3	1633.94	5.9	206.71	.
03202	b	The second secon				95.25	The second secon	12.03	
	Mean		2.3	26.3	79.2	1283.23	-19.2	200.93	8
The second secon	b			1.7	3.5	208.43		23.39	
	Mean	8	7.	28.7	78.3	1594.91	40	205.97	2
00000	6	The second secon		23	9	7,47		24.07	
	Mean	The second secon	The second secon	28.6	76.3	1454.20	-8.5	207.05	2
88067	Q	00		10				oy c	

PFE (3-Day Fluid Aging)

			700 Part of the control of the contr
14.8	VICES RESIDENCE PROPERTY.	2.3	
			0.3
		2	6.1
			0.2
5		6.49	14.9
			1.0
25.2			2.0 6.9
		80	0.1
		9.2	3.3 5.5
		9.0	0.2
			6.6 4.4
		33.7	0.2
22.5	~		1.7
73		2.5	0.2

X-FKM (3-Day Fluid Aging)

Compression Set (60-day @ RT)

			William Control of the Control of th	8 - 1	JP-8+100	MIL-PF	MIL-PRF-83282
Test Condition		RT C-Set	-40° F C-Set	RT C-Set	-40° F C-Set	RT C-Set	-40° F C-Set
	Element State of the Control of the		9/0	9/6	9		90
1,	Mean	11.3	84.5	CO C	83.1		76.2
	D C C C C C C C C C C C C C	0.8		0.2		6.0	2.9
ų Q	Mean	4,		27-	6.3	E 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.7
		0.3	2.3	Section 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (0.2	S
V CVAV	Mean	2.3	21.0	9.4	7.6	2.3	6
	0	9.0	Property of the control of the contr		2.7	9.0	7.4

Compression Stress Relaxation Measurements

- Compression set testing provided limited insights into low temperature performance
- Values were generally high even for better materials
- Exceeded 100% for poor materials (plastic flow)
- Compression stress relaxation (CSR) testing required to best characterize sealing performance
- In situ measurement provide means of monitoring sealing performance before, during and after fluid aging at temperatures of interest

CSR Test Equipment

- Rubber Development Laboratory (ARDL) **METSS CSR unit custom built by Akron**
- Temperature range of -55 to 350 °F @ \pm 2 °F
- Immersion bath for in situ fluid aging
- Test 6 o-rings at once; generally 3 sets of 2
- **Constant strain load configuration**
- Constant force monitoring

CSR Testing Unit

CSR Load Cell Configuration

CSR Fluid Bath

CSR Test Profile 1

- O-rings aged external to CSR unit
- NBR-L and PFE aged 3 days in fluid at 225 °F / 275 °F
- O-rings placed in CSR unit
- Immersed in aging fluid
- Compressed to 25% strain at RT
- Temperature profile
- Temperature equilibrated at 77 °F
- Samples cooled to -40 °F over a period of 1 hour
- Temperature held at -40 °F for 48 hours
- Samples heated to 77 °F over a period of 1 hour
- Temperature held at 77 °F for 48 hours
- Sealing force normalized and plotted as a function of time 121

CSR 1 (unaged)

CSR 1 (MIL-PRF-83282)

CSR 1 (JP8+100)

CSR Test Profile 2

Immersed in fluid

Compressed to 25% strain at RT

Temperature profile

Temperature equilibrated at 77 °F

Temperature ramped to the aging temperature over 1 hour

Temperature held at the fluid aging temperature for 70 hours

Temperature cooled to 77 °F over a period of 1 hour

Temperature held at 77 °F for 10 hours

Temperature cooled to -40 °F over a period of 1 hour

Temperature held at -40 °F for 48 hours

Temperature ramped up to 77 °F over a period of 1 hour

Temperature held at 77 °F for 1 hour

Sealing force normalized and plotted as a function of time 125

CSR 2 (275 °F in Air)

CSR 2 (275 °F 83282)

CSR 2 (255 °F JP-8+100)

CSR 2 (275 °F 83282)

CSR 2 (255 °F JP-8+100)

Final Testing - Best Performers

- New set of o-rings
- Final commercial compounds
- Third party testing
- Verification of in-house testing
- -Dynamic seal testing
- MIL-P-83461, Section 3.3.3
- Additional CSR Testing

Third Party Test Data

	PFE-VF	PFE	Harmonia de la companya de la compan
Initia	Initial Properties		
Hardness	70	L	86
Tensile Strength (psi)	1405	1010	806
Tensile Elongation (%)	134.4	119.3	163.9
Compression Set (RT)	16.7	10.3	4.4
Compression Set (-40 °F)	35.7	25.0	36.8
Compression Set (-65 °F)	51.5	41.2	5.4
After 3 Day	After 3 Days in Air @ 275 °F		
Compression Set (RT)	27.2	&	6.3
Compression Set (-40 °F)	35.7	22.1	10.3
Compression Set (-65 °F)	70.0 132	54.4	35.3

Third Party Test Data

	PFE-VF		X-FKM
	After 3 Days in MIL-PRF-83282 @ 275 °F		
Volume Swell (%)	5.6	1.7	
Change in Hardness	0	7	0
Change in Tensile Strength (%)	-1.9	+13.6	+38.9
Change in Tensile Elongation (%)	+4.8	+2.9	+15.9
Compression Set (RT)	14.7	10.3	13.3
Compression Set (-40 °F)	52.9	7.7	25.0
Compression Set (-65 °F)	73.6	**************************************	36.8
	After 3 Days in JP-8+100 @ 225 °F		
Volume Swell (%)	3.9	2.2	6.1
Change in Hardness	~		4
Change in Tensile Strength (%)	-6.4	+6.5	7.4
Change in Tensile Elongation (%)	-8.3	+4.3	+4.2
Compression Set (RT)	10.3	2.9	** ** ** ** ** ** ** **
Compression Set (-40 °F)	64.7	25.0	22.1
Compression Set (-65 °F)	76.5	9	27.9

CSR-2 (Best O-rings in Air)

CSR-2 (Best O-rings in 83282)

CSR-2 (Best O-rings in 87257)

CSR-2 (Best O-rings in 5606)

CSR-2 (Best O-rings in 23699)

Concluding Remarks

- Best Performers
- PFE-VF
- PFE
- -X-FKM
- All of these materials are now commercially available
- No problems with corrosion or adhesion
- None of the materials passed dynamic testing
- Recommended for static sealing applications only
- CSR testing provided best insights into low temperature sealing capability and service performance
- CSR unit currently available for outside testing

Backup

Fuel Coupling Test Program

Overview

- Purpose of Test
- **Background / Previous Testing and Results**
- Test Stand Development / Capabilities
- **Test Materials and Fuel**
- Test Procedures and Values
- Test Result Evaluation Criteria
- Test Results (Coupling Leakage)
- 225°F Aging Results at 7 Days (JP-8)
- 225°F Aging Results at 7 Days (JP-8 + 100)
- 325°F Aging Results at 7 Days (JP-8)
- 325°F Aging Results to Failure (Incomplete) (JP-8)
- Conclusions (Preliminary) Testing Incomplete
- Recommendations (Preliminally) Testing Incomplete 142

Test Purpose

Under same environmental conditions

Combined test fixture and environmental chamber

Aging temperature time

Leakage temperature test variations

Under same test pressure

With two different coupling types

Fixed cavity couplings (F-16 Type)

— Variable cavity couplมุฎร (F-15 Type)

Test Program

- Existing materials (system shakedown)
- Limited aging time (7 days) at 225°F and 325°F
- New and existing (high tech material)
- To failure (failure determined by coupling leakage at temperature to - 65°F after 325°F high temperature 325°F to low temperature ranging from room aging in 7 day increments)

Background/Previous Testing and Result

Previous Testing:

- O-Ring materials physical properties testing (tensile, elongation, compression set, volume swell and hardness)
- Test Stand developed to evaluate o-ring performance in fuel line couplings:
- Fuel system coupling tests (7 day and 28 day fuel aging at 225°F and 325°F temperature)
- Variable cavity couplings and fixed cavity couplings with circulating fuel.
- Measure fuel coupling leakage at high temperature, RT, and
- Results are depicted in UDRI report # WP-TR-2000-2017 dated May 2000 (test activity 09/30/2000)

Current Test Program

material improvement over current o-ring materials. Three new materials downselected as possible

Functional Testing desired to compare performance and usage life of new materials to current materials.

Utilized concept of previous fuel coupling tests

temperature, fuel flow and leakage measurement. Upgraded the test rig for better control of

Upgraded Test Stand Development/capabilities

- **Upgraded Test Stand Capabilities**
- and environmental conditions for both high temperature aging All materials subjected to near identical time of fuel exposure and low temperature leakage measurements.
- material and coupling type (variable and fixed) in a single test Isolate coupling leakage measurement to a give O-ring
- Consistent low temperature fuel leakage measurements by use of an environmental chamber
- Fuel leakage collection and measurement system
- environmental chamber (4 ea.) fuel tank and external fuel lines Thermocouple pickups on manifold test fixture located within

Development/capabilities Con't **Upgraded Test Stand**

- Upgraded Test Stand Capabilities (con't)
- Pressure transducer and gauge pressure pickups
- Provisions for up to sixteen combinations of O-ring materials and couplings
- Six test specimens for each different O-ring materials of a given size
- Utilizes -214 and -216 O-ring sizes (fixed/variable couplings)
- Reservoir for additional fuel capacity during low temperature
- Continuous operation and unmonitored safe operation 24 hours/day
- Computer data collection and continuous recording of temperatures, pressures, etc.

Test Rig Schematic

52

Photo of Fuel Lines with Couplings

Coupling Test Fixture

Top Row: Fixed Cavity, 6 each row

Upper View:

Bottom Row: Variable Cavity, 6 each row

Lower View Center: Heat Exchang

Heat Exchanger Left and Right Side: Leakage Measurement Lines

Fixed Cavity Coupling

Variable Cavity Coupling

FERRULE (S3052DE)

152 Variable Cavity Coupling

Environmental Chamber

Environmental Chamber

Test Rig Control Center

Test Rig Plumbing

Fuel Lines

Environmental Chamber Fuel In / Out Lines

Fuel Tanks and Filter

Fuel Filter - Left

Temperature Controller

Computer Monitoring Station

Computer Monitor

Data Sheet

Fuel Flow Application Test Stand Data Sheet

Fuel Leakage Symbols & Manufacturer

P = Parker Leakage = Drops/Second VC = Variable Cavity

FC = Fixed Cavity

W = Wetting VSD = Very Slow Drip

SD = Slow Drip

FD = Fast Drip R = Running V = No Leak

GTC = Green Tweed

Test Run No∴ 1	Aging Te	Aging Temperature: 225	₽°
Type Fuel: JP-8	POSF N	POSF NO. <u>02-POSF-4177 (-70°F Freeze Pt.</u>	J°F Freeze Pt.
Pre-Test Leakage Date: 18 Nov '02	Time:	1600 hrs	
Test Initiation Date: 19 Nov '02	_Time:	1335 hrs	
Test Completion Date: 26 Nov '02	Time:	Time: 1030 hrs	
Post-Test Leakage Date: 26 Nov '02	Time:	1715 hrs	1
"O"-Ring Measurement <u>Pre</u> Date:	Date: 18 Nov '02		
"O"-Ring Measurement Post	27 Nov '02	Time:	1300 hrs

		nrs	<	٥	51	51	51	51	51	51	51	51	mp.
		Fuel Aging Hours	Lance	325°F	162	162	162	162	162	162	162	162	to high te
		Fuel	F	otai	213	213	213	213	213	213	213	213	d ambient
			6 (FC)	Post	·	ذ	<i>~</i>	<i>ر</i> .	<i>ر.</i>	خ	ذ	خ	v temp. an
	۴ _.		9	Pre	<i>~</i>	خ	Ċ	خ	<i>~</i>	٤	خ	خ	ient to lov
est	-65		5 (FC)	Post	<i>~</i>	خ	¢.	¢.	<i>~</i>	خ	خ	Ċ	from amk
/ Post T	T, Post-		5	Pre	~	خ	ć	<i>ر</i> .	~	5	ذ	خ	sition time
ults Pre / Aging -65 °F;	mber	(FC)	Post	·	ذ	<i>~</i>	٥.	<i>ر</i> .	<i>د</i> .	ذ	<i>د</i>	e, and tran	
	n N	4 (FC)	Pre	·	ذ	<i>c.</i>	<i>ر</i> .	<i>ر</i> .	¢.	ذ	<i>~</i>	ent temp, time, a	
de Resi	T, Pre-	n in	3 (VC)	Post	SD	خ	<i>~</i>	ر.	۰.	<i>د</i> .	خ	۰	Δ Time includes ambient temp, time, and transition time from ambient to low temp, and ambient to high temp.
g Leaka	ature	C O	3 (Pre	·	خ	<i>~</i>	<i>ر</i> .	~	خ	خ	٠.	
Coupling Lea Leakage Temperature		2(VC)	Post	<i>~</i>	خ	<i>~</i>	Ċ	<i>~</i>	ċ	خ	Ċ		
		2	Pre	VSD **	خ	~	<i>د</i> .	~	خ	خ	¢.	Pressure P_2 (60) PSIG	
		1 (VC)	Post	~	۲	<i>~</i>	<i>ر</i> .	<i>~</i>	خ	خ	SD		
			Pre	~	۲	~	<i>د</i> .	~	خ	ذ	*	SIG Pres	
	Line No.			~	2	ю	4	2	9	2	ω	60) P	
	"O"-Ring Material	Туре		MIL-P-5315 Nitrile	AMS-7271 Nitrile	MIL-R-25988 Fluorosilicone	MIL-R-25988 Fluorosilicone	MIL-R- 25988 Fluorosilicon	MIL-R-25988 Fluorosilicon	AMS-7271	MIL-P-5315 Nitrile	Pressure P ₁ (60) PSIG	

Premature Shutdown Due to Water Main Break 3 hrs & 5 Minutes Tightened at Room Temperature Before Aging

* *

Mente includes ambient low temperature transition leakage test (ambient to high)

Test Materials and Fuel Properties Con't

Test Run #1 (7 days @ 225°F, JP-8)

Line	Line # 1.D. No.	Specification # Material	Material	Type Coupling / O-Ring Size
	I.G.3	MIL-P-5315	Nitrile	1-3 VC-216 / 4-6FC-214
2.	1.6.4	AMS-7271	Nitrile	1-3 VC-216 / 4-6FC-214
ა.	I.G.5/II.G.2	MIL-R-25988	Fluorosilicone	1-3 VC-216 / 4-6FC-214
4.	II.G.7	MIL-R-25988	Fluorosilicone	1-3 VC-216 / 4-6FC-214
5.	II.G.7	MIL-R-25988	Fluorosilicone	1-3 VC-216 / 4-6FC-214
9.	I.G.5/II.G.2	MIL-R-25988	Fluorosilicone	1-3 VC-216 / 4-6FC-214
7.	1.6.4	AMS-7271	Nitrile	1-3 VC-216 / 4-6FC-214
φ.	I.G.3	MIL-P-5315	Nitrile	1-3 VC-216 / 4-6FC-214

64

Test Materials and Fuel Properties Con't

Test Run #2 (7 days @ 225°F, JP-8 + 100)

Line	Line # 1.D. No.	Specification # Material	Material	Type Coupling / O-Ring Size
~ :	I.G.3	MIL-P-5315	Nitrile	1-6 Fixed Cavity/-214
2	I.G.4	AMS-7271	Nitrile	1-6 Fixed Cavity/-214
ა.	I.G.5/II.G.2	MIL-R-25988	Fluorosilicone	1-6 Fixed Cavity/-214
4.	II.G.7	MIL-R-25988	Fluorosilicone	1-6 Fixed Cavity/-214
5.	II.G.7	MIL-R-25988	Fluorosilicone	1-6 Variable Cavity/-216
9.	I.G.5/II.G.2	MIL-R-25988	Fluorosilicone	1-6 Variable Cavity/-216
7.	I.G.4	AMS-7271	Nitrile	1-6 Variable Cavity/-216
∞.	l.G.3	MIL-P-5315	Nitrile	1-6 Variable Cavity/-216

9

Test Materials and Fuel Properties Con't

Test Run #3 (7 days @ 325°F, JP-8)

ine	ine # 1.D. No.	Specification # Material		Type Coupling / O-Ring Size
	II.G.2	MIL-R-25988	Fluorosilicone	1-3 VC -216 / 4-6 FC -214
~i	II.G.7	MIL-R-25988	Fluorosilicone	1-3 VC -216 / 4-6 FC -214
~·	II.G.15	MIL-R-25988	Fluorosilicone/Teflon	1-3 VC -216 / 4-6 FC -214
.	II.G.9	MIL-R-83248	Fluorocarbon	1-3 VC -216 / 4-6 FC -214
ıç.	II.G.3	MIL-R-83485	Fluorocarbon/GLT	1-3 VC -216 / 4-6 FC -214
ω	II.G.6	MIL-R-83485	Fluorocarbon/GLT	1-3 VC -216 / 4-6 FC -214
	II.G.12	MIL-R-83485	Fluorocarbon/GLT	1-3 VC -216 / 4-6 FC -214
~:	II.G.14	MIL-R-25988	Fluorosilicone/Teflon	1-3 VC -216 / 4-6 FC -214

Test Materials and Fuel Properties Con't

Size

		Test Run #4	Test Run #4 (To failure @ 325°F, JP-8)	
Line # 1.D. No.	.D. No.	Specification #	Material	Type Coupling / O-Ring
1. (1-3)	New #1		New	VC-216
2. (1-3)	II.G.12	MIL-R-83485	Fluorocarbon (GLT)	VC-216
3. (1-3)	New #2		New	VC-216
4. (1-3)	New #3		New	VC-216
5. (1-3)	II.G.12	MIL-R-83485	Fluorocarbon (GLT)	FC-214
6. (1-3)			No Line	
7. (1-3)	New #2		New	FC-214
8. (1-3)	New #3		New	FC-214
1. (4-6)	II.G.2	MIL-R-25988	Fluorosilicone	FC / -214
2. (4-6)	II.G.6	MIL-R-83485	Fluorocarbon (GLT)	FC / -214
3. (4-6)	II.G.3	MIL-R-83485	Fluorocarbon (GLT)	FC -214
4. (4-6)	II.G.7	MIL-R-25988	Fluorosilicone	FC / -214
5. (4-6)	II.G.6	MIL-R-83485	Fluorocarbon (GLT)	VC / -216
6. (4-6)			No Line	
7. (4-6)	II.G.2	MIL-R-25988	Fluorosilicone	VC / -216
8. (4-6)	II.G.7	MIL-R-25988	Fluorosilicone	VC / -216

89

Test Materials and Fuel Properties Con't

Fuel

Types

JP-8 (includes standard additives) (02 POSF 4177) JP-8 + 100 Betz TSA

Properties

Total Acid No. Aromatics Volume %	0.004
Olefins Volume %	6.0
Mercaptan Sulfur % Mass	0.001
Total Sulfur % Mass	0.014
Flash Point	52°C
Freeze Point	-57°C / -70.6°F
Viscosity @ 20°C s ST	2.7
Existing Gum, mg/100ml	1.8
Conductivity pS/m	157

Test Procedures and Test Values

Time of Material Aging in Flowing Fuel at Temperature

Test sets No.'s 1, 2, 3 ~ 7 days

 Test set No. 4 until Failure (~ 7 day leakage assessment at low temperature)

Fuel Change-out

Between each test set i.e.: #1, #2, #3

Once every two weeks (test to failure)

167

69

20

Test Procedures and Test Values Cont

- Temperature Leakage Measurements (Pre-Aging Tests and 7 Day Intervals)
- Aging temperature (i.e.: 225 and 325°F) throughout test
- Ambient temperature (approx. 72°F)
- Low temperature test 32, 0, -10, -40, -65°F @ 7 day intervals
- Pressure Leakage Measurements
- Flowing pressure (approx 15 to 30 psig)
- 60 psig and 0 psig
- **Observations**
- Leakage Measurements
- Running leak
- Drops/second (stop watch)

Coupling/O-Ring Failure Criteria Test Result Eval Criteria

leakage criteria noted below. Monitoring of fuel leakage consisted of Pre- and Post 7 day aging at temperature and post low temperature O-ring material failure was established based on fuel coupling measurements and daily observations.

Failure Criteria

- Running leakage at any test temperature
- Any leakage down to 0°F
- temperatures below 0°F unless the pre-test leakage is equal to When two or more couplings of a given material are leaking at or greater than the post-test leakage. I.e.: fluorocarbons

7

Conclusions, Preliminary (Test Incomplete)

Existing O-Ring Materials / Results:

- Fluorosilicone #1 failed after the second 7-day week of testing in one variable cavity coupling running leak (Line #7)
- Fluorosilicone #1 material in the fixed cavity coupling is starting to leak during the 6th and 7th week at -40°F and 65°F of testing. No running leak
- the sixth week and a running leak in one coupling at room temperature through Fluorosilicone #2 material started leaking in a variable cavity coupling at 0°F in 65°F the 7th week, thereby a failure
- Fluorosilicone #2 material in the fixed coupling is starting to leak during the 6th and 7th week at -65°F of testing. No running leaks.
- GLT fluorocarbon #1 material did not leak in the fixed cavity coupling after the 7th leakage (no aging) occurred in both the fixed cavity and variable cavity couplings at -40°F and -65°F coupling at -65°F throughout the test period of 7 weeks. Some initial new material 4 day/week test results and only small amount of leakage in the variable cavity
- testing at -40°F and -65°F, but no running leak in either the variable coupling or GLT fluorocarbon #2 material exhibited an increased leakage after 7 weeks of the fixed cavity coupling
- week, and no leakage after the 7th (4 day) week. This material was not installed in GLT fluorocarbon #3 material did not leak in a fixed cavity coupling after the 3rd a variable cavity coupling

Conclusions, Preliminary (Test Incomplete)

New O-Ring Materials / Results:

- New Material #1 no leaks to date.
- New Material #2 failed in the variable cavity couplings at week 2.
- New material #3 no leaks to date.

Test Results (Coupling Leakage)

325°F Leakage Measurements Results after Each 7 Days Temperature Aging Period in JP-8 Fuel

lure	
_	
Fa	
ria	
ate	
2	
	ı

First 7-day period

Second 7-day period

New #2 Variable Cavity

No Failure

25988 Variable Cavity

No Failure

No Failure

Fourth 7-day period

Third 7-day period

: !

No Failure

No Failure

25988 Variable Cavity

Seventh 4-day period*

Sixth 7-day period

Fifth 7-day period

Coupling (Running Leak at Room Temp

through -65°F

172 Test was terminated due to environMantal chamber availability.

General Conclusions, Preliminary

Test Run #4

- No couplings leaked at the aging temperature of 325°F
- cavity) after the 7th week (4 days partial week) at room Only one coupling, Fluorosilicone, leaked (variable temperature
- All other coupling leakages occurred at temperatures below room temperature during the low temperature test cycle
- frequently than the fixed cavity couplings with a given Variable cavity couplings typically leaked more 0-ring material

Recommendations, Preliminary (Testing Incomplete)

becomes available. All test coupling materials be run Test Run #4 as soon as the environmental chamber Testing at 325°F aging temperature be resumed for until failure criteria are met All materials of Test Run #3 and #4 be run at 325°F in JP-8 + 100 Betz fuel additive, to failure All materials of Test Run #1 and new materials be run at 225°F in JP-8 fuel and JP-8 + 100 Betz fuel additive to failure.

PAX NAS HYDRAULICS LIAISON REPORT

WPAFB Fluids Workshop, June 15, 2004

Jeff Gribble

175

Aging Aircraft Program

POC's

James Magno James.Magno@Navy.Mil (301) 342-9374 Jeff Gribble

Jeffery.Gribble@Navy.Mil (301) 342-9399

PAX NAS LIAISON REPORT 06/15/2004

Aging Aircraft Program Hydraulic Fleet Focus Inputs

PAX NAS LIAISON REPORT 06/15/2004

Aging Aircraft Program

Current Project List

#1 - MIL-C-85052 Revision (UV and Ozone Effects on Hydraulic Tubing Clamp Cushions)

Manual Amendment (Specify Wall Thickness of #2 - NAVAIR 01-1A-20 Hydraulic Tube Repair CRES Tubes as Replacement to Titanium)

#3 - Quick Disconnect/Manifold Alignment (on H-60 Actuators) #4 - HVOF Rod Coating Developmental Testing

#5 - Superfinish Rod Coating (Research Coating for Hydraulic App.)

#6 - H-60 Primary/Boost/Tail Rotor Servo Seal

Upgrade

Any Inputs From Industry On Projects Are Welcome

Project #1: MIL-C-85052 Update & Test

Issue:

Rubber cushions on hydraulic tube clamps have been cracking in the

Solution:

fleet.

Lakehurst will publish the spec. PAX will recertify the present QPL PAX will revise the specification based on analysis of test results. vendors.

Costs:

\$15k (PAX) + \$10k (LH) = \$25k Total

Deliverables:

Changes to specification and requalification of OPL vendors will provide the fleet with more reliable clamp cushions.

Project #2: NAVAIR 01-1A-20 Update

Issue:

Fleet is replacing titanium tubes with CRES tubes during repair without guidance from the -20 Hydraulic Tube Repair Manual.

Solution:

NI/PAX will create a chart illustrating acceptable replacement tubes per size and thickness based on researchable data to modify the -20 manual. Cherry Point finalize changes and publish manual.

Costs:

\$5k (NI) + \$5k (CP) = \$10k Total

Deliverables:

The -20 manual will specify appropriate Ti tube replacement of CRES tubes.

Project #3: QD/Manifold Alignment Evaluation & Test

Issue:

identified as degrader components. DOD spent \$1.3 million in 2002 alone QD's for connecting H-60 actuators to the hydraulic system have been for replacement spares.

Solution:

FY 2004 funding utilized to initiate effort. Project completed in FY 2005. Cherry Point plans to use FST funds to investigate manifold alignment on a/c in Aug/Sept 2004.

Costs:

\$15k (PAX) + \$5k (CP) = \$20k Total

Deliverables:

preliminary tests on QDs to determined deficiencies. CP/PAX work with CP and PAX investigate failed fittings removed from A/C. PAX perform OEM for possible fixes.

Project #4: HVOF Rod Coating Test

Issue:

Current chrome plating on actuator pistons are an environmental hazard.

Solution:

JAX prepare test specimens. PAX perform developmental tests on various coatings and surface finishes.

Costs:

\$15k (JAX) = \$15k Total

Deliverables:

Test results will lead to HVOF coatings on actuator pistons, which outperform chrome plating and provide environmental benefits.

Project #5: Superfinish Rod Coating Research

ssue:

Chrome plating replacements are need for aging a/c.

Solution:

PAX research benefits of Superfinish to determine if it is worthy of future developmental testing.

Costs:

\$5k Total (JAX)

Deliverables:

plating for hydraulic application and should be evaluated through further Research will determine if Superfinish is a possible solution to chrome testing.

Project #6: H-60 Seal Improvement Upgrade

Issue:

Seal leakage is most common removal cause for H-60 boost, tail rotor, primary servo actuators. Parker and Sikorsky require lengthy, costly testing.

Solution:

Coordinate with Parker and Sikorsky meet minimum system requirements at lowest cost.

Costs:

Remaining FY-04 funding--\$15k (PAX) + \$15k (CP) + \$60k (Parker/SAC) = \$90k Total

Deliverables:

Qualified actuators with improved seals and HVOF rod coating for Navy, Coast Guard, and Army.

 $\begin{array}{l} \text{PAX NAS LIAISON REPORT } 06/15/2004 \\ \hline {\color{red} \textbf{184}} \end{array}$

Lower Priority Projects

Several projects have been identified and listed on the Rack Stack list that cannot be worked in Fiscal Year 2004 for several reasons:

- Lack of manpower required to work the projects this year.
- Projects may not have a fast turnaround time for deliverables.
- Projects simply may not be a big degrader issue to the fleet.

Lower priority projects on the Rack-Stack include:

- E2/C2 Improved Dynamic Seals Used on Advanced Hawkeye
- Metal Filters
- MIL-F-8815 Evaluaion
- Rynglok Tools and Fittings to Replace Permaswage
- Airborne Air Removal Device

WE EXIST TO PROVIDE COST-WISE READINESS AND DOMINANT MARITIME COMBAT POWER TO MAKE A GREAT NAVY/MARINE CORPS TEAM BETTER.

Donald.Courson@Navy.Mil (301) 342-8381

Raeanne Makowski

Raeanne. Makowski (a) Navy. Mil (301) 342-0300

 $\begin{array}{c} \text{PAX NAS LIAISON REPORT } 06/15/2004 \\ \hline 186 \end{array}$

V-22 Osprey Highlights

Flight Test Aircraft

2 EMD Configuration Aircraft at EAFB

8 at PAX NAS (2 EMD, 4 LRIP, 2 Block-A DT)

A/C 24 Completed Natural Icing Testing in Nova Scotia

A/C 21 Performing Aerial Retractable Re-Fuel Probe Flight Testing

VMX-22 MCAS Training Squadron New River, NC

6 Block-A Configuration Aircraft---Over 800 Hours

Program Has Over 2,000 Flight Hours Since Return To Flight

Program Schedule

12 More A/C to New River in 2005

OTHF Initial Operation Eval. Started 05/18/2004

OPEVAL Winter 2005 and Full Rate Production MS Decision Fall 2005

Hydraulic System

Individual Components vs. System Integration Are Source of Challenges

E-2C Advanced Hawkeye

Raeanne Makowski

Raeanne.Makowski@Navy.Mil (301) 342-0300

Program Highlights

Increased Capabilities of Avionics Equipment Weight Savings

Hydraulic System Changes

Some 3000psi Al and Steel A/N Flared Tubing Tri Beam Seal

Filter Housings and Quick Disconnects -Lighter Weight

Flight Control Actuators Spring Energized Seals and HVOF

Elevator actuator Al body redesign Trighter Weight

Milestone B by End Of 2004

SD&D Aircraft by 2005

POC Jeff Gribble

Jeffrey. Gribble (a) Navy. Mil (301) 342-9399

Highlights-

09-H

- H-60S Anti-Mine Countermeasures Winch Hydraulic Manifold Qual Testing
 - Proof and Endurance Testing (complete)
- Impulse Testing (currently)
- Burst Testing (after completion of impulse)
- H-60R Utility Hydraulic System Pressure Tests
- Evaluation of Integration with Airborne Low Frequency Sonar (ALFS) Reeling System ~ July 2004.
- Primary and Tail Rotor Servo E.I. of Seal Degradation ~ Aug 04

H-1 Upgrades (Y/Z) POC Ed Ryan Edwin.Ryan@Navy.Mil (301) 342-8507

Hydraulic System Redesign Complete

Hyd Power Increased (8 to 15 GPM)

3 Independent Systems Reduced to 2

Thermal Management Issue Solved (Heat EX and Air Ducting)

UH-1Y and AH-1Z Flight Testing at PAX NAS

3 AH-1Z and 2 UH-1Y (EMD Config)

Program Nearing End of Flight Testing and Tech Eval

OPEVAL Scheduled to Begin Early 2005 on 4 EMD A/C

Platforms

POC's James Magno & Jeff Gribble

Fest Requirements Document being Drafted. Source Selection Process will be Redone. V-XX Presidential Helicopter

H-53X (USMC Heavy Lift Replacement) Aircraft Specification Being Developed

Joint Unmanned Combat Air System (J-UCAS)

- · USAF, USN and Defense Advanced Research Projects Agency
- 3 Aircraft Configurations (X-45C, X-45C/N, & X-47B)

Joint Strike Fighter F-35 (JSF)

POC Ed Ryan

Edwin.Ryan@Navy.Mil (301) 342-8507

Program Highlights

Completing Air Vehicle level CDR's

Weight Reduction Continues To Be the Primary Design Focus Hydraulics System Configuration is Complete

Demand Vs. Generation Continued Challenge

System Utilizes Existing 4000psi Technology

EHA's---Most Advanced Technology Is Largest Challenge

 $\begin{array}{c} \text{PAX NAS LIAISON REPORT } 06/15/2004 \\ 192 \end{array}$

PAX NAS

Hydraulic Systems

Test/Evaluation Facility

POC James Magno

James.Magno@Navy.Mil (301) 342-9374

Lab Test/Evaluation Projects

V-22 Damage Limit Impulse Testing

Metal Filter Testing To Verify per MIL-F-8815 (2 Prototypes)

F/A-18 Spring Energized PTFE Seals

High/Low-Temp Unloaded
Cycling Delta-Qual
Stabilator Actuator Complete
Trailing Edge Flap Actuator Next

EI's on T-2 Flight Control Actuators

Misc. Qualified Product Testing

Lab Test/Evaluation Projects (Contd)

Rod/Seal Endurance Test Rig (4 Rods and 32 Installed Seals)

Actuator Endurance Testing

Test/Evaluation Projects (Contd)

Specimen 61 Post Ozone Exposure

Post UV Heavy Specimen 61 Exposure

Field Units On and Off Aircraft Developing Cracks

Navy PAX River Labs Evaluated the Effects of Ozone and UV

Navy Continuing Effort to Revise MIL-C-85052 Based On Lab Results

Document Improvements Include Additional Testing and Improved Quality Assurance Provisions

A Clamp Panel Meeting Held at Recent SAE G-3 on March 15 2004

The MIL-C-85052 Specification Update Is Scheduled to Be Completed by

PAX NAS Hydraulics Branch POC's

Al Pate (4.3.5.2 Branchhead)

Alfred.Pate@Navy.Mil (301) 757-2001

Ed Ryan (4.3.5.2 Team Lead, F-35, H-1)

Edwin.Ryan@Navy.Mil (301) 342-8507

James Magno (F/A-18, V-XX, J-UCAS, Aging A/C, Lab Manager) James.Magno@Navy.Mil (301) 342-9374

Donald Courson (V-22)

Donald.Courson@Navy.Mil (301) 342-8381

Raeanne Makowski (E-2C Advanced Hawkeye, V-22)

Raeanne.Makowski@Navy.Mil (301) 342-0300

Jeffrey. Gribble (a) Navy. Mil (301) 342-9399 Jeff Gribble (H-60, V-XX, J-UCAS, H-53X, Aging A/C)

PAX NAS LIAISON REPORT 06/15/2004

P-Clamp Cushion Test Analysis

Test Specimen Clamp Cushions:

- Clamps separated into 6 groups
- 3 Groups of -2 clamps From QPL manufacturers (Umpco, T/A, J and M)
- 3 Groups of clamps from airframe companies (Boeing Long Beach, Boeing Philadelphia, Korean Aircraft Industry)
- Clamps from QPL sources were new, -2 size
- Clamps from airframe companies were random and unused
- Known manufacturers
- Various sizes
- Some lot identification
- Unknown Manufacture date
- Clamps in new condition, believed to be unused

Test Sequences:

One 5 clamp assembly from each of the 6 groups completed each of the following test sequences:

- Sequence A: Preconditioning, Ozone, UV Light, UV Medium, UV Heavy
- · Sequence B: Ozone, UV Light, UV Medium, UV Heavy
- Sequence C: UV Medium, Preconditioning, Ozone
- · Sequence D: UV Medium, Ozone

Test Procedure:

Preconditioning and Ozone levels per MIL-C-85052.

- Ozone: 600 pphm ozone for 6 hours at 125 F
- Preconditioning: 212 F for 70 hours

UV test per ASTM G154 without rain or humidity

- UV Light is 72 hours exposure
- UV Medium is 120 hours exposure
- UV Heavy is 168 hours exposure

UV and Ozone Effects on Cracking:

- All clamp cushion cracking occurred during the ozone test.
- Cracking did not progress in subsequent tests
- No cushion cracking occurred during UV tests
- preconditioning. Preconditioning appears to help clamps pass More ozone cracking occurred when there was no ozone test.
- More clamps from airframers cracked than clamps from manufacturers. Suspect poor quality control.
- One Clamp manufacturer had no ozone cracking. Therefore the current MIL-C-85052/1 clamp cushion specification has achievable requirements.
- Clamps obtained from airframers gave similar results to clamps provided by manufacturers.

Color Change

- exposure to light UV phase. Any surface effects of UV exposure Most of clamp cushion color darkening occurred during occurs quickly and does not progress.
- Typically, medium and heavy UV exposure added little if any color change to the cushions.
- Cushion color darkening effected surface pigmentation only; inner material was light yellow.

 $\begin{array}{c} \text{PAX NAS LIAISON REPORT } 06/15/2004 \\ 204 \end{array}$

Plan Forward

- 1. Change MIL-C-85052 specification as follows:
- Full qualification testing is required if manufacturer changes cushion supplier or cushion material formulation.
- Double number of samples ozone tested for QPL procedure, 5 with preconditioning and 5 without preconditioning
- ozone, hardness, strength, tests after a set number of clamps sampling should be strengthened. Possibly require QA for processes are changed or not. Definition of "Lot" and lot Quality Assurance testing is required regardless whether produced, irregardless of size.
- 2. Re-qualify All QPL Companies
- 3. Turn QPL specification over to SAE.

High Velocity Oxygen Fuel (HVOF)

Wear Resistant HVOF Rod Coatings

- High Velocity Oxygen Fuel (HVOF) applied wear military and commercial flight control actuators. resistant coatings are best practice for recent
- HVOF applied powder metal coating process is also less toxic than traditional chrome plating process.
- because wear resistant HVOF rods will not polish Super-finished HVOF surface finish is critical up in service.

Status of HVOF Coating Efforts

F/A-18 stabilator with HVOF coated rod has been qualified with chrome equivalent performance.

- HVOF coated P-3 weapons bay door actuators in service for 2 years with no corrosion observed.
- F/A-18 TEF actuator qualified with one chrome rod and one HVOF rod showed equivalent leak-free performance of both rods.

Seal Upgrade

Heat Resistant Static Fluorocarbon Seals

- Many existing components designed before widespread use of fluorocarbon seals.
- In 1996 NAVAIR evaluated performance and endurance of several F/A-18 flight control actuators packed with fluorocarbon seals.
- High and low temperature performance was excellent but some dynamic seals showed minor damage.
- A Canadian F/A-18 has been operating since 1997 with fluorocarbon packed flight control actuators.

Spring Energized PTFE Dynamic Seals

- Spring energized seals provide consistent leak-free performance at high and low temperatures.
- performance of spring energized seals far superior In 2000, NAVAIR endurance testing showed to elastomer seals.
- Seal kits with fluorocarbon static seals and spring energized PTFE dynamic seals have been developed for several components.

Status of Heat Resistant Upgrade Efforts

- Upgraded F-14 stabilator and wingsweep swivels have been fielded with excellent results.
- the F/A-18 C/D stabilator actuator and are ready for Seal kits from three vendors have been qualified on retrofit.
- Similar efforts on F/A-18 C/D and H-60 flight control actuators are also in work.

 $\begin{array}{l} \text{PAX NAS LIAISON REPORT } 06/15/2004 \\ 210 \end{array}$

NAV AIR

Dynamic Filtration

Dynamic Filter Efficiency and Fluid Cleanliness

Media degradation causes system dirt levels to increase with time.

Update of MIL-F-8815 Filter Spec

- Filter specification was last revised in 1976 prior to widespread use of particle counters.
- Intent of specification was to evaluate media performance and degradation, but steady flow, single pass gravimetric test method is not adequate.
- Existing method gives an estimate of new filter efficiency in a steady flow environment.
- Alternate test method to evaluate filter efficiency under dynamic flow.
- Alternate method for measuring fluid cleanliness and filter performance using particle counters.
- Investigate alternate materials and methods for qualification and vendor lot
- This effort will extend and modernize the MIL-F-8815 without affecting existing products.

Air Contamination and Fluid Purification

components in an effort to reduce system weight. Many Navy hydraulic systems have undersized

Aggressive flying can easily overwhelm heat exchangers, causing excessive fluid temperatures.

This condition is aggravated by air contamination.

Bleeding Details:

requires frequent reservoir burping and bleeding to manage Maintainers report tendency to collect air between flights air contamination levels.

Coupling Details:

Existing couplings prevent fluid loss under pressure, but postflight cooling pulls dirty outside air through the coupling.

and metal lap seals in both the coupling and the cap prevents An improved vacuum tight coupling with redundant elastomer this in flow of dirty outside air.

Fluid Purification

Hydraulic Fluid Purification History

- · Oil viscosity keeps air bubbles entrained.
- Effective air bleed takes several hours of start and stop operation.

- After purification, surfaces are rock solid (moving maybe 1/2 inch by hand).
- Fluid samples from hot jets are typically frothy, not clear fluid.

Flight Control Actuation Future Trends in

Ray Levek

Integrated Defense Systems, The Boeing Company St. Louis, Missouri

(314)233-กิจิจิ7, raymond.j.levek@boeing.com

experiment. The literature was full of examples that said "If I had thought about it, I wouldn't have done the you can't do this."

--Spencer Silver on the work that led to the unique adhesives for 3-M "Post-It" Notepads. "The concept is interesting and well-formed, but in order to earn better than a 'C', the idea must be feasible."

--A Yale management professor in response to student Fred Smith's paper proposing reliable overnight delivery service (Smith went on to found Federal Express Corp.)

User Needs

- Increased System Reliability
- Reduced Maintenance Times
- Reduced Operation and Support Cost
- Improved Aircraft Survivability

Objectives

- enable revolutionary war fighter capabilities Develop breakthrough Technologies, which
- Technology insertion to extend today's fleet to meet tomorrow's war fighter needs

 $\frac{\infty}{2}$

Aerospace Power

Vision

- "Pump electrons" instead of hydraulic fluid, oil, or fuel
- Develop a "distributed control system"
- systems, gearboxes, and associated plumbing Eliminates the need for on-engine hydraulic
- Develop Internal engine starter/generator technology
- Eliminates the central hydraulic unit, the power takeoff shaft, and the gearbox.

"More Electric" Payoff

- Reduce support equipment and costs
- Improve current aircraft effectiveness
- The technology direction of opportunity for
- Uninhabited Aerial Vehicles (UAVs)
- Commercial Aviation
- Electric Vehicles
- Numerous other Commercial Applications
- Advanced Weapon Concepts.

What does this mean for Flight Control Actuation?

major breakthrough in aircraft control. Just as the actuators eliminate the need for central hydraulic systems. Control power comes directly from the need for mechanical interfaces, power-by-wire fly-by-wire flight control system eliminated the Power-by-wire (PBW) actuation is the next aircraft electrical system.

State of the Art Actuators

Key Performance Parameters

- Stall Load
- Maximum Rate
- Frequency Response
 - Dynamic Stiffness Failure Transients
- Input Power vs. Load

223

Electrohydrostatic Actuator (EHA)

Fixed Displacement

Configuration

Characteristics

- Motor must reverse rotation to reverse direction
- Electronic controller is required to control the speed and direction of motor rotation
- Motor must be stalled to hold the flight control surface against the airstream 224

Electrohydrostatic Actuator (EHA)

Variable Displacement

Configuration

Characteristics

- Motor Turns in one direction regardless of actuator direction
- Motor rotates at constant speed even at no load

Electromechanical Actuator (EMA)

Configuration

Characteristics

- Motor must reverse rotation to reverse direction
- Electronic controller is required to control the speed and direction of motor rotation
 - Motor must be stalled to the hold flight control surface against the airstream
 - Susceptible to failure mode that could jam the control surface in a deflected position.

Flight Control Actuation

Architecture Definition Drivers

- Safety
- Complete loss of power
- Flutter risk
- Minimize effect of the loss of power sources
- Minimize vulnerability to engine or tire burst, mid-air collision, battle damage, etc...
- Maintenance costs
- Weight, at aircraft level, actuation plus power sources

Key Performance Parameters

- Frequency Response
- Static Stiffness
- Dynamic Stiffness
- Loaded Rate
- Input Power vs. Load

 Electromagnetic Emissions

Electro-Hydrostatic Actuator (EHA)

ADVANTAGES

- REMOVE CENTRALIZED HYDRAULICS
- CAN PROVIDE REDUNDANCY AT SURFACE

SSUES

- SERVICING (STILL FLUID LOOP)
- PERFORMANCE (BANDWIDTH)
 - **COOLING PENALTIES**
- FAILURE MODES (FLUID LOOP)

Electro-Mechanical Actuator (EMA)

ADVANTAGES

- REMOVE HYDRAULICS ENTIRELY
- IMPROVED SUPPORTABILITY OVER EHA
 - NO SERVICING
- LONGER SHELF LIFE

- LIMITED REDUNDANCY (SIMPLEX)
- PERFORMANCE (BANDWIDTH) COOLING PENALTIES
- FAILURE MODE (PURE MECHANICAL)

Test Readiness Level of Electric Actuation

What's in the Future?

- Weight and Cost in an Increasingly Hostile Fly by Light Will Be Required to Save EMI Environment
- High Power EHAs for Future More Electric Aircraft
- Eliminate Gearboxes
- Subsystem Integration
- Improve Efficiency

Eectric Actuation Summary

Objective

- Eliminate Central Hydraulic System
- Eliminate AMAD
- Power on Demand
- Fault Tolerant Design
- Reduce Ground Support Equipment

Results in

- Reduced Power Consumption
- Improved R&M
- Decreased Weight
- Reduced Vulnerability and Improved Survivability

Bottom Line: War Fighter Capability

- Right Materiel, Right Place,
 Right Time, at the Right Cost All The Time
 233

Overview of BSN Hydraulic Fluid Contamination

Shashi Sharma, PhD

Air Force Research Laboratory Wright Patterson AFB, OH 235

• Water

- Formation of ice crystals
- Corrosion
- Fluid degradation

Particles

- Wear and tear of components

Can be removed by purifiers

- System malfunction
- Filter clogging

Solvents

- Sticking servo valves in aircraft
- Affect fluid properties

• BSN (rust-inhibitor in storage fluids, MIL-PRF-6083 and -46170)

- · Sticking servo valves in aircraft (AF, Army)
- Filter clogging (Navy)
- Increased component wear (Navy)
- Hazardous waste

736

Workshon200

INLET CHECK VALVE

VALVE CLOSED / STUCK

VALVE OPEN / NOT STUCK

237

Overview of BSN Hydraulic Fluid Contamination

Workshop2004

% Transmittance

GAM-FTIR Spectrum of Poppet Face of a Stuck Valve after Rinsing with Hexane

239

Ŋ

Simulation of Deposit Buildup on Poppet Faces

Test Fluid:

1 part MIL-H-6083 + 15.7 parts MIL-PRF-83282 (200 ppm Ba)

Test Conditions

• Oscillating frequency: 10 Hz

Stroke: 0.1 mm

 \bullet Temperature: 70° or 100° C

Load: 10, 30 or 50 N

• Duration: Varied

New poppet and seat used for each test

Friction force and electrical contact resistance measured throughout

the test

241

Overview of BSN Hydraulic Fluid Contamination

MX-85.41 T

% Transmittance

GAM-FTIR Spectrum of Poppet Face of a Stuck Valve after Rinsing with Hexane

품

F

Wavenumber

Laboratory Simulation

Workshop2004

6

Summary

 BSN contamination in hydraulic systems has caused operational problems such as sticky valves, clogged filters and excessive wear Should we discontinue the use of BSN containing fluids for component storage?

Stay tuned for Lois's presentation

Workshop2004

Fluid System Health Monitoring

Agenda

The filter element can be used as a fluid system health monitor:

- Ease of system incorporation
- On condition maintenance
- Early indicator of system problem
- Identify the problem source

Fluid System Health Monitoring

knowledge on our products' sensitivity to influid clarification systems, we have in depth With over 50 years of experience applying system debris.

Sources of system debris include:

- Component Wear or Failure
- Environmental Contamination
- Fluid Breakdown
- Maintenance

Goal:

- Enhance operational safety
- Increase mission availability
- Effective system maintenance

- Removes environmental and system-generated debris
- Controls non-metallic as well as metallic particulate
- Large voids volume provides low pressure drop and required service life
- Filter exists in every major fluid system

Conventional Installation:

- Indicates loaded filter element
- Indicates system in bypass

Switch and Indicator Limitations:

- determined until terminal pressure reached Proper actuation / operation cannot be
- Wide actuation tolerance (± 15%)
- Subject to cold start hysteresis
- Single point indication
- No prior warning before actuation

Necessitates Filter Element Change on a Time Interval Basis

Differential Pressure & Temperature Sensor

- No moving parts
 Enhanced reliability
 No components to wear
 No reseat characteristics
- Continuous output confirms proper operation
- Compatible with low current requirements
- Replaces existing differential pressure device in existing port
- Incorporates temperature output

Differential Pressure & Temperature Sensor

Advantages:

- Continuously monitors pressure drop
- Continuous performance validation
- Improved indication tolerance (± 1%)
- Negligible cold start hysteresis
- Built-in temperature sensor providing continuous thermal monitoring

Differential Pressure & Temperature Sensor

Additional Advantages:

- Enables full utilization of the filter element
- performance enables accurate scheduling of Continuous monitoring of filter element filter element change enabling

On-Condition Filter Servicing

- System performance limits can be changed without hardware change
- Reduces development & operating costs

Filter Performance Monitoring

Filter Element Service Life (hours) On-Condition Servicing **Terminal Differential Pressure** Differential Pressure (psid)

in-system filtration permits the establishment operating system generated debris and The natural equilibrium between of an expected filter service life.

During System Operation:

<u>Particulate</u>

Normal Ingression:

Filter Element

Expected Service Life

Abnormal Ingression:

Reduced Service Life

Pressure drop is caused by:

- Fluid viscosity
- Flow rate
- Contaminant ingression

as a function of contaminant loading. filter element differential pressure Normalized data establishes

An abnormal rate of pressure drop rise is an early indication o<u>f a</u> system problem 259

Output Signal Fluid System Health Monitoring Present History **Previous** Element Validate Performance Hours Hours Pressure Drop Pressure Drop Present Performance Performance Baseline Hours Hours Pressure Drop Pressure Drop RPM Signal Normalize Validate Input Input **Differential Pressure Temperature**

Filter Element Differential Pressure vs Operating Time

Filtrat<mark>ion r</mark>ating: Beta Ratio of 200 at 3 μm) <mark>262</mark>

Normalized Filter Element Differential Pressure

Filter element not installed

Remaining filter life

Change filter element

System problem

System in bypass

System over temperature

Identify system problem source

- Abnormal particulate ingression indicates the existence of a system problem
- Characterization of the captured debris can identify the problem source

Contaminants are Captured within a

Diagnostic Filter Elements

Diagnostic Filters provide:

- Full flow contaminant removal
- Concentrated system debris of interest
- A very high signal to noise ratio
- A consistent debris capture process
- A tool for visual and elemental analysis

can identify the source of a system problem Characterization of captured debris

Point of Filter Service XRF Contaminant Analyzer

X-Ray Fluorescence spectroscopy: **Energy Dispersive**

- Portable, rugged, cost effective device for point of service use.
- Simple, fast and reliable analysis
- Non-destructive: permitting additional debris evaluation.
- Diagnostic filter evaluation increases information and eliminates variability of sample taking

X-Ray Fluorescence spectroscopy: **Energy Dispersive**

- Supports health monitoring and system trending.
- Provides quantitative information on the key chemical elements of interest.
- Expert system translates XRF output
- Allows for decision making at the operating level

Summary:

- Ease of system incorporation
- Advanced notification of fluid system problems schedule action
- Minimization of collateral system damage
- Full flow monitoring of system fluids
- Increased signal to noise ratio
- Identification of problem source
- Change system performance limits without changing hardware
- Reduce development & operating costs

CONTAINING FLUIDS IN DoD ELIMINATION OF BARIUM AIRCRAFT SYSTEMS

Lois Gschwender

Shashi Sharma

AFRL/MLBT

June 2004

272

CONTAINING FLUIDS IN DoD ELIMINATION OF BARIUM AIRCRAFT SYSTEMS

Outline

The problem (Lois)

Background

Program matrix

Results

Jar tests

Pump tests (Shashi)

Summary (Lois)

The Problem

- Spent fluid is a hazardous waste
- Documented problems of operational aircraft with BSN contamination
- Army helicopters
- Navy F-18s
- Air Force T-38
- Logistics/footprint

274

The Problem

- T.O. 42B2-1-3 formerly described storage and shipping with rust inhibited fluid and then flushing and draining with the operational fluid prior to use.
- Some parts cannot have all of the rust inhibited fluid drained.

Background - Definition of Fluids

- The rust inhibited fluids contain ~3% BSN (1500 ppm Ba). Stability $\leq 225^{\circ}$ F.
- soluble Ba for hazardous disposal (EPA EPA limit is 100 mg/l (120 ppm) water Handbook CFR, 261.24)

Rust inhibited	MIL-PRF-6083	MIL-H-46170
Non-inhibited	MIL-H-5606	MIL-PRF-83282
Base stock	Mineral oil	PAO oil

Background

- Aircraft components were stored with 4 different fluids at the start of program *
- MIL-H-5606: B1B, C-130, C-135, E-3, E-4, E-6, F-5, P3C, U2R
- MIL-PRF-83282: F-110 (F-16, actuator), F404, H60, H64, S60
- MIL-PRF-6083: C-5A/B, F-117, F16
- MIL-H-46170: AV8, C17, S3A, F15, E2C, F18, H53, H60, S60, V22
- * Information from Parker Aerospace

Other reasons to change

- No documented reason for using inhibited fluid
- Component inventory going down short shelf time for components
- Logistics two fewer fluids in AF inventory
- "Footprint" reduction
- Cost savings charges from component suppliers and overhaulers

Hypothesis

Operational fluids work fine as component storage fluids

No documented part corrosion with operational fluids Laboratory tests indicated synthetic fluids more corrosion resistant than MIL-PRF-9099

AF Suggestion - 1995

- component/armament for less than one year F-22 will not use rust inhibited fluid in storage
- Resistance in AF to eliminate storage fluid across the board
- Concern about potential corrosion problems
- No documented storage studies

Program

- Needed well planned storage program to validate hypothesis
- Pollution Prevention program proposed and funded, FY00 to FY04

Program Test Matrix

- Queried MAJCOMs: HQ AMC, AFSOC/LG; SPOs, ASC, SSMs about test protocol
- Real time storage, not heated to accelerate
- Both rust inhibited and operational fluids
- Submerged and drained parts
- As received and water added to fluid
- Room temperature and humidity monitoring
- Component (pump) test after storage
- Two part program developed

Program Test Matrix, Part I, Jars

- Bearing Co.- and used F-16 pump Selected corrosion- prone, 52100 steel tapered bearings - Timken pistons in jar storage
- Submerged parts
- Two water levels
- MIL-PRF-5606, 83282 and -87257 fluids,
 100 & 350 ppm water
- MIL-PRF-6083 and -46170 fluids, 220 and 400 ppm water
- Dip & drain parts
- Higher water level only
- Parts dipped, drained, then put into jars

Program Test Matrix, Part I

Jar tests set up April 2000

- Visual observations monthly
- Jar with specific test conditions (fluid and water 200/400 ppm level) off yearly for three years
- Dip and drain jars also observed

Program Test Matrix, Part II

- 3 year pump storage begun June and July 2000
- F-16 EPU pumps purchased for storage and then pump testing after storage
- Three fluids in stored pumps: MIL-PRF-83282, MIL-PRF-87257 and MIL-PRF-46170
- Water added to fluids, 300 ppm
- Constant measurement of temperature and humidity
- Post test examination, photography and analysis, as needed
- Pump tests conducted on certain pumps at 3 years

Results, Jar Tests

PARTIJA	PART I JAR TEST RESULTS	SULTS		A THE PROPERTY OF THE PROPERTY	
		Year		operation.	
Operational Fluids	-luids	1	2	3	
MIL-PRF-					Green = No change
83282					
87257					Yellow = Slight stain
5606					
				9000	Red = Stain
Storage Fluids	<u>ds</u>				
MIL-PRF-					
46170				WOOD	
	Submerged			00000	301
	Dip & Drain				
6083					

L-PRF-83282, 352 PPM WATER, STORAGE 2 YRS

MIL-PRF-46170, 412 PPM WATER, DIP&DRAIN 2 YRS

MIL-PRF-46170, 412 PPM WATER, STORAGE 2 YEARS

288

Jar Test Results Summary

- Jar tests with
- Operational fluid no changes
- MIL-PRF-46170 staining
- MIL-PRF-6083 no changes

Results, Pump Tests (Shashi)

F-16 EPU pump, Eaton (Vickers) PV3-075-15

Part II Pump Storage Results

- Yearly inspection of MIL-PRF-83282 and MIL-PRF-87257 filled pumps - no changes
- Yearly inspection of MIL-PRF-46170 filled pump - main bearing resisted turning, discoloration of

metal, gel observed

MIL-PRF-46170 + 300 ppm water, 1 year storage

CHEMICAL REACTION MARKS ON SHAFT BEARING BALL

AFRL/MLBT Pump Test Stand

• 500 hours, 5000 rpm, 3000 psig, 255°F max fluid temp

• Flow cycled between 12 and 3 gpm every minute

• Periodic fluid samples 294

AFRL/MLBT Pump Test Stand

FIGURE 1: HYDRAULIC PUMP TEST CIRCUIT 295

Part II Pump Results

- Pumps stored with 300 ppm water, drained and filled with fresh fluid
- MIL-PRF-83282
- Run 500 hours
- Teardown inspection showed little wear
- Parts shiny

Part II Pump Test Results

- Piston defect caused pump failure at 275 hours
- No rust or other indication of fluid related problem
- MIL-PRF-87257 for 3 years to assure pump failure Two more PV3075-15 pumps put into storage with was an anomaly
- Since no corrosion was observed with MIL-PRF-83282 and MIL-PRF-87257, MIL-PRF-46170 stored pump was not tested

Pump Test Results

Pump tests with

- MIL-PRF-83282

• Storage – no change

• Run 500 hrs, no corrosion

- MIL-PRF-87257

• Storage – no change

• Run 275 hrs, piston failure, no corrosion

- MIL-PRF-46170

• Storage, staining, rough turning, gel formed

Not pump tested

Summary (Lois)

299

- Using operational fluid for component storage will
- Reduce hazardous waste stream
- Eliminate source of operational problems
- Consolidate number of fluids used
- Storage program assures users that parts won't rust on the shelf
- Save charges passed on by component suppliers and overhaulers

Post Script

- Final technical report being written on storage program
- Individual aircraft TO's are being changed
 - operational fluid for component storage Army and Navy also adopting use of
- Specification for storage fluid MIL-PRF-46170, Type II has been cancelled

Lubricant Cleaning and Compatibility Studies for Chlorofluorocarbon and Hydrochlorofluorocarbon Solvent Replacements

Marcie B. Roberts¹, Carl E. Snyder, Jr.² Lois Gschwender².

Jennifer Di Cocco³ and Scot Bryant³

- 1 University of Dayton Research Institute
- 2 Air Force Research Laboratory
- 3 Science Applications International Corporation

- Background
- Oxygen Wipe Solvents
- Introduction
- Solvents Evaluated
- Static Immersion CleaningStudies
- Procedure, Equipment, Contaminants, Results,
- Compatibility Studies
- Procedure, Equipment, O-rings Used, Results
- Conclusions

- Low Cost Precision
- Cleaning Solvents
- Introduction
- Program Guidelines
- Solvents Evaluated
 Statio Immersion C
- Static Immersion CleaningStudies
- · Contaminants, Results
- Ultrasonic Cleaning Studies
- Procedure, Equipment
- Compatibility Studies
- Procedure, Equipment, O-rings Used, Results
- Conclusions
- Overall Conclusions

- versatile and effective
- < \$180/gal
- easily recycled
- fast drying
- low toxicity
- nonflammable
- compatible with aircraft materials
- various cleaning procedures

Background

- Protocol & US Clean Air Act- Class I ODC Freon production halted 1995 - Montreal
- Military stockpiles vanishing
- HCFC 141b (dichlorofluoroethane) and isopropanol substituted
- Less effective procedure changes
- HCFC 141b Class II ODC
- Isopropanol flammable

Introduction

- The production of Chlorofluorocarbon (CFC) and been outlawed because they are ozone depleting hydrochlorofluorocarbon(HCFC) solvents has
- (Liquid Oxygen) and GOX (Gaseous Oxygen) CFC and HCFC solvents were used in LOX cleaning applications.
- systems in which they were used, and they were ability, good compatibility with the mechanical They were used for their excellent cleaning very safe for the people using them.

LOX and GOX Compatibility

- HFE 7100
- HFE 71 IPA

 HFE 7200

 Kon P

 Vertrel XF

 AK 225-G

- 1010 AISI Steel C.R.E.P.
 Coupons were cleaned by
 successive washings in Hexane
 and Acetone in an ultrasonic
 bath
- Coupons were dried in an oven for 10 minutes and cooled to room temperature
- Each coupon was engraved with a number
- Four coupons were weighed
- A small amount of contaminant was placed on each coupon and spread into a thin, even layer

- The coupons were weighed
- The coupons were hung on a wire stand inside a beaker
- Another beaker was filled with solvent
- The coupons on the wire stand were transferred to beaker containing solvent
- One Coupon was removed after 30, 60, 120, and 300 seconds
- The coupons were weighed

Experimental Set Up for

Wire Stand

l = 30 second trial

2 = 1 minute

3 = 2 minutes

4 = 5 minutes

Contaminants

- MIL-PRF-7808
- MIL-PRF-83282 (Hydraulic Fluid)
- MIL-PRF-27617 (Krytox 240AC)
- Arizona Road Dust on Krytox 240AC
- Duct Tape Residue (Aged @ 110°C for 48Hrs)

Procedure for Compatibility Study

- Three of each type of o-ring were weighed in water and in air
- A hardness measurement was taken on the rubber seals
- The three o-rings of one type were placed on a wire stand in a jar
- Solvent was added
- The lid was tightly sealed on the jar

- The first o-ring was removed from the jar after 30 days.

 The second after 60, and the third after 90 days
- Immediately after being removed the o-rings were weighed in air and in water
- The rubber o-rings were also measured for hardness
- 3 to 5 days after removal from the jar, o-rings were weighed and hardness measured for the rubber orings a second time

Experimental Set-up for Compatibility Study

Wide Mouth Jar

Wire Stand

TFE
KelF
Viton A
Silicone
Neoprene

O₂ Wipe Solvent Program Conclusions

Compatibility Study

any of the o-rings tested for any of the time periods - None of the solvents had an unacceptable effect on

Static Immersion Cleaning

- Ikon P cleaned the highest percent of the contaminants next to Freon
- AK 225-G was the next best

Overall

TO 15-X-1 was changed to require the use of AK225-G

A low cost replacement solvent was needed for these applications

32 Candidate Solvents and Aqueous Cleaners were picked for evaluation according to the following guidelines

Program Guidelines

- Cost of solvent a major driver
- Cost limited to cost of Freon 113 when it was
 - last available \$180/gallon
- Process changes acceptable
- Ultrasonic assisted
- Two step process
- · Clean and rinse
- Accelerated drying

- *Freon
- *Isopropyl Alcohol •
- *HCFC 1416
- Abzol
- Ensolv
- **DS-108**
- AK-225
- OS-120
- Leksol
- Leksol AL
- Quik Solv

- EB-223
- Safecare Aircraft Cleaner

Safecare MaxiSolv

- **DMSO**
- Brulin 1990GC
- Vertrel CCA
- SWROne
- Vigon US
- Armakleen M-Aero Cleaner
- Octagon OCC/NOC
- HFE-72DE

- Aquanox XNJ Plus
- Micronox MX2840
- Vertec Gold Cenium CP
- Re-Entry Prepsolv
- Bioact 105 Precision Cleaner
- ATTAR-C
- DOT 111/113
- BlueGold Industrial Cleaner
- Kon
- HFE-72DE
- ChemClean #2011
- standard solvent

Contaminants

- MIL-PRF-7808
- MIL-PRF-27617 (Krytox 240AC)
- Damping Fluid (ELO 65-40)
- Hydrocarbon Grease (MLO 94-23)

Cleaning Ability of Best 15 Solvents in 300 Seconds

Results

- Fluorinated Solvents ranked 1 through 6, cleaning between 393% and 301% out of a possible 400%.
- Freon (CFC) and AK-225 (HCFC) ranked 1 and 2.
- The other fluorinated solvents ranked 3rd through 6th
- All solvents comprised of n-Propylbromide cleaned between 294% and 300% out of a possible 400%.
- The nPB solvents ranked 7th through 10th, and 12th out
- Aqueous Cleaners, DMSO, IPA, Terpenes, and Ethyl Lactate cleaners did not perform well.

- Certain solvent/soil combinations were chosen to be run in an ultrasonic cleaning study to see if running the cleaning procedure in an ultrasonic bath could make a cheaper solvent clean adequately.
- Any Solvent that did not remove at least 95% of a given contaminant within 5 minutes was run in an

ultrasonic cleaning test.

- The ultrasonic cleaning test is the same as the static cleaning test except that the full beaker of solvent is placed in a running ultrasonic bath prior to placing the metals in the beaker.
- The most important results were found when cleaning PFPAE Grease.

Static and Ultrasonic Cleaning Abilit to Clean Krytox Grease

- Abzol, Hypersolv, Ensolv, Leksol AL, HFE71DE, HFE-72DE, Micronox, These solvents are: AK-225, Ikon M, Bioact, and Re-Entry Prepsolv.
- Freon was also tested as a standard.

Silicone 6855

Viton 83248

Compatibility Procedure

Results

None of the solvents had an unacceptable effect on any of the o-rings tested for any of the time periods

Precision Cleaning Solvent Program Conclusions

- Highly halogenated, containing Cl, I or Br, solvents are more effective cleaners especially with PFPAE contamination
- The most effective solvent compared to Freon was HCFC 225, then Ikon M and HFE 1
- Aqueous cleaners did not perform well in these experiments
- Ultrasonic cleaning improved performance of most cleaners

Overall Conclusions

- Effective environmentally acceptable replacement chlorofluorocarbon solvents for both cleaning oxygen systems as well as precision cleaning solvents were developed for the banned applications.
- 15-X-1 was changed to require the use of AK225-G. AK225-G was found to be a good replacement for banned solvents in O, cleaning applications. T.O.
- Micronox, Vertrel CCA, HFE71DE, HFE72DE, and precision cleaning applications: AK225, Ikon M, Several low cost alternatives were found for Lenium CP.

SBIR Topic AF04-126

sensor to determine the oxygen content of the air above the fuel in aircraft fuel tanks Objective: Develop an on-line oxygen

- Requirements
- O₂ Content 9 to 12%
- When O₂ content exceeds 12%, sensor sends signal to activate OBIGGS
- When O₂ content gets down to 9%, sensor sends signal to de-activate OBIGGS
- There could be a warning signal as the 12% and 9% limits are approached

• Requirements – cont'd

Temperature range −65°F to +125°F

Compatible with fuel and fuel vapors

 Maintains operational capability after being wetted by fuel repeatedly

No ignition hazard

Reliable

 Maintainable – No major maintenance prior to 2 years in service

Requirements

Lightweight

Robust

• Capable of withstanding shocks associated with landing

• Insensitive to aircraft vibrations

Reliable

• Requirements

Small Size

- Low cost

Compatible electrical requirements

- Phase I Exit Criteria
- Working prototype demonstrate
- Ability to sense O₂ concentrations of interest in the air above a simulated fuel tank (Proof of feasibility of technical approach)

Phase II Exit Criteria

- Complete development of sensor in final, flightworthy form
- Demonstrate capability to meet all performance requirements
- operability after exposure to fuel and fuel Demonstrate long term compatibility and vapors by accelerated testing
- Deliver a full-scale, simple to operate working

×

Schedule

January 04 Phase I Proposals Due

46 Phase I Proposals Evaluated February 04

5 Phase I Contract(s) Awarded April 04

November 04 Phase II Proposal(s) Due

Phase II Proposal(s) Evaluated January 05 Phase II Contract(s) Awarded April 05

Available for Air Force Testing/Validation Phase II Contract Complete – Monitor March 07

Phase III Required? May 07

Status

Kickoff meetings have been held with all five Phase contractors

Excellent involvement/interaction with SPO and PR

Good progress being demonstrated by all contractors

Due to proprietary nature of SBIR contracts, further details cannot be provided

Lubrication for Gas Turbine Engines

Presented at:

Military Aviation Fluids and Lubes Workshop

16 June 04

Nelson H Forster, PhD Principal Engineer Propulsion Directorate Air Force Research Laboratory

Engine Performance

- Starting with the F119 engine, performance requirements started to exceed the capability of the Grade 3 oil (7808 J) introduced in the late 1970s
- temperature for Joint Strike Fighter has pushed this even further Engine power density, fuel temperature, and the resulting oil
- Grade 3 oil has been removed from the JSF program
- What are the attributes we need in a new oil?
- Viscosity
- Thermal stability
- Compatibility/Performance with a new generation of component materials

Lubricant Can Affect Bearing Fatigue

Race scratches due to hard contaminant

Fatigue Spall

- Lubricant impacts the leading cause of bearing failure:
- Viscosity → Film Thickness → Reduces stress around surface defects
- Oil Additives can have a positive or negative effect:
- Positive Boundary Additives can add to the lubricant film
- Negative Aggressive chemistry can promote micro-spalling

Modes of Lubrication

Full Elastohydrodynamic Lubricant (EHL) Film

 $\lambda = \frac{h}{[\sigma_1^2 + \sigma_2^2]^{1/2}}$

Bearing Contact 1000X Magnification

$$\lambda > 2$$
; Long Life Bearing

Lubricant Film = Average Roughness

Mixed Mode Lubrication

Some Metal-to-Metal Contact at Asperities

 $1 < \lambda < 2$; Reduced Bearing Life

Boundary Lubrication

Significant Metal-to-Metal Contact

 λ < 1; Substantial Reduction in Bearing Life

Film Thickness for Thrust Bearing

Center Film Thickness vs Temp. F110 #3B Bearing 12000 RPM, 7500 lbf. Axial Load $\lambda = h/\text{sqrt}\{(1 \mu \text{ in})^{\Lambda}2 + (2 \mu \text{ in})^{\Lambda}2\}$

Life multiplying factor @ λ = 2, is 2.3 x predicted life from LP model

0 λ = 1, the value is 0.5, 4 x reduction in predicted bearing fatigue life

PRF-L-7808 - Grade 3

PRF-L-7808, GRADE 4

Enhanced additives and basestock offer much cleaner oils

- Attractive to commercial and military for extended engine time on wing
- In some isolated cases, cleaner oils have shown issues with wear

Cold-Start Requirements

- The oil viscosity and base stock thermal stability would benefit if we can change the -60 F requirement to -40 F
- JP-8 fuel and hydraulic fluid already have a -40F capability
- AFRL/PRTM has prepared a point paper to address the oil cold-start requirement
- This is being coordinated with
- US engine companies
- Air Combat Command Systems Office (ACCSO)
- ASC/ENF

Cold-Start Requirements

- Results from the study:
- During the past fifty years Eielson AFB has reached the coldest temperature of - 61 F, Minot has reached - 44 F, Elmendorf has not been below - 40 F
- Cold weather bases have heaters to protect personnel and equipment when the temperature is below -40F
- According to engine company survey:
- Current lube systems not designed for Optimal Ester (OE) cold-start requirements (20,000 cSt, -40 F)
- To transition OE to existing systems costly qualification testing would have to be done

Performance Attributes

- Next generation steels and lubricants will likely impact tribochemistry
- In addition to the tribo-performance (scuffing, wear, surface fatigue) anti-wear additive chemistry should also consider:
- Oil thermal/oxidative stability
- Rolling contact fatigue life
- Corrosion
- Spall propagation
- Component performance with Grade 4 was not optimal due to a high weighting on thermal/oxidative stability over component performance

Current Oils & Requirements

Cold Weather (Grade 3 or Grade 4?)

- Extreme weather locations
- Auxiliary Power Units

Older Aircraft (STD, CI, or HTS?)

Is it cost effective/desirable to keep a lower cost type oil?

High Performance Oil (HTS)

- •C17, B2 time on wing = thermal stability
- F-22, F-35, F-18, F-16 = high temperature, boundary lubricant additives for newer bearing and gear steels

High Mach (Optimal Ester)

450 F oil with higher viscosity is attractive

Bearing/Engine Development Programs

- Positive communication with the US Navy to do a joint USAF/USN oil program for the future!
- Considerable bearing and gear development activity over the next five years as part of JSF
- High potential exists to test oils as part of other component development programs
- Tentative plans exist to have AFRL/MLBT SBIR Additive program develop oils/additives and include them in these component programs
- High potential for engine demo of baseline oil in 2005 and improved oil over the baseline in 2007

Summary

- There is a lot of activity right now to do a joint oil program between the **USAF** and the USN:
- 5 cSt polyol-ester basestock
- Enhanced oil in terms of both thermal/oxidative stability and boundary lubricant performance
- 13,000 cSt at -40 F → no cold start issues for legacy systems at
- Will offer improved performance for fighter engines and extend oil life for the cargo planes and bombers
- Additionally we will keep a -60 F (Grade 3 or Grade 4) on the QPL for extreme weather applications and APUs

Research and Development of Optimal Ester Turbine Engine Lubricant 16 Jun 2004

Lynne Nelson Lois Gschwender

Optimal Ester Program

- Success will depend on both improved base stocks and additives
- To date, samples from three industrial sources received as
- Fully formulated gas turbine engine oils
- Promising base fluids and additives for formulation in-
- promising optimal ester candidate, and Phase I Currently, phase III testing continues on most testing is ongoing on two recent candidates

Phase I, Kinematic Viscosity, cSt

	S	5.99		18,724
Sample	В	5.99		19,169
	4	6.09		23869
Target		7.0 min	5.0-7.0 *	20,000 max**
၁		100		-40

Phase I, Antiwear by 4-Ball Wear Scar, 1 hr, 40kg, 600rpm (mm)

	O	0.71	I
Sample	В	0.53	1
	4	0.43	0.49
Target		0.7 max	1.0 max
		52100, 75°C	M-50, 200°C

Phase I, Corrosion-Oxidation, 48 hr, 165 ml, 220°C

metals: Al, Ag, Bz, steel, M-50, Mg (WE-43), Ti, Inconel 718

	larget		Sample	
)	A	· В	S
Visc. chg. %	-5 to 25	12.30	14.6	23.6
Acid # chg.	4.0 max	1.20	0.81	2.09
mg KOH/gm				
Fluid loss, %	8.0 max	3.25	3.1	3.9
Metal wt. chg.	0.2 max	pass	pass	pass
Mg, mg/cm ²	0.4 max	-0.01	-0.08	0.00

Phase I, Corrosion-Oxidation, 48 hr, 165 ml, 232°C

metals: Al, Ag, Bz, steel, M-50, Ti, Inconel 718 (no Mg, WE-43)

	Target		Sample	
)	A	· B	S
Visc. chg. %	-5 to 25	24.10	30.2	36.4
Acid # chg.	4.0 max	3.76	7.0	6.71
mg KOH/gm				
Fluid loss, %	8.0 max	4.40	4.30	4.60
Metal wt. chg.	0.2 max	pass	pass	pass
mg/cm ²				

Static Coke Formation – mg coke/gram oil Test conditions: 300°C, 3 hour test time, shim stock specimens, 4 test average

Target

Sample

 $\underline{\alpha}$

49.4

re-run

33.5

re-run

Optimal Ester Program - Target Properties

Phase II, Elastomer Compatibility, 70 C, 70 hours

1, 1200			() () ()
Sample A	% Swell	Tensile str,	Elongation,
		% Change	% change
(Target)	25, max	+/-50	+/-20
AMS 7276, Fluorocarbon	4.9	126.6	-45.0
AMS-R-83485, Viton GLT	5.5	56.9	-5.6
AMS 3383, Fluorosilicone	5.4	0.09	10.0

Optimal Ester Program - Target Properties

Phase II, Elastomer Compatibility, 205 C, 70 hours

Sample A	% Swell	Tensile str,	Elongation
		% Change	% change
(Target)	25, max	+/-50	+/-50
AMS 7276,	17.3	-13.1	-73.0

Fluorocarbon

16.7	
3.8	
AMS 3383,	Fluorosilicone

-8.0

Optimal Ester Program – Phase II Ryder Gear Data

- Navy ran Sample A in April 03
- Two gear sets run
- 1) A side = 2866 ppi, B side = 2884 ppi
- 2) A side = 2677 ppi, B side = 3068 ppi
- Average of 4 gears = 2874; Herco reference rating = 2776, making Relative Rating of 104% (comparable to some HTS oils)

Optimal Ester Program - Target Properties

Phase II, Dynamic Coking - Bearing Deposition, 199°C oil sump, 260°C bearing, 200 hours (with a check at 100 hour point)

(these are Navy's test temps, per MIL-PRF-23699, HTS)

	Target	Sample A
	100 hr/200 hr	100 hr/200hr
Deposit Rating	20 / 40 max	25 / 39
Oil consumption, ml	2000 / 4000max	- / 4,040
Viscosity change @40°C,	0 to 15 / 0 to 20	5.7 / 10.4
Acid # Change, mg KOH/gm	1.0 max	0.38 / 0.48

T63-A-700 Turboshaft Engine Evaluation

- Final Phase III optimal ester test
- Determine type/quantity of deposits and mechanical condition of engine at overhaul
- 250 hour engine endurance test, with oil in temp @ 300 F, #7 bearing temp @ 380 F

T 63 Engine Test Candidate A results

- coke-plugged fuel nozzle (optimal ester did <u>not</u> cause the Engine seized after ~49 hours due to a engine to seize)
- Optimal ester looked fine; % Viscosity change @ 100 C was 1.0%; change in TAN was 0.60
- T 63 output shaft was repaired; a Grade 4 oil was completed in Feb 04 baseline optimal ester conditions (175 hrs, check #8 bearing, then continue to 250 hrs)
- Candidate A optimal ester will be run in the T63 for 250 hr optimal ester test condition - currently scheduled for fall

Pratt & Whitney PW6000 engine test

- 50 hour commercial engine test was run on Candidate A optimal ester @ MTU in Munich, Germany in Aug/Sep 04
- CRADA with AFRL and Pratt & Whitney Engine test was conducted thru a joint
- Still awaiting details of this test from P&W

Summary & Conclusions

- Candidate A continues to look promising in all rig testing
- AFRL is repeating elastomer compatibility
- using optimal ester test conditions (250 hrs) Candidate A will be run in T63 engine test in the fall 2004.

Summary

- Candidates B & C are in initial phase of evaluation – AFRL is currently working with vendor to improve formulations
- Tribological performance was evaluated further with Sample A
- Limited testing in fall 2003 did not show any appreciable improvement

Summary and Conclusions

- AF is now looking to use these optimal ester fluids in specialized applications, such as high Mach engines
- AFRL continues to encourage further cooperation among all parties involved with this effort
- AFRL is hopeful Phase II SBIR results will have positive impact on optimal ester technology

Gas Turbine Engine Oil MIL-PRF-23699

Military Aviation Fluids & Lubes Workshop 15 - 17 June 2004

John Shimski (John, Shimski (anavy, mil)
Naval Air Systems Command
AIR-4.4.5, Fuels and Lubricants Division
Patuxent Rive, Md
(Com: 301.757.3412, DSN: 757.3412)

AIR-4.4.5 Lubricants Group

- naval aviation propulsion system lubricants since 1962 Primary Agency for development and qualification of
- MIL-PRF-23699 Gas Turbine Engine Oil
- DOD-L-85734 Helicopter Transmission Oil
- SAE J-1966 and J-1899 piston engine oils
- MIL-C-85704 Compressor Gas Path Cleaners
- Complete in-house test capability at Patuxent River, MD
- Physical, chemical and analytical analysis
- Bench test simulators
- T63 turboshaft engine
- Product development, qualification and in-service support

AIR-4.4.5 Lubricants Group Continued

- Strong industrial ties
- commercial oil approval (used in > 95% of the free world's MIL-PRF-23699 approval is an unofficial prerequisite for airlines)
- Product demand gives the Navy leverage for new product development
- unique military needs
- emerging engine technology requirements
- Global product availability
- Military distribution system (green cans)
- FMS / NATO availability (NATO 0-156)
- Commercial items (brand name products)

Product Chronology

MIL-L-23699 Evolution

Continuous Improvement with Minimal Risk

MIL-PRF-23699 F (HTS) Added

2007

MIL-PRF-23699 H

Next Goal C/I +HTS

1997

Corrosion Inhibition

(C/I) Added

1994

MIL-L-23699D

STD

1990

MIL-L-23699 C

STD = 29

MIL-L-23699 E

Spec Established

DoD-L-85734

1986

Established MIL-L-23699

STD = 3

1986

Transmission

Fleet Introduction

2007?

NAV/NAN 1962

MIL-PRF-23699 History

- Rev "D", 9 Oct 1990 One class of performance only
- No special features
- Three NSN's for three size containers
- Rev "E", 25 August 1994 two performance classes
- Standard (STD) traditional Rev "D" type oil
- NSN's transferred to Corrosion Inhibited products
- remained on Qualified Products List (QPL) for emergency use
- Corrosion Inhibited (C/I) oil
- adopted NSN's previously used by STD oil
- transparent conversion process
- » least intrusive method to change over
- seamless logistics conversion
- » consumes present stock in the supply pipeline
- identical in performance to STD but with add C/I feature

Continued WIL-PRF-23699 History

- Rev "F", 21 May 1997 three performance classes & PRF
- High Thermal Stability (HTS) class added
- high cleanliness, high performance additives (high cost)
- intended for "hot" engines where oil deposits are problems
- three new NSN's added for various size containers
- C/I class
- remains as primary oil for military use
- STD class
- retained for emergency use
- "PRF" = "Performance" specification
- indicates compliance with 1995 Sec. of Defense mandate that all specifications be performance based documents

Continued MIL-PRF-23699 History

Today

- All oil performance classifications are completely compatible with each other
- no harm will occur to either the equipment or the oil if mixed
- enhanced property proportionally and the performance level mixing C/I, HTS and STD oils together will diminish the will revert to that of a STD product
- C/I is the preferred class to be used for all applications
- Aircraft Engine and Helicopter Transmission Lubricating Oils" NAVAIRINST 10350.4A, 19 Mar 1999 - "Utilization of
- available at (www.nalda.navy.mil/instructions/default.cfm)
- New NSN's issued for STD class oil (three sizes)
- by US Army request, June 2001

Corrosion Inhibited Oil

Background

- WHY?: 50% of bearings rejected at OH are due to static corrosion (>\$5M in a 1985 study for parts alone)
- corrosion forms during periods of non-operation
- addition of on site preservative treatments not practical
- decision to put C/I into operational oil made in 1990
- Rev "E" published in August 1994
- NSN's applied in April 1995
- First C/I contracts awarded in early 1996
- First deliveries in Summer 1996
- Existing long term contracts for Rev "D" STD class oils continued to be filled into 1997

Performance Comparison Corrosion Inhibition- Lab Test

Performance Comparison

Corrosion Inhibition- Lab Test

Performance Comparison

Corrosion Inhibition - Engine Hardware

High Thermal Stability Oil

Background

- Specification change driven by field reports:
- Heavy Oil Deposits in:
- TF-34 engines (Navy S-3 aircraft)
- Shedding oil deposits load & by-pass filters then plug jets
- US Army AGT 1500 Abrahams Tank engine
- Caused by hot running engines / quick shutdowns
- Carrier deck operations amplify heat soaks
- Tank engine exhaust regenerator retains residual heat
- Problems caused:
- In-flight shutdowns / mission aborts
- Low TBR's
- Increased maintenance and part cleaning

Performance Comparison

Cleanliness - Test Rig

High Temperature Deposition Test

Performance Comparison

Cleanliness - Test Rig

Vapor Phase Coker Test

4

Performance Comparison Cleanliness – Test Engine Hardware

Performance Comparison

Cleanliness - Test Rig

388

17

Performance Comparison

Cleanliness-Test Rig

100 Hour High Temperature Bearing Rig Test

Performance Comparison Cleanliness in Field Hardware

HTS Class

STD Class

Figure 3 C-SUMP COVERS AFTER 758 ENGINE THERMAL CYCLES

MIL-PRF-23699 Future Plans – Near Term

MIL-PRF-23699G planned for October 2004

- Technical Changes
- Define better resolution for HTS Class oils
- 200 hour High Temperature Bearing Rig Test
- 250 hour T63 Engine Test
- New Test to measure Corrosion Resistance
- ASTM D-1743, Modified for aviation oil
- Boron and Sodium trace metal elements added to NOAP
- Indicators of oil cross-servicing
- Editorial and format changes
- Revise Qualified Products List

MIL-PRF-23699

Future Plans- Mid Term

- MIL-PRF-23699 "H" (~ Sept 2007?)
- Combine performance requirements into a single HTS + C/I product
- High cleanliness and oxidative stability
- Good corrosion protection
- Good antiwear (AW) properties and load carrying capacity
- Single oil product to stock for all Naval applications
- Simplified logistics
- Trade-offs
- Not all models need HTS performance (today)

MIL-PRF-23699

Future Plans- Mid Term (continued)

- Numerous technical challenges ahead
- Requirements focused on Military needs
- Provide C/I protection while maintaining AW features and HTS cleanliness levels
- Competition of surface active additives for metals
- Thermally and oxidatively stable C/I and AW additives
- Evolution of engine materials
- Hybrid bearings
- New alloys for gears and bearings
- High temperature elastomers
- Backward compatibility
- Must be a "drop-in" for existing systems

MIL-PRF-23699 Future Plans- Long Term

- Currently both the US Navy and USAF maintain separate lubricant specifications for gas turbine engine oils
- MIL-PRF-23699 with Class STD, C/I and HTS
- MIL-PRF-7808 with Grade 3 and Grade 4
- US military gas turbine engine designs are becoming multi-service components (JSF and beyond)
- specific leaving room for a common military lubricant Lube system requirements are becoming non-service
- US Navy USAF have begun discussions to define the performance requirements for such a common product

New engine designs lean toward HTS oil performance

Corrosion inhibition for Naval aviation engine applications is a necessary requirement to maintain mission readiness

The need for an HTS- C/I oil is here today

In the near future, a common lubricant for military aviation gas turbine engines is possible

Future Propulsion System Lubrication Considerations

- * Mechanical System Design Issues
- * Bearing Materials Development
- * Future Lubricant Requirements
- * Summary: Need For Synergism

Curt Genay, Ron Yungk, Bill Ogden & Herb

P&W Large Commercial Engines

112-inch fan 74,000-102,000 lbs

PW4000

Engines In Service

Commercial experience:

Over:

Over 29,300+ engines shipped

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Super 27

Kawasaki C-1

VC-9A T-43A C-9A

IsnihT

707 707-320 720 VC-137C DC-8

Jercure

06/16/2004

MD-82 MD-83

A300-600 A310

727

17,000-19,000 lbs

JT3D

MD-87 MD-88

DC-10

DC-9 thru -50 Caravelle 10B Caravelle 12

P&W Large Military Engines

Engines In Service

- Over 6,000 + F100 engines installed

US/17 other countries 500+ TF30's Installed

Military experience:

F117

35,000-42,000 lbs

C-17

PW229

27,000-30,000 lbs

PW220

F-16

Total fly time exceeds 40 Million hrs

- 180+ PW-F117 Installed

- 250+ J52's Installed

- 2000+ TF33's Installed

Current production engines Out-of-production engines

F-15

17,500-22,500 lbs

17,000-22,000 lbs

TF-30

KC-135 C-141 B-52 E-3 C-135

Irning

A Bearing Is Not a Component. It Is a System

Advanced Aircraft Engine Mechanical Systems Enable Improved Performance and Economic Designs

To Put Things Into Perspective: Car vs. Jet Engine

	1.5 to 2	250 to 315°F	up to 275 ksi	~	ABEC 5 or 7
	9.0>	up to 200°F	< 200 ksi.	2 to 4	ABEC 1
Service Requirements	dN = Bore X Speed	Operating Temp	Hertzian Stress	λ Ratio	Bearing Grade

Bearing Contact Ellipse Is Where All the Action Occurs

Load at the Ball / Race Contact Is an Elliptical Pressure Area Contact

The Hertzian Contact - Stress Generation

Hertzian Stress

Mean Stress = P/A

Max. Stress = 1.5X Mean Stress

Depth from surfa

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

The Hertzian Contact - Heat Generation

6/16/2004

Possible Heat Generation

The Tribology of a Bearing: Synergy Between Material Lubricant & Design - A Ratio.

Interacting Surfaces & Lubricant:

 λ Ratio =

Thickness of Lubricant Film

Thickness of Surface Asperity

A Ratio > 1 Full EHD Lympineship

λ Ratio < 1 Boundary Lubrication

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Lubricant: The Life Blood of an Engine With Many Functions:

Lubricating Characteristics

Pressure - Viscosity:

The Secret to Load Bearing Capability

Anti-wear Additive:

The Secret to Boundary Lubrication

Viscosity, cp

Metal Substrate

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Pressure, ksi

In Summary, a Bearing Is Not a Component. It Is a System. And So, There Is Much to Consider...

Advanced Bearing Materials & Lubes

Bearing Material Requirements

Bearing Material Needs:

- Hardness
- Strength
- Toughness
- Corrosion Resistance
- Wear Resistance
- · Temperature Capability

Bearing Material Requirements Into the Next Millennium

Near 2000

M50 NiE

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

TENNE STATE OF THE PARTY OF THE

Influence of Large Carbides on Bearing Life

Carbides Are Stress Risers

Cracks From Stress Risers

Steel Capability
carbide
particle

Equivalent stress

"Butterfly Crack"

Surface

Depth from surface

Bearing Materials Vision Into the Next Millennium

Hybrid Bearings: Dissimilar Race / Rolling Element Material

Application

Low Speed Bearings < 2.2 mDN

M50 Steel

Loday

Stainless Steel Rings & Si₃N₄ Rolling Elements

High Speed Bearings

> 2.2 mDN

M50 NiL Steel

Case Hardened

Stainless Steel Rings

& Si₃N₄ Rolling

Elements

Advanced Si₃N₄ Rolling Elements

Si₃N₄ Hybrid Bearing

Material-Lubricant Synergy was CRITICAL to Success!

The Ultimate Test

Si₃N₄ Hybrid Bearings Enable High Speeds

Pyrowear 675 / Si₃N₄ Full Scale Bearing Successfully Ran at 675°F (357°C)

Si₃N₄ Lowers Ball Centrifugal Loads & Frictional Heating

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Bearing Materials Vision Into the Next Millennium: Low Speed Application - Opportunities

Cronidur 30 Corrosion
Resistance100X >
AISI 440C Stainless Steel

Cronidur 30

AISI 440C

Nitrogen + Low Carbon Boosts Corrosion Resistance of the Steel

Absence of Coarse Carbide Stringers + Compressive Residual Stress →Increased Bearing Life

Bearing Materials Vision Into the Next Millennium: Low Speed Application - Status

> Two New Through-Hardened Nitrogen Alloyed Martensitic Stainless Steels Show Promise:

O	0.33	0.41
Z	0.35	0.20
>	0.0	0.3
Mo	1.0	1.7
Ċ	15.0	15.8
Fe	Bal.	Bal.
AMS#	2898	5925
0 y	Cronidur 30	KD15NW
Alloy	J.	X

Sub-scale Bearing Rig Testing Showed Improved Bearing Lives AND 100X Corrosion Resistants of the

- > Full-scale Bearing Rig Testing of Cronidur 30 Showed Cage Rub and Undesirable Tribological Load Path Interaction.
- > Need for Bearing Materials-Lubrication Synergy Most Evident for Stainless Bearing Steels

Bearing Materials Vision Into the Next Millennium: High Speed Application - Opportunities

Bearing Materials Vision Into the Next Millennium: High Speed Application - Status

- Bearing Lives AND 10X Corrosion Resistance Over Sub-scale Bearing Rig Testing Showed Improved
- Elevated Temperature Showed Improved Performance Full-scale Pyrowear 675/Si,N, Bearing Rig Testing at Over M50 Steel Bearings.
- > Cage Rub and Undesirable Tribological Load Path Interaction of All Stainless Steel Bearing Remain a
- > Again, Need for Bearing Materials-lubrication Synergy Most Evident for Stainless Bearing Steels

Summary of Bearing Materials Evolution.

Need for Material-Lubrication Synergy a Must!!!

Speed, Durability

Gas Turbine Challenges For Ester Based Lubricants

Desire for Increased Thrust to Weight Ratios:

- Higher Compression Ratios
- Higher Combustion Temperatures
- Higher Turbine Inlet Temperatures
- Reduced Cooling Air
- Higher Rotor and Gear Speeds

Consequence: Increased Thermal and Tribological Demands on the Engine Lubrication System

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Lubricant Functions / Requirements

- / Reduce FRICTION and WEAR of Bearings, Gears and Other Rotating Components
- ✓ Cool Lubrication System Components
- Transport Debris Away From Lubrication System Components
- Compatible With Metallic and Non-metallic Lubrication System Components

Engine Hardware Lubrication System: Many Micro-Environments

Critical Properties Of The Lubricant

Viscosity & Density

- Heat Generation

- Lubrication System Pressure

- Component Size & System Weight

- Pump-ability

- Compartment Pressure & Operability

Vapor Pressure

- Fluid Losses

- Pump Performance

- Engine Pump Operability (Cavitation)

- Tank Size

Characteristics

Foaming

- Component Speeds

- Lubricant Cooling Capacity

- Heat Exchanger Size

Specific Heat & Thermal Conductivity d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Critical Properties Of The Lubricant

Thermal & Oxidative Stability

Auto-Ignition Temperature

Tribological Performance Elastomer / Material Compatibility

- Bearing Operating Temperatures

- Coking Resistance

- System Weight

- Bearing Compartment Operating Temperature

- System Weight

- Rotating Components Speed, Size, & Materials

- Lubricant Cooling Capacity

- System Integrity

History Of Lubricants:

"In the Beginning, There Were Mineral Oils"

Base Stock

06/16/2004

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Capabilities of Oils Relative to Mineral Oils

Diester/Polyol Esters

Mineral Oils

- ✓ Higher Thermal-Oxidative Stability
- ✓Improved Tribological Performance
- ✓ Better Viscosity Index

Neopentyl Polyol Esters

Diesters

- ✓ More Thermal Stability Improvements
- Bulk Oxidative Stability
- Liquid & Vapor Coking Resistance

Increased Temperature Capability

Oil Properties Are Strongly Influenced by Additives

Thermal - Oxidative Stability

Tribological Performance

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Impact of Thermal-Oxidative Stability

Engine Performance

> Thrust-to-Weight Ratio

> Buffer Cooler System Requirements

Engine Durability

> Bearing and Gear Life

> Maintenance Requirements

Engine Weight and Manufacturing Costs

> Number, Size & Type of Heat Exchangers

> Heat Shielding & Insulation Requirements

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Bearing Lubrication

- Lubricant Film
 Formation in
 Response to Bearing
 Contact Interacting
 Dynamics
- Lubricant Film Serves to Physically Keep Surfaces Apart

Elasto-Hydrodynamic Lubrication

Function of Base-stock Chemistry: Temperature-Viscosity & Pressure-Viscosity Characteristics

Boundary Lubrication

Function of Additives: Anti-wear Additive & Other Competing Chemistries

Elasto-Hydrodynamic Lubrication - Basic Principles

Elasto-Hydrodynamic (EHD) Lubrication Cushions Contacts During Operation

Tribological Performance Governed By:

- Lubricant Pressure Viscosity Characteristics
- ✓ Lubricant Temperature Viscosity Characteristics
- Contact Geometry
- Contact Entraining Velocity
- Contact Loads
- Contact Surface Finish
- Contact Temperature

Boundary Lubrication - Basic Principles

Adhesive Wear Defended by Boundary Lubrication

· Influenced by Materials, Surface Treatments & Roughness

Anti-wear Additive Used to Mitigate Adhesive Wear

Additive Chemically Reacts With Bearing Surface to Fo Chemically Adsorbed Film

Maintenance of Effective Lubricant Fill Required When Bearing Contact Areas

Additive Film Protect Bearing Surface |

Boundary Lubrication - Tricresyl Phosphate (TCP)

TCP In All Currently Approved Aircraft Lubricant Formulations

Properties/Characteristics:

Non-volatile, Combustible

Typically Blended in Oil at 1-3 Wt. %

Reacts Readily With Current Bearing Steek at

> Does Not React Easily With Stainless Bearing Steels

Other Chemistries Being Investigated

Material-Lubricant Synergistic Factors

Synergistic Factor

Material-Lubricant

Stainless

Steel

Steel Corrosion Resistance

Content

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Material-Lubricant Synergistic Factors

Enabling Technology Required For Improved Bearings:

Boundary Lubrication of Corrosion Resistant Bearing Steals

Potential Approaches:

➤ Use Si₃N₄ Rolling Elements - Hybrid Bearings

> More Chemically Reactive Anti-Wear Additives

> Bearing Surface Treatments To Increase Reactivity To TCP

Tribological Properties a Necessity for Gas Turbine Engine Mechanical Company of the Next Millennium

d:My Documents/Oils/Military Issues/USAF FL Workshop 2004

Material / Lubricant Synergism

Questions??

SEALS FOR HTS OILS

16 June 2004

Testing Performed by DuPont Dow Elastomers

Alan Fletcher Program Manager Materials & Manufacturing Directorate

Air Force Research Laboratory

Overview of presentation

- Gas turbine design & technology trends
- Elastomers evaluated
- Lube oils evaluated
- **Test protocol**
- Test results in jet oils
- perfluoro-elastomers for gas turbine engine Best-in-class fluoroelastomers and service
- Summary

Design & Technology trends

Reductions in weight, noise, emissions and fuel consumption

Improved reliability & maintainability

 Longer intervals between engine overhauls (time on wing)

Design & Technology Trends (cont.)

- Rising temperatures
- -260-285°C (500-550°F) soak-back
- -lube oils running hotter
- Aggressive inhibitor packages are now prevalent
- —will require better "base resistant" perfluoroelastomers (for service fluoroelastomers, or upgrade to >200°C)

Objective of our study

commercial gas turbine engine oils in order to ascertain compatibility perfluoroelastomers in various property retention of selected and recommend best-in-class Characterize properties and fluoroelastomers and offering

Fluoroelastomers Evaluated

% Fluorine
Composition 9
ner (

 Viton® A601C VF₂/HFP Polym

67.0 VF₂/HFP/TFE/CS $VF_2/HFP/TFE/CS$ Viton® GBL-S Viton® GF-S

69.5 64.0 Viton® GLT-S VF₂/TFE/PMVE/CS

67.0 Viton® GBLT-S VF₂/TFE/PMVE/CS 66.5 Viton® GFLT-S VF₂/TFE/PMVE/CS

E/TFE/PMVE/CS Viton® ETP-S

A-601C (AMS 7276 / MIL-R-83248)

- GLT-S (AMS-R-83485)

Perfluoroelastomers Evaluated

- Kalrez® 4079AMS 75 durometer, meets AMS 7257C
- Kalrez® 6375 75 durometer, general purpose, broad chemical resistance - designed for CPI market
- broad chemical resistance, high thermal, low comp. KLX-99003 – experimental product, 75 durometer, set, improved stress relaxation and temp. cycling
- KLX-03002 experimental product, 75 durometer, high modulus, high thermal, low comp. set
- KLX-02001 experimental product, 90 durometer, high modulus

All compositions consist of TFE/PMVE/CSM (typically 72-73% fluorine)

Gas Turbine Engine Oils

Basic Components of Synthetic Jet Oil:

- polyol ester base stock
- antiwear (load carrying) additive
- antioxidants (aryl hindered amine type)
- metal passivators-deactivators
- defoamant (silicone type)

Gas Turbine Oils Evaluated

Standard Oils

- Air BP Turbo Oil 2380
- Mobil Jet Oil II

HTS Oils

- Air BP Turbo Oil 2197
- Mobil Jet Oil 254
- Mobil Jet Oil 291

Aeroshell 560

Reference Oil 300 (HTS-type)

Testing Protocol

- Test Temperature 200°C and 232°C
- Testing Performed (oil changed weekly)
- Original Physical Properties
- Hardness Changes
- Tensile Strength and Elongation Changes
- Volume Swell
- Compression Set
- Compressive Stress Relaxation out to 2016
- Low Temperature Properties

Elongation Change in Ref. Oil 300 at 200°C

A601C after 1008

hours at 200°C

Elongation Change in Reference Oil 300 at 200°C

Elongation Change (%)

Tensile Strength Change in Ref. Oil 300 at 200°C

Hardness Change in Ref. Oil 300 at 200°C

Taylor and the second s

Volume Swell in HTS Air BP 2197 at 200° C

Volume Swell in HTS MJO 291 at 232°C

■ 168 hours

336 hours

504 hours

■ 1008 hours

452

Elongation Change in HTS BPTO 2197 at 232°C

Compression Set in HTS BPTO 2197 at 232° C

Stress Relaxation in Mobil Jet Oil 291

Retained Sealing Force (%)

Low Temperature Properties

Summary Fluoroelastomers

Exhibit thermal capabilities up to 200°C

GFLT-S & ETP-S provide the lowest swell in reference oils and jet lubes

good retained stress/strain properties in jet GLT-S, GBLT-S, GFLT-S and ETP-S show lubes GLT-S has the best retained sealing force in jet oils up to 200°C as measured by CSR

properties within the elastomers evaluated **GLT-S** provides the best low temperature

Summary

- They exhibit little to no degradation by either standard or HTS-type lube oils up to and beyond the thermal limits of the oil
- FFKM-4079AMS meets AMS 7257C and has perfluoroelastomer sealing service become an industry standard for
- We are actively evaluating better candidates to meet industry needs

Development of New Materials

- DuPont's Testing Shows a Need for Higher Temperature Materials
- Only a Few Very Expensive Materials Can Go Beyond 200°C
- Some Newly Developed, but Untested **Materials Exist**
- New Materials May Need to be Developed
- Materials would be Tested
- New Material Specifications would be Written

Backup

A proposed mechanism of chemical attack on standard fluoroelastomers

Continued Crosslinking of C=C sites leads to a

loss of Elongation and Eventual Embrittlement

Elongation Change in Air BP 2197 at 200°C

Elongation Change (%)

Volume Swell in BPTO 2380 at 232°C

336 hours

504 hours

■ 1008 hours

■ 168 hours

465

Volume Swell in ATO 560 at 232°C

■ 168 hours

336 hours

504 hours

■ 1008 hours

Volume Swell in HTS MJO 254 at 232°C

■ 336 hours

■ 168 hours

504 hours

■ 1008 hours

Volume Swell in HTS MJO 291 at 232°C

■ 168 hours

336 hours

■ 504 hours

■ 1008 hours

Volume Swell in HTS ATO 560 at 232°C

■ 168 hours

336 hours

■ 504 hours

■ 1008 hours

470

■ 1008 hours

■ 504 hours

■ 336 hours

■ 168 hours

■ 1008 hours

■ 504 hours

336 hours

■ 168 hours

Volume Swell in HTS MJO 254 at 232°C

Elongation Change in ATO 560 at **232°C**

Elongation Change in BPTO 2380 at **232°C**

■ 1008 hours **■** 504 hours 336 hours ■ 168 hours

Elongation Change in BPTO 2380 at **232°C**

Elongation Change (%)

Elongation Change (%)

Elongation Change in ATO 560 at **232°C**

Compression Set in MJO 291 at **232° C**

Elongation Change in HTS BPTO 2197 at **232°C**

478

Richard Sapienza Bill Ricks Joe Sanders Chris Kubala

SBIR AF03-119

June 16, 2004

Contract: F33615-03-M-5023 POC: L. Gschwender, AFRL/MLBT

The Problem

Advanced high-chrome steels in engine bearing provide:

- higher operating temperatures
- higher speed capabilities
- improved corrosion
- / fatigue resistance
- However, they have experienced significantly shorter life than anticipated in performance tests conducted using current gas turbine engine oils (GTOs).
- Their chemistry does not interact in the same way with the lubricious coating additives.

Conventional Low Chromium Steels Reaction of Antiwear Additives on

antiwear additives react chemically with the iron surface

- a lubricious coating on steel surfaces under boundary lubrication
- produce soft films of inorganic metallic chlorides, sulfides and phosphides.
- films shear easily where any asperities meet and thus protect the base metal.

It has been postulated that the high-chromium content of the advanced steels does not provide the proper reactive iron surface necessary for interaction with the aryl phosphate (TCP) to form an iron-phosphorus surface film

METSS Approach

Identify needs, evaluate existing fluids

- Select candidate alternative materials
- Develop testing and evaluation program
- Conduct iterative formulation, testing, and optimization
- tiered approach to testing
- simple screening tests to eliminate poor performers
- more advanced tests to optimize formulations
- final qualification tests to select best performers

Partner with Manufacturers - provide max feedback; Work with AF- seek max information

Goal - Identify several candidates that exhibit better antiwear properties than either the current TCP additive or the current finished fluid.

Lubricant Materials Selection

- METSS obtained samples of two base fluids from ExxonMobil:
- Fluid A. ExxonMobil MCP 2433, a synthetic polyol ester basestock fluid containing no additives.
- used as primarily the carrier for the candidate lubricant additives
- one control was Fluid A with the current tricresyl phosphate antiwear additive.
- Fluid B. ExxonMobil RM284A, a MIL-PRF-7808 Grade 4 fluid, fully compounded with all additives, including the aryl phosphate.
- Fluid B was used as one of the controls
- METSS found suppliers and other additive technology to prepare fluids.
- Lubrication performance with M-50 steel served as baseline comparison of the additives. 440C steel used to simulate advanced high-chrome bearing steels.

Typical Elemental Composition of Selected Bearing Steels

ium %	5	0	0.	0:	.2
Chromium %	1.45	4.00	0.77	13.0	15.2
Silicon %	0.25	0.25 max.	1.00 max	0.40	0.40
Nitrogen %					0.38
Carbon %	1.00	080	1.10	0.07	1.08
Material	52100	00 120 120	440C	Pyrowear 675	Cronidur 30

Industrial Participants

- Acheson Colloids
- Akzo Nobel
- Albemarle
- Chevron Texaco
- Ciba-Geigy
- Crompton
- Dover Chemical
- **Elco Corporation**
- Ethyl Corporation

- ExxonMobil
- **Great Lakes Chemical**
- King Industries
- Lockhart Chemical
- **Lubrizol Corporation**
- Rohm & Haas

RT Vanderbilt

Four Ball Wear Test

- Standard ASTM D4172 test conditions
- Tests run on M50 and 440C steel balls.

Corrosion-Oxidation Stability

MIL-PRF-7808L Requirements

Additive Solubility/Interaction

 active components from these formulations can have unexpected synergistic effects, which alter their original function.

Additives tested at 2.0%

4-Ball Screening Best Candidates

Formula	Lubricant Additive	Appearance	4-Ball Wea	4-Ball Wear Scar, mm
Code	Chemical Description	@ 20°C	09W	440C
A	ExxonMobil Polyol Ester Basestock (No Additives)	clear, colorless	71'1	test stopped
B	ExxonMobil RM284 Finished Fluid	dark brown	1.13	test stopped
1A20	Tricresyl Phosphate	clear colorless	1.27	3.28
9A20	Alkyl Phosphite Alkanolamine Borate Ester	cloudy, straw	0.40	0.41
10A20	Alkyl Phosphite Alkanolamine Ester	cloudy, straw	0.48	0.40
11A20	Isopropylated Triphenyl Phosphate	clear colorless	1.12	3.20
12A20	Proprietary Mixed Organophosphate Esters	clear colorless	0.54	2.62
23A20	Substituted Thiadiazole	clear, yellow	0.97	1.28

Corrosion-Oxidation Stability Formulations Evaluated for

Corrosion-Oxidation Stability Data (96 Hours at 200°C)

Fluid Formulation	B	10B20X1	AX2
Viscosity @ 40C, cSt.			
Before	15.39	18.42	14.96
After	19.00	20.3	16.82
% Change (-5 to +18)	23.5	10.21	12.5
Viscosity @100C, cSt.			
Before	3.99	4.09	3.51
After (1997)		4.38	3.79
% Change (-5 to +18)	3.2	(60°2	8.0
Neutralization No., mg KOH / g			
Before	20'0	3.65	0.01
2 Area Area Area Commence	16'0	6.68	06:0
Change (2.0 max)	0.84	3.03	0.89
Fluid Appearance	dark brown, no ppt	black	dark brown, deposit on tube
Sludge Volume, ml (none visible)	none visible	1.2	none visible
Weight Loss, % (4.0 max)	1.19	1.75	1.20

Antiwear Additive Performance Effect of Antioxidant on

Components	V6	9A20	Ó	10A10	10A20	/20	23A20	20
Basestock A	97.8	95.8	98.9	6.96	8.76	95.8	98.0	0.96
Additive 9	2.0	2.0						
Additive 10			0,	0.1	2.0	2.0		
Additive 23							2.0	2.0
Primene 81R	0.2	0.2	S	10	0.2	0.2		
PANA		0.1		0.1		9.		6.
DODPA	# 10 yaagaamaa	0.		0.		0,		1.0
		Four Ba	II Wear So	Four Ball Wear Scar Diameter, mm	Ť.			
M50 Steel	0.40	0.42	0.44	0.47	0.48	0.45	0.97	0.98
440C Steel	2.37	0.44	1.72	0.40	1.83	0.40	1.28	1.85

Four Ball Wear Test Results of Best Candidate Formulations

Basestock A 96.0 PANA 1.0 DODPA 1.0 Primene 81R - Additive 1 (TCP) 2.0 Additive 9 -	0.00	95.0 1.0 1.0	95.0	0.96		
(TCP)	000	1.0			95.9	95.0
(TCP)	0	1.0	9	0.1	0,1	0:1
(TCP)			0.1	1.0	0;	1.0
(ТСР)			0:1		1:0	0:1
	0			022 2000		
		2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
Additive 10			2.0			ŝ
Additive 11		7.50.50		2.0		S
Additive 12		**************************************	g	8	2.0	8
Additive 23		es.	æ	88	ī	2.0
		Four Ball W	Four Ball Wear Scar Diameter, mm	eter, mm		
M50 Steel 1.39	39	1.12	0.41	1.37	1.13	96'0
440C Steel 3.22	22	2.32	1.92	2.96	2.73	1.91

Addition of Antiwear Additives to Current Finished Fluid

Components	B	9B10X1	9B20X1	10B10X1	10B20X1	23B20
Basestock B	100.0	98.9	97.8	98.9	97.8	98.0
Primene 81R		1.0	0.2	0.1	0.2	
Additive 9		1.0	2.0			
Additive 10				1.0	2.0	
Additive 23						2.0
		our Ball We	Four Ball Wear Scar Diameter, mm	neter, mm		
M50 Steel	5.	0.42	0.46	0.48	0.57	96.0
440C Steel	Stopped	2.10	2.17	1.96	0.41	1.82

Corrosion-Oxidation Stability Data (96 Hours at 200°C)

Fluid Formulation	1A20X2.2	9A20X2.2	10A20X2.2	11A20X2.2	12A20X2.2	23A20X2.2
Viscosity @ 40C, cSt.						
Before	15.10	15.19	15.35	15.24	15.21	14.56
Affer	16.81	18.10	18,47	± 17.10 ± 10.00 ± 10.	17.31	76,91
% Change (-5 to +18)	11.3	18.6	20.4	12.2	13.8	16.5
Viscosity @100C, cSt.						
Before	3.52	3.56	3,55	3.53	3.53	3.56
Affer	3.79	4.07	4.04	3,83	3.82	4.00
% Change (-5 to +18)			071	9'8	J.8	12.3
Neut. No., mg KOH/g						
Before	0.04	1.12	7.74	0.03	0.0	0.56
Affer.	0.66	3,39	3.88	1.22	0.57	2.72
Change (2.0 max)	0.65	2.27	1.46	1.19	0.56	2.16
Fluid Appearance	dark brown light ppt	black, heavy ppt	dark brown heavy ppt	dark brown no ppt	dark brown no ppt	dark brown heavy ppt
Sludge Volume, ml (none)	0.2	0.4	0.28	0.08	0.08	0.8
Weight Loss, % (4.0 max)	0.97	1.42	3.88	1.29	3.29	2.32

C-O Stability Data (96 Hours at 200°C) Metals Appearance & Weight Change (mg/cm², max)

(2.2	ye.	ິດ ≚	er etch	4 own	4 Slor	5 olor	o
23A20X2.2	0.00	+0.09	-0.78	+0.14	+0.14	+0.15	+0.10
	light gray	black	multicolor etch	dark brown	multicolor	multicolor	multicolor
12A20X2.2	+0.03	0.00	-0.05	0.00	-0.02	+0.03	0.00
	It gray	It gray	brown	dark blue	light gray	light gray	gray
11A20X2.2	0.00	-0,03	-0.02	-0.02	+0.03	0.00	-0.02
	light gray	light gray	brown	multicolor	multicolor	light gray	gray
10A20X2.2	-0.05	+0.10	+0.20	+0.07	+0.20	+0.15	+0.02
	light gray	multicolor etch	brown etch	multicolor etch	dark gray etch	multicolor	dark gray
9A20X2.2	+0.12	+0.22	+0.02	+0.08	+0.12	-1.16	+0.26
	multicolor	multicolor	multicolor	dark brown	dark brown	multicolor etch	dark brown
1A20X2.2	0.00	0.00	0.00	+0.02	+0.03	+0.03	+0.02
	light gray etch	light gray etch	brown etch	multicolor etch	multicolor etch	light gray etch	multicolor
Formulation	AI (+/- 0.2)	Ag (+/- 0.2)	Bz (+/- 0.4)	Fe (+/- 0.2)	M50 (+/- 0.2)	Mg (+/- 0.4)	Ti (+/- 0.2)

Wear Testing of Advanced Steel Ball-On-3-Disk Method

Cronidur 30 steel disk samples prepared by FAG/Barden Bearing Prepared to surface finish representative of that of bearing race M50 and 440C ball rotating against Cronidur 30 disks Laser-cut slices from rod stock

		Best Candi	Best Candidate Lubricant Formulations	ormulations		
Components	1A20X2.2	9A20X2.2	10A20X2.2	11A20X.2.2	12A20X2.2	23A20X2.2
		Four Bal	Four Ball Wear Scar Diameter, mm	eter, mm		
		440C Steel E	Steel Ball on Cronidur 30 Steel Disks	0 Steel Disks		
	Stopped in	Stopped in	Stopped in	Stopped in	Stopped in	Stopped in
40 Kg Load	< 1 min.	< 1 min.	< 1 min.	< 1 min.	< 1 min.	< 1 min.
	Squealing	Squealing	Squealing	Squealing	Squealing	Squealing
	Stopped in	Stopped in	Stopped in	Stopped in	Stopped in	Stopped in
5 Kg Load	< 1 min.	< 1 min.	< 1 min.	< 1 min.	< 1 min.	< 1 min.
,	Squealing	Squealing	Squealing	Squealing	Squealing	Squealing
		M50 Steel B	Steel Ball on Cronidur 30 Steel Disks) Steel Disks		
5 Kg Load	0.34	H H H O	0.27	0.40	0.32	22 (28 0)
40 Kg Load	2.28		<u></u>	1.34	2.03	805 809 609

Accomplishments to Date

antiwear properties on conventional (M50) as well as high-chrome (440C) METSS has identified 5-6 different lubricant additives that exhibit better steels than the current additive used in existing GTOs.

stability and low corrosion rates required of GTOs high temperature Two of the best antiwear candidates also exhibited the thermo-oxidative service conditions. The results of the Phase I program clearly demonstrated the technical requirements and provide a solid foundation for Phase II development feasibility of developing product formulations to meet the

Phase II Program Goals

METSS will demonstrate the ability of the lubricant

to meet all applicable performance specifications

to address issues of environmental concern

materials developed to meet field service requirements

technology to be transition to near-term military and industrial uses, and commercial market applications. The program will create an opportunity for new GTO lubricant additives for DoD and support future materials development efforts. The best overall lubricant candidate developed during Phase II will be subjected to full qualification testing by approved third party laboratories in accordance with the requirements of the MIL-PRF-7808 Grade 4 fluid specification.

SBIR program commercialization partners

Nyco America

Hatco Corporation

Timken

- The Valvoline Company

Outside testing laboratories

Phoenix Chemical

NAVAR

Timken Technical Services

Wedeven Associates

Commercial suppliers of bearing steels

Commercial suppliers of specialty additives

Commercial suppliers lubricating oils and base stocks.

Testing and evaluation

- Physical and Chemical Properties
- Mixture Compatibility
- Four Ball Wear Testing
- ASTM D4172 the relative antiwear properties
- determination of coefficient of friction
- properties of the candidate lubricant formulations on the ball-on-disk configuration to evaluate the friction wear advanced steels
- disks in conjunction with M50 and 440C steel balls, as well as ceramic test matrix will include friction and wear testing of the advanced steel silicon nitride ball.

Phase II Tier 2 Testing

Corrosion-Oxidation Stability (Federal Test 791c 5308.7)

determines the ability to resist oxidation and tendency to corrode various metals

Coking Tendency(ASTM D3711)

determines the tendency to form coke deposits in contact with surfaces at elevated temperatures

Additional Tribology Testing

an attempt at correlating laboratory friction and wear performance with anticipated performance in the field

Falex Ring-On-Block Test

WAM Testing

Other Advanced Testing

SBIR Topic AF03-119

Gas Turbine Engine Oil Additives for **Advanced Bearing Steels**

Military Aviation Fluids and Lubrication Workshop

June 15-17, 2004

Vern Wedeven Wedeven Wedeven Associates, Inc.

U.S. Air Force Contract No. F33615-03-M-5024 Small Business Innovative Research (SBIR) Program manager: Lois Gschwender

Objectives

Phase I Objective

advanced corrosion resistant materials without loss of other oil Feasibility to significantly enhance boundary lubrication of

Briefing Outline

- Background: risk in new oils and bearing materials
- Phase I approach and results
- Phase II plans

Trends in New Oils and Bearing Materials

Fatigue resistance, corrosion resistance Less wear resistance Material

High thermal stability (& corrosion inhibited) Less chemically active for boundary lubr.

History: Independent & parallel R&D Insufficient test methods

Risk in New Oils and Bearing Materials

Late 1990s – move toward corrosion resistance

Risk in New Oils and Bearing Materials

1980s -1990s reduced active chemistry for boundary lubrication

Reduced Fe at surface & less active oil chemistry inhibits surface film formation for boundary lubrication

Oil Technology Drivers:

High Thermal Stability (HTS) oils Corrosion Inhibited (CI) oils - Navy

Risk in New Oils and Bearing Materials

Background & Conclusions

Bearing materials:

has made bearing surfaces more difficult to lubricate Demand for fatigue life and corrosion resistance

Engine Oils:

reduced oil active chemistry for lubr. of bearing surfaces Demand for thermal stability & corrosion inhibition has

Need: (Urgent)

Lubricating additive technology for new JSF materials Leave no attribute behind

Strategic Approach

Utilize:

WA, Inc. assets - test methods, close association with aviation oil/chemical suppliers, specification authorities and users Catalyst to affect change Suppliers (Air BP, ExxonMobil, Vanderbilt, Lubrizol, Surf Res, others) -formulation skills, business motivation and resources for production, marketing and distribution

Must have pathway to market for success

Leverage -

Related efforts – Air Force SBIR Phase II (test methods); PW/RR Lift Fan for JSF (corrosion resistant bearing/gear materials): Sikorsky Understanding of needs (oils, materials, designs) RDS-21 (testing adv bearing mat'l/lubes)

Task 1

Identify adv bearing mat'ls for JSF propulsion system

PW, RR, GE, Air Force

Candidate CR Bearing & Gear Steels – Phase I Pyrowear 675 – heat treatment not quite ready Cronidur 30 – adhesive wear risk CSS-42L – not sufficiently mature 440C – selected as reference mat'l for Phase I

Adhesive Wear Tribology Attributes

<<Adhesive Wear.jnb>>

Ref Oil: Grade 4 (TEL-0004) - Air Force recommendation

Ref. Base Oil: Hatco - Tom Schaefer formulation HXL-7597

Properties

 Vis @ 100 C
 4.04 cSt

 Vis @ 40 C
 17.70 cSt

 Spec Gr
 0.955

 Pour pt
 -62 C

 Flash pt
 243 C

Base stock (TMP)

HXL-7598 (Lot H23366)

97.95%

Antioxidant

DODPA (Vanlube V-81)

1.0%

Alkylated PANA (Ciba L-06) 1.0%

Yellow metal corrosion inhibitor

Reference Base Oil

Formulate

Task 2

Distribute to

(Grade 4)

suppliers

Benzotriazole

0.05%

Hatco

-

Reference Base Oil HXL-7597 Distribution

(Lot H23365)

30 gal batch

5 gal

Air BP

5 gal Vanderbilt

Lubrizol

3 gal

ExxonMobil

WA, Inc.

→ Kalimex

5 gal

(5 gal base stock)

→ Surf Res & Appl

5 qts

U.S. Air Force

(1 gal base stock) 1 gal

Task 2

Reference Base Oil Distribute to **Formulate** suppliers (Grade 4)

Hatco

Screening Test Method

Task 4

Screening tests of additive formulations

WAM High Speed Load Capacity Test Method

- Developed for U.S. Navy (linkage to Ryder Gear)
- Evaluates wear & scuffing over large temperature range
- · Confidence with oil suppliers, spec authorities and engine companies
- SAE E-34 approval
- Extensive database with linkage to service performance
- Cost effective and quick turn-around

WAM High Speed Load Capacity Test

Ryder Gear simulation at point of scuffing initiation

Modify with Stainless Steel Mat'ls: 440C/440C **Screening Test Method**

boundary lubrication Traction behavior &

WAM High Speed Load Capacity Test

Polishing wear

Traction Coefficient

Calculated Total Contact Temperature

Loading protocol affects temperature and reduces h/σ

Four Test Determinations

Good repeatability

Data Processing

Average TC for each load stage

<consulting/sae/Tel-0001.jnb>

Traction and Scuffing Behavior

Qualified U.S520 Force Grade 4 Oils

Linkage to Service Performance

WAM High Speed Load Capacity Test Method

Family of qualified oils and oils with known performance deficiencies

Performance goal

Baseline Tests with Ref Materials

Reference MIL-PRF-7808 Grade 4 Oil (TEL-0004)

WAM High Speed Load Capacity Test Method

wamlcc/sbir-add.jnb

Reference Base Oil & Base Stock

WAM High Speed Load Capacity Test Method

wamlcc/sbir-add.jnb

Load **523**e

Screening Test Process

524

Monster Graph of Standard Protocol Tests

- standard protocol without a scuffing event, even with 440C materials! All key suppliers have at least one formulation that suspends the
- Variation in traction reflects range of boundary lubrication chemistry

Screening Test Process

Backward Compatibility with M50

Lower traction coefficient with M50 implies greater polishing wear than with 440C

wamlcc/sbir-add/AirBP.jnb

Backward Compatibility with M50

Lower traction coefficient with M50 implies greater polishing wear or better run-in than with 440C

M50 disc specimen

440C disc specimen

Oil: Formulation WA113

Screening Test Process

Screening Test with Modified Protocol

Modified protocol used for high load-carrying oils

530

h/Sigma (h/ഹ

Reference Oil Tests with Modified Protocol

Load (lbs.), Temperature

Results with Modified Protocol

Some formulations are in same league as high load-carrying aviation gearbox oils, even with 440C materials!

wamlcc/sbir-add/M50testing/Combo.jnb

Summary of Phase I Results

Eleven additive formulations reach the lubricating performance goal for continuation into Phase II

enhances boundary lubrication performance with 440C materials All key suppliers have at least one formulation that substantially

Four additive formulations out-perform high load-carrying DOD-PRF-85734 oils – opportunity for improved gearbox performance and single oil for engine and gearbox! Technical and business approach has motivated oil/additive suppliers; significant interest from OEMs and military oil approval authorities (AF & Navy)

SBIR Phase II Plans

Combining On-Site and On-Line Techniques CONDITION MONITORING For Improved Capabilities

Robert E. Kauffman University of Dayton Research Institute

Oil Condition Monitoring (OCM) Sensors

• On-Site Antioxidant Depletion (RULER) to detect:

- Accelerated Oxidation: C-130, Helicopters, Commercial APU's
- Differentiate Oxidation & Hydrolysis: Forestry, Steam Turbines
- Differentiate Oxidation & Thermal Breakdown: F16s "Black Oil"
- Predict Accelerated Wear: Hydraulic pumps, HMMWVs, Greases
- Incorrect Fluid Top-offs: Helicopters, APU's, Steam Turbine

• On-Line OCM sensors to detect:

- Additive Depletion: Cooking oils, Diesel & Jet Engine Test Stands
- Contaminant Build-up: Soot, Coolant and Fuel on Diesel Test Stand
- Hot Spot/Fire: Laboratory tests, F-16 and Commercial "Black Oils"
- Degradation by Contaminant: Coolant/Motor Oil in Jet Oil (Lab)

Seeded Fault Engine Test Joint Strike Fighter

- Accelerated Oxidation Test Oil cooler by-passed up to 80% to reach 232°C (450°F) at 9900 rpm
- RULER (On-site OCM) used to monitor antioxidant depletion
- Acid Number (AN) and COBRA (On-Site OCM) used to monitor oil degradation
- and vapor used to monitor oil degradation, fire in On-Line OCM (Conductivity) Sensors in liquid #5 bearing compartment, contamination

Simple, light-weight OCM sensors used for laboratory and JSF engine test stand evaluations: ± -3 square wave, Ni wire pair, nA response $\rightarrow 0 - 5$ V output

Laboratory Oxidation Test – Glass Flask – HTS Oil

JSF Seeded Fault Engine Test – Accelerated Oxidation

Effects of Temperature (200 – 450°F) & Oxidation on Liquid OCM Readings JSF Seeded Fault Engine Test – Accelerated Oxidation

Effects of Temperature & Oxidation on Vapor OCM Readings for Engine Run #8 JSF Seeded Fault Engine Test – Accelerated Oxidation

CONCLUSIONS

- Combining On-Site (RULER) and On-Line (Conductivity) abnormal operating conditions prior to component damage OCM techniques greatly improves capabilities to detect
- On-line OCM sensors:
- Can be placed in liquid or vapor
- Improved capabilities at higher/different temperatures
- Detect wide range of degradation mechanisms
- Placed on HMMWV diesel engine dipstick (US Army work)
- Soot, Oxidation, Coolant, Fuel
- Oil level, Temperature
- Being commercialized by different licensees for different applications

Systems Squadron Aging Aircraft

Rapidly delivering war-winning capability

ASC/AAAT

DSN Phone # 785-7210 X3622

Email address:

Carolyn. Tucker@wpafb.af.mil

Keep'em flying &4Keep'em relevant

Purification Overview

Rapidly delivering war-winning capability

- History
- Qualifications
- -- Phase I
- Phase II
- -- Phase III
- Purification Equipment
- -- Malabar
- -- Pall

HFP History

Rapidly delivering war-winning capability

ARMY HFP

Rapidly delivering war-winning capability

CH-47 Hydraulic Fluid Savings

- CH-47 goes through phase every 18 months
- 480 CH-47s in the Army
- 480 X 0.667 = 307 = Number of aircraft in phase annually
- Prior to purification / 53 gals hydraulic fluid required per aircraft
- After purification / 1 gal hydraulic fluid required per aircraft
- 52 gallons saved per aircraft
- $307 \times 52 = 15,964 \text{ Gals} \times \$10 \text{ Avg} = \$159,640.00 \text{ Savings per year}$

NAVY HFP

Rapidly delivering war-winning capability

- 13 years of HFP on Aircraft (F-14 / F-18)
- 520 Aircraft based on carriers
- 800 gallons of Hyd fluid used total in 2002
- <2 gal per year per aircraft used (very low)</p>
- 37 years of HFP on Submarines
- Fluid disposal was an issue
- Limited space to carry new and used fluid

USAF Phase I (Apr 00 - Jun 03)

Rapidly delivering war-winning capability

Research existing purification programs in use by other services for procedure and performance data

Rewrite current 42B2-1-3 Technical Data to allow Hydraulic Fluid Purification

Find ways to reduce yearly hydraulic fluid waste stream

9

USAF Phase II (Mar 04 – Jun 04)

Rapidly delivering war-winning capability

- **Conduct Operational Utility Evaluation**
- Use Mules from Kirtland AFB
- 58th SOW
- -150th FW
- HFP processes further defined & documented
- Assess suitability/effectiveness of Pall Purifier
- Initiate Tech Data procedure incorporation

551

USAF Phase III (Jan 05-Sep 10)

Rapidly delivering war-winning capability

- **Develop Hydraulic Fluid standards**
- 13 Different Aircraft
- 53 Bases, 570 Samples
- Aerospace Ground Equipment
- 54 Bases, 213 Mule Samples
- Field Implementation
- Introductory MDSC-17, F-22, F-16, B-1
- Full Field implementation
- AFRL, ASC/AA, MAJCOMs & ALC Involvement

WHY HFP?

Rapidly delivering war-winning capability

- Manhours Required to Drain and Flush
- **Contaminated Systems Require Drain and** Flush Three Times to Purge System
- Large Mobility/Supply Footprint
- Large Hydraulic Fluid Waste Stream
- Pollution Prevention for Environment
- High Cost of Waste DisposalGrant GoodGrant G
 - Significant Cost Savings

HFP Return on Investment

Rapidly delivering war-winning capability

- Savings in new fluid procurement (AF)/ ALL FLUIDS
- Estimated 0.9M gal X \$10/Gal X .90 = \$8.1M
- Savings in used fluid disposal cost
- Estimated 0.8M gal X \$1.50/gal = \$1.2M
- Total savings = \$9.3M Annually

Savings in fluid procurement (AF)/ Synthetic Only

- Estimated 0.520M gal X \$10/Gal X .90 = \$4.7M
- Savings in used fluid disposal cost
- Estimated 0.470M gal X \$1.50/gal = \$0.7M
- Total savings = \$5.4M Annually
- 5 Year ROI ratio = 37:1 (5.4 X 5 = 27M/730K)

10

Hydraulic Fluid Purification

Rapidly delivering war-winning capability

How the purifiers work:

- Create large fluid surface area using a spinning disk or by misting
- Partial vacuum to remove volatiles
- High efficiency fine filter
- Some use absorption/adsorption to remove

Pall Portable Purifier

Effective in removing

- Particulate Contamination
- Moisture
- Solvents
- Air (Entrained and Dissolved)
 - Spongy flight controls
- Pump cavitation
- Fluid over-temp

Portable and built-in configurations

Malabar Ground Test Stand with Built-in Purifier

_

Malabar Purification Unit

Rapidly delivering war-winning capability

Type IV, HTS 2/E, Part No. 26004, NSN 4920-01-434-3206, 2 System, Electric Motor Driven. Type II, HTS 3/E, Part No. 26003, NSN 4920-01-380-4744, 3 System, Electric Motor Driven. Type I, HTS 3/D, Part No. 26001, NSN 4920-01-380-7460, 3 System, Diesel Engine Driven. Type III, HTS 2/D, Part No. 26002, NSN 4920-01-434-1081, 2 System, Diesel Engine Driven.

Units on contract with WR-ALC/LESG

OT&E in progress

Pall Hydraulic Fluid Purifier

Rapidly delivering war-winning capability

- Purification

-- Particulate Reduction

Water Reduction

- -- Free & Dissolved
- -- Air Reduction
- -- Solvent Removal
- -- Synergistic Effects

- Filtration

-- Particulate Reduction

4330-01-470-1855 P/N PE01078-12-H-83**557**

Purification Conclusion

Rapidly delivering war-winning capability

- Qualifications
- -- Phase I (complete)
- Phase II (In Work)
- Phase III (In Work)

Purification Equipment

- -- Malabar
- -- Pall
- Funding

Hydraulic Fluid Purification Background

Ed Snyder, Lois Gschwender, Shashi Sharma Air Force Research Laboratory Wright-Patterson AFB, OH

559

HFP - Background

Outline

- Cleaning Ability Demos
- Aircraft Interface Demos
- Hydraulic Test Stand Demos
- Does HFP Degrade Fluid Properties
 - Pump Test MIL-PRF-5606

• Pump Test - MIL-PRF-83282

- Pall Purifier
 - Fan Furnier – Malabar Purifier
- T.O. 42B2-3-1 Revision
- Malabar Test Stand Qualification Test
- Recommendations

HFP – Cleaning Ability Demos

- All tests done to date with Pall Fluid Purifiers
- 1988 Hill AFB purified a 10 gallon drum of MIL-PRF-5606
- 1995 Tyndal AFB purified a 22 gallon drum of MIL-PRF-83282
- 1998 McChord AFB purified:
- 55 gallon drum of MIL-PRF-5606
- 55 gallon drum of MIL-PRF-83282
- 55 gallon drum of MIL-PRF-87257
- All tests demonstrated ability of purifiers to remove particulate, water and solvent contamination
- 2003 WPAFB demonstrated Malabar purifier in new test stand removed particulate, water and solvent contamination

HFP – Aircraft Interface Demos

- All tests conducted with Pall Fluid Purifier
- 1989 Tinker AFB B-52 MIL-PRF-5606
- 1989 Tinker AFB B-1B MIL-PRF-5606
- 1990 NASA, Houston TX T-38* MIL-PRF-5606
- 1992 Moody AFB F-16 MIL-PRF-83282
- 1993 Travis AFB C-5 MIL-PRF-83282
- 1998 McChord AFB- C-141 MIL-PRF-83282
- 2000 Beale AFB U-2 MIL-PRF-87257
- All tests except * were successful

HFP – Hydraulic Test Stand Demos

- All Tests Conducted with Pall Purifier
- 1992 Moody AFB PHTS MIL-PRF-83282
- 1993 Travis AFB PHTS MIL-PRF-83282
- 1995 North Island NAS PHTS MIL-PRF-83282
- 1998 McChord AFB PHTS MIL-PRF-83282
- 1998 McChord AFB HTS MIL-PRF-83282
- All Tests Were Successful

Does HFP Degrade Fluid Properties?

- AFRL/MLBT responsible for hydraulic fluid quality for the Air Force
 - Prepare MIL-Specs for hydraulic fluids
- Qualify Product for those specs
- Trouble shoot suspected hydraulic fluid related problems in the field
- would not degrade hydraulic fluid performance purification for field use, needed to know HFP Before we could recommend hydraulic fluid properties

Does HFP Degrade Fluid Properties?

- hydraulic pump testing with repeatedly purified MLBT developed a test protocol for extended In conjunction with SPOs and potential users hydraulic fluid to answer this question
- Hydraulic pump most demanding component for fluid properties.
- Rotating, sliding, oscillating metal on metal contacts
- Highest temperature
- Sensitive to foaming
- Shashi Sharma will be presenting that data in the next presentation

Hydraulic Fluid Purification

- Summary
- Pall purifier tested with both MIL-PRF-5606 and MIL-PRF-83282
- No degradation of fluid performance resulting from purification
- Malabar purifier tested with MIL-PRF-83282
- No degradation of fluid performance resulting from purification
- losing viscosity due to shearing in the pump test 83282 met new fluid properties except for 5606 At the conclusion of pump tests, both 5606 and
- and can be used for long periods of time in aircraft Shows that MIL-PRF-83282 does not "Wear out" **266** hydraulic systems

T.O. 42B2-3-1 Change

Excerpt from T.O.

- Purification is approved only for MIL-PRF-83282 and MIL-PRF-87257 fluids have been approved for No other hydraulic fluids. purification.
- Use of purified hydraulic fluid is permitted if the following requirements have been met:
- approved the use of purified aircraft SPO has The applicable hydraulic fluid.
 - Only approved units are used to accomplish purification of fluid. Units currently approved for use are: the
- (a) NSN 4920-01-380-7460
- (b) NSN 4920-01-380-4744
- (c) NSN 4920-01-434-1081
- (d) NSN 4920-01-434-3206
- (e) NSN 4330-01-470-1855
- Any deviation from this list must be approved by AFRL/MLBT, Wright Patterson AFB OH. AFRL/MLBT will notify Det 3, WR-ALC/AFTT of any changes or additions to this list.
- hydraulic test stands or service carts. Purification units attached directly to the airc $\mathbf{567}$ t only with aircraft SPO Purification units shall only be attached to portable pe p . ე

Malabar Test Stand

Contamination Removal Tests

Malabar Test Stand

Hydraulic Fluid Purification Requirements

- •Particulate: From NAS 1638 Class 11 to Class 5
- Water: From 600 ppm to 150 ppm
- Chlorinated Solvent: 300 ppm to 50 ppm
- Dissolved Air: 12% to 7% (8%)

hours of purification on 40 gallons of MIL-PRF-All of these requirements must be met within 8 83282 hydraulic fluid

Contamination Removal from MIL-PRF-83282 by Malabar Test Stand

(Fluid Contaminated Prior to Test with Particulate, Water and Chlorinated Solvent)

TEST	WATER (PPM) CHLORINE ppm	NE ppm	% AIR	% AIR PARTICULATE NAS 1638	ULATE 1	VAS 1638
HOURS	METER	KF	RUN 1	RUN2	by GC	PT12	PT13	OUTLET
0	584	455	293	293	12	11	а	а
1	342	334	226	221	8	2	2	9
2	245	237	192	184	8	4	2	9
3	169	171	146	145	8	4	4	5
4	120	117	123	120	2	2	4	9
5	68	06	105	101	7	4	3	9
9	65	69	9/	<i>5L</i>	2	4	4	4
7	52	44	69	63	2	2	2	3
8	40	46	09	54	7	2	4	3

effectiveness tests, used MIL-PRF-83282 still met At conclusion of Malabar Test Stand cleaning new fluid specification requirements for:

- Viscosity
- Stability
- Lubricity
- Foaming

This assures us that not only does the purifier not adversely affect fluid properties, but the the fluid is durable enough for long term re-use

Malabar Test Stand Test Results

Malabar Test Stand meets requirements for cleaning hydraulic fluid

- Particulate: NAS 1638 Class 11 to <5
- Water: 600 ppm to $\leq 150 \text{ ppm}$
- Chlorine: 300 ppm to $\leq 50 \text{ ppm}$
- Air: 12% to $\le 8\%$

contaminants from 40 gallons of MIL-PRF-83282 in Requirements were met by successfully removing eight hours

Recommendations

- Based on all the previous successful testing of the Pall and Malabar Hydraulic Fluid Purifiers
- Limited Field Evaluation is in order to get actual measurements of
- Reduction in waste stream by implementing HFP
- Increase in maintenance workload
- Improvement in component life
- Improvement in hydraulic system performance
- This is the reason we are conducting a Phase III activity – volunteers are needed to participate

Hydraulic Fluid Purification AFOTEC Phase II Status (HFP)

As of 28 May 2004
TSgt Christopher Brooks
Kirtland AFB NM

All data subject to final analysis after completion of assessment

HFP Phase II Assessment

- Assessment of integrated PPFP/PHTS configuration
- 58th SOW and 150th FW, Kirtland AFB NM
- Equipment located in/near 58th and 150th AGE shops
- Purified for 4 or 8 hours depending on condition
- Serviceable fluid purified for 4 hours
- Unserviceable fluid purified for 8 hours
- Condition established by visual inspection
- Baseline purification time vs contamination levels
- Samples taken at 1-hour intervals
- Analysis of particulate, water content, and fluid properties

က

HFP Phase II Assessment Status As of 28 May 2004

- Six of eight mules purified using PPFP
- Twelve warfighters received PPFP training
- Set up, integration, operation, user maintenance
- Waste stream study completed for 58 SOW and 150 FW
- Provides baseline for potential waste reduction
- Dates for final mules TBD -- operational requirements

4

PPFP/PHTS Integration

- PPFP input connected to reservoir drain
- PPFP output connected to one return line
- Sample valve/flow meter added for assessment
- not envisionedoperationally

Reservoir Drain Valve Connection: Fluid is drawn from mule reservoir into the PPFP.

PPFP/PHTS Integration

- Quick disconnect hose connections used to avoid leaks and spills.
- Local manufactured adapter connected PPFP output hose to mule return line

PPFP to Mule Hose Interface: 34" JIC PPFP output hose to 1 1/4" quick disconnect return line.

Sampling Valve Assembly:

Fluid samples were taken from this 1/4" ball valve.

9

PPFP Water Removal

Average reduction for 4-hour purification events

PPFP Particulate Removal

Average reduction for 4-hour purification events

PPFP Suitability Set up/ teardown

Setup/Teardown

"Easy, clean, and fast"

"It was just as easy to teardown as it was to setup." Warfighter

Setup/Teardown was easily accomplished:

was easily accomplished with only a few tools and no Warfighters agreed the setup/teardown of the PPFP special equipment

PPFP Suitability Interoperability

Interoperability: Warfighters agreed the PPFP and mule were interoperable 586

PPFP Suitability Ease of Use

Strongly agree Agree Rating Disagree Disagree Strongly 100% - %08 40% - %09 20% Number of Responses

Ease of Use: Warfighters agreed the

PPFP is very easy to use.

Ease of Use

"Nice layout, easy to

"Anybody could run this, it is very simple." "The only [thing] I would change is a way to test the fault lights prior to operation."

Warfighter

PPFP Suitability Unit Impact

Unit Impact

manpower!" "Saves

requires little or no contained and assistance" "Unit is self standby

Warfighter

Strongly agree Agree Rating Disagree Disagree Strongly %0 40% 20% Number of Responses

Unit impact: Warfighters agreed the PPFP would not increase manpower requirements 588

100%

- %08

-%09

PPFP Suitability Training

Training: Warfighters agreed the training was not excessive and provided them with enough knowledge to operate the PPFP

Training

"Instructions were appropriate for operating the unit. Easy to follow instructions without complicated details to remember."

Warfighter

ANALYTICAL DATA ON AIRCRAFT AND MULE HYDRAULIC FLUID SAMPLES

George Fultz AFRL/MLBT/UDRI

Hydraulic Fluid Sampling Program

- aircraft and hydraulic test stands (mules) for particulate, Objective: Analyze hydraulic fluid from operational water and chlorinated solvent contamination
- maximum contamination levels in operational hydraulic Primary purpose is to develop a realistic standard for systems
- cleanliness standards for hydraulic fluid purification for • This will serve as a guideline for establishing both servicing equipment as well as aircraft
- Only current standard is for new hydraulic fluid not realistic for in-use hydraulic fluid

	<u>U</u>)
		1 () () () ()
1		
	<u>۲</u>	
• ·	Alfo	1

UP TO DATE SAMPLE COUNT

AIRCRAFT

Kits For Program	270
Kits Sent Out	502
Kits Received and Analyzed	291
Kits Needing Address	68 (5 Bases)

MULES

			(\$6
213	189	1 1	24 (6 Bases)
7	7	147	(6 E
			24
		eq	
		alyz	
		Ans	ess
am		and	ddr
2		``	
ogl)ut	/ed	ğ
r Progi	nt Out	ceived	eding ,
Kits For Program	Kits Sent Out	Kits Received and Analyzed	Kits Needing Address

DATA DETERMINED ON EACH SAMPLE

- PARTICULATE COUNT FTM 791C 3012
- WATER CONTENT
- **ASTM D 6304**
- BARIUM CONTENT ASTM D 5185
- CHLORINE CAPILLARY GC

AUTOMATIC PARTICLE COUNTER PARTICULATE COUNT BY

Calibrated by Manufacturer Every Six Months

NAS 1638

MAXIMUM CONTAMINATION LEVEL OF 100 ML SAMPLES	SONTA	MINAT	ION C		JF 100	ML SAN	IPLES
			Co	Contamination Class	on Class		
Micron Range	0.0	0	1	2	3	4	5
5 - 15	125	250	200	1,000	2,000	4,000	8,000
15 - 25	22	44	88	176	352	704	1,408
25 - 50	4	8	16	35	64	128	253
50 -100	1	2	3	9	11	22	45
>100	0	0	1	1	2	4	8
			Co	Contamination Class	on Class		
Micron Range	. 6	7	8	6			
5 - 15	16,000	6,000 32,000 64,000	64,000	12,800	256,000	512,000	256,000 512,000 1,024,000
15 - 25	2,816	5,632	11,264	22,528	45,056	90,112	180,224
25 - 50	206	1,012	2,025	4,050	8,100	16,200	32,400
50 -100	90	180	360	720	1,440	2,800	2,600
>100	16	32	64	128	256	512	1,024

WATER CONTENT

REASONABLE LIMIT LESS THAN 300 PPM

BARIUM CONTENT BY ICP

REASONABLE LIMIT LESS THAN 20 PPM

CHROMATOGRAPHY CHLORINE BY GAS

REASONABLE LIMIT LESS THAN 200 PPM

All Aircraft Particulate Contamination Data June 14, 2004

All Aircraft Water Content Data June 14, 2004

All Aircraft Barium Content Data June 14, 2004

All Mule Particulate Contamination Data

June 14, 2004

All Mule Water Content Data June 14, 2004

All Mule Barium Content Data

June 14, 2004

Summary

- First broad range A/C and mule sampling program
- Data should be completed in a few months if addresses are received and kits mailed
- When completed enough data for meaningful statistics
- Establishes baseline for future purification work

Fluid Properties and Performance Effect of Purification on

Shashi Sharma Ed Snyder Lois Gschwender

Air Force Research Laboratory Wright Patterson AFB, OH

Timothy Jenney George Fultz

University of Dayton Research Institute, Dayton OH

Outline

Background

- Purification process
- Performance evaluation of purified fluid in pump tests

Effect of Purification on Fluid Properties and Performance

- Pump tests with MIL-PRF-5606
- Pump tests with MIL-PRF-83282
- Pump Tests with Malabar purifier

Summary

Purification Process

How the purifiers work:

- Create large fluid surface area using a spinning disk or by misting
- Partial vacuum to remove volatiles
- High efficiency fine filter
- Some use absorption/adsorption to remove water

Pall Portable Purifier

- Particulate Contamination
- Moisture
- Solvents
- Air (Entrained and Dissolved)
- Spongy flight controls
- Pump cavitation
- Fluid over-temp

611

Malabar Ground Test Stand with Built-in Purifier

Performance Evaluation of Purified Fluid in Pump Tests

- Highest temperature
- Sensitive to foaming

Lubrication Regimes in a Hyd. Pump

Boundary Lubrication

- Gross metal-metal contact
- Lower entraining speeds
- Influenced by the fluid chemistry and surface properties
 - Anti-wear additives and surface modifications help

Fluid Film Lubrication

- Film thickness large compared to surface roughness
- No (or rare) metal-metal contacts
- Film thickness and power losses affected by
- Viscosity of the lubricant
- Pressure-viscosity effects

613

Workshop2004

Performance Evaluation of Purified Fluid in Pump Tests

Surfaces under Boundary Lubrication

- Actuator Piston
- Shaft and Splines
- Pintle Bearings

Following Interfaces at Slower Speeds

- Cylinder Block and Valve Plate Faces
- Piston Shoe Faces and Piston;
- Pistons and Cylinder Bores
- Hold Down Plate and Bearing Plate
- Main Thrust Ball Bearing and Needle Bearing

Surfaces under Fluid Film Lubrication Following Interfaces at Higher Speeds

- Piston Shoe Ball Joints

- Cylinder Block and Valve Plate Faces
- Piston Shoe Faces and Piston
- Pistons and Cylinder Bores
- Hold Down Plate and Bearing Plate
- Mais Thrust Ball Bearing and Needle Bearing

MLBT Pump Test Stand

- All stainless steel
- Capable of 8000 psig and 350°F
- Test loop volume 1-15 gallon
- Well instrumented

Fluid Purifier

Pall Model PE-00440-1H

615

Workshop2004

Workshop2004

FIGURE 1: HYDRAULIC PUMP TEST CIRCUIT

Analyses of Fluid Samples

- · Viscosity
- · Water Content
- Lubricity (4 Ball Wear Test)
- · Foaming
- Metal Analysis
- Gas Chromatography

THROTTLING VALVE

RELIEF VALVE

DRIVE MOTOR Dissolved Air

SAMPLING VALVE

CYCLE

TEST PUMP

THERMOCOUPLE O

Pump tests with MIL-PRF-5606

Test Plan

Test 1: Base Line with Fresh MIL-H-5606

- Vickers Pump PV3-075-15
- 1000 hours inspection
- 1500 hours or performance degradation
- 5000 rpm, 3000 psig, 255°F max fluid temp
- Flow cycled between 12 and 3 gpm every minute
- Periodic fluid samples

- Same as Test 1 Except Fluid Purification
- Fluid Purified Every 200 Hours, using Pall purifier

Pump tests with MIL-PRF-5606

Test Results

- 1500 hour pump tests completed with
- Fresh MIL-H-5606 and
- Purified MIL-H-5606
- No significant difference between the two tests
- No fluid property changes except for loss in viscosity
- ✓ Pall purifier use will not decrease Pump Life or affect fluid properties
- MIL-H-5606 Hydraulic Fluid," AFRL-ML-WP-TR- "Endurance Pump Tests with Fresh and Purified 1998-4211

Enlargement of Cylinder Block Face

Cylinder Block Faces after 1500 Hours Pump Test 35 with MIL-H-5606

Cylinder Block Face 6,7,8

Cylinder Block Face after 1500 hrs. Pump Test 36 with MIL-H-5606

Outline

Background

- Purification process
- Performance evaluation of purified fluid in pump tests
- Effect of Purification on Fluid Properties and Performance
- Pump tests with MIL-PRF-5606
- Pump tests with MIL-PRF-83282
- Pump Tests with Malabar purifier

Summary

Pump tests with MIL-PRF-83282

Test Plan

- Test 1: Base line with fresh MIL-PRF-83282
- Abex Pump AP12V-17 (F-16 main pump)
- 1000 Hr inspection
- 300 ppm water in test fluid, after 1000 hrs
- 2000 hours or performance degradation
- 5000 rpm, 3100 psig, 255°F max fluid temp
- Flow cycled between 28 gpm and 36 gpm every minute
- Periodic fluid samples
- Test 2: Test with purified MIL-PRF-83282
- Same as Test 1 except fluid purification
- Fluid purified using Pall purifier every 300 hrs

Pump tests with MIL-PRF-83282

Test Results

- Test 1: Base line with fresh MIL-PRF-83282
- Completed 1343 hours
- High case-drain temperature
- Excessive wear on the barrel roller bearing
- Test 2: Test with purified MIL-PRF-83282
- Completed 1513 hours
- High case-drain temperature
- Excessive wear on the barrel roller bearing and the ball bearing
- No significant difference between the two tests
- Bearing failures similar to the field failures
 - 52100 steel bearings are the weak link
- F-16 has converted to M50 bearing steel
- ✓ No changes in fluid properties
- ✓ Pall purifier use will not decrease F-16 pump life

Onset of Bearing Failure in CTFE Pump Tests

"Endurance Pump Tests with Fresh and Purified MIL-PRF-83282 Hydraulic Fluid,"

AFRL-ML-WP-TR-1999-4185

621

Outline

- Background
- Purification process
- Performance evaluation of purified fluid in pump tests
- Effect of Purification on Fluid Properties and Performance
- Pump tests with MIL-PRF-5606
- Pump tests with MIL-PRF-83282
- Pump Tests with Malabar purifier

Summary

Pump tests with Malabar Purifier

ALC is procuring ~700 new hydraulic ground test stands from Malabar

- Based upon AFRL/MLBT work, ALC decided to incorporate purification in the new
- Purifier different design than Pall's
- Effect of Malabar purifier on pump life unknown
- Aging Aircraft SPO and ALC (Warner Robbins) approached MLBT to conduct study
- Malabar provided a stand alone purifier for this work

Malabar Purifier

Malabar Ground Test Stand

4

1 1 200

Pump tests with Malabar Purifier

Test Plan

Test 1: Base Line with Fresh MIL-PRF-83282

- Vickers Pump PV3-075-15
- 1000 hours inspection
- 1500 hours or performance degradation
- 5000 rpm, 3000 psig, 255°F max fluid temp
- Flow cycled between 12 and 3 gpm every minute
- Periodic fluid samples

Test 2: Test with Purified MIL-PRF-83282

- Same as Test 1 Except Fluid Purification
- Fluid Purified Every 200 Hours, using Malabar purifier

Test Results

- No significant difference between the two tests
- No changes in fluid properties
- Malabar purifier will not adversely impact pump performance/life

Workshop2004

Effect of Purification on Fluid Properties and Performance

Summary

- Pall purifier tested with both MIL-PRF-5606 and MIL-PRF-83282
- ✓ No degradation of fluid performance resulting from purification
- Malabar purifier tested with MIL-PRF-83282
- ✓ No degradation of fluid performance resulting from purification
- properties except for 5606 losing viscosity due to shearing in the pump At the conclusion of pump tests, both 5606 and 83282 met new fluid
- ✓ Shows that MIL-PRF-83282 does not "Wear out" and can be used for long periods of time in aircraft hydraulic systems

.

ACKNOWLEDGMENTS

Pump Tests with MIL-PRF-83282

- OO-ALC Hill AFB for providing the funding for the Pump Tests

- McClellan AFB for providing the test pumps and for helping with the disassembly and inspection of the piston-hanger assembly

Eglin and Tyndall AFB for providing the Pall purifier

Pall Corporation and Malabar International for supporting the test programs

Bob Peterson

- purifying the hydraulic systems of its Columbia Helicopters has been 234 fleet for the past ten years.
- eginning in 1995 we started testing bearings of the hydraulic pumps and motors during overhaul.
- In 1998 we started serializing the bearings to assist in fault analysis.

- damage of the bearings has decreased as we maintain a NAS class 2 or 3. We are finding that the wear and
- his has lowered our maintenance cost on the hydraulic pumps and motors.

DEFECTS