Introduction to Bayesian Statistics

Part 7
Introduction to Stan

Motivation

- Why using Stan?
- brms actually not a 3d printer:
 Very (!) big toolbox
 But limited to implemented model classes
- If we want to fit custom statistical models,
 we need to code them ourselves

Some history

1700s Bayes' theorem, Laplace formalized it

Early 1800s Gauß: least squares, regression

Late 1800s to early 1900s

Birth of modern statistics. Pearson, Fisher, Neyman ... : max. likelihood, hypothesis testing, design of experiments

Mid to late 1900s MCMC algorithms

2000s Computational tools for MCMC BUGS, JAGS, Stan ...

Today Convenient R interfaces brms, rstanarm ...

Future

Bayes impractical Restricted to simple cases

Frequentism superseded Bayes More practical in most cases

Still a niche topic in statistics

Becoming more popular in sciences

Taught in gradschools

Becoming the default instead of frequentism ??

Who is Stan?

Named after Stanislaw Ulam (1909-1984)

- Mathematician, nuclear physicist, computer scientist
- Pioneer of Monte Carlo methods
- But also participant in the Manhattan Project

Biographical movie:

"Adventures of a Mathematician" 2020 (mixed reviews, watch on own discretion)

What is Stan?

- Started as research project at Columbia University 2011 (Andrew Gelman)
- Written in C++ (fast)
- No-U-turn sampler (NUTS), a version of HMC
- Hamiltonian Monte Carlo (HMC) requires derivatives of posterior
- Uses Automatic Differentiation

→ Adopted in many fields: science, research, medicine, industry, marketing, ...

os	Linux	macOS				Windows			
Interface	CmdStanPy	CmdStan	CmdStanR CmdSt		Stan	RStan			Stan.jl
Installer	CRAN	CRAN		rse	conda		GitHub (Source)		

Workflow

Workflow

Workflow

Text-object in your R-script

```
stancode = "
data {
  int<lower=0> N:
  vector[N] x;
  vector[N] y;
parameters {
  real a;
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0,1);
  sigma ~ exponential(1.0);
  v \sim normal(a+b*x. sigma):
```

Standalone .stan file (supported by RStudio)

```
data {
  int<lower=0> N;
  vector[N] x;
  vector[N] y;
parameters {
  real a:
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0.1);
  sigma \sim exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

Statistical model

Data x Predictor

y Response

Priors $a \sim \text{Normal}(0,1)$

 $b \sim Normal(0,1)$

 $\sigma \sim \text{Exponential}(1)$

Det. part $\mu_i = a + b \cdot x_i$

Stoch. part $y_i \sim \text{Normal}(\mu_i, \sigma)$

Standalone .stan file (supported by RStudio)

```
data {
  int<lower=0> N;
  vector[N] x;
  vector[N] y;
parameters {
  real a:
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0.1);
  sigma \sim exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

```
Always 3 blocks:
data{}, parameters{}, model{}
Optional: functions{}, generated quantities{},
transformed data{}, transformed parameters{}
Coding similar to R, but not always:
some structures different (vectors, arrays)
Each variable (data, parameter, etc)
must be declared with datatype and size
Each operation ends with a semicolon;
Use //... to comment, not #...
```

```
data {
  int<lower=0> N:
  vector[N] x;
  vector[N] y;
parameters {
  real a:
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0.1);
  b \sim normal(0,1);
  sigma \sim exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

Data block

Include number of observations *N*

N determines size of vectors for predictor and response variables

vector is always of datatype real

Count or integer responses must be declared as integers → array[N] int y;

(Otherwise discrete distributions don't work)

```
data {
  int<lower=0> N:
  vector[N] x;
  vector[N] y;
parameters {
  real a;
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0,1);
  sigma ~ exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

Parameters block

Declare all datatypes of model parameters

These parameters are sampled by MCMC

<lower=...> and <upper=...> set hard boundaries

Should only use them if model pars. are logically constrained, e.g. positive sdev

```
data {
  int<lower=0> N;
  vector[N] x;
  vector[N] y;
parameters {
  real a;
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0,1);
  sigma ~ exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

Model block

- (1) **Prior** statements (∼) for model parameters
- (2) Arithmetic operations to compute predictions
- (3) **Likelihood** statement for response y_i (i = 1 ... N)

```
data {
  int<lower=0> N;
  vector[N] x;
  vector[N] y;
parameters {
  real a;
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0,1);
  sigma \sim exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

Model block

- (1) Prior statements (∼) for model parameters
- (2) Arithmetic operations to compute predictions
- (3) Likelihood statement for response y_i (i = 1 ... N)

Many operations are **vectorized**, but a safe choice is to use a **for-loop** over all N observations

```
data {
  int<lower=0> N:
  vector[N] x;
  vector[N] y;
parameters {
  real a:
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0,1);
  sigma ~ exponential(1.0);
  for(i in 1:N){
    y[i] \sim normal(a+b*x[i], sigma);
```

Model block

- (1) Prior statements (∼) for model parameters
- (2) Arithmetic operations to compute predictions
- (3) Likelihood statement for response y_i (i = 1 ... N)

Many operations are vectorized, but a safe choice is to use a for-loop over all N observations

Can use intermediate steps and **auxiliary variables**. These variables must be declared, but are not sampled

```
data {
  int<lower=0> N:
  vector[N] x;
  vector[N] v;
parameters {
  real a:
  real b:
  real<lower=0> sigma;
model {
  vector[N] mu;
  a \sim normal(0,1);
  b \sim normal(0,1);
  sigma ~ exponential(1.0);
  for(i in 1:N){
    mu[i] = a+b*x[i];
    y[i] ~ normal(mu[i], sigma);
```

```
Recipe for computing prior p(\theta) and likelihood p(y|\theta) and thus posterior p(\theta)p(y|\theta) of a sample \theta=(a,b,\sigma)
```

Stan does not know the model structure or what kind of model we are fitting (LM / GLM / LMM / NLM)

Stan code:

Data & parameter go in, posterior goes out

Stan sampler (NUTS) uses this to generate samples from posterior distribution

MCMC machinery very sophisticated & efficient: Uses automatic diffentiation to compute curvature of posterior and to make good proposals for new samples

```
data {
  int<lower=0> N:
  vector[N] x;
  vector[N] y;
parameters {
  real a:
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0.1);
  b \sim normal(0,1);
  sigma \sim exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

rstan, the R interface to Stan

Example

Latitudinal gradient of plant size

Global database with:

- log of plant height as response
- latitude as predictor (scaled)

Stochastic part: $\log(height) \sim Normal(\mu, \sigma)$

Deterministic part: $\mu = a + b \cdot lat$

How to start the engine

(1) Prepare data as named list

```
data {
  int<lower=0> N;
  vector[N] x;
  vector[N] y;
parameters {
  real a:
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0,1);
  b \sim normal(0,1);
  sigma \sim exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

How to start the engine

(2) Compile model & run MCMC

Additional arguments:

```
chains = ...
iter = ...
warmup = ...
cores = ...
```

```
data {
  int<lower=0> N:
 vector[N] x;
  vector[N] y;
parameters {
  real a:
  real b;
  real<lower=0> sigma;
model {
  a \sim normal(0.1):
  b \sim normal(0,1);
  sigma ~ exponential(1.0);
  y \sim normal(a+b*x, sigma);
```

How to analyze results

Samples were drawn using NUTS(diag_e) at Mon Feb 3 14:04:04 2025. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

How to analyze results

From **bayesplot** plackage

```
> mcmc_combo(fit1)
mcmc_hist
mcmc_trace
mcmc_dens
...
```


Posterior predictions (as in conditional_effects)

Each posterior sample generates a regression line

Posterior predictions (as in conditional_effects)

Fitted Compute predictions for deterministic model part x.pred = seq(xmin, xmax, length.out=100) = matrix(NA, nrow=nrow(post), ncol=length(x.pred)) $^{\circ}$ log(height) for(i in 1:nrow(post)){ y.fit[i,] = post[i,"a"] + post[i,"b"]*x.pred Extract mean fitted curve and credible intervals Ņ y.fit.mean= apply(y.fit, 2, function(x) mean(x)) y.fit.q05 = apply(y.fit, 2, function(x) quantile(x, probs=0.05)) -2 y.fit.q95 = apply(y.fit, 2, function(x) quantile(x, probs=0.95)) lat.z

Posterior predictions (as in conditional_effects)

Compute predictions for stochastic model part

Extract mean predictions and prediction intervals

```
y.pred.mean= apply(y.pred, 2, function(x) mean(x))
y.pred.q05 = apply(y.pred, 2, function(x) quantile(x, probs=0.05))
y.pred.q95 = apply(y.pred, 2, function(x) quantile(x, probs=0.95))
```


Posterior predictions (residuals)

Compute predictions for deterministic model part

Extract mean fitted & compute mean **residuals**

```
y.fit.mean= apply(y.fit, 2, function(x) mean(x))
residuals = stan.data$y - y.fit.mean
```


Posterior predictions (pp_checks)

Compute predictions for stochastic model part

Posterior predictive check:

Plot histogram of observed response y vs. some histograms of predicted data y_{pred}

Model comparison with LOO

(1) in Stan code:

Need to save log-likelihood values

of every datapoint i = 1 ... N

$$p(y_i \mid \theta) = p(y_i \mid \mu, \sigma) = p(y_i \mid a + bx_i, \sigma)$$

(2) in R:

Extract log-likelihood from fitted model & compute LOO

```
> log_lik_1 = extract_log_lik(fit1)
```

> loo(log_lik_1)

Computed from 4000 by 131 log-likelihood matrix.

```
Estimate SE elpd_loo -239.4 7.1 p_loo 2.7 0.4 looic 478.8 14.2
```

More examples

Generalized linear model

Example: Occurrence (yes/no) of a butterfly species versus temperature

Occurrence coded as 1/0 integers

Deterministic part

(linear model & link)

Stochastic part

 $logit(\mu) = a + b \cdot temp$ (implicit formulation)

 $occurr \sim Bernoulli(\mu)$

Generalized linear model

Example: Occurrence (yes/no) of a butterfly species versus temperature

Occurrence coded as 1/0 integers

Deterministic part (linear model & link)

Stochastic part

```
\mu = \text{inv\_logit}(a + b \cdot temp)
(explicit formulation)
```

 $occurr \sim Bernoulli(\mu)$

```
data {
 int N;
  vector[N] temp;
  array[N] int occurr;
parameters {
 real a;
  real b;
model {
 real mu;
  a \sim normal(0,1);
  b \sim normal(0,1);
  for(i in 1:N){
    mu = inv_logit(a+b*temp[i]);
    occurr[i] ~ bernoulli(mu);
```

Categorical predictor

Example: bird species richness vs landscape type

Deterministic part: $\mu = b(landscape)$

Stochastic part: $S \sim \text{Normal}(\mu, \sigma)$

4 means b_{Agri} , $b_{Bauxite}$, b_{Forest} , b_{Urban}

Problem: Stan does not allow factors variables

→ Code factor landscape as integer (levels 1,2,3,4)

ANOVA

Example: bird species richness vs landscape type

Deterministic part: $\mu_i = b_{landscape_i}$

Stochastic part: $S_i \sim \text{Normal}(\mu_i, \sigma)$

4 means b_1, b_2, b_3, b_4

Integer predictor *landscape* (levels 1,2,3,4) used as **index** in Stan

```
data {
  int N: // i=1:N observations
  int M; // j=1:M levels
 vector[N] S;
  array[N] int landscape;
parameters {
  real b[M];
  real<lower=0> sigma;
model {
 for(j in 1:M){
   b[j] \sim normal(25,10);
  sigma \sim exponential(0.1);
  for(i in 1:N){
   S[i] ~ normal(b[landscape[i]], sigma);
```

Random effects model

Example: bird species richness vs landscape type

Deterministic part: $\mu_i = b_{landscape_i}$

Hierarchical part $b_j \sim \text{Normal}(\mu_b, \sigma_b)$

Stochastic part: $S_i \sim \text{Normal}(\mu_i, \sigma)$

Replaced priors for $b_i \rightarrow \mu_h, \sigma_h$ model parameters

Alternative: $\mu_i = \mu_b + \delta_{landscape_i}$ $\delta_i \sim \text{Normal}(0, \sigma_b)$

```
data {
              // i=1:N observations
  int N:
  int M; // j=1:M levels
  vector[N] S;
  array[N] int landscape;
parameters {
  real mu b;
  real<lower=0> sd b;
  vector[M] b:
  real<lower=0> sigma;
model {
  for(j in 1:M){
   b[j] ~ normal(mu_b, sd_b);
 mu b \sim normal(25,10);
  sd b ~ exponential(0.1);
  sigma ~ exponential(0.1);
  for(i in 1:N){
    S[i] ~ normal(b[landscape[i]], sigma);
```


What else?

Cool Stan stuff

- brms already pretty versatile ...
 - ... but with Stan, theoretically no limit to model complexity
- Continuous latent variables (state-space models)
- Fit process-based models (population / community dynamics)
- Even differential equations (continuous dynamics)

But also **limitations**

- · Deterministic models only
- Could have issues with non-smooth models
- No discrete parameters (workaround via marginalization possible)
- Gets slow with spatial autocorrelation

NIMBLE

An alternative to Stan

- Replaces BUGS / JAGS nowadays
- Originates from the Ecology community (Perry de Valpine)
- Code is more slender, basically just a model block
- Modeling paradigm a bit different:
 parameters, data, variables are nodes: "probabilistic graphical models"
- Discrete parameters allowed
 Makes possible: HMMs, occupancy models, etc (discrete latent states)
- Also possible: non-exact / random simulation models (Sequential Monte Carlo)

Summary

- Translate almost any statistical model into Stan code
- Not limited to model classes (LM, GLM, GLMM, GAM, etc)
- Fit Stan model from R
- Unfortunately, can't use fancy brms tools for posterior predictions
- Compute predictions manually in R from posterior distribution
- Huge reference manual: https://mc-stan.org/docs
- Active community: https://discourse.mc-stan.org/

Further reading

Johnson, A. A., Ott, M. Q., Dogucu, M. (2021). Bayes Rules! CRC Press. https://www.bayesrulesbook.com/

Korner-Nievergelt, F., Roth, T., Von Felten, S., Guélat, J., Almasi, B. and Korner-Nievergelt, P. (2024). Bayesian Data Analysis in Ecology Using Linear Models with R and Stan. https://tobiasroth.github.io/BDAEcology/

Lambert, B. (2018). A Student's Guide to Bayesian Statistics. Sage. https://ben-lambert.com/bayesian/

Stan Development Team (2025). Stan Documentation. https://mc-stan.org/docs/