# Теория категорий Пределы и копределы

Валерий Исаев

07 сентября 2015 г.

### План лекции

#### Пределы

Копределы

Булевские объекты

### Конусы диграмм

- ▶ Пусть J = (V, E) некоторый граф, и D диграмма формы J в категории C.
- Конус диаграммы D это объект A вместе с коллекцией морфизмов  $a_v:A\to D(v)$  для каждой  $v\in V$ , удовлетворяющие условию, что для любого  $e\in E$  следующая диаграмма коммутирует



### Определение пределов

▶ Предел диграммы D — это такой конус A, что для любого конуса B существует уникальный морфизм  $f: B \to A$ , такой что для любой  $v \in V$  следующая диаграмма коммутирует



- ightharpoonup Предел D обозначается  $\lim D$ .
- ▶ Категория называется полной (конечно полной), если в ней существуют все малые (конечные) пределы.

## Примеры пределов

- ▶ Произведения это пределы дискретных диаграмм.
- Бинарные произведения это пределы диаграмм вида

• •

Уравнители – это пределы диаграмм вида

$$\bullet \Longrightarrow \bullet$$

▶ Терминальные объекты — это пределы пустой диаграммы.

### Уникальность пределов

#### Proposition

Если A и B – пределы диаграммы D, то существует изоморфизм  $f:A\simeq B$ , такой что  $a_v=b_v\circ f$  для любой  $v\in V$ .

#### Доказательство.

Так как B — предел, то существует стрелка  $f:A\to B$ , удовлетворяющая условию утверждения. Так как A — предел, то существует стрелка  $g:B\to A$ . По уникальности мы знаем, что  $g\circ f=id_A$  и  $f\circ g=id_B$ , то есть f — изоморфизм.

## Пулбэки

► Пулбэки — это пределы диаграмм вида



Пулбэк можно изображать как коммутативный квадрат

$$\begin{array}{ccc}
A \times_C B \longrightarrow B \\
\downarrow^{\bot} & \downarrow \\
A \longrightarrow C
\end{array}$$

- Пулбэк иногда называют декартовым квадратом.
- lacktriangle Стрелку  $A imes_{\mathcal{C}}B o A$  называют пулбэком стрелки  $B o \mathcal{C}$ .

## Декартово произведение через пулбэки

#### Proposition

Если 1 – терминальный объект, то пулбэк  $A \times_1 B$  является декартовым произведением  $A \times B$ .

#### Доказательство.

Действительно, конус диаграммы A B -это тоже самое, что и конус диаграммы



Следовательно пределы этих диграмм также совпадают.



# Пулбэки в Set

#### В **Set** пулбэк диаграммы



можно определить как подмножество декартова произведения  $A \times B$ . Действительно, если мы положим  $A \times_C B = \{(a,b) \mid f(a) = g(b)\}$ , то легко видеть, что  $A \times_C B$  является пулбэком диграммы выше.

## Пулбэки через уравнители и произведения

#### Proposition

Если в категории существуют конечные произведения и уравнители, то в ней существуют пулбэки.

#### Доказательство.

Пулбэки можно сконструировать так же, как и в **Set**. Пусть  $e:D\to A\times B$  — уравнитель стрелок  $f\circ\pi_1:A\times B\to C$  и  $g\circ\pi_2:A\times B\to C$ . Тогда легко видеть, что квадрат ниже является декартовым.

$$D \xrightarrow{\pi_2 \circ e} B$$

$$\pi_1 \circ e \bigvee_{q} g$$

$$A \xrightarrow{f} C$$

### Пределы через уравнители и произведения

#### Proposition

Если в категории существуют конечные произведения и уравнители, то в ней существуют все конечные пределы.

#### Доказательство.

Пусть D — диаграмма формы (V, E). Тогда рассмотрим диаграмму, состоящую из пары стрелок

$$\langle \pi_{t(e)} \rangle_{e \in E}, \langle D(e) \circ \pi_{s(e)} \rangle_{e \in E} : \prod_{v \in V} D(v) \Rightarrow \prod_{e \in E} D(t(e))$$

Конус этой диаграммы — это тоже самое, что конус диаграммы D. Следовательно предел этой диаграммы также является пределом D.

## Прообраз подобъекта

- ▶ Пусть  $f: A \to C$  функция в **Set** и  $B \subseteq C$ .
- ▶ Тогда мы можем определить прообраз f:  $f^{-1}(B) = \{a \in A \mid f(a) \in B\} \subseteq A$ .
- Как обобщить эту конструкцию на произвольную категорию?
- lacktriangle Прообраз подобъекта  $B\hookrightarrow C$  вдоль морфизма  $f:A\to C$  это пулбэк

$$\begin{cases}
f^{-1}(B) \longrightarrow B \\
\downarrow \\
A \longrightarrow C
\end{cases}$$

▶ Упражнение: докажите, что  $f^{-1}(B) o A$  является мономорфизмом.

## Пересечение подобъектов

- ▶ Пусть A и B подмножества C.
- ▶ Тогда мы можем определить их пересечение  $A \cap B$ , которое является подмножеством и A, и B.
- Как обобщить эту конструкцию на произвольную категорию?
- lacktriangle Пересечение подобъектов  $A\hookrightarrow C$  и  $B\hookrightarrow C$  это пулбэк

$$\begin{array}{ccc}
A \cap B & \longrightarrow B \\
\downarrow & & \downarrow \\
A & \longrightarrow C
\end{array}$$

### План лекции

Пределы

Копределы

Булевские объекты

## Дуальная категория

Пусть  ${\bf C}$  — произвольная категория, тогда *дуальная* ей категория  ${\bf C}^{op}$  — это категория, определяемая следующим образом:

- ▶ Объекты  $\mathbf{C}^{op}$  совпадают с объектами  $\mathbf{C}$ .
- ▶ Если X, Y объекты  $\mathbf{C}^{op}$ , то  $Hom_{\mathbf{C}^{op}}(X,Y)$  определяется как  $Hom_{\mathbf{C}}(Y,X)$ .
- ► Композиция и тождественные морфизмы определяются так же, как в **С**.

### Дуальность

- В теории категорий зачастую определения и утверждения можно дуализировать, применив их в дуальной категории.
- Например, понятие эпиморфизма является дуальным к понятию мономорфизма.

$$f$$
 - MOHO:  $Z \xrightarrow{g} X \xrightarrow{f} Y \implies g = h$ 

$$f$$
 - эпи:  $Z \underset{h}{\overset{g}{\underset{f}{\rightleftharpoons}}} X \underset{f}{\longleftarrow} Y \implies g = h$ 

 Часто к дуальным понятиям прибавляют приставку ко.
 Например, эпиморфизмы можно называть комономорфизмами (или мономорфизмы можно называть коэпиморфизмами).

### Копределы

- ▶ Копределы это дуальное понятие к понятию пределов.
- Коконус диаграммы D это объект A вместе с коллекцией морфизмов  $a_v:D(v)\to A$  для каждой  $v\in V$ , удовлетворяющие условию, что для любого  $e\in E$  следующая диаграмма коммутирует

$$D(s(e)) \xrightarrow{D(e)} D(t(e))$$

$$\downarrow a_{t(e)}$$

$$\downarrow A$$

### Определение копределов

▶ Копредел диграммы D – это такой коконус A, что для любого коконуса B существует уникальный морфизм  $f:A\to B$ , такой что для любой  $v\in V$  следующая диаграмма коммутирует



- ightharpoonup Копредел D обозначается  $colim\ D$ .
- ► Категория называется *кополной* (*конечно кополной*), если в ней существуют все малые (конечные) копределы.

### Уникальность копределов

Дуализировать можно не только определения, но и утверждения.

#### Proposition

Если A и B – копределы диаграммы D, то существует изоморфизм  $f:A\simeq B$ , такой что  $f\circ a_v=b_v$  для любой  $v\in V$ .

#### Доказательство.

Так как копредел в C – это предел в  $C^{op}$ , то это утверждение эквивалентно аналогичному утверждению для пределов.

#### Начальный объект

- Объект называется начальным, если он является копределом пустой диаграммы.
- ▶ В Set существует единственный начальный объект пустое множество.
- ▶ В **Hask** начальный объект пустой тип.
- ▶ В Grp начальный объект тривиальная группа.

### Копроизведения объектов

- ▶ Копроизведение (сумма) объектов  $A_1$  и  $A_2$  это копредел диаграммы  $A_1$   $A_2$ . Копроизведение обозначается  $A_1 \coprod A_2$  либо  $A_1 + A_2$ .
- ▶ В Set копроизведение это размеченное объединение множеств.
- ▶ В **Hask** копроизведение это *Either*.
- ▶ В Grp копроизведение свободное произведение.

### Фактор-множества

- ightharpoonup Пусть  $\sim$  отношение эквивалентности на множестве B.
- ightharpoonup Тогда можно определить множество  $B/\sim$  классов эквивалентности элементов B по этому отношению.
- Существует каноническая функция  $c: B o B/\sim$ , отправляющая каждый  $b \in B$  в его класс эквивалентности.
- ▶ Если рассматривать отношение  $\sim$  как подмножество  $B \times B$ , то существуют проекции  $f,g:\sim \to B$ .
- Стрелка с уравнивает f и g и является универсальной с таким свойством.
- ▶ Другими словами, *с* является коуравнителем *f* и *g*.

### Коуравнители

- ▶ В произвольной категории коуравнители можно рассматривать как обобщение этой конструкции.
- ▶ Пусть B абелева группа, A подгруппа B,  $f:A\hookrightarrow B$  вложенние A в B. Тогда коядро B/A это коуравнитель стрелок  $f,0:A\to B$ .
- ightharpoonup И наоборот, коуравнитель стрелок f,g:A o B это коядро B/Im(f-g).
- Пушауты дуальное понятие к понятию пулбэков.

### План лекции

Пределы

Копределы

Булевские объекты

## Копроизведение $1 \amalg 1$

- ▶ В **Set** множество *Bool* можно определить как копроизведение множеств {*true*} и {*false*}, каждое из которых является терминальным.
- ightharpoonup Копроизведение  $1 \amalg 1$  обычно обозначается как 2.
- Можно было бы в произвольной категории определить объект Bool как копроизведение 1 

  1 1.
- ► Но это недостаточно сильное определение. Мы не сможем никаких функций над ним определить.

# Булевский объект

- ▶ Пусть в C существуют все конечные произведения.
- ▶ Тогда *булевский объект* в  ${\bf C}$  это объект *Bool* вместе с парой морфизмов *true*, *false* :  $1 \to Bool$ , удовлетворяющий следующему условию.
- ightharpoonup Для любых f,g:A o B существует уникальная стрелка h:Bool imes A o B, такая что



$$A \xrightarrow{\langle falseo!_A, id_A \rangle} Bool \times A$$

$$\downarrow h$$

# Булевский объект и 2

- Любой булевский объект является 2.
- Действительно, если в определении булевского объекта в качестве A взять 1, то мы получим в точности универсальное свойство  $1 \amalg 1$ .
- Следовательно булевский объект уникален с точностью до изоморфизма.
- ▶ Но не любой объект, являющийся 2, является булевским.
- Действительно, в категории групп 2 изоморфен 1.
- Но булевский объект изоморфен 1 только в категориях предпорядка.

if

ightharpoonup Мы можем сконструировать морфизм if : Bool imes (C imes C) o C, удовлетворяющий



- ightharpoonup Действительно, в определении Bool возьмем  $A=C\times C$ , B=C,  $f=\pi_1$  и  $g=\pi_2$ .
- ▶ Тогда существует уникальная стрелка  $Bool \times (C \times C) \rightarrow C$ , удовлетворяющая условиям выше.