

Home > Maths > Stationary Points 2ii

Stationary Points 2ii

Part A	Find coordinate	~
	ind the coordinates of the stationary points on the curve $y=x^3-3x^2+4$. Enter the x and y coordinates of the stationary point with the greatest x coordinate.	
Е	nter the x -coordinate:	
Tr	ne following symbols may be useful: x	
E	nter the y -coordinate:	
Th	ne following symbols may be useful: y	
Part B	Stationary point	~
	etermine whether the stationary point whose coordinates you entered is a maximum point or a minimum point.	
	Inconclusive	
	Maximum	
	Minimum	

Part	Range of x	~
	For which range of values of x does x^3-3x^2+4 decrease as x increases?	
	What form does your answer take? Choose from the list below, where a and b are constants and $a < b$, and then find a and/or b .	
	$\bigcirc x < a$	
	$\bigcirc x \leq a$	
	$\bigcirc x > a$	
	$\bigcirc x \geq a$	
	$\bigcirc a < x < b$	
	$\bigcirc a \leq x \leq b$	
	$\bigcirc x < a \text{ or } x > b$	
	$igcap x \leq a ext{ or } x \geq b$	
	Write down the value of a .	
	Write down the value of b (or if your chosen form has no b , write "n").	
	The following symbols may be useful: n	

Used with permission from UCLES, A level, January 2006, Paper 4721, Question 6

Home > Maths > Maxima and Minima: Problems 2ii

Maxima and Minima: Problems 2ii

A Level

A curve has equation y	$=3x^3-7x+$	$-\frac{2}{x}$
--------------------------	-------------	----------------

Part A Verify stationary point

~

Verify the curve has a stationary point when x = 1.

More practice questions?

Part B Nature of stationary point

~

Determine the nature of this stationary point.

- Neither/inconclusive
- Maximum
- Minimum

Part C Tangent to curve

~

The tangent to the curve at this stationary point meets the y-axis at the point Q. Find the y-coordinate of Q.

Used with permission from UCLES, A Level, June 2014, Paper 4721, Question 8.

<u>Home</u> > Maths > Stationary Points 2i

Stationary Points 2i

Part	Α	Find minimum	~
		If the coordinates of the minimum point of the curve $y=(x+2)\left(x^2-3x+5 ight)$. Enter the x and y rdinates below.	
	Ente	er the <i>x</i> -coordinate:	
	The f	following symbols may be useful: x	
	Ente	er the y -coordinate:	
	The f	following symbols may be useful: y	

Part B	Finding nature of stationary point
Нс	ow did you know that the stationary point in part A was a minimum point? At this point, $\frac{d^2y}{dx^2}$ is positive. At this point, $\frac{d^2y}{dx^2}$ is negative. At this point, $\frac{dy}{dx}$ is zero.
Part C	Calculate discriminant $ ightharpoonup$ alculate the discriminant of x^2-3x+5 . Enter the exact value.
Part D Ex	Explain
	Easier question?
	ermission from UCLES, A Level, January 2012, Paper 4721, Question 7

<u>Home</u> > Maths > Stationary Points 4ii

Stationary Points 4ii

Part A Find coordinates	~
Find the coordinates of the stationary point on the curve $y=x^4+32x$. Enter the x and y coordinates below.	
Enter x coordinate:	
The following symbols may be useful: x	
Enter y coordinate:	
The following symbols may be useful: y	
Part B Maxima or Minima	~
Determine whether this stationary point is a maximum or a minimum.	
Maximum	
Minimum	
Part C Range of x	~
For what range of values of x does x^4+32x increase as x increases? Give your answer in the form of an inequality.	
The following symbols may be useful: <, <=, >, >=, \times	

Home > Maths > Maxima and Minima: Problems 1i

Maxima and Minima: Problems 1i

Used with permission from UCLES, A level, June 2006, Paper 4721, Question 8.

A cuboid has an volume of exactly $8 \,\mathrm{m}^3$. The base of the cuboid is a square with side length x metres. The surface area of the cuboid is $A \,\mathrm{m}^2$.

Part A Find expression for AShow that A can be expressed in the form $ax^2+rac{b}{x}$, where a and b are constants, and find this expression. The following symbols may be useful: \boldsymbol{x} Find $rac{\mathrm{d}A}{\mathrm{d}x}$ Part B Find $\frac{\mathrm{d}A}{\mathrm{d}x}$. The following symbols may be useful: x Part C **Find minimum** Find the value of x which gives the smallest surface area of the cuboid. The following symbols may be useful: \times

Home > Maths > Stationary Points 1ii

Stationary Points 1ii

The curve $y = x^3 - kx^2 + x - 3$ has two stationary points.

Part A Differentiate \checkmark Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

The following symbols may be useful: k, \times Part B Find k \checkmark Given that there is a stationary point when x=1, find the value of k.

The following symbols may be useful: k

Find $rac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.

The following symbols may be useful: \boldsymbol{x}

Hence determine whether the stationary point is a minimum or a maximum.

- Minimum
- Maximum

Find the x -coordinate of the other stationary point. The following symbols may be useful: \times
The following symbols may be useful: x

<u>Home</u> > Maths > Stationary Points 1i

Stationary Points 1i

Part	A Find stationary points	~
	Find the coordinates of the stationary points on the curve $y=2x^3-3x^2-12x-7$. Enter the x and y coordinates of the stationary point with the largest x coordinate.	
	Enter the x coordinate:	
	The following symbols may be useful: x	
	Enter the y coordinate: The following symbols may be useful: y	
Part	B Nature of stationary points	~
	Determine whether each stationary point is a minimum or maximum point. Identify the nature of the stationary point whose coordinates you have entered in Part A. Minimum	
	○ Maximum	

Part C Expand and simplify

`

Expand and simplify $(x+1)^2(2x-7)$.

The following symbols may be useful: \boldsymbol{x}

Part D Sketch

Hence sketch the curve $y = 2x^3 - 3x^2 - 12x - 7$, indicating the coordinates of all stationary points and intercepts with the axes. In order to check your answer, give the value of the intercept with the y-axis.

The following symbols may be useful: y

Used with permission from UCLES, A Level, Paper 4721 specimen, Question 8.

Home > Maths > Maxima and Minima: Problems 1ii

Maxima and Minima: Problems 1ii

Figure 1: The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length $20\,$ metres, is used to form the remaining three sides. The width of the enclosure is x metres, and the area of the enclosure is x metres.

Part A Express as equation

Show that A can be expressed in the form $px-qx^2$, and find this expression.

The following symbols may be useful: x

Part B Use differentiation

Use differentiation to find the maximum value of A.

The following symbols may be useful: A

Used with permission from UCLES, A Level, June 2007, Paper 4721, Question 5.