الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

المديوان الوطي تارشعانات والمشابقات 2016 :

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة :علوم تجريبية

اختبار في مادة : العلوم الفيزيائية المحتبار في مادة : 03 ساعات و 30د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (3.5 نقطة)

 $.25^{\circ}C$ المحاليل مأخوذة عند الدرجة

لإزالة الطبقة الكلسية المترسبة على جدران أدوات الطهي المنزلية يمكن استعمال منظف تجاري لمسحوق حمض السولفاميك القوي ذي الصيغة الكيميائية HSO_3NH_2 والذي نرمز له اختصارا (p%).

المحلول على المحلول (S_A) لحمض السولفاميك ذي التركيز $V=100\,m$ و يحتوي الكتلة $V=100\,m$ من المسحوق التجاري لحمض السولفاميك. $m=0.9\,g$

أ- أكتب معادلة انحلال الحمض HA في الماء.

 (S_A) النجريبي المناسب لعملية تحضير المحلول التجريبي المناسب العملية البروتوكول التجريبي

لمعايرة المحلول (S_{A}) نأخذ منه حجما $V_{A}=20\,m$ ونضيف له -2

من الماء المقطر ، و باستعمال التركيب التجريبي المبين بالشكل 1 نعايره بواسطة محلول هيدروكسيد 80~mL الصوديوم $Na^+(aq) + OH^-(aq)$: نبلغ نقطة التكافؤ عند إضافة $PH_E = 7$ من محلول هيدروكسيد الصوديوم ويكون $PH_E = 7$ من محلول هيدروكسيد الصوديوم ويكون $PH_E = 7$

أ- تعرف على أسماء العناصر المرقمة في الشكل-1.

ب- اكتب معادلة تفاعل المعايرة.

. المُذابة في هذا المحلول. (S_A) ، ثم استنتج الكتلة m_A للحمض M المُذابة في هذا المحلول.

د- احسب النقاوة $(p\slashed{n})$ للمنظف التجاري.

 $M = 97 \ g. \ mol^{-1}$ HA تُعطى الكتلة المولية للحمض

التمرين الثاني: (4.5 نقطة)

لأجل إجراء دراسة حركية للتحول الكيميائي التام والبطيء بين محلول يود البوتاسيوم ($K^+(aq) + I^-(aq)$) والماء الأكسجيني $H_2O_2(aq)$ لهما نفس التركيز المولي $C = 0.1 \, \text{mol} / L$ وعند نفس درجة الحرارة المزيجين التالبين:

 $(K^{+}(aq) + I^{-}(aq))$ من $H_{2}O_{2}(aq)$ و $H_{2}O_{3}(aq)$ من $4 \; \text{mL}$ المزيج الأول

 $(K^{+}(aq) + I^{-}(aq))$ من $H_{2}O_{2}(aq)$ و $H_{2}O_{2}(aq)$ من 2 mL : المزيج الثاني

نضيف لكل مزيج كمية من الماء المقطر وقطرات من حمض الكبريت المركز، فيصبح حجم المزيج التفاعلي لكل منهما $V=60~\mathrm{mL}$. يُنَمُذَجُ التحول الحادث في كل مزيج بالمعادلة الكيميائية التالية:

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = I_2(aq) + 2H_2O(l)$$

- 1- اكتب المعادلتين النصفيتين للأكسدة والارجاع، ثم استتج الثنائيتين (ox/red) المشاركتين في التفاعل.
- 2 أ احسب كمية المادة الابتدائية للمتفاعلات في كل مزيج.
 ب انشئ جدول التقدم للتفاعل الحادث في المزيج الأول.
 - 3 البیانان (1) و (2) في الشكل 2 یمثلان على الترتیب
 تطور تركیز ثنائي الیود المتشكل في كل مزیج بدلالة الزمن.
 - أ احسب تركيز ثنائي اليود المتشكل في الحالة النهائية
 في المزيج الأول.
 - ب استنتج من البيان (1) تركيز ثنائي اليود المتشكل في اللحظة $t=30~{
 m min}$.
- ج هل يتوقف التفاعل في المزيج (1) عند $t=30~{
 m min}$ علل.
- I_{2} . I_{2} . وجد عبارة السرعة الحجمية لتشكل ثنائي اليود بدلالة التركيز

 $t=10~{
m min}$ عند اللحظة $t=10~{
m min}$ عند المزيجين عند المرعة الحجمية للتفاعل في كلا المزيجين

التمرين الثالث: (04 نقاط)

 $M(H)=1\ g\ .\ mol^{-1}$ ، $M(C)=12\ g\ .\ mol^{-1}$ ، $N_A=6{,}023{\times}10^{23}mol^{-1}$: المعطيات

النواة	^{94}Sr	^{140}Xe	$^{235}\!U$	
طاقة الربط E_l (MeV)	807,46	1160	1745,6	

تسببت حادثة تشرنوبيل سنة 1986 في تلويث الأرض والغلاف الجوي بسبب زيادة تركيز العناصر المشعّة مثل السيزيوم $\frac{137}{55}$ و نصف عمر $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{135}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ عمل السيزيوم الناجم عن هذه الحادثة الذي يمكن أن يتواجد إلى يومنا هذا (سنة 2016) ؟ علّل.

 eta^- يعطي تفكك السيزيوم $^{137}_{55} C_S$ الإشعاع $^{-2}$

أ- اكتب معادلة التحول النووي الحادث مبينا النواة الناتجة من بين الأنوية التالية:

$$^{134}_{55}Cs$$
 $^{131}_{53}I$ $^{137}_{56}Ba$

بالمتغيرات الآتية: -4 بالمتغيرات الآتية: -4 بالمتغيرات الآتية:

الكمية الابتدائية للنظير المشعّ – درجة الحرارة والضغط.

:- ينشطر اليورانيوم U^{235} و فق المعادلة النووية التالية:

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{Z}Sr + ^{140}_{54}Xe + X^{1}_{0}n$$

Z و X أ حدّد قيمة كل من العددين

ب- ما هي النواة الأكثر استقرارا من بين النواتين الناتجتين عن هذا الانشطار النووي ؟ علل.

m=1~mg من اليورانيوم m=1~mg من اليورانيوم m=1~mg من اليورانيوم

 $m=1\ mg$ المحررة من انشطار الكتلة C_4H_{10} الواجب حرقها لانتاج نفس الطاقة المحررة من انشطار الكتلة C_4H_{10} من اليورانيوم C_4H_{10} علما أن $1\ mol$ من اليورانيوم C_4H_{10} من عام أن $1\ mol$ من اليورانيوم C_4H_{10} ماذا تستنتج؟

التمرين الرابع: (04 نقاط)

$$v_0 = 10 \; m.s^{-1}$$
 ، $g = 10 \; m.s^{-2}$:المعطيات

بإحدى الحصص التدريبية لكرة القدم استقبل اللاعب كرة من زميله فقذفها برأسه نحو المرمى بغية تسجيل هدف. غادرت الكرة رأسه في اللحظة t=0 من النقطة t=0 من النقطة t=0 من النقطة t=0 من النقطة t=0 من الأفق. تقع النقطة t=0 على الارتفاع الشاقولي المتعامد مع مستوي المرمى ويصنع حاملها زاوية t=0 مع الأفق. تقع النقطة t=0 على الارتفاع t=0 من سطح الأرض، كما هو موضح بالشكلt=0.

1- بإهمال أبعاد الكرة وتأثير الهواء عليها، وبتطبيق القانون الثاني لنيوتن على الكرة في المعلم السطحي الأرضى (Ox, Oy) أوجد ما يلى:

$$x(t)$$
 و $x(t)$ و $x(t)$ المعادلتين الزمنيتين $y = f(x)$. $y = f(x)$

ج- قيمة سرعة مركز عطالة الكرة عند الذروة.

2- يبعد خط التهديف عن اللاعب بالمسافة

$$L=2,44~m$$
 وارتفاع المرمى هو $d=10~m$

أ- اكتب الشرط الذي يجب أن يحققه كل من x و y لكي يسجل الهدف مباشرة إثر هذه الرأسية؟ y سجل اللاعب الهدف بهذه الرأسية؟ برّر إجابتك.

التمرين التجريبي: (04 نقاط)

نركب الدارة الكهربائية الموضحة بالشكل-4، والمؤلفة من:

- مولد كهربائي للتوتر الثابت E
- . C مكثفة غير مشحونة سعتها -
- ناقلين أوميين مقاومتيهما $R_1=1k\Omega$ عير معلومة.
 - $\cdot K$ قاطعة كهربائية –

نوصل الدارة الكهربائية براسم اهتزاز مهبطي ذي ذاكرة كما هو موضح على الشكل-4 ثم نغلق القاطعة K في اللحظة t=0 ثم نغلق القاطعة والمحافظة المحافظة المحاف

- 1- ارفق كل منحنى بالمدخل الموافق له مع التبرير.
- $i\left(t\right)$ اكتب المعادلة التفاضلية التي تحققها الشدة -2 للتيار الكهربائي في الدارة.
- I_0 المار في الدارة. I_0 التيار الأعظمي المار في الدارة.
- الناقل الأومي R_2 بدلالة R_1 ، و R_2 الناقل الأومي R_2 بدلالة الناقل الأومي R_2 بدلالة الناقل الأومي R_2 بدلالة الناقل الأومي R_2
 - من على البيانين، استنتج قيمة كل من -5 R_2 ، I_0 ، E

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (04 نقاط)

 $(Na^+(aq) + OH^-(aq))$ مع محلول هيدروكسيد الصوديوم نتائي الكلور $Cl_2(g)$ مع محلول هيدروكسيد الصوديوم بتحول كيميائي تام يُنَمَّذَ جُ بمعادلة التفاعل التالية:

$$Cl_2(g) + 2 OH^-(aq) = ClO^-(aq) + Cl^-(aq) + H_2O(l)$$

الكاور في الشرطين النظاميين اللازم (Chl) بأنها توافق عدد لترات غاز ثنائي الكلور في الشرطين النظاميين اللازم استعمالها لتحضير لتر واحد من ماء جافيل. بين أن: $\mathbf{Chl} = \mathbf{C}_0.\mathbf{V}_{M}$

حيث $V_{\rm M} = 22.4 \; {\rm L.mol}^{-1}$ هو الحجم المولى للغاز و $V_{\rm M} = 22.4 \; {\rm L.mol}^{-1}$

 $^{\circ}$ C تركيزه المولي بشوارد الهيبوكلوريت $^{\circ}$ C تركيزه المولي بشوارد الهيبوكلوريت $^{\circ}$ C أخذ العينة (A) من ماء جافيل المحفوظ عند درجة الحرارة $^{\circ}$ C تركيزه المولي $^{\circ}$ C، ونمدّدها 4 مرات ليصبح تركيزه المولي $^{\circ}$ C، نأخذ منها حجما $^{\circ}$ V₁=2mL ونضيف إليها كمية كافية من يود

البوتاسيوم ($(K^+(aq)+I^-(aq))$ في وسط حمضي، فيتشكل ثنائي اليود ($I_2(aq)$ وفق تفاعل تام يُنمذَجُ بالمعادلة التالية:

$$ClO^{^{-}}(aq) + 2I^{^{-}}(aq) + 2H_3O^{^{+}}(aq) = I_2(aq) + Cl^{^{-}}(aq) + 3H_2O(l)$$

نعاير ثنائي اليود المتشكل في نهاية التفاعل بمحلول ثيوكبريتات الصوديوم ((aq) + $S_2O_3^{2-}$ (aq)) تركيزه بالشوارد $C_2=10^{-1}$ mol . L^{-1} هو $S_2O_3^{2-}$ بوجود كاشف ملون (صمغ النشا أوالتيودان) فيكون حجم ثيوكبريتات . $V_E=20$ mL

 $(S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq))$ و $(I_2(aq)/I^-(aq))$: نعطى الثنائيتين (ox/red) الداخلتين في تفاعل المعايرة :

أ - اكتب المعادلتين النصفيتين للأكسدة والإرجاع ثم
 معادلة التفاعل أكسدة -إرجاع المُنمذِجْ لتحول المعايرة.

$$C_1 = \frac{C_2.V_E}{2V_1}$$
: بين أن

 C_0 و Chl جـ احسب C_1 ثم استنتج

3- يتفكك ماء جافيل وفق تحول تام وبطيء، معادلته

$$2CIO^{-}(aq) = 2CI^{-}(aq) + O_{2}(g)$$
 : الكيميائية

يمثل الشكل-1 المنحنيين البيانيين لتغيرات تركيز شوارد

-CIO بدلالة الزمن الناتجين عن المتابعة الزمنية

لتطور عينتين من ماء جافيل حضرتا بنفس الدرجة الكلورومترية للعينة (A) عند درجتي الحرارة $^{\circ}$ C بالنسبة للعينة (1) و $^{\circ}$ C بالنسبة للعينة (2). العينتان حديثتا الصنع عند اللحظة $^{\circ}$ C و $^{\circ}$ C بالنسبة للعينة (2).

أ - استتج بيانيا التركيز الإبتدائي للعينتين (1) و (2) بالشوارد -CIO.

هل العينة (A) السابقة حديثة الصنع ؟

ب - اكتب عبارة السرعة الحجمية لإختفاء الشوارد CIO ، ثم أحسب قيمتها في اللحظة t=50 jours بالنسبة لكل عينة. قارن بين القيمتين، ماذا تستتج ؟

ج – ما هي النتيجة التي نستخلصها من هذه الدراسة للحفاظ على ماء جافيل لمدة أطول ؟

التمرين الثاني: (04 نقاط)

 $_6$ C ; $_5$ B ; $_4$ Be ; $_3$ Li : المعطيات $N_A=6,02\times 10^{23}~{
m mol}^{-1}$, $1~an=365,25~{
m jours}$ نواة البيريليوم $_4^{-1}$ Be هي نواة مشعة تصدر الاشعاع $_4^{-1}$ Be وينتج عن تفككها نواة $_2^{-1}$ A

Z و Z. التب معادلة التفكك النووي محددا قيمتي A و B. -1 و B.

-2 مكنت المتابعة الزمنية لتطور الكتلة m لعينة من البيريليوم كتلتها الابتدائية m_0 من رسم المنحنى البياني الموضح بالشكل-2.

أ- اكتب عبارة قانون التناقص الإشعاعي بدلالة

. λ (عدد الأنوية الابتدائية) وثابت التفكك λ

ب- استنتج عبارة الكتلة m(t) للعينة المتبقية من البيريليوم عند اللحظة m بدلالة m (الكتلة الابتدائية للعينة) وثابت التفكك λ .

 λ ثم اوجد عبارته بدلالة ثابت التفكك $t_{1/2}$ ثم اوجد عبارته بدلالة ثابت التفكك $t_{1/2}$

 $^{-1}$ عين بيانيا زمن نصف عمر البيريليوم واستنتج قيمة ثابت التفكك λ بالوحدة

t=1 année عدد الأنوية المتفككة عند

 $A = 1.06 \times 10^{15} \; \mathrm{Bg}$ فوجدنا بواسطة عداد جيجر النشاطية A لعينة من البيرليوم 10 فوجدنا

أ- احسب الكتلة m للبيريليوم 10 المتسببة في هذه النشاطية.

 $m_0 = 4g$ مر هذه العينة إذا علمت أن كتلة البيريليوم الابتدائية هي

التمرين الثالث: (04 نقاط)

 n_1 نحضر جملة كيميائية في اللحظة t=0 نتكون من n_1 مول من حمض الإيثانويك CH_3COOH و n_2 مول من كحول صيغته العامة C_3H_7OH و قطرات من حمض الكبريت المركز . سمحت الدراسة التجريبية لتطور التفاعل الحادث برسم المنحنيين T_3H_7OH .

يمثل المنحنى(1) تغيرات كمية مادة الكحول بدلالة التقدم x . x مثل المنحنى(2) تغيرات كمية مادة الحمض بدلالة التقدم x

أ - اكتب معادلة التفاعل المُنَمذِج للتحول الحادث.

ب - انشئ جدول التقدم لهذا التفاعل.

ج – احسب قيمة نسبة التقدم النهائي au_f للتفاعل.

د - احسب ثابت التوازن K للتفاعل ثم حدد صنف الكحول المستخدم.

ه - كيف يمكن تحسين مردود تشكل الأستر في هذا التفاعل ؟

pH مترية لمعايرة كمية المادة n للحمض المتبقي في -2 بعد بلوغ حالة التوازن وتبريد المزيج مكنت المتابعة الـ pH مترية لمعايرة كمية المادة C=0.5mol/L تركيزه المولي $Na^+(aq)+OH^-(aq)$ من استخراج المعلومة الآتية:

عند إضافة الحجم $V=10 \mathrm{mL}$ من محلول هيدروكسيد الصوديوم تكون قيمة $V=10 \mathrm{mL}$

 $K_e = 10^{-14}$ عند درجة الحرارة 25° C – الجداء الشاردي للماء

pKa = 4.8 هو CH_3COOH/CH_3COO^- هو – ثابت الحموضة للثنائية

أ - اكتب معادلة التفاعل المُنَمْذِجْ للتحول الحادث.

ب- احسب قيمة n.

. K_e و K_a بدلالة K و التوازن K_a

د - احسب قيمة K ، ماذا تستتج ؟

التمرين الرابع: (04 نقاط)

لغرض دراسة تطور التوتر الكهربائي بين طرفي مكثفة نركب الدارة الكهربائية الموضحة بالشكل-4.

تتكون هذه الدارة من مولد للتوتر الثابت ${
m E}$ ، ناقل أومي مقاومته ${
m R}$ = 10 k Ω و بادلة

نضع البادلة في الوضع(1) إلى غاية بلوغ النظام الدائم، ثم نغير البادلة إلى الوضع(2) في اللحظة t=0.

2 - بين أن المعادلة التفاضلية التي يحققها التوتر الكهربائي

بين طرفي المكثفة في هذه الدارة تُعطى بالشكل: U_c

$$U_c + \frac{1}{\alpha} \frac{dU_c}{dt} = 0$$

-3 إذا كان حل هذه المعادلة التفاضلية من الشكل:

اوجد عبارتي الثابتين A و α بدلالة $U_c=A\mathrm{e}^{-lpha \mathrm{t}}$

.Е , С . R

بدلالة lnU_c المنحنى البياني لتغيرات -5 المنحنى البياني التغيرات -5 الزمن t

. $lnU_c=\mathbf{f}(\mathbf{t})$ أ – استنتج بيانياعبارة الدالة

. E و C ، α المطابقة مع العلاقة النظرية الموافقة للمنحنى المتنتج قيم كل من و C ، α

5. احسب الطاقة المحولة إلى الناقل الأومي عند اللحظة $\tau=2.5$ ، ماذا تستنتج ؟ حيث τ هو ثابت الزمن المميز للدارة.

التمرين التجريبي: (04 نقاط)

 $g = 10 \text{ m/s}^2$ نعتبر

يتحرك جسم (S) نعتبره نقطيا كتاته m=900g على مسار مستقيم AB مائل عن الأفق بزاوية $\alpha=35^\circ$ كما هو موضح بالشكل-6.

ينطلق الجسم من النقطة A دون سرعة ابتدائية.

باستعمال تجهيز مناسب ننجز التسجيل المتعاقب لمواضع الجسم أثناء حركته على المسار AB فنحصل على النتائج المدونة في الجدول الآتي:

الموضع		G_1							
t (s) اللحظة	0.00	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64
x(cm) الفاصلة	0.0	1,5	6,0	13,5	24,0	37,5	54,0	73,5	96,0

ينطبق الموضع G_0 على النقطة A و ينطبق الموضع G_8 على النقطة B ، والمدة التي تفصل بين تسجيلين متتاليين $\tau = 80 \, \mathrm{ms}$.

. G_6 ، G_5 ، G_4 ، G_3 ، G_2 عند المواضع عند السرعة اللحظية للجسم عند المواضع – أ – ا

. G_5 ، G_4 ، G_3 عند المواضع وجد قيمة تسارعه عند المواضع

ج - استنج طبیعة حرکته.

2 - باهمال قوى الاحتكاك المؤثرة على الجسم (S):

أ – مثل القوى المطبقة على الجسم (S).

بتطبيق القانون الثاني لنيوتن في المعلم السطحي الأرضي الذي نعتبره غاليليا، أوجد عبارة التسارع (a)
 لمركز عطالة الجسم ثم أحسب قيمته.

ج - قارن بين هذه القيمة النظرية للتسارع وقيمته التجريبية الموجودة سابقا، ماذا تستنتج ؟

. ومعاكسة لجهة الحركة. \vec{f} ثابتة في الشدة ومعاكسة لجهة الحركة.

. \overrightarrow{f} أ – احسب شدة القوة

ب - باستخدام مبدأ إنحفاظ الطاقة أوجد قيمة سرعة الجسم عند النقطة B .

انتهى الموضوع الثاني