Consider a specially made capillary, shown in the illustration below, designed for an experiment on the International Space Station. Capillary has a variable diameter and is open at both ends to a cabin pressure at ISS. A perfectly smooth glass walls appear to be *completely hydrophobic* with respect to a droplet of water positioned In the middle of the capillary.

Data

 R_1 = 300 [µm]; R_2 = 295 [µm]; L = 0.03 [m]; μ_{water} = 0.001 [Pa s]; ρ_{water} = 1000 [kg/m³]; $\sigma_{water-air}$ = 0.072 [N/m].

Illustration

Capillary is open at both ends.

(Show all your work; and, state all assumptions that you have made)

a) Which way	the bubble	will move	as it is	observed	at the	location	shown	in t	the
i	lustration bel	ow:								

	from left to right	from right to left
Why:		

b) Calculate the velocity of the droplet at the location shown in the illustration?