

INTELIGÊNCIA COMPUTACIONAL (C210/A)

Prof^a. Dr. Victoria Souto

Primeira Avaliação

1. Realize a busca em largura e em profundidade para a árvore abaixo e apresente a solução encontrada e os nós explorados para cada técnica de busca. Considere como vértice inicial o "R" e como objetivo o vértice "H".

- 2. Considere o grafo a seguir onde o vértice inicial é o "A" e o objetivo é representado pelo vértice "M", faça o que se pede:
 - Realize uma busca gulosa usando como função custo a distância entre cada cidade (mostrada no grafo). Apresente a solução encontrada e seu respectivo custo.
 - b. Realize uma busca A* usando as seguintes funções de custo g(n) = a distância entre cada cidade (mostrada no grafo) e h(n) = a distância em linha reta entre duas cidades. Estas distâncias são dadas na tabela abaixo. Apresente a solução encontrada e seu respectivo custo.
 - c. Compare as soluções obtidas em (c) e (d). Qual delas é melhor? Justifique sua resposta.

Distância em linha reta entre A até M

Α	240			
B C D E F	186			
С	182			
D	163			
Е	170			
F	150			
	180			
Н	139			
I	100			
J	150			
K	122			
J K L	122 104			
М	0			
N	77			
0	72			
N O P Q	65			
Q	65			
R	130			

3. Considere um algoritmo genético aplicado à maximização da função de segundo grau $f(x) = x^2 - 2x + 2$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:

I_1 :	0	1	0	1	1	0
I_2 :	1	1	0	1	0	1
I_3 :	0	0	1	0	1	1
I_4 :	1	1	1	0	0	1

- a. Calcule a aptidão de cada indivíduo
- b. Calcule o grau de adaptação médio da população.
- c. Considere que os indivíduos 1 e 4 foram selecionados para crossover, e que esta operação acontecerá no terceiro ponto de corte. Escreva os indivíduos que serão gerados neste processo, bem como sua respectiva aptidão.
- d. Considere que o indivíduo 2 sofrerá uma mutação do tipo flip no quarto gene. Escreva como ficará este indivíduo após esta operação, bem como sua nova aptidão.
- e. Neste momento, a população possui 6 indivíduos, mas pode conter somente 4 (módulo de população). Submeta a população a um operador de elitismo, o qual removerá os dois piores indivíduos da população. Indique quais indivíduos serão removidos.
- f. Calcule o grau de adaptação médio da nova população.
- g. É possível afirmar que esta geração melhorou a população de soluções candidatas? Justifique.