# ALGORITHMICALLY SOLVING THE TADPOLE PROBLEM

[arXiv:2010.10519, arXiv:2103.03250] with I. Bena, J. Blåbäck, M. Graña

Severin Lüst

Harvard University

Seminar Series on String Phenomenology March 23, 2021

#### **MOTIVATION**

- ➤ Flux compactifications:
  - Huge landscape of vacua: 10(big number)
    [Ashok, Douglas '03], [Denef, Douglas '04], [Taylor, Wang '15]
- > CYs with large Hodge numbers: many choices for fluxes
- ➤ Constraints on fluxes:
  - Integer quantization
  - Tadpole cancelation
- ➤ Which properties have the consistent vacua satisfying these constraints?

#### EXPLORING THE LANDSCAPE

- Systematically
  - Extensive/random scan over flux configurations
  - only possible for very special examples (for example [Betzler, Plauschinn '19] for toroidal orbifolds)
- > Statistically [Ashok, Douglas '03], [Denef, Douglas '04], [Taylor, Wang '15]
- ➤ Analytically
  - · Explore symmetries or mathematical structure
  - Related: Swampland program
- ➤ Algorithmically
  - Use modern Big Data / AI / Machine Learning algorithms

#### AI APPROACH TO THE LANDSCAPE

#### Machine Learning / AI:

a lot of recent activity for String Theory related problems (see e.g. [Ruehle '20])

Here:

Use algorithms inspired by

biological evolution / genetics

to search for / generate string vacua with specific properties.

(see for example also [Blåbäck, Danielson, Dibitetto '13; Damian et al. '13; Abel, Rizos '14; Ruehle '17; Cole, Schachner, Shiu '19; AbdusSalam, et al '20; Cabo Bizet et al. '20])

Specifically: Flux configurations with full moduli stabilization.

### FLUX COMPACTIFICATION

 $\blacktriangleright$  M-theory on  $CY_4$  / F-theory:

$$\mathscr{L}_{kin} \sim \int G_4 \wedge \star \overline{G}_4 \longrightarrow \text{"*" depends on} CY\text{-metric} \longrightarrow \text{Potential}$$
 for moduli

> Superpotentials [Gukov, Vafa, Witten '99; Haack, Louis '01]:

$$W \sim \int_{CY} G_4 \wedge \Omega \qquad \qquad \hat{W} \sim \int_{CY} G_4 \wedge J \wedge J$$

- ➤ F-term equations:  $D_i W = D_a \hat{W} = 0$  ( $i = 1,...,h^{2,1}$ ;  $a = 1,...,h^{1,1}$ )
- $\rightarrow$  complex structure sector:  $h^{2,1}$  equations for  $h^{2,1}$  moduli
- $\blacktriangleright$  But: requires knowledge of the period integrals  $\chi_i = D_i \Omega$

### THE TADPOLE PROBLEM

 $\triangleright$  Tadpole cancellation: (M-theory on  $CY_4$  / F-theory)

$$\frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi(CY_4)}{24}$$

➤ Scaling behavior at large  $h^{3,1} \gg h^{1,1} \sim h^{2,1} \sim \mathcal{O}(1)$ :

$$\frac{\chi(CY_4)}{24} \propto \frac{1}{4}h^{3,1}$$

Similar linear scaling for flux induced charge?

$$Q_{D3}^{\text{flux}} = \frac{1}{2} \int G_4 \wedge G_4 \gtrsim \alpha \times h^{3,1}$$

#### WHAT IS $\alpha$ ?

- $\triangleright$  Examples from literature indicate  $\alpha \approx 0.4!$
- ➤ Use Big Data / AI algorithms to systematically search for flux configurations which
  - \* stabilize all moduli
  - \* at a generic point in moduli
  - \* with as small charge  $Q_{\text{flux}} = \frac{1}{2} \int G_4 \wedge G_4$  as possible?

#### → Differential Evolution

#### DIFFERENTIAL EVOLUTION

- Global optimization algorithm inspired by biological evolution/genetics
- ➤ Goal: Find global minimum of fitness function



#### M-THEORY ON K3 X K3

ightharpoonup Challenge: design suitable fitness function! Requires knowledge of W and  $\hat{W}$ ... still very difficult

➤ Well-known playground for flux compactification: [Dasgupta, Rajesh, Sethi '99; Aspinwall, Kallosh '05]

# $K3 \times K3$

- ➤ [Braun Hebecker, Ludeling, Valandro '08]:
  - Stabilize all moduli (Kähler + complex str.) by fluxes
  - No knowledge of period maps necessary!

#### A LATTICE PROBLEM

- ➤ Do not study K3xK3 directly...
  ... instead solve a related lattice problem:
- ► Input data: even lattice  $\Lambda$  with inner product  $d \in \Lambda^* \otimes \Lambda^*$  (of indefinite signature)
- ightharpoonup Search space: all matrices  $G \in \Lambda \otimes \Lambda$  such that
  - (I)  $GdG^Td$  and  $G^TdGd$  diagonalizable with non-negative eigenvalues
  - (II) d has definite signature on all eigenspaces
  - (III) no root  $\alpha \in \Lambda$  orthogonal to positive norm eigenvectors
- Target:  $Q_{\min}(\Lambda) = \frac{1}{2} \min_{G} \operatorname{tr}(GdG^{T}d) = ?$



10

## RELATION TO K3 X K3

Relation to K3 x K3:

[Braun, Hebecker, Ludeling, Valandro '08]

$$\Lambda = H^2(K3, \mathbb{Z}) = (-E_8) \oplus (-E_8) \oplus U \oplus U \oplus U$$

- (I)  $GdG^Td$  and  $G^TdGd$  diagonalizable with non-negative eigenvalues
  - → Minkowski vacuum
- (II) d has definite signature on all eigenspaces
  - → all moduli stabilized
- (III) no root  $\alpha \in \Lambda$  orthogonal to positive norm eigenvectors
  - → K3 is smooth

$$Q_{\text{flux}} = \frac{1}{2} \int G_4 \wedge G_4 = \frac{1}{2} \text{tr}(GdG^Td)$$

#### DESIGN OF THE FITNESS FUNCTION

Population consists of "flux" matrices  $x \in \mathbb{R}^{D \times D}$ 

- 1. Round to the closest integer: N = round(x).
- 2. Assign "penalties"  $p_k(N)$  whenever one of (I) (III) is violated.
- 3. Compute  $Q = \operatorname{tr}(NdN^Td)$ .

#### Fitness function:

$$f(x) = \sum_{k} w^{k} p_{k}(N) + w^{Q} Q(N)$$
weights

(determined "experimentally")

#### DIFFERENTIAL EVOLUTION FOR K3 X K3

- ➤ Implementation of Differential Evolution: in Julia using BlackBoxOptim.jl [Feldt et al.] and bbsearch.jl [Blåbäck]
- ➤ Challenges:
  - HUGE search spaces!
  - Finding roots orthogonal to eigenvectors (lattice vectors of minimal length) is NP-hard!
- → Slow convergence.
- Add additional local search ("Spider")
- Smaller lattices converge much faster.

#### **EXAMPLE 1**

$$\Lambda = U \oplus U \oplus U \quad (D = 6)$$

$$d(U) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$



Snapshot of the distribution of Q(N) after 60 seconds, 2 minutes, 5 minutes, and 30 minutes.

(population size: 8 x 500)

#### **EXAMPLE 2**

 $\Lambda = E_8 \oplus E_8 \oplus U \quad (D = 18)$ 



Snapshot of the distribution of Q(N) after 20 minutes, 12 hours, 24 hours, and 36 hours.

(population size: 15 x 1000)

# **RESULTS**

#### All lattices we analyzed:

| lattice $\Lambda$ | $D = \dim(\Lambda)$ | $Q_{\min}(\Lambda)$ |
|-------------------|---------------------|---------------------|
| 3U                | 6                   | 5                   |
| $A_4 \oplus U$    | 6                   | 6                   |
| $D_4 \oplus U$    | 6                   | 6                   |
| $A_4 \oplus 2 U$  | 8                   | 7                   |
| $D_4 \oplus 2 U$  | 8                   | 6                   |
| $E_6 \oplus U$    | 8                   | 9                   |
| $A_4 \oplus 3 U$  | 10                  | 9                   |
| $D_4 \oplus 3 U$  | 10                  | 9                   |

| lattice $\Lambda$ | $D = \dim(\Lambda)$ | $Q_{\min}(\Lambda)$ | _              |
|-------------------|---------------------|---------------------|----------------|
| $E_8 \oplus U$    | 10                  | 10                  | _              |
| $E_8 \oplus 2 U$  | 12                  | 12                  |                |
| $E_8 \oplus 3 U$  | 14                  | 13                  |                |
| $2E_6 \oplus 2U$  | 16                  | 14                  |                |
| $2E_8 \oplus U$   | 18                  | 20                  |                |
| $2E_8 \oplus 2U$  | 20                  | 21                  |                |
| $2E_8 \oplus 3U$  | 22                  | 25                  | $K3 \times K3$ |
|                   |                     |                     |                |

The always exists a non-trivial

$$Q_{\min}(\Lambda) \sim D$$

#### INTERPRETATION

➤ For small lattices: very quick and reliable convergence to

$$Q_{\min}(\Lambda) \sim D$$

- → seems to be universal behavior
- More challenging: Determine the actual value of  $Q_{\min}(\Lambda)$  (in particular for larger lattices)
- ▶ Problem: Given a putative  $Q_{\min}(\Lambda)$ , what is the probability that the absence of  $Q < Q_{\min}(\Lambda)$  is just a statistical effect?
- ➤ Requires knowledge over distribution of Q and quantitative performance of search algorithm.

# **K3 X K3**

> Result:

- $\mathcal{O}(10^5)$  matrices with  $Q_{D3}^{\text{flux}} = 25$
- 0 matrices with  $Q_{D3}^{\text{flux}} \leq 24$
- Remember:  $\frac{\chi(K3xK3)}{24} = 24$
- → Moduli stabilization at generic (smooth) point in moduli space not possible!
- ► tadpole conjecture constant:  $\alpha = \frac{min(Q_{D3}^{\text{flux}})}{\text{#moduli}} = \frac{25}{57} \approx 0.44$

#### CONCLUSION

- ➤ M-theory on K3 x K3:
  - stabilization of all moduli
  - · generic point in moduli space (no orbifold singularity)
  - fluxes with arbitrary small M2-charge ( $Q \lesssim 24$ )
    - → cannot have all three!

fluxes with  $\Leftrightarrow$  additional small charge light d.o.f

# THANK YOU!