Western New England University College of Engineering ECE Department Microwave Engineering EE 414 Spring 2024 Design Project #5 Due: May 06, 2024

Name: <u>Nit</u>	tala Satya Surya Lakshmi Vasuki Siva Srinivas
	#Id – 620094, Email – sn620094@wne.edu
References:	

Design Project #5

	Score	Max
Coupler Design		100
MATLAB Simulation		100
MStrip V1 Design		100
MStrip V1 Simulation		200
MStrip V2 Simulation		100
Summary Graphs		200
Presentation		100
Total		800

- 1. Design a 10 dB single section coupled line directional coupler. The network impedance is 50 Ω ($Z_0 = 50 \Omega$), and the center frequency is 5 GHz. Determine the even-mode and odd-mode impedances, Z_{0e} and Z_{0o} , respectively.
- 2. Simulate the coupler network using MATLAB. Employ ideal transmission lines and a frequency range of 3 GHz to 7 GHz. In addition, employ a transmission line at each port with an electrical length of 60°.
 - Determine a value for S_{11} , S_{21} , S_{31} , and S_{41} at 5 GHz.
- 3. Convert the coupler network employing ideal transmission lines to microstrip transmission lines. Assume that the microstrip transmission lines are to be realized using a 1.27 mm thick Duroid 6010 substrate ($\varepsilon_r = 10.7$, $\tan \delta = 0.0023$,
 - $\sigma_c = 5.8 \times 10^{+7}$ S/m, and $t = 18 \,\mu\text{m}$). In addition, employ a transmission line at each port with an electrical length of 60°. Determine a value for the width, spacing, and length of each transmission line. This version will be called MStrip V1.
- 4. Simulate the coupler using ADS (V1).
 - Determine a value for S_{11} , S_{21} , S_{31} , and S_{41} at 5 GHz.
- 5. Add the microstrip "Optimally Chamfered Bend 90-Degree" element (MSOBND_MDS) to the model in Task (4). This version will be called MStrip V2.
 - Determine a value for S_{11} , S_{21} , S_{31} , and S_{41} at 5 GHz.
- 6. Summarize the results.
 - On the same graph, plot $|S_{11}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -40 dB to 0 dB.
 - On the same graph, plot $|S_{21}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -0.8 dB to 0 dB.
 - On the same graph, plot $|S_{31}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -12.5 dB to -8.75 dB.
 - On the same graph, plot $|S_{41}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -40 dB to 0 dB.
- 7. Present the results from the design project into a well-organized presentation.

Table 1 Summary of the simulated values for the coupling and directivity at 5 GHz.

	Coupling (dB)	Directivity (dB)
MATLAB Simulation		
MStrip V1		
MStrip V2		

Design Project 5

Single section coupled line Directional Coupler

By: Nittala Satya Surya Lakshmi Vasuki Siva Srinivas

#Id - sn620094

Email – sn620094@wne.edu

	MATLAB	MStrip_V1	MStrip_V2	
Z_{0e}	69.3713	69.3713	69.3713	Ω
Z_{0o}	36.0380	36.0380	36.0380	Ω
$ heta_e$	90	90	90	О
$ heta_o$	90	90	90	o
$ heta_P$	60	60	60	0
Return Loss	125.6185	28.9896	23.9538	dB
Insertion Loss	457.5735	558.4755	496.1234	mdB
Coupling	10.0000	10.1729	10.5519	dB
Isolation	135.1609	19.4677	24.4622	dB
Directivity	125.1609	9.2948	13.9104	dB

Ideal Transmission Lines

S-Parameters vs. Frequency

Mstrip_V2 Layout

S-Parameters vs. Frequency

IDEAL TRANSMISSION LINES

	Values	dB
S11	0.0000 < -120.000°	-125.618
S21	0.949 < 150.000°	-0.458
S31	0.316 < -120.000°	- 10.000
S41	0.0000 < -30.0000°	- 135.161

Mstrip_V1

	Values	dB
S11	0.036 < 149.745°	-28.990
S21	0.938 < 149.873°	-0.558
S31	0.310 < -120.081°	-10.173
S41	0.106 < 59.890°	-19.468

Mstrip_V2

	Values	dB
S11	0.063 < 33.794°	-23.954
S21	0.944 < 107.414°	-0.496
S31	0.297 < -161.759°	- 10.553
S41	0.060 < 36.255°	- 24.462

On the same graph, plot $|S_{11}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -40 dB to 0 dB.

S11 plot of MATLAB, MStrip_V1 and MStrip_V2, range of 0 to -200dB

On the same graph, plot $|S_{21}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -0.8 dB to 0 dB.

On the same graph, plot $|S_{31}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -12.5 dB to -8.75 dB.

On the same graph, plot $|S_{41}|$ in dB, the simulated using MATALB, MStrip V1, and MStrip V2. Employ a range of -40 dB to 0 dB.

S11 plot of MATLAB, MStrip_V1 and MStrip_V2, range of 0 to -200dB

Appendices

- MATLAB
- ADS

The End