

OPERATING SUMMARY

AMPBELLFORD THE CA

TD 367 .A56 C367 1972 MOE Digitized by the Internet Archive in 2015

https://archive.org/details/campbellfordwate25735

MINISTRY OF THE ENVIRONMENT

MINISTER Honourable James A.C. Auld

DEPUTY MINISTER E. Biggs

ASSISTANT DEPUTY MINISTER D. S. Caverly

EXECUTIVE DIRECTOR K. H. Sharpe

PROJECT OPERATIONS BRANCH

DIRECTOR D. A. McTavish

ASSISTANT DIRECTOR C.W. Perry

ACTING REGIONAL SUPERVISOR B.W. Hansler

OPERATIONS ENGINEER
J. Dick

135 St. Clair Avenue West Toronto 195

CAMPBELLFORD

WATER POLLUTION CONTROL PLANT

MINISTRY OF THE ENVIRONMENT

1972 ANNUAL OPERATING SUMMARY

CONTENTS

Title Page	•	•	•	•	•	•	•	•	•	•	1
Flow Diagram	•	•	•	•	•	•	•	•	٠	•	4
Design Data	•	•	•	•	•	•	•	٠	•	•	5
'71 Review	•	•	•	•	•	•	•	•	•	•	6
Process Data	•	•	•	•	•	•	•		•	•	8

DESIGN DATA

PROJECT NO.

1-0028-66

DESIGN FLOW

1.0 MIGD

BOD - Raw Sewage

200 mg/1

TREATMENT

Activated Sludge

DESIGN POPULATION 4200

PRIMARY TREATMENT

Grit Removal

Type: Channels, manually cleaned

Size: Two 36'6"x2'8"x3'9"
Flow Velocity: 1 fps

Screening

Type: Manually cleaned

Comminution

Type: Worthington model 15C-5

Primary Sedimentation

Type: Dorr-Oliver-Long S-7 Size: Two 40'dia x 7' swd Retention: 2.4 hours

Loading: Surface 400 gal/ft²/day Weir 4000 gal/ft/day

Outfall

- to the Trent River

SECONDARY TREATMENT

Aeration Tanks

Type: Mechanical

Size: Three, each 55,000 gallons

Retention: 4 hours

Air Supply: Simon Carves, one aerator per tank

Secondary Sedimentation

Type: Dorr-Oliver-Long S-7 Size: Two 45' dia x 9' swd Retention: 4.8 hours

Loading: Surface 330 gal/ft²/day Weir 3540 gal/ft/day

CHLORINATION

Type: Wallace & Tiernan V800

Size: One 400

Chlorine Contact Chamber

Retention: 30 minutes

DIGESTION SYSTEM

Type: Single stage Size: 30' dia x 25' swd

PUMPING STATION

P.S. #1

Three Crane Deming each 800 US gpm @ 38' tdh

P.S. #2

Two Flygt CP3100 each 400 US gpm @ 24' tdh

72 Review

GENERAL

The Town of Campbellford water pollution control plant treated a total of 589 million gallons in 1972. This was an average daily flow of 1.6 million gallons per day. The hydraulic design of the plant is 1 million gallons per day so it can be readily seen that the plant was overloaded hydraulically most of the time. A further analysis of the plant performance table will show that there is very little difference in flows to the plant during the various months of the year. This is not a normal condition. At most municipalities there is a considerable difference between the summer and winter flows. This is primarily due to the large infiltration problem in Campbellford.

The construction of a 12-inch diameter polyethylene pipe to carry ground water under the Trent Canal and thus eliminate this flow from getting into the sewage collection system was completed in 1972.

During the year, all of the outside metal railings and metal structures including the digester dome were painted.

A preventive maintenance program was initiated during 1972. All equipment items are recorded on a card system and the maintenance of each piece of equipment is distributed throughout the year. With the aid of a frequency control board, the various equipment items come up during various times of the year and the necessary inspection and repairs are conducted on the equipment. With a good preventive maintenance program in effect, the break down of equipment should be at a minimum.

There were times in 1972 when the industrial waste discharges exceeded the capacity of the plant. The result was that the dissolved oxygen disappeared from the aeration tanks and the effluent became quite cloudy. Through several meetings with the Industrial Waste Branch and the local industry concerned, this problem has been greatly rectified. There is still a considerable fluctuation in the biochemical oxygen demand of the raw sewage and this is probably a result of the slug loadings from the local industry. An examination of the average effluent BOD and suspended solids of 6 mg/l and 9 mg/l respectively is very rewarding particularly because of the rather unusual conditions in the Town of Campbellford.

Another interesting comment that should be made at this time is the phosphate reduction in the Campbellford plant. The phosphate content in the plant effluent was consistently below the objective of 1.0 mg/l.

Since most of the tables and graphs are self explanatory, no more comment will be made in this regard.

CONCLUSIONS AND RECOMMENDATIONS

The flows to the treatment plant caused by infiltration into the sewage system is still a serious problem. Every effort should be taken by the municipality to reduce this infiltration which is causing a high hydraulic overload to the plant as expeditiously as possible.

FLOWS

DESIGN CAPACITY _____

PLANT PERFORMANCE

		FLOWS		BIOCHEA	AICAL OXYC	SEN DE	MAND	SU	SPENDED	SOLID	S	PHOSPHORUS		
	TOTAL FLOW	AVERAGE	MAXIMUM	INFLUENT	EFFLUENT	REDU	ICTION	INFLUENT	EFFLUENT	RED	UCTION	INFLUENT	EFFLUENT	
MONTH	million gallons	DAY mil. gal	DAY mgd	mg/l	mg/l	%	10 ³ pounds	mg/l	mg/l	%	10 ³ pounds	mg/L P	mg/l P	
JAN	45.8	1.5	1.7	140	9	94	60	145	8	94	63	6.1	. 6	
FEB	40.5	1.4	1.6	120	13	89	43	125	13	90	45	5.4	. 9	
MAR	46.1	1.5	1.9	290	5	98	131	153	8	95	67	5.4	. 7	
APR	48.9	1.6	1.6	123	4	97	58	175	7	96	82	3.3	. 4	
МДҮ	43.5	1.4	1.5	208	2	99	90	164	7	96	68	13.8	. 3	
JUNE	49.6	1.7	1.8	102	6	94	48	273	12	96	12.9	6.7	.8	
JULY	51.2	1.7	1.7	39	4	90	18	127	7	94	61	1.4	. 4	
AUG	53.1	1.7	2.0	55	3	95	28	112	6	95	56	2.5	. 4	
SEPT	52.0	1.7	2.0	23	9	61	7	121	16	87	55	1.7	.5	
ост	53.1	1.7	2.0	160	.2	99	84	138	12	91	67	3.7	. 4	
NOV	51.8	1.7	1.8	38	5	87	17	117	7	94	57	2.3	. 6	
DEC	53.4	1.7	1.8	70	4	94	35	115	10	91	56	2.6	. 6	
TOTAL	589.0	-	-	-	-	-	619	_	-	-	806	_	-	
AVG.		1.6	MAXIMUM 2.0	119	6	95	52	148	9	94	67	5.1	.5	
No. of Samples	-	-	-	23	25	-	-	73	75		-	23	24	

BIOCHEMICAL OXYGEN DEMAND

SUSPENDED SOLIDS

PLANT INFLUENT PLANT EFFLUENT

PHOSPHORUS

DIGESTION - WERAGE DRY SOLIDS CONCENTRATION - %

DIGESTED SLUDGE =

RAW SLUDGE TO DIGESTER DIGESTED SLUDGE REMOVED

TREATMENT DATA

	GRIT	CHLORINATION PRIMARY EFFLUENT			AEI	RATIC	ATION SLUDGE DIGESTION and DISPOS						SAL			
монтн	QUANTITY REMOVED cubic feet	Cl ₂ USED	AVG. DOSE mg/l	BOD mg/l	SUSPENDED SOLIDS mg/l	MLSS CONC mg/l	F/M day-1	AIR 1000 ft ³ 1b BOD	QUANTITY	SLUDO TOTAL SOLIDS %	VOL.	DIGESTEE QUANTITY 10 ³ gallons	TOTAL SOLIDS	VOL.	SUPER- NATANT T. S. %	AMOUNT HAULED cubic yards
JAN	26	581	1.3	370	327	3820	.88		114	4.5	60	25.3	4.6	47	2.0	150
FEB	20	540	1.3	230	256	3910	. 50		106	4.7	65		5.1	42	1.8	
MAR	34	578	1.3	200	177	3910	. 46		114	4.7	61		5.8	38	1.9	
APR	48	577	1.2	65	104	4010	.16		111	4.8	63	15.1	6.4	36	2.3	90
MAY	8	557	1.3	37	75	4150	.08		119	4.9	65	7.6	5.9	48	1.6	45
JUNE	126	574	1.2	60	69	3760	.16		116	4.9	64		5.2	42	1.8	
JULY	144	1027	2.0	50	88	3960	.13		122	4.9	67	6.1	5.8	37	1.6	36
AUG	190	1152	2.2	37	62	3800	.10		121	4.3	65	14.2	5.5	39	1.0	84
SEPT	45	1177	2.3	7 8	146	3850	.21		118	4.6	66		5.3	40	1.2	
ост	70	1062	2.0	60	44	3800	.16		120	4.5	60	35.3	5.6	48	1.5	210
NOV	55	792	1.5	29	39	3500	.09		119	4.8	64	2.5	5.1	40	1.0	15
DEC	65	737	1.4	43	49	3840	.12		116	4.8	66		5.2	38	1.1	
TOTAL	831	9354	-	_	-	-	-	-	1396	-	-	106.1	-	-	-	630
AVG.	1.4 cu.f1/mil gal	780	1.6	104	121	3860	.25		116	4.7	64	8.8	5.5	41	1.6	53

Campbellford : water pollution TD control plant. 367 .A56 81511

C367

1972

