Interacting Bialgebras are Frobenius

Filippo Bonchi, Paweł Sobociński, Fabio Zanasi

FoSSaCS 2014

The theory IB - Interacting Bialgebras

Theories of circuits with both Bialgebra and Frobenius Algebra structures:

- Quantum information: ZX-calculus [Coecke & Duncan '08]
- Concurrency: algebra of stateless connectors [Bruni, Lanese,
 Montanari '07], algebra of Petri Nets with boundaries [Sobocinski '10].

Z₂-subspace Relational Semantics

Z₂-subspace Relational Semantics

Semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$

Domain of interpretation: the SMC SV of Z_2 -sub-vector spaces

- o objects: natural numbers
- $\mathbb{SV}[n,m]$ = subspaces of $\mathbb{Z}_2^n \times \mathbb{Z}_2^m$
- relational composition
- o monoidal product: direct sum

Z₂-subspace Relational Semantics

Semantics $S_{\mathbb{IB}} \colon \mathbb{IB} \to \mathbb{SV}$

Domain of interpretation: the SMC SV of Z_2 -sub-vector spaces

- o objects: natural numbers
- $\mathbb{SV}[n,m]$ = subspaces of $\mathbb{Z}_2^n \times \mathbb{Z}_2^m$
- relational composition
- o monoidal product: direct sum

Characterization result

 $S_{\mathbb{IB}} \colon \mathbb{IB} \to \mathbb{SV}$ is an isomorphism.

- PROPs are a "linear" variant of Lawvere Theories.

A PROP is a symmetric monoidal category where:

- o objects: the natural numbers on $\otimes m = n + m$
- o symmetries are the permutations $[n+m] \rightarrow [m+n]$

- PROPs are a "linear" variant of Lawvere Theories.

A PROP is a symmetric monoidal category where:

- o objects: the natural numbers on $\otimes m = n + m$
- o symmetries are the permutations $[n+m] \rightarrow [m+n]$

Two ways of defining a PROP:

- PROPs are a "linear" variant of Lawvere Theories.

A PROP is a symmetric monoidal category where:

- \circ objects: the natural numbers $\circ n \otimes m = n + m$
- o symmetries are the permutations $[n+m] \rightarrow [m+n]$

Two ways of defining a PROP:

the prop
$$\mathbb F$$
 of functions $\mathbb F[n,m]= ext{functions }\overline n o\overline m$

- PROPs are a "linear" variant of Lawvere Theories.

A PROP is a symmetric monoidal category where:

- \circ objects: the natural numbers $\circ n \otimes m = n + m$
- o symmetries are the permutations $[n+m] \rightarrow [m+n]$

Two ways of defining a PROP:

Idea: ring = abelian group + monoid + axioms describing their interaction

Composing PROPs [S.Lack, 2004]

PROPs are monads (in a certain bicategory)

PROP composition = Distributive law between monads

To define the PROP C;M we need a distributive law:

$$\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$$

Idea: ring = abelian group + monoid + axioms describing their interaction

Composing PROPs [S.Lack, 2004]

PROPs are monads (in a certain bicategory)

PROP composition = Distributive law between monads

To define the PROP C;M we need a distributive law:

$$\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$$

Idea: ring = abelian group + monoid + axioms describing their interaction

Composing PROPs [S.Lack, 2004]

PROPs are monads (in a certain bicategory)

PROP composition = Distributive law between monads

To define the PROP C;M we need a distributive law:

$$\lambda \colon \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$$

: Cospan(\mathbb{F}) \Rightarrow Span(\mathbb{F})

 $\lambda: \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$ defined by pullback in \mathbb{F} :

B as composed PROP

- $\circ \mathbb{B} = \mathbb{C}; \mathbb{M}$
- $\circ \mathbb{B} \cong \operatorname{Span}(\mathbb{F})$

 $\lambda: \mathbb{M}; \mathbb{C} \Rightarrow \mathbb{C}; \mathbb{M}$ defined by pullback in \mathbb{F} :

B as composed PROP

- $\circ \mathbb{B} = \mathbb{C}; \mathbb{M}$
- $\circ \ \mathbb{B} \cong \mathsf{Span}(\mathbb{F})$
- factorisation for B-circuits

The PROP B of bialgebras characterizes spans:

$$\mathbb{B} \cong \operatorname{Span}(\mathbb{F}) \cong \operatorname{Mat} \mathbb{N}$$

The PROP AB of antiseparable bialgebras characterizes Z_2 -matrices:

$$\mathbb{AB} \cong \operatorname{Mat} \mathsf{Z}_2$$

The PROP B of bialgebras characterizes spans:

$$\mathbb{B} \cong \operatorname{Span}(\mathbb{F}) \cong \operatorname{Mat} \mathbb{N}$$

The PROP \mathbb{AB} of antiseparable bialgebras characterizes \mathbb{Z}_2 -matrices:

$$\mathbb{AB} \cong \operatorname{Mat} \mathsf{Z}_2$$

The PROP B of bialgebras characterizes spans:

$$\mathbb{B} \cong \operatorname{Span}(\mathbb{F}) \cong \operatorname{Mat} \mathbb{N}$$

The PROP AB of antiseparable bialgebras characterizes Z_2 -matrices:

$$\mathbb{AB} \cong \operatorname{Mat} \mathsf{Z}_2$$

The PROP B of bialgebras characterizes spans:

$$\mathbb{B}\cong\operatorname{Span}(\mathbb{F})\cong\operatorname{Mat}\mathbb{N}$$

The PROP AB of antiseparable bialgebras characterizes Z_2 -matrices:

$$\mathbb{AB} \cong \operatorname{Mat} \mathsf{Z}_2$$

The PROP B of bialgebras characterizes spans:

$$\mathbb{B} \cong \operatorname{Span}(\mathbb{F}) \cong \operatorname{Mat} \mathbb{N}$$

The PROP AB of antiseparable bialgebras characterizes Z_2 -matrices:

$$\mathbb{AB} \cong Mat Z_2$$

The PROP B of bialgebras characterizes spans:

$$\mathbb{B} \cong \operatorname{Span}(\mathbb{F}) \cong \operatorname{Mat} \mathbb{N}$$

The PROP AB of antiseparable bialgebras characterizes Z_2 -matrices:

$$\mathbb{AB} \cong \operatorname{Mat} \mathsf{Z}_2$$

Composing AB and AB^{op}

Construct the PROP \mathbb{AB}^{op} ; \mathbb{AB} by pullback:

Composing AB and AB^{op}

Construct the PROP \mathbb{AB}^{op} ; \mathbb{AB} by pullback:

Read (in Mat \mathbb{Z}_2) the equations of \mathbb{AB}^{op} ; \mathbb{AB} out of pullback diagrams:

- \mathbb{IB} and \mathbb{SV} are pushout objects.

- Unique arrow $S_{\mathbb{B}} : \mathbb{IB} \to \mathbb{SV}$ $\stackrel{\mathsf{x}}{y} \xrightarrow{\mathsf{x+y}} x+\mathsf{y}$ $\times \stackrel{\mathsf{x}}{\longleftarrow} x$

Results

- Cube construction revealing the modular structure of IB.
- \circ Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

AB^{op}
WC bM
bC WM
C DD
D
D
D

Factorisation of \mathbb{IB}^{-b}

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Work in progress:

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Work in progress:

 \circ The cube for an arbitrary Principal Ideal Domain in place of Z_2 .

Results

- Cube construction revealing the modular structure of IB.
- Completeness for the semantics $S_{\mathbb{IB}} : \mathbb{IB} \to \mathbb{SV}$.
- Factorisation properties of IB.

Work in progress:

- \circ The cube for an arbitrary Principal Ideal Domain in place of Z_2 .
- Other applications:
 - Quantum information: full ZX-calculus, partial equivalence relations
 - Concurrency: Algebra of stateless/stateful connectors, Petri nets with boundaries
 - Electrical circuits, Signal Flow Graphs, Stream Calculus