Architecture Diagram

Hardware Module Analysis

- 1. decoder:是利用 instruction[31:26]的 mintern 來做 and or structure 控制 control signal
- 2. ALU_Control: 是利用 instruction[5:0] 和 ALUOp 來控制但是這次不同 於 lab2 有多一些 signal 需要放到 level 2 才能產生正確的輸出,例如: RegWrite , jr
- 3. 其餘的 multiplexer 和 ISA 和 Regfile 和 data memory 都照著 control signal 和 instruction 的要求接上而已

Result:

1. test1:

```
0.
Data Memory =
Data Memory =
                   0,
                              0,
                                        0,
                                                  0,
                                                             0,
                                                                        Ο,
                                                                                  Ο,
                                                                                             0
Data Memory =
                              0,
                                        0,
                                                                                             0
Data Memory =
                                                             0,
                                                                                            0
Registers
                            1, R2 =
RO =
            0, R1 =
                                           2, R3 =
                                                           3, R4 =
                                                                       4, R5 = 0, R13 = 0, R21 =
                                                                           4, R5 =
                                                                                           5, R6 =
                                                                                                           1, R7 =
                                         0, R11 =
0, R19 =
                                                           0, R12 =
R8 =
            4, R9 =
                            2, R10 =
                                                                                           0, R14 =
                                                                                                          0, R15 =
            0, R17 =
R16 =
                          0, R18 =
                                                           0, R20 =
                                                                                          0, R22 =
                                                                                                          0, R23 =
R24 =
            0, R25 =
                            0, R26 =
                                           0, R27 =
                                                           0, R28 =
                                                                           0, R29 =
                                                                                         128, R30 =
                                                                                                          0, R31 =
```

2. test2:

Data Memory =	0,	0,	0,	0,	0,	0,	0,	0		
Data Memory =	0,	0,	0,	0,	0,	0,	0,	0		
Data Memory =	0,	0,	0,	0,	68,	2,	1,	68		
Data Memory =	2,	1,	68,	4,	3,	16,	0,	0		
Registers										
RO =	0, R1 =	0, R2 =	5, 3	3 =	0, R4 =	0,	R5 =	0, R6 =	0, R7 =	0
R8 =	0, R9 =	1, R10 =	0, 3	111 =	0, R12 =	0,	R13 =	0, R14 =	0, R15 =	0
R16 =	0, R17 =	0, R18 =	0, 3	19 =	0, R20 =	0,	R21 =	0, R22 =	0, R23 =	0
R24 =	0, R25 =	0, R26 =	0, 3	27 =	0, R28 =	0,	R29 =	128, R30 =	O, R31 =	16

Summary:

這次的 lab 其實和上一次的差不多,但這次我遇到的最大困難是對於 ALU_Control 的畫簡,因為這次的 instruction 比較多在畫簡時很常有畫簡錯 誤的問題,我的解決方法是利用 display 將 ALU_Control 的 output 都印出來 檢查在相對應的 instruction 下所輸出的 output 是否正確