

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Test Report for FCC

FCC ID:X59-HD-200B

Repo	rt Number	ESTF15	51111-002		1 00 10.7	39 110 2000	
	Company namo	H3 6/6	STEM Co., Ltd.				
	Company name	110 010	TEW CO., Eta.				
Applicant	Address	3F, 397	3F, 397-27, Doryong-dong, Yuseong-gu, Daejeon, R.O.Korea				
	Telephone	82-42-862-9314					
	Product name	USB-H	DP Dongle				
Product	Model No.	Н	D-200B	Manufacturer	H3 SYSTE	M Co., Ltd.	
	Serial No.		NONE	Country of origin	KO	REA	
Test date	21-Oct-1	1 ~ 26-C)ct-11	Date of issue	1-No	ov-11	
Testing location	58-1	ESTECH Co., Ltd. 58-1 OSan-Ri Kanam-Myon, Yeoju-Gun, KyungKi-Do, Korea					
Standard	F	FCC PART 15 (2010) & ICES-003, ANSI C 63.4 2003					
T 1 !1	■ Conducted E	Emission	☐ Class A	■ Class B	Test result	ОК	
Test item	■ Radiated Em	ission	☐ Class A	■ Class B	Test result	ОК	
Measurement	facility registration	number	94696				
Tested by	Engin	eer J.H. K	IM	(Sure)			
Reviewed by	Engineering	Manager	J.M.Yang	(Signare)			
Abbreviation OK, Pass = Complied, Fail = Failed, N/A = not applicable							
* Note							
 This test report is not permitted to copy partly without our permission This test result is dependent on only equipment to be used This test result based on a single evaluation of one sample of the above mentioned 							

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 1 of 14

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Contents 1

1. Laboratory Information	4
2. Description of EUT	5
3. Test Standards	6
4. Measurement condition	. 7
5. Carrier Frequency Separation	10
5.1 Test procedure	· 10
5.2 Test instruments and measurement setup	· 10
5.3 Measurement results	10
5.4 Trace data ······	· 12
6. Maximum Peak Output Power ·····	16
6.1 Test procedure	· 16
6.2 Measurement results	16
7. Number of Hopping Frequency ······	17
7.1 Test procedure	· 17
7.2Test instruments and measurement setup	• 17
7.3 Measurement results	· 17
7.4 Trace data ······	18
8. Time of Occupancy (Dwell Time)	. 20
8.1 Test procedure	· 20
8.2 Test instruments and measurement setup	20
8.3 Measurement results	20
8.4 Trace Data ·····	21
8.5 Trace Data ······	23

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Contents 2

9. Band-edge and Out of band emissions	25
9.1 Test procedure	25
9.2 Test instruments and measurement setup	25
9.3 Measurement results of band-edge & out of emission	25
9.4 Trace data of band-edge & out of emission	26
10. Measurement of radiated emission	36
10.1 Measurement equipment	36
10.2 Environmental conditions	36
10.3 Test data(bluetooth)	37
10.4 Restricted Band Edges ·····	41
10.5 Test data(bluetooth)	45
10.6 Restricted Band Edges ·····	48
11. Measurement of conducted emission	52
11.1 Measurement equipment	52
11.2 Environmental conditions	52
11.3 Test data ······	53
12. Photographs of test setup	54
12.1.Setup for Radiated Test : 30 ~ 1000 MHz	54
12.2. Setup for Radiated Test :Above 1000 MHz	55
12.3. Setup for Conducted Test: 0.15 ~ 30 MHz	56
12.4. Photographs of EUT······	57
Appendix 1. Special diagram	
Appendix 2. Antenna Requirement	

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 3 of 57

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Rm 1015, World Venture Center II, 426-5, Gasan-dong, Geumcheon-gu, Seoul, Korea (Safety & Telecom. Test Lab)

EMC Test Lab: 58-1 OSan-Ri Kanam-Myon, Yeoju-Gun, KyungKi-Do, Korea

1.3 Official Qualification(s)

KCC: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Filed Laboratory at Federal Communications Commission

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 4 of 57

2. Description of EUT

2.1 Summary of Equipment Under Test (Bluetooth)

: USB-HDP Donale Product Name

Model Number : HD-200B

: GFSK(FHSS), DQPSK, 8DPSK Modulation Type

Transfer Rate : 3Mbps Number of Channel : 79 ch Channel Spacing : 1MHz

: GFSK: -5.76 dBm 8DPSK: -4.57 dBm **Output Power**

Serial Number : NONE

Manufacturer : H3 SYSTEM Co., Ltd.

: KOREA Country of origin

: Supply USB D.C 5 V Ratina

Receipt Date : 12-Oct-11

2.2 General descriptions of EUT

The device uses a minimum of 20 of the available 79 channels to comply with the 15.247 requirements for FHSS systems.

The Bluetooth frequency hoppoing transceiver is designed to operate between 2400 and 2483.5MHz.

- the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) stream. It is also comply with FHSS requirements in Section 15.247(a)(1).
- : Its hopping sequence is pseudo random, all channels used equally on average.

The receiver input bandwidth approximately equal the transmit band bandwidth, and its hop in sequence with the transmit signal.

- the system does not coordinate its channel selection/hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report Number: ESTF151111-002. Web: www.estech.co.kr Page 5 of 57

3. Test Standards

Test Standard: FCC PART 15 (2010)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.4 (2003)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

Applied Satandard: 47 CFR Part 15, Subpart C					
Standard	Test Type	Result	Remark	Limit	
15.207	AC Power Conducted Emission	Pass	Meet the requirement		
15.209	Intentional Radiated Emission	Pass	Meet the requirement		
15.247(a)(1)	Carrier Frequency Separation &	Pass	Meet the requirement	>25kHz	
	20 Bandwidth				
15.247(b)	Maximum Peak ouput power	Pass	Meet the requirement	30dBm(1W)	
15.247(a)(1)(ii)	Number of Hopping Frequency	Pass	Meet the requirement	>75	
15.247(c)	Transmitter Radiated Emission	Pass	Meet the requirement		
15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Pass	Meet the requirement	<400ms	
15.247(d)	Band Edge Measurement	Pass	Meet the requirement		

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 6 of 57

Rm 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

4. Measurement Condition

4.1 EUT Operation

a. Channel

Ch.	Frequency	Ch.	Frequency
0	2402 MHz	40	2442 MHz
1	2403 MHz	41	2443 MHz
2	2404 MHz	42	2444 MHz
3	2405 MHz	43	2445 MHz
4	2406 MHz		
		78	2480 MHz
39	2441 MHz		

b. Measurement Channel:Low(2402MHz), Middle(2441MHz), High(2480MHz)

c. Test Mode: DQPSK, 8DPSK, GFSK(worst case)

d. Test rate:3Mbps

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 7 of 57

4.2 EUT Operation.

- * The EUT was in the following operation mode during all testing
- * Connect the EUT with Note PC.
- * Execute a RF test program to enable EUT under transmission/receiving condition continuously at specific channel frequency

4.3 Configuration and Peripherals

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 8 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

4.4 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
USB-HDP Dongle	HD-200B	NONE	H3 SYSTEM Co., Ltd.	EUT
Notebook Computer	GW687AV	CNU0295R8D	Hewlett Packard Company	
ADAPTER	PPP009D	WBGSV0ADDZ3O3R	Delta Electronics(Jiang Su),Ltd.	
MOUSE	MO56UO	519048894	Dell	
PRINTER	K10229	NONE	Cannon Vietnam Co., Ltd.	

4.5 Cable Connecting

Start Equipment		End Equipment		Cable Standard		Remark
Name	I/O port	Name	I/O port	Length	Shielded	пешак
Notebook Computer	POWER	Adapter	-	1.5	Shielded	
Notebook Computer	USB	Mouse	USB	1.5	Shielded	
USB-HDP Dongle	USB	Notebook Computer	USB	ı	_	
Notebook Computer	USB	Printer	USB	1.5	Shielded	

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 9 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

5. Carrier Frequency Separation

5.1 Test procedure

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

5.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 300KHz
- . VBW= 300KHz
- . Span= 3MHz
- . Sweep= suitable duration based on the EUT specification.

20dB Bandwidth Test Instruments

Description	Model	Serial Number	Cal. Due Date
Bluetooth Tester	TC-3000A	3000A5B0298	2012-12-21
Dual Directional Coupler	778D	16502	2012-02-24
Spectrum Analyzer	E4440A	US41421291	2012-09-05
-Spectrum Analyzer <=> EUT	Loss: 1.0dB	-	

5.3 Measurement results

EUT	USB-HDP Dongle	MODEL	HD-200B
MODE	FHSS	ENVIRONMENTAL CONDITION	26℃, 43%RH
INPUT POWER	110 V a.c.		

CHANNEL	Channel Frequency (MHz)	Bandwidth at 20dB below(kHz)	Channel Separation (MHz)	Limit (kHz)	PASS/FAIL
0	2402	931	1.0	>25	PASS
39	2441	980	1.0	>25	PASS
78	2480	934	1.0	>25	PASS

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 10 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

(8DPSK)

CHANNEL	Channel Frequency (MHz)	Bandwidth at 20dB below(MHz)	Channel Separation (MHz)	Limit (MHz)	PASS/FAIL
0	2402	1.194	1.0	>0.85	PASS
39	2441	1.200	1.0	>0.86	PASS
78	2480	1.222	1.0	>0.89	PASS

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 11 of 57

5.4 Trace data (GFSK)

Channel Separation

20dB bandwidth(Ch 0)

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 12 of 57

20dB bandwidth(CH 39)

20dB bandwidth(CH 78)

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 13 of 57

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

(8DPSK)

Channel Separation

20dB bandwidth(Ch 0)

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 14 of 57

20dB bandwidth(CH 39)

20dB bandwidth(CH 78)

Am 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

6. MAXIMUM PEAK OUTPUT POWER

6.1 Test procedure

The transmitter antenna terminal is connected to the input of a Power Sensor. Measurement is made while EUT is operating in transmission mode at the appropriate center frequency. The maximum peak output power measurement is 30dBm.

Description	Model	Serial Number	Cal. Due Date
Power Meter	NRVS	849622/045	2012-01-27
Power Sensor	NRV-251	325948/013	2012-01-27
Bluetooth Tester	TC-3000A	3000A5B0298	2012-12-21
Dual Directional Coupler	778D	16502	2012-02-24
-Spectrum Analyzer <=> EUT	Loss: 1.0dB	_	

6.2 Measurement results

EUT	USB-HDP Dongle	MODEL	HD-200B
MODE	GFSK,8DPSK DH5	ENVIRONMENTAL CONDITION	24℃, 43%RH
INPUT POWER	110 V a.c.		

GFSK

CHANNEL	Channel		Peak Power Output(dBm)		PASS/
CHANNEL	Frequency (MHz)	(dBm)	(W)	(dBm)	FAIL
0	2402	-6.33	0.0002	30.0	PASS
39	2441	-6.65	0.0002	30.0	PASS
78	2480	-5.76	0.0003	30.0	PASS

8DPSK

CHANNEL	Channel		Peak Power Output(dBm)		PASS/
CHANNEL	Frequency (MHz)	(dBm)	(W)	(dBm)	FAIL
0	2402	-6.34	0.0002	30.0	PASS
39	2441	-6.28	0.0002	30.0	PASS
78	2480	-4.57	0.0003	30.0	PASS

Note: GFSK mode is max power in three different modulations.

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 16 of 57

PASS

7. Number of Hopping Frequency

7.1 Test procedure

According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5MHz bands shall use at least 75 hopping frequencies.

7.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 300KHz
- . VBW= 300KHz
- . Span= the frequency band of operation
- . Sweep= suitable duration based on the EUT specification.

The Number of Hopping Frequency Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2012-09-05
Bluetooth Tester	TC-3000A	3000A5B0298	2012-12-21
Dual Directional Coupler	778D	16502	2012-02-24
-Spectrum Analyzer <=> EUT	Loss: 1.0dB		

7.3 Measurement results

MODE FHSS ENVIRONMEN	TAI .
MIODE FROS CONDITION	26°C /13%BH
INPUT POWER 110 V a.c.	
Number of CH Limit (Number	of CH) PASS/FAIL

>75

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 17 of 57

EST-QP-20-01(1)-(F15)

79

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

7.4 Trace data

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 18 of 57

EST-QP-20-01(1)-(F15)

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

7.4 Trace data

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 19 of 57

8. Time of Occupancy (Dwell Time)

8.1 Test procedure

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

8.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 1MHz
- . VBW≥RBW
- . Span= zero span, centered on a hoppong channel
- . Sweep = as necessary to capture the entire dwell time per hoppong channel
- . Detector function = Peak
- . Trace = Max hold

The Time of Occupancy Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2012-09-05
Bluetooth Tester	TC-3000A	3000A5B0298	2012-12-21
Dual Directional Coupler	778D	16502	2012-02-24
-Spectrum Analyzer <=> EUT	Loss: 1.0dB	-	

8.3 Measurement results

EUT	USB-HDP Dongle	MODEL	HD-200B
MODE	FHSS	ENVIRONMENTAL CONDITION	26℃, 43%RH
INPUT POWER	110 V a.c.		

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 20 of 57

EST-QP-20-01(1)-(F15)

A. DH1 Mode

One peiod for each particular channel: 0.396 ms X 320.1 = 126.76 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
0	126.76	400	PASS

B. DH3 Mode

One peiod for each particular channel: 1.664 ms X 159.9 = 266.07 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
39	266.07	400	PASS

C. DH5 Mode

One peiod for each particular channel: 2.904 ms X 106.81 = 310.18 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
78	310.18	400	PASS

8.4 Trace data

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 21 of 57

Am 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

DH3

DH5

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 22 of 57

EST-QP-20-01(1)-(F15)

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

8DPSK

A. DH1 Mode

One peiod for each particular channel: 0.409 ms X 320.1 = 130.92 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
0	130.92	400	PASS

B. DH3 Mode

One peiod for each particular channel: 1.661 ms X 159.9 = 265.59 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
39	265.59	400	PASS

C. DH5 Mode

One peiod for each particular channel: 2.911 ms X 106.81 = 310.92 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
78	310.92	400	PASS

8.5 Trace data

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 23 of 57

Am 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

8DPSK

DH3

<u>DH5</u>

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 24 of 57

EST-QP-20-01(1)-(F15)

9. band-edge and out of band emissions.

9.1 Test procedure

The radio frequecy power at 20dB down from the highest inband power level is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The band edge&out of band emission shall be at least 20dB below of the highest inband power level.

9.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 100KHz
- . VBW= 100KHz
- . Span= suitable frequency span
- . Sweep= suitable duration based on the EUT specification.

Band Edge&Out of Emission Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2012-09-05
Bluetooth Tester	TC-3000A	3000A5B0298	2012-12-21
Dual Directional Coupler	778D	16502	2012-02-24
-Spectrum Analyzer <=> EUT	Loss: 1.0dB		

9.3 Measurement results of band-edge & out of emission

EUT	USB-HDP Dongle	MODEL	HD-200B
MODE	GFSK	ENVIRONMENTAL CONDITION	24℃, 43%RH
INPUT POWER	110 V a.c.		

* Refer to attach spectrum analyzer data chart.

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 25 of 57

9.4 Trace data of band-edge & Out of Emission

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 26 of 57

EST-QP-20-01(1)-(F15)

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

Hopping on

<u>CH78</u>

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

8DPSK

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 28 of 57

Hopping on

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 29 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

GFSK

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 30 of 57

CH 39

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 31 of 57

CH 78

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 32 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

8DPSK

CH 0

* Agilent Peak Search Mkr1 24.82 GHz Ref 5 dBm #Peak Atten 20 dB -64.08 dBm Next Peak Log 10 Next Pk Right dB/ Offst ďΒ Next Pk Left DI -21.0 dBm Min Search LgAv M1 S2 S3 FC Pk-Pk Search £(f): Marker FTun Mkr → CF 24.820000000 GHz -64.08 dBm More Center 17.50 GHz Span 15 GHz 1 of 2 Sweep 1.809 s (601 pts) #VBW 100 kHz

Report Number: ESTF151111-002, Web: www. estech. co. kr Pa

Page 33 of 57

CH 39

Report Number: ESTF151111-002, Web: www. estech. co. kr

CH 78

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 35 of 57

10. Measurement of radiated disturbance

Above 30 MHz Electric Field strength was measured in accordance with FCC Part 15 (2010). The test setup was made according to ANSI C 63.4 (2003) on an open test site, which allows a 3 m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8 m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESVS10	Rohde & Schwarz	838562/002	27-Jan-12
TEST Receiver	ESPI7	Rohde & Schwarz	100185	27-Jan-12
Spectrum Analyzer	R3273	ADVANTEST	110600592	27-Jan-12
LogBicon Antenna	VULB 9160	Schwarzbeck	3106	14-Apr-12
Amplifier	8447F	HP	2944A03711	11-Jan-12
Turn Table	2081-1.2M	EMCO	NONE	_
Antenna Mast	2070-1	EMCO	0005-2205	_
ANT Mast Controller	2090	EMCO	9612-1202	_
Horn Antenna	BBHA 9120 D	Schwarzbeck	352	22-Mar-12
PREAMPLIFIER	8449B	Agilent	3008A00595	27-Jan-12
Pyramidal Horn Antenna	3160-09	ETS-LINDGREN	00102642	7-Sep-12

10.2 Environmental Condition

Test Place : Open site(3 m)

Temperature (°C) : 10 °C

Humidity (% R.H.) : 66 % R.H.

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 36 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.3 Test Data for Bluetooth

Test Date: 26-Oct-11 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correctio	n Factor	Result Va	alue(Quasi-pe	eak)
(MHz)	, ,		(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
44.23	43.60	V	1.0	11.35	-25.45	40.00	29.50	10.50
58.98	40.50	V	1.0	11.20	-25.52	40.00	26.18	13.82
73.72	40.20	V	1.0	9.21	-24.64	40.00	24.77	15.23
147.45	38.50	Н	2.4	12.57	-24.06	43.50	27.02	16.48
162.20	37.20	Н	2.2	12.60	-23.59	43.50	26.21	17.29
176.94	39.50	Н	2.0	11.51	-23.52	43.50	27.49	16.01
206.43	36.00	Н	1.9	9.91	-23.32	43.50	22.59	20.91
250.67	38.50	Н	1.7	11.64	-22.95	46.00	27.18	18.82
339.14	36.50	Н	1.5	15.09	-22.82	46.00	28.77	17.23
398.13	37.50	Н	1.4	15.63	-23.96	46.00	29.17	16.83
486.60	37.40	Н	1.0	18.12	-24.20	46.00	31.32	14.68
560.33	36.00	Н	1.0	20.42	-23.62	46.00	32.80	13.20
663.55	34.20	Н	1.0	22.14	-23.03	46.00	33.31	12.69

H: Horizontal, V: Vertical

*Reading = receiver reading + Amplifier Gain

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 37 of 57

Remark

^{*}CL = Cable Loss-Amplifier Gain

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection

^{*}Checked in all 3 axis and the maximum measured data were reported in the report.

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.3-1 Test Data for Bluetooth(1.2)

Test Date: 21-Oct-11 Measurement Distance: 3 m

rest Date: 21-Oct-11 weastrement Distance: 311									
Frequency	Reading	Position	Height	Correction Factor		Result Value			
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB⊬V/m)	Result (dB⊮/m)	Margin (dB)	
Peak									
2390	24.52	Н	1.3	27.03	2.30	74.00	53.85	20.15	
2402	62.41	Н	1.3	27.06	2.30	ОВ	91.77	1	
4804	43.74	Н	1.3	31.47	-31.57	74.00	43.64	30.36	
2390	23.22	V	1.1	27.03	2.30	74.00	52.55	21.45	
2402	62.39	V	1.1	27.06	2.30	ОВ	91.75	-	
4804	44.98	V	1.1	31.47	-31.57	74.00	44.88	29.12	
		1	1	Averaç	ge				
2390	13.10	Н	1.3	27.03	2.30	54.00	42.43	11.57	
2402	61.15	Н	1.3	27.06	2.30	OB	90.51	_	
4804	30.20	Н	1.3	31.47	-31.57	54.00	30.10	23.90	
2390	12.98	V	1.1	27.03	2.30	54.00	42.31	11.69	
2402	60.96	V	1.1	27.06	2.30	ОВ	90.32	-	
4804	30.64	V	1.1	31.47	-31.57	54.00	30.54	23.46	
Remark	H: Horizontal, V: Vertical TEST MODE: Bluetooth-CH0(2402MHz) *The TX signal isn't detected from 3th harmonics. *OB = Operating band *CL = Cable Loss-Amplifier Gain(In case of above1000Mhz) *The resolution bandwidth and video bandwidth of spectrum analyzer is 1MHz and 10Hz for average detection at frequency above 1GHz. *Checked in all 3 axis and the maximum measured data were reported in the report.								

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 38 of 57

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.3-2 Test Data for Bluetooth(1.2)

Test Date: 21-Oct-11 Measurement Distance: 3 m

	Daadina	Dooition	l laight	Correctio	n Factor	Result Value			
Frequency (MHz)	Reading (dB≠V)	Position (V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB⊮/m)	Margin (dB)	
Peak									
2441	62.15	Н	1.1	27.15	2.30	ОВ	91.60	_	
4882	43.28	Н	1.1	31.63	-31.52	74.00	43.39	30.61	
2441	62.18	V	1.1	27.15	2.30	ОВ	91.63	-	
4882	42.98	V	1.1	31.63	-31.52	74.00	43.09	30.91	
				Avera	ge				
2441	59.47	Н	1.1	27.15	2.30	ОВ	88.92	1	
4882	31.21	Н	1.1	31.63	-31.52	54.00	31.32	22.68	
2441	60.50	V	1.1	27.15	2.30	ОВ	89.95	ı	
4882	31.14	V	1.1	31.63	-31.52	54.00	31.25	22.75	
Remark	H: Horizontal, V: Vertical TEST MODE: Bluetooth-CH39(2441MHz) *The TX signal isn't detected from 3th harmonics. *OB = Operating band *CL = Cable Loss-Amplifier Gain(In case of above1000Mhz) *The resolution bandwidth and video bandwidth of spectrum analyzer is 1MHz and 10Hz for average detection at frequency above 1GHz. *Checked in all 3 axis and the maximum measured data were reported in the report.								

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 39 of 57

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.3-3 Test Data for Bluetooth(1.2)

Test Date: 21-Oct-11 Measurement Distance: 3 m

	Daadina	Dooition	Llaiadat	Correctio	n Factor	Re	esult Value		
Frequency (MHz)	Reading (dB≠V)	Position (V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
Peak									
2480	63.53	Н	1.3	27.25	2.30	ОВ	93.08	_	
2483.5	25.39	Н	1.3	27.25	2.30	74.00	54.94	19.06	
4960	43.38	Н	1.3	31.78	-31.38	74.00	43.78	30.22	
2480	60.08	V	1.1	27.25	2.30	ОВ	89.63	_	
2483.5	23.62	V	1.1	27.25	2.30	74.00	53.17	20.83	
4960	42.95	V	1.1	31.78	-31.38	74.00	43.35	30.65	
		_		Avera	ge				
2480	61.64	Н	1.3	27.25	2.30	ОВ	91.19	_	
2483.5	20.23	Н	1.3	27.25	2.30	54.00	49.78	4.22	
4960	31.49	Н	1.3	31.78	-31.38	54.00	31.89	22.11	
2480	58.84	V	1.1	27.25	2.30	ОВ	88.39	_	
2483.5	17.72	V	1.1	27.25	2.30	54.00	47.27	6.73	
4960	31.20	V	1.1	31.78	-31.38	54.00	31.60	22.40	
Remark	H: Horizontal, V: Vertical TEST MODE: Bluetooth-CH78(2480MHz) *The TX signal isn't detected from 3th harmonics. *OB = Operating band *CL = Cable Loss-Amplifier Gain(In case of above1000Mhz) *The resolution bandwidth and video bandwidth of spectrum analyzer is 1MHz and 10Hz for average detection at frequency above 1GHz. *Checked in all 3 axis and the maximum measured data were reported in the report.								

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 40 of 57

Electromagnetic Interference Test Report

10.4 Restricted Band Edges for BT(1.2)

Band Edges(CH Low)

Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 41 of 57

Am 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

Band Edges(CH Low)

Detector mode:Peak

Polarity: Vertical

Detector mode: Average

Polarity:Vertical

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 42 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Band Edges(CH High)

Detector mode:Peak

Polarity:Horizontal

Detector mode: Average

Polarity: Horizontal

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 43 of 57

Rm 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

Band Edges(CH High)

Detector mode:Peak

Polarity: Vertical

Detector mode: Average

Polarity: Vertical

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 44 of 57

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.5 Test Data for Bluetooth(EDR)

Test Date: 21-Oct-11 Measurement Distance: 3 m

	Deading	Danitian	l la i a la t	Correctio	n Factor	Result Value					
Frequency (MHz)	Reading (dB#V)	Position (V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB⊮/m)	Margin (dB)			
	Peak(RBW:1 MHz VBW:1 MHz)										
2390	23.39	Н	1.3	27.03	2.30	74.00	52.72	21.28			
2402	60.86	Н	1.3	27.06	2.30	ОВ	90.22	_			
4804	42.62	Н	1.3	31.47	-31.57	74.00	42.52	31.48			
2390	22.72	Н	1.3	27.03	2.30	74.00	52.05	21.95			
2402	59.85	V	1.1	27.06	2.30	ОВ	89.21	_			
4804	43.01	V	1.1	31.47	-31.57	74.00	42.91	31.09			
			Averag	e(RBW:1 MF	dz VBW:10	Hz)					
2390	12.98	Н	1.3	27.03	2.30	54.00	42.31	11.69			
2402	58.75	Н	1.3	27.06	2.30	ОВ	88.11	_			
4804	30.15	Н	1.3	31.47	-31.57	54.00	30.05	23.95			
2390	12.96	Н	1.3	27.03	2.30	54.00	42.29	11.71			
2402	57.61	V	1.1	27.06	2.30	ОВ	86.97	_			
4804	30.50	V	1.1	31.47	-31.57	54.00	30.40	23.60			
Remark	H: Horizontal, V: Vertical TEST MODE: Bluetooth-CH0(2402MHz) *The TX signal isn't detected from 3th harmonics. *OB = Operating band *CL = Cable Loss-Amplifier Gain(In case of above1000Mhz) *The resolution bandwidth and video bandwidth of spectrum analyzer is 1MHz and 10Hz for average detection at frequency above 1GHz. *Checked in all 3 axis and the maximum measured data were reported in the report.										

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 45 of 57

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.5-1 Test Data for Bluetooth(EDR)

Test Date: 21-Oct-11 Measurement Distance: 3 m

	Reading	0 :::	11:11	Correctio	n Factor	Result Value					
Frequency (MHz)	Reading (dB₩)	Position (V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)			
	Peak(RBW:1 MHz VBW:1 MHz)										
2441	60.12	Н	1.1	27.15	2.30	ОВ	89.57	-			
4882	42.79	Н	1.1	31.63	-31.52	74.00	42.90	31.10			
2441	61.25	V	1.1	27.15	2.30	ОВ	90.70	-			
4882	41.96	V	1.1	31.63	-31.52	74.00	42.07	31.93			
			Averag	e(RBW:1 MF	dz VBW:10	Hz)					
2441	58.60	Н	1.1	27.15	2.30	ОВ	88.05	_			
4882	30.34	Н	1.1	31.63	-31.52	54.00	30.45	23.55			
2441	59.10	V	1.1	27.15	2.30	ОВ	88.55	_			
4882	30.41	V	1.1	31.63	-31.52	54.00	30.52	23.48			
Remark	H: Horizontal, V: Vertical TEST MODE: Bluetooth-CH39(2441MHz) *The TX signal isn't detected from 3th harmonics. *OB = Operating band *CL = Cable Loss-Amplifier Gain(In case of above1000Mhz) *The resolution bandwidth and video bandwidth of spectrum analyzer is 1MHz and 10Hz for average detection at frequency above 1GHz.										
	*Checked in al	II 3 axis and	the maxi	mum measured	d data were rej	ported in the repor	rt.				

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 46 of 57

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.5-2 Test Data for Bluetooth(EDR)

Test Date: 21-Oct-11 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	Correction Factor			esult Value		
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)		
Peak										
2480	60.83	Н	1.3	27.25	2.30	ОВ	90.38	_		
2483.5	24.21	Н	1.3	27.25	2.30	74.00	53.76	20.24		
4960	42.39	Н	1.3	31.78	-31.38	74.00	42.79	31.21		
2480	58.50	V	1.1	27.25	2.30	ОВ	88.05	_		
2483.5	23.57	V	1.1	27.25	2.30	74.00	53.12	20.88		
4960	42.24	V	1.1	31.78	-31.38	74.00	42.64	31.36		
		_		Averaç	ge		_	_		
2480	58.80	Н	1.3	27.25	2.30	ОВ	88.35	_		
2483.5	17.68	Н	1.3	27.25	2.30	54.00	47.23	6.77		
4960	30.15	Н	1.3	31.78	-31.38	54.00	30.55	23.45		
2480	57.77	V	1.1	27.25	2.30	ОВ	87.32	_		
2483.5	16.93	V	1.1	27.25	2.30	54.00	46.48	7.52		
4960	30.40	V	1.1	31.78	-31.38	54.00	30.80	23.20		
Remark	detection at fr	l isn't detect oss-Amplifien n bandwidth equency abo	ed from Ger Gain(In and vide	case of above o bandwidth o	*OB = Operat e1000Mhz) f spectrum and			age		

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 40 of 57

Electromagnetic Interference Test Report

10.6 Restricted Band Edges for BT(EDR)

Band Edges(CH Low)

Detector mode:Peak

Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Report Number: ESTF151111-002, Web: www.estech.co.kr

Page 48 of 57

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Band Edges(CH Low)

Detector mode:Peak

Polarity: Vertical

Detector mode: Average

Polarity: Vertical

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 49 of 57

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Band Edges(CH High)

Detector mode:Peak

Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 50 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Band Edges(CH High)

Detector mode:Peak

Polarity: Vertical

Detector mode: Average

Polarity: Vertical

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 51 of 57

Electromagnetic Interference Test Report

11. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC Part 15 (2010). The test setup was made according to ANSI C 63.4 (2003) in a shielded. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m.. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESHS 30	Rohde & Schwarz	828765/002	17-Dec-11
LISN	ESH2-Z5	POLARAD	872461/048	11-Jan-12
LISN	ESH3-Z5	Rohde & Schwarz	836679/025	27-Sep-12
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	21-Mar-12

11.2 Environmental Condition

Test Place : Shielded Room

Temperature (°C) : 20 ℃

Humidity (% R.H.) : 46 % R.H.

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 52 of 57

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

11.3 Test Data for Bluetooth

26-Oct-11 Test Date:

Frequency	Correction	on Factor	Line	Qı	uasi-peak Val	lue	Average Value		
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.15	0.10	0.35	Н	66.00	57.00	57.45	56.00	45.78	46.23
0.20	0.10	0.36	Н	63.61	30.67	31.13	53.61		
0.23	0.10	0.36	Н	62.45	45.19	45.65	52.45		
0.30	0.11	0.36	Н	60.24	38.55	39.02	50.24		
0.38	0.11	0.37	Н	58.28	31.61	32.09	48.28		
0.46	0.12	0.37	Н	56.69	36.54	37.03	46.69		
0.54	0.12	0.37	Н	56.00	35.32	35.81	46.00		
0.61	0.13	0.37	Н	56.00	37.03	37.53	46.00		
1.38	0.22	0.46	N	56.00	33.38	34.06	46.00		
1.46	0.15	0.46	Н	56.00	33.48	34.09	46.00		
2.08	0.24	0.44	N	56.00	33.88	34.56	46.00		
2.16	0.17	0.44	Н	56.00	34.90	35.51	46.00		
8.94	0.38	0.44	N	60.00	21.92	22.74	50.00		
10.48	0.41	0.52	N	60.00	26.36	27.29	50.00		
10.56	0.32	0.52	Н	60.00	26.92	27.77	50.00		
11.26	0.34	0.53	Н	60.00	25.86	26.73	50.00		
12.10	0.46	0.53	Ν	60.00	25.43	26.42	50.00		
12.19	0.36	0.53	Н	60.00	33.77	34.67	50.00		
Remark	H: Hot Line, N: Neutral Line Correction Factor = Lisn + Cable								

*Result = Correction Factor + Reading

Am 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

12. Photographs of test setup

12.1.Setup for Radiated Test : 30 ~ 1000 MHz

[Rear]

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 54 of 57

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

12.2. Setup for Radiated Test : Above 1000 MHz

[Rear]

Report Number : ESTF151111-002 , Web : www. estech. co. kr EST-QP-20-01(1)-(F15)

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

12.3. Setup for Conducted Test: 0.15 ~ 30 MHz

[Front]

[Rear]

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 56 of 57

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

12.4. Photographs of EUT

[Front]

[Rear]

Report Number: ESTF151111-002, Web: www. estech. co. kr Page 57 of 57

Appendix 1. Special diagram

*HOT

ES TECH 26 Oct 2011 17:20

HOT LINE

EUT: HD-200B

Manuf: H3 SYSTEM Co.,Ltd.

Op Cond: 120 V

Operator: Engineer J.H.Kim Test Spec: CLASS B

Comment:

Result File: 111102_h.dat : ESTF151111-002

Scan Settings (1 Range) Frequencies Receiver Settings Start IF BW Preamp OpRge Stop Step Detector M-Time Atten 10kHz OFF 60dB 150kHz 30MHz 0.8% PK+AV 10msec Auto

Final Measurement: Detectors: X QP / + AV

Meas Time: 1sec Subranges: 25 Acc Margin: 0 dB

*NEUTRAL

ES TECH 26 Oct 2011 17:13

NEUTRAL LINE

EUT: HD-200B

Manuf: H3 SYSTEM Co.,Ltd.

 Op Cond:
 120 V

 Operator:
 Engineer J.H.Kim

 Test Spec:
 CLASS B

Comment:

Result File: 111102_n.dat : ESTF151111-002

Scan Settings (1 Range) Frequencies Receiver Settings Start IF BW Step Preamp OpRge Stop Detector M-Time Atten 10msec 150kHz 30MHz 0.8% 10kHz PK+AV Auto OFF 60dB

Final Measurement: Detectors: X QP / + AV

Meas Time: 1sec Subranges: 25 Acc Margin: 0 dB

Appendix 2. Antenna Requirement

1. Antenna Requirement

1.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.24

1.2 Antenna Connected Construction

The antenna types used in this product are Intergrated Chip antenna. The maximum Gain of this antenna is -0.33 dBi.