(19) World Intellectual Property **Organization**

International Bureau

(43) International Publication Date 17 February 2005 (17.02.2005)

PCT

(10) International Publication Number WO 2005/014863 A1

(51) International Patent Classification⁷: C12N 15/01, A61K 39/395, C07K 14/47 C12Q 01/68,

Leura Grove, Hawthorn East, Victoria 3123 (AU). DAVY, Anne [FR/AU]; 76 Stanley Street, North Adelaide, South Australia 5006 (AU).

(21) International Application Number:

PCT/AU2004/001051

(22) **International Filing Date:** 6 August 2004 (06.08.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2003904154

7 August 2003 (07.08.2003) ΑU

- (71) Applicant (for all designated States except US): BIO-NOMICS LIMITED [AU/AU]; 31 Dalgleish Street, Thebarton, South Australia 5031 (AU).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MULLEY, John, Charles [AU/AU]; 13 Dunkley Avenue, Firle, South Australia 5046 (AU). HARKIN, Louise, Anne [AU/AU]; 12 Paddington Avenue, Northgate, South Australia 5085 (AU). DIBBENS, Leanne, Michelle [AU/AU]; 14 Trinity Street, College Park, South Australia 5069 (AU). PHILLIPS, Hilary, Anne [AU/AU]; 10 Witton Road, Port Noarlunga, South Australia 5167 (AU). HERON, Sarah, Elizabeth [AU/AU]; 8 Kinnaird Crescent, Highbury, South Australia 5089 (AU). BERKOVIC, Samuel, Frank [AU/AU]; 7 Polo Parade, Caulfield North, Victoria 3161 (AU). SCHEFFER, Ingrid, Eileen [AU/AU]; 3

- (74) Agent: GRIFFITH HACK; Level 10, 167 Eagle Street, Brisbane, Queensland 4000 (AU).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MUTATIONS IN ION CHANNELS

(57) Abstract: A method of identifying a subject predisposed to a disorder associated with ion channel dysfunction, comprising ascertaining whether at least one of the genes encoding ion channel subunits in said subject has undergone a mutation event as set forth in one of SEQ ID Numbers: 1-72.

MUTATIONS IN ION CHANNELS

Technical Field

The present invention is concerned with mutations in proteins having biological functions as ion channels and, more particularly, with such mutations where they are associated with diseases such as epilepsy and disorders associated with ion channel dysfunction including, but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, arrhythmias, episodic ataxia, migraine, Alzheimer's Parkinson's disease, schizophrenia, disease, anxiety, depression, phobic obsessive hyperekplexia, inflammatory neuropathic pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colour-blindness.

20 Background Art

10

15

25

30

Epilepsies constitute a diverse collection of brain disorders that affect about 3% of the population at some time in their lives (Annegers, 1996). An epileptic seizure can be defined as an episodic change in behaviour caused by the disordered firing of populations of neurons in the central nervous system. This results in varying degrees of involuntary muscle contraction and often a loss of consciousness. Epilepsy syndromes have been classified into more than 40 distinct types based upon characteristic symptoms, types of seizure, cause, age of onset and EEG patterns (Commission on Classification and Terminology of the International League Against Epilepsy, 1989). However the single feature that is common to all syndromes is the persistent increase in neuronal excitability that is both occasionally and unpredictably expressed as a seizure.

A genetic contribution to the aetiology of epilepsy has been estimated to be present in approximately 40% of

WO 2005/014863 PCT/AU2004/001051
- 2 -

(Gardiner, 2000). As epileptic affected individuals seizures may be the end-point of a number of molecular aberrations that ultimately disturb neuronal synchrony, genetic basis for epilepsy is likely heterogeneous. There are over 200 Mendelian diseases which include epilepsy as part of the phenotype. diseases, seizures are symptomatic of underlying neurological involvement such as disturbances in brain structure or function. In contrast, there are also a number of "pure" epilepsy syndromes in which epilepsy is the sole manifestation in the affected individuals. These are termed idiopathic and account for over 60% of all epilepsy cases.

5

10

15

20

25

30

35

Idiopathic epilepsies have been further divided into partial and generalized sub-types. Partial (focal or local) epileptic fits arise from localized cortical discharges, so that only certain groups of muscles are involved and consciousness may be retained. However, in generalized epilepsy, EEG discharge shows no focus such that all subcortical regions of the brain are involved. Although the observation that generalized epilepsies are frequently inherited is understandable, the mechanism by which genetic defects, presumably expressed constitutively in the brain, give rise to partial seizures is less clear.

The molecular genetic era has resulted in spectacular advances in classification, diagnosis and biological understanding of numerous inherited neurological disorders including muscular dystrophies, familial neuropathies and spinocerebellar degenerations. These disorders are all uncommon or rare and have simple Mendelian inheritance. In contrast, common neurological diseases like epilepsy, have complex inheritance where they are determined by multiple genes sometimes interacting with environmental influences. Molecular genetic advances in disorders with complex inheritance have been far more modest to date (Todd, 1999).

WO 2005/014863 PCT/AU2004/001051
- 3 -

5

10

15

20

25

30

35

Most of the molecular genetic advances have occurred by a sequential three stage process. First a clinically homogeneous disorder is identified and its mode inheritance determined. Second, linkage analysis is performed on carefully characterized clinical populations with the disorder. Linkage analysis is a process where the chromosomal localization of a particular disorder narrowed down to approximately 0.5% of the total genome. Knowledge of linkage imparts no intrinsic biological insights other than the important clue as to where to look in the genome for the abnormal gene. Third, strategies such as positional cloning or the positional candidate approach are used to identify the aberrant gene and its specific mutations within the linked region (Collins, 1995).

Linkage studies in disorders with complex inheritance have been bedevilled by negative results and by failure to frustration replicate positive findings. A sense of permeates current literature in the genetics of complex Carefully performed, large scale involving hundreds of sibpairs in disorders including multiple sclerosis and diabetes have been essentially negative (Bell and Lathrop, 1996; Lernmark and Ott, 1998). An emerging view is that such disorders are due to the of genes small effect many of identification of these genes may only be possible with very large-scale association studies. Such studies on a genome-wide basis are currently impossible to incomplete marker sets and computational limitations.

The idiopathic generalized epilepsies (IGE) are the most common group of inherited human epilepsy and do not have simple inheritance. Like other complex disorders, linkage studies in IGE have generated controversial and conflicting claims. Previous authors have suggested the possibility of multifactorial, polygenic, oligogenic or two locus models for the disease (Andermann, 1982; Doose

WO 2005/014863 PCT/AU2004/001051

5

10

15

20

25

30

and Baier, 1989; Greenberg et al., 1988a; 1992; Janz et al., 1992).

- 4 -

Two broad groups of IGE are now known - the classical idiopathic generalized epilepsies (Commission on Classification and Terminology of the International League Against Epilepsy, 1989) and the newly recognized genetic syndrome of generalized epilepsy with febrile seizures plus (GEFS⁺) (Scheffer and Berkovic, 1997; Singh et al., 1999).

The classical IGEs are divided into a number of clinically recognizable but overlapping sub-syndromes including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy etc (Commission on Classification and Terminology of the International League Against Epilepsy, 1989; Roger et al., 1992). The syndromes are identified by age of onset and the pattern of seizure types (absence, myoclonus and tonic-clonic). patients, particularly those withtonic-clonic seizures alone do not fit a specifically recognized subsyndrome. Arguments for regarding these as separate syndromes, yet recognizing that they are part of a neurobiological continuum, have been presented previously (Berkovic et al. 1987; 1994; Reutens and Berkovic, 1995).

GEFS⁺ was originally recognized through large multigeneration families and comprises a variety of subsyndromes. Febrile seizures plus (FS⁺) is a sub-syndrome where children have febrile seizures occurring outside the age range of 3 months to 6 years, or have associated febrile tonic-clonic seizures. Many family members have a phenotype indistinguishable from the classical febrile convulsion syndrome and some have FS⁺ with additional absence, myoclonic, atonic, or complex partial seizures. The severe end of the GEFS⁺ spectrum includes myoclonic-astatic epilepsy.

35 The cumulative incidence for epilepsy by age 30 years (proportion suffering from epilepsy at some time) is 1.5% (Hauser et al., 1993). Accurate estimates for the

WO 2005/014863 PCT/AU2004/001051
- 5 -

cumulative incidence of the IGEs are unavailable. epidemiological studies where attempts are to subclassify epilepsies, rather few cases of IGE are diagnosed, and many cases are unclassified. probably because cases are rarely directly examined by epileptologists. In clinic- or office-based series seen by experts, most cases are classifiable and IGEs account for about 25% of cases. This suggests that about 0.3% of the population suffer from IGE at some time.

5

20

25

30

35

10 In outbred populations many patients with classical IGE appear to be sporadic as siblings and parents are usually unaffected. Systematic EEG studies on clinically unaffected family members show an increase dependent occurrence ο£ generalized epileptiform 15 discharges compared to controls. In addition, approximate 0.3% of the population with clinical systematic EEG studies suggest that about 1% of healthy children have generalized epileptiform discharges while awake (Cavazzuti et al., 1980; Okubo et al., 1994).

Approximately 5-10% of first degree relatives classical IGE probands have seizures with affected relatives usually having IGE phenotypes orWhile nuclear families with 2-4 seizures. individuals are well recognized and 3 generation families or grandparent-grandchild pairs are occasionally observed (Italian League Against Epilepsy Genetic Collaborative Group, 1993), families with multiple affected individuals extending over 4 or more generations are exceptionally rare.

For GEFS⁺, however, a number of large multi-generation families showing autosomal dominant inheritance with incomplete penetrance are known. Similar to classical IGE, analysis of sporadic cases and small families with GEFS⁺ phenotypes does not suggest simple Mendelian inheritance. Indeed, bilineal inheritance, where there is a history of epilepsy on maternal and paternal sides, is observed in both GEFS⁺ and classical IGE families (Singh et al., 1999;

WO 2005/014863 PCT/AU2004/001051 - 6 -

Italian League Against Epilepsy Genetic Collaborative Group, 1993).

Within single families with classical IGE or GEFS+, affected individuals often have different sub-syndromes. The closer an affected relative is to the proband, the more similar are their sub-syndromes, and siblings often similar sub-syndromes (Italian League Against Genetic Collaborative Epilepsy Group, 1993). commonly, families are observed where most, or all, known affected individuals have one classical IGE sub-syndrome such as childhood absence epilepsy or juvenile myoclonic epilepsy (Italian Leaque Against Epilepsy Collaborative Group, 1993).

5

10

15

20

25

30

35

Importantly, sub-syndromes are identical in affected monozygous twins with IGE. In contrast, affected dizygous twins, may have the same or different sub-syndromes. Classical IGE and GEFS⁺ sub-syndromes tend to segregate separately (Singh et al., 1999).

In some inbred communities, pedigree analysis strongly recessive inheritance suggests for juvenile myoclonic epilepsy and other forms of IGE (Panayiotopoulos and Obeid, 1989; Berkovic et al., 2000). In such families, sub-syndromes are much more similar in affected siblings in affected sib-pairs from outbred families. Recently, a family with an infantile form of IGE with autosomal recessive inheritance, confirmed by linkage analysis, was described in Italy (Zara et al., 2000).

Most work on the molecular genetics of classical IGEs has been done on the sub-syndrome of juvenile myoclonic epilepsy where a locus in proximity or within the HLA region on chromosome 6p was first reported in 1988 (Greenberg et al., 1988b). This finding was supported by two collaborating laboratories, in separate patient samples, and subsequently three groups provided further evidence for a 6p locus for juvenile myoclonic epilepsy in some, but not all, of their families. However, genetic defects have not been found and the exact locus of the

WO 2005/014863 PCT/AU2004/001051 - 7 -

gene or genes, in relationship to the HLA region, remains controversial. Strong evidence for linkage to chromosome 6 also comes from a study of a single large family with juvenile myoclonic epilepsy, but in this pedigree the locus is well outside the HLA region. A locus on chromosome 15q has also been suggested for juvenile myoclonic epilepsy, but was not confirmed by two other studies.

5

10

15

20

25

30

35

In general, the results of studies of the putative chromosomal 6p locus in the HLA region in patients with absence epilepsies or other forms of idiopathic generalized epilepsies have been negative. The major exception is that study of probands with tonic-clonic seizures on awakening, a sub-syndrome closely related to juvenile myoclonic epilepsy, suggests linkage to 6p.

Linkage for classical remitting childhood absence epilepsy remains elusive, but in a family with persisting absence evolving into a juvenile myoclonic phenotype, linkage to chromosome 1p has been claimed. An Indian pedigree with persisting absence and tonic-clonic seizures may link to 8q24. Linkage to this region was also suggested by a non-parametric analysis in irrespective of subsyndrome, but was not confirmed in another study. Other loci for IGEs that have been reported in single studies include 3p14, 8p, 18 and possibly 5p. The unusual example of recessively inherited infantile onset IGE described in Italy maps to 16p in a single family.

Thus, like most disorders with complex inheritance, the literature on genetics of classical IGEs is confusing and contradictory. Some, and perhaps much, of this confusion is due to heterogeneity, with the likelihood of a number of loci for IGEs. The studies reviewed above were principally performed on multiple small families, so heterogeneity within and between samples is probable. Whether all, some, or none of the linkages reported above will be found to harbour relevant genes for IGE remains to

WO 2005/014863 PCT/AU2004/001051
- 8 -

be determined. Most of the studies reviewed above used analysis methods assuming Mendelian inheritance, an assumption that is not correct for outbred communities. Some studies used multiple models (autosomal recessive, autosomal dominant). Although parametric linkage analysis may be reliable in some circumstance of analyzing complex disease, it can lead to spurious findings as highlighted by the literature on linkage in major psychoses (Risch and Botstein, 1996).

5

10

15

20

25

30

35

In so far as GEFS⁺ is concerned, linkage analysis on rare multi-generation large families with clinical of major autosomal dominant gene have evidence a demonstrated loci on chromosomes 19q and 2q. Both the 19q and 2q GEFS+ loci have been confirmed in independently ascertained large families, and genetic defects have been identified. Families linked to 19q are known and a mutation in the gene for the β 1 subunit of the neuronal sodium channel (SCN1B) has been identified (Wallace et al., 1998). This mutation results in the loss of a critical disulphide bridge of this regulatory subunit and causes a loss of function in vitro. Families linked to 2q are also known and mutations in the pore-forming α subunit the neuronal channel sodium (SCN1A) have identified (PCT/AU01/01648; Wallace et al., 2001b; Escayg et al., 2000). Studies on the more common small families with GEFS⁺ have not revealed these or other mutations to date.

In addition to the SCN1B and SCN1A mutations in GEFS⁺, four other gene defects have been discovered for human idiopathic epilepsies through the study of large families. Mutations in the alpha-4 subunit of the neuronal nicotinic acetylcholine receptor (CHRNA4) occur in the focal epilepsy syndrome of autosomal dominant nocturnal frontal lobe epilepsy (Australian patent AU-B-56247/96; Steinlein et al., 1995). Mutations in the gamma-2 subunit of the GABAA receptor (GABRG2) have been identified in childhood absence epilepsy, febrile seizures (including febrile

WO 2005/014863 PCT/AU2004/001051
- 9 -

seizures plus) and myoclonic epilepsy (PCT/AU01/00729; Wallace et al., 2001a). Finally, mutations in two potassium channel genes (KCNQ2 and KCNQ3) were identified in benign familial neonatal convulsions (Singh et al., 1998; Biervert et al., 1998; Charlier et al., 1998). Although initially regarded as a special form of IGE, this unusual syndrome is probably a form of inherited focal epilepsy.

5

15

20

25

30

Further to these studies, mutations in other genes have been identified to be causative of epilepsy. These include mutations in the beta-2 subunit (CHRNB2) of the neuronal nicotinic acetylcholine receptor (PCT/AU01/00541; Phillips et al., 2001) and the delta subunit (GABRD) of the GABAA receptor (PCT/AU01/00729).

A number of mouse models approximating human IGE are known. These mice mutants have ataxia in addition to generalized spike-and-wave discharges with absences or tonic-clonic seizures. Recessive mutations in calcium channel subunit genes have been found in lethargic (CACNB4), tottering/leaner (CACNA1A), and stargazer (CACNG2) mutants. The slow-wave epilepsy mouse mutant has a mutation in the sodium/hydrogen exchanger gene, which may have important downstream effects on pH-sensitive ion channels.

The human and mouse literature is now suggesting that the idiopathic epilepsies comprise a family channelopathies with mutations in ion channel subunits of voltage-gated (eg SCN1A, SCN1B, KCNQ2, KCNQ3) or ligandgated (eg CHRNA4, CHRNB2, GABRG2, GABRD) types. channels are typically comprised of a number of subunits, specified by different chromosomes. genes on stoichiometry and conformation of ion channel subunits are not yet well understood, but many have multiple subunits in a variety of combinations.

The involvement of ion channels in other neuro/physiological disorders has also been observed (reviewed in Dworakowska and Dolowy, 2000). Mutations in

WO 2005/014863 - 10 -

voltage-gated sodium, potassium, calcium and chloride channels as well as ligand-gated channels such as the acetylcholine and GABA receptors may lead to physiological disorders such as hyper- and hypo-kalemic paralysis, myotonias, malignant hyperthermia, myasthenia and cardiac arrhythmias. Neurological disorders other than epilepsy that are associated with ion channel mutations include episodic ataxia, migraine, Alzheimer's disease, schizophrenia, Parkinson's disease, hyperekplexia, anxiety, depression, phobic obsessive symptoms, as well as neuropathic pain, inflammatory pain and chronic/acute pain. Some kidney disorders such as Bartter's syndrome, polycystic kidney disease and Dent's disease, secretion disorders such as hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, and vision disorders such congenital stationary night blindness and total colourblindness may also be linked to mutations in ion channels.

PCT/AU2004/001051

Disclosure of the Invention

5

10

15

20

25

30

- In a new genetic model for the idiopathic generalised epilepsies (IGEs) described in PCT/AU01/00872 (the disclosure of which is incorporated herein by reference) it has been postulated that most classical IGE and GEFS+ cases are due to the combination of two mutations in multi-subunit ion channels. These are typically point mutations resulting in a subtle change of function. The critical postulate is that two mutations, usually, but not exclusively, in different subunit alleles ("digenic model"), are required for clinical expression of IGE. It was further proposed that
 - a) A number of different mutated subunit pairs can be responsible for IGE. Combinations of two mutated subunits lead to an IGE genotype with ~30% penetrance.
- 35 b) The total allele frequency of mutated subunits is ~8%. It was calculated that approximately 15% of the population has one or more mutated

- 11 -

WO 2005/014863

5

10

15

20

25

30

35

subunit genes and 1% have two or more mutated subunits.

PCT/AU2004/001051

- c) Sub-syndromes are principally determined by the specific combination of mutated subunit pairs, although one or more other genes, including ion channel subunits, of smaller effect may modify the phenotype.
- d) Mutated subunit combinations that cause classical IGEs are largely separate from those that cause GEFS⁺, although some subunits may be involved in both syndromes.
- e) Individuals with single 'change of function' mutations would not have IGE, but such mutations may contribute to simple febrile seizures, which are observed with increased frequency in relatives of IGE probands.

The model also proposes that subunit mutations with severe functional consequences (eg breaking disulphide bridge in SCN1B or amino acid substitution in the pore forming regions of SCN1A for GEFS+) cause autosomal dominant generalized epilepsies with penetrance of 60-90%. The precise sub-syndromes in GEFS $^+$ are determined by minor allelic variation or mutations in other ion channel subunits. Such "severe" mutations are rare (allele frequency <0.01%) and are infrequent causes of GEFS⁺. They very rarely, or perhaps never, cause classical IGE.

The identification of molecular changes in ion channel subunits is therefore a significant step towards the elucidation of genetic variants that alone or in combination (based on the digenic model) give rise to an epilepsy phenotype, and to other neuro/physiological disorders associated with ion channel dysfunction.

The present inventors have identified a number of novel mutations or variants in genes encoding subunits of ion channels in individuals with epilepsy. It will be appreciated that for each molecular defect one can provide

WO 2005/014863 PCT/AU2004/001051
- 12 -

an isolated nucleic acid molecule coding for a protein having a biological function as part of an ion channel in a mammal, wherein a mutation event selected from the group consisting of point mutations, deletions, insertions and rearrangements has occurred so as to affect the functioning of the ion channel. In some instances this single mutation alone will produce a phenotype of epilepsy or other neuro/physiological disorders associated with ion channel dysfunction.

5

10

15

20

25

30

35

In the case where a single mutation alone does not say, an epilepsy phenotype, there would be provided one or more additional isolated nucleic acid molecules coding for proteins having a biological function as part of an ion channel in a mammal, wherein a mutation event selected from the group consisting of mutations, deletions, insertions and rearrangements has occurred so as to affect the functioning of the channel. The cumulative effect of the mutations in each isolated nucleic acid molecule in vivo is to produce a epilepsy or another neuro/physiological disorders in said mammal. The mutations may be in nucleic acid molecules coding for protein subunits belonging to the same ion channel or may be in nucleic acid molecules coding for protein subunits that belong to different ion channels.

Typically such mutations are point mutations and the ion channels are voltage-gated channels such as a sodium, potassium, calcium or chloride channels or are ligand-gated channels such as members of the nAChR/GABA super family of receptors, or a functional fragment or homologue thereof.

Mutations may include those in non-coding regions of the ion channel subunits (eg mutations in the promoter region which affect the level of expression of the subunit gene, mutations in intronic sequences which affect the correct splicing of the subunit during mRNA processing, or mutations in the 5' or 3' untranslated regions that can affect translation or stability of the mRNA). Mutations

may also and more preferably will be in coding regions of the ion channel subunits (eg nucleotide mutations may give rise to an amino acid change in the encoded protein or nucleotide mutations that do not give rise to an amino acid change but may affect the stability of the mRNA).

Mutation combinations may be selected from, but are not restricted to, those identified in Table 1.

Accordingly in one aspect of the present invention there is provided a method of identifying a subject predisposed to a disorder associated with ion channel dysfunction, comprising ascertaining whether at least one of the genes encoding ion channel subunits in said subject has undergone a mutation event selected from the group consisting of the mutation events set forth in following Table:

5

10

15

	TOTTOWING	rabie.	
_	Subunit Gene	Exon/Intron	DNA Mutation
•	SCN1A	Exon 5	c664C→T
	SCN1A	Exon 8	c1152G→A
	SCN1A	Exon 9	c1183G→C
	SCN1A	Exon 9	c1207T→C
	SCN1A	Exon 9	c1237T→A
	SCN1A	Exon 9	c1265T→A
	SCN1A	Exon 21	c4219C→T
	SCN1A	Exon 26	c5339T→C
	SCN1A	Exon 26	c5674C→T
	SCN1B	Exon 3	c254G→A
	SCN2A	Exon 6A	c668G→A
	SCN2A	Exon 16	c2674G→A
	SCN2A	Exon 17	c3007C→A
	SCN2A	Exon 19	c3598A→G
	SCN2A	Exon 20	c3956G→A
	SCN2A	Exon 12	c1785T→C
	SCN2A	Exon 27	c4919T→A
	SCN1A	Intron 9	IVS9-1G→A
	SCN1A	Intron 23	IVS23+33G→A
	SCN2A	Intron 7	IVS7+61T→A
	SCN2A	Intron 19	IVS19-55A→G
	SCN2A	Intron 22	IVS22-31A→G
	SCN2A	Intron 2	IVS2-28G→A
	SCN2A	Intron 8	IVS8-3T→C
	SCN2A	Intron 11	IVS11+49A→G
	SCN2A	Intron 11	IVS11-16C→T

WO 2005/014863 PCT/AU2004/001051

- 14 -

CCNION	Intron 17	TW01E E1
SCN2A	Intron 17	IVS17-71C→T IVS17-74de1G
SCN2A SCN2A	Intron 17 Intron 17	IVSI7-74deIG IVS17-74insG
CHRNA5	Exon 4	C400G→A
CHRNA2	Exon 4	C373G→A
CHRNA3	Exon 2	c110G→A
CHRNA2	Exon 4	
CHRNA2	Exon 5	c351C→T
CHRNA3	Exon 2	c771C→T
CHRNA3	Exon 4	c159A→G
CHRNA3	Exon 4	c291G→A
CHRNA2	Intron 3	c345G→A
	Intron 3	IVS3-16C→T
CHRNA3	-	IVS3-5T→C
CHRNA3	Intron 4	IVS4+8G→C
KCNQ2 KCNQ2	Exon 1 Exon 1	c204-c205insC
KCNQ2 KCNQ2	Exon 1	c1A→G
	Exon 8	c2T→C
KCNQ2		c1057C→G
KCNQ2	Exon 11 Exon 14	c1288C→T
KCNQ2		c1710A→T
KCNQ2	Exon 15	c1856T→G
KCNQ2	Intron 9 Intron 11	IVS9+(46-48)delCCT
KCNQ3	Intron 12	IVS11+43G→A
KCNQ3	Exon 5	IVS12+29G→A
GABRB1		c508C→T
GABRB1	Exon 9	c1329G→A
GABRB1	Exon 8	c975C→T
GABRG3	Exon 8	c995T→C
GABRA1	5' UTR	c−142A→G
GABRA1	5' UTR	c−31C→T
GABRA2	3' UTR	c1615G→A
GABRA5	5' UTR	c-271G→C
GABRA5	5' UTR	c-228A→G
GABRA5	5' UTR	c-149G→C
GABRB2	5' UTR	c-159C→T
GABRB2	3' UTR	c1749C→T
GABRPi	5' UTR	$c-101C \rightarrow T$
GABRB1	Intron 1	IVS1+24T→G
GABRB1	Intron 6	IVS6+72T→G
GABRB1	Intron 7	IVS7-34A→G
GABRB3	Intron 1	IVS1-14C→T
GABRB3	Intron 7	IVS7+58delAA
GABRD	Intron 6	IVS6+132insC
GABRD	Intron 6	IVS6+130insC
GABRD	Intron 6	IVS6+73delCGCGCCCACCGCCCTTCCGCG
GABRG3	Intron 8	IVS8-102C→T

In a further aspect there is provided a method of identifying a subject predisposed to a disorder associated with ion channel dysfunction, comprising ascertaining whether at least one of the genes encoding ion channel subunits in said subject has undergone a mutation event as set forth in one of SEQ ID Numbers: 1-72.

5

10

In another aspect of the present invention there is provided an isolated nucleic acid molecule encoding a mutant or variant ion channel subunit wherein a mutation event selected from the group consisting of the mutation events set forth in the following Table:

events set	forth in the	following Table:
Subunit	Exon/Intron	DNA Mutation
Gene		DM1 Fideacton
SCN1A	Exon 5	c664C→T
SCN1A	Exon 8	c1152G→A
SCN1A	Exon 9	c1183G→C
SCN1A	Exon 9	c1207T→C
SCN1A	Exon 9	c1237 T→ A
SCN1A	Exon 9	c1265 T→ A
SCN1A	Exon 21	c4219C→T
SCN1A	Exon 26	c5339 T→ C
SCN1A	Exon 26	c5674C→T
SCN1B	Exon 3	c254G→A
SCN2A	Exon 6A	c668G→A
SCN2A	Exon 16	c2674G→A
SCN2A	Exon 17	c3007C→A
SCN2A	Exon 19	c3598A→G
SCN2A	Exon 20	c3956G→A
SCN2A	Exon 12	c1785T→C
SCN2A	Exon 27	c4919T→A
SCN1A	Intron 9	IVS9-1G→A
SCN1A	Intron 23	IVS23+33G→A
SCN2A	Intron 7	IVS7+61T→A
SCN2A	Intron 19	IVS19-55A-→G
SCN2A	Intron 22	IVS22-31A→G
SCN2A	Intron 2	IVS2-28G→A
SCN2A	Intron 8	IVS8-3T→C
SCN2A	Intron 11	IVS11+49A→G
SCN2A	Intron 11	IVS11-16C→T
SCN2A	Intron 17	IVS17-71C→T
SCN2A	Intron 17	IVS17-74delG
SCN2A	Intron 17	IVS17-74insG
CHRNA5	Exon 4	c400G→A
CHRNA2	Exon 4	c373G→A

- 16 -

CHRNA3	Exon 2	c110G→A
CHRNA2	Exon 4	c351C→T
CHRNA2	Exon 5	c771C→T
CHRNA3	Exon 2	c159A→G
CHRNA3	Exon 4	c291G→A
CHRNA3	Exon 4	c345G→A
CHRNA2	Intron 3	IVS3-16C→T
CHRNA3	Intron 3	IVS3-5T→C
CHRNA3	Intron 4	IVS4+8G→C
KCNQ2	Exon 1	c204-c205insC
KCNQ2	Exon 1	c1A→G
KCNQ2	Exon 1	c2T→C
KCNQ2	Exon 8	c1057C→G
KCNQ2	Exon 11	c1288C→T
KCNQ2	Exon 14	c1710A→T
KCNQ2	Exon 15	c1856T→G
KCNQ2	Intron 9	IVS9+(46-48)delCCT
KCNQ3	Intron 11	IVS11+43G→A
KCNQ3	Intron 12	IVS12+29G→A
GABRB1	Exon 5	c508C→T
GABRB1	Exon 9	c1329G→A
GABRB1	Exon 8	c975C→T
GABRG3	Exon 8	c995T → C
GABRA1	5' UTR	c-142A→G
GABRA1	5' UTR	c-31C→T
GABRA2	3' UTR	c1615G→A
GABRA5	5' UTR	c-271G→C
GABRA5	5' UTR	c-228A→G
GABRA5	5' UTR	c-149G→C
GABRB2	5' UTR	c-159C→T
GABRB2	3' UTR	c1749C→T
GABRPi	5' UTR	$c-101C \rightarrow T$
GABRB1	Intron 1	IVS1+24T→G
GABRB1	Intron 6	IVS6+72T→G
GABRB1	Intron 7	IVS7-34A→G
GABRB3	Intron 1	IVS1-14C→T
GABRB3	Intron 7	IVS7+58delAA
CNDDD	Intro-	T170 C \ 1 0 0 \
GABRD GABRD	Intron 6 Intron 6	IVS6+132insC
GABRD	Intron 6	IVS6+130insC IVS6+73delCGCGCCCACCGCCCTTCCGCG
GABRG3	Intron 8	
		IVS8-102C→T

has occurred.

In still another aspect of the present invention there is provided an isolated nucleic acid molecule encoding a mutant or variant ion channel subunit wherein a WO 2005/014863 PCT/AU2004/001051 - 17 -

5

10

15

20

25

30

35

mutation event has occurred as set forth in one of SEQ ID Numbers: 1-72.

The mutation event disrupts the functioning of an ion channel so as to produce a phenotype of epilepsy, and/or one or more other disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic migraine, Alzheimer's disease, Parkinson's ataxia, hyperekplexia, schizophrenia, disease, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, kidney disease, Dent's polycystic hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colourblindness, either alone or in combination with one or more additional mutations or variations in the ion channel subunit genes.

In another aspect of the present invention there is provided an isolated nucleic acid molecule encoding a mutant KCNQ2 subunit, wherein the mutation event has occurred in the C-terminal domain of the KCNQ2 subunit and leads to a disturbance in the calmodulin binding affinity of the subunit, so as to produce an epilepsy phenotype.

In one form of the invention, the mutations are in exon 8 or exon 15 of the KCNQ2 subunit and result in the replacement of an arginine residue with a glycine residue at amino acid position 353, or the replacement of a leucine residue with an arginine at amino acid position 619. The R353G mutation occurs as a result of a C to G nucleotide substitution at position 1057 of the KCNQ2 coding sequence as shown in SEQ ID NO: 44. The L619R mutation occurs as a result of a T to G nucleotide substitution at position 1856 of the KCNQ2 coding sequence as shown in SEQ ID NO: 47.

In a further form of the invention, the mutations are in exon 11 or exon 14 of the KCNQ2 subunit and result in

WO 2005/014863 PCT/AU2004/001051
- 18 -

the replacement of an arginine residue with a stop codon at amino acid position 430, or the replacement of an arginine residue with a serine at amino acid position 570. The R430X mutation occurs as a result of a C to T nucleotide substitution at position 1288 of the KCNQ2 coding sequence as shown in SEQ ID NO: 45. The R570S mutation occurs as a result of an A to T nucleotide substitution at position 1710 of the KCNQ2 coding sequence as shown in SEQ ID NO: 46.

Preferably these mutations create a phenotype of benign familial neonatal seizures (BFNS).

10

15

20

25

30

35

In a further aspect of the present invention there is provided a combination of two or more isolated nucleic acid molecules each having a novel mutation event as laid out in Table 1. The cumulative effect of the mutations in each isolated nucleic acid molecule *in vivo* is to produce an epilepsy or another disorder associated with ion channel dysfunction as described above in said mammal.

In a particularly preferred embodiment of the present invention, the isolated nucleic acid molecules have a nucleotide sequence as shown in any one of SEQ ID Numbers: 1-72. The sequences correspond to the novel DNA mutations or variants laid out in Table 1.

In another aspect of the present invention there is provided an isolated nucleic acid molecule comprising any one of the nucleotide sequences set forth in SEQ ID Numbers: 1-72.

In another aspect of the present invention there is provided an isolated nucleic acid molecule consisting of any one of the nucleotide sequences set forth in SEQ ID Numbers: 1-72.

The nucleotide sequences of the present invention can be engineered using methods accepted in the art for a variety of purposes. These include, but are not limited to, modification of the cloning, processing, and/or expression of the gene product. PCR reassembly of gene fragments and the use of synthetic oligonucleotides allow

- 19 -

PCT/AU2004/001051

WO 2005/014863

5

10

15

20

25

30

35

the engineering of the nucleotide sequences of the present invention. For example, oligonucleotide-mediated site-directed mutagenesis can introduce further mutations that create new restriction sites, alter expression patterns and produce splice variants etc.

As a result of the degeneracy of the genetic code, a number of polynucleotide sequences, some that may have minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention includes each and every possible variation of a polynucleotide sequence that could be made selecting combinations based on possible codon choices. combinations are made in accordance with standard triplet genetic code as applied the polynucleotide sequences of the present invention, and all such variations are to be considered as being specifically disclosed.

The nucleic acid molecules of this invention typically DNA molecules, and include cDNA, genomic DNA, synthetic forms, and mixed polymers, both sense antisense strands, and may be chemically or biochemically may contain non-natural or modified, orderivatised nucleotide bases as will be appreciated by those skilled the art. Such modifications include labels, intercalators, alkylators methylation, and modified linkages. In some instances it may be advantageous to produce nucleotide sequences possessing a substantially different codon usage than that of the polynucleotide sequences of the present invention. For example, codons may be selected to increase the rate of expression of the peptide in a particular prokaryotic or eukaryotic host corresponding with the frequency that particular codons are utilized by the host. Other reasons to alter the nucleotide sequence without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater halfWO 2005/014863 PCT/AU2004/001051
- 20 -

life, than transcripts produced from the naturally occurring mutated sequence.

The invention also encompasses production of nucleic acid sequences of the present invention entirely by synthetic chemistry. Synthetic sequences may be inserted into expression vectors and cell systems that contain the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements may include regulatory sequences, promoters, 5' and 3' untranslated regions and specific initiation signals (such as an ATG initiation codon and Kozak consensus sequence) which allow more efficient translation of sequences encoding the polypeptides of the present invention. In cases where the complete coding sequence, including the initiation codon and upstream regulatory sequences, are inserted into the appropriate expression vector, additional control signals may not be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals as described above should be provided by the vector. Such signals may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used (Scharf et al., 1994).

10

15

20

25

30

35

The invention also includes nucleic acid molecules that are the complements of the sequences described herein.

The present invention allows for the preparation of purified polypeptide or protein from the polynucleotides of the present invention, or variants thereof. In order to do this, host cells may be transformed with a novel nucleic acid molecule as described above, or with nucleic acid molecules encoding two or more mutant ion channel subunits. If the mutant subunits form a part of the same ion channel a receptor protein containing two or more mutant subunits may be isolated. If the mutant subunits are subunits of different ion channels the host cells will

WO 2005/014863 PCT/AU2004/001051
- 21 -

express two or more mutant receptor proteins. Typically said host cells are transfected with an expression vector comprising a DNA molecule according to the invention or, in particular, DNA molecules encoding two or more mutant ion channel subunits. A variety of expression vector/host systems may be utilized to contain and express sequences encoding polypeptides of the invention. These include, but limited to, microorganisms such as transformed with plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; cell systems infected with viral expression vectors (e.g., baculovirus); or mouse or other animal or human tissue cell systems. Mammalian cells can also be used to express a protein using a vaccinia virus expression system. invention is not limited by the host cell or vector employed.

5

10

15

20

25

30

35

The polynucleotide sequences, or variants thereof, of the present invention can be stably expressed in cell lines to allow long term production of recombinant proteins in mammalian systems. Sequences encoding polypeptides of the present invention can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. The selectable marker confers resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode a protein may be designed to contain signal sequences which direct secretion of the protein through a prokaryotic or eukaryotic cell membrane.

WO 2005/014863 PCT/AU2004/001051
- 22 -

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences to process the expressed protein in the fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, glycosylation, acylation. phosphorylation, and Post-translational cleavage of a "prepro" form of the protein may also be specify protein targeting, folding, activity. Different host cells having specific cellular machinery and characteristic mechanisms for translational activities (e.g., CHO or HeLa cells), available from the American Type Culture Collection (ATCC) and may be chosen to ensure the correct modification and processing of the foreign protein.

5

10

15

20

25

30

35

When large quantities of the protein product of the gene are needed, such as for antibody production, vectors which direct high levels of expression of this protein may be used, such as those containing the T5 or T7 inducible bacteriophage promoter. The present invention also includes the use of the expression systems described above in generating and isolating fusion proteins which contain important functional domains of the protein. These fusion proteins are used for binding, structural and functional studies as well as for the generation of appropriate antibodies.

In order to express and purify the protein as a fusion protein, the appropriate cDNA sequence is inserted a vector which contains a nucleotide encoding another peptide (for example, glutathionine succinyl transferase). The fusion protein is expressed and recovered from prokaryotic or eukaryotic cells. The fusion protein can then be purified by affinity chromatography based upon the fusion vector sequence. The desired protein is then obtained by enzymatic cleavage of the fusion protein.

Fragments of the polypeptides of the present invention may also be produced by direct peptide synthesis

WO 2005/014863 PCT/AU2004/001051
- 23 -

5

10

15

20

25

30

35

using solid-phase techniques. Automated synthesis may be achieved by using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of this protein may be synthesized separately and then combined to produce the full-length molecule.

The present invention is also concerned with polypeptides having a biological function as an ion channel in a mammal, wherein a mutation event selected from the group consisting of substitutions, deletions, truncations, insertions and rearrangements has occurred so as to affect the functioning of the ion channel. In some instances this single mutation alone will produce an epilepsy phenotype or other neuro/physiological disorders associated with ion channel dysfunction.

In the case where a single mutation alone does not produce, say, an epilepsy phenotype, there would be additional isolated one more mammalian provided orpolypeptides having biological functions as part of an ion channel in a mammal, wherein a mutation event selected from the group consisting of substitutions, deletions, truncations, insertions and rearrangements has occurred so as to affect the functioning of the ion channel. cumulative effect of the mutations in each mammalian polypeptide in vivo being to produce epilepsy or another neuro/physiological disorder in said mammal. The mutations may be in polypeptide subunits belonging to the same ion channel as described above, but may also be in polypeptide subunits that belong to different ion channels.

Typically the mutation is an amino acid substitution and the ion channel is a voltage-gated channel such as a sodium, potassium, calcium or chloride channel or a ligand-gated channel such as a member of the nAChR/GABA super family of receptors, or a functional fragment or homologue thereof.

Mutation combinations may be selected from, but are not restricted to, those represented in Table 1.

Accordingly, in a further aspect of the present invention there is provided an isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit wherein a mutation event selected from the group consisting of the mutation events set forth in the following Table:

g	rabre:	
	Subunit	Amino Acid Change
_	Gene	
	SCN1A	R222X
	SCN1A	W384X
	SCN1A	A395P
	SCN1A	F403L
	SCN1A	Y413N
	SCN1A	V422E
	SCN1A	R1407X
	SCN1A	M1780T
	SCN1A	R1892X
	SCN1B	R85H
	SCN2A	R223Q
	SCN2A	V892I
	SCN2A	L1003I
	SCN2A	T1200A
	SCN2A	R1319Q
	CHRNA5	V134I
	CHRNA2	A125T
	CHRNA3	· R37H
	KCNQ2	K69fsX119
	KCNQ2	MlV
	KCNQ2	MlT
	KCNQ2	R353G
	KCNQ2	R430X
	KCNQ2	R570S
	KCNQ2	L619R

has occurred.

10

15

In a further aspect of the invention there is provided an isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit wherein a mutation event has occurred such that the polypeptide has the amino acid sequence set forth in one of SEQ ID Numbers: 73-95. The mutation event disrupts the functioning of an ion channel so as to produce a phenotype of epilepsy, and/or one or more other disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic

ataxia, migraine, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis,

congenital stationary night blindness and total colour-

- 25 -

PCT/AU2004/001051

WO 2005/014863

blindness.

5

10

15

20

25

30

35

In a particularly preferred embodiment of the present invention, the isolated polypeptide has an amino acid sequence as shown in any one of SEQ ID Numbers: 73-95. The sequences correspond to the novel amino acid changes laid out in Table 1 for those instances where the DNA mutation results in an amino acid change.

According to still another aspect of the present invention there is provided an isolated polypeptide, said polypeptide being a mutant KCNQ2 subunit, wherein the mutation event has occurred in the C-terminal domain of the KCNQ2 subunit and leads to a disturbance in the calmodulin binding affinity of the subunit, so as to produce an epilepsy phenotype.

In one form of the invention the mutations are substitutions in which an arginine residue is replaced with a glycine residue, or a leucine residue is replaced with an arginine. Preferably the substitutions are R353G and L619R transitions as illustrated by SEQ ID NOS: 92 and 95 respectively.

In a further form of the invention the mutations result in the replacement of an arginine for a stop codon, or an arginine is replaced with a serine. Preferably the mutations are R430X and R570S transitions as illustrated by SEQ ID NOS: 93 and 94 respectively.

In a still further aspect of the present invention there is provided a combination of two or more isolated polypeptides each having a novel mutation event as laid out in Table 1. The cumulative effect of the mutations in each isolated polypeptide molecule *in vivo* is to produce

WO 2005/014863 PCT/AU2004/001051
- 26 -

an epilepsy or another disorder associated with ion channel dysfunction as described above in said mammal.

In a particularly preferred embodiment of the present invention, the isolated polypeptides have an amino acid sequence as shown in any one of SEQ ID Numbers: 73-95. The sequences correspond to the novel amino acid changes laid out in Table 1.

5

10

15

20

25

30

35

According to still another aspect of the present invention there is provided an isolated polypeptide comprising the amino acid sequence set forth in any one of SEQ ID Numbers: 73-95.

According to still another aspect of the present invention there is provided a polypeptide consisting of the amino acid sequence set forth in any one of SEQ ID Numbers: 73-95.

According to still another aspect of the present invention there is provided a method of preparing a polypeptide, comprising the steps of:

- (1) culturing host cells transfected with an expression vector comprising a nucleic acid molecule as described above under conditions effective for polypeptide production; and
- (2) harvesting the mutant ion channel subunit.

The mutant ion channel subunit may be allowed to assemble with other subunits constituting the channel that are either wild-type or themselves mutant subunits, whereby the assembled ion channel is harvested.

According to still another aspect of the invention there is provided a polypeptide which is the product of the process described above.

Substantially purified protein or fragments thereof can then be used in further biochemical analyses to establish secondary and tertiary structure. Such methodology is known in the art and includes, but is not restricted to, X-ray crystallography of crystals of the proteins or of the assembled ion channel incorporating the proteins or by nuclear magnetic resonance (NMR).

WO 2005/014863 PCT/AU2004/001051
- 27 -

Determination of structure allows for the rational design of pharmaceuticals to interact with the ion channel as a whole or through interaction with a specific subunit protein (see drug screening below), alter the overall ion channel protein charge configuration or charge interaction with other proteins, or to alter its function in the cell.

It will be appreciated that the mutant ion channel subunits included as part of the present invention will be useful in further applications which include a variety of hybridisation and immunological assays to screen for and detect the presence of either a normal or mutated gene or gene product. The invention enables therapeutic methods for the treatment of epilepsy as well as other disorders associated with ion channel dysfunction and also enables methods for the diagnosis or prognosis of epilepsy as well other disorders associated as with ion channel dysfunction.

Therapeutic Applications

10

15

20

25

30

35

According to still another aspect of the invention there is provided a method of treating epilepsy as well as other disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness ortotal colour-blindness, comprising administering a selective antagonist, agonist or modulator of an ion channel or ion channel subunit, when the ion channel contains a mutation in a subunit comprising the channel, as described above, to a subject in need of such treatment. Said mutation event may be causative of the

WO 2005/014863 PCT/AU2004/001051
- 28 -

disorder when expressed alone or when expressed in combination with one or more additional mutations in subunits of the same or different ion channels, which are typically those identified in Table 1.

5

10

15

20

25

30

35

In still another aspect of the invention there is provided the use of a selective antagonist, agonist or modulator of an ion channel or ion channel subunit when ion channel contains a mutation in a comprising the channel, as described above, said mutation being causative of epilepsy as well as other disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, arrhythmias, episodic ataxia, migraine, Alzheimer's Parkinson's disease, disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness, when expressed alone or when expressed in combination with a second mutation in a subunit of the same or different ion channel, as described above, in the manufacture of a medicament for the treatment of the disorder.

In one aspect, a suitable antagonist, agonist or modulator will restore wild-type function to the ion channel or channels containing the mutations of the present invention, or will negate the effects the mutant channel or channels have on cell function.

Using methods well known in the art, a mutant ion channel may be used to produce antibodies specific for the mutant channel that is causative of the disease or to screen libraries of pharmaceutical agents to identify those that bind the mutant ion channel.

In one aspect, an antibody, which specifically binds to a mutant ion channel or mutant ion channel subunit of

the invention, may be used directly as an agonist, antagonist or modulator, or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to

- 29 -

PCT/AU2004/001051

WO 2005/014863

5

10

15

20

25

30

35

cells or tissues that express the mutant ion channel.

In a still further aspect of the invention there is provided an antibody which is immunologically reactive with a polypeptide as described above, but not with a

wild-type ion channel or ion channel subunit thereof.

In particular, there is provided an antibody to an assembled ion channel containing a mutation in a subunit comprising the channel, which is causative of epilepsy or another disorder associated with ion channel dysfunction when expressed alone or when expressed in combination with one or more other mutations in subunits of the same or different ion channels. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies as would be understood by the person skilled in the art.

For the production of antibodies, various hosts including rabbits, rats, goats, mice, humans, and others may be immunized by injection with a polypeptide as described above or with any fragment or oligopeptide thereof which has immunogenic properties. Various adjuvants may be used to increase immunological response and include, but are not limited to, Freund's, mineral gels such as aluminium hydroxide, and surface-active substances such as lysolecithin. Adjuvants used in humans include BCG (bacilli Calmette-Guerin) and Corynebacterium parvum.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to the mutant ion channel have an amino acid sequence consisting of at least 5 amino acids, and, more preferably, of at least 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring

WO 2005/014863 PCT/AU2004/001051
- 30 -

molecule. Short stretches of ion channel amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to a mutant ion channel may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (For example, see Kohler et al., 1975; Kozbor et al., 1985; Cote et al., 1983; Cole et al., 1984).

5

10

15

20

25

30

35

Monoclonal antibodies produced may include, but are not limited to, mouse-derived antibodies, humanised antibodies and fully human antibodies.

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (For example, see Orlandi et al., 1989; Winter and Milstein, 1991).

Antibody fragments which contain specific binding sites for a mutant ion channel may also be generated. For example, such fragments include, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (For example, see Huse et al., 1989).

Various immunoassays may be used for screening to desired identify antibodies having the specificity. Numerous protocols for competitive binding immunoradiometric assays using either polyclonal monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between channel and its specific antibody. A two-site, monoclonalWO 2005/014863 PCT/AU2004/001051
- 31 -

based immunoassay utilizing antibodies reactive to two non-interfering ion channel epitopes is preferred, but a competitive binding assay may also be employed.

5

10

15

20

25

30

35

further aspect of the invention there a provided a method of treating epilepsy as well as other disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, cardiac arrhythmias, myasthenia, episodic migraine, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night total colour-blindness, blindness or comprising administering an isolated nucleic acid molecule which is the complement (antisense) of any one of the nucleic acid molecules described above and which encodes molecule that hybridizes with the mRNA encoding a mutant ion channel subunit of the invention, to a subject in need of such treatment.

In a still further aspect of the invention there is provided the use of an isolated nucleic acid molecule which is the complement (antisense) of a nucleic acid molecule of the invention and which encodes an molecule that hybridizes with the mRNA encoding a mutant ion channel subunit of the invention, in the manufacture of a medicament for the treatment of epilepsy as well as other disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, ${ t arrhythmias}$, cardiac episodic ataxia, migraine, Alzheimer's disease, Parkinson's schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney

WO 2005/014863 PCT/AU2004/001051
- 32 -

5

10

15

20

25

30

35

disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.

Typically, a vector expressing the complement (antisense) of the polynucleotides of the invention may be administered to a subject in need of such treatment. Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (For example, see Goldman et al., 1997).

Additional antisense or gene-targeted silencing strategies may include, but are not limited to, the use of antisense oligonucleotides, injection of antisense RNA, transfection of antisense RNA expression vectors, and the use of RNA interference (RNAi) or short interfering RNAs (siRNA). Still further, catalytic nucleic acid molecules such as DNAzymes and ribozymes may be used for gene silencing (Breaker and Joyce, 1994; Haseloff and Gerlach, 1988). These molecules function by cleaving their target mRNA molecule rather than merely binding to it as in traditional antisense approaches.

In a further aspect, a suitable agonist, antagonist or modulator may include peptides, phosphopeptides or small organic or inorganic compounds that can restore wild-type activity of ion channels containing mutations in the subunits which comprise the channels as described above.

Peptides, phosphopeptides or small organic or inorganic compounds suitable for therapeutic applications may be identified using nucleic acids and peptides of the invention in drug screening applications as described below. Molecules identified from these screens may also be

WO 2005/014863 PCT/AU2004/001051
- 33 -

of therapeutic application in affected individuals carrying other ion channel subunit gene mutations if the molecule is able to correct the common underlying functional deficit imposed by these mutations and those of the invention.

5

10

15

20

25

30

35

There is therefore provided a method of treating epilepsy as well as other disorders associated with ion channel dysfunction comprising administering a compound that is a suitable agonist, antagonist or modulator of an ion channel and that has been identified using the mutant ion channel subunits of the invention.

instances, an appropriate approach some treatment may be combination therapy. This may involve the administering an antibody or complement (antisense) to a mutant ion channel or ion channel subunit of the invention inhibit its functional effect, combined administration of wild-type ion channel subunits which may restore levels of wild-type ion channel formation to normal levels. Wild-type ion channel subunits of the invention can be administered using gene approaches as described above for complement administration.

There is therefore provided a method of treating epilepsy as well as other disorders associated with ion channel dysfunction comprising administration of an antibody or complement to a mutant ion channel or ion channel subunit of the invention in combination with administration of wild-type ion channel subunits.

In still another aspect of the invention there is provided the use of an antibody or complement to a mutant ion channel or ion channel subunit of the invention in combination with the use of wild-type ion channel subunits, in the manufacture of a medicament for the treatment of epilepsy as well as other disorders associated with ion channel dysfunction.

In further embodiments, any of the agonists, antagonists, modulators, antibodies, complementary

WO 2005/014863 - 34 -

sequences or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents may be made by those skilled inthe art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, therapeutic efficacy with lower dosages of each agent may be possible, thus reducing the potential for adverse side effects.

PCT/AU2004/001051

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

15

20

25

30

10

5

Drug Screening

According to still another aspect of the invention, nucleic acid molecules of the invention as well peptides of the invention, particularly purified mutant ion channel subunit polypeptide and cells these, are useful for the screening of candidate pharmaceutical agents for the treatment of epilepsy as well as other as other disorders associated with ion channel dysfunction, including but not restricted to, hypo-kalemic periodic paralysis, hyper- or myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic ataxia, migraine, Alzheimer's Parkinson's disease, schizophrenia, hyperekplexia, phobic obsessive depression, anxiety, neuropathic pain, inflammatory pain, chronic/acute pain, syndrome, polycystic kidney disease, Dent's Bartter's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.

35 Still further, it provides the use of a polypeptide complex for the screening of candidate pharmaceutical compounds.

WO 2005/014863 PCT/AU2004/001051
- 35 -

Still further, it provides the use wherein high throughput screening techniques are employed.

Compounds that can be screened in accordance with the invention include, but are not limited to peptides (such as soluble peptides), phosphopeptides and small organic or inorganic molecules (such as natural product or synthetic chemical libraries and peptidomimetics).

5

10

15

20

25

30

35

In one embodiment, a screening assay may include a cell-based assay utilising eukaryotic or prokaryotic host cells that are stably transformed with recombinant molecules expressing the polypeptides or fragments of the invention, in competitive binding assays. Binding assays will measure the formation of complexes between a specific mutant ion channel subunit polypeptide or ion channel incorporating a mutant ion channel subunit polypeptide, and the compound being tested, or will measure the degree to which a compound being tested will inhibit or restore the formation of a complex between a specific mutant ion channel subunit polypeptide or ion channel incorporating a mutant ion channel subunit polypeptide, and its interactor or ligand.

The invention is particularly useful for screening compounds by using the polypeptides of the invention in transformed cells, transfected or injected oocytes, or animal models bearing mutated ion channel subunits such as transgenic animals or gene targeted (knock-in) animals (see transformed hosts). Drug candidates can be added to cultured cells that express a single mutant ion channel subunit or combination of mutant ion channel subunits (appropriate wild-type ion channel subunits should also be expressed for receptor assembly), can be added to oocytes transfected or injected with either a mutant ion channel subunit or combination of mutant ion channel subunits (appropriate wild-type ion channel subunits must also be injected for receptor assembly), or can be administered to animal model containing a mutant ion channel combination of mutant ion channels. Determining the

WO 2005/014863 PCT/AU2004/001051
- 36 -

ability of the test compound to modulate mutant ion channel activity can be accomplished by a number of techniques known in the art. These include for example measuring the effect on the current of the channel (e.g. calcium-, chloride-, sodium-, potassium-ion flux) as compared to the current of a cell or animal containing wild-type ion channels. Current in cells can be measured by a number of approaches including the patch-clamp technique (methods described in Hamill et al, 1981) or using fluorescence based assays as are known in the art (see Gonzalez et al. 1999). Drug candidates that alter the current to a more normal level are useful for treating or preventing epilepsy as well as other disorders associated with ion channel dysfunction.

5

10

15

20

25

30

35

cell-based may also Non assays be for used identifying compounds that can inhibit or restore binding between the polypeptides of the invention or ion channels incorporating the polypeptides of the invention, and their interactors. Such assays are known in the art and include example AlphaScreen technology (PerkinElmer Sciences, MA, USA). This application relies on the use of beads such that each interaction partner is bound to a separate bead via an antibody. Interaction of each partner will bring the beads into proximity, such that laser excitation initiates a number of chemical leading to fluorophores emitting a ultimately signal. Candidate compounds that inhibit the binding of mutant ion channel subunit, or ion channel incorporating the mutant subunit, with its interactor will result loss of light emission, while in candidate compounds that restore the binding of the mutant ion channel subunit, or ion channel incorporating the mutant subunit, with its interactor will result in positive light emission. These assays ultimately enable identification and isolation of the candidate compounds.

High-throughput drug screening techniques may also employ methods as described in WO84/03564. Small peptide

WO 2005/014863 PCT/AU2004/001051
- 37 -

test compounds synthesised on a solid substrate can be assayed for mutant ion channel subunit polypeptide or mutant ion channel binding. Bound mutant ion channel or mutant ion channel subunit polypeptide is then detected by methods well known in the art. In a variation of this technique, purified polypeptides of the invention can be coated directly onto plates to identify interacting test compounds.

5

10

15

20

25

30

35

The invention also contemplates the use of competition drug screening assays in which neutralizing antibodies capable of specifically binding the mutant ion channel compete with a test compound for binding thereto. In this manner, the antibodies can be used to detect the presence of any peptide that shares one or more antigenic determinants of the mutant ion channel.

The polypeptides of the present invention may also be used for screening compounds developed as a result of combinatorial library technology. This provides a way to test a large number of different substances for their ability to modulate activity of a polypeptide. A substance identified as a modulator of polypeptide function may be non-peptide in nature. Non-peptide peptide or molecules" are often preferred for many inpharmaceutical applications. In addition, a mimic or mimetic substance may of the be designed for pharmaceutical use. The design of mimetics based on a known pharmaceutically active compound ("lead" compound) common approach to the development of pharmaceuticals. This is often desirable where the original active compound is difficult or expensive to synthesise or where it provides an unsuitable method of administration. In the design of a mimetic, particular parts of the original active compound that are important in determining the target property are identified. These parts or residues constituting the active region of the compound are known as its pharmacophore. Once found, pharmacophore structure is modelled according its

WO 2005/014863 PCT/AU2004/001051
- 38 -

physical properties using data from a range of sources including x-ray diffraction data and NMR. A template molecule is then selected onto which chemical groups which mimic the pharmacophore can be added. The selection can be made such that the mimetic is easy to synthesise, is likely to be pharmacologically acceptable, does not degrade in vivo and retains the biological activity of the lead compound. Further optimisation or modification can be carried out to select one or more final mimetics useful for in vivo or clinical testing.

5

10

15

20

25

30

35

It is also possible to isolate a target-specific antibody and then solve its crystal structure. principle, this approach yields a pharmacophore upon which subsequent drug design can be based as described above. It may be possible to avoid protein crystallography altogether by generating anti-idiotypic antibodies (antiids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analogue of the original receptor. The anti-id could then be used to isolate peptides from chemically or biologically produced peptide banks.

Another alternative method for drug screening relies on structure-based rational drug design. Determination of the three dimensional structure of the polypeptides of the invention, or the three dimensional structure of the ion channels which incorporate these polypeptides allows for structure-based drug design to identify biologically active lead compounds.

Three dimensional structural models can be generated by a number of applications, some of which include experimental models such as x-ray crystallography and NMR and/or from in silico studies of structural databases such as the Protein Databank (PDB). In addition, three dimensional structural models can be determined using a number of known protein structure prediction techniques based on the primary sequences of the polypeptides (e.g.

SYBYL - Tripos Associated, St. Louis, MO), de novo protein structure design programs (e.g. MODELER - MSI Inc., San Diego, CA, or MOE - Chemical Computing Group, Montreal, Canada) or ab initio methods (e.g. see US Patent Numbers 5331573 and 5579250).

Once the three dimensional structure of a polypeptide or polypeptide complex has been determined, structurebased drug discovery techniques can be employed to design biologically-active compounds based on these dimensional structures. Such techniques are known in the art and include examples such as DOCK (University of California, San Francisco) or AUTODOCK (Scripps Research Institute, La Jolla, California). A computational docking protocol will identify the active site or sites that are deemed important for protein activity based on a predicted protein model. Molecular databases, such as the Available Chemicals Directory (ACD) are then screened for molecules that complement the protein model.

Using methods such as these, potential clinical drug candidates can be identified and computationally ranked in order to reduce the time and expense associated with typical 'wet lab' drug screening methodologies.

Compounds identified through screening procedures as described above, and which are based on the use of the mutant nucleic acid and polypeptides of the invention, can also be tested for their effect on correcting the functional deficit imposed by other gene mutations in affected individuals including other ion channel subunit mutations.

Such compounds form a part of the present invention, as do pharmaceutical compositions containing these and a pharmaceutically acceptable carrier.

Pharmaceutical Preparations

5

10

15

20

25

30

Compounds identified from screening assays and shown to restore ion channel wild-type activity can be administered to a patient at a therapeutically effective

WO 2005/014863 PCT/AU2004/001051 - 40 -

dose to treat or ameliorate epilepsy as well as other disorders associated with ion channel dysfunction, described above. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of the disorder.

5

10

15

20

25

30

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The data obtained from these studies can then be used in the formulation of a range of dosages for use in humans.

Pharmaceutical compositions for use in accordance with the present invention can be formulated conventional manner using one or more physiological acceptable carriers, excipients or stabilisers which are well known. Acceptable carriers, excipients or stabilizers are non-toxic at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including absorbic acid; low (less molecular weight than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; binding agents including hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glutamine, asparagine, arginine glycine, monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or non-ionic Tween, Pluronics or surfactants such as polyethylene glycol (PEG).

The formulation of pharmaceutical compositions use in accordance with the present invention will be based proposed route of administration. Routes administration may include, but are not limited to, inhalation, insufflation (either through the mouth or nose), oral, buccal, rectal or parental administration. 35

WO 2005/014863 PCT/AU2004/001051
- 41 -

Diagnostic and Prognostic Applications

5

10

15

20

25

30

35

Polynucleotide sequences encoding ion channel an subunit may be used for the diagnosis or prognosis of epilepsy, as well as other as other disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, ataxia, migraine, episodic Alzheimer's Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness, and the use of the nucleic molecules incorporated as part of the invention diagnosis orprognosis of these disorders, predisposition to these disorders, is therefore contemplated. The nucleic acid molecules incorporating the novel mutation events laid out in Table 1 may be used for this purpose.

The polynucleotides that may be used for diagnostic or prognostic purposes include oligonucleotide sequences, genomic DNA and complementary RNA and DNA molecules. The polynucleotides may be used to detect and quantitate gene expression in biological samples. Genomic DNA used for the diagnosis or prognosis may be obtained from body cells, such as those present in the blood, tissue biopsy, surgical specimen, or autopsy material. The DNA may be isolated and used directly for detection of a specific sequence or may be amplified by the polymerase chain reaction (PCR) prior to analysis. Similarly, RNA or cDNA may also be used, with or without PCR amplification. To detect a specific nucleic acid sequence, hybridisation using specific oligonucleotides, restriction enzyme digest and mapping, PCR mapping, RNAse protection, and various other methods may be employed. Oligonucleotides specific

WO 2005/014863 PCT/AU2004/001051 - 42 -

to particular sequences can be chemically synthesized and labelled radioactively or nonradioactively and hybridised to individual samples immobilized on membranes or other solid-supports or in solution. The presence, absence or excess expression of any one of the mutant ion channel genes of the invention may then be visualized using methods such as autoradiography, fluorometry, or colorimetry.

5

10

15

20

25

30

35

In a further diagnostic or prognostic approach, the nucleotide sequences of the invention may be useful in assays that detect the presence of associated disorders, particularly those mentioned previously. The nucleotide sequences may be labelled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridisation complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis or prognosis of epilepsy and other disorders as described above, which are associated with the ion channel subunit mutations or variants of the invention, the nucleotide sequence of each gene can be compared between normal tissue and diseased tissue in order to establish whether the patient expresses a mutant gene.

In order to provide a basis for the diagnosis or disorder prognosis of a associated with expression of an ion channel subunit of gene invention, a normal or standard profile for expression is established. This may be accomplished by combining body WO 2005/014863 PCT/AU2004/001051
- 43 -

fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding the relevant ion channel subunit gene, under conditions suitable for hybridisation or amplification. Standard hybridisation may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Another method identify a normal or standard profile for expression of an ion channel subunit gene is through quantitative RT-PCR isolated from body cells studies. RNA of individual is reverse transcribed and real-time PCR using specific for the oligonucleotides relevant conducted to establish a normal level of expression of the gene. Standard values obtained in both these examples may be compared with values obtained fromsamples patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

5

10

15

20

25

30

35

Once the presence of a disorder is established and a treatment protocol is initiated, hybridisation assays or quantitative RT-PCR studies may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

According to a further aspect of the invention there is provided the use of a polypeptide as described above in the diagnosis or prognosis of epilepsy as well as other disorders associated withion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic Alzheimer's disease, Parkinson's disease, migraine, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain,

WO 2005/014863 - 44 -

5

10

15

20

25

30

chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.

PCT/AU2004/001051

When a diagnostic or prognostic assay is to be based upon proteins constituting an ion channel, a variety of approaches are possible. For example, diagnosis prognosis can be achieved by monitoring differences in the electrophoretic mobility of normal and mutant proteins that form the ion channel. Such an approach will be particularly useful in identifying mutants in which charge substitutions are present, which orin insertions, deletions or substitutions have resulted in a significant change in the electrophoretic migration of the resultant protein. Alternatively, diagnosis or prognosis may be differences based upon in the proteolytic cleavage patterns of normal and mutant proteins, differences molar ratios of the various amino acid residues, or by functional assays demonstrating altered function of the gene products.

In another aspect, antibodies that specifically bind mutant ion channels may be used for the diagnosis or prognosis of a disorder, or in assays to monitor patients being treated with a complete ion channel or agonists, antagonists, modulators or inhibitors of an ion channel. Antibodies useful for diagnostic or prognostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic or prognostic assays for channels include methods that utilize the antibody and a label to detect a mutant ion channel in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labelled by covalent or non-covalent attachment of а reporter molecule.

A variety of protocols for measuring the presence of mutant ion channels, including but not restricted to, ELISAs, RIAs, and FACS, are known in the art and provide a

WO 2005/014863 PCT/AU2004/001051
- 45 -

for diagnosing or prognosing a disorder. The expression of a mutant ion channel or combination of mutant ion channels is established by combining body extracts fluids or cell taken from test mammalian subjects, preferably human, with antibody to the channel or channels under conditions suitable for complex formation. The amount ο£ complex formation may quantitated by various methods, preferably by photometric means. Antibodies specific for the mutant ion channels will only bind to individuals expressing the said mutant ion channels and not to individuals expressing only wildtype channels (ie normal individuals). This establishes the basis for diagnosing the disorder.

Once an individual has been diagnosed or prognosed with a disorder, effective treatments can be initiated as described above. Treatments can be directed to amend the combination of ion channel subunit mutations or may be directed to one mutation.

20 Microarray

5

10

15

25

30

35

In further embodiments, complete cDNAs, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as probes in a microarray. The microarray can be used to diagnose or prognose epilepsy, as well as other disorders associated with ion channel dysfunction, through identification of genetic variants, mutations, polymorphisms in the ion channel subunits that form part of the invention, to understand the genetic basis of a or can be used to develop and monitor the activities of therapeutic agents.

According to a further aspect of the present invention, tissue material obtained from genetically modified non-human animal models generated as a result of the identification of specific ion channel subunit human mutations (see below), particularly those disclosed in the present invention, can be used in microarray experiments.

WO 2005/014863 PCT/AU2004/001051 - 46 -

These experiments can be conducted to identify the level of expression of specific ion channel subunits, or the level of expression of any cDNA clone from whole-tissue libraries, in diseased tissue as opposed to normal control tissue. Variations in the expression level of genes, including ion channel subunits, between the two tissues indicates their possible involvement in the process either as a cause or consequence of the original ion channel subunit mutation present in the animal model. These experiments may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose or prognose a disorder, and to develop and monitor the activities of therapeutic agents. Microarrays may be prepared, used, and analyzed using methods known in the art. (For example, see Schena et al., 1996; Heller et al., 1997).

Transformed Hosts

5

10

15

20

25

30

35

present invention also provides The for production of genetically modified (knock-out, knock-in and transgenic), non-human animal modelscomprising nucleic acid molecules containing the novel ion channel mutations or variants as laid out in Table 1. animals are useful for the study of the function of ion channels, to study the mechanisms by which combinations of mutations in ion channel subunits interact to give rise to disease and the effects of these mutations on tissue development, for the screening of candidate pharmaceutical compounds, for the creation of explanted mammalian cell cultures which express mutant ion channels or combinations of mutant ion channels, and for the evaluation of potential therapeutic interventions.

Animal species which are suitable for use in the animal models of the present invention include, but are not limited to, rats, mice, hamsters, guinea pigs, rabbits, dogs, cats, goats, sheep, pigs, and non-human primates such as monkeys and chimpanzees. For initial

WO 2005/014863 PCT/AU2004/001051
- 47 -

studies, genetically modified mice and rats are highly desirable due to the relative ease in generating knock-in, knock-out or transgenics of these animals, their ease of maintenance and their shorter life spans. For certain studies, transgenic yeast or invertebrates may be suitable and preferred because they allow for rapid screening and provide for much easier handling. For longer term studies, non-human primates may be desired due to their similarity with humans.

5

10

15

20

25

30

35

To create an animal model for a mutated ion channel, animal model incorporating a combination mutations, several methods can be employed. These include, but are not limited to, generation of a specific mutation in a homologous animal gene, insertion of a wild type human gene and/or a humanized animal gene by homologous recombination, insertion of a mutant (single or multiple) human gene as genomic or minigene cDNA constructs using wild type or mutant or artificial promoter elements, or insertion of artificially modified fragments the gene by homologous recombination. The endogenous modifications include insertion of mutant stop codons, the of DNA sequences, the inclusion of deletion orrecombination elements (lox p sites) recognized by enzymes such as Cre recombinase.

To create transgenic mice in order to study gain of gene function in vivo, any mutant ion channel subunit gene of the invention can be inserted into a mouse germ line using standard techniques such as oocyte microinjection. Gain of gene function can mean the over-expression of a its protein product, orthe gene and of a mutation o£ complementation the gene under investigation. For occyte injection, one or more copies of the mutant gene can be inserted into the pronucleus of a oocyte. This oocyte just-fertilized mouse is into a pseudo-pregnant foster mother. The reimplanted live-born mice can then be screened for integrants using analysis of tail DNA for the presence of the relevant

WO 2005/014863 PCT/AU2004/001051
- 48 -

human ion channel subunit gene sequence. The transgene can be either a complete genomic sequence injected as a YAC, BAC, PAC or other chromosome DNA fragment, a cDNA with either the natural promoter or a heterologous promoter, or a minigene containing all of the coding region and other elements found to be necessary for optimum expression.

5

10

15

20

25

30

35

To generate knock-out mice or knock-in mice, gene targeting through homologous recombination in mouse embryonic stem (ES) cells may be applied. Knock-out mice are generated to study loss of gene function in vivo while knock-in mice (which are preferred) allow the study of gain of function or to study the effect of specific gene mutations. Knock-in mice are similar to transgenic mice however the integration site and copy number are defined in the former.

For knock-out mouse generation, gene targeting vectors can be designed such that they delete (knock-out) the protein coding sequence of the relevant ion channel subunit gene in the mouse genome. In contrast, knock-in mice can be produced whereby a gene targeting vector containing the relevant ion channel subunit gene can integrate into a defined genetic locus in the mouse genome. For both applications, homologous recombination is catalysed by specific DNA repair enzymes that recognise homologous DNA sequences and exchange them via double crossover.

Gene targeting vectors are usually introduced into ES cells using electroporation. ES cell integrants are then isolated via an antibiotic resistance gene present on the targeting vector and are subsequently genotyped to identify those ES cell clones in which the gene under investigation has integrated into the locus of interest. The appropriate ES cells are then transmitted through the germline to produce a novel mouse strain.

In instances where gene ablation results in early embryonic lethality, conditional gene targeting may be employed. This allows genes to be deleted in a temporally

WO 2005/014863 PCT/AU2004/001051
- 49 -

and spatially controlled fashion. As above, appropriate ES cells are transmitted through the germline to produce a novel mouse strain, however the actual deletion of the gene is performed in the adult mouse in a tissue specific or time controlled manner. Conditional gene targeting is most commonly achieved by use of the cre/lox system. The enzyme cre is able to recognise the 34 base pair loxP sequence such that loxP flanked (or floxed) recognised and excised by cre. Tissue specific cre expression in transgenic mice enables the generation of tissue specific knock-out mice by mating gene targeted floxed mice with cre transgenic mice. Knock-out can be conducted in every tissue (Schwenk et al., 1995) using the 'deleter' mouse or using transgenic mice with an inducible cre gene (such as those with tetracycline inducible cre genes), or knock-out can be tissue specific for example through the use of the CD19-cre mouse (Rickert et al., 1997).

10

15

20

25

30

35

animals have Once knock-in been produced contain a specific mutation in a particular ion channel subunit, mating combinations may be initiated between such animals so as to produce progeny containing combinations two or more ion channel mutations. effectively mimic combinations of mutations that proposed to cause human IGE cases. These animal models can subsequently be used to study the extent and mechanisms of the as related to mutated ion channel disease combinations, as well as for the screening of candidate therapeutic compounds.

According to still another aspect of the invention there is provided the use of genetically modified non-human animals as described above for the screening of candidate pharmaceutical compounds (see drug screening above). These animals are also useful for the evaluation (eg therapeutic efficacy, toxicity, metabolism) of candidate pharmaceutical compounds, including those identified from the invention as described above, for the

WO 2005/014863 PCT/AU2004/001051
- 50 -

treatment of epilepsy as well as other as other disorders associated with ion channel dysfunction as described above.

It will be clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art, in Australia or in any other country.

Throughout this specification and the claims, the words "comprise", "comprises" and "comprising" are used in a non-exclusive sense, except where the context requires otherwise.

It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this specification.

20

25

30

35

10

15

Brief Description of the Drawings

Preferred forms of the invention will now be described, by way of example only, with reference to the following examples and the accompanying drawings, in which:

Figure 1 provides an example of ion channel subunit stoichiometry and the effect of multiple versus single ion channel subunit mutations. Figure 1A: A typical channel may have five subunits of three different types. Figure 1B: In outbred populations complex diseases such as idiopathic generalized epilepsies may be due to mutations in two (or more) different subunit genes. Because only one allele of each subunit gene is abnormal, half the expressed subunits will have the mutation. Figure 1C: In inbred populations, both alleles of a single subunit gene will be affected, so all expressed subunits will be mutated. Figure 1D: Autosomal dominant disorders can be

WO 2005/014863 PCT/AU2004/001051 - 51 -

attributed to single ion channel subunit mutations that give rise to severe functional consequences.

Figure 2 represents the location of mutations identified in the KCNQ2 ion channel subunit constituting the potassium channel. M: Missense mutation; T: Truncation mutation; F: Frameshift mutation; S: Splice site mutation.

5

10

15

20

25

30

35

Figure 3 provides examples of epilepsy pedigrees where mutation profiles of ion channel subunits for individuals constituting the pedigree have begun to be determined. These examples have been used to illustrate how the identification of novel ion channel subunit mutations and variations in IGE individuals can combine to give rise to the disorder.

4 shows the results of yeast two-hybrid Figure analysis of R353G and L619R KCNQ2 mutants. Yeast were transformed with the empty DB (BAIT) plasmid (DBLeu), DB-Q2C wt, DB-Q2C R353G mutant or the DB-Q2 L619R mutant as indicated in A and the AD-CaM (TARGET) vector was introduced by qap-repair. Yeast control (InvitrogenTM) were included on all plates for comparison. Control 1 has no interaction. Control 2 has a weak interaction. Control 3 has moderately a interaction. Control 4 has a strong interaction control 5 has a very strong interaction. B. Growth of transformed yeast and controls on -leu -tryp selection. Yeast can grow on -leu if they contain the DB plasmid, and -tryp if they have AD plasmid. C. Growth of transformed yeast and controls on -leu -tryp -his +40mM 3AT after 48hrs. Yeast can grow on -his+3AT if the his reporter gene is activated by interaction between the BAIT and TARGET plasmids. D-F. LacZ Filter assay for interaction between BAIT and TARGET plasmids, photos taken after 2hrs (D), 7hrs (E) and 24hrs (F). Activation of the β -galactosidase reporter gene by interaction of the BAIT and TARGET plasmids leads to the dark appearance of colonies.

Figure 5 shows the results of CaM affinity experiments with the R353G and L619R KCNQ2 mutants. The

WO 2005/014863 PCT/AU2004/001051 - 52 -

chart below shows the values from the CPRG assay for β -galactosidase activity as a measure of KCNQ2C-CaM binding efficiency. The area of each bar in the chart equates to the CaM binding efficiency of the BAIT. Broken lines indicate statistical comparison by Student's t test * P<0.01, ** P<0.001.

Modes for Performing the Invention

. 5

10

15

20

25

30

35

Potassium channels are the most diverse class of ion channel. The *C. elegans* genome encodes about 80 different potassium channel genes and there are probably more in mammals. About ten potassium channel genes are known to be mutated in human disease and include four members of the KCNQ gene sub-family of potassium channels. KCNQ proteins have six transmembrane domains, a single P-loop that forms the selectivity filter of the pore, a positively charged fourth transmembrane domain that probably acts as a voltage sensor, and intracellular amino and carboxy termini. The C-terminus is long and contains a conserved "A domain" followed by a short stretch thought to be involved in subunit assembly.

Four KCNQ subunits are thought to combine to form a functional potassium channel. All five known KCNQ proteins can form homomeric channels in vitro and the formation of heteromers appears to be restricted to certain combinations. For instance KCNQ2 and KCNQ3, which are predominantly expressed in the central nervous system, form a heteromultimeric channel that mediates the neuronal muscarinic-regulated current (M-current), also known as the M-channel (or M-type K+ channel). The M-current is a slowly activating, non-inactivating potassium conductance known to regulate neuronal excitability by determining the firing properties of neurons and their responsiveness to synaptic input (Wang et al., 1998). Because it is the only current active at voltages near the threshold for action potential initiation, the M-current has a major impact on neuronal excitability.

WO 2005/014863 PCT/AU2004/001051
- 53 -

Sodium (the alpha subunit) and calcium channels are thought to have evolved from the potassium channel subunit, and they each consist of four domains covalently linked as the one molecule, each domain being equivalent to one of the subunits that associate to form the potassium channel. Each of the four domains of the sodium and calcium channels are comprised of six transmembrane segments.

5

10

15

20

25

30

35

Voltage-gated sodium channels are required generate the electrical excitation in neurones, heart and skeletal muscle fibres, which express tissue isoforms. Sodium channels are heteromers of a pore forming alpha subunit and a modulatory beta-1 subunit, with an additional beta-2 subunit in neuronal channels. Ten genes encoding sodium channel alpha subunits and 3 encoding different beta subunits have so far identified. The beta subunits of the sodium channels do not associate with the alpha subunits to form any part of the pore, they do however affect the way the alpha pore forming subunit functions.

As with sodium channels, calcium channels consist of a single pore forming alpha subunit, of which at least six types have been identified to date, and several accessory subunits including four beta, one gamma and one alpha2-delta gene. Many of these subunits also encode multiple splice variants adding to the diversity of receptor subunits of this family of ion channels.

The ion channels in the nAChR/GABA super family show a theoretical pentameric channel. Gamma-Aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the central nervous system. GABA-ergic inhibition is mediated by two major classes of receptors, type A (GABA-A) and type B (GABA-B). GABA-B receptors are members of the class of receptors coupled to G-proteins and mediate a variety of inhibitory effects via secondary messenger cascades. GABA-A receptors are ligand-gated chloride channels that mediate rapid inhibition.

WO 2005/014863 PCT/AU2004/001051 - 54 -

The GABA-A channel has 16 separate, but related, genes encoding subunits. These are grouped on the basis of sequence identity into alpha, beta, gamma, delta, epsilon, theta and pi subunits. There are six alpha subunits (α 1- α 6), three beta subunits (β 1- β 3) and three gamma subunits (γ 1- γ 3). Each GABA-A receptor comprises five subunits which may, at least in theory, be selected from any of these subunits.

5

10

15

20

25

30

35

Neuronal nicotinic acetylcholine receptors (nAChRs) consist of heterologous pentamers comprising various combinations of alpha subunits or alpha and beta subunits $(\alpha 2 - \alpha 9)$; $\beta 2 - \beta 4$). The alpha subunits are characterised by adjacent cysteine residues at amino acid positions 192 and 193, and the beta subunits by the lack of these cysteine residues. They are ligand-gated ion differentially expressed throughout the brain to physiologically and pharmacologically distinct receptors hypothesised to mediate fast, excitatory transmission between neurons of the central nervous system or to neurotransmission modulate fromtheir presynaptic position.

In chicken and rat, the predominant nAChR subtype is composed of alpha-4 and beta-2 subunits. The transmembrane 2 (M2) segments of the subunits are arranged as of helices and contribute to the walls neurotransmitter-gated ion channel. The alpha helices appear to be kinked and orientated in such a way that the side chains of the highly conserved M2-leucine residues project inwards when the channel is closed. ACh is thought cause a conformational change by altering association of the amino acid residues of M2. The opening of the channel seems to be due to rotations of the gate forming side chains of the amino acid residues; conserved polar serines and threonines may form the critical gate in the open channel.

WO 2005/014863 PCT/AU2004/001051
- 55 -

Example 1: Identification of mutations in ion channels

5

10

15

20

25

30

35

Previous studies by reference (Wallace et al., 1998; PCT/AU01/00581; Wallace et al., 2001b; Australian patent AU-B-56247/96; Steinlein et al., 1995; PCT/AU01/00541; Phillips et al., 2001; PCT/AU01/00729; PCT/AU01/01648; PCT/AU02/00910; Wallace et al., 2001a, the disclosures of incorporated herein are by reference) identified mutations in a number of ion channel subunits associated with epilepsy. These include ion channel subunits of voltage-gated (eq SCN1A, SCN1B, KCNQ2, KCNQ3) or ligand-gated (eg CHRNA4, CHRNB2, GABRG2, GABRD) types. identify further mutations in ion channel subunits which comprise the ion channels were screened for molecular defects in epilepsy patients.

Human genomic sequence available from the Human Genome Project was used to characterize the genomic organisation for each subunit gene. Each subsequently screened for sequence changes using single strand conformation polymorphism (SSCP) analysis large sample of epileptics with common sporadic subtypes eg juvenile myoclonic epilepsy (JME), childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE) and epilepsy with generalized tonic-clonic seizures (TCS). Clinical observations can then be compared molecular defects characterized in order to establish the combinations of mutant subunits involved in the various disease states, and therefore to provide validated drug targets for each of these disease states. This will provide a basis for novel drug treatments directed at the genetic defects present in each patient.

The coding sequence for each of the ion channel subunits was aligned with human genomic sequence present in available databases at the National Centre for Biotechnology Information (NCBI). The BLASTN algorithm was typically used for sequence alignment and resulted in the genomic organisation (intron-exon structure) of each gene being determined. Where genomic sequence for an ion

WO 2005/014863 PCT/AU2004/001051 - 56 -

channel subunit was not available, BACs or PACs containing the relevant ion channel subunit were identified through screening of high density filters containing these clones and were subsequently sequenced.

Availability of entire genomic sequence for each ion channel subunit facilitated the design of intronic primers spanning each exon. These primers were used for both high throughput SSCP screening and direct DNA sequencing.

10 Example 2: Sample preparation for SSCP screening

5

15

20

25

35

A large collection of individuals affected with epilepsy have undergone careful clinical phenotyping and additional data regarding their family history has been collated. Informed consent was obtained from each individual for blood collection and its use in subsequent experimental procedures. Clinical phenotypes incorporated classical IGE cases as well as GEFS+ and febrile seizure cases.

DNA was extracted from collected blood using the QIAamp DNA Blood Maxi kit (Qiagen) according to manufacturers specifications or through procedures adapted from Wyman and White (1980). Stock DNA samples were kept at a concentration of 1 ug/ul.

In preparation for SSCP analysis, samples to be screened were formatted into 96-well plates at a concentration of 30 ng/ul. These master plates were subsequently used to prepare exon specific PCR reactions in the 96-well format.

30 Example 3: Identification of sequence alterations in ion channel genes

SSCP analysis of specific ion channel exons followed by sequencing of SSCP bandshifts was performed on individuals constituting the 96-well plates to identify sequence alterations.

Primers used for SSCP were labelled at their 5' end with HEX and typical PCR reactions were performed in a

WO 2005/014863 PCT/AU2004/001051
- 57 -

total volume of 10 μ l. All PCR reactions contained 67 mM Tris-HCl (pH 8.8); 16.5 mM (NH₄)₂SO₄; 6.5 μ M EDTA; 1.5 mM MgCl₂; 200 μ M each dNTP; 10% DMSO; 0.17 mg/ml BSA; 10 mM β -mercaptoethanol; 5 μ g/ml each primer and 100 U/ml Taq DNA polymerase. PCR reactions were typically performed using 10 cycles of 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds followed by 25 cycles of 94°C for 30 seconds. A final extension reaction for 10 minutes at 72°C followed.

Ten to twenty μl of loading dye comprising 50% (v/v) formamide, 12.5 mM EDTA and 0.02% (w/v) bromophenol blue were added to completed reactions which were subsequently run on non-denaturing 4% polyacrylamide gels with a crosslinking ratio of 35:1 (acrylamide:bis-acrylamide) and containing 2% glycerol. Gel thickness was 100 μ m, width 168mm and length 160mm. Gels were run at 1200 volts and approximately 20mA, at 18°C and analysed on the GelScan 2000 system (Corbett Research, Australia) according to manufacturers specifications.

10

15

20

25

30

PCR products showing a conformational change were sequenced. This first involved subsequently amplification of the amplicon from the relevant individual (primers used in this instance did not contain 5' labels) followed by purification of the PCR amplified templates for sequencing using QiaQuick PCR preps (Qiagen) based on manufacturers procedures. The primers used to sequence the purified amplicons were identical to those amplification step. initial For for the sequencing reaction, 25 ng of primer and 100 ng purified PCR template were used. The BigDye sequencing kit (ABI) was used for all sequencing reactions according to the manufacturers specifications. The products were run on an ABI 377 Sequencer and analysed using the EditView program.

Table 1 shows the novel sequence changes identified in the ion channel subunits screened.

WO 2005/014863 PCT/AU2004/001051
- 58 -

Example 4: Digenic model examples

10

15

20

25

30

35

In some instances a single mutation in an ion channel alone is insufficient to give rise to an epilepsy phenotype. However combinations of mutations each conferring a subtle change of function to an ion channel, as proposed by the digenic model (PCT/AU01/00872), may be sufficient to produce an epilepsy phenotype.

mutations and variations ion insubunits previously identified, the digenic model may be validated through a parametric analysis of large families in which two abnormal alleles co-segregate by chance to identify mutations which act co-operatively to give an epilepsy phenotype. It is envisaged that the strategy of careful clinical phenotyping in these large together with a linkage analysis based on the digenic hypothesis will allow identification of the mutations in ion channels associated with IGEs. If molecular genetic the studies in IGE are successful using hypothesis, such an approach might serve as a model for other disorders with complex inheritance.

The digenic hypothesis predicts that the closer the genetic relationship between affected individuals, the more similar the sub-syndromes, consistent with published data (Italian League Against Epilepsy Genetic Collaborative Group, 1993). This is because more distant relatives are less likely to share the same combinations of mutated subunits.

Identical twins have the same pair of mutated subunits and the same minor alleles so the sub-syndromes are identical. Affected sib-pairs, including dizygous twins, with the same sub-syndrome would also have the same pair of mutated subunits, but differences in minor alleles would lead to less similarity than with monozygous twins. Some sib-pairs and dizygous twins, have quite different sub-syndromes; this would be due to different combinations of mutated subunits, when the parents have more than two mutated alleles between them.

WO 2005/014863 PCT/AU2004/001051
- 59 -

A special situation exists in inbred communities that parallels observations on autosomal recessive mouse models. Here the two mutated alleles of the digenic model are the same and thus result in a true autosomal recessive disorder. Because all affected individuals have the same pair of mutated alleles, and a similar genetic background, the phenotypes are very similar.

5

10

15

20

25

30

35

In outbred communities approximately 1% of the population would have IGE genotypes (2 mutated alleles) and 0.3% would clinically express IGE. Most of these would have mutations in two different channel subunits. In such communities most cases would appear "sporadic" as the risk to first degree relatives would be less than 10%.

For example, let there be three IGE loci (A,B,C) and let the frequency of abnormal alleles (a*,b*,c*) at each locus be .027 and of normal alleles (a, b, c) be .973. Then, the distribution of genotypes aa*, a*a, a*a* and aa at locus A will be .0263 (.027 x .973), .0263, .0007 and .9467 respectively, and similarly for loci B and C. In this population .8485 will have no mutated alleles (.9467³), .1413 will have one mutated allele (a* or b* or c*; .0263 x .9467² x 6), .0098 will have two abnormal alleles (.0020 two same abnormal alleles, .0078, two different abnormal alleles) and 0.00037 will have more than two abnormal alleles. Thus in this population .01, or 1%, will have two or more abnormal alleles (IGE genotype), and the total abnormal allele frequency will be .08 (3 x .027).

To determine the familial risks and allele patterns in affected pairs, the frequency distribution of population matings and the percentage of children with 2 or more abnormal alleles must be determined. The frequency of matings with no abnormal alleles (0×0) is .72 $(.8485^2)$, for 1 x 0 and 0 x 1 matings .24 $(2 \times .8485 \times .1413)$, for a 1 x 1 mating .020, and for 2 x 0 and 0 x 2 matings .0166 etc. From this distribution of matings the frequency of children with 2 or more abnormal alleles can

WO 2005/014863 PCT/AU2004/001051
- 60 -

be shown to be .01. For example, the 0 x 2 and 2 x 0 matings contribute .0033 of this .01 frequency (.0166 [mating frequency] x .2 [chance of that mating producing a child with 2 or more abnormal alleles]).

5

10

15

20

25

30

35

To determine parental risk it can be shown that of children with 2 abnormal alleles (IGE genotype), .49 derive from 1 x 1 matings where no parent is affected, .33 derive from a 2 x 0 and 0 x 2 matings etc. For the 2 x 0 and 0 x 2 matings, half the parents have IGE genotypes and contribute .16 (.33/2) to the parental risk with the total parental risk of an IGE genotype being .258. The other matings that contribute to affected parent-child pairs are 2×1 , 1×2 , 3×0 , 0×3 etc.

The sibling risk of an IGE genotype is .305. For example 2 x 0 and 0 x 2 matings contributed .08 to the sibling risk (.33[fraction of children with 2 abnormal alleles] x .25[the chance of that mating producing a child with 2 or more abnormal alleles]). Similarly the offspring risk was determined to be .248 by mating individuals with 2 abnormal alleles with the general population. Thus at 30% penetrance the risk for IGE phenotype for parents of a proband is .077, for siblings .091, and for offspring .074.

It can be shown that affected sib pairs share the same abnormal allele pair in 85% of cases. This is because of all affected sib pairs 44% derive from 1 x 1 matings and 23% from 0 x 2 and 2 x 0 matings where all affected siblings have the same genotype. In contrast, 24% derive from 1 x 2 matings and 9% from 3 x 1 and 2 x 2 matings etc where affected sibling genotypes sometimes differ.

For affected parent-child pairs, genotypes are identical in only 58%. Of affected parent child pairs, 43% derive from 0×2 matings where gentoypes are identical, whereas 38% derive from 0×3 and 17% from 1×2 where the majority of crosses yield different affected genotypes.

Based on the digenic model it has been postulated that most classical ${\sf IGE}$ and ${\sf GEFS}^+$ cases are due to the

WO 2005/014863 PCT/AU2004/001051 - 61 -

combination of two mutations in multi-subunit ion channels. These are typically point mutations resulting in a subtle change of function. The critical postulate is that two mutations, usually, but not exclusively, in different subunit alleles ("digenic model"), are required for clinical expression of IGE.

5

10

15

20

25

30

35

The hypothesis that similar phenotypes can be caused by the combination of mutations in two (or more) different subunits (outbred communities), or by the same mutation in (or more) alleles of the same subunit (inbred communities), may seem implausible. However, applying the digenic hypothesis to the theoretical pentameric channel shown in Figure 1, in outbred communities IGE will be due to subunit combinations such as $\alpha*\alpha\beta*\beta\Delta$, $\alpha*\alpha\beta\beta\Delta*$ or $\alpha\alpha\beta*\beta\Delta*$ (mutated subunits indicated by *). In inbred communities $\alpha*\alpha*\beta\beta\Delta$ or $\alpha\alpha\beta*\beta*\Delta$ combinations might cause IGE phenotypes. We assume that the mutations will not cause reduced expression of the alleles and that the altered ion channel excitability, and consequent IGE phenotype, caused by mutations in two different alleles is similar to that caused by the same mutation in both alleles of one subunit. Finally, subunit mutations with more severe functional consequences (eg breaking a disulphide bridge in SCN1B or amino acid substitution in the pore forming regions of SCN1A for GEFS+) cause autosomal dominant generalized epilepsies with a penetrance of 60-90%. Such "severe" mutations are rare (allele frequency <0.01%) and are infrequent causes of GEFS⁺. They very rarely, perhaps never, cause classical IGE.

The relative separate segregation of classical IGE and GEFS⁺ phenotypes is an anecdotal clinical observation of ours (Singh et al., 1999), although the separation is not absolute. The separation is supported by previous family and EEG studies of Doose and colleagues who described "type A" and "type B" liabilities which we may approximate the GEFS⁺ and classical IGE groupings respectively (Doose and Baier, 1987).

WO 2005/014863 PCT/AU2004/001051 - 62 -

The digenic model predicts that affected sib pairs will share the same genes in 85% of cases whereas they will have at least one different allele in the remaining 15%. In contrast, only 58% of parent-child pairs share the same alleles in a 3 locus model. Thus there should be greater similarity of syndromes between sibling pairs than parent-child pairs. This would be most objectively measured by age of onset and seizure types.

5

10

15

20

25

30

35

Estimates for the risk of febrile seizures or IGE in The estimates range from 5%-10% relatives vary. siblings, 4%-6% for offspring, 3%-6% for parents, and 2-3% for grandparents. Underestimation may occur because IGE and parents and particularly manifest inyouth, grandparents may be unaware of seizures in themselves in younger years. This is particularly true where there was stigma associated with epilepsy and where the epilepsy may and unrecognized. Underestimation mild sibling and offspring risks occurs when unaffected young children are counted, some of whom will develop IGE in adolescence. Overestimation may occur with misdiagnosis of seizures or inclusion of seizures unrelated to IGE (e.g. due to trauma or tumors)

In autosomal dominant models the risk to affected relatives reduces proportionally (50% for first degree relatives, 25% for second degree etc). For all oligogenic or polygenic models the risk decreases more quickly. For a digenic model with three loci, the risks are 9.1% for siblings, 7.4% for offspring, 7.7% for parents. Rigorous measurement of the familial recurrence rates, with careful phenotyping and age-corrected risk estimates could be compared with the predictions from the digenic model, and it is proposed to do this.

There is a small amount of information on IGE families regarding haplotype distribution. For example, there is some evidence for a locus on 8q as determined by parametric linkage in a single family (Fong et al., 1998) and by non-parametric analysis in multiple small families

WO 2005/014863 PCT/AU2004/001051 - 63 -

(Zara et al., 1995). Interestingly, in the latter study the 8q haplotype not infrequently came from the unaffected parent. This would be quite compatible with the digenic model and evaluation of other data sets in this manner could be used to test the hypothesis, and it is proposed to do this.

5

10

15

20

25

30

35

Following the analysis of one large family with epilepsy where the two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS), the inheritance of FS was found to be autosomal dominant and the penetrance 75%. However the inheritance of CAE in this family was not simple Mendelian, but suggestive of complex inheritance with the involvement of more than one gene. The power of this large family was used to explore the complex genetics of CAE further.

Linkage analysis on this family in which individuals with CAE, FS and FS+ were deemed affected led to the detection of linkage on chromosome 5q and identification of a mutation in the GABRG2 gene (R43Q) which is localised to this region (Wallace et al., 2001a; PCT/AU01/00729). All 10 tested individuals with FS alone in this family had this mutation and 7 CAE affected individuals in this family also had the mutation. To test the digenic model of IGEs in the CAE affected individuals, the whole genome screen of this family was reanalysed with only individuals CAE considered affected. Linkage analysis with performed using FASTLINK v4.0, two-point lod scores were calculated assuming 50% penetrance and a 2% phenocopy rate and individuals with FS or FS+ were coded as unknown. lod score greater than Markers producing a reanalysed without a phenocopy rate and at the observed penetrance for CAE in this family (30%). Results from the analysis revealed significant linkage to chromosome 14q22q23 (lod 3.4). This provides strong evidence for a second locus segregating with CAE affected individuals in this family. While the GABRG2 mutation is sufficient to cause FS, the CAE phenotype is thought to be due to both the

WO 2005/014863 PCT/AU2004/001051 - 64 -

GABRG2 mutation and a mutation occurring in a gene mapping to the 14q locus, as proposed by the digenic model.

For the application of the digenic model to sporadic cases of IGE and affected individuals belonging to smaller families in which genotyping and linkage analysis is not a feasible approach to disease gene identification, direct mutation analysis of ion channel genes in these individuals has been carried out as described above. In Table 1 there is provided an indication of novel genetic alterations so far identified through mutation analysis screening of these individuals. Figure 2 provides an example to indicate where some of these mutations have occurred with respect to the potassium channel KCNQ2 gene.

5

10

15

20

25

30

35

The identification of novel mutations and variations in ion channel subunits in IGE individuals provides resources to further test the digenic hypothesis and mutation profiles are starting to accumulate for a number of subunit changes that are observed in the same individuals. Figure 3 provides results from some of these profiles.

Figure 3A shows a 3 generation family in which individual III-1 has myoclonic astatic epilepsy contains a N43del mutation in the SCN3A gene as well as an A1067T mutation in the SCN1A gene. Individual I-1 also has the SCN3A mutation but alone this mutation sufficient to cause epilepsy in this individual. The SCN3A mutation has likely been inherited from the grandfather through the mother, while the SCN1A mutation is likely to arise from the father. Both parents are unaffected but have yet to be screened for the presence of the mutations in these subunits. Individual II-1 is likely to contain an as yet unidentified ion channel subunit mutation acting in co-operation with the SCN3A mutation already identified in this individual.

Figure 3B is another 3 generation family in which individual III-1 has myoclonic astatic epilepsy due to a combination of the same SCN3A and SCN1A mutations as

WO 2005/014863 PCT/AU2004/001051
- 65 -

above. However, in this family both parents have febrile seizures most likely due to the presence of just one of the mutations in each parent, as proposed by the model. This is in contrast to individuals II-2 and II-3 in Figure 4A who also contain one of the mutations in these genes each. These individuals are phenotypically normal most likely due to incomplete penetrance of these mutations in each case.

Figure 3C shows a larger multi-generation family in which individual IV-5 has a mutation in both the SCN3A and GABRG2 subunits. In combination, these give rise to severe myoclonic epilepsy of infancy but alone either cause febrile seizures (GABRG2 mutation in III-3 and IV-4) or are without an effect (SCN3A mutation in III-2) as proposed by the model.

10

15

20

25

30

35

These examples therefore illustrate the digenic model as determined from mutation analysis studies of ion channel subunits in affected individuals and highlight the need to identify genetic alterations in the genes encoding ion channel subunits.

Example 5: Analysis of ion channels and ion channel subunits

The structure and function of the mutant ion channels and mutant ion channel subunits of the present invention can be determined using a variety of molecular biological studies. These studies may provide clues as to mechanisms by which mutations in ion channel subunits effect the functioning of the ion channel. For instance the identification of proteins that interact with mutant (or whose interaction ion channels is impeded by mutation in an ion channel subunit) may help determine the molecular mechanisms that are disrupted as a result of a mutation. Procedures such as the yeast two-hybrid system can be used to discover and identify such interacting proteins.

WO 2005/014863 PCT/AU2004/001051 - 66 -

The principle behind the yeast two-hybrid procedure many eukaryotic transcriptional activators, is including those in yeast, consist of two discrete modular domains. The first is a DNA-binding domain that binds to a specific promoter sequence and the second is an activation domain that directs the RNA polymerase II complex to transcribe the gene downstream of the DNA binding site. Both domains are required for transcriptional activation as neither domain can activate transcription on its own. In the yeast two-hybrid procedure, the gene of interest or parts thereof (BAIT), is cloned in such a way that it is expressed as a fusion to a peptide that has a DNA binding domain. A second gene, or number of genes, such as those from a cDNA library (TARGET), is cloned so that it is expressed as a fusion to an activation domain. Interaction of the protein of interest with its binding partner brings the DNA-binding peptide together with the activation domain and initiates transcription of the reporter genes. The first reporter gene will select for yeast cells that contain interacting proteins (this reporter is usually a nutritional gene required for growth on selective media). The second reporter is used for confirmation and while being expressed in response to interacting proteins it is usually not required for growth.

25

30

35

20

10

15

KCNQ2 interactors

Despite the identification of a number of KCNQ2 mutations responsible for epilepsy, including those of the underlying biological mechanisms study, the present epilepsy remains for the responsible uncharacterized. Towards identifying these mechanisms, large intracellular C-terminal region of KCNO2 screened for interactions with other proteins using the yeast-two hybrid procedure. The C-terminus accounts 63% of the KCNQ2 protein and, in common with other KCNQ subunits, contains a conserved 'A domain' (Jentsch, 2000; Schwake et al., 2000) thought to be involved in subunit WO 2005/014863 PCT/AU2004/001051
- 67 -

interactions as well as another distal short conserved region that has been associated with subunit assembly, at least in KCNQ1 (Jentsch, 2000; Schmitt et al., 2000).

5 A) Yeast-two hybrid analysis

10

15

20

25

30

35

A yeast two-hybrid screen was carried out using the ProOuestTM Two-Hybrid System with Gateway™ Technology (Invitrogen TM) according to manufacturer's directions. A KCNQ2 C-terminal entry (BAIT) clone was generated using the pENTR Directional TOPO $^{\tiny{\textcircled{0}}}$ Cloning Kit (Invitrogen $^{\tiny{\texttt{TM}}}$). The following primers were designed to amplify intracellular C-terminal region of KCNQ2 based on sequence of human KCNQ2 (Genbank accession NM 172107): KCNQ2F: 5'-CACCAAGGTTCAGGAGCAGCACAGG-3' KCNQ2R: 5'-TCACTTCCTGGGCCCGGCCCAGCC-3'. The 1611 base pair cloned fragment included exon 10a (found in all amplified clones), corresponding to amino acid 373-382 of the KCNQ2 protein. The extra 30 base pairs (10 amino acids) were included in our numbering. The PCR-product was cloned into the pENTR/D-TOPO $^{\tiny{(\!0\!)}}$ vector (Invitrogen $^{\tiny{\mathsf{TM}}}$) via the $exttt{TOPO}^{ exttt{ iny{B}}}$ Cloning reaction according to the manufacturer's instructions. Following sequence verification, the KCNQ2 cDNA fragment was then subcloned into pDEST $^{\text{TM}}$ 32, the DNA Binding domain (DB) $Gateway^{TM}$ Destination Vector $(Invitrogen^{TM})$.

The $ProQuest^{TM}$ Two-Hybrid human brain cDNA Library (TARGET) with GatewayTM technology (ResGenTM, InvitrogenTM Corporation) was amplified according to the manufacturer's instructions. Plasmid DNA was purified from the cell pellet using the HiSpeed Plasmid Maxi Kit (Qiagen) according to the manufacturer's instructions.

Both the DBLeu (empty bait vector) and DB-KCNQ2 wild-type (wt) C-term BAITS were transformed into the yeast strain Mav203 and plated onto minimal selective media lacking leucine. A duplicate was carried out where the empty library TARGET (pAD) vector was co-transformed in addition to each BAIT and plated onto minimal selective

WO 2005/014863 PCT/AU2004/001051
- 68 -

media lacking leucine (-leu) and tryptophan (-tryp). Yeast control strains (InvitrogenTM) were included on all plates. Control 1, used as a negative control, contained empty plasmids pPC97 and pPC86. Control 2 had pPC97-RB and pPC86-E2F1, which express a relatively weak interaction. Control 3 contained plasmids encoding the *Drosophila* DP (pPC97) and E2F (pPC86) domains that have a moderately strong interaction, and provide a control for plasmid shuffling. Control 4 contained pPC97-Fos and pPC86-Jun which express a relatively strong interaction, and control 5 had a pCL1 plasmid encoding full-length GAL4p and empty pPC86 and was used as a positive control.

10

15

20

25

30

35

The constructs were tested for self-activation of the his and β -gal reporter genes according to InvitrogenTM instructions.

For the yeast-two hybrid screen, competent yeast cells were prepared for each BAIT (DB-KCNQ2 wt C-term construct) to be screened, transformed with ProQuest™ Two-Hybrid human brain AD (activation domain) cDNA Library and plated onto minimal selective media lacking leucine (-leu), tryptophan (-tryp) and histidine (-his) and containing 3-aminotriazole (+3AT). Positive colonies from each screen were PCR-amplified and reintroduced into fresh yeast cells containing the BAIT to re-test for two-hybrid interaction phenotypes. giving rise to more than one PCR product or that failed to re-test positively were systematically eliminated. Positives that re-tested were sequenced using the ABI BigDye™ v3.0 PRISM® Terminators technology. identified, the sequence of the potential interactor was checked to verify it was in the same translational frame as the Gal4p-AD encoding sequence of the prey construct.

Approximately 3 x 10^6 clones from the ProQuestTM Two-Hybrid human brain cDNA Library were screened for interaction with the DB-Q2C wt bait. Among 1039 positive AD-cDNAs recovered, re-tested and subsequently sequenced

WO 2005/014863 PCT/AU2004/001051

all were identified as the CALM2 gene, encoding the ubiquitous, Ca^{2+} -binding protein, Calmodulin (CaM).

The interaction between the C-terminal region of KCNQ2 and CaM has also been reported by other studies (Wen and Levitan, 2002; Yus-Najera et al., 2002; Gamper and 5 Shapiro, 2003). In mammals, the CaM protein is coded by a multigene family consisting of three bona fide members, CALM1, CALM2 and CALM3. Within the non-coding regions of the CaM transcripts, no striking homology is observed, and codon usage is maximally divergent amongst the three CaM 10 mRNAs that encode an identical protein. It has been hypothesised that the existence of a multigene family provides a tight and complex level of regulatory control at the level of gene expression (Palfi et al., 2002). CaM genes are differentially expressed in the CNS during 15 development and differential regulation of the CaM genes appears necessary to maintain the temporal and spatial fidelity of the CaM protein levels in all subcellular domains. Besides the fundamental housekeeping functions associated with CaM, it is also involved in specialized 20 neuronal functions, such as the synthesis and release of neurotransmitters, neurite extension, long-term potentiation and axonal transport (Palfi et al., 2002).

25 B) Effect of epilepsy-associated KCNQ2 mutations on the CaM-KCNQ2 interaction

To assess the effect that the C-terminus mutations of the present invention had on CaM binding, two of the identified mutations (R353G and L619R) were introduced into the DB-Q2C construct by mutagenesis and were reanalysed for an interaction with CaM using the yeast two-hybrid procedure.

The following primers were used to incorporate the c1057C \rightarrow G (R353G) and c1856T \rightarrow G (L619R) changes into the pDESTTM32- KCNQ2 C-terminal bait construct.

R353G F 5'-CGCCACCAACCTCTCGGGCACAGACCTGCACTC-3'

30

35

WO 2005/014863 PCT/AU2004/001051

- 70 -

R353G R 5'-GAGTGCAGGTCTGTGCCCGAGAGGTTGGTGGCG-3'

5

10

15

20

25

30

35

L619R F 5'-CTTGTCCATGGAGAAGAGCGGGACTTCCTGGTGAATATC-3'

L619R R 5'-GATATTCACCAGGAAGTCCCGCTTCTTCTCCATGGACAAG-3'

Overlapping PCR products were generated using the TOPO® cloning compatible KCNQ2F primer from the initial cloning and the mutagenesis reverse primers, and the KCNQ2R primer from the initial cloning with the mutagenesis forward primers. Products were gel extracted and purified before a second round of PCR using the initial KCNQ2 F&R primers. These products were also gel extracted before cloning into the pDESTTM32 bait vector via the TOPO® system (as described above). Mutant baits were sequence verified.

The interaction between each DB-Q2C mutant and CaM was then tested by the yeast two-hybrid assay and compared to the interaction with DB-Q2 wt. Three different PCR-amplified CaM positive clones from the initial screen were re-introduced by gap-repair²⁰ into the prey vector (pPC86) in the yeast strain expressing either DB-Q2C wt, DB-Q2C mutants or the empty DBLeu vector, used as negative control.

CaM interaction with the DB-Q2C wt and mutants was then assessed by expression of the $\it HIS3$ and $\it LacZ$ reporter genes.

The Q2C R353G mutant did not interact with CaM, as seen by no growth on HIS3 selective plate (Figure 4C) and no blue readout in the LacZ filter assay (seen as dark squares in Figure 4D-F). On the other hand, the DB-Q2C L619R mutant was shown to still interact with CaM, as seen by growth on HIS3 selective plate (Figure 4C) and the blue readout in the LacZ filter assay. Interestingly, the DB-Q2C L619R mutant showed an even greater growth level on HIS3 selective plate than the DB-Q2C wt and also appeared to stain faster and more intensely blue in the LacZ filter assay, suggesting a stronger interaction between CaM and this mutant.

WO 2005/014863 PCT/AU2004/001051 - 71 -

In order to better quantify β -gal activity, a second assay was carried out using the high sensitivity substrate Chlorophenol Red- β -D-Galactopyranoside (CPRG) in liquid culture. The affinity of the DB-Q2C/AD-CaM interaction was measured in terms of units of β -gal activity, with a zero value indicating no expression of the LacZ reporter gene, and hence no interaction.

In the CPRG assay, a value of 0.05 units β -gal activity (Figure 5) was significantly different from the empty bait vector replicate (P<0.01, Student's t test), confirming the interaction of the DB-Q2C wt with CaM.

10

15

20

25

30

35

As observed in the LacZ filter assay, the CPRG assay showed a significant difference in the interaction between the Q2C R353G mutant and CaM as compared to the wt replicate (P<0.01, Student's t test, Figure 4).

These results suggest that the R353G mutation alters the structural conformation of the KCNQ2 C-terminal domain such that it is no longer able to bind to CaM and that this single point mutation is sufficient to abolish the interaction. By abolishing CaM binding, the R353G mutation could lead to an impairment of M-current *in vivo* due to decreased opening of the channel.

In contrast, the CPRG assay for the L619R Q2C mutant showed a significantly higher level of β -gal activity units (0.26 units) than the wt replicate (P<0.001, Student's ttest, Figure 5). This finding indicates that the L619R mutation alters the conformation of the protein in manner that increases CaM binding affinity for the KCNQ2 C-terminal domain by approximately 5-fold. The increased affinity for CaM may affect the ability of the complex to change conformation normally in response to calcium signalling. Alternatively, the marked increase in binding KCNQ2 CaM to the L619R mutant channel detrimental to the M-channel function via disruption of normal neuronal inhibitory/excitatory therefore causing the seizures associated with epilepsy, particularly BFNS. CaM is known to be involved in both the

WO 2005/014863 PCT/AU2004/001051
- 72 -

excitatory and inhibitory neurotransmission pathways (Ohya and Botstein, 1994) and it has been proposed that the temporal and spatial restrictions on CaM itself could enable the tight control of these opposing reactions (Toutenhoofd and Strehler, 2000). Hence, the KCNQ2 L619R mutation could lead to a disruption of the local CaM pool consequently disturbing the finely balanced excitatory and inhibitory neurotransmission systems.

These results implicate CaM in the pathogenesis of epilepsy and specifically in the BFNS syndrome. Whilst further work will be required to fully elucidate the involvement of the KCNQ2-CaM interaction in neuronal excitability and its correlation with idiopathic epilepsy, these data suggest that dysfunction of this interaction leads to aberrant neuronal excitability in some BFNS patients.

The calmodulin gene (and other ion channel interacting genes) may therefore be a target for mutation in epilepsy as well as other disorders associated with ion channel dysfunction. A mutation in an ion channel interacting gene when expressed alone, or when expressed in combination with one or more other ion channel mutations or ion channel interacting gene mutations (based on the digenic model), may give rise to the disorder. The nature of the ion channel interacting genes and proteins can be studied such that these partners can also be targets for drug discovery.

Industrial Applicability

5

10

15

20

25

The mutant ion channel receptor subunits of the invention are useful in the diagnosis and treatment of diseases such as epilepsy and disorders associated with ion channel dysfunction including, but not limited to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic ataxia, migraine, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia,

WO 2005/014863 PCT/AU2004/001051

- 73 -

anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colour-blindness.

- 74 -TABLE 1

Examples of mutations and variations identified in ion channel subunit genes

Subunit Gene	Exon/Intron	DNA Mutation	Amino Acid Change	SEQ ID NOS
Sodium Chann	el Subunits			<u></u>
Coding exonic	variants – amino a	icid change		
SCN1A ^r	Exon 5	c664C→T	R222X	1, 73
SCN1A ^r	Exon 8	c1152G→A	W384X	2, 74
SCN1A ^r	Exon 9	c1183G→C	A395P	. 3,75
SCN1A ^r	Exon 9	c1207T→C	F403L	4, 76
SCN1A ^r	Exon 9	c1237T→A	Y413N	5, 77
SCN1A ^r	Exon 9	c1265T→A	V422E	6, 78
SCN1A ^r	Exon 21	c4219C→T	R1407X	7, 79
SCN1A ^r	Exon 26	c5339T→C	M1780T	8, 80
SCN1A ^r	Exon 26	c5674C→T	R1892X	9, 81
SCN1B ^r	Exon 3	c254G→A	R85H	10, 82
SCN2A ^r	Exon 6A	c668G→A	R223Q	11, 83
SCN2A ^r	Exon 16	c2674G→A	V892I	12, 84
SCN2A ^r	Exon 17	c3007C→A	L1003I	13, 85
SCN2A ^r	Exon 19	c3598A→G	T1200A	14, 86
SCN2A ^r	Exon 20	c3956G→A	R1319Q	15, 87
Coding exonic	variants – no amir	no acid change		
SCN2A°	Exon 12	c1785T→C	-	16
SCN2A°	Exon 27	c4919T→A	-	17
Non-coding var	iants			
SCN1A ^r	Intron 9	IVS9-1G→A	-	18
SCN1A ^c	Intron 23	IVS23+33G→A	-	19
SCN2A ^r '	muon ,	IVS7+61T→A	-	20
SCN2A ^r	Intron 19	IVS19-55A→G	-	21
SCN2A ^r	Intron 22	IVS22-31A→G	-	22
SCN2A°	Intron 2	IVS2-28G→A	-	23
SCN2A°	Intron 8	IVS8-3T→C	-	24
SCN2A ^c	Intron 11	IVS11+49A→G	-	25
SCN2A ^c	Intron 11	IVS11-16C→T	-	26
SCN2A°	Intron 17	IVS17-71C→T	-	27
SCN2A ^c	Intron 17	IVS17-74delG	-	28
SCN2A°	Intron 17	IVS17-74insG	-	29
Nicotinic Acetylcholine Receptor Subunits				
	variants – amino a			
CHRNA5 ^r	Exon 4	c400G→A	V134I	30, 88
CHRNA2 ^c	Exon 4	c373G→A	A125T	31,89
CHRNA3°	Exon 2	c110G→A	R37H	32, 90
Coding variants – no amino acid change				
CHRNA2°	Exon 4	c351C→T	-	33
CHRNA2°	Exon 5	c771C→T	-	34
CHRNA3°	Exon 2	c159A→G	_	35
CHRNA3°	Exon 4	c291G→A	-	36
CHRNA3 ^c	Exon 4	c345G→A	-	37
			<u></u>	

TABLE 1 (Continued)

Examples of mutations and variations identified in ion channel subunit genes

Subunit Gene	Exon/Intron	DNA Mutation	Amino Acid Change	SEQ ID NOS
Non-coding var	riants			
CHRNA2°	Intron 3	IVS3-16C→T	-	38
CHRNA3°	Intron 3	IVS3-5T→C	-	39
CHRNA3 ^c	Intron 4	IVS4+8G→C	-	40
Potassium Cha	annel Subunits			•
Coding exonic	variants – amino	acid change		
KCNQ2 ^r	Exon 1	c204-c205insC	K69fsX119	41, 91
KCNQ2 ^r	Exon 1	clA→G	M1V	42
KCNQ2 ^r	Exon 1	c2T→C	M1T	43
KCNQ2 ^r	Exon 8	c1057C→G	R353G	44, 92
KCNQ2 ^r	Exon 11	c1288C→T	R430X	45, 93
KCNQ2 ^r	Exon 14	c1710A→T	R570S	46, 94
KCNQ2 ^r	Exon 15	c1856T→G	L619R	47, 95
Non-coding var		C10301—7G	EOTOR	11, 55
KCNQ2 ^r	Intron 9	IVS9+(46-48)delCCT	_	48
KCNQ2 KCNQ3 ^r	Intron 11	IVS11+43G→A	_	49
KCNQ3°	Intron 12	IV\$11+43G→A IV\$12+29G→A		50
KCNQ3	muon 12	1V512+29U→A	· -	30
GABA Recept	or Subunits	•		
	variants – no am	ino acid change		
GABRB1 ^r	Exon 5	c508C→T	-	51
GABRB1 ^r	Exon 9	c1329G→A	-	52
GABRB1°	Exon 8	c975C→T	-	53
GABRG3°	Exon 8	c995T→C	-	54
Non-coding var				
GABRA1°	5' UTR	c-142A→G	_	55
GABRA1°	5' UTR	c-31C→T	-	56
GABRA2°	3' UTR	c1615G→A	_	57
GABRA5°	5' UTR	c-271G→C	_	58
GABRA5°	5° UTR	c-228A→G	_	59
GABRA5°	5° UTR	c-149G→C	_	60
GABRB2.b	5° UTR	c-149G→C c-159C→T		61
GABRB2°	3' UTR		-	62
	5' UTR	c1749C→T	-	63
GABRPic		c-101C→T	-	
GABRB1°	Intron 1	IVS1+24T \rightarrow G	-	64 65
GABRB1°	Intron 5	IVS6+72T→G	-	
GABRB1°	Intron 7	IVS7-34A→G	-	66
GABRB3 ^r	Intron 1	IVS1-14C→T	-	67
GABRB3 ^r	Intron 7	IVS7+58delAA	-	68
GABRD	Intron 6	IVS6+132insC	-	69
GABRD ^r	Intron 6	IVS6+130insC		70
GABRD ^r	Intron 6	IVS6+73del	-	71
CADDOS	· 	CGCGCCCACCGCCCCTTC	LUUG	70
GABRĠ3°	Intron 8	IVS8-102C→T	b x /	72

Note: Mutations or variations only occurring in individuals with epilepsy; Variant seen only in normal control samples; Mutations or variants seen in individuals with epilepsy as well as normal control samples. The KCNQ2 numbering is based on the large isoform (inclusion of exon 10a). The numbering of exons and introns for SCNRA is based on the publication of Kassai et al. 2001 and 2001.

- 76 -

References

10

35

References cited herein are listed on the following pages, and are incorporated herein by this reference.

- 5 Andermann, E. (1982). In: Genetic basis of the epilepsies.
 Anderson, VE. Hauser, WA. Penry, JK. and Singh, CF.
 (Editors). New York, Raven Press. 355-374.
 - Annegers, JF. (1996). The treatment of epilepsy:

 Principles and practice. Second Edition. (Wyllie E

 (Ed) Williams and Wilkins).
 - Bell, JI. and Lathrop, M. (1996). *Nature Genet*. 13: 377-378.
 - Berkovic, SF. Andermann, F. Andermann, E. and Gloor, P. (1987). Neurology 37: 993-1000.
- Berkovic, SF. Reutens, DC. Andermann, E. and Andermann, F. (1994). In: Epileptic seizures and syndromes. Wolf, P. (Editor). London: John Libbey. 25-37.
 - Berkovic, SF. Mazarib, A. Neufeld, M. et al. (2000).

 Neurology (Supplement 3). 54: A356.
- 20 Biervert, C. Schroeder, BC. Kubisch, C. Berkovic, SF. Propping, P. Jentsch, TJ. and Steinlein, OK. (1998).

 Science 279: 403-406.
 - Breaker, RR. and Joyce, GF. (1995). Chem. Biol. 2: 655-600.
- 25 Cavazzuti, GB. Capella, L. and Nalin, A. (1980). Epilepsia 21: 43-55.
 - Charlier, C. Singh, NA. Ryan, SG. Lewis, TB. Reus, BE. Leach, RJ. and Leppert, M. (1998). *Nature Genet*. 18: 53-55.
- 30 Cole, SP. Campling, BG. Atlaw, T. Kozbor, D. and Roder, JC. (1984). Mol. Cell Biochem. 62: 109-120.
 - Collins, FS. (1995). Nature Genet. 9: 347-350.
 - Commission on Classification and Terminology of the International League against Epilepsy. (1989). Epilepsia 30: 389-399.

5

30

WO 2005/014863 PCT/AU2004/001051

- Cote, RJ. Morrissey, DM. Houghton, AN. Beattie, EJ Jr. Oettgen, HF. and Old, LJ. (1983). Proc. Natl. Acad. Sci. USA 80: 2026-2030.
- Doose, H. and Baier, WK. (1987). Neuropediatrics 18 (Supplement 1): 1-64.
- Doose, H. and Baier, W. (1989). Clev. Clin. J. Med. 56 (Supplement): s105-s110.
- Dworakowska, B. and Dolowy, K. (2000). Acta Biochim. Pol. 47: 685-703.
- 10 Escayg, A. MacDonald, BT. Meisler, MH. Baulac, S. Huberfeld, G. An-Gourfinkel, I. Brice, A. LeGuern, E. Moulard, B. Chaigne, D. Buresi, C. and Malafosse, A. (2000). Nature Genet. 24: 343-345.
- Fong, GC. Shah, PU. Gee, MN. Serratosa, JM. Castroviejo,

 IP. Khan, S. Ravat, SH. Mani, J. Huang, Y. Zhao, HZ.

 Medina, MT. Treiman, LJ. Pineda, G. and DelgadoEscueta, AV. (1998). Am. J. Hum. Genet. 63: 1117-1129.
 - Gamper, N. and Shapiro, MS. (2003). J. Gen. Physiol. 122: 17-31.
- 20 Gardiner, M. (2000). J Neurol. 247: 327-334.
 - Goldman, CK. Soroceanu, L. Smith, N. Gillespie, GY. Shaw, W. Burgess, S. Bilbao, G. and Curiel, DT. (1997). Nature Biotechnology 15: 462-466.
- Gonzalez, JE. et al. (1999). Drug Discov. Today 4: 431-25 439.
 - Greenberg, DA. Delagado-Escueta, AV. Maldonado, HM. and Widellitz, H. (1988a). Genet Epidem. 5: 81-94.
 - Greenberg, DA. Delgado-Escueta, AV. Widelitz, H. Sparkes, RS. Treiman, L. Maldonado, HM. Park, MS. and Terasaki, PI. (1988b). Am. J. Med. Genet. 31: 185-192.
 - Greenberg, DA. Durner, M. and Delgado-Escueta, AV. (1992).

 Neurology 42 (Suppl 5): 56-62.
 - Hamill, OP. et al. (1981). Pflugers Arch. 391: 85-100.
 - Haseloff, J. and Gerlach, WL. (1988). Nature 334: 585-591.
- 35 Hauser, WA. Annegers, JF. and Kurland, LT. (1993).

 Epilepsia 34: 453-468.

25

35

WO 2005/014863 PCT/AU2004/001051

- Heller, RA. Schena, M. Chai, A. Shalon, D. Bedilion, T. Gilmore, J. Woolley, DE. and Davis RW. (1997). Proc. Natl. Acad. Sci. USA 94: 2150-2155.
- Huse, WD. Sastry, L. Iverson, SA. Kang, AS. Alting-Mees,

 M. Burton, DR. Benkovic, SJ. and Lerner, RA. (1989).

 Science 246: 1275-1281.
 - Italian League Against Epilepsy Genetic Collaborative Group. (1993). Epilepsia 34: 819-26.
- Janz, D. Beck-Mannagetta, G. and Sander, T. (1992).

 Neurology 42 (Suppl 5): 48-55.
 - Jentsch, TJ. (2000). Nature Rev. Neurosci. 1: 21-29.
 - Kasai, N. Fukushima, K. Ueki, Y. Prasad, S. Nosakowski, J. Sugata, K. Sugata, A. Nishizaki, K. Meyer, NC. and Smith, RJ. (2001). Gene 264: 113-122.
- 15 Kohler, G. and Milstein, C. (1975). Nature 256: 495-497.
 - Kozbor, D. Abramow-Newerly, W. Tripputi, P. Cole, SP. Weibel, J. Roder, JC. and Croce, CM. (1985). J. Immunol. Methods 81:31-42.
- Lernmark, A. and Ott, J. (1998). Nature Genet. 19: 213-20 214.
 - Ohya, Y. and Botstein, D. (1994). Science 263: 963-966.
 - Okubo, Y. Matsuura, M. Asai, T. Asai, K. Kato, M. Kojima, T. and Toru, M. (1994). Epilepsia 35: 832-841.
 - Orlandi, R. Gussow, DH. Jones, PT. and Winter, G. (1989).

 Proc. Natl. Acad. Sci. USA 86: 3833-3837.
 - Palfi, A. Kortvely, E. Fekete, E. Kovacs, B. Varszegi, S. and Gulya, K. (2002). Life Sciences 70: 2829-2855.
 - Panayiotopoulos, CP. and Obeid, T. (1989). Ann. Neurol. 25: 440-443.
- 30 Phillips, HA. Favre, I. Kirkpatrick, M. Zuberi, SM. Goudie, D. Heron, SE. Scheffer, IE. Sutherland, GR. Berkovic, SF. Bertrand, D. and Mulley, JC. (2001). Am. J. Hum. Genet. 68: 225-231.
 - Reutens, DC. and Berkovic, SF. (1995). Neurology 45: 1469-1476.
 - Rickert, RC. Roes, J. and Rajewsky, K. (1997). Nucleic Acids Res. 25: 1317-1318.

Risch, N. and Botstein, D. (1996). *Nature Genet*. 12: 351-353.

Roger, J. Bureau, M. Dravet, C. Dreifuss, FE. Perret, A. and Wolf, P. (1992). Epileptic syndromes in infancy, childhood and adolescence. 2nd Edition. London, John Libbey.

5

- Scharf, KD. Materna, T. Treuter, E. and Nover, L. (1994).

 Results Probl. Cell Differ. 20: 125-162.
- Scheffer, IE. and Berkovic, SF. (1997). Brain 120: 479-90.
- 10 Schena, M. Shalon, D. Heller, R. Chai, A. Brown, PO. and Davis, RW. (1996). *Proc. Natl. Acad. Sci. USA* 93: 10614-10619.
 - Schmitt, N. Schwarz, M. Peretz, A. Abitbol, I. Attali, B. and Pongs, O. (2000). Embo J. 19: 332-340.
- 15 Schwake, M. Pusch, M. Kharkovets, T. and Jentsch, TJ. (2000). J. Biol. Chem. 275: 13343-13348.
 - Schwenk, F. Baron, U. and Rajewsky, K. (1995). Nucleic Acids Res. 23: 5080-5081.
- Singh, NA. Charlie, C. Stauffer, D. DuPont, BR. Leach, RJ.

 Melis, R. Ronen, GM. Bjerre, I. Quattlebaum, T.

 Murphy, JV. McHarg, ML. Gagnon, D. Rosales, TO.

 Peiffer, A. Anderson, VE. and Leppert, M. (1998).

 Nature Genet. 18: 25-29.
- Singh, R. Scheffer, IE. Crossland, K. and Berkovic, SF. (1999). Ann. Neurol. 45: 75-81.
 - Steinlein, OK. Mulley, JC. Propping, P. Wallace, RH. Phillips, HA. Sutherland, GR. Scheffer, IE. and Berkovic, SF. (1995). Nature Genet. 11: 201-203.
 - Todd, JA. (1999). Lancet 354 (Supplement 1): 15-16.
- 30 Toutenhoofd, SL. and Strehler, EE. (2000). Cell Calcium 28: 83-96.
 - Wallace, RH. Marini, C. Petrou, S. Harkin, LA. Bowser, DN. Panchal, RG. Williams, DA. Sutherland, GR. Mulley, JC. Scheffer, IE. and Berkovic, SF. (2001a). Nature Genet. 28: 49-52.
 - Wallace, RH. Scheffer, IE. Barnett, S. Richards, M. Dibbens, L. Desai, RR. Lerman-Sagie, T. Lev, D.

WO 2005/014863 PCT/AU2004/001051
- 80 -

Mazarib, A. Brand, N. Ben-Zeev, B. Goikhman, I. Singh, R. Kremmidiotis, G. Gardner, A. Sutherland, GR. George, AL Jr. Mulley, JC. and Berkovic, SF. (2001b).

5 Wallace, RH. Wang, DW. Singh, R. Scheffer, I. George, A. Phillips, H. Saar, K. Reis, A. Johnson, E. Sutherland, G. Berkovic, S. and Mulley, J. (1998). Nature Genet. 19: 366-370.

Am. J. Hum. Genet. 68: 859-865.

- Wen, H. and Levitan, IB. (2002). J. Neurosci. 22: 7991-10 8001.
 - Winter, G. and Milstein, C. (1991). Nature 349: 293-299.
 - Wyman, AR. and White, R. (1980). Proc. Natl. Acad. Sci. 77: 6754-6758.
 - Yus-Najera, E. Santana-Castro, I. and Villarroel, A. (2002). J. Biol. Chem. 277: 28545-28553.
 - Zara, F. Bianchi, A. Avanzini, G. Di Donato, S.
 Castellotti, B. Patel, PI. and Pandolfo, M. (1995).
 Hum. Mol. Genet. 4: 1201-1207.
- Zara, F. Gennaro, E. Stabile, M. Carbone, I. Malacarne, M.

 Majello, L. Santangelo, R. de Falco, FA. and
 Bricarelli, FD. (2000). Am. J. Hum. Genet. 66: 15521557.

- 81 -

Claims

5

A method of identifying a subject predisposed to a associated with ionchannel dysfunction, disorder comprising ascertaining whether at least one of the genes encoding ion channel subunits in said subject undergone а mutation event selected from the group the mutation events set forth consisting of in the following Table:

PCT/AU2004/001051

Subunit Exon/Intron DNA Mutation Gene SCN1A Exon 5 $c664C \rightarrow T$ Exon 8 SCN1A c1152G→A Exon 9 SCN1A c1183G→C Exon 9 SCN1A c1207T→C Exon 9 SCN1A $c1237T \rightarrow A$ SCN1A Exon 9 c1265T→A SCN1A Exon 21 $c4219C \rightarrow T$ Exon 26 SCN1A c5339T→C Exon 26 SCN1A $c5674C \rightarrow T$ SCN1B Exon 3 c254G→A SCN2A Exon 6A c668G→A SCN2A Exon 16 c2674G→A Exon 17 SCN2A c3007C→A Exon 19 SCN2A c3598A→G SCN2A Exon 20 c3 № 56G → A SCN2A Exon 12 c1785T→C Exon 27 SCN2A $c4919T \rightarrow A$ SCN1A Intron 9 IVS9-1G→A Intron 23 SCN1A IVS23+33G→A Intron 7 SCN2A IVS7+61T \rightarrow A Intron 19 SCN2A IVS19-55A→G Intron 22 SCN2A IVS22-31A \rightarrow G SCN2A Intron 2 IVS2-28G→A SCN2A Intron 8 IVS8-3T→C SCN2A Intron 11 IVS11+49A \rightarrow G Intron 11 SCN2A IVS11-16C→T SCN2A Intron 17 IVS17-71C \rightarrow T Intron 17 IVS17-74delG SCN2A IVS17-74insG SCN2A Intron 17 CHRNA5 Exon 4 c400G→A CHRNA2 Exon 4 c373G→A CHRNA3 Exon 2 c110G→A Exon 4 CHRNA2 $c351C \rightarrow T$

- 82 -

OTT - 177 O		
CHRNA2	Exon 5	c771C→T
CHRNA3	Exon 2	c159A→G
CHRNA3	Exon 4	c291G→A
CHRNA3	Exon 4	c345G→A
CHRNA2	Intron 3	IVS3-16C→T
CHRNA3	Intron 3	IVS3-5T→C
CHRNA3	Intron 4	IVS4+8G→C
KCNQ2	Exon 1	c204-c205insC
KCNQ2	Exon 1	C1A→G
KCNQ2	Exon 1	c2T→C
KCNQ2	Exon 8	c1057C→G
KCNQ2	Exon 11	c1288C→T
KCNQ2	Exon 14	$c1710A \rightarrow T$
KCNQ2	Exon 15	c1856T→G
KCNQ2	Intron 9	IVS9+(46-48)delCCT
KCNQ3	Intron 11	IVS11+43G→A
KCNQ3	Intron 12	IVS12+29G→A
GABRB1	Exon 5	c508C→T
GABRB1	Exon 9	c1329G→A
GABRB1	Exon 8	c975C→T
GABRG3	Exon 8	c995T→C
GABRA1	5' UTR	c-142A→G
GABRA1	5' UTR	$C-31C \rightarrow T$
GABRA2	3' UTR	c1615G→A
GABRA5	5' UTR	c-271G→C
GABRA5	5' UTR	c-228A→G
GABRA5	5' UTR	c-149G→C
GABRB2	5' UTR	c-159C→T
GABRB2	3' UTR	c1749C→T
GABRPi	5' UTR	$C-101C \rightarrow T$
GABRB1	Intron 1	IVS1+24T→G
GABRB1	Intron 6	IVS6+72T→G
GABRB1	Intron 7	IVS7-34A→G
GABRB3	Intron 1	IVS1-14C→T
GABRB3	Intron 7	IVS7+58delAA
CARDO	Tro traces C	TVGC 122
GABRD GABRD	Intron 6 Intron 6	IVS6+132insC IVS6+130insC
GABRD GABRD	Intron 6	IVS6+73delCGCGCCCACCGCCCTTCCGCG
GABRG3	Intron 8	IVS8-102C→T
		TANO TOTO 1

2. A method as claimed in claim 1 wherein a cDNA derived from said subject comprises the sequence set forth in one of SEQ ID NOS: 1-72.

WO 2005/014863 PCT/AU2004/001051
- 83 -

- 3. A method as claimed in claim 1 wherein a cDNA derived from said subject has the sequence set forth in one of SEQ ID NOS: 1-72.
- 5 4. A method as claimed in any one of claims 1 to 3, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce an epilepsy phenotype in said subject.
- A method as claimed in any one of claims 1 to 3, 5. 10 wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce one or more with ionchannel dysfunction, disorders associated including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, 15 arrhythmias, cardiac episodic ataxia, myasthenia, Alzheimer's disease, Parkinson's disease, migraine, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney 20 disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colour-blindness in said subject.
- 25 6. A method as claimed in any one of claims 1 to 3, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce an epilepsy phenotype when expressed in combination with one or more additional mutations or variations in said ion channel subunit genes.
 - 7. A method as claimed in any one of claims 1 to 3, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce one or more disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia,

myasthenia, cardiac arrhythmias, episodic ataxia, migraine, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colour-blindness, when expressed in combination with one or more additional mutations or variations in said ion channel subunit genes.

8. An isolated nucleic acid molecule encoding a mutant or variant ion channel subunit wherein a mutation event selected from the group consisting of the mutation events

15 set forth in the following Table:

5

set torth	in the following	Table:
Subunit Gene	Exon/Intron	DNA Mutation
SCN1A	Exon 5	c664C→T
SCN1A	Exon 8	c1152G→A
SCN1A	Exon 9	c1183G→C
SCN1A	Exon 9	c1207T→C
SCN1A	Exon 9	c1237T→A
SCN1A	Exon 9	c1265T→A
SCN1A	Exon 21	C4219C→T
SCN1A	Exon 26	c5339T→C
SCN1A	Exon 26	c5674C→T
SCN1B	Exon 3	c254G→A
SCN2A	Exon 6A	c668G→A
SCN2A	Exon 16	c2674G→A
SCN2A	Exon 17	c3007C→A
SCN2A	Exon 19	c3598A→G
SCN2A	Exon 20	c3956G→A
SCN2A	Exon 12	c1785T→C
SCN2A	Exon 27	C4919T→A
SCN1A	Intron 9	IVS9-1G→A
SCN1A	Intron 23	IVS23+33G→A
SCN2A	Intron 7	IVS7+61T→A
SCN2A	Intron 19	IVS19-55A→G
SCN2A	Intron 22	IVS22-31A→G
SCN2A	Intron 2	IVS2-28G→A
SCN2A	Intron 8	IVS8-3T→C
SCN2A	Intron 11	IVS11+49A→G
SCN2A	Intron 11	IVS11-16C→T

WO 2005/014863 PCT/AU2004/001051

SCN2A	Intron 17	IVS17-71C→T
SCN2A	Intron 17	IVS17-74delG
SCN2A	Intron 17	IVS17-74insG
CHRNA5	Exon 4	c400G→A
CHRNA2	Exon 4	c373G→A
CHRNA3	Exon 2	C110G→A
CHRNA2	Exon 4	c351C→T
CHRNA2	Exon 5	c771C→T
CHRNA3	Exon 2	c159A→G
CHRNA3	Exon 4	c291G→A
CHRNA3	Exon 4	c345G→A
CHRNA2	Intron 3	IVS3-16C→T
CHRNA3	Intron 3	IVS3-5T→C
CHRNA3	Intron 4	IVS4+8G→C
KCNQ2	Exon 1	c204-c205insC
KCNQ2	Exon 1	c1A→G
KCNQ2	Exon 1	c2T→C
KCNQ2	Exon 8	c1057C→G
KCNQ2	Exon 11	C1288C→T
KCNQ2	Exon 14	c1710A→T
KCNQ2	Exon 15	c1856T→G
KCNQ2	Intron 9	IVS9+(46-48)delCCT
KCNQ3	Intron 11	IVS11+43G→A
KCNQ3	Intron 12	IVS12+29G→A
GABRB1	Exon 5	c508C→T
GABRB1	Exon 9	c1329G→A
GABRB1	Exon 8	c975C→T
GABRG3	Exon 8	c995T→C
GABRA1	5' UTR	c-142A→G
GABRA1	5' UTR	c-31C→T
GABRA2	3' UTR	c1615G→A
GABRA5	5' UTR	c-271G→C
GABRA5	5' UTR	c-228A→G
GABRA5	5' UTR	c-149G→C
GABRB2	5' UTR	c-159C→T
GABRB2	3' UTR	c1749C→T
GABRPi	5' UTR	c-101C→T
GABRB1	Intron 1	IVS1+24T→G
GABRB1	Intron 6	IVS6+72T→G
GABRB1	Intron 7	IVS7-34A→G
GABRB3	Intron 1	IVS1-14C→T
GABRB3	Intron 7	IVS7+58delAA
GABRD	Intron 6	IVS6+132insC
GABRD	Intron 6	IVS6+130insC
GABRD	Intron 6	IVS6+73delCGCGCCCACCGCCCCTTCCGCG
GABRG3	Intron 8	IVS8-102C→T

WO 2005/014863 - 86 -

has occurred.

5

10

15

35

9. An isolated nucleic acid molecule encoding a mutant or variant ion channel subunit as claimed in claim 8 wherein a cDNA derived therefrom comprises the sequence set forth in one of SEQ ID NOS: 1-72.

PCT/AU2004/001051

- 10. An isolated nucleic acid molecule encoding a mutant or variant ion channel subunit as claimed in claim 8 wherein a cDNA derived therefrom has the sequence set forth in one of SEQ ID NOS: 1-72.
- 11. An isolated nucleic acid molecule encoding a mutant or variant ion channel subunit as claimed in any one of claims 8 to 10, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce an epilepsy phenotype.
- 12. An isolated nucleic acid molecule encoding a mutant or variant ion channel subunit as claimed in any one of 20 claims 8 to 10, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce more disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant 25 hyperthermia, myasthenia, cardiac arrhythmias, ataxia, migraine, ${ t Alzheimer's}$ disease, Parkinson's schizophrenia, hyperekplexia, disease, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, 30 disease, Dent's polycystic kidney hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colourblindness.
 - 13. An isolated nucleic acid molecule encoding a mutant or variant ion channel subunit as claimed in any one of

- 87 -

PCT/AU2004/001051

claims 8 to 10, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce an epilepsy phenotype when expressed in combination with one or more additional mutations or variations in said ion channel subunit genes.

An isolated nucleic acid molecule encoding a mutant or variant ion channel subunit as claimed in any one of claims 8 to 10, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce disorders associated with ionone ormore channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, migraine, Alzheimer's disease, Parkinson's ataxia, hyperekplexia, disease, schizophrenia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colourblindness, when expressed in combination with one or more additional mutations or variations in said ion channel subunit genes.

25

5

10

15

20

WO 2005/014863

- 15. An isolated nucleic acid molecule comprising any one of the nucleotide sequences set forth in SEQ ID NOS: 1-72.
- 16. An isolated nucleic acid molecule consisting of any one of the nucleotide sequences set forth in SEQ ID NOS: 1-72.
- 17. An isolated nucleic acid molecule encoding a mutant KCNQ2 subunit, wherein the mutation event has occurred in the C-terminal domain of the KCNQ2 subunit and leads to a disturbance in the calmodulin binding affinity of the subunit, so as to produce an epilepsy phenotype.

18. An isolated nucleic acid molecule as claimed in claim 17 wherein the mutation event has occurred in exon 8, exon 11, exon 14 or exon 15.

5

19. An isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit wherein a mutation event selected from the group consisting of the mutation events set forth in the following Table:

et	forth	in	the	following Table:
	Subunit		t Deine Deid Change	Amino Acid Change
Gene			Amilio Acid Change	
	SCN1A			R222X
	SCN1	A		W384X
	SCN1	A		A395P
	SCN1	A		F403L
	SCN1	Ą		Y413N
	SCN1	Ą		V422E
	SCN1	Ą		R1407X
	SCN1	A		M1780T
	SCN1	A		R1892X
	SCN1	3		R85H
	SCN2	A		R223Q
	SCN2	A		V892I
SCN2A			L1003I	
	SCN2	A		T1200A
SCN2A			R1319Q	
CHRNA5			V134I	
CHRNA2			Al25T	
CHRNA3			R37H	
KCNQ2			K69fsX119	
KCNQ2			M1V	
KCNQ2			M1T	
KCNQ2			R353G	
KCNQ2			R430X	
KCNQ2			R570S	
KCNQ2			L619R	

10 has occurred.

- 20. An isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit as claimed in claim 19 wherein the polypeptide comprises the amino acid sequence set forth in one of SEQ ID NOS: 73-95.
- 21. An isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit as claimed in claim

WO 2005/014863 PCT/AU2004/001051
- 89 -

- 19 wherein the polypeptide has the amino acid sequence set forth in one of SEQ ID NOS: 73-95.
- 22. An isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit as claimed in any one of claims 19 to 21, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce an epilepsy phenotype.

5

- 10 23. An isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit as claimed in any 19 to 21, wherein said mutation event one of claims disrupts the functioning of an assembled ion channel so as to produce one or more disorders associated with ion channel dysfunction, including but not restricted to, 15 hypo-kalemic periodic paralysis, malignant hyperthermia, myasthenia, cardiac arrhythmias, Alzheimer $^\prime$ s ataxia, migraine, episodic Parkinson's disease, schizophrenia, hyperekplexia, depression, phobic obsessive 20 anxiety, symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colour-blindness. 25
 - 24. An isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit as claimed in any one of claims 19 to 21, wherein said mutation event disrupts the functioning of an assembled ion channel so as to produce an epilepsy phenotype when expressed in combination with one or more additional mutations or variations in said ion channel subunit genes.
- 35 25. An isolated polypeptide, said polypeptide being a mutant or variant ion channel subunit as claimed in any one of claims 19 to 21, wherein said mutation event

- 90 - disrupts the functioning of an assembled ion channel so as

PCT/AU2004/001051

WO 2005/014863

5

10

15

to produce one or more disorders associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, ataxia, ${ t migraine}$, Alzheimer's episodic schizophrenia, disease, hyperekplexia, Parkinson's phobic obsessive depression, symptoms, anxiety, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness and total colour-blindness, when expressed in combination with one or more additional mutations or variations in said ion channel subunit genes.

- 26. An isolated polypeptide comprising any one of the amino acid sequences set forth in SEQ ID NOS: 73-95.
- 20 27. An isolated polypeptide consisting of any one of the amino acid sequences set forth in SEQ ID NOS: 73-95.
- 28. An isolated polypeptide, said polypeptide being a mutant KCNQ2 subunit, wherein the mutation event has occurred in the C-terminal domain of the KCNQ2 subunit and leads to a disturbance in the calmodulin binding affinity of the subunit, so as to produce an epilepsy phenotype.
- 29. An isolated polypeptide complex, said polypeptide complex being an assembled mammalian ion channel including an ion channel subunit comprising a polypeptide as defined in any one of claims 19 to 28.
- 30. An expression vector comprising a nucleic acid molecule as claimed in any one of claims 8 to 18.

WO 2005/014863 PCT/AU2004/001051
- 91 -

- 31. A cell comprising at least one expression vector as claimed in claim 30.
- 32. A cell as claimed in claim 31 comprising two or more 5 expression vectors.
 - 33. A cell comprising at least one ion channel type, wherein the or each ion channel type incorporates at least one mutant polypeptide as claimed in any one claims 19 to 28.
 - 34. A cell as claimed in claim 33 comprising ion channels that incorporate two or more mutant polypeptides.
- 15 35. A cell as claimed in claim 33 comprising two or more ion channel types each incorporating one or more mutant polypeptides.
- 36. A method of preparing a polypeptide, comprising the 20 steps of:
 - (1) culturing cells as claimed in any one of claims 31 to 35 under conditions effective for polypeptide production; and
 - (2) harvesting the polypeptide.

25

30

- 37. A polypeptide prepared by the method of claim 36.
- 38. An antibody which is immunologically reactive with an isolated polypeptide as claimed in any one of claims 19 to 28 or claim 37, or an isolated polypeptide complex as claimed in claim 29.
- 39. An antibody as claimed in claim 38 which is selected from the group consisting of a monoclonal antibody, a humanised antibody, a chimeric antibody or an antibody fragment including a Fab fragment, (Fab')2 fragment, Fv

WO 2005/014863 PCT/AU2004/001051
- 92 -

fragment, single chain antibodies and single domain antibodies.

- 40. A method of treating epilepsy comprising administering an antibody as claimed in either one of claims 38 or 39 to a subject in need of such treatment.
- 41. The use of an antibody, as claimed in either one of claims 38 or 39, in the manufacture of a medicament for the treatment of epilepsy.
- 42. A method of treating a disorder associated with ion channel dysfunction, including but not restricted to, hypo-kalemic periodic paralysis, hyper- or malignant hyperthermia, myasthenia, cardiac arrhythmias, 15 episodic ataxia, migraine, ${ t Alzheimer's}$ Parkinson's disease, schizophrenia, hyperekplexia, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, 20 Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness, comprising administering an antibody as claimed in either one of claims 38 or 39 to a subject in need of such treatment. 25
- The use of an antibody, as claimed in either one of claims 38 or 39, in the manufacture of a medicament for the treatment of a disorder associated with ion channel 30 dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic migraine, Alzheimer's disease, Parkinson's ataxia, schizophrenia, disease, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, 35 inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's

hyperinsulinemic hypoglycemia of infancy, cystic fibrosis,

- 93 -

WO 2005/014863

10

congenital stationary night blindness or total colourblindness.

PCT/AU2004/001051

- οf treating epilepsy comprising 44. Α method administering a selective agonist, antagonist or modulator of an ion channel when it has undergone a mutation event or combination of events as defined in any one of claims 19 to 28 to a subject in need of such treatment.
- selective agonist, antagonist or 45. The use of a modulator of an ion channel when it has undergone a mutation event as defined in any one of claims 19 to 28 in the manufacture of a medicament for the treatment of 15 epilepsy.
- A method of treating a disorder associated with ion channel dysfunction, including but not restricted hypo-kalemic periodic paralysis, myotonias, hyper- or malignant hyperthermia, myasthenia, cardiac arrhythmias, 20 ataxia, migraine, Alzheimer's disease, episodic schizophrenia, hyperekplexia, Parkinson's disease, symptoms, phobic obsessive depression, anxiety, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's 25 disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness, comprising administering a selective agonist, antagonist or modulator of an ion channel when it has undergone a mutation event or combination of events as 30 defined in any one of claims 19 to 28 to a subject in need of such treatment.
- The selective agonist, antagonist of a. 47. use modulator of an ion channel when it has undergone a 35 mutation event as claimed in any one of claims 19 to 28 in the manufacture of a medicament for the treatment of a

WO 2005/014863 PCT/AU2004/001051
- 94 -

disorder associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic migraine, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.

48. A method of treating epilepsy comprising administering an isolated DNA molecule which is the complement (antisense) of a nucleic acid molecule as claimed in any one of claims 8 to 18 and which encodes an RNA molecule that hybridizes with the mRNA encoded by a nucleic acid molecule as claimed in any one of claims 8 to 18, to a subject in need of such treatment.

20

25

5

10

- 49. The use of a DNA molecule which is the complement of a nucleic acid molecule as claimed in any one of claims 8 to 18 and which encodes an RNA molecule that hybridizes with the mRNA encoded by a nucleic acid molecule as claimed in any one of claims 8 to 18, in the manufacture of a medicament for the treatment of epilepsy.
- 50. A method of treating a disorder associated with ion channel dysfunction, including but not restricted to, 30 hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic ataxia, migraine, Alzheimer's Parkinson's disease, schizophrenia, hyperekplexia, depression, anxiety, phobic obsessive 35 neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic

WO 2005/014863 PCT/AU2004/001051
- 95 -

fibrosis, congenital stationary night blindness or total colour-blindness, comprising administering an isolated DNA molecule which is the complement (antisense) of a nucleic acid molecule as claimed in any one of claims 8 to 18 and which encodes an RNA molecule that hybridizes with the mRNA encoded by a nucleic acid molecule as claimed in any one of claims 8 to 18, to a subject in need of such treatment.

5

30

- 51. The use of a DNA molecule which is the complement of 10 a nucleic acid molecule as claimed in any one of claims 8 to 18 and which encodes an RNA molecule that hybridizes with the mRNA encoded by a nucleic acid molecule as claimed in any one of claims 8 to 18, in the manufacture of a medicament for the treatment of a disorder associated 15 with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, migraine, Alzheimer's episodic ataxia, 20 Parkinson's disease, schizophrenia, hyperekplexia, depression, phobic obsessive anxiety, symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total 25 colour-blindness.
 - 52. \mathtt{method} of treating epilepsy comprising administering an antibody, as claimed in either one of claims 38 or 39, administration of an agonist, antagonist or modulator of an ion channel when it has undergone a mutation event or combination of events as defined in any one of claims 19 to 28, or administration of a DNA molecule which is the complement of a nucleic acid molecule as claimed in any one of claims 8 to 18 and which encodes an RNA molecule that hybridizes with the mRNA encoded by a nucleic acid molecule as claimed in any one

WO 2005/014863 PCT/AU2004/001051
- 96 -

of claims 8 to 18, in combination with administration of the wild-type ion channel subunit, to a subject in need of such treatment.

- The use of an antibody, as claimed in claims 38 or 5 39, use of an agonist, antagonist or modulator of an ion it has undergone a mutation whenevent combination of events as defined in any one of claims 19 to 28, or use of a DNA molecule which is the complement of a nucleic acid molecule as claimed in any one of claims 8 10 to 18 and which encodes an RNA molecule that hybridizes with the mRNA encoded by a nucleic acid molecule as claimed in any one of claims 8 to 18, in combination with the use of the wild-type ion channel subunit, in the manufacture of a medicament for the treatment of epilepsy. 15
 - 54. A method of treating a disorder associated with ion channel dysfunction, including but not restricted to, hypo-kalemic periodic paralysis, hyper- or malignant hyperthermia, myasthenia, cardiac arrhythmias, ataxia, migraine, Alzheimer's Parkinson's disease, schizophrenia, hyperekplexia, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness, comprising administering an antibody, claimed in either one of claims 38 administration of an agonist, antagonist or modulator of an ion channel when it has undergone a mutation event or combination of events as defined in any one of claims 19 to 28, or administration of a DNA molecule which is the complement of a nucleic acid molecule as claimed in any one of claims 8 to 18 and which encodes an RNA molecule that hybridizes with the mRNA encoded by a nucleic acid molecule as claimed in any one of claims 8 to 18, in

20

25

30

WO 2005/014863 PCT/AU2004/001051
- 97 -

combination with administration of the wild-type ion channel subunit, to a subject in need of such treatment.

- The use of an antibody, as claimed in claims 387 or 39, use of an agonist, antagonist or modulator of an ion 5 channel when it undergone a mutation has event combination of events as defined in any one of claims 19 to 28, or use of a DNA molecule which is the complement of a nucleic acid molecule as claimed in any one of claims 8 to 18 and which encodes an RNA molecule that hybridizes 10 with the mRNA encoded by a nucleic acid molecule as claimed in any one of claims 8 to 18, in combination with the use of the wild-type ion channel subunit, manufacture of a medicament for the treatment of a 15 disorder associated with ionchannel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic migraine, Alzheimer's disease, Parkinson's disease, 20 schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night 25 blindness or total colour-blindness.
 - 56. Use of a nucleic acid molecule as claimed in any one of claims 8 to 18 for the screening of candidate pharmaceutical agents.

30

- 57. Use of a nucleic acid molecule as claimed in any one of claims 8 to 18 for the screening of candidate pharmaceutical agents useful for the treatment of epilepsy.
- 58. Use of a nucleic acid molecule as claimed in any one of claims 8 to 18 for the screening of candidate

WO 2005/014863 PCT/AU2004/001051
- 98 -

pharmaceutical agents useful for the treatment of a disorder associated with ionchannel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic migraine, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.

5

- 59. Use of a polypeptide as claimed in any one of claims
 15 19 to 28 or claim 37, or a polypeptide complex as claimed
 in claim 29 for the screening of candidate pharmaceutical
 agents.
- 60. Use of a polypeptide as claimed in any one of claims
 20 19 to 28 or claim 37, or a polypeptide complex as claimed
 in claim 29 for the screening of candidate pharmaceutical
 agents useful for the treatment of epilepsy.
- 61. Use of a polypeptide as claimed in any one of claims 19 to 28 or claim 37, or a polypeptide complex as claimed 25 in claim 29 for the screening of candidate pharmaceutical agents useful for the treatment of a disorder associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, 30 episodic ataxia, migraine, Alzheimer's Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, 35 Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic

WO 2005/014863 PCT/AU2004/001051

fibrosis, congenital stationary night blindness or total colour-blindness.

- 62. Use of a cell as claimed in any one of claims 31 to 35 for the screening of candidate pharmaceutical agents.
 - 63. Use of a cell as claimed in any one of claims 31 to 35 for the screening of candidate pharmaceutical agents useful for the treatment of epilepsy.

64. Use of a cell as claimed in any one of claims 31 to 35 for the screening of candidate pharmaceutical agents useful for the treatment of a disorder associated with ion channel dysfunction, including but not restricted to, 15 hyper- or hypo-kalemic periodic paralysis, myotonias,

- hypo-kalemic periodic paralysis, hyper- or malignant hyperthermia, myasthenia, cardiac arrhythmias, Alzheimer's ataxia, ${ t migraine}$, episodic disease, schizophrenia, hyperekplexia, Parkinson's symptoms, phobic obsessive depression, anxiety,
- neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.
 - 65. A compound when identified through a use as claimed in any one of claims 56 to 64.

- 66. A pharmaceutical composition comprising a compound as claimed in claim 65 and a pharmaceutically acceptable carrier.
- 67. A genetically modified non-human animal comprising an isolated nucleic acid molecule as claimed in any one of claims 8 to 18.

WO 2005/014863 PCT/AU2004/001051
- 100 -

- 68. A genetically modified, non-human animal which comprises two or more isolated nucleic acid molecules as claimed in any one of claims 8 to 18.
- 5 69. A genetically modified non-human animal as claimed in either one of claims 67 or 68 in which the animal is selected from the group consisting of rats, mice, hamsters, guinea pigs, rabbits, dogs, cats, goats, sheep, pigs and non-human primates such as monkeys and chimpanzees.
 - 70. A method of producing a non-human transgenic animal comprising a combination of two or more ion channel mutations, comprising the steps of:

15

20

25

30

- (1) creating a non-human transgenic animal comprising a first nucleic acid molecule as claimed in any one of claims 8 to 18;
- (2) creating one or more additional non-human, transgenic animals comprising a second nucleic acid molecule as claimed in any one of claims 8 to 18; and
- (3) conducting mating combinations so as to produce progeny containing combinations of two or more ion channel mutations which effectively mimic combinations of ion channel mutations responsible for human disease.
- 71. A non-human, transgenic animal produced by the process of claim 70.
- 72. The use of a genetically modified non-human animal as claimed in any one of claims 67 to 69 or a non-human transgenic animal as claimed in claim 71 in the screening of candidate pharmaceutical compounds.
- 73. The use of a genetically modified non-human animal as claimed in any one of claims 67 to 69 or a non-human

WO 2005/014863 PCT/AU2004/001051
- 1.01 -

transgenic animal as claimed in claim 71 in the screening of candidate pharmaceutical compounds useful in the treatment of epilepsy.

- The use of a genetically modified non-human animal as 5 74. claimed in any one of claims 67 to 69 or a non-human transgenic animal as claimed in claim 71 in the screening candidate pharmaceutical compounds useful disorder associated with ion channel treatment of a dysfunction, including but not restricted to, hyper- or 10 hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, cardiac arrhythmias, episodic Alzheimer's disease, Parkinson's ataxia, migraine, disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, 15 inflammatory pain, chronic/acute pain, Bartter's syndrome, disease, kidney disease, Dent's polycystic hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary night blindness or total colourblindness. 20
 - 75. The use of an isolated nucleic acid molecule as claimed in any one of claims 8 to 18 for the diagnosis or prognosis of epilepsy.

25

The use of an isolated nucleic acid molecule as 76. claimed in any one of claims 8 to 18 for the diagnosis or a disorder associated with ion channel prognosis of dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant 30 hyperthermia, myasthenia, cardiac arrhythmias, episodic Alzheimer's disease, Parkinson's migraine, schizophrenia, hyperekplexia, disease, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, 35 disease, Dent's kidney polycystic hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, WO 2005/014863 PCT/AU2004/001051
- 102 -

congenital stationary night blindness or total colourblindness.

- 77. The use of a polypeptide as defined in any one of claims 19 to 28 or claim 37, or polypeptide complex as claimed in claim 29 in the diagnosis or prognosis of epilepsy.
- The use of a polypeptide as defined in any one of claims 19 to 28 or claim 37, or polypeptide complex as 10 claimed in claim 29 in the diagnosis or prognosis of a disorder associated with ionchannel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, arrhythmias, myasthenia, cardiac episodic 15 migraine, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of 20 infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.
- 79. The use of an antibody as claimed in either one of claims 38 or 39 in the diagnosis or prognosis of epilepsy.
- The use of an antibody as claimed in either one of claims 38 or 39 in the diagnosis or prognosis of a with associated ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic 30 periodic paralysis, myotonias, malignant hyperthermia, cardiac arrhythmias, episodic myasthenia, Alzheimer's disease, Parkinson's migraine, schizophrenia, hyperekplexia, anxiety, depression, phobic obsessive symptoms, neuropathic pain, inflammatory pain, 35 chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of

5

30

WO 2005/014863 PCT/AU2004/001051

infancy, cystic fibrosis, congenital stationary night blindness or total colour-blindness.

- 81. A method for the diagnosis or prognosis of epilepsy comprising the steps of:
 - (1) obtaining DNA from a subject; and
 - (2) comparing the DNA of one or more subunits of ion channels from said subject to the DNA of the corresponding native subunits;
- wherein identification of one or more DNA molecules as claimed in any one of claims 8 to 18 is an indication of epilepsy, or a predisposition thereto.
- A method for the diagnosis or prognosis of a disorder 15 associated with ion channel dysfunction, including but not restricted to, hyper- or hypo-kalemic periodic paralysis, myotonias, malignant hyperthermia, myasthenia, ataxia, migraine, arrhythmias, episodic Alzheimer's disease, Parkinson's disease, schizophrenia, 20 hyperekplexia, anxiety, depression, phobic obsessive neuropathic pain, inflammatory pain, chronic/acute pain, Bartter's syndrome, polycystic kidney disease, Dent's disease, hyperinsulinemic hypoglycemia of infancy, cystic fibrosis, congenital stationary blindness or total colour-blindness, comprising the steps 25 of:
 - (1) obtaining DNA from a subject; and
 - (2) comparing the DNA of one or more subunits of ion channels from said subject to the DNA of the corresponding native subunits;

wherein identification of one or more DNA molecules as claimed in any one of claims 8 to 18 is an indication of the disorder, or a predisposition thereto.

35 83. A method as claimed in either one of claims 81 or 82 wherein each DNA fragment is sequenced and the sequences compared.

WO 2005/014863 PCT/AU2004/001051
- 104 -

84. A method as claimed in either one of claims 81 or 82 wherein the DNA fragments are subjected to restriction enzyme analysis.

5

85. A method as claimed in either one of claims 81 or 82 wherein the DNA fragments are subjected to SSCP analysis.

1/5

IGE: Outbred Population

IGE: Inbred Population

IGE: Autosomal Dominant

FIG. 1

FIG. 2

Febrile Seizures

Febrile Seizures Plus

Myoclonic Astatic Epilepsy

Absences

→ G1050S SCN8A

Severe Myoclonic Epilepsy of Infancy

↑ Q351X GABRG2

FIG. 3

4/5

FIG. 4

5/5

FIG. 5

SSCP Update Sequences.ST25 SEQUENCE LISTING

<110>	Bionomics Limit	ted		•		
<120>	P15					-
<130>	SSCP Update PC	Γ				
<160>	95					
<170>	PatentIn versi	on 3.2				
<210> <211> <212> <213>	1 8381 DNA Homo sapiens					
<400>	1 caga ggtctctggt	acatatatat	atatatacat	ttatatatat	ttatatatct	60
	tctg ccccagtgag					120
	tgaa caattgcaac					180
	actg cagatggata					240
	aaaa tgtgcaggat					300
	tcaa cttcttcacc					360
	caaa gaatcccaaa					420
	actt ggaagctgga					480
	caga gcccctggag					540
	ataa attgaaggcc					600
_	tcaa tcctcttagg					
						720
_	ttat gtgcactatt					780
	caaa gaatgtagaa					840
	ttgc aaggggattc					900
-	attt cactgtcatt					960
	catt gagaacattc					1020
_	aaac cattgtggga					
	ctgt gttctgtctg.					1080
	ggaa taaatgtata.					1140
-	agaa tataactgtg					1200
	ggaa gtcatatatt					1260
_	tact atgtggaaat					1320
-	ctgg tagaaatccc					1380
_	cctt gtttcgacta					1440
tacgtg	ıctgc tgggaaaacg	tacatgatat	tttttgtatt	ggtcattttc	ttgggctcat	1500

SSCP Update Sequences.ST25 tctacctaat aaatttgatc ctggctgtgg tggccatggc ctacgaggaa cagaatcagg 1560 1620 ccaccttgga agaagcagaa cagaaagagg ccgaatttca gcagatgatt gaacagctta aaaagcaaca ggaggcagct cagcaggcag caacggcaac tgcctcagaa cattccagag 1680 agcccagtgc agcaggcagg ctctcagaca gctcatctga agcctctaag ttgagttcca 1740 agagtgctaa qqaaaqaaqa aatcqqaqqa aqaaaagaaa aCagaaagaq caqtctqqtq 1800 1860 gggaagagaa agatgaggat gaattccaaa aatctgaatc tgaggacagc atcaggagga aaggttttcg cttctccatt gaagggaacc gattgacata tgaaaagagg tactcctccc 1920 cacaccagtc tttgttgagc atccgtggct ccctattttc accaaggcga aatagcagaa 1980 caagcctttt cagctttaga gggcgagcaa aggatgtggg atctgagaac gacttcgcag 2040 atgatgagca cagcaccttt gaggataacg agagccgtag agattccttg tttgtgcccc 2100 gacgacacgg agagagacgc aacagcaacc tgagtcagac cagtaggtca tcccggatgc 2160 2220 tggcagtgtt tccagcgaat gggaagatgc acagcactgt ggattgcaat ggtgtggttt ccttggttgg tggaccttca gttcctacat cgcctgttgg acagcttctg ccagaggtga 2280 2340 taatagataa gccagctact gatgacaatg gaacaaccac tgaaactgaa atgagaaaga gaaggtcaag ttctttccac gtttccatgg actttctaga agatccttcc caaaggcaac 2400 gagcaatgag tatagccagc attctaacaa atacagtaga agaacttgaa gaatccaggc 2460 agaaatgccc accctgttgg tataaatttt ccaacatatt cttaatctgg gactgttctc 2520 catattggtt aaaagtgaaa catgttgtca acctggttgt gatggaccca tttgttgacc 2580 tggccatcac catctgtatt gtcttaaata ctcttttcat ggccatggag cactatccaa 2640 tgacggacca tttcaataat gtgcttacag taggaaactt ggttttcact gggatcttta 2700 cagcagaaat gtttctgaaa attattgcca tggatcctta ctattatttc caagaaggct 2760 ggaatatett tgaeggtttt attgtgaege ttageetggt agaaettgga etegeeaatg 2820 tggaaggatt atctgttctc cgttcatttc gattgctgcg agttttcaag ttggcaaaat 2880 2940 cttggccaac gttaaatatg ctaataaaga tcatcggcaa ttccgtgggg gctctgggaa atttaaccct cgtcttggcc atcatcgtct tcatttttgc cgtggtcggc atgcagctct 3000 ttggtaaaag ctacaaagat tgtgtctgca agatcgccag tgattgtcaa ctcccacgct 3060 ggcacatgaa tgacttcttc cactccttcc tgattgtgtt ccgcgtgctg tgtggggagt 3120 ggatagagac catgtgggac tgtatggagg ttgctggtca agccatgtgc cttactgtct 3180 tcatgatggt catggtgatt ggaaacctag tggtcctgaa tctctttctg gccttgcttc 3240 tgagctcatt tagtgcagac aaccttgcag ccactgatga tgataatgaa atgaataatc 3300 tccaaattgc tgtggatagg atgcacaaag gagtagctta tgtgaaaaga aaaatatatg 3360 aatttattca acagtccttc attaggaaac aaaagatttt agatgaaatt aaaccacttg 3420 atgatctaaa caacaagaaa gacagttgta tgtccaatca tacaacagaa attgggaaag 3480 atcttgacta tcttaaagat gtaaatggaa ctacaagtgg tataggaact ggcagcagtg 3540

SSCP Update Sequences.ST25 ttgaaaaata cattattgat gaaagtgatt acatgtcatt cataaacaac cccagtctta 3600 ctgtgactgt accaattgct gtaggagaat ctgactttga aaatttaaac acggaagact 3660 ttagtagtga atcggatctg gaagaaagca aagagaaact gaatgaaagc agtagctcat 3720 cagaaggtag cactgtggac atcggcgcac ctgtagaaga acagcccgta gtggaacctg 3780 aagaaactct tgaaccagaa gcttgtttca ctgaaggctg tgtacaaaga ttcaagtgtt 3840 gtcaaatcaa tgtggaagaa ggcagaggaa aacaatggtg gaacctgaga aggacgtgtt 3900 3960 tccgaatagt tgaacataac tggtttgaga ccttcattgt tttcatgatt ctccttagta 4020 gtggtgctct ggcatttgaa gatatatata ttgatcagcg aaagacgatt aagacgatgt tggaatatgc tgacaaggtt ttcacttaca ttttcattct ggaaatgctt ctaaaatggg 4080 tggcatatgg ctatcaaaca tatttcacca atgcctggtg ttggctggac ttcttaattg 4140 ttgatgtttc attggtcagt ttaacagcaa atgccttggg ttactcagaa cttggagcca 4200 tcaaatctct caggacacta agagctctga gacctctaag agccttatct cgatttgaag 4260 4320 ggatgagggt ggttgtgaat gcccttttag gagcaattcc atccatcatg aatgtgcttc tggtttgtct tatattctgg ctaattttca gcatcatggg cgtaaatttg tttgctggca 4380 4440 aattctacca ctgtattaac accacaactg gtgacaggtt tgacatcgaa gacgtgaata 4500 atcatactga ttgcctaaaa ctaatagaaa gaaatgagac tgctcgatgg aaaaatgtga aagtaaactt tgataatgta ggatttgggt atctctcttt gcttcaagtt gccacattca 4560 aaggatggat ggatataatg tatgcagcag ttgattccag aaatgtggaa ctccagccta 4620 agtatgaaaa aagtctgtac atgtatcttt actttgttat tttcatcatc tttgggtcct 4680 4740 tcttcacctt gaacctgttt attggtgtca tcatagataa tttcaaccag cagaaaaaga 4800 agtttggagg tcaagacatc tttatgacag aagaacagaa gaaatactat aatgcaatga aaaaattagg atcgaaaaaa ccgcaaaagc ctatacctcg accaggaaac aaatttcaag 4860 gaatggtctt tgacttcgta accagacaag tttttgacat aagcatcatg attctcatct 4920 gtcttaacat ggtcacaatg atggtggaaa cagatgacca gagtgaatat gtgactacca 4980 5040 ttttqtcacq catcaatctg gtgttcattg tgctatttac tggagagtgt gtactgaaac tcatctctct acgccattat tattttacca ttggatggaa tatttttgat tttgtggttg 5100 5160 tcattctctc cattqtaqqt atgtttcttg ccgagctgat agaaaagtat ttcgtgtccc ctaccctgtt ccgagtgatc cgtcttgcta ggattggccg aatcctacgt ctgatcaaag 5220 gagcaaaggg gatccgcacg ctgctctttg ctttgatgat gtcccttcct gcgttgttta 5280 acatcggcct cctactcttc ctagtcatgt tcatctacgc catctttggg atgtccaact 5340 ttgcctatgt taagagggaa gttgggatcg atgacatgtt caactttgag acctttggca 5400 acagcatgat ctgcctattc caaattacaa cctctgctgg ctgggatgga ttgctagcac 5460 ccattctcaa cagtaagcca cccgactgtg accctaataa agttaaccct ggaagctcag 5520 ttaaqggaga ctgtgggaac ccatctgttg gaattttctt ttttgtcagt tacatcatca 5580

SSCP Update Sequences.ST25 tatccttcct ggttgtggtg aacatgtaca tcgcggtcat cctggagaac ttcagtgttg 5640 5700 ctactgaaga aagtgcagag cctctgagtg aggatgactt tgagatgttc tatgaggttt qggagaagtt tgatcccgat gcaactcagt tcatggaatt tgaaaaatta tctcagtttg 5760 cagctgcgct tgaaccgcct ctcaatctgc cacaaccaaa Caaactccag ctcattgcca 5820 tggatttgcc catggtgagt ggtgaccgga tccactgtct tgatatctta tttgctttta 5880 5940 caaagcgggt tctaggagag agtggagaga tggatgctct acgaatacag atggaagagc 6000 gattcatggc ttccaatcct tccaaggtct cctatcagcc aatcactact actttaaaac 6060 gaaaacaaga ggaagtatct gctgtcatta ttcagcgtgc ttacagacgc caccttttaa agcgaactgt aaaacaagct tcctttacgt acaataaaaa caaaatcaaa ggtggggcta 6120 atcttcttat aaaaqaaqac atqataattg acagaataaa tgaaaactct attacagaaa 6180 aaactgatct gaccatgtcc actgcagctt gtccaccttc ctatgaccgg gtgacaaagc 6240 6300 caattgtgga aaaacatgag caagaaggca aagatgaaaa agccaaaggg aaataaatga aaataaataa aaataattgg gtgacaaatt gtttacagcc tgtgaaggtg atgtattttt 6360 atcaacagga ctcctttagg aggtcaatgc caaactgact gtttttacac aaatctcctt 6420 aaggtcagtg cctacaataa gacagtgacc ccttgtcagc aaactgtgac tctgtgtaaa 6480 ggggagatga ccttgacagg aggttactgt tctcactacc agctgacact gctgaagata 6540 6600 agatgcacaa tggctagtca gactgtaggg accagtttca aggggtgcaa acctgtgatt 6660 ttqqqqttqt ttaacatqaa acactttagt gtagtaattg tatccactgt ttgcatttca actgccacat ttgtcacatt tttatggaat ctgttagtgg attcatcttt ttgttaatcc 6720 6780 atgtgtttat tatatgtgac tatttttgta aacgaagttt ctgttgagaa ataggctaag 6840 gacctctata acaggtatgc cacctggggg gtatggcaac cacatggccc tcccagctac acaaagtcgt ggtttgcatg agggcatgct gcacttagag atcatgcatg agaaaaagtc 6900 acaagaaaaa caaattctta aatttcacca tatttctggg aggggtaatt gggtgataag 6960 7020 tggaggtgct ttgttgatct tgttttgcga aatccagccc ctagaccaag tagattattt 7080 gtgggtaggc cagtaaatct tagcaggtgc aaacttcatt caaatgtttg gagtcataaa 7140 tgttatgttt ctttttgttg tattaaaaaa aaaacctgaa tagtgaatat tgcccctcac 7200 cctccaccgc cagaagactg aattgaccaa aattactctt tataaatttc tgctttttcc tgcactttgt ttagccatct ttgggctctc agcaaggttg acactgtata tgttaatgaa 7260 7320 atqctattta ttatgtaaat agtcatttta ccctgtggtg cacgtttgag caaacaaata 7380 atgacctaag cacagtattt attgcatcaa atatgtacca caagaaatgt agagtgcaag 7440 ctttacacag gtaataaaat gtattctgta ccatttatag atagtttgga tgctatcaat gcatgtttat attaccatgc tgctgtatct ggtttctctc actgctcaga atctcattta 7500 7560 tgagaaacca tatgtcagtg gtaaagtcaa ggaaattgtt caacagatct catttattta 7620 agtcattaag caatagtttg cagcacttta acagcttttt ggttattttt acattttaag

tggataacat atggtatata	SSCP gccagactgt	Update Seque acagacatgt	ences.ST25 ttaaaaaaac	acactgctta	7680
acctattaaa tatgtgttta					7740
tattttattt ttcagcatta	tgtacataaa	tatgaagagg	aaattatctt	caggttgata	7800
tcacaatcac ttttcttact	ttctgtccat	agtacttttt	catgaaagaa	atttgctaaa	7860
taagacatga aaacaagact	gggtagttgt	agatttctgc	tttttaaatt	acatttgcta	7920
attttagatt atttcacaat	tttaaggagc	aaaataggtt	cacgattcat	atccaaatta	7980
tgctttgcaa ttggaaaagg	gtttaaaatt	ttatttatat	ttctggtagt	acctgtacta	8040
actgaattga aggtagtgct	tatgttattt	ttgttctttt	tttctgactt	cggtttatgt	8100
tttcatttct ttggagtaat	gctgctctag	attgttctaa	atagaatgtg	ggcttcataa	8160
ttttttttc cacaaaaaca	gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta cagaagcaaa	ccataggctc	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga actgcatgct	ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg caaaactaat	aaagattaca	ttttttattt	t		8381
<210> 2 <211> 8381 <212> DNA <213> Homo sapiens					
<400> 2 atactgcaga ggtctctggt	gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
gtgtgttctg ccccagtgag	actgcagccc	ttgtaaatac	tttgacacct	tttgcaagaa	120
ggaatctgaa caattgcaac	tgaaggcaca	ttgttatcat	ctcgtctttg	ggtgatgctg	180
ttcctcactg cagatggata	attttccttt	taatcaggaa	tttcatatgc	agaataaatg	240
gtaattaaaa tgtgcaggat	gacaagatgg	agcaaacagt	gcttgtacca	ccaggacctg	300
acagcttcaa cttcttcacc	agagaatctc	ttgcggctat	tgaaagacgc	attgcagaag	360
aaaaggcaaa gaatcccaaa	ccagacaaaa	aagatgacga	cgaaaatggc	ccaaagccaa	420
atagtgactt ggaagctgga	aagaaccttc	catttattta	tggagacatt	cctccagaga	480
tggtgtcaga gcccctggag	gacctggacc	cctactatat	caataagaaa	acttttatag	540
tattgaataa attgaaggcc	atcttccggt	tcagtgccac	ctctgccctg	tacattttaa	600
ctcccttcaa tcctcttagg	aaaatagcta	ttaagatttt	ggtacattca	ttattcagca	660
tgctaattat gtgcactatt	ttgacaaact	gtgtgtttat	gacaatgagt	aaccctcctg	720
attggacaaa gaatgtagaa	tacaccttca	caggaatata	tacttttgaa	tcacttataa	780
aaattattgc aaggggattc	tgtttagaag	attttacttt	ccttcgggat	ccatggaact	840
ggctcgattt cactgtcatt	acatttgcgt	acgtcacaga	gtttgtggac	ctgggcaatg	900
tctcggcatt gagaacattc	agagttctcc	gagcattgaa	gacgatttca	gtcattccag	960
gcctgaaaac cattgtggga	gccctgatcc	agtctgtgaa	gaagctctca	gatgtaatga	1020
tcctgactgt gttctgtctg	agcgtatttg	ctctaattgg Page 5	gctgcagctg	ttcatgggca	1080

acctgaggaa	taaatgtata	caatggcctc	ccaccaatgc	ttccttggag	gaacatagta	1140
tagaaaagaa	tataactgtg	aattataatg	gtacacttat	aaatgaaact	gtctttgagt	1200
ttgactggaa	gtcatatatt	caagattcaa	gatatcatta	tttcctggag	ggttttttag	1260
atgcactact	atgtggaaat	agctctgatg	caggccaatg	tccagaggga	tatatgtgtg	1320
tgaaagctgg	tagaaatccc	aattatggct	acacaagctt	tgataccttc	agttgggctt	1380
ttttgtcctt	gtttcgacta	atgactcagg	acttctgaga	aaatctttat	caactgacat	1440
tacgtgctgc	tgggaaaacg	tacatgatat	tttttgtatt	ggtcattttc	ttgggctcat	1500
tctacctaat	aaatttgatc	ctggctgtgg	tggccatggc	ctacgaggaa	cagaatcagg	1560
ccaccttgga	agaagcagaa	cagaaagagg	ccgaatttca	gcagatgatt	gaacagctta	1620
aaaagcaaca	ggaggcagct	cagcaggcag	caacggcaac	tgcctcagaa	cattccagag	1680
agcccagtgc	agcaggcagg	ctctcagaca	gctcatctga	agcctctaag	ttgagttcca	1740
agagtgctaa	ggaaagaaga	aatcggagga	agaaaagaaa	acagaaagag	cagtctggtg	1800
gggaagagaa	agatgaggat	gaattccaaa	aatctgaatc	tgaggacagc	atcaggagga	1860
aaggttttcg	cttctccatt	gaagggaacc	gattgacata	tgaaaagagg	tactcctccc	1920
cacaccagtc	tttgttgagc	atccgtggct	ccctattttc	accaaggcga	aatagcagaa	1980
caagcctttt	cagctttaga	gggcgagcaa	aggatgtggg	atctgagaac	gacttcgcag	2040
atgatgagca	cagcaccttt	gaggataacg	agagccgtag	agattccttg	tttgtgcccc	2100
gacgacacgg	agagagacgc	aacagcaacc	tgagtcagac	cagtaggtca	tcccggatgc	2160
tggcagtgtt	tccagcgaat	gggaagatgc	acagcactgt	ggattgcaat	ggtgtggttt	2220
ccttggttgg	tggaccttca	gttcctacat	cgcctgttgg	acagcttctg	ccagaggtga	2280
taatagataa	gccagctact	gatgacaatg	gaacaaccac	tgaaactgaa	atgagaaaga	2340
gaaggtcaag	ttctttccac	gtttccatgg	actttctaga	agatccttcc	caaaggcaac	2400
gagcaatgag	tatagccagc	attctaacaa	atacagtaga	agaacttgaa	gaatccaggc	2460
agaaatgccc	accctgttgg	tataaatttt	ccaacatatt	cttaatctgg	gactgttctc	2520
catattggtt	aaaagtgaaa	catgttgtca	acctggttgt	gatggaccca	tttgttgacc	2580
tggccatcac	catctgtatt	gtcttaaata	ctcttttcat	ggccatggag	cactatccaa	2640
tgacggacca	tttcaataat	gtgcttacag	taggaaactt	ggttttcact	gggatcttta	2700
cagcagaaat	gtttctgaaa	attattgcca	tggatcctta	ctattatttc	caagaaggct	2760
ggaatatctt	tgacggtttt	attgtgacgc	ttagcctggt	agaacttgga	ctcgccaatg	2820
tggaaggatt	atctgttctc	cgttcatttc	gattgctgcg	agttttcaag	ttggcaaaat	2880
cttggccaac	gttaaatatg	ctaataaaga	tcatcggcaa	ttccgtgggg	gctctgggaa	2940
atttaaccct	cgtcttggcc	atcatcgtct	tcatttttgc	cgtggtcggc	atgcagctct	3000
ttggtaaaag	ctacaaagat	tgtgtctgca	agatcgccag	tgattgtcaa	ctcccacgct	3060
ggcacatgaa	tgacttcttc	cactccttcc	tgattgtgtt Page 6	ccgcgtgctg	tgtggggagt	3120

ggatagagac	catgtgggac	tgtatggagg	ttgctggtca	agccatgtgc	cttactgtct	3180
tcatgatggt	catggtgatt	ggaaacctag	tggtcctgaa	tctctttctg	gccttgcttc	3240
tgagctcatt	tagtgcagac	aaccttgcag	ccactgatga	tgataatgaa	atgaataatc	3300
tccaaattgc	tgtggatagg	atgcacaaag	gagtagctta	tgtgaaaaga	aaaatatatg	3360
aatttattca	acagtccttc	attaggaaac	aaaagatttt	agatgaaatt	aaaccacttg	3420
atgatctaaa	caacaagaaa	gacagttgta	tgtccaatca	tacaacagaa	attgggaaag	3480
atcttgacta	tcttaaagat	gtaaatggaa	ctacaagtgg	tataggaact	ggcagcagtg	3540
ttgaaaaata	cattattgat	gaaagtgatt	acatgtcatt	cataaacaac	cccagtctta	3600
ctgtgactgt	accaattgct	gtaggagaat	ctgactttga	aaatttaaac	acggaagact	3660
ttagtagtga	atcggatctg	gaagaaagca	aagagaaact	gaatgaaagc	agtagctcat	3720
cagaaggtag	cactgtggac	atcggcgcac	ctgtagaaga	acagcccgta	gtggaacctg	3780
aagaaactct	tgaaccagaa	gcttgtttca	ctgaaggctg	tgtacaaaga	ttcaagtgtt	3840
gtcaaatcaa	tgtggaagaa	ggcagaggaa	aacaatggtg	gaacctgaga	aggacgtgtt	3900
tccgaatagt	tgaacataac	tggtttgaga	ccttcattgt	tttcatgatt	ctccttagta	3960
gtggtgctct	ggcatttgaa	gatatatata	ttgatcagcg	aaagacgatt	aagacgatgt	4020
tggaatatgc	tgacaaggtt	ttcacttaca	ttttcattct	ggaaatgctt	ctaaaatggg	4080
tggcatatgg	ctatcaaaca	tatttcacca	atgcctggtg	ttggctggac	ttcttaattg	4140
ttgatgtttc	attggtcagt	ttaacagcaa	atgccttggg	ttactcagaa	cttggagcca	4200
tcaaatctct	caggacacta	agagctctga	gacctctaag	agccttatct	cgatttgaag	4260
ggatgagggt	ggttgtgaat	gcccttttag	gagcaattcc	atccatcatg	aatgtgcttc	4320
tggtttgtct	tatattctgg	ctaattttca	gcatcatggg	cgtaaatttg	tttgctggca	4380
aattctacca	ctgtattaac	accacaactg	gtgacaggtt	tgacatcgaa	gacgtgaata	4440
atcatactga	ttgcctaaaa	ctaatagaaa	gaaatgagac	tgctcgatgg	aaaaatgtga	4500
aagtaaactt	tgataatgta	ggatttgggt	atctctcttt	gcttcaagtt	gccacattca	4560
aaggatggat	ggatataatg	tatgcagcag	ttgattccag	aaatgtggaa	ctccagccta	4620
agtatgaaaa	aagtctgtac	atgtatcttt	actttgttat	tttcatcatc	tttgggtcct	4680
tcttcacctt	gaacctgttt	attggtgtca	tcatagataa	tttcaaccag	cagaaaaaga	4740
agtttggagg	tcaagacatc	tttatgacag	aagaacagaa	gaaatactat	aatgcaatga	4800
aaaaattagg	atcgaaaaaa	ccgcaaaagc	ctatacctcg	accaggaaac	aaatttcaag	4860
gaatggtctt	tgacttcgta	accagacaag	tttttgacat	aagcatcatg	attctcatct	4920
gtcttaacat	ggtcacaatg	atggtggaaa	cagatgacca	gagtgaatat	gtgactacca	4980
ttttgtcacg	catcaatctg	gtgttcattg	tgctatttac	tggagagtgt	gtactgaaac	5040
tcatctctct	acgccattat	tattttacca	ttggatggaa	tatttttgat	tttgtggttg	5100
tcattctctc	cattgtaggt	atgtttcttg	ccgagctgat Page 7	agaaaagtat	ttcgtgtccc	5160

ctaccctgtt	ccgagtgatc	cgtcttgcta	ggattggccg	aatcctacgt	ctgatcaaag	5220
gagcaaaggg	gatccgcacg	ctgctctttg	ctttgatgat	gtcccttcct	gcgttgttta	5280
acatcggcct	cctactcttc	ctagtcatgt	tcatctacgc	catctttggg	atgtccaact	5340
ttgcctatgt	taagagggaa	gttgggatcg	atgacatgtt	caactttgag	acctttggca	5400
acagcatgat	ctgcctattc	caaattacaa	cctctgctgg	ctgggatgga	ttgctagcac	5460
ccattctcaa	cagtaagcca	cccgactgtg	accctaataa	agttaaccct	ggaagctcag	5520
ttaagggaga	ctgtgggaac	ccatctgttg	gaattttctt	ttttgtcagt	tacatcatca	5580
tatccttcct	ggttgtggtg	aacatgtaca	tcgcggtcat	cctggagaac	ttcagtgttg	5640
ctactgaaga	aagtgcagag	cctctgagtg	aggatgactt	tgagatgttc	tatgaggttt	5700
gggagaagtt	tgatcccgat	gcaactcagt	tcatggaatt	tgaaaaatta	tctcagtttg	5760
cagctgcgct	tgaaccgcct	ctcaatctgc	cacaaccaaa	caaactccag	ctcattgcca	5820
tggatttgcc	catggtgagt	ggtgaccgga	tccactgtct	tgatatctta	tttgctttta	5880
caaagcgggt	tctaggagag	agtggagaga	tggatgctct	acgaatacag	atggaagagc	5940
gattcatggc	ttccaatcct	tccaaggtct	cctatcagcc	aatcactact	actttaaaac	6000
gaaaacaaga	ggaagtatct	gctgtcatta	ttcagcgtgc	ttacagacgc	caccttttaa	6060
agcgaactgt	aaaacaagct	tcctttacgt	acaataaaaa	caaaatcaaa	ggtggggcta	6120
atcttcttat	aaaagaagac	atgataattg	acagaataaa	tgaaaactct	attacagaaa	6180
aaactgatct	gaccatgtcc	actgcagctt	gtccaccttc	ctatgaccgg	gtgacaaagc	6240
caattgtgga	aaaacatgag	caagaaggca	aagatgaaaa	agccaaaggg	aaataaatga	6300
aaataaataa	aaataattgg	gtgacaaatt	gtttacagcc	tgtgaaggtg	atgtatttt	6360
atcaacagga	ctcctttagg	aggtcaatgc	caaactgact	gtttttacac	aaatctcctt	6420
aaggtcagtg	cctacaataa	gacagtgacc	ccttgtcagc	aaactgtgac	tctgtgtaaa	6480
ggggagatga	ccttgacagg	aggttactgt	tctcactacc	agctgacact	gctgaagata	6540
agatgcacaa	tggctagtca	gactgtaggg	accagtttca	aggggtgcaa	acctgtgatt	6600
ttggggttgt	ttaacatgaa	acactttagt	gtagtaattg	tatccactgt	ttgcatttca	6660
actgccacat	ttgtcacatt	tttatggaat	ctgttagtgg	attcatcttt	ttgttaatcc	6720
atgtgtttat	tatatgtgac	tatttttgta	aacgaagttt	ctgttgagaa	ataggctaag	6780
gacctctata	acaggtatgc	cacctggggg	gtatggcaac	cacatggccc	tcccagctac	6840
acaaagtcgt	ggtttgcatg	agggcatgct	gcacttagag	atcatgcatg	agaaaaagtc	6900
acaagaaaaa	caaattctta	aatttcacca	tatttctggg	aggggtaatt	gggtgataag	6960
tggaggtgct	ttgttgatct	tgttttgcga	aatccagccc	ctagaccaag	tagattattt	7020
gtgggtaggc	cagtaaatct	tagcaggtgc	aaacttcatt	caaatgtttg	gagtcataaa	7080
tgttatgttt	ctttttgttg	tattaaaaaa	aaaacctgaa	tagtgaatat	tgcccctcac	7140
cctccaccgc	cagaagactg	aattgaccaa	aattactctt Page 8	tataaatttc	tgctttttcc	7200

tgcactttgt tta	gccatct ttgggctct	c agcaaggttg	acactgtata	tgttaatgaa	7260
atgctattta tta	tgtaaat agtcatttt	a ccctgtggtg	cacgtttgag	caaacaaata	7320
atgacctaag cac	agtattt attgcatca	a atatgtacca	caagaaatgt	agagtgcaag	7380
ctttacacag gta	ataaaat gtattctgt	a ccatttatag	atagtttgga	tgctatcaat	7440
gcatgtttat att	accatgc tgctgtatc	t ggtttctctc	actgctcaga	atctcattta	7500
tgagaaacca tat	gtcagtg gtaaagtca	a ggaaattgtt	caacagatct	catttattta	7560
agtcattaag caa	tagtttg cagcacttt	a acagcttttt	ggttatttt	acattttaag	7620
tggataacat atg	gtatata gccagactg	t acagacatgt	ttaaaaaaac	acactgctta	7680
acctattaaa tat	gtgttta gaattttata	a agcaaatata	aatactgtaa	aaagtcactt	7740
tattttattt ttc	agcatta tgtacataa	a tatgaagagg	aaattatctt	caggttgata	7800
tcacaatcac ttt	tcttact ttctgtcca	agtactttt	catgaaagaa	atttgctaaa	7860
taagacatga aaa	caagact gggtagttg	agatttctgc	tttttaaatt	acatttgcta	7920
attttagatt att	tcacaat tttaaggag	aaaataggtt	cacgattcat	atccaaatta	7980
tgctttgcaa ttg	gaaaagg gtttaaaat	ttatttatat	ttctggtagt	acctgtacta	8040
actgaattga agg	tagtgct tatgttatt	ttgttctttt	tttctgactt	cggtttatgt	8100
tttcatttct ttg	gagtaat gctgctctag	, attgttctaa	atagaatgtg	ggcttcataa	8160
tttttttttc cac	aaaaaca gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta cag	aagcaaa ccataggcto	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga act	gcatgct ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg caa	aactaat aaagattaca	ttttttattt	t		8381
<210> 3 <211> 8381 <212> DNA <213> Homo sa	piens				
<400> 3 atactgcaga ggt	ctctggt gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
gtgtgttctg ccc	cagtgag actgcagcco	ttgtaaatac	tttgacacct	tttgcaagaa	120
ggaatctgaa caa	ttgcaac tgaaggcaca	ttgttatcat	ctcgtctttg	ggtgatgctg	180
ttcctcactg cag	atggata attttccttt	taatcaggaa	tttcatatgc	agaataaatg	240
gtaattaaaa tgt	gcaggat gacaagatgg	agcaaacagt	gcttgtacca	ccaggacctg	300
acagcttcaa ctto	cttcacc agagaatctc	ttgcggctat	tgaaagacgc	attgcagaag	360
aaaaggcaaa gaa	tcccaaa ccagacaaaa	aagatgacga	cgaaaatggc	ccaaagccaa	420
atagtgactt ggaa	agctgga aagaaccttc	catttattta	tggagacatt	cctccagaga	480
tggtgtcaga gccd	cctggag gacctggacc	cctactatat	caataagaaa	acttttatag	540
tattgaataa attg	gaaggcc atcttccggt	tcagtgccac	ctctgccctg	tacattttaa	600

SSCP Update Sequences.ST25 ctcccttcaa tcctcttagg aaaatagcta ttaagattit ggtacattca ttattcagca 660 tgctaattat gtgcactatt ttgacaaact gtgtgtttat gacaatgagt aaccctcctq 720 attggacaaa gaatgtagaa tacaccttca caggaatata tacttttgaa tcacttataa 780 aaattattgc aaggggattc tgtttagaag attttacttt ccttcgggat ccatggaact 840 ggctcgattt cactgtcatt acatttgcgt acgtcacaga gtttgtggac ctgggcaatg 900 tctcggcatt gagaacattc agagttctcc gagcattgaa gacgatttca gtcattccag 960 gcctgaaaac cattgtggga gccctgatcc agtctgtgaa gaagctctca gatgtaatga 1020 tcctgactgt gttctgtctg agcgtatttg ctctaattgg gctgcagctg ttcatgggca 1080 acctgaggaa taaatgtata caatggcctc ccaccaatgc ttccttggag gaacatagta 1140 tagaaaagaa tataactgtg aattataatg gtacacttat aaatgaaact gtctttgagt 1200 ttgactggaa gtcatatatt caagattcaa gatatcatta tttcctggag ggttttttag 1260 atgcactact atgtggaaat agctctgatg caggccaatg tccagaggga tatatgtgtg 1320 tgaaagctgg tagaaatccc aattatggct acacaagctt tgataccttc agttgggctt 1380 ttttgtcctt gtttcgacta atgactcagg acttctggga aaatctttat caactgacat 1440 tacgtgctcc tgggaaaacg tacatgatat tttttgtatt ggtcattttc ttgggctcat 1500 tctacctaat aaatttgatc ctggctgtgg tggccatggc ctacgaggaa cagaatcagg 1560 ccaccttgga agaagcagaa cagaaagagg ccgaatttca gcagatgatt qaacaqctta 1620 aaaagcaaca ggaggcagct cagcaggcag caacggcaac tgcctcagaa cattccagag 1680 agcccagtgc agcaggcagg ctctcagaca gctcatctga agcctctaag ttgagttcca 1740 1800 gggaagagaa agatgaggat gaattccaaa aatctgaatc tgaggacagc atcaggagga 1860 aaggttttcg cttctccatt gaagggaacc gattgacata tgaaaagagg tactcctccc 1920 cacaccagtc tttgttgagc atccgtggct ccctattttc accaaggcga aatagcagaa 1980 caagcctttt cagctttaga gggcgagcaa aggatgtggg atctgagaac gacttcgcag 2040 atgatgagca cagcaccttt gaggataacg agagccgtag agattccttg tttgtgcccc 2100 gacgacacgg agagagacgc aacagcaacc tgagtcagac cagtaggtca tcccggatgc 2160 tggcagtgtt tccagcgaat gggaagatgc acagcactgt ggattgcaat ggtgtggttt 2220 ccttggttgg tggaccttca gttcctacat cgcctgttgg acagcttctg ccaqaqqtqa 2280 taatagataa gccagctact gatgacaatg gaacaaccac tgaaactgaa atgagaaaga 2340 gaaggtcaag ttctttccac gtttccatgg actttctaga agatccttcc caaaggcaac 2400 gagcaatgag tatagccagc attctaacaa atacagtaga agaacttgaa gaatccaggc 2460 agaaatgccc accctgttgg tataaatttt ccaacatatt cttaatctgg gactgttctc 2520 catattggtt aaaagtgaaa Catgttgtca acctggttgt gatggaccca tttgttgacc 2580 tggccatcac catctgtatt gtcttaaata ctcttttcat ggccatggag cactatccaa 2640

SSCP Update Sequences.ST25 tgacggacca tttcaataat gtgcttacag taggaaactt ggttttcact gggatcttta 2700 cagcagaaat gtttctgaaa attattgcca tggatcctta ctattatttc caagaaggct 2760 2820 ggaatatctt tgacggtttt attgtgacgc ttagcctggt agaacttgga ctcgccaatg tggaaggatt atctgttctc cgttcatttc gattgctgcg agttttcaag ttggcaaaat 2880 cttggccaac gttaaatatg ctaataaaga tcatcggcaa ttccgtgggg gctctgggaa 2940 atttaaccct cgtcttggcc atcatcgtct tcatttttgc CgtggtCggc atgcagctct 3000 3060 ttggtaaaag ctacaaagat tgtgtctgca agatcgccag tgattgtcaa ctcccacgct qqcacatqaa tqacttcttc cactccttcc tgattgtgtt ccgcgtgCtg tgtggggagt 3120 3180 ggatagagac catgtgggac tgtatggagg ttgctggtca agccatgtgc cttactgtct 3240 tcatgatggt catggtgatt ggaaacctag tggtcctgaa tctctttctg gccttgcttc tgagctcatt tagtgcagac aaccttgcag ccactgatga tgataatgaa atgaataatc 3300 3360 tccaaattqc tqtqqataqq atqcacaaaq gagtagctta tgtgaaaaga aaaatatatg aatttattca acagtccttc attaggaaac aaaagatttt agatgaaatt aaaccacttg 3420 atgatctaaa caacaagaaa gacagttgta tgtccaatca tacaacagaa attgggaaag 3480 atcttgacta tcttaaagat gtaaatggaa ctacaagtgg tataggaact ggcagcagtg 3540 3600 ttgaaaaata cattattgat gaaagtgatt acatgtcatt cataaacaac cccagtctta ctgtgactgt accaattgct gtaggagaat ctgactttga aaatttaaac acggaagact 3660 ttaqtaqtqa atcqqatctg gaagaaagca aagagaaact gaatgaaagc agtagctcat 3720 cagaaggtag cactgtggac atcggcgcac ctgtagaaga acagcccgta gtqgaacctg 3780 3840 aaqaaactct tgaaccagaa gcttgtttca ctgaaggctg tgtacaaaga ttcaagtgtt 3900 qtcaaatcaa tgtggaagaa ggcagaggaa aacaatggtg gaacctgaga aggacgtgtt tccgaatagt tgaacataac tggtttgaga ccttcattgt tttcatgatt ctccttagta 3960 gtggtgctct ggcatttgaa gatatatata ttgatcagcg aaagacgatt aagacgatgt 4020 tggaatatgc tgacaaggtt ttcacttaca ttttcattct ggaaatgctt ctaaaatggg 4080 4140 tggcatatgg ctatcaaaca tatttcacca atgcctggtg ttggctggac ttcttaattg 4200 ttgatgtttc attggtcagt ttaacagcaa atgccttggg ttactcagaa cttggagcca 4260 tcaaatctct caggacacta agagctctga gacctctaag agccttatct cgatttgaag qqatqaqqqt ggttgtgaat gcccttttag gagcaattcc atccatcatg aatgtgcttc 4320 4380 tggtttgtct tatattctgg ctaattttca gcatcatggg cgtaaatttg tttgctggca aattctacca ctgtattaac accacaactg gtgacaggtt tgacatcgaa gacgtgaata 4440 atcatactga ttgcctaaaa ctaatagaaa gaaatgagac tgctcgatgg aaaaatgtga 4500 aaqtaaactt tqataatqta qqatttgggt atctctcttt gcttcaagtt gccacattca 4560 aaqqatggat ggatataatg tatgcagcag ttgattccag aaatgtggaa ctccagccta 4620 4680 agtatgaaaa aagtctgtac atgtatcttt actttgttat tttcatcatc tttgggtcct

SSCP Update Sequences.ST25 tcttcacctt gaacctgttt attggtgtca tcatagataa tttcaaccag cagaaaaaga 4740 agtttggagg tcaagacatc tttatgacag aagaacagaa gaaatactat aatgcaatga 4800 aaaaattagg atcgaaaaaa ccgcaaaagc ctatacctcg accaggaaac aaatttcaag 4860 4920 gaatggtctt tgacttcgta accagacaag tttttgacat aagcatcatg attctcatct gtcttaacat ggtcacaatg atggtggaaa cagatgacca gagtgaatat gtgactacca 4980 ttttgtcacg catcaatctg gtgttcattg tgctatttac tggagagtgt gtactgaaac 5040 5100 tcatctctct acgccattat tattttacca ttggatggaa tatttttgat tttgtggttg tcattctctc cattgtaggt atgtttcttg ccgagctgat agaaaagtat ttcgtgtccc 5160 ctaccctgtt ccgagtgatc cgtcttgcta ggattggccg aatcctacgt ctgatcaaag 5220 gagcaaaggg gatccgcacg ctgctctttg ctttgatgat gtcccttcct gcgttgttta 5280 acatcggcct cctactcttc ctagtcatgt tcatctacgc catctttggg atgtccaact 5340 5400 ttgcctatgt taagagggaa gttgggatcg atgacatgtt caactttgag acctttggca acaqcatgat ctgcctattc caaattacaa cctctgctgg ctgggatgga ttgctagcac 5460 ccattctcaa cagtaagcca cccgactgtg accctaataa agttaaccct ggaagctcag 5520 5580 ttaaqqqaqa ctqtqqqaac ccatctgttg gaattttctt ttttgtcagt tacatcatca tatccttcct ggttgtggtg aacatgtaca tcgcggtcat cctggagaac ttcagtgttg 5640 5700 ctactgaaga aagtgcagag cctctgagtg aggatgactt tgagatgttc tatgaggttt gggagaagtt tgatcccgat gcaactcagt tcatggaatt tgaaaaatta tctcagtttg 5760 cagctgcgct tgaaccgcct ctcaatctgc cacaaccaaa caaactccag ctcattqcca 5820 5880 tggatttgcc catggtgagt ggtgaccgga tccactgtct tgatatctta tttgctttta 5940 caaaqcqqqt tctaqqaqaq agtggagaga tggatgctct acgaatacag atggaagagc 6000 gattcatggc ttccaatcct tccaaggtct cctatcagcc aatcactact actttaaaac gaaaacaaga ggaagtatct gctgtcatta ttcagcgtgc ttacagacgc caccttttaa 6060 agcgaactgt aaaacaagct tcctttacgt acaataaaaa caaaatcaaa ggtggggcta 6120 6180 atcttcttat aaaagaagac atgataattg acagaataaa tgaaaactct attacagaaa aaactgatct gaccatgtcc actgcagctt gtccaccttc ctatgaccgg gtgacaaagc 6240 6300 caattgtgga aaaacatgag caagaaggca aagatgaaaa agccaaaggg aaataaatga 6360 aaataaataa aaataattgg gtgacaaatt gtttacagcc tgtgaaggtg atgtattttt 6420 atcaacagga ctcctttagg aggtcaatgc caaactgact gtttttacac aaatctcctt aaqqtcaqtq cctacaataa gacagtgacc ccttgtcagc aaactgtgac tctgtgtaaa 6480 ggggagatga ccttgacagg aggttactgt tctcactacc agctgacact gctgaagata 6540 6600 agatgcacaa tggctagtca gactgtaggg accagtttca aggggtgcaa acctgtgatt ttqqqgttgt ttaacatgaa acactttagt gtagtaattg tatccactgt ttgcatttca 6660 actgccacat ttgtcacatt tttatggaat ctgttagtgg attcatcttt ttgttaatcc 6720

atgtgtttat tata	SSCP tgtgac tatttttgta	Update Sequ aacgaagttt		ataggctaag	6780
gacctctata acag	gtatgc cacctggggg	gtatggcaac	cacatggccc	tcccagctac	6840
acaaagtcgt ggtt	tgcatg agggcatgct	gcacttagag	atcatgcatg	agaaaaagtc	6900
acaagaaaaa caaa	ttctta aatttcacca	tatttctggg	aggggtaatt	gggtgataag	6960
tggaggtgct ttgt	tgatct tgttttgcga	aatccagccc	ctagaccaag	tagattattt	7020
gtgggtaggc cagt	aaatct tagcaggtgc	aaacttcatt	caaatgtttg	gagtcataaa	7080
tgttatgttt cttt	ttgttg tattaaaaa	. aaaacctgaa	tagtgaatat	tgcccctcac	7140
cctccaccgc caga	agactg aattgaccaa	aattactctt	tataaatttc	tgctttttcc	7200
tgcactttgt ttag	ccatct ttgggctctc	agcaaggttg	acactgtata	tgttaatgaa	7260
atgctattta ttat	gtaaat agtcatttta	ccctgtggtg	cacgtttgag	caaacaaata	7320
atgacctaag caca	gtattt attgcatcaa	atatgtacca	caagaaatgt	agagtgcaag	7380
ctttacacag gtaa	taaaat gtattctgta	ccatttatag	atagtttgga	tgctatcaat	7440
gcatgtttat atta	ccatgc tgctgtatct	ggtttctctc	actgctcaga	atctcattta	7500
tgagaaacca tatg	tcagtg gtaaagtcaa	ggaaattgtt	caacagatct	catttattta	7560
agtcattaag caat	agtttg cagcacttta	acagcttttt	ggttattttt	acattttaag	7620
tggataacat atgg	tatata gccagactgt	acagacatgt	ttaaaaaaac	acactgctta	7680
acctattaaa tatg	tgttta gaattttata	agcaaatata	aatactgtaa	aaagtcactt	7740
tattttattt ttca	gcatta tgtacataaa	tatgaagagg	aaattatctt	caggttgata	7800
tcacaatcac tttt	cttact ttctgtccat	agtactttt	catgaaagaa	atttgctaaa	7860
taagacatga aaac	aagact gggtagttgt	agatttctgc	tttttaaatt	acatttgcta	7920
attttagatt attt	cacaat tttaaggagc	aaaataggtt	cacgattcat	atccaaatta	7980
tgctttgcaa ttgg	aaaagg gtttaaaatt	ttatttatat	ttctggtagt	acctgtacta	8040
actgaattga aggt	agtgct tatgttattt	ttgttctttt	tttctgactt	cggtttatgt	8100
tttcatttct ttgg	agtaat gctgctctag	attgttctaa	atagaatgtg	ggcttcataa	8160
tttttttttc caca	aaaaca gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta caga	agcaaa ccataggctc	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga actg	catgct ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg caaa	actaat aaagattaca	ttttttattt	t		8381
<210> 4 <211> 8381 <212> DNA <213> Homo sap	iens				
<400> 4 atactgcaga ggtc	tctggt gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
gtgtgttctg cccc	agtgag actgcagccc	ttgtaaatac	tttgacacct	tttgcaagaa	120
ggaatctgaa caat	tgcaac tgaaggcaca	ttgttatcat Page 13	ctcgtctttg	ggtgatgctg	180

ttcctcactg	cagatggata	attttccttt	taatcaggaa	tttcatatgc	agaataaatg	240
gtaattaaaa	tgtgcaggat	gacaagatgg	agcaaacagt	gcttgtacca	ccaggacctg	300
acagcttcaa	cttcttcacc	agagaatctc	ttgcggctat	tgaaagacgc	attgcagaag	360
aaaaggcaaa	gaatcccaaa	ccagacaaaa	aagatgacga	cgaaaatggc	ccaaagccaa	420
atagtgactt	ggaagctgga	aagaaccttc	catttattta	tggagacatt	cctccagaga	480
tggtgtcaga	gcccctggag	gacctggacc	cctactatat	caataagaaa	acttttatag	540
tattgaataa	attgaaggcc	atcttccggt	tcagtgccac	ctctgccctg	tacattttaa	600
ctcccttcaa	tcctcttagg	aaaatagcta	ttaagatttt	ggtacattca	ttattcagca	660
tgctaattat	gtgcactatt	ttgacaaact	gtgtgtttat	gacaatgagt	aaccctcctg	720
attggacaaa	gaatgtagaa	tacaccttca	caggaatata	tacttttgaa	tcacttataa	780
aaattattgc	aaggggattc	tgtttagaag	attttacttt	ccttcgggat	ccatggaact	840
ggctcgattt	cactgtcatt	acatttgcgt	acgtcacaga	gtttgtggac	ctgggcaatg	900
tctcggcatt	gagaacattc	agagttctcc	gagcattgaa	gacgatttca	gtcattccag	960
gcctgaaaac	cattgtggga	gccctgatcc	agtctgtgaa	gaagctctca	gatgtaatga	1020
tcctgactgt	gttctgtctg	agcgtatttg	ctctaattgg	gctgcagctg	ttcatgggca	1080
acctgaggaa	taaatgtata	caatggcctc	ccaccaatgc	ttccttggag	gaacatagta	1140
tagaaaagaa	tataactgtg	aattataatg	gtacacttat	aaatgaaact	gtctttgagt	1200
ttgactggaa	gtcatatatt	caagattcaa	gatatcatta	tttcctggag	ggttttttag	1260
atgcactact	atgtggaaat	agctctgatg	caggccaatg	tccagaggga	tatatgtgtg	1320
tgaaagctgg	tagaaatccc	aattatggct	acacaagctt	tgataccttc	agttgggctt	1380
ttttgtcctt	gtttcgacta	atgactcagg	acttctggga	aaatctttat	caactgacat	1440
tacgtgctgc	tgggaaaacg	tacatgatat	ttcttgtatt	ggtcattttc	ttgggctcat	1500
tctacctaat	aaatttgatc	ctggctgtgg	tggccatggc	ctacgaggaa	cagaatcagg	1560
ccaccttgga	agaagcagaa	cagaaagagg	ccgaatttca	gcagatgatt	gaacagctta	1620
aaaagcaaca	ggaggcagct	cagcaggcag	caacggcaac	tgcctcagaa	cattccagag	1680
agcccagtgc	agcaggcagg	ctctcagaca	gctcatctga	agcctctaag	ttgagttcca	1740
agagtgctaa	ggaaagaaga	aatcggagga	agaaaagaaa	acagaaagag	cagtctggtg	1800
gggaagagaa	agatgaggat	gaattccaaa	aatctgaatc	tgaggacagc	atcaggagga	1860
aaggttttcg	cttctccatt	gaagggaacc	gattgacata	tgaaaagagg	tactcctccc	1920
cacaccagtc	tttgttgagc	atccgtggct	ccctattttc	accaaggcga	aatagcagaa	1980
caagcctttt	cagctttaga	gggcgagcaa	aggatgtggg	atctgagaac	gacttcgcag	2040
atgatgagca	cagcaccttt	gaggataacg	agagccgtag	agattccttg	tttgtgcccc	2100
gacgacacgg	agagagacgc	aacagcaacc	tgagtcagac	cagtaggtca	tcccggatgc	2160
tggcagtgtt	tccagcgaat	gggaagatgc	acagcactgt Page 14	ggattgcaat	ggtgtggttt	2220

			•			
ccttggttgg	tggaccttca	gttcctacat	cgcctgttgg	acagcttctg	ccagaggtga	2280
taatagataa	gccagctact	gatgacaatg	gaacaaccac	tgaaactgaa	atgagaaaga	2340
gaaggtcaag	ttctttccac	gtttccatgg	actttctaga	agatccttcc	caaaggcaac	2400
gagcaatgag	tatagccagc	attctaacaa	atacagtaga	agaacttgaa	gaatccaggc	2460
agaaatgccc	accctgttgg	tataaatttt	ccaacatatt	cttaatctgg	gactgttctc	2520
catattggtt	aaaagtgaaa	catgttgtca	acctggttgt	gatggaccca	tttgttgacc	2580
tggccatcac	catctgtatt	gtcttaaata	ctcttttcat	ggccatggag	cactatccaa	2640
tgacggacca	tttcaataat	gtgcttacag	taggaaactt	ggttttcact	gggatcttta	2700
cagcagaaat	gtttctgaaa	attattgcca	tggatcctta	ctattatttc	caagaaggct	2760
ggaatatctt	tgacggtttt	attgtgacgc	ttagcctggt	agaacttgga	ctcgccaatg	2820
tggaaggatt	atctgttctc	cgttcatttc	gattgctgcg	agttttcaag	ttggcaaaat	2880
cttggccaac	gttaaatatg	ctaataaaga	tcatcggcaa	ttccgtgggg	gctctgggaa	2940
atttaaccct	cgtcttggcc	atcatcgtct	tcatttttgc	cgtggtcggc	atgcagctct	3000
ttggtaaaag	ctacaaagat	tgtgtctgca	agatcgccag	tgattgtcaa	ctcccacgct	3060
ggcacatgaa	tgacttcttc	cactccttcc	tgattgtgtt	ccgcgtgctg	tgtggggagt	3120
ggatagagac	catgtgggac	tgtatggagg	ttgctggtca	agccatgtgc	cttactgtct	3180
tcatgatggt	catggtgatt	ggaaacctag	tggtcctgaa	tctctttctg	gccttgcttc	3240
tgagctcatt	tagtgcagac	aaccttgcag	ccactgatga	tgataatgaa	atgaataatc	3300
tccaaattgc	tgtggatagg	atgcacaaag	gagtagctta	tgtgaaaaga	aaaatatatg	3360
aatttattca	acagtccttc	attaggaaac	aaaagatttt	agatgaaatt	aaaccacttg	3420
atgatctaaa	caacaagaaa	gacagttgta	tgtccaatca	tacaacagaa	attgggaaag	3480
atcttgacta	tcttaaagat	gtaaatggaa	ctacaagtgg	tataggaact	ggcagcagtg	3540
ttgaaaaata	cattattgat	gaaagtgatt	acatgtcatt	cataaacaac	cccagtctta	3600
ctgtgactgt	accaattgct	gtaggagaat	ctgactttga	aaatttaaac	acggaagact	3660
ttagtagtga	atcggatctg	gaagaaagca	aagagaaact	gaatgaaagc	agtagctcat	3720
cagaaggtag	cactgtggac	atcggcgcac	ctgtagaaga	acagcccgta	gtggaacctg	3780
aagaaactct	tgaaccagaa	gcttgtttca	ctgaaggctg	tgtacaaaga	ttcaagtgtt	3840
gtcaaatcaa	tgtggaagaa	ggcagaggaa	aacaatggtg	gaacctgaga	aggacgtgtt	3900
tccgaatagt	tgaacataac	tggtttgaga	ccttcattgt	tttcatgatt	ctccttagta	3960
gtggtgctct	ggcatttgaa	gatatatata	ttgatcagcg	aaagacgatt	aagacgatgt	4020
tggaatatgc	tgacaaggtt	ttcacttaca	ttttcattct	ggaaatgctt	ctaaaatggg	4080
tggcatatgg	ctatcaaaca	tatttcacca	atgcctggtg	ttggctggac	ttcttaattg	4140
ttgatgtttc	attggtcagt	ttaacagcaa	atgccttggg	ttactcagaa	cttggagcca	4200
tcaaatctct	caggacacta	agagctctga	gacctctaag Page 15	agccttatct ;	cgatttgaag	4260

			•			
ggatgagggt	ggttgtgaat	gcccttttag	gagcaattcc	atccatcatg	aatgtgcttc	4320
tggtttgtct	tatattctgg	ctaattttca	gcatcatggg	cgtaaatttg	tttgctggca	4380
aattctacca	ctgtattaac	accacaactg	gtgacaggtt	tgacatcgaa	gacgtgaata	4440
atcatactga	ttgcctaaaa	ctaatagaaa	gaaatgagac	tgctcgatgg	aaaaatgtga	4500
aagtaaactt	tgataatgta	ggatttgggt	atctctcttt	gcttcaagtt	gccacattca	4560
aaggatggat	ggatataatg	tatgcagcag	ttgattccag	aaatgtggaa	ctccagccta	4620
agtatgaaaa	aagtctgtac	atgtatcttt	actttgttat	tttcatcatc	tttgggtcct	4680
tcttcacctt	gaacctgttt	attggtgtca	tcatagataa	tttcaaccag	cagaaaaaga	4740
agtttggagg	tcaagacatc	tttatgacag	aagaacagaa	gaaatactat	aatgcaatga	4800
aaaaattagg	atcgaaaaaa	ccgcaaaagc	ctatacctcg	accaggaaac	aaatttcaag	4860
gaatggtctt	tgacttcgta	accagacaag	tttttgacat	aagcatcatg	attctcatct	4920
gtcttaacat	ggtcacaatg	atggtggaaa	cagatgacca	gagtgaatat	gtgactacca	4980
ttttgtcacg	catcaatctg	gtgttcattg	tgctatttac	tggagagtgt	gtactgaaac	5040
tcatctctct	acgccattat	tattttacca	ttggatggaa	tatttttgat	tttgtggttg	5100
tcattctctc	cattgtaggt	atgtttcttg	ccgagctgat	agaaaagtat	ttcgtgtccc	5160
ctaccctgtt	ccgagtgatc	cgtcttgcta	ggattggccg	aatcctacgt	ctgatcaaag	5220
gagcaaaggg	gatccgcacg	ctgctctttg	ctttġatgat	gtcccttcct	gcgttgttta	5280
acatcggcct	cctactcttc	ctagtcatgt	tcatctacgc	catctttggg	atgtccaact	5340
ttgcctatgt	taagagggaa	gttgggatcg	atgacatgtt	caactttgag	acctttggca	5400
acagcatgat	ctgcctattc	caaattacaa	cctctgctgg	ctgggatgga	ttgctagcac	5460
ccattctcaa	cagtaagcca	cccgactgtg	accctaataa	agttaaccct	ggaagctcag	5520
ttaagggaga	ctgtgggaac	ccatctgttg	gaattttctt	ttttgtcagt	tacatcatca	5580
tatccttcct	ggttgtggtg	aacatgtaca	tcgcggtcat	cctggagaac	ttcagtgttg	5640
ctactgaaga	aagtgcagag	cctctgagtg	aggatgactt	tgagatgttc	tatgaggttt	5700
gggagaagtt	tgatcccgat	gcaactcagt	tcatggaatt	tgaaaaatta	tctcagtttg	5760
cagctgcgct	tgaaccgcct	ctcaatctgc	cacaaccaaa	caaactccag	ctcattgcca	5820
tggatttgcc	catggtgagt	ggtgaccgga	tccactgtct	tgatatctta	tttgctttta	5880
caaagcgggt	tctaggagag	agtggagaga	tggatgctct	acgaatacag	atggaagagc	5940
gattcatggc	ttccaatcct	tccaaggtct	cctatcagcc	aatcactact	actttaaaac	6000
gaaaacaaga	ggaagtatct	gctgtcatta	ttcagcgtgc	ttacagacgc	caccttttaa	6060
agcgaactgt	aaaacaagct	tcctttacgt	acaataaaaa	caaaatcaaa	ggtggggcta	6120
atcttcttat	aaaagaagac	atgataattg	acagaataaa	tgaaaactct	attacagaaa	6180
aaactgatct	gaccatgtcc	actgcagctt	gtccaccttc	ctatgaccgg	gtgacaaagc	6240
caattgtgga	aaaacatgag	caagaaggca	aagatgaaaa Page 16		aaataaatga	6300

aaataaataa	aaataattgg	gtgacaaatt	gtttacagcc	tgtgaaggtg	atgtatttt	6360
atcaacagga	ctcctttagg	aggtcaatgc	caaactgact	gtttttacac	aaatctcctt	6420
aaggtcagtg	cctacaataa	gacagtgacc	ccttgtcagc	aaactgtgac	tctgtgtaaa	6480
ggggagatga	ccttgacagg	aggttactgt	tctcactacc	agctgacact	gctgaagata	6540
agatgcacaa	tggctagtca	gactgtaggg	accagtttca	aggggtgcaa	acctgtgatt	6600
ttggggttgt	ttaacatgaa	acactttagt	gtagtaattg	tatccactgt	ttgcatttca	6660
actgccacat	ttgtcacatt	tttatggaat	ctgttagtgg	attcatcttt	ttgttaatcc	6720
atgtgtttat	tatatgtgac	tatttttgta	aacgaagttt	ctgttgagaa	ataggctaag	6780
gacctctata	acaggtatgc	cacctggggg	gtatggcaac	cacatggccc	tcccagctac	6840
acaaagtcgt	ggtttgcatg	agggcatgct	gcacttagag	atcatgcatg	agaaaaagtc	6900
acaagaaaaa	caaattctta	aatttcacca	tatttctggg	aggggtaatt	gggtgataag	6960
tggaggtgct	ttgttgatct	tgttttgcga	aatccagccc	ctagaccaag	tagattattt	7020
gtgggtaggc	cagtaaatct	tagcaggtgc	aaacttcatt	caaatgtttg	gagtcataaa	7080
tgttatgttt	ctttttgttg	tattaaaaaa	aaaacctgaa	tagtgaatat	tgcccctcac	7140
cctccaccgc	cagaagactg	aattgaccaa	aattactctt	tataaatttc	tgctttttcc	7200
tgcactttgt	ttagccatct	ttgggctctc	agcaaggttg	acactgtata	tgttaatgaa	7260
atgctattta	ttatgtaaat	agtcatttta	ccctgtggtg	cacgtttgag	caaacaaata	7320
atgacctaag	cacagtattt	attgcatcaa	atatgtacca	caagaaatgt	agagtgcaag	7380
ctttacacag	gtaataaaat	gtattctgta	ccatttatag	atagtttgga	tgctatcaat	7440
gcatgtttat	attaccatgc	tgctgtatct	ggtttctctc	actgctcaga	atctcattta	7500
tgagaaacca	tatgtcagtg	gtaaagtcaa	ggaaattgtt	caacagatct	catttattta	7560
agtcattaag	caatagtttg	cagcacttta	acagcttttt	ggttattttt	acattttaag	7620
tggataacat	atggtatata	gccagactgt	acagacatgt	ttaaaaaaac	acactgctta	7680
acctattaaa	tatgtgttta	gaattttata	agcaaatata	aatactgtaa	aaagtcactt	7740
tattttattt	ttcagcatta	tgtacataaa	tatgaagagg	aaattatctt	caggttgata	7800
tcacaatcac	ttttcttact	ttctgtccat	agtactttt	catgaaagaa	atttgctaaa	7860
taagacatga	aaacaagact	gggtagttgt	agatttctgc	tttttaaatt	acatttgcta	7920
attttagatt	atttcacaat	tttaaggagc	aaaataggtt	cacgattcat	atccaaatta	7980
tgctttgcaa	ttggaaaagg	gtttaaaatt	ttatttatat	ttctggtagt	acctgtacta	8040
actgaattga	aggtagtgct	tatgttattt	ttgttctttt	tttctgactt	cggtttatgt	8100
tttcatttct	ttggagtaat	gctgctctag	attgttctaa	atagaatgtg	ggcttcataa	8160
ttttttttc	cacaaaaaca	gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta	cagaagcaaa	ccataggctc	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga	actgcatgct	ggaaaatgct	actattatgc Page 17	taaataatgc	taaccaacat	8340

ttaaaatgtg caaaactaat a	aagattaca	ttttttattt	t		8381
<210> 5 <211> 8381 <212> DNA <213> Homo sapiens					
<400> 5 atactgcaga ggtctctggt g	gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
gtgtgttctg ccccagtgag a					120
ggaatctgaa caattgcaac t					180
ttcctcactg cagatggata a	attttccttt	taatcaggaa	tttcatatgc	agaataaatg	240
gtaattaaaa tgtgcaggat g	gacaagatgg	agcaaacagt	gcttgtacca	ccaggacctg	300
acagcttcaa cttcttcacc a	agagaatctc	ttgcggctat	tgaaagacgc	attgcagaag	360
aaaaggcaaa gaatcccaaa c	ccagacaaaa	aagatgacga	cgaaaatggc	ccaaagccaa	420
atagtgactt ggaagctgga a	aagaaccttc	catttattta	tggagacatt	cctccagaga	480
tggtgtcaga gcccctggag g	gacctggacc	cctactatat	caataagaaa	acttttatag	540
tattgaataa attgaaggcc a	atcttccggt	tcagtgccac	ctctgccctg	tacattttaa	600
ctcccttcaa tcctcttagg a	aaatagcta	ttaagatttt	ggtacattca	ttattcagca	660
tgctaattat gtgcactatt t	ttgacaaact	gtgtgtttat	gacaatgagt	aaccctcctg	720
attggacaaa gaatgtagaa t	tacaccttca	caggaatata	tacttttgaa	tcacttataa	780
aaattattgc aaggggattc t	tgtttagaag	attttacttt	ccttcgggat	ccatggaact	840
ggctcgattt cactgtcatt a	acatttgcgt	acgtcacaga	gtttgtggac	ctgggcaatg	900
tctcggcatt gagaacattc a	agagttctcc	gagcattgaa	gacgatttca	gtcattccag	960
gcctgaaaac cattgtggga g	gccctgatcc	agtctgtgaa	gaagctctca	gatgtaatga	1020
tcctgactgt gttctgtctg a	agcgtatttg	ctctaattgg	gctgcagctg	ttcatgggca	1080
acctgaggaa taaatgtata c	caatggcctc	ccaccaatgc	ttccttggag	gaacatagta	1140
tagaaaagaa tataactgtg a	aattataatg	gtacacttat	aaatgaaact	gtctttgagt	1200
ttgactggaa gtcatatatt c	caagattcaa	gatatcatta	tttcctggag	ggttttttag	1260
atgcactact atgtggaaat a	agctctgatg	caggccaatg	tccagaggga	tatatgtgtg	1320
tgaaagctgg tagaaatccc a	aattatggct	acacaagctt	tgataccttc	agttgggctt	1380
ttttgtcctt gtttcgacta a	atgactcagg	acttctggga	aaatctttat	caactgacat	1440
tacgtgctgc tgggaaaacg t	tacatgatat	tttttgtatt	ggtcattttc	ttgggctcat	1500
tcaacctaat aaatttgatc c	tggctgtgg	tggccatggc	ctacgaggaa	cagaatcagg	1560
ccaccttgga agaagcagaa c	cagaaagagg	ccgaatttca	gcagatgatt	gaacagctta	1620
aaaagcaaca ggaggcagct c	cagcaggcag	caacggcaac	tgcctcagaa	cattccagag	1680
agcccagtgc agcaggcagg c	ctctcagaca	gctcatctga	agcctctaag	ttgagttcca	1740

SSCP Update Sequences.ST25 1800 1860 gggaagagaa agatgaggat gaattccaaa aatctgaatc tgaggacagc atcaggagga aaggttttcg cttctccatt gaagggaacc gattgacata tgaaaagagg tactcctccc 1920 cacaccagtc tttgttgagc atccgtggct ccctattttc accaaggcga aatagcagaa 1980 caageetttt cagetttaga gggegageaa aggatgtggg atetgagaae gaettegeag 2040 2100 atgatgagca cagcaccttt gaggataacg agagccgtag agattccttg tttgtgcccc qacqacacqq aqaqaqacqc aacagcaacc tgagtcagac Cagtaggtca tcccggatgc 2160 2220 tggcagtgtt tccagcgaat gggaagatgc acagcactgt ggattgcaat ggtgtggttt ccttggttgg tggaccttca gttcctacat cgcctgttgg acagcttctg ccagaggtga 2280 taatagataa gccagctact gatgacaatg gaacaaccac tgaaactgaa atgagaaaga 2340 gaaggtcaag ttctttccac gtttccatgg actttctaga agatccttcc caaaggcaac 2400 2460 gagcaatgag tatagccagc attctaacaa atacagtaga agaacttgaa gaatccaggc agaaatgccc accetgttgg tataaatttt ccaacatatt cttaatctgg gactgttctc 2520 2580 catattggtt aaaagtgaaa catgttgtca acctggttgt gatggaccca tttgttgacc 2640 tggccatcac catctgtatt gtcttaaata ctcttttcat ggccatggag cactatccaa tgacggacca tttcaataat gtgcttacag taggaaactt ggttttcact gggatcttta 2700 cagcagaaat gtttctgaaa attattgcca tggatcctta ctattatttc caagaaqqct 2760 2820 ggaatatctt tgacggtttt attgtgacgc ttagcctggt agaacttgga ctcgccaatg tggaaggatt atctgttctc cgttcatttc gattgctgcg agttttcaag ttggcaaaat 2880 2940 cttggccaac gttaaatatg ctaataaaga tcatcggcaa ttccgtgggg gctctgggaa 3000 atttaaccct cgtcttggcc atcatcgtct tcatttttgc cgtggtcggc atgcagctct 3060 ttqqtaaaaq ctacaaaqat tqtqtctqca agatcgccag tgattgtcaa ctcccacgct ggcacatgaa tgacttcttc cactccttcc tgattgtgtt ccgcgtgctg tgtggggagt 3120 3180 ggatagagac catgtgggac tgtatggagg ttgctggtca agccatgtgc cttactgtct 3240 tcatgatggt catggtgatt ggaaacctag tggtcctgaa tctctttctg gccttgcttc 3300 tgagctcatt tagtgcagac aaccttgcag ccactgatga tgataatgaa atgaataatc 3360 tccaaattqc tqtqqatagg atgcacaaag gagtagctta tqtqaaaaga aaaatatatg aatttattca acagtccttc attaggaaac aaaagatttt agatgaaatt aaaccacttg 3420 3480 atgatctaaa caacaagaaa gacagttgta tgtccaatca tacaacagaa attgggaaag atcttgacta tcttaaagat gtaaatggaa ctacaagtgg tataggaact ggcagcagtg 3540 3600 ttqaaaaata cattattgat gaaagtgatt acatgtcatt cataaacaac cccagtctta ctqtqactqt accaattgct gtaggagaat ctgactttga aaatttaaac acggaagact 3660 3720 ttagtagtga atcggatctg gaagaaagca aagagaaact gaatgaaagc agtagctcat 3780 caqaaqqtaq cactqtqqac atcggcgcac ctgtagaaga acagcccgta gtggaacctg

SSCP Update Sequences.ST25 aagaaactct tgaaccagaa gcttgtttca ctgaaggctg tgtacaaaga ttcaagtgtt 3840 gtcaaatcaa tgtggaagaa ggcagaggaa aacaatggtg gaacctgaga aggacgtgtt 3900 tccgaatagt tgaacataac tggtttgaga ccttcattgt tttcatgatt ctccttagta 3960 gtggtgctct ggcatttgaa gatatatata ttgatcagcg aaagacgatt aagacgatgt 4020 tggaatatgc tgacaaggtt ttcacttaca ttttcattct ggaaatgctt ctaaaatggg 4080 tggcatatgg ctatcaaaca tatttcacca atgcctggtg ttggctggac ttcttaattq 4140 ttgatgtttc attggtcagt ttaacagcaa atgccttggg ttactcagaa cttggagcca 4200 tcaaatctct caggacacta agagctctga gacctctaag agccttatct cgatttgaag 4260 ggatgagggt ggttgtgaat gcccttttag gagcaattcc atccatcatg aatgtqcttc 4320 tggtttgtct tatattctgg ctaattttca gcatcatggg cgtaaatttg tttgctggca 4380 aattctacca ctgtattaac accacaactg gtgacaggtt tgacatcgaa gacgtgaata 4440 atcatactga ttgcctaaaa ctaatagaaa gaaatgagac tgctcgatgg aaaaatgtga 4500 aagtaaactt tgataatgta ggatttgggt atctctcttt gcttcaagtt gccacattca 4560 aaggatggat ggatataatg tatgcagcag ttgattccag aaatgtggaa ctccagccta 4620 agtatgaaaa aagtctgtac atgtatcttt actttgttat tttcatcatc tttgggtcct 4680 tcttcacctt gaacctgttt attggtgtca tcatagataa tttcaaccag cagaaaaaga 4740 agtttggagg tcaagacatc tttatgacag aagaacagaa gaaatactat aatgcaatga 4800 aaaaattagg atcgaaaaaa ccgcaaaagc ctatacctcg accaggaaac aaatttcaag 4860 gaatggtctt tgacttcgta accagacaag tttttgacat aagcatcatg attctcatct 4920 gtcttaacat ggtcacaatg atggtggaaa cagatgacca gagtgaatat gtgactacca 4980 ttttgtcacg catcaatctg gtgttcattg tgctatttac tggagagtgt gtactgaaac 5040 tcatctctct acgccattat tattttacca ttggatggaa tatttttgat tttgtqgttq 5100 tcattctctc cattgtaggt atgtttcttg ccgagctgat agaaaagtat ttcqtqtccc 5160 ctaccctgtt ccgagtgatc cgtcttgcta ggattggccg aatcctacgt ctgatcaaag 5220 gagcaaaggg gatccgcacg ctgctctttg ctttgatgat gtcccttcct qcqttqttta 5280 acatcggcct cctactcttc ctagtcatgt tcatctacgc catctttggg atgtccaact 5340 ttgcctatgt taagagggaa gttgggatcg atgacatgtt caactttgag acctttggca 5400 acagcatgat ctgcctattc caaattacaa cctctgctgg ctgggatgga ttgctagcac 5460 ccattctcaa cagtaagcca cccgactgtg accctaataa agttaaccct ggaagctcag 5520 ttaagggaga ctgtgggaac ccatctgttg gaattttctt ttttgtcagt tacatcatca 5580 tatccttcct ggttgtggtg aacatgtaca tcgcggtcat cctggagaac ttcagtgttg 5640 ctactgaaga aagtgcagag cctctgagtg aggatgactt tgagatgttc tatgaggttt 5700 gggagaagtt tgatcccgat gcaactcagt tcatggaatt tgaaaaatta tctcagtttg 5760 cagctgcgct tgaaccgcct ctcaatctgc cacaaccaaa caaactccag ctcattgcca 5820

SSCP Update Sequences.ST25 tggatttgcc catggtgagt ggtgaccgga tccactgtct tgatatctta tttgctttta 5880 caaagcgggt tctaggagag agtggagaga tggatgctct acgaatacag atggaagagc 5940 gattcatggc ttccaatcct tccaaggtct cctatcagcc aatcactact actttaaaac 6000 qaaaacaaga ggaagtatct gctgtcatta ttcagcgtgc ttacagacgc caccttttaa 6060 agcgaactgt aaaacaagct tcctttacgt acaataaaaa Caaaatcaaa ggtggggcta 6120 atcttcttat aaaagaagac atgataattg acagaataaa tgaaaactct attacagaaa 6180 aaactgatct gaccatgtcc actgcagctt gtccaccttc ctatgaccgg gtgacaaagc 6240 caattgtgga aaaacatgag caagaaggca aagatgaaaa agccaaaggg aaataaatga 6300 aaataaataa aaataattgg gtgacaaatt gtttacagcc tgtgaaggtg atgtattttt 6360 atcaacagga ctcctttagg aggtcaatgc caaactgact gtttttacac aaatctcctt 6420 aaggtcagtg cctacaataa gacagtgacc ccttgtcagc aaactgtgac tctgtgtaaa 6480 ggggagatga ccttgacagg aggttactgt tctcactacc agctgacact gctgaagata 6540 agatgcacaa tggctagtca gactgtaggg accagtttca aggggtgcaa acctgtgatt 6600 ttggggttgt ttaacatgaa acactttagt gtagtaattg tatccactgt ttgcatttca 6660 6720 actgccacat ttgtcacatt tttatggaat ctgttagtgg attcatcttt ttgttaatcc atgtgtttat tatatgtgac tatttttgta aacgaagttt ctgttgagaa ataggctaag 6780 gacctctata acaggtatgc cacctggggg gtatggcaac cacatggccc tcccagctac 6840 acaaaqtcqt qqtttqcatq aqqqcatqct qcacttaqaq atcatqcatq aqaaaaaqtc 6900 acaagaaaaa caaattctta aatttcacca tatttctggg aggggtaatt gggtgataag 6960 tggaggtgct ttgttgatct tgttttgcga aatccagccc ctagaccaag tagattattt 7020 gtgggtaggc cagtaaatct tagcaggtgc aaacttcatt caaatgtttg gagtcataaa 7080 tgttatgttt ctttttgttg tattaaaaaa aaaacctgaa tagtgaatat tgcccctcac 7140 cctccaccgc cagaagactg aattgaccaa aattactctt tataaatttc tgctttttcc 7200 tgcactttgt ttagccatct ttgggctctc agcaaggttg acactgtata tgttaatgaa 7260 7320 atgctattta ttatgtaaat agtcatttta ccctgtggtg cacgtttgag caaacaaata atgacctaag cacagtattt attgcatcaa atatgtacca caagaaatgt agagtgcaag 7380 ctttacacag gtaataaaat gtattctgta ccatttatag atagtttgga tgctatcaat 7440 7500 gcatgtttat attaccatgc tgctgtatct ggtttctctc actgctcaga atctcattta tgagaaacca tatgtcagtg gtaaagtcaa ggaaattgtt caacagatct catttattta 7560 agtcattaag caatagtttg cagcacttta acagcttttt ggttattttt acattttaag 7620 tggataacat atggtatata gccagactgt acagacatgt ttaaaaaaaac acactgctta 7680 acctattaaa tatgtgttta gaattttata agcaaatata aatactgtaa aaagtcactt 7740 tattttattt ttcagcatta tgtacataaa tatgaagagg aaattatctt caggttgata 7800 tcacaatcac ttttcttact ttctgtccat agtacttttt catgaaagaa atttgctaaa 7860

taagacatga aaacaagact <u>c</u>	SSCP l gggtagttgt	Jpdate Seque	ences.ST25 tttttaaatt	acatttqcta	7920
attttagatt atttcacaat t					7980
tgctttgcaa ttggaaaagg g					8040
actgaattga aggtagtgct t					8100
tttcatttct ttggagtaat g					8160
ttttttttc cacaaaaaca g					8220
gtgtttctta cagaagcaaa o					8280
gtattcgtga actgcatgct g	ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg caaaactaat a	aaagattaca	ttttttattt	t		8381
<210> 6 <211> 8381 <212> DNA <213> Homo sapiens <400> 6					
atactgcaga ggtctctggt g	gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
gtgtgttctg ccccagtgag a	actgcagccc	ttgtaaatac	tttgacacct	tttgcaagaa	120
ggaatctgaa caattgcaac t	tgaaggcaca	ttgttatcat	ctcgtctttg	ggtgatgctg	180
ttcctcactg cagatggata a	attttccttt	taatcaggaa	tttcatatgc	agaataaatg	240
gtaattaaaa tgtgcaggat g	gacaagatgg	agcaaacagt	gcttgtacca	ccaggacctg	300
acagcttcaa cttcttcacc a	agagaatctc	ttgcggctat	tgaaagacgc	attgcagaag	360
aaaaggcaaa gaatcccaaa c	ccagacaaaa	aagatgacga	cgaaaatggc	ccaaagccaa	420
atagtgactt ggaagctgga a	aagaaccttc	catttattta	tggagacatt	cctccagaga	480
tggtgtcaga gcccctggag g	gacctggacc	cctactatat	caataagaaa	acttttatag	540
tattgaataa attgaaggcc a	atcttccggt	tcagtgccac	ctctgccctg	tacattttaa	600
ctcccttcaa tcctcttagg a	aaatagcta	ttaagatttt	ggtacattca	ttattcagca	660
tgctaattat gtgcactatt t	tgacaaact	gtgtgtttat	gacaatgagt	aaccctcctg	720
attggacaaa gaatgtagaa t	tacaccttca	caggaatata	tacttttgaa	tcacttataa	780
aaattattgc aaggggattc t	gtttagaag	attttacttt	ccttcgggat	ccatggaact	840
ggctcgattt cactgtcatt a	acatttgcgt	acgtcacaga	gtttgtggac	ctgggcaatg	900
tctcggcatt gagaacattc a	agagttctcc	gagcattgaa	gacgatttca	gtcattccag	960
gcctgaaaac cattgtggga g	gccctgatcc	agtctgtgaa	gaagctctca	gatgtaatga	1020
tcctgactgt gttctgtctg a	agcgtatttg	ctctaattgg	gctgcagctg	ttcatgggca	1080
acctgaggaa taaatgtata c	caatggcctc	ccaccaatgc	ttccttggag	gaacatagta	1140
tagaaaagaa tataactgtg a	attataatg	gtacacttat	aaatgaaact	gtctttgagt	1200
ttgactggaa gtcatatatt c	caagattcaa	gatatcatta	tttcctggag	ggttttttag	1260
atgcactact atgtggaaat a	agctctgatg	caggccaatg Page 22	tccagaggga	tatatgtgtg	1320

tgaaagctgg	tagaaatccc	aattatggct	acacaagctt	tgataccttc	agttgggctt	1380
ttttgtcctt	gtttcgacta	atgactcagg	acttctggga	aaatctttat	caactgacat	1440
tacgtgctgc	tgggaaaacg	tacatgatat	tttttgtatt	ggtcattttc	ttgggctcat	1500
tctacctaat	aaatttgatc	ctggctgtgg	aggccatggc	ctacgaggaa	cagaatcagg	1560
ccaccttgga	agaagcagaa	cagaaagagg	ccgaatttca	gcagatgatt	gaacagctta	1620
aaaagcaaca	ggaggcagct	cagcaggcag	caacggcaac	tgcctcagaa	cattccagag	1680
agcccagtgc	agcaggcagg	ctctcagaca	gctcatctga	agcctctaag	ttgagttcca	1740
agagtgctaa	ggaaagaaga	aatcggagga	agaaaagaaa	acagaaagag	cagtctggtg.	1800
gggaagagaa	agatgaggat	gaattccaaa	aatctgaatc	tgaggacagc	atcaggagga	1860
aaggttttcg	cttctccatt	gaagggaacc	gattgacata	tgaaaagagg	tactcctccc	1920
cacaccagtc	tttgttgagc	atccgtggct	ccctattttc	accaaggcga	aatagcagaa	1980
caagcctttt	cagctttaga	gggcgagcaa	aggatgtggg	atctgagaac	gacttcgcag	2040
atgatgagca	cagcaccttt	gaggataacg	agagccgtag	agattccttg	tttgtgcccc	2100
gacgacacgg	agagagacgc	aacagcaacc	tgagtcagac	cagtaggtca	tcccggatgc	2160
tggcagtgtt	tccagcgaat	gggaagatgc	acagcactgt	ggattgcaat	ggtgtggttt	2220
ccttggttgg	tggaccttca	gttcctacat	cgcctgttgg	acagcttctg	ccagaggtga	2280
taatagataa	gccagctact	gatgacaatg	gaacaaccac	tgaaactgaa	atgagaaaga	2340
gaaggtcaag	ttctttccac	gtttccatgg	actttctaga	agatccttcc	caaaggcaac	2400
gagcaatgag	tatagccagc	attctaacaa	atacagtaga	agaacttgaa	gaatccaggc	2460
agaaatgccc	accctgttgg	tataaatttt	ccaacatatt	cttaatctgg	gactgttctc	2520
catattggtt	aaaagtgaaa	catgttgtca	acctggttgt	gatggaccca	tttgttgacc	2580
tggccatcac	catctgtatt	gtcttaaata	ctcttttcat	ggccatggag	cactatccaa	2640
tgacggacca	tttcaataat	gtgcttacag	taggaaactt	ggttttcact	gggatcttta	2700
cagcagaaat	gtttctgaaa	attattgcca	tggatcctta	ctattatttc	caagaaggct	2760
ggaatatctt	tgacggtttt	attgtgacgc	ttagcctggt	agaacttgga	ctcgccaatg	2820
tggaaggatt	atctgttctc	cgttcatttc	gattgctgcg	agttttcaag	ttggcaaaat	2880
cttggccaac	gttaaatatg	ctaataaaga	tcatcggcaa	ttccgtgggg	gctctgggaa	2940
atttaaccct	cgtcttggcc	atcatcgtct	tcatttttgc	cgtggtcggc	atgcagctct	3000
ttggtaaaag	ctacaaagat	tgtgtctgca	agatcgccag	tgattgtcaa	ctcccacgct	3060
ggcacatgaa	tgacttcttc	cactccttcc	tgattgtgtt	ccgcgtgctg	tgtggggagt	3120
ggatagagac	catgtgggac	tgtatggagg	ttgctggtca	agccatgtgc	cttactgtct	3180
tcatgatggt	catggtgatt	ggaaacctag	tggtcctgaa	tctctttctg	gccttgcttc	3240
tgagctcatt	tagtgcagac	aaccttgcag	ccactgatga	tgataatgaa	atgaataatc	3300
tccaaattgc	tgtggatagg	atgcacaaag	gagtagctta Page 23	tgtgaaaaga	aaaatatatg	3360

aatttattca	acagtccttc	attaggaaac	aaaagatttt	agatgaaatt	aaaccacttg	3420
atgatctaaa	caacaagaaa	gacagttgta	tgtccaatca	tacaacagaa	attgggaaag	3480
atcttgacta	tcttaaagat	gtaaatggaa	ctacaagtgg	tataggaact	ggcagcagtg	3540
ttgaaaaata	cattattgat	gaaagtgatt	acatgtcatt	cataaacaac	cccagtctta	3600
ctgtgactgt	accaattgct	gtaggagaat	ctgactttga	aaatttaaac	acggaagact	3660
ttagtagtga	atcggatctg	gaagaaagca	aagagaaact	gaatgaaagc	agtagctcat	3720
cagaaggtag	cactgtggac	atcggcgcac	ctgtagaaga	acagcccgta	gtggaacctg	3780
aagaaactct	tgaaccagaa	gcttgtttca	ctgaaggctg	tgtacaaaga	ttcaagtgtt	3840
gtcaaatcaa	tgtggaagaa	ggcagaggaa	aacaatggtg	gaacctgaga	aggacgtgtt	3900
tccgaatagt	tgaacataac	tggtttgaga	ccttcattgt	tttcatgatt	ctccttagta	3960
gtggtgctct	ggcatttgaa	gatatatata	ttgatcagcg	aaagacgatt	aagacgatgt	4020
tggaatatgc	tgacaaggtt	ttcacttaca	ttttcattct	ggaaatgctt	ctaaaatggg	4080
tggcatatgg	ctatcaaaca	tatttcacca	atgcctggtg	ttggctggac	ttcttaattg	4140
ttgatgtttc	attggtcagt	ttaacagcaa	atgccttggg	ttactcagaa	cttggagcca	4200
tcaaatctct	caggacacta	agagctctga	gacctctaag	agccttatct	cgatttgaag	4260
ggatgagggt	ggttgtgaat	gcccttttag	gagcaattcc	atccatcatg	aatgtgcttc	4320
tggtttgtct	tatattctgg	ctaattttca	gcatcatggg	cgtaaatttg	tttgctggca	4380
aattctacca	ctgtattaac	accacaactg	gtgacaggtt	tgacatcgaa	gacgtgaata	4440
atcatactga	ttgcctaaaa	ctaatagaaa	gaaatgagac	tgctcgatgg	aaaaatgtga	4500
aagtaaactt	tgataatgta	ggatttgggt	atctctcttt	gcttcaagtt	gccacattca	4560
aaggatggat	ggatataatg	tatgcagcag	ttgattccag	aaatgtggaa	ctccagccta	4620
agtatgaaaa	aagtctgtac	atgtatcttt	actttgttat	tttcatcatc	tttgggtcct	4680
tcttcacctt	gaacctgttt	attggtgtca	tcatagataa	tttcaaccag	cagaaaaaga	4740
agtttggagg	tcaagacatc	tttatgacag	aagaacagaa	gaaatactat	aatgcaatga	4800
aaaaattagg	atcgaaaaaa	ccgcaaaagc	ctatacctcg	accaggaaac	aaatttcaag	4860
gaatggtctt	tgacttcgta	accagacaag	tttttgacat	aagcatcatg	attctcatct	4920
gtcttaacat	ggtcacaatg	atggtggaaa	cagatgacca	gagtgaatat	gtgactacca	4980
ttttgtcacg	catcaatctg	gtgttcattg	tgctatttac	tggagagtgt	gtactgaaac	5040
tcatctctct	acgccattat	tattttacca	ttggatggaa	tatttttgat	tttgtggttg	5100
tcattctctc	cattgtaggt	atgtttcttg	ccgagctgat	agaaaagtat	ttcgtgtccc	5160
ctaccctgtt	ccgagtgatc	cgtcttgcta	ggattggccg	aatcctacgt	ctgatcaaag	5220
gagcaaaggg	gatccgcacg	ctgctctttg	ctttgatgat	gtcccttcct	gcgttgttta	5280
acatcggcct	cctactcttc	ctagtcatgt	tcatctacgc	catctttggg	atgtccaact	5340
ttgcctatgt	taagagggaa	gttgggatcg	atgacatgtt Page 24		acctttggca	5400

acagcatgat	ctgcctattc	caaattacaa	cctctgctgg	ctgggatgga	ttgctagcac	5460
ccattctcaa	cagtaagcca	cccgactgtg	accctaataa	agttaaccct	ggaagctcag	5520
ttaagggaga	ctgtgggaac	ccatctgttg	gaattttctt	ttttgtcagt	tacatcatca	5580
tatccttcct	ggttgtggtg	aacatgtaca	tcgcggtcat	cctggagaac	ttcagtgttg	5640
ctactgaaga	aagtgcagag	cctctgagtg	aggatgactt	tgagatgttc	tatgaggttt	5700
gggagaagtt	tgatcccgat	gcaactcagt	tcatggaatt	tgaaaaatta	tctcagtttg	5760
cagctgcgct	tgaaccgcct	ctcaatctgc	cacaaccaaa	caaactccag	ctcattgcca	5820
tggatttgcc	catggtgagt	ggtgaccgga	tccactgtct	tgatatctta	tttgctttta	5880
caaagcgggt	tctaggagag	agtggagaga	tggatgctct	acgaatacag	atggaagagc	5940
gattcatggc	ttccaatcct	tccaaggtct	cctatcagcc	aatcactact	actttaaaac	6000
gaaaacaaga	ggaagtatct	gctgtcatta	ttcagcgtgc	ttacagacgc	caccttttaa	6060
agcgaactgt	aaaacaagct	tcctttacgt	acaataaaaa	caaaatcaaa	ggtggggcta	6120
atcttcttat	aaaagaagac	atgataattg	acagaataaa	tgaaaactct	attacagaaa	6180
aaactgatct	gaccatgtcc	actgcagctt	gtccaccttc	ctatgaccgg	gtgacaaagc	6240
caattgtgga	aaaacatgag	caagaaggca	aagatgaaaa	agccaaaggg	aaataaatga	6300
aaataaataa	aaataattgg	gtgacaaatt	gtttacagcc	tgtgaaggtg	atgtatttt	6360
atcaacagga	ctcctttagg	aggtcaatgc	caaactgact	gtttttacac	aaatctcctt	6420
aaggtcagtg	cctacaataa	gacagtgacc	ccttgtcagc	aaactgtgac	tctgtgtaaa	6480
ggggagatga	ccttgacagg	aggttactgt	tctcactacc	agctgacact	gctgaagata	6540
agatgcacaa	tggctagtca	gactgtaggg	accagtttca	aggggtgcaa	acctgtgatt	6600
ttggggttgt	ttaacatgaa	acactttagt	gtagtaattg	tatccactgt	ttgcatttca	6660
actgccacat	ttgtcacatt	tttatggaat	ctgttagtgg	attcatcttt	ttgttaatcc	6720
atgtgtttat	tatatgtgac	tatttttgta	aacgaagttt	ctgttgagaa	ataggctaag	6780
gacctctata	acaggtatgc	cacctggggg	gtatggcaac	cacatggccc	tcccagctac	6840
acaaagtcgt	ggtttgcatg	agggcatgct	gcacttagag	atcatgcatg	agaaaaagtc	6900
acaagaaaaa	caaattctta	aatttcacca	tatttctggg	aggggtaatt	gggtgataag	6960
tggaggtgct	ttgttgatct	tgttttgcga	aatccagccc	ctagaccaag	tagattattt	7020
gtgggtaggc	cagtaaatct	tagcaggtgc	aaacttcatt	caaatgtttg	gagtcataaa	7080
tgttatgttt	ctttttgttg	tattaaaaaa	aaaacctgaa	tagtgaatat	tgcccctcac	7140
cctccaccgc	cagaagactg	aattgaccaa	aattactctt	tataaatttc	tgctttttcc	7200
tgcactttgt	ttagccatct	ttgggctctc	agcaaggttg	acactgtata	tgttaatgaa	7260
atgctattta	ttatgtaaat	agtcatttta	ccctgtggtg	cacgtttgag	caaacaaata	7320
atgacctaag	cacagtattt	attgcatcaa	atatgtacca	caagaaatgt	agagtgcaag	7380
ctttacacag	gtaataaaat	gtattctgta	ccatttatag Page 25	atagtttgga	tgctatcaat	7440

SSCP Update Sequences.ST25

gcatgtttat attaccatgc	tgctgtatct	ggtttctctc	actgctcaga	atctcattta	7500
tgagaaacca tatgtcagtg	gtaaagtcaa	ggaaattgtt	caacagatct	catttattta	7560
agtcattaag caatagtttg	cagcacttta	acagcttttt	ggttatttt	acattttaag	7620
tggataacat atggtatata	gccagactgt	acagacatgt	ttaaaaaaac	acactgctta	7680
acctattaaa tatgtgttta	gaattttata	agcaaatata	aatactgtaa	aaagtcactt	7740
tattttattt ttcagcatta	tgtacataaa	tatgaagagg	aaattatctt	caggttgata	7800
tcacaatcac ttttcttact	ttctgtccat	agtacttttt	catgaaagaa	atttgctaaa	7860
taagacatga aaacaagact	gggtagttgt	agatttctgc	tttttaaatt	acatttgcta	7920
attttagatt atttcacaat	tttaaggagc	aaaataggtt	cacgattcat	atccaaatta	7980
tgctttgcaa ttggaaaagg	gtttaaaatt	ttatttatat	ttctggtagt	acctgtacta	8040
actgaattga aggtagtgct	tatgttattt	ttgttctttt	tttctgactt	cggtttatgt	8100
tttcatttct ttggagtaat	gctgctctag	attgttctaa	atagaatgtg	ggcttcataa	8160
ttttttttc cacaaaaaca	gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta cagaagcaaa	ccataggctc	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga actgcatgct	ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg caaaactaat	aaagattaca	ttttttattt	t		8381
<210> 7 <211> 8381 <212> DNA <213> Homo sapiens					
<211> 8381 <212> DNA	gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
<211> 8381 <212> DNA <213> Homo sapiens <400> 7					60 120
<211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt	actgcagccc	ttgtaaatac	tttgacacct	tttgcaagaa	
<211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag	actgcagccc tgaaggcaca	ttgtaaatac ttgttatcat	tttgacacct ctcgtctttg	tttgcaagaa ggtgatgctg	120
<211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac	actgcagccc tgaaggcaca attttccttt	ttgtaaatac ttgttatcat taatcaggaa	tttgacacct ctcgtctttg tttcatatgc	tttgcaagaa ggtgatgctg agaataaatg	120 180
<211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac ttcctcactg cagatggata	actgcagccc tgaaggcaca attttccttt gacaagatgg	ttgtaaatac ttgttatcat taatcaggaa agcaaacagt	tttgacacct ctcgtctttg tttcatatgc gcttgtacca	tttgcaagaa ggtgatgctg agaataaatg ccaggacctg	120 180 240
<211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac ttcctcactg cagatggata gtaattaaaa tgtgcaggat	actgcagccc tgaaggcaca attttccttt gacaagatgg agagaatctc	ttgtaaatac ttgttatcat taatcaggaa agcaaacagt ttgcggctat	tttgacacct ctcgtctttg tttcatatgc gcttgtacca tgaaagacgc	tttgcaagaa ggtgatgctg agaataaatg ccaggacctg attgcagaag	120 180 240 300
<211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac ttcctcactg cagatggata gtaattaaaa tgtgcaggat acagcttcaa cttcttcacc	actgcagccc tgaaggcaca attttccttt gacaagatgg agagaatctc ccagacaaaa	ttgtaaatac ttgttatcat taatcaggaa agcaaacagt ttgcggctat aagatgacga	tttgacacct ctcgtctttg tttcatatgc gcttgtacca tgaaagacgc cgaaaatggc	tttgcaagaa ggtgatgctg agaataaatg ccaggacctg attgcagaag ccaaagccaa	120 180 240 300 360
<211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac ttcctcactg cagatggata gtaattaaaa tgtgcaggat acagcttcaa cttcttcacc aaaaggcaaa gaatcccaaa	actgcagccc tgaaggcaca attttccttt gacaagatgg agagaatctc ccagacaaaa aagaaccttc	ttgtaaatac ttgttatcat taatcaggaa agcaaacagt ttgcggctat aagatgacga catttattta	tttgacacct ctcgtctttg tttcatatgc gcttgtacca tgaaagacgc cgaaaatggc tggagacatt	tttgcaagaa ggtgatgctg agaataaatg ccaggacctg attgcagaag ccaaagccaa cctccagaga	120 180 240 300 360 420
<pre><211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac ttcctcactg cagatggata gtaattaaaa tgtgcaggat acagcttcaa cttcttcacc aaaaggcaaa gaatcccaaa atagtgactt ggaagctgga</pre>	actgcagccc tgaaggcaca attttccttt gacaagatgg agagaatctc ccagacaaaa aagaaccttc gacctggacc	ttgtaaatac ttgttatcat taatcaggaa agcaaacagt ttgcggctat aagatgacga catttattta cctactatat	tttgacacct ctcgtctttg tttcatatgc gcttgtacca tgaaagacgc cgaaaatggc tggagacatt caataagaaa	tttgcaagaa ggtgatgctg agaataaatg ccaggacctg attgcagaag ccaaagccaa cctccagaga acttttatag	120 180 240 300 360 420 480
<pre><211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac ttcctcactg cagatggata gtaattaaaa tgtgcaggat acagcttcaa cttcttcacc aaaaggcaaa gaatcccaaa atagtgactt ggaagctgga tggtgtcaga gcccctggag</pre>	actgcagccc tgaaggcaca attttccttt gacaagatgg agagaatctc ccagacaaaa aagaaccttc gacctggacc atcttccggt	ttgtaaatac ttgttatcat taatcaggaa agcaaacagt ttgcggctat aagatgacga catttattta cctactatat tcagtgccac	tttgacacct ctcgtctttg tttcatatgc gcttgtacca tgaaagacgc cgaaaatggc tggagacatt caataagaaa ctctgccctg	tttgcaagaa ggtgatgctg agaataaatg ccaggacctg attgcagaag ccaaagccaa cctccagaga acttttatag tacattttaa	120 180 240 300 360 420 480 540
<pre><211> 8381 <212> DNA <213> Homo sapiens <400> 7 atactgcaga ggtctctggt gtgtgttctg ccccagtgag ggaatctgaa caattgcaac ttcctcactg cagatggata gtaattaaaa tgtgcaggat acagcttcaa cttcttcacc aaaaggcaaa gaatcccaaa atagtgactt ggaagctgga tggtgtcaga gcccctggag tattgaataa attgaaggcc</pre>	actgcagccc tgaaggcaca attttccttt gacaagatgg agagaatctc ccagacaaaa aagaaccttc gacctggacc atcttccggt aaaatagcta	ttgtaaatac ttgttatcat taatcaggaa agcaaacagt ttgcggctat aagatgacga catttattta cctactatat tcagtgccac ttaagattt	tttgacacct ctcgtcttg tttcatatgc gcttgtacca tgaaagacgc cgaaaatggc tggagacatt caataagaaa ctctgccctg ggtacattca	tttgcaagaa ggtgatgctg agaataaatg ccaggacctg attgcagaag ccaaagccaa cctccagaga actttatag tacatttaa ttattcagca	120 180 240 300 360 420 480 540 600

aaattattgc aaggggattc tgtttagaag attttacttt ccttcgggat ccatggaact

840

SSCP Update Sequences.ST25 qqctcqattt cactgtcatt acatttgcgt acgtcacaga gtttgtggac ctgggcaatg 900 tctcggcatt gagaacattc agagttctcc gagcattgaa gacgatttca gtcattccag 960 gcctgaaaac cattgtggga gccctgatcc agtctgtgaa gaagctctca gatgtaatga 1020 tcctgactgt gttctgtctg agcgtatttg ctctaattgg gctgcagctg ttcatgggca 1080 acctgaggaa taaatgtata caatggcctc ccaccaatgc ttccttggag gaacatagta 1140 1200 taqaaaaqaa tataactgtg aattataatg gtacacttat aaatgaaact gtctttgagt ttgactggaa gtcatatatt caagattcaa gatatcatta tttcctggag ggttttttag 1260 1320 atgcactact atgtggaaat agctctgatg caggccaatg tccagaggga tatatgtgtg tgaaagctgg tagaaatccc aattatggct acacaagctt tgataccttc agttgggctt 1380 ttttgtcctt gtttcgacta atgactcagg acttctggga aaatctttat caactgacat 1440 tacqtqctqc tgggaaaacg tacatgatat tttttgtatt ggtcattttc ttgggctcat 1500 1560 tctacctaat aaatttgatc ctggctgtgg tggccatggc ctacgaggaa cagaatcagg 1620 ccaccttgga agaagcagaa cagaaagagg ccgaatttca gcagatgatt gaacagctta 1680 aaaagcaaca ggaggcagct cagcaggcag caacggcaac tgcctcagaa cattccagag 1740 agcccagtgc agcaggcagg ctctcagaca gctcatctga agcctctaag ttgagttcca 1800 aqaqtgctaa ggaaagaaga aatcggagga agaaaagaaa acagaaagag cagtctggtg 1860 qqqaagagaa agatgaggat gaattccaaa aatctgaatc tgaggacagc atcaggagga 1920 aaqqttttcg cttctccatt gaagggaacc gattgacata tgaaaagagg tactcctccc cacaccagtc tttgttgagc atccgtggct ccctattttc accaaggcga aatagcagaa 1980 2040 caaqcctttt cagctttaga gggcgagcaa aggatgtggg atctgagaac gacttcgcag atgatgagca cagcaccttt gaggataacg agagccgtag agattccttg tttgtgcccc 2100 2160 gacqacacqq aqaqaqacqc aacaqcaacc tgagtcagac cagtaggtca tcccggatgc tggcagtgtt tccagcgaat gggaagatgc acagcactgt ggattgcaat ggtgtggttt 2220 ccttggttgg tggaccttca gttcctacat cgcctgttgg acagcttctg ccagaggtga 2280 2340 taatagataa gccagctact gatgacaatg gaacaaccac tgaaactgaa atgagaaaga 2400 gaaggtcaag ttctttccac gtttccatgg actttctaga agatccttcc caaaggcaac 2460 gaqcaatqaq tatagccagc attctaacaa atacagtaga agaacttgaa gaatccaggc agaaatgccc accctgttgg tataaatttt ccaacatatt cttaatctgg gactgttctc 2520 2580 catattggtt aaaagtgaaa catgttgtca acctggttgt gatggaccca tttgttgacc 2640 tggccatcac catctgtatt gtcttaaata ctcttttcat ggccatggag cactatccaa tgacggacca tttcaataat gtgcttacag taggaaactt ggttttcact gggatcttta 2700 caqcaqaaat qtttctgaaa attattgcca tggatcctta ctattatttc caagaaggct 2760 2820 ggaatatctt tgacggtttt attgtgacgc ttagcctggt agaacttgga ctcgccaatg 2880 tggaaggatt atctgttctc cgttcatttc gattgctgcg agttttcaag ttggcaaaat

SSCP Update Sequences.ST25 cttggccaac gttaaatatg ctaataaaga tcatcggcaa ttccgtgggg gctctgggaa 2940 3000 atttaaccct cgtcttggcc atcatcgtct tcatttttgc cgtggtcggc atgcagctct 3060 ttqqtaaaaq ctacaaaqat tqtqtctqca aqatcgccag tgattgtcaa ctcccacgct ggcacatgaa tgacttcttc cactccttcc tgattgtgtt ccgcgtgctg tgtggggagt 3120 3180 ggatagagac catgtgggac tgtatggagg ttgctggtca agccatgtgc cttactgtct tcatgatggt catggtgatt ggaaacctag tggtcctgaa tctctttctg gccttgcttc 3240 3300 tgagctcatt tagtgcagac aaccttgcag ccactgatga tgataatgaa atgaataatc tccaaattgc tgtggatagg atgcacaaag gagtagctta tgtgaaaaga aaaatatatg 3360 3420 aatttattca acagtccttc attaggaaac aaaagatttt agatgaaatt aaaccacttg atgatctaaa caacaagaaa gacagttgta tgtccaatca tacaacagaa attgggaaag 3480 3540 atcttgacta tcttaaagat gtaaatggaa ctacaagtgg tataggaact ggcagcagtg 3600 ttgaaaaata cattattgat gaaagtgatt acatgtcatt cataaacaac cccagtctta 3660 ctgtgactgt accaattgct gtaggagaat ctgactttga aaatttaaac acggaagact 3720 ttaqtaqtqa atcqqatctg gaagaaagca aagagaaact gaatgaaagc agtagctcat cagaaggtag cactgtggac atcggcgcac ctgtagaaga acagcccgta qtqqaacctq 3780 3840 aaqaaactct tgaaccaqaa gcttgtttca ctgaaggctg tgtacaaaga ttcaagtgtt 3900 qtcaaatcaa tqtggaaqaa ggcagaggaa aacaatggtg gaacctgaga aggacgtgtt tccqaatagt tgaacataac tggtttgaga ccttcattgt tttcatgatt ctccttagta 3960 gtggtgctct ggcatttgaa gatatatata ttgatcagcg aaagacgatt aagacgatgt 4020 4080 tggaatatgc tgacaaggtt ttcacttaca ttttcattct ggaaatgctt ctaaaatggg 4140 tgqcatatgg ctatcaaaca tatttcacca atgcctggtg ttggctggac ttcttaattg 4200 ttgatgtttc attggtcagt ttaacagcaa atgccttggg ttactcagaa cttggagcca tcaaatctct caggacacta agagctctga gacctctaag agccttatct cgatttgaag 4260 4320 ggatgagggt ggttgtgaat gcccttttag gagcaattcc atccatcatg aatgtgcttc tqqtttqtct tatattctqq ctaattttca gcatcatggg cgtaaatttg tttgctggca 4380 4440 aattctacca ctgtattaac accacaactg gtgacaggtt tgacatcgaa gacgtgaata atcatactga ttgcctaaaa ctaatagaaa gaaatgagac tgcttgatgg aaaaatgtga 4500 aagtaaactt tgataatgta ggatttgggt atctctcttt gcttcaagtt gccacattca 4560 4620 aaggatggat ggatataatg tatgcagcag ttgattccag aaatgtggaa ctccagccta agtatgaaaa aagtctgtac atgtatcttt actttgttat tttcatcatc tttgggtcct 4680 tcttcacctt gaacctgttt attggtgtca tcatagataa tttcaaccag cagaaaaaga 4740 agtttggagg tcaagacatc tttatgacag aagaacagaa gaaatactat aatgcaatga 4800 aaaaattagg atcgaaaaaa ccgcaaaagc ctatacctcg accaggaaac aaatttcaag 4860 gaatggtctt tgacttcgta accagacaag tttttgacat aagcatcatg attctcatct 4920

SSCP Update Sequences.ST25 gtcttaacat ggtcacaatg atggtggaaa cagatgacca gagtgaatat gtgactacca 4980 ttttgtcacg catcaatctg gtgttcattg tgctatttac tggagagtgt gtactgaaac 5040 5100 tcatctctct acgccattat tattttacca ttggatggaa tatttttgat tttgtggttg tcattctctc cattqtaggt atgtttcttg ccgagctgat agaaaagtat ttcgtgtccc 5160 ctaccctgtt ccgagtgatc cgtcttgcta ggattggccg aatcctacgt ctgatcaaag 5220 5280 gagcaaaggg gatccgcacg ctgctctttg ctttgatgat gtcccttcct gcgttgttta acatcggcct cctactcttc ctagtcatgt tcatctacgc catctttggg atgtccaact 5340 5400 ttqcctatqt taagagggaa gttgggatcg atgacatgtt caactttgag acctttggca acagcatgat ctgcctattc caaattacaa cctctgctgg ctgggatgga ttgctagcac 5460 5520 ccattctcaa cagtaagcca cccgactgtg accctaataa agttaaccct ggaagctcag ttaagggaga ctgtgggaac ccatctgttg gaattttctt ttttgtcagt tacatcatca 5580 5640 tatccttcct ggttgtggtg aacatgtaca tcgcggtcat cctggagaac ttcagtgttg 5700 ctactgaaga aagtgcagag cctctgagtg aggatgactt tgagatgttc tatgaggttt gggagaagtt tgatcccgat gcaactcagt tcatggaatt tgaaaaatta tctcaqtttq 5760 5820 cagctgcgct tgaaccgcct ctcaatctgc cacaaccaaa caaactccag ctcattgcca tggatttgcc catggtgagt ggtgaccgga tccactgtct tgatatctta tttgctttta 5880 5940 caaaqcqqqt tctaqgaqag agtggagaga tggatgctct acgaatacag atggaagagc 6000 gattcatggc ttccaatcct tccaaggtct cctatcagcc aatcactact actttaaaac 6060 qaaaacaaqa ggaagtatct gctgtcatta ttcagcgtgc ttacagacgc caccttttaa 6120 agcgaactgt aaaacaagct tcctttacgt acaataaaaa caaaatcaaa ggtggggcta 6180 atcttcttat aaaagaagac atgataattg acagaataaa tgaaaactct attacagaaa 6240 aaactgatct gaccatgtcc actgcagctt gtccaccttc ctatgaccgg gtgacaaagc 6300 caattqtqqa aaaacatqag caagaaggca aagatgaaaa agccaaaggg aaataaatga aaataaataa aaataattgg gtgacaaatt gtttacagcc tgtgaaggtg atgtattttt 6360 6420 atcaacagga ctcctttagg aggtcaatgc caaactgact gtttttacac aaatctcctt 6480 aaggtcagtg cctacaataa gacagtgacc ccttgtcagc aaactgtgac tctgtgtaaa ggggagatga ccttgacagg aggttactgt tctcactacc agctgacact gctgaagata 6540 agatgcacaa tggctagtca gactgtaggg accagtttca aggggtgcaa acctgtgatt 6600 ttggggttgt ttaacatgaa acactttagt gtagtaattg tatccactgt ttgcatttca 6660 6720 actgccacat ttgtcacatt tttatggaat ctgttagtgg attcatcttt ttgttaatcc atgtgtttat tatatgtgac tatttttgta aacgaagttt ctgttgagaa ataggctaag 6780 gacctctata acaggtatgc cacctggggg gtatggcaac cacatggccc tcccagctac 6840 6900 acaaagtcgt ggtttgcatg agggcatgct gcacttagag atcatgcatg agaaaaagtc acaagaaaaa caaattctta aatttcacca tatttctggg aggggtaatt gggtgataag 6960

tggaggtgct ttgttgatct	SSCP L tgttttgcga	Jpdate Seque aatccagccc	ences.ST25 ctagaccaag	tagattattt	7020
gtgggtaggc cagtaaatct	tagcaggtgc	aaacttcatt	caaatgtttg	gagtcataaa	7080
tgttatgttt ctttttgttg	tattaaaaaa	aaaacctgaa	tagtgaatat	tgcccctcac	7140
cctccaccgc cagaagactg	aattgaccaa	aattactctt	tataaatttc	tgctttttcc	7200
tgcactttgt ttagccatct	ttgggctctc	agcaaggttg	acactgtata	tgttaatgaa	7260
atgctattta ttatgtaaat	agtcatttta	ccctgtggtg	cacgtttgag	caaacaaata	7320
atgacctaag cacagtattt	attgcatcaa	atatgtacca	caagaaatgt	agagtgcaag	7380
ctttacacag gtaataaaat	gtattctgta	ccatttatag	atagtttgga	tgctatcaat	7440
gcatgtttat attaccatgo	tgctgtatct	ggtttctctc	actgctcaga	atctcattta	7500
tgagaaacca tatgtcagtg	gtaaagtcaa	ggaaattgtt	caacagatct	catttattta	7560
agtcattaag caatagtttg	cagcacttta	acagcttttt	ggttattttt	acattttaag	7620
tggataacat atggtatata	gccagactgt	acagacatgt	ttaaaaaaac	acactgctta	7680
acctattaaa tatgtgttta	gaattttata	agcaaatata	aatactgtaa	aaagtcactt	7740
tattttattt ttcagcatta	tgtacataaa	tatgaagagg	aaattatctt	caggttgata	7800
tcacaatcac ttttcttact	ttctgtccat	agtacttttt	catgaaagaa	atttgctaaa	7860
taagacatga aaacaagact	gggtagttgt	agatttctgc	tttttaaatt	acatttgcta	7920
attttagatt atttcacaat	tttaaggagc	aaaataggtt	cacgattcat	atccaaatta	7980
tgctttgcaa ttggaaaagg	gtttaaaatt	ttatttatat	ttctggtagt	acctgtacta	8040
actgaattga aggtagtgct	tatgttattt	ttgttctttt	tttctgactt	cggtttatgt	8100
tttcatttct ttggagtaat	gctgctctag	attgttctaa	atagaatgtg	ggcttcataa	8160
ttttttttc cacaaaaaca	gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta cagaagcaaa	ccataggctc	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga actgcatgct	ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg caaaactaat	aaagattaca	ttttttattt	t		8381
<210> 8 <211> 8381 <212> DNA <213> Homo sapiens					
<400> 8 atactgcaga ggtctctggt	gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
gtgtgttctg ccccagtgag	actgcagccc	ttgtaaatac	tttgacacct	tttgcaagaa	120
ggaatctgaa caattgcaad	: tgaaggcaca	ttgttatcat	ctcgtctttg	ggtgatgctg	180
ttcctcactg cagatggata	attttccttt	taatcaggaa	tttcatatgc	agaataaatg	240
gtaattaaaa tgtgcaggat	gacaagatgg	agcaaacagt	gcttgtacca	ccaggacctg	300
acagcttcaa cttcttcacc	agagaatctc	ttgcggctat	tgaaagacgc	attgcagaag	360
aaaaggcaaa gaatcccaaa	ccagacaaaa	aagatgacga Page 30		ccaaagccaa	420

atagtgactt	ggaagctgga	aagaaccttc	catttattta	tggagacatt	cctccagaga	480
tggtgtcaga	gcccctggag	gacctggacc	cctactatat	caataagaaa	acttttatag	540
tattgaataa	attgaaggcc	atcttccggt	tcagtgccac	ctctgccctg	tacattttaa	600
ctcccttcaa	tcctcttagg	aaaatagcta	ttaagatttt	ggtacattca	ttattcagca	660
tgctaattat	gtgcactatt	ttgacaaact	gtgtgtttat	gacaatgagt	aaccctcctg	720
attggacaaa	gaatgtagaa	tacaccttca	caggaatata	tacttttgaa	tcacttataa	780
aaattattgc	aaggggattc	tgtttagaag	attttacttt	ccttcgggat	ccatggaact	840
ggctcgattt	cactgtcatt	acatttgcgt	acgtcacaga	gtttgtggac	ctgggcaatg	900
tctcggcatt	gagaacattc	agagttctcc	gagcattgaa	gacgatttca	gtcattccag	960
gcctgaaaac	cattgtggga	gccctgatcc	agtctgtgaa	gaagctctca	gatgtaatga	1020
tcctgactgt	gttctgtctg	agcgtatttg	ctctaattgg	gctgcagctg	ttcatgggca	1080
acctgaggaa	taaatgtata	caatggcctc	ccaccaatgc	ttccttggag	gaacatagta	1140
tagaaaagaa	tataactgtg	aattataatg	gtacacttat	aaatgaaact	gtctttgagt	1200
ttgactggaa	gtcatatatt	caagattcaa	gatatcatta	tttcctggag	ggttttttag	1260
atgcactact	atgtggaaat	agctctgatg	caggccaatg	tccagaggga	tatatgtgtg	1320
tgaaagctgg	tagaaatccc	aattatggct	acacaagctt	tgataccttc	agttgggctt	1380
ttttgtcctt	gtttcgacta	atgactcagg	acttctggga	aaatctttat	caactgacat	1440
tacgtgctgc	tgggaaaacg	tacatgatat	tttttgtatt	ggtcattttc	ttgggctcat	1500
tctacctaat	aaatttgatc	ctggctgtgg	tggccatggc	ctacgaggaa	cagaatcagg	1560
ccaccttgga	agaagcagaa	cagaaagagg	ccgaatttca	gcagatgatt	gaacagctta	1620
aaaagcaaca	ggaggcagct	cagcaggcag	caacggcaac	tgcctcagaa	cattccagag	1680
agcccagtgc	agcaggcagg	ctctcagaca	gctcatctga	agcctctaag	ttgagttcca	1740
agagtgctaa	ggaaagaaga	aatcggagga	agaaaagaaa	acagaaagag	cagtctggtg	1800
gggaagagaa	agatgaggat	gaattccaaa	aatctgaatc	tgaggacagc	atcaggagga	1860
aaggttttcg	cttctccatt	gaagggaacc	gattgacata	tgaaaagagg	tactcctccc	1920
cacaccagtc	tttgttgagc	atccgtggct	ccctattttc	accaaggcga	aatagcagaa	1980
caagcctttt	cagctttaga	gggcgagcaa	aggatgtggg	atctgagaac	gacttcgcag	2040
atgatgagca	cagcaccttt	gaggataacg	agagccgtag	agattccttg	tttgtgcccc	2100
gacgacacgg	agagagacgc	aacagcaacc	tgagtcagac	cagtaggtca	tcccggatgc	2160
tggcagtgtt	tccagcgaat	gggaagatgc	acagcactgt	ggattgcaat	ggtgtggttt	2220
ccttggttgg	tggaccttca	gttcctacat	cgcctgttgg	acagcttctg	ccagaggtga	2280
taatagataa	gccagctact	gatgacaatg	gaacaaccac	tgaaactgaa	atgagaaaga	2340
gaaggtcaag	ttctttccac	gtttccatgg	actttctaga	agatccttcc	caaaggcaac	2400
gagcaatgag	tatagccagc	attctaacaa	atacagtaga Page 31	agaacttgaa	gaatccaggc	2460

agaaatgccc	accctgttgg	tataaatttt	ccaacatatt	cttaatctgg	gactgttctc	2520
catattggtt	aaaagtgaaa	catgttgtca	acctggttgt	gatggaccca	tttgttgacc	2580
tggccatcac	catctgtatt	gtcttaaata	ctcttttcat	ggccatggag	cactatccaa	2640
tgacggacca	tttcaataat	gtgcttacag	taggaaactt	ggttttcact	gggatcttta	2700
cagcagaaat	gtttctgaaa	attattgcca	tggatcctta	ctattatttc	caagaaggct	2760
ggaatatctt	tgacggtttt	attgtgacgc	ttagcctggt	agaacttgga	ctcgccaatg	2820
tggaaggatt	atctgttctc	cgttcatttc	gattgctgcg	agttttcaag	ttggcaaaat	2880
cttggccaac	gttaaatatg	ctaataaaga	tcatcggcaa	ttccgtgggg	gctctgggaa	2940
atttaaccct	cgtcttggcc	atcatcgtct	tcatttttgc	cgtggtcggc	atgcagctct	3000
ttggtaaaag	ctacaaagat	tgtgtctgca	agatcgccag	tgattgtcaa	ctcccacgct	3060
ggcacatgaa	tgacttcttc	cactccttcc	tgattgtgtt	ccgcgtgctg	tgtggggagt	3120
ggatagagac	catgtgggac	tgtatggagg	ttgctggtca	agccatgtgc	cttactgtct	3180
tcatgatggt	catggtgatt	ggaaacctag	tggtcctgaa	tctctttctg	gccttgcttc	3240
tgagctcatt	tagtgcagac	aaccttgcag	ccactgatga	tgataatgaa	atgaataatc	3300
tccaaattgc	tgtggatagg	atgcacaaag	gagtagctta	tgtgaaaaga	aaaatatatg	3360
aatttattca	acagtccttc	attaggaaac	aaaagatttt	agatgaaatt	aaaccacttg	3420
atgatctaaa	caacaagaaa	gacagttgta	tgtccaatca	tacaacagaa	attgggaaag	3480
atcttgacta	tcttaaagat	gtaaatggaa	ctacaagtgg	tataggaact	ggcagcagtg	3540
ttgaaaaata	cattattgat	gaaagtgatt	acatgtcatt	cataaacaac	cccagtctta	3600
ctgtgactgt	accaattgct	gtaggagaat	ctgactttga	aaatttaaac	acggaagact	3660
ttagtagtga	atcggatctg	gaagaaagca	aagagaaact	gaatgaaagc	agtagctcat	3720
cagaaggtag	cactgtggac	atcggcgcac	ctgtagaaga	acagcccgta	gtggaacctg	3780
aagaaactct	tgaaccagaa	gcttgtttca	ctgaaggctg	tgtacaaaga	ttcaagtgtt	3840
gtcaaatcaa	tgtggaagaa	ggcagaggaa	aacaatggtg	gaacctgaga	aggacgtgtt	3900
tccgaatagt	tgaacataac	tggtttgaga	ccttcattgt	tttcatgatt	ctccttagta	3960
gtggtgctct	ggcatttgaa	gatatatata	ttgatcagcg	aaagacgatt	aagacgatgt	4020
tggaatatgc	tgacaaggtt	ttcacttaca	ttttcattct	ggaaatgctt	ctaaaatggg	4080
tggcatatgg	ctatcaaaca	tatttcacca	atgcctggtg	ttggctggac	ttcttaattg	4140
ttgatgtttc	attggtcagt	ttaacagcaa	atgccttggg	ttactcagaa	cttggagcca	4200
tcaaatctct	caggacacta	agagctctga	gacctctaag	agccttatct	cgatttgaag	4260
ggatgagggt	ggttgtgaat	gcccttttag	gagcaattcc	atccatcatg	aatgtgcttc	4320
tggtttgtct	tatattctgg	ctaattttca	gcatcatggg	cgtaaatttg	tttgctggca	4380
aattctacca	ctgtattaac	accacaactg	gtgacaggtt	tgacatcgaa	gacgtgaata	4440
atcatactga	ttgcctaaaa	ctaatagaaa	gaaatgagac Page 32		aaaaatgtga	4500
			•			

			- • - • •			
aagtaaactt	tgataatgta	ggatttgggt	atctctcttt	gcttcaagtt	gccacattca	4560
aaggatggat	ggatataatg	tatgcagcag	ttgattccag	aaatgtggaa	ctccagccta	4620
agtatgaaaa	aagtctgtac	atgtatcttt	actttgttat	tttcatcatc	tttgggtcct	4680
tcttcacctt	gaacctgttt	attggtgtca	tcatagataa	tttcaaccag	cagaaaaaga	4740
agtttggagg	tcaagacatc	tttatgacag	aagaacagaa	gaaatactat	aatgcaatga	4800
aaaaattagg	atcgaaaaaa	ccgcaaaagc	ctatacctcg	accaggaaac	aaatttcaag	4860
gaatggtctt	tgacttcgta	accagacaag	tttttgacat	aagcatcatg	attctcatct	4920
gtcttaacat	ggtcacaatg	atggtggaaa	cagatgacca	gagtgaatat	gtgactacca	4980
ttttgtcacg	catcaatctg	gtgttcattg	tgctatttac	tggagagtgt	gtactgaaac	5040
tcatctctct	acgccattat	tattttacca	ttggatggaa	tatttttgat	tttgtggttg	5100
tcattctctc	cattgtaggt	atgtttcttg	ccgagctgat	agaaaagtat	ttcgtgtccc	5160
ctaccctgtt	ccgagtgatc	cgtcttgcta	ggattggccg	aatcctacgt	ctgatcaaag	5220
gagcaaaggg	gatccgcacg	ctgctctttg	ctttgatgat	gtcccttcct	gcgttgttta	5280
acatcggcct	cctactcttc	ctagtcatgt	tcatctacgc	catctttggg	atgtccaact	5340
ttgcctatgt	taagagggaa	gttgggatcg	atgacatgtt	caactttgag	acctttggca	5400
acagcatgat	ctgcctattc	caaattacaa	cctctgctgg	ctgggatgga	ttgctagcac	5460
ccattctcaa	cagtaagcca	cccgactgtg	accctaataa	agttaaccct	ggaagctcag	5520
ttaagggaga	ctgtgggaac	ccatctgttg	gaattttctt	ttttgtcagt	tacatcatca	5580
tatccttcct	ggttgtggtg	aacacgtaca	tcgcggtcat	cctggagaac	ttcagtgttg	5640
ctactgaaga	aagtgcagag	cctctgagtg	aggatgactt	tgagatgttc	tatgaggttt	5700
gggagaagtt	tgatcccgat	gcaactcagt	tcatggaatt	tgaaaaatta	tctcagtttg	5760
cagctgcgct	tgaaccgcct	ctcaatctgc	cacaaccaaa	caaactccag	ctcattgcca	5820
tggatttgcc	catggtgagt	ggtgaccgga	tccactgtct	tgatatctta	tttgctttta	5880
caaagcgggt	tctaggagag	agtggagaga	tggatgctct	acgaatacag	atggaagagc	5940
gattcatggc	ttccaatcct	tccaaggtct	cctatcagcc	aatcactact	actttaaaac	6000
gaaaacaaga	ggaagtatct	gctgtcatta	ttcagcgtgc	ttacagacgc	caccttttaa	6060
agcgaactgt	aaaacaagct	tcctttacgt	acaataaaaa	caaaatcaaa	ggtggggcta	6120
atcttcttat	aaaagaagac	atgataattg	acagaataaa	tgaaaactct	attacagaaa	6180
aaactgatct	gaccatgtcc	actgcagctt	gtccaccttc	ctatgaccgg	gtgacaaagc	6240
caattgtgga	aaaacatgag	caagaaggca	aagatgaaaa	agccaaaggg	aaataaatga	6300
aaataaataa	aaataattgg	gtgacaaatt	gtttacagcc	tgtgaaggtg	atgtatttt	6360
atcaacagga	ctcctttagg	aggtcaatgc	caaactgact	gtttttacac	aaatctcctt	6420
aaggtcagtg	cctacaataa	gacagtgacc	ccttgtcagc	aaactgtgac	tctgtgtaaa	6480
ggggagatga	ccttgacagg	aggttactgt	tctcactacc Page 33	agctgacact	gctgaagata	6540

		SSCP	opuate sequ	ences.S125		
agatgcacaa	tggctagtca	gactgtaggg	accagtttca	aggggtgcaa	acctgtgatt	6600
ttggggttgt	ttaacatgaa	acactttagt	gtagtaattg	tatccactgt	ttgcatttca	6660
actgccacat	ttgtcacatt	tttatggaat	ctgttagtgg	attcatcttt	ttgttaatcc	6720
atgtgtttat	tatatgtgac	tatttttgta	aacgaagttt	ctgttgagaa	ataggctaag	6780
gacctctata	acaggtatgc	cacctggggg	gtatggcaac	cacatggccc	tcccagctac	6840
acaaagtcgt	ggtttgcatg	agggcatgct	gcacttagag	atcatgcatg	agaaaaagtc	6900
acaagaaaaa	caaattctta	aatttcacca	tatttctggg	aggggtaatt	gggtgataag	6960
tggaggtgct	ttgttgatct	tgttttgcga	aatccagccc	ctagaccaag	tagattattt	7020
gtgggtaggc	cagtaaatct	tagcaggtgc	aaacttcatt	caaatgtttg	gagtcataaa	7080
tgttatgttt	ctttttgttg	tattaaaaaa	aaaacctgaa	tagtgaatat	tgcccctcac	7140
cctccaccgc	cagaagactg	aattgaccaa	aattactctt	tataaatttc	tgctttttcc	7200
tgcactttgt	ttagccatct	ttgggctctc	agcaaggttg	acactgtata	tgttaatgaa	7260
atgctattta	ttatgtaaat	agtcatttta	ccctgtggtg	cacgtttgag	caaacaaata	7320
atgacctaag	cacagtattt	attgcatcaa	atatgtacca	caagaaatgt	agagtgcaag	7380
ctttacacag	gtaataaaat	gtattctgta	ccatttatag	atagtttgga	tgctatcaat	7440
gcatgtttat	attaccatgc	tgctgtatct	ggtttctctc	actgctcaga	atctcattta	7500
tgagaaacca	tatgtcagtg	gtaaagtcaa	ggaaattgtt	caacagatct	catttattta	7560
agtcattaag	caatagtttg	cagcacttta	acagcttttt	ggttatttt	acattttaag	7620
tggataacat	atggtatata	gccagactgt	acagacatgt	ttaaaaaaac	acactgctta	7680
acctattaaa	tatgtgttta	gaattttata	agcaaatata	aatactgtaa	aaagtcactt	7740
tattttattt	ttcagcatta	tgtacataaa	tatgaagagg	aaattatctt	caggttgata	7800
tcacaatcac	ttttcttact	ttctgtccat	agtacttttt	catgaaagaa	atttgctaaa	7860
taagacatga	aaacaagact	gggtagttgt	agatttctgc	tttttaaatt	acatttgcta	7920
attttagatt	atttcacaat	tttaaggagc	aaaataggtt	cacgattcat	atccaaatta	7980
tgctttgcaa	ttggaaaagg	gtttaaaatt	ttatttatat	ttctggtagt	acctgtacta	8040
actgaattga	aggtagtgct	tatgttattt	ttgttcttt	tttctgactt	cggtttatgt	8100
tttcatttct	ttggagtaat	gctgctctag	attgttctaa	atagaatgtg	ggcttcataa	8160
ttttttttc	cacaaaaaca	gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta	cagaagcaaa	ccataggctc	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga	actgcatgct	ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg	caaaactaat	aaagattaca	ttttttattt	t		8381

<210> 9 <211> 8381 <212> DNA <213> Homo sapiens

<400> 9 atactgcaga	ggtctctggt	gcatgtgtgt	atgtgtgcgt	ttgtgtgtgt	ttgtgtgtct	60
gtgtgttctg	ccccagtgag	actgcagccc	ttgtaaatac	tttgacacct	tttgcaagaa	120
ggaatctgaa	caattgcaac	tgaaggcaca	ttgttatcat	ctcgtctttg	ggtgatgctg	180
ttcctcactg	cagatggata	attttccttt	taatcaggaa	tttcatatgc	agaataaatg	240
gtaattaaaa	tgtgcaggat	gacaagatgg	agcaaacagt	gcttgtacca	ccaggacctg	300
acagcttcaa	cttcttcacc	agagaatctc	ttgcggctat	tgaaagacgc	attgcagaag	360
aaaaggcaaa	gaatcccaaa	ccagacaaaa	aagatgacga	cgaaaatggc	ccaaagccaa	420
atagtgactt	ggaagctgga	aagaaccttc	catttattta	tggagacatt	cctccagaga	480
tggtgtcaga	gcccctggag	gacctggacc	cctactatat	caataagaaa	acttttatag	540
tattgaataa	attgaaggcc	atcttccggt	tcagtgccac	ctctgccctg	tacattttaa	600
ctcccttcaa	tcctcttagg	aaaatagcta	ttaagatttt	ggtacattca	ttattcagca	660
tgctaattat	gtgcactatt	ttgacaaact	gtgtgtttat	gacaatgagt	aaccctcctg	720
attggacaaa	gaatgtagaa	tacaccttca	caggaatata	tacttttgaa	tcacttataa	780
aaattattgc	aaggggattc	tgtttagaag	attttacttt	ccttcgggat	ccatggaact	840
ggctcgattt	cactgtcatt	acatttgcgt	acgtcacaga	gtttgtggac	ctgggcaatg	900
tctcggcatt	gagaacattc	agagttctcc	gagcattgaa	gacgatttca	gtcattccag	960
gcctgaaaac	cattgtggga	gccctgatcc	agtctgtgaa	gaagctctca	gatgtaatga	1020
tcctgactgt	gttctgtctg	agcgtatttg	ctctaattgg	gctgcagctg	ttcatgggca	1080
acctgaggaa	taaatgtata	caatggcctc	ccaccaatgc	ttccttggag	gaacatagta	1140
tagaaaagaa	tataactgtg	aattataatg	gtacacttat	aaatgaaact	gtctttgagt	1200
ttgactggaa	gtcatatatt	caagattcaa	gatatcatta	tttcctggag	ggttttttag	1260
atgcactact	atgtggaaat	agctctgatg	caggccaatg	tccagaggga	tatatgtgtg	1320
tgaaagctgg	tagaaatccc	aattatggct	acacaagctt	tgataccttc	agttgggctt	1380
ttttgtcctt	gtttcgacta	atgactcagg	acttctggga	aaatctttat	caactgacat	1440
tacgtgctgc	tgggaaaacg	tacatgatat	tttttgtatt	ggtcattttc	ttgggctcat	1500
tctacctaat	aaatttgatc	ctggctgtgg	tggccatggc	ctacgaggaa	cagaatcagg	1560
ccaccttgga	agaagcagaa	cagaaagagg	ccgaatttca	gcagatgatt	gaacagctta	1620
aaaagcaaca	ggaggcagct	cagcaggcag	caacggcaac	tgcctcagaa	cattccagag	1680
agcccagtgc	agcaggcagg	ctctcagaca	gctcatctga	agcctctaag	ttgagttcca	1740
agagtgctaa	ggaaagaaga	aatcggagga	agaaaagaaa	acagaaagag	cagtctggtg	1800
gggaagagaa	agatgaggat	gaattccaaa	aatctgaatc	tgaggacagc	atcaggagga	1860
aaggttttcg	cttctccatt	gaagggaacc	gattgacata	tgaaaagagg	tactcctccc	1920
cacaccagtc	tttgttgagc	atccgtggct	ccctattttc	accaaggcga	aatagcagaa	1980

SSCP Update Sequences.ST25 2040 caaqcctttt cagctttaga gggcgagcaa aggatgtggg atctgagaac gacttcgcag atgatgagca cagcaccttt gaggataacg agagccgtag agattccttg tttgtgcccc 2100 gacgacacgg agagagacgc aacagcaacc tgagtcagac cagtaggtca tcccggatgc 2160 tggcagtgtt tccagcgaat gggaagatgc acagcactgt ggattgcaat ggtgtggttt 2220 2280 ccttggttgg tggaccttca gttcctacat cgcctgttgg acagcttctg ccagaggtga 2340 taatagataa gccagctact gatgacaatg gaacaaccac tgaaactgaa atgagaaaga 2400 gaaggtcaag ttctttccac gtttccatgg actttctaga agatccttcc caaaggcaac gagcaatgag tatagccagc attctaacaa atacagtaga agaacttgaa gaatccaggc 2460 agaaatgccc accctgttgg tataaatttt ccaacatatt cttaatctgg gactgttctc 2520 catattggtt aaaagtgaaa catgttgtca acctggttgt gatggaccca tttgttgacc 2580 tggccatcac catctgtatt gtcttaaata ctcttttcat ggccatggag cactatccaa 2640 tgacggacca tttcaataat gtgcttacag taggaaactt ggttttcact gggatcttta 2700 cagcagaaat gtttctgaaa attattgcca tggatcctta ctattatttc caagaaggct 2760 ggaatatctt tgacggtttt attgtgacgc ttagcctggt agaacttgga ctcgccaatg 2820 tggaaggatt atctgttctc cgttcatttc gattgctgcg agttttcaag ttggcaaaat 2880 cttggccaac gttaaatatg ctaataaaga tcatcggcaa ttccgtgggg gctctgggaa 2940 3000 atttaaccct cgtcttggcc atcatcgtct tcatttttgc cgtggtcggc atgcagctct ttggtaaaag ctacaaagat tgtgtctgca agatcgccag tgattgtcaa ctcccacgct 3060 ggcacatgaa tgacttcttc cactccttcc tgattgtgtt ccgcgtgctg tgtggggagt 3120 3180 ggatagagac catgtgggac tgtatggagg ttgctggtca agccatgtgc cttactgtct tcatgatggt catggtgatt ggaaacctag tggtcctgaa tctctttctg gccttgcttc 3240 tgagctcatt tagtgcagac aaccttgcag ccactgatga tgataatgaa atgaataatc 3300 tccaaattgc tgtggatagg atgcacaaag gagtagctta tgtgaaaaga aaaatatatg 3360 3420 aatttattca acagtccttc attaggaaac aaaagatttt agatgaaatt aaaccacttg atgatctaaa caacaagaaa gacagttgta tgtccaatca tacaacagaa attgggaaag 3480 3540 atcttgacta tcttaaagat gtaaatggaa ctacaagtgg tataggaact ggcagcagtg ttgaaaaata cattattgat gaaagtgatt acatgtcatt cataaacaac cccagtctta 3600 3660 ctgtgactgt accaattgct gtaggagaat ctgactttga aaatttaaac acggaagact ttagtagtga atcggatctg gaagaaagca aagagaaact gaatgaaagc agtagctcat 3720 3780 cagaaggtag cactgtggac atcggcgcac ctgtagaaga acagcccgta gtggaacctg aagaaactct tgaaccagaa gcttgtttca ctgaaggctg tgtacaaaga ttcaagtgtt 3840 gtcaaatcaa tgtggaagaa ggcagaggaa aacaatggtg gaacctgaga aggacgtgtt 3900 tccgaatagt tgaacataac tggtttgaga ccttcattgt tttcatgatt ctccttagta 3960 gtggtgctct ggcatttgaa gatatatata ttgatcagcg aaagacgatt aagacgatgt 4020

SSCP Update Sequences.ST25 tggaatatgc tgacaaggtt ttcacttaca ttttcattct ggaaatgctt ctaaaatggg 4080 tggcatatgg ctatcaaaca tatttcacca atgcctggtg ttggctggac ttcttaattg 4140 ttgatgtttc attggtcagt ttaacagcaa atgccttggg ttactcagaa cttggagcca 4200 tcaaatctct caggacacta agagctctga gacctctaag agccttatct cgatttgaag 4260 4320 qqatqaqqqt qqttgtgaat gcccttttag gagcaattcc atccatcatg aatgtgcttc tggtttgtct tatattctgg ctaattttca gcatcatggg cgtaaatttg tttgctggca 4380 aattctacca ctgtattaac accacaactg gtgacaggtt tgacatcgaa gacgtgaata 4440 atcatactga ttgcctaaaa ctaatagaaa gaaatgagac tgctcgatgg aaaaatgtga 4500 aagtaaactt tgataatgta ggatttgggt atctctcttt gcttcaagtt gccacattca 4560 aaggatggat ggatataatg tatgcagcag ttgattccag aaatgtggaa ctccagccta 4620 agtatgaaaa aagtctgtac atgtatcttt actttgttat tttcatcatc tttgggtcct 4680 tcttcacctt gaacctgttt attggtgtca tcatagataa tttcaaccag cagaaaaaga 4740 agtttggagg tcaagacatc tttatgacag aagaacagaa gaaatactat aatgcaatga 4800 aaaaattagg atcgaaaaaa ccgcaaaagc ctatacctcg accaggaaac aaatttcaag 4860 gaatggtctt tgacttcgta accagacaag tttttgacat aagcatcatg attctcatct 4920 gtcttaacat ggtcacaatg atggtggaaa cagatgacca gagtgaatat gtgactacca 4980 ttttgtcacg catcaatctg gtgttcattg tgctatttac tggagagtgt gtactgaaac 5040 tcatctctct acgccattat tattttacca ttggatggaa tatttttgat tttgtggttg 5100 tcattctctc cattgtaggt atgtttcttg ccgagctgat agaaaagtat ttcgtgtccc 5160 ctaccctgtt ccgagtgatc cgtcttgcta ggattggccg aatcctacgt ctgatcaaag 5220 gagcaaaggg gatccgcacg ctgctctttg ctttgatgat gtcccttcct gcgttgttta 5280 acatcggcct cctactcttc ctagtcatgt tcatctacgc catctttggg atgtccaact 5340 ttgcctatgt taagagggaa gttgggatcg atgacatgtt caactttgag acctttggca 5400 acagcatgat ctgcctattc caaattacaa cctctgctgg ctgggatgga ttgctagcac 5460 5520 ccattctcaa cagtaagcca cccgactgtg accctaataa agttaaccct ggaagctcag ttaagggaga ctgtgggaac ccatctgttg gaattttctt ttttgtcagt tacatcatca 5580 tatccttcct ggttgtggtg aacatgtaca tcgcggtcat cctggagaac ttcagtgttg 5640 5700 ctactgaaga aagtgcagag cctctgagtg aggatgactt tgagatgttc tatgaggttt gggagaagtt tgatcccgat gcaactcagt tcatggaatt tgaaaaatta tctcagtttg 5760 5820 cagctgcgct tgaaccgcct ctcaatctgc cacaaccaaa caaactccag ctcattgcca 5880 tggatttgcc catggtgagt ggtgaccgga tccactgtct tgatatctta tttgctttta 5940 caaaqcgggt tctaggagag agtggagaga tggatgctct acgaatacag atggaagagt gattcatggc ttccaatcct tccaaggtct cctatcagcc aatcactact actttaaaac 6000 qaaaacaaga ggaagtatct gctgtcatta ttcagcgtgc ttacagacgc caccttttaa 6060

SSCP Update Sequences.ST25 agcgaactgt aaaacaagct tcctttacgt acaataaaaa Caaaatcaaa ggtggggcta 6120 atcttcttat aaaagaagac atgataattg acagaataaa tgaaaactct attacagaaa 6180 aaactgatct gaccatgtcc actgcagctt gtccaccttc ctatgaccgg gtgacaaagc 6240 caattgtgga aaaacatgag caagaaggca aagatgaaaa agccaaaggg aaataaatga 6300 aaataaataa aaataattgg qtgacaaatt qtttacagcc tgtgaaggtg atqtattttt 6360 atcaacagga ctcctttagg aggtcaatgc caaactgact gtttttacac aaatctcctt 6420 aaggtcagtg cctacaataa gacagtgacc ccttgtcagc aaactgtgac tctgtgtaaà 6480 ggggagatga ccttgacagg aggttactgt tctcactacc agctgacact gctgaagata 6540 agatgcacaa tggctagtca gactgtaggg accagtttca aggggtgcaa acctgtgatt 6600 ttggggttgt ttaacatgaa acactttagt gtagtaattg tatccactgt ttgcatttca 6660 actgccacat ttgtcacatt tttatggaat ctgttagtgg attcatcttt ttgttaatcc 6720 6780 atgtgtttat tatatgtgac tatttttgta aacgaagttt ctgttgagaa ataggctaag qacctctata acaggtatqc cacctggggg gtatggcaac cacatggccc tcccagctac 6840 6900 acaaaqtcqt qqtttqcatq aggqcatqct qcacttagaq atcatqcatq agaaaaaqtc acaagaaaaa caaattctta aatttcacca tatttctggg aggggtaatt gggtgataag 6960 tggaggtgct ttgttgatct tgttttgcga aatccagccc ctagaccaag tagattattt 7020 7080 qtqqqtaqqc cagtaaatct tagcaqgtgc aaacttcatt caaatgtttg gagtcataaa 7140 tqttatqttt ctttttqttg tattaaaaaa aaaacctgaa tagtgaatat tgcccctcac cctccaccgc cagaagactg aattgaccaa aattactctt tataaatttc tgctttttcc 7200 tgcactttgt ttagccatct ttgggctctc agcaaggttg acactgtata tgttaatgaa 7260 atgctattta ttatgtaaat agtcatttta ccctgtggtg cacgtttgag caaacaaata 7320 7380 atgacctaag cacagtattt attgcatcaa atatgtacca caagaaatgt agagtgcaag ctttacacag gtaataaaat gtattctgta ccatttatag atagtttgga tgctatcaat 7440 7500 gcatgtttat attaccatgc tgctgtatct ggtttctctc actgctcaga atctcattta tqaqaaacca tatgtcaqtg gtaaagtcaa ggaaattgtt caacagatct catttattta 7560 agtcattaag caatagtttg cagcacttta acagcttttt ggttattttt acattttaag 7620 7680 tggataacat atggtatata gccagactgt acagacatgt ttaaaaaaaac acactgctta acctattaaa tatgtgttta gaattttata agcaaatata aatactgtaa aaagtcactt 7740 tattttattt ttcagcatta tgtacataaa tatgaagagg aaattatctt caggttgata 7800 tcacaatcac ttttcttact ttctgtccat agtacttttt catgaaagaa atttgctaaa 7860 7920 taagacatga aaacaagact gggtagttgt agatttctgc tttttaaatt acatttgcta attttagatt atttcacaat tttaaggagc aaaataggtt cacgattcat atccaaatta 7980 tgctttgcaa ttggaaaagg gtttaaaatt ttatttatat ttctggtagt acctgtacta 8040 actgaattga aggtagtgct tatgttattt ttgttctttt tttctgactt cggtttatgt 8100

tttcatttct ttggagtaat		Update Sequ attgttctaa		ggcttcataa	8160
ttttttttc cacaaaaaca	gagtagtcaa	cttatatagt	caattacatc	aggacatttt	8220
gtgtttctta cagaagcaaa	ccataggctc	ctcttttcct	taaaactact	tagataaact	8280
gtattcgtga actgcatgct	ggaaaatgct	actattatgc	taaataatgc	taaccaacat	8340
ttaaaatgtg caaaactaat	aaagattaca	ttttttattt	t		8381
<210> 10 <211> 1414 <212> DNA <213> Homo sapiens					
<400> 10 gctcccgggg acattctaac	cgccgccagg	tcccgccgcc	tctcgccccg	ctattaatac	60
cggcggcccg ggagggggc	gcagcacgcg	ccgcgcagcc	atggggaggc	tgctggcctt	120
agtggtcggc gcggcactgg	tgtcctcagc	ctgcgggggc	tgcgtggagg	tggactcgga	180
gaccgaggcc gtgtatggga	tgaccttcaa	aattctttgc	atctcctgca	agcgccgcag	240
cgagaccaac gctgagacct	tcaccgagtg	gaccttccgc	cagaagggca	ctgaggagtt	300
tgtcaagatc ctgcgctatg	agaatgaggt	gttgcagctg	gaggaggatg	agcacttcga	360
gggccgcgtg gtgtggaatg	gcagccgggg	caccaaagac	ctgcaggatc	tgtctatctt	420
catcaccaat gtcacctaca	accactcggg	cgactacgag	tgccacgtct	accgcctgct	480
cttcttcgaa aactacgagc	acaacaccag	cgtcgtcaag	aagatccaca	ttgaggtagt	540
ggacaaagcc aacagagaca	tggcatccat	cgtgtctgag	atcatgatgt	atgtgctcat	600
tgtggtgttg accatatggc	tcgtggcaga	gatgatttac	tgctacaaga	agatcgctgc	660
cgccacggag actgctgcac	aggagaatgc	ctcggaatac	ctggccatca	cctctgaaag	720
caaagagaac tgcacgggcg	tccaggtggc	cgaatagccc	tggccctggg	ccccgcctca	780
aggaagagcc agccgtaatg	gggactctcc	aggcaccgcc	tgcccccagc	gtgggggtgg	840
ccactcctgg gccccagaaa	gcctcagagt	cctgccgacg	gagccactgg	ggtgggaggg	900
ggcagggggc ttggctcgca	ccccacttt	cgcctcctcc	agctcctgcc	ccgccggccg	960
cgcaccgcca tgcatgatgg	gtaaagcaat	actgccgctg	ccccaccct	gcttctgctg	1020
cctgtttggg gaggggggg	gtgaggtggg	ggcagcggcc	ccgcacccct	cctccttgct	1080
gatttgcaca cattggccgc	ttcagacacg	cacttctggg	gccagcccct	ccccgcctcc	1140
tccctgcctg gcggcagggg	tcgcgatgat	gggctggagc	agtttggggc	agggggttct	1200
gggacccact ccgactcccc	ctcccggca	tcatttcccc	tcccgcttcc	tccggctgga	1260
cctggggtcc cccctccctg	taatgcactc	ctgccccggc	ccaacctcgc	cctctctcac	1320
cagccttgaa ctgtggccac	ctagaaaggg	gcccattcag	cctcgtctct	ttacagaagt	1380
agttttgttc atgaaataaa	gactcttgga	cttg			1414

<210> 11 <211> 6328

SSCP Update Sequences.ST25

<212> DNA <213> Homo sapiens

<400> 11						
	cagcttatca	atcccaaact	ctgggtgtaa	aagattctac	agggcacttt	60
cttatgcaag	gagctaaaca	gtgattaaag	gagcaggatg	aaaagatggc	acagtcagtg	120
ctggtaccgc	caggacctga	cagcttccgc	ttctttacca	gggaatccct	tgctgctatt	180
gaacaacgca	ttgcagaaga	gaaagctaag	agacccaaac	aggaacgcaa	ggatgaggat	240
gatgaaaatg	gcccaaagcc	aaacagtgac	ttggaagcag	gaaaatctct	tccatttatt	300
tatggagaca	ttcctccaga	gatggtgtca	gtgcccctgg	aggatctgga	cccctactat	360
atcaataaga	aaacgtttat	agtattgaat	aaagggaaag	caatctctcg	attcagtgcc	420
acccctgccc	tttacatttt	aactcccttc	aaccctatta	gaaaattagc	tattaagatt	480
ttggtacatt	ctttattcaa	tatgctcatt	atgtgcacga	ttcttaccaa	ctgtgtattt	540
atgaccatga	gtaaccctcc	agactggaca	aagaatgtgg	agtatacctt	tacaggaatt	600
tatacttttg	aatcacttat	taaaatactt	gcaaggggct	tttgtttaga	agatttcaca	660
ttttacggg	atccatggaa	ttggttggat	ttcacagtca	ttacttttgc	atatgtgaca	720
gagtttgtgg	acctgggcaa	tgtctcagcg	ttgagaacat	tcagagttct	ccaagcattg	780
aaaacaattt	cagtcattcc	aggcctgaag	accattgtgg	gggccctgat	ccagtcagtg	840
aagaagcttt	ctgatgtcat	gatcttgact	gtgttctgtc	taagcgtgtt	tgcgctaata	900
ggattgcagt	tgttcatggg	caacctacga	aataaatgtt	tgcaatggcc	tccagataat	960
tcttcctttg	aaataaatat	cacttccttc	tttaacaatt	cattggatgg	gaatggtact	1020
actttcaata	ggacagtgag	catatttaac	tgggatgaat	atattgagga	taaaagtcac	1080
ttttatttt	tagaggggca	aaatgatgct	ctgctttgtg	gcaacagctc	agatgcaggc	1140
cagtgtcctg	aaggatacat	ctgtgtgaag	gctggtagaa	accccaacta	tggctacacg	1200
agctttgaca	cctttagttg	ggcctttttg	tccttatttc	gtctcatgac	tcaagacttc	1260
tgggaaaacc	tttatcaact	gacactacgt	gctgctggga	aaacgtacat	gatattttt	1320
gtgctggtca	ttttcttggg	ctcattctat	ctaataaatt	tgatcttggc	tgtggtggcc	1380
atggcctatg	aggaacagaa	tcaggccaca	ttggaagagg	ctgaacagaa	ggaagctgaa	1440
tttcagcaga	tgctcgaaca	gttgaaaaag	caacaagaag	aagctcaggc	ggcagctgca	1500
gccgcatctg	ctgaatcaag	agacttcagt	ggtgctggtg	ggataggagt	tttttcagag	1560
agttcttcag	tagcatctaa	gttgagctcc	aaaagtgaaa	aagagctgaa	aaacagaaga	1620
aagaaaaaga	aacagaaaga	acagtctgga	gaagaagaga	aaaatgacag	agtcctaaaa	1680
tcggaatctg	aagacagcat	aagaagaaaa	ggtttccgtt	tttccttgga	aggaagtagg	1740
ctgacatatg	aaaagagatt	ttcttctcca	caccagtcct	tactgagcat	ccgtggctcc	1800
cttttctctc	caagacgcaa	cagtagggcg	agccttttca	gcttcagagg	tcgagcaaag	1860
gacattggct	ctgagaatga	ctttgctgat	gatgagcaca	gcacctttga	ggacaatgac	1920

SSCP Update Sequences.ST25 agccgaagag actctctgtt cgtgccgcac agacatggag aacggcgcca cagcaatgtc 1980 agccaggcca gccgtgcctc cagggtgctc cccatcctgc ccatgaatgg gaagatgcat 2040 agcgctgtgg actgcaatgg tgtggtctcc ctggtcgggg gcccttctac cctcacatct 2100 gctgggcagc tcctaccaga gggcacaact actgaaacag aaataagaaa gagacggtcc 2160 agttcttatc atgtttccat ggatttattg gaagatccta catcaaggca aagagcaatg 2220 agtatagcca gtattttgac caacaccatg gaagaacttg aagaatccag acagaaatgc 2280 ccaccatgct ggtataaatt tgctaatatg tgtttgattt gggactgttg taaaccatgg 2340 ttaaaggtga aacaccttgt caacctggtt gtaatggacc catttgttga cctggccatc 2400 accatctgca ttgtcttaaa tacactcttc atggctatgg agcactatcc catgacggag 2460 cagttcagca gtgtactgtc tgttggaaac ctggtcttca cagggatctt cacagcagaa 2520 atgtttctca agataattgc catggatcca tattattact ttcaagaagg ctggaatatt 2580 tttgatggtt ttattgtgag ccttagttta atggaacttg gtttggcaaa tgtggaagga 2640 ttgtcagttc tccgatcatt ccggctgctc cgagttttca agttggcaaa atcttggcca 2700 actctaaata tgctaattaa gatcattggc aattctgtgg gggctctagg aaacctcacc 2760 ttggtattgg ccatcatcgt cttcattttt gctgtggtcg gcatgcagct ctttggtaag 2820 agctacaaag aatgtgtctg caagatttcc aatgattgtg aactcccacg ctggcacatg 2880 catgactttt tccactcctt cctgatcgtg ttccgcgtgc tgtgtggaga gtggatagag 2940 accatgtggg actgtatgga ggtcgctggc caaaccatgt gccttactgt cttcatqatq 3000 gtcatggtga ttggaaatct agtggttctg aacctcttct tggccttgct tttgagttcc 3060 ttcagttctg acaatcttgc tgccactgat gatgataacg aaatgaataa tctccagatt 3120 gctgtgggaa ggatgcagaa aggaatcgat tttgttaaaa gaaaaatacg tgaatttatt 3180 cagaaagcct ttgttaggaa gcagaaagct ttagatgaaa ttaaaccgct tgaagatcta 3240 aataataaaa aagacagctg tatttccaac cataccacca tagaaatagg caaagacctc 3300 aattatctca aagacggaaa tggaactact agtggcatag gcagcagtgt agaaaaatat 3360 gtcgtggatg aaagtgatta catgtcattt ataaacaacc ctagcctcac tgtgacagta 3420 ccaattgctg ttggagaatc tgactttgaa aatttaaata ctgaagaatt cagcagcgag 3480 tcagatatgg aggaaagcaa agagaagcta aatgcaacta gttcatctga aggcagcacg 3540 gttgatattg gagctcccgc cgagggagaa cagcctgagg ttgaacctga ggaatccctt 3600 gaacctgaag cctgttttac agaagactgt gtacggaagt tcaagtgttg tcagataagc 3660 atagaagaag gcaaagggaa actctggtgg aatttgagga aaacatgcta taagatagtg 3720 gagcacaatt ggttcgaaac cttcattgtc ttcatgattc tgctgagcag tggggctctg 3780 gcctttgaag atatatacat tgagcagcga aaaaccatta agaccatgtt agaatatgct 3840 gacaaggttt tcacttacat attcattctg gaaatgctgc taaagtgggt tgcatatggt 3900 tttcaagtgt attttaccaa tgcctggtgc tggctagact tcctgattgt tgatgtctca 3960

SSCP Update Sequences.ST25 ctggttagct taactgcaaa tgccttgggt tactcagaac ttggtgccat caaatccctc 4020 agaacactaa gagctctgag gccactgaga gctttgtccc ggtttgaagg aatgagggtt 4080 gttgtaaatg ctcttttagg agccattcca tctatcatga atgtacttct ggtttgtctg 4140 atcttttggc taatattcag tatcatggga gtgaatctct ttgctggcaa gttttaccat 4200 4260 tqtattaatt acaccactqq agagatqttt gatgtaagcg tggtcaacaa ctacagtgag tgcaaagctc tcattgagag caatcaaact gccaggtgga aaaatgtgaa agtaaacttt 4320 gataacgtag gacttggata tctgtctcta cttcaagtag ccacgtttaa gggatggatg 4380 4440 gatattatqt atgcagctgt tgattcacga aatgtagaat tacaacccaa gtatgaagac aacctgtaca tgtatcttta ttttgtcatc tttattattt ttggttcatt ctttaccttg 4500 4560 aatcttttca ttggtgtcat catagataac ttcaaccaac agaaaaagaa gtttggaggt 4620 caaqacattt ttatqacaga agaacagaag aaatactaca atgcaatgaa aaaactgggt 4680 tcaaagaaac cacaaaaacc catacctcga cctgctaaca aattccaagg aatggtcttt 4740 gattttgtaa ccaaacaagt ctttgatatc agcatcatga tcctcatctg ccttaacatg gtcaccatga tggtggaaac cgatgaccag agtcaagaaa tgacaaacat tctgtactgg 4800 attaatctqq tqtttattqt tctgttcact ggagaatgtg tgctgaaact gatctctctt 4860 4920 cgttactact atttcactat tggatggaat atttttgatt ttgtggtggt cattctctcc 4980 attqtaqqaa tqtttctqqc tqaactgata gaaaagtatt ttgtgtcccc taccctgttc cqaqtqatcc qtcttqccag gattggccga atcctacgtc tgatcaaagg agcaaagggg 5040 5100 atcogcacgo tgctctttgc tttgatgatg tcccttcctg cgttgtttaa catcggcctc 5160 cttcttttcc tggtcatgtt catctacgcc atctttggga tgtccaattt tgcctatgtt 5220 aaqaqqqaaq ttqqqatcqa tgacatgttc aactttgaga cctttggcaa cagcatgatc tgcctgttcc aaattacaac ctctgctggc tgggatggat tgctagcacc tattcttaat 5280 agtggacctc cagactgtga ccctgacaaa gatcaccctg gaagctcagt taaaggagac 5340 tgtgggaacc catctgttgg gattttcttt tttgtcagtt acatcatcat atccttcctg 5400 gttgtgctga acatgtacat cgcggtcatc ctggagaact tcagtgttgc tactgaagaa 5460 5520 agtqcagagc ctctgagtga ggatgacttt gagatgttct atgaggtttg ggagaagttt 5580 gatcccgatg cgacccagtt tatagagttt gccaaacttt ctgattttgc agatgccctg gatcctcctc ttctcatagc aaaacccaac aaagtccagc tcattgccat ggatctgccc 5640 atggtgagtg gtgaccggat ccactgtctt gacatcttat ttgcttttac aaagcgtgtt 5700 ttgggtgaga gtggagagat ggatgccctt cgaatacaga tggaagagcg attcatggca 5760 tcaaacccct ccaaagtctc ttatgagccc attacgacca cgttgaaacg caaacaagag 5820 5880 gaqqtgtctg ctattattat ccagagggct tacagacgct acctcttgaa gcaaaaagtt 5940 aaaaaggtat caagtatata caagaaagac aaaggcaaag aatgtgatgg aacacccatc 6000 aaaqaagata ctctcattga taaactgaat gagaattcaa ctccagagaa aaccgatatg

acgccttcca ccacgtctc		Update Sequ gatagtgtga		aaaagaaaaa	6060
tttgaaaaag acaaatcag					6120
taaaaagaaa ccaagaatt	,				6180
gtgtttgtgt caacaggac					6240
gtatacttaa ggtcagtgc					6300
agtaaactgg agaaatagt		5 5			6328
<210> 12 <211> 6328 <212> DNA <213> Homo sapiens					
<400> 12 ttcttggtgc cagcttato	a atcccaaact	ctagatataa	aagattctac	agggcacttt	60
cttatgcaag gagctaaac					120
ctggtaccgc caggacctg					180
gaacaacgca ttgcagaag					240
gatgaaaatg gcccaaagc					300
tatggagaca ttcctccag					360
atcaataaga aaacgttta					420
acccctgccc tttacattt					480
ttggtacatt ctttattca					540
atgaccatga gtaaccctc					600
tatacttttg aatcactta	t taaaatactt	gcaaggggct	tttgtttaga	agatttcaca	660
tttttacggg atccatgga	a ttggttggat	ttcacagtca	ttacttttgc	atatgtgaca	720
gagtttgtgg acctgggca	a tgtctcagcg	ttgagaacat	tcagagttct	ccgagcattg	780
aaaacaattt cagtcatto	c aggcctgaag	accattgtgg	gggccctgat	ccagtcagtg	840
aagaagcttt ctgatgtca	t gatcttgact	gtgttctgtc	taagcgtgtt	tgcgctaata	900
ggattgcagt tgttcatgg	g caacctacga	aataaatgtt	tgcaatggcc	tccagataat	960
tcttcctttg aaataaata	t cacttccttc	tttaacaatt	cattggatgg	gaatggtact	1020
actttcaata ggacagtga	g catatttaac	tgggatgaat	atattgagga	taaaagtcac	1080
ttttattttt tagaggggc	a aaatgatgct	ctgctttgtg	gcaacagctc	agatgcaggc	1140
cagtgtcctg aaggataca	t ctgtgtgaag	gctggtagaa	accccaacta	tggctacacg	1200
agctttgaca cctttagtt	g ggccttttg	tccttatttc	gtctcatgac	tcaagacttc	1260
tgggaaaacc tttatcaac	t gacactacgt	gctgctggga	aaacgtacat	gatattttt	1320
gtgctggtca ttttcttgg	g ctcattctat	ctaataaatt	tgatcttggc	tgtggtggcc	1380
atggcctatg aggaacaga	a tcaggccaca	ttggaagagg	ctgaacagaa	ggaagctgaa	1440
tttcagcaga tgctcgaac	a gttgaaaaag	caacaagaag Page 43		ggcagctgca	1500

			•			
gccgcatctg	ctgaatcaag	agacttcagt	ggtgctggtg	ggataggagt	tttttcagag	1560
agttcttcag	tagcatctaa	gttgagctcc	aaaagtgaaa	aagagctgaa	aaacagaaga	1620
aagaaaaaga	aacagaaaga	acagtctgga	gaagaagaga	aaaatgacag	agtcctaaaa	1680
tcggaatctg	aagacagcat	aagaagaaaa	ggtttccgtt	tttccttgga	aggaagtagg	1740
ctgacatatg	aaaagagatt	ttcttctcca	caccagtcct	tactgagcat	ccgtggctcc	1800
cttttctctc	caagacgcaa	cagtagggcg	agccttttca	gcttcagagg	tcgagcaaag	1860
gacattggct	ctgagaatga	ctttgctgat	gatgagcaca	gcacctttga	ggacaatgac	1920
agccgaagag	actctctgtt	cgtgccgcac	agacatggag	aacggcgcca	cagcaatgtc	1980
agccaggcca	gccgtgcctc	cagggtgctc	cccatcctgc	ccatgaatgg	gaagatgcat	2040
agcgctgtgg	actgcaatgg	tgtggtctcc	ctggtcgggg	gcccttctac	cctcacatct	2100
gctgggcagc	tcctaccaga	gggcacaact	actgaaacag	aaataagaaa	gagacggtcc	2160
agttcttatc	atgtttccat	ggatttattg	gaagatccta	catcaaggca	aagagcaatg	2220
agtatagcca	gtattttgac	caacaccatg	gaagaacttg	aagaatccag	acagaaatgc	2280
ccaccatgct	ggtataaatt	tgctaatatg	tgtttgattt	gggactgttg	taaaccatgg	2340
ttaaaggtga	aacaccttgt	caacctggtt	gtaatggacc	catttgttga	cctggccatc	2400
accatctgca	ttgtcttaaa	tacactcttc	atggctatgg	agcactatcc	catgacggag	2460
cagttcagca	gtgtactgtc	tgttggaaac	ctggtcttca	cagggatctt	cacagcagaa	2520
atgtttctca	agataattgc	catggatcca	tattattact	ttcaagaagg	ctggaatatt	2580
tttgatggtt	ttattgtgag	ccttagttta	atggaacttg	gtttggcaaa	tgtggaagga	2640
ttgtcagttc	tccgatcatt	ccggctgctc	cgagttttca	agttggcaaa	atcttggcca	2700
actctaaata	tgctaattaa	gatcattggc	aattctgtgg	gggctctagg	aaacctcacc	2760
ttggtattgg	ccatcatcat	cttcattttt	gctgtggtcg	gcatgcagct	ctttggtaag	2820
agctacaaag	aatgtgtctg	caagatttcc	aatgattgtg	aactcccacg	ctggcacatg	2880
catgactttt	tccactcctt	cctgatcgtg	ttccgcgtgc	tgtgtggaga	gtggatagag	2940
accatgtggg	actgtatgga	ggtcgctggc	caaaccatgt	gccttactgt	cttcatgatg	3000
gtcatggtga	ttggaaatct	agtggttctg	aacctcttct	tggccttgct	tttgagttcc	3060
ttcagttctg	acaatcttgc	tgccactgat	gatgataacg	aaatgaataa	tctccagatt	3120
gctgtgggaa	ggatgcagaa	aggaatcgat	tttgttaaaa	gaaaaatacg	tgaatttatt	3180
cagaaagcct	ttgttaggaa	gcagaaagct	ttagatgaaa	ttaaaccgct	tgaagatcta	3240
aataataaaa	aagacagctg	tatttccaac	cataccacca	tagaaatagg	caaagacctc	3300
aattatctca	aagacggaaa	tggaactact	agtggcatag	gcagcagtgt	agaaaaatat	3360
gtcgtggatg	aaagtgatta	catgtcattt	ataaacaacc	ctagcctcac	tgtgacagta	3420
ccaattgctg	ttggagaatc	tgactttgaa	aatttaaata	ctgaagaatt	cagcagcgag	3480
tcagatatgg	aggaaagcaa	agagaagcta	aatgcaacta Page 44		aggcagcacg	3540

gttgatattg	gagctcccgc	cgagggagaa	cagcctgagg	ttgaacctga	ggaatccctt	3600
gaacctgaag	cctgttttac	agaagactgt	gtacggaagt	tcaagtgttg	tcagataagc	3660
atagaagaag	gcaaagggaa	actctggtgg	aatttgagga	aaacatgcta	taagatagtg	3720
gagcacaatt	ggttcgaaac	cttcattgtc	ttcatgattc	tgctgagcag	tggggctctg	3780
gcctttgaag	atatatacat	tgagcagcga	aaaaccatta	agaccatgtt	agaatatgct	3840
gacaaggttt	tcacttacat	attcattctg	gaaatgctgc	taaagtgggt	tgcatatggt	3900
tttcaagtgt	attttaccaa	tgcctggtgc	tggctagact	tcctgattgt	tgatgtctca	3960
ctggttagct	taactgcaaa	tgccttgggt	tactcagaac	ttggtgccat	caaatccctc	4020
agaacactaa	gagctctgag	gccactgaga	gctttgtccc	ggtttgaagg	aatgagggtt	4080
gttgtaaatg	ctcttttagg	agccattcca	tctatcatga	atgtacttct	ggtttgtctg	4140
atcttttggc	taatattcag	tatcatggga	gtgaatctct	ttgctggcaa	gttttaccat	4200
tgtattaatt	acaccactgg	agagatgttt	gatgtaagcg	tggtcaacaa	ctacagtgag	4260
tgcaaagctc	tcattgagag	caatcaaact	gccaggtgga	aaaatgtgaa	agtaaacttt	4320
gataacgtag	gacttggata	tctgtctcta	cttcaagtag	ccacgtttaa	gggatggatg	4380
gatattatgt	atgcagctgt	tgattcacga	aatgtagaat	tacaacccaa	gtatgaagac	4440
aacctgtaca	tgtatcttta	ttttgtcatc	tttattattt	ttggttcatt	ctttaccttg	4500
aatcttttca	ttggtgtcat	catagataac	ttcaaccaac	agaaaaagaa	gtttggaggt	4560
caagacattt	ttatgacaga	agaacagaag	aaatactaca	atgcaatgaa	aaaactgggt	4620
tcaaagaaac	cacaaaaacc	catacctcga	cctgctaaca	aattccaagg	aatggtcttt	4680
gattttgtaa	ccaaacaagt	ctttgatatc	agcatcatga	tcctcatctg	ccttaacatg	4740
gtcaccatga	tggtggaaac	cgatgaccag	agtcaagaaa	tgacaaacat	tctgtactgg	4800
attaatctgg	tgtttattgt	tctgttcact	ggagaatgtg	tgctgaaact	gatctctctt	4860
cgttactact	atttcactat	tggatggaat	atttttgatt	ttgtggtggt	cattctctcc	4920
attgtaggaa	tgtttctggc	tgaactgata	gaaaagtatt	ttgtgtcccc	taccctgttc	4980
cgagtgatcc	gtcttgccag	gattggccga	atcctacgtc	tgatcaaagg	agcaaagggg	5040
atccgcacgc	tgctctttgc	tttgatgatg	tcccttcctg	cgttgtttaa	catcggcctc	5100
cttcttttcc	tggtcatgtt	catctacgcc	atctttggga	tgtccaattt	tgcctatgtt	5160
aagagggaag	ttgggatcga	tgacatgttc	aactttgaga	cctttggcaa	cagcatgatc	5220
tgcctgttcc	aaattacaac	ctctgctggc	tgggatggat	tgctagcacc	tattcttaat	5280
agtggacctc	cagactgtga	ccctgacaaa	gatcaccctg	gaagctcagt	taaaggagac	5340
tgtgggaacc	catctgttgg	gattttcttt	tttgtcagtt	acatcatcat	atccttcctg	5400
gttgtgctga	acatgtacat	cgcggtcatc	ctggagaact	tcagtgttgc	tactgaagaa	5460
agtgcagagc	ctctgagtga	ggatgacttt	gagatgttct	atgaggtttg	ggagaagttt	5520
gatcccgatg	cgacccagtt	tatagagttt	gccaaacttt Page 45		agatgccctg	5580

SSCP Update Sequences.ST25

gatcctcctc	ttctcatagc	aaaacccaac	aaagtccagc	tcattgccat	ggatctgccc	5640
atggtgagtg	gtgaccggat	ccactgtctt	gacatcttat	ttgcttttac	aaagcgtgtt	5700
ttgggtgaga	gtggagagat	ggatgccctt	cgaatacaga	tggaagagcg	attcatggca	5760
tcaaacccct	ccaaagtctc	ttatgagccc	attacgacca	cgttgaaacg	caaacaagag	5820
gaggtgtctg	ctattattat	ccagagggct	tacagacgct	acctcttgaa	gcaaaaagtt	5880
aaaaaggtat	caagtatata	caagaaagac	aaaggcaaag	aatgtgatgg	aacacccatc	5940
aaagaagata	ctctcattga	taaactgaat	gagaattcaa	ctccagagaa	aaccgatatg	6000
acgccttcca	ccacgtctcc	accctcgtat	gatagtgtga	ccaaaccaga	aaaagaaaaa	6060
tttgaaaaag	acaaatcaga	aaaggaagac	aaagggaaag	atatcaggga	aagtaaaaag	6120
taaaaagaaa	ccaagaattt	tccattttgt	gatcaattgt	ttacagcccg	tgatggtgat	6180
gtgtttgtgt	caacaggact	cccacaggag	gtctatgcca	aactgactgt	ttttacaaat	6240
gtatacttaa	ggtcagtgcc	tataacaaga	cagagacctc	tggtcagcaa	actggaactc	6300
agtaaactgg	agaaatagta	tcgatggg				6328
<210> 13 <211> 6328	3					

<212> DNA <213> Homo sapiens

<400> 13

<400> 13						
	cagcttatca	atcccaaact	ctgggtgtaa	aagattctac	agggcacttt	60
cttatgcaag	gagctaaaca	gtgattaaag	gagcaggatg	aaaagatggc	acagtcagtg	120
ctggtaccgc	caggacctga	cagcttccgc	ttctttacca	gggaatccct	tgctgctatt	180
gaacaacgca	ttgcagaaga	gaaagctaag	agacccaaac	aggaacgcaa	ggatgaggat	240
gatgaaaatg	gcccaaagcc	aaacagtgac	ttggaagcag	gaaaatctct	tccatttatt	300
tatggagaca	ttcctccaga	gatggtgtca	gtgcccctgg	aggatctgga	cccctactat	360
atcaataaga	aaacgtttat	agtattgaat	aaagggaaag	caatctctcg	attcagtgcc	420
acccctgccc	tttacatttt	aactcccttc	aaccctatta	gaaaattagc	tattaagatt	480
ttggtacatt	ctttattcaa	tatgctcatt	atgtgcacga	ttcttaccaa	ctgtgtattt	540
atgaccatga	gtaaccctcc	agactggaca	aagaatgtgg	agtatacctt	tacaggaatt	600
tatacttttg	aatcacttat	taaaatactt	gcaaggggct	tttgtttaga	agatttcaca	660
tttttacggg	atccatggaa	ttggttggat	ttcacagtca	ttacttttgc	atatgtgaca	720
gagtttgtgg	acctgggcaa	tgtctcagcg	ttgagaacat	tcagagttct	ccgagcattg	780
aaaacaattt	cagtcattcc	aggcctgaag	accattgtgg	gggccctgat	ccagtcagtg	840
aagaagcttt	ctgatgtcat	gatcttgact	gtgttctgtc	taagcgtgtt	tgcgctaata	900
ggattgcagt	tgttcatggg	caacctacga	aataaatgtt	tgcaatggcc	tccagataat	960
tcttcctttg	aaataaatat	cacttccttc	tttaacaatt	cattggatgg	gaatggtact	1020

SSCP Update Sequences.ST25 actttcaata ggacagtgag catatttaac tgggatgaat atattgagga taaaagtcac 1080 ttttattttt tagaggggca aaatgatgct ctgctttgtg gcaacagctc agatgcaggc 1140 1200 caqtqtcctq aaqqatacat ctqtqtgaaq qctggtagaa accccaacta tgqctacacg 1260 agctttgaca cctttagttg ggcctttttg tccttatttc gtctcatgac tcaagacttc 1320 tqqqaaaacc tttatcaact qacactacgt qctgctggga aaacgtacat gatattttt 1380 gtgctggtca ttttcttggg ctcattctat ctaataaatt tgatcttggc tgtggtggcc 1440 atggcctatg aggaacagaa tcaggccaca ttggaagagg Ctgaacagaa ggaagctgaa 1500 tttcagcaga tgctcgaaca gttgaaaaag caacaagaag aagctcaggc ggcagctgca 1560 gccqcatctq ctgaatcaag agacttcagt ggtgctggtg ggataggagt tttttcagag 1620 agttcttcag tagcatctaa gttgagctcc aaaagtgaaa aagagctgaa aaacagaaga 1680 aagaaaaaga aacagaaaga acagtctgga gaagaagaga aaaatgacag agtcctaaaa 1740 tcqqaatctq aaqacaqcat aagaagaaaa ggtttccgtt tttccttgga aggaagtagg 1800 ctgacatatg aaaagagatt ttcttctcca caccagtcct tactgagcat ccgtggctcc cttttctctc caagacgcaa cagtagggcg agccttttca gcttcagagg tcgagcaaag 1860 gacattggct ctgagaatga ctttgctgat gatgagcaca gcacctttga ggacaatgac 1920 1980 agccgaagag actctctgtt cgtgccgcac agacatggag aacggcgcca cagcaatgtc 2040 agccaggcca gccgtgcctc cagggtgctc cccatcctgc ccatgaatgg gaagatgcat 2100 agcqctqtqq actqcaatqg tgtggtctcc ctggtcgggg gcccttctac cctcacatct 2160 gctqqqcaqc tcctaccaga gggcacaact actgaaacag aaataagaaa gagacggtcc 2220 agttcttatc atgtttccat ggatttattg gaagatccta catcaaggca aagagcaatg 2280 agtatagcca gtattttgac caacaccatg gaagaacttg aagaatccag acagaaatgc 2340 ccaccatgct ggtataaatt tgctaatatg tgtttgattt gggactgttg taaaccatgg ttaaaqqtqa aacaccttgt caacctggtt gtaatggacc catttgttga cctggccatc 2400 2460 accatctgca ttgtcttaaa tacactcttc atggctatgg agcactatcc catgacggag cagttcagca gtgtactgtc tgttggaaac ctggtcttca cagggatctt cacagcagaa 2520 2580 atgtttctca agataattgc catggatcca tattattact ttcaagaagg ctggaatatt 2640 tttgatggtt ttattgtgag ccttagttta atggaacttg gtttggcaaa tgtggaagga ttgtcagttc tccgatcatt ccggctgctc cgagttttca agttggcaaa atcttggcca 2700 2760 actctaaata tgctaattaa gatcattggc aattctgtgg gggctctagg aaacctcacc 2820 ttqqtattqq ccatcatcgt cttcattttt gctgtggtcg gcatgcagct ctttggtaag 2880 agctacaaag aatgtgtctg caagatttcc aatgattgtg aactcccacg ctggcacatg catgactttt tccactcctt cctgatcgtg ttccgcgtgc tgtgtggaga gtggatagag 2940 accatgtggg actgtatgga ggtcgctggc caaaccatgt gccttactgt cttcatgatg 3000 gtcatggtga ttggaaatct agtggttctg aacctcttct tggccttgct tttgagttcc 3060

SSCP Update Sequences.ST25 ttcagttctg acaatcttgc tgccactgat gatgataacg aaatgaataa tatccagatt 3120 qctqtqgqaa qgatqcagaa aggaatcgat tttgttaaaa gaaaaatacg tgaatttatt 3180 caqaaaqcct ttgttaggaa gcagaaagct ttagatgaaa ttaaaccgct tgaagatcta 3240 aataataaaa aagacagctg tatttccaac cataccacca tagaaatagg caaagacctc 3300 aattatctca aagacggaaa tggaactact agtggcatag gcagcagtgt agaaaaatat 3360 gtcgtggatg aaagtgatta catgtcattt ataaacaacc Ctagcctcac tgtgacagta 3420 ccaattgctg ttggagaatc tgactttgaa aatttaaata ctgaagaatt cagcagcgag 3480 tcagatatgg aggaaagcaa agagaagcta aatgcaacta gttcatctga aggcagcacg 3540 gttgatattg gagctcccgc cgagggagaa cagcctgagg ttgaacctga ggaatccctt 3600 qaacctqaaq cctgttttac agaagactgt gtacggaagt tcaagtgttg tcagataagc 3660 atagaagaag gcaaagggaa actctggtgg aatttgagga aaacatgcta taagatagtg 3720 gagcacaatt ggttcgaaac cttcattgtc ttcatgattc tgctgagcag tggggctctg 3780 gcctttgaag atatatacat tgagcagcga aaaaccatta agaccatgtt agaatatgct 3840 gacaaggttt tcacttacat attcattctg gaaatgctgc taaagtgggt tgcatatggt 3900 3960 tttcaagtgt attttaccaa tgcctggtgc tggctagact tcctgattgt tgatgtctca ctggttagct taactgcaaa tgccttgggt tactcagaac ttggtgccat caaatccctc 4020 agaacactaa gagctctgag gccactgaga gctttgtccc ggtttgaagg aatgagggtt 4080 4140 qttqtaaatq ctcttttaqg agccattcca tctatcatga atgtacttct ggtttgtctg atcttttggc taatattcag tatcatggga gtgaatctct ttgctggcaa gttttaccat 4200 tqtattaatt acaccactgg agagatgttt gatgtaagcg tggtcaacaa ctacagtgag 4260 tgcaaagctc tcattgagag caatcaaact gccaggtgga aaaatgtgaa agtaaacttt 4320 gataacgtag gacttggata tctgtctcta cttcaagtag ccacgtttaa gggatggatg 4380 4440 gatattatgt atgcagctgt tgattcacga aatgtagaat tacaacccaa gtatgaagac aacctgtaca tgtatcttta ttttgtcatc tttattattt ttggttcatt ctttaccttg 4500 4560 aatcttttca ttggtgtcat catagataac ttcaaccaac agaaaaagaa gtttggaggt caagacattt ttatgacaga agaacagaag aaatactaca atgcaatgaa aaaactgggt 4620 4680 tcaaagaaac cacaaaaacc catacctcga cctgctaaca aattccaagg aatggtcttt 4740 gattttgtaa ccaaacaagt ctttgatatc agcatcatga tcctcatctg ccttaacatg 4800 gtcaccatga tggtggaaac cgatgaccag agtcaagaaa tgacaaacat tctgtactgg 4860 attaatctqq tqtttattqt tctqttcact ggagaatgtg tgctgaaact gatctctctt 4920 cgttactact atttcactat tggatggaat atttttgatt ttgtggtggt cattctctcc attgtaggaa tgtttctggc tgaactgata gaaaagtatt ttgtgtcccc taccctgttc 4980 5040 cgagtgatcc gtcttgccag gattggccga atcctacgtc tgatcaaagg agcaaagggg atccgcacgc tgctctttgc tttgatgatg tcccttcctg cgttgtttaa catcggcctc 5100

cttcttttcc tggtcatgtt		Update Seque		tacctatatt	5160
aagagggaag ttgggatcga					5220
tgcctgttcc aaattacaac					5280
agtggacctc cagactgtga					5340
tgtgggaacc catctgttgg					5400
gttgtgctga acatgtacat					5460
agtgcagagc ctctgagtga					5520
gatcccgatg cgacccagtt					5580
gatcctcctc ttctcatagc					5640
atggtgagtg gtgaccggat					5700
ttgggtgaga gtggagagat					5760
tcaaacccct ccaaagtctc					5820
gaggtgtctg ctattattat	•	_			5880
aaaaaggtat caagtatata					5940
aaagaagata ctctcattga					6000
acgccttcca ccacgtctcc	accctcgtat	gatagtgtga	ccaaaccaga	aaaagaaaaa	6060
tttgaaaaag acaaatcaga	aaaggaagac	aaagggaaag	atatcaggga	aagtaaaaag	6120
taaaaagaaa ccaagaattt	tccattttgt	gatcaattgt	ttacagcccg	tgatggtgat	6180
gtgtttgtgt caacaggact	cccacaggag	gtctatgcca	aactgactgt	ttttacaaat	6240
gtatacttaa ggtcagtgcc	tataacaaga	cagagacctc	tggtcagcaa	actggaactc	6300
agtaaactgg agaaatagta	tcgatggg				6328
<210> 14 <211> 6328 <212> DNA <213> Homo sapiens <400> 14					
ttcttggtgc cagcttatca	atcccaaact	ctgggtgtaa	aagattctac	agggcacttt	60
cttatgcaag gagctaaaca	gtgattaaag	gagcaggatg	aaaagatggc	acagtcagtg	120
ctggtaccgc caggacctga	cagcttccgc	ttctttacca	gggaatccct	tgctgctatt	180
gaacaacgca ttgcagaaga	gaaagctaag	agacccaaac	aggaacgcaa	ggatgaggat	240
gatgaaaatg gcccaaagcc	aaacagtgac	ttggaagcag	gaaaatctct	tccatttatt	300
tatggagaca ttcctccaga	gatggtgtca	gtgcccctgg	aggatctgga	cccctactat	360
atcaataaga aaacgtttat	agtattgaat	aaagggaaag	caatctctcg	attcagtgcc	420
acccctgccc tttacatttt	aactcccttc	aaccctatta	gaaaattagc	tattaagatt	480
ttggtacatt ctttattcaa	tatgctcatt	atgtgcacga	ttcttaccaa	ctgtgtattt	540
atgaccatga gtaaccctcc	agactggaca	aagaatgtgg Page 49		tacaggaatt	600

tatacttttg	aatcacttat	taaaatactt	gcaaggggct	tttgtttaga	agatttcaca	660
tttttacggg	atccatggaa	ttggttggat	ttcacagtca	ttacttttgc	atatgtgaca	720
gagtttgtgg	acctgggcaa	tgtctcagcg	ttgagaacat	tcagagttct	ccgagcattg	780
aaaacaattt	cagtcattcc	aggcctgaag	accattgtgg	gggccctgat	ccagtcagtg	840
aagaagcttt	ctgatgtcat	gatcttgact	gtgttctgtc	taagcgtgtt	tgcgctaata	900
ggattgcagt	tgttcatggg	caacctacga	aataaatgtt	tgcaatggcc	tccagataat	960
tcttcctttg	aaataaatat	cacttccttc	tttaacaatt	cattggatgg	gaatggtact	1020
actttcaata	ggacagtgag	catatttaac	tgggatgaat	atattgagga	taaaagtcac	1080
ttttatttt	tagaggggca	aaatgatgct	ctgctttgtg	gcaacagctc	agatgcaggc	1140
cagtgtcctg	aaggatacat	ctgtgtgaag	gctggtagaa	accccaacta	tggctacacg	1200
agctttgaca	cctttagttg	ggcctttttg	tccttatttc	gtctcatgac	tcaagacttc	1260
tgggaaaacc	tttatcaact	gacactacgt	gctgctggga	aaacgtacat	gatattttt	1320
gtgctggtca	ttttcttggg	ctcattctat	ctaataaatt	tgatcttggc	tgtggtggcc	1380
atggcctatg	aggaacagaa	tcaggccaca	ttggaagagg	ctgaacagaa	ggaagctgaa	1440
tttcagcaga	tgctcgaaca	gttgaaaaag	caacaagaag	aagctcaggc	ggcagctgca	1500
gccgcatctg	ctgaatcaag	agacttcagt	ggtgctggtg	ggataggagt	tttttcagag	1560
agttcttcag	tagcatctaa	gttgagctcc	aaaagtgaaa	aagagctgaa	aaacagaaga	1620
aagaaaaaga	aacagaaaga	acagtctgga	gaagaagaga	aaaatgacag	agtcctaaaa	1680
tcggaatctg	aagacagcat	aagaagaaaa	ggtttccgtt	tttccttgga	aggaagtagg	1740
ctgacatatg	aaaagagatt	ttcttctcca	caccagtcct	tactgagcat	ccgtggctcc	1800
cttttctctc	caagacgcaa	cagtagggcg.	agccttttca	gcttcagagg	tcgagcaaag	1860
gacattggct	ctgagaatga	ctttgctgat	gatgagcaca	gcacctttga	ggacaatgac	1920
agccgaagag	actctctgtt	cgtgccgcac	agacatggag	aacggcgcca	cagcaatgtc	1980
agccaggcca	gccgtgcctc	cagggtgctc	cccatcctgc	ccatgaatgg	gaagatgcat	2040
agcgctgtgg	actgcaatgg	tgtggtctcc	ctggtcgggg	gcccttctac	cctcacatct	2100
gctgggcagc	tcctaccaga	gggcacaact	actgaaacag	aaataagaaa	gagacggtcc	2160
agttcttatc	atgtttccat	ggatttattg	gaagatccta	catcaaggca	aagagcaatg	2220
agtatagcca	gtattttgac	caacaccatg	gaagaacttg	aagaatccag	acagaaatgc	2280
ccaccatgct	ggtataaatt	tgctaatatg	tgtttgattt	gggactgttg	taaaccatgg	2340
ttaaaggtga	aacaccttgt	caacctggtt	gtaatggacc	catttgttga	cctggccatc	2400
accatctgca	ttgtcttaaa	tacactcttc	atggctatgg	agcactatcc	catgacggag	2460
cagttcagca	gtgtactgtc	tgttggaaac	ctggtcttca	cagggatctt	cacagcagaa	2520
atgtttctca	agataattgc	catggatcca	tattattact	ttcaagaagg	ctggaatatt	2580
tttgatggtt	ttattgtgag	ccttagttta	atggaacttg Page 50		tgtggaagga	2640

ttgtcagttc	tccgatcatt	ccggctgctc	cgagttttca	agttggcaaa	atcttggcca	2700
actctaaata	tgctaattaa	gatcattggc	aattctgtgg	gggctctagg	aaacctcacc	2760
ttggtattgg	ccatcatcgt	cttcattttt	gctgtggtcg	gcatgcagct	ctttggtaag	2820
agctacaaag	aatgtgtctg	caagatttcc	aatgattgtg	aactcccacg	ctggcacatg	2880
catgactttt	tccactcctt	cctgatcgtg	ttccgcgtgc	tgtgtggaga	gtggatagag	2940
accatgtggg	actgtatgga	ggtcgctggc	caaaccatgt	gccttactgt	cttcatgatg	3000
gtcatggtga	ttggaaatct	agtggttctg	aacctcttct	tggccttgct	tttgagttcc	3060
ttcagttctg	àcaatcttgc	tgccactgat	gatgataacg	aaatgaataa	tctccagatt	3120
gctgtgggaa	ggatgcagaa	aggaatcgat	tttgttaaaa	gaaaaatacg	tgaatttatt	3180
cagaaagcct	ttgttaggaa	gcagaaagct	ttagatgaaa	ttaaaccgct	tgaagatcta	3240
aataataaaa	aagacagctg	tatttccaac	cataccacca	tagaaatagg	caaagacctc	3300
aattatctca	aagacggaaa	tggaactact	agtggcatag	gcagcagtgt	agaaaaatat	3360
gtcgtggatg	aaagtgatta	catgtcattt	ataaacaacc	ctagcctcac	tgtgacagta	3420
ccaattgctg	ttggagaatc	tgactttgaa	aatttaaata	ctgaagaatt	cagcagcgag	3480
tcagatatgg	aggaaagcaa	agagaagcta	aatgcaacta	gttcatctga	aggcagcacg	3540
gttgatattg	gagctcccgc	cgagggagaa	cagcctgagg	ttgaacctga	ggaatccctt	3600
gaacctgaag	cctgttttac	agaagactgt	gtacggaagt	tcaagtgttg	tcagataagc	3660
atagaagaag	gcaaagggaa	actctggtgg	aatttgagga	aagcatgcta	taagatagtg	3720
gagcacaatt	ggttcgaaac	cttcattgtc	ttcatgattc	tgctgagcag	tggggctctg	3780
gcctttgaag	atatatacat	tgagcagcga	aaaaccatta	agaccatgtt	agaatatgct	3840
gacaaggttt	tcacttacat	attcattctg	gaaatgctgc	taaagtgggt	tgcatatggt	3900
tttcaagtgt	attttaccaa	tgcctggtgc	tggctagact	tcctgattgt	tgatgtctca	3960
ctggttagct	taactgcaaa	tgccttgggt	tactcagaac	ttggtgccat	caaatccctc	4020
agaacactaa	gagctctgag	gccactgaga	gctttgtccc	ggtttgaagg	aatgagggtt	4080
gttgtaaatg	ctcttttagg	agccattcca	tctatcatga	atgtacttct	ggtttgtctg	4140
atcttttggc	taatattcag	tatcatggga	gtgaatctct	ttgctggcaa	gttttaccat	4200
tgtattaatt	acaccactgg	agagatgttt	gatgtaagcg	tggtcaacaa	ctacagtgag	4260
tgcaaagctc	tcattgagag	caatcaaact	gccaggtgga	aaaatgtgaa	agtaaacttt	4320
gataacgtag	gacttggata	tctgtctcta	cttcaagtag	ccacgtttaa	gggatggatg	4380
gatattatgt	atgcagctgt	tgattcacga	aatgtagaat	tacaacccaa	gtatgaagac	4440
aacctgtaca	tgtatcttta	ttttgtcatc	tttattattt	ttggttcatt	ctttaccttg	4500
aatcttttca	ttggtgtcat	catagataac	ttcaaccaac	agaaaaagaa	gtttggaggt	4560
caagacattt	ttatgacaga	agaacagaag	aaatactaca	atgcaatgaa	aaaactgggt	4620
tcaaagaaac	cacaaaaacc	catacctcga	cctgctaaca Page 51		aatggtcttt	4680

gattttgtaa	ccaaacaagt	ctttgatatc	agcatcatga	tcctcatctg	ccttaacatg	4740
gtcaccatga	tggtggaaac	cgatgaccag	agtcaagaaa	tgacaaacat	tctgtactgg	4800
attaatctgg	tgtttattgt	tctgttcact	ggagaatgtg	tgctgaaact	gatctctctt	4860
cgttactact	atttcactat	tggatggaat	atttttgatt	ttgtggtggt	cattctctcc	4920
attgtaggaa	tgtttctggc	tgaactgata	gaaaagtatt	ttgtgtcccc	taccctgttc	4980
cgagtgatcc	gtcttgccag	gattggccga	atcctacgtc	tgatcaaagg	agcaaagggg	5040
atccgcacgc	tgctctttgc	tttgatgatg	tcccttcctg	cgttgtttaa	catcggcctc	5100
cttcttttcc	tggtcatgtt	catctacgcc	atctttggga	tgtccaattt	tgcctatgtt	5160
aagagggaag	ttgggatcga	tgacatgttc	aactttgaga	cctttggcaa	cagcatgatc	5220
tgcctgttcc	aaattacaac	ctctgctggc	tgggatggat	tgctagcacc	tattcttaat	5280
agtggacctc	cagactgtga	ccctgacaaa	gatcaccctg	gaagctcagt	taaaggagac	5340
tgtgggaacc	catctgttgg	gattttcttt	tttgtcagtt	acatcatcat	atccttcctg	5400
gttgtgctga	acatgtacat	cgcggtcatc	ctggagaact	tcagtgttgc	tactgaagaa	5460
agtgcagagc	ctctgagtga	ggatgacttt	gagatgttct	atgaggtttg	ggagaagttt	5520
gatcccgatg	cgacccagtt	tatagagttt	gccaaacttt	ctgattttgc	agatgccctg	5580
gatcctcctc	ttctcatagc	aaaacccaac	aaagtccagc	tcattgccat	ggatctgccc	5640
atggtgagtg	gtgaccggat	ccactgtctt	gacatcttat	ttgcttttac	aaagcgtgtt	5700
ttgggtgaga	gtggagagat	ggatgccctt	cgaatacaga	tggaagagcg	attcatggca	5760
tcaaacccct	ccaaagtctc	ttatgagccc	attacgacca	cgttgaaacg	caaacaagag	5820
gaggtgtctg	ctattattat	ccagagggct	tacagacgct	acctcttgaa	gcaaaaagtt	5880
aaaaaggtat	caagtatata	caagaaagac	aaaggcaaag	aatgtgatgg	aacacccatc	5940
aaagaagata	ctctcattga	taaactgaat	gagaattcaa	ctccagagaa	aaccgatatg	6000
acgccttcca	ccacgtctcc	accctcgtat	gatagtgtga	ccaaaccaga	aaaagaaaaa	6060
tttgaaaaag	acaaatcaga	aaaggaagac	aaagggaaag	atatcaggga	aagtaaaaag	6120
taaaaagaaa	ccaagaattt	tccattttgt	gatcaattgt	ttacagcccg	tgatggtgat	6180
gtgtttgtgt	caacaggact	cccacaggag	gtctatgcca	aactgactgt	ttttacaaat	6240
gtatacttaa	ggtcagtgcc	tataacaaga	cagagacctc	tggtcagcaa	actggaactc	6300
agtaaactgg	agaaatagta	tcgatggg				6328
.710. 15						
<210> 15 <211> 6328	}					
<212> DNA <213> Homo	sapiens					
400 15	•					

<400> 15

ttcttggtgc cagcttatca atcccaaact ctgggtgtaa aagattctac agggcacttt 60 cttatgcaag gagctaaaca gtgattaaag gagcaggatg aaaagatggc acagtcagtg 120

SSCP Update Sequences.ST25 ctggtaccgc caggacctga cagcttccgc ttctttacca gggaatccct tgctgctatt 180 gaacaacgca ttgcagaaga gaaagctaag agacccaaac aggaacgcaa ggatgaggat 240 300 qatgaaaatg gcccaaagcc aaacagtgac ttggaagcag gaaaatctct tccatttatt tatggagaca ttcctccaga gatggtgtca gtgcccctgg aggatctgga cccctactat 360 420 atcaataaga aaacgtttat agtattgaat aaagggaaag CaatctCtcg attcagtgcc 480 acccctgccc tttacatttt aactcccttc aaccctatta gaaaattagc tattaagatt 540 ttggtacatt ctttattcaa tatgctcatt atgtgcacga ttcttaccaa ctgtgtattt 600 atgaccatga gtaaccctcc agactggaca aagaatgtgg agtatacctt tacaggaatt 660 tatacttttg aatcacttat taaaatactt gcaaggggct tttgtttaga agatttcaca 720 tttttacggg atccatggaa ttggttggat ttcacagtca ttacttttgc atatgtgaca gagtttgtgg acctgggcaa tgtctcagcg ttgagaacat tcagagttct ccgagcattg 780 840 aaaacaattt cagtcattcc aggcctgaag accattgtgg gggccctgat ccagtcagtg 900 aagaagcttt ctgatgtcat gatcttgact gtgttctgtc taagcgtgtt tgcgctaata 960 ggattgcagt tgttcatggg caacctacga aataaatgtt tgcaatggcc tccagataat tcttcctttg aaataaatat cacttccttc tttaacaatt cattggatgg gaatggtact 1020 1080 actttcaata ggacagtgag catatttaac tgggatgaat atattgagga taaaagtcac 1140 ttttattttt tagaggggca aaatgatgct ctgctttgtg gcaacagctc agatgcaggc cagtgtcctg aaggatacat ctgtgtgaag gctggtagaa accccaacta tggctacacg 1200 1260 agctttgaca cctttagttg ggcctttttg tccttatttc gtctcatgac tcaagacttc 1320 tgggaaaacc tttatcaact gacactacgt gctgctggga aaacgtacat gatatttttt 1380 gtgctggtca ttttcttggg ctcattctat ctaataaatt tgatcttggc tgtggtggcc 1440 atggcctatg aggaacagaa tcaggccaca ttggaagagg ctgaacagaa ggaagctgaa tttcagcaga tgctcgaaca gttgaaaaag caacaagaag aagctcaggc ggcagctgca 1500 gccgcatctg ctgaatcaag agacttcagt ggtgctggtg ggataggagt tttttcagag 1560 1620 agttcttcag tagcatctaa gttgagctcc aaaagtgaaa aagagctgaa aaacagaaga 1680 aagaaaaaga aacagaaaga acagtctgga gaagaagaga aaaatgacag agtcctaaaa tcggaatctg aagacagcat aagaagaaaa ggtttccgtt tttccttgga aggaagtagg 1740 ctgacatatg aaaagagatt ttcttctcca caccagtcct tactgagcat ccgtggctcc 1800 1860 cttttctctc caagacgcaa cagtagggcg agccttttca gcttcagagg tcgagcaaag gacattggct ctgagaatga ctttgctgat gatgagcaca gcacctttga ggacaatgac 1920 agccgaagag actctctgtt cgtgccgcac agacatggag aacggcgcca cagcaatgtc 1980 agccaggcca gccgtgcctc cagggtgctc cccatcctgc ccatgaatgg gaagatgcat 2040 agcgctgtgg actgcaatgg tgtggtctcc ctggtcgggg gcccttctac cctcacatct 2100 2160 gctqggcagc tcctaccaga gggcacaact actgaaacag aaataagaaa gagacggtcc

SSCP Update Sequences.ST25 agttcttatc atgtttccat ggatttattg gaagatccta catcaaggca aagagcaatg 2220 agtatagcca gtattttgac caacaccatg gaagaacttg aagaatccag acagaaatgc 2280 ccaccatgct ggtataaatt tgctaatatg tgtttgattt gggactgttg taaaccatgg 2340 ttaaaqqtqa aacaccttgt caacctggtt gtaatggacc Catttgttga cctggccatc 2400 accatctgca ttgtcttaaa tacactcttc atggctatgg agcactatcc catgacggag 2460 cagttcagca gtgtactgtc tgttggaaac ctggtcttca cagggatctt cacagcagaa 2520 atgtttctca agataattgc catggatcca tattattact ttcaagaagg ctggaatatt 2580 tttgatggtt ttattgtgag ccttagttta atggaacttg gtttggcaaa tgtggaagga 2640 ttgtcagttc tccgatcatt ccggctgctc cgagttttca agttggcaaa atcttggcca 2700 actctaaata tgctaattaa gatcattggc aattctgtgg gggctctagg aaacctcacc 2760 ttggtattgg ccatcatcgt cttcattttt gctgtggtcg gcatgcagct ctttggtaag 2820 agctacaaag aatgtgtctg caagatttcc aatgattgtg aactcccacg ctggcacatg 2880 catgactttt tccactcctt cctgatcgtg ttccgcgtgc tgtgtggaga gtggatagag 2940 accatgtggg actgtatgga ggtcgctggc caaaccatgt gccttactgt cttcatgatg 3000 3060 gtcatggtga ttggaaatct agtggttctg aacctcttct tggccttgct tttgagttcc ttcagttctg acaatcttgc tgccactgat gatgataacg aaatgaataa tctccagatt 3120 gctgtgggaa ggatgcagaa aggaatcgat tttgttaaaa gaaaaatacg tgaatttatt 3180 cagaaagcct ttgttaggaa gcagaaagct ttagatgaaa ttaaaccgct tgaagatcta 3240 aataataaaa aagacagctg tatttccaac cataccacca tagaaatagg caaagacctc 3300 aattatctca aagacggaaa tggaactact agtggcatag gcagcagtgt agaaaaatat 3360 gtcgtggatg aaagtgatta catgtcattt ataaacaacc ctagcctcac tgtgacagta 3420 ccaattgctg ttggagaatc tgactttgaa aatttaaata ctgaagaatt cagcagcgag 3480 tcagatatgg aggaaagcaa agagaagcta aatgcaacta gttcatctga aggcagcacg 3540 gttgatattg gagctcccgc cgagggagaa cagcctgagg ttgaacctga ggaatccctt 3600 3660 gaacctgaag cctgttttac agaagactgt gtacggaagt tcaagtgttg tcagataagc atagaagaag gcaaagggaa actctggtgg aatttgagga aaacatgcta taagatagtg 3720 gagcacaatt ggttcgaaac cttcattgtc ttcatgattc tgctgagcag tggggctctg 3780 3840 gcctttgaag atatatacat tgagcagcga aaaaccatta agaccatgtt agaatatgct 3900 gacaaggttt tcacttacat attcattctg gaaatgctgc taaagtgggt tgcatatggt 3960 tttcaagtgt attttaccaa tgcctggtgc tggctagact tcctgattgt tgatgtctca ctggttagct taactgcaaa tgccttgggt tactcagaac ttggtgccat caaatccctc 4020 agaacactaa gagctctgag gccactgaga gctttgtccc agtttgaagg aatgagggtt 4080 gttgtaaatg ctcttttagg agccattcca tctatcatga atgtacttct ggtttgtctg 4140 atcttttggc taatattcag tatcatggga gtgaatctct ttgctggcaa gttttaccat 4200

SSCP Update Sequences.ST25 tgtattaatt acaccactgg agagatgttt gatgtaagcg tggtcaacaa ctacagtgag 4260 tgcaaagctc tcattgagag caatcaaact gccaggtgga aaaatgtgaa agtaaacttt 4320 4380 gataacgtag gacttggata tctgtctcta cttcaagtag ccacgtttaa gggatggatg gatattatgt atgcagctgt tgattcacga aatgtagaat tacaacccaa gtatgaagac 4440 4500 aacctqtaca tqtatcttta ttttqtcatc tttattattt ttggttcatt ctttaccttg aatcttttca ttqqtqtcat catagataac ttcaaccaac agaaaaagaa gtttggaggt 4560 4620 caaqacattt ttatqacaqa agaacagaag aaatactaca atgcaatgaa aaaactgggt 4680 tcaaagaaac cacaaaaacc catacctcga cctgctaaca aattccaagg aatggtcttt 4740 gattttgtaa ccaaacaagt ctttgatatc agcatcatga tcctcatctg ccttaacatg qtcaccatga tggtggaaac cgatgaccag agtcaagaaa tgacaaacat tctgtactgg 4800 4860 attaatctgg tgtttattgt tctgttcact ggagaatgtg tgctgaaact gatctctctt 4920 cqttactact atttcactat tqqatqqaat atttttqatt ttqtqqtqqt cattctctcc 4980 attqtaggaa tqtttctggc tgaactgata gaaaagtatt ttgtgtcccc taccctgttc cqaqtgatcc qtcttgccag gattggccga atcctacgtc tgatcaaagg agcaaagggg 5040 atccgcacgc tgctctttgc tttgatgatg tcccttcctg cgttgtttaa catcggcctc 5100 cttcttttcc tggtcatgtt catctacgcc atctttggga tgtccaattt tgcctatgtt 5160 5220 aaqaqqqaag ttgggatcga tgacatgttc aactttgaga cctttggcaa cagcatgatc 5280 tgcctgttcc aaattacaac ctctgctggc tgggatggat tgctagcacc tattcttaat 5340 agtggacctc cagactgtga ccctgacaaa gatcaccctg gaagctcagt taaaggagac 5400 tgtgggaacc catctgttgg gattttcttt tttgtcagtt acatcatcat atccttcctg 5460 gttgtgctga acatgtacat cgcggtcatc ctggagaact tcagtgttgc tactgaagaa 5520 agtgcagagc ctctgagtga ggatgacttt gagatgttct atgaggtttg ggagaagttt gatcccgatg cgacccagtt tatagagttt gccaaacttt ctgattttgc agatgccctg 5580 gatcctcctc ttctcatagc aaaacccaac aaagtccagc tcattgccat ggatctgccc 5640 atggtgagtg gtgaccggat ccactgtctt gacatcttat ttgcttttac aaagcgtgtt 5700 5760 ttgggtgaga gtggagagat ggatgccctt cgaatacaga tggaagagcg attcatggca 5820 tcaaacccct ccaaagtctc ttatgagccc attacgacca cgttgaaacg caaacaagag gaggtgtctg ctattattat ccagagggct tacagacgct acctcttgaa gcaaaaagtt 5880 5940 aaaaaqqtat caaqtatata caaqaaaqac aaaggcaaag aatgtqatgg aacacccatc aaagaagata ctctcattga taaactgaat gagaattcaa ctccagagaa aaccgatatg 6000 acqccttcca ccacgtctcc accctcgtat gatagtgtga ccaaaccaga aaaagaaaaa 6060 tttqaaaaaaq acaaatcaga aaaggaagac aaagggaaag atatcaggga aagtaaaaaag 6120 taaaaagaaa ccaagaattt tccattttgt gatcaattgt ttacagcccg tgatggtgat 6180 6240 gtgtttgtgt caacaggact cccacaggag gtctatgcca aactgactgt ttttacaaat

gtatacttaa ggtcagtgcc		cagagacctc		actggaactc	6300
agtaaactgg agaaatagta	tcgatggg				6328
<210> 16 <211> 6328 <212> DNA <213> Homo sapiens					
<400> 16 ttcttggtgc cagcttatca	atcccaaact	ctanatataa	aagattetae	200002001	60
cttatgcaag gagctaaaca				-	120
ctggtaccgc caggacctga					180
gaacaacgca ttgcagaaga					240
gatgaaaatg gcccaaagcc					300
tatggagaca ttcctccaga					360
atcaataaga aaacgtttat					420
acccctgccc tttacatttt	aactcccttc	aaccctatta	gaaaattagc	tattaagatt	480
ttggtacatt ctttattcaa	tatgctcatt	atgtgcacga	ttcttaccaa	ctgtgtattt	540
atgaccatga gtaaccctcc	agactggaca	aagaatgtgg	agtatacctt	tacaggaatt	600
tatacttttg aatcacttat	taaaatactt	gcaaggggct	tttgtttaga	agatttcaca	660
tttttacggg atccatggaa	ttggttggat	ttcacagtca	ttacttttgc	atatgtgaca	720
gagtttgtgg acctgggcaa	tgtctcagcg	ttgagaacat	tcagagttct	ccgagcattg	780
aaaacaattt cagtcattcc	aggcctgaag	accattgtgg	gggccctgat	ccagtcagtg	840
aagaagcttt ctgatgtcat	gatcttgact	gtgttctgtc	taagcgtgtt	tgcgctaata	900
ggattgcagt tgttcatggg	caacctacga	aataaatgtt	tgcaatggcc	tccagataat	960
tcttcctttg aaataaatat	cacttccttc	tttaacaatt	cattggatgg	gaatggtact	1020
actttcaata ggacagtgag	catatttaac	tgggatgaat	atattgagga	taaaagtcac	1080
ttttattttt tagaggggca	aaatgatgct	ctgctttgtg	gcaacagctc	agatgcaggc	1140
cagtgtcctg aaggatacat	ctgtgtgaag	gctggtagaa	accccaacta	tggctacacg	1200
agctttgaca cctttagttg	ggcctttttg	tccttatttc	gtctcatgac	tcaagacttc	1260
tgggaaaacc tttatcaact				_	1320
gtgctggtca ttttcttggg			_	_	1380
atggcctatg aggaacagaa					1440
tttcagcaga tgctcgaaca					1500
gccgcatctg ctgaatcaag				•	1560
agttcttcag tagcatctaa					1620
					1680
aagaaaaaga aacagaaaga					
tcggaatctg aagacagcat	aayaayaaaā	Page 56	ccccttgga	aygaagtagg	1740

ctgacatatg	aaaagagatt	ttcttctcca	caccagtcct	tactgagcat	ccgtggctcc	1800
cttttctctc	caagacgcaa	cagtagggcg	agccttttca	gcttcagagg	tcgagcaaag	1860
gacattggct	ctgagaatga	ctttgctgac	gatgagcaca	gcacctttga	ggacaatgac	1920
agccgaagag	actctctgtt	cgtgccgcac	agacatggag	aacggcgcca	cagcaatgtc	1980
agccaggcca	gccgtgcctc	cagggtgctc	cccatcctgc	ccatgaatgg	gaagatgcat	2040
agcgctgtgg	actgcaatgg	tgtggtctcc	ctggtcgggg	gcccttctac	cctcacatct	2100
gctgggcagc	tcctaccaga	gggcacaact	actgaaacag	aaataagaaa	gagacggtcc	2160
agttcttatc	atgtttccat	ggatttattg	gaagatccta	catcaaggca	aagagcaatg	2220
agtatagcca	gtattttgac	caacaccatg	gaagaacttg	aagaatccag	acagaaatgc	2280
ccaccatgct	ggtataaatt	tgctaatatg	tgtttgattt	gggactgttg	taaaccatgg	2340
ttaaaggtga	aacaccttgt	caacctggtt	gtaatggacc	catttgttga	cctggccatc	2400
accatctgca	ttgtcttaaa	tacactcttc	atggctatgg	agcactatcc	catgacggag	2460
cagttcagca	gtgtactgtc	tgttggaaac	ctggtcttca	cagggatctt	cacagcagaa	2520
atgtttctca	agataattgc	catggatcca	tattattact	ttcaagaagg	ctggaatatt	2580
tttgatggtt	ttattgtgag	ccttagttta	atggaacttg	gtttggcaaa	tgtggaagga	2640
ttgtcagttc	tccgatcatt	ccggctgctc	cgagttttca	agttggcaaa	atcttggcca	2700
actctaaaţa	tgctaattaa	gatcattggc	aattctgtgg	gggctctagg	aaacctcacc	2760
ttggtattgg	ccatcatcgt	cttcattttt	gctgtggtcg	gcatgcagct	ctttggtaag	2820
agctacaaag	aatgtgtctg	caagatttcc	aatgattgtg	aactcccacg	ctggcacatg	2880
catgactttt	tccactcctt	cctgatcgtg	ttccgcgtgc	tgtgtggaga	gtggatagag	2940
accatgtggg	actgtatgga	ggtcgctggc	caaaccatgt	gccttactgt	cttcatgatg	3000
gtcatggtga	ttggaaatct	agtggttctg	aacctcttct	tggccttgct	tttgagttcc	3060
ttcagttctg	acaatcttgc	tgccactgat	gatgataacg	aaatgaataa	tctccagatt	3120
gctgtgggaa	ggatgcagaa	aggaatcgat	tttgttaaaa	gaaaaatacg	tgaatttatt	3180
cagaaagcct	ttgttaggaa	gcagaaagct	ttagatgaaa	ttaaaccgct	tgaagatcta	3240
aataataaaa	aagacagctg	tatttccaac	cataccacca	tagaaatagg	caaagacctc	3300
aattatctca	aagacggaaa	tggaactact	agtggcatag	gcagcagtgt	agaaaaatat	3360
gtcgtggatg	aaagtgatta	catgtcattt	ataaacaacc	ctagcctcac	tgtgacagta	3420
ccaattgctg	ttggagaatc	tgactttgaa	aatttaaata	ctgaagaatt	cagcagcgag	3480
tcagatatgg	aggaaagcaa	agagaagcta	aatgcaacta	gttcatctga	aggcagcacg	3540
gttgatattg	gagctcccgc	cgagggagaa	cagcctgagg	ttgaacctga	ggaatccctt	3600
gaacctgaag	cctgttttac	agaagactgt	gtacggaagt	tcaagtgttg	tcagataagc	3660
atagaagaag	gcaaagggaa	actctggtgg	aatttgagga	aaacatgcta	taagatagtg	3720
gagcacaatt	ggttcgaaac	cttcattgtc	ttcatgattc Page 57	tgctgagcag	tggggctctg	3780

gcctttgaag	atatatacat	tgagcagcga	aaaaccatta	agaccatgtt	agaatatgct	3840
gacaaggttt	tcacttacat	attcattctg	gaaatgctgc	taaagtgggt	tgcatatggt	3900
tttcaagtgt	attttaccaa	tgcctggtgc	tggctagact	tcctgattgt	tgatgtctca	3960
ctggttagct	taactgcaaa	tgccttgggt	tactcagaac	ttggtgccat	caaatccctc	4020
agaacactaa	gagctctgag	gccactgaga	gctttgtccc	ggtttgaagg	aatgagggtt	4080
gttgtaaatg	ctcttttagg	agccattcca	tctatcatga	atgtacttct	ggtttgtctg	4140
atcttttggc	taatattcag	tatcatggga	gtgaatctct	ttgctggcaa	gttttaccat	4200
tgtattaatt	acaccactgg	agagatgttt	gatgtaagcg	tggtcaacaa	ctacagtgag	4260
tgcaaagctc	tcattgagag	caatcaaact	gccaggtgga	aaaatgtgaa	agtaaacttt	4320
gataacgtag	gacttggata	tctgtctcta	cttcaagtag	ccacgtttaa	gggatggatg	4380
gatattatgt	atgcagctgt	tgattcacga	aatgtagaat	tacaacccaa	gtatgaagac	4440
aacctgtaca	tgtatcttta	ttttgtcatc	tttattattt	ttggttcatt	ctttaccttg	4500
aatcttttca	ttggtgtcat	catagataac	ttcaaccaac	agaaaaagaa	gtttggaggt	4560
caagacattt	ttatgacaga	agaacagaag	aaatactaca	atgcaatgaa	aaaactgggt	4620
tcaaagaaac	cacaaaaacc	catacctcga	cctgctaaca	aattccaagg	aatggtcttt	4680
gattttgtaa	ccaaacaagt	ctttgatatc	agcatcatga	tcctcatctg	ccttaacatg	4740
gtcaccatga	tggtggaaac	cgatgaccag	agtcaagaaa	tgacaaacat	tctgtactgg	4800
attaatctgg	tgtttattgt	tctgttcact	ggagaatgtg	tgctgaaact	gatctctctt	4860
cgttactact	atttcactat	tggatggaat	atttttgatt	ttgtggtggt	cattctctcc	4920
attgtaggaa	tgtttctggc	tgaactgata	gaaaagtatt	ttgtgtcccc	taccctgttc	4980
cgagtgatcc	gtcttgccag	gattggccga	atcctacgtc	tgatcaaagg	agcaaagggg	5040
atccgcacgc	tgctctttgc	tttgatgatg	tcccttcctg	cgttgtttaa	catcggcctc	5100
cttcttttcc	tggtcatgtt	catctacgcc	atctttggga	tgtccaattt	tgcctatgtt	5160
aagagggaag	ttgggatcga	tgacatgttc	aactttgaga	cctttggcaa	cagcatgatc	5220
tgcctgttcc	aaattacaac	ctctgctggc	tgggatggat	tgctagcacc	tattcttaat	5280
agtggacctc	cagactgtga	ccctgacaaa	gatcaccctg	gaagctcagt	taaaggagac	5340
tgtgggaacc	catctgttgg	gattttcttt	tttgtcagtt	acatcatcat	atccttcctg	5400
gttgtgctga	acatgtacat	cgcggtcatc	ctggagaact	tcagtgttgc	tactgaagaa	5460
agtgcagagc	ctctgagtga	ggatgacttt	gagatgttct	atgaggtttg	ggagaagttt	5520
gatcccgatg	cgacccagtt	tatagagttt	gccaaacttt	ctgattttgc	agatgccctg	5580
gatcctcctc	ttctcatagc	aaaacccaac	aaagtccagc	tcattgccat	ggatctgccc	5640
atggtgagtg	gtgaccggat	ccactgtctt	gacatcttat	ttgcttttac	aaagcgtgtt	5700
ttgggtgaga	gtggagagat	ggatgccctt	cgaatacaga	tggaagagcg	attcatggca	5760
tcaaacccct	ccaaagtctc	ttatgagccc	attacgacca Page 58	cgttgaaacg	caaacaagag	5820

SSCP Update Sequences.ST25

gaggtgtctg	ctattattat	ccagagggct	tacagacgct	acctcttgaa	gcaaaaagtt	5880
aaaaaggtat	caagtatata	caagaaagac	aaaggcaaag	aatgtgatgg	aacacccatc	5940
aaagaagata	ctctcattga	taaactgaat	gagaattcaa	ctccagagaa	aaccgatatg	6000
acgccttcca	ccacgtctcc	accctcgtat	gatagtgtga	ccaaaccaga	aaaagaaaaa	6060
tttgaaaaag	acaaatcaga	aaaggaagac	aaagggaaag	atatcaggga	aagtaaaaag	6120
taaaaagaaa	ccaagaattt	tccattttgt	gatcaattgt	ttacagcccg	tgatggtgat	6180
gtgtttgtgt	caacaggact	cccacaggag	gtctatgcca	aactgactgt	ttttacaaat	6240
gtatacttaa	ggtcagtgcc	tataacaaga	cagagacctc	tggtcagcaa	actggaactc	6300
agtaaactgg	agaaatagta	tcgatggg				6328

<210> 17 <211> 6328 <212> DNA

<213> Homo sapiens

<400> ttcttggtgc cagcttatca atcccaaact ctgggtgtaa aagattctac agggcacttt 60 120 cttatgcaag gagctaaaca gtgattaaag gagcaggatg aaaagatggc acagtcagtg ctggtaccgc caggacctga cagcttccgc ttctttacca gggaatccct tgctgctatt 180 gaacaacgca ttgcagaaga gaaagctaag agacccaaac aggaacgcaa ggatgaggat 240 300 qatqaaaatq qcccaaaqcc aaacagtgac ttggaagcag gaaaatctct tccatttatt tatggagaca ttcctccaga gatggtgtca gtgcccctgg aggatctgga cccctactat 360 420 atcaataaga aaacgtttat agtattgaat aaagggaaag Caatctctcg attcagtgcc acccctgccc tttacatttt aactcccttc aaccctatta gaaaattagc tattaagatt 480 540 ttggtacatt ctttattcaa tatgctcatt atgtgcacga ttcttaccaa ctgtgtattt 600 atgaccatga gtaaccctcc agactggaca aagaatgtgg agtatacctt tacaggaatt 660 tatacttttg aatcacttat taaaatactt gcaaggggct tttgtttaga agatttcaca 720 tttttacqqq atccatqqaa ttqqttggat ttcacagtca ttacttttgc atatgtgaca gagtttgtgg acctgggcaa tgtctcagcg ttgagaacat tcagagttct ccgagcattg 780 840 aaaacaattt cagtcattcc aggcctgaag accattgtgg gggccctgat ccagtcagtg 900 aagaagcttt ctgatgtcat gatcttgact gtgttctgtc taagcgtgtt tgcgctaata 960 ggattgcagt tgttcatggg caacctacga aataaatgtt tgcaatggcc tccagataat 1020 tcttcctttg aaataaatat cacttccttc tttaacaatt cattggatgg gaatggtact 1080 actttcaata ggacagtgag catatttaac tgggatgaat atattgagga taaaagtcac ttttattttt tagaggggca aaatgatgct ctgctttgtg gcaacagctc agatgcaggc 1140 1200 cagtgtcctg aaggatacat ctgtgtgaag gctggtagaa accccaacta tggctacacg agctttgaca cctttagttg ggcctttttg tccttatttc gtctcatgac tcaagacttc 1260

SSCP Update Sequences.ST25 tgggaaaacc tttatcaact gacactacgt gctgctggga aaacgtacat gatattttt 1320 gtgctggtca ttttcttggg ctcattctat ctaataaatt tgatcttggc tgtggtggcc 1380 atggcctatg aggaacagaa tcaggccaca ttggaagagg ctgaacagaa ggaaqctgaa 1440 tttcagcaga tgctcgaaca gttgaaaaag caacaagaag aagctcaggc ggcagctgca 1500 qccqcatctq ctgaatcaag agacttcagt ggtgctggtg ggataggagt tttttcagag 1560 agttcttcag tagcatctaa gttgagctcc aaaagtgaaa aagagctgaa aaacagaaga 1620 aagaaaaaga aacagaaaga acagtctgga gaagaagaga aaaatgacag agtcctaaaa 1680 tcggaatctg aagacagcat aagaagaaaa ggtttccgtt tttccttgga aggaagtagg 1740 ctgacatatg aaaagagatt ttcttctcca caccagtcct tactgagcat ccgtggctcc 1800 cttttctctc caagacgcaa cagtagggcg agccttttca gcttcagagg tcgagcaaag 1860 gacattggct ctgagaatga ctttgctgat gatgagcaca gcacctttga ggacaatgac 1920 1980 agccgaagag actctctgtt cgtgccgcac agacatggag aacggcgcca cagcaatgtc agccaggcca gccgtgcctc cagggtgctc cccatcctgc ccatgaatgg gaagatgcat 2040 agcgctgtgg actgcaatgg tgtggtctcc ctggtcgggg gcccttctac cctcacatct 2100 gctgggcagc tcctaccaga gggcacaact actgaaacag aaataagaaa gagacggtcc 2160 agttcttatc atgtttccat ggatttattg gaagatccta catcaaggca aagagcaatg 2220 agtatagcca gtattttgac caacaccatg gaagaacttg aagaatccag acagaaatgc 2280 ccaccatgct ggtataaatt tgctaatatg tgtttgattt gggactgttg taaaccatgg 2340 ttaaaggtga aacaccttgt caacctggtt gtaatggacc catttgttga cctggccatc 2400 accatctgca ttgtcttaaa tacactcttc atggctatgg agcactatcc catgacggag 2460 cagttcagca gtgtactgtc tgttggaaac ctggtcttca cagggatctt cacagcagaa 2520 atgtttctca agataattgc catggatcca tattattact ttcaagaagg ctggaatatt 2580 tttgatggtt ttattgtgag ccttagttta atggaacttg gtttggcaaa tgtggaagga 2640 ttgtcagttc tccgatcatt ccggctgctc cgagttttca agttggcaaa atcttggcca 2700 actctaaata tgctaattaa gatcattggc aattctgtgg gggctctagg aaacctcacc 2760 ttggtattgg ccatcatcgt cttcattttt gctgtggtcg gcatgcagct ctttggtaaq 2820 agctacaaag aatgtgtctg caagatttcc aatgattgtg aactcccacg ctggcacatg 2880 catgactttt tccactcctt cctgatcgtg ttccgcgtgc tgtgtggaga gtggatagag 2940 accatgtggg actgtatgga ggtcgctggc caaaccatgt gccttactgt cttcatgatg 3000 gtcatggtga ttggaaatct agtggttctg aacctcttct tggccttgct tttgagttcc 3060 ttcagttctg acaatcttgc tgccactgat gatgataacg aaatgaataa tctccagatt 3120 gctqtgggaa ggatgcagaa aggaatcgat tttgttaaaa gaaaaatacg tqaatttatt 3180 cagaaagcct ttgttaggaa gcagaaagct ttagatgaaa ttaaaccgct tgaagatcta 3240 aataataaaa aagacagctg tatttccaac cataccacca tagaaatagg caaagacctc 3300

SSCP Update Sequences.ST25 aattatctca aagacggaaa tggaactact agtggcatag gcagcagtgt agaaaaatat 3360 gtcgtggatg aaagtgatta Catgtcattt ataaacaacc ctagcctcac tgtgacagta 3420 ccaattgctg ttggagaatc tgactttgaa aatttaaata ctgaagaatt cagcagcgag 3480 tcagatatgg aggaaagcaa agagaagcta aatgcaacta gttcatctga aggcagcacg 3540 gttgatattg gagctcccgc cgagggagaa cagcctgagg ttgaacctga ggaatccctt 3600 gaacctgaag cctgttttac agaagactgt gtacggaagt tcaagtgttg tcagataagc 3660 atagaagaag gcaaagggaa actctggtgg aatttgagga aaacatgcta taagatagtg 3720 gagcacaatt ggttcgaaac cttcattgtc ttcatgattc tgctgagcag tggggctctq 3780 gcctttgaag atatatacat tgagcagcga aaaaccatta agaccatgtt agaatatgct 3840 gacaaggttt tcacttacat attcattctg gaaatgctgc taaagtgggt tgcatatggt 3900 tttcaagtgt attttaccaa tgcctggtgc tggctagact tcctgattgt tgatgtctca 3960 ctggttagct taactgcaaa tgccttgggt tactcagaac ttggtgccat caaatccctc 4020 agaacactaa gagctctgag gccactgaga gctttgtccc ggtttgaagg aatgagggtt 4080 gttgtaaatg ctcttttagg agccattcca tctatcatga atgtacttct ggtttgtctg 4140 atcttttggc taatattcag tatcatggga gtgaatctct ttgctqgcaa qttttaccat 4200 tgtattaatt acaccactgg agagatgttt gatgtaagcg tggtcaacaa ctacagtgag 4260 tgcaaagctc tcattgagag caatcaaact gccaggtgga aaaatgtgaa agtaaacttt 4320 gataacgtag gacttggata tctgtctcta cttcaagtag ccacgtttaa gggatggatg 4380 gatattatgt atgcagctgt tgattcacga aatgtagaat tacaacccaa gtatgaagac 4440 aacctgtaca tgtatcttta ttttgtcatc tttattattt ttggttcatt ctttaccttg 4500 aatcttttca ttggtgtcat catagataac ttcaaccaac agaaaaagaa gtttggaggt 4560 caagacattt ttatgacaga agaacagaag aaatactaca atgcaatgaa aaaactgggt 4620 tcaaagaaac cacaaaaacc catacctcga cctgctaaca aattccaagg aatggtcttt 4680 gattttgtaa ccaaacaagt ctttgatatc agcatcatga tcctcatctg ccttaacatg 4740 gtcaccatga tggtggaaac cgatgaccag agtcaagaaa tgacaaacat tctgtactgg 4800 attaatctgg tgtttattgt tctgttcact ggagaatgtg tgctgaaact gatctctctt 4860 cgttactact atttcactat tggatggaat atttttgatt ttgtggtggt cattctctcc 4920 attgtaggaa tgtttctggc tgaactgata gaaaagtatt ttgtgtcccc taccctgttc 4980 cgagtgatcc gtcttgccag gattggccga atcctacgtc tgaacaaagg agcaaagggg 5040 atccgcacgc tgctctttgc tttgatgatg tcccttcctg cgttgtttaa catcgqcctc 5100 cttcttttcc tggtcatgtt catctacgcc atctttggga tgtccaattt tgcctatgtt 5160 aaqaqggaag ttgggatcga tgacatgttc aactttgaga cctttggcaa cagcatgatc 5220 tgcctgttcc aaattacaac ctctgctggc tgggatggat tgctagcacc tattcttaat 5280 agtggacctc cagactgtga ccctgacaaa gatcaccctg gaagctcagt taaaggagac 5340

tgtgggaacc	catctgttgg	SSCP gattttcttt	Update Sequ tttgtcagtt	ences.ST25 acatcatcat	atccttcctg	5400
				tcagtgttgc	•	5460
				atgaggtttg		5520
				ctgattttgc	_	5580
				tcattgccat	•	5640
				ttgcttttac		5700
				tggaagagcg		5760
tcaaacccct	ccaaagtctc	ttatgagccc	attacgacca	cgttgaaacg	caaacaagag	5820
gaggtgtctg	ctattattat	ccagagggct	tacagacgct	acctcttgaa	gcaaaaagtt	5880
aaaaaggtat	caagtatata	caagaaagac	aaaggcaaag	aatgtgatgg	aacacccatc	5940
aaagaagata	ctctcattga	taaactgaat	gagaattcaa	ctccagagaa	aaccgatatg	6000
acgccttcca	ccacgtctcc	accctcgtat	gatagtgtga	ccaaaccaga	aaaagaaaaa	6060
tttgaaaaag	acaaatcaga	aaaggaagac	aaagggaaag	atatcaggga	aagtaaaaag	6120
taaaaagaaa	ccaagaattt	tccattttgt	gatcaattgt	ttacagcccg	tgatggtgat	6180
gtgtttgtgt	caacaggact	cccacaggag	gtctatgcca	aactgactgt	ttttacaaat	6240
gtatacttaa	ggtcagtgcc	tataacaaga	cagagacctc	tggtcagcaa	actggaactc	6300
agtaaactgg	agaaatagta	tcgatggg				6328
<210> 18 <211> 385 <212> DNA <213> Homo	o sapiens					
<400> 18 ttcaatatat	ttttaaaag	ccatgcaaat	acttcagccc	tttcaaagaa	agatacagtc	60
tcttcaggtg	ctatgttaaa	atcatttctc	ttcaatataa	caggcagcaa	cggcaactgc	120
ctcagaacat	tccagagagc	ccagtgcagc	aggcaggctc	tcagacagct	catctgaagc	180
ctctaagttg	agttccaaga	gtgctaagga	aagaagaaat	cggaggaaga	aaagaaaaca	240
gaaagagcag	tctggtgggg	aagagaaaga	tgaggatgaa	ttccaaaaat	ctgaatctga	300
ggacagcatc	aggaggaaag	gttttcgctt	ctccattgaa	gggaaccgat	tgacatatga	360
aaagaggtac	tcctccccac	accag				385
<210> 19 <211> 238 <212> DNA <213> Homo	sapiens					
<400> 19	ancctaanta	tgaagaaat	ctatacatat	atctttactt	tottatttc	60
				gtgtcatcat		120
				ctcccactga	_	180
auccageaga	yuuyu t	aagtutttt		ciccactya	uutuyaadat	700

tattccttgg	agtgttttct	SSCP ctgccaaatg	Update Sequagrant	uences.ST25 u tttagaaaca	aaatggga	238
				J	335	
<210> 20 <211> 373						
<212> DNA <213> Hom	o sapiens					
<400> 20						
					gatgtcatga	60
tcttgactgt	gttctgtcta	agcgtgtttg	cgctaatagg	attgcagttg	ttcatgggca	120
acctacgaaa	taaatgtttg	caatggcctc	cagataatto	ttcctttgaa	ataaatatca	180
cttccttctt	taacaattca	ttggatggga	atggtactac	tttcaatagg	acagtgagca	240
tatttaactg	ggatgaatat	attgaggata	aaagtaagat	atactctata	aaccattaag	300
ttgtttagtt	ctctaaatat	taaatattat	ataaaatgga	aattatctca	atttagatgt	360
gaatcaagtg	act					373
<210> 21						
<211> 274 <212> DNA						
	o sapiens					
<400> 21	ataagagett	acatcattta	C+++++	222tcatca	***	60
				aaatcgtcaa	_	60
				gcctttgaag		120
				gacaaggttt		180
				tttcaagtgt	attttaccaa	240
tgcctggtgc	tggctagact	tcctgattgt	tgat			274
<210> 22						
<211> 154 <212> DNA						
	o sapiens					
<400> 22 gtattgaata	catgtcaaat	agaattttga	tcaattattc	aatttatttt	ctaaaattat	60
aattttgggg	aaaaagaaaa	tgatatgact	tttcttacag	gccacgttta	agggatggat	120
	tatgcagctg			_		154
<210> 23 <211> 219						
<212> DNA <213> Homo	sapiens					
<400> 23						
	atatttataa	ataatggttt	tacttttctc	ttaaaatatt	cttaatatat	60
attctaagtt	ttattttatg	tgttgtgttt	tctttttcag	acgtttatag	tattgaataa	120
agggaaagca	atctctcgat	tcagtgccac	ccctgccctt	tacattttaa	ctcccttcaa	180
ccctattaga	aaattagcta	ttaagatttt	ggtacattc			219

SSCP Update Sequences.ST25

<210> <211> <212> <213>	24 242 DNA Homo	o sapiens					
<400> gtgcctg	24 Jtat	aaaacagaca	ttggcatata	ttaaaacagg	aaaaccaatt	agcagacttg	60
ccgttat	tga	cttcctttct	ttcctctaac	ctaattacag	ccagtgtcct	gaaggataca	120
tctgtgt	gaa	ggctggtaga	aaccccaact	atggctacac	gagctttgac	acctttagtt	180
gggcctt	ttt	gtccttattt	cgtctcatga	ctcaagactt	ctgggaaaac	ctttatcaac	240
tg							242
<210> <211> <212> <213>	25 388 DNA Homo	o sapiens					
<400> gcggcag	25 gctg	cagccgcatc	tgctgaatca	agagacttca	gtggtgctgg	tgggatagga	60
gttttt	cag	agagttcttc	agtagcatct	aagttgagct	ccaaaagtga	aaaagagctg	120
aaaaaca	agaa	gaaagaaaaa	gaaacagaaa	gaacagtctg	gagaagaaga	gaaaaatgac	180
agagtco	ctaa	aatcggaatc	tgaagacagc	ataagaagaa	aaggtttccg	tttttccttg	240
gaaggaa	agta	ggctgacata	tgaaaagaga	ttttcttctc	cacaccaggt	aaaaatatta	300
aattaca	atga	attgtgttct	cataaatttt	ttaaaagaat	atgccagaat	ttaatggaga	360
gaaaaco	gcc	ttccacctgg	atggcaca				388
<210> <211> <212> <213>	26 445 DNA Homo	o sapiens					
<400> aagtcaa	26 atga	ctatgacaca	atgaatcaaa	ttctgttttt	cagaatgcca	gctcttaact	60
ctcttca	atct	catttttgtt	tcttttcttg	ttattcatag	tccttactga	gcatccgtgg	120
ctccct1	tttc	tctccaagac	gcaacagtag	ggcgagcctt	ttcagcttca	gaggtcgagc	180
aaagga	catt	ggctctgaga	atgactttgc	tgatgatgag	cacagcacct	ttgaggacaa	240
tgacago	ccga	agagactctc	tgttcgtgcc	gcacagacat	ggagaacggc	gccacagcaa	300
tgtcag	ccag	gccagccgtg	cctccagggt	gctccccatc	ctgcccatga	atgggaagat	360
gcatago	cgct	gtggactgca	atggtgtggt	ctccctggtc	gggggccctt	ctaccctcac	420
atctgc	tggg	cagctcctac	cagag				445
<210> <211>	27 221						

<400> 27

<212> DNA <213> Homo sapiens

aaatgcatac agaagatggg		Update Sequ		+202++2220	60
				_	
aaaataatta aatgtgtttt					120
atctgaaggc agcacggttg				ctgaggttga	180
acctgaggaa tcccttgaac	ctgaagcctg	ttttacagaa	g		221
<210> 28 <211> 221 <212> DNA <213> Homo sapiens					
<400> 28 aaaatgcata cagaagatgg	gggggggcac	acctaattaa	ttttatatt	tagattaaag	60
aaaataatta aatgtgtttt	tttgtgggat	tgattttcag	aagctaaatg	caactagttc	120
atctgaaggc agcacggttg	atattggagc	tcccgccgag	ggagaacagc	ctgaggttga	180
acctgaggaa tcccttgaac	ctgaagcctg	ttttacagaa	g		221
<210> 29 <211> 221 <212> DNA <213> Homo sapiens					
<400> 29 aatgcataca gaagatgggg	gggggggcac	acctaattaa	tttttatatt	tagattaaag	60
aaaataatta aatgtgtttt	tttgtgggat	tgattttcag	aagctaaatg	caactagttc	120
atctgaaggc agcacggttg	atattggagc	tcccgccgag	ggagaacagc	ctgaggttga	180
acctgaggaa tcccttgaac	ctgaagcctg	ttttacagaa	g		221
<210> 30 <211> 1679 <212> DNA <213> Homo sapiens					
<400> 30 gggagctgtg gcgcggagcg	gcccctctgc	tgcgtctgcc	ctcgttttgt	ctcacgactc	60
acactcagtg ctccattccc	caagagttcg	cgttccccgc	gcggcggtcg	agaggcggct	120
gcccgcggtc ccgcgcgggc	gcggggcgat	ggcggcgcgg	gggtcagggc	cccgcgcgct	180
ccgcctgctg ctcttggtcc	agctggtcgc	gggggcgctg	cggtctagcc	gggcgcggcg	240
ggcggcgcgc agaggattat	ctgaaccttc	ttctattgca	aaacatgaag	atagtttgct	300
taaggattta tttcaagact	acgaaagatg	ggttcgtcct	gtggaacacc	tgaatgacaa	360
aataaaaata aaatttggac	ttgcaatatc	tcaattggtg	gatgtggatg	agaaaaatca	420
gttaatgaca acaaacgtct	ggttgaaaca	ggaatggata	gatgtaaaat	taagatggaa	480
ccctgatgac tatggtggaa	taaaagttat	acgtgttcct	tcagactctt	cgtggacacc	540
agacatcatt ttgtttgata	atgcagatgg	acgttttgaa	gggaccagta	cgaaaacagt	600
catcaggtac aatggcactg	tcacctggac	tccaccggca	aactacaaaa	gttcctgtac	660
catagatgtc acgtttttcc	catttgacct	tcagaactgt Page 65		ttggttcttg	720

SSCP Update Sequences.ST25

gacttatgat	ggatcacagg	ttgatataat	tctagaggac	caagatgtag	acaagagaga	780
tttttttgat	aatggagaat	gggagattgt	gagtgcaaca	gggagcaaag	gaaacagaac	840
cgacagctgt	tgctggtatc	cgtatgtcac	ttactcattt	gtaatcaagc	gcctgcctct	900
cttttatacc	ttgttcctta	taataccctg	tattgggctc	tcatttttaa	ctgtacttgt	960
cttctatctt	ccttcaaatg	aaggtgaaaa	gatttgtctc	tgcacttcag	tacttgtgtc	1020
tttgactgtc	ttccttctgg	ttattgaaga	gatcatacca	tcatcttcaa	aagtcatacc	1080
tctaattgga	gagtatctgg	tatttaccat	gatttttgtg	acactgtcaa	ttatggtaac	1140
cgtcttcgct	atcaacattc	atcatcgttc	ttcctcaaca	cataatgcca	tggcgccttt	1200
ggtccgcaag	atatttcttc	acacgcttcc	caaactgctt	tcgatgagaa	gtcatgtaga	1260
caggtacttc	actcagaaag	aggaaactga	gagtggtagt	ggaccaaaat	cttctagaaa	1320
cacattggaa	gctgcgctcg	attctattcg	ctacattaca	acacacatca	tgaaggaaaa	1380
tgatgtccgt	gaggttgttg	aagattggaa	attcatagcc	caggttcttg	atcggatgtt	1440
tctgtggact	tttcttttcg	tttcaattgt	tggatctctt	gggctttttg	ttcctgttat	1500
ttataaatgg	gcaaatatat	taataccagt	tcatattgga	aatgcaaata	agtgaagcct	1560
cccaagggac	tgaagtatac	atttagttaa	cacacatata	tctgatggca	cctataaaat	1620
tatgaaaatg	taagttatgt	gttaaattta	gtgcaagctt	taacagacta	agttgctaa	1679

<210> 31 <211> 2664 <212> DNA

<400> 31 gagagaacag cgtgagcctg tgtgcttgtg tgctgagccc tcatcccctc ctggggccag 60 gcttgggttt cacctgcaga atcgcttgtg ctgggctgcc tgggctgtcc tcagtggcac 120 ctgcatgaag ccgttctggc tgccagagct ggacagcccc aggaaaaccc acctctctgc 180 agagcttgcc cagctgtccc cgggaagcca aatgcctctc atgtaagtct tctgctcgac 240 300 qqqqtqtctc ctaaaccctc actcttcagc ctctgtttga ccatgaaatg aagtgactga 360 qctctattct gtacctgcca ctctattct ggggtgactt ttgtcagctg cccagaatct 420 ccaagccagg ctggttctct gcatcctttc aatgacctgt tttcttctgt aaccacaggt tcggtggtga gaggaagcct cgcagaatcc agcagaatcc tcacagaatc cagcagcagc 480 540 tctgctgggg acatggtcca tggtgcaacc cacagcaaag ccctgacctg acctcctgat 600 gctcaggaga agccatgggc ccctcctgtc ctgtgttcct gtccttcaca aagctcagcc 660 tgtqqtgqct ccttctgacc ccagcaggtg gagaggaagc taagcgccca cctcccaggg ctcctqqaqa cccactctcc tctcccagtc ccacggcatt gccgcaggga ggctcgcata 720 780 ccgagactga ggaccggctc ttcaaacacc tcttccgggg ctacaaccgc tgggcgcgcc 840

<213> Homo sapiens

tcgatgtgga	tgagaagaac	SSCP (caaatgatga	Update Seque ccaccaacgt	ences.ST25 ctggctaaaa	caggagtgga	900
gcgactacaa	actgcgctgg	aaccccactg	attttggcaa	catcacatct	ctcagggtcc	960
cttctgagat	gatctggatc	cccgacattg	ttctctacaa	caatgcagat	ggggagtttg	1020
cagtgaccca	catgaccaag	gcccacctct	tctccacggg	cactgtgcac	tgggtgcccc	1080
cggccatcta	caagagctcc	tgcagcatcg	acgtcacctt	cttccccttc	gaccagcaga	1140
actgcaagat	gaagtttggc	tcctggactt	atgacaaggc	caagatcgac	ctggagcaga	1200
tggagcagac	tgtggacctg	aaggactact	gggagagcgg	cgagtgggcc	atcgtcaatg	1260
ccacgggcac	ctacaacagc	aagaagtacg	actgctgcgc	cgagatctac	cccgacgtca	1320
cctacgcctt	cgtcatccgg	cggctgccgc	tcttctacac	catcaacctc	atcatcccct	1380
gcctgctcat	ctcctgcctc	actgtgctgg	tcttctacct	gccctccgac	tgcggcgaga	1440
agatcacgct	gtgcatttcg	gtgctgctgt	cactcaccgt	cttcctgctg	ctcatcactg	1500
agatcatccc	gtccacctcg	ctggtcatcc	cgctcatcgg	cgagtacctg	ctgttcacca	1560
tgatcttcgt	caccctgtcc	atcgtcatca	ccgtcttcgt	gctcaatgtg	caccaccgct	1620
cccccagcac	ccacaccatg	ccccactggg	tgcggggggc	ccttctgggc	tgtgtgcccc	1680
ggtggcttct	gatgaaccgg	ccccaccac	ccgtggagct	ctgccacccc	ctacgcctga	1740
agctcagccc	ctcttatcac	tggctggaga	gcaacgtgga	tgccgaggag	agggaggtgg	1800
tggtggagga	ggaggacaga	tgggcatgtg	caggtcatgt	ggccccctct	gtgggcaccc	1860
tctgcagcca	cggccacctg	cactctgggg	cctcaggtcc	caaggctgag	gctctgctgc	1920
aggagggtga	gctgctgcta	tcaccccaca	tgcagaaggc	actggaaggt	gtgcactaca	1980
ttgccgacca	cctgcggtct	gaggatgctg	actcttcggt	gaaggaggac	tggaagtatg	2040
ttgccatggt	catcgacagg	atcttcctct	ggctgtttat	catcgtctgc	ttcctgggga	2100
ccatcggcct	ctttctgcct	ccgttcctag	ctggaatgat	ctgactgcac	ctccctcgag	2160
ctggctccca	gggcaaaggg	gagggttctt	ggatgtggaa	gggctttgaa	caatgtttag	2220
atttggagat	gagcccaaag	tgccagggag	aacagccagg	tgaggtggga	ggttggagag	2280
ccaggtgagg	tctctctaag	tcaggctggg	gttgaagttt	ggagtctgtc	cgagtttgca	2340
gggtgctgag	ctgtatggtc	cagcagggga	gtaataaggg	ctcttccgga	aggggaggaa	2400
gcgggaggca	ggcctgcacc	tgatgtggag	gtacaggcag	atcttcccta	ccggggaggg	2460
atggatggtt	ggatacaggt	ggctgggcta	ttccatccat	ctggaagcac	atttgagcct	2520
ccaggcttct	ccttgacgtc	attcctctcc	ttccttgctg	caaaatggct	ctgcaccagc	2580
cggcccccag	gaggtctggc	agagctgaga	gccatggcct	gcaggggctc	catatgtccc	2640
tacgcgtgca	gcaggcaaac	aaga				2664

<210> 32 <211> 3020 <212> DNA <213> Homo sapiens

.400. 22		SSCP (Update Sequ	ences.ST25		
<400> 32 gtcctcccgc	gggtccgagg	gcgctggaaa	cccagcggcg	gcgaagcgga	gaggagcccc	60
gcgcgtctcc	gcccgcacgg	ctccaggtct	ggggtctgcg	ctggagccgc	gcggggagag	120
gccgtctctg	cgaccgccgc	gcccgctccc	gaccgtccgg	gtccgcggcc	agcccggcca	180
ccagccatgg	gctctggccc	gctctcgctg	cccctggcgc	tgtcgccgcc	gcggctgctg	240
ctgctgctgc	tgctgtctct	gctgccagtg	gccagggcct	cagaggctga	gcaccatcta	300
tttgagcggc	tgtttgaaga	ttacaatgag	atcatccggc	ctgtagccaa	cgtgtctgac	360
ccagtcatca	tccatttcga	ggtgtccatg	tctcagctgg	tgaaggtgga	tgaagtaaac	420
cagatcatgg	agaccaacct	gtggctcaag	caaatctgga	atgactacaa	gctgaagtgg	480
aacccctctg	actatggtgg	ggcagagttc	atgcgtgtcc	ctgcacagaa	gatctggaag	540
ccagacattg	tgctgtataa	caatgctgtt	ggggatttcc	aggtggacga	caagaccaaa	600
gccttactca	agtacactgg	ggaggtgact	tggatacctc	cggccatctt	taagagctcc	660
tgtaaaatcg	acgtgaccta	cttcccgttt	gattaccaaa	actgtaccat	gaagttcggt	720
tcctggtcct	acgataaggc	gaaaatcgat	ctggtcctga	tcggctcttc	catgaacctc	780
aaggactatt	gggagagcgg	cgagtgggcc	atcatcaaag	ccccaggcta	caaacacgac	840
atcaagtaca	actgctgcga	ggagatctac	cccgacatca	catactcgct	gtacatccgg	900
cgcctgccct	tgttctacac	catcaacctc	atcatcccct	gcctgctcat	ctccttcctc	960
actgtgctcg	tcttctacct	gccctccgac	tgcggtgaga	aggtgaccct	gtgcatttct	1020
gtcctcctct	ccctgacggt	gtttctcctg	gtgatcactg	agaccatccc	ttccacctcg	1080
ctggtcatcc	ccctgattgg	agagtacctc	ctgttcacca	tgatttttgt	aaccttgtcc	1140
atcgtcatca	ccgtcttcgt	gctcaacgtg	cactacagaa	ccccgacgac	acacacaatg	1200
ccctcatggg	tgaagactgt	attcttgaac	ctgctcccca	gggtcatgtt	catgaccagg	1260
ccaacaagca	acgagggcaa	cgctcagaag	ccgaggcccc	tctacggtgc	cgagctctca	1320
aatctgaatt	gcttcagccg	cgcagagtcc	aaaggctgca	aggagggcta	cccctgccag	1380
gacgggatgt	gtggttactg	ccaccaccgc	aggataaaaa	tctccaattt	cagtgctaac	1440
ctcacgagaa	gctctagttc	tgaatctgtt	gatgctgtgc	tgtccctctc	tgctttgtca	1500
ccagaaatca	aagaagccat	ccaaagtgtc	aagtatattg	ctgaaaatat	gaaagcacaa	1560
aatgaagcca	aagagattca	agatgattgg	aagtatgttg	ccatggtgat	tgatcgtatt	1620
tttctgtggg	ttttcaccct	ggtgtgcatt	ctagggacag	caggattgtt	tctgcaaccc	1680
ctgatggcca	gggaagatgc	ataagcacta	agctgtgtgc	ctgcctggga	gacttccttg	1740
tgtcagggca	ggaggaggct	gcttcctagt	aagaacgtac	tttctgttat	caagctacca	1800
gctttgtttt	tggcatttcg	aggtttactt	attttccact	tatcttggaa	tcatgcaaaa	1860
aaaaaaatgt	caagagtatt	tattaccgat	aaatgaacat	ttaactagcc	tttttggtat	1920
ggtaaagaga	tgtcaaaatg	tgattctatg	tgattagtat	gctatgctat	ggaatataca	1980
tgtaaaaatg	tttcctttta	gttgttgaaa	caaaactgga Page 68	tagaaaaatg	ctgttcagaa	2040

atatgaaaag	tcattcagtt	atcactacag	atctcccagt	aatttttctt	atttagccca	2100
taatctcttt	gaaggtttat	actaattcag	caatccccca	tcgttaccca	tttcttacca	2160
tgcatttctc	gttctttact	gggtctaaag	ggctatgcct	ccatttcaga	gagcttcaac	2220
tacttctctt	gcatacttct	aaattatact	atgagaaatc	atgcctagtt	attcattgtt	2280
aatataactg	tcttagtaca	ccataaactg	ggtggattat	aaacaacaga	aacttctcag	2340
ttttggaggt	tgggaggtcc	aaggtcaagg	caccagcaaa	tttggtgtct	ggtgagggtc	2400
ctcttcctca	aagggtgcct	tctagctgtg	tcctcacatg	actgaaggga	ctagctatct	2460
ctgtggggtc	tattttataa	gggcactaac	cccattcatg	agagcagagc	ccccatggcc	2520
taatcacctt	tccaaggccc	caccttctat	ctaagacaat	cacgctggga	ataggtttca	2580
acatatgaat	tgggggagga	cacatttgga	ccacagcatg	aacctttaga	acagggtttc	2640
tcagccttag	cactacggac	attttgggct	ggataaatat	gtgttggtac	agaatggggg	2700
tatcctgtgc	attgtaggat	ctttagcagt	accctagcct	caactcacta	gatgccaatg	2760
acataccttg	cttcttcacc	agttatgata	accaagaatg	tctccattgt	taaatgtccc	2820
cttaggagca	aaattgcccc	tggttgagaa	acattgcttt	agacaaattg	ttaagagtat	2880
catgtactac	acttctgaaa	cttaacgtga	tcatcaccac	tgacagatga	ttcacagaga	2940
gagactgttt	gaatcttgtc	tcactagttt	ttcctgtgca	aaaataaaat	ggacagaatt	3000
						2020
gcaaaaaaaa	aaaaaaaaa					3020
<210> 33 <211> 2664 <212> DNA						3020
<210> 33 <211> 2664 <212> DNA <213> Homo	4 o sapiens	tgtgcttgtg	tgctgagccc	tcatcccctc	ctggggccag	60
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag	4 o sapiens cgtgagcctg	tgtgcttgtg atcgcttgtg				
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt	sapiens cgtgagcctg cacctgcaga		ctgggctgcc	tgggctgtcc	tcagtggcac	60
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag	sapiens cgtgagcctg cacctgcaga ccgttctggc	atcgcttgtg	ctgggctgcc ggacagcccc	tgggctgtcc aggaaaaccc	tcagtggcac acctctctgc	60 120
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc	atcgcttgtg tgccagagct	ctgggctgcc ggacagcccc aatgcctctc	tgggctgtcc aggaaaaccc atgtaagtct	tcagtggcac acctctctgc tctgctcgac	60 120 180
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc ggggtgtctc	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc ctaaaccctc	atcgcttgtg tgccagagct cgggaagcca	ctgggctgcc ggacagcccc aatgcctctc ctctgtttga	tgggctgtcc aggaaaaccc atgtaagtct ccatgaaatg	tcagtggcac acctctctgc tctgctcgac aagtgactga	60 120 180 240
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc ggggtgtctc gctctattct	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc ctaaaccctc gtacctgcca	atcgcttgtg tgccagagct cgggaagcca actcttcagc	ctgggctgcc ggacagcccc aatgcctctc ctctgtttga ggggtgactt	tgggctgtcc aggaaaaccc atgtaagtct ccatgaaatg ttgtcagctg	tcagtggcac acctctctgc tctgctcgac aagtgactga cccagaatct	60 120 180 240 300
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc ggggtgtctc gctctattct ccaagccagg	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc ctaaaccctc gtacctgcca ctggttctct	atcgcttgtg tgccagagct cgggaagcca actcttcagc ctctatttct	ctgggctgcc ggacagcccc aatgcctctc ctctgtttga ggggtgactt aatgacctgt	tgggctgtcc aggaaaaccc atgtaagtct ccatgaaatg ttgtcagctg tttcttctgt	tcagtggcac acctctctgc tctgctcgac aagtgactga cccagaatct aaccacaggt	60 120 180 240 300 360
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc ggggtgtctc gctctattct ccaagccagg tcggtggtga	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc ctaaaccctc gtacctgcca ctggttctct	atcgcttgtg tgccagagct cgggaagcca actcttcagc ctctatttct gcatcctttc	ctgggctgcc ggacagcccc aatgcctctc ctctgtttga ggggtgactt aatgacctgt agcagaatcc	tgggctgtcc aggaaaaccc atgtaagtct ccatgaaatg ttgtcagctg tttcttctgt tcacagaatc	tcagtggcac acctctctgc tctgctcgac aagtgactga cccagaatct aaccacaggt cagcagcagc	60 120 180 240 300 360 420
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc ggggtgtctc gctctattct ccaagccagg tcggtggtga tctgctgggtga tctgctggggg	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc ctaaaccctc gtacctgcca ctggttctct gaggaagcct acatggtcca	atcgcttgtg tgccagagct cgggaagcca actcttcagc ctctatttct gcatcctttc	ctgggctgcc ggacagcccc aatgcctctc ctctgtttga ggggtgactt aatgacctgt agcagaatcc cacagcaaag	tgggctgtcc aggaaaaccc atgtaagtct ccatgaaatg ttgtcagctg tttcttctgt tcacagaatc ccctgacctg	tcagtggcac acctctctgc tctgctcgac aagtgactga cccagaatct aaccacaggt cagcagcagc acctcctgat	60 120 180 240 300 360 420 480
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc ggggtgtctc gctctattct ccaagccagg tcggtggtga tctgctgggg gctcaggaga	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc ctaaaccctc gtacctgcaa ctggttctct gaggaagcct acatggtcca agccatgggc	atcgcttgtg tgccagagct cgggaagcca actcttcagc ctctatttct gcatcctttc cgcagaatcc tggtgcaacc	ctgggctgcc ggacagcccc aatgcctctc ctctgtttga ggggtgactt aatgacctgt agcagaatcc cacagcaaag ctgtgttcct	tgggctgtcc aggaaaaccc atgtaagtct ccatgaaatg ttgtcagctg tttcttctgt tcacagaatc ccctgacctg gtccttcaca	tcagtggcac acctctctgc tctgctcgac aagtgactga cccagaatct aaccacaggt cagcagcagc acctcctgat aagctcagcc	60 120 180 240 300 360 420 480 540
<210> 33 <211> 2664 <212> DNA <213> Homo <400> 33 gagagaacag gcttgggttt ctgcatgaag agagcttgcc ggggtgtctc gctctattct ccaagccagg tcggtggtga tctgctgggg gctcaggaga tctgctgggg gctcaggaga tgtggtggct	sapiens cgtgagcctg cacctgcaga ccgttctggc cagctgtccc ctaaaccctc gtacctgcca ctggttctct gaggaagcct acatggtcca agccatgggc ccttctgacc	atcgcttgtg tgccagagct cgggaagcca actcttcagc ctctatttct gcatcctttc cgcagaatcc tggtgcaacc ccctcctgtc	ctgggctgcc ggacagcccc aatgcctctc ctctgtttga ggggtgactt aatgacctgt agcagaatcc cacagcaaag ctgtgttcct gagaggaagc	tgggctgtcc aggaaaaccc atgtaagtct ccatgaaatg ttgtcagctg tttcttctgt tcacagaatc ccctgacctg gtccttcaca taagcgccca	tcagtggcac acctctctgc tctgctcgac aagtgactga cccagaatct aaccacaggt cagcagcagc acctcctgat aagctcagcc cctcccaggg	60 120 180 240 300 360 420 480 540 600

cggtgcccaa	cacttcagac		Update Sequ tgcgctttgg		gctcagctca	840
tcgatgtgga	tgagaagaac	caaatgatga	ccaccaacgt	ctggctaaaa	caggagtgga	900
gcgattacaa	actgcgctgg	aaccccgctg	attttggcaa	catcacatct	ctcagggtcc	960
cttctgagat	gatctggatc	cccgacattg	ttctctacaa	caatgcagat	ggggagtttg	1020
cagtgaccca	catgaccaag	gcccacctct	tctccacggg	cactgtgcac	tgggtgcccc	1080
cggccatcta	caagagctcc	tgcagcatcg	acgtcacctt	cttccccttc	gaccagcaga	1140
actgcaagat	gaagtttggc	tcctggactt	atgacaaggc	caagatcgac	ctggagcaga	1200
tggagcagac	tgtggacctg	aaggactact	gggagagcgg	cgagtgggcc	atcgtcaatg	1260
ccacgggcac	ctacaacagc	aagaagtacg	actgctgcgc	cgagatctac	cccgacgtca	1320
cctacgcctt	cgtcatccgg	cggctgccgc	tcttctacac	catcaacctc	atcatcccct	1380
gcctgctcat	ctcctgcctc	actgtgctgg	tcttctacct	gccctccgac	tgcggcgaga	1440
agatcacgct	gtgcatttcg	gtgctgctgt	cactcaccgt	cttcctgctg	ctcatcactg	1500
agatcatccc	gtccacctcg	ctggtcatcc	cgctcatcgg	cgagtacctg	ctgttcacca	1560
tgatcttcgt	caccctgtcc	atcgtcatca	ccgtcttcgt	gctcaatgtg	caccaccgct	1620
ccccagcac	ccacaccatg	ccccactggg	tgcggggggc	ccttctgggc	tgtgtgcccc	1680
ggtggcttct	gatgaaccgg	ccccaccac	ccgtggagct	ctgccacccc	ctacgcctga	1740
agctcagccc	ctcttatcac	tggctggaga	gcaacgtgga	tgccgaggag	agggaggtgg	1800
tggtggagga	ggaggacaga	tgggcatgtg	caggtcatgt	ggccccctct	gtgggcaccc	1860
tctgcagcca	cggccacctg	cactctgggg	cctcaggtcc	caaggctgag	gctctgctgc	1920
aggagggtga	gctgctgcta	tcaccccaca	tgcagaaggc	actggaaggt	gtgcactaca	1980
ttgccgacca	cctgcggtct	gaggatgctg	actcttcggt	gaaggaggac	tggaagtatg	2040
ttgccatggt	catcgacagg	atcttcctct	ggctgtttat	catcgtctgc	ttcctgggga	2100
ccatcggcct	ctttctgcct	ccgttcctag	ctggaatgat	ctgactgcac	ctccctcgag	2160
ctggctccca	gggcaaaggg	gagggttctt	ggatgtggaa	gggctttgaa	caatgtttag	2220
atttggagat	gagcccaaag	tgccagggag	aacagccagg	tgaggtggga	ggttggagag	2280
ccaggtgagg	tctctctaag	tcaggctggg	gttgaagttt	ggagtctgtc	cgagtttgca	2340
gggtgctgag	ctgtatggtc	cagcagggga	gtaataaggg	ctcttccgga	aggggaggaa	2400
gcgggaggca	ggcctgcacc	tgatgtggag	gtacaggcag	atcttcccta	ccggggaggg	2460
atggatggtt	ggatacaggt	ggctgggcta	ttccatccat	ctggaagcac	atttgagcct	2520
ccaggcttct	ccttgacgtc	attcctctcc	ttccttgctg	caaaatggct	ctgcaccagc	2580
cggcccccag	gaggtctggc	agagctgaga	gccatggcct	gcaggggctc	catatgtccc	2640
tacgcgtgca	gcaggcaaac	aaga				2664

<210> 34 <211> 2664 <212> DNA

i en:	5
	ıen:

<400> 34 gagagaacag cgtgagcctg tgtgcttgtg tgctgagccc tcatcccctc ctqgggccag 60 gcttgggttt cacctgcaga atcgcttgtg ctgggctgcc tgggctgtcc tcagtggcac 120 ctgcatgaag ccgttctggc tgccagagct ggacagcccc aggaaaaccc acctctctgc 180 agagcttgcc cagctgtccc cgggaagcca aatgcctctc atgtaagtct tctgctcgac 240 300 ggggtgtctc ctaaaccctc actcttcagc ctctgtttga ccatgaaatg aagtgactga gctctattct gtacctgcca ctctatttct ggggtgactt ttgtcagctg cccagaatct 360 420 ccaagccagg ctggttctct gcatcctttc aatgacctgt tttcttctgt aaccacaggt tcggtggtga gaggaagcct cgcagaatcc agcagaatcc tcacagaatc cagcagcagc 480 tctgctgggg acatggtcca tggtgcaacc cacagcaaag ccctgacctg acctcctgat 540 600 gctcaggaga agccatgggc ccctcctgtc ctgtgttcct gtccttcaca aagctcagcc tgtggtggct ccttctgacc ccagcaggtg gagaggaagc taagcgccca cctcccaggg 660 ctcctggaga cccactctcc tctcccagtc ccacggcatt gccgcaggga ggctcgcata 720 ccgagactga ggaccggctc ttcaaacacc tcttccgggg ctacaaccgc tgggcgcgcc 780 840 tcgatgtgga tgagaagaac caaatgatga ccaccaacgt ctggctaaaa caggagtgga 900 gcgactacaa actgcgctgg aaccccgctg attttggcaa catcacatct ctcagggtcc 960 cttctgagat gatctggatc cccgacattg ttctctacaa caatgcagat ggggagtttg 1020 cagtgaccca catgaccaag gcccacctct tctccacggg cactgtgcac tgggtgcccc 1080 cggccatcta caagagctcc tgcagcatcg acgtcacctt cttccccttc gaccagcaga 1140 actgcaagat gaagtttggc tcctggactt atgacaaggc caagatcgac ctggagcaga 1200 tggagcagac tgtggacctg aaggactact gggagagcgg cgagtgggcc atcgtcaatg 1260 ccacgggcac ctacaacagc aagaagtacg actgctgcgc cgagatctac cccgacgtca 1320 cctatgcctt cgtcatccgg cggctgccgc tcttctacac catcaacctc atcatcccct 1380 gcctgctcat ctcctgcctc actgtgctgg tcttctacct gccctccgac tgcggcgaga 1440 agatcacgct gtgcatttcg gtgctgctgt cactcaccgt cttcctgctg ctcatcactq 1500 agatcatccc gtccacctcg ctggtcatcc cgctcatcgg cgagtacctg ctgttcacca 1560 tgatcttcgt caccctgtcc atcgtcatca ccgtcttcgt gctcaatgtg caccaccgct 1620 cccccagcac ccacaccatg ccccactggg tgcggggggc ccttctgggc tgtgtgcccc 1680 ggtggcttct gatgaaccgg cccccaccac ccgtggagct ctgccacccc ctacgcctga 1740 agctcagccc ctcttatcac tggctggaga gcaacgtgga tgccgaggag agggaggtgg 1800 tgqtqgagga ggaggacaga tgggcatgtg caggtcatgt ggccccctct qtqqqcaccc 1860 tctgcagcca cggccacctg cactctgggg cctcaggtcc caaggctgag gctctgctgc 1920 aggagggtga gctgctgcta tcaccccaca tgcagaaggc actggaaggt gtgcactaca 1980 Page 71

ttgccgacca cctgcggtct	gaggatgctg	actcttcggt	gaaggaggac	tggaagtatg	2040
ttgccatggt catcgacagg	atcttcctct	ggctgtttat	catcgtctgc	ttcctgggga	2100
ccatcggcct ctttctgcct	ccgttcctag	ctggaatgat	ctgactgcac	ctccctcgag	2160
ctggctccca gggcaaaggg	gagggttctt	ggatgtggaa	gggctttgaa	caatgtttag	2220
atttggagat gagcccaaag	tgccagggag	aacagccagg	tgaggtggga	ggttggagag	2280
ccaggtgagg tctctctaag	tcaggctggg	gttgaagttt	ggagtctgtc	cgagtttgca	2340
gggtgctgag ctgtatggtc	cagcagggga	gtaataaggg	ctcttccgga	aggggaggaa	2400
gcgggaggca ggcctgcacc	tgatgtggag	gtacaggcag	atcttcccta	ccggggaggg	2460
atggatggtt ggatacaggt	ggctgggcta	ttccatccat	ctggaagcac	atttgagcct	2520
ccaggcttct ccttgacgtc	attcctctcc	ttccttgctg	caaaatggct	ctgcaccagc	2580
cggcccccag gaggtctggc	agagctgaga	gccatggcct	gcaggggctc	catatgtccc	2640
tacgcgtgca gcaggcaaac	aaga				2664
<210> 35 <211> 3020 <212> DNA <213> Homo sapiens					
<400> 35 gtcctcccgc gggtccgagg	gcgctggaaa	cccagcggcg	gcgaagcgga	gaggagcccc	60
gcgcgtctcc gcccgcacgg	ctccaggtct	ggggtctgcg	ctggagccgc	gcggggagag	120
gccgtctctg cgaccgccgc	gcccgctccc	gaccgtccgg	gtccgcggcc	agcccggcca	180
ccagccatgg gctctggccc	gctctcgctg	cccctggcgc	tgtcgccgcc	gcggctgctg	240
ctgctgctgc tgctgtctct	gctgccagtg	gccagggcct	cagaggctga	gcaccgtcta	300
tttgagcggc tgtttgaaga	ttacaatgag	atcatccggc	ctgtggccaa	cgtgtctgac	360
ccagtcatca tccatttcga	ggtgtccatg	tctcagctgg	tgaaggtgga	tgaagtaaac	420
cagatcatgg agaccaacct	gtggctcaag	caaatctgga	atgactacaa	gctgaagtgg	480
aacccctctg actatggtgg	ggcagagttc	atgcgtgtcc	ctgcacagaa	gatctggaag	540
ccagacattg tgctgtataa	caatgctgtt	ggggatttcc	aggtggacga	caagaccaaa	600
gccttactca agtacactgg	ggaggtgact	tggatacctc	cggccatctt	taagagctcc	660
tgtaaaatcg acgtgaccta	cttcccgttt	gattaccaaa	actgtaccat	gaagttcggt	720
tcctggtcct acgataaggc	gaaaatcgat	ctggtcctga	tcggctcttc	catgaacctc	780
aaggactatt gggagagcgg	cgagtgggcc	atcatcaaag	ccccaggcta	caaacacgac	840
atcaagtaca actgctgcga	ggagatctac	cccgacatca	catactcgct	gtacatccgg	900
cgcctgccct tgttctacac	catcaacctc	atcatcccct	gcctgctcat	ctccttcctc	960
actgtgctcg tcttctacct	gccctccgac	tgcggtgaga	aggtgaccct	gtgcatttct	1020
gtcctcctct ccctgacggt	gtttctcctg	gtgatcactg	agaccatccc	ttccacctcg	1080

		SSCP	Update Sequ	ences ST25		
ctggtcatcc	ccctgattgg	agagtacctc	ctgttcacca	tgatttttgt	aaccttgtcc	1140
atcgtcatca	ccgtcttcgt	gctcaacgtg	cactacagaa	ccccgacgac	acacacaatg	1200
ccctcatggg	tgaagactgt	attcttgaac	ctgctcccca	gggtcatgtt	catgaccagg	1260
ccaacaagca	acgagggcaa	cgctcagaag	ccgaggcccc	tctacggtgc	cgagctctca	1320
aatctgaatt	gcttcagccg	cgcagagtcc	aaaggctgca	aggagggcta	cccctgccag	1380
gacgggatgt	gtggttactg	ccaccaccgc	aggataaaaa	tctccaattt	cagtgctaac	1440
ctcacgagaa	gctctagttc	tgaatctgtt	gatgctgtgc	tgtccctctc	tgctttgtca	1500
ccagaaatca	aagaagccat	ccaaagtgtc	aagtatattg	ctgaaaatat	gaaagcacaa	1560
aatgaagcca	aagagattca	agatgattgg	aagtatgttg	ccatggtgat	tgatcgtatt	1620
tttctgtggg	ttttcaccct	ggtgtgcatt	ctagggacag	caggattgtt	tctgcaaccc	1680
ctgatggcca	gggaagatgc	ataagcacta	agctgtgtgc	ctgcctggga	gacttccttg	1740
tgtcagggca	ggaggaggct	gcttcctagt	aagaacgtac	tttctgttat	caagctacca	1800
gctttgtttt	tggcatttcg	aggtttactt	attttccact	tatcttggaa	tcatgcaaaa	1860
aaaaaaatgt	caagagtatt	tattaccgat	aaatgaacat	ttaactagcc	tttttggtat	1920
ggtaaagaga	tgtcaaaatg	tgattctatg	tgattagtat	gctatgctat	ggaatataca	1980
tgtaaaaatg	tttcctttta	gttgttgaaa	caaaactgga	tagaaaaatg	ctgttcagaa	2040
atatgaaaag	tcattcagtt	atcactacag	atctcccagt	aatttttctt	atttagccca	2100
taatctcttt	gaaggtttat	actaattcag	caatccccca	tcgttaccca	tttcttacca	2160
tgcatttctc	gttctttact	gggtctaaag	ggctatgcct	ccatttcaga	gagcttcaac	2220
tacttctctt	gcatacttct	aaattatact	atgagaaatc	atgcctagtt	attcattgtt	2280
aatataactg	tcttagtaca	ccataaactg	ggtggattat	aaacaacaga	aacttctcag	2340
ttttggaggt	tgggaggtcc	aaggtcaagg	caccagcaaa	tttggtgtct	ggtgagggtc	2400
ctcttcctca	aagggtgcct	tctagctgtg	tcctcacatg	actgaaggga	ctagctatct	2460
ctgtggggtc	tattttataa	gggcactaac	cccattcatg	agagcagagc	ccccatggcc	2520
taatcacctt	tccaaggccc	caccttctat	ctaagacaat	cacgctggga	ataggtttca	2580
acatatgaat	tgggggagga	cacatttgga	ccacagcatg	aacctttaga	acagggtttc	2640
tcagccttag	cactacggac	attttgggct	ggataaatat	gtgttggtac	agaatggggg	2700
tatcctgtgc	attgtaggat	ctttagcagt	accctagcct	caactcacta	gatgccaatg	2760
acataccttg	cttcttcacc	agttatgata	accaagaatg	tctccattgt	taaatgtccc	2820
cttaggagca	aaattgcccc	tggttgagaa	acattgcttt	agacaaattg	ttaagagtat	2880
catgtactac	acttctgaaa	cttaacgtga	tcatcaccac	tgacagatga	ttcacagaga	2940
gagactgttt	gaatcttgtc	tcactagttt	ttcctgtgca	aaaataaaat	ggacagaatt	3000
gcaaaaaaaa	aaaaaaaaaa					3020

3020 <211> <212> DNA <213> Homo sapiens <400> gtcctcccgc gggtccgagg gcgctggaaa cccagcggcg gcgaagcgga gaggagcccc 60 gcgcgtctcc gcccgcacqg ctccaqgtct ggggtctgcg ctggagccgc gcggggagag 120 gccgtctctg cgaccgccgc gcccgctccc gaccgtccgg gtccgcggcc agcccqqcca 180 ccagccatgg gctctggccc gctctcgctg cccctggcgc tgtcqccgcc qcqqctqctq 240 ctgctgctgc tgctgtctct gctgccagtg gccagggcct cagaggctga gcaccgtcta 300 tttgagcggc tgtttgaaga ttacaatgag atcatccggc ctgtagccaa cgtgtctgac 360 ccagtcatca tccatttcga ggtgtccatg tctcagctgg tgaaggtgga tgaagtaaac 420 cagatcatgg agaccaacct gtggctcaag caaatctgga atgactacaa gctgaaatgg 480 aacccctctg actatggtgg ggcagagttc atgcgtgtcc ctgcacagaa gatctggaag 540 ccagacattg tgctgtataa caatgctgtt ggggatttcc aggtggacga caagaccaaa 600 gccttactca agtacactgg ggaggtgact tggatacctc cggccatctt taagagctcc 660 tgtaaaatcg acgtgaccta cttcccgttt gattaccaaa actgtaccat gaagttcggt 720 tectggteet aegataagge gaaaategat etggteetga teggetette catgaacete 780 aaggactatt gggagagcgg cgagtgggcc atcatcaaag ccccaggcta caaacacgac 840 atcaagtaca actgctgcga ggagatctac cccgacatca catactcgct gtacatccgg 900 cgcctgccct tgttctacac catcaacctc atcatcccct gcctgctcat ctccttcctc 960 actgtgctcg tcttctacct gccctccgac tgcggtgaga aggtgaccct gtgcatttct 1020 gtcctcctct ccctgacggt gtttctcctg gtgatcactg agaccatccc ttccacctcg 1080 ctggtcatcc ccctgattgg agagtacctc ctgttcacca tgatttttgt aaccttgtcc 1140 atcgtcatca ccgtcttcgt gctcaacgtg cactacagaa ccccqacqac acacaatq 1200 ccctcatggg tgaagactgt attcttgaac ctgctcccca gggtcatgtt catgaccagg 1260 ccaacaagca acgagggcaa cgctcagaag ccgaggcccc tctacqqtqc cgagctctca 1320 aatctgaatt gcttcagccg cgcagagtcc aaaggctgca aggagggcta cccctgccaq 1380 gacgggatgt gtggttactg ccaccaccgc aggataaaaa tctccaattt cagtgctaac 1440 ctcacgagaa gctctagttc tgaatctgtt gatgctgtgc tgtccctctc tgctttqtca 1500 ccagaaatca aagaagccat ccaaagtgtc aagtatattg ctgaaaatat gaaagcacaa 1560 aatgaagcca aagagattca agatgattgg aagtatgttg ccatggtgat tgatcgtatt 1620 tttctqtqgg ttttcaccct ggtgtgcatt ctagggacag caggattgtt tctgcaaccc 1680 ctgatggcca gggaagatgc ataagcacta agctgtgtgc ctgcctggga gacttccttg 1740 tgtcagggca ggaggaggct gcttcctagt aagaacgtac tttctgttat caagctacca 1800

Page 74

1860

1920

gctttgtttt tggcatttcg aggtttactt attttccact tatcttggaa tcatgcaaaa

aaaaaaatgt caagagtatt tattaccgat aaatgaacat ttaactagcc tttttqqtat

SSCP Update Sequences.ST25

1980

660

ggtaaagaga	cyccaaaacy	egacectacy	cgaccagcac	getatgetat	ggaacacaca	1300
tgtaaaaatg 1	tttcctttta	gttgttgaaa	caaaactgga	tagaaaaatg	ctgttcagaa	2040
atatgaaaag 1	tcattcagtt	atcactacag	atctcccagt	aatttttctt	atttagccca	2100
taatctcttt g	gaaggtttat	actaattcag	caatccccca	tcgttaccca	tttcttacca	2160
tgcatttctc g	gttctttact	gggtctaaag	ggctatgcct	ccatttcaga	gagcttcaac	2220
tacttctctt g	gcatacttct	aaattatact	atgagaaatc	atgcctagtt	attcattgtt	2280
aatataactg t	tcttagtaca	ccataaactg	ggtggattat	aaacaacaga	aacttctcag	2340
ttttggaggt t	tgggaggtcc	aaggtcaagg	caccagcaaa	tttggtgtct	ggtgagggtc	2400
ctcttcctca a	aagggtgcct	tctagctgtg	tcctcacatg	actgaaggga	ctagctatct	2460
ctgtggggtc t	tattttataa	gggcactaac	cccattcatg	agagcagagc	ccccatggcc	2520
taatcacctt t	ccaaggccc	caccttctat	ctaagacaat	cacgctggga	ataggtttca	2580
acatatgaat t	egggggagga	cacatttgga	ccacagcatg	aacctttaga	acagggtttc	2640
tcagccttag d	cactacggac	attttgggct	ggataaatat	gtgttggtac	agaatggggg	2700
tatcctgtgc a	attgtaggat	ctttagcagt	accctagcct	caactcacta	gatgccaatg	2760
acataccttg o	cttcttcacc	agttatgata	accaagaatg	tctccattgt	taaatgtccc	2820
cttaggagca a	aattgcccc	tggttgagaa	acattgcttt	agacaaattg	ttaagagtat	2880
catgtactac a	acttctgaaa	cttaacgtga	tcatcaccac	tgacagatga	ttcacagaga	2940
gagactgttt g	gaatcttgtc	tcactagttt	ttcctgtgca	aaaataaaat	ggacagaatt	3000
gcaaaaaaaa a	aaaaaaaaa					3020
	sapiens					
<400> 37 gtcctcccgc g	ggtccgagg	gcgctggaaa	cccagcggcg	gcgaagcgga	gaggagcccc	60
gcgcgtctcc g	cccgcacgg	ctccaggtct	ggggtctgcg	ctggagccgc	gcggggagag	120
gccgtctctg c	gaccgccgc	gcccgctccc	gaccgtccgg	gtccgcggcc	agcccggcca	180
ccagccatgg g	jctctggccc	gctctcgctg	cccctggcgc	tgtcgccgcc	gcggctgctg	240
ctgctgctgc t	gctgtctct	gctgccagtg	gccagggcct	cagaggctga	gcaccgtcta	300
tttgagcggc t	gtttgaaga	ttacaatgag	atcatccggc	ctgtagccaa	cgtgtctgac	360
ccagtcatca t	ccatttcga	ggtgtccatg	tctcagctgg	tgaaggtgga	tgaagtaaac	420
cagatcatgg a	gaccaacct	gtggctcaag	caaatctgga	atgactacaa	gctgaagtgg	480
aacccctctg a	ctatggtgg	ggcagagttc	atgcgtgtcc	ctgcacagaa	aatctggaag	540
ccagacattg t	gctgtataa	caatgctgtt	ggggatttcc	aggtggacga	caagaccaaa	600

gccttactca agtacactgg ggaggtgact tggatacctc cggccatctt taagagctcc

SSCP Update Sequences.ST25 tgtaaaatcg acgtgaccta cttcccgttt gattaccaaa actgtaccat gaagttcggt 720 tcctggtcct acgataaggc gaaaatcgat ctggtcctga tcggctcttc catgaacctc 780 840 aaqqactatt gggagagcgg cgagtgggcc atcatcaaaag ccccaggcta caaacacgac atcaagtaca actgctgcga ggagatctac cccgacatca catactcgct gtacatccgg 900 cgcctgccct tgttctacac catcaacctc atcatcccct gcctgctcat ctccttcctc 960 actgtgctcg tcttctacct gccctccgac tgcggtgaga aggtgaccct gtgcatttct 1020 gtcctcctct ccctgacggt gtttctcctg gtgatcactg agaccatccc ttccacctcg 1080 ctggtcatcc ccctgattgg agagtacctc ctgttcacca tgatttttgt aaccttgtcc 1140 atcgtcatca ccgtcttcgt gctcaacgtg cactacagaa ccccgacgac acacacaatg 1200 ccctcatggg tgaagactgt attcttgaac ctgctccca gggtcatgtt catgaccagg 1260 ccaacaagca acgagggcaa cgctcagaag ccgaggcccc tctacggtgc cgagctctca 1320 aatctgaatt gcttcagccg cgcagagtcc aaaggctgca aggagggcta cccctgccag 1380 qacqqqatqt qtggttactg ccaccaccgc aggataaaaa tctccaattt cagtgctaac 1440 ctcacgagaa gctctagttc tgaatctgtt gatgctgtgc tgtccctctc tgctttgtca 1500 1560 ccaqaaatca aagaagccat ccaaagtgtc aagtatattg ctgaaaatat gaaagcacaa aatgaagcca aagagattca agatgattgg aagtatgttg ccatggtgat tgatcgtatt 1620 tttctgtggg ttttcaccct ggtgtgcatt ctagggacag caggattgtt tctgcaaccc 1680 ctqatggcca qggaagatgc ataagcacta agctgtgtgc ctgcctqgga qacttccttq 1740 tgtcagggca ggaggaggct gcttcctagt aagaacgtac tttctgttat caagctacca 1800 gctttgtttt tggcatttcg aggtttactt attttccact tatcttggaa tcatgcaaaa 1860 aaaaaaatgt caagagtatt tattaccgat aaatgaacat ttaactagcc tttttggtat 1920 1980 tgtaaaaatg tttcctttta gttgttgaaa caaaactgga tagaaaaatg ctgttcagaa 2040 atatgaaaag tcattcagtt atcactacag atctcccagt aatttttctt atttagccca 2100 2160 taatctcttt qaaqqtttat actaattcaq caatcccca tcqttaccca tttcttacca tgcatttctc gttctttact gggtctaaag ggctatgcct ccatttcaga gagcttcaac 2220 tacttctctt gcatacttct aaattatact atgagaaatc atgcctagtt attcattgtt 2280 aatataactg tcttagtaca ccataaactg ggtggattat aaacaacaga aacttctcag 2340 2400 ttttggaggt tgggaggtcc aaggtcaagg caccagcaaa tttggtgtct ggtgagggtc 2460 ctcttcctca aagggtgcct tctagctgtg tcctcacatg actgaaggga ctagctatct 2520 taatcacctt tccaaggccc caccttctat ctaagacaat cacgctggga ataggtttca 2580 acatatgaat tgggggagga cacatttgga ccacagcatg aacctttaga acagggtttc 2640 2700 tcagccttag cactacggac attttgggct ggataaatat gtgttggtac agaatggggg

SSCP Update Sequences.ST25 tatcctgtgc attgtaggat ctttagcagt accctagcct caactcacta gatgccaatg	2760
acataccttg cttcttcacc agttatgata accaagaatg tctccattgt taaatgtccc	2820
cttaggagca aaattgcccc tggttgagaa acattgcttt agacaaattg ttaagagtat	2880
catgtactac acttctgaaa cttaacgtga tcatcaccac tgacagatga ttcacagaga	2940
gagactgttt gaatcttgtc tcactagttt ttcctgtgca aaaataaaat	3000
gcaaaaaaaa aaaaaaaaa	3020
<210> 38 <211> 210 <212> DNA <213> Homo sapiens	
<400> 38 gggctgcttg gcccaattct gggcatcccc ggggtgtgct agctttgccc taggctgctc	60
cctggaagcg aggttgacac aacttcttcc ccacacacag gagtggagcg actacaaact	120
gcgctggaac cccgctgatt ttggcaacat cacatctctc agggtccctt ctgagatgat	180
ctggatcccc gacattgttc tctacaacaa	210
<210> 39 <211> 210 <212> DNA <213> Homo sapiens <400> 39	
agcaggggtg gggagtcacc aagatgggtg gtgccacggg aagtaaaacc aggctgattc	60
ttttaccgtc tccttctccc tccctgcttc cttccccgag atctggaatg actacaagct	120
gaagtggaac ccctctgact atggtggggc agagttcatg cgtgtccctg cacagaagat	180
ctggaagcca gacattgtgc tgtataacaa	210
<210> 40 <211> 210 <212> DNA <213> Homo sapiens	
<400> 40 atctggaatg actacaagct gaagtggaac ccctctgact atggtggggc agagttcatg	60
cgtgtccctg cacagaagat ctggaagcca gacattgtgc tgtataacaa gtaaggtcct	120
ggggggccca cgccctctca gggctgtcag cctgggctct gggtttttgg cccactgtgc	180
ttaaaacctg gccttccttg gccttttcca	210
<210> 41 <211> 7438 <212> DNA <213> Homo sapiens	
<400> 41 gctgagcctg agcccgaccc ggggcgcctc ccgccaggca ccatggtgca gaagtcgcgc	60
aacggcggcg tataccccgg cccgagcggg gagaagaagc tgaaggtggg cttcgtgggg	120

SSCP Update Sequences.ST25 ctggaccccg gcgcgcccga ctccacccgg gacggggcgc tgctgatcgc cggctccgag 180 240 gcccccaagc gcggcagcat cctcagcaaa cctcgcgcgg gcggcgcggg cgccgggaag ccccccaag cgcaacgcct tctaccgcaa gctgcagaat ttcctctaca acgtgctgga 300 gcqqccqcqc qqctqggcgt tcatctacca cgcctacgtg ttcctcctgg ttttctcctg 360 420 cctcgtgctg tctgtgtttt ccaccatcaa ggagtatgag aagagctcgg agggggccct 480 ctacatcctg gaaatcgtga ctatcgtggt gtttggcgtg gagtacttcg tgcggatctg 540 qqccqcaqqc tgctgctgcc ggtaccgtgg ctggaggggg cggctcaagt ttgcccggaa 600 accepttctgt gtgattgaca tcatggtgct catcgcctcc attgcggtgc tggccgccgg 660 ctcccagggc aacgtctttg ccacatctgc gctccggagc ctgcgcttcc tgcagattct 720 qcqqatgatc cqcatggacc ggcggggagg cacctggaag ctgctgggct ctgtggtcta 780 tgcccacage aaggagetgg teactgeetg gtacategge tteetttgte teateetgge 840 ctcqttcctq gtgtacttgg cagagaaggg ggagaacgac cactttgaca cctacgcgga 900 tqcactctqq tqqqqcctqa tcacqctqac caccattgqc tacqqqqaca agtaccccca 960 gacctggaac ggcaggctcc ttgcggcaac cttcaccctc atcggtgtct ccttcttcgc 1020 gctgcctgca ggcatcttgg ggtctgggtt tgccctgaag gttcaggagc agcacaggca 1080 gaagcacttt gagaagaggc ggaacccggc agcaggcctg atccagtcgg cctggagatt 1140 ctacqccacc aacctctcgc gcacagacct gcactccacg tggcagtact acgagcgaac ggtcaccgtg cccatgtaca gttcgcaaac tcaaacctac ggggcctcca gacttatccc 1200 1260 cccqctgaac cagctggagc tgctgaggaa cctcaagagt aaatctggac tcgctttcag 1320 qaaqqacccc ccgccggagc cgtctccaag ccagaaggtc agtttgaaag atcgtgtctt ctccagcccc cgaggcgtgg ctgccaaggg gaaggggtcc ccgcaggccc agactgtgag 1380 gcggtcaccc agcgccgacc agagcctcga ggacagcccc agcaaggtgc ccaagagctg 1440 qaqcttcqqq qaccgcagcc gggcacgcca ggctttccgc atcaagggtg ccgcgtcacg 1500 1560 qcaqaactca qaagaagcaa gcctccccgg agaggacatt gtggatgaca agagctgccc 1620 ctgcgagttt gtgaccgagg acctgacccc gggcctcaaa gtcagcatca gagccgtgtg 1680 tgtcatgcgg ttcctggtgt ccaagcggaa gttcaaggag agcctgcggc cctacgacgt gatggacgtc atcgagcagt actcagccgg ccacctggac atgctgtccc gaattaagag 1740 1800 cctqcagtcc agagtggacc agatcgtggg gcggggccca gcgatcacgg acaaggaccg 1860 caccaagggc ccggccgagg cggagctgcc cgaggacccc agcatgatgg gacggctcgg gaaggtggag aagcaggtct tgtccatgga gaagaagctg gacttcctgg tgaatatcta 1920 1980 catgcagcgg atgggcatcc ccccgacaga gaccgaggcc tactttgggg ccaaagagcc 2040 ggaqccggcg ccgccgtacc acagcccgga agacagccgg gagcatgtcg acaggcacgg ctgcattgtc aagatcgtgc gctccagcag ctccacgggc cagaagaact tctcggcgcc 2100 cccqqccgcg cccctgtcc agtgtccgcc ctccacctcc tggcagccac agagccaccc 2160

SSCP Update Sequences.ST25 gcgccagggc cacggcacct ccccgtggg ggaccacggc tccctggtgc gcatcccgcc 2220 2280 gccgcctgcc cacgagcggt cgctgtccgc ctacggcggg ggcaaccgcg ccagcatgga gttcctgcgg caggaggaca ccccgggctg caggcccccc gaggggaccc tgcgggacag 2340 cqacacgtcc atctccatcc cgtccgtgga ccacgaggag ctggagcgtt ccttcagcgg 2400 cttcagcatc tcccagtcca aggagaacct ggatgctctc aacagctgct acgcggccgt 2460 2520 ggcgccttgt gccaaagtca ggccctacat tgcggaggga gagtcagaca ccgactccga 2580 cctctgtacc ccgtgcgggc ccccgccacg ctcggccacc ggcgagggtc cctttggtga 2640 cqtqqqctqq qccgggccca ggaagtgagg cggcgctggg ccagtggacc cgcccgcggc cctcctcagc acggtgcctc cgaggttttg aggcgggaac cctctggggc ccttttctta 2700 2760 caqtaactqa qtqtqqcqgg aagggtgggc cctggagggg cccatgtggg ctgaaggatg 2820 qqqqctcctg qcagtgacct tttacaaaag ttattttcca acagggcact cccaggccct 2880 gtcqccattq aggtgcctcc gctgggctgt ctcctcaccc ctccctgtgc tggagcctgt 2940 cccaaaaagg tgccaactgg gaggcctcgg aagccactgt ccaggctccc actgcctgtc 3000 tgctctgttc ccaaaggcag cgtgtgtggc ctcgggccct gcggtggcat gaagcatccc 3060 ttctqqtqtq qqcatcqcta cqtqttttqq qqqcaqcqtt tcacqqcqqt gcccttqctq tctcccttgg gctggctcga gcctggggtc catgtccctt tgccgtcccg tcatggggca 3120 3180 gggaatccat agcggggccc acaggcaggg gtatgagtgc gtcccaccca acgcagcacc 3240 agccccggcc accgctcccc gtgtccccag ttccgtctca gctacctgga ctccaggacc 3300 ctqqagaagg gagacctggc agtggaggga ggctgtgctg tgtgtccccc tgcaggtgtg 3360 accordated 3420 caqtatggcc ccacctgctc tttcctcccc ccccaaggtg tggccccacc tgttctttcc 3480 tcccctqccq aggtqtqacc ccacctqctc tttcctccct cccagtatgg ccccacctgc tctttcctcc cccgaggtga ggccccgcct gctctttcct cccatgggag ccgctgaggc 3540 3600 gtgcqcacct gggcacaggt tggggctctg caggatgagg aagacaggcc aatcccttcc ctcccagaag ctggccgccc agcaggaggg actgaggcca gactcatgtc cagcaaggaa 3660 3720 cgtgtggtgt gtcccctggg aagtctctgg gccctgggaa gagggaaggt gcacgtcctg 3780 qqatqqttqc qqqqccctgt tttgggagac aaaggggtag agggtctgtc ttgggccccc ccagactcta gcccgagcag tgcagccacc tactgcccca cctcagagaa gtgcagcggg 3840 3900 aaqqaqqctg gaggtggtgc ggcgctgcct cgggtgtctg cgtgaatgag cgtggccaag gaccagtgcc acctcatggc aaagagctcc cgcagtgttt gttagagtgc acatcctacg 3960 tgcccactgg cacacacag tgctcacata catgtccgcg tacaggcgta cacatgcacg 4020 cttqcacaca tgcacacaga ccacatagca cacatgtgca ctgaccacac ctgtatagac 4080 4140 catgcacagt acacatacgt gcatacacat gcctgcatac aggcatacac atgcacgctt acatgtacac gtgcacagat cacacacatg cacacacgtg tagctcacac acagtataca 4200

SSCP Update Sequences.ST25 catacacaag tgcacagacc acacacagca ctaacacatg cacacacaaa gtgcataggc 4260 4320 cacacagcac atgcacacag gtgcacagac cacacagcac acacaagtgc acagagcaca ctgcacacat gcacacacac acgcgtgcat gcacactcct cgcacttcca gccttggagc 4380 ccttctgtct ctggtctttc tctttgaccc tgctgagtgt aagctgcctg gggaggggct 4440 4500 acaaggagta attgtggctt taggggtcgt ggtgatgctg gaatgtcaag cgccgtcgtg gggtatccga ctgtccgggc tcctggtccg cagtggcaga gcgccaggca gagccaatca 4560 4620 gggtctcgtg ctgcccttcc cccccacagc ctggcagcca tccagaggag gggctctacc 4680 agatgccaag gtgccccggt gtctgtatgg gtgtccggtt gggtcctgtg tttggtctgc 4740 cctqqaqqtq qctqqqccct cctqggatgg gtggctcagc Ctcgaatccc aggccccagc 4800 ccaqqcaqqt qctqctqcct gttqtggttt cctggcccag Cttctccttc tccctctgca 4860 taaaatcaca gtccgtgagt cttccagctg ccaccacggc tgggacacgc tgggggaggg 4920 ctcctcccat qcctcctqca cacagccgtc tgagcagggc aggtgccaac acccccacc 4980 ggagacacgc tgcccctcag cgatgcccct accttttggg gggcctcgtc tcaagccccc 5040 ccttggaggc tgaaatcacc ccaggcactg tgagggcttc tccaggggga caccctttga 5100 gctgtgggtc tgatcacccc aagtcccgca cacggaggag aggcacagcc agggcgtgtg 5160 gtttaatgtt tgccccttcg gggctggagg tctcagtgtt tctagattcc agaccctgct 5220 gccagagaga cctgctgccg gagagaaggg gaggaggact ccagctgggc tcggtccccc 5280 acagtcaggg acccccataa aggacacccc cttctctcta gaaagagctg ggctctcagc tatttctagt tgcttcccag aagccgagga gcagaaggag ctgtgagagc tttgcagaaa 5340 5400 cgcccttgtc cccgccctcc tgagctatga atgccgtaca gagcagaggc tggggcattg 5460 gcaagatcac aggttgatgc tgcacagccc cattgacaca aaccctcaaa gcagacgtga 5520 gagggacggt tcacaaagct tggacctgcc gtggagggtg cccggcagac gtggcgtgag agggacggct cacgaggctt ggacctgctg tggagggtgc ccagcagacg tggtgtgaga 5580 ggaacggctc acgagacttg gacctggtgg agggtgccca gcagacgtgg tgtgagaggg 5640 5700 acggctcaca gggcttggac cggagagaga tggctcatga gacttggacc tgccgtggag ggtgcccagc agacgtggta tgagagggat ggctcacgag gcttggacct ggtggagggt 5760 5820 gcccggcaga cgtgtgagag ggacggttca caaggcttgg acctgccatg gagggtgccc 5880 agcagacgtg gtgtgagagg gacagctcac gaggcttgga cctgccgtgg agggtgccca 5940 gcagggggct gagctctgag gggtgggtgc tcagtgcacg ggtgccccca gtgtcctctg 6000 atcctgtccg gtgcctcccc caacccccac acccatgcag aactcccagg tcacatgcac gtatgtccag ggcatggggg tggcgtgaag aggcctggtc agggccttta ggggctgcag 6060 6120 gacqqaatgg ccacctgggg agcctgtgtg gctgtgccgg gcagccatcc tgcattccca 6180 cccaqcgcgc agtctccacc tcggccccag caaagcgcta agcagccgga gagacagcca qqqcqqcttc ctgaaggatg tgggatggtg gactccgggg tcgagggaat acgcaggttc 6240

ctgtcctccg ggagacctag	SSCP (agaagctgca	Update Seque cacccaggag	ences.ST25 ctttccatga	cccgggagca	6300
tgagtgaatg gggggttcca					6360
ggccgaccct gggaggaggt					6420
gagacgggag gggaccattt					6480
ggggtggagt tgagtgtgct					6540
ggagactggc tctggccagg	gccccgtcct	gagaggtcct	cagcgtctga	ctctcggcca	6600
ggcgccagca aggaggggcc	ggtccccggg	gctaccaggc	aggcacgtgc	acatcgccat	6660
cgccacacgc caactccgcc	tgggttttac	aaagtcgttg	ccttaatgca	tgtggacagg	6720
aactccctga ggtcgcccca	tgccccctgg	ctgtgccagg	tacggacgcc	ctggaccctg	6780
cgaacaggtg gggcgggcga	ggggcccaag	ggacgggctc	cagagacacg	cgcagggcag	6840
gaggggtctc acggaggggt	ctcgcactga	ggcgcccaga	gctggtggtc	ccgctggacg	6900
ccatccctct gcccgggatc	cacacggccc	acgtgtgccc	gccatgcccg	cgccccacgc	6960
cattgcagtc ttccatcctc	tggccgtgac	ggtggctgca	gcttccccat	ttgcgccgtt	7020
gcctctggct gtctgcactt	ttgttcatgc	tccaaagaac	atttcataat	gccttcagta	7080
ccgacgtaca cttctgacca	ttttgtatgt	gtccttgtgc	cgtagtgacc	aggccttttt	7140
ttggtggatg tgttaccccg	cacacttcaa	tctcaacttt	gtgcaccgtc	cattttctag	7200
ggatagacgc ccagggaatg	aactctagtt	ttctaacaga	ttagctgaga	tattaactta	7260
ctcacacgga caggttgatg	ccagagccgt	aagaatgcgc	cagtgcgggt	ttgcggggga	7320
cttcgggtgt ggggtcctgc	ggccgcgatg	gccgtggaag	gttctgggga	tccctgctgc	7380
cacggggacg agttcggacg	ccaggtggac	ctgtgcactc	agtaaaacgc	agtgattc	7438
<210> 42 <211> 7437 <212> DNA <213> Homo sapiens					
<400> 42 gctgagcctg agcccgaccc	ggggcgcctc	ccgccaggca	ccgtggtgca	gaagtcgcgc	60
aacggcggcg tataccccgg	cccgagcggg	gagaagaagc	tgaaggtggg	cttcgtgggg	120
ctggaccccg gcgcgcccga	ctccacccgg	gacggggcgc	tgctgatcgc	cggctccgag	180
gcccccaagc gcggcagcat	cctcagcaaa	cctcgcgcgg	gcggcgcggg	cgccgggaag	240
cccccaagc gcaacgcctt	ctaccgcaag	ctgcagaatt	tcctctacaa	cgtgctggag	300
cggccgcgcg gctgggcgtt	catctaccac	gcctacgtgt	tcctcctggt	tttctcctgc	360
ctcgtgctgt ctgtgttttc	caccatcaag	gagtatgaga	agagctcgga	gggggccctc	420
tacatcctgg aaatcgtgac	tatcgtggtg	tttggcgtgg	agtacttcgt	gcggatctgg	480
gccgcaggct gctgctgccg	gtaccgtggc	tggagggggc	ggctcaagtt	tgcccggaaa	540
ccgttctgtg tgattgacat	catggtgctc	atcgcctcca	ttgcggtgct	ggccgccggc	600
tcccagggca acgtctttgc	cacatctgcg	ctccggagcc Page 81		gcagattctg	660

cggatgatcc	gcatggaccg	gcggggaggc	acctggaagc	tgctgggctc	tgtggtctat	720
gcccacagca	aggagctggt	cactgcctgg	tacatcggct	tcctttgtct	catcctggcc	780
tcgttcctgg	tgtacttggc	agagaagggg	gagaacgacc	actttgacac	ctacgcggat	840
gcactctggt	ggggcctgat	cacgctgacc	accattggct	acggggacaa	gtacccccag	900
acctggaacg	gcaggctcct	tgcggcaacc	ttcaccctca	tcggtgtctc	cttcttcgcg	960
ctgcctgcag	gcatcttggg	gtctgggttt	gccctgaagg	ttcaggagca	gcacaggcag	1020
aagcactttg	agaagaggcg	gaacccggca	gcaggcctga	tccagtcggc	ctggagattc	1080
tacgccacca	acctctcgcg	cacagacctg	cactccacgt	ggcagtacta	cgagcgaacg	1140
gtcaccgtgc	ccatgtacag	ttcgcaaact	caaacctacg	gggcctccag	acttatcccc	1200
ccgctgaacc	agctggagct	gctgaggaac	ctcaagagta	aatctggact	cgctttcagg	1260
aaggaccccc	cgccggagcc	gtctccaagc	cagaaggtca	gtttgaaaga	tcgtgtcttc	1320
tccagccccc	gaggcgtggc	tgccaagggg	aaggggtccc	cgcaggccca	gactgtgagg	1380
cggtcaccca	gcgccgacca	gagcctcgag	gacagcccca	gcaaggtgcc	caagagctgg	1440
agcttcgggg	accgcagccg	ggcacgccag	gctttccgca	tcaagggtgc	cgcgtcacgg	1500
cagaactcag	aagaagcaag	cctccccgga	gaggacattg	tggatgacaa	gagctgcccc	1560
tgcgagtttg	tgaccgagga	cctgaccccg	ggcctcaaag	tcagcatcag	agccgtgtgt	1620
gtcatgcggt	tcctggtgtc	caagcggaag	ttcaaggaga	gcctgcggcc	ctacgacgtg	1680
atggacgtca	tcgagcagta	ctcagccggc	cacctggaca	tgctgtcccg	aattaagagc	1740
ctgcagtcca	gagtggacca	gatcgtgggg	cggggcccag	cgatcacgga	caaggaccgc	1800
accaagggcc	cggccgaggc	ggagctgccc	gaggacccca	gcatgatggg	acggctcggg	1860
aaggtggaga	agcaggtctt	gtccatggag	aagaagctgg	acttcctggt	gaatatctac	1920
atgcagcgga	tgggcatccc	cccgacagag	accgaggcct	actttggggc	caaagagccg	1980
gagccggcgc	cgccgtacca	cagcccggaa	gacagccggg	agcatgtcga	caggcacggc	2040
tgcattgtca	agatcgtgcg	ctccagcagc	tccacgggcc	agaagaactt	ctcggcgccc	2100
ccggccgcgc	cccctgtcca	gtgtccgccc	tccacctcct	ggcagccaca	gagccacccg	2160
cgccagggcc	acggcacctc	ccccgtgggg	gaccacggct	ccctggtgcg	catcccgccg	2220
ccgcctgccc	acgagcggtc	gctgtccgcc	tacggcgggg	gcaaccgcgc	cagcatggag	2280
ttcctgcggc	aggaggacac	cccgggctgc	aggccccccg	aggggaccct	gcgggacagc	2340
gacacgtcca	tctccatccc	gtccgtggac	cacgaggagc	tggagcgttc	cttcagcggc	2400
ttcagcatct	cccagtccaa	ggagaacctg	gatgctctca	acagctgcta	cgcggccgtg	2460
gcgccttgtg	ccaaagtcag	gccctacatt	gcggagggag	agtcagacac	cgactccgac	2520
ctctgtaccc	cgtgcgggcc	cccgccacgc	tcggccaccg	gcgagggtcc	ctttggtgac	2580
gtgggctggg	ccgggcccag	gaagtgaggc	ggcgctgggc	cagtggaccc	gcccgcggcc	2640
ctcctcagca	cggtgcctcc	gaggttttga	ggcgggaacc Page 82	ctctggggcc	cttttcttac	2700

agtaactgag	tgtggcggga	agggtgggcc	ctggaggggc	ccatgtgggc	tgaaggatgg	2760
gggctcctgg	cagtgacctt	ttacaaaagt	tattttccaa	cagggcactc	ccaggccctg	2820
tcgccattga	ggtgcctccg	ctgggctgtc	tcctcacccc	tccctgtgct	ggagcctgtc	2880
ccaaaaaggt	gccaactggg	aggcctcgga	agccactgtc	caggctccca	ctgcctgtct	2940
gctctgttcc	caaaggcagc	gtgtgtggcc	tcgggccctg	cggtggcatg	aagcatccct	3000
tctggtgtgg	gcatcgctac	gtgttttggg	ggcagcgttt	cacggcggtg	cccttgctgt	3060
ctcccttggg	ctggctcgag	cctggggtcc	atgtcccttt	gccgtcccgt	catggggcag	3120
ggaatccata	gcggggccca	caggcagggg	tatgagtgcg	tcccacccaa	cgcagcacca	3180
gccccggcca	ccgctccccg	tgtccccagt	tccgtctcag	ctacctggac	tccaggaccc	3240
tggagaaggg	agacctggca	gtggagggag	gctgtgctgt	gtgtccccct	gcaggtgtga	3300
ccccgcctgc	tctttcctcc	cccgccaggt	gtggccccgc	ctgctctttc	ctccccacc	3360
agtatggccc	cacctgctct	ttcctcccc	cccaaggtgt	ggccccacct	gttctttcct	3420
cccctgccga	ggtgtgaccc	cacctgctct	ttcctccctc	ccagtatggc	cccacctgct	3480
ctttcctccc	ccgaggtgag	gccccgcctg	ctctttcctc	ccatgggagc	cgctgaggcg	3540
tgcgcacctg	ggcacaggtt	ggggctctgc	aggatgagga	agacaggcca	atcccttccc	3600
tcccagaagc	tggccgccca	gcaggaggga	ctgaggccag	actcatgtcc	agcaaggaac	3660
gtgtggtgtg	tcccctggga	agtctctggg	ccctgggaag	agggaaggtg	cacgtcctgg	3720
gatggttgcg	gggccctgtt	ttgggagaca	aaggggtaga	gggtctgtct	tgggcccccc	3780
cagactctag	cccgagcagt	gcagccacct	actgccccac	ctcagagaag	tgcagcggga	3840
aggaggctgg	aggtggtgcg	gcgctgcctc	gggtgtctgc	gtgaatgagc	gtggccaagg	3900
accagtgcca	cctcatggca	aagagctccc	gcagtgtttg	ttagagtgca	catcctacgt	3960
gcccactggc	acacacacgt	gctcacatac	atgtccgcgt	acaggcgtac	acatgcacgc	4020
ttgcacacat	gcacacagac	cacatagcac	acatgtgcac	tgaccacacc	tgtatagacc	4080
atgcacagta	cacatacgtg	catacacatg	cctgcataca	ggcatacaca	tgcacgctta	4140
catgtacacg	tgcacagatc	acacacatgc	acacacgtgt	agctcacaca	cagtatacac	4200
atacacaagt	gcacagacca	cacacagcac	taacacatgc	acacacaaag	tgcataggcc	4260
acacagcaca	tgcacacagg	tgcacagacc	acacagcaca	cacaagtgca	cagagcacac	4320
tgcacacatg	cacacacaca	cgcgtgcatg	cacactcctc	gcacttccag	ccttggagcc	4380
cttctgtctc	tggtctttct	ctttgaccct	gctgagtgta	agctgcctgg	ggaggggcta	4440
caaggagtaa	ttgtggcttt	aggggtcgtg	gtgatgctgg	aatgtcaagc	gccgtcgtgg	4500
ggtatccgac	tgtccgggct	cctggtccgc	agtggcagag	cgccaggcag	agccaatcag	4560
ggtctcgtgc	tgcccttccc	ccccacagcc	tggcagccat	ccagaggagg	ggctctacca	4620
gatgccaagg	tgccccggtg	tctgtatggg	tgtccggttg	ggtcctgtgt	ttggtctgcc	4680
ctggaggtgg	ctgggccctc	ctgggatggg	tggctcagcc Page 83		ggccccagcc	4740

caggcaggtg	ctgctgcctg	ttgtggtttc	ctggcccagc	ttctccttct	ccctctgcat	4800
aaaatcacag	tccgtgagtc	ttccagctgc	caccacggct	gggacacgct	gggggagggc	4860
tcctcccatg	cctcctgcac	acagccgtct	gagcagggca	ggtgccaaca	cccccaccg	4920
gagacacgct	gcccctcagc	gatgccccta	ccttttgggg	ggcctcgtct	caagccccc	4980
cttggaggct	gaaatcaccc	caggcactgt	gagggcttct	ccagggggac	accctttgag	5040
ctgtgggtct	gatcacccca	agtcccgcac	acggaggaga	ggcacagcca	gggcgtgtgg	5100
tttaatgttt	gccccttcgg	ggctggaggt	ctcagtgttt	ctagattcca	gaccctgctg	5160
ccagagagac	ctgctgccgg	agagaagggg	aggaggactc	cagctgggct	cggtccccca	5220
cagtcaggga	cccccataaa	ggacaccccc	ttctctctag	aaagagctgg	gctctcagct	5280
atttctagtt	gcttcccaga	agccgaggag	cagaaggagc	tgtgagagct	ttgcagaaac	5340
gcccttgtcc	ccgccctcct	gagctatgaa	tgccgtacag	agcagaggct	ggggcattgg	5400
caagatcaca	ggttgatgct	gcacagcccc	attgacacaa	accctcaaag	cagacgtgag	5460
agggacggtt	cacaaagctt	ggacctgccg	tggagggtgc	ccggcagacg	tggcgtgaga	5520
gggacggctc	acgaggcttg	gacctgctgt	ggagggtgcc	cagcagacgt	ggtgtgagag	5580
gaacggctca	cgagacttgg	acctggtgga	gggtgcccag	cagacgtggt	gtgagaggga	5640
cggctcacag	ggcttggacc	ggagagagat	ggctcatgag	acttggacct	gccgtggagg	5700
gtgcccagca	gacgtggtat	gagagggatg	gctcacgagg	cttggacctg	gtggagggtg	5760
cccggcagac	gtgtgagagg	gacggttcac	aaggcttgga	cctgccatgg	agggtgccca	5820
gcagacgtgg	tgtgagaggg	acagctcacg	aggcttggac	ctgccgtgga	gggtgcccag	5880
cagggggctg	agctctgagg	ggtgggtgct	cagtgcacgg	gtgcccccag	tgtcctctga	5940
tcctgtccgg	tgcctccccc	aacccccaca	cccatgcaga	actcccaggt	cacatgcacg	6000
tatgtccagg	gcatgggggt	ggcgtgaaga	ggcctggtca	gggcctttag	gggctgcagg	6060
acggaatggc	cacctgggga	gcctgtgtgg	ctgtgccggg	cagccatcct	gcattcccac	6120
ccagcgcgca	gtctccacct	cggccccagc	aaagcgctaa	gcagccggag	agacagccag	6180
ggcggcttcc	tgaaggatgt	gggatggtgg	actccggggt	cgagggaata	cgcaggttcc	6240
tgtcctccgg	gagacctaga	gaagctgcac	acccaggagc	tttccatgac	ccgggagcat	6300
gagtgaatgg	ggggttccag	tttgctgaac	tttgctgtct	tgtaagggtg	ggggctgacg	6360
gccgaccctg	ggaggaggtg	acaccgcagg	gggaggttgt	gggcaacggt	ggaggaggag	6420
agacgggagg	ggaccatttg	ggatggaggg	gcctcttcag	agttttaaaa	ggcgtttgtg	6480
gggtggagtt	gagtgtgctc	tgggcttgga	cacttgccgt	ggtgcccctg	gctggccgag	6540
gagactggct	ctggccaggg	ccccgtcctg	agaggtcctc	agcgtctgac	tctcggccag	6600
gcgccagcaa	ggaggggccg	gtccccgggg	ctaccaggca	ggcacgtgca	catcgccatc	6660
gccacacgcc	aactccgcct	gggttttaca	aagtcgttgc	cttaatgcat	gtggacagga	6720
actccctgag	gtcgccccat	gccccctggc	tgtgccaggt Page 84		tggaccctgc	6780

		330.	opuace ocqu	0		
gaacaggtgg g	ggcgggcgag	gggcccaagg	gacgggctcc	agagacacgc	gcagggcagg	6840
aggggtctca (cggaggggtc	tcgcactgag	gcgcccagag	ctggtggtcc	cgctggacgc	6900
catccctctg	cccgggatcc	acacggccca	cgtgtgcccg	ccatgcccgc	gccccacgcc	6960
attgcagtct -	tccatcctct	ggccgtgacg	gtggctgcag	cttccccatt	tgcgccgttg	7020
cctctggctg	tctgcacttt	tgttcatgct	ccaaagaaca	tttcataatg	ccttcagtac	7080
cgacgtacac -	ttctgaccat	tttgtatgtg	tccttgtgcc	gtagtgacca	ggcctttttt	7140
tggtggatgt (gttaccccgc	acacttcaat	ctcaactttg	tgcaccgtcc	attttctagg	7200
gatagacgcc	cagggaatga	actctagttt	tctaacagat	tagctgagat	attaacttac	7260
tcacacggac	aggttgatgc	cagagccgta	agaatgcgcc	agtgcgggtt	tgcgggggac	7320
ttcgggtgtg	gggtcctgcg	gccgcgatgg	ccgtggaagg	ttctggggat	ccctgctgcc	7380
acggggacga g	gttcggacgc	caggtggacc	tgtgcactca	gtaaaacgca	gtgattc	7437
<210> 43 <211> 7437 <212> DNA <213> Homo <400> 43	sapiens			·		
gctgagcctg	agcccgaccc	ggggcgcctc	ccgccaggca	ccacggtgca	gaagtcgcgc	60
aacggcggcg	tataccccgg	cccgagcggg	gagaagaagc	tgaaggtggg	cttcgtgggg	120
ctggaccccg (gcgcgcccga	ctccacccgg	gacggggcgc	tgctgatcgc	cggctccgag	180
gcccccaagc g	gcggcagcat	cctcagcaaa	cctcgcgcgg	gcggcgcggg	cgccgggaag	240
cccccaagc g	gcaacgcctt	ctaccgcaag	ctgcagaatt	tcctctacaa	cgtgctggag	300
cggccgcgcg (gctgggcgtt	catctaccac	gcctacgtgt	tcctcctggt	tttctcctgc	360
ctcgtgctgt (ctgtgttttc	caccatcaag	gagtatgaga	agagctcgga	gggggccctc	420
tacatcctgg a	aaatcgtgac	tatcgtggtg	tttggcgtgg	agtacttcgt	gcggatctgg	480
gccgcaggct (gctgctgccg	gtaccgtggc	tggagggggc	ggctcaagtt	tgcccggaaa	540
ccgttctgtg f	tgattgacat	catggtgctc	atcgcctcca	ttgcggtgct	ggccgccggc	600
tcccagggca a	acgtctttgc	cacatctgcg	ctccggagcc	tgcgcttcct	gcagattctg	660
cggatgatcc g	gcatggaccg	gcggggaggc	acctggaagc	tgctgggctc	tgtggtctat	720
gcccacagca a	aggagctggt	cactgcctgg	tacatcggct	tcctttgtct	catcctggcc	780
tcgttcctgg †	tgtacttggc	agagaagggg	gagaacgacc	actttgacac	ctacgcggat	840
gcactctggt g	ggggcctgat	cacgctgacc	accattggct	acggggacaa	gtacccccag	900
acctggaacg g	gcaggctcct	tgcggcaacc	ttcaccctca	tcggtgtctc	cttcttcgcg	960
ctgcctgcag g	gcatcttggg	gtctgggttt	gccctgaagg	ttcaggagca	gcacaggcag	1020
aagcactttg a	agaagaggcg	gaacccggca	gcaggcctga	tccagtcggc	ctggagattc	1080
tacgccacca a	acctctcgcg	cacagacctg	cactccacgt	ggcagtacta	cgagcgaacg	1140

SSCP Update Sequences.ST25 1200 gtcaccgtgc ccatgtacag ttcgcaaact caaacctacg gggcctccag acttatcccc 1260 ccgctgaacc agctggagct gctgaggaac ctcaagagta aatctggact cgctttcagg 1320 aaggaccccc cgccggagcc gtctccaagc cagaaggtca gtttgaaaga tcgtgtcttc tccaqccccc gaggcgtggc tgccaagggg aaggggtccc cgcaggccca gactgtgagg 1380 cggtcaccca gcgccgacca gagcctcgag gacagcccca gcaaggtgcc caagagctgg 1440 1500 agcttcgggg accgcagccg ggcacgccag gctttccgca tcaagggtgc cgcgtcacgg caqaactcaq aaqaaqcaag cctccccgga gaggacattg tggatgacaa gagctgcccc 1560 1620 tgcgagtttg tgaccgagga cctgaccccg ggcctcaaag tcagcatcag agccgtgtgt gtcatgcggt tcctggtgtc caagcggaag ttcaaggaga gcctgcggcc ctacgacgtg 1680 1740 atggacgtca tcgagcagta ctcagccggc cacctggaca tgctgtcccg aattaagagc ctgcagtcca gagtggacca gatcgtgggg cggggcccag cgatcacgga caaggaccgc 1800 accaagggcc cggccgaggc ggagctgccc gaggacccca gcatgatggg acggctcggg 1860 aaggtggaga agcaggtctt gtccatggag aagaagctgg acttcctggt gaatatctac 1920 1980 atgcagcgga tgggcatccc cccgacagag accgaggcct actttggggc caaagagccg 2040 gagccggcgc cgccgtacca cagcccggaa gacagccggg agcatgtcga caggcacggc tgcattgtca agatcgtgcg ctccagcagc tccacgggcc agaagaactt ctcggcgccc 2100 ccggccgcgc cccctgtcca gtgtccgccc tccacctcct ggcagccaca gagccacccg 2160 2220 cgccagggcc acggcacctc ccccgtgggg gaccacggct ccctggtgcg catcccgccg ccgcctgccc acgagcggtc gctgtccgcc tacggcgggg gcaaccgcgc cagcatggag 2280 2340 ttcctgcggc aggaggacac cccgggctgc aggccccccg aggggaccct gcgggacagc 2400 gacacgtcca tctccatccc gtccgtggac cacgaggagc tggagcgttc cttcagcggc 2460 ttcagcatct cccagtccaa ggagaacctg gatgctctca acagctgcta cgcggccgtg 2520 qcqccttqtq ccaaaqtcag gccctacatt gcggagggag agtcagacac cgactccgac 2580 ctctgtaccc cgtgcgggcc cccgccacgc tcggccaccg gcgagggtcc ctttggtgac 2640 gtgggctggg ccgggcccag gaagtgaggc ggcgctgggc cagtggaccc gcccgcggcc ctcctcagca cggtgcctcc gaggttttga ggcgggaacc ctctggggcc cttttcttac 2700 2760 agtaactgag tgtggcggga agggtgggcc ctggaggggc ccatgtgggc tgaaggatgg 2820 gggctcctgg cagtgacctt ttacaaaagt tattttccaa cagggcactc ccaggccctg 2880 tcqccattqa qqtqcctccg ctgggctgtc tcctcacccc tccctgtgct ggagcctgtc 2940 ccaaaaaggt gccaactggg aggcctcgga agccactgtc caggctccca ctgcctgtct 3000 gctctgttcc caaaggcagc gtgtgtggcc tcgggccctg cggtggcatg aagcatccct tctqqtgtgg gcatcgctac gtgttttggg ggcagcgttt cacggcggtg cccttgctgt 3060 3120 ctcccttggg ctggctcgag cctggggtcc atgtcccttt gccgtcccgt catggggcag ggaatccata gcggggccca caggcagggg tatgagtgcg tcccacccaa cgcagcacca 3180

SSCP Update Sequences.ST25 3240 gccccggcca ccgctccccg tgtccccagt tccgtctcag ctacctggac tccaggaccc 3300 3360 ccccqcctqc tctttcctcc cccqccaggt gtggccccgc ctgctctttc ctccccacc agtatggccc cacctgctct ttcctcccc cccaaggtgt ggccccacct gttctttcct 3420 3480 cccctqccqa qqtqtqaccc cacctqctct ttcctccctc ccagtatggc cccacctgct 3540 ctttcctccc ccgaggtgag gccccgcctg ctctttcctc ccatgggagc cgctgaggcg 3600 tgcgcacctg ggcacaggtt ggggctctgc aggatgagga agacaggcca atcccttccc tcccaqaaqc tqqccqccca gcaggaggga ctgaggccag actcatgtcc agcaaggaac 3660 gtgtggtgtg tcccctggga agtctctggg ccctgggaag agggaaggtg cacgtcctgg 3720 gatggttgcg gggccctgtt ttgggagaca aaggggtaga gggtctgtct tgggcccccc 3780 cagactctag cccgagcagt gcagccacct actgccccac ctcagagaag tgcagcggga 3840 aggaggctgg aggtggtgcct gggtgtctgc gtgaatgagc gtggccaagg 3900 3960 accagtgcca cctcatggca aagagctccc gcagtgtttg ttagagtgca catcctacgt gcccactggc acacacagt gctcacatac atgtccgcgt acaggcgtac acatgcacgc 4020 ttgcacacat gcacacagac cacatagcac acatgtgcac tgaccacacc tgtatagacc 4080 atgcacagta cacatacgtg catacacatg cctgcataca ggcatacaca tgcacgctta 4140 catgtacacg tgcacagatc acacacatgc acacacgtgt agctcacaca cagtatacac 4200 atacacaagt gcacagacca cacacagcac taacacatgc acacacaaag tgcataggcc 4260 acacagcaca tgcacacagg tgcacagacc acacagcaca cacaagtgca cagagcacac 4320 tgcacacatg cacacacac cgcgtgcatg cacactcctc gcacttccag ccttggagcc 4380 cttctgtctc tggtctttct ctttgaccct gctgagtgta agctgcctgg ggaggggcta 4440 caaqqaqtaa ttgtggcttt aggggtcgtg gtgatgctgg aatgtcaagc gccgtcgtgg 4500 4560 ggtatccgac tgtccgggct cctggtccgc agtggcagag cgccaggcag agccaatcag 4620 ggtctcgtgc tgcccttccc ccccacagcc tggcagccat ccagaggagg ggctctacca 4680 gatgccaagg tgcccqqtg tctgtatggg tgtccggttg ggtcctgtgt ttggtctgcc ctggaggtgg ctgggccctc ctgggatggg tggctcagcc tcgaatccca ggccccagcc 4740 caggcaggtg ctgctgcctg ttgtggtttc ctggcccagc ttctccttct ccctctgcat 4800 4860 aaaatcacag tccgtgagtc ttccagctgc caccacggct gggacacgct gggggagggc 4920 tcctcccatg cctcctgcac acagccgtct gagcagggca ggtgccaaca ccccccaccg 4980 gagacacget geeecteage gatgeeecta cettttgggg ggeetegtet caageeecee 5040 cttqqaggct gaaatcaccc caggcactgt gagggcttct ccagggggac accctttgag ctqtqggtct gatcacccca agtcccgcac acggaggaga ggcacagcca gggcgtgtgg 5100 tttaatgttt gccccttcgg ggctggaggt ctcagtgttt ctagattcca gaccctgctg 5160 5220 ccaqaqaqac ctgctgccgg agagaagggg aggaggactc cagctgggct cggtcccca

SSCP Update Sequences.ST25 5280 cagtcaggga cccccataaa ggacaccccc ttctctctag aaagagctgg gctctcagct atttctagtt gcttcccaga agccgaggag cagaaggagc tgtgagagct ttgcagaaac 5340 5400 gcccttgtcc ccgccctcct gagctatgaa tgccgtacag agcagaggct ggggcattgg caagatcaca ggttgatgct gcacagcccc attgacacaa accctcaaag cagacgtgag 5460 5520 agggacggtt cacaaagctt ggacctgccg tggagggtgc ccggcagacg tggcgtgaga gggacggctc acgaggcttg gacctgctgt ggagggtgcc cagcagacgt ggtgtgagag 5580 5640 gaacggctca cgagacttgg acctggtgga gggtgcccag cagacgtggt gtgagaggga 5700 cggctcacag ggcttggacc ggagagagat ggctcatgag acttggacct gccgtggagg gtgcccagca gacgtggtat gagagggatg gctcacgagg cttggacctg gtggagggtg 5760 cccggcagac gtgtgagagg gacggttcac aaggcttgga cctgccatgg agggtgccca 5820 gcagacgtgg tgtgagaggg acagctcacg aggcttggac ctgccgtgga gggtgcccag 5880 5940 cagggggctg agctctgagg ggtgggtgct cagtgcacgg gtgcccccag tgtcctctga tcctgtccgg tgcctccccc aacccccaca cccatgcaga actcccaggt cacatgcacg 6000 tatgtccagg gcatgggggt ggcgtgaaga ggcctggtca gggcctttag gggctgcagg 6060 6120 acggaatggc cacctgggga gcctgtgtgg ctgtgccggg cagccatcct gcattcccac ccaqcgcgca gtctccacct cggccccagc aaagcgctaa gcagccggag agacagccag 6180 6240 ggcggcttcc tgaaggatgt gggatggtgg actccggggt cgagggaata cgcaggttcc tgtcctccgg gagacctaga gaagctgcac acccaggagc tttccatgac ccgggagcat 6300 6360 gagtgaatgg ggggttccag tttgctgaac tttgctgtct tgtaagggtg ggggctgacg 6420 gccgaccctg ggaggaggtg acaccgcagg gggaggttgt gggcaacggt ggaggaggag agacgggagg ggaccatttg ggatggaggg gcctcttcag agttttaaaa ggcgtttgtg 6480 6540 gggtggagtt gagtgtgctc tgggcttgga cacttgccgt ggtgcccctg gctggccgag 6600 gagactggct ctggccaggg ccccgtcctg agaggtcctc agcgtctgac tctcggccag 6660 gcgccagcaa ggaggggccg gtccccgggg ctaccaggca ggcacgtgca catcgccatc 6720 gccacacgcc aactccgcct gggttttaca aagtcgttgc cttaatgcat gtggacagga actccctgag gtcgccccat gccccctggc tgtgccaggt acggacgccc tggaccctgc 6780 6840 aggggtctca cggaggggtc tcgcactgag gcgcccagag ctggtggtcc cgctggacgc 6900 6960 catccctctq cccqqqatcc acacggccca cgtgtgcccg ccatgcccgc gccccacgcc attgcagtct tccatcctct ggccgtgacg gtggctgcag cttccccatt tgcgccgttg 7020 cctctggctg tctgcacttt tgttcatgct ccaaagaaca tttcataatg ccttcagtac 7080 7140 cgacgtacac ttctgaccat tttgtatgtg tccttgtgcc gtagtgacca ggcctttttt tggtggatgt gttaccccgc acacttcaat ctcaactttg tgcaccgtcc attttctagg 7200 gatagacgcc cagggaatga actctagttt tctaacagat tagctgagat attaacttac 7260

tcacacgga	aggttgatgc	SSCP cagagccgta	Update Sequ agaatgcgco	uences.ST25 agtgcgggtt	tgcgggggac	7320
ttcgggtgtg	g gggtcctgcg	gccgcgatgg	ccgtggaagg	ttctggggat	ccctgctgcc	7380
acggggacga	a gttcggacgc	caggtggacc	: tgtgcactca	gtaaaacgca	gtgattc	7437
<210> 44 <211> 743 <212> DNA <213> Hon	•					
<400> 44	g agcccgaccc	ggggcgcctc	ccaccaaaca	ccatootoca	gaagtcgcgc	60
	tataccccgg				_	120
	gcgcgcccga					180
	gcggcagcat					240
	gcaacgcctt					300
	gctgggcgtt					360
	ctgtgttttc					420
	aaatcgtgac					480
	gctgctgccg					
•	tgattgacat					540
	acgtctttgc					600
						660
	gcatggaccg					720
	aggagctggt					780
	tgtacttggc					840
	ggggcctgat					900
	gcaggctcct					960
	gcatcttggg					1020
	agaagaggcg					1080
	acctctcggg					1140
	ccatgtacag					1200
	agctggagct					1260
	cgccggagcc					1320
tccagccccc	gaggcgtggc	tgccaagggg	aaggggtccc	cgcaggccca	gactgtgagg	1380
cggtcaccca	gcgccgacca	gagcctcgag	gacagcccca	gcaaggtgcc	caagagctgg	1440
agcttcgggg	accgcagccg	ggcacgccag	gctttccgca	tcaagggtgc	cgcgtcacgg	1500
cagaactcag	aagaagcaag	cctcccgga	gaggacattg	tggatgacaa	gagctgcccc	1560
tgcgagtttg	tgaccgagga	cctgaccccg	ggcctcaaag	tcagcatcag	agccgtgtgt	1620
gtcatgcggt	tcctggtgtc	caagcggaag	ttcaaggaga Page 89	gcctgcggcc	ctacgacgtg	1680

atggacgtca	tcgagcagta	ctcagccggc	cacctggaca	tgctgtcccg	aattaagagc	1740
ctgcagtcca	gagtggacca	gatcgtgggg	cggggcccag	cgatcacgga	caaggaccgc	1800
accaagggcc	cggccgaggc	ggagctgccc	gaggacccca	gcatgatggg	acggctcggg	1860
aaggtggaga	agcaggtctt	gtccatggag	aagaagctgg	acttcctggt	gaatatctac	1920
atgcagcgga	tgggcatccc	cccgacagag	accgaggcct	actttggggc	caaagagccg	1980
gagccggcgc	cgccgtacca	cagcccggaa	gacagccggg	agcatgtcga	caggcacggc	2040
tgcattgtca	agatcgtgcg	ctccagcagc	tccacgggcc	agaagaactt	ctcggcgccc	2100
ccggccgcgc	cccctgtcca	gtgtccgccc	tccacctcct	ggcagccaca	gagccacccg	2160
cgccagggcc	acggcacctc	ccccgtgggg	gaccacggct	ccctggtgcg	catcccgccg	2220
ccgcctgccc	acgagcggtc	gctgtccgcc	tacggcgggg	gcaaccgcgc	cagcatggag	2280
ttcctgcggc	aggaggacac	cccgggctgc	aggccccccg	aggggaccct	gcgggacagc	2340
gacacgtcca	tctccatccc	gtccgtggac	cacgaggagc	tggagcgttc	cttcagcggc	2400
ttcagcatct	cccagtccaa	ggagaacctg	gatgctctca	acagctgcta	cgcggccgtg	2460
gcgccttgtg	ccaaagtcag	gccctacatt	gcggagggag	agtcagacac	cgactccgac	2520
ctctgtaccc	cgtgcgggcc	cccgccacgc	tcggccaccg	gcgagggtcc	ctttggtgac	2580
gtgggctggg	ccgggcccag	gaagtgaggc	ggcgctgggc	cagtggaccc	gcccgcggcc	2640
ctcctcagca	cggtgcctcc	gaggttttga	ggcgggaacc	ctctggggcc	cttttcttac	2700
agtaactgag	tgtggcggga	agggtgggcc	ctggaggggc	ccatgtgggc	tgaaggatgg	2760
gggctcctgg	cagtgacctt	ttacaaaagt	tattttccaa	cagggcactc	ccaggccctg	2820
tcgccattga	ggtgcctccg	ctgggctgtc	tcctcacccc	tccctgtgct	ggagcctgtc	2880
ccaaaaaggt	gccaactggg	aggcctcgga	agccactgtc	caggctccca	ctgcctgtct	2940
gctctgttcc	caaaggcagc	gtgtgtggcc	tcgggccctg	cggtggcatg	aagcatccct	3000
tctggtgtgg	gcatcgctac	gtgttttggg	ggcagcgttt	cacggcggtg	cccttgctgt	3060
ctcccttggg	ctggctcgag	cctggggtcc	atgtcccttt	gccgtcccgt	catggggcag	3120
ggaatccata	gcggggccca	caggcagggg	tatgagtgcg	tcccacccaa	cgcagcacca	3180
gccccggcca	ccgctccccg	tgtccccagt	tccgtctcag	ctacctggac	tccaggaccc	3240
tggagaaggg	agacctggca	gtggagggag	gctgtgctgt	gtgtccccct	gcaggtgtga	3300
ccccgcctgc	tctttcctcc	cccgccaggt	gtggccccgc	ctgctctttc	ctccccacc	3360
agtatggccc	cacctgctct	ttcctccccc	cccaaggtgt	ggccccacct	gttctttcct	3420
cccctgccga	ggtgtgaccc	cacctgctct	ttcctccctc	ccagtatggc	cccacctgct	3480
ctttcctccc	ccgaggtgag	gccccgcctg	ctctttcctc	ccatgggagc	cgctgaggcg	3540
tgcgcacctg	ggcacaggtt	ggggctctgc	aggatgagga	agacaggcca	atcccttccc	3600
tcccagaagc	tggccgccca	gcaggaggga	ctgaggccag	actcatgtcc	agcaaggaac	3660
gtgtggtgtg	tcccctggga	agtctctggg	ccctgggaag Page 90		cacgtcctgg	3720

gatggttgcg	gggccctgtt	ttgggagaca	aaggggtaga	gggtctgtct	tgggcccccc	3780
cagactctag	cccgagcagt	gcagccacct	actgccccac	ctcagagaag	tgcagcggga	3840
aggaggctgg	aggtggtgcg	gcgctgcctc	gggtgtctgc	gtgaatgagc	gtggccaagg	3900
accagtgcca	cctcatggca	aagagctccc	gcagtgtttg	ttagagtgca	catcctacgt	3960
gcccactggc	acacacacgt	gctcacatac	atgtccgcgt	acaggcgtac	acatgcacgc	4020
ttgcacacat	gcacacagac	cacatagcac	acatgtgcac	tgaccacacc	tgtatagacc	4080
atgcacagta	cacatacgtg	catacacatg	cctgcataca	ggcatacaca	tgcacgctta	4140
catgtacacg	tgcacagatc	acacacatgc	acacacgtgt	agctcacaca	cagtatacac	4200
atacacaagt	gcacagacca	cacacagcac	taacacatgc	acacacaaag	tgcataggcc	4260
acacagcaca	tgcacacagg	tgcacagacc	acacagcaca	cacaagtgca	cagagcacac	4320
tgcacacatg	cacacacaca	cgcgtgcatg	cacactcctc	gcacttccag	ccttggagcc	4380
cttctgtctc	tggtctttct	ctttgaccct	gctgagtgta	agctgcctgg	ggaggggcta	4440
caaggagtaa	ttgtggcttt	aggggtcgtg	gtgatgctgg	aatgtcaagc	gccgtcgtgg	4500
ggtatccgac	tgtccgggct	cctggtccgc	agtggcagag	cgccaggcag	agccaatcag	4560 .
ggtctcgtgc	tgcccttccc	ccccacagcc	tggcagccat	ccagaggagg	ggctctacca	4620
gatgccaagg	tgccccggtg	tctgtatggg	tgtccggttg	ggtcctgtgt	ttggtctgcc	4680
ctggaggtgg	ctgggccctc	ctgggatggg	tggctcagcc	tcgaatccca	ggccccagcc	4740
caggcaggtg	ctgctgcctg	ttgtggtttc	ctggcccagc	ttctccttct	ccctctgcat	4800
aaaatcacag	tccgtgagtc	ttccagctgc	caccacggct	gggacacgct	gggggagggc	4860
tcctcccatg	cctcctgcac	acagccgtct	gagcagggca	ggtgccaaca	cccccaccg	4920
gagacacgct	gcccctcagc	gatgccccta	ccttttgggg	ggcctcgtct	caagcccccc	4980
cttggaggct	gaaatcaccc	caggcactgt	gagggcttct	ccagggggac	accctttgag	5040
ctgtgggtct	gatcacccca	agtcccgcac	acggaggaga	ggcacagcca	gggcgtgtgg	5100
tttaatgttt	gccccttcgg	ggctggaggt	ctcagtgttt	ctagattcca	gaccctgctg	5160
ccagagagac	ctgctgccgg	agagaagggg	aggaggactc	cagctgggct	cggtccccca	5220
cagtcaggga	ccccataaa	ggacaccccc	ttctctctag	aaagagctgg	gctctcagct	5280
atttctagtt	gcttcccaga	agccgaggag	cagaaggagc	tgtgagagct	ttgcagaaac	5340
gcccttgtcc	ccgccctcct	gagctatgaa	tgccgtacag	agcagaggct	ggggcattgg	5400
caagatcaca	ggttgatgct	gcacagcccc	attgacacaa	accctcaaag	cagacgtgag	5460
agggacggtt	cacaaagctt	ggacctgccg	tggagggtgc	ccggcagacg	tggcgtgaga	5520
gggacggctc	acgaggcttg	gacctgctgt	ggagggtgcc	cagcagacgt	ggtgtgagag	5580
gaacggctca	cgagacttgg	acctggtgga	gggtgcccag	cagacgtggt	gtgagaggga	5640
cggctcacag	ggcttggacc	ggagagagat	ggctcatgag	acttggacct	gccgtggagg	5700
gtgcccagca	gacgtggtat	gagagggatg	gctcacgagg Page 91		gtggagggtg	5760

SSCP Update Sequences.ST25

			•			
cccggcagac	gtgtgagagg	gacggttcac	aaggcttgga	cctgccatgg	agggtgccca	5820
gcagacgtgg	tgtgagaggg	acagctcacg	aggcttggac	ctgccgtgga	gggtgcccag	5880
cagggggctg	agctctgagg	ggtgggtgct	cagtgcacgg	gtgcccccag	tgtcctctga	5940
tcctgtccgg	tgcctcccc	aacccccaca	cccatgcaga	actcccaggt	cacatgcacg	6000
tatgtccagg	gcatgggggt	ggcgtgaaga	ggcctggtca	gggcctttag	gggctgcagg	6060
acggaatggc	cacctgggga	gcctgtgtgg	ctgtgccggg	cagccatcct	gcattcccac	6120
ccagcgcgca	gtctccacct	cggccccagc	aaagcgctaa	gcagccggag	agacagccag	6180
ggcggcttcc	tgaaggatgt	gggatggtgg	actccggggt	cgagggaata	cgcaggttcc	6240
tgtcctccgg	gagacctaga	gaagctgcac	acccaggagc	tttccatgac	ccgggagcat	6300
gagtgaatgg	ggggttccag	tttgctgaac	tttgctgtct	tgtaagggtg	ggggctgacg	6360
gccgaccctg	ggaggaggtg	acaccgcagg	gggaggttgt	gggcaacggt	ggaggaggag	6420
agacgggagg	ggaccatttg	ggatggaggg	gcctcttcag	agttttaaaa	ggcgtttgtg	6480
gggtggagtt	gagtgtgctc	tgggcttgga	cacttgccgt	ggtgcccctg	gctggccgag	6540
gagactggct	ctggccaggg	ccccgtcctg	agaggtcctc	agcgtctgac	tctcggccag	6600
gcgccagcaa	ggaggggccg	gtccccgggg	ctaccaggca	ggcacgtgca	catcgccatc	6660
gccacacgcc	aactccgcct	gggttttaca	aagtcgttgc	cttaatgcat	gtggacagga	6720
actccctgag	gtcgccccat	gccccctggc	tgtgccaggt	acggacgccc	tggaccctgc	6780
gaacaggtgg	ggcgggcgag	gggcccaagg	gacgggctcc	agagacacgc	gcagggcagg	6840
aggggtctca	cggaggggtc	tcgcactgag	gcgcccagag	ctggtggtcc	cgctggacgc	6900
catccctctg	cccgggatcc	acacggccca	cgtgtgcccg	ccatgcccgc	gccccacgcc	6960
attgcagtct	tccatcctct	ggccgtgacg	gtggctgcag	cttccccatt	tgcgccgttg	7020
cctctggctg	tctgcacttt	tgttcatgct	ccaaagaaca	tttcataatg	ccttcagtac	7080
cgacgtacac	ttctgaccat	tttgtatgtg	tccttgtgcc	gtagtgacca	ggcctttttt	7140
tggtggatgt	gttaccccgc	acacttcaat	ctcaactttg	tgcaccgtcc	attttctagg	7200
gatagacgcc	cagggaatga	actctagttt	tctaacagat	tagctgagat	attaacttac	7260
tcacacggac	aggttgatgc	cagagccgta	agaatgcgcc	agtgcgggtt	tgcgggggac	7320
ttcgggtgtg	gggtcctgcg	gccgcgatgg	ccgtggaagg	ttctggggat	ccctgctgcc	7380
acggggacga	gttcggacgc	caggtggacc	tgtgcactca	gtaaaacgca	gtgattc	7437
	7 o sapiens					
<400> 45 gctgagcctg	agcccgaccc	ggggcgcctc	ccgccaggca	ccatggtgca	gaagtcgcgc	60
						120

120

aacggcggcg tataccccgg cccgagcggg gagaagaagc tgaaggtggg cttcgtgggg

SSCP Update Sequences.ST25 180 ctggaccccg gcgcgcccga ctccacccgg gacggggcgc tgctgatcgc cggctccgag gcccccaagc gcggcagcat cctcagcaaa cctcgcgcgg gcggcgcggg cgccgggaag 240 cccccaagc gcaacgcctt ctaccgcaag ctgcagaatt tcctctacaa cgtgctggag 300 cggccgcgcg gctgggcgtt catctaccac gcctacgtgt tcctcctggt tttctcctgc 360 420 ctcqtqctqt ctgtgttttc caccatcaag gagtatgaga agagctcgga gggggccctc 480 tacatcctqq aaatcqtqac tatcqtqqtg tttqgcqtqg agtacttcqt gcggatctgg 540 gccgcaggct gctgctgccg gtaccgtggc tggagggggc ggctcaagtt tgcccggaaa ccgttctgtg tgattgacat catggtgctc atcgcctcca ttgcggtgct ggccgccggc 600 tcccagggca acgtctttgc cacatctgcg ctccggagcc tgcgcttcct gcagattctg 660 cggatgatcc gcatggaccg gcggggaggc acctggaagc tgctgggctc tgtggtctat 720 gcccacagca aggagctggt cactgcctgg tacatcggct tcctttgtct catcctggcc 780 840 tcqttcctqq tqtacttqqc aqaqaagggg gagaacgacc actttgacac ctacgcggat gcactctggt ggggcctgat cacgctgacc accattggct acggggacaa gtacccccag 900 acctggaacg gcaggctcct tgcggcaacc ttcaccctca tcggtgtctc cttcttcgcg 960 1020 ctgcctgcag gcatcttggg gtctgggttt gccctgaagg ttcaggagca gcacaggcag aagcactttg agaagaggcg gaacccggca gcaggcctga tccagtcggc ctggagattc 1080 tacgccacca acctctcgcg cacagacctg cactccacgt ggcagtacta cgagcgaacg 1140 1200 gtcaccgtgc ccatgtacag ttcgcaaact caaacctacg gggcctccag acttatcccc 1260 ccqctgaacc agctggagct gctgaggaac ctcaagagta aatctggact cgctttcagg 1320 aaggaccccc cgccggagcc gtctccaagc cagaaggtca gtttgaaaga tcgtgtcttc tccagcccct gaggcgtggc tgccaagggg aaggggtccc cgcaggccca gactgtgagg 1380 cggtcaccca gcgccgacca gagcctcgag gacagcccca gcaaggtgcc caagagctgg 1440 agcttcgggg accgcagccg ggcacgccag gctttccgca tcaagggtgc cgcgtcacgg 1500 1560 cagaactcag aagaagcaag cctccccgga gaggacattg tggatgacaa gagctgcccc 1620 tgcgagtttg tgaccgagga cctgaccccg ggcctcaaag tcagcatcag agccgtgtgt gtcatgcggt tcctggtgtc caagcggaag ttcaaggaga gcctgcggcc ctacgacgtg 1680 1740 atqqacqtca tcqaqcagta ctcaqccggc cacctggaca tgctgtcccg aattaagagc 1800 ctgcagtcca gagtggacca gatcgtgggg cggggcccag cgatcacgga caaggaccgc 1860 accaagggcc cggccgaggc ggagctgccc gaggacccca gcatgatggg acggctcggg 1920 aaggtggaga agcaggtctt gtccatggag aagaagctgg acttcctggt gaatatctac atgcagcgga tgggcatccc cccgacagag accgaggcct actttggggc caaagagccg 1980 2040 qaqccqqcqc cgccgtacca cagcccggaa gacagccggg agcatgtcga caggcacggc 2100 tgcattgtca agatcgtgcg ctccagcagc tccacgggcc agaagaactt ctcggcgccc ccggccgcgc cccctgtcca gtgtccgccc tccacctcct ggcagccaca gagccacccg 2160

SSCP Update Sequences.ST25 2220 cgccagggcc acggcacctc ccccgtgggg gaccacggct ccctggtgcg catcccgccg ccqcctgccc acgagcggtc gctgtccgcc tacggcgggg gcaaccgcgc cagcatggag 2280 2340 ttcctgcqqc aggaggacac cccgggctgc aggccccccg aggggaccct gcgggacagc gacacgtcca tctccatccc gtccgtggac cacgaggagc tggagcgttc cttcagcggc 2400 ttcagcatct cccaqtccaa ggagaacctg gatgctctca acagctgcta cgcggccgtg 2460 gcgccttgtg ccaaagtcag gccctacatt gcggagggag agtcagacac cgactccgac 2520 ctctgtaccc cgtgcgggcc cccgccacgc tcggccaccg gcgagggtcc ctttggtgac 2580 gtgggctggg ccgggcccag gaagtgaggc ggcgctgggc cagtggaccc gcccgcggcc 2640 ctcctcagca cggtgcctcc gaggttttga ggcgggaacc ctctggggcc cttttcttac 2700 aqtaactqaq tqtqqcqqqa agqgtgggcc ctggaggggc ccatgtgggc tgaaggatgg 2760 gggctcctgg cagtgacctt ttacaaaagt tattttccaa cagggcactc ccaggccctg 2820 tcqccattqa qqtqcctccg ctggqctgtc tcctcacccc tccctgtgct ggagcctgtc 2880 ccaaaaaqqt qccaactqqg aggcctcgga agccactgtc caggctccca ctgcctgtct 2940 gctctgttcc caaaggcagc gtgtgtggcc tcgggccctg cggtggcatg aagcatccct 3000 3060 tctqqtqtqq qcatcqctac gtgttttggg ggcagcgttt cacggcggtg cccttgctgt ctcccttggg ctggctcgag cctggggtcc atgtcccttt gccgtcccgt catggggcag 3120 qqaatccata qcqqqqccca caggcagggg tatgagtgcg tcccacccaa cgcagcacca 3180 qccccqqcca ccqctccccg tgtccccagt tccgtctcag ctacctggac tccaggaccc 3240 3300 ccccqcctqc tctttcctcc cccgccaggt gtggccccgc ctgctctttc ctcccccacc 3360 agtatggccc cacctgctct ttcctccccc cccaaggtgt ggccccacct gttctttcct 3420 cccctgccga ggtgtgaccc cacctgctct ttcctccctc ccagtatggc cccacctgct 3480 3540 ctttcctccc ccgaggtgag gccccgcctg ctctttcctc ccatgggagc cgctgaggcg tgcgcacctg ggcacaggtt ggggctctgc aggatgagga agacaggcca atcccttccc 3600 3660 tcccagaagc tggccgccca gcaggaggga ctgaggccag actcatgtcc agcaaggaac gtgtggtgtg tcccctggga agtctctggg ccctgggaag agggaaggtg cacgtcctgg 3720 3780 gatggttgcg gggccctgtt ttgggagaca aaggggtaga gggtctgtct tgggcccccc 3840 cagactctag cccgagcagt gcagccacct actgccccac ctcagagaag tgcagcggga 3900 aggaggctgg aggtggtgcg gcgctgcctc gggtgtctgc gtgaatgagc gtggccaagg 3960 accaptgcca cctcatggca aagagctccc gcagtgtttg ttagagtgca catcctacgt gcccactggc acacacagt gctcacatac atgtccgcgt acaggcgtac acatgcacgc 4020 ttgcacacat gcacacagac cacatagcac acatgtgcac tgaccacacc tgtatagacc 4080 atgcacagta cacatacgtg catacacatg cctgcataca ggcatacaca tgcacgctta 4140 4200 catqtacacg tgcacagatc acacacatgc acacacgtgt agctcacaca cagtatacac

SSCP Update Sequences.ST25 atacacaagt gcacagacca cacacagcac taacacatgc acacacaaag tgcataggcc 4260 4320 acacagcaca tgcacacagg tgcacagacc acacagcaca cacaagtgca cagagcacac 4380 tqcacacatq cacacacac cgcgtgcatg cacactcctc gcacttccag ccttggagcc cttctgtctc tggtctttct ctttgaccct gctgagtgta agctgcctgg ggaggggcta 4440 4500 caaggagtaa ttgtggcttt aggggtcgtg gtgatgctgg aatgtcaagc gccgtcgtgg 4560 ggtatccgac tgtccgggct cctggtccgc agtggcagag cgccaggcag agccaatcag ggtctcgtgc tgcccttccc ccccacagcc tggcagccat ccagaggagg ggctctacca 4620 4680 gatgccaagg tgccccggtg tctgtatggg tgtccggttg ggtcctgtgt ttggtctgcc ctggaggtgg ctgggccctc ctgggatggg tggctcagcc tcgaatccca ggccccagcc 4740 4800 caggcaggtg ctgctgcctg ttgtggtttc ctggcccagc ttctccttct ccctctgcat aaaatcacag teegtgagte tteeagetge caccaegget gggacaeget gggggaggge 4860 4920 tcctcccatg cctcctgcac acagccgtct gagcagggca ggtgccaaca ccccccaccg gagacacgct gcccctcagc gatgccccta ccttttgggg ggcctcgtct caagccccc 4980 cttggaggct gaaatcaccc caggcactgt gagggcttct ccagggggac accctttgag 5040 5100 ctgtgggtct gatcacccca agtcccgcac acggaggaga ggcacagcca gggcgtgtgg tttaatgttt gccccttcgg ggctggaggt ctcagtgttt ctagattcca gaccctgctg 5160 5220 ccagagagac ctgctgccgg agagaagggg aggaggactc cagctgggct cggtcccca 5280 caqtcaggga cccccataaa ggacaccccc ttctctctag aaagagctgg gctctcagct 5340 atttctagtt gcttcccaga agccgaggag cagaaggagc tgtgagagct ttgcagaaac gcccttgtcc ccgccctcct gagctatgaa tgccgtacag agcagaggct ggggcattgg 5400 caagatcaca ggttgatgct gcacagcccc attgacacaa accctcaaag cagacgtgag 5460 5520 agggacggtt cacaaagctt ggacctgccg tggagggtgc ccggcagacg tggcgtgaga gggacggctc acgaggcttg gacctgctgt ggagggtgcc cagcagacgt ggtgtgagag 5580 5640 gaacggctca cgagacttgg acctggtgga gggtgcccag cagacgtggt gtgagaggga 5700 cgqctcacag ggcttggacc ggagagagat ggctcatgag acttggacct gccgtggagg gtgcccagca gacgtggtat gagagggatg gctcacgagg cttggacctg gtggagggtg 5760 cccggcagac gtgtgagagg gacggttcac aaggcttgga cctgccatgg agggtgccca 5820 gcagacgtgg tgtgagaggg acagctcacg aggcttggac ctgccgtgga gggtgcccag 5880 cagggggctg agctctgagg ggtgggtgct cagtgcacgg gtgcccccag tgtcctctga 5940 6000 tcctgtccgg tgcctccccc aacccccaca cccatgcaga actcccaggt cacatgcacg tatgtccagg gcatgggggt ggcgtgaaga ggcctggtca gggcctttag gggctgcagg 6060 6120 acqqaatqqc cacctgqqqa gcctgtgtgg ctgtgccggg cagccatcct gcattcccac 6180 ccagcgcgca gtctccacct cggccccagc aaagcgctaa gcagccggag agacagccag ggcqgcttcc tgaaggatgt gggatggtgg actccggggt cgagggaata cgcaggttcc 6240

	SSCP L	Jpdate Seque	ences.ST25		
tgtcctccgg gagacctaga	gaagctgcac	acccaggagc	tttccatgac	ccgggagcat	6300
gagtgaatgg ggggttccag	tttgctgaac	tttgctgtct	tgtaagggtg	ggggctgacg	6360
gccgaccctg ggaggaggtg	acaccgcagg	gggaggttgt	gggcaacggt	ggaggaggag	6420
agacgggagg ggaccatttg	ggatggaggg	gcctcttcag	agttttaaaa	ggcgtttgtg	6480
gggtggagtt gagtgtgctc	tgggcttgga	cacttgccgt	ggtgcccctg	gctggccgag	6540
gagactggct ctggccaggg	ccccgtcctg	agaggtcctc	agcgtctgac	tctcggccag	6600
gcgccagcaa ggaggggccg	gtccccgggg	ctaccaggca	ggcacgtgca	catcgccatc	6660
gccacacgcc aactccgcct	gggttttaca	aagtcgttgc	cttaatgcat	gtggacagga	6720
actccctgag gtcgccccat	gccccctggc	tgtgccaggt	acggacgccc	tggaccctgc	6780
gaacaggtgg ggcgggcgag	gggcccaagg	gacgggctcc	agagacacgc	gcagggcagg	6840
aggggtctca cggaggggtc	tcgcactgag	gcgcccagag	ctggtggtcc	cgctggacgc	6900
catccctctg cccgggatcc	acacggccca	cgtgtgcccg	ccatgcccgc	gccccacgcc	6960
attgcagtct tccatcctct	ggccgtgacg	gtggctgcag	cttccccatt	tgcgccgttg	7020
cctctggctg tctgcacttt	tgttcatgct	ccaaagaaca	tttcataatg	ccttcagtac	7080
cgacgtacac ttctgaccat	tttgtatgtg	tccttgtgcc	gtagtgacca	ggccttttt	7140
tggtggatgt gttaccccgc	acacttcaat	ctcaactttg	tgcaccgtcc	attttctagg	7200
gatagacgcc cagggaatga	actctagttt	tctaacagat	tagctgagat	attaacttac	7260
tcacacggac aggttgatgc	cagagccgta	agaatgcgcc	agtgcgggtt	tgcgggggac	7320
ttcgggtgtg gggtcctgcg	gccgcgatgg	ccgtggaagg	ttctggggat	ccctgctgcc	7380
acggggacga gttcggacgc	caggtggacc	tgtgcactca	gtaaaacgca	gtgattc	7437
<210> 46 <211> 7437 <212> DNA <213> Homo sapiens					
<400> 46 gctgagcctg agcccgaccc	ggggcgcctc	ccgccaggca	ccatggtgca	gaagtcgcgc	60
aacggcggcg tataccccgg	cccgagcggg	gagaagaagc	tgaaggtggg	cttcgtgggg	120
ctggaccccg gcgcgcccga	ctccacccgg	gacggggcgc	tgctgatcgc	cggctccgag	180
gcccccaagc gcggcagcat	cctcagcaaa	cctcgcgcgg	gcggcgcggg	cgccgggaag	240
cccccaagc gcaacgcctt	ctaccgcaag	ctgcagaatt	tcctctacaa	cgtgctggag	300
cggccgcgcg gctgggcgtt	catctaccac	gcctacgtgt	tcctcctggt	tttctcctgc	360
ctcgtgctgt ctgtgttttc	caccatcaag	gagtatgaga	agagctcgga	gggggccctc	420
tacatcctgg aaatcgtgac	tatcgtggtg	tttggcgtgg	agtacttcgt	gcggatctgg	480
gccgcaggct gctgctgccg	gtaccgtggc	tggagggggc	ggctcaagtt	tgcccggaaa	540
ccgttctgtg tgattgacat	catggtgctc	atcgcctcca	ttgcggtgct	ggccgccggc	600
tcccagggca acgtctttgc	cacatctgcg	ctccggagcc Page 96		gcagattctg ·	660

cggatgatcc	gcatggaccg	gcggggaggc	acctggaagc	tgctgggctc	tgtggtctat	720
gcccacagca	aggagctggt	cactgcctgg	tacatcggct	tcctttgtct	catcctggcc	780
tcgttcctgg	tgtacttggc	agagaagggg	gagaacgacc	actttgacac	ctacgcggat	840
gcactctggt	ggggcctgat	cacgctgacc	accattggct	acggggacaa	gtacccccag	900
acctggaacg	gcaggctccť	tgcggcaacc	ttcaccctca	tcggtgtctc	cttcttcgcg	960
ctgcctgcag	gcatcttggg	gtctgggttt	gccctgaagg	ttcaggagca	gcacaggcag	1020
aagcactttg	agaagaggcg	gaacccggca	gcaggcctga	tccagtcggc	ctggagattc	1080
tacgccacca	acctctcgcg	cacagacctg	cactccacgt	ggcagtacta	cgagcgaacg	1140
gtcaccgtgc	ccatgtacag	ttcgcaaact	caaacctacg	gggcctccag	acttatcccc	1200
ccgctgaacc	agctggagct	gctgaggaac	ctcaagagta	aatctggact	cgctttcagg	1260
aaggaccccc	cgccggagcc	gtctccaagc	cagaaggtca	gtttgaaaga	tcgtgtcttc	1320
tccagccccc	gaggcgtggc	tgccaagggg	aaggggtccc	cgcaggccca	gactgtgagg	1380
cggtcaccca	gcgccgacca	gagcctcgag	gacagcccca	gcaaggtgcc	caagagctgg	1440
agcttcgggg	accgcagccg	ggcacgccag	gctttccgca	tcaagggtgc	cgcgtcacgg	1500
cagaactcag	aagaagcaag	cctcccgga	gaggacattg	tggatgacaa	gagctgcccc	1560
tgcgagtttg	tgaccgagga	cctgaccccg	ggcctcaaag	tcagcatcag	agccgtgtgţ	1620
gtcatgcggt	tcctggtgtc	caagcggaag	ttcaaggaga	gcctgcggcc	ctacgacgtg	1680
atggacgtca	tcgagcagta	ctcagccggc	cacctggaca	tgctgtcccg	aattaagagc	1740
ctgcagtcca	gtgtggacca	gatcgtgggg	cggggcccag	cgatcacgga	caaggaccgc	1800
accaagggcc	cggccgaggc	ggagctgccc	gaggacccca	gcatgatggg	acggctcggg	1860
aaggtggaga	agcaggtctt	gtccatggag	aagaagctgg	acttcctggt	gaatatctac	1920
atgcagcgga	tgggcatccc	cccgacagag	accgaggcct	actttggggc	caaagagccg	1980
gagccggcgc	cgccgtacca	cagcccggaa	gacagccggg	agcatgtcga	caggcacggc	2040
tgcattgtca	agatcgtgcg	ctccagcagc	tccacgggcc	agaagaactt	ctcggcgccc	2100
ccggccgcgc	cccctgtcca	gtgtccgccc	tccacctcct	ggcagccaca	gagccacccg	2160
cgccagggcc	acggcacctc	ccccgtgggg	gaccacggct	ccctggtgcg	catcccgccg	2220
ccgcctgccc	acgagcggtc	gctgtccgcc	tacggcgggg	gcaaccgcgc	cagcatggag	2280
ttcctgcggc	aggaggacac	cccgggctgc	aggccccccg	aggggaccct	gcgggacagc	2340
gacacgtcca	tctccatccc	gtccgtggac	cacgaggagc	tggagcgttc	cttcagcggc	2400
ttcagcatct	cccagtccaa	ggagaacctg	gatgctctca	acagctgcta	cgcggccgtg	2460
gcgccttgtg	ccaaagtcag	gccctacatt	gcggagggag	agtcagacac	cgactccgac	2520
ctctgtaccc	ċgtgcgggcc	cccgccacgc	tcggccaccg	gcgagggtcc	ctttggtgac	2580
gtgggctggg	ccgggcccag	gaagtgaggc	ggcgctgggc	cagtggaccc	gcccgcggcc	2640
ctcctcagca	cggtgcctcc	gaggttttga	ggcgggaacc Page 97	ctctggggcc	cttttcttac	2700

agtaactgag	tgtggcggga	agggtgggcc	ctggaggggc	ccatgtgggc	tgaaggatgg	2760
gggctcctgg	cagtgacctt	ttacaaaagt	tattttccaa	cagggcactc	ccaggccctg	2820
tcgccattga	ggtgcctccg	ctgggctgtc	tcctcacccc	tccctgtgct	ggagcctgtc	2880
ccaaaaaggt	gccaactggg	aggcctcgga	agccactgtc	caggctccca	ctgcctgtct	2940
gctctgttcc	caaaggcagc	gtgtgtggcc	tcgggccctg	cggtggcatg	aagcatccct	3000
tctggtgtgg	gcatcgctac	gtgttttggg	ggcagcgttt	cacggcggtg	cccttgctgt	3060
ctcccttggg	ctggctcgag	cctggggtcc	atgtcccttt	gccgtcccgt	catggggcag	3120
ggaatccata	gcggggccca	caggcagggg	tatgagtgcg	tcccacccaa	cgcagcacca	3180
gccccggcca	ccgctccccg	tgtccccagt	tccgtctcag	ctacctggac	tccaggaccc	3240
tggagaaggg	agacctggca	gtggagggag	gctgtgctgt	gtgtccccct	gcaggtgtga	3300
ccccgcctgc	tctttcctcc	cccgccaggt	gtggccccgc	ctgctctttc	ctccccacc	3360
agtatggccc	cacctgctct	ttcctcccc	cccaaggtgt	ggccccacct	gttctttcct	3420
cccctgccga	ggtgtgaccc	cacctgctct	ttcctccctc	ccagtatggc	cccacctgct	3480
ctttcctccc	ccgaggtgag	gccccgcctg	ctctttcctc	ccatgggagc	cgctgaggcg	3540
tgcgcacctg	ggcacaggtt	ggggctctgc	aggatgagga	agacaggcca	atcccttccc	3600
tcccagaagc	tggccgccca	gcaggaggga	ctgaggccag	actcatgtcc	agcaaggaac	3660
gtgtggtgtg	tcccctggga	agtctctggg	ccctgggaag	agggaaggtg	cacgtcctgg	3720
gatggttgcg	gggccctgtt	ttgggagaca	aaggggtaga	gggtctgtct	tgggcccccc	3780
cagactctag	cccgagcagt	gcagccacct	actgccccac	ctcagagaag	tgcagcggga	3840
aggaggctgg	aggtggtgcg	gcgctgcctc	gggtgtctgc	gtgaatgagc	gtggccaagg	3900
accagtgcca	cctcatggca	aagagctccc	gcagtgtttg	ttagagtgca	catcctacgt	3960
gcccactggc	acacacacgt	gctcacatac	atgtccgcgt	acaggcgtac	acatgcacgc	4020
ttgcacacat	gcacacagac	cacatagcac	acatgtgcac	tgaccacacc	tgtatagacc	4080
atgcacagta	cacatacgtg	catacacatg	cctgcataca	ggcatacaca	tgcacgctta	4140
catgtacacg	tgcacagatc	acacacatgc	acacacgtgt	agctcacaca	cagtatacac	4200
atacacaagt	gcacagacca	cacacagcac	taacacatgc	acacacaaag	tgcataggcc	4260
acacagcaca	tgcacacagg	tgcacagacc	acacagcaca	cacaagtgca	cagagcacac	4320
tgcacacatg	cacacaca	cgcgtgcatg	cacactcctc	gcacttccag	ccttggagcc	4380
cttctgtctc	tggtctttct	ctttgaccct	gctgagtgta	agctgcctgg	ggaggggcta	4440
caaggagtaa	ttgtggcttt	aggggtcgtg	gtgatgctgg	aatgtcaagc	gccgtcgtgg	4500
ggtatccgac	tgtccgggct	cctggtccgc	agtggcagag	cgccaggcag	agccaatcag	4560
ggtctcgtgc	tgcccttccc	ccccacagcc	tggcagccat	ccagaggagg	ggctctacca	4620
gatgccaagg	tgccccggtg	tctgtatggg	tgtccggttg	ggtcctgtgt	ttggtctgcc	4680
ctggaggtgg	ctgggccctc	ctgggatggg	tggctcagcc Page 98	tcgaatccca	ggccccagcc	4740

caggcaggtg	ctgctgcctg	ttgtggtttc	ctggcccagc	ttctccttct	ccctctgcat	4800
aaaatcacag	tccgtgagtc	ttccagctgc	caccacggct	gggacacgct	gggggagggc	4860
tcctcccatg	cctcctgcac	acagccgtct	gagcagggca	ggtgccaaca	cccccaccg	4920
gagacacgct	gcccctcagc	gatgccccta	ccttttgggg	ggcctcgtct	caagcccccc	4980
cttggaggct	gaaatcaccc	caggcactgt	gagggcttct	ccagggggac	accctttgag	5040
ctġtgggtct	gatcacccca	agtcccgcac	acggaggaga	ggcacagcca	gggcgtgtgg	5100
tttaatgttt	gccccttcgg	ggctggaggt	ctcagtgttt	ctagattcca	gaccctgctg	5160
ccagagagac	ctgctgccgg	agagaagggg	aggaggactc	cagctgggct	cggtccccca	5220
cagtcaggga	ccccataaa	ggacaccccc	ttctctctag	aaagagctgg	gctctcagct	5280
atttctagtt	gcttcccaga	agccgaggag	cagaaggagc	tgtgagagct	ttgcagaaac	5340
gcccttgtcc	ccgccctcct	gagctatgaa	tgccgtacag	agcagaggct	ggggcattgg	5400
caagatcaca	ggttgatgct	gcacagcccc	attgacacaa	accctcaaag	cagacgtgag	5460
agggacggtt	cacaaagctt	ggacctgccg	tggagggtgc	ccggcagacg	tggcgtgaga	5520
gggacggctc	acgaggcttg	gacctgctgt	ggagggtgcc	cagcagacgt	ggtgtgagag	5580
gaacggctca	cgagacttgg	acctggtgga	gggtgcccag	cagacgtggt	gtgagaggga	5640
cggctcacag	ggcttggacc	ggagagagat	ggctcatgag	acttggacct	gccgtggagg	5700
gtgcccagca	gacgtggtat	gagagggatg	gctcacgagg	cttggacctg	gtggagggtg	5760
cccggcagac	gtgtgagagg	gacggttcac	aaggcttgga	cctgccatgg	agggtgccca	5820
gcagacgtgg	tgtgagaggg	acagctcacg	aggcttggac	ctgccgtgga	gggtgcccag	5880
cagggggctg	agctctgagg	ggtgggtgct	cagtgcacgg	gtgcccccag	tgtcctctga	5940
tcctgtccgg	tgcctcccc	aacccccaca	cccatgcaga	actcccaggt	cacatgcacg	6000
tatgtccagg	gcatgggggt	ggcgtgaaga	ggcctggtca	gggcctttag	gggctgcagg	6060
acggaatggc	cacctgggga	gcctgtgtgg	ctgtgccggg	cagccatcct	gcattcccac	6120
ccagcgcgca	gtctccacct	cggccccagc	aaagcgctaa	gcagccggag	agacagccag	6180
ggcggcttcc	tgaaggatgt	gggatggtgg	actccggggt	cgagggaata	cgcaggttcc	6240
tgtcctccgg	gagacctaga	gaagctgcac	acccaggagc	tttccatgac	ccgggagcat	6300
gagtgaatgg	ggggttccag	tttgctgaac	tttgctgtct	tgtaagggtg	ggggctgacg	6360
gccgaccctg	ggaggaggtg	acaccgcagg	gggaggttgt	gggcaacggt	ggaggaggag	6420
agacgggagg	ggaccatttg	ggatggaggg	gcctcttcag	agttttaaaa	ggcgtttgtg	6480
gggtggagtt	gagtgtgctc	tgggcttgga	cacttgccgt	ggtgcccctg	gctggccgag	6540
gagactggct	ctggccaggg	ccccgtcctg	agaggtcctc	agcgtctgac	tctcggccag	6600
gcgccagcaa	ggaggggccg	gtccccgggg	ctaccaggca	ggcacgtgca	catcgccatc	6660
gccacacgcc	aactccgcct	gggttttaca	aagtcgttgc	cttaatgcat	gtggacagga	6720
actccctgag	gtcgccccat	gccccctggc	tgtgccaggt Page 99		tggaccctgc	6780

gaacaggtgg ggcgggcga	g gggcccaagg	gacgggctcc	agagacacgc	gcagggcagg	6840
aggggtctca cggaggggt	c tcgcactgag	gcgcccagag	ctggtggtcc	cgctggacgc	6900
catccctctg cccgggato	c acacggccca	cgtgtgcccg	ccatgcccgc	gccccacgcc	6960
attgcagtct tccatcctc	t ggccgtgacg	gtggctgcag	cttccccatt	tgcgccgttg	7020
cctctggctg tctgcactt	t tgttcatgct	ccaaagaaca	tttcataatg	ccttcagtac	7080
cgacgtacac ttctgacca	t tttgtatgtg	tccttgtgcc	gtagtgacca	ggcctttttt	7140
tggtggatgt gttaccccg	c acacttcaat	ctcaactttg	tgcaccgtcc	attttctagg	7200
gatagacgcc cagggaatg	a actctagttt	tctaacagat	tagctgagat	attaacttac	7260
tcacacggac aggttgatg	c cagagccgta	agaatgcgcc	agtgcgggtt	tgcgggggac	7320
ttcgggtgtg gggtcctgc	g gccgcgatgg	ccgtggaagg	ttctggggat	ccctgctgcc	7380
acggggacga gttcggacg	c caggtggacc	tgtgcactca	gtaaaacgca	gtgattc	7437
<210> 47 <211> 7437 <212> DNA <213> Homo sapiens					
<400> 47 gctgagcctg agcccgacc	c ggggcgcctc	ccgccaggca	ccatggtgca	gaagtcgcgc	60
aacggcggcg tataccccg	g cccgagcggg	gagaagaagc	tgaaggtggg	cttcgtgggg	120
ctggaccccg gcgcgcccg	a ctccacccgg	gacggggcgc	tgctgatcgc	cggctccgag	180
gcccccaagc gcggcagca	t cctcagcaaa	cctcgcgcgg	gcggcgcggg	cgccgggaag	240
cccccaagc gcaacgcct	t ctaccgcaag	ctgcagaatt	tcctctacaa	cgtgctggag	300
cggccgcgcg gctgggcgt	t catctaccac	gcctacgtgt	tcctcctggt	tttctcctgc	360
ctcgtgctgt ctgtgtttt	c caccatcaag	gagtatgaga	agagctcgga	gggggccctc	420
tacatcctgg aaatcgtga	c tatcgtggtg	tttggcgtgg	agtacttcgt	gcggatctgg	480
gccgcaggct gctgctgcc	g gtaccgtggc	tggagggggc	ggctcaagtt	tgcccggaaa	540
ccgttctgtg tgattgaca	t catggtgctc	atcgcctcca	ttgcggtgct	ggccgccggc	600
tcccagggca acgtctttg	c cacatctgcg	ctccggagcc	tgcgcttcct	gcagattctg	660
cggatgatcc gcatggacc	g gcggggaggc	acctggaagc	tgctgggctc	tgtggtctat	720
gcccacagca aggagctgg	t cactgcctgg	tacatcggct	tcctttgtct	catcctggcc	780
tcgttcctgg tgtacttgg	c agagaagggg	gagaacgacc	actttgacac	ctacgcggat	840
gcactctggt ggggcctga	t cacgctgacc	accattggct	acggggacaa	gtacccccag	900
acctggaacg gcaggctcc	t tgcggcaacc	ttcaccctca	tcggtgtctc	cttcttcgcg	960
ctgcctgcag gcatcttgg	g gtctgggttt	gccctgaagg	ttcaggagca	gcacaggcag	1020
aagcactttg agaagaggc	g gaacccggca	gcaggcctga	tccagtcggc	ctggagattc	1080
tacgccacca acctctcgc	g cacagacctg	cactccacgt	ggcagtacta	cgagcgaacg	1140

SSCP Update Sequences.ST25 gtcaccgtgc ccatgtacag ttcgcaaact caaacctacg gggcctccag acttatcccc 1200 ccqctgaacc agctggagct gctgaggaac ctcaagagta aatctggact cgctttcagg 1260 1320 aaggaccccc cgccggagcc gtctccaagc cagaaggtca gtttgaaaga tcgtgtcttc 1380 tccagccccc gaggcgtggc tgccaagggg aaggggtccc cgcaggccca gactgtgagg 1440 cggtcaccca gcgccgacca gagcctcgag gacagcccca gcaaggtgcc caagagctgg 1500 agcttcgggg accgcagccg ggcacgccag gctttccgca tcaagggtgc cgcgtcacgg 1560 cagaactcag aagaagcaag cctccccgga gaggacattg tggatgacaa gagctgcccc tqcqaqtttq tgaccgagga cctgaccccg ggcctcaaag tcagcatcag agccgtgtgt 1620 gtcatgcggt tcctggtgtc caagcggaag ttcaaggaga gcctgcggcc ctacgacgtg 1680 atggacgtca tcgagcagta ctcagccggc cacctggaca tgctgtcccg aattaagagc 1740 ctgcagtcca gagtggacca gatcgtgggg cggggcccag cgatcacgga caaggaccgc 1800 1860 accaagggcc cggccgaggc ggagctgccc gaggacccca gcatgatggg acggctcggg aaggtggaga agcaggtctt gtccatggag aagaagcggg acttcctggt gaatatctac 1920 atgcagcgga tgggcatccc cccgacagag accgaggcct actttggggc caaagagccg 1980 2040 qaqccqqcqc cqccqtacca cagcccggaa gacagccggg agcatgtcga caggcacggc tqcattqtca agatcqtqcg ctccagcagc tccacgggcc agaagaactt ctcggcgccc 2100 2160 ccggccgcgc cccctgtcca gtgtccgccc tccacctcct ggcagccaca gagccacccg cqccaqqqcc acqgcacctc ccccgtgggg gaccacggct ccctggtgcg catcccgccg 2220 2280 ccgcctgccc acgagcggtc gctgtccgcc tacggcgggg gcaaccgcgc cagcatggag 2340 ttcctqcqqc aggaggacac cccgggctgc aggccccccg aggggaccct gcgggacagc gacacgtcca tctccatccc gtccgtggac cacgaggagc tggagcgttc cttcagcggc 2400 2460 ttcagcatct cccagtccaa ggagaacctg gatgctctca acagctgcta cgcggccgtg gcgccttqtq ccaaagtcag gccctacatt gcggagggag agtcagacac cgactccgac 2520 2580 ctctgtaccc cgtgcgggcc cccgccacgc tcggccaccg gcgagggtcc ctttggtgac 2640 qtqqqctqqq ccqqqcccag gaagtgaggc ggcgctgggc cagtggaccc gcccgcggcc ctcctcagca cggtgcctcc gaggttttga ggcgggaacc ctctggggcc cttttcttac 2700 agtaactgag tgtggcggga agggtgggcc ctggaggggc ccatgtgggc tgaaggatgg 2760 gggctcctgg cagtgacctt ttacaaaagt tattttccaa cagggcactc ccaggccctg 2820 tcqccattqa ggtgcctccg ctgggctgtc tcctcacccc tccctgtgct ggagcctgtc 2880 ccaaaaaggt gccaactggg aggcctcgga agccactgtc caggctccca ctgcctgtct 2940 gctctgttcc caaaggcagc gtgtgtggcc tcgggccctg cggtggcatg aagcatccct 3000 3060 tctqqtqtqq qcatcqctac qtqttttggg ggcagcgttt cacggcggtg cccttgctgt 3120 ctcccttggg ctggctcgag cctggggtcc atgtcccttt gccgtcccgt catggggcag 3180 ggaatccata gcggggccca caggcagggg tatgagtgcg tcccacccaa cgcagcacca

SSCP Update Sequences.ST25 gccccggcca ccgctcccg tgtccccagt tccgtctcag ctacctggac tccaggaccc 3240 3300 ccccgcctgc tctttcctcc cccgccaggt gtggccccgc ctgctctttc ctccccacc 3360 agtatggccc cacctgctct ttcctcccc cccaaggtgt ggccccacct gttctttcct 3420 cccctgccga ggtgtgaccc cacctgctct ttcctccctc ccagtatggc cccacctgct 3480 ctttcctccc ccgaggtgag gccccgcctg ctctttcctc ccatgggagc cgctgaggcg 3540 3600 tgcgcacctg ggcacaggtt ggggctctgc aggatgagga agacaggcca atcccttccc tcccagaagc tggccgccca gcaggaggga ctgaggccag actcatgtcc agcaaggaac 3660 gtgtggtgtg tcccctggga agtctctggg ccctgggaag agggaaggtg cacgtcctgg 3720 gatggttgcg gggccctgtt ttgggagaca aaggggtaga gggtctgtct tgggcccccc 3780 cagactctag cccgagcagt gcagccacct actgccccac ctcagagaag tgcagcggga 3840 aggaggctgg aggtggtgcg gcgctgcctc gggtgtctgc gtgaatgagc gtggccaagg 3900 accagtgcca cctcatggca aagagctccc gcagtgtttg ttagagtgca catcctacgt 3960 gcccactggc acacacacgt gctcacatac atgtccgcgt acaggcgtac acatgcacgc 4020 ttgcacacat gcacacagac cacatagcac acatgtgcac tgaccacacc tgtatagacc 4080 atgcacagta cacatacgtg catacacatg cctgcataca ggcatacaca tgcacgctta 4140 catgtacacg tgcacagatc acacacatgc acacacgtgt agctcacaca cagtatacac 4200 atacacaagt gcacagacca cacacagcac taacacatgc acacacaaag tgcataggcc 4260 acacagcaca tgcacacagg tgcacagacc acacagcaca cacaagtgca cagagcacac 4320 tgcacacatg cacacaca cgcgtgcatg cacactcctc gcacttccag ccttggagcc 4380 cttctgtctc tggtctttct ctttgaccct gctgagtgta agctgcctgg ggaggggcta 4440 caaggagtaa ttgtggcttt aggggtcgtg gtgatgctgg aatgtcaagc gccgtcgtgg 4500 ggtatccgac tgtccgggct cctggtccgc agtggcagag cgccaggcag agccaatcag 4560 4620 ggtctcgtgc tgcccttccc ccccacagcc tggcagccat ccagaggagg ggctctacca gatgccaagg tgccccggtg tctgtatggg tgtccggttg ggtcctgtgt ttggtctgcc 4680 ctggaggtgg ctgggccctc ctgggatggg tggctcagcc tcgaatccca ggccccagcc 4740 caggcaggtg ctgctgcctg ttgtggtttc ctggcccagc ttctccttct ccctctgcat 4800 aaaatcacag teegtgagte tteeagetge caccaegget gggacaeget gggggaggge 4860 tecteccatg cetectgeae acageegtet gageagggea ggtgeeaaea ecceecaeeg 4920 gagacacgct gcccctcagc gatgccccta ccttttgggg ggcctcgtct caagcccccc 4980 cttggaggct gaaatcaccc caggcactgt gagggcttct ccagggggac accctttgag 5040 ctgtgggtct gatcacccca agtcccgcac acggaggaga ggcacagcca ggqcgtgtgg 5100 tttaatgttt gccccttcgg ggctggaggt ctcagtgttt ctagattcca gaccctgctg 5160 ccaqagagac ctgctgccgg agagaagggg aggaggactc cagctgggct cqqtcccca 5220

SSCP Update Sequences.ST25 cagtcaggga cccccataaa ggacaccccc ttctctctag aaagagctgg gctctcagct 5280 atttctagtt gcttcccaga agccgaggag cagaaggagc tgtgagagct ttgcagaaac 5340 5400 gcccttgtcc ccgccctcct gagctatgaa tgccgtacag agcagaggct ggggcattgg 5460 caagatcaca ggttgatgct gcacagcccc attgacacaa accctcaaag cagacgtgag 5520 agggacggtt cacaaagctt ggacctgccg tggagggtgc ccggcagacg tggcgtgaga 5580 qqqacqqctc acqaqqcttg gacctgctgt ggagggtgcc Cagcagacgt ggtgtgagag 5640 gaacggctca cgagacttgg acctggtgga gggtgcccag cagacgtggt gtgagaggga cggctcacag ggcttggacc ggagagagat ggctcatgag acttggacct gccgtggagg 5700 gtgcccagca gacgtggtat gagagggatg gctcacgagg cttggacctg gtggagggtg 5760 cccggcagac gtgtgagagg gacggttcac aaggcttgga cctgccatgg agggtgccca 5820 gcagacgtgg tgtgagaggg acagctcacg aggcttggac ctgccgtgga gggtgcccag 5880 cagggggctg agctctgagg ggtgggtgct cagtgcacgg gtgcccccag tgtcctctga 5940 tcctgtccgg tgcctccccc aacccccaca cccatgcaga actcccaggt cacatgcacg 6000 tatgtccagg gcatgggggt ggcgtgaaga ggcctggtca gggcctttag gggctgcagg 6060 6120 acggaatggc cacctgggga gcctgtgtgg ctgtgccggg cagccatcct gcattcccac ccagcgcgca gtctccacct cggccccagc aaagcgctaa gcagccggag agacagccag 6180 ggcggcttcc tgaaggatgt gggatggtgg actccggggt cgagggaata cgcaggttcc 6240 tgtcctccgg gagacctaga gaagctgcac acccaggagc tttccatgac ccgggagcat 6300 6360 gagtgaatgg ggggttccag tttgctgaac tttgctgtct tgtaagggtg ggggctgacg gccgaccctg ggaggaggtg acaccgcagg gggaggttgt gggcaacggt ggaggaggag 6420 agacgggagg ggaccatttg ggatggaggg gcctcttcag agttttaaaa ggcgtttgtg 6480 6540 gggtggagtt gagtgtgctc tgggcttgga cacttgccgt ggtgcccctg gctggccgag gagactggct ctggccaggg ccccgtcctg agaggtcctc agcgtctgac tctcggccag 6600 6660 gcgccagcaa ggaggggccg gtccccgggg ctaccaggca ggcacgtgca catcgccatc gccacacgcc aactccgcct gggttttaca aagtcgttgc cttaatgcat gtggacagga 6720 actccctgag gtcgccccat gccccctggc tgtgccaggt acggacgccc tggaccctgc 6780 6840 6900 aggggtctca cggaggggtc tcgcactgag gcgcccagag ctggtggtcc cgctggacgc catccctctg cccgggatcc acacggccca cgtgtgcccg ccatgcccgc gccccacgcc 6960 7020 attgcagtct tccatcctct ggccgtgacg gtggctgcag cttccccatt tgcgccgttg 7080 cctctggctg tctgcacttt tgttcatgct ccaaagaaca tttcataatg ccttcagtac 7140 cgacgtacac ttctgaccat tttgtatgtg tccttgtgcc gtagtgacca ggcctttttt 7200 tggtggatgt gttaccccgc acacttcaat ctcaactttg tgcaccgtcc attttctagg 7260 gatagacgcc cagggaatga actctagttt tctaacagat tagctgagat attaacttac

	tcacacggac	aggttgatgc		Update Sequ agaatgcgcc		tgcgggggac	7320
	ttcgggtgtg	gggtcctgcg	gccgcgatgg	ccgtggaagg	ttctggggat	ccctgctgcc	7380
	acggggacga	gttcggacgc	caggtggacc	tgtgcactca	gtaaaacgca	gtgattc	7437
	<210> 48 <211> 169 <212> DNA <213> Home	o sapiens					
	<400> 48 acttatcccc	ccgctgaacc	agctggagct	gctgaggaac	ctcaagagta	aatctggact	60
	cgctttcagg	tcagctgggg	agctccaggt	ggggcgggtg	ggcgtctcag	tcctgggggc	120
4	cccagctgcc	cacagaagac	acgccaggac	agtgccccag	ggactccag		169
		o sapiens		·			
	<400> 49 atgccgggac	aggtgacccc	atggcggaag	acaggggcta	tgggaatgac	ttccccatcg	60
	aagacatgat	ccccaccctg	aaggccgcca	tccgagccgt	caggtaatgc	ccccacggtc	120
	ccacctgtgc	ctgtgtgcct	ccccactcc	agctcaactc	ccacaggaag	gggcttataa	180
;	aattatcttg	cactttggga	agg				203
		o sapiens					
	<400> 50 aattctacaa	ttccgtctct	ataaaaaaaa	attcaaggag	actttgaggc	cttacgatgt	60
(gaaggatgtg	attgagcagt	attctgccgg	gcatctcgac	atgctttcca	ggataaagta	120
•	ccttcagacg	aggtgagaca	gtcacatctg	gagggactgc	actcccctca	aagccctatg	180
i	aaccttagag	tttaaggtga	gaggtattca	gaaataattc	aaaatgcagg	ga	232
-	<210> 51 <211> 1925 <212> DNA <213> Homo	sapiens					•
	<400> 51	ggaattactg	cccaacaacc	gactaagttg	catteettua	atcttcgcag	60
		tcttttaatc					120
		ctttccctgt					180
		tgccatacgt					240
							300
		cggacttcgg					
Č	aycacayaca	tggtctccga	ayiyaalaig	yaılalalaC	ccaccatyta	ccccaycag	360

	SSCP Update Sequ	ences.ST25		420
tcttggaaag acaaaaggct ttctta				420
agggtagctg accaactctg ggtaco				480
gtgcatgggg tcacagtgaa aaatcg				540
tatggactcc gaatcacaac cacago				600
gatgagcaga actgcaccct ggagat	tcgaa agttatggct	ataccactga	tgacattgaa	660
ttttactgga atggaggaga agggg	cagtc actggtgtta	ataaaatcga	acttcctcaa	720
ttttcaattg ttgactacaa gatgg	tgtct aagaaggtgg	agttcacaac	aggagcgtat	780
ccacgactgt cactaagttt tcgtc	taaag agaaacattg	gttacttcat	tttgcaaacc	840
tacatgcctt ctacactgat tacaa	ttctg tcctgggtgt	ctttttggat	caactatgat	900
gcatctgcag ccagagtcgc actagg	gaatc acgacagtgc	ttacaatgac	aaccatcagc	960
acccacctca gggagaccct gccaaa	agatc ccttatgtca	aagcgattga	tatttatctg	1020
atgggttgct ttgtgtttgt gttcc	tggct ctgctggagt	atgcctttgt	aaattacatc	1080
ttctttggga aaggccctca gaaaaa	aggga gctagcaaac	aagaccagag	tgccaatgag	1140
aagaataaac tggagatgaa taaag	tccag gtcgacgccc	acggtaacat	tctcctcagc	1200
accctggaaa tccggaatga gacgag	gtggc tcggaagtgc	tcacgagcgt	gagcgacccc	1260
aaggccacca tgtactccta tgacag	gcgcc agcatccagt	accgcaagcc	cctgagcagc	1320
cgcgaggcct acgggcgcgc cctgga	accgg cacggggtac	ccagcaaggg	gcgcatccgc	1380
aggcgtgcct cccagctcaa agtcaa	agatc cccgacttga	ctgatgtgaa	ttccatagac	1440
aagtggtccc gaatgttttt cccca	tcacc ttttctcttt	ttaatgtcgt	ctattggctt	1500
tactatgtac actgaggtct gttcta	aatgg ttccatttag	actactttcc	tcttctattg	1560
ttttttaacc ttacaggtcc ccaaca	agcga tactgctgtt	tctcgaggta	agagattcag	1620
ccatccaatt ggttttaggt cttgca	atatc agttttatta	ctgcaccatg	tttacttcaa	1680
aaagacaaaa caaaaaaaaa attati	tttc cagtctaccg	tggtccaggt	tatcagctct	1740
ttaagagctc tattaattgc catgtt	ctaca aacaaacaca	aagagagaag	ttagacaggt	1800
agatctttag cagtcttttc tagtti	ccct ggatttcact	gatttatttt	ttagggaaaa	1860
tgaaaagagg accttgctgt ccgcct	gcac tgcttcctgg	taaactataa	caaacttatg	1920
ctgcc				1925
<210> 52 <211> 1925				
<212> DNA <213> Homo sapiens	•			
<400> 52				
ggtccattcg ggaattactg cccago				60
aaaagacaat tcttttaatc agagtt				120
gggcttctct ctttccctgt gatgat	tacc atggtctgtt	gtgcacacag	caccaatgaa	180
cccagcaaca tgccatacgt gaaaga	agaca gtggacagat Page 10		atatgacatt	240
	. age 10	-		

SSCP Update Sequences.ST25

			•	•		
cgcttgcggc	cggacttcgg	agggcccccc	gtcgacgttg	ggatgcggat	cgatgtcgcc	300
agcatagaca	tggtctccga	agtgaatatg	gattatacac	tcaccatgta	tttccagcag	360
tcttggaaag	acaaaaggct	ttcttattct	ggaatcccac	tgaacctcac	cctagacaat	420
agggtagctg	accaactctg	ggtaccagac	acctactttc	tgaatgacaa	gaaatcattt	480
gtgcatgggg	tcacagtgaa	aaatcgaatg	attcgactgc	atcctgatgg	aacagttctc	540
tatggactcc	gaatcacaac	cacagctgca	tgtatgatgg	atcttcgaag	atatccactg	600
gatgagcaga	actgcaccct	ggagatcgaa	agttatggct	ataccactga	tgacattgaa	660
ttttactgga	atggaggaga	aggggcagtc	actggtgtta	ataaaatcga	acttcctcaa	720
ttttcaattg	ttgactacaa	gatggtgtct	aagaaggtgg	agttcacaac	aggagcgtat	780
ccacgactgt	cactaagttt	tcgtctaaag	agaaacattg	gttacttcat	tttgcaaacc	840
tacatgcctt	ctacactgat	tacaattctg	tcctgggtgt	ctttttggat	caactatgat	900
gcatctgcag	ccagagtcgc	actaggaatc	acgacagtgc	ttacaatgac	aaccatcagc	960
acccacctca	gggagaccct	gccaaagatc	ccttatgtca	aagcgattga	tatttatctg	1020
atgggttgct	ttgtgtttgt	gttcctggct	ctgctggagt	atgcctttgt	aaattacatc	1080
ttctttggga	aaggccctca	gaaaaaggga	gctagcaaac	aagaccagag	tgccaatgag	1140
aagaataaac	tggagatgaa	taaagtccag	gtcgacgccc	acggtaacat	tctcctcagc	1200
accctggaaa	tccggaatga	gacgagtggc	tcggaagtgc	tcacgagcgt	gagcgacccc	1260
aaggccacca	tgtactccta	tgacagcgcc	agcatccagt	accgcaagcc	cctgagcagc	1320
cgcgaggcct	acgggcgcgc	cctggaccgg	cacggggtac	ccagcaaggg	gcgcatccgc	1380
aggcgtgcct	cccagctcaa	agtcaagatc	cccgacttaa	ctgatgtgaa	ttccatagac	1440
aagtggtccc	gaatgttttt	ccccatcacc	ttttctcttt	ttaatgtcgt	ctattggctt	1500
tactatgtac	actgaggtct	gttctaatgg	ttccatttag	actactttcc	tcttctattg	1560
ttttttaacc	ttacaggtcc	ccaacagcga	tactgctgtt	tctcgaggta	agagattcag	1620
ccatccaatt	ggttttaggt	cttgcatatc	agttttatta	ctgcaccatg	tttacttcaa	1680
aaagacaaaa	caaaaaaaaa	attattttc	cagtctaccg	tggtccaggt	tatcagctct	1740
ttaagagctc	tattaattgc	catgtttaca	aacaaacaca	aagagagaag	ttagacaggt	1800
agatctttag	cagtctttc	tagtttccct	ggatttcact	gatttatttt	ttagggaaaa	1860
tgaaaagagg	accttgctgt	ccgcctgcac	tgcttcctgg	taaactataa	caaacttatg	1920
ctgcc					•	1925
240 - 52						

<210> 53 <211> 1925 <212> DNA <213> Homo sapiens

<400> 53

ggtccattcg ggaattactg cccagcagcc gactaagttg cattccttga atcttcgcag 60

aaaagacaat	tcttttaatc		Update Sequ atgtggacag		agagagtctg	120
gggcttctct	ctttccctgt	gatgattacc	atggtctgtt	gtgcacacag	caccaatgaa	180
cccagcaaca	tgccatacgt	gaaagagaca	gtggacagat	tgctcaaagg	atatgacatt	240
cgcttgcggc	cggacttcgg	agggcccccc	gtcgacgttg	ggatgcggat	cgatgtcgcc	300
agcatagaca	tggtctccga	agtgaatatg	gattatacac	tcaccatgta	tttccagcag	360
tcttggaaag	acaaaaggct	ttcttattct	ggaatcccac	tgaacctcac	cctagacaat	420
agggtagctg	accaactctg	ggtaccagac	acctactttc	tgaatgacaa	gaaatcattt	480
gtgcatgggg	tcacagtgaa	aaatcgaatg	attcgactgc	atcctgatgg	aacagttctc	540
tatggactcc	gaatcacaac	cacagctgca	tgtatgatgg	atcttcgaag	atatccactg	600
gatgagcaga	actgcaccct	ggagatcgaa	agttatggct	ataccactga	tgacattgaa	660
ttttactgga	atggaggaga	aggggcagtc	actggtgtta	ataaaatcga	acttcctcaa	720
ttttcaattg	ttgactacaa	gatggtgtct	aagaaggtgg	agttcacaac	aggagcgtat	780
ccacgactgt	cactaagttt	tcgtctaaag	agaaacattg	gttacttcat	tttgcaaacc	840
tacatgcctt	ctacactgat	tacaattctg	tcctgggtgt	ctttttggat	caactatgat	900
gcatctgcag	ccagagtcgc	actaggaatc	acgacagtgc	ttacaatgac	aaccatcagc	960
acccacctca	gggagaccct	gccaaagatc	ccttatgtca	aagcgattga	tatttatctg	1020
atgggttgct	ttgtgtttgt	gttcctggct	ctgctggagt	atgcttttgt	aaattacatc	1080
ttctttggga	aaggccctca	gaaaaaggga	gctagcaaac	aagaccagag	tgccaatgag	1140
aagaataaac	tggagatgaa	taaagtccag	gtcgacgccc	acggtaacat	tctcctcagc	1200
accctggaaa	tccggaatga	gacgagtggc	tcggaagtgc	tcacgagcgt	gagcgacccc	1260
aaggccacca	tgtactccta	tgacagcgcc	agcatccagt	accgcaagcc	cctgagcagc	1320
cgcgaggcct	acgggcgcgc	cctggaccgg	cacggggtac	ccagcaaggg	gcgcatccgc	1380
aggcgtgcct	cccagctcaa	agtcaagatc	cccgacttga	ctgatgtgaa	ttccatagac	1440
aagtggtccc	gaatgttttt	ccccatcacc	ttttctcttt	ttaatgtcgt	ctattggctt	1500
tactatgtac	actgaggtct	gttctaatgg	ttccatttag	actactttcc	tcttctattg	1560
ttttttaacc	ttacaggtcc	ccaacagcga	tactgctgtt	tctcgaggta	agagattcag	1620
ccatccaatt	ggttttaggt	cttgcatatc	agttttatta	ctgcaccatg	tttacttcaa	1680
aaagacaaaa	caaaaaaaaa	attattttc	cagtctaccg	tggtccaggt	tatcagctct	1740
ttaagagctc	tattaattgc	catgtttaca	aacaaacaca	aagagagaag	ttagacaggt	1800
agatctttag	cagtcttttc	tagtttccct	ggatttcact	gatttattt	ttagggaaaa	1860
tgaaaagagg	accttgctgt	ccgcctgcac	tgcttcctgg	taaactataa	caaacttatg	1920
ctgcc						1925

<210> 54 <211> 1536 <212> DNA

SSCP Update Sequences.ST25

<213> Hon	o sapiens	3301	opuace sequ	iences.3123		
<400> 54		c+ c c c c = c = c = c = c = c = c = c =	cc2####			
	agatggcgag			_		60
	gggcttgcac					120
	ccaaaagtgg					180
	gttgctaaga					240
	tgacgttgac					300
	. aattgacata					360
acagcacaat	gaaaattctt	actctgaaca	gcaacatggt	ggggttaatc	tggatcccag	420
acaccatctt	ccgcaattct	aaaaccgcag	aggctcactg	gatcaccaca	cccaatcagc	480
tcctccggat	ttggaatgac	gggaaaatcc	tttacacttt	gaggctcacc	atcaatgctg	540
agtgccagct	gcagctgcac	aacttcccca	tggacgaaca	ctcctgcccg	ctgattttct	600
ccagctatgg	ctatcccaaa	gaagaaatga	tttatagatg	gagaaaaaat	tcagtggagg	660
cagctgacca	gaaatcatgg	cggctttatc	agtttgactt	catgggcctc	agaaacacca	. 720
cagaaatcgt	gacaacgtct	gcaggtgatt	atgttgtcat	gactatatat	tttgaattga	780
gtagaagaat	gggatacttc	accattcaga	catacattcc	ctgtatactg	actgtggttt	840
tatcctgggt	gtcattttgg	atcaaaaaag	atgctacgcc	agcaagaaca	gcattaggca	900
tcaccacggt	gctgaccatg	accaccctga	gcaccatcgc	caggaagtcc	ttgccacgcg	960
tgtcctacgt	gaccgccatg	gacctttttg	tgactgtgtg	cttcctgttt	gtcttcgccg	1020
cgctgacgga	gtatgccacc	ctcaactact	attccagctg	tagaaaacca	accaccacga	1080
aaaagacaac	atcgttacta	catccagatt	cctcaagatg	gattcctgag	cgaataagcc	1140
tacaagcccc	ttccaactat	tccctcctgg	acatgaggcc	accaccacct	gcgatgatca	1200
ctttaaacaa	ttccgtttac	tggcaggaat	ttgaagatac	ctgtgtctat	gagtgtctgg	1260
atggcaaaga	ctgtcagagc	ttcttctgct	gctatgaaga	atgtaaatca	ggatcctgga	1320
ggaaagggcg	tattcacata	gacatcttgg	agctggactc	gtactcccgg	gtctttttcc	1380
ccacgtcctt	cctgctcttt	aacctggtct	actgggttgg	atacctgtat	ctctaagtgt	1440
tgctcagagt	gaagagtgaa	gagcatttgg	tacacacttg	accttctgtc	gtccccagac	1500
cagtagtgac	caatcgggag	tagcaaggaa	ggacac			1536
<210> 55 <211> 1843 <212> DNA <213> Home	3 o sapiens					
<400> 55 gcacaattca	gaggtaacag	cgcctgcatt	ttctccatqa	taacatagac	aaacagttgc	60
	gcagattgga					120
	gtccatgatg					180

t-tt	SSCP (Jpdate Sequ	ences.ST25	+c+c+ccaca	240
tctgctctgg cgcgcccgga					
attctctctc ccagactttt					300
ctgctccagc ccgcgatgag					360
ctccttctga gcacactgac					420
aaagacaata ccactgtctt	caccaggatt	ttggacagac	tcctagatgg	ttatgacaat	480
cgcctgagac caggattggg	agagcgtgta	accgaagtga	agactgatat	cttcgtcacc	540
agtttcggac ccgtttcaga	ccatgatatg	gaatatacaa	tagatgtatt	tttccgtcaa	600
agctggaagg atgaaaggtt	aaaatttaaa	ggacctatga	cagtcctccg	gttaaataac	660
ctaatggcaa gtaaaatccg	gactccggac	acatttttcc	acaatggaaa	gaagtcagtg	720
gcccacaaca tgaccatgcc	caacaaactc	ctgcggatca	cagaggatgg	caccttgctg	780
tacaccatga ggctgacagt	gagagctgaa	tgtccgatgc	atttggagga	cttccctatg	840
gatgcccatg cttgcccact	aaaatttgga	agttatgctt	atacaagagc	agaagttgtt	900
tatgaatgga ccagagagcc	agcacgctca	gtggttgtag	cagaagatgg	atcacgtcta	960
aaccagtatg accttcttgg	acaaacagta	gactctggaa	ttgtccagtc	aagtacagga	1020
gaatatgttg ttatgaccac	tcatttccac	ttgaagagaa	agattggcta	ctttgttatt	1080
caaacatacc tgccatgcat	aatgacagtg	attctctcac	aagtctcctt	ctggctcaac	1140
agagagtctg taccagcaag	aactgtcttt	ggagtaacaa	ctgtgctcac	catgacaaca	1200
ttgagcatca gtgccagaaa	ctccctccct	aaggtggctt	atgcaacagc	tatggattgg	1260
tttattgccg tgtgctatgc	ctttgtgttc	tcagctctga	ttgagtttgc	cacagtaaac	1320
tatttcacta agagaggtta	tgcatgggat	ggcaaaagtg	tggttccaga	aaagccaaag	1380
aaagtaaagg atcctcttat	taagaaaaac	aacacttacg	ctccaacagc	aaccagctac	1440
acccctaatt tggccagggg	cgacccgggc	ttagccacca	ttgctaaaag	tgcaaccata	1500
gaacctaaag aggtcaagcc	cgaaacaaaa	ccaccagaac	ccaagaaaac	ctttaacagt	1560
gtcagcaaaa ttgaccgact	gtcaagaata	gccttcccgc	tgctatttgg	aatctttaac	1620
ttagtctact gggctacgta	tttaaacaga	gagcctcagc	taaaagcccc	cacaccacat	1680
caatagatct tttactcaca	ttctgttgtt	cagttcctct	gcactgggaa	tttatttatg	1740
ttctcaacgc agtaattccc	atctgccttt	attgcctctg	tcttaaagaa	tttgaaagtt	1800
tccttatttt cataattcat					1843
<210> 56 <211> 1843 <212> DNA <213> Homo sapiens					
<400> 56					
gcacaattca gaggtaacag	cgcctgcgtt	ttctccatga	taacatagac	aaacagttgc	60
ctccaaagct gcagattgga	tattgggaag	caaatttggg	tgtgaaatct	tcagcaaagg	120
agcacgcaga gtccatgatg	gctcagacca	agtgagtgag Page 109		aggacgcccc	180

SSCP Update Sequences.ST25

tctgctctg	g cgcgcccgga	ctcggactcg	cagactcgcg	ctggctccag	tctctccacg	240
attctctct	c ccagactttt	ccccggtctt	aagagatcct	gtgttcagag	ggggccttag	300
ctgctccag	ccgcgatgag	gaaaagtcca	ggtctgtctg	actgtctttg	ggcctggatc	360
ctccttctg	a gcacactgac	tggaagaagc	tatggacagc	cgtcattaca	agatgaactt	420
aaagacaat	a ccactgtctt	caccaggatt	ttggacagac	tcctagatgg	ttatgacaat	480
cgcctgaga	caggattggg	agagcgtgta	accġaagtga	agactgatat	cttcgtcacc	540
agtttcgga	ccgtttcaga	ccatgatatg	gaatatacaa	tagatgtatt	tttccgtcaa	600
agctggaag	, atgaaaggtt	aaaatttaaa	ggacctatga	cagtcctccg	gttaaataac	660
ctaatggca	gtaaaatccg	gactccggac	acatttttcc	acaatggaaa	gaagtcagtg	720
gcccacaaca	ı tgaccatgcc	caacaaactc	ctgcggatca	cagaggatgg	caccttgctg	780
tacaccatga	ggctgacagt	gagagctgaa	tgtccgatgc	atttggagga	cttccctatg	840
gatgcccatg	cttgcccact	aaaatttgga	agttatgctt	atacaagagc	agaagttgtt	900
tatgaatgga	ccagagagcc	agcacgctca	gtggttgtag	cagaagatgg	atcacgtcta	960
aaccagtato	accttcttgg	acaaacagta	gactctggaa	ttgtccagtc	aagtacagga	1020
gaatatgtt	ttatgaccac	tcatttccac	ttgaagagaa	agattggcta	ctttgttatt	1080
caaacatac	tgccatgcat	aatgacagtg	attctctcac	aagtctcctt	ctggctcaac	1140
agagagtctg	taccagcaag	aactgtcttt	ggagtaacaa	ctgtgctcac	catgacaaca	1200
ttgagcatca	gtgccagaaa	ctccctccct	aaggtggctt	atgcaacagc	tatggattgg	1260
tttattgccg	tgtgctatgc	ctttgtgttc	tcagctctga	ttgagtttgc	cacagtaaac	1320
tatttcacta	agagaggtta	tgcatgggat	ggcaaaagtg	tggttccaga	aaagccaaag	1380
aaagtaaagg	atcctcttat	taagaaaaac	aacacttacg	ctccaacagc	aaccagctac	1440
acccctaatt	tggccagggg	cgacccgggc	ttagccacca	ttgctaaaag	tgcaaccata	1500
gaacctaaag	aggtcaagcc	cgaaacaaaa	ccaccagaac	ccaagaaaac	ctttaacagt	1560
gtcagcaaaa	ttgaccgact	gtcaagaata	gccttcccgc	tgctatttgg	aatctttaac	1620
ttagtctact	gggctacgta	tttaaacaga	gagcctcagc	taaaagcccc	cacaccacat	1680
caatagatct	tttactcaca	ttctgttgtt	cagttcctct	gcactgggaa	tttatttatg	1740
ttctcaacgc	agtaattccc	atctgccttt	attgcctctg	tcttaaagaa	tttgaaagtt	1800
tccttatttt	cataattcat	ttaagacaag	agacccctgt	ctg		1843
<210> 57 <211> 218 <212> DNA <213> Hom	9 o sapiens					

<400> 57

cctagcgctc ctctccggct tccaccagcc catcgctcca cgctctcttg gctgctgcag 60 tctcggtctc tctctctc tctctctc tctctctc tctctctc tctctctc 120

SSCP Update Sequences.ST25 tctctctctc tctctccaa gtttcctatc tcgtcaagat cagggcaaaa gaagaaaca 180 ccgaattctg cttgccgttt cagagcggcg gtgatgaaga caaaattgaa catctacaac 240 atcgagttcc tgctttttgt tttcttggtg tgggaccctg ccaggttggt qctgqctaac 300 atccaagaag atgaggctaa aaataacatt accatcttta cgagaattct tgacagactt 360 ctggatggtt acgataatcg gcttagacca ggactgggag acagtattac tgaagtcttc 420 actaacatct acgtgaccag ttttggccct gtctcagata cagatatgga atatacaatt 480 gatgttttct ttcgacaaaa atggaaagat gaacgtttaa aatttaaagg tcctatgaat 540 atccttcgac taaacaattt aatggctagc aaaatctgga ctccagatac ctttttcac 600 aatgggaaga aatcagtagc tcataatatg acaatgccaa ataagttgct tcgaattcag 660 gatgatggga ctctgctgta taccatgagg cttacagttc aagctgaatg cccaatgcac 720 ttggaggatt tcccaatgga tgctcattca tgtcctctga aatttggcag ctatgcatat 780 acaacttcag aggtcactta tatttggact tacaatgcat ctgattcagt acaggttgct 840 cctgatggct ctaggttaaa tcaatatgac ctgctgggcc aatcaatcgg aaaggagaca 900 960 attgggtatt ttgtgattca aacctatctg ccttgcatca tgactgtcat tctctcccaa 1020 gtttcattct ggcttaacag agaatctgtg cctgcaagaa ctgtgtttgg agtaacaact 1080 gtcctaacaa tgacaactct aagcatcagt gctcggaatt ctctccccaa agtggcttat 1140 gcaactgcca tggactggtt tattgctgtt tgttatgcat ttgtgttctc tgccctaatt 1200 gaatttgcaa ctgttaatta cttcaccaaa agaggatgga cttgggatgg gaagagtgta 1260 gtaaatgaca agaaaaaaga aaaggcttcc gttatgatac agaacaacgc ttatgcagtg 1320 gctgttgcca attatgcccc gaatctttca aaagatccag ttctctccac catctccaag 1380 agtgcaacca cgccagaacc caacaagaag ccagaaaaca agccagctga agcaaagaaa 1440 actttcaaca gtgttagcaa aattgacaga atgtccagaa tagtttttcc agttttgttt 1500 ggtaccttta atttagttta ctgggctaca tatttaaaca gagaacctgt attaggggtc 1560 agtccttgaa ttgagaccca tgttatcttt gggatgtata gcaacattaa atttggtttg 1620 ttttgctatg tacagtctga ctaataactg ctaatttgtg atccaacatg tacagtatgt 1680 atatagtgac atagcttacc agtagacctt taatggagac atgcatttgc taactcatgg 1740 aactgcagac agaaagcact ccatgcgaaa acagccattg ccttttttaa agatttaccc 1800 taggacctga tttaaagtga atttcaaatg acctgattaa tttcctattc ttccaaatga 1860 gatgaaaatg gggatcctgt acaacccttt gtggaccctt ttggtttagc tcttaagtag 1920 gggtattttc tactgttgct taattatgat ggaagataac attgtcattc ctagatgaat 1980 cctttgaagt aacaaacatt gtatctgaca tcagctctgt tcatgagtgc tcagagtccc 2040 tgctaatgta attggaagct tggtacacat aagaaaaact agagatttga aatctagcta 2100 tgaattactc tatatagtat ctatagccat gtacatatta cagcatgaca agctcgaaat 2160

SSCP Update Sequences.ST25 aattatgagt cagcccgaaa gatgttaat

aattatgagt cagcccgaaa	SSCP Update Sequences.ST25 gatgttaat	2189
<210> 58 <211> 2352 <212> DNA <213> Homo sapiens		
<400> 58 gaagatgctg ttgagggccc	tggagaaact tcagcagaac agggcctctc cccttgcagg	; 60
ccgagccgcg gccctgcgcc	ctcccctcc gcccagctcg gccaagggcg catttgctga	120
gcgtctggcg gcctctaccg	gagcacctct gcagagggcc gatcctccag cccagagacg	180
acatgtggcg ctcgggcgag	tgccttgcag agagaggagt agcttgctgg ctttgaacgc	240
gtggcgtggc agatatttca	gaaagcttca agaacaagct ggagaaggga agagttattc	300
ctccatattc acctgcttca	actactattc ttattgggaa tggacaatgg aatgttctct	360
ggttttatca tgatcaaaaa	cctccttctc ttttgtattt ccatgaactt atccagtcac	420
tttggctttt cacagatgcc	aaccagttca gtgaaagatg agaccaatga caacatcacg	480
atatttacca ggatcttgga	tgggctcttg gatggctacg acaacagact tcggcccggg	540
ctgggagagc gcatcactca	ggtgaggacc gacatctacg tcaccagctt cggcccggtg	600
tccgacacgg aaatggagta	caccatagac gtgtttttcc gacaaagctg gaaagatgaa	660
aggcttcggt ttaaggggcc	catgcagcgc ctccctctca acaacctcct tgccagcaag	720
atctggaccc cagacacgtt	cttccacaac gggaagaagt ccatcgctca caacatgacc	780
acgcccaaca agctgctgcg	gctggaggac gacggcaccc tgctctacac catgcgcttg	840
accatctctg cagagtgccc	catgcagctt gaggacttcc cgatggatgc gcacgcttgc	900
cctctgaaat ttggcagcta	tgcgtaccct aattctgaag tcgtttacgt ctggaccaac	960
ggctccacca agtcggtggt	ggtggcggaa gatggctcca gactgaacca gtaccacctg	1020
atggggcaga cggtgggcac	tgagaacatc agcaccagca caggcgaata cacaatcatg	1080
acagctcact tccacctgaa a	aaggaagatt ggctactttg tcatccagac ctaccttccc	1140
tgcataatga ccgtgatctt a	atcacaggtg tccttttggc tgaaccggga atcagtccca	1200
gccaggacag tttttggggt o	caccacggtg ctgaccatga cgaccctcag catcagcgcc	1260
aggaactctc tgcccaaagt g	ggcctacgcc accgccatgg actggttcat agctgtgtgc	1320
tatgccttcg tcttctcggc o	gctgatagag tttgccacgg tcaattactt taccaagaga	1380
ggctgggcct gggatggcaa a	aaaagccttg gaagcagcca agatcaagaa aaagcgtgaa	1440
gtcatactaa ataagtcaac a	aaacgctttt acaactggga agatgtctca cccccaaac	1500
attccgaagg aacagacccc a	agcagggacg tcgaatacaa cctcagtctc agtaaaaccc	1560
tctgaagaga agacttctga a	aagcaaaaag acttacaaca gtatcagcaa aattgacaaa	1620
atgtcccgaa tcgtattccc a	agtcttgttc ggcactttca acttagttta ctgggcaacg	1680
tatttgaata gggagccggt g	gataaaagga gccgcctctc caaaataacc ggccacactc	1740
ccaaactcca agacagccat a	acttccagcg aaatggtacc aaggagaggt tttgctcaca Page 112	1800

SSCP Update Sequences.ST25

gggactctcc	atatgtgagc	actatcttc	: aggaaatttt	tgcatgttta	ataatatgta	1860
caaataatat	tgccttgatg	tttctatatg	taacttcaga	tgtttccaag	atgtcccatt	1920
gataattcga	gcaaacaact	ttctggaaaa	acaggatacg	atgactgaca	ctcagatgcc	1980
cagtatcata	cgttgatagt	ttacaaacaa	gatacgtata	tttttaactg	cttcaagtgt	2040
tacctaacaa	tgttttttat	acttcaaatg	tcatttcata	caaattttco	cagtgaataa	2100
atattttagg	aaactctcca	tgattattag	aagaccaact	atattgcgag	aaacagagat	2160
cataaagagc	acgttttcca	ttatgaggaa	acttggacat	ttatgtacaa	aatgaattgc	2220
ctttgataat	tcttactgtt	ctgaaattag	gaaagtactt	gcatgatctt	acacgaagaa	2280
atagaatagg	caaactttta	tgtaggcaga	ttaataacag	aaatacatca	tatgttagat	2340
acacaaaata	tt					2352
<210> 59 <211> 235 <212> DNA <213> Hom	2 o sapiens					
<400> 59 gaagatgctg	ttgagggccc	tggagaaact	tcagcagaac	agggcctctc	cccttgcagg	60
	gccctgcgcc					120
	gcctctaccg					180
	ctcgggcgag				_	240
gtggcgtggc	agatatttca	gaaagcttca	agaacaagct	ggagaaggga	agagttattc	300
ctccatattc	acctgcttca	actactattc	ttattgggaa	tggacaatgg	aatgttctct	360
ggttttatca	tgatcaaaaa	cctccttctc	ttttgtattt	ccatgaactt	atccagtcac	420
tttggctttt	cacagatgcc	aaccagttca	gtgaaagatg	agaccaatga	caacatcacg	480
atatttacca	ggatcttgga	tgggctcttg	gatggctacg	acaacagact	tcggcccggg	540
ctgggagagc	gcatcactca	ggtgaggacc	gacatctacg	tcaccagctt	cggcccggtg	600
tccgacacgg	aaatggagta	caccatagac	gtgtttttcc	gacaaagctg	gaaagatgaa	660
aggcttcggt	ttaaggggcc	catgcagcgc	ctccctctca	acaacctcct	tgccagcaag	720
atctggaccc	cagacacgtt	cttccacaac	gggaagaagt	ccatcgctca	caacatgacc	780
acgcccaaca	agctgctgcg	gctggaggac	gacggcaccc	tgctctacac	catgcgcttg	840
accatctctg	cagagtgccc	catgcagctt	gaggacttcc	cgatggatgc	gcacgcttgc	900
cctctgaaat	ttggcagcta	tgcgtaccct	aattctgaag	tcgtttacgt	ctggaccaac	960
ggctccacca	agtcggtggt	ggtggcggaa	gatggctcca	gactgaacca	gtaccacctg	1020
atggggcaga	cggtgggcac	tgagaacatc	agcaccagca	caggcgaata	cacaatcatg	1080
acagctcact	tccacctgaa	aaggaagatt	ggctactttg	tcatccagac	ctaccttccc	1140
tgcataatga	ccgtgatctt	atcacaggtg	tccttttggc	tgaaccggga	atcagtccca	1200

•						
gccaggacag t	ttttggggt		Update Sequ ctgaccatga		catcagcgcc	1260
aggaactctc t	gcccaaagt	ggcctacgcc	accgccatgg	actggttcat	agctgtgtgc	1320
tatgccttcg t	cttctcggc	gctgatagag	tttgccacgg	tcaattactt	taccaagaga	1380
ggctgggcct g	ggatggcaa	aaaagccttg	gaagcagcca	agatcaagaa	aaagcgtgaa	1440
gtcatactaa a	ıtaagtcaac	aaacgctttt	acaactggga	agatgtctca	cccccaaac	1500
attccgaagg a	acagacccc	agcagggacg	tcgaatacaa	cctcagtctc	agtaaaaccc	1560
tctgaagaga a	gacttctga	aagcaaaaag	acttacaaca	gtatcagcaa	aattgacaaa	1620
atgtcccgaa t	cgtattccc	agtcttgttc	ggcactttca	acttagttta	ctgggcaacg	1680
tatttgaata g	ggagccggt	gataaaagga	gccgcctctc	caaaataacc	ggccacactc	1740
ccaaactcca a	gacagccat	acttccagcg	aaatggtacc	aaggagaggt	tttgctcaca	1800
gggactctcc a	tatgtgagc	actatctttc	aggaaatttt	tgcatgttta	ataatatgta	1860
caaataatat t	gccttgatg	tttctatatg	taacttcaga	tgtttccaag	atgtcccatt	1920
gataattcga g	caaacaact	ttctggaaaa	acaggatacg	atgactgaca	ctcagatgcc	1980
cagtatcata c	gttgatagt	ttacaaacaa	gatacgtata	tttttaactg	cttcaagtgt	2040
tacctaacaa t	gttttttat	acttcaaatg	tcatttcata	caaattttcc	cagtgaataa	2100
atattttagg a	aactctcca	tgattattag	aagaccaact	atattgcgag	aaacagagat	2160
cataaagagc a	cgttttcca	ttatgaggaa	acttggacat	ttatgtacaa	aatgaattgc	2220
ctttgataat t	cttactgtt	ctgaaattag	gaaagtactt	gcatgatctt	acacgaagaa	2280
atagaatagg c	aaactttta	tgtaggcaga	ttaataacag	aaatacatca	tatgttagat	2340
acacaaaata t	t					2352
<210> 60 <211> 2373 <212> DNA <213> Homo	sapiens					
<400> 60 gcgcgcggcc cg	ggggcgcgg	cgcggagcgg	agctgcaggg	cggcggcggg	agcgcggggc	60
gcaagagccg c	tccgccggg	agtgccgggg	aagttcgcgc	tggcagcatg	gggcggtgac	120
gccgcaccgg co	cttccgcgc	ctgccagccg	ggcgagagca	ggcggaggag	aaggaggatg	180
catcctcacc ga	acggctcgc	ctcccggggc	ccgcgcgcag	gtgccttgca	gagagaggag	240
tagcttgctg go	ctttgaacg	cgtggcgtgg	cagatatttc	agaaagcttc	aagaacaagc	300
tggagaaggg aa	agagttatt	cctccatatt	cacctgcttc	aactactatt	cttattggga	360
atggacaatg ga	aatgttctc	tggttttatc	atgatcaaaa	acctccttct	cttttgtatt	420
tccatgaact ta	atccagtca	ctttggcttt	tcacagatgc	caaccagttc	agtgaaagat	480
gagaccaatg ad	caacatcac	gatatttacc	aggatcttgg	atgggctctt	ggatggctac	540
gacaacagac ti	tcggcccgg	gctgggagag	cgcatcactc	aggtgaggac	cgacatctac	600
gtcaccagct to	cggcccggt	gtccgacacg	gaaatggagt Page 114		cgtgtttttc	660

SSCP Update Sequences.ST25

cgacaaagct	ggaaagatga	aaggcttcgg	tttaaggggc	ccatgcågcg	cctccctctc	720
aacaacctcc	ttgccagcaa	gatctggacc	ccagacacgt	tcttccacaa	cgggaagaag	780
tccatcgctc	acaacatgac	cacgcccaac	aagctgctgc	ggctggagga	cgacggcacc	840
ctgctctaca	ccatgcgctt	gaccatctct	gcagagtgcc	ccatgcagct	tgaggacttc	900
ccgatggatg	cgcacgcttg	ccctctgaaa	tttggcagct	atgcgtaccc	taattctgaa	960
gtcgtttacg	tctggaccaa	cggctccacc	aagtcggtgg	tggtggcgga	agatggctcc	1020
agactgaacc	agtaccacct	gatggggcag	acggtgggca	ctgagaacat	cagcaccagc	1080
acaggcgaat	acacaatcat	gacagctcac	ttccacctga	aaaggaagat	tggctacttt	1140
gtcatccaga	cctaccttcc	ctgcataatg	accgtgatct	tatcacaggt	gtccttttgg	1200
ctgaaccggg	aatcagtccc	agccaggaca	gtttttgggg	tcaccacggt	gctgaccatg	1260
acgaccctca	gcatcagcgc	caggaactct	ctgcccaaag	tggcctacgc	caccgccatg	1320
gactggttca	tagctgtgtg	ctatgccttc	gtcttctcgg	cgctgataga	gtttgccacg	1380
gtcaattact	ttaccaagag	aggctgggcc	tgggatggca	aaaaagcctt	ggaagcagcc	1440
aagatcaaga	aaaagcgtga	agtcatacta	aataagtcaa	caaacgcttt	tacaactggg	1500
aagatgtctc	accccccaaa	cattccgaag	gaacagaccc	cagcagggac	gtcgaataca	1560
acctcagtct	cagtaaaacc	ctctgaagag	aagacttctg	aaagcaaaaa	gacttacaac	1620
agtatcagca	aaattgacaa	aatgtcccga	atcgtattcc	cagtcttgtt	cggcactttc	1680
aacttagttt	actgggcaac	gtatttgaat	agggagccgg	tgataaaagg	agccgcctct	1740
ccaaaataac	cggccacact	cccaaactcc	aagacagcca	tacttccagc	gaaatggtac	1800
caaggagagg	ttttgctcac	agggactctc	catatgtgag	cactatcttt	caggaaattt	1860
ttgcatgttt	aataatatgt	acaaataata	ttgccttgat	gtttctatat	gtaacttcag	1920
atgtttccaa	gatgtcccat	tgataattcg	agcaaacaac	tttctggaaa	aacaggatac	1980
gatgactgac	actcagatgc	ccagtatcat	acgttgatag	tttacaaaca	agatacgtat	2040
atttttaact	gcttcaagtg	ttacctaaca	atgttttta	tacttcaaat	gtcatttcat	2100
acaaattttc	ccagtgaata	aatattttag	gaaactctcc	atgattatta	gaagaccaac	2160
tatattgcga	gaaacagaga	tcataaagag	cacgttttcc	attatgagga	aacttggaca	2220
tttatgtaca	aaatgaattg	cctttgataa	ttcttactgt	tctgaaatta	ggaaagtact	2280
tgcatgatct	tacacgaaga	aatagaatag	gcaaactttt	atgtaggcag	attaataaca	2340
gaaatacatc	atatgttaga	tacacaaaat	att			2373

<210> 61 <211> 1974 <212> DNA <213> Homo sapiens

<400> 61

cgcgcgggga agggaagaag aggacgaggt ggcgcagaga ccgcgggaga acacagtgct 60

tccggaggaa	atctgctcgg	SSCP l	Jpdate Seque	ences.ST25 cctttgatgt	tttggtacgc	120
	cgcctcacat					180
	accctcaatt					240
	gatttggtcc					300
_	taatatgtcg					360
-	gagaccagat					420
_	cgatatggtt					480
						540
	gagagataag					600
	ggcagaccag					660
	cggagtgact					
	actcagaatc					720
	acaaaactgc					780
_	ctggcgtggc					840
cacagttctc	tattgtagat	tacaaactta	tcaccaagaa	ggttgttttt	tccacaggtt	900
cctatcccag	gttatccctc	agctttaagc	ttaagagaaa	cattggctac	tttatcctgc	960
aaacatacat	gccttccatc	ctgattacca	tcctctcctg	ggtctccttc	tggattaatt	1020
acgatgcttc	agctgcaagg	gtggcattag	gaatcacaac	tgtcctcaca	atgaccacaa	1080
tcaacaccca	cctccgggaa	actctcccta	aaatccccta	tgtgaaggcc	attgacatgt	1140
acctgatggg	gtgctttgtc	ttcgttttca	tggcccttct	ggaatatgcc	ctagtcaact	1200
acatcttctt	tgggaggggg	ccccaacgcc	aaaagaaagc	agctgagaag	gctgccagtg	1260
ccaacaatga	gaagatgcgc	ctggatgtca	acaagatttt	ttataaagat	attaaacaaa	1320
atgggaccca	atatcgatcc	ttgtgggacc	ctactggaaa	cctctcccca	actagacgga	1380
ctaccaatta	cgatttctct	ctgtatacga	tggaccccca	tgagaacatc	ttactgagca	1440
ctctcgagat	aaaaaatgaa	atggccacat	ctgaggctgt	gatgggactt	ggagacccca	1500
gaagcacaat	gctagcctat	gatgcctcca	gcatccagta	tcggaaagct	gggttgccca	1560
ggcatagttt	tggccgaaat	gctctggaac	gacatgtggc	gcaaaagaaa	agtcgcctga	1620
ggagacgcgc	ctcccaactg	aaaatcacca	tccctgactt	gactgatgtg	aatgccatag	1680
atcggtggtc	ccgcatattc	ttcccagtgg	ttttttcctt	cttcaacatc	gtctattggc	1740
	gaactaaaca					1800
	agcctgatgt					1860
	tagttgctgg					1920
	gaatacacta					1974
39	J	55 5		-	-	

<210> 62 <211> 1974 <212> DNA

SSCP Update Sequences.ST25

<213> Homo sap		Update Sequ	ences.ST25		
<400> 62 cgcgcgggga aggg	gaagaag aggacgaggt	ggcgcagaga	ccgcgggaga	acacagtgcc	60
	gctcgg tccccggcag				120
	ctcacat tagaattac				180
	ctcaatt ccatcaaaaa				240
	ttggtcc ttccccttaa				300
	tatgtcg ctggttaaag				360
_	accagat tttggaggto				420
	tatggtt tctgaagtca				480
	agataag aggctgtcc				540
	agaccag ctctgggtg				600
	agtgact gttaagaaco				660
	cagaatc acaaccacag				720
	aaactgc accttggaaa				780
	gcgtggc gatgataat				840
•	tgtagat tacaaactta		*		900
	atccctc agctttaag				960
aaacatacat gcct	ttccatc ctgattacca	tcctctcctg	ggtctccttc	tggattaatt	1020
acgatgcttc agct	tgcaagg gtggcattag	gaatcacaac	tgtcctcaca	atgaccacaa	1080
tcaacaccca ccto	ccgggaa actctcccta	a aaatccccta	tgtgaaggcc	attgacatgt	1140
acctgatggg gtgc	ctttgtc ttcgttttca	tggcccttct	ggaatatgcc	ctagtcaact	1200
acatcttctt tggg	gagggg ccccaacgc	aaaagaaagc	agctgagaag	gctgccagtg	1260
ccaacaatga gaag	gatgcgc ctggatgtca	acaagatttt	ttataaagat	attaaacaaa	1320
atgggaccca atat	tcgatcc ttgtgggac	ctactggaaa	cctctcccca	actagacgga	1380
ctaccaatta cgat	tttctct ctgtatacga	ı tggaccccca	tgagaacatc	ttactgagca	1440
ctctcgagat aaaa	aaatgaa atggccaca	ctgaggctgt	gatgggactt	ggagacccca	1500
gaagcacaat gcta	agcctat gatgcctcc	a gcatccagta	tcggaaagct	gggttgccca	1560
ggcatagttt tggc	ccgaaat gctctggaa	gacatgtggc	gcaaaagaaa	agtcgcctga	1620
ggagacgcgc ctcd	ccaactg aaaatcacc	tccctgactt	gactgatgtg	aatgccatag	1680
atcggtggtc ccgc	catattc ttcccagtg	ttttttcctt	cttcaacatc	gtctattggc	1740
tttactatgt gaad	ctaaaca tggcctccc	a ctggaagcaa	ggactagatt	cctcctcaaa	1800
ccagttgtac agco	ctgatgt aggacttgg	a aaacacatca	atccaggaca	aaagtgacgc	1860
taaaatacct tagt	ttgctgg cctatcctg	ggtccatttc	ataccatttg	ggttgcttct	1920
gctaagtaat gaat	tacacta aggtccttg [.]	ggttttccag Page 11		agta	1974

<210>

SSCP Update Sequences.ST25

63 3282 <211> DNA Homo sapiens <400> gggacagggc tgaggatgag gagaaccctg gggacccaga agaccgtgcc ttqcctggaa 60 120 gtcctgcctg taggcctgaa ggacttgccc taacagagcc tcaacaacta cctggtgatt cctacttcag ccccttggtg tgagcagctt ctcaacatga actacagcct ccacttggcc 180 ttcgtgtgtc tgagtctctt cactgagagg atgtgcatcc aggggagtca gttcaacgtc 240 300 gaggtcggca gaagtgacaa gctttccctg cctggctttg agaacctcac agcaggatat aacaaatttc tcaggcccaa ttttggtgga gaacccgtac agatagcgct gactctggac 360 420 attgcaagta tctctagcat ttcagagagt aacatggact acacagccac catatacctc cgacagcgct ggatggacca gcggctggtg tttgaaggca acaagagctt cactctggat 480 gcccgcctcg tggagttcct ctgggtgcca gatacttaca ttgtggagtc caagaagtcc 540 ttcctccatg aagtcactgt gggaaacagg ctcatccgcc tcttctccaa tggcacggtc 600 ctgtatgccc tcagaatcac gacaactgtt gcatgtaaca tggatctgtc taaatacccc 660 720 atggacacac agacatgcaa gttgcagctg gaaagctggg gctatgatgg aaatgatgtg gagttcacct ggctgagagg gaacgactct gtgcgtggac tggaacacct gcggcttgct 780 840 cagtacacca tagagcggta tttcacctta gtcaccagat cgcagcagga gacaggaaat 900 tacactagat tggtcttaca gtttgagctt cggaggaatg ttctgtattt cattttggaa 960 acctacgttc cttccacttt cctggtggtg ttgtcctggg tttcattttg gatctctctc gattcagtcc ctgcaagaac ctgcattgga gtgacgaccg tgttatcaat gaccacactg 1020 atgatcgggt cccgcacttc tcttcccaac accaactgct tcatcaaggc catcgatgtg 1080 tacctgggga tctgctttag ctttgtgttt ggggccttgc tagaatatgc agttgctcac 1140 1200 tacagttcct tacagcagat ggcagccaaa gataggggga caacaaagga agtagaagaa gtcagtatta ctaatatcat caacagctcc atctccagct ttaaacggaa gatcagcttt 1260 gccagcattg aaatttccag cgacaacgtt gactacagtg acttgacaat gaaaaccagc 1320 gacaagttca agtttgtctt ccgagaaaag atgggcagga ttgttgatta tttcacaatt 1380 caaaacccca gtaatgttga tcactattcc aaactactgt ttcctttgat ttttatgcta 1440 gccaatgtat tttactgggc atactacatg tatttttgag tcaatgttaa atttcttgca 1500 tgccataggt cttcaacagg acaagataat gatgtaaatg gtattttagg ccaagtgtgc 1560 acccacatcc aatggtgcta caagtgactg aaataatatt tgagtctttc tgctcaaaga 1620 atgaagctcc aaccattgtt ctaagctgtg tagaagtcct agcattatag gatcttgtaa 1680 tagaaacatc agtccattcc tctttcatct taatcaagga cattcccatg gagcccaaga 1740 ttacaaatgt actcagggct gtttattcgg tggctccctg gtttgcattt acctcatata 1800

aagaatggga	aggagaccat	SSCP tgggtaaccc	Update Sequ tcaagtgtca	ences.ST25 gaagttgttt	ctaaagtaac	1860
tatacatgtt	ttttactaaa	tctctgcagt	gcttataaaa	tacattgttg	cctatttagg	1920
gagtaacatt	ttctagtttt	tgtttctggt	taaaatgaaa	tatgggctta	tgtcaattca	1980
ttggaagtca	atgcactaac	tcaataccaa	gatgagtttt	taaataatga	atattattta	2040
ataccacaac	agaattatcc	ccaatttcca	ataagtccta	tcattgaaaa	ttcaaatata	2100
agtgaagaaa	aaattagtag	atcaacaatc	taaacaaatc	cctcggttct	aagatacaat	2160
ggattcccca	tactggaagg	actctgaggc	tttattcccc	cactatgcat	atcttatcat	2220
tttattatta	tacacacatc	catcctaaac	tatactaaag	cccttttccc	atgcatggat	2280
ggaaatggaa	gattttttg	taacttgttc	tagaagtctt	aatatgggct	gttgccatga	2340
aggcttgcag	aattgagtcc	attttctagc	tgcctttatt	cacatagtga	tggggtacta	2400
aaagtactgg	gttgactcag	agagtcgctg	tcattctgtc	attgctgcta	ctctaacact	2460
gagcaacact	ctcccagtgg	cagatcccct	gtatcattcc	aagaggagca	ttcatccctt	2520
tgctctaatg	atcaggaatg	atgcttatta	gaaaacaaac	tgcttgaccc	aggaacaagt	2580
ggcttagctt	aagtaaactt	ggctttgctc	agatccctga	tccttccagc	tggtctgctc	2640
tgagtggctt	atcccgcatg	agcaggagcg	tgctggccct	gagtactgaa	ctttctgagt	2700
aacaatgaga	cacgttacag	aacctatgtt	caggttgcgg	gtgagctgcc	ctctccaaat	2760
ccagccagag	atgcacattc	ctcggccagt	ctcagccaac	agtaccaaaa	gtgatttttg	2820
agtgtgccag	ggtaaaggct	tccagttcag	cctcagttat	tttagacaat	ctcgccatct	2880
ttaatttctt	agcttcctgt	tctaataaat	gcacggcttt	acctttcctg	tcagaaataa	2940
accaaggctc	taaaagatga	tttcccttct	gtaactccct	agagccacag	gttctcattc	3000
cttttcccat	tatacttctc	acaattcagt	ttctatgagt	ttgatcacct	gattttttta	3060
acaaaatatt	tctaacggga	atgggtggga	gtgctggtga	aaagagatga	aatgtggttg	3120
tatgagccaa	tcatatttgt	gattttttaa	aaaaagttta	aaaggaaata	tctgttctga	3180
aaccccactt	aagcattgtt	tttatataaa	aacaatgata	aagatgtgaa	ctgtgaaata	3240
aatataccat	attagctacc	caccaaaaaa	aaaaaaaaa	aa		3282
<210> 64 <211> 270 <212> DNA <213> Homo <400> 64	sapiens					
ggtccattcg	ggaattactg	cccagcagcc	gactaagttg	cattccttga	atcttcgcag	60
aaaagacaat	tcttttaatc	agagttagta	atgtggacag	tacaaaatcg	agagagtctg	120
gggcttctct	ctttccctgt	gatgattacc	atggtctgtt	gtgcacacag	gtgagctgct	180
gttgttgaat	ctcgctctct	ctctctcttt	ttttcttggt	atgtttcttt	ttacgtgtct	240
gctggatcat	gtatcttgtt	gtttgggggt				270

SSCP Update Sequences.ST25

<210> <211> <212> <213>	65 238 DNA Homo	o sapiens					
<400>	65						C 0
			-	actggaatgg			60
				caattgttga			120
aggtgga	ıgtt	cacaacaggt	gaggttgttt	ccccaaaat	gtactagggg	tgctgtgaaa	180
ggaagaa	igat	ggttccaacc	aaataatggg	ctgattactt	gtcttttgtt	tctcaact	238
<210> <211> <212> <213>	66 345 DNA Homo	o sapiens					
<400> gcaccaa	66 itaa	ggaagtggca	aatggcatct	gtcctctcaa	tcttgaaaaa	ggaacttaat	60
agtggcg	jcct	tcagctaagt	gttgtctttc	tctttcacag	gaatcacgac	agtgcttaca	120
atgacaa	ıcca	tcagcaccca	cctcagggag	accctgccaa	agatccctta	tgtcaaagcg	180
attgata	ttt	atctgatggg	ttgctttgtg	tttgtgttcc	tggctctgct	ggagtatgcc	240
tttgtaa	att	acatcttctt	tgggaaaggc	cctcagaaaa	agggagctag	caaacaagac	300
cagagtg	jcca	atgagaagaa	taaactggag	atgaataaag	tccag		345
<210> <211> <212> <213>	67 190 DNA Homo	o sapiens					
<400> gggtggg	67 JCCg	gcgggcggcg	ggcagggcgc	ggggtgcgcg	gggcgctggc	ggctgagccg	60
cccctga	ıccc	cgctctttgt	gctccctgtc	cctccccag	tgtgaacgat	cccgggaaca	120
tgtcctt	tgt	gaaggagacg	gtggacaagc	tgttgaaagg	ctacgacatt	cgcctaagac	180
ccgactt	cgg						190
<210> <211> <212> <213>	68 253 DNA Homo	o sapiens					
<400>	68						60
				ggttgaagag			60
_				cgattctgtc			120
				tcggtatgtg			180
			ttacagtatt	gagagttcaa	aggctgtagt	tcaactacca	240
ttttttg	jaca	gcg					253

<210> 69 <211> 288

SSCP Update Sequences.ST25

<212> <213>	DNA Homo sapiens	SSCP	Update Sequ	ences.ST25		
<400> acggtt	69 actc atcggaggac		actggtcgga	gagccaggag	cacatccacg	60
ggctgg	acaa gctgcagctg	gcgcagttca	ccatcaccag	ctaccgcttc	accacggagc	120
tgatga	actt caagtccggt	aacatatgcc	cgccgcccct	tccgcatgtg	cccgccgccc	180
cttccg	cgcg cgcccaccgc	cccttccgcg	cgcgcccacc	gccccttccg	cgtgcgcccg	240
cctgtg	gttt tcatgctttt	tagtcaagcc	gcccgcaggc	ccccaggg		288
<210> <211> <212> <213>	70 288 DNA Homo sapiens					
<400> acggtt	70 actc atcggaggac	atcgtctact	actggtcgga	gagccaggag	cacatccacg	60
ggctgg	acaa gctgcagctg	gcgcagttca	ccatcaccag	ctaccgcttc	accacggagc	120
tgatga	actt caagtccggt	aacatatgcc	cgccgccccit	tccgcatgtg	cccgccgccc	180
cttccg	cgcg cgcccaccgc	cccttccgcg	cgcgcccacc	gccccttccg	cgtgcgcccg	240
cctgtg	gttt tcatgctttt	tagtcaacgc	gcccgcaggc	ccccaggg		288
<210> <211> <212> <213>	71 288 DNA Homo sapiens					
<400> acggtt	71 actc atcggaggac	atcgtctact	actggtcgga	gagccaggag	cacatccacg	60
ggctgg	acaa gctgcagctg	gcgcagttca	ccatcaccag	ctaccgcttc	accacggagc	120
tgatga	actt caagtccggt	aacatatgcc	cgccgcccct	tccgcatgtg	cccgccgccc	180
cttccg	cgcg cgcccaccgc	cccttccgcg	tgcgcccgcc	tgtggttttc	atgcttttta	240
gtcaag	cgcc cgcaggcccc	cagggcctct	ggggatgcag	ctgggacg		288
<210> <211> <212> <213>	72 170 DNA Homo sapiens					
<400> accggt	72 gatg tggcttggtt	tagtcatacc	ctaaagattg	ctcttaagag	tgatcttgga	60
tgcaaa	tgtt catgacagtt	tcctagttat	tttttcttct	tttcttgtag	ttactacatc	120
cagatt	cctc aagatggatt	cctgagcgaa	taagcctaca	agccccttcc		170
<210> <211> <212> <213>	73 221 PRT Homo sapiens					
<400>	73		Daga 131			

SSCP Update Sequences.ST25

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Asp Glu Asn Gly 40 45

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95

Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125

Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140

Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160

Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175

Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190

Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205

Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu 210 220

<210> 74

<211> 383

<212> PRT

<213> Homo sapiens

<400> 74

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 10 15

SSCP Update Sequences.ST25
Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu
20 25 30 Lys Ala Lys Asn Pro Lys Pro Asp Lys Asp Asp Glu Asn Gly 35 40 45 Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 60 Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80 Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95 Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr 100 105 Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 . 125 Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140 Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160 Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175 Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190 Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205 Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 215 220 Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240 Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255 Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270 Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285

SSCP Update Sequences.ST25 Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300

Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315

Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335

Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350

Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365

Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe 370 380

<400> 75

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Glu Asn Gly 35 40 45

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 55 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95

Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser

Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe

Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr Page 124

<210> <211>

⁷⁵ 2009

<212> PRT

Homo sapiens

SSCP Update Sequences.ST25 145 150

Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175

PCT/AU2004/001051

160

Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190

Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205

Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 215 220

Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240

Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255

Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270

Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285

Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300

Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 320

Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335

Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350

Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365

Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 375 380

Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Pro Gly Lys Thr Tyr Met 385 390 395 400

Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410

Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala Page 125

SSCP Update Sequences.ST25 420 425 430 PCT/AU2004/001051

Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445 Glu Gln Leu Lys Lys Gln Gln Glu Ala Ala Gln Gln Ala Ala Thr Ala 450 455 460 Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480 Asp Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu
485 490 495 Arg Arg Asn Arg Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly
500 505 510 Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525 Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 540 Tyr Glu Lys Arg Tyr Ser Ser Pro His Gln Ser Leu Leu Ser Ile Arg 545 550 555 560 Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Thr Ser Leu Phe Ser 575 Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp Phe Ala Asp 580 585 590 Asp Glu His Ser Thr Phe Glu Asp Asn Glu Ser Arg Asp Ser Leu 595 600 605 Phe Val Pro Arg Arg His Gly Glu Arg Arg Asn Ser Asn Leu Ser Gln 610 620 Thr Ser Arg Ser Ser Arg Met Leu Ala Val Phe Pro Ala Asn Gly Lys 625 630 635 640 Met His Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Val Gly Gly 645 650 655 Pro Ser Val Pro Thr Ser Pro Val Gly Gln Leu Leu Pro Glu Val Ile 660 665 670 Ile Asp Lys Pro Ala Thr Asp Asp Asn Gly Thr Thr Glu Thr Glu 685 Met Arg Lys Arg Arg Ser Ser Ser Phe His Val Ser Met Asp Phe Leu Page 126

SSCP Update Sequences.ST25 690 695 700

Glu Asp Pro Ser Gln Arg Gln Arg Ala Met Ser Ile Ala Ser Ile Leu 705 710 715 720

PCT/AU2004/001051

Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735

Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro 740 745 750

Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro 755 760 765

Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe 770 780

Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800

Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810

Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 825 830

Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly 835 840 845

Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 855 860

Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile 865 870 875 880

Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val 885 890 895

Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe 900 905 910

Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln 915 920 925

Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val 930 935 940

Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met 945 950 955 960

Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met Page 127

SSCP Update Sequences.ST25 965 970 975

PCT/AU2004/001051

Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu 980 985 990

Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Asn Glu 995 1000

Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 1020

Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035

Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1045 1050

Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Thr Glu 1055 1065

Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1080

Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095

Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val 1100 1105 1110

Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125

Thr Glu Asp Phe Ser Ser Glu Ser Asp Leu Glu Glu Ser Lys Glu 1130 1140

Lys Leu Asn Glu Ser Ser Ser Ser Ser Glu Gly Ser Thr Val Asp 1145 1150 1155

Ile Gly Ala Pro Val Glu Glu Gln Pro Val Val Glu Pro Glu Glu 1160 1165

Thr Leu Glu Pro Glu Ala Cys Phe Thr Glu Gly Cys Val Gln Arg 1175 1180 1185

Phe Lys Cys Cys Gln Ile Asn Val Glu Glu Gly Arg Gly Lys Gln 1190 1200

Trp Trp Asn Leu Arg Arg Thr Cys Phe Arg Ile Val Glu His Asn 1205 1210 1215

Trp Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly Page 128

PCT/AU2004/001051

SSCP Update Sequences.ST25 1220 1225 1230

Ala Leu Ala Phe Glu Asp Ile Tyr Ile Asp Gln Arg Lys Thr Ile 1235 1240 1245

Lys Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe 1250 1260

Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Tyr Gln Thr 1265 1270 1275

Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1280 1285

Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr Ser Glu 1295 1300

Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro 1310 1315 1320

Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn 1325 1330 1335

Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val

Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu 1355 1360

Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Thr Thr Gly Asp 1370 1380

Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr Asp Cys Leu Lys 1385 1390 1395

Leu Ile Glu Arg Asn Glu Thr Ala Arg Trp Lys Asn Val Lys Val 1400 1405 1410

Asn Phe Asp Asn Val Gly Phe Gly Tyr Leu Ser Leu Leu Gln Val 1415 1420 1425

Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp 1430 1440

Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr Glu Lys Ser Leu Tyr 1445 1450 1455

Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe 1460 1465 1470

Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln Page 129

SSCP Update Sequences.ST25 1475 1480 1485

Gln Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu 1490 1495 1500 Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys 1505 1510 1515Pro Gln Lys Pro Ile Pro Arg Pro Gly Asn Lys Phe Gln Gly Met 1520 1530 Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met 1535 1540 1545 Ile Leu Ile Cys Leu Asn Met Val Thr Met Met Val Glu Thr Asp Asp Gln Ser Glu Tyr Val Thr Thr Ile Leu Ser Arg Ile Asn Leu 1565 1570 1575 Val Phe Ile Val Leu Phe Thr Gly Glu Cys Val Leu Lys Leu Ile 1580 Ser Leu Arg His Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp Phe Val Val Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala 1640 1650 Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro 1655 1660 1665 Ala Leu Phe Asn Ile Gly Leu Leu Phe Leu Val Met Phe Ile 1670 1680 1680 1670 Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys Arg Glu 1690 Val Gly Ile Asp Asp Met Phe Asn Phe Glu Thr Phe Gly Asn Ser 1705 Met Ile Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly 1715 1720 1725

Leu Leu Ala Pro Ile Leu Asn Ser Lys Pro Pro Asp Cys Asp Pro

SSCP Update Sequences.ST25 1730 1735 1740

Asn Lys Val Asn Pro Gly Ser Ser Val Lys Gly Asp Cys Gly Asn 1745 1750 1755Pro Ser Val Gly Ile Phe Phe Val Ser Tyr Ile Ile Ile Ser Phe Leu Val Val Val Asn Met Tyr Ile Ala Val Ile Leu Glu Asn 1775 1780 1785 Phe Ser Val Ala Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp 1790 1795 1800 Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe Met Glu Phe Glu Lys Leu Ser Gln Phe Ala Ala 1830 Ala Leu Glu Pro Pro Leu Asn Leu Pro Gln Pro Asn Lys Leu Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His 1850 1860 Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln Met Glu Glu Arg Phe Met Ala Ser Asn Pro Ser Lys Val Ser Tyr Gln Pro Ile Thr Thr 1895 Thr Leu Lys Arg Lys Gln Glu Glu Val Ser Ala Val Ile Ile Gln Arg Ala Tyr Arg Arg His Leu Leu Lys Arg Thr Val Lys Gln Ala 1925 1930 1935 Ser Phe Thr Tyr Asn Lys Asn Lys Ile Lys Gly Gly Ala Asn Leu 1945 Leu Ile Lys Glu Asp Met Ile Ile Asp Arg Ile Asn Glu Asn Ser Ile Thr Glu Lys Thr Asp Leu Thr Met Ser Thr Ala Ala Cys Pro 1975 1970 Pro Ser Tyr Asp Arg Val Thr Lys Pro Ile Val Glu Lys His Glu

SSCP Update Sequences.ST25 1985 1990 1995

Gln Glu Gly Lys Asp Glu Lys Ala Lys Gly Lys 2000 2005

<210> 76

<211> 2009

<212> PRT

<213> Homo sapiens

<400> 76

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Asp Asp Asp Glu Asn Gly 40 45

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95

Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125

Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140

Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160

Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175

Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190

Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205

Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 215 220 Page 132

SSCP Update Sequences.ST25

Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240 Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255 Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270 Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285 Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300 Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335 Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350 Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365 Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 380 Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr Met 385 390 395 400 Ile Phe Leu Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala 420 425 430 Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445 Glu Gln Leu Lys Lys Gln Gln Glu Ala Ala Gln Gln Ala Ala Thr Ala 450 455 460 Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480 Asp Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu 485 490 495 Page 133

SSCP Update Sequences.ST25

Arg Arg Asn Arg Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly 500 505 Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525 Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 540 Tyr Glu Lys Arg Tyr Ser Ser Pro His Gln Ser Leu Leu Ser Ile Arg 545 550 555 560 Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Thr Ser Leu Phe Ser 565 570 575 Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp Phe Ala Asp 580 585 Asp Glu His Ser Thr Phe Glu Asp Asn Glu Ser Arg Asp Ser Leu 595 600 Phe Val Pro Arg Arg His Gly Glu Arg Arg Asn Ser Asn Leu Ser Gln 610 615 620 Thr Ser Arg Ser Ser Arg Met Leu Ala Val Phe Pro Ala Asn Gly Lys 625 630 635 640 Met His Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Val Gly Gly 645 650 655 Pro Ser Val Pro Thr Ser Pro Val Gly Gln Leu Leu Pro Glu Val Ile 660 665 670 Ile Asp Lys Pro Ala Thr Asp Asp Asn Gly Thr Thr Glu Thr Glu 685 Met Arg Lys Arg Arg Ser Ser Ser Phe His Val Ser Met Asp Phe Leu 690 695 700 Glu Asp Pro Ser Gln Arg Gln Arg Ala Met Ser Ile Ala Ser Ile Leu 705 710 715 720 Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735 Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro 740 745 750Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro 755 760 765 Page 134

SSCP Update Sequences.ST25

Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800 Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810 Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 825 830 Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 860 Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met 945 950 955 960 Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu 980 985 990 Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Asn Glu 995 1000 1005 Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1030 Page 135

SSCP Update Sequences.ST25

Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Thr Glu Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1080 Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095 Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125 Thr Glu Asp Phe Ser Ser Glu Ser Asp Leu Glu Glu Ser Lys Glu Lys Leu Asn Glu Ser Ser Ser Ser Ser Glu Gly Ser Thr Val Asp 1145 1150 1155Ile Gly Ala Pro Val Glu Glu Pro Val Val Glu Pro Glu Glu Thr Leu Glu Pro Glu Ala Cys Phe Thr Glu Gly Cys Val Gln Arg 1175 1180 1185 Phe Lys Cys Cys Gln Ile Asn Val Glu Glu Gly Arg Gly Lys Gln 1190 1200 Trp Trp Asn Leu Arg Arg Thr Cys Phe Arg Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Asp Gln Arg Lys Thr Ile 1235 1240 1245 Lys Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe 1250 1260 Ile Leu Glu Met Leu Lys Trp Val Ala Tyr Gly Tyr Gln Thr 1265 1270 1275 Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1280 1285 Page 136

SSCP Update Sequences.ST25

Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr Ser Glu 1295 1300 Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro 1310 1315 1320 Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn 1325 1330 Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val 1340 1345 1350 Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu 1355 1360 1365 Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Thr Thr Gly Asp 1370 1375 1380 Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr Asp Cys Leu Lys Leu Ile Glu Arg Asn Glu Thr Ala Arg Trp Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Phe Gly Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp 1430 1440 Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr Glu Lys Ser Leu Tyr 1445 1450 1455 Met Tyr Leu Tyr Phe Val Ile Phe Ile Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln 1475 1480 Gln Lys Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys 1505 1510 Pro Gln Lys Pro Ile Pro Arg Pro Gly Asn Lys Phe Gln Gly Met 1520 1530 Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met Page 137

SSCP Update Sequences.ST25

Ile	Leu 1550	Ile	Cys	Leu	Asn	Met 1555	٧a٦	Thr	Met	Met	Val 1560	Glu	Thr	Asp
Asp	G]n 1565	ser	Glu	Tyr	۷a٦	Thr 1570	Thr	IJе	Leu	Ser	Arg 1575	Ile	Asn	Leu
٧a٦	Phe 1580	Ile	val ,	Leu	Phe	Thr 1585	Gly	Glu	Cys	Val	Leu 1590	Lys	Leu	Ile
Ser	Leu 1595	Arg	His	Tyr	Tyr	Phe 1600	Thr	Ile	Gly	Trp	Asn 1605	Ile	Phe	Asp
Phe	Val 1610	٧a٦	٧a٦	Ile	Leu	Ser 1615	Ile	٧a٦	Gly	Met	Phe 1620	Leu	Ala	Glu
Leu	Ile 1625	Glu	Lys	Tyr	Phe	Val 1630	Ser	Pro	Thr	Leu	Phe 1635	Arg	٧a٦	Ile
Arg	Leu 1640	Ala	Arg	Ile	Gly	Arg 1645	Ile	Leu	Arg	Leu	Ile 1650	Lys	Gly	Аlа
Lys	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660	Phe	Ala	Leu	Met	Met 1665	Ser	Leu	Pro
Ala	Leu 1670	Phe	Asn	Ile	Gly	Leu 1675	Leu	Leu	Phe	Leu	Val 1680	Met	Phe	Ile
Tyr	А]а 1685	Ile	Phe	Glу	Met	Ser 1690	Asn	Phe	Аlа	Tyr	Va] 1695	Lys	Arg	Glu
٧a٦	Gly 1700	Ile	Asp	Asp	Met	Phe 1705	Asn	Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	Cys	Leu	Phe	Gln	Ile 1720	Thr	Thr	ser	Ala	Gly 1725	Trp	Asp	Glу
Leu	Leu 1730	Ala	Pro	Ile	Leu	Asn 1735	Ser	Lys	Pro	Pro	Asp 1740	Cys	Asp	Pro
Asn	Lys 1745	Val	Asn	Pro	Gly	ser 1750	Ser	۷al	Lys	Gly	Asp 1755	Cys	Gly	Asn
Pro	Ser 1760	٧al	Gly	Ile	Phe	Phe 1765	Phe	val	ser	Tyr	Ile 1770	Ile	Ile	Ser
Phe	Leu 1775	val	٧a٦	٧a٦	Asn	Met 1780	Tyr	Ile	Ala	٧a٦	Ile 1785	Leu	Glu	Asn
Phe	Ser 1790	val	Ala	Thr	Glu	Glu 1795	Ser		Glu age :		Leu 1800	Ser	Glu	Asp
									-					

SSCP Update Sequences.ST25

Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe Met Glu Phe Glu Lys Leu Ser Gln Phe Ala Ala 1820 1825 1830 Ala Leu Glu Pro Pro Leu Asn Leu Pro Gln Pro Asn Lys Leu Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His 1850 1860 Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln Met Glu Glu Arg Phe 1880 1885 Met Ala Ser Asn Pro Ser Lys Val Ser Tyr Gln Pro Ile Thr Thr Thr Leu Lys Arg Lys Gln Glu Glu Val Ser Ala Val Ile Ile Gln Arg Ala Tyr Arg Arg His Leu Leu Lys Arg Thr Val Lys Gln Ala 1925 1930 1935 Ser Phe Thr Tyr Asn Lys Asn Lys Ile Lys Gly Gly Ala Asn Leu 1940 1950 Leu Ile Lys Glu Asp Met Ile Ile Asp Arg Ile Asn Glu Asn Ser 1955 1960 1965 Ile Thr Glu Lys Thr Asp Leu Thr Met Ser Thr Ala Ala Cys Pro Pro Ser Tyr Asp Arg Val Thr Lys Pro Ile Val Glu Lys His Glu 1995 1990 Gln Glu Gly Lys Asp Glu Lys Ala Lys Gly Lys 2000 2005

<210> 77

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 1 5 10 15

<211> 2009

<212> PRT

<213> Homo sapiens

<400> 77

SSCP Update Sequences.ST25

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30 Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Asp Glu Asn Gly
35 40 45 Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 60 Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80 Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95 Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr $100 \\ 105 \\ 110$ Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125 Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140 Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 $$ 150 $$ 155 $$ 160 Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175 Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190 Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205 Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 215 220 Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240 Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255 Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270 Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285

SSCP Update Sequences.ST25

Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300 Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335 Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350 Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365 Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 375 380 Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr Met 385 390 395 400 Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Asn Leu Ile Asn 405 410 415 Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala 420 425 430 Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445 Glu Gln Leu Lys Lys Gln Gln Glu Ala Gln Gln Ala Ala Thr Ala 450 455 460 Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480 Asp Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu 485 490 495 Arg Arg Asn Arg Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly 500 505 Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525 Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 535 540Tyr Glu Lys Arg Tyr Ser Ser Pro His Gln Ser Leu Leu Ser Ile Arg 545 550 555 560

SSCP Update Sequences.ST25

Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Thr Ser Leu Phe Ser 565 570 575 Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp Phe Ala Asp 580 585 590 Asp Glu His Ser Thr Phe Glu Asp Asn Glu Ser Arg Asp Ser Leu 595 600 605 Phe Val Pro Arg Arg His Gly Glu Arg Arg Asn Ser Asn Leu Ser Gln 610 615 Thr Ser Arg Ser Ser Arg Met Leu Ala Val Phe Pro Ala Asn Gly Lys 625 630 635 640 Met His Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Val Gly Gly 645 650 655 Pro Ser Val Pro Thr Ser Pro Val Gly Gln Leu Leu Pro Glu Val Ile 660 665 670 Ile Asp Lys Pro Ala Thr Asp Asp Asn Gly Thr Thr Glu Thr Glu 675 680 685 Met Arg Lys Arg Arg Ser Ser Ser Phe His Val Ser Met Asp Phe Leu 690 700 Glu Asp Pro Ser Gln Arg Gln Arg Ala Met Ser Ile Ala Ser Ile Leu 705 710 715 720 Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735 Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro 740 745 750 Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro 755 760 765 Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe 770 780 Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800 Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810 815 Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 825 830

SSCP Update Sequences.ST25

Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly 835 840

Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 860

Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile 865 870 875 880

Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val 885 890 895

Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe 900 905 910

Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln 915 920

Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val 930 935 940

Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met 945 950 955 960

Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met 965 970 975

Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu 980 985 990

Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Glu 995 1000 1005

Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 1015 1020

Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035

Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1050

Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Thr Glu 1055 1065

Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1080

Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095

SSCP Update Sequences.ST25

Glu	Ser 1100	Asp	Tyr	Met	Ser	Phe 1105	Ile	Asn	Asn	Pro	Ser 1110	Leu	Thr	٧a٦
Thr	Val 1115	Pro	Ile	ΑΊа	۷al	Gly 1120	Glu	ser	Asp	Phe	Glu 1125	Asn	Leu	Asn
Thr	Glu 1130		Phe	ser	Ser	Glu 1135	Ser	Asp	Leu	Glu	Glu 1140	Ser	Lys	Glu
Lys	Leu 1145	Asn	Glu	ser	Ser	ser 1150	Ser	Ser	Glu	GТу	Ser 1155	Thr	٧a٦	Asp
ΙΊe	Gly 1160		Pro	٧a٦	Glu	Glu 1165	Gln	Pro	٧a٦	Val	Glu 1170	Pro	Glu	Glu
Thr	Leu 1175		Pro	Glu	Ala	Cys 1180	Phe	Thr	Glu	Gly	Cys 1185	Val	Gln	Arg
Ph€	Lys 1190	Cys	Cys	Gln	Ile	Asn 1195	٧a٦	Glu	Glu	Gไу	Arg 1200	Gly	Lys	Gln
Trp	Trp 1205	Asn	Leu	Arg	Arg	Thr 1210	Cys	Phe	Arg	Ile	Val 1215	Glu	His	Asn
Trp	Phe 1220		Thr	Phe	Ile	Va] 1225	Phe	Met	Ile	Leu	Leu 1230	Ser	Ser	Gly
ΑĪ	Leu 1235	Ala	Phe	Glu	Asp	Ile 1240	Tyr	Ile	Asp	Gln	Arg 1245	Lys	Thr	Ile
Lys	Thr 1250	Met	Leu	Glu	Tyr	Ala 1255	Asp	Lys	٧a٦	Phe	Thr 1260	Tyr	Ile	Phe
Ιle	e Leu 1265	Glu	Met	Leu	Leu	Lys 1270	Тгр	۷a٦	Аlа	Tyr	Gly 1275	Tyr	Gln	Thr
Ту	⁻ Phe 1280		Asn	Αla	Trp	Cys 1285	Trp	Leu	Asp	Phe	Leu 1290	Ile	Val	Asp
۷a	l Ser 1295		۷al	Ser	Leu	Thr 1300	Ala	Asn	дlа	Leu	Gly 1305	Tyr	Ser	Glu
Lei	u Gly 1310		Ile	Lys	Ser	Leu 1315	Arg	Thr	Leu	Arg	Ala 1320	Leu	Arg	Pro
Le	ı Arg 1325		Leu	Ser	Arg	Phe 1330	Glu	Gly	Met	Arg	Val 1335	۷al	Val	Asn
ΑÌ	a Leu 1340		Gly	Ala	Ile	Pro 1345	Ser	Ile	Met	Asn	Val 1350	Leu	Leu	Val
								_	240	111				

Page 144

SSCP Update Sequences.ST25

Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Thr Thr Thr Gly Asp 1370 1380 Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr Asp Cys Leu Lys Leu Ile Glu Arg Asn Glu Thr Ala Arg Trp Lys Asn Val Lys Val 1405 Asn Phe Asp Asn Val Gly Phe Gly Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr Glu Lys Ser Leu Tyr 1445 1450 1455 Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe 1460 1470 Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln Gln Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu 1490 1500 Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys 1505 1510 1515 Pro Gln Lys Pro Ile Pro Arg Pro Gly Asn Lys Phe Gln Gly Met 1520 1530 Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met 1535 1540 1545 Ile Leu Ile Cys Leu Asn Met Val Thr Met Met Val Glu Thr Asp Ser Glu Tyr Val Thr Thr Ile Leu Ser Arg Ile Asn Leu Asp Gln 1570 Ile Val Leu Phe Thr Gly Glu Cys Val Leu Lys Leu Ile Val Phe 1585 1580 Ser Leu Arg His Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp 1600

Page 145

SSCP Update Sequences.ST25

Phe	val 1610	٧al	Val	IJе	Leu	Ser 1615	Ile	Val	Gly	Met	Phe 1620	Leu	Ala	Glu
Leu	Ile 1625	Glu	Lys	Tyr	Phe	Va7 1630	Ser	Pro	Thr	Leu	Phe 1635	Arg	Val	Ile
Arg	Leu 1640		Arg	Ile	Gly	Arg 1645	Ile	Leu	Arg	Leu	Ile 1650	Lys	GТу	Αla
Lys	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660	Phe	Ala	Leu	Met	Met 1665	Ser	Leu	Pro
Аla	Leu 1670	Phe	Asn	Ile	Gly	Leu 1675	Leu	Leu	Phe	Leu	Val 1680	Met	Phe	Ile
Tyr	Ala 1685	Ile	Phe	Gly	Met	ser 1690	Asn	Phe	Аlа	Tyr	val 1695	Lys	Arg	Glu
٧a٦	Gly 1700	Ile	Asp	Asp	Met	Phe 1705	Asn	Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	Cys	Leu	Phe	Gln	Ile 1720	Thr	Thr	Ser	Ala	Gly 1725	Trp	Asp	Gly
Leu	Leu 1730	Ala	Pro	Ile	Leu	Asn 1735	Ser	Lys	Pro	Pro	Asp 1740	Cys	Asp	Pro
Asn	Lys 1745	val	Asn	Pro	Gly	ser 1750	Ser	val	Lys	Gly	Asp 1755	Cys	Glу	Asn
Pro	ser 1760		Gly	Ile	Phe	Phe 1765	Phe	٧a٦	ser	Tyr	Ile 1770	Ile	Ile	Ser
Phe	Leu 1775		Val	٧a٦	Asn	Met 1780	Tyr	Ile	Ala	val	Ile 1785	Leu	Glu	Asn
Phe	Ser 1790	۷al	Аlа	Thr	Glu	Glu 1795	Ser	Ala	Glu	Pro	Leu 1800	Ser	Glu	Asp
Asp	Phe 1805	Glu	Met	Phe	Tyr	Glu 1810	Val	Trp	Glu	Lys	Phe 1815	Asp	Pro	Asp
Ala	Thr 1820		Phe	Met	Glu	Phe 1825	Glu	Lys	Leu	Ser	Gln 1830	Phe	Ala	Аlа
Αla	Leu 1835		Pro	Pro	Leu	Asn 1840	Leu	Pro	Gln	Pro	Asn 1845	Lys	Leu	Gln
Leu	Ile 1850		Met	Asp	Leu	Pro 1855	Met	Val	Ser	Gly	Asp 1860	Arg	Ile	His
								Р	age	146				

Page 146

SSCP Update Sequences.ST25

Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu 1865 1870 1875

Ser Gly Glu Met Asp Ala Leu Arg Ile Gln Met Glu Glu Arg Phe 1880 1885 1890

Met Ala Ser Asn Pro Ser Lys Val Ser Tyr Gln Pro Ile Thr Thr 1895 1900 1905

Thr Leu Lys Arg Lys Gln Glu Glu Val Ser Ala Val Ile Ile Gln 1910 1920

Arg Ala Tyr Arg Arg His Leu Leu Lys Arg Thr Val Lys Gln Ala 1925 1930 1935

Ser Phe Thr Tyr Asn Lys Asn Lys Ile Lys Gly Gly Ala Asn Leu 1940 1945 1950

Leu Ile Lys Glu Asp Met Ile Ile Asp Arg Ile Asn Glu Asn Ser 1955 1960 1965

The Thr Glu Lys Thr Asp Leu Thr Met Ser Thr Ala Ala Cys Pro 1970 1980

Pro Ser Tyr Asp Arg Val Thr Lys Pro Ile Val Glu Lys His Glu 1985 1990 1995

Gln Glu Gly Lys Asp Glu Lys Ala Lys Gly Lys 2000 2005

<210> 78 <211> 2009

<211> 2009 <212> PRT

<213> Homo sapiens

<400> 78

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 1 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Asp Glu Asn Gly 35 40 45

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

SSCP Update Sequences.ST25 Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95 Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$ Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125 Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140 Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160 Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175 Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190 Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205 Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 220 Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240 Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255 Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270 Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285 Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300 Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 320 Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335 Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350

SSCP Update Sequences.ST25
Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365 Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 380 Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr Met 385 390 . 395 400 Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410 415 Leu Ile Leu Ala Val Glu Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala 420 425 430 Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445 Glu Gln Leu Lys Lys Gln Gln Glu Ala Ala Gln Gln Ala Ala Thr Ala 450 455 460 Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480 Asp Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu 485 490 495 Arg Arg Asn Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly 500 505 Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525 Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 540 Tyr Glu Lys Arg Tyr Ser Ser Pro His Gln Ser Leu Leu Ser Ile Arg 545 550 555 Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Thr Ser Leu Phe Ser 565 570 575 Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp Phe Ala Asp 580 585 590 Asp Glu His Ser Thr Phe Glu Asp Asn Glu Ser Arg Asp Ser Leu 595 600 Phe Val Pro Arg Arg His Gly Glu Arg Arg Asn Ser Asn Leu Ser Gln 610 620

SSCP Update Sequences.ST25
Thr Ser Arg Ser Ser Arg Met Leu Ala Val Phe Pro Ala Asn Gly Lys
625 630 635 640 Met His Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Val Gly Gly 645 650 655 Pro Ser Val Pro Thr Ser Pro Val Gly Gln Leu Leu Pro Glu Val Ile 660 670 Ile Asp Lys Pro Ala Thr Asp Asp Asn Gly Thr Thr Thr Glu Thr Glu 675 680 685 Met Arg Lys Arg Arg Ser Ser Ser Phe His Val Ser Met Asp Phe Leu 690 700 Glu Asp Pro Ser Gln Arg Gln Arg Ala Met Ser Ile Ala Ser Ile Leu 705 710 715 720 Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735 Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro 740 745 750 Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro 755 760 765 Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe 770 775 780 Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800 Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810 815 Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 825 830 Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly 835 840 845 Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 855 860 Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile 865 870 875 880 Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val

SSCP Update Sequences.ST25 Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe 900 905 910

Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln 915 920 925

Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val 930 935 940

Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met 945 950 955 960

Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met 965 970 975

Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu 980 985 990

Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Asn Glu 995 1000 1005

Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 1015 1020

Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035

Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1050

Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Thr Glu 1055 1060 1065

Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1075 1080

Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1095

Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val 1100 1105 1110

Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125

Thr Glu Asp Phe Ser Ser Glu Ser Asp Leu Glu Glu Ser Lys Glu 1130 1140

Lys Leu Asn Glu Ser Ser Ser Ser Glu Gly Ser Thr Val Asp 1145 1150 1155

Ile	Gly 1160	Ala	Pro	∨al	Glu	SS6 Glu 1165	CP UI Gln	odate Pro	e Sed Val	quen Val	ces.S Glu 1170	T25 Pro	Glu	Glu
Thr	Leu 1175	Glu	Pro	Glu	Ala	Cys 1180	Phe	Thr	Glu	Gly	Cys 1185	Val	Gln	Arg
Phe	Lys 1190		Cys	G∏n	Ile	Asn 1195	Val	Glu	Glu	Glу	Arg 1200	Gly	Lys	Gln
Trp	Trp 1205	Asn	Leu	Arg	Arg	Thr 1210	Cys	Phe	Arg	Ile	Val 1215	Glu	His	Asn
Trp	Phe 1220	Glu	Thr	Phe	Ile	Val 1225	Phe	Met	Ile	Leu	Leu 1230	Ser	Ser	Gly
Аlа	Leu 1235	Ala	Phe	Glu	Asp	Ile 1240	Tyr	Ile	Asp	Gln	Arg 1245	Lys	Thr	Ile
Lys	Thr 1250		Leu	Glu	Tyr	Ala 1255	Asp	Lys	∨al	Phe	Thr 1260	Tyr	Ile	Phe
Ile	Leu 1265	Glu	Met	Leu	Leu	Lys 1270	Trp	٧a٦	Аlа	Tyr	Gly 1275	Tyr	Gln	Thr
Tyr	Phe 1280	Thr	Asn	Аlа	Trp	Cys 1285	Trp	Leu	Asp	Phe	Leu 1290	Ile	٧a٦	Asp
٧a٦	ser 1295	Leu	٧a٦	Ser	Leu	Thr 1300	Ala	Asn	Ala	Leu	Gly 1305	Tyr	Ser	Glu
Leu	Gly 1310		Ile	Lys	Ser	Leu 1315	Arg	Thr	Leu	Arg	Ala 1320	Leu	Arg	Pro
Leu	Arg 1325	Ala	Leu	Ser	Arg	Phe 1330	Glu	Gly	Met	Arg	Val 1335	Val	٧a٦	Asn
Ala	Leu 1340	Leu	Glу	Аlа	Ile	Pro 1345	Ser	Ile	Met	Asn	Val 1350	Leu	Leu	Val
Cys	Leu 1355	Ile	Phe	Trp	Leu	Ile 1360	Phe	Ser	Ile	Met	Gly 1365	Val	Asn	Leu
Phe	Аlа 1370	Gly	Lys	Phe	Tyr	ніs 1375	Cys	Ile	Asn	Thr	Thr 1380	Thr	Glу	Asp
Arg	Phe 1385	Asp	Ile	Glu	Asp	Val 1390	Asn	Asn	His	Thr	Asp 1395	Cys	Leu	Lys
Leu	Ile 1400		Arg	Asn	Glu	Thr 1405	Ala	Arg	Trp	Lys	Asn 1410	Val	Lys	Val

			1.0											
Asn	Phe 1415	Asp	Asn	۷a٦	Glу	SS0 Phe 1420	CP Up Gly	odate Tyr	e Seo Leu	quen Ser	ces.S ⁻ Leu 1425	г25 Leu	Gln	Val
Ala	Thr 1430	Phe	Lys	Glу	Trp	Met 1435	Asp	Ile	Met	Tyr	А]а 1440	Ala	Val	Asp
ser	Arg 1445	Asn	väl	Glu	Leu	Gln 1450	Pro	Lys	Tyr	Glu	Lys 1455	Ser	Leu	Tyr
Met	Tyr 1460	Leu	Tyr	Phe	val	Ile 1465	Phe	Ile	Ile	Phe	Gly 1470	Ser	Phe	Phe
Thr	Leu 1475	Asn	Leu	Phe	Ile	Gly 1480	Val	Ile	Ile	Asp	Asn 1485	Phe	Asn	G∏n
Gln	Lys 1490	Lys	Lys	Phe	Gly	Gly 1495	Gln	Asp	Ile	Phe	Met 1500	Thr	Glu	Glu
Gln	Lys 1505	Lys	Tyr	Tyr	Asn	Ala 1510	Met	Lys	Lys	Leu	Gly 1515	Ser	Lys	Lys
Pro	Gln 1520		Pro	Ile	Pro	Arg 1525	Pro	Gly	Asn	Lys	Phe 1530	Gln	Gly	Met
∨al	Phe 1535	Asp	Phe	Val	Thr	Arg 1540	Gln	٧a٦	Phe	Asp	Ile 1545	Ser	Ile	Met
Ile	Leu 1550		Cys	Leu	Asn	Met 1555	val	Thr	Met	Met	Val 1560	Glu	Thr	Asp
Asp	Gln 1565	Ser	Glu	Tyr	Val	Thr 1570	Thr	Ile	Leu	Ser	Arg 1575	Ile	Asn	Leu
Val	Phe 1580	Ile	Val	Leu	Phe	Thr 1585	Gly	Glu	Cys	Val	Leu 1590	Lys	Leu	Ile
Ser	Leu 1595		ніѕ	туг	Tyr	Phe 1600	Thr	Ile	Gไу	Trp	Asn 1605	Ile	Phe	Asp
Phe	val 1610		val	Ile	Leu	ser 1615	Ile	Val	Gly	Met	Phe 1620	Leu	Аla	Glu
Leu	Ile 1625	Glu	Lys	Tyr	Phe	Val 1630	Ser	Pro	Thr	Leu	Phe 1635	Arg	Val	Ile
Arg	Leu 1640		Arg	Ile	Gly	Arg 1645	Ile	Leu	Arg	Leu	Ile 1650	Lys	Gly	Ala
Lys	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660		Ala	Leu	Met	Met 1665	Ser	Leu	Pro

Ala	Leu 1670	Phe	Asn	Ile	Gly	SS Leu 1675	CP U _l Leu	pdate Leu	e Seo Phe	quen Leu	ces.s [.] Val 1680	T25 Met	Phe	Ile
Tyr	Ala 1685	Ile	Phe	Gly	Met	Ser 1690	Asn	Phe	Ala	Tyr	Val 1695	Lys	Arg	Glu
Val	Gly 1700	Ile	Asp	Asp	Met	Phe 1705	Asn	Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	Cys	Leu	Phe	Gln	Ile 1720		Thr	Ser	Ala	Gly 1725	Trp	Asp	Gly
Ľeu	Leu 1730	Ala	Pro	Ile	Leu	Asn 1735	Ser	Lys	Pro	Pro	Asp 1740	Cys	Asp	Pro
Asn	Lys 1745	val	Asn	Pro	Gly	ser 1750	Ser	val	Lys	Gly	Asp 1755	Cys	Gly	Asn
Pro	Ser 1760	val	Gly	Пe	Phe	Phe 1765	Phe	∨al	Ser	Tyr	Ile 1770	Ile	Ile	Ser
Phe	Leu 1775	۷al	۷al	val	Asn	Met 1780	Tyr	Ile	Ala	٧a٦	Ile 1785	Leu	Glu	Asn
Phe	ser 1790	val	Аlа	Thr	Glu	Glu 1795	Ser	Ala	Glu	Pro	Leu 1800	Ser	Glu	Asp
Asp	Phe 1805	Glu	Met	Phe	Tyr	Glu 1810	٧a٦	Trp	Glu	Lys	Phe 1815	Asp	Pro	Asp
Αla	Thr 1820	Gln	Phe	Met	Glu	Phe 1825	Glu	Lys	Leu	Ser	Gln 1830	Phe	Ala	Ala
Аlа	Leu 1835	Glu	Pro	Pro	Leu	Asn 1840	Leu	Pro	Gln	Pro	Asn 1845	Lys	Leu	Gln
Leu	Ile 1850	Ala	Met	Asp	Leu	Pro 1855	Met	Val	Ser	Glу	Asp 1860	Arg	Ile	His
Cys	Leu 1865	Asp	IJе	Leu	Phe	Ala 1870	Phe	Thr	Lys	Arg	Val 1875	Leu	Gly	Glu
Ser	Gly 1880	Glu	Met	Asp	Ala	Leu 1885	Arg	Ile	Gln	Met	Glu 1890	Glu	Arg	Phe
Met	Ala 1895	Ser	Asn	Pro	Ser	Lys 1900	Val	Ser	Tyr	Gln	Pro 1905	Ile	Thr	Thr
Thr	Leu 1910	Lys	Arg	Lys	G∏n	Glu 1915	Glu	val	Ser	Ala	Val 1920	Ile	Ile	Gln

Page 154

SSCP Update Sequences.ST25
Arg Ala Tyr Arg Arg His Leu Leu Lys Arg Thr Val Lys Gln Ala
1925 1930 1935

Ser Phe Thr Tyr Asn Lys Asn Lys Ile Lys Gly Gly Ala Asn Leu 1940 1945 1950

Leu Ile Lys Glu Asp Met Ile Ile Asp Arg Ile Asn Glu Asn Ser 1955 1960 1965

Ile Thr Glu Lys Thr Asp Leu Thr Met Ser Thr Ala Ala Cys Pro 1970 1980

Pro Ser Tyr Asp Arg Val Thr Lys Pro Ile Val Glu Lys His Glu 1985 1990 1995

Gln Glu Gly Lys Asp Glu Lys Ala Lys Gly Lys 2000 2005

<210> 79

<211> 1406

<212> PRT

<213> Homo sapiens

<400> 79

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 1 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Asp Glu Asn Gly 35 40 45

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95

Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr 100 105 110

Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125

Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140

Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr Page 155

SSCP Update Sequences ST25
145 150 155 160

Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175

Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190

Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205

Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 215 220

Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240

Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255

Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270

Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285

Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300

Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 320

Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335

Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350

Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365

Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 380

Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr Met 385 390 395 400

Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410 415

Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala Page 156 WO 2005/014863

SSCP Update Sequences.ST25 420 425 430 PCT/AU2004/001051

Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445 Glu Gln Leu Lys Lys Gln Gln Glu Ala Ala Gln Gln Ala Ala Thr Ala 450 455 460 Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480 Asp Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu 485 490 495 Arg Arg Asn Arg Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly 500 505 Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525 Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 540 Tyr Glu Lys Arg Tyr Ser Ser Pro His Gln Ser Leu Leu Ser Ile Arg 545 550 555 Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Thr Ser Leu Phe Ser 565 570 575 Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp Phe Ala Asp 580 585 Asp Glu His Ser Thr Phe Glu Asp Asn Glu Ser Arg Arg Asp Ser Leu 595 600 605 Phe Val Pro Arg Arg His Gly Glu Arg Arg Asn Ser Asn Leu Ser Gln 610 615 620 Thr Ser Arg Ser Ser Arg Met Leu Ala Val Phe Pro Ala Asn Gly Lys 625 630 635 640 Met His Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Val Gly Gly 645 650 655 Pro Ser Val Pro Thr Ser Pro Val Gly Gln Leu Leu Pro Glu Val Ile 660 665 670 Ile Asp Lys Pro Ala Thr Asp Asp Asn Gly Thr Thr Glu Thr Glu 685 Met Arg Lys Arg Arg Ser Ser Ser Phe His Val Ser Met Asp Phe Leu Page 157

PCT/AU2004/001051

WO 2005/014863

SSCP Update Sequences.ST25

Glu Asp Pro Ser Gln Arg Gln Arg Ala Met Ser Ile Ala Ser Ile Leu 705 710 715 720 Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735 Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro
740 745 750 Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro
755 760 765 Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe 770 780 Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800 Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810 815 Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 825 830 Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly 835 840 845 Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 860 Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile 865 870 875 880 Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val 885 890 895 Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe 900 905 910 Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln 915 920 925 Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val 930 935 940 Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met 945 950 955 960

Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met

Page 158

975

SSCP Update Sequences.ST25 965 970

Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu 980 985 990

Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Asn Glu 995 1000

Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 1020

Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035

Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1050

Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Thr Glu 1055 1065

Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1080

Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095

Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val 1100 1105 1110

Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125

Thr Glu Asp Phe Ser Ser Glu Ser Asp Leu Glu Glu Ser Lys Glu 1130 1135 1140

Lys Leu Asn Glu Ser Ser Ser Ser Glu Gly Ser Thr Val Asp 1145 1150 1155

Ile Gly Ala Pro Val Glu Glu Gln Pro Val Val Glu Pro Glu Glu 1160 1170

Thr Leu Glu Pro Glu Ala Cys Phe Thr Glu Gly Cys Val Gln Arg 1175 1180 1185

Phe Lys Cys Cys Gln Ile Asn Val Glu Glu Gly Arg Gly Lys Gln 1190 1195 1200

Trp Trp Asn Leu Arg Arg Thr Cys Phe Arg Ile Val Glu His Asn 1205 1210 1215

Trp Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly
Page 159

SSCP Update Sequences.ST25 1220 1225 1230

Ala Leu Ala Phe Glu Asp Ile Tyr Ile Asp Gln Arg Lys Thr Ile 1235 1240 1245

Lys Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe 1250 1260

Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Tyr Gln Thr 1265 1270 1275

Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1280 1285 1290

Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr Ser Glu 1295 1300 1305

Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro 1310 1315 1320

Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn 1325 1330 1335

Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val 1340 1350

Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu 1355 1360 1365

Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Thr Thr Thr Gly Asp 1370 1375 1380

Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr Asp Cys Leu Lys 1385 1390 1395

Leu Ile Glu Arg Asn Glu Thr Ala 1400 1405

<210> 80

<211> 2009 <212> PRT

<213> Homo sapiens

<400> 80

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Asp Glu Asn Gly 35 40 45
Page 160

SSCP Update Sequences.ST25

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 55 60 Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80 Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95 Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$ Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125 Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140 Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160 Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175 Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190 Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205 Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 215 220 Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240 Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255 Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270 Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285 Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300 Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 320 Page 161

SSCP Update Sequences.ST25

Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335 Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350 Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365 Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 375 380 Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr Met 385 390 395 Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410 415 Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala 420 425 430 Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445 Glu Gln Leu Lys Lys Gln Gln Glu Ala Ala Gln Gln Ala Ala Thr Ala 450 455 460 Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480 Asp Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu
485 490 495 Arg Arg Asn Arg Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly 500 510 Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525 Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 540 Tyr Glu Lys Arg Tyr Ser Ser Pro His Gln Ser Leu Leu Ser Ile Arg 545 550 555 Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Thr Ser Leu Phe Ser $565 \hspace{1.5cm} 570 \hspace{1.5cm} 575$ Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp Phe Ala Asp 580 585 590 Page 162

SSCP Update Sequences.ST25

Asp Glu His Ser Thr Phe Glu Asp Asn Glu Ser Arg Asp Ser Leu 595 600 Phe Val Pro Arg Arg His Gly Glu Arg Arg Asn Ser Asn Leu Ser Gln 610 620 Thr Ser Arg Ser Ser Arg Met Leu Ala Val Phe Pro Ala Asn Gly Lys 625 630 640 Met His Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Val Gly Gly 645 650 655 Pro Ser Val Pro Thr Ser Pro Val Gly Gln Leu Leu Pro Glu Val Ile 660 665 670 Ile Asp Lys Pro Ala Thr Asp Asp Asn Gly Thr Thr Glu Thr Glu 685 Met Arg Lys Arg Arg Ser Ser Ser Phe His Val Ser Met Asp Phe Leu 690 700 Glu Asp Pro Ser Gln Arg Gln Arg Ala Met Ser Ile Ala Ser Ile Leu 705 710 715 720 Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735 Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro
740 745 750 Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro 755 760 765 Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe 770 780 Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800 Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810 Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 825 830 Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly 835 840 Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 860 Page 163

SSCP Update Sequences.ST25

Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile 865 870 875 880 Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln 915 920 925 Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 1015 1020 Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035 Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1050 Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Thr Glu 1055 1065 Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1080 Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095 Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125 Page 164

SSCP Update Sequences.ST25

Thr	Glu 1130	Asp	Phe	Ser	Ser	Glu 1135	Ser	Asp	Leu	Glu	Glu 1140	Ser	Lys	Glu
Lys	Leu 1145	Asn	Glu	Ser	Ser	ser 1150	Ser	Ser	Glu	Glу	ser 1155	Thr	Val	Asp
Ile	Gly 1160	Ala	Pro	٧a٦	Glu	Glu 1165	Gln	Pro	٧a٦	val	Glu 1170	Pro	Glu	Glu
Thr	Leu 1175	Glu	Pro	Glu	Ala	Cys 1180	Phe	Thr	Glu	Gly	Cys 1185	٧a٦	Gln	Arg
Phe	Lys 1190	Cys	Cys	Gln	Ile	Asn 1195	٧a٦	Glu	Glu	Gly	Arg 1200	Gly	Lys	Gln
Trp	Trp 1205	Asn	Leu	Arg	Arg	Thr 1210	Cys	Phe	Arg	Ile	val 1215	Glu	His	Asn
Trp	Phe 1220	Glu	Thr	Phe	Ile	Val 1225	Phe	Met	Ile	Leu	Leu 1230	Ser	Ser	Gly
Ala	Leu 1235	Ala	Phe	Glu	Asp	Ile 1240	Tyr	Ile	Asp	Gln	Arg 1245	Lys	Thr	Ile
Lys	Thr 1250	Met	Leu	Glu	Tyr	Ala 1255	Asp	Lys	val	Phe	Thr 1260	Tyr	Ile	Phe
Ile	Leu 1265	Glu	Met	Leu	Leu	Lys 1270	Trp	Val	Αla	Tyr	Gly 1275	Tyr	G∏n	Thr
Tyr	Phe 1280	Thr	Asn	ΑΊа	Trp	Cys 1285	Trp	Leu	Asp	Phe	Leu 1290	Ile	Val	Asp
٧a٦	Ser 1295	Leu	۷al	Ser	Leu	Thr 1300	Αla	Asn	Ala	Leu	Gly 1305	Tyr	Ser	Glu
Leu	Gly 1310	Аlа	Ile	Lys	Ser	Leu 1315	Arg	Thr	Leu	Arg	А]а 1320	Leu	Arg	Pro
Leu	Arg 1325	Ala	Leu	Ser	Arg	Phe 1330	Glu	Gไу	Met	Arg	Val 1335	Val	Val	Asn
Ala	Leu 1340	Leu	Gly	Ala	Ile	Pro 1345	Ser	Ile	Met	Asn	Val 1350	Leu	Leu	٧a٦
Cys	Leu 1355	Ile	Phe	Trp	Leu	Ile 1360	Phe	Ser	Ile	Met	Gly 1365	Val	Asn	Leu
Phe	А]а 1370	Gly	Lys	Phe	Tyr	Ніs 1375	Cys		Asn age 1		Thr 1380	Thr	Gly	Asp

SSCP Update Sequences.ST25

Arg	Phe 1385	Asp	Ile	Glu	Asp	Val 1390	Asn	Asn	His	Thr	Asp 1395	Cys	Leu	Lys
Leu.	Ile 1400	Glu	Arg	Asn	Glu	Thr 1405	Αla	Arg	Trp	Lys	Asn 1410	Val	Lys	Val
Asn	Phe 1415	Asp	Asn	val	Gly	Phe 1420	GТу	Tyr	Leu	Ser	Leu 1425	Leu	Gln	Val
Ala	Thr 1430	Phe	Lys	Gly	Trp	Met 1435	Asp	Ile	Met	Tyr	Ala 1440	Ala	Val	Asp
Ser	Arg 1445	Asn	٧a٦	Glu	Leu	Gln 1450	Pro	Lys	Tyr	Glu	Lys 1455	Ser	Leu	Tyr
Met	Tyr 1460	Leu	Tyr	Phe	٧a٦	Ile 1465	Phe	Ile	Ile	Phe	Gly 1470	Ser	Phe	Phe
Thr	Leu 1475	Asn	Leu	Phe	Ile	Gly 1480	Val	Ile	Ile	Asp	Asn 1485	Phe	Asn	G]n
Gln	Lys 1490	Lys	Lys	Phe	Glу	Gly 1495	Gln	Asp	Ile	Phe	Met 1500	Thr	Glu	Glu
Gln	Lys 1505	Lys	Tyr	Tyr	Asn	Ala 1510	Met	Lys	Lys	Leu	Gly 1515	Ser	Lys	Lys
Pro	Gln 1520	Lys	Pro	Ile	Pro	Arg 1525	Pro	Gly	Asn	Lys	Phe 1530	Gln	Glу	Met
٧a٦	Phe 1535	Asp	Phe	Val	Thr	Arg 1540	Gln	٧a٦	Phe	Asp	Ile 1545	Ser	Ile	Met
IJе	Leu 1550	Ile	Cys	Leu	Asn	Met 1555	٧a٦	Thr	Met	Met	∨a1 1560	Glu	Thr	Asp
Asp	Gln 1565	Ser	Glu	Tyr	Val	Thr 1570	Thr	Ile	Leu	Ser	Arg 1575	Ile	Asn	Leu
∨al	Phe 1580	Ile	Val	Leu	Phe	Thr 1585	Gly	Glu	Cys	Val	Leu 1590	Lys	Leu	Ile
Ser	Leu 1595	Arg	His	туr	туг	Phe 1600	Thr	Ile	GТу	Trp	Asn 1605	Ile	. Phe	Asp
Phe	Val 1610	۷al	Val	Ile	Leu	ser 1615	Ile	Val	GТу	Met	Phe 1620	Leu	Ala	Glu
Leu	Ile 1625	Glu	Lys	Tyr	Phe	Val 1630	Ser		Thr age		Phe 1635	Arg	val	Ile

SSCP Update Sequences.ST25

Arg	Leu 1640	Ala	Arg	Ile	Glу	Arg 1645	Ile	Leu	Arg	Leu	Ile 1650	Lys	Gly	Аlа
Lys	Gly 1655	Ile	Arg	Thr	Leu	Leu 1660	Phe	Ala	Leu	Met	Met 1665	Ser	Leu	Pro
Αla	Leu 1670	Phe	Asn	Ile	Gly	Leu 1675	Leu	Leu	Phe	Leu	Val 1680	Met	Phe	Ile
Tyr	Ala 1685	Ile	Phe	Gly	Met	Ser 1690	Asn	Phe	Ala	Tyr	Val 1695	Lys	Arg	Glu
val	Gly 1700		Asp	Asp	Met	Phe 1705	Asn	Phe	Glu	Thr	Phe 1710	Gly	Asn	Ser
Met	Ile 1715	Cys	Leu	Phe	Gln	Ile 1720	Thr	Thr	ser	Ala	Gly 1725	Trp	Asp	GТу
Leu	Leu 1730	Ala	Pro	Ile	Leu	Asn 1735	Ser	Lys	Pro	Pro	Asp 1740	Cys	Asp	Pro
Asn	Lys 1745	val	Asn	Pro	Gly	Ser 1750	Ser	٧a٦	Lys	Gly	Asp 1755	Cys	Gly	Asn
Pro	Ser 1760		Gly	Ile	Phe	Phe 1765	Phe	Val	ser	Tyr	Ile 1770	Ile	Ile	Ser
Phe	Leu 1775	val	٧a٦	٧a٦	Asn	Thr 1780	Tyr	Ile	Ala	Val	Ile 1785	Leu	Glu	Asn
Phe	Ser 1790	val	Аlа	Thr	Glu	Glu 1795	Ser	Ala	Glu	Pro	Leu 1800	Ser	Glu	Asp
Asp	Phe 1805	Glu	Met	Phe	Tyr	Glu 1810	Val	Trp	Glu	Lys	Phe 1815	Asp	Pro	Asp
Ala	Thr 1820		Phe	Met	Glu	Phe 1825	Glu	Lys	Leu	Ser	G]n 1830	Phe	Ala	Ala
Ala	Leu 1835	Glu	Pro	Pro	Leu	Asn 1840	Leu	Pro	G∏n	Pro	Asn 1845	Lys	Leu	Gln
Leu	Ile 1850	Ala	Met	Asp	Leu	Pro 1855	Met	٧a٦	ser	Gly	Asp 1860	Arg	Ile	His
Cys	Leu 1865	Asp	Ile	Leu	Phe	Ala 1870	Phe	Thr	Lys	Arg	Val 1875	Leu	Gly	Glu
Ser	Gly 1880		Met	Asp	Ala	Leu 1885	Arg		Gln age		Glu 1890	Glu	Arg	Phe

SSCP Update Sequences.ST25

Met Ala Ser Asn Pro Ser Lys Val Ser Tyr Gln Pro Ile Thr Thr 1895 1900 1905

Thr Leu Lys Arg Lys Gln Glu Glu Val Ser Ala Val Ile Ile Gln 1910 1920

Arg Ala Tyr Arg Arg His Leu Leu Lys Arg Thr Val Lys Gln Ala 1925 1930 1935

Ser Phe Thr Tyr Asn Lys Asn Lys Ile Lys Gly Gly Ala Asn Leu 1940 1945 1950

Leu Ile Lys Glu Asp Met Ile Ile Asp Arg Ile Asn Glu Asn Ser 1955 1960 1965

Ile Thr Glu Lys Thr Asp Leu Thr Met Ser Thr Ala Ala Cys Pro 1970 1975 1980

Pro Ser Tyr Asp Arg Val Thr Lys Pro Ile Val Glu Lys His Glu 1985 1990 1995

Gln Glu Gly Lys Asp Glu Lys Ala Lys Gly Lys 2000 2005

<210> 81

<211> 1891

<212> PRT

<213> Homo sapiens

<400> 81

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Glu Asn Gly 35

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 55 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Leu 85 90 95

Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr $100 \hspace{1cm} 105$

SSCP Update Sequences.ST25

Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125 Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 140 Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160 Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175 Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190 Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205 Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 220 Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240 Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255 Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270 Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285 Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300 Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335 Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350 Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365 Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 375 380

Page 169

SSCP Update Sequences.ST25

Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr Met 385 390 395 400 Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410 415Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala 420 425 430 Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445 Glu Gln Leu Lys Lys Gln Gln Glu Ala Ala Gln Gln Ala Ala Thr Ala 450 455 460 Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480 Asp Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu 485 490 495 Arg Arg Asn Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly 500 505 Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525 Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 540 Tyr Glu Lys Arg Tyr Ser Ser Pro His Gln Ser Leu Leu Ser Ile Arg 545 550 555 Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Thr Ser Leu Phe Ser 565 570 575 Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp Phe Ala Asp 580 585 Asp Glu His Ser Thr Phe Glu Asp Asn Glu Ser Arg Asp Ser Leu 595 600 Phe Val Pro Arg Arg His Gly Glu Arg Arg Asn Ser Asn Leu Ser Gln 610 615 620 Thr Ser Arg Ser Ser Arg Met Leu Ala Val Phe Pro Ala Asn Gly Lys 625 630 635 640 Met His Ser Thr Val Asp Cys Asn Gly Val Val Ser Leu Val Gly Gly 645 650 655

Page 170

SSCP Update Sequences.ST25

Pro Ser Val Pro Thr Ser Pro Val Gly Gln Leu Leu Pro Glu Val Ile 660 665 670

Ile Asp Lys Pro Ala Thr Asp Asp Asn Gly Thr Thr Glu Thr Glu 675 680 685

Met Arg Lys Arg Arg Ser Ser Ser Phe His Val Ser Met Asp Phe Leu 690 700

Glu Asp Pro Ser Gln Arg Gln Arg Ala Met Ser Ile Ala Ser Ile Leu 705 710 715 720

Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735

Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro 740 745 750

Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro 755 760 765

Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe 770 780

Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800

Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810 815

Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 830

Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly 835 840 845

Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 860

Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile 865 870 875

Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val 885 890 895

Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe 900 905 910

Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln 915 920

SSCP Update Sequences.ST25

Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val 930 935 940

Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met 945 950 955 960

Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met 965 970 975

Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu 980 985 990

Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Asn Glu 995 1000 1005

Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 1015 1020

Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035

Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1045 1050

Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Thr Glu 1055 1060 1065

Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1080

Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095

Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val 1100 1105 1110

Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125

Thr Glu Asp Phe Ser Ser Glu Ser Asp Leu Glu Glu Ser Lys Glu 1130 1140

Lys Leu Asn Glu Ser Ser Ser Ser Glu Gly Ser Thr Val Asp 1145 1150

Ile Gly Ala Pro Val Glu Glu Gln Pro Val Val Glu Pro Glu Glu 1160 1165 1170

Thr Leu Glu Pro Glu Ala Cys Phe Thr Glu Gly Cys Val Gln Arg 1175 1180 1185

SSCP Update Sequences.ST25

Phe Lys Cys Cys Gln Ile Asn Val Glu Glu Gly Arg Gly Lys Gln Trp Trp Asn Leu Arg Arg Thr Cys Phe Arg Ile Val Glu His Asn 1205 1210 1215 Trp Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Asp Gln Arg Lys Thr Ile 1235 1240 1245 Lys Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe 1250 1260 Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Tyr Gln Thr 1265 1270 1275 Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1280 1285 1290 Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr Ser Glu 1295 1300 1305 Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro 1310 1315 1320 Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn 1325 1330 Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val 1340 1345 1350 Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Thr Thr Gly Asp 1370 1375 1380 Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr Asp Cys Leu Lys Leu Ile Glu Arg Asn Glu Thr Ala Arg Trp Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Phe Gly Tyr Leu Ser Leu Leu Gln Val 1420 Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp 1430 1435

Page 173

SSCP Update Sequences.ST25

Asn Val Glu Leu Gln Pro Lys Tyr Glu Lys_ Ser Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe 1460 1465 1470Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln Gln Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu 1490 1495 1500 Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys 1505 1515 Pro Gln Lys Pro Ile Pro Arg Pro Gly Asn Lys Phe Gln Gly Met 1520 1530 Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met 1535 1540 1545 Asp Gln Ser Glu Tyr Val Thr Thr Ile Leu Ser Arg Ile Asn Leu
1565 1575 Val Phe Ile Val Leu Phe Thr Gly Glu Cys Val Leu Lys Leu Ile Ser Leu Arg His Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp 1605 Phe Val Val Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu 1610 Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Phe Leu Val Met Phe Ile 1670 1680 Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys Arg Glu 1695

Page 174

SSCP Update Sequences.ST25

- Val Gly Ile Asp Asp Met Phe Asn Phe Glu Thr Phe Gly Asn Ser
- Met Ile Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly 1715 1720 1725
- Leu Leu Ala Pro Ile Leu Asn Ser Lys Pro Pro Asp Cys Asp Pro 1730 1740
- Asn Lys Val Asn Pro Gly Ser Ser Val Lys Gly Asp Cys Gly Asn 1745 1750 1755
- Pro Ser Val Gly Ile Phe Phe Phe Val Ser Tyr Ile Ile Ile Ser
- Phe Leu Val Val Val Asn Met Tyr Ile Ala Val Ile Leu Glu Asn
- Phe Ser Val Ala Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp
- Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp 1805 1815
- Ala Thr Gln Phe Met Glu Phe Glu Lys Leu Ser Gln Phe Ala Ala
- Ala Leu Glu Pro Pro Leu Asn Leu Pro Gln Pro Asn Lys Leu Gln 1840
- Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His 1850 1860 1850 1855
- Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu 1865 1875
- Ser Gly Glu Met Asp Ala Leu Arg Ile Gln Met Glu Glu

<211> 218

<212> PRT Homo sapiens <213>

<400> 82

Met Gly Arg Leu Leu Ala Leu Val Val Gly Ala Ala Leu Val Ser Ser

Ala Cys Gly Gly Cys Val Glu Val Asp Ser Glu Thr Glu Ala Val Tyr 20 25 30

<210> 82

SSCP Update Sequences.ST25 Gly Met Thr Phe Lys Ile Leu Cys Ile Ser Cys Lys Arg Arg Ser Glu 40 45

Thr Asn Ala Glu Thr Phe Thr Glu Trp Thr Phe Arg Gln Lys Gly Thr 50 55 60

Glu Glu Phe Val Lys Ile Leu Arg Tyr Glu Asn Glu Val Leu Gln Leu 65 70 75 80

Glu Glu Asp Glu His Phe Glu Gly Arg Val Val Trp Asn Gly Ser Arg . 85 90 95

Gly Thr Lys Asp Leu Gln Asp Leu Ser Ile Phe Ile Thr Asn Val Thr 100 105

Tyr Asn His Ser Gly Asp Tyr Glu Cys His Val Tyr Arg Leu Leu Phe 115 120 125

Phe Glu Asn Tyr Glu His Asn Thr Ser Val Val Lys Lys Ile His Ile 130 135 140

Glu Val Val Asp Lys Ala Asn Arg Asp Met Ala Ser Ile Val Ser Glu 145 150 155 160

Ile Met Met Tyr Val Leu Ile Val Val Leu Thr Ile Trp Leu Val Ala 165 170 175

Glu Met Ile Tyr Cys Tyr Lys Lys Ile Ala Ala Ala Thr Glu Thr Ala 180 185

Ala Gln Glu Asn Ala Ser Glu Tyr Leu Ala Ile Thr Ser Glu Ser Lys 195 200 205

Glu Asn Cys Thr Gly Val Gln Val Ala Glu

<400> 83

Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Glu Asn 35 40 45

Gly Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Ser Leu Pro Phe Page 176

<210> 83

<211> <212> 2005

PRT

<213> Homo sapiens

PCT/AU2004/001051

WO 2005/014863

SSCP Update Sequences.ST25 50 55 60

Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp 80

Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu

Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His 115 120 125

Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val 130 135 140

Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr 145 150 155 160

Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala 165 170 175

Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn 180 185 190

Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val 195 200 205

Asp Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Gln Ala 210 220

Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala 225 230 235 240

Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val 245 250 255

Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly 260 270

Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe 275 280 285

Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly 290 295 300

Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile 305 310 315 320

Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu Page 177

335

SSCP Update Sequences.ST25 330

Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile 340 345 350

Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp 355 360 365

Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp 370 380

Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr 385 390 395 400

Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu 405 410 415

Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn 420 430

Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln 435 440

Met Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Ala 450 455 460

Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile 465 470 475 480

Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys 485 490 495

Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu 500 510

Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser 515 520 525

Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser 530 540

Arg Leu Thr Tyr Glu Lys Arg Phe Ser Ser Pro His Gln Ser Leu Leu 545 550 560

Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Ala Ser 565 570 575

Leu Phe Ser Phe Arg Gly Arg Ala Lys Asp Ile Gly Ser Glu Asn Asp 580 585 590

Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Asn Asp Ser Arg Arg Page 178 595

SSCP Update Sequences.ST25 600 605

Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg His Ser Asn 610 620 Val Ser Gln Ala Ser Arg Ala Ser Arg Val Leu Pro Ile Leu Pro Met 625 630 635 640 Asn Gly Lys Met His Ser Ala Val Asp Cys Asn Gly Val Val Ser Leu 645 650 655 Val Gly Gly Pro Ser Thr Leu Thr Ser Ala Gly Gln Leu Leu Pro Glu 660 665 670 Gly Thr Thr Glu Thr Glu Ile Arg Lys Arg Arg Ser Ser Tyr 675 680 685 His Val Ser Met Asp Leu Leu Glu Asp Pro Thr Ser Arg Gln Arg Ala 690 700 Met Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu 705 710 715 720 Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Lys Phe Ala Asn Met Cys 725 730 735 Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val 740 745 750 Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys 755 760 765 Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 770 780 Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800 Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr 805 810 Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 830 Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val 835 840 845 Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 860 Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala Page 179

880

SSCP Update Sequences.ST25 865 870 875

Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala 885 890 895

Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910

Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe 915 920 925

Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 935 940

Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 955 960

Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975

Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 990

Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 995 1000

Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu 1010 1015 1020

Phe Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu 1025 1030 1035

Ile Lys Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile 1040 1045 1050

Ser Asn His Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu 1055 1060 1065

Lys Asp Gly Asn Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu 1070 1080

Lys Tyr Val Val Asp Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn 1085 1095

Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp 1100 1105 1110

Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met 1115 1120 1125

Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Glu Gly Page 180

SSCP Update Sequences.ST25

Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1150 1155

Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1165 1170

Asp Cys Val Arg Lys Phe Lys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185

Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Thr Cys Tyr Lys 1190 1195 1200

Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile 1205 1210 1215

Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu 1220 1230

Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val 1235 1240 1245

Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Val Ala 1250 1260

Tyr Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp 1265 1270 1275

Phe Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala 1280 1285 1290

Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu 1295 1300 1305

Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met 1310 1320

Arg Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met 1325 1330 1335

Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile 1340 1345 1350

Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn 1355 1360 1365

Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr 1370 1380

Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp Page 181

PCT/AU2004/001051

SSCP Update Sequences.ST25 1385 1390 1395

Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu 1400 1410

Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met 1415 1420 1425

Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1440

Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile 1445 1450 1455

Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile 1460 1465 1470

Asp Asn Phe Asn Gln Gln Lys Lys Lys Phe Gly Gln Asp Ile 1475 1480 1485

Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys 1490 1495 1500

Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn 1505 1510 1515

Lys Phe Gln Gly Met Val Phe Asp Phe Val Thr Lys Gln Val Phe 1520 1530

Asp Ile Ser Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met 1535 1540 1545

Met Val Glu Thr Asp Asp Gln Ser Gln Glu Met Thr Asn Ile Leu 1550 1560

Tyr Trp Ile Asn Leu Val Phe Ile Val Leu Phe Thr Gly Glu Cys 1565 1570 1575

Val Leu Lys Leu Ile Ser Leu Arg Tyr Tyr Tyr Phe Thr Ile Gly 1580 1590

Trp Asn Ile Phe Asp Phe Val Val Val Ile Leu Ser Ile Val Gly 1595 1600

Met Phe Leu Ala Glu Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr 1610 1620

Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg 1625 1630 1635

Leu Ile Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Page 182

SSCP Update Sequences.ST25 1640 1645 1650

Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Leu Phe Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn Phe Glu 1685 1690 1695 Thr Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr Ser 1700 1705 Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Gly Pro
1715 1720 Pro Asp Cys Asp Pro Asp Lys Asp His Pro Gly Ser Ser Val Lys 1730 1740 Gly Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Val Ser 1745 1750 Tyr Ile Ile Ile Ser Phe Leu Val Val Leu Asn Met Tyr Ile Ala 1765 Val Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe Ile Glu Phe Ala Lys Leu Ser Asp Phe Ala Asp Ala Leu Asp Pro Pro Leu Leu Ile Ala Lys 1820 1830 Pro Asn Lys Val Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys 1855 Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln 1865 1870 1865 Met Glu Glu Arg Phe Met Ala Ser Asn Pro Ser Lys Val Ser Tyr 1880 1885

Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln Glu Glu Val Ser

SSCP Undate Sequences ST25

SSCP Update Sequences.ST25 1895 1900 1905

Ala Ile Ile Gln Arg Ala Tyr Arg Arg Tyr Leu Leu Lys Gln 1910 1915 1920

PCT/AU2004/001051

Lys Val Lys Lys Val Ser Ser Ile Tyr Lys Lys Asp Lys Gly Lys 1925 1930 1935

Glu Cys Asp Gly Thr Pro Ile Lys Glu Asp Thr Leu Ile Asp Lys 1940 1950

Leu Asn Glu Asn Ser Thr Pro Glu Lys Thr Asp Met Thr Pro Ser 1955 1960 1965

Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys 1970 1980

Glu Lys Phe Glu Lys Asp Lys Ser Glu Lys Glu Asp Lys Gly Lys 1985 1990 1995

Asp Ile Arg Glu Ser Lys Lys 2000

<210> 84

<211> 2005

<212> PRT

<213> Homo sapiens

WO 2005/014863

<400> 84

Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Glu Asn 35 40 45

Gly Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Ser Leu Pro Phe 50 60

Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp 65 70 75 80

Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys 85 90 95

Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu 100 105 110

Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His
115 120 125
Page 184

SSCP Update Sequences.ST25

Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val 130 140 Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr 145 150 155 160 Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala 165 170 175 Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn 180 185 190 Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val 195 200 205 Asp Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala 210 215 220 Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala 225 230 235 240 Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val 245 250 255 Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly 260 265 270 Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe 275 280 285 Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly 290 295 300 Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile 305 310 315 320 Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu 325 330 335 Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile 340 345 350 Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp 355 360 365 Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp 370 375 380Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr 385 390 395 400 Page 185

SSCP Update Sequences.ST25

Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu
405 410 415 Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn 420 425 430 Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln 435 440 Met Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Ala Ala 450 455 460 Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile 465 470 480 Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys 485 490 495 Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu 500 510 Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser 515 520 525 Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser 530 540 Arg Leu Thr Tyr Glu Lys Arg Phe Ser Ser Pro His Gln Ser Leu Leu 545 550 555 560 Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Ala Ser 575 Leu Phe Ser Phe Arg Gly Arg Ala Lys Asp Ile Gly Ser Glu Asn Asp 580 585 Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Asp Ser Arg Arg 595 600 605 Asp Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg His Ser Asn 610 620 Val Ser Gln Ala Ser Arg Ala Ser Arg Val Leu Pro Ile Leu Pro Met 625 630 635 640 Asn Gly Lys Met His Ser Ala Val Asp Cys Asn Gly Val Val Ser Leu 645 650 655 Val Gly Gly Pro Ser Thr Leu Thr Ser Ala Gly Gln Leu Leu Pro Glu 660 665 670 Page 186

SSCP Update Sequences.ST25

Gly Thr Thr Glu Thr Glu Ile Arg Lys Arg Arg Ser Ser Ser Tyr 675 680 685 His Val Ser Met Asp Leu Leu Glu Asp Pro Thr Ser Arg Gln Arg Ala 690 700 Met Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu 705 710 720 Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Lys Phe Ala Asn Met Cys 725 730 735 Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val 740 745 750 Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys 755 760 765 Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 770 780 Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800 Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr 805 810 815Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 830 Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val 835 840 845 Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 860 Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala 865 870 880 Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Ile Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe 915 920 925 Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 935 940 Page 187

SSCP Update Sequences.ST25

Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 955 960

Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975

Leu Phe Leu Ala Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 990

Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 995 1000

Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu 1010 1020

Phe Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu 1025 1030 1035

Ile Lys Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile 1040 1045 1050

Ser Asn His Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu 1055 1065

Lys Asp Gly Asn Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu 1070 1080

Lys Tyr Val Val Asp Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn 1085 1095

Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp 1100 1105 1110

Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met 1115 1120 1125

Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Glu Gly 1130 1140

Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1150

Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1165 1170

Asp Cys Val Arg Lys Phe Lys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185

Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Thr Cys Tyr Lys 1190 1195 1200 Page 188

SSCP Update Sequences.ST25

Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile 1205 1210 1215 Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu 1220 1230 Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val 1235 1240 1245 Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Lys Trp Val Ala 1250 1255 1260 Tyr Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp 1265 1270 1275 Phe Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala 1280 1290 Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met 1310 1320 Arg Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile 1340 1345 Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn 1355 1360 1365 Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1440 Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile 1450 Page 189

SSCP Update Sequences.ST25

Phe	Gly 1460	Ser	Phe	Phe	Thr	Leu 1465	Asn	Leu	Phe	Ile	Gly 1470	Val	Ile	Ile
Asp	Asn 1475	Phe	Asn	Gln	Gln	Lys 1480	Lys	Lys	Phe	Gly	Gly 1485	Gln	Asp	Ile
Phe	Met 1490	Thr	Glu	Glu	Gln	Lys 1495	Lys	Tyr	Tyr	Asn	Ala 1500	Met	Lys	Lys
Leu	Gly 1505	Ser	Lys	Lys	Pro	G]n 1510	Lys	Pro	Ile	Pro	Arg 1515	Pro	Ala	Asn
Lys	Phe 1520	Gln	Gly	Met	٧a٦	Phe 1525	Asp	Phe	Val	Thr	Lys 1530	Gln	٧a٦	Phe
Asp	Ile 1535	Ser	Ile	Met	Ile	Leu 1540	Ile	Cys	Leu	Asn	Met 1545	Val	Thr	Met
Met	Val 1550	Glu	Thr	Asp	Asp	Gln 1555	Ser	Gln	Glu	Met	Thr 1560	Asn	Ile	Leu
Tyr	Trp 1565	Ile	Asn	Leu	∨al	Phe 1570	Ile	٧a٦	Leu	Phe	Thr 1575	Gly	Glu	Cys
Val	Leu 1580	Lys	Leu	Ile	Ser	Leu 1585	Arg	Tyr	Tyr	Tyr	Phe 1590	Thr	Ile	Gly
Trp	Asn 1595	Ile	Phe	Asp	Phe	Val 1600	Val	٧al	Ile	Leu	ser 1605	Ile	٧a٦	Gly
Met	Phe 1610	Leu	Ala	Glu	Leu	Ile 1615	Glu	Lys	Tyr	Phe	Val 1620	Ser	Pro	Thr
Leu	Phe 1625	Arg	٧a٦	Ile	Arg	Leu 1630	Ala	Arg	IJе	Gly	Arg 1635	IJе	Leu	Arg
Leu	Ile 1640	Lys	Gly	Аlа	Lys	Gly 1645	Ile	Arg	Thr	Leu	Leu 1650	Phe	Ala	Leu
Met	Met 1655	Ser	Leu	Pro	Аlа	Leu 1660	Phe	Asn	Ile	Gly	Leu 1665	Leu	Leu	Phe
Leu	Val 1670	Met	Phe	Ile	Tyr	Ala 1675	Ile	Phe	Glу	Met	Ser 1680	Asn	Phe	Ala
Tyr	Val 1685	Lys	Arg	Glu	Val	Gly 1690	Ile	Asp	Asp	Met	Phe 1695	Asn	Phe	Glu
Thr	Phe 1700	Glу	Asn	Ser	Met	Ile 1705	Cys		Phe age 1		Ile 1710	Thr	Thr	Ser

SSCP Update Sequences.ST25

Ala	Gly 1715	Trp	Asp	Gly	Leu	Leu 1720	Ala	Pro	Ile	Leu	Asn 1725	Ser	Gly	Pro
Pro	Asp 1730	Cys	Asp	Pro	Asp	Lys 1735	Asp	His	Pro	Gly	Ser 1740	Ser	Val	Lys
Gly	Asp 1745	Cys	Gly	Asn	Pro	ser 1750	٧a٦	Gly	Ile	Phe	Phe 1755	Phe	Val	Ser
Tyr	Ile 1760	Ile	Ile	Ser	Phe	Leu 1765	٧al	Val	Leu	Asn	Met 1770	Tyr	Ile	Ala
٧a٦	Ile 1775	Leu	Glu	Asn	Phe	ser 1780	٧a٦	Ala	Thr	Glu	Glu 1785	Ser	Ala	Glu
Pro	Leu 1790	Ser	Glu	Asp	Asp	Phe 1795	Glu	Met	Phe	Tyr	Glu 1800	٧a٦	Trp	Glu
Lys	Phe 1805	Asp	Pro	Asp	Ala	Thr 1810	Gln	Phe	Ile	Glu	Phe 1815	Ala	Lys	Leu
Ser	Asp 1820	Phe	Ala	Asp	Ala	Leu 1825	Asp	Pro	Pro	Leu	Leu 1830	Ile	Ala	Lys
Pro	Asn 1835	Lys	Val	Gln	Leu	Ile 1840	Ala	Met	Asp	Leu	Pro 1845	Met	Val	Ser
Glу	Asp 1850	Arg	Ile	His	Cys	Leu 1855	Asp	Ile	Leu	Phe	Ala 1860	Phe	Thr	Lys
Arg	Val 1865	Leu	Gly	Glu	Ser	Gly 1870	Glu	Met	Asp	Аlа	Leu 1875	Arg	Ile	Gln
Met	Glu 1880	Glu	Arg	Phe	Met	А]а 1885	Ser	Asn	Pro	Ser	Lys 1890	Val	Ser	Tyr
Glu	Pro 1895	Ile	Thr	Thr	Thr	Leu 1900	Lys	Arg	Lys	Gln	Glu 1905	Glu	Val	Ser
Аlа	Ile 1910	Ile	Ile	Gln	Arg	Ala 1915	Tyr	Arg	Arg	Tyr	Leu 1920	Leu	Lys	Gln
Lys	Val 1925	Lys	Lys	val	Ser	Ser 1930	Ile	Tyr	Lys	Lys	Asp 1935	Lys	Gly	Lys
Glu	Cys 1940	Asp	Gly	Thr	Pro	Ile 1945	Lys	Glu	Asp	Thr	Leu 1950	Ile	Asp	Lys
Leu	Asn 1955	Glu	Asn	Ser	Thr	Pro 1960	Glu		Thr	-	Met 1965	Thr	Pro	Ser

SSCP Update Sequences.ST25

Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys 1970 1980

Phe Glu Lys Asp Lys . Ser Glu Lys Glu Asp Lys Gly Lys 1990 1995 Glu Lys

Asp Ile Arg Glu Ser Lys Lys 2000 2005

<210> <211> 85

2005

<212> PRT

Homo sapiens

<400>

Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Asp Glu Asn 35 40 45

Gly Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Ser Leu Pro Phe 50 60

Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp 65 70 75 80

Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys 90 95

Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu 100 105 110

Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His 115 120 125

Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val 130 140

Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr 145 150 155 160

Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala 165 170 175

Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn 180 185 190

SSCP Update Sequences.ST25

Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val 195 200 205 Asp Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala 210 215 Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala 225 230 235 240 Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val 245 250 255 Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly 260 265 270 Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe 275 285 Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly 290 295 300 Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile 305 310 315 320 Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu 325 330 335 Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile 340 345 350 Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp 355 360 365 Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp 370 375 380 Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr 385 390 . 400 Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu 405 410 415Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln 435 440 445 Met Leu Glu Gln Leu Lys Lys Gln Glu Glu Ala Gln Ala Ala Ala 450 455

SSCP Update Sequences.ST25

Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile 465 470 475 480 Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys 485 490 495 Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu 500 505 510 Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser 515 520 525 Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser 530 540 Arg Leu Thr Tyr Glu Lys Arg Phe Ser Ser Pro His Gln Ser Leu Leu 545 550 560 Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Ala Ser 575 Leu Phe Ser Phe Arg Gly Arg Ala Lys Asp Ile Gly Ser Glu Asn Asp 580 585 590 Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Asn Asp Ser Arg Arg 595 600 605 Asp Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg His Ser Asn 610 615 Val Ser Gln Ala Ser Arg Ala Ser Arg Val Leu Pro Ile Leu Pro Met 625 630 635 Asn Gly Lys Met His Ser Ala Val Asp Cys Asn Gly Val Val Ser Leu 645 650 655 Val Gly Gly Pro Ser Thr Leu Thr Ser Ala Gly Gln Leu Leu Pro Glu 660 665 Gly Thr Thr Glu Thr Glu Ile Arg Lys Arg Arg Ser Ser Ser Tyr 675 680 685 His Val Ser Met Asp Leu Leu Glu Asp Pro Thr Ser Arg Gln Arg Ala 690 695 700 Met Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu 705 710 715 720 Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Lys Phe Ala Asn Met Cys 725 730 735

SSCP Update Sequences.ST25 Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val 740 745 750 Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys 755 760 765 Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 770 780 Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800 Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr 805 810 Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 830 Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val 835 840 845

Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 860

Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala 865 870 880

Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala 885 890 895

Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910

Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe

Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 940

Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 955 960

Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975

Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 990

Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Ile Gln Ile Ala Val Gly 995 1000 1005

SSCP Update Sequences.ST25

Arg Met 1010 Gln Lys Gly Ile Asp 1015 Phe Val Lys Arg Lys 1020 Ile Arg Glu Phe Ile 1025 Gln Lys Ala Phe Val 1030 Arg Lys Gln Lys Ala Leu Asp Glu 1035

Ile Lys Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile 1040 1045 1050

Ser Asn His Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu 1055 1060

Lys Asp Gly Asn Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu 1070 1080

Lys Tyr Val Val Asp Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn 1085 1090 1095

Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp 1100 1110

Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met 1115 1120 1125

Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Glu Gly 1130 1135 1140

Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1150 1155

Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1165 1170

Asp Cys Val Arg Lys Phe Lys Cys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185

Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Thr Cys Tyr Lys 1190 1200

Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile 1205 1210 1215

Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu 1220 1230

Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val 1235 1240 1245

Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Lys Trp Val Ala 1250 1255 1260

SSCP Update Sequences.ST25

Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala 1280 1285 1290 Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met 1310 1315 Arg Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn 1355 1360 1365 Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr 1370 1380 Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp 1385 1390 1395 Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met 1415 Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1440 Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Phe Asn Gln Gln Lys Lys Phe Gly Gly Gln Asp Ile Asp Asn Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys 1490 1500 Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn 1505 1510 1515 1510

SSCP Update Sequences.ST25

Lys Phe Gln Gly Met Val Phe Asp Phe Val Thr Lys Gln Val Phe 1520 1530

Asp Ile Ser Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met 1535 1540 1545

Met Val Glu Thr Asp Asp Gln Ser Gln Glu Met Thr Asn Ile Leu 1550 1560

Tyr Trp Ile Asn Leu Val Phe Ile Val Leu Phe Thr Gly Glu Cys 1565 1570 1575

Val Leu Lys Leu Ile Ser Leu Arg Tyr Tyr Phe Thr Ile Gly 1580 1585 1590

Trp Asn Ile Phe Asp Phe Val Val Val Ile Leu Ser Ile Val Gly 1595 1600 1605

Met Phe Leu Ala Glu Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr 1610 1615 1620

Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg 1625 1630 1635

Leu Ile Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu 1640 1650

Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Leu Phe 1655 1660 1665

Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala 1670 1680

Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn Phe Glu 1685 1690 1695

Thr Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr Ser 1700 1710

Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Gly Pro 1715 1720 1725

Pro Asp Cys Asp Pro Asp Lys Asp His Pro Gly Ser Ser Val Lys 1730 1740

Gly Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Phe Val Ser

Tyr Ile Ile Ile Ser Phe Leu Val Val Leu Asn Met Tyr Ile Ala 1760 1765 1770

SSCP Update Sequences.ST25

Val Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Ala Glu 1775 1780 1785

Pro Leu Ser Glu Asp Asp Phe Glu Met Phe Tyr Glu Val Trp Glu 1790 1800

Lys Phe Asp Pro Asp Ala Thr Gln Phe Ile Glu Phe Ala Lys Leu 1805 1815

Ser Asp Phe Ala Asp Ala Leu Asp Pro Pro Leu Leu Ile Ala Lys 1820 1830

Pro Asn Lys Val Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser 1835 1840

Gly Asp Arg Ile His Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys 1850 1860

Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln 1865 1870

Met Glu Glu Arg Phe Met Ala Ser Asn Pro Ser Lys Val Ser Tyr 1880 1890

Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln Glu Glu Val Ser 1895 1900

Ala Ile Ile Gln Arg Ala Tyr Arg Arg Tyr Leu Leu Lys Gln 1910 1915 1920

Lys Val Lys Lys Val Ser Ser Ile Tyr Lys Lys Asp Lys Gly Lys 1925 1930 1935

Glu Cys Asp Gly Thr Pro Ile Lys Glu Asp Thr Leu Ile Asp Lys 1940 1950

Leu Asn Glu Asn Ser Thr Pro Glu Lys Thr Asp Met Thr Pro Ser 1955 1960 1965

Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys 1970 1980

Glu Lys Phe Glu Lys Asp Lys Ser Glu Lys Glu Asp Lys Gly Lys 1985 1990 1995

Asp Ile Arg Glu Ser Lys Lys 2000 2005

<210> 86 <211> 2005 <212> PRT

SSCP Update Sequences.ST25

<213> Homo sapiens

<400> 86

Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Asp Glu Asn 35 40 45

Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp 70 75 80

Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys 85 90 95

Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu 100 105 110

Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His 115 120 125

Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val 130 135 140

Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr 145 150 155 160

Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala 165 170 175

Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn 180 185

Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val 195 200 205

Asp Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala 210 215 220

Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala 225 230 235 240

Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val 245 250 255

SSCP Update Sequences.ST25
Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly
260 265 270 Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe 275 280 285 Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile 305 310 315 Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu 325 330 335 Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile 340 345 350 Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp 355 360 365 Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp 370 375 380 Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr 385 390 395 400 Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu 405 410 415 Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn 420 425 430 Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln 435 440 445 Met Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Ala 450 455 460 Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile 465 470 475 480 Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys 485 490 495 Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu 500 505 510 Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser 515 520 525

SSCP Update Sequences.ST25
Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser
530 540 Arg Leu Thr Tyr Glu Lys Arg Phe Ser Ser Pro His Gln Ser Leu Leu 545 550 555 Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Ala Ser 575 Leu Phe Ser Phe Arg Gly Arg Ala Lys Asp Ile Gly Ser Glu Asn Asp 580 585 590 Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Asn Asp Ser Arg Arg 595 600 605 Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg His Ser Asn 610 620 Val Ser Gln Ala Ser Arg Ala Ser Arg Val Leu Pro Ile Leu Pro Met 625 630 635 640 Asn Gly Lys Met His Ser Ala Val Asp Cys Asn Gly Val Val Ser Leu 645 650 655 Val Gly Gly Pro Ser Thr Leu Thr Ser Ala Gly Gln Leu Leu Pro Glu 660 665 670 Gly Thr Thr Glu Thr Glu Ile Arg Lys Arg Arg Ser Ser Tyr 675 680 685 His Val Ser Met Asp Leu Leu Glu Asp Pro Thr Ser Arg Gln Arg Ala 690 695 700 Met Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu 705 710 715 720 Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Lys Phe Ala Asn Met Cys 725 730 735 Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val 740 745 750 Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys 755 760 765 Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 770 780 Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800

SSCP Update Sequences.ST25

Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr
. 805 810 815

Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 830

Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val 835 840 845

Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 860

Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala 865 870 875 880

Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala 885 890 895

Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910

Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe $915 \hspace{1.5cm}920 \hspace{1.5cm}925$

Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 935 940

Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 955 960

Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975

Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 990

Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 995 1000

Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu 1010 1015 1020

Phe Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu 1025 1030 1035

Ile Lys Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile 1040 1045 1050

Ser Asn His Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu 1055 1065

SSCP Update Sequences.ST25 Lys Asp Gly Asn Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu 1070 1075 1080 Lys Tyr Val Val Asp Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn 1085 1090 1095 Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Glu Gly 1130 1135 1140 Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1150 1155 Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1170 Asp Cys Val Arg Lys Phe Lys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185 Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Ala Cys Tyr Lys 1190 1195 1200 Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val 1235 1240 1245 Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp 1265 1270 1275 Phe Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala 1280 1285 1290 Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu 1295 1305 Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met 1310 1320

SSCP Update Sequences ST25 Arg Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met 1325 1330 Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile 1340 1345 1350 Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn 1355 Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1440 Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile 1445 1450 1455 Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile 1460 1465 1470 Asp Asn Phe Asn Gln Gln Lys Lys Phe Gly Gln Asp Ile 1475 1480 1485 Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn 1505 1510 1515 Lys Phe Gln Gly Met Val Phe Asp Phe Val Thr Lys Gln Val Phe 1520 Asp Ile Ser Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met Met Val Glu Thr Asp Asp Gln Ser Gln Glu Met Thr Asn Ile Leu 1550 1560 Tyr Trp Ile Asn Leu Val Phe Ile Val Leu Phe Thr Gly Glu Cys

۷al	Leu 1580	Lys	Leu	Ile	Ser	SS Leu 1585	CP U Arg	pdat Tyr	e Se Tyr	quen Tyr	ces.S Phe 1590	T25 Thr	Ile	Gly
Trp	Asn 1595	Ile	Phe	Asp	Phe	Val 1600	٧a٦	٧a٦	Ile	Leu	ser 1605	Ile	Val	Gly
Met	Phe 1610	Leu	Ala	Glu	Leu	Ile 1615	Glu	Lys	Tyr	Phe	val 1620	Ser	Pro	Thr
Leu	Phe 1625	Arg	Val	Ile	Arg	Leu 1630		Arg	Ile	Glу	Arg 1635	Ile	Leu	Arg
Leu	Ile 1640	Lys	Gly	Ala	Lys	Gly 1645	Ile	Arg	Thr	Leu	Leu 1650	Phe	Ala	Leu
Met	меt 1655	Ser	Leu	Pro	Ala	Leu 1660		Asn	Ile	Glу	Leu 1665	Leu	Leu	Phe
Leu	Val 1670	Met	Phe	Ile	Tyr	Ala 1675	Ile	Phe	Gly	Met	Ser 1680	Asn	Phe	Ala
Tyr	Val 1685	Lys	Arg	Glu	Val	Gly 1690	Ile	Asp	Asp	Met	Phe 1695	Asn	Phe	Glu
Thr	Phe 1700	Gly	Asn	Ser	Met	Ile 1705	Cys	Leu	Phe	Gln	Ile 1710	Thr	Thr	Ser
Ala	Gly 1715	Trp	Asp	Glу	Leu	Leu 1720	Ala	Pro	Ile	Leu	Asn 1725	Ser	Gly	Pro
Pro	Asp 1730	Cys	Asp	Pro	Asp	Lys 1735	Asp	His	Pro	Glу	Ser 1740	Ser	٧a٦	Lys
Gly	Asp 1745	Cys	Glу	Asn	Pro	Ser 1750	Val	Glу	Ile	Phe	Phe 1755	Phe	٧al	Ser
Tyr	Ile 1760	Ile	Ile	Ser	Phe	Leu 1765	٧a٦	val	Leu	Asn	Met 1770	Tyr	Ile	Аlа
Val	Ile 1775	Leu	Glu	Asn	Phe	Ser 1780	Val	Ala	Thr	Glu	Glu 1785	Ser	Ala	Glu
Pro	Leu 1790	Ser	Glu	Asp	Asp	Phe 1795	Glu	Met	Phe	Tyr	Glu 1800	val	Trp	Glu
Lys	Phe 1805	Asp	Pro	Asp	Αla	Thr 1810	Gln	Phe	Ile	Glu	Phe 1815	Ala	Lys	Leu
Ser	Asp 1820	Phe	Αla	Asp	Ala	Leu 1825	Asp	Pro	Pro	Leu	Leu 1830	Ile	Ala	Lys

SSCP Update Sequences.ST25
Pro Asn Lys Val Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser
1835 1840 1845 Gly Asp Arg Ile His Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys 1850 1860 Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln Met Glu Glu Arg Phe Met Ala Ser Asn Pro Ser Lys Val Ser Tyr · 1880 1885 1890 Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln Glu Glu Val Ser Ala Ile Ile Gln Arg Ala Tyr Arg Arg Tyr Leu Leu Lys Gln 1910 1915 1920 Lys Val Lys Lys Val Ser Ser Ile Tyr Lys Lys Asp Lys Gly Lys 1925 1930 1935 Glu Cys Asp Gly Thr Pro Ile Lys Glu Asp Thr Leu Ile Asp Lys 1940 1950 Leu Asn Glu Asn Ser Thr Pro Glu Lys Thr Asp Met Thr Pro Ser 1955 1960 1965 1960 Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys 1970 1980 Glu Lys Phe Glu Lys Asp Lys Ser Glu Lys Glu Asp Lys Gly Lys 1985 1990 1995

Asp Ile Arg Glu Ser Lys Lys 2000 2005

<210> 87

<211> 2005

<212> PRT

<213> Homo sapiens

<400> 87

Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Glu Asn 35 40 45

Gly Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Ser Leu Pro Phe Page 207 SSCP Update Sequences.ST25 50 55 60

Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp 65 70 75 80

PCT/AU2004/001051

Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys 90 95

Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu 100 105 110

Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His 115 120 125

Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val 130 140

Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr 145 150 155 160

Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala 165 170 175

Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn 180 185 190

Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val 195 200 205

Asp Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala 210 220

Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala 225 230 240

Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val 245 250 255

Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly 260 265 270

Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe 275 280 285

Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly 290 295 300

Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile 305 310 315 320

Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu Page 208 SSCP Update Sequences.ST25 330 335

Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile 340 345 350 Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp 355 360 365 Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp 370 380 Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr 385 390 395 400 Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu 405 410 415 Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn 420 425 430 Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln 435 440 445 Met Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Ala Ala 450 455 460 Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile 465 470 475 480 Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys 485 490 495 Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu 500 505 510 Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser 515 520 525 Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser 530 540 Arg Leu Thr Tyr Glu Lys Arg Phe Ser Ser Pro His Gln Ser Leu Leu 545 550 560 Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Ala Ser 565 570 575

Leu Phe Ser Phe Arg Gly Arg Ala Lys Asp Ile Gly Ser Glu Asn Asp 580 585 590

Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Asn Asp Ser Arg Arg Page 209 WO 2005/014863

SSCP Update Sequences.ST25 600 605

PCT/AU2004/001051

Asp Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg His Ser Asn 610 620 Val Ser Gln Ala Ser Arg Ala Ser Arg Val Leu Pro Ile Leu Pro Met 625 630 635 640 Asn Gly Lys Met His Ser Ala Val Asp Cys Asn Gly Val Val Ser Leu 645 650 655 Val Gly Gly Pro Ser Thr Leu Thr Ser Ala Gly Gln Leu Leu Pro Glu 660 665 670 Gly Thr Thr Glu Thr Glu Ile Arg Lys Arg Arg Ser Ser Tyr 675 680 His Val Ser Met Asp Leu Leu Glu Asp Pro Thr Ser Arg Gln Arg Ala 690 695 700 Met Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu 705 710 715 Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Lys Phe Ala Asn Met Cys 725 730 735 Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val 740 745 750 Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys 755 760 765 Ile Val Leu Asn Thr Leu Phe Met Ála Met Glu His Tyr Pro Met Thr 770 780 Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800 Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr 805 810 815 Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val 835 840 845 Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 860 Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala Page 210

870

WO 2005/014863

865

PCT/AU2004/001051

880

Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala

Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910

Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe 915 920 925

Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 940

Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 960

Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975

Leu Phe Leu Ala Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 990

Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 995 1000 1005

Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu 1010 1020

Phe Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu

Ile Lys Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile 1040 1050 1040

Ser Asn His Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu 1055

Lys Asp Gly Asn Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu 1070 1080

Lys Tyr Val Val Asp Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn 1085 1090 1095

Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp 1100 1105 1110

Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met 1125 1115

Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Ser Glu Gly Page 211

PCT/AU2004/001051

SSCP Update Sequences.ST25 1130 1135 1140

Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1155

Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1170

Asp Cys Val Arg Lys Phe Lys Cys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185

Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Thr Cys Tyr Lys 1190 1200

Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile 1205 1210 1215

Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu 1220 1230

Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val 1235 1240 1245

Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Lys Trp Val Ala 1250 1260

Tyr Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp 1265 1270 1275

Phe Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala 1280 1290

Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu 1295 1300 1305

Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Gln Phe Glu Gly Met 1310 1320

Arg Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met 1325 1330 1335

Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile 1340 1350 .

Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn 1355 1360 1365

Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr 1370 1380

Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp Page 212 SSCP Update Sequences.ST25 1385 1390 1395

Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu 1400 1405 1410

Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met 1415 1420 1425

Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1440

Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile 1445 1450 1455

Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile 1460 1465 1470

Asp Asn Phe Asn Gln Gln Lys Lys Phe Gly Gly Gln Asp Ile 1475 1480 1485

Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys 1490 1500

Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn 1505 1510 1515

Lys Phe Gln Gly Met Val Phe Asp Phe Val Thr Lys Gln Val Phe 1520 1530

Asp Ile Ser Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met 1535 1540 1545

Met Val Glu Thr Asp Asp Gln Ser Gln Glu Met Thr Asn Ile Leu 1550 1560

Tyr Trp Ile Asn Leu Val Phe Ile Val Leu Phe Thr Gly Glu Cys 1565 1570 1575

Val Leu Lys Leu Ile Ser Leu Arg Tyr Tyr Phe Thr Ile Gly 1580 1590

Trp Asn Ile Phe Asp Phe Val Val Val Ile Leu Ser Ile Val Gly
1595 1600 1605

Met Phe Leu Ala Glu Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr 1610 1620

Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg 1625 1630 1635

Leu Ile Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Page 213

SSCP Update Sequences.ST25 1640 1645 1650

Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Phe Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala 1670 1680 Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn Phe Glu 1685 1690 1695 Thr Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr Ser 1700 1705 1710 Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Gly Pro
1715 1720 1775 Pro Asp Cys Asp Pro Asp Lys Asp His Pro Gly Ser Ser Val Lys 1730 1740 Gly Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Phe Val Ser 1745 1750 1755 Tyr Ile Ile Ser Phe Leu Val Val Leu Asn Met Tyr Ile Ala Val Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe Ile Glu Phe Ala Lys Leu Ser Asp Phe Ala Asp Ala Leu Asp Pro Pro Leu Leu Ile Ala Lys 1820 1830 Pro Asn Lys Val Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln 1865 1870 Met Glu Glu Arg Phe Met Ala Ser Asn Pro Ser Lys Val Ser Tyr 1880 Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln Glu Glu Val Ser

SSCP Update Sequences.ST25 1895 1900 1905

Ala Ile Ile Ile Gln Arg Ala Tyr Arg Arg Tyr Leu Leu Lys Gln 1910 1920

Lys Val Lys Lys Val Ser Ser Ile Tyr Lys Lys Asp Lys Gly Lys 1925 1930 1935

Glu Cys Asp Gly Thr Pro Ile Lys Glu Asp Thr Leu Ile Asp Lys 1940 1945 1950

Leu Asn Glu Asn Ser Thr Pro Glu Lys Thr Asp Met Thr Pro Ser 1955 1960 1965

Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys 1970 1980

Glu Lys Phe Glu Lys Asp Lys Ser Glu Lys Glu Asp Lys Gly Lys 1985 1990 1995

Asp Ile Arg Glu Ser Lys Lys 2000 2005

<210> 88

<211> 468

<212> PRT <213> Homo sapiens

<400> 88

Met Ala Ala Arg Gly Ser Gly Pro Arg Ala Leu Arg Leu Leu Leu 1 15

Val Gln Leu Val Ala Gly Ala Leu Arg Ser Ser Arg Ala Arg Arg Ala 20 25 30

Ala Arg Arg Gly Leu Ser Glu Pro Ser Ser Ile Ala Lys His Glu Asp
35 40 45

Ser Leu Leu Lys Asp Leu Phe Gln Asp Tyr Glu Arg Trp Val Arg Pro 50 60

Val Glu His Leu Asn Asp Lys Ile Lys Ile Lys Phe Gly Leu Ala Ile 65 70 75 80

Ser Gln Leu Val Asp Val Asp Glu Lys Asn Gln Leu Met Thr Thr Asn 85 90 95

Val Trp Leu Lys Gln Glu Trp Ile Asp Val Lys Leu Arg Trp Asn Pro 100 105 110

Asp Asp Tyr Gly Gly Ile Lys Val Ile Arg Val Pro Ser Asp Ser Ser 115 120 125 Page 215

SSCP Update Sequences.ST25

Thr Pro Asp Ile Ile Leu Phe Asp Asn Ala Asp Gly Arg Phe Glu 130 140 Gly Thr Ser Thr Lys Thr Val Ile Arg Tyr Asn Gly Thr Val Thr Trp 145 150 155 160 Thr Pro Pro Ala Asn Tyr Lys Ser Ser Cys Thr Ile Asp Val Thr Phe 165 170 175 Phe Pro Phe Asp Leu Gln Asn Cys Ser Met Lys Phe Gly Ser Trp Thr $180 \,$ $185 \,$ 190 Tyr Asp Gly Ser Gln Val Asp Ile Ile Leu Glu Asp Gln Asp Val Asp 195 200 205 Lys Arg Asp Phe Phe Asp Asn Gly Glu Trp Glu Ile Val Ser Ala Thr 210 215 220 Gly Ser Lys Gly Asn Arg Thr Asp Ser Cys Cys Trp Tyr Pro Tyr Val 225 230 235 240 Thr Tyr Ser Phe Val Ile Lys Arg Leu Pro Leu Phe Tyr Thr Leu Phe 245 250 255 Leu Ile Ile Pro Cys Ile Gly Leu Ser Phe Leu Thr Val Leu Val Phe 260 265 270 Tyr Leu Pro Ser Asn Glu Gly Glu Lys Ile Cys Leu Cys Thr Ser Val 275 280 285 Leu Val Ser Leu Thr Val Phe Leu Leu Val Ile Glu Glu Ile Ile Pro 290 295 300 Ser Ser Ser Lys Val Ile Pro Leu Ile Gly Glu Tyr Leu Val Phe Thr 305 310 315 320 Met Ile Phe Val Thr Leu Ser. Ile Met Val Thr Val Phe Ala Ile Asn 325 330 335 Arg Lys Ile Phe Leu His Thr Leu Pro Lys Leu Leu Ser Met Arg Ser 355 360 365 His Val Asp Arg Tyr Phe Thr Gln Lys Glu Glu Thr Glu Ser Gly Ser 370 380 Gly Pro Lys Ser Ser Arg Asn Thr Leu Glu Ala Ala Leu Asp Ser Ile 385 390 395 400 Page 216

SSCP Update Sequences.ST25

Arg Tyr Ile Thr Thr His Ile Met Lys Glu Asn Asp Val Arg Glu Val
405 410 415

Val Glu Asp Trp Lys Phe Ile Ala Gln Val Leu Asp Arg Met Phe Leu
420 425 430

Trp Thr Phe Leu Phe Val Ser Ile Val Gly Ser Leu Gly Leu Phe Val 435 440 445

Pro Val Ile Tyr Lys Trp Ala Asn Ile Leu Ile Pro Val His Ile Gly 450 460

Asn Ala Asn Lys 465

<210> 89

<211> 529

<212> PRT <213> Homo sapiens

<400> 89

Met Gly Pro Ser Cys Pro Val Phe Leu Ser Phe Thr Lys Leu Ser Leu 1 10 15

Trp Trp Leu Leu Thr Pro Ala Gly Gly Glu Glu Ala Lys Arg Pro 20 25 30

Pro Pro Arg Ala Pro Gly Asp Pro Leu Ser Ser Pro Ser Pro Thr Ala 35 40 45

Leu Pro Gln Gly Gly Ser His Thr Glu Thr Glu Asp Arg Leu Phe Lys 50 55 60

His Leu Phe Arg Gly Tyr Asn Arg Trp Ala Arg Pro Val Pro Asn Thr 65 70 75 80

Ser Asp Val Val Ile Val Arg Phe Gly Leu Ser Ile Ala Gln Leu Ile 85 90 95

Asp Val Asp Glu Lys Asn Gln Met Met Thr Thr Asn Val Trp Leu Lys 100 105 110

Gln Glu Trp Ser Asp Tyr Lys Leu Arg Trp Asn Pro Thr Asp Phe Gly 115 120 125

Asn Ile Thr Ser Leu Arg Val Pro Ser Glu Met Ile Trp Ile Pro Asp 130 135 140

Ile Val Leu Tyr Asn Asn Ala Asp Gly Glu Phe Ala Val Thr His Met 145 150 155 160

SSCP Update Sequences.ST25

Thr Lys Ala His Leu Phe Ser Thr Gly Thr Val His Trp Val Pro Pro 165 170 175 Ala Ile Tyr Lys Ser Ser Cys Ser Ile Asp Val Thr Phe Phe Pro Phe 180 185 190 Asp Gln Gln Asn Cys Lys Met Lys Phe Gly Ser Trp Thr Tyr Asp Lys 200 205Ala Lys Ile Asp Leu Glu Gln Met Glu Gln Thr Val Asp Leu Lys Asp 210 220 Tyr Trp Glu Ser Gly Glu Trp Ala Ile Val Asn Ala Thr Gly Thr Tyr 225 230 235 240 Asn Ser Lys Lys Tyr Asp Cys Cys Ala Glu Ile Tyr Pro Asp Val Thr 245 250 255 Tyr Ala Phe Val Ile Arg Arg Leu Pro Leu Phe Tyr Thr Ile Asn Leu 260 265 270 Ile Ile Pro Cys Leu Leu Ile Ser Cys Leu Thr Val Leu Val Phe Tyr 275 280 285 Leu Pro Ser Asp Cys Gly Glu Lys Ile Thr Leu Cys Ile Ser Val Leu 290 295 300 Leu Ser Leu Thr Val Phe Leu Leu Leu Ile Thr Glu Ile Ile Pro Ser 305 310 315 320 Thr Ser Leu Val Ile Pro Leu Ile Gly Glu Tyr Leu Leu Phe Thr Met
325 330 335 Ile Phe Val Thr Leu Ser Ile Val Ile Thr Val Phe Val Leu Asn Val 340 345 350 His His Arg Ser Pro Ser Thr His Thr Met Pro His Trp Val Arg Gly 355 360 365 Ala Leu Leu Gly Cys Val Pro Arg Trp Leu Leu Met Asn Arg Pro Pro 370 380 Pro Pro Val Glu Leu Cys His Pro Leu Arg Leu Lys Leu Ser Pro 385 . 395 Tyr His Trp Leu Glu Ser Asn Val Asp Ala Glu Glu Arg Glu Val Val 405 410 415 Val Glu Glu Asp Arg Trp Ala Cys Ala Gly His Val Ala Pro Ser 420 425 430

Page 218

SSCP Update Sequences.ST25

Val Gly Thr Leu Cys Ser His Gly His Leu His Ser Gly Ala Ser Gly 435 440 445

Pro Lys Ala Glu Ala Leu Leu Gln Glu Gly Glu Leu Leu Leu Ser Pro 450 455 460

His Met Gln Lys Ala Leu Glu Gly Val His Tyr Ile Ala Asp His Leu 465 470 475 480

Arg Ser Glu Asp Ala Asp Ser Ser Val Lys Glu Asp Trp Lys Tyr Val 485 490 495

Ala Met Val Ile Asp Arg Ile Phe Leu Trp Leu Phe Ile Ile Val Cys 500 505 510

Phe Leu Gly Thr Ile Gly Leu Phe Leu Pro Pro Phe Leu Ala Gly Met 515 525

Ile

<210> 90

<211> 505 <212> PRT

<213> Homo sapiens

<400> 90

Met Gly Ser Gly Pro Leu Ser Leu Pro Leu Ala Leu Ser Pro Pro Arg 1 5 10 15

Leu Leu Leu Leu Leu Leu Ser Leu Leu Pro Val Ala Arg Ala Ser 20 25 30

Glu Ala Glu His His Leu Phe Glu Arg Leu Phe Glu Asp Tyr Asn Glu 35 40 45

Ile Ile Arg Pro Val Ala Asn Val Ser Asp Pro Val Ile Ile His Phe 50 60

Glu Val Ser Met Ser Gln Leu Val Lys Val Asp Glu Val Asn Gln Ile 65 70 75 80

Met Glu Thr Asn Leu Trp Leu Lys Gln Ile Trp Asn Asp Tyr Lys Leu 85 90 95

Lys Trp Asn Pro Ser Asp Tyr Gly Gly Ala Glu Phe Met Arg Val Pro 100 105 110

Ala Gln Lys Ile Trp Lys Pro Asp Ile Val Leu Tyr Asn Asn Ala Val 115 120 125

SSCP Update Sequences.ST25 Gly Asp Phe Gln Val Asp Asp Lys Thr Lys Ala Leu Leu Lys Tyr Thr 130 135 140 Gly Glu Val Thr Trp Ile Pro Pro Ala Ile Phe Lys Ser Ser Cys Lys 145 150 155 160 Ile Asp Val Thr Tyr Phe Pro Phe Asp Tyr Gln Asn Cys Thr Met Lys 165 170 175 Phe Gly Ser Trp Ser Tyr Asp Lys Ala Lys Ile Asp Leu Val Leu Ile . 180 185 190 Gly Ser Ser Met Asn Leu Lys Asp Tyr Trp Glu Ser Gly Glu Trp Ala 195 200 205 Ile Ile Lys Ala Pro Gly Tyr Lys His Asp Ile Lys Tyr Asn Cys Cys 210 215 220 Glu Glu Ile Tyr Pro Asp Ile Thr Tyr Ser Leu Tyr Ile Arg Arg Leu 225 230 240 Pro Leu Phe Tyr Thr Ile Asn Leu Ile Ile Pro Cys Leu Leu Ile Ser 245 250 255 Phe Leu Thr Val Leu Val Phe Tyr Leu Pro Ser Asp Cys Gly Glu Lys 260 265 270 Val Thr Leu Cys Ile Ser Val Leu Leu Ser Leu Thr Val Phe Leu Leu 275 280 285 Val Ile Thr Glu Thr Ile Pro Ser Thr Ser Leu Val Ile Pro Leu Ile 290 295 300 Gly Glu Tyr Leu Leu Phe Thr Met Ile Phe Val Thr Leu Ser Ile Val 305 310 315 320

Ile Thr Val Phe Val Leu Asn Val His Tyr Arg Thr Pro Thr Thr His 325 330 335

Thr Met Pro Ser Trp Val Lys Thr Val Phe Leu Asn Leu Leu Pro Arg 340 345 350

Val Met Phe Met Thr Arg Pro Thr Ser Asn Glu Gly Asn Ala Gln Lys 355 360 365

Pro Arg Pro Leu Tyr Gly Ala Glu Leu Ser Asn Leu Asn Cys Phe Ser 370 375 380

Arg Ala Glu Ser Lys Gly Cys Lys Glu Gly Tyr Pro Cys Gln Asp Gly 385 390 395

SSCP Update Sequences.ST25
Met Cys Gly Tyr Cys His His Arg Arg Ile Lys Ile Ser Asn Phe Ser
405 410 415

Ala Asn Leu Thr Arg Ser Ser Ser Glu Ser Val Asp Ala Val Leu 420 425 430

Ser Leu Ser Ala Leu Ser Pro Glu Ile Lys Glu Ala Ile Gln Ser Val 435 440 445

Lys Tyr Ile Ala Glu Asn Met Lys Ala Gln Asn Glu Ala Lys Glu Ile 450 455 460

Gln Asp Asp Trp Lys Tyr Val Ala Met Val Ile Asp Arg Ile Phe Leu 465 470 475 480

Trp Val Phe Thr Leu Val Cys Ile Leu Gly Thr Ala Gly Leu Phe Leu 485 490 495

Gln Pro Leu Met Ala Arg Glu Asp Ala 500 505

<210> 91

<211> 118

<212> PRT <213> Homo sapiens

<400> 91

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly 10 15

Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro 20 25 30

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro 45

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala 50 60

Gly Lys Pro Pro Gln Ala Gln Arg Leu Leu Pro Gln Ala Glu Phe 65 70 75 80

Pro Leu Gln Arg Ala Gly Ala Ala Ala Arg Leu Gly Val His Leu Pro 85 90 95

Arg Leu Arg Val Pro Pro Gly Phe Leu Leu Pro Arg Ala Val Cys Val 100 105 110

Phe His His Gln Gly Val

<210> 92

SSCP Update Sequences.ST25

<211> 854 <212> PRT

<213> Homo sapiens

<400> 92

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly 10 15

Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro 20 25 30

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro 35 40 45

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala 50 55 60

Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe 65 70 75 80

Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His 85 90 95

Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe 100 105 110

Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile 115 120 125

Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg 130 135 140

Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg 150 155 160

Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu 165 170 175

Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe 180 185 190

Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met 195 200 205

Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val 210 215 220

Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe 225 230 235 240

Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly 245 250 255 Page 222

SSCP Update Sequences.ST25

Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu 260 265 270 Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Gln Thr Trp 275 280 285 Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe 290 295 300 Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val 305 310 315 320 Gln Glu Gln His Arg Gln Lys His Phe Glu Lys Arg Arg Asn Pro Ala 325 330 335 Ala Gly Leu Ile Gln Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser 340 350 Gly Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr 355 360 365 Val Pro Met Tyr Ser Ser Gln Thr Gln Thr Tyr Gly Ala Ser Arg Leu 370 375 380 Ile Pro Pro Leu Asn Gln Leu Glu Leu Leu Arg Asn Leu Lys Ser Lys 385 390 395 400 Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro Pro Glu Pro Ser Pro Ser 405 410 415 Gln Lys Val Ser Leu Lys Asp Arg Val Phe Ser Ser Pro Arg Gly Val 420 425 430 Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala Gln Thr Val Arg Arg Ser 445 445 Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser Pro Ser Lys Val Pro Lys 450 460 Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala Arg Gln Ala Phe Arg Ile 465 470 475 480 Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu Glu Ala Ser Leu Pro Gly 485 490 495 Glu Asp Ile Val Asp Asp Lys Ser Cys Pro Cys Glu Phe Val Thr Glu 500 505 510 Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys Val Met 515 520 525Page 223

SSCP Update Sequences.ST25

Arg Phe Leu Val Ser Lys Arg Lys Phe Lys Glu Ser Leu Arg Pro Tyr 530 540 Asp Val Met Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu Asp Met 545 550 560 Leu Ser Arg Ile Lys Ser Leu Gln Ser Arg Val Asp Gln Ile Val Gly 565 570 575 Arg Gly Pro Ala Ile Thr Asp Lys Asp Arg Thr Lys Gly Pro Ala Glu 580 585 Ala Glu Leu Pro Glu Asp Pro Ser Met Met Gly Arg Leu Gly Lys Val 595 600 605 Glu Lys Gln Val Leu Ser Met Glu Lys Lys Leu Asp Phe Leu Val Asn 610 620 Ile Tyr Met Gln Arg Met Gly Ile Pro Pro Thr Glu Thr Glu Ala Tyr 625 630 635 640 Phe Gly Ala Lys Glu Pro Glu Pro Ala Pro Pro Tyr His Ser Pro Glu 645 650 655 Asp Ser Arg Glu His Val Asp Arg His Gly Cys Ile Val Lys Ile Val 660 665 670 Arg Ser Ser Ser Thr Gly Gln Lys Asn Phe Ser Ala Pro Pro Ala 675 680 Ala Pro Pro Val Gln Cys Pro Pro Ser Thr Ser Trp Gln Pro Gln Ser 690 695 700 His Pro Arg Gln Gly His Gly Thr Ser Pro Val Gly Asp His Gly Ser 705 710 715 720 Leu Val Arg Ile Pro Pro Pro Pro Ala His Glu Arg Ser Leu Ser Ala 725 730 735 Tyr Gly Gly Asn Arg Ala Ser Met Glu Phe Leu Arg Gln Glu Asp 740 745 750 Thr Pro Gly Cys Arg Pro Pro Glu Gly Thr Leu Arg Asp Ser Asp Thr 755 760 765 Ser Ile Ser Ile Pro Ser Val Asp His Glu Glu Leu Glu Arg Ser Phe 770 775 780 Ser Gly Phe Ser Ile Ser Gln Ser Lys Glu Asn Leu Asp Ala Leu Asn 785 790 795 800 Page 224

SSCP Update Sequences.ST25

Ser Cys Tyr Ala Ala Val Ala Pro Cys Ala Lys Val Arg Pro Tyr Ile 805 810 815

Ala Glu Gly Glu Ser Asp Thr Asp Ser Asp Leu Cys Thr Pro Cys Gly 820 830

Pro Pro Pro Arg Ser Ala Thr Gly Glu Gly Pro Phe Gly Asp Val Gly 835 840 845

Trp Ala Gly Pro Arg Lys 850

<210> 93

<211> 429 <212> PRT

<213> Homo sapiens

<400> 93

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly 10 15

Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro 20 25 30

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro 35 40 45

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala 50 55 60

Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe 65 70 75 80

Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His 85 90 95

Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe 100 105 110

Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile 115 120 125

Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg 130 135 140

Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg 145 150 155 160

Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu 165 170 175

SSCP Update Sequences.ST25

Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe 180 185 190

Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met 195 200 205

Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val 210 215 220

Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe 225 230 235 240

Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly 245 250 255

Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu 260 265 270

Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Gln Thr Trp 275 280 285

Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe 290 295 300

Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val 305 310 315 320

Gln Glu Gln His Arg Gln Lys His Phe Glu Lys Arg Arg Asn Pro Ala 325 330 335

Ala Gly Leu Ile Gln Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser 340 345 350

Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr 355 360 365

Val Pro Met Tyr Ser Ser Gln Thr Gln Thr Tyr Gly Ala Ser Arg Leu 370 380

Ile Pro Pro Leu Asn Gln Leu Glu Leu Leu Arg Asn Leu Lys Ser Lys 385 390 395 400

Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro Pro Glu Pro Ser Pro Ser 405 410 415

Gln Lys Val Ser Leu Lys Asp Arg Val Phe Ser Ser Pro 420 425

Page 226

<210> 94

<211> 854

<212> PRT

SSCP Update Sequences.ST25

<213> Homo sapiens

<400> 94

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly 1 5 10 15

Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro 20 25 30

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro 35 40 45

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala 50 60

Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe 65 70 75 80

Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His 85 90 95

Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe 100 105 · 110

Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile 115 120 125

Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg 130 135 140

Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg 145 150 155 160

Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu 165 170 175

Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe 180 185 190

Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met 195 200 205

Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val 210 220

Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe 225 230 235 240

Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly 245 250 255

SSCP Update Sequences.ST25
Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu
260 265 270 Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Gln Thr Trp 275 . 280 285 Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe 290 300 Phé Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val 305 310 315 320 Gln Glu Gln His Arg Gln Lys His Phe Glu Lys Arg Arg Asn Pro Ala 325 330 335 Ala Gly Leu Ile Gln Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser 340 345 350 Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr 355 360 365 Pro Met Tyr Ser Ser Gln Thr Gln Thr Tyr Gly Ala Ser Arg Leu 370 380 Ile Pro Pro Leu Asn Gln Leu Glu Leu Leu Arg Asn Leu Lys Ser Lys 385 390 400 Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro Pro Glu Pro Ser Pro Ser 405 410 415Gln Lys Val Ser Leu Lys Asp Arg Val Phe Ser Ser Pro Arg Gly Val 420 425 430 Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala Gln Thr Val Arg Arg Ser 440 445 Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser Pro Ser Lys Val Pro Lys 450 460 Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala Arg Gln Ala Phe Arg Ile 465 470 480 Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu Glu Ala Ser Leu Pro Gly
485 490 495 Glu Asp Ile Val Asp Asp Lys Ser Cys Pro Cys Glu Phe Val Thr Glu 500 505 Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys Val Met 515 520 525

SSCP Update Sequences.ST25
Phe Leu Val Ser Lys Arg Lys Phe Lys Glu Ser Leu Arg Pro Tyr
530 540 Asp Val Met Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu Asp Met 545 550 555 Leu Ser Arg Ile Lys Ser Leu Gln Ser Ser Val Asp Gln Ile Val Gly 565 570 575 Arg Gly Pro Ala Ile Thr Asp Lys Asp Arg Thr Lys Gly Pro Ala Glu 580 585 590 Ala Glu Leu Pro Glu Asp Pro Ser Met Met Gly Arg Leu Gly Lys Val 595 600 605 Glu Lys Gln Val Leu Ser Met Glu Lys Lys Leu Asp Phe Leu Val Asn 610 620 Ile Tyr Met Gln Arg Met Gly Ile Pro Pro Thr Glu Thr Glu Ala Tyr 625 630 635 640 Phe Gly Ala Lys Glu Pro Glu Pro Ala Pro Pro Tyr His Ser Pro Glu 645 650 655 Asp Ser Arg Glu His Val Asp Arg His Gly Cys Ile Val Lys Ile Val 660 665 670 Arg Ser Ser Ser Thr Gly Gln Lys Asn Phe Ser Ala Pro Pro Ala 675 680 Ala Pro Pro Val Gln Cys Pro Pro Ser Thr Ser Trp Gln Pro Gln Ser 690 700 His Pro Arg Gln Gly His Gly Thr Ser Pro Val Gly Asp His Gly Ser 705 710 715 720 Leu Val Arg Ile Pro Pro Pro Pro Ala His Glu Arg Ser Leu Ser Ala 725 730 735 Tyr Gly Gly Asn Arg Ala Ser Met Glu Phe Leu Arg Gln Glu Asp 740 745 750 Thr Pro Gly Cys Arg Pro Pro Glu Gly Thr Leu Arg Asp Ser Asp Thr 755 760 765 Ser Ile Ser Ile Pro Ser Val Asp His Glu Glu Leu Glu Arg Ser Phe 770 780 Ser Gly Phe Ser Ile Ser Gln Ser Lys Glu Asn Leu Asp Ala Leu Asn 785 790 795 800

SSCP Update Sequences.ST25
Ser Cys Tyr Ala Ala Val Ala Pro Cys Ala Lys Val Arg Pro Tyr Ile
805 810 815

Ala Glu Gly Glu Ser Asp Thr Asp Ser Asp Leu Cys Thr Pro Cys Gly 820 830

Pro Pro Pro Arg Ser Ala Thr Gly Glu Gly Pro Phe Gly Asp Val Gly 835 840 845

Trp Ala Gly Pro Arg Lys 850

<210> 95

<211> 854

<212> PRT

<213> Homo sapiens

<400> 95

Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly 10 15

Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro 20 25 30

Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro 45

Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala 50 60

Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe 65 70 75 80

Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe 100 105 110

Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile 115 120 125

Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg 130 135 140

Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg 145 150 155 160

Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu 165 170 175

Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe Page 230 WO 2005/014863

SSCP Update Sequences.ST25 180 185 190 PCT/AU2004/001051

Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met 195 200 205 Ile Arg Met Asp Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val 210 215 220 Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe 225 230 235 Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly 245 250 255 Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu 260 265 270 Ile Thr Leu Thr Thr Ile Gly Tyr Gly Asp Lys Tyr Pro Gln Thr Trp 275 280 285 Asn Gly Arg Leu Leu Ala Ala Thr Phe Thr Leu Ile Gly Val Ser Phe 290 300 Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Val 305 310 315 Gln Glu Gln His Arg Gln Lys His Phe Glu Lys Arg Arg Asn Pro Ala 325 330 335 Ala Gly Leu Ile Gln Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser 340 345 350Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr 355 360 365 Val Pro Met Tyr Ser Ser Gln Thr Gln Thr Tyr Gly Ala Ser Arg Leu 370 380 Ile Pro Pro Leu Asn Gln Leu Glu Leu Leu Arg Asn Leu Lys Ser Lys 385 390 395 400 Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro Pro Glu Pro Ser Pro Ser 405 410 415Gln Lys Val Ser Leu Lys Asp Arg Val Phe Ser Ser Pro Arg Gly Val 420 425 430 Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala Gln Thr Val Arg Arg Ser 445 445 Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser Pro Ser Lys Val Pro Lys

Page 231

PCT/AU2004/001051

SSCP Update Sequences.ST25 450 455 460

WO 2005/014863

Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala Arg Gln Ala Phe Arg Ile 465 470 475 480 Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu Glu Ala Ser Leu Pro Gly
485 490 495 Glu Asp Ile Val Asp Asp Lys Ser Cys Pro Cys Glu Phe Val Thr Glu 500 505 Asp Leu Thr Pro Gly Leu Lys Val Ser Ile Arg Ala Val Cys Val Met 515 520 525 Arg Phe Leu Val Ser Lys Arg Lys Phe Lys Glu Ser Leu Arg Pro Tyr 530 540 Asp Val Met Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu Asp Met 545 550 555 560 Leu Ser Arg Ile Lys Ser Leu Gln Ser Arg Val Asp Gln Ile Val Gly 565 570 575 Arg Gly Pro Ala Ile Thr Asp Lys Asp Arg Thr Lys Gly Pro Ala Glu 580 585 Ala Glu Leu Pro Glu Asp Pro Ser Met Met Gly Arg Leu Gly Lys Val 595 600 605 Glu Lys Gln Val Leu Ser Met Glu Lys Lys Arg Asp Phe Leu Val Asn 610 620 Ile Tyr Met Gln Arg Met Gly Ile Pro Pro Thr Glu Thr Glu Ala Tyr 625 630 635 Phe Gly Ala Lys Glu Pro Glu Pro Ala Pro Pro Tyr His Ser Pro Glu 645 650 655 Asp Ser Arg Glu His Val Asp Arg His Gly Cys Ile Val Lys Ile Val 660 665 670 Arg Ser Ser Ser Thr Gly Gln Lys Asn Phe Ser Ala Pro Pro Ala 675 680 685 Ala Pro Pro Val Gln Cys Pro Pro Ser Thr Ser Trp Gln Pro Gln Ser 690 695 700 His Pro Arg Gln Gly His Gly Thr Ser Pro Val Gly Asp His Gly Ser 705 710 715 720 Leu Val Arg Ile Pro Pro Pro Pro Ala His Glu Arg Ser Leu Ser Ala

Page 232

735

SSCP Update Sequences.ST25 730

Tyr Gly Gly Asn Arg Ala Ser Met Glu Phe Leu Arg Gln Glu Asp 740 745

Thr Pro Gly Cys Arg Pro Pro Glu Gly Thr Leu Arg Asp Ser Asp Thr 755 760 765

Ser Ile Ser Ile Pro Ser Val Asp His Glu Glu Leu Glu Arg Ser Phe 770 780

Ser Gly Phe Ser Ile Ser Gln Ser Lys Glu Asn Leu Asp Ala Leu Asn 785 790 795 800

Ser Cys Tyr Ala Ala Val Ala Pro Cys Ala Lys Val Arg Pro Tyr Ile 805 810 815

Ala Glu Gly Glu Ser Asp Thr Asp Ser Asp Leu Cys Thr Pro Cys Gly 820 830

Pro Pro Pro Arg Ser Ala Thr Gly Glu Gly Pro Phe Gly Asp Val Gly 835 840 845

Trp Ala Gly Pro Arg Lys 850

International application No.

PCT/AU2004/001051

Α.	CLASSIFICATION OF SUBJECT MATTER			
Int. Cl. 7:	C12Q 1/68, C12N 15/01, A61K 39/395 CO7K	14/47		
According to I	nternational Patent Classification (IPC) or to both n	ational classification and IPC	<u>.</u>	
*	FIELDS SEARCHED			
See electroni				
Documentation See electroni	searched other than minimum documentation to the extence databases	t that such documents are included in the fields search	ned	
Electronic data WPIDS, CA	base consulted during the international search (name of da Medline. SCN1A, polymorphism/mutation/SN	ata base and, where practicable, search terms used) IP, epilepsy/disease/febrile seizure		
C.	DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appro	opriate, of the relevant passages	Relevant to claim No.	
A	Fujiwara T et al. Mutations of sodium chann- childhood epilepsies with frequent generalize 126: 531-546			
A	Nabbout R et al. Spectrum of SCN1A mutati infancy. Neurology, 2003 Jun 24. 60(12):19			
A	WO 2003/008574 A1 (BIONOMICS LIMITE	ED) 30 January 2003		
A	WO 2002/06521 A1 (BIONOMICS LIMITEI	D) 24 January 2002		
A	WO 2002/50096 A1 ((BIONOMICS LIMITE	D) 27 June 2002		
-				
Fu	urther documents are listed in the continuation	of Box C X See patent family anne	ex	
"A" documen not consi	cial categories of cited documents: Iment defining the general state of the art which is considered to be of particular relevance er application or patent but published on or after the mational filing date IT' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
or which another c				
	neans t published prior to the international filing date than the priority date claimed			
	al completion of the international search	Date of mailing of the international search report	•	
28 September		7 OCT 2004		
	Authorized officer Authorized officer			
PO BOX 200, V E-mail address:	USTRALIAN PATENT OFFICE O BOX 200, WODEN ACT 2606, AUSTRALIA -mail address: pct@ipaustralia.gov.au acsimile No. (02) 6285 3929 Gillian Allen Telephone No: (02) 6283 2266			

International application No.

PCT/AU2004/001051

Box No. I	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)			
This interr	ational search report has not been established in respect of certain claims under Article 17(2)(a) for the following			
1.	Claims Nos.:			
<u></u> -	because they relate to subject matter not required to be searched by this Authority, namely:			
2. X	Claims No 65 and 66			
2. 2.	because they relate to parts of the international application that do not comply with the prescribed requirements to such			
	an extent that no meaningful international search can be carried out, specifically:			
	The scope of these claims is so unclear that no meaningful search can be performed.			
3.	Claims Nos.:			
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)			
Dow No. II				
BOX NO. II	I Observations where unity of invention is lacking (Continuation of item 3 of first sheet)			
	his International Searching Authority found multiple inventions in this international application, as follows: The ISA found that the claims were directed to multiple invention			
See Su	pplemental Box III for details			
DCC Du	pptemental Box III for details			
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
•				
4. X	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by:			
	Claims 1-16 19-27, 29-64, 67-85 in so far as they are directed to polymorphisms in SCN1A			
	•			
Domestras	Protest			
Remark on	The additional search fees were accompanied by the applicant's protest.			
	No protest accompanied the payment of additional search fees.			

International application No.

PCT/AU2004/001051

Supplemental Box

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: III

The present claims are to 72 different mutations in 18 different ion channel genes, the mutant genes and their encoded polypeptides and antibodies thereto, and to uses of these in diagnosis or therapy.

The unifying feature of the claimed inventions is a disease-associated mutation of an ion channel gene. However, ion channel disease-associated mutations are known for every one of the ion channels of the claims, ie SCN, CHRN, KCQN, and GABR.

Therefore, since the unifying feature of the different mutations is not novel, it cannot be accepted as a special technical feature that would unite the claims.

There are therefore 72 separate inventions claimed.

However, this office believes that all claimed mutations of any one of the claimed genes could be searched without undue effort, and has chose to search the claims in so far as they are directed to polymorphisms of SCN1A

International application No.

PCT/AU2004/001051

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report	Patent Family Member		
WO 2003/008574	CA 2454073	:	
•	EP 1407013		
WO 2002/06521	AU 200172218		
WO 2002/50096	AU 200216826	e e e	
	EP 1351968		
	US 2004110706		
	JP 2004515252T	•	

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX