Normal Equation

Computer Parameters Analytically
Linear Regression with Multiple Variables

Gradient Descent

Gradient Descent

Normal equation: Method to solve for θ analytically.

$$J(\theta) = a\theta^2 + b\theta + c$$

How to minimize a function?

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \dots \quad \stackrel{\text{Set}}{=} 0$$
S

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \dots \qquad \frac{\text{Set}}{\partial \phi} O$$
Solve for O

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve for ϕ

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$ (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
 x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
 x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	_1	36	178
>>.	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	2104 5 1 1416 3 2 1534 3 2 852 2 1		$y = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	460 232 315 178

1	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
 x_0	x_1	x_2	x_3	x_4	y	_
1	2104	5	1	45	460	7
1	1416	3	2	40	232	1
1	1534	3	2	30	315	
1	852	2	_1	36	178	7
>	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $M \times (n+1)$	2 30 36	$y = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	460 232 315 178	Vertor

1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	_
1	2104	5	1	45	460	7
1	1416	3	2	40	232	
1	1534	3	2	30	315	1
1	852	2	_1	36	178	
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $M \times (n+1)$	30 36	$\underline{y} = $	460 232 315 178	Vestor

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

Andrew Ng

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$; n features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \begin{array}{c} \\ \\ \text{(design moths.)} \end{array}$$

$m \ {\sf examples} \ (x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}) \ ; \ \underline{n} \ {\sf features}.$

$m \ {\sf examples} \ (x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}) \ ; \ \underline{n} \ {\sf features}.$

E.g. If
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$

E.g. If
$$\underline{x}^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$
 \times z

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{mothan})$$

$$(\text{mothan})$$

$$(\text{mothan})$$

$$(\text{mothan})$$

E.g. If
$$\underline{x}^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$
 \times $z = \begin{bmatrix} 1 \\ x_2^{(i)} \end{bmatrix}$

m examples $(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})$; \underline{n} features.

Andrew Ng

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$; n features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{moth}_{\mathbf{x}})$$

$$(\text{moth}_{\mathbf{x}})$$

$$(\text{moth}_{\mathbf{x}})$$

$$(\text{moth}_{\mathbf{x}})$$

E.g. If
$$\underline{x}^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix} \times z \begin{bmatrix} 1 \\ x_2^{(i)} \end{bmatrix} \begin{bmatrix} y_1^{(i)} \\ y_2^{(i)} \end{bmatrix} \begin{bmatrix} y_2^{(i)} \\ y_2^{(i)} \end{bmatrix}$$

Andrew Ng

Exercise

Suppose you have the training in the table below:

age (<i>x</i> ₁)	height in cm (x_2)	weight in kg (y)
4	89	16
9	124	28
5	103	20

- You would like to predict a child's weight as a function of his age and height with the model
- $weight = \theta_0 + \theta_1 x_1 + \theta_2 x_2$
- What are X and y?

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = \underbrace{(X^TX)^{-1}X^Ty} \\ (X^TX)^{-1} \text{ is inverse of matrix } \underline{X^TX}.$$

Octave: pinv(X'*X)*X'*y

$$\theta = \underbrace{(X^TX)^{-1}X^Ty}_{(X^TX)^{-1} \text{ is inverse of matrix } \underline{X^TX}.}_{\text{Set}}$$

Octave: pinv(X'*X)*X'*y

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix X^TX .

Octave: pinv (X'*X) *X'*y

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix $\underline{X^TX}$.

Octave: pinv (X'*X) *X'*y

When to choose gradient descent and when to choose normal equations???

No need for feature scaling!

<u>Gradient Descent</u>

- Need to choose α .
- Needs many iterations.

Normal Equation

- No need to choose α .
- Don't need to iterate.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute $(X^TX)^{-1}$
 - Slow if n is very large.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

$$(X^TX)^{-1}$$
 $\xrightarrow{\mathsf{N}\times\mathsf{N}}$ $O(n^3)$

Slow if n is very large.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

• Slow if n is very large.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

Slow if n is very large.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

$$- (X^T X)^{-1} \xrightarrow{\mathsf{n} \times \mathsf{n}} O(\mathsf{n}^3)$$

Slow if n is very large.

Gradient Descent	Normal Equation
Need to choose alpha	No need to choose alpha
Needs many iterations	No need to iterate
O (<i>kn</i> ²)	O (n^3), need to calculate inverse of X^TX
Works well when n is large	Slow if n is very large