Es09: Misura della velocità del suono

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

17 febbraio 2022

Misura componenti dei circuiti

Resistenze $[k\Omega]$	R	σR	Resistenze $[k\Omega]$	R	σR
$R_1 \atop R_T$		0.08 0.08	$R_1 \ R_T$	212 212	9

Tabella 1: Valori di resistenza misurate con il multimetro dei componenti dei due circuiti studiati.

Riportiamo per completezza anche il valore della tensione di alimentazione continua per il sensore a ultrasuoni misurata con il multimetro.

$$V_{CC} = 4.99 \pm 0.03 \text{V}$$

Nota sul metodo di fit

Per determinare i parametri ottimali e le rispettive covarianze si è implementato in Python un algoritmo di fit basato sui minimi quadrati mediante la funzione *curve* fit della libreria SciPy.

1 Apparato strumentale e analisi del circuito

Il primo passo per la costruzione del circuito P.I.D. è la realizzazione del circuito di lettura. Nel nostro caso abbiamo realizzato un sistema di rilevazione di intensità luminosa costituito da due circuiti identici che emettono luce grazie a due LED bianchi (uno per il disturbo e l'altro di controllo) e da un partitore di tensione dato dalla serie di una resistenza R_3 e una fotoresistenza R_4 .

Figura 1: Schema dei circuiti di emissione e rilevazione di intensità luminosa.

1.a Analisi del funzionamento del circuito

La fotoresistenza è una resistenza variabile in funzione dell'intensità luminosa che incide su di essa. In particolare sappiamo che il valore di resistenza R_4 e intensità della luce incidente sulla superficie della fotoresistenza sono inversamente proporzionali.

Dalla formula del partitore di tensione sappiamo che il valore dell'uscita MEAS dev'essere pari a

$$V_{\text{MEAS}} = (V_{CC} - V_{EE}) \frac{R_4}{R_4 + R_3} + V_{EE}$$
 (1)

Ci aspettiamo allora che aumentando la luce (quindi nel nostro caso pilotando l'ingresso del LED driver di disturbo con una rampa), il valore di $V_{\rm MEAS}$ andrà ad aumentare sempre entro l'intervallo di tensioni (V_{EE}, V_{CC}).

Riportiamo una serie di misure di $V_{\rm MEAS}$ al variare del valore della tensione continua generata all'ingresso W2. Come ci aspettavamo il valore di $V_{\rm meas}$ cresce all'aumentare dell'intensità della luce incidente sulla fotoresistenza,

$V_{\mathrm{gen}}[\mathrm{V}]$	$V_{\rm meas}[{ m V}]$
$-4.2 \pm 0.3 \text{ m}$	-4.99 ± 0.05
$995 \pm 7 \text{ m}$	-2.11 ± 0.02
1.99 ± 0.02	-1.01 ± 0.08
2.98 ± 0.04	$-359 \pm 3 \text{ m}$
3.98 ± 0.04	$42.1\pm0.7~\mathrm{m}$
4.98 ± 0.05	$335\pm3~\mathrm{m}$

Tabella 2: Misure di $V_{\rm MEAS}$ in funzione della tensione in ingresso nel LED driver di disturbo

cioè aumentando la tensione in ingresso $V_{\rm gen}$.

Conclusioni e commenti finali

Si è riusciti a dare una misura ragionevole della velocità del suono in aria e si è riusciti ad apprezzare la sua dipendenza dalla temperatura ambientale con un semplice sensore ad ultrasuoni ed un termistore.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.