VIETNAM NATIONAL UNIVERSITY - HCM

Ho Chi Minh City University of Technology

Faculty of Computer Science and Engineering

LOGIC DESIGN WITH VERILOG HDL Mini Project:

DOOR LOCK

GVHD: Phạm Quốc Cường

SV1: Hồ Anh Tài - 1810490

SV2: Pham Thanh Danh - 1852110

SV3: Trần Nhựt Quang – 1852073

SV4: Lê Trần Minh Đức – 1852135

Ho Chi Minh, November, 2019

CONTENT

CHAPTER 1:

INTRODUCTION

CHAPTER 2:

DESIGN AND IMPLEMENTATION

CHAPTER 3:

TESTBENCH AND ON-BOARD DEMO

CHAPTER 4:

CONCLUSION

REPORT

INTRODUCTION:

Implement a door lock control design (using FSM is compulsory) with the features below:

- The password consists of three numeric digits from 0 to 9;
- To simplify the design, numeric digits are inputted by using BCD code and SWs are used to generate the input signal.
- There is only 1 digit that is inputted each time, a KEY is used to confirm an input value (assume KEY1). Input value must be showed on 7-segment LED.
- There are 2 modes that can be applied:
- Set modes: users set password.
- Verify modes: users enter a password and system check it.

Modes are switched by using KEY (assume KEY2)

• In Verify mode:

- If user enter a correct password: a GREEN led blink with a 5Hz frequency.
- If user enter a false password: a RED led blink with a 1Hz frequency.

After that, user has more 2 trials. With these trials, if user enter a correct password, her/his number of trials will be resetted. On the contrary side, the system is blocked and only be reactivated by using RESET KEY (assume KEY3).

LIST OF MODULES:

- 1. Set password
- 2. Fsm_pwdinput
- 3. Mode switch
- 4. Verify
- 5. Block
- 6. Display
- 7. BCD_to_HEX_delay
- 8. Debounce
- 9. Debounce_display

GENERAL VIEW:

DESIGN AND IMPLEMENTATION:

1. Clock Devider:

RAW CLOCK INPUT

f=1/T. 50Mhz -> T = 1/50M (s). => t=1s => f = 1/1/50M = 50MHzAssign pps = (accumulate ==0)

2. Mode_switch:

input: key

output: mode

At beginning mode take the value of 0 which mean users are in the set mode, but when user press KEY[0] then the input key received the value of 1. This create a positive edge and the mode now is 1(verify mode).

3. Set_password:

Input: mode, clock3, enable.

Output: password.

When clock3 (from fsm module) change from 0 to 1, mode variable (from mode switch) is 0 and enable (block module) is 0. Then user's inputs are assigned to password

4. Verify:

Input: mode, enable, password, data_in, clock.

- Trials = 2'b00;
- Signal = 1'b0;

Output: trials, result, signal.

5. Block:

Input: key, signal.

Output: enable.

6. Fsm_pwdinput:

-count:

Base on D Flip-Flop count variable run from 0 -2 and turn back to 0 when reach 2

Present state		Next state		Control input	
Qb	Qa	Qb	Qa	D Qb	D Qa
0	0	0	1	0	1
0	1	1	0	1	0
1	0	0	0	0	0
1	1	0	0	0	0

	Qa	Qa
Qb	1	0
Qb	0	0

	Qa	Qa
Qb	0	1
Qb	0	0

D Qa = \overline{QaQb}

 $D Qb = Qa\overline{Qb}$

-Debounce_display:

When display the inputs to 7 segments LEDs, we have a problem that the 7 segments don't display the new inputs. So we make an debounce display to solve this problem.

-fsm_pwdinput:

7. Display:

When input right in verify mode:

Right inputs display to LEDG

When input wrong in verify mode:

wrong input display to LEDR

When input wrong 3 times and block:

Block display to LEDR LEDG

TESTBENCH AND ON-BOARD TEXT:

Test on board De2i-150:

test on board first time test on board second time

CONCLUSION:

Advantage and disadvantage:

-Advantage:

Had already learn how to make a program with HDL

Had experience on working with De2i-150 board

-Disadvantage:

Having problem when using FSM

Debounce the noise signal

Phạm Thanh Danh	FSM Password Input De2i-150 Implementation Set_Password module Switch_Mode module Debounce_display module
Trần Nhựt Quang	Verify module Block module Display module Debounce module Testbench Simulation
Hồ Anh Tài	Slide Designer Report writer Design BCD_to_HEX_delay module
Lê Trần Minh Đức	Tester Basic concepts References