

IN1.4: INTEGRATION BY PARTS

The rule for integration by parts is the rule corresponding to the product rule for differentiation.

Formula for integration by parts.

$$\int u dv = uv - \int v du$$

The aim when using integration by parts is to form a new integral, (on the right), that is simpler than the original (on the left). The correct choice of terms for u and dv/dx is critical.

Choose u such that when it is differentiated it is removed, or simplifies the integral. (provided dv/dx can be easily integrated for v.)

If the integral involves a natural logarithm or inverse trig function this should be chosen as u

Examples

1. Find
$$\int x \cos x dx$$
 let $u = x$... $du = dx$ (x differentiates to 1) and $dv = \cos x dx$... $v = \sin x$ (cosx is easily integrated)

$$\int x \cos x dx = \int u dv = uv - \int v du$$
$$= x \sin x - \int \sin x dx$$
$$= x \sin x + \cos x +$$

2. Find
$$\int xe^{2x}dx$$
 let $u = x$ \therefore du = dx and $dv = e^{2x}dx$ \therefore $v = \frac{1}{2}e^{2x}$

$$\int xe^{2x} dx = \int u dv = uv - \int v du$$

$$= x \left(\frac{1}{2}e^{2x}\right) - \int \frac{1}{2}e^{2x} dx$$

$$= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$$

3. Find
$$\int x^3 \log_e x dx$$
 let $u = \log_e x$ $\therefore du = \frac{1}{x} dx$ (need to let $u = \log$ function)
$$dv = x^3 dx \therefore v = \frac{x^4}{4}$$

$$\int x^3 \log_e x dx = \int u dv = uv - \int v du$$

$$= \log_e x (\frac{x^4}{4}) - \int \frac{x^4}{4} \times \frac{1}{x} dx$$

$$= \frac{x^4}{4} \log_e x - \int \frac{x^3}{4} dx$$

$$= \frac{x^4}{4} \log_e x - \frac{x^4}{16} + \frac{1}{4} \log_e x - \frac{x^4}{16} + \frac{x^4$$

4. Find $\int \arcsin x dx$

Consider
$$\int \arcsin x dx$$
 as $\int 1 \times \arcsin x dx$ let $u = \arcsin x$.: $du = \frac{1}{\sqrt{1 - x^2}} dx$ $dv = 1 dx$.: $v = x$

$$\int \arcsin x dx = \int u dv = uv - \int v du$$

$$= \arcsin x \ (x) - \int x \frac{1}{\sqrt{1 - x^2}} dx \dots$$

$$= x \arcsin x - \frac{1}{2} \int \frac{1}{\sqrt{t}} dt$$

$$= x \arcsin x + \sqrt{1 - x^2} + c$$
use a substitution $t = 1 - x^2$

$$dt = -2x dx \therefore x dx = -\frac{1}{2} dt$$

See Exercise 1

Repeated integration by parts

Sometimes after integrating by parts the new integral cannot be integrated except by another use of integration by parts.

Examples

1. Find
$$\int x^2 e^x dx$$
 let $u = x^2$: $du = 2x dx$ and $dv = e^x dx$: $v = e^x$

$$\int x^{2}e^{x}dx = \int udv = uv - \int vdu$$

$$= x^{2} e^{x} - \int e^{x} 2xdx$$

$$= x^{2} e^{x} - 2\int xe^{x}dx \text{ Integrate this new integral by parts.}$$

$$u = x \qquad \therefore du = dx$$

$$dv = e^{x}dx \qquad \therefore v = e^{x}$$

$$= x^{2} e^{x} - 2(xe^{x} - \int e^{x}dx)$$

$$= x^{2} e^{x} - 2xe^{x} + 2e^{x} + c$$

2. Find
$$\int e^x \cos x dx$$
 $u = e^x$ $\therefore du = e^x dx$ $dv = \cos x dx$ $\therefore v = \sin x$

$$\int e^x \cos x dx = \int u dv = uv - \int v du$$

$$= e^x \sin x - \int \sin x e^x dx \text{ Integrate this new integral by parts }.$$

$$u = e^{x} \quad \therefore du = e^{x} dx$$

$$dv = \sin x dx \quad \therefore v = -\cos x$$

$$= e^{x} \sin x - (e^{x} (-\cos x) - \int -\cos x e^{x} dx)$$

$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x dx)$$

The new integral on the right side of the equation is the same as the original integral, on the left, multiplied by (-1). Shift this to the left side of the equation to give:

$$2\int e^x \cos x dx = e^x \sin x + e^x \cos x$$

$$\therefore \int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x)$$

When the integral is a product of trig functions, or exponential and trig functions it is often necessary to repeat integration by parts until the original integral appears on the right-hand side of the equation.

See Exercise 2

Exercises

Find

1. (a)
$$\int x \sin x dx$$
 (b) $\int x e^x dx$ (c) $\int x \cos 4x dx$

(d)
$$\int x \sin(\pi - 2x) dx$$
 (e) $\int \log_e x dx$ (f) $\int x^4 \log_e x dx$

(g)
$$\int \frac{1}{x^2} \log_e x dx$$

2. (a)
$$\int x^2 \cos x dx$$
 (b) $\int x^2 e^{3x} dx$ (c) $\int e^x \sin x dx$ (d) $\int \sqrt{x} \log_e x dx$ (e) $\int x^2 e^{-2x} dx$

(f)
$$\int x^5 e^{x^3} dx$$
 (hint: write as $\int x^3 x^2 e^{x^3} dx$)

Answers

1.(a)
$$-x\cos x + \sin x + c$$

(b)
$$xe^{x} - e^{x} + e^{x}$$

1.(a)
$$-x\cos x + \sin x + c$$
 (b) $xe^x - e^x + c$ (c) $\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x + c$

$$(d)\frac{x}{2}\cos(\pi-2x) + \frac{1}{4}\sin(\pi-2x) + c \qquad (e) x \log_e x - x + c$$

(e)
$$xlog_e x - x + c$$

(f)
$$\frac{x^5}{5}log_e x - \frac{x^5}{25} + c$$
 (g) $-\frac{1}{x}log_e x - \frac{1}{x} + c$

$$(g) - \frac{1}{x} log_e x - \frac{1}{x} + c$$

2. (a)
$$x^2 \sin x + 2x \cos x - 2 \sin x + c$$

2. (a)
$$x^2 \sin x + 2x \cos x - 2 \sin x + c$$
 (b) $\frac{1}{3}x^2 e^{3x} - \frac{2}{9}x e^{3x} + \frac{2}{27}e^{3x} + c$

(c)
$$\frac{1}{2}e^x \sin x - \frac{1}{2}e^x \cos x + c$$
 (d) $\frac{2}{3}x^{\frac{3}{2}} \log_e x - \frac{4}{9}x^{\frac{3}{2}} + c$

(d)
$$\frac{2}{3}x^{\frac{3}{2}}\log_e x - \frac{4}{9}x^{\frac{3}{2}} + c$$

(e)
$$-\frac{1}{2}x^2e^{-2x} - \frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + c$$
 (g) $\frac{1}{3}x^3e^{x^3} - \frac{1}{3}e^{x^3} + c$

(g)
$$\frac{1}{3}x^3e^{x^3} - \frac{1}{3}e^{x^3} + c$$