and these are verified easily. Hence (e, a, b, \circ) is a group. There is a group of order 3. Any two groups of order 3 have essentially the same Cayley table, namely the table in Figure 3. This statement will be made precise in §20.

The Cayley tables of ($\mathbb{N},+$) and (e,a,b,\circ) are symmetric about the principal diagonal (that joins the upper-left and lower-right cells). What does this signify? The symmetry of the Cayley table of a group (G,\circ) means that the cell where the i-th and j-th row column meet, and this for all i,j=1,2,...,|G|. Assuming the i-th row is the row of $a\in G$ and the j-th column is the column of $b\in G$ (and assuming we index the rows and columns by the elements of G in the same order), this means: $a\circ b=b\circ a$ for all $a,b\in G$. So the group is commutative in the following sense.

Definition 0.1. A group (G, \circ) is called a *commutative* group or an *abelian* group, if, in addition to the group axioms (i)-(iv) a fifth axiom $(v)a \circ b = b \circ a$ for all $a, b \in G$.. holds.

A binary operation on a set G is called *commutative* when $a \circ b = b \circ a$ for all $a, b \in G$.. So a commutative group is one where the operation is commutative. The term "abelian" is used in honor of N. H. Abel, a Norwegian mathematician (1802-1829). We close this paragraph with some comments on the group axioms. The reader might ask why we should study the structures (G, \circ) where \circ satisfies the axioms (i),(ii),(iii),(iv). Why do we not study structures (G, \circ) where \circ satisfies the axioms (i),(ii),(iii),(iv) to some other combination of (i),(ii),(iii),(iv)? There is of course no reason why other combinations ought to be excluded from study. As a matter of fact, all combinations have a proper name and there are theories about them. However, they are very far from having the same importance as the combination (i),(ii),(iii),(iv).