电路模拟

一. 填空题

1. 下图电阻均为 6Ω ,求等效电阻 $R_{ab}=$ 。

2. 如下图所示电路,已知N为线性有源网络。 $U_s=2\mathrm{V}, R=1\Omega$ 。当 $r=1\Omega$ 时,

$$I_1=0, I_2=0.5 \mathrm{A}$$
; 当 $r=3\Omega$ 时, $I_1=2/3 \mathrm{A}, I_2=1.5 \mathrm{A}$ 。

当
$$r=5\Omega$$
时, $I_2=$ _.

3. 如下图所示电路,已知 $u_s=3e^{-5t}arepsilon(t)\mathrm{V}$,零状态下输出电压 u_o 为_。

4. RC 一阶电路的全响应 $u_c=(10-6e^{-10t})\mathrm{V}$. 若初始状态不变而输入增加一倍,则全响应 uc 为

5. 如下图所示

1. 图11-3所示电路中, $u_{z}(t)$ 为正弦交流无伴电压源,参数 L_{1} 、 L_{2} 、M、 C_{1} 和 C_{2} 均为已知,则该电路发生并联谐振的频率 f_{0} 为____。[华南理工大学2012研]

二. 计算题

1. 如下图所示, 满足 $U_1=5U_2, I_1=-0.2I_2$,求 $rac{1}{5}\Omega$ 电阻消耗的功率。

2. 如下图所示,已知 $I_2=1\mathrm{A}$, $I_3=3\mathrm{A}$,求 R 和 U_s 。

3. 在下图所示的正弦稳态电路中 $U=120{
m V}$, 功率表读数为 $1200{
m W}$, $f=50{
m Hz}$, $R_1=2R$, $R_2=R_3=R$, $I_1=I_2=I_3=I$ 。求电流的有效值 I 及参数 R,L,C。

4. 如下图所示。

下图所示含理想变压器的正弦稳态电路中,已知 $R=1\Omega$, $X_C=X_L=\frac{1}{4}\Omega$, $n_1=2$, $n_2=4$,

 $\dot{U}_{\rm s}$ =10 \angle 0°V。试求: (1) a-b 端输入阻抗 $Z_{\rm in}$; (2) 功率表示数; (3) 电流 \dot{I}_c 。

5. 如下图所示

对称三相电路如图所示, $U_{AB}=380V$,端线阻抗 $Z_1=(0.1+j0.2)\Omega$,三相电动机的视在功率为 20KVA,功率因数为 0.8(滞后)、求(1)开关闭合时 $U_{A'B'}$;(2)开关打开时,功率表的 读数。

6.如下图所示

图示非正弦周期电流电路中,已知 $i_s = 2 + 5\sqrt{2}\sin 10^3 t + \sqrt{2}\sin (2 \times 10^3 t - 60^\circ)$ A, $R = 5\Omega$, $C_1 = 100 \mu$ F, $L_2 = 50$ mH。电压 u 只含有直流分量和二次谐波分量,电流 i 只含有直流分量。 求: (1) L_1 、 C_2 ; (2) i(t)、u(t); (3) 电流源发出的有功功率。

7.如下图所示

电路如图 (a) 所示,N 为线性电阻网络, $C = \frac{1}{500}$ F ,当 $u_1(t) = 1(t)$ (1(t)为单位阶跃函数)时,输出 $u_2(t) = \frac{1}{2}(1 + e^{-10t})1(t)$ V, $u_C(\infty) = 0.5$ V。先把电容 C 换成电感 L = 0.5H(见图 (b) 所示),(1) 求网络函数 $H(s) = \frac{U_2(s)}{U_1(s)}$;(2) 当输入 $u_1(t) = e^{-200t} \cdot 1(t)$,求输出 $u_2(t)$ 的零状态响

应;(3)当输入 $u_1(t)=(10+\sqrt{2}\times 100\sin 100t)\cdot 1(t)$ 时,求 $u_L(t)$ 的稳态分量。

8.如下图所示

电路如下图所示,已知 $R=120\Omega$, $R_S=60\Omega$, L=2H, C=1/7200F, $u_S(t)=3e^{-30t}\cdot 1(t)V$,用拉氏分析法求 u(t)的零状态响应。

