

Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond

Ding Huang, Alex Abulnaga, Sacha Welinski, Brendon C. Rose, Zi-Huai Zhang, Paul Stevenson, Nathalie P. de Leon Department of Electrical Engineering, Princeton University

Requirements for quantum networks:

- Long lived quantum memory
- Efficient spin-photon interface
- Identical photons
- Telecom wavelength

Prior work on color centers in diamond:

NV⁻ centers have long electron spin coherence, poor optical properties SiV- centers have better

optical properties, poor spin coherence

SiV⁰ is an excellent single photon source:

Near-transform-limited linewidth, low saturation power

Ensemble PLE shows all centers have narrow lines over hours

"Observation of an environmentally insensitive solid-state spin defect in diamond" - Rose*, Huang*, et al, Science, 361, 60-63 (2018)

Neutral silicon vacancy centers

Key idea—Fermi level engineering to stabilize neutral charge state of SiV, access new spin configuration

SiV⁰ is a long lived quantum memory: @ 10°

T₁ ~ 1 minute

 $T_2 \sim 1$ second

Heterogeneously integrated GaAs-on-diamond photonic platform

allows for use of GaAs, a mature photonic platform Evanescent coupling to SiV⁰ in diamond substrate Fully integrated nanophotonic circuit using GaAs-on-diamond

946 nm optical emission

Photonic crystal cavity design

Electric field intensity at SiV⁰ layer around 30% of peak value

On-chip quantum frequency conversion scheme

3 dB attenuation distance in single mode fibers Yb+ ions: 370 nm FWM-BS < 50 m NV⁻ center: 637 nm 300 m SiV- center: 737 nm 520 m SiV⁰ Pump 2 Rb atom: 780 nm 750 m emission SiV⁰ center & QDs: ~946 nm 1.5 km Telecom C-band: 1550 nm 15 km Pump 1 1550 nm

Experiments with other material platforms: Srinivasan group, Nat. Photonics, 2016 (SiN); Radic group, PRL, 2010 (SiO₂)