Department of Science and Humanities

F Y B Tech SEM II 2021-22 Engineering Physics Lab Course

Name :- Meet Gala Roll No. 16010121051

Batch A3

Optical Fibre – Numerical Aperture (using photodetector)

Diagram:-

Observation Table:

LC of screw gauge = 0.01 mm

Type of optical fibre: Glass-Glass fibre

Light used: Red

Detector axial distance from the fibre (Z) = 2 mm

Sr.		Detector			
No	Main scale	Matching division	Vernier reading	detector lateral	current (μΑ)
	reading M	of circular scale	$V = D \times LC (mm)$	distance	
	(mm)	(D)		(X) = M + V (mm)	
1	2	9	0.09	2.09	0
2	3	7	0.07	3.07	0
3	4	32	0.32	4.32	0.012
4	4	45	0.45	4.85	0.051
5	4.5	28	0.28	4.78	0.351
6*	4.5	35	0.35	4.85	0.369
7	4.5	39	0.39	4.89	0.361
8	5	30	0.30	5.30	0.026
9	5.5	12	0.12	5.62	0.0
10	6.5	0	0	6.5	0

^{*}This should be reading corresponding to peak current

Detector axial distance from the fibre (Z) = 4 mm

Sr.		Detector			
No	Main scale	Matching division	Vernier reading	detector lateral	current
	reading M	of circular scale	$V = D \times LC (mm)$	distance	I (μA)
	(mm)	(D)		X = M + V (mm)	
1	0.5	0	0	0.5	0
2	1	17	0.17	1.17	0
3	2	48	0.48	2.48	0
4	3	43	0.43	3.43	0.03
5	4	23	0.23	4.23	0.05
6*	4.5	34	0.34	4.84	$I_P = 0.18$
7	5	9	0.09	5.09	0.15
8	5.5	3	0.03	5.53	0.04
9	6	46	0.46	6.46	0.003
10	7	37	0.37	7.37	0
11	7.5	33	0.33	7.83	0

^{*}This should be reading corresponding to peak current

Somaiya Vidyavihar University
K. J. Somaiya College of Engineering, Mumbai -77
(A Constituent College of Somaiya Vidyavihar University)

Graph:

Plot detector lateral distance X (on X-axis) v/s detector current (on Y-axis) for both the values of detector axial distance (Z) on the same graph paper

Calculation:

- A. Determination of spot radius:
 - 1. Find $\frac{1}{\sqrt{2}}$ value of the peak detector current (I_P) = $\frac{I_P}{0.71}$
 - 2. These will be two values about the peak value (IP) as show in the diagram
 - 3. Find the corresponding detector lateral distance values say X_1 and X_2
 - 4. Spot radius (r) is calculated as $r = \frac{X_2 X_1}{2}$
- B. Determination of numerical aperture (NA):

$$NA = \frac{r}{\sqrt{r^2 + Z^2}}$$

C. Determine acceptance angle (θ):

 $\theta = \sin^{-1} NA$ Calculations:

Result:

Numerical Aperture of the optical fibre NA =0.39mm

Acceptance angle θ = 22.95 degree

Home Assignment:

Determine NA using light of different colour for any one value of detector axial distance Z. Hence conclude whether NA is dependent or independent on the wavelength of light used.

Observation table for home assignment:

Type of optical fibre: Glass-Glass fibre

Light used: Green

Detector axial distance from the fibre (Z) = 2 mm

Sr.		Detector						
No	Main scale	Matching division	Vernier reading	detector lateral	current (μΑ)			
	reading M	of circular scale	$V = D \times LC (mm)$	distance				
	(mm)	(D)		(X) = M + V (mm)				
1	3	17	0.17	3.17	0			
2	3.5	4	0.04	3.54	0			
3	4	1	0.01	4.01	0.0915			
4	4	14	0.14	4.14	0.2137			
5	4.5	20	0.20	4.70	0.2825			
6*	4.5	34	0.34	4.84	$I_P = 0.3694$			
7	4.5	43	0.43	4.93	0.3382			
8	5	16	0.16	5.16	0.1078			
9	5	27	0.27	5.27	0.0414			
10	5.5	3	0.03	5.53	0.010			
11	6	10	0.10	6.10	0			

^{*}This should be reading corresponding to peak current

Conclusion

Found numerical aperture of optical fibre using photodetector.