Part III — Statistics

Based on lectures by Brian Notes taken by Dexter Chua

Lent 2017-2018

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Contents III Statistics

Contents

1	Representation and summary of data - location	4
	1.1 Basic Concepts of Variable	4
	1.2 Grouped data	4
	1.3 Mean, mode and median	4
	1.4 Linear interpolation	4
	1.5 Coding	4
2	Representation and summary of data - measures of dispersion	
	2.1 Range and interquartile range	5
	2.2 Percentiles split the data into 100 parts	5
	2.3 Range and Interquartile range	5
	2.4 Variance and standard deviation	5
	2.5 Variance and standard deviation for grouped data	5
	2.6 Coding	5
3	Representation of data	6
	3.1 Stem and Leaf diagrams	6
	3.2 Outlier	6
	3.3 Box plot	6
	3.4 Histogram	6
	3.5 Skewness (Shape)	6
	3.6 What!?	7
4	Probability	8
	4.1 Classical Probability	8
	4.2 Venn diagram and their rules	8
	4.3 Conditional Probabilites	8
	4.3.1 Vann diagram	8
	4.3.2 Tree diagram	8
	4.4 Special Events of Probabilites	8
5	Correlation	9
	5.1 Correlation	9
	5.2 Bivariate data	9
	5.3 Product moment Correlation coefficient r	9
	5.4 Coding	9
6	Regression	10
	6.1 Linear	10
	6.2 Coding	10
	6.3 Interpolation and Extrapolation	10
7	Discrete random variables	11
	7.1 Probability distribution	11
8	The normal distribution	12
9	Binomial distribution	13

Contents	III Statistics
10 Poisson distribution	14
11 Continuous random variables	15
12 Continuous uniform distribution	16
13 Normal approximation	17
14 Population and samples	18
15 Hypothesis testing	19
16 Combination of random variables	20
17 Sampling	21
18 Estimation , confidence intervals and tests	22
19 Goodness of fit and contingency tables	23
20 Regression and correlation	24
21 Quality of tests and estimators	25
22 One-sample procedures	26

23 Two-sample procedures

1 Representation and summary of data - location

1.1 Basic Concepts of Variable

Definition (Quantitative variables and Qualitative variables). Quantitative variable associated with numerical observation. Qualitative variables associated with non-numerical observations.

Definition (Continuous variable and discrete variable). Continuous variable can take ant value in given range. Discrete can take only specific values in a given range.

1.2 Grouped data

Definition (Grouped data). The groups are more commonly known as classes.

- class boundaries.
- mid-point of a class.
- class width.

Example. Example 5-6

Definition (Frequency and cumulative frequency). Number of anything; example is how many sheeps. It is sometimes helpful to add a column to the table showing the running total of the frequencies. This is called the cumulative frequency

Definition (Ungrouped data). Show all data

1.3 Mean, mode and median

Definition (Mode). The mode is the value that occurs most often

Definition (Median). n/2 term or 1 term above

Definition (Mean).

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

1.4 Linear interpolation

Example. Example 14-15

1.5 Coding

Example. pick 1 example

2 Representation and summary of data - measures of dispersion

2.1 Range and interquartile range

The list of formula:

- Range = Upper value - Lowest value

Example. example 3

2.2 Percentiles split the data into 100 parts

Example. example 4

2.3 Range and Interquartile range

Example (Linear Interpolation).

2.4 Variance and standard deviation

Definition (Variance). Let f stand for the frequency, then $n = \sum f$ and

$$\text{Variance} = \frac{\sum f(x - \bar{x})^2}{\sum f} \text{ or } \frac{\sum fx^2}{\sum f} - (\frac{\sum fx^2}{\sum f})$$

2.5 Variance and standard deviation for grouped data Definition.

Example. example 7-8

2.6 Coding

Example. example 9-11

3 Representation of data

3.1 Stem and Leaf diagrams

3.2 Outlier

Definition. An outlier is an extreme value that lies outside the overall pattern of the data.

An outlier is any value, which is

greater than the upper quartile $+1.5 \times \text{interquartile range}$

OR

less than the lower quartile $+1.5 \times$ interquartile range

3.3 Box plot

3.4 Histogram

Definition (Frequency density).

$$frequency\ density = \frac{frequency}{class\ width}$$

Example. 7

3.5 Skewness (Shape)

A distribution can be symmetrical , have positive skew or have negative skew

symmetrical
$$Q_2 - Q_1 = Q_3 - Q_2$$
 or mode=median=mean

positive : $Q_2 - Q_1 < Q_3 - Q_2$ or mode<median<mean

negative : $Q_2 - Q_1 > Q_3 - Q_2$ or mode>median>mean

Or you can calculate:

$$\frac{3(\mathrm{mean}-\mathrm{median})}{\mathrm{SD}}$$

3.6 What!?

Example. example 10-12

Probability III Statistics

4 Probability

4.1 Classical Probability

4.2 Venn diagram and their rules

Definition (Complementary Probability).

4.3 Conditional Probabilites

4.3.1 Vann diagram

4.3.2 Tree diagram

4.4 Special Events of Probabilites

Definition (Mutually exclusive). When events have no outcomes in common, they are mutually exclusive.

There is no intersection of A and B, so $P(A \cap B) = 0$

We can use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ result is

$$P(A \cup B) = P(A) + P(B)$$

Definition (Independent events). When one event has no effect on another, they are independent so P(A|B) = P(A)

by
$$\frac{P(A \cap B)}{P(B)} = P(A)$$
 we have:

$$P(A \cap B) = P(B) \times P(A)$$

5 Correlation III Statistics

5 Correlation

5.1 Correlation

5.2 Bivariate data

Recall this formula:

Variance =
$$\frac{\sum (x - \bar{x})^2}{n}$$

In correlation we write:

$$S_{xx} = \sum (x - \bar{x})^2$$

$$S_{yy} = \sum (y - \bar{y})^2$$

SO

Variance =
$$\frac{S_{xx}}{n}$$

Definition (Co-Variance).

$$S_{xy} = \frac{\sum (x - \bar{x})(x - \bar{y})}{n}$$

5.3 Product moment Correlation coefficient r

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

The value of r varies between -1 and 1

If r = 1, positive linear correlation

If r = -1, nagative linear correlation

If r = 0, no linear correlation

limitation:

5.4 Coding

does not effect \boldsymbol{r}

6 Regression III Statistics

6 Regression

6.1 Linear

let y = a + bx be a regression line where

$$b = \frac{S_{xy}}{S_{xx}}$$
 and $a = \bar{y} - b\bar{x}$

6.2 Coding

6.3 Interpolation and Extrapolation

7 Discrete random variables

7.1 Probability distribution

Definition (Mean / Expected value).

$$E(X) = \sum x p(x)$$

when we find $E(X^n)$:

$$E(X^n) = \sum x^n p(x)$$

Definition (Variable).

$$Var(X) = E(X^2) - (E(X))^2$$

The constant a and b affect on E(X) and Var(X)

$$E(aX + b) = aE(x) + b$$

$$Var(aX + b) = a^2 Var(X)$$

Definition (Uniform distribution). The distribution is uniform when all the probabilities is the same of all values.

8 The normal distribution

 $Z~N(\mu,\sigma^2)$ represent the normal distribution.

The random variable X can be written as X $N(\mu,\sigma^2)$

you can transformed X to Z by this formula

$$z = \frac{X - \mu}{\sigma}$$

Example. Example 8-9

9 Binomial distribution

10 Poisson distribution

11 Continuous random variables

12 Continuous uniform distribution

13 Normal approximation

14 Population and samples

15 Hypothesis testing

16 Combination of random variables

17 Sampling III Statistics

17 Sampling

18 Estimation , confidence intervals and tests

19 Goodness of fit and contingency tables

20 Regression and correlation

21 Quality of tests and estimators

22 One-sample procedures

23 Two-sample procedures