Solution to 1:

(a) Suppose that s and r are vectors dependent on x, i.e. s = s(x) and r = r(x). Then

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{s}^T \mathbf{r}) = \left(\frac{\partial \mathbf{s}}{\partial \mathbf{x}} \right)^T \mathbf{r} + \left(\frac{\partial \mathbf{r}}{\partial \mathbf{x}} \right)^T \mathbf{s}.$$

The above result can be verified component-wise. Applying this with $\mathbf{s} = \mathbf{x}/2$ and $\mathbf{r} = A\mathbf{x}$, we get:

$$\frac{\partial}{\partial \mathbf{x}} \left(\frac{1}{2} \mathbf{x}^T A \mathbf{x} \right) = \frac{1}{2} (A + A^T) \mathbf{x} = A \mathbf{x}.$$

The above needed the well-known result $(A\mathbf{x})^T = \mathbf{x}^T A^T$, which can be seen by components, and that $A = A^T$ (since A specified as symmetric).

For the second term, $\frac{\partial}{\partial \mathbf{x}} \mathbf{b}^T \mathbf{x} = \mathbf{b}$ can be seen by setting $\mathbf{s} = \mathbf{b}$ and $\mathbf{r} = \mathbf{x}$. So in conclusion, we have

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}) = A\mathbf{x} + \mathbf{b}.$$

(b) The result asked for in the question is known as the chain rule.

By definition,

$$\nabla g(f(\mathbf{x})) = \begin{pmatrix} \frac{\partial}{\partial x_1} g(f(\mathbf{x})) \\ \vdots \\ \frac{\partial}{\partial x_n} g(f(\mathbf{x})) \end{pmatrix}$$

When applying the partial derivative $\partial/\partial x_i$ to the function $g(f(\mathbf{x}))$, we can use the single variable chain rule because we are fixing all the other variables, so that the function $f(\mathbf{x})$ is treated as a single variable function.

Using the single variable chain rule, we have

$$\frac{\partial}{\partial x_i}g(f(\mathbf{x})) = g'(f(\mathbf{x}))\frac{\partial f}{\partial x_i}.$$

Applying this to all entries of $\nabla g(f(\mathbf{x}))$, we get:

$$\nabla g(f(\mathbf{x})) = \begin{pmatrix} g'(f(\mathbf{x})) \frac{\partial f}{\partial x_1} \\ \vdots \\ g'(f(\mathbf{x})) \frac{\partial f}{\partial x} \end{pmatrix} = g'(f(\mathbf{x})) \nabla f(\mathbf{x}).$$

(c) The Hessian operator can be expressed as the following:

$$\begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x_1} & \cdots & \frac{\partial}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2}{\partial x_1^2} & \frac{\partial^2}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2}{\partial x_1 \partial x_n} \\ \frac{\partial^2}{\partial x_2 \partial x_1} & \frac{\partial^2}{\partial x_2^2} & \cdots & \frac{\partial^2}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial x_n \partial x_1} & \frac{\partial^2}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2}{\partial x_n^2} \end{pmatrix}.$$

So using our answer from part (a), we have:

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} (A\mathbf{x} + \mathbf{b})^T = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \mathbf{x}^T A^T + \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \mathbf{b}^T = \mathbf{I} A^T + \mathbf{0} = A^T = A$$

(d) Define the following function:

$$h: \mathbb{R}^n \to \mathbb{R}$$
$$\mathbf{x} \mapsto a^T \mathbf{x}$$

This function is differentiable, since $h(\mathbf{x} + \epsilon) - h(\mathbf{x}) = a^T(\mathbf{x} + \epsilon) - a^T\mathbf{x} = a^T\mathbf{x} + a^T\epsilon - a^T\mathbf{x} = a^T\epsilon$, so the gradient of h is a. We can therefore apply the chain rule (from part (b)):

$$\nabla f(\mathbf{x}) = \nabla g(h(\mathbf{x})) = g'(h(\mathbf{x})) \nabla h(\mathbf{x}) = g'(a^T \mathbf{x})a$$

To find the Hessian, we do as before and apply the gradient operator to the transpose of the gradient vector:

$$\nabla^{2} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_{1}} \\ \vdots \\ \frac{\partial}{\partial x_{n}} \end{pmatrix} (g'(a^{T}\mathbf{x})a_{1} \ g'(a^{T}\mathbf{x})a_{2} \ \cdots \ g'(a^{T}\mathbf{x})a_{n})$$

$$= \begin{pmatrix} \frac{\partial}{\partial x_{1}} g'(a^{T}\mathbf{x})a_{1} & \frac{\partial}{\partial x_{1}} g'(a^{T}\mathbf{x})a_{2} & \cdots & \frac{\partial}{\partial x_{1}} g'(a^{T}\mathbf{x})a_{n} \\ \frac{\partial}{\partial x_{2}} g'(a^{T}\mathbf{x})a_{1} & \frac{\partial}{\partial x_{2}} g'(a^{T}\mathbf{x})a_{2} & \cdots & \frac{\partial}{\partial x_{2}} g'(a^{T}\mathbf{x})a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{n}} g'(a^{T}\mathbf{x})a_{1} & \frac{\partial}{\partial x_{n}} g'(a^{T}\mathbf{x})a_{2} & \cdots & \frac{\partial}{\partial x_{n}} g'(a^{T}\mathbf{x})a_{n} \end{pmatrix}$$

$$= \begin{pmatrix} g''(a^{T}\mathbf{x})a_{1}^{2} & g''(a^{T}\mathbf{x})a_{1}a_{2} & \cdots & g''(a^{T}\mathbf{x})a_{1}a_{n} \\ g''(a^{T}\mathbf{x})a_{2}a_{1} & g''(a^{T}\mathbf{x})a_{2}^{2} & \cdots & g''(a^{T}\mathbf{x})a_{2}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ g''(a^{T}\mathbf{x})a_{n}a_{1} & g''(a^{T}\mathbf{x})a_{n}a_{2} & \cdots & g''(a^{T}\mathbf{x})a_{n}^{2} \end{pmatrix}$$

$$= g''(a^{T}\mathbf{x})aa^{T}$$

Solution to 2:

(a) $A = \mathbf{z}\mathbf{z}^T$ is symmetric, since $A_{ij} = z_i z_j = z_j z_i = A_{ji}$.

Now pick an arbitrary vector $\mathbf{x} \in \mathbb{R}^n$. Need to show that $\mathbf{x}^T A \mathbf{x} \ge 0$.

$$\mathbf{x}^{T} A \mathbf{x} = \mathbf{x}^{T} \mathbf{z} \mathbf{z}^{T} \mathbf{x}$$

$$= (\mathbf{z}^{T} \mathbf{x})^{T} (\mathbf{z}^{T} \mathbf{x})$$

$$= (\mathbf{z}^{T} \mathbf{x})^{2}$$

$$>= 0$$

(b) If $A = \mathbf{z}\mathbf{z}^T$ where $z \in \mathbb{R}^n$ and non-zero, then the rank of A is 1, because each column is a multiple of each other: by definition of A, column i is $z_i\mathbf{z}$, and column j is $z_j\mathbf{z}$. Importantly $\mathbf{z} \neq \mathbf{0}$ means the rank isn't 0

The null-space of A is the set of all vectors \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$. Specifically, $\{(x_1 \ x_2 \ \dots \ x_n)^T \in \mathbb{R}^n \mid x_1z_1 + x_2z_2 + \dots + x_nz_n = 0\}$. Since not all z_i are zero, this space has dimension n-1.

(c) The answer is in the positive. Firstly, BAB^T is symmetric, since $(BAB^T)^T = (B^T)^T A^T B^T = BAB^T$. Here we used that A is symmetric.

Now pick an arbitrary vector $\mathbf{x} \in \mathbb{R}^m$. Need to show that $\mathbf{x}^T B A B^T \mathbf{x} \geq 0$.

$$\mathbf{x}^T B A B^T \mathbf{x} = (B^T \mathbf{x})^T A B^T \mathbf{x}$$

Note that $B^T \mathbf{x}$ is just a vector in \mathbb{R}^n , so let $\mathbf{z} = B^T \mathbf{x}$. By assumption, A is positive semi-definite, so $\mathbf{z}^T A \mathbf{z} \geq 0$. In conclusion

$$\mathbf{x}^T B A B^T \mathbf{x} = (B^T \mathbf{x})^T A B^T \mathbf{x}$$
$$= \mathbf{z}^T A \mathbf{z}$$
$$\geq 0$$

so BAB^T is positive semi-definite.

Solution to 3:

(a) Suppose that $A = T\Lambda T^{-1}$ for invertible T and $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

T is by definition the invertible matrix that maps e_i to $t^{(i)}$. Hence $T^{-1}t^{(i)}=e_i$. Then $\Lambda e_i=\lambda_i e_i$. Finally, $T(\lambda_i e_i)=\lambda_i T e_i=\lambda_i t^{(i)}$. In conclusion,

$$At^{(i)} = T\Lambda T^{-1}t^{(i)}$$

$$= T\Lambda e_i$$

$$= T(\lambda_i e_i)$$

$$= \lambda_i t^{(i)}$$

- (b) The idea is the same as in part (a). Only thing to note is that if U is orthogonal then it is invertible and $U^{-1} = U^T$. Then the argument should run exactly the same as in part (a).
- (c) If A is positive semi-definite, then in particular A is symmetric. Hence we can use the Spectral Theorem and write down $A = U\Lambda U^T$ for some orthogonal matrix U and $\Lambda = \text{diag}(\lambda_1(A), \lambda_2(A), \dots, \lambda_n(A))$.

From part b, we found $Au^{(i)} = \lambda_i(A)u^{(i)}$. Multiplying both sides by $(u^{(i)})^T$ we see that $(u^{(i)})^TAu^{(i)} = \lambda_i(A)(u^{(i)})^Tu^{(i)}$. By assumption, $(u^{(i)})^Tu^{(i)} = 1$ and $(u^{(i)})^TAu^{(i)} \geq 0$ for all i. Hence $\lambda_i(A) \geq 0$ for all i.