(ii) The implication that (3) implies (1) holds if we also assume that f is surjective, even if E has infinite dimension.

In (2), when f does not satisfy the condition f(0) = 0, the proof shows that f is an affine map. Indeed, taking any vector τ as an origin, the map g is linear, and

$$f(\tau + u) = f(\tau) + q(u)$$
 for all $u \in E$.

By Proposition 24.7, this shows that f is affine with associated linear map g.

This fact is worth recording as the following proposition.

Proposition 12.13. Given any two nontrivial Euclidean spaces E and F of the same finite dimension n, for every function $f: E \to F$, if

$$||f(v) - f(u)|| = ||v - u||$$
 for all $u, v \in E$,

then f is an affine map, and its associated linear map g is an isometry.

In view of Proposition 12.12, we usually abbreviate "linear isometry," as "isometry," unless we wish to emphasize that we are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries $f : E \to E$ of a Euclidean space of finite dimension.

12.6 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal group and of orthogonal matrices.

Proposition 12.14. Let E be any Euclidean space of finite dimension n, and let $f: E \to E$ be any linear map. The following properties hold:

(1) The linear map $f: E \to E$ is an isometry iff

$$f \circ f^* = f^* \circ f = id.$$

(2) For every orthonormal basis (e_1, \ldots, e_n) of E, if the matrix of f is A, then the matrix of f^* is the transpose A^{\top} of A, and f is an isometry iff A satisfies the identities

$$A A^{\top} = A^{\top} A = I_n,$$

where I_n denotes the identity matrix of order n, iff the columns of A form an orthonormal basis of \mathbb{R}^n , iff the rows of A form an orthonormal basis of \mathbb{R}^n .