

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2006/2007 –3rd Year Examination – Semester 6

IT6402 - Advanced Database Management Systems Structured Question Paper

26th August, 2007 (THREE HOURS)

To be completed by the o	<u>candidate</u>
BIT Examination Index	No:

Important Instructions:

- The duration of the paper is **3 (three) hours**.
- The medium of instruction and questions is English.
- This paper has 4 questions and 16 pages.
- Answer all questions (25 marks each).
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.

 If a page is not printed, please inform the supervisor immediately.
- Non-programmable Calculators may be used.

uesti		

Indicate by a cross (**x**), (e.g. **X**) the numbers of the **four** questions answered.

	Ques	tion nun	nbers		
To be completed by the candidate by marking a cross (x).	1	2	3	4	
To be completed by the examiners:					

)	Describe the following five terms numbered (i) to (v) used in concurrent execution of transaction (i) Serial Schedule
	(02 ma
	ANSWER IN THIS BOX
	Serial Schedule consists of a sequence of instructions from various transaction
	where instructions belonging to a particular transaction appear always together
	in that schedule.
	i.e.
	Instructions of each transaction is executed consecutively without interleaving.
	(ii) Non-Serial Schedule
	(II) Non-Serial Schedule (02 ma
	ANSWER IN THIS BOX
	Non-Serial Schedule consists of a sequence of instructions from various
	transactions, where all instructions belonging to some transactions do not appe
	together in that schedule.
	i.e.

	(05 marks
1	ANSWER IN THIS BOX
	A schedule is said to be conflict- serializable when the schedule is serializable as
- ;	well as it is conflict-equivalent to one or more serial schedules.
- (e.g. = <t1,t2> ~=<t2,t1></t2,t1></t1,t2>

Index No:	Index No:						
-----------	-----------	--	--	--	--	--	--

((iv)) Unrecoverable Schedule
М	111	<i>i</i> Cinced verable beneauly

(03 marks)

	(03 marks
ANSW	VER IN THIS BOX
If a tra	nsaction T1 aborts and a transaction T2 commits, but T2 relies on T1,
we hav	ve an unrecoverable schedule.
i.e.	
A trans	saction committed transaction finds that the value read and commit had been
based	on a dirty read.
(v) Casc	eading Aborts (Rollbacks) or Cascadeless (02 marks)
ANSW	VER IN THIS BOX
A sing	le transaction abort leads to a series of transaction rollbacks.
i.e.	
Restric	ct schedules to read committed values to avoid cascadeless.

(b) Consider the following three transactions T1-T3 which are to be executed concurrently.

T1	Т2	Т3
READ(A)	READ(A)	READ(A)
A:=A+20	A := A + 10	READ(B)
WRITE(A)	WRITE(A)	A:=A+B
COMMIT	READ(B)	B:=0
	B:=B-10	WRITE(A)
	WRITE(B)	WRITE(B)
	COMMIT	ROLLBACK

The following six schedules S1-S6 are six different possibilities of executing two of the above transactions concurrently.

S1			S2
T1:	T2:	T1:	T2:
READ(A)			READ(A)
A:=A+20			A:=A+10
	READ(A)		WRITE(A)
	A := A + 10		READ(B)
WRITE(A)			B:=B-10
COMMIT			WRITE(B)
	WRITE(A)		COMMIT
	READ(B)	READ(A)	
	B:=B-10	A := A + 20	
	WRITE(B)	WRITE(A)	
	COMMIT	COMMIT	

S3		S4	
T1:	Т3:	T1:	T2:
	READ(A)		READ(A)
	READ(B)		A:=A+10
	A:=A+B		WRITE(A)
	B:=0	READ(A)	
	WRITE(A)	A:=A+20	
READ(A)		WRITE(A)	
A := A + 20		COMMIT	
WRITE(A)			READ(B)
COMMIT			B:=B-10
	WRITE(B)		WRITE(B)
	ROLLBACK		COMMIT

S5			S6
T1:	T2:	T3:	T1:
READ(A)			READ(A)
A := A + 20			A := A + 20
WRITE(A)			WRITE(A)
	READ(A)	READ(A)	
	A := A + 10	READ(B)	
	WRITE(A)	A:=A+B	
COMMIT		B:=0	
	READ(B)	WRITE(A)	
	B := B - 10		COMMIT
	WRITE(B)	WRITE(B)	
	COMMIT	ROLLBACK	

	Index No:
(i) List the schedule(s) which illustrate(s) the problem of "lost update".	
	(02 marks)
ANSWER IN THIS BOX	
S1	
(ii) List the schedule(s) which illustrate(s) the problem of "dirty read".	
(II) List the senedule(s) which mustane(s) the problem of diffy read.	
ANSWER IN THIS BOX	(02 marks)
ANSWER IN THIS BOX	
S3	
(iii) List the non-serial schedules which are serializable.	
	(02 marks)
ANSWER IN THIS BOX	
S4, S5, S6	
- 1, - 3, - 3, - 3, - 3, - 3, - 3, - 3,	
(iv) List the conflict-serializable schedules.	
(IV) Dist the commet seminates seminates.	(02
ANSWER IN THIS BOX	(03 marks)
S2, S4, S5	
(v) List the recoverable schedules.	
	(02 marks)
ANSWER IN THIS BOX	
\$2	
	_
(vi) List the Cascadeless schedules.	
(n y = 10	(92
ANSWER IN THIS BOX	(02 marks)
S2, S6	

	ANSWER IN THIS BOX
-	Cost-based approach searches for all possible plans and
	chooses the plan with the lowest cost.
-	Heuristics approach applies a set of rules to select the best plan.
	a professional body conducts a competition annually under different categories. The SQL commands re used to create the database tables for this application.
	CREATE TABLE Participants(pno VARCHAR(5), name VARCHAR(20), address VARCHAR(30), telephone VARCHAR(10), email VARCHAR(15));
	CREATE TABLE Categories (code VARCHAR(5), category_name VARCHAR(15), description VARCHAR(30));
	CREATE TABLE Winners(pno VARCHAR(5), code VARCHAR(5), year INTEGER, award VARCHAR(6));
	The following SQL-query is written to retrieve all Gold award winners with each winner's name, ategory and year.
	SELECT name, category_name, year FROM Participants p, Categories c, Winners w, WHERE p.pno=w.pno and c.code=w.code and award="Gold"
	assume that there are 1000 participants, 20 categories and 10 Gold award winners out of 100 vinners.
	Express the above query using relational algebra. First apply more restrictive operations and finally eliminate the unwanted attributes. (03 marks)
	ea ibiii cu)

Index	No:			 						

(ii) Draw an initial query tree (in canonical form) for the above SQL-query.

(03 marks)

(iii) Apply heuristic optimisation to optimise the above query. Indicate the heuristics one would have to use to optimise the given query.

marks)

(iv) Draw the optimised query tree for the above query. Do not show the intermediate trees.

(04 marks)

(v) Derive in bytes the cost of processing each stage of the canonical query tree of part (ii).

(04 marks)

	(OT Marks)
ANSWER IN THIS BOX	
Record Length of Participants, Categories and Winners are 80, 50 and 20)
respectively.	
Cost of processing Participants = 80 * 1000 = 80,000 bytes = 80kb	
Cost of processing Categories = 50 * 20 = 1,000 bytes = 1kb	
Cost of processing Winners = 20 * 100 = 2,000 bytes = 2kb [1]	
Cross product = (80+50+20)*1000*20*100=300,000,000=300Mb [1]	
Selection = 150*10= 1,500 bytes [1]	
Projection = 39*10 = 390 bytes [1]	

Index	No:											

(vi) Derive in bytes the cost of processing each stage of the optimised query tree of part (iv).

(03 marks)

ANSWER IN THIS BOX

Participants = 80 * 1000 = 80,000 bytes = 80kb

Categories = 50 * 20 = 1,000 bytes = 1kb

Winners = 20 * 100 = 2,000 bytes = 2kb [1/2]

Selection and Projection = 14*10 = 140 bytes [1/2]

Join with Category = 64*10 = 640 bytes [1/2]

Projection = 24*10 = 240 bytes [1/2]

Join with Participants = 104*10 = 1,040 bytes [1/2]

Projection = 39*10 = 390 bytes [1/2]

3) (a) (i) Some organisations need multiple security levels. Identify these levels and explain reasons for such classifications.

(03 marks)

ANSWER IN THIS BOX

Top Secret

This type of data could affect many parties.

e.g. customer, organisation

Secret / Confidential

This type of data could cause an effect to a particular party.

e.g. customer

Unclassified (Public)

Represents common information with no effect on any person.

	(04 marks)
ANSWER IN THIS BOX	
Database Recovery	
A database could fail due to several reasons.	
The system log assists to recover the database without losing	any completed
transaction.	
Database Audits	
The system log assists in monitoring database user behaviour	rs.
Any unauthorised activities could be detected through this pro	ocess.
(iii) What are the typical contents of a system log?	
	(0.2
	(02 marks)
	(02 marks)
	(02 marks)
ANSWER IN THIS BOX Terminal id, user account name,	(02 marks)
ANSWER IN THIS BOX Terminal id, user account name, transaction id, time,	(02 marks)
ANSWER IN THIS BOX Terminal id, user account name, transaction id, time, type of operation, object,	(02 marks)
ANSWER IN THIS BOX Terminal id, user account name, transaction id, time, type of operation, object,	(02 marks)
ANSWER IN THIS BOX Terminal id, user account name, transaction id, time, type of operation, object,	(02 marks)
ANSWER IN THIS BOX Terminal id, user account name, transaction id, time,	(02 marks)
ANSWER IN THIS BOX Terminal id, user account name, transaction id, time, type of operation, object,	(02 marks)

(ii) A database system uses a system log to keep track of all operations on the database. Explain the

Index	No:										

(b) The following is part of an Automated	Teller Machine	(ATM)	database scher	na belonging	to a
network of several banks.					

```
Bank_Branches(branch-id, bank_name, branch_name, branch_address,
    other branch details)
ATM(atm-id, branch-id, location, other_atm_details)
Customers_Cards(card-no, account_id, card_type, date_valid_till,
    daily withdrawal limit)
Withdrawals (withdrawal-id, atm-id, card-no, withdrawal_date,
    withdrawal_time, withdrawal_amount)
```

Bank network provides the following access privileges to user groups using their database administrator. Administrator creates user roles and assigns privileges. Branch managers are allowed to pass some of their privileges to their support staff classified as Cashiers.

Customer: View own Withdrawals.

Manager: View transactions belonging to his branch. Add new AMT details.

Cashier: View transactions belonging to the branch.

Administrator: Create users and roles and assigns privileges.

(i) Propose multiple security levels for the above database schema. Identify the data and relations which belong to each security level.

	(03 marks)
ANSWER IN THIS BOX	
Top Secret	
Customers_Card - card-no, daily_withdrawal_limit	
Secret / Confidential	
Withdrawals – all data	
Public	
Bank_Branches – all data	
ATM – all data	

(ii) Write SQL statements to create views which would allow a customer to view his withdrawals branch manager to view branch transactions.	and
(04 ma	rks)
ANSWER IN THIS BOX	
CREATE VIEW Customer-Withdrawals AS	
(SELECT * FROM Withdrawals WHERE card-no=\$CUST-CARD-NO)	
CREATE VIEW Branch-Withdrawals AS	
(SELECT w.* FROM Withdrawals w, ATM a	
WHERE a.ATM-id=w.AMT-id AND branch-id=\$BRANCH)	
(iii) Write SQL statements to create roles for customers, managers and cashiers, and assign privile to each of them.	eges
(04 ma	rks)
ANSWER IN THIS BOX	
CREATE ROLE Customer	
GRANT SELECT ON Customer-Withdrawals TO Customer	
CREATE ROLE Manager	
CREATE ROLE Manager GRANT SELECT ON Branch-Withdrawals TO Customer WITH GRANT OPTION	
GRANT SELECT ON Branch-Withdrawals TO Customer WITH GRANT OPTION	
GRANT SELECT ON Branch-Withdrawals TO Customer WITH GRANT OPTION	

perform these tasks.	The database administrator assigns in turns assigns privileges to a new s described. Indicate the users who
	(02 marks)
ANSWER IN THIS BOX	
Administrator: GRANT Manager TO B1	
Manager: GRANT Cashier to CH1	
Cashier: GRANT Customer TO C1	
(v) To determine the daily cash allocations for each ATM, the selected statistical data to their statistician. Propose SQL state ANSWER IN THIS BOX	
CREATE VIEW Stats AS	
SELECT atm-id, SUM(withdrawal_amount) AS Day-With	
	drawal FROM Withdrawals
GROUP BY atm-id, withdrawal_date	drawal FROM Withdrawals
	drawal FROM Withdrawals
GROUP BY atm-id, withdrawal_date	

)	In a distributed database, three types of transparencies are possible. Explain each of these types.
	ANSWER IN THIS BOX (06 marks
-	Distribution Transparency
	It provides freedom for the user from operational details of the network.
	Include location and naming transparencies.
	Replication Transparency
	It allows one to store copies of data at multiple sites for better performance,
	availability and reliability. User is unaware of these copies.
	Fragmentation Transparency
	It allows one to introduce horizontal and vertical fragments of data through splitting
	the original relation. User is unaware of the fragments.
-	
_	When modelling for Data Warehouses two common multidimensional schemas are the start schema and the snowflake schema. Briefly state what each of them consists of.
	(04 marks)
	ANSWER IN THIS BOX
	Star schema consists of a fact table with a single table for each dimension.
-	
	Snowflake schema is a variation on the start schema in which the dimensional tables
	from a star schema are organised into a hierarchy by normalising them.
	nom a star schema are organised into a merarchy by normalising them.

Index	No.											

(c) Consider the following examination results of a student.

Index	Name	Year	Subject	Grade
0101	AS Perera	2005	IT101	В
			IT102	D
		2006	IT102	С

Write XML syntax to represent this data as an XML document.

(06 marks)

	(00 marks)
ANSWER IN THIS BOX	
<student-results></student-results>	
<index>0101</index>	
<name>AS Perera</name>	
<year-results></year-results>	
<year>2005><year></year></year>	
<result></result>	
<subject>IT101</subject>	
<grade>B</grade>	
<result></result>	
<subject>IT102</subject>	
<grade>D</grade>	
<year-results></year-results>	
<year>2006><year></year></year>	
<result></result>	
<subject>IT102</subject>	
<grade>C</grade>	
<student-results></student-results>	

	Index No:
(d)	SQL standard includes several components such as SQL/CLI and SQL/PSM. Describe what these two
	components consist of. (04 marks)
Ī	ANSWER IN THIS BOX
	SQL/CLI – Call Level Interface provides rules which allow execution of application
	code without providing source code and avoid pre-processing them. It
	contains routines for tasks like connecting to SQL server.
ļ	SQL/PSM – Persistent Stored Modules specify facilities for participating an
Ì	application between a client and a server. The goal is to enhance
	performance by minimizing network traffic.
(e)	What are the five types of knowledge produced from data mining? (05 marks)
	ANSWER IN THIS BOX
	Association rules – These rules correlate the presence of a set of items with another
	range of values for another set of variables.
ļ	Classification hierarchies – The goal is to work from an existing set of events or
Ì	transaction to create a hierarchy of classes.
	Sequential patterns – A sequence of actions or events is sought. Detection of
Ì	sequential patterns is equivalent to detecting associations among events with
Ì	certain temporal relationships.
Ì	Pattern within time series – Similarities can be detected within positions of a time
	series of data, which is a sequence of data taken at regular intervals.
÷	Clustering – A population of events or items can be partitioned into sets of similar
	elements.
