COMPSCI 250: Introduction to Computation

Lecture #29: Proving Regular Language Identities David Mix Barrington and Mordecai Golin 17 April 2024

Regular Language Identities

- Regular Language Identities
- The Semiring Axioms Again
- Identities Involving Union and Concatenation
- Proving the Distributive Law
- The Inductive Definition of Kleene Star
- Identities Involving Kleene Star
- $(ST)^*$, S^*T^* , and $(S + T)^*$

Languages From Number Theory

- We can easily make a regular expression for the set of even-length strings of a's, "(aa)*", or the oddlength strings of a's, "(aa)*a", or the set of strings of a's whose length is congruent to 3 modulo 7, "a³(a²)*", or the set of strings whose length is congruent to 1, 2, or 5 modulo 6, "(a + a² + a⁵) (a⁶)*".
- What about the set of strings over {a,b} that have an even number of a's? A good first guess is that such a string is a concatenation of zero or more strings, each of which has exactly two a's. This would be the language (b*ab*ab*)*.

Languages From Number Theory

- But this isn't exactly right, because "bb", for example, has 0 a's and 0 is even. A correct expression for this language is (b + ab*a)* -- we can divide any such string into pieces which either have exactly two a's (with some number of b's between) or are just b's themselves.
- It's harder to get the strings with a number of a's congruent to 3 mod 7, or the strings with an even number of a's *and* an even number of b's, but both are possible.

Regular Expression Identities

- In this lecture and the next we'll use our new formal definition of the regular languages to prove things about them.
- In particular, in this lecture we'll prove a number of **regular language identities**, which are statements about languages where the types of the free variables are "regular expression" and which are true for all possible values of those free variables.

Regular Expression Identities

- For example, if we view the union operator + as "addition" and the concatenation operator ⋅ as "multiplication", then the rule S(T + U) = ST + SU is a statement about languages and (as we'll prove) is a regular language identity. In fact it's a language identity as regularity doesn't matter.
- We can use the inductive definition of regular expressions to prove statements about the whole family of them -- this will be the subject of the next lecture.

The Semiring Axioms Again

- The set of natural numbers, with the ordinary operations + and ×, forms an algebraic structure called a **semiring**.
- Earlier we proved the semiring axioms for the naturals from the Peano axioms and our inductive definitions of + and ×.
- It turns out that the languages form a semiring under union and concatenation, and the regular languages are a **subsemiring** because they are **closed** under + and ·. That is, if R and S are regular, so are R + S and R·S.

The Semiring Axioms Again

- Both operations of a semiring must be associative and each must have an identity. For languages, \varnothing is the identity for union and $\{\lambda\} = \varnothing^*$ is the identity for concatenation, as $\varnothing + R = R + \varnothing = R$ and $R\varnothing^* = \varnothing^*R = R$. We also need the distributive law which we'll prove soon.
- Note that + is commutative but · is not as in general XY and YX are different languages.
 There are other identities like X + X = X (addition is *idempotent*) that are not true for the natural numbers.

Clicker Question #1

- Consider the rule " $(X + Y)^2 = X^2 + Y^2$ ", where squaring denotes multiplying an element by itself in the semiring S. Which of these statements is *true*?
- (a) The rule is never true for any semiring.
- (b) The rule is always true if XY+YX = 0 (unless X = Y), that is, if multiplication is anticommutative).
- (c) The rule is true when $X \neq Y$ if XY + YX = 0.
- (d) The rule is always true if the multiplication operation is commutative.

Not the Answer

Clicker Answer #1

- Consider the rule " $(X + Y)^2 = X^2 + Y^2$ ", where squaring denotes multiplying an element by itself in the semiring S. Which of these statements is true?
- (a) The rule is never true for any semiring.
- (b) The rule is always true if XY+YX = 0 (unless X = Y), that is, if multiplication is anticommutative).

If X=Y, $RHS=X^2+X^2+X^2+X^2$ which might or might not equal X^2+X^2

- (c) The rule is true when $X \neq Y$ if XY + YX = 0. (X+Y)(X+Y) = XX+XY+YX+YY = XX + YY
- (d) The rule is always true if the multiplication operation is commutative.

could fail easily

(b) versus (c)?

• Consider the rule " $(X + Y)^2 = X^2 + Y^2$ ", where squaring denotes multiplying an element by itself in the semiring S. Which of these statements is *true*?

The statements (b) and (c) look the same, but (b) says that the $(X+Y)^2=X^2+Y^2$ rule also works for X=Y, which might not be true.

(b) The rule is always true if XY+YX = 0 (unless X = Y), that is, if multiplication is anticommutative).

If X=Y, $RHS=X^2+X^2+X^2+X^2$ which might or might not equal X^2+X^2

• (c) The rule is true when $X \neq Y$ if XY + YX = 0. (X+Y)(X+Y) = XX+XY+YX+YY = XX + YY

Union and Concatenation

- We've already proved everything we need to know about identities that just use + for languages, since they are set identities for the union operator.
- We know that:

$$S + T = T + S$$

 $S + (T + U) = (S + T) + U$
 $S + \emptyset = \emptyset + S = S$,
 $S + S = S$
 $S + \Sigma^* = \Sigma^*$.

Union and Concatenation

- We looked at concatenation of languages back in Chapter 2 of the textbook.
- Statements like S(TU) = (ST)U, $S\emptyset = \emptyset S$ $= \emptyset$, and $S\emptyset^* = \emptyset^*S = S$ may be proved by the equational sequence method.
- To prove "X = Y", for example, we let w be an arbitrary string and prove $w \in X \Leftrightarrow w \in Y$.

Union and Concatenation

- For example, $w \in (ST)U \Leftrightarrow$ $\exists u:\exists z:(w = uz) \land (u \in ST) \land (z \in U) \Leftrightarrow$ $\exists x:\exists y:\exists z:(w = xyz) \land (x \in S) \land (y \in T) \land (z \in U)$ $\Leftrightarrow \exists x:\exists v:(w = xv) \land (x \in S) \land (v \in TU) \Leftrightarrow$ $w \in S(TU).$
- At each stage we use the definition of concatenation of languages or the associativity of concatenation of strings, "x(yz) = (xy)z", which we've already proved.

Proving the Distributive Law

• The equational sequence method also works to prove S(T + U) = ST + SU, using our definitions and some logical rules.

$$w \in S(T + U) \leftrightarrow$$

$$\exists u:\exists v:(w=uv) \land u \in S \land v \in (T+U) \leftrightarrow$$

$$\exists u:\exists v: w = uv \land u \in S \land (v \in T \lor v \in U) \leftrightarrow$$

$$\exists u:\exists v: w = uv \land [(u \in S \land v \in T) \lor (u \in S \land v \in U)] \leftrightarrow$$

$$(\exists u:\exists v:w = uv \land u \in S \land v \in T) \lor (\exists u:\exists v:w = uv \land u \in S \land v \in U)$$

$$W \in ST \vee W \in SU \leftrightarrow$$

$$W \in ST + SU$$

The Inductive Definition of Star

- To prove identities about the Kleene star operation, we use its inductive definition.
- If A is any language, we define A* by three rules:
- (1) $\lambda \in A^*$,
- (2) if $u \in A^*$ and $v \in A$, then $uv \in A^*$, and
- (3) a string is only in A* if it can be proved to be so by rules (1) and (2).

The Inductive Definition of Star

- The definition we gave earlier, " $w \in A^*$ if and only if w is the concatenation of zero or more strings, each of which is in A" is equivalent.
- By induction on naturals n, we can prove that any concatenation of n strings from A is in A* according to the second definition.
- And we can prove by induction on all strings w in A* (according to the second definition) that there exists an n such that w is the concatenation of n strings from A.

Clicker Question #2

- Let $\Sigma = \{a, b\}$. Let P(w), for $w \in \Sigma^*$, be "w does not end in aa or bb". Let X denote the language $(ab + ba)^*$. In proving " $\forall w$: $(w \in X) \rightarrow P(w)$ ", what's the base case of the induction?
- (a) P(0)
- (b) $P(\lambda)$
- (c) P(ab) \(\text{P(ba)} \)
- (d) $\forall v: P(v) \rightarrow (P(vab) \land P(vba))$

Not the Answer

Clicker Answer #2

- Let $\Sigma = \{a, b\}$. Let P(w), for $w \in \Sigma^*$, be "w does not end in aa or bb". Let X denote the language $(ab + ba)^*$. In proving " $\forall w$: $(w \in X) \rightarrow P(w)$ ", what's the base case of the induction?
- (a) P(0) (wrong type)
- (b) $P(\lambda)$
- (c) P(ab) \wedge P(ba) (misses case of P(λ))
- (d) $\forall v: P(v) \rightarrow (P(vab) \land P(vba))$ (inductive step)

Structural Induction

- This is an example of a general phenomenon -- any of our **structural inductions** on the definition of a class could be rephrased as inductions on the naturals.
- Rather than proving P(w) for all strings w, for example, we could let Q(n) mean "P(w) for all w of length n" and then prove Q(n) for all naturals n. The proof of Q(n) \rightarrow Q(n+1) would essentially be the same as the proof of P(w) \rightarrow P(wa).

Identities for Kleene Star

- The statement " $(u \in A^* \land v \in A^*) \rightarrow uv \in A^*$ ", or "A* is closed under concatenation", is *not* part of the definition of Kleene star.
- It looks very much like our rule (2) which says " $(u \in A^* \land v \in A) \rightarrow uv \in A^*$ ", but it requires a proof.
- Let's prove this closure rule by induction on all strings v in A*.

A* Closed Under Concatenation

- Our statement P(v) is " $u \in A^* \rightarrow uv \in A^*$ ", where we have let u be arbitrary.
- The base case is $v = \lambda$, and it is clear that if $u \in A^*$ and $v = \lambda$, then $uv \in A^*$ since uv = u.
- For the induction, assume that v = wx, that $w \in A^*$, that $x \in A$, and that we already know P(w), which says that $u \in A^* \rightarrow uw \in A^*$.

A* Closed Under Concatenation

- Now to prove P(v), we assume $u \in A^*$, derive $uw \in A^*$ from the IH, and derive that uv = uwx is in A^* .
- This follows from rule (2), because $uw \in A^*$ and $x \in A$.
- This should remind you of the proof that the path relation on graphs is transitive, using the inductive definition of paths.

$$(ST)^*$$
, S^*T^* , and $(S + T)^*$

- It is generally much easier to prove subset relationships than set equalities from the Kleene star definition.
- Equality identities with the Kleene star, like $(S^*)^* = S^*$ are most easily proved by showing both directions, here $(S^*)^* \subseteq S^*$ and $S^* \subseteq (S^*)^*$.
- These in turn follow from the identities $T \subseteq T^*$ and $(S \subseteq T) \rightarrow (S^* \subseteq T^*)$. The second of these follows from $(S \subseteq T^*) \rightarrow (S^* \subseteq T^*)$.

$(ST)^*$, S^*T^* , and $(S + T)^*$

- How shall we prove that $S \subseteq T^* \rightarrow S^* \subseteq T^*$?
- We'll assume $S \subseteq T^*$, let P(w) be " $w \in T^*$ ", and prove P(w) for all w in S^* .
- For the base case, $w = \lambda$ and we know $\lambda \in T^*$.
- For the induction, assume w = xy with P(x) true and $y \in S$. So $x \in T^*$ by the IH, $y \in T^*$ because $S \subseteq T^*$, and then w = xy is in T^* by the closure of T^* under concatenation.

$(ST)^*$, S^*T^* , and $(S + T)^*$

- We have seen that parentheses matter, so that (ST)* and S*T* are two different languages for most choices of S and T.
- (We saw that (ab)* \neq a*b*, for example.)
- But we can prove that both (ST)* and S*T* are contained in (S + T)*, using the identities above.

Clicker Question #3

- Let S and T be any regular expressions. Which of these statements *must be* true?
- (a) (S*T + TS*)* = (S + T)*
- (b) $((S + T^*)(T + S^*))^* = (S + T)^*$
- (c) $(ST^*)^* = (S + T)^*$
- (d) $(ST+TS)^* = (S + T)^*$

Not the Answer

Clicker Answer #3

- Let S and T be any regular expressions. Which of these statements *must be* true?
- (a) (S*T + TS*)* = (S + T)* (LHS misses S)
- (b) $((S + T^*)(T + S^*))^* = (S + T)^* \text{ (has S, T)}$
- (c) $(ST^*)^* = (S + T)^* (LHS \text{ misses } T)$
- (d) $(ST+TS)^* = (S + T)^*$ (LHS misses S, T)

Why is (b) True?

- (b) $((S + T^*)(T + S^*))^* = (S + T)^*$
- The RHS is the set of all strings of S's and T's.
- We need to show that the expression inside the last star of the LHS contains both S and T.
- But we can make S from SS* and we can make T from T*T, and each of these are both part of the options for ((S + T*)(T + S*))*.