

Practice Project: GDP Data extraction and processing

Estimated time needed: 30 minutes

Introduction

In this practice project, you will put the skills acquired through the course to use. You will extract data from a website using webscraping and request APIs process it using Pandas and Numpy libraries.

Project Scenario:

An international firm that is looking to expand its business in different countries across the world has recruited you. You have been hired as a junior Data Engineer and are tasked with creating a script that can extract the list of the top 10 largest economies of the world in descending order of their GDPs in Billion USD (rounded to 2 decimal places), as logged by the International Monetary Fund (IMF).

The required data seems to be available on the URL mentioned below:

URL: https://web.archive.org/web/20230902185326/https://en.wikipedia.org/wiki/List_of_countries_by_GDP_%28nominal%29

Objectives

After completing this lab you will be able to:

- Use Webscraping to extract required information from a website.
- Use Pandas to load and process the tabular data as a dataframe.
- Use Numpy to manipulate the information contatined in the dataframe.
- Load the updated dataframe to CSV file.

Dislcaimer

If you are using a downloaded version of this notebook on your local machine, you may encounter a warning message as shown in the screenshot below.

This does not affect the execution of your codes in any way and can be simply ignored.

Setup

For this lab, we will be using the following libraries:

- pandas for managing the data.
- numpy for mathematical operations.

```
In [1]: #Install required packages
        !pip install pandas numpy
        !pip install lxml
       Collecting pandas
         Downloading pandas-2.2.3-cp312-cp312-manylinux 2 17 x86 64.manylinux2014 x86 64.whl.metadata (89 kB)
       Collecting numpy
         Downloading numpy-2.2.4-cp312-cp312-manylinux 2 17 x86 64.manylinux2014 x86 64.whl.metadata (62 kB)
       Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.12/site-packages (from pandas) (2.9.
       0.post0)
       Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.12/site-packages (from pandas) (2024.2)
       Collecting tzdata>=2022.7 (from pandas)
         Downloading tzdata-2025.1-py2.py3-none-any.whl.metadata (1.4 kB)
       Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pand
       as) (1.17.0)
       Downloading pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB)
                                                - 12.7/12.7 MB 161.7 MB/s eta 0:00:00
       Downloading numpy-2.2.4-cp312-cp312-manylinux 2 17 x86 64.manylinux2014 x86 64.whl (16.1 MB)
                                                  - 16.1/16.1 MB 166.0 MB/s eta 0:00:00
       Downloading tzdata-2025.1-py2.py3-none-any.whl (346 kB)
       Installing collected packages: tzdata, numpy, pandas
       Successfully installed numpy-2.2.4 pandas-2.2.3 tzdata-2025.1
       Collecting lxml
         Downloading lxml-5.3.1-cp312-cp312-manylinux 2 28 x86 64.whl.metadata (3.7 kB)
       Downloading lxml-5.3.1-cp312-cp312-manylinux 2 28 x86 64.whl (5.0 MB)
                                                 - 5.0/5.0 MB 51.9 MB/s eta 0:00:00
       Installing collected packages: lxml
       Successfully installed lxml-5.3.1
```

Importing Required Libraries

We recommend you import all required libraries in one place (here):

```
import numpy as np
import pandas as pd

# You can also use this section to suppress warnings generated by your code:
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn
warnings.filterwarnings('ignore')
```

Exercises

Exercise 1

Extract the required GDP data from the given URL using Web Scraping.

```
In [3]: URL="https://web.archive.org/web/20230902185326/https://en.wikipedia.org/wiki/List_of_countries_by_GDP_%28nominal%29"
```

You can use Pandas library to extract the required table directly as a DataFrame. Note that the required table is the third one on the website, as shown in the image below.

https://labs.cognitiveclass.ai/v2/tools/jupyterlab?ulid=ulid-293571b9d67673c0e6e499716401d89380f58918

14 Amerika 15 Spain 16 Indonesia 17 Martiney	Docania	1,687,713	2023	1,675,419	2022	1,734,532	2021
15 Espain	Europe	1,582,054	2029	1,307,509	2022	1.427,381	2021
16 mindanesia	Asia	1,417,387	2023	1,319,100	2022	1,186,093	2021
17 Tunay	Asia	1,154,800	2029	905,988	2022	819,034	2021

```
In [4]: # Extract tables from webpage using Pandas. Retain table number 3 as the required dataframe.

# Extract tables from webpage using Pandas. Retain table number 3 as the required dataframe.

tables = pd.read_html(URL)

df = tables[3]

# Replace the column headers with column numbers

df.columns = range(df.shape[1])

# Retain columns with index 0 and 2 (name of country and value of GDP quoted by IMF)

df = df[[0,2]]

# Retain the Rows with index 1 to 10, indicating the top 10 economies of the world.

df = df.iloc[1:11,:]

# Assign column names as "Country" and "GDP (Million USD)"

df.columns = ['Country', 'GDP (Million USD)']
```

► Click here for Solution

Exercise 2

Modify the GDP column of the DataFrame, converting the value available in Million USD to Billion USD. Use the round() method of Numpy library to round the value to 2 decimal places. Modify the header of the DataFrame to GDP (Billion USD).

```
In [5]: # Change the data type of the 'GDP (Million USD)' column to integer. Use astype() method.
    df['GDP (Million USD)'] = df['GDP (Million USD)'].astype(int)

# Convert the GDP value in Million USD to Billion USD
    df[['GDP (Million USD)']] = df[['GDP (Million USD)']]/1000

# Use numpy.round() method to round the value to 2 decimal places.
    df[['GDP (Million USD)']] = np.round(df[['GDP (Million USD)']], 2)
```

```
# Rename the column header from 'GDP (Million USD)' to 'GDP (Billion USD)'

df.rename(columns = {'GDP (Million USD)' : 'GDP (Billion USD)'})
```

Out[5]:		Country	GDP (Billion USD)	
	1	United States	26854.60	
:		China	19373.59	
	3	Japan	4409.74	
	4	Germany	4308.85	
	5	India	3736.88	
	6	United Kingdom	3158.94	
	7	France	2923.49	
8		Italy	2169.74	
	9	Canada	2089.67	
	10	Brazil	2081.24	

► Click here for solution

Exercise 3

Load the DataFrame to the CSV file named "Largest_economies.csv"

```
In [6]: # Load the DataFrame to the CSV file named "Largest_economies.csv"
# Load the DataFrame to the CSV file named "Largest_economies.csv"
df.to_csv('./Largest_economies.csv')
```

► Click here for Solution

Congratulations! You have completed the lab.

Authors

Abhishek Gagneja

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description		
2023-11-10	0.1	Abhishek Gagneja	Created initial version		

Copyright © 2023 IBM Corporation. All rights reserved.