1.DOWNLOAD THE DATASET

import pandas as pd
import numpy as np

1. LOAD THE DATASET

```
df = pd.read_csv('/content/Churn_Modelling.csv')
df.head()
```

`	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	Θ	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	Θ	0	
4	2	125510.82	1	1	1	

EstimatedSalary Exited
0 101348.88 1
1 112542.58 0
2 113931.57 1
3 93826.63 0
4 79084.10 0

3.VISUALIZATION

import matplotlib.pyplot as plt
import seaborn as sns

#Univariate Analysis
sns.displot(df['Age'])

<seaborn.axisgrid.FacetGrid at 0x7f9e4a1e0c50>

#Bivariate Analysis
sns.scatterplot(df['Tenure'],df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f9e3a934210>

#Multivariate Analysis
sns.jointplot(x='Age',y='Tenure',data=df)
<seaborn.axisgrid.JointGrid at 0x7f9e3a4665d0>

1. Perform descriptive statistics on the dataset. df.describe().T

	count	mean	std	min	\
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	
CreditScore	10000.0	6.505288e+02	96.653299	350.00	
Age	10000.0	3.892180e+01	10.487806	18.00	
Tenure	10000.0	5.012800e+00	2.892174	0.00	
Balance	10000.0	7.648589e+04	62397.405202	0.00	
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	
Exited	10000.0	2.037000e-01	0.402769	0.00	

	25%	50%	75%	max
RowNumber	2500.75	5.000500e+03	7.500250e+03	10000.00
CustomerId	15628528.25	1.569074e+07	1.575323e+07	15815690.00
CreditScore	584.00	6.520000e+02	7.180000e+02	850.00
Age	32.00	3.700000e+01	4.400000e+01	92.00
Tenure	3.00	5.000000e+00	7.000000e+00	10.00
Balance	0.00	9.719854e+04	1.276442e+05	250898.09
NumOfProducts	1.00	1.000000e+00	2.000000e+00	4.00
HasCrCard	0.00	1.000000e+00	1.000000e+00	1.00
IsActiveMember	0.00	1.000000e+00	1.000000e+00	1.00
EstimatedSalary	51002.11	1.001939e+05	1.493882e+05	199992.48
Exited	0.00	0.000000e+00	0.000000e+00	1.00

Handle the Missing values df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

1. Find the outliers and replace the outliers import pandas as pd import numpy as np import matplotlib.pyplot as plt

```
01 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
RowNumber
                    4999.5000
              124705.5000
CustomerId
CreditScore
                    134.0000
                      12.0000
Age
Tenure
                       4.0000
Balance
                  127644.2400
NumOfProducts
                       1.0000
HasCrCard
                       1.0000
IsActiveMember
                       1.0000
EstimatedSalary
                   98386.1375
                       0.0000
Exited
dtype: float64
outliers = df[((df<(Q1-1.5*IQR)) | (df>(Q3+1.5*IQR)))]
outliers
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1:
FutureWarning: Automatic reindexing on DataFrame vs Series comparisons
is deprecated and will raise ValueError in a future version. Do
`left, right = left.align(right, axis=1, copy=False)` before e.g.
`left == right`

"""Entry point for launching an IPython kernel.

`	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9995	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9996	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9997	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9998	NaN	NaN	NaN	NaN	NaN	NaN	NaN

9999	N	aN	NaN	NaN	NaN	NaN	NaN	Nal
0 1 2 3 4 9995 9996 9997 9998 9999	Tenure NaN NaN NaN NaN NaN NaN NaN NaN	Balance NaN NaN NaN NaN NaN NaN NaN NaN	NumOfPr	oducts NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	HasCrCard NaN NaN NaN NaN NaN NaN NaN NaN NaN		ber \ NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	
0 1 2 3 4 9995 9996 9997 9998 9999	Estimat	edSalary NaN NaN NaN NaN NaN NaN NaN NaN	Exited 1.0 NaN 1.0 NaN NaN NaN 1.0 NaN NaN					

[10000 rows x 14 columns]

 $1. \quad \hbox{Check for Categorical columns and perform encoding.} \\ \text{df.dtypes}$

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64

dtype: object

```
obj df = df.select dtypes(include=['object']).copy()
obj df.head()
    Surname Geography Gender
               France Female
  Hargrave
1
       Hill
                Spain Female
               France Female
2
       Onio
3
       Boni
               France Female
  Mitchell
                Spain Female
8. Split the data into dependent and independent variables.
x = df.iloc[:,0:13].values;
y = df.iloc[:,13:14].values;
Х
[3, 15619304, 'Onio', ..., 1, 0, 113931.57],
       [9998, 15584532, 'Liu', ..., 0, 1, 42085.58],
[9999, 15682355, 'Sabbatini', ..., 1, 0, 92888.52],
       [10000, 15628319, 'Walker', ..., 1, 0, 38190.78]],
dtype=object)
У
array([[1],
       [0].
       [1],
       . . . ,
       [1],
       [1],
       [0]])
     Scale the independent values
import pandas as pd
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit transform(y)
array([[ 1.97716468],
       [-0.50577476],
       [ 1.97716468],
       [ 1.97716468],
       [ 1.97716468],
       [-0.50577476]]
```

1. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest =
train_test_split(x,y,test_size=0.3,random_state=0)
```