- 1. With the help of a neat diagram explain the operation of full wave bridge rectifier.
- 2. A half wave rectifier uses diode with forward resistance of 100 Ω. If the input AC voltage is 220 V (rms) and the load resistance is of 2 KΩ. Determine (i) I_{max}, I_{dc} and I_{rms} (ii) Load output voltage (iii) DC output power and AC input power (iv) ripple factor (v) TUF (vi) Rectification efficiency.
- 3. A regulator circuit uses zener diode of 30V, series resistance (R_S) is $3K\Omega$. if the input voltage is 60V, find the zener current (I_Z) when load resistance (R_L) is $20K\Omega$.
- 4. Explain the construction of BJT and input/output characteristics of CE configuration.
- 5. What is Q point? Derive equations for Self-Bias configuration of the transistor.
- 6. Following figure (i) shows biasing with base resistor method.
- 7. Determine the collector current I_C and collector-emitter voltage V_{CE} . Neglect small base-emitter voltage. Given that $\beta = 50$.

If R_B in this circuit is changed to 50 k Ω , find the new operating point.

- Derive the mathematical relation between current gains α and β of a BJT. Also discuss the leakage currents I_{CBO} and I_{CEO}.
- 9. Consider the following voltage divider bias circuit of BJT. Determine the collector current I_C and collector to emitter voltage V_{CE} . Given, $R_1=60$ k Ω , $R_2=7$ k Ω , $R_C=12$ k Ω , $R_E=1.7$ k Ω , $V_{BE}=0.7$ V, current gain $\beta=50$ and $V_{CC}=30$ V.

- (b) Why is transistor biasing required ? Determine the following for the BJT bias circuit shown in the figure given below. Assume Si-BJT. Given that β = 80:
 - (i) Type of biasing
 - (ii) I_C
 - (iii) V_{CE}

- (a) Write characteristics of an ideal Op-Amp. Also discuss the concept of virtual ground.
- (b) Draw neat circuit diagrams and derive the output of the following Op-Amp based circuits:
 - (i) Adder
 - (ii) Subtractor
- (c) What do you mean by an inverting amplifier? Discuss, how an Op-Amp can be used as a differentiator?

- 12. Write down the characteristics for ideal op-amp. Explain voltage transfer curve for opamp.
- 13. Design an Adder circuit using an op-amp to get the output expression as

i.
$$V_{out} = -(V_1 + 10 V_2 + 100 V_3)$$

where V_1 , V_2 and V_3 are the inputs. Given that $R_f=100\text{k}\Omega$

- 14. Draw the diagrams and derive the equations for op-amp as differentiator and integrator.
- op-amp. circuits. Draw the circuit diagram of an integrator using op-amp. and explain its working.
 - (b) Write short notes on the following in context of op-amps.:
 - (i) CMRR
 - (ii) Slew rate
 - (iii) Inverting amplifier
 - (iv) Non-inverting amplifier
 - (v) Unity gain amplifier
 - (c) Enlist the characteristics of an ideal opamp. Calculate the output of the following circuit:

- (a) In a center tap full wave rectifier, the load resistance is 1 kΩ. Each diode has forward resistance of 10 Ω. The voltage across the secondary winding is 220 V. Find the values of the following:
 - (i) Peak value of current
 - (ii) Average value of current
 - (iii) RMS value of current
 - (iv) Rectification efficiency
 - (v) Ripple factor
- (b) Derive the following parameters for the half wave rectifier:
 - (i) Average current
 - (ii) RMS Voltage
 - (iii) Rectification efficiency
- (c) Write short notes on the following:
 - (i) Zener diode
 - (ii) LED

- (b) Explain input and output characteristics of CB configuration of npn transistor. Also derive the relation $I_C = \beta I_B + (1 + \beta) I_{CBO}$.
- (c) A CE amplifier employing an NPN transistor has load resistance RC connected between collector and V_{cc} supply of + 16V. For biasing a resistor R1 is connected between collector and base. Resistor $R_2 = 1 \text{ k}\Omega$ is connected between base and ground and Resistor RE = 1 k Ω is connected between emitter and ground. Draw the circuit diagram and calculate the value of R_1 and R_C if $V_{CE} = 6 \text{ V}$, $V_{BE} = 0.2 \text{ V}$ and $\alpha = 0.985$.

(b) Fig. 1 shows a simple Zener diode voltage regulator circuit. The voltage across the load is to be maintained constant 12 V while the load current varies from 0 to 200 mA. Find the value of V_Z and R_S . Also find the maximum power rating of Zener diode:

- (a) Explain common base configuration of BJT with suitable diagram. Also draw its input and output characteristics.
- (b) A silicon BJT with β = 100, is shown in Fig. 2, compute the transistor parameters i_B , i_C , i_E and V_{CE} . In which mode the BJT is operating?
- (c) Explain all three configurations of a BJT in terms of:
 - (i) Input impedance
 - (ii) Output impedance
 - (iii) Voltage gain
 - (iv) Current gain

- (a) Explain the ideal characteristics of an op-amp in terms of input impedance, output impedance, differential and common mode voltage gain, common mode rejection ration, slew rate. Under what condition the open loop gain become infinite?
- (b) An op-amp based differential amplifier is shown in Fig. 3. Derive the expression for its output voltage (V_{out}) in terms of V1 and V2. Also find the value of the output voltage, assume $V_1=2$ V, $V_2=3$ V, when $R_1=R_2=1$ k Ω , $R_3=5$ k Ω , and $R_4=8$ k Ω .

Fig. 3

- (c) A full-wave rectifier uses a double diode with each element having a constant forward resistance of 500 Ω. The transformer r. m. s. secondary voltage from the centre tap to each plate is 300 V, the load resistance of 2.5 k Ω. Determine:
 - (i) d. c. out power (P_{dc}) and a. c. input power (P_{ac}).
 - (ii) Efficiency (η).