Discrete differential geometry of surfaces. Variational principles, algorithms, and implementation

Stefan Sechelmann

January 7, 2013

CONTENTS CONTENTS

Contents

1	Inti	roduction	5		
Ι	Di	screte Uniformization	5		
2	Dis	crete Riemann surfaces	5		
3	Discrete Uniformization				
	3.1	Discrete conformal equivalence	5		
	3.2	Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2	6		
	3.3	Realization	6		
4	Uniformization of surfaces of higher genus				
	4.1	The cut-graph and fuchsian groups	7		
	4.2	Minimal presentation	8		
5	Car	nonical fundamental domains of fuchsian groups	8		
	5.1	Separated handles	8		
	5.2	Opposite sides identified	8		
6	Uniformization of elliptic and hyperelliptic surfaces				
	6.1	Elliptic Functions	8		
	6.2	The moduli space	8		
	6.3	Numerical convergence analysis	8		
	6.4	The modulus of the Wente torus	8		
	6.5	Construction of hyperelliptic surfaces	8		
	6.6	Weierstrass points on hyperelliptic surfaces	8		
	6.7	Canonical domains	9		
	6.8	Lawsons surface	9		
7	Conformal Mapping to $\hat{\mathbb{C}}$ (Planned)				
	7.1	Selection of Branch Data	9		
	7.2	Examples	9		
8	Simply and multiply connected domains				
	8.1	Variation of edge length	9		
	8.2	Examples	9		
	8.3	Comparison with Examples of the Schwarz-Christoffel community	9		

CONTENTS

II	D	iscrete Surface Parameterization	9
9	Discrete quasiisothermic parametrizations		9
	9.1	Discrete quasiisothermic parameterizations	10
	9.2	Formulation as boundary value problem	10
	9.3	Global approach	10
	9.4	Variational principle for S-isothermic surfaces	10
	9.5	Constructing the associated family of apploximate minimal surfaces	10
	9.6	A discrete ellipsoid and its dual surface	10
	9.7	Applications in architecture	10
	9.8	Piece-wise projective interpolation for arbitrary parameterizations	10
10	Grio	dshells and Applications in Architecture	10
	10.1	Tschebyscheff Meshes	10
	10.2	Variational Principle	10
	10.3	Examples	10
11	Refe	erences	11

LIST OF FIGURES LIST OF FIGURES

List of Figures

1	Discrete surfaces constructed from glued triangles of constant curvature. Euclidean, hyperbolic, and spherical. Bold edegs are identified to create a cone-like singularity at the vertex	5
2	Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyperbolic motions	
3	Square with symmetric slit to the circle	9

Figure 1: Discrete surfaces constructed from glued triangles of constant curvature. Euclidean, hyperbolic, and spherical. Bold edges are identified to create a cone-like singularity at the vertex.

1 Introduction

Part I

Discrete Uniformization

The discrete uniformization theory persented here is based on the notion of discrete conformal eqivalence of triangle meshes. The Euclidean definition was first considered by [Luo04], the variational principle and applications in computer graphics is due to [SSP08, BPS10]. The notion of conformal equivalence of non-Euclidean metrics and corresponding variational principles were first defined in [BPS10]. [Guo10] investigate the gradient flow of this principle. Most of the material presented here can be found in [BSS].

2 Discrete Riemann surfaces

Definition 1. A discrete surface is a collection of triangles equipped with a metric of constant Gaussian curvature and geodesic edges. Triangles are glued along edges to form a surface.

Generically a discrete surface can have boundary components. We consider this case in Section 8. By glueing triangles equipped with a metric of constant curvature we obtain a surface that has constant curvature except for points where the metric has cone-like singularities (Figure 1). A discrete surface is called Euclidean for K = 0, hyperbolic for K = -1, and spherical if K = 1.

Definition 2. The map $l: E \to \mathbb{R}$ of triangle edge lengths of a discrete surface is called a discrete Euclidean, hyperbolic, or spherical metric respectively.

3 Discrete Uniformization

3.1 Discrete conformal equivalence

Definition 3. Two Euclidean triangulations T and \tilde{T} are discretely conformally equivalent if there is a map $u: V \to \mathbb{R}$ such that for any edge ij it is

$$l_{ij} = e^{u_i + u_j} \tilde{l}_{ij}$$

where l_{ij} is the length of the edge ij.

Definition 4. A discrete flat Euclidean metric is a map $l: E \to \mathbb{R}_+$ such that triangle inequalities are satisfied and angle sums around each inner vertex are equal to 2π .

3.2 Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2

Construction of discrete flat metrics. A discrete Euclidean flat metric is the minimizer of a convex functional.

$$\lambda_{ij} := 2\log l_{ij} \tag{1}$$

$$\tilde{\lambda}_{ij} := \lambda_{ij} + u_i + u_j \tag{2}$$

$$f_{Euc}(u_i, u_j, u_k) := \alpha_i \tilde{\lambda}_{jk} + \alpha_j \tilde{\lambda}_{ki} + \alpha_k \tilde{\lambda}_{ij} + 2(\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k))$$
(3)

Definition 5.

$$E_{Euc}(u) := \sum_{ijk \in F} \left(f_{Euc}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i \tag{4}$$

This definition and the derivatives can be found in [BPS10]

For the hyperbolic case λ and $\tilde{\lambda}$ are defined as before. Further define

$$\beta_i := \frac{1}{2} (\pi + \alpha_i - \alpha_j - \alpha_k) \tag{5}$$

$$\beta_j := \frac{1}{2} (\pi - \alpha_i + \alpha_j - \alpha_k) \tag{6}$$

$$\beta_k := \frac{1}{2} (\pi - \alpha_i - \alpha_j + \alpha_k) \tag{7}$$

$$f_{Hyp}(u_i, u_j, u_k) := \beta_i \tilde{\lambda}_{jk} + \beta_j \tilde{\lambda}_{ki} + \beta_k \tilde{\lambda}_{ij}$$
(8)

$$+\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k) + \Pi(\beta_i) + \Pi(\beta_j) + \Pi(\beta_k)$$
(9)

$$+\Pi\left(\frac{1}{2}(\pi - \alpha_i - \alpha_j - \alpha_k)\right) \tag{10}$$

Definition 6.

$$E_{Hyp}(u) := \sum_{ijk \in F} \left(f_{Hyp}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i$$
 (11)

3.3 Realization

4 Uniformization of surfaces of higher genus

Triangulated surfaces of genus $g \geq 2$ without boundary can be equipped with a discretely conformally equivalent flat hyperbolic metric [BPS10]. By flat hyperbolic metric we mean that the edge length are hyperbolic and for any vertex the angle sum is 2π . To realize this metric in the hyperbolic plane e.g. in the Poicaré disk model one has to introduce cuts along a basis of the homotopy. This creates a simply connected domain in \mathbb{H}^2 . Matching cut paths are realated by a hyperbolic motion i.e. the Möbius transformations that leave the unit disk invariant (Figure 2).

Figure 2: Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyperbolic motions.

4.1 The cut-graph and fuchsian groups

Want so say here: the number of transformations generated by the mapping of corresponding edges equals the number of path segments in the homotopy-cut-graph. They generate a fuchsian group with #vertices relations

Proposition 1.

4.2 Minimal presentation

5 Canonical fundamental domains of fuchsian groups

- 5.1 Separated handles
- 5.2 Opposite sides identified
- 6 Uniformization of elliptic and hyperelliptic surfaces
- 6.1 Elliptic Functions
- 6.2 The moduli space
- 6.3 Numerical convergence analysis
- 6.4 The modulus of the Wente torus
- 6.5 Construction of hyperelliptic surfaces

Any hyperelliptic Riemann surface can be expressed as an algebraic curve of the form

$$\mu^2 = \prod_{i=1}^n (\lambda - \lambda_i)^2 \qquad n \ge 3, \quad \lambda_i \ne \lambda_j \forall i \ne j.$$

Here λ_i are the branch points of the doubly covered Riemann sphere.

6.6 Weierstrass points on hyperelliptic surfaces

A hyperelliptic surface comes together with a holomorphic involution h called the hyperelliptic involution. The branch points are fixed points under this transformation. For a hyperelliptic algebraic curve it is $h(\mu, \lambda) = (-\mu, \lambda)$

Figure 3: Square with symmetric slit to the circle

- 6.7 Canonical domains
- 6.8 Lawsons surface
- 7 Conformal Mapping to $\hat{\mathbb{C}}$ (Planned)
- 7.1 Selection of Branch Data
- 7.2 Examples
- 8 Simply and multiply connected domains
- 8.1 Variation of edge length
- 8.2 Examples
- 8.3 Comparison with Examples of the Schwarz-Christoffel community

Part II

Discrete Surface Parameterization

9 Discrete quasiisothermic parametrizations

The notion of quasiconformal parameterizations

- 9.1 Discrete quasiisothermic parameterizations
- 9.2 Formulation as boundary value problem
- 9.3 Global approach
- 9.4 Variational principle for S-isothermic surfaces
- 9.5 Constructing the associated family of apploximate minimal surfaces
- 9.6 A discrete ellipsoid and its dual surface
- 9.7 Applications in architecture
- 9.8 Piece-wise projective interpolation for arbitrary parameterizations
- 10 Gridshells and Applications in Architecture
- 10.1 Tschebyscheff Meshes
- 10.2 Variational Principle
- 10.3 Examples

11 References

- [BPS10] Alexander I. Bobenko, Ulrich Pinkall, and Boris Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Preprint; http://arxiv.org/abs/1005.2698, 2010.
- [BSS] Alexander I. Bobenko, Stefan Sechelmann, and Boris Springborn. Uniformization of discrete Riemann surfaces. in preparation.
- [Guo10] Ren Guo. Combinatorial yamabe flow on hyperbolic surfaces with boundary. Preprint; http://arxiv.org/abs/1003.3910, 3 2010.
- [Luo04] Feng Luo. Combinatorial yamabe flow on surfaces. Commun. Contemp. Math., 6(5):765–780, 2004.
- [SSP08] Boris Springborn, Peter Schröder, and Ulrich Pinkall. Conformal equivalence of triangle meshes. ACM Trans. Graph., 27(3):#77, 1–11, 2008.