Bit Plane Slicing

а	Take a RGB input image and convert it into a grayscale image.	01
b	Extract the dimension of the grayscale image (say R).	01
С	For every column of bit depth of R, starting from the LSB, take	02
	the column number of the bit positions (say k) of R.	
	Example: If R is an 8-bit image, for the MSB bit position, k	
	should be 7.	
d	For every k, calculate X, where X is 2 to the power of that	02
	column number.	
	$\mathbf{x}=2^k$	
е	Calculate the bitwise and operation for every pixel of the	03
	image using the following function.	
	S= bitand(A,B)	
	***where A and B are unsigned integers or arrays of	
	unsigned integers.	
	Let, A be the input image (R), and B be X.	
f	Show the output images (S) for every bit position.	01
	It is recommended to use the subplot function for showing the	
	output images.	