1 Given:

- test to detect a disease that 0.1% have
 - * test is 99%, effective in detecting an infected person.
 - false tre rate is 0.5% of cases.

Let E1 and E2

EI -> & dispose

Ez - no disease.

E12 E2 are complimentary to each other.

P(E1) + P(E2)=1

P(F2) = 1-P(ED) = 1-0.001

- 0,999

result is positive.

P(EI) = 0.1% = 0.1 = 0.001

P(A) E) = P = 0.5% = 0.005 Come

Probability of person has discase and

test result is tre

P(E)A)

By Baya Theorem.

P(FI) = P(FI) · P(A)EI)

P(E) · P(A)E) + P(E) · P(A)E)

$$\begin{array}{c} 0.001 \times 0.99 \\ 0.001 \times 0.99 + 0.999 \times 0.005 \\ 0.00099 + 0.004995 \\ 0.00099 \\ 0.005985 \\ 0.005985 \\ 0.110 \\ \hline 665 \\ 0.001 \times 0.999 \\ \hline 0.00099 \\ 0.005985 \\ 0.00$$

0.165

Gliseu. Production line 1 ni -) nor of part = 1000 difetive d1 - no. of objective = 100 Production line 2 n2 = n00 of parts = 2000 de = no. of defectives = 150 Total no. of party (n) = n1+n2 = 1000+2000 = 3000

Probability of defectives p(d) = di+d2 100+ 150

1000+ 2000 $= \frac{250}{3000} = 30.0833$

probability of defective en lines is P(Uneild) = P(sireind) P(wreind) + P(line 2 ad)

= 3000 1

Tither store Owner opens a Large shipment

· 56% of blue shirts.

· store randomly select five shirt.

$$P(x) = \frac{n!}{(n-x)!x!} p^{\alpha} q^{n-\alpha}$$

7-1 no, of successes

n no. of trook.

P) no. of success in a trail.

9 -> no. of failure in a trail.

The Probability may be found by determining. There is 'O' blue shitt in selection. Subtracting it from 1.

x=0, n=5, p=0.56 9=0.44

P(0) lucsmit) = 5! (0.56) (0.445)

= 0.0165

P(at hast | blue) = 1 - P(Oblue swit)