The random variable F is a ratio of two - distribution independent (hi-squared random variables each divided by its number of degrees of freedom.

Hence we can write

· For Library is not symmetric about origin. we look at (V, V2) dof. • for tables

	11/10	df _{1 1 2 3} Numerator Degrees of Freedom								
	df ₂ \c	"] 1	2	3	4	5	6	7	.8	9
lom	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
	6	13.745	10.925	9.7795	9.1483	8.7459	8,4661	8.2600	8.1017	7.976
	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.718
	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.910
	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.351
	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.942
g	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.631
ē	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.387
-	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.191
0	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.029
es	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.894
Denominator Degrees of Freedom	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.780
	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.682
	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.597
ö	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.522
ŧ	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.456
Ē	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.398
5	22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.345
Ě	23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.298
De	24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.2560
	25	7.7698	5.5680	4.6755	4.1774	3.8550	3,6272	3.4568	3.3239	3.217
	26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.181
	27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.149
	28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.119
	29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920
	30	7.5625	5.3903	4.5097	4.0179	3.6990	3.4735	3.3045	3.1726	3.066
	40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2.9930	2.887
	60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.7185
	120	6.8509	4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.5586
		6.6349	4.6052	3.7816	3.3192	3.0173	2.8020	2.6393	2.5113	2.407

- · For different volves of a, we will have different pages.
- · one of the useful result:

$$f_{1-\alpha}(v_1, v_2) = \frac{1}{f_{\alpha}(v_2, v_1)}$$

$$f_{1-0.99}(v_1, v_2) = \frac{1}{f_{0.99}(v_2, v_1)}$$
Note the interlap in degree of freedom.

Now if we have two normal populations and we take two independent samples of size n, & n2 respectively from pop 1 & pop 2.

Let S_1^2 & S_2^2 be the sample variances, then $\frac{(n_1-1)S_1^2}{\Gamma_1^2}$ is a chi square $r \cdot v \cdot with (n-1) dof.$

$$\frac{(n_2-1)S_2^2}{\sqrt{2^2}}$$
 is also a chi-square z -v. with (n_2-1) def.

Mence
$$\frac{(n_1-1) s_1^2}{(n_1-1)}$$
 is F distribution.
$$\frac{(n_2-1) s_2^2}{n_2-1}$$

1. e.
$$\frac{S_1^2 | \sigma_1^2}{S_2^2 | \sigma_2^2}$$
 or $\frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2}$ is F distribution.

Two independent samples of students of a programme under distance education are taken from normal population with some variances. The size and variances of malls of the 1st sample are & & 100 respectively. The size & variances of mades of the 2nd sample are 20 & 40 respectively. What is the calculated F 5 tatistics.

$$S_{1}^{(1)} = S_{1}^{(2)} = 100$$

$$Y_{1} = 20 \qquad S_{1}^{(2)} = 40$$

$$F = \frac{S_{1}^{(2)} | r_{1}^{(2)}|}{S_{1}^{(2)} | r_{2}^{(2)}|} = \frac{100}{40} \quad (:: r_{1} = r_{2})$$

= 2.9 with (7,19) dof