第3章逻辑门电路 Logic Gates

- § 3.1 分立元件门电路 Discrete Components Logic Gates
- § 3.2 TTL 集成门电路 TTL Integrated Logic Gates
- § 3.3 MOS 逻辑电路 MOS Logic Circuits

§ 3.1 分立元件门电路

Discrete Components Logic Gates

用电压(电平)表示逻辑高和低:

正逻辑

逻辑高 – 高电平

逻辑低 – 低电平

获得高 (logic 1)、低 (logic 0) 输出电平的基本原理:

开关S	输出电位 V_o
断开	高
接通、	低

输入信号 V_i 控制其工作在截止和导通两个状态, S 起

开关作用。

二极管 A—→ K

- · 当二极管加正向电压时,二极管导通,压降维持 在0.7V左右
- · 当二极管加反向电压时,处于截止状态,只有极微小的电流 I_s (μ A级) 流过

三极管在电路中的三种工作状态: 放大状态、截止状态、饱和状态

• 关的条件 (管子截止)

当 $v_{\rm I}$ 使三极管 $v_{\rm BE} < 0.7 {
m V}$, $i_{\rm B} \approx 0$, $i_{\rm C} \approx 0$, $v_{\rm O} \approx {
m V}_{\rm CC}$.

开的条件(管子饱和)

当输入 $v_I \ge 0.7V$,如果

$$i_{\mathrm{B}} > i_{\mathrm{BS}} = \frac{i_{\mathrm{CS}}}{\beta} = \frac{V_{\mathrm{CC}} - V_{\mathrm{CES}}}{\beta R_{\mathrm{C}}}$$

定义: 低电平0~2V, 高电平3~5V

1. 与门 (AND)电路

当
$$A=0$$
 (Low), D1 导通, $AB F 0 0 0$ D1钳位 0.7 V, $F=0.7$ V $D=0$ 1 0 1 0 1 0 1 1 1 1 1

当 B=0, or A=B=0 时, F=AB 情况相同。(真值表前3行)

2. 或门 (OR)电路

当
$$A=B=0$$
 (-5 V, Low),

D1 和 D2 截止, F=0 (Low);

$$F = 1$$
 (High).

(减0.7 V仍为高电平)

当B=1, or A=B=1时,情况相同	当 <i>B</i> =1,	or $A=B=1$ 时,	情况相同
----------------------	----------------	---------------	------

\boldsymbol{A}	B	F
0	0	0
0	1	1
1	0	1
1	1	1

$$F = A + B$$

3. 非门(NOT)电路

$V_{\rm i}$	$V_{\rm o}$	/
0 .	$E_{\rm c}$ (1)	T截止
1000	$V_{\rm ces}(0)$	T 导通

分立元件门电路存在的问题:

(1) 高低电平偏移

(2) 负载特性差

• 当驱动门输出高电平时

负载电流流过 R_{C} 将产生压降,使高电平输出电压下降,因此,要求 R_{C} 越小越好。

各电流之间的关系:

$$i_{\mathrm{L}} + i_{\mathrm{C}} = i_{\mathrm{T}}$$

• 当门电路输出低电平时

i_T增大将使驱动门低电平输出电压上升。

在 $i_{\rm T}$ 不变的情况下, $i_{\rm C}$ 越小,允许灌电流 $i_{\rm L}$ 越大。因此,要求 $R_{\rm C}$ 越大越好。

§ 3.2 TTL 集成门电路

§ 3.2.1 TTL 与制门 TTL NAND Gates

TTL——Transistor Transistor Logic 晶体管晶体管逻辑

TTL分4个系列

74系列: 经典系列

74H系列: 高速系列

74S系列: 肖特基系列

74LS系列: 低功耗、肖特基系列

1. 工作原理

$$F = \overline{AB}$$

T1: 两发射极 (多发射极), 两个eb结

A、B任意接低电平,必有一个发射结导通

输入部分:与门。

中间 T_2 、 R_2 、 R_3 组成倒相级。

R₄、T₄、VD₃、T₅组成输出级。

与非门真值表

A B	F
0 0	I 1 1 1 1 1 1 1
0 1	$1 \rightarrow A$ 或 B 或二者为低, F 为高电平
1 0	1 0
1 1	$0 \rightarrow A$ 和 B 都为高电平时, F 为低电平

1) 入端有低 (either or both)

A 或 B 或二者接地, T1导通,电流从 +5 V 电源经 R1 和 T1 到地。

$$V_{b1} = 0.7 \text{ V}$$

$$V_{c1} = V_{b2} = 0.3 \text{ V}$$

0.3 V 不足以使 T2_{be} 正向导通

∴T2 截止, T5 截止

输入端有低电平,输出为高电平 关门状态

2) 入都为高 (A 和 B 都为高电平) 3.6 V

A和B都是3.6V,

T1 导通,

 $V_{\rm b1}$ 钳位 4.3 V (=3.6 + 0.7),

V_{b2} 钳位 3.9 V (=3.6 + 0.3)

3.9 V 足以正向导通 T2_{be}和 T5_{be}结。

∴ T2, T5 导通

电流从 +5 V电源, 经 T1,T2 和 T5 流向地.

等效电路:

输入全高, 输出低 开门状态

实现与非功能:

$$F = \overline{AB}$$

T2 和 T5导通

$$V_{b4} = V_{be5} + V_{ce2}$$

= 0.7 +0.3 = 1.0 V

 V_{b4} 不足以

 正向导通T4_{be} 和 D3

T4, D3 截止

输出

$$F = V_{ce5} = 0.1 \sim 0.3 \text{ V (K)}$$

T5 饱和压降

§ 3.2.2 TTL 与非门的电气特性

Electrical Properties of TTL NAND Gates

1. 电压传输特性

将与非门输入连在一起,相当于非门

研究当输入 $V_i(A)$ 从低到高时,输出 $V_o(F)$ 如何从高到低

电压传输特性

TTL 系列典型值

高电平 1: 2.8~3.6 V

低电平 0: 0~0.3 V

V_T: 阈值电压 (门坎电压)
Threshold voltage
通常取1.4V

Input
$$V_i$$

$$\begin{cases} V_i < 1.4V & \text{logic } 0 \\ V_i > 1.4V & \text{logic } 1 \end{cases}$$

2. 输入负载特性

理想的TTL与非门电压传输特性是:

求出当 $V_i = V_T = 1.4 \text{ V时的输入电阻值 } R_T$

R_i 小, V_{R_i} 低 \Longrightarrow 输入低电平

$$R_i$$
大、 V_{Ri} 高 \Longrightarrow 输入高电平

$$V_{Ri} = \frac{R_i}{4 \times 10^3 + R_i} (5 - 0.7)$$
=1.4 V (V_T)

门坎电压时的 R_i $R_i = 1.9 k\Omega \approx 2 k\Omega = R_T$

R_T: 门坎电阻

$$R_{\rm i} < R_{\rm T}$$
,等效于输入低电平 (0)

$$R_i > R_T$$
,等效于输入高电平 (1)

 $R_i > R_T$,等效于输入高电平 (1) R_i 对地悬空 (∞) 逻辑高电平 (1)

根据上述特性,使用TTL门电路应注意以下两点:

- (1) 悬空相当于接高电平;
- (2) 当输出端通过一个电阻接到下级输入时,当这个电阻*R*≥2kΩ时,低电平可能无法传送到下级电路。

例: TTL 逻辑门

3. 输出特性 (带负载能力 - 同类门)

1) 输出低 - 灌流负载

当 F=0, 电流从5 V 电源 经 T1, T2 和 T5 流向地.

负载门: 输入低电平

驱动门:

$$i_{b5} > 0, \qquad I_{cs5} = 0,$$

$$\therefore i_{b5} >> \frac{I_{cs5}}{\beta} = I_{b5}$$

∴T5 深饱和

每个负载门有电流 Ii灌入, 灌电流

$$I_i = \frac{5 - 0.7}{4 \times 10^3} = 1.1 \ mA$$

灌入驱动门,这时的负载为灌流负载

$$I_{\text{max}} = 1.6 \text{ mA}$$

如果驱动门从每一个负载门接收 1.1 mA (1.6 mA) 灌电流, I_{cs5} 就要升高,饱和就会变浅,输出脱离标准低电平。

因此,TTL 不能带过多负载门。驱动门的最大容许灌电流 16 mA.

扇出系数 (Fan-out):

一个输出所能驱动的同类门的最大数目。

2) 输出高 - 拉流负载

从 F 拉出的电流是负载门 T1 管的反向漏电流。

驱动门输出高电平时,要承受各负载门的时,要承受各负载门的拉电流。拉电流越大,驱动门中 R4 上压降越大。F 非高非低,脱离标准逻辑高电平。

每负载门的拉电流为40µA,驱动门最大允许拉电流400µA

扇出系数与灌电流时相同:

$$\frac{400 \ \mu A}{40 \ \mu A} = 10$$

手册规定: *N* ≤ 8

作 业 $2.13 (F_1)$ 2.3 2.4 2.5