

AGE OF INFORMATION (AOI) A TOOL FOR DESIGNING TIME-CRITICAL NETWORKS

Jorge Torres Gómez, TU Berlin Nikolaos Pappas, Linköping University July, 2024

Outline

- Part I: Fundamentals
- Introduction
- Definition of Age of Information
- Age of Information Metrics
- Goal-oriented communications
- Part II: Hands-on in Wireless Channels
- Aol calculation
- Average AoI
- Average PAoI

Introduction

Source

Link

Receiver

Case 1

Generation Time > Packet delay

Source

Link

Receiver

Case 2

Generation Time < Packet delay

Introduction

- Source
- Link

Receiver

- Related metrics (not sufficient)
 - Packet delay
 - Inter-delivery time

Information Freshness

Source Link Receiver

Remarks

- Aol is an end-to-end metric.
- AoI captures the timeliness of information.
- AoI accounts for System
 Time, Inter-delivery time, and
 Generation time, all-together.

Aol metrics

Average Aol

$$\Delta = \lim_{T \to \infty} \int_0^T \Delta(t) dt \qquad (1)$$

$$= \lambda \left(E[GT] + \frac{E[G^2]}{2} \right), \ \lambda = \lim_{T \to \infty} \frac{N(T)}{T}$$

Average PAol

$$\Delta^{(p)} = E[A_i]$$
 (2)
= $E[G] + E[T]$

Average Aol metric: FCFS queue

$$\Delta = \frac{1}{\mu} \left(1 + \frac{1}{\rho} + \frac{\rho^2}{1 - \rho} \right) , \rho = \frac{\lambda}{\mu}$$
 (1)

Remarks on the Aol metrics

Node 1

Node 2

Statistical Framework

- Tacit distinction:
 - Data communication systems
 - Information update systems.
- Freshness as a balance between delay and throughput.

Shannon Model

- Instantaneous decoding.
- Zero latency
- Data agnostic
- Data is always available

Non linear Aol-metrics

Aol $\Delta(t) = g(t - u(t))$ time Cost of Update Delay

$$g(t) = \begin{cases} \alpha t \\ e^{\alpha t} - 1 \\ \log(\alpha t + 1) \end{cases}$$

Value of Information Update

$$V = \mathrm{E}\left[\frac{D_i}{A_i}\right]$$

Non linear AoI-metrics

Cost of Update Delay

$$g(t) = \begin{cases} \alpha t \\ e^{\alpha t} - 1 \\ \log(\alpha t + 1) \end{cases}$$

Value of Information Update

$$V = E\left[\frac{D_i}{A_i}\right]$$

Non linear AoI-metrics

Cost of Update Delay

$$g(t) = \begin{cases} \alpha t \\ e^{\alpha t} - 1 \\ \log(\alpha t + 1) \end{cases}$$

Value of Information Update

$$V = E\left[\frac{D_i}{A_i}\right]$$

Goal Oriented Communications

- Communicate with a specific goal.
- Semantics (Pragmatic)
 - Utility to achieve a goal.
- Information Attributes
 - Innate (objective): freshness, precision
 - Contextual (goal): timeliness (deadline), completeness.
- Policy
 - Generate and communicate based on the goal.

Remote Monitor

Sensor

on/off
channel

Pull-based communication model

- Sensor State: healthy or faulty
- Slotted time

Challenge: Optimally decide, at the beginning of a time slot, whether to probe or not the sensor.

G. Stamatakis, N. Pappas, A. Fragkiadakis, N. Petroulakis, A. Traganitis, "Semantics-Aware Active Fault Detection in Status Updating Systems", 16 IEEE Open Journal of Communications Society, vol. 5, Feb. 2024.

Challenge: Optimally decide, at the beginning of a time slot, whether to probe or not the sensor.

- Pull-based communication model
- healthy or faulty
- Slotted time

Procedure

Minimize the total accumulated cost over a finite time horizon.

Transition cost is a function of

- Agent's confidence about the sensor and links status
- Staleness of the status updates
- Cost associated with the probing action.

G. Stamatakis, N. Pappas, A. Fragkiadakis, N. Petroulakis, A. Traganitis, "Semantics-Aware Active Fault Detection in Status Updating Systems", 17 IEEE Open Journal of Communications Society, vol. 5, Feb. 2024.

Remote Monitor

Sensor

on/off channel

- Sensor State: healthy or faulty
- Slotted time

Transition cost

- Agent's confidence:
 - Entropy of reported status
- Staleness of the status updates
 - Age of Information
- Cost associated to probing request
 - Ratio of resources per probing/resources per transmission

Value of Information

$$V = \lambda_1 H + \lambda_2 \times \text{average AoI}$$

Transition cost

$$g = c + V$$

18

Remote Monitor

Sensor

on/off channel

- - Sensor State: healthy or faulty
 - Slotted time

19

Remote Monitor

on/off channel

- Sensor State:
 - healthy or faulty
- Slotted time

Gateway nanosensor IoBNT network Wound

Molecular Communications

[1] Jorge Torres Gómez, Joana Angjo and Falko Dressler, "Age of Information-based Performance of Ultrasonic Communication Channels for Nanosensor-to-Gateway Communication," IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 9 (2), pp. 112–123, June 2023.

Biochemical Pathways

[1] https://www.genome.gov/about-genomics/fact-sheets/Biological-Pathways-Fact-Sheet

[2]https://bionumbers.hms.harvard.edu/bionumber.aspx?id=104756&ver=1&trm=life+cycle+gene+regulation+homo+sapiens&org=

[3]https://bionumbers.hms.harvard.edu/bionumber.aspx?id=106404&ver=2&trm=life+cycle+metabolism&org=

[4] A. McMichael and P. Bowness, 'HLA-B27: natural function and pathogenic role in spondyloarthritis', Arthritis Res, vol. 4, no. Suppl 3, pp. S153–S158, 2002, doi: 10.1186/ar571.

Component	Lifecycle
Mitosis HeLa cells	1.10 hours [2]
Protein HLA-B27 [3]	4 hours [4]

Human Microbiome

[1] https://www.genome.gov/about-genomics/fact-sheets/Biological-Pathways-Fact-Sheet

[2]https://bionumbers.hms.harvard.edu/bionumber.aspx?id=104756&ver=1&trm=life+cycle+gene+regulation+homo+sapiens&org=

[3]https://bionumbers.hms.harvard.edu/bionumber.aspx?id=106404&ver=2&trm=life+cycle+metabolism&org=

[4] A. McMichael and P. Bowness, 'HLA-B27: natural function and pathogenic role in spondyloarthritis', Arthritis Res, vol. 4, no. Suppl 3, pp. S153–S158, 2002, doi: 10.1186/ar571.

[5] I. F. Akyildiz, M. Ghovanloo, U. Guler, T. Ozkaya-Ahmadov, A. F. Sarioglu, and B. D. Unluturk, 'PANACEA: An Internet of Bio-NanoThings Application for Early Detection and Mitigation of Infectious Diseases', IEEE Access, pp. 1–1, 2020, doi: 10.1109/ACCESS.2020.3012139.

Component	Lifecycle
Mitosis HeLa cells	1.10 hours [2]
Protein HLA- B27 [3]	4 hours [4]
Bacteria P. Aeruginosa	1.5 – 2 hours [5]

Molecular Communication Channels

$$\Delta^{(p)} = \frac{1}{T} \sum_{i=1}^{N(t)} A_i = \mathbb{E}[T_{\text{Tx}}] + \mathbb{E}[T_d]$$

$$= T_{\text{Tx}} + \frac{1}{1 - p_e} \frac{d^2}{6D}$$
(2)

Foundations and Trends® in Networking 12:3

Age of Information A New Concept, Metric, and Tool

Antzela Kosta, Nikolaos Pappas and Vangelis Angelakis

Now

the essence of knowledge

A Perspective on Time Toward Wireless 6G

This article provides a systematic treatment of various timing measures in wireless communication, setting the basis for design and optimization for the next-generation real-time systems.

By Petar Popovski[®], Fellow IEEE, Federico Chiariotti[®], Member IEEE, Kaibin Huang[®], Fellow IEEE, Anders E. Kalør[®], Graduate Student Member IEEE, Marios Kountouris[®], Senior Member IEEE, Nikolaos Pappas[®], Senior Member IEEE, And Beatriz Soret[®], Member IEEE

Communications Societ

Received 30 December 2023; revised 28 January 2024; accepted 22 February 2024. Date of publication 29 February 2024; date of current version 15 March 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3371871

Toward Natively Intelligent Semantic Communications and Networking

STYLIANOS E. TREVLAKIS[®] (Member, IEEE), NIKOLAOS PAPPAS[®] (Senior Member, IEEE), AND ALEXANDROS-APOSTOLOS A. BOULOGEORGOS³ (Senior Member, IEEE)

INTERNET OF THINGS AND SENSOR NETWORKS

Semantics-Empowered Communication for Networked Intelligent Systems

Marios Kountouris and Nikolaos Pappas

IEEE Communications Magazine • June 2021

INTERNET OF THINGS AND SENSOR NETWORKS

On the Role of Age of Information in the Internet of Things

Mohamed A. Abd-Elmagid, Nikolaos Pappas, and Harpreet S. Dhillon

IEEE Communications Magazine • December 2019

Age of Information

Foundations and Applications

Edited by Nikolaos Pappas, Mohamed A. Abd-Elmagid, Bo Zhou, Walid Saad and Harpreet S. Dhillon

ACM MOBIHOC 2024

OCT 14-17, 2024, Athens, Greece

General Chairs

- Nikolaos Pappas, Linköping University, Sweden
- Yin Sun, Auburn University, Alabama, USA
- Anthony Ephremides, University of Maryland, College Park, USA

July 31, 2024	Paper submission deadline
August 20, 2024	Notification of acceptance
August 30, 2024	Camera-ready version
October 14, 2024	Workshop event

Part II MATLAB[®]

Implementing AoI-related metrics in wireless links

Jorge Torres Gómez TU Berlin

Nikolaos Pappas Linköping University

GitHub Repo

Matlab Access

Transmitter

Receiver

Transmitter

Receiver

Recommended readings

- [1] R. D. Yates, Y. Sun, D. R. Brown III, S. K. Kaul, E. Modiano, and S. Ulukus, "Age of Information: An Introduction and Survey", IEEE JSAC SI AoI, May 2021.
- [2] A. Kosta, N. Pappas, V. Angelakis, "Age of Information: A New Concept, Metric, and Tool", Foundations and Trends in Networking: Vol. 12, No. 3, 2017.
- [3] S. Kaul, R. Yates and M. Gruteser, "Real-time status: How often should one update?," 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 2012, pp. 2731-2735, doi: 10.1109/INFCOM.2012.6195689.
- [4] S. Kaul, R. Yates, M. Gruteser, "Status updates through queues", CISS 2012.
- [5] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, "The cost of delay in status updates and their value: Non-linear ageing", IEEE Trans. Comm., 2020.
- [6] P. Popovski et al., "A Perspective on Time Toward Wireless 6G," in Proceedings of the IEEE, vol. 110, no. 8, pp. 1116-1146, Aug. 2022, doi: 10.1109/JPROC.2022.3190205.

AGE OF INFORMATION (AOI) A TOOL FOR DESIGNING TIME-CRITICAL NETWORKS

Jorge Torres Gómez, TU Berlin Nikolaos Pappas, Linköping University July, 2024

