Exercices: 12 - Thermochimie

A. Loi de Hess

1. Formation du chlorure d'hydrogène

On donne l'enthalpie molaire de formation de HCl à $25\,^{\circ}\text{C}$: $\Delta_f H^{\circ} = -92, 3\,\text{kJ} \cdot \text{mol}^{-1}$. On considère la réaction :

$$H_2 + Cl_2 \rightleftharpoons 2HCl$$

- 1. Calculer l'enthalpie standard de réaction $\Delta_r H^{\circ}$ à 25 °C.
- 2. On donne : $\frac{\mathrm{d}\Delta_r H^\circ}{\mathrm{d}T} = -4,5\,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$. Calculer l'enthalpie standard de réaction à 125 °C. Conclure sur la validité de l'approximation d'Ellingham.

2. Énergie de liaison

Calculer l'enthalpie standard d'hydrogénation du but-1-ène $CH_2 = CH - CH_2 - CH_3$ en butane à 298 K connaissant les énergies standard de liaison suivantes en $kJ \cdot mol^{-1}$:

$$C - C$$
 $C = C$
 $C - H$
 $H - H$
 $345 \, \text{kJ} \cdot \text{mol}^{-1}$
 $620 \, \text{kJ} \cdot \text{mol}^{-1}$
 $415 \, \text{kJ} \cdot \text{mol}^{-1}$
 $436 \, \text{kJ} \cdot \text{mol}^{-1}$

3. Formation du benzène

La réaction de formation directe du benzène de formule C_6H_6 est impossible à réaliser à 25 °C. Pour déterminer l'enthalpie standard de formation de ce corps à 25 °C, on réalise son oxydation, par un excès de dioxygène, en dioxyde de carbone et eau liquide (méthode de Liebig). La combustion, à 25 °C, dans une bombe calorimétrique de volume constant, d'un échantillon de 0,67 g de benzène liquide libère une quantité d'énergie égale à 28,04 kJ.

- 1. Déterminer $\Delta_r U^{\circ}$ et $\Delta_r H^{\circ}$ pour l'oxydation d'une mole de benzène à 25 °C.
- 2. En déduire l'enthalpie standard de formation du benzène liquide à 25 °C.

Données: la masse molaire du benzène est de $78 \,\mathrm{g \cdot mol^{-1}}$. On donne aussi les enthalpies de formation à $25 \,\mathrm{^{\circ}C}$:

eau (liquide) dioxyde de carbone
$$H_f^{\circ} = -285, 8 \text{ kJ} \cdot \text{mol}^{-1} = -393, 5 \text{ kJ} \cdot \text{mol}^{-1}$$

4. Essence sans plomb

Le plomb tétraéthyle $Pb(C_2H_5)_4$ a été utilisé pour améliorer le pouvoir antidétonant des carburants ; il est en général remplacé dans l'*Eurosuper 95* par le méthyle, tertiobutyle éther ou MTBE, $(CH_3)_3C - O - CH_3$. La voie industrielle d'obtention du MTBE utilise l'action du méthanol sur l'isobutène $(CH_3)_2C = CH_2$, en présence d'acide sulfurique selon la réaction en phase gazeuse $(CH_3)_2C = CH_2 + CH_3OH \rightleftarrows MTBE$.

On suppose que les entropie et enthalpie standard de la réaction ne dépendent pas de la température. À la température de $298 \,\mathrm{K}$, l'enthalpie libre standard de la réaction vaut $-21 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$.

- 1. Calculer l'enthalpie standard de la réaction.
- 2. Calculer l'entropie standard de la réaction.
- 3. Calculer l'enthalpie libre standard de réaction à 400 K.

Données : on précise les valeurs des énergies de liaison :

C — C	C = C	O – H	C-O	C — H
$345 \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	$620\mathrm{kJ\cdot mol^{-1}}$	$463 \mathrm{kJ \cdot mol^{-1}}$	$360\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	$415\mathrm{kJ}\cdot\mathrm{mol}^{-1}$

5. Combustion de la glycine

La glycine, ou acide 2-aminoéthanoïque, de formule H_2N-CH_2-COOH , est un acide α -aminé solide à la température ambiante.

On donne à $25\,^{\circ}\text{C}$ les énergies de liaison, en $\text{kJ}\cdot\text{mol}^{-1}$:

H - H	C-C	C – H	0 = 0	C – O	0 – H	$N \equiv N$	N – H	C-N
432	370	413	498	360	418	945	390	305

Les enthalpies standard de sublimation du carbone et de la glycine seront prises respectivement égales à 717 et $176 \text{ kJ} \cdot \text{mol}^{-1}$ à $25 \,^{\circ}\text{C}$. Les enthalpies standard de formation du dioxyde de carbone gazeux et de la glycine solide sont respectivement $-394 \text{ et } -504 \text{ kJ} \cdot \text{mol}^{-1}$.

1. On peut définir l'énergie de liaison AB comme l'enthalpie standard (moyenne) de la réaction de dissociation :

$$AB_{gaz} \rightarrow A \cdot_{gaz} + B \cdot_{gaz}$$

Déterminer l'énergie de la liaison C = O dans la glycine à 298 K.

- 2. Calculer l'enthalpie standard de combustion de la glycine solide à 298 K, sachant qu'il ne se forme que de l'eau, du dioxyde de carbone et du diazote, tous gazeux.
- 3. On réalise une combustion en faisant réagir 150 g de glycine et 4 mol de dioxygène. Calculer, à 298 K, la variation d'enthalpie du système au cours de cette combustion.

6. Énergie réticulaire

- 1. On appelle énergie réticulaire l'enthalpie standard de dissociation de l'oxyde solide M_xO_y en ses ions gazeux (pour T donnée). Établir le cycle thermodynamique réactionnel de BORN-FAJANS-HABER traduisant cette dissociation et qui permet d'exprimer l'énergie réticulaire en fonction des données fournies à la fin de l'énoncé. Exprimer l'énergie réticulaire de M_xO_y .
- 2. Appliquer la relation obtenue au calcul de l'énergie réticulaire des solides Na₂O, MgO et Al₂O₃.

Données à 25 °C:

— Enthalpies standard de formation des solides ($kJ \cdot mol^{-1}$):

$$Na_2O: -415, 9$$
 $MgO: -601, 6$ $Al_2O_3: -1676, 0$

— Énergies standard d'ionisation (états gazeux $kJ \cdot mol^{-1}$):

$$Na \rightarrow Na^{+} + e^{-}: 492 \quad Mg \rightarrow Mg^{2+} + 2e^{-}: 2188 \quad Al \rightarrow Al^{3+} + 3e^{-}: 5139$$

— Enthalpies standard de sublimation ($kJ \cdot mol^{-1}$):

$$\mathsf{Na}: 107, 5 \quad \mathsf{Mg}: 147, 1 \quad \mathsf{AI}: 330, 0$$

- Énergie de liaison pour O_2 (enthalpie standard de dissociation de O_{2gaz}): $498 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$
- Énergie de double attachement électronique (états gazeux $kJ \cdot mol^{-1}$) :

$$O + 2e^- \rightarrow O^{2-} : 710$$

B. Application du premier principe

7. Température de flamme

Calculer la température de flamme d'un chalumeau oxhydrique ($H_2 + 1/2 O_2$) sachant que l'enthalpie standard de formation de l'eau vapeur à $25\,^{\circ}\text{C}$ est $-242\,\text{kJ}\cdot\text{mol}^{-1}$ et que la relation donnant la capacité molaire à pression constante de la vapeur d'eau en fonction de la température est $c_p^{\circ} = 30, 1+9, 6\times 10^{-3}T$ en $J\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$. On suppose la combustion suffisamment rapide pour qu'il n'y ait pas d'échange thermique entre l'intérieur de la flamme et l'extérieur.

8. Dissolution et refroidissement

Pour fabriquer un fixateur photographique, on utilise du thiosulfate de sodium pentahydraté de formule brute $[Na_2S_2O_3, 5H_2O]_s$ que l'on dissout dans l'eau. On constate lors de la dissolution de ce sel une diminution de la température de la solution. On fournit les données suivantes :

La capacité thermique molaire à pression constante de l'eau liquide est $c_{p,\mathsf{H}_2\mathsf{O}_{liq}}^\circ = 75, 3\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$. La masse volumique de l'eau est considérée comme constante sur le domaine de température envisagé : $\mu = 996\,\mathrm{kg}\cdot\mathrm{m}^{-3}$. On donne les masses molaires atomiques suivantes en $\mathrm{g}\cdot\mathrm{mol}^{-1}$: $\mathsf{Na}: 23, \mathsf{0}, \mathsf{S}: 32, \mathsf{1}, \mathsf{O}: 16, \mathsf{0}$ et $\mathsf{H}: \mathsf{1}, \mathsf{0}$.

1. Écrire la réaction de mise en solution du sel en prenant comme référence une mole de ce sel.

- 2. Calculer l'enthalpie standard de réaction de ce processus. Commenter.
- 3. Pour préparer une solution de fixation, on dissout à la pression standard p° , $m=200\,\mathrm{g}$ de thiosulfate de sodium pentahydraté dans un volume $V=1,0\,\mathrm{L}$ d'eau. Calculer le transfert thermique mis en jeu lors de ce processus. On notera que la dissolution est totale car on n'atteint pas la solubilité maximale de ce sel.
- 4. Quelle doit-être la température θ_e (exprimée en °C) de l'eau avant dissolution pour que la température finale en fin de dissolution soit $\theta_f = 25,0$ °C? On considère qu'il n'y a pas de transfert thermique avec le milieu extérieur. La capacité thermique de la solution est approximée à celle de l'eau liquide.

9. Effets thermiques lors de la fabrication du ciment

Le ciment Portland (type le plus utilisé) est élaboré par réaction, dans un four chauffé à 1700 K, d'un mélange de calcaire CaCO₃ et d'argile (constituée de SiO₂ et Al₂O₃. Le constituant principal de ce ciment non hydraté est le silicate de calcium Ca₃SiO₅, formé selon la réaction totale :

$$3\,\mathsf{CaCO}_{3s} + \mathsf{SiO}_{2s} \rightleftarrows \mathsf{Ca3SiO}_{5s} + 3\,\mathsf{CO}_{2gaz} \quad (1)$$

On donne les masses molaires suivantes en $g \cdot \text{mol}^{-1}$: $M_{\mathsf{Ca}} = 40$, $M_{\mathsf{O}} = 16$, $M_{\mathsf{C}} = 12$, $M_{\mathsf{H}} = 1$ ainsi que les enthalpies de formation et capacités thermiques du tableau qui suit :

- 1. Calculer le transfert thermique Q_1 à fournir pour transformer une tonne de $CaCO_{3s}$ selon la réaction (1) effectuée à $1\,700\,\mathrm{K}$ sous la pression $p=p^\circ=1\,\mathrm{bar}$.
- 2. Calculer le transfert thermique Q_2 à fournir pour porter cette masse de calcaire et la masse nécessaire de silice de 298 K à 1700 K, à pression constante $p = p^{\circ}$.
- 3. Si l'énergie nécessaire à ces deux processus est apportée par la combustion du méthane sous $p = p^{\circ}$, calculer la masse de méthane minimale consommée pour les effectuer. Critiquer le modèle utilisé.

10. Grillage de la galène

Le minerai de plomb contient essentiellement de la galène PbS. Afin d'éliminer le soufre, il faut effectuer l'opération que l'on appelle grillage. La réaction correspondante est :

$$\mathsf{PbS}_{solide} + 3/2\mathsf{O}_{2qaz} \rightleftarrows \mathsf{PbO}_{solide} + \mathsf{SO}_{2qaz}$$

Afin de décomposer $PbSO_4$ qui se forme au cours du grillage, la température doit être d'au moins $950\,^{\circ}$ C. Il faut cependant éviter d'atteindre $1114\,^{\circ}$ C, température de fusion de PbS. A $298\,\mathrm{K}$, on donne les enthalpies standard de formation et les capacités thermiques supposées constantes suivantes :

	PbS_{solide}	PbO_{solide}	O_{2gaz}	SO_{2gaz}	N_{2gaz}
$\Delta_f H^{\circ} \text{ en kJ} \cdot \text{mol}^{-1}$	-100,4	-217,4	0	-296,8	0
$c_p^{\circ} \text{ en } J \cdot K^{-1} \cdot \text{mol}^{-1}$	49,5	45,8	29,4	39,9	29,1

- 1. Calculer l'enthalpie standard de la réaction de grillage à 298 K.
- 2. À 1223 K, on donne $\Delta_r H^{\circ} = -421 \,\mathrm{kJ \cdot mol^{-1}}$. Quel est l'écart relatif avec la valeur à 298 K? Conclure.

La réaction est exothermique. Les réactifs sont le minerai et de l'air composé de 80% de diazote et de 20% de diaxygène. Les réactifs entrent à $298\,\mathrm{K}$ dans des proportions stœchiométriques et la réaction a lieu à $1223\,\mathrm{K}$. On considère que le transfert thermique à pression constante sert à échauffer uniquement les réactifs entrants.

- 3. En supposant la transformation adiabatique, déterminer la température à laquelle sont portés les réactifs. La réaction peut-elle être auto-entretenue? Doit-on refroidir ou chauffer?
- 4. En fait le minerai est constitué d'un mélange de PbS et de gangue. La proportion de PbS dans le mélange gangue sulfure de plomb est de x% de PbS en moles. En considérant que la capacité thermique molaire de la gangue est $48 \, \mathrm{J \cdot K^{-1} \cdot mol^{-1}}$, calculer la valeur de x pour que la température atteinte soit de 1223 K.

11. Grillage du sulfure de molybdène

Le molybdène et ses dérivés sont extraits de la molybdénite MoS_{2s} , après concassage, broyage puis enrichissement par flottation (pour éliminer les concentrés de cuivre et de tungstène), le minerai est grillé à l'air dans un réacteur (l'eau est évaporée et le soufre est éliminé sous forme de SO_2), selon la réaction supposée totale :

$$\mathsf{MoS}_{2s} + \frac{7}{2}\,\mathsf{O}_{2gaz} \ \rightleftarrows \,\mathsf{MoO}_{3s} + 2\,\mathsf{SO}_{2gaz}$$

On fournit le tableau de données suivant où les capacités thermiques sont supposées indépendantes de la température :

	Mo_s	MoS_{2s}	MoO_{3s}	O_{2gaz}	SO_{2gaz}	N_{2gaz}
$\Delta_f H^{\circ} \text{ en kJ} \cdot \text{mol}^{-1}$	0	-235,1	-745,1	0	-296,8	0
c_p° en J·K ⁻¹ ·mol ⁻¹	24,1	63,5	75,0	29,4	29,9	29,1

- 1. À l'aide des données thermodynamiques fournies, calculer l'enthalpie standard de la réaction à 298 K.
- 2. L'opération de grillage est réalisée en partant d'un mélange stœchiométrique de MoS_2 et d'air (renfermant 20% de dioxygène et 80% de diazote), initialement à 298 K. Quelle est la température maximale finale T_f atteinte par le mélange, compte tenu de l'énergie dégagée par le grillage isobare de MoS_2 .

12. Pression d'explosion

Le vanadium est extrêmement explosif et sa poudre brûle très facilement dans l'air selon la réaction :

$$2V_{solide} + 5/2O_{2aaz} \rightleftharpoons V_2O_{5solide}$$

1. Évaluer l'enthalpie molaire standard de cette réaction.

On enferme, dans un calorimètre parfaitement isolé, de volume invariable et de capacité thermique $C = 836 \,\mathrm{J\cdot K^{-1}}$, 0, 2 mol de vanadium et 2 mol d'air à $T_i = 300 \,\mathrm{K}$ et $p_i = 2 \,\mathrm{bar}$. On amorce la réaction et on suppose qu'elle se produit totalement.

2. Calculer les pression et température finales. Commenter ces résultats. On donne :

	V_{solide}	$V_2O_{5}{solide}$	O_{2gaz}	N_{2gaz}
$\Delta_f H^{\circ} \text{ en kJ} \cdot \text{mol}^{-1}$	0	-1255	0	0
$c_p^{\circ} \text{ en } J \cdot K^{-1} \cdot \text{mol}^{-1}$	26,3	122,0	29,1	29,4

13. Mode de production de l'éthyne

Actuellement, l'acétylène (ou éthyne) de formule C_2H_2 est produit par pyrolyse du méthane, principal constituant du gaz naturel selon la réaction :

$$2\mathsf{CH_4} \rightleftarrows \mathsf{C_2H_2} + 3\mathsf{H_2}$$

- 1. Calculer $\Delta_r H^{\circ}$ à 25 °C puis 1500 °C, température qui correspond aux conditions industrielles sachant que $\frac{\mathrm{d}\Delta_r H^{\circ}}{\mathrm{d}T} = 81,7\,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$.
- 2. Le mélange réactionnel est initialement à 25 °C et comprend du méthane et du dioxygène en défaut. La combustion du méthane en dioxyde de carbone et vapeur d'eau fournit la chaleur nécessaire pour atteindre 1500 °C et effectuer la pyrolyse du méthane restant. En admettant que l'ensemble des opérations se déroule dans un réacteur adiabatique sous une pression constante égale à 1bar, calculer la valeur minimale que doit avoir la fraction molaire en dioxygène dans le mélange initial.

Données à 298 K:

	CH_{4gaz}	C_2H_{2gaz}	H_2O_{gaz}	CO_{2gaz}	O_{2gaz}	H_{2gaz}
$\Delta_f H^{\circ} (kJ \cdot mol^{-1})$	-74,6	227,4	-241,8	-393,5	0	0
$c_p^{\circ} \left(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1} \right)$	22,0	42,6	30,5	44,2	29,7	27,7

14. Dosage calorimétrique

- Matériel : un vase Dewar de 500 mL, un thermocouple de précision 0,1 °C, une fiole jaugée de 200 mL, une burette graduée de 25 mL, un agitateur en verre.
- **Produits**: solution d'hydroxyde de sodium de concentration $c_b = 4,00 \,\text{mol} \cdot \text{L}^{-1}$, solution d'acide chlorhydrique de concentration c_a inconnue.

• Manipulation :

- prélever un volume $v_a = 200 \,\mathrm{mL}$ d'acide chlorhydrique en équilibre thermique avec la pièce, le verser dans le vase Dewar et mesurer la température;
- remplir la burette de la solution d'hydroxyde de sodium à la température de la pièce;
- ajouter 0,5 mL de cette solution dans le vase, agiter et relever la température;
- procéder ainsi, régulièrement, de $0.5\,\mathrm{mL}$ en $0.5\,\mathrm{mL}$ en relevant à chaque fois la température du mélange après agitation;
- tracer la courbe des températures mesurées en fonction du volume v_b versé en hydroxyde de sodium.

Pour les solutions aqueuses considérées, $C_{p,v}^{\circ} = 4,18 \,\mathrm{kJ \cdot kg^{-1} \cdot K^{-1}}$ et l'enthalpie standard de réaction de l'équilibre $\mathsf{H^+}_{aq} + \mathsf{OH^-}_{aq} = \mathsf{H_2O}_{liq}$ est de $-56,2 \,\mathrm{kJ \cdot mol^{-1}}$. De plus, le tracé obtenu expérimentalement est celui de la figure 1.

- 1. On suppose que le système réactif acide + base versée évolue à enthalpie constante. Justifier cette hypothèse.
- 2. La réaction $\mathsf{H^+}_{aq} + \mathsf{OH^-}_{aq} = \mathsf{H_2O}_{liq}$ est totale. Déterminer l'avancement ξ de cette réaction en fonction du volume v_b de base versé avant l'équivalence. En déduire la variation d'enthalpie ΔH_1 du système si les produits restaient à la température initiale T_i .
- 3. Déterminer la température T du mélange final après agitation, avant l'équivalence, en fonction de T_i , v_b , v_a , c_b et de la capacité volumique à pression constante $C_{p,v}^{\circ}$. Justifier l'allure de la première partie de la courbe de dosage.
- 4. Comment évolue la température après l'équivalence? Obtenir la concentration c_a de l'acide chlorhydrique.

15. Modélisation du fonctionnement d'un moteur

Le moteur du Coupé 406 (rouge) est un V6 24 soupapes de 2946 cm³. Son fonctionnement sera modélisé par le cycle idéal de Beau de Rochas représenté sur le schéma de la figure 2 (les 6 cylindres étant assimilés à un seul). Le cycle idéal de Beau de Rochas est un cycle réversible composé de deux isochores et de deux adiabatiques.

L'admission se fait à $T_0 = 300 \,\mathrm{K}$ sous une pression $p^{\circ} = 1 \,\mathrm{bar}$. On donne :

	$C_7H_{16}_{gaz}$	H_2O_{gaz}	CO_{2gaz}	O_{2gaz}	N_{2gaz}
$c_p^{\circ} \left(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1} \right)$	270	45	57	36	34

1. Le carburant injecté est modélisé par un mélange air-combustible dans les proportions stœchiométriques où le combustible est C_7H_{16} (heptane). Écrire l'équation de combustion avec l'air (80% de N_2 et 20% de O_2) et expliquer pourquoi on considérera que la nature et la quantité de gaz ne changent pas au cours du cycle.

FIGURE 2 – Cycle BEAU DE ROCHAS

- 2. Exprimer le travail fourni par le moteur W en fonction des températures puis le rendement. On peut montrer qu'il s'exprime en fonction du taux de compression $\alpha_v = V_B/V_C$ par $\eta = 1 \alpha_v^{1-\gamma}$. Faire l'application numérique avec $\alpha_v = 10,5$ et $\gamma = 1,40$.
- 3. Déterminer la température T_C atteinte juste avant l'explosion en C.
- 4. L'enthalpie de combustion du combustible à T_C , sous 1 bar, est $\Delta_r H^{\circ}(T_C) = -4.687 \,\mathrm{kJ \cdot mol}^{-1}$. Calculer $\Delta_r U^{\circ}(T_C)$.
- 5. Calculer la température T_D . En réalité, elle est proche de 1600 K, notablement plus basse que la valeur obtenue. Proposez des explications.
- 6. En reprenant l'expression du travail W calculée à la question 2, déterminer le travail fourni pour 1 mole de combustible dans le cas où $T_D = 1600 \, \text{K}$.
- 7. En admettant que le gaz frais admis à chaque tour du moteur correspond à la cylindrée, calculer la puissance fournie à 5500 tours par minute. Cette valeur est-elle compatible avec les données du constructeur qui prévoit une puissance maximale de 210 chevaux à 5500 tours par minute (1 cheval-vapeur est équivalent à 736 W)?