Chap 4 Data Warehousing and On-line Analytical Processing

- Table
 - o Dimension Table
 - o Fact Table: contains measures
- Spreadsheet
- Data Cube (P15-16)
 - o Base Cuboid: n-D base cubes
 - Apex Cuboid: highest-level of summarization

1. Data Warehouse: A multi-dimensional model of a data warehouse

- 1) A Data Cube consists of dimensions & measures: (P15-16)
 - Base Cuboid: n-D base cube
 - Apex Cuboid: highest-level of summarization

2) Star schema, snowflake schema, fact constellations (P17-20)

Star schema? A fact table in the middle connected to a set of dimension tables
☐ Snowflake schema: A refinement of star schema where some dimensional
hierarchy is normalized into a set of smaller dimension tables, forming a shape
similar to snowflake
Fact constellations: Multiple fact tables share dimension tables, viewed as a
collection of stars, therefore called galaxy schema or fact constellation
 Star Schema: 有一个中心的fact table连接着很多dimension tables Snowflake Schema: 连接的dimension tables有hierarchy Fact Constellation/ Galaxy Schema / Fact Constellation: 有多个fact table
3) OLAP operations: drilling, rolling, slicing, dicing and pivoting
Roll up (drill-up): summarize data
by climbing up hierarchy or by dimension reduction
□ Drill down (roll down): reverse of roll-up
from higher level summary to lower level summary or detailed data, or introducing new dimensions
□ Slice and dice: project and select
□ Pivot (rotate):
reorient the cube, visualization, 3D to series of 2D planes
Other operations
Drill across: involving (across) more than one fact table
 Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

• Roll Up/ Drill Up: summary并且降维

• Drill Down/ Roll Down: 增加维度

• Slice and Dice: slice 切片就是固定某个维度的值, dice是类似从多个维度挑选几个值

Pivot / Rotate

Drill Across

• Drill Through

4) Measures: Distributive, Algebraic, Holistic

Data Cube Measures: Three Categories

- Distributive: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- Algebraic: if it can be computed by an algebraic function with *M* arguments (where *M* is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - \square avg(x) = sum(x) / count(x)
 - □ Is min_N() an algebraic measure?
- Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()
- 2. Data Warehouse: Architecture, Design and Usage
- 1) Multi-tiered architecture
- 2) Business analysis design framework
- 3) Information processing, analytical processing, data mining
- 3. Implementation: Efficient computation of data cubes
- 1) Partial Materialization vs. Full Materialization vs. No Materialization
 - Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
 - ☐ How many cuboids in an n-dimensional cube with L levels?
 - Materialization of data cube
 - Full materialization: Materialize every (cuboid)

No materialization: Materialize none (cuboid)

Partial materialization: Materialize some cuboids

- Which cuboids to materialize?
 - □ Selection based on size, sharing, access frequency, etc. →

Why this formula? $T = \prod_{i=1}^{n} (L_i + 1)$ Industry Region Year

Category Country Quarter

Product City Month Week

Office Day

- 2) Indexing OALP data: Bitmap index and join index
- 3) OLAP query processing

Chap 5 Data Cube Technology

1. Data Cube Computation: Preliminary Concepts

- Base Cell vs Aggregate Cell
- Ancestor Cell vs Descendant Cell
- Parent Cell vs Child Cell
- Full Cube vs Iceberg Cube
- Close Cube & Close Cell
- Cube Shell

2. Data Cube Computation Methods

• MultiWay Array Aggregation —— small number of dimensions

• BUC —— large number of dimensions

• High-Dimensional OLAP with Shell-Fragments

Shell Fragment Cubes: Ideas

- ☐ Generalize the **1-D** inverted indices to **multi- dimensional** ones in the data cube sense
- Compute all cuboids for data cubes ABC and DE while retaining the inverted indices
 - ☐ Ex. shell fragment cube ABC contains 7 cuboids:
 - □ A, B, C; AB, AC, BC; ABC
- ☐ This completes the offline computation

■ ID_Measure Table	,
--------------------	---

If measures other than count are present, store in ID_measure table separate from the shell fragments

tid	count	sum
1	5	70
2	3	10
3	8	20
4	5	40
5	2	30

Shell-fragment AB

Attribute Value	TID List	List Size
a1	123	3
a2	45	2
b1	145	3
b2	23	2
c1	12345	5
d1	1345	4
d2	2	1
e1	12	2
e2	34	2
e3	5	1

Cell	Intersection	TID List	List Size
a1 b1	123 145	1	1
a1 b2	123 ∩ 23	23	2
a2 b1	45 145	45	2
a2 b2	45∩23	ф	0

3. Multidimensional Data Analysis in Cube Space

- Multi-feature Cubes
- Discover-Driven Exploration of Data Cubes

Chap 6 Mining Frequent Patterns, Association and Correlations

1. Basic Concepts

- 1) Pattern Discovery
- 2) Basic Concepts: Frequent Patterns and Association Rules
- 3) Compressed Representation: Closed Patterns and Max-Patterns

2. Efficient Pattern Mining Methods:

- 1) The Downward Closure Property of Frequent Patterns
- 2) The Apriori Algorithm

 C_k : Candidate itemset of size k F_k : Frequent itemset of size k

```
K := 1;

F_k := \{ \text{frequent items} \}; \ // \ \text{frequent 1-itemset} 

While (F_k != \emptyset) \text{ do } \{ \ // \ \text{when } F_k \text{ is non-empty} 

C_{k+1} := \text{candidates generated from } F_k; \ // \ \text{candidate generation} 

Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup; k := k+1

\}

return \bigcup_k F_k // return F_k generated at each level
```


- 3) Extensions or Improvements of Apriori
- 4) Mining Frequent Patterns by Exploring Vertical Data Format
- 5) FP Growth A Frequent Pattern-Growth Approach

Example: Construct FP-tree from a Transaction DB

- 6) Mining Closed Patterns
- 3. Pattern Evaluation
- 1) Interestingness Measures in Pattern Mining: Lift
 - Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

Eigt is more telling than s & c ¬В Σ_{row} 400 350 750 $\neg C$ 200 50 250 600 400 1000 Σ_{col}

(400/1000) / (600/1000 * 750/1000)

- ☐ Lift(B, C) may tell how B and C are correlated
 - □ Lift(B, C) = 1: B and C are independent
 - > 1: positively correlated
- < 1: negatively correlated</p>
- 400/1000 $lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000}$ For our example, $lift(B, \neg C) = \frac{200/1000}{600/1000 \times 250/1000}$
- Thus, B and C are negatively correlated since lift(B, C) < 1;</p>
 - \square B and \neg C are positively correlated since lift(B, \neg C) > 1

 \square Another measure to test correlated events: χ^2

	В		¬B	Σ_{row}
С	400 (450)		350 (300)	750
¬С	20	ر (150)	50 (100)	250
Σ_{col}		600	400	1000

☐ For the table on the right,

$$\chi^2 = \frac{(400 - 450)^2}{450} + \frac{(350 - 300)^2}{300} + \frac{(200 - 150)^2}{150} + \frac{(50 - 100)^2}{100} = \frac{(400 - 450)^2}{100} =$$

Expected value

- Observed value
- \square By consulting a table of critical values of the $χ^2$ distribution, one can conclude that the chance for B and C to be independent is very low (< 0.01)
- χ²-test shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- \Box Thus, χ^2 is also more telling than the support-confidence framework
- 2) Interestingness Measures: Lift and X^2
- 3) Null-Invariant Measures

Imbalance Ratio with Kulczynski Measure

IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications: |e(A)-e(B)|

 $IR(A,B) = \frac{|s(A) - s(B)|}{s(A) + s(B) - s(A \cup B)}$

4) Comparison of Interestingness Measures