CSc 3102: (Dis)Proving Asymptotic Bounds

Worked Examples

Consider the claims below. If the claim is true, prove the claim using (a.) the definition of the Θ -notation and (b.) limits. If the claim is false, disprove it using a proof-by-contradiction involving limits.

Claim 1.
$$(n^3 + 4n - 5)^2 \in \Theta(n^6)$$

The claim is true.

A proof using the definition of Θ -notation.

Proof:

- A. **Definition 1.** Let f and g be functions from $\mathbb{Z}^+ \to \mathbb{R}^+$ that is, positive real-valued functions on the domain of positive integers. If $f(n) \in \Theta(g(n))$, then g(n) is said to be an asymptotic tight bound for f(n). Mathematically, there are constants $c_1 > 0$, $c_2 > 0$ and an integer constant $n_0 \geq 1$ such that $c_1g(n) \leq f(n) \leq c_2g(n) \ \forall n \geq n_o$.
- B. Let $f(n) = (n^3 + 4n 5)^2$ and $g(n) = n^6$.
- C. I want to find c_1 , c_2 and n_o such that $c_1 n^6 \le (n^3 + 4n 5)^2 \le c_2 n^6$ where $n \ge n_o$.
- D. Proving the first half of the inequality:
 - (a) $n^3 \le n^3, n \ge 1$
 - (b) $0 \le 4n 5, n \ge 2$
 - (c) Using the additive property of inequality and comibining D.(a) and D.(b) and using the intersection of the half open intervals, we get $n^3 \le n^3 + 4n 5$, $n \ge 2$.

- (d) Squaring both sides of the inequality in D(c), we get $n^6 \le (n^3 + 4n 5)^2$, $n \ge 2$
- E. Proving the second half of the inequality:
 - (a) $n^3 < n^3, n > 1$
 - (b) $4n 5 \le 4n^3$, $n \ge 1$
 - (c) Using the additive property of inequality and comibining E.(a) and E.(b) and using the intersection of the half open intervals, we get $n^3 + 4n 5 \le 5n^3$, $n \ge 1$.
 - (d) Squaring both sides of the inequality in E(c), we get $(n^3 + 4n 5)^2 \le 25n^6$, $n \ge 1$
- F. Combining D.(d) and E.(d) and using the intersection of the half open intervals, we get $n^6 \leq (n^3 + 4n 5)^2 \leq 25n^6$, $n \geq 2$. For $c_1 = 1$, $c_2 = 25$ and $n_o = 2$, we get $c_1g(n) \leq f(n) \leq c_2g(n)$, $n \geq n_o$. Therefore $(n^3 + 4n 5)^2 \in \Theta(n^6)$.

A proof using limits.

Proof:

- A. Let f and g be functions from $\mathbb{Z}^+ \to \mathbb{R}^+$ that is, positive real-valued functions on the domain of positive integers. $f(n) \in \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$.
- B. Let $f(n) = (n^3 + 4n 5)^2$ and $g(n) = n^6$.
- C. I want to show that $\lim_{n\to\infty} \frac{\left(n^3+4n-5\right)^2}{n^6} = c, \ 0 < c < \infty.$
- D. $\lim_{n \to \infty} \frac{\left(n^3 + 4n 5\right)^2}{n^6} = \lim_{n \to \infty} \left(\frac{n^3 + 4n 5}{n^3}\right)^2 = \lim_{n \to \infty} \left(\frac{n^3}{n^3} + \frac{4n}{n^3} \frac{5}{n^3}\right)^2 = \left[\lim_{n \to \infty} \left(\frac{n^3}{n^3} + \frac{4}{n^3} \frac{5}{n^3}\right)\right]^2 = (1 + 0 0)^2 = 1$ For c = 1, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, \ 0 < c < \infty.$ Therefore $(n^3 + 4n 5)^2 \in \Theta(n^6)$.

Claim 2. $3n \lg n \in \Theta(n^2)$

The claim is false.

Proof:

A. Let f and g be functions from $\mathbb{Z}^+ \to \mathbb{R}^+$ - that is, positive real-valued functions on the domain of positive integers.

$$f(n) \in \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty.$$

- B. Let $f(n) = 3n \lg n$ and $g(n) = n^2$.
- C. I want to show that $\lim_{n \to \infty} \frac{n \lg n}{n^2} = c$, $0 < c < \infty$ is impossible.
- D. $\lim_{n \to \infty} \frac{n \lg n}{n^2} = \lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \frac{(\lg n)'}{(n)'} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \lim_{n \to \infty} \frac{1}{n} = 0$ For c = 0, $0 < c < \infty$ is false. Therefore $3n \lg n \notin \Theta(n^2)$.

Prove the following theorem using the defintion of the Big-O asymptotic notation.

Theorem 3.

Suppose d, e, f and g are functions from $\mathbb{Z}^+ \to \mathbb{R}^+$. If $d(n) \in O(e(n))$ and $f(n) \in O(g(n))$, then $d(n) + f(n) \in O(e(n) + g(n))$.

Proof:

- A. Given $d(n) \in O(e(n)) \iff d(n) \le c_1 e(n) \ \forall n \ge n_1$, where $c_1 \in \mathbb{R}^+$ and $n_1 \in \mathbb{Z}^+$.
- B. Given $f(n) \in O(g(n)) \iff f(n) \le c_2g(n) \ \forall n \ge n_2$, where $c_2 \in \mathbb{R}^+$ and $n_2 \in \mathbb{Z}^+$.
- C. I want to find $c \in \mathbb{R}^+$ and $n_0 \in \mathbb{Z}^+$ such that $d(n)+f(n) \leq c \left(e(n)+g(n)\right)$ $\forall n \geq n_0$, where $c \in \mathbb{R}^+$ and $n_0 \in \mathbb{Z}^+$.
- D. Using the additive property of inequality on the inequalities in A and B and using the intersection of the half open intervals defined in A and B, we get: $d(n) + f(n) \le c_1 e(n) + c_2 g(n) \quad \forall n \ge \max(n_1, n_2)$.

- E. Using the inequality in D, the fact that $c_1e(n)+c_2g(n) \leq max(c_1,c_2)$ (e(n)+g(n)) $\forall n \geq max(n_1,n_2)$ and the transitive property of inequality, we get $d(n)+f(n) \leq max(c_1,c_2)$ (e(n)+g(n)) $\forall n \geq max(n_1,n_2)$.
- F. For $c = max(c_1, c_2)$ and $n_o = max(n_1, n_2)$, we get $d(n)+f(n) \le c(e(n)+g(n)) \quad \forall n \ge n_0 \Rightarrow d(n)+f(n) \in O(e(n)+g(n))$. Therefore, if $d(n) \in O(e(n))$ and $f(n) \in O(g(n))$, then $d(n)+f(n) \in O(e(n)+g(n))$.