目录

1	预览	. 5
1.1	1 first	. 5
	1.1.1 和差化积	. 5
	1.1.2 ♥some easy replace	. 6
2	线性代数	. 7
2.1	1 线性表出	. 7
	2.1.1 线性相关	. 8
	2.1.2 向量组等价	. 9
2.2	2 两个方程同解	. 9
	2.2.1 已知特征值,求特征向量 ♡	10
	2.2.2 [分析]矩阵的对角化:	11
2.3	$3~A;$ 特征值;求可逆矩阵 P , 相应的对角矩阵 $\Lambda~\dots$	11
	2.3.1 相似的必要条件	11
	$2.3.2$ 实对称矩阵A(含参数),求可逆矩阵P,求对角矩阵 Λ	12
	2.3.3 实对称矩阵的正交规范化	12
	$2.3.4 \ f(A)$ 的特征值 及对应的特征向量	12
	2.3.4.1 实对称矩阵必可对角化	13
2.4	4 行列变换	13
2.5	5 方程组同解	14
	2.5.1 x1=x2	14
2.6	6 A	16
	2.6.1 克拉默法则	17
2.7	7 已知两个方程组的通解,求公共解。	19
2.8	8 相似对角化	20
2 ($0 \cdot (A + E)n$	91

2 目录

3	最最最易错的分解	23
3.1	隐函数的存在定理	23
	3.1.1 $\frac{x^2+c}{(x+a)(x+b)^2}$	23
	3.1.2 arccos的区间	
3.2	曲率圆	28
3.3	判断函数的凹凸性,并根据凹凸函数的图像性质求解	28
4	高数基础	31
4.1	函数极限	31
	4.1.1 极限的定义	31
	4.1.2 一些写错的极限计算	31
	4.1.3 极限的判定	33
	4.1.4 复合函数的奇偶性	34
	4.1.5 复合函数的极限定理	35
	4.1.6 重要极限∞ ⁰	36
	$4.1.7 \ \frac{\infty}{\infty} \ \dots $	36
	$4.1.8 \ 1^{\infty} \dots \dots$	36
	4.1.9 复合函数	37
4.2	f(x,y)在 $f(0,0)$ 处	37
4.3	数列极限	39
	4.3.1 极限存在证明	39
	4.3.2 极限的最值问题	40
	4.3.3 极限的不等式性质(保号性的推广)	40
4.4	斜渐近线	41
	4.4.1 一阶线性微分方程	41
4.5	连续与可导	43
4.6	方程实根数	44
	4.6.1 分情况讨论	45
	4.6.2 参数分离	45
4.7	・ ・绝对值 X	45
	4.7.1 区间再现与绝对值	48

目录

4.8 中值	定理	49
4.8.1	构建辅助函数	49
4.8.2	罗尔	49
4.8.3	图像与中值定理	49
4.8.4	不同区间上的拉氏	50
4.8.5	f'' = g''	51
4.8.6	N-L定理	51
4.8.7	高阶莱布尼兹公式	52
4.8.8	泰勒	52
4.8.9	$f'(x) = \int_0^{\xi} f(x) dx$	52
	≒cosx	53
4.10 函数	枚图像与根	54
5 高数下	·	55
	方程	55
	二阶,少y	
		55
	y(x) = u(x)g(x)的二阶微分方程	55
	一个简单的倒带换	55
5.1.4	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} \dots $	56
5.1.5	倾斜角 α , $\frac{d\alpha}{dx}$, $\frac{dy}{dx}$, $\tan \alpha = -\frac{1}{u'_{\alpha}}$	56
	叠加性 \ldots g_x	
5.2.1	高阶K重根	57
5.3 定积	分应用	58
5.3.1	旋转体体积,非 y 轴, $V=V_1-V_2$	58
5.3.2	积分比大小	58
5.4 对称	区间的积分	59
5.5 重积	分	59
5.5.1	分段区间	60
5.5.2	区间相同,二重积分保序性	60
5.5	5.2.1 区间极坐标换元	61
5.5.3	二重积分存在	61

4	目录
5.5.4 轮换对称性	. 62
5.6 二元函数最值问题	. 62
6 积分表	. 65
索引	. 67
参考文献	. 69

第1章

预览[1]

1.1 first

[题目] 设n阶可逆矩阵A有特征值 λ ,对应的特征向量为 α ,证明 α 也是 A^-1 对应于 λ^{-1} 的特征向量

[证明] 由题设 $A\alpha = \lambda \alpha$,两边同乘 A^-1 ,则

 $(A^{-1}A)\alpha = \lambda (A^{-1}\alpha) \Rightarrow E\alpha = \lambda (A^{-1}\alpha) \Rightarrow \alpha = \lambda (A^{-1}\alpha)$ 因为A可逆,则 $|A| \neq 0$. 由|A|等于特征值之积,故 $\lambda \neq 0$. 综上, $A^{-1}\alpha = \frac{1}{\lambda}\alpha$. 故 α 也是 A^{-1} 对应于 λ^{-1} 的特征向量。

$$A^{-1}\alpha = \frac{1}{\lambda}\alpha$$

$$A = \alpha \alpha^T \qquad A\alpha = \alpha(\alpha^T \alpha)$$

$$\alpha \alpha^t = k$$

1.1.1 和差化积

和差化积公式:
$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

[帮助记忆]

方法 1.可以只记第一个公式,将其它公式用诱导公式化成 $\sin(\alpha) + \sin(\beta)$ 的形式。 方法 2.找规律。前两个公式是 $\sin \pi \cos \beta$ 名函数乘积,后两个公式是同名函数乘积。

口诀:

正加正, 正在前,

余加余,余并肩。

6

正减正,余在前,

余减余, 负正弦。

1.1.2 ♥some easy replace

$$x \in (0, +\infty)$$
 时,有 $0 < \frac{x}{x+1} < \ln(x+1)$.故 $\frac{x^3}{x+1} < \ln(x+1)x^2$.故 $\int_0^1 \frac{x^3}{x+1} dx < \int_0^1 \ln(x+1)x^2 dx$,即 $I_2 < I_1$.故选 A .

(%i14) tm_plot2d([log(1+t),t/(1+t)],[t,0,0.5])

(%o14) true

第2章

线性代数

2.1 线性表出

[2003年真题]设向量组 $I:\alpha_1,\alpha_2,\ldots,\alpha_t$ 可由向量组 $II:\beta_1,\beta_2,\ldots,\beta_s$ 线性表示,则

- A. 当t < s时,向量组II必线性相关
- B. 当t > s时,向量组II必线性相关
- \mathbb{C} . 当t < s时,向量组I 必线性相关
- D. 当t > s时,向量组I必线性相关

[简解] 根据定理: "若 $\alpha_1, \alpha_2, \cdots, \alpha_t$ 可有 $\beta_1, \beta_2, \cdots, \beta_s$ 线性表出,且 $t > s, 则 \alpha_1, \alpha_2, \cdots, \alpha_t$ 必线性相关即若多数向量可以由少数向量线性表出,则此多数向量必线性相关,故选 D.

A. 若n > m,由A的行秩是行极大线性无关组的向量个数 \leq 行向量组的总向量个数=m,则r(A) = m B. 由 A的行秩是行极大线性无关组的向量个数=行向量组的总向量个数=m,则 $r(A) \leq m$ $\mathbb C$. A的列秩是列极大线性无关组的向量个数=列向量组的总向量个数=n,则r(A) = n D. A的列秩是列极大线性无关组的向量个数 \leq 列向量组的总向量个数=n,则 $e(A) \leq n$

因为r(A) = A的行秩= A的列秩,而A的列秩是列极大线性无关组的向量个数 \leq 列向量组的总向量个数= n. 同理A的行秩是行极大线性无关组的向量个数 \leq 行向量组的总向量个数= m. 综上, $r(A) \leq \min \ (m,n)$,即有 $r(A) \leq n$. 选D.

其余选项:

A: 只能得出 $r(A) \leq m$.

B:A的行秩是行极大线性无关组的向量个数 \leq 行向量组的总向量个数=m

2.1.1 线性相关

由特征值的定义

有 $[A(\lambda_2 \alpha_1), A(\lambda_1 \alpha_2)] = [\lambda_1 \lambda_2 \alpha_1, \lambda_1 \lambda_2 \alpha_2]$ 极大线性无关组中所含向量的个数r 称为向量组的秩,因此需判定 $[\lambda_1 \lambda_2 \alpha_1, \lambda_1 \lambda_2 \alpha_2]$ 中的线性无关向量。

由互不相同的特征值对应的特征向量线性无关,则 α_1 与 α_2 线性无关。

当 $\lambda_1 \neq 0$, $\lambda_2 \neq 0$ ⇒ $\lambda_1 \lambda_2 \neq 0$, 则 $\lambda_1 \lambda_2 \alpha_1 \neq 0$, $\lambda_1 \lambda_2 \alpha_2 \neq 0$, 故 $\lambda_1 \lambda_3 \alpha_1$ 与 $\lambda_1 \lambda_3 \alpha_3$ 线性无关,向量组 $A(\lambda_2 \alpha_1)$, $A(\lambda_1 \alpha_3)$ 的秩为 2.

♡ 设 $A = (\alpha_1, \alpha_2, \alpha_3)$ 是三阶矩阵,A*为A的伴随矩阵,若(0, 2, 1)^T是方程组A**x** = 0的一个基础解系,则A***x** = 0的基础解系可为

A. α_1 B. α_1, α_2 C. α_2, α_3 D. $\alpha_1, \alpha_2, \alpha_3$

[分析]没有具体的线性方程组,先用秩来决定线性无关解的个数,再用AB = O 来得到解向量。

[解答] 用秩来决定线性无关解的个数: 因为A**x**=0 只有 1 个线性无关的解,即 n-r(A)=1, n=3,从而 r(A)=2.由r(A)=2=n-1,则 $r(A^*)=1$.有 $n-r(A^*)=3-1=2$,故 A^* **x**=0的基础解系中有 2 个线性无关的解向量。

用AB = O来得到解向量: 由 $A\mathbf{x} = 0$ 有非零解,则|A| = 0. 由 $A^*A = |A|E, \mathcal{D}|A| = 0$,有 $A^*A = O$,则A 的列向量全是 $A^*\mathbf{x} = 0$ 的解。

而秩r(A) = 2,故A的列向量中必有 2 个线性无关。 需找到这 2 个线性无关的列向量:

由
$$A\begin{bmatrix} 0\\2\\1 \end{bmatrix} = 0$$
,即 $(\alpha_1, \alpha_2, \alpha_3)\begin{bmatrix} 0\\2\\1 \end{bmatrix} = 0$,则 $2\alpha_2 + \alpha_3 = 0$,即 α_2, α_3 相关。

综上, α_1, α_2 无关, α_1, α_3 无关。 选B.

♡[2011年真题] 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是四阶矩阵,A*为A 的伴随矩阵,若 $(1,0,1,0)^T$ 是方程组 $A\mathbf{x} = 0$ 的一个基础解系,则

A*x=0的基础解系可为

 $A. \alpha_1, \alpha_3 B. \alpha_1, \alpha_2 C. \alpha_1, \alpha_2, \alpha_3 \mathcal{D}. \alpha_2, \alpha_3, \alpha_4$

2.2 两个方程同解 9

[分析]没有具体的线性方程组,先用秩来决定线性无关解的个数,再用AB=O 来得到解向量。

[解答] 用秩来决定线性无关解的个数: 因为Ax = 0只有 1 个线性无关的解, 即n - r(A) = 1, n = 4,从 而r(A) = 3. 由 r(A) = 3 = n - 1, 则 $r(A^*) = 1$. 有 $n - r(A^*) = 4 - 1 = 3$, 故 $A^* \mathbf{x} = 0$ 的基础解系中有 3 个线 **性无关的解向量**。 用AB = O来得到解向量: 由Ax = 0 有非零解,则 |A| = 0. 由 $A^*A = |A|E,$ |A| = 0, $A^*A = O$.则A 的列向量全是 $A^*\mathbf{x} = 0$ 的解。 而秩r(A) = 3.故A的列向量中必有 3 个线性无关。

需找到这 3 个线性无关的列向量: 由
$$A\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0$$
,即 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0$,则 $\alpha_1 + \alpha_3 = 0$,即 α_1, α_3 相关。

综上, $\alpha_2, \alpha_3, \alpha_4$ 无关。

选D.

2.1.2 向量组等价

例 2.1.

若向量组(I) 是向量组(II) 的权大线性无关组,向量组(III) 是向量组(IV)的极大线性无关组,向量组(I) 与 (III)等价,则

A、由量组(II)与(IV)不等价,且(I)不一定可由(IV)线性表出

B、由重组(II)与(IV)等价,且(I)不一定可由(IV)线性表出 C、向量组(II)与(IV)等价,且(IV)可由(IV)线性表出 D、向量组(IV)与(IV)不等价,但(IV)可由(IIV)线性表出

解】

向量组完它的极大线性无关组等价,且等价具有递性,则 $(I) \sim (II) \sim (III) \sim (IV)$,且两两可以且相线性表出。 选C.

等价向量组的定义是可以互相线性表出

例 2.2.

$$[2022 年真题 \ \partial \ \alpha_1 = \begin{pmatrix} \lambda \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ \lambda \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix},$$
 若 向量组 (I) : $\alpha_1, \alpha_2, \alpha_3$ 与 向量组 (II) : $\alpha_1, \alpha_2, \alpha_4$ 等价,则 λ 的取值范围为 $A.\{\lambda|\ \lambda \in \mathbb{R}\}$ $B.\{\lambda|\ \lambda \in \mathbb{R}, \lambda \neq -1\}$ $C.\{\lambda|\ \lambda \in \mathbb{R}, \lambda \neq -1, \lambda \neq -2\}$ $D.\{\lambda|\ \lambda \in \mathbb{R}, \lambda \neq -2\}$

 $A(\alpha_1, \alpha_2, \alpha_3), B(\alpha_1, \alpha_2, \alpha_4)$ A|B 求解 λ

2.2 两个方程同解

线性无关的解的个数相同=>系数矩阵的秩相同

基础解系相同

Ar 令方程组()的系数矩阵为 $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 1 & a & 1 \end{bmatrix}$. 令方程组(ll)的系数矩阵为 $B = \begin{bmatrix} b & 2 & c \\ b^2 & 3 & c \end{bmatrix}$.

$$AB = O$$
 $r(A) + r(B) \leq \min \{r(A), r(B)\}$

由于A,B均非零,故r(A)>0,且r(B)>0,即 $r(A)\geq 1$, $r(B)\geq 1$.由于AB=O,且A是 5×4 ,B是 4×6 矩阵,则 $r(A)+r(B)\leq 4$.代入 $r(A)\geq 1$,有 $r(B)\leq 4-r(A)\leq 3$.因为已得出 $r(B)\geq 1$,则 $1\leq r(B)\leq 3$.过 D.

AB=O时的秩:若 A是 m×n矩阵,B是 n×s矩阵,AB=O,则 r(A)+r(B)≤n.

已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则[$\alpha_1,\alpha_2,\alpha_3$]可逆,又有 $A\alpha_1,A\alpha_2,A\alpha_3$ 的表达式,想到相似,即 $AP=PB\Leftrightarrow P^{-1}AP=B$.

1 2 3 4 5

列向量线性无关,可逆, $AP = PB \Leftrightarrow P^{-1}AP = B$

$$A \sim B; A_{\lambda} = B_{\lambda}$$

$$|\lambda E - A| = O$$

2.2.1 已知特征值, 求特征向量 ♡

 $\lambda \to A$, 系数矩阵,行最简形矩阵,自由未知量 $x_x = 1,0$;得到基础解系即属于特征值 λ_x 的特征向量

- 代入每个 λ_i ,得到线性方程组 $(\lambda_i E-A)\mathbf{x}=0$,通解即对应 λ_i 的全体特征向量(除去 0向量)

_

10

 $1. \ \exists \ \lambda_1 = \lambda_2 = 1 \ \mathrm{bf} \ , \ \ \mathrm{bf} \ (E-B)\mathbf{x} = 0,$ 系数矩阵 $E-B = \begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & -2 \\ -1 & -1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 令 x_2, x_3 为自由未知量, x_1 为独立未知量。 令 x_2, x_3 为自由未知量, x_1 为独立未知量。 令 $x_2 = 1, x_3 = 0,$ 则 $x_1 = -1$. 令 $x_2 = 0, x_3 = 1,$ 则 $x_1 = -2$. 故 $\eta_1 = (-1, 1, 0)^T, \eta_2 = (-2, 0, 1)^T$ 是一个基础解系,即属于特征值 $\lambda_1 = \lambda_2 = 1$ 的两个线性无关的特征向量。 $2. \ \exists \lambda_3 = 4 \ \mathrm{bf} \ , \ \ \mathrm{bf} \ (4E-B)\mathbf{x} = 0,$ 系数矩阵 $4E-B = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 2 & -2 \\ -1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ 令 x_3 为自由未知量, x_1, x_2 为独立未知量。 令 $x_3 = 1,$ 则 $x_2 = 1,$ $x_1 = 0.$ 故 $\eta_3 = (0, 1, 1)^T$ 是一个基础解系,即属于特征值 $\lambda_3 = 4$ 的一个特征向量。 综上, η_1, η_2, η_3 为三个线性无关的特征向量。 选D.

2.2.2 [分析]矩阵的对角化:

令A的特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$,设A有n个线性无关的特征向量 $\pmb{lpha}_1,\pmb{lpha}_2,\cdots,\pmb{lpha}_n$,

取
$$P = [\alpha_1, \alpha_2, \cdots, \alpha_n],$$
则有 $P^{-1}AP = \Lambda,$ 其中 $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}.$

[解答] 注意P的每一列为一个特征向量,且P中 α_1 , α_2 , $\langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle$, α_n 排列次序应与 Λ 中 λ_1 , λ_2 , $\langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle$, λ_n 的排列次序 一致。

<with|color|red|[解答]>

2.3 A; 特征值; 求可逆矩阵P, 相应的对角矩阵 A

 $[1999年真题] 设矩阵 <math>A = \begin{bmatrix} 3 & 2 & -2 \\ 0 & -1 & 0 \\ 4 & 2 & -3 \end{bmatrix},$ 已知A 的特征值为1,-1,-1.求可逆矩阵P,使得 P^{-1} $AP = \Lambda$ 为对角矩阵?

并求出相应的对角矩阵。

2.3.1 相似的必要条件

[1992年真题]设矩阵A 与B 相似,其中A = $\begin{bmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{bmatrix}$,B = $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{bmatrix}$,求x+y的值。 [分析]由相似求未知参数,用相似的必要条件:1.迹相等;2.行列式相等;3.特征值相等 [解答]

相似矩阵的迹相等,则 $\sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} b_{ii} \Rightarrow -2 + x + 1 = y + 2 - 1 \Rightarrow y = x - 2$.

相似矩阵的行列式相等,则 $|A| = |B| \Rightarrow (-2)(x-2) = -2y \Rightarrow y = x-2$.

所以"1.迹相等"与"2.行列式相等"得到的等式相同,需要使用"3.特征值相等".

因为对角矩阵 B 的特征值为-1,2,y,所以矩阵 A 的特征值也为-1,2,y.

用特征方程 $|\lambda E - A| = 0$ 的根来求A的特征值

$$\pm |\lambda \, E - A| = \left| \begin{array}{ccc} \lambda + 2 & 0 & 0 \\ -2 & \lambda - x & -2 \\ -3 & -1 & \lambda - 1 \end{array} \right| = (\lambda + 2) \left[\lambda^2 - (x+1) \, \lambda + (x-2) \right].$$

 $\exists \lambda = -2$ 是A的特征值,因此必有y = -2. 综上,x = y + 2 = 0,则答案为x + y = -2.

2.3.2 实对称矩阵A(含参数),求可逆矩阵P,求对角矩阵A

$$[2002年真题 \ 设实对称矩阵 A = \left| \begin{array}{ccc} a & 1 & 1 \\ 1 & a & -1 \\ 1 & -1 & a \end{array} \right|, 求可逆矩阵 P, 使 P^{-1} A P 为对角阵。$$

 $|\lambda E - A| = O$; 求特征值 λ_n Λ \checkmark ; 代入A, 化最简阶梯形矩阵, 自由未知数 X_n : $q1 \rightarrow$ 得到基础解系 (特征向量) P

1. 求特征值:

立特征方程:
$$|\lambda E - A| = \begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & 1 \\ -1 & 1 & \lambda - a \end{vmatrix} = \begin{vmatrix} \lambda - a - 1 & \lambda - a - 1 & 0 \\ -1 & \lambda - a & 1 \\ 0 & a + 1 - \lambda & \lambda - a - 1 \end{vmatrix}$$

$$= (\lambda - a - 1)^2 \begin{vmatrix} 1 & 1 & 0 \\ -1 & \lambda - a & 1 \\ 0 & -1 & 1 \end{vmatrix} = (\lambda - a - 1)^2 \begin{vmatrix} 1 & 1 & 0 \\ 0 & \lambda - a + 1 & 1 \\ 0 & -1 & 1 \end{vmatrix}$$

$$= (\lambda - a - 1)^2 (\lambda - a + 2)$$

2.3.3 实对称矩阵的正交规范化

对矩阵 A 执行特征值分解。

- 将得到的特征向量作为矩阵 Q 的列。
- 对 Q 的每一列向量 q_i 执行归一化: $q_i = \frac{q_i}{\|q_i\|}$,其中 $\|q_i\|$ 是向量 q_i 的欧几里得范数。

2.3.4 f(A)的特征值 及对应的特征向量

矩阵	Α	kA	$\mathbf{A}^{\mathbf{k}}$	f(A)
特征值	λ	kλ	λ^{k}	f(\lambda)
对应特征向量	α	α	α	α

A的特征值已知? f(A)的特征值是? 对应的特征向量变了吗? /

2.4 行列变换 13

相似矩阵的性质 对应的特征向量是变的.

_	矩阵	A^{-1}	A^*	$A^{-1}+f(A)$	- 运用相似矩阵的性质,有	l		$B = P^{-1}A^*P$	
					矩阵	Α	A^*	В	$_{\mathrm{B+kE}}$
	特征值	λ-1	$ A \lambda^{-1}$	$\lambda^{\text{-}1} + f(\lambda)$,	$ A \lambda^{-1}$	$ \mathbf{A} \lambda^{-1}$	$ \mathrm{A} \lambda^{-1}+\mathrm{k}$
					刊业压	Λ.	A A	IΨIV	A V + V
	对应特征向量	α	α	α	对应特征向量	α	α	$P^{-1}\alpha$	$P^{-1}\alpha$

2.3.4.1 实对称矩阵必可对角化

注意:特征值相同是<mark>任意矩阵</mark>相似的必要条件,但只当矩阵实对称时,才是充分条件。即: 矩阵相似⇒特征值相同

A与B(实对称矩阵) 相似的充分必要条件is A和B的特征值相同 $\rightarrow |\lambda_{b_n}E - A| = O$

2.4 行列变换

因为B可以由A经行变换得到,B = (矩阵左乘A)

已知A 为n $(n \ge 2)$ 阶可逆矩阵,为书写简洁,不妨设A 为三阶矩阵。

根据题设: 将A的第 1 行加到第 2 行得矩阵B,则 $B=\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $A=E_{21}(1)A$.

因此 $B^{-1} = A^{-1} E_{21}(1)^{-1}$,其中 $E_{21}(1)$ 为 倍加初等矩阵。

利用倍加初等矩阵的逆矩阵,有 $E_2 1(1)^{-1} = E_{21}(-1)$,则 $B^- 1 = A^{-1} E_{21}(-1)$.

根据定义,有 $A^-1 = \frac{A^*}{|A|}, B^{-1} = \frac{B^*}{|B|},$ 从而 $\frac{B^*}{|B|} = \frac{A^*}{|A|} E_{21} (-1).$

因为将一行 (或列) 的k<mark>倍加</mark>到另一行 (或列),行列式的值不变,则|B| = |A|.

故 $B^* = A^* E_{21}(-1)$,即将 A^* 的第 2 列从第 1 列中减去得 B^* ,答案选 D

[分析]因为所求行列式中含 $\beta_1 + \beta_2$,想到 $|\alpha_3, \alpha_2, \alpha_1, \beta_1 + \beta_2| = |\alpha_3, \alpha_2, \alpha_1, \beta_1| + |\alpha_3, \alpha_2, \alpha_1, \beta_2|$. 试着将题设转化成等式右边的两项。

例 2.3.

[2021年真题]设A, B为 n阶实矩阵,下列不成立的是

A.
$$r \begin{bmatrix} A & O \\ O & A^{\top} A \end{bmatrix} = 2 r(A)$$

B. $r \begin{bmatrix} A & AB \\ O & A^{\top} \end{bmatrix} = 2 r(A)$
 $\mathbb{C}. r \begin{bmatrix} A & BA \\ O & AA^{\top} \end{bmatrix} = 2 r(A)$
D. $r \begin{bmatrix} A & O \\ BA & A^{\top} \end{bmatrix} = 2 r(A)$

选项 D: 广义高斯消元: BA为 A的行变换(左乘行变换),故将分块矩阵行变换。 将行[A O]的(-B)倍,行[-BA O],加在行[BA A^{\top}]上,得到

$$r \left[\begin{array}{cc} A & O \\ BA & A^{\top} \end{array} \right] = r \left[\begin{array}{cc} A & O \\ O & A^{\top} \end{array} \right] = r(A) + r(A^{\top}) = 2 \, r(A).$$

将列
$$\begin{bmatrix} A \\ O \end{bmatrix}$$
的 $(-B)$ 倍加在 列 $\begin{bmatrix} BA \\ AA^{\top} \end{bmatrix}$ 上。
将列变换写成完整的矩阵相乘形式,即看出错误所在:

$$\begin{bmatrix} A & BA \\ O & AA^\top \end{bmatrix} \begin{bmatrix} E & -B \\ O & E \end{bmatrix} = \begin{bmatrix} A & -AB + BA \\ O & AA^\top \end{bmatrix}, 不能消去。$$

$$r \begin{bmatrix} A & O \\ O & A^\top A \end{bmatrix} = r(A) + r(A^\top A) = 2r(A), 故A正确。$$
洗 项 B :

广义高斯消元:

AB为 A的列变换(右乘列变换),故将分块矩阵列变换。

将列
$$\begin{bmatrix} A \\ O \end{bmatrix}$$
的 B 倍 $\begin{bmatrix} AB \\ O \end{bmatrix}$,从列 $\begin{bmatrix} AB \\ A^{\top} \end{bmatrix}$ 中减去,得到
$$\begin{bmatrix} A & AB \\ O & A^{\top} \end{bmatrix} = r \begin{bmatrix} A & O \\ O & A^{\top} \end{bmatrix} = r(A) + r(A^{\top}) = 2r(A),$$
故B正确。 注:写成矩阵相乘形式,
$$\begin{bmatrix} A & AB \\ O & A^{\top} \end{bmatrix} \begin{bmatrix} E & -B \\ O & E \end{bmatrix} = \begin{bmatrix} A & -AB + AB \\ O & A^{\top} \end{bmatrix} = \begin{bmatrix} A & O \\ O & A^{\top} \end{bmatrix}.$$

2.5 方程组同解

2.5.1 x1=x2

例 2.4.

已知线性方程组的通解为 $k_1(1,-3,1,0)^{\top}+k_2(0,-1,0,1)^{\top}$,其中 k_1,k_2 为任意常数,求该方程组满足 $2x_1=$ x_2 的全部解。

A.
$$k_1(1,2,1,-5)^{\top} + k_2(1,2,1,-2)^{\top}$$
,其中 k_1,k_2 为任意常数

2.5 方程组同解 15

- B. $(1, 2, 1, -5)^{\top}$
- C. $k(1,2,1,-5)^{T}$,其中k 为任意常数
- D. $k(1,2,1,-2)^{T}$,其中k 为任意常数

[分析]即求原方程组与 $2x_1=x_2$ 的公共解。原方程组未给出,不能联立方程。则将已知通解代入 $2x_1=$ x_2 中。 [解答] 从 通 解 可 得 $x_1 = k_1, x_2 = -3k_1 - k_2$. 若 $2x_1 = x_2,$ 则 $2k_1 = -3k_1 - k_2 \Rightarrow k_2 = -5k_1$. 代 入 通 解,得 $x = k_1(1, -3, 1, 0)^{\top} - 5k_1(0, -1, 0, 1)^{\top} = k_1(1, 2, 1, -5)^{\top}$. 则通解为 $k(1, 2, 1, -5)^{\top}$,其中k 为任意常数。

[2005年真题] 已知齐次线性方程组

$$(1) \begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0, \Re(11) \begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$
 $\exists \mathbb{R},$

则a+b+c=

A.3 B.5 C.3或5D.2或5

[分析]方程组同解,则 1.线性无关解的个数相同⇒系数矩阵的秩相同; 2.基础解系相同 [解答] 令方程组 (l)的系数矩阵为 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 1 & 1 & a \end{bmatrix}$.

令方程组(II)的系数矩阵为 $B = \begin{bmatrix} 1 & b & c \\ 2 & b^2 & c+1 \end{bmatrix}$ 中十印如同知则的(x) = (x, y) = (x, y)

由方程组同解,则n-r(B)=方程 (II)线性无关解的个数=方程 (II)线性无关解的个数=n-r(A),即r(B)= r(A). 因为 $r(B) \le 2$,则 $r(A) \le 2$,即|A| = 0,有

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \end{vmatrix} \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & 0 & a - 2 \end{vmatrix} = 2 - a = 0$$
,则 $a = 2$.

x3为自由未知量。

则方程组(l)的通解是 $k(-1,-1,1)^{\top}$, k 为任意常数。

以下由方程组(II)的通解也是 $k(-1,-1,1)^{\top}$,求出b 和c.

注意有两部分:

 $1.(-1,-1,1)^{\mathrm{T}}$ 是方程组 (II)的解; 2.方程组 (II) 只有 1 个线性无关解, 即r(B)=2.

第1部分:

因为 $(-1,-1,1)^{\mathsf{T}}$ 应当是方程组 (II)的解,代入则得到 b,c 的方程组: $\begin{cases} -1-b+c=0\\ -2-b^2+c+1=0 \end{cases}$,解得b=1, c=2 或b=0, c=1.

第2部分:

情况一: 当b=0,c=1,方程组(II)为 $\begin{cases} x_1+x_3=0\\ 2x_1+2x_3=0 \end{cases}$ 有 r(B)=1,从而(I)与(II)不同解,故b=0,c=1 应舍去。情况二: 当b=1,c=2时,方程组 $\Big(|1 \Big)$ 为 $\Big\{ \begin{array}{l} x_1+x_2+2x_3=0\\ 2x_1+x_2+3x_3=0 \end{array} \Big\}$ 有 r(B)=2,从而方程组 (II) 只有 1 个线性无关解,即通解是 $k(-1,-1,1)^{\top}$, k为任意常数,(I)与 (II)同解。

故a+b+c=2+1+2=5. 选B

例 2.5.

设四元齐次线性方程组()的基础解系为 $\beta_1 = (0,0,1,0)^\top$, $\beta_2 = (-1,1,0,1)^\top$, 而另一四元齐次线性方程组 (II) 的基础解系为

 $\alpha_1 = (0, 1, 1, 0)^{\top}, \alpha_2 = (-1, -1, 0, 1)^{\top}.$ 则方程组()与(II)的公共解为

[分析]已知两个方程组的通解,求公共解。则令通解相等,解关于常数 k_1, k_2, l_1, l_2 的新方程组。

[解答]

设 η 是方程组(I)与(II)的非零公共解,则

 $\eta = k_1 \beta_1 + k_2 \beta_2 = l_1 \alpha_1 + l_2 \alpha_2$.

那么 $k_1 \beta_1 + k_2 \beta_2 - l_1 \alpha_1 - l_2 \alpha_2 = 0$

再代入题设给出的 $\beta_1, \beta_2, \alpha_1, \alpha_2$,由此得齐次方程组(III)

$$\{-k_2+l_2=0$$

 $k_2 - l_1 + l_2 = 0$ 对系数矩阵高斯消元

$$k_1 - l_1 = 0$$

 $k_2 - l_1 = 0$

$$A = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

则令 k_1, k_2, l_1 为独立未知量, l_2 为自由未知量。令 $l_2=1$,则 $l_1=2, k_1=2, k_2=1$.

即通解为 $h(2,1,2,1)^{\top}$,h为任意常数。则

$$\begin{bmatrix} k_1 \\ k_2 \\ l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} 2h \\ h \\ 2h \\ h \end{bmatrix}$$
.则方程组的公共解为

 $\bar{\eta} = l_1 \alpha_1 + l_2 \alpha_2 = 2h \alpha_1 + h \alpha_2 = h(2\alpha_1 + \alpha_2) = h(-1, 1, 2, 1)^\top$, h为任意常数。

2.6 |A|

[2013年真题] $A = (a_{ij})$ 是三阶非零矩阵,|A|为A的行列式 A_{ij} 为 a_{ij} 的代数余子式, 若 $a_{ij} + A_{ij} = 0$ (i, j = 1, 2, 3),则 |A| =

2.6 |A| 17

$$a_{ij} + A_{ij} = O, a_{ij} = -A_{ij}, |A| = 0, -1; A \neq O; |A| = -1.$$

例 2.6.

$$\begin{split} r(A) &= 3, |A| = 2, |A^{-1} - E| = 3, |A - E| = ? \\ |A - E| &= |A| \, |E - A^{-1}| = 2 \, |-1(A^{-1} - E)| = 2 \times (-1)^3 \, |A^{-1} - E| = -6 \end{split}$$

例 2.7.

[2008年真题](本题请写出计算过程)已

$$A = \begin{bmatrix} 2a & 1 & & & & \\ a^2 & 2a & 1 & & & & \\ & a^2 & 2a & 1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & a^2 & 2a & 1 \\ & & & & a^2 & 2a \end{bmatrix}$$
则 $|A| =$

A.
$$n \ a^n \ 3$$
. $(n+1) \ a^n \ D$. $(n+1) \ u \ C$. $\frac{a^n + a^{2n}}{2} = (2-1)^n \ D$. $(2 \ a)^n - (n-1) \ a^{2(n-1)}$
$$U_n = 2a \ U_{n-1} + (-1)^{n+n-1} \ a^2 \times 1 \times U_{n-2}$$

$$U_n = 2a \ U_{n-1} - a^2 \ U_{n-2}$$

$$x^2 - 2ax + a^2 = 0$$

$$U_n = (c_1 \ n + c_2) a^n$$

代入
$$U_1, U_2, \rightarrow c_1, c_2$$

2.6.1 克拉默法则

设n元线性方程组Ax = b,其中

$$A = \begin{bmatrix} 4 & 1 & & & & \\ 4 & 4 & 1 & & & & \\ & 4 & 4 & 1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & 4 & 4 & 1 \\ & & & & 4 & 4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

已知行列式 $|A| = (n+1) 2^n$,则 A.方程组有唯一解,且 $x_1 = \frac{n}{2(n+1)}$

B.方程组有一解,且 $x_1 = \frac{n}{n+1}$

C.方程组有无穷解,且 $\mathbf{x} = k(1,0,0,...,0)^{\mathsf{T}}$,其中 k为任意常数

D.方程组有无穷解,且 $\mathbf{x} = k(0, 1, 0, ..., 0)^{\mathsf{T}}$,其中 k为任意常数

由克拉默法则, $|A| \neq 0$ 时,n元线性方程组有唯一解。 由题这 $|A| = (n+1) \cdot 2^n$,故方程组有唯-解。 又由ke拉默法则,将 A的第一列替换为 b,有

$$\begin{vmatrix} 1 & 1 & & & & & \\ 0 & 4 & 1 & & & & \\ 0 & 4 & 4 & \ddots & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ 0 & & 4 & 4 & 1 \end{vmatrix}$$

$$x_1 = \frac{|a|}{|A|}$$
令 n 阶行列式 $D_n = |A| = (n+1) \cdot 2^n$, 则按第 1列展开:
$$\begin{vmatrix} 1 & 1 & & & & \\ 0 & 4 & 1 & & & \\ 0 & 4 & 4 & \ddots & & \\ \vdots & \ddots & \ddots & 1 & & \\ 0 & & & 4 & 4 \end{vmatrix} = 1 \cdot D_{n-1} = n \cdot 2^{n-1}.$$

$$\text{Mix}_1 \!\!=\!\! \frac{n\!\cdot\! 2^{n\!-\!1}}{(n\!+\!1)\!\cdot\! 2^n} \!\!=\!\! \frac{n}{2(n\!+\!1)}$$

克拉默法则

A**x** = 0 有非零解,根据克拉默法则,有|A| = 0 由A* A = |A| E , D A A = D . 则 A 的列向量全是 A* **x** = D 的解。

设齐次线性方程组 $A\mathbf{x}=0$. 已知 $(1,1,\cdots,1)^{\top}$ 是方程组的解, A_{ij} 是 A 中元素 a_{ij} 的代数余子式,令 $\boldsymbol{\alpha}_i = [A_{i1},A_{i2},\cdots A_{in}]^{\top}$ $(i=1,2,\cdots,n)$,则

- A. α_i ($i=1,2,\dots,n$) 是 $A\mathbf{x}=0$ 的一个基础解系
- B. $\alpha_i(i=1,2,\dots,n)$ 是 $A\mathbf{x}=0$ 的解向量, 并两两线性相关
- C. $\alpha_i(i=1,2,\cdots,n)$ 都为零向量, 故为 $A\mathbf{x}=0$ 的解向量
- D. $\alpha_i(i=1,2,\cdots,n)$ 包含 $A\mathbf{x}=0$ 的解向量,但不能表出所有解向量

[分析] 由 $A_{i,j}$ 是A中元素 $\alpha_{i,j}$ 的代数余子式,则[$\alpha_1,\alpha_2,\langle \mathsf{cdotp}\rangle\langle \mathsf{cdotp}\rangle\langle \mathsf{cdotp}\rangle,\alpha_n$]为 伴随矩阵 A^* . [解答] 已知 $(1,1,\cdots,1)^\mathsf{T}$ 是方程组的解,根据克拉默法则,有|A|=0. 由 $AA^*=|A|E$,且|A|=0,则 $AA^*=O$,即 A^* 的列向量 为 $A\mathbf{x}=0$ 的解向量。 因为|A|=0,则r(A)< n,有 $r(A^*)\leq 1$,分两种情况: 若 $r(A^*)=0$,则 $\alpha_i(i=1,2,\cdots,n)$ 都 为零向量,显然两两线性相关。 若 $r(A^*)=1$,则 A^* 的列向量的极大线性无关组只有 1 个向量,则两两线性相关。

例 2.8.

设 $A = (\alpha_1, \alpha_2, \alpha_3)$ 是三阶矩阵, A^* 为A 的伴随矩阵,若 $(0, 2, 1)^T$ 是方程组 $A\mathbf{x} = 0$ 的一个基础解系,则 $A^*\mathbf{x} = 0$ 的

基础解系可为(a₁,a₂)(a₁,a₃)

例 2.9.

[2011年真题]设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是四阶矩阵, A^* 为A 的伴随矩阵,若 $(1,0,1,0)^{\mathsf{T}}$ 是方程组 $A\mathbf{x} = 0$ 的一个基础解系,则

 $A*\mathbf{x} = 0$ 的基础解系可为

A.
$$\alpha_1, \alpha_3$$
 B. α_1, α_2 C. $\alpha_1, \alpha_2, \alpha_3$ D. $\alpha_2, \alpha_3, \alpha_4$

用秩来决定线性无关解的个数: 因为A**x**=0只有 1 个线性无关的解,即n-r(A)=1, n=4, 从而 r(A)=3. 由 $r(A)=3=n-1, \text{则} r(A^*)=1.$ 有 $n-r(A^*)=4-1=3, \text{故} A^*$ **x**=0 的基础解系中有 3 个线性无关的解向量。 用AB=O来得到解向量: 由A**x**=0 有非零解,则|A|=0. 由 $A^*A=|A|E, \text{及}|A|=0, \text{有} A^*A=O.$ 则A的列向量全是 A^* **x**=0 的解。 而秩r(A)=3, 故 A的列向量中必有 3 个线性无关。

需找到这3个线性无关的列向量:

由
$$A\begin{bmatrix} 1\\0\\1\\0\end{bmatrix} = 0$$
, 即 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)\begin{bmatrix} 1\\0\\1\\0\end{bmatrix} = 0$, 则 $\alpha_1 + \alpha_3 = 0$, 即 α_1, α_3 相关。
综上、 $\alpha_2, \alpha_3, \alpha_4$ 无关。

选D.

2.7 已知两个方程组的通解,求公共解。

则令通解相等,解关于常数 k_1, k_2, l_1, l_2 的新方程组

[解答]

设η是方程组(l)与(ll)的非零公共解,则

$$\eta = k_1 \, \beta_1 + k_2 \, \beta_2 = l_1 \, \alpha_1 + l_2 \, \alpha_2.$$

那么 $k_1 \beta_1 + k_2 \beta_2 - l_1 \alpha_1 - l_2 \alpha_2 = 0$ 再代入题设给出的 $\beta_1, \beta_2, \alpha_1, \alpha_2$,由此得齐次方程组 (III) $(-k_2 + l_2 = 0)$ $|k_2 - l_1 + l_2 = 0$ 对系数矩阵高斯消元.

$$k_1 - l_1 = 0$$

$$A = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

则令 $k_1 \cdot k_2 \cdot l_1 \cdot$ 为独立已知 $l_2 \cdot$ 为自由未知

 $\diamondsuit l_2 = 1, 则 l_1 = 2, k_1 = 2, k_2 = 1.$ 即通解为 $h(2, 1, 2, 1)^{\mathsf{T}}, h$ 为任意常数。

则
$$\begin{bmatrix} k_1 \\ k_2 \\ l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} 2h \\ h \\ 2h \\ h \end{bmatrix}.$$

则方程组的公共解为 $\eta = l_1 \alpha_1 + l_2 \alpha_2 = 2 h \alpha_1 + h \alpha_2 = h (2 \alpha_1 + \alpha_2) = h (-1, 1, 2, 1)^{\mathsf{T}}, h$ 为任意常数。

例 2.10. Ax = O, Bx = O同解

[2022年真题 设矩阵 A, B均为 n阶方阵, 若Ax = 0与 Bx = 0同解, 则

$$A.\begin{pmatrix} A & O \\ E & B \end{pmatrix}$$
 $\mathbf{x} = 0$ 仅有零解
$$B.\begin{pmatrix} AB & B \\ O & A \end{pmatrix}$$
 $\mathbf{x} = 0$ 仅有零解
$$C.\begin{pmatrix} A & B \\ O & B \end{pmatrix}$$
 $\mathbf{x} = 0$ 与 $\begin{pmatrix} B & A \\ O & A \end{pmatrix}$ $\mathbf{x} = 0$ 同解
$$D.\begin{pmatrix} AB & B \\ O & A \end{pmatrix}$$
 $\mathbf{x} = 0$ 与 $\begin{pmatrix} BA & A \\ O & B \end{pmatrix}$ $\mathbf{x} = 0$ 同解 (2.1)

【分析】题设为方程组,选项为分块矩阵方程,故将选项写成方程组:

令
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$$
, 其中 \mathbf{x}_1 , \mathbf{x}_2 为 n 维列向量,则
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \mathbf{x} = 0$$
等价于
$$\begin{cases} A\mathbf{x}_1 + B\mathbf{x}_2 = 0 \\ C\mathbf{x}_1 + D\mathbf{x}_2 = 0 \end{cases}$$
 (2.2)

方程组一:
$$\begin{cases} AB\mathbf{x}_1 + B\mathbf{x}_2 = 0 \\ A\mathbf{x}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} AB\mathbf{x}_1 = 0 \\ A\mathbf{x}_2 = 0 \end{cases}$$
方程组二:
$$\begin{cases} BA\mathbf{x}_1 + A\mathbf{x}_2 = 0 \\ B\mathbf{x}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} BA\mathbf{x}_1 = 0 \\ B\mathbf{x}_2 = 0 \end{cases}$$

以上等价应用了题设条件: 若 $Ax_2=0$,则 $Bx_2=0$,反之亦然。由 $ABx_1=0$ 与 $BAx_1=0$ 不

一定同解(注:只能得出 Bx_1 是

只能得出 $B\mathbf{x}_1$ 是 $A\mathbf{x}=0$ 的基础解系,及 $A\mathbf{x}_1$ 是 $B\mathbf{x}=0$ 的基础解系,不能得出同解

2.8 相似对角化

例 2.11.

例2(22数一):下述四个条件中,3阶矩阵A可对 角化的一个充分但不必要条件是()

- (A)A有3个互不相等的特征值
- (B)A有3个线性无关的特征向量
- (C)A有3个两两线性无关的特征向量
- (D)A的属于不同特征值的特征向量正交

B ⇔ A可相似对角化

 $C \Leftarrow$

D #

评注:数学定理的表述中有一些默认的潜台词,例如定理中说"p是q的充分条件",潜台词就是告诉你"p不是q的必要条件",因为否则的话他会表述为"p是q的充要条件"!这样的例子有很多,回忆高数中的""偏导数连续是可微的充分条件",潜台词就是有些可微的二元函数,偏导数并不连续!

2.9 $(A+E)^n$

例 2.12.

例
$$3(22$$
数三):设A为 3 阶矩阵,A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,则A

的特征值为1,-1,0的充分必要条件是()

- (A)存在可逆矩阵P,P,使得 $A = P\Lambda Q$
- (B)存在可逆矩阵P,使得 $A = P\Lambda P^{-1}$
- (C)存在正交矩阵Q,使得 $A = Q\Lambda Q^{-1}$
- (D)存在可逆矩阵P,使得 $A = P\Lambda P^T$
- A A, 矩阵等价的定义, AB相似则AB一定等价 \leftarrow
- $B A \text{ and } \Lambda$ 相似(可对角化)的定义 \Leftrightarrow A的特征值为1, -1, 0
- C A不是实对称矩阵的时候, Q不一定存在 \Rightarrow
- D 矩阵合同的定义 ⇔

2.9 $(A+E)^n$

展开 $(A+E)^n = A^n + nA^{n-1} + \cdots + nA + E$. 失求 A^n .

利用矩阵乘法的结合律,有 $A^n=(\alpha\,\beta^\top)\,(\alpha\,\beta^\top)\cdots(\alpha\,\beta^\top)=\alpha\,(\beta^\top\,\alpha)\cdots(\beta^\top\,\alpha)\,\beta^\top$ 由条件, $\beta^\top\,\alpha=0-1+1=0$,故当 n>1时, $A^n=O$

则
$$(A+E)^n = nA + E = n\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} + E = \begin{bmatrix} 1 & n & n \\ 0 & 1-n & -n \\ 0 & n & n+1 \end{bmatrix}$

第3章

最最最易错的分解

3.1 隐函数的存在定理

- **例 3.1.** 有三元方程 $\frac{x}{y} + yz e^z = 1$,根据隐函数存在定理,存在点(2,1,0)的一个邻域,在此邻域内该方程
 - A. 只能确定一个具有连续偏导数的隐函数z = z(x, y)
 - B. 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - C. 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - D. 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

分别对x, y, z求偏导,有:

代入目标点的坐标x=2, y=1, z=0,有: $F'_x(2,1,0)=1, F'_y(2,1,0)=-2, F'_z(2,1,0)=0$.

根据隐函数存在定理,因为 F'_x 连续且 $F'_x(2,1,0) \neq 0$,故存在点(2,1,0)的一个邻域,可以确定隐函数x = x(y,0)

z)存在.同理可以确定隐函数

$$y = y(x, z)$$
 存在.

因为 $F'_z(2,1,0)=0$,故不能确定隐函数z=z(x,y)的存在性。

故选 D.

注意 3.2.

隐函数存在定理为充分条件,即无法判定z = z(x, y)不存在。

3.1.1
$$\frac{x^2+c}{(x+a)(x+b)^2}$$

$$\frac{x^2+5}{(x-2)\,(x+1)^2} = \frac{A}{x-2} + \frac{B}{x+1} + \frac{C}{(x+1)^2}.(1)$$

注意拆项时要写成 $\frac{B}{x+1} + \frac{C}{(x+1)^2}$ 两项, 如果只有 $\frac{B}{x+1}$, 可能不存在满足条件的 B.

$$x^{2} + 5 = A(x+1)^{2} + B(x-2)(x+1) + C(x-2)$$

使用留数法:令x = 2, 得A = 1. 同理,令x = -1, 可得C = -2.

使用赋值法:令 x=0,解得 B=0

24 最最易错的分解

有理分式: 分母能因式分解, 含二次式的高次幂, 则拆成分子为一次式的项

$$\frac{x^2 - 2x + 2}{(2+x^2)^2} = \frac{Ax + B}{2+x^2} + \frac{Cx + D}{(2+x^2)^2}.$$

$$\int e^{x} \cdot \frac{x^{2}-2x+2}{(2+x^{2})^{2}} dx$$

(dbm:17.) kill(all)

done

(dbm:18.) eq1:
$$\frac{x^2-2x+2}{(2+x^2)^2}$$
;

$$\frac{x^2. - 2. x + 2.}{(x^2. + 2.)^2.}$$

(dbm:18.) eq2:
$$\frac{ax+b}{2+x^2} + \frac{cx+d}{(2+x^2)^2}$$

$$\frac{a\,x+b}{x^2.+2.} + \frac{c\,x+d}{(x^2.+2.)^2.}$$

(dbm:18.) solve(eq1 - eq2 = 0,
$$a = -\frac{2}{3}, b, c, d$$
)

$$\left[\left[a = -\left(\frac{2}{3}\right)\right] = \%R26, b = \%R28, c = \%R27, d = -(a x^{3}) + (1. - \%R28) x^{2} + (-(2. a) - \%R27 - 2.) x - 2.\%R28 + 2.\right]$$

(dbm:18.) eq1: 'frac($x^2 - 2*x + 2$, (2 + x^2)'2);

$$\operatorname{frac}(x^2. - 2. x + 2., (x^2. + 2.)^2.)$$

(dbm:18.) eq2: 'frac(ax + b, 2 +
$$x^2$$
) + 'frac(cx + d, (2 + x^2)'2);

 $\operatorname{frac}(d + \operatorname{cx}, (x^2 + 2)^2) + \operatorname{frac}(b + \operatorname{ax}, x^2 + 2)$

(dbm:18.) sol: linsolve([eq1 - eq2], [a, b, c, d]);

♡含
$$\sqrt{\frac{ax+b}{cx+d}}$$
的积分,命 $\sqrt{\frac{ax+b}{cx+d}}$ =t.

原式 =
$$\int_{2}^{8} \sqrt{\frac{x-2}{3x}} dx = \int_{0}^{\frac{1}{2}} \frac{12t^{2}}{(3t^{2}-1)^{2}} dt$$
.

$$\frac{t^2}{(3\,t^2-1)^2} = \frac{t^2}{(\sqrt{3}\,t-1)^2\,(1+\sqrt{3}\,t)^2}$$
是有理分式,分母能因式分解
$$\frac{t^2}{(3\,t^2-1)^2} = \frac{A}{\sqrt{3}\,t-1} \,+\, \frac{B}{(\sqrt{3}\,t-1)^2} + \frac{C}{(\sqrt{3}\,t+1)^2}.$$

(dbm:3.)
$$f(a) := sqrt((a-2)/(3*a))$$

$$f(a) := \sqrt{\frac{a-2}{3 \cdot a}}$$

3.1 隐函数的存在定理 25

```
(dbm:3.) jf(a) := integrate(f(a), a, 2, 8)
```

jf(a) := integrate(f(a), a, 2., 8.)

(dbm:3.) jf(a)

$$\frac{-\log \left(\sqrt{2}.\sqrt{6}.+4.\right)+\log \left(\sqrt{2}.\sqrt{6}.-4.\right)-\log \left(-1.\right)+2^{\frac{3}{2}}\sqrt{6}.}{\sqrt{3}.}$$

(dbm:3.) zk(a):=integrate(f(a),a)

$$zk(a) := integrate(f(a), a)$$

(dbm:3.) expand(zk(a))

$$\frac{\sqrt{1.-\frac{2.}{a}}\,a}{\sqrt{3.}}-\frac{\log\left(\sqrt{1.-\frac{2.}{a}}+1.\right)}{\sqrt{3.}}+\frac{\log\left(\sqrt{1.-\frac{2.}{a}}-1.\right)}{\sqrt{3.}}$$

(dbm:3.) factor(zk(a))

$$\frac{\sqrt{\frac{a-2.}{a}} \ a - \log \left(\sqrt{\frac{a-2.}{a}} + 1.\right) + \log \left(\sqrt{\frac{a-2.}{a}} - 1.\right)}{\sqrt{3.}}$$

(dbm:3.) fullratsimp(zk(a))

$$\frac{\sqrt{\frac{a-2.}{a}}\,a-\log\left(\sqrt{\frac{a-2.}{a}}+1.\right)+\log\left(\sqrt{\frac{a-2.}{a}}-1.\right)}{\sqrt{3.}}$$

 $\label{lem:3.} $$ \left(\frac{1}{2}\right) \frac{1}{2} \left(\frac{12t^2}{\left(3t^2-1\right)^2} \operatorname{d}t. \right) . $$$

incorrect syntax: { is not an infix operator

 $\int_0^{\frac{0}{f_{c}}}$

^

(dbm:3.)
$$hy(t) := \frac{12 t^2}{(3 t^2 - 1)^2}$$

$$hy(t) := \frac{12 \cdot t^2}{(3 \cdot t^2 - 1)^2}$$

(dbm:3.) jf(t) := integrate(hy(t), t, 0, 1/2)

$$\mathrm{jf}(t) := \mathrm{integrate}\bigg(\mathrm{\,hy}(t), t, 0., \frac{1.}{2.}\bigg)$$

(dbm:3.) fullratsimp(jf(t))

$$\frac{\sqrt{3.}\log(7.-4.\sqrt{3.})+12.}{3}$$

26 最最易错的分解

```
(dbm:3.) trace(hy(t))
```

trace: argument is apparently not a function or operator: $\mathrm{hy}(t)$

[]

(dbm:3.) step(hy(t))

incorrect syntax: ; is an unknown keyword in a do statement.

step(hy(t));

^

求系数
$$A,B,C,D.(1)$$
 两侧同乘 $(\sqrt{3}\,t-1)^2\,(\sqrt{3}\,t+1)^2$,得
$$t^2=A\cdot(\sqrt{3}\,t-1)\,(\sqrt{3}\,t+1)^2+B\cdot(\sqrt{3}\,t+1)^2+C\cdot(\sqrt{3}\,t+1)\,(\sqrt{3}\,t-1)^2+D\cdot(\sqrt{3}\,t-1)^2.$$

使用留数法:令 $t=\frac{\sqrt{3}}{3}$ 可得 $B=\frac{1}{12}$;令 $t=-\frac{\sqrt{3}}{3}$ 可得 $D=\frac{1}{12}$. 使用赋值法:分别令t=0和 $t=\sqrt{3}$,并代入B和D的值,解得: $A=\frac{1}{12},C=-\frac{1}{12}$

3.1.2 arccos的区间

(dbm:5)
$$ac(x) := acos(cos(x))$$

$$as(x) := asin(sin(x))$$

ac(x) := arccos(cos(x))

 $\mbox{(dbm:5)} \ \ \mbox{tm_plot} 2d([\mbox{ac}(x),\mbox{as}(x),\mbox{sin}(x),\mbox{cos}(x)], [x,\frac{7\,\pi}{2},4\,\pi], [y,-2,3])$

 $\langle image | \langle tuple | \langle raw-data \rangle | pdf \rangle | 0.618 par | | | \rangle true$

(dbm:5) tm_plot2 $d([ac(x), as(x), sin(x), cos(x)], [x, -3\pi, 3\pi], [y, -3, 4])$

true

3.1 隐函数的存在定理 27

true

(dbm:5) as(x) := asin(sin(x));

as(x) := arcsin(sin(x))

(dbm:5)

arcsin 的性质: $(\arcsin{(\sin{x})}) = (2k-1)\pi - x$, $\arcsin{(\sin{(x)})} = x - 2k\pi$ arcsin x 的值域是 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ arcsin (\sin{x}) 等价于在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 中均到一点 x_0 使得 $\sin{x_0} = \sin{x}$

対 $\frac{\pi}{2} + 2 \operatorname{kx} \le x \le \frac{3\pi}{2} + 2 \operatorname{k} \pi \ (k \in \pi)$ 最arcsin $(\sin(x)) = (2 \operatorname{k} + 1) \pi - x$ 対 $-\frac{\pi}{2} + 2 \operatorname{k} \pi \le x \le \frac{\pi}{2} + 2 \operatorname{k} \pi \ (k \in \mathbb{Z})$,

有 $\arcsin(\sin(x)) = x - 2k\pi$ 特

别对: $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \arcsin(\sin x) = x$.

类似的 $\arccos x$ 的值域是 $[0,\pi]$ 对 $-\pi+2k\pi\leq x\leq 2k\pi$ $(k\in\mathbb{Z})$ 有 $\arccos(\cos(x))=2k\pi-x$ 对 $2k\pi\leq x\leq x\leq x+2k\pi$ $(k\in\mathbb{Z})$ 有

 $\arccos\left(\cos\left(x\right)\right)=x-2\pi(x$ 特别的,对于 $x\in[0,\pi]$ 对于 $x\in[0,\pi]$ 的,对于 $x\in[0,\pi]$ 的,有 $\arccos\left(\cos\left(x\right)\right)=2k\pi-x$ 对 $2k\pi\leq x\leq\pi+2k\pi$ $(k\in\mathbb{Z})$ 有

二重积分 $\int_{-\frac{5\pi}{2}}^{\frac{8\pi}{3}} \mathrm{d}x \int_{-\frac{1}{2}}^{\cos x} f(x,y) \mathrm{d}y$ 对应的积分区域为 $D = \left\{ (x,y) | \frac{5\pi}{2} \le x \le \frac{8}{3}\pi, -\frac{1}{2} \le y \le \cos x \right\}$ 如图所示,是 $y = -\frac{1}{2}$ 上方, $y = \cos x$ 下方, $x = \frac{5\pi}{2}$ 右侧的区域。交换积分顺序,将区域D 写为 $a \le y \le b, \varphi_1(y) \le x \le \varphi_2(y)$ 的形式: 求x 右边界. 在边界上 $y = \cos x$. 因为 $\frac{5\pi}{2} \le x \le \frac{8}{3}\pi$, 故arccos $(\cos(x)) = x - 2\pi$. 即 $x = \arccos(y) + 2\pi$.则

$$D = \left\{ (x, y) \mid \frac{5\pi}{2} \le x \le \arccos(y) + 2\pi, -\frac{1}{2} \le y \le 0 \right\}$$

28 最最易错的分解

3.2 曲率圆

曲率圆的导数性质: 曲线L与曲率圆C在切点处的y, y', y''均相等。同理, x, x', x''也相等

曲线L: y = f(x)上点 $(x_0, f(x_0))$ 处的曲率圆C: y = c(x)有如下性质:

1. 过 $(x_0, f(x_0))$,即 $c(x_0) = f(x_0)$;

2.与L 在 $(x_0, f(x_0))$ 处相切,即 $c'(x_0) = f'(x_0)$;

3.与L 在 $(x_0, f(x_0))$ 处有相同的曲率,根据曲率公式 $K = \frac{|y''|}{(1+(y')^2)^{\frac{3}{2}}}$ 可知 $c''(x_0) = f''(x_0)$

即曲线L与曲率圆C在切点处的y, y', y''均相等。

[常见题型]

题目给出L: y = f(x)上某一点的曲率圆,求f(x)表达式中的待定系数。 求解方法为: 计算 $c(x_0)$, $c'(x_0)$, $c''(x_0)$ 得到 $f(x_0)$, $f'(x_0)$, $f''(x_0)$, 进而求解函数表达式。

[拓展] 同理,曲线L与曲率圆C在切点处的x,x',x''均相等。当 $y'=\infty$ 无法求解系数时,用x,x',x''求解。

3.3 判断函数的凹凸性,并根据凹凸函数的图像性质求解

例 3.3.

设 $f(x) = 3^x + x$,且f(x) = g(x) + h(x),其中 g(x)是奇函数, h(x)是偶函数,则 h(1) =

[分析] f(x) 的定义域关于原点对称,则 f(x) 可以写成奇函数和偶函数的和。

$$\mathbb{P} f(x) = \frac{f(x) - f(-x)}{2} + \frac{f(x) + f(-x)}{2}.$$

[解答]

第4章 高数基础

4.1 函数极限

4.1.1 极限的定义

[1996年真题]设函数 f(x) 在区间 $(-\delta, \delta)$ 内有定义,若当 $x \in (-\delta, \delta)$ 时,恒有 $[f(x)] \le x^2$,则x = 0 必是 f(x)

的

A. 间断点 B. 连续而不可导的点 C. 可导的点, 且f'(0) = 0 D. 可导的点, 且 $f'(0) \neq 0$

C 选项正确。

4.1.2 一些写错的极限计算

设 $\lim x_n$ 存在,则下列选项哪个是律误的?

$$A_{n\to\infty} \frac{x_{n+1}}{x_n}$$
可能为 1

$$A \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$$
可能为 1
$$B. \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$$
可能小于 1

$$C.\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$$
可能大于 1

C.
$$\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$$
可能大于 1
D. $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$ 可能不存在

由
$$\lim_{n\to\infty} x_n = 0$$
 时, $\frac{0}{0}$ 为不定式,则 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$ 可能存在,可能不存在。故 D 正确.

由
$$\lim_{n\to\infty} x_n = 0$$
 时, $\frac{0}{0}$ 为不定式,则 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$ 可能存在,可能不存在。故 D 正确。 令 $\lim_{n\to\infty} x_n = a$, 当 $a \neq 0$ 时,则 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \frac{x_{n\to\infty}}{\lim_{n\to\infty} x_n} = \frac{a}{a} = 1$ 故 A 正确。 令 $x_n = a^n$, ($|a| < 1$),则 $\lim_{n\to\infty} x_n = 0$ 而 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = a < 1$,故 B 正确。

令
$$x_n = a^n$$
, $(|a| < 1)$, 则 $\lim_{n \to \infty} x_n = 0$ 而 $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = a < 1$,故 B 正确。

【证明 C错误】

反证:若 $\left|\lim_{n\to\infty}\frac{x_{n+1}}{x_n}\right|>1$,由保号性,存在 N 使得当 n>N时, $\left|\frac{x_{n+1}}{x_n}\right|>1$,故 $\lim_{n\to\infty}x_n=\infty$,极限不存在,与条件矛

$$\lim_{x\to 0^-} - \frac{\int_0^1 \sqrt{2\text{-}2\cos\ (2xt)}\ dt}{x}$$

则左导数
$$\varphi'_{-}(0) = \lim_{x \to 0^{-}} - \frac{\int_{0}^{1} \sqrt{2 - 2\cos{(2 \operatorname{xt})}} \, \mathrm{d}t}{x} = \lim_{x \to 0^{-}} - \frac{\int_{0}^{2x} \sqrt{2 - 2\cos{u}} \, \mathrm{d}u}{2 \, x^{2}} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}} - \frac{2 \cdot \sqrt{2 - 2\cos{(2 \, x)}}}{4 \, x} = \lim_{x \to 0^{-}$$

$$\lim_{x \to 0^-} -\frac{2 \cdot \sqrt{4 \sin^2 x}}{4 x}$$

$$= \lim_{x \to 0^{-}} - \frac{|\sin x|}{x} = \lim_{x \to 0^{-}} \frac{\sin x}{x} = 1$$

其中倒数第一个等号使用了sin x的等价无穷小。

32 高数基础

 $\mathcal{O}[2022$ 年真题] 当 $x \to 0$ 时, $\alpha(x), \beta(x)$ 是非零无穷小量,给出以下四个命题

$$(1)$$
若 $\alpha(x) \sim \beta(x)$,则 $\alpha^2(x) \sim \beta^2(x)$;

$$(2)$$
若 $\alpha^2(x) \sim \beta^2(x)$,则 $\alpha(x) \sim \beta(x)$;

$$(3)$$
若 $\alpha(x) \sim \beta(x)$,则 $\alpha(x) - \beta(x) = o(\alpha(x))$;

$$(4)$$
若 $\alpha(x) - \beta(x) = o(\alpha(x)), 则 \alpha(x) \sim \beta(x)$

1.
$$\frac{\alpha}{\beta} = 1, \frac{\alpha^2}{\beta^2} = 1 \times 1 = 1$$

$$2. \quad \frac{\alpha^2}{\beta^2} = 1 \quad \frac{\alpha}{\beta} = \pm 1$$

$$3 \quad \frac{\alpha}{\beta} = 1 \quad \frac{a - \beta}{\alpha} = 1 - \frac{\beta}{\alpha} = 0 \quad \text{yes}$$

$$4 \frac{\alpha - \beta}{\alpha} = 0 \qquad 1 - \frac{1}{\frac{\alpha}{\beta}} = 0 \quad \frac{\alpha}{\beta} = 1$$

♥wrong usually

$$\begin{split} &\lim_{x \to +\infty} \frac{\int_{1}^{x} 2\,t^{2} \left(\sqrt{1 + \frac{1}{t}} - 1\right) - t\,\mathrm{d}t}{\int_{1}^{x^{2}} \arcsin\frac{1}{\sqrt{t}}\,\mathrm{d}t} \\ &= \lim_{x \to +\infty} \frac{2\,x^{2} \left(\sqrt{1 + \frac{1}{x}} - 1\right) - x}{2\,x \cdot \arcsin\frac{1}{x}} \\ &= \lim_{x \to +\infty} \frac{2\,x^{2} \left(\sqrt{1 + \frac{1}{x}} - 1\right) - x}{2\,x \cdot \frac{1}{x}} \\ &= \lim_{x \to +\infty} \frac{1}{2} \left[2\,x^{2} \left(\frac{1}{2\,x} + \frac{\frac{1}{2} \left(-\frac{1}{2}\right)}{2\,x^{2}} + o\left(\frac{1}{x^{2}}\right)\right) - x\right] \\ &= \lim_{x \to +\infty} \frac{1}{2} \left[x - \frac{1}{4} + o(1) - x\right] \\ &= -\frac{1}{8} \end{split}$$

例 4.1. $\lim_{x \to -1^+} \frac{\ln|1 + (x+1)|}{|x^3 - x|}$,跳跃间断点。

$$x = -1$$
时,

右 极 限 : $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{(x+2) (x-1) \ln |1+(x+1)|}{x(x-1) (x+1)} = -\lim_{x \to -1^+} \frac{x+1}{x+1} = -1$ 左极限: $\lim_x \to -1^- f(x) = \lim_{x \to -1^-} \frac{(x+2) (x-1) \ln |1+(x+1)|}{x(1-x) (1+x)} = \lim_{x \to -1^-} \frac{x+1}{1+x} = 1$ 因为左、右极限存在但不相等,所以 $x = \pm 1$ 是f(x)的跳跃间断点

(%i1)
$$f(x) := \frac{\log(abs(1+(x+1)))}{abs(x^3-x)}$$

(%o1)
$$f(x) := \frac{\log(|1+(x+1)|)}{|x^3-x|}$$

(%i2) tm_plot2
$$d([f(x)], [x, -10, 10], [y, -3, 7])$$

4.1 函数极限 33

(%o2) true

(%i3)

4.1.3 极限的判定

设函数 f(x)在 (0,1]上连续,在 (0,1)上可导,又设 $\lim_{x\to 0^+} f(x) = f(1) = 0$,用下列哪些定理可以证明:至少存在一点 $\xi\in(0,1)$ 使得 $f'(\xi)=0$.

- (1)费马定理;
- (2)极限定义;
- (3)夹逼定理;
- (4)闭区间上连续函数的最值定理;
- (5)函数可导,则区间内的最值为极值。

(原题为证明题,请写下完整证明,再作选择)

- A. 1,4,5
- B. 1, 2, 4, 5
- C. 1,3,5
- D.2, 3, 4

[分析]通常证明 $f'(\xi)=0$,用罗尔定理。 但这里的条件为 $\lim_{x\to 0^+}f(x)=f(1)$,不符合罗尔定理, 故用费马定理。 用费马定理证明 $f'(\xi)=0$,只需证明 (0,1)区间内存在极值。

[证明]

分两种情况讨论:

1.函数 f(x) = 0,则 f(x) 在(0,1]上处处有f'(x) = 0,命题得证。

高数基础 34

2. 函数 f(x) 不恒为0, 故存在 $f(c) \neq 0$ 不失一般性, 设 f(c) > 0. (如果设 f(c) < 0, 证法完全类似) 由 $\lim_{x \to 0} f(x) = 0$,根据极限定义,存在 δ ,使得当 $\mathbf{0} < \mathbf{x} \le \delta$ 时,|f(x) - 0| < f(c) 由于在区间 $(0, \delta]$ 上|f(x)| < f(c), 故c不在区间 $(0,\delta]$ 上,即 $c \in (\delta,1]$ 由f(x)在 $[\delta,1]$ 上连续,根据闭区间上连续函数的最值定理, f(x)在 1),在区间内。 因为f(x) 在 $(\delta,1)$ 上可导,则区间内的最值为极值,故 $f(\xi)$ 为极大值。 根据费马定理, 如果极值点可导,则导数为0,故 $f'(\xi)=0$.

证毕。

(注:此命题是罗尔定理的推广)

以上证明依次用到了

- (2)极限定义;
- (4)闭区间上连续函数的最值定理;
- (5)函数可导,则区间内的最值为极值。
- (1)费马定理;

4.1.4 复合函数的奇偶性

例 4.2.

[2022年真题]设 $-\frac{n}{2} \le x_n \le \frac{n}{2}$,则 A. 若 $\lim_{n \to \infty} \cos(\sin x_n)$ 存在,则 $\lim_{n \to \infty} x_n$ 存在. B. 若 $\lim_{n \to \infty} \sin(\cos x_n)$ 存在,则 $\lim_{n \to \infty} x_n$ 存在 C.若 $\lim_{n \to \infty} \cos(\sin x_n)$ 存在,则 $\lim_{n \to \infty} \sin x_n$ 存在,但 $\lim_{n \to \infty} x_n$ 不一定存在. D.若 $\lim_{n \to \infty} \sin(\cos x_n)$ 存在,则 $\lim_{n \to \infty} \cos x_n$ 存在,但 $\lim_{n \to \infty} x_n$ 不一定存在.

判断复合函数奇偶性:内偶则止于偶,内奇则穿至外

意思是, 内部函数为偶函数, 则该复合函数就为偶函数。

内部函数为奇函数,则看外面的函数,

外面的函数为奇函数,则为奇函数,外面的函数为偶函数,则为偶函数

[分析]数列极限不存在的常见例子, 1.反复横跳, 2.趋于无穷。

由 $-\frac{\pi}{2} \le x_n \le \frac{\pi}{2}$,则考虑 $\{x_n\}$ 反复横跳,最常用的例子是: $x_n = \begin{cases} 1 & n$ 为奇数,-1, n为6数。

 $ilde{a}f(x)$ 为偶函数,且f(1)=f(-1)=c存在,则 $\{f(x_n)\}$ 为常数数列,即 $\{f(x_n)\}$ 收敛。

由于 $\cos x$, $\cos (\sin x)$, $\sin (\cos x)$ 都是偶函数, 则 $\lim \cos x_n$, $\lim \cos (\sin x_n)$, $\lim \sin (\cos x_n)$ 均为常数数列,故存在。 但 $\lim_{n\to\infty}^{n\to\infty} x_n$ 不存在。 $\overline{\text{misin }}_{x}^{n\to\infty}$ 为奇函数, $\sin 1\neq\sin (-1)$, 故 $\lim_{n\to\infty}\sin x_{n}$ 不存在。

4.1 函数极限 35

(%i3) $tm_plot2d([sin(cos(x)), cos(sin(x))], [x,-5,5], [y,-1,1])$

(%o3) true

(%i4)

原理很简单,以图像的方式来说就是,正常画图时我们默认的x是从负无穷到正无穷,可以把x本身看做一个奇函数,然后此时y该是什么函数就是什么函数,也就是内奇同外,然后看内层函数为偶函数的函数,可以使坐标轴横轴左右对称,让x为偶函数,也就是从左到右依次为正无穷,0,正无穷,也就是说,此坐标图上的右侧不变,左侧对称过去,此时无论外层函数为奇函数还是偶函数,对称过去都是偶函数,也就是内偶则偶。

4.1.5 复合函数的极限定理

设 f[g(x)] 在点 x_0 的某去心邻域内有定义。 若 $\lim_{x \to x_0} g(x) = u_0$, $\lim_{u \to u_0} f(u) = A$, 且存在 $\delta_0 > 0$, 当 $x \in \mathring{U}(x_0, \delta_0)$ 时,有 $g(x) \neq u_0$,(条件 (1)) 则 $\lim_{x \to x_0} f(g(x)) = \lim_{u \to u_0} f(u) = A$.

若不存在一个去心邻域使得 $g(x) \neq u_0$,则任何去心邻域里都可能有无穷多个无定义的点, 由它们组成的子数列必然无极限, 故原数列极限不存在。 例 如 : 令 $g(x) = x \sin\left(\frac{1}{x}\right)$, $f(u) = \frac{\sin u}{u}$,有 $\lim_{x \to 0} g(x) = 0$, $\lim_{u \to 0} f(u) = 1$.

[为什么需要条件(1)?]

因为 $f(u_0)$ 可能无定义。条件中只给出 $\lim_u \to u_0$ f(u) = A, 而极限存在不代表 $f(u_0)$ 有定义。 但复合函数 $f(g(x)) = \frac{\sin\left(x\sin\left(\frac{1}{x}\right)\right)}{x\sin\left(\frac{1}{x}\right)}$ 在g(x) = 0时无定义。 而当 $x = \frac{1}{n\pi}$ 时, $g(x) = x\sin\left(n\pi\right) = 0$.故无论 δ 多么小,在 x = 0 的 δ 去心邻域 $\mathring{U}(0,\delta)$ 内,g(x) 在无穷多个点上为 0,而f(g(x)) 在这些点上无定义。

题目 4.1.

高数基础 36

若 $\lim g(x) = c$, 其中 c 为常数或 ∞ , $\lim f(u) = 1$, 则下列哪个选项是正确的?

x = 0A. 若 $\lim_{x \to 0} g(x)$ 不存在,则 $\lim_{x \to 0} f(g(x))$ 必不存在 B. 若 $\lim_{x \to 0} g(x)$ 存在,则 $\lim_{x \to 0} f(g(x))$ 必存在 C. 若 $\lim_{x \to 0} g(x)$ 不存在,则 $\lim_{x \to 0} f(g(x))$ 必存在 D. 若 $\lim_{x \to 0} g(x)$ 趋于无穷,则 $\lim_{x \to 0} f(g(x))$ 可能不存在

选项 C 中,因为 $\lim_{x\to 0}g(x)=c$,其中 c 为常数或 ∞ ,若 $\lim_{x\to 0}g(x)$ 不存在,则 $\lim_{x\to 0}g(x)=\infty$ 则在 x=0 的任何去心邻域内,都有 $g(x)\neq\infty$,满足条件 (1),故 $\lim_{x\to 0}f(g(x))=1$,极限存在 选 C. 【其余选项】

B:与定理比较,缺少条件(1),故错误。

D. **若** $\lim_{x\to 0} g(x)$ 趋于无穷,则 $\lim_{x\to 0} f(g(x))$ 必存在。故 D错误。

4.1.6 重要极限∞0

例 4.3.
$$\diamondsuit$$
 $\lim_{x\to 0^+} \left(1 + e^{\frac{1}{\sin x}}\right)^{\ln(1 + 2\sin x)} = C$, 求 $\ln C$

$$\begin{split} *l \, i \, m_{x \to 0^+} \ln \left[\left(1 + e^{\frac{1}{\sin x}} \right)^{\ln \left(1 + 2\sin x \right)} \right] \\ = \lim_{x \to 0^+} \left[\ln \left(1 + 2\sin x \right) \cdot \ln \left(1 + e^{\frac{1}{\sin x}} \right) \right] \\ = \lim_{x \to 0^+} 2(\sin x) \ln \left(1 + e^{\frac{1}{\sin x}} \right) = \lim_{u \to +\infty} \frac{2 \ln \left(1 + e^u \right)}{u} \end{split}$$

$$\lim_{\substack{u \to +\infty \\ 0 = 2.}} \frac{2\ln\left(1 + e^u\right)}{u} = \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left[e^u\left(e^{-u} + 1\right)\right]}{u} = \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2u + 2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\ u \to +\infty}} \frac{2\ln\left(e^{-u} + 1\right)}{u} = 2 + \lim_{\substack{u \to +\infty \\$$

$4.1.7 \frac{\infty}{\infty}$

$$\lim_{n \to \infty} \frac{n^{\frac{n^2 + n + 1}{n}}}{(n+1)^n} (\sqrt[n]{2} - 1) =$$

首先化简。
$$\lim_{n\to\infty}\frac{n^{\frac{n^2+n+1}{n}}}{(n+1)^n}(\sqrt[n]{2}-1)=\lim_{n\to\infty}\frac{n^{n+1+\frac{1}{n}}}{(n+1)^n}(\sqrt[n]{2}-1)=\lim_{n\to\infty}\frac{n^n\cdot n\cdot n^{\frac{1}{n}}}{(n+1)^n}(\sqrt[n]{2}-1)=\lim_{n\to\infty}\frac{n}{\left(\frac{n+1}{n}\right)^n}(\sqrt[n]{2}-1)$$
 1)

第三步用了
$$\lim_{x \to \infty} n^{\frac{1}{n}} = 1$$
,并上下同除 n^n .
$$\lim_{x \to \infty} \frac{n^{\frac{n-1}{n}}}{\left(\frac{n+1}{n}\right)^n} (\sqrt[n]{2} - 1) = \lim_{x \to +\infty} \frac{x}{\left(\frac{x+1}{x}\right)^x} (\sqrt[n]{2} - 1)$$
,即数列极限 =函数极限。
$$\lim_{x \to +\infty} \frac{x}{\left(\frac{x+1}{x}\right)^x} (\sqrt[n]{2} - 1) = \lim_{x \to +\infty} \frac{x}{e} \left(e^{\frac{\ln 2}{x}} - 1\right) = \lim_{x \to +\infty} \frac{x}{e} \left(\frac{\ln 2}{x}\right) = \frac{\ln 2}{e}$$
 第一步用了 $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$,第二步用了 $e^x - 1$ 的等价无穷小。

4.1.8 1^{∞}

例 4.4.
$$\diamondsuit$$
 $\lim_{x\to 0} \left(\frac{\tan x}{\arctan x}\right)^{\frac{1}{\ln(1+x^2)}} = C$,求 $\ln C$. $=\frac{2}{3}$

4.2 f(x,y)£f(0,0)£

[分析]

首先检验,由 $\tan x$ 和 $\arctan x$ 的等价无穷小,有 $\lim_{x\to 0}\frac{\tan x}{\arctan x}=\lim_{x\to 0}\frac{x}{x}=1$,又 $\lim_{x\to 0}\frac{1}{\ln{(1+x^2)}}=\frac{1}{0}=\infty$,故这是 1^∞ 的类型三极限。 最常用的方法是将给定函数写成 $(1+x)^{\frac{1}{x}}$ 的形式,然后使用重要极限: $\lim_{x\to 0}{(1+x)^{\frac{1}{x}}}=e$.

也可以直接使用结论, 设 $\lim_{x \to x_0} \alpha(x) = 0$, $\lim_{x \to x_0} \beta(x) = \infty$, $\lim_{x \to x_0} \alpha(x) \beta(x) = A$,

则

$$\lim_{x \to x_0} (1 + \alpha(x))^{\beta(x)} = \lim_{x \to x_0} \left\{ [1 + \alpha(x)]^{\frac{1}{a(x)}} \right\}^{a(x)\beta(x)} = e^A$$

4.1.9 复合函数

因为 $\ln \left[\cos \left(\frac{1}{x}\right) + 2\right]$ 是复合函数,故利用复合函数的单调性质,"同增异减"。

[解答]

又因为x+2单调增加,故 $\cos(1)$

因为 $\frac{1}{x}$ 在 $(1,+\infty)$ 上单调减少,其值域范围是(0,1),且 $\cos x$ 在(0,1)上单调减少,故 $\cos\left(\frac{1}{x}\right)$ 在 $(1,+\infty)$ 上单调增加.

+2 单调增加;因为 $\ln x$ 单调增加,故 $\ln \left[\cos \left(\frac{1}{x}\right) + 2\right]$ 单调增加。

true

4.2 f(x,y)在f(0,0)处

连续?偏导数存在?偏导数连续?可微分?

二元函数
$$f(x,y) = \begin{cases} \frac{x^2 y^3}{(x^2 + y^2)^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 =上

在点(0,0)处

- A. 不连续
- B. 连续但偏导数不存在
- C. 连续且偏导数存在但不可微
- D. 可微

$$\begin{split} & \pm \left| \frac{2\,x\,y}{x^2 + y^2} \right| \leq 1, \text{则} \; \frac{x^2\,y^2}{(x^2 + y^2)^2} \leq \frac{1}{4}, \text{即 函 数 有 界 }, \; = \frac{1}{4}, \text{即 函 数 有 界 }, \; \text{而} \lim_{x} \to 0 \, y = 0, \text{故与有界函数的积为} \\ & \lim_{(x,y) \to (0,0)} \frac{x^2\,y^2}{(x^2 + y^2)^2} \cdot y = 0. \; \, \text{则} * l \, i \, m_{(x,v) \to (0,0)} \, f(x,y) = f(0,0), \text{即在点 } (0,0) \; \text{处连续}. \end{split}$$

偏导数本质上是一元函数的导数。 定义一元函数 $\varphi(x) = f(x, y_0), \, \text{则} \, f_x'(x_0, y_0) = \varphi'(x_0). \, \, \text{易见当} \, x, \, y \neq 0$ 时, f(x,0) = f(0,y) = 0,则对应的一元函数连续且恒等于0. 故 $f_x'(0,0) = f_y'(0,0) = 0$,偏导数存在。

判定可微:

$$\begin{split} & \rho = \sqrt{x^2 + y^2}, \\ & \boxed{\mathbb{M}} \lim_{(x,y) \to (0,0)} \frac{u}{\rho} = \lim_{(x,y) \to (0,0)} \frac{x^2 \, y^3}{(x^2 + y^2)^{\frac{5}{2}}}. \\ & \diamondsuit y = k \, x, \\ & \boxed{\lim_{y \to y \to 0} \frac{x^2 \, y^3}{(x^2 + y^2)^{\frac{3}{2}}}} = \lim_{x \to 0} \frac{k^3 \, x^5}{(1 + k^2)^{\frac{3}{2}} x^5} = \frac{k^3}{(1 + k^2)^{\frac{5}{2}}}, \\ & \boxed{5} k \, \text{的取值有关, 故极限} \lim_{(x,y) \to 0} \frac{u}{\rho} \text{不存在}, \end{split}$$

则f(x,y)在(0,0)处不可微。

综上, f(x, y)在(0,0)处连续且偏导数存在但不可微。

特殊方法 构造特殊函数用排除法

4.3 数列极限 39

4.3 数列极限

下列条件中有几个是 $\lim_{n} \to \infty x_n = A$ 的充分条件,几个是必要条件?

- $\begin{array}{l} (1)*li\,m_{n\to\infty}\,\,x_{2n}=*li\,m_{n\to\infty}\,\,x_{2n-1}=A.\\ (2)*li\,m_{n\to\infty}\,\,x_{3n}=*li\,m_{n\to\infty}\,\,x_{3n+1}=*li\,m_{n\to\infty}\,\,x_{3n-1}=A.\\ (3)*li\,m_{n\to\infty}\,\,x_{4n}=*li\,m_{n\to\infty}\,\,x_{4n-1}=A.\\ (4)*li\,m_{n\to\infty}\,\,x_{4n}=*li\,m_{n\to\infty}\,\,x_{4n-1}=*li\,m_{n\to\infty}\,\,x_{4n-2}=A. \end{array}$
- (1)(2)是充要条件,包含了全部子数列,命题(4)中,未出现的子数列 $\{x_{4n-3}\}$ 可能发散,故原数列可能发散。故不是充分条件。

例 4.5.

$$\text{(\%i4)} \ \ \mathrm{tm_plot2} d([\frac{3}{\sin(x)}, x^{\frac{1}{3}}, x^{\frac{1}{x}}, \log \bigg(\frac{3}{x}\bigg)], [x, 0, 100], [y, -20, 20])$$

(%04)

 \mathbf{true}

3.926 sec

(%i5)

4.3.1 极限存在证明 设 f(x)是区间 $[0,+\infty)$ 上单调减少且非负的连续函数, $a_n = \sum_k = 1^n f(k) - \int_1^n f(x)$ d $x(n=1,2,\cdots)$ 证明数列 $\{a_n\}$ 的极限存在。 [解析] 1. 证明极限存在,想到用单调有界定理,需要证明 $\{x_n\}$ 单调且有界。 2. 证明数列 $\{x_n\}$ 的单调性,需证明对于任意n,都有 $x_n \geq x_{n+1}$ 或 $x_n \leq x_{n+1}$. 3. f(x) 单

调减,则有
$$f(k+1) \le \int_{k}^{k} +1 f(x) dx \le f(k)$$

4.3.2 极限的最值问题

例 4.6.

已知 $a_n = n \ln (1+n) - n \ln n, n = 1, 2, \dots,$ 则数列 $\{a_n\}$ A. 有最大值,有最小值 B. 有最大值,没有最小值 C. 没有最大值,有最小值

D. 没有最大值,没有最小值

【分析】将数列分成两部分考虑:有限的前N项,与n>N的无限项。

前N项是有限数列,则必是有界数列,则这N项的最大值与最小值存在。

对于后面的无限项, 有以下情况:

- 1. 数列极限不存在。若 $\lim_{n\to n^+}=+\infty$,则最大值不存在;若 $\lim_{n\to n^+}=-\infty$,则最小值不存在。
- 2. 数列极限 $\lim_{\epsilon} = A$ 存在,则由极限定义,后面的无限项都在极限的 ϵ 范围内。
- (2.a)若数列中存在 a_i 使得 $a_i \!<\! A,$ 则最小值存在。同理若存在 a_j 使得 $a_j \!>\! A$,则最大值存在。
- (2.b) 若数列中不存在 a_i 使得 $a_i < A$,则最小值不存在。同理若不存在 a_i 使得 $a_i > A$,则最大值不存在。 例如 $\frac{1}{n}$, 其极限是 0, 但是任意 $a_i > 0$, 则最小值不存在。

先求数列极限:

$$n\ln{(1+n)} - n\ln{n} = n\ln{\left(\frac{1+n}{n}\right)} = n\ln{\left(1+\frac{1}{n}\right)}$$

由海涅定理, $\lim_{n\to\infty} n\ln{\left(1+\frac{1}{n}\right)} = \lim_{x\to+\infty} x\ln{\left(1+\frac{1}{x}\right)} = \lim_{x\to+\infty} x\cdot\frac{1}{x} = 1.$
故由极限定义,对任意 $\varepsilon>0$, 存在正整数 N , 当 $n>N$ 时, 恒有 $|\alpha_n-1|<\varepsilon$. 即 $n>N$ 时, a_n 和 1 的差距最大不

超过 ε .

判断最大值是否存在:

对于
$$x > 0$$
,有 $\ln(1+x) < x$,即 $\frac{\ln(1+x)}{x} < 1$.令 $x = \frac{1}{n}$,则有 $n \ln\left(1 + \frac{1}{n}\right) < 1$.即 $a_n < 1$.

则对于任意 a_i , 总能找到一个 a_n , 使得 $a_n>a_i$. 证明如下 取足够小的 ε , 使得 $\alpha_i<1-\varepsilon$, 存在正整数 N, 当 n>N 时, 恒有 $|\alpha_n-1|<\varepsilon$. 因为 $\alpha_n<1$, $|\alpha_n-1|=$ $1-a_n < \varepsilon \Rightarrow a_n > 1-\varepsilon > a_i$. 证毕。

即数列中不存在最大值。

for this 因此我们将数列分成了两部分(1) 有限的前N项;与(2) n>N 的无限项,其中所有 a_n 都大于 a_1 .

4.3.3 极限的不等式性质(保号性的推广)

- 1. **若** A > B,则存在N > 0,使得当n > N时,有 $a_n > b_n$.
- 2. 若 存 在 N > 0, 使 得 当 n > N时, 有 $a_n \ge b_n$, 则 $A \ge B$.

4.4 斜新近线 41

[注意]

1.若 $A \ge B_1$,不能得出存在N > 0,使得当n > N时,有 $a_n \ge b_n$. 反例: $a_n = 0, b_n = \frac{1}{n}$,则A = B = 0,但 $\forall n$,有 $a_n < b_n$.

2. 若存在N > 0,使得当n > N时,有 $a_n > b_n$,不能得出A > B. 反例: $a_n = 0, b_n = -\frac{1}{n}$,则 $\forall n, 有 a_n > b_n$,但 A = B = 0.

(%i8) tm_plot2 $d([\frac{1}{x}, \frac{-1}{x}, 0], [x, 0, 10], [y, -3, 2])$

(%08) true

1.022 sec

(%i9)

[拓展]

1. 令 $b_n=0$, 则 得 到 收 敛 数 列 的 保 号 性: 设 $\lim_{n\to\infty}a_n=A$, 若 A>0, 则存在 N>0, 使得当 n>N 时,有 $a_n>b_n$.

2.类似的,有函数极限的不等式性质: 设 $\lim_{x} \to x_0 f(x) = A$, $\lim_{x \to x_0} g(x) = B$.

- 1)若A>B,则存在 $\delta>0$,使得当 $|x-x_0|<\delta$ 时,有f(x)>g(x).
- 2) 若存在 $\delta > 0$,使得当 $|x x_0| < \delta$ 时,有 $f(x) \ge g(x)$,则 $A \ge B$.

4.4 斜渐近线

4.4.1 一阶线性微分方程

例 4.7.

设 y=y(x) 满足 $y'+y=\frac{2}{\pi}\arctan{(e^x)}$,且 $y(0)=\frac{1}{2}-\frac{\ln{2}}{\pi}$. 设 y(x)有 n 条渐近线,除了铅直渐近线以外,其余所有渐近线的斜率的和为 A,所有渐近线与 y 轴交点的纵坐标的和为 B,求 A+B+n.

$$\begin{split} A+B+n. \\ y &= e^{-x} \left(\int \frac{2}{\pi} \arctan \left(e^x \right) \cdot e^x \mathrm{d}x + C \right) \\ &= \frac{2}{\pi} e^{-x} \left(e^x \arctan \left(e^x \right) - \frac{1}{2} \ln \left(1 + e^{2x} \right) + C \right) \\ &= \frac{1}{\pi} \left(2 \arctan \left(e^x \right) - e^{-x} \ln \left(1 + e^{2x} \right) + C_1 \right) \\ &= \lim_{x \to +\infty} \frac{y(x)}{x} \\ &= \frac{1}{\pi} \lim_{x \to +\infty} \frac{2 \arctan \left(e^x \right) - e^{-x} \ln \left(1 + e^{2x} \right)}{x} \\ &= \frac{1}{\pi} \left(\lim_{x \to +\infty} \frac{2 \arctan \left(e^x \right) - e^{-x} \ln \left(1 + e^{2x} \right)}{x} \right) \\ &= \frac{1}{\pi} \left(\lim_{x \to +\infty} \frac{2 \arctan \left(e^x \right) - \lim_{x \to +\infty} \frac{e^{-x} \ln \left(1 + e^{2x} \right)}{x} \right) \\ &= \frac{1}{\pi} \left(0 - \lim_{x \to +\infty} \frac{e^{-x} \ln \left(e^{2x} \cdot \left(e^{-2x} + 1 \right) \right)}{x} \right) \\ &= -\frac{1}{\pi} \cdot \lim_{x \to +\infty} \frac{e^{-x} \cdot \left(2x + e^{-2x} \right)}{x} \\ &= -\frac{1}{\pi} \cdot \lim_{x \to +\infty} \frac{e^{-x} \cdot \left(2x + e^{-2x} \right)}{x} \\ &= 0. \\ b &= * li \ m_{x \to +\infty} y(x) - a \ x \\ &= \lim_{x \to +\infty} \frac{1}{\pi} \left(2 \arctan \left(e^x \right) - e^{-x} \ln \left(1 + e^{2x} \right) \right) - 0 \cdot x \\ &= \frac{1}{\pi} \lim_{x \to +\infty} \left(2 \arctan \left(e^x \right) - e^{-x} \ln \left(1 + e^{2x} \right) \right) \\ &= \frac{1}{\pi} \left(2 \cdot \frac{\pi}{2} - \lim_{x \to +\infty} e^{-x} \ln \left(1 + e^{2x} \right) \right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \ln \left(e^{2x} \left(e^{-2x} + 1 \right) \right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \left(\ln \left(e^{2x} \right) + \ln \left(e^{-2x} + 1 \right) \right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \left(2x + e^{-2x} \right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot 0 \end{aligned}$$

令 $x \to -\infty$ 时的渐近线方程为 y = cx + d,有

则 $x \to +\infty$ 时的渐近线方程为 y = 1.

y = 0

4.5 连续与可导 43

4.5 连续与可导

设函数
$$f(x) = \begin{cases} \cos x, & 0 \leqslant x < \pi, \\ 1, & x = \pi \\ -1, & \pi < x \leqslant 2\pi. \end{cases}$$
 $F(x) = \int_0^x f(t) dt$ 则

 $A.x = \pi$ 是函数 F(x)的跳跃间断点

 $A.x = \pi$ 是函数 F(x)的跳跃间断点

- $B. x = \pi$ 是函数 F(x)的可去间断点
- C. F(x) 在 $x = \pi$ 处连续但不可导
- D. F(x) 在 $x = \pi$ 处可导

[分析] $\int_0^x f(t) dt$ 是变上限积分,利用变上限积分的性质判断。[知个]

[解

判断连续性: 因为 f(x) 除有限个第一类间断点 $(x=\pi)$ 外处处连续,故 f(x) 可积。则 $\int_0^x f(t) \, \mathrm{d}t$ 为连续函数

判断可导性: 变上限积分 $F(x) = \int_0^x f(t) dt$ 在某一点的左右导数等于被积函数 f(x) 在这一点的左右极限。 由于 $\lim_{x \to \pi^-} f(x) = \cos \pi = -1 * l i m_{x \to \pi^+} f(x) = -1$,即 $\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^+} f(x)$,故 $F'_{\pi^{-1}}(x) = F'_{\pi^+}(x)$.左右导数相等,故F(x)在 $x = \pi$ 处可导。 综上,F(x)在 $x = \pi$ 处连续可导,故选D

例 4.8. 已知
$$f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}}$$
,则 $f(x)$

- A. 在 x=1, x=-1 处都连续
- B. 在x=1处连续, x=-1处不连续
- C. 在x=1, x=-1 处都不连续。
- D. $\alpha x = 1$ 处不连续, $\alpha = -1$ 处连续

$$f(x) = \begin{cases} 1+x & \exists |x| < 1 \\ 0 & \exists |x| > 1 \\ 0 & \exists x = -1 \\ 1 & \exists x = 1 \end{cases}$$

2.分析 f(x)在x=1处的连续性: 左 极 限: $\lim_{x\to 1^-}f(x)=\lim_{x\to 1^-}1+x=1+1=2$,但 f(1)=1,故 $\lim_{x\to 1^-}f(x)\ne f(1)$,因此,函数在x=1处不连续。

3. 分析 f(x) 在 x=-1 处的连续性:因为当 $x\to -1^-$,即 x<-1,此时 |x|>1,所以 f(x)=0,则左极限: $\lim_{x\to -1^-}f(x)=0$,右极限: $\lim_{x\to -1^+}f(x)=\lim_{x\to -1^+}1+x=1+(-1)=0$,函数值: f(-1)=0,综上

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) = f(-1) = 0$$

因此, 函数在x = -1处连续。

4. 最终结论: f(x)在x = 1处不连续。 f(x)在x = -1处连续。

例 4.9.

[2001年真题] 设
$$f(0) = 0$$
,则 $f(x)$ 在 $x = 0$ 处可导的充要条件为 A. $\lim_{h \to 0} \frac{1}{h^2} f(1 - \cos h)$ 存在 B. $\lim_{h \to 0} \frac{1}{h} f(1 - e^h)$ 存在 C. $\lim_{h \to 0} \frac{1}{h^2} f(h - \sin h)$ 存在 D. $\lim_{h \to 0} \frac{1}{h} [f(2h) - f(h)]$ 存在

选项 C: 若取
$$f(x) = x^{\frac{2}{3}}$$
,显然 $f(x)$ 在 $x = 0$ 处不可导
$$\text{但} \lim_{h \to 0} \frac{1}{h^2} f(h - \sin h) = \lim_{h \to 0} \frac{(h - \sin h)^{\frac{2}{3}}}{h^2} = \lim_{h \to 0} \left(\frac{h - \sin h}{h^3}\right)^{\frac{2}{3}} = \left(\frac{1}{6}\right)^{\frac{2}{3}}$$
存在。 故选项 C 错误。

若取 $f(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$,显然 f(x) 在 x = 0 处不可导,因为 f(x) 在 x = 0 处不连续, 但 $\lim_{h \to 0} \frac{1}{h} [f(2h) - f(h)] = \lim_{h \to 0} \frac{1 - 1}{h} = 0$ 存在。 故选项 D 错误。

4.6 方程实根数

[2011年真题]设k为参数,则关于方程k arctan x-x=0不同实根的个数,说法正确的是:

(注:考试中本题型为证明题,选择正确后需要对比详细过程)

- A. 若k > 0,则方程有 2 个实根; 若 $k \le 0$,则方程有 1 个实根
- B. 若 $k \ge 0$,则方程有 1 个实根;若k < 0,则方程有 2 个实根
- C. $\overline{a}_k > 1$,则方程有 3 个实根; $\overline{a}_k \leq 1$,则方程有 1 个实根
- D. 若 $k \ge 1$,则方程有 1 个实根;若k < 1,则方程有 3 个实根

[分析]

判定方程根的个数,一般通过求导判断函数形态,利用单调性和介值定理判定。 题目中函数的单调性受 到k的影响。此类问题有两种解法: 1.分情况讨论:对于不同的k,判断单调区间的情况; 2.分离参数法:先 4.7 绝对值[X] 45

将方程化为g(x)=k的形式,再讨论g(x)的形态。 如果可以分离参数,则尝试分离参数法。如果不能分离参数,或分离参数后 g(x)的导数不易分析,则使用分情况讨论的方法。 本题参数可以分离,得到g(x)=k的形式,但g'(x)不容易分析,故建议分情况讨论。

4.6.1 分情况讨论

f(x)的无定义点, +f'(x)的无定义点 +f'(x) = 0的点(驻点)

f(x)是否为奇函数, 偶函数, 对称区间, f(0) = 0?

实数解 $\rightarrow x = g(k) \rightarrow$ 划分单调区间 \rightarrow

通过单调区间判断函数零点,

先考察各单调区间的端点是否为零点,再考察每个区间内部的零点:

4.6.2 参数分离

g(x) = k 的根个数 \rightarrow 对g(x)求导 \rightarrow 大致绘制g(x)的图像(主要g(x)在区间的单调情况)

和
$$g(x)_{\min}$$
和 $g(x)_{\max}$ 或者 $\lim_{x\to 2} g(x) =$

$$\lim_{x \to 2} f(x) = 5$$

$$\sum_{i=1}^{n} \lim_{x \to x \to \infty} \lim_{x \to \infty} \lim_{x \to x \to \infty} \lim_{x \to$$

4.7 绝对值|X|

判断绝对值函数在一点是否可导,有两个重要推论,做选择题时可以直接应用: $1. \varphi(x_0) = 0$ 且 $\varphi'(x_0) \neq 0 \Leftrightarrow x_0$ 是 $|\varphi(x)|$ 的不可导点;

 $2. \ f(x) = |\varphi(x)| \ g(x), |\varphi(x)|$ 在 $x = x_0$ 处不可导但 $\varphi(x)$ 可导,且g(x)在 $x = x_0$ 处连续,则综上,令 $\varphi(x) = x^2 - 1, g(x) = \sqrt[3]{(x^2 - 1)(x - 3)},$ 找f(x)的不可导点,即1.找 $\varphi(x) = 0, \varphi'(x) \neq 0$ 且 $g(x) \neq 0$ 的点。2.找g(x) = 0, $g'(x) \neq 0$ 且 $\varphi(x) \neq 0$ 的点。f(x)在 $x = x_0$ 处可导的充要条件是 $g(x_0) = 0$.

loadfile: loading C:\Program Files\XmacsLabs\MoganResearch-1.2.9.5\plugins\maxima\lisp\
texmacs-maxima.lisp.

 ${\tt Loading \ C:/Users/admin/maxima/maxima-init.mac}$

Maxima 5.47.0 https://maxima.sourceforge.io

using Lisp SBCL 2.3.2

Distributed under the GNU Public License. See the file COPYING.

Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.

(%i12) h:sin(x);

(%o12) $\sin(x)$

(%i13) h_abs:abs(h);

(%o13) $|\sin(x)|$

(%i20) $g: x^2 + x$

(%o21) $x^2 + x$

(%i22) f:g*h_abs;

(%o22) $(x^2+x)|\sin(x)|$

(%i28) tm_plot2d([f,h_abs],[x,-4,7])

(%o28) true

4.7 绝对值|X|

(dbm:4) kill(all)

done

(dbm:4) $f: abs(x^2-1) \sqrt[3]{(x^2-1)(x-3)}$

$$(x-3)^{\frac{1}{3}}(x^2-1)^{\frac{1}{3}}|x^2-1|$$

(dbm:4) $tm_plot2d(f,[x,-3,3])$

true

(dbm:4)

(%i7) kill(all)

(%00) done

$$\text{(\%i3)} \ \ \mathrm{tm_plot} \\ 2d([(\%e^{2x}+2)^{\frac{1}{2}}+\%e^x,\log\biggl(\frac{x^2-2}{2\,x}\biggr)],[x,-10,10],[y,-3,7])$$

(%o3) true

[2010年真题] 计算二重积分 $\iint_D (x+y)^3 d\sigma$, 其中D 由曲线 $x = \sqrt{1+y^2}$ 与直线 $x + \sqrt{2} y = 0$ 及 $x - \sqrt{2} y = 0$ 所 围成。

(%i7) tm_plot2 $d([x=(1+y^2)^{\frac{1}{2}},x+\sqrt{2}\;y=0,x-\sqrt{2}\;y=0],[x,-3,13],[y,-3,2])$

(%o7) true

(%i26) tm_draw3d(

 $surface_hide = true,$ $explicit(abs(y)*(x^2+y^2), x,-5,5,y,-5,5), grid = [50, 50], xaxis = true, yaxis = true, zaxis = true, title = "3D plot of abs(y) * (x^2 + y^2)");$

(%o26) true

(%i27)

4.7.1 区间再现与绝对值

4.8 中值定理 49

思路一: 积分 $\int_0^x t |\cos t| \; \mathrm{d}t$ 中有绝对值号,先根据积分区域脱去绝对值号。由 $\cos t$ 在 $x=\frac{\pi}{2}+n\pi$ 变号,故先考虑 $x=\frac{\pi}{2}+n\pi$.此思路也适用于其

[分析]由 $\cos t$ 是周期函数,先考虑x 为特殊值时的极限,如 $x=n\pi$,或 $x=\frac{\pi}{2}+n\pi$,再考虑任意x. 它函数,例如 $\int_0^x t^3 |\cos t| \mathrm{d}t$.

思路二:利用函数 $t|\cos t|$ 的特殊性质,即t为一次幂,结合区间再现公式简化计算: $\int_0^{n\pi} t|\cos t|\mathrm{d}t = \int_0^{n\pi} (n\pi - t)|\cos t|\mathrm{d}t = \int_0^{n\pi} n\pi |\cos t|\mathrm{d}t - \int_0^{n\pi} t|\cos t|\mathrm{d}t.$ 注意区间再现对其它函数,例如 $\int_0^x t^3 |\cos t|\mathrm{d}t \in \mathbb{R}$ 法简化计算。

- - 2) 区间再现,取上下区间 $[n\pi,0]$ f(a+b-x) (首先尝试)
 - 3) 夹逼定理, 大题必须有, 小题忽略。

4.8 中值定理

4.8.1 构建辅助函数

[注:]以下用标准方法构建辅助函数。 用罗尔定理证明复杂函数的等式,先构建辅助函数。 将上式写成 $h'(\xi) + \phi(\xi) h(\xi) = 0$ 的形式, 则 $h(\xi) = f(\xi)$, $\phi(\xi) = \frac{g''(\xi)}{g'(\xi)}$,辅助函数 $F(x) = e^{\int \phi(x) \, \mathrm{d}x} h(x) = e^{\ln g'(x)} f(x) = g'(x) f(x)$.

4.8.2 罗尔

设奇函数 f(x) 在 [-a,a]上具有二阶导数,且 f(a)=ka. 求常数 k 的值,使得对于任何满足条件的 f(x),都存在 $\eta \in (-a,a)$,使得 $2f'(\eta)+f'(\eta)=5$

$$F'(x) = 2 f''(\eta) + f'(\eta) - 5$$

$$F(x); F(a) = F(-a); \qquad f(a) = -f(-a), f'(a) = f'(-a)$$

4.8.3 图像与中值定理

设 f(x)在 [0,2] 上连续, 在 (0,2) 内存在二阶导数, 并设 f(0)=3, $f(2)=\frac{3}{2}$, $\min_{[0,2]} f(x)=1$. 可以证明存在 $\xi \in (0,2)$,使得 $f''(\xi) \le c$,(c) 为常数) 求 c 的最小值, 使不等式对任意满足条件的 f(x) 都成立。

 \mathbf{true}

4.8.4 不同区间上的拉氏

题目 4.3.

已知函数 f(x)在 [0,1]上连续,在 (0,1) 上可导,且 f(0)=0, f(1)=1. 证明:对任意的 a>0, b>0, 存在 $\eta,\zeta\in(0,1)$, 使得 $\frac{a}{f'(\eta)}+\frac{b}{f'(\zeta)}=a+b.$

【分析】题目没有明确要求 $\eta \neq \zeta$,但 $\frac{a}{f'(\eta)} + \frac{b}{f'(\zeta)}$ 为相加的形式,故这是不同区间上的双中值问题。

题目没有给出区间,需要自选区间。 因为 $f'(\eta)$, $f'(\zeta)$ 在分母中, $\frac{a}{f'(\eta)} + \frac{b}{f'(\zeta)} = \frac{1}{\frac{f'(\eta)}{a}} + \frac{1}{\frac{f'(\zeta)}{b}}$, 将 f(x) 的值在 (0,1) 上分为长度为 a: b的两个区间,即选 ξ 使得 $f(\xi) = \frac{a}{a+b}$.

4.8 中值定理 51

 $Q: f'(\eta), f'(\zeta)$ 在分子呢?

A: 将[a,b]区间分为a: b的两个区间 $\xi = \frac{a}{a+b}$ 令拉式分母相等。

首先证明存在一点 ξ 使得 $f(\xi) = \frac{a}{a+b}$

因为a>0,b>0,fa+b>0.所以 $\frac{a}{a+b}>0$ 因为a< a+b,所以 $\frac{a}{a+b}<1$. 令函数 f(x) 在 [0,1] 的最大值为 M,最小值为 m.因为 f(0)=0,f(1)=1,有 $m\le 0,1\le M$ 综上

$$m \le 0 < \frac{a}{a+b} < 1 \le M.$$

根据连续函数介值定理,存在 $\xi \in (0,1)$,使 $f(\xi) = \frac{a}{a+b}$

$$f'(\eta) = \frac{f(\xi) - f(0)}{\xi - 0} = \frac{\frac{a}{a+b}}{\xi}$$

在 $(\xi,1)$ 上用拉格朗日中值定理,则存在 $\zeta \in (\xi,1)$,使

$$f'(\zeta) = \frac{f(1) - f(\xi)}{1 - \xi} = \frac{1 - \frac{a}{a + b}}{1 - \xi} = \frac{\frac{b}{a + b}}{1 - \xi}$$

故
$$\frac{a}{f'(\eta)} + \frac{b}{f'(\zeta)} = \frac{\xi}{\frac{1}{a+b}} + \frac{1-\xi}{\frac{1}{a+b}} = a+b.$$
 (注意, $f'(\eta)$ 为什么要取 $f(\xi) - f(0)$ not $f(1) - f(\xi)$? 你经常错)

4.8.5 f'' = g''

例 4.10. 设函数 f(x), g(x) 在[a,b] 上连续,在(a,b) 内具有二阶导数,f(a) - g(a) = a, f(b) - g(b) = b. 以下哪个条件可以证明存在 $\xi \in (a,b)$,使得 $f''(\xi) = g''(\xi)$?

- A. 存在 $\beta \in (a,b)$, 使 $f(\beta) = g(\beta)$
- B. f(x) x, g(x)在(a,b)内存在相等的最大值
- C. 存在 $\eta \in (a, b)$, 使 $f'(\eta) g'(\eta) = 1$
- D. f(x), g(x) 在(a,b) 内存在相等的最大值

【分析】

- 1. 证明 $f''(\xi) = g''(\xi)$, 等价于证明 $f''(\xi) g''(\xi) = 0$, 所以构建辅助函数 $F''(\xi) = f''(\xi) g''(\xi)$.
- 2. 通常,证明二阶导数 $F''(\xi)$ 有零点,在 F(x)上找三点相等,然后质复使用罗尔定理。
- 3. 由 f(a) g(a) = a, f(b) g(b) = b 可知,若 F(x) = f(x) g(x) x,则 F(a) = F(b) = 0. 只需找到第三个点 η ,证明存在 $\eta \in (a,b)$,使

 $F(\eta) = 0.$

4.8.6 N-L定理

牛顿-莱布尼兹定理: $\int_a^b f(x) \mathrm{d}x = F(x)|_a^b = F(b) - F(a).$

怎么考?

$$F(b) = \int_{a}^{b} f(x) dx + F(a)$$

设
$$G'(x) = e^{(x-3)^2}(x-3)^2, G(2) = 0, 求 \int_2^3 G(x) dx.$$

4.8.7 高阶莱布尼兹公式

题目 4.4.

已知
$$f(x) = (x^2 - 1)^n$$
, 求 $f^{(n+1)}(-1)$
A. $(n+1)!n(-2)^{n+1}$
B. $(n-1)!(-2)^{n-1}$
C. $(n+1)!n(-2)^{n-1}$
D. $(n+1)!(-2)^{n-1}$

[分析]求高阶导数在 $x \neq 0$ 的值,运用常见初等函数的n阶导数公式。

因为 $f(x) = (x^2 - 1)^n = (x + 1)^n (x - 1)^n$,求乘积的高阶导数,一般用高阶导数的莱布尼兹公式:

$$(uv)^{(n)} = u^{(n)}v + \frac{C_n^1}{n}u^{(n-1)}v' + \dots + C_n^k u^{(n-k)}v^{(k)} + \dots + uv^{(n)}$$

[解答]
$$f^{(n+1)}(x) = [(x+1)^n]^{(n+1)} (x-1)^n + C_{n+1}^1 [(x+1)^n]^{(n)} [(x-1)^n]^{(1)} + C_{n+1}^2 [(x+1)^n]^{(n-1)} [(x-1)^n]^{(2)} + \dots + C_{n+1}^{n+1} (x+1)^n [(x-1)^n]^{(n+1)}.$$

注意一个常用的性质: 令 $f(x) = (x - x_0)^n$,则 $f^{(n)}(x_0) = n!$, $f^{(k)}(x_0) = 0$, $(k \neq n)$.

所以x = -1时,只有第 2项不为 0,则

$$f^{(n+1)}(-1) = (n+1) \cdot n! n (-2)^{n-1} = (n+1)! n (-2)^{n-1}$$

答案为C.

4.8.8 泰勒

设函数 f(x)在闭区间[-1,1]上具有三阶连续导数,且 f(-1)=0, f(1)=2, f'(0)=0, 在开区间(-1,1)内至少存在一点 ξ ,使 $f'(t)(\xi)=c$, f(t)(t)=0, f(t)=0, f(t)=0,

本题需要求三阶导数的值。通常,证明高阶导数的不等式,或等于非0非1的常数,试用泰勒公式。 由于 f'(0)=0,应在 $x_0=0$ 处展开泰勒公式: $f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(\eta)}{3!}x^3$ (η 在0与x之间). 在上式中分别取x=1 和x=-1,根据连续函数介值定理,存在 $\xi \in [\eta_2,\eta_1] \subset (-1,1)$,使 $f'''(\xi)=6$.

$$4.8.9 \ f'(x) = \int_{0}^{\xi} f(x) dx$$

(注意 $f'(\xi)$ 是 $\int_0^\xi f(t) \, \mathrm{d}t$ 的三阶导,而不是一阶导,故不能直接用微分方程法构建辅助函数) 对 $f'(x) \int_x^1 g(t) \, \mathrm{d}t + g'(x) \int_0^x f(t) \, \mathrm{d}t$ 的两项分别分部积分,得到: $\varphi(x) = \int \left[f'(x) \int_x^1 g(t) \, \mathrm{d}t + g'(x) \int_0^x f(t) \, \mathrm{d}x \right] \mathrm{d}x$ $= \int \left[f'(x) \int_x^1 g(t) \, \mathrm{d}t \right] \mathrm{d}x + \int \left[g'(x) \int_0^x f(t) \, \mathrm{d}t \right] \mathrm{d}x$ $= \left[f(x) \int_x^1 g(t) \, \mathrm{d}t - \int f(x) \right] - g(x) \right] \mathrm{d}x \right] + \left[g(x) \int_0^x f(t) \, \mathrm{d}t - \int g(x) \, f(x) \, \mathrm{d}x \right]$ $= f(x) \int_x^1 g(t) \, \mathrm{d}t + g(x) \int_0^x f(t) \, \mathrm{d}t$

4.9 sinx与cosx 53

证明.

令
$$\varphi(x) = f(x) \int_{x}^{1} g(t) dt + g(x) \int_{0}^{x} f(t) dt.$$
 有 $\varphi(0) = f(0) \int_{0}^{1} g(t) dt + g(0) \int_{0}^{0} f(t) dt = f(0) \int_{0}^{1} g(t) dt + 0 = f(0) \int_{0}^{1} g(t) dt,$ 同理 $\varphi(1) = g(1) \int_{0}^{1} f(t) dt.$ 对 $\varphi(x)$ 使用罗尔定理,则存在 $\xi \in (0,1)$,使 $\varphi'(\xi) = 0$ 所以 $\varphi'(\xi) = f'(\xi) \int_{\xi}^{1} g(t) dt + g'(\xi) \int_{0}^{\xi} f(t) dt = 0,$ 即 $\frac{f'(\xi)}{g'(\xi)} + \frac{\int_{\xi}^{\xi} f(t) dt}{\int_{\xi}^{1} g(t) dt} = 0.$

4.9 sinx与cosx

n项同类函数乘积,分母包含 2^n ,添起始项,来达到连锁消项的目的。

使用公式: $2\sin x \cos x = \sin 2x$

[解答] 令 $A = \cos(x)\cos(2x)\cdots\cos(2^n x)$.

1.若 $\sin x \neq 0$,添一项 $\sin x$,则

$$\sin(x) A$$

$$= \sin(x) \cos(x) \cos(2x) \cdots \cos(2^{n} x)$$

$$= \frac{1}{2} \sin(2x) \cos(2x) \cdots \cos(2^{n} x)$$

$$= \frac{1}{2^{2}} \sin(4x) \cdots \cos(2^{n} x)$$

$$= \frac{1}{2^{n+1}} \sin(2^{n+1} x)$$
故 $A = \frac{\sin(2^{n+1} x)}{2^{n+1} \sin x}$.

 $n \to \infty$ 时, $\sin (2^n + 1x)$ 振荡但有界,即 $-1 \le \sin (2^{n+1}x) \le 1$ 又 $\lim_{n \to \infty} \frac{1}{\gamma^{n+1}} = 0$,而 $\sin x \ne 0$ 为常数

故 $\lim_{n \to \infty} A = 0$.

2. 若 $\sin x = 0$,分两种情况, $x = 2k\pi$ 或 $x = (2k+1)\pi$,其中 $k = 0, 1, 2, \cdots$

则 $\lim A = \cos(2k\pi)\cos(2k\pi)\cdots\cos(2k\pi) = 1\cdot 1\cdot \dots = 1.$

 $n \rightarrow \infty$

若 $x = (2k+1)\pi$,

 $\iiint_{n \to \infty} A = \cos(\pi)\cos(2k\pi) \cdot \cdots \cdot \cos(2k\pi) = (-1) \cdot 1 \cdot \cdots \cdot 1 = -1.$

 $n \rightarrow \infty$

综上, 极限存在, 可能为 0.1 或-1.

4.10 函数图像与根

例 4.11. $f(x) = 3^x - 3x^2$

[解答] 对 f(x) 求导考察单调性: $f'(x) = \ln 3 \cdot 3^x - 6x$.不易判断单调区间,故考察特殊点的函数值:

对
$$\int (\lambda)$$
 小寺ち奈丰响田: $\int (\lambda) = m \cdot 3 \cdot 3 = 0$
 $f(-1) = 3^{-1} - 3 \cdot (-1)^2 = -\frac{8}{3} < 0$;
 $f(0) = 3^0 - 3 \cdot 0^2 = 1 > 0$;
 $f(1) = 3^1 - 3 \cdot 1^2 = 0$;
 $f(3) = 3^3 - 3 \cdot 3^2 = 0$.

 $x \in (-1,0)$ 时,因为f(x)连续,且f(-1) < 0,f(0) > 0,根据介值定理,f(x)在(-1,0) 上存在至少一个零点。因为x = 1 和x = 3 也是零点,故f(x)至少存在 3个零点。 考察二阶导数: $f''(x) = (\ln 3)^2 \cdot 3^x - 6$.其唯一零点为 $x = \log_3\left(\frac{6}{(\ln 3)^2}\right)$.则f(x) 至多有 3 个零点。

故 f(x) 有且仅有 3 个零点。

第5章

高数下

5.1 微分方程

5.1.1 二阶, 少y

【分析】

 $y'' - \frac{x+3}{x+1}y' = 0$,可化为可分离变量的一阶微分方程,令 t = y'.

【解答答】

令 t=y',有 $y''=\frac{\mathrm{d}y'}{\mathrm{d}x}=\frac{\mathrm{d}t}{\mathrm{d}x}=t'$. 原方程化为 $t'-\frac{x+3}{x+1}t=0$,即 $\frac{\mathrm{d}t}{\mathrm{d}x}=\frac{x+3}{x+1}t$.

 $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{x+3}{x+1} t$ 滿足 $\frac{\mathrm{d}t}{\mathrm{d}x} = f(x) \ g(t)$ 的形式,是可分离变量的一阶微分方程。分离变量,两边积分求解。

5.1.2 y(x) = u(x)g(x)的二阶微分方程

[2016年真题] $_{i}$ 设 $y(x) = u(x) e^{x}$ 是二阶微分方程(2x-1) y' - (2x+1) y' + 2y = 0的解,已知u(-1) = e,

$$u(0) = -1$$
,已知 $y(1) = ae + \frac{b}{e} + c$,且 a, b, c 为有理数,求 $a - b + c$.

[分析] 将 $y(x) = u(x) e^x$ 代入微分方程,得到关于u(x)的关系式,由此求出u(x)的表达式。

[解答] 由
$$y(x) = u(x) e^x$$
, 得 $y'(x) = u'(x) e^x + u(x) e^x = [u'(x) + u(x)] e^x$.

♡得到 (2x-1)u''(x)+(2x-3)u'(x)=0 为不显含u 的微分方程,

令
$$t = u'(x)$$
,有 $u''(x) = \frac{\mathrm{d}u'(x)}{\mathrm{d}x} = \frac{\mathrm{d}t}{\mathrm{d}x} = t'$.

原方程化为(2x-1)t'+(2x-3)t=0.

化为标准形式,除以t'的系数(2x-1)得 $t'+\frac{2x-3}{2x-1}t=0$ $\Rightarrow \frac{\mathrm{d}t}{\mathrm{d}x}=-\frac{2x-3}{2x-1}t$

5.1.3 一个简单的倒带换

[2007年真题]令微分方程 $y''(x+y'^2)=y'$ 满足初始条件y(1)=y'(1)=1的特解为y(x),求y(4)的值

[分析] 不显含y的微分方程,令t = y'(x),将y的二阶微分方程转化为t的一阶微分方程。

[解答] 令
$$t=y'(x)$$
,有 $y''(x)=\frac{\mathrm{d}y'(x)}{\mathrm{d}x}=\frac{\mathrm{d}t}{\mathrm{d}x}=t'$. 原方程变为 $t'(x+t^2)=t$,即 $\frac{\mathrm{d}t}{\mathrm{d}x}(x+t^2)=t$.

56 高数下

此时将t作为未知函数,x作为自变量,化为标准形式为 $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{t}{(x+t^2)}$,不便于求解。 故将x作为未知函数,将上式转化为 $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x}{t} + t$,即 $\frac{\mathrm{d}x}{\mathrm{d}t} - \frac{x}{t} = t$. 令x' + p(t) x = q(t),其中 $p(t) = -\frac{1}{t}$,q(t) = t,代入一阶线性微分方程的通解公式: 5.1

$5.1.4 \quad \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{dy}}{\mathrm{dt}} \frac{\mathrm{dt}}{\mathrm{dx}}$

用变量代换 $x = 2\cos t \left(0 < t < \frac{\pi}{2}\right)$ 将微分方程 $(4-x^2)$ $y'' - (x+\sqrt{4-x^2})$ y' + y = 0 化为 $\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + A\frac{\mathrm{d}y}{\mathrm{d}t} + By = 0$, 求A+B.

$$\begin{split} y' &= \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{1}{2\sin t} \frac{\mathrm{d}y}{\mathrm{d}t}. \\ y'' &= \frac{\mathrm{d}y'}{\mathrm{d}x} \\ &= \frac{\mathrm{d}y'}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \\ &= \frac{\mathrm{d}(-\frac{1}{2\sin t} \frac{\mathrm{d}y}{\mathrm{d}t})}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \\ &= [\frac{\mathrm{d}(-\frac{1}{2\sin t})}{\mathrm{d}t} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\mathrm{d}\frac{\mathrm{d}y}{\mathrm{d}t}}{\mathrm{d}t} \cdot (-\frac{1}{2\sin t})] \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \\ &= \left[\frac{\cos t}{2\sin^2 t} \frac{\mathrm{d}y}{\mathrm{d}t} - \frac{1}{2\sin t} \frac{\mathrm{d}^2y}{\mathrm{d}t^2}\right] \cdot \left(-\frac{1}{2\sin t}\right). \end{split}$$

$$(5.1)$$

5.1.5 倾斜角 α , $\frac{\mathrm{d}\alpha}{\mathrm{d}\mathrm{x}}$, $\frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}$, $\tan\alpha = -\frac{1}{y_x'}$

例 5.1. 设非负函数 y(x) 具有二阶导数,记 α 为曲线 l: y=y(x) 在点(x,y) 处法线的倾角,若 $\frac{\mathrm{d}\alpha}{\mathrm{d}x}=\frac{1}{1+x^2}$,且 l: y=y(x) 与x 轴及直 线 x=0, x=6 围成平面区域 D 的面积为 36,且 y'(1)=1.求 y(2).

设法线斜率为
$$k$$
,则 $k = -\frac{1}{y'} = \tan \alpha$.即 $\alpha = \arctan\left(-\frac{1}{y'}\right)$,所以 $\frac{\mathrm{d}\alpha}{\mathrm{d}x} = \frac{\mathrm{d}\arctan\left(-\frac{1}{y'}\right)}{\mathrm{d}x} = \frac{1}{1 + \frac{1}{(y')^2}} \cdot \frac{y''}{(y')^2} = \frac{y''}{(y')^2 + 1}$.

由已知条件
$$\frac{\mathrm{d}\alpha}{\mathrm{d}x} = \frac{1}{1+x^2}$$
有 $\frac{y^{\prime\prime}}{1+(y^\prime)^2} = \frac{1}{1+x^2}$, 即 $y^{\prime\prime} = \frac{1+(y^\prime)^2}{1+x^2}$.

不显含 y 的微分方程,令 t = y'(x),将 y 的二阶微分方程转化为 t的一阶微分方程。

令
$$t = y'(x)$$
,有 $y''(x) = \frac{\mathrm{d}y'(x)}{\mathrm{d}x} = \frac{\mathrm{d}t}{\mathrm{d}x}$. 原方程变为 $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1+t^2}{1+x^2}$.

分离变量得:
$$\frac{\mathrm{d}t}{1+t^2} = \frac{\mathrm{d}x}{1+x^2}$$

两边积分得:
$$\int \frac{\mathrm{d}t}{1+t^2} = \int \frac{1}{1+x^2} \mathrm{d}x$$
. $\Rightarrow \arctan t = \arctan x + C_1$

略。

5.1.
$$\mathbf{x} = \mathbf{e}^{-\int \mathbf{p(t)dt}} * \left| \int \mathbf{q(t)} * \mathbf{e}^{\int \mathbf{p(t)dt}} \mathbf{dt} + \mathbf{C_1} \right|$$

5.2 解的叠加性 57

5.2 解的叠加性

y' + p(x) y = q(x)是线性微分方程,利用其解的叠加性求解。

由
$$y_1 = (3+x^2)^3 - e^{2x}$$
, $y_2 = (3+x^2)^3 + e^{2x}$ **= $\underset{\text{E#齐次线性微分方程 }y}{**}$ $y' + p(x)$ $y = q(x)$ 的两个解,

可知:
$$y = y_2 - y_1 = [(3+x^2)^3 + e^{2x}] - [(3+x^2)^3 - e^{2x}] = 2e^{2x}$$

是齐次线性方程 y' + p(x) y = 0 的解;

$$y_1 + y_2 = (3 + x^2)^3 - e^{2x} + [(3 + x^2)^3 + e^{2x}] = 2(3 + x^2)^3$$
是

线性方程y' + p(x) y = q(x) + q(x)的解。

5.2.1 高阶K重根

k重复数根: 通解中的2k项

$$e^{\alpha} x [(A_1 + A_2 x + \dots + A_k x^{k-1}) \cos \beta x + (B_1 + B_2 x + \dots + B_k x^{k-1}) \sin \beta x]$$

若 $\lambda_{1,2} = \alpha \pm \beta i, \beta > 0$ 为特征方程

$$r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n = 0$$
的 k 重复数根,

则对应的齐次方程通解中的 2k项

$$e^{\alpha} x[(A_1 + A_2 x + \dots + A_k x^{k-1})\cos \beta x + (B_1 + B_2 x + \dots + B_k x^{k-1})\sin \beta x]$$

求高阶齐次方程的通解:将n个特征根对应的项相加得到通解

求n阶常系数线性齐次微分方程 $y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = 0$ 的通解:

- 1 写出特征方程 $r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n = 0$,求出其特征根 $r_i (i = 1, 2, \dots, n)$
- 2 对每一个根, 判断对应形式: 单重实根r,对应一项 $Ce^{\alpha}x$;
- \heartsuit 单重复数根 r_1 . $2 = \alpha \pm \beta i$, $\beta > 0$, 对应两项 $e^{\alpha} x (C_1 \cos \beta x + C_2 \sin \beta x)$;

♡k重复数根 r_1 . $2 = \alpha \pm \beta i$, $\beta > 0$, 对应2k 项 $e^{\alpha} x [(A_1 + A_2 x + \dots + A_k x^{k-1}) \cos \beta x + (B_1 + B_2 x + \dots + B_k x^{k-1}) \sin \beta x]$.

例 5.2. K重

已知以 $y=(C_1x+C_2)\cos 2x+(C_3x+C_4)\sin 2x$, $(C_1, C_2, C_3, C_4$ 为任意常数) 为通解的微分方程是 y'''''+ay'''+by''+cy'+dy=0,求 a+b+c+d.

3 将n个根对应的所有项相加便得通解,其中C, C_i , A_i , B_i 为任意常数。

58 高数下

5.3 定积分应用

5.3.1 旋转体体积, 非y轴, $V = V_1 - V_2$

D是由 $y=e^x$ 和其切线 y=ex以及 y轴所围成的平面区域。 D 绕 x=1 旋转而成的旋转体体积为 V ,已知 $\frac{V}{\pi}=a\,e^b+c$,其中 a,b,c 为有理数,求 a+b+c .

(%i12)

(%i6) tm_plot2 $d([\%e^x,\%e^x,1,x=1],[x,-1,2],[y,-0.5,4])$

(%o6) true

(%i7)

5.3.2 积分比大小

例 5.3.

5.5 重积分 59

[2012年真题] 设
$$I_k = \int_0^{k\pi} e^{x^2} \sin x \, dx, (k=1,2,3),$$
则有

(%i7)
$$f(x) := \sin(x);$$

$$g(x) := \%e^{x^{\frac{1}{5}}};$$

(%o7)
$$f(x) := \sin(x)$$

(%08)
$$g(x) := e^{x^{\frac{1}{5}}}$$

(%i10) tm_plot2
$$d([f(x) g(x)], [x, 0, 10], [y, -7, 7])$$

(%o10) true

(%i11) quit()

The end

(%i11)

5.4 对称区间的积分

例 5.4.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} \, dx$$

求对称区间上的定积分,将积分 $\int_{-a}^{a} f(x) dx$,拆成两项之和,然后并项处理:

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$$

$$= \int_{-\frac{\pi}{4}}^{0} \frac{1}{1+\sin x} dx + \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$$

$$= \int_{\frac{\pi}{4}}^{0} \frac{1}{1-\sin t} (-dt) + \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{1+\sin x} + \frac{1}{1-\sin x}\right) dx$$

5.5 重积分

 $[2003年真题 \ \mathop{\mathcal{l}}\nolimits_D f(x) = g(x) = \left\{ \begin{array}{l} 3, \ \ \text{若} \ 0 \leq x \leq 1, \\ 0, \ \ \text{其他}, \end{array} \right. \\ \left. \begin{array}{l} \text{m} \ D \ \ \text{表示全平面,} \ \ \underset{D}{\text{\tiny M}} \int_D f(x) \ g \ (y-x) \mathrm{d}x \mathrm{d}y = 0, \end{array} \right.$

60 高数下

[分析] 由于 f(x)和 g(x)为分段函数,所以被积函数 f(x) g(y-x)为分块函数,将积分区域按照被积函数 拆分,分别积分。

[解答] 又在 $0 \le x \le 1$ 时 f(x) = 3;仅在 $0 \le y - x \le 1$ 时 g(y - x) = 3.则仅当 $0 \le x \le 1$, $0 \le y - x \le 1$ 时,被积函数不为0. 令此区域为 D_1 ,则 $D_1 = \{(x,y) | 0 \le x \le 1, 0 \le y - x \le 1\} = \{(x,y) | 0 \le x \le 1, x \le y \le 1 + x\}$. 用有 $f(x) g(y - x) = \begin{cases} 3 \cdot 3, & (x,y) \in D_1, \\ 0, & \text{其他}. \end{cases}$

5.5.1 分段区间

令

$$A = \iint_D \max\left(\frac{1}{x^2 y + 2x}, \frac{1}{3x}\right)$$

dxdy,其中 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le 1\}$. 已知 $A = a + b \ln 2 + c \ln 3$,其中a, b, c

为有理数, 求a+b+c.

[分析] 被积函数中 $\max\left(\frac{1}{x^2y+2x},\frac{1}{3x}\right)$ 是分块函数,先将积分区域拆分, 去掉 \max 符号。[解答] 被积函数在区域D 的分界线为 $\frac{1}{x^2y+2x}=\frac{1}{3x}$,即 $y=\frac{1}{x}$.将D拆分为 $D_1\cup D_2$.如图所示。 $y=\frac{1}{x}$ 与x=2 相交于 (1,1). $D_1=\left\{(x,y)|\ 1\leq x\leq 2, 0\leq y\leq 1, y\geq \frac{1}{x}\right\}$

$$D_1 = \left\{ (x,y) | 1 \le x \le 2, 0 \le y \le 1, y \ge \frac{1}{x} \right\}$$

$$D_2 = \left\{ (x,y) | 1 \le x \le 2, 0 \le y \le 1, 0 \le y \le \frac{1}{x} \right\}$$
区域 D_1 中 $\max \left(\frac{1}{x^2 y + 2x}, \frac{1}{3x} \right) = \frac{1}{3x}, D_2$ 中 $\max \left(\frac{1}{x^2 y + 2x}, \frac{1}{3x} \right) = \frac{1}{x^2 y + 2x}.$

5.5.2 区间相同, 二重积分保序性

已知 f(x,y) = x + y, g(x,y) = x - y. 区域 $D = \{0 \le y \le 3, h(y) \le x \le h(y) + 1\}$, 其中 h(x) 为某函数。以下选项正确的是:

A.
$$\langle \mathsf{iint} \rangle_D f(x,y) \, \mathrm{d}\sigma > \langle \mathsf{iint} \rangle_D g(x,y) \, \mathrm{d}\sigma$$
B. 可能有 $\langle \mathsf{iint} \rangle_D f(x,y) \, \mathrm{d}\sigma = \langle \mathsf{iint} \rangle_D g(x,y) \, \mathrm{d}\sigma$
C. $\langle \mathsf{iint} \rangle_D f(x,y) \, \mathrm{d}\sigma < \langle \mathsf{iint} \rangle_D g(x,y) \, \mathrm{d}\sigma + 3$
D. $\langle \mathsf{iint} \rangle_D f(x,y) \, \mathrm{d}\sigma \leq \langle \mathsf{iint} \rangle_D g(x,y) \, \mathrm{d}\sigma$

在积分区域D上有 $y \ge 0$,故 $f(x,y) \ge g(x,y)$.

$$f(x,y) = x + y$$
 和 $g(x,y) = x - y$ 在积分区域D 上连续, 且不恒相等,

5.5 重积分 61

所以
$$\iint_D f(x,y) d\sigma > \iint_D g(x,y) d\sigma$$
 综上选 A .

5.5.2.1 区间极坐标换元

题目 5.1.

令
$$I = \iint_D \frac{r^2 \sin \theta}{(1 + r^2 \cos 2\theta)^{\frac{3}{2}}} dr d\theta$$
,其中 $D = \left\{ (r, \theta) | 0 \le r \le \sec \theta, 0 \le \theta \le \frac{\pi}{4} \right\}$ 一点时已知 $I = a + b \ln (\sqrt{2} + 1)$,其中 a, b 为有理数,求 $a - b$.

5.5.3 二重积分存在

设二元函数 $f(x,y) = xy^{\frac{3}{2}} ln(x^4 + y^6),$ 则 $lim_{(x,y) \to (0,0)} f(x,y) =$

 $\mathbb{C}.I_2 > I_1 > I_3$ $D.I_3 > I_1 > I_2$

[分析]二重极限存在,需证明点(x,y)以 任何方式 趋于点 (x_0,y_0) 时,函数f(x,y)都无限趋近于同一常数

A. |.运用 $\left| \frac{2xy}{x^2 + y^2} \right| \le 1$,来证明对任何(x, y),不等式都成立;

常用方法: 2. 夹逼定理; 3. 将重极限转化为一元函数极限。 这里用 1,2,3.

[解答] 由
$$\left| \frac{2 x^2 y^3}{x^4 + y^6} \right| \le 1$$
,有 $\left| x^2 y^3 \right| \le \frac{x^4 + y^6}{2}$,则
$$0 \le \left| x y^{\frac{3}{2}} \ln (x^4 + y^6) \right| \le \sqrt{\frac{x^4 + y^6}{2}} \left| \ln (x^4 + y^6) \right|.$$

令 $t = x^4 + y^6$,则 $(x, y) \rightarrow (0, 0)$ 时, $t \rightarrow 0^+$,有

$$0 \le \lim_{(x,y)\to(0,0)} |f(x,y)| \le \lim_{t\to 0^+} \sqrt{\frac{t}{2}} |\ln t| = 0,$$

最后一个等式用了 $\lim_{x} \to 0^+ x^{\delta} (\ln x)^k = 0, (常数 \delta > 0, k > 0).$

62 高数下

故由夹逼定理 $\lim_{'}(x,y)\to(0,0)\,\,|\,f(x,y)|=0$,即 $\lim_{(}x,y)\to(0,0)'\,f(x,y)=0$

 \Diamond

(分析]判断二重极限是否存在,关键在于构建不同路径,看是否存在: 1.两种不同路径,点(x,y) 沿不同路径趋向于点 (x_0,y_0) 时,f(x,y) 趋于不同常数, 2.某一路径,点(x,y)沿此路径趋于 (x_0,y_0) 时,f(x,y)的极限不存在, 若1或2成立,则极限不存在。

构建路径的常用方法:

1.常见函数: $f(x,y) = \frac{x^n y^m}{x^{2n} + y^{2m}}$, 令 $y^m = kx^n$,则k不同时,极限不同。 2.坐标轴方向: 令 $y = y_0$,或 $x = x_0$,即沿平行于x轴或y轴的方向趋于 (x_0, y_0) ,得到一个极限; 3.归零:分子分母有相同项,则构建路径使分子分母上的其他项为0; 4.分子低阶:构建路径使分母只余一项,如 x^k ,选择k使分子为 x^k 的低阶无穷小,则极限为 ∞

这里用 4 即可.

5.5.4 轮换对称性

例 5.6.

[2008年真题]设 $D = \{(x,y)|x^2+y^2 \le 1\}, A = \iint_D (x^2-y) \, dx \, dy$,已知 $A = a + b \pi$,其中a,b为有理数,求a - b. 积分区域D 为半径为1的圆。相对于x 轴对称,且 y 是关于 y 的奇函数,则 $\iint_D y \, dx \, dy = 0$

$$\iiint_D (x^2 - y) \, \mathrm{d}x \mathrm{d}y = \iint_D x^2 \, \mathrm{d}x \mathrm{d}y$$

调换 $x, y, 区域D_{cr}$ 的形状不变,则利用 x, y 的轮换对称性进一步化简。

$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D x^2 + y^2 dx dy.$$

积分区域为圆形,使用极坐标计算二重积分,令 $x=r\cos\theta$, $y=r\sin\theta$.则 $x^2+y^2=r^2\cos^2\theta+r^2\sin^2\theta=r^2(\sin^2\theta+\cos^2\theta)=r^2$.故

$$\begin{split} D &= \{(r,\theta) | \ 0 \leq r \leq 1, 0 \leq \theta \leq 2 \ \pi \} \\ &\frac{1}{2} \iint_{D} x^{2} + y^{2} \ \mathrm{d}x \mathrm{d}y = \frac{1}{2} \int_{0}^{2\pi} \mathrm{d}\theta \int_{0}^{1} r^{2} \cdot r \ \mathrm{d}r = \frac{1}{2} \int_{0}^{2\pi} \mathrm{d}\theta \int_{0}^{1} r^{3} \mathrm{d}r = \frac{1}{8} \int_{0}^{2\pi} r^{4} |_{0}^{1} \, \mathrm{d}\theta = \frac{1}{8} \int_{0}^{2\pi} \mathrm{d}\theta = \frac{\pi}{4}. \end{split}$$

$$\mathbb{E}[A = \frac{\pi}{4} \cdot \mathbb{E}[A = 0, b = \frac{1}{4}, a - b = -\frac{1}{4}]$$

5.6 二元函数最值问题

题目 5.2.

[2022年真题]设 $x \ge 0, y \ge 0$,满足 $x^2 + y^2 \le k e^{x+y}$. 若 k的最小值为 $a e^b + c$,其中 a,b,c为有理数,求 a+b+c.

先求函数在区域内的驻点: 即求所有偏导数为 0 的点

5.6 二元函数最值问题 63

再求函数在边界线上可能的最值点: 边界线由 x=0 ($y\ge 0$) 和 y=0 ($x\ge 0$) 两部分组成,分别求两段边界的极值,和两段边界的分界点。

将区域内驻点和边界上的极值点分别代入目标函数f(x,y)

设
$$k$$
 在 $y \ge |x|$ 上满足 $(1-x)$ $(y-1) \ge k e^y$,求 k 能取到的最大值。
$$f(1,1) = (1-1) (1-1) e^{-1} = 0, \\ f(3,3) = (1-3) (3-1) e^{-3} = -4 e^{-3}, \\ f(-1-\sqrt{2},1+\sqrt{2}) = (1-(-1-\sqrt{2})) (1+\sqrt{2}-1) e^{-1-\sqrt{2}} = (2+2\sqrt{2}) e^{-1-\sqrt{2}}, \\ f(0,0) = (0-1) (1-0) e^{-0} = -1,$$

第6章

积分表

$$\int x^n \ln(x) \ dx = \frac{x^{n+1}}{n+1} (\ln(x) - \frac{x^{n+1}}{(n+1)})$$
$$\int \ln(\sin x) \ dx = x \ln(\sin x) - \ln(\cos x) + C$$

平方6.1

2.立方根函数积分:

$$\int \sqrt[3]{x} \ dx = \frac{3}{4} x^{4/3} + C$$

3.其他根号函数积分:

4. 含有根号的三角函数积分:

5. 含有根号和指数的函数积分:

•
$$\int e^x \sqrt{1+e^x} \, dx$$
 (这类积分通常需要换元法)

6. 含有根号和有理函数的积分:

•
$$\int \frac{\sqrt{x}}{x^2+1} dx$$
 (可能需要分部积分法)

1.有理函数积分(部分分式分解):

$$\int \frac{1}{(x-a)(x-b)} dx = \frac{1}{b-a} \ln \left| \frac{x-a}{x-b} \right| + C$$

^{6.1.} 通常要用

66 积分表

2.根式函数积分:

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$

$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \ln \left(x + \sqrt{a^2 + x^2} \right) + C$$

3.指数函数与三角函数的积分:

$$\int e^{ax} \sin b \, x \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin b \, x - b \cos b \, x) + C$$

$$\int e^{ax} \cos b \, x \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos b \, x + b \sin b \, x) + C$$

- 三角函数的分式, 按顺序思考:
 - 1.凑微分,
 - 2.化简成一次式,或可以直接积分/凑微分积分的形式,
 - 3. 拆项,
 - 4.和差化积,
 - 5.万能代换。

不能凑微分,拆项或和差化积,所以用万能代换:命 $\tan\left(\frac{x}{2}\right) = t$.

[解答]原式=
$$\int \frac{\mathrm{d}x}{x}\sin(2x) + 2\sin x = \int \frac{\mathrm{d}x}{2\sin x(\cos x + 1)}$$

(%i11) ds:
$$\sin\left(\frac{\log(abs(x))}{(x-1)(x-3)}\right)$$

(%o11)
$$\sin \left(\frac{\log (|x|)}{(x-3)(x-1)} \right)$$

(%i12)
$$tm_plot2d(ds, [x, -0.5, 3.5])$$

(%o12) true

索引

平方根函数积分:	平方根函数积分:

参考文献

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$