NEW ENGLAND PLAYOFFS – 2003

Round 1 Arithmetic and Number Theory

- 1. _____
- 2. _____
- 3. _____
- 1. If $a \blacklozenge b = ab 1$ and $a \spadesuit b = a + b^2$, find $5 \spadesuit (4 \spadesuit 3)$

2. If $\frac{2^2 \cdot 3^3 \cdot 5^5 \cdot 7^7}{\left(20 \cdot 30 \cdot 50 \cdot 70\right)^3} = 2^a \cdot 3^b \cdot 5^c \cdot 7^d \text{ for integers } a, b, c, \text{ and } d, \text{ find the value of the sum } a + b + c + d.$

3. If *n* is a positive integer less than 10,000, for how many values of *n* is $\sqrt[3]{4n}$ an integer?

NEW ENGLAND PLAYOFFS – 2003

Round	2	Algebra	1

- 1.
- 2._____
- 3._____
- 1. Factor completely: c(a + b) 4(a + 2b) + 2b(c 2)

2. Measuring a certain distance by a meter stick that was 10% too short gave a length that was 40 cm too long. What was the actual distance in meters?

3. For x > y > 0 determine the greater value of $\frac{x}{y}$ if $\frac{x^3 - y^3}{x^3 - 3x^2y + 3xy^2 - y^3} = 4$.

NEW ENGLAND PLAYOFFS - 2003

Round 3 – Geometry

1.

2.

3.

1. ABCD is a square with AB = 9, EFGH is a square in which E and H are trisection points of \overline{AD} , and - PQRS is a square in which R is the midpoint of \overline{BC} and P is the midpoint of \overline{FG} , as shown. If X is the area of ABCD and Y is the area of the shaded region, determine Y/X.

2. Trapezoid ABCD with \overline{AB} parallel to \overline{DC} and median \overline{MN} . If AB = 10, DC = 18, and h and k are the lengths of perpendiculars to \overline{AC} drawn from D and N, determine $\frac{h}{k}$.

3. In circle O, if PS = n, SQ = n + 6, RS = n + 3, ST = n + 2, and TV = n + 1, determine the value of VQ. \overline{VQ} is tangent to circle O at Q.

NEW ENGLAND PLAYOFFS - 2003

Round 4 – Algebra 2	Round	4 –	Algebra	2
---------------------	-------	-----	---------	---

l**.**

2. _____

3._____

1. If $\log_5 2 = a$, $\log_5 3 = b$, and $\log_5 7 = c$, determine $\log_5 \frac{75}{16}$

2. Let f be a function such that f(x) = xf(x-1) for all x and f(3) is the arithmetic mean between f(2) and f(4). Determine the exact value of $\ln(5e^{f(3)})$.

3. The reciprocal of a real number is 19/18 more than its square. What is the number?

NEW ENGLAND PLAYOFFS - 2003

Round	5 –	Anal	lytic	Geome	etry

- 1. _____
- 2. _____
- 3._____
- 1. Line ℓ passes through the origin and divides square ABCD into two regions of equal area. Given A(7, 11), B(8, 11), C(8, 10) and D(7, 10), determine the slope of ℓ .

2. If the reflection of A(-1, 2) across y = mx for m > 0 lies on the x-axis, determine m.

3. A circle passes through the vertex of $y = 4 - x^2$ and is tangent to the graph of y = |x| at two points. Determine the radius of the smaller circle satisfying these conditions.

NEW ENGLAND PLAYOFFS - 2003

Round 6 - Trig and Complex Numbers

- 1. _____
- 2. _____
- 3._____
- 1. If $y = 479\cos(2003\pi x) + 821$ intersects y = x at point P whose coordinates are integers, find the coordinates of P, expressed as an ordered pair.

2. Solve $\cos(\sin(\cos t)) = 1$ for $0 \le t < 2\pi$

3. A sine function, $y = D + A \sin(Bx + C)$, has a maximum y-value at $\left(\frac{3\pi}{8}, 5\right)$ and its next minimum y-value is at $\left(\frac{5\pi}{8}, 1\right)$. If A, B, C, and D are all positive, find the minimum value of A + B + C + D.

NEW ENGLAND PLAYOFFS - 2003

Team Round

1. _____ 4. ____

2. _____ 5. ____

._____ 6.____

1. In right triangle $\triangle ABC$, AB = 3 and BC = 4. $\triangle DEA$ is inscribed in $\triangle ABC$ such that $\triangle DEA \sim \triangle ABC$. If the perimeter of $\triangle DEA$ is m and the perimeter of $\triangle ABC$ is n, determine m/n.

2. Let *n* be an <u>odd positive integer</u>. Consider S = (0 + 1 + 2 + ... + n) + (1 + 2 + ... + n - 2 + n - 1) + (2 + 3 + 4 + ... + n - 3 + n - 2) + ... where each expression inside the parentheses has the outer terms of the previous expression deleted and the last expression has two terms. If S = 3480, determine *n*.

3. AB = 1, $AC = \frac{170}{121}\cos\theta$, $m\angle B = 3\theta$ and $m\angle C = 2\theta$. Determine the exact numerical value of $\cos\theta$.

4. A square is chosen at random in both the first and second columns. Each is marked with an *X* and the mirror images of those squares across the vertical line separating the 2nd and 3rd columns are marked with an *X* in the third and fourth columns. For most combinations of marked squares there will be some 2 by 2 square regions in which no individual square is marked. Find the probability that the number of unmarked 2 by 2 regions is 7.

- 5. A constant m is selected with 0 < m < 1. Find the sum of all solutions x to $\sin(x) = m$ if $0 \le x \le 2002$.
- 6. Shown are two concentric regular hexagons with parallel corresponding sides whose lengths are integers. The ratio of their areas is 4/25. Find the least area of trapezoid *ABCK*.

NEW ENGLAND PLAYOFFS - 2003

Answer Sheet

Round 1

- 1. 64
- 2. -19
- 3. 17

Round 2

- 1. (a+3b)(c-4)
- 2. 3.6
- $3. \quad \frac{x}{y} = \frac{3 + \sqrt{5}}{2}$

Round 3

- 1. $\frac{2}{3}$
- 2. $\frac{18}{5}$
- 3. $2\sqrt{42}$

Round 4

- 1. 2 + b 4a
- 2. ln 5
- 3. $\frac{2}{3}$

Round 5

- 1. $\frac{7}{5}$
- $2. \quad \frac{\sqrt{5}+1}{2}$
- 3. $4(\sqrt{2}-1)$

Round 6

- 1. (1300, 1300)
- 2. $\frac{\pi}{2}, \frac{3\pi}{2}$
- 3. $9 + \pi$

Team

- 1. 25/32
- 2. 29
- 3. $\frac{11}{12}$
- 4. $\frac{4}{25}$
- 5. $2,003,001\pi$
- 6. $10\sqrt{3}$

PLAYOFFS - 2003 - Solutions Outline

Round 1 Arithmetic and Number Theory

- 1. $4 \spadesuit 3 = 4 + 9 = 13$; $5 \spadesuit 13 = 64$
- 2. $\frac{2^2 \cdot 3^3 \cdot 5^5 \cdot 7^7}{\left(20 \cdot 30 \cdot 50 \cdot 70\right)^3} = \frac{2^2 \cdot 3^3 \cdot 5^5 \cdot 7^7}{\left(2 \cdot 3 \cdot 5 \cdot 7\right)^3 \left(10^4\right)^3} = \frac{2^2 \cdot 3^3 \cdot 5^5 \cdot 7^7}{2^{15} \cdot 3^3 \cdot 5^{15} \cdot 7^3} = 2^{-13} \cdot 3^0 \cdot 5^{-10} \cdot 7^4. \text{ Thus,}$ a + b + c + d = -13 + 0 10 + 4 = -19.
- 3. Clearly, $n = 2m^3$ and since $2 \cdot 17^3 = 9826$ and $2 \cdot 18^3 = 11664$, then $n = 2 \cdot 1^3$, $2 \cdot 2^3$, $2 \cdot 3^3$, ..., $2 \cdot 17^3$ giving 17 values for n.

Round 2 Algebra 1

- 1. Multiplying and combining gives ac + 3bc 4a 12b = (a + 3b)(c 4)
- 2. Let x be the length in meters. Then $\frac{x}{.9} = x + \frac{2}{5} \rightarrow x = \frac{18}{5} = 3.6$.

3.
$$\frac{x^3 - y^3}{x^3 - 3x^2y + 3xy^2 - y^3} = 4 \implies \frac{(x - y)(x^2 + xy + y^2)}{(x - y)^3} = 4 \implies$$
$$x^2 + xy + y^2 = 4(x^2 - 2xy + y^2) \implies x^2 - 3xy + y^2 = 0 \implies \left(\frac{x}{y}\right)^2 - 3\left(\frac{x}{y}\right) + 1 = 0. \text{ Thus,}$$
$$\frac{x}{y} = \frac{3 \pm \sqrt{9 - 4 \cdot 1}}{2}. \text{ Choose } \frac{x}{y} = \frac{3 + \sqrt{5}}{2}.$$

Round 3 – Geometry

1. Let AB = x, making EH = x/3 and diagonal PR = 2x/3. The area of EFGH is $\frac{x^2}{9}$ and the area of PQRS is easily obtained using the area formula for a rhombus and equals $\frac{(2x/3)(2x/3)}{2} = \frac{4x^2}{9}$. Thus, $Y/X = \frac{x^2 - (x^2/9 + 4x^2/18)}{x^2} = \frac{2}{3}$.

2. Draw a perpendicular from *B* to \overline{AC} . Call its length *x*. (5/2)x. Since N is the midpoint of \overline{BC} , $\frac{k}{x} = \frac{1}{2}$. By alternate alterior angles, the right triangle with corresponding legs *x* and *h* are similar $\Rightarrow \frac{x}{h} = \frac{10}{18}$. Multiplying the two equations $\Rightarrow \frac{k}{h} = \frac{5}{18}$.

3.
$$n(n+6) = (n+3)(n+2) \rightarrow n = 6$$
. RS = 9, ST = 8 and TV = 7. (RV)(TV) = VQ^2 .

Round 4 - Algebra 2

1.
$$\log_5 \frac{75}{16} = 2\log_5 5 + \log_5 3 - 4\log_5 2 = 2 + b - 2a$$
.

- 2. Since f(3) = 3f(2) and f(4) = 4f(3), then $f(3) = \frac{f(2) + f(4)}{2} = \frac{(1/3)f(3) + 4f(3)}{2}$. Thus, $f(3) = \frac{13}{6}f(3) \rightarrow f(3) = 0$.
- 3. $\frac{1}{x} = x^2 + \frac{19}{18}$, $18x^3 + 19x 18 = 0$, looking for root between 0 and 1. Use rational root theorem and synthetic division.

Round 5 – Analytic Geometry

- 1. A line passing through the center of a square bisects the square. The center of *ABCD* is $M\left(\frac{15}{2}, \frac{21}{2}\right)$ and the slope of ℓ is $\frac{21/2 0}{15/2 0} = \frac{7}{5}$.
- 2. The distance from the point (-1, 2) to the origin must = the distance from the origin to R, the reflection point. Hence we get $R(\sqrt{5},0)$. The slope of the segment connecting these points is $\frac{-2}{\sqrt{5}+1}$.

3. Since $m \angle BAD = 90^{\circ}$, and AB = AD while CB = CD = r, then ABCD is a square. Thus, CE = r and $AC = r\sqrt{2}$, so $CE + AC = r + r\sqrt{2} = 4 \implies r = \frac{4}{\sqrt{2} + 1} = 4(\sqrt{2} - 1).$

Round 6 - Trig and Complex Numbers

- 1. Since $479 \cos(2003\pi x) + 821 = x$ for integer x, then $\cos(2003\pi x) = 1$ and x = 479 + 821 = 1300. The coordinates are (1300, 1300).
- 2. Let $x = \sin(\cos t)$. Then $\cos x = 1 \rightarrow x = 0 \pm 2\pi k \rightarrow \sin(\cos t) = 0 \pm 2\pi k$, but given that the range values of the sine function are restricted to between -1 and 1 inclusive, we have $\sin(\cos t) = 0$. Let $\cos t = y$. Then $\sin y = 0 \rightarrow y = 0 \pm \pi k$. Thus, $\cos t = 0 \pm \pi k$, but since $-1 \le \cos t \le 1$, $\cos t = 0 \rightarrow t = \frac{\pi}{2}, \frac{3\pi}{2}$.
- Given $\left(\frac{3\pi}{8}, 5\right)$ and $\left(\frac{5\pi}{8}, 1\right)$, we know that the amplitude equals $\frac{5-1}{2} = 2$, so A = 2. The minimum value has been shifted upwards from -2 to 1, so D = 3. The period equals $2\left(\frac{5\pi}{8} \frac{3\pi}{8}\right) = \frac{\pi}{2}$, and since $\frac{\pi}{2} = \frac{2\pi}{B}$, B = 4. Thus we have $y = 3 + 2\sin 4(x + \frac{C}{4})$. Point (0, 0) on $y = \sin x$ would be point $(-\frac{\pi}{4}, 3)$ on this graph so there is a phase shift to the left of $\frac{\pi}{4}$ making $\frac{C}{4} = \frac{\pi}{4}$ so $C = \pi$. Thus, $A + B + C + D = 2 + 4 + \pi + 3 = 9 + \pi$.

Team Round

1. Using $\triangle ABE \sim \triangle EFD$, $\cos \theta = \frac{3}{4x}$ and $\frac{EF}{3x}$ respectively. This makes EF = 9/4. Since DC = 5 - 5x = 5(1-x) and $\triangle DFC \sim \triangle ABC$, then DF = 3(1-x). Thus, $\left(\frac{9}{4}\right)^2 + \left(3(1-x)\right)^2 = \left(3x\right)^2$ making $x = \frac{25}{32}$. The ratio of perimeters equals 3x/3 = x = 25/32.

2. In *S* the first expression is an arithmetic progression with common difference d = 1 and n + 1 terms. The second has d = 1 and n - 1 terms, the third has d = 1 and n - 3 terms and so on until the last expression which has 2 terms. Thus, *S* equals

$$\left(\frac{0+n}{2}\right)(n+1) + \left(\frac{1+(n-1)}{2}\right)(n-1) + \left(\frac{2+(n-2)}{2}\right)(n-3) + \dots + \left(\frac{n-1}{2} + \frac{n+1}{2}\right)(n-(n-2)) = 0$$

 $n\left(\frac{n+1}{2} + \frac{n-1}{2} + \frac{n-3}{2} + \dots + 1\right)$. The last expression inside () = sum of the integers from 1 to (n+1)/2, S

equals
$$n \cdot \frac{1 + \frac{n+1}{2}}{2} \cdot \frac{n+1}{2} = \frac{n(n+3)(n+1)}{8}$$
. Thus, $n(n+1)(n+3) = 8.3480 = 29.30.32$, making $n = 29$.

3. Let $k = \frac{170}{121}$. By the Law of Sines, $\frac{k \cos \theta}{\sin 3\theta} = \frac{1}{\sin 2\theta} \implies k \cos \theta = \frac{\sin 3\theta}{\sin 2\theta} = \frac{3 \sin \theta - 4 \sin^3 \theta}{2 \sin \theta \cos \theta} = \frac{3 - 4 \sin^2 \theta}{2 \cos \theta}$. Multiply both

sides by $2\cos\theta$ and substitute $1-\cos^2\theta$ for $\sin^2\theta$ giving $2k\cos^2\theta = 3-4+4\cos^2\theta$. This simplifies to $\cos^2\theta = \frac{1}{4-2k}$. Now k = 170/121 and obtain $\cos^2\theta = \frac{121}{144} \implies \cos\theta = \frac{11}{12}$.

4. There are $5 \cdot 5 = 25$ different ways to select a square at random in the first two columns. Of those, the two shown in the diagram have exactly 7 clear 2 by 2 squares. For example, the left array has a 2 by 2 square bounded by the x's on the side and then the 3 by 4 section of squares at the bottom has six 2 by 2 that are free of x's. Each array can be turned upside down to give another array, making 4 arrays with 7 x-free 2 by 2's.

X			X	X	
	X				
		X			X

In the table below, the first row gives the number of 2 by 2 squares that are x-free and the second row gives the number of times that outcome occurs:

0	1	2	3	4	5	6	7	8	9
0	0	2	0	8	4	5	4	0	2

The answer is $\frac{4}{25}$.

- 5. Since m is non-negative, solutions lie in the first and second quadrant. They are $x, \pi x, 2\pi + x, 3\pi x, \ldots, 2000\pi + x, 2001\pi x$. The x's cancel leaving $\pi(1+2+3+\ldots+2001) = \frac{(1+2001)(2001)\pi}{2} = 2,003,001\pi.$
- 6. Since the ratio of areas is 4/25, the ratio of sides is 2/5. If AB = 5, then FC = 10. If HJ = 2, then GK = 4, giving KC = 3. Since BC = 5 and triangle BPC is a 30–60–90 triangle, then $PC = \frac{5\sqrt{3}}{2}$. Area of trapezoid $ABCK = \frac{1}{2}(3+5)\frac{5\sqrt{3}}{2} = 10\sqrt{3}$.

