Paweł Kruczkiewicz,

Algorytmy geometryczne,

Grupa nr 8 (czwartek 16:15, tydzień B)

Sprawozdanie nr 1

Temat: Badanie wyznaczników

Cel ćwiczenia

Ćwiczenie wprowadzające w zagadnienia geometrii obliczeniowej – implementacja podstawowych predykatów geometrycznych, przeprowadzenie testów, wizualizacja i opracowanie wyników.

Wprowadzenie

Wyznaczanie, po której stronie danego odcinka znajduje się dany punkt jest jednym z najważniejszych, a jednocześnie najbardziej fundamentalnych problemów geometrii obliczeniowej. Najbardziej wydajnym rozwiązaniem jest w tym przypadku użycie wyznacznika – jego znak wskazuje orientację punktu względem wektora. Jeżeli punkt C znajduje się po lewej stronie prostej wyznaczonej przez wektor **AB**, wyznacznik jest dodatni, gdy po prawej – ujemny, a gdy wyznacznik jest równy zeru – punkt C znajduje się na prostej AB (inaczej: punkty A, B i C są współliniowe).

Jednak ze względu na sposób zapisu liczb zmiennoprzecinkowych w komputerze, nie każdy sposób obliczania wyznacznika jest sobie równy. W tym doświadczeniu sprawdzono, jak różne typy wyznaczników radzą sobie na różnych, wygenerowanych losowo zbiorach danych. Każdy test powtórzono dla różnych dokładności ε (tj. dla wartości wyznacznika mniejszych od ε , ale większych od $-\varepsilon$, uznawano punkty za współliniowe).

Specyfikacja

Doświadczenie przeprowadzono na 64-bitowym systemie Windows 10 na 4-rdzeniowym procesorze firmy Intel . Kod oraz obliczenia wykonano w Jupyter Notebooku. Wersja pythona to 3.8, co sprawia, że precyzja obliczeń jest ograniczona przez zapis 64-bitowej liczby zmiennoprzecinkowej (odpowiednik typu *double* w językach C).

Plan doświadczenia

- 1. Przygotowano 4 zbiory losowe w przestrzeni dwuwymiarowej zapisanych jako dwuelementowe tuple z liczbami zmiennoprzecinkowymi:
 - a. Zbiór 1 10⁵ losowych punktów o współrzednych z przedziału [-1000, 1000],
 - b. Zbiór $2 10^5$ losowych punktów o współrzędnych z przedziału [- 10^{14} , 10^{14}],
 - c. Zbiór 3 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu R=100,
 - d. Zbiór 4 1000 losowych punktów o współrzędnych z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor [(-1.0, 0.0), (1.0, 0.1)],
- 2. Zobrazowano zbiory graficznie z użyciem narzędzia.

- 3. Przygotowano program, który dla każdego ze zbioru danych dokona podziału punktów względem ich orientacji w stosunku do odcinka ab (a = [-1.0, 0.0], b = [1.0, 0.1] punkty znajdujące się po lewej stronie, po prawej stronie oraz współliniowe.
- 4. Program przygotowany w punkcie 3. sprawdzono dla czterech rodzajów wyznaczników: wyznacznika 2x2, wyznacznika 3x3 (patrz Wzór 1) napisanych samodzielnie oraz odpowiednich wyznaczników obliczonych za pomocą biblioteki numpy. Zastosowane wartości ε: 0, 10-14, 10-12, 10-10-Wyniki przypisana przedstawiono w tabelkach i na wykresach.
- 5. Przedstawiono graficznie różnice w podziale punktów.

$$\det(a,b,c) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix}$$

$$\det(a,b,c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$$

Wzór 1 - wyznaczniki 2x2 i 3x3 dla punktów A, B, C

UWAGA

Punkty na lewo od prostej będą zaznaczane na czerwono, punkty na prawo – na niebiesko, a punkty współliniowe – w kolorze khaki.

Pomiary:

Zbiór 1

Pierwszym zbiorem jest 10 000 losowych punktów o współrzędnych z zakresu (-1000, 1000).

Jest to zbiór kontrolny, w którym nie ma większych trudności dla napisanych programów. Widać to wyraźnie w wynikach – każdy wyznacznik przyporządkował dane punkty w ten sam sposób (tabela 1, wykres 2) dla każdej wartości epsilon.

Wykres 1 - graficzne przedstawienie zbioru 1

Epsilon	0	1,00E-14	1,00E-12	1,00E-10
Lewy	50180	50180	50180	50180
Prawy	49820	49820	49820	49820
Współliniowe	0	0	0	0

Tabela 1 - wyniki dla zbioru 1 każdego z wyznaczników

Wykres 2 - przyporządkowanie punktów przez wszystkie wyznaczniki dla zbioru 1

Zbiór 2

Drugi zbiór różnił się od pierwszego jedynie zbiorem wartości pojedynczych współrzędnych (między - 10^{14} i 10^{14}). Potencjalną trudnością dla liczenia wyznacznika jest tutaj duża różnica między współrzędnymi. Operacje arytmetyczne na liczbach różnego rzędu wielkości (np. 10^{14} i $10^{(-3)}$) jest

problematyczne dla komputera ze względu na reprezentację liczb zmiennoprzecinkowych w pamięci komputera.

Powyższy problem widać na wykresie 3, gdzie przedstawiono podział punktów przez wyznacznik 2x2 napisany samodzielnie. 6 pojedynczych punktów zostało przypisanych jako współliniowe z wektorem AB. Linia ma miarę Riemanna równą 0, więc prawdopodobieństwo wylosowania punktu z danej linii jest zerowe. Dlatego też żaden punkt nie powinien zostać tak przyporządkowany.

Warto zauważyć, że "błędne" punkty mają dużą różnicę między współrzędnymi x i y, co jest powodem ich mylnego przyporządkowania.

Podobnych błędów nie odnotowano w przypadku pozostałych wyznaczników.

Wykres 3 - przyporządkowanie punktów przez wyznacznik 2x2 (własny)

Wyniki przyporządkowania dla poszczególnych wyznaczników przedstawiono w tabeli 2 i tabeli 3.

Epsilon	0	1,00E-14	1,00E-12	1,00E-10
Lewy	50027	50027	50027	50027
Prawy	49967	49967	49967	49967
Współlin.	6	6	6	6

Tabela 2 - przyporządkowanie dla punktów zbioru 2 dla wyznacznika 2x2 (sam.)

Epsilon	0	1,00E-14	1,00E-12	1,00E-10
Lewy	50030	50030	50030	50030
Prawy	49970	49970	49970	49970
Współlin.	0	0	0	0

Tabela 3 - to samo przyporządkowanie dla pozostałych wyznaczników

Zbiór 3

Trzeci zbiór to losowo wybrane punkty na okręgu o promieniu R=100 oraz środkiem w punkcie (0,0). Jego graficzna reprezentacja została przedstawiona na wykresie 4.

Wykres 4 - graficzne przedstawienie zbioru 3

Podobnie jak w zbiorze pierwszym – nie powinno być tutaj większych trudności przy przyporządkowywaniu. Potwierdza to pomiar – każdy wyznacznik poradził sobie tak samo.

Epsilon	0	1,00E-14	1,00E-12	1,00E-10
Lewy	496	496	496	496
Prawy	504	504	504	504
Współlin.	0	0	0	0

Tabela 4 - przyporządkowanie dla punktów zbioru 3 każdego wyznacznika W

Wykres 5- podział punktów zbioru 3 wszystkich wyznaczników

Zbiór 4

Zbiór czwarty jest kluczowy dla doświadczenia. (wykres 6) Wszystkie punkty należą do prostej wyznaczonej przez wektor AB. Z tego powodu każdy punkt powinien zostać uznany za współliniowy, jednak ze względu na zapis liczb zmiennoprzecinkowych w pamięci komputera wynik różnych różni się dla wartości Wyniki przyporządkowania punktów tego zbioru przedstawiono w tabeli 5. Przeanalizujmy wyniki dla różnych wyznaczników.

Wykres 6 - przedstawienie graficzne punktów zbioru 4

Epsilon	0	1,00E-14	1,00E-12	1,00E-10	
wyznacznik 2x2 (implementacja samodzielna)					
Lewy	129	119	63	0	
Prawy	156	146	82	0	
Współlin.	715	735	855	1000	
wyna	cznik 3x3 (ii	mplementa	cja samodz	ielna)	
Lewy	174	0	0	0	
Prawy	398	0	0	0	
Współlin.	428	1000	1000	1000	
wyznacznik 2x2 (biblioteka numpy)					
Lewy	506	452	132	0	
Prawy	494	452	138	0	
Współlin.	0	96	730	1000	
wyznacznik 3x3 (biblioteka numpy)					
Lewy	479	15	0	0	
Prawy	519	106	0	0	
Współlin.	2	879	1000	1000	

Tabela 5 - wyniki przyporządkowania dla różnych wyznaczników dla zbioru 4

Wyznacznik 2x2 (samodzielna implementacja):

Wyznacznik ten poradził sobie najlepiej dla 0 tolerancji ε osiągając ponad 70% skuteczność. (Przedstawione to zostało na *wykresie 7*). Niestety pełną skuteczność osiągnęła dopiero dla ε rzędu $10^{(-10)}$, co sprawia, że nie jest to najlepszy z wyznaczników

Wyznacznik 3x3 (samodzielna implementacja):

Pod względem poprawnie zakwalifikowanych punktów, zdecydowanie najlepsze wyniki osiągnął samodzielnie zaimplementowany wyznacznik 3x3. Już zaledwie dla $\varepsilon=10^{(-14)}$ wyznacznik osiągnął stuprocentową skuteczność. (wykres 9)

Omawiany wyznacznik nie poradził sobie jedynie dla ε =0, gdzie osiągnął zaledwie 43% precyzji. Jednakże poza tym mankamentem, ów wyznacznik jest najbardziej rzetelnym sposobem wyznaczania orientacji punktów względem danej prostej.

Warto również zauważyć, że niepoprawnie przyporządkowane punkty znajdują się przede wszystkim w dalekiej odległości od punktu (0,0), czyli różnica między ich współrzędną x oraz y jest duża, co mogło spowodować błędny osąd orientacji punktu.

Wykres 7- przyporządkowanie wyznacznika 2x2 dla ϵ = 0

Wykres 8 - przyporządkowanie dla wyznacznika 3x3 dla ε =0

Wykres 9 - przyporządkowanie "bezbłędne" dla ε =10 $^{(-14)}$ wyznacznika 3x3

Wyznaczniki systemowe (2x2 i 3x3 obliczone z pomocą biblioteki numpy)

Oba wyznaczniki wykazały się bardzo niską skutecznością dla ε =0.(*Wykres 10*). Nie można ich również uznać za lepsze od ich samodzielnie zaimplementowanych odpowiedników, gdyż każdy poradził sobie gorzej niemal dla każdego ε .(Jedynym wyjątkiem jest ε =10⁽⁻¹⁰⁾, dla którego każdy wyznacznik poradził sobie równie dobrze.)

Na wykresie 11 umieszczono porównanie "skuteczności" wszystkich wyznaczników dla danego epsilonu dla punktów ze zbioru 4.

Wykres 10 - przyporządkowanie wyznacznika 2x2 (numpy) dla ε =0

Wykres 11 - przedstawienie liczby poprawnie zakwalifikowanych punktów

WNIOSKI

Powyższe doświadczenie wykazało, że nie wszystkie wyznaczniki przyporządkowują punkty dokładnie tak, jak powinny być przyporządkowane. Głównym problemem jest tutaj sposób zapisywania liczb zmiennoprzecinkowych w pamięci komputera, co przy dużych różnicach w rzędach wielkości liczb, może doprowadzić do niedokładności przy obliczeniach arytmetycznych. Dlatego też różne zbiory punktów mogą sprawiać różne trudności dla wyznaczników.

Zbiory 1 i 3 w opisywanym doświadczeniu zostały przyporządkowane jednakowo przez wszystkie wyznaczniki. W zbiorze 2 pojawiły się pojedyncze źle zakwalifikowane punkty dla wyznacznika 2x2 z powodu opisanego w powyższym akapicie. Pozostałe wyznaczniki poradziły sobie z tym zbiorem bez błędów.

Zbiór 4 jest decydujący, jeżeli chodzi o jakość wyznacznika. Owe testy niemal jednoznacznie wskazały na samodzielnie zaimplementowany wyznacznik 3x3, który bezbłędnie przyporządkował punkty już dla niepewności do stubilionowej części dziesiętnej.

W dalszych doświadczeniach do wyznaczania orientacji punktu względem prostej wyznaczonej przez dany wektor będę używał właśnie tego wyznacznika.