Economie I Cours 3 : La théorie du producteur

O. Barrera, C. Bordenave, J.-B. Jarin, P. Larbaoui, P. Lacassy, F. Maublanc, Q. de Nantes, A.-C. Soh-Voutsa, A. Szczygiel, O. Thöni

Sommaire

- La production
 - Définition
 - Les facteurs de production
 - La technologie de production
- 2 La fonction de production
 - Les isoquantes
 - Productivité moyenne et productivité marginale
 - Taux marginal de substitution technique
 - Complémentarité et substituabilité parfaite
 - Les rendements d'échelle
- 3 Combinaison optimale des facteurs de production
 - Le programme du producteur
 - Les droites d'isocoût
 - Combinaison optimale des facteurs

La production

- La production
 - Définition
 - Les facteurs de production
 - La technologie de production

La production I

- Les entreprises produisent des biens et services à destination d'autres entreprises ou des consommateurs.
- Pour ce faire, elles doivent répondre à plusieurs questions :
 - Quels sont les biens et les services qui vont être nécessaires à la production ?
 - Quelle quantité de chacun de ces biens et services vais-je devoir utiliser pour parvenir à réaliser mon objectif de production ?
 - Comment organiser le processus de production ?
 - Comment produire de façon efficace ? Au moindre coût ?

La production II

- En microéconomie, la théorie du producteur permet de répondre à ces questions de la façon suivante :
 - L'entreprise utilise des facteurs de production ou inputs (ressources naturelles, travail, capital...) qui vont entrer en compte dans le processus de production.
 - ② Ce processus de production indique comment ces inputs sont transformés en outputs ou production, très souvent au moyen d'une fonction de production.
 - Les entreprises choisissent les quantités de facteurs de production de façon à minimiser leurs coûts totaux tout en réalisant leur objectif de production.
- Analysons successivement ces différents points, en commençant par les facteurs de production.

Les facteurs de production

- On appelle facteurs de production (ou inputs) les éléments nécessaires à la production.
- On classe souvent ces éléments dans des catégories larges, comme les ressources naturelles, le travail et le capital.
- Le capital regroupe tous les biens utilisés au cours de <u>plusieurs</u> cycles de production, comme les machines, les bâtiments, les ordinateurs... Ces biens constituant le capital ne sont pas détruits ou transformés au cours du cycle de production.
- Généralement, nous mesurons ces différents facteurs en unités de flux et non en unités de stock : le nombre d'heures travaillées, le nombre d'heures d'utilisation des machines, la quantité de matières premières utilisées pour la production...

La technologie de production

- Il ne suffit pas d'avoir des inputs pour parvenir à produire un bien ou un service. Seulement certaines combinaisons de ces inputs permettent de produire la quantité désirée, à cause de contraintes techniques par exemple...
- Ainsi, pour atteindre un certain niveau de production, il existe un ensemble de combinaisons possibles des différents facteurs. Chacune de ces combinaisons est appelée technologie de production.
- Pour décrire la transformation des inputs en outputs, les économistes utilisent souvent des fonctions de production, que nous allons étudier ci-après.

La fonction de production

- La production
- 2 La fonction de production
 - Les isoquantes
 - Productivité moyenne et productivité marginale
 - Taux marginal de substitution technique
 - Complémentarité et substituabilité parfaite
 - Les rendements d'échelle
- 3 Combinaison optimale des facteurs de production

La fonction de production

- La fonction de production exprime la relation entre les facteurs de production et l'output.
- Nous allons considérer dans ce cours les fonctions de production à deux inputs : le capital noté K, et le travail noté L (Labor en Anglais).
- La fonction de production à deux inputs est :

$$Y = f(K, L)$$

• Le niveau d'output (Y) est une fonction du niveau de capital (K) et de travail (L).

Les isoquantes

- Chaque niveau de production peut être obtenu par un ensemble de combinaisons différentes des deux facteurs : cela signifie qu'il est possible de substituer au moins en partie le capital et le travail.
- Nous allons pouvoir représenter graphiquement des isoquantes (appelées également courbes d'isoproduit).
- Les **isoquantes** indiquent toutes les combinaisons productives permettant d'atteindre le même niveau de production.
- Analogie des isoquantes avec les courbes d'indifférence du consommateur.

Les isoquantes Productivité moyenne et productivité marginale

Toutetivité mojenne et productivité magna Taux marginal de substitution technique Complémentarité et substituabilité parfaite

Les isoquantes

La productivité marginale I

- Partant de la combinaison de facteurs capital et travail (K,L), que se passe-t-il si une entreprise décide d'augmenter l'utilisation de facteur travail $(\Delta L>0)$, le facteur capital restant constant ? De la même façon, que se passe-t-il si elle décide d'augmenter l'utilisation de facteur capital $(\Delta K>0)$, le facteur travail restant constant ?
- On définit la productivité marginale d'un facteur comme étant le supplément de production obtenu par l'entreprise rapporté à l'augmentation de la quantité utilisée de ce facteur.

La productivité marginale II

• La productivité marginale du travail (notée Pm_L) obtenue suite à une augmentation de la quantité de facteur travail de ΔL unités est égale à :

$$Pm_L = \frac{f(K, L + \Delta L) - f(K, L)}{\Delta L} \ .$$

• Si ΔL est très petit, on a alors :

$$Pm_L(K,L) = \frac{\partial f}{\partial L}(K,L)$$
.

La productivité marginale III

• La productivité marginale du capital (notée Pm_K) obtenue suite à une augmentation de la quantité de facteur capital de ΔK unités est égale à :

$$Pm_K = \frac{f(K + \Delta K, L) - f(K, L)}{\Delta K}$$

• Si ΔK est très petit, on a alors :

$$Pm_K(K,L) = \frac{\partial f}{\partial K}(K,L)$$
.

Productivité moyenne

- Il ne faut pas confondre productivité marginale et productivité moyenne des facteurs.
- La productivité moyenne des facteurs est le ratio entre la production et la quantité de facteurs utilisée. La productivité moyenne du travail (notée PM_L) est ainsi le ratio entre la production et la quantité de travail utilisée :

$$PM_L = \frac{Y}{L},$$

et la **productivité moyenne du capital** (notée PM_K) est le ratio entre la production et la quantité de facteur capital utilisée :

$$PM_K = \frac{Y}{K}.$$

Le taux marginal de substitution technique I

- Imaginons que nous soyons au point de coordonnées (K,L). Si l'entreprise décide de diminuer l'utilisation de facteur capital d'une unité, de combien d'unités de travail doit-elle compenser pour rester à niveau de production donné ?
- Autrement dit, quelle est la valeur ΔK telle que $(K+\Delta K; L+\Delta L)$ permette d'obtenir la même production que (K,L) lorsque $\Delta K=-1$?

Le taux marginal de substitution technique II

Le taux marginal de substitution technique III

- Partant du point A, lorsqu'on diminue le facteur capital d'1 unité $(\Delta K = -1)$, on passe de 1.5 à 0.5 unités de capital), il faut augmenter le facteur travail de 4 unités $(\Delta L = 4)$ pour que l'entreprise réalise le même niveau de production.
- Partant du point B, lorsqu'on diminue le facteur capital d'1 unité $(\Delta K = -1)$, on passe de 4 à 3 unités de capital), il faut augmenter le facteur travail de 0.25 unité $(\Delta L = 0.25)$ pour que l'entreprise réalise le même niveau de production.
- On observe qu'on ne substitue pas toujours la même quantité de facteur travail à une même quantité de facteur capital lorsqu'on souhaite se séparer d'une unité de capital.
- Le ratio $\frac{\Delta L}{\Delta K}$ représente le taux auquel l'entreprise substitue du facteur capital par du facteur travail (lorsqu'on prend $\Delta K > 0$).

Les isoquantes
Productivité moyenne et productivité marginale
Taux marginal de substitution technique
Complémentarité et substituabilité parfaite
Les rendements d'échelle

Le taux marginal de substitution technique IV

- En choisissant une quantité ΔK très petite (en la faisant tendre vers 0), alors ce ratio tend vers la pente de l'isoquante en ce point.
- Le taux marginal de substitution technique en un point est la pente de l'isoquante en ce point :

$$TMST(K,L) = \frac{dL}{dK}.$$

• Le TMST est de signe négatif. Il mesure la baisse de la quantité de facteur travail (notée dL) permise par une augmentation (infinitésimale) de la quantité de capital dK, pour rester à production constante.

Le taux marginal de substitution technique V

• La différentielle de la fonction f s'écrit :

$$df = \frac{\partial f}{\partial K}(K, L)dK + \frac{\partial f}{\partial L}(K, L)dL$$

 \bullet Le long de l'isoquante, la quantité ne varie pas. Donc en tout point de cette isoquante, $d\!f=0.$

Par conséquent :

$$\frac{\partial f}{\partial K}(K, L)dK + \frac{\partial f}{\partial L}(K, L)dL = 0$$

Le taux marginal de substitution technique VI

• En réarrangeant :

$$\frac{dL}{dK} = -\frac{\frac{\partial f}{\partial K}(K,L)}{\frac{\partial f}{\partial L}(K,L)} \text{ ou encore } \boxed{TMST(K,L) = -\frac{Pm_K(K,L)}{Pm_L(K,L)}}$$

 Le taux marginal de substitution technique est égal au rapport des productivités marginales des facteurs de production.

Facteurs parfaitement substituables I

- Lorsque les facteurs de production sont parfaitement **substituables**, les isoquantes sont graphiquement des droites.
- Par conséquent, le Taux Marginal de Substitution Technique (TMST) est constant en tout point.
- Par exemple, la fonction de production suivante

$$f(K, L) = K + L$$

est à facteurs de production parfaitement substituables. Nous représentons ci-après quelques isoquantes.

Facteurs parfaitement substituables II

Facteurs parfaitement complémentaires I

- Lorsque les facteurs de production sont parfaitement complémentaires, il n'est pas possible de substituer les facteurs de production.
- La production ne peut augmenter que si les quantités d'inputs utilisées augmentent toujours dans les mêmes proportions.
- Par exemple, la fonction de production suivante

$$f(K, L) = \min(K, L)$$

est à facteurs de production parfaitement complémentaires. En effet, partant de la situation K=L, augmenter un seul des facteurs de production ne permet pas d'accroître la quantité produite. Il faut augmenter simultanément la quantité des deux facteurs pour augmenter la production.

Facteurs parfaitement complémentaires II

Les isoquantes Productivité moyenne et productivité marginale Taux marginal de substitution technique Complémentarité et substituabilité parfaite

Les rendements d'échelle I

- Au lieu d'augmenter un seul facteur de production en laissant les autres facteurs constants, que se passe-t-il si on augmente tous les facteurs de production en même temps, en les multipliant par un facteur $\lambda \in \mathbb{R}+$?
- Si on multiplie tous les facteurs de production par $\lambda \in \mathbb{R}+$, alors la production est-elle multipliée par λ , par plus que λ ou par moins que λ ?
- Autrement dit, en changeant d'échelle le montant des facteurs de production, quel est l'effet sur le rendement de la production ? Nous allons ici analyser les **rendements d'échelle**.

Les rendements d'échelle II

Si nous avons

$$f(\lambda K, \lambda L) = \lambda f(K, L) \quad \forall \lambda \in \mathbb{R}^+,$$

alors les rendements d'échelle sont constants.

• Nous pouvons bien sûr élargir cette propriété dans le cas où nous avons plus que deux facteurs de production, notés ci-dessous $x_1, ..., x_n$. Les rendements d'échelle seront constants lorsque :

$$f(\lambda x_1, ..., \lambda x_n) = \lambda f(x_1, ..., x_n) \quad \forall \lambda \in \mathbb{R} + .$$

Les rendements d'échelle III

Si nous avons

$$f(\lambda K, \lambda L) > \lambda f(K, L) \quad \forall \lambda \in \mathbb{R}^+,$$

alors les rendements d'échelle sont croissants.

• Comme précédemment, cette propriété peut être élargie dans le cas où nous avons plus que deux facteurs de production, notés ci-dessous $x_1,...,x_n$. Les rendements d'échelle seront croissants lorsque :

$$f(\lambda x_1, ..., \lambda x_n) > \lambda f(x_1, ..., x_n) \quad \forall \lambda \in \mathbb{R} + .$$

Les rendements d'échelle IV

Si nous avons

$$f(\lambda K, \lambda L) < \lambda f(K, L) \quad \forall \lambda \in \mathbb{R}^+,$$

alors les rendements d'échelle sont décroissants.

• Comme précédemment, cette propriété peut être élargie dans le cas où nous avons plus que deux facteurs de production, notés ci-dessous $x_1, ..., x_n$. Les rendements d'échelle seront décroissants lorsque :

$$f(\lambda x_1, ..., \lambda x_n) < \lambda f(x_1, ..., x_n) \quad \forall \lambda \in \mathbb{R} + .$$

Les rendements d'échelle V

- Il ne faut pas confondre productivité marginale (augmentation d'un seul facteur toutes choses égales par ailleurs) et rendements d'échelle (augmentation de tous les facteurs par un même facteur multiplicatif).
- Il est ainsi possible d'avoir une productivité marginale du travail décroissante mais des rendements d'échelle constants. Par exemple avec la fonction de production suivante :

$$f(K, L) = K^{0.5}L^{0.5}.$$

 Mathématiquement, les propriétés d'homogénéité des fonctions permettent (souvent) de connaître rapidement la nature des rendements d'échelle.

Combinaison optimale des facteurs de production

- La production
- 2 La fonction de production
- Combinaison optimale des facteurs de production
 - Le programme du producteur
 - Les droites d'isocoût
 - Combinaison optimale des facteurs

Le programme du producteur I

- Pour produire une quantité donnée notée α , l'entreprise va chercher à minimiser ses coûts de production.
- Si on note p_K le prix de chaque unité de capital, et p_L le prix de chaque unité de travail, alors la fonction de coût total de l'entreprise (notée CT(K,L)) est donnée par :

$$CT(K,L) = p_K K + p_L L.$$

Le programme du producteur II

• Le programme du producteur s'écrit ainsi :

$$\begin{cases} \min_{K,L} CT(K,L) = p_K K + p_L L \\ s.c. \quad \alpha = f(K,L) \end{cases}$$

• Nous allons tout d'abord procédér à une analyse graphique. Nous savons que la combinaison optimale est nécessairement située sur l'isoquante de niveau α notée ici q_{α} , sinon l'entreprise ne parviendra pas à produire exactement la quantité α . Nous avons représenté ci-après cette isoquante.

Le programme du producteur III

Les droites d'isocoût I

- Nous allons représenter sur ce même graphique l'ensemble des combinaisons de facteurs de production Capital et Travail qui présentent le même coût. Il s'agit des droites d'isocoût.
- Si on note C_{β} la droite d'isocoût de niveau β , celle-ci a pour équation :

$$\beta = p_K K + p_L L$$

$$\iff \boxed{L = \frac{\beta}{p_L} - \frac{p_K}{p_L} K}$$

• Les droites d'isocoût ont pour ordonnée à l'origine β/p_L , et pour coefficient directeur (pente) le rapport des prix des deux facteurs $-p_K/p_L$.

Les droites d'isocoût II

- Nous allons représenter sur le même graphique que l'isoquante plusieurs droites d'isocoût de niveau β_1 , β_2 et β_3 notées C_{β_1} , C_{β_2} et C_{β_3} , avec $\beta_1 < \beta_2 < \beta_3$.
- Ces droites ont toutes la même pente égale à $-p_K/p_L$ (elles sont parallèles).

Les droites d'isocoût III

Combinaison optimale des facteurs I

- D'après le graphique précédent, il sera impossible de produire α au coût β_1 : il n'y a aucun point d'intersection entre la droite d'isocoût C_{β_1} et l'isoquante q_{α} .
- Il est par contre possible de produire α au coût β_3 : il existe deux points d'intersection entre la droite d'isocoût C_{β_3} et l'isoquante q_{α} . Mais peut-on produire cette même quantité pour un coût inférieur ? La réponse est OUI.
- Graphiquement, il va falloir chercher la droite d'isocoût la plus "basse" possible mais qui ait un point d'intersection avec l'isoquante.
- La combinaison de facteurs choisie par l'entreprise se situe au niveau du point de tangence de la droite d'isocoût à l'isoquante. Il s'agit du point E sur le graphique ci-après.

Combinaison optimale des facteurs II

Combinaison optimale des facteurs III

- Mathématiquement, au point de tangence, l'isoquante et la droite d'isocoût ont la même pente.
- Nous avons vu que la pente de l'isoquante en un point est le Taux Marginal de Substitution Technique (TMST).
- Nous avons vu que la pente de la droite d'isocoût est égale au rapport des prix des facteurs de production.
- La quantité de facteurs travail et capital choisie par l'entreprise (qui minimise le coût total de production) est telle que :

$$TMST = -\frac{p_K}{p_L}$$

Le programme du producteur Les droites d'isocoût Combinaison optimale des facteurs

Merci pour votre attention!