Лабораторная работа 4.3.2 Дифракция на ультразвуковых волнах

Кагарманов Радмир Б01-106 $3\ {\rm mas}\ 2023\ {\rm r}.$

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

Оборудование: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Теоретическое введение

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции $n\ (m\ll 1).$

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin\theta\approx\theta\approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Обработка результатов

1. Параметры установки: фокусное расстояние объектива O_2 F=30 см, одно деление винта микроскопа составляет 4 мкм.

Измерим положения x_m дифракционных максимумов с помощью микроскопического винта для четырех частот. Результаты измерений занесены в таблицы 1-4 ниже. На основе каждой таблицы построены графики зависимости $x_m(m)$, они изображены на рисунках 3-6. С помощью формул (4) и (5) вычислим скорость ультразвука в воде.

m	-3	-2	-1	0	1	2	3
x_m , MKM	-97,5	-59	-29	0	31	69	104

Таблица 1: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}048~{\rm M}\Gamma{\rm H}$

$$v_1=1530\pm 54$$
 м/с

Рис. 3: Координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}048~{\rm M}\Gamma{\rm g}$

m	-3	-2	-1	0	1	2	3
x_m , MKM	-108	-68	-37	0	30	61	98

Таблица 2: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}179~{\rm M}\Gamma{\rm g}$

Рис. 4: Координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}179~{\rm M}\Gamma{\rm g}$

$$v_2 = 1680 \pm 59 \; \text{м/c}$$

$$v_3 = 1582 \pm 55 \; \text{м/c}$$

$$v_4 = 1565 \pm 55 \; \mathrm{m/c}$$

m	-3	-2	-1	0	1	2	3
x_m , MKM	-274	-178	-90	0	79	161	261

Таблица 3: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=2,883~\mathrm{M}\Gamma\mathrm{ц}$

Рис. 5: Координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=2,883~\mathrm{M}\Gamma\mathrm{g}$

m	-1	0	1	
x_m , MKM	-142	0	141	

Таблица 4: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu = 4{,}615~{\rm M}\Gamma{\rm H}$

2. Рассчитаем длину и скорость УЗ-волны в воде методом тёмного поля.

Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы. В таблице 6 содержатся количество маленьких делений окулярной шкалы N (цена деления C=0,8), соответствующее n темным полосам акустической решетки. Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu\Lambda \tag{6}$$

Расчеты также приведены в таблице 5. Ошибка при таком определении скорости звука больше, чем в первой части работы, и составляет около 5%.

Вывод: В работе изучена дифракция света на акустической решетки, рассчитаны длина волны ультразвука и скорость его распространения в воде. Решетка наблюдалась методом темного поля.

Рис. 6: Координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=4{,}615~{\rm M}\Gamma{\rm ц}$

ν, Мгц	N	n	Λ , mm	<i>v</i> , м/с	Δv , м/с
1,201	10	8	1,14	1373	69
1,036	9	6	1,60	1492	75
0,957	9	5	1,80	1723	86
1,088	10	7	1,33	1450	73

Таблица 5: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=2,883~{
m M}\Gamma{
m H}$