Eine Woche, ein Beispiel 4.28 naive &- Hom adjunction Ref: from [23.11.19]

Notation. - A: associate ring allowed to be non-commutative, contains 1 - There are two systems to write category of A-modules.

$$Mod_A = A - Mod$$
 $(Mod_A)^{\circ p} \neq Mod_{A^{\circ p}} = Mod - A = A^{\circ p} - Mod \Rightarrow M_A$
 $Mod_{A \otimes B^{\circ p}} = A - Mod - B \Rightarrow A^{M_B}$

In this document, we want to emphasize left/right module, so we use the right version for the most of time.

For convenience, we write
$$\left(M_{\text{od}}_{\text{B} \otimes \text{A}^{\text{op}}}\right)^{\text{op}} = \left(B - M_{\text{od}} - A\right)^{\text{op}} = \left(A^{\text{op}} - M_{\text{od}} - B^{\text{op}}\right)^{\text{op}}$$
as
$$\left(M_{\text{od}}_{\text{A} \otimes \text{B}^{\text{op}}}\right)^{\text{op}} = \left(A - M_{\text{od}} - B\right)^{\text{op}}$$

 ∇ Even though you can identify $Ob(Ring) \cong Ob(Ring^{op})$, A^{op} is still a ring.

Be careful about the difference between "the opposite of category" and "the opposite of objects"

In this case, it is desirable to translate algebraic results into geometrical results. Q: How to see the geometry of noncommutative rings? It is still vague for me.

- 1 definition recall for ⊗ & Hom
- 2 adjunction
- 3. comparison between ⊗-1 Hom & f*-1 f*

6. comparison between ⊗-1 Hom & f*-1 f*, derived version

1 definition recall for ⊗ & Hom

$$\otimes_A: \operatorname{Mod}_{A^{\circ P}} \times \operatorname{Mod}_A \longrightarrow \operatorname{Mod}_Z$$

 $\operatorname{Hom}_A(-,-): (\operatorname{Mod}_A)^{\circ P} \times \operatorname{Mod}_A \longrightarrow \operatorname{Mod}_Z$

$$\otimes_{B}$$
: $A - Mod - B \times B - Mod - C \longrightarrow A - Mod - C$
 $Hom_{B}(-,-)$: $(A - Mod - B)^{\overline{P}} \times B - Mod - C \longrightarrow A - Mod - C$

$$Hom_{B}^{A}(-,-)$$
: $(A-Mod-B)^{\overline{op}} \times B-Mod-A \longrightarrow \mathbb{Z}-Mod$

$$Hom_{B\otimes_{\mathbb{Z}}A^{op}}(-,-) (\mathbb{Z}-Mod-B\otimes_{\mathbb{Z}}A^{op})^{\overline{op}} \times (B\otimes_{\mathbb{Z}}A^{op}-Mod-\mathbb{Z})^{\overline{op}} \longrightarrow \mathbb{Z}-Mod-\mathbb{Z}$$

$$(X \otimes_{B} Y) \otimes_{C} Z \cong X \otimes_{B} (Y \otimes_{C} Z)$$

$$X \otimes_{B} Y \cong Y \otimes_{B^{op}} X$$

$$A \otimes_{A} X \cong X \cong X \otimes_{B} B$$

$$Hom_{A}(A, X) \cong X$$

in
$$A-Mod-C = C^{op}-Mod-A^{op}$$

2 adjunction BXA, cYB, cZD, we get

 $Homc(Y \otimes_{B} X, Z) \cong Hom_{B}(X, Homc(Y, Z))$ in A-Mod-D.

Reason: both sides equal to the set $f: Y \times X \longrightarrow Z \mid f(cyb,x) = cf(y,bx) \quad \forall b,c$

For A = D = Z, fix $Y \in C$ -Mod-B, one gets adjunction fctors.

slogan: adjunction & associativity

3. comparison between ⊗-1 Hom & f*-1 f*

Forgetful fctor

Prop. For ring homo
$$\begin{picture}(1,0) \put(0,0){\line(1,0){150}} \put($$

one has adjunction fctors

djunction fctors
$$S_{R} \otimes_{R} - \frac{\sum_{S_{R} \otimes_{R} - 1}^{S_{R} \otimes_{R}} \otimes_{S_{R} - 1}}{\sum_{S_{R} \otimes_{S} - 1}^{S_{R} \otimes_{S}} \otimes_{S_{R} - 1}} R-Mod \qquad (3.1)$$

Compare with j

Now, we compare (3.1) with part of the recollement diagram:

Vague slogan: $u \approx$ "forget the information of Z".

In applications, $U \longrightarrow X$ is a covering map. This change the feeling of the size between U & X.

E.g. For finite gps
$$H \leq G$$
, one has Res-Ind adjunction.
 $Res_{H}^{G} \dashv Ind_{H}^{G}$
 $c-Ind_{H}^{G} \dashv Res_{H}^{G}$

It can be generalized for
$$G: loc$$
 profinite gp , $H \leq G$ open If one only has $H \leq G$ closed, then it's possible that $j' \neq j^*$. e.g. $G = GL_1(\mathbb{Q}_p)$ $H = GL_2(\mathbb{Z}_p)$

In the diagram,

Ex Compare it with the recollement diagram & (3.1).

$$\mathcal{U}$$
 [*/H]
$$\downarrow j$$
 "cover with fiber G/H"
$$X$$
 [*/G]

translate the following geometrical results into algebraic statements.

1. One has natural fctor
$$j_! \longrightarrow j_*$$
. When $\# G/H < +\infty$, $j_! = j_*$
 $c - Ind_H^G \longrightarrow Ind_H^G$

2. Even though Sho.v.([*/G]) ≈ Repa = Q[G]-Mod. the "structure sheaf" of [*/G] is Q. not Q[G].

Res_{f*1}
$$Q = Q$$
, Res_{f*1} $Q[G] = Q[G] \neq Q$

√ In this example, j*Rj* ≠ Id, j'j! ≠ Id.

Until now, we have met three types of six fctor formalism: top spaces, A-modules and stacks.

Compare with i

Now, assume S, R commutative in the scheme setting.

E.g. For ring homo

$$\exists$$
 "pullback fctor"
$$f^*: R\text{-}Mod \longrightarrow S\text{-}Mod \qquad f^*M = sS_R \otimes_R M$$
 This is also called the base change.

Now, (31) can be rewritten as

compare it with another part of the recollement diagram.

Rmk. u is usually not f faithful, unless S = R/I. (In fact, only need S is R-idempotent, i.e. $S \cong S \otimes_R S$.) which croppeds to closed embedding. In that case, $i^*i^* = Id : SS \otimes (SS \otimes_S M) \cong M$

$$i^*i_* = Id$$
: ${}_{S}S_R \otimes_R ({}_{R}S_S \otimes_S M) \cong M$
 $i^!i_* = Id$: $Hom_R ({}_{R}S_S, Hom({}_{S}S_R, M)) \cong M$

Slogan: in the comm alg., Spec $R/I \longrightarrow Spec R$ is closed embedding. In general, if S is an R-idempotent algebra. $S \cong S \otimes_R S$ then i. Spec $S \longrightarrow Spec R$ can be viewed as "closed subset".

This poses a lot of bizarre phenomenons in six-fctors for coherent sheaves. Spec R/I is open instead?

E.g. R_p , R/I are idempotent R-algs. $Z[\frac{1}{6}]$, F_p , Z/p^2Z , Q, Z_p , are idem Z-algs. Usually R/1 is not an derived idem R-alg!

Rmk Following this slogan, original open/closed subsets are all closed. Also, i^! is not shifted (exists already in the non-derived category).

Q. What is the crspd "open subset"? A: (possibly) the Verdier quotient.
We will come back to this after we derive everything.

4. LO -1 RHom

F	RF or LF	RiF or LiF	exact fctor
f*	f*	_	•
f*	Rf*	Rif*	f*-acyclic
Tx,* F	P(X, F)	H'(X,F)	r - acyclic
f _!	Rf!	Rif!	f: - acyclic
πx,! F	Cc(X,F)	Hic(X;F)	Cc-acyclic
-	f!	H (f'-)	V
- ⊗ _R -	- '⊗ _R -	Tori(-,-)	flat
Hom _R (-,-)	RHomR(-,-)	Exti(-,-)	injective/projective
MG	Z'Oz[a]M	Hi(G;M)	
l ΛΛ ^G	RHomz[G](Z,M)	$H^{i}(G;M)$	
Mg	x Lough	H; (g:M)	
M ³	RHomug(x,M)	Hi (g; M)	
M/[AM]	AL OVE W	$HH_{i}(A,M)$	
M^A	RHomae (A,M)	HH'(A,M)	
A/[AA]	AL ⊗Ae A	HH: (A)	
Z(A)	RHomAe (A,A)	HH1 (A)	
	1		

e.g. group coh

e.g. Lie alg coh

g/x: Lie alg

e.g. Hochschild coh

For calculations, see:

[23.04.09]: gp coh [wiki]: Lie algebra coh

[21.05.21]: Hochschild coh

[hidden]: quiver coh (there are also many books...)

Reminder: all the above fctors have adjoints.

 $For \ Hom(-,A), see \ https://math.stackexchange.com/questions/2010345/left-adjoint-to-hom-m. Chenji \ Fu \ claimed \ that \ Hom(-,A) \ always \ has \ a \ left \ adjoint \ by \ SAFT, \ but \ we \ haven't \ found \ any \ explicit \ expression \ for \ that \ fctor.$

https://mathoverflow.net/questions/38080/what-are-examples-of-cogenerators-in-r-mod https://mathoverflow.net/questions/38080/what-are-examples-of-cogenerators-in-r-mod