CHM452: Problem Set 3

Xinxian Chen*

April 8, 2020

Let $i = \sqrt{-1}$, $o(\cdot)$ and $O(\cdot)$ are little-o and big-O notations, respectively, and \mathbb{N} is the set of natural numbers $(\mathbb{N} = \{0, 1, 2, 3, \ldots\})$ and $\mathbb{N}_+ = \mathbb{N} \setminus \{0\}$

1. Set $\hbar = 1$.

(i) Analytically, when $x_0 = 0$ and $p_0 = 0$,

$$\left\langle x^2\right\rangle = \left(\frac{\alpha}{\pi}\right)^{1/2} \int_{-\infty}^{\infty} \mathrm{d}x \, x^2 e^{-\alpha x^2} = \left(\frac{\alpha}{\pi} \frac{\pi}{4\alpha^3}\right)^{1/2} = \frac{1}{2\alpha}, \\ \left\langle x\right\rangle = \left(\frac{\alpha}{\pi}\right)^{1/2} \int_{-\infty}^{\infty} \mathrm{d}x \, x e^{-\alpha x^2} = 0.$$

When $\alpha = 1$, $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = 1/\sqrt{2} \approx 0.70710678$.

Use the grid basis in the range [-20, 20] and the number of grid points be 1024, and results are:

norm: 1.00000000; $\langle x \rangle$: 0.00000000; and Δx : 0.70710678.

The wavefunction is plotted in Figure 1.

Figure 1

(ii) Analytically, when $x_0 = 0$ and $p_0 = 0$, the fourier transformation gives

$$\begin{split} \Psi_0(p) &= \frac{1}{\sqrt{2\pi}} \int \mathrm{d}x \, e^{-\mathrm{i}px} \Psi_0(x) = \frac{1}{\sqrt{2\pi}} \left(\frac{\alpha}{\pi}\right)^{1/4} \int \mathrm{d}x \, e^{-\mathrm{i}px - \alpha x^2/2} \\ &= \frac{1}{\sqrt{\alpha}} \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-p^2/(2\alpha)}, \end{split}$$

^{*}Email: xchen106@ur.rochester.edu

and when $\alpha = 1$,

$$\Psi_0(p) = \left(\frac{1}{\pi}\right)^{1/4} e^{-p^2/2},$$

Hence, follow the same procedure we will find that $\langle p \rangle = 0$, $\langle p^2 \rangle = 1/2$ and $\Delta p = 1/\sqrt{2} \approx 0.70710678$. Use the grid basis in the range [-20, 20] and the number of grid points be 1024 and 1025, and results are:

1024 grid points: norm: 1.00000000; $\langle p \rangle$: 0.000000000; and Δp : 0.70849123; 1024 grid points: norm: 1.000000000; $\langle p \rangle$: 0.00000000; and Δp : 0.70848987; 1025 grid points: norm: 1.000000000; $\langle p \rangle$: 0.000000000; and Δp : 0.70848852.

The wavefunction is plotted in Figure 2.

Figure 2

Note that the relevant errors of Δp are larger than the ones of Δx , and the when the number of grid points is odd the results are more accurate than the case that the number of grid points is similar but is even. This can be also justified the imaginary part of the wavefunction in momentum space.

(iii) With 1024 gird points, the answer is

Potential: 0.25000000; Kinetic: 0.25097895; Total = 0.50097895.

With $2^{20} = 1048576$ gird points, the answer is

Potential: 0.25000000; Kinetic: 0.25000095; Total: 0.50000095.

Note that the analytical expectation of the total energy is 0.5.

2. (i) Use $2^{12} = 4096$ grid points uniformly spanned on [-20, 20]. Results plotted in Figure 3.

Figure 3

The movie is showed in q2-1.mp4.

(ii) Still use $2^{12} = 4096$ grid points uniformly spanned on [-20, 20]. Results plotted in Figure 4.

Figure 4

The movie is showed in q2-2.mp4.

(iii) The energy of the ground state calculated by (Sine-)DVR (spanned on [-20, 20] using 1024 basis) is 0.49218750 a. u., while imaginary time propagation SO (using grid basis spanned on [-20, 20] with 4096 grid points) gives 0.49242469 a. u.. The wavefunction of the ground state is plotted in Figure 5.

Figure 5

(iv) Use $2^{12} = 4096$ grid points uniformly spanned on [-20, 20]. See q2-4.mp4. Note that the potential function used in the propagator $\tilde{V}(x) = V(x) - V_a(x)$ in order to absorb the wavefunction moved out from [-10, 10].

- 3. (i) 1
 - (ii) 2
 - (iii) 3