Zadaci:

1. (8 bodova) Riješi matričnu jednadžbu

$$\begin{bmatrix} 1 & 1 & -2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{bmatrix}^{\lambda} \cdot X + X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

gdje je λ zbroj rješenja jednadžbe

$$\left(z - \frac{1}{2}\right)^4 = \left(1 + i\sqrt{3}\right)^6.$$

2. (3 bodova) Postoji li $a \in \mathbb{R}$ takav da (x, y, z) = (1, -1, 2) bude rješenje sustava

$$a^2y + 2z = 0$$
$$ax + y + 3z = 3?$$

Ako postoji, nadji sva rješenja sustava za taj parametar a.

- 3. (4 bodova) Zadane su točke A(1,0,1), B(2,-2,4), $C(1,\lambda,3)$ i D(0,1,-4). Odredite $\lambda \in \mathbb{R}$ tako da vektori \overrightarrow{AB} , \overrightarrow{AC} i \overrightarrow{AD} budu komplanarni, te za taj λ izrazite vektor \overrightarrow{AD} kao linearnu kombinaciju vektora \overrightarrow{AB} i \overrightarrow{AC} .
- 4. **(5 boda)** Odredite udaljenost pravaca $p...\frac{x-1}{2} = \frac{y+2}{3} = \frac{z}{-1}$ i $q...\frac{x-1}{2} = \frac{y-1}{3} = \frac{z+5}{-1}$.
- 5. (5 bodova) Za koju vrijednost parametra $k \in \mathbb{R}$ je funkcija $f(x) = \sqrt{\ln\left(kx^2 (2k+1)x + \frac{13}{16k}\right)}$ definirana za sve $x \in \mathbb{R}$?

Teorija:

- 1. (**7 bodova**) Kako definiramo skup kompleksnih brojeva, jednakost dvaju kompleksnih brojeva, konjugirano kompleksni broj i modul kompleksnog broja? Dokazati da je $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$, za $z_1, z_2 \in \mathbb{C}$.
- 2. (6 bodova) Definirati pojam ranga matrice i pojam regularnosti matrice. Objasniti vezu između ranga matrice sustava i karaktera rješenja sustava (navesti jednostavne primjere za svaku situaciju).
- 3. (7 bodova) Izvesti vektorsku jednadžbu ravnine zadane u prostoru pomoću triju različitih točaka T_1 , T_2 i T_3 koje ne leže na istom pravcu pa zatim nju raspisati u općem obliku u koordinatnom sustavu $(O, \mathbf{i}, \mathbf{j}, \mathbf{k})$. Kako glasi jednadžba ravnine kroz točke $T_1(a, 0, 0)$, $T_2(0, b, 0)$ i $T_3(0, 0, c)$, $a, b, c \neq 0$?

Rješenja:

1.
$$\lambda = 2, X = \frac{1}{5} \begin{bmatrix} -1 & 12\\ 1 & 3\\ -1 & 7 \end{bmatrix}$$

2.
$$a = -2$$
,
$$\begin{cases} x = \frac{-3}{2} - \frac{5}{2}t \\ y = t \\ z = -2t \end{cases}$$
, $t \in \mathbb{R}$

3.
$$\lambda = 1$$
, $\overrightarrow{AD} = -\overrightarrow{AB} - \overrightarrow{AC}$

4.
$$d = 2\sqrt{5}$$

5. Za $k \in \left<0, \frac{1}{4}\right]$ funkcija f je definirana za svaki $x \in \mathbb{R}$