Category Theory from Scratch: Terminal Objects Worksheet

Mathcamp 2025 - Della Hendrickson & Riley Shahar

We have now defined a terminal object:

Definition 1. A *terminal object* in a category C is an object * such that, for any object x, there is a unique morphism $!_x : x \to *$.

Our goal in this worksheet is to work out some properties of this definition.

Problem 1. Describe what a terminal object is in as many categories as you can.

Problem 2. In this exercise, we will prove that terminal objects are unique up to unique isomorphism.

- (a) Prove that, if * and *' are terminal objects in C, then there is an isomorphism $f : * \to *'$.
- (b) Prove that if f and g are isomorphisms $* \to *'$, then f = g.

Problem 3. Given a category C and an object x, define the *over category* category C/x as follows:

- The objects of C/x are pairs (y, f), where y is an object in C and $f: y \to x$ is a morphism in C.
- The morphisms between (y, f) and (z, g) in C/x are the morphisms $h: y \to z$ in C so that $g \circ h = f$.

Define composition and the identities, and prove that C/x is a category.

What is the terminal object in C/x?

Problem 4 (optional). Prove that there is no terminal object in the category of fields. (Hint: think about the finite fields \mathbb{F}_2 and \mathbb{F}_3 .)

Problem 5 (optional). Let P be a preordered set, which has an associated category |P|, according to the first day's homework. What is a terminal object in |P|?

Problem 6 (optional). Let *M* be a monoid, which has an associated category *BM*, according to the first day's homework. For which monoids *M* does *BM* have a terminal object?