

ロボット活用型市場化適用技術開発プロジェクト

~SIer、ユーザーの品種替えによる負荷軽減を~ 次世代FMSに向けたオープンハードプラットフォーム開発

2019年 12月 20日

富士ソフト株式会社 日本電産株式会社

旦目次

- ・取り組み 「導入・品種替えを前提としたシステム」
- ・今後の事業化計画、ビジネス展開・課題

●取り組みの成果

導入・品種替えを前提としたシステムとは?

プログラム、ティーチコストを削減!!

- ・各社ロボット、装置の最適な組み合わせが可能で、 プログラムを共通化(資産化)
- ・経路はROSにより自動生成

品種の変更が簡単に!!

- ・ビジョンシステムを使用した品種登録
- ・画面にて品種を登録、置き場所を指定可能
- ・登録した品種、置き場所も画面で選択(プログラム化)

AIによる品種判別!!

- ・形状認識後に自動経路生成が可能
- ・未登録の品種にも対応(検査・異常検知)

"共通のプログラムでメーカの異なるロボットや周辺の制御が可能、さらに品種替えの負荷削減"

取り組み内容

「簡単」に導入・品種替えができる

産業用ロボットのプラットフォーム

① 共通化:ハードウェアの種類、メーカー問わず制御

② 簡単化:専門知識がなくとも簡単に操作可能

③ 高度化:人の作業の代わりをするための機能拡張

導入・品種替えを前提としたシステムを 組み合わせるためのソフトウェア群

ご提供

取り組み1

① 共通化:ハードウェアの種類、メーカー問わず制御

ROS対応

各メーカー毎の言語での開発 ↓ 共通化

ロボットや装置の制御コントローラに対し、オープ ンプラットフォーム化を実現

●取り組み① 既存ロボットへのROS適用

既存ロボットや装置の制御コントローラにROSを適用、ロボットの制御コマンドに関しては、必要な項目の整理を行い、対応しました。

既存ロボットへのROS適用開発例

各社ロボットや装置の制御コントローラが、統一したコマンドで制御可能となります。

取り組み②

②簡単化:専門知識がなくとも簡単に操作可能

ROSベースの プラットフォーム化 + GUI

SIer、ユーザーに新たな知識、言語の習得を 必要としない仕組み

●取り組み② ROSベースのプラットフォーム開発

ROS対応

ROSのI/F

ROSの技術ツー ル (可視化な ど)を使用する ことが可能

ビジョン、力覚との連携が容易

将来的にAIなど の新技術との連 携がスムーズと なる

課題は?

MOTOMAN

ROS(ロボット)の学術的な専門知識 制御コマンドに対し、数多くのパラメータ設定 制御コマンドの複数の呼び出し

●取り組み② ROSベースのプラットフォーム開発

タスクを抽象化したI/Fを持つプラットフォーム

取り組み② システム構成

プラットフォームとサンプルGUIを提供することで、PC環境にインストールすると確認することができます

●取り組み② タスクI/Fの共通化

タスクの抽象化を実現したコマンド例は以下の通りです。

取り組み② デモ

実際にピック/プレースのI/Fで実現したアームの動作です。

デモ

●取り組み②ロボット操作を簡単にするGUI

機能方針

直感的なティーチングが可能

1 Motion View

2 State View ロボット、周辺 機器情報を見え る化

プログラムレスな 設定・調整 4 Task Editor

Motion Editor

テンプレート化し て再利用

MotionEditor

SIer向け 高度なUser向け

必要最低限のパラメータ設定による、 ロボットの簡単なモーションの作成を実現

インテグレータが簡単、 再利用しやすく検証時間が短くなる プログラム不要

TaskEditor

SIer向け User向け

最短3アクション(ボタン押下)でロボットのピック&プレースを実行

ピックとプレースのモーションを選択し、実行する

取り組み③

③ 高度化:人の作業の代わりをするための機能拡張

ROSベースのAI、ビジョン技術の連携

AIとの組み合わせ、ビジョンなど既存ソリューションが活用できることの検証を行っております。

取り組み② デモ

形状認識時のアームの動作です。

デモ

○今後の事業化計画、ビジネス展開・課題

次世代FMS:次世代フレキシブル生産システム

(汎用的で変更しやすいライン設計、IoT技術などでデータを活かす)

取り組み デモ

ハンガー掛けの動作です。

デモ

● まとめ

① 共通化:ハードウェアの種類、メーカー問わず制御

② 簡単化:専門知識がなくとも簡単に操作可能

③ 高度化:人の作業の代わりをするための機能拡張

「簡単」に導入・段取り替えができる 産業用ロボットのプラットフォーム

GitHubに公開

●お問い合わせなど

GitHub公開

■ BSDライセンスで公開中

(公開先→https://github.com/FUJISOFT-Robotics)

富士ソフト

ニーズに合わせ機能拡張を行います! ROSや公開するプラットフォーム等の お問い合わせなどもお気軽にどうぞ

