Section 3, p34 1-7 odd, 17, 21, 25

Computations

1. What three things must be check to determine whether a function $\phi: S \mapsto S'$ is an isomorphism of a binary structure $\langle S, * \rangle$ with $\langle S', *' \rangle$?

 ϕ must be one-to-one, onto, and operation preserving.

In Exercises 2 through 10, determine whether the given map ϕ is an isomorphism of the first binary structure with the second. If it is not an isomorphism, why not?

3. $\langle \mathbb{Z}, + \rangle$ with $\langle \mathbb{Z}, + \rangle$ where $\phi(n) = 2n$ for $n \in \mathbb{Z}$

An isomorphism must be one-to-one, onto, and operation preserving.

Proof. Onto: Let $y \in \mathbb{Z}$. Let us find $n \in \mathbb{Z}$ such that $y = \phi(x)$

$$y = \phi(n)$$
$$y = 2n$$
$$y/2 = n$$

y/2 is not always an integer, so we cannot say that ϕ is onto. Therefore, ϕ is not an isomorphism between $\langle \mathbb{Z}, + \rangle$ and $\langle \mathbb{Z}, + \rangle$.

- **5.** $\langle \mathbb{Q}, + \rangle$ with $\langle \mathbb{Q}, + \rangle$ where $\phi(x) = x/2$ for $x \in \mathbb{Q}$

An isomorphism must be one-to-one, onto, and operation preserving.

Proof. (a) One-to-one: Assume $\phi(x_1) = \phi(x_2)$ for some $x_1, x_2 \in \mathbb{Q}$.

$$\phi(x_1) = \phi(x_2)$$

$$\frac{x_1}{2} = \frac{x_2}{2}$$

$$x_1 = x_2$$

Thus ϕ is one-to-one.

(b) Onto: Let $y \in \mathbb{Q}$. Let us find $x \in \mathbb{Q}$ such that $y = \phi(x)$

$$y = \phi(x)$$
$$y = \frac{x}{2}$$
$$2y = x$$

Choose x = 2y. Thus ϕ is onto.

(c) Operation Preserving: Need to show that $\phi(x+y) = \phi(x) + \phi(y)$.

$$\phi(x+y) = \frac{x+y}{2}$$
$$= \frac{x}{2} + \frac{y}{2}$$
$$= \phi(x) + \phi(y)$$

Thus ϕ is operation preserving.

Since ϕ is one-to-one, onto, and operation preserving, it is an isomorphism between $(\mathbb{Q}, +)$ and $(\mathbb{Q}, +)$.

7. $\langle \mathbb{R}, \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(x) = x^3$ for $x \in \mathbb{R}$

An isomorphism must be one-to-one, onto, and operation preserving.

Proof. (a) One-to-one: Assume $\phi(x_1) = \phi(x_2)$ for some $x_1, x_2 \in \mathbb{R}$.

$$\phi(x_1) = \phi(x_2)$$

$$x_1^3 = x_2^3$$

$$x_1 = x_2$$

Thus ϕ is one-to-one.

(b) Onto: Let $y \in \mathbb{R}$. Let us find $x \in \mathbb{R}$ such that $y = \phi(x)$.

$$y = \phi(x)$$
$$y = x^3$$
$$\sqrt[3]{y} = x$$

Choose $x = \sqrt[3]{x}$. Thus ϕ is onto.

(c) Operation Preserving: Need to show that $\phi(x \cdot y) = \phi(x) \cdot \phi(y)$.

$$\phi(x \cdot y) = (xy)^3$$
$$= x^3 \cdot y^3$$
$$= \phi(x) \cdot \phi(y)$$

Thus ϕ is operation preserving.

Since ϕ is one-to-one, onto, and operation preserving, it is an isomorphism between (\mathbb{R},\cdot) and (\mathbb{R},\cdot) . \square

17. The map $\phi: \mathbb{Z} \mapsto \mathbb{Z}$ defined by $\phi(n) = n+1$ for $n \in \mathbb{Z}$ is one to one and onto \mathbb{Z} .

Give the definition of a binary operation * on $\mathbb Z$ such that ϕ is an isomorphism mapping

a. $\langle \mathbb{Z}, \cdot \rangle$ onto $\langle \mathbb{Z}, * \rangle$

Since ϕ is already one-to-one and onto, we just need to define * so that ϕ is operation preserving. Consider a*b=ab-a-b+2

$$\phi(x) * \phi(y) = (x+1) * (y+1)$$

$$= (x+1)(y+1) - (x+1) - (y+1) + 2$$

$$= xy + x + y + 1 - x - 1 - y - 1 + 2$$

$$= xy + 1$$

$$= \phi(x \cdot y)$$

 $\phi(x)*\phi(y)=\phi(x\cdot y),$ meaning ϕ is operation preserving. Along with being one-to-one and onto, ϕ is thus an isomorphism between $\langle \mathbb{Z},\cdot \rangle$ and $\langle \mathbb{Z},* \rangle$.

b. $\langle \mathbb{Z}, * \rangle$ onto $\langle \mathbb{Z}, \cdot \rangle$

Since ϕ is already one-to-one and onto, we just need to define * so that ϕ is operation preserving. Consider a*b=ab+a+b

$$\phi(x * y) = \phi(xy + x + y)$$
$$= xy + x + y + 1$$
$$= (x + 1)(y + 1)$$
$$= \phi(x) \cdot \phi(y)$$

 $\phi(x)*\phi(y)=\phi(x\cdot y)$, meaning ϕ is operation preserving. Along with being one-to-one and onto, ϕ is thus an isomorphism between $\langle \mathbb{Z},\cdot \rangle$ and $\langle \mathbb{Z},* \rangle$.

In Exercises 21 and 22, correct the definition of the italicized term without reference to the text, if correction is needed, so that it is in a form acceptable for publication.

21. A function $\phi: S \mapsto S'$ is an *isomorphism* if and only if $\phi(a * b) = \phi(a) *' \phi(b)$.

A function $\phi: S \mapsto S'$ is an operation preserving if and only if $\phi(a * b) = \phi(a) *' \phi(b)$.

If function $\varphi : \mathcal{S} \times \mathcal{F} \mathcal{S}$ is all operation preserving if and only if $\varphi(u \circ v) = \varphi(u) \circ \varphi(v)$.

25. Continuing the ideas of Exercise 24 can a binary structure have the left identity element e_L and a right identity element e_R where $e_L \neq e_R$? If so, given an example, using an operation on a finite set S. If not, prove that it is impossible.

We shall conduct a proof by contradiction

Proof. Let e_L and e_R be left- and right-sided identities, respectively, such that $e_L \neq e_R$. Let us consider $e_L * e_R$.

$$e_L * e_R = e_L$$
 since e_R is an identity from the right $e_L * e_R = e_R$ since e_L is an identity from the left

Since a binary structure is uniquely defined, we must conclude that $e_L = e_R$. However, this contradicts our assertion that $e_L \neq e_L$. Therefore, there *cannot* be a binary structure such that the left identity and right identity are distinct.