## Teori Bilangan

TK13029 COMPUTATION II







## Tujuan Pembelajaran dan Materi

- Mempelajari himpunan bilangan bulat dan propertinya
- Materi:
  - Pembagian dan Modular Arithmetic
  - Representasi Bilangan Bulat
  - Bilangan Prima dan Greatest Common Divisor
  - Kongruensi





## Pembagian dan Modular Arithmetic





#### Pembagian

- Jika a dan b adalah bilangan bulat dimana  $a \neq 0$ , dikatakan a membagi habis b jika ada bilangan bulat c sehingga b = ac.
  - a disebut sebagai faktor atau pembagi b
  - *b* disebut kelipatan dari *a*
  - *a* | *b* : *a* membagi *b*
  - $a \nmid b : a$  tidak membagi b
  - Jika  $a \mid b$  dan  $a \mid c$ , maka  $a \mid (b + c)$
  - Jika  $a \mid b$ , maka Jika  $a \mid bc$ , untuk semua bilangan bulat c
  - Jika  $a \mid b$  dan  $b \mid c$ , maka  $a \mid c$
- Contoh: 3 | 7 dan 3 | 12
  - 3 \ 7 dan 3 | 12





### Algoritma Pembagian

- Diketahui a adalah bilangan bulat dan d bilangan bulat positif. Terdapat bilangan bulat unik q dan r, dengan  $0 \le r < d$ , sehingga a = dq + r
  - a adalah bilangan yang dibagi (dividen)
  - *d* adalah pembagi (*divisor*)
  - q adalah hasil bagi (quotient)
  - r adalah sisa bagi (reminder)
  - $q = a \operatorname{div} d \operatorname{dan} r = a \operatorname{mod} d$
- Contoh: tentukan
  - q dan r untuk 101 dibagi 11
    - 101 = 11(9) + 2, q = 9 dan r = 2
  - $q \operatorname{dan} r \operatorname{untuk} -11 \operatorname{dibagi} 3$ 
    - -11 = 3(-4) + 1, q = -4 dan r = 1 (r tidak boleh negatif karena  $0 \le r < 3$ )





### Modular Arithmetic (1)

- Jika a dan b adalah bilangan bulat dan m bilangan bulat positif, maka a dikatakan kongruen b modulo m jika m membagi a-b.
  - $a \text{ kongruen } b \text{ modulo } m : a \equiv b \pmod{m}$
  - a tidak kongruen b modulo  $m : a \not\equiv b \pmod{m}$
  - $a \equiv b \pmod{m}$  jika dan hanya jika  $a \mod m = b \mod m$
  - $a \equiv b \pmod{m}$  jika dan hanya jika terdapat bilangan bulat k sehingga a = b + km
- Contoh:
  - apakah 17 kongruen 5 modulo 6?
    - 6 membagi habis (17 5) = 12
  - apakah 24 kongruen 14 modulo 6?
    - 6 tidak membagi habis (24 14) = 10





## Modular Arithmetic (2)

- Diketahui m bilangan bulat positif. Jika  $a \equiv b \pmod{m}$  dan  $c \equiv d \pmod{m}$ , maka
  - $a + c \equiv b + d \pmod{m}$
  - $ac \equiv bd \pmod{m}$
  - $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
  - $ab \mod m = ((a \mod m)(b \mod m)) \mod m$





## Representasi Bilangan Bulat





#### Representasi Bilangan Bulat

Diketahui b bilangan bulat lebih besar dari 1. Jika n adalah bilangan bulat positif, maka n diekspresikan secara unik dalam bentuk:

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0,$$

untuk k adalah bilangan bulat positif,  $a_0, a_1, \dots, a_k$  adalah bilangan bulat positif lebih kecil dari b dan  $a_k \neq 0$ .





### Bilangan Desimal

- Bilangan basis 10
- 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9
- Contoh:

$$(987)_{10} = 987 = 9 \times 10^2 + 8 \times 10^1 + 7 \times 10^0$$





## Bilangan Biner

- Bilangan basis 2
- 0 dan 1
- Contoh:

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (5)_{10} = 5$$





#### Konversi Desimal ke Biner

• 
$$(35)_{10} = (....)_2$$
  
 $35/2 = 17 \text{ sisa } 1$   
 $17/2 = 8 \text{ sisa } 1$   
 $8/2 = 4 \text{ sisa } 0$   
 $4/2 = 2 \text{ sisa } 0$   
 $2/2 = 1 \text{ sisa } 0$   
 $1/2 = 0 \text{ sisa } 1$ 

Bilangan biner yang didapat Diambil dari bawah ke atas, Yaitu: (100011)<sub>2</sub>





### Bilangan Oktal dan Heksadesimal

#### Oktal

- Bilangan basis 8
- 0, 1, 2, 3, 4, 5, 6, 7
- Oktal ke desimal

• 
$$(132)_8 = 1 \times 8^2 + 3 \times 8^1 + 2 \times 8^0$$
  
=  $64 + 24 + 2 = 90$ 

• Desimal ke oktal 90 / 8 = 11 sisa 2 11 / 8 = 1 sisa 3 1 / 8 = 0 sisa 1

#### Heksadesimal

- Bilangan basis 16
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Heksa ke Desimal

• 
$$(ABC)_{16} = 10 \times 16^2 + 11 \times 16^1 + 12 \times 16^0$$
  
=  $2560 + 176 + 12 = 2748$ 

Desimal ke heksa



## Algoritma Konversi Bilangan

#### Konsep Konversi:

$$n = bq_0 + a_0, \qquad 0 \le a_0 < b$$
  $q_0 = bq_1 + a_1, \qquad 0 \le a_0 < b$  ...  $q_k = bq_{k+1} + a_k, \quad 0 \le a_k < b$  Sampai  $q_{k+1} = 0$ 

#### **ALGORITHM 1 Constructing Base b Expansions.**

```
procedure base b expansion(n, b): positive integers with b > 1)
```

```
k := 0

while q \neq 0

a_k := q \mod b

q := q \operatorname{div} b

k := k + 1
```

q := n

**return**  $(a_{k-1}, ..., a_1, a_0) \{(a_{k-1} ... a_1 a_0)_b \text{ is the base } b \text{ expansion of } n\}$ 





## Algoritma Penjumlahan Bilangan Bulat

#### Konsep Penjumlahan:

$$a = (a_{n-1}a_{n-2} \dots a_1 a_0)_2$$
  
$$b = (b_{n-1}b_{n-2} \dots b_1 b_0)_2$$

$$a_0 + b_0 = c_0 \cdot 2 + s_0,$$
  
 $a_1 + b_1 + c_0 = c_1 \cdot 2 + s_1,$ 

• • •

$$a_{n-1} + b_{n-1} + c_{n-2} = c_{n-1} \cdot 2 + s_{n-1},$$
  
 $s_n = c_{n-1}$   
Hasil =  $(s_n s_{n-1} s_{n-2} \dots s_1 s_0)_2$ 

#### **ALGORITHM 2 Addition of Integers.**

```
procedure add(a, b): positive integers)
{the binary expansions of a and b are (a_{n-1}a_{n-2} \dots a_1a_0)_2 and (b_{n-1}b_{n-2} \dots b_1b_0)_2, respectively}
c := 0
for j := 0 to n - 1
d := \lfloor (a_j + b_j + c)/2 \rfloor
s_j := a_j + b_j + c - 2d
c := d
s_n := c
return (s_0, s_1, \dots, s_n) {the binary expansion of the sum is (s_n s_{n-1} \dots s_0)_2}
```







#### Contoh Penjumlahan Bilangan

$$(1010)_{2}$$

$$(1100)_{2}$$

$$(123)_{8}$$

$$1+0+0=0\cdot 2+0$$

$$1+0+0=0\cdot 2+1$$

$$1+1+0=1\cdot 2+0$$

$$(10110)_{2}$$

$$(726)_{8}$$

$$(123)_{8}$$

$$2+2+1=0$$

$$7+1+0=3$$

$$\begin{array}{c}
-----+\\
6 + 3 = 1 \cdot 8 + 1\\
2 + 2 + 1 = 0 \cdot 8 + 5\\
7 + 1 + 0 = 1 \cdot 8 + 0\\
1
\end{array}$$



## Algoritma Perkalian Bilangan Bulat

Konsep perkalian:

$$a = (a_{n-1}a_{n-2} \dots a_1 a_0)_2$$
  
$$b = (b_{n-1}b_{n-2} \dots b_1 b_0)_2$$

#### **ALGORITHM 3 Multiplication of Integers.**

```
procedure multiply(a, b: positive integers)
{the binary expansions of a and b are (a_{n-1}a_{n-2} \dots a_1a_0)_2
   and (b_{n-1}b_{n-2} \dots b_1b_0)_2, respectively}
for j := 0 to n - 1
      if b_i = 1 then c_i := a shifted j places
      else c_i := 0
\{c_0, c_1, \dots, c_{n-1} \text{ are the partial products}\}\
p := 0
for j := 0 to n - 1
     p := add(p, c_i)
return p \{ p \text{ is the value of } ab \}
```

$$ab = a(b_0 2^0) + a(b_1 2^1) + \dots + a(b_{n-1} 2^{n-1})$$







## Contoh Perkalian Bilangan

```
(726)_{8}
 (23)_8
 2602
1654
(21342)_8
6 \times 3 = 18 \ (>7),
    18 = 2 \cdot 8 + 2,
    jadi 6 \times 3 = 22
2 \times 3 = 6, 6 + 2 = 8  (> 7),
    8 = 1 \cdot 8 + 0
    jadi 2 \times 3 = 10
dst ...
```





## Algoritma DIV dan MOD untuk Bilangan Bulat

• Contoh: a/d

$$a = 11, d = 3$$
  
 $q = 0, r = |a| = 11$ 

- Loop 1:
  - r = 11 3 = 8
  - q = 0 + 1 = 1
- Loop 2:
  - r = 8 3 = 5
  - q = 1 + 1 = 2
- Loop 3:
  - r = 5 3 = 2
  - q = 2 + 1 = 3

#### ALGORITHM 4 Computing div and mod.

**procedure** *division algorithm*(*a*: integer, *d*: positive integer)

$$q := 0$$

$$r := |a|$$

while  $r \ge d$ 

$$r := r - d$$

$$q := q + 1$$

if a < 0 and r > 0 then

$$r := d - r$$

$$q := -(q+1)$$

**return** (q, r) {q = a **div** d is the quotient, r = a **mod** d is the remainder}















## Algoritma DIV dan MOD untuk Bilangan Bulat

• Contoh: a/d

$$a = -11, d = 3$$
  
 $q = 0, r = |a| = 11$ 

- Loop 1:
  - r = 11 3 = 8
  - q = 0 + 1 = 1
- Loop 2:
  - r = 8 3 = 5
  - q = 1 + 1 = 2
- Loop 3:
  - r = 5 3 = 2
  - q = 2 + 1 = 3
- r = 3 2 = 1
- q = -(3+1) = -4

#### **ALGORITHM 4 Computing div and mod.**

**procedure** division algorithm(a: integer, d: positive integer)

$$q := 0$$

$$r := |a|$$

while r > d

$$r := r - d$$

$$q := q + 1$$

if a < 0 and r > 0 then

$$r := d - r$$

$$q := -(q+1)$$

**return** (q, r) { $q = a \operatorname{div} d$  is the quotient,  $r = a \operatorname{mod} d$  is the remainder}















### Modular Exponentiation

- Menghitung  $b^n$  mod m
- Konsep

$$n = (a_{k-1}a_{k-2} \dots a_1a_0)_2$$

$$b^n = b^{a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2 + a_0}$$

$$= b^{a_{k-1} \cdot 2^{k-1}} \cdot \dots \cdot b^{a_1 \cdot 2} \cdot b^{a_0}$$

```
Contoh: 3<sup>11</sup>
11 = (1011)_2
3^{11} = 3^{1 \cdot 8} \cdot 3^{\overline{0} \cdot 4} \cdot 3^{1 \cdot 2} \cdot 3^{1}
        =3^8 \cdot 3^0 \cdot 3^2 \cdot 3^1
        = 6561 \cdot 1 \cdot 9 \cdot 3 = 177147
```

#### **ALGORITHM 5 Fast Modular Exponentiation.**

```
procedure modular exponentiation(b: integer, n = (a_{k-1}a_{k-2} \dots a_1a_0)_2,
         m: positive integers)
power := b \mod m
for i := 0 to k - 1
      if a_i = 1 then x := (x \cdot power) \mod m
      power := (power \cdot power) \mod m
return x\{x \text{ equals } b^n \text{ mod } m\}
```











#### • Contoh: 3<sup>11</sup> **mod** 13 $11 = (1011)_2, x = 1,$ power = 3 mod 13 = 3 $a_0 = 1$ , $x = (1 \cdot 3) \text{mod } 13 = 3$ , $power = 3 \cdot 3 \mod 13$ $= 3^2 \mod 13$ $= 9 \mod 13$ = 9 $a_1 = 1$ , $x = (3 \cdot 9)$ **mod** 13 = 1, power = 81 mod 13 = 3 $a_2 = 0, x = 1,$ power = 9 mod 13 = 9

 $a_3 = 1, x = (1 \cdot 9) \text{mod } 13 = 9,$ 

power = 81 mod 13 = 3

Jadi,  $3^{11}$  **mod** 13 = 3

## **Modular Exponentiation**

```
ALGORITHM 5 Fast Modular Exponentiation.
```

```
procedure modular exponentiation(b: integer, n = (a_{k-1}a_{k-2} \dots a_1a_0)_2, m: positive integers)
```

```
x := 1

power := b \mod m

for i := 0 \text{ to } k - 1

if a_i = 1 \text{ then } x := (x \cdot power) \mod m

power := (power \cdot power) \mod m

return x\{x \text{ equals } b^n \mod m\}
```





# Bilangan Prima dan Greatest Common Divisor





#### Bilangan Prima

- Sebuah bilangan bulat p disebut sebagai **bilangan prima** jika dan hanya jika terdapat **hanya dua faktor** dari p, yaitu  $\mathbf{1}$  dan p itu sendiri.
- Sebuah bilangan bulat positif yang lebih dari satu dan bukan bilangan prima disebut bilangan komposit.
- Contoh: tentukan apakah 7 dan 9 bilangan prima atau komposit
  - 7 adalah bilangan prima karena hanya bisa dibagi habis oleh 1 dan 7
  - 9 adalah bilangan komposit karena bisa dibagi habis oleh 3





### Faktorisasi Bilangan Prima

- Faktorisasi bilangan prima dari 100
  - $100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 5^2$
- Jika n adalah bilangan bulat komposit, maka n memiliki faktor (pembagi) sebuah bilangan prima lebih kecil atau sama dengan  $\sqrt{n}$ 
  - Tunjukkan bahwa 101 adalah bilangan prima
    - Bilangan prima dari  $\sqrt{101}$  adalah 2, 3, 5, 7.
    - 101 tidak bisa dibagi habis oleh 2, 3, 5, 7
    - 101 adalah bilangan prima
- Faktorisasi bilangan prima dari 7007:
  - 2, 3, 4, 5 tidak bisa membagi habis 7007
  - 7 bisa membagi habis 7007: 7007/7 = 1001
  - 1001 bisa dibagi habis dengan 7: 1001/7 = 143
  - 143 tidak bisa dibagi habis dengan 7 tapi 11 bisa: 143/11 = 13
  - 13 adalah bilangan prima
  - Faktorisasi dari  $7007 = 7^2 \cdot 11 \cdot 13$



#### **Greatest Common Divisors (GCD)**

Faktor Persekutuan terBesar (FPB)

- GCD(a,b): bilangan terbesar yang membagi habis a dan b, untuk  $a \neq 0$  dan  $b \neq 0$  adalah bilangan bulat
  - GCD(24,36) = 12
  - GCD(17,22) = 1
- Bilangan bulat a dan b disebut relatively prime, jika GCD(a, b) = 1
- Deretan bilangan bulat  $a_1, a_2, \dots a_n$  disebut pairwise relatively prime jika  $GCD(a_i, a_i) = 1$ , untuk  $1 \le i < j \le n$ .
  - 10, 17, 21 adalah pairwise relatively prime karena GCD(10,17)=1, GCD(17,21)=1, dan GCD(10,21)=1
  - 10, 19, 24 bukan pairwise relatively prime karena GCD(10,24) = 2





## Least Common Multiples (LCM)

Kelipatan Persekutuan terKecil (KPK)

- lcm(a, b): bilangan terkecil habis dibagi oleh a dan b, untuk a dan b adalah bilangan bulat positif.
  - lcm(12,18) = 36
  - lcm(24,36) = 72





## Faktorisasi Bilangan Prima untuk GCD dan LCM

- GCD(168,180)
  - $168 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 = 2^3 \cdot 3 \cdot 7$
  - $180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$
  - $GCD(168,180) = 2^{\min(3,2)}3^{\min(1,2)}7^{\min(1,0)}5^{\min(0,1)} = 2^2 \cdot 3 = 12$
- lcm(45,75)
  - $45 = 3^2 \cdot 5$
  - $75 = 3 \cdot 5^2$
  - $lcm(45,75) = 3^{max(2,1)}5^{max(1,2)} = 3^2 \cdot 5^2 = 225$





#### Algoritma Euclidean

- Menggunakan faktorisasi bilangan prima tidak efisien
- Konsep: GCD(287, 91)

$$287 = 3 \cdot 91 + 14$$
  
 $91 = 6 \cdot 14 + 7$   
 $14 = 2 \cdot 7 + 0$   
 $GCD(287,91) = 7$ 

#### ALGORITHM 1 The Euclidean Algorithm.

**procedure** gcd(a, b): positive integers)

$$x := a$$

$$y := b$$
**while**  $y \neq 0$ 

$$r := x \bmod y$$

$$x := y$$

$$y := r$$

**return**  $x\{\gcd(a, b) \text{ is } x\}$ 







### GCD sebagai Kombinasi Linier

- Jika a dan b adalah bilangan bulat positif, maka terdapat bilangan bulat s dan t sehingga GCD(a, b) = sa + tb
- Contoh: GCD(287, 91)

$$287 = 3 \cdot 91 + 14$$

$$91 = 6 \cdot 14 + 7$$

$$14 = 2 \cdot 7 + 0$$

Extended Euclidean untuk menentukan nilai s dan t

$$91 = 6 \cdot 14 + 7$$
  $\rightarrow$   $7 = 91 - 6 \cdot 14$ 

$$7 = 91 - 6 \cdot 14$$

$$287 = 3 \cdot 91 + 14$$

$$287 = 3 \cdot 91 + 14$$
  $\rightarrow$   $14 = 287 - 3 \cdot 91$ 

$$7 = 91 - 6 \cdot 14$$

$$7 = 91 - 6 \cdot ($$

$$7 = 91 - 6 \cdot 14$$
  $\rightarrow$   $7 = 91 - 6 \cdot (287 - 3 \cdot 91) = 19 \cdot 91 - 6 \cdot 287$ 

Jadi, 
$$s = -6 \operatorname{dan} t = 19$$







## Kongruensi dan Penyelesaiannya





#### Kongruensi

- $a \equiv b \pmod{m}$  jika dan hanya jika  $a \mod m = b \mod m$ 
  - Contoh: apakah  $14 \equiv 8 \pmod{6}$ ?
    - Iya, karena  $14 \mod 6 = 8 \mod 6$

- **→**
- 2 = 2
- Jika m bilangan bulat positif dan a, b, c adalah bilangan bulat. Jika  $ac \equiv bc \pmod{m}$  dan GCD(c, m) = 1, maka  $a \equiv b \pmod{m}$ 
  - c adalah relatively prime dengan m
  - *m* | *a* − *b*





## Kongruensi Linier (1)

- $ax \equiv b \pmod{m}$ , untuk m bilangan bulat positif, a dan b adalah bilangan bulat, dan x adalah peubah.
  - Bagaimana mencari semua nilai x yang memenuhi kongruensi  $ax \equiv b \pmod{m}$ ?
  - Inverse dari a modulo m,  $\bar{a}a \equiv 1 \pmod{m}$ , untuk a dan m adalah relatively prime.
    - $\bar{a}$  disebut inverse perkalian
    - Gunakan persamaan euclidean untuk mencari GCD(a, m) = 1, yaitu  $m = k \cdot a + 1$ , dilanjutkan dengan extended euclidean
- Contoh: tentukan inverse dari 3 modulo 7

$$7 = 2 \cdot 3 + 1$$

$$\rightarrow$$

$$7 = 2 \cdot 3 + 1$$
  $\rightarrow$   $-2 \cdot 3 + 1 \cdot 7 = 1$ 

maka —2 adalah inverse dari 3 modulo 7

Selain itu, (-2 + 7) = 5 dan 12 juga termasuk dari inverse dari 3 modulo 7







## Kongruensi Linier (2)

• Solusi untuk  $3x \equiv 4 \pmod{7}$ Inverse dari 3 modulo 7 adalah -2 $-2 \cdot 3 = -6 \equiv 1 \pmod{7}$  $-2 \cdot 3x \equiv -2 \cdot 4 \pmod{7}$  $x \equiv -8 \pmod{7}$  $x \mod 7 = -8 \mod 7$  $x \mod 7 = 6$  $x \equiv 6 \pmod{7}$ Untuk x = 6, maka  $3 \cdot 6 = 18 \equiv 4 \pmod{7}$ Solusi lainnya untuk x adalah 6 + 7 = 13, 20, ... dan <math>-1, -8, -15, ...

#### Contoh Inverse a Modulo m

• Inverse 55 modulo 7

#### Euclidean:

$$55 = 7 \cdot 7 + 6$$
  $\rightarrow$   $6 = 55 -$ 

1 · 6

$$7 = 1 \cdot 6 + 1$$
  $\rightarrow$   $1 = 7 -$ 



$$1 = 7 -$$

#### **Extended Euclidean:**

$$1 = 7 - 1 \cdot (55 - 7 \cdot 7)$$

$$1 = 8 \cdot 7 - 1 \cdot 55$$

Inverse 55 modulo 7 = -1, atau nilai positifnya (-1+7)=6

Inverse 55 modulo 7 = 6

Inverse 7 modulo 31

#### Euclidean:

$$31 = 4 \cdot 7 + 3$$
  $\rightarrow$   $3 = 31 -$ 



$$3 = 31 -$$

 $2 \cdot 3$ 

$$7 = 2 \cdot 3 + 1 \qquad \rightarrow \qquad 1 = 7 -$$



$$1 = 7 -$$

#### **Extended Euclidean:**

$$1 = 7 - 2 \cdot (31 - 4 \cdot 7)$$

$$1 = 9 \cdot 7 - 2 \cdot 31$$

Inverse 7 modulo 31 = 9







### Sistem Kongruensi Linier

**Chinese remainder theorem**: diketahui deretan bilangan bulat positif  $m_1, m_2, ..., m_n$  adalah *pairwise relatively prime* yang lebih besar dari satu dan deretan bilangan bulat sembarang  $a_1, a_2, ..., a_n$ . Maka sistem:

$$x \equiv a_1 \pmod{m_1}$$
  
 $x \equiv a_2 \pmod{m_2}$   
 $\vdots$   
 $x \equiv a_n \pmod{m_n}$ 

memiliki solusi modulo unik  $m=m_1\cdot m_2\cdot \ldots \cdot m_n$ .

\_\_\_\_\_

$$x \equiv a_k M_k y_k \equiv a_k \pmod{m_k}$$

 $y_k$  adalah inverse of  $M_k$  modulo  $m_k$ 

untuk 
$$M_k = m/m_k$$





#### Contoh

• Diketahui sistem kongruensi linier berikut:

$$x \equiv 2 \pmod{3}$$
  
 $x \equiv 3 \pmod{5}$   
 $x \equiv 2 \pmod{7}$ 

- $x \equiv a_k M_k y_k = a_k \pmod{m_k}$ 
  - $m = 3 \cdot 5 \cdot 7 = 105$
  - $M_1 = \frac{105}{3} = 35$ ,  $M_2 = \frac{105}{5} = 21$ ,  $M_3 = \frac{105}{7} = 15$
  - $M_1 = 35 \equiv 2 \pmod{3}$ , inverse dari 35 modulo 3 adalah  $y_1 = 2$
  - $M_2 = 21 \equiv 3 \pmod{5}$ , inverse dari 21 modulo 5 adalah  $y_2 = 1$
  - $M_3 = 15 \equiv 2 \pmod{7}$ , inverse dari 15 modulo 7 adalah  $y_3 = 1$
  - $a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3$ =  $2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1$ =  $233 \equiv 23 \pmod{105}$

• Inverse 35 modulo 3:

#### **Euclidean:**

$$35 = 11 \cdot 3 + 2$$
  $\Rightarrow 2 = 35 - 11 \cdot 3$   
 $3 = 1 \cdot 2 + 1$   $\Rightarrow 1 = 3 - 1 \cdot 2$ 

#### **Extended Euclidean:**

$$1 = 3 - 1 \cdot (35 - 11 \cdot 3) = 12 \cdot 3 - 1 \cdot 35$$

Fokus ke konstants dari 35, yaitu -1 yang merupakan inverse 35 modulo 3.

Kita bisa menentukan nilai positif untuk inverse tersebut yaitu (-1+3)=2

 Dengan cara yang sama, lakukan perhitungan untuk Inverse 21 modulo 5, dan 15 modulo 7

#### Fermat's Little Theorem

- Jika p adalah bilangan prima dan a adalah bilangan bulat tidak dapat dibagi habis oleh p, maka  $a^{p-1} \equiv 1 \pmod{p}$ .
- Untuk setiap a adalah bilangan bulat,  $a^p \equiv a \pmod{p}$ .
- Contoh: 7<sup>222</sup> mod 11
  - $7^{11-1} = 7^{10} \equiv 1 \pmod{41}$
  - 222 dibagi  $10 \rightarrow 222 = 10 \cdot 22 + 2$
  - $7^{222} = 7^{10 \cdot 22 + 2} = (7^{10})^{22} 7^2$
  - $(7^{10})^{22}7^2 \mod 11 = ((7^{10})^{22} \mod 11)(7^2 \mod 11) \mod 11$ =  $((1)^{22} \cdot 49) \mod 11 = 5$
  - $7^{222} \mod 11 = 5$











- Jawablah pertanyaan berikut dengan memberikan proses atau perhitungan secara rinci:
  - a. Jelaskan apakah 17 dapat membagi habis 357 dan 1001!
  - b. Diketahui  $a \equiv -133 \pmod{23}$  dan  $b \equiv 261 \pmod{23}$ . Tentukan hasil dari  $(a+b) \mod 23!$





- 2. Berikan secara rinci proses berikut ini:
  - a. Konversi bilangan desimal 1025 ke bilangan biner, oktal dan heksadesimal!
  - b. Tentukan hasil penjumlahan dan perkalian dari pasangan bilangan basis 3  $(12021)_3$  dan  $(2112)_3$ :





- 3. Jelaskan cara untuk menentukan:
  - a. apakah 107 dan 114 adalah bilangan prima
  - b. GCD(124,323) dan ekpresinya dalam bentuk kombinasi linier







4. Secara rinci, selesaikan kongruensi linier  $2x \equiv 7 \pmod{17}$  menggunakan inverse of 2 modulo 17.



#### Jawaban Latihan Soal 5

5. Tuliskan proses pencarian solusi (nilai untuk x) sistem kongruensi liner berikut:

$$x \equiv 2 \pmod{3}$$

$$x \equiv 1 \pmod{4}$$

$$x \equiv 3 \pmod{5}$$





6. Tuliskan proses pencarian hasil dari 23<sup>1002</sup> mod 41:

