

CMPS 460 - Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by. WittySparks.com | Image source: Pixabay.com

8.a

Probabilistic Modeling: Review of Statistical Principles

Sec 9.1-9.3

Learning as a problem of statistical inference

- Describe the training data as a probability distribution D.
- Learning is then to infer the "best" values of the parameters θ of D given the observed training data.

Review of Some Statistical Principles

Bayes Rule

$$P(A|B) = \frac{P(A, B)}{P(B)}$$
 Bayes' rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Bayes Rule

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Showing a probability distribution for two (or more) random variables

Given the joint distribution, we can find the probability of any logical expression E involving these variables

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using a Joint Distribution

Given the joint distribution, we can make inferences

- -e.g., P(Male | Poor)?
- or P(Wealth | Gender, Hours)?

Recall: Classification

If we have access to *D* (the data generating *joint* distribution), finding an optimal classifier would be trivial!

We don't have access to *D*! So let's try to estimate it instead!

"Training" in Probabilistic Settings

Training = $\mathbf{estimating} \mathcal{D}$ from a finite training set

- ullet We typically assume that ${\mathcal D}$ comes from a specific family of probability distributions
 - e.g., Bernoulli, Gaussian, etc.

- Learning means inferring parameters of that distribution
 - e.g., mean and covariance of the Gaussian.

Assumption: Training Examples are iid

- Independently and Identically-distributed
 - i.e., as we draw a sequence of examples from \mathcal{D} , the nth draw is independent from the previous n-1 samples.

- This assumption is usually false!
 - But sufficiently close to true to be useful

How can we estimate the joint probability distribution from data?

Maximum Likelihood Estimation

Maximum Likelihood Estimation

Find the parameters that maximize the probability of the data

Experiment: a "Biased" Coin!

- Given a "biased" coin
- Flipped multiple times
- Got α_1 heads and α_0 tails

What is p(head) and p(tail)?

Each coin flip yields a Boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

Multiple flips

$$X=1$$
 $X=0$
 $P(X=1) = \theta$
 $P(X=0) = 1-\theta$
(Bernoulli)

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1-X)}$$

Given a data set D of iid flips: α_1 1s and α_0 0s:

$$P_{\theta}(D) = \theta^{\alpha_1} (1 - \theta)^{\alpha_0}$$

Maximum Likelihood Estimation

$$P_{\theta}(D) = \theta^{\alpha_1} (1 - \theta)^{\alpha_0}$$

$$\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Example: how to model a k-sided die?

$$X \sim Discrete: P(X) = \prod_k \theta_k^{1(x=k)}$$

Given a data set D of iid rolls, where

$$P_{\theta}(D) = \prod_{i=1}^{n} \theta_i^{x_i}$$

$$\hat{\theta}_{i,MLE} = \frac{x_i}{\sum_{i=1}^K x_i}$$