Basic concepts:

Definition 1 (Ω, \mathcal{A}) is a measurable space, if Ω nonempty, \mathcal{A} is a sigma-algebra over Ω . That is

- $\Omega \in \mathcal{A}$
- $A \in \mathcal{A} \ then \ \Omega \setminus A \in \mathcal{A}$
- $A_1, \ldots, A_n, \ldots \in \mathcal{A} \text{ then } \bigcup_n A_n \in \mathcal{A}.$

Definition 2 Let $P: A \rightarrow [0,1]$ a set function such that

- $P(\Omega) = 1$
- for arbitrary (A_n) disjoint sets of $\mathcal{A}: P(\bigcup_{n=0}^{\infty} A_n) = \sum_{n=0}^{\infty} P(A_n)$

then P is called a probability measure.

Definition 3 The triplet (Ω, \mathcal{A}, P) is called a probability (Kolmogorov) space if $\Omega \neq \emptyset$, \mathcal{A} is a sigma-algebra over Ω and P is a probability measure.

- the possible outcome of an experiment: elemental event $\omega \in \Omega$
- sample space Ω , consists of ω 's
- subsets of Ω (which are elements of \mathcal{A}) are called events (A, B, C, \ldots)
- an A event occurs, if any of the containing ω 's occurs

Example 1 Dice throwing: $\Omega = \{1, 2, 3, 4, 5, 6\}$. If A means that we get an even number, then $A = \{2, 4, 6\}$.

Coin tossing, twice: $\Omega = \{HH, HT, TH, TT\}$. $A = \{HT, HH\}$ event means that the first is heads. Toss a coin as long as we get heads: $\Omega = \{H, TH, TTH, TTTH, \ldots\}$.

Events:

- $\bullet\,$ special events: Ω certain event, \varnothing impossible event
- operations with events (usual set operations): e.g. $A \cup B$ (A or B occurs, or both of them), $A \cap B$ (A and B occur), \overline{A} (opposite of A)
- $A \setminus B = A \cap \overline{B}$; $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (de Morgan); $\overline{\overline{A}} = A$ (examples: dice, coin)

Probability P(A): nonnegative for all A; for exclusive events $(A \cap B = 0)$ $P(A \cup B) = P(A) + P(B)$ (additivity); $P(\Omega) = 1$; (Ω, A, P) probability space.

Properties:

- 1. additivity for n events: A_1, \ldots, A_n pairwise exclusive events: $P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n)$. Proof: with induction, use $P(\emptyset) = 0$, $\Omega = \Omega \cup \emptyset$ and additivity.
- 2. $P(A \setminus B) = P(A) P(A \cap B)$. Proof: $A = (A \cap B) \cup (A \setminus B)$ decomposition and additivity

Definition 4 Discrete probability field: $\Omega = \{\omega_1, \omega_2, \ldots\}$ (finite or countable infinite), $\mathcal{A} = 2^{\Omega}$. Let denote $p_i = P(\omega_i)$. $\sum p_i = 1$, $P(A) = \sum_{i:\omega_i \in A} p_i$.

The classical probability models

Definition 5 (The classical probability space) $\{\Omega, \mathcal{A}, P\}$. Here Ω is discrete and finite. If $A \in \mathcal{A}$ define $P(A) = \frac{|A|}{|\Omega|}$.

1. Maxwell-Boltzmann statistics. Suppose there is n object and N boxes and suppose that all boxes and object are different. The number of ways we can distribute the object in the boxes is N^n . Here

$$\Omega = \{(a_1, \dots, a_n), 1 \le a_j \le N, j = 1, \dots, n\}$$

and $|\Omega| = N^n$. Now let $A_{k,i} = \{$ the i^{th} box contains k objects $\}$. What is P(A)?

$$P(A_{k,i}) = \frac{\binom{n}{k}(N-1)^{n-k}}{N^n}$$

Note that the probability is independent of index i. Translating this question into the language of our model: $A_{k,i} = \bigcup_{1 \leq j_1 < j_2 < \ldots < j_k \leq n} \{(a_1, \ldots, a_n), a_{j_1} = \ldots = a_{j_k} = i \text{ and the others differ }\}$. Note that

$$|\{(a_1,\ldots,a_n),a_{j_1}=\ldots=a_{j_k}=i \text{ and the others differ }\}|=(N-1)^{n-k}$$

and the sets in the union are disjoint, hence

$$|\bigcup_{1 \le j_1 < j_2 < \dots < j_k \le n} \{(a_1, \dots, a_n), a_{j_1} = \dots = a_{j_k} = i \text{ and the others differ }\}| = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} (N-1)^{n-k} = \binom{n}{k} (N-1)^{n-k}.$$

2. Bose-Einstein statistics. Suppose that in the previous example the object are indistinguishable. This means that given two setups where box i has exactly the same number of objects in the first setup than in the second setup, the setups are the same. This gives as an equivalence relation on Ω (HW:prove it!). Denote by $\tilde{\Omega} = \Omega/\sim$. Thus

$$\tilde{\Omega} = \{(b_1, \dots, b_N) : 0 \le b_j \le n \ \sum_{j=1}^N b_j\}$$

and $|\tilde{\Omega}| = {N+n-1 \choose N-1}$, hence

$$P(A_{i,k}) = \frac{\binom{N-1+(n-k)-1}{N-2}}{\binom{N+n-1}{N-1}}$$