Organización Atómica.

Existen tres niveles de arreglo atómico:

- •Sin Orden.
- Orden de Corto Alcance.
- •Orden de Largo Alcance.

Figure 3-1 Levels of atomic arrangements in materials: (a) Inert monoatomic gases have no regular ordering of atoms. (b,c) Some materials, including water vapor, nitrogen gas, amorphous silicon, and silicate glass, have short-range order. (d) Metals, alloys, many ceramics and some polymers have regular ordering of atoms/ material.

Celda unitaria

Puntos de la red

The body-centered cubic (bcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit cells. Source: W. G. Moffatt, et al., The Structure and Properties of Materials, Vol. I, John Wiley & Sons, 1976.

The face-centered cubic (fcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit cells. Source: W. G. Moffatt, et al., The Structure and Properties of Materials, Vol. I, John Wiley & Sons, 1976.

The hexagonal close-packed (hcp) crystal structure: (a) unit cell; and (b) single crystal with many unit cells. Source: W. G. Moffatt, et al., The Structure and Properties of Materials, Vol. I, John Wiley & Sons, 1976.

Figure 3-6 The fourteen types of Bravais lattices grouped in seven crystal systems. The actual unit cell for a hexagonal system is shown in Figures 3-8 and 3-13.

TABLE 3-1 ■ Characteristics of the seven crystal systems

Structure	Axes	Angles between Axes		
Cubic	a = b = c	All angles equal 90°.		
Tetragonal	$a = b \neq c$	All angles equal 90°.		
Orthorhombic	$a \neq b \neq c$	All angles equal 90°.		
Hexagonal	$a = b \neq c$	Two angles equal 90°.		
		The angle between		
		a and b equals 120° .		
Rhombohedral	a = b = c	All angles are equal		
or trigonal		and none equals 90°.		
Monoclinic	$a \neq b \neq c$	Two angles equal 90°.		
		One angle (β)		
		is not equal to 90°.		
Triclinic	$a \neq b \neq c$	All angles are		
		different and		
		none equals 90°.		

El Número de Coordinación es el número de átomos vecinos más cercanos a otro.

Figure 3-8 Definition of the lattice parameters and their use in cubic, orthorhombic, and hexagonal crystal systems.

Factor de empaquetamiento, es la fracción de espacio ocupada por átomos.

$$F.E. = \frac{(\# \acute{a}tomos / celda)(4/3\pi r^3)}{Volumen _de _la _Celda}$$

Los parámetros de red describen el tamaño y la forma de la celda unitaria y consta de dimensiones de los lados y sus respectivos ángulos.

de átomos por celda unitaria

Figure 3-11 The relationships between the atomic radius and the lattice parameter in cubic systems (for Example 3-3).

$$\rho = \frac{\sum \ (\# \text{\'a} tomos / celda) (Masa_at\'omica)}{(Volumen_de_la_Celda) (N_A)}$$

TABLE 3-2 ■ Crystal structure characteristics of some metals at room temperature

Structure	a ₀ versus r	Atoms per Cell	Coordination Number	Packing Factor
Simple cubic (SC) Body-centered cubic (BCC) Face-centered cubic (FCC) Hexagonal close-packed (HCP)	$a_0 = 2r$ $a_0 = 4r/\sqrt{3}$ $a_0 = 4r/\sqrt{2}$ $a_0 = 2r$ $c_0 \approx 1.633a_0$	1 2 4 2	6 8 12 12	0.52 0.68 0.74 0.74

Figure 3-13 The hexagonal close-packed (HCP) structure (left) and its unit cell.

Cristales Iónicos.

Cálculo del sitio intersticial octaédrico.

Neutralidad Eléctrica: para asegurar un equilibrio correcto de la carga se debe de revisar el número de coordinación para los compuestos (AX, AX₂).

Estructura de la Blenda de Zinc (ZnS). < 0,414

(a√3)/4

en el factor de emp

Estructura del Cloruro de Cesio (CsCl). > 0,732

Fluorite cell

Estructuras Covalentes.

Celda Unitaria Cúbica de Diamante (CD).

Estructura del Sílice (SiO₂).

Estructura Cúbica de Diamante: El silicio, el germanio y el carbono en su forma de diamante, están unidos por enlaces covalentes y producen un tetraedro.

Estructura del Polietileno Cristalino (C_2H_4) .

5