Package 'RADstackshelpR'

October 12, 2022

Title Optimize the De Novo Stacks Pipeline via R

2 optimize_bigM

Index 7

optimize_bigM Optimize the M parameter during denovo stacks assembly

Description

This function requires the path to stacks vcf file(s) as input. There are slots for varying the M parameter from 1-8 (as recommended by Paris et al. 2017). After running stacks with each of the M options, plug the output vcf files into this function to calculate the effect of varying M on the number of SNPs/loci built. Plug the output of this function into vis_loci() to visualize the optimal the M parameter for your dataset at the 'R80' cutoff (Paris et al. 2017).

Usage

```
optimize_bigM(
  M1 = NULL,
  M2 = NULL,
  M3 = NULL,
  M4 = NULL,
  M5 = NULL,
  M6 = NULL,
  M7 = NULL,
  M8 = NULL
)
```

Arguments

Path to the input vcf file for a run when M=]	M1	
Path to the input vcf file for a run when M=]	M2	
Path to the input vcf file for a run when M=]	M3	
Path to the input vcf file for a run when M=]	M4	
Path to the input vcf file for a run when M=]	M5	
Path to the input vcf file for a run when M=]	M6	
Path to the input vcf file for a run when M=]	M7	
Path to the input vcf file for a run when M=]	M8	

Value

A list containing four summary dataframes, 'snp' showing the number of non-missing SNPs retained in each sample at each m value, 'loci' showing the number of non-missing loci retained in each sample at each m value, 'snp.R80' showing the total number of SNPs retained at an 80% completeness cutoff, and 'loci.R80' showing the total number of polymorphic loci retained at an 80% completeness cutoff.

Examples

```
optimize\_bigM(M1=system.file("extdata","bigM1.vcf.gz",package="RADstackshelpR",mustWork=TRUE))
```

optimize_m 3

optimize_m	Optimize the m parameter during denovo stacks assembly

Description

This function requires the path to stacks vcf file(s) as input. There are slots for varying the m parameter from 3-7 (as recommended by Paris et al. 2017). After running stacks with each of the m options, plug the output vcf files into this function to calculate the effect of varying m on depth and number of SNPs/loci built. Plug the output of this function into vis_loci() to visualize the optimal the m parameter for your dataset at the 'R80' cutoff (Paris et al. 2017).

Usage

```
optimize_m(m3 = NULL, m4 = NULL, m5 = NULL, m6 = NULL, m7 = NULL)
```

Arguments

m3 Path to t	the input vcf file for a run when m=3
m4 Path to t	the input vcf file for a run when m=4
m5 Path to t	the input vcf file for a run when m=5
m6 Path to t	the input vcf file for a run when m=6
m7 Path to t	the input vcf file for a run when m=7

Value

A list containing five summary dataframes, 'depth' showing depth per sample for each m value, 'snp' showing the number of non-missing SNPs retained in each sample at each m value, 'loci' showing the number of non-missing loci retained in each sample at each m value, 'snp.R80' showing the total number of SNPs retained at an 80% completeness cutoff, and 'loci.R80' showing the total number of polymorphic loci retained at an 80% completeness cutoff.

Examples

```
optimize_m(m3=system.file("extdata","m3.vcf.gz",package="RADstackshelpR",mustWork=TRUE))
```

optimize_n	Optimize the n parameter during denovo stacks assembly

Description

This function requires the path to stacks vcf file(s) as input. There are slots for varying the n parameter across M-1, M, and M-1 (as recommended by Paris et al. 2017). After running stacks with each of the n options, plug the output vcf files into this function to visualize the effect of varying m on number of SNPs and loci built to recognize which value optimizes the n parameter for your dataset at the 'R80' cutoff (Paris et al. 2017).

4 vis_depth

Usage

```
optimize_n(nequalsMminus1 = NULL, nequalsM = NULL, nequalsMplus1 = NULL)
```

Arguments

nequalsMminus1 Path to the input vcf file for a run when n=M-1
nequalsM Path to the input vcf file for a run when n=M
nequalsMplus1 Path to the input vcf file for a run when n=M+1

Value

A dataframe showing the number of SNPs and loci retained across filtering levels for each n value

Examples

```
optimize_n(nequalsM =
system.file("extdata","nequalsm.vcf.gz",package="RADstackshelpR",mustWork=TRUE))
```

Description

This function takes the list of dataframes output by optimize_m() as input. The function then uses ggplot2 to visualize the effect of m on depth.

Usage

```
vis_depth(output = NULL)
```

Arguments

output

A list containing 5 dataframes generated by optimize_m()

Value

A plot showing the depth of each sample at each given m value

Examples

```
vis_depth(output =
readRDS(system.file("extdata","optimize.m.output.RDS",package="RADstackshelpR",mustWork=TRUE)))
```

vis_loci 5

vis_loci	Visualize the effect of varying a stacks parameter on the number of polymorphic loci retained

Description

This function takes the list of dataframes output by optimize_m(), optimize_M(), or optimize_n() as input. The function then uses ggplot2 to visualize the effect of the given stacks on the number of polymorphic loci retained, reporting which value is optimal.

Usage

```
vis_loci(output = NULL, stacks_param = NULL)
```

Arguments

output A list containing 5 dataframes generated by optimize_m() stacks_param A character string indicating the stacks parameter iterated over

Value

A plot showing the number of polymorphic loci retained at each given parameter value

Examples

Description

This function takes the list of dataframes output by optimize_m(), optimize_M(), or optimize_n() as input. The function then uses ggplot2 to visualize the effect of the given stacks on the number of SNPs retained.

Usage

```
vis_snps(output = NULL, stacks_param = NULL)
```

Arguments

output A list containing 5 dataframes generated by optimize_m() stacks_param A character string indicating the stacks parameter iterated over

6 vis_snps

Value

A plot showing the number of SNPs retained at each given parameter value

Examples

Index

```
optimize_bigM, 2
optimize_m, 3
optimize_n, 3

vis_depth, 4
vis_loci, 5
vis_snps, 5
```