PATENT SPECIFICATION

(11) **1 509 283**

(21) Application No. 13663/75 (22) Filed 3 April 1975 (31) Convention Application No. 460 331

(32) Filed 12 April 1974

(31) Convention Application No. 556 879

(32) Filed 10 March 1975 in

(33) United States of America (US)

(44) Complete Specification published 4 May 1978

(51) INT CL2 C07C 51/52; B01F 17/00//C08K 9/00

(52) Index at acceptance

C2C 1300 200 20Y 215 220 227 22Y 246 247 253 25Y 292 29Y 30Y 321 32Y 360 362 366 367 368 36Y 37X 567 568 569 620 623 628 658 65X 65Y 660 668 67Y 797 79Y BA BP CM CP CQ LR LS LU YK

C1A H11B H11C H11D H11G H11H H11L H12X H13

C3B 1C12 1C13M 1C21 1C22 1C6A1 1C6X 1L2CX 1L2X

C3K 111 121 124 125 244 GA

C3Q C12X C8B C8C D1A T2A C3R 14C 22C C12 C13M C21 C22 C6A1 C6X L2CX L4B

(54) INORGANIC-ORGANIC COMPOSITES AND METHODS OF REACTING THE SAME WITH ORGANO-TITANIUM COMPOUNDS

(71) We, KENRICH PETROCHEMICALS, INC., a corporation of the State of Delaware, one of the United States of America, East 22nd Street, Bayonne, New Jersey, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-5 Inorganic materials have long been used as fillers, pigments, reinforcements and chemical reactants in polymers. They are essentially hydrophilic, i.e., easily wetted by water or able to adsorb water. However, their compatibility with polymers is limited. Therefore, poor utilization is obtained of the potential reinforcement, of color or opacity, or chemical reactivity of inorganic materials.

For example, zinc oxide is a commonly used component in rubber compounds. When comminuted zinc oxide is added to a rubber compound as a dry powder, it is difficult to disperse it completely in the rubber. On the other hand 10 10 powder, it is difficult to disperse it completely in the rubber. On the other hand, predispersion of the zinc oxide in an organic medium which is a plasticizer for the rubber forms a stiff paste which is not dusty, is easy to weigh, and aids in the dispersion in the rubber. 15 15 Likewise, other comminuted inorganic solids such as magnesium oxide, calcium oxide, other metal oxides, and fillers such as clay, calcium carbonate, colloidal silica and carbon black may be predispersed in an organic plasticizer or 20 polymer prior to addition to a rubber or plastic compound.

Organo-titanium compounds are well known. A wide variety may be prepared 20 from tetraalkyl ortho titanates by reaction with organic acids, as for example in U.S. Patent 2,621,193. Organo-titanates having di- or tri- alkyl hydrolyzable groups and with, therefore, only one or two organic groups which are non-hydrolyzable have been used to treat the surfaces of inorganic materials in order to render them hydrophilic, as for example in U.S. Patent 3,660,134. Such di- or tri- alkyl hydrolyzable titanates form 25 25 hydrolyzable titanates form a multi-molecular layer or envelope around the inorganic particles, resulting in less efficient use of the organo-titanate, as well as a weaker bond between the inorganic particle surface and the organic continuous 30 30 phase. The reaction is accomplished by adding the organo-titanate to a suspension of the inorganic material in an inert solvent such as naphtha, trichloroethylene, toluene or hexane. After the reaction is completed, the solvent is removed and the 35 treated, dried inorganic material is subsequently incorporated in an organic 35

	polymer system. U.S. Patent 3,697,475, for example, incorporates such treated inorganic fillers in thermoplastic polymer films.	
5	According to the present invention there is provided a mixture of organo- titanates represented by the formula Ti(OR) _{4-n} (OCOR') _n wherein the or each OR is a hydrolyzable group as hereinafter defined, the or each OCOR' is a non- hydrolyzable group as hereinafter defined at least one OCOR' group having from 6 to 24 carbon atoms, and n is more than 3 but not greater than 3.5, the mixture including at least some of one or more of the compounds represented by the	5
10	formula Ti(OR) _{4-m} (OCOR') _m where m is an integer of from 1 to 3. By "hydrolyzable" is meant a group which will cleave in an aqueous solution having a pH of about 7 at a temperature of less than 100°C. Hydrolysis may be determined by analysing for liberated acids and alcohols. By "non-hydrolyzable" is meant a group which will not cleave under the aforesaid conditions.	10
15	Preferably the value of n in the above formula is between 3.1 and 3.25. The present invention also provides a composition comprising a comminuted inorganic material and an organo-titanate mixture as defined above or a titanate of the formula Ti(OR)(OCOR'), where OR and OCOR' are as defined above, the surface of the inorganic material having been reacted with the titanate mixture or	15
20	titanate. The present invention further provides a process for producing a dispersion of a comminuted inorganic material in a polymeric medium which comprises admixing an inorganic material, a mixture of organo-titanates as defined above or a titanate of the formula Ti(OR)(OCOR'), where OR and OCOR' are as defined above and a polymeric medium, to form a dispersion of the inorganic	20
25	material, the surface of which has been reacted with said organo-titanate, in the polymeric medium. The amount of the organo-titanate mixture required is preferably at least 0.1 part, more preferably 0.5 to 10 parts, per 100 of the inorganic solid. The reaction takes place on the surface of the inorganic solid, whereby the hydrolyzable group is removed and a bond is established, thus forming an organic,	25
30	hydrophobic surface layer on the inorganic solid. The inorganic solid, prior to surface modification, is difficult to disperse in an organic medium because of its hydrophilic surface. However, when the organo-titanium compound is incorporated into an organic medium (low molecular weight liquids or higher molecular weight polymeric solids), preferably a rubber medium, the surface of	30
35	the inorganic solid is wet-out, agglomerates are readily broken into individual particles, and a dispersion having improved properties is formed. Alternatively, the organo-titanate may be first reacted with the organic solid in the absence of an organic medium and thereafter admixed with the latter. The method of the present invention converts the surfaces of inorganic	35
40	materials from a hydrophilic to a hydrophobic state preferably by reaction in an organic medium. This preferred procedure eliminates the prior art intermediate steps of dispersing the inorganic material in a solvent, reacting, filtering and drying the inorganic solid before dispersing it in a polymer. By means of the present invention, the dispersion of inorganic materials in	40
45	organic polymer media is improved in order to obtain: (1) lower viscosity or higher loading of the dispersate in the organic medium; (2) higher degrees of reinforcement by the use of fillers, thereby resulting in improved physical properties in the filled polymer; (3) more complete utilization of chemical reactivity, thereby reducing the quantity of inorganic reactive solids required; (4)	45
50	more efficient use of pigments and opacifiers; (5) higher inorganic-to-organic ratios in a dispersion, and (6) shorter mixing times to achieve dispersion. Also, according to the invention herein, the reaction with the single hydrolyzable group of the organo-titanate may be carried out neat or in an organic medium to form a liquid, solid, or paste-like solid dispersion which can be used in	50
55	the compounding of the final polymeric system. Such dispersions are very stable, i.e., having no tendency to settle, separate, or harden on storage to a non-dispersible state. Moreover, the invention simplifies the making of inorganic dispersions in organic media by providing a means to eliminate the solvent, to reduce the cost of	55
60	processing equipment, and to reduce the time and energy required to disperse an inorganic solid material in a liquid or polymeric organic solid. The present invention results in the formation of a reinforced polymer which has a lower melt viscosity, improved physical properties, and better pigmenting characteristics than are displayed in prior art materials.	60
65	The practice of the present invention achieves a product comprising natural or synthetic polymers which contain particulate or fibrous inorganic materials	65

	which reinforce, pigment, or chemically react with the polymer to produce a product having superior physical properties, better processing characteristics, and	•
	more efficient utilization of pigments. Amongst the advantages gained by the practice of this embodiment of the	
5	present invention is the dispensing with the use of volatile and flammable solvents as required in the prior art. Thus, it is not necessary to dry the filler or to recover	5
	solvents. Furthermore, there is no possibility of a multi-molecular layer formation since there is only one hydrolyzable group in the organo-titanate reactant. Also,	
10	the practice of the present invention results in a non-oxidizing dispersion.	40
10	The preparation of illustrative organo-titanium compounds is described in U.K. Patent Specification No. 733,224. While many of the compounds of the basic starting material Ti(OR), may be used in preparing the polyesters, from the	10
	viewpoint of reactivity and economy, tetraisopropyl titanate is preferred.	
• -	Referring to the above formula, R, which forms part of the hydrolyzable group, is	
15	preferably a straight chain, branched or cyclic alkyl group having from 1 to 5 carbon atoms per molecule. The groups include methyl, ethyl, n- and isopropyl, n-, sec-, and t-butyl, pentyl and cyclopentyl.	15
	With regard to the non-hydrolyzable groups (OCOR'), they are all preferably	
	formed from organic acids having 1 to 50 carbon atoms, and at least one has from	
20	6 to 24 carbon atoms, such as stearic, isostearic, oleic, linoleic, palmitic, lauric and	20
	tall oil acids. Isostearic acid is particularly advantageous because it forms a triester that is a liquid at room temperature, which is more readily soluble in organic	
	media. A major consideration is the total number of carbon atoms in the non-hydro-	
	lyzable groups. The sum of the carbon atoms in the three R' groups for the com-	
25	ponent of the mixture Ti(OR)(OCOR'), is preferably at least 15. Furthermore, as	25
	indicated above at least one R' group must have a long chain by which is meant a	
	group having from 5 to 23 carbon atoms in order to give the necessary viscosity reduction to the reaction product of the organic titanate and the organic material.	
	As an example, two R' groups may be isopropyl and the long chain R', lauryl.	
30	Materials which can be readily liquefied or dissolved at conventional mixing	30
	temperatures are most desirable. Equivalent polytitanates may also be used.	
	Preferably, the R' groups are alkyl groups having up to 23 carbon atoms; alkenyl groups having up to 18 carbon atoms; or aryl, alkaryl, or aralkyl groups	
	having up to 23 carbon atoms. Additionally, the aforesaid groups may be	
35	substituted with halo, nitro, amino, carboxyl, epoxy, or hydroxyl ether or ester	35
	groups. Generally from 1 to 6 of such substitutions may occur. Still further, the R'	
	group may contain intermediate hetero-atoms such as oxygen, sulfur or nitrogen in	
	the chain. All of the R' groups in the organo-titanate compound need not be the same.	
40	They may be mixtures of two or more groups, the preparation of which shall be	40
•	readily understood by those skilled in the art. For example, the Ti(OR), starting	
	material may be reacted with two or more organic acids.	
•	The selection of the R' groups for the organo-titanate depends on the particular application. The optimum groups depend on the filler and the	
45	monomeric or polymeric organic material, and the desired properties of the filled	45
	material. One skilled in the art may determine suitable organo-titanates for	
	specific applications by limited experimental work in light of the teachings herein.	
	Examples of the R' groups are numerous. These include straight chain, branched chain and cyclic alkyl groups such as hexyl, heptyl, octyl, decyl, dodecyl,	
50	tetradecyl, pentadecyl, hexadecyl, octadecyl, nonadecyl, eicosyl, docosyl,	50
••	tetracosyl, cyclohexyl, cycloheptyl and cyclooctyl. Alkenyl groups include	
	hexenyl, octenyl and dodecenyl.	
	Groups derived from saturated and unsaturated fatty acids are also useful. In these cases the OCOR' group may be caproyl, caprylyl, capryl, lauryl, myristyl,	
55	palmityl, stearyl, arachidyl, behenyl, lignoceryl, dodecylenyl, palmitoleyl, oleyl,	55
	ricinoleyl, linoleyl, and gadoleyl.	
	Halo-substituted groups include bromohexyl, chlorooctadecyl, iodotetradecyl	
	and chlorooctahexenyl. One or more halogen atoms may be present, as for	
60	example in difluorohexyl or tetrabromooctyl. Ester-substituted aryl and alkyl groups include 4-carboxyethylcapryl and 3-carboxymethyltoluyl. Amino-	60
00	substituted groups include aminocaproyl, aminostearyl, aminohexyl, aminolauryl	
	and diaminooctyl.	
	In addition to the foregoing aliphatic groups, groups containing hetero-atoms,	
65	such as oxygen, sulfur or nitrogen, in the chain may also be used. Examples of these radicals are ethers of the alkoxyalkyl type, including methoxyhexyl and	65
65	these radicals are ethers of the aixonyaixyr type, including methoxynexyr and	

5	1,509,283	
	particle size of the inorganic material should not be greater than 1 mm, preferably from 1 micron to 500 micron.	
	It is imperative that the organic titanate be properly admixed with the	
	inorganic material so as to permit the surface of the latter to react sufficiently. The	
5	optimum amount of the titanate to be used in dependent on the effect to be	5
	achieved, the available surface area of and the bonded water in the inorganic	
-	material	
	Reaction is facilitated by admixing under the proper conditions. Optimum	
••	results depend on the properties of the titanate, namely, whether it is a liquid or	10
10	solid, and its decomposition and flash point. The particle size, the geometry of the	10
	particles, the specific gravity, the chemical composition, among other things, must be considered. Additionally, the treated inorganic material must be thoroughly	
	admixed with the polymeric medium. The appropriate mixing conditions depend	
	on the type of polymer, whether it is thermoplastic or thermosetting, its chemical	
15	structure etc. as will be readily understood by those skilled in the art.	15
1.5	Where the increasic material is pretreated with the organic filanate, it may be	13
	admixed in any convenient type of intensive mixer, such as a Henschel or Hodari	
	(Trade Mark) mixer or a Waring blender. Even hand mixing may be employed.	
	The optimum time and temperature is determined so as to obtain substantial	
20	reaction between the inorganic material and the organic titanate. Mixing may be	20
	performed under conditions at which the organic titanate is in the liquid phase, at	
	temperatures below the decomposition temperature. While it is desirable that the	
	bulk of the hydrolyzable groups be reacted in this step, this is not essential where	
25	the materials are later admixed with a polymer, since substantial completion of the	25
25	reaction may take place in this latter mixing step.	25
	Polymer processing, e.g., high shear mixing, is generally performed at a temperature well above the second order transition temperature of the polymer,	
	desirably at a temperature where the polymer will have a low melt viscosity. For	
	example, low density polyethylene is best processed at temperature range of 350°	
30	to 450° F. high density polyethylene from 400° to 4/3° F; polystyrene from 450° to	30
	500°F and polypropylene from 450° to 550°F. Temperatures for mixing other	-
•	polymers are known to those skilled in the art and may be determined by reference	
	to existing literature. A variety of mixing equipment may be used, e.g., two-roll	
	mills Banbury mixers, double concentric screws, counter or corotating twin	
35	screws and ZSK type of Werner and Pfaudler and Busse mixers.	35
	When the organic titanate and the inorganic materials are dry-blended,	
	thorough mixing and/or reaction is not readily achieved and the reaction may be	
	substantially completed when the treated filler is admixed with the polymer. In this latter step, the organic titanate may also react with the polymeric material if one or	
40	more of the R' groups is reactive with the polymer.	40
40	To illustrate further the invention, attention is directed to the following	-10
	examples:	
	Example A: Preparation of Organo-Titanate Esters.	
	One mole of tetraisopropyl titanate is admitted to a vessel equipped with an	
45	agitator, an internal heating and cooling means, a vapor condenser, a distillate trap	45
	and liquid-solid feed input means. Agitation is commenced with the tetraisopropyl	
•	titanate at room temperature. Liquid isostearic acid is metered into the vessel at a	
	controlled rate so that the exothermic reaction is maintained below about 350°F until 3.19 moles of the acid are added. The isopropanol is removed from the	
50	reaction product by distillation at 150°C at 50 mm Hg to remove potentially	50
30	objectionable volatiles.	50
	The organic titanate thus produced has an average of 3.19 moles of isostearate	
	per molecule. This material is hereinafter referred to as the "isostearate 3.19"	
	ester" The ester structure is determined by ascertaining the isopropanol liberated	
55	from the reaction and the residual isostearic acid. It is found that about from 3.1 to	55
	3.3 moles of isopropanol are recovered in the typical run. Substantially no	
	unreacted isostearic acid is detected. The physical properties of the ester are:	
	Specific Gravity at 74°F 0.944	
	Flash Point (COC), °F 315	
60	Viscosity, LV, at 74°F, cps. 120	60
	· 1000011/1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-

	«					1 800	4,100	3880	3,500	25 75 3	7,700
Oil)	7					15 85 1	4,700	115 85 3	3,000	3800	3,300
Fillers Dispersed in Mineral Oil (Naphthenic Oil)	9	75 25 0.5	12,600			000	520	90 90	345	88 3	1,125
eral Oil (N	\$	70 30 0.5	2,320		•	95 1	114	95.5 3	98	980	350
sed in Min	4	50 50 0.5	280	335	22,000	88	7,000	780	3,800	25 - -	16,800
lers Disper	m	881	32,500	3,50	1,280	85	5,750	115 85 2	4,200	1 82	5,000
匠	2	33.	1,600	30 %	215	28	615	2 90	465	15 85	1,612
	-	885	85	1 23	30,000	28.1	120	28.5	92	28	462
		CaCO, parts by wt. Mineral Oil, ", Titanate Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	Calcined Clay, parts by wt. Mineral Oil, "Titanate Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	Hi Surface area silica, parts by weight Mineral Oil, '' Titanate Ester, '' on Filler	Brookfield Viscosity at 25°C, cps.	Hi Surface area silica, parts by weight Mineral Oil, "Strante Ester," on Filler	. 60	Commercially Oxidized Carbon Black, pts. by wt. Mineral Oil, Titanate Ester. % on Filler	Brookfield Viscosity at 25°C, cps.

A regular grade of carbon black was chemically oxidized in situ to convert carboxyl groups to hydroxyl groups. The results are shown below: Brookfield Viscosity at 77°F, Type of Treatment cps. of Dispersion 5 Carbon Black (untreated) 9,200 5 Carbon Black (5% chemically oxidized) 15,800 Carbon Black (5% chemically oxidized and treated with 10 3% titanate ester) 2,700 10 The aforesaid data clearly show that materials reacted in situ with the titanate ester make dispersions having substantially reduced Brookfield viscosities. Marked reductions in viscosity are shown particularly with the calcium carbonate, calcined clay, and carbon black. This reduced viscosity greatly enhances the ease 15 of mixing these fillers with the organic-type materials and results in improved 15 dispersion at lower energy requirements for mixing. Example C.
This example, using the procedures of Example B, shows the effect of other organic titanate compounds on the viscosity of calcium carbonate in naphthenic 20 mineral oil dispersions. The compositions tested contain 50 parts by weight of oil, 20 50 parts of precipitated calcium carbonate and 0.5% (based on CaCO₃) of the titanate esters. The results are shown below: **Brookfield Viscosity** Titanate Ester at 72°F ± 3% 25 None 32,500 25 Monoisopropyl diisostearyl, acryl 188 Monoisopropyl trimonococo, phthaloyl 152 Monoisopropyl diisostearyl, methacryl 175 Monoisopropyl dimethacryl, isostearyl 175 30 Monoisopropyl tri-2-aminoacetyl 34,600 30 Monoisopropyl tripropionyl 30,000 The above table shows the dramatic effect on viscosity of the titanate esters of the invention. The last two examples fall outside of the invention since all the nonhydrolyzable groups are short chain radicals. In such cases, the viscosity of the 35 CaCO, filled oil is substantially unaffected.

The effect of isostearic isopropyl titanates on the dispersion and chemical 35 reactivity of zinc oxide is shown in the following examples: Example 1: Effect of Isostearate Esters on the Dispersion of Zinc Oxide in an Organic Medium. 40 40

)	Formulation	Parts by Weight	
	Zinc oxide (-325 mesh, S.A. 5.3 m ² /gm.)	90	
	Hydrocarbon oil (Naphthenic process oil)	7	
	Ester as shown below	3	
			_

10

15

20

15

20

PENETRATION (ASTM TEST No. D1231) at 74°F

		Isostearate Esters					
5	Days after Mixing	1.0 mol.	2.0 mols.	3.0 mols.	3.19 mols.*	3.70 mols.	
	0	(Could not	160	170	165	615	
•	2	make disper-	125	140	150	_	
	4	sion)	89	105	118	_	
	6	,,	85	105	115	****	
10	7	**	80	90	112		

^{*} The "isostearate 3.19 ester"

The greater the degree of penetration, the more fluid is the mix. After aging, the isostearate 3.19 ester gives the most desirable penetration characteristics. It can be seen by the data that, desirably, the most stable fluid mix is obtained with three or slightly more mols of isostearate in the titanate ester.

The dispersion made with the isostearate 3.19 ester was compared with the same zinc oxide in the untreated powder form in a natural rubber compound except that 10% less zinc oxide was used when making the rubber compound with the treated zinc oxide dispersion described in Example 1. The formulation and test results are shown in Example 2, as follows:

Example 2: Effect of Treated Zinc Oxide Dispersion in a Natural Rubber Compound.

FORMULATION

	Zinc Oxide Powder (pts. by weight)	90% Zinc Oxide Dispersion (Example 1)	25
Natural Rubber	100	100	
Peptizer—REOGENT (Trade Mark)	2	2	
Stearic Acid	2.5	2.5	
Zinc Oxide Powder	3.5		30
90% Zinc Oxide Dispersion (isostearate 3.19 ester)		3.5	:
HAF Black (high abrasive furnace black) (N330)	45	45	
Sulfur	2.5	2.5	35
Ultra-Accelerator e.g. thiuram sulfide or a dithiocarbonate (AMAX (Trade Mark) No. 1)	.5	.5	<u>-</u> *
	Peptizer—REOGENT (Trade Mark) Stearic Acid Zinc Oxide Powder 90% Zinc Oxide Dispersion (isostearate 3.19 ester) HAF Black (high abrasive furnace black) (N330) Sulfur Ultra-Accelerator e.g. thiuram sulfide or a	Powder (pts. by weight) Natural Rubber 100 Peptizer—REOGENT (Trade Mark) 2 Stearic Acid 2.5 Zinc Oxide Powder 3.5 90% Zinc Oxide Dispersion (isostearate 3.19 ester) — HAF Black (high abrasive furnace black) (N330) 45 Sulfur 2.5 Ultra-Accelerator e.g. thiuram sulfide or a	Powder (pts. by weight) Natural Rubber 100 Peptizer—REOGENT (Trade Mark) Stearic Acid 2.5 Zinc Oxide Powder 3.5 HAF Black (high abrasive furnace black) (N330) Sulfur 2.5 Dispersion (Example 1) 100 100 2.5 2.5 2.5 2.5 2.5 Zinc Oxide Dispersion (isostearate 3.19 ester) 3.5 HAF Black (high abrasive furnace black) (N330) 45 45 Sulfur 2.5 Ultra-Accelerator e.g. thiuram sulfide or a

PHYSICAL PROPERTIES

Stress PSI at 300% Elongation (S), Tensile Strength PSI (T), % Elongation (E), Hardness, Shore A (H).

Press Cures at 290°F	s	T	E	Н	S	T	E	Н
15 min.	1120	2850	500	55	1380	3810	550	57
45 min.	1380	2890	460	59	1640	3780	520	59
60 min.	1460	2900	460	59	1520	3610	500	60

RATE AND STATE OF CURE

Rheometer at 290°F, 60 Sec. Preheat,

60 Min. Motor, 100 Range, 3° Arc

	Zinc Oxide Powder (pts. by weight)	90% Zinc Oxide Dispersion (Example 1)		
Max. Torque	56.2 in./lbs.	77 in./lbs.		
Min. Torque	15 "	22.5 ,,		
T90 (% degree of cure)	19.5 minutes	17.5 minutes		
T95 "	24 "	22 "		
T2 ,,	2.2 ,,	2.7 ,,		

PROCESS TIME

30.

Mod	oney Scorch at 250°F	
	C D inc	

• • • • • • •				
Time Scorch Begins	Minutes	5	Minutes	5
Time to 5 Point Rise		3		3
Total Time		8		8
Rise Last Minute		3		3.5
Plasticity		16		35

The table in Example 2 shows the great improvement in physical properties of a natural rubber compound achieved by the use of the isostearate 3.19 ester treatment of the zinc oxide surface even when 10% less zinc oxide is used. Tensile strength is increased by 30%, elongation by 10%, stress at 300% elongation by 10%. It is significant that hardness is not affected. The Mooney plasticity is more than doubled at 250°F, while the rheometer data at 290°F shows that the treated zinc oxide provides a tighter cure.

The following Example 3 shows the improvement in properties obtained when using the zinc oxide dispersion made with the isostearate 3.19 ester of Example 1 in an oil-black extended SBR (styrene-butadiene rubber) compound:

•	
	- 1

Example 3: Effect of Treated Zinc Oxide Dispersion in a Styrene-Butadiene Rubber Compound.

FORMULATION

Compound SBR, Oil-Black Extended	Zinc Oxide Powder (pts. by weight)	90% Zinc Oxide Dispersion (Example 1)	5
PP 1849 (Phillips Petroleum SBR)	· 245	245	
Zinc Oxide	.3		
90% Zinc Oxide Dispersion (isostearate 3.19 ester)		3	10
Anti-Oxidant (Flexzone 3C)	1	1	
Accelerator—CBTS	1:3	1.3	
Sulfur	2.1	2.1	
Accelerator—TMTM	0.55	0.55	
Ultra-Accelerator (Vultac #5)	1.2	1.2	15
Resin Modifier Nebony 100	10	10	
Stearic Acid	. I	1 .	•

PHYSICAL PROPERTIES

Stress PSI at 300% Elongation (S), Tensile Strength PSI (T), % Elongation (E), Hardness, Shore A (H).

20

25

		Zinc C Powde by we	r (pts.			90% Zin Dispe (Exam	rsion	
Press Cures at 307°F	s	T	E	H	s	т	E	н
30 min.	1175	2775	600	59	1325	2929	580	59
Press Cures at 280°F								
40 min.	1240	2800	580	60	1350	2700	530	61

30

25

RATE AND STATE OF CURE

30

35

Rheometer at 280°F, 60 Sec. Preheat,

60 Min. Motor, 50 Range, 1° Arc

Max. Torque 25.75 in /lbs. 25.75 in /lbs.

Min. Torque 5.75 ,, 5.65

TS-2 9.5 minutes 8.25 minutes

TC-90 22.5 ,, 21.75

	1,509,283	12
	RATE AND STATE OF CURE Continued	
	Rheometer at 340°F, 60 Sec. Preheat,	
	12 Min. Motor, 50 Range, 1° Arc	
	Max. Torque 21.1 in./lbs. 22.8 in./lbs.	
	Min. Torque 5.4 ,, 5.1 ,,	5
	TS—2 2.15 minutes 1.9 minutes	
	TS—90 3.9 ,, 3.7 ,,	
	PROCESS TIME	:
	Mooney Data at 212°F	
	Initial 50.5 51.5	1
	1.5 minutes 40.5 41.5	
	4.0 minutes 36.5 37.5	
i	The data in Example 3 show an equal or improved condition of physical properties with the use of 10% less of zinc oxide. In actual processing, it has been observed that the isostearate 3.19 ester treated zinc oxide dispersion of Example 1 is incorporated into the rubber compound in about one-fourth to one-fifth of the time otherwise required for untreated zinc oxide powder. Additionally, the treated zinc oxide powder was non-dusty. The above data also show that the compound which contains the treated zinc oxide dispersion has a higher degree of reactivity as well as a tighter final cure, as evidenced by the increase in torque, as compared to the untreated zinc oxide. The following Examples 4, 5 and 6 illustrate the effectiveness of isostearate 3.19 ester in reducing the viscosity of dispersions of various inorganic solids in a hydrocarbon oil. The dispersion of zinc oxide in a hydrocarbon oil results in a greatly reduced viscosity when it is reacted with isostearate 3.19 ester, as can be seen in the following Example 4:	:
	Example 4.	
	Parts by Weight	
)	Zinc Oxide 50 50	
	Naphthenic Process Oil 50 47.5	
	Isostearate 3.19 ester 0 2.5	
	Brookfield Viscosity at 74°F cps (centipoises) 460,000 80,000	
35	The reduction in viscosity of the zinc oxide dispersion in a hydrocarbon oil by the <i>in situ</i> reaction with the isostearate 3.19 ester was 83%. The viscosity of a dispersion of titanium oxide is similarly reduced by the isostearate 3.19 ester, as shown in the following Example 5:	

Example 5.		
	Parts by	Weight
Titanium Dioxide	50	50
Naphthenic Process Oil	50	47.5
Isostearate 3.19 Ester	0	2.5
Brookfield Viscosity at 74°F cps.	110,000	900
The reduction in viscosity of the titanium dioxidoil by the in situ reaction with the isostearate 3.19 The viscosity of a dispersion of carbon black in reduced by the same ester, as shown in the following	ester was 99 a hydrocarbo	%. on oil is similarly
Example 6.		
	Parts by	Weight
Carbon Black FEF N550	30	30
Naphthenic Process Oil	70	65 .
Isostearate 3.19 Ester	0	3
Brookfield Viscosity at 79°F, cps.	104,000	46,000
The reduction in viscosity of the carbon black diby the <i>in situ</i> reaction with the isostearate 3.19 est. The viscosity of a dispersion of calcium carbon reduced when the isostearate 3.19 ester is added Example 7:	er was 56%. Iate in a liqu	id epoxy resin i
Example 7.		
	Parts by	Weight
Calcium carbonate (low oil absorption type)	50	50
Liquid epoxy resin (epoxide equivalent -185)	50	45
Isostearate 3.19 Ester	. 0	5
Brookfield Viscosity at 74°F, cps.	550,000	110,000
The reduction in viscosity of the calcium carbon	ate dispersio	n in liquid enoxy

5

25.

30

35

Example 10.

	Parts by	Weight	
Magnesium Oxide	55	55	,
Naphthenic Process Oil	45	42	
Isostearate 3.19 ester	0	3	5

	Increment Addition No.	Weight	Time i	n Minutes	
	1	16.67	0	0	
•	2	8.33	0.5	0.5	
10	3	8.33	1.0	1.0	10
	4	8.33	2.0	2.0	
	5	5.00	4.0	2.5	
	6	4.17	4.5	3.0	
	7	4.17	5.0	3.5	
15		55.00			15
	Time to Complete D	ispersion	6.5	4.5	
	Penetration (ASTM No. D—1321)	Test	160	230	

The resultant dispersion was therefore made 30% softer while requiring 31% 20 less mixing time.

20

Example 11.

The effect of reacting the isostearate 3.19 ester with calcium carbonate (a precipitated small particle grade) in situ in low density polyethylene (LDPE, sp.g. 0.918) is shown in the table below. This table compares the melt viscosity vs. time in making a dispersion of calcium carbonate in low density polyethylene having a melt index of 7, when 70 parts of calcium carbonate are blended with 28 parts of LDPE.

25

In these experiments, 2.85% of the isostearate 3.19 ester (based on the calcium carbonate) was added before starting the mixing in a Brabender high intensity mixer. The mixing was carried out at a maximum temperature of 200°F, and at 82 RPM, using a 5 Kg weight on the ram, while the melt viscosity was observed by measuring the torque applied to the mixer in gram meters.

Similar experiments were made when the isostearate ester was omitted, and when two other dispersion aids, namely, aluminum tristearate and polyglycerol 400 mono-oleate, were used at the same concentration, namely, 2.85% (based on CaCO₃). The results are also shown in the following table:

30

		1,509,2	283					16
16		Torque	Readings	(gmsm	neter²)			
		Time (se	econds) 60	90	120	150	190	
	Additives	1250	900	900	900	750	750	
	Isostearate 3.19 Ester	2000	2000	1900	1750	1750	1750	5
5	No Additive	1900	1400	1300	1250	1250	1250	
	Aluminum Tristearate		1400	1150	1000	1000	1000	
	Polyglycerol 400 Mono-Oleate							
10	When no additive was emp 2,000 gmsq. meter, and after When the isostearate 3.19 e sq. meter in 30 seconds, and was	ster was 750 at 1	used, the 90 second	torque h ls, showi	nad drop ing the g	ped to 12 reat redu	250 gm action in	10
15	When the aluminum triste gmsq. meter after 30 seconds, than the titanate ester. The p	arate wa and to 1 olyglycer after 30	is used, t ,250 after rol 400 m seconds	he torqu 190 sections of mixin	ne had donds, are adding, and a	preciable tive pro torque	ly higher oduced a of 1,000	15
20	The effectiveness of the is demonstrated by an additional with additional LDPE polymer blown-film extrusion. The resultant property of remaining agglomes	in the rating film	atio of l was then ticles per	to 9, an examin square	d then red visual foot. When the second is the second in the second is the second in t	nade intelly to me hen no d	o film by asure the lispersion When the	20
	additive was employed, there titanate ester was employed, the	e numbe	r of aggle	omerates	s droppe	d to 16 p	er square	25
25	foot.							
30	This example is similar Titanium dioxide (rutile) was LDPE as used in Example 1 2.67% dispersion additive (ba The following table show Brabender mixer after 30 sechad dropped to 1,100. When 30 seconds was reduced to 1	in procused as I. The dised on the sed on the sed on the sed on the sed onds was	ispersion he TiO ₂) ith no dis 2,250 gr	was ma, and 23 spersion msq. mo	ide at 75 parts o additive eter, and	5 parts 1 f LDPE the toro	iO ₂ using indicate on the seconds or the seconds	30

	·	Torque		(B	·		
	Additive	Time (se	conds) 60	90	120	150	180
	Control No Additive	2250	1750	1250	1250	1150	1100
	Isostearate 3.19 ester	1250	900	900	900	750	750
	Polyglycerol 400 Mono-Oleate	2000	1500	1250	1000	1000	1000
	Aluminum Tristearate	1000	750	750	600	500	500
	with the isostearate ester the agoot. There was also a very not	iceable in	icrease	in opaci	tv and v	vhitenes	٠,
	It can also be seen from toolyglycerol 400 mono-oleate superior to the titanate ester as This example is similar in plispersed phase was yellow iron additive (based on the iron oxidhows the results.	he table was infer a disper Examp procedure oxide and	that in rior, wh sion aid le 13. to Exa	the case ile the : mples 11	of TiO aluminu and 12 sed with	dispers m stears . The in	organic
2	It can also be seen from toolyglycerol 400 mono-oleate superior to the titanate ester as This example is similar in plispersed phase was yellow iron additive (based on the iron oxidation).	he table was infer a disper Examp procedure oxide and de), and	that in ior, wh sion aid le 13. to Exa l 50 parts	the case ile the : mples 11	of TiO aluminu and 12 sed with PE. The	dispers m stears . The in	organic
E 8	It can also be seen from toolyglycerol 400 mono-oleate superior to the titanate ester as This example is similar in plispersed phase was yellow iron additive (based on the iron oxidation).	he table was infer a disper Examp procedure oxide and de), and	that in ior, when aid le 13. to Exa 150 parts 48 parts	the case ile the s mples 11 s were u of LDF	of TiO aluminu and 12 sed with PE. The	dispers m stears . The in	organic
r	This example is similar in plispersed phase was yellow iron additive Additive Control No Additive 2***	he table was infer a disper Examp procedure oxide and de), and Torque Time (so 30	that in ior, wh sion aid le 13, to Exa l 50 part 48 parts Reading econds) 60	mples 11 s were u of LDF	of TiO aluminu and 12 sed with PE. The	dispers m stears . The in 40% dis followir	organic persion ig table
r	This example is similar in plispersed phase was yellow iron additive Additive Control No Additive 2***	he table was infer a disper Examp procedure oxide and de), and Torque Time (so 30	that in ior, wh sion aid le 13, to Exa l 50 part 48 parts Reading econds) 60	mples 11 s were u of LDF	and 12 sed with PE. The	dispers m stear: The in 40% dis followir	organic persion the was
r	This example is similar in plispersed phase was yellow iron additive Additive Control No Additive 2***	he table was infer a disper Examp procedure oxide and de), and Torque Time (so	that in ior, wh sion aid le 13, to Exa l 50 part 48 parts Reading econds) 60	mples 11 s were u of LDF	and 12 sed with PE. The meter ²)	disperse dis	organic persion the was

THIS PAGE BLANK (USPTO)