





# MULTIVERSE

COMPUTING

# Quantum Kernel Methods for Malware beaconing Detection

#### Maissa BEJI

Industrial Supervisors: Luc ANDREA, Llorenç ESPINOSA, Multiverse Computing

Academic Supervisor: Peter BROWN, Télécom Paris

## Outline

Introduction

Dataset and Methodology

Quantum Kernel Methods

Experimental Approaches

Benchmarking Results

Impact and Conclusions

# Context: AQACYB Project

## **Quantum Advantage for Cyber Threat Analysis**

- Focus: Quantum-enhanced anomaly detection
- Target: Malware beaconing detection
- Hardware: IQM's 20-qubit quantum processor



## Challenge

 $\Rightarrow$  Malware beaconing hides in encrypted periodic traffic to sustain long-term access.

## Problem Statement

#### **How Attackers Control Infected Machines:**

- Malware opens stealth channel to C&C server
- Connection starts from inside
- ► Regular "calls home" for:
  - Presence announcement
  - New instructions
- ► This repeated pattern = Beaconing



Source: Hu et al., IEEE, 2016.

## Problem Statement

#### **Key Challenges in Detecting Beaconing**

#### Traffic Looks Normal

▶ Blends with regular encrypted traffic

#### False Positives

► Legitimate apps appear beacon-like

## Scalability

Millions of daily connections

#### Imbalanced Data

Malicious traffic is rare

## **Dataset Evolution**

#### Original Dataset

- ➤ 721,899 normal events, 2,523 attack events
- ► Highly imbalanced (99.65% normal)



TCP three-way handshake

## **Dataset Evolution**

## Original Dataset

- Data leakage issues with SYN and TCP flags
- No time dependency captured in baseline features



Spearman correlation matrix

## **Dataset Evolution**

## Feature Engineering Approach

For each source-destination IP pair:

- Mean and std of time intervals between connections
- Number of new connections
- ► Mean and std of packet sizes
- Number of unique source ports
- Number of unique destination ports

119 Non-attacks 1 Attack



Insufficient for evaluation

## Final Dataset Construction

#### **Data Sources**

- ► IoT traffic
- Normal logs
- Client malware
- CTU-13 dataset
- ► Laptop traffic

#### Dataset Size

6,459

Training logs

1,741

Testing logs

**126** 

Labeled attacks

#### Flow Definition

- Source IP
- Dest. IP
- Protocol
- Ext. port

**Note:** IP-only insufficient for periodicity detection

# Unsupervised Learning Setup

## **Training Phase:**



**Testing Phase:** 



Evaluation using F1-score

## Data Encoding

Classical data  $x \in \mathbb{R}^n$  encoded into quantum states:

$$|\phi(x)\rangle = U(x)|0\rangle^{\otimes n}$$



#### **Tested Feature Maps:**

**Z Feature Map**: Separable rotations



CNOT Feature Map: Entangling gates



## **Tested Feature Maps:**

▶ IQP-like Circuit: Commuting gates



#### **Tested Feature Maps:**

► Hamiltonian Evolution: Many-body inspired

#### Mathematical Definition

$$|x_i\rangle = \left(\prod_{j=1}^n \exp\left(-i\frac{t}{T}x_{ij}H_j^{XYZ}\right)\right)^T \bigotimes_{j=1}^{n+1} |w_j\rangle$$

where: 
$$H_i^{XYZ} = X_j X_{j+1} + Y_j Y_{j+1} + Z_j Z_{j+1}$$

# Quantum Kernel Computation

## Fidelity Kernel

$$\kappa(x_i, x_i) = |\langle \phi(x_i) | \phi(x_i) \rangle|^2$$

Direct measure of state similarity

## Main Challenge

► **Scalability**: Quadratic growth with dataset size

#### **Protocol Overview**



#### Mathematical Framework

Estimate kernel entries using random basis measurements:

$$K(x_i, x_j) = 2^N \sum_{s_A, s_A'} (-2)^{-H(s_A, s_A')} \overline{p_U^{(i)}(s_A) p_U^{(j)}(s_A')}$$

## **Implementation Steps**

- 1. Prepare the target quantum state  $|\phi\rangle$
- 2. Sample r random Haar unitaries  $\{U_{\mathsf{Haar}}\}$
- 3. For each unitary: apply  $U_{\Phi}(x)$ , then  $U_{\text{Haar}}$ , then measure in computational basis
- 4. Repeat each measurement  $n_s$  times ( $n_{shots}$  per unitary)
- 5. Collect measurement statistics across all  $r \times n_s$  runs
- 6. Estimate fidelity using cross-correlations between outcome probabilities

- **Error Scaling:**  $\Delta K \propto \frac{1}{n_s \sqrt{r}}$
- Error mitigation:

$$K_m(x_i, x_j) = \frac{\mathsf{Tr}(
ho_i 
ho_j)}{\sqrt{\mathsf{Tr}(
ho_i^2)\mathsf{Tr}(
ho_j^2)}}$$

► Complexity: quantum  $n \cdot r_s \cdot n_s$ , classical post-processing  $n^2$ 

#### Experimental results

▶ The statistical error  $\Delta K$  is the absolute deviation between the estimated purity and its ideal value.



Statistical error vs. number of random transformations



Statistical error vs. number of



Optuna hyperparameter importance scores



#### Experimental results

▶ Evaluation on the malware dataset.



Kernel Matrix Visualization



Test Score Distribution



Confusion matrix

#### Experimental results

► F1 Score Variability Across Experimental Repetitions



30 transformations, 400 shots, 1 layer CNOT (29 experiments)



10 transformations, 180 shots, 1 layer CNOT (9 experiments)

#### **Conclusions:**

- 1. Error Scaling:  $\Delta K \propto \frac{1}{n_s \sqrt{r}}$
- 2. Strong results on malware dataset with 7 qubits.
- 3. High variance in performance

## **Challenges:**

- Statistical error plateaus
- ► Concentration effects persist
- ► Requires error mitigation

### Core Concept

Extract classical features from reduced density matrices



Source: Huang et al., Nature Communications (2021)

## Core Concept

k-particle reduced density matrix (k-RDM) approach:

$$\rho_K(x_i)=\mathrm{Tr}_{\bar{K}}\big[\rho(x_i)\big]$$

#### **Kernel Types:**

► RBF:

$$k(x_i, x_j) = \exp(-\gamma ||f(x_i) - f(x_j)||^2)$$

Sigmoid:

$$k(x_i, x_j) = \tanh(\alpha \langle f(x_i), f(x_j) \rangle + c)$$



 $\mathsf{Projection} \Rightarrow \mathsf{Classical} \ \mathsf{feature} \ \mathsf{space}$ 

#### Evaluation on Malware Dataset

## Sigmoid Kernel



Test scores with Hamiltonian feature map



Test scores with CNOT feature map

#### Evaluation on Malware Dataset

#### RBF Kernel



Test scores with Hamiltonian feature map



Test scores with CNOT feature map

#### Evaluation on Open-Source Network Dataset

▶ Performance comparison for different training set sizes

| Data size |        | Р      | QKs       |        | Classical |        |           |        |
|-----------|--------|--------|-----------|--------|-----------|--------|-----------|--------|
|           | F1     | Recall | Precision | Acc.   | F1        | Recall | Precision | Acc.   |
| 200       | 0.2308 | 0.1313 | 0.9524    | 0.9524 | 0.7467    | 0.6936 | 0.8087    | 0.6140 |
| 1000      | 0.1193 | 0.0634 | 1         | 0.2316 | 0.2368    | 0.1422 | 0.7065    | 0.2477 |

**Takeaway:** PQKs perform consistently worse than the classical kernel, with F1-scores dropping further as data size increases.

### Evaluation on Open-Source Network Dataset

Varying k in the k-reduced density matrices

| k | F1     | Recall | Precision | Acc.   |
|---|--------|--------|-----------|--------|
| 1 | 0.2308 | 0.1313 | 0.9524    | 0.2819 |
| 2 | 0.2031 | 0.1138 | 0.9454    | 0.2675 |
| 3 | 0.1996 | 0.1116 | 0.9444    | 0.2657 |
| 4 | 0.2136 | 0.1203 | 0.9482    | 0.2728 |

**Takeaway:** Performance is nearly flat across k; best and most efficient choice is k = 1.

#### **Conclusion:**

- ► Hamiltonian mapping more robust than CNOT.
- ► Classical kernels often outperform PQKs; RBF ( $\gamma = 1$ ) limits gains.
- Minimal impact; k = 1 optimal.
- PQKs highly dependent on feature map and kernel choice.

#### **Advantages:**

- Avoids concentration effects
- Computationally efficient
- No fidelity estimation needed
- Stable across runs

# Study Design: Quantum Kernels and Feature Maps

- ► Focus: Hyperparameter benchmarking for quantum anomaly detection
- Retained methods:
  - ► *EFK*: Scalable fidelity-based
  - ► *PQK*: Distance-based with *k*-RDMs
- Excluded: Randomized Measurement (scaling issues)



Quantum kernels and hyperparameters.

# Study Design: Quantum Kernels and Feature Maps

- ► Focus: Hyperparameter benchmarking for quantum anomaly detection
- Retained methods:
  - ► *EFK*: Scalable fidelity-based
  - ► *PQK*: Distance-based with *k*-RDMs
- Excluded: Randomized Measurement (scaling issues)



Quantum data encoding methods.

# Experimental setup:

## Hyperparameter search space:

- ► Feature map: {Z feature map, CNOT feature map, Hamiltonian-like circuit, IQP-like circuit}, number of layers ∈ [1,5]
- **EFK:** number of estimators  $\in [1, 5]$
- ▶ **PQK\_RBF:**  $k \in [1, 3], \gamma \in [10^{-3}, 10^3]$
- ▶ **PQK\_Sigmoid:**  $k \in [1, 5]$ ,  $\alpha \in [-1, 1]$ ,  $c_{\text{sigmoid}} \in [10^{-3}, 10^{3}]$

#### Metrics:

► F1-score

$$F_1 = \frac{2 \cdot TP}{2 \cdot TP + FP + FN}$$

▶ Geometric difference

$$g_{C \to Q} = \|\sqrt{K_Q}(K_C)^{-1}\sqrt{K_Q}\|_{\infty}$$

# **Dataset Configuration**

#### **Training Dataset:**

- ➤ 200 datapoints with 5 selected features
- Results in 5-qubit quantum system

#### **Test Dataset:**

- ▶ 100 non-attack samples
- ▶ 457 attack samples
- Same 5-feature selection as training

# Variable Subsampling Ensembles with Inversion Test Kernels (Ensemble Fidelity Kernel)

## Key Idea

- ► Train multiple OC-SVMs on subsets of different sizes  $(n_i)$ .
- ► Each subset → different decision boundary.
- ▶ Aggregate predictions (average  $\rightarrow$  reduce variance, max  $\rightarrow$  reduce bias).
- Scalable: training complexity  $\sim \lfloor \frac{n}{100} \rfloor \times \left( \frac{50+100}{2} \right)^2$ .



## Results: Ensemble Fidelity Kernel

► Hyperparameter optimization process







Hyperparameter importance (Optuna analysis)

## Results: Ensemble Fidelity Kernel

## Hyperparameter sensitivity analysis



Number of estimators vs F1-score



Feature map vs F1-score



Number of layers vs F1-score.

# Results: Ensemble Fidelity Kernel





# Results: Ensemble Fidelity Kernel

#### **Takeaways:**

- ▶ Performance is sensitive to tuning but converges quickly within 15–20 trials
- Estimators matter most: best balance with 3–4 estimators.
- CNOT and Z maps are stable and reliable, while IQP and Hamiltonian are risky.
- ▶ Shallow circuits (1–2 layers) work best; deeper ones reduce performance.

► Hyperparameter optimization process



Optimization history across 100 trials.



Hyperparameter importance (Optuna analysis)

Hyperparameter sensitivity analysis



 $\gamma$  (log scale) vs F1-score

Feature map vs F1-score.

► Hyperparameter sensitivity analysis



Number of layers vs F1-score.



# Geometric difference analysis



Correlation between F1 Score and Geometric Difference.



Hyperparameter importance for predicting geometric difference.

#### **Takeaways**

- $\blacktriangleright$   $\gamma$  (RBF bandwidth) dominates performance; default  $\gamma=1$  is worst, extremes work best.
- ► Feature maps: IQP & Hamiltonian can peak but unstable; CNOT & Z more stable but weaker.
- Layers and subsystem size k have little impact.
- Larger geometric difference often means lower F1, showing classical  $\gamma$  overshadows quantum effects.

# Results: Projected Quantum Kernel, sigmoid kernel

► Hyperparameter optimization process



Optimization history across 100 trials.



Hyperparameter importance (Optuna analysis)

### **Takeaway**

Sigmoid PQK: poor vs RBF,  $\alpha$  dominates, F1 < 0.2.

### Conclusions

### **Key Findings**

- Quantum kernels viable for unsupervised anomaly detection
- Ensemble fidelity kernels show promise for scalability
- Projected quantum kernels dominated by classical parameters

### Methodological Contributions

- First comprehensive study of QKMs in unsupervised anomaly detection
- ▶ Benchmarking framework for quantum kernel comparison

# Project Impact

#### **Environmental**

- ▶ 105,288 CPU hours
- ▶ 47 GPU hours
- ▶ 38% CPU utilization
- ► Room for optimization

#### Social

- Quantum reversibility
- Enhanced interpretability
- Al transparency potential
- Ethical AI considerations

#### **Economic**

- Industry partnership
- Strategic cybersecurity
- Scientific publication
- Technology adoption

### Strategic Value

Real-world collaboration between academia, industry, and quantum hardware providers addressing critical cybersecurity challenges.

### Future Work

#### **Technical Directions:**

- Larger dataset experiments
- ► Noisy quantum simulators
- Hardware implementation
- ► Trainable kernel methods
- Quantum autoencoders comparison

#### **Research Questions:**

- Can quantum advantage emerge at scale?
- ► How to mitigate concentration effects?
- ► How does noise affect performance?

### Open Challenge

Finding quantum kernel constructions that provide genuine advantages over classical methods while remaining computationally tractable.

### Personal Reflection

#### Technical Skills Gained

- Quantum machine learning algorithms
- Software engineering practices (Git, Docker, MLflow)
- Scientific literature review and analysis
- Hyperparameter optimization techniques

### Professional Development

- Team collaboration in research environment
- Presentation skills in consortium meetings
- ► Critical analysis and problem-solving
- Balancing scientific depth with practical constraints

# Thank you for your attention!

Questions?

#### Contact:

Maissa BEJI Télécom Paris maissa.beji@imt-atlantique.net