Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа P3112 Студент Сенина Мария Михайловна Преподаватель Сорокина E K

К работе допущен Работа выполнена

Рабочий протокол и отчёт по лабораторной работе № 1.07V Маятник Максвелла

1 Цель работы

Изучение динамики плоского движения твердого тела на примере маятника Максвелла.

2 Задачи, решаемые при выполнении работы

- 1. Проверка выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение.
- 2. Определение центрального осевого момента инерции маятника Максвелла.

3 Объект исслевдования

Маятник Максвелла.

4 Метод экспериментального исследования

Маятник Максвелла - это массивный диск радиуса R с тонким осевым валом радиусом r, который подвешен на двух нитях. Такой маятник совершает плоские колебания вверх и вниз.

Момент инерции маятника Максвелла можно найти двумя разными способами - через энегретический и через динамический подходы.

Динамический подход позволяет рассмотреть движение маятника, как вращательное движение в СО маятника и как поступательное движение в лабораторной системе отсчёта. Тогда второй закон Ньютона

Рис. 1: Маятник Максвелла

для системы можно записать так:

$$\begin{cases}
 ma = mg - 2T \\
 I_c \varepsilon = 2Tr
\end{cases}$$
(1)

Т.к. нить можно считать нерастяжимой скорость движения центра масс равна скорости вращения диска.

$$V_{u,m} = \omega r \tag{2}$$

Из формул 1 и 2 можно вывести:

$$I_c = mr^2(\frac{g}{a} - 1)$$

Аналогичный разультат мы получим пользуясь **энергетичкским подходом**. В для маятника в нижней точке будет выполняться:

$$W_{ep} + W_{nocm} + \Delta U = 0 \Rightarrow mgh = \frac{mv^2}{2} + \frac{I_c \omega}{2}$$
 (3)

Зная, что маятник опускается с постоянным ускорением можно понять, что за время t центр масс опустится на $h=\frac{at^2}{2}$, т.к. $v=\omega r$, а v=at, $h=\frac{vt}{2}=\frac{\omega rt}{2}$. Подставив это в 3 мы получим ту же формулу для момента инерции маятника

 $I_c = mr^2(\frac{gt^2}{2h} - 1) = mr^2(\frac{g}{a} - 1)$

.

5 Рабочие формулы

• Среднее значение

$$\frac{\sum_{i=1}^{n} x_i}{n} \tag{4}$$

• Момент инерции маятника

$$I_c = mr^2(\frac{gt^2}{2h} - 1) = mr^2(\frac{g}{a} - 1)$$
 (5)

• Погрешность момента инерции маятника

$$\Delta I_c = S_N \sqrt{(mr^2 \Delta)^2 + ((-1)r^2 \Delta m)^2 + (2(-1)mr \Delta r)^2}$$
 (6)

• Теоритический момент инерции маятника

$$I_{meop} = mR^2 (7)$$

• α коэффицент пропорциональности между I_c и Δh

$$\begin{cases} \frac{gt^2}{2} = \alpha \Delta h \\ \Delta \alpha = 2\sigma \\ \delta = \frac{\Delta \alpha}{2} \end{cases}$$
 (8)

ullet Коэфициент уравнения прямой Y=aX через МНК

$$a = \frac{\sum_{i=1}^{n} x_i \cdot y_i}{\sum_{i=1}^{n} x_i^2} \tag{9}$$

• СКО коэффицента а уровнения прямой

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^n (y_i - a \cdot x_i)^2}{(N-1)\sum_{i=1}^n x_i^2}}$$
 (10)

• Мгновенная скорость

$$v_i = \frac{2r}{t_i} \tag{11}$$

• Кинетическая энегрия маятника (вращательного и поступательного движения)

$$E_{\kappa} = \frac{mv_i^2}{2} (\frac{I_c}{mr^2} + 1) \tag{12}$$

• Потенциальная энергия маятника, если считать за 0 низ его траектории

$$E_{nom} = mgh (13)$$

• Полная энергия маятника

$$E_{nonh} = E_{nom} + E_{\kappa uh} \tag{14}$$

• Погрешность измерений через коэффицент Стьюденса, где $t_{a_{\partial oe,N}}$ - коэффицент Стьюдентса для доверительной вероятности $a_{\partial oe}$ и количества измерений N

$$\Delta x = t_{a_{\partial oo,N}} \sqrt{\frac{\sum_{i=1}^{N} (x - \bar{x})^2}{N(N-1)}}$$
 (15)

6 Измерительные приборы

Погрешности измерительных приборов

Nº	Наименование	Используемый диапазон	Погрешность прибора
1	Секундомер	0.02c - 6.9c	0.0001 c

7 Схема установки

Параметры стенда

Nº	Наименование	Значение	Погрешность
1	Масса колеса т	0.47 кг	0.001 кг
2	Радиус оси колеса r	$2.5 \cdot 10^{-3}$ м	$0.1 \cdot 10^{-3}$ м
3	Радиус маховика <i>R</i>	0.65 mm	

Рис. 2: Стенд:

1 - цифровой счётчик, 2 - колесо, 3 - рамка с фотоэлементами, 4 - Вертикальная линейка, 5 - Пусковой механизм

8 Результаты прямых измерений

Таблица 1

O1111140 I							
$h_0 = 0.1 M$	0.2м	0.3, M	0.4, M	0.5, M	0.6, м	0.7, м	0.8, м
t_1, c	0.200	0.300	0.400	0.500	0.600	0.700	0.800
t_2, c	2.614	3.713	4.563	5.265	5.896	6.463	6.978
t_3, c	2.615	3.720	4.561	5.270	5.894	6.460	6.984
t_4, c	2.614	3.720	4.562	5.270	5.898	6.463	6.972
t_5, c	2.613	3.715	4.557	5.264	5.893	6.454	6.982
t_6, c	2.614	3.719	4.561	5.265	5.896	6.456	6.973

Таблица 4

$h_0 = 0.1 M$	0.2м	0.3, м	0.4, м	0.5, M	0.6, M	0.7, м	0.8, м
Δh	0.2	0.300	0.400	0.500	0.600	0.700	$0.800 \ t_1$
0.053	0.037	0.031	0.027	0.024	0.022	$0.020 \ t_2$	0.081
0.044	0.034	0.028	0.025	0.023	$0.021 t_3$	0.081	0.044
0.034	0.029	0.025	0.023	0.021		1	

| 0.023 | 0.025 | 0.025 | 0.021 | Измерения проведены в 18:39 4 декабря 2020 года.

9 Расчёт результатов косвенных измерений

Часть 1

Из данных таблицы 1 посчитаем расстояние $\Delta h = h_0 - h_i$, которое прошёл маятник, от начала движения до рамки с фотоэлементом и среднее время, за которое он это сделал. Зная среднее время движения маятника посчитаем $\frac{gt_{cp}^2}{2}$.

Таблица 2

$h_0 = 0.1 M$	0.2м	0.3, M	0.4, м	0.5, M	0.6, M	0.7, м	0.8, м
Δh , M	0.1	0.2	0.3	0.4	0.5	0.6	0.7
t_{cp}, c	2.61	3.72	4.56	5.27	5.90	6.46	6.98
$\frac{gt^2}{2}$	33.55	67.85	102.13	136.19	170.66	204.85	239.05

По формуле $\frac{gt^2}{2}=\alpha\Delta h$ зависимость $\frac{gt_{cp}^2}{2}(\Delta h)$ - линейна. Тогда построим её график см рис 3. Здесь α - коэффицент пропорциональности между $\frac{gt_{cp}^2}{2}$ и $\Delta h,$ значит мы можем его вычеслить с помощью метода наименьших

квадратов (формулы
$$a = \frac{\sum_{i=1}^{n} x_i \cdot y_i}{\sum_{i=1}^{n} x_i^2}$$
 и $\Delta \alpha = \sigma_a * S_t = \sqrt{\frac{\sum_{i=1}^{n} (y_i - a \cdot x_i)^2}{(N-1) \sum_{i=1}^{n} x_i^2}}$.

$$\alpha = \frac{477.61 \ \text{M}^2}{1.40 \ \text{M}^2} = 341.2$$

$$\Delta \alpha = \sigma_a S_t = 2 \cdot \sqrt{\frac{0.68 \ \text{M}^2}{5 \cdot 1.40 \ \text{M}^2}} = 0.7$$

Значит относительная погрешность $\delta \alpha = \frac{\Delta \alpha}{2} = 0.002 = 0.2\%$

Далее зная по формулам $I_c=mr^2(\alpha-1)$ и $\Delta I_c=S_N$ $\sqrt{(mr^2\Delta)^2+((-1)r^2\Delta m)^2+(2(-1)mr\Delta r)^2}$ мы можем вычислить момент

$$I_c = mr^2(\alpha - 1) = 0.47 \text{ kg} \cdot (0.003 \text{ m})^2 \cdot 341.2 = 1.0 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta I_c =$$

 $2.77 \sqrt{(0.47~\text{kg}\cdot(3~\text{mm})^20.7)^2 + ((341.2-1)(3~\text{mm})^21~\text{g})^2 + (2(341.2-1)0.47~\text{kg}\cdot30\cdot10^{-4}~\text{m}^2)^2} = 0.2 \cdot 10^{-3} \text{kg}\cdot\text{m}^2$

$$I_c = (1.0 \pm 0.2) \cdot 10^{-3} \kappa e \cdot M^2$$

Теоритически момент инерции должен ровняться $I_{meop} = mR^2 = 2.0$ $10^{-3} \kappa \epsilon \cdot M^2$ (по формуле 7).

Используя данные из таблицы 3 вычислим мгновенную скорость маятника в каждый из моментов замеров по формуле $v_i = \frac{2r}{t_i}$ (см. таблицу 4). Зная мгновенную скорость вычислим кинетическую энергию маятника в моменты замеров $E_\kappa=\frac{mv_i^2}{2}(\frac{I_c}{mr^2}+1),$ а зная высоту, на которой зекреплена рамка с фотоэлементом можно вычислить потенциальную энергию $E_{nom}=mgh$ и полную энергию маятника в этих точках $E_{non} = E_{nom} + E_{\kappa un}$.

$h_0 = 0.1 M$	0.2м	0.3, M	0.4, M	0.5, M	0.6, м	0.7, M	0.8, M
Δh	0.1	0.2	0.3	0.4	0.5	0.6	0.7
v_1	0.053	0.075	0.092	0.106	0.119	0.130	0.140
v_2	0.035	0.063	0.083	0.099	0.112	0.124	0.135
v_3	0.035	0.063	0.083	0.098	0.112	0.123	0.134
$E_k 1$	0.224	0.452	0.671	0.895	1.129	1.347	1.571
E_k2	0.097	0.323	0.547	0.779	1.006	1.231	1.467
E_k3	0.096	0.320	0.550	0.763	1.006	1.220	1.439
$E_n om$	3.692	3.231	2.769	2.308	1.846	1.385	0.923
E_n олн 1	3.916	3.683	3.440	3.203	2.975	2.732	2.494
E_n олн 2	3.789	3.554	3.316	3.087	2.852	2.615	2.390
E_n олн 3	3.788	3.551	3.319	3.071	2.852	2.604	2.362

Построим графики зависимости энергии маятника от высоты (см рис 6).

10 Окончательные результаты

Экспериментальный момент инерции маятника

$$I_c = (1.0 \pm 0.2) \cdot 10^{-3} \kappa s \cdot M^2$$

Относительная погрешность момента инерции маятника $\delta I_c = 0.22 = 22\%$ Теоритический момент инерции маятника

$$I_{meop} = mR^2 = 0.2 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Получается, что теоритическое значение в два раза больше экспериментального $\frac{1}{2}$

Графики зависимости кинетической и полной энергии маятника от высоты (см рис 6).

11 Выводы

В ходе эксперимента мы вычислили момент инерции маятника, с точностью 20%, но при этом с теоритичесим значением результат расходится в два раза. Это скорее всего происходит потому, что в считая I_{meop} мы считаем ось маятника, к которой крепятся нити полой, а она цельная, т.е. формула $I_{meop} = \frac{mR^2}{2}$. Т.е. результат должнен получиться в два раза меньше и полностью совпасть с экспериментом.

Так же целью эксперимента было проверить выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение. Полная энергия маятника не может сохранятся полностью, т.к. в верёвка, на которую подвешен, маятник не является нерастяжимой и невесомой, что будет приводить к небольшим потерям энергии, особенно в нижней точке. Из графика (рис 5) мы можем заметить, что именно так и происходит. Значения полной энергии в точке t_1 и точках t_2 и t_3 различаются примерно на 0.1 Дж, в то время, как различий в значении у точек t_2 и t_3 почти нет, как раз потому что маятник проходит нижнюю точку между моментами t_1 и t_2 .

Из графика (рис 5) видно, что полная энергия с увеличением высоты полностью не сохраняется, т.к. прямая-аппроксимация значений полной энергии не горизонтальная. К таким результатам могла привести неточность в измерении мгновенной скорости, или пренебрежение потерями энергии из-за растяжимости нити.

12 Графики

Рис. 3: Зависимость $\frac{gt^2}{2}(\Delta h)$

Рис. 4: Зависимость $E_{\kappa un}$ от h для трёх первыйх моментов времени, когда маятник проходит мимо фотодатчика

- 1) Синий энергия первого момента 2) Красный энергия второго момента
- 3) Зелёный энергия второго момента

Рис. 5: Зависимость E_{nonn} от h для трёх первыйх моментов времени, когда маятник проходит мимо фотодатчика 1) Пурпурный - энергия первого момента 2) Светлоголубой - энергия вто-

рого момента 3) Жёлтый энергия второго момента

Рис. 6: Зависимость $E_{\kappa u n}$ и E_{nonn} от h. Общий график