Data607-Week05-Assignment Tidying and Transforming Data

Vinayak Kamath

2/29/2020

		Los Angeles	Phoenix	San Diego	San Francisco	Seattle
ALASKA	on time	497	221	212	503	1,841
	delayed	62	12	20	102	305
AM WEST	on time	694	4,840	383	320	201
	delayed	117	415	65	129	61

Source: Numbersense, Kaiser Fung, McGraw Hill, 2013

(1) Create a .CSV file (or optionally, a MySQL database!) that includes all of the information above. You're encouraged to use a "wide" structure similar to how the information appears above, so that you can practice tidying and transformations as described below.

CSV File created using Microsft Excel. File can found in Git Repository.

(2) Read the information from your .CSV file into R, and use tidyr and dplyr as needed to tidy and transform your data.

X	X.1	Los.Angeles	Pheonix	San.Diego	San.Francisco	Seattle
Alaska	on time	497	221	212	503	1,841
NA	delayed	62	12	20	102	305
NA	NA	NA	NA	NA	NA	NA
AM WEST	on time	694	4,840	383	320	201
NA	delayed	117	415	65	129	61

	Airline	Status	Los.Angeles	Pheonix	San.Diego	San.Francisco	Seattle
1	Alaska	on time	497	221	212	503	1,841
2	NA	delayed	62	12	20	102	305
4	AM WEST	on time	694	4,840	383	320	201
5	NA	delayed	117	415	65	129	61

```
# Use the tidyr->fill function to get Airline name on the row for the delayed data:
# fill() function, by defualt downward direction, helps to fill NA value from recent
# non-NA values
ArrivalDelays.df <- fill(ArrivalDelays.df, Airline)
kable(ArrivalDelays.df)</pre>
```

Airline	Status	Los.Angeles	Pheonix	San.Diego	San.Francisco	Seattle
Alaska	on time	497	221	212	503	1,841
Alaska	delayed	62	12	20	102	305
AM WEST	on time	694	4,840	383	320	201
AM WEST	delayed	117	415	65	129	61

```
# Above three steps have helped us to get the data in a format that helps to work # with the final set of data and to work with it in a better way now.
```

[#] Next, we will tidy the data by reshaping the data layput in the table by using # tidyr->gather function to move the airport column names into a key column,

Airline	Airport	On.Time
Alaska	Los.Angeles	497
Alaska	Pheonix	221
Alaska	San.Diego	212
Alaska	San.Francisco	503
Alaska	Seattle	1,841
AM WEST	Los.Angeles	694
AM WEST	Pheonix	4,840
AM WEST	San.Diego	383
AM WEST	San.Francisco	320
AM WEST	Seattle	201

Airline	Airport	Delayed
Alaska	Los.Angeles	62
Alaska	Pheonix	12
Alaska	San.Diego	20
Alaska	San.Francisco	102
Alaska	Seattle	305
AM WEST	Los. Angeles	117
AM WEST	Pheonix	415
AM WEST	San.Diego	65
AM WEST	San.Francisco	129
AM WEST	Seattle	61

[#] We will now merge the above two dataset to one fianl dataset based on common keys # Airline and Airport; we will use dplyr->full_join

Airline	Airport	On.Time	Delayed	Percent.Delayed
Alaska	Los.Angeles	497	62	11.09
Alaska	Pheonix	221	12	5.15
Alaska	San.Diego	212	20	8.62
Alaska	San.Francisco	503	102	16.86
Alaska	Seattle	1841	305	14.21
AM WEST	Los.Angeles	694	117	14.43
AM WEST	Pheonix	4840	415	7.90
AM WEST	San.Diego	383	65	14.51
AM WEST	San.Francisco	320	129	28.73
AM WEST	Seattle	201	61	23.28

(3) Perform analysis to compare the arrival delays for the two airlines.

```
# 1. We can get the Mean and Standard Deviation for each airline:
final.ArrivalDelays.df %>%
   group_by(Airline) %>%
   summarise(Mean=mean(Percent.Delayed), SD=sd(Percent.Delayed))

## # A tibble: 2 x 3
## Airline Mean SD
## <fct> <dbl> <dbl>
## 1 Alaska 11.2 4.59
## 2 AM WEST 17.8 8.21

# Plotting the boxplot to check on the outliers:
ggplot(final.ArrivalDelays.df, aes(x=Airline, y=Percent.Delayed, color=Airline)) +
   geom_boxplot()
```


 $ext{->}$ Based on above, we can say AM WEST on average is more delayed then Alaska Airlines.

```
# 2. Airport wise we can check the Top Delayed Airline:
final.ArrivalDelays.df %>%
  group_by(Airport) %>%
  top_n(1, Percent.Delayed)
```

A tibble: 5 x 5
Groups: Airport [5]

```
On. Time Delayed Percent. Delayed
##
     Airline Airport
##
             <chr>
                              <dbl>
                                      <dbl>
                                                       <dbl>
     <fct>
                                694
## 1 AM WEST Los.Angeles
                                        117
                                                        14.4
## 2 AM WEST Pheonix
                               4840
                                        415
                                                         7.9
## 3 AM WEST San.Diego
                                383
                                         65
                                                        14.5
## 4 AM WEST San.Francisco
                                320
                                        129
                                                        28.7
## 5 AM WEST Seattle
                                201
                                                        23.3
```


-> Based on above, we can say AM WEST had highest delayed for each airport as well.