장 이

로컬 영역 네트워크 - 소개

제 목표

- 서버, LAN 서비스, 고객을 정의하고 LAN에서 각각의 역할에 대해 설명합니다.
- 메인 프레임 및 LAN 단말기의 구성을 설명한다.
- 피어 투 피어, 클라이언트 지배, 클라이언트 / 서버 및 분산 처리 LAN을 토론한다.
- 동축, 트위스트 페어, 광섬유, 케이블 유형을 정의합니다.
- 무선 미디어의 세 가지 유형을 식별합니다.
- 네트워크 인터페이스 카드가 작동하는 방법에 대해 설명합니다.
- 네트워크 인터페이스 카드의 종류를 확인합니다.

기술 개요

- LAN은 전문적인 하드웨어와 소프트웨어를 사용합니다.
 - 서버와 워크 스테이션의 기능을 컴퓨터.
 - 서비스를 제공하는 운영 체제.
 - 네트워크 인터페이스 카드는 LAN에 연결합니다.
 - 케이블 또는 무선 미디어.
 - 허브, 브리지, 스위치, 라우터 및 다른 연결 장치.

간단한의 물리적 구성 근거리 통신망

SERVERS

 섬기는 사람 - LAN에 연결되어 있고 네트워크의 클라이언트에 공유 LAN 서비스를 제공하기 위해 설치된 네트워크 운영 체제 소프트웨어가 설치된 컴퓨터.

근거리에 기본 서비스 회로망

CLIENTS

 에이 LAN 클라이언트 서버의 네트워크 운영 체제에서 제공하는 LAN 서비스에 사용자를 연결하는 컴퓨터입니다.

LAN CONFIGURATIONS

- 메인 프레임 과 터미널 컴퓨팅 기능은 메인 프레임에 대해 수행되며, 터미널은 데이터 입력 및 데이터의 시청을 지원.
 - 처리가 메인 프레임에서 이루어 지므로, 단자 "단순"으로 간주된다.
 - 메인 프레임은 자본 지출의 주어진 수준의 컴퓨팅 파워의 고정 금액을 제공합니다.
 - 처리 능력의 업그레이드는 비싸다.
 - 응용 프로그램 개발은 비싸다.
 - 메인 프레임 기술은 오늘날의 무선 랜의 데이터 저장 기능 스토리지 네트워킹 영역으로 적용되고있다.

메인 프레임 네트워크

LAN 구성의 예 (계속)

- 피어 투 피어 랜 전용 메인 프레임이나 서버에서 중앙 집중식 컴퓨팅 성능에 대한 실질적인 필요가없는 조직을위한 비즈니스 요구 사항을 입력합니다.
 - 피어 투 피어 LAN을 통해, LAN상의 각 컴퓨터는 다른 모든 컴퓨터에 피어 역할을합니다.
 - 각 컴퓨터가 LAN에있는 다른 모든 컴퓨터에 서비스 요청 서비스를 제공 할 수 있습니다.
 - 피어 컴퓨터는 일반적으로 동일한 "작업 그룹"에 속하도록 구성되어

피어 - 투 - 피어 LAN을

LAN 구성의 예 (계속)

• 클라이언트 지배적 랜

- 개인 PC 용으로 개발 된 단일 사용자 응용 프로그램에서 1980 년대 진화.
- LAN 서버에 데이터 저장은 중앙 집중식 파일 액세스를 제공했다.
- 응용 프로그램 처리 및 데이터 조작은 클라이언트에서 열렸다.
- "운동화-NET"사용자의 PC 사이의 의존도를 감소.

클라이언트 지배적 로컬 영역 회로망

LAN 구성의 예 (계속)

- 클라이언트 / 서버의 LAN
 - 일부 처리는 클라이언트와 서버의 일부에서 수행된다.

- 서버는 데이터 액세스 및 저장을 처리합니다.
- 단지 필요한 정보는 데이터 조작에 대한 클라이언트 컴퓨터에 복사됩니다.
- LAN에 장점은 네트워크 미디어와 더 나은 전반적인 네트워크 성능에 대한 수요가 감소된다.

클라이언트 / 서버 로컬 영역 회로망

LAN 구성의 예 (계속)

• 분산 처리 무선 랜

- 데이터 액세스 및 저장 컴포넌트 애플리케이션의 <u>데이터 처리 구성 요소로부터</u> 분리된다.
- 응용 프로그램 처리는 여러 컴퓨터에서 공유됩니다.
- 응용 프로그램의 다른 구성 요소는 하나 개 이상의 서버에 설치할 수 있습니다.
- 응용 프로그램에 내장 된 로직은 모든 구성 요소 모듈이 통신 할 수 있습니다.

LAN 구성의 예 (계속)

- 분산 처리 무선 랜 (계속)
 - 실제 처리가 일어나는 경우 응용 프로그램의 클라이언트 구성 요소는 상관하지 않는다.
 - LAN의이 유형은 잘 성장 처리 요구에 확장 할 수 있습니다.
 - 부하 공유 및 중복 향상된 성능을 제공합니다.

분산 처리

LAN 구성의 예 (계속)

- LAN에 컴퓨터를 연결
 - 클라이언트 컴퓨터는 워크 스테이션 OS와 NOS 클라이언트를 필요로한다.
 - 서버 NOS 설치 및 구성이 필요합니다.
 - 네트워크 관리자는 클라이언트 소프트웨어와 하드웨어, 서버 하드웨어 및 소프트웨어, 프로토콜, 네트워크 카드, 미디어, 및 연결 장치를 구성합니다.

• 동축 케이블

- 일반적으로 "동축 케이블"이라한다.
- 특별한 절연 재료에 의해 분리 된 두 개의 도체로 구성된다.
- 하나 개의 도체는 상기 신호 및 접지 차폐와 같은 같은 다른 동작을 수행한다.
- 초기 이더넷 LAN을위한 일반적인 미디어 선택이었다.

(계속)

- 동축 케이블 (계속)
 - 의 thicknet 두꺼운 이더넷 케이블로 알려진
 - 500m의 거리에 걸쳐 10 Mbps의 최대 데이터 전송 속도를 제공하고, LAN 세그먼트 (100)에 컴퓨터의 연결을 지원.

의 thicknet의 특성

케이블

(계속)

- 동축 케이블 (계속)
 - 도 thinnet 또한 박막은 이더넷으로 알려진 -의 thicknet 대안으로 1985 년에 소개되었다.
 - 그것은의 thicknet보다 저렴했다.
 - 10 Mbps의를 제공하지만 185m의 거리에.
 - 30 컴퓨터는 LAN 세그먼트에 연결할 수 있습니다.

도 thinnet의 특성 케이블

(계속)

• 도 thinnet 커넥터

- 도 thinnet는 케이블에 케이블을 케이블로의 NIC 및 연결 장치를 연결하는 케이블을 BNC 커넥터를 사용한다.

BNC 커넥터도 thinnet 사용 케이블

(계속)

- 트위스트 페어 미디어
 - LAN 설치에서 매우 인기가 있습니다.
 - 트위스트 구리 와이어의 여러 쌍으로 구성되어 있습니다.
 - UTP와 STP 비 차폐 및 차폐 두 종류에서 사용할 수 있습니다.

일반적인 UTP 미디어 기준

TABLE 2.1
Common UTP Media
Standards

Media Type	Maximum Data Rate	Where Used
Cat 1 UTP	less than 1 Mbps	Home telephone lines
Cat 2 UTP	4 Mbps	4 Mbps Token Ring networks, older POTs lines—1983–1993
Cat 3 UTP	100 Mbps ^a	4 Mbps Token Ring networks, 10 Mbps Ethernet LANs, some 100 Mbps Ethernet LANs, and POTs lines installed after 1993
Cat 4 UTP	100 Mbps ^b	4 or 16 Mbps Token Ring networks, 10 Mbps Ethernet LANs, some 100 Mbps Ethernet LANs
Cat 5 UTP	1,000 Mbps ^c	4 or 16 Mbps Token Ring networks, 10 and 100 Mbps Ethernet LANs, 1 Gbps Ethernet LANs—with four pairs ATM at 155 Mbps, FDDI
Cat 5e UTP	1 Gbps	10, 100, and 1,000 Mbps Ethernet ATM at 155 Mbps
Cat 6 UTP	10 Gbps	High-speed multimedia applications over future Ethernet LANs with speeds greater than 1 Gbps

^a Category 3 can support 100 Mbps Ethernet LANs only if the NICs are 100BaseT4 NICs. The 100 means 100 Mbps, Base means a single communications channel, the T represents twisted pair, and the 4 designates four twisted pairs (eight wires total).

^b Category 4 can also support 100 Mbps Ethernet only if the NICs are 100BaseT4.

^c Category 5 can only support 1 Gbps Ethernet when implemented as 1000BaseT4. This means 1,000 Mbps (1 Gbps), single channel, twisted pair, four pairs.

비 차폐 트위스트 페어 케이블

(계속)

• UTP 커넥터

- UTP 케이블은 UTP 8 핀 커넥터로 종결된다.

- UTP 커넥터는 일반적으로 RJ-45 커넥터로 불린다.

UTP 케이블 커넥터

(계속)

- 차폐 트위스트 페어
 - UTP 같은 연결의 이점을 제공하지만, STP는 EMI (전자기 간섭)의 데이터 전송을 보호하기 위해 차폐 재료의 두 단계를 추가한다.

차폐 트위스트 페어 케이블

(계속)

• STP 커넥터

- 매우 UTP 커넥터 등 STP 제외 커넥터는 STP 케이블의 쉴드는 접속되는 접지 케이스를 제공한다.

STP 케이블 커넥터

(계속)

• 광섬유 미디어

- 광 펄스를 전송하기 위해 유리 또는 플라스틱 섬유를 사용한다.
- 높은 데이터 속도 및 데이터 전송 많은 양이 요구되는 경우에 사용됩니다.
- 송신 및 수신을위한 하나 하나 전형적인 구현은 소스와 목적지 장치
 사이의 두 개의 광섬유 케이블을 포함한다.
- FO 미디어는 EMI에 민감하지 않습니다.
- FO 미디어는 더 먼 거리와 구리 케이블보다 더 높은 전송 속도를 지원할 수 있습니다.

광섬유 케이블의 예

광섬유 케이블의 예 커넥터

(계속)

• 무선 미디어

- 전기 또는 광 전도체를 필요로하지 않습니다.
- 옵션은 무선 주파수, 적외선, 전자 레인지 등이 있습니다.

(계속)

- 무선 미디어 무선 주파수
 - 각 LAN 디바이스는 송수신기 및 안테나를 갖는다.
 - 무선 LAN 라디오 주파수는 라디오 방송국을 방해하지 않습니다.
 - 무선 주파수는 KCC에 의해 할당된다
 - 무선 장치는 LAN에 연결하는 액세스 포인트를 사용합니다.

로컬에 RF 무선 LAN 장치 지역 네트워크

(계속)

- 무선 미디어 적외선의
 - 데이터 전송을위한 광 주파수를 사용한다.
 - 일반적으로 매우 짧은 거리로 제한했다.
 - 간섭의 많은 종류에 감염되기 쉬운.
 - 포인트 투 포인트 또는 브로드 캐스트 전송에 사용할 수 있습니다.

(계속)

- 무선 미디어 마이크로파
 - 데이터 송신을 위해 초고주파 무선 전파를 사용한다.

- LAN 응용 프로그램에서 사용하는 경우 일반적으로 건물 사이의 전송에 구현된다.
- 지상파 전자 데이터를 송신하는 파라볼라 안테나들을 사용한다.

지상파 전자 레인지 데이터 연락

(계속)

• 무선 커넥터

- 무선 데이터 전송은 동축 케이블, 트위스트 페어 및 광섬유 케이블에 사용되는 커넥터와 유사 커넥터를 사용하지 마십시오.
- 대신, 무선 장치는 무선 장치 사이의 연결을 만들기 위해 안테나와 송수신기를 사용합니다.

네트워크 인터페이스 카드

• 네트워크 인터페이스 카드

- 또한 네트워크 어댑터, 네트워크 카드, 또는 단순히 NIC라고도합니다.
- NIC가 컴퓨터 나 다른 네트워크 기기와 LAN과의 인터페이스이다.
- NIC는 다양한 형태로 사용할 수 있습니다 별도의 확장 카드로, 컴퓨터의 마더 보드에 내장, PC 카드와 같은 USB 장치로, 등

이더넷 네트워크 카드의 예

네트워크 인터페이스 카드 (계속)

- 네트워크 인터페이스 카드 (계속)
 - 다른 전송 속도를 사용할 수 있습니다 등 10 Mbps의, 100 Mbps의 1000 Mbps의 10 Gbps의를,
 - 다른 아키텍처를 사용할 수 있습니다 이더넷, 토큰 링, FDDI (데이터 인터페이스 분산 섬유), ATM (비동기 전송 모드) 등

네트워크 인터페이스 카드 (계속)

• 무엇 NIC를 할

- NIC는 전송 매체에 대해 허용 가능한 포맷으로 컴퓨터에서 데이터를 번역.
- NIC의 프레임들로 데이터를 분할.
- NIC는 디바이스의 물리적 인 노드 주소를 제공한다.

네트워크 인터페이스 카드 (계속)

- NIC 특성
 - NIC 드라이버는 NIC는 워크 스테이션 운영 체제와 네트워크 운영 시스템과 통신 할 수 있습니다.
 - 대부분의 NIC는 관리 기능 및 성능 향상 기능을 제공하는 기능을 내장했다.
 - NIC 관리 기능은 외부 명령을 통해 PC의 전원을 켤 수있는 기능으로 능력을 포함한다.