<u>Home</u>

<u>Gameboard</u>

Maths

Functions and Algebra 5ii

Functions and Algebra 5ii

The function f is defined by

$$f(x)=rac{1}{\sqrt{x}}+2, \;\; x>0.$$

The function g is defined for all real values of x by

$$g(x) = 10 - (x+3)^2$$
.

Range of fPart A

State the range of f(x) as an inequality.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = f(x), x, y$

Inverse of fPart B

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, x

Range of gPart C

State the range of g(x) as an inequality.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =$, g(x), x, y

${\bf Part \ D} \qquad {\bf Compound \ function \ of} \ g$

Find the value of g(g(-1)).

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Home</u> <u>Gameboard</u>

Maths

Functions Graph Sketching

Inverse Quadratic Function

Inverse Quadratic Function

Figure 1 shows the graph of y = f(x), where

$$f(x)=2-x^2,\quad x\leq 0$$

Figure 1: The graph of y = f(x), for $x \leq 0$.

Part A $f^2(-3)$

Evaluate $f^2(-3)$.

Part B
$$f^{-1}(x)$$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, x, y

Part C Graph of $f^{-1}(x)$

Sketch the graph of $y = f^{-1}(x)$.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 24 - Defining Functions

<u>Home</u> <u>Gameboard</u> Maths Functions General Functions Function Types and Inverses

Function Types and Inverses

Figure 1 shows five different graphs, A, B, C, D and E, each for values of x such that $-a \le x \le a$ where a is a constant.

Figure 1: The set of five graphs, labelled A, B, C, D and E

Part A Function

Which diagram does not show the graph of a function?

- () A
- \bigcirc B
- \bigcirc c
- () F

Which diagram shows the graph of a function that is not one-to-one? Α В С D Ε Part C Inverses It is given that two of the diagrams illustrate functions that are inverses of each other. Identify one of these two diagrams. Α В С D Ε

One-to-one Function

Part B

Part D Sketch

The graph in E has equation y = f(x). Sketch the graph of $y = \big|f(x)\big|$.

To prevent any sharp changes in your curve from being smoothed out, sketch your curve as two sections.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 24 - Defining Functions

<u>Home</u>

<u>Gameboard</u>

Maths

Functions and Algebra 3i

Functions and Algebra 3i

The functions f and g are defined for all real values of x by

$$f(x)=ig|2x+aig|+3a \quad ext{ and }\quad g(x)=5x-4a,$$

where a is a positive constant.

Part A Range

Find the range of f(x).

Fill in the inequality below.

Items:

 $egin{bmatrix} 2a \ \end{bmatrix} egin{bmatrix} 3a \ \end{bmatrix} egin{bmatrix} 4a \ \end{bmatrix} egin{bmatrix} 0 \ \end{bmatrix} egin{bmatrix} -rac{a}{3} \ \end{bmatrix} egin{bmatrix} -rac{a}{2} \ \end{bmatrix} egin{bmatrix} -a \ \end{bmatrix} egin{bmatrix} -2a \ \end{bmatrix}$

Fill in the blanks to explain why the function f(x) has no inverse.

The function f(x) is not $oxed{}$. For example, f(0)=4a and $f(oxed{}$) also equals 4a. Hence, f(x) has no inverse.

Items:

 many-to-many
 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

 a

Home Game

<u>Gameboard</u>

Maths

Modulus 3ii

Modulus 3ii

Solve the inequality $\left|\,2x-5\,\right|\,>\,\left|\,x+1\,\right|.$

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- $\bigcirc x < a$
- $x \leq a$
- () x > a
- $x \ge a$
- $\bigcirc \quad a < x < b$
- $\bigcirc \quad a \leq x \leq b$
- x < a or x > b
- $x \leq a \text{ or } x \geq b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 24 - Defining Functions

<u> Home</u> <u>Gameboard</u>

Maths

Functions General Functions

Modulus Functions 2

Modulus Functions 2

Part A Divergence of
$$y=|rac{1}{x}|$$

Does the function
$$y = \left| \frac{1}{x} \right|$$
 diverge anywhere? Where?

The following symbols may be useful: \times

Part B Graph of
$$y=|rac{1}{x}|$$

Sketch the graph of
$$y = \left| \frac{1}{x} \right|$$
 .

Part C Divergence of
$$y = \left| rac{1}{x^2-4} \right|$$

Does the function
$$y=\left|rac{1}{x^2-4}
ight|$$
 diverge anywhere? Where?

The following symbols may be useful: x, \pm

Part D Graph of $y = \left| rac{1}{x^2 - 4} \right|$

Sketch the graph of
$$y=\left|rac{1}{x^2-4}
ight|$$
 .

Part E Solve equation graphically

Solve the equation $|x|=\left|rac{1}{x}
ight|$ graphically and give the solution as a single expression.

The following symbols may be useful: x, ±

Created for isaacphysics.org for Julia Riley

Gameboard:

STEM SMART Single Maths 24 - Defining Functions

Home Gameboard

Maths

Curve Sketching and Combined Transformations 3i

Curve Sketching and Combined Transformations 3i

The function f is defined for all real values of x by

$$f(x) = k(x^2 + 4x)$$

where k is a positive constant. Figure 1 shows the curve with equation y=f(x).

Figure 1: The graph of y=f(x)

Part A

Range Part B

Find the range of f(x) as a single inequality in terms of k.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = f(x), k, x, y$

It is given that there are three distinct values of x which satisfy the equation |f(x)| = 20. Find the value of k and determine exactly the three values of x which satisfy the equation in this case.

State the value of k.

The following symbols may be useful: k

Give the rational value of x which satisfies this equation.

The following symbols may be useful: x

Give one of the irrational solutions for \boldsymbol{x} in its simplest exact form.

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 24 - Defining Functions

<u>Home</u> <u>Gameboard</u> Maths Functions General Functions Combined Transformations

Combined Transformations

The function f is defined by $f(x) = \sqrt{mx+7} - 4$, where $x \ge -\frac{7}{m}$ and m is a positive constant. Figure 1 shows the curve y = f(x).

Figure 1: The curve y=f(x)

A sequence of transformations maps the curve $y=\sqrt{x}$ to the curve y=f(x). Give details of these transformations.

Available items

Translate the curve 4 units in the positive y direction.

Translate the curve 4 units in the negative y direction.

Stretch the curve in the x direction by a factor of $\frac{1}{m}$.

Translate the curve 7 units in the positive x direction.

Stretch the curve in the y direction by a factor of $\frac{1}{m}$.

Stretch the curve in the x direction by a factor of m.

Translate the curve 7 units in the negative y direction.

Translate the curve 4 units in the negative x direction.

Translate the curve 7 units in the negative x direction.

Part B $f^{-1}(x)$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, m, \times

It is given that the curves y=f(x) and $y=f^{-1}(x)$ do not meet. Thus it can be deduced that neither curve meets the line y=x. Hence determine the set of possible values of m, and give the upper bound in the form m < a or $m \le a$.

The following symbols may be useful: <, <=, >, >=, m

Give the lower bound in the form m>a or $m\geq a$.

The following symbols may be useful: <, <=, >, >=, m

Used with permission from UCLES A-level Maths papers, 2003-2017.