TD5

Relations, fonctions, applications

A. Parcours des notions du cours

Exercice 1

On s'intéresse à la relation $\mathcal{R} = (E, F, L)$ avec $E = \{1, 2, 3, 4\}, F = \{a, b, c, d, e\}$ et

$$L = \{(1, a), (2, a), (3, e)\}.$$

- 1. Représenter le diagramme sagittal de cette relation.
- 2. Quels sont les éléments en relation avec a? avec b? avec c?
- 3. Cette relation est-elle une fonction? Une application?
- 4. Si la relation est une fonction f, que valent f(1), f(2), f(3), f(4)?

Exercice 2

On s'intéresse à la relation $\mathcal{R} = (E, F, L)$ avec $E = \{a, b, c\}, F = \{1, 2\}$ et

$$L = \{(a, 1), (a, 2), (b, 2)\}.$$

- 1. Représenter le diagramme sagittal de cette relation.
- 2. Quels sont les éléments en relation avec a? avec b? avec c?
- 3. Cette relation est-elle une fonction? Une application?

B. Notion de fonction

Exercice 3

On s'intéresse à la relation $\mathcal{R} = (A, B, L)$ avec $A = \{a, b, c\}$, $B = \{c, d, e, f\}$. Parmi les différentes valeurs de L suivantes, lesquelles font de \mathcal{R} une relation? une fonction?

- 1. $L = \{(a, b), (b, d)\}.$
- 2. $L = \{(c, c), (b, f), (a, f)\}.$
- 3. $L = \{(a, c), (c, f), (a, c), (b, e)\}.$
- 4. $L = \{(b, e), (a, c)\}.$
- 5. $L = \{\}.$
- 6. $L = \{(c, b), (d, f)\}.$

C. Notion d'application

Exercice 4

On reprend les relations considérées dans l'exercice 3.

Lesquelles sont des applications? Pour celles qui n'en sont pas, proposer une modification pour qu'elles le deviennent.

D. Relations définies autrement que par L

Exercice 5 - Par une propriété

Donner le diagramme sagittal des relations suivantes. Dire s'il s'agit de fonctions ou/et d'applications.

1. R_1 relation de $E_1 = \{1; 2; 3\}$ dans $F_1 = \{4; 5; 6\}$ telle que pour tout $(x, y) \in \{1; 2; 3\} \times \{4; 5; 6\}$, on ait :

$$xR_1y \iff x+y=6$$

Ecrire de plus l'ensemble L_1 associé à R_1 .

- 2. R_2 relation de $\{1; 2; 3; 4\}$ dans $\{0; 1; 4; 9\}$ définie par : $\forall (x, y) \in \{1; 2; 3; 4\} \times \{0; 1; 4; 9\}, \quad xR_2y \iff x^2 = y$ Ecrire de plus l'ensemble L_2 associé à R_2 .
- 3. R_3 relation de $\{3;5;7\}$ dans $\{-10;1;11;27;28\}$ définie par : $\forall (x,y) \in \{3;5;7\} \times \{-10;1;11;27;28\}, \ xR_3y \Longleftrightarrow \exists k \in \mathbb{Z}, \ y=kx$
- 4. R_4 relation de $\{3;5;7\}$ dans $\{-10;1;11;20;27;28\}$ définie par : $\forall (x,y) \in \{3;5;7\} \times \{-10;1;11;20;27;28\}, \ xR_4y \Leftrightarrow \exists k \in \mathbb{Z}, y=kx$

Exercice 6 - Par une fonction

Rappel : pour une fonction $f: A \to B$, le domaine de définition D_f est le sous-ensemble de A constitué des éléments x de A pour lesquels f(x) est bien défini dans B.

Pour chacune des fonctions suivantes, donner son domaine de définition D_f et dire si $f: A \to B$ est une application.

$$\begin{array}{ccc}
f_1: & \mathbb{N} & \longrightarrow & \mathbb{N} \\
 & n & \longmapsto & n-5
\end{array}$$

$$f_2: \mathbb{R} \longrightarrow \mathbb{R}^* \\ x \longmapsto x-1$$

$$f_3: \mathbb{R} \longrightarrow \mathbb{R}^*$$
 $x \longmapsto \frac{x-1}{x+1}$

$$f_4: \mathbb{R} \longrightarrow [1;2]$$
$$x \longmapsto x^2$$

Approfondissement

suite Exercice 6

$$f_5: \mathbb{R}^2 \longrightarrow \mathbb{R} \qquad f_6: \mathbb{I}$$
 $(x,y) \longmapsto x/y \qquad (x$

Exercice 7

Dans chacun des cas suivants, déterminer le nombre de relations, de fonctions et d'applications pouvant exister de E dans F:

- 1. $E = \{1\}, F = \{1\}.$
- 2. $E = \{1, 2\}, F = \{1, 2, 3\}.$
- 3. $E = \{1, 2, 3\}, F = \{1, 2\}.$
- 4. $E = \{1, 2, 3\}, F = \{1, 2, 3\}.$

Exercice 8

Soit R la relation de \mathbb{R} vers \mathbb{R} définie par :

$$xRy \Leftrightarrow a(x)y^2 + 2b(x)y + c(x) = 0,$$

où
$$a(x) = 4x^2 + 4x + 1$$
, $b(x) = 2x^2 + 5x + 2$, $c(x) = x^2 + 4x + 4$.

- 1. Factoriser les trois fonctions polynômiales a(x) puis b(x) et c(x). On rappelle que si un polynôme $ax^2 + bx + c$ a pour racines x_1 et x_2 alors : $ax^2 + bx + c = a(x - x_1)(x - x_2)$.
- 2. Montrer que R n'est pas une application de \mathbb{R} vers \mathbb{R} .
- 3. Montrer que R est une fonction de \mathbb{R} vers \mathbb{R} et donner son domaine de définition D.
- 4. Soit (x, y) appartenant à $D \times \mathbb{R}$ tel que xRy. Expliciter y en fonction de x.