Теория групп, ФПМИ МФТИ

Госткин Евгений Михайлович

Оглавление

1	Понятие группы. Г	Іримеры. І	[иклические группы и их подгруппы.	2
---	-------------------	------------	------------------------------------	---

Понятие группы. Примеры. Циклические группы и их подгруп-1 пы.

Определение 1.1. Группа - множество G с операцией \cdot (умножения), обладающей следующими

- 1) $\forall a, b, c \in G : (ab)c = a(bc)$ (ассоциативность);
- 2) $\exists e \in G \ \forall a \in G \ ae = ea = a$ (существование единицы);
- 3) $\forall a \in G \; \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$ (существование обратного элемента).

Определение 1.2. Абелева группа (коммутативная) - $\forall a, b \in G \ ab = ba$.

Определение 1.3. Группа преобразований множества X - совокупность G его биективных преобразований, удовлетворяющая следующим условиям:

- 1. $\phi, \psi \in G \Rightarrow \phi \circ \psi \in G$;
- 2. $\phi \in G \Rightarrow \phi^{-1} \in G$;
- 3. $id \in G$ (тождественное).

Пример 1.1. (\mathbb{Z} , +) - абелева группа по сложению

- ullet 0 $\in \mathbb{Z}$ нейтральный элемент, т.к. $\forall a \in \mathbb{Z} a + 0 = 0 + a = a$
- $\forall a \in \mathbb{Z} \ \exists a^{-1} = -a : a + (-a) = (-a) + a = 0$

Пример 1.2. $(\mathbb{Q}^{\times},\cdot)$ - абелева группа по умножению, где $\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$

- ullet 1 $\in \mathbb{Q}^{ imes}$ нейтральный элемент, т.к. $orall a \in \mathbb{Q}^{ imes}$ $a \cdot 1 = 1 \cdot a = a$
- $\bullet \ \forall a \in \mathbb{Q}^{\times} \ \exists a^{-1} = \frac{1}{a} : a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$

Пример 1.3. $GL_n(\mathbb{R})^1$ - группа невырожденных матриц по умножению 3 .

Пример 1.4. $SL_n[\mathbb{R}] \subset GL_n[\mathbb{R}] := {}^4 \forall A \in SL_n[\mathbb{R}] \det A = 1$

Пример 1.5. $(S_n, \circ)^5$ - группа перестановок элементов вида $\{1, \ldots, n\}$, рассматриваемых как функции $\{1,\ldots,n\}\to S_n$. \circ - операция композиции функций. Является группой, т.к. есть тождественная перестановка и у каждой перестановки есть обратная. Также следует заметить, что S_n подходит под определение 1.3, поэтому можно задать действие S_n на любом конечном множестве.

Пример 1.6. D_{2n} - группа Диэдра - группа симметрий правильного n-угольника A_1, \ldots, A_n , включающая поворот и отражение. Состоит из 2n элементов:

$$\{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\},\$$

где r - поворот n-угольника на $\frac{2\pi}{n}$, а s - отражение относительно OA_1 , где O - центр фигуры. Таким образом, rs - повернуть и отразить (читаем слева направо, как композиция функций). В частности, $r^n = s^2 = 1$ и $r^k s = sr^{-k}$.

Пример 1.7. $\{1\}$ - тривиальная группа.

¹ Название произошло от 'General linear group'.

 $^{^2}$ Для тех, кто не помнит: матрицы с ненулевым определителем. 3 Из курса алгема: $\forall A: \det A \neq 0 \Rightarrow \exists A^{-1}: AA^{-1} = A^{-1}A = E$, где E - единичная, и $\det AB = \det A \cdot \det B$.

⁴Название от 'Special linear group'.

⁵Название от 'Symmetric group'.