Business Problem - Predict the Price of Bangalore House

Using Support Vector Regression - Supervised Machine Learning Algorithm

Load Libraries

```
In [ ]: import pandas as pd
```

Load Data

Out[3]:

	bath	balcony	price	total_sqft_int	bhk	price_per_sqft	area_typeSuper built-up Area	area_typeBuilt- up Area	area_typePlot avail Area
0	3.0	2.0	150.0	1672.0	3	8971.291866	1	0	0
1	3.0	3.0	149.0	1750.0	3	8514.285714	O	1	0
2	3.0	2.0	150.0	1750.0	3	8571.428571	1	0	0
3	2.0	2.0	40.0	1250.0	2	3200.000000	1	0	0
4	2.0	2.0	83.0	1200.0	2	6916.666667	O	0	1

5 rows × 108 columns

Split Data

```
In [ ]: | X = df.drop('price', axis=1)
        y = df['price']
        print('Shape of X = ', X.shape)
        print('Shape of y = ', y.shape)
        Shape of X = (7120, 107)
        Shape of y = (7120,)
In [ ]: from sklearn.model selection import train test split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=51)
        print('Shape of X train = ', X train.shape)
        print('Shape of y_train = ', y_train.shape)
        print('Shape of X_test = ', X_test.shape)
        print('Shape of y_test = ', y_test.shape)
        Shape of X train = (5696, 107)
        Shape of y train = (5696,)
        Shape of X test = (1424, 107)
        Shape of y test = (1424,)
```

Feature Scaling

```
In [ ]: from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train = sc.transform(X_train)
X_test = sc.transform(X_test)
```

Support Vector Regression - ML Model Training

```
In []: from sklearn.svm import SVR

In []: svr_rbf = SVR(kernel='rbf')
    svr_rbf.fit(X_train, y_train)
    svr_rbf.score(X_test, y_test)

Out[9]: 0.2063803584082815

In []: svr_linear = SVR(kernel='linear')
    svr_linear.fit(X_train, y_train)
    svr_linear.score(X_test, y_test)

Out[10]: 0.796272530851755

In []: svr_poly = SVR(kernel='poly',degree=2,)
    svr_poly.fit(X_train, y_train)
    svr_poly.score(X_test, y_test)

Out[11]: 0.18266215211874626
```

Predict the value of Home and Test

```
In [ ]: X test[0]
Out[12]: array([ 0.71301986, 0.0112734, 0.30202307, 0.65677518, -0.48064341,
                -1.7385623 . 2.11587407 . -0.25430867 . 0.51007548 . -0.18373025 .
                -0.16389438, -0.1473229 , -0.13023539, -0.12812824, -0.12598816,
                -0.12454231, -0.12953656, -0.12381344, -0.12010681, -0.11551113,
                -0.10992018, -0.10909925, -0.10660036, -0.11234866, -0.09315135,
                -0.08618799, -0.08923672, -0.09023078, -0.08721571, -0.09023078,
                -0.08721571, -0.08195215, -0.08195215, -0.07633675, -0.0751646 ,
                -0.08085949, -0.0739743 , -0.07975227, -0.07153563, -0.0751646 ,
                -0.0677166 , -0.08085949 , -0.07153563 , -0.07862985 , -0.0751646 ,
                -0.07862985, -0.06504853, -0.0751646 , -0.06901264, -0.0751646 ,
                -0.06901264, -0.07028523, -0.07276497, -0.07028523, -0.06367332,
                -0.06226825, -0.06226825, -0.06639573, -0.06504853, -0.05935999,
                -0.06083125, -0.06639573, -0.06639573, -0.06226825, -0.06367332,
                -0.05935999, -0.06639573, -0.06367332, -0.06226825, -0.06226825,
                -0.05935999, -0.05935999, -0.05935999, -0.05630391, -0.05935999,
                -0.05785186, -0.05935999, -0.05935999, -0.06083125, -0.06083125,
                -0.05471275, -0.06083125, -0.06226825, -0.05935999, -0.05935999,
                -0.06226825, -0.06226825, -0.05785186, -0.06504853, -0.06226825,
                -0.06083125, -0.05935999, -0.05307449, -0.05630391, -0.06226825,
                -0.05471275, -0.05935999, -0.05471275, -0.05471275, -0.05138463,
                -0.05307449, -0.05307449, -0.05471275, -0.05471275, -0.05630391,
                -0.05630391, -0.05138463])
In [ ]: svr linear.predict([X test[0]])
Out[13]: array([86.53673464])
In [ ]: y pred = svr linear.predict(X test)
         y pred
Out[14]: array([ 86.53673464, 33.70390806, 122.48356838, ..., 26.23978753,
                 64.52634655, 176.175327931)
```

```
In [ ]: y_test
Out[15]: 2435
                  80.00
         3113
                  40.00
         426
                 120.00
         1124
                  79.00
                  45.00
         1161
                  . . .
                  28.34
         2078
                  84.00
         6855
                  32.00
         4381
                  63.00
         3862
         43
                 180.00
         Name: price, Length: 1424, dtype: float64
In [ ]: from sklearn.metrics import mean_squared_error
         import numpy as np
         mse = mean_squared_error(y_test, y_pred)
         rmse = np.sqrt(mse)
         print('MSE = ', mse)
         print('RMSE = ', rmse)
         MSE = 4093.4831852475745
         RMSE = 63.9803343633618
```

Ab milenge next tutorial me, Tab tak ke liye SIKHATE SIKHATE kuch IMPLEMENT karte raho, Thank You.....-:)