PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-157575

(43)Date of publication of application: 18.06.1996

(51)Int.Cl.

C08G 61/12 C07C223/06 C07C229/44 C07C317/32 C07D333/76 C09K 11/06

(21)Application number: 06-330622

(71)Applicant: TOPPAN PRINTING CO LTD

SATO HISAYA

(22)Date of filing:

07.12.1994

(72)Inventor: ITO YUICHI

SATO HISAYA

HAYASHI TAKAKO

(54) CARRIER TRANSPORT POLYMER

(57)Abstract:

PURPOSE: To obtain a carrier transport polymer which enables a carrier layer of an org. thin-film EL element to be formed by a method using a solvent and has a Tg of 120° C or higher and improved mechanical strengths by selecting a polymer having a specific structure. CONSTITUTION: This carrier transport polymer is represented by formula I [wherein m is the degree of polymn.; G1 is a single bond, arylene, alkylene, alkylenedioxy, or a group selected from among groups represented by formulas II; G2 is (halogenated) alkyl; G3 is H or alkyl; G4 is a group selected from among groups represented by formulas III; and G5 is 1-12C alkyl or alkoxy]. The polymer wherein G1 is p-phenylene is esp. pref. And, the polymer pref. has a wt. average mol.wt. (by GPC) of 2,000-1,000,000, can be produced by the Wittig reaction of a dicarbonyl compd. with a phosphorus ylide, Ph3P+C-H2G1C- H2P+Ph3, and can be formed into a film by spin coating or casting.

LEGAL STATUS

[Date of request for examination]

10.09.2001

[Date of sending the examiner's decision of rejection]

rejection]
[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3482719

[Date of registration]

17.10.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-157575

(43)公開日 平成8年(1996)6月18日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 8 G 61/12	NLJ			
C 0 7 C 223/06		7457—4H		
229/44		9450-4H		
317/32		7419-4H		
C 0 7 D 333/76				
		審查請求	未請求 請求	項の数5 FD (全20頁) 最終頁に続く
(21)出願番号	特願平6-330622		(71) 出願ノ	000003193
				凸版印刷株式会社
(22)出顧日	平成6年(1994)12月7日			東京都台東区台東1丁目5番1号
			(71)出頭ノ	593209792
				佐藤 寿弥
				東京都小金井市貫井北町3-8-6
			(72)発明者	分子 伊藤 祐一
				東京都台東区台東1丁目5番1号 凸版印
				剧株式会社内
			(72) 発明表	佐藤 寿弥
				東京都小金井市貫井北町3丁目8番6号
			(72) 癸明尹	新 林 崇子
			1,5/76975	神奈川県横浜市緑区あかね台1-32-5
			(7A) (P.## 1	、 弁理士 田治米 登 (外1名)
			(14/14/4/	

(54) 【発明の名称】 キャリア輸送性重合体

(57)【要約】

【目的】 有機薄膜 E L素子のキャリア輸送層を、スピンコート法やキャスト法などの溶媒を用いた成膜法で成膜可能とし、しかも、膜のガラス転移点を120℃以上*

*とし、更に機械的強度も向上させる。

【構成】 式(A) 【化1】

(式中、mは重合度を示す正の整数であり、 G^1 は存在しないか又はアリーレン基、アルキレン基、アルキレンジオキシ基などの連結基であり、 G^2 はハロゲン置換又は未置換アルキル基であり、 G^3 は水素原子又はアルキ

ル基であり、 G^4 はフェニレン基やビフェニレン基などの連結基である。)で表される重合体から有機薄膜 EL素子の正孔注入輸送層を形成する。

【特許請求の範囲】

【請求項1】 式(A)

*【化1】

$$\begin{array}{c}
 & * \\
 & \downarrow \\$$

(式中、mは重合度を示す正の整数であり、 G^1 は存在 しないか又はアリーレン基、アルキレン基、アルキレン※ (1) ※ジオキシ基又は式(1)~式(9) 【化2】 (2)

$$-$$
CH $_2$ -CH $_2$ -

(4) -0-

(6)

(7)

(8)

-CH2-O-CH2-

(9)

のいずれかの基であり、 G^2 はハロゲン置換又は未置換アルキル基であり、 G^3 は水素原子又はアルキル基であ

り、G'は式(10)~(25) 【化3】

3 (10) (11) (13) (12)

(14)(15)

(17) (16)

【化4】

(19) (18)(21) (20) (23) (22) ĊНз ĊНз

(25) (24)

の中から選択された連結基である。ここで、 G° は炭素 数1~12の直鎖もしくは分枝鎖のアルキル基又はアル 50 【請求項2】 式(B)

コキシ基である。)で表される重合体。

【化5】

$$\begin{array}{c|c} & & & & \\ & &$$

(式中、nは1又は2である)で表される請求項1記載の重合体。

5

*体。 【請求項4】 式(a) 【化6】

【請求項3】 GPC法で測定した数平均分子量が2000~1000000である請求項1又は2記載の重合*

$$O = C \xrightarrow{G^3} O = C \xrightarrow{G^3} O = C \xrightarrow{G^3} O = O$$

$$G^2 \xrightarrow{G^3} O = O$$

$$G^3 \xrightarrow{G^3} O = O$$

(式中、 G^2 はハロゲン置換又は未置換アルキル基であり、 G^3 は水素原子又はアルキル基であり、 G^4 は式 % (10)

(化7) (11)

 $% (10) \sim (25)$

(12) G⁵ G⁶

(18)

(14) -{\infty}-0-{\infty}-

-CH2-CH2

(17)
-CF₃
-CF₃

【化8】

$$(18) \qquad (19)$$

$$(20) \qquad (21)$$

$$(22) \qquad (23)$$

$$CH_3 \qquad CH_3$$

$$CH_3 \qquad CH_3$$

$$CH_3 \qquad CH_3$$

$$CH_3 \qquad CH_3$$

の中から選択された連結基である。ここで、 G^5 は炭素数 $1\sim 1$ 2 の直鎖もしくは分枝鎖のアルキル基又はアルコキシ基である。)で表されるジカルボニル化合物。

7

*【請求項5】 式(b) 【化9】

$$H_3C$$

$$V \left(\bigcirc \right)^N$$

$$CH_3$$

$$CH_3$$

(式中、nは1又は2である)で表される請求項4記載のジカルボニル化合物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、有機薄膜 E L (エレクトロルミネスセンス)素子や有機薄膜光電池におけるキャリア輸送性材料又は発光材料として、あるいは電子写真用感光体におけるキャリア輸送性材料として有用な新規な重合体、及びそれを製造するためのモノマー化合物に関する。

[0002]

【従来の技術】近年、発光型表示素子として、イーストマン・コダック社のC.W.Tangらによって開発された直流駆動型の有機薄膜 EL素子が、昇電圧トランス

などの周辺機器が不要で表示装置全体として薄型化が可能なために注目されている。この素子の基本的な構造は、透光性絶縁基板、透光性陽極、キャリア輸送層(有機正孔注入輸送層もしくは正孔輸送層とも称する)及び背面陰極が順次積層されたものとなっている(特開昭59-194393号公報、同63-295695号公報、Appl. Phys. Lett., 51(1987)913, J. Appl. Phys., 65(1989)3610等)。この場合、キャリア輸送層の仕事関数を、透光性陽極の仕事関数と有機発光層の仕事関数との間になるようにする。

【0003】このような有機薄膜 E L素子は具体的には次にように作製されている。

【0004】まず、ガラスや樹脂フィルム等の透光性絶

縁基板上に、蒸着法やスパッタ法などによりインジウムとスズとの複合酸化物(以下、ITOと略する/仕事関数4.6~5.0 eV)などの透光性導電体の薄膜を形成し、パターニングして陽極を形成する。

【0005】次に、その上にキャリア輸送層として、仕*

* 事関数が5.0~5.8 e V の範囲内にある銅フタロシ アニンあるいは式(C)又は式(D)

[0006] 【化10】

【0008】最後に、その有機発光層上に背面陰極として、Mg:Ag、Ag:Eu、Mg:Cu、Mg:In、Mg:Sn、Al:Li等の合金材料の薄膜を共蒸着法により形成する。これにより、有機薄膜EL素子が得られる。

【0009】なお、有機発光層と背面電極との間に、電子輸送効率を向上させるために有機電子注入輸送層を形成することも提案されている(Appl. Phys. Lett., 57,531 (1990))。この場合、ITOからなる陽極上のキャリア輸送層として、ガラス転移温度67℃で融点(mp)159~163℃のN,N´ージフェニルーN,N´ービス(3-メチルフェニル)-1,1´ービフェニルー4,4´ージアミン(以下、TPDと称する)の薄膜を形成し、その上に有機発光層として、1-[4-N,N 50

ービス (p-メトキシフェニル) アミノスチリル] ナフタレンの薄膜を形成し、更に有機電子注入輸送層として、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(以下、BPBDと略する)の薄膜を形成している。この態様の場合、<math>TPD層を省略することもでき、そのときには、有機発光層がキャリア輸送層(有機正孔注入輸送発光層)としても機能する。

[0010]

【発明が解決しようとする課題】しかしながら、従来の有機薄膜 E L 素子においては、そのキャリア輸送層を銅フタロシアニンがら形成する場合、銅フタロシアニンが有機溶媒に難溶性であるために、成膜コストの高い蒸着法で成膜せざるを得ず、スピンコート法などの簡便な手法を利用できないという問題があった。また、蒸着法により成膜した銅フタロシアニン薄膜は結晶性が高く、その表面が凹凸となりやすいために、素子が短絡するおそれも否定できないという問題もあった。更に、銅フタロシアニンの可視光線領域の吸収が大きいために、有機薄膜 E L 素子の発光強度を低下させるという問題もあった

【0011】これに対し、式(C)又は(D)の化合物やTPDから有機薄膜EL素子のキャリア輸送層を蒸着法により形成すると、非晶質で平滑な薄膜が得られる。

しかし、それらのガラス転移温度(Tg)や融点(mp)が比較的低いために耐熱性が不十分であるという問題があった。このため、キャリア輸送層が有機薄膜 EL素子作製プロセスにおいて蒸着源の輻射熱等により加熱された場合、又は有機薄膜 EL素子の駆動中のジュール熱により加熱された場合、あるいはまた、夏期(日中)の高温の自動車内に放置された場合のように高温度雰囲気に放置された場合には、キャリア輸送層が隣接する他の層と融合したり、結晶化してその表面が凹凸となり、その結果、発光効率が大きく低下したり、素子が短絡し、駆動不可能となったりするおそれもあった。そこで、キャリア輸送層の構成化合物のTgを120℃以上とすることが望まれていた。

【0012】更に、有機薄膜 E L 素子の安定化や陰極パターニング時の加工性を向上させるために、上述の従来のキャリア輸送層の機械的強度をより向上させることも*

*望まれていた。

【0013】本発明は、上述の従来技術の課題を解決しようとするものであり、有機薄膜 E L 素子のキャリア輸送層を、スピンコート法やキャスト法などの溶媒を用いた成膜法で成膜可能とし、しかも、キャリア輸送層の T gを120℃以上とし、更に機械的強度も向上させることを目的とする。

[0014]

【課題を解決するための手段】本発明者は、有機薄膜 E L 素子のキャリア輸送層として、特定の重合体を使用することにより、上述の目的が達成できることを見出し、本発明を完成させるに至った。

【0015】即ち、本発明は、式(A)

[0016]

【化11】

$$\begin{array}{c} G^{3} \\ G^{2} \\ G^{3} \\ G^{3} \end{array}$$
(A)

(式中、mは重合度を示す正の整数であり、G¹ は存在しないかもしくはアリーレン基、アルキレン基、アルキレンジオキシ基又は式(1)~式(9)

[0017] 【化12】

30

(8)

14

0 || --C-

(7)

$$-CH_2-O-CH_2-$$

(9)

のいずれかの基であり、 G^2 はハロゲン置換又は未置換アルキル基であり、 G^3 は水素原子又はアルキル基であり、 G^4 は式(10)~(25) (10)

*【0018】 【化13】

$$- \bigcirc - \bigcirc \begin{matrix} \mathsf{CF_3} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{CF_3} \end{matrix} \bigcirc - \begin{matrix} \mathsf{CF_3} \\ \mathsf{CF_3} \\ \mathsf{CF_3} \end{matrix}$$

(15)

$$(20)$$

$$(21)$$

$$(22)$$

$$(24)$$

$$(24)$$

$$(25)$$

$$(19)$$

$$(21)$$

$$(21)$$

$$(23)$$

$$(24)$$

$$(24)$$

$$(25)$$

$$(25)$$

$$(24)$$

$$(25)$$

の中から選択された連結基である。ここで、G⁵ は炭素 数1~12の直鎖もしくは分枝鎖のアルキル基又はアル コキシ基である。) で表される重合体を提供する。

【0020】以下、本発明を詳細に説明する。

【0021】式(A)のG'において、アリーレン基と してはフェニレン基、ビフェニレン基、ターフェニレン 基、アントリレン基等を例示でき、アルキレン基として はメチレン基、エチレン基、プロピレン基等を例示で き、アルキレンジオキシ基としてはメチレンジオキシ 基、エチレンジオキシ基等を例示することができる。G*

* において、ハロゲン置換アルキル基としてはトリフル オロメチル基等を例示でき、末置換アルキル基としては メチル基、t-ブチル基等を例示することができる。G において、アルキル基としてはメチル基、エチル基等 30 を例示することができる。

【0022】式(A)の本発明の重合体の中でも、式 (B)

[0023]

【化15】

$$H^{8}C$$

$$H$$

で表されるものを特に好ましく例示することができる。 中でもG¹ がp-フェニレンであるものが好ましい。 【0024】式(A)又は(B)で示される重合体の数 50 くは5000~100000である。

平均分子量(GPC法)は、成膜性や機械的強度の点か ら、好ましくは2000~100000、より好まし

【0025】以上のように特定される本発明の重合体は、クロロホルム、トルエン等の一般の有機溶媒に溶解可能である。従って、有機溶媒を使用するスピンコート法やキャスト法等の方法により成膜できる。また、本発明の重合体は、Tgを120℃以上とすることが可能であり、よって耐熱性と膜の機械的強度とを向上させることができる。

17

【0026】また、本発明の重合体には、分子中にキャリア輸送単位となるトリフェニルアミン類等の芳香族第3級アミンが多数含まれているので、キャリア輸送層の正孔又は電子のキャリア輸送能力を向上させることができる。更に、本発明の重合体において、そのモノマーユニット間が二重結合となっているので、G¹との組み合わせにより分子内の共役系を伸長させることができる。よって、本発明の重合体から形成されるキャリア輸送層のキャリア輸送能を更に向上させることができる。

【0027】なお、本発明の重合体は、可視光領域において発光(蛍光)スペクトルを有する。従って、キャリア輸送発光層、好ましくは有機正孔輸送発光層の構成材料として使用することもできる。

【0028】本発明の重合体の仕事関数を調節する必要*

*がある場合には、G² としてトリフルオロメチル基、ニトロ基、シアノ基等の電子吸引性基を使用することにより、仕事関数を増大させることができ、また、メチル基、メトキシ基等の電子供与基を使用することにより仕事関数を低減させることもできる。

【0029】また、蛍光スペクトルのピーク波長は、C 又はG²として、非共役又は共役度の低い基(例えば、芳香環のメタ位で連接するmーキシリレンのような基)を使用すると短波長化させることができ、共役系の連結基を使用すると長波長化することができる。このように、本発明の重合体は、仕事関数と発光(蛍光)スペクトルを高い自由度で設定することができ、優れた有機正孔注入輸送層材料もしくは有機正孔輸送発光層材料となる。

【0030】式(A)の本発明の重合体は、以下の反応スキームに示すように製造することができる。ここで、反応スキーム中のm、 G^1 、 G^2 、 G^3 及び G^4 は、式(A)において定義された通りであり、Xはクロロ、ブロモなどのハロゲン原子である。

20 【0031】 【化16】

$$G^{2}$$
 にルスマイヤー反応又は フリーデルクラフト反応 G^{2} G^{3} G^{3} G^{3} G^{3} G^{3}

$$XCH_{2}G^{1}CH_{2}X \xrightarrow{\psi} [Ph_{3}PCH_{2}G^{1}CH_{2}PPh_{3}]^{2\Phi} X^{2\Phi}$$

$$(Viii) \qquad (ix) \qquad \psi$$

$$Ph_{3}PCH_{2}G^{1}CH_{2}PPh_{3}$$

$$Ph_{3}PCH_{2}G^{1}CH_{2}PPh_{3}$$

反応スキーム3

$$O = C G^{8}$$

$$O = C G^{2}$$

$$* \longrightarrow \begin{cases} CH - G^{1} - CH = C \\ O \\ O \\ O \end{cases} N - G^{\frac{4}{2}} N$$

$$(A)$$

$$G^{2}$$

$$G^{3}$$

$$G^{3}$$

$$G^{3}$$

$$G^{3}$$

$$G^{3}$$

反応スキーム1

まず、炭酸カリウムとCulとの存在下で、式(i)のジ アミン化合物にヨードベンゼンをテトラリン中で反応さ せてアミノ基にフェニル基を導入し、式(ii)のN, N ージフェニルジアミン化合物を製造する。

【0033】更に、同様な反応条件下で、式(ii)の化合 物に式(iii)のG²置換ヨードベンゼンを反応させて式 (iv)の化合物を製造する。

【0034】なお、式(iv)の化合物は、別法として、式 40 (V) の G² 置換-アミノベンゼンににヨードベンゼンを 反応させて式(vi)の化合物を形成し、更に、式(vii)の ジヨード化合物を反応させることにより製造することも できる。

【0035】次に、式(iv)の化合物に、ビルスマイヤー 反応又はフリーデルクラフト反応を施すことにより、ホ ルミル基 $(G^3 = H)$ 又はアシル基 $(G^3 = P)$ ルキル 基)が導入された式(a)の化合物を製造する。

【0036】反応スキーム2

これとは別に、式(viii)の化合物にトリフェニルホスフ 50 【化18】

ィンを反応させて式(ix)のビスホスホニウム塩を形成 し、更に、その式(viii)のビスホスホニウム塩にプチル リチウムやナトリムメトキサイド等の塩基を作用させて 式(x) のリンイリドを製造する。

【0037】反応スキーム3

次に、式(x) のリンイリドと式(a) の化合物とをWitt ig反応させることにより式(A)の重合体を製造するこ とができる。このWittig反応は、実験化学講座(第4 版、第19(1)巻、57頁、丸善書店発行)の詳細な 記載に準じて行うことができる。

【0038】以上、本発明の重合体を製造するために使 用した式(a)の化合物は、新規な化合物であり、式 (A) の化合物の製造原料として有用である。従って、 この化合物も本発明の一部となる。

【0039】なお、式(A)で表される本発明の重合体 の中でも式(B)の化合物は式(a)の中でも次式 (b)

[0040]

$$\begin{array}{c|c}
\text{CHO} & \text{CHO} \\
\text{OHC} & \text{OHO} \\
\text{N} & \text{CHO}
\end{array}$$

(式中、nは1又は2である)で表されるジカルボニル 化合物から製造することができる。

【0041】式(A)の本発明の重合体は、一般的な有機薄膜 E L 素子の正孔注入輸送層に好ましく適用することができる。例えば、スピンコート法により I T O 陽極上に式(A)の本発明の重合体を成膜し、アルミニウムオキシン錯体を有機発光層とし、AlLi合金を陰極としてEL素子を構成した場合には、1000cd/m²以上の光強度の黄緑色発光を得ることができる。また、本発明の重合体からなる正孔注入輸送層を発光層としても機能させることもできる。

【0042】また、本発明の重合体をキャリア輸送層として用いた有機薄膜 E L 素子は、その吸収波長の光を照射することにより1 V以上の光起電力を発生させること 20ができるので、光電池に応用することもできる。例えば、本発明の重合体を用いた有機薄膜 E L 素子は、その有機発光層として、太陽光線の吸収に適したフタロシアニン系やペリレン系有機色素層を設けることにより太陽電池として使用することもできる。

【0043】また、本発明の重合体は、電子写真における機能分離感光体のキャリア輸送層に適用することができる。その場合には、有機系のキャリア発生材料であるペリレン系、多環キノン系、フタロシアニン系、アゾ系等の有機色素やSe、Se-Te、CdS、アモルファスSi等の無機材料を含有するキャリア発生層(「電子写真技術の基礎と応用」、441頁(1988年)、電子写真学会編、コロナ社発行)上に、本発明の重合体からなるキャリア輸送層を形成すればよい。

[0044]

【作用】本発明の重合体は、分子中にキャリア輸送単位となるトリフェニルアミン類等の芳香族第3級アミンを多数含む。従って、本発明の重合体からキャリア輸送層を形成することにより、キャリア輸送層の正孔又は電子のキャリア輸送能力を向上させることが可能となる。更40に、そのモノマーユニット間が二重結合となっているので、分子内の共役系を伸長させることができる。よって、本発明の重合体から形成されるキャリア輸送層のキャリア輸送能を更に向上させることが可能となる。

【0045】また、本発明の重合体は、一般的な有機溶剤に可溶であるため、溶媒を使用する成膜法で成膜可能となる。しかも、本発明の重合体は、高分子化しているために耐熱性が向上している。従って、有機薄膜 E L 素子の作製プロセス時や素子駆動時に発生するジュール熱による加熱に対しても十分な耐熱性を示すものとなる

[0046]。

【実施例】以下、本発明を実施例により具体的に説明す る。

22

【0047】実施例1

(n=1の式(b)の化合物「N, N´-ビス(4-ホルミルフェニル) -N, N´-ジ(p-トリル) -p-フェニレンジアミン]の合成)

p-hルイジン107g(1mo1)、ヨードベンゼン61.2g(0.3mo1)、炭酸カリウム44.9g(0.33mo1)及びCuI5.7g(0.03mo1)を反応容器に仕込み、200℃で20時間撹拌しながらウルマン反応させた。反応終了後、トルエンを加え、生成した塩を濾別した。濾液から減圧蒸留によりトルエン、<math>p-hルイジン及びヨードベンゼンを除去した後、残渣をトルエンーへキサンの1:1溶離液を用いてシリカゲルカラムで精製し、エタノールから再結晶させた。その結果、白色結晶として<math>N-フェニル-p-hルイジン(収率65%、融点90℃)が得られた。

【0049】次に、塩化ホスホリル12.27g(80 mmol)を、氷冷したN, N´ージメチルホルムアミド(DMF)21.05g(266 mmol)に滴下し、メチレンイミニウム化合物を生成させた。

【0050】反応液の発熱が治まった後に、このメチレンイミニウム化合物を含有する反応混合液に、先に合成したN, N´ージフェニルーN, N´ージ(pートリル)ーpーフェニレンジアミン4.4g(10mmo1)を20m1のDMFに溶解させた溶液を加え、80℃で5時間反応させた。その後、反応混合物を氷水中に投入し、水酸化ナトリウム水溶液で中和し加水分解した。その状態で一晩冷蔵庫で放置して沈殿を熟成させた

後、濾過、水洗、真空乾燥し、茶色粉末として4.9 g (収率99%) の目的の化合物(N, N´ービス(4-ホルミルフェニル) -N, N´-ジ(p-トリル) -p -フェニレンジアミン)を得た。この化合物の同定デー タを以下に示す。

[0051] mp: 227°C (DTA 10°C/mi n)

IR (KBr法): 図1 [1692cm⁻¹ (CO伸 縮)、825cm ゜(p置換ベンゼン面外変角)] 溶液): 図2

¹³ C−NMR(CDCl₃): 図3 [190. 1pp m (CHO), 20. 9 ppm (CH₃)].

【0052】実施例2

(n=2の式(b)の化合物 [N, N´-ビス(4-ホ ルミルフェニル) - N, N´-ジ(p-トリル) -ベン ジジン]の合成)

N, N´-ジフェニルベンジジン35g(104mmo 1)、p-ヨードトルエン91g(416mmol)、 炭酸カリウム35g(253mmol)、Cull. 4 7g(7.7mmol)及びテトラリン100mlを反 応容器に仕込み、200℃で20時間、生成する水を留 去しながら撹拌してウルマン反応させた。

【0053】反応終了後、トルエンを加え、生成した塩 を濾別した。濾液からトルエンを留去した後、ヘキサン でヨードベンゼンを抽出除去し、溶離液としてトルエン を用いてシリカゲルカラムで残渣を精製し、更にトルエ ンーアセトンから再結晶させた。その結果、淡黄色粉末 としてN, N´ービフェニルーN, N´ージ(pートリ ル) -ベンジジン(収率57%、融点153~164. 5℃(ホットプレート法))が得られた。

【0054】次に、塩化ホスホリル12.27m1(8 Ommol)を、氷冷したN、N´ージメチルホルムア ミド (DMF) 21. 05g (266mmol) に滴下 し、メチレンイミニウム化合物(ビルスマイヤー錯体) を生成させた。

【0055】このメチレンイミニウム化合物を含有する 反応混合液に、先に合成したN, N´ージフェニルー N, N´-ジ (p-トリル) -ベンジジン5. 16g

(10mmol) を30mlのDMFに溶解させた溶液 40 を加え、80℃で5時間反応させた。その後、反応混合 物を氷水中に投入し、水酸化ナトリウム水溶液で中和し 加水分解した。その状態で一晩冷蔵庫で放置して沈殿を 熟成させた後、濾過、水洗、真空乾燥し、黄土色非晶質 粉末として5.7g(収率99%)の目的の化合物

 $(N, N'-UZ)(4-\pi N) = N, N'$ ージ(pートリル)ーベンジジン)を得た。この化合物 の同定データを以下に示す。

【0056】 I Rスペクトル (KBr法): 図4 [1 689cm⁻¹ (CO伸縮)、819cm⁻¹ (p-置換べ 50 PCで測定)

ンゼンの面外変角)]

紫外-可視吸収スペクトル(1×10 M THF溶 液): 図5

24

C-NMR (CDC 13): 図6 [190.2pp m (CHO), 20. 1 ppm (CH₃)].

【0057】実施例3

(n=1且つ $G^1=m-+$ シリレン基の式 (B) の重合 体の合成)

実施例1で得られたN, N´ービス(4ーホルミルフェ 紫外-可視吸収スペクトル(1. 7×10⁵ M THF 10 ニル)−N, N´ージ(pートリル)−pーフェニレン ジアミン1. 2415g(2.5mmol)とm-キシ リルービス (トリフェニルホスホニウムクロライド) 1. 7491g(2. 5mmol)とを、クロロホルム /エタノール(1/1) 7 6 m l に溶解し、その溶液に ナトリウムエトキシド(6 mm o 1)を加え、室温で3 日間撹拌した。

> 【0058】その後、反応液に2%塩酸水溶液2.5m 1を加えて沈殿を生成させ、その沈殿を遠心分離した後 に、クロロホルム/メタノールで再沈させた。その沈殿 を濾別し、乾燥することにより、黄色粉末として目的の 化合物 0. 42g (収率 29.6%) を得た。この化合 物の同定データを以下に示す。

【0059】Tg: 153.5℃(DSCで20℃/ minの昇温)

数平均分子量(ポリスチレン換算): 0.9万(GP

重量平均分子量(ポリスチレン換算): 2.5万(G P C で測定)

仕事関数: 5.5eV(石英板上のキャストフィルム を理研計器(株)製AC-1で光量1.0nWで測定) IRスペクトル(KBr法): 図7

紫外-可視吸収スペクトル(8.8mg/I THF溶 液): 図8

蛍光スペクトル: 図9(石英板上のキャストフィルム を島津RF-5000蛍光光度計で測定)。

【0060】実施例4

(n=1且つ $G^1=p-+$ シリレン基の式(B)の重合 体の合成)

m-キシリルービス(トリフェニルホスホニウムクロラ イド) に代えてpーキシリルービス(トリフェニルホス ホニウムクロライド)を1.7490g(2.5mmo 1)使用する以外は実施例3と同様の操作により、黄色 粉末として0.273g(収率19.3%)の目的の化 合物を得た。この化合物の同定データを以下に示す。

【0061】ガラス転移温度: 149.4℃(DSC で20℃/minの昇温)

数平均分子量(ポリスチレン換算) : 0.9万(GP Cで測定)

重量平均分子量(ポリスチレン換算) : 2. 3万(G

仕事関数: 5.2 e V (石英板上のキャストフィルムを理研計器 (株) 製AC-1で光量749nWで測定) IRスペクトル (KBr法): 図10

25

紫外-可視吸収スペクトル (5 m g / I THF溶液): 図11

蛍光スペクトル: 図12(石英板上のキャストフィルムを島津RF-5000蛍光光度計で測定)。

【0062】実施例5

実施例 2 で得られた N, N´ービス (4-ホルミルフェニル) - N, N´ージ (p-トリル) - ベンジジン 1. 4320g (2.5 mmol) em-キシリルービス <math>(トリフェニルホスホニウムクロライド) 1. 7491 em 1 em 1

【0063】その後、反応液に2%塩酸水溶液2.5m 1を加えて沈殿を生成させ、その沈殿を遠心分離した後 20 に、クロロホルム/メタノールで再沈させた。その沈殿 を濾別し、乾燥することにより、黄色粉末として0.6 70g(収率41.7%)の目的の化合物を得た。この 化合物の同定データを以下に示す。

【0064】Tg: 180.6℃(DSCで20℃/minの昇温)

数平均分子量(ポリスチレン換算) : 1.6万(GP Cで測定)

重量平均分子量(ポリスチレン換算) : 3.6万(GPCで測定)

仕事関数: 5.3 e V (石英板上のキャストフィルムを 理研計器 (株) 製AC-1で光量749nWで測定) IRスペクトル (KBr法): 図13

紫外−可視吸収スペクトル (5 m g / I T H F 溶液): 図14

蛍光スペクトル: 図15(石英板上のキャストフィルムを島津RF-5000蛍光光度計で測定)。

【0065】実施例6

 $(n=2且つG^1=p-+シリレン基の式(B)の重合体の合成)$

m-キシリルービス(トリフェニルホスホニウムクロライド)に代えてp-キシリルービス(トリフェニルホスホニウムクロライド)を1.7492g(2.5 mmo 1)使用する以外は実施例5と同様の操作により、黄色粉末として0.762g(収率47.4%)の目的の化合物を得た。この化合物の同定データを以下に示す。

【0066】N, N´ービス(4ーホルミルフェニル) ーN, N´ージ(pートリル)ーベンジジン1. 4317g(2. 5mmo1)とpーキシリルービス(トリフェニルホスホニウムクロライド)1. 7492g(2. $5 \, \text{mmol}$)をクロロホルム/エタノール(1/1)7 $6 \, \text{ml}$ に溶解し、 $6 \, \text{mmol}$ のナトリウムエトキシドを加えて室温で $2 \sim 3 \, \text{日攪拌した}$ 。

26

【0067】その後、2%塩酸水溶液を2.5ml加え、生じた沈殿を遠心分離後、クロロホルム/メタノールで再沈、乾燥を行い黄色粉末0.762g(収率47.4%)を得た。この化合物の同定データを以下に示す。

【0068】Tg: 193.6℃(DSCで20℃/ 10 minの昇温)

数平均分子量(ポリスチレン換算) : 2. 3万(GP Cで測定)

重量平均分子量(ポリスチレン換算) : 5.0万(GPCで測定)

仕事関数: 5.5 e V (石英板上のキャストフィルム を理研計器 (株) 製AC-1で光量1.3 n Wで測定) IRスペクトル (KBr法): 図16

紫外—可視吸収スペクトル(5 m g / I THF溶液): 図17

) 蛍光スペクトル: 図18(石英板上のキャストフィルムを島津RF-5000蛍光光度計で測定)。

【0069】実施例7

厚さ1.1mmのガラス基板の上に、120nmのITOをスパッタリングで被覆して透明陽極を形成した。この陽極上に銅フタロシアニンを15nm厚に真空蒸着させることにより正孔注入層を形成した。

【0070】次に、この正孔注入層上に、実施例4で合成した重合体のトルエン溶液をスピンコートし、厚さ40nmの正孔輸送層を形成した。

30 【0071】次に、正孔輸送層上に有機電子輸送発光層 としてアルミニウムオキシン錯体を50nm厚に蒸着さ せ、更に、陰極としてAlとLiとの合金を20nm厚 に蒸着させ、更にAlのみを230nm厚で蒸着させる ことにより有機薄膜EL素子を作製した。

【0072】得られた有機薄膜 E L 素子は、直流電圧 1 6 V において 1300 c d / m² の輝度で発光した。 【0073】

【発明の効果】本発明の新規な重合体を使用することにより、有機薄膜 E L 素子や電子写真の感光体などにおい 40 て高いキャリア輸送能と高い耐熱性とを発揮するキャリ ヤ輸送層を形成することができる。

【図面の簡単な説明】

【図1】本発明のジカルボニル化合物の赤外線吸収スペクトル図である。

【図2】本発明のジカルボニル化合物の紫外-可視吸収スペクトル図である。

【図3】本発明のジカルボニル化合物の¹³ C−NMRスペクトル図である。

【図4】本発明のジカルボニル化合物の赤外線吸収スペ 50 クトル図である。

吸収 :

【図5】本発明のジカルボニル化合物の紫外-可視吸収スペクトル図である。

【図 6 】本発明のジカルボニル化合物の 13 C-NMRスペクトル図である。

【図7】本発明の重合体の赤外線吸収スペクトル図である。

【図8】本発明の重合体の紫外-可視吸収スペクトル図である。

【図9】本発明の重合体の蛍光スペクトル図である。

【図10】本発明の重合体の赤外線吸収スペクトル図で 10 ある。

【図11】本発明の重合体の紫外-可視吸収スペクトル*

* 図である。

【図12】本発明の重合体の蛍光スペクトル図である。

【図13】本発明の重合体の赤外線吸収スペクトル図で ある。

【図14】本発明の重合体の紫外-可視吸収スペクトル図である。

【図15】本発明の重合体の蛍光スペクトル図である。

【図16】本発明の重合体の赤外線吸収スペクトル図で なる

【図17】本発明の重合体の紫外-可視吸収スペクトル図である。

【図18】本発明の重合体の蛍光スペクトル図である。

フロントページの続き

(51) Int. Cl. ⁶ C O 9 K 11/06

FΙ

技術表示箇所