5.1) Generalized Least Squares (GLS)

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from:

Hansen (2018). **Econometrics.** Ch 4.8 to 4.19.

Known and Nonsingular V(X)

$$E(\epsilon \epsilon' | X) = \sigma^2 V(X)$$

$$(n \times n)$$

$$V^{-1} = C'C$$
 $ilde{y} = Cy, \ ilde{X} = CX, \ ilde{\epsilon} = C\epsilon$
 $ilde{y} = ilde{X}\beta + ilde{\epsilon}$

Strict Exogeneity

$$E(ilde{\epsilon}| ilde{X})$$
 $E(ilde{\epsilon}|X)$
 $E(C\epsilon|X)$
 $CE(\epsilon|X)$
 0

Variance of the Transformed Error $\tilde{\epsilon}$ is Spherical

$$E(\tilde{\epsilon}\tilde{\epsilon}'|\tilde{X})$$

$$E(\tilde{\epsilon}\tilde{\epsilon}'|X)$$

$$C\sigma^{2}VC'$$

$$\sigma^{2}CVC'$$

$$\sigma^{2}I_{n}$$

Generalized Least Squares (GLS) Estimator

$$\hat{\beta}_{GLS} = (\tilde{X}'\tilde{X})^{-1}\tilde{X}'\tilde{y}$$

$$[(CX)'(CX)]^{-1}(CX)'Cy$$

$$(X'C'CX)^{-1}(X'C'Cy)$$

$$(X'V^{-1}X)^{-1}X'V^{-1}y$$

GLS: Conditional Variance

$$Var(\hat{eta}_{GLS}|X)$$
 $(X'V^{-1}X)^{-1}X'V^{-1}Var(y|X)V^{-1}X(X'V^{-1}X)^{-1}$
 $(X'V^{-1}X)^{-1}X'V^{-1}(\sigma^{2}V)V^{-1}X(X'V^{-1}X)^{-1}$
 $\sigma^{2}(X'V^{-1}X)^{-1}$

Vitor Kamada ECO 7100 Econometrics I December 2018

Weighted Least Squares (WLS)

$$Var(\epsilon_i|X) = E(\epsilon_i^2|X) = \sigma^2 v_i(X)$$

$$\tilde{y}_i = \frac{y_i}{\sqrt{v_i(X)}}, \, \tilde{X} = \frac{X_i}{\sqrt{v_i(X)}}, \\
\tilde{\epsilon} = \frac{\epsilon_i}{\sqrt{v_i(X)}}$$

$$\tilde{y} = \tilde{X}\beta + \tilde{\epsilon}$$

8 / 12

Papke (1995)

library(foreign); library(lmtest); library(car); library(stargazer)

d401k<-

read.dta ("https://github.com/VitorKamada/ECO7100/raw/master/Data/401ksubs.dta")

summary(d401k); stargazer(d401k)

Statistic	N	Mean	St. Dev.	Min	Max
e401k	9,275	0.392	0.488	0	1
inc	9,275	39.255	24.090	10.008	199.041
marr	9,275	0.629	0.483	0	1
male	9,275	0.204	0.403	0	1
age	9,275	41.080	10.300	25	64
fsize	9,275	2.885	1.526	1	13
nettfa	9,275	19.072	63.964	-502.302	1,536.798
p401k	9,275	0.276	0.447	0	1
pira	9,275	0.254	0.436	0	1
incsq	9,275	2,121.192	3,001.469	100.160	39,617.320
agesq	9,275	1,793.653	895.649	- 625 → - 1	4,096 ~ a

R Code for WLS and Heteroskedasticity

```
OLS <- Im(nettfa \sim inc + I((age-25)^2) + male + e401k,
 data=d401k, subset=(fsize==1))
OLSRobRef <- coeftest(OLS,hccm)
OLSRob <- coeftest(OLS, vcov=hccm(OLS, type="hc0"))
wlsreg <- Im(nettfa \sim inc + I((age-25)^2) + male + e401k,
 weight=1/inc, data=d401k, subset=(fsize==1))
WLS <- coeftest(wlsreg)
WLSRob <- coeftest(wlsreg,hccm)
```

10 / 12

R Code for Table of Results

```
library(stargazer)
stargazer(OLSRob,OLSRobRef,WLS,WLSRob,
 title="Regression Results",
 dep.var.labels="Net Financial Wealth".
 column.labels=c("OLSRob","OLSRobRef",
   "WLS","WLSRob"),
 no.space=TRUE,
 column.sep.width = "1pt"
 omit.stat=c("ser","f"))
```

Regression Results

	Dependent variable:						
	Net Financial Wealth						
	OLSRob (1)	OLSRobRef (2)	WLS (3)	WLSRob (4)			
inc	0.771***	0.771***	0.740***	0.740***			
	(0.099)	(0.100)	(0.064)	(0.075)			
I((age - 25)^2)	0.025***	0.025***	0.018***	0.018***			
	(0.004)	(0.004)	(0.002)	(0.003)			
male	2.478	2.478	1.841	1.841			
	(2.056)	(2.065)	(1.564)	(1.313)			
e401k	6.886***	6.886***	5.188***	5.188***			
	(2.284)	(2.292)	(1.703)	(1.574)			
Constant	$-\hat{20.985}^{***}$	-20.985^{***}	-16.703^{***}	$-\hat{1}6.703^{**}$			
	(3.491)	(3.520)	(1.958)	(2.248)			

Note:

*p<0.1; **p<0.05; ***p<0.01