Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 12, 2021

2021 Spring

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

 \S 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Rationale:

Reducing variability by blocking[†]

 † Blocking is the arranging of experimental units in groups (blocks) that are similar to one another.

https://www.slideshare.net/KevinHamill2/ experimental-design-cartoon-part-5-sample-size

Goal Reducing variability caused by

a elevation.

b soil types.

V.S

c complete randomized design

} One-way ANOVA

Two-way ANOVA

https://www.sare.org/Learning-Center/Bulletins/ How-to-Conduct-Research-on-Your-Farm-or-Ranch/Text-Version/ Basics-of-Experimental-Design

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Setup Y_{ij} indep. $\sim N(\mu_j + \beta_i, \sigma^2)$, i.e., $Y_{ij} = \mu_j + \beta_i + \epsilon_{ij}$, ϵ_{ij} i.i.d. $\sim N(0, \sigma^2)$

Table 13.2.1								
		Trea	tment	Level		Block	Block	True Block
		I	2		k	Totals	Means	Effects
	1	Y_{11}	Y_{12}		Y_{1k}	$T_{1.}$	$\overline{\underline{Y}}_{1}$.	β_1
Blocks	2	Y_{21}	Y_{22}		Y_{2k}	$T_{2.}$	$\overline{Y}_{2.}$	$oldsymbol{eta}_2$
	b	Y_{b1}	Y_{b2}		Y_{bk}	T_{b} .	\overline{Y}_{b} .	$oldsymbol{eta}_b$
Sample totals		$T_{.1}$	$T_{.2}$		$T_{.k}$	$T_{\cdot \cdot}$		
Sample means		$\overline{Y}_{.1}$	$\overline{Y}_{.2}$		$\overline{Y}_{.k}$		$\overline{Y}_{}$	
True means		μ_1	μ_2		μ_k			

Recall For one-way ANOVA,

$$Y_{ij} = \mu_j + \epsilon_{ij}$$

1

$$\begin{split} \textit{SSTOT} &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{\cdot j} \right) + \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + \text{zero cross term} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{\cdot j} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^{2} \\ &= \textit{SSE} + \textit{SSTR} \end{split}$$

a

$$SSTOT = SSE + SSTR$$
 $\downarrow \downarrow$
 $\frac{SSTOT}{\sigma^2} = \frac{SSE}{\sigma^2} + \frac{SSTR}{\sigma^2}$
 $\downarrow \downarrow \qquad \qquad \downarrow \downarrow$
 $\chi^2(bk-1) \qquad \chi^2(bk-k) \perp \chi^2(k-1)$
Under $H_0 \qquad \checkmark \qquad$ Under H_0

$$H_0: \mu_1 = \cdots = \mu_k$$

Symmetry If

$$Y_{ij} = \beta_i + \epsilon$$

$$\begin{split} \textit{SSTOT} &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{i.} \right) + \left(\overline{Y}_{i.} - \overline{Y}_{..} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} \right)^{2} + \text{zero cross term} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} \right)^{2} + k \sum_{i=1}^{b} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &= \textit{SSE} + \textit{SSB} \end{split}$$

$$\widetilde{H}_0: \beta_1 = \cdots = \beta_b$$

Similarly If

$$Y_{ij} = \mu_i + \beta_i + \epsilon_{ij}$$

.

$$\begin{split} SSTOT &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left[\left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right) + \left(\overline{Y}_{i.} - \overline{Y}_{..} \right) + \left(\overline{Y}_{.j} - \overline{Y}_{..} \right) \right]^{2} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &+ \sum_{i=1}^{b} \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} + \text{zero cross terms} \\ &= \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..} \right)^{2} + k \sum_{i=1}^{b} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} + b \sum_{j=1}^{k} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} \\ &= SSE + SSB + SSTR \end{split}$$

$$SSTOT = SSE + SSB + SSTR$$

$$\downarrow \downarrow$$

$$\frac{SSTOT}{\sigma^2} = \frac{SSE}{\sigma^2} + \frac{SSB}{\sigma^2} + \frac{SSTR}{\sigma^2}$$

$$\downarrow \downarrow$$

$$\chi^2(bk-1) \qquad \chi^2((k-1)(b-1)) \perp \chi^2(b-1) \perp \chi^2(k-1)$$
Under H_0 or \widetilde{H}_0 \quad under H_0 under H_0

$$\widetilde{H}_0: \beta_1 = \cdots = \beta_b$$
 and $H_0: \mu_1 \cdots = \mu_k$

$$H_0: \mu_1 \cdots = \mu$$

Table 13.2.2							
Source	df	SS	MS	F	P		
Treatments	k — 1	SSTR	SSTR/(k-1)	$\frac{SSTR/(k-1)}{SSE/(b-1)(k-1)}$	$P[F_{k-1,(b-1)(k-1)} \ge \text{obs. } F]$		
Blocks	b-1	SSB	SSB/(b-1)	$\frac{SSB/(b-1)}{SSE/(b-1)(k-1)}$	$P[F_{b-1,(b-1)(k-1)} \ge \text{obs. } F]$		
Error	(b-1)(k-1)	SSE	SSE/(b-1)(k-1)				
Total	n-1	SSTOT					

Computing formulas

$$C=\frac{T_{\cdot \cdot}^2}{bk}$$

$$SSTR = b \sum_{j=1}^{k} \left(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot} \right)^2 = b \sum_{j=1}^{k} \overline{Y}_{\cdot j}^2 - bk \overline{Y}_{\cdot \cdot}^2 = \frac{1}{b} \sum_{j=1}^{k} \overline{T}_{\cdot j}^2 - C.$$

$$SSB = k \sum_{i=1}^{b} \left(\overline{Y}_{i\cdot} - \overline{Y}_{\cdot\cdot} \right)^2 = k \sum_{i=1}^{b} \overline{Y}_{i\cdot}^2 - bk \overline{Y}_{\cdot\cdot}^2 = \frac{1}{k} \sum_{j=1}^{k} \overline{T}_{i\cdot}^2 - C.$$

$$SSTOT = \sum_{i=1}^{b} \sum_{j=1}^{k} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} = \sum_{i=1}^{b} \sum_{j=1}^{k} Y_{ij}^{2} - bk \overline{Y}_{..}^{2} = \sum_{i=1}^{b} \sum_{j=1}^{k} Y_{ij}^{2} - C.$$

$$SSE = SSTOT - SSTR - SSB$$

E.g. Two methods to test wines: whether these two procedures produce the same measurements?

	DRS-FTIR	Standard
White wine 1	112.9	115.1
White wine 2	123.1	125.6
Red wine 1	135.2	132.4
Red wine 2	140.2	143.7

Test at
$$\alpha = 0.05$$

$$H_0: \mu_{DRS} = \mu_{STD}$$
 v.s. $H_1: \mu_{DRS} \neq \mu_{STD}$

and

$$\widetilde{H}_0: \mu_{W1} = \mu_{W2} = \mu_{R1} = \mu_{R2}$$
 v.s. $\widetilde{H}_1:$ not equal

```
3 > DIRS < -c(112.9, 123.1, 135.2, 140.2)
4 > STD < -c(115.1, 125.6, 132.4, 143.7)
7 > my data <- data.frame(
* + method = rep(c("DIRS", "STD"),
       each =4),
9 + types = c(Wines, Wines),
10 + concentration = c(DIRS, STD)
  > print(my data)
    method types concentration
     DIRS W1
                     112.9
16 2
     DIRS W2
                     123.1
     DIRS R1
                     135.2
     DIRS R2
18 4
                     140.2
19 5
      STD W1
                     115.1
20 6
      STD W2
                     125.6
      STD R1
                     132.4
22 8
      STD R2
                     143.7
```

```
> res <- t.test(concentration ~ method, 2 | > res <- t.test(concentration ~ method, + data = my, data
                data = my data,
                                                           var.equal = FALSE
                 var.equal = TRUE
                                          5 > res
  > res
                                              Welch Two Sample t-test
    Two Sample t-test
                                            data: concentration by method
9 data: concentration by method
                                            t = -0.15721, df = 5.9968, p-value =
10 t = -0.15721, df = 6, p-value = 0.8802^{10}
                                                  0.8802
11 alternative hypothesis: true difference in
                                          alternative hypothesis: true difference in
        means is not equal to 0
                                                  means is not equal to 0
12 95 percent confidence interval:
                                          12 95 percent confidence interval:
   -22.362\ 19.662
                                             -22.3647 19.6647
14 sample estimates:
mean in group DIRS mean in group STD^4 sample estimates:
                                          15 mean in group DIRS mean in group STD
             127.85
                              129.20
                                                       127.85
                                                                        129.20
                                                        1. Classical method
                                                        2. Welch approximation
```

4 > model3 = Im(concentration ~ method, 5 + data=my_data) 6 > Anova(model3) Anova Table (Type II tests) 8 Response: concentration Sum Sq Df F value Pr(>F) method 3.64 1 0.0247 0.8802 Pasiduals 884 87 6

3. one-way ANOVA

The same answer (p-value)

Concl. Fail to reject H_0

- 1. Fail to reject H_0
- **2.** Reject \widetilde{H}_0

E.g. 2 https://rcompanion.org/rcompanion/d_08.html

Genotype	Female	Male
FF	2.838	1.884
	4.216	2.283
	2.889	4.939
	4.198	3.486
FS	3.550	2.396
	4.556	2.956
	3.087	3.105
	1.943	2.649
SS	3.620	2.801
	3.079	3.421
	3.586	4.275
	2.669	3.110

Test at $\alpha = 0.05$

$$H_0: \mu_F = \mu_M$$
 v.s. $H_1: \mu_F \neq \mu_F$

and

$$\widetilde{\mathcal{H}}_0: \mu_{\mathit{FF}} = \mu_{\mathit{S}} = \mu_{\mathit{SS}}$$
 v.s. $\widetilde{\mathcal{H}}_1: \mathrm{not\ all\ equal}$

		17 17 female	$_{\mathrm{fs}}$	1.943
> Data		18 19 female	ff	4.198
id Sex Genoty	pe Activity	19 20 female	ff	2.473
1 1 male ff	1.884	20 22 female	ff	2.033
2 2 male ff	2.283	21 24 female		2.200
3 3 male fs	2.396	22 25 female		2.157
4 4 female ff	2.838	23 26 male		2.801
5 5 male fs	2.956	24 28 male		3.421
6 6 female ff	4.216	25 29 female	ff	1.811
7 7 female ss	3.620	26 30 female		4.281
8 8 female ff	2.889	27 32 female	fs	4.772
9 9 female fs	3.550	28 34 female		3.586
10 10 male fs	3.105	29 36 female	ff	3.944
11 11 female fs	4.556	30 38 female		2.669
12 12 female fs	3.087	31 39 female		3.050
13 13 male ff	4.939	32 41 male		4.275
14 14 male ff	3.486	33 43 female		2.963
15 15 female ss	3.079	34 46 female		3.236
16 16 male fs	2.649	35 48 female		3.673
		36 49 male		3.110

```
|z| > \text{model} = \text{lm}(\text{Activity} \sim \text{Sex} +
        Genotype,
              data=Data)
4 > Anova(model, type="II")
5 Anova Table (Type II tests)
  Response: Activity
            Sum Sq Df F value Pr(>F)
  Sex
            0.0681 1 0.0888 0.7676
  Genotype 0.2772 2 0.1808 0.8354
  Residuals 24.5285 32
  > model Sex = lm(Activity \sim Sex,
                 data=Data)
15 > Anova(model Sex, type="II")
16 Anova Table (Type II tests)
  Response: Activity
            Sum Sq Df F value Pr(>F)
  Sex
            0.0681 1 0.0933 0.7619
  Residuals 24.8057 34
  > model Genotype = lm(Activity ~
        Genotype,
                 data=Data)
  > Anova(model Genotype, type="II")
  Anova Table (Type II tests)
  Response: Activity
            Sum Sq Df F value Pr(>F)
  Genotype 0.2772 2 0.186 0.8312
31 Residuals 24.5965 33
```

Tuckey's pairwise comparison

Replace
$$Q_{\alpha,k,b(k-k)}$$
 by $Q_{\alpha,k,(b-1)(k-1)}$

```
|z| > \text{model} 2 = \text{aov}(\text{Activity} \sim \text{Sex} + \text{supple})
  > model1 = aov(Activity ~ Genotype,
                                                       Genotype.
                        data=Data)
                                                             data=Data)
  > TukeyHSD(model1, "Genotype",
                                               4 > TukeyHSD(model2, "Genotype",
                                                       ordered = TRUE
    Tukey multiple comparisons of means
                                                   Tukey multiple comparisons of means
      95% family—wise confidence level
                                                     95% family—wise confidence level
      factor levels have been ordered
                                                     factor levels have been ordered
  Fit: aov(formula = Activity ~ Genotype,
                                                 Fit: aov(formula = Activity \sim Sex +
         data = Data
                                                       Genotype, data = Data)
   $Genotype
                                                  $Genotype
                        lwr
                                                                        lwr
                   adi
                                                                  adi
  fs-ff 0.05483333 -0.8100204 0.919687
                                                 fs-ff 0.05483333 -0.8234920 0.9331586
        0.9867505
                                                       0.987114
14 ss-ff 0.20741667 -0.6574370 1.072270
                                               14 ss-ff 0.20741667 -0.6709086 1.0857420
        0.8272105
                                                       0.831554
15 ss-fs 0.15258333 -0.7122704 1.017437
                                               15 | ss-fs | 0.15258333 - 0.7257420 | 1.0309086
        0.9021607
                                                       0.904729
```

Remark By two-way ANOVA, or through blocking one factor, we obtain

1. larger *p*-values:

more conservative to reject H_0 .

2. wider C.I.'s:

more conservative on our estimates.

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

 \S 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

		Numeriz Al Valnes	Categorizal Values	
	Sample 1	y y . m	C11 C16	
-ples	Sample 2	y y 2m	Cz1 Czp	
જુ ∠	•		; ;	
(Sample 11	y y	Ca. · · · Cap	
		m	P	

Indep. v.s. Dependent

1. Categorical v.s. Continuous

	One-way ANOVA
1.2 $p = 2, m = 1,$	Two-way ANOVA
1.3 $p \ge 3, m = 1,$	<i>p</i> -way ANOVA
1.4 $p = 1, m \ge 2,$	One-way MANOVA
1.5 $p=2, m \geq 2,$	Two-way MANOVA
1.6 $p \ge 3, m \ge 2,$	p-way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

2. Continuous v.s. Continuous

2.1	$\mathit{m}_{\mathit{ind}} = 1, \; \mathit{m}_{\mathit{dep}} = 1,$	Simple linear	r regression
2.2	$m_{ind} \geq 2$	Multiple linear	regression
2.3	$m_{den} > 2$	Multivariate linear	r regression

E.g. One example for $MANOVA^{1}$.

¹http://www.sthda.com/english/wiki/
manova-test-in-r-multivariate-analysis-of-variance

Iris Versicolor

Iris Setosa

Iris Virginica

```
1 > library(datasets)
2 > data(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width
          Species
   Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
                                                          setosa
   1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor
   Median: 5.800 Median: 3.000 Median: 4.350 Median: 1.300 virginica
   Mean: 5.843 Mean: 3.057 Mean: 3.758 Mean: 1.199
   3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
   Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
  > mv data <- iris
12 > my data
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
14 1
              5.1
                                   1.4
                                                    setosa
15 2
                                   1.4
              4.7
                        3.2
                                   1.3
16 3
                                                     setosa
              4.6
                                   1.5
                                                     setosa
                                   1.4
19 6
              5.4
                                             0.4
                                                     setosa
              4.6
                        3.4
                                   1.4
                                                    setosa
              4.4
                                   1.4
                                                     setosa
23 10
              4.9
                        3.1
                                   1.5
                                                     setosa
```

```
2 > res.man <- manova(cbind(Sepal,Length, Petal,Length) ~ Species, data =
        iris)
3 > summary(res.man)
            Df Pillai approx F num Df den Df Pr(>F)
5 Species 2 0.9885 71.829 4 294 < 2.2e-16 ***
6 Residuals 147
8 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
10 > summary.aov(res.man)
   Response Sepal.Length:
             Df Sum Sq Mean Sq F value Pr(>F)
13 Species 2 63.212 31.606 119.26 < 2.2e-16 ***
  Residuals 147 38.956 0.265
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
   Response Petal.Length:
             Df Sum Sq Mean Sq F value Pr(>F)
20 Species 2 437.10 218.551 1180.2 < 2.2e-16 ***
  Residuals 147 27.22 0.185
23 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1:w
```

Concl.: Two variables are highly significantly different among species.