Grau d'Estadística UB-UPC

Programació Lineal

Tema 3 : Dualitat i anàlisi de sensibilitat

F.-Javier Heredia http://gnom.upc.edu/heredia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Algorisme del simplex

(Cap. 2 - 5 "Introduction to Linear Optimization", D. Bertsimas, N. Tsitsiklis)

1. Teoria de dualitat.

- Origen de la Ta. de dualitat: teoria de jocs.
- Definició i formulació del problema dual.
- Teoremes de dualitat.
- Solucions bàsiques factibles duals.
- Algorisme del símplex dual.

2. Anàlisi de sensibilitat

- <u>l'Anàlisi de sensibilitat: definició i concepte.</u>
- Modificació del vector de costos c.
- Modificació del vector de termes independents b.
- Preus ombra.
- Addició d'una nova variable.
- Addició d'una nova constricció.
- Reoptimització.

Origens de la dualitat: teoria de jocs (1/8)

- Joc finit de suma zero amb dos jugadors.
 - John von Neumann's work in the theory of games and mathematical economics. H. W. Kuhn and A. W. Tucker Bull. Amer. Math. Soc. Volume 64, Number 3, Part 2 (1958), 100-122. Permanent link: http://projecteuclid.org/euclid.bams/1183522375

- Estratègies pures jugador 1: $J_1 = \{1, 2, ..., m\}$
- Estratègies pures jugador 2: $J_2 = \{1, 2, ..., n\}$

• Matriu de guanys (J_1) / pèrdues (J_2) associades a les estratègies pures:

"payoff matrix":
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 estratègies jugador 1

Si es produeix la jugada $(J_1, J_2) = (i, j) \Rightarrow$ el jugador 1 rep a_{ij} i el jugador 2 paga a_{ij} (joc de suma zero).

Origens de la dualitat: teoria de jocs (2/8)

 Estratègia mixta: distribució de probabilitat del conjunt d'estratègies pures (freqüència amb la que es jugarà cada estratègia):

- Jugador 1:
$$Y = \{y \in \mathbb{R}^m : \sum_{i=1}^m y_i = 1, 0 \le y_i \le 1, i = 1, ..., m\}$$

- Jugador 2:
$$X = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, 0 \le x_i \le 1, i = 1, ..., n\}$$

Valor esperat dels guanys/pèrdues associada a una estratègia mixta:

$$E[\text{guanys } J_1 = y \mid J_2 = x_i] \rightarrow \sum_{j=1}^m a_{j1} y_j \sum_{j=1}^m a_{j2} y_j \dots \sum_{j=1}^m a_{jn} y_j$$

 $E[\text{pèrdues } J_2 = x \mid J_1 = y_j]$ $\sum_{i=1}^{n} a_{1i}x_i$ $\sum_{i=1}^{n} a_{2i}x_i$ \vdots $\sum_{i=1}^{n} a_{mi}x_i$

Origens de la dualitat: teoria de jocs (3/8)

• Jugada òptima jugador 1, criteri maximin :

"El jugador 1 maximitza l'esperança matemàtica del seu guany mínim"

$$z_1^* = \max_{y} \left\{ z_1(y) = \min_{i=1,\dots,n} \left\{ \sum_{j=1}^m a_{ji} y_j \right\} \right\}$$

El problema de (PL) associat a la jugada òptima del jugador 1 és:

$$\begin{cases} \max_{y,z_1} & z_1 \\ \text{s.a.:} & \sum_{j=1}^{m} a_{ji}y_j \geq z_1 & i = 1, ..., n \\ & \sum_{j=1}^{m} y_j = 1 \\ & y_j \geq 0 & j = 1, ..., m \end{cases}$$

Origens de la dualitat: teoria de jocs (4/8)

Jugada òptima jugador 2, criteri minimax :

"El jugador 2 minimitza l'esperança matemàtica de la seva pèrdua màxima"

$$z_2^* = \min_{x} \left\{ z_2(x) = \max_{j=1,...,m} \left\{ \sum_{i=1}^n a_{ji} x_i \right\} \right\}$$

• El problema de (PL) associat a la jugada òptima del jugador 2 és:

$$\begin{cases}
\min_{x,z_2} & z_2 \\
s.a.: & \sum_{i=1}^{n} a_{ji} x_i \le z_2 \quad j = 1, ..., m \\
& \sum_{i=1}^{n} x_i = 1 \\
& x_i \ge 0 \quad i = 1, ..., n
\end{cases}$$

Origens de la dualitat: teoria de jocs (5/8)

• Exemple: "pares o nones" amb dos dits

- Si la suma dels dits és senar, el jugador 1 rep del jugador 2 la suma dels dits en euros.
- Si la suma dels dits és parell, el jugador 1 paga al jugador 2 la suma dels dits en euros.

- Matriu de guanys
$$J_1$$
:
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ -2 & 3 \\ 3 & -4 \end{bmatrix} \quad \begin{array}{c} 1 \\ 2 \\ \end{array} \} J_1$$

- Problema maximin jugador 1: (P_1) $\begin{cases} -2y_1 + 3y_2 \ge z_1 \\ 3y_1 - 4y_2 \ge z_1 \\ y_1 + y_2 = 1 \end{cases}$

$$y_1, y_2 \geq 0$$

 \max_{y,z_1}

s.a.:

Origens de la dualitat: teoria de jocs (6/8)

max

*y*₁,*z*₁ s.a.:

• Exemple: "pares o nones" amb dos dits

Resolució del problema maximin jugador 1:

$$(P_{1}) \begin{cases} \max_{y_{1}, y_{2}, z_{1}} & z_{1} \\ s.a.: & \\ -2y_{1} + 3y_{2} & \geq z_{1} \xrightarrow{y_{2} = 1 - y_{1}} (P_{1}) \\ 3y_{1} - 4y_{2} & \geq z_{1} \\ y_{1} + y_{2} & = 1 \\ y_{1}, y_{2} & \geq 0 \end{cases}$$

$$z_{1}^{*} = \frac{1}{12}, y_{1}^{*} = \frac{7}{12} (y_{2}^{*} = \frac{5}{12}) - \text{La espectation}$$

$$\text{de}$$

$$\text{max } z_{1} = -5\hat{y}_{1} + 3$$

$$\text{max } z_{1} = 7\hat{y}_{1} - 4$$

$$c = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

La **recta** $z_1 = -5y_1 + 3$ representa el valor esperat dels beneficis de J_1 en funció del valor de y_1 a les partides on J_2 juga l'estratègia 1.

 $y_1 \in [0,1]$

 $-5y_1 + 3 \ge z_1 \ (J_2 = 1)$

 $7y_1 - 4 \ge z_1 \quad (J_2 = 2)$

- La **recta** $z_1 = 7y_1 4$ representa el valor esperat dels beneficis de J_1 en funció del valor de y_1 en les partides on J_2 juga l'estratègia 2.
- Per a cada valor de y_1 ∈ [0,1]:

$$\max z_1 = \min \{-5y_1 + 3, 7y_1 - 4\}.$$

 $y_1^* = \frac{7}{12} (y_2^* = \frac{5}{12})$ és el valor de y_1 on el mínim entre les dues rectes és màxim $(z_1^* = \frac{1}{12})$.

Ta Minimax de von Neuman (7/8)

• PL jugador 1:
$$(P_1)$$

$$\begin{cases} \max_{y,z_1} & z_1 \\ \text{s.a.:} & \sum_{j=1}^m a_{ji}y_j - z_1 \geq 0 \quad i = 1, ..., n \\ & \sum_{j=1}^m y_j & = 1 \\ & y_j & \geq 0 \quad j = 1, ..., m \end{cases}$$

• PL jugador 2:
$$(P_2)$$

$$\begin{cases} \min_{x,z_2} & z_2 \\ \text{s.a.:} & \sum_{i=1}^n a_{ji}x_i - z_2 \leq 0 \quad j = 1, ..., m \\ & \sum_{i=1}^n x_i & = 1 \\ & x_i & \geq 0 \quad i = 1, ..., n \end{cases}$$

• Ta. Minimax (Ta. Principal de Ta. de Jocs, von Neumann 1928⁽¹⁾):

Les estratègies òptimes y^* i x^* pels jugadors 1 i 2 existeixen i satisfan: $z_1^* = z_2^*$.

(1): Von Neumann, J: Zur Theorie der Gesellschaftsspiele Math. Annalen. 100 (1928) 295-320, DOI: 10.1007/BF01448847

Aplicacions de la dualitat: teoria de jocs (8/8)

Exemple 2: "parells o senars" amb tres dits

- Si la suma dels dits és senar, el jugador 1 rep del jugador 2 la suma dels dits en euros.
- Si la suma dels dits és parell, el jugador 1 paga al jugador 2 la suma dels dits en euros.
- Si ensenyen el mateix nombre de dits, hi ha empat i ningú paga

- Matriu de guanys
$$J_1$$
: $A = \begin{bmatrix} 3 & 3 & 1 \\ 1 & 2 & 3 \\ 0 & 3 & -4 \\ 3 & 0 & 5 \\ -4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix} J_1$

Estratègia òptima (calculeu-la amb SAS):

*
$$J_1: y^* \approx [0.36 \quad 0.57 \quad 0.07]'; J_2: x^* \approx [0.36 \quad 0.57 \quad 0.07]'$$

 $*z_1^* = z_2^* ≈ 1,43 € > 0 ⇒ l'esperança matemàtica dels guanys del$ jugador 1 és estrictament positiva: el joc beneficia al jugador 1

Definició del problema dual (D) (1/3)

Def. problema dual:

Sigui el problema de programació lineal $(P) \min\{c'x|x \in P\}$. El **problema dual** (D) associat a (P) es defineix com el problema de programació lineal que s'obté a través de la següent taula de transformació:

Problema p	rimal (P)	Problema dual (D)			
Funció objectiu	$\min c'x$	\leftrightarrow	$\max \lambda' b$	Funció objectiu	
Constriccions _	$a_j x \ge b_j$	$\longleftrightarrow_{\mathbb{S}^n}$	$\lambda_j \geq 0$	Variables	
primals	$a_j x \le b_j$	\leftrightarrow	$\lambda_j \leq 0$	Duals	
$j=1,2,\ldots,m$	$a_j x = b_j$	\leftrightarrow	λ_j lliure	$j=1,2,\ldots,m$	
Variables	$x_i \ge 0$	\leftrightarrow	$\lambda' A_i \leq c_i$	Constriccions	
primals	$x_i \le 0$	\leftrightarrow	$\lambda' A_i \geq c_i$	duals	
$i=1,2,\ldots,n$	x_i lliure	\leftrightarrow	$\lambda' A_i = c_i$	$i=1,2,\ldots,n$	

Definició del problema dual (D) (2/3)

Exemple formulació problema dual:

$$\begin{cases} \min & x_1 + 2x_2 + 3x_3 \\ \text{s.a.:} & -x_1 + 3x_2 \\ 2x_1 - x_2 + 3x_3 \\ x_3 & \le 4 \\ x_1 & \ge 0 \\ x_2 & \le 0 \\ x_3 & \text{Iliure} \end{cases} = 5$$

$$x_1 & \ge 0$$

$$x_2 & \le 0$$

$$x_3 & \text{Iliure} \end{cases} \Rightarrow \begin{cases} \max & 5\lambda_1 + 6\lambda_2 + 4\lambda_3 \\ \text{s.a.:} & \lambda_1 & \text{Iliure} \\ \lambda_2 & \ge 0 \\ \lambda_3 & \le 0 \\ 3\lambda_1 - \lambda_2 & \le 2 \\ 3\lambda_2 + \lambda_3 & = 3 \\ \end{cases}$$

Propietat: "El dual del dual és el primal"

$$\text{(D)} = (\widetilde{\mathsf{P}}) \left\{ \begin{array}{lll} \min & -5x_1 & -6x_2 & -4x_3 \\ \text{s.a.:} & x_1 & \text{lliure} \\ & & x_2 & \geq 0 \\ & & x_3 & \leq 0 & \rightarrow & (\widetilde{\mathsf{D}}) = (\mathsf{P}) \end{array} \right. \left\{ \begin{array}{lll} \max & -\lambda_1 & -2\lambda_2 & -3\lambda_3 \\ \text{s.a.:} & \lambda_1 & -3\lambda_2 & = -5 \\ & -2\lambda_1 & +\lambda_2 & -3\lambda_3 & \leq -6 \\ & & & -\lambda_3 & \geq -4 \\ & & & \lambda_1 & \geq 0 \\ & & & & \lambda_2 & \leq 0 \\ & & & & & \lambda_3 & \text{lliure} \end{array} \right.$$

Exercici: demostreu que els problemes (P_1) i (P_2) són un parell primal-dual

Relacions (P) - (D): teoremes de dualitat.

- Teoremes de dualitat: Estudien les relacions entre les propietats dels problemes (P) i (D).
- En ocasions usarem el fet que el dual (D) d'un problema (P)
 qualsevol i el dual (D)_e de la seva forma estàndard (P)_e son
 equivalents:

Teorema 7:

Equivalència duals forma estàndard (Ta. 4.2 B&T):

Suposem que hem transformat un problema (P) a la seva forma estàndard $(P)_e$ de rang complet. Llavors els problemes duals de (P) i $(P)_e$ són equivalents en el sentit que o bé són tots dos infactibles o bé tenen el mateix cost òptim.

Demo: exercici "Dual de la forma estàndard".

Relacions (P) - (D): teorema feble de dualitat (1/2)

Teorema 8: Ta. feble de dualitat (Ta. 4.3 B&T, *weak duality)*:

Sigui x solució factible del problema (P), i sigui λ solució factible del problema dual (D) associat. Llavors es satisfà:

$$\lambda' b \leq c' x$$
.

Demo:

• Per a tot i $x \in \mathbb{R}^n$ i $\lambda \in \mathbb{R}^m$ definim:

$$\begin{cases} u_j = \lambda_j (a'_j x - b_j) & j = 1, 2, ..., m \\ v_i = (c_i - \lambda' A_i) x_i & i = 1, 2, ..., n \end{cases}$$

• Si x i λ son factibles \Rightarrow $\begin{cases} \text{Si } a'_j x \neq b_j, \text{ els signes de } \lambda_j \text{ i } \left(a'_j x - b_j\right) \\ \text{Si } \lambda' A_i \neq c_i, \text{ els signes de } x_i \text{ i } \left(c_i - \lambda' A_i\right) \end{cases}$ coincideixen \Rightarrow $\Rightarrow u_j \geq 0, v_i \geq 0 \ \forall i, j$.

• Llavors :
$$\begin{cases} \sum_{j} u_{j} = \lambda' A x - \lambda' b \\ \sum_{i} v_{i} = c' x - \lambda' A x \end{cases} \Rightarrow \sum_{j} u_{j} + \sum_{i} v_{i} = c' x - \lambda' b \overset{u \geq 0, v \geq 0}{\overset{}{\succeq}} \quad 0 \Rightarrow \lambda' b \leq c' x$$

• Comentari: si (P) en forma estàndard, trivial: $\forall x, \lambda$ factibles: $\lambda' b = \lambda' A x \leq c' x$

Relacions (P) - (D): teorema feble de dualitat (2/2)

Teorema 8: Ta. feble de dualitat (Ta. 4.3 B&T, weak duality):

Sigui x solució factible del problema (P), i sigui λ solució factible del problema dual (D) associat. Llavors es satisfà:

$$\lambda' b \leq c' x$$
.

Corol-laris:

- i. Si (P) és il·limitat llavors (D) infactible. (**Demo**: $\nexists \lambda \in \mathbb{R}^m$: $\lambda' b \leq -\infty$)
- ii. Si (D) és il·limitat llavors (P) infactible. (**Demo:** $\exists x \in \mathbb{R}^n$: $c'x \ge +\infty$)
- iii. Siguin x i λ solucions factibles (P) i (D) respectivament tals que $\lambda'b = c'x$. Llavors x i λ són òptimes. (**Demo**: trivial)

Relacions (P) - (D): teorema fort de dualitat (1/4)

Teorema 9: Ta. fort de dualitat (von Neumann 1947, Ta. Minimax):

Si un problema de programació lineal (P) té solució òptima, el seu dual (D) també en té, i els valors respectius de la funció objectiu coincideixen.

Demo:

- 1. Sigui (P) en forma estàndard de rang complet amb sol. òptima. Sigui B base òptima obtinguda per l'algorisme del símplex amb regla de Bland. Llavors $r \ge 0$. Es demostrarà (a) que $\lambda' = c_B' B^{-1}$ és una solució factible (D) i (b) que és òptima:
 - a) $x_B = B^{-1}b$ solució òptima $(P) \Rightarrow r = c_N c_B'B^{-1}A_N \ge 0 \Rightarrow c_B'B^{-1}A_N \le c_N$. Llavors:

$$\lambda' A = c_B' B^{-1} [B \quad A_N] = [c_B' \quad c_B' B^{-1} A_N] \le [c_B' \quad c_N'] = c' \Rightarrow$$
$$\Rightarrow \lambda' = c_B' B^{-1} \text{ factible } (D)$$

- b) $\lambda' b = c_B' B^{-1} b = c_B' x_B \Rightarrow \lambda' = c_B' B^{-1}$ òptima (D).
- 2. Si (P) és un problema general el podem transformar a un problema $(P)_e$ estàndard amb rang(A) = m. Llavors en virtut del Ta. 7 i l'aparat (1) anterior tenim que

$$z_{(P)}^* = z_{(P)_e}^* \stackrel{(1)}{=} z_{(D)_e}^* \stackrel{Ta.7}{=} z_{(D)}^*$$

Relacions (P) - (D): teorema fort de dualitat (2/4)

Teorema 9: Ta. fort de dualitat (von Neumann 1947, Ta. Minimax):

Si un problema de programació lineal (P) té solució òptima, el seu dual (D) també en té, i els valors respectius de la funció objectiu coincideixen.

Corol-lari : si $(P)_e$ de rang complet té solució llavors (D) té solució i l'òptim dual és $\lambda' = c_B' B^{-1}$

• Possibles combinación (P) - (D): els Ta. de dualitat fixen la següent relació de possibles casos:

		(D)				
		Òptim	II-limitat	Infactible		
	Òptim	Possible	Impossible	Impossible		
(P)	II-limitat	Impossible	Impossible	Possible		
	Infactible	Impossible	Possible	Possible		

Possibles combinacions (P)-(D)

• Exemple: (P) i (D) amb solució òptima

(P)
$$\begin{cases} \min & x_1 + x_2 \\ \text{s.a.:} & x_1 + 2x_2 \ge 2 & (1) \\ & x_1 & \ge 1 & (2) \\ & x_1, & x_2 \ge 0 \end{cases}$$

(D)
$$\begin{cases} \max & 2\lambda_1 + \lambda_2 \\ \text{s.a.:} & \lambda_1 + \lambda_2 \leq 1 \end{cases} (1)$$
$$& 2\lambda_1 \leq 1$$
$$& \lambda_1, \quad \lambda_2 \geq 0$$

Possibles combinacions (P)-(D)

• Exemple: (P) il·limitat i (D) infactible

$$(P) \begin{cases} \min & -x_{1} & -x_{2} \\ \text{s.a.:} & x_{1} & +2x_{2} & \geq 2 & (1) \\ & x_{1} & & \geq 1 & (2) \\ & x_{1}, & x_{2} & \geq 0 \\ & & & & & & \end{cases}$$

$$(D) \begin{cases} \max & 2\lambda_1 + \lambda_2 \\ \text{s.a.:} & \lambda_1 + \lambda_2 \leq -1 \\ & 2\lambda_1 \leq -1 \end{cases} (2)$$

$$\lambda_1, \quad \lambda_2 \geq 0$$

• **Exercici:** penseu i representeu gràficament les dues situacions que queden: (D) il·limitat - (P) infactible i (P) infactible - (D) infactible

Relacions (P) - (D): Ta. de folga complementària.

Teorema 10: Ta. de folga complementària :

Siguin x i λ solucions factibles de (P) i (D) respectivament. Els vectors x i λ són solucions òptimes si i només si:

$$\lambda_j (a'_j x - b_j) = 0$$
 $j = 1, 2, ..., m$
 $(c_i - \lambda' A_i) x_i = 0$ $i = 1, 2, ..., n$

Demo:

 \implies Si x i λ factibles, de la demostració del Ta. feble de dualitat sabem que:

i.
$$u_j = \lambda_j (a_i' x - b_j) \ge 0$$
 , $v_i = (c_i - \lambda' A_i) x_i \ge 0 \quad \forall i, j$

ii.
$$c'x - \lambda b = \sum_{j} u_j + \sum_{i} v_i$$

Pel Ta. fort de dualitat sabem que si x i λ òptimes llavors $c'x = \lambda'b \Rightarrow u_j = v_i = 0 \ \forall i,j$

$$\sqsubseteq$$
 Si $u_j = v_i = 0 \ \forall i, j \stackrel{\text{ii}}{\Rightarrow} c'x - \lambda'b = 0 \stackrel{\textit{Cor.8.3}}{\Longrightarrow} x, \lambda \ \text{optimes} \blacksquare.$

Solucions bàsiques factibles duals

Def. Solució bàsica factible dual:

Sigui el problema de programació lineal (P) en forma estàndard. Una solució bàsica factible dual és tota solució bàsica amb $r \geq 0$

Comentaris:

- Si $r \ge 0$ llavors pel T^a fort de dualitat sabem que $\lambda' = c_B' B^{-1}$ és una solució factible pel problema dual (D).
- Una solució bàsica factible dual pot no ser factible primal.
- Una solució bàsica factible dual i factible primal és òptima:
 - * Factibilitat primal: $x_B = B^{-1}b \ge 0$
 - * Factibilitat dual: $r' = c'_N \lambda' A_N \ge 0$

Solucions bàsiques factibles duals

Solució bàsica factible dual, exemple:

(P)
$$\begin{cases} \min & x_1 + x_2 \\ \text{s.a.:} & x_1 + 2x_2 \ge 2 \\ & x_1 \ge 1 \\ & x_1, & x_2 \ge 0 \end{cases}$$

Solucións bàsiques

factibles primal: C , 臣

Solucións bàsiques

factibles dual: \mathbb{A} , \mathbb{B} , \mathbb{C} , \mathbb{D}

© solució bàsica factible

primal i dual ⇒ òptima

Pregunta: poden existir bases infactibles (P) i (D)?

Algorisme del símplex dual

- L'algorisme del símplex dual és un algorisme que permet resoldre problemes de PL en forma estàndard a partir de solucions bàsiques factibles dual basant-se en la següent estratègia:
 - a) Es determina si la s.b.f. (D) actual és factible (P) \Rightarrow òptima.
 - b) Si la s.b.f. (D) actual no és factible (P), es troba, si existeix, una s.b.f. (D) adjacent a l'actual que millori el valor de la f.o. dual, i es pren aquesta com a nova s.b. actual.
- Desenvolupament teòric: s'obté aplicant el símplex primal sobre el problema dual expressat en forma estàndard a partir d'una s.b. factible dual (fora de temari).
- Interès del símplex dual:
 - Situacions on es disposa d'una s.b.f. (D) infactible (P):
 - ❖ Anàlisi de sensibilitat: canvis en A i/o b.
 - Algorismes de programació lineal entera.

Algorisme del símplex dual

- 1. Sigui la s.b.f. (D) \mathcal{B} amb valors: B, x_B , r, c_B , c_N , A_N , z.
- 2. Identificació de s.b.f. òptima i selecció de la variable bàsica sortint B(p):
 - 2.1. Si $x_B \ge [0]$ llavors la s.b.f. actual és òptima: **STOP**.

Altrament, es selecciona una v.b. p amb $x_{B(p)} < 0$ (v.b. sortint).

- 3. Identificació de problema il·limitat:
 - 3.1. Es calcula $d_{r_N}=(\beta_p A_N)'$ $(\beta_p$: fila p-èssima de B^{-1})
 - 3.2. Si $d_{r_N} \ge [0]$ llavors problema (D) il.limitat (\Rightarrow (P) infactible): STOP
- 4. Selecció de la variable no bàsica entrant q:
 - 4.1. Càlcul de $\theta_D^* = \min_{\left\{j \in \mathcal{N} \mid d_{r_{N_j}} < 0\right\}} \left\{\frac{-r_j}{d_{r_{N_j}}}\right\} = \frac{-r_q}{d_{r_{N_q}}}$. Es selecciona q com a v.n.b. entrant.
- 5. Canvi de base i actualitzacions :
 - 5.2. Act. variables duals: $r_N \coloneqq r_N + \theta_D^* d_{r_N}$, $\lambda \coloneqq \lambda \theta_D^* \beta_p'$, $r_{B(p)} \coloneqq \theta_D^*$; $z \coloneqq z \theta_D^* x_{B(p)}$
 - 5.1. Act. variables primals: $d_B = -B^{-1}A_q$, $\theta^* = -\frac{x_{B(p)}}{d_{B(p)}}$, $x_B \coloneqq x_B + \theta^*d_B$, $x_q \coloneqq \theta^*$
 - 5.2. S'actualitzen $\mathcal{B}\coloneqq\mathcal{B}\setminus\{B(p)\}\cup\{q\}$, $\mathcal{N}\coloneqq\mathcal{N}\setminus\{q\}\cup\{B(p)\}$.
- 6. Anada a 2.

Algorisme del símplex dual : exemple (1/4)

Exemple: Trobeu la solució òptima del següent problema (P) aplicant l'algorisme del símplex dual com a s.b. inicial l'associada a x' = [0,0].

$$(P) \begin{cases} \min z = & x_1 & +x_2 \\ \text{s.a:} & x_1 & +2x_2 & \geq 2 \\ & x_1 & & \geq 1 \\ & x_1, & x_2 & \geq 0 \end{cases} \to (P) \begin{cases} \min z = & x_1 & +x_2 \\ \text{s.a:} & x_1 & +2x_2 & -x_3 & & = 2 \\ & x_1 & & -x_4 & = 1 \\ & x_1, & x_2, & x_3, & x_4 & \geq 0 \end{cases}$$

Càlculs previs:

$$x = \begin{bmatrix} 0 \\ 0 \\ -2 \\ -1 \end{bmatrix} \rightarrow$$

Algorisme del símplex dual : exemple (2/4)

- 1a iteració: $\mathcal{B} = \{3,4\}, \mathcal{N} = \{1,2\}$
- Identificació de s.b.f. òptima i selecció de la v.b. sortint B(p):

$$x_B = [-2 \ -1]' \ge 0 \Rightarrow p = 1, B(1) = 3 \text{ v.b. sortint}$$

- Identificació de problema (D) il·limitat :

$$\beta_1 = e_1' B^{-1} = \begin{bmatrix} -1 & 0 \end{bmatrix}, d'_{r_N} = \beta_1 A_N = \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix} \ngeq 0$$

- Selecció de la v.n.b. entrant $q: \theta_D^* = \min_{\left\{j \in \mathcal{N} \mid d_{r_{N_j}} < 0\right\}} \left\{\frac{-r_j}{d_{r_{N_j}}}\right\} = \min\left\{1, \frac{1}{2}\right\} = \frac{1}{2} \Rightarrow q = 2$
- Canvi de base i actualitzacions:

o
$$r_N = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} \coloneqq r_N + \theta_D^* d_{r_N} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}, \ r_{B(1)} = r_3 \coloneqq \theta_D^* = \frac{1}{2},$$

$$\circ \ d_B = -B^{-1}A_2 = -\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \theta^* = -\frac{x_{B(1)}}{d_{B(1)}} = 1$$

o
$$x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} := x_B + \theta^* d_B = \begin{bmatrix} -2 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, x_2 := \theta^* = 1$$

o
$$\mathcal{B} := \{\mathbf{2}, 4\}, \mathcal{N} := \{1, \mathbf{3}\}, \ B^{-1} = \begin{bmatrix} 1/2 & 0 \\ 0 & -1 \end{bmatrix}, x_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, r_N = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \lambda = \begin{bmatrix} -1/2 \\ 0 \end{bmatrix}$$

Algorisme del símplex dual : exemple (3/4)

- **2**^a iteració: $\mathcal{B} = \{2,4\}, \mathcal{N} = \{1,3\}$
- Identificació de s.b.f. òptima i selecció de la v.b. sortint B(p):

$$x_B = [1 \ -1]' \ge 0 \Rightarrow p = 2, B(2) = 4 \text{ v.b. sortint}$$

Identificació de problema (D) il·limitat :

$$\beta_2 = e_2' B^{-1} = \begin{bmatrix} 0 & -1 \end{bmatrix}, d'_{r_N} = \beta_2 A_N = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \end{bmatrix} \not \geq 0$$

- Selecció de la v.n.b. entrant q: $\theta_D^* = \min_{\left\{j \in \mathcal{N} \mid d_{r_{N_i}} < 0\right\}} \left\{\frac{-r_j}{d_{r_{N_i}}}\right\} = \min\left\{-\frac{1/2}{-1}\right\} = \frac{1}{2} \Rightarrow q = 1$
- Canvi de base i actualitzacions:

$$cong |r_N| = {r_1 \brack r_3} \coloneqq r_N + \theta_D^* d_{r_N} = {1/2 \brack 1/2} + \frac{1}{2} {-1 \brack 0} = {0 \brack 1/2}, \ r_{B(2)} = r_4 \coloneqq \theta_D^* = \frac{1}{2}$$

$$\circ \ d_B = -B^{-1}A_1 = -\begin{bmatrix} 1/2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}, \theta^* = -\frac{x_{B(2)}}{d_{B(2)}} = -\frac{-1}{1} = 1$$

o
$$x_B = \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} := x_B + \theta^* d_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}, x_q = x_1 := \theta^* = 1$$

o
$$\mathcal{B} := \{2, \mathbf{1}\}, \mathcal{N} := \{3, \mathbf{4}\}, \ B^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}, x_B = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}, r_N = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \lambda = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$$

Algorisme del símplex dual : exemple (4/4)

- **3a iteració:** $\mathcal{B} = \{2,1\}, \mathcal{N} = \{3,4\}$
- Identificació de s.b.f. òptima i selecció de la v.b. sortint B(p):

$$x_B = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} \ge 0 \Rightarrow \text{s.b. factible } (P) \text{ i } (D) \text{: optim}$$

- Solució òptima: $\mathcal{B}^* = \{2,1\}, \mathcal{N}^* = \{3,4\}, x_B^* = [1/2 \quad 1]', z^* = 3/2$
- Interpretació geomètrica:

Iteració 1: A → B

Iteració 2: B → C

Algorisme del símplex dual : convergència

Degeneració dual: es diu que una s.b. és degenerada dual si :

$$r_j = 0$$
 per algun $j \in \mathcal{N} (\equiv \text{optims alternatius}).$

- Ta (convergència del símplex dual): Si el problema (P) no té cap s.b.f. dual amb degeneració dual, llavors l'algorisme del símplex dual estudiat convergeix en un nombre finit d'iteracions.
 - Demo: cada iteració augmenta estrictament el valor de la funció dual $\lambda'b \Rightarrow$ no es repeteix cap s.b.f. dual i el nre. de s.b.f. duals és finit.
- Si (P) té s.b.f. duals degenerades, la regla de Bland (entre d'altres) assegura la convergència.

Anàlisi de sensibilitat: definició

• Sigui el problema de programació lineal (PL) en forma estàndard:

(P)
$$\begin{cases} \min & c'x \\ \text{s.a.:} & Ax = b \\ & x \ge 0 \end{cases}$$

- L'anàlisi de sensibilitat consisteix en l'estudi de com afecta a la solució òptima x* de (P):
 - Un canvi en c, A o b
 - L'addició d'una nova variable o constricció.
- Interés:
 - Decidir si un canvi en les dades modifica la solució òptima sense necessitat de tornar a resoldre el problema.
 - Realitzar anàlisis econòmiques relacionades amb modificacions dels paràmetres del model.

Anàlisi de sensibilitat : concepte

Sigui el problema de programació lineal (P) en forma estàndard, i siguin B la base òptimes. Llavors, per teoria de dualitat sabem que *B* satisfà les condicions d'optimalitat:

> $x_B = B^{-1}b \ge 0$ Factibilitat primal:

Factibilitat dual: $r' = c'_N - c'_R B^{-1} A_N \ge 0$

- Suposem que algun element ϕ de A, b o c de (P) ha estat modificat, o que s'introdueix una nova variable, o una nova constricció, definint un nou problema $(P)_{\phi}$.
- Imposant les condicions d'optimalitat al nou problema $(P)_{\phi}$ s'obtenen les condicions sota les quals la base B conserva la seva optimalitat (interval d'estabilitat).

Anàlisi de sensibilitat en c

- S'introdueix el canvi: $c_i \leftarrow \boxed{\phi_{c_i} = c_i + \Delta c_i}$
- Analitzem com afecta el canvi a les condicions d'optimalitat :

Factibilitat primal: $x_B = B^{-1}b \ge 0 \rightarrow \text{no es pot perdre}$

Factibilitat dual: $r' = c'_N - c'_B B^{-1} N \ge 0 \rightarrow \text{es pot perdre}$

- Cal diferenciar dos casos d'anàlisi:
 - a) $i \in \mathcal{N}^*$
 - b) $i \in \mathcal{B}^*$

Interval d'estabilitat de c_i , $i \in \mathcal{N}^*$

Cas a): $i \in \mathcal{N}^*$

 En aquest cas, només ens hem de preocupar del possible canvi de signe del nou cost reduït de la VNB x_i:

$$\tilde{r}_i = (c_i + \Delta c_i) - c_B' B^{-1} A_i = \Delta c_i + r_i \ge 0 \Leftrightarrow \Delta c_i \ge -r_i$$
 (1)

- Si la desigualtat (1) es satisfà, la base actual ${\mathcal B}$ conserva l'optimalitat.
- Si la desigualtat (1) no es satisfà, la base actual \mathcal{B} perd l'optimalitat: La v.n.b. x_i té cost reduït negatiu, i pot entrar a la base millorant la solució actual (si no provoca un problema $(P)_{\phi_{c_i}}$ il·limitat).
- Interval d'estabilitat de c_i , $i \in \mathcal{N}^*$: interval de valors de ϕ_{c_i} que conserva l'optimalitat de \mathcal{B} ($\iff \tilde{r}_i \ge 0$):

$$\phi_{c_i} \in \Phi_{c_i} = \left[\phi_{c_i}^{min}, \phi_{c_i}^{max}\right] = \left[c_i - r_i, +\infty\right[$$

Interval d'estabilitat de c_i , $i \in \mathcal{B}^*$

Cas b) : $i \in \mathcal{B}^*$

- Sigui x_i la p-èssima VB (i=B(p)). Llavors $c_B \leftarrow \phi_{c_B} = c_B + \Delta c_i \cdot e_p$
- Aquest canvi afecta als costos reduïts de totes les variables no bàsiques $j \in \mathcal{N}^*$:

$$\tilde{r}_{j} = c_{j} - \left(c_{B} + \Delta c_{i} \cdot e_{p}\right)' B^{-1} A_{j} = -\Delta c_{i} \cdot \underbrace{e_{p}' B^{-1} A_{j}}^{v_{pj}} + r_{j} = -\Delta c_{i} \cdot v_{pj} + r_{j} \ge 0$$

$$\Delta c_{i} \cdot v_{pj} \le r_{j} , j \in \mathcal{N}^{*}$$

$$(1)$$

- Si (1) es satisfà, la base actual B conserva l'optimalitat.
- Si (1) no es satisfà la base actual B perd l'optimalitat: la VNB x_j té cost reduit negatiu, i pot entrar a la base, millorant la solució actual (si no provoca un problema $(P)_{\phi_{C_i}}$ il·limitat).
- Interval d'estabilitat de c_i , $i \in \mathcal{B}^*$:

$$\phi_{c_{i}} \in \Phi_{c_{i}} = \left[\Phi_{c_{i}}^{min}, \Phi_{c_{i}}^{max}\right] : \begin{cases} \phi_{c_{i}} \geq \phi_{c_{i}}^{min} = \max_{j \in \mathcal{N}^{*}} \left\{c_{i} + \frac{r_{j}}{v_{pj}} : v_{pj} < 0\right\} \\ \phi_{c_{i}} \leq \phi_{c_{i}}^{max} = \min_{j \in \mathcal{N}^{*}} \left\{c_{i} + \frac{r_{j}}{v_{pj}} : v_{pj} > 0\right\} \end{cases}$$

Exemple: prob. de planificació de la producció

$$\begin{cases} \min & -350x_1 & -300x_2 \\ \text{s.a.:} & x_1 & +x_2 & +x_3 & = 200 \\ 9x_1 & +6x_2 & +x_4 & =1566 \\ 12x_1 & +16x_2 & +x_5 & = 2880 \\ x_1, & x_2, & x_3, & x_4, & x_5, & \geq 0 \end{cases}$$

Solució òptima:

$$\mathcal{B}^* = \{2,1,5\}, B = \begin{bmatrix} 1 & 1 & 0 \\ 6 & 9 & 0 \\ 16 & 12 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & -1/3 & 0 \\ -2 & 1/3 & 0 \\ -24 & 4/3 & 1 \end{bmatrix}, x_B = B^{-1}b = \begin{bmatrix} 78 \\ 128 \\ 168 \end{bmatrix}, z^* = c_B'x_B = -66100$$

$$\mathcal{N}^* = \{3,4\}, r' = \begin{bmatrix} 200 & 50/3 \end{bmatrix}, A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Interval d'estabilitat de c_i , exemple

A la solució òptima de l'exemple teníem:

$$\mathcal{B}^* = \{2,1,5\}, B = \begin{bmatrix} 1 & 1 & 0 \\ 6 & 9 & 0 \\ 16 & 12 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & -1/3 & 0 \\ -2 & 1/3 & 0 \\ -24 & 4/3 & 1 \end{bmatrix}, x_B = \begin{bmatrix} 78 \\ 128 \\ 168 \end{bmatrix}$$

$$\mathcal{N}^* = \{3,4\}, r' = \begin{bmatrix} 200 & 50/3 \end{bmatrix}, A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, V = B^{-1}A_N = \begin{bmatrix} 3 & -1/3 \\ -2 & 1/3 \\ -24 & 4/3 \end{bmatrix} \xrightarrow{>} v_1 \xrightarrow{>} v_2$$

Interval d'estabilitat de c_i , $i \in \mathcal{N}^*$: $\Phi_{c_i} = \left[\phi_{c_i}^{min}, \phi_{c_i}^{max}\right] = \left[c_i - r_i, +\infty\right]$

$$\phi_{c_3} \in [-200, +\infty[, \phi_{c_4} \in [-50/3, +\infty[$$

Interval d'estabilitat de c_i , $i \in \mathcal{B}^*$:

$$\begin{cases} \phi_{c_{i}}^{min} = \max_{j \in \mathcal{N}^{*}} \left\{ c_{i} + \frac{r_{j}}{v_{pj}} : v_{pj} < 0 \right\} \\ \phi_{c_{i}}^{max} = \min_{j \in \mathcal{N}^{*}} \left\{ c_{i} + \frac{r_{j}}{v_{pj}} : v_{pj} > 0 \right\} \end{cases} \rightarrow \begin{cases} i = 2 \rightarrow p = 1, \phi_{c_{2}} \in \left[-400, \frac{-700}{3} \right] \\ i = 1 \rightarrow p = 2, \phi_{c_{1}} \in \left[-450, -300 \right] \\ i = 5 \rightarrow p = 3, \phi_{c_{5}} \in \left[-\frac{25}{3}, \frac{25}{2} \right] \end{cases}$$

Anàlisi de sensibilitat en b

- S'introdueix el canvi: $b_j \leftarrow \phi_{b_j} = b_j + \Delta b_j$
- Condicions d'optimalitat :

Factibilitat primal: $x_B = B^{-1}b \ge 0 \rightarrow \text{es pot perdre}$

Factibilitat dual: $r' = c'_N - c'_B B^{-1} A_N \ge 0 \rightarrow \text{no es pot perdre}$

• Volem trobar l'interval de valors de ϕ_{b_j} pels quals la base actual es manté òptima

Interval d'estabilitat de b_j : $\Phi_{b_j} = \left[\phi_{b_j}^{min}, \phi_{b_j}^{max}\right]$

- Imposem la condició de factibilitat primal $\tilde{x}_B = B^{-1}(b + \Delta b_j \cdot e_j) \ge 0$ on e_j és el vector unitari j-èssim.
- Sigui $\gamma_j = [\gamma_{1j}, \gamma_{2j}, ..., \gamma_{mj}]'$ la columna j-èssima de B^{-1} . Llavors, la condició de factibilitat primal imposa:

$$\tilde{x}_B = x_B + \Delta b_j \cdot \gamma_j \ge 0 \to x_{B(k)} + \Delta b_j \cdot \gamma_{kj} \ge 0$$
 , $k = 1, ..., m \Rightarrow$

$$\Rightarrow \begin{vmatrix} \phi_{b_{j}} \in \Phi_{b_{j}} = [\phi_{b_{j}}^{min}, \phi_{b_{j}}^{max}] \Rightarrow \begin{cases} \phi_{b_{j}} \geq \phi_{b_{j}}^{min} = \max_{k=1,...,m} \left\{ b_{j} - \frac{x_{B(k)}}{\gamma_{kj}} : \gamma_{kj} > 0 \right\} \\ \phi_{b_{j}} \leq \phi_{b_{j}}^{max} = \min_{k=1,...,m} \left\{ b_{j} - \frac{x_{B(k)}}{\gamma_{kj}} : \gamma_{kj} < 0 \right\} \end{cases}$$

- Si $\phi_{b_j} \in \Phi_{b_j} \Rightarrow \widetilde{x}_B \geq 0 \Rightarrow$ es conserva l'optimalitat de \mathcal{B}^*
- Si $b \leftarrow \phi_b$ i $\forall j : \phi_{b_j} \in \Phi_{b_j} \Rightarrow$ es conserva la optimalitat de \mathcal{B}^*

Interval d'estabilitat de b_i , exemple

A la solució òptima de l'exemple teníem:

$$\mathcal{B}^* = \{2,1,5\}, B = \begin{bmatrix} 1 & 1 & 0 \\ 6 & 9 & 0 \\ 16 & 12 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & -1/3 & 0 \\ -2 & 1/3 & 0 \\ -24 & 4/3 & 1 \end{bmatrix}, x_B = \begin{bmatrix} 78 \\ 128 \\ 168 \end{bmatrix}$$

• Interval d'estabilitat de b_2 :

$$\gamma_2 = B^{-1}e_2 = \begin{bmatrix} 3 & -1/3 & 0 \\ -2 & 1/3 & 0 \\ -24 & 4/3 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/3 \\ 1/3 \\ 4/5 \end{bmatrix}$$

$$\phi_{b_2}^{min} = \max_{k=1,\dots,3} \left\{ b_2 - \frac{x_{B(k)}}{\gamma_{k2}} : \gamma_{k2} > 0 \right\} = 1566 + \max \left\{ -\frac{128}{\frac{1}{3}}, -\frac{168}{\frac{4}{3}} \right\} = -1440$$

$$\phi_{b_2}^{max} = \min_{k=1,\dots,3} \left\{ b_2 - \frac{x_{B(k)}}{\gamma_{k2}} : \gamma_{k2} < 0 \right\} = 1566 + \min \left\{ -\frac{78}{-\frac{1}{3}} \right\} = 1800$$

Intervals d'estabilitat amb SAS/OR

RHS Range Analysis							
	Minimum Phi			Maximum Phi			
Row	Rhs	Leaving	Objective	Rhs	Leaving	Objective	
c1	174	x2	-60900	207	c3	-67500	
c2	1440	c3	-64000	1800	x2	-70000	
с3	2712	c3	-66100	INFINITY			

Price Range Analysis							
		Minimum Phi			Maximum Phi		
Col	Variable Name	Price	Entering	Objective	Price	Entering	Objective
1	x1	-450	c1	-78300	-300	c2	-60000
2	x2	-350	c2	-70000	-233.3333	c1	-60900
3	c1	-200	c1	-66100	INFINITY		-66100
4	c2	-16.66667	c2	-66100	INFINITY		-66100
5	c3	-8.333333	c1	-67500	12.5	c2	-64000

Cost òptim en funció de Δb : preus ombra

• Si $\phi_{b_i} \in \Phi_{b_i}$, $j = 1, ..., m \Rightarrow$ la funció objectiu es pot expressar com:

$$\tilde{z} = c_B' B^{-1} (b + \Delta b) = \overbrace{c_B' B^{-1} b}^{z} + \overbrace{c_B' B^{-1}}^{\lambda'} \Delta b = z + \overbrace{\lambda' \Delta b}^{\Delta z} \Rightarrow \boxed{\Delta z = \lambda' \Delta b}$$

• El vector de variables duals $\lambda' = c_B' B^{-1}$ es coneix també com el vector de *preus ombra*, o *costos marginals* i en el nostre exemple és:

$$\lambda' = c_B' B^{-1} = \begin{bmatrix} -300 & -350 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1/3 & 0 \\ -2 & 1/3 & 0 \\ -24 & 4/3 & 1 \end{bmatrix} = \begin{bmatrix} -200 & -\frac{50}{3} & 0 \end{bmatrix}$$

• La variable dual λ_j s'interpreta com el canvi que provoca en la funció objectiu un increment unitari del terme independent:

$$\tilde{z} \stackrel{\Delta b = e_j}{=} z + \lambda' e_j = z + \lambda_j$$

Addició d'una nova variable: anàlisi

S'introdueix una nova variable definida per:

$$x_{n+1} \ge 0, c_{n+1}, A_{n+1}$$

- Analitzem com afecta el canvi a les condicions d'optimalitat :
 - Factibilitat primal: $x_B = B^{-1}b \ge 0$ → es conserva.
 - Factibilitat dual: $r' = c'_N \lambda' A_N \ge 0 \rightarrow \text{es pot perdre}$
- Condicions de conservació de l'optimalitat de B:

$$\tilde{r}' = \begin{bmatrix} c_N' & c_{n+1} \end{bmatrix} - \lambda' \begin{bmatrix} A_N & A_{n+1} \end{bmatrix} = \begin{bmatrix} \stackrel{\geq 0}{r}, & \\ \stackrel{\sim}{r}, & r_{n+1} \end{bmatrix} \geq 0$$

$$\tilde{r} \ge 0 \Leftrightarrow r_{n+1} \ge 0$$

• Exercici "Logistics"

Addició d'una nova constricció: anàlisi

S'introdueix una nova constricció definida per:

$$a'_{m+1}x \le b_{m+1} \to a'_{m+1}x + \overbrace{x_{n+1}}^{folga \to v.b.} = b_{m+1}$$

$$\tilde{A}_N = \begin{bmatrix} A_N \\ a'_{m+1} \end{bmatrix}, \tilde{B} \leftarrow \mathcal{B} \cup \{n+1\}, \tilde{B} = \begin{bmatrix} B & 0 \\ a'_{B,m+1} & 1 \end{bmatrix}, \tilde{B}^{-1} = \begin{bmatrix} B^{-1} & 0 \\ -a'_{B,m+1}B^{-1} & 1 \end{bmatrix}$$

- Analitzem com afecta el canvi a les condicions d'optimalitat :
 - Factibilitat primal: $\tilde{x}_B = \tilde{B}^{-1}\tilde{b} \ge 0$

$$\tilde{x}_{B} = \begin{bmatrix} x_{B} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} B^{-1} & 0 \\ -a'_{B,m+1}B^{-1} & 1 \end{bmatrix} \begin{bmatrix} b \\ b_{m+1} \end{bmatrix} = \begin{bmatrix} x_{B} \ge 0 \\ B^{-1}b \\ b_{m+1} - a'_{B,m+1}B^{-1}b \end{bmatrix}$$

$$\tilde{x}_B \ge 0 \iff x_{n+1} = b_{m+1} - a'_{B,m+1} x_B \ge 0$$

Addició d'una nova constricció: anàlisi

• S'introdueix una nova constricció definida per:

$$a'_{m+1}x \leq b_{m+1} \to a'_{m+1}x + \overbrace{x_{n+1}}^{folga \to v.b.} = b_{m+1}$$

$$\tilde{A}_{N} = \begin{bmatrix} A_{N} \\ a'_{m+1} \end{bmatrix}, \tilde{B} \leftarrow \mathcal{B} \cup \{n+1\}, \tilde{B} = \begin{bmatrix} B & 0 \\ a'_{B,m+1} & 1 \end{bmatrix}, \tilde{B}^{-1} = \begin{bmatrix} B^{-1} & 0 \\ -a'_{B,m+1}B^{-1} & 1 \end{bmatrix}$$

Analitzem com afecta el canvi a les condicions d'optimalitat :

Addició d'una nova constricció: exemple

$$\begin{cases} \min & -350x_1 - 300x_2 \\ \text{s.a.:} & x_1 + x_2 + x_3 \\ 9x_1 + 6x_2 + x_4 = 1566 \\ 12x_1 + 16x_2 + x_5 = 2880 \\ x_1, x_2, x_3, x_4, x_5, \ge 0 \end{cases} = 200 \quad \mathcal{B}^* = \{2, 1, 5\}$$

S'afegeix un dispositiu de millora del flux d'aigua a la banyera:

$$2x_1 + x_2 \le 300 \rightarrow 2x_1 + x_2 + x_6 = 300$$

Condició de conservació de fact. (P):

$$x_{n+1} = b_{m+1} - a'_{B,m+1} x_B \ge 0 \longrightarrow x_6 = 300 - (2 \times 128 + 78) = 300 - 334 = -34 < 0$$

$$\downarrow \downarrow$$

Es perd l'optimalitat de la base

Pèrdua de l'optimalitat i reoptimització

- Els canvis de formulació que hem analitzat poden provocar la pèrdua de l'optimalitat de la base \mathcal{B} . En aquest cas caldrà reoptimitzar amb l'algorisme apropiat:
 - Si es perd la factibilitat primal: es reoptimitza amb el símplex dual.
 - Si es perd la factibilitat dual: es reoptimitza amb el símplex primal.

