Partial Differential Equation

example of partial differential equation in physics L.

- wave equation
- Poisson's equation
- Laplace equation
- Heat equation

Classification of second-order partial differential equation

$$A\frac{3^{2}u}{3x^{2}} + B\frac{3u}{3x}\frac{3u}{3y} + C\frac{3^{2}u}{3y^{2}} + D\frac{3u}{3x} + E\frac{3u}{3y} + Fu = G$$

A Unx+ Bux uy + Cuyy + Dux + Euy + Fu = G

where A, B, C, D, E, F & G over the coeffici function of 223.

The above equation is said to be

(i) elliptic at a point (71, 9) in the place if $B^2 - 4AC < 0$

(ii) parabolic if $B^2-4AC=0$

(111) Hyporbolic if B2-4AC70

Example:-

Elliptic type

1.
$$\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} = 0$$
 (Laplace -egh in two dim.)

2.
$$\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} = f(x,y)$$
 (Poisson's equation)

Parabolic type :-

$$\frac{\partial^2 y}{\partial x^2} + \frac{1}{\partial x^2} \frac{\partial^2 y}{\partial t} = 0$$
 (one dim. heat equation)

Hyperbolic type

$$\frac{3^2u}{3x^2} = \frac{1}{x^2} \frac{3^2u}{34^2}$$
 (one dim. wave equation)

Example: - classify the following equations.

$$1. \quad \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$

2.
$$\chi^2 u_{xx} + (1-y^2) u_{yy} = 6$$

$$1. \quad \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 y}{\partial y^2} = 0$$

 $B^2-4AC=4-4(1X1)=0$ for all values of x13. Hence equation is parabolic at all points

2.
$$x^2 u_{xx} + (1-y^2) u_{yy} = 0$$

$$A = x^2$$
, $B = 0$, $C = (1 - y^2)$

$$B^{2}-4AC = 0-4x^{2}(1-y^{2})$$

$$= 4x^{2}(y^{2}-1)$$

$$-1 < y < 1$$
; $y^2 - 1 = -ve$

_ for -∞< x < ∞; x ≠0, y <-1 or y>1, the equation is hypovebolic.

- for x=0 & for any value of y. $4x^2(y^2-1)=0$ equation is parabolic

- $y = \pm 1$ for any value of x, $4x^2(y^2-1) = 0$.

equation is parabolic.

Example: - classify the partial differential equation.

re user + y they = 0; x>0, y>0

solution :-

x uxx + y uyy = 0 . for x70, 470

A=x, B=0, C=9

B2-4AC= 0-4 xy = -4xy

for 2>0, 4>0

B2-4 Ac = - 42y is always regative.

Thus the given partial diffountial equation is elliptic for 20,70,4>0. Finite diffuence Approximations to partial durivations $\frac{dy}{dx} = \lim_{n \to \infty} \frac{f(n+n) - f(n)}{h}$

$$\frac{\partial u}{\partial x} = \frac{u(x+h) - u(xh)}{h} + o(h) = \frac{u(x+h) - u(x+h)h}{h} + o(h)$$

above approximation can be rewritten as

Ux =
$$\frac{2l_{i+1},j-u_{i,j}}{h}$$
 = $\frac{u_{i,j}-u_{i-1}}{h}$ (forward difference)

Ux = (forward difference) (Backward difference

BD)

similarly.

$$uy = \frac{(u_{i,j+1} - u_{i,j})}{k} = \frac{u_{i,j} - u_{i,j-1}}{k}$$
(forward difference) (Backward difference)

FD BA

h-const duff. along x-axis.

k-const duff. along y-axis.

$$u_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left[\frac{u_{i+1,j} - u_{i,j}}{h} \right] = \frac{1}{h} \left[\frac{(u_{i+1,j})_{BD}}{(u_{i,j})_{BD}} \right]$$

$$u_{xx} = \frac{1}{h} \left[\frac{(u_{i+1,j} - u_{i,j})}{h} - \frac{(u_{i,j} - u_{i+1,j})}{h} \right]$$

$$u_{xx} = \frac{1}{h^2} \left[\frac{u_{i+1,j} - u_{i,j}}{h} - \frac{u_{i,j}}{h} + \frac{u_{i-1,j}}{h} \right] + o(h^2)$$

similarly.

$$u_{yy} = \frac{1}{k^2} \left[u_{i,j+1} - 2u_{i,j} + u_{i,j-1} \right] + O(tk^2)$$

Elliptic iequations

Consider Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 : i.e. \quad \nabla^2 u = 0, \text{ or } u_{xx} + u_{yy} = 0$$

. (1.11)

Replacing above equation with its derivative

$$\frac{(2i+1,j-24i,j+4i-1,j)}{4^2} + \frac{(2i,j+1,-24i,j+4i,j-1)}{4^2} = 0$$

in case of square much h= k.

$$u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4 u_{i,j} = 0$$

$$u_{i,j} = \frac{1}{4} (u_{i+1,j} + u_{i+1,j} + u_{i,j+1,+} u_{i,j-1})$$

Scanned with CamScanner

the value of "u" at any interior point is

the axiithmetic mean of the value of "u" at the
four lattice points. This is called standard
five points formula. (SFPF)

Control value = arrage of four other values

A less accertate sometimes can be used which is the

average of four neighbouring mesh points and

ealled Diagonal five point formula (DFPF).

Solution of Laplace's Equation (using Gaus-siedal formula) iteration method

Example: - solve uxx, + uyy = v for the following a mesh with boundary values as shown in figure below:

Boundary values are symmetrical about diagonal Al. By symmetry we can wrute

Rough values:

$$\frac{h \text{ values:}}{u_1 = \frac{(1+1+0+0)}{4}} = \frac{2}{4} = 0.5 \text{ (SFPF)}$$

$$u_4 = \frac{5+5+0+0}{4} = \frac{10}{4} = 2.5 \text{ (SFPF)}$$

Using SFPF, we have the following requations!

$$u_1 = \frac{(1+1+u_3+u_2)}{4} = \frac{(2+2u_2)}{4} = \frac{(1+u_2)}{2}$$
(as $u_2 = u_3$)

$$u_1 = \frac{1 + u_2}{2}$$

$$u_2 = \frac{(2+4+u_1+44)}{4} = \frac{(6+u_1+44)}{4}$$

$$u_2 = 6 + u_1 + u_4$$

$$\mathcal{I}_3 = \mathcal{U}_2$$

$$u_4 = \frac{5+5+u_2+u_3}{4} = \frac{10+2u_2}{4} = \frac{(5+u_2)}{2}$$
(a) $u_2 = u_3$)

		The state of the s	the terrain states from the
Threation	201	112=U3	44
n	21=1+42	162= (6+41+44)	$44 = \frac{5 + 42}{2}$
0	0.5	00	2.5
1	1+0 = 0.5	$\frac{6+0.5+2.5}{4} = 2.25$	5+ 2·25 = 3·6250
2	1.6250	2.0125	3.9063
3	1.9063	2.9532	3.9766
4 ,	19766	2.9883	3.9942
5.	1-9942	2.9971	3.9985
6.	1.9986	2.9993	3.9996
7	1.9997	2 9998	3.3333
0	1. 9999	3.0000	4.0000
9.	2.0	3.0000	4.0000
10	2.0	3.0000	4.0000

solution _ $u_1 = 2.0000$, $u_2 = u_3 = 3.0000$ $u_4 = 4.0000$

Scanned with CamScanner

Theration n	$CL_1 = (4 + U_2 + U_3)$	U2=(19+41+44)	43= 3+41+4	14 4 = (16+43) +42/4
Ó	2	5.2500	1.2500	0
1	2.6250	5.4063	1.4663	5.7631
2	2.7032	6.0516	2.8516	G.4258
3	3.4258	7.2129	3,2129	G.6065
4	3.6065	7.30.32	3.3033	6.6516
5	3.6516	7.3258	3.32 58	6.6629
6	3.6629	7.3315	3.3315	6.6657
7	3.6658	7.3329	3.3329	6.6664
8	3.6665	7.3332	3.3332	6.6666
9	3:6666	7.3333	3,3333	6.6667

 $U_1 = 3.666$, $U_2 = 7.333$, $U_3 = 3.333$, $U_4 = 6.666$ correct upto 3^{RD} place of decimal.

iv)
$$n(x,4) = x^2$$
 for $0 \le x \le 4$

Solution

Rough value

$$U_{5} = \frac{(0+4+14+6)}{4} = 6 \quad (SFPF)$$

$$U_{1} = \frac{(0+6+0+4)}{4} = 2.5 \text{ (DFPF)}$$

$$U_{3} = \frac{(16+6+4+14)}{4} = 10 \text{ (DFPF)}$$

$$U_{2} = \frac{2.5+4+10+6}{4} = 5.625 \text{ (SFPF)}$$

$$U_{3} = \frac{(6+14+12+6)}{4} = 9.5 \text{ (DFPF)}$$

$$U_{4} = \frac{(6+9.5+14+10)}{4} = 9.875 \text{ (SFPF)}$$

$$U_{7} = \frac{(0+6+6+0)}{4} = 3.0 \text{ (DFPF)}$$

$$U_{4} = \frac{(0+2.5+6.0+3.0)}{4} = 2.8750 \text{ (SFPF)}$$

$$U_{4} = \frac{(6+3.0+6+9.5)}{4} = 6.125 \text{ (SFPF)}$$

using SFPF following equ can be used to improve the rough value of u's by Gauss-Siedel method.

$$u_{1} = \left(0 + 1 + u_{2} + u_{4}\right) ; \quad u_{4} = \frac{1 + u_{2} + u_{4}}{4}$$

$$u_{2} = \frac{4 + u_{1} + u_{3} + u_{5}}{4} ; \quad u_{2} = \frac{4 + u_{1} + u_{3} + u_{5}}{4}$$

$$u_3 = \frac{9+15+u_2+u_6}{4}$$
; $u_3 = \frac{24+u_2+u_6}{4}$

$$44 = (0 + 41 + 45 + 47); \quad 4 = 41 + 45 + 47$$

$$u_6 = \frac{(14 + u_3 + u_5 + u_9)}{4}$$

$$48 = \frac{6 + 45 + 47 + 49}{4}$$

$$4g = \frac{13+9+46+48}{4} = \frac{22+46+48}{4}, \quad 4g = \frac{22+46+48}{4}$$

43 22+46+43	9.5	9.5049	9.5070	3.50 80	9.5084		uz = 3.00	
48 8h	6.125	4051.9	6.1565	6.1587	6.1598		46= 9.87.	1
9h+4h+8	3.0	2.9922	3.0039	3.00 69	3.0080	,17	6.2	•
46 (43+45+49 +143)	9.8750	9.8692	4.0.6	9.8731	9.8740		2:87, US=	
45 40+407 40+400	0.9	6.1094	6-1172	17/0	18.5	80	Clq = 2:	
	2.8750	2.8438	2.8653	2.8409	2,8731		decemal	
43 (24+42)	0)	9.84350 9.8672	9,8633	6490.6	9,8651		\$,	9.50
(1+ 4+44) (4+4+43+45) (2+44+46) (41+45+47)	5,625	5.5938	2.5040	5.5857	P+85.5	•	2	15, 4g= 9.50
(+ 42+44)	2,5	2.37.50	2.3594	2.3623	2.3642		corruct abto	ug = 6.15,
£ .	o	<u>-:</u>	7	(m)	72			

Poisson's Equation

$$\nabla^2 u = f(x, y)$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

for square mesh h=k.; n=ih, y=jk= th

$$\left(\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{h^2}\right)+\left(\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{h^2}\right)=f(ih,jh)$$

$$u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4 u_{i,j} = h^2 f(ih,jh)$$

By applying the above formula at each mesh point, we get a system of linear equation:

Example: - solve $\nabla^2 u = -10(x^2+y^2+10)$ over the square mesh with sides x=0, y=0, x=3 & y=3 with u=0 on the boundary and mesh length of 1 unit

At point
$$A(i=1,j=2)$$
; $h=1$
 $0+0+42+43-441=-10f(ih, h)$ $i=1$
 $=-10f(1,2)$

$$42+43-441=-150$$

$$41=\frac{(42+43+150)}{4}$$

At
$$C(i=1, j=1)$$

$$U_{3} = \frac{1}{4}(U_{1} + U_{4} + 180)/4$$
At $D(i=2, j=1)$

$$U_{4} = \frac{1}{4}(U_{2} + U_{3} + 150)$$
from above $M_{1} = 4U_{1}$
Using Gains-sceold formula we get
$$U_{1} = U_{1} = 74.999, \quad U_{2} = 82.499, \quad U_{3} = 67.499$$