Memo: Intr-o algebra Boole B, pentru orice x,y in B:

 $x \rightarrow y = x^{-} v y$, unde am notat cu x^{-} complementul lui x;

$$x <-> y = (x -> y) ^ (y -> x);$$

$$x -> y = 1 <=> x <= y;$$

$$x <-> y = 1 <=> x = y.$$

Notez cu |- deductia sintactica si faptul de a fi adevar sintactic (i.e. teorema formala).

Notez cu |= satisfacerea, deductia semantica si faptul de a fi adevar semantic (i.e. tautologie, enunt universal adevarat).

Notez cu |/= negatia lui |=, cu |/- negatia lui |-, cu </= negatia lui <=, iar cu =/= negatia lui = (i.e. nonegalitatea).

Exercițiul 5. Fie V mulțimea variabilelor propoziționale și E mulțimea enunțurilor logicii propoziționale clasice, iar $\alpha, \beta, \varphi \in E$, astfel încât $\varphi = [(\alpha \wedge \beta) \to \beta] \to (\alpha \wedge \beta)$.

Să se demonstreze că, în logica propozițională clasică:

- dacă $\alpha, \beta \in V$, atunci enunțul φ e satisfiabil;
- dacă mulțimea de enunțuri $\{\alpha, \beta\}$ e nesatisfiabilă, atunci enunțul φ e nesatisfiabil.
- (1) matematic;
- (2) prin predicatele zeroare în Prolog:
 - propr1, care întoarce true ddacă, atunci când $\alpha, \beta \in V$, există o interpretare $h: V \to \mathcal{L}_2$ care satisface enunțul φ , efectuând o demonstrație semantică pentru această implicație;
 - propr2, care întoarce true ddacă, atunci când nicio interpretare nu satisface mulţimea $\{\alpha, \beta\}$, nu există interpretări care să satisfacă enunțul φ , efectuând o demonstrație semantică pentru această implicație.

Pentru **jumătate din punctajul** de la **această a doua cerință**, puteți scrie doar unul dintre predicatele zeroare *propr*1 și *propr*2, la alegere.

Rezolvarea 1: fi = [(alfa ^ beta) -> beta] -> (alfa ^ beta).

$$h^{\sim}(fi) = h^{\sim}([(alfa \land beta) \rightarrow beta] \rightarrow (alfa \land beta)) =$$

$$[(h^{(a)} \wedge h^{(beta)}) -> h^{(beta)}] -> (h^{(a)} \wedge h^{(beta)}).$$

 $[(h^{(alfa)} ^ h^{(beta)}) -> h^{(beta)}] -> (h^{(alfa)} ^ h^{(beta)}) = 1 <=> (h^{(alfa)} ^ h^{(beta)}) -> h^{(beta)} <= h^{(alfa)} ^ h^{(beta)}.$

Caz 1: $h^{(alfa)} h^{(alfa)} h^{(beta)} = 0 \Rightarrow (h^{(alfa)} h^{(beta)}) \Rightarrow h^{(beta)} = 0 \Rightarrow h^{(beta)} = 1.$

1 </= 0, asadar (h~(alfa) ^ h~(beta)) -> h~(beta) </= h~(alfa) ^ h~(beta), deci h|/=fi.

Caz 2: $h^{(alfa)} h^{(beta)} = 1 <=> h^{(alfa)} = h^{(beta)} = 1$.

Atunci (h~(alfa) ^ h~(beta)) -> h~(beta) = 1 -> 1 = 1 <= 1 = h~(alfa) ^ h~(beta), asadar h|=fi.

Prin urmare, $h|=fi <=> h^{(alfa)} = h^{(beta)} = 1 <=> h|=alfa si h|=beta <=> h|= {alfa,beta}. (*)$

Daca alfa, beta apartin lui V (nu neaparat cu alfa=/=beta), atunci exista (o infinitate de interpretari, pentru ca, in orice element din multimea infinita $V\{alfa,beta\}$, o astfel de interpretare poate lua orice valoare din L2, asadar numarul acestor interpretari este $|\{g \mid g:V\{alfa,beta\}-L2\}|=|L2|^{|V\{alfa,beta\}|}=|L2|^{|V|}=|P(V)|)$ h:V->L2={0,1} cu h(alfa) = h(beta) = 1, <=> h^(alfa) = h^(beta) = 1 <=>(*) h|=fi => fi e satisfiabila.

Daca {alfa,beta} e nesatisfiabila, i.e.:

(nu exista h:V->L2)(h $= \{alfa,beta\}$) <=>(*)

(nu exista h:V->L2)(h |= fi) <=> fi e nesatisfiabil.

Rezolvarea 2: fi = [(alfa ^ beta) -> beta] -> (alfa ^ beta).

Fie h:V->L2= $\{0,1\}$. ---> h~:E->L2

 $h^{\sim}(fi) = h^{\sim}([(alfa \land beta) \rightarrow beta] \rightarrow (alfa \land beta))=$

 $[(h^{(alfa)} \wedge h^{(beta)}) -> h^{(beta)}] -> (h^{(alfa)} \wedge h^{(beta)}).$

h~(alfa)	h~(beta)	h~(alfa) ^ h~(beta)	(h~(alfa) ^ h~(beta)) -> h~(beta)	h~(fi)
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	1	1

Asadar: $h|=fi <=> h^{(fi)} = 1 <=> h^{(alfa)} = h^{(beta)} = 1 <=> h|=alfa si h|=beta <=> h|={alfa,beta}. (*)$

Prin urmare:

daca alfa, beta apartin lui V (nu neaparat cu alfa=/=beta), atunci exista (o infinitate de interpretari) h:V->L2 cu h(alfa)=h(beta)=1 <=>

 $h^{(alfa)} = h^{(beta)} = 1 <=>^{(*)} h = 1$, asadar fi e satisfiabila;

daca multimea {alfa,beta} e nesatisfiabila, adica:

(nu exista h:V->L2)(h|={alfa,beta}) \ll

(nu exista h:V->L2)(h|=fi) <=> fi e nesatisfiabila.

- un podicat unud $d\phi X(-Fetf)$, care întoarce în argumentul sou ∇ctf frencția de la A la A care Ca care binară pa A este egală cu închiderea simetrică a relator de suc esiune a poset lu (A, 1) arân $MA(A \times) = \{a, b\}, Max(A, \le) = \{c, d\}, a \|d\| \S \|b\|_{C}$
- in predicat unar detR(RelR) care adoate înlargin untu său RelR cea mai mică relație de echivaler pe A are include relația (un A mală sotală Fctf returnată de predicatul detf;
- un predicat un r detk(-C, v), care întoarce k gumentul său Ck elementul diferit de a din clasa de eccivalență a di a în glația le eccivalență RelR returnată de predicatul detR;
- un predicat zen ar verif Asatepsilon, care întoarce true dacă $A \vDash \varepsilon$ și false dacă $A \nvDash \varepsilon$, efectuând o demo strație semantică, prin testarea perechilor de valori din mulțimea A pentru variabilele x, y într—

٧

Pentru jumătate din punctajul de la această a doua certută, puteți scrie doar predicatul unar tet L2xL2xL2tL3 definit a mai us.

Exercitiu. Fre i multiruea varia i elor propoziționale si V în lțimea enunțiu lor exicit in a claster iar α, ρ, γ a E, ast finea $\rho = [(\alpha \wedge \beta) \to \beta] \to (\alpha \wedge \beta)$. It is demonstreze că, în logica propozițională clasică:

- Că $\alpha, \beta \in V$, atunci enunțul φ e satisfiabi ;
- dacă mulțimea de enunțuri $\{\alpha, \beta\}$ e nesatist al lă, tunci enunțul φ e nesatisfiabil.
- ① matematic;

2) prin predi atele zeroare în Prole

- $m_{\lambda}r$ 1, care înte arce true dda ă, atunci când $\alpha, \beta \in \mathbb{R}$ există o inte prete $n_{\lambda}r \to L_2$ care sa sface quincul φ , sective ad o demonstrație semantică pentru aceasta puplicație;
- $propr^2$, care înt are true ddacă, atunci când nicio interpretare nu satisface interpretare $\{\alpha, \beta\}$, nu există interpretări care să utisfacă enunțul φ , efectuând o demonstrație semantică pentru această implicații

Pentru **jumătate din punctajul** de la **această a doua cerință**, puteți scrie doar unul dintre predicatele zeroare *propr*1 și *propr*2, la alegere.

Exercițiul 6. Considerăm signatura de ordinul I: $\tau = (1, 2, 0)$, simbolul de operație unară f, simbolul de relație

Mnemonic: Pentru orice multime Sigma de enunturi, orice enunt epsilon si orice g:V->L2:

 $g = epsilon <=> g^{(epsilon)};$

Exercițiul 8. Fie V mulțimea variabilelor propoziționale și E mulțimea enunțurilor logicii propoziționale clasice, iar $\alpha, \beta, \gamma, \varphi, \psi \in E$, astfel încât:

5

$$\varphi = (\alpha \to \beta) \leftrightarrow \gamma \quad \text{si} \quad \psi = \gamma \to (\alpha \land \neg \beta).$$

Să se demonstreze că, în logica propozițională clasică:

- nicio interpretare care satisface multimea de enunturi $\{\varphi, \psi\}$ nu satisface enuntul γ ;
- dacă mulțimea de enunțuri $\{\varphi,\psi\}$ e satisfiabilă, atunci enunțul γ nu e teoremă formală.
- (1) matematic;
- ② prin predicatele zeroare în Prolog:
 - propr1, care întoarce true d
dacă orice interpretare $h:V\to \mathcal{L}_2$ satisface implicația $h\models \{\varphi,\psi\}\Rightarrow h\not\models \gamma$,
efectuând o demonstrație semantică pentru această implicație pentru orice interpretare h, mai precis
pentru fiecare triplet de valori de adevăr pentru enunțurile α,β,γ într-o interpretare h;
 - propr2, care întoarce true d
dacă satisfiabilitatea mulțimii de enunțuri $\{\varphi,\psi\}$ implică
 $\not\vdash \gamma$, folosind predicate auxiliare care testează satisfiabiliatea mulțimii de enunțuri $\{\varphi,\psi\}$ și dacă enunțu
l γ e teoremă formală, prin testarea tuturor tripletelor de valori de adevăr pentru enunțurile α,β,γ într–o interpretare.

Pentru jumătate din punctajul de la această a doua cerință, puteți scrie doar unul dintre predicatele zeroare propr1 și propr2, la alegere.

fi = (alfa->beta)<->gama si psi = gama->(alfa^-|beta).

Prima cerinta:

Fie h:V->L2 a.i.
$$h|=\{fi,psi\}. <=> h^{(fi)} = h^{(psi)} = 1$$
, asadar:

$$1 = h^{(fi)} = h^{((alfa->beta)<->gama)} = (h^{(alfa)->h^{(beta))<->h^{(gama)}}$$

$$1 = h^{(psi)} = h^{(gama-)(alfa^-|beta)} = h^{(gama)-}(h^{(alfa)^h}(beta)^-).$$

Pp. abs. ca h|=gama. $<=> h^{\sim}(gama)=1$. Atunci:

$$(h^{(alfa)}->h^{(beta)})<->1 = 1 <=>h^{(alfa)}->h^{(beta)} = 1 <=>h^{(alfa)}v h^{(beta)} = 1 <=>(h^{(alfa)}v h^{(beta)}) = 1 <=>h^{(alfa)}v h^{(beta)} = 0;$$

 $1 - (h^{(alfa)^h}(beta)^-) = 1 <=> 1 <= h^{(alfa)^h}(beta)^- <=> h^{(alfa)^h}(beta)^- = 1.$ => 0=1 in L2; contradictie. => h|/=gama.

A doua cerinta:

Pp. ca {fi,psi} e satisfiabila, adica exista h:V->L2 a.i. h|={fi,psi}.

Fie h:V->L2 a.i. h|={fi,psi}. Conform primei proprietati cerute, demonstrate mai sus, => h|/=gama.

Asadar exista h:V->L2 a.i. h|/=gama, i.e. gama nu e teorema formala: |/- gama.

Să ce demonstree că, în logica prefesțivlată clasioii nicio interpretare care satisface dunițum de cungurui (c_{V}) nu satisface emurțui γ ; dacă mulțimea de emurțui (c_{V} , ψ) e sinchipela, atquei penpaul γ nu e tessanul fermulii ① natematiț ② nu confidatori secure în Prolog: • propri1, care fontoses trive Gliser Osic indepredare h; $V \to \mathcal{L}_2$ satisface implicația $h \models (\varphi, \psi) \Rightarrow h \vdash$ sectential of demburițui emunicia pentha coesată implicație pentru orice interpretare h, mai pre
pentru ficeție triplicație de videri de oderie pentru emunicia ρ , γ inter- interpretare h;

Pentru Prolog, sa retinem ca: Prima proprietate ceruta:

A doua proprietate ceruta:

