Organizační úvod

Poznámka

1 Úvod

Definice 1.1 (Diferenciální rovnice)

Diferenciální rovnice je rovnice, která obsahuje derivaci.

Poznámka (Motivace)

Fyzika (např. pružina: $m \cdot \ddot{x} = -k \cdot x$), ekonomie (např. rovnice majetku?: $k' = \alpha \cdot k - c(t)$), biologie (např. model dravec-kořist: $d' = \alpha \cdot d \cdot k - \beta \cdot d \wedge k' = \gamma \cdot k - \delta \cdot d \cdot k$).

Poznámka (Co nás zajímá na DR)

Přesné řešení (často neumíme spočítat), existence a jednoznačnost řešení, jaké vlastnosti má řešení.

Poznámka (Předpoklady)

 $\Omega \subset \mathbb{R}^{n+1}$ otevřená, $(x,t) \in \Omega \subset \mathbb{R}^n \times I$, $f: \Omega \to \mathbb{R}^n$, x' = f(x,t). $I \subset \mathbb{R}$.

Definice 1.2 (Obyčená diferenciální rovnice, řešení)

Obyčejná diferenciální rovnice je rovnice x' = f(x,t) z předchozí poznámky.

Funkce $x: I \to \mathbb{R}^n$ je řešení DR, jestliže

- $\forall t \in I : (x(t), t) \in \Omega$,
- $\forall t \in I$ existuje vlastní derivace x'(t),
- $\forall t \in I \text{ plati } x'(t) = f(x(t), t).$

Poznámka

První dvě podmínky jsou jen existenční podmínky k rovnici ve třetím bodě.

Typicky má DR nekonečně mnoho řešení, přidáváme proto počáteční podmínku $(x_0, t_0) \in \Omega$, $t_0 \in I$.

Lemma 1.1

Nechť $\Omega \subset \mathbb{R}^{n+1}$ otevřená, $f: \Omega \to \mathbb{R}^n$ spojitá a $x: I \to \mathbb{R}^n$ spojitou a takovou, že graf x $(\{(x(t),t)|t\in I\})$ leží v Ω . Pak následující tvrzení jsou ekvivalentní:

- x je řešení DR s počáteční podmínkou $x(t_0) = x_0$;
- $x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds \ \forall t \in I.$

 \Box Důkaz

"
$$\Longrightarrow$$
": x a f je spojitá, tedy $x'=f(x(t),t)$ je spojitá, tj. $x\in C^1(I)\implies \int_{t_0}^t x'(s)ds=x(t)-x(t_0).$

" \Leftarrow ": jelikož f i s je spojitá, tak integral je diferencovatelný a x(t) je spojitá, tedy

$$x'(t) = 0 + f(x(t), t) \land x(t_0) = t_0 + 0.$$

Věta 1.2 (Peanova věta o lokální existenci)

Nechť $\Omega \subset \mathbb{R}^{n+1}$ otevřená, $f: \Omega \to \mathbb{R}^n$ spojitá a $(x_0, t_0) \in \Omega$. Potom $\exists \ \delta > 0$ a funkce $x: B(t_0, \delta) \to \mathbb{R}^n$ taková, která je řešení DR a splňuje počáteční podmínku. (Stačí spojitá f a kompaktní Ω .)

Tvrzení 1.3 (Pomocné tvrzení)

Pokud $\Omega = \mathbb{R}^{n+1}$ a f je omezená na Ω , pak $\forall T$ existuje řešení DR x na $[t_0 - T, t_0 + T]$ splňující počáteční podmínku.

 $D\mathring{u}kaz$

Když x_{λ} je definována na $[t_0 - \lambda, t]$, pak pravá strana má smysl $\forall t \in [t_0, t_0 + \lambda]$ tím pádem pravá strana integrálního tvaru má smysl $\forall t \in [t_0, t + \lambda]$, tím pádem definujeme x_{λ} na $[t_0 - \lambda, t_0 + \lambda]$.

Nyní definujme $M:=\left\{x_n|_{[t_0,t_0+T]}\right\}_{n=1}^\infty$ a ověříme, že M splňuje podmínky Arzela-Ascoliho věty:

$$|x_{\lambda}(t)| \le |x_0| + \int_{t_0}^t |f(x_{\lambda}(s-\lambda))| ds \le |x_0| + ||f||_{\infty} \cdot |t - t_0| \le |x_0| + ||f||_a \cdot T,$$

$$|x_{\lambda}(t) - x_{\lambda}(\tau)| = \left| \int_{\tau}^{t} f(x_{\lambda}(s-\lambda), s) ds \right| \le ||f||_{\infty} \cdot |t-\tau|.$$

Podle AA věty tedy existuje podposloupnost M, která konverguje stejnoměrně. Limitu si označme x, podposloupnost x_{n_k} .

Chceme dokázat, že x je řešení DR: TODO!

$$\lambda_k := \frac{1?}{n_k}$$

 $D\mathring{u}kaz$

3