CS 278 HW 10 8.1.1 (D) (non decreasing) because First two terms @ nth term is largest integer to such that $\Lambda_{1}^{k!} \leq \Lambda$ Λ_{2}^{1}, Z Λ_{3}^{2}, Z $\Lambda_$ $\Lambda_{6/3}$ non decreasing @ The of tem is 3 (Mr increasing and non decreasing (F) nth torn is n N, = 1 N = 4 Ng = 9 (increasing and non decreasing) (h) nt form is $2^{\Gamma_{109}} = 7$ $\Lambda_{1} = 2^{2} = 1$ $\Lambda_{2} = 7$ $\Lambda_{3} = 7$ $\Lambda_{3} = 7$ $\Lambda_{4} = 7$ $\Lambda_{5} = 7$

1000000000

8.1.2 (b) $\alpha_{1} = n^{2} - 3n$, For $n \ge 1$ $\alpha_{1} = -2$, $\alpha_{2} = -2$, $\alpha_{3} = 0$, $\alpha_{4} = 21$, $\alpha_{5} = 10$

-3)

3

-

-

9

9

--

-3

-

--

-9

-

(d) $a_n = Z^n - n!$, for $n \ge 1$ $a_1 = 1$, $a_2 = Z$, $a_3 = Z$, $a_4 = 16 - 24 = -8$ [none of the properties]

8.1.3 6 Arithmetic sequence: first value = 2, common difference of 3 $A_1 = 2$, $A_2 = 5$, $A_3 = 8$, $A_4 = 11$, $A_5 = 14$, $A_6 = 17$

> © Geometric sequence: First valle = 27, common ratio is 1/3. $\alpha_1 = 27$, $\alpha_2 = 9$, $\alpha_3 = 3$ $\alpha_4 = 1$, $\alpha_5 = 1/3$, $\alpha_6 = 1/9$