Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет информационных технологий и программирования Кафедра компьютерных технологий

Реализация эффективного взаимодействия между платформой для анализа экспрессии генов Morpheus и библиотекой вычислительных методов R/Bioconductor

Зенкова Д.М.

Научный руководитель: Сергушичев А. А.

ОГЛАВЛЕНИЕ

	Стр.
введение	5
ГЛАВА 1. ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ	6
1.1. Биоинформатика	6
1.1.1. Анализ экспрессии генов	6
1.1.2. Используемые методы	
1.2. Существующие решения для анализа экспрессии генов	6
1.2.1. GENE-E	6
1.2.2. morpheus.js	6
1.2.3. R/Bioconductor	
1.3. Инструменты, которые могут быть применены	7
1.3.1. Язык R и библиотека Bioconductor	7
1.3.2. JavaScript	7
1.3.3. R shiny	7
1.3.4. OpenCPU	7
1.3.5. Gene Expression Omnibus	7
1.3.6. Docker	8
1.3.7. Protocol Buffers	8
1.3.8. Apache2	8
1.3.9. HTML	8
1.4. Постановка задачи	8
Выводы по главе 1	8
ГЛАВА 2. АРХИТЕКТУРА ПРОЕКТА	9
Резюме	9
глава з. реализация	10
Резюме	10
ЗАКЛЮЧЕНИЕ	11
СПИСОК ИСТОЧНИКОВ	12

введение

ГЛАВА 1. ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ

1.1. Биоинформатика

1.1.1. Анализ экспрессии генов

1.1.2. Используемые методы

1.2. Существующие решения для анализа экспрессии генов

1.2.1. **GENE-E**

Платформа для анализа данных и визуального исследования данных, созданная на Java и R. Содержит в себе множество полезных для исследования инструментов: тепловые карты, кластеризацию, фильтрацию, построение графиков и т.д. Позволяет исследовать любые данные в виде матрицы. К тому же, содержит дополнительные инструменты для геномных данных.

Недостатки:

- Чтобы использовать, необходимо устанавливать на свой компьютер.
- Поддержка данного приложения прекратилась в связи с созданием morpheus.js
- Не имеет открытого исходного кода, а только API.

1.2.2. morpheus.js

Веб-приложение от создателя GENE-E. Создано с теми же целями и мотивацией, но уже на JavaScript и с открытым исходным кодом. Удобно для использования исследователями без навыков программирования и так же, как и GENE-E, применимо к любым матрицам.

Недостатки:

- Ограниченный набор функций, которых недостаточно для полноценного анализа.
- Для расширения биоинформатическими алгоритмами требуется реализовывать их заново на JavaScript.

1.2.3. R/Bioconductor

R - язык программирования для статистического анализа данных и работы с графикой. Bioconductor - библиотека, содержащая в себе множество реализаций биоинформатических алгоритмов и методов обработки биологических данных на R. Она постоянно обновляется, пополняется новыми библиотеками, модерируется сообществом. R и Bioconductor очень популярны в биоинформатической среде ввиду предоставляемых возможностей.

Однако для качественного и полноценного анализа с помощью этих инструментов, нужно иметь навыки программирования на R, что весьма неудобно для исследователей биологических специальностей.

1.3. Инструменты, которые могут быть применены

1.3.1. Язык R и библиотека Bioconductor

1.3.2. JavaScript

JavaScript - язык программирования, широко используемый для написания веб-приложений.

1.3.3. R shiny

1.3.4. OpenCPU

OpenCPU - система для встроенных научных вычислений и воспроизводимых исследований, предоставляющая HTTP API для взаимодействия с R-серверами. Имеется также библиотека opencpu.js для интеграции JavaScript и R.

1.3.5. Gene Expression Omnibus

GEO - публичный репозиторий с геномными данными.

В библиотеке Bioconductor есть R-пакет GEOquery для удобной загрузки данных из GEO.

- **1.3.6. Docker**
- 1.3.7. Protocol Buffers
- **1.3.8.** Apache2
- **1.3.9.** HTML
- 1.4. Постановка задачи

Выводы по главе 1

ГЛАВА 2. АРХИТЕКТУРА ПРОЕКТА

В этой главе будут подробно рассмотрены элементы проекта, их взаимосвязь и ключевые для архитектуры выдержки из исходного кода.

Резюме

глава 3. РЕАлизация

Резюме

ЗАКЛЮЧЕНИЕ

СПИСОК ИСТОЧНИКОВ