Part-of-speech tagging с использованием нейронных сетей

Даниил Анастасьев Научный руководитель: Евгений Инденбом

Москва, 2018

Содержание

- Введение
- 2 Признаки
- Отражения потеры
- 4 Данные
- Ваключение

Описание задачи

• Part-of-speech tagging — важный источник признаков для большинства NLP pipeline'ов.

Описание задачи

- Part-of-speech tagging важный источник признаков для большинства NLP pipeline'ов.
- Задача найти грамматические значения (*meru*) всех слов в предложении:

```
Y двери стоял \begin{array}{c} \mathbf{cto}\mathbf{n} \\ \mathrm{NOUN} \\ \mathrm{Animacy=Inan} \\ \mathrm{Case=Nom} \\ \mathrm{Gender=Masc} \\ \mathrm{Number=Sing} \end{array}
```

The interviews took $\begin{array}{c} \mathbf{place} \\ \mathbf{NN} \end{array}$ two years ago .

Омонимичность тегов

Грамматическое значение слова почти невозможно определить, не принимая во внимание его контекст:

$$\begin{array}{ccc} \text{she} & \text{hated} & \text{lies} \\ \hline \text{VBD} & & \text{NNS} \\ \text{PRP} & \text{VBN} & \text{VBZ} \\ \end{array}$$

 Чтобы решить любую задачу машинного обучения, нам нужны:

- Чтобы решить любую задачу машинного обучения, нам нужны:
 - Модель;

- Чтобы решить любую задачу машинного обучения, нам нужны:
 - Модель;
 - Данные для обучения;

- Чтобы решить любую задачу машинного обучения, нам нужны:
 - Модель;
 - Данные для обучения;
 - Признаки, извлекаемые из данных;

- Чтобы решить любую задачу машинного обучения, нам нужны:
 - Модель;
 - Данные для обучения;
 - Признаки, извлекаемые из данных;
 - Функция потерь.

- Чтобы решить любую задачу машинного обучения, нам нужны:
 - Модель;
 - Данные для обучения;
 - Признаки, извлекаемые из данных;
 - Функция потерь.
- Зафиксируем модель Bidirectional LSTM;

- Чтобы решить любую задачу машинного обучения, нам нужны:
 - Модель;
 - Данные для обучения;
 - Признаки, извлекаемые из данных;
 - Функция потерь.
- Зафиксируем модель Bidirectional LSTM;
- Улучшим её результат, сконцентрировавшись на остальных компонентах.

Baseline

 Основой модели для нас послужит двуслойный BiLSTM;

Baseline

ABBYY

- Основой модели для нас послужит двуслойный BiLSTM;
- Эмбеддинги слов будет строить BiLSTM символьного уровня часть модели с самым высоким качеством на PTB;

Baseline

- Основой модели для нас послужит двуслойный BiLSTM;
- Эмбеддинги слов будет строить BiLSTM символьного уровня часть модели с самым высоким качеством на PTB;
- Дополним пошагово данную модель новыми фишками.

Датасеты

Использовались следующие датасеты для проверки моделей:

Датасет	Train	Dev	Test	#labels
PTB	912 344	131 768	129 654	45
UD SynTagRus	871 082	118 630	117 470	723
MorphoRuEval-2017	977 567	108 581	19 560	302
Tiger	711 041	88 152	89 054	54
UD Ukrainian IU	75 098	10 371	14 939	1 196

 BiLSTM символьного уровня один из стандартных способов построить словный эмбеддинг;

- ВіLSTM символьного уровня один из стандартных способов построить словный эмбеддинг;
- Обрабатывает символы один за другим;

- ВіLSTM символьного уровня один из стандартных способов построить словный эмбеддинг;
- Обрабатывает символы один за другим;
- Может обрабатывать слова произвольной длины;

- ВіLSTM символьного уровня один из стандартных способов построить словный эмбеддинг;
- Обрабатывает символы один за другим;
- Может обрабатывать слова произвольной длины;
- Не параллелизуется эффективно.

• Обычная feed-forward сеть — предлагаемая альтернатива Char BiLSTM;

- Обычная feed-forward сеть предлагаемая альтернатива Char BiLSTM;
- Обрабатывает конкатенацию символьных эмбеддингов;

- Обычная feed-forward сеть предлагаемая альтернатива Char BiLSTM;
- Обрабатывает конкатенацию символьных эмбеддингов;
- Может работать лишь с фиксированной длиной слов:

- Обычная feed-forward сеть предлагаемая альтернатива Char BiLSTM;
- Обрабатывает конкатенацию символьных эмбеддингов;
- Может работать лишь с фиксированной длиной слов:
 - 11–13 символов обычно достаточно;

- Обычная feed-forward сеть предлагаемая альтернатива Char BiLSTM;
- Обрабатывает конкатенацию символьных эмбеддингов;
- Может работать лишь с фиксированной длиной слов:
 - 11–13 символов обычно достаточно;
 - Более короткие слова дополняются слева,
 более длинные обрезаются.

- Обычная feed-forward сеть предлагаемая альтернатива Char BiLSTM;
- Обрабатывает конкатенацию символьных эмбеддингов;
- Может работать лишь с фиксированной длиной слов:
 - 11–13 символов обычно достаточно;
 - Более короткие слова дополняются слева,
 более длинные обрезаются.
- Считаются гораздо быстрее Char BiLSTM.

Сравнение вариантов эмбеддингов

- По качеству модели близки;
- По скорости очевидно выигрывает Char FF.

Dataset	Char BiLSTM	Char FF
PTB	97.02% / 96.98%	97.32% / 97.26%
SynTagRus	95.23% / 95.39%	94.98% / 95.16%
MorphoRuEval	96.48% / 94.69 %	96.68% / 94.63%
Tiger	98.27% / 99.86%	98.31% / 99.73%
Ukrainian	80.10% / 78.70%	81.51% / 79.48%

• В предобученных словных эмбеддингах закодирована важная информация, собранная на больших корпусах;

- В предобученных словных эмбеддингах закодирована важная информация, собранная на больших корпусах;
- Перенесём эту информацию с помощью автоэнкодера:

- В предобученных словных эмбеддингах закодирована важная информация, собранная на больших корпусах;
- Перенесём эту информацию с помощью автоэнкодера:
 - Энкодер одна из функций символьного уровня;

- В предобученных словных эмбеддингах закодирована важная информация, собранная на больших корпусах;
- Перенесём эту информацию с помощью автоэнкодера:
 - Энкодер одна из функций символьного уровня;
 - Декодер полносвязный слой, инициализированный предобученными эмбеддингами.

- В предобученных словных эмбеддингах закодирована важная информация, собранная на больших корпусах;
- Перенесём эту информацию с помощью автоэнкодера:
 - Энкодер одна из функций символьного уровня;
 - Декодер полносвязный слой, инициализированный предобученными эмбеддингами.
- Кросс-энтропийные потери стимулируют символьный эмбеддинг слова приближаться по косинусной мере к его предобученному варианту и удаляться от всех остальных эмбеддингов.

Результаты при применении предобучения

 Предобученные эмбеддинги обучались дальше вместе со всей моделью под задачу;

Результаты при применении предобучения

- Предобученные эмбеддинги обучались дальше вместе со всей моделью под задачу;
- На первых эпохах модель с предобучением достигала заметно более высокого качества.

Результаты при применении предобучения

- Предобученные эмбеддинги обучались дальше вместе со всей моделью под задачу;
- На первых эпохах модель с предобучением достигала заметно более высокого качества.

Dataset	Char FF	Char FF (Pretrained)
PTB	97.32% / 97.26%	97.40% / 97.31%
SynTagRus	94.98% / 95.16%	95.22% / 95.36%
MorphoRuEval	96.68% / 94.63%	96.88% / 94.63%
Tiger	98.31% / 99.73%	98.39 % / 99.69%
Ukrainian	81.51% / 79.48%	82.65% / 80.67%

ABBYY

Граммемные эмбеддинги

 Сложно предсказать тег слова по набору его символов близкие по написанию слова бывают очень далеки;

Граммемные эмбеддинги

- Сложно предсказать тег слова по набору его символов близкие по написанию слова бывают очень далеки;
- Будем оценивать априорные вероятности каждой из возможных граммем по словарю:

Граммемные эмбеддинги

- Сложно предсказать тег слова по набору его символов близкие по написанию слова бывают очень далеки;
- Будем оценивать априорные вероятности каждой из возможных граммем по словарю:
 - Например, форма существительного «cut» имеет частотность $2.84\cdot 10^{-5}$, глагольная форма $-8.75\cdot 10^{-5}$. Тогда $\mathbf{P}(\mathrm{noun})\approx 0.26$.

Граммемные эмбеддинги

- Сложно предсказать тег слова по набору его символов близкие по написанию слова бывают очень далеки;
- Будем оценивать априорные вероятности каждой из возможных граммем по словарю:
 - Например, форма существительного «cut» имеет частотность $2.84\cdot 10^{-5}$, глагольная форма $-8.75\cdot 10^{-5}$. Тогда $\mathbf{P}(\text{noun})\approx 0.26$.
- Добавим полносвязный слой для сокращения размерности эмбеддингов:

◆□▶ ◆御▶ ◆意▶ ◆意▶ ○意

Результаты при применении граммемных эмбеддингов

- На русском и украинском наиболее заметный прирост — до 35–43% ERR;
- На английском и немецком прирост незначительный.

Результаты при применении граммемных эмбеддингов

- На русском и украинском наиболее заметный прирост — до 35–43% ERR;
- На английском и немецком прирост незначительный.

Dataset	Char FF (Pretrained)	+ Grammemes
PTB	97.40% / 97.31 %	97.43% / 97.30%
SynTagRus	95.22% / 95.36%	96.77% / 97.00%
MorphoRuEval	96.88% / 94.63%	98.07% / 95.36%
Tiger	98.39% / 99.69%	98.70% / 99.85%
Ukrainian	82.65% / 80.67%	89.61% / 88.06%

Результаты при добавлении языкового моделирования

 Добавим в модель потери от языкового моделирования;

Результаты при добавлении языкового моделирования

- Добавим в модель потери от языкового моделирования;
- POS LM пытается вместе с предсказанием тега слова выдавать теги предыдущего и следующего слов:

```
tag(hated)
Forward LSTM(she, hated) \sim
                                   tag(lies)
```

ABBYY^{*}

Результаты при добавлении языкового моделирования

- Добавим в модель потери от языкового моделирования;
- POS LM пытается вместе с предсказанием тега слова выдавать теги предыдущего и следующего слов:

Forward LSTM(she, hated) $\sim \frac{\text{tag(hated)}}{\text{tag(lies)}}$

Результаты при добавлении языкового моделирования

- Добавим в модель потери от языкового моделирования;
- POS LM пытается вместе с предсказанием тега слова выдавать теги предыдущего и следующего слов:

Forward LSTM(she, hated) $\sim \frac{\text{tag(hated)}}{\text{tag(lies)}}$

Dataset	All features	+ POS LM
PTB	97.43% / 98.30%	97.57% / 97.49%
SynTagRus	96.77% / 97.00%	96.97% / 97.24%
MorphoRuEval	98.07% / 94.85%	98.12% / 96.72%
Tiger	98.70% / 99.85%	98.71% / 99.57%
Ukrainian	89.61% / 88.06%	89.48% / 88.07%

Предсказание отдельных граммем

Добавим в модель
предсказание отдельных
граммем для каждой из
возможных грамматических
категорий:

Предсказание отдельных граммем

- Добавим в модель
 предсказание отдельных
 граммем для каждой из
 возможных грамматических
 категорий:

Предсказание отдельных граммем

- Добавим в модель
 предсказание отдельных
 граммем для каждой из
 возможных грамматических
 категорий:

Dataset	All features	+ POS LM	+ Gram categories
SynTagRus	96.77% / 97.00%	96.97% / 97.24%	96.89% / 97.20%
MorphoRuEval	98.07% / 94.85%	98.12% / 96.72%	98.01% / 96.65%
Ukrainian	89.61% / 88.06%	89.48% / 88.07%	90.17% / 89.01%

Перенос модели между датасетами

- Перенесем модель на SynTagRus c
 - MorphoRuEval датасета с похожим UD тегсетом;
 - Размеченным Compreno датасетом с не слишком похожим тегсетом.
- При переносе заменим выходной слой и будем первые несколько эпох тренировать только его, а только затем — всю модель целиком.

Перенос модели между датасетами

- Перенесем модель на SynTagRus c
 - MorphoRuEval датасета с похожим UD тегсетом;
 - Размеченным Compreno датасетом с не слишком похожим тегсетом.
- При переносе заменим выходной слой и будем первые несколько эпох тренировать только его, а только затем — всю модель целиком.

Model	Accuracy	
Best previous	96.97% / 97.24%	
MorphoRuEval pretrained	98.21% / 98.33%	
Compreno pretrained	98.18% / 98.29%	

Перенос модели между языками

 Перенесем модель на украинский язык с SynTagRus аналогичным образом;

Перенос модели между языками

- Перенесем модель на украинский язык с SynTagRus аналогичным образом;
- Для этого объединим все граммемы и символы, встречающиеся в этих языках.

Dataset	$ {\bf Char\ FF+Grammemes} $	+ Pretrained
Dataset	+ PosLM	on Syntagrus
Ukrainian	89.48% / 88.07%	90.93% / 89.54%

Совместная тренировка модели под несколько языков

 Модель при переносе очень быстро забывает то, на чём она училась до этого;

- Модель при переносе очень быстро забывает то, на чём она училась до этого;
- Будем тренировать модель под два языка сразу;

- Модель при переносе очень быстро забывает то, на чём она училась до этого;
- Будем тренировать модель под два языка сразу;
- Добавим к модели предсказание отдельных граммем;

- Модель при переносе очень быстро забывает то, на чём она училась до этого;
- Будем тренировать модель под два языка сразу;
- Добавим к модели предсказание отдельных граммем;
- Слои предсказания граммем будут не language specific.

- Модель при переносе очень быстро забывает то, на чём она училась до этого;
- Будем тренировать модель под два языка сразу;
- Добавим к модели предсказание отдельных граммем;
- Слои предсказания граммем будут не language specific.

Dataset	Transfer baseline	Multi-lang	$egin{array}{l} ext{Multi-lang} \ + ext{Gram categories} \end{array}$
Ukrainian	90.93% / 89.54%	91.15% / 89.33%	91.72% / 89.87%
Syntagrus	96.77% / 97.00%	96.44% / 96.69%	96.66% / 97.01 %

Сравнение с baseline

• С использованием всех улучшений оказывается возможным значительно превзойти baseline;

Dataset	Char BiLSTM	Best Model	ERR
PTB	97.02% / 96.98%	97.60% / 97.51%	19.4% / 17.5%
SynTagRus	95.23% / 95.39%	98.21% / 98.33%	62.5% / 63.8%
MorphoRuEval	96.48% / 94.69%	98.12% / 96.72%	46.5% / 38.2%
Tiger	98.27% / 99.86%	98.74% / 99.91%	27.2% / 35.7%
Ukrainian	80.10% / 78.70%	$91.72\% \ / \ 89.87\%$	58.4% / 52.4%

Сравнение с baseline

- С использованием всех улучшений оказывается возможным значительно превзойти baseline;
- При этом размер модели почти не вырос;

Dataset	Char BiLSTM	Best Model	ERR
PTB	97.02% / 96.98%	97.60% / 97.51%	19.4% / 17.5%
SynTagRus	95.23% / 95.39%	98.21% / 98.33%	62.5% / 63.8%
MorphoRuEval	96.48% / 94.69%	98.12% / 96.72%	46.5% / 38.2%
Tiger	98.27% / 99.86%	98.74% / 99.91%	27.2% / 35.7%
Ukrainian	80.10% / 78.70%	91.72% / 89.87%	58.4% / 52.4%

Сравнение с baseline

- С использованием всех улучшений оказывается возможным значительно превзойти baseline;
- При этом размер модели почти не вырос;
- Итоговая модель значительно меньше большинства state-of-the-art моделей, но показывает сопоставимое качество.

Dataset	Char BiLSTM	Best Model	ERR
PTB	97.02% / 96.98%	97.60% / 97.51%	19.4% / 17.5%
SynTagRus	95.23% / 95.39%	98.21% / 98.33%	62.5% / 63.8%
MorphoRuEval	96.48% / 94.69%	98.12% / 96.72%	46.5% / 38.2%
Tiger	98.27% / 99.86%	98.74% / 99.91%	27.2% / 35.7%
Ukrainian	80.10% / 78.70%	$91.72\% \ / \ 89.87\%$	58.4% / 52.4%

• Мы начали с сильного baseline — BiLSTM модель с Char BiLSTM эмбеддингами;

- Мы начали с сильного baseline BiLSTM модель с Char BiLSTM эмбеддингами;
- Был предложен более быстрый аналог Char BiLSTM, показывающий сопоставимое качество;

- Мы начали с сильного baseline BiLSTM модель с Char BiLSTM эмбеддингами;
- Был предложен более быстрый аналог Char BiLSTM, показывающий сопоставимое качество;
- Был разработан метод для предобучения эмбеддингов символьного уровня;

- Мы начали с сильного baseline BiLSTM модель с Char BiLSTM эмбеддингами;
- Был предложен более быстрый аналог Char BiLSTM, показывающий сопоставимое качество;
- Был разработан метод для предобучения эмбеддингов символьного уровня;
- Были описаны дополнительные функции потерь, улучшающие качество целевой функции — POS LM и предсказание отдельных граммем;

- Мы начали с сильного baseline BiLSTM модель с Char BiLSTM эмбеддингами;
- Был предложен более быстрый аналог Char BiLSTM, показывающий сопоставимое качество;
- Был разработан метод для предобучения эмбеддингов символьного уровня;
- Были описаны дополнительные функции потерь, улучшающие качество целевой функции — POS LM и предсказание отдельных граммем;
- Был продемонстрирован положительный эффект от переноса модели с датасета на датасет и с языка на язык;

- Мы начали с сильного baseline BiLSTM модель с Char BiLSTM эмбеддингами;
- Был предложен более быстрый аналог Char BiLSTM, показывающий сопоставимое качество;
- Был разработан метод для предобучения эмбеддингов символьного уровня;
- Были описаны дополнительные функции потерь, улучшающие качество целевой функции — POS LM и предсказание отдельных граммем;
- Был продемонстрирован положительный эффект от переноса модели с датасета на датасет и с языка на язык;
- Был улучшен способ совместной тренировки модели на несколько языков;

- Мы начали с сильного baseline BiLSTM модель с Char BiLSTM эмбеддингами;
- Был предложен более быстрый аналог Char BiLSTM, показывающий сопоставимое качество;
- Был разработан метод для предобучения эмбеддингов символьного уровня;
- Были описаны дополнительные функции потерь, улучшающие качество целевой функции — POS LM и предсказание отдельных граммем;
- Был продемонстрирован положительный эффект от переноса модели с датасета на датасет и с языка на язык;
- Был улучшен способ совместной тренировки модели на несколько языков;
- Всё это привело к значительному увеличению качества модели POS tagging'a.