Chapitre 2 : Potentiel électrique

I Définition

A) Circulation du champ électrique \vec{E}

On considère un champ $\{\vec{E}\}$ créé par une distribution de charges.

$$M \bullet M'$$
 déplacement infinitésimal $d\vec{M} = \overrightarrow{MM'}$

Définition:

Circulation élémentaire de \vec{E} associée à $d\vec{M}$:

$$\delta C = \vec{E}(M) \cdot d\vec{M}$$
.

Pour un contour A B:

Circulation de \vec{E} sur $\hat{A}B$: $C_{AB}(\vec{E}) = \int_{AB} C = \int_{AB} \vec{E}(M) \cdot d\vec{M}$.

Analogie mécanique:

$$\delta W = \vec{F}(M) \cdot d\vec{M}$$
, $W_{AB}(\vec{F}) = \int_{AB} \vec{F}(M) \cdot d\vec{M}$.

Remarque:

On parle de circulation pour des *champs de vecteurs*; ainsi, un travail est une circulation, mais pas le contraire, puisqu'on n'utilise le terme de travail que pour une *force*.

B) Circulation du champ créé par une charge ponctuelle

1) Circulation élémentaire

$$\vec{u}_{R} = \frac{\overrightarrow{OM}}{\overrightarrow{OM}}$$

$$O \qquad d\vec{M} \qquad M'$$

$$\vec{q}$$
On note $r = OM$.
Ainsi, $\vec{E}(M) = \frac{q}{4\pi\varepsilon_{0}r^{2}}\vec{u}_{r}$.
$$d\vec{M} = \overrightarrow{MM'} = d(r\vec{u}_{r}) = dr.\vec{u}_{r} + rd\vec{u}_{r}$$

$$\delta C = \vec{E}(M) \cdot d\vec{M} = \frac{q}{4\pi\varepsilon_{0}r^{2}}(\vec{u}_{r} \cdot d\vec{M}) = \frac{qdr}{4\pi\varepsilon_{0}r^{2}}$$

2) Potentiel électrostatique

$$\delta C = \frac{qdr}{4\pi\varepsilon_0 r^2} = d\left(\frac{-q}{4\pi\varepsilon_0 r}\right) = -d\left(\frac{q}{4\pi\varepsilon_0 r} + \text{cte}\right) = -dV(M)$$

V(M) : potentiel électrostatique créé en M par la charge q située en O. Remarque :

On choisit généralement la constante de sorte que $\lim_{M \to \infty} V(M) = 0$.

Ainsi,
$$V(M) = \frac{q}{4\pi\varepsilon_0 r}$$
.

3) Propriétés

$$\delta C = -dV$$
.

Donc, pour un contour A B:

$$C_{\mathcal{A}B}(\vec{E}) = \int_{\mathcal{A}B} \mathcal{C} = \int_{\mathcal{A}B} dV = -(V(B) - V(A)) = V(A) - V(B).$$

Pour un contour fermé :

$$C_{\mathcal{A}A}(\vec{E}) = \oint_C \vec{E}(M) \cdot d\vec{M} = V(A) - V(A) = 0$$

C) Théorème de superposition

1) Distribution discrète de charges

$$\begin{array}{cccc} & M_{\mathrm{i}} & M_{3} & & \\ M_{\mathrm{1}} \times & q_{i} & & \times & & \\ q_{1} & M_{2} \times & & & \times & \\ & q_{2} & & \times & \\ & & q_{n} & & & \end{array} \qquad \begin{array}{c} M & & & \\ M_{\mathrm{i}} \times & M_{3} & & & \times & \\ & & & \times & q & \\ & & & & & \times & q \end{array}$$

 $\{q_i\}_{i\in[[1,n]]}$ crée en tout point M de l'espace un champ :

$$\vec{E}(M) = \sum_{i=1}^{n} \vec{E}_i(M).$$

Donc:

$$\mathcal{E}C = \vec{E}(M) \cdot d\vec{M} = \left(\sum_{i=1}^{n} \vec{E}_{i}(M)\right) \cdot d\vec{M} = \sum_{i=1}^{n} \underbrace{\left(\vec{E}_{i}(M) \cdot d\vec{M}\right)}_{=\mathcal{E}C_{+} = -dV_{-}}$$

Avec
$$V_i(M) = \frac{q_i}{4\pi\varepsilon_0 M_i M}$$

Donc
$$\delta C = \sum_{i=1}^{n} -dV_i = -d\left(\sum_{i=1}^{n} V_i\right)$$

Le champ électrique $\vec{E}_{\{q_i\}}$ dérive donc d'un potentiel, à savoir :

$$V(M) = \sum_{i=1}^{n} V_i(M) = \sum_{i=1}^{n} \frac{q_i}{4\pi\varepsilon_0 M_i M}$$

2) Distribution de charges continue

(On utilise $d\tau$ pour un volume élémentaire afin d'éviter les conflits de notation avec les potentiels)

On considère le champ $\{\vec{E}\}$ créé par V.

$$\delta C = \vec{E}(M) \cdot d\vec{M} = \iiint_{M} d\vec{E} \cdot d\vec{M} = \iiint_{M} -dV_{dq}$$

Avec
$$V_{dq} = \frac{dq}{4\pi\varepsilon_0 PM} = \frac{\rho(P)d\tau(P)}{4\pi\varepsilon_0 PM}$$
.

D'où
$$\delta C = -d \iiint_{V} \frac{\rho(P)d\tau(P)}{4\pi\varepsilon_{0}PM}$$
.

On applique le même principe pour σ, λ .

Conclusion:

Le champ $\{\vec{E}\}$ dérive d'un potentiel pour toute distribution de charge (qu'elle soit continue ou discrète)

II Lien entre \vec{E} et V.

A) Gradient d'un champ scalaire

1) Définition

On considère $F: \underset{M \mapsto F(M)}{\varepsilon \to \mathbb{R}}$ un champ scalaire.

On lui associe le champ vectoriel:

 $\overrightarrow{\operatorname{grad}} F$, ou $\overrightarrow{\nabla} F$ ("nabla"): $M \mapsto \overrightarrow{\operatorname{grad}}_M F$ défini par $dF = \overrightarrow{\operatorname{grad}}_M F \cdot d\vec{M}$.

On admet que $\overrightarrow{\text{grad}}_{M}F$ est défini de manière unique (vu en math).

$$M \underbrace{d\vec{M}}_{F(M')-F(M)} = \overrightarrow{\text{grad}}_{M} F \cdot \overrightarrow{MM'}$$

2) Expression dans les différents systèmes de coordonnées

• Cartésien :

$$\overrightarrow{OM} = x.\overrightarrow{i} + y.\overrightarrow{j} + z.\overrightarrow{k} \quad ; \quad d\overrightarrow{M} = dx.\overrightarrow{i} + dy.\overrightarrow{j} + dz.\overrightarrow{k}$$

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy + \frac{\partial F}{\partial z}dz$$

$$= \overrightarrow{\operatorname{grad}}_{M}F \cdot d\overrightarrow{M} = (\overrightarrow{\operatorname{grad}}_{M}F)_{x}dx + (\overrightarrow{\operatorname{grad}}_{M}F)_{x}dy + (\overrightarrow{\operatorname{grad}}_{M}F)_{z}dz$$

Ainsi,
$$\overrightarrow{\operatorname{grad}}_{M}F$$

$$\begin{vmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial F}{\partial y} \\ \frac{\partial F}{\partial z} \end{vmatrix}$$
• Cylindriques: $M(\rho, \theta, z)$

$$\overrightarrow{OM} = \rho.\overrightarrow{e}_{\rho} + z.\overrightarrow{k} \quad ; \quad d\overrightarrow{M} = d\rho.\overrightarrow{e}_{\rho} + \rho d\theta.\overrightarrow{e}_{\theta} + dz.\overrightarrow{k}$$

$$dF = \frac{\partial F}{\partial \rho}d\rho + \frac{\partial F}{\partial \theta}d\theta + \frac{\partial F}{\partial z}dz$$
Et $dF = \overrightarrow{\operatorname{grad}}_{M}F \cdot d\overrightarrow{M} = (\overrightarrow{\operatorname{grad}}_{M}F)_{\rho}dx + (\overrightarrow{\operatorname{grad}}_{M}F)_{\theta}\rho.d\theta + (\overrightarrow{\operatorname{grad}}_{M}F)_{z}dz$
Donc $\overrightarrow{\operatorname{grad}}_{M}F$

$$\begin{vmatrix} \frac{\partial F}{\partial \rho} \\ \frac{\partial F}{\partial \rho} \\ \frac{\partial F}{\partial z} \end{vmatrix}$$

Exemple:

$$F: M(x, y, z) \mapsto y$$

$$\overrightarrow{\text{grad}}_{M} F \begin{vmatrix} 0 \\ 1 = \vec{j} \\ 0 \end{vmatrix}$$
et $\overrightarrow{\text{grad}}_{M} F = \frac{\partial F}{\partial \rho} \vec{e}_{\rho} + \frac{\partial F}{\partial \theta} \frac{1}{\rho} \vec{e}_{\theta} + \frac{\partial F}{\partial z} \vec{k}$

$$F(M) = y = \rho \sin \theta$$

$$D'où:$$

$$\overrightarrow{\text{grad}}_{M} F = \sin \theta . \vec{e}_{\rho} + \frac{\cos \theta}{\rho} \rho . \vec{e}_{\theta}$$

$$= \sin \theta (\cos \theta . \vec{i} + \sin \theta . \vec{j}) + \cos \theta (-\sin \theta . \vec{i} + \cos \theta . \vec{j})$$

$$= (\sin^{2} \theta + \cos^{2} \theta) \vec{j} = \vec{j}$$

3) Interprétation géométrique

On considère une surface $F = \text{cte} = \lambda$ (c'est-à-dire telle que pour tout point M de cette surface, F(M) = cette constante; on l'appelle une surface de niveau de F).

Soit M un point de cette surface, M' infiniment voisin de M sur cette surface.

Alors
$$dF = F(M') - F(M) = \lambda - \lambda = 0 = \overrightarrow{\text{grad}}_M F \cdot \overrightarrow{MM'}$$

Donc $\overrightarrow{\operatorname{grad}}_{M} F \perp \overrightarrow{MM}'$

Ainsi, $\overrightarrow{\text{grad}}_{M}F$ est perpendiculaire en M à la surface de niveau.

On prend maintenant deux surfaces de niveau infiniment voisines, $F = \lambda$ et $F = \lambda + d\lambda$, avec $d\lambda > 0$ (représentation en coupe):

$$F = \lambda \qquad F = \lambda + d\lambda$$

$$M'$$
Direction de $\overrightarrow{\text{grad}}_M F$

Soient M un point de la surface $F = \lambda$, M' infiniment voisin de M sur la surface $F = \lambda + d\lambda$.

Alors:

$$dF = F(M') - F(M) = d\lambda > 0$$
$$= \overrightarrow{\text{grad}}_{M} F \cdot \overrightarrow{MM'}$$

Donc $\overrightarrow{\text{grad}}_{M}F$ est dirigé vers les croissantes de F.

Enfin, avec l'expression différentielle, on remarque que $\operatorname{grad}_M F$ a une intensité (c'est-à-dire une norme) d'autant plus importante que F est « fortement croissante ».

B) Lien entre \vec{E} et V.

$$\begin{split} \delta &C = \vec{E}(M) \cdot d\vec{M} \\ &= -dV = -\overrightarrow{\operatorname{grad}}_{M} V \cdot d\vec{M} \end{split}$$

Donc, par unité de la définition du gradient :

$$\vec{E} = -\overrightarrow{\text{grad}}V$$

Ou, pour tout point de l'espace : $\vec{E}(M) = -\overrightarrow{\operatorname{grad}}_M V$.

C) Topographie du champ électrique

1) Lignes de champ

C'est une courbe tangente en tout point à \vec{E} .

Soient M un point de l'espace et M' infiniment voisin de M appartenant à la ligne de champ passant par M.

Alors $\vec{E}(M)//\overline{MM}$. Donc $\vec{E}(M) \wedge d\vec{M} = \vec{0}$. On obtient ainsi une équation différentielle dont la (les) solution(s) sont les lignes de champ.

2) Surfaces équipotentielles

Définition : Ce sont les surfaces de niveau de V.

(Les surfaces V(M) = cte)

Exemple:

Pour une charge ponctuelle, $V(M) = \frac{q}{4\pi\varepsilon_0 OM}$

 $V(M) = \text{cte} \Leftrightarrow OM = \text{cte} \Leftrightarrow M$ appartient à la sphère de centre O.

On a $\vec{E} = -\overrightarrow{\text{grad}}V$. Donc \vec{E} est perpendiculaire aux surfaces équipotentielles, et dirigé vers les potentiels décroissants.

Exemple:

3) Tube de champ

L'ensemble des lignes de champ qui s'appuient sur le contour ${\cal C}$ forme une surface, appelée tube de champ.

D) Exemple de calcul de *V*.

Avec un disque uniformément chargé:

Sur l'axe,
$$\vec{E}(M) = \frac{\sigma_0 z}{2\varepsilon_0} \left(\frac{1}{|z|} - \frac{1}{\sqrt{R^2 + z^2}} \right) \vec{k}$$
 (vu au chapitre précédent)

Calcul de V(M) pour un point M de l'axe (Oz :

$$C_{O^{-}M} = \int_{O^{-}M} \vec{E}(M) \cdot d\vec{M} = V(O) - V(M)$$

On choisit pour OM le segment rectiligne de O à M.

$$V(O) - V(M) = \int_{OM} E_z(z) \vec{k} \cdot (dz \cdot \vec{k}) = \int_0^{z_M} \frac{\sigma_0 z}{2\varepsilon_0} \left(\frac{1}{|z|} - \frac{1}{\sqrt{R^2 + z^2}} \right) dz.$$

Pour z > 0:

$$V(O) - V(M) = \int_0^{z_M} \frac{\sigma_0}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{R^2 + z^2}} \right) dz = \frac{\sigma_0}{2\varepsilon_0} \left(z_M - 0 - \sqrt{R^2 + z_M^2} + R \right)$$

(Une primitive de
$$z \mapsto \frac{z}{\sqrt{R^2 + z^2}}$$
 est $z \mapsto \sqrt{R^2 + z^2}$)

Donc
$$V(M) = V(O) + \frac{\sigma_0}{2\varepsilon_0} \left(\sqrt{R^2 + z_M^2} - R - z_M \right)$$

$$\lim_{M \to +\infty} V(M) = 0 \text{ . Donc } V(O) = \frac{\sigma_0 R}{2\varepsilon_0} \text{ (et } V(M) = \frac{\sigma_0}{2\varepsilon_0} \left(\sqrt{R^2 + z_M^2} - z_M \right))$$

Et de même, pour z quelconque sur (Oz :

$$V(M) = \frac{\sigma_0}{2\varepsilon_0} \left(\sqrt{R^2 + z_M^2} - \left| z_M \right| \right)$$

Si $OM = z_M >> R$:

$$\sqrt{R^2 + z_M^2} = z_M \sqrt{1 + \frac{R^2}{z_M^2}} = z_M \left(1 + \frac{R^2}{2z_M^2}\right)$$

Donc
$$V(M) = \frac{\sigma_0}{2\varepsilon_0} \frac{R^2}{2z_M} = \frac{\sigma_0 \pi R^2}{4\pi\varepsilon_0 z_M}$$

On observe une discontinuité du champ en z = 0.

$$\Delta \vec{E} = \lim_{z_M \to 0^+} \vec{E}(M) - \lim_{z_M \to 0^-} \vec{E}(M) = \frac{\sigma_0}{\varepsilon_0} \vec{k}$$

Propriété générale :

Distribution	$ec{E}$	V
Volumique	Continu	Continu
Surfacique	Discontinuité	Continu
Linéique	Non définis sur la	
Discrète	distribution de charge	

Exemple : $V = \frac{q}{4\pi\epsilon_0 r}$ n'est pas défini pour r = 0.

E) Symétries de $\{\rho\}$ et $\{V\}$.

Théorème (admis):

 $\{\rho\}$ et $\{V\}$ possèdent les mêmes symétries.

Exemples:

• Invariance par translation de direction \vec{i} : Le potentiel est indépendant de x; V(x, y, z)

$$\vec{E}(M) = -\overrightarrow{\text{grad}}_{M}V$$

$$= -\frac{\partial V}{\partial x}\vec{i} - \frac{\partial V}{\partial y}\vec{j} - \frac{\partial V}{\partial z}\vec{k}$$

$$= E_{y}(y,z)\vec{j} + E_{z}(y,z)\vec{k}$$

• Invariance par rotation d'axe (Oz et d'angle α quelconque :

Le potentiel est indépendant de θ : $V(\rho, \theta, z)$

$$\vec{E}(M) = E_{\rho}(\rho, z)\vec{e}_{\rho} + E_{z}(\rho, z)\vec{k}$$

• Symétrie sphérique :

Le potentiel est indépendant de θ , φ : $V(r, \theta, \varphi)$

$$\vec{E}(M) = -\frac{\partial V}{\partial r}\vec{e}_r = E_r(r)\vec{e}_r$$

III Energie potentielle

A) Energie potentielle électrique d'une charge ponctuelle

Distribution de charges
$$\overset{V}{q}$$

Une distribution de charges crée un champ électrique $\{\vec{E}\}$ et un potentiel $\{V\}$ dans tout l'espace.

On considère une charge q en M soumise à la force de Coulomb :

$$\vec{F}_{V \to q} = q\vec{E}(M)$$

Pour un déplacement infinitésimal $d\vec{M}$:

$$\delta W = \vec{F} \cdot d\vec{M} = q \underbrace{\vec{E}(M) \cdot d\vec{M}}_{\delta T} = q(-dV) = -d(qV)$$

Donc la force de Coulomb est conservative, et dérive d'une énergie potentielle :

 $E_p = qV(M) + {\rm cte}$, appelée aussi énergie potentielle de q dans le champ de potentiel $\{V\}$.

Remarque:

Soit \vec{F} une force conservative, et E_p l'énergie potentielle dont elle dérive.

$$\delta W = \vec{F} \cdot d\vec{M} = -dE_P = -(\overrightarrow{\text{grad}}_M E_p \cdot dM)$$

Donc
$$\vec{F} = -\overrightarrow{\text{grad}}_M E_p$$

Exemple:

L'énergie potentielle de pesanteur :

$$E_{pp} = mgz + cte$$

Donc
$$\vec{F} = -\overrightarrow{\text{grad}}E_{pp} = -\frac{\partial E_{pp}}{\partial x}\vec{i} - \frac{\partial E_{pp}}{\partial y}\vec{j} - \frac{\partial E_{pp}}{\partial z}\vec{k} = -\frac{dE_{pp}}{dz}\vec{k} = -mg\vec{k}$$

(D'où le terme de "dérive d'une énergie potentielle" pour une force conservative)

B) Interprétation

Travail quasi-statique d'un opérateur pour amener la charge q de $M_{\scriptscriptstyle 1}$ à $M_{\scriptscriptstyle 2}$

(Quasi-statique : à tout instant, la vitesse et l'accélération sont quasiment nulles) On a alors :

$$\vec{F}_{\text{élec}} + \vec{F}_{\text{op}} = m\vec{a} \approx \vec{0}$$
.

Donc
$$\vec{F}_{op} \approx -\vec{F}_{elec}$$
.

$$\delta W_{op} = \vec{F}_{op} \cdot d\vec{M} = -\vec{F}_{\acute{\rm el}} \cdot d\vec{M} = dE_p$$

Donc
$$W_{op} = \int_{M_1 \cap M_2} dE_p = E_p(M_2) - E_p(M_1) = q(V(M_2) - V(M_1))$$

Si
$$V(M_2) > V(M_1)$$
 et $q > 0$, $W_{op} > 0$

Si
$$V(M_2) < V(M_1)$$
 et $q > 0$, $W_{op} < 0$

Ainsi, une charge q > 0 descend spontanément vers les régions de plus faible potentiel.

Page 9 sur 10

Si M_1 est à l'infini, et M_2 en un point M:

Si on choisit $E_p = qV$, nulle à l'infini (possible uniquement pour des distributions de charge d'extension finie) :

$$W_{op} = E_p(M) = qV(M)$$

C) Energie potentielle d'un système de deux charges

$$\begin{aligned} & \underset{\overset{\scriptstyle Q_1}{\stackrel{\scriptstyle \times}{M_2}}}{\stackrel{\scriptstyle \times}{M_2}} \\ & \vec{F}_2 = \vec{F}_{q_1 \rightarrow q_2} = q_2 \vec{E}_1(M_2) = q_2(-\overrightarrow{\operatorname{grad}}_{M_2} V_1) = -\overrightarrow{\operatorname{grad}}_{M_2} q_2 V_1 = -\overrightarrow{\operatorname{grad}}_{M_2} E_p \\ & \text{Où } E_P = \frac{q_1 q_2}{4\pi \varepsilon_0 M_1 M_2} \end{aligned}$$

On retrouve l'expression de l'énergie potentielle d'interaction d'un système de deux particules isolées.

Travail d'un opérateur pour construire cette distribution, les charges q_1, q_2 étant initialement à l'infini (et infiniment éloignées l'une de l'autre).

1^{ère} étape :

On amène q_1 de l'infini à M_1 . Aucun champ, donc pas de travail. $W_{\rm op}^{(1)}=0$ $2^{\rm ème}$ étape :

 q_1 est en M_1 , immobile.

On amène q_2 de l'infini à M_2 : $W_{\rm op}^{(2)} = q_2 V(M_2)$

avec $V(M_2) = \frac{q_1}{4\pi\epsilon_0 M_1 M_2}$: potentiel en M_2 créé par la charge q_1 en M_1 .

Donc
$$W_{\text{op}} = W_{\text{op}}^{(1)} + W_{\text{op}}^{(2)} = \frac{q_1 q_2}{4\pi \epsilon_0 M_1 M_2}$$

$$\begin{split} E_p &= q_2 V_1(M_2) = q_1 V_2(M_1) \\ &= \frac{1}{2} (q_1 V_2(M_1) + q_2 V_1(M_2)) \end{split}$$

Généralisation à n charges q_i en M_i :

$$E_p = \frac{1}{2} \sum_{i=1}^{n} q_i V(M_i)$$

Où $V(M_i)$ est le potentiel créé par toutes les charges en M_i