

Определения коллоквиум дискретная математика

1. Множество

а. Определение 1:

Совокупность объектов произвольной природы, рассматриваемых как единое целое

b. Определение 2:

Совокупность объектов произвольной природы, объединенных общим свойством

2. Способы задания множеств

а. Перечисление

$$A = \{1, 4, 9, 16, 25...\}$$

b. Правило

$$A = \{k \mid k \in N \ and \ k <= 8\}$$

с. Порождающая процедура

$$A = \{f_1, \ f_2, \ f_3, \ f_4 \ \dots \} \ f_1 = 1 \ f_2 = 1 \ f_i = f_{i-2} + f_{i-1}$$

- d. Графический (дополнительно) диаграммы Эйлера-Венна
- е. Аналитический (дополнительно) с помощью выражений на множествах
- 3. Подмножества, отличие собственных и несобственных подмножеств
 - а. Подмножество:

Подмножеством множества A называется множество B, такое что все элементы множества B принадлежат множеству A

b. Несобственные и собственные подмножества

Несобственными подмножествами для множества A называются пустое множество Ø и само множество A. Остальные множества называются собственными

4. Булеан множества А

Булеаном множества A называется множество B, такое что множество B содержит все подмножества множества A. Обозначается

$$B_A, 2^A, P(A)$$

5. Объединение

$$A \cup B = C = \{x \mid x \in A \text{ or } x \in B\}$$

Объединение множеств A и B называется множество C, такое что множество C содержит в себе все элементы из множества A, все элементы из множества B и все общие для множеств A и B элементы.

6. Пересечение

$$A \cap B = C = \{x \mid x \in A \text{ and } x \in B\}$$

Пересечение множеств A и B называется множество C, такое что множество C содержит в себе все общие для множеств A и B элементы.

7. Разность

$$A \backslash B = C = \{x \mid x \in A \text{ and } x \notin B\}$$

Разностью множеств A и B называется множество C, такое что множество C содержит в себе все элементы из множества A, которые не содержит множество B.

Более просто:

Разностью множеств A и B называется множество C, такое что множество C содержит в себе все элементы из множества A, которых нет в множестве B.

8. Дополнение

$$\overline{A} = U \setminus A$$

Дополнение множества A называется такое множество B, такое что, множество B содержит все элементы универсума, которые не принадлежат множеству A

9. Симметричная разность

$$A \triangle B = C = \{x \mid (x \in A \text{ and } x \notin B) \text{ or } (x \in B \text{ and } x \notin A)$$

Симметричной разностью множеств A и B называется множество C, такое что множество C содержит все элементы множества A, которых нет в множестве B, и все элементы множества B, которых нет в множестве A.

Короче:

Симметричной разностью множеств A и B называется множество C, такое что множество C содержит все элементы множеств A и B, такие что эти элементы не принадлежат сразу им обоим

10. Декартово произведение множеств

$$A \ x \ B = C = \{(x,y) \ | \ x \ \in A \ and \ y \ \in B\}$$

Декартовым произведением множеств A и B называется множество C, такое что множество C состоит из упорядоченных пар вида (X, Y), где X принадлежит множеству A, а Y принадлежит множеству B

Определение для произвольного числа множеств:

Декартовым произведением N множеств является множество кортежей, таких что, первый элемент кортежа принадлежит первому множеству, второй - второму ... N-ый элемент принадлежит N-ому перемножаемому множеству

11. Прямое произведение 5 множеств

$$A~x~B~x~C~x~D~x~E=F=\{(a,b,c,d,e)|x\in A~and~b\in B~and~c\in C~and~d\in D~and~e\in E\}$$

Прямым произведение множеств A, B, C, D, E называется множество F, такое что множество F состоит из кортежей длины 5, первый элемент которых принадлежит множеству A, второй элемент - множеству B, третий элемент - множеству C, четвертый элемент множеству D, пятый элемент множеству E

12. Кортеж

кортеж
$$=(a,b,c\dots)$$

Кортежем называется упорядоченный набор элемент, фиксированной длины

13. Равенство упорядоченных пар/кортежей

$$egin{aligned} A &= (a,b,c\dots) \ B &= (a,b,c\dots) \ A &= B: \ len(A) = len(B) \ and \ orall \ 1 <= i <= len(A) \ A_i = B_i \end{aligned}$$

Два кортежа равны тогда и только тогда, когда равны их длинны и элементы на соответствующих позициях

14. Закон коммутативности

$$A \cap B = B \cap A$$
$$A \cup B = B \cup A$$

15. Закон дистрибутивности

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

16. Метод двух включений (критерий равенства множеств)

$$\forall A, B \ if \ A \subseteq B \ and \ B \subseteq A => A = B$$

Если множество A включено в множество B и множество B включено в множество A одновременно, то множества A и B равны

17. Равные множества

$$orall A, B \ A = B \ if \ orall a \in A \ a \in B \ and \ orall \ b \in B \ b \in A$$

Множества A и B называются равными тогда и только тогда, когда множества A и B состоят из одинаковых элементов

Второй вариант:

Множества A и B равны тогда и только тогда, когда все элементы из множества A содержатся в множестве B и все элементы из множества B содержатся в множестве A

18. Закон ассоциативности

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Расстановка скобок в объединении множеств A, B, C не влияет на результирующее множество.

Расстановка скобок в пересечении множеств A, B, C не влияет на результирующее множество.

19. Закон поглощения

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

20. Закон склеивания

$$(A \cup B) \cap (\overline{A} \cup B) = B$$

 $(A \cap B) \cup (\overline{A} \cap B) = B$

21. Закон де Моргана

$$\frac{\overline{A \cup B}}{\overline{A \cap B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$$

22. Бинарное отношение на множествах

Бинарным отношением на декартовом произведении множеств A x B называется множество C, такое что, множество C состоит из упорядоченных пар элементов, таких что, первым элемент пары принадлежит множеству A, а второй множеству B

23. Способы задания бинарных отношений

- а. Перечисление
- b. Правило
- с. Графический способ
- d. Граф
- е. Матрица
- f. Ось координат
- g. Таблица

24. Область определения отношения и область значений отношения

Областью определения отношения R называются все первые элементы упорядоченных пар, входящих в данное отношение.

Областью значений отношения R называются вторые элементы упорядоченных пар, входящих в данное отношение

25. Обратное отношение

$$R\subseteq A\ x\ B \ R=\{(a,b)|a\ \in A\ and\ b\in B\} \ R^{-1}\subseteq B\ x\ A \ R^{-1}=\{(b,a)|a\ \in A\ and\ b\in B\}$$

Пусть есть бинарное отношение R, тогда существует бинарное отношение R^(-1), такое что, область определения отношения R^(-1) является областью значений отношения для R, а область значений отношения для R^(-1) является область определения отношения для R.

26. Композиция отношений

$$egin{aligned} R \subseteq A \ x \ B \ S \subseteq B \ x \ C \ T \subseteq A \ x \ C \end{aligned}$$
 $f \ orall a \in A, \ c \in C \colon aTc \ \exists \ b \in B \colon aRb \ and \ bSc \end{aligned}$

Пусть задано отношение R на декартовом произведении множеств A и B, задано отношение S на декартовом произведении множеств B и C. Пусть задано отношение T на декартовом произведении множеств A и C. Тогда T называется композицией R и S, если для любых элементов из множества A и множества C, если они состоят в отношении, то существует такой элемент из множества B, такой что, элемент из множества A состоит в отношении с элементом из множества B и элемент из множества B состоит в отношениях с элементом из множества C

27. Степень отношения

Степень отношения R, заданного на множестве A, определяется следующим образом

 $R^n = R^(n-1)$ композиция R

 $R^1 = R$

 $R^0 = \{(x, x) | x принадлежит A\}$

28. Теорема об ассоциативности композиции отношений

Пусть на декартовом произведении множеств A и B задано отношение R, на декартовом произведении множеств B и C задано отношение S, на декартовом произведении множеств C и D задано отношение T. Тогда при любой расстановке скобок в композиции отношений RST результирующее множество не изменится

29. Свойство симметричности отношений

$$R\subseteq A\ x\ A \ R$$
 — симметрично $if\ orall a,b\in A:aRb\ and\ bRa$

Отношение R, заданное на множестве A называется симметричным, если для любой пары элементов (a, b), a,b принадлежат множеству A, выполняется, что

если aRb, то bRa

30. Свойство асимметричности отношений

$$R\subseteq A\ x\ A \ R$$
 — асимметрично $if\ orall a,b\in A:aRb\ and\ not(bRa)\ and\ a\ !=\ b$

Отношение R, заданное на множестве A называется асимметричным, если для любой пары элементов (a, b), a,b принадлежат множеству A, выполняется, что если aRb, то bRa не выполняется, и пары вида (a, a), где а принадлежит A, не допускаются

31. Свойство антисимметричности отношений

$$R\subseteq A\ x\ A$$
 $R-$ антисимметрично $if\ orall a,b\in A:$ $(aRb\ and\ not(bRa)\ and\ a\ !=\ b)\ or\ (aRb\ and\ bRa\ and\ a\ ==\ b)$

Отношение R, заданное на множестве A называется асимметричным, если для любой пары элементов (a, b), a, b принадлежат множеству A, выполняется, что если aRb, то bRa не выполняется, но пары вида (a, a) допускаются, где а принадлежит A

32. Свойство несимметричности отношений

Отношение R, заданное на множестве A называется несимметричным, если для некоторых пар (a, b), a, b принадлежат множеству A, выполняется aRb и bRa, a для других пар (a, b), a, b принадлежат множеству A, выполняется aRb и not(bRa)

33. Свойство рефлексивности

$$R\subseteq A\ x\ A \ R$$
 — рефлексивно $if\ orall a\in A\colon\ aRa$

Отношение R, заданное на множестве A называется рефлексивным тогда и только тогда, когда для каждого элемента а принадлежащего множеству A, а

состоит в отношениях с самим собой

34. Свойство антирефлексивности

$$R\subseteq A\ x\ A \ R$$
 — антирефлексивно $if\ orall a\in A\colon\ not(aRa)$

Отношение R, заданное на множестве A называется антирефлексивным тогда и только тогда, когда для всех элементов а, где а принадлежит множеству A, элемент а не состоит в отношениях с самим собой

35. Свойство транзитивности

$$R\subseteq A\ x\ A$$
 R — транзитивно $if\ orall a,b,c\in A\colon ifaRb\ and\ bRc\ =>\ aRc$

Отношение R, заданное на множестве A называется транзитивным тогда и только тогда, когда для любых элементов a, b, c, принадлежащих множеству A, если aRb и bRc, то aRc

36. Свойство нетранзитивности

Отношение R, заданное на множестве A называется нетранзитивным тогда и только тогда, когда для некоторых элементов a, b, c, принадлежащих множеству A, если aRb и bRc, то aRc, но для других элементов a, b, c, принадлежащих множеству A, если aRb и bRc, то not(aRc)

37. Свойство нерефлексивности

Отношение R, заданное на множестве A называется нерефлексивным тогда и только тогда, когда для некоторых элементов а, принадлежащих множеству A, а состоит в отношениях с самим собой, но для других элементов а, принадлежащих множеству A, а не состоит в отношениях с самим собой

38. Свойство антитранзитивности

$$R\subseteq A\ x\ A$$
 $R-$ антитранзитивно $if\ orall a,b,c\in A\colon ifaRb\ and\ bRc\ =>\ not(aRc)$

Отношение R, заданное на множестве A называется антитранзитивным тогда и только тогда, когда для любых элементов a, b, c, принадлежащих множеству A, если aRb и bRc, то not(aRc)

39. Отношение эквивалентности

Отношение R, заданное на множестве A, называется отношением эквивалентности тогда и только тогда, когда для него выполнены следующие свойства: оно рефлексивно, симметрично и транзитивно.

40. Класс эквивалентности

Подмножество множества A, образованное путем разбиения множества A, с помощью отношения эквивалентности.

41. Порождающий элемент класса эквивалентности

Сложное:

Некоторый элемент, принадлежащий множеству A, который состоит в отношении R со всеми элементами данного класса.

Простое:

Любой элемент, который находится в классе эквивалентности.

42. Разбиение множеств

Разбиением множества А, называется множество В, такое что оно состоит из непустых, попарно непересекающихся подмножеств множества А.

43. Теорема про разбиение и классы эквивалентности

Если R - отношение эквивалентности, заданное на множестве A, то множество всех классов эквивалентности, полученных разбиением множества A с помощью R, образует разбиение множества A

44. Отношение строгого порядка

Отношение R, заданное на множестве A, называется отношением строгого порядка тогда и только тогда, когда для него выполняются следующие свойства: оно асимметрично и транзитивно

45. Отношение нестрогого порядка

Отношение R, заданное на множестве A, называется отношением нестрогого порядка, тогда и только тогда, когда для него выполняются следующие свойства: оно антисимметрично, транзитивно и рефлексивно

46. Отношения соответствия

- Взаимно-однозначное: одному x соответствует один y, и одному y соответствует один x
- Много-однозначное: одному x соответствует один y, но одному y соответствует несколько x
- Одно-многозначное: одному X соответствует несколько Y, но одному Y соответствует только 1 X
- Много-многозначное: одному x соответствует несколько y, a одному y соотвествует несколько x

47. Линейно упорядоченное множество

Отношение R, заданное на множестве A, называется отношением строгого порядка тогда и только тогда, когда для любых элементов a, b, принадлежащих множеству A, либо только aRb, либо только bRa

48. Частично упорядоченное множество

Отношение R, заданное на множестве A, называется отношением нестрогого порядка, сели для некоторых a, b, принадлежащих множеству A, выполняется только aRb или только bRa, a для других элементов a, b, принадлежащих множеству A, выполняется и aRb и bRa

49. Функциональное отношение

Отношение R, заданное на декартовом произведении множеств X и Y, называет функциональным тогда и только тогда, когда каждому элементу x, принадлежащему множеству X, соответствует не более 1 у, принадлежащего множеству Y

50. Недопределенная функция

Функциональное отношение R, такое что не для каждому х соответствует у