Geometria

kuko

13.10.2020

Vybrané partie z dátových štruktúr

A database query may ask for all employees with age between a_1 and a_2 , and salary between s_1 and s_2

Example of a 3-dimensional (orthogonal) range query: children in [2,4], salary in [3000,4000], date of birth in [19,500,000, 19,559,999]

- dané: body p_1, p_2, \ldots, p_n
- môžeme si ich predspracovať
- chceme vedieť
 - spočítať body v danom obdĺžniku
 - vypísať všetky body v danom obdĺžniku
- dynamická úloha: body môžeme pridávať/mazať

- dané: body p_1, p_2, \ldots, p_n
- môžeme si ich predspracovať
- chceme vedieť
 - spočítať body v danom obdĺžniku
 - vypísať všetky body v danom obdĺžniku
- dynamická úloha: body môžeme pridávať/mazať

- dané: body p_1, p_2, \ldots, p_n
- môžeme si ich predspracovať
- chceme vedieť
 - spočítať body v danom obdĺžniku
 - vypísať všetky body v danom obdĺžniku
- dynamická úloha: body môžeme pridávať/mazať

1D ?

A balanced binary search tree with the points in the leaves

A 1-dimensional range query with [25, 90]

A 1-dimensional range query with [61, 90]

A 1-dimensional range counting query with $\left[25,90\right]$

- počítanie v O(log n)
- vypísanie k bodov v $O(\log n + k)$

2D?

Kd-stromy: body budeme rozdeľovať striedavo podľa x-ových súradníc a y-ových súradníc

- podľa x: rozdelíme body podľa zvislej priamky tak, že polovica je vľavo a polovica vpravo
- podľa y: rozdelíme body podľa vodorovnej priamky tak, že polovica je dolu a polovica hore

Kd-stromy: body budeme rozdeľovať striedavo podľa x-ových súradníc a y-ových súradníc

- podľa x: rozdelíme body podľa zvislej priamky tak, že polovica je vľavo a polovica vpravo
- podľa y: rozdelíme body podľa vodorovnej priamky tak, že polovica je dolu a polovica hore

každý podstrom zodpovedá obdĺžnikovej oblasti

čierne vrcholy: celá oblasť je v obdĺžniku;

šedé: časť je v obdĺžniku

Question: How many grey and how many black nodes?

Question: How many grey and how many black leaves?

nech G(n) je počet šedých vrcholov

- G(n) = G(n/2) + 1 pre párne hĺbky
- $G(n) = 2 \cdot G(n/2) + 1$ pre nepárne hĺbky

$$G(n) = 2 \cdot G(n/4) + O(1)$$
 a $G(1) = 3$

nech G(n) je počet šedých vrcholov

- G(n) = G(n/2) + 1 pre párne hĺbky
- $G(n) = 2 \cdot G(n/2) + 1$ pre nepárne hĺbky

$$G(n) = 2 \cdot G(n/4) + O(1)$$
 a $G(1) = 1$

The grey subtree has unary and binary nodes

- počítanie v $O(\sqrt{n})$
- vypísanie k bodov v $O(\sqrt{n}+k)$

3D ?

A 3-dimensional kd-tree alternates splits on x-, y-, and z-coordinate

A 3D range query is performed with a box $\,$

How does the query time analysis change?

Intersection of B and region(v) depends on intersection of facets of $B \Rightarrow$ analyze by axes-parallel planes (B has no more grey nodes than six planes)

$$G(n) = 4 \cdot G(n/8) + O(1)$$
 a $G(1) = 1$

strom výšky $\frac{2}{3}$ lg

$$G(n) = 4 \cdot G(n/8) + O(1)$$
 a $G(1) = 1$

strom výšky $\frac{2}{3} \lg n$

- počítanie v $O(n^{2/3})$
- v d rozmeroch $O(n^{1-1/d})$
- predpočítanie v $O(n \log n)$

- počítanie v $O(n^{2/3})$
- v d rozmeroch $O(n^{1-1/d})$
- predpočítanie v $O(n \log n)$

- počítanie v $O(n^{2/3})$
- v d rozmeroch $O(n^{1-1/d})$
- predpočítanie v $O(n \log n)$

Dá sa to lepšie?

Can we achieve $O(\log n \; [+k])$ query time?

A 1-dimensional range query with [25, 90]

A 1-dimensional range query with [61, 90]

V 1D vieme identifikovať $O(\log n)$ podstromov, ktoré spolu reprezentujú celý rozsah.

V 2D vieme takto identifikovať $O(\log n)$ podstromov, ktoré obsahujú body *so správnou x-ovou súradnicou*.

Every internal node stores a whole tree in an *associated structure*, on *y*-coordinate

Question: How much storage does this take?

- pamäť $O(n \log n)$
- predspracovanie v $O(n \log n)$
- query: $O(\log^2 n)$

n	$\log n$	$\log^2 n$	\sqrt{n}
16	4	16	4
64	6	36	8
256	8	64	16
1024	10	100	32
4096	12	144	64
16384	14	196	128
65536	16	256	256
1M	20	400	1K
16M	24	576	4K

A d-dimensional range tree has a main tree which is a one-dimensional balanced binary search tree on the first coordinate, where every node has a pointer to an associated structure that is a (d-1)-dimensional range tree on the other coordinates

Dá sa to lepšie?

Every internal node stores a whole tree in an *associated structure*, on *y*-coordinate

Question: How much storage does this take?

Napríklad vstup:

(2,19),(5,80),(7,10),(8,37),(12,3),(15,99),(17,62),(21,49),(33,30),(41,95),(52,23),(58,59),(67,89),(93,70)

2D:

- pamäť $O(n \log n)$
- predspracovanie v $O(n \log n)$
- počítanie v O(log n)

d rozmerov:

- pamäť $O(n\log^{d-1}n)$
- predspracovanie v $O(n \log^{d-1} n)$
- počítanie v $O(\log^{d-1} n)$

Dynamicky?

Pamätáte si scapegoat stromy?

INVARIANT: Každý vrchol bude mať našetrené aspoň $\Delta-1$ \$.

Na každý insert stačí $2\log_{3/2} N$:

- $\bullet \log_{3/2} N$ \$ zaplatí pridanie
- ullet $\log_{3/2} N$ \$ si ušetríme na neskôr

 \dots tým pádom nevyvážený podstrom s S vrcholmi mal $\Theta(S)$ \$ a vedel zaplatiť prebudovanie v O(S) Problém: tentokrát trvá

prebudovanie $O(S\log S)$ (v 2D)

...tým pádom nevyvážený podstrom s S vrcholmi mal $\Theta(S)$ \$ a vedel zaplatiť prebudovanie v O(S) **Problém:** tentokrát trvá prebudovanie $O(S \log S)$ (v 2D)

$$\Delta = |L - R|$$

INVARIANT: Každý vrchol bude mať našetrené aspoň $(\Delta - 1) \log S$ \$.

Na každý insert stačí $O(\log^2 N)$:

- log N\$ zaplatí pridanie
- ullet každý vrchol si ušetrí $pprox \log N$ \$ na neskôr

2D:

- pamäť $O(n \log n)$
- predspracovanie v $O(n \log n)$
- počítanie v $O(\log n)$
- insert/delete v $O(\log^2 n)$ amortizovane