ANALYSIS OF GLOBAL DEVELOPMENT DATA

DANA 4840-001

Lien Pham Mohamed Ghayaas Ayushi Singh Mary Ann Villamor

CONTENTS

OI INTRODUCTION

- Overview of the data
- Audience/user of the clustering analysis

02 Data Pre-processing

- Data Cleaning
- Selecting the relevant variables
- Data Imputation

O3 APPROPRIATE K AND CLUSTERING METHODS

- Select relevant clustering methods
- Select optimal k

04 CLUSTERING AND ANALYSIS

- Interpretation of the clusters
- Assess the quality and reliability of clustering results by critical thinking

- 05
 CONCLUSIONS/
 RECOMMENDATIONS
- Conclusions of all the analysis results
- Recommendations on how to improve analysis in the future

I. INTRODUCTION

DATASET

2010 World Bank Economic Data

PURPOSE

Cluster the countries and detect groups' characteristics to support World Bank to assess the countries for decision making

DATA OVERVIEW

- 214 Countries
- 33 variables (28 numerical data)
- Comprises of economic, population, education and health factors

TARGET AUDIENCE

The World Bank Group works in every major area of development. They provide a wide array of financial products and technical assistance to help countries to eradicate poverty and increase life's quality. Their specific goals are:

- Eradicate poverty and hunger
- Achieve universal primary education
- Promote gender equality and empower women
- Reduce child mortality
- Improve maternal health
- Combat HIV/AIDS, malaria, and other diseases
- Ensure environmental sustainability

Source: World Bank development indicator 2010

2. DATA PRE-PROCESSING

OI MISSING DATA 1,383 (20%) missing data

5 variables with > 50% missing data

34 countries/rows with
 30% missing data

Range	Count	Rate %	
>=80%	5	2.34%	
>=60% < 80%	6	2.80%	
>=50% <60%	11	5.14%	
>=30% <50%	12	5.61%	
>=20% <30%	11	5.14%	
> 20%	169	78.97%	
Total	214	100.00%	

O2 RELEVANT DATA

Redundancies

- Categorical variables not needed for analysis:
 - Year
 - Year Code
 - Country name
- Highly correlated data

lifeexp_f	Life expectancy at birth, female (years)
lifeexp_m	Life expectancy at birth, male (years)
Lifeexp *	Life expectancy at birth, total (years)

mortrate_inf *	Mortality rate, infant (per 1,000 live births)
mortrate_un5 *	Mortality rate, under-5 (per 1,000 live births)
mortrate_un5f	Mortality rate, under-5, female (per 1,000)
mortrate_un5m	Mortality rate, under-5, male (per 1,000)

* removed

Data added – CO2 emission!

Goal #7: Ensure environmental sustainability (World Development Indicator 2010, World Bank)

2. DATA PRE-PROCESSING

O3 IMPUTATION

71 missing data (2%) after cleaning

- Our dataset has multiple variables with high correlation and multicollinearity. Missing data was imputed using MissForest
- MissForest is robust to noisy data and multicollinearity, since random-forests have built-in feature selection (evaluating entropy and information gain). KNN-Impute yields poor predictions when datasets have weak predictors or heavy correlation between features.
- No significant changes for the SD, Mean and Max before and after imputation.

variable	Before impute			After impute				
	Count	sd	min	max	Count	sd	min	max
adjsav_eduexp	167	1.89	0.84	12.93	180	1.84	0.84	12.93
agrland	179	22.14	0.5	88.4	180	22.08	0.5	88.4
c_gdp	174	1.18	1.11	1.36	180	1.16	1.11	1.36
grow_gdp	176	3.87	-9.53	16.73	180	3.83	-9.53	16.73
percap_gdp	172	13493.0 7	335.68	70239.3 1	180	13274.7 3	335.68	70239.3 1
percap_healthe xp	179	1683.66	12.7	8232.88	180	1680.26	12.71	8232.88
healthexp_gdp	179	2.27	0.24	12.46	180	2.27084 4	0.24	12.46
de_gdp	176	7.38	-4.2	45.94	180	7.30906	-4.2	45.94
immu_dpt	179	12.48	33	99	180	12.4960 8	33	99
hiv_fe15up	153	16.13	8.9	68	180	15.2235 9	8.9	68

3. APPROPRIATE K AND CLUSTERING METHODS

Internal criterion:

A good clustering will produce high quality clusters in which:

- The intra-class (that is, intra-cluster) similarity is high
- The inter-class similarity is low

The measured quality of a clustering depends on both the document representation and the similarity measure used

Internal criterion is used when we don't have a ground of truth or expert knowledge.

- Silhouette coefficient
- CH score

Agglomerative coefficient:

measures the amount of clustering structure of the dataset

- If observations quickly agglomerate into distinct clusters that later agglomerate into a single cluster at much greater dissimilarities, the coefficient will approach
 1
- In contrast, no clustering for the dataset will have coefficient approaching zero

3. APPROPRIATE K AND CLUSTERING METHODS

Silhouette score

```
sw complete sw average sw wardD2
       sw single
                    0.3696676
                              0.3635434 0.3694468
[k=2]
      0.24431939
[k=3]
      0.16666165
                    0.2902638
                               0.3200097 0.2421877
                    0.2972885
[k=4]
      0.13790036
                               0.2967349 0.2148586
[k=5]
      0.07008383
                    0.2515810
                               0.2507863 0.1850567
      0.05565885
                    0.1488498
                               0.2156399 0.1846749
[k=6]
     -0.01897703
                    0.1377229
                               0.2076657 0.1763091
[k=8] -0.03041767
                    0.1135680
                                0.1858980 0.1831650
                               0.1740821 0.1528211
[k=9] -0.15339242
                    0.1065394
[k=10] -0.16777476
                     0.1063986
                                0.1408716 0.1499510
```

```
CH score
```

```
ch single ch complete ch average ch wardD2
       2.347684
                  161,43729
                              158.90334 164.36272
[k=2]
      5.208947
[k=3]
                  141,65347
                               85.03813 158.67000
[k=4]
      4.881848
                  104.08367
                              101.29612 131.65109
      3.729960
                   99.34525
                               98.97265 132.15571
[k=5]
                  102.85451
[k=6]
      4.102568
                               88.74460 118.24940
      3.454631
                   89.81414
                               74.51522 102.26244
[k=7]
[k=8]
      3.088748
                   87.04003
                               64.16104
                                         91.73435
      2.705327
                                         92.97035
[k=9]
                   93.48398
                               58.24927
[k=10] 2.426490
                   88.73290
                               52.33390
                                         90.97680
```

Agglomerative coefficient

```
coef.hclust(hc_single) #0.4988596
coef.hclust(hc_complete) #0.8496924
coef.hclust(hc_average) #0.6895446
coef.hclust(hc_wardD2) #0.9526863
```

Note:

The same methods were performed on kmeans, kmedoid and hierarchal wardD2 and wardD2 has highest silhouette and CH scores

Ward D2 has highest silhouette and CH score, with optimal k = 2

- Agglomerative ward clustering seems to give a better structure, in comparison to the other clustering technique

4. CLUSTER INTERPRETATION

Cluster 1

- Number of countries 45
- Example Afghanistan, Ethiopia, South Africa, South Sudan, Central African Republic, Nigeria, Rwanda, Yemen, Uganda
- Label: Low Income countries

Cluster 2

- Number of countries 106
- Example Australia, Oman, New Zealand, Denmark, Greece, Israel
- Label: Middle (upper and lower) Income and High income

4. COUNTRY'S ECONOMY

Cluster 1 (Low Income Countries)

- GDP per capita Low
- Health Expenditure Per Capita Low
- Heath Expenditure Public Low
- GDP Growth High
- Inflation High
- CO2 Emission Low

Cluster 2 (Middle & High Income Countries)

- GDP per capita High
- Health Expenditure Per Capita High
- Heath Expenditure Public High
- GDP Growth Low
- Inflation Low
- CO2 Emission High

4. POPULATION HEALTH

Cluster 1 (Low income)

- Life Expectancy (years)
 - Male 57.1
 - Female 59.7
- Mortality Rate / Per 1000 births
 - Male 92.15
 - Female 81.03
- Annual Population Growth 2.58 %

Cluster 2 (Middle and high income)

- Life Expectancy (years)
 - Male 71.63
 - Female 77.38
- Mortality Rate / Per 1000 births
 - Male 19.47
 - Female 15.98
- Annual Population Growth 0.94 %

4. POPULATION HEALTH

Cluster 1 (Low income)

- Birth Rate High
- Lower Immunization against DPT and Measles in children
- Higher percentage of women 15+ of age living with HIV +

Cluster 2 (Middle and high income)

- Birth Rate Low
- Higher Immunization against DPT and Measles in children
- Lower percentage of women 15+ of age living with HIV +

4. MIDDLE INCOME (2) VS HIGH INCOME COUNTRIES (3)

		cluster_k2 🗐	cluster_k3
Albania	ALB	2	2
Algeria	DZA	2	. 2
Antigua and Barbuda	ATG	2	3
Argenti	ARG	2	. 2
Armenia	ARM	2	. 2
<mark>Australia</mark>	AUS	2	3
Austria	AUT	2	3
Azerbaijan	AZE	2	. 2
Bahamas, The	BHS	2	3
Bangladesh	BGD	2	. 2
Barbados	BRB	2	3
Belarus	BLR	2	2
Belgium	BEL	2	3
Belize	BLZ	2	. 2
Bhutan	BTN	2	2
Bolivia	BOL	2	2
Bosnia and Herzegovi	BIH	2	3
Brazil	BRA	2	2
Bulgaria	BGR	2	3
Cabo Verde	CPV	2	2
Cambodia	KHM	2	2
Cada?	CAN	2	3
Chile	CHL	2	. 2
Colombia	COL	2	2
Costa Rica	CRI	2	2
<u>Croatia</u>	HRV	2	3
Cyprus	CYP	2	3

Peru

United Kingdom

Rwanda

6. MIDDLE INCOME COUNTRIES **VS** HIGH INCOME COUNTRIES

5. USE CLUSTERS' LABELS FOR MODELLING

Encoding:

- Cluster 1 Low Income countries 1
- Cluster 2 Middle & High Income 0

Random Forest Accuracy – 90.32 %

XG Boost Accuracy – 93.54 %

5. CONCLUSIONS/RECOMMENDATIONS

From WB's perspective

- Deep dive into group 2 to analyze the countries that are middle income such as Philippine, Vietnam, Myanmar
- Efforts shall be undertaken by the world bank to curb the high CO2 emission from developed countries alongside the other goals.

From algorithm perspective

- Look for more variables such as criminal rate, clean water quality access rate, literacy rate to support World Bank's goals/decision making if there is a specific goal
- Perform analysis in cluster 2 to detect lower middle income countries
- Try the clustering on the most recent dataset (2021) to detect the changes in clustering, trends and patterns

QUESTIONS?

