ITSC - Extensión áulica Villa El Libertador

Programación III Trabajo práctico evaluativo

Temas:

- Notación O
- Análisis de complejidad de algoritmos
- Algoritmos de ordenamiento

Actividades:

- 1) Implementar la función selection_sort en el archivo ss.py
- 2) Implementar la función insertion_sort en el archivo is.py
- 3) Escribir tests para ambas funciones de ordenamiento, considerando (al menos) los siguientes casos:
- o lista vacía
- o lista con un elemento
- o lista ordenada con dos elementos
- o lista desordenada con dos elementos
- o listas con más de dos elementos
- o lista de diferentes tipos (con números, con caracteres, con tuplas)
- 4) Escribir el análisis de la cantidad de comparaciones que realiza cada algoritmo
- 5) Determinar la complejidad de cada algoritmo considerando mejor caso y peor caso
- 6) Realizar mediciones usando el módulo timeit para listas de diferentes tamaños y graficar los valores obtenidos para el mejor caso y el peor caso
- 7) Evaluar si los resultados obtenidos coinciden con el análisis hecho en los puntos 4 y 5.

Respuestas

4)Ordenamiento por Seleccion

entrada= lista de elementos comparables salida=una lista ordenada que es permutacion de la lista original

PASO 0:

```
L=[-4,2,8,7] i=0, j=1, pos_min=0
```

```
*comparo L[j] con L[pos_min] \rightarrow j=2
```

*comparo L[j] con L[pos_min] \rightarrow j=3

*comparo L[j] con L[pos_min] \rightarrow j=4

intercambio L[i] con L[pos_min]

PASO 1:

L=[-4,2,8,7] i=1, j=2, pos_min=1

*comparo L[i] con L[pos min] \rightarrow j=3

*comparo L[j] con L[pos_min] \rightarrow j=4

intercambio L[i] con L[pos_min]

PASO2:

L=[-4,2,8,7] i=2, j=3, pos_min=2

*comparo L[j] con L[pos_min] \rightarrow j=4

intercambio L[j] con L[pos_min]

Ordenamiento por insercion

<u>Peor de los casos</u>: que este ordenada exactamente al reves L=[6,4,3,2,1,0]

PASO 1: insertar el 4 * comparar el 4 con el 6 → intercambio [4,6,3,2,1,0]

PASO 2: insertar el 3

- * comparar el 3 con el $6 \rightarrow$ intercambio [4,3,6,2,1,0]
- * comparar el 3 con el $4 \rightarrow$ intercambio [3,4,6,2,1,0]

PASO 3: insertar el 2

- * comparar el 2 con el 6 \rightarrow intercambio [3,4,2,6,1,0]
- * comparar el 2 con el $4 \rightarrow$ intercambio [3,2,4,6,1,0]
- * comparar el 2 con el 3 \rightarrow intercambio [2,3,4,6,1,0]

PASO 4: insertar el 1

- * comparar el 1 con el $4 \rightarrow$ intercambio [2,3,1,4,6,0]
- * comparar el 1 con el 3 \rightarrow intercambio [2,1,3,4,6,0]
- * comparar el 1 con el $2 \rightarrow$ intercambio [1,2,3,4,6,0]

PASO 5:

- * comparar el 0 con el 6 \rightarrow intercambio [1,2,3,4,0,6]
- * comparar el 0 con el $4 \rightarrow$ intercambio [1,2,3,0,4,6]
- * comparar el 0 con el 3 \rightarrow intercambio [1,2,0,3,4,6]
- * comparar el 0 con el 2 \rightarrow intercambio [1,0,2,3,4,6]
- * comparar el 0 con el 1 \rightarrow intercambio [0,1,2,3,4,6]

Mejor de los casos : que la lista este ordenada L=[1,3,6,8]

PASO 1: insertar el 3 * comparar el 3 con el 1

PASO 2: insertar el 6

* comparar el 6 con el 3

PASO 1: insertar el 8 * comparar el 8 con el 6

5) COMPLEJIDAD DE CADA ALGORITMO:

insercion_sort

°mejor caso: O(n) °al azar= $O(n^2)$ °peor caso: $O(n^2)$

selección_sort

°mejor caso: $O(n^2)$ °al azar : $O(n^2)$ °peor caso : $O(n^2)$

6)Con las mediciones en timeit grafique en geogebra.

Ordenamiento por Seleccion

Ordenamiento por inserccion Al azar :

Peor de los casos

