Classifying probabilistic distributions

S.E. Volodin

MIPT

The dataset

- **1** Probability distributions $\{f_k(x) \colon \mathbb{R} \to \mathbb{R}\}_{k=1}^K$
- ② Picking one of them $k \in \overline{1, K}$
- **3** Picking points $[a, b] \subseteq \mathsf{Dom} f_k$
- ① Dividing [a, b] into 101 parts: $[a, b] = \bigsqcup_{s=0}^{100} \Delta_s$,

$$|\Delta_0| = |\Delta_{100}| = \frac{\Delta_s}{2}$$

- **5** Sampling $t_z \sim f_k$
- **6** Counting numbers in Δ_s : $x_s^i = \sum_z [t_z \in \Delta_s]$
 - \Rightarrow Obtained object $\{x_s\} \in \mathfrak{D}$

The dataset

Answers: $y_i = [k = \hat{k}]$ for a fixed \hat{k} .

$$f_{\hat{k}} = ax^{a-1}[x \in [0,1]]$$

Рис.: 1. Training set, $y_i = 0$

Рис.: 2. Training set, $y_i = 1$

The solution

Idea: dimension reduction

• Fitting a polynom $\sum |P_n(s) - x_s|^2 \to \min$

② Using coefficients $coeff(P_n)$ as features of $\{x_s^i\} \in \mathfrak{D}$

Choosing degree

Answer: $n^* = 3$

Result

Result

# Δ2d Team Name	Score 2
1 -	0.99450
2 –	0.99412
3 -	0.98403
4 – SergeyVolodin	0.97144

Thank you! Questions?