Mikrokontrolery AVR ATmega

Literatura:

8-bit Microcontroller AVR with 32KBytes In-System Programmable Flash ATmega32 [www.atmel.com]

8-bit AVR Instruction Set [www.atmel.com]

Baranowski Rafał, Mikrokontrolery AVR Atmega, BTC, Warszawa 2005

Struktura pojedynczej linii portu

Każdemu z portów są przyporządkowane trzy rejestry wejścia-wyjścia:

PORTx- Gdy port pracuje w trybie wyjściowym stan logiczny zapisany w tym rejestrze jest stanem logicznym wymuszanym na pinie zewnętrznym, gdy port pracuje jako wejście ustawienie określonych bitów powoduje dołączenie do wejść rezystorów podciągających o ile nie jest to zablokowane bitem **PUD** w rejestrze **SFIOR** lub **MCUCR.**

PINx- stan bitów tego portu odpowiada faktycznemu stanowi pinów ustawionych jako wejścia, gdy linia portu pracuje jako wyjście to stan odpowiadającego mu bitu rejestru **PINx** jest kopią bitu rejestru **PORTx.**

DDRx- określa kierunek linii portu. *Wyzerowanie bitu* rejestru **DDRx** powoduje ustawienie linii jako *wejścia*, *ustawienie bitu* powoduje ustawienie linii jako **wyjścia**.

Bit	7	6	5	4	3	2	1	0	
	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	l
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Read/Write	•					<u> </u>			
Deadwalite	R	R	R	R	R	R	R	R	

Port A

Bit	7	6	5	4	3	2	1	0	
	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
Read/Write	R	R	R	R	R	R	R	R	
Initial Value									

Port B

Bit	7	6	5	4	3	2	1	0	
	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	PORTC
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	_
	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	DDRC
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	PINC
Read/Write	R	R	R	R	R	R	R	R	
Initial Value	N/A								

Port C

Bit	7	6	5	4	3	2	1	0	_
	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
Read/Write	R/W	ı							
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	PIND
Read/Write	R	R	R	R	R	R	R	R	
Initial Value	N/A								

Port D

Bit	7	6	5	4	3	2	1	0	_
	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	1
Initial Value	0	0	0	0	0	0	0	0	

Bit PUD w rejestrze SFIOR umożliwia blokowanie funkcji pull-up dla wszystkich linii wszystkich portów.

Możliwe ustawienia linii portu rónoległego

PORTxn	DDRxn	PUD	Kier. Port.	Stan linii portu
0	0	X	Wejście	Wysoka impedancja
1	0	1	Wejście	Wysoka impedancja
1	0	0	Wejście	Podciągnięcie rezystorem 20-50kOhm
0	1	X	Wyjście	Wyjście w stanie "L"
1	1	X	wyjście	Wyjście w stanie "H"

Cechy szczególne linii portów

Port jako wejście:

- -histereza (około 50 mV), pozwalająca na eliminację błędów przy sygnałach wolnozmiennych i zaszumionych,
- -przy odczycie portu po jego zapisaniu należy odczekać około 1 takt zegara (wewnętrzny układ synchronizujący).

Port jako wyjście:

- -stan pinu może się pojawiać z opóźnieniem jednego taktu zegara przy zmianie PORTxn,
- -typowe obciążenie linii portu wynosi 20mA, maksymalnie 40mA.

Moduł przerwań zewnętrznych

Trzy źródła przerwań zewnętrznych- wyprowadzenia:

INT0

INT1

INT2

Bity sterujące przerwaniami INT0 i INT1 w rejestrze MCUCR:

Bit	7	6	. 5	4	3	. 2	. 1	. 0	_
	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Sposób zgłaszania przerwania INT0:

ISC01	ISC00	Sposób zgłaszania przerwania
0	0	Zgłaszanie niskim poziomem logicznym
0	1	Zgłaszanie zmianą stanu logicznego z 0 na 1 lub z 1 na 0
1	0	Zgłaszanie opadającym zboczem
1	1	Zgłaszanie narastającym zboczem

Sposób zgłaszania przerwania INT1:

ISC11	ISC10	Sposób zgłaszania przerwania
0	0	Zgłaszanie niskim poziomem logicznym
0	1	Zgłaszanie zmianą stanu logicznego z 0 na 1 lub z 1 na 0
1	0	Zgłaszanie opadającym zboczem
1	1	Zgłaszanie narastającym zboczem

Bit sterowania przerwaniem INT2 w rejestrze MCUCSR

Bit	7	6	5	4	3	2	1	0	_
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0						

Sposób zgłaszania przerwania INT2:

ISC2	Sposób zgłaszania przerwania
0	Zgłaszanie opadającym zboczem
1	Zgłaszanie narastającym zboczem

Rejestr sterowania przerwaniami zewnętrznymi INTx

Bit	7	6	5	4	3	2	1	0	_
	INT1	INT0	INT2	-	-	-	IVSEL	IVCE	GICR
Read/Write	R/W	R/W	R/W	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

INT1- bit maski przerwania INT1 (INT1="1" i bit I=,,1" przerwanie INT1 odmaskowane, INT1=,,0"- zamaskowane).

INT0- bit maski przerwania INT0 (INT0="1" i bit I=,,1" przerwanie INT0 odmaskowane, INT0=,,0"- zamaskowane).

INT2- bit maski przerwania INT2 (INT2="1" i bit I=,,1" przerwanie INT2 odmaskowane, INT2=,,0"- zamaskowane).

Rejestr znaczników zgłaszania przerwań zewnętrznych- GIFR

Bit	7	6	5	4	3	2	1	0	
	INTF1	INTF0	INTF2	-	-	-	-	-	GIFR
Read/Write	R/W	R/W	R/W	R	R	R	R	R	-
Initial Value	0	0	0	0	0	0	0	0	

INTF1: bit zgłoszenia przerwania na wejściu INT1, ustawiany gdy przerwanie jest odmaskowane i zgłoszone, kasowany po wejściu do procedury obsługi lub poprzez zapis jedynki logicznej. Gdy przerwanie jest aktywne poziomem bit ten nie jest ustawiany.

INTF0: bit zgłoszenia przerwania na wejściu INT0, ustawiany gdy przerwanie jest odmaskowane i zgłoszone, kasowany po wejściu do procedury obsługi lub poprzez zapis jedynki logicznej. Gdy przerwanie jest aktywne poziomem bit ten nie jest ustawiany.

INTF2: bit zgłoszenia przerwania na wejściu INT2, ustawiany gdy przerwanie jest odmaskowane i zgłoszone, kasowany po wejściu do procedury obsługi lub poprzez zapis jedynki logicznej.

8-mio bitowy licznik czasomierz T0 z funkcją PWM

Źródłem sygnału taktującego mogą być:

- -sygnał CK z oscylatora,
- -sygnał CK z oscylatora podzielony prescalerem,
- -zewnętrzny sygnał T0.

Praca licznika T0 z funkcją Output Compare

Rejestry układu czasowo-licznikowego T0 Rejestr kontrolny licznika T0

Bit	7	6	5	4	3	2	1	0	_
	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	TCCR0
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Bity ustawiające źródło sygnału taktującego i podział prescalera:

CS02	CS01	CS00	Opis		
0	0	0	Licznik zatrzymany		
0	0	1	Taktowanie CK		
0	1	0	Taktowanie CK/8		
0	1	1	Taktowanie CK/64		
1	0	0	Taktowanie CK/256		
1	0	1	Taktowanie CK/1024		
1	1	0	Zewnętrzny sygnał T0 (opadające zbocze)		
1	1	1	Zewnętrzny sygnał T0 (narastające zbocze)		

Tryb generacji sygnału

WGM01	WGM00	Opis				
0	0	Zwykłą praca licznika				
0	1	PWM z korekcją fazy				
1	0	Porównanie z zerowaniem licznika				
1	1	Szybki PWM				

Tryb funkcji Output Compare gdy tryb PWM wyłączony

COM01	COM00	Opis				
0	0	Pin odłączony				
0	1	Zmiana stanu logicznego na pinie				
1	0	Zerowanie pinu				
1	1	Ustawienie pinu				

Rejestr licznika T0- TCNT0

Rejestr porównawczy- OCR0

Bit	7	6	5	4	3	2	1	0	_
				OCR	0[7:0]				OCR0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Rejestr maski przerwań od liczników czasomierzy-TIMSK

Bit	7	6	5	4	3	2	1	0	_
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

BIT1: **OCIE0**- bit maski przerwania od funkcji Output-Compare licznika **T0**

BIT0: **TOIEO-** bit maski przerwania od przepełnienia licznika T0

Rejestr znaczników przerwań od liczników-czasomierzy- TIFR

Bit	7	6	5	4	3	2	1	0	_
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

BIT1: **OCF0**- bit zgłoszenia przerwania od funkcji Output-Compare licznika **T0**

BIT0: **OCFO-** bit zgłoszenia przerwania od przepełnienia licznika T0

Prescaler licznika T0 i T1

Schemat blokowy

Rejestr specjalny SFIOR- zerowanie prescalera

Bit	7	6	5	4	3	2	1	0	_
	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Ustawienie bitu 0- **PSR10**, w rejestrze SFIOR powoduje wyzerowanie prescalera licznika T0 i T1

16-to bitowy licznik czasomierz T1 z funkcją PWM

Funkcja Input Capture (zatrzaskiwanie stanu licznika)

Schemat blokowy

Funkcja Output Compare

Schemat blokowy

Rejestr kontrolny A licznika T1- TCCR1A

Bit	7	6	5	4	3	2	1	0	_
	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	W	W	R/W	R/W	1
Initial Value	0	0	0	0	0	0	0	0	

Tryb funkcji Output Compare gdy tryb PWM wyłączony

COM1A1/ COM1B1	COM1A0/ COM1B0	Opis
0	0	Piny odłączone, normalne funkcje portu
0	1	Zmiana stanu logicznego na pinie
1	0	Zerowanie pinu
1	1	Ustawienie pinu

Tryb funkcji Output Compare gdy tryb Szybki PWM

COM1A1/	COM1A0/	Opis
COM1B1	COM1B0	
0	0	Piny odłączone, normalne funkcje portu
0	1	W zależności od bitów WGM Wyjście A w
		funkcji OC wyjście B normalny pinportu, oba
		piny jako linie portu
1	0	Tryb nieodwracający
1	1	Tryb odwracający

Tryb funkcji Output Compare gdy tryb PWM z korekcją fazy oraz z korekcją fazy i częstotliwości

COM1A1/ COM1B1	COM1A0/ COM1B0	Opis
0	0	Piny odłączone, normalne funkcje portu
0	1	W zależności od bitów WGM Wyjście A w funkcji OC wyjście B normalny pinportu, oba piny jako linie portu
1	0	Zerowanie pinu przy zliczaniu w dół, ustawianie przy zliczaniu w górę
1	1	Ustawianie pinu przy zliczaniu w dół, zerowanie przy zliczaniu w górę

Tryb generacji sygnału na wyjściach A i B

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation
0	0	0	0	0	Normal
1	0	0	0	1	PWM, Phase Correct, 8-bit
2	0	0	1	0	PWM, Phase Correct, 9-bit
3	0	0	1	1	PWM, Phase Correct, 10-bit
4	0	1	0	0	стс
5	0	1	0	1	Fast PWM, 8-bit
6	0	1	1	0	Fast PWM, 9-bit
7	0	1	1	1	Fast PWM, 10-bit
8	1	0	0	0	PWM, Phase and Frequency Correct
9	1	0	0	1	PWM, Phase and Frequency Correct
10	1	0	1	0	PWM, Phase Correct
11	1	0	1	1	PWM, Phase Correct
12	1	1	0	0	стс
13	1	1	0	1	Reserved
14	1	1	1	0	Fast PWM
15	1	1	1	1	Fast PWM

Rejestr kontrolny B licznika T1- TCCR1B

Bit	7	6	5	4	3	2	1	0	_
	ICNC1	ICES1	_	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ICNC1- włączanie filtracji wejścia Input Capture

ICES1- Wybór zbocza wejścia Input Capture (gdy "0" opadające zbocze, gdy "1"- narastające zbocze)

WGM13, WGM12- tryb generacji przebiegu

CS12-CS10- wybór źródła taktowania zgodnie z tabelą

CS12	CS11	CS10	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{l/O} /1 (No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T1 pin. Clock on falling edge.
1	1	1	External clock source on T1 pin. Clock on rising edge.

Źródła taktowania licznika T1

Rejestr licznika T1

Bit	7	6	5	4	3	2	1	0	_
				TCNT	1[15:8]				TCNT1H
	TCNT1[7:0]								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Rejestr porównawczy funkcji Output-Compare Ai B

Bit	7	6	5	4	3	2	1	0			
	OCR1A[15:8]										
				OCR1	A[7:0]				OCR1AL		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Initial Value	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	OCR1B[15:8]										
	OCR1B[7:0]										
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Initial Value	0	0	0	0	0	0	0	0			

Rejestr zatrzaskowy funkcji Input Capture licznika T1

Rejestr maski przerwań od układów czasowo-licznikowych- TIMSK

Bit	7	6	5	4	3	2	1	0	_
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TICIE1- maska przerwań od funkcji Input Capture licznika T1

OCIE1A- maska przerwań od funkcji Output Compare A

OCIE1B- maska przerwań od funkcji Output Compare B

TOIE1- maska przerwań od przepełnienia licznika T1

Rejestr bitów zgłaszania przerwań od licznika T1-TIFR

Bit	7	6	5	4	3	2	1	0	_
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ICF1- znacznik zgłoszenia przerwania od funkcji Input Capture licznika T1

OCF1A- znacznik zgłoszenia przerwania od funkcji Output Compare A OCF1B- znacznik zgłoszenia przerwania od funkcji Output Compare B TOV1- znacznik zgłoszenia przerwania od przepełnienia licznika T1

8-mio bitowy układ czasowo-licznikowy T2 z możliwością pracy asynchronicznej

Schemat blokowy układu licznika T2

Rejestr sterujący licznika T2- TCCR2

Bit	7	6	5	4	3	2	1	0	_
	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	TCCR2
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	.
Initial Value	0	0	0	0	0	0	0	0	

Rejestr licznika T2- TCNT2

Bit	7	6	5	4	3	2	1	0	_		
		TCNT2[7:0]									
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Initial Value	0	0	0	0	0	0	0	0			

Rejestr porównawczy funkcji Output Compare licznika T2- OCR2

Bit	7	6	5	4	3	2	1	0	_	
		OCR2[7:0]								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•	
Initial Value	0	0	0	0	0	0	0	0		

Status trybu asynchronicznego- ASSR

Bit	7	6	5	4	3	2	1	0	_
	-	-	-	-	AS2	TCN2UB	OCR2UB	TCR2UB	ASSR
Read/Write	R	R	R	R	R/W	R	R	R	1
Initial Value	0	0	0	0	0	0	0	0	

Rejestr maski przerwań układu czasowo-licznikowego

Bit	7	6	5	4	3	2	1	0	_
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

OCIE1 – maska przerwań od funkcji Output Compare licznika T2

TOIE1 – maska przerwań od przepełnienia licznika T2

Rejestr zgłaszania przerwań od licznika T2-TIFR

OCF1 – znacznik zgłoszenia przerwania od funkcji Output Compare licznika T2

TOV1 – znacznik zgłoszenia przerwania od przepełnienia licznika T2

Prescaler licznika T2

Schemat blokowy układu prescalera

Bit zerowania prescalera licznika T2 w rejestrze SFIOR

Bit	7	6	5	4	3	2	1	0	_
	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Synchroniczny port szeregowy SPI

Połączenie urządzeń nadrzędnych (Master) i podrzędnych (Slave) przy pomocy portu SPI

Układ nadrzędny (Master) jest źródłem sygnału taktującego oraz układem dokonującym wyboru układu Slave (podrzędnego). Linia MISO układu nadrzędnego jest połączona z linią MISO układu podrzędnego i podobnie linia MOSI układu Master jest połączona z linią MOSI układu Slave. Sygnał SS w przypadku układów master wykrywa konflikty na magistrali gdy dwa układy Master chcą skorzystać z magistrali SPI.

Rejestr sterujący układu SPI- SPCR

Bit	7	6	5	4	3	2	1	0	
	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	SPCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

SPIE- bit maski przerwań od portu SPI

SPE- bit uaktywnienia portu SPI (gdy bit SPE=,,0" port wyłączony)

DORD- decyduje o kolejności wysyłania bitów danej (gdy DORD=,,0" dana jest transmitowana od najstarszego (MSB) bitu

MSTR- Wybór funkcji układu- nadrzędny lub podrzędny (gdy MSTR=,,0"- Slave, gdy MSTR=,,1"- Master)

CPOL- Polaryzacja zegara- ustalenie stanu nieaktywnego na linii SCK (gdy CPOL="0" nieaktywny stan na linii SK to stan niski)

CPHA- faza zegara determinuje kiedy dana jest próbkowana (podczas pierwszego lub ostatniego zbocza zegara)

SPR1, SPR0, wybór częstotliwości taktowania portu SPI

SPI2X	SPR1	SPR0	Częstotliwość zegara portu SPI- SCK
0	0	0	fosc/4
0	0	1	fosc/16
0	1	0	fosc/64
0	1	1	fosc/128
1	0	0	fosc/2
1	0	1	fosc/8
1	1	0	fosc/32
1	1	1	fosc/64

Rejestr statutowy portu SPI

Bit	7	6	5	4	3	2	1	0	
	SPIF	WCOL	=	-	-	-	-	SPI2X	SPSR
Read/Write	R	R	R	R	R	R	R	R/W	
Initial Value	0	0	0	0	0	0	0	0	

SPIF- znacznik zgłoszenia przerwania od portu SPI- ustawiany po zakończeniu transmisji prze port SPI

WCOL- bit kolizji przy zapisie portu SPI

SPI2X- bit podwojenia prędkości transmisji przez port SPI (sygnału SCK), SPI2X podwaja prędkość transmisji

Rejestr danych portu SPI

Port szeregowy synchroniczny-asynchroniczny USART

Możliwość pracy synchronicznej i synchronicznej

Ramka od 5 do 9 bitów

1 lub 2 bity stopu

Dwa rodzaje kontroli parzystości

Wykrywanie błędu ramki

Eliminacja szumów

Możliwość współpracy wieloprocesorowej

Schemat blokowy portu USART

Tryb pracy synchronicznej

St Start bit, always low.

(n) Data bits (0 to 8).

Ramka transmisji

- P Parity bit. Can be odd or even.
- **Sp** Stop bit, always high.
- **IDLE** No transfers on the communication line (RxD or TxD). An IDLE line must be high.

Próbkowanie bitu startu

Próbkowanie bitu danych i parzystości

Próbkowanie bitu stopu

Rejestry: nadawczy i odbiorczy portu USART- UDR

Rejestr nadawczy i odbiorczy znajdują się pod tym samym adresem dostęp do rejestru jest rozpoznawany kierunkiem transferu danych (rejestr odbiorczy-odczyt, nadawczy-zapis)

Rejestr kontrolno-sterujący portu USART: A- UCSRA

Bit	7	6	5	4	3	2	1	0	_
	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	UCSRA
Read/Write	R	R/W	R	R	R	R	R/W	R/W	•
Initial Value	0	0	1	0	0	0	0	0	

RXC- bit informujący o skompletowaniu danej odbieranej

TXC- bit informujący o wysłaniu całej danej

UDRE- bit informujący, że bufor nadawania jest gotowy do przyjęcia nowej danej

FE- bit zgłoszenia błędu ramki (ustawiany gdy w oczekiwanym czasie nie pojawił się bit stopu)

DOR- bit zgłoszenia błędu nadpisania (dana odbierana jest skompletowana, a wykryto bit startu nowej danej odbieranej)

PE- błąd parzystości

U2X- podwojenie prędkości transmisji w trybie asynchronicznym

MPCM- bit współpracy wieloprocesorowej

Rejestr kontrolno-sterujący portu USART: B- UCSRB

Bit	7	6	5	4	3	2	1	0	_
	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	UCSRB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

RXCIE- bit maski przerwania od skompletowania danej odbieranej

TXCIE- bit maski przerwania od wysłania danej

UDRIE- bit maski przerwania od pustego rejestru danych

RXEN- włączanie odbiornika portu USART (zapis "1")

TXEN- włączanie nadajnika portu USART (zapis "1")

UCSZ2- jeden z bitów określających rozmiar danej

RXB8- 9-ty bit odbierany

TXB8- 9-ty bit nadawany

Rejestr kontrolno-sterujący portu USART: C- UCSRC

Bit	7	6	5	4	3	2	1	0	_
	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	UCSRC
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	1	0	0	0	0	1	1	0	

URSEL- bit dostępu do rejestru UCSRC i UBRRH, ustawienie na 1 zapewnia dostęp do rejestru UCSRC. Oba rejestry mają ten sam adres.

UMSEL- wybór trybu synchronicznego lub asynchronicznego, "0" tryb asynchroniczny.

UPM1, UPM0- wybór rodzaju kontroli parzystości: wyłączona, parzystość parzysta, parzystość nieparzysta

USBS- ilość bitów stopu: "0"- 1bit stopu, "1"- 2 bity stopu

UCSZ1, UCSZ0- wybór ilości bitów danej

UCSZ2	UCSZ1	UCSZ0	Długość danej
0	0	0	5-bitów
0	0	1	6-bitów
0	1	0	7-bitów
0	1	1	8-bitów
1	0	0	rezerwa
1	0	1	rezerwa
1	1	0	rezerwa
1	1	1	9-bitów

Określenie wielkości danej

UCPOL- tylko w modzie synchronicznym określa polaryzację sygnału zegarowego

Rejestr prędkości bodowej

Bit	15	14	13	12	11	10	9	8	
	URSEL		-	-		UBRE	[11:8]		UBRRH
				UBRI	R[7:0]				UBRRL
	7	6	5	4	3	2	1	0	
Read/Write	R/W	R	R	R	R/W	R/W	R/W	R/W	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

URSEL- bit określający dostęp do starszej lub młodszej części rejestru. Przy zapisie do UBRRH powinien być ustawiony w stan niski

Przykładowe prędkości bodowe

 $f_{\rm osc} = 1.0000 MHz$ $f_{osc} = 1.8432MHz$ $f_{osc} = 2.0000MHz$ Baud U2X = 0U2X = 1U2X = 1U2X = 0U2X = 1U2X = 0Rate UBRR Error UBRR UBRR UBRR **UBRR UBRR** Error Error Error Error Error (bps) 2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2% 0.2% 4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 9600 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2% 6 -3.5% 2.1% 14.4k 8.5% 0.0% 15 0.0% -3.5% 16 3 8 7 8 0.2% 19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 28.8k 7 1 8.5% 3 8.5% 3 0.0% 0.0% 3 8.5% 8 -3.5% 38.4k -18.6% 8.5% 0.0% 5 0.0% 2 8.5% 6 -7.0% 1 2 2 57.6k 8.5% 8.5% 0 8.5% 0.0% 3 0.0% 8.5% 3 1 1 76.8k -18.6% 0.0% -18.6% 2 8.5% 1 1 -25.0% 2 1 115.2k 8.5% 0.0% 0.0% 8.5% 0 0 1 0 8.5% 1 230.4k 0.0% 0 250k 0 0.0% Max (1) 115.2 Kbps 62.5 Kbps 125 Kbps 230.4 Kbps 125 Kbps 250 Kbps

UBRR = 0, Error = 0.0%

Przykładowe prędkości bodowe

		f _{osc} = 16.	f _{osc} = 18.4320MHz				f _{osc} = 20.0000MHz						
Baud Rate	U2X	= 0	U2X	C = 1	U2X	U2X = 0		U2X = 1		U2X = 0		U2X = 1	
(bps)	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	
2400	416	-0.1%	832	0.0%	479	0.0%	959	0.0%	520	0.0%	1041	0.0%	
4800	207	0.2%	416	-0.1%	239	0.0%	479	0.0%	259	0.2%	520	0.0%	
9600	103	0.2%	207	0.2%	119	0.0%	239	0.0%	129	0.2%	259	0.2%	
14.4k	68	0.6%	138	-0.1%	79	0.0%	159	0.0%	86	-0.2%	173	-0.2%	
19.2k	51	0.2%	103	0.2%	59	0.0%	119	0.0%	64	0.2%	129	0.2%	
28.8k	34	-0.8%	68	0.6%	39	0.0%	79	0.0%	42	0.9%	86	-0.2%	
38.4k	25	0.2%	51	0.2%	29	0.0%	59	0.0%	32	-1.4%	64	0.2%	
57.6k	16	2.1%	34	-0.8%	19	0.0%	39	0.0%	21	-1.4%	42	0.9%	
76.8k	12	0.2%	25	0.2%	14	0.0%	29	0.0%	15	1.7%	32	-1.4%	
115.2k	8	-3.5%	16	2.1%	9	0.0%	19	0.0%	10	-1.4%	21	-1.4%	
230.4k	3	8.5%	8	-3.5%	4	0.0%	9	0.0%	4	8.5%	10	-1.4%	
250k	3	0.0%	7	0.0%	4	-7.8%	8	2.4%	4	0.0%	9	0.0%	
0.5M	1	0.0%	3	0.0%	_	_	4	-7.8%	_	_	4	0.0%	
1M	0	0.0%	1	0.0%	_	_	_	_	_	_	_	_	
Max (1)	1MI	bps	2M	bps	1.152	Mbps	2.304	Mbps	1.25	Mbps	2.5Mbps		

Interfejs magistrali dwuliniowej (I2C)

Przykładowe połączenie układów na magistrali I2C

Współzależność między sygnałami SDA i SCL

Sekwencje Start i Stop

Adresacja urządzenia

Przesyłanie danych

Typowa ramka transmisji danych

Arbitraż w przypadku dwóch układów Master

Schemat blokowy układu interfejsu magistrali I2C

Rejestr określający prędkość transmisji na magistrali- TWBR

Bit	7	6	5	4	3	2	1	0	
	TWBR7	TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0	TWBR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
		_			_				
	S	CL fred	quency			k freque BR) - 4			

Rejestr kontrolny interfejsu magistrali I2C

Bit	7	6	5	4	3	2	1	0	_
	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	TWCR
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TWINT- bit sygnalizujący koniec czynności na magistrali I2C

TWEA- bit zezwalający na generację sygnału akceptacji ACK

TWSTA- generacja sekwencji START (sprawdza zajętość linii SDA) kasowany programowo

TWSTO- generacja sekwencji STOP

TWWC- bit detekcji kolizji na magistrali

TWEN- włączenie interfejsu I2C (aktywny stan wysoki)

TWIE- bit maski przerwań od interfejsu I2C

Rejestr statusowy magistrali I2C

Bit	7	6	5	4	3	2	1	0	_
	TWS7	TWS6	TWS5	TWS4	TWS3	_	TWPS1	TWPS0	TWSR
Read/Write	R	R	R	R	R	R	R/W	R/W	1
Initial Value	1	1	1	1	1	0	0	0	

TWPS0, TWPS1- bity sterowania prescalerem

TWPS1	TWPS0	Prescaler Value
0	0	1
0	1	4
1	0	16
1	1	64

TWS7-TWS3- bity statusu interfejsu I2C

Przebieg transmisji na magistrali I2C- obsługa programowa

Data byte will be transmitted and ACK or NOT ACK will SLA+W has been transmitted; Х \$18 Load data byte or 0 ACK has been received be received No TWDR action or 1 0 1 Х Repeated START will be transmitted No TWDR action or 0 1 Х STOP condition will be transmitted and 1 TWSTO Flag will be Reset Х STOP condition followed by a START condition will be No TWDR action 1 1 1 transmitted and TWSTO Flag will be Reset SLA+W has been transmitted: Load data byte or 0 1 Х Data byte will be transmitted and ACK or NOT ACK will \$20 0 NOT ACK has been received be received No TWDR action or Х Repeated START will be transmitted 1 0 1 STOP condition will be transmitted and No TWDR action or 0 1 1 Х TWSTO Flag will be reset STOP condition followed by a START condition will be No TWDR action 1 Х 1 1 transmitted and TWSTO Flag will be reset Load data byte or \$28 Data byte has been transmitted: 0 0 1 Х Data byte will be transmitted and ACK or NOT ACK will ACK has been received be received Х No TWDR action or 0 Repeated START will be transmitted No TWDR action or 0 1 1 Х STOP condition will be transmitted and TWSTO Flag will be reset STOP condition followed by a START condition will be No TWDR action 1 1 1 Х transmitted and TWSTO Flag will be reset

Przykłady statusu interfejsu I2C

Rejestr danych

Bit	7	6	5	4	3	2	1	0	_
	TWD7	TWD6	TWD5	TWD4	ТWDз	TWD2	TWD1	TWD0	TWDR
Read/Write	R/W	•							
Initial Value	1	1	1	1	1	1	1	1	

Rejestr adresu układu Slave

Bit	7	6	5	4	3	2	1	0	
	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	TWAR
Read/Write	R/W								
Initial Value	1	1	1	1	1	1	1	0	

TWGCE- bit wywołania ogólnego

Komparator analogowy

Schemat blokowy

Rejestr specjalny SFIOR

ACME- wybór wejścia odwracającego komparatora. ACME=,,0" wejście AIN1

Rejestr kontrolno-sterujący ACSR

Bit	7	6	5	4	3	2	1	0	_
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	N/A	0	0	0	0	0	

ACD- blokada komparatora

ACBG- dołączanie wejścia nieodwracającego do pinu AINO lub do napięcia referencyjnego

AC0- dołączenie wyjścia komparatora AC0 (z synchronizacją)

ACI- bit zgłoszenia przerwania

ACIE- bit maski przerwania od komparatora

ACIC- dołączenie wyjścia komparatora do funkcji Input Capture

ACIS1, ACIS0- tryb zgłaszania przerwań

ACIS1	ACIS0	Interrupt Mode	
0	0	Comparator Interrupt on Output Toggle	
0	1	Reserved	
1	0	Comparator Interrupt on Falling Output Edge	
1	1	Comparator Interrupt on Rising Output Edge	

ACME	ADEN	MUX20	Analog Comparator Negative Input
0	х	XXX	AIN1
1	1	XXX	AIN1
1	0	000	ADC0
1	0	001	ADC1
1	0	010	ADC2
1	0	011	ADC3
1	0	100	ADC4
1	0	101	ADC5
1	0	110	ADC6
1	0	111	ADC7

Multipleksowane wejście komparatora

Przetwornik AC

Cechy:

- -rozdzielczość 10 bitów,
- -mała nieliniowość- 0,5 LSB,
- -dokładność +-2LSB,
- -czas konwersji od 13 us do 260 us,
- -7 wejść różnicowych,
- -2 wejścia różnicowe z regulacją wzmocnienia x10 i x200,
- -wybierane źródło napięcia referencyjnego,
- -Możliwość wyboru źródła wyzwalania.

Zawartość rejestru ADMUX

ADC Multiplexer Selection Register – ADMUX

Wybór źródła napięcia referencyjnego

Table 83. Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal Vref turned off
0	1	AVCC with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin

Bit5- ADLAR: decyduje o sposobie umieszczenia 10 bitowego wyniku konwersji w rejestrach wynikowych.

Bit4- MUX 4:0- decydują o sposobie dołączenia multipleksowanych wejść do przetwornika.

Konfiguracja połączeń wejść do przetwornika

.

MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
00000	ADC0			•
00001	ADC1			
00010	ADC2			
00011	ADC3	N/A		
00100	ADC4			
00101	ADC5			
00110	ADC6			
00111	ADC7			
01000		ADC0	ADC0	10x
01001		ADC1	ADC0	7 10%
01010		ADC0	ADC0	2002
01011		ADC1	ADC0	200x

01100		ADC2	ADC2	۱
01101		ADC3	ADC2	10x
01110		ADC2	ADC2	200x
01111		ADC3	ADC2	2001
10000		ADC0	ADC1	
10001		ADC1	ADC1	
10010	N/A	ADC2	ADC1	
10011		ADC3	ADC1	
10100		ADC4	ADC1	
10101		ADC5	ADC1	
10110		ADC6	ADC1	1x
10111		ADC7	ADC1	
11000		ADC0	ADC2	
11001		ADC1	ADC2	
11010		ADC2	ADC2	
11011		ADC3	ADC2	
11100		ADC4	ADC2	

Rejestr kontrolno statusowy przetwornika AC- ADCSRA

ADC Control and Status Register A – ADCSRA

Bit	7	6	5	4	3	2	1	0	_
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- **Bit7- ADEN**: włączanie wyłączanie przetwornika AC (stan niski-przetwornik wyłączony),
- Bit6- ADSC: bit startu konwersji:
- -w przypadku konwersji ciągłej wyzwala pierwszą konwersję,
- -w przypadku trybu pracy pojedynczej konwersji wyzwala każdą z nich.
- -Bit5- ADATE: bit zezwalający na auto wyzwalanie konwersji przy pomocy dodatniego zbocza wybranego źródła wyzwalania, określonego bitami ADTS.
- **Bit4- ADIF**: bit zgłoszenia przerwania końca konwersji przetwornika AC i zapisu wyniku (w interakcji wykonywana jest procedura obsługi, o ile bit ADIE jest ustawiony i bit I w rejestrze SREG jest ustawiony.
- Bit3- ADIE- bit maski przerwania od przetwornika AC
- Bit-y 2-0: ADSP2:0: bity prescalera taktującego przetwornik AC

Możliwości ustawienia prescalera przetwornika AC

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Przebiegi czasowe pojedynczej konwersji

Przebiegi czasowe przy wyzwalaniu ciągłym

Schemat blokowy prescalera układu taktowania przetwornika AC

Dwa różne formaty zapisu wyniku przetwarzania w rejestrach wynikowych.

Bit	15	14	13	12	11	10	9	8	_
	-	-	-	-	-	-	ADC9	ADC8	ADCH
	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
	ADC1	ADC0	-	_	-	-	_	_	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

Rejestr sterujący sposobem wyzwalania przetwornika AC-SFIOR

Special FunctionIO Register – SFIOR

Źródła wyzwalania konwersji przetwornika AC

Table 86. ADC Auto Trigger Source Selections

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter1 Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event

Połączenia elektryczne przy wykorzystaniu przetwornika AC

Najczęściej spotykane bity konfiguracyjne

Nazwa	Opis	Stan domyślny
BODEN	Włącza układ zerujący w przypadku nieodpowiedniego zasilania	1 (włączony)
BODLEVEL (20)	Ustawia poziom zadziałania BODEN	1
BOOTSZ (10)	Wielkość sekcji boot loadrea	00
CKDIV8	Włącza dzielenie zegara systemowego przez 8	0 (dzielenie przez 8)
СКОРТ	Wymuszenie pracy oscylatora w pełnym zakresie napięć	1 (oscylacje ograniczone)
CKOUT	Dołącza wewnętrzny sygnał zegarowy do wyprowadzenia CLK0	1 (CLK0 jako port we-wy)
CKSEL (30)	Źródło zegara systemowego	0001 (wew. Oscylator RC)
DWEN	Włącza obsługę jednoprzewodowego interfejsu uruchomieniowego debugWIRE	1 (wyłączony)

Nazwa	Opis	Stan domyślny
EESAVE	Wymuszenie zachowania EEPROM przy kasowaniu pamięci mikrokontrolera	1 (nie zachowuje)
JTAGEN	Uaktywnia interfejs JTAG	0 (JTAG włączony)
OCDEN	Włącza tryb uruchomieniowy (On Chip Debug)	1 (OCD zablokowany)
RSTDISBL	Przełącza linie RSET do trybu pracy jako port we-wy	1 (RESET- zerowanie)
SELFPRGEN	Odblokowuje instrukcję programowania pamięci programu SPM	1 (spm zablokowane)
SPIEN	Włącza możliwość odczytu i programowanie przez SPI	0 (SPI włączone)
SUT (10)	Ustala opóźnienie działania po włączeniu zasilania	10
WDTON	Uaktywnia układ Watch Dog	1 (Watch Dog aktywny z poziomu programu)

Bity zabezpieczające

Zabezpieczenie pamięci Flash i EEPROM przy dostępie zewnętrznym

LB2	LB1	Znaczenie
1	1	Brak zabezpieczeń
1	0	Zapis pamięci niedozwolony
0	0	Zapis, odczyt i weryfikacja pamięci niedozwolone

Ograniczenie dostępu do pamięci programu instrukcjami LPM i SPM

BLB12	BLB11	BLB02	BLB01	Znaczenie
Dost	ęp do	1	1	Brak zabezpieczeń.
1 .	ramu kacji	1	0	Zapis sekcji aplikacji niedozwolony.
ф	ikuoji	0	0	Zapis sekcji aplikacji niedozwolony, Program boot loadrea nie może odczytywać sekcji aplikacji.
		0 0		Program boot loadrea nie może odczytywać sekcji aplikacji.
1	1	Dostęp do		Brak zabezpieczeń.
1	0		nu boot dera	Zapis sekcji boot loadrea niedozwolony.
0	1			Zapis sekcji boot loadera niedozwolony. Program aplikacji nie może odczytywać sekcji boot loadera.
0	0			Program aplikacji nie może odczytywać sekcji boot loadera.

Układy zarządzania energią

Ograniczenie poboru mocy:

- -zredukowanie częstotliwości zegara,
- -wykorzystania trybów wstrzymania (sleep modes).

Wstrzymywanie systemu możliwe przy użyciu instrukcji SLEEP.

Interakcje w mikrokontrolerze:

- -nie pracuje jednostka centralna,
- -pamięć danych zachowywana,
- -rejestry wejścia wyjścia zachowywane,
- -układy peryferyjne pracują w zależności od trybu uśpienia.

Wyjście z trybu uśpienia:

- -poprzez jeden z sygnałów zerujących RESET,
- -przez przerwanie (wtedy wejście do procedury obsługi i powrót do następnej instrukcji po sleep).

Tryby uśpienia układu

SM2	SM1	SM0	Tryb	Opis
0	0	0	Idle	CPU wstrzymane
0	0	1	ADC noise reduction	CPU wyłączone, USART i SPI wyłączone, powrót przez przerwanie od przetwornika
0	1	0	Power-down	Większość peryferiów wyłączonych, CPU wyłączone, zegar systemowy wyłączony, działają układy asynchroniczne względem głównego zegara np TWI.
0	1	1	Power-save	Jak Power-down lecz działanie licznika T0 w trybie asynchronicznym możliwe.
1	1	0	Standby	Jak Power-down, zewnętrzny rezonator, zegar systemowy pracuje
1	1	1	Extended standby	Jak Power-save, zewnętrzny rezonator, zegar systemowy pracuje

Wstrzymywanie pracy poszczególnych modułów

Bity sterujące rejestru PRR

7	6	5	4	3	2	1	0
PRTWI	PRTIM2	PRTIMO	PRLCD	PRTIM1	PRSPI	PRUSAR T0	PRADC

PRTWI- wstrzymywanie portu I2C

PRTIM2- wstrzymywanie licznika T2

PRTIM0- wstrzymywanie licznika T0

PRLCD- wyłączanie interfejsu LCD

PRTIM1- wstrzymywanie licznika T1

PRSPI- wstrzymywanie portu SPI

PRUSART0- wstrzymywanie interfejsu USART0

PRADC- wstrzymywanie przetwornika AC

Pamięć programu flash

W przypadku stosowania programu Boot-loadrea obszar pamięci programu można podzielić na dwa obszary:

Sekcja RWW (Read-While-Write),

Sekcja NRWW (No-Read-While_Write).

Jeśli w danym momencie trwa zapis RWW (dolna część pamięci programu), odczyt górnej części NRWW jest niemożliwy.

Organizacja pamięci programu- flash

Zapis pamięci programu- Flash

Do zapisu pamięci programu służy rozkaz: SPM

Rejestrem sterującym pracą rozkazu *SPM* jest rejestr sterujący **SPMCR** lub SPMCSR.

7	6	5	4	3	2	1	0
SPMIE	RWWSB	-	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN

Bit7- SPMIE: bit maski przerwania przy gotowości do zapisu.

Bit6- RWWSB: zajętość sekcji RWW (trwa zapis)

Bit4- RWWSRE: zwalnianie zajętości obszaru RWW

Bit3-BBSET: programowanie i odczyt bitów strujących

Bit2- PGWRT: zapis strony pamięci programu

Bit1- PGERS: kasowanie strony pamięci programu

Bit0- SPMEN: zezwolenie na zapis

Układ kontroli poprawności wykonywania programu Watch-Dog

Układ jest taktowany odrębnym wewnętrznym sygnałem zegarowym o częstotliwości 1MHz.

Schemat blokowy układu Watch-Dog

Rejestr kontrolny układu Watch-Dog: WDTCR

Bit	7	6	5	4	3	2	1	0	_
	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	WDTCR
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Bit4- WDTOE: bit zabezpieczający przed przypadkowym wyłączeniem modułu WDT, musi być ustawiony najwcześniej na cztery takty zegara przed wyłączeniem WDT

Bit3-WDE: włączanie WDT (przy wyłączeniu należy ustawić bit WDTOE)

Bit2..0- WDP 2..0: nastawa prescalera WDT

W nowszych wersjach układu ATmega dodano bity:

Zwiększający ilość kombinacji prescalera, maskę przerwania od układu WDT, bit zgłoszenia przerwania od WDT.

Możliwości nastawy prescalera Watch Doga

Table 17. Materially Times I resource delect

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at V _{CC} = 3.0V	Typical Time-out at V _{CC} = 5.0V
0	0	0	16K (16,384)	17.1ms	16.3ms
0	0	1	32K (32,768)	34.3ms	32.5ms
0	1	0	64K (65,536)	68.5ms	65ms
0	1	1	128K (131,072)	0.14s	0.13 s
1	0	0	256K (262,144)	0.27s	0.26s
1	0	1	512K (524,288)	0.55s	0.52s
1	1	0	1,024K (1,048,576)	1.1s	1.0s
1	1	1	2,048K (2,097,152)	2.2s	2.1s

Informacje o "przeszłości" działania mikrokontrolera sprzed zerowania.

Rejestr specjalny MCUSCR

Bit	7	6	5	4	3	2	1	0	_
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	О		See	e Bit Descrip	tion		

Bit4- JTRF: powodem zerowania była komenda zerująca interfejsu JAG,

Bit3- WDRF: powodem zerowania było przepełnienia Watch-Doga,

Bit2-BORF: powodem zerowania było nieprawidłowe napięcie zasilające,

Bit1- EXTRF: powodem zerowania zewnętrzny sygnał RESET,

Bit0- PORF: nastąpiło wyłączenie zasilania.

Port JTAG mikrokontrolera

Rejestr identyfikatora układu

Numer serii

Part Number	JTAG Part Number (Hex)
ATmega32	0x9502

Informacje o producencie

TABLE OF MAHAMAMAMIN ID

Manufacturer	JTAG Man. ID (Hex)
Atmel	0x01F

Rejestr kontrolno sterujący- MCUCSR

Bit	7	6	5	4	3	2	1	0	
	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0		See	e Bit Descrip	tion		

Bit7- JTD: wyłączanie interfejsu JTAG

Bit4- JTRF: bit informujący o zerowaniu od JTAG

Rejestr kontrolno sterujący- OCDR

Bit włączenia debagowania programu

Interfejsy programowania i uruchomieniowe

Równoległy interfejs programowania.

Interfejs programowania SPI

Interfejs JTAG

Kodowanie stałoprzecinkowe liczb ułamkowych

Kod 1.7

Bit	7	6	5	4	3	2	1	0
Waga	+/-1	+1/2	+1/4	+1/8	+1/16	+1/32	+1/64	+1/128
		0,5	0,25	0,125	0,0625	0,03125	0,015625	0,0078125

Dla liczb ze znakiem zakres kodowania wynosi od –1 do +0,9921875 Dla liczb bez znaku zakres wynosi od 0 do 1,9921875

Kod 1.15

Liczba 16-to bitowa