Машинное обучение (Machine Learning) Композиционные методы машинного обучения

Уткин Л.В.

Содержание

- Предпосылки композиции классификаторов
- Бэггинг
- Метод случайных подпространств
- Отэкинг
- Бустинг
 - AdaBoost
 - Бустинг для регрессии (AdaBoost.RT и AdaBoost.R2)
 - Градиентный бустинг

Презентация является компиляцией и заимствованием материалов из замечательных курсов и презентаций по машинному обучению:

K.B. Воронцова, А.Г. Дьяконова, Н.Ю. Золотых, С.И. Николенко, Andrew Moore, Lior Rokach, Matthias Schmid, Rong Jin, Cheng Li, Luis F. Teixeira, Alexander Statnikov и других.

Бэггинг, случайные пространства и стэкинг

Композиция классификаторов

"If you torture the data long enough, it will confess to anything" - Ronald Coase

Теорема Кондорсе о присяжных (Condorcet Jury Theorem, 1784)

Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри, и стремиться к единице. Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных.

Теорема Кондорсе о присяжных

- N число членов жюри
- р вероятность правильного решения одного члена жюри
- ullet вероятность правильного решения жюри

•

$$\mu = \sum_{i=m}^{N} C_N^i \rho^i (1-\rho)^{N-i}$$

- ullet Если p > 0.5, то $\mu > p$.
- ullet Если $N o \infty$, то $\mu o 1$.

Мудрость толпы (Wisdom of crowds)

- Почему вместе мы умнее, чем поодиночке?
- Совокупность знаний независимой группы людей превышает знания любого отдельного человека.

Мудрость толпы (Wisdom of crowds)

Francis Galton

- В 1906 посетил рынок скота.
- Крестьяне были приглашены, чтобы отгадать вес одного быка.
- Около 800 человек дали свои оценки и ни один не дал более-менее точное число: 1198 фунтов.
- Однако, на удивление, среднее этих 800 отгадываний было очень близко к точному значению. Оно было 1197 функтов.

Бэггинг

Bagging (bootstrap aggregation)

Слабый и сильный классификаторы

- Слабый классификатор алгоритм обучения, позволяющий с вероятностью ошибки меньшей, чем простое угадывание (0.5 для бинарной классификации).
- Сильный классификатор алгоритм обучения, позволяющий добиться произвольно малой ошибки обучения.

Бэггинг (алгоритм)

- f O Дано: обучающая выборка $D = \{({f x}_1, y_1), ..., ({f x}_n, y_n)\}$
- $m{Q}$ Случайно выбираем t элементов из D с возвращением s раз: $D_1,...,D_s$
- Обучаемся на каждом $D_1, ..., D_s$ (комитет моделей) и получаем последовательность s выходов: $f_1(\mathbf{x}), ..., f_s(\mathbf{x})$ (базовые алгоритмы или слабые классификаторы)
- $f(\mathbf{x}) = \sum_{i=1}^{s} \mathrm{sign}(f_i(\mathbf{x}))$ (простое голосование классификация) или $f(\mathbf{x}) = \frac{1}{s} \sum_{i=1}^{s} f_i(\mathbf{x})$ (среднее регрессия)

Эффективность бэггинга объясняется следующими обстоятельствами:

- Благодаря различности базовых алгоритмов, их ошибки взаимно компенсируются при голосовании.
- Объекты-выбросы могут не попадать в некоторые обучающие подвыборки.
- Если каждый классификатор имеет высокую дисперсию (нестабильность), то комбинированный классификатор имеет меньшую дисперсию по сравнению с отдельными классификаторами.

Бэггинг (пример нелинейности)

• Пусть настоящая функция, которую пытаемся предсказать $-h(\mathbf{x})$, т.е. модели выглядят как

$$f_i(\mathbf{x}) = h(\mathbf{x}) + \epsilon_i(\mathbf{x})$$

• Средняя ошибка модели

$$\mathbb{E}_{\mathbf{x}}\left[\left(f_{i}(\mathbf{x})-h(\mathbf{x})\right)^{2}\right]=\mathbb{E}_{\mathbf{x}}\left[\epsilon_{i}^{2}(\mathbf{x})\right]$$

• Средняя ошибка всех моделей

$$E_{\mathsf{cp}} = rac{1}{s} \sum_{i=1}^{s} \mathbb{E}_{\mathsf{x}} \left[\epsilon_{i}^{2}(\mathsf{x})
ight]$$

• Ошибка комитета (бэггинга)

$$E_{\text{\tiny KOM}} = \mathbb{E}_{\mathbf{x}} \left[\left(\frac{1}{s} \sum_{i=1}^{s} \left(y_i(\mathbf{x}) - h(\mathbf{x}) \right) \right)^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\left(\frac{1}{s} \sum_{i=1}^{s} \epsilon_i(\mathbf{x}) \right)^2 \right]$$

• Сравним

$$E_{\mathsf{cp}} = rac{1}{s} \sum_{i=1}^{s} \mathbb{E}_{\mathbf{x}} \left[\epsilon_i^2(\mathbf{x})
ight], \quad E_{\mathsf{kom}} = \mathbb{E}_{\mathbf{x}} \left[\left(rac{1}{s} \sum_{i=1}^{s} \epsilon_i(\mathbf{x})
ight)^2
ight]$$

• Если предположить, что $\mathbb{E}_{\mathbf{x}}\left[\epsilon_i(\mathbf{x})\right] = 0$, и ошибки некоррелированы: $\mathbb{E}_{\mathbf{x}}\left[\epsilon_i(\mathbf{x})\epsilon_j(\mathbf{x})\right] = 0$, получим $E_{\text{ком}} = E_{\text{cp}}/s$.

- Не все так просто: ошибки на самом деле сильно коррелированы и $\mathbb{E}_{\mathbf{x}}\left[\epsilon_m(\mathbf{x})\epsilon_l(\mathbf{x})\right] \neq 0$.
- Но всегда $E_{\text{ком}} \leq E_{\text{ср}}!$

Метод случайных подпространств (RSM)

- Random subspace method (RSM)
- Базовые алгоритмы обучаются на различных подмножествах признакового описания, которые также выделяются случайным образом.
- Метод может быть эффективен, когда:
 - большое число признаков
 - относительно небольшое число объектов
 - наличие избыточных неинформативных признаков.

Стэкинг (stacking) - "мета-классификация"

Стэкинг использует концепцию метаобучения, т.е. пытается обучить каждый классификатор, используя алгоритм, который позволяет обнаружить лучшую комбинацию выходов базовых моделей (Wolpert, 1992).

- Пусть D обучающая выборка, и выбрано множество алгоритмов $A_1, ..., A_s$ (базовые классификаторы).
- Входные данные мета-классификатора решения базовых классификаторов, т.е. множество меток классов, к которым базовые класс-ры отнесли описание входного объекта. Множество меток на входе мета-классификатора интерпретируется как множество признаков нового признакового пространства.

Стэкинг (stacking) - "мета-классификация"

• Обучающие и тестирующие данные для мета-классификатора (мета-данные) формируются базовыми классификаторами на основании тех данных, которыми располагают базовые классификаторы, т.е. метаданные - множества кортежей меток классов, полученных в качестве решений алгоритмами $A_1, ..., A_s$ при их тестировании на множестве входных описаний экземпляров объектов.

Стэкинг (stacking) - "мета-классификация"

• Каждому кортежу решений ставится метка (кортеж меток) класса, к которому этот объект относится на самом деле. Т.о., обучающие данные метаклассификатора - векторы вида $(x_{1i},...,x_{si},y_i)$, где i - индекс экземпляра из тестовой выборки, 1,...,s - индексы базовых классификаторов, x_{ki} - метки классов, полученных базовыми классификаторами A_k для тестируемого примера с номером i, y_i - истинное значение метки тестируемого примера.

Стэкинг

Бустинг

Бустинг (Schapire, 89)

Бустинг - итерационный алгоритм, реализующий "**сильный**" классификатор, который позволяет добиться произвольно малой ошибки обучения (на обучающей выборке) на основе композиции "слабых" классификаторов, каждый из которых лучше, чем просто угадывание, т.е. вероятность правильной классификации больше 0.5.

Ключевая идея: использование весовой версии одних и тех же обучающих данных вместо случайного выбора их подмножества.

Отличие бустинга от бэггинга

- Бэггинг примеры выбираются так, что каждый пример имеет одинаковые шансы попасть в обучающую подвыборку.
- Бустинг обучающая выборка на каждой итерации определяется, исходя из ошибок классификации на предыдущих итерациях.

Бэггинг, случайные пространства и стэкинг

- Ключевая идея: использование весовой версии одних и тех же обучающих данных вместо случайного выбора их подмножества.
- Слабые классификаторы образуются последовательно, различаясь только весами обучающих данных, которые зависят от точности предыдущих классификаторов.
- Большие веса назначаются "плохим" примерам, что позволяет на каждой итерации сосредоточиться на примерах, неправильно классифицированных.

Особенности бустинга

- Базовые классификаторы должны быть слабыми, из сильных хорошую композицию не построить ("бритва Оккама")
- Причины этого:
 - сильный классификатор, давая нулевую ошибку на обучающих данных, не адаптируется и композиция будет состоять из одного классификатора
 - один, даже сильный, классификатор может дать "плохое" предсказание на данных тестирования, давая "хорошие" результаты на на обучающих данных.

Бустинг (общая схема)

AdaBoost (Freund & Schapire, 1996)

- Исходные данные:
 - n примеров $S = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$
 - слабый классификатор $h = h(\mathbf{x}, \theta, \mathbf{w})$
- Инициализировать одинаковые веса примеров $w_i = 1/n, i = 1, ..., n$
- **3** Цикл по t = 1, ..., T:
 - обучение слабого классификатора в соответствии с весами **w** и вычисление $h_t = h(\mathbf{x}, \theta_t, \mathbf{w})$
 - 2 вычисление средней ошибки классификации ε_t
 - надежность)
 - **4** модификация весов для следующей t+1-ой итерации
- $oldsymbol{0}$ Конец цикла по t
- Выход: линейная комбинация $h_1,...,h_t$

AdaBoost

AdaBoost

- **1** Исходные данные: $S = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, h = h(\mathbf{x}, \theta, \mathbf{w})$
- **②** Инициализировать веса $w_i = 1/n$, i = 1, ..., n
- **③** Цикл по t = 1, ..., T:
 - $oldsymbol{0}$ обучение слабого классификатора $h_t(\mathbf{x}) = h(\mathbf{x}, heta_t, \mathbf{w})$
 - $m{arphi}$ ошибка слабого классификатора $arepsilon_t \leftarrow \sum_{i:h_t(\mathbf{x}_i)
 eq y_i} w_i(t)$
 - ullet вес слабого классификатора $lpha_t \leftarrow rac{1}{2} \ln \left(rac{1-arepsilon_t}{arepsilon_t}
 ight)$
- $oldsymbol{0}$ Конец цикла по t
- \bullet Выход: $h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{T} \alpha_t h_t(\mathbf{x})\right)$

AdaBoost (пример)

AdaBoost (пример)

$$\epsilon_1 = 0.1 + 0.1 + 0.1 = 0.3$$
, $\mathrm{Bec} = \alpha_1 = \frac{1}{2} \ln \frac{1 - \epsilon_1}{\epsilon_1} = 0.42$

AdaBoost (пример)

$$\epsilon_2 = 0.07 + 0.07 + 0.07 = 0.21$$
, $\sec = \alpha_2 = \frac{1}{2} \ln \frac{1 - \epsilon_2}{\epsilon_2} = 0.65$

$$\epsilon_3=0.14$$
, $\mathrm{Bec}{=}lpha_3=rac{1}{2}\lnrac{1-\epsilon_3}{\epsilon_3}=0.92$

Данные	1	2	3	4	5	6	7	8	9	10
W_i	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Данные	1	2	3	4	5	6	7	8	9	10
ош.	0	1	1	0	1	0	0	0	0	0
wį	0.07	0.17	0.17	0.07	0.17	0.07	0.07	0.07	0.07	0.07

Экспериментальные характеристики бустинга (Schapire, 1989)

Как классифицировать с весами?

Общий подход: Функционал качества алгоритма а на выборке X есть

$$Q(a,X) = \sum_{i=1}^{n} w_i \cdot L(a,x_i)$$

В частности: Метод ближайших соседей:

$$a(x^*) = \arg\max_{y \in Y} \sum_{i=1}^n [y_i = y] w_i$$

Метод опорных векторов (Лагранжиан):

$$\max_{\alpha} \left(\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \right)$$

при ограничениях

$$0 \le \alpha_i \le Cw_i, i = 1, ..., n, \sum_{i=1}^n \alpha_i y_i = 0.$$

Ошибка обучения AdaBoost

ошибка обучения
$$(h(\mathbf{x})) \leq e^{-2\gamma T}$$
,

- $oldsymbol{\circ} \gamma = \min_{t=1,...,T} \gamma_t$, где $arepsilon_t = 0.5 \gamma_t$
- Т число итераций

Так ли все хорошо?

Симплекс весов в AdaBoost и переобучение

3 наблюдения: $w_1 + w_2 + w_3 = 1$

Переобучение: слишком большой вес назначается "плохим" примерам, например, выбросам, а "хорошие" примеры практически не участвуют в обучении.

Переобучение и как с ним бороться

Два основных подхода:

- Ограничение числа итераций
- ② Ограничение множества возможных весов примеров в обучающей выборке

Ограничение множества весов

Ограничение множества весов

Ограничение множества весов и их двойная адаптация

- Адаптация подмножеств весов (малых треугольников или многоугольников)
- Адаптация внутри подмножеств весов (EPIBoost (Extreme Points Imprecise Boost) и IDMBoost (Imprecise Dirichlet Model Boost))
 - Utkin L.V. An imprecise boosting-like approach to classification // International Journal of Pattern Recognition and Artificial Intelligence, 2013, 27, Pp. 1-24.
 - Utkin L.V. The imprecise Dirichlet model as a basis for a new boosting classification algorithm // Neurocomputing, 2015, 151, Pp. 1374-1383.

Достоинства AdaBoost

- Эффективный с вычислительной точки зрения
- Позволяет решать сложные задачи, которые плохо решаются отдельными алгоритмами
- Простой с точки зрения программирования
- Только один параметр настройки число итераций
- Не требует априорной информации о слабом классификаторе
- Обеспечивает во многих случаях высокую точность прогнозирования
- Прост для модификаций

Недостатки AdaBoost

- Слишком эффективные или сложные слабые классификаторы могут привести к переобучению
- Чрезмерная чувствительность к выбросам (опять переобучение)
- Громоздкие композиции из сотен алгоритмов не интерпретируемы
- Требуются достаточно большие обучающие выборки (иначе переобучение)
- Не удается строить короткие композиции из «сильных» алгоритмов типа SVM (только длинные из слабых)
- Слишком "слабые" слабые классификаторы могут привести к слишком малым изменениям весов

Модификации AdaBoost

A.J.Ferreira and M.T. Figueiredo. Boosting Algorithms: A Review of Methods, Theory, and Applications, 2012

Алгоритмы бустинга для регрессии

Дано: $D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, \ \mathbf{x}_i \in \mathbb{R}^m, \ y_i \in \mathbb{R}$

Найти: функцию $f(\mathbf{x})$, аппроксимирующую данные или

минимизирующую функцию потерь

Функция потерь: разность квадратов

$$L = \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$$

Алгоритм AdaBoost.RT (Solomatine and Shrestha, 2004)

Самый простой алгоритм:

ullet Ввести порог au для относительной ошибки регрессии

$$e_i = |f(\mathbf{x}_i) - y_i|/y_i, \quad i = 1, ..., n,$$

на каждой итерации

- Свести задачу к классификации с двумя классами: если $e_i > \tau$, то ошибка в точке i
- Далее AdaBoost

Алгоритм AdaBoost.RT

- **1** Инициализировать веса $w_i(1) \leftarrow 1/n, i = 1, ..., n$
- ② Цикл по t = 1, ..., T:
 - Построим регрессионную модель f_t , используя веса w(t)
 - $oldsymbol{e}$ Относительная ошибка $e_i(t)$ для каждого примера: $e_i(t) \leftarrow |y_i f_t(\mathbf{x}_i, \mathbf{w})|/y_i$
 - \bullet Общая ошибка f_t : $\varepsilon_k \leftarrow \sum_{i:e_i(t)> au} w_i$
 - $\mathbf{0} \quad \alpha_t \leftarrow \ln\left((1-\varepsilon_t^I)/\varepsilon_t^I\right)$, где I может быть 1,2,...
 - $oldsymbol{arphi}_i$ Если $arepsilon_k \leq au$, то $w_i(t+1) \leftarrow w_i(t) \cdot \exp\left(-lpha_t(1-e_i(t))
 ight)$, иначе $w_i(t+1) \leftarrow w_i(t)$
- \odot Конец цикла по t
- **9** Результат $f(\mathbf{x}) \leftarrow \sum_{i=1}^{T} \alpha_t f_t(\mathbf{x})$

Алгоритм AdaBoost.R2 (Drucker, 1997)

- **1** Инициализировать веса $w_i(1) \leftarrow 1/n, i = 1, ..., n$
- **2** Цикл по t = 1, ..., T:
 - Построим регрессионную модель f_t , используя веса w(t)

 - $oldsymbol{\circ}$ Относительная ошибка $e_i(t)$ для каждого примера: $e_i(t) \leftarrow |y_i f_t(\mathbf{x}_i, \mathbf{w})|/D_t$
 - **4** Вес функции f_t : $\epsilon_t \leftarrow \sum_{i=1}^n e_i(t) w_i(t)$
 - **5** Если $\epsilon_t > 0.5$, то Выход, иначе
 - $\begin{array}{ll}
 \mathbf{0} & \alpha_t \leftarrow \ln\left((1 \epsilon_t)/\epsilon_t\right) \\
 \mathbf{2} & w_i(t+1) \leftarrow w_i(t) \cdot \exp\left(-\alpha_t(1 e_i(t))\right)
 \end{array}$
- \odot Конец цикла по t
- **9** Результат $f(\mathbf{x}) \leftarrow \sum_{t=1}^{T} \alpha_t f_t(\mathbf{x})$

Градиентный бустинг

- Предположим, что мы угадали (но не точно): $f(x_1)=0.8$, когда $y_1=0.9$, затем $f(x_2)=1.4$, когда $y_2=1.3$, ...
- Как улучшить модель, если нельзя изменить параметры f(x)?

- ullet Предположим, что мы угадали (но не точно): $f(x_1)=0.8$, когда $y_1=0.9$, затем $f(x_2)=1.4$, когда $y_2=1.3$, ...
- Как улучшить модель, если нельзя изменить параметры f(x)?
- Идея: Можно добавить дополнительную модель h к f так, что новая функция: f(x) + h(x)

$$f(x_1) + h(x_1) = y_1$$
 $h(x_1) = y_1 - f(x_1)$
 $f(x_2) + h(x_2) = y_2$ $h(x_2) = y_2 - f(x_2)$
 \cdots или \cdots
 $f(x_n) + h(x_n) = y_n$ $h(x_n) = y_n - f(x_n)$

Построим регрессионную модель для h(x), т.е., модель для новой обучающей выборки

$$\{(x_1, y_1 - f(x_1)), ..., (x_n, y_n - f(x_n))\}$$

• Построим регрессионную модель для h(x), т.е., модель для новой обучающей выборки

$$\{(x_1, y_1 - f(x_1)), ..., (x_n, y_n - f(x_n))\}$$

- Роль h(x) компенсировать недостаток существующей модели f(x).
- Что делать, если f(x) + h(x) снова нас не удовлетворяет?
- Можем добавить другую модель $h_2(x)!$

Как это все соотносится с понятием градиентного спуска? Градиентный спуск: минимизация функции, двигаясь в направлении, противоположном градиенту

$$\theta_i \leftarrow \theta_i - \rho \frac{\partial J}{\partial \theta_i}$$

Градиентный спуск

• Если функция потерь $L = (y - f(x))^2/2$, то для поиска $f(x_1), ..., f(x_n)$ нужно минимизировать функционал риска

$$J = \sum_{j=1}^{n} L(y_j, f(x_j))$$

• Рассмотрим число $f(x_i)$ как параметр и возьмем производную

$$\frac{\partial J}{\partial f(x_i)} = \frac{\partial \sum_{j=1}^n L(y_j, f(x_j))}{\partial f(x_i)} = \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} = f(x_i) - y_i$$

ullet Отклонение $y_i - f(x_i) = -\partial J/\partial f(x_i)$ - отрицательный градиент

$$f(x_i) \leftarrow f(x_i) + y_i - f(x_i)$$
 $f(x_i) \leftarrow f(x_i) - 1 \frac{\partial J}{\partial f(x_i)}$
 $\theta_i \leftarrow \theta_i - \rho \frac{\partial J}{\partial \theta_i}$

 $f(x_i) \leftarrow f(x_i) + h(x_i)$

- Модификация f на основе **отклонений** \Leftrightarrow модификация f на основе отрицательного **градиента**
- Модифицируем модель, используя градиентный спуск
- Оказывается градиенты более общее и полезное понятие, чем отклонения

Алгоритм градиентного бустинга для регрессии с квадратичными потерями

$$-g(x_i) = -\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} = y_i - f(x_i)$$

- **1** Начинаем с исходной модели, например, $f(x) = \sum_{i=1}^{n} y_i / n$.
- ② Цикл по t = 1, ..., T:
 - \bullet вычислить $-g_t(x_i)$
 - построить регрессию h_t по $-g_t(x_i)$
 - $f(x_i) \leftarrow f(x_i) + \rho_t \cdot h_t(x_i)$
- Конец цикла по t

Преимущество формулировки алгоритма, используя градиент, в том, что можно рассматривать другие функции потерь.

Пример градиентного бустинга

Пример градиентного бустинга

Пример градиентного бустинга

Особенности квадратичной функции потерь в градиентном бустинге

- Достаточно простая функция с математической точки зрения
- Не является робастной к выбросам, которые сильно влияют, так как величина ошибки в квадрате

Уi	0.5	1.2	2	5
$f(x_i)$	0.6			1.7
$L = (y - f)^2/2$	0.005	0.02	0.125	5.445

Другие функции потерь (более робастные к выбросам)

- ullet Абсолютные потери L(y,f)=|y-f|
- Функция потерь Хьюбера

$$L(y,f) = \left\{ egin{array}{ll} (y-f)^2/2, & ext{если } |y-f| \leq \delta, \ \delta\left(|y-f|
ight) - \delta/2, & ext{если } |y-f| > \delta. \end{array}
ight.$$

У _і	0.5	1.2	2	5
$f(x_i)$	0.6	1.4	1.5	1.7
Квадратич. потери	0.005	0.02	0.125	5.445
Абсолютные потери	0.1	0.2	0.5	3.3
Хьюбера потери ($\delta=0.5$)	0.005	0.02	0.125	1.525

Алгоритм градиентного бустинга для регрессии с абсолютными потерями

Отрицательный градиент:

$$-g(x_i) = -\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} = \operatorname{sign}(y_i - f(x_i))$$

- Начинаем с исходной модели, например, $f(x) = \sum_{i=1}^{n} y_i / n$.
- ② Цикл по t = 1, ..., T:
 - \bullet вычислить $-g_t(x_i)$
 - построить регрессию h_t по $-g_t(x_i)$
 - $f(x_i) \leftarrow f(x_i) + \rho_t \cdot h_t(x_i)$

Алгоритм градиентного бустинга для регрессии с потерями Хьюбера

Отрицательный градиент:

$$-g(x_i) = -rac{\partial L(y_i, f(x_i))}{\partial f(x_i)} =$$
 $= \left\{ egin{array}{ll} y_i - f(x_i), & ext{если } |y_i - f(x_i)| \leq \delta, \ \delta \cdot ext{sign} \left(y_i - f(x_i)
ight), & ext{если } |y_i - f(x_i)| > \delta. \end{array}
ight.$

Градиентный бустинг для регрессии в общем виде

Используем любую дифференцируемую функцию потерь L

- ullet Начинаем с исходной модели, например, $f(x) = \sum_{i=1}^n y_i/n$.
- ② Цикл по t = 1, ..., T:
 - ullet вычислить $-g_tig(x_iig) = -rac{\partial L(y_i,f_t(x_i))}{\partial f_t(x_i)}$
 - построить регрессию h_t по $-g_t(x_i)$
 - $f(x_i) \leftarrow f(x_i) + \rho_t \cdot h_t(x_i)$
- Конец цикла по t
- **9** Результат $f(x) = \sum_{i=1}^{T} \rho_t h_t(x)$

Градиентный бустинг для регрессии

Как выбрать подходящую скорость обучения ρ для алгоритма градиентного бустинга? См. Friedman J.H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages 1189–1232.

Достоинства градиентного бустинга

- Наиболее общий из всех бустингов
- Может использоваться произвольная функция потерь
- Подходит для регрессии, классификации и ранжирования

''Бритва Оккама'' (Occam's Razor)

- В общем философском понимании: "Не следует множить сущее без необходимости".
- В машинном обучении: "Между двумя моделями, которые дают эквивалентные предсказания, следует выбрать более простую."

"Принцип Эпикура" (Epicurus' principle)

• Если более одной теорий согласуются с наблюдениями, то следует оставить все теории. (If more than one theory is consistent with the observations, keep all theories.)

Противоречие с бритвой Оккама

- Методы композиции противоречат бритве Оккама.
- Больше итераций \Rightarrow больше базовых алгоритмов для голосования \Rightarrow больше сложность
- При отсутствии ошибок обучения более сложный классификатор может быть хуже

Две бритвы (Domingos, 1999)

- Первая бритва: Если даны две модели с одинаковыми ошибками тестирования, то простейшая из них предпочтительнее, так как простота лучше сама по себе.
- Вторая бритва: Если даны две модели с одинаковыми ошибками обучения, то простейшая из них предпочтительнее, так как она имеет большие шансы иметь меньше ошибок тестирования.

Программная реализация в R

- https://cran.r-project.org/web/views/MachineLearning.html
- Package gbm, реализует стандартный AdaBoost и алгоритм градиентного бустинга Фридмана
- Package mboost, реализует алгоритмы градиентного бустинга
- Package **xgboost**, реализует алгоритмы градиентного бустинга
- Package adabag, реализует AdaBoost.M1
- Package ada, реализует стохастический градиентный бустинг (SGB)
- Package randomForest, реализует алгоритмы случайных лесов

Вопросы

?