Teorie míry a integrálu

Kateřina Ševčíková, podle učebního textu profesora Jana Rataje

Poslední úprava: 12. října 2024

Obsah

1	Základní pojmy teorie míry	2
2	Měřitelné funkce	3
3	Funkce jedné reálné proměnné – derivace a Taylorův polynom	3
4	Řady	3
5	Primitivní funkce	3
6	Určitý integrál	3

Úvod

Připomenutí: Riemannův, Newtonův integrál, geometrický význam plochy pod grafem. (Riemannův integrál lze použít k výpočtu míry = integrálu, ale jen na uzavřeném intervalu a pro omezenou funkci.) ((

Ne všechny funkce jsou "integrovatelné", ne všechny množiny "měřitelné". úplnost : Na prostoru Riemannovsky integrovatelných funkcí na intervalu I definujme skalární součin vztahem $\langle f,g\rangle:=\int_I f\cdot g$. Indukovaný metrický prostor není úplný.

aditivita: V teorii pravděpodobnosti potřebujeme, aby pravděpodobnostní míra byla spočetně aditivní, tedy aby pro po dvou disjunktní náhodné jevy A_1, A_2, \dots platilo $Pr(\bigcup_i A_i) = \sum_i Pr(A_i)$. Toto by pro míru definovanou pomocí Riemannova integrálu neplatilo.

Obecná konstrukce: nejprve míra (množinová funkce), z ní je odvozen integrál (aproximace po částech konstantními funkcemi). Vlastnosti, které chceme po "míře":

```
1. \mu(\emptyset) = 0, \mu(A) \ge 0 \ \forall A
```

2. $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$ pro po dvou disjunktní množiny A_1, A_2, \dots

))

Banachův - Tarského paradox: u míry chceme moct rozdělit množinu na několik částí, každou posunout, zrotovat, tak ať jou stále disjunktní, a chceme mít staále stejnou míru. To ale vždy nefunguje, tento paradox ukazuje, že je možné rozdělit jednotkovou kouli v \mathbb{R}^3 na 5 částí, posunout je, a získat 2 stejné koule, tedy nezachováme míru. Tedy ne každá množina je měřitelná.

1 Základní pojmy teorie míry

Věta 1.1. Existence nejmenší σ -algebry

Věta 1.2. slkdji

Definice. Nechť $a=(a_1,...,a_n), b=(b_1,...,b_n)\in\mathbb{R}$. Množina $W=x=(x_1,...,x_n)\in\mathbb{R}: a_i < x_i < b < iprovechnai \in 1,$ a také ksždou množinu, která vznikne záměnou libovolného znaménka «"za «=", nazveme n-buňk. Objem n-buňky definujeme jako 0, je-li $W=\emptyset$ a jako $vol(W)=\prod$...

Věta 1.3. Rozšíření elementárního objemu Existuje

 $D\mathring{u}kaz$. Náznak: Lze ukázat, že je-li $G \in \mathbb{R}$ otevřená, pak existují po dvou disjunktní n-buňky takové, že $G = \bigcup_{i=1}^{\infty} W_i$. Definujeme $Z_n(G) = \sum_{i=1}^{\infty} vol(W_i)$. (nezáleží na volbě rozkladu). Dále pak $A \in \mathcal{B}(\mathbb{R}^n)$ definujeme $Z_n(A) = \inf\{Z_n(G) : G \text{ otevřená}, \ G \in \mathbb{R}^n, A \subset G\}$.

Poznámka. • Z konstrukce míry Z_n plyne, že je-li $A \subset \mathbb{R}^n$ borelovská a $\epsilon < 0$, potom existuje otrevřená množina $G \in \mathbb{R}^n$ takov, $eA \subset GaZ_n(G \setminus A) < A$

• Míra Z_n je invariantní vůči posunutí - pro všechna $x \in \mathbb{R}^n$ a $A \in \mathcal{B}(\mathbb{R}^n)$ platí !!!!!!!!!!

Definice. Nechť (X, \mathcal{A}, μ) je prostor s mírou. Řekneme, že μ je <mark>úplná míra</mark>, jestliže platí: je-li $A \in \mathcal{A}$ splňující $\mu(A) = 0$ a $A^I \in \mathcal{A}$, pak $A^I \in \mathcal{A}$.

Věta 1.4. Zúplnění míry (bez dk)

Nechť (X, A, μ) je prostor s mírou. Nechť A_0 je systém všech množin EsubsetX, pro něž existují $A, B \in A$ takové, že $A \subset E \subset Ba\mu(B \setminus A) = 0$. Potom A_0 je σ -algebra obsahující A. Definujeme $\mu_0(E) = \mu(A) \forall E \in A_0$. Potom $\mu = \mu_0$ na A a (X, A_0, μ_0) je prostor s úplnou mírou.

Definice. Zúplnění σ-algebry $\mathcal{B}(\mathbb{R}^n)$ vzhledem i Z_n značíme $\mathcal{B}_0(\mathbb{R}^n)$ a nazýváme ji σ-algebrou lebesgueovsky měřitelných množin. Odpovídající zúplnění míry Z_n značíme opět Z_n a nazýváme je hldefLebesgueovou mírou.

2 Měřitelné funkce

Definice. Nechť (X, \mathcal{A}) je měřitelný prostor a (Y, τ) je metrický prostor. Řekneme, že zobrazení f: X->Y je měřitelné, jestliže $f^{-1} \in \mathcal{A}$ pro každou $V \subset Y$ otevřenou. Je-li navíc (X, ρ) metrický prostor a $\mathcal{A} = \mathcal{B}(X)$, pak F nazýváme hldefborelovské.

Poznámka. Nechť $(X, \rho), (Y, \tau)$ jsou M.P.. Pak zobrazení g: X - > Y je spojité práve tehdy když $g^{-1}(V)$ je otevřená v X pro každou V otevřenou v Y. Tedy každé spojité zobrazení je borelovké.

Příklad. Nechť (X, A) je měřitelný prostor, $A \subset X$. Potom charakteristická funkce množiny A je definovaná předpisem $\S_A(x) = 1$, pokud $x \in A$, 0, pokud $x \notin A$ je měřitelné práve tehdy, když $A \in A$

 $D\mathring{u}kaz.$ "=;" Je-li \S_A měřitelná, pak
 $A=\S_A^{-1}((1/2,3/2))$ je vzor otevřené množiny, a tehd
y $A\in\mathcal{A}$ "i=" Nechť $A\in\mathcal{A}, A\subset\mathbb{R}$ otevřená. Pak
 $\S_A^{-1}=$

- X, pokud $0, 1 \in B$,
- A, pokud $0 \notin B, 1 \in B$,

Dle vlastností σ -algebry patří všechny tyto množiny so mathcal A, a tedy \S_A je měřitelná.

Věta 2.1. měřitelnost složení zobrazení Nechť $(Y,\tau),(Z,\sigma)$ jsou M.P. a (X,\mathcal{A}) je měřitelný prostor. Nechť g:Y->Z je spojité a f:X->Y je měřitelné. Potom gof:X->Z je měřitelné.

 $D\mathring{u}kaz$. obrázkem

3 Funkce jedné reálné proměnné – derivace a Taylorův polynom

Derivace a Taylor.

4 Řady

Konvergence řad.

5 Primitivní funkce

Primitivní funkce, integrace.

6 Určitý integrál

Riemannův a Newtonův integrál.