מתמטיקה בדידה - תרגיל בית 7 - שחר פרץ

מידע כללי

מגיש: שחר פרץ

ת.ז.: 334558962

תאריך הגשה: 31.4.2024

~~~ תרגיל בית 7

## שאלה 1

#### (א) סעיף

נתונה הפונקציה:

$$H = \lambda f \in \mathbb{Z} \to \{0, 1\}.\lambda n \in \mathbb{N}_+.f(n) + f(-n)$$

 $\mathrm{range}(H) = \mathbb{N}_+ o \mathbb{N}$  :חום:  $\mathrm{dom}(h) = \mathbb{Z} o \{0,1\}$ 

(ב) סעיף

 $\mathbf{U}$ טענה: H לא חח"ע

הוכחה: נניח בשלילה ש־H הוא חח"ע. נראה דוגמה נגדית.

$$f_1 = \mathbb{Z}_{\leq 0} \times \{1\} \cup \mathbb{Z}_{>0} \times \{0\}$$

$$f_2 = \mathbb{Z}_{\leq 0} \times \{0\} \cup \mathbb{Z}_{>0} \times \{1\}$$

$$H(f_1) = \lambda n \in \mathbb{N}_+.f(n) + f(-n) = 0 + 1 = 1$$

$$H(f_2) = \lambda n \in \mathbb{N}_+.f(n) + f(-n) = 0 + 1 = 1$$

$$H(f_1) = H(f_2) \wedge f_1 \neq f_2$$
  $\mathscr{Q}.\mathscr{E}.\mathscr{D}. \blacksquare$ 

(ג) סעיף

 $\mathbb{N}_+ o \mathbb{N}$  טענה: H לא על

**הוכחה:** נראה שאחת ההכלות המהוות תנאי הכרחי לשוויון לא מתקיימת.

נבחר  $f\in\mathbb{Z}$  כך ש־ $f\in\mathbb{Z}$  כך ש־ $f\in\mathbb{Z}$  הוא f הוא f הוא f הוא f הוא f בחר f בחר f בחר f בחר f בפלג למקרים:

f(n)+f(-n)=1 אז f(-n)=1 אז f(-n)=0 אז f(-n)=0 אם f(-n)=0 אם f(-n)=0 אם f(-n)=0

$$f(n)+f(-n)=2$$
 אז  $f(-n)=1$  אז הום  $f(-n)=f(-n)=1$  אז אם  $f(-n)=f(-n)=1$  אז אם הוב ליינו אם היינו אום או היינו אום היינו אום

f=g סה"כ (g=g, וזו סתירה להיות, בפרט (g=gר בפרט, רange (g=g

*Q.E.D.* ■

## שאלה 2

נתון

 $g \in B o C \wedge f \in A o B$  נתון  $A,B,C 
eq \emptyset$  נתון

#### סעיף (א) - סתירה

 $g\circ f$  מח"ע

**צ.ל.:** *g* לא חח"ע

בחר: נבחר g חח"ע. נבחר:

$$A = \{1\}, B = \{1, 2\}, C = \{1\}$$

$$f = \{\langle 1, 1 \rangle\}, g = \{\langle 1, 1 \rangle, \langle 2, 1 \rangle\}$$

נתבונן ב־ $\{\langle 1,1 \rangle\}$ , שהוא חח"ע באופן ריק, כדרוש.

Q.E.D. ■

#### סעיף (ב) - הוכחה

f על  $g \circ f$  על  $g \circ f$ 

**צ.ל.:** *g* חח"ע

חח"ע, כבר הוכחנו ש־f חח"ע, כלומר קיימים f כבר הוכחנו שf כבר הוכחנו ש־f חח"ע. נתבונן ב־f חח"ע. נתבונן ב־f חח"ע. נחשום ש־f על אז דf מלאה (ב־f), וסה"כ f פונקציה חח"ע. נתבונן ב־f חח"ע, נסיק בf חח"ע.

$$(g \circ f)(a_1) = g(f(a_1)) = g(b_1) = g(b_2) = g(f(a_2)) = (g \circ f)(a_2)$$

. שח"ע כדרוש.  $a_1 \neq a_2$  אך  $a_1 \neq a_2$  אך  $a_2 \neq a_3$  אך  $a_1 \neq a_2$  אך  $a_1 \neq a_2$  אך  $a_2 \neq a_3$  אך פלומר סה"כ כלומר סה"כ  $a_1 \neq a_2$  אך  $a_2 \neq a_3$  אך פלומר סה"כ פלומר סה"כ  $a_1 \neq a_2$  אך פלומר הנחת השלילה לא נכונה ו־ $a_1 \neq a_2$  אך פלומר סה"כ פלומר סה"כ פלומר סה"כ פלומר סה"ע כדרוש.

סעיף (ג) - הוכחה

 $g \circ f$  על

**צ.ל.:** *g* על

g(f(a))=c כלומר g(f(a))=c כך ש־ $a\in A$  כך שקיים  $a\in B$  כך ש־ $b\in B$  כך של , $c\in C$  הוכחה: יהי יהי b=c נבחר (b=c אותו b=c מקיים את מה שהיה להוכיח.

Q.E.D. ■

#### סעיף (ד) - סתירה

 $g \circ f$  על  $g \circ f$ 

**צ.ל.:** *f* לא על

:ונחה: נראה דוגמה נגדית להיות f על

$$A = \{1\}, B = \{1, 2\}, C = \{1\}$$

$$f = \{\langle 1, 1 \rangle\}, g = \{\langle 1, 1 \rangle, \langle 2, 1 \rangle\}$$

. נתבונן ב־ $\{\langle 1,1 \rangle\}$  לא על, וזו סתירה. לעומת זאת,  $g \circ f = \{\langle 1,1 \rangle\}$ 

*Q.E.D.* ■

#### סעיף (ה) - לעשות

נתון:

## שאלה 3

#### (א) סעיף

 $f\colon \mathbb{N} o \mathbb{Z}, f=\lambda n\in \mathbb{N}.n^2-6n+8$  נתון:

 $\blacksquare \, 2 
eq 4$  אך אך אך f(2) = f(4) אר אח"ע כי

 $lacktriangledown n^2-6n+8=-2 \implies n^2-6n+10=0 \implies n=3\pm i 
ot\in \mathbb{N}$  על: הפונקציה לא על כי

# (ב) סעיף

 $f\colon \mathcal{P}(A) imes\mathcal{P}(\mathbb{N}) o\mathcal{P}(\mathbb{N})f=\lambda\langle A,B
angle\in\mathcal{P}(\mathbb{N}) imes\mathcal{P}(\mathbb{N}).A\cap B$  נתון:

 $\blacksquare \langle \{1\}, \{2\} \rangle \neq \langle \{0\}, \{1\} \rangle$  אך  $f(\langle \{0\}, \{1\} \rangle) = f(\langle \{1\}, \{2\} \rangle) = \emptyset$  אר מפונקציה לא חח"ע. הפונקציה לא חח"ע כי

על: הפונקציה על; יהי  $A\in\mathcal{P}(\mathbb{N})$ , צריך להוכיח קיום  $B\in\mathcal{P}(\mathbb{N})^2$  כך ש־ $A\in\mathcal{P}(\mathbb{N})$ . נבחר  $A\in\mathcal{P}(\mathbb{N})$  כדרוש  $A\cap A=A$ 

# סעיף (ג)

 $f\colon (\mathbb{R} o\mathbb{R})^2 o(\mathbb{R} o\mathbb{R}), f=\lambda\langle g,h
angle\in (\mathbb{R} o\mathbb{R}).g\circ h$  دراا:

 $lacktriangledown f(\langle \{\langle 1,1 
angle \}, \{\langle 1,1 
angle \} \rangle) = h(\langle \{\langle 1,2 
angle \}, \{\langle 2,1 
angle \} \rangle) = \{\langle 1,1 
angle \}$  הח"ע: הפונקציה לא חח"ע, דוגמה נגדית:

על: הפונקציה על; יהי  $g\in\mathbb{R} o \mathbb{R}$ , צ.ל. להוכיח קיום זוג סדור x המקיים g נבחר x נבחר x, ומשום ש־x הפונקציה על; יהי x בחר x על: להוכיח קיום זוג סדור x להוכיח קיום זוג סדור x בחר x על: x בחר x בחר x של: x בחר x בחר

סעיף (ד)

 $f \colon \mathbb{N} o (\mathbb{R} o \mathbb{N}), f = \lambda n \in \mathbb{N}. \lambda x \in \mathbb{R}.n$  נתון:

 $\eta$  סלומר לפי כלל  $\lambda n\in\mathbb{N}.a=\lambda n\in\mathbb{N}.b$  ידוע a=b צ.ל. a=b צ.ל. f(a)=f(b) יהי חח"ע. יהי חח"ע: הפונקציה חח"ע. ולפי כלל  $\alpha a=b$  צ.ל.  $\alpha a=b$  אולפי כלל  $\alpha a=b$  ולפי כלל  $\alpha a=b$  ולפי כלל  $\alpha a=b$  ולפי כלל

#### (ה) סעיף

 $f\colon (\mathbb{R} o \mathbb{R}) o \mathbb{R}, f = \lambda g \in \mathbb{R} o \mathbb{R}.g(0)$ נתון:

 $f(\lambda x\in\mathbb{R}.x)=f(\lambda x\in\mathbb{R}.0)=0$  אך הפונקציה לא חח"ע. ראה דוגמה נגדית: נתבונן ב־ $\lambda x\in\mathbb{R}.0=0$  אך  $\lambda x\in\mathbb{R}.x
eq \lambda x\in\mathbb{R}.0$ 

על: הפונקציה על. יהי  $x\in\mathbb{R}$ . צריך להוכיח קיום  $g\in\mathbb{R}\to\mathbb{R}$  כך ש־ $g\in\mathbb{R}\to \mathbb{R}$  נבחר  $x\in\mathbb{R}$ . נבחר גצריך להוכיח נפעיל פעמיים את כלל g ונקבל g נקום להוכיח קיום g כדרוש.

#### (טעיף (ו

 $f\colon ((\mathbb{R} o\mathbb{R}) imes\mathbb{R}) o\mathbb{R}, f=\lambda g\in\mathbb{R} o\mathbb{R}, r\in\mathbb{R}.g(r)$  دراا:

 $f(\langle(\lambda x\in\mathbb{R}.x),0
angle)=f(\langle(\lambda x\in\mathbb{R}.0),1
angle)=0$  אך ענ. נראה דוגמה נגדית: הפונקציה לא חח"ע. נראה דוגמה נגדית:  $0
eq f(\langle(\lambda x\in\mathbb{R}.x),0
angle)=f(\langle(\lambda x\in\mathbb{R}.x),0
angle)=0$  אך  $f(\langle(\lambda x\in\mathbb{R}.x),0
angle)=f(\langle(\lambda x\in\mathbb{R}.x),0
angle)=0$ 

y=x ,  $g=\lambda p\in\mathbb{R}.p$  נבחר  $f(g)=x^-$  נבחר על: הפונקציה על. יהי  $x\in\mathbb{R}$  צריך להוכיח קיום  $f(g)=x^-$  כך ש־ $f(g,y)=x^-$  כך נבחר  $f(g,y)=x^-$  נבחר ונפעיל פעמיים את כלל g כדי לקבל  $g(g,y)=g(y)=x^-$  כדרוש

#### שאלה 4

# (א) סעיף

:נתון

$$F = \lambda q \in \mathbb{N} \to (\mathbb{N} \to \mathbb{R}).\lambda x \in \mathbb{N}.q(x)(x)$$

 $:F^{-}$ טווח ותחום אפשרי ל

$$dom(F) = \mathbb{N} \to (\mathbb{N} \to \mathbb{R}), range(F) = \mathbb{N} \to \mathbb{R}$$

 $:\beta$  נחשב לפי כלל

$$F(\lambda n \in \mathbb{N}.\lambda m \in \mathbb{N}.n + 1)(0)$$

$$= (\lambda x \in \mathbb{N}.(\lambda n \in \mathbb{N}.\lambda m \in \mathbb{N}.n + 1)(x)(x))(0)$$

$$= (\lambda n \in \mathbb{N}.\lambda m \in \mathbb{N}.n + 1)(0)(0)$$

$$= (\lambda m \in \mathbb{N}.0 + 1)(0)$$

$$= 0$$

(ג) סעיף

ע"ע לא חח"ע *F* **:.2.** 

 $F(f_1)=F(f_2)$  אך  $f_1 
eq f_2$  כך ש־ $f_1,f_2$  כך הוכחה: נבחר

$$f_1 = (\mathbb{N} \setminus \{0\}) \times (\lambda n \in \mathbb{N}.n) \cup \{\langle 0, \{\langle 0, 0 \rangle\} \cup \lambda n \in (\mathbb{N} \setminus \{0\}).0 \rangle\}$$
  
$$f_2 = (\mathbb{N} \setminus \{1\}) \times (\lambda n \in \mathbb{N}.n) \cup \{\langle 1, \{\langle 1, 1 \rangle\} \cup \lambda n \in (\mathbb{N} \setminus \{1\}).0 \rangle\}$$

רה: מהצורה: f מהצורה בה"כ על פונקציה f מהצורה:  $f_1, f_2 \in (\mathbb{N} \to \mathbb{R})$ 

$$f = (\mathbb{N} \setminus \{t\}) \times (\lambda n \in \mathbb{N}.n) \cup \{\langle t, \{\langle t, t \rangle\} \cup \lambda n \in (\mathbb{N} \setminus \{t\}).0 \rangle\}$$

: נפלג למקרים:  $x\in\mathbb{N}$ . יהי  $\forall x_1\in\mathbb{N}. \exists y\in(\mathbb{N}\to\mathbb{R}). f(x)=y$ . נפלג למקרים:

- אם  $y\in\mathbb{N}$  כלומר נוכל לבחור  $y=\lambda n\in\mathbb{N}.n$  שמקיים  $y=\lambda n\in\mathbb{N}$ , וזה יעבוד לפי  $x\in\mathbb{N}\setminus\{t\}$ , אז אם  $y=\lambda n\in\mathbb{N}$ , וזה יעבוד לפי כפל קרטזי.
- אם  $y=\{\langle t,\{\langle t,t\rangle\}\cup \lambda n\in (\mathbb{N}\setminus\{t\}).0\rangle\}$ . נבחר x=t נגרר x=t אם  $x\in\{t\}$  אם  $x\in\{t\}$  אם  $x\in\{t\}$  אם  $x\in\{t\}$  המקיים לפי פילוג למקרים  $y\in\mathbb{N}\to\mathbb{R}$ . ולפי  $y\in\mathbb{N}\to\mathbb{R}$  הדרת  $y\in\mathbb{N}$ , נסיק y=t, נסיק y=t, כדרוש.

עכשיו, נותר להוכיח  $F(f_1) 
eq F(f_2)$ . נשתמש בכלל eta כדי למצוא את ערכם:

$$F(f_1) = \lambda x \in \mathbb{N}.f_1(x)(x)$$
  
$$F(f_2) = \lambda x \in \mathbb{N}.f_2(x)(x)$$

לפנות כל, נוכיח טענה שנכנה טענה (1): בה"כ  $x \in \mathbb{N} \setminus \{0\} \land x \in \mathbb{N} \setminus \{1\}$  אז  $x \notin \{t\}$  כלומר  $x \in \mathbb{N} \setminus \{0\}$  כלומר  $x \in \mathbb{N} \setminus \{0\}$  בסיק  $x \in \mathbb{N} \setminus \{0\}$  בסיק  $x \in \mathbb{N} \setminus \{0\}$  בח"כ כלל  $x \in \mathbb{N} \setminus \{0\}$ 

לפי כלל  $f_1(x)(x)=f_2(x)(x)$ . צ.ל. צ.ל. ע.ל. נפלג למקרים:  $x\in\mathbb{N}$ יהי  $\eta$ 

- כלומר  $f_1(x)=f_1(0)=\langle 0,\{\langle 0,0\rangle\}\cup \lambda n\in (\mathbb{N}\setminus \{0\}).0\rangle$  נסיק  $\alpha,\beta$  נסיק : $x\in \{0\}$  אם  $x\in \{0\}$  אם  $x\in \{0\}$  נפצל למקרים:
  - $f_1(x)(x)=f_2(x)(x)$  אם  $f_2(x)(x)=x=0$  :1 אם לפי טענה  $x
    ot\in\{1\}$  וסה"כ מענה ר
- ס אם  $f_2(x)=f_2(0)=\langle 1,\{\langle 1,1\rangle\}\cup \lambda n\in (\mathbb{N}\setminus\{1\}).1\rangle$  נסיק  $\alpha,\beta$  נסיק  $\alpha,\beta$  לפי כללים  $\alpha,\beta$  פיק  $\alpha,\beta$  נסיק  $\alpha,\beta$  וסה"כ  $\alpha,\beta$  וסה"

ים וסה"כ אזי לפי טענה 1:  $x \notin \{0\}$ , נקבל פילוג למקרים וסה"כ ישהיה למה שהיה לפרים וסה"כ ישהיה לפרים וסה"ל ישהיה וסה"ל ו

. עה"ע הפונקציה אח"ע. כלומר הפונקציה לא חח"ע $f_1 = f_2 \wedge F(f_1) 
eq F(f_2)$  סה"כ

*Q.E.D.* ■

#### שאלה 5

#### (א) סעיף

טענה:  $X\subseteq A.f^{-1}[f[X]]=X$  אמ"מ $X\subseteq A.f^{-1}[f[X]]$ 

**הוכחה:** נוכיח כל אחת מהגרירות בנפרד;

- $a_1,a_2\in A$  נניח f נניח f נוכיח f נוכיח f נוכיח f נוכיח f מוכיח f נוכיח f f נוכיח f f נוכיח f נוכיח f נוכיח f נוכיח f נוכיח f נוכיח f f נוכיח f נוכיח f נוכיח f נוכיח f נוכיח f נוכיח f
- מכאן (מכאן החלפה, יהי f והוע  $f(a_1)$  משום שלפי היות (מ $a=a_1$ ), ומשום  $a\in X$  הוא האיבר היחיד (מכאן f(x)=f(x)=f(x)=f(x) אז אווה ל־ $f(a_1)$ , אז אז אווה ל־ $f(a_1)$ , אז אז מגיעה הגרירה הדו־כיוונית) שווה ל־ $f(a_1)$ , אז אז אווה ל־ $f(a_1)$
- נרצה להוכיח  $a_2\in A \land f(a_2)\in \{f(a_1)\}$ . באופן שקול,  $\{a_2\}\subseteq f^{-1}[\{f(a_1)\}]$  התנאי הראשון נתון לפי הגדרת  $a_2\in f(a_1)=f(a_1)=f(a_1)$  וזה נתון מתוך הנחת השלילה.

סה"כ נציב ונקבל  $\{a_2\} \not\in X$ , אך אך אך  $\{a_2\} \notin X$ , אך אך אך אך אך אר הנחת השלילה, לכן חח"ע סה"כ נציב ונקבל כן  $\{a_2\} \notin X$ , אך אר השלילה, לכן חח"ע כדרוש.

- . נוכיח בהכלה דו־כיוונית.  $\forall X \subseteq A.f^{-1}[f[X]] = X$  נוכיח בהכלה f נוכיח .
- הטענה  $f(x) \in f[X]$  וגם (שכבר נתון לנו) גבל.  $x \in X$  הטענה  $x \in f^{-1}[f[X]]$  הטענה  $x \in X$  יהי  $x \in X$  הזו נכונה כי ע"פ בעקרון ההחלפה  $x \in X$  החלפה  $x \in X$ , ולכן הטענה נכונה באופן טריוויאלי.
- יהי  $f(x)\in f[X]$  יהי  $f(x)\in f[X]$ , ידוע  $f(x)\in f[X]$ , לפי הגדרת קבוצת המקורות של  $f(x)\in f[X]$ , ידוע  $f(x)\in f(X)$ , ובשילוב a=x של הגדרת התמונה ועקרון ההפרדה, נסיק שקיים  $a\in X$  כך שf(x)=a=x חח"ע, אזי f(x)=a=x, כלומר f(x)=a=x כדרוש.

2.€.Д. ■

#### (ב) סעיף

טענה:  $Y\subseteq B.f[f^{-1}[Y]]=Y$  אמ"מ f על.

**הוכחה:** נוכיח כל אחת מהגרירות בנפרד.

- $Y\subseteq B$  נניח f על, נוכיח  $Y\subseteq B.f[f^{-1}[Y]]=Y$  באמצעות הכלה דו כיוונית. יהי יהי
  - :. צ.ל.: ע.ל. נוכיח  $y \in f[f^{-1}[Y]]$ , או באופן שקול (ובה"כ), צ.ל. יהי

$$y \in f[f^{-1}[Y]]$$

$$\iff \exists x \in f^{-1}[Y].f(x) = y \qquad \qquad (f[X] \text{ definition})$$

$$\iff \exists x.x \in A \land f(x) \in Y \land f(x) = y \quad (f^{-1} \text{ definition}, A \land A \leftrightarrow A, \exists \text{ syntax})$$

משום שידוע  $A \land f(x) = y \land f(x) = Y$ , אז  $A \land f(x) = y \land f(x) = y \land y \in Y$ . הטענה הזו פסוק אמת כי  $A \land f(x) = y \land f(x) = y \land f(x) = y \land f(x)$ . בדרוש.

- $\exists x.x \in A \land f(x) \in Y \land f(x) = y$  יהי  $y \in f[f^{-1}[Y]]$  יהי  $y \in f[f^{-1}[Y]]$  יהי  $y \in f[f^{-1}[Y]]$  יהי  $y \in Y$  נוכיח  $y \in Y$  כדרוש.
- נניח  $b \in B$  נניח f לא על, כלומר קיים f עבורו f על. נניח בשלילה ש־f לא על, כלומר קיים f עבורו f נניח f נניח f נניח f נניח f נניח f נניח באלילה. נבחר f נוכיח דוגמה נגדית להנחת השלילה. נבחר f בחר f נפי באה דוגמה נגדית להנחת השלילה. כלומר f עבורו סתירה להנחת שקיים f עבורו הטענה הזו לא מתקיימת), כלומר f על.

Q.E.D. ■

#### שאלה 6

#### הגדרה

תהי פונקציה f. נגדיר שתי פונקציות:

$$f_{\rightarrow} \in \mathcal{P}(A) \to \mathcal{P}(B), f_{\rightarrow} = \lambda U \in \mathcal{P}(A).f[U]$$
  
 $f_{\leftarrow} \in \mathcal{P}(B) \to \mathcal{P}(A), f_{\leftarrow} = \lambda V \in \mathcal{P}(B).f^{-1}[V]$ 

#### סעיף (א) - הוכחה

 $\mathbf{v}$ "חח"ע גורר  $f \rightarrow$  חח"ע

הוכחה: נניח f חח"ע, נוכיח  $f_{\to}$  חח"ע. באופן שקול, יהי  $a_1,a_2\in \mathcal{P}(A)$  הוכחה: נניח  $f_{\to}$  חח"ע, נוכיח  $f_{\to}$  חח"ע. באופן שקול, והי  $f_{\to}$  חח"ע. באופן שקול, תוך שימוש בכלל  $f_{\to}$ , נגרר  $f_{\to}$  ונראה סתירה. לפי הנחת השלילה, תוך שימוש בכלל  $f_{\to}$ , נגרר  $f_{\to}$  ונראה סתירה. נסיק  $f_{\to}$  ונראה סתירה. לפי הנחת  $f_{\to}$  או באופן שקול: שימוש בהגדרת תמונה, נסיק  $f_{\to}$  ווכיח באופן שקול.

$$\forall y. (\exists x_1 \in a_1. f(x_1) = y) \iff (\exists x_2 \in a_2. f(x_2) = y)$$

משום ש־f חח"ע, אז  $x_1=x_2$  ולכן לפי טרנזיטיביות אם קיים איבר ב־ $a_1$  באופן שקול האיבר קיים ב־ $a_2$ , כלומר , $\forall y.y \in a_1 \iff a \in a_2$ 

2.€.D. ■

#### סעיף (ב) - הוכחה

 $\forall b \in B. \exists a \in A. f(a) = b$  נתון: f על B, כלומר

 $orall b \in \mathcal{P}(B).\exists a \in \mathcal{P}(A).f_{
ightarrow}(a) = b$  צ.ל:  $f_{
ightarrow}$ על  $f_{
ightarrow}$ , כלומר

הוכחה: יהי  $p_a=f^{-1}[p_b]$  נכיח קיום  $p_a\in\mathcal{P}(A)$  כך ש־ $p_a=p_b$  נבחר  $p_a=f^{-1}[p_b]$  נסיק,  $p_b\in\mathcal{P}(B)$  נסיק,  $p_b\in\mathcal{P}(B)$  נסיק,  $p_b\in\mathcal{P}(B)$  נחבר בי $p_a=f^{-1}[p_b]$  נחבר את הקבוצה  $p_a=f^{-1}[p_b]$  נחבר את הקבוצה  $p_a=f^{-1}[p_b]$  נוכיח שוויון לקבוצה  $p_a=f^{-1}[p_b]$  נוכיח שוויון לקבוצה  $p_b=f^{-1}[p_b]$  נוכיח שוויון לקבוצה  $p_b=f^{-1}[p_b]$ 

- f יהי  $y\in D$  נוכיח  $y\in C$  כלומר את קיום את קיום ל $y\in C$  יהי  $y\in C$ . משום שמתוך המליאות של  $y\in C$  יהי  $y\in p_b$  נבחר  $y\in C$  כך ש־ $y\in C$  כך ש־ $y\in C$  נבחר  $y\in C$ , עליו כבר הוכח ומהיות  $y\in C$ , אז קיים  $y\in C$  כך ש־ $y\in C$ , וגם  $y\in C$ , וגם ל $y\in C$  כל אשר הכרחי.

*2.€.D.* ■

### סעיף (ג) - סתירה

 $f_\leftarrow$  חח"ע גורר f חח"ע צורר f

**הוכחה:** נבחר:

$$A = \{0\}, B = \{0, 1\}, f = \{\langle 0, 0 \rangle\}$$

כמובן ש־f חח"ע כי הוא יחס זהות. עם זאת  $f^{-1}[\{0,1\}] = \{0\} = f^{-1}[\{0\}]$  אך גורר  $f^{-1}[\{0,1\}] = 0$  וזה פסוק שקר.

*Q.E.D.* ■

#### סעיף (ד) - סתירה

 $\mathbf{y}$ "ת  $f_{
ightarrow}$  על, אז  $f_{
ightarrow}$  ח"ע

**הוכחה:** נבחר:

$$A = \{0\}, B = \{0, 1\}, f = \{\langle 0, 1 \rangle, \langle 0, 0 \rangle\}$$

... שכמובן לא חח"ע.  $f_{
ightarrow}=\{\langle\{0\},\{0\}\rangle,\langle\{1\},\{0\}\rangle,\langle\{0,1\},\{0\}\rangle\}:f_{
ightarrow}$  שכמובן לא חח"ע.  $\mathscr{Q}.\mathscr{E}.\mathscr{D}.$ 

#### סעיף (ה) - הוכחה

 $\mathcal{P}(A)$  על  $f_{\leftarrow}$  על חח"ע, בהינתן

הוכחה: נוכיח ש־ $f_{\leftarrow}(\mathcal{B})=\mathcal{A}$  על  $f_{\leftarrow}(\mathcal{B})=\mathcal{A}$ , כל נוכיח קיום  $f_{\leftarrow}(\mathcal{B})=\mathcal{A}$ , לפי כלל  $f_{\leftarrow}(\mathcal{B})=\mathcal{A}$ , לפי כלל  $f_{\leftarrow}(\mathcal{B})=\mathcal{A}$ , כך נוכיח קיום  $f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})$ . לאחר הצבה, נוכיח בהכלה דו כיוונית ש־ $f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})=f_{\leftarrow}(\mathcal{B})$ 

- יהי  $A \in \mathcal{A}$ . נוכיח את התנאי השני, כלומר לפי  $a \in \mathcal{A}$ . התנאי הראשון מתקיים לפי הגדרה. נוכיח את התנאי השני, כלומר לפי  $a \in \mathcal{A}$ . הגדרת תמונה של קבוצה צ.ל.  $a \in \mathcal{A}$ .  $a \in \mathcal{A}$  או לפי עקרון ההחלפה צ.ל.  $a \in \mathcal{A}$ . בחר  $a \in \mathcal{A}$ . נבחר  $a \in \mathcal{A}$ . נקבל  $a \in \mathcal{A}$ . שמתקיים לפי ח"ע של הפונקציה  $a \in \mathcal{A}$ .
  - . יהי  $f(a) \in A$ , נגרר ישירות  $a \in A$ , כלומר  $a \in A$  וגם  $a \in A$ , נגרר ישירות  $a \in A$  כדרוש. •



נתון

יתהי A,B,C קבוצות לא ריקות. נתון:

$$H \colon ((B \cup C) \to A) \to ((B \to A) \times (C \to A))$$
 
$$H = \lambda h \in (B \cup C) \to A.\langle h|_B, h|_C \rangle$$

(א) סעיף

**צ.ל.:** *H* חח"ע

 $H(h_1)=H(h_2)$  נוכיח  $x_1=x_2$  נוכיח  $H(h_1)=y \wedge H(h_2)=y$ . נניח  $x_1,x_2 \in B \cup C$  הוכחה: ויהי

$$H(h_1) = H(h_2)$$

$$\iff \langle h_1|_B, h_1|_C \rangle = \langle h_2|_A, h_2|_B \rangle \qquad (\beta \text{ rule})$$

$$\iff h_1|_B = h_2|_B \wedge h_1|_C = h_2|_C \qquad (\times \text{ definition})$$

$$\iff \forall x. (x \in h_1|_B \longleftrightarrow x \in h_2|_B) \wedge (x \in h_1|_C \longleftrightarrow x \in h_2|_C) \qquad (A = B \text{ definition})$$

$$\iff \forall \langle x, y. (h_1(x) \in B \wedge f(x) = y \longleftrightarrow h_2(x) \in B \wedge f(x) = y \in B) \wedge [\dots] \text{ (|}_X \text{ definition})$$

$$\iff \forall \langle x, y \rangle. (h_1(x) \in B \longleftrightarrow h_2(x) \in B) \qquad (\text{logic rules})$$

$$\iff \forall \langle x, y \rangle. h_1(x) = h_2(x) = y$$

$$\iff h_1 = h_2 \qquad (A = B \text{ definition}) \qquad \mathcal{Q}. \mathcal{E}. \mathcal{D}. \blacksquare$$

(ב) סעיף

 $B\cap C=\emptyset$  על אם ורק אם H :.**צ.ל**.:

**הוכחה:** נפצל לשתי גרירות;

- בניח A נוכיח קיום A נוכיח שA פר ש־ A פר ש־ A נוכיח שA פר שA נוכיח שA פר שA נוכיח שA פר שA פר ש־ A פר ש- A פר ש־ A פר ש- A פר
  - פונ': נוכיח מליאות וחד ערכיות; h  $\circ$
- $x\in B$  מליאות ב־ $(B\cup C)$ . יהי  $B\cup C$  , נוכיח קיום  $y\in A$  כך ש־ $x\in B\cup C$  , נפצל למקרים: אם  $x\in B\cup C$  מליאות ב־ $y=f_1(x)\in B$  כך ש־ $y=f_1(x)\in B$  לפי הגדרה, ובאופן דומה במקרה השני נבחר  $y=f_2(x)$
- חד־ערכיות: יהי  $y_1=y_2$  ויהי  $y_1,y_2$  כך ש־ $y_1,y_2$  כך ש־ $y_1,y_2$  נוכיח נניח בשלילה ...  $x\in B\cup C$  שלא כן. נפצל למקרים:
  - $y_1=y_2$  אז  $f_1$  ח"ע אז  $\{x,y_1\}$  ולכן הם ב־ $\{x,y_1\}$ , ומשום ש־ $\{x,y_2\} 
    otin f_1$  אם ב-  $\{x,y_1\}$
  - $y_1=y_2$  אם  $B = f_1$  אם  $A = f_1$  אז אז  $A = f_1$  אל ולכן הם ב־ג $A = f_1$  ולכן הם ב־ג $A = f_1$  אם ש

- . אם  $x \in \emptyset$  אז אז  $x \in C \cap B$  אם  $x \in C \cap B$  אם
- :.ל. נקבל שצ.ל.: נשתמש בכלל eta וכלל eta, נקבל שצ.ל.:  $H(h) = \langle f_1, f_2 \rangle$

$$\langle (f_1 \cup f_2)|_B, (f_1 \cup f_2)|_C \rangle = \langle f_1, f_2 \rangle$$

שמתקיים באופן ברור (אפשר להוכיח את זה אבל זה נראה לי די מיותר), בהתחשב בזה שהתחומים של  $f_1$  ו־  $f_1$  הם באופן ברור (אפשר להוכיח את זה אבל זה נראה לי די מיותר), בהתאמה שהן קבוצות זרות.

נניח H על, נוכיח  $B\cap C=\emptyset$ . נניח בשלילה שלא כן, ונראה דוגמה נגדית. לפי השקילות הלוגית • A,B,C ניתן לבחור A,B,C ניתן לבחור A,B,C ניתן לבחור A,B,C ניתן לבחור שאלה זו. נבחר

$$A = \{0, 3\}, B = \{0, 1\}, C = \{1, 2\}$$

לפי היותה על, לכל  $H(h)=\langle f,f_2 \rangle$  קיימת  $H(h)=\langle f,f_2 \rangle$  על  $H(h)=\langle f,f_2 \rangle$  ואר הצמצום ב־ $H(h)=\langle f,f_2 \rangle$  ואר הצמצום ב- $H(h)=\langle f,f_2 \rangle$  האר הצמצום ב- $H(h)=\langle f,f_2 \rangle$  ואר הצמצום ב- $H(h)=\langle f,f_2 \rangle$  האר הצמצום ב- $H(h)=\langle f,f_2 \rangle$  ואר הצמצום ב- $H(h)=\langle f,f_2 \rangle$  האר הצמצום ב- $H(h)=\langle$ 

*Q.E.D.* ■