Deep Reinforcement Learning

Overview of main articles
Part 1. Value-based algorithms

Sergey Ivanov September 23, 2018

MSU

Table of contents i

Reinforcement Learning [reminder]

Deep Q-learning (2014)

Stabilizing Q-learning

Target-network heuristic (2015)

Double DQN (2015)

Dueling DQN (2016)

Prioritized replay memory (2015)

Noisy networks for exploration (2017)

Categorical DQN (2017)

Rainbow DQN (2018)

Reinforcement Learning

[reminder]

MDP

```
MDP is \{\mathbb{S}, \mathbb{A}, \mathbb{T}, r\}: \mathbb{S} \longrightarrow \text{set of states} \mathbb{A} \longrightarrow \text{set of actions} \mathbb{T} \longrightarrow \text{probability } p(s' \mid s, a), \text{ where } s, s' \in \mathbb{S}, a \in \mathbb{A} r \longrightarrow \text{function } \mathbb{S} \longrightarrow \mathbb{R}
```

RL Goal

We search for policy $\pi:\mathbb{S}\to\mathbb{A}$ which maximizes 1

$$\mathbb{E}\sum_t r(s_t)$$

 $^{^{1}}$ over what probability distributions is this expectation?

RL Goal

We search for policy $\pi:\mathbb{S}\to\mathbb{A}$ which maximizes¹

$$\mathbb{E}\sum_t r(s_t)$$

This goal does not suit infinite horizon case, so for generalization purposes goal is substituted with

$$\mathbb{E}\sum_t \gamma^t r(s_t)$$

for $\gamma \in (0,1)$.

 $^{^{1}}$ over what probability distributions is this expectation?

Definitions

For convenience²:

$$R = \sum_{t} \gamma^{t} r(s_{t})$$

²What does it depend on?

Definitions

For convenience²:

$$R = \sum_{t} \gamma^{t} r(s_{t})$$

For given policy π :

$$V^{\pi}(s) = \mathbb{E}R \mid s_0 = s$$
 $Q^{\pi}(s, a) = \mathbb{E}V(s') \mid s, a$

²What does it depend on?

Definitions

For convenience²:

$$R = \sum_{t} \gamma^{t} r(s_{t})$$

For given policy π :

$$V^{\pi}(s) = \mathbb{E}R \mid s_0 = s$$
 $Q^{\pi}(s, a) = \mathbb{E}V(s') \mid s, a$

Let π^* be optimal policy.

²What does it depend on?

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It's also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It's also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

Note:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^*}(s, a) \tag{2}$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It's also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
(1)

Note:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^*}(s, a) \tag{2}$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It's also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

Note:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^*}(s, a) \tag{2}$$

Insert (2) into (1):

Bellman Equation

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s', \underset{a}{argmax} \ Q^{\pi^*}(s', a))\right]$$

For every π it's true:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi}(s',\pi(s'))\right]$$

It's also true for π^* :

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + Q^{\pi^*}(s',\pi^*(s'))\right]$$
 (1)

Note:

$$\pi^*(s) = \operatorname{argmax} Q^{\pi^*}(s, a) \tag{2}$$

Insert (2) into (1):

Bellman Equation

$$Q^{\pi^*}(s,a) = \mathbb{E}\left[r(s') + \max_{a} Q^{\pi^*}(s',a)\right]$$

For finite-state case Q^{π^*} is finite vector of unknown values. Bellman equations can be solved using point iteration:

$$Q_{t+1}(s,a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s',a)\right]$$

For finite-state case Q^{π^*} is finite vector of unknown values. Bellman equations can be solved using point iteration:

$$Q_{t+1}(s, a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s', a)\right]$$

Problem: expectation.

For finite-state case Q^{π^*} is finite vector of unknown values.

Bellman equations can be solved using point iteration:

$$Q_{t+1}(s, a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s', a)\right]$$

Problem: expectation.

Temporal Difference Learning

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right]$$

6

For finite-state case Q^{π^*} is finite vector of unknown values.

Bellman equations can be solved using point iteration:

$$Q_{t+1}(s, a) = \mathbb{E}\left[r(s') + \max_{a} Q_t(s', a)\right]$$

Problem: expectation.

Temporal Difference Learning

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right]$$

 \checkmark Is a contraction mapping ⇒ converges.

Deep Q-learning (2014)

Atari

- * No prepared features for each game.
- * Screen image as input.
- * Finite-state case... not quite finite.

Atari games

Atari

- * No prepared features for each game.
- * Screen image as input.
- * Finite-state case... not quite finite.

Atari games

We want to approximate Q(s, a) with neural net.

Q-network

Q-network

 $\label{eq:option 1}$ Requires forward pass for each action 1

Option 2 Number of actions must be adequate

¹Is there a case when option 1 might be better?

Q-network

Atari: up to 18 discrete actions. Use option 2.

¹Is there a case when option 1 might be better?

$$Q_{t+1}(s,a) = \alpha Q_t(s,a) + (1-\alpha) \left[r(s') + \max_{a} Q_t(s',a) \right]$$

TD-learning is «similar» to gradient descent.

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right]$$

9

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

Let
$$y = r(s') + \max_a Q_t(s', a)$$
.

TD-learning is «similar» to gradient descent.

$$Q_{t+1}(s, a) = \alpha Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) \right] =$$

$$= Q_t(s, a) + (1 - \alpha) \left[r(s') + \max_{a} Q_t(s', a) - Q_t(s, a) \right] =$$

$$= Q_t(s, a) - \eta \nabla_Q L$$

Let $y = r(s') + \max_a Q_t(s', a)$. If dependence of y from Q is ignored:

$$L = (Q_t(s, a) - y)^2$$

With Q(s, a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

With Q(s, a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's move gradient descent from space of Q functions to θ !

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

With Q(s, a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's move gradient descent from space of ${\it Q}$ functions to $\theta!$

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

Problems:

 \times batch_size = 1. Wow.

With Q(s, a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's move gradient descent from space of Q functions to θ !

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

Problems:

- \times batch_size = 1. Wow.
- \times Target y changes after each step.

With Q(s, a) as neural net, its parameters θ determine function.

$$Q_{t+1}(s, a, \theta) = Q_t(s, a, \theta) - \eta \nabla_Q L$$

Let's move gradient descent from space of Q functions to θ !

$$\theta_{t+1} = \theta_t - \beta \nabla_{\theta} L$$

Problems:

- \times batch_size = 1. Wow.
- \times Target y changes after each step.
- × All theoretical guarantees are lost.

ExperienceReplay

Utilize all experienced transitions (s, a, s', r, done) for generating a batch for stochastic optimization step.

ExperienceReplay

Utilize all experienced transitions (s, a, s', r, done) for generating a batch for stochastic optimization step.

Pretend on each step that loss function is

$$\mathbb{E}_{(s,a,s',r,done)}(Q(s,a,\theta)-y(s',r,done))^2$$

Batch of transitions is sampled uniformly from memory.

ExperienceReplay

Utilize all experienced transitions (s, a, s', r, done) for generating a batch for stochastic optimization step.

Pretend on each step that loss function is

$$\mathbb{E}_{(s,a,s',r,done)}(Q(s,a,\theta)-y(s',r,done))^2$$

Batch of transitions is sampled uniformly from memory.

- √ Decorellates samples.
- * Target *y* can be calculated only for this batch.
- * Only last N observed transitions may be stored

ε -greedy exploration

Problem: at the very beginning trajectories generated by $\pi(s) = \mathop{argmax}_{a} Q(s, a, \theta)$ are very similar.

ε -greedy exploration

Problem: at the very beginning trajectories generated by $\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a, \theta)$ are very similar.

Choose random actions sometimes.

For example, with probability ε .

ε annealing

 ε should be big at the beginning and small at the end.

ε annealing

arepsilon should be big at the beginning and small at the end.

Atari: $\varepsilon(i) = 0.01 + 0.99 \exp\{-\frac{i}{30000}\}$ where i is frames counter.

Details

- Gray-scale frames were downsampled and cropped to 84x84.
- Last 4 frames³ were considered as state to satisfy MDP Markov's property.
- Same NN architecture was used for all games: 3 convolutional⁴ and 2 feedforward layers.

³3 for Space Invaders cause of laser blinking period

⁴why no max pooling here?

More details

Playing Atari with Deep Reinforcement Learning (2014)

- Reward was restricted to $\{+1, 0, -1\}$. Allowed to use same learning rate for all games.
- :(50 hours per game / 10 000 000 frames per game.
- :} Bought by Google after 7 games.

Stabilizing Q-learning

Unstability

Recall our target on each step:

$$y(s',r) = r + \max_{a'} Q(s',a',\theta)$$

- Changes each frame
- Formally depends on θ
- "Correlates" with actions chosen during playing
- Tends to overestimate true V(s')
- \Rightarrow loss is completely unstable and can even diverge.

Target network (2015)

Change the target not every step, but each K-th step.

Target network (2015)

Change the target not every step, but each K-th step.

For this purpose:

- Make a copy of Q-network, target network, with parameters θ^-
- Use it on every step to calculate

$$y(s',r) = r + \max_{a'} Q^{\text{target}}(s', a', \theta^{-})$$

• Each K-th step update θ^- with current Q-network's weights θ .

Can be seen on loss

✓ Loss really stabilized!

Value overestimation

Recall our target is proxy of $V^{\pi^*}(s',a')$

$$y(s',r) = r + \max_{a'} Q(s',a',\theta)$$

Practice: this proxy overestimates true value of states.

Intuition: this max operator will prefer actions, for which $Q(s', a', \theta)$ is overestimating true value due to approximation or luck.

Action Selection vs Evaluation

Recall Bellman Equation derivation and untangle our target:

$$y(s',r) = r + \max_{a'} Q(s',a',\theta) = r + Q(s', \underset{a'}{\operatorname{argmax}} Q(s',a',\theta), \theta)$$

Action Selection vs Evaluation

Recall Bellman Equation derivation and untangle our target:

$$y(s',r) = r + \max_{a'} Q(s',a',\theta) = r + Q(s', \underset{a'}{\operatorname{argmax}} Q(s',a',\theta), \theta)$$

- * $a' = \underset{a'}{\operatorname{argmax}} Q(s', a', \theta)$ is action selection
- * $Q(s', a', \theta)$ is action evaluation

Action Selection vs Evaluation

Recall Bellman Equation derivation and untangle our target:

$$y(s',r) = r + \max_{a'} Q(s',a',\theta) = r + Q(s', \underset{a'}{\operatorname{argmax}} Q(s',a',\theta), \theta)$$

- * $a' = \underset{a'}{\operatorname{argmax}} Q(s', a', \theta)$ is action selection
- * $Q(s', a', \theta)$ is action evaluation

General idea:

Use different approximations for evaluation and for selection to avoid *max*.

Two Q-learnings

Basic way to do this:

run two Q-learning algorithms with two approximations of Q^{π^*} : $Q_1(s,a,\theta_1)$ and $Q_2(s,a,\theta_2)$.

Two Q-learnings

Basic way to do this:

run two Q-learning algorithms with two approximations of Q^{π^*} : $Q_1(s,a,\theta_1)$ and $Q_2(s,a,\theta_2)$.

Targets for Q-learnings:

$$y_1 = r + Q_2(s', \mathop{argmax}_{a'} Q_1(s', a', \theta_1), \theta_2)$$
 $y_2 = r + Q_1(s', \mathop{argmax}_{a'} Q_2(s', a', \theta_2), \theta_1)$

Double DQN (2015)

Deep Reinforcement Learning with Double Q-learning (2015)

- more convenient way to do this:

Use target network as one of two approximations.

⁵how many backwards?

Double DQN (2015)

Deep Reinforcement Learning with Double Q-learning (2015)

- more convenient way to do this:

Use target network as one of two approximations.

$$y = r + Q^{\mathsf{target}}(s', \underset{a'}{\mathsf{argmax}} \ Q(s', a', \theta), \theta^-)$$

⁵how many backwards?

Double DQN (2015)

Deep Reinforcement Learning with Double Q-learning (2015)

- more convenient way to do this:

Use target network as one of two approximations.

$$y = r + Q^{\mathsf{target}}(s', \underset{a'}{\mathsf{argmax}} \ Q(s', a', \theta), \theta^-)$$

- * Keep ignoring dependence of y from θ .
- * Requires three forward passes on each step⁵.

⁵how many backwards?

Comparing DQNs

Table 1: DQN targets

DQN	target <i>y</i>
Classic Deep Q-learning	$r + Q(s', argmax\ Q(s', a', \theta), \theta)$
With target-network	$r + Q^{target}(s', \underset{a'}{argmax} Q^{target}(s', a', \theta^-), \theta^-)$
Double Deep Q-learning	$r + Q^{target}(s', \underset{a'}{\operatorname{argmax}} Q(s', a', \theta), \theta^-)$

Dueling DQN: Motivation

Note:

- * In most states our choice of action does not affect future value.
- * After finding Q(s, a) Q-learning still gains no information about Q(s, a') for $a' \neq a$.

Dueling DQN: Motivation

Note:

- * In most states our choice of action does not affect future value.
- * After finding Q(s, a) Q-learning still gains no information about Q(s, a') for $a' \neq a$.

 \Rightarrow after trying an action in a bad state, Q-learning wants to try all other actions in this state.

Dueling DQN: Motivation

Note:

- * In most states our choice of action does not affect future value.
- * After finding Q(s, a) Q-learning still gains no information about Q(s, a') for $a' \neq a$.

 \Rightarrow after trying an action in a bad state, Q-learning wants to try all other actions in this state.

Learning Q(s, a) should lead to learning V(s)

Advantage function

Define advantage function:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Advantage function

Define advantage function:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Note:

$$\mathbb{E}_{a \sim \pi} A^{\pi}(s, a) = \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - \frac{V^{\pi}(s)}{s} =$$

$$= \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) = 0$$

Advantage function

Define advantage function:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Note:

$$\begin{split} \mathbb{E}_{a \sim \pi} A^{\pi}(s, a) &= \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - V^{\pi}(s) = \\ &= \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) - \mathbb{E}_{a \sim \pi} Q^{\pi}(s, a) = 0 \end{split}$$

Rewrite *Q*-function in terms of value of state:

$$Q^{\pi}(s,a) = V^{\pi}(s) + A^{\pi}(s,a)$$

Dueling DQN (2016)

Dueling Network Architectures for Deep Reinforcement Learning (2016)

Dueling Q-network architecture

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

For deterministic $\pi(s) = \mathop{argmax}\limits_{a} Q(s,a)$ this is equivalent to

$$\max_{a} A(s,a) = 0$$

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

For deterministic $\pi(s) = \mathop{argmax}\limits_{a} Q(s,a)$ this is equivalent to

$$\max_{a} A(s,a) = 0$$

Proposition:

$$Q(s, a) = V(s) + A(s, a) - \max_{a} A(s, a)$$

Problem: A(s,a) is not arbitrary. Recall $\mathbb{E}_{a \sim \pi} A^{\pi}(s,a) = 0$.

For deterministic $\pi(s) = \mathop{argmax}\limits_{a} Q(s,a)$ this is equivalent to

$$\max_{a} A(s,a) = 0$$

Proposition:

$$Q(s,a) = V(s) + A(s,a) - \max_{a} A(s,a)$$

$$Q(s, a) = V(s) + A(s, a) - \underset{a}{mean} A(s, a)$$

suddenly worked better.

Results

- ✓ Learning Q(s, a) leads to correcting V(s).
 - * Only network architecture is changed.
- * Double DQN still works for dueling architecture.

Motivation

In standard DQN we sample batch of transitions from replay memory uniformly.

- \times Some transitions are more important than others
- × Replay memory is full of almost useless transitions

Motivation

In standard DQN we sample batch of transitions from replay memory uniformly.

- \times Some transitions are more important than others
- imes Replay memory is full of almost useless transitions

 $\delta = |y(s', r, done) - Q(s, a)|$ is a good proxy of transition importance

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found $\alpha \approx$ 0.6 is a good universal value.

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found $\alpha \approx$ 0.6 is a good universal value.

Problems:

imes On each step this probability changes for all the replay memory 6

⁶which capacity is on the order of 1M transitions

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found $\alpha \approx$ 0.6 is a good universal value.

Problems:

- × On each step this probability changes for all the replay memory ⁶
 - \approx on each step update δ only for the sampled batch used for learning

⁶which capacity is on the order of 1M transitions

Prioritized Experience Replay (2015):

$$p(\mathcal{T}) \propto \delta(\mathcal{T})^{\alpha}$$

Authors found $\alpha \approx$ 0.6 is a good universal value.

Problems:

- imes On each step this probability changes for all the replay memory 6 \approx on each step update δ only for the sampled batch used for learning
- × Introduces bias (transitions are now sampled from hell knows what distribution).

⁶which capacity is on the order of 1M transitions

Background: Importance Sampling

For arbitrary distribution q(x):

$$\mathbb{E}_{p(x)}f(x) = \int p(x)f(x)dx = \int \frac{q(x)}{q(x)}p(x)f(x)dx =$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx = \mathbb{E}_{q(x)}\frac{p(x)}{q(x)}f(x)$$

Background: Importance Sampling

For arbitrary distribution q(x):

$$\mathbb{E}_{p(x)}f(x) = \int p(x)f(x)dx = \int \frac{q(x)}{q(x)}p(x)f(x)dx =$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx = \mathbb{E}_{q(x)}\frac{p(x)}{q(x)}f(x)$$

That's exactly what we want: to substitute expectation of loss over uniform sampling from experience replay to expectation over our own prioritized distribution!

Background: Importance Sampling

For arbitrary distribution q(x):

$$\mathbb{E}_{p(x)}f(x) = \int p(x)f(x)dx = \int \frac{q(x)}{q(x)}p(x)f(x)dx =$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx = \mathbb{E}_{q(x)}\frac{p(x)}{q(x)}f(x)$$

That's exactly what we want: to substitute expectation of loss (f(x)) over uniform sampling from experience replay (p(x)) to expectation over our own prioritized distribution (q(x))!

Applying Importance Sampling

If N is replay memory capacity:

$$L = \mathbb{E}_{\mathcal{T} \sim uniform}(y - Q(s, a))^2 = \mathbb{E}_{\mathcal{T} \sim prioritized} \frac{1}{Np(\mathcal{T})} (y - Q(s, a))^2$$

IS just adds weights to our batch:

$$w_i = \frac{1}{Np(\mathcal{T}_i)}$$

Annealing weights

Problem: at the beginning these weights might not be that relevant, yet slowing down learning.

Annealing weights

Problem: at the beginning these weights might not be that relevant, yet slowing down learning.

Let's smooth them at the beginning of learning:

$$L = \mathbb{E}_{\mathcal{T} \sim prioritized} \left(\frac{1}{\mathsf{Np}(\mathcal{T})} \right)^{\beta} (y - Q(s, a))^2,$$

where β changes from 0.4 to 1 linearly during first 100 000 frames.

Hints

* Weights significantly vary scale of loss function. Constant learning rate might be inappropriate.

 $Hint:^{7}$ normalize weights by dividing on max w_{i} .

 $^{^{7}\}mathrm{max}$ taken over all replay memory. Yet in some implementations it is taken over current batch

Hints

* Weights significantly vary scale of loss function. Constant learning rate might be inappropriate.

 $Hint:^7$ normalize weights by dividing on $\max_i w_i$.

* $min(1, |\delta|)$ is used instead of $|\delta|$ for stabilization purposes.

 $^{^{7}\}mathrm{max}$ taken over all replay memory. Yet in some implementations it is taken over current batch

Hints

* Weights significantly vary scale of loss function. Constant learning rate might be inappropriate.

 $Hint:^7$ normalize weights by dividing on $\max_i w_i$.

- * $\min(1, |\delta|)$ is used instead of $|\delta|$ for stabilization purposes.
- * new transitions are stored with maximum priority.

 $^{^{7}\}mathrm{max}$ taken over all replay memory. Yet in some implementations it is taken over current batch

Noisy networks for exploration (2017)

Noisy Nets (2017)

Problem: ε -greedy exploration is *state-independent*.

Noisy Nets (2017)

Problem: ε -greedy exploration is *state-independent*.

Add parametric noise to the weights of Q-network

Noisy Nets (2017)

Problem: ε -greedy exploration is *state-independent*.

Add parametric noise to the weights of Q-network

Noisy Nets for Exploration (2017):

$$w_i = \mu_i + \sigma_i * \varepsilon_i, \quad \varepsilon \sim \mathcal{N}(0, 1)$$

- * μ_i, σ_i are both learnable parameters.
- * all weights are independent random variables
- * use policy $\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a, \mu, \sigma, \varepsilon)$

Optimized Loss

Formally, our loss⁸ is now:

$$\mathbb{E}_{\varepsilon}\mathbb{E}_{\mathcal{T}}(Q(s, a, \theta, \varepsilon) - y(\mathcal{T}))^2$$

 $^{^8\}mbox{Noisy}$ Net is not a bayesian NN as it does not model probability; loss minimization is also not an upper bound optimization

Optimized Loss

Formally, our loss⁸ is now:

$$\mathbb{E}_{\varepsilon}\mathbb{E}_{\mathcal{T}}(Q(s, a, \theta, \varepsilon) - y(\mathcal{T}))^2$$

Problem: *y* also depends on stochastic *Q*-function.

 $^{^8\}mbox{Noisy}$ Net is not a bayesian NN as it does not model probability; loss minimization is also not an upper bound optimization

Optimized Loss

Formally, our loss⁸ is now:

$$\mathbb{E}_{\varepsilon}\mathbb{E}_{\mathcal{T}}(Q(s, a, \theta, \varepsilon) - y(\mathcal{T}))^2$$

Problem: *y* also depends on stochastic *Q*-function.

* use different noise samples for it:

$$y = r + Q(s', \underset{a'}{\operatorname{argmax}} Q(s', a', \varepsilon''), \varepsilon')$$

 $^{^{8}}$ Noisy Net is not a bayesian NN as it does not model probability; loss minimization is also not an upper bound optimization

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)
- N more noises for bias ⁹

 $^{^{9}}$ authors also scale them with f

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)
- N more noises for bias ⁹
- \checkmark just M + 2N noise samples are needed.

 $^{^{9}}$ authors also scale them with f

Problem: noise generation turns to be a bottleneck in terms of wall-clock time.

- MN + N samples required for linear layer mapping M features to N.

- generate M noises ε_m and N noises ε_n
- consider weight noise $\varepsilon_{mn} = f(\varepsilon_m)f(\varepsilon_n)$, where f is scaling function (signed square root)
- N more noises for bias 9
- ✓ just M + 2N noise samples are needed.
 - * for whole batch!10

 $^{^{9}}$ authors also scale them with f

¹⁰is this theoretically coherent?

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.

¹¹why?

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process

¹¹why?

 $^{^{12}}$ on practice, behaves very differently from game to game

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process
 - * yet $w_i = \mu_i$ can be used for exploitation purposes

 $^{^{11}}$ why?

 $^{^{12}}$ on practice, behaves very differently from game to game

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process
 - * yet $w_i = \mu_i$ can be used for exploitation purposes
- √ almost random behavior at the beginning

¹¹why?

 $^{^{12}}$ on practice, behaves very differently from game to game

- √ No hyperparameters
 - * Except where to put noise in the network... Convolution layers better leave deterministic¹¹.
- \checkmark noise magnitude σ will (hopefully 12) vanish state-dependently through the learning process
 - * yet $w_i = \mu_i$ can be used for exploitation purposes
- √ almost random behavior at the beginning
 - * yet ε -greedy strategy may also be used

¹¹why?

¹²on practice, behaves very differently from game to game

Categorical DQN (2017)

Motivation

Consider a state where you get $1000\ \text{or}\ -1000\ \text{with probabilities}\ 0.5.$

Motivation

Consider a state where you get 1000 or -1000 with probabilities 0.5. Q-network would say value of state is 0.

Motivation

Consider a state where you get 1000 or -1000 with probabilities 0.5. Q-network would say value of state is 0. But you never really get 0.

Motivation

Consider a state where you get 1000 or -1000 with probabilities 0.5. Q-network would say value of state is 0. But you never really get 0.

Learn a distribution over future reward instead of it's expectation.

Value Distribution

Recall

$$Q^{\pi}(s,a) = \mathbb{E}\sum_{t} r(s_{t}) \mid s,a$$

Value Distribution

Recall

$$Q^{\pi}(s,a) = \mathbb{E}\sum_{t} r(s_{t}) \mid s,a$$

A Distributional Perspective on Reinforcement Learning (2017):

For fixed policy π let's define value distribution:

Value distribution

Let's define value distribution as distribution of

$$Z^{\pi}(s,a) = \sum_{t} r(s_t) \mid s,a$$

Value Distribution

Recall

$$Q^{\pi}(s,a) = \mathbb{E}\sum_{t} r(s_t) \mid s,a$$

A Distributional Perspective on Reinforcement Learning (2017):

For fixed policy π let's define value distribution:

Value distribution

Let's define value distribution as distribution of

$$Z^{\pi}(s,a) = \sum_{t} r(s_t) \mid s,a$$

! It's a random variable!

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi}(s',\pi(s'))$$

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi}(s',\pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s, a) \stackrel{\mathrm{D}}{=} r(s, a) + \gamma Z^{\pi}(s', \pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Question: will point iteration be a contraction mapping for some metric in the space of value distributions?

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s, a) \stackrel{\mathrm{D}}{=} r(s, a) + \gamma Z^{\pi}(s', \pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Question: will point iteration be a contraction mapping for some metric in the space of value distributions?

Value distribution satisfies a recursive distributional equation:

$$Z^{\pi}(s, a) \stackrel{\mathrm{D}}{=} r(s, a) + \gamma Z^{\pi}(s', \pi(s'))$$

Just equivalence of c.d.f. of left and right part :}

Question: will point iteration be a contraction mapping for some metric in the space of value distributions?

$$\checkmark$$
 yes, for $d(Z_1, Z_2) = \sup_{s,a} \mathcal{W}(Z_1(s, a), Z_2(s, a))$, where \mathcal{W} is

Wasserstein distance between two random variables.

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s',\pi^*(s'))$$

Analogically:
$$\pi^*(s) = \max_{a} \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E} Z^{\pi^*}(s',a'))$$

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E} Z^{\pi^*}(s',a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

¹³and why are we asking this again?

Analogically: $\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E}Z^{\pi^*}(s',a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

 \times no, it will not.

¹³and why are we asking this again?

Analogically:
$$\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$$

Distributional Bellman equation

$$Z^{\pi^*}(s, a) \stackrel{\text{D}}{=} r(s, a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E} Z^{\pi^*}(s', a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

- \times no, it will not.
- imes there may be no fixed point at all

¹³and why are we asking this again?

Analogically: $\pi^*(s) = \max_a \mathbb{E} Z^{\pi^*}(s, a)$

Distributional Bellman equation

$$Z^{\pi^*}(s,a) \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z^{\pi^*}(s', \max_{a'} \mathbb{E}Z^{\pi^*}(s',a'))$$

Question: will point iteration be a contraction mapping for some metric in the space of value distributions? 13

- \times no, it will not.
- imes there may be no fixed point at all
- x and existence of one doesn't guarantee convergence to it

¹³and why are we asking this again?

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left[s', \max_{a'} \mathbb{E}Z_t(s', a')\right]\right)$$

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left[s', \max_{a'} \mathbb{E}Z_t(s', a')\right]\right)$$

Problems:

? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left[s', \max_{a'} \mathbb{E}Z_t(s', a')\right]\right)$$

Problems:

? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?

 \checkmark use some distribution family as approximation: $p(Z_t(s,a)) pprox Z_{ heta}$

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left[s', \max_{a'} \mathbb{E}Z_t(s', a')\right]\right)$$

Problems:

? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?

 \checkmark use some distribution family as approximation: $p(Z_t(s,a)) pprox Z_{ heta}$

? we have only samples of s' and r(s, a)

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left[s', \max_{a'} \mathbb{E}Z_t(s', a')\right]\right)$$

Problems:

- ? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?
 - \checkmark use some distribution family as approximation: $p(Z_t(s,a)) pprox Z_{ heta}$
- ? we have only samples of s' and r(s, a)
 - * in DQN case we optimized $L=\mathbb{E}_{\mathcal{T}}(y-Q_{ heta})^2$

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left[s', \max_{a'} \mathbb{E}Z_t(s', a')\right]\right)$$

Problems:

- ? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?
 - \checkmark use some distribution family as approximation: $p(Z_t(s,a)) pprox Z_{ heta}$
- ? we have only samples of s' and r(s, a)
 - * in DQN case we optimized $L = \mathbb{E}_{\mathcal{T}}(y-Q_{\theta})^2$
 - \checkmark let's optimize $L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta})$, where \mathcal{D} is some divergence

Let's do point iteration anyway! Our wish:

$$p(Z_{t+1}(s, a)) \leftarrow p\left(r(s, a) + \gamma Z_t\left[s', \max_{a'} \mathbb{E}Z_t(s', a')\right]\right)$$

Problems:

- ? $p(Z_t)$ is some distribution on \mathbb{R} . How do we represent it?
 - \checkmark use some distribution family as approximation: $p(Z_t(s,a)) pprox Z_{ heta}$
- ? we have only samples of s' and r(s, a)
 - * in DQN case we optimized $L = \mathbb{E}_{\mathcal{T}}(y-Q_{\theta})^2$
 - ✓ let's optimize $L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta})$, where \mathcal{D} is some divergence

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where
$$y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a)).$$

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a))$.

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a)).$

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 \Rightarrow for given $p(Z_t(s,a))$ we can get $p(y \mid s')$

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a)$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a))$.

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 \Rightarrow for given $p(Z_t(s,a))$ we can get $p(y \mid s')$

Problem: and what?

 $Z_{t+1} \stackrel{\mathrm{D}}{=} r(s,a) + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s,a))$ is a convolution involving MDP transition probability $p(s' \mid s,a)$:

$$p(Z_{t+1}) = \sum_{s'} p(y \mid s') p(s' \mid s, a) = \mathbb{E}_{\mathcal{T}} p(y \mid s')$$

where $y(s') = r(s') + \gamma Z_t(s', \max_a \mathbb{E} Z_t(s, a))$.

Note: for fixed $Z_t(s, a)$ and given s' function y(s') is deterministic!

 \Rightarrow for given $p(Z_t(s,a))$ we can get $p(y \mid s')$

Problem: and what?

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{\theta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{\theta}) + C$$

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

* we are free to choose $\mathcal{D}!$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{ heta}) = -\int p(Z_{t+1}) \log Z_{ heta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{ heta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{ heta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{ heta}) + C$$

√ this can be evaluated through Monte-Carlo!

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{\theta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{\theta}) + C$$

- √ this can be evaluated through Monte-Carlo!
- imes trick doesn't work for other divergences!

Our loss is
$$L = \mathcal{D}(p(Z_{t+1}) \parallel Z_{\theta}) = \mathcal{D}(\mathbb{E}_{\mathcal{T}}p(y \mid s') \parallel Z_{\theta}).$$

$$\mathsf{KL}(p(Z_{t+1}) \parallel Z_{\theta}) = -\int p(Z_{t+1}) \log Z_{\theta} + C = -\int \mathbb{E}_{\mathcal{T}} p(y \mid s') \log Z_{\theta} + C =$$

$$= -\mathbb{E}_{\mathcal{T}} \int p(y \mid s') \log Z_{\theta} + C = \mathbb{E}_{\mathcal{T}} \mathsf{KL}(p(y \mid s') \parallel Z_{\theta}) + C$$

- ✓ this can be evaluated through Monte-Carlo!
- × trick doesn't work for other divergences!
- * KL requires Z_{t+1} and Z_{θ} share domain.

Options:

- Gaussian mixture
- Discrete

Options:

- Gaussian mixture
- Discrete ✓
 - * KL-divergence of two discrete distributions is a simple cross-entropy

Options:

- Gaussian mixture
- Discrete ✓
 - * KL-divergence of two discrete distributions is a simple cross-entropy

Let's $\mathcal P$ be a family of categorical distribution on the grid from V_{\min} to V_{\max} with N atoms (outcomes).

Options:

- Gaussian mixture
- Discrete ✓
 - * KL-divergence of two discrete distributions is a simple cross-entropy

Let's \mathcal{P} be a family of categorical distribution on the grid from V_{\min} to V_{\max} with N atoms (outcomes).

Parametrization:

For each action our neural network Z(s,a) outputs ${\it N}$ numbers, summing into 1

Calculating target

Suppose you have transition (s, a, r, s', done), $Z(s, a) \in \mathcal{P}$. Then:

$$y(s') = r + \gamma Z(s', \max_{a'} \mathbb{E}Z(s', a'))$$

Calculating target

Suppose you have transition (s, a, r, s', done), $Z(s,a) \in \mathcal{P}$. Then:

$$y(s') = r + \gamma Z(s', \max_{a'} \mathbb{E}Z(s', a')) \in \mathcal{P}$$
?

Calculating target

Suppose you have transition (s, a, r, s', done), $Z(s, a) \in \mathcal{P}$. Then:

$$y(s') = Pr\left[r + \gamma Z(s', \max_{a'} \mathbb{E}Z(s', a'))\right] \in \mathcal{P}$$

How it looks like

Failed to insert video into beamer ;o)

Rainbow DQN (2018)

Blend them all!

Multistep DQN: Motivation

Recall our target in classic DQN:

$$y = r + \gamma \max_{a'} Q(s', a')$$

If we have nonzero reward at the end of M-step game, we need at least M iterations of Q-learning to «propagate» this reward to all visited states.

Multistep DQN: Motivation

Recall our target in classic DQN:

$$y = r + \gamma \max_{a'} Q(s', a')$$

If we have nonzero reward at the end of M-step game, we need at least M iterations of Q-learning to «propagate» this reward to all visited states.

Look more than one step ahead!

• work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$

- work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$
- transition reward $R = r + \gamma r' + \gamma^2 r'' + \cdots + \gamma^{M-1} r^{M-1}$

- work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$
- transition reward $R = r + \gamma r' + \gamma^2 r'' + \cdots + \gamma^{M-1} r^{M-1}$
- use new target:

$$y = R + \gamma^{M} \max_{a^{(M)}} Q(s^{(M)}, a^{(M)})$$

- work with transitions $(s, a, r, r', r'', \dots, r^{(M-1)}, s^{(M)}, done)$
- transition reward $R = r + \gamma r' + \gamma^2 r'' + \cdots + \gamma^{M-1} r^{M-1}$
- use new target:

$$y = R + \gamma^{M} \max_{a^{(M)}} Q(s^{(M)}, a^{(M)})$$

 \times the further we look the worser y approximates $Q^{\pi^*}(s,a)$ \Rightarrow number of steps should be chosen carefully.

Multistep Categorical DQN

Recall categorical DQN target:

$$y = \Pr \left[r + \gamma Z(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z(s', a')) \right]$$

Multistep Categorical DQN

Recall categorical DQN target:

$$y = \Pr \left[r + \gamma Z(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z(s', a')) \right]$$

It can also be made multi-step:

$$y = \Pr\left[R + \gamma^{M}Z(s^{(M)}, \underset{a^{(M)}}{\operatorname{argmax}} \mathbb{E}Z(s^{(M)}, a^{(M)}))\right]$$

Multistep Categorical DQN

Recall categorical DQN target:

$$y = \Pr \left[r + \gamma Z(s', \underset{a'}{\operatorname{argmax}} \mathbb{E} Z(s', a')) \right]$$

It can also be made multi-step:

$$y = \text{Pr}\left[R + \gamma^{M}Z(s^{(M)}, \underset{a^{(M)}}{\operatorname{argmax}} \mathbb{E}Z(s^{(M)}, a^{(M)}))\right]$$

Loss stays the same:

$$L = \mathsf{KL}(p(y) \parallel p(Z))$$

Dueling Categorical DQN

Recall dueling DQN:

$$Q(s,a) = V(s) + A(s,a) - \mathop{\mathit{mean}}_a A(s,a)$$

Dueling Categorical DQN

Recall dueling DQN:

$$Q(s,a) = V(s) + A(s,a) - \underset{a}{mean} A(s,a)$$

Let's make our Z(s,a) (modeling categorical distribution with N atoms) in dueling way:

$$Z(s,a) = V_N(s) + A_N(s,a) - \mathop{mean}_a A_N(s,a)$$

where $V_N(s)$ and $A_N(s,a)$ are categorical N-atomed distributions.

Dueling Categorical DQN

Recall dueling DQN:

$$Q(s, a) = V(s) + A(s, a) - \underset{a}{mean} A(s, a)$$

Let's make our Z(s,a) (modeling categorical distribution with N atoms) in dueling way:

$$Z(s,a) = softmax(V_N(s) + A_N(s,a) - mean_a A_N(s,a))$$

where $V_N(s)$ and $A_N(s,a)$ are arbitrary N numbers¹⁴.

¹⁴why couldn't we only add softmax?

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

• Double: use target network to evaluate

$$y = R + \gamma^N Z^{\text{target}}(s^{(N)}, \underset{a^{(N)}}{\operatorname{argmax}} Z(s^{(N)}, a^{(N)}))$$

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

• Double: use target network to evaluate

$$y = R + \gamma^N Z^{\text{target}}(s^{(N)}, \underset{a^{(N)}}{\operatorname{argmax}} Z(s^{(N)}, a^{(N)}))$$

• Noisy: add noise to all fully connected layers

Rainbow: Combining Improvements in Deep Reinforcement Learning (2018):

Dueling + Multistep + Categorical + DQN +

• Double: use target network to evaluate

$$y = R + \gamma^N Z^{\text{target}}(s^{(N)}, \underset{a^{(N)}}{\operatorname{argmax}} Z(s^{(N)}, a^{(N)}))$$

- Noisy: add noise to all fully connected layers
- Prioritized Replay: just use it15

¹⁵guess proxy of transition priority

Do we really need all this?

Rainbow: resume

* all improvements are important as they address different problems

Rainbow: resume

* all improvements are important as they address different problems \times a lot of hyperparameters

Rainbow: resume

- * all improvements are important as they address different problems
- $\, imes\,$ a lot of hyperparameters
- ? Allegedly 10 hours for 7M frames on single GPU
 - :(I can't reproduce 16

¹⁶10 hours for 3M. Noise generation seems to be a problem!

NEXT: see pt.2 for Policy Gradient algorithms