#### TRinker's R Blog

Experiments & Experiences in R

#### Skip to content

- Home
- About
- My R Packages
  - <u>qdap</u>
  - qdapRegex
  - qdapTools
  - reports
  - <u>pacman</u>
  - <u>regexr</u>

← qdap 1.3.1 Release: Demoing Dispersion Plots, Sentiment Analysis, Easy Hash Lookups, Boolean Searches and More...
Handling @S3method's Death in roxygen2 Version 4.0.0 →

# **Shape File Selfies in ggplot2**

Posted on April 12, 2014 by tylerrinker

In this post you will learn how to:

- 1. Create your own quasi-shape file
- 2. Plot your homemade quasi-shape file in ggplot2
- 3. Add an external svg/ps graphic to a plot
- 4. Change a grid grob's color and alpha

## **Background** (See <u>just code</u> if you don't care much about the process)

I started my journey wanting to replicate a graphic called a *space manikin* by <u>McNeil (2005)</u> and fill areas in that graphic like a choropleth. I won't share the image from McNeil's book as it's his intellectual property but know that the graphic is from a gesturing book that divides the body up into zones (p. 275). To get a sense of what the manikin looks like here is the ggplot2 version of it:

<sup>\*</sup>Note get simple .md version here



Figure 1: ggplot2 Version of McNeil's (2005) Space Manikin

While this is a map of areas of a body you can see where this could be extended to any number of spatial tasks such as mapping the layout of a room.

# 1. Creating a Quasi-Shape File

So I figured "zones" that's about like states on a map. I have toyed with <u>choropleth maps</u> of the US in the past and figured I'd generalize this learning. The difference is I'd have to make the shape file myself as the <u>maps</u> package doesn't seem to have McNeil's space manikin.

Let's look at what ggplot2 needs from the maps package:

```
library(maps); library(ggplot2)
head(map data("state"))
              lat group order region subregion
##
       long
## 1 -87.46 30.39
                                            <NA>
                      1
                            1 alabama
## 2 -87.48 30.37
                            2 alabama
                                            <NA>
## 3 -87.53 30.37
                      1
                            3 alabama
                                            <NA>
## 4 -87.53 30.33
                                            <NA>
                      1
                            4 alabama
## 5 -87.57 30.33
                                            <NA>
                      1
                            5 alabama
## 6 -87.59 30.33
                            6 alabama
                                            <NA>
```

Hmm coordinates, names of regions, and order to connect the coordinates. I figured I can handle that. I don't 100% know what a shape file is, mostly that it's a file that makes shapes. What we're making may or may not technically be a shape file but know we're going to map shapes in <code>ggplot2</code> (I use the quasi to avoid the wrath of those who do know precisely what a shape file is).

I needed to make the zones around an image of a person so I first grabbed a free png silhouette from: <a href="http://www.flaticon.com/free-icon/standing-frontal-man-silhouette-10633">http://www.flaticon.com/free-icon/standing-frontal-man-silhouette-10633</a>. I then knew I'd need to add some lines and figure out the coordinates

of the outlines of each cell. So I read the raster image into R, plotted in ggplot2 and added lots of grid lines for good measure. Here's what I wound up with:

plot of chunk unnamed-chunk-2

Figure 2: Silhouette from ggplot2 With Grid Lines

### 1b. Dirty Deeds Done Cheap

I needed to get reference lines on the plot so I could begin recording coordinates. Likely there's a better process but this is how I approached it and it worked. I exported the ggplot in <a href="Figure 2">Figure 2</a> into (GASP) Microsoft Word (I may have just lost a few die hard command line folks). I added lines there and and figured out the coordinates of the lines. It looked something like this:



| Х    | Υ   |  |
|------|-----|--|
| 1    | 1   |  |
| .87  | .73 |  |
| .75  | .65 |  |
| .67  | .6  |  |
| .525 | .4  |  |
| .475 | .35 |  |
| .28  | .27 |  |
| 0    | 0   |  |
|      |     |  |
|      |     |  |
|      |     |  |
|      |     |  |
|      |     |  |

Figure 3: Silhouette from ggplot2 with MS Word Augmented Border Lines

After that I began the tedious task of figuring out the corners of each of the shapes ("zones") in the space manikin. Using <u>Figure 3</u> and a list structure in R I mapped each of the corners, the approximate shape centers, and the order to plot the coordinates in for each shape. This is the code for corners:

```
library(qdap)
dat <- list(
    `01`=data.frame(x=c(.4, .4, .6, .6), y=c(.67, .525, .525, .67)),
    `02`=data.frame(x=c(.35, .4, .6, .65), y=c(.75, .67, .67, .75)),
    `03`=data.frame(x=c(.6, .65, .65, .6), y=c(.525, .475, .75, .67)),
    `04`=data.frame(x=c(.4, .35, .65, .6), y=c(.525, .475, .475, .525)),
    `05`=data.frame(x=c(.35, .35, .4, .4), y=c(.75, .475, .525, .67)),
    `06`=data.frame(x=c(.4, .4, .6, .6), y=c(.87, .75, .75, .87)),
    `07`=data.frame(x=c(.6, .6, .65, .65, .73, .73), y=c(.87, .75, .75, .67, .67, .87)),
    `08`=data.frame(x=c(.65, .65, .73, .73), y=c(.67, .525, .525, .67)),
    `09`=data.frame(x=c(.6, .6, .73, .73, .65, .65), y=c(.475, .28, .28, .525, .525, .475)),
    `10`=data.frame(x=c(.4, .4, .6, .6), y=c(.475, .28, .28, .475)),
    `11`=data.frame(x=c(.27, .27, .4, .4, .35, .35), y=c(.525, .28, .28, .475, .475, .525)),
    `12`=data.frame(x=c(.27, .27, .35, .35), y=c(.67, .525, .525, .67)),
    `13`=data.frame(x=c(.27, .27, .35, .35, .4, .4), y=c(.87, .67, .67, .75, .75, .87)),
    `14`=data.frame(x=c(.35, .35, .65, .65), y=c(1, .87, .87, 1)),
    `15`=data.frame(x=c(.65, .65, .73, .73, 1, 1), y=c(1, .87, .87, .75, .75, 1)),
    `16`=data.frame(x=c(.73, .73, 1, 1), y=c(.75, .475, .475, .75)),
    17=data.frame(x=c(.65, .65, 1, 1, .73, .73), y=c(.28, 0, 0, .475, .475, .28)),
    `18`=data.frame(x=c(.35, .35, .65, .65), y=c(.28, 0, 0, .28)),
    `19`=data.frame(x=c(0, 0, .35, .35, .27, .27), y=c(.475, 0, 0, .28, .28, .475)),
    `20`=data.frame(x=c(0, 0, .27, .27), y=c(.75, .475, .475, .75)),
    21 = data.frame(x=c(0, 0, .27, .27, .35, .35), y=c(1, .75, .75, .87, .87, 1))
dat <- lapply(dat, function(x) {</pre>
    x$order <- 1:nrow(x)
})
space.manikin.shape <- list_df2df(dat, "id")[, c(2, 3, 1, 4)]</pre>
And the code for the centers:
centers <- data.frame(</pre>
    id = unique(space.manikin.shape$id),
    center.x=c(.5, .5, .625, .5, .375, .5, .66, .69, .66, .5, .34, .31,
        .34, .5, .79, .815, .79, .5, .16, .135, .16),
    center.y=c(.597, .71, .5975, .5, .5975, .82, .81, .5975, .39, .3775, .39,
        .5975, .81, .935, .89, .6025, .19, .14, .19, .6025, .89)
)
```

There you have it folks your very own quasi-shape file. Celebrate the fruits of your labor by plotting that bad Oscar.

# 2. Plot Your Homemade Quasi-Shape File

```
ggplot(centers) + annotation_custom(img,0,1,0,1) +
   geom_map(aes(map_id = id), map = space.manikin.shape, colour="black", fill=NA) +
   theme_bw()+
   expand_limits(space.manikin.shape) +
   geom_text(data=centers, aes(center.x, center.y, label = id), color="grey60")
```

plot of chunk unnamed-chunk-5

Figure 4: Plotting the Quasi-Shape File and a Raster Image

Then I said I may want to tone down the color of the silhouette a bit so I can plot geoms atop without distraction. Here's that attempt.

```
img[["raster"]][img[["raster"]] == "#0E0F0FFF"] <- "#E7E7E7"

ggplot(centers) + annotation_custom(img,0,1,0,1) +
        geom_map(aes(map_id = id), map = space.manikin.shape, colour="black", fill=NA) +
        theme_bw()+
        expand_limits(space.manikin.shape) +
        geom_text(data=centers, aes(center.x, center.y, label = id), color="grey60")

plot of chunk unnamed-chunk-6</pre>
```

Figure 5: Altered Raster Image Color

## 3. Add an External svg/ps

I realized quickly a raster was messy. I read up a bit on them in the R Journal (click here). In the process of reading and fooling around with Picasa I turned my original silhouette (body.png) blue and couldn't fix him. I headed back to <a href="http://www.flaticon.com/free-icon/standing-frontal-man-silhouette">http://www.flaticon.com/free-icon/standing-frontal-man-silhouette</a> 10633 to download another. In this act I saw you could download a svg file of the silhouette. I thought maybe this will be less messier and easier to change colors. This led me to a google search and finding the grImport package after seeing this listserve post. And then I saw an article from Paul Murrell (2009) and figured I could turn the svg (I didn't realize what svg was until I opened it in Notepad++) into a ps file and read into R and convert to a flexible grid grob.

Probably there are numerous ways to convert an svg to a ps file but I chose a <u>cloud</u> <u>convert service</u>. After I read the file in with grImport per the Paul <u>Murrell (2009)</u> article. You're going to have to download the ps file <u>HERE</u> and get to your working directory.

```
browseURL("https://github.com/trinker/space manikin/raw/master/images/being.ps")
## Move that file from your downloads to your working directory.
## Sorry I don't know how to automate this.
library(grImport)
## Convert to xml
PostScriptTrace("being.ps")
## Read back in and convert to a grob
being_img <- pictureGrob(readPicture("being.ps.xml"))</pre>
## Plot it
ggplot(centers) + annotation custom(being img, 0, 1, 0, 1) +
    geom map(aes(map id = id), map = space.manikin.shape,
        colour="black", fill=NA) +
    theme bw()+
    expand limits(space.manikin.shape) +
    geom text(data=centers, aes(center.x, center.y,
        label = id), color="grey60")
```

plot of chunk unnamed-chunk-7

Figure 6: Quasi-Shape File with Grob Image Rather than Raster

# 4. Change a grid Grob's Color and Alpha

Now we have a flexible grob we can mess around with colors and alpha until our heart's content.

str is our friend to figure out where and how to mess with the grob (str(being\_img)). That leads me to the following changes to the image to adjust color and/or alpha (transparency).

plot of chunk unnamed-chunk-8

Figure 7: Quasi-Shape File with Grob Image Alpha = .2

## Let's Have Some Fun

Let's make it into a choropleth and a density plot. We'll make some fake fill values to fill with.

#### Figure 8: Quasi-Shape File as a Choropleth

```
set.seed(10)
centers[, "Frequency2"] <- sample(seq(10, 150, by=20, ), nrow(centers), TRUE)</pre>
centers2 <- centers[rep(1:nrow(centers), centers[, "Frequency2"]), ]</pre>
ggplot(centers2) +
        geom_map(aes(map_id = id), map = space.manikin.shape,
        colour="grey65", fill="white") +
    stat density2d(data = centers2,
        aes(x=center.x, y=center.y, alpha=..level..,
        fill=..level..), size=2, bins=12, geom="polygon") +
    scale fill gradient(low = "yellow", high = "red") +
    scale_alpha(range = c(0.00, 0.5), guide = FALSE) +
    theme bw()+
    expand_limits(space.manikin.shape) +
    geom_text(data=centers, aes(center.x, center.y,
        label = id), color="black") +
    annotation_custom(being_img,0,1,0,1) +
    geom density2d(data = centers2, aes(x=center.x,
        y=center.y), colour="black", bins=8, show guide=FALSE)
```

plot of chunk unnamed-chunk-10

Figure 9: Quasi-Shape File as a Density Plot

Good times were had by all.

Created using the reports (Rinker, 2013) package

Get the .Rmd file here

### References

- D. McNeil, (2005) Gesture & Thought.
- Paul Murrell, (2009) Importing Vector Graphics: The {grImport} Package for {R}. Journal of Statistical Software **30** (4) 1-37 <a href="http://www.jstatsoft.org/v30/i04/">http://www.jstatsoft.org/v30/i04/</a>
- Tyler Rinker, (2013) reports: Package to asssist in report writing. <u>http://github.com/trinker/reports</u>

<u>@tylerrinker</u> very nice; would love to try to integrate topojson for your example or this basketball court <a href="http://t.co/BRXyFfTbWr">http://t.co/BRXyFfTbWr</a>

– klr (@timelyportfolio) <u>April 12, 2014</u>

Advertisements



#### **Share this:**

- Twitter
- Facebook

.

#### Like this:

Like Loading...

#### Related



## **About tylerrinker**

Data Scientist, open-source developer , #rstats enthusiast, #dataviz geek, and #nlp buff  $\underline{\text{View all posts by tylerrinker}}$ 

This entry was posted in <u>discourse analysis</u>, <u>ggplot2</u>, <u>Uncategorized</u>, <u>visualization</u> and tagged <u>ggplot2 trinker</u>, <u>R</u>, <u>shape file</u>, <u>space manikin</u>, <u>spatial</u>. Bookmark the <u>permalink</u>. 

<u>← qdap 1.3.1 Release: Demoing Dispersion Plots</u>, <u>Sentiment Analysis</u>, <u>Easy Hash Lookups</u>, <u>Boolean Searches and More...</u>

Handling @S3method's Death in roxygen2 Version 4.0.0 →

### 1 Response to Shape File Selfies in ggplot2

1. Pingback: Shape File Selfies in ggplot2 ← Patient 2 Earn

### **Leave a Reply**

| Enter your comment here |
|-------------------------|
|-------------------------|

Fill in your details below or click an icon to log in:









Email (required) (Address never made public)

Name (required)

Website



You are commenting using your WordPress.com account. ( <u>Log Out</u> / <u>Change</u> )







You are commenting using your Twitter account. ( <u>Log Out</u> / <u>Change</u> )





You are commenting using your Facebook account. ( Log Out / Change )



### **Cancel**

Connecting to %s

- □ Notify me of new comments via email.
- Notify me of new posts via email.

Post Comment

• Search for: Search

#### Recent Posts

- ggplot2: How Geoms & Aesthetics ≈ Whipped Cream
- Math Notation for R Plot Titles: expression, bquote, & Greek Letters
- <u>Using R to Reason & Test Theory: A Case Study from the Field of Reading Education</u>
- Minimal, Explicit, Python Style Package Loading for R
- Easily Make Multi-tabbed .xlsx Files with openxlsx

#### Archives

- March 2018
- February 2018
- December 2016
- May 2016
- March 2016
- May 2015
- o April 2015
- February 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- December 2013
- November 2013
- September 2013
- August 2013
- July 2013
- o May 2013
- March 2013
- February 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012

### Categories

- analysis
- animation

- <u>annotate</u>
- benchmark
- <u>data</u>
- data generation
- discourse analysis
- factor
- games
- ggplot2
- grapheme
- <u>igraph</u>
- knitr
- <u>letter</u>
- package creation
- parallel
- paste
- o plot
- qdap
- 0 <u>r</u>
- <u>random</u>
- regular expression
- reports
- reshape
- slidify
- text
- <u>tidytext</u>
- <u>tidyverse</u>
- <u>trinker</u>
- <u>tylerrinker</u>
- <u>Uncategorized</u>
- visualization
- wakefield
- word cloud
- work flow

Advertisements

Fed up with companies selling your data?

### Tag Cloud

- o <u>#rstats</u>
- o <u>ability scores</u>
- o <u>animation</u>
- o <u>annotate</u>
- o <u>benchmark</u>
- <u>cran</u>
- data
- o data prep
- data science
- o data set
- o <u>dialogue</u>
- <u>discourse</u>
- discourse analysis
- o facet
- o <u>faceted</u>
- o <u>factor scores</u>
- o <u>formality</u>
- o game
- ggplot
- ggplot2
- graph
- o <u>igraph</u>
- o <u>IRT</u>
- o <u>item response theory</u>
- knitcitations
- knitr
- o <u>latex</u>
- o <u>long</u>
- o <u>long to wide</u>
- o <u>ltm</u>
- o microbenchmark
- o <u>multipaste</u>
- o multi paste

- o <u>mutipaste</u>
- <u>natural language processing</u>
- package
- o <u>pacman</u>
- paste
- o paste2
- o paste column
- o plot
- o <u>polarity</u>
- qdap
- <u>qdapRegex</u>
- quantitative discourse analysis
- 。<u>R</u>
- o random data
- o <u>rbenchmark</u>
- o <u>regex</u>
- o <u>reorder</u>
- reports
- o <u>reshape</u>
- o reshape 2
- o rinker
- o <u>rmarkdown</u>
- o <u>rmd</u>
- o <u>rnw</u>
- <u>rstudio</u>
- o safe indexing
- o sentence drawing
- <u>text</u>
- text analysis
- text mining
- o <u>tidyverse</u>
- <u>title</u>
- transcript
- trinker
- tyler rinker
- visualization
- o wide
- o wide to long
- wordcloud
- o word cloud
- o <u>workflow</u>
- o work flow

|   | C   |      |      |      | i |
|---|-----|------|------|------|---|
| • | Sea | Ircn | this | DIOG |   |

| Search for: | Search |
|-------------|--------|
|             |        |

### Blogroll

- AboutMe
- Bot Thoughts
- Data Science, Data Mining and Predictive Analytics
- o ggplot2
- My GitHub account
- psychometroscar
- r twotorials
- R-bloggers
- Talk Stats

## Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 674 other followers

Enter your email address

Follow

#### TRinker's R Blog

Create a free website or blog at WordPress.com.

Close and accept Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here: <u>Cookie Policy</u> %d bloggers like this:

ü