Mathematics III

Course Objective:

To round out the students' preparation for more sophisticated applications with an introduction to linear algebra, Fourier Series, Laplace Transforms, integral transformation theorems and linear programming.

- 1.Determinants and Matrices(11 hours)
 - a. Determinant and its properties
 - b. Solution of system of linear equations
 - c. Algebra of matrices
 - d.Complex matrices
 - e.Rank of matrices
 - f. System of linear equations
 - g. Vector spaces
 - h.Linear transformations
 - i. Eigen value and Eigen vectors
 - j.The Cayley-Hamilton theorem and its uses
 - k.Diagonalization of matrices and its applications
- 2. Line, Surface and Volume Integrals(12 hours)
 - a.Line integrals
 - b. Evaluation of line integrals
 - c.Line integrals independent of path
 - d. Surfaces and surface integrals
 - e.Green's theorem in the Plane and its applications
 - f.Stoke's theorem (without proof) and its applications
 - g. Volume integrals; Divergence theorem of Gauss (without proof) and its applications
- 3. Laplace Transform(8 hours)
 - a. Definitions and properties of Laplace Transform
 - b.Derivations of basic formulae of Laplace Transform
 - c.Inverse Laplace Transform: Definition and standard formulae of inverse Laplace Transform
 - d. Theorems on Laplace transform and its inverse
 - e.Convolution and related problems
 - f. Applications of Laplace Transform to ordinary differential equations
- 4. Fourier Series (5 hours)
 - a. Fourier Series
 - b. Periodic functions
 - c.Odd and even functions
 - d. Fourier series for arbitrary range
 - e. Half range Fourier series

- 5. Linear Programming (9 hours)
 - a.System of Linear Inequalities in two variables
 - b.Linear Programming in two dimensions: A Geometrical Approach
 - c.A Geometric introduction to the Simplex method
 - d. The Simplex method: Maximization with Problem constraints of the form "\u214"
 - e.The Dual: Maximization with Problem Constraints of the form ">"
 - f.Maximization and Minimization with mixed Constraints. The two-phase method(An alternative to the Big M Method)

References:

- 1.E. Kreszig, "Advance Engineering Mathematics", Willey, New York.
- 2.M.M Gutterman and Z.N.Nitecki, "Differential Equation, a First Course", 2nd Edition, saunders, New York.

Evaluation Scheme:

The questions will cover all the chapters of the syllabus. The evaluation scheme will be as indicated in the table below:

Chapters	Hours	Marks distribution*
1	11	20
2	12	20
3	8	15
4	5	10
5	9	15
Total	45	80

^{*}Note: There may be minor deviation in marks distribution.