Série 6

Dans ces exercices, on va classifier a isomorphisme pres les petits groupes finis.

Exercice 1. Montrer qu'a isomorphisme pres il n'existe qu'un seul groupe d'ordre 1,2, 3, 5, 7.

Exercice 2. On discute le cas des groupes d'ordre 4.

- 1. Montrer que le groupe $\mathbb{Z}/4\mathbb{Z}$ et le groupe produit $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ne sont pas isomorphes (regarder les ordres des elements.) On va montrer que ce sont les seuls.
- 2. Soit (G, .) un groupe d'ordre 4. Que dire de G si il possede un element d'ordre A.
- 3. Si ce n'est pas le cas, quels sont les ordres des elements de G? Montrer que $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercice 3. Soit G un groupe d'ordre 6. On va montrer qu'il n'existe a isomorphisme pres que deux groupes possibles.

- 1. Quels sont les ordres possibles des elements de G?
- 2. Que dire si G possede un element d'ordre 6? Dans la suite on suppose que G n'a pas d'element d'ordre 6.
- 3. On suppose que tous les elements non triviaux de G sont d'ordre 2; Montrer qu'alors

$$\forall g \in G, \ g^{-1} = g \text{ et que } \forall g, g' \in G, \ g.g' = g'.g.$$

Montrer que G contiendrait alors un groupe d'ordre 4 et que c'est impossible.

- 4. Ainsi G possede au moins un element d'ordre 3. On notera cet element r et $r^{\mathbb{Z}} = \{e_G, r, r^2\}$ le groupe qu'il engendre. Quel est l'ordre de r^2 ?
- 5. Soit $s \in G r^{\mathbb{Z}}$. Montrer que

$$G - r^{\mathbb{Z}} = \{s, s.r, s.r^2\}.$$

- 6. Montrer que $s^2 \in r^{\mathbb{Z}}$ et que necessairement s est d'ordre 2 (montrer que sinon s serait d'ordre 6).
- 7. Montrer que s.r et $s.r^2$ sont egalement d'ordre 2 et que

$$s.r.s = s.r.s^{-1} = r^{-1} = r^2.$$

- 8. Ecrire la table de multiplication de ce groupe. Ce groupe est le groupe dihedral d'ordre 6.
- 9. Ce groupe existe bien et est isomorphe au groupe des isometries d'un triangle equilateral centre a l'origine : trouver les isometries qui correspondent aux elements r et s.

Définition 1. Soit X un ensemble. Une distance est une application

$$d(\cdot, \cdot): \begin{matrix} X \times X & \mapsto & \mathbb{R}_{\geqslant 0} \\ (P, Q) & \mapsto & d(P, Q) \end{matrix}$$

qui verifie les proprietes suivantes

— Separation des points : pour tout $P, Q \in X$,

$$d(P,Q) = 0 \iff P = Q.$$

— Symetrie: pour tout $P, Q \in X$,

$$d(P,Q) = d(Q,P).$$

— Inegalite du triangle : pour tout $P, Q, R \in X$,

$$d(P,R) \leqslant d(P,Q) + d(Q,R).$$

Exercice 4. Montrer que les applications suivantes definissent des distances sur \mathbb{R}^2 . Pour chacune de ces distances, dessiner la boule unite centree a l'origine (on note $\mathbf{0} = (0,0)$)

$$B_d(\mathbf{0}, 1) := \{(x, y) \in \mathbb{R}^2, \ d(\mathbf{0}, (x, y)) \le 1\}.$$

$$d_0((x,y),(x',y')) = \delta_{x\neq x'} + \delta_{y\neq y'}, \text{ avec } \delta_{x\neq x'} = \begin{cases} 0 & \text{si } x = x' \\ 1 & \text{si } x \neq x' \end{cases}.$$

$$d_1((x,y),(x',y')) = |x - x'| + |y - y'|.$$

$$d_4((x,y),(x',y')) = (|x - x'|^4 + |y - y'|^4)^{1/4}.$$

$$d_{\infty}((x,y),(x',y')) = \max(|x - x'|,|y - y'|).$$

Pour la distance d_4 on pourra introduire la "norme"

$$\|\vec{u}\|_4 := (x^4 + y^4)^{1/4}$$

et montrer

$$\forall \vec{u}, \vec{v} \in \mathbb{R}^2, \ \|\vec{u} + \vec{v}\|_4 \leqslant \|\vec{u}\|_4 + \|\vec{v}\|_4.$$

Pour cela on pourra utiliser la propriete d'homogeneite (ie.

$$\forall \vec{u} \in \mathbb{R}^2, \ \lambda \in \mathbb{R}, \ \|\lambda \vec{u}\|_4 = |\lambda| \|\vec{u}\|_4$$