Supervised Learning: Linear Regression and Logistic Regression

Dr. Srijith P K

Computer Science and Engineering

IIT Hyderabad

Supervised learning

Supervised learning

Supervised Learning

Outline

- Supervised Learning
- Regression
- Classification

- Linear Regression
- Logistic Regression
- Poisson Regression

Supervised learning: Regression

Estimating Price of a house

Supervised learning: Regression

Supervised learning: Regression

Real valued targets (outputs)

Generalization performance

Goal is to learn a function which maps inputs to outputs so that it will predict well on future data points

Airquality data.

- Data set has various air quality parameters in New York city.
- These are the parameters in the data set:
- Daily temperature from May to August
- Solar radiation data
- Ozone data
- Wind data
- Goal: predict the temperature for a particular month in New York using solar radiation, ozone and wind data.

Airquality data

##		0zone	Solar.R	Wind	Temp	Month	Day
##	1	41	190	7.4	67	5	1
##	2	36	118	8.0	72	5	2
##	3	12	149	12.6	74	5	3
##	4	18	313	11.5	62	5	4
##	5	NA	NA	14.3	56	5	5
##	6	28	NA	14.9	66	5	6
##	7	23	299	8.6	65	5	7
##	8	19	99	13.8	59	5	8
##	9	8	19	20.1	61	5	9
##	10	NA	194	8.6	69	5	10

https://www.edvancer.in/step-step-guide-to-execute-linear-regression-r/

Airquality data

Linear regression

- Temp=w1.Solar.R +w2.Ozone + w3.Wind + error.
- Temperature of house depends on ozone, wind and solar radiations
- linear regression helps to discover relation between dependent and independent variables

Linear Regression

- Observations need not lie on a line
 - Observations are not generated by a linear line
 - Observations are noisy, due to measurement errors

Linear regression

Learn a function which maps
 input to output f: X -> Y

Regression Output is real and scalar, $y \in \mathbb{R}$

Consider a Linear function

Linear regression

Learn a function which maps
 input to output f: X -> Y

Regression Output is real and scalar, $y \in \mathbb{R}$

Consider a Linear function

1 dim input
$$X_i = [1, X_i]^T$$
 $w = [w_0, w_1]^T$
D dim input $X_i = [1, X_{i1}, ..., X_{iD}]^T$ $w = [w_0, w_1, ..., w_D]^T$

Linear Regression - Learning Parameters

 Learn the function which passes through as many points as possible:
 Minimize the Least Squares Error

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2} \sum_{i=1}^{N} (y_i - X_i^{\top} w)^2$$

$$\frac{1}{2} \|(y - X^{\top} w)\|^2$$

$$X_{i} = [1, X_{i1}, \dots, X_{iD}]^{T}$$
Design matrix
$$X = \begin{bmatrix} X_{1}, X_{2}, \dots X_{N} \\ \end{bmatrix} (D+1) \times N$$

Linear Regression - Learning Parameters

 Learn the function which passes through as many points as possible:
 Minimize the Least Squares Error

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
$$= \frac{1}{2} \sum_{i=1}^{N} (y_i - X_i^{\top} w)^2$$
$$\frac{1}{2} ||(y - X^{\top} w)||^2$$

$$\nabla E(w) = Xy - XX^{\top}w = 0$$

$$X_{i} = [1, X_{i1}, \dots, X_{iD}]^{T}$$
Design matrix
$$X = \begin{bmatrix} X_{1}, X_{2}, \dots X_{N} \end{bmatrix}$$

$$(D+1) \times N$$

$$w_{ML} = (XX^{\top})^{-1}Xy$$

Linear Regression - Learning Parameters

Learn the function which passes through as many points as possible
 : Minimize the least squares error using gradient descent

$$abla E(w) = Xy - XX^{ op}w = 0$$
 $Error_{(m,c)} = \frac{1}{N}\sum_{i=1}^{N}(y_i - (mx_i + c))^2$
 $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$
Gradient Search
Points and Line

Question

- write down three equations for the line y = mx + c to go through y = 7 at x = -1, y = 7 at x = 1 and y = 21 at x = 2. Find the least squares solution (c,m)?
- Implement In python least squares solution to linear regression
 - Analytical approach
 - Gradient descent approach

Question

• write down three equations for the line y = mx + c to go through y = 7 at x = -1, y = 7 at x = 1 and y = 21 at x = 2. Find the least squares solution (c,m)?

• Answer : (9,4)

Non Linear Regression - curve fitting

- Remember high school maths!
- Real-valued target variable t.
- Training set comprising N observations

- M is the order of the polynomial, y(x,w) is a nonlinear function of x, it is a linear function of the coefficients w.
- Functions, such as the polynomial, which are linear in the unknown parameters have important properties and are called linear models

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

 Coefficients will be determined by fitting the polynomial to the training data. This can be done by minimizing an error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

 Model selection (choosing M): higher order polynomial (M = 9), provide excellent fit to the training data but gives a very poor representation of the function

Model selection (choosing M): h Overfitting omial (M = 9), provide excellent fit to the training representation of the function

model that is too flexible with respect to the number of data

- Generalization performance: root mean square error on test data
- Weights coefficients for M=9 is extremely large!

$$E_{\text{RMS}} = \sqrt{2E(\mathbf{w}^*)/N}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$w_3^{\tilde{\star}}$			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

 Given model complexity, the over-fitting problem become less severe as the size of the data set increases.

Curve fitting - regularization

 Add a penalty term to the error function (1.2) in order to discourage the coefficients from reaching large values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Ridge regression : L2 norm

$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$$

Regularization constant

Curve fitting - regularization

Regularized Least Squares

- Parameter shrinkage, weight decay
- Ridge regression q=2 $\frac{\lambda}{2} \sum_{i=1}^{\infty} w_j^2$
- Lasso regression q=1, if λ is sufficiently large, some of the coefficients are driven to zero

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|$$

Elastic net regularization

$$rac{1}{n} \|Y - \operatorname{X} w\|_2^2 + \lambda_1 \sum_{j=1}^d |w_j| + \lambda_2 \sum_{j=1}^d |w_j|^2$$

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Ridge Regression

Regularized Least Squares

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}.$$

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix} \mathbf{N} \times \mathbf{M}$$

Show that the regularized least squares solution is

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

Stable and unique solution

Least Absolute Shrinkage and Selection Operator (LASSO)

Training

Probabilistic Interpretation: Least Squares = Maximum likelihood estimation

$$y_i \sim w \cdot x_i + N(0, \sigma^2) = N(w \cdot x_i, \sigma^2)$$

$$X_i^{\top}w$$
 Likelihood
$$y_i | x_i \sim N(X_i^{\top}w, \sigma^2)$$

$$L = \prod_i \exp{-\frac{1}{2\sigma^2}(X_i^{\top}w - y_i)^2} = \exp{-\frac{1}{2\sigma^2}\sum_i (X_i^{\top}w - y_i)^2}$$

$$\operatorname{argmax} L = \operatorname{argmin} E$$

Similarly Regularized least squares is same as maximum aposteriori
estimate assuming p(w) to be a Gaussian: argmax p(yi | w, xi) p(w)

Regularized least squares regression = Maximum Aposteriori Estimate

Ridge Regression

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Compute Maximum aposteriori (MAP) estimate
- Prior over parameters $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$
- Posterior
- MAP estimate

 $p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha).$

 $\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}.$

Unique Solution

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}. \qquad \lambda = \alpha/\beta.$$

Regularized Least Squares: Cross Validation

How to choose λ ? Use validation data!

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

TRAIN VALIDATION 1

TEST

- 1. Training set is a set of examples used for learning a model parameters (e.g., weight vector w in linear regression
- 2. Validation set is a set of examples that cannot be used for learning the model parameter but can help tune model hyper-parameters e.g Regularization constant in LR. Validation helps control overfitting.
- 3. Test set is used to assess the performance of the final model and provide an estimation of the test error.

Example: Split the data randomly into 60% for training, 20% for validation and 20% for testing.

Note: Dont use the test set to further tune the parameters or revise the model.

Cross Validation

https://scikit-learn.org/stable/modules/cross_validation.html

Bias-Variance Decomposition

- If we had an unlimited supply of data, we could in principle find the regression function h(x) to any desired degree of accuracy, and y(x) = h(x). In practice only data set D containing finite number N of data points,
- Large number of data sets D each of size N, For any given data set D, we can run our learning algorithm and obtain a prediction function y(x;D).

$$\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x}) \}^2 \right]$$

$$= \underbrace{\{ \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \}^2}_{\text{(bias)}^2} + \underbrace{\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^2 \right]}_{\text{variance}}.$$

Bias Variance Decomposition

Supervised Learning: Classification

- Binary classification : $y = \{0,1\}$
- Multiclass classification : y = {1,2,...K}

p(y|x)?

Linear regression to Logistic regression

Y takes value 0 or 1

- A discriminative approach which directly models p(y|x)
- To predict an outcome variable that is categorical from one or more categorical or continuous predictor variables.
 - Let X be the data instance, and Y be the class label {0,1}:
 Model P(Y|X) directly using a Sigmoid function:

Logistic Sigmoid:
$$P(Y = 1 \mid \mathbf{X}) = \frac{1}{1 + e^{-wx}}$$

- To predict an outcome variable that is categorical from one or more categorical or continuous predictor variables.
 - Let X be the data instance, and Y be the class label: Model P(Y|X) directly using a Sigmoid function:

$$P(Y=1 \mid \mathbf{X}) = \frac{1}{1+e^{-\mathbf{w}\mathbf{x}}}$$

[HW] Find derivative of s(w) = p(y=1|X)!

- In logistic regression, we learn the conditional distribution P(y|x)
- Let $p_y(x;w)$ be our estimate of P(y|x), where w is a vector of adjustable parameters.
- Assume there are two classes, y = 0 and y = 1 and

$$p_1(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}\mathbf{x}}}$$
 $p_0(\mathbf{x}; \mathbf{w}) = 1 - \frac{1}{1 + e^{-\mathbf{w}\mathbf{x}}} = \frac{1}{1 + e^{\mathbf{w}\mathbf{x}}}$

• This is equivalent to

$$\log \frac{p_1(\mathbf{x}; \mathbf{w})}{p_0(\mathbf{x}; \mathbf{w})} = \mathbf{w}\mathbf{x}$$

- That is, the log odds of class I is a linear function of x
- Q: How to find **W**?

• Alternate representation of
$$p(y|x)$$
:
$$p_y(x;w) = \frac{1}{1 + e^{-ywx}}; y = \{-1,1\}$$

- Conditional data likelihood Probability of observed Y values in the training data, conditioned on corresponding X values.
- We choose parameters w that satisfy

$$\mathbf{w} = \arg\max_{\mathbf{w}} \prod_{l} P(y^{l} \mid \mathbf{x}^{l}, \mathbf{w})$$

- where
 - $\mathbf{w} = \langle w_0, w_1, ..., w_n \rangle$ is the vector of parameters to be estimated,
 - y denotes the observed value of Y in the I th training example, and
 - \mathbf{x}^{l} denotes the observed value of \mathbf{X} in the l th training example

• Equivalently, we can work with log of conditional likelihood:

$$\mathbf{w} = \arg\max_{\mathbf{w}} \sum_{l} \ln P(y^{l} \mid \mathbf{x}^{l}, \mathbf{w})$$

• Conditional data log likelihood, I(W), can be written as

$$l(\mathbf{w}) = \sum_{l} y^{l} \ln P(y^{l} = 1 | \mathbf{x}^{l}, \mathbf{w}) + (1 - y^{l}) \ln P(y^{l} = 0 | \mathbf{x}^{l}, \mathbf{w})$$

 Note here that Y can take only values 0 or 1, so only one of the two terms in the expression will be non-zero for any given y¹

We need to estimate:

$$\mathbf{w} = \arg\max_{\mathbf{w}} \sum_{l} \ln P(y^{l} | \mathbf{x}^{l}, \mathbf{w})$$
$$l(\mathbf{w}) = \sum_{l} y^{l} \ln P(y^{l} = 1 | \mathbf{x}^{l}, \mathbf{w}) + (1 - y^{l}) \ln P(y^{l} = 0 | \mathbf{x}^{l}, \mathbf{w})$$

 Equivalently, we can minimize negative log likelihood using gradient descent technique

No closed-form solution though. Iterative method required.

• [HW] Find the derivative of I(w) !

- Overfitting can arise especially when data has very high dimensions and is sparse.
- One approach -> modified "penalized log likelihood function," which penalizes large values of **w**, as before.

$$\mathbf{w} = \underset{\mathbf{w}}{\operatorname{arg\,max}} \sum_{l} \ln P(y^{l} \mid \mathbf{x}^{l}, \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

• [HW] Find the Derivative!

- LR: Functional form of P(Y|X), no assumption on P(X|Y)
- LR is a linear classifier
- LR optimized by conditional likelihood
- Extending logistic regression to multiple classes
 - Use softmax for each class k!

$$p(y = k|x) = \frac{exp(w_k^\top x)}{\sum_{i=1}^{K} exp(w_i^\top x)}$$

Meet Softmax

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K .

Classification: Evaluation metrics

Accuracy:
$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[y_i == \hat{y}_i]$$

		Actual Label	
		Positive	Negative
Predicted Label	Positive	True Positive (TP)	False Positive (FP)
	Negative	False Negative (FN)	True Negative (TN)

Accuracy	(TP + TN) / (TP + TN + FP + FN)	The percentage of predictions that are correct
Precision	TP / (TP + FP)	The percentage of positive predictions that are correct
Sensitivity (Recall)	TP / (TP + FN) The percentage of positive cases that we predicted as positive	
Specificity	TN / (TN + FP)	The percentage of negative cases that were predicted as negative

Supervised learning: Regression

Number of vehicles passing a junction

p(y|x)?

Y take values 0,1,2,3,..... but not 2.1, 3.4, 5.55......

Poisson Regression

Poisson distribution: Model number of events occurring in a fixed interval of time/space

0.30

0.25 8 0.20

0.15

0.10

0.05

10

$$P(k ext{ events in interval}) = e^{-\lambda} rac{\lambda^k}{k!}$$

- λ is the average (mean) number of events
- Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

$$\lambda := \mathrm{E}(Y \mid x) = e^{ heta' x}, \qquad p(y \mid x; heta) = rac{\lambda^y}{y!} e^{-\lambda} = rac{e^{y heta' x} e^{-e^{ heta' x}}}{y!}$$

Poisson Regression: Learning parameters

Likelihood

$$p(y_1,\ldots,y_m\mid x_1,\ldots,x_m; heta)=\prod_{i=1}^mrac{e^{y_i heta'x_i}e^{-e^{ heta\cdot x_i}}}{y_i!}.$$

Estimate parameters by maximum likelihood estimation

$$\ell(\theta \mid X,Y) = \log L(\theta \mid X,Y) = \sum_{i=1}^m \left(y_i \theta' x_i - e^{\theta' x_i} - \log(y_i!)
ight).$$

• Use gradient descent to find the optimal value of θ .

Thank you!

Reference

- [1] Christopher Bishop, Pattern Recognition and Machine Learning
- [2] Kevin Murphy, Machine Learning: A Probabilistic Perspective