Дискретная математика. Глава 3. Элементарная комбинаторика.

А.В.Пастор

Дискретная математика Глава 3. Элементарная комбинаторика

А. В. Пастор

03.10.2022

Дополнительные материалы по комбинаторике

- Дискретная математика. Глава 3. Элементарная комбинаторика.
 - А.В.Пастор

- 1. M. Холл, *Комбинаторика*. M.: Мир, 1970.
- 2. Р. Стенли, Перечислительная комбинаторика. М.: Мир, 1990.

Слайды по дискретной математике будут публиковаться по адресу https://logic.pdmi.ras.ru/~pastor/ITMO/2022-23/

- Это число можно интерпретировать как
 - ▶ число инъективных отображений $f: [1..k] \to [1..n];$
 - число способов разложить k шаров по n ящикам (шары имеют номера от $1 \div k$, ящики $1 \div n$, в ящик помещается не более одного шара).
- Число размещений с повторениями из n элементов по k это количество последовательностей длины k, составленных из элементов n-элементного множества. Обозначается \widetilde{A}_n^k .
- Это число можно интерпретировать как
 - ightharpoonup число отображений f:[1..k]
 ightharpoonup [1..n];
 - число способов разложить k шаров по n ящикам (шары имеют номера от $1 \div k$, ящики от $1 \div n$, в ящик можно класть любое число шаров).
- Мы уже доказывали, что $A_n^k = n(n-1)...(n-k+1)$ и $\widetilde{A}_n^k = n^k$.

Глава 3.

- Число сочетаний из n элементов по k это количество k-элементных подмножеств в n-элементном множестве (где 0 < k < n).
- Возможные обозначения: C_n^k или $\binom{n}{k}$. • Это число можно интерпретировать как
 - \blacktriangleright число строго монотонно возрастающих функций $f: [1..k] \to [1..n];$
 - \blacktriangleright число способов разложить k одинаковых шаров по n пронумерованным ящикам (в каждый ящик помещается не более одного шара).

Теорема

$$C_n^k = rac{n!}{k!(n-k)!}.$$
Доказательство. Пусть $|X| = n.$

- ullet Есть $A_n^k = n(n-1)\dots(n-k+1) = rac{n!}{(n-k)!}$ способов выбрать
- последовательность из k различных элементов X.
- Каждая такая последовательность задает k-элементное подмножество X.
- Каждое подмножество посчитано k! раз, ибо его элементы можно упорядочить k! способами. Итого, $\frac{n!}{k!(n-k)!}$ различных подмножеств.

Элементарная комбинаторика.

Дискретная математика. Глава 3. Элементарная комбинаторика.

- Число сочетаний с повторениями из n элементов по k это количество неупорядоченных наборов из k элементов n-элементного множества (в отличии от множества, в наборе один и тот же элемент может встречаться несколько раз).
- Возможные обозначения: \widetilde{C}_n^k или $\binom{n}{k}$.
- Это число можно интерпретировать как
 - lacktriangle число нестрого монотонно возрастающих функций $f\colon [1..k] o [1..n];$
 - число способов разложить k неразличимых шаров по n ящикам (в ящик можно класть любое число шаров);
 - число способов выбрать k предметов, если есть предметы n типов (на складе есть хотя бы по k предметов каждого типа; предметы одного типа абсолютно неразличимы).

Теорема

$$\widetilde{C}_n^k = C_{n+k-1}^{n-1} = C_{n+k-1}^k.$$

Лемма

Число решений уравнения
$$t_1+t_2+\ldots+t_n=k$$
 (1) в \mathbb{N}_0 равно \widetilde{C}_n^k .

Доказательство. Пусть $X = \{x_1, x_2, \dots, x_n\}$.

- Строим биекцию между решениями уравнения (1) и неупорядоченными наборами из k элементов множества X.
- Каждому решению (t_1, t_2, \ldots, t_n) ставим в соответствие набор, состоящий из t_1 экземпляров элемента x_1 , t_2 экземпляров x_2 , ..., t_n экземпляров x_n .
- Обратно, каждому набору $\mathcal T$ ставим в соответствие решение (t_1,t_2,\ldots,t_n) , где t_i число экземпляров x_i в $\mathcal T$.

Формула для числа сочетаний с повторениями: доказательство

Дискретная математика. Глава 3. Элементарная комбинаторика.

А.В.Пастор

Доказательство теоремы.

- ullet Расположим в ряд k шариков и n-1 перегородку.
- Всего есть C_{n+k-1}^k таких расположений.
- Обозначим через t_1 число шариков до первой перегородки; t_2 между первой и второй перегородками; . . . ; t_n после (n-1)-й перегородки.
- Получаем биекцию между решениями уравнения (1) и такими расположениями шаров и перегородок.

- $C_n^k = C_n^{n-k}$ (очевидно).
- $C_{n+1}^{k+1} = C_n^k + C_n^{k+1}$.

Доказательство.
$$C_n^k + C_n^{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n! \cdot (k+1)}{(k+1)!(n-k)!} + \frac{n! \cdot (n-k)}{(k+1)!(n-k)!} = \frac{n! \cdot (n+1)}{(k+1)!(n-k)!} = C_{n+1}^{k+1}.$$

Другой способ доказательства. Пусть $X = \{x_0, x_1, \dots, x_n\}$.

- (k+1)-элементные подмножества X бывают двух видов: содержащие x_0 и не содержащие x_0 .
- ▶ Если $x_0 \notin S \subset X$, то $S \subset X' = \{x_1, \dots, x_n\}$. Таких подмножеств C_n^{k+1} .
- ▶ Если $x_0 \in S \subset X$, то удалим x_0 из S. Получим подмножество $S' \subset X'$, где |S'| = k. Таких подмножеств C_n^k .

Большинство соотношений на C_n^k имеют как алгебраическое, так и комбинаторное доказательство.

Дискретная математика. Глава 3. Элементарная комбинаторика.

$$\bullet kC_n^k = nC_{n-1}^{k-1}.$$

Доказательство.

Алгебраически:

$$kC_n^k = k \cdot \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} = n \cdot \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} = nC_{n-1}^{k-1}.$$

Комбинаторно: Как в левой, так и в правой части формулы записано число k-элементных подмножеств n-элементного множества, в которых один элемент отмечен.

Дискретная математика. Глава 3. Элементарная комбинаторика.

Свойства чисел сочетаний

ullet (Бином Ньютона) $(a+b)^n = \sum\limits_{k=0}^n C_n^k a^{n-k} b^k.$

Доказательство.

$$(a+b)^n = \underbrace{(a+b)(a+b)\dots(a+b)}_{n \text{ скобок}};$$

- слагаемое $a^{n-k}b^k$ получается, если из k скобок выбрать b, а из остальных a.
- ightharpoonup Это можно сделать C_n^k способами.
- Другое название чисел C_n^k биномиальные коэффициенты.
- $C_n^0 + C_n^1 + \ldots + C_n^n = (1+1)^n = 2^n$.
 - ► Комбинаторное доказательство: в левой и в правой части записано число подмножеств *п*-элементного множества.
- $C_n^0 C_n^1 + \ldots + (-1)^n C_n^n = (1-1)^n = 0.$
- $C_n^0 + C_n^2 + \ldots = C_n^1 + C_n^3 + \ldots = 2^{n-1}$.

Дискретная математика. Глава 3. Элементарная комбинаторика.

Свойства чисел сочетаний

Докажем формулу $C_n^0 - C_n^1 + ... + (-1)^n C_n^n = 0$ комбинаторно. Доказательство. Докажем, что $C_n^0 + C_n^2 + \ldots = C_n^1 + C_n^3 + \ldots$

- Пусть $X = \{x_1, \dots, x_n\}$.
- Построим биекцию между всеми четными и всеми нечетными подмножествами X.
- Пусть $f(S) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} S \cup \{x_n\}, & x_n \notin S \\ S \setminus \{x_n\}, & x_n \in S. \end{array} \right.$
- Получаем отображение $f: \mathcal{P}(X) \to \mathcal{P}(X)$, обладающее следующим свойством: $\forall S (f(f(S)) = S)$.
 - Отображение, обладающее таким свойством называется инволюцией.
 - \triangleright В частности, это означает, что f обратно самому себе, следовательно, f — биекция.
- \bullet При этом, |S| и |f(S)| всегда имеют разную четность.
- Таким образом, f также задает биекцию между всем четными и всеми нечетными подмножествами X.

Определение

Пусть $n=k_1+k_2+\ldots+k_m$, где $m\in\mathbb{N}$ и $n,k_1,k_2,\ldots,k_m\in\mathbb{N}_0$. Тогда число способов разбить n-элементное множество X на m непересекающихся подмножеств X_1,X_2,\ldots,X_m , где $|X_i|=k_i$, обозначается $\binom{n}{k_1,k_2,\ldots,k_m}$ и называется мультиномиальным коэффициентом.

(Другое название: полиномиальный коэффициент.)

Теорема

$$\binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! k_2! \ldots k_m!}.$$

Доказательство. Есть n! способов упорядочить элементы множества X.

- Для каждого способа, помещаем первые k_1 элементов в X_1 ; следующие k_2 элементов в X_2 и т. д.
- ullet Получаем разбиение X на подмножества нужного размера.
- Каждое разбиение посчитано $k_1!k_2!...k_m!$ раз.

Дискретная математика. Глава 3. Элементарная комбинаторика.

А.В.Пастор

Теорема

$$(a_1 + a_2 + \ldots + a_m)^n = \sum_{k_1 + k_2 + \ldots + k_m = n} {n \choose k_1, k_2, \ldots, k_m} a_1^{k_1} a_2^{k_2} \ldots a_m^{k_m}.$$

Доказательство. Аналогично доказательству Бинома Ньютона.

- При раскрытии скобок слагаемое $a_1^{k_1}a_2^{k_2}\dots a_m^{k_m}$ получается, если выбрать из k_1 скобок слагаемое a_1 , из k_2 скобок слагаемое a_2,\dots , из k_m скобок слагаемое a_m .
- ullet Такой выбор можно сделать в точности $egin{pmatrix} n \ k_1, k_2, \dots, k_m \end{pmatrix}$ способами. ullet

Дискретная математика. Глава 3. Элементарная комбинаторика.

А.В.Пастор

Примеры

1. Пусть A, B — конечные множества. Тогда

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

2. Пусть A, B, C — конечные множества. Тогда

$$|A \cup B \cup C| =$$
= |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| +
+ |A \cap B \cap C|.

Формула включений-исключений

Теорема (Формула включений-исключений)

Пусть A_1, \ldots, A_n — конечные множества. Тогда

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\varnothing \neq I \subset [1..n]} (-1)^{|I|+1} \left| \bigcap_{i \in I} A_i \right|. \tag{1}$$

Доказательство.

- lack Пусть $x \in A_{i_1}, \dots, A_{i_k}$ и x не принадлежит остальным A_j .
- ightharpoonup Тогда x учитывается в формуле (1) с коэффициентом

$$\sum_{\ell=1}^k (-1)^{\ell+1} C_k^{\ell} = 1.$$

Дискретная математика. Глава 3. Элементарная комбинаторика.

- P_1, \ldots, P_n свойства элементов множества X (т. е. одноместные предикаты на X);
- $N_{i_1,...,i_k}$ число элементов, удовлетворяющих P_{i_1},\ldots,P_{i_k} ;
- N(0) число элементов, не удовлетворяющих ни одному свойству.

Тогда

$$N(0) = N - \sum_{i} N_{i} + \sum_{i_{1} < i_{2}} N_{i_{1}, i_{2}} - \dots$$

$$\dots + (-1)^{k} \sum_{i_{1} < \dots < i_{k}} N_{i_{1}, \dots, i_{k}} + \dots$$

$$\dots + (-1)^{n} N_{1, \dots, n}. \quad (2)$$

Дискретная математика. Глава 3. Элементарная комбинаторика.

Определение

- Перестановкой на множестве M называется произвольная биекция $\sigma\colon M o M$.
- Неподвижной точкой перестановки σ называется такой элемент $x \in M$, что $\sigma(x) = x$.
- S_n множество всех перестановок на [1..n].

Замечание

Мы знаем, что $|S_n| = n!$.

Определение

D(n) — число перестановок из S_n , не имеющих неподвижных точек.

Субфакториалы: рекуррентная формула

математика. Глава 3. Элементарная комбинаторика.

Лискретная

Теорема

$$D(n+1) = n(D(n) + D(n-1)).$$

Доказательство.

- ▶ Пусть $\sigma \in S_{n+1}$; $k = \sigma(n+1)$; $\ell = \sigma^{-1}(n+1)$.
- ightharpoonup Возможны два случая: $k \neq \ell$ или $k = \ell$.
 - 1° Пусть $k \neq \ell$.
 - ullet Тогда $\sigma'(x)\stackrel{\mathrm{def}}{=} \left\{ egin{array}{ll} \sigma(x), & x
 eq \ell \\ k, & x = \ell \end{array}
 ight.$ перестановка из S_n без неподвижных точек.
 - ullet Для каждого $k \in [1..n]$ есть D(n) таких перестановок.
 - 2° Пусть $k = \ell$.
 - Тогда $\sigma|_{[1..n]\setminus\{k\}}$ перестановка на $[1..n]\setminus\{k\}$ без неподвижных точек.
 - ullet Для каждого $k \in [1..n]$ есть D(n-1) таких перестановок.
- ▶ Итого, получаем nD(n) + nD(n-1) перестановок без неподвижных точек.

Субфакториалы: явная формула

Дискретная математика. Глава 3. Элементарная комбинаторика.

Замечание

Для обычных факториалов выполняется такое же соотношение:

$$(n+1)! = n(n! + (n-1)!).$$

Поэтому числа D(n) называют субфакториалами.

Теорема

$$D(n) = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

Доказательство. Пусть $X = S_n$.

- ullet P_i свойство " $\sigma(i)=i$ " для перестановки $\sigma\in S_n$.
- Тогда N = n! и $N_{i_1,...,i_k} = (n-k)!$.
- По формуле (2) имеем: $D(n) = \sum_{k=0}^{n} (-1)^k (n-k)! C_n^k = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$.

7

Субфакториалы: явная формула

Следствие

$$D(n) = \operatorname{round}(\frac{n!}{e})$$
; более того, $|D(n) - \frac{n!}{e}| < \frac{1}{n+1}$.

Доказательство. Напомним, что $e^x = \sum_{k=0}^\infty \frac{x^k}{k!}$. Тогда

$$\bullet \frac{n!}{e} = n! \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} + n! \sum_{k=n+1}^{\infty} \frac{(-1)^k}{k!} =$$

$$= D(n) + (-1)^{n+1} \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell+1} n!}{(n+\ell)!};$$

•
$$|D(n) - \frac{n!}{e}| = |\sum_{\ell=1}^{\infty} \frac{(-1)^{\ell+1} n!}{(n+\ell)!}| = |\frac{1}{n+1} - \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} - \dots|;$$

$$\bullet \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell+1} n!}{(n+\ell)!} = \left(\frac{n!}{(n+1)!} - \frac{n!}{(n+2)!} \right) + \left(\frac{n!}{(n+3)!} - \frac{n!}{(n+4)!} \right) + \ldots > 0;$$

$$\bullet \sum_{n=1}^{\infty} \frac{(-1)^{\ell+1} n!}{(n+\ell)!} = \frac{1}{n+1} - \left(\frac{n!}{(n+2)!} - \frac{n!}{(n+3)!} \right) - \left(\frac{n!}{(n+4)!} - \frac{n!}{(n+5)!} \right) - \ldots < \frac{1}{n+1}. \quad \Box$$

математика. Глава 3. Элементарная комбинаторика.

Лискретная

Функция Эйлера

Определение

- Натуральные числа *a* и *b* называются *взаимно простыми*, если у них нет общего натурального делителя, отличного от единицы.
- $\varphi(n)$ количество натуральных чисел, меньше либо равных n и взаимно простых с n (функция Эйлера).

Теорема

Пусть $n = p_1^{a_1} \dots p_s^{a_s}$ (где $p_1, \dots p_s$ — различные простые и a_1, \dots, a_s — натуральные числа). Тогда $\varphi(n) = n(1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_s})$.

- Доказательство. Пусть X = [1..n]. • P_i — свойство " $x : p_i$ " для числа $x \in X$.
- Тогда $N_{i_1,...,i_k} = \frac{n}{p_{i_1}p_{i_2}...p_{i_k}}$.
- По формуле (2) имеем:

$$\varphi(n) = \sum_{k=0}^{n} (-1)^k \sum_{1 \le i_1 < i_2 < \dots < i_k \le s} \frac{n}{p_{i_1} p_{i_2} \dots p_{i_k}} = n(1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_s}).$$

математика. Глава 3. Элементарная комбинаторика.

Лискретная

А.В.Пастор

Число сюръективных отображений
$$f\colon [1..k] o [1..n]$$
 равно $\sum_{s=1} (-1)^{n-s} C_n^s s^k.$

Доказательство.

- Пусть X множество всех отображений $f: [1..k] \rightarrow [1..n]$.
- P_i свойство " $f^{-1}(i) = \emptyset$ " для отображения $f \in X$.
 - ▶ Тогда $N = |X| = n^k$;
 - $N_{i_1,...,i_\ell} = (n-\ell)^k$ количество функций, удовлетворяющих данным ℓ свойствам.
 - ▶ $f \in X$ сюръекция $\Leftrightarrow f$ не удовлетворяет ни одному из свойств. Следовательно, число сюръекций равно N(0).
- По формуле включений-исключений имеем:

$$N(0) = \sum_{\ell=0}^{n} (-1)^{\ell} C_n^{\ell} (n-\ell)^k = \sum_{s=1}^{n} (-1)^{n-s} C_n^s s^k.$$

(Последнее равенство получено заменой переменной $s=n-\ell$).