COMP7035

Python for Data Analytics and Artificial Intelligence

Keras

Renjie Wan, Jun Qi

12/03/2024

What we will learn?

Topic	-		Hours
I.	Python Fundamentals		12
	A.	Program control and logic	
	В.	Data types and structures	
	C.	Function	
	D.	File I/O	
II.	Numerical Computing and Data Visualization		9
	Tools and libraries such as		
	A.	NumPy	
	В.	Matplotlib	
	C.	Seaborn	
III.	Exploratory Data Analysis (EDA) with Python		9
	Tools and libraries such as		
	A.	Pandas	
	В.	Sweetviz	
IV.	Artificial Intelligence and Machine Learning with Python		9
	Tools and libraries such as		
	A.	Scikit-learn	
	В.	Keras	

Key Components of Keras Pipeline

11/25/24

Keras Layers

A DNN is built from many different types of layers, which mainly include

- Linear layers (Dense)
- RNN layers
- CNN layers

Keras Layers

- Linear layers (Dense)
- RNN layers
- CNN layers

```
Dense( units, activation=None,
  use_bias=True,
  kernel_initializer="glorot_uniform",
  bias_initializer="zeros",
  kernel_regularizer=None,
  bias_regularizer=None,
  activity_regularizer=None,
  kernel_constraint=None,
  bias_constraint=None, **kwargs)
```

You can also specify the input dimension as introduced before

Keras Layers

- RNN layers takes the sequence as input and output a new sequence.
- Mainly used to model sequential data (speech, stock price, etc)
- The most used RNN is LSTM (Long Short-Term Memory).

- Linear layers (Dense)
- RNN layers
- CNN layers

```
"tanh",
recurrent activation="sigmoid",
use bias=True,
kernel initializer="glorot uniform",
recurrent initializer="orthogonal",
bias initializer="zeros",
unit forget bias=True,
kernel regularizer=None,
recurrent regularizer=None,
bias regularizer=None,
activity regularizer=None,
kernel constraint=None,
recurrent constraint=None,
bias constraint=None, dropout=0.0,
 recurrent dropout=0.0,
eturn sequences=False, return state=False,
go backwards=False, stateful=False,
time major=False, unroll=False, **kwargs )
```


Keras Layers


```
# Define the model using functional API:
from keras.layers import Dense,LSTM
import keras
import numpy as np
```

```
• Linear layers (Dense)
```

- RNN layers
- CNN layers

Run the codes, check, and understand the dimensions of different tensors.

The first dimension of x is batch size, which will be studied later.

```
x = keras.backend.constant(np.random.randn(1,100,128))
lstm_layer1 = LSTM(512,return_sequences=True)
lstm_layer2 = LSTM(512,return_sequences=False)
```

 $y1 = lstm_layer1(x)$

 $y2 = lstm_layer2(x)$

```
for ii in [x,y1,y2]:
   print(ii.shape)
```

```
(1, 100, 128)
(1, 100, 512)
```

(1, 512)

Keras Layers

```
# Define the model using functional API:
from keras.layers import Dense, Conv2D
import keras
import numpy as np
x = keras.backend.constant(np.random.randn(16,28,
28,1))
n filter = 16
filter size = 2
cnn layer1 = Conv2D (n filter, filter size, input sh
ape=(28, 28, 1))
y1 = cnn layer1(x)
n filter = 32
filter size = 4
cnn layer2 = Conv2D (n filter, filter size, input sh
ape=(28, 28, 1))
y2 = cnn layer2(x)
for ii in [x,y1,y2]:
  print(ii.shape)
```

- Linear layers (Dense)
- RNN layers
- CNN layers

2D convolution

```
tf.keras.layers.Conv2D(
filters, kernel size
strides = (1, 1),
padding="valid",
data format=None,
dilation rate=(1, 1),
groups=1, activation=None,
use bias=True,
kernel initializer="glorot uni
form",
bias initializer="zeros",
kernel regularizer=None,
bias regularizer=None,
activity regularizer=None,
kernel constraint=None,
bias constraint=None, **kwargs
```


Keras Layers

```
# Define the model using functional API:
from keras.layers import Dense, Conv2D
import keras
import numpy as np
x = keras.backend.constant(np.random.randn(16,28,
28,1))
n filter = 16
filter size = 2
cnn layer1 = Conv2D (n filter, filter size, input sh
ape=(28, 28, 1))
                      When using this layer as the first layer in a model,
y1 = cnn layer1(x)
                      provide the keyword argument input shape
n filter = 32
filter size = 4
cnn layer2 = Conv2D(n filter, filter size, input sh
ape=(28, 28, 1))
y2 = cnn layer2(x)
for ii in [x,y1,y2]:
  print(ii.shape)
```

- Linear layers (Dense)
- RNN layers
- CNN layers

2D convolution

```
tf.keras.layers.Conv2D(
Eilters, kernel size
strides = (1, 1),
padding="valid",
data format=None,
dilation rate=(1, 1),
groups=1, activation=None,
use bias=True,
kernel initializer="glorot uni
form",
bias initializer="zeros",
kernel regularizer=None,
bias regularizer=None,
activity regularizer=None,
kernel constraint=None,
bias constraint=None, **kwargs
```


Average Pooling

Keras Layers

MaxPooling2D(pool_size)

- Linear layers (Dense)
- RNN layers
- CNN layers

Pooling


```
31
    15
        28
            184
                 # Define the model using functional API:
                 from keras.layers import Dense, Conv2D, MaxPool2D
        70
             38
0
    100
                 import keras
                 import numpy as np
    12
         7
12
    12
        45
12
                 x = keras.backend.constant(np.random.randn(16,28,28,1))
                 n filter = 32
          2 x 2
                filter size = 4
         pool size cnn layer2 = Conv2D(n_filter,filter_size,input_shape=(
                 28,28,1))
                 y1 = cnn layer2(x)
    36
        80
                 pooling layer = MaxPool2D(2)
                 y2 = pooling layer(y1)
    12
        15
```


Other Common Keras Operations

Flatten Layer in Keras

Flatten()

```
(16, 28, 28, 1)
(16, 784)
(16, 25, 25, 32)
(16, 20000)
```

```
# Define the model using functional API:
from keras.layers import Flatten, Reshape
from keras.models import Sequential
import keras
import numpy as np
x = keras.backend.constant(np.random.randn(16,28,2)
8,1))
y = Flatten()(x)
n filter = 32
filter size = 4
conv layer = Conv2D(n filter, filter size, input sha
pe=(28, 28, 1))
z = conv layer(x)
model = Sequential([conv layer, Flatten()])
w = model(x)
for i in [x,y,z,w]:
  print(i.shape)
```


Other Common Keras Operations

Reshape(target_shape)

```
# Define the model using functional API:
from keras.layers import Flatten, Reshape
from keras.models import Sequential
import keras
import numpy as np

x = keras.backend.constant(np.random.ran
dn(16,28,28,1))
y = Reshape((14,14,-1))(x)
print(y.shape)
y = Reshape((-1,1))(x)
print(y.shape)
(16, 14, 14, 4)
(16, 784, 1)
```


Exercise

1. Define the following model using Sequential API. Assuming padding is not used.

Exercise

- 1. Define the following model using Sequential API. Assuming padding is not used.
- 2. Define the following model using Functional API.

Key Components of Keras Pipeline

11/25/24

The DNN model is optimized through a feedback backpropogation (BP). The loss function is used to judge how well the model can approximate the desired output.

Types of loss functions

- Regression Loss Functions
- Classification Loss Functions
- Probabilistic Loss Functions
- Custom Loss Functions

Regression Loss Functions

Mean Squared Error (MSE)

```
import keras
from keras.losses import MeanAbsoluteError, MeanSquaredError
mse = MeanSquaredError()
y_true = [[0., 0.3], [0., 1.]]
y_pred = [[1., 1.], [1., 0.]]
z = mse(y_true, y_pred)
print(z)
print(z.numpy())
```


Classification Loss Functions

Categorical Cross-Entropy


```
import keras
from keras.losses import CategoricalCrossen
tropy
loss = CategoricalCrossentropy()
y_true = [[0, 1, 0], [0, 0, 1]]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
z = loss(y_true, y_pred)
print(z.numpy())
```


- The prediction contains only one class
- The label is one-hot

Classification Loss Functions

Categorical Cross-Entropy


```
import keras
from keras.losses import SparseCategoricalC
rossentropy
loss = SparseCategoricalCrossentropy()
y_true = [1, 2]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
z = loss(y_true, y_pred)
print(z.numpy())
```

- Softmax $Cross-Entropy \\ Loss$ $f(s)_i = \frac{e^{s_i}}{\sum_{j}^{C} e^{s_j}} \quad CE = -\sum_{i}^{C} t_i log(f(s)_i)$
- The prediction contains only one class
- The label is an integer.

Probabilistic Loss Functions

Binary Cross-Entropy


```
import keras
from keras.losses import BinaryCrossentropy
loss = BinaryCrossentropy()
y_true = [0, 1, 0, 0]
y_pred = [-18.6, 0.51, 2.94, -12.8]
z = loss(y_true, y_pred)
print(z.numpy())
```


- The prediction can contain multiple classes
- The label is multi-hot.

Custom Loss Functions

We can also define the loss as a function of prediction and target.

```
def custom_loss(y_true, y_pred):
    # calculate loss, using y_pred
    return loss
```

Supposing we want to define a loss function as MAE+2*MSE

```
import keras
from keras.losses import MeanAbsoluteError, MeanSquaredError
def my_loss(y_true, y_pred):
    loss = MeanAbsoluteError(y_true, y_pred) +2*MeanSquaredError(y_true, y_pred)
    return loss
```


For the MNIST task, the loss function would be loss = CategoricalCrossentropy() for one-hot labels;

```
Or
```

loss = SparseCategoricalCrossentropy()
for integer-valued labels.

Key Components of Keras Pipeline

11/25/24

Optimizer

The optimizer specifies how to update the DNN weights according to the loss function values.

- SGD
- RMSprop
- Adam
- Adadelta
- Adagrad
- e.g.,

```
optimizer = keras.optimizers.Adam()
optimizer = keras.optimizers.Adam(learning rate=1e-3)
```


Compile Model

- There is one more thing before actually training the model:
 - How to evaluate the generalization performance, in order to save the best model?

Metrics

During training, we compute the metrics on the validation dataset and choose the model with the best evaluation metric.

Commonly used metric:

- Accuracy
- MSE
- •

The loss function itself can also be taken as the metric.

Compile Model

After we have figured out the loss function and optimizer, we can compile a defined model for training.

Fit Model

The model can be optimized using the built-in API

model.fit

Fit Model

The model can be optimized using the built-in API

model.fit

```
Model.fit(x=None, y=None,
oatch size=None, epochs=1,
verbose="auto",
callbacks=None,
validation split=0.0,
validation data=None,
shuffle=True,
class weight=None,
sample weight=None,
initial epoch=0,
steps per epoch=None,
validation steps=None,
validation batch size=None,
validation freq=1,
max queue size=10, workers=1,
use multiprocessing=False, )
```

```
batch_size = 128
epochs = 15
model.fit(x_train, y_train, batch_size=batch_size
, epochs=epochs, validation_split=0.1)
```


Exercise

- 1. Define the following model using Sequential API. Assuming padding is not used.
- 2. Define the following model using Functional API.
- 3. Use the structure as below to train a model for the MNIST task. Try using the entire dataset and data generator to train the model.

Key Components of Keras Pipeline

11/25/24

Evaluate Model

using model.evaluate to evaluate the model, it will give us the loss and the metric values.

```
Model.evaluate( x=None, y=None,
batch_size=None, verbose="auto",
sample_weight=None, steps=None,
callbacks=None,
max_queue_size=10, workers=1,
use_multiprocessing=False,
return_dict=False, **kwargs)
```

```
score = model.evaluate(x_test, y_test)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```


Key Components of Keras Pipeline

11/25/24

36

Customized Training Loop

Rather than using model.fit, the training loop can also be customized, in order to

- Save the model
- Adjust the learning rate
- etc

Customized Training Loop

The training loop design:

```
for epoch in range(epochs):
    for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            logits = model(x_batch_train, training=True)
            loss_value = loss_fn(y_batch_train, logits)
            grads = tape.gradient(loss_value, model.trainable_weights)
            optimizer.apply_gradients(zip(grads, model.trainable_weights))
```

- Open a for loop that iterates over epochs
- For each epoch, iterate over the dataset in batches
- For each batch, open a GradientTape() scope, forward pass and compute the loss
- Outside the scope, retrieve the gradients
- Use the optimizer to update the model

Customized Training Loop

The training loop design:

```
val acc metric = keras.metrics.SparseCategoricalAccuracy()
best metric = 10000
for epoch in range (epochs):
  for step, (x batch train, y batch train) in enumerate(train dataset):
        with tf.GradientTape() as tape:
            logits = model(x batch train, training=True)
            loss value = loss fn(y batch train, logits)
        grads = tape.gradient(loss value, model.trainable weights)
        optimizer.apply gradients(zip(grads, model.trainable weights))
   for x batch val, y batch val in val dataset:
        val logits = model(x batch val, training=False)
        val acc metric.update state(y batch val, val logits)
   val acc = val acc metric.result()
    if float(val acc) < best metric:</pre>
      best metric = float(val acc)
      model.save('path to location.h5')
    val acc metric.reset states()
```

• Evaluate after each epoch, save the best model

Customized Training Loop

The training loop design:

```
import keras
from keras import backend as K

val_acc_metric = keras.metrics.SparseCategoricalAccuracy()
best_metric = 10000
for epoch in range(epochs):
    for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            logits = model(x_batch_train, training=True)
            loss_value = loss_fn(y_batch_train, logits)
            grads = tape.gradient(loss_value, model.trainable_weights)
            optimizer.apply_gradients(zip(grads, model.trainable_weights))
            K.set_value(model.optimizer.learning_rate, 0.001)
```

• Change the learning rate

- 1. Define the following model using Sequential API. Assuming padding is not used.
- 2. Define the following model using Functional API.
- 3. Use the structure as below to train a model for the MNIST task. Try using the entire dataset and data generator to train the model.
- 4. Write customized training loop for the MNIST task.

Key Components of Keras Pipeline

11/25/24

Make Predictions

```
Model.predict( x,
batch_size=None,
verbose="auto",
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
)
```

prediction = model.predict(x test)

1. Define the following model using Sequential API. Assuming padding is not used.

my model.summary()

- 1. Define the following model using Sequential API. Assuming padding is not used.
- 2. Define the following model using Functional API.
 # Define the model using functional API:

```
from keras.models import Model
from keras.layers import Dense, Conv2D, MaxPool2D, Input, Reshape, Flatten, concatenate
import keras
import numpy as np
def my model():
  # define layers
  input tensor = Input(shape=(256,256,1))
  reshape layer = Reshape((64, 64, -1))
  conv2d 1 = Conv2D(filters=8, kernel size=5)
  conv2d 2 = Conv2D(filters=8, kernel size=17)
  \max pool layer = MaxPool2D(4)
  input_tensor_reshape = reshape layer(input tensor)
  conv1 out = conv2d 1(input tensor reshape)
  conv2 out = conv2d 2(input tensor)
  max pool out = max pool layer(conv2 out)
  cat out = concatenate([conv1 out, max pool out], axis=-1)
  model = Model(inputs=input tensor, outputs=cat out)
  return model
my model = my model()
```


Use the structure as below to train a model for the MNIST task. Try using **the entire dataset** and the data generator to train the model.

See next page


```
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense, Input
from keras.losses import SparseCategoricalCrossentropy
df orig train = pd.read csv('/content/drive/MyDrive/keras/mnist train.csv', header=None)
df orig test = pd.read csv('/content/drive/MyDrive/keras/mnist test.csv', header=None)
df train values = df orig train.values
df test values = df orig test.values
train feat ori, train label ori = df train values[:,1:]/255.0, df train values[:,0]
test feat, test label = df test values[:,1:]/255.0, df test values[:,0]
train feat, val feat = train feat ori[6000:], train feat ori[:6000]
train label, val label = train label ori[6000:], train label ori[:6000]
model = Sequential()
model.add(Input(shape=(784,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',loss= 'sparse categorical crossentropy',metrics=['accuracy'])
batch size = 128
epochs = 8
model.fit(train feat, train label, batch size=batch size, epochs=epochs, validation data =
l feat, val label))
                                                                                             46
```


Use the structure as below to train a model for the MNIST task. Try using the entire dataset and the **data generator** to train the model.

See next page


```
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense,Input
from keras.losses import SparseCategoricalCrossentropy
import numpy as np
import linecache
import random
```



```
class DataGenerator(keras.utils.Sequence):
  'Generates data for Keras'
 def init (self, csv path, indexes, bs):
   # initilizes some variables
   self.csv path = csv path
   self.norm facor = 255.0
   self.indexes = indexes
   random.shuffle(self.indexes)
    self.bs = bs
 def len (self):
   # return the total number of samples in the dataset
   return len(self.indexes)//self.bs
 def getitem (self,index):
   # get one sample according to the index
   feat all = []
   label all = []
   for this index in range(index*self.bs, (index+1)*self.bs):
     line index = self.indexes[index]
     line str = linecache.getline(self.csv path, line index)
     line val = [int(i) for i in line str.split(',')]
     label = line val[0]
     feat = np.array(line val[1:])/self.norm_facor
     feat all.append(feat)
     label all.append(label)
   return np.array(feat all), np.array(label all)
```



```
indexes = [i for i in range(60000)]
train index = indexes[6000:]
val index = indexes[:6000]
batch size = 128
train set = DataGenerator('/content/drive/MyDrive/keras/mnist train.csv',train index,batch siz
e)
val set = DataGenerator('/content/drive/MyDrive/keras/mnist train.csv', val index, batch size)
model = Sequential()
model.add(Input(shape=(784,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',loss= 'sparse categorical crossentropy',metrics=['accuracy'])
epochs = 8
model.fit(train set, steps per epoch = len(train set), epochs=epochs, validation data = val se
t, validation steps=len(val set))
```


- 1. Define the following model using Sequential API. Assuming padding is not used.
- 2. Define the following model using Functional API.
- 3. Use the structure as below to train a model for the MNIST task. Try using the entire dataset and data generator to train the model.
- 4. Write customized training loop for the MNIST task.


```
import pandas as pd
import keras
from keras.models import Sequenti
al
from keras.layers import Dense,In
put

import numpy as np
import linecache
import random
import tensorflow as tf
```



```
class DataGenerator(keras.utils.Sequence):
  'Generates data for Keras'
 def init (self, csv path, indexes, bs):
    # initilizes some variables
   self.csv path = csv path
   self.norm facor = 255.0
    self.indexes = indexes
    self.bs = bs
   random.shuffle(self.indexes)
 def len (self):
    # return the total number of samples in the dataset
   return (len(self.indexes))//self.bs-1
 def getitem (self,index):
    # get one sample according to the index
   feat all = []
   label all = []
   for this index in range(index*self.bs, (index+1)*self.bs):
      line index = self.indexes[index]
      line str = linecache.getline(self.csv path, line index)
      line val = [int(i) for i in line str.split(',') if len(i)]
      label = line val[0]
      feat = np.array(line val[1:])/self.norm facor
      feat all.append(feat)
      label all.append(label)
   return np.array(feat all), np.array(label all)
 def shuffle(self):
                                                                53
   random.shuffle(self.indexes)
```



```
indexes = [i for i in range(60000)]
train index = indexes[6000:]
val index = indexes[:6000]
batch size = 128
train set = DataGenerator('/content/drive/MyDrive/keras/mnist train.csv', train index,
batch size)
val set = DataGenerator('/content/drive/MyDrive/keras/mnist train.csv', val index, batc
h size)
model = Sequential()
model.add(Input(shape=(784,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',loss= 'sparse categorical crossentropy',metrics=['accu
racy'])
loss fn = keras.losses.SparseCategoricalCrossentropy()
optimizer = keras.optimizers.Adam()
val acc metric = keras.metrics.SparseCategoricalAccuracy()
epochs = 15
best metric = 100
```



```
for epoch in range (epochs):
 train set.shuffle()
 for step, (x batch train, y batch train) in enumerate(train set):
        with tf.GradientTape() as tape:
            logits = model(x batch train, training=True)
            loss value = loss fn(y batch train, logits)
        grads = tape.gradient(loss value, model.trainable weights)
        optimizer.apply gradients(zip(grads, model.trainable weights))
 for x batch val, y batch val in val set:
   val logits = model(x batch val, training=False)
   val acc metric.update state(y batch val, val logits)
 val acc = val acc metric.result()
 print("[{}/{}], val acc:{}".format(epoch, epochs, float(val acc)))
 if float(val acc) < best metric:</pre>
   best metric = float(val acc)
   model.save('path to location.h5')
 val acc metric.reset states()
```