

Microeletrônica: Introdução ao Projeto Físico de Portas Lógicas

Rafael Schivittz, Roberto Almeida, Giane Ulloa, Fábio Silva Cristina Meinhardt, Paulo F. Butzen

Grupo de Sistemas Digitais e Embarcados

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4, 5 e 6
 - Atrasos, Dimensionamento, Sub-circuitos.

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4, 5 e 6
 - Atrasos, Dimensionamento, Sub-circuitos.

Nem tudo é CMOS Complementar

- Existem diversos modos de construir um arranjo de transistores para uma mesma função.
- Eles v\u00e3o diferir
 - Número de transistores (área)
 - Atrasos
 - Potência + desempenho
 Potência
 Área

Exemplo Somador de 1 bit

Desafio

- Para o circuito recebido:
 - Realizar a validação lógica
 - Determinar a função (pode ser mostrar a tabela verdade)

PRÊMIO PARA QUEM IDENTIFICAR CORRETAMENTE PRIMEIRO!

- Realizar a caracterização elétrica
 - Determinar os atrasos (no papel)
 - Definir as formas de onda para medir os atrasos no NGSPICE
 - Medir os atrasos e determinar a potência