A different type of DAG: Data pipelines principles for epidemiology

Emily Riederer

Data Science Lead at Capital One

Disclosures

I am an employee of Capital One Financial Corporation

I have no relevant financial relationships to disclose

Industry data science can learn a lot from epidemiology

Epi

DS

Data pipelines are a different sort of DAG that encode the computational versus conceptual data generating process

Data pipelines and databases serve many needs in industry with parallels for individual analytical projects

Data Pipelines

- Data lineage and quality control
- New data ingestion, integration, and updates
- Sharing data artifacts across many users
- Sharing data artifacts across many use cases

Project Benefit

- Reproducibility
- Harmonizing disparate sources
- Collaboration
- Reuse across projects

Today, we will discuss some useful tools and ideas throughout the data pipeline ecosystem

The same principles apply across platforms

	Local	Shared	Cloud
Storage	Local Drive	✓ Network Drive☐ Google Cloud Storage☐ Amazon S3	■ Google BigQuery
Compute	■ duckdb + dbt R, python, or any scripting language		■ Google BigQuery SQL + dbt (data pipeline) Dagster (orchestration)

ARCHITECTURE: Pipelines preserve data artifacts at raw, standardized, and transformed stages

Medallion Architecture

Bronze (= Raw)

Unmodified source data

Silver (= Structure)

- Standardized file structure
- Cleaned column name
- Casted data types
- Light re-encoding

Gold (= Prepared)

- Transformed and merged data
- Derived fields
- Ready for analytical use

ARCHITECTURE: Preserving artifacts at multiple stages balances reproducibility with analytical efficiency

In Database Schema

- data.raw
- data.structured
- data.clean

In File System

- data/raw/
- data/structured/
- data/clean/

Raw

- Preserves full reproducibility
- Enables testing for upstream errors pre-transformation

Structured

 Preserves data flexible enough to transform in different ways

Prepared

- Ready for use without rerunning expensive computations
- Ensures collaborators made same design decisions

ARCHITECTURE: Pure reading and writing is what makes pipeline acyclic and idempotent, resilient to re-runs

```
df = readr::read csv('data/raw/patients.csv')
df cleaned = << transformations >>
readr::write csv(df cleaned, 'data/structured/patients.csv')
df = readr::read csv('data/raw/patients.csv')
df = << transformations >>
readr::write csv(df, 'data/raw/patients.csv')
df = readr::read csv('data/raw/patients.csv')
df cleaned = << transformations >>
readr::write csv(df cleaned, 'data/raw/patients.csv')
```

EXTRACT: Many different techniques can be used to collect data across disparate and sometimes inconvenient sources

When data is available as...

Link to a standalone file, e.g. in an S3 bucket

Exposed through a REST API

Rendered server-side in the webpage's source, e.g. a static HTML table

Rendered client-side or requires navigating through a UI

Trapped within a complex UI or dashboard with no access to the source

Method

Download: Download with R {readr} package or python {urllib.requests}

API Call: R {httr2} package or python {requests}

Scraping: Extract content from underlying webpage structure

Headless Browsing: Use code to navigate to URLs, click buttons, etc.

Computer Vision: Parse characters from an image or webpage based on visual characteristics

Increasing Complexity

EXTRACT: Automation can save manual data collection effort

Example: Headless Browsing with Playwright


```
from playwright.sync api import sync playwright
with sync playwright() as p:
 browser = p.firefox.launch()
  context = browser.new context(accept downloads = True)
 page = context.new page()
# pick selections from menu
 page.goto(url)
 page.select option('#idElection',
   label = "2020 NOVEMBER 3RD GENERAL ELECTION")
 page.click('#electionsInfoForm button')
 page.wait for selector('#selectedDate')
 page.select option('#selectedDate', value = target date)
 page.click('#electionsInfoForm button:nth-child(2)')
 page.wait for selector('"Generate Statewide Report"')
# download report
  with page.expect download() as download info:
   page.click('"Generate Statewide Report"')
  download = download info.value
  download.save as(target file)
```

LOAD: Despite being the most common data storage formats, CSVs and Excel files can be brittle for computing

id_patient <str></str>	treated <int></int>	name <str></str>
'01'	1	Emily
'02'	1	Malcolm,
'03'	1	Travis

write_csv('patients.csv')
read_csv('patients.csv')

Wrong type inferred, leading zeros ignored

id_patient <int></int>	treated <int></int>	name <str></str>
1	1	Emily
2	1	Malcolm,
3	1	Travis

Could break file or skip row if not escaped

BONUS:

DuckDB's CSV Sniffer can help identify and quarantine bad rows that keep you from opening a file

LOAD: Parquet has numerous advantages over CSV as a standard data format

- 1 Similar scripting read/write Easily handled by {readr} or {arrow}
- 2 Lower risk of accidental Not easily opened in UI or modified without explicit read/write
- 3 Preserves data types Remembers column types to avoid data corruption
- Storing strategies allow efficient reads

 Allows for partitioned read/writes for pre-filtering of large files
- 5 Smaller file sizes Compressed on disk

LOAD: Partitioning improves data organization and aids in efficient reading of large files

```
arrow::write dataset(
                           arrow::open dataset(
                                                      arrow::open dataset(
                                                         'data/year=2022/'
                              'data'
 data,
 path = 'data/',
 format = "parquet",
 partitioning = "year"
data/year=2021/
                          万data/year=2021/
                                                         data/year=2021/
//data/year=2022/
                                                         data/year=2022/
                          data/year=2022/
                                                       //data/year=2023/
                          data/year=2023/
```

TRANSFORM: Data transformation choices help us organize our data for maximum success across projects

Data Modeling

Organizing the relationship between types of information in your warehouse

Table Design

Designing table contents, column names, documentation, etc. for maximum usability

Materialization

Deciding which intermediates you save as tables versus what exists only in transient code

TRANSFORM: Keep the simplest data structures as long as possible ("shift right") to preserve flexibility

id_patient	date	event	
1	2025-01-05	treatment	
1	2025-01-10	ice	
2	2025-01-05	treatment	
3	2025-01-05	treatment	
3	2025-03-14	death	
4	2025-01-05	treatment	
4	2025-02-10	withdraw	

id_patient	treated	withdrew	ice	death
1	1		1	
2	1			
3	1			1
4	1	1		

TRANSFORM: Keep the simplest data structures as long as possible ("shift right") to preserve flexibility

id_patient	date	event
1	2025-01-05	treatment
1	2025-01-10	ice
1	2025-01-12	death
2	2025-01-05	treatment
3	2025-01-05	treatment
4	2025-01-05	treatment
4	2025-02-10	withdraw

Flexible to query different inclusion/exclusion criteria

Easily updated with new records (favor appends to joins)

TRANSFORM: Data modeling principles can help standardize disparate sources and make wrangling more manageable

Separate tables by different entity types and sources

patients (1 row / patient)

> patients_pii (1 row / patient, limited acces)

> > patient_visits
> > (1 row / patient x visit)

Create separate tables for values applying to multiple records

id_patient	date	cd_diagnosis
1	2025-01-05	13
1	2025-01-10	1
1	2025-01-12	2
2	2025-01-05	14

cd_diagnosis	desc_diagnosis
1	Α
2	В
3	С
4	D

TRANSFORM: Consistent column naming conventions across tables aids comprehension and downstream analysis code

Stub	Semantics
ID	Unique entity identifier
IND /	Binary 0/1 indicator; rest of name describes 1 condition
BIN	Binary 0/1 indicator; rest of name describes 1 condition
N	Count of quantity or event occurrences
AMT	Sum-able real number amount ("denominator free")

```
library(dplyr)
data %>%
 group_by(NM_STATE) %>%
 summarize(
   across(starts_with("IND"), mean),
   across(contains("_ACTL_"), sum)
#> # A tibble: 51 x 4
#> NM STATE IND COUNTY HPSA N CASE ACTL N DEATH ACTL
    <chr>
                    <db1>
                              <db1>
                                        <db1>
#> 1 Alabama
                   0.149
                             455582
                                        7566
#> 2 Alaska 0.235 51338
                                         250
                             753379
#> 3 Arizona
                                       13098
```

TEST: A multistage pipeline allows us to conduct hypothesis-drive upstream data quality checks ("shift left")

10

4

TEST: A multistage pipeline allows us to conduct hypothesis-drive upstream data quality checks ("shift left")

stg_patients

ID	Age	Arm
1	57	1
2	45	0

Test Here:
Same cardinality in
stg_patient and stg_outcomes

stg_outcomes

ID	Score
1	50
2	0
3	20
4	10

LEFT JOIN

study_results

ID	Age	Arm	Score
1	57	1	50
2	45	0	0

Not Here

ORCHESTRATE: Orchestration tools help us run many steps of an analysis pipeline in order to keep dependencies consistent

ORCHESTRATE: Many different tools exist for orchestration

makefile

- General purpose config file
- Runs any CLI commands based on user-defined dependencies
- Higher learning curve

dbt

- SQL framework that infers dependencies
- Compatible with any database including local compute (duckdb)
- Lower learning curve but less flexible

```
select id, name
from raw.patients
where dt_enroll = '2025-01-01'

select id, name, outcome
from {{ref('patients')}}
left join
{{ref('outcomes')}}
using (id)
results.sql
```

 $\label{localization} \mbox{Makefile example from $\underline{$https://datasciencesouth.com/blog/make/\#a-make-data-pipeline-example}$ See also R package $\{targets\}$ and Dagster $\{targets\}$ and $\{targets\}$ are $\{targets\}$ and $\{targets\}$ and $\{targets\}$ and $\{targets\}$ and $\{targets\}$ are $\{targets\}$ and $\{targets\}$ and $\{targets\}$ are $\{targets\}$ are $\{targets\}$ and $\{targets\}$ are $\{tar$

Big ideas from data pipelining can help improve data handling in projects of any size of complexity

Architecture	Store data at different stages for reproducibility and efficiency
Extract	Use automated tools to accelerate tedious extraction processes
Load	Consider Parquet files for resilient type-safe file storage and sharing
Transform	Apply data modeling techniques to increase flexibility and clarity
Test	Test intermediate artifacts to detect hidden failures at their root cause

Adopt automated tooling to ensure all steps of processing stay in sync

Orchestrate

Thank you!