6g. Optical Properties of Metals

GEORG HASS

U.S. Army Electronics Command, Night Vision Laboratory

LAWRENCE HADLEY

Colorado State University

The optical properties of metals are usually characterized by two parameters, the index of refraction n and the extinction coefficient k. The refractive index is defined as the ratio of the phase velocity of light in vacuum to the phase velocity of light in the material. The extinction coefficient is related to the exponential decay of the wave as it passes through the medium. Both of these parameters are contained in the equation for the propagation of a wave in an absorbing medium:

$$E = E_0 e^{-2\pi k x/\lambda_0} e^{-2\pi i (nx/\lambda_0 - rt)}$$

where E_0 is the amplitude of the wave measured at the point x=0 in the medium, E is the instantaneous value of the electric vector measured at a distance x from the first point and at some time t, ν is the frequency of the source, and λ_0 is the wavelength in vacuum. The two parameters n and k (called the optical "constants," even though they vary strongly with frequency) can be combined to give a complex index of refraction N=n-ik. It should be noted that in much of the older literature the complex index of refraction is written as $N=n(1-i\kappa)$. Consequently, the k used here will equal the $n\kappa$ which is found tabulated in many places elsewhere. This κ is called the absorption index.

In much of the current literature the real and imaginary parts of the complex dielectric constant are given instead of the index of refraction and the extinction coefficient. They are related through the following equations

$$\epsilon = \epsilon_1 - i\epsilon_2 = N^2 = n^2 - k^2 - 2ink$$

A second point on which some confusion has arisen in the literature is that of the absorption coefficient α , which appears in the familiar equation $I = I_0 e^{-\alpha x}$. The absorption coefficient α is related to the extinction coefficient by $\alpha = 4\pi k/\lambda_0$. The use of the above absorption equation implies, however, that the intensities I and I_0 are to be measured within the absorbing medium and that the total thickness of the medium is sufficiently great that there are no interference effects arising from multiple reflection.

When light is reflected from a metal surface, it experiences a phase shift which is a function of the angle of incidence and the state of polarization of the incident light. If r_p and r_s represent respectively the amplitude ratios of the reflected electric vector to the incident electric vector for light polarized parallel and perpendicular to the plane of incidence, then

$$\frac{r_p}{r_s} = \frac{|r_p|e^{i\beta_p}}{|r_s|e^{i\beta_s}} = e^{i\Delta} \tan \psi$$

It may be shown that the phase angle Δ and the azimuth angle ψ are related to the refractive index and the extinction coefficient for a particular angle of incidence ϕ_1 by the following equations

$$\frac{r_{1p}}{r_{1s}} = \frac{|r_{1p}|e^{i\beta_{p}}}{|r_{1s}|e^{i\beta_{p}}} = e^{i\Delta} \tan \psi$$

$$n^{2} - k^{2} = n_{1}^{2} \sin^{2} \phi_{1} \left\{ 1 + \frac{\tan^{2} \phi_{1}(\cos^{2} 2\psi - \sin^{2} 2\psi \sin^{2} \Delta)}{(1 + \sin 2\psi \cos \Delta)^{2}} \right\}$$

$$nk = \frac{n_{1}^{2} \sin^{2} \phi_{1} \tan^{2} \phi_{1} \sin 2\psi \cos 2\psi \sin \Delta}{(1 + \sin 2\psi \cos \Delta)^{2}}$$

where n_1 is the refractive index of the incident medium. Since these angles are relatively easily measured quantities, these equations form the basis of several of the methods used to determine the optical constants of metals. Reference 1 also lists a number of other methods for these determinations.

Since reflection methods are used in determining the constants, they are strongly dependent on the characteristics of the metallic surface. These characteristics vary considerably with the chemical and mechanical treatment. Accordingly, there has always been a certain degree of controversy on the subject of the optical constants of metals. Since the oldest measurements were made, there has been considerable development in the preparation of metallic surfaces by evaporation in a vacuum. The properties of such surfaces are frequently quite different from those of surfaces of bulk metals prepared by polishing. By no means all the metallic constants have been determined on such freshly prepared surfaces.

It is also well known that the presence of an extremely thin surface film on a metal will significantly alter the values of the phase and azimuth angles, making ellipsometric measurements subject to some difficulties. The appropriate corrections to be made in the presence of such surface films are given in ref. 2.

The relationships existing among n and k and the reflectance, transmittance, and phase shift are given here for several cases of interest. Since the properties of an absorbing dielectric material can also be expressed by a complex index N = n - ik, the following equations have general application.

Case I. Reflection at the boundary between two homogeneous, isotropic massive media, the one a dielectric of refractive index n_0 , which is assumed to be the medium of incidence, and the other an opaque absorbing medium whose complex refractive index will be denoted by $N_1 = n_1 - ik_1$:

a. Intensity reflectance (normal incidence):

$$R = \frac{(n_0 - n_1)^2 + k_1^2}{(n_0 + n_1)^2 + k_1^2}$$
 (6g-1)

b. Phase change on reflection (normal incidence):

$$\rho = \tan^{-1} \frac{2n_0 k_1}{n_0^2 - n_1^2 - k_1^2}$$
 (6g-2)

Case II. Reflection, transmission, and absorption of light by a thin absorbing film N_1 of true thickness h_1 surrounded by homogeneous, isotropic, massive media, the incident medium being a dielectric of refractive index n_0 and the emergent medium being an absorbing medium whose complex refractive index is given by $N_2 = n_2 - ik_2$:

$$\begin{array}{c|c}
n_0 & N_1 & N_2 \\
\hline
\text{Incident} & \leftarrow h_1 \rightarrow \\
\hline
\end{array}$$

a. Intensity reflectance (normal incidence):

$$R = \frac{a_1 e^{\sigma} + a_2 e^{-\sigma} + a_3 \cos \nu + a_4 \sin \nu}{b_1 e^{\sigma} + b_2 e^{-\sigma} + b_3 \cos \nu + b_4 \sin \nu}$$
 (6g-3)

where:

$$a_{1} = [(n_{0} - n_{1})^{2} + k_{1}^{2}][(n_{1} + n_{2})^{2} + (k_{1} + k_{2})^{2}]$$

$$a_{2} = [(n_{0} + n_{1})^{2} + k_{1}^{2}][(n_{1} - n_{2})^{2} + (k_{1} - k_{2})^{2}]$$

$$a_{3} = 2\{[n_{0}^{2} - (n_{1}^{2} + k_{1}^{2})][(n_{1}^{2} + k_{1}^{2}) - (n_{2}^{2} + k_{2}^{2})] + 4n_{0}k_{1}(n_{1}k_{2} - n_{2}k_{1})\}$$

$$a_{4} = 4\{[n_{0}^{2} - (n_{1}^{2} + k_{1}^{2})](n_{1}k_{2} - n_{2}k_{1}) - n_{0}k_{1}[(n_{1}^{2} + k_{1}^{2}) - (n_{2}^{2} + k_{2}^{2})]\}$$

$$\sigma = \frac{4\pi k_{1}h_{1}}{\lambda_{0}} \qquad \lambda_{0} = \text{vacuum wavelength}$$

$$\nu = \frac{4\pi n_{1}h_{1}}{\lambda_{0}}$$

$$b_{1} = [(n_{0} + n_{1})^{2} + k_{1}^{2}][(n_{1} + n_{2})^{2} + (k_{1} + k_{2})^{2}]$$

$$b_{2} = [(n_{0} - n_{1})^{2} + k_{1}^{2}][(n_{1} - n_{2})^{2} + (k_{1} - k_{2})^{2}]$$

$$b_{3} = 2\{[n_{0}^{2} - (n_{1}^{2} + k_{1}^{2})][(n_{1}^{2} + k_{1}^{2}) - (n_{2}^{2} + k_{2}^{2})] - 4n_{0}k_{1}(n_{1}k_{2} - n_{2}k_{1})\}$$

$$b_{4} = 4\{[n_{0}^{2} - (n_{1}^{2} + k_{1}^{2})](n_{1}k_{2} - n_{2}k_{1}) + n_{0}k_{1}[(n_{1}^{2} + k_{1}^{2}) - (n_{2}^{2} + k_{2}^{2})]\}$$

b. Phase change on reflection (normal incidence):

$$\rho = \tan^{-1} \frac{c_1 c^{\sigma} + c_2 e^{-\sigma} + c_3 \cos \nu + c_4 \sin \nu}{d_1 e^{\sigma} + d_2 e^{-\sigma} + d_3 \cos \nu + d_4 \sin \nu}$$
 (6g-4)

where

$$c_{1} = 2n_{0}k_{1}[(n_{1} + n_{2})^{2} + (k_{1} + k_{2})^{2}]$$

$$c_{2} = -2n_{0}k_{1}[(n_{1} - n_{2})^{2} + (k_{1} - k_{2})^{2}]$$

$$c_{4} = 8n_{0}n_{1}[n_{1}k_{2} - n_{2}k_{1}]$$

$$c_{4} = -4n_{0}n_{1}[(n_{1}^{2} + k_{1}^{2}) - (n_{2}^{2} + k_{2}^{2})]$$

$$d_{1} = [n_{0}^{2} - (n_{1}^{2} + k_{1}^{2})][(n_{1} + n_{2})^{2} + (k_{1} + k_{2})^{2}]$$

$$d_{2} = [n_{0}^{2} - (n_{1}^{2} + k_{1}^{2})][(n_{1} - n_{2})^{2} + (k_{1} - k_{2})^{2}]$$

$$d_{3} = 2[n_{0}^{2} + (n_{1}^{2} + k_{1}^{2})][(n_{1}^{2} + k_{1}^{2}) - (n_{2}^{2} + k_{2}^{2})]$$

$$d_{4} = 4[n_{0}^{2} + (n_{1}^{2} + k_{1}^{2})](n_{1}k_{2} - n_{2}k_{1})$$

The symbols σ and ν have the same definitions as in Eq. (6g-3).

c. Intensity transmittance (normal incidence): This denotes the percentage of incident intensity which is transmitted into the final medium.

$$T = \frac{16n_0n_2(n_1^2 + k_1^2)}{b_1e^{\sigma} + b_2e^{-\sigma} + b_3\cos\nu + b_4\sin\nu}$$
 (6g-5)

where b_1 , b_2 , b_3 , b_4 , σ , and ν are defined as in Eq. (6g-3). Alternatively, one can write

$$T = (1 - R)\Psi \tag{6g-6}$$

$$\Psi = \frac{4n_2(n_1^2 + k_1^2)}{g_1e^{\sigma} + g_2e^{-\sigma} + g_3\cos\nu + g_4\sin\nu}$$

$$g_1 = \frac{b_1 - a_1}{4n_0} = n_1[(n_1 + n_2)^2 + (k_1 + k_2)^2]$$

$$g_2 = \frac{b_2 - a_2}{4n_0} = -n_1[(n_1 - n_2)^2 + (k_1 - k_2)^2]$$

$$g_3 = \frac{b_3 - a_3}{4n_0} = -4k_1(n_1k_2 - n_2k_1)$$

$$g_4 = \frac{b_4 - a_4}{4n_0} = 2k_1[(n_1^2 + k_1^2) - (n_2^2 + k_2^2)]$$

d. Intensity absorptance (normal incidence):

$$A = (1 - R - T) - (1 - R)(1 - \Psi)$$
 (6g-7)

This is the percentage of incident intensity which is absorbed by the film. In the simpler case where the emergent medium is a nonabsorbing material of refractive index n_2 , the formulas for R, T, and Ψ can be obtained from Eqs. (6g-3) and (6g-6) by setting $k_2 = 0$.

Case III. The effect of a nonabsorbing surface film of refractive index n_1 and thickness h_1 on the reflectance of an opaque metal of complex index $N_2 = n_2 - ik_2$, where n_0 is the index (real) of the incident medium:

a. Intensity reflectance (normal incidence):

$$R = \frac{r_1^2 + r_2^2 - 2r_1r_2\cos(\nu - \delta)}{1 + r_1^2r_2^2 - 2r_1r_2\cos(\nu - \delta)}$$
 (6g-8)

where

$$r_1 = \frac{n_1 - n_0}{n_1 + n_0} \qquad r_2 = \left[\frac{(n_2 - n_1)^2 + k_2^2}{(n_2 + n_1)^2 + k_2^2} \right]^{\frac{1}{2}}$$

$$\nu = \frac{4\pi n_1 h_1}{\lambda_0} \qquad \delta = \tan^{-1} \left(\frac{2n_1 k_2}{n_1^2 - n_2^2 - k_2^2} \right)$$

δ is the absolute phase change at the dielectric-metal boundary.

A minimum value of reflectance occurs when $\nu - \delta = 2m\pi$, where m is an integer:

$$R_{\min} = \frac{(r_1 - r_2)^2}{(1 - r_1 r_2)^2}$$
 (6g-9)

A maximum value of reflectance occurs when $\nu - \delta = (2m - 1)\pi$:

$$R_{\text{max}} = \frac{(r_1 + r_2)^2}{(1 + r_1 r_2)^2}$$
 (6g-10)

Case IV. The reflectance of a metal can be increased by the addition of a pair of dielectric layers to its surface (see ref. 3):

By using pairs of dielectric films with alternately low and high indices of refraction, mirror protection and reflectance enhancement over a rather broad spectral region can be achieved. To obtain the maximum reflectance increase with a low-index-high-index film pair, the metal surface must first be coated with low-index material

until its reflectance decreases to a minimum at the wavelength at which highest reflectance is desired. Then the high-index material must be applied until the reflectance reaches a maximum. For further reflectance increase, more film pairs must be added in the same sequence. Under these conditions, the low-index film adjacent to the metal is effectively $\lambda/4$, and all other films are truly $\lambda/4$ thick. The optical thickness of the effectively $\lambda/4$ -thick film on the metal surface can be determined from the following equation:

$$n_1 t_1 = \frac{\lambda}{4} \frac{\delta}{180^{\circ}} \tag{6g-11}$$

where δ is the absolute phase change at the dielectric-metal boundary, as given by

$$\tan \delta = \frac{2n_1k}{n_1^2 - n^2 - k^2} \tag{6g-12}$$

where n_1 is the refractive index of the low-index dielectric film, and n and k are the constants for the mirror material.

For normal incidence the maximum reflectance of a metal with optical constants n and k when coated with low-index n_L -high-index n_H film pairs is given by the following expression:

$$R = \left| \frac{1 - Y^{zz}Z}{1 + Y^{zz}Z} \right|^{z} \tag{6g-13}$$

where

$$Y = \frac{n_H}{n_L} \qquad Z = n_L \left| \frac{1 + r_z}{1 - r_z} \right|$$

x is the number of film pairs, and

$$r_1 = \left(\frac{(n_L - n)^2 + k^2}{(n_L + n)^2 + k^2}\right)^{\frac{1}{2}}$$
 (6g-14)

For opaque coatings, the reflectances R, and R, and their dependence on angle of incidence i are given below. As before, the subscripts s and p refer to light polarized perpendicular and parallel to the plane of incidence. Here, the incident medium has refractive incidence of unity, and n and k are the values for the coating material. Normal incidence:

$$R_{*} = R_{p} = \frac{(n-1)^{2} + k^{2}}{(n+1)^{2} + k^{2}}$$
 (6g-15)

Reflectances as a function of angle of incidence i:

$$R_{*} = \frac{a^{2} + b^{2} - 2a\cos i + \cos^{2} i}{a^{2} + b^{2} + 2a\cos i + \cos^{2} i}$$
 (6g-16)

$$R_{s} = \frac{a^{2} + b^{2} - 2a \cos i + \cos^{2} i}{a^{2} + b^{2} + 2a \cos i + \cos^{2} i}$$

$$R_{p} = R_{s} \cdot \frac{a^{2} + b^{2} - 2a \sin i \tan i + \sin^{2} i \tan^{2} i}{a^{2} + b^{2} + 2a \sin i \tan i + \sin^{2} i \tan^{2} i}$$
(6g-17)

where

$$2a^{2} = [(n^{2} - k^{2} - \sin^{2}i)^{2} + 4n^{2}k^{2}]^{\frac{1}{2}} + (n^{2} - k^{2} - \sin^{2}i)$$

$$2b^{2} = [(n^{2} - k^{2} - \sin^{2}i)^{2} + 4n^{2}k^{2}]^{\frac{1}{2}} - (n^{2} - k^{2} - \sin^{2}i)$$

For unpolarized light with equal amplitudes of perpendicular and parallel components, the reflectance is

$$R = \frac{1}{2}(R_{\bullet} + R_{p}) \tag{6g-18}$$

A great deal of work remains to be done in this area. The following tables and graph include both old and new data on the optical constants and reflectance of metals as a function of wavelength. In recent years many of these values have been extended into the vacuum ultraviolet region, and in some cases, further into the infrared region.

Many of the values of refractive index and extinction coefficient given in these tables have been calculated from graphical values of the real and imaginary parts of the dielectric coefficient. In order to facilitate these calculations a computer program was written. Because of this it was not possible to maintain a uniform standard of usable significant digits. Where the computer was used, the data were computed to four digits beyond the decimal place. If some question exists as to the reliability of a particular datum, the original reference should be consulted.

References for Sec. 68

- 1. Heavens, O. S.: "Physics of Thin Films," G. Hass and R. Thun, eds., vol. 2, pp. 193-238, Academic Press. Inc., New York, 1964.
- Burge, D. K., and H. E. Bennett: J. Opt. Soc. Am. 54, 1428 (1964).
 Hass, G., and A. P. Bradford: J. Opt. Soc. Am. 44, 810 (1954).

OPTICS

Table 6g-1. Optical Constants of Metals

Metal	Wave- length,	Index of refraction			Re
<u> </u>	μm 	n	k	calculated	116
Aluminum, evaporated	0.010	0.99	0.0041	0.00003	1
	0.011		0.0051	j	-
	0.012	0.99	0.0068	İ	ļ
	0.014	0.55	0.0079		
	0.015	0.98	0.0076		
	0.016		0.0084		
	0.017	0.99	0.0038		l
	0.018 0.019	0.98	0.0043		
	0.020	0.97	0.0044		
	0.021	0.01	0.0048 0.0048		
	0.022		0.0052		
	0.023		0.0060		
	0.024	0.96	0.0064		
	0.025	•••••	0.0067		
	0.026 0.027	•••••	0.0074	İ	
-	0.028	•••••	0.0079 0.0084		
	0.029		0.0084		
	0.030	0.93	0.0096		
	0.0344	0.96	0.0095		2
	0.0376	0.943	0.0110		_
	0.0413	0.912	0.0125		
	0.0443	0.880	0.0141	l	
	0.0516	0.838 0.785	0.0159	1	
	0.0563	0.718	0.0182 0.0213		
	0.0620	0.635	0.0267		
	0.0652	0.580	0.0307		
	0.0689	0.520	0.0355		
	0.0729	0.445	0.0424	1	
	0.0775 0.0826	0.345 0.225	0.0632	1	
	0.0920	0.104	0.22	-	
	0.1032	0.033	0.58	i	
	0.0584	0.71	0.018		3
	0.735	0.455	0.043		•
	0.120 0.140	0.057	1.15	0.9019	4
•	0.140	0.065 0.080	1.43	0.9122	
	0.180	0.095	1.73	0.9231	
	0.200	0.110	2.20	0.9275	
	0.220	0.130	2.40	0.9261	
	0.240	0.160	2.53	0.9174	
	0.2200 0.240	0.14	2.35	0.918	5
	0.240	0.16 0.19	2.60	0.921	
	0.280	0.19	2.85 3.13	0.920 0.922	
	0.300	0.25	3.33	0.921	
	0.320	0.28	3.56	0.922	
	0.340	0.31	3.80	0.923	
	0.360 0.380	0.34	4.01	0.924	
		0.37	4.25	0.926	
	0.400 0.436	0.40 0.47	4.45 4.84	0.926 0.927	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

					·
Metal	Wave-	Index of	Extinction	Reflec-	D
Michai	length, μm	refraction n	coefficient k	tance calculated	Ref.
Aluminum evaporated (Cont.)	0.450	0.51	5.00	0.925	
	0.492	0.64	5.50	0.922	
	0.546	0.82	5.99	0.916	
	0.578 0.650	0.93	6.33	0.915 0.907	
	0.700	1.55	7.11	0.888	6, 7
	0.750	1.80	7.12	0.877	0, '
	0.800	1.99	7.05	0.864	
	0.850	2.08	7.15	0.863	
	0.900 0.950	1.96	7.70	0.885	
	2.0	1.75 2.3	8.50 16.5	0.912 0.968	8
	4.0	6.1	30.4	0.975	°
	6.0	10.8	42.6	0.978	
	8.0	17.9	55.3	0.979	
	$\begin{matrix} 10.0 \\ 12.0 \end{matrix}$	26.0	67.3	0.980	
Antimony, evaporated	0.0310	33.1 1.0291	78.0 0.2429	0.982 0.0143	9
•	0.0400	1.0055	0.3332	0.0269	
	0.0500	0.8194	0.1464	0.0162	
	0.0620	0.6976	0.1290	0.0373	
	0.0830 0.1000	0.4989	0.4109	0.1739	
	0.1140	0.6167	0.8316 1.0297	0.2612 0.3286	
	0.1240	0.5141	1.0697	0.4016	ļ
	0.1650	0.6694	1.3594	0.4223	Ì
	0.1950	0.6246	1.2728	0.4134	
	0.2180 0.2420	0.6805 0.6000	1.4328	0.4419	1
*	0.2820	0.4602	1.2083 1.5754	0.4030 0.6010	ĺ
Antimony, single crystal, optic axis	0.4000	1.1297	2.8768	0.6473	10
	0.4500	1.4972	2.9054	0.5920	
·	0.5000 0.5500	1.6031	3.1308	0.6542	
	0.6000	2.0620 2.6008	3.8797 4.1910	0.6623 0.6592	l
	0.6500	2.7296	4.2131	0.6551	
**	0.7000	2.7698	3.9714	- 0.6305	
·	0.8000 0.8500	2.9409	4.0803	0.6344	
·	0.8000	3.0463 3.2938	4.1689	0.6390	
	0.9500	3.2536	4.3415 4.2266	0.6466 0.6314	
	1.0000	3.8139	4.1165	0.6197	
	1.1000	3.9268	4.1255	0.6196	
	1.2000 1.3000	4.0621	4.0989	0.6170	
:	1.4000	4.4216 4.6672	4.1049 3.9853	0.6175 0.6111	
	1.5000	4.8446	3.9838	0.6127	
	1.6000	4.9338	3.9928	0.6142	
	1.8000 2.0000	5.1815	4.0432	0.6201	
j	2.2000	5.4148 5.8958	4.1737	0.6302	
	2.5000	6.3294	4.3082 4.2263	0.6433 0.64 6 3	
	3.0000	7.0784	4.3936	0.6652	
İ	3.5000	7.8361	4.2432	0.6738	
	4.0000 4.5000	7.9222 7.3412	3.9194	0.6663	
	¥.0000	1.0412	3.0649	0.6281	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal Wave- length, pm n Extinction Reflection to coefficient tank	3C-
μm ,	
μ in n k calculated calculates k calculates k	ated Ref.
Antimony, single crystal, optic axis 5.0000 6.8470 2.0447 0.58	0.5
5.5000 6.5086 4.0368 0.60	
6.0000 6.2512 3.3433 0.60	78
7 0000 0.0393 3.5235 0.616	06
7 5000	38
8 0000 5 0000 2.5500 0.630	34
8.5000 5.0797 5.0003 0.672 8.5000 5.6760 5.7849 0.718	
9.0000 5.2135 6.5407 0.77	
9.5000 5.0092 7.1967 0.772	1
Antimony, basal plane	9
0.4500 1.1146 2.528 0.617	
0.5000 1.3788 3.0824 0.636	3
0.5500 1.6696 3.5338 0.659	
0.6000 1.9499 3.7950 0.662	
0.6500 2.0179 3.7910 0.656	2
0.000	
0.8500 2.7040 0.090	
0.9000 2.8059 5.0964 0.7336	
0.9500 3.1582 5.1453 0.7113	
1.1000 3.3243 5.1138 0.7038	
1 2000 2 8540 0.7140	
1 3000 4 3000 0.7136	
1.4000 4.5459 5.6094 0.7078	
1.5000 4.6786 5.7175 0.7118	
5.1888 5.6854 0.7061	
1.8000 5.6637 5.8072 0.7139 2.0000 6.0180 6.1981 0.7254	1
2 2000 6 5000 0.7234	
2.5000	
3.0000 8.8769 6.9281 0.7560	•
3.3000 10.2871 6.3186 0.7541]
4.0000 11.1722 5.2362 0.7455 4.5000 11.2230 4.5888 0.7366	1
5 0000 11 0380 0.7300	
5.5000 10.5985 3.9911 0.7189	1
0.000 10.4824 3.6442 0.7111	
6.5000 10.2814 3.2875 0.7022 7.0000 10.2000 3.4075 0.7022	
7 5000 0 0001	1
8.0000 9.8931 3.7248 0.7014 9.8153 3.4843 0.6959	
8.5000 9.4542 3.8448 0.6952	
9.0000 9.0686 3.7602 0.6860	
9.5000 8.7140 3.8903 0.6817	ĺ
Antimony, evaporated.	
1.5 4.5 4.4 0.637	11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$egin{array}{c cccc} 3.0 & 6.8 & 4.9 & 0.679 \\ 4.0 & 7.8 & 5.0 & 0.694 \\ \hline \end{array}$	
5.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.000	

Table 6g-1. Optical Constants of Metals (Continued)

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)							
Metal	Wave- length, μm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.		
Antimony, evaporated (Cont.)	7.0 8.0	7.0 6.6	4.0 4.5	0.650 0.662			
	9.0	6.2	4.9	0.673			
	10.0	5.7	5.6	0.701			
	11.0 12.0	5.1 4.3	6.3	0.735			
Antimony, bulk	1.0000	2.8000	7.0 4.5000	0.777 0.6771	12		
• • • • • • • • • • • • • • • • • • • •	2.0000	3.4000	4.4000	0.6488	12		
	3 0000	4.0000	4.3000	0.6321			
	4.0000	4.4000	4.1000	0.6171			
	5.0000 6.0000	4.8000 5.0000	4.0000 4.0000	0.6132			
	7 0000	5.1000	3.9000	0.6154 0.6108	i		
	8.0000	4.9000	3.9000	0.6082			
	9.0000	4.4000	3 .8000	0.5963			
	10.0000 11.0000	2.0000 2.0000	3.9000 5.0000	0.6696 0.7647			
	12.0000	6.0000	9.0000	0.7047			
Barium, evaporated	0.1440	0.7400	0.1100	0.0262	13		
	0.1550	0.6300	0.2000	0.0656			
	0.1650 0.1770	0.5700	0.2900	0.1055			
	0.1900	0.5300 0.5300	0.4300 0.5300	0.1607 0.1914			
	0.2070	0.5400	0.6300	0.2198			
	0.2250	0.5900	0.7300	0.2290			
	0.2480	0.6100	0.8700	0.2714			
	0.2750 0.3100	0.6900 0.7700	0.9300 1.0900	0.2583 0.2872			
Barium, evaporated	0.4040	0.82	1.0900	0.264	14		
	0.4358	0.78	1.10	0.287			
	0.4916	0.86	1.26	0.318			
	0.5461 0.5780	0.89 0.88	1.51 1.52	0.392 0.398			
·	0.3130	0.76	7.84	0.338	15		
	0.3650	0.72	7.10	0.347			
-	0.4047	0.69	7.12	0.425			
	0.4358 0.4916	0.72 0.81	2.12 2.19	0.454 0.471			
	0.5461	0.90	2.19	0.520			
n	0.5780	0.90	2.32	0.548			
Beryllium, evaporated	0.4046	2.48	2.20	0.415	14		
	0.4358 0.4916	2.56 2.64	2.23 2.25	0.420 0.423			
	0.5461	2.66	2.36	0.423			
	0.5780	2.64	2.27	0.426			
	0.8	2.7	2.8	0.498	16		
	0.9 1.2	$egin{array}{c} 2.7 \ 2.4 \end{array}$	2.9 3.5	0.511 0.597			
	1.5	2.4	3.3 4.7	0.397			
	2.0	2.5	5 .8	0.782			
	2.5	2.75	7.25	0.835			
	3 3.5	3.45 3.9	9.0 10.8	0.863 0.889			
	4	5.0	12.2	0.892			
	5	6.85	14.3	0.897			
ļ	6	8.0	15.4	0.899			
	<u>-</u>		· · · · · · · · · · · · · · · · · · ·				

OPTICS

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

TABLE 0g-1. OPTIC	1	THE OF ME	IALS (Conti	nuea)	
Metal	Wave- length, µm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.
Beryllium, evaporated (Cont.)	7	9.1	17.1	0.000	
	8	11.0	19.4	0.908 0.915	
	9	11.4	18.6	0.909	1
	10	11.9	20.0	0.916	
Bismuth, cleaved, single crystal	0.350	11.9	21.1	0.922	
crown out, single crystal	0.370	0.82	2.57	0.669	17
	0.390	0.93	2.78 3.00	0.690 0.708	
÷	0.410	0.99	3.17	0.708	
	0.430	1.09	3.01	0.675	
i	0.440	1.17	3.30	0.700	
	0.450	1.28	3.38	0.692	
·	0.460 0.470	1.25	3.41	0.700	
	0.490	1.11	2.87 2.94	0.652	
	0.510	1.18	2.93	0.661 0.646	
	0.530	1.19	3.03	0.659	
į	0.550	1.24	3.17	0.671	
	0.570 0.589	1.28	3.27	0.678	
	0.610	1.35 1.37	3.36	0.679	
	0.630	1.42	3.52 3.60	0.696 0.698	
İ	0.650	1.46	3.71	0.705	
Bismuth, single crystal, optic axis.	0.670	1.52	3.65	0.691	
dameth, single crystal, optic axis.	0.4000	1.4477	2.2794	0.4824	10
	0.4500 0.5000	1.6082	2.4872	0.5048	
	0.5500	1.7412 2.1015	2.6705 2.8313	0.5245	
	0.6000	2.0230	3.0647	0.5234 0.5633	
	0.6500	2.0542	3.3346	0.5982	
	0.7000	2.2682	3.9679	0.6567	
	0.7500 0.8000	2.6717	4.4540	0.6793	
	0.8500	2.8324 3.2570	4.5191 4.3598	0.6773 0.6491	
	0.9000	3.4014	4.4687	0.6542	
	0.9500	3.7072	4.3294	0.6374	
	1.0000	4.0801	4.3872	0.6378	
	1.1000 1.2000	4.1849	4.5402	0.6476	
	1.3000	4.6152 5.0398	4.6368 4.5934	0.6519	
	1.4000	5.4377	4.5791	0.6499 0.6515	
	1.5000	5.8069	4.6066	0.6562	
	1.6000	6.1789	4.4021	0.6515	
	1.8000 2.0000	6.6576	4.1381	0.6485	
·	2.2000	7.0147 8.0032	3.8348 3.3987	0.6446	
	2.5000	7.6241	2.8331	0.6543 0.6299	
	3.0000	7.6813	2.1220	0.6153	
	3.5000	7.5552	1.4427	0.5985	
	4.0000	7.3769 7.3832	1.0574	0.5861	
	5.0000	7.3832 7.4842	1.5847 2.1245	0.5943	
	5.5000	7.6034	1.8741	0.6086 0.6077	
	6.0000	7.5045	1.7656	0.6021	
	6.5000 7.0000	7.6564	2.5338	0.6235	
		7.5650	2.2868	0.6150	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

			ALS (Contin	· · · · · · · · · · · · · · · · · · ·	
	Wave-	Index of	Extinction	Reflec-	
Metal	length,	refraction	coefficient	tance	Ref.
	μm	n 	k	calculated	
Bismuth, single crystal optic axis.	7.5000	7 4012	2.1492	0.6094	
(Cont.)	8.0000	7.4913 7.5900	2.3254	0.6166	
(00)	8.5000	7.6510	2.4572	0.6216	
	9.0000	7.7011	2.1231	0.6160	
	9.5000	7.6220	1.8696	0.6083	
	10.0000	7.4470	2.0141	0.6050	
Bismuth, basal plane	0.4000	1.2015	2.5384	0.5743	
	0.4500	1.4371	2.7139	0.5679	
	0.5000	1.5195	2.8300	0.5766	
	0.5500 0.6000	1.7009	3.1453	0.6042	ł
	0.6500	1.7896 1.7655	3.4645 3.8232	0.6382	
	0.7000	2.1909	4.3589	0.6997	
	0.7500	2.1788	4.7273	0.7314	
	0.8000	2.6054	4.0088	0.7264	
	0.8500	3.0036	5.2270	0.7229	ļ
	0.9000	3.2281	5.3592	0.7229	1
	0.9500	3.7049	5.4522	0.7143	
	1.0000	3.9147	5.2750	0.6987	
	1.1000	4.2638	5.6991	0.7166	ŀ
	1.2000	4.8698	5.7805	0.7130	
	1.3000	5.3944	5.8394	0.7123	
	1.4000 1.5000	5.9624 6.4591	5.9624	0.7162	ŀ
	1.6000	7.0329	5.8754 5.7586	0.7134 0.7120	
	1.8000	7.8028	5.2994	0.7120	İ
	2.0000	8.2569	4.8142	0.6966	
	2.2000	8.5265	4.5388	0.6937	
	2 5000	8.7956	3.7633	0.6805	
	3.0000	8.7609	3.0419	0.6647	
	3.5000	8.7156	2.8742	0.6604	1
	4.0000	8.5067	2.0161	0.6397	
	4.5000	8.8043	2.3909	0.6542	
	5.0000	8.7850	2.1855	0.6504	
	5.5000 6.0000	8.7449 8.9090	2.0183	0.6468	
*	6.5000	8.7959	2.6210 2.2511	0.6608	
	7.0000	8.8615	1.3880	0.6426	1
	7.5000	8.8662	1.0997	0.6401	
	8.0000	8.8560	1.9309	0.6488	
	8.5000	8.8718	2.0514	0.6500	
	9.0000	8.6748	1.8848	0.6428	
	9.5000	8.6008	2.2965	0.6470	
	10.0000	8.6907	2.3934	0.6511	1
Bismuth, polycrystalline bulk	1.0000	1.700	3.3000	0.6260	12
	2.0000	2.0000	3.2000	0.5842	1
	3.0000	2.1000	3.3000	0.5902	
	4.0000	2.2000	3.4000	0.5963	1
	6.0000	2.3000	3.4000 3.5000	0.5902	1
	7.0000	2.4000	3.6000	0.6085	
	8.0000	2.5000	3.7000	0.6145	1
	9.0000	2.5000	3.9000	0.6358	
	10.0000	2.6000	4.0000	0.6409	1.
	11,0000	2.9000	4.1000	0.6377	
	12,0000	3.8000	4.3000	0.6340	1
	13.0000	5.6000	4.4000	0.6440	ł

OPTICS

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, μm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.
Bismuth, bulk	1.00	4.5 5.0	5.0	0.674	18
	1.41	5.6	4.9	0.667	
	1.88	6.6	3.7	0.654 0.631	
	2.76	7.9	2.7	0.635	
	3.55	8.6	1.2	0.632	
	5.01	8.2	1.5	0.623	
Cadmium, single crystal, optic axis	5.68	7.6	2.2	0.614	
outment, single crystal, optic axis	0.2400 0.2600	0.6084 0.3856	1.7917	0.5802	19
	0.2800	0.3679	1.4521 1.4406	0.6171	
	0.3000	0.3598	1.5425	0.6271 0.6596	
	0.3200	0.3990	1.6791	0.6658	
	0.3400	0.4393	1.7757	0.6637	
	0.3600	0.5085	1.9075	0.6561	
	0.3800	0.6132	2.0140	0.6316	
	0.4000 0.4200	0.7135 0.7846	2.1585	0.6242	
	0.4400	0.9026	2.2750 2.3653	0.6246	
	0.4600	0.9969	2.5127	0.6082 0.6129	
	0.4800	1.1035	2.6959	0.6225	
	0.5000	1.1887	2.9023	0.6401	
	0.5200	1.2001	3.0332	0.6581	
	0.5400	1.3023	3.1521	0.6581	
	0.5600 0.5800	1.4213	3.4088	0.6748	
	0.6000	1.5736 1.9777	3.7049 4.0350	0.6907	
	0.6100	2.0728	4.0910	0.6854 0.6833	
	0.6500	2.3704	4.6743	0.0833	
	0.7000	1.9733	4.9663	0.7644	
	0.7500	2.0713	4.9245	0.7540	
	0.8000 0.8500	2.3097	4.8492	0.7320	
	0.9000	2.2939 1.9543	4.7605	0.7262	
**	0.9500	2.0371	4.4440 4.1725	0.7255 0.6941	
	1.0000	2.5603	4.5503	0.6932	
	1.0500	3.0715	4.8202	0.6914	
	1.1000	3.2299	4.5466	0.6650	
	1.1500	3.2022	4.2736	0.6434	
	1.2000 1.2500	3.4700 2.7996	3.8731	0.6032	
	1.3000	2.8810	3.9291 4.2190	0.6252	
	1.5000	2.1558	4.0009	0.6679	
	1.6000	1.8758	5.2885	0.7930	
	1.7000	1.5254	6.1852	0.8633	
	1.8000	1.7290	6.1424	0.8469	
admium, basal plane	0.2400	1.7071 0.5397	6.7952	0.8724	
	0.2600	0.3397	1.6677 1.5678	0.5810	
	0.2800	0.2992	1.5873	0.7134	
	0.3000	0.2810	1.6550	0.7434	
	0.3200	0.3059	1.7982	0.7523	
	0.3400	0.4123	1.6492	0.6502	
	0.3600	0.4206	2.0801	0.7348	
	0.4000	0.4885 0.5323	2.2313 2.3671	0.7284	
į	3.1000	0.0020	۳.30/1	0.7322	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, μm	Index of refraction n	Extinction coefficient	Reflec- tance calculated	Ref.
Cadmium, basal plane (Cont.) Cadmium, evaporated	-		•		20
	0.1600 0.1700 0.1800 0.1900	0.4400 0.4200 0.4100 0.4000	0.7200 0.8100 0.9100 1.0000	0.3210 0.3714 0.4177 0.4595	

OPTICS

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

	Wave-	Index o	of Extincti	2 7 2	T
Metal	length, µm	refraction			Ref
Cadmium, evaporated (Cont.)	0.2000	0.4000	1 1000		
, , , , , , , , , , , , , , , , , , , ,	0.2000	0.1000		9.1000	
	0.2200				
	0.2300	,			
	0.2400	0.4000		7.0010	
	0.2500			0.6306	
	0.2600		1.6900	0.6615	
	0.2700		1.8000	0.6863	
Cadmium, bulk	0.2800	0.4100	000	0.7261	1
Calcium, evaporated	0.4046	1.13 0.34	5.01	0.847	21
	0.4358	0.34	1.56	0.678	24
	0.4916	0.29	1.64	0.734	
;	0.5461	0.29	1.92 2.16	0.783	
Continue	0.5780	0.29	2.10	0.828	1
Cerium, evaporated	0.4358	1.41	1.97	0.834	1
	0.5461	1.74	2.39	0.418	14
Cesium, evaporated	0.5780	1.91	2.58	0.495	
costum, evaporated	0.2536	0.916	0.143	0.007	22
	0.3126	0.827	0.174	0.018	
	0.3650	0.671	0.233	0.057	1
	0.4047 0.4358	0.540	0.320	0.127	
	0.5461	0.425 0.278	0.438	0.235	
	0.5780	0.264	0.950	0.561	
Chromium, evaporated	0.133	0.83	0.35	0.631	00
İ	0.145	0.84	0.50	0.044	23
	0.156	0.90	0.54	0.077	
i	0.169	1.22	0.75	0.111	
î	0.178	1.68	0.92	0.163	l
	0.193 0.205	2.23	1.17	0.244	}
hromium, bulk	0.203	2.46	1.37	0.289	
obalt, evaporated	0.1130	2.97 1.0748	4.85	0.698	21
	0.1240	1.0592	0.8094 0.8497	0.1332	25
	0.1380	1.0512	0.8497	0.1462	
1	0.1550	1.0252	1.0729	0.1775 0.2193	
	0.1770	1.0169	1.2783	0.2866	
	0.2070	1.1542	1.5595	0.3472	
	0.2480	1.2683	1.7346	0.3778	
	0.3100 0.3870	1.3477	2.0776	0.4515	
	0.6200	1.5693 2.1726	2.6763	0.5439	
	1.2400	3.8513	4.0274	0.6694	
	2.4800	4.8379	6.2316 9.5082	0.7530	
·	0.4400	1.9000	3.1800	0.8445 0.5897	0.0
	0.5400	2.5000	3.7600	0.6210	26
· 1	0.6600	3.0000	4.1200	0.6361	
1	0.8100	3.5400	4.5900	0.6603	
	1.0300	3.8500	5.2700	0.6998	
	1.6700	4.4000 4.6100	5.7200	0.7156	
	2.1600	5.0000	5.8600	0.7198	
balf, polycrystalline	2.5000	5.1000	6.0600 7.8000	0.7250	07
	3.0000	4.8800	8.4600	0.7919 0.8161	27
	4.0000	4.7000		A.0101	

Table 6g-1. Optical Constants of Metals (Continued)

TABLE 0g-1. OFFIC	AL CONSTAI	NTS OF MET	ALS (Contin	rued)	
Metal	Wave- length, µm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.
Cobalt, polycrystalline (Cont.)	4.5000	4.7800 4.7000	12.6000 14.7000	0.9005 0.9244	
	5.5000	4.7600	15.2000	0.9356	1
	6.0000	5.0000	17.5000	0.9416	
	6.5000	5.2000	19.3000	0.9494	
	7.0000 8.0000	5.4000	20.9000	0.9548	
	9.0000	5.8000 6.56	24.0000 27.200	0.9627 0.968	
	10.0000	7.1000	29.5000	0.9697	
	11.000	8.1000	32.6000	0.9717	
	12.0000	9.0000	34.7000	0.9724	
	14.0000 15.0000	10.2000	38.0000	0.9740	ļ
	17.0000	13.5000	40.5000 45.0000	0.9750 0.9758	
	19.0000	14.9000	49.0000	0.9775	
	20.0000	15.2000	51.7000	0.9793	
Copper, bulk	0.3650	1.0719	2.0710	0.5004	28
	0.4050 0.4360	1.0769 1.0707	2.2890	0.5491	
	0.5000	1.0308	2.4610 2.7843	0.5860 0.6528	
	0.5500	0.7911	2.7177	0.7013	
	0.5780	0.3250	2.8923	0.8716	
	0.6000	0.1491	3.2867	0.9508	
	0.6500 0.7500	0.1074	3.9104	0.9740	
	1.0000	0.1034 0.1471	4.8847 6.9334	0.9835 0.9881	
Copper, single crystal	0.4400	1.1070	2.5565	0.5965	29
	0.4600	1.0942	2.6320	0.6131	
	0.4800	1.0618	2.7124	0.6341	
	0.5000 0.5200	1.0836 1.0438	2.7684 2.7784	0.6390	
	0.5400	0.9324	2.7348	0.6490 0.6674	
•	0.5600	0.6470	2.7200	0.7440	
	0.5800	0.2805	2.9764	0.8931	
	0.6000	0.1360	3.3464	0.9565	
	0.6200 0.6400	0.1040 0.0972	3.6525 3.9114	0.9714 0.9765	
	0.6600	0.0897	4.0692	0.9798	
Copper, evaporated	0.450	0.87	2.20	0.583	6, 7
	0.500	0.88	2.42	0.625	
	0.550 0.600	0.756	2.462	0.669	31
	0.650	0.186 0.142	2.980 3.570	0.928 0.960	
	0.700	0.150	4.049	0.966	
	0.750	0.157	4.463	0.970	
•	0.800	0.170	4.840	0.973	
	0.8 50 0.900	0.182	5.222	0.975	
	0.950	0.190 0.197	5.569 5.900	0.977 0.978	
	1.000	0.197	6.272	0.981	
	5.0	2.92	27.45	0.985	32
	1.35	0.45	7.81	0.971	33
	1.69 2.28	0.58 0.82	9.96 13.0	0.977	
	3.00	1.22	17.1	0.981 0.984	
	3.4	1.53	20.3	0.985	
			<u> </u>		

OPTICS

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, µm	Index of refraction n	Extinction coefficient k	Reflec- tance calculated	Ref
Copper, evaporated (Cont.)	4.87	1.94 2.86	23.1 28.9	0.986 0.987	
	5.8	3.71	34.6	0.988	1
•	7.0	5.25	40.7	0.988	1
	8.35	5.79 7.28	43.2 49.2	0.988	
	9.6	9.76	57.2	0.988 0.988	
	10.25	11.0	60.6	0.988	
	10.8 12.25	12.6	64.3	0.988	
	0.1025	15.5	71.9	0.989	_
	0.1113	0.95	0.70 0.73	0.098 0.115	84
	0.1215	0.95	0.78	0.113	
	0.1306	0.90	0.83	0.148	
	0.1392	1.00	0.91	0.165	
	0.1500	1.02 0.98	1.02	0.192	
	0.1700	0.98	1.04 1.12	$0.219 \\ 0.254$	
	0.1800	0.90	1.21	0.296	
	0.1900	0.88	1.36	0.335	
allium, liquid	0.2000 0.40	0.94	1.51	0.378	
	0.50	0.59 0.89	4.50 5.60	0.896 0.898	34
	0.60	1.25	6.60	0.897	
	0.70	1.65	7.60	0.898	
	0.80 0.87	2.09	8.50	0.898	
allium, thin solid film	0.87	2.40 0.9555	9.20	0.900	
	0.4400	1.0775	1.7897 1.9675	0.4561 0.4736	35
-	0.4600	1.1045	2.0688	0.4927	
	0.4800	1.1020	2.1643	0.5158	
	0.5000 0.5200	0.9737 0.8608	2.2645	0.5684	
	0.5400	1.0281	2.3582 2.4366	0.6184 0.5908	
	0.5600	1.3351	2.5578	0.5548	
	0.5800	1.5585	2.6436	0.5394	
·	0.6000 0.6200	1.6796 1.7059	2.6346	0.5242	
	0.6400	1.5447	2.4678 2.0943	0.4912 0.4311	
ermanium, evaporated	0.0490	0.8100	0.0300	0.0113	36
	0.0550	0.7600	0.0400	0.0191	50
	0.0580 0.0610	0.7200 0.6800	0.500	0.0273	
	0.0670	0.5700	0.0700 0.1200	0.0380 0.0804	
	0.0690	0.5300	0.1600	0.1042	
	0.0720	0.4800	0.1800	0.1362	
	0.0740	0.4500 0.4000	0.2600	0.1705	
	0.0800	0.3800	0.3600	0.2343	
	0.0840	0.3400	0.4800	0.3287	
	0.0870	0.3200	0.5900	0.3877	
	0.0920 0.1050	0.3100 0.3500	0.6500	0.4202	
	0.1030	0.3500	0.9100 1.0400	0.4718 0.4577	
	0.1610	0.5300	1.4600	0.5260	

:

AND A CALLE

The State of the S

Table 6g-1. Optical Constants of Metals (Continued)

TABLE 68-1. OFFICEL CONSTANTS OF METALS (Continued)								
Metal	Wave- length,	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.			
Germanium, single crystal	0.0540 0.0560 0.0590 0.0620 0.0650 0.0690 0.0730 0.0770 0.0830 0.0880 0.0950 0.1030 0.1133 0.1240	0.8400 0.8300 0.8100 0.7800 0.7300 0.6700 0.6300 0.6300 0.6800 0.7300 0.7300 0.8300	0.0900 0.0900 0.0900 0.1100 0.2000 0.3500 0.4400 0.6300 0.7600 0.8800 0.9600	0.0099 0.0110 0.0135 0.0190 0.0298 0.0526 0.0933 0.1199 0.1748 0.1964 0.2249 0.2341 0.2789	37			
Germanium, bulk	0.1240 0.365 0.405 0.430 0.465 0.49 0.52 0.545 0.58 0.60 0.63 0.655 0.68	0.8800 4.2 4.25 4.1 4.15 4.5 5.15 5.5 5.7 5.45 5.3 5.0	1.2900 2.6 2.2 2.2 2.27 2.3 2.25 2.15 1.8 1.25 0.85 0.70 0.55	0.3229 0.503 0.475 0.468 0.476 0.504 0.515 0.416 0.509 0.485 0.472 0.449	39			
-	0.250 0.310 0.370 0.400 0.430 0.490 0.540 0.620 0.700 0.900 1.100 1.300	1.7 2.47 2.63 2.71 3.32 4.19 4.28 4.66 4.63 4.17 4.17	1.35 1.58 1.35 1.20 1.99 2.57 2.40 1.65 0.95 0.47 0.43 0.36	0.245 0.245 0.320 0.299 0.287 0.413 0.501 0.492 0.465 0.432 0.396 0.379 0.375	40			
	0.124 0.138 0.155 0.177 0.190 0.207 0.255 0.247 0.258 0.269 0.281 0.295 0.310 0.354 0.413 0.442 0.477 0.516	0.94 0.92 0.94 1.00 1.07 1.27 1.54 1.63 1.74 2.06 3.18 3.94 3.94 4.00 4.15 4.12 4.27 4.71	0.87 1.10 1.37 1.74 2.00 2.38 2.47 2.88 3.15 3.61 4.26 3.45 2.88 2.42 1.88 1.87 2.00 2.00	0.168 0.219 0.219 0.287 0.321 0.354 0.417 0.419 0.501 0.526 0.508 0.544 0.598 0.647 0.513 0.484 0.466	41			

OPTICS

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

TABLE 0g-1. OPTIC	T CONSTA	NIS OF MET	TALS (Contr	nued)	
Metal	Wave- length, µm	Index of refraction n	Extinction coefficient	Reflectance calculated	Ref.
Germanium, bulk (Cont.)	0.562 0.619 0.826 1.24	5.15 5.30 4.64 4.27	1.83 0.90 0.20 0.05	0.446 0.474 0.477 0.422	
Germanium, evaporated	2.48 1.33 1.43 1.54	4.08	0.00 0.131 0.085	0.388	42
	1.67 1.82 2.00	4.50 4.45 4.40 4.35	0.061 0.040 0.036 0.03	0.405 0.401 0.396 0.392	
	2.22 2.50 0.4	4.29 4.26 2.3	0.02 0.02 2.8	0.387 0.384 0.509	43
	0.5 0.6 0.7 0.8	3.4 4.5 5.15	2.25 1.7 1.3	0.443 0.457 0.479	
	0.9 1.0 2.0	5.27 5.2 5.1 4.6	0.9 0.6 0.45	0.475 0.464 0.455	
	3.0 4.0 5.0	4.4 4.35 4.3			
	6.0 7.0 8.0 9.0	4.3 4.3 4.3 4.3			
Gold, evaporated	10.0 0.025 0.026	4.3 0.890 0.900	0.386 0.390	0.0433 0.0431	38
	0.027 0.028 0.029 0.030	0.906 0.910 0.910 0.906	0.392 0.396 0.400 0.407	0.0429 0.0433 0.0441	
	0.031 0.032 0.033	0.900 0.893 0.882	0.416 0.426 0.440	0.0459 0.0484 0.0512 0.0556	
•	0.034 0.035 0.036	0.867 0.855 0.849	0.453 0.470 0.490	0.0604 0.0661 0.0719	
÷	0.037 0.038 0.039 0.040	0.846 0.850 0.865 0.894	0.512 0.535 0.555 0.570	0.0779 0.0832 0.0862 0.0859	
	0.041 0.042 0.043	0.925 0.940 0.942	0.572 0.570 0.562	0.0825 0.0803 0.0781	
	0.044 0.045 0.046 0.047	0.935 0.910 0.870 0.855	0.550 0.542 0.540 0.548	0.0758 0.0766 0.0814 0.0859	
	0.048 0.049 0.050	0.846 0.846 0.850	0.565 0.600 0.645	0.0839 0.0920 0.1018 0.1142	
	0.051	0.860	0.695	0.1275	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, µm	Index of refraction	Extinction coefficient k	Reflec- tance calculated	Ref.
Gold, evaporated (Cont.)	0.052	0.872	0.740	0.1392	-
Join, evaporated (Com.)	0.053	0.890	0.795	0.1532	
	0.054	0.915	0.825	0.1582	
	0.055	0.950	0.840	0.1571	
	0.056	0.985	0.848	0.1544	
	0.057	1.022	0.850	0.1503	
	0.058	1.055	0.842	0.1444	
	0.059	1.085	0.830	0.1382	
	0.060	1.113	0.813	0.1314	
	0.061	1.134	0.795	0.1253 0.1182	
	0.062	1.146 1.153	0.770 0.750	0.1102	
	0.064	1.157	0.730	0.1075	
	0.065	1.155	0.710	0.1026	
	0.066	1.140	0.700	0.1005	
	0.067	1.125	0.694	0.0995	
	0.068	1.107	0.687	0.0984	
	0.069	1.088	0.680	0.0975	Ì
	0.070	1.075	0.678	0.0976	
	0.071	1.060	0.680	0.0990	
	0.072	1.050	0.685	0.1010	
	0.073	1.042	0.690	0.1029	
	0.074	1.038	0.697	0.1050 0.1073	
	0.075	1.033	0.704	0.1100	1
	0.077	1.029	0.713	0.1120	
	0.078	1.028	0.730	0.1149	
	0.079	1.028	0.739	0.1174	
	0.080	1.029	0.745	0.1190	
	0.081	1.030	0.752	0.1200	
	0.082	1.033	0.759	0.1226	
	0.083	1.037	0.765	0.1239	
	0.084	1.041	0.770	0.1249	1
	0.085	1.048	0.775	0.1257	
74	0.086 0.087	1.053	0.780 0.784	0.1267 0.1272	
	0.088	1.070	0.789	0.1279	l
	0.089	1.080	0.793	0.1282	ł
	0.090	1.090	0.798	0.1289	
	0.091	1.100	0.801	0.1290	
, d	0.092	1.110	0.806	0.1297	
	0.093	1.121	0.809	0.1298	
	0.094	1.133	0.812	0.1300	
	0.095	1.146	0.815	0.1301	1
	0.096	1.159	0.819	0.1305	
	0.097	1.170	0.823 0.826	0.1311	1
	0.098	1.180 1.190	0.820	0.1313	
	0.100	1.200	0.836	0.1334	
	0.105	1.215	0.862	0.1397	1
	0.110	1.218	0.896	0.1486	1
	0.115	1.232	0.930	0.1571	1
	0.120	1.258	0.963	0.1649	1
	0.125	1.282	0.992	0.1718	
	0.130	1.307	1.020	0.1783	
	0.135	1.330	1.048	0.1849	1

OPTICS

Table 6g-1. Optical Constants of Metals (Continued)

Metal	Wave- length, µm	Index of refraction		Reflection tance calculated	Re
Gold, evaporated (Cont.)	. 0.140	1.357	1.070	0.1000	
, , , , , , , , , , , , , , , , , , , ,	0.145	1.386	1.089	0.1899	1
	0.150	1.419	1.102	0.1967	
	0.155	1.450	1.108	0.1978	
	0.160 0.165	1.483	1.106	0.1971	
	0.170	1.512 1.519	1.093	0.1941	
	0.175	1.500	1.070 1.070	0.1888	ŀ
	0.180	1.470	1.085	0.1886	1
	0.185	1.442	1.107	0.1976	
	0.190	1.427	1.135	0.2049	ĺ
	0.195	1.424	1.170	0.2138	
	0.200	1.427	1.215	0.2251	
	0.500	0.84	1.84	0.397	6, 7
	0.550	0.331	2.324	0.815	31
	0.600	0.200	2.897	0.919	91
	0.650	0.142	3.374	0.055	
	0.700 0.750	0.131	3.842	0.967	
	0.800	0.140 0.149	4.266	0.971	
	0.850	0.143	4.654	0.974 0.976	
	0.900	0.166	5.335	0.978	
	0.950	0.174	5.691	0.979	
old, crystalline	1.000	0.179	6.044	0.981	
	0.4400 0.4600	1.5778	1.9077	0.3863	29
	0.4800	1.4843	1.8257 1.7301	0.3754	
	0.5000	0.8031	1.8180	0.3787 0.5100	
	0.5200	0.5264	2.1277	0.6929	
	0.5400	0.3772	2.4520	0.8092	
	0.5600 0.5800	0.3054	2.7501	0.8682	
1	0.6000	0.2524 0.2113	3.0106	0.9050	
i	0.6200	0.1906	3.2411 3.4621	0.9294 0.9431	
·	0.6400	0.1667	3.6902	0.9555	
• *	1.0000	0.2200	6.7100	0.9811	44
·	1.5000	0.3600	10.4000	0.9869	- 1
	2.0000 2.5000	0.5500 0.8200	13.9000	0.9888	
	3.0000	1.1700	17.3000 21.0000	0.9892	
1	4.0000	2.0400	27.9000	0.9895 0.9896	
1	5.0000	3.2700	35.2000	0.9896	
	8.0000	4.7000	35.2000	0.9896	
	8.0000	7.8200 11.5000	54.60000	0.9898	
	12.0000	15.4000	67.5000 80.5000	0.9902	
	1.0000	0.3100	5.5800	0.9909 0.9623	45
	2.0000	0.5400	11.2000	0.9831	70
1	3.0000	0.9300	16.7000	0.9868	
	4.0000 5.0000	1.4900 2.1900	22.2000	0.9881	
İ	6.0000	3.0100	27.7000 33.0000	0.9887	
į	7.0000	3:9700	38.3000	0.9891 0.9894	
	8.0000	5.0500	43.5000	0.9895	
	9.0000	6.2100	48.6000	0.9897	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

		,			
Metal	Wave- length,	Index of refraction	Extinction coefficient	Reflec- tance	Ref.
	μm	n	k	calculated	-
Gold, crystalline (Cont.)	10.0000	7.4100	53.4000	0.9899	
•	11.0000	8.7100	58.2000	0.9900	l
	2.5000	0.6900	14.4000	0.9869	87
	3.0000	1.2500	17.6000	0.9841	
	4.0000	1.8800	23.2000	0.9862	
	4.5000	2.2800	25.3000	0.9860	
	5.0000	2.7100	28.5000	0.9869	
	6.0000	4.7100	34.5000	0.9846	
	6.5000	5.4800	37.4000	0.9848	
	7.0000 8.0000	6.6200 7.9000	39.4000	0.9836	
	8.5000	9.7200	44.0000	0.9843	
	9.0000	10.0000	45.6000 47.9000	0.9823 0.9834	
	9.5000	10.9000	50.6000	0.9839	
Indium, evaporated	0.4200	0.6505	1.8448	0.5753	35
•	0.4400	0.8128	1.8085	0.5041	33
	0.4600	0.8676	1.8902	0.5085	
	0.4800	0.8103	1.9252	0.5359	
	0.5000	1.0190	2.0805	0.5150	
	0.5200	1.0536	2.2068	0.5362	
	0.5400	1.0778	2 3242	0.5564	
	0.5600	1.1743	2.4185	0.5559	
	0.5800	1.2039	2.4919	0.5648	
	0.6000	1.2915	2.5900	0.5680	
	0.6200	1.4285	2.7406	0.5738	
	0.6400 0.7100	1.4502 1.3800	2.8307	0.5861	
	1.0500	1.8300	6.2400 7.9400	0.8762 0.8970	46
	1.5600	2.3100	11.3000	0.0970	
	2.2000	3.5300	15.8000	0.9477	
	2.6800	4.4300	18.2000	0.9509	
	3.1400	5.5000	21.2000	0.9553	
	4 0000	7.6000	26.1000	0.9597	i
•	5.9500	13.4000	35.6000	0.9637	
	8.0000	19.2000	42.2000	0.9649	
Iridium, evaporated	10.0000	23.8000	51.7000	0.9710	
Indidin, evaporated	0.0500	0.65	0.88	0.255	47
	0.0550 0.0600	0.76	0.99	0.255	
	0.0650	0.88 1.02	1.08	0.251	
	0.0700	1.02	1.08 0.97	0.221 0.175	
	0.0750	1.15	0.90	0.153	
,÷	0.0800	1.14	0.90	0.154	
	0.0850	1.10	0.93	0.166	
	0.0900	1.09	0.98	0.182	
	0.0950	1.11	1.06	0.204	
	0.1000	1.14	1.13	0.220	
	0.1100	1.27	1.23	0.238	
İ	0.1200	1.36	1.21	0.227	
	0.1300	1.38	1.16	0.213	
	0.1400 0.1500	1.35 1.28	1.14	0.205	
	0.1600	1.28	1.18 1.29	0.222	
	0.1000	1.17	1.29	0.275 0.340	
	0.18	1.01	1.64	0.400	
	0.19	0.95	1.81	0.460	
					
		<u></u>			

OPTICS

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, µm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref
Iridium, evaporated (Cont.)	0.20 0.21	0.89 0.82	1.93	0.510	
_	0.22	0.74	2.01	0.555 0.585	[
Iron, single crystal		1.9500	3.5300	0.6314	50
·	0.3730	2.0200	3.5700	0.6305	30
	0.3800	2.1100	3.5600	0.6223	
	0.3930	2.2000	3.6800	0.6300	
	0.4190	2.4600	3.7100 3.7600	0.6256	
	0.4320	2.5800	3.8000	0.6231 0.6214	
	0.4450	2.6900	3.8500	0.6214	
	0.4580	2.8300	3.8400	0.6152	
	0.4710	2 9200	3.8800	0.6161	
	0.4840	3.0400	3.8600	0.6105	
	0.4970 0.5100	3.1200	3.8700	0.6094	
	0.5230	3.1900 3.2500	3.8600	0.6068	
	0.5460	3.3500	3.8500 3.8400	0.6047 0.6020	
	0.5490	3.3600	3.8400	0.6018	
	0.5620	3.4200	3.8500	0.6018	
	0.5750	3.4400	3.8700	0.6033	
	0.5880 0.6010	3.4600	3.8800	0.6040	
	0.6140	3.4900 3.5000	3.8900	0.6044	
	0.6270	3.5300	3.8800 3.9300	0.6034	
	0.6400	3.4900	3.9700	0.6074 0.6114	
	0.6530	3.5600	4.0400	0.6163	
	0.6660	3.5700	4.0200	0.6145	
	0.6700 0.6920	3.5800 3.5800	4.1000	0.6210	
ron, evaporated	0.4400	3.5800 2.9400	4.1700	0.6267	
	0.5400	3.1100	3.3400 3.6200	0.5592	26
	0.6600	3.3100	3.7500	0.5853 0.5943	
	0.8100	3.6900	3.9400	0.6066	
·	1.0300	3.8100	4.4400	0.6443	
	1.3100	4.1200	5.3100	0.6971	
İ	2.1600	4.0600 3.8100	5.9400 6.3800	0.7333	
ron, bulk	0.4800	2.9057	3.8201	0.7613 0.6106	£1
<u> </u>	0.5000	3.0222	3.8449	0.6096	51
	0.5200	3.0931	3.8246	0.6057	
	0.5400 0.5600	3.2151	3.8485	0.6062	
	0.5800	3.2972 3.3 6 29	3.8563	0.6044	
	0.6000	3.3975	3.8509 3.8410	0.6028	
ļ	0.6200	3.4396	3.8537	0.6014 0.6019	
	0.6400	3.4558	3.8500	0.6014	
	0.6600 0.589	3.4801	3.8563	0.6016	
anthanum, evaporated	0.889	2.36 1.34	3.20	0.561	21
	0.4358	1.34	2.33	0.508	14
	0.5461	1.79	3.43	0.539 0.634	
and bulk	0.5780	T.74	8.47	0.644	
ead, bulkead, evaporated	0.589	2.01	3.48	0.620	21
J. aporated	0.7000	1.6800	3.6700	0.6746	52
	0.8000	1.5100	4.2400	0.7512	

Table 6g-1. Optical Constants of Metals (Continued)

Metal	Wave- length,	Index of refraction n	Extinction coefficient k	Reflec- tance calculated	Ref
Lead, evaporated (Cont.)	0.9000	1.4400	4.8500	0.8046	
,	1.0000	1.4100	5.4000	0.8046 0.8387	
	1.1000	1.4200	5.9700	0.8631	
	1.2000	1.4600	6.3500	0.8741	
	1.3000	1.5100	7.1200	0.8940	
	1.4000	1.5900	7.6700	0.9030	
	1.5000	1.6700	8.2400	0.9110	
	1.7000	1.9000	9.3700	0.9210	
	2.0000	2.2800	11.1000	0.9319	
	2.5000	3.2000	13.7000	0.9377	
	3.0000 3.5000	4.2700	16.4000	0.9424	
	4.0000	5.3900 6.5800	18 6000 20 8000	0.9443	
	5.0000	9.0400	24.8000	0.9463	
	6.0000	11.7000	28.1000	0.9495 0.9508	
	7.0000	14.1000	30.9000	0.9523	
	8.0000	16.4000	33.6000	0.9542	
	9.0000	18.7000	35.8000	0.9552	
·	10.0000	21.0000	37.4000	0.9554	
	11.0000	24.6000	40.5000	0.9571	
Aagnesium, evaporated	12.0000	24.6000	40.5000	0.9571	
and a state of the	0.1200 0.1400	0.2500	0.4000	0.4194	53
	0.1400	0.1500 0.2000	0.9500	0.7303	
	0.1800	0.2500	1.2000 1.3000	0.7222 0.6925	
	0.2000	0.2000	1.4000	0.0923	
	0.2200	0.1500	1.5000	0.8321	
	0.2400	0.1000	1.6000	0.8930	
	0.4046	0.52	2.05	0.681	14
İ	0.4358	0.52	2.65	0.777	
	0.4916	0.53	2.92	0.805	
	0.5461 0.5780	0.57	3.47	0.813	
Aagnesium, bulk	0.589	0.48 0.37	3.71	0.880	٥.
Ianganese, evaporated	0.4358	2.08	4.42 2.62	0.931 0.491	21
•	0.5461	2.46	3.07	0.491	14
_	0.5780	2.59	3.04	0.532	
Ianganese, bulk	0.4600	1.97	3.43	0.617	54
	0.5000	1.92	3.42	0.620	
	0.5408	2.10	3.53	0.619	
	0.5890	2.26	3.71	0.629	
	0.6410 0.6800	2.61	3.97	0.637	
fercury, liquid	0.40	2.85 0.73	4.05	0.635	
	0.50	1.04	3.01 3.70	0.758 0.767	34
	0.60	1.39	4.32	0.772	
	0.70	1.76	4.83	0.773	
	0.80	2.14	5.33	0.776	
	0.87	2.40	5.63	0.778	
	0.3022	0.55	2.25	0.705	55
	0.3130	0.44	2.53	0.792	
	0.3650 0.4047	0.64	2.97	0.778	
	0.4358	0.79 0.88	3.40 3.47	0.786	
Iolybdenum, bulk	0.0550	0.4900	0.6300	0.774 0.2511	5 6
	0.0580	0.5200	0.9600	0.2511	90

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length,	Index of refraction	Extinction coefficient	Reflec- tance calculated	Re
Molybuenum, bulk (Cont.)	0.0730	1.1500	1.3500	0.2863	
	0.0740	1.0300	1.2200	0.2655	
	0.0830	1.1700	1.2000	0.2389	
	0.0870	1.1700	1.2000	0.2389	
	0.0880	1.3200	1.3300	0.2617	
İ	0.0890	1.3300	1.3500	0.2663	
Ì	0.0910 0.0970	1.3800 1.5500	1.3800 1.3100	0.2707	
	0.1030	1.6700	1.2000	0.2456 0.2204	
	0.1070	1.6400	1.0800	0.1937	
	0.1100	1.3300	1.0500	0.1855	
	0.1200	0.8300	1.4200	0.3812	
	0.1210	0.8100	1.4200	0.3878	
	0.1260	1.0000	1.9000	0.4744	
	0.1290 0.1340	0.9200 0.9500	1.9200 2.0200	0.5009 0.5179	
	0.1340	1.0300	2.0200	0.5179	
	0.1450	0.9700	2.4500	0.6074	
	0.1600	1.1000	2.7700	0.6358	
	0.1750	1.6700	3.0200	0.5889	
	0.2480	1.2300	2.7300	0.6040	
	0.2540 0.2650	1.3000	2.7300	0.5919	
	0.2800	1.4000 1.6300	2.9300 3.0000	0.6096 0.5904	
	0.3120	2.0200	3.0100	0.5556	
	0.3660	2.4300	2.9700	0.5278	
	0.4050	2.5000	3.0000	0.5294	
	0.4360	2.4800	3.0100	0.5314	
Į	0.4920	2.7500	3.4500	0.5764	
	0.5460 0.5780	3.0000	3.4200	0.5667	
1	0.3780	3.1800 2.8600	3.4100 3.0000	0.5629	40
	0.5010	3.1700	3.0000	0.5213 0.5195	48
	0.5610	3.4300	3.0000	0.5207	
	0.6220	3.5600	3.0100	0.5230	
	0.8000	3.6900	3.0200	0.5257	
· ·	1.0000	3.8300	3.5500	0.5736	
	1.2000	4.0000 4.3100	4.0400	0.6128 0.6455	
<i>'</i>	1.6000	4.6000	5.0000	0.6435	
	1.8000	4.8300	5.4900	0.6987	
	2.0000	5.0700	5.8600	0.7151	
	0.436	2.95	3.283	0.553	57
	0.546 0.578	3.59	3.403	0.560	
eodymium, evaporated	0.378	3.65 0.89	3.274 1.20	0.549	20
	0.4060	0.84	1.22	0.311	58
	0.4170	0.79	1.28	0.347	
	0.4280	0.67	1.36	0.422	
	0.4420	0.56	1.42	0.497	
	0.4550 0.4690	0.46	1.47	0.571	
	0.4840	0.40 0.37	1.46 1.42	0.609 0.620	
	0.5000	0.38	1.41	0.610	
	0.5170	0.43	1.44	0.582	
	0.5360	0.43	1.44	0.582	

では、一般のでは、一般のでは、一般のでは、一般のできないというない。 からのないない

Table 6g-1. Optical Constants of Metals (Continued)

I ABLE 6g-1. OPTIC.	AL CONSTAI	NTS OF MET	ALS (Contin	iued)	
Metal	Wave- length, µm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.
Neodymium, evaporated (Cont.)	0.5560 0.5770 0.6000 0.6250 0.6520 0.6820 0.7140 0.7500 0.7900	0.42 0.40 0.37 0.35 0.34 0.32 0.28 0.27 0.28	1.42 1.38 1.37 1.36 1.35 1.32 1.30 1.30	0.583 0.586 0.606 0.619 0.624 0.633 0.664 0.673	
Nickel, evaporated	0.8340 0.8830 0.4400 0.5400 0.6600 0.8100 1.0300 1.3100 1.6700	0.28 0.30 1.5600 1.8500 2.0600 2.3700 2.8700 3.3600 3.6200	1.42 1.50 2.6800 3.2700 3.8900 4.2100 4.8700 5.6500	0.694 0.695 0.5457 0.6067 0.6636 0.6740 0.7033	26
Nickel, bulk	2.1600 0.4800 0.5000 0.5200 0.5400 0.5600 0.5800 0.6000 0.6200	4.2500 1.7763 1.8282 1.8796 1.9245 1.9670 1.9830 2.0663 2.1278	6.1600 6.2500 3.2765 3.3886 3.5061 3.6268 3.7469 3.9208 3.9950 4.0887	0.7558 0.7448 0.6147 0.6246 0.6348 0.6454 0.6556 0.6732 0.6741 0.6788	51
Nickel, evaporated	0.6400 0.6600 0.420 0.589 0.750 1.000 2.25 2.0 1.12	2.1890 2.2498 1.41 1.79 2.19 2.63 3.95 3.74 2.63	4.2074 4.3338 2.53 3.33 4.36 5.26 9.20 8.80 4.28	0.6858 0.6933 0.538 0.621 0.700 0.742 0.855 0.850 0.666	59 21 60 32 33
	1.58 2.18 2.72 3.4 4.4 5.4 6.75 8.7 10.5	2.89 3.18 3.44 3.72 4.35 4.92 5.86 7.31 8.86	5.08 6.13 7.15 8.49 10.59 12.4 15.2 19.2 22.5	0.718 0.769 0.806 0.842 0.876 0.896 0.916 0.933 0.941	
Niobium, bulk	12.5 0.4720 0.5010 0.5610 0.6220 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000	10.2 2.2600 2.3900 2.5700 2.5200 2.2300 2.0300 2.0000 2.1800 2.4200 2.7800 3.1300	26.2 2.2600 2.2800 2.3400 2.5200 3.0400 4.0000 5.0400 6.1800 7.1300 8.3600 9.1300	0.950 0.4255 0.4272 0.4358 0.4621 0.5466 0.6775 0.7675 0.8195 0.8452 0.8679 0.8753	48

OPTICS

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, μm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.
Niobium, crystalline, bulk	1.0000	1.5200	4.2900	0.7544	61
·	1.5000 2.0000	1.5600	7.1200	0.8910	
	2.5000	2.5000	8.7000 11.0000	0.9117 0.9250	
	3.0000	2.9000	12.2000	0.9293	
	3.5000	3.8000	15.6000	0.9429	
	4.0000	4.2000	17.4000	0.9491	
	4.5000	4.7000	19.0000	0.9522	
	5.0000 5.5000	5.5000 6.4000	21.6000 23.0000	0 9568 0.9561	
	6.0000	7.2000	25.0000	0.9584	
	6.5000	7.8000	25.9000	0.9583	
	7.0000	9.0000	27.7000	0.9585	
	7.5000	9.9000	29.4000	0.9597	
	8.0000 8.5000	10.6000 11.4000	31.0000	0.9613	
	9.0000	12.5000	33.2000 34.9000	0.9637 0.9643	
	9.5000	14.0000	36.4000	0.9639	
·	10.0000	15.6000	38.7000	0.9648	
	12.0000	19.1000	42.0000	0.9648	
	14.0000 15.0000	24 8000 26 1000	45.4000	0.0636	
Niobium, bulk	0.579	1.80	48.8000 2.11	0.9665 0.414	24
Palladium, evaporated	0.3021	1.5	2.0	0.415	62
	0.3404	1.5	2.1	0.437	02
	0.4358	1.8	2.4	0.471	
	0.5085 0.5461	1.9	2.7	0.516	
Platinum, evaporated	0.0580	2.3 0.0700	2.7	0.494	
	0.0730	1.0800	0.7900	0.2149 0.1274	63
	0.1220	1.2800	1.1600	0.2176	
Platinum, bulk	0.589	2.06	4.26	0.701	21
Tatmum, electrolytic	0.257 0.441	1.17 1.94	1.93	0.445	64
	0.589	2.63	3.16 3.54	0.584 0.591	
	0.668	2.91	3.66	0.594	
Platinum, sputtered	1.00	3.42	6.3	0.770	49
	1.97 3.29	5.92	9.8	0.830	
•	4.65	7.50	12.2 15.5	0.860	
Plutonium, bulk	0.5461	2.0700	3.6100	0.890 0.6313	65
Potassium, evaporated	0.1270	0.9600	0	0.0004	66
	0.1390	0.9700	0	0.0002	
	0.1420 0.1480	0.9800 0.9800	0	0.0001	
	0.1560	0.9600	0	0,0001 0.0004	
	0.1590	0.9600	ŏ I	0.0004	
	0.1720	0.9300	0	0.0013	
	0.1780	0.9200	0	0.0017	
	0.1830	0.9100	0	0.0022	
	0.1980	0.8800	0	0.0034	
	0.2080	0.8400	ŏ	0.0041	
	0.2180	0.8200	0	0.0098	
	0.2280	0.7900	0	0.0138	
į	0.2520	0.7200	0	0.0265	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

TABLE 0g-1. OFFICAL	CONSTAL	I S OF MEI	ALS (CONTA	raca)	
	Wave-	Index of	Extinction	Reflec-	
Metal	length, μm	refraction n	coefficient k	tance calculated	Ref.
Potassium, evaporated (Cont.)	0.3120	0.3900	0	0.1920	
Totalsiam, ovaporatea (com.)	0.2536	0.744	0.049	0.022	67
	0.3126	0.410	0.080	0.178	
	0.3650	0.150	0.443	0.605	
	0.4047	0.105	0.710	0.757	
	0.4358 0.5461	0.121 0.091	0.978 1.42	0.781 0.886	
	0.5780	0.094	1.57	0.897	
·	0.3126	0.51	0.07	0.107	68
	0.3341	0.30	0.21	0.308	
	0.3650	0.21	0.42	0.488	
	0.4047 0.4358	0.12 0.08	0.56 0.68	0.694 0.804	
	0.4916	0.07	1.22	0.894	
	0.5461	0.05	1.41	0.935	Ì
	0.5780	0.05	1.60	0.938	
Potassium, bulk behind glass	0.472	0.070	1.00	0.869	69
	0.589 0.665	0.068	1.50 1.77	0.920 0.938	ļ
	0.546	0.06	1.29	0.938	70
Potassium, bulk behind KBr	2.5000	0.3500	7.5500	0.9762	71
	3.2000	0.6500	9.6500	0.9729	
	4.5000	1.3800	14.3000	0.9737	
	5.5000	1.6600	17.1000	0.9778	
	7.2000 10.1500	2.8900 4.77	21.6000 28.2000	0.9768	
Rhenium, bulk	0.436	2.62	2.97	0.510	72
	0.589	3.18	3.55	0.576	'-
	0.4720	3.0000	3.0200	0.5223	48
	0.5010	3.3000	3.0300	0.5230	
	0.5610 0.6220	3.4600	3.0800 3.1300	0.5289	
	0.8000	3.3800	4.1700	0.6303	<u> </u>
	1.0000	3.3300	5.3700	0.7201	
	1.2000	3.5600	6.6000	0.7787]
	1.4000	4.1700	7.7900	0.8092	1
	1.6000	4.7800 5.6300	8.7300 9.5200	0.8256	
	2.0000	6.0000	10.0200	0.8394	
Rhodium, bulk	0.4000	0.8400	3.9100	0.8201	73
	0.5000	1.0900	4.1700	0.7996	
	0.6000	1.4300	4.6200	0.7901	ļ
	0.7000 0.8000	1.6800 2.0300	5.6700	0.8291	
	0.9000	2.2700	6.3600	0.8364	
	1.0000	2.3300	6.8000	0.8374	
	1.5000	3.1000	8.5200	0.8613	
	2.0000	3.2800	9.8700	0.8866	
1	2.5000 3.0000	4.4500 5.0800	12.2000 14.3000	0.9003	
1	3.5000	5.6500	16.9900	0.9321	
	4.0000	5.9900	17.4600	0.9323	
	4.5000	6.6900	19.0900	0.9368	
1	5.0000	6.7900	19.8800	0.9404	
	5.5000 6.0000	7.6300 8.0000	23.7100 24.5400	0.9521	
	5.0000	3.0000	21.0200	0.3002	1

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, µm	Index of refraction	Extinction coefficient k	Reflec- tance calculated	Ref
Rhodium, bulk (Cont.)	6.5000	8.9100	25.5000	0.9541	
	7.0000	8.9100	28.9100	0.9618	1
	7.5000	9.5900	31.4200	0.9651	
	8.0000	9.1200	33.3100	0.9699	
	8.5000	10.6900	35.6200	0.9696]
	9.0000	10.9700 11.3200	37.5400	0.9717	ľ
	10.0000	12.0700	38.8900 41.7600	0.9728 0.9748	1
	10.5000	12.8800	43.9500	0.9748	
	11.0000	13.8300	56.2100	0.9765	ļ
Rhadium avaparated	0.579	1.54	5.67	0.782	24
Rhodium, evaporated Rubidium, vacuum deposited	0.546	1.62	4.63	0.771	74
vacuum deposited	$0.2536 \\ 0.3022$	1.031 0.833	0.056	0.001	22
	0.3126	0.814	0.071 0.078	$0.010 \\ 0.012$	
	0.3341	0.745	0.090	0.012	
	0.3650	0.496	0.135	0.121	
į	0.4047	0.275	0.373	0.377	
·	0.4358	0.181	0.636	0.598	
	0.5461	0.157	1.05	0.742	
selenium, single crystal, 1 to C	0.2810	0.164 1.9000	1.19 1.7263	0.763	
axis	0.2940	2.1800	1.8715	0.3328 0.3595	75
	0.3100	2.4965	1.8145	0.3565	
	0.3260	2.7947	1.6764	0.3504	
	0.3440	3.0381	1.4318	0.3380	
	0.3640	3.1990	1.2222	0.3309	
,	0.3860	3.3009 3.2483	0.9467	0.3192	
	0.4400	3.1415	0.7219	0.3003	
	0.4750	3.0063	0.5455	0.2644	
	0.5150	2.9317	0.6123	0.2594	
	0.5600	3.0460	0.7337	0.2794	
	0.6100 0.6200	3.2439	0.7229	0.2999	
	0.6500	3.3708 3.4611	0.6497 0.3149	0.3095	
	0.6900	3.3106	0.3149	0.3078 0.2881	
elenium, to C axis	0.3440	3.3908	3.0509	0.5255	
,	0.3640	3.6899	2.7304	0.4988	
	0.3860	3.8083	2.7282	0.5016	
	0.3960	4.2412 4.4447	2.4875	0.4960	
_	0.4400	4.5964	2.3207	0.4925 0.4644	
1	0.4750	4.3729	1.3572	0.4304	
	0.5150	4.2640	1.2090	0.4153	
	0.5600	4.4567	1.1926	0.4286	
	0.6200 0.6350	4.7644	0.7210	0.4353	
	0.6900	4.7660 4.4723	0.5245	0.4313	
lenium, evaporated amorphous	0.2400	1.881	1.131	0.4026 0.215	76
_	0.2600	2.069	1.257	0.213	10
	0.2800	2.280	1.285	0.265	
	0.3000	2.453	1.240	0.271	
·	0.3200	2.570	1.157	0.270	
	0.3625	2.661 2.734	1.060	0.267 0.265	

Action March

-

Table 6g-1. Optical Constants of Metals (Continued)

	T		TALS (Cont	T	
Metal	Wave- length, µm	Index of refraction		Reflec- tance calculated	Ref.
Selenium, evaporated amorphous (Cont.)	0.3875 0.4000 0.4250	2.792 2.820 2.871	0.877 0.838	0.263 0.262	
	0.4500	2.917	0.756 0.679	0.262 0.262	
	0.4750	2.963	0.600	0.262	
	0.5000	3.003	0.515	0.263	
	0.5250 0.5500	3.041 3.051	0.410	0.263	
	0.5750	3.005	0.282 0.147	0.260 0.252	
	0.6000	2.922	0.061	0.232	
	0.6297	2.810	0.000	0.210	
,	0.6766	2.710	0.000		
	0. 7429 0. 8349	2.633 2.580	0.000		
	0.9643	2.539	0.000		
	1.1470	2.494	0.000		
-	1.4350	2.464	0.000		
	1.6490 1.9410	2.454	0.000		
	2.3630	2.445 2.435	0.000		
llicon, single crystal	0.0650	0.5000	0.1300	0.1177	77
	0.0690	0.4500	0.1700	0.1555	"
*	0.0730	0.3700	0.3600	0.2624	
j	0.0770 0.0820	0.3700	0.3700	0.2651	
İ	0.0880	0.4100 0.4300	0.5400 0.5900	0.2806	
j	0.0950	0.4100	0.6600	0.2812	
ļ	0.1030	0.3600	0.7700	0.4104	
	0.1130	0.4600	1.0400	0.4274	
1	0.1240 0.1240	0.4800	1.1800	0.4641	
	0.1300	0.5200	1.2600	0.4664	78
	0.1380	0.5800	1.5000	0.4615 0.5112	
	0.1460	0.6500	1.6400	0.5196	
	0.1550	0.6700	1.7700	0.5474	
	0.1650 0.1770	0.6800 0.7500	1.9500	0.5894	
	0.1990	0.8000	2.2500 2.5300	0.6308 0.6681	
	0.2060	1.1400	2.8300	0.6378	
	0.2140 0.2210	1.2700	3.0000	0.6411	
	9.2290	1.5000 1.6600	3.1700	0.6319	
	0.2380	1.7500	3.1500 3.2500	0.6094 0.6138	
	0.2480	1.7000	3.3800	0.6366	
	0.2580	1.6700	3.6700	0.6757	
	0.2690 0.2810	2.0900	4.3800	0.7098	
į	0.2940	3.3300 4.8300	5.1300	0.7044	
	0.3100	4.9000	3.9500 3.5500	0.6104 0.5866	
	0.3260	5.1000	3.0000	0.5585	
j	0.3440	5.2000	3.0900	0.5666	
İ	0.3640 0.3860	7.0000	2.1600	0.5922	
		6.0000	0.4200	0.5120	
	0.4100	5.1100	N 1700	0.4500	
	0.4100 0.4400 0.4750	5.1100 4.6700	0.1700 0.1300	0.4529 0.4193	

Table 6g-1. Optical Constants of Metals (Continued)

Metal	Wave- length, µm	Index of refraction	Extinction coefficient k	Reflec- tance calculated	Ref
Silicon, single crystal (Cont.)	0.5150 0.5600	4.1600	0.1000	0.3753	
	0.6200	3.9200	0.0500	0.3603 0.3523	
Silicon, evaporated	0.5000	4.3000	0.7400	0.3994	79
	0.5500	4.4000	0.6300	0.4045	
	0.6000	4.3500	0.5900	0.3994	
	0.6500	4.2300	0.5700	0.3887	
	0.7000 0.7500	4.1900 4.1700	0.4000 0.3700	0.3815	
-	0.8000	4.0600	0.3700	0.3791 0.3668	
Silicon, bulk (low purity)	0.589	4.18	0.376	0.380	60
	1.25	3.67	0.294	0.330	. 00
	2.25	3.53	0.282	0.315	
Silver, bulk	0.1030	1.6500	0.4100	0.0821	80
	0.1100 0.1240	1.5900 1.4000	0.3200 0.2700	0.0661 0.0399	
	0.1300	1.3000	0.2700	0.0399	
	0.1340	1.2500	0.3200	0.0319	
	0.1370	1.2300	0.3700	0.0371	
	0.1430	1.1500	0.4200	0.0414	
·	0.1550	1.0700	0.5800	0.0739	
	0.1620	1.0600	0.6900	0.1016	
	0.1710 0.1790	1.0700	0.7800	0.1253	
	0.1790	1.0900 1.1500	0.8700 1.0100	0.1493 0.1848	
	0.2160	1.2300	1.1000	0.2043	
	0.2360	1.2800	1.1800	0.2232	
	0.2620	1.3900	1.2800	0.2436	
•	0.2810	1.5800	1.2400	0.2287	
	0.2920	1.7100	1.0800	0.1963	
	0.3010 0.3070	1.8100	0.8500	0.1600	
	0.3070	1.7400 1.3500	0.5400 0.2300	0.1076 0.0315	
	0.3180	1.1500	0.1900	0.0216	
	0.3200	1.0700	0.1800	0.0086	
	0.3210	0.9800	0.1600	0.0066	
. [0.3230	0.8900	0.1600	0.0105	
	0.3260 0.3290	0.6800 0.4900	0.1700 0.2100	0.0460	
	0.3320	0.2300	0.4000	0.1344 0.4501	
	0.3350	0.1700	0.5900	0.6040	
	0.3440	0.1400	0.9400	0.7435	
1	0.3620	0.1000	1.3400	0.8669	
	0.3760	0.0900	1.5700	0.9015	
llver, evaporated	0.1025	1.19	0.57	0.078	84
Į.	0.1113 0.1215	1.09 1.10	0.56 0.57	0.067 0.063	
	0.1306	1.14	0.57	0.063	
	0.1392	1.04	0.54	0.074	
	0.1500	0.96	0.66	0.100	
	0.1603	0.94	0.86	0.149	
	0.1700 0.1800	0.95	0.91	0.195	
į	0.1800	0.99 1.02	1.07	0.226 0.250	
	0.1900	1.13	1.11	0.263	
	0.2200	1.3200	1.2900	0.2507	81

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

	***	7 3	P 4:4:	D.4.	
Metal	Wave- length,	Index of refraction	Extinction coefficient	Reflec- tance	Def
i i i i i i i i i i i i i i i i i i i	μm	n	k	calculated	Ref.
	-				
Silver, evaporated (Cont.)	0.2300	1.3800	1.3100	0.2521	
onver, evaporated (cont.)	0.2400	1.3700	1.3300	0.2580	
	0.2500	1.3900	1.3400	0.2594	
	0.2550	1.3900	1.3400	0.2594	
	0.2600	14500	1.3500	0.2588	
	0.2650	1.4700	1.3400	0.2554	
	0.2700	1.5100	1.3300	0.2515	
	0.2750	1.5100	1.3100	0.2465	
·	0.2800	1.5700	1.2700	0.2358	
	0.2850	1.6100	1.2400	0.2287	
	0.2900	1.6000	1.1700	0.2127	
	0.2950	1.6400	1.0800	0.1937	
	0.3000	1.6700	0.9600	0.1702	
	0.3020	1.6500	0.8200	0.1423	
	0.3040	1.6400	0.7500	0.1291	
	0.3060	1.6200	0.6800	0.1156	
-	0.3080	1.5800	0.6100	0.1008	
1	0.3100	1.5400	0.5400	0.0865	
	0.3120	1.4700	0.4800	0.0713	
	0.3140	1.4000	0.4300	0.0580	
	0.3160	1.3000	0.3800	0.0431	
•	0.3180	1.1900	0.3400	0.0309	
	0.3200	1.0700	0.3200	0.0244	
	0.3220	0.9200	0.3000	0.0255	
	0.3240	0.7900	0.3000	0.0407	
	0.3260	0.6400	0.3500	0.0896	
	0.3280	0.4800	0.4400	0.1946	
	0.3300	0.3000	0.5500	0.3977	
	0.3320	0.2300	0.6800	0.5342	
	0.3340	0.2000	0.7900	0.6124	
	0.3360	0.1900	0.9200	0.6641	
	0.3380	0.1800	1.0500	0.7114	
	0.3400	0.1600	1.1400	0.7551	
25	0.3450	0.1400	1.2700	0.8077	
	0.3500	0.1200	1.3500	0.8440	
	0.3550	0.1000	1.4200	0.8760	
	0.3600	0.0900	1.5200	0.8971	
	0.3650	0.0700	1.6000	0.9244	
Cilore Lelle	0.3700	0.0600	1.7000	0.9402	00
Silver, bulk	0.226	1.41	1.11	0.199	82
	0.293 0.316	1.57	0.97	0.168	
·	0.310	0.41	0.45	0.320	1
	0.332	0.41	1.91	0.320	1
	0.500	0.17	2.94	0.932	Ī
	0.589	0.17	3.64	0.951	
Silver, evaporated	0.3021	1.2	0.8	0.124	83
Bilver, evaporaved	0.3021	0.5	0.5	0.200	00
	0.3201	0.3	1.0	0.646	
1	0.3404	0.22	1.93	0.939	6, 7
	0.45	0.075	2.42	0.968	", "
1	0.43	0.050	2.42	0.979	
	0.55	0.055	3.32	0.982	
1	0.60	0.060	3.75	0.984	
	0.65	0.070	4.20	0.985	
i			,	1 0.000	1
	0.70	0.075	4.62	0.987	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length,	Index of refraction	Extinction coefficient	Reflec-	Ref
	μm	n	k	calculated	Itel.
Silver, evaporated (Cont.)	0.75	0.080	5.05	0.988	
	0.80	0.090	5.45	0.988]
-	0.85	0.100	5.85	0.989	
	0.90 0.95	0.105	6.22	0.989 0.989	
Silver, crystalline	0.4400	0.110	2.5985	0.989	29
bilver, cry stairme	0.4600	0.0410	2.8039	0.9703	29
	0.4800	0.0415	3.0136	0.9837	
	0.5000	0.0468	3.2019	0.9835	
	0.5200	0.0427	3.3988	0.9865	
	0.5400	0.0448	3.5696	0.9870	
	0.5600 0.5800	0.0453 0.0496	3.7499 3.9335	0.9880 0.9880	
ļ	0.6000	0.0489	4.0881	0.9890	
	0.6200-	0.0552	4.2505	0.0885	
	0.6400	0.0542	4.4320	0.9896	
Silver, chemically deposited	0.750	0.17	5.16	0.976	60
·	1.00	0.24	6.96	0.981	
	$1.50 \\ 2.25$	0.45 0.77	10.7 15.4	0.985	
	2.89	1.39	19.0	0.987 0.985	49
	4.37	4.34	32.6	0.985	13
Silver, evaporated	1.2500	0.3700	7.700	0.9785	30
	1.5000	0.4500	9.000	0.9783	
٠	2.0000	0.6500	12.2000	0.9828	
	3.000	1.3000	18.2000	0.9845	
	4.000 5.000	2.3000 3.5000	24.3000 30.4000	0.9847 0.9852	
	6.000	5.0000	36.0000	0.9850	
	7.000	6.9000	41.0000	0.9842	
	8.000	8.9000	46.000	0.9839	
	9.0000	11.0000	50.0000	0.9834	
	10.0000	13.0000	54.0000	0.9830	4.5
	2.000	0.2500 0.6800	6.8100 13.6000	0.9791 0.9855	45
	3.0000	1.3800	20.3000	0.9868	
	4.0000	2.3400	26.9000	0.9873	
·	5.0000	3.5200	33.2000	0.9875	
ŧ	6.0000	4.8700	39.4000	0.9877	
	7.0000 8.0000	6.3100	45.300	0.9880	
1	9.0000	7.8600 9.3600	50.9000 56.0000	0.9882 0.9885	
	10.0000	10.8000	60.7000	0.9887	
	11.0000	12.0000	64.8000	0.9890	
	12.0000	12.8000	67.8000	0.9893	
	1.0	0.129	6.83	0.989	31
	2.0 4.0	0.48 1.89	14.4 28.7	0.991	8
	6.0	4.15	42.6	0.991	
	8.0	7.14	56.1	0.991	
	10.00	10.69	69.0	0.991	
Bodium, vacuum deposited	12.00	14.50	81.4	0.992	_
outum, vacuum deposited	0.2536 0.2652	0.026	0.621	0.928	7
I		0.028	0.735	0.930	
	0.3126	0.040	1.02	0.925	

Table 6g-1. Optical Constants of Metals (Continued)

TABLE 6g-1. OPTIC			1	1	
Metal	Wave- length, μm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref.
Sodium, vacuum deposited (Cont.)	0.4047	0.048	1.56	0.946	
	0.4358	0.048	1.80	0.956	
	0.5461	0.029	2.32	0.982	
Sodium, bulk behind NaCl	0.5780 2.2500	0.027 0.4100	2.59	0.986	
codium, buik bemma ivaci	2.5000	0.4100	11.6000 12.5000	0.9880 0.9874	71
	3.0000	0.6100	14.7000	0.9888	
	3.5000	0.8100	17.2000	0.9892	
	4.0000	1.0200	19.4000	0.9893	
	4.7500 7.2000	1.7100 3.6600	22.3000 32.9000	0.9864 0.9867	
	10.1500	6.4300	44.5000	0.9874	
Strontium, evaporated	0.4046	0.55	1.28	0.456	14
	0.4358	0.57	1.50	0.516	
	0. 4 916 0. 546 1	0.58	1.61	0.544	
	0.5780	0.63 0.61	1.99 2.13	0.619 0.658	
Tantalum, bulk	0.4720	2.5200	2.9600	0.5234	48
	0.5010	2.5500	2.9600	0.5226	10
	0.5610	2.4700	2.8100	0.5044	
	0.6220 0.8000	2.1300	2.8900	0.5306	
	1.0000	1.3400 1.3000	3.6400 4.4200	0.7138 0.7905	
•	1.2000	1.4100	5.1000	0.8227	
•	1.4000	1.6900	5.7800	0.8337	
	1.6000	2.0000	6.3900	0.8395	
:	2.0000	2.5000 2.9800	6.9400	0.8345	
Tin (gray), single crystal	1.0000	4.7000	7.5400 1.6000	0.8360 0.4636	85
	3.0000	4.6000	1.3000	0.4433	00
	4.0000	4.6000	1.1000	0.4351	
	5.0000	4.5000	0.9000	0.4205	
	6.0000 7.0000	4.4000 4.4000	1.0000 0.9000	0.4164 0.4127	
	8.0000	4.3000	0.8000	0.4013	
	9.0000	4.2000	0.8000	0.3931	
	9.5000	4.2000	0.8000	0.3931	
	10.0000 10.5000	4.1000 4.0000	0.8000	0.3846	
	11.0000	4.0000	0.9000 1.0000	0.3801 0.3846	
	11.500	3.900	1.000	0.3762	
	12.000	3.800	1.000	0.3677	
	12.500	3.7000	0.900	0.3537	
	13.000 13.500	3.6000 3.6000	0.900 0.900	0.3446	
	14.000	3.6000	0.800	0.3446 0.3394	
	14.500	3.5000	0.900	0.3352	
	15.000	3.3000	0.800	0.3100	
	15.500	3.2000	0.800	0.2998	
	16.000 16.500	3.2000 3.2000	0.800 0.900	0.2998 0.3062	
	17.000	3.000	0.900	0.3062	
	17.500	2.900	1.000	0.2844	
	18.000	2.800	1.100	0.2843	
	18.500 19.000	2.700 2.500	1.3000 1.500	0.2978 0.3103	
	10.000	2.500	1.500	6.9103	

Table 6g-1. Optical Constants of Metals (Continued)

Metal	Wave- length, µm	Index of refraction	Extinction coefficient	Reflec- tance calculated	Ref
Tin (gray), single crystal (Cont.)	19.500	2.400	1.6000	0.3201	
Titanium avanantad	20.000	2.100	2.0000	0.3828	
Titanium, evaporated	0.436 0.546	2.04 2.53	2.85 3.33	0.530	86
	0.578	2.64	3.42	0.570	
	0.650	3.03	3.65	0.590	
Titanium, bulk	2.000	4.3800	4.8400	0.6655	87
	2.500 3.000	4.5700 4.5700	5.3900 5.8300	0.6957 0.7188	
	3.500	4.5600	6.5800	0.7542	
	4.000	4.6600	7.2700	0.7804	
	4.500 5.000	4.6600	8.0700	0.8082	
	5.50 0	4.8700 5.0700	9.1800 10.3000	0.8359 0.8581	
	6.000	5.3800	11.3000	0.8722	
	6.500	5.6300	12.2000	0.8832	
	7 000	5.9900	13.2000	0.8926	
	7.500 8.000	6.3100 6.5600	13.9000	0.8977	
	8.500	6.9600	14.8000 16.1000	0.9050 0.9137	
	9.000	7.5600	16.6000	0.9133	
	9.5000	8.5600	17.1000	0.9108	
hallium, evaporated	10.0000 0.0800	9.0100	17.8000	0.9136	
manium, evaporated	0.0900	1.3500 1.1200	0.1000 0.1900	0.0239 0.0111	20
	0.0950	1.1200	0.2400	0.0111	
	0.1000	1.2000	0.2800	0.0241	
	0.1020 0.1040	1.1300	0.1900	0.0116	
·	0.1040	0.9400 0.8600	0.1500 0.1900	0.0009	
	0.1080	0.8100	0.2500	0.0295	
	0.1100	0.7700	0.3300	0.0499	
	0.1150	0.6700	0.4600	0.1008	
	0.1200 0.1300	0.5900	0.5500 0.7700	0.1663 0.2965	
	0.1400	0.4800	0.9600	0.3830	
	0.1500	0.5400	1.1200	0.4043	
	0.1600	0.6100	1.2800	0.4232	
	0.1700 0.1800	0.6700	1.3900	0.4323 0.4399	
	0.1900	0.7800	1.5900	0.4523	
	0.2000	0.8400	1.7000	0.4646	
	0.2100 0.2200	0.8800	1.8000	0.4804	
İ	0.2300	0.9100 0.9700	1.9000	0.4985 0.5077	
	0.2400	1.0300	2.1100	0.5194	
	0.2500	1.1100	2.2800	0.5399	
1	0.2600 0.2700	1.1900	2.4000 2.5400	0.5491	
	0.2800	1.3500	2.7000	0.5640 0.5785	
	0.4200	0.8099	2.0312	0.5623	35
	0.4400	0.9407	2.1154	0.5434	•
	0.4600 0.4800	1.0414	2.1942	0.5302	
	0.5000	1.1037	2.2655 2.3377	0.5377 0.5473	
	0.5200	1.1588	2.3860	0.5523	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave-	Y-4		l	
Metal		Index of	Extinction	Reflec-	
	length,	refraction	coefficient	tance	Ref.
	μm	n	k	calculated	
Thallium, evaporated (Cont.)	0.5400	1.1540	2.4437	0.5650	
I hamum, evaporaceu (com.)	0.5600	1.1622	2.5081	0.5761	
	0.5800	1.1135	2.5729	0.5983	
	0.6000	1.0681	2.6497	0.6218	
	0.6200	1.0405	2.7005	0.6367	
	0.6400	0.9717	2.8043	0.6693	
Tungsten, bulk	0.4720	2.9900	2.2600	0.4312	48
	0.5010	3.0400	2.3400	0.4421	
	0.5610	3.2800	2.5200	0.4682	
	0.6220 0.8000	3.4100 3.5400	2.6300 2.7600	0.4826 0.4984	
	1.0000	3.0400	3.5200	0.5765	
	1.2000	3.0400	4.2800	0.6490	
	1.4000	2.9400	4.5700	0.6770	
	1.6000	2.4700	5.1300	0.7424	
	1.8000	2.1300	6.4900	0.8359	
	2.0000	2.0000	7.0200	0.8627	
	0.579 0.589	2.76 3.46	2.71 3.25	0.486 0.545	24 88
Vanadium, bulk	2.000	2.0800	6.4300	0.8363	87
	2.500	2.1800	7.3700	0.8647	
	3.000	2.4400	8.8100	0.8909	
	3.500	2.9500	10.6000	0.9078	
	4.000 4.500	3.2400 3.7500	11.5000 12.8000	0.9137 0.9195	
	5.000	4.1500	14.3000	0.9281	
	5 .500	4.7200	14.6000	0.9316	
	6.000	5.2000	16.8000	0.9351	
	7.000	6.1800	18.5000	0.9372	
	7.500	6.7400	19.8000	0.9403	
*	8.000	7.0000	20.2000	0.9407	
a:	9.000	8.1000	22.8000	0.9462	
Zinc	$0.2573 \\ 0.2749$	0.554 0.456	0.612 1.167	0.206 0.476	64
	0.2981	0.469	1.598	0.602	
	0.3255	0.599	2.229	0.682	
	0.3611	0.720	2.610	0.705	
,	0.3982	0.846	2.917	0.716	
	0.4413	0.934	3.178	0.730	
	0.4678	1.049	3.485	0.743	
	0.508 0.5893	1.406	4.101 4.661	0.751 0.745	
	0.668	2.618	4.083	0.731	
Zinc, single crystal, optic axis	0.2650	0.2354	1.6357	0.7759	19
	0.3050	0.2510	1.8528	0.7991	
	0.3450	0.2737	2.1737	0.8275	
	0.3850	0.3069	2.5088	0.8466	
į	0.4250	0.3589	2.8140	0.8530	l
;	0.4650	0.4430	3.1379	0.8515	1
· · · · · · · · · · · · · · · · · · ·	0.5050 0.5450	0.6395	3.4013	0.8206 0.8250	
	0.5450	0.7737 1.0017	3.9129 3.8683	0.3230	
	0.5920	1.2525	3.9961	0.7619	ĺ
	0.6000	1.4856	4.0555	0.7374	
	0.6250	1.8562	3.9706	0.6896	
	0.6400	3.0132	3.9974	0.6243	1

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, µm	Index of refraction	Extinction coefficient k	Reflec- tance calculated	Ref
	·				
Zinc, single crystal, optic axis	0.6800	3.4234	4.3232	0.6421	
(Cont.)	0.7200	3.5908	4.4614	0.6495	
	0.7500 0.8000	3.7577	4.6239	0.6585	
1	0.8500	3.8086 3.2523	4.6212	0.6575	
	0.9000	2.9459	4.2447 3.5761	0.6396 0.5845	
	0.9500	3.2039	3.0042	0.5200	
	1.0000	2.8821	3.4766	0.5755	
	1.0500	1.9808	4.2004	0.7013	
	1.1000	1.7768	4.5307	0.7483	
	1.1500	1.5853	4.9013	0.7935	
	1.2000	1.5407	5.3192	0.8227	
	1.2500	1.5762	5.8843	0.8472	
Į	1.3000	1.4824	6.2296	0.8681	
	1.4000 1.5000	1.5571	6.7753	0.8812	
	1.6500	1.7921 1.9241	6.9973 7.5619	0.8737	
inc, basal plane	0.2650	0.2806	1.7997	0.8829	
F	0.3050	0.3013	2.0077	0.7699 0.7894	
	0.3450	0.3147	2.3041	0.7834	
	0.3850	0.3911	2.7463	0.8250	
	0.4250	0 4774	3.0476	0.8335	
	0.4650	0.5470	3.4277	0.8453	
	0.5050	0.7568	3.7627	0.8264	
	0.5450	0.9725	4.2879	0.8254	
	0.5850	1.3329	4.4751	0.7907	
	0.5920 0.6000	1.7048	4.7923	0.7748	
j	0.6250	2.0802 3.2515	4.7231 4.2980	0.7383	
	0.6400	3.4512	4.2980	0.6441 -0.6309	
	0.6800	3.7549	4.3042	0.6417	
	0.7200	3.9369	4.6356	0.6566	
	0.7500	4.0269	4.8027	0.6668	
	0.8000	4.1241	4.7768	0.6638	
	0.8500	3.5064	4.1994	0.6303	
	0.9000	3.1807	3.4709	0.5691	
	0.9500	3.3991	2.7684	0.4967	
.	1.0500	2.8717 1.9701	3.2873 4.0176	0.5547	
	1.1000	1.6897	4.0176	0.6843 0.7464	
į	1.1500	1.3095	4.9025	0.7464	
	1.2000	1.2889	5.4001	0.8210	
	1.2500	1.3835	5.8910	0.8630	
	1.3000	1.3165	6.2212	0.8805	
	1.4000	1.3628	6.6886	0.8917	
	1.5000	1.4744	6.9688	0.8922	
rconium, polycrystalline	1.6500 2.5000	1.4469	7.4158	0.9051	
gorg org sommer.	3.0000	3.8000	6.0500	0.7451	61
	3.5000	3.9500 3.4500	6.4600 7.5500	0.7615 0.8203	
1	4.0000	3.5700	8.7100	0.8203	
İ	4.5000	3.7500	9.8000	0.8735	
	5.0000	3.9900	11.5000	0.8984	
	5.5000	4.3500	12.8000	0.9096	
	6.0000	4.5200	14.0000	0.9202	
1	6.5000	5.0000	15.3000	0.9260	

TABLE 6g-1. OPTICAL CONSTANTS OF METALS (Continued)

Metal	Wave- length, μm	Index of refraction	Extinction coefficient k	Reflec- tance calculated	Ref.
Zirconium, polycrystalline (Cont.).	7.0000 8.0000 9.0000 10.0000 11.0000 12.0000 15.0000 17.0000	5.5000 6.4000 7.3000 8.2000 9.0500 10.0000 12.4000 12.6000 13.3000	16.6000 18.3000 21.0000 23.0000 25.0000 26.40000 32.50000 34.60000	0.9308 0.9343 0.9427 0.9465 0.9501 0.9511 0.9599 0.9635 0.9655	

References for Table 5g-1

- 1. Philipp, H. R., and H. Ehrenreich: J. App. Phys. 35, 1416 (1964).
- 2. Ditchburn, R. W., and G. H. C. Freeman: Proc. Roy. Soc. (London), ser. A, 294, 20
- 3. Madden, R. R., L. R. Canfield, and G. Hass: J. Opt. Soc. Am. 53, 620 (1963).
- 4. Daudae, A., M. Priol, and S. Robin: Compt. Rend. 263, 1178 (1966).
- 5. Hass, G., and J. E. Waylonis: J. Opt. Soc. Am. 50, 1133 (TB15) (1960).
- Schulz, L. G., and F. R. Tangherlini: J. Opt. Soc. Am. 44, 362 (1954).
- 7. Schulz, L. G.: J. Opt. Soc. Am. 44, 357 (1954).
- 8. Beattie, J. R.: Physica 23, 898 (1957).
- 9. Lemonnier, J., Y. LeCalvez, G. Stepahan, and S. Robin: Compt. Rend. 264, 1599 (1967).
- 10. Lenham, A. P., D. M. Treherne, and P. J. Metcalfe: J. Opt. Soc. Am. 55, 1072 (1965).
- 11. Shkliarevskii, Avdeenko, and Padalka: Opt. Specktroskopiya 6, 528 (1959).
- 12. Potapov, E. V.: Soviet Phys.-JETP 20, 307 (1965).
- 13. Fisher, E. I., I. Fugita, and G. L. Weissler: J. Opt. Soc. Am. 56, 1560 (1966).
- 14. O Bryan, H. M.: J. Opt. Soc. Am. 26, 122 (1036).
- 15. Maurer, R. J.: Phys. Rev. 57, 653 (1940).
- 16. Shkliarevskii, I. N., and R. G. Yarovaya: Opt. Spectr. U.S.S.R. 11, 355 (1961).
- 17. Dix, F. E., and L. H. Rowse: J. Opt. Soc. Am. 14, 306 (1927).
- 18. Hodgson, J. N.: Proc. Phys. Soc. (London), ser B, 67, 260 (1054). 19. Lenham, A. P., and D. M. Treherne: Proc. Phys. Soc. 83, 1059 (1964).
- Jelinek, T. M., R. N. Hamm, E. T. Arakawa, and R. H. Huebner: J. Opt. Soc. Am. 36, 185 (1966).
- 21. Drude, P.: Ann. Physik 39, 481 (1890).
- 22. Ives, H. E., and N. B. Briggs: J. Opt. Soc. Am. 27, 395 (1937).
- 23. Robin, S.: Compt. Rend. 236, 674 (1953).
- Wartenberg, H. V.: Verhandl. Deut. Physik. Deut. Ges. 12, 105 (1910).
 Yu, A. Y. C., T. M. Donovan, and W. E. Spicer. Phys. Rev. 167, 670 (1968).
- 26. Clemens, K. H., and J. Jaumann: Z. Physik 173, 135 (1963).
- 27. Kirillova, M. M., and B. A. Charikov: Opt. Spectr. U.S.S.R. 17, 134 (1965).
- 28. Roberts, S.: Phys. Rev. 118, 1509 (1960).
- 29. Otter, M.: Z. Physik 161, 163 (1961).
- 30. Dold, B., and R. Mecke: Optik 22, 435 (1965).
- 31. Weiss, K.: Z. Naturforsch. 3a, 143 (1948).
- Beattie, J. R., and G. K. T. Conn: Phil. Mag. 46, 989 (1955).
 Shkliarevskii, I. N., and V. G. Padalka: Opt. Specktroskopiya 6, 78 (1959).
- 34. Schulz, L. G.: J. Opt. Soc. Am. 47, 64 (1957).
- 35. Bor, J., and C. Bartholomew: Proc. Phys. Soc. (London) 90, 1153 (1966).
- 36. Marton, L., and J. Toots: Phys. Rev. 160, 602 (1967).
- 37. Sasaki, T.: J. Phys. Soc. Japan 18, 701 (1963).
- 38. Canfield, L. R., G. Hass, and W. R. Hunter: J. Phys. 25, 124 (1964).
- 39. Archer, R. J.: Phys. Rev. 110, 354 (1958).
- 40. Avery. D. G., and P. L. Clegg: Proc. Phys. Soc. (London), ser. B, 66, 512 (1953). 41. Philipp, H. R., and E. A. Taft: Phys. Rev. 113, 1002 (1959).
- 42. Huldt, L., and T. Staffin: Opt. Acta 6, 27 (1959).

```
43. Brattain, W. H., and H. B. Briggs: Phys. Rev. 75, 1705 (1949).
  44. Motulevich, G. P., and A. A. Shubin: Soviet Phys.—JETP 20, 560 (1965).
  45. Padalka, V. G., and I. N. Shklyarevskii: Opt. Spectr. U.S.S.R. 11, 285 (1961).
  46. Motulevich, G. P., and A. A. Shubin: Soviet Phys.—JETP 17, 33 (1963).
  47. Hass, G., G. F. Jacobus, and W. R. Hunter: J. Opt. Soc. Am. 57, 758 (1967).
  48. Barnes, B. T.: J. Opt. Soc. Am. 56, 1546 (1966).
  49. Forsterling, K., and V. Freedericksz: Ann. Physik 40, 201 (1913).
  50. Yolken, H. T., and J. Kruger: J. Opt. Soc. Am. 55, 842 (1965).
 51. Menzel, E., and J. Gebhart: Z. Physik 168, 302 (1062). 52. Golovashkin, A. I.: Soviet Phys. JETP 21, 548 (1965).
 53. Priol, M., A. Daudé, and S. Robin: Compt. Rend. 264b 935 (1967).
 54. Nathanson, J. B.: J. Opt. Soc. Am. 20, 594 (1930).
 55. O'Brien, Brian: Phys. Rev. 27, 93 (1926).

    Juenker, D. W., L. J. LeBlanc, and C. R. Martin: J. Opt. Soc. Am. 58, 164 (1968).
    Summers, R. D.: J. Opt. Soc. Am. 24, 262 (1934).

 58. Kern, E.: Z. Physik 148, 38 (1957).
 59. Tool, A. Q.: Phus. Rev. 31, 1 (1910).
 60. Ingersoll, L. R.: Astrophys. J. 32, 282 (1910).
 61. Kirillova, M. M., and B. A. Charikov: Phys. Metals Metallog. (GB) 16, 41 (1964).
 62. Malé, D., and J. Trompette: J. Phys. Radium 18, 128 (1957).
 63. Jacobus. G. F., R. P. Madden, and L. R. Canfield: J. Opt. Soc. Am. 53, 1084 (1963).
 64. Meier, W.: Ann. Physik 31, 1017 (1910).
 65. Larson, D. T., and D. L. Cash: J. Nucl. Mater. 24, 2232 (1967).
 66. Sutherland, J. C., and L. T. Arakawa: J. Opt. Soc. Am. 58, 1080 (1968).
 67. Ives, H. E., and H. B. Briggs: J. Opt. Soc. Am. 26, 238 (1936); 27, 182 (1937).
 68. Bolle, H. J.: Z. Physik 143, 538 (1956).
 69. Duncan, R. W.: Phys. Rev. 1, 306 (1913).
 70. Morgan, R.: Phys. Rev. 20, 203 (1922).
 71. Althoff, R., and J. H. Hertz: Infrared Phys. 7, 11 (1967).
 72. Lange, H.: Z. Physik 94, 650 (1935).
 73. Bolotin, G. A., and T. P. Chukina: Opt. Spectr. U.S.S.R. 23, 333 (1967).
 74. Hass, Schroeder, and Turner: J. Opt. Soc. Am. 46, 31 (1956).
 75. Tutihasi, S., and I. Chen: Phys. Rev. 158, 623 (1967).
 76. Koehler, Odencrantz, and White: J. Opt. Soc. Am. 49, 109 (1959).
77. Sasaki, T., and K. Ishiguro: Phys. Rev. 127, 1091 (1962).
78. Philipp, H. R., and E. A. Taft: Phys. Rev. 120, 37 (1960).
70. Pulker, H., and E. Ritter. Optik 21, 21 (1964).
80. Taft, E. A., and H. R. Phillip: Phys. Rev. 121, 1100 (1961).
81. Huebner, R. H., E. T. Arakawa, R. A. MacRae, and R. N. Hamm: J. Opt. Soc. Am.
    54, 1434 (1964).
82. Minor, R. S.: Ann. Physik 10, 581 (1903).
83. Philip, R., and J. Trompette: Compt. Rend. 241, 627 (1955).
84. Canfield, L. R., and G. Hass: J. Opt. Soc. Am. 55, 61 (1965).
85. Lindquist, R. E., and A. A. Ewald: Phys. Rev. 135, A191 (1964).
86. Hass, G., and A. P. Bradford: J. Opt. Soc. Am. 47, 125 (1957).
87. Bolotin, G. A., et al.: Fiz. Metal. Metallored. 13, 823 (1962).
88. Littleton, J. T.: Phys. Rev. 35, 306 (1912).
```

Table 6g-2. Percent Normal-incidence Reflectance of Freshly EVAPORATED MIRROR COATINGS OF ALUMINUM, SILVER, GOLD, COPPER, RHODIUM, AND PLATINUM, FROM THE ULTRAVIOLET TO THE INFRARED*†

-	1		TOTHE		, l	
λ, μm	Al	Ag	Au	Cu	Rh	Pt
0.220	91.5	28.0	27.5	40.4	57.8	40.5
0.240	91.9	29.5	31.6	39.0	63.2	46.9
0.260	92.2	29.2	35.6	35.5	67.7	51.5
0.280	92.3	25.2	37.8	33.0	70.7	54.9
0.300	92.3	17.6	37.7	33.6	73.4	57.6
0.315	92.4	5.5	37.3	35.5	75.0	59.4
0.320	92.4	8.9	37.1	36.3	75.5	60.0
0.340	92.5	72.9	36.1	38.5	76.9	62.0
0.360	92.5	88.2	36.3	41.5	78.0	63.4
0.380	92.5	92.8	37.8	44.5	78.1	64.9
0.400	92.4	95.6	38.7	47.5	77.4	66.3
0.450	92.2	97.1	38.7	55.2	76.0	69.1
0.500	91.8	97.9	47.7	60.0	76.6	71.4
0.550	91.5	98.3	81.7	66.9	78.2	73.4
0.600	91.1	98.6	91.9	93.3	79.7	75.2
0.650	90.5	98.8	05.5	96.6	81.1	70.4
0.700	89.7	98.9	97.0	97.5	82.0	77.2
0.750	88.6	99.1	97.4	97.9	82.6	77.9
0.800	86.7	99.2	98.0	98.1	83.1	78.5
0.850	86.7	99.2	98.2	98.3	83.4	79.5
0.900	89.1	99.3	98.4	98.4	83.6	80.5
0.950	92.4	99.3	98.5	98.4	83.9	80.6
1.0	94.0	99.4	98.6	98.5	84.2	80.7
1.5	97.4	99.4	99.0	98.5	87.7	81.8
2.0	97.8	99.4	99.1	98.6	91.4	81.8
3.0	98.0	99.4	99.3	98.6	95.0	90.6
4.0	98.2	99.4	99.4	98.7	95.8	93.7
5.0	98.4	99.5	99.4	98.7	96.4	94.9
6.0	98.5	99.5	99.4	98.7	96.8	95.6
7.0	98.6	99.5	99.4	98.7	97.0	95.9
8.0 9.0 10.0 15.0 20.0 30.0	98.7 98.7 98.7 98.9 99.0 99.2	99.5 99.5 99.6 99.6 99.6	99.4 99.4 99.4 99.4 99.4	98.8 98.8 98.9 99.0	97.2 97.4 97.6 98.1	96.0 96.1 96.2 96.5

^{*}The reflectance of a good evaporated mirror coating is always higher than that of a polished or electroplated surface of the same material.

†G. Hass, in R. Kingslake, ed., "Applied Optics and Optical Engineering," vol. III, pp. 309-330,

Academic Press, Inc., New York, 1965.

OPTICS

Table 6g-3. Percent Reflectance of Various Polished Metals AT CLOSE TO NORMAL INCIDENCE

Wave- length λ, μm	Au (1)	Be (2)	Cu (3)	Mo (8)	Ni	Pd (7)	Rh (8)	Ag	Ta (8)
0.25 0.30 0:35 0.40 0.50 0.60 0.70 0.80 1.0 2.0 4.0 6.0 8.0	36.0 41.5 87.0 93.0	50 50 48 46 50 54.5 	25.9 25.3 27.5 30.0 43.7 71.8 83.1 88.6 90.1 95.5 97.3 98.0 98.3	44.0 45.5 47.6 40.8 52.3 58.2 81.6 90.5 93.0 93.7	47.5 (2) 41.5 (2) 45.0 (2) 53.3 (2) 59.7 (1) 64.5 (1) 74.1 (4) 84.4 (4) 06.0 (5)	74.8	76 79 81 84 91 92.5 93.5	25 (6) 13 (6) 68 (6) 87.5 (6) 95.2 (6) 96.1 (3) 96.2 (3) 96.4 (3) 97.3 (3) 97.7 (3) 98.0 (3) 98.7 (3)	38.0 45.0 56.0 64.5 78.5 90.5 93.0 93.2
$10.0 \\ 12.0$			98.4 98.4	$94.5 \\ 95.2$		96.5 96.5	95	98.9 (3) 98.9 (3)	ł .
Wave- length λ, μm	Al (7)	Sb (8)	Cd (7)	Cr (8)	Fe (8)	Ir (7)	Co (7)	Mg (8)	W (9)
0 6 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	73.3 82.0 88.3 91.4 93.7 95.0 96.9 97.0	53 55 60 65 68 70 72	71.0 93 95.9 97.2 98.0 98.0 98.2	55.5 57.0 63.0 70.0 76.0 81.0 85.0 89.0 92.0 93.0	57.5 65.0 78.0 84.5 89.5 91.5 93.0 94.0 94.0	79.4 91.4 93.3 94.0 94.5 94.7 94.8 95.5 95.8	67.5 76.7 80.7 86.0 93.0 95.8 96.4 96.8 96.6	74.0 77.0 80.5 83.5 86.0 88.0 91.0 93.0	53.1 57.6 90.0 94.3 94.8 95.3 95.8

Numbers in parentheses refer to the references which follow.

References for Table 6g-3

- Tool, A. Q.: Phys. Rev. 31, 1 (1910).
 Coblentz, W. W., and R. Stair: Natl. Bur. Standards J. Research 2, 343 (1929).
 Hagen, E., and H. Rubens: Ann. Physik 8, 16 (1902), and 11, 873 (1903).
- 4. Ingersoll, L. R.: Astrophys. J. 32, 282 (1910).
- 5. Hagen, E., and H. Rubens: Berliner Sitzber. 491 (1909).
- 6. Minor, R. S.: Ann. Physik 10, 581 (1903).
 7. Coblentz, W. W.: Natl. Bur. Standards Bull. 2, 457 (1906).
 8. Coblentz, W. W.: Natl. Bur. Standards Bull. 7, 198 (1911).
- 9. Coblentz, W. W., and W. B. Emerson: Natl. Rur. Standards Bull. 14, 306 (1918-1919).

Table 6g-4. Calculated Reflectance and Transmittance of Al Films on Transparent Substrates of n=1.5 for Various Wavelengths as a Function of Film Thickness

(Calculated values agree with directly measured ones for film thicknesses t > 80 Å; back surface antireflected)*

T201					Waveler	ngth, n	m			
Film thickness, angstroms	2:	20	3	00	400 5			46	650	
	R %	T %	R %	T %	R %	T %	R %	T %	R %	T %
40	14	82	19	74	25	65	33	51	38	42
80	33	60	43	47	52	36	60	24	63	18
120	52	40	62	27	70	19	74	12	75	9
160	67	25	74	16	79	11	81	7	82	5
200	76.3	15.2	81.5	9.1	84.9	5.9	85.6	3.5	85.4	2.6
240	82.4	9.1	86.0	5.1	88.1	3.3	88.1	2.0	87.5	1.4
280	86.2	5.4	88 4	3.1	90.0	1.9	89.5	1.1	88.8	0.8
3 20	88.5	3.2	90.0	1.8	91.1	1.1	90.4	0.5	89.6	0.4
360	89.8	1.9	90.9	1.0	91.7	0.6	90.9	0.4	90.0	0.3
400	90.6	1.1	91.4	0.5	92.1	0.4	91.2	0.2	90.3	0.0
5 00	91.5	0.3	92.0	0.1	92.5	<0.1	91.5	<0.1	90.6	<0.1

^{*} From measurements by G. Hass and J. E. Waylonis; for similar tables of other metals see H. Mayer "Physik Duenner Schichten," vol. I, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1950.

TABLE 6g-5. THICKNESS OF AL FILMS FOR WHICH THE TRANSMITTANCE IS 0.5 PERCENT AT VARIOUS WAVELENGTHS

Wavelength, angstroms	Film thickness, angstroms
5,460	320
3,000	390
2,200	450
1,216	700
735	~7,000
585	~12,000

Table 6g-6. The Extreme Ultraviolet Reflectance of Evaporated Platinum and Rhodium in the Wavelength Region from 585 to 2,000 Å*

(Both film materials show very little aging during exposure to air)

λ, angstroms		584	735	900	1,000	1.105	1,216	1,360	1,486	1,606	2,000
R %	Pt	20.9	12.9	16.1	17.5	20.6	23.0	24.3	25.7	2 6.0	30.0
	Rh	20.9	13.5	12.5	11.0	9.5	9.2	12.5	24.8	35.0	49.0

^{*} G. Hass and R. Tousey, J. Opt. Soc. Am. 49, 593 (1959).

Fig. 6g-1. Extreme ultraviolet reflectance of best-quality aluminum films after 1 hour, 1 month, and 1 year exposure to air; wavelength region 900 to 2,400 Å. [From G. Hass and R. Tousey, J. Opt. Soc. Am. 49, 593 (1959).]