367.40118X00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s):

HANNUKSELA, et al.

Serial No.:

Filed:

May 15, 2001

Title:

VIDEO CODING

Group:

LETTER CLAIMING RIGHT OF PRIORITY

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231 May 15, 2001

Sir:

Under the provisions of 35 USC 119 and 37 CFR 1.55, the applicant(s) hereby claim(s) the right of priority based on United Kingdom Patent Application No.(s) 0011639.2, filed May 15, 2000.

A certified copy of said United Kingdom Application is attached.

Respectfully submitted,

ANTONELLI, TERRY, STOUT & KRAUS, LLP

Carl I. Brundidge

Registration No. 29,621

CIB/alb Attachment (703)312-6600 THIS PAGE BLANK (USPTO)

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

CERTIFIED COPY OF PRIORITY DOCUMENT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation and Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein together with the Statement of inventorship and of right to grant of a Patent (Form 7/77), which was subsequently filed.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

A1 MY 4001

THIS PAGE BLANK (USPTO)

Statement of inventorship and of

right to grant of a patent

Patents Act 1977 (Rule 15)

THE PATENT **SEEIGE**

1 9 APR 2001

3

NEWPORT

The Patent Office

Cardiff Road Newport Gwent NP9 1RF

Gwent NP9 1RH Your reference PAT 00405 GB Patent application number (if you know it) 0011639.2 Full name of the or of each applicant NOKIA MOBILE PHONES LIMITED KEILALAHDENTIE 4 02150 ESPOO FINLAND Title of the invention VIDEO CODING State how the applicant(s) derived the right from the inventor(s) to be granted a patent BY VIRTUE OF AN ASSIGNMENT DATED 14 MAY 2000 6. How many, if any, additional Patents Forms 7/77 are attached to this form? (see note (c)) 7. I/We believe that the person(s) named over the page (and on any extra copies of this form) is/are the inventor(s) of the invention which the above patent application relates to. Signature 18/04/81 8. Name and daytime telephone number of JULIET HIBBERT 01252 865101 person to contact in the United Kingdom

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- f) If there are more than three inventors, please write the names and addresses of the other inventors on the back of another Patents Form 7/77 and attach it to this form.

When an application does not declare any priority, or declares priority from an earlier UK application, you must a provide enough copies of this form so that the Patent Office can send one to each inventor who is not an applicant.

ce you have filled in the form you must remember to sign and date it.

Enter the full names, addresses and postcodes of the inventors in the boxes and underline the surnames

MISKA <u>HANNUKSELA</u> KUKKANIITYNKATU 4 B 33710 TAMPERE FINLAND

Patents ADP number (if you know it):

7764096001

KEREM <u>CAGLAR</u>
LAHTEENKATU 5 H 116
33500 TAMPERE
FINLAND

Patents ADP number (if you know it):

813088200

Reminder

Have you signed the form?

Patents ADP number (if you know it):

P. 002 NMP PATENTS UK FAX:+44 1252 865080 00 (MON) 18:25 uts Form 1/77 Patents Act 1977 (Rule 16) 15 MAY 2000 The Patent Office Request for grant of a patent (See the notes on the back of this form. You can also get an Cardiff Road explanatory leaflet from the Patent Office to help you fill in Newport this form) Gwent NP9 1RH Your reference PAT 00405 GB 16MAY00 E536971-1 002716. P01/7700 0.00-0011439.2 2. Patent application number **0011639.2** (The Patent Office will fill in this part) 15 MAY ZUUU Full name, address and postcode of the or of NOKIA MOBILE PHONES LIMITED each applicant (underline all surnames) KEILALAHDENTIE 4 02150 ESPOO FINLAND Patents ADP number (if you know a) 05911995004 If the applicant is a corporate body, give the FINLAND country/state of its incorporation 4. Title of the invention VIDEO CODING 5. Name of your agent (If you have one) NOKIA IPR DEPARTMENT "Address for service" in the United Kingdom NOKIA HOUSE to which all correspondence should be sent SUMMIT AVENUE (including the postcode) FARNBOROUGH HAMPSHIRE GU140NG UK Patents ADP number (ff you know it) 7577638001 Date of filing Priority application number 6. If you are declaring priority from one or more Country (day / month / year) (If you know it) earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know #) the or each application number Date of filing Number of earlier application If this application is divided or otherwise (day / month / year) derived from an earlier UK application, give the number and the filing date of the earlier application Is a statement of inventorship and of right to grant of a patent required in support of YES this request? (Answer Yes' if: a) any applicant named in part 3 is not an inventor, or . b) there is an inventor who is not named as an applicant, or any named applicant is a corporate body. note (4))

15-05-00 18:25 +44 1252 865080		P.03	R-184	Job-143	
-MÁY. '00 (MON) 18:25 NMP PATENTS UK		FAX:+44 1252	865080		P. 003
Pat aus Form 1/77					
 Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document 					
Continuation sheets of this form Description	۱ (
Claim(s)	3 (5			
Abstract	1 1				
Drawing(s)	4 '				
10. If you are also filing any of the following, state how many against each item.					
Priority documents					
Translations of priority documents					
Statement of inventorship and right to grant of a patent (Patents Form 7/77)		5			
Request for preliminary examination and search (Patents Form 9/77)		1 / 3			
Request for substantive examination (Patents Form 10/77)					
Any other documents (pleuse specify)				·	
11.	I/We requ	est the grant of a pate			plication.
	Signature	JULIET HIBBERT	Mobel	Date 12.05.00	
12. Name and daytime telephone number of person to contact in the United Kingdom		Miss J Hibbert			
Warning After an application for a patent bas been filed, the or communication of the invention should be proh will be informed if it is necessary to probibit or res. United Kingdom, Section 23 of the Patents Act 197 written permission from the Patent Office unless an	ibited or restr trict your inve 7 stops you fro	icted under Section 2 ntion in this way. Fi m applying for a pa	2 of the Pa irthermore, tent abroad	tents Act 197 if you live i witbout fir	77, You n the st getting

United Kingdom for a patent for the same invention and either to direction probibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need belp to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

10

15

20

25

30

and the second of the second o

nc29788a.doc

1

PAT 00405

VIDEO CODING

This invention relates to video coding and in particular to concealing artefacts introduced by errors.

A video sequence consists of a series of still pictures or frames. Video compression methods are based on reducing the redundant and perceptually irrelevant parts of video sequences. The redundancy in video sequences can be categorized into spectral, spatial and temporal redundancy. Spectral redundancy refers to the similarity between the different colour components of the same picture. Spatial redundancy results from the similarity between neighbouring pixels in a picture. Temporal redundancy exists because objects appearing in a previous image are also likely to appear in the current image. Compression can be achieved by taking advantage of this temporal redundancy and predicting the current picture from another picture, termed an anchor or reference picture. Further compression is achieved by generating motion compensation data that describes the motion between the current picture and the reference picture.

However, sufficient compression cannot usually be achieved by only reducing the inherent redundancy of the sequence. Thus, video encoders also try to reduce the quality of those parts of the video sequence which are subjectively less important. In addition, the redundancy of the encoded bit-stream is reduced by means of efficient lossless coding of compression parameters and coefficients. The main technique is to use variable length codes.

Video compression methods typically differentiate between pictures that utilise temporal redundancy reduction and those that do not. Compressed pictures that do not utilise temporal redundancy reduction methods are usually called INTRA or I-frames or I-pictures. Temporally predicted images are usually forwardly predicted from a picture occurring before the current picture and are

15-MAY. '00 (MON) 18:26 NMP PATENTS UK

FAX: +44 1252 865080

P. 006

nc29788a.doc

2

called INTER or P-frames. In the INTER frame case, the predicted motion-compensated picture is rarely precise enough and therefore a spatially compressed prediction error frame is associated with each INTER frame. INTER pictures may contain INTRA-coded areas.

5

10

15

Many video compression schemes also use temporally bi-directionally predicted frames, which are commonly referred to as B-pictures or B-frames. B-pictures are inserted between anchor picture pairs of I- and/or P-frames and are predicted from either one or both of these anchor pictures. B-pictures normally yield increased compression as compared with forward-predicted pictures. B-pictures are not used as anchor pictures, i.e., other pictures are not predicted from them. Therefore they can be discarded (intentionally or unintentionally) without impacting the picture quality of future pictures. Whilst B-pictures may improve compression performance as compared with P-pictures, their generation requires greater computational complexity and memory usage, and they introduce additional delays. This may not be a problem for non-real time encoding such as video-conferencing.

20

A compressed video clip typically consists of a sequence of pictures, which can be roughly categorized into temporally independent INTRA pictures and temporally differentially coded INTER pictures. Since the compression efficiency in INTRA pictures is normally lower than in INTER pictures, INTRA pictures are used sparingly, especially in low bit-rate applications.

25

30

A video sequence may consist of a number of scenes or shots. The picture contents may be remarkably different from one scene to another, and therefore the first picture of a scene is typically INTRA-coded. There are frequent scene changes in television and film material, whereas scene cuts are relatively rare in video conferencing. In addition, INTRA pictures are typically inserted to stop temporal propagation of transmission errors in a

10

15

20

25

30

P. 007

Job-143

FAX: +44 1252 865080

nc29788a.doc

3

reconstructed video signal and to provide random access points to a video bitstream.

Compressed video is easily corrupted by transmission errors, mainly for two reasons. Firstly, due to utilisation of temporal predictive differential coding (INTER frames), an error is propagated both spatially and temporally. In practice this means that, once an error occurs, it is easily visible to the human eye for a relatively long time. Especially susceptible are transmissions at low bit-rates where there are only a few INTRA-coded frames, so temporal error propagation is not stopped for some time. Secondly, the use of variable length codes increases the susceptibility to errors. When a bit error alters the codeword, the decoder will lose codeword synchronisation and also decode subsequent error-free codewords (comprising several bits) incorrectly until the next synchronisation (or start) code. A synchronisation code is a bit pattern which cannot be generated from any legal combination of other codewords and such codes are added to the bit stream at intervals to enable re-In addition, errors occur when data is lost during synchronisation. transmission. For example, in video applications using the unreliable UDP transport protocol in IP networks, network elements may discard parts of the encoded video bit-stream.

There are many ways for the receiver to address the corruption introduced in the transmission path. In general, on receipt of a signal, transmission errors are first detected and then corrected or concealed by the receiver. Error correction refers to the process of recovering the erroneous data perfectly as if no errors had been introduced in the first place. Error concealment refers to the process of concealing the effects of transmission errors so that they are hardly visible in the reconstructed video sequence. Typically some amount of redundancy is added by the source or transport coding in order to help error detection, correction and concealment. Error concealment techniques can be roughly classified into three categories: forward error concealment, error concealment by post-processing and interactive error concealment. The term

10

15

30

15-MAY. '00 (MON) 18:27 NMP PATENTS UK

FAX: +44 1252 865080

nc29788a.doc

4

"forward error concealment" refers to those techniques in which the transmitter side adds redundancy to the transmitted data to enhance the error resilience of the encoded data. Error concealment by post-processing refers to operations at the decoder in response to characteristics of the received signals. These methods estimate the correct representation of erroneously received data. In interactive error concealment, the transmitter and receiver co-operate in order to minimize the effect of transmission errors. These methods heavily utilise feedback information provided by the receiver. Error concealment by post-processing can also be referred to as passive error concealment whereas the other two categories represent forms of active error concealment.

There are numerous known concealment algorithms, a review of which is given by Y. Wang and Q. -F. Zhu in "Error Control and Concealment for Video Communication: A Review", Proceedings of the IEEE, Vol. 86, No. 5, May 1998, pp. 974 – 997 and an article by P. Salama, N. B. Shroff, and E. J. Delp, "Error Concealment in Encoded Video," submitted to IEEE Journal on Selected Areas in Communications.

Current video coding standards define a syntax for a self-sufficient video bitstream. The most popular standards at the time of writing are ITU-T
Recommendation H.263, "Video coding for low bit rate communication",
February 1998; ISO/IEC 14496-2, "Generic Coding of Audio-Visual Objects.
Part 2: Visual", 1999 (known as MPEG-4); and ITU-T Recommendation H.262
(ISO/IEC 13818-2) (known as MPEG-2). These standards define a hierarchy
for bit-streams and correspondingly for image sequences and images.

To assist in error concealment, the MPEG-2 video coding standard allows for the transmission of motion vectors for INTRA macroblocks within INTRA pictures. These motion vectors are used only for error concealment, as follows: if an INTRA macroblock is lost (or corrupted), the decoder uses the motion vectors belonging to the macroblock above the lost one to get

nc29788a.doc

5

resembling blocks from a reference picture. If the INTRA macroblock does not contain motion information, the decoder conceals the errors with a spatial algorithm.

- In H.263, the syntax has a hierarchical structure with four layers: picture, picture segment, macroblock, and block layer. The picture layer data contain parameters affecting the whole picture area and the decoding of the picture data. Most of this data is arranged in a so-called picture header.
- 10 The picture segment layer can either be a group of blocks layer or a slice layer. By default, each picture is divided into groups of blocks. A group of blocks (GOB) typically comprises 16 successive pixel lines. Data for each GOB consists of an optional GOB header followed by data for macroblocks. If the optional slice structured mode is used, each picture is divided into slices instead of GOBs. A slice contains a number of successive macroblocks in scan-order. Data for each slice consists of a slice header followed by data for the macroblocks.
- Each GOB or slice is divided into macroblocks. A macroblock relates to 16 x 16 pixels (or 2 x 2 blocks) of luminance and the spatially corresponding 8 x 8 pixels (or block) of chrominance components. A block relates to 8 × 8 pixels of luminance or chrominance.
- Block layer data consist of uniformly quantised discrete cosine transform coefficients, which are scanned in zigzag order, processed with a run-length encoder and coded with variable length codes. MPEG-2 and MPEG-4 layer hierarchies resemble that used in H.263.
- In H.263, the issue of error concealment is typically perceived as a post-30 processing function and is generally left to the decoder. In ITU-T Study Group 16 Question 15 documents no. 17, 18, 19, 20, 21 & 22, presented at the Ninth

10

15

20

25

5-MAY. '00 (MON) 18:28 NMP PATENTS UK

FAX: +44 1252 865080

nc29788a.doc

6

meeting of ITU-T Study Group 16 in New Jersey in the USA in October 1999, it is proposed to add normative language to H.263 to specify several error concealment techniques and to define a signalling mechanism by which an encoder can announce this to a decoder, preferably on a picture-by-picture basis.

However this approach is unduly restrictive on the decoder since the error concealment method to be used by the decoder is specified by the encoder. Thus other concealment methods cannot be used, even if the decoder has these methods available to use.

According to a first aspect of the invention there is provided a method of encoding a video signal representing a sequence of pictures, the method comprising comparing a first picture with a second picture, calculating a measure of the similarity between the first and the second pictures, comparing the measure of similarity with a predetermined criterion of similarity and, when the measure of similarity does not meet the predetermined criterion of similarity, outputting an indicator indicating that a non-temporally predictive error concealment method should be used by a subsequent decoder and, when the measure of similarity meets the predetermined criterion of similarity, outputting an indicator indicating that a temporally predictive error concealment method should be used by a subsequent decoder.

Consequently, the decoder is free to choose an appropriate type of error concealment method for a corrupted picture on the basis of the indicator. However the indicator does not specify a particular algorithm and thus the decoder is not restricted to using a particular algorithm.

Preferably the error concealment indicator is updated when the measure of similarity does not meet the predetermined criterion. The indicator then indicates what may be viewed as a change in scene.

10

15

20

25

Job-143

15-MAY 00 (MON) 18:28 NMP PATENTS UK

FAX: +44 1252 865080

nc29788a.doc

7

Thus the invention enables the decoder to detect which pictures belong to the same scene and, on the basis of this indication, to select an appropriate type of error concealment method, if required. Thus, when the error concealment indicator changes from one frame to another, the decoder responds by applying a non-predictive error concealment method. If the error concealment to another, responds by applying a temporally predictive error concealment method.

For example, at a scene change, the similarity between the current picture (the first picture in a new scene) and the last picture of the previous scene will be low. The encoder will therefore update the error concealment indicator for the current picture. If the picture is corrupted, the decoder detects the change in the error concealment indicator and uses a non-temporally predictive concealment method. Additionally the decoder can determine which INTRA pictures are used to code a scene change and which ones are inserted into the video sequence for other reasons and can select an appropriate concealment algorithm on the basis of this information.

Some video encoders code all frames (after the initial frame) as INTER pictures. If the first INTER picture after a scene cut gets corrupted, a traditional decoder is likely to utilise temporal prediction in an attempt to conceal the errors introduced by loss of contents of two pictures from different scenes are mixed and the concealed picture may be unacceptably distorted. However a decoder according to the invention is able to detect on the basis of the error concealment indicator that it should use a non-temporal concealment method instead of a temporal concealment method. Hence a picture from a different scene is not used for error concealment.

30 Compared with the solution introduced in MPEG-2, which requires additional motion rectors, the invention requires considerably fewer bits per frame. In addition, the invention operates with existing video compression standards

10

15

20

25

15-MAY. '00 (MON) 18:28 NMP PATENTS UK

FAX:+44 1252 865080

P. 012

nc29788a.doc

8

that do not allow motion vectors for INTRA macroblocks, as allowed in MPEG-2.

The error concealment indicator may be included in respect of the whole picture or part of a picture. In the former case, typically the indicator is included in a picture header. In a preferred implementation of the invention, the video signal is encoded according to the H.263 standard and the error concealment indicator is included in the Supplemental Enhancement concealment indicator may also be included in picture segment headers or macroblock headers of the encoded picture.

According to a second aspect of the invention there is provided a method of encoding a video signal representing a sequence of pictures, the method comprising comparing a first picture with a second picture, calculating a measure of the similarity between the first and the second pictures, comparing the measure of similarity with a predetermined criterion of similarity and outputting an indicator in response to the measure of similarity wherein, when the measure of similarity does not meet the predetermined criterion, the indicator is updated and when the measure of similarity meets the predetermined criterion, the indicator is unchanged.

According to a third aspect of the invention there is provided a method of decoding an encoded video signal representing a sequence of pictures, the method comprising receiving an encoded video signal, identifying for each picture to be decoded an indicator indicating the type of concealment method to be used in the decoding process and decoding the encoded video signal using a concealment method of the identified type.

According to a fourth aspect of the invention there is provided a method of error concealment comprising receiving an encoded video signal including an indicator indicating the type of concealment method to be used in the error

Job-143

P. 013

5-MAY 00 (MON) 18:29 NMP PATENTS UK

FAX:+44 1252 865080

nc29788a.doc

9

concealment process and concealing the error in the video signal appropriately.

According to a fifth aspect of the invention there is provided a method of decoding an encoded video signal representing a sequence of pictures, the method comprising receiving an encoded video signal, identifying for each picture to be decoded an indicator representing the measure of similarity between a first picture and a second picture and, when the indicator is the same as that of a previously received picture, applying a temporal predictive error concealment method and, when the indicator is the different from that of a previously received picture, applying a spatial error concealment method.

According to a sixth aspect of the invent on there is provided a video encoder comprising an input for receiving a video signal representing a sequence of pictures, a calculator to calculate a measure of the similarity between a first and a second picture, and a comparator to compare the measure of similarity with a predetermined criterion of similarity and to output an indicator indicating the concealment method to be used by a subsequent decoder, the comparator being arranged to output an indicator indicating that a non-temporally predictive concealment method should be used when the measure of similarity does not meet the predetermined criterion, and, when the measure of similarity meets the predetermined criterion, to output an indicator indicator indicator indicator decoder.

25

30

15

20

According to a seventh aspect of the invention there is provided a video encoder for encoding a video signal representing a sequence of pictures, the encoder comprising a comparator for comparing a first picture with a second picture, a processor for calculating a measure of the similarity between the first and the second pictures and comparing the measure of similarity with a predetermined criterion of similarity, the processor being arranged to output an indicator in response to the measure of similarity wherein, when the

nc29788a.doc

10

measure of similarity does not meet the predetermined criterion, the indicator is updated and when the measure of similarity meets the predetermined criterion, the indicator is unchanged.

According to an eighth aspect of the invention there is provided a video decoder comprising an input for receiving an encoded video signal representing a sequence of pictures, a controller for identifying within the video signal for each picture to be decoded an indicator indicating the type of concealment method to be used in the decoding process, and decoding the encoded video signal using a concealment method as indicated by the indicator.

The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

15 Figure 1 shows a multimedia mobile communications system;

Figure 2 shows an example of the multimedia components of a multimedia terminal;

Figure 3 shows an example of a video codec;

Figure 4 shows the syntax of a bit stream as known according to H.263;

20 Figure 5a shows an example of a bit stream output by an encoder according to a first implementation of the invention

Figure 5b shows an example of a bit stream output by an encoder according to a second implementation of the invention;

Figure 6a shows an example of a bit stream output by an encoder according to a third implementation of the invention;

Figure 6b shows an example of a bit stream output by an encoder according to a fourth implementation of the invention;

Figure 7 shows an example of a bit stream output by an encoder according to a fifth implementation of the invention.

30

Figure 1 shows a typical multimedia mobile communications system. A first multimedia mobile terminal 1 communicates with a second multimedia mobile

15-05-00 18:25

5

30

пс29788а.doc

11

terminal 2 via a radio link 3 to a mobile communications network 4. Control data is sent between the two terminals 1,2 as well as the multimedia data.

Figure 2 shows the typical multimedia components of a terminal 1. The terminal comprises a video codec 10, an audio codec 20, a data protocol manager 30, a control manager 40, a multiplexer/demultiplexer 50 and a modern 60 (if required). The video codec 10 receives signals for coding from a video capture device of the terminal (not shown) (e.g. a camera) and receives signals for decoding from a remote terminal 2 for display by the terminal 1 on a display 70. The audio codec 20 receives signals for coding from the 10 microphone (not shown) of the terminal 1 and receive signals for decoding from a remote terminal 2 for reproduction by a speaker (not shown) of the terminal 1.

- The control manager 40 controls the operation of the video codec 10, the 15 audio codec 20 and the data protocol manager 30. However, since the invention is concerned with the operation of the video codec 10, no further discussion of the audio codec 20 and protocol manager 30 will be provided.
- Figure 3 shows an example of a video codec 10 according to the invention. 20 The video codec comprises an encoder part 100 and a decoder part 200. The encoder part 100 comprises an input 101 for receiving a video signal from a camera or video source (not shown) of the terminal 1. A switch 102 switches the encoder between an INTRA-mode of coding and an INTER-25 mode.

In INTRA-mode, the video signal from the input 101 is transformed into DCT co-efficients by a DCT transformer 103. The DCT coefficients are then passed to a quantiser 104 that quantises the coefficients. Both the switch 102 and the quantiser 104 are controlled by an encoding control manager 105 of the video codec which also receives feedback control from the receiving terminal 2 by means of the control manager 40.

10

15

20

25

30

15-MAY. '00 (MON) 18:30 NMP PATENTS UK

FAX:+44 1252 865080

P. 016

nc29788a.doc

12

In INTER mode, the switch 102 is operated to accept from a subtractor 106 the difference between the signal from the input 101 and a previous picture which is stored in a picture store 107. The difference data output from the subtractor 106 represents the prediction error between the current picture and the previous picture stored in the picture store 107. The data in the picture store 107 is generated by passing the data output by the quantiser through an inverse quantiser 108 and applying an inverse DCT transform 109 to the inverse-quantised data. The resulting data is added to the contents of the picture store 107 by adder 110. A motion estimator 111 may generate motion compensation data (motion vectors) from the data in the picture store 107 in a conventional manner.

The video codec outputs the quantised DCT coefficients 112a, the quantising index 112b (i.e. the details of the quantising used), an INTRA/INTER flag 112c to indicate the mode of coding performed (I or P/B), a transmit flag 112d to indicate the number of the frame being coded and the motion vectors 112e for the picture being coded. These are multiplexed together by the multiplexer 50 together with other multimedia signals.

The decoder part 200 of the video codec 10 comprises an inverse quantiser 120, an inverse DCT transformer 121, a motion compensator 122, a picture store 123 and a controller 124. The controller 124 receives video codec control signals demultiplexed from the demultiplexer 50. In practice the controller 105 of the encoder and the controller 124 of the decoder may be the same processor.

The operation of an encoder according to the invention will now be described. The video codec 10 receives a video signal to be encoded. The encoder 100 of the video codec encodes the video signal by performing DCT transformation, quantisation and motion compensation. The decoded video data is then output to the multiplexer 50. The multiplexer 50 multiplexes the

Job-143

5-MAX: 00 (MON) 18:30 " NMP PATENTS UK

FAX: +44 1252 865080

nc29788a.doc

13

video data from the video codec 10 and control data from the control 40 (as well as other signals as appropriate) into a multimedia signal. The terminal 1 outputs this multimedia signal to the receiving terminal 2 via the modem 60 (if required).

5

10

15

20

25 .

30

The invention relates to the inclusion of an indicator in the video sequence syntax that indicates the type of concealment method to be used by the decoder. This may be included in the picture layer of the bit stream or be provided as a separate layer. The indicator may enable identification of different scenes and thus the type of concealment method to be used.

In a first embodiment of the invention, the error concealment indicator comprises a so-called scene identifier (SI), which is added to the bit-stream representation of each coded picture. The scene identifier is a value, which is the same for all of the pictures of the same scene. Pictures belonging to different scenes typically have different value of SI is incremented each time it is updated. However, it is envisaged that the scene identifier may take one adjacent scenes having non-identical SI values e.g. the pictures of the odd-numbered scenes having SI set to 0 and the pictures of the even-numbered scenes having SI set to 1.

The controller 105 of the encoder detects a scene cut by comparing the similarity between one frame and another. The controller 105 compares the pixel representation of the current picture (received from input 102) with the pixel representation of the previous picture stored in the picture store 107. Each time the similarity between the two pictures is below a certain threshold, the controller detects a scene cut and an updated scene indicator 112f is output. If the similarity is above the threshold the scene indicator is not updated but is repeated.

15-MAY. '00 (MON) 18:30 NMP PATENTS UK

FAX:+44 1252 865080

P. 018

nc29788a.doc

14

The scene identifier does not necessarily identify an actual scene cut; a change in the scene identifier indicates that the current picture has changed sufficiently with respect to a previous picture that the current picture may be deemed to be a new scene.

5

10

15

Other known methods for detecting scene changes may be used.

In a second embodiment of the invention, a so-called concealment method indicator (CMI) is added to the bit-stream representation of each coded picture. The CMI indicates to a decoder the type of concealment method that the decoder should use if the associated picture is corrupted. The encoder decides which CMI to associate with the picture by comparing the similarity between a current picture and a previous one. If the similarity between the two pictures is below a certain threshold, the controller outputs a first concealment method indicator CMI=0 as output 112f. This indicates to a decoder that a non-temporal predictive concealment method should be used. If the similarity is above the threshold a second concealment method indicator CMI=1 is output as output 112f. This indicates to a decoder that a temporal predictive concealment method should be used.

20

25

30

The measure of similarity may be formed by calculating the mathematical correlation between the two pictures.

An error concealment indicator may also be included in the picture segment header and/or the macroblock header to influence at this level the selection by a receiving decoder of an appropriate error concealment method.

Considering the terminal 1 as receiving encoded video data from terminal 2, the operation of the video codec 10 will now be described with reference to its decoding role. The terminal 1 receives a multimedia signal from the transmitting terminal 2. The demultiplexer 50 demultiplexes the multimedia signal and passes the video data to the video codec 10 and the control data

15

20

25

30

Job-143

15-MAY '00 (MON) 18:31 " NMP PATENTS UK

FAX: +44 1252 865080

nc29788a.doc

15

to the control manager 40. The decoder 200 of the video codec decodes the encoded video data by inverse quantising, inverse DCT transforming and motion compensating the data. The controller 124 of the decoder checks the integrity of the received data and, if an error is detected, attempts to correct and conceal the error in a manner to be described below. The decoded, corrected and concealed video data is then output for reproduction on a display 70 of the receiving terminal 1.

Errors in video data may occur at the picture level, the picture segment level or the macroblock level. Error checking may be carried out at any or all of these levels.

Considering first a signal encoded according to the invention, in which an indicator SI is included, when an error is detected, the decoder examines the SI of the received but corrupted picture. If the SI of the corrupted picture is the same as that of the temporally-neigh pouring correctly decoded picture(s), the decoder applies a temporal prediction (INTER) concealment algorithm. The decoder may be capable of carrying out various temporal prediction concealment algorithms. The indicator S indicates to the decoder the type of concealment algorithm that should be used but does not specify the algorithm to be used.

If the SI of the corrupted picture differs from that of the temporallyneighbouring correctly decoded picture(s), the decoder conceals the picture using a spatial (INTRA) concealment method.

Considering a signal encoded according to the invention, in which an indicator CMI is included, when an error is detected, the decoder examines the CMI of the received but corrupted picture. If the CMI of the corrupted picture is CMI1, the decoder conceals the picture using a spatial concealment method. If the CMI of the corrupted picture is CMI2, the decoder applies a temporal prediction concealment algorithm. Again the decoder may be capable of

5-MAY. 00 (MON) 18:31 NMP PATENTS UK

FAX: +44 1252 865080

nc29788a_doc

16

carrying out various error concealment algorithms. The indicator CMI indicates to the decoder the type of concealment method that should be used but does not specify the algorithm to be used.

An example of how the error concealment indicator may be included in the syntax of an encoded signal will now be addressed with reference to the H.263 video coding standard.

Figure 4 shows the syntax of a bit stream as known according to H.263. (The following implementations describe the GOB format but it will be clear to a skilled person that the invention may also be implemented in the slice format.) As mentioned already, the bit stream has four layers: the picture layer, picture segment layer, macroblock layer and block layer. The picture layer comprises a picture header followed by data for the Group of Blocks, eventually followed by any optional end-of-sequence code and stuffing bits.

The prior art H.263 bit stream is formatted as shown in Figure 4. A descriptor for each part is given below:

	PSC	The picture start code (PSC) indicates the start of the picture
20	TR	The Temporal Reference (TR) is formed by incrementing its
		value in the temporally previous reference picture header by
		one plus the number of skipped or non-referenced pictures
		since the previously transmitted one
25	PTYPE	Amongst other things, PTYPE includes details of the picture
		coding type i.e. INTRA or INTER
	PQUANT	A codeword that indicates the quantiser to be used for the
		picture until updated by any subsequent quantiser information
	СРМ	A codeword that signals the use of optional continuous
		presence multipoint and video multiplex (CPM) mode
30	PSBI	Picture Sub-Bit stream Indicator – only present if CPM is set
	TRB	Present if the frame is a bi-directionally predicted frame (known
		as a PB-frame)

20

25

30

P. 021

Job-143

15-MAY 00 (MON) 18:31 NMP PATENTS UK

FAX: +44 1252 865080

nc29788a.doc

17

DBQUANT Present if a bi-directional frame

PEI This relates to extra insertion information and is set to "1" to

indicate the presence of the following optional data fields
PSUPP and PEI. PSUPP and PEI are together known as

Supplemental Enhancement Information, which is further

defined in Annex L of H.26\$.

GOBS Is the data for the group of blocks for the current picture

ESTF A stuffing codeword provided to attain byte alignment before

EOS

10 EOS A codeword indicating the end of the data sequence for the

picture

PSTUF A stuffing codeword to allow for byte alignment of the next

picture start code PSC

The structure as shown in Figure 4 does not include the optional PLUSTYPE data field. PSBI is only present if indicated by CPM. TR_B and DBQUANT are only present if PTYPE indicates use of a so-called PB frame mode (unless the PLUSTYPE field is present and the used of DBQUANT is indicated therein).

These issues are addressed in more detail in the H.263 specification.

The following paragraphs outline possible implementations of the bit-stream output by an encoder according to the invention.

The concealment method indicator may be incorporated into a H.263 bit stream as follows. Figure 5a shows an example of a bit stream output by an encoder according to the first implementation of the invention. As shown in Figure 5a, the bit stream includes an additional codeword SI which is a codeword indicating the scene to which the picture belongs. This is inserted by the encoder according to the amount of change between successive pictures, as described above. A change in identifier indicates that the similarity between the picture being coded and a reference picture is low. The decoder uses this information to select an error concealment method of the

15-MAY. '00 (MON) 18:32 NMP PATENTS UK

FAX:+44 1252 865080

nc29788a.doc

18

indicated type. In this case, the type of error concealment method to be used is not specifically indicated, but can be determined from the changes in SI.

Figure 5b shows an example of a bit stream output by an encoder according to the second implementation of the invention. As shown in Figure 5b, the bit stream may include an additional codeword CMI which is a codeword indicating the type of concealment method to be used by the decoder. This is inserted by the encoder according to the amount of change between successive pictures, as described above.

10

15

5

Alternatively, the SI or CMI may be included in the Supplemental Enhancement Information PSUPP (see Annex L of H.263 and Figure 4). The supplemental information may be present in the bit stream even though the decoder may not be capable of providing the enhanced capability to use it, or even to properly interpret it. Simply discarding the supplemental information is allowable by decoders unless a requirement to provide the requested capability has been negotiated by external means.

If PEI is set to "1", then 9 bits follow consisting of 8 bits of data (PSUPP) and then another PEI bit to indicate if a further 9 bits follow and so on.

The PSUPP data consists of a 4-bit function type indication FTYPE, followed by a 4-bit parameter data size specification DSIZE followed by DSIZE octets of function parameter data, optionally followed by another FTYPE and so on. It is known to use this PSUPP codeword to signal various situations such as: to indicate a full-picture or partial-picture reeze or freeze-release request with or without resizing; to tag particular pictures or sequences of pictures within the video stream for external use; or to video compositing.

25

25

30

Job-143

FAX: +44 1252 865080

nc29788a.doc

19

To implement the invention using the Supplemental Enhancement Information, a further FTYPE is defined as "Scene Identifier" or "CMI". For example, FTYPE 15 may be used for this purpose.

This is illustrated in Figures 6a and 6b. Figure 6a illustrates the example where a parameter SI is included in the SEI of the picture header. The FTYPE is defined as Scene Identifier SI. The DSIZE specifies the size of the parameter and the following octet is the parameter data i.e. the value of SI. From this value a receiving decoder can determine whether a corrupted picture is from the same "scene" as a previous one and so select the most appropriate type of concealment method. Figure 6b illustrates the example where a parameter CMI is included in the SEI of the picture header. The FTYPE is defined as Concealment Method Indicator CMI. The DSIZE specifies the size of the parameter and the following octet is the parameter data i.e. the value of CMI. From this value a receiving decoder can determine the most appropriate type of concealment method for a corrupted picture.

Alternatively, the information may be contained in the additional Supplemental Enhancement Information as specified in a "Draft of new Annex W: Additional Supplementary Enhancement Information Specification" P. Ning and S. Wenger, ITU-T Study Group 16 Question 15 Document Q15-I-58, November 1999.

In this draft proposal, FTYPE 14 is defined as "Picture Message". When this FTYPE is set, the picture message function indicates the presence of one or more octets representing message data. The first octet of the message data is a message header with the structure shown in Figure 7 i.e. CONT, EBIT and MTYPE. DSIZE is equal to the number of octets in the message data corresponding to a picture message function, including the first octet message header.

10

15

20

25

30

15-MAY. '00 (MON) 18:32 NMP PATENTS UK

FAX: +44 1252 865080

P. 024

nc29788a.doc

20

The continuation field CONT, if equal to associated with the picture message is part of the same logical message as the message data associated with the next picture message function. The End Bit Position field EBIT specifies the shall be ignored in the last message octet. Further details of these fields can be found in the draft of Annex W, referred

The field MTYPE indicates the type of message. Various types of message are suggested in the draft of Annex W. According to the invention one type e.g. MTYPE 9 is defined as Error Concealment Type. The value of the scene identifier or CMI is defined in the octet following the message header. For the scene identifier the value is the same in all pictures of the same scene. Pictures belonging to different scenes have different scene identifier values. The decoder uses the SI or CMI to determine the type of error concealment to be used.

The message may also indicate the type of error concealment that should be used for particular specified rectangular areas of the current picture if at least part of the area is not correctly received. There may be multiple error concealment type messages for one picture each specifying the concealment type for a non-overlapping rectangular area. Advantageously if the messages do not cover some areas of the picture, a decoder uses any error concealment for those areas. Preferably, the decoder uses the concealment type that corresponds to the picture type i.e. a temporal predictive concealment method for an INTER-frame and a non-temporal predictive concealment method for an INTER-frame.

A specific example will now be given. For each error concealment type message, DSIZE shall be 6, CONT shall be 0, and EBIT shall be 0. If the first data byte is equal to one (0000 0001), this indicates to a decoder that transmission errors are to be concealed using spatial concealment algorithms only. If the first data byte is equal to two (0000 0010), this indicates to a

20

25

Job-143

P. 025

15-MAX.'00 (MON) 18:33 NMP PATENTS UK

FAX:+44 1252 865080

nc29788a.doc

21

decoder that transmission errors are to be concealed using temporal prediction. The following four PSUPP octets contain the horizontal and vertical location of the upper left corner of the specified rectangular region within the picture within which errors are to be concealed, and the width and height of the rectangular region, respectively, using eight bits each and expressed in units of 16 pixels (of luminance picture). For example, an entire Quarter Common Intermediate Format (QCIF) picture (which has a luminance picture of 176 X 144 pixels) is specified by the four parameters (0, 0, 11, 9).

For picture formats having a width and height that is not divisible by 16, the specified area may extend to the next larger size that would be divisible by 16. For example, an entire image having size of 160 x 120 pixels is specified by the four parameters (0, 0, 10, 8). Preferably, the specified area does not cross picture boundaries, and preferably does not overlap with other specified error concealment areas of the same picture.

The error concealment indicator may also be incorporated into other video coding protocols. For example MPEG-4 defines so-called user data, which can contain any binary data and is not necessarily associated with a picture. The error concealment identifier may be added to these fields.

The invention is not intended to be limited to the video coding protocols discussed above: these are intended to be merely exemplary. The invention is applicable to any video coding protocol in which a choice of error concealment methods is available. The addition of the information as discussed above allows a receiving decoder to determine which would be the best type of error concealment method to use.

10

25

30

15-MAY. '00 (MON) 18:33 NMP PATENTS UK

FAX:+44 1252 865080

P. 026 ...

nc29788a.doc

22

CLAIMS

- 1. A method of encoding a video pictures, the method comprising comparing a first picture with a second picture, calculating a measure of the similarity between the first and the second pictures, comparing the measure of similarity with a predetermined criterion of similarity and, when the measure of similarity does not meet the predetermined criterion of similarity, outputting an indicator indicating that a non-temporally predictive error concealment method should be used by a subsequent decoder and, when the predetermined criterion of similarity, outputting an indicator indicating that a temporally predictive error concealment method should be used by a subsequent decoder.
- 15 2. A method according to claim 1, wherein the indicator is updated when the measure of similarity does not meet the predetermined criterion of similarity.
- 3. A method according to claim 1 or 2 wherein the indicator is included in 20 a picture header.
 - 4. A method according to claim 3 wherein the video signal is encoded according to the H.263 standard and the indicator is included in the Supplemental Enhancement Information.
 - 5. A method of encoding a video signal representing a sequence of pictures, the method comprising comparing a first picture with a second picture, calculating a measure of the similarity between the first and the second pictures, comparing the measure of similarity with a predetermined criterion of similarity and outputting an indicator in response to the measure of similarity wherein, when the measure of similarity does not meet the

10

15

20

Job-143

15-MA 00 (MON) 18:33 NMP PATENTS UK

FAX:+44 1252 865080

nc29788a.doc

23

predetermined criterion, the indicator is updated and when the measure of similarity meets the predetermined criterion, the indicator is unchanged.

6. A method of decoding an encoded video signal representing a sequence of pictures, the method comprising receiving an encoded video signal, identifying for each picture to be decoded an indicator indicating the type of concealment method to be used in the decoding process and decoding the encoded video signal using a concealment method of the identified type.

7. A method of error concealment comprising receiving an encoded video signal including an indicator indicating the type of concealment method to be used in the error concealment process and concealing the error in the video

signal appropriately.

- 8. A method of decoding an encoded video signal representing a sequence of pictures, the method comprising receiving an encoded video signal, identifying for each picture to be decoded an indicator representing the measure of similarity between a first picture and a second picture and, when the indicator is the same as that of a previously received picture, applying a temporal predictive error concealment method and, when the indicator is the different from that of a previously received picture, applying a spatial error concealment method.
- 9. A video encoder comprising an input for receiving a video signal representing a sequence of pictures, a calculator to calculate a measure of the similarity between a first and a second picture, and a comparator to compare the measure of similarity with a predetermined criterion of similarity and to output an indicator indicating the concealment method to be used by a subsequent decoder, the comparator being arranged to output an indicator indicating that a non-temporally predictive concealment method should be used when the measure of similarity does not meet the predetermined

15-MAY. '00 (MON) 18:34 NMP PATENTS UK

FAX:+44 1252 865080

P. 028 🗑

nc29788a.doc

24

criterion, and, when the measure of similarity meets the predetermined criterion, to output an indicator indicating that a temporally predictive concealment method should be used by a subsequent decoder.

- 5 10. A video encoder for encoding a video signal representing a sequence of pictures, the encoder comprising a comparator for comparing a first picture with a second picture, a processor for calculating a measure of the similarity between the first and the second pictures and comparing the measure of similarity with a predetermined criterion of similarity, the processor being arranged to output an indicator in response to the measure of similarity wherein, when the measure of similarity does not meet the predetermined criterion, the indicator is updated and when the measure of similarity meets the predetermined criterion, the indicator is unchanged.
- 11. A video decoder comprising an input for receiving an encoded video signal representing a sequence of pictures, a controller for identifying within the video signal for each picture to be decoded an indicator indicating the type of concealment method to be used in the encoded video signal using a concealment method as indicated by the indicator.
 - 12. A portable radio communications device including an encoder according to claim 9 or 10 and/or a decoder according to claim 10 or 11.

P. 029

100 (MON) 18:34 NMP PATENTS UK

FAX: +44 1252 865080

nc297B8a.doc

25

ABSTRACT

Encoding a video signal with an indication of the type of error conceatment used.

VIDEO CODING-

A method of encoding a video signal representing a sequence of pictures, the method comprising comparing a first picture with a second picture, calculating a measure of the similarity between the first and the second pictures, comparing the measure of similarity with a predetermined criterion of similarity and, when the measure of similarity does not meet the predetermined criterion of similarity, outputting an indicator indicating that a non-temporally predictive error concealment method should be used by a subsequent decoder and, when the measure of similarity meets the predetermined criterion of similarity, outputting an indicator indicating that a temporally predictive error concealment method should be used by a subsequent decoder.

15

Fig 5a

15-MAY. '00 (MON) 18:34 NMP PATENTS UK

P. 030

Job-143

P. 031

15-MA 00 (MON) 18:34 NMP PATENTS UK

FAX:+44 1252 865080

15-MAY. '00 (MON) 18:34 NMP PATENTS UK

FAX:+44 1252 865080

P. 032

3/4

PSC TR PTYPE PQUANT CBM PSBI TR DBQUANT PEI PSUPP PEI GOBS ESTUF EOS PSTUF

Fig 4

PSC TR PTYPE PQUANT CBM PSBI TRB DQUANT SI PEI

Fig 5a

PSC TR PTYPE PQUANT CBM PSBI TR DQUANT CMI PEI

Fig 5b

P.33

THIS PAGE BLANK (USPTO)