

This Video: Rigid Body Simulation with Contact

What Makes an Object Rigid?

Affine Body Dynamice

$$\mathbf{x}(\mathbf{X},t) = \mathbf{J}(\mathbf{X})\mathbf{q}(t)$$

Reference (Undeformed) Space

Solve using Optimization via Newton's Method

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$

Questions from Previous Lecture?

Optimization Problem for a single object

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$

Two Problems with Our Current Approach

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$

Problem 1: Solving this optimization problem only moves one object !!!

Problem 2: There's no term in this optimization that tells it how to handle collisions

Kinetic Energy of an Affine Body

Kinetic Energy of many Affine Bodies

Reference (Undeformed) Spaces

Kinetic Energy of many Affine Bodies

$$\sum_{i=0}^{N} \frac{1}{2} \int_{\Omega_i} \rho_i ||\mathbf{v}_i(\mathbf{X})|| d\Omega_i$$

Kinetic Energy of many Affine Bodies

Number of Objects
$$\frac{1}{N} \frac{1}{2} \dot{\boldsymbol{q}}_i^T \boldsymbol{M}_i \dot{\boldsymbol{q}}_i$$

Kinetic Energy for a Bunny using FEM

Generalized Coordinates for Bunny FEM

Let's do the same thing

Number of Objects
$$\frac{1}{2} \dot{\mathbf{q}}_{i}^{T} \mathbf{M}_{i} \dot{\mathbf{q}}_{i}$$

i=0

Generalized Velocity for MANY Affine Bodies

$$\dot{\mathbf{q}} = egin{bmatrix} \dot{\mathbf{q}}_0 \ \dot{\mathbf{q}}_1 \ \dot{\mathbf{q}}_2 \end{bmatrix}$$

Reference (Undeformed) Spaces

Generalized Coordinates for MANY Affine Bodies

$$\mathbf{q} = egin{bmatrix} \mathbf{q}_0 \ \mathbf{q}_1 \ \mathbf{q}_2 \end{bmatrix}$$

Let's do the same thing

$$\sum_{i=0}^{N} \frac{1}{2} \dot{\mathbf{q}}^{T} E_{i}^{T} M_{i} E_{i} \dot{\mathbf{q}}$$

Mass Matrix for Affine Body System

Reference (Undeformed) Spaces

Block Structure of M?

Block Structure of M?

Potential Energy of Affine Body System

Reference (Undeformed) Spaces

Optimization Problem for a multi-object system

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^1 M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$

Two Problems with Our Current Approach

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$

Problem 1: Solving this optimization problem only moves one object !!!

Problem 2: There's no term in this optimization that tells it how to handle collisions

Collisions in Simulation

Two phases detection and response

Detection: Did I hit anything?

Response: I hit something! What do I do?

Three Rules of Contact Mechanics

Try to prevent interpenetration at contact point

Three Rules of Contact Mechanics

Three Rules of Contact Mechanics

One Approach of Many – Penalty "Springs"

Standard energy form of a zerorest length spring

Stiffness (user parameter)

Remember the Rules

- 1. Contact Forces Prevent Penetration
- 2. Contact Force Only Push Objects Apart
- 3. Contact Forces Only Apply when Objects are in Contact

Remember the Rules

- 1. Contact Forces UNDO Penetration
- 2. Contact Force Only Push Objects Apart
- 3. Contact Forces Only Apply when Objects Have Penetrated

What does the normal tell us about the sign of d?

$$d = \max(0, ||\mathbf{x}_{\mathbf{b}} - \mathbf{x}_{\mathbf{a}}||_2)$$

What does the normal tell us about the sign of d?

$$d = \max(0, (\mathbf{x_b} - \mathbf{x_a})^{\mathrm{T}} n_b)$$

Contact Potential Energy

Two Problems with Our Current Approach

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^{i}}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^{i}}}) + h^{2}V(\mathbf{q^{i+1}})$$

$$V_{springs} + V_{affine}$$

Problem 1: Solving this optimization problem only moves one object !!!

Problem 2: There's no term in this optimization that tells it how to handle collisions

Finding Contacts?

```
list = [] # Empty list of penalty springs
For A in each Object
  For B in each Object
      if A == B
            continue
      else
            For each vertex, v, in A
                  Find triangle, t, with least positive penetration in B
                  Add spring between v and t to list
```

Finding Contacts?

```
list = [] # Empty list of penalty springs
For A in each Object
  For B in each Object
      if A == B
            continue
      else
                                                     How exactly do we
                                                       compute this?
            For each vertex, v, in A
                  Find triangle, t, with least positive penetration in B
                  Add spring between v and t to list
```

Calculating Penetration Depth For a Single Triangle

Given, it's a vertex in mesh A

Calculating Penetration Depth For a Single Triangle

Calculating Penetration Depth For a Single Triangle

Calculating Penetration Depth For a Mesh

Calculating Penetration Depth For a Mesh

One last thing ...

Vectorized Generalized Coordinates

Reference (Undeformed) Space

$$\mathbf{x}(\mathbf{X},t) = \mathbf{J}(\mathbf{X})\mathbf{q}(t)$$

What's the problem?

Vectorized Generalized Coordinates

Reference (Undeformed) Space

$$\mathbf{x}(\mathbf{X},t) = \mathbf{J}(\mathbf{X})\mathbf{q}(t)$$

Given x, need to FIND X ... grrrrr

But what is the Deformation Gradient?

Reference (Undeformed) Space

But what is the Deformation Gradient?

Reference (Undeformed) Space

Static Friction: Holds things still

Dynamic Friction: Friction force resists sliding when in motion

Coloumb's Law: $||\mathbf{f}|| \le \mu ||\mathbf{c}||$

Friction is maximally dissipative

It wants to reduce the kinetic energy in the system as quickly as possible, up to Coloumb's Law

Friction Between Two Objects

We apply friction between contact points where it opposes relative tangential velocity

An approximation:

- 1. if relative velocity is zero, force of friction is zero
- 2. Otherwise friction opposes relative velocity with coloumb law magnitude.

Ideally, we could write this out as an Energy and add it to our implicit integrator!

Introduce a "Threshold" Function

$$f_1(y) = \begin{cases} -\frac{y^2}{\epsilon_v^2 h^2} + \frac{2y}{\epsilon_v h}, & y \in (0, h\epsilon_v) \\ 1, & y \ge h\epsilon_v, \end{cases}$$

A Simple Friction Spring Energy

$$V_{friction}(\mathbf{q}) = \mu \lambda f_0(||\mathbf{v}_r^{t+1}(\mathbf{q})||)$$

T only computed at time t

$$\mathbf{v}_r^{\mathsf{t+1}} = \mathbf{T}^T (\boldsymbol{v_b} - \boldsymbol{v_a})$$

$$\lambda^t = ||\mathbf{c}||$$

A Simple Friction Spring Energy

Integral of f_1 wrt magnitude of tangential velocity

$$V_{friction}(\mathbf{q}) = \mu \lambda f_0(||\mathbf{v}_r^{t+1}(\mathbf{q})||)$$

T only computed at time t

$$\mathbf{v}_r^{\mathsf{t+1}} = \mathbf{T}^T (\boldsymbol{v_b} - \boldsymbol{v_a})$$

$$\lambda^t = ||\mathbf{c}||$$

Multibody AND Contact AND Friction in One Solver

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^{i}}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^{i}}}) + h^{2}V(\mathbf{q^{i+1}})$$

$$V_{springs} + V_{affine} + V_{-}\{friction\}$$

This Video: Rigid Body Simulation with Contact

