

TARGET

Case Study

Stage 1: Data Exploration

Schema of the **Target** dataset

Assessment of the structure and data types of different columns across tables in the given dataset:

Query:

SELECT *

FROM Target.INFORMATION_SCHEMA.TABLES; --Target is the dataset name here

Quer	ry results												▲ SAVE RESULTS ▼	
JOB IN	NFORMATION	RESULTS	JSON	EXECUTIO	N DETAILS	EXECU	TION GRAPH PE	REVIEW						
Row	table_catalog /	table_schema	table_name	table_type	is_insertable.	is_typed	creation_time	base_table_catalog	base_table_schema	base_table_name	snapshot_time_ms	ddl	default_collation_name_	upsert_stream_apply_watermark
1		Target	order_ite	BASE TABLE	YES	NO	2023-03-30	null	null	null	null	CREATE	NULL	null
												TABLE		
												`target-		
												382214.T		
												arget.ord		
2	target-382214	Target	sellers	BASE TABLE	YES	NO	2023-03-30	null	null	null	null	CREATE	NULL	null
												TABLE		
												`target- 382214.T		
												arget.sell		
3	target-382214	Target	geolocati	BASE TABLE	YES	NO	2023-03-30	null	null	null	null	CREATE	NULL	null
Ü	target 502214	rarget	geolocati	DAGE TABLE	120	140	2020 00 00	nan	11011	11011	nun	TABLE	Noce	nun
												`target-		
												382214.T		
												arget.geo		
4	target-382214	Target	products	BASE TABLE	YES	NO	2023-03-30	null	null	null	null	CREATE 💙	NULL	null
												TABLE		
												`target-		
												382214.T		
												arget.pro		
5	target-382214	Target	orders	BASE TABLE	YES	NO	2023-03-30	null	null	null	null	CREATE 💙	NULL	null

Here,

- The dataset contains 8 tables namely, customers, geolocation, payments, orders, order_items, sellers, reviews, products
- "target-382214" in the column table_catalog is the project ID of the project that contains the dataset.
- "Target" in the column table_schema is the name of the dataset that contains the table.
- "YES" in the column is_insertable_into states that the table supports DML INSERT statements.
- "NO" in the is_types column is always no.

Analyzing the time period for which the data is given:

Query:

SELECT

EXTRACT(DATE FROM MIN(order_purchase_timestamp)) AS first_order,

EXTRACT(DATE FROM MAX(order_purchase_timestamp)) AS last_order

FROM 'Target.orders';

Query results

Here,

- The first order was placed on 4 September 2016.
- The last order given to us is of 17 October 2018.
- Therefore the data that has been provided to us is between <u>4 September 2016 to 17 October 2018.</u>

Cities and States of customers ordered during the given period:

Query:

SELECT

DISTINCT c.customer_city,

c.customer_state

FROM `Target.customers` AS c

JOIN 'Target.orders' AS o

Query results

JOB IN	IFORMATION	RESULTS J		
Row	customer_city	customer_state		
1	abadia dos dour	MG		
2	abadiania	GO		
3	abaete	MG		
4	abaetetuba	PA		
5	abaiara	CE		
6	abaira	BA		
7	abare	BA		
8	abatia	PR		
9	abdon batista	SC		
10	abelardo luz	SC		

Here,

• These are the cities and states of of customers in Brazil that have ordered between the given period.

Stage 2: In-depth Exploration

Understanding the trend of e-commerce in Brazil:

Query:

SELECT

EXTRACT(YEAR FROM order_purchase_timestamp) AS Year,

EXTRACT(MONTH FROM order_purchase_timestamp) AS Month,

FORMAT_DATETIME("%B",order_purchase_timestamp) AS Month_Name,

COUNT(*) AS No_of_orders

FROM `Target.orders`

WHERE order_purchase_timestamp IS NOT NULL

GROUP BY Year, Month, Month_Name

ORDER BY Year, Month;

Query results

JOB IN	IFORMATIO	N I	RESULTS	JSON EXE
Row	Year //	Month /	Month_Name	No_of_orders
1	2016	9	September	4
2	2016	10	October	324
3	2016	12	December	1
4	2017	1	January	800
5	2017	2	February	1780
6	2017	3	March	2682
7	2017	4	April	2404

8	2017	5	May	3700
9	2017	6	June	3245
10	2017	7	July	4026

Understanding the trend

Assumption:

- Only analyzing this by the number of orders.
- Also considering orders that were cancelled or returned.
- 2016 may be considered as an outlier.

Insights:

- As per the results, e-commerce in Brazil has shown a <u>small amount of growth in 2017</u> since the number of orders has been consistently increasing. Also, November emerged as the best performing month and noticed almost 50% increase in the number of orders.
- However, the growth was almost stagnant in 2018 since the number of orders is almost similar throughout the year and saw a major dip in September 2018.
- There has been a decent spike in number of orders in the month of August depicting a seasonality when orders between January and September are taken into account.(2016 excluded)

Preferable shopping time for people in Brazil:

Query:

SELECT

CASE

WHEN EXTRACT(TIME FROM order_purchase_timestamp) BETWEEN '04:00:00' AND '06:30:00'

THEN "DAWN"

WHEN EXTRACT(TIME FROM order_purchase_timestamp) BETWEEN '06:30:01' AND '12:00:00'

THEN "MORNING"

WHEN EXTRACT(TIME FROM order_purchase_timestamp) BETWEEN '12:00:01' AND '17:00:00'

THEN "AFTERNOON"

WHEN EXTRACT(TIME FROM order_purchase_timestamp) BETWEEN '17:00:01' AND '19:00:00'

THEN "EVENING"

WHEN EXTRACT(TIME FROM order_purchase_timestamp) BETWEEN '19:00:01' AND '23:00:00'

THEN "NIGHT"

ELSE "MIDNIGHT"

END AS time_of_the_day,

COUNT(*) AS no_of_orders

FROM 'Target.orders'

GROUP BY time_of_the_day

ORDER BY No_of_orders DESC;

Query results

JOB INFORMATION RESULTS

Row /	time_of_the_day /	no_of_orders_/
1	AFTERNOON	32212
2	NIGHT	24209
3	MORNING	22042
4	EVENING	11918

5	MIDNIGHT	8468
6	DAWN	592

Assumptions:

- Assuming that when this data was created, it was adjusted according to Brazil.
- Dawn 04:00:00 to 06:30:00
- Morning 06:30:01 to 12:00:00
- Afternoon 12:00:01 to 17:00:00
- Evening 17:00:01 to 19:00:00
- Night 19:00:01 to 23:00:00
- Midnight 23:00:01 to 03:59:59

Intuition:

- The people of Brazil mostly tend to order in afternoon(Between 12:00:01 and 17:00:00) and night(Between 19:00:01 and 23:00:00).
- Dawn(Between 04:00:00 AND 06:30:00) has seen the least of orders.

Stage 3: Evolution of e-commerce orders in Brazil region:

Month on month orders by states:

Query:

SELECT

DISTINCT customer_state,

EXTRACT(MONTH FROM order_purchase_timestamp) AS month,

FORMAT_DATETIME("%B",order_purchase_timestamp) AS month_name,

COUNT(*) AS orders

FROM `Target.customers` AS ${\bf c}$

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

WHERE order_purchase_timestamp IS NOT NULL

GROUP BY customer_state, month, month_name

ORDER BY customer_state,month;

Query results

JOB IN	IFORMATION	RESULTS JS		EXE
Row	customer_state	month	month_name	orders //
1	AC	1	January	8
2	AC	2	February	6
3	AC	3	March	4
4	AC	4	April	9
5	AC	5	May	10
6	AC	6	June	7
7	AC	7	July	9
8	AC	8	August	7
9	AC	9	September	5
10	AC	10	October	6

• This is the month-wise number of orders of every state where orders have been placed.

Distribution of customers across the states in Brazil:

Query:-

SELECT

DISTINCT customer_state,

COUNT(*) AS no_of_customers

FROM 'Target.customers'

GROUP BY customer_state

ORDER BY no_of_customers DESC;

Query results

JOB INFORMATION RESULTS Row customer_state no_of_customers

Row	customer_state	no_of_customers
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

Assumptions:

• A customer is someone who has registered on Target's website.

Intuition:

- The customer are scattered throughout the country.
- A large number of customers are concentrated at Sao Paulo, Rio De Janeiro and Minas Gerais.
- Sao Paulo has most number of customers.

Stage 4: Impact on Economy

Percent increase in cost of orders from 2017 to 2018 (Between Jan to Aug only):

Month-on-month increment in sales in 2017-18

Query:

```
SELECT *,
```

CONCAT(ROUND((Amount - LAG(Amount,1) OVER (ORDER BY Year,Month))/(LAG(Amount,1) OVER (ORDER BY Year,Month))*100,2),"%") AS Percent_increase

FROM(SELECT

EXTRACT(YEAR FROM order_purchase_timestamp) AS Year,

EXTRACT(MONTH FROM order_purchase_timestamp) AS Month,

FORMAT_DATETIME("%B",order_purchase_timestamp) AS Month_name,

ROUND(SUM(payment_value),2) AS Amount

FROM 'Target.payments' AS p

JOIN 'Target.orders' AS o

ON p.order_id = o.order_id

ORDER BY Year, Month

Query results JOB INFORMATION **RESULTS JSON EXECUTION DETAILS** Row Year Month Month_name Amount Percent_increase 2017 1 1 January 138488.04 null 110.78% 2 2017 2 February 291908.01 3 2017 3 March 449863.6 54.11% 4 2017 4 April 417788.03 -7.13% 5 2017 5 May 592918.82 41.92% 6 2017 6 June 511276.38 -13.77% 7 2017 7 July 592382.92 15.86% 8 2017 8 674396.32 13.84% August 9 2018 1 January 1115004.18 65.33%

Month-on-month increment in average order value in 2017-18

2

February

Query:

10

2018

SELECT*,

CONCAT(ROUND((Average_order_value - LAG(Average_order_value,1) OVER (ORDER BY Year,Month))/(LAG(Average_order_value,1) OVER (ORDER BY Year,Month))*100,2),"%") AS Percent_increase

-10.99%

992463.34

FROM(SELECT

EXTRACT(YEAR FROM order_purchase_timestamp) AS Year,

EXTRACT(MONTH FROM order_purchase_timestamp) AS Month,

 ${\color{red}\textbf{FORMAT_DATETIME}("\%B", order_purchase_timestamp)} \ {\color{red}\textbf{AS Month_name}},$

ROUND(AVG(payment_value),2) AS Average_order_value

FROM 'Target.payments' AS p

JOIN 'Target.orders' AS o

ON p.order_id = o.order_id

WHERE (EXTRACT(MONTH FROM order_purchase_timestamp) BETWEEN 1 AND 8) AND (EXTRACT(YEAR FROM order_purchase_timestamp) BETWEEN 2017 AND 2018)

GROUP BY Year, Month, Month_name) AS x

ORDER BY Year, Month

Query results

JOB INFORMATION			RESULTS .	JSON EXECUTIO	N DETAILS E
Row	Year	Month	Month_name	Average_order_value	Percent_increase
1	2017	1	January	162.93	null
2	2017	2	February	154.78	-5%
3	2017	3	March	158.57	2.45%
4	2017	4	April	162.5	2.48%
5	2017	5	May	150.33	-7.49%
6	2017	6	June	148.8	-1.02%
7	2017	7	July	137.22	-7.78%
8	2017	8	August	148.22	8.02%
9	2018	1	January	147.43	-0.53%
10	2018	2	February	142.76	-3.17%

Insights:

- Total sales per month has been gradually increasing from 2017 and 2018.
- Average order value in 2017 has been fluctuating but has increased a little in 2018.

Year-on-year increment in sales from 2017 to 2018(Between January to July only)

Query:

SELECT*,

CONCAT(ROUND((Amount - LAG(Amount,1) OVER (ORDER BY Year))/(LAG(Amount,1) OVER (ORDER BY Year))*100,2),"%") AS Percent_increase

FROM(SELECT

EXTRACT(YEAR FROM order_delivered_carrier_date) AS Year,

ROUND(SUM(payment_value),2) AS Amount

FROM 'Target.payments' AS p

JOIN 'Target.orders' AS o

ON p.order_id = o.order_id

WHERE (EXTRACT(MONTH FROM order_delivered_carrier_date) BETWEEN 1 AND 8) AND (EXTRACT(YEAR FROM order_delivered_carrier_date) BETWEEN 2017 AND 2018)

GROUP BY Year)AS x

ORDER BY Year;

Query results

JOB IN	NFORMATIO	ON RESUL	TS JSON
Row	Year //	Amount	Percent_increase
1	2017	3461837.51	null
2	2018	8665545.66	150.32%

Year-on-year increment in average order value from 2017 to 2018(Between January to July only)

Query:

SELECT *,

CONCAT(ROUND((Average_order_value - LAG(Average_order_value,1) OVER (ORDER BY Year))/(LAG(Average_order_value,1) OVER (ORDER BY Year))*100,2),"%") AS Percent_increas

FROM(SELECT

EXTRACT(YEAR FROM order_purchase_timestamp) AS Year,

ROUND(AVG(payment_value),2) AS Average_order_value

FROM 'Target.payments' AS p

JOIN 'Target.orders' AS o

ON p.order_id = o.order_id

WHERE (EXTRACT(MONTH FROM order_purchase_timestamp) BETWEEN 1 AND 8) AND (EXTRACT(YEAR FROM order_purchase_timestamp) BETWEEN 2017 AND 2018)

GROUP BY Year) AS x

ORDER BY Year

Query results								
JOB IN	NFORMATIO	N RESUL	.TS	JSON	EXEC			
Row	Year	Average_order_v	/alue	Percent_incre	ease //			
1	2017	1	150.43	null				
2	2018	1	155.28	3.22%				

Insights:

- Total sales in 2018 is 150% more than the sales in 2017 which are very good signs for any economy signifying growth.
- Average order value has increased in 2018 by 3.22% as compared to 2017.

Mean & Sum of price and freight value by customer state

Query:

SELECT

customer_state,

ROUND(SUM(price),2) AS total_price,

ROUND(AVG(price),2) AS mean_price,

ROUND(SUM(freight_value),2) AS total_freight,

ROUND(AVG(freight_value),2) AS mean_freight

FROM 'Target.customers' AS c

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

JOIN 'Target.order_items' AS oi

ON o.order_id = oi.order_id

GROUP BY customer_state

ORDER BY total_price DESC

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION D	ETAILS E
Row	customer_state	total_price	mean_price	total_freight	mean_freight //
1	SP	5202955.05	109.65	718723.07	15.15
2	RJ	1824092.67	125.12	305589.31	20.96
3	MG	1585308.03	120.75	270853.46	20.63
4	RS	750304.02	120.34	135522.74	21.74
5	PR	683083.76	119.0	117851.68	20.53
6	SC	520553.34	124.65	89660.26	21.47
7	BA	511349.99	134.6	100156.68	26.36
8	DF	302603.94	125.77	50625.5	21.04
9	GO	294591.95	126.27	53114.98	22.77
10	ES	275037.31	121.91	49764.6	22.06

Insights:

• Freight value in sates with greater number of orders is lesser when compared to sates with lesser orders.

Stage 5: Analysis on sales, freight and delivery time

Days between purchasing, delivering and estimated delivery

Query:-

SELECT

order_id,

EXTRACT(DATE FROM(order_purchase_timestamp)) AS purchase_date,

 ${\color{red}\textbf{EXTRACT}(\textbf{DATE FROM}(order_delivered_customer_date))} \ \textbf{AS delivery_date},$

EXTRACT(DATE FROM(order_estimated_delivery_date)) AS estimated_delivery_date,

DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS time_to_delivery,

DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS diff_estimated_delivery

FROM 'Target.orders'

 $\textbf{WHERE order_delivered_customer_date IS NOT NULL; } -- \textit{NULL values probably mean that the order was cancelled } \\$

JOB IN	FORMATION	RESULTS	JSC	N EXECU	TION DETAILS	EXECUTION GRAPH	PREVIEW	
Row	order_id		1	purchase_date	delivery_date //	estimated_delivery_date	time_to_delivery	diff_estimated_delivery_/
1	770d331c84e5b	214bd9dc70a10b829d()	2016-10-07	2016-10-14	2016-11-29	7	52
2	2c45c33d2f9cb	3ff8b1c86cc28c11c30		2016-10-09	2016-11-09	2016-12-08	30	59
3	dabf2b0e35b42	3f94618bf965fcb7514		2016-10-09	2016-10-16	2016-11-30	7	51
4	8beb59392e21a	f5eb9547ae1a9938d06		2016-10-08	2016-10-19	2016-11-30	10	52
5	65d1e226dfaeb	8cdc42f665422522d14		2016-10-03	2016-11-08	2016-11-25	35	52
6	cec8f5f7a13e5a	b934a486ec9eb713c8		2017-03-17	2017-04-07	2017-05-18	20	61
7	58527ee472691	1bee84a0f42cdd797c1		2017-03-20	2017-03-30	2017-05-18	10	58
8	10ed5499d1623	638ee810eff1deccded		2017-03-21	2017-04-18	2017-05-18	28	57
9	818996ea24780	3ddc123789f2bd6046b		2018-08-20	2018-08-29	2018-10-04	9	44
10	d195cac9ccaa1	394ede717d38d075fac		2018-08-12	2018-08-23	2018-10-04	10	52

Analysis by mean of freight_value, time_to_delivery, diff_estimated_delivery on the data grouped by state

Query:-

SELECT

customer_state,

ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))) AS avg_time_to_delivery,

ROUND(AVG(DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY))) AS avg_diff_estimated_delivery,

ROUND(AVG(freight_value),2) AS mean_freight

FROM 'Target.customers' AS c

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

JOIN `Target.order_items`AS oi

ON o.order_id = oi.order_id

GROUP BY customer_state

Query results

JOB IN	IFORMATION	RESULTS JS	SON EXECUTION DETAI	LS EXECU
Row	customer_state	avg_time_to_delivery	avg_diff_estimated_delivery	mean_freight /
1	MT	18.0	32.0	28.17
2	MA	21.0	30.0	38.26
3	AL	24.0	32.0	35.84
4	SP	8.0	19.0	15.15
5	MG	12.0	24.0	20.63
6	PE	18.0	31.0	32.92
7	RJ	15.0	26.0	20.96
8	DF	13.0	24.0	21.04
9	RS	15.0	28.0	21.74
10	SE	21.0	30.0	36.65

Top 5 states with highest average freight value

Query:-

SELECT

customer_state,

ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))) AS avg_time_to_delivery,

 ${\bf ROUND(AVG(DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY)))} \ AS \ avg_diff_estimated_delivery, and a supplied the property of t$

ROUND(AVG(freight_value),2) AS mean_freight

FROM 'Target.customers' AS c

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

JOIN `Target.order_items`AS oi

ON o.order_id = oi.order_id

GROUP BY customer_state

ORDER BY mean_freight DESC

LIMIT 5

Query results

JOB IN	IFORMATION	RESULTS JS	ON EXECUTION DETA	ILS EXECU
Row /	customer_state	avg_time_to_delivery_	avg_diff_estimated_delivery //	mean_freight //
1	RR	28.0	46.0	42.98
2	PB	20.0	33.0	42.72
3	RO	19.0	39.0	41.07
4	AC	20.0	41.0	40.07
5	PI	19.0	30.0	39.15

Top 5 states with lowest average freight value

Query:-

SELECT

customer_state,

ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))) AS avg_time_to_delivery,

ROUND(AVG(DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY))) AS avg_diff_estimated_delivery,

ROUND(AVG(freight_value),2) AS mean_freight

FROM 'Target.customers' AS c

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

JOIN 'Target.order_items' AS oi

ON o.order_id = oi.order_id

GROUP BY customer_state

ORDER BY mean_freight ASC

LIMIT 5

Query results

JOB IN	IFORMATION	RESULTS JSC	ON EXECUTION DETAIL	LS EXECUT
Row	customer_state //	avg_time_to_delivery	avg_diff_estimated_delivery	mean_freight
1	SP	8.0	19.0	15.15
2	PR	11.0	24.0	20.53
3	MG	12.0	24.0	20.63
4	RJ	15.0	26.0	20.96
5	DF	13.0	24.0	21.04

Top 5 states with highest average time to delivery

SELECT

customer_state,

 ${\bf ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)))} \ AS \ avg_time_to_delivery,$

FROM 'Target.customers' AS c

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

JOIN `Target.order_items`AS oi

ON o.order_id = oi.order_id

GROUP BY customer_state

ORDER BY avg_time_to_delivery DESC

LIMIT 5

Query results

JOB IN	FORMATION	RESULTS	JSON
Row	customer_state /	avg_time_to_de	livery
1	AP		28.0
2	RR		28.0
3	AM		26.0
4	AL		24.0
5	PA		23.0

Top 5 states with lowest average time to delivery

SELECT

 $customer_state,$

ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))) AS avg_time_to_delivery,

FROM `Target.customers` AS c

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

JOIN 'Target.order_items'AS oi

ON o.order_id = oi.order_id

GROUP BY customer_state

ORDER BY avg_time_to_delivery ASC

LIMIT 5

Query results

JOB IN	IFORMATION	RESULTS	JSON
Row /	customer_state //	avg_time_to_deliv	ery /
1	SP		8.0
2	PR		11.0
3	MG		12.0
4	DF		13.0
5	RS		15.0

SELECT

customer_state,

ROUND(AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)),1) AS avg_time_to_delivery,

ROUND(AVG(DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY)),1) AS avg_diff_estimated_delivery,

ROUND(AVG(DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY)) - AVG(DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY)),1) A S difference,

FROM 'Target.customers' AS c

JOIN 'Target.orders' AS o

ON c.customer_id = o.customer_id

JOIN 'Target.order_items' AS oi

ON o.order_id = oi.order_id

GROUP BY customer_state

ORDER BY difference DESC

LIMIT 5

Query results

JOB IN	IFORMATION	RESULTS	JS0	N EXECUTION DETAIL	S EXECU
Row	customer_state	avg_time_to_de	livery /	avg_diff_estimated_delivery	difference
1	AC		20.3	40.7	20.4
2	RO		19.3	38.7	19.4
3	AM		26.0	45.2	19.2
4	RR		27.8	46.0	18.2
5	AP		27.8	45.5	17.7

Assumptions:

• Considering the order_delivered_customer_date and not order_delivered_carrier_date since it carrier can mark an order as delivered without it's actually being delivered. So, order_delivered_customer_date seems to be more accurate.

Here,

The actual delivery has been made much before the expected delivery date.

Insights:

- Orders in states like Sao Paulo which has greater number of orders take lesser time to get delivered. They also have lower freight value.
- States like AP and RR have <u>higher average freight value</u> and <u>higher average delivery days</u> since they have <u>lesser number of orders</u> and are maybe distant(assumption).

Stage 6: Payment type analysis

Payment modes used:

Query:-

SELECT

DISTINCT payment_type

FROM 'Target.payments'

Query results

JOB INFORMATION RESULTS Row payment_type 1 credit_card 2 voucher

_	rodono
3	not_defined
4	debit_card
5	UPI

Number of orders made by different payment modes:

Query:

SELECT

DISTINCT payment_type,

COUNT(*) AS number_of_orders

FROM `Target.payments` AS p

JOIN 'Target.orders' AS o

ON p.order_id = o.order_id

WHERE EXTRACT(MONTH FROM order_purchase_timestamp) IS NOT NULL

GROUP BY payment_type

ORDER BY number_of_orders DESC

Query results

JOB INFORMATION RESULTS JS

Row	payment_type	number_of_orders
1	credit_card	76795
2	UPI	19784
3	voucher	5775
4	debit_card	1529
5	not_defined	3

Insights:

• Most of the people in Brazil prefer paying for their orders through credit card.

Month over Month count of orders for different payment types:

Query:-

SELECT

DISTINCT payment_type,

 ${\bf EXTRACT} ({\bf MONTH\ FROM\ order_purchase_timestamp})\ {\bf AS\ month},$

 ${\color{red}\textbf{FORMAT_DATETIME}("\%B", order_purchase_timestamp)} \ {\color{red}\textbf{AS}} \ {\color{red}\textbf{month_name}},$

COUNT(*) AS number_of_orders

FROM 'Target.payments' AS p

JOIN 'Target.orders' AS o

ON p.order_id = o.order_id

WHERE EXTRACT(MONTH FROM order_purchase_timestamp) IS NOT NULL

GROUP BY payment_type, month, month_name

ORDER BY payment_type, month;

Query results

JOB INFORMATION

Row	payment_type //	month /	month_name	number_of_orders /
1	UPI	1	January	1715
2	UPI	2	February	1723
3	UPI	3	March	1942
4	UPI	4	April	1783
5	UPI	5	May	2035
6	UPI	6	June	1807
7	UPI	7	July	2074
8	UPI	8	August	2077
9	UPI	9	September	903
10	UPI	10	October	1056

Count of orders based on the no. of payment installments

Query:-

SELECT

payment_installments,

COUNT(DISTINCT order_id) AS number_of_orders

FROM 'Target.payments'

GROUP BY payment_installments

ORDER BY number_of_orders DESC;

Query results

JOB IN	IFORMATION	RES	SULTS JSON
Row	payment_installm	ents /	number_of_orders //
1		1	49060
2		2	12389
3		3	10443
4		4	7088
5		10	5315
6		5	5234
7		8	4253
8		6	3916
9		7	1623
10		9	644

Insights:

• Almost 50% of the orders have been paid in the first installment.

Analyzing reviews:

Query:

SELECT

review_score,

COUNT(*) AS rating_count

FROM `Target.order_reviews`

GROUP BY review_score

ORDER BY rating_count DESC

Query results

JOB IN	IFORMATION	RESULTS
Row	review_score	rating_count
1	5	57328
2	4	19142
3	1	11424
4	3	8179
5	2	3151

Analyzing number of people who have rated(1 and 2):

Query:

SELECT

review_score,

COUNT(*) AS rating_count

FROM `Target.order_reviews`

WHERE review_comment_title IS NOT NULL AND review_score IN (1, 2)

GROUP BY review_score

ORDER BY rating_count DESC

Query results

JOB INFORMATION		RESULTS
Row	review_score	rating_count
1	1	1871
2	2	477

Analysing probable reasons for ratings(1 and 2):

Query:

SELECT

COUNT(*) AS rating_count,

CASE

WHEN LOWER(review_comment_title) LIKE "%delivery%" OR LOWER(review_comment_title) LIKE "%late%" OR LOWER(review_comment_title) LIKE "%delay%" OR LOWER(review_comment_title) LIKE "%deliver%"OR LOWER(review_comment_title) LIKE "%date%" OR LOWER(review_comment_title) LIKE "%await%" OR LOWER(review_comment_title) LIKE "%arrive%" OR LOWER(review_comment_title) LIKE "%date%"

THEN "Delivery"

ELSE "Product"

END AS Not_satisfied_with

FROM `Target.order_reviews`

WHERE review_comment_title IS NOT NULL AND review_score IN (1, 2)

Query results

JOB INFORMATION		RESULTS	J
Row	rating_count	Not_satisfied_with	
1	1975	Product	
2	373	Delivery	

Assumptions:

• Assuming, there are majorly these two reasons a customer is not satisfied with.

Actionable Insights

After analyzing the complete dataset, some of the useful insights that I found out are:

- The e-commerce sector has shown considerable amount of growth in the time period provided and is likely to grow further.
- There is a decent <u>difference between estimated delivery date and actual delivery date</u>. Estimated delivery date is generally <u>higher</u> than the actual delivery date.
- Close to 56% orders are placed between 12:00:01 UTC to 23:00:00 UTC.
- Most of the people are comfortable in paying for their orders in one go.
- Most of the customers are concentrated in SP, RJ and MG.
- More than 55% have rated their purchase 5.
- Majority of people who have rated 1 and 2 are not satisfied with the product.

Recommendations

Some of the recommendations, I would give Target are:

- Estimated delivery date calculation algorithm needs to be fixed since it's <u>pretty inaccurate.</u>
- More targeted marketing campaigns can be run between 12:00:01 and 23:00:00 UTC since the people in Brazil mostly order within this time period.
- Since, most of the orders are from Sao Paulo, Rio De Janeiro and Minas Gerais, <u>awareness</u> needs to be spread in the rest of the states which hardly had people placing orders.
- Time taken to deliver is generally on the higher side which needs to be reduced by taking appropriate measures like automated logistics software, setting up new warehouses, inventory update etc.
- Since most of the people rating 1 and 2 are not satisfied with the product, <u>product quality needs to be improved.</u>
- Since 73% payments are made through credit cards, several benefits(like coupons, cashbacks and vouchers) must be provided to the credit card users to promote customer retention.