

Quadrotor Sensors

Prof. Venki Muthukumar, Ph.D.

Sensors

- IMUs (inertial measurement units)
 - Accelerometers
 - Gyroscopes
- Range sensors (sonar)
- GPS
- Cameras

MEMS Accelerometers

- Micro Electro-Mechanical Systems (MEMS)
- Spring-like structure with a proof mass
- Damping results from residual gas
- Implementations: capacitive, piezoelectric, ...

Bernstein, J., An Overview of MEMS Inertial Sensing Technology, Sensors, Feb. 2003.

JAV Workshop

MEMS Gyroscopes

- Vibrating structure gyroscope (MEMS)
 - Based on Coriolis effect
 - "Vibration keeps its direction under rotation"
 - Implementations: Tuning fork, vibrating wheels, ...

Bernstein, J., An Overview of MEMS Inertial Sensing Technology, Sensors, Feb. 2003.

GPS

- Every satellite transmits its position and time
- Receiver measures time difference of satellite signals
- Calculate position by intersecting distances (pseudoranges)

IMU

Gyroscope and accelerometer opening – Package, MEMS die and MEMS sensor view

(Source: Analog Devices High-End Accelerometers and Gyroscopes Comparison, System Plus Consulting, 2021)

IMU

(c)

Why Filtering?

Sensor Fusion

GPS

- 24+ satellites, 12 hour orbit, 20.190 km height
- 6 orbital planes, 4+ satellites per orbit, 60deg distance
- Satellite transmits orbital location (almanach) + time
- 50bits/s, msg has 1500 bits → 12.5 minutes

GPS

- Position from pseudorange
 - Requires measurements of 4 different satellites
 - Low accuracy (3-15m) but absolute
- Position from pseudorange + phase shift (RTK/dGPS)
 - Very precise (<1mm)
 - Position is relative to a reference station

real time kinematics (RTK)

Ultrasound Range Sensors

- Emit signal to determine distance along a ray
- Make use of propagation speed of ultrasound
- Traveled distance is given by speed of sound (v=340m/s)

$$d = \frac{v\Delta t}{2}$$

Ultrasound Range Sensors

- Range between 12cm and 5m
- Opening angle around 20 to 40 degrees
- Problems: multi-path propagation, absorption
- Lightweight and cheap

IR Sensors

- Infrared sensors are used to measure distance or proximity.
- Characteristics of IR Sensor
 - Narrow/focused area = high accuracy
 - Don't work in sunlight
 - Can be affected by an object's color

Output Voltage vs. Distance

Based on the Type

Interface: Analog

Power Supply: 4.5-5.5 Volts Working Current: 30-50 mA Distance Range: 10 - 550 cm

Precision: ~1 cm.

Dimensions: 58 x 17.6 x 22.5 mm

Camera-based Navigation

[Engel, Sturm, Cremers; IROS 2012; RAS 2014]

UAV Workshop

Two Examples

- Parrot Mainboard + Navigation board [Bristeau, IFAC WC 2011]
 Camera + IMU + ultrasound + pressure, 180 USD
- Pix4flow sensor from ETH [Honegger et al., ICRA 2013]
 Camera + IMU + ultrasound, 120 EUR

Pix4Flow Sensor

[Honegger et al, ICRA 2013]

- Smart camera module
- 752Hx480V (60fps), 188Hx120V (250fps), 16mm lens
- ARM Cortex M4 (168 MHz, precision floating point ope
 MEMS gyroscope (L3GD20) ARM Cortex M4 (168 MHz, 192 KB RAM, single precision floating point operations)

 - Ultrasound sensor
 - Outputs speed over serial link
 - Open-source

Depth Cameras

- Camera measures depth of every pixel
- Different sensing principles exist
 - Stereo cameras
 - Time-of-flight
 - Structured light (e.g., Kinect)

Lens Distortions

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Camera Calibration

- Collect n corresponding observations between
 - 3D points $\mathbf{p}_1, \dots, \mathbf{p}_n$ (3D location in world coordinates)
 - 2D points $\mathbf{X}_1, \dots, \mathbf{X}_n$ (on the image plane)
- Typically using a calibration board

APRIL tags

Autonomy, Perception, Robotics, Interfaces, and Learning

Java-based landmark library from U. Michigan

an example tag in the center...

provides full 6 DOF pose and scale

We integrated it into ROS using Python's os.system call...

APRIL tags' scale range

an example tag in the center...

provides full 6 DOF pose and scale

ArUco markers

