Zadanie 1.

Rysunek przedstawia schemat blokowy algorytmu, na którym liczba bloków decyzyjnych wynosi

A. 1

B. 2

C. 3

D. 8

Zadanie 2.

Jaki algorytm przedstawiono poniżej?

Dane: Liczba naturalna n i ciąg liczb x₁, x₂, ..., x_n.

Wynik: ?

Krok 1. Dla i=1, 2, ..., n-1 wykonaj kroki 2 i 3, a następnie zakończ algorytm.

Krok 2. Znajdź k takie, że x_k jest najmniejszym elementem w ciągu $x_1, ..., x_n$.

Krok 3. Zamień miejscami elementy x_i oraz x_k .

A. Szukania największego elementu w zbiorze.

B. Szukania najmniejszego elementu w zbiorze.

C. Sortowania liczb w porządku od największego do najmniejszego.

D. Sortowania liczb w porządku od najmniejszego do największego.

Zadanie 3.

Schemat blokowy przedstawia algorytm

A. warunkowy.

B. iteracyjny.

C. rekurencyjny.

D. liniowy.

Zadanie 4.

Algorytm, który wywołuje sam siebie do rozwiązania tego samego problemu, to:

A. Algorytm liniowy

B. Algorytm iteracyjny

C. Algorytm z warunkami

D. Algorytm rekurencyjny

Zadanie 5.

Zapis warunku (x > 0) **lub** (x < **100)**, przedstawionego w skrzynce decyzyjnej, będzie miał w języku Pascal postać:

A. If (x > 0) AND (x < 100) Then

B. If (x>0) NOT (x< 100) Then

C. If (x > 0) MOD (x < 100) Then

D. If(x>0)OR(x<100) Then

Zadanie 6.

Zdjęcie przedstawia blok

A. operacyjny.

B. warunkowy.

C. startu/stopu.

D. wejścia/wyjścia.

Zadanie 7.

W zamieszczonym na rysunku algorytmie za odczyt lub zapis danych jest odpowiedzialny blok oznaczony cyfrą

A. 1

B. 2

C. 3

D. 4

Zadanie 8.

Który z przedstawionych symboli graficznych oznacza blok kolekcyjny

Zadanie 9.

Algorytm zapisany w postaci listy kroków przedstawia instrukcję

A. wyboru.

B. iteracyjną.

C. warunkowa.

D. rekurencyjną.

- 1. Wczytaj x.
- 2. Jeśli x>0, to wypisz: "x jest liczbą dodatnią" i zakończ.
- 3. Jeśli x<0, to wypisz: "x jest liczbą ujemną" i zakończ.

Zadanie 10.

Schemat blokowy przedstawia algorytm obliczania

- A. sumy.
- B. średniej arytmetycznej.
- C. pola kwadratu.
- D. pola prostokata.

Zadanie 11.

Schemat blokowy algorytmu został podzielony poziomymi liniami kreskowymi na 3 obszary. Błąd polegający na niezgodności symbolu graficznego z przypisaną mu czynnością

- A. występuje w I obszarze.
- B. występuje w II obszarze.
- C. występuje will obszarze.
- D. nie występuje na schemacie.

Zadanie 12.

Rysunek przedstawia symbol graficzny bloku

- A. iteracyjnego.
- B. warunkowego.
- C. wykonywalnego.
- D. programu uprzednio zdefiniowanego

Zadanie 13.

Wynikiem wykonania przedstawionej w ramce listy kroków jest wypisanie liczby

- A. 0
- B. 3
- C. 4
- D. 13

- 1. Wprowadź A=13, B=3
- 2. Przypisz W=0
- 3. Jeśli A<B to pkt 7
- 4. A=A-B
- 5. W=W+1
- 6. Skocz do pkt. 3
- 7. Pisz W

Zadanie 14.

Przedstawiony algorytm posortuje liczby

- A. na parzyste i nieparzyste.
- B. na dodatnie i ujemne.
- C. malejaco.
- D. rosnąco.

X, A, B są tablicami liczb.

Algorytm (X, A, B)

- 1. Pobierz liczbę z tablicy X
- 2. Podziel liczbę modulo 2
- Jeżeli wynik dzielenia modulo jest równy zero to wpisz liczbę do tablicy A,
 - w przeciwnym wypadku wpisz liczbę do tablicy B.
- 4. Jeżeli nie ma więcej liczb w tablicy X to zakończ, w przeciwnym razie przejdź do punktu 1.

Zadanie 15.

Który z algorytmów przedstawionych w postaci listy kroków odpowiada schematowi blokowemu?

Α.

Krok 1. Zwiększ x o 3

Krok 2. Jeśli x >3 to podziel y przez 3 i wypisz wartość y

w przeciwnym wypadku:

Krok 3. Nowa wartość y jest równa y*3

Krok 4. Jeśli y > 0 to wypisz y

w przeciwnym wypadku nie rób nic

B.

Krok 1. Do wartości x dodaj 3

Krok 2 .Jeśli za x podstawiono 3 to podziel y przez 3 i wypisz wartość y

w przeciwnym wypadku:

Krok 3. Nowa wartość y jest równa y*3

Krok 4. Jeśli y > 0 to wypisz y

w przeciwnym wypadku nie rób nic

C.

Krok 1. Do wartości x dodaj 3

Krok 2. Jeśli x >3 to podziel y przez 3 i wypisz wartość y

Krok 3. Nowa wartość y jest równa y*3
Krok 4. Jeśli y > 0 to wypisz y
w przeciwnym wypadku nie rób nic

D.

Krok 1. Do wartości x dodaj 3

Krok 2. Jeśli x >3 to podziel y przez 3 i wypisz wartość y

w przeciwnym wypadku:

Krok 3. Nowa wartość y jest równa y*3

Krok 4. Jeśli y > 0 to nie rób nic

w przeciwnym wypadku wypisz y

Zadanie16.

Na schemacie blokowym algorytmu zamieszczono

A. jeden blok wejścia/wyjścia.

B. trzy bloki obliczeniowe.

C. dwa bloki graniczne.

D. dwa bloki decyzyjne.

Zadanie 17.

Algorytm przedstawiony w postaci schematu blokowego, to algorytm

- A. sortowania bąbelkowego.
- B. porządkowania przez wstawianie.
- C. wyszukiwania elementu największego (maksimum).
- D. wyszukiwania elementu najmniejszego (minimum).

Zadanie 18.

lle symboli graficznych bloków obliczeniowych przedstawiono na schemacie blokowym fragmentu programu?

- A. 0
- B. 1
- C. 2
- D. 3

Zadanie 19.

Algorytm przedstawiony w postaci listy kroków służy do

- Krok 1: Wczytaj a, b.
- Krok 2: Jeśli a=b, wypisz a i zakończ.
- Krok 3: Jeśli a>b, zmiennej a przypisz a-b i wróć do kroku 2.
- Krok 4: Jeśli a
b, zmiennej b przypisz b-a i wróć do kroku 2.
- A. sprawdzenia, która z liczb a i b jest większa.
- B. sprawdzenia, czy liczby a i b są liczbami pierwszymi.
- C. obliczenia najmniejszej wspólnej wielokrotności liczb a i b.
- D. obliczenia największego wspólnego podzielnika liczb a i b.

Zadanie20.

Przedstawiony schemat blokowy zawiera

- A. jeden blok decyzyjny.
- B. jeden blok operacyjny.
- C. dwa bloki warunkowe.
- D. jeden blok wejścia wyjścia.

Zadanie 21.

Przedstawiony symbol graficzny, jest stosowany w zapisie algorytmów do

- A. obliczania długości wejściowego łańcucha znaków.
- B. podjęcia decyzji, czy program ma zakończyć działanie.
- C. wprowadzania wartości określonych zmiennych z klawiatury.
- D. wywołania funkcji właściwej, zdefiniowanej przez programistę.

Zadanie 22.

W schematach blokowych, symbol graficzny przedstawiony na rysunku, oznacza

- A. łącznik stronicowy.
- B. początek algorytmu.
- C. wprowadzanie danych.
- D. wyprowadzanie danych.

Zadanie 23.

W wyniku realizacji algorytmu

- 1. Pobierz pierwszy element tablicy
- 2. Za x podstaw pierwszy element tablicy
- 3. Pobierz następny element tablicy
- 4. Jeżeli następny element tablicy większy od x, podstaw jego wartość za x
- 5. Jeżeli nie ma więcej elementów tablicy zakończ, w przeciwnym razie przejdź do punktu 3

otrzyma sie

- A. liczbę elementów tablicy.
- B. wartość minimalną tablicy.
- C. wartość maksymalną tablicy.
- D. wartość średnią elementów tablicy.

Zadanie 24.

Jak nazywa się blok przedstawiony na rysunku używany do zapisu algorytmu w postaci schematu blokowego?

- A. Decyzyjny.
- B. Wejściowy.
- C. Operacyjny.
- D. Warunkowy.

Zadanie 25

Instrukcje oznaczone literami X i Y w algorytmie znajdowania wartości średniej dodatnich elementów 10-cio elementowej tablicy liczb T[] to

A. **X:** i=i+1, **Y:** n=n+1 B. **X:** n=n+1, **Y:** i=i+1

C. **X:** n=n-1, **Y:** i=i+1

D. **X:** i=i+1, **Y:** n=n-1

Zadanie 26.

Ile warunków występuje w poniższym algorytmie przedstawionym w postaci listy kroków?

- 1. Zacznij algorytm
- 2. Wprowadź daną: P
- 3. Wprowadź daną: a
- 4. Jeśli a = 0 to idź do kroku 3

w przeciwnym wypadku Oblicz: H:=2*P/a

- 5. Wyprowadź wynik: H
- 6. Zakończ algorytm
- A. Jeden.
- B. Dwa niezależne.
- C. Jeden, a w nim zagnieżdżony drugi.
- D. Ilość jest uzależniona od wprowadzanych wartości zmiennej a.

Zadanie 27.

Poniższy algorytm zapisany w postaci listy kroków zawiera

- 1. Zacznij algorytm
- 2. Wprowadź wartość współczynnika: a
- 3. Wprowadź wartość współczynnika: b
- 4. Jeśli a = 0, to jeśli b = 0, to wyprowadź: "nieskończenie wiele rozwiązań" w przeciwnym wypadku wyprowadź: "równania sprzeczne" w przeciwnym wypadku: oblicz: x := b/a, wyprowadź: x
- 5. Zakończ algorytm
- A. dwie operacje wyprowadzenia wyniku i jedną operację warunkową.
- B. trzy operacje wprowadzenia danych i dwie operacje warunkowe.
- C. trzy operacje wyprowadzenia wyniku i dwie operacje warunkowe.
- D. dwie operacje wprowadzenia danych i jedną operację warunkową.

Zadanie 28.

Który ze schematów blokowych jest przykładem algorytmu sekwencyjnego?

Zadanie 29.

Wynik pola i obwodu prostokąta podawany jest w bloku

- A. zakończenia.
- B. operacyjnym.
- C. warunkowym.
- D. wejścia-wyjścia.

Zadanie 30.

Zamieszczona lista kroków przedstawia algorytm sortowania

K01: Dla j = 1,2,...,n - 1: wykonuj K02

K02: Dla i = 1,2,...,n - 1: jeśli d[i] > d[i + 1], to d[i] \leftrightarrow d[i + 1]

K03: Zakończ algorytm.

A. szybkiego.

- B. przez wybór.
- C. babelkowego.
- D. przez wstawienie.

Zadanie 31.

Przedstawiony w postaci listy kroków algorytm przypisuje

- Krok 1: Wykonuj kroki od 2 do 5 dla i od 1 do 10 zwiększając i o 1
- Krok 2: Wykonuj kroki od 3 do 5 dla j od 1 do 10 zwiększając j o 1
- Krok 3: Jeżeli i jest równe j wykonaj krok 4, w przeciwnym wypadku wykonaj krok 5.
- Krok 4: Elementowi tablicy tab[i,j] przypisz wartość 1.
- Krok 5: Elementowi tablicy **tab[i,j]** przypisz wartość 0.
- A. wartość 0 wszystkim elementom macierzy.
- B. wartość 1 wszystkim elementom macierzy.
- C. wartość 0 elementom na przekątnej macierzy.
- D. wartość 1 elementom na przekątnej macierzy.

Zadanie 32.

Na przedstawionym schemacie blokowym algorytmu występują

- A. trzy bloki decyzyjne.
- B. dwa bloki wykonania działań.
- C. trzy bloki wykonania działań.
- D. dwa bloki wprowadzania danych (wyprowadzania wyników).

Zadanie 33.

lle razy będzie sprawdzany warunek na schemacie blokowym?

- A. 4 razy.
- B. 5 razy.
- C. 6 razy.
- D. 7 razy.

Zadanie 34.

Przedstawiony algorytm w postaci listy kroków porządkuje ciąg n liczb od największej do najmniejszej metodą "przez wybór" (Selection Sort). Ilu porównań wymaga, w najgorszym wypadku, porządkowanie tą metodą ciągu 4 liczb?

Dane: Liczba naturalna n i ciąg n liczb $x_1, x_2, ..., x_n$.

Wynik: Uporządkowanie ciągu liczb w porządku od najmniejszej do największej,

Krok 1. Dla i: 1, 2, ..., n-1 wykonaj kroki 2 i 3, a następnie zakończ algorytm,

Krok 2. Znajdź k takie, że x_k , jest najmniejszym elementem ciągu x_i , ..., x_n ,

Krok 3. Zamień miejscami elementy x_i oraz x_k.

- A. 3 porównań.
- B. 4 porównań.
- C. 6 porównań.
- D. 8 porównań.

Zadanie 35.

Najszybszą metodą obliczenia wartości wielomianu jest zastosowanie:

- A. Algorytmu Hornera
- B. Algorytmu Euklidesa
- C. Algorytmu Huffmana
- D. Algorytmu Newtona-Raphsona

Zadanie 36.

Blok decyzyjny schematu blokowego ma

- A. jedno wejście, dwa wyjścia
- B. dwa wejścia, dwa wyjścia
- C. jedno wejście i jedno wyjście
- D. dwa wejścia, jedno wyjście

Zadanie 37.

Blok wprowadzania danych jest oznaczany na schemacie blokowym

- A. elipsą
- B. równoległobokiem
- C. prostokatem
- D. rombem

Zadanie 38.

Dokończ zdanie: Algorytm

- A. nie może być zapisany listą kroków
- B. stanowi podstawe do tworzenia programu
- C. nie da się przedstawić na schemacie
- D. łączy społeczność użytkowników i programistów

Zadanie 39.

Blok wykonywania działań jest na schemacie blokowym przedstawiany

- A. równoległobokiem
- B. prostokatem
- C. elipsą
- D. rombem

Zadanie 40.

Każdy algorytm przedstawiony na schemacie blokowym da się zapisać:

- A. za pomocą instrukcji pętli
- B. w wielu językach programowania
- C. tylko w jednym języku programowania
- D. listą kolejnych kroków

Zadanie 41.

Algorytm to;

- A. zadanie do rozwiązania
- B. polecenia używane w językach programowania
- C. precyzyjny opis metody rozwiązania jakiegoś problemu
- D. rytm pracy komputera

Zadanie 42.

Iteracja jest to:

- A. wykonywanie fragmentów programu przy spełnieniu określonych warunków
- B. sprawdzanie wprowadzonego warunku
- C. wielokrotne powtarzanie jakichś czynności
- D. przypisanie zmiennej jakiejś wartości

Zadanie 43.

Instrukcje przypisania są to instrukcje:

- A. wprowadzające dane na jakąś zmienną
- B. nadające zmiennej jakąś wartość
- C. powodujące wykonanie pętli programowej
- D. wyprowadzające dane poprzez zmienną

Zadanie 44.

Graficzne przedstawienie algorytmu to:

- A. procedura
- B. zestaw procedur
- C. schemat blokowy
- D. język programowania

Zadanie 45.

W schemacie blokowym algorytmu pojawia się symbol równoległoboku Oznacza on:

- A. początek programu
- B. operacje warunkowe
- C. operacje obliczeniowe
- D. operacje wprowadzania danych i wyprowadzania wyników

Zadanie 46.

Algorytm liniowy:

- A. zawiera pętle
- B. zawiera zestaw operacji wykonywanych sekwencyjnie
- C. zawiera warunek logiczny
- D. nie zawiera warunku logicznego

Zadanie 47.

Algorytm Euklidesa to algorytm:

- A. obliczający NWW
- B. obliczający NWW NWD
- C. obliczający NWD
- D. obliczający ONP

Zadanie 48.

Algorytmy sortujące za pomocą porównań:

- A. przez wstawianie
- B. przez scalanie
- C. przez zliczanie
- D. przez kopcowanie

Zadanie 49.

Czym jest rekurencja

- A. metoda wywołująca sama siebie
- B. innym zapisem pewnych algorytmów iteracyjnych
- C. blokiem wykonawczym
- D. specjalna zmienna

Zadanie 50.

Sito Eratostenesa to algorytm wyznaczania:

- A. liczb pierwszych
- B. wybranych liczb pierwszych
- C. liczb pierwszych i pseudopierwszych
- D. liczb pseudopierwszych