Thème 02 - Le futur des énergies

Chapitre 01 - Deux siècles d'énergie électrique

0/Répondre aux questions

On génère un courant induit alternatif dans une bobine en approchant et en éloignant un aimant de cette bobine ou en le faisant tourner.	Un alternateur transforme de l'énergie mécanique en énergie électrique.	Les deux parties principales de l'alternateur sont : • le stator (partie fixe) ; • le rotor (partie qui tourne).	Le phénomène de frottement et donc l'effet Joule diminuent le rendement de l'alternateur.
Un semi-conducteur est un matériau qui devient conducteur lorsqu'on lui apporte de l'énergie, sous la forme d'énergie lumineuse par exemple.	Pour être utilisé dans une cellule photovoltaïque, il faut que le semi-conducteur absorbe les radiations émises par le Soleil.	Ce sont principalement les radiations du visible et du proche infrarouge qui sont absorbées par les semi-conducteurs.	Un panneau photovoltaïque transforme de l'énergie lumi- neuse en énergie électrique.

Question à choix multiple

- **A- 2** et **3**. C'est le moteur électrique qui convertit l'énergie électrique en énergie mécanique, la proposition 1 est donc fausse.
- **B- 1** et **2**. L'énergie sortante est l'énergie électrique, l'énergie entrante est mécanique, la proposition 3 est donc fausse.
- **C- 1** et **3**. Le panneau solaire n'utilise pas l'énergie thermique, la proposition 2 est donc fausse.
- **D- 2** et **3**. À la proposition 1, la caractéristique est celle d'un conducteur ohmique.

2 Appliquer le cours

- **1.** Oui, l'élément central de l'éolienne est l'alternateur.
- **2.** Oui, l'éolienne convertit le mouvement en électricité.
- 3. Non, l'éolienne n'utilise pas l'énergie radiative.
- **4.** Oui, l'alternateur dans l'éolienne utilise le lien entre le magnétisme et l'électricité.
- **5.** Non.

Comprendre le cours

1. a. Il s'agit de l'alternateur.

b.

2.
$$\eta = \frac{E_{\text{électrique}}}{E_{\text{mécanique}}} = \frac{1,3}{1,4} = 0,93.$$

5 Exploiter un graphe

- **1.** Le germanium absorbe une partie du spectre solaire.
- **2.** On l'utilise dans les cellules photovoltaïques pour convertir l'énergie radiative en énergie électrique.

Étude d'un panneau photovoltaïque

- **1. a.** Au sommet de la courbe P = f(U), on lit, pour un éclairement de 800 W · m⁻² : $P_{-} = 140$ W.
- **b.** Une puissance de 140 W correspond à une tension $U_{\rm m}=22$ V sur la courbe P=f(U). Sur la courbe I=g(U), on mesure pour ${\bf U_m}={\bf 22}$ V, ${\bf I_m}={\bf 6,6}$ A.
- **c.** On utilise la loi d'Ohm $U=R\cdot I$ donc $R_{\rm m}=U_{\rm m}/I_{\rm m}$ et la valeur de la résistance maximisant la puissance se calcule : $R_{\rm m}=U_{\rm m}/I_{\rm m}=22/6, 6=$ **3,3** Ω .
- 2. Sur le graphique, on voit que plus l'éclairement augmente et plus l'intensité de court-circuit augmente. Plus l'éclairement augmente et plus la puissance électrique maximale augmente.

Un panneau solaire

1. Il s'agit de la caractéristique.

2. Éclairement 3 < Éclairement 2 < Éclairement 1 car $I_{cc1} > I_{cc2} > I_{cc3}$.

3. a.
$$I_{cc} = 6$$
 A.

b.
$$U_0 = 36 \text{ V}.$$

c. On lit (5,6 A; 26 V) pour le point de fonctionnement à puissance maximale.

d.
$$R_{\rm m} = \frac{U_{\rm m}}{I_{\rm m}} = \frac{26}{5.6} = 4.6 \ \Omega.$$

8 À bicyclette

1. a. L'élément 1 est un aimant, l'élément 2 est une bobine de fil conducteur.

b. L'aimant est une source de champ magnétique. La bobine est un enroulement de fil conducteur dans lequel le courant va être créé.

c. Le rotor indique la partie qui tourne. Le stator est la partie fixe donc statique du dispositif.

2. a.

b. Cela signifie que si on fournit *x* énergie mécanique, on récupère 0,4*x* énergie électrique.

c. Il faut relier les deux extrémités du stator à un ampèremètre pour mesurer le courant créé lorsque le rotor est en mouvement dans le stator.

10 Le silicium

1. On voit sur ces diagrammes que l'énergie ne peut pas prendre n'importe quelle valeur, c'est ce que l'on appelle la quantification de l'énergie.

2. a. Le diagramme **a** explique le spectre d'émission : le passage d'un niveau d'énergie à un niveau d'énergie inférieur par l'émission d'un photon de longueur d'onde donnée se traduit par une raie colorée sur le spectre.

b. Le diagramme **b** permet d'expliquer l'effet photovoltaïque. Lorsqu'un photon d'énergie supérieure à celle de la bande interdite est absorbé, un électron passe de la bande de valence à la bande de conduction, ce qui est exploité dans l'effet photovoltaïque.

111 Étude expérimentale d'une cellule photovoltaïque

1. a. L'ampèremètre permet de mesurer l'intensité du courant électrique.

b. Le voltmètre permet de mesurer la tension aux bornes de la cellule.

2

3.

i	U ş	T ·	P
	V	mA	mW
0	0,0610	224,0	13,66
1	4,400	210,0	924,0
2	7,500	200,0	1500
3	13,50	173,0	2336
4	15,80	150,0	2370
5	17,50	116,0	2030
5	18,80	84,10	1581
7	19,90	45,50	905,4
3	20,80	0,000	0,000

4. a. On trouve $P_{\rm m} = 2.4 \, \rm W$ or le constructeur indique $P_{\rm m} = 5 \, \rm W$.

On mesure I_{cc} = 224 mA or le constructeur indique 410 mA, et U_0 = 20,8 V or le constructeur indique U_0 = 21 V. On mesure des valeurs plus petites que celles indiquées par le constructeur.

b. Les données du constructeur sont indiquées pour un éclairement de 1 000 W·m⁻² et celui exploité dans l'expérience doit être plus faible, ce qui explique l'écart entre les données du constructeur et celles mesurées expérimentalement.

12 Associations de cellules

1. Pour le point A:

 $I = 0,48 \text{ A et } U = 0 \text{ V, donc } P = U \cdot I = 0 \text{ W.}$

Pour le point B:

 $I = 0.47 \text{ A}, U = 5.0 \text{ V}; P = 0.47 \times 5.0 = 2.4 \text{ W}.$

Pour le point C:

I = 0.20 A et U = 5.8 V; $P = 0.20 \times 5.8 = 1.2 \text{ W}$.

Le point qui conduit à la puissance maximale est donc le point B.

2. a. On a la relation suivante pour les résistances : $U = R \cdot I$. Donc $I = \frac{U}{R} = U \cdot \left(\frac{1}{R}\right)$ donc le tracé

de I en fonction de U est une droite qui passe par l'origine de coefficient directeur $\frac{1}{2}$.

b. Pour déterminer le coefficient directeur de la droite qui passe par le point B, on choisit deux points faciles à repérer (0,18; 2) et (0; 0), puis on calcule:

$$\frac{0.18-0}{2-0} = 0.09 \text{ donc } \frac{1}{R_{\text{m}}} = 0.09 \text{ et } R_{\text{m}} = \frac{1}{0.09} = 11 \text{ } \Omega.$$

3. Pour l'association des 5 cellules en série :

 $I_{cc} = 0.48 \text{ A et } U_0 = 5 \times 6 = 30 \text{ V}.$

Pour l'association des 5 cellules en dérivation : $I_{cc} = 5 \times 0.48 = 2.4 \text{ A et } U_0 = 6 \text{ V}.$

La cellule triple jonction

- 1. Ces trois jonctions exploitent au mieux l'énergie radiative du Soleil puisqu'à elles trois, elles recouvrent une bonne partie du spectre d'émission du Soleil.
- 2. On peut représenter la conversion d'énergie de la manière suivante :

3. a. On lit sur le graphique : $P_{\rm m}$ = 33 mW.

b. On lit $U_m = 3.0 \text{ V}$ et $I_m = 12.5 \text{ mA}$. On a :

$$R_{\rm m} = \frac{U_{\rm m}}{I_{\rm m}} = \frac{3.0}{0.0125} = 240 \ \Omega.$$

c.
$$\eta = \frac{33}{89} = 0.37 \times 100 = 37 \%.$$

Le rendement est bien supérieur au rendement moyen de 15 % des cellules actuelles.