Two-Sample Tests

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Hypothesis testing

- 1. Choose a conjecture
- 2. Choose null hypothesis
- 3. Choose test statistic
- 4. Decide significance level α
- 5. Gather data and compute test statistic
- 6. Compute p value
- 7. Reject the null hypothesis if p value $\leq \alpha$

Null hypothesis

Antetokounmpo's free throw percentage is the same at home and away

Two-sample test: Data are separated in two groups

Null hypothesis: Groups are from same distribution

Alternative hypothesis: Groups are from different distributions

Test statistic

Large value should be evidence against null hypothesis

$$\begin{split} t_{\text{data}} &:= \frac{\text{Made at home}}{\text{Attempted at home}} - \frac{\text{Made away}}{\text{Attempted away}} \\ &= \frac{34}{44} - \frac{22}{41} = 0.236 \end{split}$$

Evidence against null hypothesis?

P value
Probability of observing larger or equal test statistic under null hypothesis
Tobability of observing larger of equal test statistic under fruit hypothesis

Two-sample z test

Data: $\tilde{x}_1, \ldots, \tilde{x}_n$

Two groups: A and B

One-tailed test statistic

$$\tilde{t}_{1-\text{tail}} = \frac{1}{n_A} \sum_{i \in A} \tilde{x}_i - \frac{1}{n_B} \sum_{i \in B} \tilde{x}_i$$

Null hypothesis: All data are i.i.d. Bernoulli with parameter θ_{null}

Binomial distribution

Binomial random variable \tilde{a} with parameters n and θ

pprox Gaussian with mean $n\theta$ and variance $n\theta$ $(1-\theta)$

Two-sample z test

Null hypothesis: All data are i.i.d. Bernoulli with parameter θ_{null}

$$\tilde{t}_{1-tail} = \frac{1}{n_A} \sum_{i \in A} \tilde{x}_i - \frac{1}{n_B} \sum_{i \in B} \tilde{x}_i$$

Distribution of $\sum_{i \in \mathcal{A}} \tilde{x}_i$? Binomial with parameters n_A and θ_{null}

$$pprox$$
 Gaussian with mean $n_A \theta_{\mathsf{null}}$ and variance $n_A \theta_{\mathsf{null}} (1 - \theta_{\mathsf{null}})$

Gaussian random variable

If \tilde{a} is a Gaussian random variable with mean μ and variance σ^2

$$\tilde{b} := \alpha \tilde{a} + \beta$$

is Gaussian with mean $\alpha\mu + \beta$ and variance $\alpha^2\sigma^2$

Two-sample z test

Distribution of $\sum_{i \in A} \tilde{x}_i$?

$$pprox$$
 Gaussian with mean $n_A heta_{
m null}$ and variance $n_A heta_{
m null} (1 - heta_{
m null})$

Distribution of $\frac{1}{n_A} \sum_{i \in \mathcal{A}} \tilde{x}_i$?

$$\approx$$
 Gaussian with mean θ_{null} and variance $\frac{\theta_{\text{null}}(1-\theta_{\text{null}})}{\eta_A}$

Distribution of $-\frac{1}{n_B}\sum_{i\in\mathcal{B}}\tilde{x}_i$?

$$pprox$$
 Gaussian with mean $- heta_{
m null}$ and variance $rac{ heta_{
m null}(1- heta_{
m null})}{n_B}$

Independent Gaussians $ilde{a}$ and $ilde{b}$

If \tilde{a}_1 and \tilde{a}_2 are independent Gaussian with means μ_1 and μ_2 , and variances σ_1^2 and σ_2^2

$$\tilde{s} = \tilde{a}_1 + \tilde{a}_2$$
 is Gaussian with mean $\mu_1 + \mu_2$ and variance $\sigma_1^2 + \sigma_2^2$

Two-sample z test

Null hypothesis: All data are i.i.d. Bernoulli with parameter θ_{null}

$$\tilde{t}_{1-\mathsf{tail}} = \frac{1}{n_A} \sum_{i \in A} \tilde{x}_i - \frac{1}{n_B} \sum_{i \in B} \tilde{x}_i$$

Distribution of \tilde{t}_{1-tail} ?

 \approx Gaussian with mean 0 and variance

$$\sigma_{\mathsf{null}}^2 := heta_{\mathsf{null}} (1 - heta_{\mathsf{null}}) \left(rac{1}{n_A} + rac{1}{n_B}
ight)$$

In practice, $\theta_{\text{null}} := \frac{\text{Number of 1s}}{n}$

Antetokounmpo's free throws

$$\begin{split} t_{\text{data}} &:= \frac{\text{Made at home}}{\text{Attempted at home}} - \frac{\text{Made away}}{\text{Attempted away}} \\ &= \frac{34}{44} - \frac{22}{41} = 0.236 \end{split}$$

Under null hypothesis \approx Gaussian with mean 0 and variance

$$\sigma_{\text{null}} := \sqrt{\theta_{\text{null}} (1 - \theta_{\text{null}}) \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}$$
$$= \sqrt{\frac{56}{85} \left(1 - \frac{56}{85}\right) \left(\frac{1}{44} + \frac{1}{41}\right)} = 0.103$$

P value function

$$ilde{t}_{1 ext{-tail}} pprox 0.103 ilde{z}$$

 $ilde{z}$ is standard Gaussian with mean 0 and variance 1

$$egin{aligned} \mathsf{pv}(t) &:= \mathrm{P}\left(ilde{t}_{1 ext{-tail}} \geq t
ight) \ &= \mathrm{P}\left(ilde{z} \geq rac{t}{0.103}
ight) \end{aligned}$$

One-tailed test

P value function

Two-tailed test

P value function

Statistical significance

We reject the null hypothesis when p value $\leq \alpha$

Guarantees that probability of a false positive $\leq \alpha$

Conclusion

$$\alpha := 0.05 \ge 0.011 \text{ (or } 0.022\text{)}$$

We reject the null hypothesis!

Does this mean taunts cause worse percentage? No!

How to design a two-sample test $% \left\{ 1,2,\ldots ,n\right\} =0$