Contents

0.1	Example 1	ı
0.2	Example 2	
0.3	Example 3 Fit to a straight line	,
Given 5	data points ()	

$$A\vec{x} = x_1\vec{v}_1 + x_2\vec{v}_2 = \vec{b}$$

Defines a place that \vec{b} is not in. The closest value would be the projection such that $\vec{b} - A\vec{y} \perp A\vec{x}$ where \vec{y} is the least square solution.

$$Residual = r(\vec{x}) = b - A\vec{x} \tag{1}$$

 $r = 0 \Rightarrow \vec{x}$ is solution $A\vec{x} = \vec{b}$ Measure \vec{r} : $||\vec{r}(x)|| = ||\vec{b} - A\vec{x}||$. Goal min ||r(x)||Details: $A_{m \times n} \Rightarrow A_{n \times m}^T$

$$(A+B)^T = A^T + B^T (2)$$

$$(AB)^T = B^T A^T \tag{3}$$

 $\perp \Rightarrow$ orthogonal.

Vectors \vec{u} abd \vec{v} are orthogonal if $\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = 0$.

$$(\vec{b} - A\vec{y}) \perp \{A\vec{x} | \vec{x} \in \mathbb{R}^2\}$$

$$(A\vec{x}) \cdot (\vec{b} - A\vec{y}) = 0$$

$$(A\vec{x})^T (\vec{b} - A\vec{y}) = 0$$

$$\vec{x}^T A^T (\vec{b} - A\vec{y}) = 0$$

$$A^T (\vec{b} - A\vec{y}) = 0$$

$$A^T \vec{b} - A^T A\vec{y} = 0$$

$$A^T \vec{b} - A^T A\vec{y} = 0$$

$$A^T \vec{b} = A^T_{n \times m} \vec{b} = A^T_{n \times m} A_{m \times n} \vec{y}$$

Example 1

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

 $A\vec{v} = \vec{b}$ is inconsistent.

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Solve normal equation: $A^TAy = A^Tb$

$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 & | 6 \\ 1 & 3 & | 4 \end{bmatrix} = (r_2 \leftarrow r_2 - \frac{r_1}{3}) \begin{bmatrix} 3 & 1 & | 6 \\ 0 & \frac{8}{3} & | 2 \end{bmatrix}$$

$$= \left(r_2 \leftarrow \frac{3}{8} r_2 \right) \begin{bmatrix} 3 & 1 & | 6 \\ 0 & 1 & | \frac{3}{4} \end{bmatrix}$$

$$= (r_1 \leftarrow r_1 - r_2) \begin{bmatrix} 3 & 0 & | \frac{25}{4} \\ 0 & 1 & | \frac{3}{4} \end{bmatrix}$$

$$= \left(r_1 \leftarrow \frac{r_1}{3} \right) \begin{bmatrix} 1 & 0 & | \frac{25}{12} \\ 0 & 1 & | \frac{3}{4} \end{bmatrix}$$

Data: $(t_1, y_1), \ldots, (t_m, y_m)$ is the training set. Formula: y = a + bt

Example 2

$$(t,y) = (1)$$

$$a + b(1) = 2$$

$$a + b(-1) = 1$$

$$a + b(1) = 3$$

$$SSE \Rightarrow r(x) = e_1^2 + e_2^2 + \dots + e_m^2 \tag{4}$$

$$RMSE = \sqrt{\frac{SSE}{m}} \tag{5}$$

Data points: $\{(-1,1),(0,0),(1,0),(2,-2)\}$

Example 3 Fit to a straight line

$$y = a + bt$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -2 \end{bmatrix}$$
$$A\vec{x} = \vec{b}$$