

Math Methods for Political Science

Lecture 7: Functions and limits

- 1 Functions
- 2 Limits
- 3 Infinite limits
- 4 Monotonicity
- 5 Limits inferior and superior

Correspondences and functions

Let D_f , R_f be two sets.

Definition 1 (Corresp., domain, range, function, image)

- A correspondence is a mapping $f: D_f \rightrightarrows R_f$ with D_f the domain and R_f the range.
- A **function** is a correspondence $f: D_f \to R_f$ s.t. $\exists! f(x) \in R_f \ \forall x \in D_f$, with f(x) the **image** of x.

Example 1 (Corresp., domain, range, function, image)

- A mapping between students and majors is a correspondence. The domain/range are the sets of students /majors.
- $f: \mathbb{R} \to \mathbb{R}$ s.t. f(x) = 1 2x is a fct with \mathbb{R} as domain/range.

Arithmetic operations on functions

Definition 2 (Arithmetic operations on functions)

If
$$D_f \cap D_g \neq \emptyset$$
, then $f+g$, $f-g$ and fg are defined by
$$(f+g)(x) = f(x) + g(x),$$
$$(f-g)(x) = f(x) - g(x),$$
and $(fg)(x) = f(x)g(x),$

 $\forall x \in D_f \cap D_g$, and f/g is defined by (f/g)(x) = f(x)/g(x) $\forall x \in D_f \cap D_g$ s.t. $g(x) \neq 0$.

Example 2 (Arithmetic operations on functions)

Let
$$f(x) = \sqrt{4 - x^2}$$
 and $g(x) = \sqrt{x - 1}$ with $D_f = [-2, 2]$ and $D_g = [1, \infty)$. Then $D_f \cap D_g = [1, 2]$ and $(f \pm g)(x) = \sqrt{4 - x^2} \pm \sqrt{x - 1},$ $(f - g)(x) = \sqrt{(4 - x^2)(x - 1)},$

for $x \in [1, 2]$, and $(f/g)(x) = \sqrt{(4-x^2)/(x-1)}$ for $x \in (1, 2]$.

Injective/surjective/bijective functions COLUMBIA UNIVERSITY

Let D_f , R_f be two sets and $f: D_f \to R_f$ be a function.

Definition 3 (Injective, surjective and bijective functions)

- If $x_2 \neq x_1 \implies f(x_2) \neq f(x_1)$, f is injective (or one-to-one).
- If $\forall y \in R_f$, $\exists x \in D_f$ s.t. y = f(x), f is surjective (or onto).
- \blacksquare If f is injective and surjective, f is **bijective**.

- 1 Functions
- 2 Limits
- 3 Infinite limits
- 4 Monotonicity
- 5 Limits inferior and superior

Limits

Definition 4 (Limits)

f(x) approaches the **limit** L as x approaches x_0 , $\lim_{x\to x_0} f(x) = L$, if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $0 \mid x - x_0 \mid < \delta \implies |f(x) - L| < \epsilon$.

Limits cont'd

Example 3 (Limits)

- $f(x) = cx \implies \lim_{x \to x_0} f(x) = cx_0$
- $f(x) = x \sin(1/x) \implies \lim_{x \to 0} f(x) = 0$

Theorem 1 (Properties of the limit)

- If $\lim_{x\to x_0} f(x)$ exists, then it is e.
- If $\lim_{x\to x_0} f(x) = L_1$ and $\lim_{x\to x_0} g(x) = L_2$, then
 - 1. $\lim_{x\to x_0} (f\pm g)(x) = L_1 \pm L_2$,
 - 2. $\lim_{x\to x_0} (fg)(x) = L_1L_2$,
 - 3. and $\lim_{x\to x_0} (f/g)(x) = L_1/L_2$ if $L_2 \neq 0$.

Example 4 (Properties of the limit)

Since $\lim_{x\to 2} 9 - x^2 = 5$ and $\lim_{x\to 2} x + 1 = 3$, $\lim_{x\to 2} \frac{9-x^2}{x+1} = 5/3$ and $\lim_{x\to 2} (9-x^2)(x+1) = 15$.

One-sided limits

Definition 5 (One-sided limits)

- **left-hand limit:** $\lim_{x \to x_0 -} f(x) = f(x_0 -)$, if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $x_0 \delta < x < x_0 \Longrightarrow |f(x) L| < \epsilon$.
- right-hand limit: $\lim_{x\to x_0+} f(x) = f(x_0+)$, if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $x_0 < x < x_0 + \delta \implies |f(x) L| < \epsilon$.

One-sided limits cont'd

Remark: theorem 1 is still valid for one-sided limits.

Example 5 (One-sided limits)

•
$$f(x) = x/|x|, x \neq 0 \implies \begin{cases} f(x_0-) &= -1 \\ f(x_0+) &= 1 \end{cases}$$

$$f(x) = \frac{x + |x|(1+x)}{x} \sin(1/x), x \neq 0 \implies \begin{cases} f(x_0 -) = 0 \\ f(x_0 +) \text{ undefined} \end{cases}$$

Theorem 2 (Existence of a limit)

$$\lim_{x\to x_0} f(x) = L \iff f(x_0-) = f(x_0+) = L$$

Limits at $\pm \infty$

Definition 6 (Limits at $\pm \infty$)

- Limits at $+\infty$: $\lim_{x\to\infty} f(x) = f(+\infty)$, if $\forall \epsilon > 0$, $\exists \beta > 0$ s.t. $x > \beta \implies |f(x) L| < \epsilon$.
- Limits at $-\infty$: $\lim_{x\to-\infty} f(x) = f(-\infty)$, if $\forall \epsilon > 0$, $\exists \beta < 0$ s.t. $x < \beta \implies |f(x) L| < \epsilon$.

Remark: theorem 1 is still valid for limits at $\pm \infty$.

- 1 Functions
- 2 Limits
- 3 Infinite limits
- 4 Monotonicity
- 5 Limits inferior and superior

The idea

Let

$$\begin{cases} f(x) = 1/x \\ g(x) = 1/x^2 \\ p(x) = \sin(1/x) \\ q(x) = (1/x^2)\sin(1/x) \end{cases}$$

What are their (one-sided) limits at $x_0 = 0$?

Infinite limits

Definition 7 (Infinite limits)

- **left-hand infinite limit:** $f(x_0-) = \pm$, if $\forall M \ge 0$, $\exists \delta > 0$ s.t. $x_0 \delta < x < x_0 \implies f(x) \ge M$.
- right-hand infinite limit: $f(x_0+) = \pm$, if $\forall M \ge 0$, $\exists \delta > 0$ s.t. $x_0 < x < x_0 + \delta \implies f(x) \ge M$.

Remark: we'll say that a (one-sided) limit exists if it is finite.

Example 6 (Infinite limits)

•
$$f(x) = 1/x \implies \begin{cases} f(0-) = -\infty \\ f(0+) = \infty \end{cases}$$

•
$$f(x) = 1/x^2 \implies f(0-) = f(0+) = \infty$$

$$f(x) = x^2 \implies f(-\infty) = f(\infty) = \infty$$

•
$$f(x) = x^3 \implies \begin{cases} f(-\infty) = -\infty \\ f(\infty) = \infty \end{cases}$$

$$f(x) = e^{2x} - e^x \implies f(\infty) = \infty$$

- 1 Functions
- 2 Limits
- 3 Infinite limits
- 4 Monotonicity
- 5 Limits inferior and superior

Monotonic functions

Definition 8 ((Non)decreasing and (non)increasing functions)

- f is nondecreasing/nonincreasing on an interval I if $\forall x_1, x_2 \in I \ x_1 > x_2 \implies f(x_1) \stackrel{>}{\geq} f(x_2)$.
- f is decreasing/increasing on an interval I if $\forall x_1, x_2 \in I$ $x_1 > x_2 \implies f(x_1) \ge f(x_2)$.
- f is monotonic on I if it is nondecreasing or nonincreasing on I.
- *f* is **strictly monotonic** on *l* if it is decreasing or increasing on *l*.

Example 7 (Monotone functions)

Monotonic functions cont'd

Theorem 3 (Monotonic functions)

Assume f monotonic on I = (a, b) and define

$$\alpha = \inf_{x \in I} f(x), \text{ and } \beta = \sup_{x \in I} f(x).$$

- 1. f nondecreasing $\implies f(a+) = \alpha$ and $f(b-) = \beta$.
- 2. f nonincreasing $\implies f(a+) = \beta$ and $f(b-) = \alpha$.
- 3. $a < x_0 < b \implies f(x_0+)$ and $f(x_0-)$ exist and are finite, with

$$f(x_0-) \le f(x_0) \le f(x_0+)$$
 if f is nondecreasing $f(x_0-) \ge f(x_0) \ge f(x_0+)$ if f is nonincreasing.

- 1 Functions
- 2 Limits
- 3 Infinite limits
- 4 Monotonicity
- 5 Limits inferior and superior

Left limits inferior and superior

Definition 9 (Bounded function)

f is **bounded** on a set S if $\exists M < \infty$ s.t. $|f(x)| < M \ \forall x \in S$.

Example 8 (Bounded function)

- f(x) = x is bounded on [-1, 1] but not in \mathbb{R} .
- f(x) = 1/x is bounded on $[-1,1] \setminus \{0\}$ but not on [-1,1].

Definition 10 (Left limits inferior and superior)

Let $S = [a, x_0)$ and assume f bounded on S.

- Left limit superior: $\limsup_{x \to x_0 -} f(x) = \lim_{x \to x_0 -} \sup_{x < t < x_0} f(t)$
- Left limit inferior: $\lim \inf_{x \to x_0 -} f(x) = \lim_{x \to x_0 -} \inf_{x \le t < x_0} f(t)$

Example 9 (Left limits inferior and superior)

$$f(x) = \sin(1/x) \Rightarrow \limsup_{x \to 0-} f(x) = 1$$
, $\liminf_{x \to 0-} f(x) = -1$

Right limits inferior and superior

Definition 11 (Right limits inferior and superior)

Let $S = (x_0, a]$ and assume f bounded on S.

- Right limit superior: $\limsup_{x \to x_0 +} f(x) = \lim_{x \to x_0 +} \sup_{x_0 < t \le x} f(t)$
- Right limit inferior: $\lim \inf_{x \to x_0 +} f(x) = \lim_{x \to x_0 +} \inf_{x_0 < t < x} f(t)$

Example 10 (Right limits inferior and superior)

$$f(x) = \sin(1/x) \Rightarrow \limsup_{x \to 0+} f(x) = 1$$
, $\liminf_{x \to 0+} f(x) = -1$

Left limits inferior and superior cont'd [™] COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Theorem 4 (Existence of the left limits inferior and superior)

Let $S = [a, x_0)$ and assume f bounded on S, then

$$\begin{cases} \alpha = \lim \inf_{x \to x_0 -} f(x) \\ \beta = \lim \sup_{x \to x_0 -} f(x) \end{cases}$$

exist and $\forall \epsilon > 0$,

1.
$$\exists \alpha_1, \beta_1 \in S \text{ s.t. } \begin{cases} \alpha_1 \leq x < x_0 \implies f(x) > \alpha - \epsilon \\ \beta_1 \leq x < x_0 \implies f(x) < \beta + \epsilon \end{cases}$$

2.
$$\exists \alpha_1, \beta_1 \in S \text{ s.t. } \begin{cases} f(\bar{x}_1) < \alpha + \epsilon \text{ for some } \bar{x}_1 \in [\alpha_1, a_0) \\ f(\bar{x}_2) > \beta - \epsilon \text{ for some } \bar{x}_2 \in [\beta_1, a_0) \end{cases}$$
.