Université Mohammed V Faculté des Sciences Département d'Informatique

# Cours M6 pour SMIA Introduction à l'Informatique

M. El Marraki N. El Khattabi 2020 – 2021

Cours n° 4-1





IV. Algèbre de Boole (Partie 1)

#### **Sommaire**

- I. La Filière SMIA (SMI / SMA)
- II. Histoire de l'informatique et Structure des ordinateurs
- III. Histoires des Langages de programmation
- IV. Algèbre de Boole
- v. Le codage
  - Décimale, binaire, octale et hexadécimale
  - Codage des nombres entiers
  - Codage des nombres réels
  - Codage des caractères
  - Codages des images et du son
- VI. Le langage HTML

#### Introduction



2

- Les machines numériques sont constituées d'un ensemble de circuits électroniques.
- Chaque circuit fournit une fonction logique bien déterminée (addition, comparaison, ....).



La fonction F(A,B) peut être : la somme de A et B , ou le résultat de la comparaison de A et B ou une autre fonction

3

4

#### Introduction



#### Introduction



L'algèbre de Boole est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques. Elle est introduit en 1854 par le mathématicien britannique **George Boole**.

Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

#### Introduction



- ◆ L'algèbre de Boole permet de manipuler des valeurs logiques
  - Une valeur logique n'a que deux états possibles : Vraie(1) ou Fausse(0).
  - Plusieurs valeurs logiques peuvent être combinées pour donner un résultat qui est lui aussi une valeur logique
- ◆ La manipulation des valeurs logiques repose sur 3 fonctions (ou opérateurs) logiques de base:
  - ET, OU, NON
- Toutes les fonctions logiques sont formées de ces 3 fonctions de base

## Circuits électroniques





## Introduction

- Pour concevoir et réaliser ce circuit on doit avoir un modèle mathématique de la fonction réalisée par ce circuit .
- Ce modèle doit prendre en considération le système binaire.
- Le modèle mathématique utilisé est celui de Boole.

## **Opérateurs de base**



11



## **Fonction logique**



- Dans l'Algèbre de Boole il existe trois opérateurs de base : NON, ET, OU.
- La valeur d'une fonction logique est égale à 1 ou 0 selon les valeurs des variables logiques.
- Si une fonction logique possède n variables logiques
  → 2<sup>n</sup> combinaisons → la fonction possède 2<sup>n</sup> valeurs.
- Les 2<sup>n</sup> combinaisons sont représentées dans une table qui s'appelle table de vérité (TV).

#### **Boole:** calcul binaire et calcul logique



10

**# Représentation:** 

F = A et B, A \* B, A • B ou AB

Table de vérité

| Entrée |   | Sortie |
|--------|---|--------|
| В      | Α | F      |
| 0      | 0 | 0      |
| 0      | 1 | 0      |
| 1      | 0 | 0      |
| 1      | 1 | 1      |



Symbole graphique

12

## **Boole : calcul binaire et calcul logique**



**%** Représentation:

F = A ou B, A + B

#### Table de vérité

| Entrée |   | Sortie |
|--------|---|--------|
| В      | А | F      |
| 0      | 0 | 0      |
| 0      | 1 | 1      |
| 1      | 0 | 1      |
| 1      | 1 | 1      |



## Exercice



13

Théorème de De Morgan

Montrer que

et

## **Boole:** calcul binaire et calcul logique



**#** Rep<u>ré</u>sentation:

F = A ou A

#### Table de vérité

| Entrée | Sortie |
|--------|--------|
| Α      | F      |
| 0      | 1      |
| 1      | 0      |



Symbole graphique

## **Correction**



14

<u>Vérification</u>:

| 0 | 0 | 1   | 1       |
|---|---|-----|---------|
| 0 | 1 | 0   | 0       |
| 1 | 0 | 0   | 0       |
| 1 | 1 | 0   | 0       |
|   |   | Equ | ivalent |

Vérification :

| 0 | 0 | 1     | 1     |
|---|---|-------|-------|
| 0 | 1 | 1     | 1     |
| 1 | 0 | 1     | 1     |
| 1 | 1 | 0     | 0     |
|   |   | Equiv | alent |

## Remarques

- Dans la définition des opérateurs ET, OU, nous avons juste donner la définition de base avec deux variables logiques.
- L'opérateur ET peut réaliser le produit de plusieurs variables logique (ex: A.B.C.D).
- L'opérateur OU peut aussi réaliser la somme logique de plusieurs variables logiques (ex: A + B + C +D).
- Dans une expression on peut aussi utiliser les parenthèses.

### L'opérateur nand (non et)



17



circuit NAND

 $\equiv$ 



Fig. 2. - Décomposition du circuit NAND

| а | b  | S |
|---|----|---|
| 0 | 0  | 1 |
| 0 | 11 | 1 |
| 1 | 0  | 1 |
| 1 | 1  | 0 |

Fig. 5. - Table de vérité du circuit NAND.

#### Priorité des opérateurs



## Pour évaluer une expression logique (fonction logique) :

- on commence par évaluer les sous expressions entre les parenthèses.
- puis le complément (NON),
- en suite le produit logique (ET)
- la somme logique (OU)

### L'opérateur nor (non ou)





Fig. 10-a. - Symbole graphique du circuit NOR.



Fig. 10-b. - Schéma équivalent du circuit

| а   | р | S |
|-----|---|---|
| 0   | 0 | 1 |
| 0   | 1 | 0 |
| 1   | 0 | 0 |
| _1_ | 1 | 0 |

Fig. 13. - Table de vérité du circuit NOR.

#### Priorité des opérateurs



#### Exemple:

$$F(A,B,C) = (\overline{A \cdot B}) \cdot (C+B) + A \cdot \overline{B} \cdot C$$
  
si on veut calculer  $F(0,1,1)$  alors:

$$F(0,1,1) = (\overline{0.1})(1+1) + 0.\overline{1}.1$$

$$F(0,1,1) = (\overline{0})(1) + 0.0.1$$

$$F(0,1,1) = 1.1 + 0.0.1$$

$$F(0,1,1) = 1 + 0$$

$$F(0,1,1)=1$$

#### **Exercice:**

Trouver la table de vérité de la fonction précédente ?

#### **Solution**

Pour trouver la table de vérité, il faut trouver la valeur de la fonction F pour chaque combinaisons des trois variables A, B, C 3 variables  $\rightarrow$  2 <sup>3</sup> = 8 combinaisons



| F(A,B,C) = | =(A.B). | (C+B) | ) + A.B.C |
|------------|---------|-------|-----------|

| $F(0,0,0) = (\overline{0.0}).(0+0)+0.\overline{0}.0 = 0$ |
|----------------------------------------------------------|
| $F(0,0,1) = (\overline{0.0}).(1+0)+0.\overline{0}.1 = 1$ |

$$F(0,1,0) = (\overline{0.1}).(0+1) + 0.\overline{1}.0 = 1$$

$$F(0,1,1) = (\overline{0.1}).(1+1) + 0.\overline{1}.1 = 1$$

$$F(1,0,0) = (\overline{1.0}).(0+0)+1.\overline{0}.0=0$$

$$F(1,0,1) = (\overline{1.0}).(1+0)+1.\overline{0}.1=1$$

$$F(1,1,0) = (\overline{1.1}).(0+1)+1.\overline{1.0} = 0$$

$$F(1,1,1) = (\overline{1.1}).(1+1)+1.\overline{1}.1 = 0$$

| Α | В | С | F |    |
|---|---|---|---|----|
| 0 | 0 | 0 | 0 |    |
| 0 | 0 | 1 | 1 |    |
| 0 | 1 | 0 | 1 |    |
| 0 | 1 | 1 | 1 |    |
| 1 | 0 | 0 | 0 |    |
| 1 | 0 | 1 | 1 |    |
| 1 | 1 | 0 | 0 |    |
| 1 | 1 | 1 | 0 |    |
|   |   |   |   | 22 |

### Lois fondamentales de l'Algèbre de Boole

#### L'opérateur NON

$$A = A$$

$$\overline{A} + A = 1$$

$$\overline{A}.A = 0$$

#### L'opérateur ET



$$A.B = B.A$$

$$A.A = A$$

$$A.1 = A$$

$$A.0 = 0$$

#### L'opérateur OU



$$(A+B)+C = A+(B+C) = A+B+C$$

$$A + B = B + A$$

$$A + A = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

Associativité

Commutativité

Idempotence

Elément neutre

Elément absorbant

## Correction



25

Montrons que A + A.B = A

$$A + A.B = A.(1 + B) = A.1 = A$$

Montrons que A. (A + B) = A

$$A.(A + B) = A.A + A.B = A + A.B = A$$

Montrons que (A + B).  $(A + \overline{B}) = A$ 

$$(A + B). (A + \bar{B}) = A + B. \bar{B} = A + 0 = A$$

Montrons que  $A + \overline{A} \cdot B = A + B$ 

$$A + \overline{A} \cdot B = (A + \overline{A}) \cdot (A + B) = 1 \cdot (A + B) = A + B$$

#### Distributivité



A.(B+C) = (A.B)+(A.C) Distributivité du ET sur le OU

A + (B.C) = (A + B).(A + C) Distributivité du OU sur le ET

#### **Exercices: Autres relations utiles**

$$A + (A.B) = A$$

$$A.(A + B) = A$$

$$(A+B).(A+\overline{B})=A$$

$$A + \overline{A} \cdot B = A + B$$



26

#### Fin du cours