CP1

January 25, 2024

PGE 382 - Numerical Methods in Petroleum and Geosystems Engineering

Renato Poli - rep2656

a) Evaluate a sin with an infinite series

```
[1]: from math import factorial, pi, sin
   import numpy as np

x = 1.5
   TRUESIN = sin(x)
   SIN = 0
   sign = 1

print (f"{'EXPONENT':10}{'SIN':<30}{'ERROR(%)'}")
   print (50*'-')
   for i in (2*np.arange( 8 )+1) :
        SIN = SIN + sign * x**i / factorial( i )
        ERR = ( TRUESIN - SIN ) / TRUESIN * 100
        sign = - sign
        print (f"{i:<10d}{SIN:<30.20f}{ERR:<20.5e}")
   print (50*'-')
   print (f"{'EXACT:':<10}{TRUESIN:<20.20F}")</pre>
```

EXPONENT	SIN	ERROR(%)	
1	1.50000000000000000000	-5.03767e+01	
3	0.93750000000000000000	6.01457e+00	
5	1.0007812499999995559	-3.29452e-01	
7	0.99739118303571427937	1.04064e-02	
9	0.99749712262834822063	-2.14139e-04	
11	0.99749495568213530916	3.09996e-06	
13	0.99749498693616722722	-3.32947e-08	
15	0.99749498660130264671	2.75871e-10	
FXACT:	0.99749498660405444550		

EXACT: 0.99749498660405444550

b) Piecewise functions

```
[2]: from numpy import exp, linspace, vectorize
     import matplotlib.pyplot as plt
     plt.style.use('paper.mplstyle')
     def foo_v(t) :
         if t < 0 : return 0</pre>
         if t <= 10 : return 11*t**2-5*t</pre>
         if t <= 20 : return 1100 - 5*t
         if t \le 30 : return 50*t + 2*(t-20)**2
         return 1520 * exp(-0.2 * (t-30))
     X = linspace(-5, 50, 200)
     Y = vectorize(foo_v)(X)
     plt.figure(figsize=(10,6))
     plt.scatter( X, Y, marker='x', s=10, lw=1, c='k')
     plt.xlabel("$t$")
     plt.ylabel("$v$")
     plt.xlim( -5, 50)
     plt.ylim( 0, 1750)
```

[2]: (0.0, 1750.0)

c) Distances and tan^{-1}

```
[3]: from numpy import arctan, pi, arctan, sqrt
     def ATAN(x,y) :
         if x<0 :
             if y > 0 : return arctan( y/x ) + pi
             if y < 0 : return arctan(y/x) - pi
            if y == 0 : return pi
         if x==0:
             if y > 0 : return pi/2
             if y < 0: return -pi/2
            if y == 0 : return 0
         return arctan(y / x)
     def RT(x,y):
        r = sqrt( x**2 + y**2 )
         return r, ATAN(x,y)
     XY = [[1,0],[1,1],[0,1],[-1,1],[-1,0],[-1,-1],[0,0],[0,-1],[1,-1]]
     print(f" \ \{'x':<20\}\{'y':<16\}\{'theta':<16\}\{'r':<20\}")
     print(80*'-')
     for x,y in XY:
         R,T=RT(x,y)
         print(f"\{x:>2\}\{y:>20\}\{T*180/pi:>20.1f\}\{R:>20.7f\}")
     print(80*'-')
```

х	У	theta	r	
1	0	0.0	1.0000000	
1	1	45.0	1.4142136	
0	1	90.0	1.000000	
-1	1	135.0	1.4142136	
-1	0	180.0	1.000000	
-1	-1	-135.0	1.4142136	
0	0	0.0	0.000000	
0	-1	-90.0	1.000000	
1	-1	-45.0	1.4142136	