Feuille d'exercice n° 02 : Rappels et compléments d'algèbre linéaire

I. Familles de vecteurs et sous-espaces vectoriels

Exercice 1 () Pour tout entier $0 \le k \le n$, on pose $f_k : \mathbb{R} \to \mathbb{R}$ définie par $f_k(x) = e^{kx}$. Montrer que la famille $(f_k)_{0 \le k \le n}$ est une famille libre de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Exercice 2 (\circlearrowleft) Soit E un \mathbb{K} -espace vectoriel, soit E_1, \ldots, E_n, F des sous-espaces vectoriels de E vérifiant $E = E_1 \oplus \cdots \oplus E_n$.

Si $1 \leq i \leq n$, on pose $F_i = F \cap E_i$.

- 1) Justifier que F_1, \ldots, F_n sont des sous-espaces vectoriels de E.
- 2) Montrer que la somme $F_1 + \cdots + F_n$ est directe.
- 3) Comparer F et $F_1 + \cdots + F_n$.

II. Applications linéaires

Exercice 3 ($^{\circ}$) Soit E un espace vectoriel, et u une application linéaire de E dans E. Dire si les propriétés suivantes sont vraies ou fausses. Si une propriété est vraie, le démontrer. Si elle est fausse, donner un contre-exemple ET donner une condition suffisante sur u du type "u injective" ou "u surjective" sous laquelle l'assertion devient vraie, et démontrer que cette condition est bien suffisante.

1) Si e_1, e_2, \ldots, e_p est libre, il en est de même de $u(e_1), u(e_2), \ldots, u(e_p)$.

- 2) Si $u(e_1), u(e_2), \ldots, u(e_p)$ est libre, il en est de même de e_1, e_2, \ldots, e_p .
- 3) Si e_1, e_2, \ldots, e_p est génératrice, il en est de même de $u(e_1), u(e_2), \ldots, u(e_p)$.
- 4) Si $u(e_1), u(e_2), \ldots, u(e_p)$ est génératrice, il en est de même de e_1, e_2, \ldots, e_p .

Exercice 4 (\circlearrowleft) Soit E et F deux \mathbb{K} -espaces-vectoriels, E_1 et E_2 deux sous-espaces-vectoriels supplémentaires de E. Soit $h_1 \in \mathcal{L}(E_1, F)$ et $h_2 \in \mathcal{L}(E_2, F)$. Montrer qu'il existe un unique $h \in \mathcal{L}(E, F)$ vérifiant $h_{|E_1} = h_1$ et $h_{|E_2} = h_2$.

Exercice 5 Soit E un \mathbb{R} -ev de dimension quelque. Soit $u \in E \setminus \{0\}$. Trouver les $f \in \mathcal{L}(E)$ telles que pour tout $x \in E$, la famille (u, x, f(x)) est liée.

Exercice 6 (A) Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$. Montrer que $f^2 = 0$ si et seulement si il existe une forme linéaire α de \mathbb{R}^3 dans \mathbb{R} et $v \in \mathbb{R}^3$ tels que $\forall x \in \mathbb{R}^3$ $f(x) = \alpha(x) v$ et $\alpha(v) = 0$.

Exercice 7 Soit E un \mathbb{K} -ev de dimension n et soit $u \in \mathcal{L}(E)$, de rang r.

Déterminer les dimensions des sous-espaces de $\mathcal{L}(E)$ suivants :

$$A = \{ f \in \mathcal{L}(E) , f \circ u = 0 \}$$

$$B = \{ f \in \mathcal{L}(E) , u \circ f = 0 \}$$

$$C = A \cap B.$$

Exercice 8 Soit E un \mathbb{K} -espace-vectoriel, p et q deux projecteurs de E. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$. Identifier alors $\mathrm{Im}(p+q)$ et $\mathrm{Ker}(p+q)$.

Exercice 9 Soient E un \mathbb{K} -ev de dimension $n, k \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$ tel que $u^k = \mathrm{Id}$. Soit enfin F un sev de E stable par u.

- 1) Soit p un projecteur sur F; on pose $q = \frac{1}{k} \sum_{j=0}^{k-1} u^j \circ p \circ u^{k-j}$. Démontrer que q est un projecteur. Quelle est son image?
- 2) Démontrer que F admet un supplémentaire lui aussi stable par u.

Exercice 10 ($\stackrel{\triangleright}{\triangleright}$) Soit n dans \mathbb{N}^* et p_1, p_2, \dots, p_m des projecteurs non nuls de $E = \mathbb{R}^n$ vérifiant $p_i \circ p_j = 0$ pour tout $i \neq j$.

- 1) On suppose m = n. Montrer que $E = \operatorname{Im} p_1 \oplus \cdots \oplus \operatorname{Im} p_n$.
- **2)** Montrer que la famille (p_1, p_2, \ldots, p_m) est libre.
- 3) Soit p un projecteur de \mathbb{R}^n . Déterminer la dimension du commutant de p (c'est-à-dire l'ensemble des endomorphismes de \mathbb{R}^n commutant avec p).
- 4) Trouver une partie libre de cardinal maximal, constituée de projecteurs de \mathbb{R}^n .

 Indication: on pourra considérer les matrices élémentaires $E_{i,i}$ ainsi

Indication: on pourra considérer les matrices élémentaires $E_{i,i}$ ainsi que les $E_{i,i} + E_{i,j}$ avec $i \neq j$.

III. Matrices

Exercice 11 () On considère $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{Z}$.

Exercice 12 ($^{\otimes}$) Soit $n \in \mathbb{N}^*$. On note $\mathscr{S}_n(\mathbb{K})$ (resp. $\mathscr{A}_n(\mathbb{K})$) l'ensemble des matrices symétriques (resp. antisymétriques) de taille $n \times n$ à coefficients dans \mathbb{K} .

- 1) Déterminer dim $\mathscr{S}_n(\mathbb{K})$ et dim $\mathscr{A}_n(\mathbb{K})$.
- 2) Montrer que $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ sont supplémentaires dans $\mathscr{M}_n(\mathbb{K})$.

Exercice 13 Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$, et r = rg(A).

On note $J_{n,p,r}$ la matrice de $\mathscr{M}_{n,m}(\mathbb{K})$ telle que $J_{n,p,r}=\begin{pmatrix} \mathrm{I}_r & 0 \\ 0 & 0 \end{pmatrix}$.

- 1) Montrer qu'il existe deux matrices inversibles $P \in \mathcal{M}_n(\mathbb{K})$ et $Q \in \mathcal{M}_p(\mathbb{K})$ telles que $A = PJ_{n,p,r}Q$.
- **2)** Montrer qu'il existe $C \in \mathcal{M}_{n,r}(\mathbb{R})$ et $D \in \mathcal{M}_{r,p}(\mathbb{R})$ telles que A = CD.

IV. Trace

Exercice 14 (\circlearrowleft) Soit $n \ge 2$.

1) Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall M \in \mathscr{M}_n(\mathbb{R}), \ \varphi(M) = \operatorname{tr}(AM).$$

2) En déduire que tout hyperplan de $\mathcal{M}_n(\mathbb{R})$ possède au moins une matrice inversible.

Exercice 15 Soit $M \in \mathscr{M}_n(\mathbb{K})$ telle que tr M = 0.

- 1) Montrer que M est semblable à une matrice dont tous les coefficients diagonaux sont nuls (on pourra utiliser, en le montrant, que si M n'est pas une homothétie, alors il existe un vecteur X tel que (X, MX) soit libre).
- 2) Montrer qu'il existe $B, C \in \mathscr{M}_n(\mathbb{K})$ telles que M = BC CB.

V. Déterminant

Exercice 16 (N) Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq b$. Pour $n \in \mathbb{N}$, $n \geq 2$, on note B_n le déterminant suivant :

$$B_n = \begin{vmatrix} a+b & a & 0 \\ b & \ddots & \ddots \\ & \ddots & \ddots & a \\ 0 & b & a+b \end{vmatrix}$$

Montrer que $\forall n \in \mathbb{N}, n \geqslant 4, B_n = (a+b)B_{n-1} - abB_{n-2}$ Montrer que

$$\forall n \in \mathbb{N}, n \geqslant 2, \ B_n = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

Exercice 17 Soit $n \in \mathbb{N}^*$, $(\alpha, \beta) \in \mathbb{R}^2$ et $(x_1, \dots, x_n) \in \mathbb{R}^n$. Calculer

$$D_n(x) = \begin{vmatrix} x_1 - x & \alpha - x & \cdots & \alpha - x \\ \beta - x & x_2 - x & \ddots & \vdots \\ \vdots & \ddots & \ddots & \alpha - x \\ \beta - x & \cdots & \beta - x & x_n - x \end{vmatrix}.$$

Exercice 18 (\mathcal{F}_n) Soit $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer que

$$\begin{vmatrix} A & B \\ B & A \end{vmatrix} = \det(A+B)\det(A-B).$$

Exercice 19 Soit $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer que

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} \geqslant 0.$$

Exercice 20 Soit $A, B, C \in \mathcal{M}_n(\mathbb{R})$ et $D \in GL_n(\mathbb{R})$.

1) Trouver quatre matrices $X, Y, Z, T \in \mathcal{M}_n(\mathbb{R})$ telles que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I_n & X \\ 0 & Y \end{pmatrix} \begin{pmatrix} Z & 0 \\ T & I_n \end{pmatrix}.$$

2) En déduire que, si C et D commutent,

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(AD - BC).$$

Exercice 21 Soient E un ev de dimension finie, $u, v \in \mathcal{L}(E)$ avec v nilpotent.

- 1) Montrer que $\det(\mathrm{Id} + v) = 1$.
- **2)** Montrer que det(u+v) = det u si $u \circ v = v \circ u$.

VI. Polynôme annulateur

Exercice 22 (\mathfrak{D}) Soit $u \in \mathcal{L}(\mathbb{R}^3)$ non nul vérifiant $u^3 + u = 0_{\mathcal{L}(E)}$.

- 1) Montrer que $\mathbb{R}^3 = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$.
- 2) Montrer que $\operatorname{Im}(u) = \operatorname{Ker}(u^2 + \operatorname{Id}).$
- **3)** Montrer que *u* n'est pas injective. *Indication*: on pourra raisonner par l'absurde.
- 4) Montrer que rg(u) = 2.
- 5) Montrer qu'il existe une base \mathscr{B} de \mathbb{R}^3 pour laquelle $\mathrm{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

Exercice 23 Soit E un \mathbb{K} -e.v. de dimension quelconque, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$. On suppose que P est annulateur de u, et que 0 est racine simple de P.

- 1) Montrer que $\operatorname{Ker} u^2 = \operatorname{Ker} u$ et $\operatorname{Im} u^2 = \operatorname{Im} u$.
- **2)** En déduire que $E = \operatorname{Ker} u \oplus \operatorname{Im} u$.

Exercice 24 Soit E un \mathbb{K} -espace vectoriel, f, g et h trois endomorphismes de E vérifiant

$$f \circ g = h, \ g \circ h = f \operatorname{et} h \circ f = g$$
.

- 1) Montrer que f, g et h ont même noyau et même image.
- 2) Montrer que $X^5 X$ est un polynôme annulateur de f.
- 3) En déduire que l'image et le noyau de f sont supplémentaires dans E.

