

Université des Sciences et Technologies de Lille

Reconnaissance de Formes Master 1 2012-2013

Résumé

La durée de cet exam est de 2h. Les documents de cours, TD et de TP sont autorisés. Les 3 parties sont indépendantes, et doivent être rédigés sur 3 copies séparées. Utilisez la fiche réponse fournie pour la partie 1.

Partie 1 : segmentation et attributs de forme 1

On considère l'image en niveaux de gris de la figure 1. Le niveau de gris de chaque pixel varie entre 0 et 7. L'image est celle d'un objet d'intérêt, de niveau de gris clair (proche de 7), apparaissant sur un fond de niveau de gris foncé (proche de 0).

0	0	0	1	1	0	0	1	1	1	0	0	0	0	0	0
0	1	1	1	2	2	3	2	2	1	1	1	1	1	0	0
0	1	1	2	3	4	4	4	2	2	2	3	2	2	1	1
0	1	2	3	4	6	6	6	5	5	5	5	5	3	2	1
0	2	3	5	6	6	7	7	7	7	6	6	5	3	2	1
1	2	5	6	7	7	7	7	7	7	7	7	6	3	2	2
1	3	5	7	7	7	7	7	7	7	7	7	6	6	2	2
1	2	5	6	6	7	7	7	7	7	7	7	6	6	2	2
1	2	3	5	6	6	6	6	6	6	7	7	6	3	2	2
1	1	2	2	3	3	3	3	3	5	5	5	4	3	2	1
0	1	1	1	1	1	2	2	2	3	3	3	2	2	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0

FIGURE 1 – Image d'un objet clair sur un fond sombre.

- Q 1.Déterminez l'histogramme des niveaux de gris de cette image et représentez-le sous forme d'un diagramme à barres dans la première partie de la feuille réponse que vous joindrez à votre copie.
- Q 2.A partir de cet histogramme, déterminez le seuil optimal qui permet de séparer au mieux la forme correspondant à l'objet d'intérêt et le fond de la scène. Utilisez ce seuil pour binariser l'image, en considérant qu'un pixel appartient à la forme si son niveau de gris est supérieur ou égal au seuil. Représentez l'image binaire dans la deuxième partie de la feuille réponse. Par convention utilisez la valeur 0 pour un représenter un pixel du fond et la valeur 1 pour un pixel de l'objet.
- **Q** 3. Calculez les moments m_{00} , m_{10} et m_{01} de la forme correspondant à l'objet d'intérêt et déduisez-en les coordonnées de son barycentre.
- Q 4.Déterminez une chaîne de Freeman décrivant le contour extérieur de la forme, en connexité 8, et déduisez-en son périmètre.

2 Partie 2: homme ou femme?

Q 5. Expliquez la différence entre une variable et une variable aléatoire en donnant un exemple pour chaque cas.

Q 6.Quelle est la différence entre l'apprentissage supervisé et non supervisé? Donnez ici encore un exemple pour chaque cas.

Q 7. Classification d'images (Naive Bayes)

Nous possédons une base de données de quatre images, notées $\mathbf{x_1}$, $\mathbf{x_2}$, $\mathbf{x_3}$, $\mathbf{x_4}$. Chaque image est le portrait soit d'un homme \mathbf{H} , soit d'une femme \mathbf{F} , et est représentée par un vecteur de nombres entiers. La base de données est représentée dans le tableau ci-dessous. Cet tableau comprend quatre lignes : chaque ligne correspond à une image, et indique la classe, \mathbf{H} ou \mathbf{F} à laquelle elle appartient. Par exemple, la première image $\mathbf{x_1}$ est représentée par le vecteur $\mathbf{x_1} = (1, 2, 1)$, et appartient à la classe \mathbf{F} . (Notez que les vecteurs qui représentent les images n'ont pas nécessairement la même taille.)

image	classe (\mathbf{H}/\mathbf{F})
$\mathbf{x}_1 = (1, 2, 1)$	\mathbf{F}
$\mathbf{x}_2 = (1, 1, 3)$	${f F}$
$\mathbf{x}_3 = (1,4)$	${f F}$
$\mathbf{x}_4 = (5, 6, 1)$	\mathbf{H}

Table 1 – Base de données d'entrainement

On considère une image de test, représentée par le vecteur $\mathbf{x}_{\text{test}} = (1, 1, 1, 5, 6)$. Utilisez l'algorithme Naive Bayes afin de classifier l'image \mathbf{x}_{test} : s'agit-il du portrait d'un homme ou dune femme? Précisez les raisonnements et les calculs qui vous ont menès au résultat.

3 Partie 3 : arbres et chaînes

3.1 Classification par arbre

Q 8. Question préliminaire : donner les arbres de décisions qui expriment les fonctions booléennes suivantes :

- 1. $A \lor (B \land C)$
- 2. $(A \land B) \lor (C \land D)$

Q 9.On considère maintenant un problème de classification à 2 classes pour les données suivantes (4 attributs binaires) :

Classe 1	Classe 2
a=0001	e=1010
b=1111	f=0100
c=0101	g=1100
d=1011	h=0111

Utilisez le critère d'impurté entropique pour construire un arbre de décision pour ces données.

Q 10. Exprimez chaque catégorie à l'aide d'expressions logiques aussi simple que possible (c'est-à-dire avec le plus petit nombre possible de ET et de OU).

Q 11.A quelle catégorie appartiendrait l'exemple x=0011?

3.2 Une question de distance

Q 12.Calculez dans un tableau la distance edit entre les mots galinettes et grelinette.

Diagramme en barres de l'histogramme des niveaux de gris

Image binarisée