Problema 6. 1000 kg/h de una especie A y 1000 kg/h de una especie B entran a una unidad de separación, de tal manera que se obtienen dos corrientes de salida (ambas especies en las dos corrientes). Una de las dos corrientes de salida de la especie A tiene un flujo másico de 900 kg/h y el flujo másico de la especie B en la otra corriente de salida es 950 kg/h.

- a) Dibuje el diagrama de proceso, etiquetando las corrientes de entrada y de salida.
- b) Determine cuáles son los flujos másicos de salida de A y B en kg/h.

a)

Como es un proceso continuo en estado estacionario sin reacción, entonces la ecuación general de balance en el sistema es:

$$\label{eq:consumo} \begin{aligned} \text{Entrada} + \frac{\text{Generaci\'on}}{\text{Centrada}} - \frac{\text{Salida}}{\text{Salida}} - \frac{\text{Consumo}}{\text{Centrada}} = \frac{\text{Acumulaci\'on}}{\text{Salida}} \end{aligned}$$

b)

En el problema:

Corriente
$$1 = \text{Corriente } 2 + \text{Corriente } 3$$

Además, las ecuaciones independientes son las siguientes:

- Balance de A: 1000 kg A/h = 900 kg A/h + y kg A/h
- Balance de B: 1000 kg B/h = x kg B/h + 950 kg B/h

Dando un total de 2 ecuaciones independiente y hay 2 incógnitas = $\{x,y\}$. Entonces, el grado de libertad del sistema es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 2 - 2 = 0

Por lo que el problema tiene solución única:

- \bullet Balance de A: y kg A/h = 1000 kg A/h 900 kg A/h = 100 kg A/h
- \bullet Balance de B: x kg B/h = 1000 kg B/h 950 kg B/h = 50 kg B/h

Finalmente, en cada corriente:

• Corriente 1:

$$Total = 2000 \text{ kg/h}$$

$$A = 1000 \text{ kg/h}$$

$$B = 1000 \text{ kg/h}$$

• Corriente 2:

$$Total = 950 \text{ kg/h}$$

$$A = 900 \text{ kg/h}$$

$$B = 50 \text{ kg/h}$$

• Corriente 3:

$$Total = 1050 \text{ kg/h}$$

$$A = 100 \text{ kg/h}$$

$$B = 950 \text{ kg/h}$$

Problema 7. Disulfuro de carbono (CS₂) se separa de un gas que contiene 60.4 % de N₂, 24.2 % de CS₂ y 15.4% de O₂, todos en fracción mol. El proceso consiste en alimentar gas a una torre de absorción continua donde se pone en contacto con hexano (C₆H₁₄), que absorbe el CS₂ pero no el O₂ ni el N₂. El hexano alimenta la columna en una relación de moles de 4 a 2 con respecto al gas de alimentación. De la torre de absorción sale una corriente de gas que contiene $3\,\%$ de CS_2 y $4\,\%$ de hexano en fracción mol y otra corriente líquida que contiene hexano y el CS₂ absorbido.

- a) Calcular el porcentaje de hexano con que se alimentó la columna, que pierde en la corriente de gas de salida.
- b) El porcentaje de CS₂ con que se alimentó la columna, que se separa en la corriente líquida de salida.

Torre de absorción

Como es un proceso continuo en estado estacionario sin reacción, entonces la ecuación general de balance en el sistema es:

$$\label{eq:entrada} \begin{aligned} \text{Entrada} + \frac{\text{Generación}}{\text{Centrada}} - \frac{\text{Salida}}{\text{Salida}} - \frac{\text{Acumulación}}{\text{Centrada}} \end{aligned}$$

En el problema:

Corriente
$$1 + \text{Corriente } 2 = \text{Corriente } 3 + \text{Corriente } 4$$

Además, las ecuaciones independientes son las siguientes:

- Balance de N_2 : (A mol)(0.604 mol N_2/mol) = (B mol)(B₁ mol N_2/mol)
- $\bullet \ \text{Balance de CS}_2\text{: (A mol)}(0.242 \ \text{mol}) \ \text{CS}_2/\text{mol}) = (B \ \text{mol})(0.03 \ \text{mol} \ \text{CS}_2/\text{mol}) + (C \ \text{mol})(C_1 \ \text{mol} \ \text{CS}_2/\text{mol})$
- Balance de O_2 : (A mol)(0.154 mol O_2/mol) = (B mol)(0.93-B₁ mol O_2/mol)
- Balance total: A mol + 2A mol = B mol + C mol

Dando un total de 4 ecuaciones independiente y hay 5 incógnitas = $\{A, B, C, B_1, C_1\}$. Entonces, el grado de libertad del sistema es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 5 - 4 = 1

Por lo que se necesita plantear una base de cálculo, es decir, darle valor a una incógnita para así reducir el GL a 0 y responder los incisos del problema (recordemos que las proporciones molares siempre se mantienen a pesar de la cantidad supuesta de moles). Supongamos que A = 100.

Sumando el balance de N_2 y O_2 se tiene que:

$$(100 \text{ mol})(0.758 \text{ mol } [N_2 + O_2]/\text{mol}) = (B \text{ mol})(0.93 \text{ mol } [N_2 + O_2]/\text{mol})$$

$$B \text{ mol} = \frac{(100 \text{ mol})(0.758 \text{ mol } [N_2 + O_2]/\text{mol})}{0.93 \text{ mol } [N_2 + O_2]/\text{mol}} = 81.5054 \text{ mol}$$

Usando el balance total:

$$100 \; \mathrm{mol} + 200 \; \mathrm{mol} = 81.5054 \; \mathrm{mol} + \mathrm{C} \; \mathrm{mol}$$

 C $\mathrm{mol} = 100 \; \mathrm{mol} + 200 \; \mathrm{mol}$ - $81.5054 \; \mathrm{mol} = 218.4946 \; \mathrm{mol}$

Utilizando el balance de N₂:

$$(100 \text{ mol})(0.604 \text{ mol } N_2/\text{mol}) = (81.5054 \text{ mol})(B_1 \text{ mol } N_2/\text{mol})$$

$$B_1 \text{ mol } N_2/\text{mol} = \frac{(100 \text{ mol})(0.604 \text{ mol } N_2/\text{mol})}{81.5054 \text{ mol}} = 0.7411 \text{ mol } N_2/\text{mol}$$

Usando el balance de CS₂:

$$(100 \text{ mol})(0.242 \text{ mol } CS_2/\text{mol}) = (81.5054 \text{ mol})(0.03 \text{ mol } CS_2/\text{mol}) + (218.4946 \text{ mol})(C_1 \text{ mol } CS_2/\text{mol}) \\ C_1 \text{ mol } CS_2/\text{mol} = \frac{(100 \text{ mol})(0.242 \text{ mol } CS_2/\text{mol}) - (81.5054 \text{ mol})(0.03 \text{ mol } CS_2/\text{mol})}{218.4946 \text{ mol}} = 0.09957 \text{ mol } CS_2/\text{mol}$$

En este caso, en cada corriente:

Cantidad molar

• Corriente 1:	• Corriente 2:	• Corriente 3:	• Corriente 4:
Total = 100 mol	$\mathrm{Total} = 200 \; \mathrm{mol}$	Total = 81.5054 mol	$Total = 218.4946 \ mol$
$N_2=60.4~\mathrm{mol}$	$\mathrm{N}_2=0\;\mathrm{mol}$	$ m N_2=60.4~mol$	$\mathrm{N}_2=0~\mathrm{mol}$
$\mathrm{CS}_2 = 24.2 \; \mathrm{mol}$	$\mathrm{CS}_2 = 0 \; \mathrm{mol}$	$\mathrm{CS}_2 = 2.4452~\mathrm{mol}$	$\mathrm{CS}_2 = 21.7548 \; \mathrm{mol}$
$O_2 = 15.4 \text{ mol}$	$\mathrm{O}_2=0\;\mathrm{mol}$	$O_2 = 15.4 \text{ mol}$	$O_2 = 0 \text{ mol}$
$\mathrm{C_6H_{14}}=0$ mol	$\mathrm{C_6H_{14}} = 200 \; \mathrm{mol}$	$C_6H_{14} = 3.2602 \text{ mol}$	$C_6H_{14} = 196.7398 \text{ mol}$

Fracción molar

a)

La corriente de gas de salida es la Corriente 3 y la corriente de alimentación de hexano es la Corriente 2:

$$\% \text{ Hexano perdido} = \frac{\text{Hexano en Corriente 3}}{\text{Hexano en Corriente 2}} \times 100 \% = \frac{3.2602 \text{ mol}}{200 \text{ mol}} \times 100 \% = 1.6301 \%$$

b)

La corriente líquida de salida es la Corriente 4 y la corriente de alimentación de CS_2 es la Corriente 1:

$$\% \ \text{CS}_2 \ \text{separado} = \frac{\text{CS}_2 \ \text{en Corriente} \ 4}{\text{CS}_2 \ \text{en Corriente} \ 1} \times 100 \,\% = \frac{21.7548 \ \text{mol}}{24.2 \ \text{mol}} \times 100 \,\% = 89.8960 \,\%$$

Problema 8. Se secan hojuelas de papa (contenido de humedad de $75\,\%$). El contenido de humedad del aire que entra al secador es de 0.08 kg de agua por 1 kg de aire seco. El contenido de humedad del aire que sale del secador es de 0.18 kg de agua por 1 kg de aire seco. El flujo de aire a la entrada del secador es de 100 kg de aire seco/h. 50 kg de hojuelas de papa húmedas entran al secador por hora.

- a) ¿Cuál es el flujo de hojuelas de papa seca?
- b) ¿Cuál es el contenido de humedad de las hojuelas de papa a la salida del secador?

Como es un proceso continuo en estado estacionario sin reacción, entonces la ecuación general de balance en el sistema es:

$$\label{eq:consumo} \begin{aligned} \text{Entrada} + \frac{\text{Generaci\'on}}{\text{Centrada}} - \frac{\text{Salida}}{\text{Salida}} = \frac{\text{Acumulaci\'on}}{\text{Salida}} \end{aligned}$$

Como entran 100 kg de aire seco/h, usando la relación del problema:

$$100 \text{ kg aire seco/h} \quad \frac{0.08 \text{ kg H}_2\text{O}}{1 \text{ kg aire seco}} = 8 \text{ kg H}_2\text{O/h}$$
 Flujo másico total = 100 kg aire seco/h + 8 kg H $_2$ O/h = 108 kg/h
$$x_{\text{H}_2\text{O}} = \frac{\text{Masa de H}_2\text{O}}{\text{Masa total}} = \frac{8 \text{ kg}}{108 \text{ kg}} = 0.07407$$

$$x_{\text{aire seco}} = \frac{\text{Masa de aire seco}}{\text{Masa total}} = \frac{100 \text{ kg}}{108 \text{ kg}} = 0.92593$$

En el caso de la salida del aire con agua, observemos que los 100 kg de aire seco/h de la entrada se mantienen ahí, por lo que utilizando la relación del problema:

$$\begin{array}{c|c} 100~\mathrm{kg~aire~seco/h} & \boxed{0.18~\mathrm{kg~H_2O}} \\ \hline 1~\mathrm{kg~aire~seco} & \boxed{} = 18~\mathrm{kg~H_2O/h} \\ \\ \mathrm{Flujo~m\acute{a}sico~total} = 100~\mathrm{kg~aire~seco/h} + 18~\mathrm{kg~H_2O/h} = 118~\mathrm{kg/h} \\ \\ x_{\mathrm{H_2O}} & = \frac{\mathrm{Masa~de~H_2O}}{\mathrm{Masa~total}} = \frac{18~\mathrm{kg}}{118~\mathrm{kg}} = 0.1525 \\ \\ x_{\mathrm{aire~seco}} & = \frac{\mathrm{Masa~de~aire~seco}}{\mathrm{Masa~total}} = \frac{100~\mathrm{kg}}{118~\mathrm{kg}} = 0.8475 \\ \end{array}$$

Quedando el diagrama de flujo de la siguiente forma:

En el problema:

Corriente
$$1 + \text{Corriente } 2 = \text{Corriente } 3 + \text{Corriente } 4$$

Además, las ecuaciones independientes son las siguientes:

• Balance de H₂O: $(50 \text{ kg/h})(0.75 \text{ kg H}_2\text{O/kg}) + (108 \text{ kg/h})(0.07407 \text{ kg H}_2\text{O/kg}) = (A \text{ kg/h})(A_1 \text{ kg H}_2\text{O/kg}) + (118 \text{ kg/h})(0.1525 \text{ kg H}_2\text{O/kg})$

• Balance total: 50 kg/h + 108 kg/h = A kg/h + 118 kg/h

Dando un total de 2 ecuaciones independiente y hay 2 incógnitas = $\{A, A_1\}$. Entonces, el grado de libertad del sistema es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 2 - 2 = 0

Por lo que el problema tiene solución única. Utilizando el balance total:

$$50 \text{ kg/h} + 108 \text{ kg/h} = \text{A kg/h} + 118 \text{ kg/h}$$

$$\text{A kg/h} = 50 \text{ kg/h} + 108 \text{ kg/h} - 118 \text{ kg/h} = 40 \text{ kg/h}$$

Usando el balance de H₂O:

$$(50 \text{ kg/h})(0.75 \text{ kg } \text{H}_2\text{O/kg}) + (108 \text{ kg/h})(0.07407 \text{ kg } \text{H}_2\text{O/kg}) = (40 \text{ kg/h})(\text{A}_1 \text{ kg } \text{H}_2\text{O/kg}) + (118 \text{ kg/h})(0.1525 \text{ kg } \text{H}_2\text{O/kg})$$

$$A_1 \text{ kg } \text{H}_2\text{O/kg} = \frac{(50 \text{ kg/h})(0.75 \text{ kg } \text{H}_2\text{O/kg}) + (108 \text{ kg/h})(0.07407 \text{ kg } \text{H}_2\text{O/kg}) - (118 \text{ kg/h})(0.1525 \text{ kg } \text{H}_2\text{O/kg})}{40 \text{ kg/h}}$$

$$A_1 \text{ kg } H_2O/\text{kg} = 0.6875 \text{ kg } H_2O/\text{kg}$$

Finalmente, en cada corriente:

Flujo másico

- Corriente 3: Total = 40 kg/h $H_2O = 27.5 \text{ kg/h}$ papa seca = 12.5 kg/h aire seco = 0 kg/h

Fracción másica

- $\begin{aligned} \bullet & \text{Corriente 1:} \\ & H_2O = 0.75 \\ & \text{papa seca} = 0.25 \\ & \text{aire seco} = 0 \end{aligned}$
- Corriente 2: $H_2O = 0.07407$ $papa \ seca = 0$ $aire \ seco = 0.92593$

a)

En la salida hay 12.5 kg de papa seca/h por cada 40 kg/h de hojuelas de papa

b)

Las hojuelas de papa en la salida tienen $0.6875~\mathrm{kg}$ de $\mathrm{H_2O/kg}$