

Отчёт по лабораторной работе №320 Дифракция Фраунгофера

Выполнили (420гр):

Горюнов О.А., Плешков Д.С., Сиднев А.А.

Содержание

1	Teo	ретическая часть	3
	1.1	Введение	3
	1.2	Вывод уравнения для интенсивности на экране	3
	1.3	Влияние размера источника света	6
	1.4	Экспериментальная установка	6
2	Пра	актическая часть	8
	2.1	Измерение угловых координат минимумов интенсивности при дифракции .	8
		2.1.1 На 1 щели	9
		2.1.2 На 2 щелях	10
		2.1.3 На 15 щелях	11
	2.2	Размытие дифракционной картины	12
	2.3	Изменение дифракционной картины при изменении размеров щели	12
	2.4	Изменение дифракционной картины при изменении периода решётки	13
	2.5	Влияние угла падения на решётку	13
	2.6	Изменение дифракционной картины при изменении длины световой волны .	14
	2.7	Распределение цветов при дифракции	14
	2.8	Изменение дифракционной картины при изменении длины щели коллиматора	15
3	Вы	вол	16

Цель работы - исследование дифракции Фраунгофера на препятсвиях в виде одной щели, двух щелей и решётки из нескольких щелей.

1 Теоретическая часть

1.1 Введение

Дифракция Фраунгофера - это предельный случай дифракции плоской волны на препятствии, который наблюдается на больших расстояних от препятствия.

1.2 Вывод уравнения для интенсивности на экране

Рассмотрим дифракцию плоской световой волны с длиной волны λ при нормальнои падении на щель ширины b ($b >> \lambda$) в непрозрачном экране (рис.1). Дифрация проявляется в том, что распределение освещенности в плоскости наблюдения отличается от равномерно засвеченной полоски ширины b, как это предсказывает геометрическая оптика, причём характер распределения существенно зависит от расстояния z. В зависимости от z выделяют три характерные области: геометрической оптики, дифракции Френеля и дифракции Фраунгофера. Области дифракции Фраунгофера соответсвуют расстояния, удовлетворяющие условию:

Рис. 1: Геометрия для вывода формул.

Сначала выведем уравнение для распределения интенсивности от одной щели ширины b. Пусть на щель падает свет с амплитудой A_0 , длиной волны λ , при этом щель будем считать по вертикальной оси бесконечной. Пользуясь принципом Гюйгенса-Френеля, запишем уравнение поля для элементарного кусочка по оси x:

$$d\widehat{f}_p = \frac{A_0}{\sqrt{\lambda z}} e^{i(\omega t - kr + \frac{\pi}{2})} dr$$

Учитываем разность хода для отдельных лучей:

$$r = r_0 - x\sin(\theta)$$

$$\Rightarrow d\widehat{f}_p = \frac{A_0}{\sqrt{\lambda z}} e^{i\theta_0} e^{ikx\sin(\theta)} dx$$

$$\Rightarrow \widehat{f}_p = \frac{A_0}{\sqrt{\lambda z}} e^{i\theta_0} \int_{-b/2}^{b/2} e^{ikx\sin(\theta)} dx$$

$$\widehat{f}_p = \frac{A_0}{\sqrt{\lambda z}} e^{i\theta_0} \frac{e^{ik\frac{b}{2}\sin\theta} - e^{ik\frac{-b}{2}\sin\theta}}{ik\sin\theta} = \frac{A_0b}{\sqrt{\lambda z}} \frac{\sin(k\frac{b}{2}\sin\theta)}{k\frac{b}{2}\sin\theta} e^{i\theta_0} = \frac{A_0b}{\sqrt{\lambda z}} \frac{\sin(\pi\frac{b}{\lambda}\sin\theta)}{\pi\frac{b}{\lambda}\sin\theta} e^{i\theta_0}$$

Тогда интенсивность от одной щели можно найти как:

$$I = I_{max} \cdot sinc^2 \left(\frac{\pi b}{\lambda} sin\theta\right)$$
, где $I_{max} = \frac{A_0^2 b^2}{\lambda z}$ (1)

Рис. 2: Угловое распределение интенсивности света при дифракции на щели.

Теперь ряссмотрим сложение волн, пришедших на экран он N щелей. Набег фазы будет зависеть от номера щели:

$$\theta_0 = \omega t - kr_0 + \frac{\pi}{2} \equiv \theta_1$$

. .

$$\theta_n = \theta_1 - kd(n-1)sin\theta$$

Если для одной щели:

$$f_p = \sqrt{I_p} sinc(\frac{\pi b sin\theta}{\lambda}) cos(\theta_0)$$

то для нескольких щелей:

$$f = \sum_{n=1}^{N} f_{pn}$$

Проще в МКА:

$$\widehat{f} = \sqrt{I_p} sinc(\frac{\pi b sin\theta}{\lambda}) e^{i\theta_0} (1 + e^{-ikdsin\theta} + e^{-ikdsin\theta} + ...)$$

$$\Rightarrow I = \widehat{f} \cdot \widehat{f}^* = I_p \cdot sinc^2 (\frac{\pi b sin\theta}{\lambda}) \cdot \frac{sin^2 (\frac{\pi N d sin\theta}{\lambda})}{sin^2 (\frac{\pi d sin\theta}{\lambda})}$$
(2)

Рис. 3: Угловое распределение интенсивности света при дифракции на N щелях ($N=6,\ d=3b$).

Для наблюдения дифракции Фраунгофера плоскость наблюдения должна находиться на больших расстояниях от препятствия, что практически неудобно. К тому же, интенсивность света в плоскости наблюдения оказывается много меньшей интенсивности I_0 . Поэтому на практике за препятствием ставят линзу, которая собирает параллельные лучи света, идущие под разными углами θ , в различные точки фокальной плоскости (в центре собираются лучи с θ_0). Таким образом, в фокальной плоскости линзы получается яркая, локализованная дифракционная картина, соответствующая угловому распределению $I(\theta)$.

1.3 Влияние размера источника света

Оценим ширину щели источника света, при которой наступает размытие, для случая дифракции на двух щелях, когда в дифракционной картине отсутствуют побочные максимумы. В этом случае размытие наступает при наложении центрального максимума картины от крайней точки щели (с угловой координатой $\theta = \Delta \alpha/2$, где $\Delta \alpha - 0$) на первый нуль картины от центральной точки щели (с $\theta = \lambda/(2d)$), т.е. при условии $\Delta \alpha/2 = \lambda/(2d)$, откуда находим угловой размер щели:

$$\Delta \alpha = \frac{\lambda}{d}$$

Зная фокусное расстояние линзы F, можно найти соответствующую ширину щели:

$$l = F\Delta\alpha = \frac{\lambda F}{d}$$

Рис. 4: Дифракционные картины от центральной (пунктир) и смещённой от центра (сплошная линия) точек светящейся щели.

1.4 Экспериментальная установка

В экспериментальной установке измерения проводятся при помощи гониометра - оптического прибора, предназначенного для высокоточного измерения углов. Основные части гониометра - это коллиматор 1, зрительная труба 2 и отсчетный микроскоп 3 (рис.5).

Коллиматор преобразует свет от осветителя (лампочки), падающий на его входную щель, в параллельный пучок света, проходящий над предметным столиком 4. В этот пучок

ставится экран со щелями. При этом в фокальной плоскости объектива зрительной трубы получается дифракционная картина Фраунгофера, которую можно наблюдать с помощью окуляра зрительной трубы.

Рис. 5: Гониометр, 1 - коллиматор, 2 - зрительная труба, 3 - отсчётный микроскоп, 4 - предметный столик, 5 - алидада, 6 - зажимной винт, 7 - микрометрический винт, 8 - маховик микроскопа, 9 - маховичок наводки на резкость зрительной трубы.

Углы дифракции измеряются отсчетным микроскопом. С этой целью зрительная труба и микроскоп размещены на улидаде 5, которую можно поворачивать вокруг вертикальной оси. Грубо поворот осуществляется рукой после освобождения зажимного винта 6. При закрепленном винте 6 алидаду можно точно повернуть на небольшой угол вращением микрометрического винта 7.

Отсчёт угла поворота производится с помощью отсчётного микроскопа.

2 Практическая часть

2.1 Измерение угловых координат минимумов интенсивности при дифракции

Параметры решёток							
Nº	Количество щелей	b , мм	<i>d</i> , мм				
1	1	0,52	-				
2	2	0,52	1,5				
3	15	1,00	2,0				

2.1.1 На 1 щели.

№ минимума	Угол <i>θ</i> , - ^	Δ,'"		Отсчёт от центра, практический	Отсчёт от центра, теоретический	$\Delta \theta$, _"
3	272°25′57″	4'18"		0° 12′ 30″	0° 12′ 54″	24"
2	272°30′15″	410	3′56″	0° 8′ 12″	0° 8′ 36″	24"
1	272°34′11″	4'16" 4'24"		0° 4′ 16″	0° 4′ 18″	2"
0	272°38′27″			0	0	0
-1	272°42′51″	4'04"		-0° 4′ 24″	-0° 4′ 18″	6"
-2	272°46′55″	4 04	4'03"	-0° 8′ 28″	-0° 8′ 36″	8"
-3	272°50′58″		4 03	-0° 12′ 31″	-0° 12′ 54″	23"

Рис. 6: Теоретический график распределения интенсивности для 1 щели.

2.1.2 На 2 щелях

№ минимума	Угол <i>θ</i> , _ ^	Δ,'"		Отсчёт от центра, практический	Отсчёт от центра, теоретический	Δθ, _"
6	272°31′32″	1'30"		0° 6′ 47″	0° 6′ 42″	5"
5	272°33′02″	1 30	0'53"	0° 5′ 17″	0° 5′ 13″	4"
4	272°33′55″	0/49//		0° 4′ 24″	0° 4′ 18″	6"
3	272°34′37″	0'42"	1′37″	0° 3′ 42″	0° 3′ 43″	1"
2	272°36′14″	1/19//		0° 2′ 05″	0° 2′ 14″	9"
1	272°37′27″	1′13″	0'52"	0° 0′ 52″	0° 0′ 45″	7"
0	272°38′19″	0'43"	0.52	0	0	0
-1	272°39′02″	0 45	1'35"	-0° 0′ 43″	-0° 0′ 45″	2"
-2	-2 272°40′37″ 1′25″			$-0^{\circ} 2' 18''$	$-0^{\circ} 2' 14''$	4"
-3	272°42′02″	1 25		-0° 3′ 43″	-0° 3′ 43″	0"
-4	272°42′52″	0'43"	0'50"	-0° 4′ 33″	-0° 4′ 18″	15"
-5	272°43′35″	0 40	1'31"	-0° 5′ 16″	-0° 5′ 13″	3"
-6	272°45′06″		1 91	-0° 6′ 47″	$-0^{\circ} 6' 42''$	5"

Рис. 7: Теоретический график распределения интенсивности для 2 щелей.

2.1.3 На 15 щелях

				Отсчёт от	Отсчёт от	
№ максимума	У гол θ ,	$ $ $^{\prime}$	o , ,,	центра,	центра,	$\Delta\theta$, "
Ji- Wakchwywa	· / //	\(\(\times \), \(\)		практический	теоретический	Δv , –
				o / //	o / //	
1	272°36′59″	1'15"		0° 1′ 15″	0° 1′ 07″	8"
0	272°38′08″	1 10	1'07"	0	0	0
-1	272°39′15″		107	-0° 1′ 07″	-0° 1′ 07″	0"

Рис. 8: Теоретический график распределения интенсивности для 15 щелей.

2.2 Размытие дифракционной картины

Сначали закрывали полностью щель и постепенно её открывали. В таблице приведены значения когда заканчивается темнота, начинается чёткая и размытая картинка.

Темнота , $\cdot 10^{-2}$ мм	Чёткая картина, $\cdot 10^{-2}$ мм	Размытие , ·10 ⁻² мм
7	11	17

$$\Rightarrow l =$$
Размытие — Темнота $= 10 \cdot 10^{-2}$ мм

Погрешность микрометра: $\Delta x = 10^{-2}$ мм

$$\Rightarrow \Delta l = 2\Delta x = 2 \cdot 10^{-2} \text{ mm}, \Rightarrow l \approx (10 \pm 2) \cdot 10^{-2} \text{ mm}$$

Сравним с теоретической формулой. Зная фокусное расстояние линзы F, можно найти соответсвующую ширину щели:

$$l = \frac{\lambda F}{d} \approx 11 \cdot 10^{-2}$$
 мм, где

λ , mm	<i>F</i> , мм	<i>d</i> , мм
$6.5 \cdot 10^{-4}$, MM	250	1,5

Можно сделать вывод, что практически полученное значение сходится с теоретическим.

2.3 Изменение дифракционной картины при изменении размеров щели

С изменением ширины щели решётки - уменьшаем b - картинка расширяется. Это просто объяснить по формуле (2). Минимумы, определяемые щелевым множителем можно найти по формуле:

$$\frac{2\pi b sin\theta_m}{\lambda} = 2\pi m, \ m = \pm 1, \pm 2, \dots$$

$$\Rightarrow sin\theta_m = \frac{\lambda m}{b}$$

пусть m=1 (первый минимум): $sin\theta_1 = \frac{\lambda}{b}$. То есть при уменьшении b сдвигаются и минимумы \Rightarrow картинка расширяется.

2.4 Изменение дифракционной картины при изменении периода решётки

При уменьшении d дифракционная картинка так же расширяется. Это можно объяснить аналогично предыдущему пункту, только на примере решёточного множителя, найдём положения минимумов:

$$\frac{\pi N d sin \theta_m}{\lambda} = \pi m, \ m = \pm 1, \pm 2, \dots$$

$$\Rightarrow sin \theta_m = \frac{\lambda m}{N d}$$

Таким образом, при уменьшении d расстояние между минимумами увеличивается -> картинка расширится.

2.5 Влияние угла падения на решётку

Экспериментально - при увеличении угла картинка расширяется. Рассмотрим картинку для объяснения:

Красным - начальное положение решётки, чёрным - после поворота на угол α . Если рассматривать распространение, например, волн 1 и 2 до щели. Разность хода $\Delta = r_1 - r_2$, то есть 1 луч опережает второй. Но после щели это разность хода "компенсируется теперь $r_1 < r_2$ на величину Δ . То есть в итоге суммарная разность фаз $\Delta \phi_{\Sigma}$ останется постоянной. Но ширина щели теперь спроецируется на угол α :

$$b \ \Rightarrow \ bcos(\alpha) < b$$

То есть в итоге уменьшается проекция щели на экран, а следовательно сдвинутся и минимумы интенсивности $(sin\theta_m=\frac{\lambda m}{b})$ -> расшириться картинка.

2.6 Изменение дифракционной картины при изменении длины световой волны

В эксперименте меняли красный светофильтр на зелёный ($\lambda_{\rm kp} > \lambda_{\rm 3en}$), ширина максимумов уменьшалась. Это объясняется аналогично с пунктами 2.3 и 2.4. Для минимумов:

$$sin\theta_m = \frac{\lambda m}{h}$$

То есть при уменьшении λ уменьшается ширина между минимумами, то есть картинка сжимается.

2.7 Распределение цветов при дифракции

Распределение цветов при дифракции в белом свете: фиолетовый - синий - зелёный - оранжевый - красный.

$$\lambda_{\rm dp} < \lambda_{\rm c} < \lambda_{\rm 3} < \lambda_{\rm o} < \lambda_{\rm kp}$$

На примере одной щели, минимумы интенсивности можно найти по формуле:

$$\frac{\pi b sin\theta_m}{\lambda} = 2\pi m, \ m = \pm 1, \pm 2, \dots$$

$$\Rightarrow sin\theta_m = \frac{\lambda m}{h}$$

Между двумя минимумами есть максимум интенсивности, и для каждой длины волны он свой. При уменьшении λ минимумы сдвигаются к центру, следовательно, сдвигаются и максимумы, поэтому и распределение цветов по длинам волн будет в соответствующем порядке.

2.8 Изменение дифракционной картины при изменении длины щели коллиматора

При уменьшении длины коллиматора, по горизонтали картинка не изменяется, а по вертикали - "урезается".

3 Вывод

Выполнив лабораторную работу, мы:

- 1) Определили распределение интенсивностей от угла дифракции для решёток с 1 щелью, 2 и 15 щелями. В эксперименте с <u>1 щелью</u>, максимальное расхождение с теорией составило $\Delta\theta = 24''$, с <u>2 щелями</u> $\Delta\theta = 15''$, с <u>15 щелями</u> $\Delta\theta = 8''$. Если считать, что средняя ошибка глаза 20'', можно сказать, что экспериментальные данные хорошо сходятся с теоретическими;
- **2)** Определили размеры источника света, при котором наступает размытие дифракционной картины:

$$l \approx (10 \pm 2) \cdot 10^{-2} \text{ mm}$$

Что сходится с теоретической формулой: $\frac{\lambda F}{d}\approx 11\cdot 10^{-2}$ мм;

- 3) С уменьшением ширины щели дифракционная картинка расширялась. Это объясняется формулой: $sin\theta_m = \frac{\lambda m}{b}$, то есть с уменьшением b увеличивается расстояние между минимума;
- **4)** С уменьшением периода решётки d картина так же расширялась, что объясняется аналогично, но с помощью решёточного множителя:

$$sin\theta_m = \frac{\lambda m}{Nd}$$

При уменьшении d увеличивается расстояние между побочными минимумами;

- **5)** При изменении угла падения на решётку картинка расширялась. Суммарная разность фаз волн не изменяется, но размер щели теперь проецируется на плоскость экрана: $bcos(\alpha) < b$, из-за чего увеличивается расстояние между минимумами;
- 6) При уменьшении длины волны дифракционная картинка сжималась, что объясняется формулой $sin\theta_m = \frac{\lambda m}{b}$. Так как λ в числители, при уменьшении длины волны уменьшается и расстояние между минимумами;
- 7) Наблюдали распределение цветов при дифракции в белом свете: фиолетовый синий зелёный оранжевый красный. Цвета расположены по уменьшению длины волны, которая входит в числитель для положения минимумов (а между ними и максимумов) интенсивности. Именно поэтому мы и видим их в таком порядке;
- **8)** При уменьшении длины коллиматора, по горизонтали картинка не изменяется, а по вертикали "обрезается".