

資訊安全風險管理 介紹

查士朝 Ph.D.

台灣科技大學資管系助理教授

- 1 資訊安全風險管理的基本觀念
- 2 常見的資安事件
- 3 常見的風險識別方式
- 4 風險的評估方式
- 5 風險評鑑方法設計上常見的問題
- 6 資訊安全風險管理比較框架
- 7 學習地圖

1

資訊安全風險的基本觀念

■ P 6-34 表 6.4 SSL vs. SET

	SSL	SET
•••••		
實用性	高	目前尚低,預期將成長

安全與便利的拔河

由風險為出發點的思維

- 為何要以風險為出發點:
 - 一資安的吸引與排除效果,如果太過可能反而會造成反效果
 - 經濟效益考量
 - 資安不太會對整個生產過程產生 加值,但通常需要投入許多額外 的資源。
 - 如果不管控,等到發生事情又可 能會造成巨大損失
- 透過從風險的角度來思考,可決定到 底該要採用什麼樣的資安措施,並把 錢花在刀口上。

風險管理在做些什麼?

- 風險管理程序是要透過一套有系統的方法,來達到以下的目的:
 - 一管控或降低資訊安全意外事件所可能造成的損失:風險管理要能夠辨 識出可能發生的意外事件或風險,並採取適當回應,以使得可能的損 失被控管在一個可接受的範圍內。
 - 是升資訊安全措施的成本效益:風險管理的方法要能夠協助企業或組織,在需要控管某項風險時,能夠找到最有成本效益的措施來進行控管。
 - 滿足法規或是利害關係人(如客戶與消費者團體)的相關要求。

風險管理的起源: 孫子兵法謀攻篇

故曰:知己知彼,百戰不貽;

不知彼而知己,一勝一負;

不知彼不知己,每戰必貽。

了解可能遭遇的威脅

風險管理在資安上的概念

■ 風險管理了解到威脅 (T) 利用到弱點 (V) 所可能造成意外事件的損失 (R) 。而採取適當的控制措施 (S),使得殘存風險 (RR),是可被企業接受的。

風險管理的主要程序

成熟度

風險管理與 ISO 27001

2

常見的資安事件

常見的資安意外事件來源

類別	威脅		
災難事件	火災 Fire		
Catastrophic	水災Flood		
incident	地震Earthquake		
	暴風 Severe storm		
	恐怖攻擊 Terrorist attack		
	暴動 Civil unrest/riots		
	山崩 Landslide		
	雪崩 Avalanche		
	產業面影響 Industrial accident		
機械故障	缺乏電源 Power outage		
Mechanical	機械固障 Mechanical failure		
failure	應體失效 Hardware failure		
	網路中斷 Network outage		
	環境控制失效 Environmental		
	controls failure		
	建築物意外Construction accident		

類別	威脅
非故意	未被通知的員工 Uninformed
Non-	employee
malicious person	未被通知的使用者 Uninformed user
	疏乎的員工 Negligent employee
人為惡意攻	駭客 Hacker, cracker
擊 Malicious person	電腦犯罪 Computer criminal
P	產業間諜 Industrial espionage
	社交工程 Social engineering
	不滿的現任或離職員工
	Disgruntled current or former employee
	恐怖份子 Terrorist

Source: NIST 800-30

CSI 調查中的資訊安全威脅

事件	金額	比率
財務舞弊 (Financial Fraud)	\$21,124,750	12%
病毒 (Virus)	\$8,391,800	52%
資訊系統被外部滲透 (System penetration by outsider)	\$6,875,000	13%
資料被竊取(除了行動設備失竊外) (Theft of confidential data)	\$5,685,000	17%
筆電或行動裝置遭竊 (Laptop or mobile hardware theft)	\$3,881,150	50%
內部員工對網路的濫用 (Insider abuse of net access)	\$2,889,700	59%
服務阻斷攻擊 (Denial of Service)	\$2,888,600	25%
網路釣魚 (Phishing)	\$2,752,000	26%
殭屍病毒 (Bot)	\$2,869,600	21%

CVE Top 10 2001~2006

- XSS
- Buffer overrun
- SQL Injection
- Php-include: PHP remote file inclusion
- Dot: Directory traversal
- Infoleak: Information leak by a product
- DoS-malform: DoS caused by malformed input
- Link: Memory leak (doesn't free memory when it should)
- Format String: Format string vulnerability; user can inject format specifies during string processing.
- Crypt: Cryptographic error (poor design or implementation), including plaintext storage/transmission of sensitive information.

OWASP (Open Web Application Security Project) Top 10 2007

- No 1. Cross-Site Scripting (XSS)
- No 2. Injection Flaws
- No 3. Malicious File Execution
- No 4. Insecure Direct Object Reference
- No 5. Cross Site Request Forgery (CSRF)
- No 6. Information Leakage and Improper Error Handling
- No 7. Broken Authentication and Session Management
- No 8. Insecure Cryptographic Storage
- No 9. Insecure Communications
- No10. Failure to Restrict URL Access

3

常見的風險識別方式

風險識別方式

- Misuse Case
- FTA 法
- 資產導向

資產導向方法:流程訪談與資訊資產的辨識

資產導向方法:風險的評估

計算風險值

4

風險的評估方式

標竿法與非正式法

- 基準法:不進行詳細的風險分析,而以市面上的 Best Practice 或其它標準為 基準。而以和 Best Practice 的差異為風險。
 - Baseline vs. Best Practice
- 非正式法:群體共同討論,決定可能遭遇的資安事件,發生的機率,以及可能造成的衝擊等,並共同決定風險

評鍵項目	目前狀況	說明
資安政策	•	
資安組織	•	
實體安全		未實行桌面 及螢幕淨空

正式法的資安風險評量(定量法)

- 定量風險評估方法:採用數量化的分析方式,去計算可能的損失。

Concept	Derivation Formula
曝險因子 Exposure Factor (EF)	威脅發生造成資產受損的比率
單一損失期望值 Single Loss Expectancy (SLE)	資產價值 x 曝險因子 (EF).
平均年發生率 Annualized Rate of Occurrence (ARO)	每年發生的頻率
年期望損失 Annualized Loss Expectancy (ALE)	單一損失期望值 (SLE) x平均年發生率 (ARO)

資安事件	預期風險
天然災害	
人為疏失	*

風險分配

正式法的資安風險評量(定性法)

- 主要是針對可能發生的資安事件, 進行細部的分析。又可以分為定性 法和定量法:
 - 定性風險評估方法:利用質化的 類別,來對風險進行評估。

威,	威脅				中			小		
弱黑		大	中	小	大	中	今	大	中	今
重	高	高	高	高	高	高	中	高	中	低
要性	中	高	高	中	高	中	中	中	中	低
	低	高	中	低	中	中	中	中	中	低

資訊資產	價值	風險
A	高	高
В	中	
С	低	

	資安事件	威脅發 生率	弱點易被 利用率	資產重要性	風險
	火災	高	中	高	高
,					

比較

	定性法	定量法
優點	●計算較簡單	●算出來之結果比較容易做跨 領域比較
缺點	●計算出來的結果可能沒有 數學上的意義	●計算較複雜

混合法

- 混合法:同時採用上述方法,例如:
 - 首先用非正式法決定哪些部份特別重要
 - 重要的部份採用正式的方法進行風險 評估
 - 而其它的部份採用基準法

5

風險評鑑方法設計上常見的問題

- ■採用資產導向時,如何去處理大量的資產與其相關的風險?
- 一個資安事件發生,萬一有可能會影響到多個資產?
- 期望風險與極端值
- ■採用FTA等方法時,如何計算風險?

一種可能的作法

- 將資產分類,依類別產生風險清單
 - 可節省每個資產都要去判斷到底有哪些風險的問題
- 將會有相似風險的資產放在一起評
- 只看資產價值減損 (AV*EF),而避免一個一個風險去判斷
 - 思考:資產價值可以如何判斷?

思考:資訊安全可以保險嗎?

- 是否有可能將資安事件保險,讓保險公司來負擔損失
 - 國內目前針對個人資料保護法修正案,有保險公司在思考推出這樣的產品
- ■保險通常是一種風險分攤的概念,有沒有可能有一種資安事件會造成很多公司同時出現問題?
- 同樣的,在一家公司內,如果是看期望風險,萬一有某事件發生會同時影響到很多資產?

思考:如何考慮極端值的狀況

5

風險對應

風險的管理

■ 當評估出來風險以後,一般可以採用 以下四種方式加以管理:

發生頻率

6

資訊安全風險管理比較框架

為何要有一個比較框架

- 在 1990 年代初期,就已經有數十種風險管理方法論
- 這些比較標準或框架來說,主要可以分成兩類:
 - 針對各方法或程序本身的特色或功能
 - 提供組織依照本身的條件來做出選擇

功能比較指標

- 一致性 (Consistency): 不同的人進行風險評估的結果不致於有一個顯著的 差異。
- 易用性 (Useability):因為要得到風險評估的結果,所必需要花費的成本(如學習、作業,與準備輸出入資料等)是值得的。而這也可表現在可被理解與容易使用的程度。
- 可調整性 (Adaptability):方法或是工具可以被應用在許多不同的系統環境中。
- 可行性 (Feasibility): 可以採用最具經濟效益的方法來取得所需的資料或 執行。
- 完整性 (Completeness): 是否有考慮到足夠周詳的元素或方面
- 有效性 (Validity):程序的結果能夠反應真實的情況
- 可信賴性 (Creditability): 結果是可信並且是有價值的。

Garrabrants, W. M., Ellis, A. W., Hoffman, L. J., & Kamel, M. (1990). CERTS: A Comparative Evaluation Method for Risk Management Methodologies and Tools. In *Proceedings of the 6th Annual Computer Security Applications Conference* (pp.251-257). IEEE Computer Society Press.

7 學習地圖

資訊安全與風險管理

■ 學習地圖

