Teoria da computação Q2.2018 - Lista 3

João Carlos Pandolfi Santana

Agosto 2018

1 Problema 1

O que significa dizer que $NP \neq co-NP$?

Significa que nem todos os problemas presentes em NP satisfazem a regra para serem incluídos no co-NP. Dado que co-NP é o complemento de NP.

2 Problema 2

$Voc \hat{e} \ acha \ que \ NP \neq coNP? \ Argumente.$

Sim, mas não para todos os casos. Existem casos que apresentam certificados positivos e certificados negativos ao mesmo tempo, assim, podendo estar dentro dos dois conjuntos ao mesmo tempo. Desta forma, alguns problemas apresentam sim certificados negativos o que os torna da co-NP e não possuem certificados positivos não podendo ser classificado como NP. Portanto, acredito que $NP \neq coNP$ mas existem problemas que se enquadram nos dois conjuntos.

3 Problema 3

Prove: Se $NP \neq coNP$ então $P \neq NP$.

Prova pela contrapositiva: $P = NP \Rightarrow NP = coNP$ Assumimos que P=NP, então:

- 1. Para todo $L \in NP$, temos $L \in P$, e como P é fechado em seu complemento, $\sim L \in P$, portanto $L \in coNP$.
- 2. Para todo $L \in coNP$, temos $\sim L \in P$, e como P é fechado em seu complemento, $L \in P$, portanto $L \in coNP$.

4 Problema 4

Prove: Se $NP \neq coNP$ então $SAT \in coNP$

5 Problema 5

Dados os números x, a, $b \in N$ (conjunto dos números naturais) codificados em binário, decida se existe um fator primo $p \in [a, b]$ tal que p divide x. Prove que este problema pertence a classe $NP \cap coNP$.

Não consegui provar, mas achei a solução: $https://courses.cs.ut.ee/all/MTAT.07.004/2016_fall/uploads/solution/solution-03.pdf$