Formulário

Sejam $f, g: I \longrightarrow \mathbb{R}$ funções deriváveis no intervalo real I.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$(f(x) \times g(x))' = f'(x)g(x) + g'(x)f(x)$$
$$\left[\frac{f(x)}{f(x)}\right]' = \frac{f'(x)}{f(x)}$$

$$(f(x) \times g(x))' = f'(x)g(x) + g'(x)f(x)$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}$$

$$(f[g(x)])' = g'(x)f'[g(x)] \qquad [f^{-1}(y)]' = \frac{1}{f'[f^{-1}(y)]}$$

Sejam $f: I \longrightarrow \mathbb{R}$ uma função derivável no intervalo real I e \mathcal{C} uma constante real arbitrária e $\{k, n\} \in \mathbb{R}$.

1.
$$Pk = kx + C$$
 2. $Pf'(x)f^n(x) = \frac{f^{n+1}(x)}{n+1} + C \quad (n \neq -1)$

3.
$$P(x) = \ln |f(x)| + C$$
 4. $P(x) = \ln |f(x)| + C$

5.
$$P \ a^{f(x)} f'(x) = \frac{a^{f(x)}}{\ln x} + C \ (a \in \mathbb{R}^+ \setminus 1)$$
 6. $P \ f'(x) \cos(f(x)) = \sin(f(x)) + C$

7.
$$P(f'(x) \operatorname{sen}(f(x))) = -\cos(f(x)) + C$$
 8. $P(f'(x) \operatorname{sec}^2(f(x))) = \operatorname{tg}(f(x)) + C$

9.
$$P(f'(x) \csc^2(f(x)) = -\cot(f(x)) + C$$
 10. $P(f'(x) \sec(f(x))) = \ln|\sec(f(x))| + C$

11.
$$P(f'(x) \operatorname{cosec}(f(x))) = \ln|\operatorname{cosec}(f(x)) - \operatorname{cotg}(f(x))| + C$$
 12. $P(f'(x)) = \operatorname{arcsen}(f(x)) + C$

13.
$$P \frac{-f'(x)}{\sqrt{1-f^2(x)}} = \arccos(f(x)) + C$$
 14. $P \frac{f'(x)}{1+f^2(x)} = \arctan(f(x)) + C$

15.
$$P \frac{-f'(x)}{1 + f^2(x)} = \operatorname{arccotg}(f(x)) + C$$
 16. $P \frac{f'(x)}{|f(x)| \sqrt{f^2(x) - 1}} = \operatorname{arcsec}(f(x)) + C$

17.
$$P(f'(x)) = sh(f(x)) + C$$
 18. $P(f'(x)) sh(f(x)) = ch(f(x)) + C$

19.
$$P = \frac{f'(x)}{\cosh^2(f(x))} = \sinh(f(x)) + C$$
 20. $P = \frac{f'(x)}{\sinh^2(f(x))} = -\cosh(f(x)) + C$

21.
$$P \frac{f'(x)}{\sqrt{f^2(x)+1}} = \operatorname{argsh}(f(x)) + C$$
 22. $P \frac{f'(x)}{\sqrt{f^2(x)-1}} = \operatorname{argch}(f(x)) + C$

23.
$$P \frac{f'(x)}{1 - f^2(x)} = \operatorname{argth}(f(x)) + C$$
 24. $P \frac{f'(x)}{1 - f^2(x)} = \operatorname{argcoth}(f(x)) + C$

$$\cos^2\alpha + \sin^2\alpha = 1 \qquad \qquad \cos\left(\alpha \pm \beta\right) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \qquad \qquad \cos^2\alpha = \frac{1 + \cos2\alpha}{2}$$

$$\sec \alpha = \frac{1}{\cos \alpha} \qquad \qquad \qquad \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha \qquad \qquad \sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

$$\csc \alpha = \frac{1}{\sec \alpha}$$
 $\sec^2 \alpha = 1 + tg^2 \alpha$ $\csc^2 \alpha = 1 + \cot^2 \alpha$

$$ch u = \frac{e^u + e^{-u}}{2}$$
 $sh u = \frac{e^u - e^{-u}}{2}$ $ch^2 u - sh^2 u = 1$

$$\operatorname{th} u = \frac{\operatorname{sh} u}{\operatorname{ch} u} \qquad \operatorname{ch} (u \pm v) = \operatorname{ch} u \operatorname{ch} v \pm \operatorname{sh} u \operatorname{sh} v \qquad \operatorname{ch}^2 u = \frac{\operatorname{ch}(2u) + 1}{2}$$

$$\coth u = \frac{1}{\operatorname{th} u} \qquad \qquad \operatorname{sh}(u \pm v) = \operatorname{sh} u \operatorname{ch} v \pm \operatorname{sh} v \operatorname{ch} u \qquad \qquad \operatorname{sh}^2 u = \frac{\operatorname{ch}(2u) - 1}{2}$$

Primitivação por Substituição

Na lista de substituições que se segue, a, b e c são constantes reais arbitrárias. A notação $R(\cdots)$ indica uma função racional dos monómios que se encontram dentro dos parêntesis. Na coluna da esquerda, figuram diferentes tipos de funções primitiváveis Na coluna da direita sugere-se, em cada caso, uma substituição adequada à função indicada na coluna da esquerda.

Tipo de Função

1.
$$\frac{1}{(x^2+a^2)^k}$$
, $k \in \mathbb{N}$, $k > 1$

2.
$$R(a^{rx}, a^{sx}, ...)$$

3.
$$R(\log_a x)$$

4.
$$R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p/q}, \left(\frac{ax+b}{cx+d}\right)^{r/s}, \ldots\right)$$

5.
$$R\left(x,(ax+b)^{p/q},(ax+b)^{r/s},\ldots\right)$$

6.
$$R\left(x, x^{p/q}, x^{r/s}, \ldots\right)$$

7.
$$R\left(x, \sqrt{a^2 - b^2 x^2}\right)$$

8.
$$R\left(x, \sqrt{a^2 + b^2 x^2}\right)$$

9.
$$R\left(x, \sqrt{b^2x^2 - a^2}\right)$$

10.
$$R(\operatorname{sen} x, \cos x)$$
 com

(a)
$$R$$
 impar em sen x isto é
$$R(-\operatorname{sen} x, \cos x) = -R(\operatorname{sen} x, \cos x)$$

(b) R impar em
$$\cos x$$
 isto é
 $R (\sec x, -\cos x) = -R (\sec x, \cos x)$

(c)
$$R$$
 par em (sen x , cos x) isto é
$$R(-\operatorname{sen} x, -\operatorname{cos} x) = R(\operatorname{sen} x, \cos x)$$

$$(d)$$
 nos restantes casos (e até nos anteriores)

11.
$$R(\operatorname{sh} x, \operatorname{ch} x)$$
 com

(a)
$$R$$
 ímpar em sh x

(b)
$$R$$
 impar em ch x

(c)
$$R$$
 par em (sh x , ch x)

$$(d)$$
 nos restantes casos (e até nos anteriores)

Substituição

$$x = a \operatorname{tg} t$$

$$a^{mx} = t$$
 com $m = \text{m.d.c.}(r, s, ...)$

$$t = \log_a x$$

$$\frac{ax+b}{cx+d}=t^m \text{ com } m=\text{m.m.c.}(q,s,\ldots)$$

$$(ax + b) = t^m \text{ com } m = \text{m.m.c.}(q, s, \ldots)$$

$$x = t^m \text{ com } m = \text{m.m.c.}(q, s, \ldots)$$

$$x = \frac{a}{b} \operatorname{sen} t$$
 ou $x = \frac{a}{b} \cos t$ ou $x = \frac{a}{b} \operatorname{th} t$

$$x = \frac{a}{b} \operatorname{tg} t$$
 ou $x = \frac{a}{b} \operatorname{sh} t$

$$x = \frac{a}{b} \sec t$$
 ou $x = \frac{a}{b} \cosh t$

$$\cos x = t$$

$$sen x = t$$

$$\operatorname{tg} x = t$$
, sendo então (supondo $x \in]0, \pi/2[$)
 $\operatorname{sen} x = \frac{t}{\sqrt{1+t^2}}$, $\cos x = \frac{1}{\sqrt{1+t^2}}$

$$\sqrt{1+t^2} \qquad \sqrt{1+t^2}$$

$$tg \frac{x}{2} = t \text{, sendo } sen x = \frac{2t}{1+t^2} \text{, } cos x = \frac{1-t^2}{1+t^2}$$

$$ch x = t$$

$$sh x = t$$

$$\operatorname{th} x = t$$
 , sendo $\operatorname{sh} x = \frac{t}{\sqrt{1-t^2}}$, $\operatorname{ch} x = \frac{1}{\sqrt{1-t^2}}$

th
$$\frac{x}{2} = t$$
, sendo sh $x = \frac{2t}{1 - t^2}$, ch $x = \frac{1 + t^2}{1 - t^2}$