	《固体物理基础》(2022年春)期末考试试题(A卷)
	班级 姓名 学号
注意	: 1、填空题的答案直接写在试卷上。 2、计算题的答案写在答题纸上,注意在答案前标明题目序号。
物理	常数: $k_B = 1.38 \times 10^{-23} \text{ J/K}$
	$m_e = 9.109 \times 10^{-31}$ kg (电子质量) $N_A = 6.02 \times 10^{23}/\text{mol}$ (阿伏伽德罗常数)
1.	填空题(每空1分,共37分)
(1)	Si 的晶体结构为结构,其中的 Si 原子之间以(填原子间相互作用的类型
	结合,这种结构是由两套(填布拉菲格子的类型)嵌套而成的,其中一套
	格子沿着另一套格子的晶胞体对角线平移(填最小的正数数值)距离得到的
	它的倒格子为(填布拉菲格子的类型)。
(2)	Si 是(填"直接"或"间接")带隙半导体材料, GaAs 是(填"直接"
	或"间接")带隙半导体。其中(填"Si"或"GaAs")更适合做发光器件。
(3)	晶格结构的观测常用 X 射线衍射的方法,若入射波长为 λ ,晶面间距为 d ,衍射角为 2θ
	衍射的级数为 n,则布拉格定律可以表述为
	晶体,衍射角越大说明衍射级数越(填"高"或"低")。已知单个"光子"能量为 251-27 对应的 7 时候在"喜欢"中的波长为
	量为 35 keV 对应的 X 射线在"真空"中的波长为。若用波长为 λ 的光对简单
	立方晶体进行衍射,前两个一级衍射峰的半衍射角 θ_1 和 θ_2 分别
	为,。(简单立方晶体的晶胞边长为 <i>a</i>)
(4)	可以利用霍尔效应测量半导体的掺杂类型、载流子浓度和迁移率。霍尔电压为正时,表
	明半导体是(填 "p"或 "n")型半导体。若已知垂直于导体的磁场强度为 B, 通
	过导体的电流密度为 j,由于电荷积累产生的横向稳定电场(霍尔电场)大小为 E,霍尔
	系数 R 的表达式为。
(5)	索末菲模型中,假设电子与其他电子之间(填"有"或"无")相互作用,并
	假设电子的能量统计分布为
	为 n,则按照索末菲模型计算其费米波矢为,若知道电子质量为 m,能量用
(6)	E 表示,则此晶体中的能态密度为。 考 虑 近 自 由 电 子 近 似 模 型 , 设 一 维 晶 格 的 晶 格 常 数 为 <i>a</i> , 周 期 性 势 场
(6)	
	$V(x) = V_0 \left(2\cos\left(\frac{2\pi}{a}x\right) + \cos\left(\frac{4\pi}{a}x\right) \right)$,其中 $V_0 > 0$ 。则其能带的第一个禁带宽度
	为,第二个禁带宽度为。
(7)	在 T=0 K 的时候, 半导体的最外层能带(填"有"或者"没有")被电子填满。
	金属的最外层能带(填"有"或者"没有")被电子填满。固体的电导率主要

取决于载流子	浓度和迁移率,	迁移率由载流子的		П	共同	司决定。	随着
温度的升高,	本征半导体的导	异电性将	(填"升高'	'或	"降低"),	金属的	导电
性将	(填"升高"	或"降低")。					

- (9) PN 结两侧的空间电荷区宽度与掺杂浓度成______(正比/反比),外加正向偏压下的空间电荷区将变______(宽/窄)。相比同质结,异质结的注入比之所以高,主要得益于其与________成正比。
- (10) 已知半导体材料 GaAs 的电子亲合能为 4.07eV,禁带宽度为 1.424eV。请问下列金属中 (功函数: Pt 为 5.65eV, Cr 为 4.5eV, Mg 为 3.66eV, Li 为 2.9eV), n+-GaAs 与______接 触后形成肖特基接触,p+-GaAs 与______接触后形成欧姆接触。
- (11) 原子的磁性主要来自于电子磁矩的贡献,其磁矩包含自旋磁矩、____、__、____、
- **2.**(15分)下图展示的是一种晶体 $A_x M_v X_z$ 的立方晶胞。

- (1) 计算 A 原子、M 原子与 X 原子的比例 x: y: z。
- (2) 这种晶格振动谱中存在几个声学支? 几个光学支?
- (3) 常温 (T = 300 K)下,根据杜隆-珀替定律近似计算 1 $\operatorname{mol} \mathbf{A_x} \mathbf{M_y} \mathbf{X_z}$ 原胞的比热容 (单位: $\mathbf{J/K}$)。
- **3. (17 分)**室温下(300 K),有一片 n 型掺杂的硅晶圆,施主杂质浓度 $N_D = 0.5 \times 10^{17} \, \mathrm{cm}^{-3}$,在其表面一层继续添加部分受主杂质,浓度 $N_A = 1.5 \times 10^{17} \, \mathrm{cm}^{-3}$, 形成硅 pn 结。 假设杂质原子全部被热激发, 本征载流子浓度 $n_i = 1.5 \times 10^{10} \, \mathrm{cm}^{-3}$,带隙 $E_g = 1.12 \mathrm{eV}$,电子亲和能

 $E_{Fi} = 4.05 \text{eV}$ 。我们近似认为本征硅中费米能级 E_{Fi} 位于带隙中央。T = 300 K 时, Si 材料中电子、空穴的迁移率与杂质浓度的关系如下表所示:

杂质浓度 cm ⁻³	0. 5×10 ¹⁷	1×10 ¹⁷	1. 5×10 ¹⁷	2×10 ¹⁷
电子迁移率 cm²/(V • s)	1400	900	780	700
空穴迁移率 cm²/(V • s)	400	310	290	280

- (1) 计算 n-Si 和 p-Si 两个区域的电导率(单位: S/cm)。
- (2) 画出平衡状态时 pn 结附近的能带图,并在图中计算和标记出在 p-Si 以及 n-Si 区域费米能级 E_F 相对于导带底 E_C 和价带顶 E_V 的位置(单位: eV)。
- (3) 计算内建电势 qV_{bi} (单位: eV)。
- **4. (16 分)** 已知室温 300K 时,铝镓砷材料($Al_xGa_{1-x}As$)的禁带宽度 E_g 和电子亲合能 χ 如下公式所示,本征载流子浓度如下表所示,其中 x 代表 Al 的组分,取值范围为 0~1。

$$E_g = \begin{cases} 1.424 + 1.247 x(eV), & x < 0.45 \\ 1.9 + 0.125 x + 0.143 x^2(eV), & x > 0.45 \end{cases}$$

$$\chi = \begin{cases} 4.07 - 1.1x(eV), & x < 0.45 \\ 3.64 - 0.14x(eV), & x > 0.45 \end{cases}$$

X	0	0.1	0.3	0.5	0.8
n_i (cm ⁻³)	2.1×10^6	2.1×10^{5}	2.1×10^{3}	2.5×10^{2}	4.3×10 ¹

双异质结在半导体光电器件中有着广泛的应用,例如激光器、LED 等,它可以获得更高的载流子浓度从而提高发光效率。AlGaAs/GaAs 激光器的工作波长通常在 800nm 左右,以 n-Al $_0$ 3Ga $_0$ 7As / p-GaAs / p-Al $_0$ 3Ga $_0$ 7As 为例,各层掺杂浓度依次为 10^{17} cm 3 、 10^{16} cm 3 、 10^{17} cm 3 ,假设各层厚度足够厚。计算 n-Al $_0$ 3Ga $_0$ 7As 与 p-GaAs 形成的接触电势差 \mathbf{V}_{D} 。定性画出该结构平衡时的能带图(注:标出真空能级、费米能级、导带底、价带顶,以及禁带宽度 \mathbf{E}_{g} 、电子亲合能 χ 、导带带阶 ΔE_{c} 、价带带阶 ΔE_{v} 、接触电势差 \mathbf{V}_{D})。

- **5. (15 分)** 假设存在两种一维原子链 A-A···以及 A-B-A-B···,二者的原子间距均为a,A、B 原子质量分别为 m 和 M(m<M)。A-A、A-B 间的弹性系数均为 K 。
- (1) 在下图中分别近似画出两种结构的简约布里渊区内的纵波振动谱(ωk 关系曲线),注意标注 k = 0 及布里渊边界等关键点上的数值。

(2) 计算 α 趋于0时,两种结构对应的声学波群速度和相速度。