Supplementary material

Adria Caballe Mestres

January 20, 2021

1 Motivations for weighted summaries

1.1 Results from extreme value theory

Important pathways in database collections such as Broad Hallmarks or KEGG might contain highly correlated genes, even when the effect of the known covariates is adjusted *a priori* [Figure 2a shows the correlation structure of the Interferon alpha gene set using the metabric data].

When a specific gene that is highly correlated to the rest of the gene set finds an extreme value, even under H_0 , it is likely that many other genes in the pathway follow it with large values as well. This has been extensively studied in extreme value theory in the context of time series for asymptotic models [1], sub-asymptotic models [2] or for non-stationary processes [3]. In [4], extreme value rates for non-stationary processes that are not ordered are found to be similar to the results by [3]. We complement these theoretical results that can be found in the literature with empirical results from a case study using real data [Figure 2b].

1.2 Weighted statistics and effective signature size

The weighted approach for the mean and maxmean statistics [see Table 1 in the main text] is proposed as a way to reduce the variance of the rotation scores, thus keeping larger effective signature size [Figure 3a,b]. Besides, when all genes composing the set have effects that are independent to the gene underlying correlation structure, our proposed weighting approach finds a more precise estimate of the gene set activity [Figure 3c].

A toy example to further motivate the weighting approach. Consider a gene set that is composed by 50 genes, forming S_1 , that are basically explaining the same variation (in the extreme with all pair correlations equal to 1)

Figure 1: Intra-gene set correlation levels for all hallmarks measured by the average correlation across genes of the testing set. Interferon alpha, with the highest average correlation, and TNFA signaling via NFKB, with an intermediate correlation, are used to define correlation structures in simulated studies.

Figure 2: [Left] Heatmap with the interferon alpha gene-gene Pearson correlations (from -1 in dark blue to 1 in dark red). Estimated weights are shown above the heatmap. [Right] Number of moderated t-statistics in the interferon alpha gene set larger than 2 (in absolute value) when a given gene in the gene set had a moderated t-statistic larger than 2.

and 50 other genes, forming S_2 , that might have similar functions in the biological process under study but that are perpendicular among each other. If we compute the mean summary statistic of this gene set, we obtain an approximated effective signature size of 4. If we re-consider the pathway so that we take all genes in S_2 and only 1 gene in S_1 , the effective sample size is 51. For not such extreme case of exactly correlated genes but with strong dependency, the same sort of decrease in the effective size can occur.

2 Tables with recovery rates from simulation scenarios

The performance of the described methods under competitive testing is assessed using simulated data. For this purpose, we measure the proportion of times (from a total of 1000 instances) that the test is rejected at a significance level of 0.05 (from Table 1 to Table 5).

3 Benchmarking data results

The **GSEABenchmarkeR** R package is used to investigate the accuracy of the presented **roastgsa** scores in several real case studies. The package provides the relevance ranking of the KEGG pathways based on the disease

Figure 3: Weighted and unweighted mean rotation scores on Hallmarks: [top] variance of the rotation scores; [middle] ratio between estimated effective signature size and original signature size. Greater variances for the unweighted score are observed when the intra-gene set correlations is sufficiently large (> 0.02). This leads to a loss of effective size with respect to the weighting approach; [bottom] Self-contained mean and weighted mean enrichment scores over 2,000 instances. Constant effect of 0.3 for all genes belonging to the interferon alpha set. Weighted scores find more precise estimations than unweighted scores, especially for large n.

Figure 4: Barplot and average ranks resulting from measure M1 using the 42 datasets from the benchmarking package. Rank 1 is the highest rate and rank 8 is the lowest rank. Only competitive scores are used. The weighted and non-weighted maxmean scores achieve the best rates.

under investigation (MalaCards, [5]). We consider two measures to evaluate the performance of the methods based on a weighted average of such relevance scores, one using the ordered list of all gene sets and another using only the first 50 hits. The results are presented in Figure 4 (M1 measure), Figure 5 (M2 measure) and Table 6 (average ranks of M1 and M2).

References

- [1] G. O'Brien. Extreme values for stationary and Markov sequences. *The Annals of Probability*, 281291, 1987.
- [2] E. F. Eastoe and J. A. Tawn. Modelling the distribution of the clus-

Figure 5: Average rank resulting from measures M2 using the 40 datasets from the benchmarking package. Rank 1 is the highest rate and rank 8 is the lowest rank. The maxmean score achieves the best rates in the two measures. Only competitive scores are used.

- ter maxima of exceedances of subasymptotic thresholds. *Biometrika*, 99:4355, 2012.
- [3] D. Aldous. Probability Approximations via the Poisson Clumping Heuristic. New York: Springer-Verlag.
- [4] A. Caballe. (2018) Statistical methods for the testing and estimation of linear dependence structures on paired high-dimensional data: application to genomic data. (Doctoral dissertation), Retrieved from Edinburgh Research Archive. (http://hdl.handle.net/1842/31331).
- [5] N. Rappaport, M. Twik, I. Plaschkes, R. Nudel, T. I. Stein, J. Levitt, M. Gershoni, C. P. Morrey, M. Safran, and D. Lancet. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. *Nucleic Acids Research*, 45:877– 887, 2017.

n =		6	10	20	30
	sc.mean	45	53	50	47
	sc.wmean	54	71	73	63
	sc.maxmean	51	56	64	45
	sc.wmaxmean	78	84	82	66
A1	sc.median	45	48	50	54
	sc.absmean	65	71	67	53
	co.mean	48	49	49	46
	co.wmean	60	66	76	61
	co.maxmean	38	57	52	51
	${\rm co.wmaxmean}$	61	81	80	62
	co.median	45	45	56	47
	co.absmean	42	54	61	59
	meanrank	42	52	52	47
	ksmean	46	45	56	54
	ksmax	32	37	38	41
	sc.mean	57	55	61	65
	sc.wmean	67	81	71	76
	sc.maxmean	59	64	51	64
	sc.wmaxmean	82	91	65	79
A2	sc.median	54	66	56	61
	sc.absmean	56	70	47	50
	co.mean	49	56	46	54
	co.wmean	58	82	66	71
	co.maxmean	53	60	50	57
	${\rm co.wmaxmean}$	68	90	64	74
	co.median	52	67	49	55
	co.absmean	51	69	43	52
	meanrank	53	60	55	56
	ksmean	45	61	51	63
	ksmax	45	48	46	56
	sc.mean	70	61	45	51
	sc.wmean	61	53	37	55
	sc.maxmean	70	51	49	57
	sc.wmaxmean	79	56	50	64
A3	sc.median	67	45	54	55
	sc.absmean	54	45	44	61
	co.mean	62	50	42	51
	co.wmean	65	45	36	55
	co.maxmean	63	45	59	62
	${\rm co.wmaxmean}$	76	50	47	64
	co.median	74	54	55	53
	co.absmean	51	46	44	66
	meanrank	66	48	49	53
	ksmean	54	44	41	54
	ksmax	55	49	37	57

Table 1: Average empirical size for all methods for n=6,10,20,30 iid observations (n/2 per group). The average intra-gene set correlation of A1, A2 and A3 are 0.05, 0.13 and 0 respectively.

n =		6	10	20	30
	mean	178	327	577	779
	wmean	223	401	684	$\bf 872$
	maxmean	177	308	557	747
	wmaxmean	233	422	687	870
A1	median	139	279	496	709
	absmean	113	179	317	530
	meanrank	167	317	571	767
	ksmean	181	324	575	775
	ksmax	77	220	479	716
	mean	86	126	231	334
	wmean	118	189	292	415
	maxmean	94	122	221	320
	wmaxmean	112	185	282	398
A1	median	94	127	200	297
	absmean	75	121	175	259
	meanrank	81	130	236	329
	ksmean	91	132	236	322
	ksmax	66	129	212	303
-	mean	344	643	937	985
	wmean	348	607	926	986
A1	maxmean	312	589	910	979
	wmaxmean	304	580	900	980
	median	210	410	793	911
	absmean	114	175	431	618
	meanrank	335	594	913	984
	ksmean	294	564	906	972
	ksmax	129	424	859	966

Table 2: Proportion (\times 1000) of tests that have been rejected with a rejection levels of 0.05. Scenario 1: same effect for all genes in the tested geneset, n=6,10,20,30 iid observations (n/2 for each group). Only competitive test statistics are shown. The average intra-gene set correlation of A1, A2 and A3 are 0.05, 0.13 and 0 respectively.

n =		6	10	20	30
	mean	74	91	170	268
	wmean	95	125	227	334
	maxmean	88	103	221	334
	wmaxmean	137	179	307	433
A1	median	65	75	120	173
	absmean	115	197	407	646
	meanrank	74	74	129	171
	ksmean	60	79	126	180
	ksmax	37	59	127	223
	mean	74	69	130	144
	wmean	96	105	151	164
	maxmean	82	76	145	182
	wmaxmean	110	118	182	206
A2	median	71	59	107	116
	absmean	102	124	236	353
	meanrank	65	49	101	97
	ksmean	63	50	99	102
	ksmax	55	61	107	144
	mean	168	284	499	680
	wmean	153	270	491	668
A3	maxmean	175	352	593	764
	wmaxmean	175	355	589	757
	median	106	161	234	294
	absmean	127	270	525	727
	meanrank	117	189	296	404
	ksmean	117	153	307	431
	ksmax	64	158	451	685

Table 3: Proportion (\times 1000) of tests that have been rejected with a rejection levels of 0.05. Scenario 2: only a group of interconnected genes in the geneset have -a common- activity in the geneset, n=6,10,20,30 iid observations (n/2 for each group). Only competitive test statistics are shown. The average intra-gene set correlation of A1, A2 and A3 are 0.05, 0.13 and 0 respectively.

n =		6	10	20	30
	mean	59	56	63	67
	wmean	79	73	100	104
	maxmean	80	78	114	173
	wmaxmean	114	127	176	267
A1	median	62	46	55	64
	absmean	112	184	378	590
	meanrank	51	42	46	47
	ksmean	58	45	44	41
	ksmax	44	43	63	73
	mean	67	43	48	60
	wmean	86	67	64	77
	maxmean	63	53	77	102
	wmaxmean	98	88	102	127
A1	median	58	42	48	62
	absmean	82	101	175	259
	meanrank	58	32	36	40
	ksmean	56	34	39	38
	ksmax	56	41	51	49
	mean	70	85	96	101
	wmean	61	74	78	97
A1	maxmean	126	151	335	462
	wmaxmean	132	152	343	457
	median	63	82	94	109
	absmean	129	194	504	690
	meanrank	51	63	61	64
	ksmean	46	55	49	42
	ksmax	68	88	117	144

Table 4: Proportion (\times 1000) of tests that have been rejected with a rejection levels of 0.05. Scenario 3: two groups of genes, one up-regulated and the other down-regulated, are active in the geneset, n=6,10,20,30 iid observations (n/2 for each group). Only competitive test statistics are shown. The average intra-gene set correlation of A1, A2 and A3 are 0.05, 0.13 and 0 respectively.

n =		6	10	20	30
	mean	50	71	55	82
	wmean	61	97	80	110
	maxmean	80	94	88	126
	wmaxmean	113	152	152	181
A1	median	47	50	54	56
	absmean	107	155	238	305
	meanrank	44	61	43	47
	ksmean	37	59	41	43
	ksmax	41	62	42	63
	mean	58	76	90	86
	wmean	80	106	114	126
	maxmean	81	97	120	134
	wmaxmean	110	141	174	197
A2	median	57	53	53	50
	absmean	141	190	$\bf 326$	465
	meanrank	49	54	47	46
	ksmean	51	43	32	38
	ksmax	52	60	63	65
	mean	472	715	934	979
	wmean	434	693	925	970
A3	maxmean	690	949	1000	1000
	wmaxmean	675	932	1000	1000
	median	59	80	75	87
	absmean	615	928	1000	1000
	meanrank	71	94	108	111
	ksmean	86	110	135	115
	ksmax	514	796	985	999

Table 5: Proportion (\times 1000) of tests that have been rejected with a rejection levels of 0.05. Scenario 4: few genes -or outliers- present a much higher effect than the rest of the genes, n=6,10,20,30 iid observations (n/2 for each group). Only competitive test statistics are shown. The average intra-gene set correlation of A1, A2 and A3 are 0.05, 0.13 and 0 respectively.

	maxmean	wmaxmean	mean	wmean	absmean	$_{ m med}$	ksmean	ksmax	meanrank
M1	3.93	4.21	6.05	5.50	3.05	5.60	6.31	4.29	6.07
M2	4.66	4.12	5.35	5.45	3.07	5.33	6.33	4.98	5.71

Table 6: Average rank resulting from measures M1 and M2 using the 40 datasets from the benchmarking package. Rank 1 is the highest rate and rank 9 is the lowest rank. The absmean score achieves the best rates in the two measures followed by the maxmean approach. Only competitive scores are used.