Регрессионный анализ, часть 1

Математические методы в зоологии - на R, осень 2013

Марина Варфоломеева Каф. Зоологии беспозвоночных, СПбГУ

Знакомимся с линейными моделями

- Модель простой линейной регрессии
- Проверка валидности модели
- Оценка качества подгонки модели

Вы сможете

- подобрать модель линейной регрессии и записать ее в виде уравнения
- проверить валидность модели при помощи t- или F-теста
- · оценить долю изменчивости, которую объясняет модель, при помощи \$R2\$

Модель простой линейной регрессии

Линейная регрессия

• простая

$$Y_i = eta_0 + eta x_i + \epsilon_i$$

• множественная

$$Y_i = eta_0 + eta x_{1i} + + eta x_{2i} + \ldots + \epsilon_i$$

Запись моделей в R

зависимая_переменная ~ модель

$$\hat{y}_i = b_0 + bx_i$$
 (простая линейная регрессия со свободным членом (intercept))

- . Y ~ X
- · Y ~ 1 + X
- · Y ~ X + 1

$$\hat{y}_i = b x_i$$
 (простая линейная регрессия без свободного члена)

- . Y ~ X 1
- · Y ~ -1 + X

 $\hat{y}_i = b_0$ (уменьшенная модель, линейная регрессия у от свободного члена)

- · Y~1
- $\cdot Y \sim 1 X$

Запишите в нотации R

эти модели линейных регрессий

- : $\hat{y}_i = b_0 + bx_{1i} + bx_{2i} + bx_{3i}$ (множественная линейная регрессия со свободным членом)
- : $\hat{y}_i = b_0 + bx_{1i} + bx_{3i}$ (уменьшенная модель множественной линейной регрессии, без X2)

Минимизируем остаточную изменчивость

$$Y_i = eta_0 + eta x_i + \epsilon_i$$
 - модель регрессии

$$\hat{y}_i = b_0 + b_1 x_i$$
 - оценка модели

нужно оценить β_0 , β_1 и \$ σ 2\$

· Метод наименьших квадратов (Ordinary Least Squares, см. рис.)

Еще есть методы максимального правдоподобия (Maximum Likelihood, REstricted Maximum Likelihood)

Оценки параметров линейной регрессии

минимизируют $\sum (y_i - \hat y_i)^2$, т.е. остатки.

ОЦЕНКИ ПАРАМЕТРОВ	СТАНДАРТНЫЕ ОШИБКИ ОЦЕНОК	
$\b _1 = \frac{\{\sum_{i=1}^n \{[(x_i - \bar{x})(y_i - \bar{x})\}\}}{\{[(x_i - \bar{x})(y_i - \bar{x})(y_i - \bar{x})\}\}}$	$SE_{b_1} = \sqrt{MS_e} / \sqrt{1} = \sqrt{MS_e} $	
\bar{y} \bar y)]}}{\sum _{i=1}{n} {(x _i - \bar x)2}}\$\$	${(x_i - bar x)2}}$ \$\$	
$b_0 = \bar{y} - b_1 \bar{x}$	$SE_{b_0} = \sqrt{MS_e [\frac{1}{n} + \frac{1}{n} + \frac{1}{n}]}$	
	x {\sum _{i=1}{n} {(x _i - \bar x)2}}]}\$\$	
$e_i = y_i - \hat{y}_i$	$pprox \sqrt{MS_e}$	
	\$\$b_1 = \frac {\sum_{i=1}{n} {[(x_i - \bar x)(y_i - \bar y)]}} {\sum_{i=1}{n} {(x_i - \bar x)2}}\$\$ $b_0 = \bar{y} - b_1 \bar{x}$	

- Стандартные ошибки коэффициентов нужны
 - для построения доверительных интервалов
 - для статистических тестов

Коэффициенты регрессии

- · Если нужно сравнивать лучше стандартизованные (= "бета коэффициенты") коэффициенты (на след.лекции про сравнение моделей)
 - \$b\ast _1 = {b _1 {\sigma _x} \over {\sigma _y}}\$
 - не зависят от масштаба

Пример: усыхающие личинки мучных хрущаков

Как зависит потеря влаги личинками малого мучного хрущака Tribolium confusum от влажности воздуха? (Nelson, 1964)

- 9 экспериментов, продолжительность 6 дней
- разная относительная влажность воздуха, % (humidity)
- · измерена потеря влаги, мг (weightloss)

Данные в файлах nelson.xlsx и nelson.csv

Читаем данные из файла и знакомимся с ними

Внимание, установите рабочую директорию, или используйте полный путь к файлу

```
setwd("C:\\mathmethr\week2")
## из .xlsx
library(XLConnect)
wb <- loadWorkbook(".\data\nelson.xlsx")
nelson <- readWorksheet(wb, sheet = 1)
## или из .csv
# nelson <- read.table(file=".\data\nelson.xlsx", header = TRUE, sep = "\t", dec = ".")

str(nelson)

## 'data.frame': 9 obs. of 2 variables:</pre>
```

```
## 'data.frame': 9 obs. of 2 variables:
## $ humidity : num 0 12 29.5 43 53 62.5 75.5 85 93
## $ weightloss: num 8.98 8.14 6.67 6.08 5.9 5.83 4.68 4.2 3.72
```

```
head(nelson)
```

```
## humidity weightloss
## 1 0.0 8.98 12/41
## 2 12 0 8.14
```

Как зависит потеря веса от влажности? График рассеяния.

```
library(ggplot2)
p_nelson <- ggplot(data=nelson, aes(x = humidity, y = weightloss)) +
  geom_point() +
  labs(x = "Относительная влажность, %", y = "Потеря веса, мг")
p_nelson</pre>
```


13/41

Внешний вид графиков можно менять при помощи тем

```
p_nelson + theme_classic()
p_nelson + theme_bw()
theme_set(theme_classic()) # устанавливаем понравившуюся тему до конца сессии
```


Подбираем параметры линейной модели

```
nelson_lm <- lm(weightloss ~ humidity, nelson)
summary(nelson_lm)</pre>
```

```
##
## Call:
## lm(formula = weightloss ~ humidity, data = nelson)
## Residuals:
              10 Median
                              30
      Min
                                    Max
## -0.4640 -0.0344 0.0167 0.0746 0.4524
## Coefficients:
              Estimate Std. Error t value
                                             Pr(>|t|)
## (Intercept) 8.70403 0.19156 45.4 0.00000000065 ***
## humidity -0.05322 0.00326 -16.4 0.00000078161 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.297 on 7 degrees of freedom
## Multiple R-squared: 0.974, Adjusted R-squared: 0.971
## F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
                                                                               15/41
```

Добавим линию регрессии на график

p_nelson + geom_smooth(method = "lm")

Как вы думаете,

что это за серая область вокруг линии регрессии?

Неопределенность оценок коэффициентов и предсказанных значений

Неопределенность оценок коэффициентов

- · Доверительный интервал коэффициента
 - зона, в которой с $(1-\alpha)\cdot 100\%$ вероятностью содержится среднее значение коэффициента
 - $b_1 \pm t_{lpha,df=n-2} SE_{b_1}$
 - lpha = 0.05 => $(1-0.05) \cdot 100\% = 95\%$ интервал
- . Доверительная зона регрессии
 - зона, в которой с $(1-\alpha)\cdot 100\%$ вероятностью лежит регрессионная прямая

Находим доверительные интервалы коэффициентов

```
# Вспомните, в выдаче summary(nelson_lm) были только оценки коэффициентов
# и стандартные ошибки
# оценки коэффициентов отдельно
coef(nelson_lm)
```

```
## (Intercept) humidity
## 8.7040 -0.0532
```

```
# доверительные интервалы коэффициентов confint(nelson_lm)
```

```
## 2.5 % 97.5 %
## (Intercept) 8.2510 9.1570
## humidity -0.0609 -0.0455
```

Оценим, какова средняя потеря веса при заданной влажности

Нельзя давать оценки вне интервала значений X!

```
# новые данные для предсказания значений newdata <- data.frame(humidity = c(50, 100)) predict(nelson_lm, newdata, interval = "confidence", se = TRUE)
```

```
## $fit
## fit lwr upr
## 1 6.04 5.81 6.28
## 2 3.38 2.93 3.83
##
## $se.fit
## 1 2
## 0.0989 0.1894
##
## $df
## [1] 7
##
## $residual.scale
## [1] 0.297
```


• При 50 и 100% относительной влажности ожидаемая средняя потеря веса жуков будет 6 ± 0.2 и 3.4 ± 0.4 , соответственно.

21/41

Строим доверительную зону регрессии

```
p_nelson + geom_smooth(method = "lm") +
   ggtitle ("95% доверительная зона регрессии")
p_nelson + geom_smooth(method = "lm", level = 0.99) +
   ggtitle ("99% доверительная зона регрессии")
```


Неопределенность оценок предсказанных значений

- . Доверительный интервал к предсказанному значению
 - зона в которую попадают $(1-\alpha)\cdot 100\%$ значений \hat{y}_i при данном x_i
 - $\hat{y}_i \pm t_{0.05,n-2} SE_{\hat{y}_i}$
 - $SE_{\hat{y} = \sqrt{MS_{e} [1 + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} \frac{1}{n} }$
- . Доверительная область значений регрессии
 - зона, в которую попадает $(1-\alpha)\cdot 100\%$ всех предсказанных значений

Предсказываем для новых значений

Нельзя использовать для предсказаний вне интервала значений X!

```
# новые данные для предсказания значений newdata <- data.frame(humidity = c(50, 100)) predict(nelson_lm, newdata, interval = "prediction", se = TRUE)
```

```
## $fit
## fit lwr upr
## 1 6.04 5.30 6.78
## 2 3.38 2.55 4.21
##
## $se.fit
## 1 2
## 0.0989 0.1894
##
## $df
## [1] 7
##
## $residual.scale
## [1] 0.297
```


 \cdot У 95% жуков при 50 и 100% относительной влажности будет потеря веса будет в пределах 6 \pm 0.7 и 3.4 \pm 0.8, соответственно.

Данные для доверительной области значений

Warning: predictions on current data refer to future responses

```
# предсказанные значения для исходных данных predict(nelson_lm, interval = "prediction")

## Warning: predictions on current data refer to _future_ responses

## fit lwr upr
## 1 8.70 7.87 9.54
## 2 8.07 7.27 8.86
## 3 7.13 6.38 7.89
## 4 6.42 5.67 7.16
## 5 5.88 5.14 6.62
## 6 5.38 4.63 6.12
## 7 4.69 3.92 5.45
## 8 4.18 3.39 4.97
## 9 3.75 2.95 4.56

## объединим с исходными данными в новом датафрейме - для графиков nelson_with_pred <- data.frame(nelson, predict(nelson_lm, interval = "prediction"))
```

25/41

Строим доверительную область значений и доверительный интервал

$$H_0:eta_1=0$$
 или t-, или F-тест

Проверка валидности модели

Проверка при помощи t-критерия

$$H_0: b_1= heta, heta=0$$

$$t=rac{b_1- heta}{SE_{b_1}}$$

$$df=n-2$$

Проверка коэффициентов с помощью t-критерия есть в сводке модели

```
summary(nelson_lm)
```

```
##
## Call:
## lm(formula = weightloss ~ humidity, data = nelson)
## Residuals:
      Min
               10 Median
                               30
                                      Max
## -0.4640 -0.0344 0.0167 0.0746 0.4524
##
## Coefficients:
              Estimate Std. Error t value
                                              Pr(>|t|)
## (Intercept) 8.70403
                          0.19156 45.4 0.00000000065 ***
                         0.00326 -16.4 0.00000078161 ***
              -0.05322
## humidity
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.297 on 7 degrees of freedom
## Multiple R-squared: 0.974, Adjusted R-squared: 0.971
## F-statistic: 267 on 1 and 7 DF, p-value: 0.000000782
                                                                                  29/41
```

. .

Проверка при помощи F-критерия

 $H_0:eta_1=0$

• Та же самая нулевая гипотеза. Как так получается?

Общая изменчивость - отклонения от общего среднего значения

SS_{total}

Рисунок из кн. Logan, 2010, стр. 172, рис. 8.3 а

$SS_{total} = SS_{regression} + SS_{error}$

Рисунок из кн. Logan, 2010, стр. 172, рис. 8.3 а-с

32/41

Если зависимости нет, $b_1 = 0$

Тогда $\hat{y}_i = \bar{y}_i$ и $MS_{regression} pprox MS_{error}$

Рисунок из кн. Logan, 2010, стр. 172, рис. 8.3 а-с

33/41

F-критерий и распределение F-статистики

$$F = rac{ ext{Объясненная изменчивость}}{ ext{Heoбъясненная изменчивость}} = rac{MS_{regression}}{MS_{error}}$$

F-распределение при $H_0:b_1=0$

Зависит от

- \cdot α
- $\cdot \ df_{regression}$
- $\cdot \ df_{error}$

Таблица результатов дисперсионного анализа

ИСТОЧНИК ИЗМЕНЧИВОСТИ	СУММЫ КВАДРАТОВ ОТКЛОНЕНИЙ, SS	ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ, DF	СРЕДНИЙ КВАДРАТ ОТКЛОНЕНИЙ, MS	F
Регрессия	$SS_r = \sum_{i=1}^{s} y_i$	$df_r=1$	$MS_r = rac{SS_r}{df_r}$	$F_{df_r,df_e} = rac{MS_r}{MS_e}$
Остаточная	$SS_e = \sum \{(y_i - \hat y_i)^2\}$	$df_e=n-2$	$MS_e = rac{SS_e}{df_e}$	
Общая	\$\$SS _t = \sum {(\bar y - y _i)2}\$\$	$df_t=n-1$		

- Минимальное упоминание в тексте - F_{df_r,df_e} , p

Проверяем валидность модели при помощи F-критерия

```
nelson_aov <- aov(nelson_lm)
summary(nelson_aov)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## humidity 1 23.51 23.51 267 0.00000078 ***
## Residuals 7 0.62 0.09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 \cdot Количество влаги, потерянной жуками в период эксперимента, достоверно зависело от уровня относительной влажности ($F_{1,7}=267,\,p<0.01$).

Оценка качества подгонки модели

Коэффициент детерминации

доля общей изменчивости, объясненная линейной связью х и у

\$0 \le R2 \le 1\$

Иначе рассчитывается как R2 = r2

Коэффициент детерминации

можно найти в сводке модели

• Осторожно, не сравнивайте \$R2\$ моделей с разным числом параметров, для этого есть \$R2 _{adjusted}\$

```
summary(nelson_lm)
```

```
##
## Call:
## lm(formula = weightloss ~ humidity, data = nelson)
##
## Residuals:
      Min
              10 Median
                              30
                                     Max
## -0.4640 -0.0344 0.0167 0.0746 0.4524
## Coefficients:
              Estimate Std. Error t value
                                             Pr(>|t|)
                         0.19156 45.4 0.00000000065 ***
## (Intercept) 8.70403
## humidity -0.05322 0.00326 -16.4 0.00000078161 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                39/41
```

Take home messages

- · Модель простой линейной регрессии $y_i = eta_0 + eta_1 \dot{x}_i + \epsilon_i$
- В оценке коэффициентов регрессии и предсказанных значений существует неопределенность. Доверительные интервалы можно расчитать, зная стандартные ошибки.
- Валидность модели линейной регрессии можно проверить при помощи t- или F-теста. $H_0: \beta_1 = 0$
- · Качество подгонки модели можно оценить при помощи коэффициента детерминации \$R2\$

Дополнительные ресурсы

- · Гланц, 1999, стр. 221-244
- · Logan, 2010, pp. 170-207
- · Quinn, Keough, 2002, pp. 78-110
- · Open Intro to Statistics: Chapter 7. Introduction to linear regression, pp. 315-353.
- · Sokal, Rohlf, 1995, pp. 451-491
- · Zar, 1999, pp. 328-355