Multiple Linear Regression: Categorical Predictors

a statsTeachR resource

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Multiple Linear Regression: recapping model definition

In matrix notation...

$$\mathsf{y} = \mathsf{X} oldsymbol{eta} + oldsymbol{\epsilon}$$

where $E(\epsilon) = 0$ and $Cov(\epsilon) = \sigma^2 I$

In individual observation notation...

$$y_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_p x_{p,i} + \epsilon_i$$

where $\epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$

Categorical predictors

- Assume X is a categorical / nominal / factor variable with k levels
- With only one categorical X, we have classic one-way ANOVA design
- Can't use a single predictor with levels 1, 2, ..., K this has the wrong interpretation
- Need to create indicator or dummy variables

Indicator variables

- Let x be a categorical variable with k levels (e.g. with k=3 "low", "med", "hi").
- Choose one group as the baseline (e.g. "low")
- Create (k-1) binary terms to include in the model:

$$x_{1,i} = 1(x_i = \text{``med''})$$

 $x_{2,i} = 1(x_i = \text{``hi''})$

For a model with no additional predictors, pose the model

$$y_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_{k-1} x_{k-1,i} + \epsilon_i$$

and estimate parameters using least squares

Note distinction between predictors and terms

Categorical predictor design matrix

Which of the following is a "correct" design matrix for a categorical predictor with 3 levels?

ANOVA model interpretation

Using the model $y_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_{k-1} x_{k-1,i} + \epsilon_i$, interpret

$$\beta_0 =$$

$$\beta_1 =$$

Equivalent model

Define the model $y_i = \beta_1 x_{i1} + \ldots + \beta_k x_{i,k} + \epsilon_i$ where there are indicators for each possible group

$$\beta_1 =$$

$$\beta_2 =$$

Categorical predictor example: lung data

qplot(factor(education), disease, geom="boxplot", data=dat)

Categorical predictor example: lung data

$$dis_i = \beta_0 + \beta_1 educ_{6,i} + \beta_2 educ_{7,i} + \cdots + \beta_{14} educ_{14,i}$$

<pre>mlr7 <- lm(disease ~ factor(education), data=dat) summary(mlr7)\$coef</pre>					
##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	33.00	4.913	6.7173	1.689e-09
##	factor(education)6	-1.00	7.768	-0.1287	8.979e-01
##	factor(education)7	17.33	6.017	2.8808	4.969e-03
##	factor(education)8	11.18	5.329	2.0975	3.879e-02
##	factor(education)9	15.50	5.353	2.8953	4.765e-03
##	factor(education)10	20.38	5.188	3.9289	1.683e-04
##	factor(education)11	20.53	5.382	3.8155	2.505e-04
##	factor(education)12	22.20	5.601	3.9633	1.489e-04
##	factor(education)13	18.67	6.948	2.6868	8.609e-03
##	factor(education)14	19.00	9.825	1.9338	5.632e-02

Categorical predictor releveling

```
\mathit{dis}_i = \beta_0 + \beta_1 \mathit{educ}_{5,i} + \beta_2 \mathit{educ}_{6,i} + \beta_1 \mathit{educ}_{7,i} + \beta_2 \mathit{educ}_{9,i} + \dots + \beta_{14} \mathit{educ}_{14,i}
```

```
dat$educ_new <- relevel(factor(dat$education), ref="8")</pre>
mlr8 <- lm(disease ~ educ_new, data=dat)
summary(mlr8)$coef
##
             Estimate Std. Error t value Pr(>|t|)
  (Intercept)
             44.176
                          2.064 21.4059 7.303e-37
                          5.329 -2.0975 3.879e-02
  educ_new5 -11.176
## educ_new6 -12.176
                          6.361 -1.9143 5.880e-02
## educ_new7
                6.157
                          4.041 1.5238 1.311e-01
## educ_new9 4.324
                          2.964 1.4588 1.482e-01
## educ_new10 9.208
                          2.654 3.4695 8.059e-04
## educ_new11 9.357
                          3.014 3.1042 2.559e-03
## educ_new12
               11.024
                          3.391 3.2507 1.626e-03
## educ new13
                7.490
                          5.329 1.4057 1.633e-01
## educ new14
                7.824
                          8.756 0.8935 3.740e-01
```

Categorical predictor: no baseline group

$$dis_i = \beta_1 educ_{5,i} + \beta_2 educ_{6,i} + \cdots + \beta_{14} educ_{14,i}$$

```
mlr9 <- lm(disease ~ factor(education) - 1, data=dat)
summary(mlr9)$coef
##
                       Estimate Std. Error t value Pr(>|t|)
## factor(education)5
                          33.00
                                     4.913 6.717 1.689e-09
## factor(education)6
                          32.00
                                     6.017 5.318 7.716e-07
## factor(education)7
                          50.33
                                     3.474 14.489 3.846e-25
## factor(education)8
                          44.18
                                     2.064
                                            21,406 7,303e-37
## factor(education)9
                          48.50
                                     2.127
                                            22.799 6.282e-39
## factor(education)10
                          53.38
                                     1.669
                                            31.991 1.359e-50
## factor(education)11
                          53.53
                                     2.197
                                            24.366 3.801e-41
## factor(education)12
                          55.20
                                     2.691
                                            20.514 1.713e-35
## factor(education)13
                          51.67
                                     4.913
                                            10.517 2.758e-17
## factor(education)14
                          52.00
                                     8.509
                                             6.111 2.561e-08
```

Creating categories using cut()

$$dis_i = \beta_1 educ_{low,i} + \beta_2 educ_{med,i} + \cdots + \beta_{14} educ_{hi,i}$$

Today's big ideas

■ Multiple linear regression: categorical variables