### Section 2.1

I talked to Kie Seng about this section.

**Definition 1.** The 'idempotent completion'  $Kar(\mathscr{C})$  (also called the 'Karoubi envelope') of a category  $\mathscr{C}$  is defined as follows:

- 1. an object of  $Kar(\mathscr{C})$  is a pair (C,p) where C is an object of  $\mathscr{C}$  and  $C \xrightarrow{p} C$  is an idempotent,
- 2. a morphism  $(C, p) \to (C', p')$  of  $Kar(\mathscr{C})$  is a map  $C \xrightarrow{C}'$  in  $\mathscr{C}$  such that fp = f = p'f.

Remark 1. If you have two maps  $(C,p) \xrightarrow{f} (C',p') \xrightarrow{g} (C'',p'')$ , then their composition gf is also a map  $(C,p) \to (C'',p'')$  in  $Kar(\mathscr{C})$  since

$$gfp = g(fp) = gf = (p''g)f = p''gf.$$

**Lemma 1.** The identity morphism on (C, p) in  $Kar(\mathscr{C})$  is the morphism p itself:

$$id_{(C,p)} = \left(C \xrightarrow{p} C\right).$$

*Proof.* First, check that p is indeed a morphism  $(C, p) \to (C, p)$  in  $Kar(\mathscr{C})$ . This amounts to checking that  $p^2 = p$ , which is guaranteed by the definition of (C, p).

Next, check that p satisfies the identity axioms. Let  $(C,p) \xrightarrow{f} (C',p')$  be another morphism in  $Kar(\mathscr{C})$ . Then, by definition, fp = f = p'f as maps in  $\mathscr{C}$ . It follows by the above remark that fp = f = p'f as maps in  $Kar(\mathscr{C})$ , as well.

### Part (1)

Let **primeVec** denote the full subcategory of **fdVec** consisting of vector spaces with prime dimensions.

Claim 1. The idempotent completion of primeVec is isomorphic to fdVec:

$$Kar(\mathbf{primeVec}) \cong \mathbf{fdVec}.$$

*Proof.* Define a functor  $F : Kar(\mathbf{primeVec}) \to \mathbf{fdVec}$  by

$$\begin{pmatrix} (V,p) & \xrightarrow{f} (V',p') \end{pmatrix} & \longleftarrow & \left( pV \xrightarrow{f|_{pV}} p'V' \right)$$

Why is this well defined on morphisms? We need to check that  $\text{Im}(f|_{pV}) \subset p'V'$ . But we know that  $f(pv) = p'f(v) \subset p'V'$  since f is a morphism in  $\text{Kar}(\mathbf{primeVec})$ . Thus, F is well defined.

We also need to check that F is indeed a functor. That is, we need to verify that

1.  $F(id_X) = id_{F(X)}$  for all objects X in Kar(**primeVec**),

2.  $F\left((V,p) \xrightarrow{f} (V',p') \xrightarrow{g} (V'',p'')\right) = F(V,p) \xrightarrow{F(f)} F(V',p') \xrightarrow{F(g)} F(V'',p'') \text{ for all } (V,p), (V',p'), (V'',p'') \text{ and } f,g \text{ in } \mathrm{Kar}(\mathbf{primeVec}).$ 

To prove 1, notice that  $\mathrm{id}_{(V,p)}$  is the morphism  $V \xrightarrow{p} V$ . Thus,  $F(\mathrm{id}_{(V,p)}) = p|_{pV}$ . By idempotency, p(pv) = pv, so  $p|_{pV} = \mathrm{id}_{pV}$  as required. To prove 2, notice that  $(g \circ f)|_{pV} = g|_{p'V'} \circ f|_{pV}$ .

We want to show that F is an equivalence. To do this, we will prove that F is full, faithful and essentially surjective:

1. Proof that F is full: Take  $pV \xrightarrow{g} p'V'$  in **fdVec**. We will construct a morphism  $(V, p) \xrightarrow{f} (V', p')$  in Kar(**primeVec**) with F(f) = g. Define

$$f(v) = \begin{cases} g(v) & \text{if } v = pw \text{ for some } w \in V, \\ 0 & \text{otherwise.} \end{cases}$$

We need to check that f is a morphism in  $Kar(\mathbf{primeVec})$ . Firstly, we will check that it is linear map from V to V' in  $\mathbf{primeVec}$ . It suffices to check this on the subspace pV. For  $v, w \in pV$  and scalars a, b, we have

$$f(av + bw) = g(av + bw) = ag(v) + bg(w) = af(v) + bf(w),$$

since g is linear by assumption. Secondly, we need to check that f satisfies the property fp = f = p'f. Again, it suffices to check this on the subspace pV. For  $v \in V$ , we have fp(pv) = f(pv) = g(pv) since  $p^2 = p$ . Now, g(pv) = p'v' for some  $v' \in V'$ . Thus, fp(pv) = f(pv) = p'v' = p'(p'v') = p'g(pv) = p'f(pv) since  $(p')^2 = p'$ . Therefore, f is a morphism in Kar(**primeVec**).

Now, F(f) = g since  $f|_{pV} = g$  by definition. Thus, F is full.

2. Proof that F is faithful: Take morphisms  $(V, p) \xrightarrow{f,g} (V', p')$  in  $Kar(\mathbf{primeVec})$  with F(f) = F(g). Then  $f|_{pV} = g|_{pV}$ . So, for  $v \in V$ ,

$$f(v) = f(pv) = g(pv) = g(v),$$

since f = fp and g = gp. Thus, f = g.

3. Proof that F is essentially surjective: Take V' in  $\mathbf{fdVec}$ . We will construct (V,p) in  $\mathrm{Kar}(\mathbf{primeVec})$  with  $F(V,p) \cong V'$ . Let  $\{e_1,...,e_n\}$  be a basis for V'. Let  $\phi$  be the smallest prime such that  $\phi \geq n$ . Let  $e_{n+1},...,e_{\phi}$  be formal symbols. Define V to be the vector space with basis  $\{e_1,...,e_{\phi}\}$ . Define  $p:V\to V$  to be the projection onto the first n basis vectors. That is, p is the linear map defined by

$$p(e_i) = \begin{cases} e_i & \text{if } i \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Then  $p^2 = p$ . So  $(V, p) \in \text{Kar}(\mathbf{primeVec})$ . Also, pV has dimension n. So  $F(V, p) = pV \cong V'$ .

#### Part (2)

In this part, we will construct an equivalence  $\iota_{\mathscr{C}} : \operatorname{Kar}(\operatorname{Kar}(\mathscr{C})) \xrightarrow{\cong} \operatorname{Kar}(\mathscr{C})$ .

Before we do this, lets understand  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$ . An object K of  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$  is a pair (X,q), where X is an object of  $\operatorname{Kar}(\mathscr{C})$ , such that  $X \stackrel{q}{\to} X$  is an idempotent. We can write X = (C,p) where C is an object of  $\mathscr{C}$  and  $C \stackrel{p}{\to} C$  is an idempotent. Thus, K is a triple (C,p,q) with p and q idempotents. Notice that  $(C,p) \stackrel{q}{\to} (C,p)$  is a morphism in  $\operatorname{Kar}(\mathscr{C})$  and consequently it is a morphism  $C \stackrel{q}{\to} C$  in  $\mathscr{C}$  satisfying the property qp = q = pq. Summing up, an object K of  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$  is a tuple (C,p,q) with

- 1. C an object in  $\mathscr{C}$ ,
- 2.  $C \xrightarrow{p,q} C$  idempotents in  $\mathscr{C}$ , and
- 3. qp = q = pq.

A morphism  $(C, p, q) \xrightarrow{f} (C', p', q')$  of  $Kar(Kar(\mathscr{C}))$  is a map  $(C, p) \xrightarrow{f} (C', p')$  in  $Kar(\mathscr{C})$  such that fq = f = q'f. Unwrapping definitions further, f is a morphism  $C \to C'$  in  $\mathscr{C}$  satisfying fp = f = p'f = fq = q'f.

Define the 'forgetful' functor  $\iota_{\mathscr{C}}: \operatorname{Kar}(\operatorname{Kar}(\mathscr{C})) \to \operatorname{Kar}(\mathscr{C})$  by

$$\begin{array}{ccc} (C,p,q) & \longmapsto & (C,q), \\ \\ \left((C,p,q) & \xrightarrow{f} (C',p',q')\right) & \longmapsto & \left((C,q) & \xrightarrow{f} (C',q')\right). \end{array}$$

We must check that  $\iota_{\mathscr{C}}$  is indeed a functor. Note that both  $\mathrm{id}_{(C,p,q)}$  and  $\mathrm{id}_{(C,q)}$  are the same morphism  $C \xrightarrow{q} \mathrm{in} \mathscr{C}$ . Thus,  $\iota_{\mathscr{C}}(\mathrm{id}_{(C,p,q)}) = \mathrm{id}_{(C,q)}$ . The fact that  $\iota_{\mathscr{C}}$  preserves composition is trivial.

Claim 2. The functor  $\iota_{\mathscr{C}}$  is an equivalence.

*Proof.* We will show that  $\iota_{\mathscr{C}}$  is full, faithful and essentially surjective.

1. Proof that  $\iota_{\mathscr{C}}$  is full: Fix objects (C, p, q) and (C', p', q') in  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$ . Consider  $\iota_{\mathscr{C}}(C, p, q) \xrightarrow{f} \iota_{\mathscr{C}}(C', p', q')$ . That is, f is a morphism  $C \to C'$  in  $\mathscr{C}$  satisfying fq = f = q'f. We will show that f is also a morphism in  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$ . That is, we need to verify fp = f = p'f.

We know that pq = q = qp and p'q' = q' = q'p'. Using these properties, along with the relation fq = f = q'f, we get

$$fp = (fq)p = f(qp) = fq = f = q'f = (p'q')f = p'(q'f) = p'f,$$

as required. Now, it is obvious that  $\iota_{\mathscr{C}}(f) = f$ . Thus,  $\iota_{\mathscr{C}}$  is full.

- 2. Proof that  $\iota_{\mathscr{C}}$  is faithful: This is trivial by expanding definitions. Suppose f, g are morphisms  $(C, p, q) \to (C', p', q')$  in  $Kar(Kar(\mathscr{C}))$  with  $\iota_{\mathscr{C}}(f) = \iota_{\mathscr{C}}(g)$ . Then f and g considered as morphisms  $C \to C'$  in  $\mathscr{C}$  must be equal. It follows by definition that f and g are equal, when considered as morphisms  $(C, p, q) \to (C', p', q')$ .
- 3. Proof that  $\iota_{\mathscr{C}}$  is essentially surjective: Let (C,q) be an object in  $\operatorname{Kar}(\mathscr{C})$ . Then  $(C,\operatorname{id}_C,q)$  is an object in  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$  and  $\iota_{\mathscr{C}}(C,\operatorname{id}_C,q)=(C,q)$ .

### Part (3)

**Claim 3.** There is a fully faithful functor  $i_{\mathscr{C}}: \mathscr{C} \to \operatorname{Kar}(\mathscr{C})$  given by  $C \mapsto (C, \operatorname{id}_C)$ .

Remark 2. This gives an embedding of  $\mathscr{C}$  into  $Kar(\mathscr{C})$ .

*Proof.* Define  $i_{\mathscr{C}}: \mathscr{C} \to \operatorname{Kar}(\mathscr{C})$  by

$$C \longmapsto (C, \mathrm{id}_C)$$

$$\left(C \xrightarrow{f} C'\right) \longmapsto \left((C, \mathrm{id}_C) \xrightarrow{f} (C', \mathrm{id}_{C'})\right)$$

We need to check that this is a functor. Note that  $\mathrm{id}_{(C,\mathrm{id}_C)}$  is the identity morphism  $\mathrm{id}_C$  in  $\mathscr{C}$ . Thus,  $i_{\mathscr{C}}(\mathrm{id}_C) = \mathrm{id}_{(C,\mathrm{id})}$  as required. The fact that  $i_{\mathscr{C}}$  preserves composition is trivial.

We will show that  $i_{\mathscr{C}}$  is full. Fix objects C, C' in  $\mathscr{C}$ . Consider the morphism  $(C, \mathrm{id}_C) \xrightarrow{f} (C', \mathrm{id}_{C'})$  in  $\mathrm{Kar}(\mathscr{C})$ . By definition, this is a map  $C \xrightarrow{f} C'$  in  $\mathscr{C}$ . Then  $i_{\mathscr{C}}(f) = f$  and so  $i_{\mathscr{C}}$  is full.

Finally, we prove that  $i_{\mathscr{C}}$  is faithful. Again this follows by expanding definitions. Fix C, C'. Suppose we have morphisms  $C \xrightarrow{f,g} C'$  in  $\mathscr{C}$  with  $i_{\mathscr{C}}(f) = i_{\mathscr{C}}(g)$ . Then the maps  $(C, \mathrm{id}_C) \xrightarrow{f,g} (C', \mathrm{id}_{C'})$  are equal. By definition, it must be the case that f, g are equal as maps  $C \to C'$  in  $\mathscr{C}$ .

## Part (4)

**Definition 2.** Given a functor  $F: \mathscr{C} \to \mathscr{D}$ , there is a functor  $Kar(F): Kar(\mathscr{C}) \to Kar(\mathscr{D})$  given by

$$\operatorname{Kar}(F)(C,p) = (F(C), F(p))$$

$$\operatorname{Kar}(F)((C,p) \xrightarrow{f} (C',p')) = (F(C), F(p)) \xrightarrow{F(f)} (F(C'), F(p')).$$

We need to check that this is well defined: is F(f) a map in  $Kar(\mathcal{D})$ ? It needs to satisfy the property F(f)F(p) = F(f) = F(p')F(f). This follows from the corresponding property of f in  $Kar(\mathcal{C})$  and functorality:

$$F(f)F(p) = F(fp) = F(f) = F(p'f) = F(p')F(f).$$

The fact that Kar(F) preserves identities and composition is straightforward to verify.

**Theorem 1.** A functor  $F : \text{Kar}(\mathscr{C}) \to \text{Kar}(\mathscr{D})$  is determined up to natural isomorphism by its restriction  $F|_{\mathscr{C}} : \mathscr{C} \to \text{Kar}(\mathscr{D})$ :

$$F \cong (\iota_{\mathscr{D}} \circ \operatorname{Kar}(F|_{\mathscr{C}})).$$

Remark 3. By  $F|_{\mathscr{C}}$  we mean the composition  $F \circ i_{\mathscr{C}}$  of F and the embedding  $i_{\mathscr{C}} : \mathscr{C} \to \operatorname{Kar}(\mathscr{C})$ .

This is an exercise in notation. Suppose (C,p) and (D,q) are objects in  $\operatorname{Kar}(\mathscr{C})$ . Let  $C \xrightarrow{f} D$  be a morphism in  $\mathscr{C}$  satisfying fp = f = qf. Write  $f_p^q$  for the corresponding morphism  $(C,p) \to (D,q)$  in  $\operatorname{Kar}(\mathscr{C})$ . Also, given a morphism  $(C,p) \xrightarrow{g_p^q} (D,q)$  in  $\operatorname{Kar}(\mathscr{C})$ , write  $\overline{g_p^q}$  for the underlying morphism  $C \to D$  in  $\mathscr{C}$ .

Remark 4. If  $\overline{f_p^q} = \overline{g_p^q}$  then  $f_p^q = g_p^q$ .

Remark 5. We have that  $\overline{f \circ g} = \overline{f} \circ \overline{g}$ 

Remark 6. If we have  $(C,p) \xrightarrow{f_p^{p'}} (C',p')$  and  $(C',p') \xrightarrow{g_{p'}^{p''}} (C'',p'')$ , then we get a morphism  $(g \circ f)_p^{p''}$  from (C,p) to (C'',p'').

**Lemma 2.** Given a functor  $F : \text{Kar}(\mathscr{C}) \to \text{Kar}(\mathscr{D})$  and (C, p) an object of  $\text{Kar}(\mathscr{C})$ ,

$$F(C, p) = (\widehat{C}_p, \overline{F(p_p^p)})$$

for some object  $\widehat{C}_p$  in  $\mathscr{D}$ .

Proof. Write  $F(C,p)=(\widehat{C_p},\widehat{p})$  for some object  $(\widehat{C_p},\widehat{p})$  in  $\mathrm{Kar}(\mathscr{D})$ . By lemma 1,  $p_p^p$  is the identity of (C,p). Thus,  $F(p_p^p)$  is the identity of  $(\widehat{C_p},\widehat{p})$ . Again using lemma 1, it follows that  $\overline{F(p_p^p)}=\widehat{p}$ .

Remark 7. We will use the notation  $(\widehat{C_p}, \overline{F(p_p^p)})$  to denote the element F(C, p) from herein.

Recall that an element of  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$  is  $\left((C,p),(C,p) \xrightarrow{q} (C,p)\right)$  where (C,p) is an object and q is a morphism of  $\operatorname{Kar}(\mathscr{C})$ . A map  $\left((C,p),(C,p) \xrightarrow{q} (C,p)\right) \to \left((C',p'),(C',p') \xrightarrow{q'} (C',p')\right)$  in  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$  is a map  $(C,p) \xrightarrow{f_p^{p'}} (C',p')$  in  $\operatorname{Kar}(\mathscr{C})$  satisfying  $f_p^{p'}q = f_p^{p'} = q'f_p^{p'}$ . That is, it is the map  $(f_p^{p'})_q^{q'}$ .

Lemma 3. We have that

$$\iota_{\mathscr{C}}\left((C,p),(C,p)\xrightarrow{q}(C,p)\right)=(C,C\xrightarrow{\overline{q}}C)\ \ and\ \ \iota_{\mathscr{C}}\left((f_{p}^{p'})_{q}^{q'}\right)=f_{\overline{q}}^{\overline{q'}}.$$

*Proof.* We just need to translate the definition of  $\iota_{\mathscr{C}}$  into the new notation. Previously, we wrote an object of  $\operatorname{Kar}(\operatorname{Kar}(\mathscr{C}))$  as the triple (C,p,q) and defined

$$\iota_{\mathscr{C}}(C, p, q) = (C, q),$$

 $\iota_{\mathscr{C}}\left((C,p,q)\xrightarrow{f}(C',p',q')\right)=(C,q)\xrightarrow{f}(C',q').$ 

Now, the morphism q in the triple (C, p, q) is actually the underlying map  $C \xrightarrow{\overline{q}} C$  of the morphism  $(C, p) \xrightarrow{q} (C, p)$ . Then, translating into the new notation, (C, p, q) becomes  $\left((C, p), (C, p) \xrightarrow{q} (C, p)\right)$  and (C, q) becomes  $(C, \overline{q})$ , giving us the required result.

To get the second result, translate into the new notation again. We get that  $(C, p, q) \xrightarrow{f} (C', p', q')$  becomes

$$\left((C,p),(C,p)\xrightarrow{q}(C,p)\right)\xrightarrow{(f_p^{p'})_q^{q'}} \left((C',p'),(C',p')\xrightarrow{q'}(C',p')\right)$$

and  $(C,q) \xrightarrow{f} (C',q')$  becomes  $(C,\overline{q}) \xrightarrow{f_{\overline{q}}^{\overline{q}'}} (C,\overline{q}')$ . This gives the required result.

Proof of theorem 1. The idea will be to find isomorphisms

$$F(C,p) \xrightarrow{\cong} \iota_{\mathscr{D}} \circ \operatorname{Kar}(F|_{\mathscr{C}})(C,p)$$

that are natural in (C, p). Firstly, compute

$$\operatorname{Kar}(F|_{\mathscr{C}})(C,p) = \left(F \circ i_{\mathscr{C}}(C), F \circ i_{\mathscr{C}}(p)\right) = \left(F(C,\operatorname{id}_{C}), F(C,\operatorname{id}_{C}) \xrightarrow{F(p_{\operatorname{id}_{C}}^{\operatorname{id}_{C}})} F(C,\operatorname{id}_{C})\right).$$

Thus, by lemma 3, we calculate

$$\iota_{\mathscr{D}} \circ \operatorname{Kar}(F|_{\mathscr{C}})(C, p) = \left(\widehat{C_{\operatorname{id}_{C}}}, \widehat{C_{\operatorname{id}_{C}}} \xrightarrow{\overline{F(p_{\operatorname{id}_{C}}^{\operatorname{id}_{C}})}} \widehat{C_{\operatorname{id}_{C}}}\right).$$

We have a map  $(C, p) \xrightarrow{p_p^{\mathrm{id}_C}} (C, \mathrm{id}_C)$ . Applying F we get a map

$$F(C,p) = \left(\widehat{C_p}, \overline{F(p_p^p)}\right) \xrightarrow{F(p_p^{\operatorname{id}_C})} \left(\widehat{C_{\operatorname{id}_C}}, \overline{F\left((\operatorname{id}_C)_{\operatorname{id}_C}^{\operatorname{id}_C}\right)}\right) = F(C, \operatorname{id}_C).$$

We will show that this is also a map

$$\left(\widehat{C_p}, \overline{F(p_p^p)}\right) \xrightarrow{F(p_p^{\mathrm{id}_C})} \left(\widehat{C_{\mathrm{id}_C}}, \overline{F(p_{\mathrm{id}_C}^{\mathrm{id}_C})}\right).$$

To do this, we need  $\overline{F(p_{\mathrm{id}_{C}}^{\mathrm{id}_{C}})} \circ \overline{F(p_{p}^{\mathrm{id}_{C}})} = \overline{F(p_{p}^{\mathrm{id}_{C}})}$ . By functoriality,  $\overline{F(p_{\mathrm{id}_{C}}^{\mathrm{id}_{C}})} \circ \overline{F(p_{p}^{\mathrm{id}_{C}})} = \overline{F(p_{\mathrm{id}_{C}}^{\mathrm{id}_{C}} \circ p_{p}^{\mathrm{id}_{C}})}$ . Then  $p_{p}^{\mathrm{id}_{C}} = p_{\mathrm{id}_{C}}^{\mathrm{id}_{C}} \circ p_{p}^{\mathrm{id}_{C}} = \overline{p_{\mathrm{id}_{C}}^{\mathrm{id}_{C}} \circ p_{p}^{\mathrm{id}_{C}}} = \overline{p_{\mathrm{id}_{C}}^{\mathrm{id}_{C}} \circ p_{p}^{\mathrm{id}_{C}}}$ , which gives us the required result. We will show that this map  $F(p_{p}^{\mathrm{id}_{C}})$  is an isomorphism in  $\mathrm{Kar}(\mathcal{D})$ .

We construct its inverse in a similar way. We have a map  $(C, \mathrm{id}_C) \xrightarrow{p_{\mathrm{id}_C}^p} (C, p)$  which gives a map

$$F(C, \mathrm{id}_C) = \left(\widehat{C_{\mathrm{id}_C}}, \overline{F\left((\mathrm{id}_C)_{\mathrm{id}_C}^{\mathrm{id}_C}\right)}\right) \xrightarrow{F(p_{\mathrm{id}_C}^p)} \left(\widehat{C_p}, \overline{F(p_p^p)}\right) = F(C, p).$$

This is also a map

$$\left(\widehat{C_{\mathrm{id}_C}}, \overline{F(p_{\mathrm{id}_C}^{\mathrm{id}_C})}\right) \xrightarrow{F(p_{\mathrm{id}_C}^p)} \left(\widehat{C}_p, \overline{F(p_p^p)}\right)$$

since we have that  $\overline{F(p_{\mathrm{id}_C}^p)} \circ \overline{F(p_{\mathrm{id}_C}^{\mathrm{id}_C})} = \overline{F(p_{\mathrm{id}_C}^p)}$  by reasoning analogous to above.

We will show that these maps  $F(p_p^{\mathrm{id}_C})$  and  $F(p_{\mathrm{id}_C}^p)$  are mutually inverse. We need that

$$\left(\widehat{C_{\mathrm{id}_C}}, \overline{F(p_{\mathrm{id}_C}^{\mathrm{id}_C})}\right) \xrightarrow{F(p_{\mathrm{id}_C}^p)} \left(\widehat{C}_p, \overline{F(p_p^p)}\right) \xrightarrow{F(p_p^{\mathrm{id}_C})} \left(\widehat{C_{\mathrm{id}_C}}, \overline{F(p_{\mathrm{id}_C}^{\mathrm{id}_C})}\right)$$

is the identity. That is, we need that  $\overline{F(p_p^{\mathrm{id}_C}) \circ F(p_{\mathrm{id}_C}^p)} = \overline{F(p_{\mathrm{id}_C}^{\mathrm{id}_C})}$ . Since  $\overline{(p_p^{\mathrm{id}_C} \circ p_{\mathrm{id}_C}^p)} = \overline{p_{\mathrm{id}_C}^{\mathrm{id}_C}}$ , we have that  $p_p^{\mathrm{id}_C} \circ p_{\mathrm{id}_C}^p = p_{\mathrm{id}_C}^{\mathrm{id}_C}$ . Then the required result follows by functoriality.

By analogous reasoning we can show that

$$\left(\widehat{C_p}, \overline{F(p_p^p)}\right) \xrightarrow{F(p_p^{\operatorname{id}_C})} \left(\widehat{C_{\operatorname{id}_C}}, \overline{F(p_{\operatorname{id}_C}^{\operatorname{id}_C})}\right) \xrightarrow{F(p_{\operatorname{id}_C}^p)} \left(\widehat{C_p}, \overline{F(p_p^p)}\right)$$

is the identity. Therefore,  $F(p_p^{\mathrm{id}_C})$  is an isomorphism from F(C,p) to  $\iota_{\mathscr{D}} \circ \mathrm{Kar}(F|_{\mathscr{C}})(C,p)$ .

It remains to prove that this isomorphism is natural in (C,p). For every  $(C,p) \xrightarrow{f_p^q} (D,q)$ , we need to check that the square

$$F(C,p) \xrightarrow{F(f_p^q)} F(D,q)$$

$$\downarrow^{F(p_p^{\mathrm{id}_C})} \qquad \qquad \downarrow^{F(q_q^{\mathrm{id}_D})}$$

$$\left(\widehat{C_{\mathrm{id}_C}}, \overline{F(p_{\mathrm{id}_C}^{\mathrm{id}_C})}\right) \xrightarrow{\iota_{\mathscr{O}} \circ \mathrm{Kar}(F \circ i_{\mathscr{C}})(f_p^q)} \left(\widehat{D_{\mathrm{id}_D}}, \overline{F(p_{\mathrm{id}_D}^{\mathrm{id}_D})}\right)$$

commutes. Firstly, let us compute

$$\operatorname{Kar}(F \circ i_{\mathscr{C}})(f_p^q) = \left(F \circ i_{\mathscr{C}}(\overline{f_p^q})\right)_{F \circ i_{\mathscr{C}}(p)}^{F \circ i_{\mathscr{C}}(q)} = \left(\left(\widehat{C_{\operatorname{id}_C}}, \overline{F\left((\operatorname{id}_C)_{\operatorname{id}_C}^{\operatorname{id}_C}\right)}\right) \xrightarrow{F\left((\overline{f_p^q})_{\operatorname{id}_C}^{\operatorname{id}_D}\right)} \left(\widehat{D_{\operatorname{id}_D}}, \overline{F\left((\operatorname{id}_D)_{\operatorname{id}_D}^{\operatorname{id}_D}\right)}\right)\right)_{F \circ i_{\mathscr{C}}(p)}^{F \circ i_{\mathscr{C}}(q)}$$

Notice that  $(\overline{f_p^q})_{\mathrm{id}_C}^{\mathrm{id}_D} = f_{\mathrm{id}_C}^{\mathrm{id}_D}$ . Then, applying lemma 3,

$$\iota_{\mathscr{D}} \circ \operatorname{Kar}(F \circ i_{\mathscr{C}})(f_{p}^{q}) = \left( \left( \widehat{C_{\operatorname{id}_{C}}}, \overline{F \circ i_{\mathscr{C}}(p)} \right) \xrightarrow{F\left(f_{\operatorname{id}_{C}}^{\operatorname{id}_{D}}\right)} \left( \widehat{D_{\operatorname{id}_{D}}}, \overline{F \circ i_{\mathscr{C}}(q)} \right) \right)$$

$$= \left( \left( \widehat{C_{\operatorname{id}_{C}}}, \overline{F(p_{\operatorname{id}_{C}}^{\operatorname{id}_{C}})} \right) \xrightarrow{F\left(f_{\operatorname{id}_{C}}^{\operatorname{id}_{D}}\right)} \left( \widehat{D_{\operatorname{id}_{D}}}, \overline{F(q_{\operatorname{id}_{D}}^{\operatorname{id}_{D}})} \right) \right).$$

Using this, we get the naturality condition easily by functoriality:

$$F(f_{\mathrm{id}_C}^{\mathrm{id}_D}) \circ F(p_p^{\mathrm{id}_C}) = F\left((f \circ p)_p^{\mathrm{id}_D}\right) = F(f_p^{\mathrm{id}_D}) = F\left((q \circ f)_p^{\mathrm{id}_D}\right) = F(q_q^{\mathrm{id}_D}) \circ F(f_p^q).$$

# Section 2.2

#### Part (1)

Recall the following definitions.

**Definition 3.** Given a functor  $F: \mathcal{J} \to \mathscr{C}$ , the category  $\mathbf{C}_F$  of cones is the category where:

1. objects are pairs  $(C, (C \xrightarrow{f_j} Fj)_{j \in \mathcal{J}})$  of objects  $C \in \mathscr{C}$  and families of morphisms  $(C \xrightarrow{f_j} Fj)_{j \in \mathcal{J}})$  in  $\mathscr{C}$  such that the triangle

$$\begin{array}{c}
C \\
f_{j} \downarrow & \downarrow \\
Fj \xrightarrow{F_{g}} Fj'
\end{array}$$

commutes for all  $j \xrightarrow{g} j'$  in  $\mathcal{J}$ ,

2. morphisms  $(C, (f_i)_{i \in \mathcal{J}}) \to (C', (f'_i)_{i \in \mathcal{J}})$  are maps  $C \xrightarrow{f} C'$  in  $\mathscr{C}$  such that the triangle

$$C \xrightarrow{f} C' \downarrow f'_j \\ Fj$$

commutes for all  $j \in \mathcal{J}$ .

**Definition 4.** Given categories and functors

$$\mathscr{B}$$
 
$$\downarrow \mathscr{C}$$
 
$$\mathscr{A} \stackrel{P}{\longrightarrow} \mathscr{C}$$

the comma category  $(P \downarrow Q)$  is the category where

- 1. objects are tuples (A, h, B) with  $A \in \mathcal{A}$ ,  $B \in \mathcal{B}$  and  $PA \xrightarrow{h} QB$  in  $\mathcal{C}$ ,
- 2. morphisms  $(A, h, B) \to (A', h', B')$  are pairs  $(A \xrightarrow{f} A', B \xrightarrow{g} B')$  such that the square

$$\begin{array}{ccc} PA & \xrightarrow{Pf} & PA' \\ & \downarrow_h & & \downarrow_{h'} \\ QB & \xrightarrow{Qg} & QB' \end{array}$$

commutes.

Consider categories  $\mathcal{J}$  and  $\mathscr{C}$  and functor  $F: \mathcal{J} \to \mathscr{C}$ . We can interpret  $\mathcal{J}$  as a functor  $\mathscr{C} \to \operatorname{Fun}(\mathcal{J} \to \mathscr{C})$  defined on objects by

$$C \longmapsto \left( \begin{array}{c} j \mapsto C \\ (j \xrightarrow{f} j') \longmapsto \mathrm{id}_C \end{array} \right).$$

The functor  $\mathcal{J}$  sends a morphism  $C \xrightarrow{g} C'$  in  $\mathscr{C}$  to the natural transformation  $\mathcal{J}(C) \to \mathcal{J}(C')$  with components  $J(C)(j) = C \xrightarrow{g} C' = J(C)(j')$ . It is easy to verify that this is indeed a natural transformation (i.e. it satisfies the naturality square). To verify that  $\mathcal{J}$  is a functor, we need to check that it preserves identities and composition. This is trivial.

Moreover, we can interpret F as a functor  $\mathbf{1} \to \operatorname{Fun}(\mathcal{J} \to \mathscr{C})$  defined on objects by

$$1 \longmapsto \left(\begin{array}{c} j \mapsto Fj \\ (j \xrightarrow{f} j') \longmapsto (Fj \xrightarrow{Ff} Fj') \end{array}\right).$$

The functor  $F: \mathbf{1} \to \operatorname{Fun}(\mathcal{J} \to \mathscr{C})$  sends the identity morphism in  $\mathbf{1}$  to the identity natural transformation on F(1). It follows F preserves identities and composition. Thus, we have the following categories and functors:

$$\begin{array}{c} \mathbf{1} \\ \downarrow_F \\ \mathscr{C} \stackrel{\mathcal{I}}{\longrightarrow} \operatorname{Fun}(\mathcal{I} \to \mathscr{C}) \end{array}$$

Using these interpretations of  $\mathcal{J}$  and F, we get a comma category  $(\mathcal{J} \downarrow F)$ . Its objects are tuples (C, h, 1) with  $C \in \mathscr{C}$  and  $\mathcal{J}(C) \xrightarrow{h} F(1)$ . Note that h is a natural transformation, so we get components  $h_j$  for all  $j \in \mathcal{J}$  satisfying the commutative square:

$$C \xrightarrow{\operatorname{id}_C} C \\ \downarrow^{h_j} \qquad \downarrow^{h_{j'}} \\ Fj \xrightarrow{Fg} Fj'$$

Notice that the above square is exactly saying that  $(C, (h_j)_{j \in \mathcal{J}})$  is an object in the category  $\mathbf{C}_F$  of cones of F. Thus, every object in  $(\mathcal{J} \downarrow F)$  can be considered as an object in  $\mathbf{C}_F$ . Similarly, an object  $(C, (h_j)_{j \in \mathcal{J}})$  in  $\mathbf{C}_F$  can be considered as an object (C, h, 1) in  $(\mathcal{J} \downarrow F)$  where h is that natural transformation with components  $h_j$ .

Now consider a morphism  $(C, h, 1) \to (C', h', 1)$  in  $(\mathcal{J} \downarrow F)$ . By definition, it is a pair  $(C \xrightarrow{g} C', 1 \xrightarrow{\mathrm{id}_1} 1)$  of morphisms in  $\mathscr{C}$  and  $\mathbf{1}$  such that the square of functors and natural transformations in Fun $(\mathcal{J} \to \mathscr{C})$ 

$$\mathcal{J}(C) \xrightarrow{\mathcal{J}(g)} \mathcal{J}(C')$$

$$\downarrow h \qquad \qquad \downarrow h'$$

$$F(1) \xrightarrow{F(\mathrm{id}_1)} F(1)$$

commutes. This is exactly saying that, for all  $j \in \mathcal{J}$ , the square

$$\mathcal{J}(C)(j) = C \xrightarrow{\mathcal{J}(g)_j = g} \mathcal{J}(C')(j) = C'$$

$$\downarrow h_j \qquad \qquad \downarrow h'_j$$

$$F(1)(j) = F(j) \xrightarrow{\mathrm{id}_{F_j}} F(1)(j) = F(j)$$

commutes. This is exactly the property that  $C \xrightarrow{g} C'$  is a map  $(C, (h_j)_{j \in \mathcal{J}}) \to (C', (h'_j)_{j \in \mathcal{J}})$  in  $\mathbf{C}_F$ . Thus, a morphism  $(C \xrightarrow{g} C', 1 \xrightarrow{\operatorname{id}_1} 1)$  from (C, h, 1) to (C', h', 1) in  $(\mathcal{J} \downarrow F)$  can be considered as a morphism  $C \xrightarrow{g} C'$  from  $(C, (h_j)_{j \in \mathcal{J}})$  to  $(C', (h'_j)_{j \in \mathcal{J}})$  in  $\mathbf{C}_F$ . Similarly, a morphism  $C \xrightarrow{g} C'$  from  $(C, (h_j)_{j \in \mathcal{J}})$  to  $(C', (h'_j)_{j \in \mathcal{J}})$  in  $\mathbf{C}_F$  can be considered as a morphism  $(C \xrightarrow{g} C', 1 \xrightarrow{\operatorname{id}_1} 1)$  from (C, h, 1) to (C', h', 1) in  $(\mathcal{J} \downarrow F)$ .

Therefore, the comma category  $(\mathcal{J} \downarrow F)$  is the same as the category  $\mathbb{C}_F$  of cones of F.

## Section 2.3

## Part (1)

In this section we will prove the Yoneda lemma. Recall the following definitions.

**Definition 5.** Let  $\mathscr{A}$  be a locally small category and A an object in  $\mathscr{A}$ . Define the functor  $H_A: \mathscr{A}^{\mathrm{op}} \to \mathbf{Set}$  by

$$H_A(B) = \operatorname{Hom}_{\mathscr{A}}(B \to A),$$

for objects B in  $\mathscr{A}$  and

$$H_A(B \xrightarrow{g} B') : \operatorname{Hom}_{\mathscr{A}}(B' \to A) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(B \to A)$$

$$p \longmapsto p \circ g,$$

for morphisms  $B \xrightarrow{g} B'$  in  $\mathscr{A}$ . Moreover, given a map  $A \xrightarrow{f} A'$  in  $\mathscr{A}$ , define the induced natural transformation  $H_f: H_A \to H_{A'}$  by its components

$$(H_f)_B: H_A(B) = \operatorname{Hom}_{\mathscr{A}}(B \to A) \longrightarrow H_{A'}(B) = \operatorname{Hom}_{\mathscr{A}}(B \to A')$$

$$p \longmapsto f \circ p,$$

for all B in  $\mathscr{A}$ .

Given a functor  $X: \mathscr{A}^{\mathrm{op}} \to \mathbf{Set}$ , consider the morphisms  $\mathrm{Hom}_{[\mathscr{A}^{\mathrm{op}}, \mathbf{Set}]}(H_A \to X)$ . These are natural transformations. from  $H_A$  to X.

**Theorem 2** (Yoneda). For  $\mathscr{A}$  locally small,  $\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X)$  is a set<sup>1</sup>, and

$$\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X) \cong X(A)$$

naturally in A in  $\mathscr{A}$  and X in  $[\mathscr{A}^{op}, \mathbf{Set}]$ .

This is theorem 4.2.1 in Leinster.

*Proof.* We will define mutually invertible maps

$$\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X) \xrightarrow{(\uparrow)} X(A)$$

for each A and X. Then we will show that the bijection ( $\hat{}$ ) is natural in A and X.

For a natural transformation  $\alpha: H_A \Rightarrow X$ , defined  $\hat{\alpha} = \alpha_A(\mathrm{id}_A)$ . This is an element of X(A). Why? By definition of a natural transformation,  $H_A(A) = \mathrm{Hom}_{\mathscr{A}}(A \to A) \xrightarrow{\alpha_A} X(A)$  is a map in **Set**. So  $\alpha_A(\mathrm{id}_A)$  is an element of X(A).

For  $x \in X(A)$ , define a natural transformation  $\tilde{x}: H_A \to X$  as follows. Given B in  $\mathscr{A}$ , we need to define the component  $\tilde{x}_B: H_A(B) = \operatorname{Hom}_{\mathscr{A}}(B \to A) \to X(B)$  as a map in **Set**. For  $f \in \operatorname{Hom}_{\mathscr{A}}(B \to A)$ , define

$$\tilde{x}_B(f) = (X(f))(x).$$

Notice that X(f) is a map  $X(A) \to X(B)$  in **Set**, so  $X(f)(x) \in X(B)$  as required. We need to prove that the components satisfy the naturality condition. That is, for any map  $B' \xrightarrow{g} B$  in  $\mathscr{A}$ , the square

$$H_A(B) = \operatorname{Hom}_{\mathscr{A}}(B, A) \xrightarrow{H_A g} H_A(B') = \operatorname{Hom}_{\mathscr{A}}(B'A)$$

$$\downarrow^{\tilde{x}_B} \downarrow \qquad \qquad \downarrow^{\tilde{x}_{B'}}$$

$$X(B) \xrightarrow{Xg} X(B')$$

<sup>&</sup>lt;sup>1</sup>Without knowing this first, the isomorphism  $\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X) \cong X(A)$  doesn't make sense. We need to know that  $\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X)$  lives in **Set** before we can talk about isomorphisms between it and X(A). Moreover, it's not possible to prove that  $\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X)$  is a set without proving the Yoneda lemma, despite what Leinster implies. There is actually more going on here and what I've done isn't strictly correct. (I assume that  $\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X)$  is a class and that a class which is in bijection with a set is a set.) See https://math.stackexchange.com/questions/2245952/yoneda-lemma-why-is-mathscr-a-textop-textbfseth-a-x-a-set/2246284#2246284 if you're interested (especially the comments on HeinrichD's answer).

commutes. This follows by unwrapping definitions: for all  $f \in \text{Hom}_{\mathscr{A}}(B,A)$ , we have

$$\begin{array}{ccc}
f & \longrightarrow & f \circ g \\
\downarrow & & \downarrow \\
\downarrow & & (X(f \circ g))(x) \\
(Xf)(x) & \longmapsto & (Xg \circ Xf)(x)
\end{array}$$

and  $X(f \circ g) = (Xg \circ Xf)$  by functorality. (Remember X is contravariant.) Thus, the square commutes.

We have now defined (^) and (~). We will show that they are mutually inverse: for  $x \in X(A)$ ,

$$\hat{\tilde{x}} = \tilde{x}_A(\mathrm{id}_A) = (X(\mathrm{id}_A))(x) = \mathrm{id}_{X(A)}(x) = x.$$

Next, we want to show  $\tilde{\alpha} = \alpha$  for natural transformation  $\alpha : H_A \to X$ . This amounts to showing all the components are equal:  $\tilde{\alpha}_B = \alpha_B$  for B in  $\mathscr{A}$ . These are functions of sets  $H_A(B) = \operatorname{Hom}_{\mathscr{A}}(B \to A) \to X(B)$ , so to check equality, we need to verify

$$\tilde{\hat{\alpha}}_B(f) = \alpha_B(f)$$

for all  $f \in \operatorname{Hom}_{\mathscr{A}}(B \to A)$ . By definition,  $\tilde{\alpha}_B(f) = (Xf)(\hat{\alpha}) = (Xf)(\alpha_A(\operatorname{id}_A))$ . Also, we get that

$$(Xf)\left(\alpha_A(\mathrm{id}_A)\right) = \alpha_B\left(\left(H_A(f)\right)(\mathrm{id}_A)\right) = \alpha_B(f) \tag{1}$$

by naturality of  $\alpha$ :

$$H_A(A) = \operatorname{Hom}_{\mathscr{A}}(A \to A) \xrightarrow{H_A(f) = -\circ f} H_A(B) = \operatorname{Hom}_{\mathscr{A}}(B \to A)$$

$$\downarrow^{\alpha_A} \qquad \qquad \downarrow^{\alpha_B}$$

$$X(A) \xrightarrow{Xf} X(B).$$

This establishes the bijection (^) and allows us to conclude that  $\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}},\mathbf{Set}]}(H_A \to X)$  is a set. It remains to show that it is natural in A and X. Let us spell out what this actually means. We have two functors

$$F: \left[\mathscr{A}^{\mathrm{op}}, \mathbf{Set}\right] \times \mathscr{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$$

$$(X, A) \longmapsto \operatorname{Hom}_{\left[\mathscr{A}^{\mathrm{op}}, \mathbf{Set}\right]}(H_A \to X)$$

$$(X \stackrel{\beta}{\Rightarrow} X', A \stackrel{f}{\to} A') \longmapsto \left(\left(H_{A'} \stackrel{\alpha}{\Rightarrow} X\right) \mapsto \left(H_A \stackrel{\beta \circ \alpha \circ H_f}{\Longrightarrow} X'\right)\right)$$

$$G: \left[\mathscr{A}^{\mathrm{op}}, \mathbf{Set}\right] \times \mathscr{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$$

$$(X, A) \longmapsto X(A)$$

$$(X \stackrel{\beta}{\Rightarrow} X', A \stackrel{f}{\to} A') \longmapsto \left(X(A') \stackrel{\beta_A \circ Xf}{\Longrightarrow} X'(A)\right).$$

We want to show that  $(\hat{\ })$  is a natural transformation in two variables X,A between F and G. Exercise 1.3.29 in Leinster states that this is equivalent to checking naturality in each variable separately. That is, it suffices to show that

- 1. (^) is a natural transformation between  $F^X$  and  $G^X$  for every X in  $[\mathscr{A}^{op}, \mathbf{Set}]$ , and
- 2. (^) is a natural transformation between  $F_A$  and  $G_A$  for every A in  $\mathscr{A}^2$ .

To check 1., we need to check the following square commutes for each X in  $[\mathscr{A}^{\mathrm{op}}, \mathbf{Set}]$  and  $B \xrightarrow{f} A$  in  $\mathscr{A}$ :

$$\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}}, \mathbf{Set}]}(H_A \to X) \xrightarrow{F^X(f) = -\circ H_f} \operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}}, \mathbf{Set}]}(H_B \to X)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

For a natural transformation  $\alpha: H_A \Rightarrow X$ , we have

$$\begin{array}{ccc}
\alpha & \longmapsto & \alpha \circ H_f \\
\downarrow & & \downarrow \\
& \downarrow & & (\alpha \circ H_f)_B(\mathrm{id}_B) \\
\alpha_A(\mathrm{id}_A) & \longmapsto & (Xf)(\alpha_A(\mathrm{id}_A).
\end{array}$$

Using equation 1, we compute

$$(\alpha \circ H_f)_B(\mathrm{id}_B) = \alpha_B\left((H_f)_B(\mathrm{id}_B)\right) = \alpha_B(f \circ \mathrm{id}_B) = \alpha_B(f) = (Xf)(\alpha_A(\mathrm{id}_A)).$$

Thus, we have shown the naturality of ( $\hat{}$ ) between  $F^X$  and  $G^X$ . To check naturality between  $F_A$  and  $G_A$ , we need that the square

$$\operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}}, \mathbf{Set}]}(H_A \to X) \xrightarrow{F_A(\beta) = \beta \circ -} \operatorname{Hom}_{[\mathscr{A}^{\operatorname{op}}, \mathbf{Set}]}(H_B \to X)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

commutes for all A in  $\mathscr{A}$  and all natural transformations

$$\mathscr{A}^{\mathrm{op}}$$
  $\underset{X'}{\bigvee}_{\beta}$  **Set**.

Again, we compute this directly. For  $\alpha: H_A \Rightarrow X$ , we have



Recall that if  $F: \mathscr{A} \times \mathscr{B} \to \mathscr{C}$  is a functor then for each A in  $\mathscr{A}$ , we have that  $F^A: \mathscr{B} \to \mathscr{C}$  is a functor defined on objects by  $F^A(B) = F(A,B)$  and on maps g in  $\mathscr{B}$  by  $F^A(g) = F(\operatorname{id}_A,g)$ . Similarly, for each B in  $\mathscr{B}$ , the functor  $F_B: \mathscr{A} \to \mathscr{C}$  is defined on objects by  $F_B(A) = F(A,B)$  and on maps f in  $\mathscr{A}$  by  $F_B(f) = F(f,\operatorname{id}_B)$ .

We get  $(\beta \circ \alpha)_A = \beta_A \circ \alpha_A$  by definition of composition in the functor category  $[\mathscr{A}^{op}, \mathbf{Set}]$ . Thus, we have shown the naturality of  $(\hat{\ })$  between  $F_A$  and  $G_A$ .

### Part (2)

How does this part relate to the Yoneda lemma?

In this section we will explain why  $[\mathscr{C}^{op}, \mathscr{D}]$  is the same as  $[\mathscr{C} \to \mathscr{D}^{op}]$ . (By Fun $(\mathscr{C} \to \mathscr{D})$  I assume you mean the category of functors, not the *set* of functors.)

A functor is defined by what it does to objects and what it does to morphisms. A functor  $F: \mathscr{C}^{\text{op}} \to \mathscr{D}$  sends objects in  $\mathscr{C}$  to objects in  $\mathscr{D}$ . Secondly, F sends maps  $C \stackrel{f}{\leftarrow} C'$  in  $\mathscr{C}^{\text{op}}$  to maps  $F(C') \xrightarrow{F(f)} F(C)$  in  $\mathscr{D}$ . But  $C \stackrel{f}{\leftarrow} C'$  in  $\mathscr{C}^{\text{op}}$  is simply a map  $C \xrightarrow{f} C'$  in  $\mathscr{C}$ . So we can consider F as sending maps  $C \xrightarrow{f} C'$  in  $\mathscr{C}^{\text{op}}$  to maps  $F(C') \xrightarrow{F(f)} F(C)$  in  $\mathscr{D}$ .

In comparison, a functor  $G:\mathscr{C}\to\mathscr{D}^{\mathrm{op}}$  sends objects in  $\mathscr{C}$  to objects in  $\mathscr{D}$ . It sends maps  $C\xrightarrow{f}C'$  in  $\mathscr{C}$  to maps  $G(C)\xrightarrow{G(f)}G(C')$  in  $\mathscr{D}^{\mathrm{op}}$ . Notice that  $G(C)\xrightarrow{G(f)}G(C')$  in  $\mathscr{D}^{\mathrm{op}}$  is simply a map  $G(C)\xleftarrow{G(f)}G(C')$  in  $\mathscr{D}$ . Thus, we can consider G as sending maps  $C\xrightarrow{f}C'$  in  $\mathscr{C}$  to maps  $G(C')\xrightarrow{G(f)}G(C)$  in  $\mathscr{D}$ . But this is exactly the same behaviour as a functor  $\mathscr{C}^{\mathrm{op}}\to\mathscr{D}$  described above. So we can consider functors  $\mathscr{C}\to\mathscr{D}^{\mathrm{op}}$  as functors  $\mathscr{C}^{\mathrm{op}}\to\mathscr{D}$ .

Also, we can consider natural transformations



as natural transformations

in the following way. A natural transformation  $\alpha: F \to G$  in  $[\mathscr{C}^{op}, \mathscr{D}]$  is defined to be the components  $(F(C) \xrightarrow{\alpha_C} G(C))_{C \in \mathscr{C}^{op}}$ . The components are maps in  $\mathscr{D}$ . But the objects in  $\mathscr{C}^{op}$  are exactly the objects in  $\mathscr{C}$ . So we can equally describe  $\alpha$  by the components  $(F(C) \xrightarrow{\alpha_C} G(C))_{C \in \mathscr{C}}$ . The naturality condition states that for every morphism  $C \xrightarrow{f} D$  in  $\mathscr{C}$ , the square of morphisms in  $\mathscr{D}$ 

$$F(C) \xleftarrow{F(f)} F(D)$$

$$\alpha_C \downarrow \qquad \qquad \downarrow \alpha_D$$

$$G(C) \xleftarrow{G(f)} G(D)$$

commutes.

Now, a natural transformation  $\beta: G \to F$  in  $[\mathscr{C}, \mathscr{D}^{op}]$  is defined to be the components

$$(G(C) \xrightarrow{\beta_C} F(C))_{C \in \mathscr{C}}$$

of maps in  $\mathscr{D}^{op}$ . Equally, we can describe the components to be maps  $(F(C) \xrightarrow{\beta_C} G(C))_{C \in \mathscr{C}}$  in  $\mathscr{D}$ . The

naturality condition states that for every morphism  $C \xrightarrow{f} D$  in  $\mathscr{C}$ , the square of morphisms in  $\mathscr{D}^{\text{op}}$ 

$$G(C) \xrightarrow{G(f)} G(D)$$

$$\beta_C \downarrow \qquad \qquad \downarrow \beta_D$$

$$F(C) \xrightarrow{F(f)} F(D)$$

commutes. This is equivalent to the statement that the square of morphisms in  $\mathcal{D}$ 

$$G(C) \xleftarrow{G(f)} G(D)$$

$$\beta_C \uparrow \qquad \qquad \uparrow \beta_D$$

$$F(C) \xleftarrow{F(f)} F(D)$$

commutes. But this description of  $\beta$  is exactly the same as the description of a natural transformation  $\alpha: F \to G$  in  $[\mathscr{C}^{op}, \mathscr{D}]$ . So we can interpret natural transformations  $G \to F$  in  $[\mathscr{C}, \mathscr{D}^{op}]$  as natural transformations  $F \to G$  in  $[\mathscr{C}^{op}, \mathscr{D}]$ , and visa versa.

I talked to Kie Seng about the second half of this part.

Claim 4. We have the following non-equivalence

$$\mathbf{Set}^{\mathrm{op}} \ncong \mathbf{Set}.$$

To prove this we need a lemma.

**Lemma 4.** An equivalence between categories sends initial objects to initial objects and terminal objects to terminal objects.

I looked at https://math.stackexchange.com/a/840065 when proving this.

*Proof.* Suppose  $F:\mathscr{C}\to\mathscr{D}$  is an equivalence and I an initial object of  $\mathscr{C}$ . We will show that F(I) is initial in  $\mathscr{D}$ .

Let D be an object in  $\mathscr{D}$ . Since F is essentially surjective, there is some object C in  $\mathscr{C}$  and some isomorphism  $F(C) \xrightarrow{\phi} D$ . (Note that it is not correct to say that  $F(I) \xrightarrow{F(f)} F(C) \xrightarrow{\phi} D$  is the only map  $F(I) \to D$ , since we do not know that the isomorphism  $\phi$  is the only map  $F(C) \to D$ .)

We claim that we have a bijection

$$\operatorname{Hom}_{\mathscr{D}}(F(I) \to F(C)) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(F(I) \to D)$$

$$f \longmapsto \phi \circ f$$

We see that this map is injective since if  $\phi \circ f = \phi \circ g$  then  $f = \phi^{-1} \circ \phi \circ f = \phi^{-1} \circ \phi \circ g = g$ . Also, given  $F(I) \xrightarrow{g} D$ , we have that  $\phi^{-1} \circ g$  is a map  $F(I) \to F(C)$  with  $\phi \circ (\phi^{-1} \circ g) = g$ . So the map is also surjective.

Moreover, since F is full and faithful, we have a bijection

$$\operatorname{Hom}_{\mathscr{C}}(I \to C) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(F(I) \to F(C)).$$

(It suffices to have a surjection, since we know that  $\operatorname{Hom}_{\mathscr{C}}(I \to C)$  is a singleton.)

Therefore, we have a bijection between  $\operatorname{Hom}_{\mathscr{C}}(I \to C)$  and  $\operatorname{Hom}_{\mathscr{D}}(F(I) \to D)$  for any object D and so F(I) must be initial.

The proof of the second half of the lemma is analogous.

*Proof of claim 4.* Suppose  $F : \mathbf{Set} \to \mathbf{Set}^{\mathrm{op}}$  is an equivalence. We know that  $\emptyset$  is initial in  $\mathbf{Set}$  and the set  $\mathbf{1}$  of one object is initial in  $\mathbf{Set}^{\mathrm{op}}$ . By the above lemma,  $F(\emptyset) \cong \mathbf{1}$ .

Also, **1** is terminal in **Set** and  $\emptyset$  is terminal in **Set**<sup>op</sup>. So  $F(\mathbf{1}) \cong \emptyset$ . Now, suppose  $S \neq \emptyset$  is a set. There exists a map  $\mathbf{1} \xrightarrow{f} S$  in **Set**. Then  $F(S) \xrightarrow{F(f)} F(\mathbf{1})$  is also a map in **Set**. Since  $F(\mathbf{1}) \cong \emptyset$ , this implies we have a map  $F(S) \to \emptyset$  in **Set**. Therefore,  $F(S) = \emptyset$ .

Combining the results of the preceding two paragraphs, we get that, for any set R,

$$F(R) \cong \begin{cases} \mathbf{1} & \text{if } S = \emptyset, \\ \emptyset & \text{if } S \neq \emptyset. \end{cases}$$

This implies F is not essentially surjective.

Claim 5. We have the following equivalence

$$\mathbf{fdVec}^{\mathrm{op}} \cong \mathbf{fdVec}$$
.

*Proof.* This follows from the fact that  $[\mathscr{C}^{op}, \mathscr{D}] = [\mathscr{C}, \mathscr{D}^{op}]$  for any categories  $\mathscr{C}$  and  $\mathscr{D}$ . Consider the dual functor ()\*:  $\mathbf{fdVec}^{op} \to \mathbf{fdVec}^{op}$ . We can also consider it as a functor ()\*:  $\mathbf{fdVec}^{op} \to \mathbf{fdVec}$ . We will show that there are natural isomorphisms ()\*  $\circ$  ()\*  $\to$   $\mathbf{id}_{\mathbf{fdVec}}$  and  $\mathbf{id}_{\mathbf{fdVec}^{op}} \to$  ()\*  $\circ$  ()\*.

In example 1.3.4, Leinster constructs a natural isomorphism

$$\mathbf{fdVec} \qquad \qquad \downarrow \alpha \qquad \mathbf{fdVec}$$

This gives us one of the required natural isomorphisms. We can rewrite this as



Applying the result  $[(\mathbf{fdVec^{op}})^{op}, \mathbf{fdVec}] = [\mathbf{fdVec^{op}}, \mathbf{fdVec^{op}}]$ , we get that



is also a natural isomorphism. This is the other required natural isomorphism.