

Ch—06 Electromagnetic Induction Daily Practice Problem 06

- **Q1.** A magnetic flux of $8 \times 10^{-4} Wb$ is linked with each turn of a 200 turn coil when there is an electric current of 4A in it. Calculate the self-inductance of the coil.
- **Q2.** The self-inductance of an inductor coil having $100 \ turns$ is $20 \ mH$. Calculate the magnetic flux through the cross-section of the coil corresponding to a current of $4 \ mA$. Also, find the total flux.
- **Q3.** An average induced emf of 0.4 V appears in a coil when the current in it is changed from 10 A in one direction to 10 A in opposite direction in 0.40 second. Find the coefficient of self-induction of the coil.
- **Q4.** What is the self-inductance of a solenoid of length $40 \ cm$, area of cross-section $20 \ cm^2$ and total number of turns 800?
- **Q5.** The current in a solenoid of $240 \ turns$, having a length of $12 \ cm$ and a radius of

2 cm, changes at the rate of $0.8 As^{-1}$. Find the emf induced in it.

- **Q6.** A 12 V battery connected to a 6 Ω , 10 H coil through a switch drives a constant current through the circuit. The switch is suddenly opened. If it takes 1 ms to open the switch, find the average emf induced across the coil.
- **Q7.** An air-cored solenoid with length $30 \ cm$, area of cross-section $25 \ cm^2$ and number of turns 500, carries a current of $2.5 \ A$. The current is suddenly switched off in a brief time of 10^{-3} s. How much is the average back emf induced across the ends of the open switch in the circuit?
- **Q8.** A 0.5 m long solenoid of $10 \ turns/cm$ has area of cross-section $1cm^2$. Calculate the voltage induced across its ends if the current in the solenoid is changed from $1 \ A$ to $2 \ A$ in $0.1 \ s$.

ANSWERS

1. $4 \times 10^{-2} H$

2. $8 \times 10^{-7} Wb$, $8 \times 10^{-5} Wb$

3. 8 mH

4. 4.02 mH

5. $6 \times 10^{-4} V$

6. 20,000 *V*

7. 6.542 *V*

8. 0.628 mV