Лабораторная работа №16

Задачи оптимизации. Модель двух стратегий обслуживания

Алиева Милена Арифовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16
Сп	исок литературы	17

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт по модели первой стратегии обслуживания	8
3.3	Модель второй стратегии обслуживания	9
3.4	Отчет по модели второй стратегии обслуживания	9
3.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	11
3.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	11
3.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	12
3.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	12
3.9	Модель первой стратегии обслуживания с 4 пропускными пунктами	13
3.10	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	13
3.11	Модель второй стратегии обслуживания с 3 пропускными пунктами	14
3.12	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	14
3.13	Модель второй стратегии обслуживания с 4 пропускными пунктами	15
3.14	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	15

Список таблиц

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры. [1]

2 Задание

Реализовать с помощью gpss модель с двумя очередями, модель с одной очередью и изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

- 1) На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:
- автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

Целью моделирования является определение:

- характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;
- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 3.1).

```
EUntitled Model 

GENERATE (Exponential(1,0,1.75)); npu6wine abtomo6uneŭ fest Le QSOtheri,QSOtheri2,0bsl 2; nnuma ov. 1 - nnume ov. 2 
TEST LE QSOtheri,QSOtheri2,0bsl 2; nnuma ov. 1 - nnume ov. 2 
TEST LE QSOtheri,QSOtheri2,0bsl 1; nnuma ov. 1 - nnume ov. 2 
TEANSFER 0.5,Obsl 1,Obsl 2; nnuma ovepeneŭ pamma, 
; modenposamue padovim nymkra 1 
Obsl 1,QUEUE Otheri ; npucoemumenue k ovepenu 1 
SEIZE punkl ; samrue nymkra 1 
DEPART Otheri ; nbxog us ovepenu 1 
ADVANCE 4,3; odonymumanue na nymkra 1 
TERMINATE ; abtomo6una nokugaer cucremy ; Modenposamue padovim nymkra 2 
Obsl 2,QUEUE Otheri ; npucoemumenue k ovepenu 2 
SEIZE punkl ; osamformenum e nymkra 2 
DEPART Otheri ; mbxog us ovepenu 2 
ADVANCE 4,3; odonymumanue na nymkra 2 
DEPART Otheri ; mbxog us ovepenu 2 
ADVANCE 4,3; odonymumanue na nymkra 2 
TERMINATE ; abtomo6una nokugaer cucremy ; TERMINATE ; abtomo6una nokugaer cucremy ; sanahwe vychomus ocrahobku npolenypa modenupobahus 
GENERATE 10080 ; remepanus фиктивного транажта, ; указывашено на сокомание рабочей недели ; (7 дней х 24 часа х 60 мин = 10080 мин) 
TERMINATE 1; ocrahobuth modenupobahus 
START 1 ; sanyck процедуры моделирования 
START 1 ; sanyck процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. 3.2).

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным

пунктом (рис. 3.3, 3.4).

```
☐ Undited Model 2

punk: STORAGE 2

GENERATE (Exponential (1, 0, 1.75)) : mpudative abromodume#

GUTUR Other : mpudementer k overpain 1

EMPART Other : manda is overpain 1

EMPART I : manda is overpain is overpain 1

EMPART OTHER OTH
```

Рис. 3.3: Модель второй стратегии обслуживания

	GPSS Worl	ld Simulation Repo	rt - Untitle	d Model 2.4.	1	
	Thu	sday, May 22, 202	5 01:19:13			
	START TIME	END TIME	BLOCKS FA	CILITIES ST	ORAGES	
	0.000	10080.000	9	0	1	
	NAME		VALUE			
	OTHER		001.000			
	PUNKT		000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COUNT (CURRENT COUN	T RETRY	
	1	GENERATE QUEUE ENTER	5719	0	0	
	2	QUEUE	5719	668	0	
	3	ENTER	5051	0	0	
		DEPART				
		ADVANCE				
		LEAVE				
		TERMINATE				
		GENERATE		0		
	9	TERMINATE	1	0	0	
UEUE	MAX	CONT. ENTRY ENTRY	(0) AVE.CONT	AVE.TIME	AVE.(-0) RETRY	
OTHER		668 5719				
TORAGE	CAP	REM. MIN. MAX.	ENTRIES AVI.	AVE.C. UTI	L. RETRY DELAY	
PUNKT		0 0 2				

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1

Показатель	стратегия 1			стратегия 2
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

2) Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 3.5).

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. 3.5).

	GPSS World	Simulation Re	ort - Untitle	d Model 2.	10.1		
	Thurs	day, May 22, 2	025 01:52:49				
	STADT TIME	END TI	E BLOCKS F7	CILITIES	STODACES		
		10080.0					
	NAME OTHER		VALUE LOOGO.OOO				
	PUNKT		L0000.000 L0001.000				
	PUNKI		10001.000				
LABEL	TOC	BLOCK TYPE	ENTRY COUNT	CURRENT CO	INT RETRY		
LINDLA		GENERATE		0			
		QUEUE					
		SEIZE					
		DEPART	2511	0	0		
		ADVANCE	2511	1	0		
	6	RELEASE	2510	0	0		
	7	TERMINATE	2510	0	0		
	8	GENERATE	1	0	0		
	9	TERMINATE	1	0	0		
FACILITY	ENTRIES						
PUNKT	2511	1.000	4.014 1	2512 0	0 0	3233	
QUEUE	MAX C						
OTHER	3234 3	233 5744	1 1617.676	2838.819	2839.313	0	

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. 3.7, 3.8).

```
GENERATE (Exponential(1,0,1.75)); npwChrwe abronoGunek

TRANSFER 0.33,go,Chsi_3
go TRANSFER 0.30,Gbsi_1,Obsi_2: mnuns owepenek pabmu,

; mbGupaen произв. пункт пропуска
; mcgmmposamove paGorms пункта 1
Cobsi_1 (JUEUE Other): присо-димение к очереди 1
SEIZE punktl : sanstwe пункта 1
DEFART Other1: mskcou из очереди 1
ADVANCE 4,3: oбслуживание на пункте 1
REMINATE : abronoEdumen пункта 1
TERMINATE : abronoEdumen пункта 2
Cobsi_2 (QUEUE Other2: pnpuco-димение к очереди 2
SEIZE punkt : cabonoEdumen пункта 2
Cobsi_2 (QUEUE Other2: pnpuco-димение к очереди 2
SEIZE punkt : sanstwam nymera 2
DEFART Other2: shkcou из очереди 2
IDEFART Other2: shkcou из очереди 2
REMINATE : abronoEdumen nomunater ucreeny
Obsi_3 (QUEUE Other3: pnpuco-димение к очереди 3
SEIZE punkt : sanstwam nomunater ucreeny
Obsi_3 (QUEUE Other3: pnpuco-димение к очереди 3
SEIZE punkt : sanstwam nomunater ucreeny
Obsi_3 (QUEUE Other3: pnpuco-димение к очереди 3
ADVANCE 4,3: oбслуживание на пункте 3
RELEASE punkt : sanstwam nomunater ucreeny
Obsi_3 (QUEUE Other3: pnpuco-димение к очереди 3
ADVANCE 4,3: oбслуживание на пункте 3
RELEASE punkt : cabonoGumen unymera 3
TERMINATE: a sanstwam of unymera 4
TERMINATE: a sanstwam of unymera 5
TERMINATE: a sanstwam of unymera 6
TERMINATE: a unymera 6
TERMINATE
```

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL	LOC	BLOCK TYP	E	ENTR	Y COUN	T CURR	ENT C	TNUC	RETRY	
	1	GENERATE		5	547		0		0	
	2	TRANSFER		5	547		0		0	
GO	3	TRANSFER		3	682		0		0	
OBSL 1	4	QUEUE		1	853		1		0	
-	5	SEIZE		1	852		0		0	
	6	DEPART		1	852		0		0	
	7	ADVANCE		1	852		1		0	
	8	RELEASE		1	851		0		0	
	9	TERMINATE		1	851		0		0	
OBSL 2	10	QUEUE		1	829		0		0	
_	11	SEIZE		1	829		0		0	
	12	DEPART		1	829		0		0	
	13	ADVANCE		1	829		0		0	
	14	RELEASE		1	829		0		0	
	15	TERMINATE		1	829		0		0	
OBSL 3	16	QUEUE		1	865		3		0	
	17	SEIZE		1	862		0		0	
	18	DEPART			862		0		0	
	19	ADVANCE		1	862		1		0	
		RELEASE			861		0		0	
		TERMINATE		1			0		0	
		GENERATE			1		0		0	
	23	TERMINATE			1		0		0	
FACILITY	ENTRIES	UTIL.	AVE.	TIME	AVAIL.	OWNER	PEND	INTE	R RETRY	DELAY
PUNKT2	1829	0.717		3.952	1	0	0	0	0	0
PUNKT3	1862	0.740		4.006	1	5534	0	0	0	3
PUNKT1		0.727				5546				1
QUEUE	MAX C	ONT. ENTRY	ENT	RY(0)	AVE.CO	NT. AV	E.TIM	E A	VE. (-0)	RETRY
OTHER2	11	0 1829		508		2			8.482	
OTHER3	13	3 1865		513	1.13	4	6.13	2	8.458	0
OTHER1	9	1 1853		529	0.92	9	5.05	5	7.075	0

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 3.9, 3.10).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

TRANSFER O.5, ob.; 1,0bs1,2;
b TRANSFER O.5, ob.; 1,0bs1,2;
c Mademuposanue paGorm пункта 1

Ds.1 (OUTLE Other!); присоедимение к очереди 1

SELZE punktl; занатие пункта 1

TERRITORI, занатие пункта 1

TERRITORI, занатие пункта 1

TERRITORI, занатие пункта 1

TERRITORI, занатие пункта 2

SELZE punktl; занатиме пункта 2

TERRITARIE; автомобиль покидает систему;
колемировамие работы пункта 3

DS.1 3 QUEUE Other 2; вколо из очереди 2

ADVANCE 4,3; обслуживание на пункте 2

TERRITARIE; автомобиль покидает систему;
колемировамие работы пункта 3

DS.1 3 QUEUE Other 3; присоединение к очереди 3

SELZE punktl; занатие пункта 3

DEPART Other 3; вколи из очереди 3

ADVANCE 4,3; обслуживание на пункте 3

RELEASE punktl; занатие пункта 3

TERRITARIE; автомобиль покидает систему;
колемирование работы пункта 3

TERRITARIE; автомобиль помидает систему;
колемирование работы пункта 4

SELZE punktl; занатие пункта 4

TERRITARIE; автомобиль помидает систему;
колемирование работы пункта 4

TERRITARIE; автомобиль помидает систему;
колемирование условия остемовим процедуры моделирования

GENERATE 10080; генерация фикивного транзакта,
куказываниего на оконамие рабочей медели

START 1; запуск процедуры моделирования

TERRITARIE 1; остемовочей медели

START 1; запуск процедуры моделирования
```

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются оптималь-

ным количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
Unitied Model 2

punkx 3708AGE 3

generate (Exponential (1, 0, 1.75)) ; nputative abtonogues 
generate (1, 1.75) ; nputative (1, 1.75) ; nputative abtonogues 
generate (1, 1.75) ; nputative (1, 1.75) ; nput
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случае второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 для второго типа обслуживания и 4 для первого.

4 Выводы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

Список литературы

1. Королькова А.В., Кулябов Д.С. Лабораторная работа 16. Задачи оптимизации. Модель двух стратегий обслуживания [Электронный ресурс].