0.1. 絶対値 1

0.1 絶対値

0.1.1 数直線上の原点からの距離

実数aの絶対値は、数直線上の原点0からaまでの距離として定義される。 $3 \ge -3$ を例に考えると、どちらも絶対値は3となる。

-3 の絶対値が 3 であるように、負の数の絶対値は元の数から符号を取ったもの(元の数を -1 倍したもの)となる。

まとめると、

- 正の数の絶対値は元の数そのまま(0の絶対値もそのまま0)
- 負の数の絶対値は元の数の -1 倍

というように、絶対値は場合分けして定義される。

0.1.2 絶対値の性質

絶対値は0以上の数

負の数の場合は、符号を取って正の数にしたものを絶対値とすることから、絶対値が負の数になることはない。

絶対値(は常に	非負																	
実数 a	の絶対	値	a lä	ţ,	常り	2 0	以.	Ŀσ)数	とな	:る。)							
										a	>	0							
等号がり	むせっ	7.0	D / +			ο σ	十旦.	△ 7											
守亏かり	JX JZ 9	ବ (ノは	, a	=	0 0,)场	E C	. as	ත ං									

中身の符号によらず絶対値は同じ

3 も -3 も、絶対値はともに 3 だった。つまり、

$$|3| = |-3| = 3$$

このことを一般化したのが、次の性質である。

積の絶対値は絶対値の積

絶対値の計算と、積の計算は、どちらを先に行っても結果が同じになる。

aとbがともに正の数なら、

0.1. 絶対値 3

- $a \ge b$ は正の数なので、|a| = a、|b| = b
- ab も正の数なので、|ab| = ab

となり、|ab| = |a||b|が成り立つことがわかる。

では、片方が負の数の場合はどうだろうか。 aかbのどちらかにマイナスの符号をつけてみると、

$$|-ab| = |-a||b|$$
$$|-ab| = |a||-b|$$

のどちらかとなるが、前の節で解説した |-X|=|X| の関係から、これらはどちらも |ab|=|a||b| に帰着する。

aとbの両方が負の数の場合は、

$$|ab| = |-a||-b|$$

となるが、これも |-X| = |X| の関係を使えば、やはり |ab| = |a||b| に帰着する。

0.1.3 数直線上の2点間の距離

0.1.4 max 関数による表現

実数 a の絶対値は、「a と -a のうち大きい方を選ぶ」という考え方でも表現できる。 たとえば、3 と -3 の絶対値はともに 3 だが、これは 3 と -3 のうち大きい方(正の数の方)を絶対値として採用した、という見方もできる。

ここで登場した max は、「複数の数の中から最大のものを選ぶ」という操作を表している。

0.1.5 三角不等式

2 つの実数 a と b の「絶対値の和」と「和の絶対値」の間には、次のような大小関係がある。

この形の不等式は、実は今後登場するベクトルの長さ (ノルム) や、複素数の絶対値に対して も成り立つ。三角不等式と呼ばれる所以は、ベクトルに関する三角不等式で明らかになる。

絶対値の定義から、この不等式の証明を考えてみよう。

a の絶対値 |a| は、a から符号を取り払ったものであるから、逆に絶対値 |a| に + か - の符号をつけることで、元の数 a に戻すことができる。

a が負の数だったなら、-|a| とすればa に戻る。正の数だったなら、|a| がそのまま a に一致する。

a は原点からの距離が |a| の場所にあり、a は -|a| か |a| のどちらかに一致する。 どちらに一致するかはわからないので、次のような不等式で表しておく。

 $-|a| \le a \le |a|$

b についても、同じように考えることができる。

 $-|b| \le b \le |b|$

これらの不等式を使って、さらに式変形を行うことで、三角不等式を導くことができる。

0.1. 絶対値 5

Proof: 絶対値に関する三角不等式

絶対値の定義から、次の不等式が成り立つ。

 $-|a| \le a \le |a|$

 $-|b| \le b \le |b|$

両辺を足し合わせて、次の不等式を得る。

$$-(|a| + |b|) \le a + b \le |a| + |b|$$

 $-(|a|+|b|) \le a+b$ の両辺を -1 倍することで、次の関係も得られる。(不等式の両辺を -1 倍すると、不等号の向きが逆転することに注意)

$$|a| + |b| \ge -(a+b)$$

ここまでで得られた、a+bについての不等式をまとめると、次のようになる。

$$|a| + |b| \ge a + b$$

$$|a| + |b| \ge -(a+b)$$

一方、a+bの絶対値は、定義より次のように表せる。

$$|a + b| = \max\{a + b, -(a + b)\}\$$

a+b と-(a+b) のうち大きい方が |a+b| となるが、a+b と-(a+b) はどちらも |a|+|b| 以下となることがすでに示されているので、

$$|a+b| \le |a| + |b|$$

となり、定理は示された。 ■