

# Solved exercises in Miles Reid's Undergraduate Commutative Algebra



Simon Stefanus Jacobsson

Friday 7<sup>th</sup> August, 2020

#### 0.1

Let A be a ring and consider the polynomial ring A[T]. Prove that T is not a zero-divisor in A[T]. Generalize the argument to prove that a monic polynomial

$$f = T^n + a_{n-1}T^{n-1} + \ldots + a_0$$

is not a zero-divisor in A[T].

#### Solution

Let  $g = a_n T^n + \ldots + a_1 T + a_0 \in A[T]$  and let gT = 0. Then

$$a_n T^{n+1} + \ldots + a_1 T^2 + a_0 T = 0$$

implies  $a_n, \ldots, a_1, a_0 = 0$  by uniqueness of polynomial coefficients.

Similarly, if  $g(T^n + b_{n-1}T^{n-1} + \ldots + b_1T + b_0)$ , the  $T^{2n}$ -term gives that  $a_n = 0$ , the  $T^{2n-1}$ -term gives that  $a_{n-1} = 0$ , and so on. Hence g = 0 and any monic polynomial will not be a zero-divisor.

# 0.2

Let A be a ring,  $a \in A$ , and  $f \in A[T]$ . Prove that there exists an expression f = (T - a)q + r with  $q \in A[T]$  and  $r \in A$ . [Hint: subtract off a suitable multiple of (T - a) to cancel the leading term, then use induction on deg f.] By substituting T = a, show that r = f(a). (this result is often called the *remainder theorem* in algebra textbooks.)

# Solution

For induction, assume it holds for deg f = p. Then, for  $f = c_{p+1}T^{p+1} + \ldots + c_0$ , we have deg  $(f - c_{p+1}(T - a)) = p$ . Hence

$$f - c_{p+1}(T - a) = (T - a)q' + r$$
 for some  $q' \in A[T]$  and  $r \in A$   
 $f = (T - a)(q' + c_{p+1}) + r$ 

and hence it is true for deg f = p + 1 (with  $q = q' + c_{p+1}$ ).

For deg f = 0, it is obviously true with q = 0 and r = f.

# 0.4

Let A[T] be the polynomial ring over a ring A, and let B be a ring. Suppose that  $\varphi \colon A \to B$  is a given ring homomorphism; show that ring homomorphisms  $\psi \colon A[T] \to B$  extending  $\varphi$  are in one-to-one correspondence with elements in B.

# Solution

This is clear since in

$$\psi(f(T)) = \psi(c_n T^n + ... + c_1 T + c_0)$$
  
=  $c_n \psi(T)^n + ... + c_1 \psi(T) + c_0$ ,

if we know  $\psi(T)$ , we know the whole expression, and  $\psi(T)$  can be any element in B.

# 0.7

TODO

# 1

#### 1.1

Give an example of a ring A and ideals I, J such that  $I \cup J$  is not an ideal; in your example, what is the smallest ideal containing I and J?

# Solution

Consider (6) and (10) in  $\mathbb{Z}$ .  $10 \in (10)$  and  $6 \in (6)$ , but  $10 + 6 = 16 \notin (10) \cup (6)$ , so  $(10) \cup (6)$  is not even a subring of  $\mathbb{Z}$ . The smallest ideal containing  $(10) \cup (6)$  is  $(\gcd(6, 10)) = (2)$ .

#### 1.2

The *product* of two ideals I and J is the set of all sums  $\sum_i f_i g_i$  with  $f_i \in I$  and  $g_i \in J$ . Give an example in which  $IJ \neq I \cap I$ .

# Solution

$$I = J = (2)$$
 gives  $IJ = (4) \neq (2) = I \cap J$ .

#### 1.3

Let A = k[X,Y]/(XY). Show that any element of A has a unique representation in the form

$$a + f(X)X + g(Y)Y$$
 with  $a \in k$ ,  $f \in k[X]$ , and  $g \in k[Y]$ .

How do you multiply two such elements?

Prove that A has exactly two minimal prime ideals. If possible, find ideals I, J, and K to contradict each of the following statements:

- 1.  $IJ = I \cap J$
- $2. (I+J)(I\cap J) = IJ$
- 3.  $I \cap (J + K) = (I \cap J) + (I \cap K)$ .

#### Solution

TODO

#### 1.4

Two ideals I and J are strongly coprime if I + J = A. Check that this is the usual notion for coprime  $A = \mathbb{Z}$  or k[X]. Prove that if I and J are strongly coprime, then

$$IJ = I \cap J$$
 and  $A/IJ \sim (A/I) \times (A/J)$ .

Prove also that if I and J are strongly coprime then so are  $I^n$  and  $J^n$  for  $n \ge 1$ .

# Solution

Since  $\mathbb{Z}$  is a PID, let I = (a) and J = (b). Then

$$I+J=(a)+(b)=(a,b)=(\gcd(a,b))=\begin{cases} (1)=A & \text{if $a$ and $b$ coprime in the usual sense}\\ \text{not } (1) & \text{if $a$ and $b$ not coprime in the usual sense} \end{cases}$$

Similarly for k[X].

In general,  $IJ \subset I \cap J$  since  $IJ \subset IA = I$  and  $IJ \subset AJ = J$ . TODO

# 1.5

Let  $\varphi \colon A \to B$  be a ring homomorphism. Prove that  $\varphi^{-1}$  takes prime ideals of B to prime ideals of A. In particular, if  $A \subset B$ , and P is a prime ideal of B then  $A \cap P$  is a prime ideal of A.

#### Solution

If P is a prime ideal in B, then  $\varphi^{-1}(P)$  is an ideal since if  $\varphi(a) \in P$ , then  $\varphi(ab) = \varphi(a)\varphi(b) \in P$  by P being an ideal. Furthermore,  $\varphi^{-1}(P)$  is prime since if  $\varphi(a)$ ,  $\varphi(b) \in P^{\complement}$ , then  $\varphi(ab) = \varphi(a)\varphi(b) \in P^{\complement}$  by P being prime.

#### 1.6

Prove or give a counterexample to

- 1. the intersection of two prime ideals is prime
- 2. the ideal  $P_1 + P_2$  generated by two prime ideals  $P_1$  and  $P_2$  is prime
- 3. if  $\varphi \colon A \to B$  is a ring homomorphism then  $\varphi^{-1}$  takes maximal ideals of B to maximal ideals of A
- 4. the map  $\varphi^{-1}$  of Proposition 1.2 (quotient homomorphism) takes maximal ideals of A/I to maximal ideals of A.

# Solution

Item 1 is false since (2) and (3) in  $\mathbb{Z}_6$  is a counterexample. (2)  $\cap$  (3) = (0) is not prime in  $\mathbb{Z}_6$  since [2][3] = [0].

Item 2 is false since (2) and  $(x^2 + 3)$  in  $\mathbb{Z}[X]$  is a counterexample. Both 2 and  $x^2 + 3$  are irreducible in  $\mathbb{Z}[X]$ , but  $(2) + (x^2 + 3) = (2, x^2 + 3)$  is not prime since  $x^2 - 1 \in (2, x^2 + 3)$  but  $x^2 - 1 = (x + 1)(x - 1)$  while neither of those factors are in  $(2, x^2 + 3)$ .

Items 3 and 4 are also false by the same counterexample. Let  $A = \mathbb{Z}[X,Y]$ , let I = (X-2,Y-3), and let  $\varphi$  be the quotient homomorphism. We can identify A/I with  $\mathbb{Z}$  and say that  $\varphi \colon X \mapsto 2$  and  $Y \mapsto 3$ . Then (2) is maximal in  $\mathbb{Z}$  but  $\varphi^{-1}((2)) = (2,X)$  is not maximal in  $\mathbb{Z}[X,Y]$ .