Feature set analysis for chess 3UNN networks Tesis de Licenciatura

Martín Emiliano Lombardo

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

2024

Introducción

Ajedrez

- Dos jugadores
- Suma cero

Humano vs. Computadora

Humano vs. Computadora

Humano vs. Computadora

Ajedrez como árbol

Motores de ajedrez (Chess Engines)

Exploran el árbol de juego (Minimax, MCTS, etc.)

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas
- La evaluación se propaga hacia arriba, según el algoritmo

Función de evaluación o "eval"

Intentan resumir todo el subárbol en un solo número.

■ 1950s: Se desarrollan los primeros *algoritmos* de ajedrez

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- **1997** (hito): IBM DeepMind vence a Garry Kasparov en un torneo

- 1950s: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- **1997** (hito): IBM DeepMind vence a Garry Kasparov en un torneo
- 2017 y 2018: Google DeepMind publica AlphaGo Zero y su sucesor AlphaZero

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- **1997** (hito): IBM DeepMind vence a Garry Kasparov en un torneo
- **2017 y 2018**: Google DeepMind publica AlphaGo Zero y su sucesor AlphaZero
- 2018: Yu Nasu introduce las redes ∃UИИ para Shogi

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- 1960s+: Aparecen los primeros motores de ajedrez, lentos y débiles
- 1997 (hito): IBM DeepMind vence a Garry Kasparov en un torneo
- 2017 y 2018: Google DeepMind publica AlphaGo Zero y su sucesor AlphaZero
- 2018: Yu Nasu introduce las redes ∃UNN para Shogi
- 2020: Stockfish 12 introduce redes ∃UNN en su evaluación

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- 1960s+: Aparecen los primeros motores de ajedrez, lentos y débiles
- 1997 (hito): IBM DeepMind vence a Garry Kasparov en un torneo
- 2017 y 2018: Google DeepMind publica AlphaGo Zero v su sucesor AlphaZero
- 2018: Yu Nasu introduce las redes ∃UNN para Shogi
- 2020: Stockfish 12 introduce redes ∃UNN en su evaluación
- 2024: Stockfish 16.1 elimina todo aspecto humano de su evaluación, todo es mediante redes neuronales

- Implementar un motor de ajedrez que utilice NNUEs
 Vemos Como funciona el motor NNUE Cómo se transforma una posición a un vector - Cómo se entrena - Experimentos asdasd
 - Engine

asdasd

- Implementar un motor de ajedrez que utilice NNUEs Vemos - Como funciona el motor - NNUE - Cómo se transforma una posición a un vector - Cómo se entrena - Experimentos asdasd
 - Engine
 - Text visible on slide 2

asdasd

- Implementar un motor de ajedrez que utilice NNUEs
 Vemos Como funciona el motor NNUE Cómo se transforma una posición a un vector - Cómo se entrena - Experimentos asdasd
 - Engine
 - Text visible on slide 2
 - Text visible on slide 3

asdasd

- Implementar un motor de ajedrez que utilice NNUEs
 Vemos Como funciona el motor NNUE Cómo se transforma una posición a un vector - Cómo se entrena - Experimentos asdasd
 - Engine
 - Text visible on slide 2
- Text visible on slide 4 asdasd

Contenido

- 1 Introducción
- 2 Engine
- 3 Feature set
 - Motivación
 - Definición
 - Operadores
 - Feature sets conocidos
 - Resumen
- (AUNN) NNUE
- 5 Training
- **6** Experimentos
- 7 Conclusión

Engine

Feature set

¿Cómo transformar la posición a un vector?

Motivación

¿Cómo transformar la posición a un vector?

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- **P**(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un feature.

Un **feature set** S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un feature.
- Cada feature es un valor en el vector de entrada, valiendo 1 si está activo y 0 si no.

Ejemplos de S

Información posicional:

Información sobre las piezas:

ROLES = { \triangle Pawn, \triangle Knight, \triangleq Bishop, Ξ Rook, $\stackrel{\text{\tiny def}}{=}$ Queen, $\stackrel{\text{\tiny def}}{=}$ King Colors = { \bigcirc White, \bullet Black}

Ejemplo completo

	Feature set	
	$(FILES \times COLORS)_P$	$(\text{Files} \times \text{Roles})_Q$
Active features	$\langle a, \bigcirc \rangle, \langle a, \bullet \rangle, \langle c, \bullet \rangle,$	$\langle a, \& \rangle, \langle c, @ \rangle, \langle c, @ \rangle,$
	$\langle c, \bigcirc \rangle, \langle d, \bigcirc \rangle, \langle h, \bullet \rangle$	$\langle d, \mathring{\triangle} \rangle, \langle h, \mathring{\underline{\mathbb{A}}} \rangle$

 $P(\langle f, c \rangle)$: there is a piece in file f with color c. $Q(\langle f, r \rangle)$: there is a piece in file f with role r.

Operadores

Operación: Suma (concatenación)

Hay veces que es útil combinar información de dos feature sets

Hay veces que es útil combinar información de dos feature sets

$$S_P,\, T_Q:$$
 feature sets $S_P\oplus T_Q=(S\cup T)_R$ where $R(e)=egin{cases} P(e) & ext{if } e\in S \ Q(e) & ext{if } e\in T \end{cases}$

Operadores

Operación: Producto \times (and)

$$S_P imes T_Q = (S imes T)_R$$
 where $R(\langle e_0, e_1
angle) = P(e_0) \ \land \ Q(e_1)$

Feature sets conocidos

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

■ Es pequeño: $64 \times 6 \times 2 = 768$ *features*

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ *features*
- Es completo: contiene toda la información de la posición

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ *features*
- Es completo: contiene toda la información de la posición
- Es muy rápido computar cuáles features están activas

Feature sets conocidos

Feature set: KING-ALL ó "KA"

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

> $KING-ALL = SQUARE_K \times ALL$ K(s): s is the square of the king of the side to move

Feature set: KING-ALL ó "KA"

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{KING-ALL} = ext{SQUARE}_{K} imes ext{ALL}$$
 $K(s)$: s is the square of the king of the side to move

■ Es grande: $64 \times 768 = 49152$ features

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{\mathcal{K}} imes ext{All}$$

 $\mathcal{K}(s)$: s is the square of the king of the side to move

- **E**s grande: $64 \times 768 = 49152$ *features*
- Es muy rápido como All

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{K} imes ext{All}$$

 $K(s)$: s is the square of the king of the side to move

- **E**s grande: $64 \times 768 = 49152$ *features*
- Es muy rápido como All
- Entrenarlo require un dataset más grande y lleva más tiempo (no me meto acá)

Feature sets: resumen

- **S**: set of concepts (roles, colors, squares, files, ranks, etc.).
- **P**(e): predicate that defines when the feature e is present in the (implicit) position.
- **S**_P: a feature set. Every element in S_P is a feature. Features that satisfy P are active.
- $S_P \times T_Q = (S \times T)_R$ where $R(\langle e_0, e_1 \rangle) = P(e_0) \wedge Q(e_1)$

(AUNN) NNUE

ЗUИИ: Efficiently Updatable Neural Networks

ЗUИИ: **N**eural **N**etworks

- El input es un vector one-hot generado por el *feature set*.
 - Debe tener pocos *features* activos (rala): introduce una cota superior.
- La red es una feedforward clásica con dos capas ocultas.

Linear layer

Figure: Linear layer operation comparison. Figures from [18].

ЗUИИ: **E**fficient **U**pdates

Figure: Partial tree of feature updates (removals and additions) for ($SQUARES \times COLORS$) (white's point of view) in a simplified 3x3 pawn-only board.

ЗИИИ: Tradeoff

motivacion comparacion de burns

Training

Un blogpost de 2014 por Erik Bernhardsson propone entrenar una red utilizando dos principios:

Experimentos

Recapitulando... ¿Qué hay que definir para entrenar una red?

■ Feature set: determina la codificación y los patrones que se pueden aprender

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente

- **Feature set**: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2

- **Feature set**: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2
- Método de entrenamiento: PQR/target scores; determina el formato de las muestras y la loss function

- **Feature set**: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2
- Método de entrenamiento: PQR/target scores; determina el formato de las muestras y la loss function
- Hiperparámetros: learning rate, batch size, epochs, etc.

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red
- Elo relativo: la medida más común para comparar engines.
 - Se realizan torneos de 100ms por movimiento
 - El elo es calculado a partir de Ordo

Busco fijar el setup de entrenamiento con valores razonables

Busco fijar el setup de entrenamiento con valores razonables

■ El feature set va a cambiar cada experimento

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Entonces queda por determinar...

■ La arquitectura de la red $(L_1 \ y \ L_2)$

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es target scores

Entonces queda por determinar...

- La arquitectura de la red $(L_1 \ y \ L_2)$
- Los hiperparámetros

Baseline: hiperparámetros

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Baseline: hiperparámetros

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ **Learning rate**: 0.0005

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

■ Exponential decay: 0.99

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

Exponential decay: 0.99

■ Batch size: 16384

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ **Learning rate**: 0.0005

Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ **Learning rate**: 0.0005

■ Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

cada epoch realiza 6104 batches

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ **Learning rate**: 0.0005

Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

cada epoch realiza 6104 batches

■ Epochs: 256

■ cada run observa 25.6 billion samples

Baseline: experimento

Sólo queda buscar parámetros L_1 y L_2 razonables. Realizo una búsqueda en grilla con:

- $\blacksquare \ \mathsf{L1} \in \{256, 512, 1024, 2048\}$
- L2 ∈ {32, 64, 128, 256}

El feature set a utilizar es ALL[768].

Baseline: resultados

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.
- L1=512. Es el mejor valor para L2=64 y L2=128, y en margen de error para L2=32.
 - Además es el más rápido de entrenar.

Axis encoding: motivación

Figure: Weights of **a neuron** in the L1 layer, which are connected to features in ALL where the role is Ξ Rook. The intensity represents the weight value, and the color represents the sign (although not relevant).

Axis encoding: motivación

La red detecta patrones parecidos a los movimientos de las piezas.

Axis encoding: motivación

La red detecta patrones parecidos a los movimientos de las piezas. Para hacerle la vida más fácil a la red, propongo agregar features como:

"there is a ○ White \(\mathbb{Z} \) Rook in the 4th rank"

Axis encoding: experimento

Axis encoding: experimento

Depiction	Block name		Definition	Number of features
← →	Н	(FILES	\times Roles \times Colors) _P	96
‡	V	(Ranks	\times Roles \times Colors) _P	96
	D1	(Diags1	\times Roles \times Colors) _P	180
	D2	(Diags2	\times Roles \times Colors) _P	180

 $P(\langle x, r, c \rangle)$: there is a piece in x with role r and color c

Axis encoding: experimento

Depiction	Feature set	Number of features
↔ ⊕ ‡	$\mathrm{H}\oplus\mathrm{V}$	192
✓ ⊕ 🔨	$\mathrm{D}1\oplus\mathrm{D}2$	360
$\longrightarrow \oplus \uparrow \oplus \nearrow \oplus \searrow$	$H\oplus V\oplus D1\oplus D2$	552
	$\mathrm{All} \oplus \mathrm{H} \oplus \mathrm{V}$	960
$All \oplus \nearrow \oplus \searrow$	$\mathrm{All} \oplus \mathrm{D1} \oplus \mathrm{D2}$	1128
$ALL \oplus \longleftrightarrow \oplus \uparrow \oplus \nearrow \oplus \nwarrow$	$ALL \oplus H \oplus V \oplus D1 \oplus D2$	1320

Axis encoding: resultados

Feature set	Number of features	Val. loss	Rating elo (rel. to All)	Puzzles move acc.
←→ ⊕ ‡	192	0.005810	-384.3 ± 5.1	0.8618
✓ ⊕ \	360	0.006707	-444.1 ± 5.1	0.8517
$\begin{array}{c} \longleftrightarrow \oplus \\ \nearrow \oplus \\ \end{array}$	552	0.003907	-183.5 ± 4.1	0.8748
All (reference)	768	0.003134	0.0	0.8865
$ALL \oplus \longleftrightarrow \oplus \updownarrow$	960	0.003082	-27.1 ± 4.1	0.8851
$ALL \oplus \diagup \oplus \diagdown$	1128	0.003087	-26.1 ± 3.8	0.8814
$\begin{array}{c} A \perp L \oplus \longleftrightarrow \oplus \uparrow \\ \oplus \swarrow \oplus \swarrow \end{array}$	1320	0.003067	-58.7 ± 3.7	0.8766

Pairwise axes: motivación

Configuraciones distintas, situaciones similares

Las mismas dos features (par rojo y par azul)

Pairwise axes: motivación

Comparando con el experimento anterior, es más específico en vez de más general:

"there is a ○ White \(\begin{aligned} \begin{aligned} \text{Rook in the 4th rank} \\ \text{vs.} \end{aligned} \)

"there is a ● Black \(\mathbb{Z}\) Rook next to a \(\cap \) White \(\text{\alpha}\) Pawn in the 'a' file"

Pairwise axes: experimento

D.	Block name	Definition	Num. of features
		$({\rm Ranks}\times({\rm Roles}\times{\rm Colors})\times({\rm Roles}\times{\rm Colors}))_{P}$	
0 -0	PH	$P(\langle r, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in rank r with role r_1 and color c_1 to the left of a piece with role r_2 and color c_2	1152
_		$({\rm Files}\times({\rm Roles}\times{\rm Colors})\times({\rm Roles}\times{\rm Colors}))_Q$	
ď	PV	$Q(\langle f, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in file f with role r_1 and color c_1 below a piece with role r_2 and color c_2	1152

Pairwise axes: experimento

Pairwise axes: experimento

Los feature sets a entrenar son:

- lacktriangle ALL \oplus PH (1920 features)
- \blacksquare $ALL \oplus PV$ (1920 features)
- $ALL \oplus PH \oplus PV$ (3072 features)

Pairwise axes: resultados

Feature set	Number of features	Val. loss	Rating elo (rel. to All)
All (reference)	768	0.003134	0.0
All ⊕ 0-0	1920	0.003033	-38.2 ± 4.8
$ALL \oplus $	1920	0.002946	-8.4 ± 5.0
$ALL \oplus o - o \oplus \emptyset$	3072	0.002868	-37.6 ± 4.9

■ Reducir el número de pairs puede llevar a una mejora por sobre ALL (ej. △)

 La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.

- La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.
- Un paper de Eliot Slater (1950) mostró que hay una correlación entre la mobilidad de un jugador y la cantidad de partidas ganadas.

- La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.
- Un paper de Eliot Slater (1950) mostró que hay una correlación entre la mobilidad de un jugador y la cantidad de partidas ganadas.
- Se usa en funciones de evaluación hechas a mano.

- La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.
- Un paper de Eliot Slater (1950) mostró que hay una correlación entre la mobilidad de un jugador y la cantidad de partidas ganadas.
- Se usa en funciones de evaluación hechas a mano.
- Propongo agregar mobilidad como features en la red.

Mobility: experimento

Hay dos maneras de codificar la mobilidad:

- Bitsets (por rol/color)
- Cantidades (por rol/color)

Mobility: experimento (bitsets)

Los features proveen **las celdas** a las que una pieza de determinado rol/color puede moverse.

La cantidad de features es $64 \times 6 \times 2 = 768$, la misma que ALL.

Mobility: experimento (counts)

Los features proveen **la cantidad de celdas** a las que una pieza de determinado rol/color puede moverse. Esto reduce la cantidad de features significativamente.

Piece role	Min	Max
∆ Pawn	0	8+
🛭 Knight	0	15+
₫ Bishop	0	16+
≌ Rook	0	25+
₩ Queen	0	25+
🗳 King	0	8

Mobility: experimento (counts)

Figure: Total mobility values for each piece on the board. Computed using 2 billion boards. The value 0 for the 🖄 Knight, 🚊 Bishop, 🖺 Rook, and 👑 Queen has been excluded from the plot, as it is very common.

Mobility: experimento

Block name	Definition	Number of features
	(Squares \times Roles \times Colors) _P	
MB	$P(\langle s, r, c \rangle)$: there is a piece of role r and color c that can move to square s	768
MC	$(\{0,1,\ldots\} \times \text{Roles} \times \text{Colors})_P$	
	$P(\langle m, r, c \rangle)$: the value of mobility for a piece of role r and color c is m	206

Los feature sets a entrenar son: $\rm ALL \oplus MB$ (1536 features) y $\rm ALL \oplus MC$ (974 features).

Mobility: resultados

Table: Mobility encodings results

Feature set	Number	Val. loss	Rating
	of features	min	elo (rel. to All)
All (reference)	768	0.003134	0.0
$\mathrm{All} \oplus \mathrm{MB}$	1536	0.002824	-260.9 ± 5.4
$\mathrm{All} \oplus \mathrm{MC}$	974	0.003032	-280.9 ± 5.6

- Las predicciones mejoran muy poco (el loss no se reduce tanto).
- Por ende, el costo de las actualizar los features es más alto al beneficio que aportan.

Table: Mobility encodings results

Feature set	Number of features	Val. loss	Rating elo (rel. to ALL)
ALL (reference)	768	0.003134	0.0
$ALL \oplus MB$	1536	0.002824	-260.9 ± 5.4
$\overline{\hspace{1.5cm} \text{All} \oplus \text{MC}}$	974	0.003032	-280.9 ± 5.6

- Las predicciones mejoran muy poco (el loss no se reduce tanto).
- Por ende, el costo de las actualizar los features es más alto al beneficio que aportan.
- MB tiene más updates que MC, pero menor loss que compensa.

Feature set statistics

Depiction	Feature block	Number of features	Average features		
			active per position	added per move	removed per move
+	All	768	14.68	0.98	0.60
← →	Н	96	14.68	0.60	0.43
‡	V	96	14.68	0.61	0.43
1	D1	180	14.68	0.77	0.52
_ \	D2	180	14.68	0.77	0.52
0-0	PH	1152	8.23	0.92	0.57
g	PV	1152	8.30	0.83	0.53
MB MC	MB MC	768 206	48.93 12.00	5.68 2.34	4.35 1.48

PQR: motivación

Recordando...

- P: Una posición en el dataset
- Q: La posición obtenida a partir de aplicar el "mejor" movimiento a P, según el dataset
- **R**: Una posición aleatoria obtenida a partir de P, tal que $R \neq Q$

PQR: motivación

Recordando...

- P: Una posición en el dataset
- Q: La posición obtenida a partir de aplicar el "mejor" movimiento a P, según el dataset
- R: Una posición aleatoria obtenida a partir de P, tal que $R \neq Q$

Y los principios:

- 1 Si $P \to Q$, entonces f(P) = -f(Q) (suma cero)
- 2 Si $P \to R$ tal que $R \neq Q$, entonces f(R) > f(Q)

PQR: motivación

¿Los principios funcionan en la práctica? Veamos...

PQR analysis for a network trained with target scores

Figure: Analysis of N=4000 PQR samples using a model trained with target scores and the feature set ALL.

PQR: experimento

- Entrenar de cero, directamente con PQR
 - no espero que sea mejor que target scores

PQR: experimento

- Entrenar de cero, directamente con PQR
 - no espero que sea mejor que target scores
- B. Continuar de un checkpoint entrenado con el otro método
 - no tiene que aprender tanto de entrada
 - mejor caso: mejora lentamente
 - peor caso: se "olvida" todo lo anterior (resulta peor)
 - se entrena con distintos learning rates

PQR: experimento

Eligiendo R.

Conclusión

adasdas

asdasd