Introduction to Machine Learning Notes in Linear Search

Andres Mendez-Vazquez

January 28, 2023

Outline

Gold Section

Gold Section

Golden Section

What is the Golden Ratio Idea?

Basically, given an interval $[x_1, x_3]$

Then, we select a point x_2 and x_3 such that we have a two possible intervals of search for the minimum

- \bullet [x_1, x_4]
- $[x_2, x_3]$

If they are not,

 You could run to a series of search wider intervals slowing down the rate of convergence.

What is the Golden Ratio Idea?

Basically, given an interval $[x_1, x_3]$

Then, we select a point x_2 and x_3 such that we have a two possible intervals of search for the minimum

- \bullet [x_1, x_4]
- $[x_2, x_3]$

The Golden Linear Search requires these intervals be equal!!!

If they are not,

 You could run to a series of search wider intervals slowing down the rate of convergence.

How?

Therefore

We have the following question?

Where do you place x_2 ? Thus you can generate x_4

• x_2 to close to x_1 or x_3

Therefore

We have the following question?

Where do you place x_2 ? Thus you can generate x_4

You want to avoid

• x_2 to close to x_1 or x_3

The process is as follow

We define

- $f_1 = f(x_1)$
- $f_2 = f(x_2)$
- $f_3 = f(x_3)$
- $f_4 = f(x_4)$

Two Cases

If $f_2 < f_4$ then the minimum lies between x_1 and x_4 and the new triplet is x_1, x_2 and x_4 . x_1 x_3 a

Here, we have the realization that

We have interval size reduction

$$x_4 - x_1 = \varphi(x_3 - x_1) \longmapsto x_4 = x_1 + \varphi x_3 - \varphi x_1$$

$$x_4 = (1 - \varphi) x_1 + \varphi x_3$$

Here, we have the realization that

We have interval size reduction

$$x_4 - x_1 = \varphi(x_3 - x_1) \longmapsto x_4 = x_1 + \varphi x_3 - \varphi x_1$$

Then

$$x_4 = (1 - \varphi) x_1 + \varphi x_3$$

Two Cases

Then

We want

$$x_3 - x_2 = \varphi(x_3 - x_1) \longrightarrow -x_2 = \varphi x_3 - \varphi x_1 - x_3$$

Then

We want

$$x_3 - x_2 = \varphi(x_3 - x_1) \longmapsto -x_2 = \varphi x_3 - \varphi x_1 - x_3$$

Therefore

$$x_2 = \varphi x_1 + (1 - \varphi)x_3$$

Thus once we

• For this, we make the following assumption $[x_1, x_3] = [0, 1]$

Then

We want

$$x_3 - x_2 = \varphi(x_3 - x_1) \longmapsto -x_2 = \varphi x_3 - \varphi x_1 - x_3$$

Therefore

$$x_2 = \varphi x_1 + (1 - \varphi)x_3$$

Thus, once we obtain φ , we get x_2 and x_4

• For this, we make the following assumption $[x_1, x_3] = [0, 1]$

Therefore

If we have
$$f_2 < f_4$$

$$x_2 = 1 - \varphi$$

Then, if we have the new function evaluation at the left of

Therefore

If we have $f_2 < f_4$

$$x_2 = 1 - \varphi$$

Then, if we have the new function evaluation at the left of x_{2}

With a Little Algebra

Then, x_2 is between the the interval $[0,\varphi]$ and assume is a convex combination of such values

$$1 - \varphi = (1 - \varphi) 0 + \varphi \varphi \longmapsto \varphi^2 + \varphi - 1 = 0$$

$$\varphi = \frac{-1 + \sqrt{5}}{2} = 0.6180$$

With a Little Algebra

Then, x_2 is between the the interval $[0,\varphi]$ and assume is a convex combination of such values

$$1 - \varphi = (1 - \varphi) \, 0 + \varphi \varphi \longmapsto \varphi^2 + \varphi - 1 = 0$$

With Solution

$$\varphi = \frac{-1 + \sqrt{5}}{2} = 0.6180$$

```
INPUT: x_1, x_3, \tau, \varphi, f
OUTPUT: \frac{x_3 - \tau_1}{2}
```

- $u_2 = \varphi u_1 + (1 \varphi)u_3$
- ① while $|x_3 x_1| > \tau(|x_2| + |x_4|)$
- if $f(x_2) < f(x_4)$:

- $x_4 = x_2$
- else
- $x_1 = x_2$
- $x_1 x_2$
- $\mathbf{n} = (1 n)x + nx$
- $x_4 = (1 \varphi)x_1 + \varphi x_3$
- ereturn $\frac{x_3-x_1}{2}$

Golden Ratio

INPUT: $x_1, x_3, au, arphi, f$ OUTPUT: $rac{x_3 - x_1}{2}$

- 2 $x_4 = (1 \varphi)x_1 + \varphi x_3$

Golden Ratio

INPUT: $x_1, x_3, \tau, \varphi, f$

OUTPUT:
$$\frac{x_3-x_1}{2}$$

- 2 $x_4 = (1 \varphi)x_1 + \varphi x_3$

INPUT:
$$x_1, x_3, \tau, \varphi, f$$

OUTPUT: $\frac{x_3 - x_1}{2}$
① $x_2 = \varphi x_1 + (1 - \varphi) x_3$
② $x_4 = (1 - \varphi) x_1 + \varphi x_3$
③ while $|x_3 - x_1| > \tau (|x_2| + |x_4|)$
③ if $f(x_2) < f(x_4)$:
⑥ $x_3 = x_4$
⑥ $x_4 = x_2$
② $x_2 = \varphi x_1 + (1 - \varphi) x_3$

```
INPUT: x_1, x_3, \tau, \varphi, f
   OUTPUT: \frac{x_3-x_1}{2}
1 x_2 = \varphi x_1 + (1 - \varphi)x_3
2 x_4 = (1 - \varphi)x_1 + \varphi x_3
3 while |x_3 - x_1| > \tau (|x_2| + |x_4|)
            if f(x_2) < f(x_4):
6
                  x_3 = x_4
6
                  x_4 = x_2
0
                  x_2 = \varphi x_1 + (1 - \varphi)x_3
8
            else
9
                  x_1 = x_2
1
                  x_2 = x_4
•
                  x_4 = (1 - \varphi)x_1 + \varphi x_3
```

INPUT:
$$x_1, x_3, \tau, \varphi, f$$
OUTPUT: $\frac{x_3 - x_1}{2}$

1 $x_2 = \varphi x_1 + (1 - \varphi) x_3$
2 $x_4 = (1 - \varphi) x_1 + \varphi x_3$
3 while $|x_3 - x_1| > \tau (|x_2| + |x_4|)$
4 if $f(x_2) < f(x_4)$:
5 $x_3 = x_4$
6 $x_4 = x_2$
7 $x_2 = \varphi x_1 + (1 - \varphi) x_3$
8 else
9 $x_1 = x_2$
10 $x_2 = x_4$
11 $x_4 = (1 - \varphi) x_1 + \varphi x_3$
12 return $\frac{x_3 - x_1}{2}$

Iteratively

Repeat the procedure!!!

Until a error threshold is reached

Iteratively

Repeat the procedure!!!

Until a error threshold is reached.

Iteratively

Repeat the procedure!!!

Until a error threshold is reached.

For more, please read the paper

"SEQUENTIAL MINIMAX SEARCH FOR A MAXIMUM" by J. Kiefer

There are better versions

Take a look

The papers at the repository.