탐욕 알고리즘 (Greedy Algorithms)

- 01 탐욕 알고리즘 이론
- 02 탐욕 알고리즘 예시 문제 풀이

신 제 용

01 탐욕 알고리즘 이론

당장 좋은 것부터 하나씩 해 나가는 탐욕 알고리즘을 배워봅니다.

학습 키워드 – 탐욕 알고리즘, 그리디 알고리즘, Greedy

탐욕 알고리즘 (Greedy algorithms)

- 매 순간 현재 기준으로 최선의 답을 선택해 나가는 기법
 - 빠르게 근사치를 계산할 수 있다.
 - 결과적으로는 최적해가 아닐 수도 있다.

• 탐욕 알고리즘의 결과가 최적해인 경우를 알아야 한다.

활동 선택 문제 (Activity selection problem)

N 개의 활동과 각 활동의 시작/종료 시간이 주어졌을 때,
 한 사람이 최대한 많이 할 수 있는 활동의 수 구하기

Activity	А	В	С	D	E
시작	1	4	2	4	6
종료	5	5	3	7	10

활동 선택 문제 (Activity selection problem)

- 활동을 종료 시간 기준으로 오름차순 정렬
- 먼저 종료되는 활동부터 그리디하게 선택
 - → 문제 조건에 따라 시간이 겹치는 경우는 제외

Activity	С	А	В	D	Е
시작	2	1	4	4	6
종료	3	5	5	7	10

거스름돈 문제

- 동전의 개수가 가장 적게 거스름돈을 돌려주는 문제
 - 잔돈 890원
 - 동전의 종류: 10, 50, 100, 500
 - → 큰 동전부터 개수를 계산

잔돈	500	100	50	10
개수	1	3	1	4

거스름돈 문제

- 동전의 종류가 배수로 증가하지 않을 경우, 그리디 알고리즘이 최적해가 아닐 수 있다.
 - 동전의 종류: 10, 50, 100, 400, 500
 - → 동적계획법(DP)에서 해결 방법을 배웁니다!

그리디 알고리즘 결과

잔돈	500	400	100	50	10
개수	1	0	3	1	4

우리가 원하는 정답

잔돈	500	400	100	50	10
개수	0	2	0	1	4

그리디 알고리즘 최적해 조건

- 그리디 알고리즘은 빠르지만 최적해를 보장하지는 못함
- 하기 두 가지 조건에 해당하는 경우 적용 가능
 - 탐욕적 선택 특성 (Greedy choice property) 지금 선택이 다음 선택에 영향을 주지 않음
 - 최적 부분 구조 (Optimal substructure)
 전체 문제의 최적해는 부분 문제의 최적해로 이루어짐

02 탐욕 알고리즘 예시 문제 풀이

다음 챕터에서는 탐욕 알고리즘이 적용 가능한 예시 문항을 학습합니다.

02 탐욕 알고리즘 예시 문제 풀이

탐욕 알고리즘은 단순하고 간단하지만, 언제 적용 가능한지 아는 것이 핵심입니다. 탐욕 알고리즘이 적용 가능한 상황을 예시 문제를 통해 알아봅니다.

학습 키워드 – 탐욕 알고리즘, 최적해, 구현

Chapter 02

탐욕 알고리즘 예시 문제 풀이

Problem1

문제 설명

활동 선택 문제를 해결하세요!

각 활동이 activity[i] = [시작시간, 끝나는시간] 으로 주어질 때,

시간이 겹치지 않도록 선택할 수 있는 가장 많은 활동의 수를 구하시오.

매개변수 형식

activity = [[1, 5], [4, 6], [3, 5], [7, 12], [5, 11], [13, 15]]

반환값 형식

3

Chapter 02 탐욕 알고리즘 예시 문제 풀이

Problem2

문제 설명

양의 정수가 담긴 문자열 s 가 있다고 하자. 이 문자열에서 k 개의 숫자를 제거해, 가장 작은 숫자를 만들고자 한다.

이렇게 만든 가장 작은 숫자를 담은 문자열을 출력하시오.

단, k 개의 문자열을 제거한 결과는 앞에 불필요한 ø 이 포함될 수 있으며,

최종 출력에는 이 불필요한 0는 제거하여 출력하시오. (예시 입출력 참고)

입력 예시

s = "105990"

k = 1

출력 예시

"5990"

입출력 설명

맨 앞의 '1' 을 제거하면 "05990" 이 된다. 불필요한 '0' 를 제거한 최종 출력은 "5990" 이다.

Chapter 02 탐욕 알고리즘 예시 문제 풀이

Problem3

문제 설명

숫자 num 이 주어졌을 때, 최대 한번의 자릿수 교환을 통해 최대의 숫자를 만들어 내려고 한다.

즉, 자릿수를 교환하지 않았을 때가 더 큰 숫자인 경우, 원래 숫자를 그대로 출력해야 한다.

위 프로그램을 작성하시오.

매개변수 형식

num = 43824

반환값 형식

83424

입출력 예시 설명

0번째 인덱스의 숫자 8 과 2번째 인덱스의 숫자 4 의 자릿수를 바꾸었을 때 가장 큰 수가 된다.

Chapter 02 탐욕 알고리즘 예시 문제 풀이

