

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

SEQUENCE LISTING

<110> C. Frank Bennett
 Susan M. Freier

<120> ANTISENSE MODULATION OF HKR1 EXPRESSION

<130> RTS-0248

<160> 89

<210> 1
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense Oligonucleotide

<400> 1
 tccgtcatcg ctcctcaggg

20

<210> 2
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense Oligonucleotide

<400> 2
 atgcattctg cccccaagga

20

<210> 3
 <211> 2772
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (3) ... (2096)

<400> 3
 ca ggc gcg tta agc tgg ttg gga ccc ggg aag gcc tcc ctc tta agg 47
 Gly Ala Leu Ser Trp Leu Gly Pro Gly Lys Ala Ser Leu Leu Arg
 1 5 10 15

tct ttc cca cac ctc tgc tcc ttg tta cct gac ttt cgg ctt cag gat 95
 Ser Phe Pro His Leu Cys Ser Leu Leu Pro Asp Phe Arg Leu Gln Asp
 20 25 30

ccg cgg cgt gca ccc gcg ttc cat ctg tct tct gag act ttg ccc ttc 143
 Pro Arg Arg Ala Pro Ala Phe His Leu Ser Ser Glu Thr Leu Pro Phe
 35 40 45

tcc agg aag agc act cag gag acc agg aaa atg gct aca ggg ctc ctg	191
Ser Arg Lys Ser Thr Gln Glu Thr Arg Lys Met Ala Thr Gly Leu Leu	
50 55 60	
aga gcc aaa aaa gag gcg ttc gtg gca ttc agg gat gtg gct gtg tac	239
Arg Ala Lys Lys Glu Ala Phe Val Ala Phe Arg Asp Val Ala Val Tyr	
65 70 75	
ttc acc cag gag gag tgg agg ttg ttg agc cct gct cag agg acc ctg	287
Phe Thr Gln Glu Glu Trp Arg Leu Leu Ser Pro Ala Gln Arg Thr Leu	
80 85 90 95	
cac agg gag gtg atg ctg gag act tat aac cat ctg gtc tca ctg gaa	335
His Arg Glu Val Met Leu Glu Thr Tyr Asn His Leu Val Ser Leu Glu	
100 105 110	
att cca tct tct aaa cca aaa ctc att gct cag ctg gag cga ggg gaa	383
Ile Pro Ser Ser Lys Pro Lys Leu Ile Ala Gln Leu Glu Arg Gly Glu	
115 120 125	
gcg ccc tgg aga gag gag aga aaa tgt cca ctg gac ctc tgt cca gaa	431
Ala Pro Trp Arg Glu Glu Arg Lys Cys Pro Leu Asp Leu Cys Pro Glu	
130 135 140	
tcg aag cca gaa att caa ctt agt ccc tcc tgc cct ctg att ttc tcc	479
Ser Lys Pro Glu Ile Gln Leu Ser Pro Ser Cys Pro Leu Ile Phe Ser	
145 150 155	
agt cag caa gct ctc agc caa cat gtg tgg ctg agt cat ctc tct cag	527
Ser Gln Gln Ala Leu Ser Gln His Val Trp Leu Ser His Leu Ser Gln	
160 165 170 175	
ctg ttt tca agt tta tgg gca gga aat cct ctc cac ctg gga aaa cac	575
Leu Phe Ser Ser Leu Trp Ala Gly Asn Pro Leu His Leu Gly Lys His	
180 185 190	
tat cca gaa gat cag aaa caa cag cag gat cca ttc tgc ttt agt ggc	623
Tyr Pro Glu Asp Gln Lys Gln Gln Asp Pro Phe Cys Phe Ser Gly	
195 200 205	
aaa gca gaa tgg att caa gag gga gaa gac tcc aga ctc ctg ttt ggg	671
Lys Ala Glu Trp Ile Gln Glu Gly Glu Asp Ser Arg Leu Leu Phe Gly	
210 215 220	
aga gta agc aaa aat ggc act tca aag gca ctt tcc agc cca cct gaa	719
Arg Val Ser Lys Asn Gly Thr Ser Lys Ala Leu Ser Ser Pro Pro Glu	
225 230 235	
gaa caa cag cca gca cag tcc aag gaa gac aac aca gtg gtg gat ata	767
Glu Gln Gln Pro Ala Gln Ser Lys Glu Asp Asn Thr Val Val Asp Ile	
240 245 250 255	
ggg tcc agc cct gaa cgg agg gca gat cta gag gaa aca gac aaa gta	815
Gly Ser Ser Pro Glu Arg Arg Ala Asp Leu Glu Glu Thr Asp Lys Val	
260 265 270	
ttg cat ggt tta gaa gtc tca gga ttt gga gaa atc aaa tat gaa gag	863
Leu His Gly Leu Glu Val Ser Gly Phe Gly Glu Ile Lys Tyr Glu Glu	
275 280 285	

ttt ggg cca ggc ttt atc aag gag tca aac ctc ctt agc ctc cag aag Phe Gly Pro Gly Phe Ile Lys Glu Ser Asn Leu Leu Ser Leu Gln Lys 290 295 300	911
aca caa act ggg gag aca cct tac atg tac act gag tgg gga gac agc Thr Gln Thr Gly Glu Thr Pro Tyr Met Tyr Thr Glu Trp Gly Asp Ser 305 310 315	959
ttt ggc agt atg tca gtc ctc atc aaa aac cca agg aca cac tct ggg Phe Gly Ser Met Ser Val Leu Ile Lys Asn Pro Arg Thr His Ser Gly 320 325 330 335	1007
gga aag cct tat gtg tgc agg gaa tgt ggg cga ggc ttt acg tgg aag Gly Lys Pro Tyr Val Cys Arg Glu Cys Gly Arg Gly Phe Thr Trp Lys 340 345 350	1055
tca aac ctg atc aca cat cag agg aca cac tca ggg gag aaa cct tat Ser Asn Leu Ile Thr His Gln Arg Thr His Ser Gly Glu Lys Pro Tyr 355 360 365	1103
gtg tgc aag gat tgt gga cga ggc ttt act tgg aag tcg aac ctc ttt Val Cys Lys Asp Cys Gly Arg Gly Phe Thr Trp Lys Ser Asn Leu Phe 370 375 380	1151
aca cat cag cgg aca cac tca ggg ctc aag cct tat gtg tgc aag gaa Thr His Gln Arg Thr His Ser Gly Leu Lys Pro Tyr Val Cys Lys Glu 385 390 395	1199
tgt ggg cag agc ttt agc ctg aag tca aac ctc att acc cac cag agg Cys Gly Gln Ser Phe Ser Leu Lys Ser Asn Leu Ile Thr His Gln Arg 400 405 410 415	1247
gcg cac act ggg gag aag cct tat gtt tgc agg gaa tgt ggg cgt ggc Ala His Thr Gly Glu Lys Pro Tyr Val Cys Arg Glu Cys Gly Arg Gly 420 425 430	1295
ttt cgc cag cat tca cac ctg gtc aga cac aag agg aca cat tca gga Phe Arg Gln His Ser His Leu Val Arg His Lys Arg Thr His Ser Gly 435 440 445	1343
gag aag cct tac att tgc agg gag tgt gag caa ggc ttt agc cag aag Glu Lys Pro Tyr Ile Cys Arg Glu Cys Glu Gln Gly Phe Ser Gln Lys 450 455 460	1391
tca cac ctc atc aga cac tta agg aca cac aca gga gag aag cct tat Ser His Leu Ile Arg His Leu Arg Thr His Thr Gly Glu Lys Pro Tyr 465 470 475	1439
gta tgc aca gaa tgt ggg cgt cac ttt agc tgg aaa tca aac ctc aaa Val Cys Thr Glu Cys Gly Arg His Phe Ser Trp Lys Ser Asn Leu Lys 480 485 490 495	1487
aca cac cag agg aca cac tca ggg gtt aaa cct tat gtc tgc ctg gag Thr His Gln Arg Thr His Ser Gly Val Lys Pro Tyr Val Cys Leu Glu 500 505 510	1535
tgc ggg cag tgc ttt agc ctg aag tca aac ctt aac aaa cac cag agg Cys Gly Gln Cys Phe Ser Leu Lys Ser Asn Leu Asn Lys His Gln Arg	1583

515	520	525	
tca cac acg ggg gag aag cca ttt gta tgt acg gag tgt ggg cga ggc Ser His Thr Gly Glu Lys Pro Phe Val Cys Thr Glu Cys Gly Arg Gly 530	535	540	1631
ttt acc cgg aaa tca acc ctg atc acg cac cag agg aca cac tca ggg Phe Thr Arg Lys Ser Thr Leu Ile Thr His Gln Arg Thr His Ser Gly 545	550	555	1679
gag aag cca ttt gta tgt gct gag tgt gga cga ggc ttt aat gat aag Glu Lys Pro Phe Val Cys Ala Glu Cys Gly Arg Gly Phe Asn Asp Lys 560	565	570	1727
tcc acc ctc att tca cac cag agg aca cat tca ggg gaa aag cct ttt Ser Thr Leu Ile Ser His Gln Arg Thr His Ser Gly Glu Lys Pro Phe 580	585	590	1775
atg tgc agg gag tgt ggc aga agg ttt cgg cag aag cct aac ctg ttt Met Cys Arg Glu Cys Gly Arg Arg Phe Arg Gln Lys Pro Asn Leu Phe 595	600	605	1823
agg cac aag agg gca cac tca ggt gcc ttt gtg tgc agg gag tgt ggg Arg His Lys Arg Ala His Ser Gly Ala Phe Val Cys Arg Glu Cys Gly 610	615	620	1871
caa ggc ttt tgt gct aag tta act ctc att aaa cac cag aga gca cac Gln Gly Phe Cys Ala Lys Leu Thr Leu Ile Lys His Gln Arg Ala His 625	630	635	1919
gca ggg ggg aag cct cat gtg tgc agg gag tgt ggg caa ggc ttt agc Ala Gly Gly Lys Pro His Val Cys Arg Glu Cys Gly Gln Gly Phe Ser 640	645	650	1967
cgg cag tca cac ctc att aga cac cag agg aca cat tca gga gag aag Arg Gln Ser His Leu Ile Arg His Gln Arg Thr His Ser Gly Glu Lys 660	665	670	2015
cct tat att tgc aga aag tgt gga cgg ggc ttt agt cgg aag tcc aac Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn 675	680	685	2063
ctt atc aga cat cag agg aca cac tca gga tag aaactttatg tgtataggaa 2116 Leu Ile Arg His Gln Arg Thr His Ser Gly 690	695		
atgtggtaca gcctttagcc aggagtata cttcatcaga caccagagga cacacacagt 2176 gctgtggctt ttccagccat tgcttagatac caaagtggag acattctgtg tgtgattatg 2236 catgagactg tactggtaag acttgtatct ccattccacct gaaggagaat tgctggctca 2296 ttttcaggag ccctgccctt cctcactgtg gatggtggtg tgtggaaacc cggtcaggta 2356 atgatagttgg caggaggcag tcaaattcccc aggcagatag ggggtgggtac ctggtgaaac 2416 ccaaccttaa agctgaagac agtccccggct aaatcctcat actgaattga gaacctgtct 2476 tcccattttgg tgtgctttcc tccgattgtat cccaaaccctt cacctatccc acgtataacct 2536			

gcctttcct aattgggttt tacactgctg tgcccacctt ttgagtggtg cctttgcata 2596
 cttacaaatc agtcaacgtg tattcccta ttctgagccc ataaaagacc cagactcagc 2656
 tgcagtgagg agagaaatca ccctgctgtg gaggttgggg accactccct gcatccctc 2716
 tccactgaga gctgttcttt tgctcaataa aattcttttc taccatcct caccct 2772

<210> 4
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 4
tgaaggagaa ttgctggctc a

21

<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 5
acctgaccgg gtttccaca

19

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Probe

<400> 6
ctgcccttcc tcactgtgga tggtg

25

<210> 7
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 7
gaaggtgaag gtcggagtc

19

<210> 8

```

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 8
gaagatggtg atgggatttc 20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Probe

<400> 9
caagcttccc gttctcagcc 20

<210> 10
<211> 11173
<212> DNA
<213> Homo sapiens

<220>

<400> 10
aagcttcttg gctctctaag ttttattttc tattcactgt gagaagtact tggctattat 60
ttcaaatattt ttcctgtccc ttttactctt tcctctcatt cttaggactcc caatttacct
gtatatttggaa ctgctggaaa tgtgtttctg aagattcata ttgtctcata agcttctgtt 120
catTTTCTT cagtTTTT tctctTTT gaggggtggg tggatataatg taatttctat
tcttttattt tcaaattcac taatctttct tcttttctg tttgctatta aacctgtcta 180
gtgaattttt aaatttcagt tgTTTTTTC tttccccctc ccctcctctc ccctcctctc
ccctccccctc ccctccccctc ccctccccctc ccctccccctc ctcttgcTTTc 240
cgTgggTTTT aggagtgcTc tcaggcaaga aagccacaaa caaaattatt acccTTTCT 300
gttgcaattt tttgagcata aactcttccc catcttctgg ctggttatgt atattttcca
gtgcctttga gtagttatTTT gttatattt atccagtctt attattttct gctgcagggt 360
ccttgcacc atttcagtct gctggcattt tcgttagtgg gcttcctcat acttatttt 420
gaattgattt ttggaaattt cttcaaaattt acagaatatt tgcaaaaata aaaatagtag 480
ataaaatata tatggcag tgagttgtat gtggTTTGTc cccaccacaa ctcatggta 540
atTTAATTG ccagTTAAC ggtattgaaa ggtqgtgggg cctttaaqag qtgTTTGGTT 600

```

gtggcatctc tgccctctcg aatggcttat gcagactggg ttagttcttt tggactgggt 900
 tggttctcggt gagatcaagt tggataaaaa caaggcttcc tctgatgttt ggctctttg 960
 catgcacttg cttcccttc ctcttctgc tgtgatttga agcagcatga gaccatcacc 1020
 aaatgggcta ccatccaacc tccagaattt tgagccaaat aaactttttt gtaaaattacc 1080
 cagtctcagg tattctgtta tagcaataca aaacagatta agacatatgg catatatgtt 1140
 attatataaa tggcatcata aaatgaccta ctatTTTact tagTTTgctt tatcatTTT 1200
 tcatagtgctc ttttgcatac atacccttcc tccttccttc cccttctca gtacatatgt 1260
 atgtatgtgt atatgtatgtat gtatgttcat atgtgtttgt tttgtttttg tctttgttt 1320
 tgTTTTgtt ttttgagaca gagtctcgct ctgtcacccca ggctggagtg cagtggcacg 1380
 atctcggttc actgcaacct ccgcctcctg ggtcaagcg attctcctgc ctcagcctcc 1440
 caagtagctg ggattacagg tgcacgccac catgcctggc taatTTTgtt gtttttagta 1500
 gagacagggt ttcaccatgt tagtcaggct ggtcttgaac acctgacctc atgatctgct 1560
 cacctcggtc tccccaaagtg ctgggattac aggctgagc caccaccccc ggctgtaaag 1620
 tgTTTgttcc tggatTTTtta ctaagaatgt cgatattgtc tcataaaacc acagtgtgg 1680
 tatcagcctc agtaaaactta actttgatac agtcattttg cctgttatct accattcgta 1740
 ttataatTTT gtcaacatata agaataatata ggtttttac ttccagaac ataatctgt 1800
 ccaaggtag ttagttcatt ttcatgtcat gtctataattt attattaagg gaaggaaatt 1860
 attatttcaa taatcttctt ctgttttta taacattgac atttcattttg ttatTTTaaat 1920
 tttagattca gagtgtacat gtgcaggTTT gttacatggg tatattatgt aatgctgggg 1980
 ttggggctt ctattgaacc tatcacccaa atagttaca tagtacctga tagtagttt 2040
 ttcagccctt acctccatcc ttttcccctt gttttggagt ccccaagtgtc tattattcc 2100
 atctttatgt ccgtgtgtac ccattgttta gtcctactt gtgagaacat aggttattt 2160
 attttctgtt tctgcattga ttcaacttagg atgatggctt ctagctgtcat ccattgttgc 2220
 gcagaggaca tgatttcatt ttTTTTatg gctgcatagt atttcattgtt gtgtgtgtac 2280
 cacattttat ttatccagtc cactattgtt gggctatac gaagattcca tgactttgct 2340
 gttggaaata gtgcgtcgat aagcatacga gtgcaggTTT cttctggtag aacaatttt 2400
 ttcccaactg ttgcatac aggttgaact aatttacatg accaccaaca atatataagc 2520
 attccctgtt ctgtgcatacc tcactaacat ctgtttttt gtttggatTTT ttgtttgtt 2580
 aactttttaa taatagccat tctgactggt gtgagatggc ctatcttctt gtgggtttc 2640

ttttcccatc cttcactggt accaagatct ctttgggtt gtaattgta tttctctgat 2700
 gattagtat tttgaggcatt ttttatgttt gctccctgtt tgtgtacctt ctggagaa 2760
 gtatctgttt atgtcccttg ctcaactttt aatgaggtta ttgggttt tggtgtgat 2820
 ttgtttaagt tccttatgtt tctgcattt agtccttgtt aagatgcattt gttcgaaat 2880
 gcttctccc attctgttagg ttgtctttt actctgttga ttgttcttt tgcatgtcag 2940
 aagctctttt gcttaattaa atcatatttgc tccatttttgc ttgggttgc aatcgctttt 3000
 gaggacttag tcataagttc tttgccttgg ccaatgtcca gagaagttt tcctagttt 3060
 ccttaggaa ttttatagtt tgaggtctta catttaaatgc tttcatccat cttgagttga 3120
 tttgtgtata tgagggggaa gggccagtt tcattcttgc gcatgtggct ggacagttt 3180
 cccagcatca tttatttgc agggtgcctt ttccccatttgc ttatatttgc tcagcttct 3240
 cgtagatcag ttggtagtagt gtgtgtggc ttatatttgc gttctctgtt ctgttccgtt 3300
 gatctatatg tctatttttgc tacttacacc gtgctgttgc agttaatata gccttgcattt 3360
 atagtcaaag tcaggtaatg tgatatttcc agctttgc ttttgc ttttgc 3420
 ggctagtcag gcttgc tcccatatgc attttgc ttttgc ttttgc 3480
 gaatgttgc atgacaaatg atgttgc tttgatagga attgcatttgc atctgttagat 3540
 tgcttggc agtacatca ttttacttgc attgatttgc aacaatctt gaggatgc 3600
 tgttttccc tttgtgtcat ctgtgatttgc tttcatcatttgc gttttgc ttttgc 3660
 gagaccttgc acctcttgg tttgatgtat tcttaggcatttgc ttttgc 3720
 tgtggctatt gtaaaatggc tcttgc ttttgc taagcttgc ttttgc 3780
 gtatagaaat gctatttgc ttttgc ttttgc ttttgc 3840
 ttttttttgc ttttgc ttttgc ttttgc 3900
 attatatttgc aggtataatg ttttgc ttttgc ttttgc 3960
 actcccttttgc ttttgc ttttgc ttttgc 4020
 aggacttcca gtactaagtt gaatacgatg ggtgagagca gacatcctt tcttgc 4080
 cttcttaggg ggaatggc ttttgc ttttgc ttttgc 4140
 tcacagataa ctcttcttgc ttttgc ttttgc ttttgc 4200
 tttatcatgc aggggtgttgc gatgttttgc gatgttttgc ttttgc 4260
 ttttttttgc ttttgc ttttgc ttttgc 4320
 gagtgcaggatgc ggcgcgttgc aagctccgttgc tcccaaggatgc acactatttgc 4380

cctgcctcag cctctctgag tagctggaac tacaggcgcc caccaccaag cctggctata 4440
 ttttgtatt ttttagtag agatggggtt tcaccgttgt ctcaatctcc tgacctcgta 4500
 atccgccccgc ctcagcctcc caaaagtgcata ggattacaag catgagccac cacacctggc 4560
 cggttttgtt tttaatcct gtttatgtga tgaatcacat ttattgaaca ctgacatttt 4620
 agaataacaat tcctcagttc tcactttttt ttttttctt ttttgagatg aagtctcact 4680
 ctgttgccta ggctggagtg cagtggcgcg atctcggtc actgcaacct ccacccctg 4740
 gtttcaagca gttctctgcc tcagcctccc gattagctgg gactacaggt gcgtgccacc 4800
 atgcctggct aagtttgta ttttagtag agacaggatt tcaccatctt ggccaggctt 4860
 gtcttgaact cttgccctca ggtgatccac ccacccctggc ctcccaaagt gctgggatta 4920
 caggcgtgag ctaccgcgccc tggccagttc tcactttta aaatagctt actgaggtat 4980
 aatttacatg ccataaaaatt acttattgta tgtatacagt tcaatatata tatattttt 5040
 ttttgagatg gagtttcaact gtttagccc atgctggagt gcagtggcac aatctcggt 5100
 cactgcaacc tctgcctcct gggttcaagt gattctcctg cctcagcctc ccgagtagct 5160
 gggattacag gcatgtacca ccaggcctgg ctaattttgtt atttttggta aagacagggt 5220
 ttctccatgt tggtcaggct ggtctcaaacc ttccgacctc aggtgatccg ccacccctc 5280
 ctcccaaagt gctgggatta caggcgtgaa ccgcccgcacc tggcctgtgt gtgtacagtt 5340
 caataatttt tagtaaactt atagagttat atgattgtca cctctattca acatttctgt 5400
 cacaccagaa agttctcatg tgcccatttg cattcatccg tcctcccatc agagggaaacc 5460
 attgatttgtt ttactgtcta tagatttgct gtttctagac gtataagaat ggcattgtga 5520
 aatatatagt cttttctttt tttttttttt agatggagcc ttgctctgtt gccaggctgg 5580
 aatacagtgg tgttatatacg gctcaactgca acctctgcct cctgggttca agcaattccc 5640
 ctgcctcagc ctccctgagta gctgggacta caggtgcaca ccaccacacc tggctaattt 5700
 tttgtatattt agtagagacg gggttcacc atgtggcca ggatggctc aatctcctga 5760
 ccttgtgatc cacccgcctc agcctcccaa agtgctggga ttacaggcat gagccaccat 5820
 gcctggccct tttcattgtt tattaaccat ttgcataatct ttttagtaa aatgcctatt 5880
 caattctttt ctttatattta aaatttagatt gtgttcttat tgaattgtaa gaatttttag 5940
 tatattcttag acacaagtcc tataatcaata taggattttc agatatttct ccctgtctgt 6000
 ggcttatctt ttcattttct caatgggtgc atttcaggca caaaagtttt aaatgctgat 6060
 taagtttaac ttaccaattt ttaaaatggg ttgtgctttt ggtgttgtaa ctaagaactt 6120
 tattcttaac tcaaggttat gaagattttc ttcactgggtt tcttcttagaa gttttacagt 6180

tttagctctt acattnagag ctacaatcca ttttagttaa ttttatgtt tcaaatgagg 6240
 tgaaaatcta aattcatttt ctgcataatg aatattcagt tgtccttaca atctcatata 6300
 aagagtatcc ttcctccat tgaattacct tggcacctt atcaaaaatc agctgactgt 6360
 gaatctaagt gttcatttct agtctcctga ttttgttcca tgatctccat cttcctccta 6420
 tgacagtagc acactatctt cattactgtt gctttatatt aagtttgaa gttagaagta 6480
 tacactcccc aactttatatt tcttttcag aaattgttt gtctatatttga tgcctttga 6540
 atttcaatgt aagttttagg atcagattgt gaatttccaa aagggaaaaa aaccaaaagc 6600
 ctgctgtgg tgcataccca tgattatgtt gaatctgcag ataaattttgc gagaatca 6660
 ccatcttaat aatagtaagc cttccaatct atgactgtct ccctatatttgc ttggagctt 6720
 aacttcattt aacaatgttt gttatatttgc tttttaaaaaa tctttcttgc tttcctcctt 6780
 tccttcctt ttctcttgc ttctcttgc tttcatccca ctatgttgc caaactggcc 6840
 tctaacttctt ggcccaagc aatcccccac cctcagccctc cttaagtgtt gggattacag 6900
 gcatgagcca ccgtgcccag cttaatttttgc cagttacaa actttgtgct actttgtcac 6960
 atttatttgc ttatatttttgc gttatgttgc atagttttgtt ttctcttgc 7020
 tcatttttag aatagtcatt gctatgttgc agaaatataa ttatatttttgc tatatttgc 7080
 ttatatgacc taagtacaat tatgacttctt agttgttttgc ttgaaatatttgc atgcttacaa 7140
 aattatataa tctgtgaaca agagatttttgc ttacttctt cttttcttagt taagatgcct 7200
 ttcatatttttgc ttctccttgc tttgttttgc ttctcttgc ttttttttttgc ttggagcca 7260
 cagagtctca ctgtgtcacc aggctggagt gtgggtggcac gatctcagct cactgcaacg 7320
 tccgcctccg ggggttcaagc gatttccttgc cctcagccctc ccaagtagcc gagactacat 7380
 gtgtgtgcta ccatagccag ctaatttttgc ttttttttagt ggagacaggg ttctgccttgc 7440
 ttggccagga tggctcaat ctcttgcacct cgtgatctgc ccgcctcgcc ttcccaaaatgt 7500
 gttgggacta caggcgtcat aagtttttgc gaaacacgtgc aatatttgcctt acttcttgc 7560
 tcttcttgc ctttccat tccctcttgc cctccttgc ttctcttgc ttctcttgc 7620
 cttttctgttgc tctcccttgc ttgaaatttgc ccccttaaaaaa aggtaaaaac catttttagt 7680
 tggcaggcca tacagaaaca ggtttcaggc tggatttggc ctgtcagggtt agtttgcctt 7740
 ctcctgcaat agaaaatgttgc atgcataaggc ctagacacacag tggcttgc ctgtaatccc 7800
 agcactttgg gaggcttagg ctgacctgag gtcaggagtt caagaccaggc ctggcaaaca 7860
 cggtaaaaact ctgtcttgc taaaaataca aaaatttgc gggcttagtgc ttggacgcctt 7920

gtaatcccag ctactcgga ggctaaggca ggagaatcgc ttgaaccctg gaggcggagg 7980
 ttgcagttag ctgagatcgc accactgcac tccagcttgg gtgaaagaaa gactccgtt 8040
 aaaaaaaaaa acaaaaaaac aaaagaaagt gtaatgcatt aagtgaaatg aaaaatagat 8100
 gctgggaagg atgtctaact gggagatagc ttgtatgt aatatgtaaa tatattatga 8160
 atgaccagtg ggcaaggcaa aattgcctac acagccctac ctatggcccc tctgaaaatg 8220
 ttcttccttc agcagaatcg aagccagaaa ttcaacttag tccctcctgc cctctgattt 8280
 tctccagtca gcaagcttc agccaacatg tgtggcttag tcatactctc cagctgttt 8340
 caagtttatg ggcagggaaat cctctccacc tgggaaaaca ctatccagaa gatcagaac 8400
 aacagcagga tccattctgc tttatgtggca aagcagaatg gattcaagag ggagaagact 8460
 ccagactcct gtttgggaga gtaagcaaaa atggcacttc aaaggcactt tccagcccac 8520
 ctgaagaaca acagccagca cagtc当地agg aagacaacac agtgggtggat atagggtcca 8580
 gccctgaacg gagggcagat ctagaggaaa cagacaaagt attgcattt ttagaagtct 8640
 caggatttg agaaatcaaa tatgaagagt ttggggccagg ctttatcaag gagtcaaacc 8700
 tccttagcct ccagaagaca caaaactgggg agacaccctt catgtacact gagtggggag 8760
 acagctttgg cagtatgtca gtccatcatca aaaacccaag gacacactct gggggaaagc 8820
 cttatgttg cagggaatgt gggcgaggct ttacgtggaa gtcaaaccctg atcacacatc 8880
 agaggacaca ctcaggggag aaacctttagt tgtgcaagga ttgtggacga ggctttactt 8940
 ggaagtcgaa cctcttaca catcagcggg cacactcagg gctcaaggct tatgtgtgca 9000
 aggaatgtgg gcagagctt agcctgaagt caaacctcat tacccaccag agggcgcaca 9060
 ctggggagaa gccttatgtt tgcaggaaat gtggcggtgg cttcgccag cattcacacc 9120
 tggtcagaca caagaggaca cattcaggag agaagcctt cattgcagg gagtgtgagc 9180
 aaggctttag ccagaagtca cacctcatca gacacttaag gacacacaca ggagagaagc 9240
 cttatgtatg cacagaatgt gggcgtaact ttagctggaa atcaaaccctc aaaacacacc 9300
 agaggacaca ctcaggggat aaacctttagt tctgcctgg gtcggggcag tgctttagcc 9360
 tgaagtcaaa ccttaacaaa caccagaggt cacacacggg ggagaagcca tttgtatgt 9420
 cgaggatgtgg ggcaggcattt accccggaaat caaccctgag cacgcaccag aggacacact 9480
 cagggggagaa gcccatttgc tgcgtgatgt gtggacgagg ctttatgtt aagtccaccc 9540
 tcatttcaca ccagaggaca cattcagggg aaaagcctt tatgtgcagg gagtgtggca 9600
 gaaggtttcg gcagaaggct aacctgtttt ggcacaagag ggcacactca ggtgccttg 9660
 tgtgcaggaa gtgtggcaaa ggctttgtt ctaagttaac tctcattaaa caccagagag 9720

cacacgcagg ggggaagcct catgtgtgca gggagtgtgg gcaaggcttt agccggcagt 9780
 cacacctcat tagacaccag aggacacatt caggagagaa gccttatatt tgcagaaaagt 9840
 gtggacgggg cttagtcgg aagtccaacc ttatcagaca tcagaggaca cactcaggat 9900
 agaaaactta tgtgtataagg gaatgtggta cagcctttag ccaggagtca tacttcatca 9960
 gacaccagag gacacacaca gtgctgtggc ttttcagcc attgctagat accaaagtgg 10020
 agacattctg tgtgtgatta tgcattgagac tgtactggta agacttgtat ctccatccac 10080
 ctgaaggaga attgctggct catttcagg agecctgccc ttccctactg tggatggtgg 10140
 gttgtggaaa cccggtcagg taatgatagt ggcaggaggc agtcaaatgc ccaggcagat 10200
 aggggtgggt acctggtgaa acccaacctt aaagctgaag acagtcccgg ctaaatcctc 10260
 atactgaatt gagaacctgt cttccatatt ggtgtgcttt cctccgattt atcccaaccc 10320
 ttoaccttatt ttacgtatac ctgccttcc ctaattggtt ttacactgc tgtgccacc 10380
 tttttagtgg tgccttgca tacttacaaa tcagtcaacg tgtattcccc tattctgagc 10440
 ccataaaaaga cccagactca gctgcagtga ggagagaaat caccctgctg tgggggttgg 10500
 ggaccactcc ctgcatttttttctccactga gagctgttct tttgctcaat aaaattcttt 10560
 tctacccatc ctcaccccttc aattgtcagt gtatcctcat tctttttgga ctcaggacaa 10620
 gcgcctcagaa ccactaaaca tgggtataag ctataataca ggcaggccaa gagggcaggg 10680
 cacctccagc agcaggccca gggctaagtg agatccaggc agagggctgt cgctggctgt 10740
 ggaggtcctc agttggcaat gtggctgaga aaattccctgt gtcaact tgacggagaa 10800
 agtactttta aatgggttga aatttagaaaa tgaataactat tccagtgtca ttttacaggt 10860
 acactggAAC attccttcca ctgtaccctg gatgttacag aaactattgc ggaaatgtgg 10920
 gagggaccaga gagaccatgg ggtgagacag gaggatttat ttatttat tttttagaca 10980
 gagtctcgct ctgtcacccca ggctggagtg cagtggcgcg atctcggttc actgcaggct 11040
 ccggcccccga ggttcacgccc attcttctgc ctcagccctcc cgaggagctg ggactacaag 11100
 tgcctgccac ctcacccggc taattttttgc tatttttagt agagatgggg ttctactgtg 11160
 ttagccagga tgg 11173

<210> 11
 <211> 246
 <212> DNA
 <213> Homo sapiens
 <220>

<400> 11
 tgagatgaag tctcaactctg ttgccttaggc tggagtgcag tggcgcgatc tcggctact 60
 gcaacctcca cctcctggtt tcaagcgggtt ctctgcctcg gcctcccgat tagctggac 120
 tacagaatcg aagccagaaa ttcaacttag tccctcctgc cctctgattt tctccagtca 180
 gcaagctctc agccaacatg tgtggctgag tcatctctc cagctgtttt caagttatg 240
 ggcagg 246

<210> 12
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense Oligonucleotide

<400> 12
 aaagaccta aaggggaggc 20

<210> 13
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense Oligonucleotide

<400> 13
 aagtcaaggta acaaggagca 20

<210> 14
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense Oligonucleotide

<400> 14
 aagccgaaag tcaggttaaca 20

<210> 15
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense Oligonucleotide

<400> 15
 tcctggagaa gggcaaagtc 20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 16
tcctgagtgc tcttcctggaa

20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 17
agaccagatg gttataaggc

20

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 18
cagtggacat tttctctctt

20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 19
tctggacaga ggtccagtg

20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 20
gggactaagt tgaatttctg

20

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 21
cttgctgact ggagaaaaatc 20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 22
gttggctgag agcttgctga 20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 23
gccacacatg ttggctgaga 20

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 24
gagagagatg actcagccac 20

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 25

attcctgcc cataaacttg -
20

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 26
cagaatggat cctgctgttg
20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 27
atccattctg ctttgccact
20

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 28
ggagtctgga gtcttctccc
20

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 29
ctcccaaaca ggagtctgga
20

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 30
ccttgaagt_gccattttg 20

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 31
aagtgcctt gaagtgccat 20

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 32
gactgtgctg gctgttgttc 20

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 33
ttgtcttcct tggactgtgc 20

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 34
ccctatatcc accactgtgt 20

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 35
agggctggac cctatatcca 20

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 36
ctgtttcctc tagatctgcc 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 37
ccttgataaa gcctggccca 20

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 38
ggaggtttga ctccttgata 20

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 39
ctccccagtt tgtgtcttct 20

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 40

gtccttgggt ttttgatgag

20

<210> 41

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 41

tttgacttcc acgtaaagcc

20

<210> 42

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 42

cgacttccaa gttaaaggcc

20

<210> 43

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 43

tgccttaag tgtctgatga

20

<210> 44

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 44

attctgtgca tacataaggc

20

<210> 45

<211> 20

<212> DNA

<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 45
ttatcattaa agcctcggtcc

20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 46
ggacttatca tttaaaggctc

20

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 47
gtgtgaaatg aggggtggact

20

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 48
gccgaaacct tctgccacac

20

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 49
aacaggttag gcttctgccg

20

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 50
gtgcccttctt gtgcctaaac

20

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 51
ctccctgcac acaaaggcac

20

<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 52
ttaatgagag ttaacttagc

20

<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 53
ggtgttaat gagagttaac

20

<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 54
actttctgca aatataaggc

20

<210> 55
<211> 20
<212> DNA

<213> Artificial Sequence
.....
<220>
<223> Antisense Oligonucleotide

<400> 55
aaagtttctta tcctgagtgt

20

<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 56
ctgtaccaca ttccctatac

20

<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 57
tatgactcct ggctaaaggc

20

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 58
gcaatggctg aaaaagccac

20

<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 59
ggtatcttagc aatggctgaa

20

<210> 60
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 60
tcacacacag aatgtctcca 20

<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 61
tcatgcataa tcacacacag 20

<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 62
gtcttaccag tacagtctca 20

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 63
agcaattctc cttcagggtgg 20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 64
aaaatgagcc agcaattctc 20

<210> 65

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 65
aacccaccat ccacagtgag

20

<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 66
ggtttccaca acccaccatc

20

<210> 67
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 67
ctgggcattt gactgcctcc

20

<210> 68
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 68
ctatctgcct gggcatttga

20

<210> 69
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 69
caggtaccca ccccttatctg

20

<210> 70
<211> 20 .. -
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 70
aagggtgggt ttcaccaggt

20

<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 71
tttagccggg actgtcttca

20

<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 72
aattcagtat gaggatttag

20

<210> 73
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 73
accaaatggg aagacaggtt

20

<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 74
aaaggcacca ctcaaaaaggt

20

<210> 75 .. -
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 75
atttgtaaat atgcaaaggc 20

<210> 76
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 76
ggcttttat gggctcagaa 20

<210> 77
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 77
cactgcagct gagtctgggt 20

<210> 78
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 78
atttctctcc tcactgcagc 20

<210> 79
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 79
gagtggtccc caacctccac 20

<210> 80
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 80
aacagctctc agtggagagg

20

<210> 81
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 81
agaaaagaat tttattgagc

20

<210> 82
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 82
actatgtaaa ctatttgggt

20

<210> 83
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 83
gagcttctgc actgcaaaag

20

<210> 84
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 84

agcttgcagt gagccgagat

20

<210> 85
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 85
atgcctgtaa tcccaacact

20

<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 86
ttcgattctg ctgaagaaag

20

<210> 87
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 87
gcctaggcaa cagagtgaga

20

<210> 88
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 88
ttctgttagtc ccagctaatac

20

<210> 89
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

29

<400> 89
aatttctggc_ttcgattctg

20