GSI024 - Organização e recuperação de informação

Prof. Dr. Rodrigo Sanches Miani (FACOM/UFU)

Modelo Vetorial

Agenda "Modelo vetorial"

Ideia básica

Definição

Exemplo

Aula passada

Ponderação TF-IDF - Definição

Seja w_{i,j} o peso do termo associado ao par (k_i, d_i). Então, definimos:

$$w_{i,j} = \begin{cases} (1 + \log f_{i,j}) \times \log \frac{N}{n_i} & \text{se } f_{i,j} > 0 \\ 0 & \text{caso contrário} \end{cases}$$

que é conhecida por esquema de ponderação TF-IDF.

Ponderação TF-IDF - Exemplo

Ponderação TF-IDF - Exemplo

#	termo	$TF_{i,1}$	$TF_{i,2}$	$TF_{i,3}$	$TF_{i,4}$	$IDF_i = \log(N/n_i)$	d_1	d_2	d_3	d_4
1	to	3	2	_	_	1	3	2	_	_
2	do	2	_	2,585	2,585	0,415	0,830	_	1,073	1,073
3	is	2	_	_	_		4		2,010	2,010
4	be	2	2	2	2	2	4		_	_
5	or	_	1	_	_	0	_	_	_	_
6	not	_	1	_	_	2	_	2	_	_
7	I	_	2	2	_	9		9		_
8	am	_	2	1	_	2		2		
9	what	_	1	_	_	1	_	2	2	_
.0	$_{ m think}$	_	_	1	_	1	_	2	1	_
11	therefore	_	_	1	_	9	_	2	_	_
12	da	_	_	_	2,585				2	
13	let	_	_	_	2	2	_	_	2	_
14	it	_	_	_	2	2	_	_	2	_
						2	_		_	5,170
						2	_	_	_	4
						2				4
						anho do documento rmas dos vetores)	5,068	4,899	3,762	7,738

Ideia básica

Motivação

- Discutido nos seguintes trabalhos:
 - K. Spark Jones 1974;
 - Salton e Yang 1973;
 - Salton, Wong e Yang 1975;
- Reconhecimeno de que a recuperação booleana é bastante limitada;
- Propor um método em que casamentos parciais entre consultas e documentos são possíveis (algo entre 0 e 1).

Ideia básica

- Atribuir pesos não binários aos termos de indexação das consultas e documentos;
- Calcular o grau de similaridade entre cada documento armazenado no sistema e a consulta do usuário;
- Ordenar os documentos recuperados de forma decrescente de acordo com esse grau de similaridade.

Modelo vetorial x Modelo booleano

Documentos recuperados de forma decrescente (ranqueados) fornecem uma resposta (no sentido da necessidade de informação do usuário) mais precisa do que a resposta fornecida pelo modelo booleano.

Definição

Modelo vetorial - Definição

Para o modelo vetorial, o peso w_{i,j} associado ao par termo-documento (k_i, d_j) é não negativo e não binário e dado pela ponderação TF-IDF. Os termos de indexação são todos considerados mutuamente independentes e são representados por vetores unitários em um espaço com t dimensões, no qual t é o número de termos de indexação. As representações do documento d_i e da consulta q são vetores com t dimensões dadas por:

$$\vec{d_j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

$$\vec{q} = (w_{1,q}, w_{2,q}, \dots, w_{t,q})$$

onde $w_{i,q}$ é o peso associado ao par termo-consulta (k_i , q), com $w_{i,q} \ge 0$.

Modelo vetorial - Definição

Portanto, um documento d_j e uma consulta de usuário q são representados como vetores com t dimensões:

Modelo vetorial - Grau de similaridade

- O grau de similaridade do documento d_j em relação à consulta q é dado à partir da correlação entre os vetores d_i e q;
- Um meio de quantificar essa correlação em 2 dimensões é através do cálculo do cosseno entre os vetores d_i e q:
 - Por que cosseno?
 - Quanto menor o ângulo entre os vetores, maior a correlação entre eles, eles estão mais próximos!
 - Cos(0) = 1, ou seja, grau de similaridade máximo entre os vetores.

Modelo vetorial – Grau de similaridade

Grau de similaridade entre um determinado documento e uma consulta, no modelo vetorial, é dado por:

$$sim(d_j, q) = \frac{\vec{d_j} \cdot \vec{q}}{|\vec{d_j}| \times |\vec{q}|}$$

$$= \frac{\sum_{i=1}^t w_{i,j} \times w_{i,q}}{\sqrt{\sum_{i=1}^t w_{i,j}^2} \times \sqrt{\sum_{i=1}^t w_{i,q}^2}}$$

onde o numerador representa o produto interno entre os dois vetores e o denominador representa o produto da norma dos dois vetores.

Modelo vetorial - Grau de similaridade

Definição: Seja V um espaço vetorial sobre o corpo R. Uma aplicação: $\langle \cdot, \cdot \rangle : V \times V \longrightarrow R$, que associa a cada par de elementos u e v em V um número real $\langle u, v \rangle$, e para quaisquer elementos u, v e $w \in V$ satisfaz as propriedades:

- (1) Simetria: $\langle u, v \rangle = \langle v, u \rangle$.
- (2) Positividade: $\langle v, v \rangle \geq 0$, com $\langle v, v \rangle = 0$ se, e somente se, $v = e_V$.
- (3) Distributividade: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$.
- (4) Homogeneidade: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$, para todo $\lambda \in R$.

define um **produto interno** no espaço vetorial real V.

Produto Interno Euclidiano em R^n: Sejam $u=(u_1,u_2,\ldots,u_n)$ e $v=(v_1,v_2,\ldots,v_n)$ vetores do R^n , então a aplicação $\langle\cdot,\cdot\rangle:R^n\times R^n\longrightarrow R$ dada por:

$$\langle u,v\rangle=u_1v_1+u_2v_2+\ldots+u_nv_n$$

define um produto interno, denominado produto interno Euclidiano do \mathbb{R}^n .

Modelo vetorial – Grau de similaridade

- O grau de similaridade (sim(d_i,q)) varia entre 0 e 1;
 - Ao invés de adotar um critério binário, os documentos são ordenados com base no grau de similaridade;
 - Assim, um documento pode ser recuperado, mesmo que ele satisfaça a consulta apenas parcialmente.

- Quanto mais próximo de 1, mais bem ranqueado será o documento d_j com relação a consulta q;
 - Valores próximos de 1 para $cos(\theta)$ representam maior "proporcionalidade" entre os vetores d_j e q.

Modelo vetorial - Grau de similaridade

Os pesos no modelo vetorial são basicamente os pesos TF-IDF:

$$w_{i,q} = (1 + \log f_{i,q}) \times \log \left(\frac{N}{n_i}\right)$$

$$w_{i,j} = (1 + \log f_{i,j}) \times \log \left(\frac{N}{n_i}\right)$$

onde f_{i,q} é a frequência do termo k_i no texto da consulta q.

Importante: as equações acima só devem ser aplicadas para valores de frequência de termo maior do que zero. Se a frequência do termo for zero, o respectivo peso também deve ser zero.

Exemplo

Modelo vetorial – Exemplo

Considere a coleção de documentos abaixo:

e a consulta q = "to do". Vamos calcular o grau de similaridade entre cada documento e a consulta.

Ponderação TF

#	termo	$f_{i,1}$	$f_{i,2}$	$f_{i,3}$	$f_{i,4}$		$TF_{i,1}$	$TF_{i,2}$	$TF_{i,3}$	$TF_{i,4}$
1	to	4	2	_	_		3	2	_	_
2	do	2	_	3	3		2	_	2,585	2,585
3	is	2	_	_	_		2	_	_	_
4	be	2	2	2	2		2	2	2	2
5	or	_	1	_	_		_	1	_	_
6	not	_	1	_	_		_	1	_	_
7	I	_	2	2	_		_	2	2	_
8	am	_	2	1	_		_	2	1	_
9	what	_	1	_	_		_	1	_	_
10	$_{ m think}$	_	_	1	_		_	_	1	_
11	therefore	_	_	1	_		_	_	1	_
12	da	_	_	_	3		_	_	_	2,585
13	let	_	_	_	2		_	_	_	2
14	it	_	_	_	2		_	_	_	2
	Tamanho do documento (# palavras)		11	10	12	-				

Ponderação IDF

#	termo	n_i	$IDF_i = \log(N/n_i)$
1	to	2	1
2	do	3	0,415
3	is	1	2
4	be	4	0
5	or	1	2
6	$_{ m not}$	1	2
7	I	2	1
8	am	2	1
9	what	1	2
10	$_{ m think}$	1	2
11	therefore	1	2
12	da	1	2
13	let	1	2
14	it	1	2

Ponderação TF-IDF

#	termo	d_1	d_2	d_3	d_4
1	to	3	2	_	_
2	do	0,830	_	1,073	1,073
3	is	4	_	_	_
4	be	_	_	_	_
5	or	_	2	_	_
6	not	_	2	_	_
7	I	_	2	2	_
8	am	_	2	1	_
9	what	_	2	_	_
10	$_{ m think}$	_	_	2	_
11	therefore	_		2	_
12	da	_	_	_	5,170
13	let	_		_	4
14	it	_	_	_	4
	o do documento as dos vetores)	5,068	4,899	3,762	7,738

Modelo vetorial – Exemplo

Doc	Computação do escore	Escore
d_1	$\frac{1 \times 3 + 0,415 \times 0,830}{5.068}$	0,660
d_2	$\frac{1 \times 2 + 0,415 \times 0}{4,899}$	0,408
d_3	$\frac{1 \times 0 + 0,415 \times 1,073}{3,762}$	0,118
d_4	$\frac{1 \times 0 + 0,415 \times 1,073}{7,738}$	0,058

Modelo vetorial – Exemplo

 O documento d₁ é o documento mais bem ranqueado, porque possui todos os termos da consulta;

- Os documentos d₃ e d₄ contêm apenas o termo da consulta "do" mas o documento d₄ recebe um escore menor. Porque?
 - A norma do vetor é maior (normalização pelo tamanho do documento).

Modelo vetorial x Sistema de RI

Consulta do usuário

• Formadas por termos presentes no vocabulário. São convertidas em vetores;

Recuperação de documentos

 Documentos são recuperados à partir do cálculo do grau de similaridade entre o vetor consulta e o vetor documento (ambos construídos com o auxílio da ponderação TF-IDF);

Ranqueamento dos documentos

 Cada par documento-consulta está associado a um valor real (grau de similaridade). Basta agora ordenar esses valores para obter o ranking.

Modelo vetorial - Características

- Apesar de simples, o modelo vetorial consegue bons resultados com coleções genéricas pois utiliza:
 - Esquema de ponderação de termos;
 - Método para normalizar o documento de acordo com o seu tamanho;
- Fornece resultados ranqueados que dificilmente podem ser melhorados sem o uso de expansão de consultas ou de realimentação de relevância;
- Um dos modelos de RI mais populares.

Modelo vetorial - Vantagens

- 1. Ponderação de termos melhora a qualidade da recuperação (quando comparado ao modelo booleano);
- 2. Estratégia de casamento parcial entre a consulta e o documento permite a recuperação de documentos que aproximam as condições da consulta;
- 3. A normalização pelo tamanho do documento está naturalmente embutida no modelo.

Modelo vetorial - Desvantagem

1. Termos de indexação são considerados mutuamente independentes

Comentários

No decorrer da aula vimos...

 Como utilizar a ponderação TF-IDF como base para a construção de um modelo de RI (modelo vetorial);

 Um método para calcular o grau de similaridade entre um documento e uma consulta, baseado no cosseno formado entre os ângulos de tais vetores;

No decorrer da aula vimos...

 A simplicidade e a possibilidade do casamento parcial entre um documento e uma consulta são características fundamentais do modelo vetorial;

 Modelo vetorial é uma boa estratégia de ranqueamento para coleções genéricas.

Próximas aulas

Modelo probabilístico.

• Construção do índice e pré-processamento.

Aulas práticas.

Estudos

- Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca
 - Capítulo 2.2.6

- Introdução aos Modelos Computacionais de Recuperação de Informação
 - Capítulo 4