Additively Homomorphic UC Commitments With Optimal Amortized Overhead

Ignacio Cascudo, Ivan Damgård, Bernardo David, Irene Giacomelli, Jesper Buus Nielsen, Roberto Trifiletti Aarhus University

Structure

- 1. Introduction
- 2. A general framework
- 3. Achieving additive homomorphism
- 4. Efficiency
- 5. Follow-up work and Open Questions

Commitment Schemes

Universal Composability

 Protocols remain secure in parallel concurrent executions and arbitrary composition.

- Commitments require setup assumptions [CF01].
- Commitments are complete [CLOS02].

Extractability, Simulator can open if Committer is corrupt

Equivocability: Simulator can change its mind if Reciever is corrupt.

Related Works

- DDH based fast UC commitments: static security [Lindell11,BCPV13], adaptive security [DN02, DG03].
 - Use a Common Reference String (CRS).
 - High asymptotic communication and computational complexity.
- UC commitments (with optimal rate): [GIKW14] (see also [DDGN14]).
 - Use Oblivious Transfer as a setup assumption.
 - Require PRGs and Codes that are also good Linear Secret Sharing schemes.

What do we do in theory?

- Optimal communication
- Additively Homomorphic
- Optimal computation

 Can use any good code, no need for it to be both a good code and a good secret sharing scheme.

How do we do it?

What do we do in practice?

Online Phase:

2 Encodings: 1.5 μs

[Lindell11,BCPV13] -> 22 exponentiations: 8250 μs

Practical scheme runs 5500 times faster

Practical Trade Offs...

No additive homomorphism.

Then setup phase cost:

796 OTs

8756 exponentiations using [PVW08]

398 [Lindell11,BCPV13] commitments

Building Blocks

- Error correcting codes:
 - Linear-time encodable codes[GI01,GI02,GI03,GI05,Spi96,DI14].
- UC Oblivious Transfer:
 - Any UC Oblivious Transfer protocol, e.g. [PVW08]
- Pseudorandom Generator:
 - Linear-time PRG, e.g. [VZ12]

Oblivious Transfer

Encoding Scheme

General Framework

Setup phase:

- Independent from the inputs
- Constant number of OTs for unbounded number of commitments.
- Constant communication complexity.

Commitment/Open Phases:

- Linear communication complexity (in size of string committed to).
- Only require a PRG and the encoding scheme.
- Non interactive.

Setup Phase

Sender Receiver

Commit Phase (Sender) j'th com.

Opening Message:

Open Phase (Receiver)

P_{1+c1}

P_{3+c2}

P_{2n-1+cn}

Open Phase (Receiver)

Additive Homomorphism

- The encoding scheme can be seen as a LSSS.
- Use the encoding scheme to build a VSS scheme using techniques of [DDGN14] and then use MPC in the head.
- For this to work, we need to additively secret share each code-word entry into 3 additive shares.
- Made MPC in the head work for a nonthreshold multiparty protocol.

Asymptotic Efficiency

- Computational complexity: O(k)
- Communication complexity: O(k)
- Round optimal (non interactive)

Scheme		nication exity lements)	Round Complexity		Computational Complexity			
	Commit	Open	Total	Commit	Open	Commit	Open	Total
Fig. 4	$\frac{2mnt}{t} + k$	\overline{m}	$\frac{2mnt}{l} + k + m$	1	1	$\frac{4n(t-1)}{t} + 2$ Enc.	1 Enc.	$\frac{4n(t-1)}{k} + 3$ Enc.
(homomorphic)	κ		κ			κ		κ
Fig. 2	nt	m	m+nt	1	1	1 Enc.	1 Enc.	2 Enc.
(basic)	. 30			_	_		_	

m=k+n(t-1)

Concrete Efficiency

- Underlying ECC: BCH [796,256,>=121]
- On average, encoding takes 0.75 μs and exponentiations on 256 bits field take 375 μs.

	Comn	nunica	tion	Round		Computational			
Scheme	Complexity (in bits)			Complexity		Complexity			
	Commit	Open	Total	Commit	Open	Commit	Open	Total	
[BCPV13] (Fig. 6)	1024	2048	3072	1	5	10 Exp.	12 Exp.	22 Exp.	
[Lin11] (Protocol 2)	1024	2560	3584	1	3	5 Exp.	$18\frac{1}{3}$ Exp.	$23\frac{1}{3}$ Exp.	
Fig. 4 (homomorphic, $t = 3$)	34733	1848	36580	1	1	27 Enc.	1 Enc.	28 Enc.	
Fig. 2 (basic, $t = 2$)	1592	1052	2644	1	1	1 Enc.	1 Enc.	2 Enc.	

 Our basic scheme is faster than previous schemes even in the ROM.

Open Problems

- Can we get optimal rate?
- Can we get additive homomorphism in this construction without VSS?
- YES! Follow-up work [Nielsen et al. 15]: check that committer uses (almost) a code word by checking random linear combinations.
- Very small overhead, natural idea but nontrivial to prove.

Usage with garbling schemes

- Several schemes seem to need efficient homomorphic commitments
- No need for UC OT in set-up phase in this context, can use the OT's already available.
- Seems to be the garbler's best friend ©

THANK YOU!

READ THE FULL PAPER:

https://eprint.iacr.org/2014/829