

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "МИРЭА – Российский технологический университет"

РТУ МИРЭА

Институт искусственного интеллекта Кафедра проблем управления

Программное обеспечение мехатронных и робототехнических систем

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Тема лабораторной работы: «Отладка программного обеспечения робототехнических систем с использованием виртуального моделирования»

Выполнили: студенты группы

КРБО-01-20

Крохмальный Д. И. Клиндухов Я. И.

Ведущий преподаватель

Морозов А.А.

Цель работы: получение навыков моделирования объекта управления в промышленных системах автоматического управления и создание функциональных блоков.

Задание: создать виртуальную систему управления (рис.1), включающую: модель объекта управления (рис. 2), ПИ-регулятор (рис. 3), сумматор и обратную связь. Передаточная функция объекта:

Рис. 1. Структура системы управления

Рис. 2. Структура объекта управления

Рис. 3. Структура ПИ-регулятора

Ход работы:

Давайте начнем новый проект в среде Automation Studio без конфигурации оборудования. Нам не требуется настраивать соединение с установкой, так как будем работать с симуляцией.

Создадим в проекте следующие объекты:

- 1. ANSI C Program;
- 2. ANSI C Library «MotorControl».

В библиотеке создаем функциональные блоки:

- 1. «FB_Motor» модель ДПТ;
- 2. «FB_Regulator» модель ПИ-регулятора;
- 3. «FB_Integrator» модель интегрирующего звена.

Детальное создание моделей начнем с интегратора, поскольку он необходим для функциональных блоков мотора и регулятора.

Таблица 1. Параметры функци	ионального блока FB_Integrator
-----------------------------	--------------------------------

Конфигурация	Имя	Тип данных	Описание
вход	in	REAL	вход интегрирующего звена
выход	out	REAL	выход интегрирующего звена
внутреннее состояние	dt	REAL	шаг расчета [с]

Заносим параметры функционального блока FB_Integrator в Automation Studio согласно Таблице 1.

Рис. 4. Параметры функционального блока FB_Integrator

На структурных схемах блок интегратора представляет собой следующую структуру:

Рисунок 5. Структурная схема интегратора

Логика работы интегратора заключается в накоплении сумм разностей входного и выходного значений в соответствии с шагом расчета. Это реализуем в программном коде данного функционального блока (см. приложение A).

Далее наполним функциональный блок FB_Motor.

Таблица 2. Параметры функционального блока FB_Motor

Конфигурация	Имя	Тип данных	Описание
вход	U	REAL	входное напряжение [В]
выход	W	REAL	частота вращения [об/мин]
выход	Phi	REAL	положение [рад]
внутреннее состояние	integrator	FB_Integrator	интегратор
внутреннее состояние	Tm	REAL	электромеханическая постоянная времени [с]
внутреннее состояние	Ke	REAL	постоянная ЭДС двигателя [В•мин/об]
внутреннее состояние	Dt	REAL	шаг расчета [с]

Заносим параметры функционального блока FB_Motor в Automation Studio согласно Таблице 2.

☐ ■ FB FB_Motor		
🐎 и	REAL	VAR_INPUT
🚓 w	REAL	VAR_OUTPUT
🚓 phi	REAL	VAR_OUTPUT
🧼 Tm	REAL	VAR
🔷 ke	REAL	VAR
🧼 dt	REAL	VAR
	FB_Integrator	VAR

Рис. 6. Параметры функционального блока FB Motor

Расчет значения на выходе блока происходит в соответствии со схемой ДПТ (см. рис. 2) с помощью программного кода (см. приложение Б).

Крайний функциональный блок FB_Regulator.

Таблица 3. Параметры функционального блока FB_Regulator

Конфигурация	Имя	Тип данных	Описание
вход	е	REAL	рассогласование между задающим воздействием и реальной скоростью вращения вала ДПТ [об/мин]
выход	u	REAL	напряжение, подаваемое на вход ДПТ [В]
внутреннее состояние	k_p	REAL	пропорциональный коэффициент регулятора
внутреннее состояние	k_i	REAL	интегральный коэффициент регулятора
внутреннее состояние	integrator	FB_Integrator	интегратор
внутреннее состояние	iyOld	REAL	хранение предыдущего значения схемы противонакопления
внутреннее состояние	max_abs_value	REAL	граница блока ограничения [В]
внутреннее состояние	dt	REAL	шаг расчета [с]

Заносим параметры функционального блока FB_Regulator в Automation Studio согласно Таблице 3.

☐ ■ FB_Regulator			
* e	REAL		VAR_INPUT
[©] 🚓 u	REAL		VAR_OUTPUT
🧼 k_p	REAL		VAR
🧼 k_i	REAL		VAR
····· 🧼 iyOld	REAL		VAR
🧼 max_abs_value	REAL		VAR
& 🔷 dt	REAL	✓	VAR
	FB_Integrator		VAR

Рис. 7. Параметры функционального блока FB_Regulator

Расчет значения на выходе блока происходит в соответствии со схемой ПИ-регулятора (см. рис. 3) с помощью программного кода (см. приложение B).

Объединим объект и регулятор в систему управления в основной программе с применением разработанных функциональных блоков.

В основной программе Маіп создадим следующие переменные:

Имя	Тип данных	Описание
fb_controller	FB_Controller	рассогласование между задающим воздействием и реальной скоростью вращения вала ДПТ [об/мин]
fb_motor	FB_Motor	напряжение, подаваемое на вход ДПТ [В]
Speed	REAL	уставка по скорости
Enable	BOOL	интегральный коэффициент регулятора
dt	REAL	шаг расчета [с]

Таблица 4. Переменные основной программы

В основной программе, в части инициализации «Init», заполняем все постоянные (коэффициенты регуляторов, постоянные времени, граничные значения и шаги расчета) созданных объектов fb controller и fb motor.

Добавляем второй мотор, указав в полях инициализации данные, аналогичные уже созданному ранее мотору. Добавить исполнение

функционального блока второго мотора в основной цикл программы, подавая на его вход уставку speed.

Рис. 8. Параметры fb_controller, fb_motor и fb_motor2

Снимаем графики с помощью средства Тrace.

Рис. 9. Конфигурация Тrace

Далее подбираем параметры регулятора для мотора. Начинаем с изменения интегрального коэффициента k_i при неизменных значениях k_i , max_abs_value (puc. 10-14).

Рис. 10. График уставки, k i = 0.16

Рис. 11. График уставки, k i = 1.6

Рис. 12. График уставки, k i = 16

Рис. 13. График уставки, $k_i = 16000$

Рис. 14. График уставки, k i = 160000

Оптимальное значение $k_i=0.16$. Теперь изменим значения max_abs_value при неизменных значениях k_p и k_i (рис. 15-19).

Рис. 15. График уставки, max abs value = 10

Рис. 16. График уставки, max_abs_value = 30

Рис. 17. График уставки, max_abs_value = 50

Рис. 18. График уставки, max abs value = 100

Рис. 19. График уставки, max abs value = 200

Оптимальное значение max_abs_value=200. Теперь изменим значения k_p при неизменных значениях max_abs_value и k_i (рис. 20-22).

Рис. 20. График уставки, к р=0.64

Рис. 21. График уставки, к р=6.4

Рис. 22. График уставки, к р=64

Оптимальное значение k_p=6.4.

Вывод:

лабораторной работы В ходе выполнения было освоено регулятора моделирование двигателя И его использованием c функциональных блоков в виртуальной среде Automation Studio. Мы применяли ступенчатое воздействие на уставку скорости (speed=50) и нашли оптимальные параметры для ПИ-регулятора при шаге расчета dt=0.002: k p=6.4, k i=0.16, и максимальное абсолютное значение выходного сигнала ограничено 200.