2-ая неделя

11.09.2023

Определение 1 (билет 4). $r \in \mathbb{Z}_+$, $O-omкpытое в <math>\mathbb{R}^n$ Тогда $C^r(O) \coloneqq \{f \colon O \to R : \forall i_1 \dots i_r \ \frac{\partial^r f}{\partial x_{i_r} \dots \partial x_{i_1}} \in C(O)\}$

Определение 2. $C^{\infty}(O) := \bigcap_{r \in \mathbb{Z}_+} C^r(O)$

Теорема 1 (О линейном пространстве $C^r(O)$). $C^r(O)$ - линейное пространство. Замкнуто относительно произведения: $f, g \in C^r : f \cdot g \in C^r$

Определение 3. $C^r(O \to \mathbb{R}^m) := \{f : f_1, \dots f_m \in C^r(O)\}$

Теорема 2 (Композиция $C^r(O)$). Пусть $\varphi \in C^r(O \to \tilde{O})$, $f \in C^r(\tilde{O})$. $Tor\partial a \ f \circ \varphi \in C^r(O)$

Теорема 3 (О равенстве смешанных производных в классе C^r (билет 4)). Если $f \in C^r(O)$, $O-omkpumoe\ e\ \mathbb{R}^n$, $r \in \mathbb{Z}_+; (i_1, i_2, \dots i_l) \in 2^{\{1,\dots,r\}}, \ l \leq r, \ (j_1, \dots, j_l) - nepecmanos \kappa a(i_1, \dots i_l)$ Тогда $\frac{\partial^l f}{\partial x_{i_l} \dots \partial x_{i_1}} = \frac{\partial^l f}{\partial x_{j_l} \dots \partial x_{j_1}}$

Определение 4 (билет 5). *Мультииндекс* - элемент \mathbb{Z}_+^n

$$|j| = j_1 + j_2 + \dots + j_n$$

$$j! = j_1! \cdot j_2! \cdot \dots \cdot j_n!$$

$$h \in \mathbb{R}^n, h^j = h_1^{j_1} \cdot \dots \cdot h_n^{j_n}$$

$$f(j)(a) = \frac{\partial^{|j|} f}{\partial x_n^{j_n} \dots \partial x_1^{j_1}}(a)$$

Лемма 1. Пусть $f \in C^r(O)$, $O-omкрытое в <math>\mathbb{R}^n$, $[a,a+h] \subset O$, g(t)=f(a+th). Тогда $\forall l=0,\ldots,r: g^{(l)}(t)=\sum_{j\in\mathbb{Z}_+^n,|j|=l} \frac{l!}{i!} f^{(j)}(a+th)\cdot h^j$

Теорема 4 (Глобальная формула Тейлора(-Лагранжа) для функции нескольких переменных (билет 6)).

Если
$$f \in C^{r+1}(O)$$
, $O-omкpытое \ B^n$, $r \in \mathbb{Z}_+$; $[a,a+h] \subset O$.

Тогда $\exists \theta \in (0,1): f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + \sum_{j \in \mathbb{Z}_+^n, |j| = r+1} \frac{f^{(j)}(a+\theta h)}{j!} h^j$

Следствие 1 (Формула Тейлора-Пеано, локальный вариант формулы Тейлора (билет 7)). Пусть $f \in C^r(O)$, $O-открытое \ в \mathbb{R}^n, \ a \in O.$

Тогда
$$f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + o(||h||^j) \ npu \ h \to 0$$

Следствие 2 (Теорема Лагранжа о среднем для скалярно-значных отображений (билет 7)). Пусть $f \in$ $C^1(O),\ O-omк$ рытое в $\mathbb{R}^n;\ a,h:a+th\in O \forall t\in [0,1].$ Тогда $f(a+h)-f(a)=\sum_{i=1}^n rac{\partial f}{\partial x_i}(a+\theta h)\cdot h_i=\langle \nabla_{a+\theta h}f,h\rangle$ (частный случай Тейлора для r=0).

Следствие 3 (Полиномиальная формула (билет 7)). $(x_1+\cdots+x_n)^r=\sum_{i\in\mathbb{Z}_+^n,|i|=r}\frac{r!}{i!}(x_1,\ldots,x_n)^j,\ npu\ r\in\mathbb{Z}_+$

Замечание. $d_a^0 f = f(a)$ $d_a^1 f = d_a f$ $d_a^{1}f(h) = d_af(h)$ $d_a^{l+1}f(h) = d_a(d_a^{l}f(h))(h)$

Лемма 2. Пусть $f \in C^r(O)$, $O-om\kappa pытое в <math>\mathbb{R}^n$; $a,h:a+th \in O \ \forall t \in [0,1]$. Тогда $\forall l=0,\ldots,r:d_{a+th}^lf(h)=g^{(l)}(t)$, где g(t)=f(a+th)

Теорема 5 (Формула Тейлора в дифференциалах в условиях теоремы Тейлора-Лагранжа (билет 8)). f(a + $h) = \sum_{l=0}^{r} \frac{1}{l!} d_a^l f(h) + \frac{d_{a+\theta h}^{l+1} f}{(l+1)!} (h)$

Определение 5. $f: E \to \mathbb{R}, E \subseteq \mathbb{R}^n, a \in E$.

а называется точкой максимума для f, если существует окрестность $U(a): f(x) \leq f(a) \ \forall x \in U(a) \cap E$

Теорема 6 (Необходимое условие экстремума (билет 9)). $f: E \to \mathbb{R}, \ a \in IntE, \ a$ - точка экстремума $f, \ f$ дифференцируема в точке $a \Rightarrow d_a f = 0 \Leftrightarrow \nabla_a f = 0 \Leftrightarrow \forall i \in 1, \ldots, n: \frac{\partial f}{\partial x_i}(a) = 0$

Теорема 7. a - точка максимума f, φ непрерывна в точке α , $\varphi(\alpha)=a$.

Tогда α - mочка максимума $f \circ \varphi$

Замечание. $\sum_{1 \leq i,j \leq n} a_{i,j} h_i h_j$ - $\kappa ea \partial pamuчная форма.$

 $d_a^2f(h)$ - квадратичная форма переменных h_1,\ldots,h_n

 $d_a^lf(h)$ - однородная функция степени $l\colon d_a^lf(Ch)=C^ld_a^lf(h).$

 Φ орма Q(h) бывает положительно определенной, отрицательно определенной, неопределенной (бывает и положительной, и отрицательной).

Теорема 8 (Достаточное условие экстремума). $f: \mathbb{R}^n \supseteq E \to \mathbb{R}, \ a \in IntE, \ в точке a выполняется необходимое условие экстремума <math>u \ \exists d_a^2 f$.

 $Q(h) := d_a^2 f(h)$. Тогда, если Q > 0, то a - точка минимума, если Q < 0, то a - точка максимума, если Q неопределенная, то a - не точка экстремума.