Statistics

Week 11: Single Factor Experiments (Chapters 12)

ESD, SUTD

Term 5, 2017

Established in collaboration with MIT

Information

Tuesday second half: last guest lecture.

Thursday 1pm: homework 3 due. You can submit on *eDimension*, or in the homework box labeled 'Statistics' on level 7, building 1.

Outline

Analysis of single factor experiments

Introduction

Independent samples design allows us to compare two groups. Now we look at techniques for comparing *more than two* groups.

More formally, we look at an experiment which measures a response from more than two groups (or treatments). The treatments are levels of a single treatment factor.

The available experimental units are randomly assigned to each treatment (no matching).

Example: we might want to measure the compression during a crash for small, medium, and large cars.

Set up

Group (or treatment)			
1	2		k
y_{11}	y_{21}	• • •	y_{k1}
y_{12}	y_{22}	• • •	y_{k2}
:	:	:	:
y_{1n_1}	y_{2n_2}		y_{kn_k}

The group sizes n_i do *not* necessarily equal.

Total sample size:
$$N = \sum_{i=1}^{k} n_i$$
.

Sample mean for group i: \bar{y}_i .

Sample standard deviation for group i: s_i .

Grand mean:
$$\bar{\bar{y}} = \frac{1}{N} \sum_{i,j} y_{ij}$$
. Note: this is a double sum.

Set up, continued

We assume that for each group, the response is *normally* distributed, and that all the groups have the same variance σ^2 but not necessarily the same mean μ_i .

Exercise

(1) Show that

$$\sum_{i=1}^{k} n_i (\bar{y}_i - \bar{\bar{y}}) = 0.$$

(2) If all the group sizes are the same, give an interpretation of \bar{y} .

Confidence interval

Since each s_i^2 is an estimator of σ^2 , we can pool them together to get a better estimate for σ^2 :

$$s^{2} := \frac{\sum_{i,j} (y_{ij} - \bar{y}_{i})^{2}}{N - k} = \frac{\sum_{i} (n_{i} - 1)s_{i}^{2}}{\sum_{i} (n_{i} - 1)}.$$

Using s, we can write down the $(1-\alpha)$ -level confidence interval for μ_i (the true mean of group i):

$$\bar{y}_i - t_{N-k, 1-\alpha/2} \frac{s}{\sqrt{n_i}} \le \mu_i \le \bar{y}_i + t_{N-k, 1-\alpha/2} \frac{s}{\sqrt{n_i}}.$$

The null hypothesis

Our primary interest is in comparing whether the μ_i 's are actually different. Set up $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$.

A preliminary test can be carried out using side-by-side box plots.

Can we use confidence intervals to test for H_0 ? It turns out that even if all the Cl's contain a number in common, it is not obvious how strongly this supports H_0 .

The tabular set up of the data values y_{ij} suggests that we can use a tool encountered before: analysis of variance.

The idea behind ANOVA

The idea is to compare the variation *between* the groups to the variation *within* each group.

The total variance can (once again) be decomposed into the above two terms.

SST :=
$$\sum_{i,j} (y_{ij} - \bar{y})^2$$
, df = $N - 1$ (total),

SSE
$$:= \sum_{i,j} (y_{ij} - \bar{y}_i)^2$$
, df. $= N - k$ (within),

SSA :=
$$\sum_{i=1}^k n_i (\bar{y}_i - \bar{\bar{y}})^2$$
, df = $k-1$ (between).

The ANOVA identity

SSA is the weighted sum of squared errors between all treatments, and can also be written as $\sum_{i,j}(\bar{y}_i-\bar{y})^2$. Its degree of freedom is (k-1) due to the relation in the previous exercise.

A 'large enough' value of SSA would indicate that H_0 is false.

Let
$${\bf MSA}={\rm SSA}/(k-1)$$
, ${\bf MSE}={\rm SSE}/(N-k)=s^2$, and ${\bf F}={\rm MSA}/{\rm MSE}$.

The ANOVA identity

$$SST = SSA + SSE.$$

The set up here is just like regression (in fact, it is because the data can be written as a regression model).

Proof of the ANOVA identity

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 = \sum_{i,j} (y_{ij} - \bar{y}_i + \bar{y}_i - \bar{y})^2$$

$$= \sum_{i,j} (\bar{y}_i - \bar{y})^2 + \sum_{i,j} (y_{ij} - \bar{y}_i)^2 + 2\sum_i (\bar{y}_i - \bar{y}) \sum_j (y_{ij} - \bar{y}_i)^2$$

$$= \sum_i n_i (\bar{y}_i - \bar{y})^2 + \sum_{i,j} (y_{ij} - \bar{y}_i)^2 + 0.$$

As in regression, F satisfies a $F_{k-1,N-k}$ distribution if H_0 is true.

We can reject H_0 with $(1-\alpha)$ confidence if $F > f_{k-1,N-k,1-\alpha}$.

Exercises

Use $\alpha = 0.05$ throughout.

(1) Complete all the calculations using the formulas, in the spreadsheet 'cars'.

Check your answers against *Excel*'s Anova: Single Factor function.

- (2) Complete all the calculations in the spreadsheet 'sugar'; think about how to find SSE and SST.
- (3) Construct the ANOVA tables in the spreadsheet 'anorexia', and answer the question.