TEAM MEMBERS:

- Aditi Paitandy
- Aditya Sahu
- Anurag Dash
- Manish Kumar
- Priyanka Bammanahalli

Array-Based Smart Seating Management System

Description:

Develop a 2D array-based system for efficiently managing seating arrangements in theaters, classrooms, and events. This system dynamically tracks seat availability, optimizes group seating, and prevents overbooking.

Features:

- Seat Tracking: Stores seat availability (0 for available, 1 for booked, V for VIP) in a 2D array.
- Group Seating Optimization: Identifies and assigns adjacent seats for group bookings.
- VIP and Reserved Seating: Allocates priority seating for premium or special users.
- Dynamic Booking & Cancellation: Updates seat status in real time when bookings or cancellations occur.

Why It's Unique:

This system provides an automated and structured approach to seating management, ensuring optimized space utilization. It can be integrated into event planning platforms, cinema booking systems, and educational institutions.

Project Name: Smart Seating Management System Using 2D Arra	Proj	ect Name:	Smart Seating	Management Sy	ystem Using	2D Arra
---	------	-----------	----------------------	---------------	-------------	---------

Course Name: Advanced Data Structures and Algorithms

Submitted By:

- Aditi Paitandy
- Aditya Sahu
- Anurag Dash
- Manish Kumar
- Priyanka Bammanahalli

Date of Submission: 10 January 2025

Case Study: Smart Seating Management System Using 2D Array

1. Concept Overview

Seating management in venues such as theaters, classrooms, and transportation systems require an efficient approach to **seat allocation**, **group seating**, **and VIP reservations**. Manual systems often result in inefficiencies such as **overbooking**, **split seating for groups**, **and underutilized VIP sections**.

A **2D** array-based seating system provides a structured method for tracking seat availability and optimizing allocations. Each element in the array represents a seat and its current status:

- $0 \rightarrow \text{Available seat}$
- $1 \rightarrow Booked seat$
- $V \rightarrow VIP/Reserved$ seat

This model enables **real-time updates** and **optimized space utilization**, ensuring seamless user experiences.

2. Key Ideas

Dynamic Seat Allocation and Tracking

- A 2D array (rows x columns) stores seat status.
- The system dynamically updates availability and prevents overbooking.

Optimized Group Seating

- Identifies **continuous empty seats** for group reservations.
- Avoids last-minute **split seating issues** by optimizing space allocation.

VIP and Special Seat Reservations

- Certain rows or sections can be **pre-marked for priority seating**.
- Ensures accessibility for elderly individuals or persons with disabilities.

Efficient Booking and Cancellation Management

- Real-time updates ensure accuracy.
- Cancellations are immediately processed, allowing for reallocation.

3. Stepwise Calculation for Seat Allocation

Step 1: Defining the Seating Grid

Consider a theater with 5 rows and 8 seats per row. The seating matrix is structured as:

VVVVVVV (VIP Reserved)

0 0 0 1 0 0 0 0 (Regular)

00100000

00000100

00000000

Here,

- Row 0 is exclusively reserved for VIP customers (V).
- Booked seats are marked as 1.
- Available seats are 0.

Step 2: Booking a Seat

If a user requests **seat** (2,3), the system checks:

- Is seating [2][3] == 0? Yes \rightarrow Seat is available
- The system updates seating [2][3] = 1, marking it as booked.

Updated Grid:

VVVVVVVV

00010000

0 0 1 1 0 0 0 0 (Seat at (2,3) booked)

00000100

 $0\ 0\ 0\ 0\ 0\ 0\ 0$

Step 3: Finding the Best Row for Group Seating

A group of 3 people wants adjacent seats. The system scans each row for:

• Three consecutive 0s (available seats).

• The best row with the most space is allocated to them.

If **Row 1** has 0 0 0 1 0 0 0 0, the best available section is **seats** $(1,0) \rightarrow (1,1) \rightarrow (1,2)$.

Updated Grid After Group Allocation:

```
VVVVVVV
```

1 1 1 1 0 0 0 0 (Seats (1,0), (1,1), (1,2) booked)

00110000

00000100

0000000

Step 4: Handling Cancellations

If the user at **seat (3,5)** cancels their booking:

• The system **updates seating**[3][5] = 0, marking it as available.

Updated Grid After Cancellation:

VVVVVVV

11110000

00110000

0 0 0 0 0 0 0 0 (Seat (3,5) is now available)

 $0\ 0\ 0\ 0\ 0\ 0\ 0$

4. Advanced Enhancements

1. Priority-Based Dynamic Pricing

- Front-row seats can be premium-priced, with automated pricing adjustments based on demand.
- Discounts may be offered for **low-demand sections**.

2. AI-Powered Seat Recommendations

• The system can suggest **the best available seats** based on previous preferences.

• **AI-driven seating optimization** can recommend ideal seats for solo travelers, groups, or couples.

3. Integration with Digital Ticketing Systems

- Allows users to view live seat availability on an online platform.
- Provides **QR-based seat confirmation** to prevent fraudulent bookings.

4. Adaptive Layout for Different Event Types

• The system can **adjust seating layouts dynamically** for conferences, live performances, or sports events.

5. Conclusion

The 2D array-based seating management system effectively optimizes seat allocation, ensures efficient group seating, and prevents overbooking. By implementing advanced enhancements such as AI-based recommendations, dynamic pricing, and online integration, this system can significantly improve user experience in cinemas, airlines, exam halls, and stadiums.

Future developments could focus on **3D seating visualization**, automated seat rearrangements, and smart ticketing solutions for even greater efficiency.