JP2000268012A

Publication Title:

METHOD AND DEVICE FOR DISTRIBUTING LOAD IN CLIENT SERVER SYSTEM

Abstract:

Abstract of JP 2000268012

(A) Translate this text PROBLEM TO BE SOLVED: To provide a sure high-reliability service to a client by enabling operation with an optimum load. SOLUTION: Concerning a method for distributing a server load, in a client server system, each server 21 weights its own load condition to a CPU load, a job priority, a number of execution jobs and a number of job input queues respectively, allocates a threshold value (server load information weighting setting function part 211) and periodically compares this threshold value with sampled (server load information sampling function part 212) load information so as to perform load judgement for instructing the acceptance or interruption of a local area network(LAN) traffic (LAN traffic acceptance discriminating function part 213). By timely transmitting load control information generated according to the result of the above load judgement to a load distributing device 1 connected to a LAN, the transmission of the LAN traffic to the relevant server is controlled (load distribution control executing function part 12).

Courtesy of http://v3.espacenet.com

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-268012

(P2000-268012A)

(43)公開日 平成12年9月29日(2000.9.29)

(51) Int.Cl.7		識別記号	F I		ý	マコード(参考)
G06F	15/177	674	C 0 6 F	15/177	6 7 4 B	5 B 0 4 5
	15/16	620		15/16	620B	

窓杏請求 有 請求項の数4 〇1. (全10 頁)

		香堂前水 有 前水坝の数4 OL (全 10 貝)
(21)出顧番号	特願平11-67554	(71)出願人 000004237 日本電気株式会社
(22) 掛城日	平成11年3月12日(1999.3.12)	東京都港区芝五丁目7番1号 (72)発明者 日渡 輝美 東京都港区芝五丁目7番1号 日本電気株 式会社内 (74)代理人 100108578 弁理士 高橋 配男 (外3名) Fターム(参考) 5B045 AA03 BB12 BB28 BB47 GG04

(54) 【発明の名称】 クライアントサーバシステムにおけるサーバ負荷の分散方法ならびに装置

(57)【要約】

【課題】 最適な負荷で運用でき、クライアントに対し 確実で信頼性の高いサービスを提供する。

【解決手段】 クライアントサーバシステムにおいて、各サーバ21 (22,23) は自身の負荷状況をCPU負荷、ジョブ優先順位、実行ジョブ数、ジョブ入力待ち行列数のそれぞれに重み付けを行い、また、閾値を割り当て(サーバ負荷情報重み付け設定機能部211)、この閾値と採取(サーバ負荷情報球取機能部212)された負荷情報を定期的に比較することにより、LANトラフィックの受け入れ、あるいは中断を指示する負荷判断を行う(LANトラフィック受付判定機能部213)。そして、LAN接続された負荷分散装置1に前記負荷判断の結果に従い生成される負荷制御情報をタイムリーに送信することにより、該当サーバへのLANトラフィックの送信制御を行う(負荷分散制御実行機能部12)。

【特許請求の範囲】

【請求項1】 LAN接続環境下におけるクライアントサーバシステムにおいて、サーバ負荷の要素をアプリケーションに応じて定義される優先順位毎、CPU使用率、実行ジョブ数、ジョブ入力待ち行列数に分解し、前部各サーバは、前記分解された要素のそれぞれにつき重み付けを行うと共に関値を割り当て、この関値と採取される負荷状況を定期的に比較することにより、LANトラフィックの受け入れ、拒否のための負荷判断を行い、その結果をLAN接続される負荷分散装置に通知することにより、前記重み付け設定された負荷要素に従い該当サーバもしくは他のサーバに対してLANトラフィックの送信制御を促すことを特徴とするサーバ負荷の分散方法。

【請求項2】 サーバ負荷の要素を、アプリケーションに応じて定義される優先順位毎、CPU使用率、実行ジョブ数、ジョブ入力特ち行列数に分解し、前記それぞれの要素に基づきLANトラフィックの送信制御を行うクライアントサーバシステムにおいて、前記分解された要素のそれぞれにつき重み付けを行うと共に関値を割り当て、この関値と採取される負荷情報とを定期的に比較することにより、LANトラフィックの受け入れ、拒否のための負荷判断を行い、LAN接続される負荷判断によっための負荷判断を行い、LAN接続される負荷判断によっては内蔵するサーバ負荷管理テーブルを更新し前記重み付け設定された負荷要素に従い該当サーバもしくは他のサーバに対し、LANトラフィックの送信制御を行う負荷分散装置とを備えることを特徴とするサーバ負荷の分散装置

【請求項3】 前記サーバ負荷管理情報デーブルは、管理すべきそれぞれのサーバで使用され優先度が付されたアプリケーション毎、CPU負荷ステイタス、実行ジョブ負荷ステイタス、入力ジョブ待ち行列負荷ステイタスの各情報設定領域から成り、前記負荷分散装置により参照され、前記サーバ中の負荷情報重み付け設定手段で設定された重みに従う順序でLANトラフィックの受け入れ判断を行うことを特徴とする請求項2記載のサーバ負荷の分散装置。

【請求項4】 LAN接続環境下におけるクライアントサーバシステムにおいて、サーバ負荷の要素をアプリケーションに応じて定義される優先順位毎、CPU使用率、実行ジョブ数、ジョブ入力特ち行列数に分解し、分解された要素のそれぞれにつき重みづけを行うと共に関値を割り当てる前記サーバ中のサーバ負荷情報重み付け設定手段と、前記CPU使用率、実行ジョブ数、ジョブ入力持ち行列数から成るサーバ負荷情報採取手段と、前記サーバ申荷情報採取手段と、前記サーバ負荷情報採取手段と、前記サーバ負荷情報採取手段により定義された関値と前記サーバ負荷情報採取手段により採取されたサーバ負荷情報採取手段によりが表立れたサーバ負荷情報採取手段によりが表立れたサーバ負荷情報採取手段によりが表立れたサーバ負荷情報採取手段によりが表立れたサーバ負荷情報採取手段によりが表立れたサーバ負荷情報採取手段によりが表されたサーバ負荷情報採取手段によりが表されたサーバ負荷情報採取手段によりが表されたサーバ負荷情報採取手段によりが表されたサーバ負荷情報採取手段によりが表されたサーバ負荷情報採取手段によりが表されたサーバ負荷情報採取手段によりを表する。

れ、もしくは拒否する前記サーバ中のLANトラフィッ ク受付判定手段と、前記比較の結果によってはLANト ラフィック中断のための負荷制御情報もしくはLANト ラフィック受付再開のための負荷制御情報を、LAN接 続される負荷制御装置に伝える前記サーバ中の負荷状況 通信手段と、前記各負荷制御情報を受信して負荷分散制 御実行手段に伝える前記負荷制御装置中の負荷状況通信 手段と、LANトラフィック受付け中断のための負荷制 御情報を受信した場合、自身で管理しているサーバ負荷 管理情報テーブルにおける該当サーバの関連ステイタス を送信不可状態に設定し、他のサーバでクライアントか らのジョブを受け付け可能なサーバを探してルーティン グを行い、LANトラフィック受付け再開のための負荷 制御情報を受信した場合、自身で管理しているサーバ負 荷管理情報テーブルにおける該当サーバの関連するステ イタスを送信可能な状態に設定し、該当サーバに対する LANトラフィックの送信制御を促す前記負荷分散装置 中の負荷分散制御実行手段とを備えることを特徴とする サーバ負荷の分散装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、クライアントサーバシステムにおけるサーバ負荷の分散方法ならびに装置に関する。

[0002]

【従来の技術】コンピュータをネットワーク化し、ネッ トワーク全体でコンピューティングパワーを発揮させる のがネットワークコンピューティングである。ネットワ ークコンピューティングにおいて、ネットワークを構成 する各コンピュータは業務を分業化し、かつ相互に利用 しあう分散処理が可能になる。サービスを提供するサー バや、サーバの機能を利用するクライアントがネットワ ークコンピューティング構成要素になるため、このネッ トワークコンピューティングのことをクライアントサー バコンピューティングと呼ぶことがある。上述したクラ イアントサーバコンピューティングを実現するクライア ントサーバシステムは、要求に応じて所定の処理を行う サーバコンピュータと、そのサーバコンピュータに対し て処理を要求する複数のクライアントコンピュータと、 これらクライアント、サーバコンピュータ間を相互に接 続するLAN (Local Area Network) 等通信回線から 成る。

[0003]

【発明が解決しようとする課題】ところで、上述したクライアントサーバシステムにおいて、1台のサーバコンピュータの処理能力には限界があるため、サーバコンピュータを複数台で構成することが多く、この場合、特定のサーバに要求が集中しないように負荷分散のための手立てがなされる。通常はCPU負荷によってのみ負荷状況を判断し、負荷分散をはかっていた。また負荷分散装

置を接続し、サーバ間におけるレスポンスタイムを計測 し、そのタイムに従い負荷状況を判断するシステムもあ った。そのため、サーバ負荷は、CPU使用率、あるい はレスポンスタイムによってのみサーバの負荷が決定さ れ適当なサーバが割り当てられるため、サービスの重要 度、種類による負荷状況が的確に把握できず、従ってそ のサーバ処理がかならずしも信頼性の高いサービスを提 供するものではなかった。この発明は上記事情に鑑みて なされたものであり、サーバ負荷の要素を使用アプリケ ーションに応じて定義される優先順位毎、CPU使用 率、実行ジョブ数、ジョブ入力待ち行列数に分解し、そ れぞれについてLANトラフィックの流量を制御するこ とにより、最適な負荷で運用でき、クライアントに対し 確実で信頼性の高いサービスを提供できる、クライアン トサーバシステムにおけるサーバ負荷の分散方法ならび に装置を提供することを目的とする。

[0004]

【課題を解決するための手段】上述した課題を解決するために請求項1記載のサーバ負荷の分散方法は、LAN接続環境下におけるクライアントサーバシステムにおいて、サーバ負荷の要素をアプリケーションに応じて定義される優先順位毎、CPU使用率、実行ジョブ数、ジョブ入力待ち行列数に分解し、前記各サーバは、前記分解された要素のそれぞれにつき重みづけを行うと共に閾値を割り当て、この閾値と採取される負荷状況を定期的に比較することにより、LANトラフィックの受け入れ、拒否のための負荷判断を行い、その結果をLAN接続される負荷分散装置に通知することにより、前記重み付け設定された負荷要素に従い該当サーバもしくは他のサーバに対してLANトラフィックの送信制御を促すことを特徴とする。

【0005】請求項2記載のサーバ負荷の分散装置は、 サーバ負荷の要素をアプリケーションに応じて定義され る優先順位毎、CPU使用率、実行ジョブ数、ジョブ入 力待ち行列数に分解し、前記それぞれの要素に基づきし ANトラフィックの送信制御を行うクライアントサーバ システムにおいて、前記分解された要素のそれぞれにつ き重み付けを行うと共に閾値を割り当て、この閾値と採 取される負荷情報とを定期的に比較することにより、L ANトラフィックの受け入れ、拒否のための負荷判断を 行い、LAN接続される負荷分散装置に通知するサーバ と、前記サーバによる負荷判断によっては内蔵するサー バ負荷管理テーブルを更新し前記重み付け設定された負 荷要素に従い該当サーバもしくは他のサーバに対し、し ANトラフィックの送信制御を行う負荷分散装置とを備 えることを特徴とする。また、請求項3記載のサーバ負 荷の分散装置は、前記サーバ負荷管理情報テーブルは、 管理すべきそれぞれのサーバで使用され優先度が付され たアプリケーション毎、CPU負荷ステイタス、実行ジ ョブ負荷ステイタス、入力ジョブ待ち行列負荷ステイタ スの各情報設定領域から成り、前記負荷分散装置により 参照され、前記サーバ中の負荷情報重み付け設定手段で 設定された重みに従う順序でLANトラフィックの受け 入れ判断を行うことも特徴とする。

【0006】更に請求項4記載の負荷の分散装置は、L AN接続環境下におけるクライアントサーバシステムに おいて、サーバ負荷の要素をアプリケーションに応じて 定義される優先順位毎、CPU使用率、実行ジョブ数、 ジョブ入力待ち行列数に分解し、分解された要素のそれ ぞれにつき重み付けを行うと共に閾値を割り当てる前記 サーバ中のサーバ負荷情報重み付け設定手段と、前記C PU使用率、実行ジョブ数、ジョブ入力待ち行列数から 成るサーバ負荷状況を定期的に採取する前記サーバ中の サーバ負荷情報採取手段と、前記サーバ負荷情報重み付 け設定手段により定義された閾値と前記サーバ負荷情報 採取手段により採取されたサーバ負荷状況を定期的に比 較し、LANトラフィックの受け入れ、もしくは拒否す る前記サーバ中のLANトラフィック受付判定手段と、 前記比較の結果によってはLANトラフィック中断のた めの負荷制御情報もしくはLANトラフィック受付けの 再開をための負荷制御情報を、LAN接続される負荷制 御装置に伝える前記サーバ中の負荷状況通信手段と、前 記各負荷制御情報を受信して負荷分散制御実行手段に伝 える前記負荷制御装置中の負荷状況通信手段と、LAN トラフィック受付け中断のための負荷制御情報を受信し た場合、自身で管理しているサーバ負荷管理情報テーブ ルにおける該当サーバの関連ステイタスを送信不可状態 に設定し、他のサーバでクライアントからのジョブを受 け付け可能なサーバを探してルーティングを行い、LA Nトラフィック受付け再開のための負荷制御情報を受信 した場合、自身で管理しているサーバ負荷管理情報テー ブルにおける該当サーバの関連するステイタスを送信可 能な状態に設定し、該当サーバに対するLANトラフィ ックの送信制御を促す前記負荷分散装置中の負荷分散制 御実行手段とを具備することを特徴とする。

【〇〇〇7】上述した構成において、この発明は、サーバ群へのLANトラフィックの負荷分散をLAN環境で行う場合に、サーバ群のLANトラフィック負荷分散をサーバ群と負荷分散装置が協調して行うことを特徴とす。各サーバは自身の負荷状況をCPU負荷、ジョブ後 先順位、実行ジョブ数、ジョブ入力待ち行列数のそれぞれに重み付けを行い、また、関値を割り当て、この関値と採取された負荷情報を定期的に比較することにより、LANトラフィックの受け入れ、あるいは中断を指示する負荷判断を行う。そして、LAN接続された負荷分散装置に前記負荷判断の結果に従い生成される負荷制御情報をタイムリーに送信することにより、該当サーバへのLANトラフィックの送信制御を行う。このことにより、サーバ群のLANトラフィックの荷角分散を最適にかつ効率よく行うことを可能とする。本発明により、サー

バ群は最適な負荷で運用でき、クライアントに対し、確 実に信頼性の高いサービスを提供できる。

[0008]

【発明の実施の形態】図1は本発明が採用されるクライアントサーバシステムの構成を示すブロック図である。図1において、クライアントサーバシステムは、負荷分散装置1とサーバ群2、及び図示せぬクライアントコンピュータがLAN回線3経由で接続される。本発明の負荷分散方法が具現化されるサーバ群2はサーバ21,22、25から成る。負荷分散装置1は、LANトラフィックをサーバ群2を構成する各サーバ21,22、23の負荷状況を見ながら分散制御する。

【0009】図2は本発明のクライアントサーバシステ ムにおける負荷の分散装置の実施形態を示すブロック図 である。図において、図1に示す番号と重複するブロッ クは図1のそれと同じとする。図において、サーバ群2 の一つであるサーバー21は、サーバ負荷情報重み付け 設定機能部211、サーバ負荷情報採取機能部212、LAN トラフィック受付判定機能部213と負荷状況通信機能部2 14から構成される。サーバ22,23もサーバ21と同様の構 成を持つ。本発明の特徴は、サーバ負荷の要素をアプリ ケーションに応じて定義される優先順位毎、CPU使用 率、実行ジョブ数、ジョブ入力待ち行列数として分解 し、それぞれについてLANトラフィックの流量を制御 を行うことにある。サーバ負荷情報重み付け設定機能部 211は、分解された要素のそれぞれにつき後述する重み 付けを行うと共に後述する閾値を割り当て、LANトラ フィック受付判定機能部213に供給する。また、サーバ 負荷情報採取機能部212は、CPU使用率、実行ジョブ 数、ジョブ入力待ち行列数から成るサーバ負荷状況を定 期的に採取してLANトラフィック受付判定機能部213 に供給する。LANトラフィック受付判定機能部213 は、サーバ負荷情報重み付け設定機能部211により定義 された閾値とサーバ負荷情報採取機能部212により採取 されたサーバ負荷状況を定期的に比較し、LANトラフ ィックの受け入れ、もしくは拒否し、その旨負荷制御情 報として負荷状況通信機能部214に供給する。負荷状況 通信機能部214は、LANトラフィック受付判定機能部2 13による比較操作の結果によってはLANトラフィック 中断のための負荷制御情報もしくはLANトラフィック 受付再開のための負荷制御情報を、LAN接続される負 荷分散装置1に伝える。

【0010】負荷分散装置1は、負荷状況通信機能部11と、負荷分散制御実行機能部12と、サーバ負荷管理テーブル13で構成される。負荷状況通信機能部11は、サーバ21の負荷状況通信機能部214から送信される負荷制御情報を受信して負荷分散制御実行機能部12に伝える。負荷分散制御実行機能部12は、LANトラフィック受付け中断のための負荷制御情報を受信した場合、自身で管理しているサーバ負荷管理情報テーブルにおける該当サーバ

の関連ステイタスを送信不可状態に設定し、他のサーバ でクライアントからのジョブを受け付け可能なサーバを 探してルーティングを行い、LANトラフィック受付け 再開のための負荷制御情報を受信した場合、自身で管理 しているサーバ負荷管理情報テーブル13における該当サ 一バの関連するステイタスを送信可能な状態に設定し、 該当サーバに対するLANトラフィックの送信制御を促 す。サーバ負荷情報管理テーブル13は、図5にその一例 を示すように、管理すべきそれぞれのサーバで使用され 優先度が付されたアプリケーション毎、CPU負荷ステ イタス、実行ジョブ負荷ステイタス、入力ジョブ待ち行 列負荷ステイタスの各情報設定領域から成り、負荷分散 装置1の負荷分散制御実行機能部12により参照され、サ ーバ21中の負荷情報重み付け設定機能部211で設定され た重み付に従う順序でLANトラフィックの受け入れ判 断が行われる。

【0011】図3乃至図5は本発明実施形態の動作を説 明するために引用した図であり、それぞれ、サーバ負荷 情報重み付け設定機能部211により設定される重み付け の一例を表形式で示す<表1>、サーバ負荷情報採取機 能部212により採取される負荷採取状況の一例を評形式 で示す<表2>、サーバ負荷情報管理テーブル13のデー タ構造を表形式で示す<表3>である。図3に示す<表 1>において、重み付け情報は、ジョブ優先順位毎に、 優先順位、CPU使用率、実行ジョブ数、ジョブ入力待 ち行列数から成る。これら各要素は、CPU使用率、実 行ジョブ数およびジョブ入力待ち行列数の順にLANト ラフック受け入れのために負荷情報の重み付けがなさ れ、また、各要素に対し、それぞれ上限、下限閾値が設 定される。更に、ジョブ受付限界閾値およびジョブ受付 再開閾値も設定されている。尚、使用されるアプリケー ション毎、例えば基幹業務は優先度1、WWW (World Wide Web.) アクセスは優先度10に設定されるもの とする。図4に示す<表2>は、サーバ負荷情報採取機 能部212がある一定間隔でジョブ優先順位毎にCPU使 用率、実行ジョブ数、入力ジョブ待ち行列数を採取した ものである。図5に示す<表3>は、負荷分散装置1の 負荷分散制御実行機能部12が管理しているサーバ負荷情 報管理テーブル13であり、管理すべきサーバ毎のCPU 負荷、実行ジョブ負荷および入力ジョブ待ち行列負荷の それぞれについて、LANトラフィック受け入れ可否の 状態を表している。LANトラフィックの受入判断は負 荷情報重み付け設定機能部211で設定される重み付け情 報に従い、CPU負荷、実行ジョブ負荷、入力ジョブ待 ち行列負荷の順に行われる。図6、図7は本発明の動作 を説明するために引用したフローチャートであり、サー バ21の動作手順、負荷分散装置1の負荷分散制御実行機 能部12の動作手順をそれぞれフローチャートで示した図 である。

【0012】以下、図3乃至図7を参照しながら図1,

図2に示す本発明実施形態の動作について詳細に説明す る。本発明の特徴は、サーバ負荷の要素をアプリケーシ ョンに応じて定義される優先順位毎、CPU使用率、実 行ジョブ数、ジョブ入力待ち行列数として分解し、それ ぞれについてLANトラフィックの流量を制御を行うこ とにあることは上述したとおりである。そこで、サーバ 負荷情報重み付け機能設定部211は、サーバ負荷状況を 各要素毎それぞれに重み付けし(ステップS61)、ま た、閾値として設定定義する(ステップS62)。ここ では図3に<表3>として示すように、各要素毎の重み 付けに関し、CPU使用率、実行ジョブ数、入力ジョブ 待ち行列数の順に重み付けし、また、優先度1が付与さ れたアプリケーションに関し、CPU使用率の上限閾値 を30%、下限閾値を15%、実行ジョブ数の上限閾値 を60、下限閾値を40、入力ジョブ待ち行列の上限閾 値を20、下限閾値を10とし、また、優先度2が付与 されたアプリケーションに関し、CPU使用率の上限関 値を20%、下限閾値を7%、実行ジョブ数の上限閾値 を40、下限閾値を20、入力ジョブ待ち行列の上限閾 値を15、下限閾値を7とし、更に、優先度10が付与 されたアプリケーションに関し、CPU使用率の上限閾 値を5%、下限閾値を4%、実行ジョブ数の上限閾値を 50、下限閾値を40、入力ジョブ待ち行列の上限閾値 を80、下限閾値を50とし、後述するLANトラフィ ック受付判定機能部213における受付判定処理のため各 要素毎の受付限界閾値、あるいは再開閾値としている。 【0013】一方、サーバ負荷情報採取機能部212は、 サーバ負荷状況をCPU負荷、ジョブ優先順位毎の実行 ジョブ数およびジョブ入力待ち行列数を定期的に採取し (ステップS63)、LANトラフィック受付判定機能 部213に供給する。採取されたサーバ負荷状況は、ここ では図4に<表2>として示す。ここでは、優先度1の ジョブに関し、CPU使用率24%、実行ジョブ数4 3、入力ジョブ待ち行列数9とし、また、優先度2のジ ョブに関し、CPU使用率21%、実行ジョブ数36、 入力ジョブ待ち行列数5とし、また、優先度10のジョ ブに関し、CPU使用率24%、実行ジョブ数43、入 カジョブ待ち行列数9とする。LANトラフィック受付 判定機能部213は、サーバ負荷情報重み付け機能部211に よって定義された各要素毎の受付限界閾値、受付再開閾 値と、サーバ負荷採取機能212により採取された負荷状 況を定期的に比較し、LANトラフィックの受付/再 開、あるいは拒否を判定する(ステップS64)。LA Nトラフィック受付判定機能部213により、サーバ負荷 情報重み付け設定機能部211で定義された受付限界閾値 を越えたことが確認された場合、負荷状況通信機能部21 4は、負荷分散装置1に対してLANトラフィック受付 中断のための負荷制御情報を送信し(ステップS6 5)、また、受付再開閾値に負荷が下がった場合、LA

Nトラフィックの受付再開のための負荷制御情報を送信

する(ステップS66)。定義された関値の範疇にある 場合は該当サーバでのLANトラフィックの受け入れを 許容する(ステップS67)。

【0014】負荷分散装置1は、負荷状況通信機能部11でサーバー21の負荷状況通信機能部214から負荷制御情報を受信すると、その情報を負荷分散制御実行機能部12により生成された後述する負荷分散制御情報を指示されたサーバー21の負荷状況通信機能部214に送信する。負荷分散制御実行機能部12は、サーバー21から送信される負荷制御情報をチェックし(ステップS71)、ここでLANトラフィック受付中断の負荷制御情報を受信した場合、負荷分散装置1内で管理している該当サーバー3の関連するステイタスを送信不可状態に変更し(ステップS7

2)、受付確認メッセージをサーバー21に返答する(ス テップS73)。更に、サーバ群2の他のサーバでクラ イアントからのジョブを受付可能なサーバをサーバ負荷 情報管理テーブル13からラウンドロビン検索しルーテイ ングする(ステップS74)。一方、サーバー21からL ANトラフィック受付再開の負荷制御情報を受信する と、負荷分散装置1内で管理している該当サーバー214 の関連するステイタスを送信可能状態に変更し(ステッ プS75)、受付確認メッセージをサーバー3に返答す る (ステップS76)。 図5に示す<表3>は、負荷分 散装置1の負荷分散制御実行機能部12が管理しているサ ーバ負荷情報管理テーブル13であり、管理すべきサーバ 毎のCPU負荷、実行ジョブ負荷および入力ジョブ待ち 行列負荷のそれぞれについて、LANトラフィック受け 入れ可否の状態が示されている。例えば、サーバ01の 優先度1が割り振られたジョブはCPU負荷ステイタス が受け入れ可、実行ジョブ負荷ステイタスが受け入れ不 可、入力ジョブ待ち行列負荷ステイタスが受け入れ可に なっており、また、サーバ02の優先度8が割り振られ たジョブはCPU負荷ステイタス、実行ジョブ負荷ステ イタス、入力ジョブ待ち行列負荷ステイタス共に受け入 れ可の状態になっている。

【0015】以上説明のように本発明は、サーバ負荷の 要素を使用アプリケーションに応じて定義される優先順 位毎、CPU使用率、実行ジョブ数、ジョブ入力待ち行 列数に分解し、それぞれについてLANトラフィックの 流量を制御するものであり、このことにより、最適な負 荷で運用できる。

[0016]

【発明の効果】以上説明のように本発明によれば、サーバ毎の負荷分散の制御をサーバと負荷分散装置が協調してサービスの重要度、種類に応じて詳細に制御するため、サーバ群は最適な負荷で運用でき確実に信頼性の高いサービスをクライアントに対し提供できる。

【図面の簡単な説明】

【図1】 本発明が採用されるクライアントサーバシス

テムの構成例を示すブロック図である。

【図2】 本発明の実施形態を示すブロック図である。

【図3】 図2に示す重み付け設定機能部により定義される、重み付け、関値設定定義の一例を<表1>として示す図である。

【図4】 図2に示す負荷情報採取機能部により採取される負荷情報の一例を<表2>として示す図である。

【図5】 図2に示す負荷分散装置により管理されるサーバ負荷情報管理テーブルのデータ構造の一例を<表3>として示す図である。

【図6】 図2におけるサーバの動作を説明するために 引用したフローチャートである。

【図7】 図2における負荷分散制御実行機能部の動作を説明するために引用したフローチャートである。 【符号の説明】

1…負荷分散装置、2(21, 22, 23)…サーバ、11 (214) …負荷状況通信機能部、12…負荷分散制御実行機能部、 13…サーバ負荷情報管理テーブル、211…サーバ負荷情報採取機能 都重み付け設定機能部、212…サーバ負荷情報採取機能 部、213…LANトラフィック受付判定機能部

【図1】

【図2】

【図3】

<表1> 重み付け・関値設定

	CPU使用率	実行ジョブ数	入力ジョ ブ待ち行列数
	上限しきい値	上限しきい値	上限しきい 値
	下限しきい値	下限しきい値	下限しきい 値
優先度 1	3 0 %	6 C	2 0
	1 5 %	4 C	1 0
優先度 2	2 0 % 7 %	4 6 2 0	1 5 7
侵先度10	5 %	5 ()	8 0
	4 %	4 ()	5 0

【図4】

<表2> 負荷採取状況

	CPU使用率	実行ジョブ数	入力ジョブ待ち行列数
優先度 1 優先度 2	2 4 % 2 1 %	4 3 3 6	9 5
優先渡10	7%	5 7	3 5

【図5】

<表3> サーバ負荷情報管理テーブル13

サーバ名	優先度	CPU負荷 ステイタス	実行ジョブ 負荷ステイタス	入力ジョブ待ち行列 負荷 ステイタス
SVR 0 1	1	受入可	受入不可	受入可
	2	受入不可	受入可	受入可
				:
	1 0	受入可	受入可	受入不可
SVR 0 2	1	受入不可	受人可	受入可
		:		
	8	受入可	受入可	受入可
SVR 0 3	1	受入可	受入可	受入可
		:		
	1 0	受人不可	受入不可	受入不可

【図6】

