# Math Camp - Day 2

#### Aaron Rudkin

Trinity College Dublin
Department of Political Science

rudkina@tcd.ie

- What is a function?
  - A function is a **black box** – a device that translates from input  $\rightarrow$  output
  - A function will map one or more input values (characteristics of data or an object) onto values measuring another characteristic.
  - Typically written in the style f(x) where f is a label being assigned to the function and x is an input argument.
- f(x) = y
- $f(x) = 4x + 1 \rightarrow f(3) = 4(3) + 1 = 13$
- Arguments can be constants or themselves functions:

$$f(x) = x^2 + 2 \rightarrow f(y + 3z) = (y + 3z)^2 + 2$$



- The domain of the function is the set of possible input values for which the function has a meaningful output.
  - $\frac{x+1}{x-1}$   $\rightarrow$  Not defined when x=1 (why not?)
- Function composition chains multiple functions, another way to use functions as inputs:
  - If f(x) = 2x + 1 and  $g(x) = x^2 + 1$
  - Then  $f \circ g(x) = 2(x^2 + 1) + 1 = 2x^2 + 3$
- **Identity function** f(x) = x: Elements in domain are mapped to identical elements without transformation.
- Inverse function  $f^{-1}(f(x)) = x$ : Function that when composed with original function returns identity function.
- Can have multiple inputs or outputs.
- In programming, used for any set of instructions.



## Increasing and Decreasing Functions

- Increasing 
   As inputs increase, outputs increase.
- Decreasing
   As inputs increase, outputs decrease.
- Strictly increasing: Increasing function that is never flat.
- Strictly decreasing: Decreasing function that is never flat.
- Weakly increasing: Increasing function that is sometimes flat.
- Weakly decreasing: Decreasing function that is sometimes flat.

Table: Interval Notation

| Interval           | Set                                | Description        |
|--------------------|------------------------------------|--------------------|
| $(a,\infty)$       | $\{x \in \mathbf{R}^1 : x > a\}$   | Open, bounded      |
| $[a,\infty)$       | $\{x \in \mathbf{R}^1 : x \ge a\}$ | Half-open, bounded |
| $(-\infty,a)$      | $\{x \in \mathbf{R}^1 : x < a\}$   | Open, bounded      |
| $(-\infty, a]$     | $\{x \in \mathbf{R}^1 : x \le a\}$ | Half-open, bounded |
| $(-\infty,\infty)$ | R                                  | Open, unbounded    |

#### **Linear Functions**

- Simplest linear function: y = a + bx, where a and b are constants.
- When *b* is negative, function is decreasing. When *b* is positive, function is increasing.
- Linear functions can also have multiple inputs: z = a + bx + cy
- Easily interpreted in regression format: The "effect" of a one-unit change in x in output y is the same everywhere in the domain. Givens us statements like: "One additional year of schooling is associated with 2,000 euro additional annual income".
- Slope (how steep is the line):  $b = \frac{y_2 y_1}{x_2 x_1} \rightarrow$  "rise over run"

#### Nonlinear Functions

- The formal definition of a linear function is any function with the following properties:
  - Additivity (superposition): f(x1 + x2) = f(x1) + f(x2)
  - Scaling (homogeneity): f(ax) = af(x)
- Not all functions are linear. Some examples:
  - Exponents and roots:  $y = x^2 + 3x + 2$
  - Logarithms
  - Exponential functions:  $y = e^{x^2+1}$

## Nonlinear Functions – Exponents

Recap from yesterday: multiplication of a number by itself. e.g.  $a^3 = a \times a \times a$ 

#### Table: Rules of Exponents

| Multiplication rule      | $a^x \times a^y = a^{x+y}$                                       |
|--------------------------|------------------------------------------------------------------|
| Division rule            | $a^x \div a^y = a^{x-y}$                                         |
| Power of a power rule    | $(a^x)^y = a^{xy}$                                               |
| Power of a product rule  | $(ab)^{\times} = a^{\times}b^{\times}$                           |
| Power of a fraction rule | $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$ $a^{0} = 1$ |
| Zero exponent            | -                                                                |
| Negative exponent        | $a^{-x}=\frac{1}{a^x}$                                           |
| Fractional exponent      | $a^{\frac{1}{x}} = \sqrt[x]{a}$                                  |

# Nonlinear Functions – Exponents – Interpretation

#### Squared and cubic terms



Figure:  $y = -2x + x^2$ 



Figure:  $y = 2x - x^2$ 

# Logarithms

## Logarithms

- $y = log_a z \Leftrightarrow z = a^y$
- The logarithm of z (y) is the power to which one must raise a to yield z.
- $log_327 = 3$
- $log_4256 = 4$
- Why do we need logarithms? Useful for modelling functions where growth depends on level: increasing or diminishing marginal returns.
   Bank account interest, population growth, happiness from additional slices of pizza, magnitude of an earthquake.

# Logarithmic transformation



Logarithms "squish" large differences, making them appear smaller, and "stretch" small differences, making them appear larger.

## Properties of Logarithm, Recap

- $log(x \times y) = log(x) + log(y)$
- $log(\frac{1}{x}) = -log(x)$
- $log(\frac{x}{y}) = log(x) log(y)$
- $log x^y = ylog(x)$
- log(1) = 0

## Change of Base Trick

The Trick:

$$log_b(a) = \frac{log_x(a)}{log_x b}$$

Example:

$$log_248 = \frac{log_{10}48}{log_{10}2} \approx 5.58$$

- Easy to quickly convert to a base that can be solved on a calculator
- Independent study: Why does this work? How do rules of exponents lead to this?

## Interpreting Log-Transformed Variables

- In a regression context, either function inputs, function outputs, or both can be log-transformed.
- Suppose we wish to study the impact of additional investment euro in a charity's programming.
- $Y = \alpha + 10.43X + \epsilon$  and let us assume X is log-transformed. ( $\epsilon$  is used for the "error term": unexplained variation)

## Interpreting Log-Transformed Variables

- In a regression context, either function inputs, function outputs, or both can be log-transformed.
- Suppose we wish to study the impact of additional investment euro in a charity's programming.
- $Y = \alpha + 10.43X + \epsilon$  and let us assume X is log-transformed. ( $\epsilon$  is used for the "error term": unexplained variation)
- Implies a one-unit increase in X in log terms leads to 10.43 unit increase in Y.
- Because X is log-tranformed, a "one unit increase" in X is not interpretable in euro terms.
  - Depending on baseline, increase of one log unit may be larger or smaller
  - $exp(4) exp(3) \approx 34.5$
  - exp(15) exp(14) = 2,066,413



## Quick Hack for Unpacking Log-Transformed Variables

- Given  $y = \alpha + \beta X$  linear function, and say  $\beta = 10.43$  as before, the expected change in Y associated with a p% increase in X (logged) can be calculated as  $\beta iog([100 + p]/100)$ .
- A 10% increase in X will increase Y by  $10.43 \times log(1.10) = 10.43 \times .09531 \approx 0.994$
- A 50% increase in X will increase Y by  $10.43 \times log(1.50) = 10.43 \times .17609 \approx 1.83$

# Limits

### Limits and Functions

- For the function y = f(x), a limit is the value of y that the function tends toward (approaches) given arbitrarily small movements toward a specific value of x, say x = c.
- Notation:  $\lim_{x \to c} f(x)$
- Limits do not always exist, but they exist where f(x) is smooth and continuous (no breaks in the curve or plane fit by the function).
- Limits can even exist where f(x) is not defined: consider  $f(x) = \frac{1}{x}$ . This function is not defined at x = 0. But  $\lim_{x \to 0+} = \infty$ .

## Continuity

- Intuitively, a **continuous function** is a function without sudden breaks in it.
- When you draw the graph of a continuous function, you never need to lift your pencil from the page.
- f(x) is continuous at x = c iff  $\lim_{x \to c} f(x) = f(c)$ .
- A non-continuous function might have a single discontinuity (say,  $f(x) = \frac{1}{(x-1)}$ ) or else it could be **piecewise**.

# Introduction to Derivatives

#### Introduction to Derivatives

- Earlier, we saw that functions have slopes (how steeply they increase or decrease in a given section)
- In a linear function, the slope is constant, but in a non-linear function, the slope is sometimes steeper and sometimes less steep
- A slope is also called a "rate of change": how much does the function change as its inputs change?
- The derivative of a function at a point is the *instantaneous* rate of change. At any given point, how much is it changing?

## Visual intuition of a derivative



#### **Derivatives and Limits**

- Intuition to calculate: evaluate slope near point of interest
- But the smaller the change in x over which we evaluate the slope, the closer we get to evaluate instantaneous rate of change.
- Making the difference between points smaller and smaller until if approaches to zero, we take the limit to get the derivative – "rise over run".
- But thankfully, don't need to use this approach: we have analytical solutions, rules for whole classes of functions.
- Derivatives of polynomial functions, as we'll see in rules tomorrow, lower order of polynomial: linear functions have constant derivatives, quadratic functions have linear derivatives,

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{(x+h)-x}$$



### **Notation**

- $\frac{d}{dx}f(x) \rightarrow \text{read}$  as "derivative with respect to x of f(x)", i.e. how is the function changing as we change x?
- $\frac{dy}{dx}$   $\rightarrow$  read as "derivative of y with respect to x of f(x)", i.e. how is y, the output of the function, changing as we change x?
- $f'(x) \rightarrow \text{read}$  as "f prime of x". Each time we take a derivative, add another prime mark.
- All of these notations are equivalent



### Partial derivatives



### Partial Derivatives

- Some functions have multiple inputs, but still have a class of derivatives.
- For f(x, z), to know how y changes with x holding z constant, we need partial derivatives.
- Partial derivative keeps all but one input to function constant (taking a "slice" out of the function) and takes derivative with respect to one variable's slope.
- Notation:  $\frac{\partial}{\partial x} f(x, z)$
- Note use of lowercase delta by convention.

## Rules of Differentiation

## Rules of Differentiation

| Name of rule     | Function type              | Solution                                          |
|------------------|----------------------------|---------------------------------------------------|
| Constant rule    | f(x) = a                   | f'(x) = 0                                         |
| Power rule       | $f(x) = (x^n)$             | $f'(x) = nx^{n-1}dx$                              |
| Sum rule         | f(x) = g(x) + h(x)         | f'(x) = g'(x) + h'(x)dx                           |
| Difference rule  | f(x) = g(x) - h(x)         | f'(x) = g'(x) - h'(x)dx                           |
| Product rule     | f(x) = g(x)h(x)            | f'(x) = g(x) + h(x)g'(x)dx                        |
| Quotient rule    | $f(x) = \frac{g(x)}{h(x)}$ | $f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2} dx$ |
| Constants        | f(ax)                      | f'(ax) = af'(x)dx                                 |
| Chain rule       | f(g(x))                    | f'(g(x)) = f'(x)g'(x)dx                           |
| Exponential rule | $f(x) = a^x$               | $f'(x) = a^x \ln(x) dx$                           |
| Logarithm rule   | $f(x) = log_a(x)$          | $f'(x) = \frac{1}{x \ln(a)} dx$                   |

### Power Rule

• **Power Rule**: Simple to learn and master, extremely powerful; almost all of the additive models we use are some sort of polynomial!

$$dx x^n = n \times x^{n-1} dx$$

• Examples:

$$\frac{d}{dx}4x^{3} = 4 \times 3x^{2}dx = 12x^{2}dx$$

$$\frac{d}{dx}\frac{x^{4}}{2} = \frac{1}{2}4x^{3}dx = 2x^{3}dx$$

$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{\frac{1}{2}} = \frac{1}{2}x^{-\frac{1}{2}}dx = \frac{1}{2\sqrt{x}}dx$$

### Chain Rule

 Chain Rule: If you can't find a rule to solve a function, write the function as a composite!

• 
$$\frac{d}{dx}f(g(x)) = f'(x)g'(x)dx$$

• Examples:

$$\frac{d}{dx}\sqrt{3x+2}$$
Let  $f(x) = \sqrt{x}$ ;  $g(x) = 3x+2$   
Then  $f'(x) = \frac{1}{2\sqrt{x}}$ ;  $g'(x) = 3$   

$$\frac{d}{dx}\sqrt{3x+2} = \frac{1}{2\sqrt{3x+2}}3dx = \frac{3}{2\sqrt{3x+2}}dx$$

### Approaching a derivative

- Break a complicated function down into its constituent parts using rules
- Each individual part can be solved easily
- Keep track of various functions

$$f(x) = x^3 + 3x^2 - 6x + 5$$
  
=  $x^3 + 3x^2 - 6x + 5$   
$$f'(x) = 3x^2 + 6x - 6 + 0 dx$$

$$\frac{d}{dx}x^3 = 3x^2dx$$

$$\frac{d}{dx}3x^2 = 3(2x) = 6xdx$$

$$\frac{d}{dx}6x = 6x^0 = 6dx$$

$$\frac{d}{dx}5 = 0$$

# L'Hopital's Rule

- One immediate use of a derivative is that it allows us to solve the limits of functions that would otherwise be undefined.
- Consider  $\lim_{x\to 0} \frac{e^x 1}{3x}$
- As x approaches zero, the numerator tends to 0... and the denominator tends to 0. How to solve?
- L'Hopital's Rule:  $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{f'(x)}{g'(x)}$   $\lim_{x\to 0} \frac{e^x 1}{x^2} = \lim_{x\to 0} \frac{e^x}{3} = 0$

# Conclusion

### Tomorrow

- Derivatives for Optimization
- Intro and Rules for Integrals
- Intro to Matrices