Lab 1: Data Pre-processing

Introduction:

This lab report details the implementation and results of various data pre-processing techniques, including data cleaning, normalization, data binning, discretization, and feature selection.

1.1 Data Cleaning:

Datasets

ID	Name	Age	Department	Salary
1	John	28	HR	50000
2	Jane	35	Finance	60000
3	Emily		HR	55000
4	Michael	40	Human Resources	
5	Sarah	29	IT	52000
6	David	50	Finance	75000
7	Laura	38	H.R.	68000
8	Robert	32	HR	57000
9	Linda	45	IT	62000
10	James	30	HR	51000

Implementation Code:

```
import pandas as pd
print("Kishor Lab-1.1")
df = pd.read_csv('employee_data.csv')
print("Initial Data:\n", df.head())

df['Age'] = df['Age'].fillna(df['Age'].mean())
df['Salary'] = df['Salary'].fillna(df['Salary'].mean())

df['Department'] = df['Department'].str.strip().replace({
    'Human Resources': 'HR',
    'H.R.': 'HR',
    'hr': 'HR'
})
print("\nCleaned Data:\n", df.head())
```

Output SnapShot:

```
Kishor Lab-1.1
Initial Data:
   ID Name Age Department
                                    Salary
  1
        John 28.0
                               HR 50000.0
                    Finance 60000.0
HR 55000.0
        Jane 35.0
   2
1
2 3 Emily NaN
3 4 Michael 40.0 Human Resources
                                      NaN
                      IT 52000.0
4 5 Sarah 29.0
Cleaned Data:
   ID
        Name Age Department Salary
         John 28.0 HR 50000.0
   1
1 2
        Jane 35.0 Finance 60000.0
2 3 Emily 35.7 HR 55000.0
3 4 Michael 40.0 HR 58100.0
4 5 Sarah 29.0 IT 52000.0
```

1.2 Normalization

Datasets

StudentID	Math	Science	English
1	78	65	80
2	88	75	85
3	60	50	55
4	90	78	92
5	55	48	58
6	83	72	88
7	71	66	79
8	64	52	70
9	88	80	90
10	76	68	82

Implementation Code

```
import pandas as pd
print("Kishor Lab-1.2")
from sklearn.preprocessing import MinMaxScaler
df = pd.read_csv('student_scores.csv')
print("Initial Data:\n", df.head())
scaler = MinMaxScaler()
df[['Math', 'Science', 'English']] = scaler.fit_transform(df[['Math', 'Science', 'English']])
print("\nNormalized Scores:\n", df.head())
```

Output Snapshot

```
Kishor Lab-1.2
Initial Data:
   StudentID Math Science English
    1 78 65
                            80
        2 88 .
3 60 50
90 78
                            85
1
2
                            55
3
                            92
4
         5
            55
                   48
                            58
Normalized Scores:
   StudentID Math Science English
0
     1 0.657143 0.53125 0.675676
1
        2 0.942857 0.84375 0.810811
        3 0.142857 0.06250 0.000000
2
        4 1.000000 0.93750 1.000000
3
        5 0.000000 0.00000 0.081081
```

1.3 Data Binning

DataSets

CustomerID	Age
1	25
2	42
3	36
5	53
5	28
6	47
7	31
8	50
9	22
10	60

Implementation Code:

```
import pandas as pd
print("Kishor Lab-1.3")

df = pd.read_csv('customer_ages.csv')
print("Initial Data:\n", df.head())

bins = [18, 30, 50, 100]

labels = ['Young', 'Middle-aged', 'Senior']

df['Group'] = pd.cut(df['Age'], bins=bins, labels=labels, right=False)
print("\nData after Binning:\n", df.head())

dist = df['Group'].value_counts()
print("\nAge Group Distribution:\n", dist)
```

Output SnapShot:

Data after Binning:

	CustomerID	Age	Group
0	1	25	Young
1	2	42	Middle-aged
2	3	36	Middle-aged
3	4	53	Senior
4	5	28	Young

Age Group Distribution:

Group

Middle-aged 7 Young 5 Senior 3

Name: count, dtype: int64

1.4 Discretization

DataSets

Month	Sales
January	15000
February	18000
March	12000
April	30000
May	22000
June	5000
July	8000
August	25000
September	10000
October	20000

Implementation Code:

```
import pandas as pd
print("Kishor Lab-1.4")

df = pd.read_csv('sales_data.csv')
print("Initial Data:\n", df.head())

bins = [0, 5000, 20000, float('inf')]

labels = ['Low', 'Medium', 'High']

df['Category'] = pd.cut(df['Sales'], bins=bins, labels=labels)
print("\nData after Discretization:\n", df.head())

dist = df['Category'].value_counts()
print("\nSales Category Distribution:\n", dist)
```

Output SnapShot

```
Kishor Lab-1.4
Initial Data:
    Month Sales
0 January 15000
1 February 18000
   March 12000
April 30000
May 22000
2
3
4
Data after Discretization:
      Month Sales Category
0 January 15000 Medium
1 February 18000 Medium
   March 12000 Medium
   April 30000 High
3
     May 22000
                   High
Sales Category Distribution:
Category
Medium 7
High 4
Name: count, dtype: int64
```

1.5 Feature Selection

DataSets

PatientID	Age	BloodPressure	Cholesterol	Glucose	HeartRate	Disease
1	45	130	180	95	70	1
2	50	140	200	105	75	1
3	60	150	240	120	80	1
4	40	120	170	90	65	0
5	35	110	160	85	60	0
6	55	145	210	115	78	1
7	42	135	190	100	72	0
8	38	115	150	80	68	0
9	47	125	170	95	70	1
10	53	140	210	110	76	1

Implementation Code

```
import pandas as pd
from sklearn.feature_selection import SelectKBest, chi2
print("Kishor Lab-1.5")
df = pd.read_csv('medical_data.csv')
print("Initial Data:\n", df.head())

X = df.drop(columns=['Disease'])
y = df['Disease']
sel = SelectKBest(score_func=chi2, k=3)
sel.fit(X, y)

top = X.columns[sel.get_support()]
print("\nTop 3 Features for Predicting Disease:\n", top.tolist())
```

Output SnapShot

Kishor Lab-1.5 Initial Data:

Initial bata.								
		PatientID	Age	BloodPressure	Cholesterol	Glucose	HeartRate	Disease
	0	1	45	130	180	95	70	1
	1	2	50	140	200	105	75	1
	2	3	60	150	240	120	80	1
	3	4	40	120	170	90	65	0
	4	5	35	110	160	85	60	0

```
Top 3 Features for Predicting Disease:
  ['Age', 'Cholesterol', 'Glucose']
```