5CCS2FC2: Foundations of Computing II

Tutorial Sheet 1

- 1.1 Over the alphabet $\Sigma = \{0, 1\}$, construct a Finite Automata (deterministic or non-deterministic) that accepts each of the following languages:
 - (i) The language of all binary strings that begin and end with a 1,
 - (ii) The language of all strings that contain exactly three 1s
 - (iii) The language of all strings that contain the substring 1010,
 - (iv) The regular language represented by the expression $1(01)^*1$,
- 1.2 Let $\Sigma = \{0, 1, \#\}$, and consider the following Turing Machine \mathcal{T} on the language, whose transition diagram is depicted below:

(Code for turingmachinesimulator.com is available on KEATS.)

- (i) Which of the following words are accepted by this Turing Machine:
 - -1001,
 - 00,
 - -101,
 - 0011.
- (ii) What is the language that is accepted by this Turing Machine? *i.e.*, what is $L(\mathcal{T})$?
- 1.3 Consider the language of all *palindromes* over the binary alphabet $\Sigma = \{0, 1\}$,

$$L = \{ w \in \{0,1\}^* : w = w^R \}$$

where w^{R} denote the reversal of $w \in \{0,1\}^{*}$ (e.g., $(111001)^{R} = 100111$)

- (i) Give 5 examples of words belonging to L,
- (ii) Outline a pseudo-code program for a Turing machine that accepts the language L,
- (iii) Convert your pseudo-code into a complete description of a Turing Machine. (Test that your machine works as intended using the turingmachinesimulator.com.)
- 1.4 Consider the language

$$L = \{ w \# w : w \in \{0, 1\}^* \}$$

comprising all those strings over the alphabet $\Sigma = \{0, 1, \#\}$, that consist of two copies of a binary string separated by a special character # that appears precisely once. Using the pigeon-hole principle, show that no DFA can accept the language L.