Deep Homography Estimation Report

Centro de Investigación en Matemáticas A.C

Esteban Reyes Saldaña

June 1, 2023

Summary

- It was introduced a deep convolutional neural network for estimating homography in a relative way between a pair of images.
- The problem was formulated in two ways: a regression and a classification problem.
- It outperforms the SOTA in 2016.

Classic Homography Estimation

• To perform the estimation of a homography, the basic material are correspondences among the two images

$$p_k, p_k'$$

that sould correspond to the same 3D point.

• Tradictional homography estimation is composed of two stages: corner estimation and robust homography estimation using RANSAC algorithm.

$$\begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} \sim \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$
(1)

The 4-Point Homography Parametrization

Suppose that

$$U_i = \left(x_i, y_i\right)^T \tag{2}$$

for k = 1, 2, 3, 4 are 4 fixed point in the image i and

$$U_j' = (x_i', y_i')^T \tag{3}$$

for each pair of corresponding points, we have

$$h_1x_i + h_2y_i + h_3 - x_ix_i'h_7 - y_ix_i'h_8 - x_ih_9 = 0$$

$$h_4x_i + h_5y_i + h_6 - x_iy_i'h_7 - y_iy_i'h_8 - y_i'h_9 = 0$$

and if we know 4 pair of points, considering $h_9 = 1$, the system can be solved using Direct Linear Transoformation.

Corner Location Parameterization

Why the 3×3 is not so useful for a Neural Network?

- Balancing the rotational and translational terms as part of an optimization problem is difficult.
- Rotation components tend to have a much smaller magnitude than the translation component.
- Impact in the L2 loss will be minimal.
- The 4-point parameterization does not suffer from these problems since there are all magnitudes referring to a position rate.

Corner Location Parameterization

Let

$$\Delta u_1 = u_1' - u_1 \tag{4}$$

be the u-offset for the first corner. The 4 point parametrization represents a homography as follows

$$H_{4points} = \begin{pmatrix} \Delta u_1 & \Delta v_1 \\ \Delta u_2 & \Delta v_2 \\ \Delta u_3 & \Delta v_3 \\ \Delta u_4 & \Delta v_4 \end{pmatrix}$$
 (5)

once displacement is known, one can easily convert $H_{4points}$ to H using several methods, such as DLT or the function getPerspectiveTransofrmation() in OpenCV.

xData Generation for Homography Estimation

Step 2: Randomly perturb four corners of Patch A.

Step 3: Compute HAB given these correspondences.

Step 4: Apply (HAB)-1 = HBA to the image, and crop again at position p. this is Patch B.

The process is list as follow

- Randomly crop a square patch from a large image I at position p.
- 2 Randomly perturbed corners by values within the range $[-\rho, \rho]$.
- **3** The four correspondences define a homography H_AB .
- **1** Compute $H^{BA} = (H_{AB})^{-1}$.
- **6** Apply H^{BA} to the large image.
- **6** A second patch I'_p is cropped from I' at position p.
- The training example (I_p, I'_p) and the second element is $H_{4points}$.

Data Generation for Homography Estimation

The networks use 3×3 convolutional blocks with BatchNorm and ReLUs activations. filtering

$$64, 64, 64, 64, 128, 128, 128, 128$$
 (6)

and finally it is connected to a two fully connected layers.

Networks Configuration

it produces directly 8 real values numbers and Euclidean L2 loss is applyed during training.

Use a quantization scheme, has a softmax at the last layer and we use the cross entropy loss function during training. 21 bins was chosen for each of the 8 outputs, which results in a final layer with 168 output neurons.

Networks Configuration

- Optimizer : **SGD** with a learning rate of 0.005 and momentum of 0.9. The learning rate was decrease by a factor of 10 after every 30,000 iterations.
- The network are trained for 90,000 total iterations using a batch size of 64.

For creating the dataset, MS coco 2017 was used. The main configuration is

Item	Value
Img_size	(320, 480)
$patch_size$	(128, 128)
ho	32
$num_samples$	500000
Iterations	90000
Item	Value
Img_size	(640, 480)
patch_size	(256, 256)
ho	64
num samples	5000

Unet for regression

In the aim of reduce the number of parameters using a more complex network architecture, it is use a UNet for feature extracting.

Model	n params	TPE
Reg	34,1 m	$1.63 \mathrm{min}$
Class	$34,4 \mathrm{m}$	$1.62 \min$
Unet Reg	$8,9 \mathrm{m}$	$1.21~\mathrm{min}$

Metrics

According to the Mean Average Corner Error, we get

that is similar to the results of the

original paper

Visual Results

Regression / Classification Model/ Unet Reegression

Conclusions

- it was introduced a new method for estimating homography between two gray scales images.
- it was introduced an algorithm for creating a synthetic dataset which is a tuple of two image gray-scale images and the homography given 4 corners.

Many suggesting can improve the model

- Introduce a metric that takes into account spatial features.
- Convolutions only sees local context, maybe some attention mechanism could work.
- The dataset is syntetic, it must be compare with real life examples.
- Investigate another metrics.

