Models for each category

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Four categories

```
print(fish["species"].unique())
```

```
array(['Bream', 'Roach', 'Perch', 'Pike'], dtype=object)
```


Splitting the dataset

```
bream = fish[fish["species"] == "Bream"]
perch = fish[fish["species"] == "Perch"]
pike = fish[fish["species"] == "Pike"]
roach = fish[fish["species"] == "Roach"]
```

Four models

```
mdl_bream = ols("mass_g ~ length_cm", data=bream).fit()
print(mdl_bream.params)
```

```
perch = fish[fish["species"] == "Perch"]
print(mdl_perch.params)
```

```
Intercept -1035.3476
length_cm 54.5500
```

```
Intercept -619.1751
length_cm 38.9115
```

```
mdl_pike = ols("mass_g ~ length_cm", data=pike).fit()
print(mdl_pike.params)
```

```
mdl_roach = ols("mass_g ~ length_cm", data=roach).fit()
print(mdl_roach.params)
```

```
Intercept -1540.8243
length_cm 53.1949
```

```
Intercept -329.3762
length_cm 23.3193
```

Explanatory data

```
length_cm
0
             10
             15
3
             20
4
             25
5
             30
6
             35
             40
8
             45
9
             50
10
             55
11
             60
```

Making predictions

```
prediction_data_bream = explanatory_data.assign(
    mass_g = mdl_bream.predict(explanatory_data),
    species = "Bream")
```

```
prediction_data_perch = explanatory_data.assign(
    mass_g = mdl_perch.predict(explanatory_data),
    species = "Perch")
```

```
prediction_data_pike = explanatory_data.assign(
    mass_g = mdl_pike.predict(explanatory_data),
    species = "Pike")
```

```
prediction_data_roach = explanatory_data.assign(
    mass_g = mdl_roach.predict(explanatory_data),
    species = "Roach")
```

Concatenating predictions

```
length_cm
                     mass_g species
                -762.597660
0
                               Bream
1
                -489.847756
            10
                               Bream
2
                -217.097851
                               Bream
3
            20
                  55.652054
                               Bream
4
            25
                 328.401958
                               Bream
5
                 601.151863
            30
                               Bream
3
            20
                -476.926955
                                Pike
                -210.952626
                                Pike
5
                  55.021703
                                Pike
            30
                 320.996032
                                Pike
6
            35
                 586.970362
                                Pike
            40
8
            45
                 852.944691
                                Pike
                                Pike
9
            50
                1118.919020
                                Pike
10
            55
                1384.893349
11
                1650.867679
                                Pike
```

Visualizing predictions

Adding in your predictions

```
sns.lmplot(x="length_cm",
           y="mass_g",
           data=fish,
           hue="species",
           ci=None)
sns.scatterplot(x="length_cm",
                y="mass_g",
                data=prediction_data,
                hue="species",
                ci=None,
                legend=False)
plt.show()
```


Coefficient of determination

0.917

```
print(mdl_bream.rsquared_adj)
0.874
print(mdl_perch.rsquared_adj)
0.917
print(mdl_pike.rsquared_adj)
0.941
print(mdl_roach.rsquared_adj)
0.815
```


Residual standard error

```
print(np.sqrt(mdl_fish.mse_resid))
```

print(np.sqrt(mdl_bream.mse_resid))

103

74.2

print(np.sqrt(mdl_perch.mse_resid))

100

print(np.sqrt(mdl_pike.mse_resid))

120

print(np.sqrt(mdl_roach.mse_resid))

38.2

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

One model with an interaction

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

What is an interaction?

In the fish dataset

- Different fish species have different mass to length ratios.
- The effect of length on the expected mass is different for different species.

More generally

The effect of one explanatory variable on the expected response changes depending on the value of another explanatory variable.

Specifying interactions

No interactions

```
response ~ explntry1 + explntry2
```

With interactions (implicit)

```
response_var ~ explntry1 * explntry2
```

With interactions (explicit)

response ~ explntry1 + explntry2 + explntry1:explntry2

No interactions

```
mass_q ~ length_cm + species
```

With interactions (implicit)

```
mass_g ~ length_cm * species
```

With interactions (explicit)

```
mass_g ~ length_cm + species + length_cm:species
```

Running the model

```
mdl_mass_vs_both = ols("mass_g ~ length_cm * species", data=fish).fit()
print(mdl_mass_vs_both.params)
```

```
Intercept
                              -1035.3476
species[T.Perch]
                                416.1725
species[T.Pike]
                               -505.4767
species[T.Roach]
                                705.9714
                                54.5500
length_cm
length_cm:species[T.Perch]
                                -15.6385
length_cm:species[T.Pike]
                                -1.3551
length_cm:species[T.Roach]
                                -31.2307
```


Easier to understand coefficients

```
mdl_mass_vs_both_inter = ols("mass_g ~ species + species:length_cm + 0", data=fish).fit()
print(mdl_mass_vs_both_inter.params)
```

```
species[Bream]
                           -1035.3476
species[Perch]
                            -619.1751
species[Pike]
                           -1540.8243
species[Roach]
                            -329.3762
species[Bream]:length_cm
                              54.5500
species[Perch]:length_cm
                              38.9115
species[Pike]:length_cm
                              53.1949
species[Roach]:length_cm
                              23.3193
```


Familiar numbers

```
print(mdl_mass_vs_both_inter.params)
```

```
species[Bream]
                           -1035.3476
species[Perch]
                            -619.1751
species[Pike]
                           -1540.8243
species[Roach]
                            -329.3762
species[Bream]:length_cm
                               54.5500
species[Perch]:length_cm
                               38.9115
species[Pike]:length_cm
                               53.1949
species[Roach]:length_cm
                               23.3193
```

```
print(mdl_bream.params)
```

```
Intercept -1035.3476
length_cm 54.5500
```

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Making predictions with interactions

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

The model with the interaction

```
species[Bream]
                           -1035.3476
species[Perch]
                            -619.1751
species[Pike]
                           -1540.8243
species[Roach]
                            -329.3762
species[Bream]:length_cm
                              54.5500
species[Perch]:length_cm
                              38.9115
species[Pike]:length_cm
                              53.1949
species[Roach]:length_cm
                              23.3193
```

The prediction flow

```
from itertools import product
length_cm = np.arange(5, 61, 5)
species = fish["species"].unique()
p = product(length_cm, species)
explanatory_data = pd.DataFrame(p,
                                columns=["length_cm",
                                          "species"1)
prediction_data = explanatory_data.assign(
mass_g = mdl_mass_vs_both_inter.predict(explanatory_data))
print(prediction_data)
```

```
length_cm species
                         mass_q
               Bream -762.5977
0
               Roach -212.7799
               Perch -424.6178
                Pike -1274.8499
               Bream -489.8478
5
                      -96.1836
               Roach
6
          10
               Perch -230.0604
                Pike -1008.8756
          10
8
               Bream -217.0979
. . .
40
           55
               Bream 1964.9014
41
           55
                       953.1833
               Roach
               Perch 1520.9556
42
43
          55
                Pike 1384.8933
44
               Bream 2237.6513
45
          60
               Roach 1069.7796
46
                Perch 1715.5129
47
           60
                Pike 1650.8677
```

Visualizing the predictions

```
sns.lmplot(x="length_cm",
           y="mass_g",
           data=fish,
           hue="species",
           ci=None)
sns.scatterplot(x="length_cm",
                y="mass_g",
                data=prediction_data,
                hue="species")
plt.show()
```


Manually calculating the predictions

```
coeffs = mdl_mass_vs_both_inter.params
```

```
species[Bream]
                         -1035.3476
species[Perch]
                          -619.1751
species[Pike]
                         -1540.8243
species[Roach]
                -329.3762
species[Bream]:length_cm
                            54.5500
species[Perch]:length_cm
                            38.9115
species[Pike]:length_cm
                            53.1949
species[Roach]:length_cm
                            23.3193
```

```
ic_bream, ic_perch, ic_pike, ic_roach,
slope_bream, slope_perch, slope_pike, slope_roach = coeffs
```


Manually calculating the predictions

```
conditions = [
    explanatory_data["species"] == "Bream",
    explanatory_data["species"] == "Perch",
    explanatory_data["species"] == "Pike",
    explanatory_data["species"] == "Roach"
ic_choices = [ic_bream, ic_perch, ic_pike, ic_roach]
intercept = np.select(conditions, ic_choices)
slope_choices = [slope_bream, slope_perch, slope_pike, slope_roach]
slope = np.select(conditions, slope_choices)
```

Manually calculating the predictions

```
prediction_data = explanatory_data.assign(
  mass_g = intercept + slope * explanatory_data["length_cm"])
print(prediction_data)
```

```
prediction_data = explanatory_data.assign(
  mass_g = mdl_mass_vs_both_inter.predict(explanatory_data))
print(prediction_data)
```

```
length_cm species
                          mass_q
0
                Bream -762.5977
                Roach -212.7799
2
                Perch -424.6178
                 Pike -1274.8499
3
                Bream -489.8478
4
5
                        -96.1836
                Roach
. . .
43
           55
                       1384.8933
                 Pike
44
                       2237.6513
                Bream
45
                       1069.7796
                Roach
46
           60
                Perch
                       1715.5129
47
                       1650.8677
           60
                 Pike
```

```
length_cm species
                          mass_q
                Bream -762.5977
0
                Roach -212.7799
                Perch -424.6178
                 Pike -1274.8499
                Bream -489.8478
5
                Roach
                       -96.1836
. . .
43
                      1384.8933
           55
                 Pike
44
                       2237.6513
                Bream
45
                Roach 1069.7796
46
                Perch 1715.5129
                 Pike 1650.8677
47
           60
```


Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Simpson's Paradox

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck
Content Developer at DataCamp

A most ingenious paradox!

Simpson's Paradox occurs when the trend of a model on the whole dataset is very different from the trends shown by models on subsets of the dataset.

trend = slope coefficient

Synthetic Simpson data

X	y	group
62.24344	70.60840	D
52.33499	14.70577	В
56.36795	46.39554	С
66.80395	66.17487	D
66.53605	89.24658	E
62.38129	91.45260	E

• 5 groups of data, labeled "A" to "E"

¹ https://www.rdocumentation.org/packages/datasauRus/topics/simpsons_paradox

Linear regressions Whole dataset

```
Intercept -38.554
x 1.751
```

By group

```
groupB
                    groupC
                                        groupE
                              groupD
 groupA
32.5051
          67.3886
                   99.6333 132.3932
                                      123.8242
groupA:x groupB:x
                  groupC:x groupD:x
                                      groupE:x
-0.6266
          -1.0105
                   -0.9940 -0.9908
                                       -0.5364
```

Plotting the whole dataset

Plotting by group

Reconciling the difference

Good advice

If possible, try to plot the dataset.

Common advice

You can't choose the best model in general – it depends on the dataset and the question you are trying to answer.

More good advice

Articulate a question before you start modeling.

Test score example

Infectious disease example

Reconciling the difference

- Usually (but not always) the grouped model contains more insight.
- Are you missing explanatory variables?
- Context is important.

Simpson's paradox in real datasets

- The paradox is usually less obvious.
- You may see a zero slope rather than a complete change in direction.
- It may not appear in every group.

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

