

#### Different types of clamping device







- √ Higher clamping distance
- ✓ Not powerful grip
- ✓ Uneven clamping

#### **Feed Plate**

- ✓ Small clamping distance
- ✓ More powerful grip
- ✓ Uneven clamping







#### **Pedal rollers**

- ✓ 16 pedal rollers
- ✓ Small clamping distance
- ✓ Even clamping



# animal wren

## Mixer/Blender

#### Purpose of blending/mixing

- ✓ To average out the variation in fibre characteristics
- ✓ To engineer a textile yarn with specific properties
- ✓ To produce a certain shade by mixing fibres of different colours
- ✓ To reduce the cost

| Form        | Stage                               | Machine                                                                                             |
|-------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|
| Bale        | Blow room                           | Automatic bale opening machine                                                                      |
| Flock/ tuft | Within blow room                    | <ol> <li>Hand stack blending</li> <li>Automatic blending equipment</li> <li>Multi mixers</li> </ol> |
| Lap         | Within blow room                    | Scutcher                                                                                            |
| Sliver      | Drawing, pre-combing stage, combing | Draw frame, sliver lap machine , comber draw box                                                    |
| Web         | Pre combing stage, blending drawing | Ribbon lap machine , blending draw frame                                                            |
| Roving      | Spinning                            | Ring spinning machine                                                                               |







Fibre blending using blowroom



## Mixer

## Mixing through bale lay down

| Cate gory    | Number | Odd/<br>even | U- side | L-side | 1 2 3 2 3 3 4 5 4         |
|--------------|--------|--------------|---------|--------|---------------------------|
| 1 (Shortest) | 3      | 0            | 1       | 2      |                           |
| 2            | 4      | E            | 2       | 2      |                           |
| 3            | 6      | E            | 4       | 2      | 3 4 5 5 4 3 2 1 2 1       |
| 4            | 4      | E            | 2       | 2      |                           |
| 5 (Longest)  | 3      | 0            | 1       | 2      | Two rows                  |
|              | 20     |              | 10      | 10     | T WO TOWS                 |
| 1 2          | 3      | 2            | 3 3     | 3      | 4 5 4 3 4 5 5 4 3 2 1 2 1 |



#### Mixer

Automatic bale opener does not give homogeneous mixing. Why?





#### Multimixer



- ✓ Consists of 6-10 vertical compartments
- ✓ Cotton tufts are filled up to a certain filling height

# Tallhold Proper

#### Multimixer

### **Discontinuous Operation**



The largest difference in the filling time of tufts in different boxes is known as Blending delay time (BDT)

BDT is constant in case of discontinuous operation

## **Continuous Operation**



The compartments are filled up in a staggered configuration from 1<sup>st</sup> to last compartment



#### Multimixer

1st cycle



2<sup>nd</sup> scycle 4 81 78 63 75 45 60 72 42 57 69 39 54 18 66 36 Conveyor



Blending delay time (BDT): 45 min

4<sup>th</sup> cycle: Blending delay time (BDT): 72 min Blending delay time (BDT): 57 min

5<sup>th</sup> Cycle:

Blending delay time (BDT): 75 min

Blending delay time (BDT): 66 min

6<sup>th</sup> cycle:

Blending delay time (BDT): 75 min

How BDT changes with feed cycle and number of compartments?



**Unimix (Rieter)** 



# B 76 UNImix





90° bend in the material flow produces a shift in the timing resulting in long term blending



#### **Blender**



Metered amount of tufts are mixed together to maintain the blend ratio



#### Blender





- A metering system is used to drop a measured quantity of material to the conveyor belt
- ✓ Materials from 3-4 blenders are dumped together in sandwich form to form the blend



## Blender





## Blender



UNIblend A 81



- ✓ The amount of trash (%) in feed
- ✓ Speed of the opening device
- ✓ Setting between feed roller and line of action of beater
- ✓ Grid bar inclination and opening





Effect of trash%



Waste % increases linearly with the trash%

Effect of feed pedal distance



Waste % decreases with the increase in feed pedal distance

## Effect of grid bar opening



Effect of grid bar angle







#### Effect of trash% on cleaning



Why non-linear after 4% trash?

#### Effect of fibre type on cleaning



**Cleaning resistance of cotton** 



**Problem:** In a blowroom line, a fine cleaner gives cleaning efficiency of 24% for trash content in the feed of 4.3%. The amount of waste collected under the cleaner is 2.8%. Calculate the trash and lint% in the waste.

Ans: Trash collected in waste: 40% Lint collected in waster: 60%

# Cleaning of different fibre types





# Cleaning of different fibre types







#### VARIOline cleaning concept - medium trash content



# Cleaning of different fibre types



#### VARIOline cleaning concept - high trash content



# **Lap Formation**





No Scutcher in modern blowroom line:

Flock Feed system

- $Production(m) = delivery speed(m/min) \times duration(min)$
- $Production(Kg) = Delivery speed(m/min) \times duration(min) \times \frac{1}{1000} \times lap \ weight(g/m)$