Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
II.a.	
	$\vec{G} + \vec{N} + F_f = m\vec{a}$
	$mg \sin \alpha - \mu mg \cos \alpha = ma$
	$a = g(\sin \alpha - \mu g \cos \alpha)$
	Rezultat final: $a = 5 \left(1 - \frac{\sqrt{3}}{10} \right) m/s^2 \approx 4,13 m/s^2$
b.	
	$v_m = \frac{d_{AB}}{\Delta t}$ $v_m = \frac{0 + v}{2}$
	$V_m = \frac{0+v}{2}$
	$a = \frac{\Delta V}{\Delta t}$
	$a = \frac{\Delta v}{\Delta t}$ $v = \sqrt{\frac{2ah}{\sin \alpha}}$
	Rezultat final: $v \approx 2,88 m/s^2$
C.	
	$F_{\min} = mg \sin \alpha - \mu mg \cos \alpha$
	Rezultat final: $F_{\text{min}} = 0.5 \left(1 - \frac{\sqrt{3}}{10} \right) N \cong 0.4 \text{ N}$
d.	
	La ridicare uniformă: $F_{\min} = mg \sin \alpha + \mu mg \cos \alpha$
	Rezultat final: $F_{\text{min}} = 0.5 \left(1 + \frac{\sqrt{3}}{10} \right) N \cong 0.59 N$