MOUNTED STRUCTURE OF TUNNEL INTERIOR PANEL

Publication number: JP8114096 (A)
Publication date: 1996-05-07

Inventor(s): TONYA JIYUNJI; HORI KENGO +
Applicant(s): NIPPON STEEL METAL PROD +

Classification:

- international: E21D11/15; E21D11/14; (IPC1-7): E21D11/15

- European:

Application number: JP19940277118 19941017 Priority number(s): JP19940277118 19941017

Abstract of JP 8114096 (A)

PURPOSE: To reduce the distance of a tunnel interior panel from a tunnel side wall surface. CONSTITUTION: A bed material (furring strip made of angle steel) 7 is horiz ontally mounted on a tunnel side wall surface 10. A fixing member 25 of Lshaped horizontal cross section is secured to the vertical reinforcing frame 3 of a tunnel interior panel 1 by screws 26. One side 25b of the fixing member 25 is secured to the vertical reinforcing frame 3 by screws 26. A mounting bracket 27 comprises a retainer 28 having a flat portion, an engagement member 30 that engages with the bed material 7. and a screw 29. The other side 25a of the fixing member 25 is pressed against the bed material 7, and the flat portion of the retainer 28 of the mounting bracket 7 is pressed against the projecting part 25c of the side 25a, and the screw 29 is tightened to press and fix the fixing member 25 to the bed material 7. The tunnel interior plate 1 is thus secured to the tunnel side wall surface 10. This constitution can reduce the dimension of a clearance between the inner surface of the tunnel interior panel 1 and the bed material 7 and can readily satisfy limitation (building limit) on the distance from the tunnel side wall surface 10.

Data supplied from the espacenet database — Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-114096

(43)公開日 平成8年(1996)5月7日

(51) Int.Cl.⁶

識別記号 庁内整理番号 FΙ

技術表示箇所

E 2 1 D 11/15

審査請求 未請求 請求項の数2 FD (全 5 頁)

(21)出願番号 特願平6-277118

(22)出願日 平成6年(1994)10月17日 (71)出願人 000006839

日鐵建材工業株式会社

東京都中央区銀座7丁目16番3号

(72)発明者 問屋 淳二

神奈川県川崎市川崎区出来野3-1-203

(72)発明者 堀 謙吾

神奈川県川崎市川崎区東門前3-9-16-

205

(74)代理人 弁理士 加川 征彦

(54) 【発明の名称】 トンネル内装板の取付構造

(57)【要約】

【目的】 トンネル内装板のトンネル側壁面からの離間 距離を小さくする。

【構成】 トンネル側壁面10に下地材(山形鋼による 胴縁) 7を水平に取り付ける。トンネル内装板1の縦補 強フレーム3に水平断面がL形の固定部材25をねじ2 6で固定する。固定部材25の他方の辺25bを縦補強 フレーム3にねじ26で固定する。取付金具27は、平 板部28bを持つ押さえ金具28と、下地材7に係合す る係合部材30と、ねじ29とからなる。固定部材25 の一方の辺25 aを下地材7に当て、その突出部25 c に取付金具7の押さえ金具28の平板部28bを当て, ねじ29を締め付けて、固定部材25を下地材7に押し 付け固定する。これによりトンネル内装板1をトンネル 側壁面10に固定する。この構成により、トンネル内装 板1の内面と下地材7との間の間隙寸法dが小さく済 み、トンネル側壁面10からの離間距離D'の制限(建 築限界)を容易に満足させられる。

1

【特許請求の範囲】

【請求項1】 トンネルの側壁面に固定した下地材にトンネル内装板を取り付けるトンネル内装板の取付構造であって、トンネル内装板の左右縁部の補強フレームに、水平断面がL形の固定部材をそのL形の一方の辺が内装板の面に対して間隔をあけて平行するように、かつ前記一方の辺の側端縁が内装板の側端縁より内装板幅方向外側に突出するように取り付けるとともに、前記L形固定部材の前記突出する部分を、隣接する左右のトンネル内装板間の間隙寸法より幅の狭い押さえ金具と、この押さ 10 え金具にあけたねじ挿通穴に挿通されるねじと、前記ねじが螺合するねじ穴を有し前記下地材に係合する係合部材とからなる取付金具により下地材に押し付け固定したことを特徴とするトンネル内装板の取付構造。

【請求項2】 前記取付金具の押さえ金具は、中央にね じ挿通穴をあけた平板部の上部に直角に折曲された補強 用のフランジ部、下部に前記下地材の下縁に係合可能な U字形部を備えたことを特徴とする請求項1記載のトン ネル内装板の取付構造。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、道路等のトンネルの 側壁面にトンネル内装板を取り付けるトンネル内装板の 取付構造に関する。

[0002]

【従来の技術】図9、図10に従来のトンネル内装板の 取付構造を示す。この取付構造は、トンネル内装板1の 主として下段部をトンネル側壁面に取り付けるものであ り、トンネル内装板1のパネル2の左右縁部に固定した 縦補強フレーム3に、U字形の切り欠き4aを持つ内装 30 板取付板4を内装板1の面と垂直にねじで固定し、前記 内装板取付板4のU字形切り欠き4aに嵌合する羽根部 5を持つ蝶金具6によって、トンネル内装板1を山形鋼 の下地材7に固定するものである(実開昭6-4009 9号参照)。そして、この従来の取付構造における前記 蝶金具6は、蝶金具本体部5aとこの蝶金具本体部5a の左右両端から直角に折曲された脚部5 b と上端から水 平に折曲されたフランジ部5cとを持つ前述の羽根部5 と、この羽根部5のねじ挿通穴に通されたねじ8と、下 地材7に係合する係合溝9aを有し前記ねじ8に螺合す 40 る係合部材9とからなる構造であった。そして、隣接す る左右のトンネル内装板1の内装板取付板4を1つの蝶 金具6によって同時に下地材7に固定していた。なお、 符号10はトンネル側壁面であり、トンネル側壁面10 にホールインアンカー11を打ち込み、このホールイン アンカー11にナット12により取付用ピース13を固 定し、この取付用ピース13に前記下地材7をボルト1 4で水平に固定している。

[0003]

【発明が解決しようとする課題】上記従来の取付構造 50

は、トンネル内装板1をトンネル側壁面10に容易に取 り付けることができるものであるが、若干の問題があ る。すなわち、トンネル内装板1は、トンネル側壁面1 ○からの許容される離間距離(建築限界) Dが例えば1 00mm以内等と、あまり離れない位置に配置すること が要求される場合がある。このような場合に、従来の取 付構造では、内装板1の面と直角な内装板取付板4に設 けたU字形切り欠き4aに蝶金具6の羽根部5の羽根本 体部5aを嵌合させる構成であること、および、前記羽 根本体部5aの両側に下地材7側に直角に折曲した脚部 5 b を持つ構成であること等から、必要な剛性を確保す ることとの関係で、建築限界Dの範囲内に設置すること が困難な場合がある。また、トンネル内装板1を設置し た後、例えばメンテナンスにおいて蝶金具6の損傷を発 見し取り替えようとしても、蝶金具6の羽根部5の幅 (左右の脚部5bの間隔)が隣接する左右のトンネル内 装板1の内装板取付板4間の間隔より広く, 左右のトン ネル内装板1の間隔寸法Wより当然広いので、トンネル 内装板1を動かさずに蝶金具6を除去することができ 20 ず、蝶金具6の取り外しが容易でない。また、トンネル 内装板1の取り付けの作業性を一層向上させることがで

【0004】本発明は上記従来の欠点を解消するためになされたもので、トンネル内装板のトンネル側壁面からの離間距離の制限すなわち建築限界を満足させることが容易であり、また、トンネル側壁面への取り付けの作業性が一層向上し、さらにメンテナンスにおいて取付金具の交換が容易なトンネル内装板の取付構造を提供することを目的とする。

0 [0005]

きれば望ましい。

【課題を解決するための手段】上記課題を解決する本発明は、トンネルの側壁面に固定した下地材にトンネル内装板を取り付けるトンネル内装板の取付構造であって、トンネル内装板の左右縁部の補強フレームに、水平断面がL形の固定部材をそのL形の一方の辺が内装板の面に対して間隔をあけて平行するように、かつ前記一方の辺の側端縁が内装板の側端縁より内装板幅方向外側に突出するように取り付けるとともに、前記L形固定部材の前記突出する部分を、隣接する左右のトンネル内装板間の間隙寸法より幅の狭い押さえ金具と、この押さえ金具にあけたねじ挿通穴に挿通されるねじと、前記ねじが螺合するねじ穴を有し前記下地材に係合する係合部材とからなる取付金具により下地材に押し付け固定したことを特徴とする。

【0006】請求項2は、前記取付金具の押さえ金具が、中央にねじ挿通穴をあけた平板部の上部に直角に折曲された補強用のフランジ部、下部に前記下地材の下縁に係合可能なU字形部を備えた形状であることを特徴とする。

50 [0007]

えた形状である。

【作用】上記の取付構造によれば、L形の固定部材の一 方の辺を取付金具の押さえ金具で下地材に押し付け固定 してトンネル内装板をトンネル側壁面に固定するもので あるから、トンネル内装板の面と下地材との間の距離は 小さく済み、したがって、トンネル内装板のトンネル側 壁面からの離間距離が小さく済み、この離間距離の制限 すなわち建築限界を満足させることは容易である。ま た、押さえ金具の幅が隣接する左右のトンネル内装板の 間隙寸法より狭いので、トンネル内装板取り付け施工後 のメンテナンスにおいて、トンネル内装板を動かさずに 10 の各フック23に対応する所定の高さ位置、および縦補 取付金具を除去することができ、メンテナンスが容易に なる。また、トンネル内装板の取り付け作業時において も、押さえ金具の幅が前記間隙寸法より狭いことで、作 業性が良好になる。

【0008】請求項2において、押さえ金具は上部にフ ランジ部,下部にU字形部を持つことで剛性が高まり, 取付金具としての必要な剛性を容易に確保できる。ま た、下部のU字形部は下地材の下縁に係合して、トンネ ル内装板の浮き上がりを防止する。

[0009]

【実施例】以下,本発明の一実施例を図1~図8を参照 して説明する。図1は本発明の一実施例の取付構造によ りトンネル内装板1をトンネル側壁面10に取り付けた 状態の断面図、図2は同正面図である。トンネル内装板 1は、矩形のパネル2の周囲に補強フレーム21を固定 した構成であり、補強フレーム21はパネル2の左右の 側端縁を補強する縦補強フレーム3とパネル2の上下の 端縁を補強する横補強フレーム22とからなる。縦補強 フレーム3は図3に示すように、U字形部分にパネル2 と垂直なフランジ部3aを一体に形成した断面形状であ 30 る。そして、縦補強フレーム3の上端部および中間部に 図1に示すようにそれぞれカギ形のフック23を図示略 のねじで固定し、縦補強フレーム3のフランジ部3 aの 下端近傍には、図3、図4、図8に示すように、水平断 面がL形の固定部材25をねじ26で固定している。こ のL形固定部材25は、L形の一方の辺25aが長く他 方の辺25bが短いし形であり、短い辺25bが前述の 通りねじ26で縦補強フレーム3のフランジ部3aに固 定され、長い辺25aは内装板1の面に対して間隔をあ けて平行し、かつその側端縁が内装板1の側端縁より内 40 装板幅方向外側に突出している。この突出する部分(突 出部) 25 cは、図8に示されるように、後述する押さ え金具28の上部のフランジ部28c等との干渉を避け るために、上下を切り欠いた形状としている。

【0010】本発明では前記L形固定部材25の前記長 い辺(一方の辺) 25 a の前記突出部 25 c を取付金具 27で下地材7に固定する。この取付金具27は、図5 ~図7にも詳細を示すように、隣接する左右のトンネル 内装板1間の間隙寸法Wより幅の狭い押さえ金具28 と,この押さえ金具28にあけたねじ挿通穴28aに挿 *50 ど*)を満足させることは容易である。また,押さえ金具

通されるねじ29と、前記ねじ29が螺合するねじ穴3 0 a を有し前記下地材7に係合する係合溝30bを形成 した係合部材30とからなり、前記押さえ金具28は、 中央に前述のねじ挿通穴28aを持つ平板部28bの上 部に直角に折曲された補強用のフランジ部28c,下部 に前記下地材7の下縁に係合可能なU字形部28dを備

【0011】一方、トンネル側壁面10には、従来と同 様であるが縦補強フレーム3の前記上端部および中間部 強フレーム3の下端部の前記L形固定部材25に対応す る高さ位置でそれぞれホールインアンカー11を打ち込 み, このホールインアンカー11に山形鋼による取付用 ピース13,13'をナット12で固定し、この取付用 ピース13,13'にトンネル長さ方向に水平に延びる 山形鋼による胴縁である下地材7,7'をボルト14で 固定している。

【0012】上記のトンネル内装板1をトンネル側壁面 10に取り付ける作業について説明すると、トンネル内 20 装板1の上端部および中間部に取り付けたフック23を それぞれトンネル側壁面10側の上段および中段の下地 材7'に引っ掛けてトンネル内装板1を吊り下げ、その 後,縦補強フレーム3の下端部に固定したL形固定部材 25を取付金具27で下段の下地材7に固定する。取付 金具27でL形固定部材25を下段の下地材7に固定す る手順の詳細を説明すると、まず、取付金具27の係合 部材30の係合溝30bを下地材7の水平部7bの端縁 に係合させる。次いで、隣接する左右のトンネル内装板 1にそれぞれ固定したL形固定部材25の長い辺25a に押さえ金具28の平板部28bを当て、その際下部の U字形部28dを下地材7の下縁に図4のように係合さ せ、次いで、ねじ29を締め付けていくと、押さえ金具 28の平板部28bがL形固定部材25の長い辺25a の突出部25cを下地材7の垂直部7aに押し付け固定 し、これによりトンネル内装板1を下地材7に固定す る。なお、U字形部28dを下地材7に係合させる際、 U字形に湾曲した形状であることや下地材7に対して余 裕を持たせていること等から、下地材7に係合させる操 作は容易である。

【0013】上記の取付構造において,トンネル内装板 1の内面と下地材7との間の間隙寸法d (図4参照) に 関与するものはほぼL形固定部材25の短い辺25bの 寸法のみであり、そしてこの間隙寸法はは、L形固定部 材25の長い辺25aの厚みと押さえ金具28の平板部 28bの厚みとねじ29の頭部の高さとワッシャ31の 厚みとが収容できる程度でよいので、小さくすることが できる。したがって、トンネル内装板1のトンネル側壁 面10からの離間距離D'が小さく済み,この離間距離 の制限すなわち建築限界(例えば、100mm以内な

5

28の幅が隣接する左右のトンネル内装板1の間隙寸法Wより狭いので、トンネル内装板取り付け施工後のメンテナンスにおいて、左右のトンネル内装板1を動かさずに押さえ金具28を含む取付金具27を除去することができ、メンテナンスが容易になる。また、押さえ金具28の幅が前記間隙寸法Wより狭いことは、上述したトンネル内装板1の取り付け作業時においても有利であり、作業性が良好になる。また、押さえ金具28は上部にフランジ部28c,下部にU字形部28dを持つ形状であるから、L形固定部材25を押さえる部分が単なる平板7であっても、取付金具としての必要な剛性を容易に確保できる。また、下部のU字形部28dは、トンネル内装板1にトンネル側壁面10から離れる方向の風圧等が作用しても、下地材7に係合してトンネル内装板1が浮き上がることを防止する。

[0014]

【発明の効果】本発明によれば、L形の固定部材の一方の辺を取付金具の押さえ金具で下地材に押し付け固定してトンネル内装板をトンネル側壁面に固定するものであるから、トンネル内装板と下地材との間隙寸法を小さく 20 することができ、トンネル内装板のトンネル側壁面からの離間距離の制限すなわち建築限界を容易に満足させることができる。また、押さえ金具の幅が隣接する左右のトンネル内装板の間隙寸法より狭いので、トンネル内装板取り付け施工後のメンテナンスにおいて、トンネル内装板を動かさずに取付金具を除去することができ、メン

テナンスが容易になる。また、トンネル内装板の取り付け作業時においても、押さえ金具の幅が前記間隙寸法より狭いことで、作業性が一層向上する。

【0015】請求項2によれば、押さえ金具は上部にフランジ部、下部にU字形部を持つ形状であるから、L形固定部材を押さえる部分が単なる平板であっても、取付金具としての必要な剛性を容易に確保できる。また、下部のU字形部は下地材の下縁に係合して、トンネル内装板の浮き上がりを防止する。

10 【図面の簡単な説明】

【図1】本発明の一実施例のトンネル内装板の取付構造の使用態様を示すもので、トンネル側壁面に取り付けられたトンネル内装板の断面図である。

【図2】トンネル側壁面に取り付けられたトンネル内装板の正面図である。

【図3】本発明のトンネル内装板の取付構造の一実施例 を示す平面図である。

【図4】図3におけるA-A断面図である。

【図5】図4における取付金具のみを示す図である。

【図6】図5の平面図である。

【図7】図5の右側面図である。

【図8】上記のトンネル内装板の取付構造を裏面側から 見た斜視図である。

【図9】従来のトンネル内装板の取付構造を示す平面図である

-28b

【図10】図9の要部のB-B断面図である。

