NTNU

Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering

Faglig kontakt under eksamen: Navn: Lars Magnus Hvattum Oppgave settet laget av: Navn: Bjørn Nygreen

Svar til

EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK

Onsdag 10. august 2011

Tid: kl. 0900-1300

Bokmål

Tillatte hjelpemidler: C - Godkjent kalkulator og K.Rottmann: "Matematisk formelsamling" er tillatt.

Oppgave 1

a) Definerer:

z =overskudd i neste periode regnet i 1000 kroner

 x_i = antall enheter produsert av type j i neste periode, j = 1, 2, 3

Da får vi følgende formulering:

$$\max \ z = 4x_1 + 3x_2 + 6x_3$$

når

$$2x_1 + x_2 + 3x_3 \le 40$$

$$2x_1 + 2x_2 + x_3 = 30$$

$$x_1, x_2, x_3 \ge 0$$

b) Vi innfører følgende nye variable:

 $x_4 = \text{tomgang i restriksjon 1}$

 x_5 = kunstvariabel i restriksjon 2

Restriksjonene kan nå skrives slik:

$$2x_1 + x_2 + 3x_3 + x_4 = 40$$
$$2x_1 + 2x_2 + x_3 + x_5 = 30$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Oppgaveteksten sier at vi skal bruke 2 fasers simpleks. Det vil si at vi skal minimere summen av de kunstvariable i fase 1 og forsette fra den løsningen med å maksimere overskuddet.

Målfunksjoner:

Fase 1: min
$$w = x_5$$

Fase 2: max $z = 4x_1 + 3x_2 + 6x_3$

Vi har valget mellom å eliminere de basisvariable fra målfunksjonen før problemet settes inn i regneskjemaet eller å starte med de virkelige målfunksjonene i skjemaet og bruke en ekstra "iterasjon" til å fjerne de basisvariable fra målfunksjonen. Vi velger den siste måten og kaller de

"iterasjon" til å fjerne de basisvariable fra målfunksjonen. Vi velger den siste måten og kaller de første skjemaene i hver fase for Iterasjon -1.

Siden læreboka bare maksimerer og betrakter "målvariabelen" som en basisvariabel omskriver vi målfunksjonene slik før vi starter med skjemaene:

Fase 1:
$$-w + x_2 = 0$$

Fase 2: $z - 4x_1 - 3x_2 - 6x_3 = 0$

Fase 1, iterasjon -1:

Basis	w	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> ₅	RHS	Forhold
-w	-1	0	0	0	0	1	0	_
<i>x</i> ₄	0	2	1	3	1	0	40	_
<i>x</i> ₅	0	2	2	1	0	1	30	_

Her subtraherer vi siste linje fra målfunksjonen for å fjerne den basisvariable fra målfunksjonen. Vi får intet basisskift i denne "iterasjonen".

Fase 1, iterasjon 0:

Basis	w	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	Forhold
-w	-1	-2 *	-2	-1	0	0	-30	_
<i>x</i> ₄	0	2	1	3	1	0	40	40/2 = 20
<i>x</i> ₅	0	2	2	1	0	1	30	30/2 = 15 *

Vi skal velge den mest negative reduserte kostnaden. Det vanlig er å søke forfra og bare bytte til noe bedre (ikke bytte til noe like godt). Vi får derfor at x_1 skal inn i basis.. Vi marker den valgte reduserte kostnaden med en *. Vi beregner forholdene og markerer det minste med stjerne.

Vi ser at x_5 skal ut av basis. Oppdateringene av skjemaet gjøres først i neste iterasjon:

Fase 1, iterasjon 1:

Basis	w	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	RHS	Forhold
-w	-1	0	0	0	0	1	0	_
<i>x</i> ₄	0	0	-1	2	1	-1	10	_
x_5	0	1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	15	_

Vi ser her at det ikke er flere negative reduserte kostnader og heller ingen kunstvariable i basis. Vi har derfor funnet optimal løsning i fase 1 og denne løsningen har en mulig basis.

Vi avslutter derfor fase 1 og starter fase 2. Det gjør vi ved å sette inn målfunksjon z i stedet for målfunksjon -w i skjemaet foran.

Fase 2, iterasjon -1:

Basis	z	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	RHS	Forhold
z	1	-4	-3	-6	0	0	0	_
x_4	0	0	-1	2	1	-1	10	_
$ x_1 $	0	1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	15	_

Vi kunne slettet kolonnen for x_5 siden den kunstvariable ikke skal inn i basis igjen, men vi beholder den slik at vi har de dualvariable (muligens med motsatt fortegn) og den inverse basismatrisene i spaltene til x_4 og x_5 . Her adderer vi siste linje multiplisert med 4 til målfunksjonen for å fjerne alle basisvariable fra målfunksjonen.

Fase 2, iterasjon 0:

Basis	z	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	RHS	Forhold
z	1	0	1	-4 *	0	2	60	_
x_4	0	0	-1	2	1	-1	10	10/2 = 5 *
x_1	0	1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	15	$15/\frac{1}{2} = 30$

Vi ser her at x_3 skal inn og x_4 ut av basis. Oppdateringen skjer først i neste iterasjon

Fase 2, iterasjon 1:

Basis	z	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	RHS	Forhold
z	1	0	-1 *	0	2	0	80	_
<i>x</i> ₃	0	0	$-\frac{1}{2}$	1	1/2	$-\frac{1}{2}$	5	_
x_1	0	1	<u>5</u>	0	$-\frac{1}{4}$	3/4	$\frac{25}{2}$	$\frac{25}{2} / \frac{5}{4} = 10 *$

Her ser vi at x_2 skal inn og x_1 ut av basis. Oppdatering av skjema først i neste iterasjon

Fase 2, iterasjon 2:

Basis	z	x_1	x_2	<i>x</i> ₃	χ_4	<i>X</i> ₅	RHS	Forhold
z	1	<u>4</u> 5	0	0	<u>9</u> 5	<u>3</u> 5	90	_
<i>x</i> ₃	0	<u>2</u> 5	0	1	<u>2</u> 5	$-\frac{1}{5}$	10	_
$ x_2 $	0	$\frac{4}{5}$	1	0	$-\frac{1}{5}$	$\frac{3}{5}$	10	_

Her er det ingen negative reduserte kostnader og vi har den optimale løsningen.

$$z = 90$$
, $x_1 = 0$, $x_2 = 10$, $x_3 = 10$

hvor z er målt i 1000 kroner.

c) Dualen formuleres slik:

min
$$w = 40y_1 + 30y_2$$

$$2y_1+2y_2 \geq 4$$

$$y_1 + 2y_2 \ge 3$$

$$3y_1 + y_2 \ge 6$$

$$y_1 \ge 0$$

 $y_2 \rightarrow \text{ uten tegn krav}$

 y_i er skyggepris på høyresiden i restriksjon i = endring i z pr enhets endring i b_i

d) Løsnings verdiene til i dualen finnes i z linjen under x_4 og x_5 i det optimale skjemaet og målverdien er den samme som i primalen

$$w = 90, \quad y_1 = \frac{9}{5}, \quad y_2 = \frac{3}{5}$$

Benevningen på w og y_i-ene er 1000 kroner.

e) Den lavest nummererte produkttypen som ikke produseres er nummer 1

Fra starten av iterasjon -1 i fase 2 har en ikke multiplisert z linjen med noe tall, en har bare addert andre linjer multiplisert med konstanter.

Dvs. at slutt verdiene i z er de negative målkoeffisientene $(-c_j)$ pluss totaleffekten av alle adderingene (z_j) .

For x_1 får vi:

$$z_j - c_j = z_j - 4 = \frac{4}{5} \Rightarrow z_j = \frac{24}{5}$$

For at løsningen ikke skal endres må vi ikke ønske x_1 inn i basis. Vi må derfor ha:

$$z_j - c_j^{ny} \ge 0 \Rightarrow c_j^{ny} \le z_j = \frac{24}{5} = 4.8$$
 (målt i 1000 kroner)

f) Når høyresiden i et LP problem varieres forblir verdiene på de dualvariable uendret så lenge basis ikke må endres, dvs. så lenge de basisvariable ikke blir negative.

Når energitilgjengeligheten endres i dette problemet, kan vi utrykke den nye høyresiden slik:

$$b(\theta) = \begin{bmatrix} 40 \\ 30 \end{bmatrix} + \theta \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

hvor θ = endringen (positiv eller negativ) i energitilgangen.

Generelt kan verdien på de basisvariable skrives slik:

$$x_B = A_B^{-1}b \ge 0$$

Den inverse basismatrisen finnes i restriksjonslinjene under x_4 og x_5 i sluttskjemaet.

Her gir dette:

$$x_{B} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{3}{5} \end{bmatrix} b(\theta) = \begin{bmatrix} 10 \\ 10 \end{bmatrix} + \theta \begin{bmatrix} \frac{2}{5} \\ -\frac{1}{5} \end{bmatrix} = \begin{bmatrix} 10 + \frac{2\theta}{5} \\ 10 - \frac{\theta}{5} \end{bmatrix} \ge 0$$

Dette gir

$$10 - \frac{\theta}{5} \ge 0 \Rightarrow \theta \le 50$$
$$10 + \frac{2\theta}{5} \ge 0 \Rightarrow \theta \ge -25$$

Dualløsningen ikke endres ikke for energitilgangsendringer, θ , i følgende intervall:

$$-25 \le \theta \le 50$$

Oppgave 2

a) Produksjonen skal flyttes i begynnelsen av 5 år fra nå.. Vi skal ta beslutning om skifing eller ikke skifting i begynnelsen av hvert av de 4 årene før flyttingen

n = trinn = begynnelsen av hvert av de resterende 4 driftsårene

 x_n = beslutningsvariabel = behold (0) eller skift (1) utstyr

 y_n = tilstandsvariabel = alder på utstyret på beslutningstidspunkt n

b)

$$N = \text{mengden av trinn} = \{1, 2, 3, 4\}$$

 $X_n = \text{mengden av mulige beslutninger på trinn } n = \{0, 1\}, \forall n$

 \rightarrow = 0 for behold, = 1 for bytt

Verdien av tilstanden varierer med beslutningstrinn slik:

$$y_{n+1}(x_n, y_n) = 1 \cdot x_n + (y_n + 1) \cdot (1 - x_n)$$

Dette gir følgende mulige verdier på de tilstandsvariable:

$$Y_1 = \{3\}$$

 $Y_2 = \{1,4\}$
 $Y_3 = \{1,2,5\}$
 $Y_4 = \{1,2,3,6\}$

c) Vi regner baklengs rekursjon, på samme måte som i læreboka ogg definerer:

 $f_n^*(y_n) = \text{maksimalt netto overskudd f.o.m. trinn } n$, t.o.m. trinn 4 og salg av utstyr etter år 4,

 \rightarrow gitt at utstyret er y_n år på trinn n.

 $f_n(y_n, x_n) = \text{maksimalt netto overskudd f.o.m. trinn } n, \text{ t.o.m. trinn 4 og salg av utstyr etter år 4.}$

 \rightarrow gitt at utstyret er y_n år på trinn n og en tar beslutningen x_n på trinn n.

Hvis vi bruker de samme symbolene på i økonomiske data som i oppgave teksten, men skrevet som funksjoner av y_n får vi:

For det siste driftsåret, n = 4:

$$f_4(y_4, x_4) = [R(0) + S(y_n) - I + S(1)] \cdot x_4 + [R(y_n) + S(y_n + 1)] \cdot (1 - x_4)$$

$$f_4^*(y_4) = \max_{x_4 \in \{0,1\}} f_4(y_4, x_4)$$

For de øvrige 4 driftsårene, n = 1, 2, 3

$$f_n(y_n, x_n) = [R(0) + S(y_n) - I + f_{n+1}^*(1)] \cdot x_n + [R(y_n) + f_{n+1}^*(y_n + 1)] \cdot (1 - x_n)$$

$$f_n^*(y_n) = \max_{x_n \in \{0,1\}} f_n(y_n, x_n)$$

Tilstanden på trinn 1 (år 1) er kjent, $y_1 = 3$, så optimal målverdi, z, blir:

$$z = f_1^*(3)$$

Vi regner baklengs og starter med trinn n = 4:

Tilstand	Bytt $(x_4 = 1)$	Behold $(x_4 = 0)$	$f_4^*(y_4)$	$x_4^*(y_4)$
Formel	$[R(0) + S(y_3) - I + S(1)]$	$[R(y_3) + S(y_3 + 1)]$		
1	196 + 800 - 1000 + 800 = 796	184 + 600 = 784	796	1
2	196 + 600 - 1000 + 800 = 596	173 + 500 = 673	673	0
3	196 + 500 - 1000 + 800 = 496	157 + 300 = 457	496	1
6	196 + 50 - 1000 + 800 = 46	Må bytte	46	1

Så fortsetter vi med trinn n = 3:

Tilstand	Bytt $(x_3 = 1)$	Behold $(x_3 = 0)$	$f_3^*(y_3)$	$x_3^*(y_3)$
Formel	$[R(0) + S(y_3) - I + f_4^*(1)]$	$[R(y_3) + f_4^*(y_3 + 1)]$		
1	196 + 800 - 1000 + 796 = 792	184 + 673 = 857	857	0
2	196 + 600 - 1000 + 796 = 592	173 + 496 = 669	669	0
5	196 + 100 - 1000 + 796 = 92	122 + 46 = 168	168	0

Så fortsetter vi med trinn n = 2:

Tilstand	Bytt $(x_2 = 1)$	Behold $(x_2 = 0)$	$f_2^*(y_2)$	$x_2^*(y_2)$
Formel	$[R(0) + S(y_2) - I + f_3^*(1)]$	$[R(y_2) + f_3^*(y_2 + 1)]$		
1	196 + 800 - 1000 + 857 = 853	184 + 669 = 853	853	1/0
4	196 + 300 - 1000 + 857 = 353	138 + 168 = 306	353	1

Så fortsetter vi med trinn n = 1:

Tilstand	Bytt $(x_1 = 1)$	Behold $(x_1 = 0)$	$f_1^*(y_1)$	$x_1^*(y_1)$
Formel	$[R(0) + S(y_1) - I + f_2^*(1)]$	$[R(y_1) + f_1^*(y_1 + 1)]$		
3	196 + 500 - 1000 + 853 = 549	157 + 353 = 510	549	1

Så nøster vi opp løsningen:

$$y_1 = 3$$
 \Rightarrow $x_1 = 1$ \Rightarrow $y_2 = 1$
 $y_2 = 1$ \Rightarrow $x_2 = 1$ \Rightarrow $y_3 = 1$
 $y_3 = 1$ \Rightarrow $x_3 = 0$ \Rightarrow $y_4 = 2$
 $y_4 = 2$ \Rightarrow $x_4 = 0$ \Rightarrow $y_5 = 3$

eller

$$y_1 = 3$$
 \Rightarrow $x_1 = 1$ \Rightarrow $y_2 = 1$
 $y_2 = 1$ \Rightarrow $x_2 = 0$ \Rightarrow $y_3 = 2$
 $y_3 = 2$ \Rightarrow $x_3 = 0$ \Rightarrow $y_4 = 3$
 $y_4 = 3$ \Rightarrow $x_4 = 1$ \Rightarrow $y_5 = 1$

Begge løsningen har et netto oveskudd på z = 549000 kroner.

Oppgave 3

- a) Vi får enklest regning hvis vi definerer operatørens igangsetting av maskinene som betjening og systemet som opertøren og den eventuelle maskinen som blir betjent pluss de maskinene som eventuelt står stille og venter på betjening.
- b) Diagrammet vil bestå av 5 noder på en linje som hver representerer en av de mulige tilstandene (antall kunder i systemet): 0, 1, 2, 3, 4.

De mulige overgangene representeres med buer med pil mellom nabo noder. Diagrammet tegnes ikke her.

 λ_n = overgangsrate pr time fra tilstand n til tilstand n + 1

 μ_n = overgangsrate pr time fra tilstand n til tilstand n-1

$$\lambda_n = (4 - n)\lambda, \quad \lambda = 1, \quad n = 0, 1, 2, 3$$

 $\mu_n = \mu, \quad \mu = 4, \quad n = 1, 2, 3, 4$

c) Vi beregner Sannsynligheten, p_0 , for tomt system og multipliserer den med 40 timer.

Sannsynlighetene for *n* kunder i systemet beregnes som i læreboka ved bruk av hjelpestørrelsene:

$$C_n = \begin{cases} 1 & n = 0\\ \frac{\lambda_0 .. \lambda_{n-1}}{\mu_1 .. \mu_n} & n = 1, 2, 3, 4 \end{cases}$$

$$p_n = C_n \left[\sum_{k=0}^4 C_k \right]^{-1}$$

$$\left[\sum_{k=0}^{4} C_k \right] = 1 + 4 \cdot \left(\frac{1}{4} \right) + 4 \cdot 3 \cdot \left(\frac{1}{4} \right)^2 + 4 \cdot 3 \cdot 2 \cdot \left(\frac{1}{4} \right)^3 + 4 \cdot 3 \cdot 2 \cdot 1 \cdot \left(\frac{1}{4} \right)^4 = \frac{103}{32}$$

Tid uten betjening =
$$40p_0 = 40C_0 \left[\sum_{k=0}^{4} C_k \right]^{-1} = \frac{40 \cdot 32}{103} = \frac{1280}{103} = 12 \text{ timer og 26 minutter}$$

d) For hver betjening vil en maskin produsere 1 enhet. For hver time operatøren bruker på betjening, vil han i gjennomsnitt betjene 4 maskiner.

Dvs.

Forventet produksjon =
$$4 \cdot \frac{40 \cdot 103 - 1280}{103} = 110.3$$

Alternativt kan en regne slik:

Forventet produksjon =
$$40 \cdot \sum_{n=1}^{4} \mu_n p_n = 40 \cdot \mu \sum_{n=1}^{4} p_n = 160 \sum_{n=1}^{4} p_n = 160 \cdot (1 - p_0)$$

Tallsvaret blir det samme.