

Notions de métrologie

Frédéric Taillade

30 juin 2005

Table des matières

Ι	Gέ	enéralités	1					
1		Introduction						
	1.1	La métrologie à quoi ça sert?	3					
	1.2	La mesure d'une grandeur physique	4					
	1.3	Un peu de vocabulaire	4					
2	Système International d'unité (SI)							
	2.1	Unités de bases	7					
		2.1.1 Unité de longueur : le mètre (symbole : m)	7					
		2.1.2 Unité de masse : le kilogramme (symbole : kg)	8					
		2.1.3 Unité de temps : la seconde (symbole : s)	8					
		2.1.4 Unité de courant électrique : l'ampère (symbole : A)	8					
		2.1.5 Unité de température thermodynamique : le kelvin (symbole : K) .	8					
		2.1.6 Unité de quantité de matière : la mole (symbole : mol)	9					
		2.1.7 Unité d'intensité lumineuse : la candela (symbole : cd)	9					
	2.2	Unités dérivées	9					
	2.3	Unités supplémentaires	9					
	2.4	1	12					
	2.5	Traçabilité	12					
3	Mes	sures - Erreurs de mesures - Corrections	15					
	3.1	Mesures	15					
	3.2	Concepts d'erreurs et d'incertitudes	15					
	3.3	Causes d'erreurs	16					
	3.4	Réduction - Correction des erreurs	17					
		3.4.1 Correction de l'erreur systématique	18					
		3.4.2 Réduction de l'erreur aléatoire	20					
	3.5	Jugement d'une mesure - Tolérance	20					
4	Not	ions de Moindres carrés	23					
	4.1	Introduction	23					
	4.2	Principe des Moindres Carrés						
	4.3	1	25					
			25					
		1 1	28					
	4 4		31					

II	\mathbf{B}	ilan d	l'incertitude	33
5	Ana	dyse d	u processus de mesure	35
	5.1	Introd	uction	35
	5.2	La règ	les des «5M»	35
6	Esti	mation	n de l'incertitude	39
	6.1	Appro	che GUM	39
		6.1.1	Grandeurs d'entrée non corrélées	40
		6.1.2	Grandeurs d'entrée corrélées	40
		6.1.3	Evaluation des incertitudes par la méthode de type A	41
		6.1.4	Evaluation des incertitudes par la méthode de type B	41
	6.2	Appro	che NF ISO 5725	42
		6.2.1	Organisation d'un essai interlaboratoire	45
		6.2.2	Qui peut utiliser les résultats (exactitude) d'essai	46
	6.3	Expres	ssion finale du résultat de mesure	46

Première partie Généralités

Chapitre 1

Introduction

1.1 La métrologie à quoi ça sert?

La métrologie au sens étymologique du terme se traduit par Science de la mesure.

La métrologie s'intéresse traditionnellement à la détermination de caractéristiques (appelées grandeurs) qui peuvent être fondamentales comme par exemple une longueur, une masse, un temps... ou dérivées des grandeurs fondamentales comme par exemple une surface, une vitesse... Cependant, dans les domaines courants des essais, il existe de nombreuses caractéristiques n'ayant qu'une relation indirecte avec ces grandeurs. C'est le cas, par exemple, de la dureté, de la viscosité... qui peuvent poser des problèmes dans l'interprétation.

Mesurer une grandeur physique consiste à lui attribuer une valeur quantitative en prenant pour référence une grandeur de même nature appelée unité. Dans le langage courant des «métrologues», on entend souvent dire mesurer c'est comparer!

Les résultats des mesures servent à prendre des décisions :

- acceptation d'un produit (mesure de caractéristiques, de performances, conformité à une exigence),
- réglage d'un instrument de mesure, validation d'un procédé,
- réglage d'un paramètre dans le cadre d'un contrôle d'un procédé de fabrication
- validation d'une hypothèse (R&D),
- protection de l'environnement,
- définition des conditions de sécurité d'un produit ou d'un système,
- ...

L'ensemble de ces décisions concourt à la qualité des produits ou des services : on peut qualifier quantitativement la qualité d'un résultat de mesure grâce à son incertitude.

NB : Sans incertitude les résultats de mesure ne peuvent plus être comparés :

- soit entre eux (essais croisés),
- soit par rapport à des valeurs de référence spécifiés dans une norme ou une spécification (conformité d'un produit).

1.2 La mesure d'une grandeur physique

Tout d'abord définissons ce que l'on entend par grandeur physique :

on appelle grandeur physique X une propriété discernable caractérisant un objet, un système ou un état physique.

Deux grandeurs physiques sont de mêmes espèces (ou de même nature) lorsqu'on peut les comparer. Une grandeur est mesurable quand on sait définir son égalité avec une grandeur de même nature et lorsque leur somme (ou le rapport) avec une grandeur de même nature a un sens. Si une grandeur est mesurable, on peut alors affecter à cette grandeur une valeur numérique objective en comptant combien de fois une grandeur de même espèce prise comme **référence**, à laquelle on attribue conventionnellement la valeur numérique 1 et appelée **unité**, est contenue dans la grandeur considérée.

On écrira alors le résultat sous la forme :

$$X = \{X\} \cdot [X]$$

où X est le nom de la grandeur physique, [X] représente l'unité et $\{X\}$ est la valeur numérique de la grandeur exprimée dans l'unité choisie.

N.B. : Toute grandeur physique est invariante, c'est-à-dire qu'elle ne dépend pas de l'unité dans laquelle on l'exprime. Par exemple :

- longueur de la règle 30,48cm
- " 0,3048m,
- " 12pouces,
- " $1.646.10^{-4}$ millemarin.

On remarque que la valeur numérique dépend de l'unité choisie. En conséquence, celleci doit toujours être **précisées**.

1.3 Un peu de vocabulaire

Dans le vocabulaire officiel[2] de la norme française, cette opération communément appelée mesure est appelée mesurage (en anglais measurement). De même, la grandeur physique soumise à l'opération de mesurage est appellée mesurande (en anglais measurand). Attention aux faux amis, l'opération d'étalonnage (en anglais calibration) doit être distinguée de celle appelée calibrage (en anglais gauging).

NB : il ne faut pas utiliser le terme précision mais le terme **incertitude** (en anglais **uncertainty**).

Il faut bien différencier la **répétabilité** des résultats de mesurage qui est l'étroitesse de l'accord entre les résultats de mesures successifs du même mesurande effectués dans la totalité des mêmes conditions de mesure avec la **reproductibilité** où les mesurages sont effectués en faisant varier les conditions de mesure.

On rappelle les principaux paramètres assurant des conditions de mesures de répétabilité et de reproductibilité :

- répétabilité :
 - même méthode
 - même individus (échantillon)
 - même laboratoire
 - même opérateur
 - même équipement
 - même ...

De plus, les essais successifs doivent se dérouler sur une durée courte vis-à-vis de la dynamique des phénomènes physiques entrant en jeu lors d'un essai.

- reproductibilité :
 - même méthode
 - même individus
 - laboratoire différent
 - opérateur différent
 - équipement différent
 - ...

Pour plus d'information se reporter au VIM[2].

Chapitre 2

Système International d'unité (SI)

Le Système International d'Unités a pour objet une meilleure uniformité, donc une meilleure compréhension mutuelle dans l'usage général. Cependant, dans quelques domaines spécialisés, en particulier physique théorique, il peut exister des raisons **sérieuses** justifiant l'emploi d'autres systèmes ou d'autres unités. Quelles que soient ces unités, il est important de respecter les symboles et leur représentation conformes aux recommandations internationales en vigueur.

Le système SI est un système cohérent d'unités qui comporte sept unités de base. C'est le système légal d'unités en FRANCE (décret 61-501 du 3 mai 1961 modifié par le décret 82-203 du 26 février 1982 et par le décret 85-1500 du 30 décembre 1985).

2.1 Unités de bases

Au nombre de sept, elles doivent être considérées comme indépendantes au point de vue dimensionnel (TAB. 2.1).

2.1.1 Unité de longueur : le mètre (symbole : m)

Définition de la 17ème CGPM¹ (1993) - résolution 1 :

Tab. 2.1 – Unités de bases du SI

Grandeur	Nom	Symbole
Longueur	mètre	m
Masse	kilogramme	kg
Temps	seconde	\mathbf{s}
Courant électrique	ampère	A
Température thermodynamique	kelvin	K
Quantité de matière	mole	mol
Intensité lumineuse	candela	cd

¹Conférence Générale des Poids et Mesures qui a lieu tout les 4 ans composée par les représentant des états membres de la convention du mètre (voir http://www.bipm.org/)

Le mètre est la longueur du trajet par couru dans le vide par la lumière pendant une durée de $1/299792458\ de$ seconde

2.1.2 Unité de masse : le kilogramme (symbole : kg)

Définition de la 1ere CGPM (1889) et de la 3ème CGPM (1901) :

Le kilogramme est l'unité de masse. Il est égal à la masse du prototype international du kilogramme

2.1.3 Unité de temps : la seconde (symbole : s)

Définition de la 13ère CGPM (1967) - résolution 1 :

La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental du césium 133

2.1.4 Unité de courant électrique : l'ampère (symbole : A)

Définition du CIPM² (1946) - résolution 1, approuvé par la 9ème CGPM (1948) :

L'ampère est l'intensité d'un courant constant qui, maintenu dans deux circuits conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de un mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à 2.10^{-7} newton par mètre de longueur

2.1.5 Unité de température thermodynamique : le kelvin (symbole : K)

Définition de la 13ème CGPM (1967) - résolution 4 :

Le kelvin, unité de température thermodynamique, est la fraction 1/273,16 de la température thermodynamique du point triple de l'eau. La 13ème CGPM (résolution 3) décide aussi que l'unité de kelvin et son symbole K sont utilisés pour exprimer un intervalle ou une différence de température

Remarque : en dehors de la température thermodynamique (symbole : T) exprimée en kelvins, on utilise aussi la température Celsius (symbole t) définie par l'expression

$$t = T - T_0$$

où $T_0 = 273, 15K$ par définition.

²Comité International des Poids et Mesures (voir http://www.bipm.org/)

Unité SI Grandeur Nom Symbole superficie mètre carré m^2 m^3 volume mètre cube $m.s^{-1}$ vitesse mètre par seconde $m.s^{-2}$ accélération mètre par seconde carré nombre d'ondes mètre à la puissance moins un m^{-1} masse volumique kilogramme par mètre cube $kg.m^{-3}$ $m^3.kg$ volume massique mètre cube par kilogramme densité de courant ampère par mètre carré A.mA.mchamp magnétique ampère par mètre mol.mconcentration (quantité de matière) mole par mètre cube

cadela par mètre carré

cd.m

Tab. 2.2 – Exemples d'unités SI exprimées à partir d'unités de base

2.1.6 Unité de quantité de matière : la mole (symbole : mol)

Définition de la 14ème CGPM (1971) - résolution 3 :

luminance lumineuse

La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0, 012 kilogramme de carbone 12

Remarque : Lorsqu'on emploie la mole, les entités élémentaires doivent être spécifiées et peuvent être des atomes, des molécules, des ions, des électrons, d'autres particules ou des groupements spécifiés de telles particules.

2.1.7 Unité d'intensité lumineuse : la candela (symbole : cd)

Définition de la 16ème CGPM (1979) - résolution 3 :

La candela est l'intensité lumineuse, dans une direction donnée, d'une source qui émet un rayonnement monochromatique de fréquence 540.1012 hertz et dont l'intensité énergétique dans cette direction est 1/683 watt par stéradian

2.2 Unités dérivées

Elles sont formées de manière cohérente à partir des unités de base (TAB. 2.2).

Certaines unités dérivées ont reçu un nom spécial (TAB. 2.3) qui peut à son tour, être utilisé pour former d'autres noms d'unités (TAB. 2.4).

2.3 Unités supplémentaires

A côté de ces unités de base et des unités dérivées, il existe des unités supplémentaires, au nombre de deux :

Tab. 2.3 – Exemples d'unités SI exprimées à partir d'unités de base				
	Unité SI			
Grandeur	Nom	Symbole	Expression	Expression en
			en	unités SI de
			d'autres	base
			unités SI	
fréquence	hertz	Hz		s^{-1}
force	newton	N		$m.kg.s^{-2}$
pression, contrainte	pascal	Pa	$N.m^{-2}$	$m.kg.s^{-2}$ $m^{-1}.kg.s^{-2}$ $m^{2}.kg.s^{-2}$
énergie, travail, quan-	joule	J	N.m	$m^2.kg.s^{-2}$
tité de chaleur				
puissance, flux énergé-	coulomb	C		s.A
tique, quantité d'élec-				
tricité, charge élec-				
trique				
potentiel électrique,	volt	V	$W.A^{-1}$	$m^2.kg.s^{-3}.A^{-1}$
tension électrique,				
force électromotrice				
capacité électrique	farad	F	$C.V^{-1}$	$m^{-2}.kg^{-1}.s^4.A^2$
résistance électrique	ohm	$V.A^{-1}$	$m^2.kg.s^{-3}.A$	
conductance élec-	siemens	S	$A.V^{-1}$	$m^{-2}.kg^{-1}.s^3.A^2$
trique				
flux d'induction ma-	weber	Wb	V.s	$m^2.kg.s^{-2}.A^{-1}$
gnétique				
induction magnétique	tesla	T	$Wb.m^{-2}$	$kg.s^{-2}.A^{-1}$ $m^2.kg.s^{-2}.A^{-2}$
inductance	henry	H	$Wb.A^{-1}$	$m^2.kg.s^{-2}.A^{-2}$
température Celsius	degré Cel-	$^{\circ}C$		K
	sius			
flux lumineux	lumen	lm		cd.sr
éclairement lumineux	lux	lx	$lm.m^{-2}$	$m^{-2}.cd.sr$
activité (d'un radionu-	becquerel	Bq		s^{-1}
cléïde)				
dose absorbée, indice	gray	Gy	$J.kg^{-1}$	$m^2.s^{-2}$
de dose absorbée				
équivalent de dose, in-	sievert	Sv	$J.kg^{-1}$	$m^2.s^{-2}$
dice d'équivalent de				
dose				
:	:	:	:	:
·	•			•
		ĺ		

Grandeur	I TALT		•
	Nom	Symbole	Expression en unités SI de base
viscosité dynamique	pascal seconde	Pa.s	$m^{-1}.kg.s^{-1}$
moment d'une force	newton mètre	N.m	$m^2.kg.s^{-2}$ $kg.s^{-2}$
tension superficielle	newton par mètre	$N.m^{-1}$	$kg.s^{-2}$
flux thermique sur- facique, éclairement énergétique	watt par mètre carré	$W.m^{-2}$	$kg.s^{-3}$
capacité thermique, entropie	joule par kelvin	$J.K^{-1}$	$m^2.kg.s^{-2}.K^{-1}$
capacité thermique massique, entropie massique	-		$m^2.s^{-2}.K^{-1}$
énergie massique	joule par kilogramme	$J.kg^{-1}$	$m^2.s^{-2}$
conductivité ther- mique	watt par mètre kelvin	$W.m^{-1}.K^{-1}$	
énergie volumique	joule par mètre cube	$J.m^{-3}$	$m^{-1}.kg.s^{-1}$
champ électrique	volt par mètre	$V.m^{-1}$	$m^{-1}.kg.s^{-1}$ $m.kg.s^{-3}.A^{-1}$ $m^{-3}.s.A$
charge (électrique) vo- lumique	coulomb par mètre cube	$C.m^{-3}$	$m^{-3}.s.A$
déplacement élec- trique	coulomb par mètre carré	$C.m^{-2}$	$m^{-2}.s.A$
permittivité	farad par mètre	$F.m^{-1}$	$m^{-3}.kg^{-1}.s^4.A^2$
perméabilité	henry par mètre	$H.m^{-1}$	$m^{-3}.kg^{-1}.s^4.A^2$ $m.kg.s^{-2}.A^{-2}$
énergie molaire	joule par mole	$J.mol^{-1}$	$m^2.kg.s^{-2}.mol^{-1}$
entropie molaire, ca- pacité thermique	joule par mole kelvin	$J.mol^{-1}.K^-$	$\frac{1}{m}m^2.kg.s^{-2}.K^{-1}.m$
exposition (rayon X et	coulomb par kilo-	$C.kg^{-1}$	$kg^{-1}.s.A$
$\gamma)$	gramme		
débit de dose absorbée	gray par seconde	$Gy.s^{-1}$	$kg^{-1}.s.A$
:	:	:	:

Tab. 2.5 – Exemples d'unités SI dérivées exprimées en utilisant des unités suplémentaires

	Unité SI		
Grandeur	Nom	Symbole	
vitesse angulaire	radian par seconde	$rad.s^{-1}$	
accélération angulaire	radian par seconde carrée	$rad.s^{-2}$	
intensité énergétique	watt par stéradian	$W.sr^{-1}$	
luminance énergétique	watt par mètre carré stéradian	$W.m^{-2}.sr^{-1}$	

Tab. 2.6 – Préfixes SI

	Multiple	S	So	us-multip	oles
Facteur	Préfixe	Symbole	Facteur	Préfixe	Symbole
10^{24}	yotta	Y	10^{-24}	yocto	У
10^{21}	zetta	Z	10^{-21}	zepto	${f z}$
10^{18}	exa	E	10^{-18}	atto	a
10^{15}	péta	Р	10^{-15}	femto	f
10^{12}	téra	Τ	10^{-12}	pico	p
10^{9}	giga	G	10^{-9}	nano	n
10^{6}	méga	M	10^{-6}	micro	ţ
10^{3}	kilo	k	10^{-3}	milli	m
10^{2}	hecto	h	10^{-2}	centi	c
10^{1}	déca	da	10^{-1}	déci	d

- l'unité d'angle plan : le radian (symbole : rad); le radian est l'angle plan compris entre deux rayons qui, sur la circonférence d'un cercle, interceptent un arc de longueur égale à celle du rayon,
- l'unité d'angle solide : le **stéradian** (symbole : sr); le stéradian est l'angle solide qui, ayant son sommet au centre d'une sphère, découpe sur la surface de cette sphère une aire égale à celle d'un carré ayant pour côté le rayon de la sphère.

Les grandeurs nangle planz et nangle solidez doivent être considérées comme des unités dérivées sans dimension qui peuvent être utilisées ou non dans les expressions des unités dérivées (TAB. 2.5).

2.4 Multiples et sous-multiples

Lorsqu'une unité s'avère trop grande ou trop petite, pour l'emploi envisagé, on utilise des multiples ou des sous-multiples exclusivement décimaux. Ils sont obtenus en joignant un préfixe, choisi (TAB. 2.6), au nom de l'unité.

2.5 Traçabilité

La traçabilité est la propriété du résultat d'un mesurage ou d'un étalon tel qu'il puisse être relié à des références déterminées, généralement des étalons nationaux ou internationaux, par l'intermédiaire d'une chaîne ininterrompue de comparaisons ayant toutes des incertitudes déterminées[2].

Fig. 2.1 – Organisation de la traçabilité.

Son organisation est pyramidale (Fig. 2.1), c'est-à-dire de la référence nationale (et donc internationale) vers l'utilisateur.

 ${\rm LNM}$: Laboratoire National de Métrologie détient les références nationales et les diffuse vers l'utilisateur. En France, c'est le Laboratoire National de métrologie et d'Essai $({\rm LNE^3})$.

En France, l'accréditation est à la charge essentiellement du ${\rm COFRAC^4}$ (section laboratoire qui regroupe étalonnage et essais).

 $^{^3}$ voir http://www.lne.fr/

 $^{^4}$ voir http://www.cofrac.fr/

Chapitre 3

Mesures - Erreurs de mesures - Corrections

3.1 Mesures

La mesure est l'ensemble des opérations ayant pour objet de déterminer la valeur $\{X\}$ dans des conditions expérimentales spécifiées (appelée aussi mesurande), en la comparant directement ou indirectement à un étalon qui est la représentation matérielle de l'unité [X] dans laquelle sera exprimée la valeur de X.

Le procédé de mesure est direct lorsque le résultat de la mesure est obtenu par comparaison à un étalon de même nature que la grandeur mesurée (Fig. 3.1).

Le procédé de mesure est indirect quand une grandeur Y est liée à des grandeurs $X_1, X_2, ..., X_k$ par une relation du type :

$$Y = f(X_1, X_2, ..., X_k)$$

Par exemple, la valeur de l'aire S d'une surface rectangulaire se calcule à partir de la mesure de la longueur L et de la largeur l et en appliquant la relation S = Ll.

Par conséquent, la valeur $\{Y\}$ de Y est obtenue, à partir des valeurs de $\{X_1\}$, $\{X_2\}$, ..., $\{X_k\}$ de $X_1, X_2, ..., X_k$ selon le procédé de mesure (Fig. 3.2).

3.2 Concepts d'erreurs et d'incertitudes

Auparavant, on désignait l'incertitude du mesurage sous le nom d'erreur de mesure. Il convient aujourd'hui d'éviter cette ancienne expression. En effet, l'erreur de mesure est maintenant définie comme la différence entre la valeur annoncée et la valeur vraie qui

Fig. 3.1 – Procédé de mesure.

Fig. 3.2 – Procédé de mesure directe.

reste inconnue. L'incertitude de mesure caractérise la dispersion des mesurages autour de la valeur moyenne de ces mesurages; voir (Fig. 3.3).

Remarque: l'incertitude comprend, en général, plusieurs composantes. Certaines peuvent être de type aléatoire et évaluées à partir de la distribution statistique des résultats de séries de mesurages et peuvent être caractérisées par des écart-types expérimentaux. Les autres composantes, qui peuvent aussi être caractérisées par des écart-types, sont évaluées en admettant des distributions de probabilité, d'après l'expérience acquise ou d'après d'autres informations.

3.3 Causes d'erreurs

Tout système de mesure est inéluctablement attaché d'erreurs :

- le système de mesure n'est jamais parfait puisqu'il est en général plus ou moins sensible à l'environnement (température, pression, humidité...), il n'est pas fidèle¹ et même les étalons servant à l'étalonnage de l'instrumentation ne sont qu'une matérialisation imparfaite de la définition de l'unité qu'ils sont chargés représenter,
- la mauvaise définition de la grandeur est elle-même une source d'erreur.

Le résultat de mesure s'écrit par conséquent

Resultat de mesure = Valeur vraie + erreurs

¹Définition du VIM : aptitude d'un instrument de mesure à donner des indications très voisines lors de l'application répétée du mesurande dans les mêmes conditions de mesure ; l'indication n'est pas forcément celle qui se rapproche de la valeur vraie

Fig. 3.3 – Illustration du concept d'erreur et d'incertitude.

Il est toujours possible de décomposer le terme erreurs en une erreur systématique et une erreur aléatoire (Fig. 3.4).

L'erreur aléatoire (notée e_a) est le résultat d'un mesurage moins la moyenne d'un nombre infini de mesurages du même mesurande (grandeur physique) effectués dans des conditions de répétabilités [2] (tout reste identique).

NB: Comme on ne peut faire qu'un nombre limité (fini) de mesurages, il est seulement possible de déterminer une **estimation** de l'erreur aléatoire. Cela veut dire que l'erreur aléatoire a elle-même une incertitude associée.

L'erreur systématique (notée e_s) est la moyenne qui résulterait d'un nombre infini de mesurages du même mesurande, effectués dans des conditions de répétabilité, moins une valeur vraie du mesurande.

NB : comme la valeur vraie, l'erreur systématique et ses causes ne peuvent être connues complètement.

3.4 Réduction - Correction des erreurs

L'objectif du métrologue est de fournir un résultat proche de la valeur vraie :

- en diminuant les erreurs aléatoires en répétant les mesures et en calculant la moyenne arithmétique des observations (mesures individuelles),
- en diminuant les erreurs systématiques en appliquant des corrections.

La diminution des erreurs est certainement la tâche la plus délicate pour toute personne réalisant des mesures ou des essais. Elle demande une étude approfondie de l'ensemble de la chaîne d'instrumentation et des phénomènes physiques directs ou indirects dont dépend le résultat de la mesure ou de l'essai. Cette étude permet à la fois d'identifier les

Fig. 3.4 – Décomposition de l'erreur.

Fig. 3.5 – Correction de l'erreur.

causes d'erreurs puis de proposer des corrections qui permettront de compenser les erreurs présumées. Le tableau (TAB. 3.1) dresse une liste (non exhaustive) des causes possibles d'erreur.

3.4.1 Correction de l'erreur systématique

Pour chaque composante de l'erreur identifiée, on connaît une estimation \hat{e}_{s_j} . On appelle corrections, cette estimation changée de signe :

$$C_j = -\hat{e}_{s_j}$$

La correction totale est la somme algébrique de ces composantes :

$$C = \sum_{j} C_{j}$$

Cette loi est connue sous le nom de loi de composition des corrections.

On obtient le résultat corrigé de la mesure en ajoutant algébriquement la correction C au résultat brut x (Fig. 3.5) :

$$x_C = x + C$$

NB: en principe, le résultat corrigé est plus proche de la valeur vraie que ne l'était x.

Tab. 3.1 – Liste (incomplète) des causes possibles d'erreur				
Causes	Exemple			
Grandeur mesurée				
Variation temporelle et spatiale	La grandeur que l'on mesure est supposée stable; si elle varie au cours du temps, on doit impérativement s'intéresser alors à un autre facteur décrivant ce comportement			
Représentativité du prélèvement ou de l'échantillon	L'échantillon mesuré peut ne pas représenter le mesurande défini comme par exemple la pollution de l'air en ville			
Instrument	de mesure			
Etalonnage	On utilise des certificats d'étalonnage périmés			
Linéarité				
Temps de réponse	On utilise mal l'option filtrage d'un volt- mètre			
Résolution	On utilise un double décimètre pour des mesures dimensionnelles de pièces mécaniques de précision			
Méthode	de mesure			
Biais dû la méthode				
Erreur de modélisation				
Constantes utilisées				
Grandeurs	d'influence			
Stabilité de l'étalonnage	Cela fait appel à des notions de dérive dans le temps des appareils et des étalons			
Pression atmosphérique, Température, Humidité, Taux CO2	Par exemple, lors de la comparaison des masses tenir compte de ces grandeurs pour compenser l'effet de la poussée d'Archimède			
Tension d'alimentation				
	culs			
Relation mathématique	On utilise une ancienne relation (faisant appel, plus ou moins, à des approximations) alors qu'il en existe une plus récente et peut être plus exacte			
Constantes physiques (voir CODATA (http://www.codata.org/)				
Arondissage des valeurs				

FIG. 3.6 – Nombre optimum de répétition pour la réduction de la part de l'erreur aléatoire compte tenu de la part de l'erreur systématique.

3.4.2 Réduction de l'erreur aléatoire

Pour réduire les erreurs aléatoires (on ne parle pas vraiment de corrections mais plutôt de réduction ou de minimisation), on répéte les mesures de x. En effet, si on recommence n fois la mesure dans des conditions de répétabilités, on obtient n valeurs brutes : x_1 , x_2 , ..., x_n .

- on calcule la moyenne arithmétique des valeurs brutes :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- on détermine la correction totale C que l'on applique à la moyenne \bar{x} :

$$\bar{x}_C = \bar{x} + C$$

Le problème qui se pose alors est de connaître quel est le nombre de répétition des mesurages optimum. Il est souvent possible d'exprimer l'incertitude sur \bar{x}_C par une expression de la forme :

$$u_{\bar{x}_C} = \sqrt{\frac{u_{\bar{x}}^2}{n} + u_C^2}$$

avec $u_{\bar{x}}$ l'incertitude de répétabilité caractérisant l'erreur aléatoire, u_C l'incertitude caractérisant l'erreur systématique et n le nombre de répétition.

Comme le montre la figure (Fig. 3.6), il existe un nombre de répétition de mesure optimum qui correspond à l'égalité entre l'incertitude sur la valeur de la moyenne \bar{x}_C et l'incertitude liée à l'erreur systématique.

3.5 Jugement d'une mesure - Tolérance

Les résultats de mesures sont utilisés pour déclarer la conformité à des spécifications. Tout résultat de mesure étant attaché d'un doute ou d'une incertitude, les décisions prises ne sont pas certaines : il subsiste un risque. Cette situation est inéluctable, il existe un

U : incertitude de mesure (élargie) LSL : limite de spécification inférieure USL : limite de spécification supérieure

Fig. 3.7 – Principe de déclaration de conformité.

risque de déclarer conforme un produit qui ne le serait pas et réciproquement (risque fournisseur) et d'accepter un produit qui ne serait pas conforme aux spécifications (risque client).

La figure (Fig. 3.7) récapitule les situations possibles :

- 1. zone de conformité,
- 2. zone de non-conformité,
- 3. zone de doute, la décision est prise avec un risque.

Pour plus d'informations, consulter les références [5] et [6].

Chapitre 4

Notions de Moindres carrés

4.1 Introduction

Il arrive très souvent, lors d'une comparaison (mesure), que nous cherchions à modéliser la réponse de la grandeur de sortie Y, d'un instrument par exemple, par rapport à une ou plusieurs grandeurs d'entrées X_1, X_2, \dots, X_k dont elle dépend. Ce modèle n'est autre que *l'équation d'exploitation* qui permet l'interpolation entre deux points de mesure.

Pour simplifier le raisonnement, prenons le cas particulier, que l'on rencontre très souvent, où la grandeur de sortie dépend d'une seule grandeur d'entrée. Par ailleurs, on sait ou *l'on postule* que le modèle reliant la grandeur de sortie à la grandeur d'entrée est une relation du type :

$$y = f(x; \theta_0, \theta_0, \theta_1, \theta_2, \cdots, \theta_h)$$

où $\theta_0, \theta_1, \theta_2, \cdots, \theta_h$ sont les h+1 paramètres que l'on souhaite estimer.

En théorie, la forme de la fonction f peut être quelconque. Elle peut prendre les formes suivantes :

- forme polynomiale : $y = \theta_0 + \theta_1 x + \theta_2 x^2 + \cdots$
- forme exponentielle : $y = \theta_0 \exp(\theta_1 x)$ qui peut se linéariser en prenant le logarithme Népérien : $a = B + \theta_1 x$ avec $a = \ln(y)$ et $B = \ln(\theta_0)$.

Pour estimer ces coefficients θ_i , on mesure les grandeurs physiques Y et X simultanément de telle sorte que le $i^{\grave{e}me}$ résultat soit : y_i , x_i . Ces mesures sont répétées N fois pour différentes valeurs de X afin d'obtenir l'ensemble de valeurs E :

$$E = \begin{vmatrix} y_1, & x_1 \\ y_2, & x_2 \\ \vdots & \vdots \\ y_N, & x_N \end{vmatrix}$$

Graphiquement, cela donne la figure (Fig. 4.1).

Fig. 4.1 – Représentation graphique d'une série de mesure y = f(x).

4.2 Principe des Moindres Carrés

Mathématiquement, la recherche des valeurs des paramètres θ_i consiste à résoudre le système d'équations suivant :

$$S = \begin{cases} f(x_1; \theta_0, \theta_1, \theta_2, \dots, \theta_h) &= y_1 \\ f(x_2; \theta_0, \theta_1, \theta_2, \dots, \theta_h) &= y_2 \\ \vdots & & \vdots \\ f(x_N; \theta_0, \theta_1, \theta_2, \dots, \theta_h) &= y_N \end{cases}$$

Si le nombre N de valeurs mesurées est **inférieur ou égal** au nombre h+1 de paramètres à déterminer, on pourra toujours obtenir des valeurs de $\theta_0, \theta_1, \theta_2, \dots, \theta_h$ telle que la fonction f satisfasse rigoureusement au système d'équation S:

- $-\sin N < h+1$, certains paramètres pourront être choisis arbitrairement,
- si N=h+1, les valeurs des paramètres θ_i seront **toutes fixées** par le système S, c'est-à-dire que la fonction f passera rigoureusement par tous les points de mesures. Par contre, si N>h+1, il n'est plus possible de satisfaire simultanément aux N équations du système S. Physiquement ce point n'est pas grave, puisque toute mesure est entachée d'incertitude, il n'est pas nécessaire que la fonction f passe par les points expérimentaux, il suffit que la fonction f passe à **l'intérieur du domaine d'incertitude** de ces points.

Pour simplifier, on suppose que seules les mesures de Y sont entachées d'incertitude. Le système S s'écrit donc :

$$S' = \begin{cases} f(x_1; \theta_0, \theta_1, \theta_2, \dots, \theta_h) + e_1 &= y_1 \\ f(x_2; \theta_0, \theta_1, \theta_2, \dots, \theta_h) + e_2 &= y_2 \\ \vdots & \vdots & \vdots \\ f(x_N; \theta_0, \theta_1, \theta_2, \dots, \theta_h) + e_N &= y_N \end{cases}$$

où e_i représente l'écart entre la valeur expérimentale mesurée y_i et la valeur calculée au point x_i en utilisant la fonction f.

A cause de la présence de ces écarts, on ne pourra pas trouver la valeur vraie des paramètres θ_i mais seulement **une estimation** de ces paramètres à la condition que

$$|e_i|$$
 petit quel que soit i

soit satisfaite.

Pour remplir cette condition, la solution adoptée dans les moindres carrés est que

$$\sum_{i=1}^{N} e_i^2 \quad soit \ minimum$$

La somme à rendre minimum s'écrit donc :

$$Q = \sum_{i=1}^{N} [y_i - f(x_i; \theta_0, \theta_1, \theta_2, \dots, \theta_h)]^2$$

Le minimum de cette fonction est atteint lorsque :

$$dQ = \frac{\partial Q}{\partial \theta_0} d\theta_0 + \frac{\partial Q}{\partial \theta_1} d\theta_1 + \dots + \frac{\partial Q}{\partial \theta_h} d\theta_h = 0$$

En supposant que les valeurs de θ_i sont indépendantes, il suffira d'écrire que :

$$S'' = \begin{cases} \frac{\partial Q}{\partial \theta_0} = 0 \\ \frac{\partial Q}{\partial \theta_1} = 0 \\ \vdots & \vdots \\ \frac{\partial Q}{\partial \theta_h} = 0 \end{cases}$$

Les estimateurs $\hat{\theta}_i$ cherchés sont solutions du système S'' de h+1 équations à h+1 inconnues en écrivant :

$$\sum_{i=1}^{N} \frac{\partial}{\partial \theta_0} \left[y_i - f(x_i; \theta_0, \theta_1, \theta_2, \dots, \theta_h) \right]^2 = 0$$

$$\sum_{i=1}^{N} \frac{\partial}{\partial \theta_1} \left[y_i - f(x_i; \theta_0, \theta_1, \theta_2, \dots, \theta_h) \right]^2 = 0$$

$$\vdots$$

$$\sum_{i=1}^{N} \frac{\partial}{\partial \theta_h} \left[y_i - f(x_i; \theta_0, \theta_1, \theta_2, \dots, \theta_h) \right]^2 = 0$$

4.3 Application des Moindres Carrés

4.3.1 Relation proportionnelle

Soit X et Y deux grandeurs physiques reliées par une relation de la forme :

$$Y = \theta X$$

On mesure N couples de valeurs $(x_1, y_1), (x_2, y_2), \cdots (x_N, y_N)$, qui dans un système d'axes (x, y), sont les coordonnées des N points P_1, P_2, \cdots, P_N (Fig. 4.2).

On cherche à ajuster la droite passant obligatoirement par l'origine et au mieux par le nuage de points P_1, P_2, \dots, P_N .

Fig. 4.2 - y = f(x).

Hypothèses

 $\mathbf{H1}$: il n'y a pas d'incertitudes sur la mesure de X. Il en résulte qu'il existe un écart entre la valeur mesurée y_i et l'ordonnée de θx_i du point de même abscisse appartenant à la droite théorique : $y_i = \theta x_i + e_i$

 $\mathbf{H2}$: il n'existe pas de biais sur la mesure de Y, c'est-à-dire que la moyenne des e_i est nulle.

H3: toutes les mesures sont faites avec la même incertitude, $u(y) = \sigma$.

 ${f H4}$: les mesures de Y ne sont pas corrélées.

Calcul de l'estimateur

En appliquant ce qui a été vue dans le principe des Moindres Carrés, on écrit :

$$Q = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - \theta x_i)^2$$

qui est une fonction du second degré de θ . Cette fonction présente un minimum (Fig. 4.3) quand :

$$\partial Q/\partial \theta = 0$$

$$\partial Q/\partial \theta = -2\sum_{i=1}^{N} x_i \cdot (y_i - \theta x_i)$$

$$= -2\sum_{i=1}^{N} x_i \cdot y_i + 2\theta \sum_{i=1}^{N} x_i^2$$

 $\hat{\theta}$ est solution de l'équation normale $\partial Q/\partial \theta = 0$:

$$\begin{array}{rcl}
0 & = & -2\sum_{i=1}^{N} x_i \cdot y_i + 2\hat{\theta} \sum_{i=1}^{N} x_i^2 \\
\sum_{i=1}^{N} x_i \cdot y_i & = & \hat{\theta} \sum_{i=1}^{N} x_i^2
\end{array}$$

Fig. $4.3 - Q = f(\theta)$.

Soit

$$\hat{\theta} = \frac{\sum_{i=1}^{N} x_i \cdot y_i}{\sum_{i=1}^{N} x_i^2}$$

Propriétés

En tenant compte des hypothèses **H1** et **H4**, on trouve la variance de $\hat{\theta}$:

$$V\left[\hat{\theta}\right] = \frac{V\left[\sum_{i=1}^{N} x_i \cdot y_i\right]}{\left[\sum_{i=1}^{N} x_i^2\right]^2} = \frac{\sum_{i=1}^{N} V\left[x_i \cdot y_i\right]}{\left[\sum_{i=1}^{N} x_i^2\right]^2} = \frac{\sum_{i=1}^{N} x_i^2 \cdot V\left[y_i\right]}{\left[\sum_{i=1}^{N} x_i^2\right]^2}$$

Remplaçons $V[y_i]$ par sa valeur σ^2 résultant de l'hypothèse **H3**:

$$V\left[\hat{\theta}\right] = \sigma^2 \frac{\sum_{i=1}^{N} x_i^2}{\left[\sum_{i=1}^{N} x_i^2\right]^2} = \frac{\sigma^2}{\sum_{i=1}^{N} x_i^2}$$

Si la variance σ^2 n'est pas connue, elle peut être estimée à partir de la somme des carrés des résidus $(r_i = y_i - \hat{y}_i = y_i - \hat{\theta} \cdot x_i)$:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} r_i^2$$

N.B.: Au dénominateur de σ^2 , on remarque le terme N-1, où N est le nombre de points de mesure et 1 le nombre de paramètre estimé $(\hat{\theta})$.

 σ^2 s'appelle aussi la résiduelle de justesse, c'est l'incertitude liée au fait que l'on utilise l'équation d'exploitation (le modèle) pour calculer un point particulier. Cette incertitude sert dans les bilans d'incertitudes afin d'exprimer l'incertitude composée.

FIG. 4.4 - y = f(x).

4.3.2 Relation affine

Soit X et Y deux grandeurs physiques reliées par une relation de la forme :

$$Y = \theta_0 + \theta_1 X$$

On mesure N couples de valeurs $(x_1, y_1), (x_2, y_2), \cdots (x_N, y_N)$, qui dans un système d'axes (x, y), sont les coordonnées des N points P_1, P_2, \cdots, P_N (Fig. 4.4).

On cherche à ajuster la droite passant obligatoirement par l'origine et au mieux par le nuage de points P_1, P_2, \dots, P_N .

Hypothèses

 $\mathbf{H1}$: il n'y a pas d'incertitudes sur la mesure de X. Il en résulte qu'il existe un écart entre la valeur mesurée y_i et l'ordonnée de θx_i du point de même abscisse appartenant à la droite théorique : $y_i = \theta_0 \theta_1 x_i + e_i$

 $\mathbf{H2}$: il n'existe pas de biais sur la mesure de Y, c'est-à-dire que la moyenne des e_i est nulle.

H3: toutes les mesures sont faites avec la même incertitude, $u(y) = \sigma$.

 $\mathbf{H4}$: les mesures de Y ne sont pas corrélées.

Calcul des estimateurs

De la même manière que précédemment, en appliquant se qui a été vue dans le principe des Moindres Carrés, on écrit :

$$Q = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - \theta_0 - \theta_1 x_i)^2$$

Fig. $4.5 - Q = f(\theta_0, \theta_1)$.

La fonction $Q = f(\theta_0, \theta_1)$ est l'équation d'une surface appelée paraboloïde elliptique (Fig. 4.5).

Le minimum est atteint lorsque

$$\partial Q/\partial \theta_0 = 0$$

et

$$\partial Q/\partial \theta_1 = 0$$

simultanément.

On trouve les estimateurs $\hat{\theta_0}$ et $\hat{\theta_0}$:

$$\hat{\theta_0} = \frac{\sum_{i=1}^{N} x_i^2 \cdot \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \cdot \sum_{i=1}^{N} x_i \cdot y_i}{N \cdot \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2}$$

$$\hat{\theta_1} = \frac{N \cdot \sum_{i=1}^{N} x_i \cdot y_i - \sum_{i=1}^{N} x_i \cdot \sum_{i=1}^{N} y_i}{N \cdot \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2}$$

Propriétés

$$V\left[\hat{\theta}_{0}\right] = \sigma^{2} \left(\frac{1}{N} + \frac{\bar{x}^{2}}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}\right)$$

$$V\left[\hat{\theta}_{1}\right] = \frac{\sigma^{2}}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$

$$Cov\left[\hat{\theta}_{0}, \hat{\theta}_{1}\right] = \frac{\sigma^{2} \cdot \bar{x}}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$

avec

$$\sigma^2 = \frac{1}{N-2} \sum_{i=1}^{N} r_i^2$$

N.B.: Au dénominateur de σ^2 , on remarque le terme N-2, où N est le nombre de points de mesure et 2 le nombre de paramètres estimés $(\hat{\theta_0} \text{ et } \hat{\theta_1})$.

Exemple d'application

L'ordonnée d'un point situé sur la droite des moindres carrés à l'abscisse x, vaut

$$\hat{y} = \hat{\theta_0} + \hat{\theta_1} \cdot x$$

La variance de \hat{y} est obtenue en appliquant la loi de composition des variances :

$$V\left[\hat{y}\right] = V\left[\hat{\theta}_{0}\right] + x^{2}V\left[\hat{\theta}_{1}\right] + 2xCov\left[\hat{\theta}_{0}, \hat{\theta}_{1}\right]$$

En remplaçant $V\left[\hat{\theta_0}\right], V\left[\hat{\theta_1}\right]$ et $Cov\left[\hat{\theta_0}, \hat{\theta_1}\right]$ par leur expression, on trouve :

$$V[\hat{y}] = \sigma^2 \left(\frac{1}{N} + \frac{N(x - \bar{x})^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right)$$

Cette variance est une fonction parabolique de x (Fig. 4.6). Elle est minimum lorsque $x = \bar{x}$ et $V[\hat{y}] = V[\hat{\theta}_0]$ lorsque x = 0 ou $x = 2\bar{x}$.

Fig.
$$4.6 - \hat{y} = f(x)$$
.

Réciproquement, pour y donné, on estime :

$$\hat{x} = \frac{\hat{y} - \hat{\theta_0}}{\hat{\theta_1}}$$

L'application de la loi de composition des variances donne :

$$V\left[\hat{x}\right] = \frac{V\left[\hat{y}\right]}{\hat{\theta_1}^2}$$

4.4 Remarques

Le critères des moindres carrés ne permet pas à lui seul de tester la validité du modèle choisi pour expliquer les variations de Y en fonction de X. Un examen graphique des résultats (Fig. 4.7) peut servir à vérifier que le modèle est pertinent soit directement sur la fonction de Y = f(X) soit sur les résidus portés en fonction de X:

- a) : la répartition des points est satisfaisante et le modèle choisi est plausible,
- **b)** : la répartition des points est mauvaise : il y a une courbure du fait que le modèle n'est pas adapté,
- c) : La répartition des points semble satisfaisante, sauf pour un point dont la présence modifie la pente de la droite ; il faut s'assurer de la véracité de ce point avant de conclure de manière formelle (attention on entend trop souvent parler de points aberrants que l'on supprime trop rapidement).

Deuxième partie Bilan d'incertitude

Chapitre 5

Analyse du processus de mesure

5.1 Introduction

Le bilan d'incertitude est le processus conduisant à estimer l'incertitude de mesure. Ce processus tient compte de l'analyse complète du processus de mesure : évidemment des grandeurs mesurées, de la prise en compte des facteurs d'influence et des corrections apportées au résultat annoncé.

Pour analyser le processus de mesure, il existe deux méthodes principales. Les questions qui permettent de choisir entre ces deux voies sont les suivantes :

- le processus est-il modélisable au sens du GUM [1]?
- souhaite-t-on utiliser le modèle du GUM?

La modélisation du processus de mesure au sens du GUM, consiste à écrire sous forme mathématique la façon dont sont utilisées toutes les informations qui sont à la disposition de l'expérimentateur pour calculer le résultat annoncé de mesure ou d'essai.

La pratique des mesures et des essais conduisent parfois à des situations où l'établissement du modèle mathématique est trop complexe, voire quasi impossible dans l'état actuel des connaissances. Pour la mesure des grandeurs physiques, il est en général possible d'établir un modèle décrivant le processus de mesure. Pour les essais, cette modélisation est souvent très difficile.

5.2 La règles des $\ll 5M$ »

Afin d'analyser le processus de mesure, il faut identifier toutes les causes possibles d'incertitude.

- 1. on explicite successivement, la contribution des Moyens, de la Méthode de mesure, l'impact du Milieu environnant et de la Main d'oeuvre (l'expérimentateur) sans oublier l'objet mesuré lui-même le Mesurande (TAB. 5.1),
- 2. on décrit le mode opératoire retenu en fonction des ressources choisies,
- 3. on établie un modèle de la mesure,
- 4. on identifie les causes d'erreurs et on calcule la valeur de chacune des composantes,

Tab. 5.1 – Grille pour la caractérisation du processus de mesure

	Grandeurs à mesurer	Les «5M»			
1	Objet	Mesurande			
2	Outils	Moyens de mesure			
3	Environnement	Milieu			
4	Méthode	Méthode			
5	Compétences	Main d'oeuvre			
	Schéma de principe du montage				

5. décider de l'application ou non de la correction.

L'analyse du processus se présente également très souvent sous la forme d'une figure (Fig. 5.1). A titre d'exemple, on donne l'analyse du processus d'étalonnage d'un pied à coulisse.

Fig. 5.1 – Analyse du processus d'étalonnage d'un pied à coulisse [3].

Chapitre 6

Estimation de l'incertitude

La question que tout le monde se pose face à un résultat de mesure ou d'essai est la suivante : quelle confiance puis-je avoir dans ce résultat?

L'incertitude a donc pour but de «chiffrer cette confiance»; elle traduit la dispersion des valeurs associées au mesurande. Elle doit être établie de manière raisonnable et s'exprime sous forme d'un écart-type. Le but ultime de cette incertitude est de fixer un intervalle que l'on aimerait le plus étroit possible et dont on espère que la valeur vraie du mesurande y soit incluse.

6.1 Approche GUM

Cette approche est fondé sur le fait qu'il existe explicitement un modèle du processus de mesure. On rappelle que ce modèle est équivalent à une expression mathématique décrivant la façon dont sont utilisées toutes les informations dont disposent l'expérimentateur (série de lectures de l'instrument, valeur d'une correction lue dans un certificat d'étalonnage, la mesure de l'estimation des effets d'une grandeur d'influence...).

Prenons le cas général en considérant la grandeur de sortie Y (le mesurande) qui dépend de plusieurs grandeurs d'entrées X_i par une fonction f soit :

$$Y = f(X_1, X_2, X_3, ..., X_k)$$

où f exprime la loi physique liant les grandeurs d'entrées à la grandeur de sortie, le mode opératoire, le processus de mesure, la méthode d'exploitation...

En appliquant la loi de propagation de l'incertitude (cf. 5.2.2 dans [1]) et connaissant les incertitude-type des X_i , on calcule l'incertitude-type composée sur le mesurande Y:

$$u_c^2(y) = \sum_{i=1}^k \left(\frac{\partial f}{\partial x_i}\right)_{\underline{E}[\underline{X_i}]}^2 u^2(x_i) + 2\sum_{i=1}^{k-1} \sum_{j=i+1}^k \left(\frac{\partial f}{\partial x_i}\right) \left(\frac{\partial f}{\partial x_j}\right)_{\underline{E}[\underline{X_i}]} u(x_i, x_j)$$

où $u^2(x_i)$ et $u(x_i, x_j)$ représentent respectivement les variances¹ sur chaque grandeurs X_i et les covariances entre les grandeurs X_i et X_j , $\partial f/\partial x_i$ la sensibilité de la grandeur de sortie Y par rapport aux grandeurs d'entrées X_i évaluées pour les espérances mathématiques $\underline{E} \left[\underline{X_i} \right]$ des grandeurs d'entrées X_i .

¹Variance : carré de l'incertitude

6.1.1 Grandeurs d'entrée non corrélées

La variance de Y s'exprime alors par :

$$u_c^2(y) = \sum_{i=1}^k \left(\frac{\partial f}{\partial x_i}\right)_{\underline{E}[\underline{X_i}]}^2 u^2(x_i)$$

Exemple 1

$$Y = X_1 + X_2 + X_3$$

$$u_c^2(y) = u^2(x_1) + u^2(x_2) + u^2(x_3)$$

Exemple 2

$$Y = X_1 X_2 X_3$$

$$\frac{\partial f}{\partial x_1} = x_2 x_3; \frac{\partial f}{\partial x_2} = x_1 x_3; \frac{\partial f}{\partial x_3} = x_1 x_2$$

$$u_c^2(y) = (x_2 x_3)^2 u^2(x_1) + (x_1 x_3)^2 u^2(x_2) + (x_1 x_2)^2 u^2(x_3)$$

$$\frac{u_c^2(y)}{y^2} = \frac{u^2(x_1)}{x_1^2} + \frac{u^2(x_2)}{x_2^2} + \frac{u^2(x_3)}{x_3^2}$$

 NB : on remarque que l'incertitude-type composée sur Y est la somme des carrés des contributions des incertitudes de chaque grandeurs d'entrées.

6.1.2 Grandeurs d'entrée corrélées

Soit on estime les termes de covariances $u(x_i, x_j)$ par les expressions ci-après, soit on se sert du coefficient de corrélation $r(x_i, x_j)$:

$$r(x_i, x_j) = \frac{u(x_i, x_j)}{u(x_i)u(x_j)}$$

avec $-1 \le r \le +1$.

NB: Bien souvent, on exprime $u(x_i, x_j)$ à partir de $u(x_i)$ et $u(x_j)$ et on calcule $u_c^2(y)$ en appliquant successivement r = 0, r = -1 et r = +1; on prend alors la valeur de $u_c^2(y)$ la plus petite et la plus grande afin d'encadrer l'incertitude composée sur Y.

La question qui vient alors immédiatement après est de savoir comment estimer les incertitudes sur les grandeurs d'entrées? Pour évaluer la valeur numérique (écart-type ou variance) de chacune des composantes, deux méthodes peuvent être employées : méthode de type A et méthode de type B. On peut considérer que si l'on avait suffisamment de ressources (en temps et budgétaire), toutes les composantes pourraient être évaluées avec des méthodes de type A. En revanche, la méthode de type B demande de l'expérience et des compétences techniques.

6.1.3 Evaluation des incertitudes par la méthode de type A

La méthode de type A se fonde sur l'application de méthodes statistiques à une série de détermination répétées. Elle est classiquement utilisée pour quantifier les incertitudes de répétabilité des processus de mesure. Avec n valeurs indépendantes x_i , on détermine :

 l'estimation de l'espérance mathématique (la moyenne arithmétique) de X est donnée par :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- l'estimation de la variance de X est donnée par :

$$s^{2}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Dans le cas de petite série de mesure $n \leq 10$, l'estimateur de la variance peut être remplacé par l'expression ci-dessous :

$$s^2 = \sqrt{\frac{w}{dn}}$$

avec w la différence maximum observée sur la série de mesure et dn un coefficient dépendant du nombre de mesure dans la série :

n	2	3	4	5	6	7	8	9	10
dn	1,13	1,69	2,06	2,33	2,53	2,70	2,85	2,97	3,08

– l'estimation de la covariance entre X_p et X_q est donnée soit par le calcul des termes de covariance :

$$s(x_p, x_q) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{p_i} - \bar{x}_p)(x_{q_i} - \bar{x}_q)$$

soit par l'examen des termes communs à deux grandeurs d'entrées :

$$X_p = F(Q_1, Q_2, ..., Q_L) \text{ et } X_q = G(Q_1, Q_2, ..., Q_L)$$

$$u(x_p, x_q) = \sum_{k=1}^{L} \sum_{h=1}^{L} \left(\frac{\partial F}{\partial q_k} \right) \left(\frac{\partial G}{\partial q_h} \right) u(q_k, q_h)$$

s(x) représente l'écart-type de l'échantillon ; l'incertitude sur la moyenne x est donnée par :

$$u(x) = \frac{s(x)}{\sqrt{n}}$$

6.1.4 Evaluation des incertitudes par la méthode de type B

La méthode de type B est utilisée pour quantifier les incertitudes des différentes composantes intervenant dans le modèle du processus de mesure : incertitudes sur les corrections d'environnement, d'étalonnages, etc. Cette méthode est employée lorsqu'on ne peut ou ne veut pas utiliser la mé-thode statistique.

Cette méthode se fonde sur l'expérience des opérateurs, sur des essais précédents, sur la connaissance des phénomènes physiques... Pour chacun des Xi intervenant dans le modèle décrivant le processus de mesure, on napprécieraz les incertitudes-types correspondantes, en utilisant toutes les informations techniques disponibles : étendue de mesure des valeurs possibles et la distribution $a\ priori$...

Exemple : On doit appliquer une correction dans un processus de mesure, mais cette correction n'est pas très bien connue, on sait seulement qu'elle est comprise entre 2 valeurs extrêmes a_{inf} et a_{sup} :

- la valeur de la correction sera estimé par :

$$C = \frac{(a_{inf} + a_{sup})}{2}$$

- l'estimation de la variance correspondante sera :

$$s_C^2 = \frac{1}{12}(a_{inf} - a_{sup})^2$$

Le tableau (TAB. 6.1) donne des exemples d'application des principales lois de distribution utilisées pour l'estimation des incertitudes par la méthode type B. Le tableau (TAB. 6.2) donne quant à lui les caractéristiques des principales lois utilisées dans l'application de la méthode de type B.

6.2 Approche NF ISO 5725

Cette méthode repose sur l'idée que l'on peut extraire de l'information des résultats d'essais interlaboratoires pour estimer l'incertitude. Dans de nombreuses situations où la méthode d'obtention du résultat est suffisamment complexe on ne peut ou veut pas modéliser le processus de mesure. Afin d'assurer une reproductibilité des résultats les conditions de mise en oeuvre de la méthodes d'essais doivent être parfaitement maîtrisées.

La qualité d'une méthode d'essais s'apprécie au moyen de son exactitude [2][4] : justesse et fidélité :

- justesse : écart entre la moyenne d'un ensemble de résultat et la valeur de référence,

 fidélité : aptitude d'une méthode à fournir des résultats très voisins les uns des autres.

TAB. 6.1 – Application des principales lois de distribution utilisées pour l'estimation des

incertitudes par la méthode de type B

incertitudes par la méthode de type	$oxed{ ext{Distribution } a }$	Méthode de calcul
Composantes	priori	Methode de calcul
Résolution d'un indicateur numé-	*	Si la résolution est b alors $u =$
	Rectangle	$b/\sqrt{12}$
rique	Doctorolo	Si la différence maximale entre les
Prise en compte d'un phénomène	Rectangle	
d'hystérésis		indications obtenues par valeurs
		croissante et décroissante est b
Da. 1 1 15. 0	D(: (1) :	alors $u = b/\sqrt{12}$
Effet de grandeurs d'influence va-	Dérivée d'arc si-	Si les variations de la grandeur
riant entre deux extremums de fa-	nus	(ex. température) sont désignées
çon sensiblement sinusoïdale (par		$par \pm a alors u = a/\sqrt{2}$
exemple la température d'un lo-		
cal régulé en température)		
Dérive d'un instrument de mesure		Si l'analyse des résultats des éta-
		lonnages successifs montre une
		tendance qui peut être modélisée,
		alors on applique une correction.
		On estime l'incertitude sur cette
		correction par exemple grâce à
		une technique de régression. Si
		l'examen des résultats des étalon-
		nages ne montre pas de tendance,
		on ne peut pas parler de dérive
		mais de reproductibilité que l'on
		peut évaluer par la méthode de
		type A.
Composantes asymétriques du	Triangle rec-	Si la base du triangle rectangle est
type erreur de parallélisme entre	tangle	égale à d alors $u = d/\sqrt{18}$
l'objet mesuré et l'étalon (mé-		
trologie dimensionnelle) ou verse-		
ment du contenu d'une fiole jau-		
gée en chimie (la quantité versée		
est toujours inférieure au contenu		
de la fiole)		
Correction non appliquée		Si on n'applique pas une correc-
		tion connue, on commet une er-
		reur. Ceci n'a rien à voir avec l'es-
		timation des incertitudes. Néan-
		moins le GUM propose une solu-
		tion (cf. 6.3.1, F2.4.5 et 9.4 dans
		[1])
Instrument vérifié et conforme à	Rectangle	Si la classe est définie par $\pm a$ alors
une classe	-	$u = a/\sqrt{3}$

Tab. 6.2 – Caractéristiques des principales lois de distribution utilisées pour l'estimation des incertitudes par la méthode type B

des incertitudes par la méthode			
Lois	Distribution	Variance	Ecart-type
	(étendue $d = 2a$)		
Normale ($a = 3\sigma \Rightarrow 99,73\%$)	(af3)√2π +a	$\frac{d^2}{36} = \frac{a^2}{9}$	$\frac{d}{6} = \frac{a}{3}$
Triangle isocèle	-a +a	$\frac{d^2}{24} = \frac{a^2}{6}$	$\frac{d}{\sqrt{24}} = \frac{a}{\sqrt{6}}$
Uniforme	-a +a +a	$\frac{d^2}{12} = \frac{a^2}{3}$	$\frac{d}{2\sqrt{3}} = \frac{a}{\sqrt{3}}$
Dérivée d'arc sinus	-a //m +a +a	$\frac{d^2}{8} = \frac{a^2}{2}$	$\frac{d}{2\sqrt{2}} = \frac{a}{\sqrt{2}}$
Triangle Rectangle	-2a/ ₃ 4a/ ₃ -4a/ ₃ 2a/ ₃	$\frac{d^2}{18} = \frac{a^2}{4,5}$	$\frac{d}{3\sqrt{2}} = \frac{a}{\sqrt{4.5}}$

171D. 0.0 Recapitulating des resultatis d'essais						
Laboratoire	Mesures	Valeur annoncée	Dispersion			
1	$y_{11}, y_{12}, \ldots, y_{1n_1}$	$ar{y_1}$	s_1			
2	$y_{21}, y_{22}, \ldots, y_{2n_2}$	$ar{y_2}$	s_2			
i :	<u>:</u>	<u>:</u>	:			
		•				
:	:	:	:			
p	$y_{p1}, y_{p2}, \ldots, y_{pn_n}$	$ar{y_p}$	s_p			

Tab. 6.3 – Récapitulatifs des résultats d'essais

 NB : La fidélité recouvre la répétabilité (notée r) et la reproductibilité (notée R), on parle aussi de fidélité intermédiaire entre répétabilité et reproductibilité lorsqu'on veut évaluer la dispersion des résultats que par rapport à certains paramètres. Dans ce cas, on ne fait pas varier tout les paramètres en même temps. On rappelle les principaux paramètres assurant des conditions de mesures de répétabilité et de reproductibilité :

- répétabilité :
 - même méthode
 - même individus (échantillon)
 - même laboratoire
 - même opérateur
 - même équipement
 - même ...

De plus, les essais successifs doivent se dérouler sur une durée courte vis-à-vis de la dynamique des phénomènes physiques entrant en jeu lors d'un essai.

- reproductibilité :
 - même méthode
 - même individus
 - laboratoire différent
 - opérateur différent
 - équipement différent

6.2.1 Organisation d'un essai interlaboratoire

La norme NF ISO 5725 [4] décrit les règles à suivre afin d'organiser un essai interlaboratoire. Chaque laboratoire réalise un certain nombre de mesures (pas nécessairement le même nombre pour chaque laboratoire) puis calcule la moyenne et l'écart-type de sa mesure (TAB. 6.3).

Après vérification de la validité des données par un test de Grubbs ou de Cochran (i.e. vérifier que les valeurs annoncées et les dispersions décrivent la même loi de distribution), on calcule le résultat moyen :

$$\bar{\bar{y}} = \frac{1}{p} \sum_{i=1}^{p} \bar{y}_i$$

puis l'écart-type de répétabilité (noté s_r) :

$$s_r^2 = \frac{\sum_{i=1}^p (n_i - 1)s_i^2}{\sum_{i=1}^p (n_i - 1)}$$

avec

 $s_i^2 = \frac{\sum_{k=1}^{n_i} (y_{i_k} - \bar{y}_i)^2}{n_i - 1}$

et

$$\bar{y}_i = \frac{1}{n_i} \sum_{k=1}^{n_i} y_{i_k}$$

et enfin l'écart-type de reproductibilité (noté s_R) :

$$s_R^2 = s_L^2 + s_r^2$$

avec s_L l'écart-type interlaboratoire donné par :

$$s_L^2 = \frac{s_d^2 - s_r^2}{\bar{n}}$$

$$s_d^2 = \frac{1}{p-1} \sum_{i=1}^p ni(\bar{y}_i - \bar{y})^2$$

$$\bar{n} = \frac{\left(\sum_{i=1}^p n_i\right)^2 - \sum_{i=1}^p n_i^2}{(p-1)\sum_{i=1}^p n_i}$$

6.2.2 Qui peut utiliser les résultats (exactitude) d'essai

Bien évidemment, tout les laboratoires ayant participés à l'essai interlaboratoire sous réserve que leurs résultats aient été pris en considération dans l'analyse finale. Les autres peuvent utiliser les résultats d'exactitude s'ils estiment (il est préférable de le prouver ou encore plus facile d'avoir participer à un essai interlaboratoire) qu'ils ont parfaitement appliqué la méthode d'essai (i.e. que leurs résultats auraient pu faire partie de ceux utilisées lors de l'essai interlaboratoire) alors tous ces laboratoires pourront considérer que leur incertitude peut s'exprimer :

$$u_c(y) = s_R$$

NB: Avec cette méthode, on a tendance à sur-estimer l'incertitude.

6.3 Expression finale du résultat de mesure

Comme nous l'avons déjà mentionné au tout début, un résultat de mesure doit **TOU-JOURS** être accompagné de son incertitude. Le résultat s'exprime de la manière suivant :

$$Y = y \pm U$$

où U est appelée l'incertitude élargie, elle se déduit de l'incertitude composée de Y par la relation

$$U = ku_c(y)$$

. avec k le facteur d'élargissement (k=2 ou 3 ; dans le cadre de mesures ou d'essais sous accréditation COFRAC k=2).

NB : Un facteur d'élargissement de deux (k=2) revient à considérer que 95% (FIG. 6.1) des résultats de mesures sont dans l'intervalle $\pm U$. Si k=3, 99% des résultats de mesures sont dans l'intervalle $\pm U$.

Fig. 6.1 – Intervalle de confiance.

Bibliographie

- [1] NF ENV 13005 Normes fondamentales Guide pour l'expression de l'incertitude de mesure, AFNOR, 1993.
- [2] NF X 07-001 Normes fondamentales Vocabulaire international des termes fondamentaux et généraux de métrologie, (VIM), AFNOR, 1994.
- [3] 27 Exemples d'évaluation d'incertitude d'étalonnage, MFQ, 1999.
- [4] NF ISO 5725 Exactitude (justesse et fidélité) des résultats et méthodes de mesures, AFNOR, 1994.
- [5] Incertitudes de mesure et tolérances, Techniques de l'Ingénieur, R 285.
- [6] NF EN ISO 14253-1 Normes fondamentales Spécification géométrique des produits (GPS) Vérification par la mesure des pièces et équipements de mesures, Mars 1999.

Normes et documents divers

X 07-021, Aide à la démarche pour l'estimation et l'utilisation de l'incertitude des mesures et des résultats d'essais, 1999.

Métrologie dans l'entreprise : outil de la qualité, AFNOR, 2003.

Christophe Perruchet, Marc Priel, Estimer l'incertitude. Mesures - Essais, AFNOR, 2000. EA-4/16, Lignes directrices d'EA pour l'expression de l'incertitude des résultats d'essais quantitatifs, European co-operation for Accreditation, Avril 2004.

Liens internet

Internationaux

- BIPM: Bureau International des Poids etMesures (http://www.bipm.org)
- OIML: Organisation Internationale de la Métrologie Légale (http://www.oiml.org)

Nationaux

- LNE: Laboratoire National de métrologie et d'Essais (http://www.lne.fr)
- COFRAC : COmité FRançais d'ACcréditation (http://www.cofrac.fr)
- AFNOR: Association Française de Normalisation (http://www.afnor.fr)
- Formation :
- CNAM: Conservatoire National des Arts etMétiers (http://www.cnam.fr)
- ESM : Ecole Supérieure de Métrologie (http://www.esm.fr/)
- ENSIM: Ecole Nationale Supérieure d'Ingénieurs du Mans (http://ensim.univlemans.fr/)

Divers

- Site du ministère de l'industrie : (http ://www.industrie.gouv.fr/)
- Site général de métrologie : (http://www.metrologie.org)