VERMES MIKLÓS Fizikaverseny

III. forduló 2019. április 6. X. osztály

JAVÍTÓKULCS

I. feladat

a)
$$L = p_0 \Delta V$$
 1 p
 $V_1 = \frac{m}{\rho} = 4,44 \cdot 10^{-6} m^3$, 0,25 p
 $p_0 V_2 = \frac{m}{\mu} \cdot R \cdot T_2$, $T_2 = 100^{\circ} C = 373,15 K, V_2 = 6800 \cdot 10^{-6} m^3$ 1 p
 $\Delta V = 6795,56 \cdot 10^{-6} m^3$ 0,25 p
 $L = 688,35 J$ 0,5 p
b) $Q_t = \Delta U + L$, 1 p
 $\Delta U = Q_{\text{olvadás}} + Q_{\text{melegítés}} + Q_{\text{párolgás}} = 12038,8 J$ 1,5 p
 $Q_t = 12727,15 J$ 0,5 p

d) $V_2 = NV_d$, ahol $V_d = \frac{V_2}{N}$, az a térfogat, melyben egy molekula található

$$V_d = d^3$$
, ahol d a molekulák közötti átlagos távolság, $d = \sqrt[3]{V_d}$ 1 p

$$N = \frac{m}{\mu} \cdot N_A = 1,338 \cdot 10^{23}$$
 molekula 0,5 p

$$d = \sqrt[3]{50,82} \, 10^{-9} \, m \tag{0.5 p}$$

II. feladat

a) Levezetés:
$$\eta = 1 - \frac{\sqrt{Q_{leadott}}}{Q_{felvett}}$$
; $\eta = 1 - \frac{T_4 - T_1}{\gamma \cdot (T_3 - T_2)}$; 1 p

A hatásfok képlete az adatok függvényében: $\eta = 1 - \frac{\rho^{\gamma} - 1}{\gamma \cdot \varepsilon^{\gamma - 1} (\rho - 1)}$ 1 p

b) A működési körfolyamat ábrázolása V,T és P,T koordináta rendszerben

c)
$$Q=m \cdot q$$
; $m=\rho \cdot V$; $V=25 l$; $m=21 kg$ 1 p
 $Q=924 MJ$ 1 p

d)
$$P = \frac{L}{\Delta t}$$
; 1 p
 $L = \eta Q$; 1 p
 $P = \eta Q/\Delta t$ 0,5 p
 $P = 17.1 \text{ kW} = 22.95 \text{ LE}$ 0,5 p

e)
$$\Delta t = \frac{L}{P_{max}} = \frac{Q}{P_{max}}$$
; $\Delta t = 7832 \ s = 2{,}175 \ h$

III. feladat

a) A vezetődarab hossza
$$l=8$$
 m , $S=\frac{\pi \cdot D^2}{4}=0,2\cdot 10^{-6}m^2$,
$$R=\frac{\rho l}{S}=20\,\Omega$$
 1 p

A csomópontok közötti ellenállások értéke, egyenként: $R_1=\frac{R}{8}$ =2,5 Ω. Az eredő ellenállás: $R_e=1,66$ Ω

2 p

c) Az áramforráson áthaladó áramerősség:
$$I = \frac{E}{R+r}$$
, $I = 0.8$ A 1 p

d) Az áramforrás által leadott teljesítmény:
$$P = U \cdot I = I^2 \cdot R_e = 1,0624 W$$
 0,5 p

- hatásfok:
$$\eta = \frac{R_e}{R_e + r} = 0,453$$
 0,5 p

f) Ebben az esetben csak a B és D pontok lesznek ekvipotenciálisak. 0,5 p A hálózat egyszerűsített ábrája így modosul: Az A,B; A,D; D,C; B,C csomópontok közötti ellenállások értéke:

$$R_1 = \frac{R}{8} = 2.5 \Omega.$$

Az A,E; B,E; D,E; C,E csomópontok közötti ellenállások értéke:

$$R_2 = 2 \cdot \frac{R}{8} = 5 \Omega$$
 1 p

Egyenértékű kapcsolási rajz: 1 p

