









# Are Anchor Points Really Indispensable in Label-Noise Learning?

Xiaobo Xia<sup>1,2</sup> Tongliang Liu<sup>1</sup> Nannan Wang<sup>2</sup> Bo Han<sup>3</sup> Chen Gong<sup>4</sup> Gang Niu<sup>3</sup> Masashi Sugiyama<sup>3,5</sup>

<sup>1</sup>University of Sydney <sup>2</sup>Xidian University <sup>3</sup>RIKEN <sup>4</sup>Nanjing University of Science and Technology <sup>5</sup>University of Tokyo

#### **OVERVIEW**

- A new paradigm called T-Revision combating with noisy labels is presented, which effectively learn transition matrices, leading to better classifier.
- The generalization error bound is derived to theoretically prove the effectiveness of our method.
- Experiments on simulated noisy dataset and real noisy dataset demonstrate the excellence of algorithm.

#### **MOTIVATION**

Figure 3. Illustrative experimental results (using a 5-class classification problem as an example).



- Let an example have  $P(\overline{Y}|X) = [0.141; 0.189; 0.239; 0.281; 0.15];$
- With the true transition matrix T,  $P(Y|X) = (T^{\top})^{-1}P(\overline{Y}|X)$  = [0.15; 0.28; 0.25; 0.3; 0.02]

 $P(Y|X) = (\tilde{T}^{\top})^{-1}P(\bar{Y}|X)$ = [0.1587; 0.2697; 0.2796; 0.2593; 0.0325]

## **IMPORTANCE REWEIGHTING**

$$\bar{R}_{n,w}(T,f) = \frac{1}{n} \sum_{i=1}^{n} \frac{g_{\bar{Y}_i}(X_i)}{(T^{\mathsf{T}}g)_{\bar{Y}_i}(X_i)} l(f(X_i), \bar{Y}_i)$$

#### **QR CODE**



### **ALGORITHM DESCRIPTION**

Figure 1. An overview of the proposed method. The proposed method will learn a more accurate classifier because the transition matrix is renovated.



#### Figure 2. The process of Reweight-R Algorithm.

**Algorithm 1** Reweight *T*-Revision (Reweight-R) Algorithm.

**Input**: Noisy training sample  $\mathcal{D}_t$ ; Noisy validation set  $\mathcal{D}_v$ .

Stage 1: Learn T

- 1: Minimize the unweighted loss to learn  $\hat{P}(\bar{Y}|X)$  without a noise adaption layer
- 2: Initialize  $\hat{T}$  according to Eq. (1) by using instances with the highest  $\hat{P}(\bar{Y}=i|X)$  as anchor points

Stage 2: Learn the classifier f and  $\Delta T$ 

- 3: Initialize the neural network by minimizing the weighted loss with a noisy adaption layer  $\hat{T}^\top$
- 4: Minimize the weighted loss to learn f and  $\Delta T$  with a noisy adaption layer  $(\hat{T} + \Delta T)^{\top}$ ; //Stopping criterion for learning  $\hat{P}(\bar{Y}|X)$ , f and  $\Delta T$ : when  $\hat{P}(\bar{Y}|X)$  corresponds the minimum classification error on the noisy validation set  $\mathcal{D}_v$

**Output**:  $\hat{T}$ ,  $\Delta T$ , and f.

# **RESULTS**

Figure 4. The estimation error of the transition matrix by employing classifier-consistent and risk- consistent estimators on CIFAR10 dataset.

(a) Sym-20 label noise. (b)Sym-50 label noise.





Table 1. Classification accuracy on synthetic noisy dataset and real noisy dataset.

(a) / (b) Means and Standard Deviations(Percentage) of classification accuracy on CIFAR10 dataset with / without anchor points.

(c) Classification Accuracy (Percentage) on *Clothing1M*.

| Models        | Sym-20           | Sym-50           |  |
|---------------|------------------|------------------|--|
| Decoupling-A  | 79.85±0.30       | 52.22±0.45       |  |
| MetorNet-A    | 80.49±0.52       | $70.71 \pm 0.24$ |  |
| Co-teaching-A | 82.38±0.11       | $72.80 \pm 0.45$ |  |
| Forward-A     | $85.63 \pm 0.52$ | 77.92±0.66       |  |
| Reweight-A    | 86.77±0.40       | 80.16.±0.46      |  |
| Forward-A-R   | 88.10±0.21       | 81.11±0.74       |  |
| Reweight-A-R  | 89.63±0.13       | 83.40±0.65       |  |

| Models          | Sym-20           | Sym-50           |  |
|-----------------|------------------|------------------|--|
| Decoupling-N/A  | 75.37±1.24       | 47.19±0.19       |  |
| MetorNet-N/A    | $78.51 \pm 0.31$ | 67.37±0.30       |  |
| Co-teaching-N/A | 81.72±0.14       | $70.44 \pm 1.01$ |  |
| Forward-N/A     | 84.75±0.81       | 74.32±0.69       |  |
| Reweight-N/A    | 85.53±0.26       | $77.70.\pm1.00$  |  |
| Forward-N/A-R   | 86.93±0.39       | 77.14±0.65       |  |
| Reweight-N/A-R  | 88.90±0.22       | 81.55±0.94       |  |

(a)

(b)

| Decoupling | MentorNet | Co-teaching | Forward | Reweight | Forward+R | Reweight+R |
|------------|-----------|-------------|---------|----------|-----------|------------|
| 53.98      | 56.77     | 58.68       | 71.79   | 70.95    | 72.25     | 74.18      |
|            |           |             | (c)     |          |           |            |