SWMPr: An R package for estuarine water quality time series

Marcus W. Beck¹

¹ORISE, USEPA NHEERL Gulf Ecology Division Email: beck.marcus@epa.gov

April 15, 2015

Overview

A mixture of things...

- What is NERSS/SWMP and motivation for creating the package
- The process of package development
- What can SWMPr do
- What has SWMPr done

NERRS

National Estuarine Research Reserve System, established by Coastal Zone Management Act of 1972. Address goals for *long-term research*, *monitoring*, *education*, and *stewardship* for more effective coastal management.

SWMP

System Wide Monitoring Program, initiated in 1995 to provide $continuous\ monitoring$ data at over 300 stations in in each of the 28 NERRS reserves

http://nerrs.noaa.gov/ReservesMap.aspx

Each reserve has fixed, continuous monitoring stations for *water quality* (15 min), *meteorology* (15 min), and *nutrients* (monthly)

The parameters for a station are specific to the parameter type

Water	quality		

temp, spcond, sal, do_pct, do_mgl, depth, cdepth, level, clevel, ph, turb, chlfluor

Meteorology

atemp, rh, bp, wspd, maxwspd, wdir, sdwdir, totpar, totprcp, cumprcp, totsorad

Nutrients

po4f, chla_n, no3f, no2f, nh4f, no23f, ke_n, urea

Data maintained by the Centralized Data Management Office (CDMO)

As of April 10, > 58 million SWMP data records available from CDMO

Raw data will look like this...

4	Α	В	С	D	Е	F	G	н	I	J	K	L
1	StationCo	isSWMP	DateTimeStamp	Historical	Provision	CollMeth	REP	F_Record	PO4F	F_PO4F	NH4F	F_NH4F
2	apacpnut	P	1/10/2012 10:20	0	1	1	1		0.003	<-4>[SBL]	0.03	<0>
3	apacpnut	P	2/7/2012 11:41	0	1	1	1		0.005	<0>	0.019	<0>
4	apacpnut	P	3/5/2012 11:51	0	1	1	1		0.003	<-4>[SBL]	0.041	<0>
5	apacpnut	P	4/4/2012 10:30	0	1	1	1		0.003	<-4>[SBL]	0.043	<0>
6	apacpnut	P	5/9/2012 10:12	0	1	1	1		0.003	<0>	0.053	<0>
7	apacpnut	P	5/9/2012 10:15	0	1	1	2		0.003	<-4>[SBL]	0.022	<0>
8	apacpnut	P	5/9/2012 10:20	0	1	1	3		0.003	<0>	0.016	<0>
9	apacpnut	P	6/5/2012 8:30	0	1	1	1		0.003	<-4>[SBL]	0.04	<0>
10	apacpnut	P	7/3/2012 9:58	0	1	1	1	{CSM}	0.004	<0>	0.094	<0>
11	apacpnut	P	7/3/2012 9:59	0	1	1	2	{CSM}	0.004	<0>	0.066	<0>
12	apacpnut	P	7/3/2012 10:01	0	1	1	3	{CSM}	0.005	<0>	0.069	<0>
13	apacpnut	P	8/7/2012 9:53	0	1	1	1	{CSM}	0.003	<-4>[SBL]	0.05	<0>
14	apacpnut	P	9/5/2012 10:56	0	1	1	1		0.003	<-4>[SBL]	0.026	<0>
15	apacpnut	P	10/2/2012 9:22	0	1	1	1		0.003	<-4>[SBL]	0.042	<0>
16	apacpnut	P	10/2/2012 9:27	0	1	1	2		0.003	<-4>[SBL]	0.024	<0>
17	apacpnut	P	10/2/2012 9:32	0	1	1	3		0.003	<0>	0.042	<0>
18	apacpnut	P	11/6/2012 10:30	0	1	1	1		0.003	<-4>[SBL]	0.07	<0>
19	apacpnut	Р	11/26/2012 11:39	0	1	1	1		0.003	<-4>[SBL]	0.041	<0>

What is the problem?

An invaluable data source but no recent comparative analyses between systems

NERRS researchers, managers, and technicians need more tools for trend analysis

Some specific issues:

- Knowing what data to use and how to obtain
- Dealing with QAQC columns or removing 'bad' observations
- Combining data for comparison
- Issues inherent with time series, e.g., signal vs. noise, data quantity

What is the (potential) solution?

SWMPr v2.0.0 is now available on CRAN!

- > install.packages('SWMPr')
- > library(SWMPR)

Currently no vignette, but working on a manuscript

The process of package development

The development version lives on GitHub: https://github.com/fawda123/SWMPr

The package development process was much simplified using RStudio and the Hadleyverse (specifically devtools, roxygen2)

In RStudio, create a package template:

File > New Project > New Directory > R Package, with options for Git version control

Package does not have to be on CRAN to distribute...

The process of package development

Follow the advice here: http://r-pkgs.had.co.nz/

What can SWMPr do?

SWMPr functions are grouped into three categories that describe their use in the 'data workflow'

Retrieve	Organize	Analyze
all_params all_params_dtrng import_local import_remote single_param site_codes site_codes_ind	comb qaqc qaqcchk rem_reps setstep subset	aggreswmp aggremetab ecometab decomp decomp_cj hist lines na.approx plot plot_metab plot_summary smoother

The first challenge is to determine the station, parameter, and date range of interest - Check the available data on the CDMO website

Also familiarize yourself with the NERRS/SWMP naming convention

Site (reserve), station, and parameter type are identified by a 7 or 8 character name

E.g., elkcwmet

- elk: site, Elkhorn Slough
- cw: station, Caspian Weather Station
- met: parameter type (weather)

SWMP data can be imported from CDMO into R three ways

1) From a local path: import_local

Advantages:

- Ideal for large datasets
- Most recent data

Disadvantages:

- Outside of R
- Only works for one type of data request from CDMO

SWMP data can be imported from CDMO into R three ways

2) retrieve SWMP data from a third-party server: import_remote,

Advantages:

- Fast import!
- No requests to CDMO

Disadvantages:

- Data are not current
- Requires further processing date subsets, etc.

SWMP data can be imported from CDMO into R three ways

3) Use the existing CDMO web services to import directly: single_param, all_params_dtrng

Advantages:

- Current
- Customized requests

Disadvantages:

- IP address must be registered
- Quantity severely limited

The best approach depends on your needs

> dat <- import_remote('kacsswg')</pre>

The end result is the same - data are imported as a swmpr S3 object

```
## [1] "swmpr" "data.frame"
> names(attributes(dat))
## [1] "names" "row.names" "class" "station"
## [5] "parameters" "qaqc_cols" "date_rng" "timezone"
## [9] "stamp_class"
```

> class(dat)

The remaining functions have swmpr methods

```
> methods(class = 'swmpr')
##
    [1] aggremetab.swmpr*
                            aggreswmp.swmpr*
##
    [3] comb.swmpr*
                            decomp.swmpr*
##
    [5] decomp_cj.swmpr*
                            ecometab.swmpr*
##
    [7] hist.swmpr*
                            lines.swmpr*
       na.approx.swmpr*
##
                            plot.swmpr*
   [11] plot_metab.swmpr*
                            plot_summary.swmpr*
##
   [13] qaqc.swmpr*
                            qaqcchk.swmpr*
   [15] rem_reps.swmpr*
                            setstep.swmpr*
   [17] smoother.swmpr*
                            subset.swmpr*
##
      Non-visible functions are asterisked
##
```

swmpr objects also inherit methods from the data.frame class

How are data *organized*?

test