Problem Set 4 Complex Analysis

Bennett Rennier bennett@brennier.com

October 10, 2018

Ex 1 Define $g: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ by $g(z) = \frac{z+1}{z-1}$ and let $f(z) = e^{g(z)}$.

- a) Prove that f is bounded on \mathbb{D} .
- b) Fix $a \in \mathbb{D}$. Decide if $\lim_{t\to 0^+} f(t+(1-t)a)$ exists, and if so compute it.
- c) Prove that $\frac{e^{it}+1}{e^{it}-1} = -i\cot(t/2)$ for all $t \in \mathbb{R}$, $t \notin \{2\pi k : k \in \mathbb{Z}\}$ [sic].
- d) Decide if $\lim_{\theta\to 0^+} f(e^{i\theta})$ exists and if so, compute it.
- e) Decide if $\lim_{\theta \to 0^-} f(e^{i\theta})$ exists and if so, compute it.

Proof.

a) We note that g(z) is a Möbius Transform such that

$$g(-1) = \frac{0}{-2} = 0$$

$$g(1) = \frac{2}{0} = \infty$$

$$g(i) = \frac{i+1}{i-1} = \frac{-(i+1)^2}{(i-1)(-i-1)} = \frac{-(-1+1+2i)}{2} = -i$$

$$g(0) = \frac{1}{-1} = -1,$$

which means g maps that unit circle onto the imaginary axis and that it maps the unit disk \mathbb{D} onto the half plane defined by $\{z : \operatorname{Re}(z) \leq 0\}$. This means that for $z \in \mathbb{D}$

$$|f(z)| = |e^{g(z)}| = |e^{\operatorname{Re}(g(z)) + i\operatorname{Im}(g(z))}| = |e^{\operatorname{Re}(g(z))}| |e^{i\operatorname{Im}(g(z))}| = |e^{\operatorname{Re}(g(z))}| = e^{\operatorname{Re}(g(z))}| \le e^0 = 1.$$

This proves that f is bounded on \mathbb{D} ; in fact, it maps \mathbb{D} back inside \mathbb{D} .

b) We note that g is continuous on $\mathbb{C} \setminus \{1\}$, which means f is also continuous on $\mathbb{C} \setminus \{1\}$. Since $t + (1 - t)a \subseteq \mathbb{D}$ for $t \in [-\varepsilon, 1 + \varepsilon]$ and $1 \notin \mathbb{D}$, we have by continuity that

1

$$\lim_{t \to 0+} f(t + (1-t)a) = f\left(\lim_{t \to 0^+} t + (1-t)a\right) = f(a) = e^{\frac{a+1}{a-1}}.$$

c) We recall that $\cos(t) = \frac{e^{it} + e^{-it}}{2}$ and $\sin(t) = \frac{e^{it} - e^{-it}}{2i}$. This means that for $t \notin \{\pi k : k \in \mathbb{Z}\}$, we have that

$$-i\cot(t) = -i\frac{\cos(t)}{\sin(t)} = -i\frac{\left(\frac{e^{it} + e^{-it}}{2}\right)}{\left(\frac{e^{it} - e^{-it}}{2i}\right)} = -i\left(\frac{e^{it} + e^{-it}}{2}\right)\left(\frac{2i}{e^{it} - e^{-it}}\right) = \frac{e^{it} + e^{-it}}{e^{it} - e^{-it}}$$
$$= \frac{e^{it} + e^{-it}}{e^{it} - e^{-it}}\frac{e^{it}}{e^{it}} = \frac{e^{2it} + 1}{e^{2it} - 1}.$$

This proves that $\frac{e^{it}+1}{e^{it}-1}=-i\cot(t/2)$ for $t\not\in\{2\pi k:k\in\mathbb{Z}\}$ as we wanted.

d) By the previous part, we know that

$$f(e^{i\theta}) = e^{\frac{e^{i\theta}+1}{e^{i\theta}-1}} = e^{-i\cot(t/2)}$$
.

Since $\lim_{t\to 0^+} -\cot(t/2)$ tends to $-\infty$, $\cot(\pi/2) = \frac{\cos(\pi/2)}{\sin(\pi/2)} = 0$, and cot is continuous, there exists a monotonically decreasing sequence $t_n \in (0,\pi]$ such that $\cot(t_n) = -n \cdot \pi$. This means that

$$\lim_{n \to \infty} f(e^{it_n}) = e^{-i\cot(t_n)} = e^{in\pi} = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$$

Since t_n is a sequence approaching 0 from the right and $f(e^{it_n})$ doesn't converge, it cannot be the case that $\lim_{t\to 0^+} f(e^{it})$ converges.

e) Similar to the previous part, so $\lim_{t\to 0^-} -\cot(t/2)$ tends to ∞ , $\cot(-\pi/2) = 0$, and cot is continuous, there exists a monotonically increasing sequence $t_n \in [-\pi, 0)$ such that $\cot(t_n) = n \cdot \pi$. This means that

$$\lim_{n \to \infty} f(e^{it_n}) = e^{-i\cot(t_n)} = e^{-in\pi} = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$$

Since t_n is a sequence approaching 0 from the left and $f(e^{it_n})$ doesn't converge, it cannot be the case that $\lim_{t\to 0^-} f(e^{it})$ converges.

Ex 2 Let $f: \mathbb{C} \to \mathbb{C}$ be analytic.

- a) Suppose that f is nonconstant. Suppose that $z_0 \in \mathbb{C}$ and $f(z_0) \neq 0$. Show that for every $\varepsilon > 0$, there is a point $z \in B_{\varepsilon}(z_0)$ with $|f(z)| < |f(z_0)|$.
- b) Suppose that $\lim_{z\to\infty} f(z) = \infty$. Show that there is a $z_0 \in \mathbb{C}$ so that $f(z_0) = 0$. [Hint: show that there is a point $z_0 \in \mathbb{C}$ at which $|f(z_0)| = \inf_{z\in\mathbb{C}} |f(z)|$.]
- c) Explain why the previous parts imply that every nonconstant polynomial with complex coefficients has a root.

Proof.

a) Without loss of generality, we may assume that $z_0 = 0$ (we can simply translate f if need be). Since f is analytic, we have that $f(z) = \sum_{n=0}^{\infty} a_n z^n$. We know that $0 \neq f(0) = a_0$. If all the other a_n 's are zero, then f is constant which is a contradiction. Thus, there is a least positive integer j such that $a_j \neq 0$. This means that

$$f(z) = a_0 + a_j z^j + \sum_{n>j} a_n z^n.$$

Choose r small enough so that $r \sum_{n>j} |a_n| < |a_j|$. If we let $\tilde{f}(z) = a_0 + a_j z^j$, we see that

$$\tilde{f}(B_r(0)) = a_0 + a_j B_r(0)^j = a_0 + a_j B_{r^j}(0) = a_0 + B_{|a_j|r^j}(0) = B_{|a_j|r^j}(a_0).$$

We want an element in this image which is as close to the origin as possible. We see that within the ball $B_{|a_j|r^j}(a_0)$, we can get arbitrarily close to an element with modulus $|a_0| - |a_j|r^j$. More precisely, for any $\varepsilon > 0$, there exists a $z_0 \in B_r(0)$ such that $|\tilde{f}(z_0)| < |a_0| - |a_j|r^j + \varepsilon$. Using this, we see that for $z_0 \in B_r(0)$

$$|f(z_0)| = \left| \tilde{f}(z_0) + \sum_{n>j} a_n z_0^n \right| = |\tilde{f}(z_0)| + \sum_{n>j} |a_n| |z_0|^n < |a_0| - |a_j| r^j + \varepsilon + \sum_{n>j} |a_n| r^n$$

$$\leq |a_0| - |a_j| r^j + \varepsilon + r^{j+1} \sum_{n>j} |a_n| = |a_0| + r^j \left(r \sum_{n>j} |a_n| - |a_j| \right) + \varepsilon.$$

We note that we chose r so that $r \sum_{n>j} |a_n| - |a_j| < 0$. Thus, we can choose ε small enough so that $|f(z_0)| < |a_0| = |f(0)|$. We note that the claim still holds for any r' such that $0 < r' \le r$. This means that for any ball around 0, there will always be a smaller one of radius r' such that there's an element $z \in B_{r'}(0)$ where $|f(z)| < |f(z_0)|$.

- b) Consider the compact sets $C_n = \overline{B_n(0)}$. Since C_n is compact and |f| is continuous, we see that |f| achieves its infinum on this set, meaning there's some $t_n \in C_n$ such that $|f(t_n)| = \inf\{|f(t)| : t \in C_n\}$. Since $C_n \subseteq C_{n+1}$, we know that either $t_{n+1} \in C_{n+1} \setminus C_n$ or that $t_{n+1} = t_n$. This means if we consider the sequence $(t_n)_{n \in \mathbb{N}}$, either the sequence goes to infinity or is eventually constant. Suppose that the sequence goes to infinity. Then since $|f(t_{n+1})| \le |f(t_n)|$, we have that $|f(t_n)| < |f(t_1)|$ for all $n \in \mathbb{N}$. This would make $(|f(t_n)|)_{n \in \mathbb{N}}$ a bounded sequence, meaning $(t_n)_{n \in \mathbb{N}}$ goes to infinity, but $(|f(t_n)|)_{n \in \mathbb{N}}$ does not, a contradiction to our assumption. Thus, it must be that t_n is eventually constant. Let z_0 be this constant. Since by definition $|f(z_0)| = \inf\{|f(t)| : t \in C_n\}$ for all C_n , we have that $|f(z_0)| = \inf\{|f(t)| : t \in \mathbb{C}\}$. By part (a), if $f(z_0) \neq 0$, there's some ball $B_{\varepsilon}(z_0)$ and a $z \in B_{\varepsilon}(z_0)$ such that $|f(z_0)| < |f(z_0)|$. This contradicts $|f(z_0)|$ being the infinimum of f. Thus, it must be that $|f(z_0)| = 0$.
- c) Let $p(z) = \sum_{k=0}^{n} a_k x^k$ be a nonconstant polynomial with complex roots. This is a finite power series, so p is analytic on \mathbb{C} . We see that by the Triangular inequality:

$$\begin{split} \lim_{z \to \infty} |p(z)| &= \lim_{z \to \infty} \left| \sum_{k=0}^n a_k z^k \right| \ge \lim_{z \to \infty} |a_n z^n| - \sum_{k=0}^{n-1} |a_k z^k| = \lim_{z \to \infty} |a_n| |z|^n - \sum_{k=0}^{n-1} |a_k| |z|^k \\ &= \lim_{z \to \infty} |a_n| |z| - \sum_{k=0}^{n-1} |a_k| |z|^{k-n+1} = \left(\lim_{z \to \infty} |a_n| |z| \right) - \left(\lim_{z \to \infty} \sum_{k=0}^{n-1} |a_k| |z|^{k-n+1} \right) \\ &= \infty - |a_{n-1}| = \infty. \end{split}$$

This means we can apply part (b) to show that there exists an $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$. \square

Ex 3 Let $z \in \mathbb{D}$ and evaluate

$$\int_{\partial \mathbb{D}} \frac{\overline{s}}{s-z} \, ds.$$

Proof. We see that

$$\int_{\partial \mathbb{D}} \frac{\overline{s}}{s-z} \, ds = \int_{\partial \mathbb{D}} \frac{s}{s} \cdot \frac{\overline{s}}{s-z} \, ds = \int_{\partial \mathbb{D}} \frac{|s|^2}{s(s-z)} \, ds = \int_{\partial \mathbb{D}} \frac{1}{s(s-z)} \, ds = \int_{\partial \mathbb{D}} \frac{-1/z}{s} + \frac{1/z}{s-z} \, ds$$
$$= \frac{1}{z} \left(\int_{\partial \mathbb{D}} \frac{1}{s-z} \, ds - \int_{\partial \mathbb{D}} \frac{1}{s} \, ds \right).$$

We know that for a function f holomorphic on $\overline{B_r(z_0)}$ we have for all $z \in B_r(z_0)$,

$$f(z) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(s)}{s - z} \, ds.$$

In this case, if we take f to be the holomorphic constant function 1, then since 0 and z are in $B_1(0) = \mathbb{D}$ we get that

$$\int_{\partial \mathbb{D}} \frac{1}{s - z} \, ds = \int_{\partial \mathbb{D}} \frac{1}{s} \, ds = 2\pi i.$$

This proves that

$$\int_{\partial \mathbb{D}} \frac{\overline{s}}{s-z} \, ds = \frac{1}{z} \left(\int_{\partial \mathbb{D}} \frac{1}{s-z} \, ds - \int_{\partial \mathbb{D}} \frac{1}{s} \, ds \right) = \frac{1}{z} \left(2\pi i - 2\pi i \right) = 0.$$

Ex 4 Let U, V be open sets, $u: V \to \mathbb{R}$ harmonic [sic], $f: U \to V$ holomorphic such that f'' exists and is continuous. Show that $u \circ f$ is harmonic.

Proof. Let $z_0 \in U$. Since V is open, there is some r > 0, such that $B_r(f(z_0)) \subseteq V$. Since $B_r(f(z_0))$ is convex and u is harmonic on this ball, we know that u has some harmonic conjugate, meaning there exists some holomorphic function $g: B_r(f(z_0)) \to \mathbb{C}$ such that g(z) = u(z) + iv(z).

As f is continuous, $f^{-1}(B_r(f(z_0)))$ is open, so we can define the holomorphic restriction $\tilde{f} = f|_{f^{-1}(B_r(f(z_0)))}$. Since the composition of holomorphic functions is holomorphic we know that $g \circ \tilde{f}$ is holomorphic and that $\text{Re}(g \circ \tilde{f}) = \text{Re}((u \circ \tilde{f}) + i(v \circ \tilde{f})) = u \circ \tilde{f}$. Thus, $u \circ \tilde{f}$ is the real part of some holomorphic function, proving that $u \circ \tilde{f}$ is harmonic. Since this is the restriction of $u \circ f$ onto an open neighborhood of z_0 and being harmonic is a local property, this means that $u \circ f$ is harmonic at z_0 . Since z_0 arbitrary, we have that $u \circ f$ is harmonic.

Ex 5 Let Ω be open and suppose that there is a conformal map $\phi : \mathbb{D} \to \Omega$. Prove that every harmonic $u : \Omega \to \mathbb{R}$ has a harmonic conjugate.

Proof. By Ex 4, we know that the composition $u \circ \phi : \mathbb{D} \to \mathbb{R}$ is harmonic. Since \mathbb{D} is a convex set, this means that $u \circ \phi$ has a harmonic conjugate, that is there is a holomorphic function $g : \mathbb{D} \to \mathbb{C}$ such that $g = (u \circ \phi) + iv$. Since ϕ is conformal, we know ϕ^{-1} is well-defined and also holomorphic. Thus,

$$g \circ \phi^{-1} = (u \circ \phi \circ \phi^{-1}) + i(v \circ \phi^{-1}) = u + i(v \circ \phi^{-1})$$

is a holomorphic function. As u is the real part of this holomorphic function, we have proven that u has a harmonic conjugate.

Ex 6 Define $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ by $f(z) = \frac{1}{2}(z + \frac{1}{z})$.

a) Let C_r denote the circle of radius r centered at the origin. Show that if $r \neq 1$ then $f(C_r)$ is an ellipse. Find the center and equation of the ellipse. Show that $f(C_1) = [-1, 1]$.

- b) Show that $f|_{\mathbb{C}\setminus\overline{\mathbb{D}}}$ is injective and that $f(\mathbb{C}\setminus\overline{\mathbb{D}})=\mathbb{C}\setminus[-1,1]$.
- c) Use f to find a conformal map from $\mathbb{C} \setminus [-1,1]$ to $\mathbb{D} \setminus \{0\}$.
- d) Fix $\theta \in \mathbb{R}$. Show that $f(\lbrace re^{i\theta} : r > 0 \rbrace)$ is a hyperbola.

Proof.

a) We see that in polar coordinates

$$f(re^{i\theta}) = \frac{1}{2} \left(re^{i\theta} + \frac{1}{re^{i\theta}} \right) = \frac{r}{2} (\cos(\theta) + i\sin(\theta)) + \frac{1}{2r} (\cos(\theta) - i\sin(\theta))$$
$$= \left(\frac{r + r^{-1}}{2} \right) \cos(\theta) + i\left(\frac{r - r^{-1}}{2} \right) \sin(\theta).$$

This means for a fixed $r \in (0,1)$, $f(C_r(0))$ is simply an ellipse centered at the origin. Furthermore, when r=1, we have that $\frac{r-r^{-1}}{2}=\frac{1-1}{2}=0$ and $\frac{r+r^{-1}}{2}=\frac{1+1}{2}=1$, so we get that $f(e^{i\theta})=\cos(\theta)$, which means $f(C_1)=[-1,1]$.

b) Suppose $re^{i\theta} \neq se^{i\phi}$ where r, s > 1. If these two numbers have different radii. Then without loss of generality, we may assume that r > s > 1. This would mean that

$$r - \frac{1}{r} > s - \frac{1}{r} > s - \frac{1}{s}$$

and that

$$r-s>\frac{r-s}{sr}\implies r-s>\frac{1}{s}-\frac{1}{r}\implies r+\frac{1}{r}>s+\frac{1}{s}.$$

Thus, $f(re^{i\theta})$ lies on an ellipse with strictly larger axes than $f(se^{i\phi})$. Thus proves that $f(re^{i\theta}) \neq f(se^{i\phi})$. On the other hand, if r = s, then it must be that $\theta \neq \phi + 2\pi k$. This means that $f(re^{i\theta})$ and $f(se^{i\phi})$ lie on the same ellipse, but with different angles. Once again, this proves that $f(re^{i\theta}) \neq f(se^{i\phi})$. Thus, f is injective on $\mathbb{C} \setminus \overline{\mathbb{D}}$.

To prove that $f(\mathbb{C}\setminus\overline{\mathbb{D}})=\mathbb{C}\setminus[-1,1]$ we will see that $f\circ g$ is the identity where $g(z)=z-\sqrt{z^2-1}=z-e^{1/2\log z^2-1}$ where the branch cut of log is the nonpositive real numbers and $\log(1)=0$. We note that g is defined for all $\mathbb{C}\setminus[-1,1]$ under this branch cut. Since we have that

$$(f \circ g)(z) = f(z - \sqrt{z^2 - 1}) = \frac{1}{2} \left(z - \sqrt{z^2 - 1} + \frac{1}{z - \sqrt{z^2 - 1}} \right)$$
$$= \frac{1}{2} \left(z - \sqrt{z^2 - 1} + \frac{z + \sqrt{z^2 - 1}}{z^2 - (z^2 - 1)} \right) = z.$$

c) Since $f: \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \setminus [-1,1]$ is surjective and injective, f is a bijection and has an inverse. As the g in the previous part is holomorphic and the right inverse of f, by uniqueness of inverses, g is a holomorphic inverse of f. This proves that f and g are conformal. We see that the Möbius Transformation $\phi(z) = \frac{1}{z}$ inverts elements across the unit circle as $|\phi(z)| = |1/z| = 1/|z|$. This means that ϕ is a conformal map from $\mathbb{C} \setminus \overline{\mathbb{D}}$ to $\mathbb{D} \setminus \{0\}$. Thus, $\phi \circ g$ is a conformal map from $\mathbb{C} \setminus [-1,1]$ to $\mathbb{D} \setminus \{0\}$.

d) We see that

$$\operatorname{Re}(f(re^{i\theta}))^2 = \left(\frac{r+r^{-1}}{2}\cos(\theta)\right)^2 = \frac{r^2+r^{-2}+2}{4}\cos^2(\theta)$$

and that

$$\operatorname{Im}(f(re^{i\theta}))^2 = \left(\frac{r - r^{-1}}{2}\sin(\theta)\right)^2 = \frac{r^2 + r^{-2} - 2}{4}\sin^2(\theta).$$

This means that for a fixed θ , we have the equation

$$\frac{\operatorname{Re}(f(re^{i\theta}))^2}{\cos(\theta)^2} - \frac{\operatorname{Im}(f(re^{i\theta}))^2}{\sin(\theta)^2} = \frac{r^2 + r^{-2} + 2}{4} - \frac{r^2 + r^{-2} - 2}{4} = 4/4 = 1$$

which proves that $f(\{re^{i\theta}: r>0\})$ is a hyperbola for a fixed θ .

Ex 7 Let $\gamma:[a,b]\to\mathbb{C}$ be C^1 and $f:\gamma([a,b])\to\mathbb{C}$ be continuous. By completing the following outline, show that $\int_{\gamma}f(z)|\,dz|=\int_a^bf(\gamma(t))|\gamma'(t)|\,dt$.

a) Let $s_1 < s_2$ be elements of [a, b] and set $v = \sup_{x,y \in [s_1, s_2]} |\gamma'(x) - \gamma'(y)|$. Prove that

$$\left| |\gamma(s_2) - \gamma(s_1)| - \int_{s_1}^{s_2} |\gamma'(t)| \, dt \right| \le 2v(s_2 - s_1).$$

b) Use (a) and a modification of our proof that $\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$ to show that $\int_{\gamma} f(z) |dz| = \int_{a}^{b} f(\gamma(t)) |\gamma'(t)| dt$.

Proof.

a) We note that for a fixed $w \in [s_{1,2}]$, we have that

$$\int_{s_1}^{s_2} |\gamma'(w)| \, dt = |\gamma'(w)| \int_{s_1}^{s_2} dt = |\gamma'(w)|(s_2 - s_1) = |\gamma'(w)(s_2 - s_1)| = \left| \int_{s_1}^{s_2} \gamma'(w) \, dt \right|.$$

We also recall the following facts about integrals, absolute values, and the fundamental theorem of calculus:

$$\gamma(s_2) - \gamma(s_1) = \int_{s_1}^{s_2} \gamma'(t) dt$$
$$||u| - |w|| \le |u - w|$$
$$\left| \int f(t) dt \right| \le \int |f(t)| dt.$$

Using these tricks (some multiple times), we have that for an arbitrary fixed $w \in [s_1, s_2]$,

$$\begin{aligned} \left| |\gamma(s_{2}) - \gamma(s_{1})| - \int_{s_{1}}^{s_{2}} |\gamma'(t)| dt \right| &= \left| \left| \int_{s_{1}}^{s_{2}} \gamma'(t) dt \right| - \int_{s_{1}}^{s_{2}} |\gamma'(t)| dt \right| \\ &= \left| \left| \int_{s_{1}}^{s_{2}} \gamma'(t) dt \right| - \left| \int_{s_{1}}^{s_{2}} \gamma'(w) dt \right| + \int_{s_{1}}^{s_{2}} |\gamma'(w)| dt - \int_{s_{1}}^{s_{2}} |\gamma'(t)| dt \right| \\ &\leq \left| \left| \int_{s_{1}}^{s_{2}} \gamma'(t) dt \right| - \left| \int_{s_{1}}^{s_{2}} \gamma'(w) dt \right| + \left| \int_{s_{1}}^{s_{2}} |\gamma'(w)| dt - \int_{s_{1}}^{s_{2}} |\gamma'(t)| dt \right| \\ &\leq \left| \int_{s_{1}}^{s_{2}} \gamma'(t) dt - \int_{s_{1}}^{s_{2}} \gamma'(w) dt \right| + \left| \int_{s_{1}}^{s_{2}} |\gamma'(w)| - |\gamma'(t)| dt \right| \\ &\leq \left| \int_{s_{1}}^{s_{2}} (\gamma'(t) - \gamma'(w)) dt \right| + \int_{s_{1}}^{s_{2}} |\gamma'(w) - \gamma'(t)| dt \\ &\leq \int_{s_{1}}^{s_{2}} |\gamma'(t) - \gamma'(w)| dt + \int_{s_{1}}^{s_{2}} |\gamma'(w) - \gamma'(t)| dt \\ &\leq \int_{s_{1}}^{s_{2}} v dt + \int_{s_{1}}^{s_{2}} v dt = 2v(s_{2} - s_{1}) \end{aligned}$$

as we wanted.

b) Let $M_1 = \sup_{t \in [a,b]} |\gamma'(t)|$, $M_2 = \sup_{t \in [a,b]} |f(\gamma(t))|$, and let $\varepsilon > 0$. By the continuity of $f \circ \gamma$ and of γ' , there exists a $\delta > 0$ such that

$$|t_1 - t_2| < \delta \implies |f(\gamma(t_1)) - f(\gamma(t_2))| < \varepsilon$$

and

$$|t_1 - t_2| < \delta \implies |\gamma'(t_1) - \gamma'(t_2)| < \varepsilon.$$

Now fix a partition $p = \{s_k\}_{0 \le k \le n}$ such that $|s_k - s_{k-1}| < \delta$. We note that any refinement of P also has the property that it's step sizes are less than δ . We also let $v_k = \sup_{x,y \in [s_{k-1},s_k]} |\gamma'(x) - \gamma'(y)|$ and note that $v_k < \varepsilon$ by our choice of partition. With all this, we get that

$$\begin{split} &\left| \int_{a}^{b} f(\gamma(t)) |\gamma'(t)| \, dt - \sum_{k=1}^{n} f(\gamma(\tau_{k})) |\gamma(s_{k}) - \gamma(s_{k-1})| \right| \\ &= \left| \sum_{k=1}^{n} \int_{s_{k-1}}^{s_{k}} f(\gamma(t)) |\gamma'(t)| \, dt - f(\gamma(\tau_{k})) |\gamma(s_{k}) - \gamma(s_{k-1})| \right| \\ &\leq \sum_{k=1}^{n} \left| \int_{s_{k-1}}^{s_{k}} f(\gamma(t)) |\gamma'(t)| \, dt - f(\gamma(\tau_{k})) \int_{s_{k-1}}^{s_{k}} |\gamma'(t)| \, dt \right| \\ &+ \left| f(\gamma(\tau_{k})) \int_{s_{k-1}}^{s_{k}} |\gamma'(t)| \, dt - f(\gamma(\tau_{k})) |\gamma(s_{k}) - \gamma(s_{k-1})| \right| \\ &= \sum_{k=1}^{n} \left| \int_{s_{k-1}}^{s_{k}} (f(\gamma(t)) - f(\gamma(t_{k}))) |\gamma'(t)| \, dt \right| + \left| f(\gamma(\tau_{k})) \left(\int_{s_{k-1}}^{s_{k}} |\gamma'(t)| \, dt - |\gamma(s_{k}) - \gamma(s_{k-1})| \right) \right| \\ &\leq \sum_{k=1}^{n} \int_{s_{k-1}}^{s_{k}} |f(\gamma(t)) - f(\gamma(t_{k}))| |\gamma'(t)| \, dt + |f(\gamma(\tau_{k}))| |2v_{k}(s_{k} - s_{k-1})| \\ &\leq \sum_{k=1}^{n} \int_{s_{k-1}}^{s_{k}} \varepsilon M_{1} \, dt + 2M_{2}\varepsilon(s_{k} - s_{k-1}) = \sum_{k=1}^{n} (M_{1} + 2M_{2})(s_{k} - s_{k-1})\varepsilon = (M_{1} + 2M_{2})(b - a)\varepsilon \end{split}$$

Since this same reasoning works for any refinement of P, it must be that

$$\left| \int_a^b f(\gamma(t)) |\gamma'(t)| \, dt - \int_\gamma f(z) |dz| \right| < (M_1 + 2M_2)(b - a)\varepsilon.$$

Since ε was arbitrary, we have that

$$\int_{a}^{b} f(\gamma(t))|\gamma'(t)| dt = \int_{\gamma} f(z)|dz|$$

as desired.