Chapter 3: Computer Memory

3.1 Memory Mapping.

- computer memory can be thought of as an array of bytes.
- In modern CPU's there are hardware mapping registers used to give each process a protected address space.
 - The logical address can be the same but the physical address differs.
- Memory Pages
 - Hardware mapping registers on an x86_64 CPU can map pages of 2 different sizes.
 - 2 MB for the kernel on Linux, OS X, and Windows.
 - sometimes user processes are allowed 2 MB page.
 - 4096 bytes for most other uses.
 - Modern CPU's may allow 1 GB pages.
 - The memory system translates the upper bits of the address from a process's logical address to a physical address.
 - · Example using 4KB pages.
 - An address is translated based on the page number and the address within the page.
 - Consider the logical address 0x4000002220.
 - 4096 = 2^12 so the offset within the page is the rightmost 12 bits. 0x220
 - The page number is the rest of the bits 0x4000002
 - The hardware translates the page number to a physical page address.
 - Then the offset is tagged onto the end of the address.
 - This adds memory protection so that processes are not using memory from other processes pages.

· Users are also prohibited from reading other users data.

3.2 Process Memory Model in Linux

- In Linux the memory for a process is divided into four ligical regions.
 - text
 - data
 - heap
 - stack
- The stack is mapped to the highest address of a process.
 - Linux x86 64 has this as 0x7fffffffff or 131 TB.
 - The number is selected based on the max number of bits allowed in logical addresses being 48 bits.
- Arrangement of the program memory.
 - The text segment goes at the lowest memory address.
 - The data segment is placed directly above the text segment.
 - Data starts with the .data segment.
 - Contains initialized data.
 - Then the .bss segment.
 - contains data whihe is statically allocated in a process.
 - this data is not stored in an executable file.
 - allocated when the process is loaded into memory.
 - initially .bss segment are all 0 bits.
 - Then the heap
 - dynamically allocated memory at run time.
 - can grow very large.
 - limited by physical memory and swap space on x86_64
 - · The Stack Segment on top of that.
 - Typically restricted to 16 MB by the Linux kernel

- can be edited by changing /etc/security/limits.conf
- The stack automotacially grows when the system responds to a page fault.
- executing /cat/proc/999/maps where 999 is the pid will display the memory used by a process.