## PCT

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 5 : C12N 15/54, 9/12, C12O 1/48 |    | (11) International Publication Number: | WO 94/03609                 |
|--------------------------------------------------------------------------|----|----------------------------------------|-----------------------------|
| C12N 1/19 // C12Q 1/02<br>(C12N 1/19, C12R 1:645)                        | Ä1 | (43) International Publication Date:   | 17 February 1994 (17.02.94) |

(21) International Application Number: PCT/GB93/01651

(22) International Filing Date: 5 August 1993 (05.08.93)

(30) Priority data: 9216654.5 5 August 1992 (05.08.92) GB

(71) Applicant (for all designated States except US): IMPERIAL CANCER RESEARCH TECHNOLOGY LIMITED [GB/GB]; Sardinia House, Sardinia Street, London WC2A 3NL (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PARKER, Peter, Joseph, Jacques [GB/GB]; GOODE, Nigel, Thomas [AU/GB]; NURSE, Paul, Maxime [GB/GB]; Imperial Cancer Research Fund, P.O. Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX (GB). WATERFIELD, Michael, Derek [GB/GB]; Ludwig Institute for Cancer Research, London W1P 8BT (GB).

(74) Agent: BASSETT, Richard, S.; Eric Potter Clarkson, St. Mary's Court, St. Mary's Gate, Nottingham NG1 1LE (GB).

(81) Designated States: GB, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: EUCARYOTIC CELLS TRANSFORMED WITH A MAMMALIAN PHOSPHOLIPID KINASE OR PROTEIN KINASE AND ASSAYS USING THEM

#### (57) Abstract

A eukaryotic cell transformed with a DNA construct comprising a coding sequence encoding a polypeptide having the activity of a mammalian phospholipid kinase or a mammalian protein kinase activated by a phospholipid or its metabolite and regulatory elements to allow transcription of the coding sequence in the said cell wherein the regulatory elements include a repressible or inducible promoter and the expression of the said coding sequence is lethal or growth inhibitory to the cell. In a preferred embodiment the cells are *Schizosaccharomyce pombe*. The cells are used as the basis of an assay for compounds involved in cell growth regulation. Such compounds can be used to treat cancers and the formation of blood vessel plaques.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT | Austria                  | FR  | France                       | MR   | Mauritania               |
|----|--------------------------|-----|------------------------------|------|--------------------------|
| AU | Australia                | GA  | Gabon                        | MW   | Malawi                   |
| BB | Barbados                 | GB  | United Kingdom               | NE   | Niger                    |
| BE | Belgium                  | GN  | Guinea                       | NL   | Netherlands              |
| BF | Burkina Faso             | GR  | Greuce                       | NO   | Norway                   |
| BG | Bulgaria                 | HÜ  | Hungary                      | NZ.  | New Zealand              |
| BJ | Benin                    | iE  | Ireland                      | PL   | Poland                   |
| BR | Brazil                   | iŦ  | Italy                        | PT   | Portugal                 |
| BY | Belarus                  | JР  | Japan                        | RO   | Romania                  |
| CA | Canada                   | KP  | Democratic People's Republic | RU . | Russian Federation       |
| CF | Central African Republic | *** | of Korea                     | SD   | Sudan                    |
| CG | Congo                    | KR  | Republic of Korea            | SE   | Sweden                   |
| CH | Switzerland              | KZ  | Kazakhstan                   | SI   | Slovenia                 |
| CI | Côte d'Ivoire            | Li  | Liechtenstein                | SK   | Slovak Republic          |
| CM | Cameroon                 | Ĭ.ĸ | Sri Lanka                    | SN   | Senegal                  |
|    | China                    | เบ  | Luxembourg                   | TD   | Chad                     |
| CN |                          | LV  | Latvia                       | TG   | Togo                     |
| CS | Czechoslovakia           | MC  | Monaco                       | ÜÄ   | Ukraine                  |
| CZ | Czech Republic           |     |                              | US   | United States of America |
| DE | Germany                  | MG  | Madagascar                   | UZ   | Uzbekistan               |
| DK | Denmark                  | ML  | Mali                         |      |                          |
| ES | Spain                    | MN  | Mongolia                     | VN   | Viot Nam                 |
| FI | Finland                  |     |                              |      |                          |

WO 94/03609 PCT/GB93/01651

1

#### EUCARYOTIC CELLS TRANSFORMED WITH A MAMMALIAN PHOSPHOLIPID KINASE

#### OR PROTEIN KINASE AND ASSAYS USING THEM

The present invention relates to assays for compounds involved in cell growth regulation, and more particularly to those involved in transducing signals from hormones, growth factors and oncogenes. Such compounds represent potential drugs or targets for drugs to treat cancers and to prevent the formation of plaques which cause heart disease.

Phosphatidylinositol 3-OH kinase (PtdIns 3-kinase) catalyses the phosphorylation of the 3-hydroxyl of inositol in PtdIns, PtdIns-4-phosphate or in PtdIns-4,5-bisphosphate. This activity is involved in transducing signals from a number of hormones, growth factors and oncogenes. The standard assay for the activity of the PtdIns 3-kinase involving lipid moieties does not readily lend itself to a screen for potential inhibitors (or activators) of catalytic function. Members of the protein kinase C family of enzymes are involved in transducing signals from a number of hormones, growth factors and oncogenes. The standard assay for protein kinase C does not lend itself to a screen for potential inhibitors (or activators) of catalytic function.

20 Thus it has been desirable to investigate other means of searching for inhibitors.

A first aspect of the invention provides a eukaryotic cell transformed with a DNA construct comprising a coding sequence encoding a polypeptide having the activity of a mammalian phospholipid kinase or a mammalian protein kinase activated by a phospholipid or its metabolite and regulatory elements to allow transcription of the coding sequence in the said cell wherein the regulatory elements include a repressible or inducible promoter and the expression of the said coding sequence is lethal or growth inhibitory to the cell.

25

5

10

Polypeptides having the activity of a phospholipid kinase or a protein kinase activated by a phospholipid or its metabolite are involved in cell growth regulation.

- By "growth inhibitory" we mean that the growth rate of cells transformed with the said DNA construct is at least two to three fold lower than the same cells not transformed with the said DNA construct when grown in the same culture conditions.
- By "repressible" we mean that in the presence of a repressing agent the expression from the promoter is at least two-fold lower than expression from the promoter in the absence of the repressing agent.
- It is preferred if expression from the promoter in the presence of a repressing agent is at least five-fold lower, more preferably ten-fold lower or even more preferably 100-fold lower than expression from the promoter in the absence of the repressing agent.
- By "inducible" we mean that in the presence of an inducing agent the expression from the promoter is at least two-fold higher than expression from the promoter in the absence of the inducing agent.
- It is preferred if expression from the promoter in the presence of an inducing agent is at least five-fold higher, more preferably ten-fold higher or even more preferably 100-fold higher than expression from the promoter in the absence of the inducing agent.
  - When an inducible promoter is used there is sufficiently low expression of the polypeptide in the uninduced state that the lethal or growth inhibitory phenotype is not observed whereas when the inducing agent is present the lethal or growth

inhibitory phenotype is observed.

When a repressible promoter is used there is sufficiently low expression of the polypeptide in the repressed state that the lethal or growth inhibitory phenotype is not observed whereas when the repressing agent is absent the lethal or growth inhibitory phenotype is observed.

Suitable eukaryotic cells include mammalian cells, such as COS cells and CHO cells, insect cells, slime mould such as *Dictyostelium*, and yeast.

10

Suitable regulatable mammalian cell promoters include glucocorticoid-inducible promoters and the metallothionein promoter.

It is preferred if the cell is a yeast cell.

15

Exemplary genera of yeast contemplated to be useful in the practice of the present invention are Pichia, Saccharomyces, Kluyveromyces, Candida, Torulopsis, Hansenula, Schizosaccharomyces, Citeromyces, Pachysolen, Debaromyces, Metschunikowia, Rhodosporidium, Leucosporidium, Botryoascus, Sporidiobolus, Endomycopsis, and the like.

It is preferred if the yeast is a fission yeast.

It is further preferred if the yeast is Schizosaccharomyces.

25

30

20

Preferably, the said polypeptide has the activity of a phospholipid kinase, for example a catalytically effective portion of the said kinase. Phospholipid kinases include phosphatidyl inositol 3-kinase, phosphatidyl inositol 4-kinase and phosphatidyl inositol 5-kinase which phosphorylate the inositol ring on the 3', 4' or 5' hydroxyl, respectively.

30

4

Suitably, the said polypeptide is a catalytically effective portion of a phosphatidylinositol 3-OH kinase. It is convenient to use the 110 kDa mammalian PtdIns 3-kinase catalytic subunit.

In further preference, the said polypeptide is a catalytically effective portion of a protein kinase C (PKC). Suitably, the protein kinase C is PKC- $\gamma$  or PKC- $\delta$  or PKC- $\eta$  or PKC- $\epsilon$ .

A constitutive promoter such as *adh* may be used (disclosed in ref 1). Also, the SV40 promoter may be used.

Thus, a further aspect of the invention provides a Schizosaccharomyces cell transformed with a DNA construct comprising a coding sequence encoding a polypeptide having the activity of a mammalian phospholipid kinase or a mammalian protein kinase activated by a phospholipid or its metabolite and regulatory elements to allow transcription of the coding sequence in the said cell wherein the regulatory elements include a constitutive promoter and the expression of the said coding sequence is lethal or growth inhibitory to the cell.

Any gene that arrests growth or is lethal can be expressed only transiently for the purposes of subsequent inhibitor screening. In the case of a constitutive promoter in a plasmid carrying a marker, freshly transfected cells are diluted directly into medium using a combination of growth conditions to select for transfectants (for example, medium containing no leucine) and added potential inhibitors of the constitutively expressed mammalian gene to test for their efficacy.

Mammalian genes whose expression can be controlled by growth conditions can be introduced into the yeast under conditions where expression is low (ie suppressed or not induced).

15

20

25

30

It is preferred if the mammalian genes so introduced are stably maintained in the yeast.

It is further preferred if the mammalian genes are stably integrated into the yeast genome.

Expression is then increased following growth under de-repressing conditions (for example removal of thiamine) and potential inhibitors scored on their ability to permit growth under these conditions. The use of an integrant and a controllable promoter provides the most amenable procedure. The induction of cell arrest or cell death provides a powerful screen for a suppressor of such events. The present invention provides a screen for suppressors of regulatory proteins that control other mammalian functions either directly, for example protein kinases, or indirectly through the production of small regulatory molecules, for example an inositol lipid kinase.

Thus, in a preferred embodiment, the S. pombe cells contain a coding sequence for the 110 kDa mammalian PtdIns 3-kinase catalytic subunit under the regulatory control of the nmt promoter and with other suitable regulatory elements, such as a transcription terminator, as is known in the art, for expression of the said catalytic subunit. In the presence of thiamine the promoter is inoperative and the cells carrying the PtdIns 3-kinase catalytic subunit plasmid grow as the parental strain. (It will be appreciated by those skilled in the art that the parental strain may not be wild-type. For example mutant strains containing Ade or Leu or Ura mutations may be used as the parental strain to allow selection of plasmid uptake). In the absence of thiamine the nmt promoter functions and the PtdIns 3-kinase catalytic subunit is induced. This has been shown by demonstrating a substantial increase in PtdIns 3-kinase activity under these conditions. However, following this induction the cells cease to divide; cultures plated in the absence of thiamine

do not grow but die.

Derivative of the *nmt* promoter that retain the thiamine-repressibility characteristics of the wild type promoter may also be used.

5

10

15

20

25

As an alternative to the thiamine-repressible *nmt* promoter, the *fbp1* gene promoter from *S. pombe* can be used. The *fbp1* gene promoter is repressed in the presence of 8% glucose as disclosed by Hoffman & Winston (1990) Genetics 124, 807-816 incorporated herein by reference. Thus, in a further embodiment, the *S. pombe* cells contain a coding sequence for the 110 kDa mammalian PtdIns 3-kinase catalytic subunit under the regulatory control of the *fbp1* promoter and with other suitable regulatory elements for expression of the said catalytic subunit. In the presence of 8% glucose the function of the promoter is repressed and the cells carrying the PtdIns 3-kinase catalytic subunit plasmid grow on the parental strains. In the absence of glucose the *fbp1* promoter functions and the PtdIns 3-kinase catalytic subunit is induced.

The lethal phenotype of the *S. pombe* expressing mammalian PtdIns 3-kinase provides a very powerful tool with which to screen for inhibitors of this activity. Cells plated in the absence of thiamine will survive and proliferate if the activity of the PtdIns 3-kinase is suppressed. A direct demonstration that this is indeed the case, is afforded by the finding that a mammalian PtdIns 3-kinase regulatory subunit (p85 $\alpha$ ) when coexpressed with the PtdIns 3-kinase catalytic subunit will rescue these cells and allow proliferation. Clearly, therefore, coexpression of (or generally the presence of) the p85 $\alpha$  subunit should be avoided in the assay of this embodiment, as should, in other embodiments, other activity-suppressing compounds.

In further embodiments the S. pombe cells contain a coding sequence for a mammalian protein kinase C under the regulatory control of the nmt promoter

or the fbp1 promoter.

As an inhibitor screening process, a further advantage afforded by this approach is that general cytostatic and cytotoxic compounds will score negative; the screen will distinguish the action of the mammalian PtdIns 3-kinase or protein kinase C against the background of a plethora of essential eukaryotic gene functions.

Thus, a further aspect of the invention provides an assay kit comprising a eukaryotic cell according to the first aspect of the invention and culture medium such that the cell will divide and grow and such that the said coding sequence is expressed, the expressed polypeptide at least preventing cell division in the cell culture.

15 Conveniently the kit comprises S. pombe as the eukaryotic cell.

The invention also encompasses compounds identified as being useful in the assays of the invention.

These compounds are useful in the treatment of disease and medical conditions where there is an undesirable function of a phospholipid kinase or a protein kinase activated by a phospholipid or its metabolite.

Such diseases and conditions include cancer, inflammation, Alzheimer's disease, restenosis, atherosclerosis and wound healing.

Suitable promoters and coding sequence can be incorporated into vectors in the correct orientation by methods known in the art, some of which are described in Sambrook et al (1989) Molecular Cloning, a practical approach (2nd Edition), Sambrook, J., Fritsch, E. & Maniatis, T., eds, Cold Spring Harbor

Laboratory Press, Cold Spring Harbor, New York, incorporated herein by reference.

A variety of methods have been developed to operatively link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

10

15

20

25

30

Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. The DNA segment, generated by endonuclease restriction digestion as described earlier, is treated with bacteriophage T4 DNA polymerase or *E. coli* DNA polymerase I, enzymes that remove protruding, 3'-single-stranded termini with their 3'-5'-exonucleolytic activities, and fill in recessed 3'-ends with their polymerizing activities.

The combination of these activities therefore generates blunt-ended DNA segments. The blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase. Thus, the products of the reaction are DNA segments carrying polymeric linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.

Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.

A desirable way to modify the DNA encoding the polypeptide of the invention is to use the polymerase chain reaction as disclosed by Saiki et al (1988) Science 239, 487-491.

In this method the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA. The said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art.

10

Transformation of appropriate cell hosts is accomplished by well known methods that typically depend on the type of vector used and host cell. Transformation of Saccharomyces and related cells is described in Sherman et al (1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY. The method of Beggs (1978) Nature 275, 104-109 is also useful. With regard to vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, MD 20877, USA.

20

15

Schizosaccharomyces pombe may be transformed following LiCl treatment or by electroporation.

Conveniently, a Bio-Rad Pulse Controller may be used for electroporation of S. pombe cells.

- a) Grow up cells to OD<sub>595</sub> less than or equal to 0.5 in minimal medium.
- b) Centrifuge cells at 1500 g for 5 min, remove supernatant and resuspend in 20 ml ice-cold distilled water, centrifuge again, remove supernatant and

resuspend in 20 ml ice-cold 1 M sorbitol, centrifuge again and remove supernatant.

- c) Resuspend cells in ice-cold 1 M sorbitol to a density of  $\sim 5 \times 10^9$  cells/ml (concentrated 500 times when compared to original culture).
  - d) Use 40-100  $\mu$ l of cell suspension per transformation. Add DNA (up to 100 ng) in 1  $\mu$ l in TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) to cells and incubate on ice 5 min.

10

- e) Transfer to pre-chilled cuvettes (0.2 cm gap) and apply pulse (1.5 KV, 25  $\mu$ F, 200  $\Omega$ ).
- f) Immediately add 900  $\mu$ l of ice-cold 1 M sorbitol and transfer to a chilled tube on ice.
  - g) Promptly spread 100-200  $\mu$ l onto a selective minimal medium plate containing 1 M sorbitol and culture at 32°C until grown.
- The technique of electroporation of yeast is disclosed in Becker, D.M. and Guarente, L. (1990) Meth. Enzymol. 194, 182.

Machines for electroporation are available from other manufacturers and can be used to transform yeast and mammalian cells according to their instructions.

25

30

Successfully transformed cells, ie cells that contain a DNA construct, can be identified by well known techniques. For example, cells resulting from the introduction of an expression construct of the present invention can be grown to produce the polypeptide of the invention. Cells can be harvested and lysed and their DNA content examined for the presence of the DNA using a method

such as that described by Southern (1975) J. Mol. Biol. 98, 503 or Berent et al (1985) Biotech. 3, 208.

In addition to directly assaying for the presence of recombinant DNA, successful transformation can be confirmed by well known immunological methods when the recombinant DNA is capable of directing the expression of the protein. For example, cells successfully transformed with an expression vector produce proteins displaying appropriate antigenicity. Samples of cells suspected of being transformed are harvested and assayed for the protein using suitable antibodies, for example by western blotting.

The invention will now be described in detail with reference to the following Examples and Figures wherein:

Figure 1 shows the nucleotide sequence (SEQ ID No 1) and deduced amino acid (SEQ ID No 2) of the sequence 110 kDa catalytic subunit of PtdIns 3-kinase (P110).

Figure 2 shows the nucleotide sequence of the *nmt* promoter region (SEQ ID No 3).

Figure 3 shows the nucleotide sequence of PKC- $\epsilon$  (SEQ ID No 4).

Figure 4 shows the nucleotide sequence of PKC- $\gamma$  (SEQ ID No 5).

Figure 5 shows the nucleotide sequence of PKC-δ (SEO ID No 6).

Figure 6 shows the nucleotide sequence of PKC-η (SEQ ID No 7).

30 Figure 7 shows that the lethal effect of p110 expression in S. pombe is

20

25

30

suppressed by p85 expression.

Figure 8 shows the isotype-specific effects of PKC expression in S. pombe.

5 Figure 9 shows the effect of PKC expression on growth rates in liquid culture.

Figure 10 shows that PKC-δ-induced growth inhibition is the result of kinase activity.

10 Example 1: Assay using catalytic subunit of PtdIns 3-kinase and nmt promoter

Isolation of PtdIns 3-kinase catalytic subunit cDNA. The cDNA for the 110 kDa catalytic subunit can be isolated by a conventional cloning strategy. Purification of the bovine enzyme from brain tissue (Morgan, Smith et al 1990) has demonstrated that sufficient protein can be isolated for protein sequence determination. This is unequivocally established for the 85 kDa regulatory subunit which has been sequenced from this source and, as a consequence, cloned (Otsu, Hiles et al 1991). The PtdIns 3-kinase from bovine brain (85-110 dimer) is purified according to Morgan, Smith et al (1990) by sequential fractionation with ammonium sulphate and chromatography on DEAE-cellulose, phosphocellulose, Sephacryl S-200 and Mono Q. In order to remove contaminants and separate subunits, the protein is further purified by sodium dodecyl sulphate polyacrylamide gel electrophoresis according to Laemmli (1970), the 110 kDa protein visualised in ammonium chloride (4N), electroeluted and digested with trypsin as described in Katan, Kriz et al (1988). Tryptic peptides are then separated by standard procedures and subjected to amino acid sequence determination. Sequence established for the 110 kDa catalytic subunit is used to predict redundant oligonucleotide probes for screening a bovine brain cDNA library. Standard cloning procedures are then employed in the isolation of a cDNA encoding the complete open reading frame of the 110 kDa subunit (Sambrook et al 1989). The sequence of the cDNA is determined by commonly employed dideoxy-sequencing procedures. A specific example of using this strategy is described by Hiles et al (1992) Cell 70, 419-429.

Materials: Restriction enzymes and DNA modification enzymes were obtained from standard commercial sources and used according to the manufacturer's recommendations. Oligonucleotides were synthesised on an Applied Biosystems 380B DNA synthesiser and used directly in subsequent procedures.

Protein Purification and Amino Acid Sequence Determination: purification of the p85 $\alpha$  and p110 proteins by chromatography on a peptide affinity column corresponding to amino acids 742-758 of the kinase insert region of the human PDGF-β receptor has been described (Otsu et al (1991) Cell 65, 91-104). Proteins were released from the affinity matrix using SDScontaining buffers, separated on a Prosieve agarose gel, and visualised by staining with Coomassie blue G250. The band corresponding to p110 was excised and protein was eluted by tube gel HPEC. Protein was precipitated from p110-containing fractions by treatment with trichloroacetic acid and then washed with acetone. The p110-containing pellet was resuspended and digested with lysylendopeptidase in the presence of SDS, and peptides were separated by tandem ion-exchange chromatography and reverse-phase HPLC. This procedure was carried out on three separate PI3-kinase preparations. A fourth preparation was eluted from the matrix as before and boiled for 5 min. After cooling, the sample was diluted with 25 mM Tris-HCl (pH 8.8) and digested directly with lysylendopeptidase for 72 hr at 30°C. Peptides were separated as above. Peptide sequences were determined using a modified Applied Biosystems 477A automated pulse-liquid sequencer.

25

5

10

15

10

15

20

25

30

mRNA Isolation and cDNA Cloning: Total RNA was isolated from SGBAF-1 cells by the method of Chirgwin et al (1979) Biochemistry 18, 294-299 and poly(A) mRNA was selected by chromatography on oligo-(dT)-cellulose (Maniatis et al (1982) Molecular Cloning: A laboratory manual, Cold Spring Harbor Press, Cold Spring Harbor, New York). An oligo-dT primed cDNA library of 5 x  $10^6$  primary recombinants was constructed in lambda Uni-Zap (Stratagene) from 5  $\mu$ g of this mRNA using the Stratagene Uni-Zap cDNA cloning system. The construction of the total bovine brain cDNA library in lambda Uni-Zap has been described previously (Otsu et al (1991) Cell 65, 91-104).

Library Screening and Hybridisations: The unamplified SGBAF-1 cDNA library (106 recombinants) was plated on E. coli K12 PLK-F (Stratagene) at a density of 10<sup>5</sup> plaques per 15 cm dish, and lifts were taken in duplicate onto nitrocellulose membranes (Millipore). For screening, filters were prehybridised for at least 1 hr at 42°C in 6 x SSPE, 0.5% SDS, 10 x Denhardt's solution, and 100 µg/ml denatured sonicated herring sperm DNA (Sigma). Hybridisation was carried out in the same solution containing 10 ng/ml radiolabeled oligonucleotide. Oligonucleotides used were: peptide N, (MDWIFHT; SEO ID No 8) 5'-AA(G/A)ATGGA(T/C)TGGAT(C/T/A)TT(T/C)CA(T/C)AC-3' (SEQ ID No 9); peptide J (DDGQLFHIDFGHF; SEQ ID No 10) 5'-GATGATGGCC-A(G/A)CTGTT(T/C)CA(T/C)AT(T/A)GA(T/C)-TTTGGCCA(T/C)TT (SEQ ID No 11). Oligonucleotides were labeled with <sup>32</sup>P at the 5' end in a 20  $\mu$ l reaction containing 100 ng of oligonucleotide, 1 x kinase buffer (Promega), 0.1 mM spermidine, 5 mM dithiothreitol, 100  $\mu$ Ci of  $[\gamma^{-32}P]$ ATP (5000 Ci/mmol, Amersham), and 2  $\mu$ l (20 U) of T4 polynucleotide kinase (Amersham). Filters were washed in 6 x SSC, 0.1% SDS at room temperature and then subjected to autoradiography using Kodak XAR film. Hybridising clones were plaque purified and rescued as plasmids according to the manufacturer's instructions.

Characterisation of cDNA Clones: Sequencing was carried out by the chain termination method using the Sequenase system (US Biochemicals). Clones for sequencing were obtained by directed cloning of restriction fragments into M13mp18 and mp19 vectors (Yanisch-Perron et al (1985) Gene 33, 103-119) and by making a series of exonuclease III-mediated deletions (Henikoff (1984) Gene 28, 351-359; Pharmacia Exonuclease III deletion kit). DNA sequences were analysed on a Micro-VAX computer using the Wisconsin sequence analysis package (UWGCG; Devereux et al (1984) Nucl. Acids Res. 12, 387-395).

10

15

20

25

30

5

RACE PCR: RACE PCR was carried out essentially as described previously (Frohman et al (1988) Proc. Natl. Acad. Sci. USA 85, 8998-9002; Harvey and Garlison (1991) Nucl. Acids Res. 19, 4002). In brief, first-strand cDNA primed with random hexamers (Amersham) was synthesised from 1  $\mu$ g of SGBAF-1 cell mRNA using the Stratagene first-strand cDNA synthesis kit. First-strand cDNA was isolated by isopropanol precipitation and tailed with oligo-(dA) using terminal deoxynucleotidyl transferase (Bethesda Research Laboratories). PCR was performed using oligo 2224 AATTCACACACTGGCATGCCGAT; SEQ ID No 12) and adaptor dT (5'-primers, using a Perkin-Elmer Cetus Taq polymerase PCR kit (conditions: 30 cycles of 94°C for 1 min, 35°C for 1 min, 72°C for 2 min). Products were fractionated on a 1.5% low melting point agarose gel and visualised by staining with ethidium bromide. The gel was sliced into six bands (ranging from 150 bp to 2000 bp), and DNA was isolated from each gel slice. A further round of PCR was performed on this DNA using oligonucleotide 2280 (5'-TTTAAGCTTAGGCATTCTAAAGTCACTATCATCCC; SEQ ID No 14) and adaptor (5'-GACTCGAGTCGACATCGA; SEQ ID No 15) as primers (conditions: 35 cycles of 94°C for 1 min, 56°C for 1 min, 72°C for 2 min). Products were fractionated on an agarose gel and visualised by staining with

ethidium bromide. A band 250 bp shorter than the size of the DNA in the gel slice used for the PCR was expected. An intensely staining band of 350 bp obtained from the ~600 bp gel slice was excised, digested with *HindIII* and *SalI*, and ligated into Bluescript KS- digested with *HindIII* and *XhoI* to give plasmid pBS/race. Two independent inserts were completely sequenced. The sequence of p110, the 110-kD catalytic subunit of PI3-kinase is shown in Figure 1 and has the GenEMBL Accession No M93259 (SEQ ID No 1).

Isolation of *nmt* promoter. The promoter has been isolated by Maundrell (2) and may be isolated by repeating the procedures reported in that reference. Moreover, the sequence of the gene, including the promoter, has been submitted to the GenBank<sup>TM</sup>/EMBL database as Accession No J05493 and is shown in Figure 2 (SEQ ID No 3).

Vectors containing the *nmt* promoter and derivatives of the *nmt* promoter suitable for use in the present invention are described by Basi *et al* (1992) Yeast 8, S597 (special issue) and Maundrell (1990).

The upstream regulatory region and downstream polyadenylation site of *nmt1* have been incorporated into two types of *S. pombe/E. coli* shuttle vector: pREP extrachromosomally replicating plasmids and pRIP integrating plasmids. Using either of these constructs thiamine mediated transcriptional regulation can be transferred to heterologous coding sequences.

The time course of induction and repression have been studied as a function of changes in the intracellular thiamine concentration. Addition of thiamine to cells growing in minimal medium results in a rapid rise in the internal thiamine from a basal level of around 10 pmoles/10<sup>7</sup> cells to up to 1000 fold this level and this is accompanied by repression of *nmt1* promoter activity. If cells are then washed and allowed to continue growth in minimal medium, the

10

15

intracellular thiamine is progressively diluted as the cell mass doubles and transcription is reinitiated as the internal thiamine concentration falls below 50 pmoles/10<sup>7</sup> cells. The time taken to re-activate the *nmt1* promoter therefore depends on the internal thiamine concentration at the time when the cells are transferred to thiamine free medium.

Quantitation of promoter strength was assessed using chloramphenicol acetyl transferase as a reporter gene. The fully induced nmt1 promoter is about 6 fold more active than the S. pombe adh promoter and its activity is reduced about 80 fold when cells are grown in repressing conditions. These vectors are ideally suited to applications requiring maximal expression of a gene of interest. In addition, two modified versions of the promoter with reduced activity have been created following an analysis of the effects of TATA box mutations. Truncating the wild type TATA box, TATATAAA to ATAAA (the '4' series) or AT (the '8' series) down-regulates transcriptional activity of the nmt1 promoter by approximately 1 and 2 orders of magnitude respectively (see Table). These mutations in the TATA box do not affect thiamine repressibility or the site of transcription initiation.

The table below summarises the salient features of some of the vectors which have been constructed thus far:

| vector | TATA box | selectable | restriction site         | relative activitya | vitya     |
|--------|----------|------------|--------------------------|--------------------|-----------|
|        |          | marker     | at A I G                 | -thiamine          | +thiamine |
| pREP1  | TATATAAA | LEU2       | Ndel                     | 80                 | 1         |
| pREP2  | TATATAAA | ura4       | NdeI                     | 80                 | 1         |
| pREP3  | TATATAAA | LEU2       | Ball                     | 80                 |           |
| pREP3X | TATATAA  | LEU2       | q-                       | 80                 |           |
| pREP4  | TATATAAA | ura4       | Ball                     | 80                 | 1         |
| pREP41 | ATAAA    | LEU2       | Ndel                     | 12                 | 0.06      |
| pREP42 | ATAAA    | ura4       | Ndel                     | 12                 | 90.0      |
| pREP6  | TATATAAA | Sup3.5     | Ball                     | 80                 | 1         |
| pREP6X | TATATAAA | Sup3.5     | multiple<br>cloning site | 80                 | -         |
| pREP81 | AT       | LEU2       | NdeI                     |                    | 0.004     |
| pREP82 | AT       | ùra4       | Ndel                     | 1                  | 0.004     |

activity is based on the quantitation of CAT assays. Data are expressed in arbitrary units relative to the wild type promoter cultured in the presence of thiamine.

7

10

15

20

25

30

- the *Bal*I site is replaced with an *Xho*I site allowing expression from the ATG.
- in some of the vectors the complementation gene used for selection of plasmid uptake has been changed from the LEU2 gene to the sup 3.5 gene which complements the Ade 6.704 mutation or to the URA4 gene. The backbone of the plasmid is not altered (ie promoter and stop sequence from the *nmt*1 gene, ARS1 and pUC119 backbone).

Construction of an S. pombe p110 expression system. A suitable restriction fragment containing the complete 110 kDa subunit open reading frame and flanking sequences is subcloned into the nmt promoter plasmid containing a suitable marker gene for selection creating an nmt-100 plasmid in order to allow expression of the 110 kDa protein under the control of the thiamine repressible nmt promoter. The nmt-110 plasmid is grown in a suitable bacterial host and the plasmid purified by conventional techniques (Sambrook et al 1989). A 3.4 kb BamHI/FspI fragment containing the cDNA of p110 was isolated and subcloned into the BamHI/SmaI sites of pREP3X-p110 (nmt-110).

The *nmt*-110 plasmid is then transfected by standard procedures (Moreno, Klar et al 1991) into a Schizosaccharomyces pombe strain that is auxotrophic for leucine cells are transformed using electroporation. Transfected cells are then plated in the presence of thiamine and in the absence of leucine. As an alternative Schizosaccharomyces pombe strains which are auxotrophic for adenine or uracil (that is Ade or Ura) may be used; in this case the cells are plated in the presence of thiamine and absence of adenine, or the presence of thiamine and absence of uracil, respectively. Colonies growing up under these conditions are then analysed for the presence of the *nmt*-110 plasmid. The lethal phenotype caused by the expression of 110 kDa protein is checked by replating colonies in the presence or absence of thiamine; under the latter conditions colonies will arrest and/or die.

For the purposes of setting up a screen for inhibitors, a stable transformant is isolated. This is carried out by standard procedures involving growth in the presence and absence of the selectable marker leucine (or adenine or uracil). Isolates obtained in this manner are checked for the stable insertion of the 110 kDa sequence into genomic DNA by Southern analysis or stable replication of a non-integrated plasmid. Expression of the p110 protein is also confirmed by western blot analysis of the transformants using antibodies reactive against p110, or by measuring the activity of the p110 subunit in the transformed cells. The inducible lethal phenotype is rechecked by growth of these isolates in the presence and absence of thiamine ( $\geq$  10 nM).

It is preferred if 100 nM, or > 1 pM or > 1  $\mu$ M is used.

It is most preferred if 15  $\mu$ M thiamine is used.

15

20

25

30

10

Operating the screen. The screen for inhibitor activity is carried out on a 96-well microtitre plate format. An integrant colony is picked and put into liquid culture in minimal medium, 2% glucose, 15  $\mu$ M thiamine and supplements appropriate for the strain (eg uracil 50  $\mu$ g/ml would be included for a urastrain if the integrated plasmid did not harbour a URA4-based selection marker). This culture is grown up and, after extensive washing, used to seed two 10 ml cultures, one containing thiamine as above, and one without. The cultures are expanded overnight and then diluted to an optical density (OD) at 595 nm of 0.01-0.10. For those cells requiring treatment for arrest of growth additions are made at this stage prior to plating. The diluted cultures are then aliquoted into wells of a sterile 96 well microtitre plate containing individual test compounds in the presence or absence of thiamine. The growth of the cells is monitored over time until the OD<sub>595</sub> reached is ~0.8 for control cultures. Control cultures are those cultured with thiamine. The OD<sub>595</sub> is assessed using a microtitre plate reader.

15

20

The cells precultured in thiamine and retained in thiamine serve to indicate optimum growth rate. Cells precultured in the absence of thiamine and then put into wells containing thiamine provide a control for the rescue of growth. Cells precultured in the absence of thiamine and put into wells in the absence of thiamine or test compound provide a baseline for non-growth. Individual test compounds are assessed for their potency in permitting growth in the absence of thiamine in cells plated in the absence of thiamine.

Accumulated experience in the operation of this screen for a particular gene product permits a less frequent monitoring of the growth curves and a single time point may be found to be sufficient. Similarly, cultures propagated throughout in the presence of thiamine may be found to be a non-essential control. These alterations to the procedure may provide some practical advantages in increasing the number of test compounds per 96 well plate and in reducing the time required for assessment of growth.

The above procedures have been employed in creating an S. pombe strain harbouring a p110 cDNA under the control of the nmt promoter. Switching these cells from a medium containing thiamine (15  $\mu$ M) to one in the absence of thiamine causes growth arrest. Evidence that the arrest is a consequence of the expression of the mammalian protein has come from a number of observations:

- Transient transfection and subsequent expression has been observed on
   multiple occasions with the p110 cDNA and not with the vector alone.
  - 2. On expression of the p110 protein, it is possible to detect the activity of the expressed mammalian protein in cell extracts, ie the catalytic activity is retained on expression in S. pombe.

15

25

30

3. On expression of the mammalian regulatory subunit of the kinase,  $p85\alpha$  [4], increased expression of p110 no longer induces growth arrest.

The use of this system as a viable tool for screening p110 inhibitors is evidenced by the ability of p85 $\alpha$ , the regulatory subunit, to suppress the growth arrest phenotype. Biochemical evidence has already established that the p85 $\alpha$ -p110 complex is less active than the free p110 protein [9].

The lethal effect of p110 expression in S. pombe is suppressed by p85 expression as shown in Figure 7. Stable p110-expressing S. pombe cells were transformed with the pREP4 vector, or the pREP4-p85 $\alpha$  or pREP4-p85 $\beta$  constructs and, after selection for plasmid uptake, were streaked onto selective minimal medium plates in the presence or absence of thiamine. Expression of p110 alone is lethal but this effect is rescued by co-expression of either p85 $\alpha$  or p85 $\beta$ .

The p85 $\alpha$  and p85 $\beta$  cDNAs can be obtained using the methods described by Otsu et al (1991) Cell 65, 91-104 incorporated herein by reference.

# 20 Example 2: Isotype-specific effects of PKC expression in S. pombe and the effect of PKC expression on growth rates in liquid culture

S. pombe strains containing integrated plasmids for expression of mammalian PKC- $\gamma$ , - $\delta$ , - $\epsilon$ , - $\zeta$  or - $\eta$  were streaked onto selective minimal medium plates in the absence of thiamine or the presence of thiamine or TPA as shown in Figure 8. Growth of control (vector) or PKC- $\zeta$  cells was similar under all three conditions. PKC- $\gamma$  expression (Figure 8, plate B) marginally decreased growth and TPA addition to these cells totally supressed growth (Figure 8, plate C). PKC- $\delta$ , - $\epsilon$  and - $\eta$  expression alone was markedly growth inhibitory (Figure 8, plate B).

Stable PKC-S. pombe strains were cultured in minimal medium in the absence of thiamine for 18 hours until an  $OD^{595}$  of 0.2-0.5 was attained (see Figure 9). Strains were then (at time zero) diluted to an  $OD^{595}$  of 0.02 in minimal medium and cultured in the presence of 1  $\mu$ M thiamine (controls) ( $\triangle$ ), in the absence of thiamine ( $\blacksquare$ ) or in the absence of thiamine with 100 ng/ml TPA (O). At the indicated times, the cell density was calculated by measuring the  $OD^{595}$ . PKC- $\Gamma$  cells grew at a rate essentially indistinguishable from vector controls. PKC- $\delta$ ,  $-\epsilon$  and  $-\eta$  expression markedly delayed growth when compared with vector controls (-thiamine). Growth of PKC- $\gamma$ ,  $-\delta$  and  $-\eta$  expressing cells was essentially nil when cultured in the presence of TPA.

## Example 3: An inhibitor screen for protein kinase C-6

Protein kinase C- $\epsilon$  [10] cDNA (Figure 3; SEQ ID No 4) has been introduced into a plasmid under the control of the *nmt* promoter yielding *nmt*-PKC- $\epsilon$ . A 2.7 kb XhoI fragment with the full coding sequence for PKC- $\epsilon$  was isolated from pMT2-PKC- $\epsilon$  and subcloned into SalI-digested pREP3X. Then 300 bp of 5' non-coding sequence was removed by digesting with XhoI and NcoI, blunting the ends and religating to give pREP3X-PKC- $\epsilon$ . The plasmid pMT2-PKC- $\epsilon$  can be prepared by the methods described by Schaap *et al* (1989) FEBS Lett. 243, 351-357. Transfection of this construct into S. pombe employing selection for uptake of the LEU2 gene in the presence of thiamine, yields populations of cells that on switching to "no thiamine" conditions while retaining selection for LEU2, reduce growth rate.

25

10

15

20

Growth inhibition is consistent with the expression of the mammalian PKC- $\epsilon$  gene product since:

1. Growth inhibition correlates with an induction of the PKC-ε protein as

judged by Western analysis.

2. The induced phenotype also correlates with expression of PKC- $\epsilon$  activity as determined in cell extracts.

5

3. Suppression of PKC- $\epsilon$  expression by exposure to the phorbol ester TPA can rescue cells that are expressing low levels of PKC- $\epsilon$  (cells expressing high levels of PKC- $\epsilon$  are not rescued and the steady state level of PKC- $\epsilon$  is not significantly depressed by TPA treatment).

10

The expression of a functional PKC- $\epsilon$  activity in S. pombe and its correlation with growth arrest under various growth conditions provides the basis for an inhibitor screen.

The transformed cells are plated in the presence of thiamine (control) and the absence of thiamine (test) and the compound to be assayed is added to the "test" plates.

# Example 4: An inhibitor screen for protein kinase C-y.

20

25

30

A cDNA for PKC- $\gamma$  (Figure 4; SEQ ID No 5) has been introduced into a plasmid under the control of the *nmt* promoter, producing *nmt*-PKC- $\gamma$ . A 2.4 kb *Bam*HI/blunt *Hin*dIII fragment with the full coding sequence of PKC- $\gamma$  was isolated from pSP64-PKC- $\gamma$  and subcloned into the *Bam*HI/SmaI sites of pREP3X to give pREP3X-PKC- $\gamma$ . The plasmid pSP64-PKC- $\gamma$  can be prepared as described by Patel & Stabel (1989) *Cell. Signall.* 1, 227-240. Transfection of *S. pombe* with *nmt*-PKC- $\gamma$  yields populations of cells that on switching to medium without thiamine induce PKC- $\gamma$  protein as determined by Western blotting and the detection of PKC activity in cell extracts. These cells continue to grow on induction but if the PKC- $\gamma$  is selectively activated by inclusion of

the phorbol ester TPA in the growth medium, the cells will arrest. The dependence of growth arrest upon the inclusion of TPA provides direct evidence that the catalytic function of PKC- $\gamma$  is responsible for the phenotype. No such arrest is observed on treatment of the original *S. pombe* strain. Other PKC activators, such as Mezerein, or other phorbol esters or diacylglycerols may be used in place of TPA.

That activation of PKC- $\gamma$  induces growth arrest provides a screen for inhibition of function of this mammalian gene product.

10

15

20

25

5

Operating the screen. The screen for inhibitor activities is carried out on a 96-well microtitre plate format. For thiamine repressible genes, stable integrants are grown up overnight (12 h) in the absence of thiamine. The culture is then diluted in the absence of thiamine to an  $OD_{595} = 0.01$  to 0.10. The culture is then aliquoted into microtitre wells containing the potential inhibitors and, in the case of PKC- $\gamma$ , also phorbol ester. The growth of cells monitored at 595 nm using a microtitre plate reader. Cells are allowed to grow until parallel wells/plates containing cells growing in the presence of thiamine (15  $\mu$ M) have increased their  $OD_{595}$  to 1.0 units. Cells from the test wells that have proliferated can be scored relative to both control wells (eg +thiamine) and no addition wells (-inhibitor, -thiamine).

Thus, for PKC- $\gamma$  there are the following possibilities: (i) control plates which are +thiamine or -thiamine + TPA and (ii) test plates which are +thiamine + compound or -thiamine + compound or -thiamine + TPA + compound.

10

15

## Example 5: An inhibitor screen for protein kinase $C-\delta$ .

A cDNA for PKC-δ (Figure 5; SEQ ID No 6) has been introduced into a plasmid under the control of the *nmt* promoter, producing *nmt*-PKC-δ. A 2.4 kb blunt PfiMI/NdeI fragment containing the full coding sequence of PKC-δ was isolated from pBluescript-PKC-δ and subcloned into blunt Sall-digested pREP3X to give pREP3X-PKC-δ. The plasmid pBluescript-PKC-δ can be obtained using the methods described in Olivier & Parker (1991) Eur. J. Biochem. 200, 805-810 incorporated herein by reference. Transfection of S. pombe with nmt-PKC-δ yields populations of cells that on switching to medium without thiamine induce PKC- $\delta$  protein as determined by Western blotting and by activity measurements. There is marked growth inhibition by expression alone and if the PKC-δ is activated by inclusion of the phorbol ester TPA in the growth medium, the phenotype is strengthened. Experiments with PKC- $\delta$  also provide firm evidence that the phenotype is a result of the function of the kinase. Part of the kinase domain of PKC-δ was deleted thus rendering it enzymatically inactive. The product was expressed to a high level in S. pombe but there was no growth inhibition thus indicating that the phenotype is due to the functional kinase.

20

25

30

That activation of PKC- $\delta$  induces growth inhibition provides a screen for inhibition of function of this mammalian gene product.

Operating the screen. The screen for inhibitor activities is carried out on a 96-well microtitre plate format. For thiamine repressible genes, stable integrants are grown up overnight (12 h) in the absence of thiamine. The culture is then diluted in the absence of thiamine to an  $OD_{595} = 0.01$  to 0.10. The culture is then aliquoted into microtitre wells containing the potential inhibitors and, in the case of PKC- $\gamma$ , also phorbol ester. The growth of cells monitored at 595 nm using a microtitre plate reader. Cells are allowed to grow

10

15

until parallel wells/plates containing cells growing in the presence of thiamine (15  $\mu$ M) have increased their OD<sub>595</sub> to 1.0 units. Cells from the test wells that have proliferated can be scored relative to both control wells (+thiamine) and no addition wells (-inhibitor, -thiamine). Additionally, the test wells may contain or lack TPA.

Figure 10 shows that the PKC- $\delta$ -induced growth inhibition is the result of kinase activity. S. pombe cells were transformed with a control vector or vectors to express the full length PKC- $\delta$  protein or a PKC- $\delta$  protein in which part of the catalytic domain has been deleted to render it functionally inactive as a protein kinase (PKC- $\delta\Delta$ ). After selection for uptake of plasmid, a number of colonies were plated onto selective medium plates in the presence of thiamine, the absence of thiamine or the presence of TPA. PKC- $\delta$  expression markedly inhibits growth (-thiamine plate) and addition of TPA increases the effect. In contrast, expression of PKC- $\delta\Delta$  has no effect on growth under any condition.

## Example 6: An inhibitor screen for protein kinase C-n.

A cDNA for PKC-η (Figure 6; SEQ ID No 7) has been introduced into a plasmid under the control of the nmt promoter, producing nmt-PKC-η. A 3.3 kb XhoI fragment containing the coding sequence for PKC-η was isolated from pBluescript-PKC-η and subcloned into SalI-digested pREP3X to give pREP3X-PKC-η. The plasmid pBluescript-PKC-η can be obtained using the methods described by Dekker et al (1992) FEBS Lett. 312, 195-199. Transfection of S. pombe with nmt-PKC-η yields populations of cells that on switching to medium without thiamine induce PKC-η protein as determined by Western blotting and the detection of PKC activity in cell extracts. However, there is some expression even in the presence of thiamine which produces ~50% growth inhibition. There is an even more marked growth inhibition by derepressed

expression alone and if the PKC- $\eta$  is selectively activated by inclusion of the phorbol ester TPA in the growth medium, there is no growth.

That activation of PKC- $\eta$  induces growth inhibition provides a screen for inhibition of function of this mammalian gene product.

Operating the screen. The screen for inhibitor activities is carried out on a 96-well microtitre plate format. For thiamine repressible genes, stable integrants are grown up overnight (12 h) in the absence of thiamine. The culture is then diluted in the absence of thiamine to an  $OD_{595} = 0.01$  to 0.10. The culture is then aliquoted into microtitre wells containing the potential inhibitors and, in the case of PKC- $\gamma$ , also phorbol ester. The growth of cells monitored at 595 nm using a microtitre plate reader. Cells are allowed to grow until parallel wells/plates containing cells growing in the presence of thiamine (15  $\mu$ M) have increased their  $OD_{595}$  to 1.0 units. Cells from the test wells that have proliferated can be scored relative to both control wells (+thiamine) and no addition wells (-inhibitor, -thiamine). Additionally, the test wells may contain or lack TPA.

20

10

## **REFERENCES**

- 1. Russell, P. & Nurse, P. (1986) Cell 45, 145-153.
- 5 2. Maundrell, K. (1990) J. Biol. Chem. 265, 10857-10864.
  - 3. Morgan, S.J. et al (1990) Eur. J. Biochem. 191, 761-767.
  - 4. Otsu, M. et al (1991) Cell 65, 91-104.

10

- 5. Laemmli, U.K. (1970) Nature 227, 680-685.
- 6. Katan, M. et al (1988) Cell 54, 171-177.
- Sambrook, J. et al (1989) "Molecular Cloning, a Laboratory Manual"
   C.S.H. Laboratory Press.
- Moreno, S. et al (1991) "Molecular Genetic Analysis of fission yeast Schizosaccharomyces pombe". In Methods in Enzymology. pp 795-20
   823.
  - 9. Shibasaki, F. et al (1991) J. Biol. Chem. 266, 8108-8114.
  - 10. Schaap, D. et al (1989) FEBS Lett. 243, 351-357.

#### SEQUENCE LISTING

| i | (.i | ١. | a | DI | TC  | T | C | N | T  |   |
|---|-----|----|---|----|-----|---|---|---|----|---|
| ۱ |     |    | n |    | - 1 | 1 |   | M | т. | = |

- (A) NAME: Imperial Cancer Research Technology Ltd
- (B) STREET: Sardinia House, Sardinia Street
- (C) CITY: London
- (E) COUNTRY: United Kingdom
- (F) POSTAL CODE (ZIP): WC2A 3NL (G) TELEPHONE: 071 242 1136
- (H) TELEFAX: 071 831 4991
- (ii) TITLE OF INVENTION: Transformed cells and assays using them
- (iii) NUMBER OF SEQUENCES: 15
- (iv) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Floppy disk
  - (B) COMPUTER: IBM PC compatible
  - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
  - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

#### (2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3498 base pairs (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 1..3204
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

| ATG | CCT | CCA | AGA | CCA | TCA | TCA | GGT | GAA | CTG | TGG | GGC | ATC | CAC | TTG | ATG |   | 48 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|----|
| Met | Pro | Pro | Arg | Pro | Ser | Ser | Gly | Glu | Leu | Trp | Gly | Ile | His | Leu | Met |   |    |
| 1   |     |     |     | · 5 |     |     |     |     | 10  |     |     |     |     | 15  |     |   |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | • |    |

CCC CCA AGA ATC CTA GTA GAA TGT TTA CTA CCA AAT GGG ATG ATA GTG 96 Pro Pro Arg Ile Leu Val Glu Cys Leu Leu Pro Asn Gly Met Ile Val

ACT TTA GAA TGC CTC CGT GAG GCT ACG TTA ATA ACG ATA AAG CAT GAA 144 Thr Leu Glu Cys Leu Arg Glu Ala Thr Leu Ile Thr Ile Lys His Glu

CTA TTT AAA GAA GCA AGA AAA TAC CCT CTC CAT CAA CTT CTT CAA GAT 192 Leu Phe Lys Glu Ala Arg Lys Tyr Pro Leu His Gln Leu Leu Gln Asp 60

GAA TCT TCT TAC ATT TTC GTA AGT GTT ACC CAA GAA GCA GAA AGG GAA 240 Glu Ser Ser Tyr Ile Phe Val Ser Val Thr Gln Glu Ala Glu Arg Glu

| 65 |  |  | 70 |  |                   | 75 |     |  | 80         |      |
|----|--|--|----|--|-------------------|----|-----|--|------------|------|
|    |  |  |    |  | TGT<br>Cys<br>90  |    |     |  |            | 288  |
|    |  |  |    |  | GGC<br>Gly        |    |     |  |            | 336  |
|    |  |  |    |  | GGC<br>Gly        |    |     |  |            | 384  |
|    |  |  |    |  | GAC<br>Asp        |    |     |  |            | 432  |
|    |  |  |    |  | AGG<br>Arg        |    |     |  |            | 480  |
|    |  |  |    |  | AAT<br>Asn<br>170 |    |     |  |            | 528  |
|    |  |  |    |  | GAT<br>Asp        |    |     |  |            | 576  |
|    |  |  |    |  | AAT<br>Asn        |    |     |  |            | 624  |
|    |  |  |    |  | GAA<br>Glu        |    |     |  |            | 672  |
|    |  |  |    |  | CTA<br>Leu        |    |     |  |            | 720  |
|    |  |  |    |  | TAT<br>Tyr<br>250 |    |     |  |            | 768  |
|    |  |  |    |  | CCT               |    |     |  |            | 816  |
|    |  |  |    |  | ATG<br>Met        |    |     |  | ATG<br>Met | 864  |
|    |  |  |    |  | CCA<br>Pro        |    | Cys |  |            | 912  |
|    |  |  |    |  | GCT<br>Ala        |    |     |  |            | 960  |
|    |  |  |    |  | ATA<br>Ile<br>330 |    |     |  | ATA<br>Ile | 1008 |

| AAA<br>Lys        | ATT<br>Ile        | CTT<br>Leu        | TGT<br>Cys<br>340 | GCA<br>Ala        | ACC<br>Thr        | TAT<br>Tyr        | GTG<br>Val        | AAT<br>Asn<br>345 | GTA<br>Val        | AAT<br>Asn        | ATT<br>Ile        | CGA<br>Arg        | GAC<br>Asp<br>350 | ATT<br>Ile        | GAC<br>Asp        | 1056 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   | ATT<br>Ile        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1104 |
| GAT<br>Asp        | AAT<br>Asn<br>370 | GTG<br>Val        | AAC<br>Asn        | ACT<br>Thr        | CAA<br>Gln        | AGA<br>Arg<br>375 | GTA<br>Val        | CCT<br>Pro        | TGT<br>Cys        | TCC<br>Ser        | AAT<br>Asn<br>380 | CCC<br>Pro        | AGG<br>Arg        | TGG<br>Trp        | AAT<br>Asn        | 1152 |
|                   | TGG<br>Trp        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1200 |
| CGA<br>Arg        | CTT<br>Leu        | TGC<br>Cys        | CTT<br>Leu        | TCC<br>Ser<br>405 | ATT<br>Ile        | TGT<br>Cys        | TCT<br>Ser        | GTT<br>Val        | AAA<br>Lys<br>410 | GGC               | CGA<br>Arg        | AAG<br>Lys        | GGT<br>Gly        | GCT<br>Ala<br>415 | AAA<br>Lys        | 1248 |
|                   | GAA<br>Glu        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1296 |
|                   | GAT<br>Asp        |                   |                   |                   |                   |                   |                   | Met               |                   |                   |                   |                   |                   |                   |                   | 1344 |
|                   | CAT<br>His<br>450 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1392 |
| AAT<br>Asn<br>465 | CCA<br>Pro        | AAT<br>Asn        | AAA<br>Lys        | GAA<br>Glu        | ACT<br>Thr<br>470 | CCA<br>Pro        | TGT<br>Cys        | TTA<br>Leu        | GAG<br>Glu        | TTG<br>Leu<br>475 | GAG<br>Glu        | TTT               | GAC<br>Asp        | TGG<br>Trp        | TTC<br>Phe<br>480 | 1440 |
| AGC<br>Ser        | AGT<br>Ser        | GTG<br>Val        | GTA<br>Val        | AAG<br>Lys<br>485 | TTT<br>Phe        | CCA<br>Pro        | GAT<br>Asp        | ATG<br>Met        | TCA<br>Ser<br>490 | GTG<br>Val        | ATT               | GAA<br>Glu        | GAG<br>Glu        | CAT<br>His<br>495 | GCC<br>Ala        | 1488 |
| TAA<br>Asn        | TGG<br>Trp        | TCT<br>Ser        | GTA<br>Val<br>500 | Ser               | CGT<br>Arg        | GAA<br>Glu        | GCA<br>Ala        | GGA<br>Gly<br>505 | TTT<br>Phe        | AGT<br>Ser        | TAT<br>Tyr        | TCC               | CAT<br>His<br>510 | GCA<br>Ala        | GGA<br>Gly        | 1536 |
| CTG<br>Leu        | AGT<br>Ser        | AAC<br>Asn<br>515 | AGA<br>Arg        | CTA<br>Leu        | GCT<br>Ala        | AGA<br>Arg        | GAC<br>Asp<br>520 | Asn               | GAA<br>Glu        | TTA<br>Leu        | AGA<br>Arg        | GAA<br>Glu<br>525 | AAT<br>Asn        | GAT<br>Asp        | AAA<br>Lys        | 1584 |
| GAA<br>Glu        | CAG<br>Gln<br>530 | Leu               | CGA<br>Arg        | GCA<br>Ala        | ATT<br>Ile        | TGT<br>Cys<br>535 | ACA<br>Thr        | CGA<br>Arg        | Asp               | CCT<br>Pro        | CTA<br>Leu<br>540 | Ser               | GAA<br>Glu        | ATC<br>Ile        | ACT<br>Thr        | 1632 |
| GAG<br>Glu<br>545 | Gln               | GAG<br>Glu        | AAA<br>Lys        | GAT<br>Asp        | TTT<br>Phe<br>550 | Leu               | TGG<br>Trp        | AGC<br>Ser        | CAC<br>His        | AGA<br>Arg<br>555 | His               | TAT<br>Tyr        | TGT<br>Cys        | GTA<br>Val        | ACT<br>Thr<br>560 | 1680 |
| ATC               | CCC<br>Pro        | GAA<br>Glu        | ATT               | CTA<br>Leu<br>565 | Pro               | AAA<br>Lys        | TTG<br>Leu        | CTT<br>Leu        | CTG<br>Leu<br>570 | Ser               | GTT<br>Val        | AAA<br>Lys        | TGG<br>Trp        | AAC<br>Asn<br>575 |                   | 1728 |
| AGA<br>Arg        | GAT<br>Asp        | GAA<br>Glu        | GTA<br>Val<br>580 | Ala               | CAG<br>Gln        | ATG<br>Met        | TAC               | TGC<br>Cys<br>585 | Leu               | GTA<br>Val        | AAA<br>Lys        | GAT<br>Asp        | TGG<br>Trp<br>590 | Pro               | CCA<br>Pro        | 1776 |
| ATC<br>Ile        | AAG<br>Lys        | CCT<br>Pro        | GAA<br>Glu        | CAG<br>Glr        | GCT<br>Ala        | ATG<br>Met        | GAG<br>Glu        | CTT<br>Leu        | CTG               | GAC<br>Asp        | TGC<br>Cys        | TAA :             | TAC               | CCA<br>Pro        | GAT<br>Asp        | 1824 |

|                   |                           | 595               |                   |                   |                   |                   | 600               |                   |                   |                   |                   | 605               | ٠                 |                   |                   |   |      |
|-------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|------|
|                   |                           |                   |                   | GGT<br>Gly        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | • | 1872 |
| GAT<br>Asp<br>625 | GAC<br>Asp                | AAA<br>Lys        | CTT<br>Leu        | TCT<br>Ser        | CAG<br>Gln<br>630 | TAC<br>Tyr        | CTA<br>Leu        | ATT<br>Ile        | CAG<br>Gln        | CTA<br>Leu<br>635 | GTA<br>Val        | CAG<br>Gln        | GTA<br>Val        | CTA<br>Leu        | AAA<br>Lys<br>640 | : | 1920 |
| TAT<br>Tyr        | GAA<br>Glu                | CAG<br>Gln        | TAT<br>Tyr        | TTG<br>Leu<br>645 | GAT<br>Asp        | AAC<br>Asn        | CTG<br>Leu        | CTT<br>Leu        | GTG<br>Val<br>650 | AGA<br>Arg        | TTT<br>Phe        | TTA<br>Leu        | CTC<br>Leu        | AAA<br>Lys<br>655 | AAA<br>Lys        |   | 1968 |
|                   |                           |                   |                   | CAA<br>Gln        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | : | 2016 |
| TCT<br>Ser        | GAG<br>Glu                | ATG<br>Met<br>675 | CAC<br>His        | AAT<br>Asn        | AAA<br>Lys        | ACA<br>Thr        | GTT<br>Val<br>680 | AGT<br>Ser        | CAG<br>Gln        | AGG<br>Arg        | TTT<br>Phe        | GGC<br>Gly<br>685 | CTG<br>Leu        | CTT<br>Leu        | TTG<br>Leu        | ; | 2064 |
|                   |                           |                   |                   | CGT<br>Arg        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ; | 2112 |
| CAA<br>Gln<br>705 | GTT<br>Val                | GAG<br>Glu        | GCT<br>Ala        | ATG<br>Met        | GAA<br>Glu<br>710 | AAG<br>Lys        | CTC<br>Leu        | ATT<br>Ile        | AAC<br>Asn        | TTG<br>Leu<br>715 | ACT<br>Thr        | GAC<br>Asp        | ATT<br>Ile        | CTC<br>Leu        | AAA<br>Lys<br>720 |   | 2160 |
| CAA<br>Gln        | GAG<br>Glu                | AAG<br>Lys        | AAG<br>Lys        | GAT<br>Asp<br>725 | GAA<br>Glu        | ACA<br>Thr        | CAA<br>Gln        | AAG<br>Lys        | GTA<br>Val<br>730 | CAG<br>Gln        | ATG<br>Met        | AAG<br>Lys        | TTT<br>Phe        | TTA<br>Leu<br>735 | GTT<br>Val        |   | 2208 |
| GAG<br>Glu        | CAA<br>Gln                | ATG<br>Met        | CGG<br>Arg<br>740 | CGA<br>Arg        | CCA<br>Pro        | GAT<br>Asp        | TTC<br>Phe        | ATG<br>Met<br>745 | GAT<br>Asp        | GCT<br>Ala        | CTC<br>Leu        | CAG<br>Gln        | GGC<br>Gly<br>750 | TTT<br>Phe        | CTG<br>Leu        |   | 2256 |
|                   |                           |                   |                   | CCT<br>Pro        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |   | 2304 |
|                   |                           | Ile               |                   | TCT<br>Ser        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |   | 2352 |
| AAC<br>Asn<br>785 | Pro                       | GAC<br>Asp        | ATC<br>Ile        | ATG<br>Met        | TCA<br>Ser<br>790 | Glu               | TTA<br>Leu        | CAC<br>His        | TTT<br>Phe        | CAG<br>Gln<br>795 | AAC<br>Asn        | AAT<br>Asn        | GAG<br>Glu        | ATC<br>Ile        | ATC<br>Ile<br>800 |   | 2400 |
| TTT               | AAA<br>Lys                | TAA<br>Asn        | GGG<br>Gly        | GAT<br>Asp<br>805 | GAT<br>Asp        | TTA<br>Leu        | CGG<br>Arg        | CAA<br>Gln        | GAT<br>Asp<br>810 | Met               | CTA<br>Leu        | ACC               | CTT<br>Leu        | CAG<br>Gln<br>815 | ATT               |   | 2448 |
| ATT<br>Ile        | CGC<br>Arg                | ATT               | ATG<br>Met<br>820 | Glu               | AAT<br>Asn        | ATC<br>Ile        | TGG<br>Trp        | CAA<br>Gln<br>825 | Asn               | ĊAA<br>Gln        | GGT<br>Gly        | CTT<br>Leu        | GAT<br>Asp<br>830 | Leu               | CGA<br>Arg        |   | 2496 |
| ATG<br>Met        | TTA<br>Leu                | CCT<br>Pro<br>835 | Tyr               | GGA<br>Gly        | TGT<br>Cys        | CTG<br>Leu        | TCA<br>Ser<br>840 | Ile               | GGT               | GAC<br>Asp        | TGT<br>Cys        | GTG<br>Val<br>845 | Gly               | CTT<br>Leu        | ATC<br>Ile        |   | 2544 |
| GAG<br>Glu        | <b>GT</b> G<br>Val<br>850 | Val               | AGA<br>Arg        | AAT<br>Asn        | TCT<br>Ser        | CAC<br>His<br>855 | Thr               | ATA<br>Ile        | ATG<br>Met        | CAG<br>Gln        | ATT<br>Ile<br>860 | Gln               | TGT<br>Cys        | AAA<br>Lys        | GGA<br>Gly        | • | 2592 |

| GGC CTG AAA GGT GCA CTG CAG TTT AAC AGC CAC ACA CTC CAT CAG TGG Gly Leu Lys Gly Ala Leu Gln Phe Asn Ser His Thr Leu His Gln Trp 865 870 875 880           | 2640 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CTC AAA GAC AAG AAC AAG GGG GAA ATA TAT GAT GCG GCC ATC GAT TTG<br>Leu Lys Asp Lys Asn Lys Gly Glu Ile Tyr Asp Ala Ala Ile Asp Leu<br>885 890 895         | 2688 |
| TTT ACA CGA TCA TGT GCT GGA TAT TGT GTT GCC ACC TTC ATT TTG GGA Phe Thr Arg Ser Cys Ala Gly Tyr Cys Val Ala Thr Phe Ile Leu Gly 900 905 910               | 2736 |
| ATT GGA GAT CGT CAC AAT AGT AAT ATC ATG GTT AAA GAT GAT GGA CAA<br>Ile Gly Asp Arg His Asn Ser Asn Ile Met Val Lys Asp Asp Gly Gln<br>915 920 925         | 2784 |
| CTG TTT CAT ATA GAT TTT GGA CAC TTT TTG GAT CAC AAG AAG AAA AAA<br>Leu Phe His Ile Asp Phe Gly His Phe Leu Asp His Lys Lys Lys<br>930 935 940             | 2832 |
| TTT GGT TAT AAA CGA GAG CGC GTG CCG TTT GTT TTG ACA CAA GAT TTC Phe Gly Tyr Lys Arg Glu Arg Val Pro Phe Val Leu Thr Gln Asp Phe 945 950 955 960           | 2880 |
| TTA ATA GTG ATT AGT AAA GGA GCC CAA GAA TGC ACA AAG ACA AGA GAA<br>Leu Ile Val Ile Ser Lys Gly Ala Gln Glu Cys Thr Lys Thr Arg Glu<br>965 970 975         | 2928 |
| TTT GAG AGG TTT CAG GAG ATG TGT TAC AAG GCT TAT CTA GCT ATT CGG<br>Phe Glu Arg Phe Gln Glu Met Cys Tyr Lys Ala Tyr Leu Ala Ile Arg<br>980 985 990         | 2976 |
| CAG CAT GCC AAT CTC TTC ATA AAT CTT TTC TCA ATG ATG CTT GGC TCT Gln His Ala Asn Leu Phe Ile Asn Leu Phe Ser Met Met Leu Gly Ser 995 1000 1005             | 3024 |
| GGA ATG CCA GAA CTG CAA TCT TTT GAT GAT ATT GCA TAC ATT CGA AAG Gly Met Pro Glu Leu Gln Ser Phe Asp Asp Ile Ala Tyr Ile Arg Lys 1010 1020                 | 3072 |
| ACC CTA GCT TTA GAT AAA ACT GAG CAA GAG GCT TTG GAG TAT TTC ATG<br>Thr Leu Ala Leu Asp Lys Thr Glu Gln Glu Ala Leu Glu Tyr Phe Met<br>1025 1030 1035 1040 | 3120 |
| AAA CAA ATG AAT GAT GCA CAC CAT GGT GGC TGG ACA ACA AAA ATG GAT<br>Lys Gln Met Asn Asp Ala His His Gly Gly Trp Thr Thr Lys Met Asp<br>1045 1050 1055      | 3168 |
| TGG ATC TTC CAC ACA ATT AAG CAG CAT GCT TTG AAC TGAAATGATA Trp Ile Phe His Thr Ile Lys Gln His Ala Leu Asn 1060 1065                                      | 3214 |
| ACTAAAAGCT CAGTATCTGG ATTCTACACT GCACTGTTAA TAACTGTCAA CAGGCAAAGA                                                                                         | 3274 |
| CTGATTGCAT AGGAATTGCA CAATCCATGA ACAGCATTAG AATTTACAGC AAGAACAGAA                                                                                         | 3334 |
| ATAAAATACT ATATAATTTA AATAATGTAA ACGCAAACAG GGTTTGATAG CACTAAACTA                                                                                         | 3394 |
| GTTCATTTCA AAATTAAGCT TTAGAATAAT GCGCAATTTC ATGTTATGCC TTAAGTCCAA                                                                                         | 3454 |
| AAAGGTAAAC TTTAAAGATT GTTTGTATCT TTCCTTTAAA AAAA                                                                                                          | 3498 |

## (2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1068 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Pro Pro Arg Pro Ser Ser Gly Glu Leu Trp Gly Ile His Leu Met

1 5 10 15

Pro Pro Arg Ile Leu Val Glu Cys Leu Leu Pro Asn Gly Met Ile Val 20 25 30

Thr Leu Glu Cys Leu Arg Glu Ala Thr Leu Ile Thr Ile Lys His Glu
35 40 45

Leu Phe Lys Glu Ala Arg Lys Tyr Pro Leu His Gln Leu Leu Gln Asp
50 55 60

Glu Ser Ser Tyr Ile Phe Val Ser Val Thr Gln Glu Ala Glu Arg Glu 65 70 75 80

Glu Phe Phe Asp Glu Thr Arg Arg Leu Cys Asp Leu Arg Leu Phe Gln
85 90 95

Pro Phe Leu Lys Val Ile Glu Pro Val Gly Asn Arg Glu Glu Lys Ile 100 105 110

Leu Asn Arg Glu Ile Gly Phe Ala Ile Gly Met Pro Val Cys Glu Phe 115 120 125

Asp Met Val Lys Asp Pro Glu Val Gln Asp Phe Arg Asn Ile Leu 130 135 140

Asn Val Cys Lys Glu Ala Val Asp Leu Arg Asp Leu Asn Ser Pro His 145 150 155 160

Ser Arg Ala Met Tyr Val Tyr Pro Pro Asn Val Glu Ser Ser Pro Glu 165 170 175

Leu Pro Lys His Ile Tyr Asn Lys Leu Asp Lys Gly Gln Ile Ile Val 180 185 190

Val Ile Trp Val Ile Val Ser Pro Asn Asp Lys Gln Lys Tyr Thr 195 200 205

Leu Lys Ile Asn His Asp Cys Val Pro Glu Gln Val Ile Ala Glu Ala 210 215 220

Ile Arg Lys Lys Thr Arg Ser Met Leu Leu Ser Ser Glu Gln Leu Lys 225 230 235

Leu Cys Val Leu Glu Tyr Gln Gly Lys Tyr Ile Leu Lys Val Cys Gly
245 250 255

Cys Asp Glu Tyr Phe Leu Glu Lys Tyr Pro Leu Ser Gln Tyr Lys Tyr 260 265 270

Ile Arg Ser Cys Ile Met Leu Gly Arg Met Pro Asn Leu Met Leu Met 275 280 285

Ala Lys Glu Ser Leu Tyr Ser Gln Leu Pro Met Asp Cys Phe Thr Met 290 295 300

Pro Ser Tyr Ser Arg Arg Ile Ser Thr Ala Thr Pro Tyr Met Asn Gly

| 305          |            |            |            |            | 310        |            |            |            |            | 315                      |            |            |                |            | 320        |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------------|------------|------------|----------------|------------|------------|
| Glu T        | Thr        | Ser        | Thr        | Lys<br>325 | Ser        | Leu        | Trp        | Val        | 11e<br>330 | Asn                      | Ser        | Ala        | Leu            | Arg<br>335 | Ile        |
| Lys I        | le         | Leu        | Cys<br>340 | Ala        | Thr        | Tyr        | Val        | Asn<br>345 | Val        | Asn                      | Ile        | Arg        | <b>Asp</b> 350 | Ile        | Asp        |
| Lys I        |            | Tyr<br>355 | Val        | Arg        | Thr        | Gly        | 11e<br>360 | Tyr        | His        | Gly                      | Gly        | Glu<br>365 | Pro            | Leu        | Сув        |
| Asp A        | Asn<br>370 | Val        | Asn        | Thr        | Gln        | Arg<br>375 | Val        | Pro        | Cys        | Ser                      | Asn<br>380 | Pro        | Arg            | Trp        | Asn        |
| Glu 1<br>385 | rp         | Leu        | Asn        | Tyr        | <b>Asp</b> | Ile        | Tyr        | Ile        | Pro        | <b>Asp</b><br><b>395</b> | Leu        | Pro        | Arg            | Ala        | Ala<br>400 |
| Arg I        | Leu        | Cys        | Leu        | Ser<br>405 | Ile        | Cys        | Ser        | Val        | Lys<br>410 | Gly                      | Arg        | Lys        | Gly            | Ala<br>415 | Lys        |
| Glu G        | 3lu        | His        | Cys<br>420 | Pro        | Leu        | Ala        | Trp        | Gly<br>425 | Asn        | Ile                      | Asn        | Leu        | Phe<br>430     | Asp        | Tyr        |
| Thr A        | Asp        | Thr<br>435 | Leu        | Val        | Ser        |            | Lys<br>440 | Met        | Ala        | Leu                      | Asn        | Leu<br>445 | Trp            | Pro        | Val        |
| Pro H        | lis<br>150 | Gly        | Leu        | Glu        | Asp        | Leu<br>455 | Leu        | Asn        | Pro        | Ile                      | Gly<br>460 | Val        | Thr            | Gly        | Ser        |
| Asn I<br>465 | Pro        | Asn        | Lys        | Glu        | Thr<br>470 | Pro        | Cys        | Leu        | Glu        | Leu<br>475               | Glu        | Phe        | Asp            | Trp        | Phe<br>480 |
| Ser S        | Ser        | Val        | Val        | Lys<br>485 | Phe        | Pro        | Asp        | Met        | Ser<br>490 | Val                      | Ilė        | Glu        | Glu            | His<br>495 |            |
| Asn 1        | rp         | Ser        | Val<br>500 | Ser        | Arg        | Glu        | Ala        | Gly<br>505 | Phe        | Ser                      | Tyr        | Ser        | His<br>510     | Ala        | Gly        |
| Leu S        | Ser        | Asn<br>515 | Arg        | Leu        | Ala        | Arg        | Asp<br>520 | Asn        | Glu        | Leu                      | Arg        | Glu<br>525 | Asn            | Asp        | Lys        |
| Glu (        | 31n<br>530 | Leu        | Arg        | Ala        | Ile        | Cys<br>535 | Thr        | Arg        | Asp        | Pro                      | Leu<br>540 | Ser        | Glu            | Ile        | Thr        |
| Glu (<br>545 | 31n        | Glu        | Lys        | Asp        | Phe<br>550 | Leu        | Trp        | Ser        | His        | Arg<br>555               | His        | Tyr        | Сув            | Val        | Thr<br>560 |
| Ile I        | Pro        | Glu        | Ile        | Leu<br>565 | Pro        | Lys        | Leu        | Leu        | Leu<br>570 | Ser                      | Val        | Lys        | Trp            | Asn<br>575 | Ser        |
| Arg 1        | Asp        | Glu        | Val<br>580 | Ala        | Gln        | Met        | Tyr        | Cys<br>585 | Leu        | Val                      | Lys        | Asp        | Trp<br>590     | Pro        | Pro        |
| Ile I        | Lys        | Pro<br>595 | Glu        | Gln        | Ala        | Met        | Glu<br>600 | Leu        | Leu        | Asp                      | Cys        | Asn<br>605 | Tyr            | Pro        | Asp        |
| Pro 1        | Met<br>610 | Val        | Arg        | Gly        | Phe        | Ala<br>615 | Val        | Arg        | Cys        | Leu                      | Glu<br>620 | Lys        | Tyr            | Leu        | Thr        |
| Asp 1<br>625 | Asp        | Lys        | Leu        | Ser        | Gln<br>630 | Tyr        | Leu        | Ile        | Gln        | Leu<br>635               | Val        | Gln        | Val            | Leu        | Lys<br>640 |
| Tyr (        | Glu        | Gln        | Tyr        | Leu<br>645 | Asp        | Asn        | Leu        | Leu        | Val<br>650 | Arg                      | Phe        | Leu        | Leu            | Lys<br>655 | Lys        |
| Ala 1        | Leu        | Thr        | Asn        | Gln        | Arg        | Ile        | Gly        | His        | Phe        | Phe                      | Phe        | Trp        | His            | Leu        | Lys        |

|            |                   |            | 660        |                   |            |            |            | 665        |                   |            |            |            | 670        |            |            |
|------------|-------------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|
| Ser        | Glu               | Met<br>675 |            | Asn               | Lys        | Thr        | Val<br>680 | Ser        | Gln               | Arg        | Phe        | Gly<br>685 | Leu        | Leu        | Leu        |
| Glu        | <b>Ser</b><br>690 | Tyr        | Сув        | Arg               | Ala        | Cys<br>695 | Gly        | Met        | Tyr               | Leu        | Lys<br>700 | His        | Leu        | Asn        | Arg        |
| Gln<br>705 | Val               | Glu        | Ala        | Met               | Glu<br>710 | Lys        | Leu        | Ile        | Asn               | Leu<br>715 | Thr        | Asp        | Ile        | Leu        | Lys<br>720 |
| Gln        | Glu               | Lys        | Lys        | Asp<br>725        | Glu        | Thr        | Gln        | Lys        | Val<br>730        | Gln        | Met        | Lys        | Phe        | Leu<br>735 | Val        |
| Glu        | Gln               | Met        | Arg<br>740 | Arg               | Pro        | Asp        | Phe        | Met<br>745 | Asp               | Ala        | Leu        | Gln        | Gly<br>750 | Phe        | Leu        |
| Ser        | Pro               | Leu<br>755 | Asn        | Pro               | Ala        | His        | Gln<br>760 | Leu        | Gly               | Asn        | Leu        | Arg<br>765 | Leu        | Glu        | Glu        |
| Cys        | Arg<br>770        | Ile        | Met        | Ser               | Ser        | Ala<br>775 | Lys        | Arg        | Pro               | Leu        | Trp<br>780 | Leu        | Asn        | Trp        | Glu        |
| Asn<br>785 | Pro               | Asp        | Ile        | Met               | Ser<br>790 | Glu        | Leu        | His        | Phe               | Gln<br>795 | Asn        | Asn        | Glu        | Ile        | Ile<br>800 |
| Phe        | Lys               | Asn        | Gly        | Asp<br>805        | Asp        | Leu        | Arg        | Gln        | <b>Asp</b><br>810 | Met        | Leu        | Thr        | Leu        | Gln<br>815 | Ile        |
| Ile        | Arg               | Ile        | Met<br>820 | Glu               | Asn        | Ile        | Trp        | Gln<br>825 | Asn               | Gln        | Gly        | Leu        | Asp<br>830 | Leu        | Arg        |
| Met        | Leu               | Pro<br>835 | Tyr        | Gly               | Сув        | Leu        | Ser<br>840 | Ile        | Gly               | Asp        | Cýs        | Val<br>845 | Gly        | Leu        | Ile        |
| Glu        | <b>Val</b><br>850 | Val        | Arg        | Asn               | Ser        | His<br>855 | Thr        | Ile        | Met               | Gln        | Ile<br>860 | Gln        | Сув        | Lys        | Gly        |
| Gly<br>865 | Leu               | Lys        | Gly        | Ala               | Leu<br>870 | Gln        | Phe        | Asn        | Ser               | His<br>875 | Thr        | Leu        | His        | Gln        | Trp<br>880 |
| Leu        | Lys               | Asp        | Lys        | <b>Asn</b><br>885 | Lys        | Gly        | Glu        | Ile        | <b>Tyr</b><br>890 | Asp        | Ala        | Ala        | Ile        | Asp<br>895 | Leu        |
| Phe        | Thr               | Arg        | Ser<br>900 | Cys               | Ala        | Gly        | Tyr        | Сув<br>905 | Val               | Ala        | Thr        | Phe        | Ile<br>910 | Leu        | Gly        |
| Ile        | Gly               | Asp<br>915 | Arg        | His               | Asn        |            | Asn<br>920 |            | Met               | Val        |            | Asp<br>925 | Asp        | Gly        | Gln        |
| Leu        | Phe<br>930        | His        | Ile        | Asp               | Phe        | Gly<br>935 | His        | Phe        | Leu               | Asp        | His<br>940 | Lys        | Lys        | Lys        | Lys        |
| Phe<br>945 | Gly               | Tyr        | Lys        | Arg               | Glu<br>950 | Arg        | Val        | Pro        | Phe               | Val<br>955 | Leu        | Thr        | Gln        | Asp        | Phe<br>960 |
| Leu        | Ile               | Val        | Ile        | Ser<br>965        | Lys        | Gly        | Ala        | Gln        | Glu<br>970        |            | Thr        | Lys        | Thr        | Arg<br>975 | Glu        |
| Phe        | Glu               | Arg        | Phe<br>980 |                   | Glu        | Met        | Сув        | Tyr<br>985 |                   | Ala        | Tyr        | Leu        | Ala<br>990 |            | Arg        |
| Gln        | His               | Ala<br>995 |            | Leu               | Phe        | Ile        | Asn<br>100 |            | Phe               | Ser        | Met        | Met<br>100 |            | Gly        | Ser        |
| Gly        | Met               | Pro        | Glu        | Leu               | Gln        | Ser        | Phe        | Asp        | Asp               | Ile        | Ala        | Tyr        | Ile        | Arg        | Lys        |

38

1010 1020 1015

Thr Leu Ala Leu Asp Lys Thr Glu Gln Glu Ala Leu Glu Tyr Phe Met 1030 1035 1025

Lys Gln Met Asn Asp Ala His His Gly Gly Trp Thr Thr Lys Met Asp 1045

Trp Ile Phe His Thr Ile Lys Gln His Ala Leu Asn 1065 1060

- (2) INFORMATION FOR SEQ ID NO: 3:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2199 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: SCHIZOSACCHAROMYCES POMBE
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

| AAAAATCTCA | ACACATGTGA | ATGATCAGAA | AATTATCGCC | ATAAAAGACA | GAATAAGTCA | 60   |
|------------|------------|------------|------------|------------|------------|------|
| TCAGCGGTTG | TTTCATTTCC | TATATTTTTT | TTTTATTTT  | TTATTTTTTA | ATAAGGGAAA | 120  |
| ATTTAACGTC | TAAGGATACA | GAAGATTGTT | AGCACATTAA | AGTAATAAAG | GCTTAAGTAG | 180  |
| TAAGTGCCTT | AGCATGTTAT | TGTATTTCAA | AGGACATAAT | CTAAAATAAT | AACAATATCA | 240  |
| TTTCTCACAA | GTTATTCAAT | TTTCTTTTTT | TTTTCTAATA | ATATCAAGAA | TGTATTATTT | 300  |
| GTTTGACATA | AGTCAACTAA | TTTATTTAAT | ATGCTGGATT | AATCTTGCAG | ACATGTAAAT | 3,60 |
| TAACAAGTTT | TAGTCAAATA | ACGTTGAAGT | TTCAATGAAC | TCAAATAATT | TCTCTTTTTT | 420  |
| TTTATATAAC | CATATGTCTA | ATCTGATTTA | TATTTTCCGC | AGGATCAACT | GAAGTTATGA | 480  |
| CATTTGGATT | GGATCACTTA | TAACCTTGGT | CGCCAAATAA | TACAAAAATC | AGCGTTATAA | 540  |
| AACAAAGAAG | GTTTTTGTTA | AGAAATTAAT | CCTCTTTCTT | GATAAGAAAG | TTGAACCGAA | 600  |
| ATTGCAGATA | CTGATATATG | AAAATAATAC | CCACAATTTT | GGGAATAGCG | CAAGCCTCAA | 660  |
| TTTAAACAAT | AGGTGAGGAC | ACATGATAAT | GACCTCAATG | ATTGTTAGAA | GAAAAGAGCC | 720  |
| TCATTACAAA | ATCGAAAAAT | GAATGGTTGG | GTACAAGTTT | CCAAAACATG | GTAAAGTGGA | 780  |
| CTTTGCGTAT | GAGACGTAAA | TAGAAAAAA  | CACTTGTTAT | ATGTTTTCTA | GAATTATTGT | 840  |
| TGTCTCTTTA | TGGTTGGATG | ATGCAAAATA | GTAATTTCGG | TTAGTTGCTG | TAAAACACCA | 900  |
| CGAGACAAAT | AGATATGGAT | ATTTATTAAA | TCAGGAAAAA | CGTAACTCTC | GGCTACTGGA | 960  |
| TGGTTCAGTC | ACCCAACGAT | TACTGGGGAG | AGAAAACAGG | GCAAAAGCAA | AGCTTAAAGG | 1020 |
| AATCCGATTG | TCATTCGGCA | ATGTGCAGCG | AAACTAAAAA | CCGGATAATG | GACCTGTTAA | 1080 |

| TCGAI         | AACATT         | GAAGATATAT | AAAGGAAGAG | GAATCCTGGC | ATATCATCAA | TTGAATAAGT | 1140 |
|---------------|----------------|------------|------------|------------|------------|------------|------|
| TGAA:         | TTAATT         | ATTTCAATCT | CATTCTCACT | TTCTGACTTA | TAGTCGCTTT | GTTAAATCAT | 1200 |
| aggai         | ATGTCT         | CCCTTGCCAG | TACTGCTAGG | GTTTTTCTTT | CAAACTATGG | AAGCCCATTC | 1260 |
| AAGC:         | rgcata         | TTACGATTTT | GTTTTTCGCT | TTTAGAAAGT | GGTTTAGATG | AGATAATAGA | 1320 |
| AAAA:         | TCTTG          | ATCTCCGACA | ACGAGTACTT | TTATTTTTTT | TGCTAATCAC | TTTACTCAAT | 1380 |
| ATTA          | CTCGA          | AATCGTAGAA | ACGTAGACGG | GTGCGGGATA | CCGAGTGGTG | TAGTTAAGAA | 1440 |
| TTTT:         | AAATAI         | CCACGTGGCC | CAAAAATATG | AACCCAAAAC | GTTTATACAT | GAGTATACTT | 1500 |
| Taagi         | AAGGCT         | ATACCCCTTC | GTGTTAGATG | TAGTTTTAGC | TACCCAACCC | GAGTCTATGA | 1560 |
| GCTT          | SACTTC         | AGATGTAGAA | GGCATTAAAT | CGTTTTGAAT | AAATTAATTA | AAACGATGAA | 1620 |
| LTTAA         | TATAA          | TTAAAAGCAA | TCATACGCTG | AAAATTTAGT | GCTGTGGCTA | ATCCTTCAAC | 1680 |
| atgġ <i>i</i> | <b>VAAT</b> GC | CATAAAAGTG | ACTTTGACAA | AAAAAAAAGT | ATATACAGGT | AGTAAACTCA | 1740 |
| TCTAC         | CTTCAT         | TGACTTTGTT | TACAGCATGT | GGAAGGAGGA | ATATTTATTG | CTAAATCGTA | 1800 |
| GTTT?         | AACATT         | CAATAAGTAA | TACTATTGAA | ATTCGACAAG | ATTGGCCGCA | TGGATGAAAA | 1860 |
| AGAGO         | CATTT          | TGCTTTGGGA | GAATTAGTTC | AAATTAGAAC | TGAAAAAAA  | AACTTTACGA | 1920 |
| GGCA          | AAAATG         | TCGGATTGAG | ATCGTAAAAG | TTCGCTCGTC | GTCTTTTGCT | TTGTGATTGT | 1980 |
| TTTC          | ATGGAT         | ACATCTTGCT | GGATATTTAA | ATTTTAGTAC | TATGTATAAG | ATATTCTATA | 2040 |
| AATG:         | TATTT          | CACCCAAACC | TGTTAGCGCC | TTCTTAATTC | TATTCAATCT | GGCTTTTGCT | 2100 |
| CTGA          | GACTAC         | TTCTTGGACT | TTCACTACTT | GTTAGTTATA | CGGAATTTGT | GTAATTAGAA | 2160 |
| GTGA          | TAATAA         | CCTTTCTATT | AGTAATGCAA | ACAAAAATC  |            | •          | 2199 |

#### (2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2707 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

| CTCGAGCTGA | AGAACCAGCG | AGGCGGCGAG | GCAGCCCCCG | CGGCTTGCAG | CGGAGGCGAC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| AGCTCGTCTC | CTGCCGTGGA | GGTGTCGCCG | GTGGTGGGG  | GGAGAGACTT | GCTCCAAAAA | 120 |
| AACGGACGTC | TCCAGCTCTC | CCCCCTCCCT | GTTTTCCGTT | AGGAATCCGG | CGAGGAAATA | 180 |
| CATGCACTCG | CTGAGAATCG | GCGGCGCCAG | GAGGCAGCGC | CACAAGGTGT | AGCGAGTGAG | 240 |
| TGGGGTGGG  | CAAGAGGGGA | CCCAGGAGTC | CCCCAGGCTC | CCGGCGCGCC | TGCTCCTGCT | 300 |

| CTTCAATCCT | GCCCACGGGG | CGGACGGAGT | GACCCCCGCC | CCGACCATGG | TAGTGTTCAA  | 360  |
|------------|------------|------------|------------|------------|-------------|------|
| TGGCCTTCTT | AAGATCAAAA | TCTGCGAGGC | GGTGAGCTTG | AAGCCCACAG | CCTGGTCGCT  | 420  |
| GCGCCATGCG | GTGGGACCCC | GGCCACAGAC | GTTCCTTTTG | GACCCCTACA | TTGCCCTTAA  | 480  |
| CGTGGACGAC | TCGCGCATCG | GCCAAACAGC | CACCAAGCAA | AAGACCAACA | GCCCGGCCTG  | 540  |
| GCACGATGAG | TTCGTCACCG | ATGTGTGCAA | TGGGCGCAAG | ATCGAGCTGG | CTGTCTTTCA  | 600  |
| CGACGCTCCT | ATCGGCTACG | ACGACTTCGT | GGCCAACTGC | ACCATCCAGT | TCGAGGAGCT  | 660  |
| GCTGCAGAAT | GGGAGCCGTC | ACTTCGAGGA | CTGGATTGAC | CTGGAGCCAG | AAGGAAAAGT  | 720  |
| GTACGTGATC | ATCGATCTCT | CGGGATCATC | GGGTGAAGCC | CCTAAAGACA | ATGAAGAACG  | 780  |
| AGTGTTCAGG | GAGCGTATGC | GGCCAAGGAA | GCGGCAAGGG | GCTGTCAGGC | GCAGGGTCCA  | 840  |
| CCAGGTCAAT | GGCCACAAGT | TCATGGCCAC | CTACTTGCGG | CAACCCACCT | ACTGCTCCCA- | 900  |
| CTGCAGAGAT | TTCATCTGGG | GTGTCATAGG | AAAACAGGGA | TATCAATGTC | AAGTTTGCAC  | 960  |
| TTGCGTTGTC | CACAAGCGAT | GTCATGAGCT | CATTATTACA | AAGTGCGCTG | GGCTGAAGAA  | 1020 |
| ACAGGAAACC | CCTGACGAGG | TGGGCTCCCA | ACGGTTCAGC | GTCAACATGC | CCCACAAGTT  | 1080 |
| CGGGATCCAC | AACTACAAGG | TCCCCACGTT | CTGTGACCAC | TGTGGGTCCC | TGCTCTGGGG  | 1140 |
| CCTCTTGCGG | CAGGGCTTGC | AGTGTAAAGT | CTGCAAAATG | AATGTTCACC | GGCGATGTGA  | 1200 |
| GACCAACGTG | GCTCCCAACT | GTGGGGTAGA | CGCCAGAGGA | ATTGCCAAAG | TGCTGGCTGA  | 1260 |
| CCTCGGTGTT | ACTCCAGACA | AAATCACCAA | CAGTGGCCAA | AGGAGGAAAA | AGCTCGCTGC  | 1320 |
| TGGTGCTGAG | TCCCCACAGC | CGGCTTCTGG | AAACTCCCCA | TCTGAAGACG | ACCGATCCAA  | 1380 |
| GTCAGCGCCC | ACCTCCCCTT | GTGACCAGGA | ACTAAAAGAA | CTTGAAAACA | ACATCCGGAA  | 1440 |
| GGCCTTGTCA | TTTGACAACC | GAGGAGAGGA | GCACCGAGCG | TCGTCGGCCA | CCGATGGCCA  | 1500 |
| GCTGGCAAGC | CCCGGAGAGA | ATGGGGAAGT | CCGGCCAGGC | CAGGCCAAGC | GCTTGGGGCT  | 1560 |
| GGATGAGTTC | AACTTCATCA | AAGTGTTGGG | CAAAGGCAGC | TTTGGCAAGG | TCATGTTGGC  | 1620 |
| GGAACTCAAA | GGCAAAGATG | AAGTCTACGC | TGTGAAGGTC | TTGAAGAAGG | ACGTTATCCT  | 1680 |
| ACAAGACGAT | GATGTGGACT | GCACAATGAC | AGAGAAGAGG | ATTTTGGCTC | TGGCTCGGAA  | 1740 |
| ACACCCTTAT | CTAACCCAAC | TCTATTGCTG | CTTCCAGACC | AAGGACCGCC | TCTTCTTCGT  | 1800 |
| CATGGAATAT | GTAAATGGTG | GAGACCTCAT | GTTCCAGATT | CAGCGGTCCC | GAAAATTTGA  | 1860 |
| TGAGCCTCGT | TCTCGGTTCT | ATGCCGCAGA | GGTCACATCG | GCCCTCATGT | TTCTCCACCA  | 1920 |
| GCATGGAGTG | ATCTACAGGG | ATTTGAAACT | GGACAACATC | CTTCTAGATG | CAGAAGGCCA  | 1980 |
| CTGCAAGCTG | GCTGACTTTG | GGATGTGCAA | GGAAGGGATT | ATGAATGGTG | TGACAACTAC  | 2040 |
| CACCTTCTGT | GGGACTCCTG | ACTACATAGC | TCCAGAGATC | CTACAGGAGT | TGGAGTACGG  | 2100 |
| CCCCTCAGTG | GACTGGTGGG | CCCTGGGGGT | GCTGATGTAC | GAGATGATGG | CTGGGCAGCC  | 2160 |
| CCCCTTTGAA | GCTGACAACG | AGGACGACTT | GTTCGAATCC | ATCCTTCATG | ATGATGTTCT  | 2220 |
| CTATCCTGTC | TGGCTTAGCA | AGGAAGCTGT | CAGCATCCTG | AAAGCTTTCA | TGACCAAGAA  | 2280 |

| CCCGCACAAG | CGCCTGGGCT | GTGTGGCAGC | GCAGAACGGG | GAGGACGCCA | TCAAGCAACA | 2340 |
|------------|------------|------------|------------|------------|------------|------|
| TCCATTCTTC | AAGGAGATTG | ACTGGGTACT | GCTGGAGCAG | AAGAAAATCA | AGCCCCCTT  | 2400 |
| CAAGCCGAGA | ATTAAAACCA | AAAGAGATGT | CAATAACTTT | GACCAAGACT | TTACGCGGGA | 2460 |
| AGAGCCAATA | CTTACACTTG | TGGATGAAGC | AATCATTAAG | CAGATCAACC | AGGAAGAATT | 2520 |
| CAAAGGCTTC | TCCTACTTTG | GTGAAGACCT | GATGCCCTGA | GAGGCTGCTT | CGGATGGAGG | 2580 |
| GAGCTCATGC | TGCAAGGACG | GTGTTGAGAT | ACTCCCAAGC | TGCAGAGGCT | CCGAAGGTCT | 2640 |
| CAACTCCTCC | TCCTCCTCCC | CCTCCCAGA  | GCCCCAGTCC | CATGTCCACT | CTCTTATTTA | 2700 |
| TTGCATT    |            |            |            |            |            | 2707 |

#### (2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2167 base pairs (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

| GGCCCCTGTT | CTGCAGAAAG | GGGGCTCTGA | GGCAGAAGGT | GGTCCATGAG | GTCAAGAGCC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| ACAAGTTCAC | CGCTCGCTTC | TTCAAGCAGC | CGACCTTCTG | CAGCCACTGC | ACTGACTTCA | 120 |
| TATGGGGGAT | TGGAAAACAG | GGTCTGCAAT | GTCAAGTCTG | CAGTTTTGTG | GTTCATCGAC | 180 |
| GATGCCACGA | GTTTGTGACC | TTCGAGTGTC | CAGGCGCTGG | GAAGGCCCC  | CAGACGGACG | 240 |
| ATCCCCGGAA | CAAGCACAAG | TTCCGTCTGC | ACAGCTACAG | CAGCCCCACC | TTCTGCGACC | 300 |
| ACTGTGGCTC | CCTGCTCTAC | GGGCTGGTGC | ACCAGGGCAT | GAAGTGTTCT | TGCTGCGAGA | 360 |
| TGAACGTGCA | CCGGCGCTGT | GTGCGCAGCG | TGCCCTCTCT | GTGCGGCGTG | GACCACACGG | 420 |
| AGCGCCGGGG | CCGCCTGCAG | CTGGAGATCC | GGGCGCCCAC | TTCCGATGAG | ATCCACGTTA | 480 |
| CGGTTGGCGA | GGCCCGGAAC | CTCATCCCAA | TGGACCCCAA | CGGTCTCTCC | GATCCCTATG | 540 |
| TGAAGCTGAA | GCTCATCCCA | GACCCTCGGA | ATTTGACCAA | GCAGAAGACC | CGCACGGTGA | 600 |
| AAGCTACGCT | AAACCCTGTG | TGGAACGAGA | CCTTTGTGTT | CAACCTGAAG | CCGGGGGACG | 660 |
| TGGAGCGCCG | GCTCAGCGTG | GAGGTGTGGG | ACTGGGACCG | GACCTCCCGA | AACGACTTCA | 720 |
| TGGGCGCCAT | GTCCTTCGGC | GTCTCGGAGC | TGCTCAAGGC | GCCGGTGGAC | GGCTGGTACA | 780 |
| AGTTACTGAA | CCAGGAGGAG | GGCGAGTATT | ACAATGTGCC | GGTGGCTGAC | GCCGACAACT | 840 |
| GCAACCTCCT | CCAGAAGTTC | GAGGCCTGTA | ACTACCCCCT | GGAACTATAC | GAGAGGGTGC | 900 |
| GGACGGGTCC | CTCTTCATCT | CCCATCCCCT | CCCCATCCCC | CAGTCCCACC | GACTCCAAGC | 960 |

|            |            |            |            |            |            | •    |
|------------|------------|------------|------------|------------|------------|------|
| GCTGTTTCTT | CGGGGCCAGC | CCTGGACGAC | TGCACATCTC | CGACTTCAGC | TTCCTCATGG | 1020 |
| TTCTAGGAAA | AGGCAGTTTT | GGGAAGGTGA | TGCTGGCCGA | GCGCCGGGGC | TCCGATGAGC | 1080 |
| TCTACGCCAT | CAAGATCCTG | AAGAAAGACG | TGATCGTCCA | GGATGACGAC | GTGGACTGCA | 1140 |
| CCCTGGTGGA | GAAACGCGTG | CTGGCTCTGG | GGGGCCGAGG | CCCGGGAGGC | CGGCCGCACT | 1200 |
| TCCTCACCCA | GCTTCACTCC | ACCTTCCAGA | CCCCGGATCG | CCTGTATTTT | GTGATGGAGT | 1260 |
| ATGTCACCGG | GGGCGACTTG | ATGTACCACA | TTCAACAGCT | GGGCAAGTTT | AAGGAACCCC | 1320 |
| ACGCAGCGTT | CTACGCTGCA | GAAATCGCCA | TCGGCCTCTT | CTTCCTCCAT | AACCAGGGCA | 1380 |
| TTATCTATCG | GGACCTGAAA | CTGGACAACG | TGATGCTGGA | TGCCGAAGGA | CACATCAAAA | 1440 |
| TCACCGACTT | CGGCATGTGT | AAGGAGAACG | TCTTTCCCGG | GAGTACCACT | CGCACCTTCT | 1500 |
| GCGGGACCCC | GGACTACATA | GCCCCGAGA  | TCATTGCCTA | CCAACCCTAT | GGGAAGTCTG | 1560 |
| TGGATTGGTG | GTCCTTTGGG | GTTCTGCTCT | ACGAGATGTT | GGCAGGACAG | CCCCCTTTG  | 1620 |
| ATGGAGAAGA | TGAGGAGGAG | CTGTTTCAAG | CCATCATGGA | ACAAACTGTC | ACCTACCCCA | 1680 |
| AGTCGCTTTC | CCGGGAAGCT | GTGGCCATCT | GCAAGGGGTT | CCTCACCAAG | CACCCGGCCA | 1740 |
| AGCGCCTGGG | CTCAGGCCCC | GATGGAGAGC | CCACCATCCG | CGCTCACGGC | TTTTTCCGCT | 1800 |
| GGATCGACTG | GGACAGGCTG | GAACGATTAG | AGATCGCGCC | TCCGTTCAGA | CCCCCCCCT  | 1860 |
| GTGGCCGCAG | CGGCGAGAAC | TTCGACAAGT | TCTTCACTCG | GGCGGCGCCG | GCGCTGACAC | 1920 |
| CCCCTGACCG | CCTGGTTCTG | GCCAGCATCG | ACCAGGCTGA | GTTCCAGGGC | TTCACCTATG | 1980 |
| TCAACCCGGA | TTTCGTGCAC | CCGGATGCCC | GCAGCCCCAT | CAGCCCAACG | CCTGTGCCAG | 2040 |
| TCATGTAATC | CCACCTGCCG | CCACCAGGCG | TCCCCACGGC | TCCCTCCTCC | GCCCCGGCTT | 2100 |
| TGGCCCTCGC | CTCACCATGC | CACCCGCCTT | TCCAATTCTA | GATATGGCTC | CCCAGCGTTC | 2160 |
| TGGCCTC    |            |            |            |            |            | 2167 |
|            |            |            |            |            |            |      |

#### (2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 2891 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

| GCCGCCGCC  | GCGGGGATCC | CGCGAGCGGC | CCCTGAACAT | CTACCCTTCT | TGCCGGGACC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| CGGGAGGTCC | CCACTGGCCT | CCGGGCCCGT | CCTGATCAGA | CTCGTGTCGA | CCTCCCCGTC | 120 |
| CACGCGCATC | CGGGAGAGCC | GCGCCACGAG | ACGGACCCGG | GCCGCCGGG  | ACCCCTGGTG | 180 |

| TCTGGCCCTG | CGTCGAGAGG. | CTGGTGACTG | CCACCCATAA | GCTCCAGCTT | CAGCCTCGGC  | 240  |
|------------|-------------|------------|------------|------------|-------------|------|
| TTACTCCCCT | CAGGGGCTTG  | CAGGCTGAGG | CCTGCCCTCG | GACGCGGCTG | ACCAGCCTCT  | 300  |
| CCCTCTCTTC | CACACTTTGG  | ACTTCTCTTT | GGACCTCCTA | AAAAGGCTCC | ATCATGGCAC  | 360  |
| CGTTCCTGCG | CATCTCCTTC  | AATTCCTATG | AGCTGGGCTC | CCTGCAGGCG | GAGGACGACG  | 420  |
| CAAGCCAGCC | TTTCTGTGCC  | GTGAAGATGA | AGGAGGCACT | CACCACAGAC | CGAGGGAAGA  | 480  |
| CTCTGGTACA | GAAGAAGCCC  | ACAATGTACC | CTGAGTGGAA | GTCAACATTC | GACGCCCACA  | 540  |
| TCTATGAAGG | CCGTGTCATC  | CAGATCGTGC | TGATGCGGGC | AGCTGAAGAC | CCCATGTCGG  | 600  |
| AGGTGACCGT | GGGCGTGTCA  | GTGCTGGCTG | AGCGCTGCAA | GAAGAACAAC | GGCAAGGCTG  | 660  |
| AGTTCTGGCT | GGACCTGCAG  | CCTCAGGCCA | AGGTGCTGAT | GTGTGTGCAG | TATTTCCTGG  | 720  |
| AGGATGGGGA | TTGCAAACAG  | TCCATGCGTA | GTGAGGAGGA | GGCCATGTTC | CCAACTATGA  | 780  |
| ACCGCCGTGG | ağccattaaa  | CAGGCCAAGA | TTCACTACAT | CAAGAACCAC | GAGTTCATCG  | 840  |
| CCACCTTCTT | TGGGCAGCCC  | ACCTTCTGTT | CTGTGTGCAA | AGAGTTTGTC | TGGGGCCTCA  | 900  |
| ACAAGCAAGG | CTACAAATGC  | AGGCAATGCA | ACGCTGCCAT | CCATAAGAAA | TGCATCGACA  | 960  |
| AGATTATCGG | CCGCTGCACT  | GGCACTGCTA | CCAATAGCCG | GGACACCATC | TTCCAGAAAG  | 1020 |
| AACGCTTCAA | CATCGACATG  | CCTCACCGAT | TCAAGGTCTA | TAACTACATG | AGCCCCACCT  | 1080 |
| TCTGTGACCA | CTGTGGCACT  | TTGCTCTGGG | GATTGGTGAA | ACAGGGATTA | AAGTGTGAAG  | 1140 |
| ACTGCGGCAT | GAATGTGCAC  | CACAAATGCC | GGGAGAAGGT | GGCCAACCTG | TGTGGTATCA  | 1200 |
| ACCAAAAGCT | CTTGGCTGAG  | GCCTTGAACC | AAGTGACCCA | GAAAGCTTCC | CGGAAGCCAG  | 1260 |
| AGACACCAGA | GACTGTCGGA  | ATATACCAGG | GATTCGAGAA | GAAGACAGCT | GTCTCTGGGA  | 1320 |
| ATGACATCCC | AGACAACAAC  | GGGACCTATG | GCAAGATCTG | GGAGGGGAGC | AACCGGTGCC. | 1380 |
| GCCTTGAGAA | CTTCACCTTC  | CAGAAAGTAC | TTGGCAAAGG | CAGCTTTGGC | AAGGTACTGC  | 1440 |
| TTGCAGAACT | GAAGGGCAAG  | GAAAGGTACT | TTGCAATCAA | GTACCTGAAG | AAGGACGTGG  | 1500 |
| TGTTGATCGA | CGATGACGTG  | GAGTGCACCA | TGGTGGAGAA | GCGGGTGCTG | GCGCTCGCCT  | 1560 |
| GGGAGAATCC | CTTCCTCACC  | CATCTCATCT | GTACCTTCCA | GACCAAGGAC | CACCTCTTCT  | 1620 |
| TTGTGATGGA | GTTCCTCAAT  | GGGGGCGATC | TGATGTTCCA | CATTCAGGAC | AAAGGCCGCT  | 1680 |
| TCGAACTCTA | CCGGGCTACG  | TTTTATGCAG | CTGAGATCAT | CTGCGGACTG | CAGTTTCTAC  | 1740 |
| ATGGCAAAGG | CATCATTTAC  | AGGGACCTCA | AGCTAGACAA | TGTAATGCTG | GACAAGGATG  | 1800 |
| GCCACATCAA | GATTGCTGAC  | TTCGGGATGT | GCAAAGAGAA | TATATTTGGG | GAGAACCGGG  | 1860 |
| CCAGCACATT | CTGCGGCACT  | CCTGACTACA | TCGCCCCTGA | GATCCTGCAG | GGCCTGAAGT  | 1920 |
| ACTCATTTTC | CGTGGACTGG  | TGGTCTTTTG | GGGTCCTCCT | CTATGAGATG | CTCATTGGCC  | 1980 |
| AGTCCCCCTT | CCATGGTGAT  | GATGAGGACG | AGCTCTTTGA | GTCCATCCGG | GTGGACACAC  | 2040 |
| CACACTACCC | GCGCTGGATC  | ACCAAGGAGT | CCAAGGACAT | CATGGAGAAG | CTCTTCGAGA  | 2100 |
| GGGACCCTGC | CAAGAGGCTG  | GGAGTAACAG | CAAACATCAG | GCTTCACCCC | TTTTTCAAGA  | 2160 |

| CTATCAACTG | GAACCTGCTG | GAGAAGCGGA | AGGTGGAGCC | CCCCTTTAAG         | CCCAAAGTGA   | 2220 |
|------------|------------|------------|------------|--------------------|--------------|------|
| AATCCCCTTC | AGACTACAGC | AACTTTGACC | CAGAGTTCCT | GAATGAGAAA         | CCCCAACTTT   | 2280 |
| CCTTCAGTGA | CAAGAACCTC | ATCGACTCTA | TGGACCAGAC | AGCCTTCAAG         | GGCTTCTCCT   | 2340 |
| TTGTGAACCC | CAAATATGAG | CAATTCCTGG | AATAGTGAGC | TCCCAGACCT         | GCTTTTAATG   | 2400 |
| CCCCGGCAGA | GTAGGCCCAT | CTGCCCTGGT | TTGCATCCTC | ACTGCCCATG         | AAGAAGAGTG   | 2460 |
| GGTGACTGGT | GATTCCTGCT | GCTGCCCCCT | CTTCCTCGGA | GAGTCTGGCT         | CCTGTTGGCT   | 2520 |
| GGGCTCACAG | TACTTCCTCT | GTGAACTGTT | TGTGAATTTG | CCTTCCTTTT         | GCCATCGGAG   | 2580 |
| GGAAACTGTA | AATCCTGTGT | GTCATTACTT | GAATGTAGTT | ATTGAAATAT         | ATATTATATA   | 2640 |
| TATGCACATA | TATATAATAG | GCTGTATATA | TTGCTCAGTA | TAGAAAGCAT         | GTAGGAGACT   | 2700 |
| GGTGATGTGT | TGACCTTTTT | TTAAAAAAAA | CCATATGTAT | ACGTGTGTAT         | GTATACATCT , | 2760 |
| ACACACGTAT | ACATATATGT | ATGTATGTAT | GTATGTATGT | ATGTATATAT         | GACCAAAAGA   | 2820 |
| AAAGAGAGCA | CAAGCTACCT | GAACCACAGG | ATTGTTTATG | <b>ȚGTGTATAA</b> A | TAAACACTGA   | 2880 |
| ATGGTAAAAA | A          | •          | •          |                    |              | 2891 |

#### (2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2176 base pairs

  - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

| TCCGGGTTCC | CCAGTGCCAG | CCAGCGCGGC | CCCCTCGGGG | CTCCGGCAGC | AGCGCCGGCA | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| TGTCGTCCGG | CACGATGAAG | TTCAATGGCT | ATCTGAGGGT | CCGCATCGGA | GAGGCTGTAG | 120 |
| GGCTGCAGCC | CACCCGCTGG | TCCCTGCGGC | ACTCGCTCTT | CAAAAAGGGC | CACCAGCTGC | 180 |
| TGGACCCCTA | CCTGACGGTG | AGCGTAGACC | AGGTACGCGT | GGGCCAGACC | AGCACAAAGC | 240 |
| AGAAGACCAA | CAAACCCACC | TACAACGAGG | AGTTCTGCGC | CAATGTCACC | GACGGCGGCC | 300 |
| ACCTGGAGCT | AGCCGTCTTC | CACGAGACGC | CCCTGGGTTA | TGACCACTTT | GTGGCCAACT | 360 |
| GCACGCTGCA | GTTCCAGGAG | CTGTTGCGCA | CGGCTGGTAC | CTCGGACACC | TTCGAGGGCT | 420 |
| GGGTGGATCT | GGAGCCTGAG | GGGAAAGTGT | TTGTGGTAAT | AACCCTAACA | GGGAGTTTCA | 480 |
| CTGAAGCCAC | TCTCCAGAGA | GACCGCATCT | TCAAGCATTT | TACCAGGAAG | CGCCAAAGGG | 540 |
| CTATGCGAAG | ACGAGTCCAT | CAAGTGAACG | GACATAAGTT | CATGGCCACG | TACCTGAGGC | 600 |
| AGCCCACCTA | CTGCTCTCAT | TGCCGAGAGT | TCATCTGGGG | AGTATTTGGG | AAACAGGGTT | 660 |

| ATCAATGCCA | AGTGTGCACC | TGCGTCGTCC | ATAAACGCTG | CCATCATCTA | ATTGTTACAG | 720    |
|------------|------------|------------|------------|------------|------------|--------|
| CCTGCACTTG | CCAAAACAAT | ATTAACAAAG | TGGATGCCAA | GATTGCAGAA | CAGCGGTTTG | 780    |
| GCATCAACAT | CCCACACAAG | TTCAACGTTC | ACAATTACAA | GGTGCCCACG | TTCTGTGACC | 840    |
| ACTGTGGCTC | CCTGCTCTGG | GGGATAATGC | GACAAGGACT | TCAGTGTAAA | ATATGTAAGA | 900    |
| TGAATGTACA | TATTCGGTGT | CAGGCGAACG | TGGCCCCAAA | CTGCGGGGTG | AATGCCGTGG | 960    |
| agcttgccaa | GACCCTGGCA | GGGATGGGTC | TCCAACCCGG | AAATATTTCT | CCAACCTCGA | 1020   |
| AACTCATTTC | CAGGTCGACA | CTAAGACGGC | AGGGAAAGGA | GGGCTCCAAA | GAAGGAAATG | 1080   |
| GGATCGGTGT | TAACTCTTCC | AGCAGATTCG | GCATCGACAA | CTTTGAGTTC | ATCCGGGTGT | 1140   |
| TGGGGAAGGG | GAGCTTCGGG | AAGGTGATGC | TTGCCAGGAT | AAAGGAGACA | GGAGAACTGT | 1200   |
| ACGCCGTGAA | GGTGCTGAAG | AAGGACGTGA | TTCTGCAGGA | TGATGATGTA | GAGTGCACCA | 1260   |
| TGACTGAGAA | GAGGATCCTG | TCCTTGGCTC | GCAACCACCC | CTTCCTCACC | CAGCTCTTCT | 1320   |
| GCTGCTTTCA | GACTCCAGAC | CGTCTGTTCT | TTGTCATGGA | GTTTGTGAAC | GGAGGCGACC | 1380   |
| TGATGTTCCA | CATCCAAAAG | TCCCGTCGTT | TCGATGAAGC | CCGTGCTCGT | TTCTACGCCG | 1440   |
| CGGAGATCAT | TTCTGCACTC | ATGTTCCTAC | ATGAGAAAGG | TATCATCTAT | AGAGACTTGA | . 1500 |
| AACTGGACAA | TGTGCTATTG | GACCACGAAG | GTCACTGTAA | ACTGGCCGAT | TTTGGAATGT | 1560   |
| GCAAGGAGGG | GATTTGTAAT | GGGGTCACCA | CAGCCACCTT | CTGCGGTACA | CCTGACTACA | 1620   |
| TTGCCCCAGA | GATCCTTCAG | GAGATGCTGT | ATGGACCTGC | AGTAGACTGG | TGGGCCATGG | 1680   |
| GCGTGTTGCT | TTATGAGATG | CTGTGCGGAC | ATGCGCCCTT | TGAGGCTGAA | AATGAAGATG | 1740   |
| ACCTTTTTGA | GGCCATACTG | AATGATGAAG | TCGTCTACCC | CACCTGGCTC | CATGAAGATG | 1800   |
| CCAGAGGGAT | CCTCAAGTCT | TTCATGACCA | AGAACCCCAC | CATGCGCTTG | GGCAGCCTGA | 1860   |
| CTCAGGGAGG | AGAGCATGAG | ATCCTGAGAC | ACCCTTTCTT | TAAGGAAATC | GACTGGGCCC | 1920   |
| AGTTGAACCA | TCGCCAGTTA | GAGCCGCCTT | TCCGACCTAG | AATCAAATCC | CGAGAAGATG | 1980   |
| TCAGCAATTT | TGACCCAGAC | TTTATAAAAG | AAGAGCCCGT | CTTAACTCCG | ATTGATGAGG | 2040   |
| GACATCTTCC | TATGATTAAC | CAGGATGAGT | TTAGAAACTT | TTCCTATGTG | TCACCGGAAT | 2100   |
| TGCAACTGTA | GCCTTATGGG | GAGTCAGAAC | CAAAGGGGAA | GGTGGATTTC | TCCAGGAATT | 2160   |
| TCTTATGTGG | GAATTC     |            |            |            |            | 2176   |

#### (2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 7 amino acids

  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: Met Asp Trp Ile Phe His Thr

|              | 46                                                                                                                           |    |
|--------------|------------------------------------------------------------------------------------------------------------------------------|----|
| . 1          | 5                                                                                                                            |    |
| (2) INFO     | RMATION FOR SEQ ID NO: 9:                                                                                                    |    |
| (i)          | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
| (ii)         | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
| (iii)        | HYPOTHETICAL: NO                                                                                                             |    |
| •            |                                                                                                                              |    |
| (xi)         | SEQUENCE DESCRIPTION: SEQ ID NO: 9:                                                                                          |    |
| AARATGGAY    | YT GGATHTTYCA YAC                                                                                                            | 23 |
| (2) INFO     | RMATION FOR SEQ ID NO: 10:                                                                                                   | •  |
| (i)          | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 13 amino acids  (B) TYPE: amino acid  (D) TOPOLOGY: linear                            |    |
| (ii)         | MOLECULE TYPE: peptide                                                                                                       |    |
| (xi)         | SEQUENCE DESCRIPTION: SEQ ID NO: 10:                                                                                         |    |
| Asp<br>1     | Asp Gly Gln Leu Phe His Ile Asp Phe Gly His Phe 5 10                                                                         |    |
| (2) INFO     | RMATION FOR SEQ ID NO: 11:                                                                                                   |    |
| : <b>(i)</b> | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear    |    |
| (ii)         | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
| (iii)        | HYPOTHETICAL: NO                                                                                                             |    |
| (xi)         | SEQUENCE DESCRIPTION: SEQ ID NO: 11:                                                                                         |    |
| GATGATGG     | CC ARCTGTTYCA YATWGAYTTT GGCCAYTT                                                                                            | 38 |
| (2) INFO     | RMATION FOR SEQ ID NO: 12:                                                                                                   |    |
| (i)          | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

18 ·

GACTCGAGTC GACATCGA

| (xi)      | SEQUENCE DESCRIPTION: SEQ ID NO: 12:                                                                                         |    |
|-----------|------------------------------------------------------------------------------------------------------------------------------|----|
| AATTCACAC | CA CTGGCATGCC GAT                                                                                                            | 23 |
| (2) INFOR | MATION FOR SEQ ID NO: 13:                                                                                                    |    |
| (i)       | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear    |    |
| (ii)      | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
| (iii)     | HYPOTHETICAL: NO                                                                                                             |    |
| (xi)      | SEQUENCE DESCRIPTION: SEQ ID NO: 13:                                                                                         |    |
| GACTCGAGI | TC GACATCGATT TTTTTTTT TTTTT                                                                                                 | 35 |
| (2) INFOR | RMATION FOR SEQ ID NO: 14:                                                                                                   |    |
| (i)       | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear    |    |
| (ii)      | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
| (iii)     | HYPOTHETICAL: NO                                                                                                             |    |
| (xi)      | SEQUENCE DESCRIPTION: SEQ ID NO: 14:                                                                                         |    |
| TTTAAGCTT | TA GGCATTCTAA AGTCACTATC ATCCC                                                                                               | 35 |
| (2) INFOR | RMATION FOR SEQ ID NO: 15:                                                                                                   |    |
| (i)       | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
| (ii)      | MOLECULE TYPE: DNA (genomic)                                                                                                 |    |
| (iii)     | HYPOTHETICAL: NO                                                                                                             |    |
| (xi)      | SEQUENCE DESCRIPTION: SEQ ID NO: 15:                                                                                         |    |

15

#### **CLAIMS**

- 1. A eukaryotic cell transformed with a DNA construct comprising a coding sequence encoding a polypeptide having the activity of a mammalian phospholipid kinase or a mammalian protein kinase activated by a phospholipid or its metabolite and regulatory elements to allow transcription of the coding sequence in the said cell wherein the regulatory elements include a repressible or inducible promoter and the expression of the said coding sequence is lethal or growth inhibitory to the cell.
  - 2. A cell according to Claim 1 wherein the cell is a yeast cell.
  - 3. A cell according to Claim 2 wherein the yeast is Schizosaccharomyces.
  - 4. A cell according to Claim 3 wherein the promoter is the *nmt* promoter.
- 5. A Schizosaccharomyces cell transformed with a DNA construct comprising a coding sequence encoding a polypeptide having the activity of a mammalian phospholipid kinase or a mammalian protein kinase activated by a phospholipid or its metabolite and regulatory elements to allow transcription of the coding sequence in the said cell wherein the regulatory elements include a constitutive promoter and the expression of the said coding sequence is lethal or growth inhibitory to the cell.
  - 6. A Schizosaccharomyces cell according to Claim 5 wherein the promoter is the adh promoter.
- 30 7. A cell according to any one of the preceding claims wherein the

phospholipid kinase is an inositol phospholipid kinase.

8. A cell according to any one of Claims 1 to 6 wherein the protein kinase activated by a phospholipid or its metabolite is a protein kinase C.

5

- 9. A cell according to Claim 7 wherein the phospholipid kinase is selected from the group consisting of phosphatidyl inositol 3-kinase, phosphatidyl inositol 4-kinase and phosphatidyl inositol-5-kinase.
- 10 10. A cell according to Claim 9 wherein the phospholipid kinase is phosphatidyl inositol 3-kinase.
  - 11. A cell according to Claim 8 wherein the protein kinase C is selected from any one of PKC- $\gamma$ , PKC- $\delta$ , PKC- $\eta$  or PKC- $\epsilon$ .

15

12. An assay for detecting whether a compound is involved in cell growth regulation, the assay comprising (1) a cell according to any one of the preceding claims, (2) a container for the said cell, (3) a growth medium for the said cell and (4) means to detect the viability of the cell.

20 .

- 13. A kit comprising a eukaryotic cell as defined in Claim 1 and culture medium such that the cell will divide and grow.
- 14. A method for assaying for a compound that is involved in cell growth regulation the method comprising (1) culturing a cell as defined in Claim 1, (2) adding a compound and (3) determining the cell growth rate in the presence of the compound.
- 15. A compound identified by the assay of Claim 12 or the method of Claim 14 as being involved in cell growth regulation.

1/17 240 160 200 280 360 **40** 80 120 320 960 **400** teggeatgeeagtgtgaattegattaaagateeagaagtaeaggaetteeggaaaaatatteteaatgtttgtaaagaagetgtbgggatettagggatettaatteaeet N N D K Q K Y T L K I N H D C V P E Q V I A E A I R K K T R S H L L S S E Q L K ATAATGACAAACAGAATACTCTGAAAATCAACCATGACTGTGCCAGAAGAAGTAATTGCTGAAGCAATCAGGAAAAAACTCGAAGTATGTTGCTATCATCTGAACAACAAAA M P P R P S S G E L W G I M L M P P R I L V E C L L P N G M I V T L E C L R E A Atgectecaagaceateateagataaactatgagggaategatgatgatgececaagaatectagtagtagtageaaatgggatgatagtagtatagaatgecteggtgagget EFFOET RECOLREGACTITGGACCTTCGACCTTTTTCAACCTTTTTAAAAGTAATTGAACCAAGCAACGGGAAAAGAAAAGTAATTGCT Gaattttttgatgaaacaaggacgacgttgggacgtttttgaacctttttaaaagtaattgaacaagcgggaagaaaaaagacgtcaatcgaagaaattggtttgct IGTAGAGCAATGTATGTTATCCTCCAAATGTAGAATCTTCACCAGAACTGCCAAAGCACATATAAAATTAGATAAAGGGCAAATAATAGTGGTGATTTGGGTAATAGTGTTCTCCCA -tctgtgttttagaatatgagggcaagtattttaaaagtgtgtggatgatgataatacttgctagaaaaatatcctgagtcagtataagtatataagaagctgtataatgcttggg U < ۵ ø z > 3 ٥ Ż o د م ع 0 0 SLWVINSALRIK o U w v Œ A X X X Y P P X V E S S P U O |-٥ U U O

Fig. 1 PAGE 1 OF 3

2/17 9 8 5 8 680 760 1440 \$20 1560 \$60 1680 600 \T&&C1TTGAATCTTTGGCCAGTACCTCATGGACTAGAAGATTTGCTGAACCCTATTGGTGTTACTGGATCAAATCCAAATAAAGAAACTCCATGTTTAGAGTTGGAGTTTGACTGGTTT atceecamattetacceamattgettetgtetgttamatggametetagagatgamgtageteagatgtactgettagtamagattggeetecaateaageetgameagge paagaggaacactgtccattggcctggggaaatataaacttgtttgattacacagatactctagtatctggaaaa MGMCAGCTCCGAGCAATTTGTACACGAGATCCTCTATCTGAAATCACTGAGCAAGAGAATTTTCTGTGGAGCCACAGACACTATTGTGTAACT cttctggactgcaattacccagatcctatggtttgctgttcggtgcttagaaaaataatttaacagatgacaactagtactagtacagtgactagtacaggtactaaaa $oldsymbol{E}$ X I A D A I B D A I I O I A O A I X TATGACAGTATTTGGATACCTGCTTGTGAGATTTTTACTCAAAAGGGTTAACTAATCAAGGATGGGTGACTTTTTGTTTTTAAATCTGAGATGCACATAAAACAGT G **⊢** > × α v 3 v ب د <u>~</u> ٥ I ¥ X A L T N O R I G H F F F w, 0 v υ د م v د. ۵. SORFGLESYCRACGHYL 3 ۵ z Œ < S I

- ' **y. '** PAGE 2 OF 3

PAGE 3 OF 3



## SUBSTITUTE SHEET

4/17

AAAAATCTCA ACACATGTGA ATGATCAGAA AATTATCGCC ATAAAAGACA GAATAAGTCA 60 TCAGCGGTTG TTTCATTTCC TATATTTTTT TTTTTTTTT TTATTTTTA ATAAGGGAAA 120 ATTTAACGTC TAAGGATACA GAAGATTGTT AGCACATTAA AGTAATAAAG GCTTAAGTAG 180 TAAGTGCCTT AGCATGTTAT TGTATTTCAA AGGACATAAT CTAAAATAAT AACAATATCA 240 TTTCTCACAA GTTATTCAAT TTTCTTTTT TTTTCTAATA ATATCAAGAA TGTATTATTT 300 GTTTGACATA AGTCAACTAA TTTATTTAAT ATGCTGGATT AATCTTGCAG ACATGTAAAT 360 TAACAAGTTT TAGTCAAATA ACGTTGAAGT TTCAATGAAC TCAAATAATT TCTCTTTTTT 420 TTTATAAC CATATGTCTA ATCTGATTTA TATTTTCCGC AGGATCAACT GAAGTTATGA 480 CATTIGGATT GGATCACTTA TAACCTIGGT CGCCAAATAA TACAAAAATC AGCGTTATAA 540 AACAAAGAAG GTTTTTGTTA AGAAATTAAT CCTCTTTCTT GATAAGAAAG TTGAACCGAA 600 ATTGCAGATA CTGATATATG AAAATAATAC CCACAATTTT GGGAATAGCG CAAGCCTCAA 660 TTTAAACAAT AGGTGAGGAC ACATGATAAT GACCTCAATG ATTGTTAGAA GAAAAGAGCC 720 TCATTACAAA ATCGAAAAAT GAATGGTTGG GTACAAGTTT CCAAAACATG GTAAAGTGGA 780 CTTTGCGTAT GAGACGTAAA TAGAAAAAAA CACTTGTTAT ATGTTTTCTA GAATTATTGT 840 TGTCTCTTTA TGGTTGGATG ATGCAAAATA GTAATTTCGG TTAGTTGCTG TAAAACACCA 900 CGAGACAAAT AGATATGGAT ATTTATTAAA TCAGGAAAAA CGTAACTCTC GGCTACTGGA 960 TGGTTCAGTC ACCCAACGAT TACTGGGGAG AGAAAACAGG GCAAAAGCAA AGCTTAAAGG 1020 AATCCGATTG TCATTCGGCA ATGTGCAGCG AAACTAAAAA CCGGATAATG GACCTGTTAA 1080 TCGAAACATT GAAGATATAT AAAGGAAGAG GAATCCTGGC ATATCATCAA TTGAATAAGT 1140 TGAATTAATT ATTTCAATCT CATTCTCACT TTCTGACTTA TAGTCGCTTT GTTAAATCAT 1200 AGGAATGTCT CCCTTGCCAG TACTGCTAGG GTTTTTCTTT CAAACTATGG AAGCCCATTC 1260 AAGCTGCATA TTACGATTTT GTTTTTCGCT TTTAGAAAGT GGTTTAGATG AGATAATAGA 1320 AAAATTCTTG ATCTCCGACA ACGAGTACTT TTATTTTTTT TGCTAATCAC TTTACTCAAT 1380 ATTAGCTCGA AATCGTAGAA ACGTAGACGG GTGCGGGATA CCGAGTGGTG TAGTTAAGAA 1440 TTTTTATAAA CCACGTGGCC CAAAAATATG AACCCAAAAC GTTTATACAT GAGTATACTT 1500 TAAGAAGGCT ATACCCCTTC GTGTTAGATG TAGTTTTAGC TACCCAACCC GAGTCTATGA 1560 GCTTGACTTC AGATGTAGAA GGCATTAAAT CGTTTTGAAT ATTAATTAAA AAACGATGAA 1620 AATTAAATAT TTAAAAGCAA TCATACGCTG AAAATTTAGT GCTGTGGCTA ATCCTTCAAC 1680 ATGGAAATGC CATAAAAGTG ACTTTGACAA AAAAAAAGT ATATACAGGT AGTAAACTCA 1740 TCTACTTCAT TGACTTTGTT TACAGCATGT GGAAGGAGGA ATATTTATTG CTAAATCGTA 1800 GTTTAACATT CAATAAGTAA TACTATTGAA ATTCGACAAG ATTGGCCGCA TGGATGAAAA 1860 AGAGGCATTT TGCTTTGGGA GAATTAGTTC AAATTAGAAC TGAAAAAAAA AACTTTACGA 1920 GGCAAAAATG TCGGATTGAG ATCGTAAAAG TTCGCTCGTC GTCTTTTGCT TTGTGATTGT 1980 TTTCATGGAT ACATCTTGCT GGATATTTAA ATTTTAGTAC TATGTATAAG ATATTCTATA

Figure 2; page 1 of 2

## SUBSTITUTE SHEET

| AATGTTTTAT | CACCCAAACC | TGTTAGCGCC | 5/17 | TATTCAATCT | GGCTTTTGCT | 2100 |
|------------|------------|------------|------|------------|------------|------|
|            |            |            |      |            | GTAATTAGAA | 2160 |
|            | CCTTTCTATT |            |      |            |            | 2199 |

Figure 2; page 2 of 2

## SUBSTITUTE SHEET

6/17

| CTCGAGCTGA | AGAACCAGCG | AGGCGGCGAG | GCAGCCCCCG   | CGGCTTGCAG | CGGAGGCGAC | 60   |
|------------|------------|------------|--------------|------------|------------|------|
| AGCTCGTCTC | CTGCCGTGGA | GGTGTCGCCG | GTGGTGGGG    | GGAGAGACTT | GCTCCAAAAA | 120  |
| AACGGACGTC | TCCAGCTCTC | CCCCCTCCCT | GTTTTCCGTT   | AGGAATCCGG | CGAGGAAATA | 180  |
| CATGCACTCG | CTGAGAATCG | GCGGCGCCAG | GAGGCAGCGC   | CACAAGGTGT | AGCGAGTGAG | 240  |
| TGGGGTGGGG | CAAGAGGGGA | CCCAGGAGTC | CCCCAGGCTC   | CCGCGCGCCC | TGCTCCTGCT | 300  |
| CTTCAATCCT | GCCCACGGGG | CGGACGGAGT | GACCCCCGCC   | CCGACCATGG | TAGTGTTCAA | 360  |
| TGGCCTTCTT | AAGATCAAAA | TCTGCGAGGC | GGTGAGCTTG   | AAGCCCACAG | CCTGGTCGCT | 420  |
| GCGCCATGCG | GTGGGACCCC | GGCCACAGAC | GTTCCTTTTG   | GACCCCTACA | TTGCCCTTAA | 480  |
| CGTGGACGAC | TCGCGCATCG | GCCAAACAGC | CACCAAGCAA   | AAGACCAACA | GCCCGGCCTG | 540  |
| GCACGATGAG | TTCGTCACCG | ATGTGTGCAA | TGGGCGCAAG   | ATCGAGCTGG | CTGTCTTTCA | 600  |
| CGACGCTCCT | ATCGGCTACG | ACGACTTCGT | GGCCAACTGC   | ACCATCCAGT | TCGAGGAGCT | 660  |
| GCTGCAGAAT | GGGAGCCGTC | ACTTCGAGGA | CTGGATTGAC   | CTGGAGCCAG | AAGGAAAAGT | 720  |
| GTACGTGATC | ATCGATCTCT | CGGGATCATC | GGGTGAAGCC   | CCTAAAGACA | ATGAAGAACG | 780  |
| AGTGTTCAGG | GAGCGTATGC | GGCCAAGGAA | GCGGCAAGGG   | GCTGTCAGGC | GCAGGGTCCA | 840  |
| CCAGGTCAAT | GGCCACAAGT | TCATGGCCAC | CTACTTGCGG   | CAACCCACCT | ACTGCTCCCA | 900  |
| CTGCAGAGAT | TTCATCTGGG | GTGTCATAGG | AAAACAGGGA   | TATCAATGTC | AAGTTTGCAC | 960  |
| TTGCGTTGTC | CACAAGCGAT | GTCATGAGCT | CATTATTACA   | AAGTGCGCTG | GGCTGAAGAA | 1020 |
| ACAGGAAACC | CCTGACGAGG | TGGGCTCCCA | ACGGTTCAGC   | GTCAACATGC | CCCACAAGTT | 1080 |
| CGGGATCCAC | AACTACAAGG | TCCCCACGTT | CTGTGACCAC   | TGTGGGTCCC | TGCTCTGGGG | 1140 |
| CCTCTTGCGG | CAGGGCTTGC | AGTGTAAAGT | CTGCAAAATG   | AATGTTCACC | GGCGATGTGA | 1200 |
| GACCAACGTG | GCTCCCAACT | GTGGGGTAGA | CGCCAGAGGA   | ATTGCCAAAG | TGCTGGCTGA | 1260 |
| CCTCGGTGTT | ACTCCAGACA | AAATCACCAA | CAGTGGCCAA   | AGGAGGAAAA | AGCTCGCTGC | 1320 |
| TGGTGCTGAG | TCCCCACAGC | CGGCTTCTGG | AAACTCCCCA   | TCTGAAGACG | ACCGATCCAA | 1380 |
| GTCAGCGCCC | ACCTCCCCTT | GTGACCAGGA | ACTAAAAGAA   | CTTGAAAACA | ACATCCGGAA | 1440 |
| GGCCTTGTCA | TTTGACAACC | GAGGAGAGGA | GCACCGAGCG   | TCGTCGGCCA | CCGATGGCCA | 1500 |
| GCTGGCAAGC | CCCGGAGAGA | ATGGGGAAGT | CCGGCCAGGC   | CAGGCCAAGC | GCTTGGGGCT | 1560 |
| GGATGAGTTC | AACTTCATCA | AAGTGTTGGG | CAAAGGCAGC   | TTTGGCAAGG | TCATGTTGGC | 1620 |
| GGAACTCAAA | GGCAAAGATG | AAGTCTACGC | TGTGAAGGTC   | TTGAAGAAGG | ACGTTATCCT | 1680 |
| ACAAGACGAT | GATGTGGACT | GCACAATGAC | AGAGAAGAGG   | ATTTTGGCTC | TGGCTCGGAA | 1740 |
| ACACCCTTAT | CTAACCCAAC | TCTATTGCTG | CTTCCAGACC   | AAGGACCGCC | TCTTCTTCGT | 1800 |
| CATGGAATAT | GTAAATGGTG | GAGACCTCAT | GTTCCAGATT   | CAGCGGTCCC | GAAAATTTGA | 1860 |
| TGAGCCTCGT | TCTCGGTTCT | ATGCCGCAGA | GGTCACATCG   | GCCCTCATGT | TTCTCCACCA | 1920 |
| GCATGGAGTG | ATCTACAGGG | ATTTGAAACT | GGACAACATC   | CTTCTAGATG | CAGAAGGCCA | 1980 |
| CTGCAAGCTG | GCTGACTTTG |            | GGAAGGGATT   |            | TGACAACTAC | 2040 |
|            |            | Figu       | re 3; page 1 | l of 2     |            |      |

## SUBSTITUTE SHEET

2707

7/17 CACCTTCTGT GGGACTCCTG ACTACATAGC TCCAGAGATC CTACAGGAGT TGGAGTACGG 2100 CCCCTCAGTG GACTGGTGGG CCCTGGGGGT GCTGATGTAC GAGATGATGG CTGGGCAGCC 2160 CCCCTTTGAA GCTGACAACG AGGACGACTT GTTCGAATCC ATCCTTCATG ATGATGTTCT 2220 CTATCCTGTC TGGCTTAGCA AGGAAGCTGT CAGCATCCTG AAAGCTTTCA TGACCAAGAA 2280 CCCGCACAAG CGCCTGGGCT GTGTGGCAGC GCAGAACGGG GAGGACGCCA TCAAGCAACA 2340 TCCATTCTTC AAGGAGATTG ACTGGGTACT GCTGGAGCAG AAGAAAATCA AGCCCCCCTT 2400 CAAGCCGAGA ATTAAAACCA AAAGAGATGT CAATAACTTT GACCAAGACT TTACGCGGGA 2460 AGAGCCAATA CTTACACTTG TGGATGAAGC AATCATTAAG CAGATCAACC AGGAAGAATT 2520 CAAAGGCTTC TCCTACTTTG GTGAAGACCT GATGCCCTGA GAGGCTGCTT CGGATGGAGG 2580 GAGCTCATGC TGCAAGGACG GTGTTGAGAT ACTCCCAAGC TGCAGAGGCT CCGAAGGTCT 2640 CAACTCCTCC TCCTCCCC CCTCCCCAGA GCCCCAGTCC CATGTCCACT CTCTTATTTA 2700 TTGCATT

Figure 3; page 2 of 2

|            |            |            | 8/17       |            |            |               |
|------------|------------|------------|------------|------------|------------|---------------|
| GGCCCCTGTT | CTGCAGAAAG | GGGGCTCTGA | GGCAGAAGGT | GGTCCATGAG | GTCAAGAGCC | 60            |
| ACAAGTTCAC | CGCTCGCTTC | TTCAAGCAGC | CGACCTTCTG | CAGCCACTGC | ACTGACTTCA | 120           |
| TATGGGGGAT | TGGAAAACAG | GGTCTGCAAT | GTCAAGTCTG | CAGTTTTGTG | GTTCATCGAC | 180           |
| GATGCCACGA | GTTTGTGACC | TTCGAGTGTC | CAGGCGCTGG | GAAGGCCCC  | CAGACGGACG | 240           |
| ATCCCCGGAA | CAAGCACAAG | TTCCGTCTGC | ACAGCTACAG | CAGCCCCACC | TTCTGCGACC | 300           |
| ACTGTGGCTC | CCTGCTCTAC | GGGCTGGTGC | ACCAGGGCAT | GAAGTGTTCT | TGCTGCGAGA | 360           |
| TGAACGTGCA | CCGGCGCTGT | GTGCGCAGCG | TGCCCTCTCT | GTGCGGCGTG | GACCACACGG | 420           |
| AGCGCCGGGG | CCGCCTGCAG | CTGGAGATCC | GGGCGCCCAC | TTCCGATGAG | ATCCACGTTA | 480           |
| CGGTTGGCGA | GGCCCGGAAC | CTCATCCCAA | TGGACCCCAA | CGGTCTCTCC | GATCCCTATG | 540           |
| TGAAGCTGAA | GCTCATCCCA | GACCCTCGGA | ATTTGACCAA | GCAGAAGACC | CGCACGGTGA | 600           |
| AAGCTACGCT | AAACCCTGTG | TGGAACGAGA | CCTTTGTGTT | CAACCTGAAG | CCGGGGGACG | 660           |
| TGGAGCGCCG | GCTCAGCGTG | GAGGTGTGGG | ACTGGGACCG | GACCTCCCGA | AACGACTTCA | 720           |
| TGGGCGCCAT | GTCCTTCGGC | GTCTCGGAGC | TGCTCAAGGC | GCCGGTGGAC | GGCTGGTACA | 780           |
| AGTTACTGAA | CCAGGAGGAG | GGCGAGTATT | ACAATGTGCC | GGTGGCTGAC | GCCGACAACT | 840           |
| GCAACCTCCT | CCAGAAGTTC | GAGGCCTGTA | ACTACCCCCT | GGAACTATAC | GAGAGGGTGC | 900           |
| GGACGGGTCC | CTCTTCATCT | CCCATCCCCT | CCCCATCCCC | CAGTCCCACC | GACTCCAAGC | 960           |
| GCTGTTTCTT | CGGGGCCAGC | CCTGGACGAC | TGCACATCTC | CGACTTCAGC | TTCCTCATGG | 1020          |
| TTCTAGGAAA | AGGCAGTTTT | GGGAAGGTGA | TGCTGGCCGA | GCGCCGGGGC | TCCGATGAGC | 1080          |
| TCTACGCCAT | CAAGATCCTG | AAGAAAGACG | TGATCGTCCA | GGATGACGAC | GTGGACTGCA | 1140          |
| CCCTGGTGGA | GAAACGCGTG | CTGGCTCTGG | GGGGCCGAGG | CCCGGGAGGC | CGGCCGCACT | 1200          |
| TCCTCACCCA | GCTTCACTCC | ACCTTCCAGA | CCCCGGATCG | CCTGTATTTT | GTGATGGAGT | 1260          |
| ATGTCACCGG | GGGCGACTTG | ATGTACCACA | TTCAACAGCT | GGGCAAGTTT | AAGGAACCCC | 1320          |
| ACGCAGCGTT | CTACGCTGCA | GAAATCGCCA | TCGGCCTCTT | CTTCCTCCAT | AACCAGGGCA | 1380          |
| TTATCTATCG | GGACCTGAAA | CTGGACAACG | TGATGCTGGA | TGCCGAAGGA | CACATCAAAA | 1440          |
| TCACCGACTT | CGGCATGTGT | AAGGAGAACG | TCTTTCCCGG | GAGTACCACT | CGCACCTTCT | 15 <b>0</b> 0 |
| GCGGGACCCC | GGACTACATA | GCCCCGAGA  | TCATTGCCTA | CCAACCCTAT | GGGAAGTCTG | 1560          |
| TGGATTGGTG | GTCCTTTGGG | GTTCTGCTCT | ACGAGATGTT | GGCAGGACAG | CCCCCTTTG  | 1620          |
| ATGGAGAAGA | TGAGGAGGAG | CTGTTTCAAG | CCATCATGGA | ACAAACTGTC | ACCTACCCCA | 1680          |
| AGTCGCTTTC | CCGGGAAGCT | GTGGCCATCT | GCAAGGGGTT | CCTCACCAAG | CACCCGGCCA | 1740          |
| AGCGCCTGGG | CTCAGGCCCC | GATGGAGAGC | CCACCATCCG | CGCTCACGGC | TTTTTCCGCT | 1800          |
| GGATCGACTG | GGACAGGCTG | GAACGATTAG | AGATCGCGCC | TCCGTTCAGA | CCCCGCCCGT | 1860          |
| GTGGCCGCAG | CGGCGAGAAC | TTCGACAAGT | TCTTCACTCG | GCCGCCCC   | GCGCTGACAC | 1920          |
| CCCCTGACCG | CCTGGTTCTG | GCCAGCATCG | ACCAGGCTGA | GTTCCAGGGC | TTCACCTATG | 1980          |
| TCAACCCGGA | TTTCGTGCAC | CCGGATGCCC | GCAGCCCCAT | CAGCCCAACG | CCTGTGCCAG | 2040          |
|            |            |            | _          |            |            |               |

Figure 4; page 1 of 2

## SUBSTITUTE SHEET

| TCATGTAATC | CCACCTGCCG | CCACCAGGCG | 9/17<br>TCCCCACGGC | TCCCTCCTCC | GCCCCGGCTT | 2100 |
|------------|------------|------------|--------------------|------------|------------|------|
| TGGCCCTCGC | CTCACCATGC | CACCCGCCTT | TCCAATTCTA         | GATATGGCTC | CCCAGCGTTC | 2160 |
| TGGCCTC    | •          |            | •                  |            |            | 2167 |

Figure 4; page 2 of 2

10/17

|            |            |            | 10/1/        |            |            |      |
|------------|------------|------------|--------------|------------|------------|------|
| GGCGGCGGCC | GCGGGGATCC | CGCGAGCGGC | CCCTGAACAT   | CTACCCTTCT | TGCCGGGACC | 60   |
| CGGGAGGTCC | CCACTGGCCT | CCGGGCCCGT | CCTGATCAGA   | CTCGTGTCGA | CCTCCCCGTC | 120  |
| CACGCGCATC | CGGGAGAGCC | GCGCCACGAG | ACGGACCCGG   | GCCCGCCGGG | ACCCCTGGTG | 180  |
| TCTGGCCCTG | CGTCGAGAGG | CTGGTGACTG | CCACCCATAA   | GCTCCAGCTT | CAGCCTCGGC | 240  |
| TTACTCCCCT | CAGGGGCTTG | CAGGCTGAGG | CCTGCCCTCG   | GACGCGGCTG | ACCAGCCTCT | 300  |
| CCCTCTCTTC | CACACTTTGG | ACTTCTCTTT | GGACCTCCTA   | AAAAGGCTCC | ATCATGGCAC | 360  |
| CGTTCCTGCG | CATCTCCTTC | AATTCCTATG | AGCTGGGCTC   | CCTGCAGGCG | GAGGACGACG | 420  |
| CAAGCCAGCC | TTTCTGTGCC | GTGAAGATGA | AGGAGGCACT   | CACCACAGAC | CGAGGGAAGA | 480  |
| CTCTGGTACA | GAAGAAGCCC | ACAATGTACC | CTGAGTGGAA   | GTCAACATTC | GACGCCCACA | 540  |
| TCTATGAAGG | CCGTGTCATC | CAGATCGTGC | TGATGCGGGC   | AGCTGAAGAC | CCCATGTCGG | 600  |
| AGGTGACCGT | GGGCGTGTCA | GTGCTGGCTG | AGCGCTGCAA   | GAAGAACAAC | GGCAAGGCTG | 660  |
| AGTTCTGGCT | GGACCTGCAG | CCTCAGGCCA | AGGTGCTGAT   | GTGTGTGCAG | TATTTCCTGG | 720  |
| AGGATGGGGA | TTGCAAACAG | TCCATGCGTA | GTGAGGAGGA   | GGCCATGTTC | CCAACTATGA | 780  |
| ACCGCCGTGG | AGCCATTAAA | CAGGCCAAGA | TTCACTACAT   | CAAGAACCAC | GAGTTCATCG | 840  |
| CCACCTTCTT | TGGGCAGCCC | ACCTTCTGTT | CTGTGTGCAA   | AGAGTTTGTC | TGGGGCCTCA | 900  |
| ACAAGCAAGG | CTACAAATGC | AGGCAATGCA | ACGCTGCCAT   | CCATAAGAAA | TGCATCGACA | 960  |
| AGATTATCGG | CCGCTGCACT | GGCACTGCTA | CCAATAGCCG   | GGACACCATC | TTCCAGAAAG | 1020 |
| AACGCTTCAA | CATCGACATG | CCTCACCGAT | TCAAGGTCTA   | TAACTACATG | AGCCCCACCT | 1080 |
| TCTGTGACCA | CTGTGGCACT | TTGCTCTGGG | GATTGGTGAA   | ACAGGGATTA | AAGTGTGAAG | 1140 |
| ACTGCGGCAT | GAATGTGCAC | CACAAATGCC | GGGAGAAGGT   | GGCCAACCTG | TGTGGTATCA | 1200 |
| ACCAAAAGCT | CTTGGCTGAG | GCCTTGAACC | AAGTGACCCA   | GAAAGCTTCC | CGGAAGCCAG | 1260 |
| AGACACCAGA | GACTGTCGGA | ATATACCAGG | GATTCGAGAA   | GAAGACAGCT | GTCTCTGGGA | 1320 |
| ATGACATCCC | AGACAACAAC | GGGACCTATG | GCAAGATCTG   | GGAGGGGAGC | AACCGGTGCC | 1380 |
| GCCTTGAGAA | CTTCACCTTC | CAGAAAGTAC | TTGGCAAAGG   | CAGCTTTGGC | AAGGTACTGC | 1440 |
| TTGCAGAACT | GAAGGGCAAG | GAAAGGTACT | TTGCAATCAA   | GTACCTGAAG | AAGGACGTGG | 1500 |
| TGTTGATCGA | CGATGACGTG | GAGTGCACCA | TGGTGGAGAA   | GCGGGTGCTG | GCGCTCGCCT | 1560 |
| GGGAGAATCC | CTTCCTCACC | CATCTCATCT | GTACCTTCCA   | GACCAAGGAC | CACCTCTTCT | 1620 |
| TTGTGATGGA | GTTCCTCAAT | GGGGGCGATC | TGATGTTCCA   | CATTCAGGAC | AAAGGCCGCT | 1680 |
| TCGAACTCTA | CCGGGCTACG | TTTTATGCAG | CTGAGATCAT   | CTGCGGACTG | CAGTTTCTAC | 1740 |
| ATGGCAAAGG | CATCATTTAC | AGGGACCTCA | AGCTAGACAA   | TGTAATGCTG | GACAAGGATG | 1800 |
| GCCACATCAA | GATTGCTGAC | TTCGGGATGT | GCAAAGAGAA   | TATATTTGGG | GAGAACCGGG | 1860 |
| CCAGCACATT | CTGCGGCACT | CCTGACTACA | TCGCCCCTGA   | GATCCTGCAG | GGCCTGAAGT | 1920 |
| ACTCATTTTC | CGTGGACTGG | TGGTCTTTTG | GGGTCCTCCT   | CTATGAGATG | CTCATTGGCC | 1980 |
| AGTCCCCCTT | CCATGGTGAT | GATGAGGACG | AGCTCTTTGA   | GTCCATCCGG | GTGGACACAC | 2040 |
|            | •          | Fian       | re 5• name ' | of 2       |            |      |

Figure 5; page 1 of 2

## SUBSTITUTE SHEET

|            |            |            | 11/17      |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| CACACTACCC | GCGCTGGATC | ACCAAGGAGT | CCAAGGACAT | CATGGAGAAG | CTCTTCGAGA | 2100 |
| GGGACCCTGC | CAAGAGGCTG | GGAGTAACAG | CAAACATCAG | GCTTCACCCC | TTTTTCAAGA | 2160 |
| CTATCAACTG | GAACCTGCTG | GAGAAGCGGA | AGGTGGAGCC | CCCCTTTAAG | CCCAAAGTGA | 2220 |
| AATCCCCTTC | AGACTACAGC | AACTTTGACC | CAGAGTTCCT | GAATGAGAAA | CCCCAACTTT | 2280 |
| CCTTCAGTGA | CAAGAACCTC | ATCGACTCTA | TGGACCAGAC | AGCCTTCAAG | GGÇTTCTCCT | 2340 |
| TTGTGAACCC | CAAATATGAG | CAATTCCTGG | AATAGTGAGC | TCCCAGACCT | GCTTTTAATG | 2400 |
| CCCCGGCAGA | GTAGGCCCAT | CTGCCCTGGT | TTGCATCCTC | ACTGCCCATG | AAGAAGAGTG | 2460 |
| GGTGACTGGT | GATTCCTGCT | GCTGCCCCCT | CTTCCTCGGA | GAGTCTGGCT | CCTGTTGGCT | 2520 |
| GGGCTCACAG | TACTTCCTCT | GTGAACTGTT | TGTGAATTTG | CCTTCCTTTT | GCCATCGGAG | 2580 |
| GGAAACTGTA | AATCCTGTGT | GTCATTACTT | GAATGTAGTT | ATTGAAATAT | ATATTATATA | 2640 |
| TATGCACATA | TATATAATAG | GCTGTATATA | TTGCTCAGTA | TAGAAAGCAT | GTAGGAGACT | 2700 |
| GGTGATGTGT | TGACCTTTTT | TTAAAAAAAA | CCATATGTAT | ACGTGTGTAT | GTATACATCT | 2760 |
| ACACACGTAT | ACATATATGT | ATGTATGTAT | GTATGTATGT | ATGTATATAT | GACCAAAAGA | 2820 |
| aaagagagca | CAAGCTACCT | GAACCACAGG | ATTGTTTATG | TGTGTATAAA | TAAACACTGA | 2880 |
| ATGGTAAAAA | A          |            |            |            |            | 2891 |

Figure 5; page 2 of 2

## SUBSTITUTE SHEET

## 12/17

| TCCGGGTTCC | CCAGTGCCAG | CCAGCGCGGC | CCCCTCGGGG   | CTCCGGCAGC | ÄGCGCCGGCA | 60   |
|------------|------------|------------|--------------|------------|------------|------|
| TGTCGTCCGG | CACGATGAAG | TTCAATGGCT | ATCTGAGGGT   | CCGCATCGGA | GAGGCTGTAG | 120  |
| GGCTGCAGCC | CACCCGCTGG | TCCCTGCGGC | ACTCGCTCTT   | CAAAAAGGGC | CACCAGCTGC | 180  |
| TGGACCCCTA | CCTGACGGTG | AGCGTAGACC | AGGTACGCGT   | GGGCCAGACC | AGCACAAAGC | 240  |
| AGAAGACCAA | CAAACCCACC | TACAACGAGG | AGTTCTGCGC   | CAATGTCACC | GACGGCGGCC | 300  |
| ACCTGGAGCT | AGCCGTCTTC | CACGAGACGC | CCCTGGGTTA   | TGACCACTTT | GTGGCCAACT | 360  |
| GCACGCTGCA | GTTCCAGGAG | CTGTTGCGCA | CGGCTGGTAC   | CTCGGACACC | TTCGAGGGCT | 420  |
| GGGTGGATCT | GGAGCCTGAG | GGGAAAGTGT | TTGTGGTAAT   | AACCCTAACA | GGGAGTTTCA | 480  |
| CTGAAGCCAC | TCTCCAGAGA | GACCGCATCT | TCAAGCATTT   | TACCAGGAAG | CGCCAAAGGG | 540  |
| CTATGCGAAG | ACGAGTCCAT | CAAGTGAACG | GACATAAGTT   | CATGGCCACG | TACCTGAGGC | 600  |
| AGCCCACCTA | CTGCTCTCAT | TGCCGAGAGT | TCATCTGGGG   | AGTATTTGGG | AAACAGGGTT | 660  |
| ATCAATGCCA | AGTGTGCACC | TGCGTCGTCC | ATAAACGCTG   | CCATCATCTA | ATTGTTACAG | 720  |
| CCTGCACTTG | CCAAAACAAT | ATTAACAAAG | TGGATGCCAA   | GATTGCAGAA | CAGCGGTTTG | 780  |
| GCATCAACAT | CCCACACAAG | TTCAACGTTC | ACAATTACAA   | GGTGCCCACG | TTCTGTGACC | 840  |
| ACTGTGGCTC | CCTGCTCTGG | GGGATAATGC | GACAAGGACT   | TCAGTGTAAA | ATATGTAAGA | 900  |
| TGAATGTACA | TATTCGGTGT | CAGGCGAACG | TGGCCCCAAA   | CTGCGGGGTG | AATGCCGTGG | 960  |
| AGCTTGCCAA | GACCCTGGCA | GGGATGGGTC | TCCAACCCGG   | AAATATTTCT | CCAACCTCGA | 1020 |
| AACTCATTTC | CAGGTCGACA | CTAAGACGGC | AGGGAAAGGA   | GGGCTCCAAA | GAAGGAAATG | 1080 |
| GGATCGGTGT | TAACTCTTCC | AGCAGATTCG | GCATCGACAA   | CTTTGAGTTC | ATCCGGGTGT | 1140 |
| TGGGGAAGGG | GAGCTTCGGG | AAGGTGATGC | TTGCCAGGAT   | AAAGGAGACA | GGAGAACTGT | 1200 |
| ACCCCTGAA  | GGTGCTGAAG | AAGGACGTGA | TTCTGCAGGA   | TGATGATGTA | GAGTGCACCA | 1260 |
| TGACTGAGAA | GAGGATCCTG | TCCTTGGCTC | GCAACCACCC   | CTTCCTCACC | CAGCTCTTCT | 1320 |
| GCTGCTTTCA | GACTCCAGAC | CGTCTGTTCT | TTGTCATGGA   | GTTTGTGAAC | GGAGGCGACC | 1380 |
| TGATGTTCCA | CATCCAAAAG | TCCCGTCGTT | TCGATGAAGC   | CCGTGCTCGT | TTCTACGCCG | 1440 |
| CGGAGATCAT | TTCTGCACTC | ATGTTCCTAC | ATGAGAAAGG   | TATCATCTAT | AGAGACTTGA | 1500 |
| AACTGGACAA | TGTGCTATTG | GACCACGAAG | GTCACTGTAA   | ACTGGCCGAT | TTTGGAATGT | 1560 |
| GCAAGGAGGG | GATTTGTAAT | GGGGTCACCA | CAGCCACCTT   | CTGCGGTACA | CCTGACTACA | 1620 |
| TTGCCCCAGA | GATCCTTCAG | GAGATGCTGT | ATGGACCTGC   | AGTAGACTGG | TGGGCCATGG | 1680 |
| GCGTGTTGCT | TTATGAGATG | CTGTGCGGAC | ATGCGCCCTT   | TGAGGCTGAA | AATGAAGATG | 1740 |
| ACCTTTTTGA | GGCCATACTG | AATGATGAAG | TCGTCTACCC   | CACCTGGCTC | CATGAAGATG | 1800 |
| CCAGAGGGAT | CCTCAAGTCT | TTCATGACCA | AGAACCCCAC   | CATGCGCTTG | GGCAGCCTGA | 1860 |
| CTCAGGGAGG | AGAGCATGAG | ATCCTGAGAC | ACCCTTTCTT   | TAAGGAAATC | GACTGGGCCC | 1920 |
| AGTTGAACCA | TCGCCAGTTA | GAGCCGCCTT | TCCGACCTAG   | AATCAAATCC | CGAGAAGATG | 1980 |
| TCAGCAATTT | TGACCCAGAC | TTTATAAAAG | AAGAGCCCGT   | CTTAACTCCG | ATTGATGAGG | 2040 |
|            |            | Figu       | re 6; page ] | l of 2     | •          |      |

## SUBSTITUTE SHEET

| GACATCTTCC TATGATTAAC CAGGATGAG | 13/17<br>T TTAGAAACTT | TTCCTATGTG | TCACCGGAAT | 2100 |
|---------------------------------|-----------------------|------------|------------|------|
| TGCAACTGTA GCCTTATGGG GAGTCAGAA | C CAAAGGGGAA          | GGTGGATTTC | TCCAGGAATT | 2160 |
| TCTTATGTGG GAATTC               |                       |            |            | 2176 |

Figure 6; page 2 of 2

## SUBSTITUTE SHEET

14/17



+Thiamine





Fig.7

15/17



A = 10nM Thiamine

B = n11

C = 10ng/m1 TPA

Fig. 8

WO 94/03609 PCT/GB93/01651



17/17

## + Thiamine





- Thiamine

- Thiamine + TPA

Fig. 10

## SUBSTITUTE SHEET

#### INTERNATIONAL SEARCH REPORT

Inte: anal Application No PCT/GB 93/01651

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C12N15/54 C12N9/12 (C12N1/19, C12R1:645)

C12Q1/48

C12N1/19

//C12Q1/02,

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. PIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 5 C12N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

| C. DOCU    | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                   |                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                | Relevant to claim No. |
| Χ .        | EP,A,O 358 325 (TAKEDA CHEMICAL INDUSTRIES<br>LTD.) 14 March 1990                                                                                                                                                                                 | 1,2,8,<br>12-15       |
| Y          | see page 3, line 14 - line 34 see page 4, line 28 - line 36 see example 4                                                                                                                                                                         | 1-6,8,11              |
| <b>Y</b>   | JOURNAL OF BIOLOGICAL CHEMISTRY vol. 265, no. 19 , 5 July 1990 , BALTIMORE, MD US pages 10857 - 10864 MAUNDRELL, K. 'nmtl of fission yeast' cited in the application see from page 10860, right column, last paragraph to page 10864 see figure 8 | 1-6,8                 |
|            | <b>-/-</b> -                                                                                                                                                                                                                                      | •                     |
|            | ·                                                                                                                                                                                                                                                 |                       |

|    | Further documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·A | document defining the general state of the art which is not considered to be of particular relevance  earlier document but published on or after the international filing date  document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  document referring to an oral disclosure, use, exhibition or other means  document published prior to the international filing date but later than the priority date claimed | To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  "&" document member of the same patent family |
| Di | ate of the actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date of mailing of the international search report 3 0 -11- 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | 9 November 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 -11- 1333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N  | ame and mailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2  NL - 2280 HV Rijswijk                                                                                                                                                                                                                                                                                                                                                                                                                         | Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L  | Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANDRES, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Form PCT/ISA/210 (second sheet) (July 1992)

#### INTERNATIONAL SEARCH REPORT

Inte: mal Application No
PCT/GB 93/01651

|            |                                                                                                                                                                                                                                                                                              |   | PC1/GB 93/01651       |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|--|--|
|            | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                   |   |                       |  |  |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                           |   | Relevant to claim No. |  |  |
| X          | JOURNAL OF BIOLOGICAL CHEMISTRY vol. 265, no. 36 , 25 December 1990 , BALTIMORE, MD US pages 22434 - 22440 OSADA, SI. ET AL. 'A phorbol ester receptor/protein kinase, nPKCeta, a new member of the protein kinase C family predominantly expressed in lung and skin' see the whole document | : | 1,8,11<br>11          |  |  |
| X          | WO,A,88 01303 (GENETICS INSTITUTE, INC.) 25 February 1988 see page 4, line 12 - page 5, line 33 see page 12, line 32 - page 13, line 7 see example VIII                                                                                                                                      |   | 1,2,8,<br>12-15       |  |  |
| X          | WO,A,89 07654 (PROGENICS PHARMACEUTICALS, INC.) 24 August 1989 see page 14 - page 16, line 23 see page 19 - page 22, line 3                                                                                                                                                                  |   | 1,8,<br>12-15         |  |  |
| P,X-       | CELL vol. 70 , 7 August 1992 , CAMBRIDGE, NA US pages 419 - 429 HILES, I. ET AL. 'Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit' cited in the application see the whole document                                                                   | , | 1,7,9,10              |  |  |
|            |                                                                                                                                                                                                                                                                                              |   |                       |  |  |
|            |                                                                                                                                                                                                                                                                                              |   |                       |  |  |
|            |                                                                                                                                                                                                                                                                                              |   | , .                   |  |  |
|            |                                                                                                                                                                                                                                                                                              |   |                       |  |  |
|            |                                                                                                                                                                                                                                                                                              |   |                       |  |  |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

#### INTERNATIONAL SEARCH REPORT

inter nal Application No
PCT/GB 93/01651

| Patent document cited in search report | Publication date | Patent family member(s) |         | Publication date |
|----------------------------------------|------------------|-------------------------|---------|------------------|
| EP-A-0358325                           |                  | JP-A- 2138983           |         |                  |
| WO-A-8801303                           | 25-02-88         | AU-A-                   | 7851387 | 08-03-88         |
| •                                      |                  | EP-A-                   | 0317574 | 31-05-89         |
|                                        | <u> </u>         | JP-T-                   | 2500243 | 01-02-90         |
| WO-A-8907654                           | 24-08-89         | US-A-                   | 4980281 | 25-12-90         |
|                                        |                  | AU-B-                   | 612948  | 18-07-91         |
|                                        |                  | AU-A-                   | 3184089 | 06-09-89         |
|                                        |                  | EP-A-                   | 0403506 | 27-12-90         |
|                                        |                  | JP-T-                   | 3503598 | 15-08-91         |

Form PCT/ISA/210 (petent family annex) (July 1992)