Disciplina:

MODELAGEM E PREPARAÇÃO
DE DADOS PARA APRENDIZADO
DE MÁQUINA

Professor: Rafael Barroso

AVALIAÇÃO

Prática:

12 pontos

Exercício: 15 pontos

Prática: 12 pontos

Prática: 12 pontos

Prática: 12 pontos Prática: 12 pontos

Final:

25 pontos

Aula 1

- Visão crítica de dados
- Dados estruturados e não-estruturados

Aula 2

- Principais trativas para organização e entendimento de dados
- Análise exploratória de dados
- Visualização analítica

Aula 3

- Tratamento de nulo:
- Encoding
- Reescalagem de dados
- Discretização

Aula 4

- Limpeza de dados
- Tratamento de outliers
- Agrupamento de dados
- Amostragem

Aula 5

Seleção de variáveis

Aula 6

Redução de dimensionalidade

PARTE 1 TIPOS DE VARIÁVEIS

TIPOS DE VARIÁVEIS

TIPOS DE VARIÁVEIS

Categórica Nominal

- Cor dos olhos,
- Cor do cabelo,
- Estado de saúde,
- Cidade natal,
- País,
- Estilo musical, etc.

Categórica Ordinal

- Escolaridade,
- Mês (de um dado evento).

Numérica Discreta

- Número de filhos/pessoas,
- Número de prédios,
- Número de assentos, etc.

Numérica Contínua

- Tempo,
- Peso,
- Altura,
- Dinheiro,
- Distância, etc.

PARTE 2 ESTATÍSTICA DESCRITIVA

MEDIDAS DE TENDÊNCIA

Média

- Valor que resume as observações a um valor central.
- Resume a amostra a um valor que, se repetido n vezes (onde n é o tamanho da amostra), obtém-se o mesmo valor para a soma dos elementos da amostra.
- É fortemente influenciado por valores extremos (mínimos e máximos).
- Pode não ter um significado coerente para o domínio em questão.

Mediana

- Valor que divide as observações da amostra em dois grupos de mesmo tamanho.
- É equivalente ao percentil 50%.
- Demanda que a amostra esteja ordenada para sua identificação.
- Em amostras com número ímpar de elementos, é o próprio elemento central.
- Em amostras com número par de elementos, é a média dos dois elementos centrais.

Moda

- Valor mais recorrente na amostra.
- Pode não existir.

MEDIDAS DE TENDÊNCIA

 12
 15
 23
 32
 4
 93
 14
 12
 13

Média

$$\bar{x} = \frac{\sum_{i=0}^{n} x_i}{n}$$

$$\bar{x} = \frac{12 + 15 + 23 + 32 + 4 + 93 + 14 + 12 + 13}{9}$$

$$\bar{x} = \frac{218}{9}$$

$$\bar{\chi} = 24,2$$

Mediana

4, 12, 12, 13, 14, 15, 23, 32, 93

M = 14

Moda

Número	Frequência
4	1
12	2
13	1
14	1
15	1
23	1
32	1
93	1

MEDIDAS DE TENDÊNCIA

76	34	64	74	42	23	59	79	26	86	

Média Mediana Moda

MEDIDAS DE TENDÊNCIA

 76
 34
 64
 74
 42
 23
 59
 79
 26
 86

Média

$$\bar{x} = \frac{\sum_{i=0}^{n} x_i}{n}$$

 $\bar{\chi} = \frac{76+34+64+74+42+23+59+79+26+86}{10}$

$$\bar{x} = \frac{563}{10}$$

$$\bar{x} = 56,3$$

Mediana

23, 26, 34, 42, 59, 64, 74, 76, 79, 86

M = 61,5

Moda

Número	Frequência
76	1
34	1
64	1
74	1
42	1
23	1
59	1
79	1
26	1
86	1

ASSIMETRIA

MEDIDAS DE VARIABILIDADE

Amplitude

• É a diferença entre os valores máximo e mínimo da amostra de dados.

Desvio Padrão

- Indica o grau de variação no conjunto de dados.
- Valores baixos indicam que os elementos se concentram próximo à média.
- Por conseguinte, valores altos indicam que os dados estão distribuídos/menos concentrados.
- É sempre positivo ou nulo (sempre nulo para constantes).

MEDIDAS DE TENDÊNCIA

Amplitude

$$A = x_{m\acute{a}x} - x_{min}$$

$$A = 86 - 23$$

$$A = 63$$

Desvio Padrão

$$\sigma = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \overline{x})^2}{n}}$$

$$\sigma = 22,1$$

Variância

$$\sigma^2 = \frac{\sum_{i=0}^n (x_i - \overline{x})^2}{n}$$

$$\sigma = 489,4$$

MEDIDAS DE VARIABILIDADE

MEDIDAS DE VARIABILIDADE

MEDIDAS DE POSIÇÃO

- Percentis, quartis, etc.
- Responsáveis por dividir a <u>amostra ordenada</u> de acordo com o percentual da população que desejamos;
- Ex: percentil 10% → equivale ao valor (no domínio

da amostra) que separa os primeiros 10% de observações dos outros 90%;

- Percentis notáveis:
 - 1º quartil → percentil 25%,
 - 2º quartil → percentil 50% → mediana,
 - 3º quartil → percentil 75%.

OUTLIERS

- São valores possíveis, mas incomuns;
- Em alguns casos, podem ser facilmente identificados no conjunto de dados;
- Em outros, pode-se aplicar algum teste estatístico para identifica-los;

 A principal ferramenta se baseia na distância interquartis.

OUTLIERS

Identificação de Outliers – Distância Interquartis:

Limite Inferior =
$$Q_1 - 1.5 \times IQR$$

Limite Superior = $Q_3 + 1.5 \times IQR$
 $IQR = (Q_3 - Q_1)$

PARTE 3 ANÁLISE EXPLORATÓRIA

ANÁLISE EXPLORATÓRIA

O QUE É:

- Processo inicial de análise crítica;
- Busca identificar padrões, anomalias, testar hipóteses e validar premissas;
- Tem como objetivo <u>entender</u> os dados <u>antes</u> de começar a usá-los;

- Ajuda a definir como melhor utilizar/trabalhar os dados;
- Além de validar informações conhecidas (ou supostas), pode revelar novos insights.

ANÁLISE EXPLORATÓRIA

ABORDAGENS:

