1) Что такое контекстное переключение задач?

Контекстное переключение задач — это необходимый набор действий (сохранение состояния задачи, сохранение счетчика команд, поиск новой задачи, загрузка состояния задачи), который осуществляется при смене задач, одновременно, но поочередно поддерживаемых одним исполнителем.

2) Назовите основные подходы к реализации параллелизма

- 1) Через процессы: у каждого из свое адресное пространство и функция main, обмен данными осуществляется через посредника безопасно, но медленно, с большой сложностью и затратностью.
- 2) Через потоки: у них общее адресное пространство, в связи с чем нужно синхронизировать доступ к данным небезопасно, но быстро, с хорошей сложностью и нормальной затратностью.

3) Что может влиять на производительность параллельных алгоритмов?

- 1) Количество исполнителей и задач
- 2) Конкуренция за данные при модификации общих переменных
- 3) Ложное разделение (из памяти в регистры подгружается некоторое число последовательнос расположенных байт, для маленьких типов это может быть несколько разных переменных, которые из-за этого нельзя модифицировать параллельно)
- 4) Обработка исключений
- 5) Закон Амдала последовательные участки ограничивают прирост производительности для сколь угодно большого числа исполнителей.

4) Как в стандартной библиотеке реализована концепция асинхронного исполнения?

std::thread – поток; std::async – имеет синтаксис, как thread, но режим выполнения задает уже операционная система, оно может начаться когда угодно; std::future – позволяет через get() получить результат выполнения задачи (и дождаться его, если необходимо), гарантированно запускает процесс исполнения задачи, помимо этого есть функции wait() и valid(); std::promise – может сохранить то, что извлечет фьючерс (значение/исключение); std::packaged_task – обертка для функции, которую нужно будет вызвать асинхронно.

5) Что нужно учитывать при замене последовательной реализации алгоритма на параллельную?

- 1) Количество элементов
- 2) Сложность действий
- 3) Время подготовки
- 4) Характер задачи
- 5) Работу с памятью