

Machine Learning CSE - 465

Lecture - 06

Lecture 06 Decision Tree

Content credit: Data mining lab, Brigham Young University, Utah, USA

Outline

- Example of a Decision Tree
- ID3 Example
- Entropy
- Information Gain
- Overfitting and Underfitting

Example of a Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Test Data

Refund		Taxable Income	Cheat
No	Married	80K	?

Decision Tree Learning: ID3

Function ID3(Training-set, Attributes)

- If all elements in *Training-set* are in same class, then return leaf node labeled with that class
- Else if Attributes is empty, then return leaf node labeled with majority class in Training-set
- Else if Training-Set is empty, then return leaf node labeled with default majority class
- Else
 - ◆ Select and remove A from Attributes
 - ◆ Make A the root of the current tree
 - ◆ For each value V of A
 - Create a branch of the current tree labeled by V
 - Partition_V ← Elements of Training-set with value V for A
 - Induce-Tree(Partition_V, Attributes)
 - Attach result to branch V

Illustrative Training Set

Risk Assessment for Loan Applications

Client#	Credit History	Debt Level	Collateral	Income Level	RISK LEVEL
1	Bad	High	None	Low	HIGH
2	Unknown	High	None	Medium	HIGH
3	Unknown	Low	None	Medium	MODERATE
4	Unknown	Low	None	Low	HIGH
5	Unknown	Low	None	High	LOW
6	Unknown	Low	Adequate	High	LOW
7	Bad	Low	None	Low	HIGH
8	Bad	Low	Adequate	High	MODERATE
9	Good	Low	None	High	LOW
10	Good	High	Adequate	High	LOW
11	Good	High	None	Low	HIGH
12	Good	High	None	Medium	MODERATE
13	Good	High	None	High	LOW
14	Bad High		None	Medium	HIGH

ID3 Example

Attach subtrees at appropriate places.

Non-Uniqueness

- Decision trees are not unique:
 - Given a set of training instances T, there generally exists a number of decision trees that are consistent with (or fit) T

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

ID3's Question

Given a training set, which of all of the decision trees consistent with that training set should we pick?

More precisely:

Given a training set, which of all of the decision trees consistent with that training set has the greatest likelihood of correctly classifying unseen instances of the population?

Entropy (as information)

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(where $p(j \mid t)$ is the relative frequency of class j at node t)

Based on Shannon's information theory

For simplicity, assume only 2 classes Yes and No

Assume t is a set of messages sent to a receiver that must guess their class

If $p(Yes \mid t)=1$ (resp., $p(No \mid t)=1$), then the receiver guesses a new example as Yes (resp., No). No message need be sent.

If $p(Yes \mid t) = p(No \mid t) = 0.5$, then the receiver cannot guess and must be told the class of a new example. A 1-bit message must be sent.

If $0 < p(Yes \mid t) < 1$, then the receiver needs less than 1 bit on average to know the class of a new example.

Entropy (as homogeneity)

Think chemistry/physics

- Entropy is measure of disorder or homogeneity
- Minimum (0.0) when homogeneous / perfect order
- Maximum (1.0, in general log C) when most heterogeneous / complete chaos

• In ID3

- Minimum (0.0) when all records belong to one class, implying most information
- Maximum (log C) when records are equally distributed among all classes, implying least information
- Intuitively, the smaller the entropy the purer the partition

Examples of Computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Information Gain

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

(where parent Node, p is split into k partitions, and n_i is number of records in partition i)

- Measures reduction in entropy achieved because of the split

 maximize
- ID3 chooses to split on the attribute that results in the largest reduction, i.e, (maximizes GAIN)
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Computing Gain

Overfitting and Underfitting

Overfitting:

- Given a model space H, a specific model $h \subseteq H$ is said to overfit the training data if there exists some alternative model $h' \subseteq H$, such that h has smaller error than h' over the training examples, but h' has smaller error than h over the entire distribution of instances

Underfitting:

 The model is too simple, so that both training and test errors are large

Detecting Overfitting

Overfitting in Decision Tree Learning

- Overfitting results in decision trees that are more complex than necessary
 - Tree growth went too far
 - Number of instances gets smaller as we build the tree (e.g., several leaves match a single example)

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Good accuracy

Disadvantages:

- Axis-parallel decision boundaries
- Redundancy
- Need data to fit in memory
- Need to retrain with new data

Thank You

