Examine the structure proposed for the transactions table:

Name	Nu.	11?	Type
TRANS_ID	NOT	NULL	NUMBER (6)
CUST_NAME	NOT	NULL	VARCHAR2 (20)
CUST_STATUS	NOT	NULL	CHAR
TRANS_DATE	NOT	NULL	DATE
TRANS_VALIDITY			VARCHAR2
CUST_CREDIT_LIMIT			NUMBER

Which two statements are true regarding the creation and storage of data in the above table structure?

- A. The CUST_STATUS column would give an error.
- B. The TRANS_VALIDITY column would give an error.
- C. The CUST STATUS column would store exactly one character.
- D. The CUST_CREDIT_LIMIT column would not be able to store decimal values.
- E. The TRANS VALIDITY column would have a maximum size of one character.
- F. The TRANS_DATE column would be able to store day, month, century, year, hour, minutes, seconds, and fractions of seconds

Answer: B, C

Explanation:

VARCHAR2(size)Variable-length character data (A maximum size must be specified: minimum size is 1; maximum size is 4, 000.) CHAR [(size)] Fixed-length character data of length size bytes (Default and minimum size is 1; maximum size is 2, 000.) NUMBER [(p, s)] Number having precision p and scale s (Precision is the total number of decimal digits and scale is the number of digits to the right of the decimal point; precision can range from 1 to 38, and scale can range from –84 to 127.) DATE Date and time values to the nearest second between January 1, 4712 B.C., and December 31,9999 A.D.

View the Exhibit and evaluate the structure and data in the CUST_STATUS table.

CUST_STATUS Name	Nu.	11?	Туре
CUSTNO AMT_SPENT CREDIT_LIMIT		NULL	NUMBER(2) NUMBER(10,2) NUMBER(10,2)

CUSTNO	AMT_SPENT	CREDIT_LIMIT
1	1000	1000
2	2000	2500
3		3000
4	3000	2800

You issue the following SQL statement:

```
SQL> SELECT custno, NVL2(NULLIF(amt_spent, credit_limit), 0, 1000)"BONUS" FROM cust_status;
```

Which statement is true regarding the execution of the above query?

- A. It produces an error because the AMT_SPENT column contains a null value.
- B. It displays a bonus of 1000 for all customers whose AMT_SPENT is less than CREDIT_LIMIT.
- C. It displays a bonus of 1000 for all customers whose AMT_SPENT equals CREDIT_LIMIT, or AMT_SPENT is null.
- D. It produces an error because the TO_NUMBER function must be used to convert the result of the NULLIF function before it can be used by the NVL2 function.

Answer: C

The NULLIF Function The NULLIF function tests two terms for equality. If they are equal the function returns a null, else it returns the first of the two terms tested. The NULLIF function takes two mandatory parameters of any data type. The syntax is NULLIF(ifunequal, comparison_term), where the parameters ifunequal and comparison_term are compared. If they are identical, then NULL is returned. If they differ, the ifunequal parameter is returned.

Which normal form is a table in if it has no multi-valued attributes and no partial dependencies?

- A. First normal form
- B. Second normal form
- C. Third normal form D.

Fourth normal form

Answer: B

QUESTION: 4

Examine the structure and data of the CUST TRANS table: Dates

CUST TH	RANS	
Name	Null?	Type
CUSTNO	NOT NULL	CHAR(2)
TRANSDA	ATE	DATE
TRANSAM	MT	NUMBER (6,2)
CUSTNO	TRANSDATE	TRANSAMT
11	01-JAN-07	1000
22	01-FEB-07	2000
33	01-MAR-07	3000

Dates are stored in the default date format dd-mon-rr in the CUST_TRANS table. Which three SQL statements would execute successfully?

- A. SELECT transdate + '10' FROM cust_trans;
- B. SELECT * FROM cust_trans WHERE transdate = '01-01-07'; C. SELECT transamt FROM cust_trans WHERE custno > "11";
- D. SELECT * FROM cust_trans WHERE transdate='01-JANUARY-07';
- E. SELECT custno + 'A' FROM cust_trans WHERE transamt > 2000;

Answer: A, C, D

You need to produce a report where each customer's credit limit has been incremented by \$1000. In the output, the customer's last name should have the heading Name and the incremented credit limit should be labeled New credit Limit. The column headings should have only the first letter of each word in uppercase. Which statement would accomplish this requirement?

- B) SELECT cust_last_name AS Name, cust_credit_limit + 1000 AS New Credit Limit FROM customers;
- C) SELECT cust_last_name AS "Name", cust_credit_limit + 1000 AS "New Credit Limit" FROM customers;
- A. Option A
- B. Option B
- C. Option C
- D. Option D

Answer: C

Explanation:

A column alias:

- Renames a column heading
- Is useful with calculations
- Immediately follows the column name (There can also be the optional AS keyword between the column name and the alias.)
- Requires double quotation marks if it contains spaces or special characters, or if it is case sensitive.

View the Exhibit and examine the data in the costs table.

COSTS

PROD_ID	PROMO_ID	UNIT_COST	UNIT_PRICE
14	111	900	1129
15	333	875	1075
16	333	700	900
17	444	1000	1150

You need to generate a report that displays the IDs of all products in the costs table whose unit price is at least 25% more than the unit cost. The details should be displayed in the descending order of 25% of the unit cost. You issue the following query:

```
SQL>SELECT prod_id

FROM costs

WHERE unit_price >= unit_cost * 1.25

ORDER BY unit cost * 0.25 DESC;
```

Which statement is true regarding the above query?

- A. It executes and produces the required result.
- B. It produces an error because an expression cannot be used in the order by clause.
- C. It produces an error because the DESC option cannot be used with an expression in the order by clause.
- D. It produces an error because the expression in the ORDER by clause should also be specified in the SELECT clause.

Answer: A

You need to list the employees in DEPARTMENT_ID 30 in a single row, ordered by HIRE_DATE. Examine the sample output:

```
Emp_list Earliest
Raphaely; Khoo; Tobias; Baida; Himuro; Colmenares 07-DEC-02
```

Which query will provide the required output?

```
A) SELECT LISTAGG (last name)
  WITHIN GROUP ORDER BY (hire date) "Emp list", MIN(hire date) "Earliest"
  FROM employees
  WHERE department id = 30;
B) SELECT LISTAGG(last name, '; ')
  WITHIN GROUP (ORDER BY hire date) "Emp list", MIN(hire date) "Earliest"
  FROM employees
  WHERE department id = 30;
C) SELECT LISTAGG(last_name, '; ') "Emp_list", MIN(hire_date) "Earliest"
  FROM employees
  WHERE department id = 30
  WITHIN GROUP ORDER BY hire date;
D) SELECT LISTAGG (last name, '; ') "EMP LIST", MIN (hire date) "Earliest"
  FROM employees
  WHERE department id = 30
  ORDER BY hire date;
```

- A. Option A
- B. Option B
- C. Option C
- D. Option D

Answer: B

Reference:

http://docs.oracle.com/cd/E11882 01/server.112/e10592/functions089.htm