CBSE Class 10 Maths Solutions 30/5/1

QUESTION PAPER CODE 30/5/1 **EXPECTED ANSWER/VALUE POINTS**

SECTION A

a.b = 10001. 1 $\frac{1}{2}$ **2.** $k(2)^2 + 2(2) - 3 = 0$ $k = -\frac{1}{4}$ OR For real and equal roots $\frac{1}{2}$ $k^2 - 4 \times 3 \times 3 = 0$ $k = \pm 6$ 15 + (n-1)(-3) = 03. n = 6 $\sin 30^\circ + \cos y = 1$ $\frac{1}{2}$ $\cos y = \frac{1}{2}$ \Rightarrow y = 60° OR $\cos 48^{\circ} - \sin 42^{\circ}$ $= \cos 48^{\circ} - \cos (90^{\circ} - 42^{\circ})$ $\frac{1}{2}$ = 0**5.** 5:11 1 $\frac{1}{2}$ **6.** 6 - 3a = 5 $a = \frac{1}{3}$

30/5/1

30/5/1

SECTION B

7.	$a_1 = S_1 = 2(1)^2 + 1 = 3$	$\frac{1}{2}$
	$a_2 = S_2 - S_1 = 10 - 3 = 7$	$\frac{1}{2}$

AP
$$3, 7 ..., \Rightarrow d = 4$$

$$a_n = 3 + (n-1)4 = (4n-1)$$

OR

$$a_{17} = a_{10} + 7$$

$$a + 16d = a + 9d + 7$$

$$d = 1$$

8.
$$\frac{2a-2}{2} = 1$$

$$\Rightarrow a = 2$$

$$\frac{4+3b}{2} = 2a+1$$

$$\Rightarrow$$
 b = 2

9. (i) P (getting A) =
$$\frac{3}{6}$$
 or $\frac{1}{2}$

(ii) P (getting B) =
$$\frac{2}{6}$$
 or $\frac{1}{3}$

10.
$$612 = 2^2 \times 3^2 \times 17$$

$$1314 = 2 \times 3^2 \times 73$$

HCF (612, 1314) =
$$2 \times 3^2 = 18$$

OR

Let a be any +ve integer

and b = 6

1

30/5/1

 \Rightarrow a = 6m + r $0 \le r < 6$, for any +ve integer m 1

Possible forms of 'a' are

$$6m$$
, $6m + 1$, $6m + 2$, $6m + 3$, $6m + 4$, $6m + 5$

 $\overline{2}$

Out of which 6m, 6m + 2 and 6m + 4 are even.

Hence, any +ve odd integer can be 6m + 1, 6m + 3 or 6m + 5

 $\frac{1}{2}$

Total cards = 4611.

 $\frac{1}{2}$

(i) P [Prime number less than 10(5, 7)] = $\frac{2}{46}$ or $\frac{1}{23}$

1 $\frac{-}{2}$

(ii) P [A number which is perfect square (9, 16, 25, 36, 49)] = $\frac{5}{46}$

1

12. For infinitely many solutions

$$\frac{2}{k-1} = \frac{3}{k+2} = \frac{7}{3k}$$

1

$$2k + 4 = 3k - 3;$$
 $9k = 7k + 14$

$$9k = 7k + 14$$

$$k = 7$$

$$k = 7$$

Hence k = 7

1

SECTION C

Let $\sqrt{5}$ be rational. 13.

 $\therefore \sqrt{5} = \frac{a}{b}$, $b \ne 0$. a, b are positive integers, HCF (a, b) = 1

On squaring,

$$5 = \frac{a^2}{b^2}$$

$$b^2 = \frac{a^2}{5}$$

- 5 divides a²
- 5 divides a also.

30/5/1

(3)

a = 5m, for some +ve integer m.

$$b^2 = \frac{25m^2}{5}$$

$$b^2 = 5m^2$$

 \Rightarrow 5 divides b^2

 \Rightarrow 5 divides b also

 \Rightarrow 5 divides a and b both.

1

Which is the contradiction to the fact that HCF (a, b) = 1

Hence our assumption is wrong.
$$\frac{1}{2}$$

 $\sqrt{5}$ is irrational.

14. Given $\sqrt{2}$ and $-\sqrt{2}$ are zeroes of given polynomial.

$$(x-\sqrt{2})$$
 and $(x+\sqrt{2})$ are two factors i.e. x^2-2 is a factor $\frac{1}{2}$

$$x^2 + x - 12 = x^2 + 4x - 3x - 12$$

$$= (x + 4) (x - 3)$$

 \therefore -4, 3 are the zeroes.

Hence, all zeroes are
$$-4$$
, 3, $\sqrt{2}$, $-\sqrt{2}$

(4) 30/5/1

$$\frac{AP}{AB} = \frac{1}{3} \implies \frac{AP}{PB} = \frac{1}{2}$$

$$\frac{AB}{PB} = \frac{1}{2}$$

1

1

1

Coordinates of P are
$$\left(\frac{5+4}{3}, \frac{-8+2}{3}\right) = (3, -2)$$

Now, P lies on 2x - y + k = 0

$$\therefore$$
 2(3) - (-2) + k = 0

$$\Rightarrow$$
 k = -8

OR

Three points are collinear \Rightarrow area of Δ formed by these points is zero.

$$\therefore \frac{1}{2} [2(-1-3) + p(3-1) - (1+1)] = 0$$

$$-8 + 2p - 2 = 0$$

$$p = 5$$

16. LHS =
$$\frac{\tan \theta}{1 - \tan \theta} - \frac{\cot \theta}{1 - \cot \theta}$$

$$= \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\sin \theta}{\cos \theta}} - \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\cos \theta}{\sin \theta}}$$

$$= \frac{\sin \theta}{\cos \theta - \sin \theta} + \frac{\cos \theta}{\cos \theta - \sin \theta}$$

$$1\frac{1}{2}$$

$$= \frac{\sin \theta + \cos \theta}{\cos \theta - \sin \theta} = RHS$$

OR

$$\sin \theta = (\sqrt{2} - 1)\cos \theta$$

$$(\sqrt{2}+1)\sin\theta = (\sqrt{2}-1)(\sqrt{2}+1)\cos\theta$$

$$(\sqrt{2}+1)\sin\theta = \cos\theta$$

$$\Rightarrow \sqrt{2}\sin\theta = \cos\theta - \sin\theta$$

30/5/1 (5)

Alternate method

 $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$

On squaring

$$\cos^2 \theta + \sin^2 \theta + 2 \cos \theta \sin \theta = 2 \cos^2 \theta$$

 $\sin^2 \theta + 2 \cos \theta \sin \theta = \cos^2 \theta$

$$2\cos\theta\sin\theta = \cos^2\theta - \sin^2\theta$$

 $2 \cos \theta \sin \theta = (\cos \theta - \sin \theta) (\cos \theta + \sin \theta)$

 $2 \cos \theta \sin \theta = (\cos \theta - \sin \theta)(\sqrt{2} \cos \theta)$

$$\sqrt{2}\sin\theta = \cos\theta - \sin\theta$$

17. Let the fixed charges per student = \mathbb{T} x

Cost of food per day per student = ₹ y

$$x + 25y = 4500$$

$$x + 30y = 5200$$

On solving 5y = 700

$$\therefore y = 140$$

$$x = 1000$$

∴ Fixed charges = ₹ 1000 & cost of food per day ₹ 140

18.

Correct Figure

ΔABC is right angled at B

$$\therefore AC^2 = AB^2 + BC^2$$

$$AC^2 = AB^2 + (2CD)^2$$

$$AC^2 - 4CD^2 = AB^2$$
 ...(1)

 \triangle ABD is right angled at B,

$$\therefore AD^2 - BD^2 = AB^2 \qquad ...(2)$$

By (1) & (2)
$$AC^2 - 4CD^2 = AD^2 - BD^2$$
 $\frac{1}{2}$

$$AC^2 = AD^2 - CD^2 + 4CD^2 = AD^2 + 3CD^2$$
 (: BD = CD)

(6) 30/5/1

1

OR

$$AB = AC \Rightarrow \angle C = \angle B \qquad ...(1)$$

In \triangle ABD & \triangle ECF,

 $\angle ADB = \angle EFC \text{ (each } 90^\circ)$

$$\angle ABD = \angle ECF$$
 (by (1))

By AA similarity

$$\Delta ABD \sim \Delta ECF$$

19. Correct Figure

Let parallelogram ABCD circumscribes a circle

1

1

$$AP + PB + DR + RC = AS + BQ + DS + CQ$$

$$AB + DC = AD + BC$$

$$AB + AB = AD + AD$$
 (opp. sides equal)

$$2AB = 2AD$$

$$\Rightarrow$$
 AB = AD $\frac{1}{2}$

 \Rightarrow ABCD is a rhombus.

20. Area of shaded region =
$$\frac{80^{\circ}}{360^{\circ}} \pi (7)^2 + \frac{40^{\circ}}{360^{\circ}} \pi (7)^2 + \frac{60^{\circ}}{360^{\circ}} \pi (7)^2$$

$$= \frac{22}{7} \times 7 \times 7 \left[\frac{180^{\circ}}{360^{\circ}} \right]$$

$$= 77 \text{ cm}^2$$

21. Modal class:
$$50 - 60$$

$$mode = 50 + \left(\frac{90 - 58}{180 - 58 - 83}\right) \times 10$$

30/5/1 (7)

$$= 50 + \frac{32}{39} \times 10$$
$$= 58.2$$

 \therefore Modal age = 58.2 years.

22. Apparent capacity = $\pi r^2 h$

$$= 3.14 \times \frac{5}{2} \times \frac{5}{2} \times 10$$

$$= 196.25 \text{ cm}^3$$

1

1

Actual capacity =
$$196.25 - \frac{2}{3} \times 3.14 \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2}$$

= $196.25 - 32.71$

$$= 163.54 \text{ cm}^3$$

OR

$$\pi(18)^2 \times 32 = \frac{1}{3}\pi r^2 \times 24$$

$$r^2 = (18)^2 \times 4$$

$$r = 36 \text{ cm}$$

$$l^2 = (36)^2 + (24)^2$$

$$l^2 = 1872$$

$$l = 43.2 \text{ cm}$$

SECTION D

23. Let speed of train be x km/h

$$\frac{360}{x} - \frac{360}{x+5} = 1$$

$$360 \left[\frac{x+5-x}{x(x+5)} \right] = 1$$

$$x^2 + 5x - 1800 = 0$$

$$(x + 45) (x - 40) = 0$$

$$x = -45, \qquad x = 40$$

(8) 30/5/1

(Rejected)

Hence, speed of train = 40 km/h

OR

$$\frac{1}{a+b+x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$

$$\frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$$

$$-ab = x^2 + (a + b)x$$

$$x^2 + (a + b)x + ab = 0$$

$$(x + a) (x + b) = 0$$

$$x = -a, x = -b$$

24.
$$\frac{p}{2}(2a+(p-1)d=q)$$

$$2a + (p-1)d = \frac{2q}{p} \qquad ...(1)$$

$$\frac{q}{2}[(2a+(q-1)d] = p$$

$$2a + (q-1)d = \frac{2p}{q}$$
 ...(2)

On solving (1) and (2) for a and d

$$d = \frac{-2(p+q)}{pq}$$

$$a = \frac{q^2 + p^2 - p + pq - q}{pq}$$

$$S_{p+q} = \frac{p+q}{2} (2a + (p+q-1)d)$$

$$= \frac{p+q}{2} \left[2 \left(\frac{q^2 + p^2 - p + pq - q}{pq} \right) + (p+q-1) \left(\frac{-2(p+q)}{pq} \right) \right]$$
1

30/5/1 (9)

$$= (p+q) \left[\frac{x^{2} + p^{2} - p + pq - p - p - p^{2} - 2pq + p + p}{pq} \right]$$

$$= (p+q) \times \frac{-pq}{pq} = -(p+q)$$

Alternatively:

$$\frac{p}{2}(2a+(p-1)d) = q$$

$$\Rightarrow 2a + (p-1)d = \frac{2q}{p} \qquad \dots (1)$$

$$\frac{q}{2}[(2a+(q-1)d]=p$$

$$\Rightarrow 2a + (q-1)d = \frac{2p}{q} \qquad \dots (2)$$

Solving (1) and (2) for d

$$d = \frac{-2(p+q)}{pq}$$

$$S_{p+q} = \frac{(p+q)}{2} [2a + (p+q-1)d]$$

$$= \frac{(p+q)}{2} [2a + (p-1)d + qd]$$

$$= \frac{(p+q)}{2} \left[\frac{2q}{p} + \frac{q \times (-2)(p+q)}{pq} \right]$$

$$= \frac{(p+q)}{2} \times 2 \left\lceil \frac{q-p-q}{p} \right\rceil = -(p+q)$$

25. For Correct Given, To Prove, Construction, Figure
$$4 \times \frac{1}{2} = 2$$

(10) 30/5/1

30/5/1

27.

Correct Figure

1

In ΔABC

$$\sin 30^\circ = \frac{BC}{100}$$

$$\Rightarrow$$
 BC = 50 m

$$CF = 50 - 20 = 30 \text{ m}$$

In ΔCFE

$$\sin 45^\circ = \frac{30}{CE}$$

$$CE = 30\sqrt{2}$$

$$= 30 \times 1.414$$

$$= 42.42 \text{ m}$$

OR

In
$$\triangle ABC$$
, $\tan 60^\circ = \frac{3600\sqrt{3}}{x}$

$$x = 3600$$

In
$$\triangle ADE$$
, $\tan 30^\circ = \frac{3600\sqrt{3}}{x+y}$

$$3600 + y = 3600 \times 3$$

$$y = 7200$$

Speed =
$$\frac{7200}{30}$$
 = 240 m/s

30/5/1 **(11)** 28.

Marks	fi	cf
0–10	10	10
10–20	Х	10 + x
20–30	25	35 + x
30–40	30	65 + x
40–50	у	65 + x + y
50–60	10	75 + x + y
Total	100	

Correct Table

Median class = 30 - 40

$$75 + x + y = 100$$

$$x + y = 25$$

$$\frac{1}{2}$$

1

$$32 = 30 + \left(\frac{50 - 35 - x}{30}\right) \times 10$$

$$2 = \frac{15 - x}{3}$$

$$x = 9$$

$$\frac{1}{2}$$

$$y = 16$$

$$\frac{1}{2}$$

Class	cf
More than or equal to 0	100
More than or equal to 10	95
More than or equal to 20	80
More than or equal to 30	60
More than or equal to 40	37
More than or equal to 50	20
More than or equal to 60	9

Correct Table

Plotting of points (0, 100), (10, 95), (20, 80), (30, 60), (40, 37), (50, 20) and (60, 9)

 $1\frac{1}{2}$

Joining the points to get curve

 $\frac{1}{2}$

$$Median = 35 (approx.)$$

 $\frac{1}{2}$

1

29. LHS =
$$\frac{(1+\cot\theta+\tan\theta)(\sin\theta-\cos\theta)}{\sec^3\theta-\csc^3\theta}$$

$$= \frac{\left(1 + \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}\right)(\sin \theta - \cos \theta)}{\frac{1}{\cos^3 \theta} - \frac{1}{\sin^3 \theta}}$$

 $= \frac{\frac{(\cos\theta\sin\theta + \cos^2\theta + \sin^2\theta)(\sin\theta - \cos\theta)}{\cos\theta\sin\theta}}{\frac{\sin^3\theta - \cos^3\theta}{\cos^3\theta\sin^3\theta}}$

$$= \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta} \times \frac{\cos^3 \theta \sin^3 \theta}{\sin^3 \theta - \cos^3 \theta}$$

$$= \cos^2 \theta \sin^2 \theta = RHS$$

30/5/1 (13)

30.
$$l^2 = (24)^2 + \left(\frac{45}{2} - \frac{25}{2}\right)^2$$

$$l^2 = 576 + 100 = 676$$

$$l = 26 \text{ cm}$$

TSA =
$$\frac{22}{7} \times 26 \left(\frac{25}{2} + \frac{45}{2} \right) + \frac{22}{7} \times \frac{25}{2} \times \frac{25}{2}$$

$$= 2860 + 491.07$$

$$= 3351.07 \text{ cm}^2$$

Volume =
$$\frac{1}{3} \times \frac{22}{7} \times 24 \left(\frac{625}{4} + \frac{2025}{4} + \frac{1125}{4} \right)$$

= $\frac{1}{\cancel{3}} \times \frac{22}{7} \times \cancel{6}^2 \cancel{24} \times \frac{3775}{\cancel{4}}$
= $\frac{166100}{7} \text{ cm}^3$

or 23728.57 cm³
$$1\frac{1}{2}$$

(14) 30/5/1

 $1\frac{1}{2}$