MATH 4338 Main Problem 9

Andy Lu

Question. Given the function f defined on $I = x : 0 \le x \le 1$ by the formula

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Prove that $\int_0^1 f(x) dx = 0$ and $\overline{\int_0^1} f(x) dx = 1$.

Proof. Let f be defined on $I = x : 0 \le x \le 1$ by the formula

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Let Δ be a subdivision of I s.t. $0 = d_0 < d_1 < \ldots < d_{n-1} < d_n = 1$ with the corresponding subintervals denoted $I_1, I_2, \ldots I_n$. By the Archimedian Principle, $\forall I_k \exists$ a rational number and an irrational number in I_k , for $k = 1, 2, \ldots n$. Let m_k and M_k denote the g.l.b and l.u.b of f on I_k . Since the range of f on I_k contains only 2 values,

$$\inf_{I_k} f = 0 \qquad \sup_{I_k} f = 1 \tag{1}$$

With respect to Δ ,

$$S^{+}(f,\Delta) = \sum_{i=1}^{n} M_{i}(d_{i} - d_{i-1})$$
 (by definition of Upper Darboux Sum)

$$= \sum_{i=1}^{n} (d_{i} - d_{i-1})$$
 (since $M_{i} = 1$)

$$= (d_{1} - d_{0}) + (d_{2} - d_{1}) + \dots + (d_{n} - d_{n-1})$$
 (by definition of sum)

$$= d_{n} - d_{0}$$
 (by combining like terms)

$$= 1 - 0$$
 (by construction of Δ)

$$= 1$$

As $S^+(f,\Delta)=1$, for f on I=[0,1] and subdivision $\underline{\Delta}$, the g.l.b. of $S^+(f,\Delta)$ is 1. Then by definition of upper Darboux integral, $\overline{\int_0^1 f(x) \, dx}=1$. Similarly,

with respect to Δ ,

$$S_{-}(f,\Delta)=\sum_{i=1}^n m_i(d_i-d_{i-1})$$
 (by definition of Lower Darboux Sum)
$$=\sum_{i=1}^n (0)(d_i-d_{i-1})$$
 (since $m_i=0$)
$$=0$$

As $S_{-}(f,\Delta)=0$, for f on I=[0,1] and subdivision Δ , the l.u.b. of $S_{-}(f,\Delta)$ is 0. Then by definition of the Lower Darboux Integral, $\underline{\int_{0}^{1}f(x)\,dx}=0$. Hence, $\underline{\int_{0}^{1}f(x)\,dx}=0$ and $\overline{\int_{0}^{1}f(x)\,dx}=1$.