

Week 1 Objectives

- Orientation
- Go through the theory of solid motors
- Help in N3.5 launch preparation
- Understand N3.5 propulsion system

Tasks completed in week 1

- Attending orientation meetings
- Reading solid motor theory Richard Nakka
- Helped N3.5 team prepare for launch
- Installation and training on necessary software -Solidworks, Open Motor, Ansys, etc
- Solid propulsion system characterization for N3.5

Week 2 Objectives

- Benchmarking solid motor designs
- Estimation of required impulse for target apogee
- Casing Design
- Design of grains and nozzle parameters using Open Motor
- Ansys Simulation of flow through nozzle
- Design of grain casting tools
- Improvements and SA Cup Requirements
- Design of Casting Tools

Tasks Completed in week 2 Benchmarking of SRM designs

		GRAINS					Nozzle					CASING	
University	Name of Rocket	Propellant	Number of grains	Outside diameter D (mm)	Core diameter,d (mm)	Length, L (mm)	Exit diameter (mm)	Throat length (mm)	Throat diameter (mm)	Half divergence angle (deg)	Half convergence angle (deg)	Outside Diameter (mm)	Thickness (mm)
JKUAT	Nakuja N3.5	KNSB	4	64	16.98	101	42	1	12	12	32.3		2.5
West Virginia	Wild and												
University	Wonderful II	APCP	5	82.423	34.925	134.95	47.625		23.83			98	
Universidade de													
São Paulo - USP	Imperius Project	KNSB 65-35	5	94	32	156	67		22.8	15	30	110.7	4.22
University of													
Nevada	SEDS UNLY	APCP	4	75	-	155.25							
University of		Terple											
Maryland	Project Karkinos	Nebula	6	98	38	152						107.8	4.6
University of													
Florida	TropoGator	APCP		98								98	

Impulse estimation Utilization of work-energy equations


```
♣ Grain estimation.jl > 😭 interpolate_Fz
      using Interpolations
      using Plots
      m = 22.5 #estimated mass (kg)
      t = 3.6 #estimated burn time (s)
      g = 9.8 #gravitational acceleration (m/s^2)
      cd = 0.4 #drag coefficient
      D = 11 #max rocket diameter (cm)
      md = 17.5 #estimated rocket mass without grains (kg)
      N values = [0.0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
      Fz values = [1.0, 0.82, 0.7, 0.62, 0.56, 0.52, 0.48, 0.44, 0.4, 0.38, 0.38]
      # Create quadratic interpolation function
      itp = LinearInterpolation(N_values, Fz_values)
      # Define a function to interpolate Fz for any given N
      function interpolate Fz(N)
          return itp(N)
      #altitude at burnout
      function burnout(F, m, g, t)
         z1 = 0.5 * ((F / m) - g) * t^2
          return z1
      end
      function apogee(F, z1, m, g)
          z2 = (F * z1) / (m * g)
          return z2
```

Apogee Estimation Results

Iteration80.0 Thrust: 2000

Altitude at burnout: 512.496

Maximum altitude (apogee): 3163.933399184551 velocity at burnout v1: 284.71999999999997 Drag influence number N: 224.20395168914283

Iteration81.0 Thrust: 2025

Altitude at burnout: 519.696

Maximum altitude (apogee): 3224.2658809073023

velocity at burnout v1: 288.72

Drag influence number N: 230.54783648914292

Iteration82.0 Thrust: 2050

Altitude at burnout: 526.8960000000001

Maximum altitude (apogee): 3284.0852572420786

velocity at burnout v1: 292.72

Orag influence number N: 236.9802241462858

Burn time (estimate) = 3.6 s

Avg thrust required = 2025 N

Impulse required = 7290 Ns

Casing Design

Aluminum 6063 T6

Material Aluminum	0 6063576 150 Cooper south 5 L
Supplier! Keps Me	
Vibild (Strength Ttu:	210 MG
Oltimate sterat	For = 2100 Mlg. Bust Fooler, B = 1.284
	E - 60700 Mrs.
	$n = 0.33$ $\beta = \frac{1}{100} = 0.874$
0001011	Ftu
Do Coctoide diane	(max) = 100 mm
thickness, t = 51	m/m
Design Pressure,	Pn - 2 tfm
pedgii presic	630
Po=2x5x216 100×1.284	= 16.35 M/a
100 X 1- 20 H	
By Dissure Pu	- 2 x + En B
ouce mader) la	$a = 2x + Fy \cdot B$
	= 2 x 5 x & HO x 1 284, = 30.82 MB
	100
Araans.	
a K	
0 100	1 10500 10.5 = 2xtx210
10 = 10 500 Mara	
Po = 10 500 Mapa	10011.284
10 = 10 800 Mara	
Pp = 10 500 Maya	'.t = 8.21 mm.
	·· t = 3.21 mm.
Pu = 26985 KPG	·· t = 3.21 mm.
	-: -t = 3.21 mm. -: 26.96 = 2x + x240x 1.284

Design of Grains and Nozzle Parameters

Design of Grains and Nozzle Parameters

Code WEIGHT D-H DENS COMPOSITION 0 SUCROSE (TABLE SUGAR) 2212.000 -1550 0.05740 22 H 12 C 11 O 0 POTASSIUM NITRATE 4108.000 -1167 0.07670 1N 3O 1K THE PROPELLANT DENSITY IS 0.06862 LB/CU-IN OR 1.8995 GM/CC THE TOTAL PROPELLANT WEIGHT IS 6320,0000 GRAMS NUMBER OF GRAM ATOMS OF EACH ELEMENT PRESENT IN INGREDIENTS 142.164400 H 77.544200 C 40.629820 N 192,971600 O 40.629820 K T(K) T(F) P(ATM) P(PSI) ENTHALPY ENTROPY CP/CV GAS RT/V 1703 2606 38.71 569.00 -8222.64 10660.18 1.1349151.569 0.255 SPECIFIC HEAT (MOLAR) OF GAS AND TOTAL = 10.511 14.861 NUMBER MOLS GAS AND CONDENSED = 151.569 18.878 5.000043e+001 H2O 3.368403e+001 CO 2.497893e+001 CO2 2.031121e+001 N2 1.972611e+001 H2 1.887710e+001 K2CO3* 2.665177e+000 KHO 1.788783e-001 K 1.427333e-002 K2H2O2 3.709072e-003 NH3 1.329761e-003 H 1.161684e-003 KH 5.974830e-004 KCN 1.795201e-004 HO 1.250677e-004 CH2O 1.630892e-004 CH4 0.000119285 CNH THE MOLECULAR WEIGHT OF THE MIXTURE IS 37.079

Design of Grains and Nozzle Parameters

Motor dimensions estimation

			GR	AIN S	SIZING					
Propellant	Numbe	Number of grains		Outside diameter(mm)		Core diameter(mm)		Length L = 1.5D+0.5d		
KNSB	5	5		86		32.5		145.25		
CASING SIZING										
Material Outer			diameter(Inner diameter(mm)			Length			
Aluminum	num 6063 T6 100			90			82		325	
BULKHEAD SIZING										
Material	Outer di	Outer diameter(mm)			Length					
Aluminum 6063 T6			89	89			50			
NOZZLE SIZING										
Material	Outside diameter			Throat Ediameter o		er	Divergence half-angle		Converger half angle	
Mild Steel	89	1	23		67		15		30	

Bulkhead and Nozzle drawing

SCALE 1:1.5

UNITED OFFERING PROPERTY OMENIONS ARE IN MILIMETERS JURY ACT PARKS TOLINANCES JUNGAT: ANGULAR:			PHSH:		DELIN AND STAK DARF EDERS		DO NOT LCALE DRAWING			
	Navie	10	ATUTE	DATE		the	Moto Compon			
CEANN	Ogerans									
CHED										
AFFYCIA		1								
Met:										

Casing drawing

Recommendations on N3.5 and SA Cup Requirements

Recommendations

- Measuring chamber pressure and temperature
- Measuring casing temperature
- Redesign of test stand
- Long storage and drying of grains

SA Cup Requirements

SA Cup Requirements - Google
Docs

Challenges

- Simulation softwares
- Unergonomic seats

Next Week's Objectives

- Nozzle simulation (Ansys) and characterization
- Coming up with a components budget
- Procurements of casing, nozzle and bulkhead materials
- Test stand design

- Research on grain storage
- Design and 3D printing of Casting tools

