For any matrix $A = (a_{ij})$, we let -A be the matrix $(-a_{ij})$. Given a scalar $\lambda \in K$, we define the matrix λA as the matrix $C = (c_{ij})$ such that $c_{ij} = \lambda a_{ij}$; that is

$$\lambda \begin{pmatrix} a_{1\,1} & a_{1\,2} & \dots & a_{1\,n} \\ a_{2\,1} & a_{2\,2} & \dots & a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m\,1} & a_{m\,2} & \dots & a_{m\,n} \end{pmatrix} = \begin{pmatrix} \lambda a_{1\,1} & \lambda a_{1\,2} & \dots & \lambda a_{1\,n} \\ \lambda a_{2\,1} & \lambda a_{2\,2} & \dots & \lambda a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m\,1} & \lambda a_{m\,2} & \dots & \lambda a_{m\,n} \end{pmatrix}.$$

Given an $m \times n$ matrices $A = (a_{ik})$ and an $n \times p$ matrices $B = (b_{kj})$, we define their product AB as the $m \times p$ matrix $C = (c_{ij})$ such that

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj},$$

for $1 \le i \le m$, and $1 \le j \le p$. In the product AB = C shown below

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mp} \end{pmatrix},$$

note that the entry of index i and j of the matrix AB obtained by multiplying the matrices A and B can be identified with the product of the row matrix corresponding to the i-th row of A with the column matrix corresponding to the j-column of B:

$$(a_{i\,1}\,\cdots\,a_{i\,n})\begin{pmatrix}b_{1\,j}\\\vdots\\b_{n\,j}\end{pmatrix}=\sum_{k=1}^n a_{i\,k}b_{k\,j}.$$

Definition 3.14. The square matrix I_n of dimension n containing 1 on the diagonal and 0 everywhere else is called the *identity matrix*. It is denoted by

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Definition 3.15. Given an $m \times n$ matrix $A = (a_{ij})$, its transpose $A^{\top} = (a_{ji}^{\top})$, is the $n \times m$ -matrix such that $a_{ji}^{\top} = a_{ij}$, for all $i, 1 \leq i \leq m$, and all $j, 1 \leq j \leq n$.

The transpose of a matrix A is sometimes denoted by A^t , or even by tA . Note that the transpose A^{\top} of a matrix A has the property that the j-th row of A^{\top} is the j-th column of