Problem 1. Construct several examples of homotopic and non-homotopic maps.

See attached.

Problem 2. Show that the relation of fixed-endpoint homotopy is an equivalence relation.

Proof. To show that the relation of fixed-endpoint homotopy (\sim)is an equivalence relation we will show that it is reflexive, symmetric, and transitive.

Let $f: X \to Y$ be a continuous function. Then we can construct a fixed endpoint homotopy from f to f via H(x,t) = f(x) showing that \sim is reflexive.

Next let $f \sim g$. Then there is a fixed endpoint homotopy H(x,t) from f to g. Define H': $X \times [0,1] \to Y$ via H'(x,t) = H(x,1-t). Then H' is a homotopy from g to f that fixes the endpoints since H did as well demonstrating that \sim is reflexive.

Finally suppose that $f \sim g$ and $g \sim h$. Then there are fixed endpoint homotopies F from f to g and G from g to h. Define a new homotopy via

$$H(x,t) = \begin{cases} F(x,2t) & 0 \le t \le \frac{1}{2} \\ G(x,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

This homotopy will fix the endpoints since the two it is constructed from do.

Therefore since \sim is reflexive, symmetric, and transitive it is an equivalence relation.

Problem 3. Construct some examples of paths which are fixed-endpoint homotopic, and some which are not.

See attached.

Problem 4. a) Show that any convex open subset of \mathbb{R}^n is contractible.

- b) Show that a contractible space is path connected.
- c) Show that if Y is contractible, then all maps

$$f: X \to Y$$

are homotopic.

d) Show that if X is contractible and Y is path-connected, then all maps

$$f: X \to Y$$

are homotopic. What happens if we remove the path-connectedness assumption?

Proof. a) Let U be a convex open subset of \mathbb{R}^n and let $u \in U$. Given any point x we can construct a path p_x from x to u via the definition of convexity. Then construct a homotopy from id_X to the constant map at u (c_u) via $H(x,t) = p_x(t)$.

Therefore since $id_X \sim c_u$ for U, any open convex subset of \mathbb{R}^n is contractible.

b) Let X be a contractible space and let $x, y \in X$ be points in X. Since X is contractible we have a homotopy H from id_X to c_z for some point $z \in X$. Define a path from x to z via $p_x(t) = H(x,t)$ and a path from z to y via $p_y(t) = H(y,(1-t))$. Then the path $p_x * p_y$ is a path from x to y.

Therefore since a path exists between any two point in a contractible space X, X is path connected.

c) Let Y be a contractible space and $f, g: X \to Y$. Since Y is contractible there exists a homotopy H from id_Y to a constant function c_y . Define $H_f(x,t) = H(f(x),t)$ and $H_g(x,t) = H(g(x),t)$. Then define a homotopy $F: X \times [0,1] \to Y$ via

$$F(x,t) = \begin{cases} H_f(x,2t) & 0 \le t \le \frac{1}{2} \\ H_g(x,2(1-t)) & \frac{1}{2} \le t \le 1 \end{cases}$$

Therefore any two maps into a contractible space are homotopic.

d) Let X be a contractible space and Y a path-connected space. Since X is contractible there is a homotopy H from id_X to a constant map c_{x_0} . Let $f, g: X \to Y$ and p a path from $f(x_0)$ to $g(x_0)$. Then define a homotopy $F: X \times [0,1] \to Y$ from f to g via

$$F(x,t) = \begin{cases} f(H(x,3t)) & 0 \le t \le \frac{1}{3} \\ p(3t-1) & \frac{1}{3} \le t \le \frac{2}{3} \\ g(H(x,3-3t)) & \frac{2}{3} \le t \le 1 \end{cases}$$

Therefore if X is contractible and Y is path connected any two maps $f: X \to Y$ are homotopic.

This does not hold if we remove the path connected assumption. Let $\mathbb{R}_2 = \mathbb{R} \times \{0\} \cup \mathbb{R} \times \{1\}$. Then the map f(x) = (x, 0) is not homotopic to g(x) = (x, 1) since there is no path between the two copies of \mathbb{R} .

Problem 5. Check that the fundamental group of a pointed space (X, x_0) is a group.

Proof. To show that $\pi(X, x_0)$ is a group we need to verify that that path concatenation is associative, there is an identity, and that there are inverses. We denote the equivalence class of a loop α via $[\alpha]$

• Let $[\alpha], [\beta], [\gamma] \in \pi(X, x_0)$. Then we can define a fixed endpoint homotopy between $(\alpha * \beta) * \gamma$ and $\alpha * (\beta * \gamma)$ via

$$H(t,s) = \begin{cases} \alpha(\frac{4t}{s+1}) & 0 \le t \le \frac{s+1}{4} \\ \beta(4t-s-1) & \frac{s+1}{4} \le t \le \frac{s+2}{4} \\ \gamma(\frac{4t-s-2}{2-s}) & \frac{s+2}{4} \le t \le 1 \end{cases}$$

Since there is a fixed endpoint homotopy between them they lie in the same equivalence class of loops.

Therefore the concatenation operation on loops is associative.

• Let $[\alpha] \in \pi(X, x_0)$ and let p_{x_0} be the constant loop at x_0 . Consider the loop $\alpha * p_{x_0}$. We can then construct a fixed endpoint homotopy from $\alpha * p_{x_0}$ to α via I think the second line is wrong

$$H(t,s) = \begin{cases} \alpha(\frac{2t}{1+s}) & 0 \le t \le \frac{1+s}{2} \\ p_{x_0}(\frac{2t}{1+s} - 1) & \frac{1+s}{2} \le t \le 1 \end{cases}$$

Since there is a fixed endpoint homotopy between them they lie in the same equivalence class of loops and the constant loop is a right identity.

Therefore there exists a right identity in $\pi(X, x_0)$.

• Let $[\alpha] \in \pi(X, x_0)$. Then define $\beta(t) = \alpha(1 - t)$. We can define a homotopy from $\alpha * \beta$ to p_{x_0} via

$$H(t,s) = \begin{cases} \alpha(2(1-s)t) & 0 \le t \le \frac{1}{2} \\ \beta(2(1-s)t + (2s-1)) & \frac{1}{2} \le t \le 1 \end{cases}$$

Since there is a fixed endpoint homotopy between them they lie in the same equivalence class of loops which implies that β is a right inverse of α .

Therefore given $[\alpha] \in \pi(X, x_0)$ there exists a right inverse.

Therefore since loop concatenation is associative, there exists an identity element, and any class of loops has an inverse we have that $\pi(X, x_0)$ is a group under the loop concatenation operation.

Problem 6. Show that if x_0, x_1 are in the same path component of a space X, then $\pi_1(X, x_0) \simeq \pi_1(X, x_1)$.

Proof. Let p denote a path from x_1 to x_0 and let $p_r = p(1-t)$. Then define a map $\phi([\alpha])$: $\pi(X, x_0) \to \pi(X, x_1)$ via

$$\phi([\alpha]) = [p^r * \alpha * p]$$

We can define an inverse to ϕ as

$$\phi^{-1}([\alpha]) = [p * \alpha * p^r]$$

To verify for that it is indeed an inverse we can check

$$\phi \circ \phi^{-1}([\alpha]) = [p^r * p * \alpha * p^r * p] = [\alpha]$$

and

$$\phi^{-1} \circ \phi([\alpha]) = [p * p^r * \alpha * p * p^r] = [\alpha]$$

. Therefore ϕ is a bijection.

To show that ϕ is a homomorphism we will show that $\phi([\alpha]) * \phi([\beta]) = \phi([\alpha] * [\beta])$ via

$$\phi([\alpha])*\phi([\beta]) = [p^r*\alpha*p]*[p^r\beta*p] = [p^r*\alpha*p*p^r*\beta*p] = [p^r\alpha*\beta*p] = \phi([\alpha*\beta]) = \phi([\alpha]*[\beta])$$

Since ϕ preserves the group operation it is indeed a homomorphism and thus and isomorphism.

Therefore if x_0, x_1 are in the same path component of a space X then $\pi_1(X, x_0) \simeq \pi_1(X, x_1)$. \square