CS 602 Assignment 1

Mls Pragna - 180050064

Question 1

Given, q is not in the convex hull of $\{p_1, p_2, p_3, ..., p_k\}$. By farkas lemma, Ax = b, $x \ge 0$ not feasible $\iff y^T A \ge 0$, $y^T b < 0$ feasible

Proof:

To prove, $\exists a \in \mathbb{R}^n$, $b \in \mathbb{R}$ s.t $a^T q > b$ and $a^T p_i \leq b$ for each $1 \leq i \leq k$.

Converting above inequalities to the form of inequalities in Farkas lemma:

Let,
$$y \in R^{(n+1)}$$
, $y = \begin{bmatrix} a \\ b \end{bmatrix}$ and $c \in R^{(n+1)}$, $c = \begin{bmatrix} -q \\ 1 \end{bmatrix}$

$$a^{T}q > b$$

$$\Rightarrow -a^{T}q < -b$$

$$\Rightarrow -a^{T}q + b < 0$$

$$\Rightarrow a^{T} * -q + b < 0$$

$$\Rightarrow \begin{bmatrix} a \\ b \end{bmatrix}^{T} \begin{bmatrix} -q \\ 1 \end{bmatrix} < 0$$

$$\Rightarrow y^{T}c < 0$$

Let
$$A \epsilon R^{(n+1)xk}$$
 and A_i be ith column, $A_i = \begin{bmatrix} -p_i \\ 1 \end{bmatrix}$

$$a^T p_i \leq b \ \forall i \epsilon [1, k]$$

$$\Rightarrow -a^T p_i + b \geq 0 \ \forall i \epsilon [1, k]$$

$$\Rightarrow \begin{bmatrix} a \\ b \end{bmatrix}^T A \geq 0$$

$$\Rightarrow y^T A \geq 0$$

Hence, $\exists a \in \mathbb{R}^n$, $b \in \mathbb{R}$ s.t $a^T q > b$ and $a^T p_i \leq b$ for each $1 \leq i \leq k \iff y \in \mathbb{R}^{n+1}$, $y^T A \geq 0$, $y^T c < 0$ feasible

Applying farkas lemma:

By farkas lemma, $y \in \mathbb{R}^{n+1}$, $y^T A \geq 0$, $y^T c < 0$ feasible $\iff Ax = c$, $x \geq 0$ not feasible. Therefore, showing there should not exist x, such that $x \in \mathbb{R}^{n+1}$, Ax = c, $x \geq 0$ is equivalent to proving there exists a separating hyperplane H such that q is on one side of H and the points $p_1, p_2, p_3, \ldots, p_k$ are on the other side of H.

Showing Ax = c, $x \ge 0$ not feasible :

$$Ax = c$$

$$\Rightarrow \begin{bmatrix} -p_1 & -p_2 & \dots & -p_k \\ 1 & 1 & \dots & 1 \end{bmatrix} x = \begin{bmatrix} -q \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -p_1 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} -p_2 \\ 1 \end{bmatrix} x_2 + \dots + \begin{bmatrix} -p_k \\ 1 \end{bmatrix} x_k = \begin{bmatrix} -q \\ 1 \end{bmatrix}$$

$$\Rightarrow p_1 x_1 + p_2 x_2 + \dots + p_k x_k = q \text{ and } x_1 + x_2 + \dots + x_k = 1$$

Since q is not in the convex hull of $\{p_1, p_2, p_3, ..., p_k\}$, there does not exist x, such that $x \in \mathbb{R}^k$, x >= 0, $p_1 x_1 + p_2 x_2 + + p_k x_k = q$ and $x_1 + x_2 + + x_k = 1$. Therefore, Ax = c, $x \geq 0$ is not feasible.

Conclusion:

By farkas lemma, $y \in \mathbb{R}^{n+1}$, $y^T A \geq 0$, $y^T c < 0$ feasible $\iff Ax = c$, $x \geq 0$ not feasible. Therefore, there exists a separating hyperplane H such that q is on one side of H and the points $p_1, p_2, p_3, \ldots, p_k$ are on the other side of H.

Question 2

Let V1 and V2 be the set of vertices that are disjoint and independent sets and such that every edge (u,v) ϵE either $u\epsilon V1$ and $v\epsilon V2$ or $u\epsilon V2$ and $v\epsilon V1$.

Proof by contradiction:

To prove, the LP $0 \le x_u \le 1$ for each vertex $u \in V$ and $x_u + x_v \ge 1$ for each edge $(u,v) \in E$ describes the vertex cover polytope.

Let q be the feasible non-integral point that is at least one x_u in q is strictly between 0 and 1. Let P be the set of vertices in V such that $0 < q(x_u) < 1$ for each u ϵ P.

Let
$$P1 = P \cap V1$$
 and $P2 = P \cap V2$.
Let $\varepsilon = \min\{ q(x_u), 1-q(x_u) : u \in P \}$

Now, we define two points q1 and q2 such that

$$q1 = \begin{cases} q(x_u) + \varepsilon & \text{if } u\epsilon P1 \\ q(x_u) - \varepsilon & \text{else if } u\epsilon P2 \\ q(x_u) & \text{else} \end{cases}$$

$$q2 = \begin{cases} q(x_u) - \varepsilon & \text{if } u\epsilon P1 \\ q(x_u) + \varepsilon & \text{else if } u\epsilon P2 \\ q(x_u) & \text{else} \end{cases}$$

Both points q1 and q2 are the feasible points of the given LP because

As,
$$0 \le q(x_u)$$
, $\forall u \in V \implies 0 \le q(x_u) + \varepsilon$, $\forall u \in V \implies 0 \le q1(x_u)$, $\forall u \in P1$
As, $\varepsilon \le 1$ -q (x_u) , $\forall u \in P \implies q(x_u) + \varepsilon \le 1$, $\forall u \in P \implies q1(x_u) \le 1$, $\forall u \in P1$
As, $\varepsilon \le q(x_u)$, $\forall u \in P \implies 0 \le q(x_u) - \varepsilon$, $\forall u \in P \implies 0 \le q1(x_u) \forall u \in P2$
As, $q(x_u) \le 1$, $\forall u \in V \implies q(x_u) - \varepsilon \le 1$, $\forall u \in V \implies q1(x_u) \le 1$, $\forall u \in P2$

As,
$$\varepsilon \leq q(x_u)$$
, \forall u ε P \Rightarrow 0 \leq q(x_u) - ε , \forall u ε P \Rightarrow 0 \leq q2(x_u) \forall u ε P1
As, q(x_u) \leq 1, \forall u ε V \Rightarrow q(x_u) - ε \leq 1, \forall u ε V \Rightarrow q2(x_u) \leq 1, \forall u ε P1
As, 0 \leq q(x_u), \forall u ε V \Rightarrow 0 \leq q(x_u) + ε , \forall u ε V \Rightarrow 0 \leq q2(x_u), \forall u ε P2
As, $\varepsilon \leq$ 1-q(x_u), \forall u ε P \Rightarrow q(x_u) + $\varepsilon \leq$ 1, \forall u ε P \Rightarrow q2(x_u) \leq 1, \forall u ε P2

For any edge (u,v) in E, either $u \in V1$ and $v \in V2$ or $u \in V2$ and $v \in V1$.

If $u \in P1$ and $v \in P2$ then

As,
$$q(x_u) + q(x_v) \ge 1 \Rightarrow q(x_u) + \varepsilon + q(x_v) - \varepsilon \ge 1 \Rightarrow q1(x_u) + q1(x_v) \ge 1$$

As, $q(x_u) + q(x_v) \ge 1 \Rightarrow q(x_u) - \varepsilon + q(x_v) + \varepsilon \ge 1 \Rightarrow q2(x_u) + q2(x_v) \ge 1$
Else if $u \in P2$ and $v \in P1$ then
As, $q(x_u) + q(x_v) \ge 1 \Rightarrow q(x_u) - \varepsilon + q(x_v) + \varepsilon \ge 1 \Rightarrow q1(x_u) + q1(x_v) \ge 1$
As, $q(x_u) + q(x_v) \ge 1 \Rightarrow q(x_u) + \varepsilon + q(x_v) - \varepsilon \ge 1 \Rightarrow q2(x_u) + q2(x_v) \ge 1$

As we can see, q = (q1+q2)/2. By the defination of a corner(q is a corner in LP if it is not a midpoint of two points in LP), q cannot be a corner point as both q1 and q2 are feasible points of LP. Therefore, no non-integral feasible point can be a corner of this LP and every corner is integral.

Every integral feasible point is a vertex cover because for each edge (u,v) ϵ E at least one of it's endpoint is choosen as $x_u + x_v \ge 1$ (that is $x_u = 1$ or/and $x_v = 1$).

Therefore, the LP $0 \le x_u \le 1$ for each vertex $u \in V$ and $x_u + x_v \ge 1$ for each edge $(u,v) \in E$ describes the vertex cover polytope. Hence proved.

Question 3

Given, $A \in \mathbb{R}^{kxn}$, $b \in \mathbb{R}^k$, $C \in \mathbb{R}^{lxn}$, $d \in \mathbb{R}^l$

By strong duality theorem, if LP is max{ $w^Tx : Ax \leq b$ }, LP^* is min{ $b^Ty : y \geq 0, A^Ty = w$ } and LP^* is dual LP then opt(LP) = opt(LP^*)

Proof:

Let the first LP be LP_1 and the second LP be LP_2 , that is

$$LP_1 = \min\{ w^T x : Ax \le b; x \ge 0; Cx = d \}$$

$$LP_2 = \max\{ b^T y + d^T z : y \le 0, z \in \mathbb{R}^l, A^T y + C^T z \le w \}$$

The overall idea for the proof is to find the dual of LP_1 and then show LP2 is dual of LP_1 .

Converting LP_1 into the form of LP in strong duality theorem :

$$LP_1 = \min \{ w^T x : Ax \le b; x \ge 0; Cx = d \}$$

$$\min w^T x \iff \max -w^T x$$

$$x \ge 0 \iff -x \le 0$$

$$Cx = d \iff Cx > d \text{ and } Cx < d \iff -Cx < -d \text{ and } Cx < d$$

Hence,
$$LP_1 = \max\{-w^T x : Ax \le b, -x \le 0, Cx \le d, -Cx \le -d\}$$

Let,
$$w_1 = -w$$
, $D \in \mathbb{R}^{nxn}$, $D = -I$, $A_1 = \begin{bmatrix} A \\ C \\ -C \\ D \end{bmatrix}$, $b_1 = \begin{bmatrix} b \\ d \\ -d \\ 0 \end{bmatrix}$.

(Here $0 \in \mathbb{R}^n$)

Then we can say $LP_1 = \max\{ w_1^T x : A_1 x \leq b_1 \}.$

Applying Strong Duality theorem:

By strong duality theorem, LP_1 and dual LP_1 (LP_1^*) have same optimal value where LP_1^* $\min\{b_1^T y_1: y_1 \ge 0, A_1^T y_1 = w_1\}.$

$$LP_1^* = \min\{b_1^T y_1 : y_1 \ge 0, y_1 \in \mathbb{R}^{k+2l+n}, A_1^T y_1 = w_1\}$$

Converting LP_1 into the form of LP^* in strong duality theorem :

Let, z = q - p such that $p, q \in \mathbb{R}^l$, $p \ge 0, q \ge 0$

$$\begin{split} LP_2 &= \max\{\ b^Ty + d^Tz : \, y \leq 0, \, z\epsilon R^l, \, A^Ty + C^Tz \leq w\} \\ &\quad y \leq 0 \iff -y \geq 0 \\ A^Ty + C^Tz \leq w \iff -A^T* - y + C^Tz + r = w, \, r\epsilon R^n, \, r \geq 0 \end{split}$$

$$\begin{aligned} -A^T * - y + C^T z + r &= w \\ \Rightarrow -1 * (-A^T * - y + C^T z + r) &= -1 * w \\ \Rightarrow A^T * - y - C^T (q - p) - r &= -w \\ \Rightarrow A^T * - y + C^T p - C^T q - r &= -w \end{aligned}$$

$$\Rightarrow A^T * -y - C^T(q - p) - r = -w$$

$$\Rightarrow A^T * -y + C^T p - C^T q - r = -u$$

$$\Rightarrow \begin{bmatrix} A \\ C \\ -C \\ D \end{bmatrix}^T \begin{bmatrix} -y \\ p \\ q \\ r \end{bmatrix} = -w$$

$$\Rightarrow A_1^T \begin{bmatrix} -y \\ p \\ q \\ r \end{bmatrix} = w_1$$

$$\max b^{T}y + d^{T}z$$

$$\Rightarrow \max b^{T}y + d^{T}q - d^{T}p$$

$$\Rightarrow \min b^{T} * -y + d^{T}p - d^{T}q + 0 * r$$

$$\Rightarrow \min \begin{bmatrix} b \\ d \\ -d \\ 0 \end{bmatrix}^{T} \begin{bmatrix} -y \\ p \\ q \\ r \end{bmatrix}$$

(Here $0 \epsilon R^n$)

$$\Rightarrow \min \, b_1^T \begin{bmatrix} -y \\ p \\ q \\ r \end{bmatrix}$$

Let,
$$y_2 \in \mathbb{R}^{k+2l+n}$$
, $y_2 = \begin{bmatrix} -y \\ p \\ q \\ r \end{bmatrix}$

As, $-y \ge 0$, $p \ge 0$, $q \ge 0$ and $r \ge 0$, this implies $y_2 \ge 0$

Therefore, $LP_2 = \min\{b_1^T y_2 : y_2 \ge 0, y_2 \in \mathbb{R}^{k+2l+n}, A_1^T y_2 = w_1\}$

Conclusion:

As we can see, dual LP_1 (LP_1^*) and LP_2 are same. Therefore, by duality theorem optimal value of LP_1 and LP_2 are same.