P, NP Theory - II

Prof Devesh C Jinwala, PhD
Professor, Department of Computer Engineering
http://www.svnit.ac.in/dcj/

Indian Institute of Technology Jammu

1

Contents

- What is an Algorithm? Solving problems algorithmically
- Classifying the problems
- A Motivating Example
- Some Hard Problems
- Reductions
- Non-determinism
- Class P, NP
- NP Complete Problems
- Concluding Remarks

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ {}^-\ II\ \ @IIT\ Jammu,\ Oct\ 2019$

2/63

How to we deal with the hard problems?

If we are not able to solve these problems,

at least

we would be happy

if we were able to verify a given solution

to be optimal or not......

in polynomial time ???

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

3/63

3

Nondeterminism

- Deterministic Algorithms
 - determinism the property that the result of every operation is uniquely defined.
 - that can be implemented on the actual machine
- Deterministic Polynomial Algorithms
 - Deterministic algorithms that can be solved reasonably fast
 - whose complexity is bounded by O(nc), c a positive constant, n input size as seen before.

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

4/63

Nondeterminism

- Theoreticians treat even n^{million} as solvable reasonably fast
 - even while practically their execution time is very long
- That is the reason why
 - we have to conceptually conceive non-determinism.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

5/63

5

Understanding Nondeterminism

- A nondeterministic algorithm can be understood using three new functions
 - Choice(S)
 - Takes a set S as input & arbitrarily chooses one of the elements of the set S
 - e.g. x=choice(I,n)
 - x is assigned any one of the integers in [1...n]can be qualified in any manner we desire...
 - takes time O(1)
 - Failure()
 - signals an unsuccessful completion of the algorithm
 - takes time O(1)
 - Success()
 - signals a successful completion of the algorithm
 - takes time O(1)

Which function(s)
amongst these
is/are
deterministic?
Nondeterministic?

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ {}^-\ II\ \ @IIT\ Jammu,\ Oct\ 2019\ Algorithms,\ NP\ Theory\ {}^-\ II\ \ Particles$

6/63

Nondeterministic Search Algorithm

- Problem
 - Searching for an element x in a given set of elements >= I.
 - Output An index j, such that A[j]=x OR j=0 if x is not in A.
 - Design the algorithm NonDeterministicSearch (x, A)

```
Algorithm NonDeterministicSearch(x, A)
1. j = Choice(1,n);
2. if A[j]=x, then write(j); Success();
3. write(0); Failure();`
```

Algorithm has nondeterministic complexity O(I). Why?

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

7/63

7

Nondeterministic Sorting Algorithm

- Problem
 - Sorting A[i], I<=i<=n, an unsorted array of positive integer
 - Output A[i], sorted in nondecreasing order

```
Algorithm NonDeterministicSorting(A, n)
1. for i= 1 to n, B[i]=0;
2. for i= 1 to n {
3.    j=Choice(1,n);
4.    if B[j] ≠ 0 then Failure();
5.    B[j] = A[i];
6. }
7. for i=1 to n-1 //Verify the order
8.    if B[i]>B[i+1] then Failure();
9. write B[1..n];
10.Success();
```

What is the overall Nondeterministic Complexity??

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

Why Nondeterminism?

- Nondeterministic algorithms in computational complexity theory.
 - are typically studied only on a theoretical framework.
 - outcome of an operation is not uniquely defined.....
 - but is limited to specified sets of possibilities. i.e. these can allow for multiple choices to be available for the next step of computation......
 - at every step, creating many possible computational paths.
 - these algorithms do not arrive at a solution for every possible computational path,
 - but are guaranteed to arrive at a correct solution for some path i.e., if the right choices are made underway.

.....contd

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

9/63

q

Why Nondeterminism?.....

- Nondeterministic algorithms in computational complexity theory.
 - the choices can be interpreted as guesses in a search process.
 - a large number of real-life problems can be naturally stated/solved in this way
 - hence nondeterminism can help define commonality amongst the problems.

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Problem Boolean Satisfiability

- Input
 - A boolean formula F in CNF
- Goal
 - Check if F is satisfiable or not.
 - e.g. if F=(x1+x2) can we assign at least one set of values to the literals of the formula so that F=1.
- How to solve this problem deterministically?
 - What could be the Brute-force approach?
 - Time complexity ??
 - O(2ⁿ|F|)
 - Cannot do any better than that.
- Hence, the nondeterministic solution.....

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

11/63

11

Nondeterministic Boolean Satisfiability

- Phase I
 - 1. for i=1 to n do
 - 2. use Choice() to determine the value of $\mathbf{x_i}'$ s that will satisfy F
- Phase2
 - Check if F is satisfied under the above criterion
- Runtime
 - Phase I O(I) * n i.e. O(n)
 - Phase2.....O(|F|)
 - Total.....O(n + |F|)

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

Problem k-Clique

- Input G(V,E), k
- Output "Yes", if G has a clique of size k and "No" otherwise
 - e.g.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

13/63

13

k-Clique Deterministic approach

- Input G(V,E), k
- Output "Yes", if G has a clique of size k and "No" otherwise
- Naïve/Deterministic approach
 - For every subset of k nodes, check if these k nodes form a clique
 - Time complexity
 - $\binom{n}{k}\binom{k}{2}$
 - i.e. O(n^kk²)
- The issue is can we do better than this?

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

k-Clique Non-deterministic approach

Phase 1

Using the Choice(), we investigate whether "for every node in the graph is this node a k-clique?" Guess k nodes that form a clique

Phase 2

Verify whether the above nodes indeed form a k-clique.

- Time Complexity
 - Phase I takes k units of time.....
 - Phase two takes (k choose 2 i.e.) units of time
 - $O(k + (k \text{ choose 2})) \text{ i.e. } O(k^2).$

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

15/63

15

Complexity Classes

- A Complexity Class
 - Is a collection of decision problems (???) all of which can be solved in SAME resource bounds
 - i.e. within same time, space or randomness....
- The question is

Why do we bring in the discussion and then focus on decision problems and not on search problems?

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Different versions of problems

- Combinatorial Optimization problems
 - Answer is a number
- Decision problems
 - Answer is yes or no
- Construction problems
 - Answer is some object (set of vertices, function, ...)

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

17/63

17

Classes of Problems

- Combinatorial Optimization problems
 - how to we define these ?
- Output

Our Focus on decision problems

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Classes of Problems

- Decision problems
 - variation of optimization problems
 - answer yes/no to a question
- Statement of a decision problem has two parts
 - instance description
 - question with variables defined in instance description with actual yes/no asked
- Many problems will have decision and optimization versions.
- For example ??

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

19/63

19

Illustrating the difference

- Clique
 - optimization
 - instance For an undirected graph G = (V, E)
 - question does G contain a clique of k vertices ?
 - say running time O(k²n^k).
 - Is it polynomial?.....depends on the nature of k
 - Decision
 - instance For an undirected graph G = (V, E) and an integer k
 - question does G contain a clique of k vertices?
 - say running time $O(k^2n^k)$.
 - Is it polynomial?.....depends on the nature of k

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Hamiltonian Cycle

• given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V exactly once ?

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

21/42

21

Hamiltonian Cycle (contd)

■ HAM-CYCLE given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

22/63

Traveling Salesperson problem

- Minimum Tour problem
 - Optimization problem
 - Given a complete, weighted graph find a minimum-weight Hamiltonian cycle
 - Decision problem
 - Given a complete, weighted graph and an integer k, is there a Hamiltonian cycle with total weight at most k?

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

23/63

23

Contents

- What is an Algorithm? Solving problems algorithmically
- Classifying the problems
- A Motivating Example
- Some Hard Problems
- Reductions
- Non-determinism
- Class P, NP
- NP Complete Problems
- Concluding Remarks

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

31/63

Class P

- P
 - the class of decision problems that are solvable deterministically in O(p(n)), where p(n) is a polynomial on n
 - the class of decision problems that are polynomially bounded.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

32/63

32

Solving the Decision Problems

- Can every decision problem be solved in polynomial time?
 - Obviously not !!
 - Some decision problems cannot be solved at all by any algorithm
 - Undecidable problems e.g. The Halting problem
 - Proving that the Halting problem can not be solved at all....
 - Are there any decidable but intractable problems ?
 - Yes, they are

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Solving the Decision Problems...

- However, as seen before.....the important aspect is
 - that there are decidable problems for which neither the polynomial time algorithm has been found nor impossibility of doing so can be proved

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

34/63

34

Class NP

- NP Nondeterministic Polynomial and not Nonpolynomial !!
 - the set of all the decision problems that can be solved using nondeterministic algorithms in polynomial time
 - Loosely
 - the class of decision problems for which a given proposed solution for a given input can be checked quickly in polynomial time.

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

35/63

Class NP

- Recollect that
 - A nondeterministic algorithm is a two stage procedure that takes as input an instance i of a decision problem
 - Guessing (nondeterministic) stage
 - an arbitrary string S is generated that can be thought of as a candidate solution to the given instance i
 - Verification (Deterministic) stage
 - a deterministic algorithm takes both i and S as its input and outputs yes if S represents a solution to instance i; otherwise returns no.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

36/63

36

Class NP (contd)

- Thus, NP can also be thought of as
 - the collection of problems that have polynomially i.e. efficiently verifiable solutions
 - that can be solved in polynomial time on a machine that can pursue infinitely many paths of the computation in parallel

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Certification in NP

- def
 - Algorithm C(s, t) is a certifier for problem X if for every string $s, s \in X$ there exists a string t such that C(s, t) = yes.

← "certificate" or "witness"

↑

C(s, t) is a poly-time algorithm and

 $|t| \le p(|s|)$ for some polynomial $p(\cdot)$.

- Certification algorithm intuition.
 - Certifier views things from "managerial" viewpoint.
 - Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.
- NP
 - Decision problems for which there exists a poly-time certifier.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

38/63

38

Prover Verifier View

A resource rich Oracle or a Prover

A resource starved poor verifier

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

39/63

Certifiers-Certificates Composite

- COMPOSITES. Given an integer s, is s composite?
- Certificate
 - A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|t| \le |s|$.
- Certifier

```
boolean C(s, t) {
   if (t ≤ 1 or t ≥ s)
      return false
   else if (s is a multiple of t)
      return true
   else
      return false
}
```

- Instance. s = 437,669.
- Certificate. t = 541 or 809.
- Conclusion. COMPOSITES is in NP.

_ 437,669 = 541 × 809

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory ⁻ II @IIT Jammu, Oct 2019

40/43

40

Certifiers-Certificates 3-Satisfiability

- SAT
 - Given a CNF formula Φ , is there a satisfying assignment?
- Certificate
 - An assignment of truth values to the n boolean variables.
- Certifier
 - \bullet Check that each clause in Φ has at least one true literal.
- Ex.

instance s
$$\left(\overline{x_1} \lor x_2 \lor x_3\right) \land \left(x_1 \lor \overline{x_2} \lor x_3\right) \land \left(x_1 \lor x_2 \lor x_4\right) \land \left(\overline{x_1} \lor \overline{x_3} \lor \overline{x_4}\right)$$

 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$ certificate t

• Conclusion. SAT is in NP.

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Certifiers-Certificates Hamiltonian Cycle

- HAM-CYCLE
 - Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?
- Certificate
 - A permutation of the n nodes.
- Certifier
 - Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.
- Conclusion. HAM-CYCLE is in NP.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

42/63

42

Certifiers-Certificates k-CLIQUE

- A graph G=(V, E) is a Clique if every two nodes in V are connected by an edge
- K-CLIQUE
 - Given a graph G=(V,E), prove that k-clique is in NP.
- Proof
 - define CLIQUE = {<G,K>|G is an undirected graph with a k-clique
 - Certificate
 - the collection of k vertices of the graph
 - Certifier
 - Take as input some string c as (<G,k>, c)
 - Test whether c is a set of k nodes in G
 - Test whether G contains all edges connecting nodes in c
 - If so, proved.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

Certifiers-Certificates SUBSET SUm

■ Tutorial Assignment.....

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

44/63

44

Revisiting P, NP, EXP

- P
 - Decision problems for which there is a poly-time algorithm.
- EXP
 - Decision problems for which there is an exponential-time algorithm.
- NP
 - Decision problems for which there is a poly-time certifier.

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

45/63

Revisiting P, NP, EXP (contd)

- Claim. P ⊂ NP.
- Proof
 - Consider any problem X in P.
 - By definition, there exists a poly-time algorithm A(s) that solves X.
 - Certificate $t = \varepsilon$, certifier C(s, t) = A(s).
 - Therefore, the fact.

Remember, we said an Algorithm C(s, t) is a certifier for problem X; iff for every string $s, s \in X$ there exists a string t such that C(s, t) = yes.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

46/63

46

Revisiting P, NP, EXP (contd)

- \blacksquare Claim. NP \subseteq EXP.
- Proof
 - Consider any problem X in NP.
 - By definition, there exists a poly-time certifier C(s, t) for X.
 - To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
 - Return yes, if C(s, t) returns yes for any of these

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

NP-Hard

- A problem π is NP-Hard if for every problem $\pi_1 \in \text{NP}$, π_1 reduces to π .
 - i.e. π is at least as difficult as π_1 OR
 - i.e. π is at least as difficult as every problem in class NP.
- Graphically,

 $\pi^{^{\times}}$

Here, every π_i in CLASS NP is polynomially reducible to a problem π that is outside NP,

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

40/43

48

NP Complete Problems

- A problem π is NPC if π is NP-Hard and $\pi \in NP$.
- Thus, based on the above we can conceive of the Venn-diagram as below

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

49/63

NP Completeness

- Cook and Levin 's theory
 - There are certain problems in NP
 - whose individual complexity is related to that of the entire class.
 - i.e. if a poly time algorithm were to exist for any problem in this class, all problems in NP would be polynomial time solvable.
- These problems are called NP-complete problems.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

50/63

50

NP Completeness

- A problem P is NP-complete if one can prove that
 - P is in NP, and
 - show that there is some other problem Q known to be an NPC is poly-time reducible to the problem P.
 - the hard part of that was proving the first example of an NP-complete problem
 - that was done by Steve Cook in Cook's Theorem

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ @IIT\ Jammu,\ Oct\ 2019$

Theorem P = NP

- Fact Let π be any NPC problem. If π ∈ P, then P = NP.
- Proof
 - Let π_1 be any problem in NP.
 - Now, if π_1 is an NPC problem, then by definition of NPC, π_1 is also NP-Hard and so $\pi_1 \alpha \pi_1$
 - Now, if $\pi \in P$, then since $\pi_1 \alpha \pi$, π_1 is also in P
 - Therefore, P = NP.

NP

- However, the belief is that if π is any NPC problem, then π ! \in P.
- So, P != NP.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

52/63

52

The Main Question P Versus NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the certification problem?

If P≠NP

If P = NP

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

53/63

The Main Question P Versus NP...

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the certification problem?
- If yes
 - Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
- If no
 - No efficient algorithms possible for 3-COLOR, TSP, SAT, ...
- Consensus opinion on P = NP? Probably no.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

54/63

54

Theorem

- Prove that if a problem B is NP-complete and $B \le_P C$ for C in NP, then C is NP-Complete.

 A problem Π is NPC if it belongs to the class NP and for every problem $\Pi_1 \in \mathbb{NP}$, Π_1 reduces to Π .
- Proof
 - We are given C is in NP and
 - to prove that C is NPC we must now show that every problem in class NP is polynomial time reducible to C.
 - We are given that B is NP-complete.
 - That is, every problem in NP is \leq_P to B
 - But, we are given that $B \leq_P C$
 - Therefore, every problem A in NP is $\leq_P C$
 - Therefore, C is NP-complete

A problem A is NP-complete if one can prove that A is in NP, and there is some problem B which is already proven to be an NPC is poly-time reducible to a problem A.

 $Mr\ D\ C\ Jinwala,\ M\ Tech\ III\ (CSE-Ds/IS),\ Design\ and\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ @IIT\ Jammu,\ Oct\ 2019\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ of\ Algorithms,\ NP\ Theory\ ^-\ II\ \ (CSE-Ds/IS)\ Analysis\ \ (CSE-Ds/IS)\ An$

CLASS NPC

CLASS NPC

CLASS P

CLASS P

55/63

0/1 Knapsack problem: A special mention

- Is 0/1 knapsack problem solvable using dynamic programming?
- Why is then its solution referred to as pseudo-polynomial time solution?
- /*write here from the notes page */

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

56/63

56

Any problems that are NPH but not NPC?

- Can there be any problem that is NPH but not NPC?
- When can a problem be NPH but not NPC?
- The following problems are NPH but not NPC

NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!

58

Some NP-Complete Problems

- Six basic genres of NP-complete problems and paradigmatic examples.
 - Packing problems SET-PACKING, INDEPENDENT SET.
 - Covering problems SET-COVER, VERTEX-COVER.
 - Constraint satisfaction problems SAT, 3-SAT.
 - Sequencing problems HAMILTONIAN-CYCLE.
 - Partitioning problems 3D-MATCHING 3-COLOR.
 - Numerical problems SUBSET-SUM, KNAPSACK.
 - Practice. Most NP problems are either known to be in P or NP-complete.
- Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

60/63

60

References

- Text by CLRS
- Text by Garey and Johnson
- Text by Klienberg Tardos
- NPTEL Videos
- Special gratitude to Prof Rajsekaran, IUCEE Course Instructor at Infosys, July 2009.

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory ⁻ II @IIT Jammu, Oct 2019

61/63

To Teach is to Learn twice

Hence, Thank You!!!

Mr D C Jinwala, M Tech III (CSE-Ds/IS), Design and Analysis of Algorithms, NP Theory - II @IIT Jammu, Oct 2019

63/63