Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 6 A

Lösungshinweise

Aufgabe 1:

- (a) Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ reelle Zahlenfolgen. Beweisen oder widerlegen Sie die folgenden Aussagen.
 - (i) Sind $(a_n)_{n\in\mathbb{N}}$ konvergent und $(b_n)_{n\in\mathbb{N}}$ divergent, so ist die Folge $(a_nb_n)_{n\in\mathbb{N}}$ divergent.
 - (ii) Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ beide divergent, so ist die Folge $(a_nb_n)_{n\in\mathbb{N}}$ divergent.
 - (iii) Sind $(a_n)_{n\in\mathbb{N}}$ beschränkt und $(b_n)_{n\in\mathbb{N}}$ konvergent, so ist die Folge $(a_n+b_n)_{n\in\mathbb{N}}$ konvergent.
 - (iv) Sind $(a_n)_{n\in\mathbb{N}}$ beschränkt und $(b_n)_{n\in\mathbb{N}}$ eine Nullfolge, so ist die Folge $(a_nb_n)_{n\in\mathbb{N}}$ eine Nullfolge.
- (b) Es sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente reelle Zahlenfolge mit $a_n \neq 0$ für alle $n \in \mathbb{N}$ und $\lim_{n\to\infty} a_n \neq 0$. Zeigen Sie, dass die Folge $(\frac{1}{a_n})_{n\in\mathbb{N}}$ ebenfalls konvergent ist mit

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{\lim_{n \to \infty} a_n}.$$

Hinweis: Sie dürfen ohne Beweis verwenden, dass die Folge $(a_n)_{n\in\mathbb{N}}$ einen "Sicherheitsabstand" zur 0 einhält, d. h., dass es eine reelle Zahl c>0 gibt, sodass $|a_n|\geq c$ für alle $n\in\mathbb{N}$ gilt.

Lösung:

- (a) (i) Diese Aussage ist falsch. Als Gegenbeispiel betrachten wir die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, die gegeben sind durch $a_n=0$ und $b_n=n$ für alle $n\in\mathbb{N}$. Dann ist $(a_n)_{n\in\mathbb{N}}$ konvergent (gegen 0), $(b_n)_{n\in\mathbb{N}}$ divergent und $(a_nb_n)_{n\in\mathbb{N}}$ konvergent (gegen 0) da $a_nb_n=0$ für alle $n\in\mathbb{N}$.
 - (ii) Diese Aussage ist falsch. Als Gegenbeispiel betrachten wir die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, die gegeben sind durch $a_n=b_n=(-1)^n$ für alle $n\in\mathbb{N}$. Diese sind beide divergent, jedoch gilt $a_nb_n=1$ für alle $n\in\mathbb{N}$, sodass die Folge $(a_nb_n)_{n\in\mathbb{N}}$ konvergiert.

- (iii) Diese Aussage ist falsch. Als Gegenbeispiel betrachten wir die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, die gegeben sind durch $a_n=(-1)^n$ und $b_n=0$ für alle $n\in\mathbb{N}$. Dann ist $(a_n)_{n\in\mathbb{N}}$ beschränkt und $(b_n)_{n\in\mathbb{N}}$ konvergent (gegen 0), jedoch ist wegen $a_n+b_n=(-1)^n$, weshalb die Folge $(a_n+b_n)_{n\in\mathbb{N}}$ divergent ist.
- (iv) Diese Aussage ist wahr. Wir nehmen an, dass $(a_n)_{n\in\mathbb{N}}$ beschränkt und $(b_n)_{n\in\mathbb{N}}$ eine Nullfolge ist. Weil $(a_n)_{n\in\mathbb{N}}$ beschränkt ist, gibt es ein C>0, sodass $|a_n|\leq C$ für alle $n\in\mathbb{N}$. Es sei nun $\varepsilon>0$ vorgegeben. Weil $(b_n)_{n\in\mathbb{N}}$ eine Nullfolge ist, finden wir ein $N\in\mathbb{N}$, sodass $|b_n|<\frac{\varepsilon}{C}$ für alle $n\in\mathbb{N}$ mit $n\geq N$ gilt. Folglich haben wir

$$|a_n b_n| = |a_n| |b_n| \le C |b_n| < C \frac{\varepsilon}{C} = \varepsilon.$$

Also stellt $(a_n b_n)_{n \in \mathbb{N}}$ eine Nullfolge dar.

(b) Die Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent mit $a=\lim_{n\to\infty}a_n\neq 0$ und $a_n\neq 0$ für alle $n\in\mathbb{N}$. Gemäß dem Hinweis gibt es also eine reelle Zahl c>0 mit

$$c < |a_n|$$
 für alle $n \in \mathbb{N}$

Damit rechnen wir nach

$$\left|\frac{1}{a_n} - \frac{1}{a}\right| = \left|\frac{a - a_n}{a_n a}\right| \le \frac{1}{c|a|} |a_n - a|,$$

und da $a_n \to a$ für $n \to \infty$, gibt es ein $N \in \mathbb{N}$ mit

$$|a_n - a| < \varepsilon c|a|$$
 für alle $n \in \mathbb{N}$ mit $n \ge N$,

also

$$\left|\frac{1}{a_n} - \frac{1}{a}\right| < \varepsilon \qquad \text{für alle } n \in \mathbb{N} \text{ mit } n \geq N.$$

Aufgabe 2:

(a) Es sei $\alpha \in \mathbb{R}$ mit $\alpha > 0$ gegeben. Folgern Sie aus

$$\lim_{n \to \infty} \frac{1}{n} = 0,$$

dass

$$\lim_{n\to\infty}\frac{1}{n^\alpha}=0.$$

Hinweis: Nutzen Sie aus, dass die Funktionen $f:[0,\infty)\to\mathbb{R}, x\mapsto x^{\alpha}$ für ein beliebiges aber festes $\alpha>0$ streng monoton wachsend ist.

(b) Finden Sie eine divergente reelle Zahlenfolge $(a_n)_{n\in\mathbb{N}}$ mit der Eigenschaft, dass die Folge $(\sin(a_n))_{n\in\mathbb{N}}$ konvergiert.

¹Von der Gültigkeit der im Hinweis behaupteten Aussage überzeugt man sich wie folgt: Da $(a_n)_{n\in\mathbb{N}}$ gegen $a\neq 0$ konvergiert, gibt es ein $N\in\mathbb{N}$, sodass $|a_n-a|<\frac{|a|}{2}$ für alle $n\geq N$ gilt; insbesondere haben wir also $|a_n|=|(a_n-a)+a|\geq |a|-|a_n-a|>|a|-\frac{|a|}{2}=\frac{|a|}{2}$ für alle $n\geq N$. Wir setzen $c:=\min\{\frac{|a|}{2},|a_1|,\ldots,|a_{N-1}|\}$. Dann ist c>0 und es gilt $c\leq |a_n|$ für alle $n\in\mathbb{N}$.

(c) Finden Sie eine konvergente reelle Zahlenfolge $(a_n)_{n\in\mathbb{N}}$ mit der Eigenschaft, dass die Folge $(\sin(\frac{1}{a_n}))_{n\in\mathbb{N}}$ divergiert.

Lösung:

- (a) Wir wählen ein festes $\alpha>0$. Sei $\varepsilon>0$ beliebig vorgegeben. Weil $\lim_{n\to\infty}\frac{1}{n}=0$, finden wir ein $N\in\mathbb{N}$, sodass $\frac{1}{n}<\varepsilon^{1/\alpha}$ für alle $n\in\mathbb{N}$ mit $n\geq N$ gilt. Aufgrund der Monotonie der Funktion $f:[0,\infty)\to\mathbb{R}, x\mapsto x^\alpha$ gilt deshalb $\frac{1}{n^\alpha}=f(\frac{1}{n})< f(\varepsilon^{1/\alpha})=\varepsilon$ für alle $n\in\mathbb{N}$ mit $n\geq N$. Somit haben wir gezeigt, dass $\lim_{n\to\infty}\frac{1}{n^\alpha}=0$.
- (b) Wir betrachten die Folge $(a_n)_{n\in\mathbb{N}}$, die durch $a_n := n\pi$ für alle $n \in \mathbb{N}$ definiert ist. Dann ist $(a_n)_{n\in\mathbb{N}}$ divergent, während die Folge $(\sin(a_n))_{n\in\mathbb{N}}$ gegen 0 konvergiert, da $\sin(a_n) = 0$ für alle $n \in \mathbb{N}$ gilt.
- (c) Wir betrachten die Folge $(a_n)_{n\in\mathbb{N}}$, die durch $a_n := \frac{2}{(2n+1)\pi}$ für alle $n \in \mathbb{N}$ definiert ist. Dann ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge, also konvergent, während die Folge $(\sin(\frac{1}{a_n}))_{n\in\mathbb{N}}$ divergiert, da $\sin(\frac{1}{a_n}) = \sin(\frac{\pi}{2} + n\pi) = (-1)^n$ für alle $n \in \mathbb{N}$ gilt.

Aufgabe 3: Berechnen Sie die folgenden Grenzwerte oder begründen Sie, dass der Grenzwert nicht existiert.

(a)
$$\lim_{n \to \infty} \frac{n}{n+1} - \frac{n+1}{n}$$

(d)
$$\lim_{n \to \infty} \sqrt[n]{4 + \frac{n-1}{n+1}}$$

Hinweis: $\lim_{n\to\infty} \sqrt[n]{a} = 1$ für alle a > 0.

(b)
$$\lim_{n \to \infty} \frac{7\sqrt{n} + 1}{n}$$

(e)
$$\lim_{n \to \infty} \frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}}$$

Hinweis: $\lim_{n \to \infty} x^n = 0$ für |x| < 1.

(c)
$$\lim_{n \to \infty} \frac{n^2 + 4n + 4}{(n+1)(n+2)}$$

(f)
$$\lim_{m \to \infty} \lim_{n \to \infty} \left(1 + \frac{1}{m}\right)^{-n}$$
 und $\lim_{n \to \infty} \lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^{-n}$

Lösung:

(a) Es gilt

$$\frac{n}{n+1} - \frac{n+1}{n} = \frac{n^2 - (n+1)^2}{n(n+1)} = -\frac{2n+1}{n^2 + n} = -\frac{\frac{2}{n} + \frac{1}{n^2}}{1 + \frac{1}{n}} \to 0$$

für $n \to \infty$.

(b) Es gilt

$$\frac{7\sqrt{n}+1}{n} = \frac{7}{\sqrt{n}} + \frac{1}{n} \to 0$$

für $n \to \infty$.

(c) Für alle $n \ge 3$ gilt

$$\frac{n^2 + 4n + 4}{(n+1)(n+2)} = \frac{n^2 \left(1 + \frac{4}{n} + \frac{4}{n^2}\right)}{n^2 \left(1 + \frac{3}{n} + \frac{2}{n^2}\right)}$$
$$= \frac{1 + \frac{4}{n} + \frac{4}{n^2}}{1 + \frac{3}{n} + \frac{2}{n^2}}$$
$$\to 1$$

für $n \to \infty$.

(d) Es gilt

$$\left(4 + \frac{n-1}{n+1}\right)^{1/n} = \left(\frac{4(n+1) + n - 1}{n+1}\right)^{1/n}$$
$$= \left(\frac{5n+3}{n+1}\right)^{1/n}$$
$$= \left(\frac{5 + \frac{3}{n}}{1 + \frac{1}{n}}\right)^{1/n},$$

und aus

$$\underbrace{\left(\frac{5}{2}\right)^{1/n}}_{\longrightarrow 1} \le \left(\frac{5 + \frac{3}{n}}{1 + \frac{1}{n}}\right)^{1/n} \le \underbrace{8^{1/n}}_{\longrightarrow 1}$$

folgt mit dem Einschließungskriterium, dass

$$\lim_{n\to\infty} \sqrt[n]{4+\frac{n-1}{n+1}} = 1.$$

(e) Es gilt

$$\frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}} = \frac{1 + \left(-\frac{1}{2}\right)^n}{2 - \left(-\frac{1}{2}\right)^n} \to \frac{1}{2}$$

für $n \to \infty$.

(f) Es sei $m \in \mathbb{N}$. Dann gilt

$$1 + \frac{1}{m} > 1,$$

sodass

$$\left(1 + \frac{1}{m}\right)^{-1} < 1$$

und damit

$$\lim_{n \to \infty} \left(1 + \frac{1}{m} \right)^{-n} = 0$$

(geometrische Folge). Die Folge $(a_m)_{m\in\mathbb{N}}$ mit $a_m=\lim_{n\to\infty}(1+m^{-1})^{-n}$ ist also konstant 0, sodass

$$\lim_{m \to \infty} a_m = \lim_{m \to \infty} \lim_{n \to \infty} \left(1 + \frac{1}{m} \right)^{-n} = 0.$$

Nun sei $n \in \mathbb{N}$. Dann gilt nach den Rechenregeln für konvergente Folgen, dass

$$\lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^{-n} = \left(\lim_{m \to \infty} \left[1 + \frac{1}{m} \right] \right)^{-n} = 1.$$

Die Folge $(b_n)_{n\in\mathbb{N}}$ mit $b_n = \lim_{m\to\infty} (1+m^{-1})^{-n}$ ist also konstant 1, sodass

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^{-n} = 1.$$