Chapitre 24

Récursivité et Induction

Sommaire.

1	Récurrence sur $\mathbb N$	1
	Ensembles ordonnés. 2.1 Définitions. 2.2 Ensembles inductifs.	
	Preuve par induction. 3.1 Théorème de l'induction	
	3.2 Correction des récursives	3

Les propositions marquées de \star sont au programme de colles.

1 Récurrence sur \mathbb{N}

Proposition 1: Récurrence.

Soit P(n) un prédicat sur $n \in \mathbb{N}$.

$$(P(0) \text{ et } \forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)) \Longrightarrow \forall n \in \mathbb{N}, \ P(n).$$

Preuve:

Supposons que $E = \{n \in \mathbb{N} \mid P(n)\}$ est non vide.

Alors E est minoré et non vide, il a un minimum m non nul tel que P(m) est faux.

Ainsi, P(m-1) est vrai car m-1 < m et m est le minimum de E, or $P(m-1) \Longrightarrow P(m)$.

On en déduit que P(m) est vrai, ce qui est absurde, donc $E = \emptyset$.

Remarques: Ce principe repose sur les propriétés de \mathbb{N} , qui possède un ordre total, a un élément plus petit 0 et est le plus petit sous-ensemble de \mathbb{R} tel que $0 \in \mathbb{N}$ et $n \in \mathbb{N} \Longrightarrow n+1 \in \mathbb{N}$.

2 Ensembles ordonnés.

2.1 Définitions.

Définition 2: Prédécesseurs.

Soit $E \neq \emptyset$ et \leq une relation d'ordre sur E. Soient $x, y \in E$ tels que $x \neq y$.

On dit que x est un **prédécesseur** de y si ils sont comparables et que $x \leq y$.

C'est un **prédécesseur immédiat** de y si $\forall z > x, \ z \ge y$.

On dit que x est **minimal** si $\forall y \in E, y \geq x$.

Définition 3: Ordre total.

La relation d'ordre est totale si $\forall x, y \in E, x \leq y$ ou $y \leq x$.

Un ensemble muni d'un ordre total a au plus un élément minimal m.

La donnée d'un ordre sur un ensemble l'induit sur chacun de ses sous-ensembles.

Proposition 4: Ensemble bien fondé. 🛨

Soit E un ensemble ordonné par la loi \leq . Il y a équivalence entre

- 1. Tout sous-ensemble **non-vide** de E admet un élément minimal.
- 2. Toute suite infinie décroissante de E est stationnaire.

Preuve:

 \Longrightarrow Soit $(u_n)_{n\in\mathbb{N}}$ une suite infinie décroissante de E.

 $\overline{\text{Soit }}F = \{u_n \mid n \in \mathbb{N}\} \subset E.$

Alors $\exists k \in \mathbb{N} \mid u_k = \min(F)$, or F est décroissante donc $\forall n \geq k, \ u_n = u_k$.

On a bien montré que cette suite est stationnaire.

Soit $F \subset E \mid F \neq \emptyset$.

On définit (u_n) telle que $u_0 \in F$ et u_{n+1} soit le prédécesseur de u_n par \leq s'il existe, sinon u_n .

Par construction, (u_n) est infinie et décroissante donc stationnaire : $\exists k \in \mathbb{N} \ \forall n \geq k, \ u_n = u_k$.

On en déduit que u_k n'a pas de prédécesseur par \leq , c'est le minimum de F.

On a bien montré l'équivalence.

Proposition 5: Ordre lexicographique.

Soit E un ensemble ordonné par \leq .

L'ordre lexicographique sur E^n est :

$$(x_i)_{i \in \llbracket 1, n \rrbracket} < (y_i)_{i \in \llbracket 1, n \rrbracket} \Longrightarrow \exists N \in \llbracket 1, n \rrbracket \mid \forall i < N, \ x_i = y_i \land x_N < y_N.$$

 $Si \le est total$, alors l'ordre lexicographique l'est aussi.

Si l'ordre de E est bien fondé, alors l'ordre lexicographique sur E^n l'est aussi.

2.2 Ensembles inductifs.

Définition 6: Ensemble défini inductivement. \star

Soit E un ensemble non vide. Une définition de $X\subseteq E$ consiste à se donner :

- \odot Un ensemble $B \subseteq E$ non vide d'assertions.
- \odot Un ensemble R de règles : $\forall r_i \in R, \ r_i : E^{n_i} \to E$ avec n_i l'arité de r_i .

Théorème 7: Point fixe. 🛨

Il existe un plus petit sous-ensemble X de E tel que :

- (B) $B \subset X$: les assertions sont dans X.
- $(I) \ \forall r_i \in R, \ \forall (x_1,...,x_{n_i}) \in X^{n_i} \ \text{ on a } \ r_i(x_1,...,x_{n_i}) \in X \ \text{avec } n_i \ \text{l'arit\'e de } r_i : X \ \text{est stable par les r\`egles}.$

Preuve:

Soit \mathscr{F} l'ensemble des parties de E vérifiant (B) et (I).

On considère X l'intersection de tous les éléments de $\mathscr F$:

$$X = \bigcap_{Y \in \mathscr{F}} Y.$$

Puisque $\forall Y \in \mathscr{F}, \ B \subset Y$, on en déduit que $B \subset X$. On a donc vérifié (B).

Soit $r_i \in R$ et $(x_1, ..., x_{n_i}) \in X^{n_i}$.

Remarquons que $\forall Y \in \mathscr{F}, \ x_1, ..., x_{n_i} \in Y$, or les Y sont stables par les règles d'où $\forall Y \in \mathscr{F}, \ r_i(x_1, ..., x_{n_i}) \in Y$.

Puisque X est leur intersection, $r_i(x_1, ..., x_{n_i}) \in X$ et X vérifie alors (I).

C'est donc le plus petit ensemble vérifiant (B) et (I) par construction.

3 Preuve par induction.

3.1 Théorème de l'induction.

Théorème 8: Induction structurelle. 🛨

Soit $X \subseteq E$ défini inductivement (cf question précédente) et \mathcal{P} un prédicat sur E.

Si on a que:

- (B) $\mathcal{P}(x)$ est vraie pour tout $x \in B$.
- (I) \mathcal{P} est héréditaire : $\forall r_i \in R, \ \forall (x_1, ..., x_{n_i}) \in E^{n_i}, \ \mathcal{P}(x_1), ..., \mathcal{P}(x_{n_i}) \Longrightarrow \mathcal{P}(r_i(x_1, ..., x_{n_i}))$.

Alors $\mathcal{P}(x)$ est vraie pour tout $x \in X$.

Preuve:

On suppose (B) et (I), montrons que $\mathcal{P}(x)$ est vraie pour tout $x \in E$.

Soit $Y = \{x \in E \mid P(x)\}$. Alors $B \subset Y$ d'après (B) et Y est stable par R d'après (I).

On a alors $X \subset Y$ donc $\forall x \in X$, $\mathcal{P}(x)$ est vrai.

Exemple 9

Pour un arbre binaire strict A, on note $\mathcal{N}(A)$ son nombre de noeuds, $\mathcal{F}(A)$ son nombre de feuilles. On a alors $\mathcal{N}(A) = 2\mathcal{F}(A) - 1$.

Solution:

On définit inductivement l'ensemble $\mathscr A$ des arbres binaires stricts par :

- \bullet Assertions : $\{0\}$ l'arbre restreint à sa racine.
- Règles : $\{R_0:(g,d)\mapsto \mathrm{Noeud}(g,d)\}$, l'arbre obtenu en donnant un ancêtre commun à $g,d\in\mathscr{A}$.

La propriété est immédiatement vraie sur l'arbre réduit à sa racine.

On suppose que la propriété est vraie pour $g, d \in \mathcal{A}$.

Ainsi, $\mathcal{N}(R_0(g,d)) = 1 + \mathcal{N}(g) + \mathcal{N}(d) = 1 + 2\mathcal{F}(g) - 1 + 2\mathcal{F}(d) - 1 = 2\mathcal{F}(R_0(g,d)) - 1.$

Donc la propriété est stable par les règles d'inférence.

Par théorème d'induction structurelle, elle est vraie pour tout arbre binaire strict.

Corrolaire 10: Induction bien fondée.

Soit Emuni d'un ordre bien-fondé et ${\mathcal P}$ un prédicat sur E. Si :

- $\bullet \ \mathcal{P}$ est vraie sur tout élément minimal de E.
- $\forall x \in E, \ (\forall y < x, \ \mathcal{P}(y)) \Longrightarrow \mathcal{P}(x).$

Alors \mathcal{P} est vraie pour tout $x \in E$.

Preuve:

- Les assertions sont les minimaux.
- Les règles sont une famille de fonction permettant de passer au successeur immédiat.

3.2 Correction des récursives.

Méthode: Correction des récursives.

L'ensemble des valeurs des paramètres des fonctions récursives peut être défini par induction :

- Assertions : cas de base.
- Règles : lien entre les paramètres de l'appel récursif et ceux de l'appel courant.

On utilise alors le théorème d'induction pour prouver la correction.