Homework 4

21-740 Introduction to Functional Analysis II

Name: Shashank Singh¹

Due: Monday, November 25, 2013

Problem 1

Lemma 1 Suppose $\mathcal{D}(B) \subseteq X$ is dense in $X, B : \mathcal{D}(B) \to X$ is linear and closed. Then, for any integrable $g : [0, \tau] \to \mathcal{D}(B), t \in [0, \tau]$, if $B \circ g$ is integrable, then

$$B\int_0^t g(s) ds = \int_0^t Bg(s) ds.$$

Proof: Claim 1: Suppose g is a simple function, i.e., for some $k \in \mathbb{N}, c_1, \ldots, c_k \in \mathcal{D}(B)$,

$$g = \sum_{i=1}^{k} c_i \chi_{E_i},$$

where $\{E_i : i = 1, ..., k\}$ is a partition of $[0, \tau]$ into Lebesgue-measurable sets and χ_{E_i} is the characteristic function of A_i (we refer to $\{E_i : i = 1, ..., k\}$ as the partition underlying g). Then,

$$B \int_0^t g(s) \, ds = B \sum_{i=1}^k c_i \lambda(E_i) = \sum_{i=1}^k B c_i \lambda(E_i) = \int_0^t B g(s) \, ds,$$

where λ denotes the Lebesgue measure, proving Claim 1.

General Case: Now consider a sequences of simple functions $\{g_k\}_{k=1}^{\infty}$ mapping $[0,\tau]$ to $\mathcal{D}(B)$ and $\{h_k\}_{k=1}^{\infty}$ mapping $[0,\tau]$ to X such that

$$\sup_{t \in [0,\tau]} \|g(t) - g_k(t)\|_{X} \to 0 \quad \text{and} \quad \sup_{t \in [0,\tau]} \|Bg(t) - h_k(t)\|_{X} \to 0 \quad \text{as } k \to \infty$$

(such sequences exist because $\mathcal{D}(B)$ is dense in X and both g and $B \circ g$ are integrable.) In particular, we can take such sequences such that $g_k(s) = g(s)$ for some s in each set of the partition underlying g, and, $\forall k \in \mathbb{N}$, the partition of $[0,\tau]$ underlying g_k is a refinement of the partition underlying h_k . It follows from these constraints that

$$\sup_{t \in [0,\tau]} \|Bg_k(t) - h_k(t)\|_X \to 0 \quad \text{as } k \to \infty,$$

and so, by Claim 1,

$$\lim_{k \to \infty} B \int_0^t g_k(s) \, ds = \lim_{k \to \infty} \int_0^t B g_k(s) \, ds = \lim_{k \to \infty} \int_0^t h_k(s) \, ds = \int_0^t B g(s) \, ds.$$

Since B is closed, $\int g_k \to \int g$, and $B \circ \int g_k \to \int B \circ g$, it follows that $\int g : [0, \tau] \to \mathcal{D}(B)$ and $B \int g = \int B \circ g$. \square

¹sss1@andrew.cmu.edu

We calculate

$$\lim_{h \to 0} \frac{1}{h} \left(\int_0^t T(t+h-s)f(s) \, ds - \int_0^t T(t-s)f(s) \, ds \right) = \lim_{h \to 0} \frac{1}{h} \int_0^t (T(h)-I)T(t-s)f(s) \, ds$$

$$= \lim_{h \to 0} \frac{(T(h)-I)}{h} \int_0^t T(t-s)f(s) \, ds$$

$$= A \int_0^t T(t-s)f(s) \, ds = Av(t)$$

and

$$\lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} T(t+h-s)f(s) \, ds = \lim_{h \to 0} T(h) \frac{1}{h} \int_{t}^{t+h} T(t-s)f(s) \, ds$$
$$= \lim_{h \to 0} T(h) \frac{1}{h} \int_{t}^{t+h} T(s)f(t-s) \, ds$$
$$= If(t) = f(t).$$

Thus, $\dot{v}(t) = Av(t) + f(t), \forall t \in [0, \tau].$

Problem 2

By a generation theorem from class, there exist constants $C, \omega \in \mathbb{R}$ and $\delta \in (0, \pi/2)$ such that

$$\left\{\lambda \in \mathbb{C} : |\arg(\lambda - \omega)| < \frac{\pi}{2} + \delta\right\} \subseteq \rho(A)$$

and

$$||R(\lambda; A)|| \le \frac{C}{|\lambda - \omega|}, \quad \forall \lambda \in \mathbb{C} \text{ with } |\arg(\lambda - \omega)| < \frac{\pi}{2} + \delta.$$

Furthermore, by another part of the same theorem, it suffices to show that

$$\{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > \omega + \|L\|\} \subseteq \rho(A+L) \quad \text{and} \quad \|R(\lambda; A+L)\| \le \frac{C}{\lambda - (\omega + C\|L\|)}$$

whenever Re $\lambda > \omega + C||L||$. Since L is bounded, it can shift the spectrum by at most ||L||, and so

$$\{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > \omega + \|L\|\} \subseteq \left\{\lambda \in \mathbb{C} : |\operatorname{arg}(\lambda - (\omega + \|L\|))| < \frac{\pi}{2} + \delta\right\} \subseteq \rho(A + L).$$

It is easily checked from the definition of the resolvent operator that

$$R(\lambda; A + L) = \sum_{k=0}^{\infty} R(\lambda; A) \left(LR(\lambda; A) \right)^{k}$$

(we showed this as a lemma for Problem 6 of Assignment 3). Thus, by the triangle inequality and

the identity $\frac{1}{1-x} = \sum_{i=0}^{\infty} x^i$, for $\operatorname{Re} \lambda - \omega > C \|L\|$,

$$\begin{split} \|R(\lambda;A+L)\| &\leq \sum_{k=0}^{\infty} \frac{C^{k+1} \|L\|^k}{(\lambda-\omega)^{k+1}} = \frac{C}{\lambda-\omega} \sum_{k=0}^{\infty} \frac{C^k \|L\|^k}{(\lambda-\omega)^k} \\ &= \frac{C}{\lambda-\omega} \left(1 - \frac{C\|L\|}{\lambda-\omega}\right)^{-1} \\ &= \frac{C}{\lambda-\omega} \left(\frac{\lambda-\omega}{\lambda-\omega-C\|L\|}\right) = \frac{C}{\lambda-\omega-C\|L\|}. \quad \blacksquare \end{split}$$

Problem 3

We assume without loss of generality that T is quasicontractive, since there exists an equivalent norm under which T is quasicontractive, and it suffices to prove the result for an equivalent norm. In particular, suppose $\omega \in \mathbb{R}$ with $||T(t)|| \le e^{\omega t}, \forall t \ge 0$. Note that $\forall c \in \mathbb{R}$,

$$||e^{cI}|| = \left| \sum_{k=0}^{\infty} \frac{(cI)^k}{k!} \right|| = \left| \sum_{k=0}^{\infty} \frac{c^k}{k!} I \right|| = ||e^cI|| = e^c.$$

Since $||T(t)|| \le e^{\omega t}$, there exists $\varepsilon > 0$ such

$$\frac{||T(t)|| - 1}{h} \le 1 + \frac{d}{dt}e^{\omega t}\Big|_{t=0} = \omega + 1,$$

for all $h \in (0, \varepsilon)$. Since, $\forall t \geq 0, h \in (0, \varepsilon)$, since T(h) and I commute,

$$\begin{aligned} \|e^{t\mathcal{A}_h}\| &= \left\| \exp\left(\frac{t(T(h) - I)}{h}\right) \right\| = \left\| \exp\left(\frac{tT(h)}{h}\right) \right\| \|\exp(-tI/h)\| \\ &\leq \exp(t\|T(h)\|/h) \exp(-t/h) = \exp\left(\frac{t(\|T(h)\| - 1)}{h}\right) \leq e^{(\omega + 1)t} \end{aligned}$$

By the Fundamental Theorem of Calculus, $\forall t \geq 0, h \in (0, \varepsilon), x \in X$

$$T(t)x - e^{t\mathcal{A}_h}x = \int_0^t \frac{d}{ds} e^{(t-s)\mathcal{A}_h} T(s)x \, ds$$
$$= \int_0^t e^{(t-s)\mathcal{A}_h} (A - \mathcal{A}_h) T(s)x \, ds$$
$$= \int_0^t e^{(t-s)\mathcal{A}_h} T(s) (Ax - \mathcal{A}_h x) \, ds$$

since A and each A_h commutes with T(t) for all $t \geq 0$. Then, $\forall t \geq 0, x \in X$,

$$||T(t)x - e^{t\mathcal{A}_h}x|| \le \int_0^t ||e^{(t-s)\mathcal{A}_h}|| ||T(s)|| ||(Ax - \mathcal{A}_h x)|| \, ds$$

$$\le te^{(2\omega + 1)t} ||(Ax - \mathcal{A}_h x)|| \to 0,$$

as $h \to 0$, by definition of A and \mathcal{A}_h .

Problem 4

If $x \in \mathcal{D}(A)$ is non-zero, then

$$Re[Ax, x] = ||x||^2 Re\left[A\frac{x}{||x||}, \frac{x}{||x||}\right] \le 0.$$

Thus, A is dissipative. As in the proof of Lemma 10.10, we have, $\forall x \in X, \lambda \in \mathbb{C}$,

$$\|(\lambda I - A)x\|\|x\| \ge \|[(\lambda I - A)x, x]\| = \text{Re}[(\lambda I - A)x, x] = \text{Re}\lambda\|x\|^2 - \text{Re}[Ax, x] \ge \text{Re}\lambda\|x\|^2.$$

It follows that, for Re $\lambda > 0$, $\lambda I - A$ is injective and, if $\lambda I - A$ is surjective, then $R(\lambda; A) \leq \frac{1}{\text{Re }\lambda}$. By a generation theorem for analytic semigroups, it suffices now to show that

$$H := \{ \lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0 \} \subseteq \rho(A),$$

for which we essentially follow the proof of Lemma 10.11.

Define $\Lambda := \rho(A) \cap H$. Since $\rho(A)$ is open in \mathbb{C} , $\Lambda \neq \emptyset$ by assumption, and H is connected, it suffices to show that Λ is closed in the relative topology on H. Let $\{\lambda_k\}_{k=1}^{\infty}$ be a sequence in Λ converging to $\lambda \in H$. To show $\lambda \in \Lambda$, it suffices to show $\lambda I - A$ is surjective. Let $y \in X$ and, $\forall n \in \mathbb{N}$, put

$$x_n := R(\lambda_n; A)y.$$

Noting that, since $1/\lambda_n \to 1/\lambda$ as $n \to \infty$, the sequence $\{1/\lambda_n\}_{n=1}^{\infty}$ is bounded,

$$||x_n - x_m|| = ||R(\lambda_n; A)y - R(\lambda_m; A)y||$$

$$= |\lambda_n - \lambda_m|||R(\lambda_n; A)||||R(\lambda_m; A)||||y||$$

$$\leq |\lambda_n - \lambda_m|\frac{||y||}{\lambda_n \lambda_m}$$

using a resolvent identity (Proposition 7.26). It follows that $\{x_n\}_{n=1}^{\infty}$ is Cauchy, and so we may put

$$x := \lim_{n \to \infty} x_n.$$

Note that each $x_n \in \mathcal{D}(A)$ and $Ax_n \to \lambda x - y$. Since A is closed, $x \in \mathcal{D}(A)$ and $y = \lambda x - Ax$.

Problem 5

Since T is analytic, by Proposition 11.19, for t > 0, $T(t) : X \to \mathcal{D}(A)$. Thus, for $s, t \in [0, \tau]$ with s < t, $T(t - s)(f(s) - f(t)) \in \mathcal{D}(A)$, and hence $w(t) \in \mathcal{D}(A), \forall t \in [0, \tau]$.

Let $f \in C^{0,\theta}([0,\tau];X)$ with C > 0 such that

$$||f(t) - f(s)|| \le C|t - s|^{\theta}, \quad \forall s, t \in [0, \tau].$$

Since T is an analytic semigroup, $\exists K > 0$ such that

$$||AT(t)|| \le K/t, \quad \forall t \in [0, \tau],$$

and let $s, t \in [0, \tau]$ with s < t. Adding forms of 0, by integral and semigroup properties,

$$w(t) - w(s) = \int_0^t T(t-r)(f(r) - f(t)) dr - \int_0^s T(s-r)(f(r) - f(s)) dr$$

$$= \int_0^s T(t-r)(f(r) - f(t)) - T(s-r)(f(r) - f(s)) dr + \int_s^t T(t-r)(f(r) - f(t)) dr$$

$$= \int_0^s (T(t-s) - I)T(s-r)(f(r) - f(s)) dr + \int_s^t T(t-r)(f(r) - f(t)) dr$$

$$+ \int_0^s T(t-r)(f(s) - f(t)) dr.$$

We now bound the norm of A applied to each of these three terms.

$$\left\| A \int_{0}^{s} T(t-r)(f(s)-f(t)) dr \right\| \leq \int_{0}^{s} \|AT(t-r)\| \|(f(s)-f(t))\| dr$$

$$\leq \int_{0}^{s} \frac{k}{t-r} C(t-s)^{\theta} dr \leq kC \int_{0}^{s} (t-r)^{\theta-1} dr$$

$$= \frac{kC}{\theta} (t^{\theta} - (t-s)^{\theta})$$

$$\left\| A \int_{s}^{t} T(t-r)(f(r)-f(t)) dr \right\| \leq \int_{s}^{t} \|AT(t-r)\| \|(f(r)-f(t))\| dr$$

$$\leq \int_{s}^{t} \frac{k}{t-r} C(t-r)^{\theta} dr$$

$$\leq kC \int_{0}^{t-s} t^{\theta-1} dr = \frac{kC}{\theta} (t-s)^{\theta}.$$

[I didn't have time to finish writing this part up. I'm not sure I divided the pieces of Aw correctly...] Thus, we have, $\forall s, t \in [0, \tau]$,

$$||Aw(t) - Aw(s)|| \le \frac{kC}{\theta} |t - s|^{\theta},$$

so that $Aw \in C^{0,\theta}([0,\tau];X)$.