Université Abdelmalek Essaadi ENS Tétouan LEM, M2 Année 2023-2024

TD 1 – Nombres réels

Exercice 1

On suppose que A et B deux parties non vides et bornées de \mathbb{R}

- 1. Montrer que $A \cup B$ est non vide et bornée.
- 2. Montrer que si $A \subset B$ alors $\sup(A) \leq \sup(B)$ et $\inf(A) \geq \inf(B)$.
- 3. Montrer que $A \cup B$ possède une borne supérieure, et que $\sup(A \cup B) = \max(\sup(A), \sup(B))$.
- 4. Calculer la borne supérieure de l'ensemble $\{\frac{1+(-1)^n}{n}-n^2; n\in\mathbb{N}^*\}$.
- 5. Montrer que $\inf(A \cup B) = \min(\inf(A), \inf(B))$.
- 6. Montrer $\sup(-A) = -\inf(A)$ où $-A = \{-a, a \in A\}$

On définit L'ensemble $A + B = \{a + b \mid a \in A, b \in B\}$

- 1. Montrer que A + B possède une borne supérieure.
- 2. Montrer que $\sup(A+B) = \sup(A) + \sup(B)$ et $\inf(A+B) = \inf(A) + \inf(B)$.
- 3. Déduire $\sup(A B)$ où $A B = \{a b, / a \in A, b \in B\}$
- 4. Calculer les bornes supérieure et inférieure $\{\frac{1}{n} + \frac{1}{m}; n \in \mathbb{N}^*, m \in \mathbb{N}^*\}$.

Soit $\lambda \in \mathbb{R}^*$, on définit l'ensemble $\lambda A = \{\lambda a; a \in A\}$.

- 1. Montrer que l'ensemble λA possède une borne supérieure et une borne inférieure.
- 2. Montrer que

$$\sup(\lambda A) = \left\{ \begin{array}{ll} \lambda \sup(A) & \mathrm{si} & \lambda > 0 \\ \lambda \inf(A) & \mathrm{si} & \lambda < 0 \end{array} \right.$$

On définit l'ensemble $A \cdot B = \{ab, \text{ où } (a,b) \in A \times B\}$, A-t-on toujours $\sup(A \cdot B) = \sup(A) \times \sup(B)$?

Montrer $A \cap B$ possède une borne supérieure, a-t-on $\sup(A \cap B) = \min(\sup(A), \sup(B))$?

Exercice 2

Déterminer, lorsqu'elles existent, la borne inférieure, la borne supérieure, le plus grand élément et le plus petit élément

1.
$$A = \{\frac{n-1}{n}; /n \in \mathbb{N}^*\}$$

2.
$$B = \{(-1)^n \frac{n}{n+1}; /n \in \mathbb{N}\}$$

3.
$$C = \{x \in \mathbb{R} / x^2 + x + 1 \ge 0\}$$

4.
$$D = \{ \frac{\cos(n)}{n} / n \in \mathbb{N}^* \}$$

5.
$$E = \{x \in \mathbb{R}/ x^2 + x + 1 \le 0\}$$

Exercice 3

Soient a, b deux entiers naturels $(b \neq 0)$.

- 1. Montrer que l'ensemble $A = \{n \in \mathbb{N} : nb \leq a\}$ est non vide et admet un maximum que l'on notera q.
- 2. On pose r = a bq. Montrer que $0 \le r < b$.
- 3. En déduire que : pour tout entier b > 0, et pour tout entier $a \ge 0$, $\exists (q, r) \in \mathbb{N} \times [0, a[: a = bq + r]]$. Montrer que ce couple (q, r) est unique.

Exercice 4

(Densité de $\mathbb{R}\setminus\mathbb{Q}$ dans \mathbb{R})

- 1. Montrer que $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $x + r \notin \mathbb{Q}$ et si $r \neq 0$ alors $rx \notin \mathbb{Q}$.
- 2. Montrer $\mathbb{R}\setminus\mathbb{Q}$ est non vide.
- 3. Soient x et y deux réels et soit $z \in \mathbb{R} \setminus \mathbb{Q}$. Montrer que l'intervalle]x-z,y-z[contient au moins un rationnel r et en déduire que l'intervalle]x,y[contient au moins un élément $\mathbb{R} \setminus \mathbb{Q}$.
- 4. Que peut-on déduire.

Exercice 5

Soit $A = \{x \in \mathbb{Q} : x > 1 \text{ et } x^2 < 2\}.$

- 1. Montrer que A est une partie non vide et majorée dans Q.
- 2. Soit $r \in A$, montrer qu'il existe $n \in \mathbb{N}$: $n(2-r^2) > 2r+1$. En déduire que $r' = r + \frac{1}{n} \in A$.
- 3. Soit $M \in \mathbb{Q}$ un majorant de A. Montrer que $M > \sqrt{2}$.
- 4. En déduire que $\sup(A) \notin \mathbb{Q}$.

Exercice 6

- 1. Montrer que $\forall (p, x) \in \mathbb{Z} \times \mathbb{R}$, E(x+p) = E(x) + p
- 2. Montrer $\forall (n,x) \in \mathbb{N}^* \times \mathbb{R}$, $E(\frac{E(nx)}{n}) = E(x)$.
- 3. Montrer que $\forall (n,x) \in \mathbb{N}^* \times \mathbb{R}$, $\frac{E(nx)}{n} \leq x < \frac{E(nx)}{n} + \frac{1}{n}$.
- 4. Soit $(x,y) \in \mathbb{R}^2$ tel que x < y. Montrer que $\exists p \in \mathbb{N}^* \quad x < \frac{E(px)+1}{p} < y$. Conclure

Exercice 7

Soient I et J deux intervalles ouverts. On suppose que $(I \cap \mathbb{Q}) \cap (J \cap \mathbb{Q}) = \emptyset$. Démontrer que $I \cap J = \emptyset$.