Solutions to Terence Tao's Analysis I

Sebastian Claici

December 7, 2024

Introduction

It has been a while since I have done any formal mathematics, so take these solutions with a large heaping of salt. If there is intuition to be developed in a problem, I try to develop it before diving in.

Chapter 2: The natural numbers

The natural numbers satisfy the Peano axioms:

Axiom 1 0 is a natural number.

Axiom 2 If n is a natural number, then n++ is also a natural number.

Axiom 3 0 is not the successor of any natural number; i.e. we have $n++\neq 0$ for every natural number n.

Axiom 4 Different natural numbers must have different successors; i.e., if n and m are natural numbers, and $n \neq m$, then $n++\neq m++$.

Axiom 5 Principle of mathematical induction). Let P(n) be any property pertaining to a natural number n. Suppose that P(0) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.

Addition

For reference, addition is defined inductively as 0 + m = m and (n++) + m = (n+m)++.

2.2.1. (Addition is associative)

We can use induction on a to prove a + (b + c) = (a + b) + c.

The base case is

$$0 + (b + c) = (b + c)$$
 (by the definition of addition)
= $b + c$ (again using the definition)

Now we assume the statement holds for a, and we seek to prove it for a++.

$$(a++) + (b+c) = (a+(b+c))++$$
 (definition)
 $= ((a+b)+c)++$ (inductive step)
 $= (a+b)+++c$ (definition)
 $= ((a++)+b)+c$ (definition)

2.2.2. (Positive numbers have only one successor)

We will prove this by induction on a. The base case is a = 1 as the first positive number, and since 0++=1, the base case is proved.

For the inductive step, assume the statement holds for a, that is that there exists exactly one b such that b++=a. If we increment both sides, then (b++)++=a++. By the inductive step, we know b++=a and from the problem statement, we know that a is positive which completes the proof.

2.2.3. (Basic properties of natural numbers)

I will prove transitivity and the final two.

a) To prove transitivity, we can expand the \geq definitions as $a \geq b \implies a = b + n$ for some natural number n, and $b \geq c \implies b = c + m$ for some natural number m. Thus

$$a = b + n$$

 $= (c + m) + n$ (expand)
 $= c + (m + n)$ (by associativity)

Since m + n is a natural number, by definition of \geq , we have $a \geq c$.

- **b)** We want to prove that a < b if and only if $a++ \le b$.
- (\Leftarrow) If $a++ \le b$, then b = (a++) + n for some natural number n. By definition of addition, b = (a+n)++. By commutativity, b = a + (n++). Since n++ is a positive number, we have that $b \ge a$ and $b \ne a^1$ which shows b > a.
- (\Rightarrow) If $a \leq b$, then b = a + n, and $b \neq a$. This means that $n \neq 0$, and by the previous exercise,

¹Otherwise we get a contradiction that n++=0 by cancellation.

we know that n = m++ for some natural number m. Replacing in the equation for b, we have

$$b = a + (m++)$$

= $(m++) + a$ (commutativity)
= $(a+m)++$ (addition and commutativity)
= $(a++)+m$ addition

hence $b \ge a++$ by definition of \ge .

c) We want to show that a < b if and only if b = a + d for some positive number d.

The proof for this is part of the proof for **b**), although the forward direction can be shown more easily by contradiction.