11年世十七年十十二

三种基本传热方式		$q = q''A = \frac{\Delta T}{R} = \frac{\Delta T}{A''}$
	热通量	热阻
Conduction	$q_{cond}^{"} = -k \frac{dT}{dx}$	$R_{t,cond} = \frac{L}{kA}$
Convection	$q_{conv}^{\prime\prime}=h(T_{s}-T_{\infty})$	$R_{t,conv} = \frac{1}{hA}$
Radiation	$q_{rad}^{"}=\varepsilon\sigma(T_S^4-T_{sur}^4)$	$R_{t,rad} = \frac{1}{h_r A}$ (रेमिप्रि)
	$q_{rad} = h_r A (T_s - T_{sur})$	

字热系数 Thermal conductivity

Heat Diffusion Equation (能量守恒)

$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial \chi} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial \chi} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial \chi}$	$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho c_p$

$\frac{\partial}{\partial x} \left(k \frac{\partial}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial}{\partial \psi} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial}{\partial \psi} \right) + \dot{q} = \rho c_p \frac{\partial}{\partial \psi}$ $\frac{\partial}{r} \frac{\partial}{\partial r} \left(kr \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$	$\frac{1}{r^2}\frac{\partial}{\partial r}\left(kr^2\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\sin^2\theta}\frac{\left(k\frac{\partial T}{\partial \phi}\right)}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{1}{r^2}\frac{\partial}{\sin\theta}\frac{\partial}{\partial \theta}\left(k\sin\theta\frac{\partial T}{\partial \theta}\right) + \dot{q} = \rho c_p\frac{\partial T}{\partial t}$
	10 to

复合层导热 (空心+不产热)

墙产热模型 (均匀产热)

 $T_{s,1} - \Delta T \left[\frac{1 - (r_1/r)}{1 - (r_1/r_2)} \right]$

 $T_{s,2} + \Delta T \frac{\ln(r/r_2)}{\ln(r_1/r_2)}$

 $T_{s,1} - \Delta T \frac{x}{L}$

温度分布

 $\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$

 $\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$

Heat equation $\frac{d^2T}{dx^2} = 0$

Spherical Walla

Plane Wall Cylindrical Wall^a

 $T(x) = -(\dot{q}/2k)x^2 + C_1x + C_2$ (3.45)

 $r^{2}[(1/r_{1}) - (1/r_{2})]$

 $\frac{k\,\Delta T}{r\,\ln\left(r_2/r_1\right)}$

热通量 Heat flux (q'')

 $4\pi k \Delta T$

 $kA\frac{\Delta T}{L}$

热流量 Heat rate (q)

 $k \Delta T$

 $(1/r_1) - (1/r_2)$ $(1/r_1) - (1/r_2)$

 $\frac{\ln\left(r_2/r_1\right)}{2\pi Lk}$ $\ln (r_2/r_1)$ $2\pi Lk \Delta T$

热阻 (R_{r,cond})

$$T(x) = \left(\frac{q}{2k}L^2\right)\left(1 - \frac{x^2}{L^2}\right) + \left(\frac{T_{5,2} - T_{5,1}}{2}\right)\left(\frac{x}{L}\right) + \left(\frac{T_{5,1} + T_{5,2}}{2}\right)$$

$Bi = \frac{L_c}{k} = \frac{L_c}{\frac{LA_s}{1}} \approx \frac{R_{cond}}{R_{conv}} \approx \frac{\Delta T_{solid}}{\Delta T_{solid} - fuid}$ **Biot Number**

h = 对流或辐射传热系数

k = **固体**传热系数 $L_c =$ 特征长度

Bi < 0.1 是好的

 $L_c \rightarrow$ characteristic length of the solid (V/A_c or distance associated with maximum spatial temperature difference) Normally: L/2 for wall, r_c for sphere (sometimes $r_s/3$) and cylinder (sometimes $r_s/3$) and the special speci 代表固体传热远快于对流或辐射

 $\tau = \frac{\rho \cdot V \cdot c}{h \cdot A_s} = \left(\frac{1}{hA_s}\right) \cdot (\rho V c) = R_t \cdot C_t$

 $= \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\frac{h \cdot As}{\rho \cdot V \cdot c} \cdot t\right]$

嚴态传热

Case	Tip Condition $(x = L)$	Temperature Distribution $ heta/ heta_b$	Fin Heat Transfer Rate q_f
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x=L}$	$\frac{\cosh m(L-x) + (hlmk) \sinh m(L-x)}{\cosh mL + (hlmk) \sinh mL}$	$M \frac{\sinh mL + (h/mk) \cosh mL}{\cosh mL + (h/mk) \sinh mL}$
В	Adiabatic: $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$	M $ anh$ mL
C	Prescribed temperature: $\theta(L) = \theta_L$	$(\theta_L/\theta_b) \sinh mx + \sinh m(L-x)$	$M \frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mr}$

 T_{∞}, h

 m^2K/W

单位面积热阻

mK/W

 R_t

K/W

P = 2w + 2t $A_c = wt$

 W/m^2K

热辐射系数 radiation heat transfer coefficient

convection heat transfer coefficient

热对流系数

 W/m^2K W/mK

 W/m^2

5通量/热流密度

导热速率

功率

 $M \equiv \sqrt{hPkA_c\theta_b}$

 $\theta_b = \theta(0) = T_b - T_{\infty}$

$$e^{-mx}$$

$$\sinh x = \frac{e^x - e^{-x}}{2} \quad \cosh x = \frac{e^x + e^{-x}}{2} \quad \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

鳍片效率

L个 A J k J 会使得散热鳍片热阻增加

$$R_{t,f} = \frac{\theta_b}{q_f} = \frac{1}{hA_f\eta_f}$$

 $P = \pi D$ $A_c = \pi D^2 / 4$

	$\varepsilon_f = \frac{q_f}{hA_{c,b}\theta_b} = \frac{\sqrt{hPKA_{c,b}\theta_b}}{hA_{c,b}\theta_b} = \frac{\left\lfloor \frac{kP}{A}\right\rfloor}{\sqrt{hA_{c,b}}} \text{ X$$\frac{1}{2}$ F infinite fin}$	
$\varepsilon_f = \frac{q_f}{hA_{c,b}\theta_b} = \frac{R_{t,b}}{R_{t,fin}}$	$\varepsilon_f = \frac{q_f}{hA_{c,b}\theta_b} = \frac{\sqrt{hPkA_{c,b}}}{hA_{c,b}\theta}$	$\eta_f = \frac{q_f}{q_{f,max}} = \frac{q_f}{hA_f\theta_b}$
Fin Effectiveness 有无散热片差别		Fin Efficiency 实际与理想散热片差别

鳍片阵列

 $A_b =$ 没被鳍片覆盖的面积 $A_f =$ 单个鳍片表面积

 $A_t =$ 总散热面积

 $A_t = NA_f + A_b$

 $= hA_t \left(\eta_f \frac{NA_f}{A_t} + 1 - \frac{NA_f}{A_t} \right) \theta_b$ $= h \left(N \eta_f A_f + A_t - N A_f \right) \theta_b$ $q_t = Nq_f + q_b$ = $N(\eta_f h A_f \theta_b) + h A_b \theta_b$

 $=\eta_{overall}hA_{t} heta_{b} \ heta_{b}$

 $\eta_{overall} = 1 - \frac{NA_f}{A_t} \left(1 - \eta_{fin} \right)$

 $-=\frac{-}{\eta_{overall}}h_{A_{total}}$ $R_{overall} = \overline{q_{total}}$

