

SCC.121: ALGORITHMS AND COMPLEXITY Big-O Notation

Emma Wilson e.d.wilson1@lancaster.ac.uk

Today's Lecture

Aim: To introduce big-O notation

Learning objectives:

- To know how to calculate the complexity of example algorithms in big-O notation
- To be able to calculate the complexity of algorithms using big-O notation without operation counting (more next lecture)

Outline

- Formal definition of big-O
- Big-O notation in general

Outline

- Formal definition of big-O
- Big-O notation in general

Recap: Growth rate of functions

Listed from slowest to fastest growth:

- 1 → Constant growth
- log n → Logarithmic growth
- $n^c \rightarrow$ where 0<c<1
- **n** → Linear growth
- n log n
- n² \rightarrow Quadratic growth
- n² log n
- n³ → Cubic growth
- n^c → Polynomial growth (c is a constant number)
- $2^n \rightarrow$ Exponential growth
- $3^n \rightarrow$ Exponential growth
- $c^n \rightarrow$ Exponential growth (c is a constant number)
- n! -> Factorial growth

The Big-O Notation

The growth of functions is usually described using the big-O notation

- The formal mathematical definition of Big O:
 - Let T(n) and f(n) be two positive functions from the integers or the real numbers to the real numbers
 - We write $T(n) \in O(f(n))$, and say that T(n) has order of f(n), if there are positive constants M and n_0 such that
 - $T(n) \le M \times f(n)$ for all $n \ge n_0$

The Big-O Notation

This graph shows a situation where all of the conditions in the definition

are met

• T(n) is O(f(n)) if even as n becomes arbitrarily large, T(n)'s growth is bounded from **above** by f(n), meaning it grows no faster than f(n)

The Big-O Notation

The idea behind the big-O notation is to establish an **upper boundary** for the growth of the function **T(n)** for large **n**

This boundary is specified by the function **f(n)** that is usually much **simpler** than **T(n)**

```
• For example, f(n) = 1, f(n) = \log_2 n, f(n) = n, f(n) = n, \log_2 n, f(n) = n^2, f(n) = n^3, ..., f(n) = 2^n, f(n) = 3^n, ..., f(n) = n!
```


Example#1:

- T(n) = 3n + 4
- f(n) = n
- Show that T(n) is O(f(n)) which means T(n) is O(n)

We need to find an M and no such that

 $T(n) \leq M \times f(n)$ for all $n \geq n_0$

Example#1:

- T(n) = 3n + 4
- f(n) = n
- Show that T(n) is O(f(n)) which means T(n) is O(n)
- We need to find an M and n_0 such that: $T(n) \le M \times n$ for all $n \ge n_0$

Solution:

- For $n \ge 1$ we have: $T(n) = 3n + 4 \le 3n + 4n$
- So, $T(n) = 3n + 4 \le 7n$
- Therefore, for M=7 and $n_0=1 \rightarrow T(n) \le 7n$ for all $n \ge 1$
- $T(n) \in O(n)$

Example#2:

- $T(n) = n^2 + 2n + 1$
- $f(n) = n^2$
- Show that T(n) is O(f(n)) which means T(n) is O(n²)

We need to find an M and no such that

$$T(n) \leq M \times f(n)$$
 for all $n \geq n_0$

Example#2:

- $T(n) = n^2 + 2n + 1$
- $f(n) = n^2$
- Show that T(n) is O(f(n)) which means T(n) is O(n²)
- We need to find an M and n_0 such that: $T(n) \le M \times n^2$ for all $n \ge n_0$

• Solution:

- For $n \ge 1$ we have: $T(n) = n^2 + 2n + 1 \le n^2 + 2n^2 + n^2$
- So, $T(n) = n^2 + 2n + 1 \le 4n^2$
- Therefore, for M=4 and $n_0=1 \rightarrow T(n) \le 4 \times n^2$ for all $n \ge 1$
- $T(n) \in O(n^2)$

Example#3:

- $T(n) = 3 \log_2 n + 3$
- $f(n) = log_2 n$
- Show that T(n) is O(f(n)) which means T(n) is O(log₂ n)
- We need to find an M and n_0 such that: $T(n) \le M \times \overline{\log}_2 n$ for all $n \ge n_0$

Solution:

- For $n \ge 2$ we have: $T(n) = 3 \log_2 n + 3 \le 3 \log_2 n + 3 \log_2 n$
- So, $T(n) = 3 \log_2 n + 3 \le 6 \log_2 n$
- Therefore, for M=6 and $n_0=2 \rightarrow T(n) \le 6 \log_2 n$ for all $n \ge 2$
- $T(n) \in O(\log_2 n)$

We can follow as similar approach to also show that $\log_2 n$ is $O(\log_b n)$: lab exercise

- So, in the Example#3:
- $T(n) = 3 \log_2 n + 3$
- $f(n) = log_2 n$
- We can say T(n) is $O(\log_b n)$ or in general $O(\log n)$

Example#4:

- T(n) = 30
- f(n) = 1
- Show that T(n) is O(f(n)) which means T(n) is O(1)
- We need to find an M and n_0 such that: $T(n) \le M$ for all $n \ge n_0$

Solution:

- We have: $T(n) = 30 \le 31$
- So, T(n) = $30 \le 31 \times 1$
- Therefore, for M=31 \rightarrow T(n) \leq 31 f(n) for all n
- $T(n) \in O(1)$

Outline

- Formal definition of big-O
- Big-O notation in general

Outline

- Formal definition of big-O
- Big-O notation in general

The big O notation in general

Constant $< \log n < n^c (0 < c < 1) < n < n \log n < n^2 < n^3 \dots < 2^n < 3^n < \dots < n!$

•
$$T(N) = C_1 \times N + C_0$$
 O(N)

• T(N) =
$$C_2 \times N^2 + C_1 \times N + C_0$$
 $O(N^2)$

• T(N) =
$$C_3 \times N^3 + C_2 \times N^2 + C_1 \times N + C_0$$
 $O(N^3)$

•
$$T(N) = C_k \times N^k + C_{k-1} \times N^{k-1} + \dots + C_1 \times N + C_0$$
 $O(N^k)$

More examples:

• T(N) =
$$C_2 \times N + C_1 \log N + C_0 \rightarrow O(N)$$

N is dominant term

• T(N) =
$$C_2 \times N^{1000} + C_1 2^N + C_0 \rightarrow O(2^N)$$

 2^N is dominant term

Big-O: Example Notation

Constant : **O(1)**

Logarithmic: O(log n)

Linear: O(n)

Quadratic O(n²)

Polynomial (c a constant number): O(n^c)

Exponential (c a constant number): O(cⁿ)

• Factorial: O(n!)

The Growth of Functions Questions

Which function grows faster?

$$-T_1(n) = 1000n^2$$

-T_2(n) = $n \log n + 5000n$

Which function grows faster?

$$-T_1(n) = 1000 \times 2^n$$

 $-T_2(n) = n!$

Which function grows faster?

$$-T_1(n) = n^{0.1}$$

-T_2(n) = log n + 10

slido

Growth of functions

The Growth of Functions

Constant
$$< \log n < n^c$$
 (where $0 < c < 1$) $< n < n \log n <$ sity $n^2 < n^3 \dots < 2^n < 3^n < \dots < n!$

Which function grows faster?

$$-T_1(n) = 1000n^2 \to O(n^2)$$

$$-T_2(n) = n \log n + 5000n \to O(n \log n)$$

Which function grows faster?

$$-T_1(n) = 1000 \times 2^n \rightarrow O(2^n)$$

 $-T_2(n) = n! \rightarrow O(n!)$

Which function grows faster?

$$-T_1(n) = n^{0.1} \rightarrow O(n^{0.1})$$

 $-T_2(n) = \log n + 10 \rightarrow O(\log n)$

The Big-O notation General Question

• If T(n) is O(n²), is it also O(n³)?

slido

If T(n) is $O(n^2)$, is it also $O(n^3)$?

The Big-O Notation Note

Question: If T(n) is $O(n^2)$, is it also $O(n^3)$?

Yes. Why?

- T(n) is O(n²) means T(n) \leq M \times n² for all n \geq n₀
- We now need to prove T(n) is $O(n^3)$ which means $T(n) \le M \times n^3$ for all $n \ge n_0$
- Since n^3 grows faster than $n^2 \rightarrow n^2 \le n^3$ for $n \ge 1$
- Thus $T(n) \le M \times n^2 \le M \times n^3 \rightarrow T(n)$ is $O(n^3)$

In practice, we always use smallest simple function f(n) for which $\overline{T(n)}$ is O(f(n))

The Growth of Functions (Questions)

Which function grows faster?

$$-T_1(n) = 1000n^2 \rightarrow O(n^2), O(n^3), O(n^4), ..., O(2^n), ..., O(n!)$$

$$-T_2(n) = n \log n + 5000n \rightarrow O(n \log n), O(n^2), ..., O(2^n), ..., O(n!)$$

Which function grows faster?

$$-T_1(n) = 10002^n \rightarrow O(2^n), O(3^n), ..., O(n!)$$

$$-T_2(\mathbf{n}) = n! \rightarrow O(n!), O(n^n)$$

Which function grows faster?

$$-T_1(n) = n^{0.1} \rightarrow O(n^{0.1}), O(n^2), O(n^3), O(n^4), ..., O(2^n), ..., O(n!)$$

$$-T_2(n) = \log n + 10 \rightarrow O(\log n), O(n), ..., O(2^n), ..., O(n!)$$

Dominant Terms: More examples

Given the processing time T(n) spent by an algorithm for solving a problem of size n

Find the dominant term(s) and specify the lowest Big-O complexity

Expression	Dominant term(s)	O()
$5 + 0.001n^3 + 0.025n$	$0.001n^3$	O(n ³)
$500n + 100n^{1.5} + 50n \log_{10} n$	$100n^{1.5}$	$O(n^{1.5})$
$0.3n + 5n^{1.5} + 2.5n^{1.75}$	$2.5n^{1.75}$	$O(n^{1.75})$
$n^2 \log_2 n + n(\log_2 n)^2$	$n^2 \log_2 n$	$O(n^2 \log n)$
$0.01n\log_2 n + n(\log_2 n)^2$	$n(\log_2 n)^2$	$O(n(\log n)^2)$
$\log_2 n + \log_2 \log_2 n$	$\log_2 n$	$O(\log n)$

constant
$$< \log n < n^c$$
 (where $0 < c < 1$) $< n < n \log n < n^2$
 $< n^3 ... < 2^n < 3^n < ... < n!$

Single loops with O(1) instructions

Loop running constant times: O(1)

- Loop runs constant times, performing O(1) operations at each iteration
- Time complexity = c*O(1) = O(1)

Loop incrementing/ decrementing by constant c: O(n)

- Loop runs n/c times, performing O(1) operations at each iteration
- Time complexity = 1/c *O(n)* O(1) = O(n)

Loop divided/ multiplied by constant c: O(log n)

- Loop runs log_c(n) times, performing O(1) operations at each iteration
- Time complexity = $log_c(n) * O(1) = O(log n)$

Single loops with O(f(n)) instructions

Loop running constant times:

- Loop runs constant times, performing O(1) operations at each iteration
- Time complexity = c*O(f(n)) = O(f(n))

Loop incrementing/ decrementing by some constant c:

- Loop runs n/c times, performing O(f(n)) operations at each iteration
- Time complexity = 1/c *O(n)* O(f(n)) = O(n*f(n))

Loop divided/ multiplied by some constant c:

- Loop runs log_c(n) times, performing O(f(n)) operations at each iteration
- Time complexity = $log_c(n) * O(f(n)) = O(log n*f(n))$

```
// c is a constant
for (int i = 0; i <= c; i++) {
      //O(f(n)) instructions
}</pre>
```

Nested Loops

- Complexity of nested loops equal to the number of times innermost statement executed*complexity of statement
- Complexity of inner loop*complexity of outer loop
- Care needed if loops are not independent

Example: Inner loop runs n times for every iteration of outer loop

- Total number of nested loop iterations:
 O(n)*O(n) = O(n²)
- At each iteration nested loop doing an O(f(n)) operation
- Overall time complexity = O(f(n))*O(n²)
 = O(n² * f(n))

Care with general rules – check code!


```
// c is a constant
for (int i = 0; i <= n; i*=c)
{
      //O(f(n)) instructions
}</pre>
```

• Rules are simple, but care needed!

Summary

Today's lecture: looked at using big O notation

- The growth of functions is usually described using the big-O notation
- Can calculate big-O from the term that grows the fastest (dominant term) in T(n)
- In practice, we always use the smallest simple function f(n) for which T(n) is O(f(n))
- Next: big-O examples and big-omega and big-theta.