Geometría de las curvas solución de sistemas de tipo gradiente convexo

Andrés Laín Sanclemente, Antonio Jesús Martínez Aparicio, Carmen María Martínez Pérez, Gregorio Martínez Sempere, Miguel Martínez Teruel

Tutora: Estibalitz Durand Cartagena

XI Escuela-Taller de Análisis Funcional Bernardo Cascales

Marzo 2022

Índice

- Motivación
- 2 Curvas
 - Curvas autocontractivas
 - Curvas evolutivas
- Teorema de longitud acotada
 - ullet Teorema de longitud acotada en \mathbb{R}^2
 - ullet Teorema de longitud acotada en \mathbb{R}^n
- Extensiones
- 6 Aplicaciones
 - Algoritmo de búsqueda para conjuntos estrellados
 - Greedy drawing
 - Algoritmo proximal

Índice

- Motivación
- Curvas
 - Curvas autocontractivas
 - Curvas evolutivas
- Teorema de longitud acotada
 - ullet Teorema de longitud acotada en \mathbb{R}^2
 - ullet Teorema de longitud acotada en \mathbb{R}^n
- 4 Extensiones
- 6 Aplicaciones
 - Algoritmo de búsqueda para conjuntos estrellados
 - Greedy drawing
 - Algoritmo proximal

Motivación

$$\begin{cases} \dot{x}(t) = -\nabla f(x(t)), \ t > 0, \\ x(0) = x_0 \in \mathbb{R}^n. \end{cases}$$

Motivación

$$\begin{cases} \dot{x}(t) = -\nabla f(x(t)), \ t > 0, \\ x(0) = x_0 \in \mathbb{R}^n. \end{cases}$$

Índice

- Motivación
- 2 Curvas
 - Curvas autocontractivas
 - Curvas evolutivas
- Teorema de longitud acotada
 - Teorema de longitud acotada en \mathbb{R}^2
 - ullet Teorema de longitud acotada en \mathbb{R}^n
- Extensiones
- 6 Aplicaciones
 - Algoritmo de búsqueda para conjuntos estrellados
 - Greedy drawing
 - Algoritmo proximal

Curvas en espacios métricos

Definición 1.

Una curva en un espacio métrico (X,d) es una función continua $x:[a,b]\subset\mathbb{R}\to X.$ Definimos la longitud de x como

$$\ell(x) := \sup \left\{ \sum_{i=0}^{n-1} d(x(t_i), x(t_{i+1})) \right\},\,$$

donde el supremo se toma sobre todas las particiones $a = t_0 < t_1 < \cdots < t_n = b$.

Curvas autocontractivas

Definición 2 ([DLS]).

Una curva $x\colon I\subset\mathbb{R}\to(X,d)$ se dice autocontractiva si para todo $t_1\le t_2\le t_3$ en I se tiene que

$$d(x(t_1), x(t_3)) \ge d(x(t_2), x(t_3))$$

o, equivalentemente, si la función

$$t \mapsto d(x(t), x(t_3))$$

es decreciente en $I \cap (-\infty, t_3]$ para cada $t_3 \in I$.

Curvas autocontractivas

Definición 2 ([DLS]).

Una curva $x\colon I\subset\mathbb{R}\to (X,d)$ se dice autocontractiva si para todo $t_1\leq t_2\leq t_3$ en I se tiene que

$$d(x(t_1), x(t_3)) \ge d(x(t_2), x(t_3))$$

o, equivalentemente, si la función

$$t \mapsto d(x(t), x(t_3))$$

es decreciente en $I \cap (-\infty, t_3]$ para cada $t_3 \in I$.

Autocontractiva

NO Autocontractiva

Caracterización de función convexa

Lema 1.

Si $f: \mathbb{R}^n \to \mathbb{R}$ es diferenciable, entonces son equivalentes las condiciones

- f es convexa.

Caracterización de función convexa

Lema 1.

Si $f: \mathbb{R}^n \to \mathbb{R}$ es diferenciable, entonces son equivalentes las condiciones

- f es convexa.

Demostración (⇒):

Como f es convexa,

$$f(ty + (1-t)x) \le tf(y) + (1-t)f(x);$$

$$\frac{f(x+t(y-x))-f(x)}{t} \le f(y)-f(x).$$

Tomando límites cuando $t \to 0^+$,

$$\lim_{t \to 0^+} \frac{f(x + t(y - x)) - f(x)}{t} = \langle \nabla f(x), y - x \rangle \le f(y) - f(x).$$

Caracterización de función convexa

Lema 1.

Si $f: \mathbb{R}^n \to \mathbb{R}$ es diferenciable, entonces son equivalentes las condiciones

- f es convexa.

Demostración (⇒):

Lema 2.

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa diferenciable. Las curvas $x: I \subset \mathbb{R} \to \mathbb{R}^n$ solución del sistema $\dot{x}(t) = -\nabla f(x(t))$ con $t \in I$ son autocontractivas.

Lema 2.

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa diferenciable. Las curvas $x: I \subset \mathbb{R} \to \mathbb{R}^n$ solución del sistema $\dot{x}(t) = -\nabla f(x(t))$ con $t \in I$ son autocontractivas.

Demostración:

$$\frac{\mathrm{d}}{\mathrm{d}t} (\|x(t_0) - x(t)\|^2) = 2\langle -\dot{x}(t), x(t_0) - x(t) \rangle = 2\langle \nabla f(x(t)), x(t_0) - x(t) \rangle.$$

Lema 2.

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa diferenciable. Las curvas $x: I \subset \mathbb{R} \to \mathbb{R}^n$ solución del sistema $\dot{x}(t) = -\nabla f(x(t))$ con $t \in I$ son autocontractivas.

Demostración:

$$\frac{\mathrm{d}}{\mathrm{d}t} (\|x(t_0) - x(t)\|^2) = 2\langle -\dot{x}(t), x(t_0) - x(t) \rangle = 2\langle \nabla f(x(t)), x(t_0) - x(t) \rangle.$$

Aplicando el lema anterior, obtenemos que

$$\langle \nabla f(x(t)), x(t_0) - x(t) \rangle \le f(x(t_0)) - f(x(t)).$$

Lema 2.

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa diferenciable. Las curvas $x: I \subset \mathbb{R} \to \mathbb{R}^n$ solución del sistema $\dot{x}(t) = -\nabla f(x(t))$ con $t \in I$ son autocontractivas.

Demostración:

$$\frac{\mathrm{d}}{\mathrm{d}t} (\|x(t_0) - x(t)\|^2) = 2\langle -\dot{x}(t), x(t_0) - x(t) \rangle = 2\langle \nabla f(x(t)), x(t_0) - x(t) \rangle.$$

Aplicando el lema anterior, obtenemos que

$$\langle \nabla f(x(t)), x(t_0) - x(t) \rangle \le f(x(t_0)) - f(x(t)).$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(f(x(t_0)) - f(x(t))\right) = \left\langle -\nabla f(x(t)), \dot{x}(t) \right\rangle = \left\| \nabla f(x(t)) \right\|^2 \ge 0, \,\forall \, t < t_0.$$

Como la función $f(x(t_0)) - f(x(t))$ es creciente y es nula en el punto t_0 , deducimos que la función $||x(t_0) - x(t)||^2$ es decreciente.

Lema 2.

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa diferenciable. Las curvas $x: I \subset \mathbb{R} \to \mathbb{R}^n$ solución del sistema $\dot{x}(t) = -\nabla f(x(t))$ con $t \in I$ son autocontractivas.

Curvas evolutivas

Definición 3 ([MaPu]).

Una curva $x\colon I\to\mathbb{R}^n$ derivable en casi todo punto es una curva evolutiva si para cada $t\in I$ tal que $\dot{x}(t)$ existe se tiene que

$$\langle \dot{x}(t), x(t) - x(s) \rangle \ge 0$$

para todo $s \in I$ tal que $s \le t$.

Evolutiva

NO Evolutiva

Curvas evolutivas

Definición 3 ([MaPu]).

Una curva $x\colon I\to\mathbb{R}^n$ derivable en casi todo punto es una curva evolutiva si para cada $t\in I$ tal que $\dot{x}(t)$ existe se tiene que

$$\langle \dot{x}(t), x(t) - x(s) \rangle \ge 0$$

para todo $s \in I$ tal que $s \le t$.

NO Evolutiva

Evolutiva

10 / 47

Equivalencia entre ambas definiciones

Proposición 1.

Una curva $x\colon [a,b]\to \mathbb{R}^n$ absolutamente continua es evolutiva si y solo si x^- es una curva autocontractiva.

Equivalencia entre ambas definiciones

Proposición 1.

Una curva $x\colon [a,b]\to \mathbb{R}^n$ absolutamente continua es evolutiva si y solo si x^- es una curva autocontractiva.

Demostración (\Longrightarrow):

Fijemos $t_1 \in [a,b]$. Si x es evolutiva,

$$\langle \dot{x}(t), x(t) - x(t_1) \rangle \ge 0$$
, para $t \in [t_1, b]$.

o, equivalentemente,

$$\frac{\mathrm{d}}{\mathrm{d}t} \|x(t) - x(t_1)\|^2 \ge 0$$
, para $t \in [t_1, b]$.

Por lo tanto, $|x(t) - x(t_1)|$ es creciente para $t \in [t_1, b]$. Así,

$$||x(-s)-x(t_1)||$$

es decreciente para $s \in [-b, -t_1]$. Si denotamos $s_1 = -t_1$, concluimos que

$$||x^{-}(s)-x^{-}(s_1)||$$

es decreciente para $s \in [-b, s_1]$, con lo que x^- es autocontractiva.

Índice

- Motivación
- Curvas
 - Curvas autocontractivas
 - Curvas evolutivas
- Teorema de longitud acotada
 - ullet Teorema de longitud acotada en \mathbb{R}^2
 - ullet Teorema de longitud acotada en \mathbb{R}^n
- Extensiones
- 6 Aplicaciones
 - Algoritmo de búsqueda para conjuntos estrellados
 - Greedy drawing
 - Algoritmo proximal

Las curvas evolutivas tienen longitud acotada

Teorema 1 ([MaPu, 3.IX.]).

Toda curva $x(t):[0,a)\to\mathbb{R}^n$ evolutiva cuya imagen está contenida en un conjunto acotado tiene longitud finita.

Teorema 2 ([MaPu, 2.IV.]).

Toda curva $x(t):[0,a)\to\mathbb{R}^2$ evolutiva cuya imagen está contenida en un conjunto K convexo y acotado tiene longitud menor o igual al perímetro de K.

Caso límite

Existen curvas cuya longitud coincide con el perímetro de su envolvente convexa.

Figura: Longitud igual al perímetro.

$$v(t) = e^{-\omega t} (\cos t, \sin t), \ t \ge c(\mu),$$

$$\omega = \exp\left(-\frac{3\pi\omega}{2}\right).$$

Lemas previos para el caso de \mathbb{R}^2 (I)

Resultado 1.

Sean $K_1, K_2 \subseteq \mathbb{R}^2$ dos conjuntos convexos acotados tales que $K_1 \subseteq K_2$. Entonces, $\operatorname{perímetro}(K_1) \leq \operatorname{perímetro}(K_2).$

Lemas previos para el caso de \mathbb{R}^2 (II)

Resultado 2.

Sean $a \in \mathbb{R}^+ \cup \{\infty\}$, $x:[0,a) \to \mathbb{R}^2$ una curva absolutamente continua y

$$\Gamma(s) := \{x(r) : 0 \le r \le s\} \ \forall s \in [0,a).$$

Entonces,

$$p(s) \coloneqq \operatorname{perímetro}\left(\operatorname{conv}\left(\Gamma(s)\right)\right) \ \forall s \in [0, a)$$

es una función creciente y por tanto, derivable en casi todo punto.

Lemas previos para el caso de \mathbb{R}^2 (III)

Lema 3.

Sea $x(t): I \to \mathbb{R}$ una curva evolutiva. $\|x(s) - x(s_1)\|$ es no decreciente, luego si $s_1 \le s_2 \le s$,

$$||x(s_2) - x(s_1)|| \le ||x(s) - x(s_1)||.$$

En el triángulo $x(s_1)$, $x(s_2)$ y x(s), el lado $x(s_2)-x(s_1)$ no es el más largo. Por tanto, el ángulo entre los vectores $x(s_1)-x(s)$, $x(s_2)-x(s)$ es menor que $\frac{\pi}{2}$.

Corolario 1.

El ángulo del sector proyectante a $\operatorname{conv}(\Gamma(s))$ en x(s) es menor o igual que $\frac{\pi}{2}$.

Demostración del caso \mathbb{R}^2 (I)

Teorema 3 ([MaPu, 2.IV.]).

Toda curva $x(t):[0,a)\to\mathbb{R}^2$ evolutiva cuya imagen está contenida en un conjunto K convexo cumple

$$p(s) \ge l(s)$$
.

• Sea p(s) el perímetro de $\operatorname{conv}(\Gamma(s))$, siendo $\Gamma(s) \coloneqq \{x(r) : 0 \le r \le s\}$.

Demostración del caso \mathbb{R}^2 (I)

Teorema 3 ([MaPu, 2.IV.]).

Toda curva $x(t):[0,a)\to\mathbb{R}^2$ evolutiva cuya imagen está contenida en un conjunto K convexo cumple

$$p(s) \ge l(s)$$
.

- Sea p(s) el perímetro de $\operatorname{conv}(\Gamma(s))$, siendo $\Gamma(s) \coloneqq \{x(r) : 0 \le r \le s\}$.
- Sea l(s) la longitud de $\Gamma(s)$. Podemos asumir sin pérdida de generalidad que la curva está parametrizada por el arco, por lo que l(s)=s.

Demostración del caso \mathbb{R}^2 (I)

Teorema 3 ([MaPu, 2.IV.]).

Toda curva $x(t):[0,a)\to\mathbb{R}^2$ evolutiva cuya imagen está contenida en un conjunto K convexo cumple

$$p(s) \ge l(s)$$
.

- Sea p(s) el perímetro de $\operatorname{conv}(\Gamma(s))$, siendo $\Gamma(s) \coloneqq \{x(r) : 0 \le r \le s\}$.
- Sea l(s) la longitud de $\Gamma(s)$. Podemos asumir sin pérdida de generalidad que la curva está parametrizada por el arco, por lo que l(s)=s.
- Nuestro objetivo es probar $p(s) \geq l(s) = s$; para ello, como p(0) = l(0) = 0, basta ver que $p'(s) \geq 1$ para casi todo punto $s \in [0,a)$.

Demostración del caso \mathbb{R}^2 (II)

Sea $h \in \mathbb{R}^+$. Consideremos la curva.

Demostración del caso \mathbb{R}^2 (III)

Sea la envolvente convexa de $\Gamma(s)$.

Demostración del caso \mathbb{R}^2 (IV)

Añadimos sectores proyectantes de la envolvente convexa de $\Gamma(s)$ desde x(s) y desde x(s+h).

Demostración del caso \mathbb{R}^2 (V)

$$C_2 := \operatorname{conv}(\Gamma(s) \cup \{x(s+h)\}).$$

Demostración del caso \mathbb{R}^2 (VI)

 $C_1 := C_2 \cap \{\text{sector proyectante desde } x(s)\}.$

Demostración del caso \mathbb{R}^2 (VII)

Por construcción se tiene la cadena de contenidos

$$\operatorname{conv}(\Gamma(s)) \subseteq C_1 \subseteq C_2 \subseteq \operatorname{conv}(\Gamma(s+h))$$

y, por el Resultado 1, se tiene

$$p(s) \le p_1(s) \le p_2(s) \le p(s+h),$$

siendo p_1, p_2 los perímetros de C_1, C_2 respectivamente. En consecuencia,

$$p(s+h) - p(s) \ge p_2(s) - p_1(s).$$

Demostración del caso \mathbb{R}^2 (VIII)

Nuestro objetivo es calcular

$$\lim_{h\rightarrow 0^+}\frac{p(s+h)-p(s)}{h}\geq \lim_{h\rightarrow 0^+}\frac{p_2(s)-p_1(s)}{h},$$

para lo que trabajaremos con $p_2(s) - p_1(s)$.

Demostración del caso \mathbb{R}^2 (IX)

Definamos z_1, z_2 como los puntos donde los lados del sector proyectante coinciden con la frontera de C_1 .

Se puede ver que

$$p_2(s) - p_1(s) = \sum_{i=1}^{2} (\|x(s+h) - z_i\| - \|x(s) - z_i\|).$$

Demostración del caso \mathbb{R}^2 (X)

Calculemos la proyección de x(s+h) sobre la recta tangente a la curva en x(s).

Demostración del caso \mathbb{R}^2 (XI)

Eliminado del diagrama anterior la curva, obtenemos

Como se puede probar fácilmente que $\left\|x(s+h)-x^{(h)}\right\|=o(h)$, podemos considerar en su lugar

Demostración del caso \mathbb{R}^2 (XII)

Así, podemos sustituir

$$p_2(s) - p_1(s) = \sum_{i=1}^{2} (\|x(s+h) - z_i\| - \|x(s) - z_i\|)$$

por

$$p_2(s) - p_1(s) \ge \sum_{i=1}^{2} \left(\left\| x^{(h)} - z_i \right\| - \left\| x^{(h)} - z_i \right\| \right) + o(h).$$

Demostración del caso \mathbb{R}^2 (XIII)

Teniendo en cuenta que dos de las diagonales del triángulo son los lados de cierto sector proyectante, por el lema 3, se cumple que $\alpha_1 + \alpha_2 \leq \frac{\pi}{2}$.

Por un argumento geométrico no trivial, puede probarse que $\cos \alpha_1 + \cos \alpha_2 \geq 1$ y, de esta manera,

$$p_2(s) - p_1(s) \ge \sum_{i=1}^2 \left(\left\| x^{(h)} - z_i \right\| - \left\| x^{(h)} - z_i \right\| \right) + o(h) \ge$$
$$\ge \left\| x^{(h)} - x(s) \right\| \left(\cos \alpha_1 + \cos \alpha_2 \right) + o(h).$$

Demostración del caso \mathbb{R}^2 (XIV)

Dividiendo por h en ambos miembros y tomando límites cuando $h \to 0^+$, se llega a

$$p'(s) = \lim_{h \to 0^+} \frac{p_2(h) - p_1(h)}{h} \ge \lim_{h \to 0^+} \frac{1}{h} \left(\left\| x^{(h)} - x(s) \right\| (\cos \alpha_1 + \cos \alpha_2) + o(h) \right)$$
$$= \|\dot{x}(s)\| (\cos \alpha_1 + \cos \alpha_2) > \|\dot{x}(s)\| = 1.$$

Generalización del Teorema a \mathbb{R}^n (I)

Teorema 4.

Toda curva $x(t):[0,a)\to\mathbb{R}^n$ evolutiva cuya imagen está contenida en un conjunto K acotado tiene longitud finita.

Definición 4 (Anchura media).

Dado un conjunto convexo y no vacío $K \subset \mathbb{R}^n$, la anchura de K en una dirección $u \in \mathbb{S}^{n-1}$ es la longitud de la proyección ortogonal $P_u(K)$ de K sobre $\mathbb{R}u$. La anchura media de un conjunto convexo es el promedio de la anchura de K sobre todas las posibles direcciones de \mathbb{S}^{n-1} , esto es,

$$W(K) := \frac{1}{\sigma_n} \int_{\mathbb{S}^{n-1}} \mathcal{H}^1(P_u(K)) \, \mathrm{d}u,$$

donde $\mathrm{d} u$ es la medida de Hausdorff $(n-1)\text{-}\mathrm{dimensional}$ sobre \mathbb{S}^{n-1} y

$$\sigma_n = \int_{\mathbb{S}^{n-1}} du = \frac{n\pi^{n/2}}{\Gamma(\frac{n}{2}+1)},$$

esto es, una constante que hace que $W(\mathbb{S}^{n-1})=1$.

Generalización del Teorema a \mathbb{R}^n (II)

Lema 4.

Sean $K_1, K_2 \subseteq \mathbb{R}^n$ dos conjuntos convexos acotados tales que $K_1 \subseteq K_2$. Entonces,

$$W(K_1) \leq W(K_2).$$

Teorema 5 ([MaPu, 3.IX.]).

Sea $\gamma:I\to\mathbb{R}^n$ una curva Lipschitz evolutiva cuya imagen está contenida en un conjunto convexo y acotado K. Entonces existe una constante C_n (que depende solo de la dimensión) tal que

$$\ell(\gamma) \le C_n W(K).$$

Índice

- Motivación
- Curvas
 - Curvas autocontractivas
 - Curvas evolutivas
- Teorema de longitud acotada
 - ullet Teorema de longitud acotada en \mathbb{R}^2
 - ullet Teorema de longitud acotada en \mathbb{R}^n
- 4 Extensiones
- 6 Aplicaciones
 - Algoritmo de búsqueda para conjuntos estrellados
 - Greedy drawing
 - Algoritmo proximal

Extensiones

¿Hasta dónde podemos llegar?

Extensiones

¿Hasta dónde podemos llegar?

- \bullet \mathbb{R}^n caso discontinuo (2015: Daniiliidis, David, Durand, Lemenant)
- Espacios normados finito dimensionales (2017: Stepanov, Teplitskaya)

Contraejemplo en dimensión infinita

Curva de longitud infinita contenida en un compacto

$$\begin{array}{cccc} x \colon [0,1] & \longrightarrow & L^2[0,1] \\ & t & \longmapsto & \mathbf{1}_{[0,t]} \end{array}$$

Como $||x(t) - x(s)||_2 = \sqrt{|t - s|}$, entonces

- x es continua (por ello la curva es compacta).
- x es autocontractiva.
- ullet x no es rectificable porque cualquier partición $\{t_0,t_1,\ldots,t_n\}$ uniforme de [0,1],

$$\sum_{i=0}^{n} ||x(t_{i+1}) - x(t_i)||_2 = \sum_{i=0}^{n} \frac{1}{\sqrt{n}} = \sqrt{n}.$$

Índice

- Motivación
- Curvas
 - Curvas autocontractivas
 - Curvas evolutivas
- Teorema de longitud acotada
 - ullet Teorema de longitud acotada en \mathbb{R}^2
 - Teorema de longitud acotada en \mathbb{R}^n
- 4 Extensiones
- 6 Aplicaciones
 - Algoritmo de búsqueda para conjuntos estrellados
 - Greedy drawing
 - Algoritmo proximal

Sala del museo

Figura: Polígono estrellado no convexo.

Paredes visibles

Figura: Construcción del polígono visible.

Cono de direcciones

Figura: Elección de la dirección.

Direcciones

Figura: Regiones donde se reformula el problema.

Curva solución

Figura: Curva generada por el algoritmo.

Iteraciones

Figura: [IKL]

Greedy drawing

Definición: Greedy Drawing

Dado un grafo, dados dos vértices s_0, s_N se dice que un s_0s_N -camino es un greedy drawing si

$$d(s_{i+1}, s_N) \le d(s_i, s_N)$$

para todo $0 \le i < N$.

Algoritmo proximal

Definición 5.

Dada $f:\mathbb{R}^n \to \mathbb{R}$ una función convexa. Se define la subdiferencial de f en x como

$$\partial f(x) := \{ \xi \in \mathbb{R}^n : \alpha - f(x) \ge \langle \xi, y - x \rangle, \forall \alpha \ge f(y) \}$$

Sea $f:\mathbb{R}^n \to \mathbb{R}$ una función convexa acotada inferiormente y una sucesión $\{t_i\}_{i\in\mathbb{N}}\subseteq (0,1]$. Dado $x_0\in\mathbb{R}^n$ e $i\in\mathbb{N}$, se define x_{i+1} como

$$x_{i+1} = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2t_i} ||x - x_i||^2 \right\}.$$

Esto es equivalente a decir que

$$0 \in \partial f(x_{i+1}) + \frac{1}{t_i} (x_{i+1} - x_i).$$

Bibliografía

- [DDDL] A. Daniilidis, G. David, E. Durand-Cartagena, A. Lemenant: Rectifiability of self-contracted curves in the euclidean space and applications. *J. Geom. Analysis* 25 (2015), 1211–1239.
- [DLS] A. Daniilidis, O. Ley, S. Sabourau: Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions, *J. Math. Pures Appl.* 94 (2010), 183–199.
- [MaPu] P. Manselli, C. Pucci.: Maximum length of steepest descent curves for quasi-convex functions, *Geom. Dedicata* 38 (1991), 211–227.
- [IKL] C. Icking, R. Klein, E. Langetepe: Searching for the Kernel of a Polygon: A Competitive Strategy Using Self-Approaching Curves. *Proceedings of the eleventh annual symposium on Computational geometry* (1995).
- [ST] E. Stepanov, Y. Teplitskaya: Self-contracted curves have finite length *J. London Math. Soc.* Volume 96, Issue 2 (2017), 455–481.

¡Gracias por su atención!

