Ex. No: 6

CO2:Construct queries using SQL for database creation, interaction, modification, and updation. (Cognitive Knowledge Level: Apply)

Implementation of built-in functions in RDBMS

AIM

RDBMS Built in Functions

There are two types of functions:

- 1) Single Row Functions: Single row or Scalar functions return a value for every row that is processed in a query.
- 2) Group Functions: These functions group the rows of data based on the values returned by the query. This is discussed in SQL GROUP Functions. The group functions are used to calculate aggregate values like total or average, which return just one total or one average value after processing a group of rows.

There are four types of single row functions. They are:

- 1) Numeric Functions: These are functions that accept numeric input and return numeric values.
- 2) Character or Text Functions: These are functions that accept character input and can return both character and number values.
- 3) Date Functions: These are functions that take values that are of datatype DATE as input and return values of datatype DATE, except for the MONTHS_BETWEEN function, which returns a number.
- **4)** Conversion Functions: These are functions that help us to convert a value in one form to another form. For Example: a null value into an actual value, or a value from one datatype to another datatype like NVL, TO_CHAR, TO_NUMBER, TO_DATE etc.

Mathematical Functions

SQL> select ABS(-100) from dual;
ABS(-100)
----100
SQL> select ABS(-6) from dual;

CSL333 Database Management Systems Lab

```
ABS(-6)
-----
SQL> select FLOOR(2345.78) FROM DUAL;
FLOOR(2345.78)
2345
                      GREATEST(23,67,90,123,78,50)
SQL>
          SELECT
                                                     FROM
                                                                DUAL;
GREATEST(23,67,90,123,78,50)
123
SQL> SELECT LEAST(34, 21,67,11,89,9) FROM DUAL;
LEAST(34,21,67,11,89,9)
SQL> SELECT LENGTH('RAJESHWARI') FROM DUAL;
LENGTH('RAJESHWARI')
10
SQL> SELECT LENGTH(17245637) FROM DUAL;
LENGTH(17245637)
8
SQL> SELECT SQRT(16) FROM DUAL;
SQRT(16)
-----
SQL> SELECT SQRT(99) FROM DUAL;
SQRT(99)
9.94987437
SQL> SELECT POWER(2,4) FROM DUAL;
POWER(2,4)
16
SQL> SELECT POWER(2,10) FROM DUAL;
POWER(2,10)
-----
1024
SQL> SELECT power(2,10) FROM DUAL;
POWER(2,10)
1024
SQL> SELECT ROUND(5.86) FROM DUAL;
ROUND(5.86)
-----
SQL> SELECT ROUND(1001.6) FROM DUAL;
ROUND(1001.6)
```

Dept of CSE, SNGCE

CSL333 Database Management Systems Lab

```
1002
SQL> SELECT ROUND(1001.3) FROM DUAL;
ROUND(1001.3)
1001
SQL> SELECT SIN(90) FROM DUAL;
SIN(90)
_____
.893996664
SQL> SELECT COS(45) FROM DUAL;
COS(45)
-----
.525321989
SQL> SELECT TAN(30) FROM DUAL;
TAN(30)
-----
-6.4053312
SQL> SELECT TAN(90) FROM DUAL;
TAN(90)
-----
-1.9952004
SQL> SELECT TAN(180) FROM DUAL;
TAN(180)
-----
1.33869021
SQL> SELECT SIGN(-128) FROM DUAL;
SIGN(-128)
-1
SQL> SELECT SIGN(10) FROM DUAL;
SIGN(10)
-----
SQL> SELECT SIGN(0) FROM DUAL;
SIGN(0)
SQL> SELECT LN(100) FROM DUAL;
LN(100)
4.60517019
SQL> SELECT LN(10) FROM DUAL;
LN(10)
2.30258509
SQL> SELECT LOG(10,100) FROM DUAL;
```

CSL333 Database Management Systems Lab

```
LOG(10,100)
SQL> SELECT LOG(100,10) FROM DUAL;
LOG(100,10)
-----
.5
SQL> SELECT MOD(4,3) FROM DUAL;
MOD(4,3)
-----
SQL> SELECT MOD(4,2) FROM DUAL;
MOD(4,2)
-----
SQL> SELECT EXP(2) FROM DUAL;
EXP(2)
7.3890561
SQL> SELECT EXP(-2) FROM DUAL;
EXP(-2)
_____
.135335283
SQL> SELECT EXP(0) FROM DUAL;
EXP(0)
1
Date Functions
SQL> SELECT CURRENT_DATE FROM DUAL;
CURRENT D
14-AUG-19
SQL> SELECT EXTRACT(YEAR FROM SYSDATE) FROM DUAL;
EXTRACT(YEARFROMSYSDATE)
2019
SQL> SELECT EXTRACT(DAY FROM SYSDATE) FROM DUAL;
EXTRACT(DAYFROMSYSDATE)
14
SQL> SELECT EXTRACT(MONTH FROM SYSDATE) FROM DUAL;
EXTRACT(MONTHFROMSYSDATE)
8
```

CSL333 Database Management Systems Lab

```
SQL> SELECT SYSDATE FROM DUAL;
 SYSDATE
  -----
 AUG-19
 String Functions
 SQL> select ascii('t') from dual;
 ASCII('T')
 -----
 116
 SQL> select ascii('a') from dual;
 ASCII('A')
 97
 SQL> select ascii('A') from dual;
 ASCII('A')
 65
 SQL> select ascii('Z') from dual;
 ASCII('Z')
  _____
 90
 SQL> select ascii('z') from dual;
 ASCII('Z')
 -----
 122
 SQL> SELECT UPPER('bldea sb arts and kcp science college') from dual;
 UPPER('BLDEASBARTSANDKCPSCIENCECOLLEG')
 BLDEA SB ARTS AND KCP SCIENCE COLLEGE
 SQL> select LOWER('welcome to dbms lab') from dual;
 LOWER('WELCOMETODBM
 -----
 welcome to dbms lab
 SQL> select LOWER('WELCOME TO DBMSLAB') from dual;
 LOWER('WELCOMETODB
 _____
 welcome to dbmslab
 SQL> SELECT REPLACE('HELLO', 'H', 'K') FROM DUAL;
 REPLA
 ----
 KELLO
 SQL> SELECT REPLACE('COMPUTER','C','K') FROM DUAL;
 REPLACE( -----
 KOMPUTER
 SQL> SELECT REPLACE('HELLO','L','A') FROM DUAL;
CSL333 Database Management Systems Lab
                                                                 Dept of CSE,SNGCE
```

REPLA
---HEAAO
SQL> SELECT TRIM('A' FROM 'ANACONDA') FROM DUAL;
TRIM('
-NACOND
SQL> SELECT LTRIM('ANACONDA','A') FROM DUAL;
LTRIM('

NACONDA

SQL> SELECT LTRIM('ANIL','A') FROM DUAL;

LTR

NIL

SQL> SELECT RTRIM('ANITA','A') FROM DUAL;

RTRI

ANIT

SQL> SELECT RTRIM('ANACONDA','A') FROM DUAL;

RTRIM('

ANACOND

SQL> SELECT RTRIM('ANACONDA ','A') FROM DUAL;

RTRIM('ANAC

ANACONDA

Ex. No: 7

Implementation of various aggregate functions in SQL

CO2: Construct queries using SQL for database creation, interaction, modification, and updation. (Cognitive Knowledge Level: Apply)

AIM

Create the tables with the following fields

Faculty (FacultyCode, FacultyName)
Subject (SubjectCode,SubjectName,MaxMark,FacultyCode)
Student(StudentCode,StudentName,DOB,StudentsBranch(CS/EC/EE/ME),
AdmissionDate)
M_Mark (StudentCode, SubjectCode, Mark)

Do the following queries

- a) Display the number of faculties.
- b) Display the total mark for each student.
- c) Display the subject, average mark for each subject.
- d) Display the name of subjects for which atleast one student got below 40%.
- e) Display the name, subject and percentage of mark who got below 40 %.
- f) Display the faculties and alloted subjects for each faculty
- g) Display the name of faculties who take more than one subject.
- h) Display name, subject, mark, % of mark in ascending order of mark

Commands

Create Table Faculty (F_Code Number Primary Key, F_Name Varchar(15)); insert into Faculty values(&facultycode,'&facultyname');

SELECT * **FROM** Faculty;

F_CODE	F_NAME
105	Jayakumar
104	Sangeetha

CSL333 Database Management Systems Lab

102	Bindu
101	Silgy
103	Vidhya

create table Subject (subjectcode varchar(5) primary key not null, subjectname char(15), maxmark number(5,2), faculty_code int, foreign key(faculty_code) references Faculty(f_code));

insert into Subject values('&subjectcode','&subjectname',&maxmark,&facultycode);

SUBJECTCODE	SUBJECTNAME	MAXMARK	X FACULTYCODE
503	DBMS	100	105
501	Maths	150	101
502	FSA	100	102
504	OS	75	103
505	DC	200	104
508	DBMS lab	1001	103

create table Student(studentcode varchar(5) primary key not null,studentname char(15),dob date,studentbranch char(3),adate date,check(studentbranch in('cs','ec','ee','me')));

insert into Student values('&studentcode','&studentname','&dob','&studentbranch','&adate');

```
Enter value for studentcode: 1
```

Enter value for studentname: Amitha Enter value for dob: 12-jan-1987 Enter value for studentbranch: cs Enter value for adate: 1-jun-2000

old 1: insert into Student

 $values (\verb|`\&studentcode'|, \verb|\&studentname'|, \verb|\&dob'|, \verb|\&studentbranch'|, \verb|\&adate'|)$

new 1: insert into Student values('1','Amitha','12-jan-1987','cs','1-jun-2000')

insert into student values(2, 'vaidehi', '25-dec-88', 'me', '1-jun-2000');

insert into student values(3, 'varun', '2-oct-88', 'me', '2-jun-2000');

insert into student values(4, 'turner', '5-sep-88', 'ec', '1-jun-2000');

insert into student values(5, 'vani', '20-jul-88', 'ee', '5-jun-2000');

insert into student values(6,'binu','13-aug-88','me','10-jun-2000');

insert into student values(7,'chitra','14-nov-86','me','9-jun-1999');

insert into student values(8,'dona','2-dec-91','cs','2-jun-2000');

insert into student values(9, 'elana', '5-feb-90', 'cs', '1-jun-2000');

insert into student values(10, 'fahan', '20-mar-88', 'ec', '5-jun-2000');

insert into student values(11, 'ginu', '13-apr-88', 'ec', '10-jun-2000');

insert into student values(12, 'hamna', '14-may-85', 'ee', '9-jun-1999');

create table M_mark(studentcode varchar(5) references Student(studentcode),subjectcode varchar(5) references Subject(subjectcode),mark number(5,2),primary key(studentcode,subjectcode));

insert into M mark values('&studentcode','&subjectcode',&mark);

```
insert into M_mark values(1,501,40);
insert into M mark values(1,502,70);
insert into M_mark values(1,503,50);
insert into M mark values(1,504,80);
insert into M mark values(1,505,40);
insert into M_mark values(1,508,70);
insert into M_mark values(2,501,90);
insert into M mark values(2,502,89);
insert into M_mark values(2,503,77);
insert into M_mark values(2,504,95);
insert into M_mark values(2,505,74);
insert into M mark values(2,508,98);
insert into M_mark values(3,501,40);
insert into M_mark values(3,502,43);
insert into M mark values(3,503,40);
insert into M_mark values(3,504,40);
insert into M mark values(3,505,40);
insert into M_mark values(3,508,35);
insert into M_mark values(4,501,50);
insert into M mark values(5,501,60);
insert into M_mark values(6,501,67);
insert into M_mark values(7,501,23);
insert into M_mark values(8,501,43);
insert into M_mark values(9,501,42);
insert into M_mark values(10,505,74);
insert into M_mark values(11,508,98);
insert into M mark values(12,501,40);
insert into M mark values(5,502,43);
insert into M mark values(6,503,40);
insert into M_mark values(7,504,40);
insert into M_mark values(8,505,40);
insert into M_mark values(9,508,35);
insert into M_mark values(10,501,50);
insert into M mark values(11,501,60);
insert into M_mark values(12,503,67);
insert into M_mark values(5,504,23);
insert into M_mark values(6,504,23);
insert into M mark values(9,504,1);
insert into M mark values(10,504,1);
insert into M mark values(6,502,43);
insert into M_mark values(7,505,42);
```

CSL333 Database Management Systems Lab

a) Display the number of faculties.

select count(*) "No: of Faculties" from faculty;

No: of Faculties

b) Display the total mark for each student.

select studentname,sum(mark) "Total Mark" from M_mark,Student where Student.studentcode= M_mark.studentcode group by studentname;

STUDENTNAME	SUM(MAF
binu	150
hamna	107
turner	50
fahan	124
vaidehi	523
chitra	105
Amitha	350
ginu	158
varun	238
vani	126
dona	83
elana	77

c) Display the subject, average mark for each subject.

select subjectname,round(avg(mark),2) "Average mark" from Subject,M_mark where Subject.subjectcode= M_mark.subjectcode group by subjectname;

SUBJECTNAME	Average mark
DBMS lab	67.2
DC	51.67
FSA	57.6
DBMS	54.8
Maths	50.42
OS	55.6

d) Display the name of subjects for which atleast one student got below 40%.

select subject.subjectname,count(student1.studentname)"NO: OF STUDENTS" from subject,m_mark,student1 where student1.studentcode= m_mark.studentcode and m_mark.mark<(40* maxmark)/100 and subject.SubjectCode=m_mark.Subjectcode group by subject. Subjectname having count(distinct(m_mark.subjectcode))>=1;

SUBJECTNAME	NO: OF STUDENTS
DBMS lab	2

CSL333 Database Management Systems Lab

Maths 1 OS 4

e) Display the name, subject and percentage of mark who got below 40 %.

select studentname,

subjectname,mark,maxmark,round((m_mark.mark/maxmark)*100,2)"Percentage"
from subject, student1, m_mark where mark<(40*maxmark/100) and subject.
SubjectCode = m_mark. subjectcode and student1.studentcode
=m_mark.studentcode;</pre>

f) Display the faculties and alloted subjects for each faculty.

select Faculty.f_name,Subject.subjectname from Faculty,Subject where Faculty.F_code=Subject.FACULTYCODE;

F_NAME	SUBJECTNAME
Vidhya	DBMS lab
Jayakumar	DBMS
Silgy	Maths
Bindu	FSA
Vidhya	OS
Sangeetha	DC

g) Display the name of faculties who take more than one subject.

Select f_name name from Faculty where (select count(subjectcode) from Subject where Subject.facultycode=Faculty.f_code)>1 group by Faculty.f_name;

or

select Faculty.f_name,count(subject.SubjectCode) "NO OF SUBJECTS" from Faculty,subject where (select count(*) from Subject where Subject.facultycode=Faculty.f_code)>1 and Subject.facultycode=Faculty.f_code group by Faculty.f_name;

F_NAME	NO OF SUBJECTS
Vidhya	2

h) Display name, subject, mark, % of mark in ascending order of mark

select studentname, subjectname, mark from Student1, Subject, M_mark where Student1.studentcode=M_mark.studentcode and Subject.subjectcode=M_mark.subjectcode order by mark;

CSL333 Database Management Systems Lab

Ex. No: 8

Implementation of Order By, Group By & Having clause

CO2: Construct queries using SQL for database creation, interaction, modification, and updation. (Cognitive Knowledge Level: Apply)

AIM

Create two tables

Dept(Department_Id, Department_Name, Manager_id, Loc)

Emp(Emp no, Emp name, Job, Salary, Hiredate, Comm, Depno)

MANAGER_ID is the empno of the employee whom the employee reports to. DEPTNO is a foreign key.Insert these values into department table

- 1) Display the name and salary for all employees whose salary is not in the range of 5000 and 35000
- 2) Display the employee name, job ID, and start date of employees hired between February 20, 1990, and May 1, 1998. Order the query in ascending order by start date.
- 3) list the name and salary of employees who earn between 5,000 and 12,000, and are in department 2 or 4. Label the columns Employee and Monthly Salary, respectively.
- 4)Display the name and hire date of every employee who was hired in 1994.
- 5). Display the name, salary, and commission for all employees who earn commissions. Sort data in descending order of salary and commissions.
- 6) Display the name and job title of all employees who do not have a manager.
- 7). Display the names of all employees where the third letter of the name is an a.
- 8). Display the name of all employees who have an a and an e in their name.
- 9). Display the name, job, and salary for all employees whose job is sales representative or stock clerk and whose salary is not equal to 2,0000, 4000, or 7,000.
- 10) Write a query that displays the employee's names with the first letter capitalized and all other letters lowercase and the length of the name for all employees whose name starts with J, A, or M. Give each column an appropriate label. Sort the results by the employees' names.
- 11)For each employee, display the employee's name, and calculate the number of months between today and the date the employee was hired and years worked. Label the column CSL333 Database Management Systems Lab Dept of CSE,SNGCE

MONTHS_WORKED. Order your results by the number of months employed. Round the number of months and year up to the closest whole number.

- 12). Write a query to display the name, department number, and department name for all employees.
- 13) Create a query to display the name and hire date of any employee hired after employee Mathew
- 14) Display the names and hire dates for all employees who were hired before their managers, along with their manager's names and hire dates. Label the columns Employee, EmpHired, Manager, and Mgr Hired, respectively.
- 15) Write a query to display the number of people with the same job.
- 16). Display the manager number and the salary of the lowest paid employee for that manager. Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is less than 6,000. Sort the output in descending order of salary.
- 17. Write a query to display each department's name, location, number of employees, and the average salary for all employees in that department. Label the columns Name, Location, Number of People, and Salary, respectively. Round the average salary to two decimal places.
- 18). Write a query to display the name and hire date of any employee in the same department as amit. Exclude JOHN.
- 19. Write a query that displays the employee numbers names of all employees who work in a department with any employee whose name contains a u.

20)display employee name and department name of all employees that work in a department that has at least 3 employees. Order the list in alphabetical order first by department name, then by employee name.

21. Write a query to list the length of service of the employees (of the form n years and m months).

COMMANDS

CREATE TABLE dept(department_id int primary key , department_name VARCHAR(20) NOT NULL , manager_id int, loc varchar(10));

create table emp(EMP_no int Primary Key,Emp_Name Varchar(10),Job Varchar(10),Hiredate Date,Salary Float,Comm Float,Depno Int References Dept(Department_Id));

INSERT INTO emp VALUES(1,'Steven', 'Marketing','06-jan-1995',24000, NULL,2); INSERT INTO emp VALUES(2,'Neena', 'FI_ACCOUNT', '06-feb-1987',34000, NULL,1); INSERT INTO emp VALUES(3,'Lex', 'FI_MGR', '06-jan-1980',240000, NULL,1); CSL333 Database Management Systems Lab Dept of CSE,SNGCE

```
INSERT INTO emp VALUES(4,'Alexander', 'Sa_Rep', '06-jun-1987',20000, NULL,4);
INSERT INTO emp VALUES(5, 'Bruce', 'IT_PROG', '06-jul-1990',24000, NULL,4);
INSERT INTO emp VALUES(6, 'David', 'IT PROG', '06-sep-1991', 22000, NULL, 4);
INSERT INTO emp VALUES(7, 'vipin', 'IT PROG', '16-nov-1987', 28000, NULL, 4);
INSERT INTO emp VALUES(8, 'Diana', 'Pur_Man', '26-jan-1987',24000, NULL,3);
INSERT INTO emp VALUES(9, 'John', 'FI ACCOUNT', '1-dec-1992', 24000, NULL, 1);
INSERT INTO emp VALUES(10, 'Ismael', 'CLERK', '29-mar-1994', 4000, NULL, 3);
INSERT INTO emp VALUES(11, 'Mathew', 'CLERK', '12-oct-1992', 46000, 200,3);
INSERT INTO emp VALUES(12, 'Hayes', 'Marketing', '21-apr-1998', 14000, 1000, 2);
INSERT INTO emp VALUES(13, 'sarun', 'Marketing', '18-may-1993', 18000, NULL, 2);
INSERT INTO emp VALUES(14, 'Henin', 'FI MGR', '06-aug-1980', 240000, NULL, 1);
INSERT INTO emp VALUES(15, 'Greesh', 'Clerk', '06-aug-1980', 240000, NULL, 5);
INSERT INTO dept values(1, 'Administration', null, 'Boston');
INSERT INTO dept values(2, 'Marketing', null, 'Boston');
INSERT INTO dept values(3, 'Purchase', null, 'perryridge');
INSERT INTO dept values(4, 'Programming',null, 'Hudson');
```

Alter table dept add foreign key(manager_id references emp(emp_id));

```
Update dept set manager_id=2 where department_id=1; Update dept set manager_id=1 where department_id=2; Update dept set manager_id=8 where department_id=3; Update dept set manager_id=7 where department_id=4;
```

INSERT INTO dept values(5, 'HR', null, 'Hudson');

1) Display the name and salary for all employees whose salary is not in the range of 5000 and 35000

SELECT emp_name, salary FROM emp WHERE salary NOT BETWEEN 5000 AND 35000:

EMP_NAME	SALARY
Lex	240000
Ismael	4000
Mathew	46000
Henin	240000

2) Display the employee name, job ID, and start date of employees hired between February 20, 1990, and May 1, 1998. Order the query in ascending order by start date.

SELECT emp_name, job, hiredate FROM emp WHERE hiredate BETWEEN '20-Feb-1990' AND '01-May-1998' ORDER BY hiredate

EMP_NAME	JOB	HIREDATE
========	========	=======
Bruce	IT PROG	06-JUL-90

CSL333 Database Management Systems Lab

David	IT_PROG	06-SEP-91
Mathew	CLERK	12-OCT-92
John	FI_ACCOUNT	01-DEC-92
Steven	Marketing	18-MAY-93
Ismael	CLERK	29-MAR-94
Hayes	Marketing	21-APR-98

3) list the name and salary of employees who earn between 5,000 and 12,000, and are in department 2 or 4. Label the columns Employee and Monthly Salary, respectively.

SELECT emp_name "Employee", salary "Monthly Salary", depno FROM emp WHERE salary BETWEEN 5000 AND 30000 AND depno IN (2, 4);

Employee	Monthly Salary
========	==========
Alexander	20000
Bruce	24000
vipin	28000
Hayes	14000
Steven	18000
David	22000

4)Display the name and hire date of every employee who was hired in 1994.

SELECT emp_name, hiredate FROM emp WHERE hiredate LIKE '%94';

EMP_NAME	HIREDATE
=========	=======
Ismael	29-MAR-94

5). Display the name, salary, and commission for all employees who earn commissions. Sort data in descending order of salary and commissions.

SELECT emp_name, salary, comm FROM emp WHERE comm >0 ORDER BY salary DESC, comm DESC;

Or

SELECT emp_name, salary, comm FROM emp WHERE comm IS NOT NULL ORDER BY salary DESC, comm DESC;

EMP_NAME	SALARY	COMM
========	========	=======
Mathew	46000	200
Hayes	14000	1000

6) Display the name and job title of all employees who do not have a manager.

CSL333 Database Management Systems Lab

SELECT emp_name, job FROM emp,dept WHERE manager_id IS NULL and emp.depno=dept.department_id;

EMP_NAME	JOB
========	========
Greesh	Clerk

7). Display the names of all employees where the third letter of the name is an a.

SELECT emp_name FROM emp WHERE emp_name LIKE '__a%';

EMP_NAME
=======
Diana

8). Display the name of all employees who have an a and an e in their name.

SELECT emp_name FROM emp WHERE emp_name LIKE '%a%' AND emp_name LIKE '%e%';

EMP_NAME

Neena

Alexander

Ismael

Mathew

Hayes

9). Display the name, job, and salary for all employees whose job is sales representative or stock clerk and whose salary is not equal to 2,0000, 4000, or 7,000.

SELECT emp_name, job, salary FROM emp WHERE job IN ('Sa_rep', 'CLERK') AND salary NOT IN (2000, 4000, 7000);

JOB	SALARY
========	========
Sa_rep	20000
CLERK	46000
	======= Sa_rep

10) Write a query that displays the employee's names with the first letter capitalized and all other letters lowercase and the length of the name for all employees whose name starts with J, A, or M. Give each column an appropriate label. Sort the results by the employees' names.

SELECT INITCAP(emp_name) "Name", LENGTH(emp_name) "Length" FROM emp

CSL333 Database Management Systems Lab

WHERE emp_name LIKE 'J%' OR emp_name LIKE 'M%' OR emp_name LIKE 'A%'ORDER BY emp_name;

Name	Length	
Alexander	9	
John	4	
Mathew	6	

11)For each employee, display the employee's name, and calculate the number of months between today and the date the employee was hired and years worked. Label the column MONTHS_WORKED. Order your results by the number of months employed. Round the number of months and year up to the closest whole number.

SELECT emp_name, ROUND(MONTHS_BETWEEN(SYSDATE, hiredate))
MONTHS_WORKED, round(MONTHS_BETWEEN(SYSDATE, hiredate)/12,2) "NO:
Of YEARS" FROM emp ORDER BY MONTHS_BETWEEN(SYSDATE, hiredate);

12). Write a query to display the name, department number, and department name for all employees.

SELECT emp.emp_name, emp.depno, dept.department_name FROM emp , dept WHERE emp.depno = dept.department_id order by dept.department_name;

13) Create a query to display the name and hire date of any employee hired after employee Mathew

SELECT emp_Name, HireDate **FROM** Emp **WHERE** ((HireDate)>**any**(**SELECT** HireDate **FROM** Emp **WHERE** emp_Name='Mathew'));

EMP_NAME	HIREDATE	
Hayes	21-APR-98	
Ismael	29-MAR-94	
Steven	18-MAY-93	
John	01-DEC-92	

14) Display the names and hire dates for all employees who were hired before their managers, along with their manager's names and hire dates. Label the columns Employee, EmpHired, Manager, and Mgr Hired, respectively.

SELECT emp.emp_name employee , emp.hiredate "EMP HIRE DATE", emp.salary, manager.emp_name manager, manager.hiredate "MANAGER HIRE DATE" **FROM emp** , dept, emp manager WHERE dept.manager_id = manager.emp_no and emp.depno=dept.department_id and emp.hiredate < manager.hiredate;

CSL333 Database Management Systems Lab

EMPLOYEE	EMP HIRE DATE	MANAGER	MANAGER HIRE DATE
Lex	06-JAN-80	Neena	06-FEB-87
Alexander	06-JUN-87	vipin	16-NOV-87
Steven	18-MAY-93	Steven	06-JAN-95
Henin	06-AUG-80	Neena	06-FEB-87

15) Write a query to display the number of people with the same job. **SELECT** job, **COUNT(*)** "No: of Jobs" **FROM** emp **GROUP BY** job;

JOB	NO: OF JOBS
IT_PROG	4
Pur_Man	1
CLERK	2
FI_ACCOUN	T 2
FI_MGR	2
Marketing	3

16). Display the manager number and the salary of the lowest paid employee for that manager. Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is less than 6,000. Sort the output in descending order of salary.

SELECT min(salary) "MINIMUM SALARY",manager_id, department_name FROM emp,dept where emp.depno=dept.department_id AND manager_id IS NOT NULL GROUP BY manager_id, department_name HAVING MIN(salary) > 6000 ORDER BY "MINIMUM SALARY" DESC

MINIMUM SALARY	MANAGER_ID	DEPARTMENT_NAME
24000	2	Administration
20000	7	Programming
14000	1	Marketing

select emp_name "manager",emp.depno,emp.emp_no, (**select** min(salary) **from** emp e **where** (emp.depno=e.depno) **group by** e.depno having min(salary)>15000) "salary" **from** emp,dept **where** emp.emp_no=dept. MANAGER_ID and emp.depno=dept. DEPARTMENT_ID

select emp_name "manager", (select min(salary) from emp e where (emp.depno=e.depno) group by e.depno having min(salary)>13000) "salary" from emp,dept where emp.emp_no=dept. MANAGER_ID and emp.depno=dept. DEPARTMENT_ID

CSL333 Database Management Systems Lab

select min(emp.salary) from emp,emp e where (emp.depno=e.depno) group by e.depno having min(emp.salary)>15000

17. Write a query to display each department's name, location, number of employees, and the average salary for all employees in that department. Label the columns Name, Location, Number of People, and Salary, respectively. Round the average salary to two decimal places.

SELECT d.department_name "Name", d.loc "Location ", COUNT(*) "Number of People", ROUND(AVG(salary),2) "Salary" FROM emp e, dept d

WHERE e.depno = d.department id GROUP BY d.department name, d.loc;

Name	Location	Number of People	Salary
Administration	Boston	4	134500
Marketing	Boston	3	18666.67
Programming	Hudson	4	23500
Purchase	perryridge	e 3	24666.67

18). Write a query to display the name and hire date of any employee in the same department as amit. Exclude JOHN.

SELECT emp_name, hiredate **FROM** emp **WHERE** depno = (**SELECT** depno **FROM** emp **WHERE** emp_name = 'John') and emp_name<'>'John';

EMP_NAME	HIREDATE
Neena	06-FEB-87
Lex	06-JAN-80
Henin	06-AUG-80

19. Write a query that displays the employee numbers names of all employees who work in a department with any employee whose name contains a *u*.

SELECT emp_no, emp_name,department_name FROM emp,dept
WHERE depno IN (SELECT depno FROM emp WHERE emp_name like '%u%') and
emp.depno=dept.department_id;

EMP_NO	EMP_NAME	DEPARTMENT_NAME
6	David	Programming
7	vipin	Programming
5	Bruce	Programming
4	Alexander	Programming

CSL333 Database Management Systems Lab

20)display employee name and department name of all employees that work in a department that has at least 3 employees. Order the list in alphabetical order first by department name, then by employee name.

SELECT Emp_name, department_name **FROM** emp, dept **WHERE** emp.depno = dept.department_id **AND** emp.depno in (**SELECT** depno **FROM** emp **GROUP BY** depno **HAVING** count(*) >4) **ORDER BY** department_name, emp_name;

21. Write a query to list the length of service of the employees (of the form n years and m months).

SELECT emp_name "employee",to_char(trunc(months_between(sysdate,hiredate)/12))||' years '|| to_char(trunc(mod(months_between (sysdate, hiredate),12)))||' months ' "length of service" **FROM** emp;