

X3-Class HiPerFET™ **Power MOSFET**

IXFP56N30X3M

(Electrically Isolated Tab)

N-Channel Enhancement Mode

V _{DSS}	=	300V
I _{D25}	=	56A
R _{DS(on)}	≤	$27m\Omega$

G = Gate	D = Drain
S = Source	

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	300	V	
V _{DGR}	$T_{_J} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{GS}} = 1\text{M}\Omega$	300	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_{c} = 25^{\circ}C$, Limited by T_{JM}	56	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	112	Α	
I _A	$T_{c} = 25^{\circ}C$	28	Α	
E _{as}	$T_{c} = 25^{\circ}C$	700	mJ	
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$	50	V/ns	
$\overline{\mathbf{P}_{\scriptscriptstyle D}}$	T _c = 25°C	36	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
V _{ISOL}	50/60 Hz, 1 Minute	2500	V~	
M _d	Mounting Torque	1.13 / 10	Nm/lb.in	
Weight		2.5	g	
	· · · · · · · · · · · · · · · · · · ·	·		

Features

- International Standard Package
- Plastic Overmolded Tab
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- 2500V~ Electrical Isolation
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

		Charac Min.	cteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	300		V	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1.5 mA$	2.5		4.5 V	
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 nA	
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 μA 500 μA	
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 28A, Note 1$		21	27 mΩ	

.,		Chai Min.	racteristic Typ.	Values Max
g _{fs}	$V_{DS} = 10V, I_{D} = 28A, \text{ Note 1}$	26	43	S
R_{Gi}	Gate Input Resistance		2.3	Ω
C _{iss}			3750	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		560	pF
C _{rss}			3	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $V_{cc} = 0V$		210	pF
C _{o(tr)}	Energy related $\begin{cases} V_{GS} = 0V \\ V_{DS} = 0.8 \bullet V_{DSS} \end{cases}$		860	pF
t _{d(on)}			21	ns
t _r	Resistive Switching Times		26	ns
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 28A$		64	ns
t _f	$R_{\rm G} = 5\Omega \text{ (External)}$		10	ns
Q _{g(on)}			56	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 28A$		18	nC
Q _{gd}			17	nC
R _{thJC}				3.5 °C/W
R _{thCS}			0.50	°C/W

OVERMOLDED TO-220 (IXFP...M) Terminals: 1 - Gate 2 - Drain 3 - Source

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
E	.392	.408	9.96	10.36	
е	.100 BSC		2.54 BSC		
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13.28	
L1	.119	.135	3.03	3.43	
ØΡ	.121	.129	3.08	3.28	
0	.126	.134	3,20	3.40	

Source-Drain Diode

Symbol Test Conditions Ch		Chara	aracteristic Values		
$(T_{J} = 25^{\circ}C, U)$	Jnless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			56	Α
SM	Repetitive, Pulse Width Limited by $T_{_{JM}}$			224	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{ll} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} ar$	$I_F = 28A$, -di/dt = 100A/ μ s $V_R = 100V$		115 580 10		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

© 2019 IXYS CORPORATION, All Rights Reserved

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Forward-Bias Safe Operating Area

Fig. 14. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.