

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A61K 31/135		A1	(11) International Publication Number: WO 94/13275 (43) International Publication Date: 23 June 1994 (23.06.94)
(21) International Application Number: PCT/US93/11833		(81) Designated States: AU, CA, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 6 December 1993 (06.12.93)		Published <i>With international search report.</i>	
(30) Priority Data: 07/984,939 4 December 1992 (04.12.92) US			
(71) Applicants: MASSACHUSETTS EYE AND EAR INFIRMARY [US/US]; 243 Charles Street, Boston, MA 02114 (US). THE CHILDREN'S MEDICAL CENTER CORPORATION [US/US]; 55 Shattuck Street, Boston, MA 02115 (US).			
(72) Inventors: LIPTON, Stuart, A.; 43 Peregrine Road, Newton, MA 02159-3443 (US). DREYER, Evan, B.; 58 Ober Road, Newton, MA 02159 (US).			
(74) Agent: FREEMAN, John, W.; Fish & Richardson, 225 Franklin Street, Boston, MA 02110-2804 (US).			

(54) Title: GLAUCOMA TREATMENT

(57) Abstract

Elevated glutamate levels are associated with glaucoma, and damage to retinal ganglion cells can be controlled by administering to the patient a compound capable of reducing glutamate induced excitotoxicity in a concentration effective to cause reduction of such excitotoxicity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

- 1 -

GLAUCOMA TREATMENT

This application relates to glaucoma treatment.

Background of the Invention

5 Glaucoma affects approximately five percent of persons who are older than 65 years and fourteen percent of those older than 80 years. The visual loss which results from glaucoma conditions has been attributed to progressive damage of the optic nerve and consequent loss
10 of retinal ganglion cells, mediated by elevated intraocular pressure (Quigley et al., *Invest. Ophthalmol. Vis. Sci.* 19:505, 1980). Consequently, therapeutic modalities have focused on the management of intraocular pressure.

15 Many compounds have been proposed to treat glaucoma. See generally, Horlington U.S. Patent 4,425,346; Komuro et al. U.S. Patent 4,396,625; Gubin et al. U.S. Patent 5,017,579; Yamamori et al. U.S. Patent 4,396,625; and Bodor et al. U.S. Patent 4,158,005.

20 At the present time, medical control of intraocular pressure consists of topical or oral administration of a miotic (e.g., pilocarpine), epinephrine derivatives (e.g., dipivalyl epinephrine), or topical beta blockers (e.g., timolol). Abelson U.S.
25 4,981,871 discloses the use of a class I voltage-dependent Ca^{++} channel blocking agent (a phenylalkylamine) to treat elevated ocular pressure (Specifically, Abelson '871 discloses the use of verapamil, which does not cross the blood brain barrier and does not reach retinal
30 ganglion cells).

Miotics may reduce the patient's visual acuity, particularly in the presence of lenticular opacities. Topical beta blockers such as TimololTM have been associated with systemic side effects such as fatigue, confusion, or asthma, and exacerbation of cardiac

- 2 -

symptoms has been reported after rapid withdrawal of topical beta blockers. Oral administration of carbonic anhydrase inhibitors, such as acetazolamide, may also be used, but these agents can be associated with systemic side effects including chronic metabolic acidosis.

If current methods of treatment fail to reduce intraocular pressure, laser treatment or a drainage operation (e.g., trabeculectomy) is usually performed.

Summary of the Invention

We have discovered that glaucoma is associated with elevated glutamate. We have further discovered that glaucoma management, particularly protection of retinal ganglion cells, can be achieved by administering to the patient a compound capable of reducing glutamate-induced excitotoxicity in a concentration effective to reduce such excitotoxicity, thereby reducing the loss of retinal ganglion cells resulting from such excitotoxicity.

By way of additional background underlying the invention, excessive influx of Ca^{2+} due to glutamate-mediated receptor activation is thought to underlie excitotoxicity. Several types of calcium-permeable ion channels that can be involved in this excitotoxicity are mentioned below, including voltage-dependent Ca^{2+} channels, the NMDA receptor channel complex, and other channels directly coupled to glutamate (or excitatory amino acid) receptors. Such channels are reviewed in Sommer, B. and Seuberg, P.H. Glutamate receptor channels: novel properties and new clones. Trends Pharmacological Sciences 13:291-296 (1992); Nakanishi, S. Molecular Diversity of glutamate receptors and implications for brain function. Science 248:597-603 (1992).

One aspect of the invention generally features administering antagonists of glutamate-induced excitotoxicity that are capable of crossing both the

- 3 -

blood-brain barrier and the blood-retina barrier to human patients with non-vascular glaucoma -- i.e., all types of glaucoma other than the type commonly termed "neo-vascular" glaucoma. A second aspect of the invention 5 features the use of antagonists that do not have a substantial direct effect on glutamate toxicity mediated by the L-type voltage dependent Ca^{++} channel, but instead affect glutamate toxicity mediated by other mechanisms detailed below. We consider that a compound has a 10 substantial direct effect on glutamate toxicity mediated by the L-type voltage dependent Ca^{++} channel if it produces a statistically significant result in experiments measuring glutamate induced effects by the general method described in Karschian and Lipton, *J. 15 Physiol.* 418: 379-396 (1989) or by other techniques for measuring antagonism of the L-type Ca^{++} channel known to those in the art. (We contrast the direct effect so measured with the secondary effects of excitotoxicity mediated by other channels, which in turn causes flow 20 through the voltage dependent Ca^{++} channels.) In particular, this aspect of the invention features use of compounds which are not Class I voltage dependent Ca^{++} channel antagonists, e.g., compounds that are not phenylalkylamines. Preferably, this second aspect of the 25 invention features antagonists of the N-methyl-D-aspartate (NMDA) receptor channel complex and other glutamate receptor antagonists described in detail below. Other useful compounds according to the invention include antagonists of non-NMDA receptors -- i.e. antagonists of 30 glutamate induced excitotoxicity that do substantially affect excitotoxicity mediated via the NMDA receptor channel complex (e.g., excitotoxicity caused by NMDA in experiments well known to those in the art), but instead operate by antagonizing excitotoxicity mediated via other 35 glutamate receptors. Also, antagonists of the second

- 4 -

aspect are used in preferred embodiments of the first aspect of the invention.

According to both aspects, the invention preferably will be used to treat patients which have 5 primary open-angle glaucoma, chronic closed-angle glaucoma, pseudoexfoliation, or other sub-types of glaucoma or ocular hypertension. Preferably, the agent is administered over an extended period (e.g., at least six months and preferably at least one year), regardless 10 of changes in the patient's intraocular pressure over the period of administration.

Particularly preferred compounds used in both aspects of the invention are antagonists of the NMDA receptor-channel complex. The term "NMDA receptor 15 antagonists" includes several sub-types of NMDA antagonists including: a) channel blockers -- i.e., antagonists that operate uncompetitively to block the NMDA receptor channel; b) receptor antagonists -- antagonists that compete with NMDA to act at the NMDA 20 binding site; c) agents acting at either the glycine co-agonist site or any of several modulation sites such as the zinc site, the magnesium site, the redox modulatory site, or the polyamine site; d) agents which inhibit the downstream effects of NMDA receptor stimulation, such as 25 agents that inhibit activation of protein kinase C activation by NMDA stimulation, antioxidants, and agents that decrease phosphatidylinositol metabolism.

Other compounds that are useful in the invention include voltage-dependent calcium channel antagonists 30 which are described in greater detail below, particularly those which cross the blood-brain and blood-retina barriers and which can be administered chronically. Other preferred agents act as antagonists of non-NMDA receptors (glutamate receptor types other than the NMDA 35 receptor complex discussed above), and include agents

- 5 -

which block ionotropic glutamate receptors or interact with metabotropic glutamate receptors (Nakanishi, *supra*). Other preferred agents act to limit (reduce) release of glutamate from cells, thereby acting upstream from the 5 glutamate receptors in the excitatory neurotoxicity process. Still other agents may act by blocking downstream effects of glutamate receptor stimulation, e.g., the intracellular consequences of glutamate interaction with a cell membrane glutamate receptor, such 10 as agents (like dantrolene) that block the rise in intracellular calcium following stimulation of membrane glutamate receptors.

The most preferred compounds are those capable of crossing the blood-brain barrier or the blood-retinal 15 barrier; these compounds may be administered orally, intravenously, or topically and cross intervening barriers including the blood brain barrier to reach the retinal ganglion cells. Compounds that do not freely cross the blood-brain barrier are less preferred; these 20 compounds may be administered intravitreally to the retina. In the case of compounds that have an intermediate ability to cross the blood-brain barrier, the mode of administration will depend on the dosage required and other factors.

25 Among the preferred compounds are amantadine derivatives (e.g., memantine, amantadine, and rimantadine), nitroglycerin, dextorphan, dextromethorphan, and CGS-19755. See generally, the compounds listed in Table 2.

30 The invention is useful for the reduction or prevention (including prophylactic treatment) of damage to retinal ganglion cells and their axons comprising the optic nerve in patients with glaucoma.

- 6 -

Other features and advantages of the invention will be apparent from the following description of the preferred embodiment thereof, and from the claims.

Description of the Preferred Embodiments

5 The drawings will first be briefly described.

Drawings

Fig. 1 is a bar graph of normalized amino acid concentrations in glaucomatous vitreous when compared to control vitreous.

10 Fig. 2 is a graph of amino acid concentration of glutamate in vitreous plotted as a function of years of glaucoma.

Following is a detailed description indicating that increased levels of glutamate in the vitreous is
15 associated with glaucoma mediated damage of the optic nerve. We do not wish to bind ourselves to a specific theory. However, in view of well documented literature establishing the excitotoxic effect of glutamate on neurons of the central nervous systems, including retinal
20 neurons, it is likely that the compounds of the invention are useful for treating glaucoma because of their ability to block glutamate induced excitotoxicity. Also outlined are assays which provide one skilled in the art with the necessary guidance to determine the potential efficacy of
25 receptor antagonists in reducing or preventing damage of the retinal ganglion cells.

Detection of Vitreal Levels of Glutamate

Vitreous samples from twenty-six glaucomatous and non-glaucomatous patients (on the General Eye and
30 Glaucoma Consultation Services of the Massachusetts Eye and Ear Infirmary) were assayed. Samples were centrifuged at high speed in a Microfuge for 60 minutes at 4°C. The supernatant was then immediately frozen in liquid nitrogen and stored at -80°C until assayed for
35 amino acid concentration. Amino acid analyses were

- 7 -

performed by the Neurochemistry Laboratory of the Massachusetts General Hospital. Immediately before analysis, salicylic acid was added to each sample. Analyses were carried out by cation exchange on a 5 Beckmann Amino Acid Analyzer (model 6300), as described in detail previously (Lipton, et al. *Neuron*, 7:11, 1991). Duplicate analyses of samples from three controls with cataract and three patients with glaucoma were performed by the Amino Acid Laboratory at Children's Hospital of 10 Boston. These duplicate values agreed in all cases within 9% of the results obtained at the Massachusetts General Hospital laboratory.

Samples were obtained from fifteen patients with documented glaucoma and cataract, and from eleven 15 patients with cataract alone. Each patient with glaucoma (either primary open angle, chronic angle closure, or pseudoexfoliation) had either been on anti-glaucoma therapy for at least one year prior to cataract surgery, or had undergone a filtering operation for pressure 20 control.

Amino acid analyses reveal an approximately two-fold elevation in glutamic acid levels in patients with glaucoma and cataract when compared to cataractous controls (Figure 1 and Table 1). Data were analyzed by 25 the students' t test and were significant at $p<0.0001$. Apart from glutamate, no other statistically significant variation in amino acid concentrations was detected in these patients. The data were further stratified by patient age, axial length of the eye, sex, race, type or 30 severity of cataract (as judged preoperatively), etiology of glaucoma, or type of anti-glaucoma therapy. The presence and severity of cataract (based upon pre-operative examination and cataract type) were similar between the control and glaucoma groups. Thus the group

- 8 -

of patients with cataract alone could serve as an appropriate control group.

TABLE 1: Amino Acid Concentrations in Vitreous of Control and Glaucoma Patients

5 <u>Amino Acid:</u> *	<u>Controls:</u>	<u>Glaucoma:</u>
Alanine	167.4 ± 44.3	159.1 ± 50.7
Aspartate	Not Detectable†	Not Detectable†
Glutamic Acid	12.6 ± 1.8	22.3 ± 2.8‡
Glutamine	479.0 ± 33.1	466.1 ± 41.1
10 Glycine	22.9 ± 5.0	27.6 ± 22.9
Histidine	34.2 ± 3.7	32.5 ± 3.3
Isoleucine	35.1 ± 1.2	34.1 ± 4.4
Leucine	77.9 ± 2.5	73.6 ± 7.9
Lysine	106.3 ± 4.6	101.5 ± 7.7
15 Methionine	21.5 ± 2.2	20.1 ± 2.9
Phenylalanine	63.4 ± 4.7	58.9 ± 6.9
Serine	105.5 ± 8.7	98.6 ± 7.6
Threonine	57.5 ± 6.5	56.8 ± 7.3
Tyrosine	15.8 ± 1.3	15.6 ± 1.2
20 Valine	143.6 ± 19.1	143.2 ± 19.4

(*) All concentrations are $\mu\text{mols/liter}$ ± standard deviation; those amino acids not tabulated were not analyzed.

(†) Below 5 $\mu\text{mols/liter}$.

25 (‡) When compared to control, significant by the students' t test at $P < 0.0001$.

- 9 -

The glutamate concentrations detected in these patients were also plotted as a function of time from the diagnosed onset of the disease with patients having cataract alone plotted at time zero. A graph of these data is shown in Figure 2. The correlation coefficient for the line drawn is $r = 0.702$. Thus, although elevated in all glaucomatous vitreous assayed, there is a direct correlation between the level of glutamate and the stage of visual loss from glaucoma.

10 The elevated glutamate can damage neurons by NMDA-mediated activation; and glutamate (or congener) activation of non-NMDA receptors could also contribute to retinal ganglion cell loss, and may be important to control, even if the NMDA contribution predominates.

15 See, generally, Sucher et al. *J. Neurosci.*, 11:966 (1991).

One explanation for the toxic level of glutamate found in glaucomatous vitreous is that it is released by dying cells during the course of the destruction occasioned by the glaucomatous process. For example, 20 other forms of trauma to nerve cells are known to lead to the accumulation of extracellular glutamate (Faden et al. *Science*, 244:798-800 (1989)), and the elevated pressure of the glaucomatous process could exert traumatic injury on cells. The glutamate thereby released could, in turn, 25 lead directly to further neuronal injury. A second possibility is that the glaucomatous process (perhaps through elevated pressure on the cell soma) leads to increased permeability of damaged retinal cells, exposing intracellular stores of glutaminase. This might promote 30 the conversion of glutamine to glutamate. However, whatever the mechanism of generation, this neurotoxin is elevated in the glaucomatous population, and therefore participates in the destruction of retinal ganglion cells and the consequent visual loss seen in this disease.

- 10 -

Selection of Antagonists

In view of our discovery that such excitotoxicity is associated with glaucoma, the invention features antagonists having certain specific characteristics: the 5 ability to cross the blood-brain and blood-retina barriers; and the ability to be administered chronically, even when intraocular pressure has been controlled to within normal ranges. Within those guidelines, any suitable antagonist of the glutamate induced 10 excitotoxicity may be used in accordance with the invention. As mentioned, in preferred embodiments, N-methyl-D-aspartate (NMDA) subtype of glutamate receptor-channel complex may be used to reduce or prevent glaucoma related injury to the retinal ganglion cells and their 15 axons comprising the optic nerve with consequent vision loss. Many antagonists of the NMDA receptor have been identified (Watkins et al., Trends in Pharmacological Sci. 11:25, 1990, hereby incorporated by reference). There are several recognized sub-types of NMDA receptor 20 including: a) channel blockers -- i.e., antagonists that operate non-competitively to block the NMDA receptor channel; b) receptor antagonists -- antagonists that compete with NMDA, acting at the NMDA binding site; c) agents acting at either the glycine co-agonist site or 25 any of several modulation sites such as the zinc site, the magnesium site, the redox modulatory site, or the polyamine site; d) agents which inhibit the downstream effects of NMDA receptor stimulation such as agents that inhibit activation of protein kinase C activation by NMDA 30 stimulation, antioxidants, and agents that decrease phosphatidylinositol metabolism.

Other compounds that are useful in this invention include: other non-NMDA receptor antagonists, such as agents which block other types of ionotropic glutamate 35 receptors or interact with metabotropic glutamate

- 11 -

receptors; voltage-dependent calcium channel antagonists (against L, N, T, and P type channels). (Bean, B.P. Annu. Rev. Physiol. 51:367-384 (1989); Hess, P. Annu. Rev. Neurosci. 13:337-356 (1990)), and are described in 5 greater detail below; and agents which act to decrease the release of glutamate, thereby acting upstream in the excitatory neurotoxicity process.

Table 2, below lists various suitable NMDA and non-NMDA receptors which do not operate via the voltage- 10 dependent Ca^{++} ion channel. Tables 3-5 list antagonists of the voltage dependent Ca^{++} channel, which can be used by themselves in connection with the first aspect of the invention, and which can also be used in combination with other antagonists in the second aspect of the invention.

- 12 -

Table 2 Page 1

NMDA Antagonists	NMDA Antagonists	NMDA Antagonists
1. Competitive NMDA Antagonists (act at agonist binding site)	2. Channel Blockers (Un-Competitive NMDA Antagonists)	3. Antagonists at Glycine Site of the NMDA Receptor
CGS-19755 (CIBA-GEIGY) and other piperidine derivatives, D-2-amino-5-phosphovalerate, D-2-amino-7-phosphobutyroacetate (APT)	MK-801 (Dizocilpine) and other derivatives of dibenzocycloheptene (Merck)	Kynurenamide, 7-chloro-kynurenamide, 5,7-chloro-kynurenamide, thio-derivatives, and other derivatives. (Merck)
CPP ([3-(2-carboxypiperazin-4-yl-propyl-1-phosphonic acid)])	Sigma receptor ligands, e.g. Dextrofetorphan, dextromethorphan and morphinan derivatives (Hoffmann La Roche) such as caramiphen and nimazazole (which also block calcium channels)	Indole-2-carboxylic acid
LY 274614, CGP39551, CGP37849, LY233053, LY233536	Ketamine, Tiletamine and other cyclohexanes	DNQX
O-phosphobutyroserine	Phencyclidine (PCP) and derivatives, and pyrazine compounds	Quinoxaline or oxadiazole derivatives including CNQX, NBQX
MDL100,453	Memantine, amantadine, rimantadine and derivatives	Glycine partial agonist (e.g. Hoechst-Roussel P-9939)
	CNS 1102 (and related bi- and tri-substituted guanidines)	
	Diamines	
	Conantokin peptide from Conus geographus	
	Agatoxin-489	

- 13 -

Table 2 Page 2

NMDA Antagonists	NMDA Antagonists	NMDA Antagonists
4. Polyamine Site of NMDA Receptor	5. Redox Site of NMDA Receptor	6. Other Non-Competitive NMDA Antagonists
Arcaine and related biguanidines and biogenic polyamines	Oxidized and reduced glutathione	Hoechst 831917189
Ifenprodil and related drugs	PQQ (pyrroloquinoline quinone)	SKB Carvedilol
Diethylenetriamine SL 82,0715	Compounds that generate Nitric Oxide (NO) or other oxidation states of nitrogen monoxide (NO+, NO-) including those listed in the box below	
1,10-diaminodecane (and related inverse agonists)	Nitroglycerin and derivatives, Sodium Nitroprusside, and other NO generating listed on p. 5 of this table	
	Nitric oxide synthase (NOS) Inhibitors: Arginine analogs including N -mooo-methyl-L-arginine (NMA); N -amino-L-arginine (NAA); N -nitro-L-arginine (NNA); N -nitro-L-arginine methyl ester; N-iminoethyl-L-ornithine	
	Flavin Inhibitors: diphenyliodonium; Calmodulin inhibitors, trifluoperazine	
	Calcineurin Inhibitors, e.g., FK-506 (inhibits calcineurin and thus NOS diphosphorylase)	

Table 2 Page 3

Inhibitors of Downstream Effects of NMDA	Inhibitors of Downstream Effects of NMDA	Non-NMDA Receptor Antagonists
7. Agents to inhibit protein kinase C activation by NMDA stimulation (involved in NMDA toxicity)	8. Downstream effects from Receptor Activation	9A. Non-NMDA antagonists (Competitive)
MDL 27,266 (Merrill Dow) and triazolo-one derivatives	8a. To decrease phosphatidylinositol metabolism	CNQX, NBQX, YM900, DNQX, PD140532
Monosialogangliosides (eg GM1 of Fidia Corp.) and other ganglioside derivatives LIGA20, LIGA4 (may also effect calcium extrusion via calcium ATPase)	kappa opioid receptor agonist: US0488 (Upjohn) and dynorphin	AMOA (2-amino-3[3-9carboxymethoxy-5-methoxysoxazol-4-yl]propionate)
	kappa opioid receptor agonist: PD117302, CI-977	2-phosphophenoxyethyl phenylalanine derivatives, i.e. 5-ethyl, 5-methyl, 5-trifluoromethyl
	8b. To decrease hydrogen peroxide and free radical injury, eg antioxidants	
	21-aminosteroid (lazaroids) such as U74500A, U75412E and U74006F	9B. Non-NMDA Non competitive antagonists
	U74389F, FLE26749, Trolox (water soluble alpha tocopherol), 3,5-dialkoxy-4-hydroxy-benzylamines	GYK152466
	Compounds that generate Nitric Oxide (NO) or other oxidation states of nitrogen monoxide (NO+, NO-) including those listed in the box below	Evans Blue
	Nitroglycerin and derivatives, Sodium Nitroprusside, and other NO generating listed on p. 5 of this table	
	Nitric oxide synthase (NOS) Inhibitors: Arginine analogs including N -mono-methyl-L-arginine (NMA); N -amino-L-arginine (NAA); N -nitro-L-arginine (NNA); N -nitro-L-arginine methyl ester; N-iminoethyl-L-ornithine	

- 15 -

Table 2 Page 4

Agents Active at Metabotropic Glutamate Receptors	Decrease glutamate release	Drugs to decrease intracellular calcium following glutamate receptor stimulation
10a. Blockers of Metabotropic Glutamate Receptors	11. Agents to decrease glutamate release	12a. Agents to decrease intracellular calcium release
AP3 (2-amino-3-phosphonopropionic acid)	Adenosine, and derivatives, e.g. cyclohexyladenosine	Dantrolene (sodium dantrolene); Ryanodine (or ryanodine + caffeine)
10b. Agonists of Metabotropic Glutamate Receptors	CNS1145	12b. Agents inhibiting Intracellular Calcium ATPase
(1S, 3R)-1-Amino-cyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD], commonly ref as trans-ACPD	Conopeptides: SNX-111, SNX-183, SNX-230	Thapsigargin, cyclopiazonic acid, BHQ ([2,5-di-(tert-butyl)-1,4-benzohydroquinone; 2,5-di-(tert-butyl)-1,4benzohydroquinone])
	Omega-Aga-IVA, toxin from venom of funnel web spider	
	Compounds that generate Nitric Oxide (NO) or other oxidation states of nitrogen monoxide (NO+, NO-) including those listed in the box below	
	Nitroglycerin and derivatives, Sodium Nitroprusside, and other NO generating listed on p. 5 of this table	
	Nitric oxide synthase (NOS) Inhibitors: Arginine analogs including N-mono-methyl-L-arginine (NMA); N- amino-L-arginine (NAA); N-nitro-L-arginine (NNA); N-nitro-L-arginine methyl ester; N-iminoethyl-L-ornithine	

- 16 -

Table 2 Page 5

Additional NO-generating compounds
Isosorbide dinitrate (isordil)
S-nitrosocaptopril (SnoCap)
Serum albumin coupled to nitric oxide (SA-NO)
Cathepsin coupled to nitric oxide (cathepsin-NO)
Tissue plasminogen activator coupled to NO (TPA-NO)
SIN-1 (also known as SIN1 or molsidomine)
Ion-nitrosyl complexes (e.g., nitrosyl-iron complexes, with iron in the Fe ²⁺ state)
Nicorandil

- 17 -

TABLE 3

Antagonists of the Voltage Dependent Calcium Channels (N,
L, T, P and other types)

- 5 dihydropyridines (e.g., nimodipine)
- 5 phenylalkylamines (e.g., verapamil, (S)-emopamil, D-600, D-888)
- benzothiazepines (e.g., diltiazem and others)
- bepridil and related drugs
- diphenylbutylpiperdines
- 10 diphenylpiperazines (e.g., flunarizine/cinnarizine series)
- HOE 166 and related drugs
- fluspirilene and related drugs
- toxins and natural compounds (e.g., snail toxins -
- 15 wconotoxin GVIA and GVIIA, maitotoxin, taicatoxin, tetrandine, hololena toxin, plectreureys toxin, funnel-web spider venom and its toxin fraction, agatoxins including ω -agatoxin IIIA and ω -agatoxin IVA.

20

TABLE 4

DIHYDROPYRIDINE CALCIUM CHANNEL ANTAGONISTS

nifedipine	KW3049
niludipine	oxodipine
25 PY108-068 (darodipine)	CD349
mesudipine	TC81
GX 1048	YM-09730-5 or (4S)DHP
floridine	MDL72567
nitrendipine	Ro18-3981
30 nisoldipine	DHP-218
nimodipine	nilvadipine
nicardipine	amlodipine
felodipine	8363-S
PN200-110 (Isradipine)	iodipine
35 CV4093	azidopine

- 18 -

TABLE 5

OTHER CALCIUM CHANNEL ANTAGONISTS

	diclofurime	D-600
	pimozide	D-888
5	prenylamine	Smith Kline 9512
	fendiline	ranolazine
	perhexiline	lidoflazine
	mioflazine	CERM-11956
	flunarizine/cinnarizine	R-58735
10	series	R-56865
	verapamil	amiloride
	dilfiazine	phenytoin
	dipropervine	thioridazine
	(S)-emopamil	tricyclic antidepressents
15		

- 19 -

In Vitro Neuronal Cell Death Assay

An antagonist may be tested for utility in the method of the invention by monitoring neuronal cell death in retinal ganglion cells incubated *in vitro* with 5 glutamate. The ability of the antagonist to reduce neuronal cell death is determined by scoring live cells which have been incubated overnight with both glutamate and the drug.

Retinal ganglion cells from postnatal rats are 10 identified and their viability ascertained as follows. Under general anesthesia, the fluorescent dye granular blue (Mackromolekulare Chemic, Umstadt, FRG) is injected as approximately a 2% (w/v) suspension in saline into the superior colliculus of 4- to 7-day-old Long Evans rats 15 (Charles River Laboratory, Wilmington, MA). Two to 7 days later, the animals are killed by decapitation and enucleated, and the retinas quickly removed. The retinas are then dissociated and cultured in Eagle's minimum essential medium (MEM, catalog #1090, Gibco Grand Island, 20 NY), supplemented with 0.7% (w/v) methylcellulose, 2 mM glutamine, 1 µg/ml gentamicin, 16mM dextrose, and 5% (v/v) rat serum, as described in Lipton et al., *J. Physiol.*, 385:361, (1987) (except that when using a [Ca⁺⁺] of 3mM or higher -- the level found in the vitreous -- Mg⁺⁺ was 25 omitted to enhance NMDA receptor-mediated neurotoxicity -- see, Levy et al. *Neurology*, 40:852-855 (1990); Hahn et al. *Proc. Nat'l Acad. Sci. USA*, 85:6556-6560 (1988). The cells are plated onto 75 mm² glass coverslips coated with poly-L-lysine in 35 mm tissue culture dishes; glutamate 30 is then added. Sibling cultures receive various doses of NMDA receptor-channel complex antagonists, or non-NMDA antagonists with and without glutamate (e. g., 25µM).

Cell survival is assayed after one day in culture at 37°C in an atmosphere of 5% CO₂/95% air. Ganglion 35 cells can be unequivocally identified by the continued

- 20 -

presence of the fluorescent blue dye. The ability of retinal ganglion cells to take up and cleave fluorescein diacetate to fluorescein is used as an index of their viability as described in detail in Hahn et al., *supra*.

- 5 Dye uptake and cleavage correlates well with normal electrophysiological properties assayed with patch electrodes.

To perform the viability test, the cell-culture medium is exchanged for physiological saline containing 10 0.0005% fluorescein diacetate for 15-45 s, and then cells are rinsed in saline. Retinal ganglion cells that do not contain the fluorescein dye (and thus are not living) often remain visible under both phase-contrast and UV fluorescence optics, the latter because of the continued 15 presence of the marker dye granular blue; other dead retinal ganglion cells disintegrate and only debris remains. In contrast, the viable retinal ganglion cells display not only a blue color in the UV light but also a yellow-green fluorescence with filters appropriate for 20 fluorescein. Thus, the use of two exchangeable fluorescence filter sets permits the rapid determination of the number of viable ganglion cells in the cultures, which are found as solitary neurons or lying among other cells in small clusters (usually in the ratio of 25 approximately 1:10 solitary to clustered). Statistical analyses consisting of a one-way analysis of variance followed by a Scheffe multiple comparison of means is then conducted to determine the effectiveness of drugs such as the NMDA antagonists and/or non-NMDA antagonists 30 in preventing glutamate excitotoxicity.

Use

An effective receptor antagonist will cause a decrease in glaucoma-associated retinal ganglion cell damage or death. As described above, the preferred 35 compounds which cross the blood-brain and blood retinal

- 21 -

barriers are preferably administered topically or orally in known, physiologically acceptable vehicles including tablets, liquid excipients and suspensions. Those skilled in the art will appreciate how to formulate 5 acceptable therapeutics.

Antagonists may be compounded into a pharmaceutical preparation, using pharmaceutical compounds well-known in the art; the exact formulation and dosage of the antagonist compound depends upon the 10 route of administration. Generally, the effective daily dose of the antagonists will range from 0.01 to 1000 mg/kg.

Other Embodiments

Other embodiments are within the following claims.
15 For example, the method of the invention may be used for treatment of retinal ganglion cell damage associated with glaucoma in combination with other modes of treatment, e.g., those that are directed to reducing intraocular pressure such as those described herein. In the method of
20 the invention, a useful compound may be administered by any means that allows the compound access to the retinal ganglion cells whose axons comprise the optic nerve. The compounds useful in the method include antagonists of excitatory amino acid receptors (both NMDA and non-NMDA
25 subtypes) that act to reduce retinal ganglion cell neuronal injury via the glaucoma mediated rise in extracellular glutamate, or which reduce binding of glutamate to the NMDA receptor. The antagonists can act to prevent cell death by acting at a modulatory site or a
30 co-agonist site, or by blocking the chain of events initiated by receptor activation.

Other embodiments are within the following claims.

What is claimed is:

- 22 -

Claims

1. A method of protecting a human patient from damage to retinal ganglion cells associated with non-vascular forms of glaucoma, said method comprising
5 administrating to said patient a medicament comprising an antagonist of glutamate induced excitotoxicity, in a concentration effective to cause reduction of said excitotoxicity, said antagonist being capable of crossing the blood brain barrier and the blood retina barrier.
- 10 2. A method of protecting retinal ganglion cells against glaucoma associated damage in a human patient, said method comprising administering to said patient a medicament comprising an antagonist of glutamate induced excitotoxicity, in a concentration effective to cause
15 reduction of said excitotoxicity, said antagonist being characterized by the substantial absence of a direct effect on the L-type voltage dependent Ca^{++} channel.
- 20 3. A method of making a medicament for protecting a human patient from damage to retinal ganglion cells associated with non-vascular forms of glaucoma, said medicament comprising an antagonist of glutamate induced excitotoxicity, in a concentration effective to cause reduction of said excitotoxicity, said antagonist being capable of crossing the blood brain barrier and the blood
25 retina barrier.
- 25 4. A method of making a medicament for protecting retinal ganglion cells against glaucoma associated damage in a human patient, said medicament comprising an antagonist of glutamate induced excitotoxicity, in a
30 concentration effective to cause reduction of said excitotoxicity, said antagonist being characterized by

- 23 -

the substantial absence of a direct effect on the L-type voltage dependent Ca^{++} channel.

5. The method of claim 2 or claim 4 wherein said antagonist is capable of crossing the blood-brain barrier and the blood-retina barrier.

6. The method of any of claims 1-4 wherein said glaucoma is chronic closed-angle glaucoma.

7. The method of any of claims 1-4 wherein said glaucoma is primary open-angle glaucoma.

10 8. The method of claims 1-4 wherein said glaucoma is pseudoexfoliation glaucoma.

9. The method of claim 2 or claim 4, said antagonist being capable of crossing the blood-brain and the blood retina barrier.

15 10. The method of any of claims 1-4, said medicament being administered to said patient topically.

11. The method of any of claims 1-4, said medicament being administered to said patient orally.

12. The method of any of claims 1-4, said 20 medicament being administered to said patient intravitreally.

13. The method of any of claims 1-4, wherein said antagonist is an antagonist of the NMDA receptor-channel complex.

- 24 -

14. The method of claims 1-4, wherein said antagonist is an antagonist of glutamate induced excitotoxicity that does not operate via the NMDA receptor channel complex.

5 15. The method of any of claims 1-4, wherein said antagonist is one of those listed in Table 2.

16. The method of any of claims 1-4 wherein said medicament is administered chronically.

10 17. The method of any of claims 1-2 wherein an antagonist of glutamate excitotoxicity listed in Table 2 in combination with an antagonist of glutamate excitotoxicity listed in Table 3, Table 4 or Table 5.

15 18. The method of any of claims 3-4 wherein said medicament further comprises an antagonist of glutamate excitotoxicity listed in Table 2 in combination with an antagonist of glutamate excitotoxicity listed in Table 3, Table 4 or Table 5.

20 19. The method of claim 7 in which said antagonist of glutamate excitotoxicity is a listed in Table 2.

20. The method of claim 8 in which said antagonist of glutamate excitotoxicity is a compound listed in Table 2.

25 21. The method of claim 9 in which said antagonist of glutamate excitotoxicity is a compound listed in Table 2.

- 25 -

22. The method of any of claims 1-4 wherein said antagonist of glutamate excitotoxicity is a compound that limits release of glutamate from cells.

23. The method of any of claims 1-4 wherein said antagonist of glutamate excitotoxicity is a compound that blocks the intracellular neurotoxic consequences of glutamate interaction with cell membrane glutamate receptors.

1/1

FIG. 1

FIG. 2

YEARS WITH GLAUCOMA

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US93/11833

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) : A61K 31/135

US CL : 514/650

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/650

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Brain Research, volume 297, issued March 1991, (Elsevier Science publishers Biv.), N. Sicher "Calcium channel antagonists attenuate NMDA receptor-mediated neurotoxicity of retinal ganglion cells in culture", pages 297-302. See the entire document.	1-23

<input type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/> See patent family annex.
•	Special categories of cited documents:	"T"
'A'	document defining the general state of the art which is not considered to be part of particular relevance	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
'E'	earlier document published on or after the international filing date	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
'L'	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents; such combination being obvious to a person skilled in the art
'O'	document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
'P'	document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 08 MARCH 1994	Date of mailing of the international search report MAR 31 1994
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer Zohreh Fay ach Telephone No. (703) 308-1235

Form PCT/ISA/210 (second sheet)(July 1992)*

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)