DAMAGESPEAKS

Travis Thonstad, Civil and Environmental Engineering

Valentina Staneva, eScience Institute

Acoustical Monitoring Framework for Structures Subjected to Earthquakes

Motivation

- The assessment of the integrity and safety of structures subjected to earthquakes relies on a combination of visual inspection and engineering judgement.
- This process is time consuming and can miss critical damage that is not visible.

2014 Shake Table Test

- Quarter scale, two-span bridge tested at the University of Nevada, Reno.
- Instrumented with cameras to detect visible signs of damage.
- Reinforcing bar fractures were heard during the test by observers.
- Post-test inspection revealed 72 instances of fractured reinforcement.

Goals

- Detect structural damage from audio recordings.
- Develop a framework for acoustical monitoring in the field.

Technical Challenges

Camera recordings are not synchronized.

• Multiple bar fractures occur at nearly the same instant.

 The signals include high levels of noise from machinery, other forms of damage within the structure and human speech.

Methodology

Synchronization

Cross-correlation between signals

Noise Removal

Median filtering is sensitive to neighborhood choice.

Continuous Wavelet Transform (CWT) falsely identifies

Wavelet Transform

peaks in noise.

Raw Signal -20000-30000-40000 100 200 250 Time (ms) Continuous Wavelet Transform Midths 1.0 1.5 2.0 200 250 100 Time (ms)

Feature-based Clustering

Power Spectral Density

Autocorrelation

Acoustical Features? Pitch-related measures

Signal Decomposition

Principal Component Analysis (PCA) and Independent Component Analysis (ICA) modes are not informative.

Acknowledgements

- eScience Institute at the University of Washington
- George Brown Network for Earthquake Engineering Simulation (NEES) Research Program (NSF CMMI-1207903)
- Gordon and Betty Moore Foundation
- Alfred P. Sloan Foundation

Next Steps

- Use recorded data from the structure as peak predictors.
- Incorporate prior information from fatigue models.
- Estimate fracture locations within the structure using time of arrival differences.
- Apply methodology to other experiments available through the Network for Earthquake Engineering Simulation (NEES) data repository.