-1	Using some test cases	. 1 .1 1		1
- 1	Lising some test cases	match these bit	Operations to the	eir associated tiinction:

- 1. x & 1
- 2. x & (1 « n)
- 3. x & ~(1 < n)
- 4. $(x ^ y) < 0$
- 5. $y \hat{ } ((x \hat{ } y) \& -(x < y))$
- 6. x & (x 1)
- 7. x & (x + 1)

- a) Return x without trailing 1s (e.g. 11011111 becomes 11000000)
- b) Unset the n_{th} bit
- c) Return true if n_{th} bit is set
- d) Return the minimum of x and y
- e) Return true if x and y have opposite signs
- f) Return true if x is odd, false if x is even
- g) Return 0 if x is a power of 2 for x > 0

Solution:			

- 2. The following C "optimizations" are said to improve the performance of embedded systems. In reality, some of them are useless or even counterproductive on certain architectures. For each of the "optimizations" given,
 - Find out why it optimizes performance on some architectures
 - Find out if there are any targets on which it does not improve performance, or decreases performance
 - On the architectures on which it improves performance, how great is the improvement? (e.g., one instruction overall, one instruction per iteration of a loop, etc.) Is the improvement significant or trivial?

Here are the "optimizations":

- (a) Count down to zero, not up to N, in for() loops
- (b) Avoid the % operation
- (c) Use an 8-bit unsigned char whenever you have a value that you know won't go beyond 0-255 (e.g., some loop index variables)

Solution:	

Refer to the JPL Institutional Coding Standard for the C Programming Language (http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_ext.pdf). This standard describes their rules for mission critical flight software written in the C programming language. (The NASA Jet Propulsion Laboratory was responsible for the Mars Curiosity rover.)
(a) Why is recursion not permitted in mission critical flight software?
(b) Why is dynamic memory allocation disallowed after task initialization in mission critical flight software?
Solution:

4. Fill in the blanks with the word "signed" or "unsigned":

	(a)			arithmetic, if the overflow flag (V in CPSR) is set on an operation, the result
((b)	is wrong In ingful al		arithmetic, the overflow flag (V in CPSR) does not indicate anything mean-of the operation.
	•			arithmetic, if the carry flag (C in CPSR) is set on an operation, the result
	(d)	In		arithmetic, the carry flag (C in CPSR) does not indicate anything meaningful operation.
	So	olution:		
E T		onilo o Alo o	atotua of the N	I. 7. C. and Williams of the CDCD often each of the followings:
		ldr ldr add	r1, =0xffff r2, =0x0000 r0, r1, r2	
((b)	ldr ldr cmn	r1, =0xffff r2, =0x0000 r1, r2	
	(c)	ldr ldr adds	r1, =0xffff r2, =0x0000 r0, r1, r2	
	(d)	ldr ldr addeq	r1, =0xffff r2, =0x0000 r0, r1, r2	
	(e)	ldr ldr adds	r1, =0x7fff r2, =0x7fff r0, r1, r2	ffff
	So	olution:		

6. The following C code implements the Euclid algorithm for calculating the greatest common divisor:

```
int gcd(int a, int b)
{
    while (a != b)
        {
        if (a > b)
            a = a - b;
        else
            b = b - a;
    }
    return a;
}
```

Here is an equivalent ARM assembly routine that only uses conditional execution on the branch instructions:

```
gcd

CMP r1, r2

BEQ end

BLT lessthan

SUB r1, r1, r2

B gcd

lessthan

SUB r2, r2, r1
```

end	В	gcd
ona		
And here	e is an equiva	lent ARM assembly routine that uses full conditional execution :
gcd	GMD.	
	CMP SUBGT	r1, r2 r1, r1, r2
	SUBLT	r2, r2, r1
	BNE	gcd
Assume	a is 54 and is	loaded into r1 h is 24 and is loaded into r2

Assume a is 54 and is loaded into r1, b is 24 and is loaded into r2.

(a) Run through the C algorithm until its completion to find the greatest common divisor.

	Solution:
ı	

(b)	Run through the ARM assembly version without full conditional execution.
	Total chrough the first assembly version without fair conditional chocation.

(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.
(c)	Run through the ARM assembly version with full conditional execution.

eiei to the Ann		How many or	cles does the fir	st ARM routine	take? How r
t the timing of cles does the se	each instruction.	ne take?			
t the timing of cles does the se	each instruction.	ne take?			
t the timing of rcles does the se	each instruction.	ne take?			
t the timing of rcles does the se	each instruction.	ne take?			
t the timing of rcles does the se	each instruction.	ne take?			
at the timing of values does the se	each instruction.	ne take?			
efer to the ARM at the timing of values does the second Solution:	each instruction.	ne take?			
t the timing of rcles does the se	each instruction.	ne take?			
t the timing of cles does the se	each instruction.	ne take?			