Bayesian Learning

Lecture 12 - Predictive model comparison methods and variable selection

Department of Statistics Stockholm University

Overview

- Log predictive scores for model comparison
- **■** Bayesian variable selection
- Model averaging
- **■** Posterior predictive analysis

Marginal likelihood measures out-of-sample predictive performance

■ The marginal likelihood can be decomposed as

$$p(x_1,...,x_n) = p(x_1)p(x_2|x_1)\cdots p(x_n|x_1,x_2,...,x_{n-1})$$

a product of intermediate predictive densities

$$p(x_i|x_1,...,x_{i-1}) = \int p(x_i|x_1,...,x_{i-1},\theta)p(\theta|x_1,...,x_{i-1})d\theta$$

and $p(\theta|x_1,...,x_{i-1})$ is the intermediate posterior.

- **Prediction of** x_1 is based on the prior of θ . Sensitive to prior.
- **Prediction of** x_n uses almost all the data to infer θ . Not sensitive to prior when n is not small.

Normal example

- Model: $x_1,...,x_n|\theta \sim N(\theta,\sigma^2)$ with σ^2 known.
- Prior: $\theta \sim N(0, \sigma^2/\kappa_0)$.
- Intermediate predictive density at time i-1

$$x_i|x_1,...,x_{i-1} \sim N\left(\mu_{i-1},\sigma^2\left(1 + \frac{1}{i-1+\kappa_0}\right)\right),$$

where

- $\mu_{i-1} = w_{i-1}\bar{x}_{i-1} + (1 w_{i-1})\mu_0$
- $ightharpoonup ar{x}_{i-1}$ is the sample mean of the first i-1 obs
- $w_{i-1} = (i-1)/(i-1+\kappa_0)$
- \blacksquare i=1, $x_1 \sim N\left[0, \sigma^2\left(1+rac{1}{\kappa_0}
 ight)
 ight]$ can be very sensitive to κ_0 .
- Large i: $x_i|x_1,...,x_{i-1} \stackrel{\text{approx}}{\sim} N(\bar{x}_{i-1},\sigma^2)$, not sensitive to κ_0 .

First observations are sensitive to κ_0

First observations are sensitive to κ_0 - zoomed

Log Predictive Score - LPS

- Reduce prior sensitivity: use n^* observations to train the prior.
- (Log) Predictive (Density) Score (PS):

$$\underbrace{p(x_1)p(x_2|x_1)\cdots p(x_{n^*}|x_{1:(n^*-1)})}_{\textit{training}} \underbrace{p(x_{n^*+1}|x_{1:n^*})\cdots p(x_n|x_{1:(n-1)})}_{\textit{test}}$$

■ Time-series: obvious which data are used for training.

LPS not sensitive to κ_0

Bayesian variable selection

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon.$$

■ Which variables have **non-zero** coefficient?

$$H_0$$
: $\beta_0 = \beta_1 = \dots = \beta_p = 0$

$$H_1 : \beta_1 = 0$$

$$H_2 : \beta_1 = \beta_2 = 0$$

- Introduce variable selection indicators $\mathcal{I} = (I_1, ..., I_p)$.
- Example: $\mathcal{I}=(1,1,0)$ means that $\beta_1\neq 0$ and $\beta_2\neq 0$, but $\beta_3=0$, so x_3 drops out of the model.

Bayesian variable selection

Model inference, just crank the Bayesian machine:

$$\rho(\mathcal{I}|\mathbf{y},\mathbf{X}) \propto \rho(\mathbf{y}|\mathbf{X},\mathcal{I}) \cdot \rho(\mathcal{I})$$

■ The prior $p(\mathcal{I})$ is typically taken to be

$$I_1, ..., I_p | \theta \stackrel{\textit{iid}}{\sim} \textit{Bernoulli}(\theta)$$

- \blacksquare θ is the prior inclusion probability.
- Challenge: Computing the marginal likelihood for each model (*I*)

$$\rho(\mathbf{y}|\mathbf{X},\mathcal{I}) = \int \rho(\mathbf{y}|\mathbf{X},\mathcal{I},\beta)\rho(\beta|\mathbf{X},\mathcal{I})d\beta$$

Bayesian variable selection

- Let $\beta_{\mathcal{I}}$ denote the **non-zero** coefficients under \mathcal{I} .
- Prior:

$$eta_{\mathcal{I}} | \sigma^2 \sim \mathcal{N}\left(0, \sigma^2 \Omega_{\mathcal{I}, 0}^{-1}\right)$$

$$\sigma^2 \sim \mathit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right)$$

Marginal likelihood

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) \propto \left|\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}^{-1}\right|^{-1/2} \left|\Omega_{\mathcal{I},0}\right|^{1/2} \left(\nu_0 \sigma_0^2 + RSS_{\mathcal{I}}\right)^{-(\nu_0 + n - 1)/2}$$

where $\mathbf{X}_{\mathcal{I}}$ is the covariate matrix for the subset selected by \mathcal{I} .

 $lacksquare{1}{2}$ RSS $_{\mathcal{I}}$ is (almost) the residual sum of squares for model with \mathcal{I}

$$RSS_{\mathcal{I}} = \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}_{\mathcal{I}} \left(\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0} \right)^{-1} \mathbf{X}_{\mathcal{I}}'\mathbf{y}$$

Bayesian variable selection via Gibbs sampling

- But there are 2^p model combinations to go through! Ouch!
- but most have essentially zero posterior probability. Phew!
- **Simulate** from the joint posterior distribution:

$$\label{eq:definition} \textit{p}(\beta, \sigma^2, \mathcal{I} | \mathbf{y}, \mathbf{X}) = \textit{p}(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X}) \textit{p}(\mathcal{I} | \mathbf{y}, \mathbf{X}).$$

- Simulate from $p(\mathcal{I}|\mathbf{y}, \mathbf{X})$ using **Gibbs sampling**:
 - ightharpoonup Draw $I_1 | \mathcal{I}_{-1}, \mathbf{y}, \mathbf{X}$
 - ightharpoonup Draw $I_2|\mathcal{I}_{-2}$, \mathbf{y} , \mathbf{X}
 - **.**
 - ightharpoonup Draw $I_p|\mathcal{I}_{-p},\mathbf{y},\mathbf{X}$
- Note that: $Pr(I_i = 0 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X}) \propto Pr(I_i = 0, \mathcal{I}_{-i} | \mathbf{y}, \mathbf{X})$.
- Compute $p(\mathcal{I}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathcal{I}) \cdot p(\mathcal{I})$ for $I_i = 0$ and for $I_i = 1$.
- **Model averaging** in a single simulation run.
- If needed, simulate from $p(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X})$ for each draw of \mathcal{I} .

Simple general Bayesian variable selection

The previous algorithm only works when we can compute

$$\rho(\mathcal{I}|\mathbf{y}, \mathbf{X}) = \int \rho(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) d\beta d\sigma$$

MH - **propose** β and \mathcal{I} jointly from the proposal distribution

$$q(\beta_p|\beta_c,\mathcal{I}_p)q(\mathcal{I}_p|\mathcal{I}_c)$$

- Main difficulty: how to propose the non-zero elements in β_p ?
- Simple approach:
 - ▶ Approximate posterior with all variables in the model:

$$\boldsymbol{\beta}|\mathbf{y},\mathbf{X} \overset{\textit{approx}}{\sim} \textit{N}\left[\hat{\boldsymbol{\beta}},\textit{J}_{\mathbf{y}}^{-1}(\hat{\boldsymbol{\beta}})\right]$$

▶ Propose β_p from $N | \hat{\beta}, J_y^{-1}(\hat{\beta}) |$, conditional on the zero restrictions implied by \mathcal{I}_{p} . Formulas are available.

Variable selection in more complex models

Posterior summary of the one-component split-t model.^a

Parameters	Mean	Stdev	Post.Incl.
Location µ			
Const	0.084	0.019	-
Scale ϕ			
Const	0.402	0.035	-
LastDay	-0.190	0.120	0.036
LastWeek	-0.738	0.193	0.985
LastMonth	-0.444	0.086	0.999
CloseAbs95	0.194	0.233	0.035
CloseSqr95	0.107	0.226	0.023
MaxMin95	1.124	0.086	1.000
CloseAbs80	0.097	0.153	0.013
CloseSqr80	0.143	0.143	0.021
MaxMin80	-0.022	0.200	0.017
Degrees of freedom v			
Const	2.482	0.238	_
LastDav	0.504	0.997	0.112
LastWeek	-2.158	0.926	0.638
LastMonth	0.307	0.833	0.089
CloseAbs95	0.718	1.437	0.229
CloseSqr95	1.350	1.280	0.279
MaxMin95	1.130	1.488	0.222
CloseAbs80	0.035	1.205	0.101
CloseSar80	0.363	1.211	0.112
MaxMin80	-1.672	1.172	0.254
Skewness λ			
Const	-0.104	0.033	_
LastDay	-0.159	0.140	0.027
LastWeek	-0.341	0.170	0.135
LastMonth	-0.076	0.112	0.016
CloseAbs95	-0.021	0.096	0.008
CloseSqr95	-0.003	0.108	0.006
MaxMin95	0.016	0.075	0.008
CloseAbs80	0.060	0.115	0.009
CloseSqr80	0.059	0.111	0.010
MaxMin80	0.093	0.096	0.013

Model averaging

- Let γ be a quantity with the same interpretation in the two models.
- **Example:** Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- \blacksquare The marginal posterior distribution of γ reads

$$p(\gamma|\mathbf{y}) = p(M_1|\mathbf{y})p_1(\gamma|\mathbf{y}) + p(M_2|\mathbf{y})p_2(\gamma|\mathbf{y}),$$

 $p_k(\gamma|\mathbf{y})$ is the marginal posterior of γ conditional on M_k .

- Predictive distribution includes three sources of uncertainty:
 - **Future errors**/disturbances (e.g. the ε 's in a regression)
 - Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - Model uncertainty (by model averaging)

Posterior predictive analysis

- If $p(y|\theta)$ is a 'good' model, then the data actually observed should not differ 'too much' from simulated data from $p(y|\theta)$.
- Bayesian: simulate data from the posterior predictive distribution:

$$p(y^{rep}|y) = \int p(y^{rep}|\theta)p(\theta|y)d\theta.$$

- \blacksquare Difficult to compare y and y^{rep} because of dimensionality.
- Solution: compare low-dimensional statistic $T(y, \theta)$ to $T(y^{rep}, \theta)$.
- Evaluates the full probability model consisting of both the likelihood *and* prior distribution.

Posterior predictive analysis

- Algorithm for simulating from the posterior predictive density $p[T(y^{rep})|y]$:
- 1 Draw a $\theta^{(1)}$ from the posterior $p(\theta|y)$.
- 2 Simulate a data-replicate $y^{(1)}$ from $p(y^{rep}|\theta^{(1)})$.
- 3 Compute $T(y^{(1)})$.
- 4 Repeat steps 1-3 a large number of times to obtain a sample from $T(y^{rep})$.
- We may now compare the observed statistic T(y) with the distribution of $T(y^{rep})$.
- **Posterior predictive p-value**: $\Pr[T(y^{rep}) \geq T(y)]$
- Informal graphical analysis.

Posterior predictive analysis - Normal model, max statistic

