Information Theory Solutions to Practice Sets 11 & 12

Lakshmi Prasad Natarajan

Remarks and Solutions to selected questions from Practice Sets 11 & 12

Practice Set 11

- 1(a). $f(y|x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-x)^2}{2\sigma^2}\right)$
- 1(b). $f(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i x_i)^2}{2\sigma^2}\right)$.
- 1(c). The first option is the optimal decoder.
- 1(d). This is rather straightforward given the answer to 1(c). Diagrams like these can be found in digital communications textbooks as well.

Remark: These regions \mathcal{D}_i , i = 1, ..., M, are also known as *Voronoi regions*.

• 2. Suppose $C = \{x(1), \dots, x(M)\}$ is the codebook, and $y \in \{0, 1, ?\}^n$ is the received vector. The following is the optimal decoding rule.

Identify the list L of all codewords that match \boldsymbol{y} at the unerased coordinates, and output any codeword from the list L. That is, $L = \{\boldsymbol{x}(w) : x_i(w) = y_i \text{ for all } i \text{ such that } y_i \neq ?\}$.

Remark: Note that the decoder identifies the input message without any ambiguity if and only if the list L contains exactly one codeword. If |L| > 1, the decoder is wrong with probability $1 - \frac{1}{|L|}$. Thus,

$$P[\hat{W} \neq W] = \mathbb{E}\left[\frac{|L|-1}{|L|}\right] \leq P[|L| \geq 2].$$

- 3(a). $\sum_{i=0}^{t} \binom{n}{i}$.
- 3(b). $\sum_{i=0}^{t} \delta^{i} (1-\delta)^{n-i} {n \choose i} = 1 \sum_{i=t+1}^{n} \delta^{i} (1-\delta)^{n-i} {n \choose i}$.

Remark: It is a good exercise to prove the triangle inequality of the Hamming distance. It follows from a simple counting argument.

- 4(a). 2.
- 4(b). n.
- 4(c). 2.
- 5(a). This follows from the definition of d_{\min} .
- 5(c). Use the fact that the optimal decoder outputs the codeword closest to y (in terms of the Hamming distance).
- 5(d). Use the answer from Question 3(b).

Practice Set 12

• 2(c). Reliable communication (that is, $P_e \to 0$) is possible as long as P > 0. It is not necessary to have $P > \sigma^2$ (this is a common misconception). When the signal power is smaller than the noise power the capacity is less than $\frac{1}{2}$, but the capacity is non-zero as long as $P \neq 0$.

Remark: Capacity limit in terms of minimum required energy per bit E_b . Denote σ^2 by $N_o/2$; this is standard notation is digital communications. Define E_b to be the energy spent by the transmitter per 1

bit of information. That is, if we are transmitting reliably at some rate R < C, we are encoding nR bits of information or message, and we are using an energy of nP. Therefore,

$$E_b = \frac{nP}{nR} = \frac{P}{R}$$
 and $\frac{E_b}{N_o} = \frac{P}{2\sigma^2 R}$.

We want to determine the smallest value of E_b/N_o required for reliable communication to take place (without imposing any restrictions on rate R).

First note that E_b/N_o is a decreasing function of R. Since the supremum of all achievable rates is C, we observe that E_b/N_o is minimized when R = C (to be mathematically precise, the infimum of E_b/N_o corresponds to R = C). Thus, for a fixed P, the minimum value of E_b/N_o is

$$\frac{P}{2\sigma^2C} = \frac{\mathrm{SNR}}{2C} = \frac{\mathrm{SNR}}{\log_2(1+\mathrm{SNR})},$$

where SNR is P/σ^2 .

Question. For what value of SNR does E_b/N_o take the minimum possible value (to be precise, this is infimum not minimum)? What is this minimum value of E_b/N_o ?

This minimum value of E_b/N_o is a fundamental limit in digital communications, and is especially relevant when the available SNR is limited (such as communications from a far away satellite to an earth station).

- 4. You must use the data processing inequality as done in the class.
- 5(a). This is a cascade of two BSC(p) channels. The resulting channel is also a BSC. Its bit flip probability is 2p(1-p).
- 5(b). Typo in question: reliable communication is possible at any rate $R < 1 h_2(p)$.