List of assignments

Till (midnight)	Assignments
6.11	3 (Bayes), 9 (KNN) 10,11 (Expectation)
13.11	4,5,6, 10,13,14,15,16,17(Statistics I) 18-20, 24,26,27 (Statistics II)
20.11	all others up to 27

1. Tossing a coin three times:

- What is the sample space Ω ?
- What is the event space F for selection of at least two heads?

2.

Show that $P(B) = \Sigma i \ P(B|Ai) * P(Ai)$ for Ai being disjoint sets, partitioning the whole sample space ($\Omega = U Ai$) and P(Ai) > 0 for all I

3. A pharmaceutical company developed a test for detecting the rare disease, which is carried by 0.5 % cases of the whole population. Let's assume that the test gives the positive results for 96% of the cases if the patient is ill, but it also gives the positive results in 5% of the healthy patient. What is the probability that a patient is ill if his test gave a positive result?

4. Tossing two coins: $\Omega = \{ HT, TH, HH, TT \}$

X is a random variable - number of heads

$$X(E) = 1 \text{ if } E = \{HT, TH\}$$

$$0 \text{ if } E = \{TT\}$$

$$2 \text{ if } E = \{HH\}$$

- · What are CDF and PMF functions?
- Draw it

5. What are the PDF and CDF functions for the uniform distribution defined for X = [0, a]?

6. Write a program that simulates the tossing of two coins, and estimate the CDF and PMF functions for the problem 4.

--

7. Derive the optimal algorithm $f^*(X)$ assuming L(f(X), Y) = |(f(X) - Y)|

--

8. Derive the optimal algorithm $f^*(X)$ assuming $L(f(X), Y) = (f(X) - Y)^2$

- 9. Let's assume that we use k-NN model to perform the classification of two type of objects (think of spam/non-spam) with k=2, k=3 and k=10 and N=100 training samples with 2 features each e.g. { X(1)=[0,1]T, X(2)=[-1,2]T, X(3)=[2,2]T, X(4)=[0,0.3]T, ..., X(100)=[-100,12,5]T} and {Y(1)=[0], Y(2)=[1], Y(3)=[1], Y(4)=[0]]
 - For which k value do we expect the smallest training error?
 - For which k value do we expected the highest/smallest stability?
 - How would we classify X=[0,0] if we use first 4 training samples for k=1, k=2, k=3? Calculate the majority vote result for each case.
 - We increase the training sample to N=101. How we expect it affects the stability for different k values?
 - Now instead of kNN model we use the linear regression. Discuss the stability issues.

10. Let g(X) = 1 for some set A being a subset of sample space Ω :

What is E[g(X)] if X is discrete with a given PMF or continuous with a given PDF

11. What is the interpretation of E[g(X)] for g(X) = x

12. Show that $Var[X] = E[X^2] - E^2[X]$

13. Calculate the mean and the variance of the uniform distribution

__.

14.Implement a function that returns a mean of a vector represented as a list of numbers.

15. Implement a function that returns Var[X] for vector X represented as a list of numbers

16.Implement a function that returns Euclidean distance between two vectors represented as a list of numbers

17. Implement a function that returns Manhattan distance between two vectors represented as a list of numbers

--

18. Tossing a coin: $\Omega = \{ H, T \}$ and rolling strange die $\Omega = \{ 1, 2, 3 \}$

If H we roll the die twice, if T we roll the die once

X number of heads $X = \{0,1\}$

Y sum from die Y = $\{1,2,3,4,5,6\}$

- Calculate joint PMF
 - Calculate marginal PMF based on joint ones.

19* Calculate joint and marginal CDF

20. Write a program that estimates the PMFs distribution from 18

21. Rolling a die $\Omega = \{1, 2, 3, 4, 5, 6\}$

X is 1 if even number 0 otherwise.

Y is 1 if prime number 0 otherwise.

- Calculate joint PMF
- Calculate marginal PMF of X and of Y
- Calculate conditional PMF pY|X (r|X=1)
- Check if h(k) = pY|X (r|k) is a proper probability function with respect to k

- 22. Let X and Y have a joint PDF $f_{XY}(x,y) = x+y$ for 0 < x < 1, 0 < y < 1
 - Find conditional PDF f_{Y|X} (y|x)
 - Show that the integral of $f_{Y|X}(y|x)$ over all y values is equal to 1

23. Show that:

- Cov[X,Y] = E[XY] E[X]E[Y]
- Var[X+Y] = Var[X] + Var[Y] + 2 Cov[X,Y]

24. Let X be uniform in (-1,1) and $Y = X^2$

- · Check if X and Y are correlated
- · Check if X and Y are independent

25. Rolling a die $\Omega = \{ 1, 2, 3, 4, 5, 6 \}$

X is 1 if even number 0 otherwise.

Y is 1 if prime number 0 otherwise.

- Calculate E[Y|1], E[Y|0]
- Var[Y|1], Var[Y|0]

26

Implement a function that returns Cov[X,Y] for two vectors X,Y represented as lists
of numbers

27.

- Implement a function that returns Cosine similarity for two vectors represented as lists of numbers
- Implement a function that returns Pearson correlation coefficient for two vectors represented as lists of numbers
