Lecture 13: 10 DG Elliptic

In this lecture a will describe how to solve the elliptic ez.

(13.1)
$$\frac{d^2c}{dx^2} = S(x) \quad x \in [-L, +L]$$

US: the troastip process:

(13.24)
$$Q = \frac{d\zeta}{dx}$$

$$(13.24) \qquad Q = \frac{d\zeta}{dx}$$

$$(13.24) \qquad \frac{d\zeta}{dx} = \frac{d\zeta}{dx} = 5(x)$$
Slux Socrabletion

De solve 2nd order operators in this way because DG was initially designed to solve 1st order operators.

1st order openter 4/ DG

Let't discust how to construct a first derivitive.

Start of the equality:

Next let $\frac{d(x)}{dx} = \sum_{j=0}^{N} \frac{dv_{j}(x)}{dx} = \sum_{j=0}^{N} \frac{v_{j}(x)}{\sqrt{x}} \frac{g(x)}{\sqrt{x}}$

The nidele term is the word approx. of a derivative
using the bestis function derivation of the far right
tern is how a could regress t the definition it we
unen the derivation at Specific goodpoints so.
Multiply. (13.3) by of 4 intomto yields:
(13.4) Some the said of the day done.
US: j the product rule:
using the product rule: \[\frac{d}{dx} \left(\frac{\psi_{(e)}}{dx} \right) = \frac{d\psi_{(e)}}{dx} \frac{g(e)}{dx} + \frac{\psi_{(e)}}{dx} \]
4 50365 For the right in (13.4) yields:
(13.5) Su 4: 14, dr. (2) = [4: 60] [- Sudy: 100 dle
Where he have used FTC for the 1st term on the
In mitrix form, he now write:
(13.6) $M_{ij}^{(e)} = F_{ij}^{(e)} g_{i}^{(e)} - \tilde{D}_{ij}^{(e)} g_{j}^{(e)}$
whe he now have to introduce a nonvice 5/0%.

Since there is no preferred direction of prophystion in a derivative, the se will use the mean/averaged Slope:
$$g^{(e)} = \frac{5}{2}g^{(e)} = \frac{1}{2}\left(g^{(e)} + g^{(u)}\right)$$

Elenut Ers.

Left Elent

$$\frac{\Delta x^{(L)}}{6} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6x, 1 \\ 6x, 2 \end{pmatrix} = \begin{pmatrix} -1 & 6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 7 & 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 6 & 1 \\ 1 & 2 \end{pmatrix}$$

Right Elak

$$\frac{\Delta x^{(R)}}{6} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6x, 3 \\ 6x, 4 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 63 \\ 74 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 63 \\ 74 \end{pmatrix}$$

yields: when we assure
$$\Delta x = \Delta x^{(c)} = \Delta x^{(c)}$$
 for simplicity

$$\frac{\Delta x}{6} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 3 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 5 & x \\ 2 & x \end{pmatrix}$$

$$\frac{\Delta x}{6} \begin{pmatrix} 2 & 1 \\ 3 & x \\ 4 & x \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 5 & x \\ 4 & x \end{pmatrix}$$

$$\frac{\Delta x}{2} \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{14} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -1 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix}$$

Note that the derivatives at 82 \$ 83 in fact may regressed the same physical location.

For 12 we get:

$$\frac{\Delta x}{2} 6x, z = 62 - \frac{1}{2} (61 + 62)$$

4 u ju:

For 12 we jet:

Sunning This approximation giver us O(4%) frost derivatives.

Second Order Differential Operators

So far he have learned to represent a sirit duringline of sollows:

(13.7)
$$M_{ij}^{(e)} = F_{ij}^{(e)} = F_{ij}^{(e)} = \tilde{0}_{ij}^{(e)} = \frac{d_{i}^{(e)}}{dx}$$

We can apply what we beared have to approximate dig at 5.11005:

1. Let
$$Q = \frac{dz}{dx}$$
 4 Silve for Q using (17.7)
2. Drile $\frac{d^2z}{dx^2} = \frac{dQ}{dx}$ 4 Silve for $\frac{d^2z}{dx^2}$ using (13.7)

Auniliury Veriesk @ To Solve Son @ Le use the expensions: On(x) = & N;(x) O;(4) & (e)(x) = & N;(x)(e)

d in newix forn

$$M:_{j}^{(e)} G_{j}^{(e)} = F:_{j} G_{j}^{(e)} - \tilde{0}:_{j}^{(e)} Z_{j}^{(e)}$$

90

$$M_{ij}^{(e)} (e) = F_{ij}^{(e)} Q_{i}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{i}^{(e)}$$

Solution of the 10 Elliptic

We can now use the previous neckinary to solve the elliptic Poisson problem:

$$\frac{\partial^2 t}{\partial x^2} = f(x) \quad \text{if } \quad g \in [-L, +L] \quad \text{if } \quad g|_{\Gamma_0} = g(x)$$

we breen the problem down into the following too-strys:

2.
$$\frac{dq}{dx} = S(x)$$

Which results in

(13.8)
$$M_{ij}^{(e)} Q_{j}^{(e)} = F_{ij}^{(e)} I_{j}^{(e)} - \tilde{D}_{ij}^{(e)} I_{j}^{(e)} I_{j}^{(e)}$$

$$= F_{ij}^{(e)} I_{j}^{(e)} - \tilde{D}_{ij}^{(e)} I_{j}^{(e)} I_{j}^{(e)} I_{j}^{(e)}$$

(13.1) $F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)} I_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)} I_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{j}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{j}^{(e)} = M_{ij}^{(e)} f_{j}^{(e)}$$

$$= F_{ij}^{(e)} Q_{ij}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{ij}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{ij}^{(e)} + \tilde{D}_{ij}^{(e)} Q_{ij}^{(e)}$$

$$= F_{ij}^{(e)} Q_{ij}^{(e)} - \tilde{D}_{ij}^{(e)} Q_{i$$

(13.10)
$$Q_{i}^{(c)} = M_{i} D_{0}e^{-1} D_{0}e^{-1}$$