國立清華大學

碩士論文

單光子展頻

Spread Single Photon Spectrum

系 所:物理研究所

學 號:105022555

研究生:陳奕丞 (Chen, Yi-Cheng)

指導教授:褚志崧 教授 (Prof. Chuu, Chih-Sung)

中華民國一〇八年七月

Todo list

補上型號,確定共振腔的物質,與偏振的關係	13
重畫,調整座標軸	22
補上另一條紅色的線	29
重新確定% 數	30

單光子展頻

摘要

我們運用對單光子波包的操控,讓單光子免於被躍遷頻率同其頻率的原子吸收或「偵測」,達到隱形斗篷的效果。

關鍵字:關鍵字,論文,樣板,讓我畢業

Spread Single Photon Spectrum

Abstract

Write your English abstract here.

Keywords: Keyword, Thesis, Template, Graduate me

誌謝

謝謝天謝謝地

目錄

		真	欠
摘	要	i	iii
Al	ostrac	${f ct}$	\mathbf{iv}
誌	謝		\mathbf{v}
目記	錄	•	vi
_	`	實驗背景與動機	1
	1.1	古典通訊展頻	1
	1.2	量子通訊展頻	1
<u> </u>	`	基本原理介紹	2
	2.1	展頻技術	2
	2.2	相位調製	2
		2.2.1 數學形式	2
		2.2.2 單頻波	3
三	`	理論模擬	5
	3.1	展頻及壓縮	5
	3.2	⁸⁷ Rb 原子氣體吸收	7
		3.2.1 展頻對吸收率的影響	7
		3.2.2 吸收對頻譜還原的影響	8

四、		實驗儀器與優化流程	10
4	.1	隨機訊號產生器	10
4	.2	電光調製器	11
4	.3	高頻電訊號放大器	12
4	.4	法布立-培若干涉儀	12
4	.5	Etalon 干涉儀	13
五、		實驗架設與結果討論	14
5	.1	光源製備	14
		5.1.1 雷射光	14
		5.1.2 單光子	14
5	.2	雷射頻譜量測	17
		5.2.1 2 Gb/s 隨機訊號之相位調製	19
		5.2.2 10 Gb/s 隨機訊號之相位調製	20
5	.3	87Rb 經相位調製後的原子吸收譜	21
5	.4	單光子相位調製對原子吸收之影響	22
5	.5	雷射光相位調製對原子吸收之影響	25
5	.6	不同展頻頻寬對吸收率之影響	25
5	.7	單光子頻譜壓縮	26
5	.8	雷射光頻譜壓縮	28
5	.9	誤差分析與模擬修正	29
\ \		總結	32

圖目錄

		頁次
2.1	窄頻雷射頻譜	4
3.1	隨機訊號 $PRBS(t)$	5
3.2	展寬後頻譜模擬圖	6
3.3	$\Delta t_p > \Delta t_{RF}$ 時壓縮頻譜	7
3.4	⁸⁷ <i>Rb</i> 原子吸收譜	8
3.5	不同隨機訊號的展頻對穿透率之影響	8
3.6	展頻後吸收對壓縮之影響	9
4.1	隨機訊號眼圖	10
4.2	偏振角度不對	11
4.3	放大後的隨機訊號眼圖	12
4.4	Fabry-Perot 干涉儀透射頻率	13
5.1	糾纏光子對之 $G^2(au)$ 量測 \dots	15
5.2	調整溫度測量雙光子產生率	16
5.3	調整溫度測量雙光子產生率(加上濾波器)	16
5.4	經過 Etalon 濾波後光子之吸收	17
5.5	雷射頻譜量測光路圖	17
5.6	雷射頻譜	18
5.7	2 Gb/s 訊號之展頻頻譜	19

5.9	偽隨機訊號週期與展頻頻譜震盪之關係	20
5.10	10 Gb/s 訊號壓縮後頻譜	20
5.11	初始頻譜與壓縮頻譜放大比較圖	21
5.12	經過放大器,進入 EOM 用以調製的兩組隨機訊號眼圖	21
5.13	調製後的銣原子吸收譜	22
5.14	單光子量測光路圖	23
5.15	單光子通過 ^{87}Rb 氣體管之 $G^2(au)$ 量測 \dots	23
5.16	展頻單光子被部分吸收後 $G^2(\tau)$ 量測 \dots	24
5.17	沒通過 ^{87}Rb 氣體管之單光子 $G^2(au)$ 量測。有無相位調製	
	時的雙光子產生率幾乎相同。	24
5.18	雷射光相位調製對穿透率之影響	25
5.19	改變展頻頻率對吸收率之影響	26
5.20	加上濾波器之單光子量測光路圖	27
5.21	加上 Etalon 濾波器之單光子 $G^2(\tau)$ 量測	28
5.22	原子吸收對單光子壓縮比較圖	28
5.23	原子吸收對雷射光壓縮品質比較圖	29
5.24	PRBS 輸出之訊號眼圖(放大前)	30
5.25	PRBS 輸出之訊號眼圖(放大後)	30
5.26	理論模擬使用的隨機訊號	30

一、 實驗背景與動機

1.1 古典通訊展頻

展頻技術 (Spread Spectrum Technology) 在古典通訊上已行之有年,

1.2 量子通訊展頻

在量子通訊中,若以單光子作為攜帶資訊的媒介,展頻技術也可以 降低環境對於單光子的影響,還能將展頻後的單光子藏匿於人工外加的 雜訊之中,並在接收端將其還原成原始訊號的模樣。

二、 基本原理介紹

2.1 展頻技術

展頻技術 (spread spectrum technology) 是一種可將原訊號的頻譜打散分佈到比原始頻寬更寬的技術。在我們的實驗上,能窄頻雷射 (narrow-band laser) 與單光子的頻寬從約 10 MHz 展至 10 GHz,其作法為,以 PRBS 產生高頻隨機訊號,使用光電調製器 (EOM) 對入射光進行相位調製,此在時域上的操作,經傅立葉轉換後等效於增加其他頻率成分,以達到展寬頻率的效果。

2.2 相位調製

2.2.1 數學形式

此小節介紹相位調製的數學形式。設入射 EOM 的雷射波函數為 $E_0(t)$,調製函數 (modulation function) 為 M(t),經調製後的波函數 $E_m(t)$ 可表示成:

$$E_m(t) = E_0(t)e^{iM(t)}$$
 (2.1)

若對此式做傅立葉轉換,根據 convolution theorem,可得:

$$\mathscr{F}\lbrace E_0(t)e^{iM(t)}\rbrace = \tilde{E}_0(\omega) * \mathscr{F}\lbrace e^{iM(t)}\rbrace$$
 (2.2)

 $\tilde{E}_{0}(\omega)$ 為入射光之頻譜,所以在頻譜數學分析上,我們可以把入射光頻譜與相位調製的部分分開處理,個別將兩項計算好後再做摺積即可得到調製後的頻譜。

2.2.2 單頻波

若入射光的頻譜為中心頻率在 ν_0 的勞倫茲分佈 (lorenz distribution),調製函數為頻率 ν_m 的單頻波,意即輸入的電訊號強度隨時間的函數可表示為 $\phi_0 sin(2\pi\nu_m\omega t)$,則可將 (2.2) 改寫為:

$$\mathscr{F}\{E_0(t)e^{i\phi_0\sin(2\pi\nu_m\omega t)}\} = \tilde{E}_0(\omega) * \mathscr{F}\{e^{i\phi_0\sin(2\pi\nu_m\omega t)}\}$$
 (2.3)

其中 $\tilde{E}_0(\omega)$ 為勞倫茲分佈,另一項傅立葉轉換的結果為第一類貝索函數 (Bessel function of the first kind):

$$\mathscr{F}\left\{e^{i\phi_0 \sin(2\pi\nu_m \omega t)}\right\} = J_n(\phi_0) \tag{2.4}$$

或在時域上看,將調製項做傅立葉級數展開:

$$e^{i\phi_0 \sin(2\pi\nu_m \omega t)} = \sum_{n=-\infty}^{\infty} J_n(\phi_0) e^{i2\pi n\nu_m t}$$
(2.5)

可從上式看出,調製項的頻譜是由頻率為 $n\nu_m$ 的狄拉克函數 (Dirac function) 組成, $n=0,\pm 1,\pm 2,\ldots$,強度分佈為 $J_n(\phi_0)$ 。

以 $\phi_0 = \pi$ 為例,從 (2.3) 可知,將入射光(圖)與調製項的頻譜做 摺積可得調製後的結果,如圖:

兩者比較可明顯看出,時域上相位調製能讓改變頻率的分佈。

圖 2.1: 窄頻雷射頻譜

三、 理論模擬

3.1 展頻及壓縮

從上一章單頻波的例子可看出,相位調製可將原先頻率集中於 ν_0 的 光,分散至 $\nu_0 \pm \nu_m, \nu_0 \pm 2\nu_m, \dots$ 。若調製函數改用時間寬度為 ΔT 的隨機方波 PRBS(t) (如圖),則可將 (2.2) 的右式寫成:

$$\tilde{E}_0(\omega) * \mathscr{F}\{e^{iPRBS(t)}\}$$
 (3.1)

經計算,展寬後的頻譜如圖:

待放圖片

圖 3.1: 隨機訊號 *PRBS*(t)

其包絡線接近 sinc 的平方,展開的寬度為 $\pm \frac{1}{\Delta T}$,在我們實驗中使用的隨機訊號的產生率為 $10~{\rm Gb/s}$,單一位元的時間寬度為 $100~{\rm ps}$,相當於能將頻譜從數 ${\rm MHz}$ 展至 $10~{\rm GHz}$ 寬。

經展頻後的訊號,在傳輸的過程中可以降低環境的影響,避免光子

圖 3.2: 展寬後頻譜模擬圖

被特定原子團吸收,但若想還原光子初始相位的資訊,則需要做一個反向的相位調製,讓光子再經過第二台 EOM,輸入的電訊號必須為與 PRBS(t) 互補的 $\overline{PRBS}(t)$,這兩個訊號要滿足以下關係:

$$PRBS(t) + \overline{PRBS}(t) = 0 \tag{3.2}$$

或

$$e^{iPRBS(t)} \times e^{i\overline{PRBS}(t)} = 1$$
 (3.3)

若光子在兩台 EOM 行經的時間間距為 Δt_p ,兩個電訊號抵達的時間差為 Δt_{RF} ,當 $\Delta t_p = \Delta t_{RF}$ 時,理論上可以對相位進行反向的調製,將展頻後的訊號壓縮,還原成原本的頻率分布,但若 $\Delta t_p > \Delta t_{RF}$,則無法完全還原頻譜,比較如圖 3.3,所以在實驗架設上,必須要能精確的控制電路與光路的長度,讓兩個電訊號匹配,才能達到最好的還原效果。

圖 3.3: $\Delta t_p > \Delta t_{RF}$ 時壓縮頻譜

3.2 ⁸⁷Rb 原子氣體吸收

3.2.1 展頻對吸收率的影響

在光通訊中,以光作為資訊的載體,在空氣中傳輸的過程中光子會與原子產生交互作用,當光子的頻率接近原子的耀遷能階時有很大的機率會被吸收。以波長約為 795 nm 的窄頻雷射為例,將此道光打入溫度約 87 度的 ⁸⁷ Rb 原子氣體管,調整入射光頻率測量穿透率即可掃出 ⁸⁷ Rb 的吸收譜,結果如圖 3.4,從圖中可知,在頻率 105 GHz 與 112 GHz 的頻率位置分別約有 2 GHz 與 1 GHz 寬的吸收區域,其吸收的中心頻率是被原子的能階給決定,可從飽和吸收光譜 (saturated absorption spectroscopy) 得知;吸收的寬度則是與原子蒸氣壓和溫度有關,不同的原子運動速度分佈會有不一樣的寬度,此為效應都卜勒增寬 (Doppler broadening)。

為降低環境對光子的影響,我們可用上述之展頻技術,對光進行相位調製,將頻譜展寬,減少光對原子的吸收率。我們分別使用 1 Gb/s、5 Gb/s、10 Gb/s 與 20 Gb/s 的隨機訊號去模擬,在有展頻的狀態下,中心頻率與穿透率之關係,結果如圖 3.5,未經調製的光在 105 GHz 與112 GHz 附近會被完全吸收,若將光的頻譜展寬則能顯著的降低吸收率,

圖 3.4: ⁸⁷Rb 原子吸收譜

隨機訊號的頻率越高,原子對光子的影響越小。

待放圖片

圖 3.5: 不同隨機訊號的展頻對穿透率之影響

3.2.2 吸收對頻譜還原的影響

如前所述,對已調製過的光進行反向的調製,理論上可將頻譜壓窄, 完美還原成調製前的分佈。但若先將已展頻的光通入原子團使其被部分 吸收,再進行反向的調製,則還原回來的頻譜會與原先有些微的差異, 比較如圖 3.6。

圖 3.6: 展頻後吸收對壓縮之影響

四、 實驗儀器與優化流程

4.1 隨機訊號產生器

由於實驗上無法產生真正的隨機訊號,只能使用偽隨機訊號產生器 (Pseudo Random Bit Sequence, PRBS),儀器型號為 Anritsu 的 MP1763C,可以產生 0.5 至 12.5 Gb/s 的訊號。偽隨機訊號實際上為週期訊號,會重複出現特定的隨機序列,其週期可以調整,為了達到最接近隨機的效果,我們選擇使用最長的隨機序列,一個週期內共有 $2^{31}-1$ 的隨機位元。

我們實驗上實際使用的頻率為 $10~\mathrm{GHz}$ (或 $10~\mathrm{Gb/s}$),每秒能產生 10×10^9 個隨機位元,以示波器去測量該訊號的眼圖 (eye diagram) 則可以知道訊號的品質,量測結果如下:

待放圖片

圖 4.1: 隨機訊號眼圖

可見實際訊號與理論(圖)有蠻大的差異,有著相對大的上升與下

降時間,圖形上下也不太對稱,這都會影響到展頻與壓縮的效果,造成 實驗與理論的誤差。

4.2 電光調製器

電光調製器 (Electro-Optic Modulator, EOM) 可使用電訊號對光進行調製,一般而言可以分成三種,分別為振幅、相位與偏振的調製,在我們的實驗中需要調製的是相位。使用的儀器為 EOSPACE 的 SN73717 與 SN73718,分別為頻譜的窄寬與壓縮用。

相位調制器由鈮酸鋰 $(LiNbO_3)$ 雙折射晶體製成,因泡克耳斯效應 (Pockels effect),外加電場能線性的改變快軸上的折射率,進而達到改變相位的效果,且我們稱能將 45 度線偏旋轉至 -45 度的電壓為 V_{π} 。

由上介紹可知,實際使用上需優化進光的偏振以及電訊號的振幅, 以達到預期的相位調製效果。

我們使用半波片 (half-wave plate) 調整入射 EOM 偏振的方向,若偏振方向不對的話,調製效果會不佳,如圖,所以實驗上優化的方式為,看著調製後的頻譜,將偏振旋轉到最接近理論模擬時的角度。

待放圖片

圖 4.2: 偏振角度不對

4.3 高頻電訊號放大器

由於我們使用的隨機訊號產生器僅能輸出 $0.2 \pm 2 V_{pp}$ 的訊號,EOM 的 V_{π} 為 2.3 V,需再經過放大器才能提供足夠的電壓去進行相位調製。同樣的,也用示波器去測量眼圖,看放大後的訊號品質,如圖 5.12

待放圖片

圖 4.3: 放大後的隨機訊號眼圖

由於兩台放大器連接 EOM 使用的 SMA 線的材質與長短不同,會有不一樣的頻率響應與耗損,使兩個訊號無法互補,這會對頻譜壓縮與還原的效果造成負面的影響。

4.4 法布立一培若干涉儀

古典光可以用法布立一培若 (Fabry-Perot) 干涉儀來掃出頻譜,我們使用的儀器為 THORLABS 的(型號), FSR 為 10 GHz。此干涉儀的主體為一個共振腔,由兩面高反射率的鏡子所組成。當光垂直入射腔體時,須滿足以下共振條件的光才能會有建設性干涉,能透射共振腔:

$$2nL = m\lambda \tag{4.1}$$

n 為共振腔的折射率,L 為腔長,頻率與透射率做圖,其中 ν_F 稱為 FSR (Free Spectrual Range),此參數決定了這個干涉儀適用的掃頻範圍,調

整腔長 L 的大小能改變允許透射的頻率,所以若在其中一面鏡子黏上 Piezo,輸入電壓即可微調腔長,達到掃頻的效果。

待放圖片

圖 4.4: Fabry-Perot 干涉儀透射頻率

此外,另一個重要的參數為 F (Finesse),為精細度,定義如下:

$$F = \frac{\pi R^{1/2}}{1 - R} \tag{4.2}$$

此共振腔的頻寬(解析度) $\delta\lambda$ 與 F 成反比,關係如下式,所以鏡面反射率越高,F 越大,解析度越好,此次實驗使用的干涉儀解析度約為 30 MHz。

$$\delta\lambda = \frac{\nu_F}{F} \tag{4.3}$$

4.5 Etalon 干涉儀

與 Fabry-Perot 干涉儀為相同的原理,只是共振腔使用的鏡子反射率較低,所以頻寬較大(約為 $60~\mathrm{MHz}$),若固定腔長 L ,則可做為濾波器使用,僅讓頻率寬度在 $60\mathrm{MHz}$ 這區間內的光通過,中心頻率則 ν 可以由溫度 T 改變腔長 $\mathrm{L}(T)$ 來調整。

補上型號,確定共振腔的物質,與偏振的關係

五、 實驗架設與結果討論

5.1 光源製備

5.1.1 雷射光

雷射光源為 Toptica 的半導體雷射,可產生波長 795 nm 的窄頻雷射

5.1.2 單光子

雙光子的產生機制為 SPDC,入射一道波長 397.5 nm 的藍光雷射進入 PPKTP 晶體,產生 Type-II 的時間 - 能量糾纏光子對 (time-energy entangled biphoton),波長為 795 nm。實驗上會將產生出來的雙光子對經過 PBS,將訊號分為 signal 和 idler,以 idler 做為觸發訊號,使 signal 經過 ^{87}Rb 原子氣體管與 EOM,讓光子被吸收或對其進行相位的調製,並做 $G^2(\tau)$ 的測量, $G^2(\tau)$ 的定義如 (5.1)。

$$G^{2}(\tau) = \frac{4\Gamma_{s}\Gamma_{i}}{\Gamma_{s} + \Gamma_{i}} \begin{cases} e^{\Gamma_{s}\tau} &, \tau < 0 \\ e^{-\Gamma_{i}\tau} &, \tau > 0 \end{cases}$$

$$(5.1)$$

此為二階強度關聯函數 (second-order intenstity correlation function), τ 為兩顆單光子抵達探測器的時間差。在符合準相位匹配條件 (quasi phase matching condition) 時能最有效率的產生雙光子,實際測量結果如圖 5.1,此光子之時間波包寬度約為 100 ns,頻寬為 4.5 MHz。

圖 5.1: 糾纏光子對之 $G^2(\tau)$ 量測

為了找到符合準項未匹配條件的入射光波長與晶體溫度,實驗上我 們先將入射光的頻率固定在 105489 MHz,改變晶體溫度測量雙光子的 產生率 (biphton rate), 結果如圖 5.2黑線, 在 39.91°C 至 40.10°C 有四 組符合條件的模態,若讓其中一顆光子經過 87Rb 原子氣體管,並做相 同的量測,結果如圖 5.2紅線,可以發現第二和第三個的模態雖有明顯 的吸收,但吸收率不高,我們認為這是因為晶體所產生的光子為多模 (multi-mode) 而非單模 (single-mode),同時產生了兩種以上頻率的單光 子,儘管其中一個頻率的光子能完全被吸收,其他頻率的光子仍會透 射,因此無法讓透射率趨近於零。為了確認這想法,我們在探測器前面 加上一個頻寬為 60 MHz 的 Etalon 濾波器,只允許特定頻率附近的光通 過,並在沒放 ⁸⁷ Rb 原子氣體管時改變晶體溫度,重新測量產生率,有無 Etalon 濾波器測量之結果比較如圖 5.3,黑色為沒放 Etalon 濾波器時測 量到的訊號,紅色經過濾波後之訊號,兩者相比可明顯看出,有放濾波 器時能將其他產生效率較低的模態過濾掉,一次只讓一個特定頻率區間 內的光通過。此時再將 87 Rb 原子氣體管放回,並對其中第二和第三個模 熊進行相同的量測,結果如圖 5.4,黑線為加上 Etalon 過濾之後測到的 訊號,若放上 ⁸⁷Rb 原子氣體管讓光子通過,測量結果如藍線,光子幾乎 完全被吸收,與圖 5.2相比,可明顯看出,在過濾前的光源的確有其他頻 率的成分,要避免其他頻率成分影響後續的實驗與分析,需加上 Etalon 濾波器。

圖 5.2: 調整溫度測量雙光子產生率,黑線為直接對雙光子進行量測;紅線為先讓其中 一顆單光子通過 ⁸⁷ Rb 氣體管再測量,其中第二和第三個模態有部分吸收。

圖 5.3: 黑色為無濾波器時測量之訊號,在二與三個模態附近測量到一些明顯的訊號, 表示我們的單光子非單模;紅線為經過濾波器測量到的訊號,此時就只允許特 定頻率透射。

圖 5.4: 經過 Etalon 濾波後光子之吸收

5.2 雷射頻譜量測

實驗光路架設如圖 5.5,我們將窄頻雷射通過兩台 EOM 對其進行相位調製,第一台為展頻用,第二台用來做反向的調製還原頻譜,再以 Fabrty-Perot 干涉儀去測量頻譜。

待放圖片

圖 5.5: 雷射頻譜量測光路圖

在兩台 EOM 都關閉的情況下,可以測到波長 795 nm 雷射的頻譜, 結果如圖,以此 Fabry-Perot 的解析度掃出的雷射頻寬約為 60 MHz。

若只開啟第一台 EOM,在 10 Gb/s 隨機訊號的調製下可將窄頻雷射光的頻譜展至 10 GHz 寬,但由於我們的使用的 Fabry-Perot FSR 僅 10 GHz,無法涵蓋完整的頻率區間,會使測量的結果失真,要想掃出完整展開的頻譜需使用 FSR 20 GHz 以上的干涉儀,所以下面會先以 2 Gb/s

圖 5.6: 以頻寬 60MHz 的 Fabry-Perot 干涉儀掃出之雷射頻譜的訊號來測試展頻的結果是否符合理論模擬。

5.2.1 2 Gb/s 隨機訊號之相位調製

先以 2 Gb/s 隨機訊號進行相位調製,只開啟第一台能將頻譜展至 ±5 GHz 寬,如下圖。

圖 5.7: 2 Gb/s 訊號之展頻頻譜

頻譜的形狀大致上與理論相符,但在 ±2 GHz 的位置有一個突起的訊號,這是由於隨機訊號的上升與下降時間不夠快所致,若在數值模擬中把隨機訊號加上約 30 ps 的上升與下降時間(如圖),則會出現類似的結果,如圖:

此外,還可隱約看出該頻譜的包絡線有週期振盪的訊號,原因為我們使用的隨機訊號實際上是個重複出現的週期訊號,每個週期有 $2^{31}-1$ 個位元,若把位元數調為 $2^{15}-1$ 或者 2^7-1 則可看到週期更大的震盪訊號,測量結果如圖 5.9。

圖 5.9: 偽隨機訊號週期與展頻頻譜震盪之關係

從以上測量的頻譜可以看出,調製後的頻寬與理論計算的結果一致, 所以我們認為 10 Gb/s 的隨機訊號能將訊號展至 ±10 GHz 寬。

5.2.2 10 Gb/s 隨機訊號之相位調製

當兩台 EOM 同時開啟時,理論上要能將展寬的頻譜還原成調製前的狀態,但從圖 5.10 的實驗結果可以看出,壓縮回來的頻譜與調製前相比,中心頻率的強度僅為本來的 80%,若將電壓放大來看(如圖 5.11)可以觀察到,在調製前所有能量皆集中於中心頻率附近,但經過兩台 EOM 調製後,仍有部分能量分散在其他頻率沒被還原,導致中心頻率的強度降低。造成頻譜還原效果不佳的可能原因為,兩個隨機訊號的形狀與穩定度皆不同(如圖 5.12),導致無法將相位做反向的調製,使訊號完美還原成最初的狀態。

圖 5.10: 10 Gb/s 訊號壓縮後頻譜

圖 5.11: 放大後之電訊號,紅線為未經調製的雷射頻譜,黑線為兩次調製後的訊號,雖 能大致上將頻寬從 10 GHz 壓回 60 MHz,但從圖中可發現,中心以外的頻率 仍能測到一些訊號。

圖 5.12: 經過放大器,進入 EOM 用以調製的兩組隨機訊號眼圖

5.3 ⁸⁷ Rb 經相位調製後的原子吸收譜

如章節 3.2.1 所提,當光子的頻率很接近原子的躍遷能階時,光會被吸收,實驗上可以圖 5.5的架設,將 Farby-Perot 干涉儀換成光二極體 (photodiode) 收光,連續調變入射光的頻率,測量透射 ⁸⁷ Rb 原子氣體管的光強,從圖 5.13 藍線可以觀察到,在特定的兩個頻率位置附近光會被原子吸收,穿透率特別低。本實驗主要的目的為透過展頻技術,降低光子與原子的交互作用,使光子能不被吸收而增加透射率,所以若將第一台 EOM 開啟,將雷射的頻寬從 60 MHz 展至 10 GHz,此時的吸收譜如圖 5.13 紅線,在經過展頻後,無論在哪個頻率下光皆能大部分透射原子,調製前的光在 105 GHz 與 112 GHz 會被完全吸收,調製後卻有 75%

的光能透射原子,就如隱形了一般,展頻能降低光子受環境的影響。

圖 5.13: 調製後的如原子吸收譜,黑線為沒放 ^{87}Rb 原子氣體管時的訊號;藍線為調製 前 ^{87}Rb 原子氣體管的吸收譜;紅線為展頻後的吸收譜。

重畫,調整座標軸

5.4 單光子相位調製對原子吸收之影響

從前一小節的實驗結果能得知,⁸⁷Rb 的躍遷頻率約在 105 GHz 與 112 GHz 附近,這時我們將光源從窄頻雷射換成單光子,並透過改變入射光的頻率與晶體溫度,將單光子的頻率調至 112300 MHz,使其能被原子吸收,再以圖 5.14 的光路架設,對光子進行相位調製與測量。

當兩台 EOM 皆關閉時,頻寬約為 4.5 MHz 的單光子會幾乎完全被原子吸收,光無法透射氣體管,但若對其進行 $G^2(\tau)$ 測量,卻會測到訊號,如圖 5.15,原因如章節 5.1.2 所述,是由於我們晶體產生的單光子源非單模 (single-mode),其中還存在符合其他組準相位匹配條件 (quasiphase matching condition) 所產生的光,若要去除那些光子對實驗的影響,在此小節的數據處理上,我們直接將其當作雜訊扣除,只保留主要

圖 5.14: 單光子量測光路圖

模態的光;下一小節的實驗中,我們會外加一個 Etalon 濾波器,只讓 112300 MHz 附近的光通過。

圖 5.15: 單光子通過 ^{87}Rb 氣體管之 $G^{2}(\tau)$ 量測,黑線為沒放氣體管時測到的訊號,放了氣體管後,其他模態的光因不在吸收頻率附近而能透射原子團不吸收,所以會測到紅線的訊號。

若開啟第一台 EOM,以 10 Gb/s 的隨機訊號對單光子進行相位調製,可以讓單光子的頻寬從 4.5 MHz 展至 10 GHz,使大部分的光可以透射 ^{87}Rb 氣體不被吸收,扣除雜訊後的 $G^2(\tau)$ 的測量結果如圖 5.16,透射率為 76%。另外,此時若將 ^{87}Rb 氣體管移除,直接測量展頻後的訊

號,能發現單位時間測量到的光子數與調製前相差不多,比較如圖 5.17,可知相位調製僅會改變頻率的分佈,不會影響光強。

圖 5.16: 黑線為沒被放氣體管也沒調製時的 $G^2(\tau)$ 量測,紅線為展頻光子被部分吸收後之訊號,可以以兩者 concidence counts(也就是圖下面積)的比值來計算透射率,約為 76%

待放圖片 待放圖片

(a) 調製前

(b) 調製後

圖 5.17: 沒通過 ^{87}Rb 氣體管之單光子 $G^2(\tau)$ 量測。有無相位調製時的雙光子產生率幾乎相同。

從前述的結果可知,未經調製的窄頻單光子會幾乎被 ⁸⁷*RB* 原子吸收,無法透射氣體管,透射率幾乎為零,但經過 10 Gb/s 隨機訊號的調製後,可讓透射率提升至 76%,如同穿上隱形斗篷般,能大部分的光子不會與原子產生交互作用,直接穿透原子團。

5.5 雷射光相位調製對原子吸收之影響

在上一小節中,我們對單光子進行相位調製,觀察展頻對吸收率之影響,為確定此現象在不同系統下能維持一致性,我們將圖 5.14光路架設的光源改為雷射光,單光子探測器改用光二極體,並將雷射調至與單光子同樣的波長去進行相同的量測,實驗結果如圖 5.18,與單光子的量測結果相近,調製前的光幾乎會全部被原子團吸收,但經過展頻後的雷射光能有約 80% 的穿透率,也能達到隱形斗篷的效果。

圖 5.18: 雷射光相位調製對穿透率之影響,最上面三條線(藍、紅與黃色)為沒放 87RB 原子氣體管時之量測,無論是展頻還是壓縮,相位調製皆不會影響光強;中間兩條線(綠色與橘色)為展頻後通過氣體管所測得的訊號,約 80% 的光能因相位調製而穿透原子團而不被吸收;最下面的藍線為兩台 EOM 關閉時測到的訊號,未經調製的光會幾乎都被原子吸收。

5.6 不同展頻頻寬對吸收率之影響

由章節 3.2.1 的模擬可知,使用越高頻的隨機訊號去展頻可提升光子隱形的效果,為驗證此理論,我們分別使用 2,4,6,8,10 Gb/s 的隨機訊號去展頻,並透射原子團測量穿透率,實驗結果如圖 5.19,從結果可看出,無論是雷射光或單光子,頻寬越大,吸收率越低,使用越高的頻率

去進行調製,的確能增加光子的隱匿性,降低環境或竊聽者的影響。

圖 5.19: 黑色為數值模擬;紅線與藍線分別為雷射光與單光子的實驗測量結果,數據點的值為數次測量的平均,帶狀的寬度為測量的標準差。單光子的標準差較大是實驗穩定度不佳造成的。

此外,可以看出單光子的透射率皆比雷射光低一些,或許是因為單 光子較容易被原子團吸收所致。

5.7 單光子頻譜壓縮

從前兩小節的結果可知,使用展頻技術可以有效的降低環境對光子的影響,但若考量到接收訊息端可能會需要光子原始的相位資訊,或者需要讓光子與 87 Rb 原子進行交互作用,我們必須要開啟第二台 EOM 進行反向的調製,盡量使光子還原到原先的狀態,若以圖 5.14的光路架設,除了第一台 EOM 外,將第二台也開啟,由於相位調製不影響光強與波形,單就 $G^2(\tau)$ 的測量無法得知頻譜的變化,因此要將光路架設改為圖 5.21,在單光子探測器前加上 Etalon 濾波器,限制只讓頻寬 60 MHz 內的光通過,如此一來,只要能測到訊號就代表部分光子的頻寬有被壓

窄至 60 MHz 內,另一方面,這也可以將上一小節及提的雜訊去除。

待放圖片

圖 5.20: 加上濾波器之單光子量測光路圖

以圖 5.21的光路架設,只開啟第一台 EOM 時,被展頻的單光子能大部分透射原子團,但由於 Etalon 的過濾,頻寬 10 GHz 的光子幾乎無法抵達探測器,因而測不到明顯的訊號,結果如圖 5.21a。若將第二台 EOM 也開啟,將已展頻且被部分吸收的單光子頻譜壓縮,則能再次測到訊號,如圖 5.21b,與調製前且沒放氣體管時的初始訊號相比,透射率為 42.3%。

為了知道原子吸收對於單光子頻譜的壓縮有何影響,我們以同樣的光路架設,在沒放 Etalon 濾波器時,同時開啟兩台 EOM,測量結果如圖 5.22黑線,與調製前的訊號相比,透射率為 77.9%;放上 ⁸⁷ Rb 原子氣體管後的訊號為紅線,透射率為 42.3%。

(b) 兩台 EOM 同時開啟,將已展頻的單 光子頻譜壓縮,使光子再次現形,能 透射 Etalon 濾波器,被探測器偵測 到。

圖 5.21: 加上 Etalon 濾波器之單光子 $G^2(\tau)$ 量測

圖 5.22: 在兩台 EOM 同時開啟時測量 $G^2(\tau)$, 黑線為沒經過 ^{87}Rb 原子氣體管時之量測; 紅線為透射 ^{87}Rb 原子氣體管之訊號, 兩者的比值為 54.3%。

5.8 雷射光頻譜壓縮

同樣的,我們以上一小節相同的架設,將光源換成雷射光,單光子探測器改為光二極體,且進行同樣的測量,結果如圖 5.23,與單光子的量測結果相近,經展頻後在壓縮的光,約 70% 能通過 Etalon 濾波器,

若在中間放氣體管使部分光被吸收,僅 40% 的光能通過 Etalon,被重新 壓回窄頻雷射

圖 5.23: 原子吸收對雷射光壓縮品質比較圖

補上另一條紅色的線

5.9 誤差分析與模擬修正

由相位調製的基本原理可知,若輸入兩台 EOM 的隨機訊號符合式 () 的條件,則能完美的將光的相位與頻譜還原成最初的狀態,在我們實驗中所使用的窄頻雷射與單光子,頻寬皆遠小於 Etalon 濾波器的頻寬,在沒原子團吸收的狀況下,被展頻再壓縮的光應該要能 100% 通過 Etalon,這與實驗測量的結果不符,我認為主要的可能原因為隨機訊號的品質不佳所致,兩個訊號從 PRBS 輸出時的波形如圖 5.24,兩者形狀不一致,且上下不對稱,若在經過延長線與高頻訊號放大器波形則變為圖 5.25,兩者變得更不一致,有著不一樣的波形、穩定度、上升時間、下降時間與交叉位置 (crossing),這些因素都會使兩台 EOM 的調製無法互相抵消,讓相位無法還原至最初的狀態。除此之外,也有能是因為兩台 EOM 對高頻訊號的響應不同,也會影響調製的結果。

為了確認上述的因素所造成的影響,根據圖 5.25的測量結果,修正

(a) 第一台 EOM

(b) 第二台 EOM

Eile Control Setup Measure Calibrate Utilities Help

圖 5.24: PRBS 輸出之訊號眼圖 (放大前)

Person RANG OF THE PRESENCE OF

(a) 第一台 EOM

(b) 第二台 EOM

圖 5.25: PRBS 輸出之訊號眼圖(放大後)

模擬時使用的隨機訊號,修正的參數如表 5.1,模擬的電訊號如圖 5.26。

待放圖片 待放圖片

(a) 修正前

(b) 修正後

圖 5.26: 理論模擬使用的隨機訊號

使用修正後的隨機訊號進行展頻、吸收與壓縮的模擬,可讓計算的 結果更貼近實驗的測量,以下將整理理論與實驗的結果整理成表 5.2 與 表 5.3

表 5.1: 數值模擬參數修正

	jitter	amplitidu	rising & falling
EOM 1	14 ps	$\pm 7.7\%$	38 ps
EOM 2	16 ps	$\pm 16.7\%$	144 ps

表 5.2: 展頻後的光經過 ^{87}Rb 之透射率 (無 Etalon 濾波器)

	修正前理論	修正後理論	雷射光實驗	單光子實驗
穿透率	79.1%	73.8%	76.0%	79.6%

重新確定%數

表 5.3: 展頻後壓縮的光經過 Etalon 濾波器之透射率

	修正前理論	修正後理論	雷射光實驗	單光子實驗
無通過氣體管	100.0%	88.9%	77.9%	70.9%
有通過氣體管	67.6%	45.6%	42.3%	41.0%

從以上的表可以看出,經過修正後的理論更接近實驗的結果,由此可知,想要有效地使用展頻技術,電訊號的品質起了關鍵的作用,需要有更好的訊號產生器與線材才可以將調製的訊號還原成原始的模樣。

六、 總結

展頻好棒棒是一個想起來很簡單,做起來很靠腰的一個實驗