30. Chebyshev methods IV

Last time

- Chebyshev interpolation
- Discrete Cosine transform
- Barycentric Lagrange interpolation

 \blacksquare Given $f:[-1,+1]\to \mathbb{R}$

- lacksquare Given $f:[-1,+1]
 ightarrow \mathbb{R}$
- \blacksquare Approximate $f = \sum_{k=0}^N \alpha_k T_k$
- $\qquad \textbf{Chebyshev polynomials} \ T_n(x) = \cos(n\arccos(x))$

- Given $f:[-1,+1] \to \mathbb{R}$
- \blacksquare Approximate $f = \sum_{k=0}^N \alpha_k T_k$
- $\qquad \textbf{Chebyshev polynomials} \ T_n(x) = \cos(n \arccos(x))$
- \blacksquare Interpolate in Chebyshev points $t_j := \cos\left(\frac{\pi j}{N}\right)$
- $\blacksquare \ f_j := f(t_j) \ \text{at} \ (N+1) \ \text{points} \ t_j \ \text{with} \ j = 0, \dots, N$

- Given $f: [-1, +1] \rightarrow \mathbb{R}$
- \blacksquare Approximate $f = \sum_{k=0}^N \alpha_k T_k$
- $\qquad \textbf{Chebyshev polynomials} \ T_n(x) = \cos(n\arccos(x))$
- \blacksquare Interpolate in Chebyshev points $t_j := \cos\left(\frac{\pi j}{N}\right)$
- $\blacksquare \ f_j := f(t_j) \ \text{at} \ (N+1) \ \text{points} \ t_j \ \text{with} \ j=0,\dots,N$
- Discrete Cosine Transformation (DCT):

$$\sum_k \alpha_k \cos\left(\frac{jk\pi}{n}\right) = f_j$$

where $f_i := f(t_i)$

Goals for today

- Choosing the number of interpolation points
- Operations using Chebyshev representation
- Derivatives
- Integrals
- Roots

Fundamental idea:

Represent / approximate function f by Chebyshev interpolant in Chebyshev points

. . .

But how many points should we choose?

Fundamental idea:

Represent / approximate function f by Chebyshev interpolant in Chebyshev points

- But how many points should we choose?
- \blacksquare Enough that Chebyshev coefficients have decayed to $\epsilon_{\rm mach}$

. . .

Start with N+1, e.g. N=8

- \blacksquare Start with N+1, e.g. N=8
- $\blacksquare \ \, \text{Interpolate} \, f \text{ to get} \, f_i^{(N)}$

- \blacksquare Start with N+1, e.g. N=8
- Interpolate f to get $f_i^{(N)}$
- lacktriangle Calculate α_k using DCT or preferably fast FCT
- Check if have decayed, e.g. last two are \$< 10⁴-13}

- \blacksquare Start with N+1, e.g. N=8
- Interpolate f to get $f_i^{(N)}$
- lacktriangle Calculate α_k using DCT or preferably fast FCT
- Check if have decayed, e.g. last two are \$< 10⁴(-13)
- lacktriangle If not, **double** N and try again
- Can reuse: $f_{2j}^{(2N)} = f_{j}^{(N)}$

- \blacksquare Suppose have $f = \sum_{k=0}^N \alpha_k T_k$
- How can we calculate the derivative f'?

- \blacksquare Suppose have $f = \sum_{k=0}^N \alpha_k T_k$
- How can we calculate the derivative f'?
- lacksquare Will also be a sum of T_k :

$$f' = \sum_{k=1}^{N} \alpha_k T_k'$$

- \blacksquare Suppose have $f = \sum_{k=0}^N \alpha_k T_k$
- How can we calculate the derivative f'?
- lacksquare Will also be a sum of T_k :

$$f' = \sum_{k=1}^{N} \alpha_k T_k'$$

 $lue{}$ This will be polynomial of degree N-1

- \blacksquare Let p be the unique polynomial that interpolates the f_j
- $\blacksquare \; \mathrm{Set} \; w_j := p'(t_j)$

- \blacksquare Let p be the unique polynomial that interpolates the f_j
- $\blacksquare \; \mathrm{Set} \; w_j := p'(t_j)$
- Calculate using Lagrange interpolation since have explicit formulae (unlike for Chebyshev polynomials)

- lacksquare Let p be the unique polynomial that interpolates the f_j
- $\blacksquare \; \mathrm{Set} \; w_j := p'(t_j)$
- Calculate using Lagrange interpolation since have explicit formulae (unlike for Chebyshev polynomials)
- Then

$$\mathbf{w} = D_N \mathbf{f}$$

- Where D_N is $(N+1) \times (N+1)$ Chebyshev differentiation matrix
- Chapter 6 of Trefethen, Spectral Methods in MATLAB has explicit formulae for D_N

lacktriangle The matrices \mathbf{D}_N are dense matrices

 \blacksquare The matrices D_N are *dense* matrices

Modern approach: Olver & Townsend 2014, "A fast and well-conditioned spectral method"

■ The matrices D_N are dense matrices

- Modern approach: Olver & Townsend 2014, "A fast and well-conditioned spectral method"
- lacktriangle Derivative T_k' is ultraspherical polynomial
- Get banded matrix if use correct bases

■ The matrices D_N are dense matrices

- Modern approach: Olver & Townsend 2014, "A fast and well-conditioned spectral method"
- lacktriangle Derivative T_k' is ultraspherical polynomial
- Get banded matrix if use correct bases
- "Differentiating scales the coefficients and changes the basis"

- Note that differentiation lowers the degree of the polynomial
- So repeated differentiation is a bad idea

- Note that differentiation lowers the degree of the polynomial
- So repeated differentiation is a bad idea

- Alternative: Use automatic differentiation!
- \blacksquare Calculate $f^{\prime}(t_{j})$ using dual numbers exactly (up to rounding error)

- Note that differentiation lowers the degree of the polynomial
- So repeated differentiation is a bad idea

- Alternative: Use automatic differentiation!
- \blacksquare Calculate $f'(t_j)$ using dual numbers exactly (up to rounding error)
- Higher-order derivatives using Taylor methods

- Note that differentiation lowers the degree of the polynomial
- So repeated differentiation is a bad idea

- Alternative: Use automatic differentiation!
- \blacksquare Calculate $f^{\prime}(t_{j})$ using dual numbers exactly (up to rounding error)
- Higher-order derivatives using Taylor methods
- Then interpolate again!

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$\$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$\$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

Where does this come from?

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$\$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

Where does this come from?

 $\blacksquare \text{ Consider } xT_k(x)$

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$\$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

Where does this come from?

- lacksquare Consider $xT_k(x)$
- lacktriangle This is a polynomial of degree k+1, so

$$xT_k(x) = \sum_{i=0}^{k+1} \alpha_j T_j(x)$$

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$\$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

- Where does this come from?
- \blacksquare Consider $xT_k(x)$
- This is a polynomial of degree k+1, so

$$xT_k(x) = \sum_{j=0}^{k+1} \alpha_j T_j(x)$$

lacksquare α_i are given by (xT_k,T_i)

We have

$$(xT_k,T_j)=\int_{-1}^{-1}xT_k(x)T_j(x)dx$$

■ Change variables using $x = \cos(\theta)$:

$$(xT_k, T_j) = \int_0^{2\pi} c_1 c_k c_j d\theta$$

where $c_j(\theta) := \cos(j\theta)$

We have

$$(xT_k, T_j) = \int_{-1}^{-1} xT_k(x)T_j(x)dx$$

■ Change variables using $x = \cos(\theta)$:

$$(xT_k, T_j) = \int_0^{2\pi} c_1 c_k c_j d\theta$$

where $c_i(\theta) := \cos(j\theta)$

Use trigonometric relation

$$\cos(A)\cos(B) = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$$

We have

$$(xT_k, T_j) = \int_{-1}^{-1} xT_k(x)T_j(x)dx$$

■ Change variables using $x = \cos(\theta)$:

$$(xT_k, T_j) = \int_0^{2\pi} c_1 c_k c_j d\theta$$

where $c_i(\theta) := \cos(j\theta)$

Use trigonometric relation

$$\cos(A)\cos(B) = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$$

We have

$$(xT_k,T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

We have

$$(xT_k,T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

 \blacksquare But $\int c_l c_m = 0$ if $l \neq m$

We have

$$(xT_k,T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

- \blacksquare But $\int c_l c_m = 0$ if $l \neq m$
- lacksquare So (xT_k,T_j) is 0 unless j=k+1 or j=k-1

We have

$$(xT_k, T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

- But $\int c_l c_m = 0$ if $l \neq m$
- \blacksquare So (xT_k,T_j) is 0 unless j=k+1 or j=k-1
- $\label{eq:Tk} \blacksquare \mbox{ Hence } xT_k = \alpha T_{k+1} + \beta T_{k-1}$ and we can calculate the constants α and β

We have

$$(xT_k, T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

- But $\int c_l c_m = 0$ if $l \neq m$
- lacksquare So (xT_k,T_j) is 0 unless j=k+1 or j=k-1
- $\label{eq:Tk} \blacksquare \mbox{ Hence } xT_k = \alpha T_{k+1} + \beta T_{k-1}$ and we can calculate the constants α and β

 Can show that any orthogonal polynomials have a similar 3-term recurrence

Integration

- lacktriangle Now suppose want to integrate f
- \blacksquare Approximate f as $f = \sum_{k=0}^N \alpha_k T_k$ such that error is small

Integration

- lacktriangle Now suppose want to integrate f
- \blacksquare Approximate f as $f = \sum_{k=0}^N \alpha_k T_k$ such that error is small
- Now integrate the resulting polynomial
- Clenshaw–Curtis integration

Integration

- lacktriangle Now suppose want to integrate f
- \blacksquare Approximate f as $f = \sum_{k=0}^N \alpha_k T_k$ such that error is small
- Now integrate the resulting polynomial
- Clenshaw–Curtis integration
- Will get spectral accuracy due to spectral accuracy of the polynomial interpolation!

Two possibilities:

$$\int f = \sum_{k=0}^{N} \alpha_k \int T_k$$

lacktriangle Pre-calculate and store $\int T_k$ – integral of a polynomial

Two possibilities:

$$\int f = \sum_{k=0}^{N} \alpha_k \int T_k$$

- lacktriangle Pre-calculate and store $\int T_k$ integral of a polynomial
- Calculate explicit polynomial using recurrence relation

Two possibilities:

$$\int f = \sum_{k=0}^{N} \alpha_k \int T_k$$

- lacktriangle Pre-calculate and store $\int T_k$ integral of a polynomial
- Calculate explicit polynomial using recurrence relation
- Integral becomes a dot product!

- lacksquare Alternative: use Lagrange interpolation in f_j
- Integrate Lagrange interpolant

- lacksquare Alternative: use Lagrange interpolation in f_j
- Integrate Lagrange interpolant
- Can find explicit formulae for the result

Summary

- Fundamental mathematical operations become "easy" once we have spectral approximation
- Spectral convergence gives excellent approximation of function
- This is (mostly) maintained by operations like differentiation, integration
- Orthogonal polynomials satisfy 3-term recurrence relations