

Algoritmo de Optimización Energética Sustentable Para el Hábitat en Zonas Semiáridas del Oeste Argentino

Ricardo R. Palma, Gustavo Masera, Duilio Calcagno

41 JAIIO - Simposio de Informática Industrial

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

JUSTIFICACIÓN

- Trabajos existentes (38 y 39 JAIIO)
- Excedente de biocombustible (exportable)
- * 12.000 ha potencialmente cultivables
- Dificultad para la radicación
- × Alto costo dieta equilibrada
- Decenio Naciones Unidas
- Las culturas anteriores en desiertos

PINCIPALES PROBLEMAS

- AS en agua (común en varios bordes de desierto)
- Energía para calefacción
- Sin energía para refriferación
- Poco interés (Domótica)
- Poco valor agregado de los saldos exportables
- El problema del riego (ONU FAO)

SOLUCIONES ELEGIDAS

Domo geodésico

SOLUCIÓN EN EL HÁBITAT

PROYECTAR SOMBRAS

Energía consumida para mantener la temeratura Set Point Invierno 18°C set Poit Verano 26°C

Tipología	Consumo Medio Anual (K. W. Hora)				
Grupo A	2,757				
Grupo B	2,753				
Grupo C	2,75				
Grupo D	2,76				
Grupo E	2,65				

Trabajo inicial con algoritmos (Blast y DOE)

Pruebas con Open Studio (sobre google map)

Determinar la carga térmica de frío / calor

Optimizar el sistema complejo (media anual)

SOLUIÓN INTEGRAL ENCONTRADA

FORMULACIÓN MATEMÁTICA

$$opt \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix}_{[w]} = \begin{bmatrix} l_1^1 & . & . & . & . & l_n^1 \\ 2_1^2 & . & . & . & . & 2_n^2 \\ \vdots & . & . & . & . & . & . \\ \vdots & . & . & . & . & . & . \\ l_m^1 & . & . & . & . & . & l_m^n \end{bmatrix} * \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{bmatrix}$$

El vector R (recursos) tiene límites

L es una matriz de coeficientes Tecnológicos (balance masa y energía)

P son los productos obtenidos del sistema

	Agua	Biomasa	Vapor	CO2	Agua AS	Cons. Apar.	Saldo Export	Cons. Total
Agua	0,001	9,000	12,000	0,000	0,000	50,000		71,001
Biomasa	34,000	0,007	4,000	43,000	67,000	300,000		448,007
Vapor	12,000	34,000	0,001	0,250	3,000	15,000		64,2512
CO2	90,000	2,000	18,000	0,030	2,000	6,000		118,03
Agua AS	0,000	1,000	0,000	0,001	0,200	0,000		1,201
Hortalizas	32,000	3,000	22,000	0,250	0,000	27,000	50	134,25
Madera Trat.	0,000	0,000	13,000	0,250	57,000	0,000	150	220,25
Requerimiento	168,001	49,007	69,001	43,781	129,200	398,000	200	
Resctricción	200	79	120	60	150	400		-

ENLACE PIEZAS DE SOFTWARE

GRACIAS ...

PREGUNTAS?

http://ceal.fing.uncu.edu.ar/seminario_ZA

Dr. Ricardo R. Palma rpalma@uncu.edu.ar

Facultad de Ingeniería Cátedra Técnicas y Herramientas Modernas Universidad Nacional de Cuyo

Mendoza - Argentina