Linear Discriminant Analysis

(operates on dafa, linear method, unsupervised)

x give me top 3 principal components

LDA

(operates of feature subspace,

linear method,

supervised)

- Data < x1, x2 ... xn>

- N, samples belong to class C,
- N2 samples belong to class c2
- Find a line that maximize the class seperation.

y= wx find weights

only witchange to rotate the line * maximize difference between averages

- Define a good seperation measure

- Measure $M_i = \frac{1}{N_i} \sum_{x \in c_i} x$

$$M' = \frac{1}{N_i} \sum_{y \in c_i} y = \frac{1}{N_i} \sum_{x \in c_i} wx = wx$$

- Driving force for seperation argmax objective
$$f(w) = |\tilde{\mu}_1 - \tilde{\mu}_2| L1 \text{ norm}$$

$$= |w^T(\mu_1 - \mu_2)|$$

better class ---> variance inside class has to be minimum

Distance to other classes has to be maximum

But we are ignoring variability inside classes.

Fisher Approach

Normalize the distance (difference)

between the means by intra-class

scatter= variance

variance
$$\widetilde{S}_{i}^{2} = \sum_{i=1}^{2} (y-\widetilde{u}_{i})^{2}$$

inside class $y \in C_{i}$

Intra class scatter = $\hat{S}_1^2 + \hat{S}_2^2$ (sum should be minimum)

Objective(w) = maximum inter class seperation minimum intra class variability

Fisher Discriminant

Objective(w) =
$$\frac{|\vec{\mu}_1 - \vec{\mu}_2|^2}{\tilde{S}_1^2 + \tilde{S}_2^2}$$
 | norm

t-SNE (t-Distributed Stochastic neighbor * bring anything to 2D embedings)

-> pon linear data visualizer

-> t-test | t-distribution (normal distribution)

t-sne doesn't use any norm (distance metric)

¥, ¥... ×

Kullback Leibler Divergence > distance metric

Given 2 probability distributions p,q the KL divergence measures the distance

D(P119) Howmuch P distribution diverges from q

 $D(P|Q) \neq D(Q|P)$

-> KL divergence is not a metric

ex:- Divergence D(observed 1) normal)

How far data is deviate from normal Distribution D (observed 1) binomial)

Relationship to entropy H(X)

$$H(x) = \sum_{x \in x} b(x) \log \frac{1}{p(x)}$$

The shannon entropy is the number of bits necessary to identify x from N equally 'likely possibilities less the KL divergence of the uniform distribution from the true distribution.

t-SNE idea

Similarity in high dimensions corresponds to short distance in low dimensions.

t-SNE minimizes the sum of KL divergence over all data points using gradient decent method.

Objective =
$$\sum_{i} D(P_{i} | | Q_{i})$$

= $\sum_{i} \sum_{j} P_{j} | | \log \frac{P_{j}|_{i}}{|Q_{j}|_{i}}$

$$P_{j|i} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\delta_i^2}\right)$$

$$\leq \exp\left(-\frac{\|x_i - x_K\|^2}{2\delta_i^2}\right)$$
high dimention

$$Q_{j|i} = \underbrace{\exp(-\|y_i - y_j\|^2)}_{K \neq i} \underbrace{\delta_{i=\frac{1}{\sqrt{2}}}}_{low} low dimension$$

Dim feduction and Visualization

- * PCA
- * LDA
- * t-SNE