Homework 03

Aaron Wang

February 4 2025

1 Monday 1/27

Section 4

16. Solve the differential equation $yy'^2 + 2xy' - y = 0$ by changing from variables y, x, to r, x, where $y^2 = r^2 - x^2$; then yy' = rr' - x.

$$yy'^{2} + 2xy' - y = 0$$

$$y^{2}y'^{2} + 2xyy' - y^{2} = 0$$

$$y^{2}y'^{2} + 2xyy' + x^{2} - y^{2} - x^{2} = 0$$

$$(yy' + x)^{2} - (y^{2} + x^{2}) = 0$$

$$(rr')^{2} - r^{2} = 0$$

$$r'^{2} - 1 = 0$$

$$r' = \pm 1$$

$$\int r'dx = \int \pm 1dx$$

$$r = \pm x + C$$

$$r^{2} = x^{2} \pm 2xC + C^{2}$$

$$r^{2} - x^{2} = \pm 2xC + C^{2}$$

$$y^{2} = \pm 2xC + C^{2}$$

$$y = \sqrt{\pm 2xC + C^{2}}$$

Section 5

1.
$$y'' + y' - 2y = 0$$

$$(D^2 + D - 2)y = 0$$
Auxillary Equation: $(D^2 + D - 2) = 0$
 $\implies (D+2)(D-1) = 0 \implies \text{root(s): } -2, 1$
General Solution: $y = C_1 e^{-2x} + C_2 e^x$

$$2. \ y'' - 4y' + 4y = 0$$

$$(D^2 - 4D + 4)y = 0$$
Auxillary Equation: $(D^2 - 4D + 4) = 0$

$$\implies (D - 2)^2 = 0 \implies \text{root(s): } 2$$
General Solution: $y = e^{2x}(Ax + B)$

5.
$$(D^2 - 2D + 1)y = 0$$

Auxillary Equation:
$$(D^2 - 2D + 1) = 0$$

 $\implies (D - 1)^2 = 0 \implies \text{root(s)}$: 1
General Solution: $y = e^x(Ax + B)$

8.
$$(D)(D+5)y=0$$

Auxillary Equation:
$$(D)(D+5) = 0$$

 $\implies \text{root(s): } 0, -5$
General Solution: $y = C_1 + C_2 e^{-5x}$

10.
$$y'' - 2y' = 0$$

$$(D^2 - 2D)y = 0$$

Auxillary Equation: $(D^2 - 2D) = 0$
 $\implies (D - 2)D = 0 \implies \text{root(s): } 0, 2$
General Solution: $y = C_1 + C_2e^{2x}$

5.
$$(2D^2 + D - 1)y = 0$$

Auxillary Equation:
$$(2D^2 + D - 1) = 0$$

 $\implies (2D - 1)(D + 1) = 0 \implies \text{root(s)}: -1, \frac{1}{2}$
General Solution: $y = C_1 e^{-x} + C_2 e^{\frac{x}{2}}$

2 Wednesday 1/29

Section 5

3.
$$y'' + 9y = 0$$

$$(D^2 + 9)y = 0$$

Auxillary Equation: $(D^2 + 9) = 0$
 $\implies (D + 3i)(D - 3i) = 0 \implies \text{root(s): } \pm 3i$
General Solution: $y = Ae^{3ix} + Be^{-3ix}$

6.
$$(D^2 + 16)y = 0$$

$$(D^2 + 16)y = 0$$

Auxillary Equation: $(D^2 + 16) = 0$
 $\implies (D + 4i)(D - 4i) = 0 \implies \text{root(s): } \pm 4i$
General Solution: $y = Ae^{4ix} + Be^{-4ix}$

9.
$$(D^2 - 4D + 13)y = 0$$

$$(D^2 - 4D + 13)y = 0$$
Auxillary Equation: $(D^2 - 4D + 13)y = 0$

$$\implies (D - (2+3i))(D - (2-3i)) = 0$$

$$\implies \text{root(s): } 2 \pm 3i \implies \alpha = 2; \ \beta = 3$$
General Solution: $y = e^{2x}(C_1 \cos(3x) + C_2 \sin(3x))$

Section 6

1.
$$y'' - 4y = 10$$

First Find General Solution to homogenous equation:

$$y_c'' - 4y_c = 0 \implies (D^2 - 4)y_c = 0$$

Auxillary Equation: $(D^2 - 4) = 0$
 $\implies (D+2)(D-2) = 0 \implies \text{root(s): } \pm 2$
General Solution: $y_c = Ae^{2x} + Be^{-2x}$

Now Find particular Solution:

Because this is a constant we know, $-4y_p = 10 \implies y_p = -\frac{5}{2}$

Combine:

$$y = y_c + y_p$$
$$y = Ae^{2x} + Be^{-2x} - \frac{5}{2}$$

2.
$$(D-2)^2y = 16$$

First Find General Solution to homogenous equation:

$$(D-2)^2y_c=0$$
 Auxillary Equation: $(D-2)^2=0 \Longrightarrow \operatorname{root}(\mathbf{s})$: 2 General Solution: $y_c=e^{2x}(Ax+B)$

Rewrite as

$$y'' - 2y' + 4y = 16$$

Now Find particular Solution:

Because this is a constant we know, 4 $y_p=16 \implies y_p=4$

Combine:

$$y = y_c + y_p$$
$$y = e^{2x}(Ax + B) + 4$$