Plan du cours

I.	Le théorème de Pythagore		
		L'énoncé	
	2.	Application de ce théorème	
II.	Réciproque du théorème de Pythagore		
	1.	La réciproque du théorème de Pythagore	
	2.	Applications de la réciproque	

Chapitre 0 : Le théorème de Pythagore et sa réciproque

Remarque : Ces théorèmes ne s'appliquent qu'aux triangles rectangles!

I. Le théorème de Pythagore

1. L'énoncé

Théorème

Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

En pratique:

Si ABC est un triangle rectangle en A alors $BC^2 = AC^2 + AB^2$.

Exemple : pour le triangle rectangle suivant, écrire la relation du théorème de Pythagore :

L'hypoténuse est le côté [MK], donc : $KM^2 = KL^2 + LM^2$

2. Application de ce théorème

Soit DFE un triangle rectangle en E.

Calculer la longueur EF (donner l'arrondi au dixième) sachant que ED = 5 cm et DF = 13 cm.

Dans le triangle DFE rectangle en E, l'hypoténuse est le côté [DF].

D'après le théorème de Pythagore, on a : $DF^2 = FE^2 + ED^2$

On remplace par les valeurs : $13^2 = FE^2 + 5^2$

Donc $169 = FE^2 + 25$

 $FE^2 = 169 - 25$

 $FE^2 = 144$

Or FE est une longueur donc FE > 0.

Ainsi $FE = \sqrt{144} = 12cm$

II. Réciproque du théorème de Pythagore

1. La réciproque du théorème de Pythagore

Théorème

(RÉCIPROQUE) Dans un triangle, si le carré de la longueur du plus grand côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle et admet ce plus grand côté pour hypoténuse.

2. Applications de la réciproque

Exemple 1 : On considère le triangle ZEN tel que NE = 16 cm, ZE = 12 cm et ZN = 20 cm. Montrons que le triangle ZEN est rectangle.

Dans le triangle ZEN, [ZN] est le plus grand côté.

D'une part,
$$ZN^2 = 20^2 = 400$$

D'autre part,
$$ZE^2 + NE^2 = 12^2 + 16^2$$

$$ZE^2 + NE^2 = 144 + 256$$

$$ZE^2 + NE^2 = 400$$

On constate que $AB^2 = BC^2 + AC^2$.

Ainsi d'après la réciproque du théorème de Pythagore, on peut affirmer que le triangle ZEN est rectangle en E.

Exemple 2: IJK est un triangle tel que IJ = 5,4 cm; JK = 3,5 cm et KI = 4,1 cm. Le triangle IJK est-il rectangle?

Dans le triangle IJK, [IJ] est le plus grand côté.

D'une part,
$$IJ^2 = 5, 4^2$$
 $IJ^2 = 29, 16$

D'autre part,
$$JK^2 + KI^2 = 3,5^2 + 4,1^2$$

 $JK^2 + KI^2 = 12,25 + 16,81$
 $JK^2 + KI^2 = 29,06$

On constate que $IJ^2 \neq JK^2 + KI^2$.

Ainsi d'après la contraposée du théorème de Pythagore, le triangle IJK n'est pas un triangle rectangle.