Chapter 4: Dynamic Programming

Objectives of this chapter:

- Overview of a collection of classical solution methods for MDPs known as dynamic programming (DP)
- ☐ Show how DP can be used to compute value functions, and hence, optimal policies
- Discuss efficiency and utility of DP

Dynamic Programming

- ☐ A collection of algorithms to **compute** value functions and optimal policies
 - Given a perfect model of the environment
- Useful for understanding algorithms in the rest of the book
 - These can be viewed as trying achieve much the same effect as DP with less computation and without the model
- ☐ Key idea: use value functions to organize and structure the search for good policies
- ☐ We will turn the Bellman equations into assignments

Policy Iteration

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

policy evaluation policy improvement "greedification"

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Recall: **Bellman equation for** v_{π}

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

—a system of |S| simultaneous equations

Iterative Methods

$$v_0 \to v_1 \to \cdots \to v_k \to v_{k+1} \to \cdots \to v_\pi$$
a "sweep",

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

Expected update

A Small Gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R = -1$$
 on all transitions

$$\gamma = 1$$

- An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is −1 until the terminal state is reached

A Small Gridworld

	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

$$\gamma = 1$$

- □ What is p(6, -1 | 5, right) = ?
- \Box p(10, r | 5, right) = ?
- \square p(13, -1 | 13, down) = ?

 V_{k} for the Handom Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

k = 1

	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

$$\gamma = 1$$

k = 2

k = 3

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

k = 10

 V_{k} for the Handom Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

k = 1

0.0 -1.0	-1.0	-1.0
-1.0 -1.0	-1.0	-1.0
-1.0 -1.0		
-1.0 -1.0	-1.0	0.0

	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

 $\gamma = 1$

k = 2

k = 3

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

k = 10

 V_{k} for the Handom Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

$$k = 1$$

k = 2

0.0 -1.0	-1.0	-1.0
-1.0 -1.0	-1.0	-1.0
-1.0 -1.0	-1.0	-1.0
-1.0 -1.0	-1.0	0.0

	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

$$\gamma = 1$$

$$k = 3$$

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

$$k = 10$$

 V_k for the Handom Policy

k = 0

 π = equiprobable random action choices

k = 1

0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0

	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

 $\gamma = 1$

0.0	-2.4	-2.9	-3.0
-2,4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

k = 10

k = 3

 V_k for the Random Policy

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 π = equiprobable random action choices

$$k = 1$$

	1	2	3			
4	5	6	7			
8	9	10	11			
12	13	14				

$$R = -1$$
 on all transitions

$$k = 2$$

k = 3

$$\gamma = 1$$

0.0 -2.4	-2.9	-3.0
-2.4 -2.9	-3.0	-2.9
-2.9 -3.0	-2.9	-2.4
20 20	.2.4	0.0

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

$$k = 10$$

0.0 -6.1	-8.4	-9.0
-6.1 -7.7	-8.4	-8.4
-8.4 -8.4	-7.7	-6.1
-9.0 -8.4	-6.1	0.0

$$k = ^{\circ} \infty$$

 V_k for the Random Policy

_	equiprobable		4:	-1:
$\pi =$	eambrobable	: random	aciion	cnoices

$$R = -1$$
 on all transitions

 $\gamma = 1$

$$k = 2$$

$$\begin{array}{c}
0.0 - \\
-1.7 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 - \\
-2.0 -$$

$$k = 3$$

k = 0

$$\square$$
 Nonterminal states: 1, 2, ..., 14;

11

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7		-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

Negative of expected #steps until termination

Implementing Iterative Policy Eval

- ☐ Two array version:
 - use one array for the old values, and another for the new values
- One array version:
 - Update in place
 - Each new value immediately overwrites the old value
 - Sometimes new values from the current sweep will be used instead of old values
- ☐ Both versions converge, and the one array version is often faster

Iterative Policy Evaluation - One array version

```
Input \pi, the policy to be evaluated
Initialize an array V(s) = 0, for all s \in S^+
Repeat
   \Delta \leftarrow 0
   For each s \in S:
         v \leftarrow V(s)
         V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx v_{\pi}
```

Value Iteration

Recall the **full policy-evaluation backup**:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

Here is the **full value-iteration backup**:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \quad \forall s \in S$$

Value Iteration – One array version

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

```
Repeat \Delta \leftarrow 0 For each s \in \mathcal{S}: v \leftarrow V(s) V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')] \Delta \leftarrow \max(\Delta,|v - V(s)|) until \Delta < \theta (a small positive number)
```

Output a deterministic policy, π , such that $\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Gambler's Problem

- ☐ Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- □ Initial capital $\in \{\$1, \$2, ... \$99\}$
- ☐ Gambler wins if his capital becomes \$100 loses if it becomes \$0
- Coin is unfair
 - Heads (gambler wins) with probability p = .4
- ☐ States, Actions, Rewards?

Gambler's Problem Solution

Gambler's Problem Solution

Policy Improvement

Suppose we have computed v_{π} for a deterministic policy π .

For a given state s, would it be better to do an action $a \neq \pi(s)$?

And, we can compute $q_{\pi}(s,a)$ from v_{π} by:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$
$$= \sum_{s' r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big].$$

Policy Improvement

Suppose we have computed v_{π} for a deterministic policy π .

For a given state s, would it be better to do an action $a \neq \pi(s)$?

It is better to switch to action a for state s if and only if $q_{\pi}(s,a) > v_{\pi}(s)$

And, we can compute $q_{\pi}(s,a)$ from v_{π} by:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big].$$

Policy Improvement Cont.

Do this for all states to get a new policy $\pi' \ge \pi$ that is **greedy** with respect to v_{π} :

$$\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$$

$$= \arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \arg \max_{a} \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s')\right],$$

What if the policy is unchanged by this? Then the policy must be optimal!

Policy Iteration

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

policy evaluation policy improvement "greedification"

 V_k for the Random Policy

Greedy Policy w.r.t. V_{k}

 π = equiprobable random action choices

$$k = 1$$

k = 2

k = 0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

R = -1on all transitions

 $\gamma = 1$

k = 3

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.5
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- ☐ One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

$$k = 10$$

$$k = \infty$$

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

0.0 0.0 0.0 0.0

Greedy Policy w.r.t. ${\cal V}_k$

 π = equiprobable random action choices

$$k = 1$$

k = 0

$$R = -1$$
 on all transitions

$$k = 2$$

	—	—	٠	\rightarrow
t	t,	4	П	П
1	\div	Ļ		
₽	_	→		

	γ	=	1

- \square Nonterminal states: 1, 2, . . ., 14;
- ☐ One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- ☐ Reward is –1 until the terminal state is reached

6

k = 10

0.0 -14.	-20.	-22
-1418.	-20.	-20.
-2020.	-18.	-14
-22, -20,	-14.	0.0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Iteration – One array version (+ policy)

1. Initialization $V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in \mathbb{S}$

2. Policy Evaluation

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r|s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$a \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $a \neq \pi(s)$, then policy-stable $\leftarrow false$

If policy-stable, then stop and return V and π ; else go to 2

Generalized Policy Iteration

Generalized Policy Iteration (GPI):

any interaction of policy evaluation and policy improvement, independent of their granularity.

A geometric metaphor for convergence of GPI:

Jack's Car Rental

- □ \$10 for each car rented (must be available when request rec'd)
- ☐ Two locations, maximum of 20 cars at each
- Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - 2nd location: average requests = 4, average returns = 2
- ☐ Can move up to 5 cars between locations overnight
- States, Actions, Rewards?
- ☐ Transition probabilities?

Jack's Car Rental

Jack's CR Exercise

- □ Suppose the first car moved is free
 - From 1st to 2nd location
 - Because an employee travels that way anyway (by bus)
- □ Suppose only 10 cars can be parked for free at each location
 - More than 10 cost \$4 for using an extra parking lot
- □ Such arbitrary nonlinearities are common in real problems

Asynchronous DP

- ☐ All the DP methods described so far require exhaustive sweeps of the entire state set.
- ☐ Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- ☐ Still need lots of computation, but does not get locked into hopelessly long sweeps
- ☐ Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Efficiency of DP

- ☐ To find an optimal policy is polynomial in the number of states...
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- ☐ In practice, classical DP can be applied to problems with a few millions of states.
- ☐ Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation.
- ☐ It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- ☐ Policy evaluation: backups without a max
- □ Policy improvement: form a greedy policy, if only locally
- ☐ Policy iteration: alternate the above two processes
- ☐ Value iteration: backups with a max
- ☐ Full backups (to be contrasted later with sample backups)
- ☐ Generalized Policy Iteration (GPI)
- ☐ Asynchronous DP: a way to avoid exhaustive sweeps
- **Bootstrapping**: updating estimates based on other estimates
- ☐ Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)