Problem Set 4

Oct. 14, 2021

- 1. Write down the primal form of linear SVM for cases when the samples are not linearly separable, write down the Lagrangian of the problem, and derive the dual problem. Derive $|\mathbf{w}_0|^2$ at the solution, and show that $\alpha_i = C$ for samples that are not correctly classified.
- 2. Consider a Support Vector Machine and the following training data from two categories:

category	x_1	x_2
ω_1	1	1
ω_1	2	2
ω_1	2	0
ω_2	0	0
ω_2	1	0
ω_2	0	1

- (1) Plot these six training points, and construct by inspection the weight vector for the optimal hyperplane, and the optimal margin. Point out the support vectors on the plot.
- (2) Construct the solution in the dual space by finding the Lagrange undetermined multipliers α_i . Compare the result to your results in part (1).

Due date: Oct. 20 (Wednesday) 23:00 Beijing time