Computer Vision

Dominik Kuczkowski Gradient Science Club 2022

Plan for Today

- What is computer vision?
- Quick history of computer vision
- Convolutions
- Convolutional Neural Networks
- Computer vision tasks
- Transfer learning

Resources

But what are convolutions? - 3blue1brown

CNNs explained - Futurology

What is computer vision?

"If AI enables computers to think, computer vision enables them to see, observe and understand."

History of computer vision

Research on computer vision started in 1960s. Some researchers believed the problem could be solved in one summer - "The summer vision project".

In later decades many algorithms were created for edge detection, optical flow, motion estimation etc.

In 1980s and 1990s neural network based solutions came to life.

Kunihiko Fukushima created - **Neocognitron**, which was inspired by work of Hubel & Wiesel from 1959.

Why do we need computer vision?

500 HOURS

of video are uploaded to YouTube every minute worldwide.

(Tubefilter, 2019)

How to analyze all of this data?

The answer is:

Convolutional Neural Networks.

What is a convolution?

What is a convolution?

Importance of the kernel

Convolutions are used in classic computer vision algorithms:

- edge detectors
- image blurring
- image sharpening

In Convolutional Neural Networks the parameters of the kernel are learned.

Sobel Edge Detection: **Gradient Approximation**

Note anisotropy of edge finding

1	0	-1	ľ
2	0	-2	
1	0	-1	

1 4:cc	1	2	1
l diff.	0	0	0
Computer Vision:	-1	-2	-1

Vertical diff.

Convolutional Neural Networks

Consist of:

- convolution layers
- non-linear activations
- pooling layers
- fully connected layers

Convolution Neural Network (CNN)

Convolution layers

A Convolution Layer

Parameters of convolution

- kernel size
- output channels
- stride
- padding
- dilation

Parameters of convolution

Pooling

12	20	30	0				
8	12	2	0	2×2 Max-Pool	20	30	│ ← Max pooling
34	70	37	4		112	37	
112	100	25	12				

Computer vision tasks

- classification
- segmentation
- object detection
- image captioning
- image generation

Popular CNN architectures for classification

- AlexNet
- ResNet
- EfficientNet
- MobileNet
- Inception

<u>ImageNet</u>

ResNet

Proposed in 2015 by researchers from Microsoft. Used residual connections to solve the problem of vanishing/exploding gradients. Became very popular since then.

Usage Over Time

ResNet - architecture

ResNet - residual connection

Object detection - YOLO

YOLO (You Only Look Once) algorithm revolutionised object detection. It is based on CNNs. Provides fast and accurate object detection

Posture recognition - DeepPose

Uses architecture based on AlexNet, but with different training target. The problem of classification is changed for regression. The goal is to predict x, y coordinates of body joints.

Image and video generation

Field with most recent advances. Very popular text-to-image models. New text-to-video models.

- DALL-E 2
- Stable Diffusion
- Imagen
- Make-a-video

Transfer learning

Using parameters from already trained models to train a network on a small dataset. Very useful approach that enables creation of good quality models.

https://keras.io/api/applications/

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	79.0%	94.5%	22.9M	81	109.4	8.1
VGG16	528	71.3%	90.1%	138.4M	16	69.5	4.2
VGG19	549	71.3%	90.0%	143.7M	19	84.8	4.4
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6
ResNet50V2	98	76.0%	93.0%	25.6M	103	45.6	4.4
ResNet101	171	76.4%	92.8%	44.7M	209	89.6	5.2
ResNet101V2	171	77.2%	93.8%	44.7M	205	72.7	5.4

Hands-on

Computer Vision

All hands-on materials available at github.com/Gradient-PG/gradient-live-session

Questions & Discussion

Thank you! See you next week on Recurrent Neural Networks.

