

Exercise 1.13a Suppose that f is holomorphic in an open set Ω . Prove that if Re(f) is constant, then f is constant.

Exercise 1.13b Suppose that f is holomorphic in an open set Ω . Prove that if Im(f) is constant, then f is constant.

Exercise 1.13c Suppose that f is holomorphic in an open set Ω . Prove that if |f| is constant, then f is constant.

Exercise 1.18 Let f be a power series centered at the origin. Prove that f has a power series expansion around any point in its disc of convergence.

Exercise 1.19a Prove that the power series $\sum nz^n$ does not converge on any point of the unit circle.

Exercise 1.19b Prove that the power series $\sum zn/n^2$ converges at every point of the unit circle.

Exercise 1.19c Prove that the power series $\sum zn/n$ converges at every point of the unit circle except z=1.

Exercise 1.22 Let $\mathbb{N}=1,2,3,\ldots$ denote the set of positive integers. A subset $S\subset\mathbb{N}$ is said to be in arithmetic progression if $S=a,a+d,a+2d,a+3d,\ldots$ where $a,d\in\mathbb{N}$. Here d is called the step of S. Show that \mathbb{N} cannot be partitioned into a finite number of subsets that are in arithmetic progression with distinct steps (except for the trivial case a=d=1).

Exercise 1.26 Suppose f is continuous in a region Ω . Prove that any two primitives of f (if they exist) differ by a constant.

Exercise 2.2 Show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$.

- **Exercise 2.5** Suppose f is continuously complex differentiable on Ω , and $T \subset \Omega$ is a triangle whose interior is also contained in Ω . Apply Green's theorem to show that $\int_T f(z)dz = 0$.
- **Exercise 2.6** Let Ω be an open subset of $\mathbb C$ and let $T\subset \Omega$ be a triangle whose interior is also contained in Ω . Suppose that f is a function holomorphic in Ω except possibly at a point w inside T. Prove that if f is bounded near w, then $\int_T f(z)dz = 0$.
- **Exercise 2.9** Let Ω be a bounded open subset of \mathbb{C} , and $\varphi:\Omega\to\Omega$ a holomorphic function. Prove that if there exists a point $z_0\in\Omega$ such that $\varphi(z_0)=z_0$ and $\varphi'(z_0)=1$ then φ is linear.
- **Exercise 2.13** Suppose f is an analytic function defined everywhere in \mathbb{C} and such that for each $z_0 \in \mathbb{C}$ at least one coefficient in the expansion $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ is equal to 0. Prove that f is a polynomial.
- **Exercise 3.2** Evaluate the integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$.
- **Exercise 3.3** Show that $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \pi \frac{e^{-a}}{a}$ for a > 0.
- **Exercise 3.4** Show that $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \pi e^{-a}$ for a > 0.
- **Exercise 3.9** Show that $\int_0^1 \log(\sin \pi x) dx = -\log 2$.
- **Exercise 3.14** Prove that all entire functions that are also injective take the form f(z) = az + b, $a, b \in \mathbb{C}$ and $a \neq 0$.
- **Exercise 3.22** Show that there is no holomorphic function f in the unit disc D that extends continuously to ∂D such that f(z) = 1/z for $z \in \partial D$.
- **Exercise 4.4a** Suppose Q is a polynomial of degree ≥ 2 with distinct roots, none lying on the real axis. Calculate $\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{Q(x)} dx$, $\xi \in \mathbb{R}$, in terms of the roots of Q.
- **Exercise 5.1** Prove that if f is holomorphic in the unit disc, bounded and not identically zero, and $z_1, z_2, \ldots, z_n, \ldots$ are its zeros $(|z_k| < 1)$, then $\sum_n (1 |z_n|) < \infty$.
- **Exercise 5.3** Show that $\sum \frac{z^n}{(n!)^{\alpha}}$ is an entire function of order $1/\alpha$.