Devoir surveillé n° 08

- Version 1 -

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n, p \in \mathbb{N}^*$. Combien existe-t-il d'applications strictement croissantes de $[\![1, n]\!]$ dans $[\![1, p]\!]$?

II. Étude asymptotique d'une suite définie par une intégrale (extrait et adapté du concours Ecricome 2005 - ECE).

On considère, pour tout entier naturel n, l'application φ_n définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ \varphi_n(x) = (1-x)^n e^{-2x},$$

ainsi que l'intégrale :

$$I_n = \int_0^1 \varphi_n(x) \mathrm{d}x.$$

On se propose de déterminer un développement asymptotique de \mathcal{I}_n de la forme

$$I_n = a + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{1}{n^2}\right).$$

- 1) Calculer I_0 et I_1 .
- 2) Étudier la monotonie de la suite $(I_n)_{n\in\mathbb{N}}$.
- 3) Déterminer le signe de I_n , pour tout entier n.
- 4) Qu'en déduit-on pour la suite $(I_n)_{n\in\mathbb{N}}$?
- 5) Majorer la fonction $x \mapsto e^{-2x}$ sur [0,1] et en déduire que :

$$\forall n \in \mathbb{N}^*, \ 0 \leqslant I_n \leqslant \frac{1}{n+1}.$$

- **6)** En déduire la limite de la suite $(I_n)_{n\in\mathbb{N}}$.
- 7) À l'aide d'une intégration par parties, montrer que

$$\forall n \in \mathbb{N}, \ 2I_{n+1} = 1 - (n+1)I_n.$$

- 8) En déduire la limite de la suite $(nI_n)_{n\in\mathbb{N}}$.
- 9) Déterminer la limite de la suite $(n(nI_n-1))_{n\in\mathbb{N}}$.
- 10) Conclure quant à l'existence et la valeur de a, b et c.

III. Endomorphismes de carré nul (extrait et adapté du concours E3A 2014 - MP B).

On désigne par \mathbb{K} le corps \mathbb{R} ou \mathbb{C} .

Soit n un entier naturel non nul et soit $E = \mathbb{K}^n$.

Pour tout endomorphisme u de E, on note Ker(u) le noyau de u et Im(u) l'image de u.

1) Soit u et v deux endomorphismes de E qui commutent. Démontrer que $\mathrm{Ker}(u)$ et $\mathrm{Im}(u)$ sont stables par v.

Dans la suite de l'exercice, u désigne un endomorphisme de E tel que $u^2 = 0$.

- 2) Démontrer que Im(u) est inclus dans Ker(u).
- 3) Quelle inégalité obtient-on sur le rang de u? On citera précisément le théorème utilisé.
- 4) On suppose ici que n=2, soit $E=\mathbb{K}^2$. On suppose ici u non nul.
 - a) Démontrer qu'il existe une droite D de E telle que Ker(u) = Im(u) = D.
 - **b)** Soit v un endomorphisme de E tel que $v^2 \neq 0$ et $u \circ v = v \circ u$.
 - i) Démontrer que $v(D) \subset D$.
 - ii) Démontrer que $u \circ v = 0$.
 - c) Soit v et w deux endomorphismes de E tels que $v^2 \neq 0$, $w^2 \neq 0$, $u \circ v = v \circ u$ et $u \circ w = w \circ u$.

Démontrer que $v \circ w = 0$.

5) On revient au cas général. Soit $m \ge 2$ un entier naturel. Soit u_1, \ldots, u_m des endomorphismes de E tels que :

$$\forall (i,j) \in \{1,\ldots,m\}^2, \ u_i^2 = 0 \ \text{et} \ u_i \circ u_j = u_j \circ u_i.$$

On pose $F_1 = \text{Im}(u_1)$ et, pour chaque entier $2 \leq i \leq m$,

$$F_i = \operatorname{Im}(u_1 \circ u_2 \circ \cdots \circ u_{i-1} \circ u_i).$$

- a) Démontrer que, pour tout entier $1 \le i \le m-1$, F_i est un sous-espace vectoriel de E, stable par u_{i+1} .
- b) En déduire que, pour tout entier $1 \le i \le m$, F_i est de dimension au plus $\frac{n}{2^i}$.
- c) Dans le cas où $n < 2^m$, démontrer que $u_1 \circ u_2 \circ \cdots \circ u_m = 0$.

— FIN —

Devoir surveillé n° 08 – Version 2 –

Durée : 3 heures, calculatrices et documents interdits

Étude asymptotique de suites définies par une intégrale (extrait et adapté du concours E3A 2014 -MP B).

Pour chaque entier naturel n, on définit la fonction

$$f_n: [0,1] \to \mathbb{R}, \quad x \mapsto \frac{x^n}{\sqrt{1+x}}$$

ainsi que

$$u_n = \int_0^1 \frac{x^n}{\sqrt{1+x}} dx = \int_0^1 f_n.$$

- 1) Soit $n \in \mathbb{N}$. Établir le tableau de variations de f_n sur [0,1].
- 2) Représenter sur un même graphique les graphes des fonctions f_0 , f_1 et f_2 .
- 3) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite monotone (on précisera le sens de monotonie), qui converge vers 0.
- 4) Démontrer que, pour tout $n \in \mathbb{N}$,

$$(n+1)u_n = \frac{1}{\sqrt{2}} + \frac{1}{2} \int_0^1 \frac{x^{n+1}}{(\sqrt{1+x})^3} dx.$$

- 5) En déduire un équivalent pour la suite $(u_n)_{n\in\mathbb{N}^*}$.
- **6)** Déterminer des nombres α_1 , α_2 et α_3 tels que, pour tout $n \in \mathbb{N}$,

$$(n+2)(n+1)u_n = \alpha_1(n+2) + \alpha_2 + \alpha_3 \int_0^1 \frac{x^{n+2}}{(\sqrt{1+x})^5} dx.$$

7) En déduire l'existence et la valeur de nombres α et β tels que la suite $(u_n)_{n\in\mathbb{N}}$ admette le développement asymptotique :

$$u_n \underset{n \to +\infty}{=} \frac{\alpha}{n} + \frac{\beta}{n^2} + o\left(\frac{1}{n^2}\right).$$

8) Soit g une fonction de classe \mathscr{C}^{∞} sur l'intervalle [0,1]. On introduit la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ v_n = \int_0^1 x^n g(x) \mathrm{d}x.$$

Démontrer que, pour tout entier naturel non nul k, la suite $(v_n)_{n\in\mathbb{N}}$ admet un développement asymptotique de la forme :

$$v_n \underset{n \to +\infty}{=} \frac{\beta_1}{n} + \frac{\beta_2}{n^2} + \dots + \frac{\beta_k}{n^k} + o\left(\frac{1}{n^k}\right).$$

- 9) Exprimer les nombres β_1 et β_2 en fonction de g.
- 10) Soit h une fonction continue sur l'intervalle [0,1], soit la suite $(w_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \ w_n = n \int_0^1 x^n h(x) \mathrm{d}x.$$

Démontrer que la suite $(w_n)_{n\in\mathbb{N}}$ admet une limite finie et exprimer cette limite en fonction de h.

II. Endomorphismes cycliques.

Soit E un espace-vectoriel réel et $f \in \mathcal{L}(E)$.

On dit que f est cyclique s'il existe $a \in E$ tel que la famille $(f^k(a))_{k \in \mathbb{N}}$ engendre E. Dans cette situation, on dit que a est $associ\'{e}$ à f.

On note $\mathscr{C}(f) = \{ g \in \mathscr{L}(E) \mid g \circ f = f \circ g \}$ l'ensemble des endomorphismes commutant avec f.

On note $\mathscr{P}(f) = \left\{ \alpha_0 \mathrm{Id}_E + \alpha_1 f + \dots + \alpha_k f^k \mid k \in \mathbb{N}, \ (\alpha_0, \dots, \alpha_k) \in \mathbb{R}^{k+1} \right\}$ l'ensemble des polynômes en f.

Partie I : Questions préliminaires.

- 1) Démontrer que $\mathscr{C}(f)$ est un sous-espace vectoriel de $(\mathscr{L}(E), +, \cdot)$, contenant Id_E et stable par composition.
- 2) Soit $g \in \mathscr{C}(f)$, montrer que $\mathscr{P}(g) \subset \mathscr{C}(f)$.

Partie II: Étude en dimension finie.

On suppose dans cette partie que E est de dimension finie, égale à n, que f est cyclique et l'on considère $a \in E$ associé à f.

- 3) Justifier l'existence d'un plus grand entier naturel p tel que $(a, f(a), \ldots, f^{p-1}(a))$ soit une famille libre.
- 4) Démontrer que $(a, f(a), \ldots, f^{p-1}(a))$ est une base de E. Que vaut donc p?
- 5) Soit $g \in \mathcal{C}(f)$, soit $\alpha_0, \ldots, \alpha_{n-1}$ tels que $g(a) = \alpha_0 a + \alpha_1 f(a) + \cdots + \alpha_{n-1} f^{n-1}(a)$. On note $h = \alpha_0 \mathrm{Id}_E + \alpha_1 f + \cdots + \alpha_{n-1} f^{n-1}$. Démontrer que g = h.

- **6)** En déduire que $\mathscr{C}(f) = \mathscr{P}(f)$.
- 7) Démontrer que $(\mathrm{Id}_E, f, \dots, f^{n-1})$ est une base de $\mathscr{P}(f)$.

Partie III : Dérivations discrète et formelle en dimension finie.

On suppose que $E = \mathbb{R}_n[X]$, soit a un réel non nul. On considère les endomorphismes D et Δ de $\mathbb{R}_n[X]$ définis par

$$D: P \to P'$$
 et $\Delta: P \to P(X+a) - P(X)$.

- 8) Montrer que si $P \in \mathbb{R}_n[X]$ n'est pas constant, alors $\deg(\Delta(P)) = \deg(P) 1$.
- 9) En déduire que Δ est cyclique. Quels sont les polynômes associés à Δ ?
- **10)** Montrer que $D \in \mathscr{P}(\Delta)$.
- 11) Démontrer que D est cyclique.
- 12) Montrer que $\mathscr{C}(D) = \mathscr{C}(\Delta)$.

Partie IV : Étude de ces dérivations en dimension infinie.

On considère maintenant les endomorphismes D et Δ étendus à $\mathbb{R}[X]$. Soit $\varphi \in \mathscr{C}(\Delta)$.

- **13)** Soit $P \in \mathbb{R}[X]$ et $n \in \mathbb{N}$. Démontrer que $P \in \mathbb{R}_n[X] \Leftrightarrow \Delta^{n+1}(P) = 0$.
- **14)** En déduire que, pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par φ .
- **15)** Démontrer alors que, pour tout $P \in \mathbb{R}[X]$, $\varphi(P') = [\varphi(P)]'$.
- **16)** Démontrer que $\mathscr{C}(\Delta) = \mathscr{C}(D)$.
- 17) Montrer que Δ n'appartient pas à $\mathcal{P}(D)$.

— FIN —