6

4

2

2

2

CLAIMS

What is claimed is:

- 1) A circuit for applying power to an on-chip cache memory array comprising:
- a switch in series with a power supply and said on-chip cache memory array;
 - a PMU electrically connected to said on-chip cache memory array;
- a software application electrically connected to said PMU;
 - wherein said switch may be opened or closed by said PMU.
 - 2) The circuit as in Claim 1 wherein said switching device is connected between a negative terminal of said on-chip cache memory array and GND of said power supply.
 - 3) The circuit as in Claim 2 wherein said switching device is a MOSFET.
 - 4) The circuit as in Claim 2 wherein said switching device is a bipolar transistor.
- 5) The circuit as in Claim 1 wherein said switching device is connected between a
 positive terminal of said on-chip cache memory array and VDD of said power supply.
 - 6) The circuit as in Claim 5 wherein said switching device is a MOSFET.
 - 7) The circuit as in Claim 5 wherein said switching device is a bipolar transistor.
 - H.P. Docket Number 10016695

4

2

2

4

2

2

- A circuit for applying power to an on-chip cache memory array comprising:
 a switch in series with a power supply and said on-chip cache memory array;
 a PMU electrically connected to said on-chip cache memory array;
 wherein said switch may be opened or closed by said PMU.
- The circuit as in Claim 8 wherein said switching device is connected between a
 negative terminal of said on-chip cache memory array and GND of said power supply.
 - 10) The circuit as in Claim 9 wherein said switching device is a MOSFET.
 - 11) The circuit as in Claim 9 wherein said switching device is a bipolar transistor.
- 12) The circuit as in Claim 8 wherein said switching device is connected between a
 positive terminal of said on-chip cache memory array and VDD of said power supply.
 - 13) The circuit as in Claim 12 wherein said switching device is a MOSFET.
 - 14) The circuit as in Claim 12 wherein said switching device is a bipolar transistor.
- 15) A circuit for applying power to an on-chip cache memory array comprising:
 a switch in series with a power supply and said on-chip cache memory array;
 a software application electrically connected to a PMU;
- wherein said switch may be opened or closed by said PMU.

	16) The circuit as in Claim 15 wherein said switching device is connected between a
2	negative terminal of said on-chip cache memory array and GND of said power
	supply.
4	
	17) The circuit as in Claim 16 wherein said switching device is a MOSFET.
2	
	18) The circuit as in Claim 16 wherein said switching device is a bipolar transistor.
2	
	19) The circuit as in Claim 15 wherein said switching device is connected between a
2	positive terminal of said on-chip cache memory array and VDD of said power supply.
	20) The circuit as in Claim 19 wherein said switching device is a MOSFET.
2	
1	21) The circuit as in Claim 19 wherein said switching device is a bipolar transistor.
2	
	22) A method for applying power to a on-chip cache memory array comprising:
2	electrically connecting a switch between a power supply and said on-chip cache
	memory array;
4	electrically connecting a PMU to said on-chip cache memory array;
	electrically connecting a software application to said PMU;
5	wherein said switch may be opened or closed by said PMU.
	23) The method as in Claim 22 wherein said switching device is connected between a

negative terminal of said on-chip cache memory array and GND of said power

supply array.

2

H.P. Docket Number 10016695

4	
	24) The method as in Claim 23 wherein said switching device is a MOSFET.
2	25) The method as in Claim 23 wherein said switching device is a bipolar transistor.
2	
	26) The method as in Claim 22 wherein said switching device is connected between a
2	positive terminal of said on-chip cache memory array and VDD of said power supply
	27) The method as in Claim 26 wherein said switching device is a MOSFET.
2	
	28) The method as in Claim 26 wherein said switching device is a bipolar transistor.
2	
	29) A method for applying power to an on-chip cache memory array comprising:
2	electrically connecting a switch between a power supply and said on-chip cache
	memory array;
4	electrically connecting a PMU to said on-chip cache memory array;
	wherein said switch may be opened or closed by said PMU.
6	
	30) The method as in Claim 29 wherein said switching device is connected between a
2	negative terminal of said on-chip cache memory array and GND of said power
	supply array.
4	
	31) The method as in Claim 30 wherein said switching device is a MOSFET.
2	
	32) The method as in Claim 30 wherein said switching device is a bipolar transistor.

page 10 of 13

2

	33) The method as in Claim 29 wherein said switching device is connected between a
4	positive terminal of said on-chip cache memory array and VDD of said power supply.
	34) The method as in Claim 33 wherein said switching device is a MOSFET.
2	
	35) The method as in Claim 33 wherein said switching device is a bipolar transistor.
2	
	36) A method for applying power to a cache memory array comprising:
2	electrically connecting a switch between a power supply and said on-chip cache
	memory array;
4	electrically connecting a software application to a PMU;
	wherein said switch may be opened or closed by said PMU.
6	
	37) The method as in Claim 36 wherein said switching device is connected between a
2	negative terminal of said on-chip cache memory array and GND of said power
	supply array.
4	
	38) The method as in Claim 37 wherein said switching device is a MOSFET.
2	
	39) The method as in Claim 37 wherein said switching device is a bipolar transistor.
2	40) The method as in Claim 36 wherein said switching device is connected between a
	positive terminal of said on-chip cache memory array and VDD of said power
4	supply.
	41) The method as in Claim 40 wherein said switching device is a MOSFET.

H.P. Docket Number 10016695

42) The method as in Claim 40 wherein said switching device is a bipolar transistor.

2