Clase 2020-01-30

David Gabriel Corzo Mcmath

2020-Jan-30 10:22:58

1. Resolución de corto

■ Determine el área del triángulo entre los puntos P(), Q(), R():

$$\vec{a} = \overrightarrow{PQ} = \langle 4, 3, -2 \rangle$$

$$\vec{b} = \overrightarrow{PR} = \langle 5, 5, 1 \rangle$$

$$\text{Área } = \frac{1}{2} \left| \vec{a} \times \vec{b} \right|$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & -2 \\ 3 & 5 & 1 \end{vmatrix} = 13\hat{i} - 14\hat{j} + 5\hat{k}$$

$$\text{Área } = \frac{1}{2} \checkmark$$

2. Rectas y planos

• Ecs. Rectas: $\vec{r} = \vec{r_0} + t\vec{v}$

si
$$a \neq b \neq c \neq 0$$
 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

■ Paramétricas:

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

• Ecuación de plano:

$$\hat{n} = \vec{r} - \vec{r_0}$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\hat{n} = \vec{a} \times \vec{b}$$

2.1. Ejercicios

- 1. Considere los planos x + y = 0 & x + 2y + z = 1.
 - a) Determine si los planos son paralelos so no lo son encuentre el ángulo entr ellos:

$$\hat{n_1} = \langle 1, 1, 0 \rangle$$

$$\hat{n}_2 = \langle 1, 2, 1 \rangle$$

: Los dos planos no son paralelos

■ El $\hat{n_1}$ & $\hat{n_2}$ no son necesariamente ortogonales.

$$\cos \theta = \frac{\hat{n_1} \cdot \hat{n_2}}{|\hat{n_1}| \, |\hat{n_2}|} = \frac{3}{\sqrt{2}}$$

$$\cos \theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \qquad \theta = \frac{\pi}{2}$$

2. Encuentre la ec. de la recta que interseca a ambos planos $x + y = 0 \ \& \ x + 2y + z = 1$:

$$r = \vec{r_0} + t\vec{v}$$

Dos puntos sobre la recta

Como la recta esta en ambos planos, se debe resolver el sig. sistema de ecuaciones

$$x + y = 0 \implies x = -y$$

$$x + 2y + z = 1 \implies y = z - 1$$

z tiene cualquier valor, ahora encontrar escogiendo cualquier punto sobre la recta, en este caso 0

Primer punto z = 0

y = 1

x = -1

$$\therefore \langle -1, 1, 0 \rangle$$

Segundo punto z = 1

y = 0

x = 0

 $\therefore \langle 0, 0, 1 \rangle$

3. Encuentre la ecuación de la recta que pasa por P(-1,1,0) y Q $\underbrace{(0,0,1)}_{r_0}$:

$$\vec{r_0} = \langle 0, 0, 1 \rangle \langle -1, 1, 0 \rangle$$

$$\vec{v} = \overrightarrow{QP}0 \langle -1, 1, -1 \rangle$$

Ecuaciones paramétricas de la recta:

$$x = 0 - t$$
 $y = 0 + t$ $z = 1 - t$

4. Solución alterna:

$$x=-y$$
 $y=1-z$ Más incognitas que ecuaciones.
 x,y ó z pueden tener cualquier valor $z=t$
$$x=-1+t$$

$$y=1-t \ \, \because v_2=\langle 1,-1,1\rangle \quad \vec{r_0}=\langle -1,1-0\rangle$$

$$t=t$$

5. Solución geométrica:

- Encuentre un punto en ambos planos (0,0,1).
- L arecta está en el plano I, entonces la recta es perpendicular al vector normal del plano I.
- Está en el plano z, entonces también es perpendicular al segundo vector normal.
- ∴ la recta es perpendicular a ambos $\hat{n_1}$ & $\hat{n_2}$

$$ec{v} = \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - \hat{j} + \hat{k}$$

Ecuación de la recta: $r = \langle 0, 0, 1 \rangle + t \langle 1, -1, 0 \rangle$

6. Ejercicio 3: Encuentre el punto en el que la línea recta x=1+2t, y=4t, z=5t interseca al plano. x-y+2z=17.

$$x=1+2t$$

$$y=4t$$

$$z=5t$$
 Plano
$$x-y+2z=17 \quad 1+2t-4t+10t=17$$

$$8t=16 \implies \therefore t=2$$

El punto de intersección es (5,8,10).

- 7. Ejercicio 4: Encuentre una ec. del plano que contiene la recta x=1+t, y=2-t, z=4-3t y es paralela a plano 5x+2y+z=1.
 - Cualquier punto sobre la recta que también esté sobre el plano, t= 0.

Evaluemos en t=0
$$x = 1, y = 2, z = 4$$

 $\vec{r_0} = \langle 1, 2, 4 \rangle$

- Nos preguntamos: ¿Cómo se encuentra \hat{n} ?
- El vectos de dirección de la recta $v = \langle 1, -1, -2 \rangle$ es paralelo al plano.
- Como es paralelo al seguno plano, entonces tiene que ser perpendicular $\hat{n}_2 = \langle 5, 2, 1 \rangle$
- Lo que ocurre entonces es:

$$\vec{r_0}=\langle 1,2,4\rangle \quad \hat{n}=\langle 5,2,1\rangle$$
 Ec. Plano: $\implies 5(x-1)+2(y-2)+1(z-4)=0$

3

- 8. Ejercicio 5: Encuentre los números directores para la recta de intersección entre los planos x+y+z=1 & x+2y+3z=1.
 - Definición de "numeros directores": a,b,c del vector de dirección $\langle a,b,c \rangle$
 - La recta es ortogonal a ambos vectores normales:

$$\hat{n_1} = \langle 1, 1, 1 \rangle \quad text \& \hat{n_2} = \langle 1, 2, 3 \rangle \quad \text{de ambos planos}$$

$$\vec{v} = \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - 2\hat{j} + \hat{k}$$

Los números directores: a = 1, b = 2, c = 1

9. Ejercicio 6: Encuentre las ecs. aparamétricas de la recta que pasa por el punto (0,1,2), que es paralelo al plano x+y+z=2 y es perpendicular a la recta $r=\langle -2t,0,3t\rangle$.

$$L_1 r = \vec{r_0} + t\vec{v} \quad r_0 = \langle 0, 1, 2 \rangle$$

- ullet Aclaraciones: L_1 es la incógnita que tenemos que encontrar.
- Nos preguntamos: ¿Cómo se encuentra r?
- Plano I: $\hat{n} = \langle 1, 1, 1 \rangle$ es perpendicular al plano, es paralelo a L_1 .
- Recta II: $\hat{v}_2 = \langle -2, 0, 3 \rangle$ es perpendicular a L_1
- \blacksquare La recta es perpendiculae a \hat{n} y a $\vec{v_2}$

$$v = \hat{n} \times \vec{v_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -2 & 0 & 3 \end{vmatrix} = 3\hat{i} - 5\hat{j} + 2\hat{k}$$

$$r_0 = \langle 0, 1, 2 \rangle$$

 $v = \hat{v_2} \times \hat{n}$ Ecuaciones paramétricas:

$$x = 0 - 3t$$

$$y = 1 - 5t$$

$$z = 2 + 2t$$