TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7628P, TA7628HP

AMPLIFIER SYSTEM FOR CASSETTE TAPE RECORDER

TA7628P and TA7628HP are Pre + Power amplifier system designed for cassette tape recorder.

FEATURES

- Recording Playback for Pre Amplifier
- Buffer Amplifier (Recording Amplifier)
- Power Amplifier
- ALC Detector Circuit
- Muting Circuit
- Maximum Output Power (V_{CC} = 6V, f = 1kHz, THD = 10%)

: $P_{out} = 0.6W \text{ (Typ.) } (R_L = 8\Omega) : TA7628P$

: $P_{out} = 0.96W$ (Typ.) ($R_L = 4\Omega$) : TA7628HP

- Low Distortion and Wide Dynamic Range
- Without Turn-on "POP" for Muting Circuit
- Operating Supply Voltage Range

: $V_{CC (opr)} = 3.5 \sim 9V (Ta = 25^{\circ}C)$

Weight: 1.00g (Typ.)

BLOCK DIAGRAM

1 2001-06-25

ELECTRICAL CHARACTERISTICS (TA7628P) (Unless otherwise specified, $V_{CC} = 6V$, f = 1kHz, $Ta = 25^{\circ}C$) TOTAL

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Current	lccQ (1)	_	V _{CC} = 3.5V	7	_	_	mA
Quiescent Current	lcco (2)	_	V _{CC} = 6V	9	_	36	mA

PRE AMP.

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Open Loop Voltage Gain	G _{vo1}	_	_	55	70	_	dB
Closed Loop Voltage Gain	G _{v1}	_	_	_	40	_	dB
Maximum Output Voltage	V _{out1}	_	THD = 1%		0.7	_	V _{rms}
Input Resistance	R _{IN1}	_	_	24	30	_	kΩ
Equivalent Input Noise Voltage	V _{ni}	_	$R_g = 0$	_	1.4	2.5	μ V $_{rms}$

PRE AMP. + BUFFER AMP.

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Closed Loop Voltage Gain	G _{v2}	_	Pre amp. $G_V = 40dB$ Buffer amp. $G_V = 20dB$	_	60	_	dB
Maximum Output Voltage	V _{out2}	_	THD = 3%	1.5	1.7	_	V _{rms}
Output Noise Voltage	V _{no2}	_	$R_g = 0$, $G_{v2} = 60$ dB	_	1.2	2.5	mV_{rms}
ALC Effect	ALC1	_	$V_{in} = 0.775 \text{mV}_{rms} (-60 \text{dBm})$ ~0.0775 $V_{rms} (-20 \text{dBm})$	_	2	_	dB
ALC Range	ALC2	_	Range of THD≦1%	_	60	_	dB

POWER AMP.

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Open Loop Voltage Gain	G _{vo3}	_	_	60	70	_	dB
Closed Loop Voltage Gain	G _{v3}	_	_	_	40	_	dB
Output Power	Pout	_	$R_L = 8\Omega$, THD = 10%	0.5	0.6	_	W
Output Noise Voltage	V _{no3}	_	$R_g = 0$, $G_V = 40$ dB	_	0.3	1.0	mV _{rms}

5 2001-06-25

ELECTRICAL CHARACTERISTICS (TA7628HP) (Unless otherwise specified, $V_{CC} = 6V$, f = 1kHz, $Ta = 25^{\circ}C$) TOTAL

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Current	lccQ (1)	_	V _{CC} = 3.5V	7.5		_	mA
Quiescent Current	lccQ (2)	_	V _{CC} = 6V	11	_	35	mΑ

PRE AMP.

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Open Loop Voltage Gain	G _{vo1}	_	_	55	70	_	dB
Closed Loop Voltage Gain	G _{v1}	_	_	_	40	_	dB
Maximum Output Voltage	V _{out1}	_	THD = 1%	_	0.7	_	V _{rms}
Input Resistance	R _{IN1}	_	_	_	30	_	kΩ
Equivalent Input Noise Voltage	V _{ni}	_	$R_g = 0$	_	1.4	2.5	μ V $_{rms}$

PRE AMP. + BUFFER AMP.

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Closed Loop Voltage Gain	G _{v2}	_	Pre amp. $G_V = 40dB$ Buffer amp. $G_V = 20dB$	_	60	_	dB
Maximum Output Voltage	V _{out2}	_	THD = 3%	1.5	1.7	_	V _{rms}
Output Noise Voltage	V _{no2}	_	$R_g = 0$, $G_{v2} = 60$ dB	_	1.2	2.5	mV_{rms}
ALC Effect	ALC1	_	V _{in} = 0.775mV _{rms} (- 60dBm) ~0.0775V _{rms} (- 20dBm)	_	2	_	dB
ALC Range	ALC2	_	Range of THD≦ 1%	_	60	_	dB

POWER AMP.

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Open Loop Voltage Gain	G _{vo3}	_	_	60	70	_	dB
Closed Loop Voltage Gain	G _{v3}	_	_	_	40	_	dB
Output Power	Pout		$R_L = 4\Omega$, THD = 10%	0.8	0.96	_	w
		-	$V_{CC} = 9V$, $R_L = 8\Omega$, $THD = 10\%$	_	1.4	_	"
Output Noise Voltage	V _{no3}	_	$R_g = 0$, $G_V = 40dB$	_	0.3	1.0	mV_{rms}

6 2001-06-25

APPLICATION CIRCUIT

 $SW_1 \sim SW_6$ are set for play back. SW Functions.