安徽大学 2019—2020 学年第2 学期

《 大学物理 A (上) 》期末考试试卷(A 卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	11	三 (16)	三 (17)	三 (18)	四	总分
得 分							
阅卷人							

	467	<u> </u>			
性名	超兼订线	1. 一粒子运动质量 A. √3/3	B. 1/3 5点作半径为 2m 的圆	C. $2\sqrt{2}/3$	度为光速 c 的倍.() D. $\sqrt{2}/2$ 间 t 的关系为 $s = t^2$,则 $t = 3s$
	* % ∐	A. 18	B. 24	C. 30	D. 36
李 [冷 國	二者相对质心运动	, ,, , , , , ,	和 v, 质心的运动速度	J成的系统. 某时刻相距为 R , 医大小为 v . 则该刻质心距离甲 $\begin{pmatrix} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \end{pmatrix}$
条	莽	4.下列关于保守力。 A. 当仅有保守力值 B. 保守力和非保守 C. 万有引力,重力	B. 0.25 <i>R</i> , 8 <i>m</i> , 和非保守力说法正确 故功时,系统的机械 计力同时做功时系统的 力和摩擦力均属于保护	—— 能必守恒; 的动能才守恒; 守力;	D. 0.75R, 8mv ²
派			}转轴的转动平台上, 铃与转动平台组成的		在他将二哑铃水平收缩到胸前 ()
		A. 机械能守恒,角	角动量不守恒;	B. 机械能守恒,角	动量守恒;
		C. 机械能不守恒,	角动量守恒;	D. 机械能不守恒,	角动量也不守恒.
		C	质点做简谐振动,其. 于	•	$5\pi t$ -π/4) (SI 单位). 则在 $t = 2s$ ()

A. π^2 B. $\pi^2/2$ C. 1 D. 2	
7. 在同一弹性介质中,两列相干的平面简谐机械波的振幅之比是 4:1,则这	两列波的强度
之比为	()
A. 2:1 B. 4:1 C. 32:1 D. 16:1	
8. 已知一行波 $y(x,t) = 0.04\cos[100\pi(t-2x)]$ (SI 单位),则该波的传播速率为	m/s. (
A. 0.5 B. 1 C. 2 D. 4	
9. 一理想气体其分子速率分布遵从麦克斯韦速率统计分布律. 该系统处于流	温度分别为 T
和 T2 两个热平衡状态时的速率分布函数如图所示,则这两个状态的分子平均	J热运动速率关
系为 $f(v)$ \uparrow T_1	()
A. $\overline{\mathbf{v}}_1 < \overline{\mathbf{v}}_2$;	
B. $\overline{\mathbf{v}}_1 > \overline{\mathbf{v}}_2$;	
C. $\overline{v}_1 = \overline{v}_2$;	
D. 无法判断.	<i>v</i>
10. 一热机工质经历如下热力学循环过程: (1) 绝热膨胀; (2) 等温膨胀,	从高温执源吸
热 500J; (3) 绝热压缩; (4) 等温压缩,向低温热源放热 300J 至初状态. 则	
功为J,效率为	(
A. 300, 0.6 B. 200, 0.6 C. 300, 0.4 D. 200,	0.4
二、填空题(每小题 4 分,共 20 分)	身分
11. 由单一分子组成的理想气体其定体摩尔热容量为 3 <i>R</i> /2, <i>R</i> 为普适气体常	
摩尔热容为	1 至,为7人亿元
12. 满足、、和相位差	: 信空笙二个タ
12. 1M/C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	: 巴尼 寸 — 丨 示
	411111111111111111111111111111111111111
件的两列波称为相干波.	
件的两列波称为相干波. 13. 一单摆的悬线长 <i>l</i> ,在顶端固定的竖直下方一半处有个小钉,	
件的两列波称为相干波. 13. 一单摆的悬线长 l ,在顶端固定的竖直下方一半处有个小钉,如图所示. 则单摆的左右两方振动周期之比为 $T_1/T_2 =$	
件的两列波称为相干波. 13. 一单摆的悬线长 <i>l</i> ,在顶端固定的竖直下方一半处有个小钉,	
件的两列波称为相干波. 13. 一单摆的悬线长 l ,在顶端固定的竖直下方一半处有个小钉,如图所示. 则单摆的左右两方振动周期之比为 $T_1/T_2 =$	
件的两列波称为相干波. 13. 一单摆的悬线长 l ,在顶端固定的竖直下方一半处有个小钉,如图所示. 则单摆的左右两方振动周期之比为 $T_1/T_2 =$	的转动惯量。

三、 计算题 (共40分)

16. (本题 18分)

得分

1mol 单原子分子理想气体的循环过程如右图所示,其中状态点 c 的温度 $T_c = 600$ K. 求:

- (1) a 和 b 点的温度 T_a 和 T_b ;
- (2) ab, bc, ca 各个过程系统吸收的热量;
- (3) 根据能量守恒,经过一个循环系统做的净功.
- (普适气体常量 $R = 8.31 \text{ J·mol}^{-1} \cdot \text{K}^{-1}$, $\ln 2 = 0.693$)

姓线 製 R

17. (本题 14分)

得 分

- 一振幅为 20 cm,波长为 200 cm 的一维余弦波. 沿 x 轴正向传播,波速为 100 cm/s,在 t=0 时原点处质点在平衡位置向正位移方向运动. 求:
 - (1) 原点处质点的振动方程.
 - (2) 在 x = 150 cm 处质点的振动方程.

18. (本题 8 分)

得分

一个质量为m、长为L的匀质细棒绕其一端固定的水平轴O转动,如图所示. 当细棒角速度为 ω 时,根据微元-积分的方法求细棒动量的大小.

19. 如图所示,质量为 M、长为 l 的均匀细杆,其上端可绕水平轴 O 无摩擦地转动. 起初直杆竖直静止. 已知细棒对 O 轴的转动惯量为 $Ml^2/3$,设一质量为 m 的子弹(可视为质点)沿水平方向入射并恰好射入细杆的下端,若直杆(连同射入的子弹)的最大摆角为 $\theta=60^\circ$. 证明子弹入射细杆前的速率为:

$$v_0 = \sqrt{\frac{(M+2m)(M+3m)gl}{6m^2}}$$

率

製

