Tutorial—Laplace Transform

Example 1. Find the Laplace transform of hyperbolic sine: $\sinh(bt)$ and hyperbolic cosine: $\cosh(bt)$. Hint: $\sinh(bt) = (e^{bt} - e^{-bt})/2$ and $\cosh(bt) = (e^{bt} + e^{-bt})/2$.

Example 2. Find the Laplace transform of positive powers of t^n . Hint: apply integration by parts: $\int uv'dx = uv - \int u'vdx$. Let $u = t^n$, $dv = e^{-st}dt$, then $du = nt^{n-1}dt$, and $v = \int e^{-st}dt$.

Example 3. Find the Laplace transform of $f(t) = Ae^{-at}\sin(bt + \theta)$. Hint: (i) express f(t) in exponential form, (ii) first find $\mathfrak{L}[A\sin(bt + \theta)]$, and then apply $\mathfrak{L}[e^{-at}f(t)] = F(s+a)$.

Example 4. Find the Laplace transform of the following waveforms in Fig. 1. Which waveform that the Shifting Theorem is applicable?

Figure 1: Four different waveforms

Example 5. Find the Laplace transform of the sawtooth waveform shown in Fig. 2. Hint: de-composite the waveform into three components.

Figure 2: The sawtooth waveform and its compositions

Example 6. Find the Laplace transform of the single half-cycle sine wave shown in Fig. 3

Figure 3: A single half-cycle sine wave

Example 7. Find the Laplace transform of the sawtooth waveform shown in Fig. 2 by making use of a gate function $G_0(t_0,T) = U(t-t_0) - U(t-t_0-T)$, see Fig. 4.

Figure 4: A gate function

Example 8. Find the Laplace transform of the single half-cycle sine wave shown in Fig. 3 by making use of the gate function.

Example 9. Find the Laplace transform of the periodic half-cycle sine wave shown in Fig. 5.

Figure 5: Rectified half-cycle sine waveform

Example 10. Find the Laplace transform of the periodic sawtooth waveform shown in Fig. 6

Figure 6: A periodic sawtooth waveform

Example 11. Find $\mathfrak{L}[t^2 \sin \omega t]$. Hint: compute the differential of $\mathfrak{L}[\sin \omega t]$.

Example 12. Find $\mathfrak{L}\left[\frac{1}{t}\sin \omega t\right]$. Hint: compute the integral of $\mathfrak{L}[\sin \omega t]$.

Solution 1. From

$$\mathfrak{L}[e^{-at}] = \frac{1}{s+a} \tag{1}$$

then

$$\mathfrak{L}[e^{bt}] = \frac{1}{s-b}, \ \mathfrak{L}[e^{-bt}] = \frac{1}{s+b}$$
 (2)

and

$$\frac{1}{2} \left[\frac{1}{s-b} - \frac{1}{s+b} \right] = \frac{1}{2} \left[\frac{s+b-(s-b)}{(s-b)(s+b)} \right] = \frac{1}{2} \left[\frac{2b}{s^2-b^2} \right] \Rightarrow \mathfrak{L}[\sinh(bt)] = \frac{b}{s^2-b^2}$$
(3)

Similarly,

$$\frac{1}{2} \left[\frac{1}{s-b} + \frac{1}{s+b} \right] = \frac{1}{2} \left[\frac{s+b+(s-b)}{(s-b)(s+b)} \right] = \frac{1}{2} \left[\frac{2s}{s^2-b^2} \right] \Rightarrow \mathfrak{L}[\cosh(bt)] = \frac{s}{s^2-b^2} \tag{4}$$

Solution 2. From $\mathfrak{L}[t^n] = \int t^n e^{-st} dt$, and integrate by parts

$$\int_0^\infty t^n e^{-st} dt = -\frac{t^n}{s} e^{-st} \bigg|_0^\infty + \frac{n}{s} \int_0^\infty t^{n-1} e^{-st} dt = \frac{n}{s} \int_0^\infty t^{n-1} e^{-st} dt \tag{5}$$

It shows that

$$\mathfrak{L}[t^n] = -\frac{n}{s}\mathfrak{L}[t^{n-1}] \tag{6}$$

By extending this process, we have

$$\mathfrak{L}[t^n] = \frac{n}{s} \mathfrak{L}[t^{n-1}] = \frac{n}{s} \frac{n-1}{s} \mathfrak{L}[t^{n-2}] = \frac{n}{s} \frac{n-1}{s} \frac{n-2}{s} \cdots \frac{1}{s} \mathfrak{L}[t^0]$$
 (7)

But t^0 for t > 0 is the same as the unit step function U(t), which has a Laplacec transform 1/s. Hence

$$\mathfrak{L}[t^n] = \frac{n!}{s^{n+1}} \tag{8}$$

Solution 3. (i) Express f(t) in exponential form:

$$f(t) = \frac{A}{2j}e^{-at} \left[e^{j(bt+\theta)} - e^{-j(bt+\theta)} \right]$$

$$= \frac{A}{2j} \left[e^{(-a+jb)t}e^{j\theta} - e^{(-a-jb)t}e^{-j\theta} \right]$$
(9)

then

$$\mathfrak{L}[f(t)] = \frac{A}{2j} \left\{ e^{j\theta} \mathfrak{L}[e^{(-a+jb)t}] - e^{-j\theta} \mathfrak{L}[e^{(-a-jb)t}] \right\}$$

$$= \frac{A}{2j} \left\{ \frac{e^{j\theta}}{s+a-jb} - \frac{e^{-j\theta}}{s+a+jb} \right\}$$

$$= \frac{A}{2} \left\{ \frac{(s+a+jb)(-j\cos\theta+\sin\theta) - (s+a-jb)(-j\cos\theta-\sin\theta)}{(s+a)^2+b^2} \right\}$$

$$= A \left\{ \frac{(s+a)\sin\theta + b\cos\theta}{(s+a)^2+b^2} \right\}$$
(10)

(ii) First we have

$$\mathfrak{L}[A\sin(bt+\theta)] = A\mathfrak{L}[\sin bt \cos \theta + \cos bt \sin \theta]
= A\mathfrak{L}[\sin bt] \cos \theta + A\mathfrak{L}[\cos bt] \sin \theta
= A\left[\frac{b}{s^2 + b^2}\right] \cos \theta + A\left[\frac{s}{s^2 + b^2}\right] \sin \theta
= A\left[\frac{b \cos \theta + s \sin \theta}{s^2 + b^2}\right]$$
(11)

From $\mathfrak{L}[e^{-at}f(t)] = F(s+a)$, then

$$\mathfrak{L}[Ae^{-st}\sin(bt+\theta)] = A\left[\frac{b\cos\theta + (s+a)\sin\theta}{(s+a)^2 + b^2}\right]$$
(12)

Solution 4. For waveforms (a) and (b), they are equivalent because of the definition of Laplace transform. The integration starts from t = 0. Then

$$\mathfrak{L}[\sin\omega(t-t_0)] = \mathfrak{L}[\sin\omega t \cos\omega t_0 - \cos\omega t \sin\omega t_0] = \frac{\omega\cos\omega t_0 - s\sin\omega t_0}{s^2 + \omega^2}$$
(13)

For waveform (c), we have

$$\mathfrak{L}[\sin \omega t U(t - t_0)] = \int_{t_0}^{\infty} \sin \omega t e^{-st} dt$$

$$= \frac{1}{2j} \int_{t_0}^{\infty} \left[e^{(-s+j\omega)t} - e^{(-s-j\omega)t} \right] dt$$

$$= \frac{1}{2j} \left[\frac{e^{(-s+j\omega)t_0}}{s - j\omega} - \frac{e^{(-s-j\omega)t_0}}{s + j\omega} \right]$$

$$= e^{-st_0} \left[\frac{\omega \cos \omega t_0 + s \sin \omega t_0}{s^2 + \omega^2} \right]$$
(14)

For waveform (d), we note that the start of the waveform coincides with the shifted unit function. Hence, we have a pure time-shifted sine wave. Then

$$\mathfrak{L}[\sin\omega(t-t_0)U(t-t_0)] = e^{-st_0}\mathfrak{L}[\sin\omega t] = e^{-st_0}\frac{\omega}{s^2 + \omega^2}$$
 (15)

Hence, the Shifting Theorem can be applied to waveform (d).

Solution 5. Before the Laplace transform can be found, it is necessary to write the expression for f(t). It can be constructed from $f(t) = f_a(t) + f_b(t) + f_c(t)$, where

$$f_a(t) = \frac{E}{T}tU(t), \ f_b(t) = -EU(t-T), \ f_c(t) = -\frac{E}{T}(t-T)U(t-T)$$
 (16)

Now,

$$\mathfrak{L}[f_a(t)] = \frac{E}{Ts^2}, \ \mathfrak{L}[f_b(t)] = -\frac{E}{s}e^{-sT}, \ \mathfrak{L}[f_c(t)] = -\frac{E}{Ts^2}e^{-sT}$$
 (17)

Hence

$$\mathfrak{L}[f(t)] = \mathfrak{L}[f_a(t)] + \mathfrak{L}[f_b(t)] + \mathfrak{L}[f_c(t)] = \frac{E}{Ts^2} \left[1 - (sT+1)e^{-sT} \right]$$
(18)

Solution 6. We can de-composite the waveform as the addition of a continuous sine wave and a shifted sine wave that cancels the rest of the continuous waveform. We can write

$$f(t) = f_a(t) + f_b(t) = E \sin \frac{\pi}{T} t U(t) + E \sin \frac{2\pi}{T} \left(t - \frac{T}{2} \right) U\left(t - \frac{T}{2} \right)$$
 (19)

Since we known the Laplace transform of the sine function, with the aid of the Shifting Theorem we can write

$$\mathfrak{L}[f(t)] = \mathfrak{L}[f_a(t)] + \mathfrak{L}[f_b(t)]
= \frac{E2\pi/T}{s^2 + (2\pi/T)^2} + \frac{E2\pi/T}{s^2 + (2\pi/T)^2} e^{-sT/2}
= \frac{E2\pi/T}{s^2 + (2\pi/T)^2} \left(1 + e^{-sT/2}\right)$$
(20)

Solution 7. We can note that

$$f(t) = \frac{E}{T}tG(T) = \frac{E}{T}t\left[U(t) - U(t - T)\right]$$
(21)

then no graphical composition is necessary. We have

$$\mathfrak{L}[f(t)] = \frac{E}{T} \left\{ \mathfrak{L}[tU(t)] - \mathfrak{L}[tU(t-T)] \right\}
= \frac{E}{T} \left\{ \frac{1}{s^2} - \mathfrak{L}[(t-T) + T]U(t-T) \right\}
= \frac{E}{T} \left\{ \frac{1}{s^2} - \left[\frac{1}{s^2} + \frac{T}{s} \right] e^{-sT} \right\}$$
(22)

Solution 8. Using a gate function $G_0(T/2)$, we have

$$f(t) = E \sin\left(\frac{2\pi}{T}t\right) G_0\left(\frac{T}{2}\right) = E \sin\left(\frac{2\pi}{T}t\right) \left[U(t) - U\left(t - \frac{T}{2}\right)\right]$$
(23)

Then

$$\mathfrak{L}[f(t)] = E\mathfrak{L}\left[\sin\left(\frac{2\pi}{T}t\right)U(t)\right] - E\mathfrak{L}\left[\sin\left(\frac{2\pi}{T}t\right)U\left(t - \frac{T}{2}\right)\right] = F_1(s) - F_2(s)$$
(24)

where

$$F_1(s) = E\mathfrak{L}\left[\sin\left(\frac{2\pi}{T}t\right)U(t)\right] = \frac{E2\pi/T}{s^2 + (2\pi/T)^2}$$
 (25)

$$F_{2}(s) = E\mathfrak{L}\left[\sin\left(\frac{2\pi}{T}t\right)U\left(t - \frac{T}{2}\right)\right]$$

$$= E\mathfrak{L}\left\{\sin\frac{2\pi}{T}\left[\left(t - \frac{T}{2}\right) + \frac{T}{2}\right]U\left(t - \frac{T}{2}\right)\right\}$$

$$= E\mathfrak{L}\left\{\sin\left[\frac{2\pi}{T}\left(t - \frac{T}{2}\right) + \pi\right]U\left(t - \frac{T}{2}\right)\right\}$$

$$= E\mathfrak{L}\left\{-\sin\frac{2\pi}{T}\left(t - \frac{T}{2}\right)U\left(t - \frac{T}{2}\right)\right\}$$

$$= -\frac{E2\pi/T}{s^{2} + (2\pi/T)^{2}}e^{-sT/2}$$
(26)

then

$$\mathfrak{L}[f(t)] = \frac{E2\pi/T}{s^2 + (2\pi/T)^2} \left(1 + e^{-sT/2}\right)$$
 (27)

Solution 9. Let f(t) be a periodic function with period T_1 and $f_1(t)$, $f_2(t)$, \cdots be the function describing the first, second cycle (time shifted), \cdots . Then

$$f(t) = f_1(t) + f_1(t-T)U(t-T) + f_1(t)(t-2T)U(t-2T) + \cdots$$
 (28)

If we call $\mathfrak{L}[f_1(t)] = F_1(s)$, then by the Shifting Theorem, we have

$$\mathfrak{L}[f(t)] = (1 + e^{-sT} + e^{-2sT} + \cdots) F_1(s) = \frac{1}{1 - e^{-sT}} F_1(s)$$
 (29)

Now, $F_1(s) = \frac{E2\pi/T}{s^2 + (2\pi/T)^2} (1 + e^{-sT/2})$, then

$$\mathfrak{L}[f(t)] = \frac{1 + e^{-sT/2}}{1 - e^{-sT}} \frac{E2\pi/T}{s^2 + (2\pi/T)^2}$$

$$= \frac{1}{1 - e^{-sT/2}} \frac{E2\pi/T}{s^2 + (2\pi/T)^2}$$
(30)

Solution 10. We first determine $f_1(t)$ for the first period (it is simplest to use the gate function).

$$f_{1}(t) = -\frac{2E}{T} \left(t - \frac{T}{2} \right) \left[U(t) - U(t - T) \right]$$

$$= -\frac{2E}{T} U \left(t - \frac{T}{2} \right) + \frac{2E}{T} \left(t - T + \frac{T}{2} \right) U(t - T)$$

$$= -\frac{2E}{T} U \left(t - \frac{T}{2} \right) + \left[\frac{2E}{T} (t - T) + E \right] U(t - T)$$
(31)

We now find $F_1(s)$ from $f_1(t)$

$$F_{1}(s) = \mathfrak{L}[f_{1}(t)] = -\frac{2E}{T} \left(\frac{1}{s^{2}} - \frac{T}{2s} \right) + \left(\frac{2E}{Ts^{2}} + \frac{E}{s} \right) e^{-sT}$$

$$= \frac{2E}{Ts} \left[\frac{T}{2} \left(1 + e^{-sT} \right) - \frac{1}{s} \left(1 - e^{-sT} \right) \right]$$
(32)

Finally, we obtain F(s) from $F_1(s)$

$$F(s) = \frac{F_1(s)}{1 - e^{-sT}}$$

$$= \frac{2E}{Ts} \left[\frac{T}{2} \left(\frac{1 + e^{-sT}}{1 - e^{-sT}} \right) - \frac{1}{s} \right]$$
(33)

Solution 11. From $\mathfrak{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$, then

$$\frac{d}{ds}\mathfrak{L}[f(t)] = \frac{d}{ds} \int_0^\infty e^{-st} f(t) dt = \int_0^\infty \frac{d}{ds} \left(e^{-st} \right) f(t) dt = \int_0^\infty -t e^{-st} f(t) dt$$
(34)

then

$$-\frac{d}{ds}\mathfrak{L}[f(t)] = \int_0^\infty t f(t)e^{-st}dt = \mathfrak{L}[tf(t)]$$
(35)

hence

$$\mathfrak{L}[tf(t)] = -\frac{d}{ds}F(s) \tag{36}$$

Now

$$\mathfrak{L}[t^{2} \sin \omega t] = (-1)^{2} \frac{d^{2}}{ds^{2}} \{ \mathfrak{L}[\sin \omega t] \}
= \frac{d^{2}}{ds^{2}} \left(\frac{\omega}{s^{2} + \omega^{2}} \right) = \frac{2\omega(3s^{2} - \omega^{2})}{(s^{2} + \omega^{2})^{3}}$$
(37)

Solution 12. Consider

$$\int_{s}^{\infty} F(v)dv = \int_{s}^{\infty} \int_{0}^{\infty} e^{-st} f(t)dtdv = \int_{0}^{\infty} \int_{s}^{\infty} e^{-st} f(t)dvdt$$
$$= \int_{0}^{\infty} -\frac{1}{t} e^{-vt} f(t) \Big|_{s}^{\infty} dt = \int_{0}^{\infty} e^{-st} \frac{f(t)}{t} dt = \mathfrak{L}\left[\frac{f(t)}{t}\right]$$
(38)

then

$$\mathfrak{L}\left[\frac{\sin \omega t}{t}\right] = \int_{s}^{\infty} \mathfrak{L}[\sin \omega t] ds = \int_{s}^{\infty} \frac{\omega}{s^{2} + \omega^{2}} ds$$

$$= \tan^{-1}\left(\frac{s}{\omega}\right)\Big|_{s}^{\infty} = \frac{\pi}{2} - \tan^{-1}\left(\frac{s}{\omega}\right) = \tan^{-1}\left(\frac{s}{\omega}\right)$$
(39)