Correction CTM - TP 4

Suivi d'une cinétique par conductimétrie Correction de la préparation

I - Préparation

I.1 - Hydrolyse du chlorure de tertiobutyle

(concentrations)	tBuCl	+	$2\mathrm{H_2O}$	\rightarrow	tBuOH	+	$\mathrm{H_{3}O^{+}}$	+	Cl^-
$\mathbf{\hat{A}} \ t = 0$	C_0		Large excès		0		0		0
À t	$C_0 - x(t)$				x(t)		x(t)		x(t)
À t infini	0				C_0		C_0		C_0

1.2 - Étude de la cinétique

On a:

$$r = k_{app}(T)[\text{tBuCl}]^p$$
 avec $k_{app}(T) = k(T)[\text{H}_2\text{O}]_0^q$

— Si p=1, alors $\forall t\geq 0,\ r=-\frac{\mathrm{d}[\mathrm{tBuCl}]}{\mathrm{d}t}=k_{app}(T)[\mathrm{tBuCl}]$ qui, en intégrant, donne $[\mathrm{tBuCl}](t)=[\mathrm{tBuCl}]_0\ e^{-k_{app}(T)t}$. D'après le tableau d'avancement, on a $[\mathrm{tBuCl}](t)=C_0-x(t)$, on en déduit

$$\forall t \ge 0, \quad x(t) = C_0 \left(1 - e^{-k_{app}(T)t} \right)$$

— Si p=2, alors $\forall t \geq 0$, $r=-\frac{\text{d[tBuCl]}}{\text{d}t}=k_{app}(T)[\text{tBuCl}]^2$ qui s'intègre en $\frac{1}{[\text{tBuCl}]}=k_{app}(T)t+\frac{1}{[\text{tBuCl}]_0}$. En utilisant les expressions entre concentration et avancement volumique du tableau d'avancement, on trouve

 $\forall t \ge 0, \boxed{\frac{1}{x(t)} = \frac{1}{k_{app}(T)C_0^2 t} + \frac{1}{C_0}}$

•

1.3 - Étude de la conductivité

Les seules espèces qui conduisent l'électricité sont les espèces chargées électriquement donc ici les ions hydronium et chlorure. On a donc :

$$\forall t \geq 0, \, \gamma(t) = \lambda_{\mathrm{H_3O^+}}^{\circ}[\mathrm{H_3O^+}] + \lambda_{\mathrm{Cl^-}}^{\circ}[\mathrm{Cl^-}] \quad \mathrm{soit} \quad \gamma(t) = (\lambda_{\mathrm{H_3O^+}}^{\circ} + \lambda_{\mathrm{Cl^-}}^{\circ})x(t)$$

. On a également $\gamma_{\infty} = \lim_{t \to +\infty} \gamma(t) = (\lambda_{\mathrm{H_3O^+}}^{\circ} + \lambda_{\mathrm{Cl^-}}^{\circ}) C_0$ et donc $\boxed{\gamma(t) = \gamma_{\infty} \frac{x(t)}{C_0}}$.

En réutilisant les résultats de la partie précédente, on trouve bien :

— si $p=1,\, \forall t\geq 0,\, e^{-k_{app}(T)t}=1-\frac{x}{C_0}=1-\frac{\gamma(t)}{\gamma_\infty}$ soit, en linéarisant en appliquant le logarithme,

$$\ln(\gamma_{\infty} - \gamma(t)) = \ln(\gamma_{\infty}) - k_{app}(T)t$$

— si
$$p = 2$$
, $\forall t \ge 0$, $\frac{1}{x(t)} = \frac{\gamma_{\infty}}{C_0 \gamma(t)} = \frac{1}{k_{app}(T)C_0^2 t} + \frac{1}{C_0}$ soit

$$\boxed{\frac{1}{\gamma(t)} = \frac{B}{\gamma_{\infty}^2 k_{app}(T)} \frac{1}{t} + \frac{1}{\gamma_{\infty}}} \quad \text{avec} \quad B = \frac{\gamma_{\infty}}{C_0} = \lambda_{\text{H}_3\text{O}^+}^{\circ} + \lambda_{\text{Cl}^-}^{\circ}.$$