Let's say that $D_4 = \langle r, f \rangle$, where r is the 90° ccw rotation and f is the flip over a vertical axis. Draw arrows indicating what each element of D_4 does to this list of "binary squares."

 r^2 : $\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$ $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$ $\begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix}$ $\begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix}$ $\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}$

 r^3 : $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$

 r^2f : $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

 r^3f : $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

What if $D_4 = \langle s, t \rangle$, where s is the flip over a vertical axis and t is the flip over the up-right diagonal?