Difference-in-Differences and OLS Regressions

Sid Satya

This is a notebook that runs the regressions for my honors thesis project.

Difference-in-Differences Regressions

Importing Relevant DiD Datasets:

```
# Wage Datasets
pa_wage <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/physicians
sa_wage <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/secretary_s
# Employment Datasets
pa_emp <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/physicians_sa_emp <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/secretary_as</pre>
```

Physicians DiD Regressions:

```
# Wage DiD for Physicians vs. Aides, reg1 = without controls and with FE, reg2 = with controls and with
pa wage did reg1 <- lm(LOGWAGE ~ AI + AIPost + factor(YEAR) + factor(IND1990), data = pa wage)
pa_wage_did_reg2 <- lm(LOGWAGE ~ AI + AIPost + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(YEAR
# Employment DiD for Secretaries vs. Aides
pa_emp_did_reg1 <- lm(LOGEMP ~ AI + AIPost + factor(YEAR) + factor(IND1990), data = pa_emp)</pre>
pa_emp_did_reg2 <- lm(LOGEMP ~ AI + AIPost + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(YEAR)</pre>
stargazer(pa_wage_did_reg1,
          pa_wage_did_reg2,
          pa_emp_did_reg1,
         pa_emp_did_reg2,
         header = FALSE,
          type = "latex",
          title = "Difference-in-Differences: Physicians and Surgeons as Treatment Group, Nursing, Psyci
          omit = c("IND1990", "YEAR"),
          column.labels =c("No Controls", "With Controls", "No Controls", "With Controls"),
          covariate.labels = c("AI", "AI x Post", "Frac. College", "Frac. White", "Frac. Female", "Age"
          dep.var.labels = c("log(wage)", "log(employment)"),
          omit.stat =c("LL", "ser", "f"),
          add.lines = list(c("Industry FE?", "Yes", "Yes", "Yes", "Yes"),
                           c("Year FE?", "Yes", "Yes", "Yes", "Yes"))
```

Table 1: Difference-in-Differences: Physicians and Surgeons as Treatment Group, Nursing, Psychiatric, and Home Health Aides as Control Group

		Dependen	t variable:	
	$\log(\text{wage})$		log(employment)	
	No Controls	With Controls	No Controls	With Controls
	(1)	(2)	(3)	(4)
AI	1.776***	1.366***	-1.284**	5.576***
	(0.030)	(0.120)	(0.569)	(1.002)
AI x Post	0.061	0.081*	0.143	-1.254***
	(0.049)	(0.046)	(0.917)	(0.381)
Frac. College		-0.036		-9.916***
		(0.100)		(0.834)
Frac. White		0.645***		-1.772
		(0.169)		(1.403)
Frac. Female		-0.259***		-2.637***
		(0.089)		(0.742)
Age		0.425^{*}		-3.987**
		(0.225)		(1.875)
Constant	10.308***	8.883***	11.809***	17.457**
	(0.049)	(0.843)	(0.910)	(7.013)
Industry FE?	Yes	Yes	Yes	Yes
Year FE?	Yes	Yes	Yes	Yes
Observations	78	78	78	78
\mathbb{R}^2	0.990	0.993	0.343	0.910
Adjusted R ²	0.987	0.991	0.170	0.878

Note:

*p<0.1; **p<0.05; ***p<0.01

Secretaries & Administrative Assistants DiD Regressions

Secretaries DiD Regressions:

```
# Wage DiD for Secretaries vs. Aides, reg1 = without controls and with FE, reg2 = with controls and wit
sa wage did reg1 <- lm(LOGWAGE ~ AI + AIPost + factor(YEAR) + factor(IND1990), data = sa wage)
sa_wage_did_reg2 <- lm(LOGWAGE ~ AI + AIPost + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(YEAR
# Employment DiD for Secretaries vs. Aides
sa_emp_did_reg1 <- lm(LOGEMP ~ AI + AIPost + factor(YEAR) + factor(IND1990), data = sa_emp)</pre>
sa_emp_did_reg2 <- lm(LOGEMP ~ AI + AIPost + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(YEAR)</pre>
stargazer(sa_wage_did_reg1,
          sa_wage_did_reg2,
          sa_emp_did_reg1,
          sa_emp_did_reg2,
         header = FALSE,
          type = "latex",
          title = "Difference-in-Differences: Secretaries and Administrative Assistants as Treatment Gr
          omit = c("IND1990", "YEAR"),
          column.labels =c("No Controls", "With Controls", "No Controls", "With Controls"),
          covariate.labels = c("AI", "AI x Post", "Frac. College", "Frac. White", "Frac. Female", "Age"
          dep.var.labels = c("log(wage)", "log(employment)"),
          omit.stat =c("LL", "ser", "f"),
          add.lines = list(c("Industry FE?", "Yes", "Yes", "Yes", "Yes"),
                           c("Year FE?", "Yes", "Yes", "Yes", "Yes"))
```

OLS Regressions

Importing relevant OLS datasets:

```
p_wage_ols <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/p_wage_
s_wage_ols <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/s_wage_
a_wage_ols <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/a_wage_
p_emp_ols <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/p_emp_ol
s_emp_ols <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/s_emp_ol
a_emp_ols <-read.csv(file = "/Users/sidsatya/Desktop/berkeley/senior_year/thesis/aithesis/data/a_emp_ol</pre>
```

Wage OLS Regressions:

```
# reg1: without controls, reg2: with controls
pwagereg1 <- lm(LOGWAGE ~ num_patents, data=p_wage_ols)
pwagereg2 <- lm(LOGWAGE ~ num_patents + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(IND1990), d

swagereg1 <- lm(LOGWAGE ~ num_patents, data=s_wage_ols)
swagereg2 <- lm(LOGWAGE ~ num_patents + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(IND1990), d

awagereg1 <- lm(LOGWAGE ~ num_patents, data=a_wage_ols)
awagereg2 <- lm(LOGWAGE ~ num_patents + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(IND1990), d</pre>
```

Table 2: Difference-in-Differences: Secretaries and Administrative Assistants as Treatment Group, Nursing, Psychiatric, and Home Health Aides as Control Group

	$Dependent\ variable:$				
	log(wage)		log(employment)		
	No Controls	With Controls	No Controls	With Controls	
	(1)	(2)	(3)	(4)	
AI	0.076**	-0.363***	-0.820***	2.674***	
	(0.035)	(0.080)	(0.303)	(0.452)	
AI x Post	-0.018	-0.033	-0.063	0.029	
	(0.056)	(0.037)	(0.489)	(0.207)	
Frac. College		0.400***		-3.868***	
		(0.107)		(0.603)	
Frac. White		0.588***		-5.914***	
		(0.195)		(1.095)	
Frac. Female		0.255		0.288	
		(0.234)		(1.313)	
Age		1.452**		-9.446***	
O		(0.617)		(3.467)	
Constant	10.160***	5.422**	11.098***	40.268***	
	(0.056)	(2.277)	(0.485)	(12.800)	
Industry FE?	Yes	Yes	Yes	Yes	
Year FE?	Yes	Yes	Yes	Yes	
Observations	78	78	78	78	
\mathbb{R}^2	0.511	0.850	0.434	0.927	
Adjusted R ²	0.382	0.798	0.285	0.901	
N7 - 4	* <0.1. ** <0.05. *** <0.01				

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 3: Wage OLS for Each Occupation Against Number of AI-Related Patents by Year

	Dependent variable: log(wage)		
	Physicians and Surgeons	Secretaries and Administrative Assistants	Nursing, Psychiatric, and Home Health Aides
	(1)	(2)	(3)
Num. Patents	0.077***	0.0003	0.015
	(0.026)	(0.012)	(0.016)
Frac. College	-0.073	0.184*	-0.030
Ü	(0.956)	(0.094)	(0.110)
Frac. White	0.737***	-0.178	-0.385^{*}
	(0.211)	(0.234)	(0.221)
Frac. Female	-0.142	-0.113	-0.565
	(0.188)	(0.390)	(0.462)
Age	-0.669	-0.006	2.639***
C	(0.744)	(0.403)	(0.714)
Constant	14.503***	10.245***	0.348
	(3.064)	(1.538)	(2.683)
Industry Fixed Effects?	Yes	Yes	Yes
Observations	39	39	39
\mathbb{R}^2	0.788	0.255	0.938
Adjusted R ²	0.741	0.087	0.924

Note: *p<0.1; **p<0.05; ***p<0.01

Employment OLS Regressions:

```
# reg1: without controls, reg2: with controls
pempreg1 <- lm(LOGEMP ~ num_patents, data=p_emp_ols)</pre>
pempreg2 <- lm(LOGEMP ~ num_patents + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(IND1990), dat
sempreg1 <- lm(LOGEMP ~ num_patents, data=s_emp_ols)</pre>
sempreg2 <- lm(LOGEMP ~ num patents + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(IND1990), dat
aempreg1 <- lm(LOGEMP ~ num_patents, data=a_emp_ols)</pre>
aempreg2 <- lm(LOGEMP ~ num_patents + FRACCOLLEGE + FRACWHITE + FRACFEMALE + AGE + factor(IND1990), dat
stargazer(pempreg2,
          sempreg2,
          aempreg2,
          header = FALSE,
          type = "latex",
          title = "Employment OLS for Each Occupation Against Number of AI-Related Patents by Year",
          omit = c("IND1990"),
          dep.var.caption = "Dependent variable: log(employment)",
          dep.var.labels = "",
          column.labels = c('\\shortstack{Physicians and \\\\ Surgeons}',
                            '\\shortstack{Secretaries and \\\\ Administrative Assistants}',
                            '\\shortstack{Nursing, Psychiatric, and \\\\ Home Health Aides}'),
          covariate.labels = c("Num. Patents", "Frac. College", "Frac. White", "Frac. Female", "Age"),
          omit.stat = c("LL", "ser", "f"),
          add.lines = list(c("Industry Fixed Effects?", " Yes", " Yes", " Yes"))
```

Table 4: Employment OLS for Each Occupation Against Number of AI-Related Patents by Year

	Dependent variable: log(employment)		
	Physicians and Surgeons	Secretaries and Administrative Assistants	Nursing, Psychiatric, and Home Health Aides
	(1)	(2)	(3)
Num. Patents	0.084	-0.065***	-0.022
	(0.060)	(0.023)	(0.024)
Frac. College	3.256	0.166	0.119
Ü	(2.194)	(0.183)	(0.160)
Frac. White	0.088	0.030	0.531
	(0.485)	(0.455)	(0.322)
Frac. Female	0.181	-0.890	-1.576**
	(0.432)	(0.757)	(0.674)
Age	1.563	-0.954	0.618
	(1.708)	(0.783)	(1.041)
Constant	6.340	15.245***	7.932*
	(7.031)	(2.984)	(3.909)
Industry Fixed Effects?	Yes	Yes	Yes
Observations	39	39	39
\mathbb{R}^2	0.992	0.995	0.997
Adjusted R ²	0.991	0.994	0.996

Note: *p<0.1; **p<0.05; ***p<0.01