

DAY 4: APPLICATIONS OF MACHINE VISION

KE5108: DEVELOPING INTELLIGENT SYSTEMS FOR PERFORMING BUSINESS ANALYTICS

Dr TIAN Jing tianjing@nus.edu.sg

Tak.	700	740	221	atas	100	166	118	155	208	Trial.	229
242	200	218	110	Air	81	164	190	255	200	resk	221
241	343	1110	20	14	62	1012	77	100	20A	208	713
200	217	115	212	745	.236	147	530	19	201	218	211
291	200	331	222	219	226	196	334		258	213	234
T 2002	217	111	116	70	199	AV	-54		301	228	224
232	232	182	186	1111	100/		129	-/	grace .	225	225
NX.	236	2011	134	215		LITY	4 21	10	252	241 9.0	
1/2	COM.	336.1	308	1/3	10	7,00	Jone .	-12	EM	District Co.	16
	100	1	4115	-	19.50	U Mage	- 100				-
			4				100	10			
- AND THE	04	- 1	-	-	1			A STATE OF	1		# 3
	No.	4		-		0.18	10			7	
No. /			Separation of the last	-5ML	No.	C tn	The said			1	7
		-		Man -	1		20 1	. 97	100		100

- R. C. Gonzalez and R. E. Woods, *Digital Image Processing*, http://www.imageprocessingplace.com/
- Computer Vision Crash Course, Jia-Bin Huang, https://filebox.ece.vt.edu/~jbhuang/
- Computer Vision: Algorithms and Applications, Richard Szeliski, http://szeliski.org/Book/
- Programming Computer Vision with Python, http://programmingcomputervision.com/

- Introduction
- Feature representation: Motion
- Feature representation: Frequency-domain
- Classification and object detection

Computer vision tasks

Face Detection/Recognition

Object Detection

Sports

Object Tracking

Human Pose

Autonomous vehicle

Multi-view Geometry

3D Scene

Vision for Robots

Low Level Task

Mid Level Task

High Level Task

Input: Image

Output: Image

Examples:

Noise removal, image sharpening

Input: Image

Output: Attributes

Examples:

Object recognition, segmentation

Input: Attributes/Image

Output: Understanding

Examples:

Scene understanding, autonomous navigation

Source: https://adeshpande3.github.io/assets/Caption.png

Recap: Image filtering

Weighted summation

Source: http://setosa.io/ev/image-kernels/

Н

Review: questions

* Is the filtering operator

Example question: Fill in the blanks

→ What do you see?

© 2018 National University of Singapore. All Rights Reserved

© 2018 National University of Singapore. All Rights Reserved

Inspiration from human perception

 Early processing in humans perception filters for orientations and scales of frequency.

Early visual processing: Multi-scale edge and blob filters

Convolution theorem

Example: f and g are functions defined in spatial domain, while F and G are their corresponding functions defined in Fourier domain

$$f(x,y) * g(x,y) \Leftrightarrow F(u,v)G(u,v)$$

In words: the Fourier transform of the convolution of two functions is the product of their individual Fourier transforms

Because linear filtering operations can be carried out by simple multiplications in the Fourier domain

Convolution theorem

From image to video

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

Why is motion useful?

- Definition: optical flow is the apparent motion of brightness patterns in the image
- Note: apparent motion can be caused by lighting changes without any actual motion

GOAL: Estimate image motion at each pixel from optical flow.

弗 Estimating optical flow

- Given two subsequent frames, estimate the apparent motion vector field u(x,y), v(x,y) between them
 - Key assumptions
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far; the length of the vector u(x,y), v(x,y) are small.

Assumption:

The image motion of a surface patch changes gradually over time.

Brightness constancy

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$I(x+u, y+v, t+1) = I(x, y, t)$$

(assumption)

Optical flow constraints

- brightness constancy: H(x,y)=I(x+u, y+v)
- small motion: suppose we take the Taylor series expansion of I:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$
$$\approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

$$\approx I(x, y) + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \, \frac{\partial y}{\partial t} \right]$$

- How to get more equations for a pixel?
- Spatial coherence constraint:
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

Lucas-Kanade flow

Overconstrained linear system

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}}) & I_{y}(\mathbf{p_{1}}) \\ I_{x}(\mathbf{p_{2}}) & I_{y}(\mathbf{p_{2}}) \\ \vdots & \vdots \\ I_{x}(\mathbf{p_{25}}) & I_{y}(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p_{1}}) \\ I_{t}(\mathbf{p_{2}}) \\ \vdots \\ I_{t}(\mathbf{p_{25}}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

Least squares solution for d given by (A^TA) $d = A^Tb$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

Iterative refinement at same scale

- Iterative Lukas-Kanade Algorithm
 - 1.Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2.Warp I(t-1) towards I(t) using the estimated flow field
 - use image warping techniques
 - 3. Repeat until convergence

Coarse-to-fine optical flow estimation

Gaussian pyramid of image A at (t-1) Gaussian pyramid of image B at (t)

When optical flow fails?

- In other words, in what situations does the displacement of pixel patches not represent physical movement of points in space?
- A uniform rotating
 - nothing seems to move, yet it is rotating
- Changing directions or intensities of lighting can make things seem to move
 - for example, if the specular highlight on a rotating sphere moves.

📫 Machine learning

Objective: Looking for a function!

Speech Recognition

)= "How are you"

Image Recognition

Playing Go

$$=$$
 "5-5" (next move)

Chatbot

(what the user said) (system response)

Machine learning tasks in vision

 Object Classification what object ?

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

 Object Detection object or no-object ?

Sub-category analysis which object type ?

{people | vehicle | ... intruder}

{face | vehicle plate| gait → biometrics}

{gender | type | species | age}

Sequence { Recognition | Classification } ? what is happening / occurring ?

Image classification

Test Image

Classical machine learning pipeline

- 1. Select / develop features: SURF, HoG, SIFT, ...
- 2. Add on top of this Machine Learning for multiclass recognition and train classifier

Classical computer vision feature definition is domain-specific and time-consuming

What are the right features?

What are the right features?

- Object: shape
 - Local shape info, shading, shadows, texture
- Scene: geometric layout
 - linear perspective, gradients, line segments
- Material properties: Color, texture
- Action: motion
 - Optical flow, tracked points

 Histogram of an image provides the frequency of the brightness (intensity) value in the image.

def histogram(im):

h = np.zeros(255)
for row in im.shape[0]:
 for col in im.shape[1]:
 val = im[row, col]
 h[val] += 1

Count: 10192 Mean: 133.711 StdDev: 55.391

Min: 9 Max: 255 Mode: 178 (180)

Count: 10192 Mean: 104.637

Min: 11 Max: 254 Mode: 23 (440)

Color

L*a*b* color space

HSV color space

Texture (filter banks)

Gradients

"Bag of visual words"

All of these images have the same color histogram

Compute histogram in each spatial bin

Spatial pyramid

Category vs. instance recognition

Category:

- Find all the people
- Find all the buildings
- Often within a single image
- Often 'sliding window'

Instance:

- Is this face James?
- Find this specific famous building
- Often within a database of images

Object category detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch

pore. All Rights Reserved

Challenges in object detection

Object pose

'Clutter'

Occlusions

Intra-class appearance

Viewpoint

- Tested with
 - RGB
 - LAB
 - Grayscale

Slightly better performance vs. grayscale

- Gamma Normalization and Compression
 - Square root

Very slightly better performance vs. no adjustment

Log

Person /

→ non-person classification

centered

-1 1

uncentered

1	-8	0	8	-1
---	----	---	---	----

cubic-corrected

0	1
-1	0

Linear

SVM

diagonal

-1	0	1
-2	0	2
-1	0	1

Sobel

Linear

SVM

Person /

→ non-person

classification

Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles)

Histograms in 8x8 pixel cells

Contrast normalize

over overlapping

spatial blocks

Collect HOG's

over detection

window

Votes weighted by magnitude

Linear

SVM

Person /

→ non-person

classification

Contrast normalize

over overlapping

spatial blocks

Collect HOG's

over detection

window

R-HOG

Normalize with respect to surrounding cells

$$L2-norm: v \longrightarrow v/\sqrt{||v||_2^2+\epsilon^2}$$

CNN as feature extractor

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO Background? YES

CNN as feature extractor

- 1. Input image
- 2. Extract region proposals (~2k)
- 3. Compute CNN features

- 4. Classify regions
- Replace sliding windows with "selective search" region proposals
- Extract rectangles around regions
- Extract features with fine-tuned CNN (that was initialized with network trained on ImageNet before training)
- Classify last layer of network features with SVM, refine bounding box localization (bbox regression) simultaneously

Deep learning pipeline

"having had countless ConvNet papers rejected, published and ignored, and occasionally paid attention to, for over 15 years"

-- Yann Lecun

ZSS INSTITUTE OF SYSTEMS SCIEN

- Introduction
- Feature representation: Motion
- Feature representation: Frequency-domain
- Classification and object detection

Thank You!

Dr TIAN Jing Email: tianjing@nus.edu.sg