Chapter I

Sinusoidal Steady State Analysis

"Circuit Elements in the Phasor Domain"

Objectives

- To introduce phasors and convert the time domain sinusoidal waveform into phasors
- To develop the phasor relationships for the basic circuit elements
- To solve electric circuits in the phasor domain

Phasor Domain Sources

Convert time domain elements and sources into phasors

Time Domain

Phasor Domain

Circuit Elements in Frequency Domain

1. Resistance

$$i(t) = I_m \cos(\omega t - \psi)$$

$$v(t) = Ri = RI_m \cos(\omega t - \psi)$$

= $V_m \cos(\omega t - \psi)$

Then:

$$R = \frac{V_m}{I_m}$$

2. Inductance

Relationship between voltage and current

$$i(t) = I_m \cos(\omega t - 90) = I_m \sin(\omega t)$$

$$v(t) = L \frac{\mathrm{d}i}{\mathrm{d}t} = \omega L I_m \cos(\omega t) \qquad V_m = \omega L I_m$$

v and i have the same frequency, i lags v by 90°

الجامعة الألمانية بالقاهرة

 X_L is the inductive reactance (Ω)

3. Capacitors

Relationship between voltage and current

$$v = V_m \sin \omega t$$

$$i = C \frac{dv}{dt} = C\omega U_m \sin(\omega t + 90^0)$$
$$= I_m \sin(\omega t + 90^0)$$

$$I_{m} = \omega C V_{m} = 2\pi f C V_{m}$$

$$X_C = \frac{V_m}{I_m} = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

Summary of voltage-current relationship		
Element	Time domain	Frequency domain
R	v = Ri	V = RI
L	$v = L \frac{di}{dt}$	$V = j\omega LI$
С	$i = C \frac{dv}{dt}$	$V = \frac{I}{j\omega C}$

The voltage $v = 12\cos(60t + 45^{\circ})$ is applied to a 0.1-H inductor. Find the steady-state current through the inductor.

Solution:

For the inductor, $\mathbf{V} = j\omega L\mathbf{I}$, where $\omega = 60 \text{ rad/s}$ and $\mathbf{V} = 12/45^{\circ}$ V. Hence

$$\mathbf{I} = \frac{\mathbf{V}}{j\omega L} = \frac{12/45^{\circ}}{j60 \times 0.1} = \frac{12/45^{\circ}}{6/90^{\circ}} = 2/-45^{\circ} \,\text{A}$$

$$i(t) = 2\cos(60t - 45^{\circ}) \text{ A}$$

If voltage $v(t) = 6\cos(100t - 30^\circ)$ is applied to a 50 µF capacitor, calculate the current, i(t), through the capacitor.

Answer: $i(t) = 30 \cos(100t + 60^{\circ}) \text{ mA}$

The Impedance

- Any combination of series and/or parallel resistors, inductors and capacitors form an impedance.
- Z is the impedance where $Z = R+j\omega L j/\omega c$

The admittance

The admittance **Y** is the reciprocal of impedance, measured in siemens (S).

$$Z = \frac{V}{I}$$
 or $V = ZI$

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{\mathbf{I}}{\mathbf{V}}$$

$$\mathbf{Z} = R \pm jX = |\mathbf{Z}| \underline{/\theta}$$

$$\mathbf{Y} = G + jB$$

$$G + jB = \frac{1}{R + jX}$$

$$G + jB = \frac{1}{R + jX} \cdot \frac{R - jX}{R - jX} = \frac{R - jX}{R^2 + X^2}$$

Equating the real and imaginary parts gives

$$G = \frac{R}{R^2 + X^2}, \qquad B = -\frac{X}{R^2 + X^2}$$

Series and parallel Impedances

$$Z_{ab} = \frac{\mathbf{V}_{ab}}{\mathbf{I}} = Z_1 + Z_2 + \cdots + Z_n.$$

parallel

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \cdots + \mathbf{I}_n,$$

$$\frac{\mathbf{V}}{Z_{ab}} = \frac{\mathbf{V}}{Z_1} + \frac{\mathbf{V}}{Z_2} + \cdots + \frac{\mathbf{V}}{Z_n}.$$

$$Y = \frac{1}{Z} = G + jB$$

$$Y_{ab} = Y_1 + Y_2 + \cdots + Y_n.$$

Kirchhoff's Laws in the Frequency Domain

- Both KVL and KCL are hold in the <u>phasor domain</u> or more commonly called <u>frequency domain</u>.
- Moreover, the variables to be handled are <u>phasors</u>, which are <u>complex</u> <u>numbers</u>.
- Series and parallel combinations are the same as in DC circuits analysis.
- All the mathematical operations involved are now in complex domain.

Refer to Figure below, determine the time domain expression for the steady state current.

$$v_s$$
 is 750 cos (5000 t + 30°) V 0000Ω 00

Answer

$$\mathbf{I} = \frac{750 / 30^{\circ}}{150 / 53.13^{\circ}} = 5 / -23.13^{\circ} \text{ A.} \qquad i = 5 \cos (5000t - 23.13^{\circ}) \text{ A.}$$

$$i_s = 8\cos 200,000t \text{ A}$$

Find the steady-state expressions for v, i_1 , i_2

Solution

الجامعة الألمانية بالقاهرة

Step 1: Construct the phasor domain circuit

Step 2: Apply circuit analysis technique

$$Y = Y_1 + Y_2 + Y_3$$

$$= 0.16 + j0.12$$

$$= 0.2 / 36.87^{\circ} \text{ S.}$$

$$Z = \frac{1}{V} = 5 / -36.87^{\circ} \Omega$$

$$V = ZI = 40 / -36.87^{\circ} V.$$

Impedance Combinations

Determine the input impedance of the circuit in figure below at $\omega = 10$ rad/s.

Answer: $Z_{in} = 32.38 - j73.76$

