Figure 1: Predicted protein sequence of mG γ 12 (SEQ ID NO:1)

- 1 MSSKTASTNS IAQARRTVQQ LRLEASIERI KVSKASADLM SYCEEHARSD
- 51 PLLMGIPTSE NPFKDKKTCI IL*

Figure 2: cDNA sequence of mGγ12 variant 1 (SEQ ID NO:2)

1	CTAGAATTCA GCGGCCGCTG AATTCTAGGC GACGACGGCG AAGAGTGAGT
51	GCCAAGGTTC ATATGGGAAG GACTTTGGGG TGAGCATCTT CTCTATTTCC
101	AGCTGGCTTT TCTGATTTTC AGAAAGAAGA CTCATCAAAG ATGTCCAGCA
151	AGACGGCAAG CACCAACAGC ATAGCCCAAG CCAGGAGAAC TGTGCAGCAG
201	CTGAGATTGG AAGCCTCCAT CGAAAGAATA AAGGTCTCAA AAGCATCAGC
251	AGACCTGATG TCATACTGTG AGGAGCATGC CCGGAGCGAC CCCCTGCTGA
301	TGGGCATACC GACCTCAGAA AACCCGTTCA AGGATAAGAA GACCTGCATC
351	ATCTTATAGT GGACCAGGAA GCGCCCCTTG CCTCTTAACG CAAACCACAG
401	CAGCAACCTG AAGGGATTCC TTCAGCTTAC CTGGTAACCA CAGCTAGTAA
451	CTAAAACACC CTTCTCTCGG AATAATAGAC CCTGAAGTCT CTCTTTTCA
501	AGTTGTCCTT TCTTCACCCT TTACTGATTT AATACAGAAT AACAATCTTA
551	TTTTCTATTT GATAACTATG GTATCATATT GGGTTACTGT ATAAGGAAAA
601	TGGCAGGGGA GTTGTGGGAA GCTTGTCTTT ACAAAATATA ATTGATTAAG
651	ATATGTCAAG ACCTACATTG TCTAAGCACC GGCAAATTAA AATGTCGAGA
701	ATCACTTCAG TCAAAAACCT TTATATTCTG TTCTTAATAA TGTTTGTGCC
751	AACCTATATC CCATGTAAGG GATCTGGGGA GGAGGCATGT GTCTACAACC
801	ATACCTTTTT GCACTATGGG CACTAACCAC CCTGAAACTT CCTGCGGTAG
851	CTCCCTCCCT TCAGAGTTAC ATCATTATCC TGACTCTGTG TAGGTAAATT
901	TCCGTGAAAT TTTTGTACAA AAAAAAGGTA ATGAAAGAAC GTTGCAAAGA
951	TCATCTGCAT TATAATGAGT TGATGCTGTT CTCACTCCTC TCTTGGAATT
1001	GTGCTGGCCC CTTAGTCTAC AATAAACTGT GCCAATTAAA AACCTAAGGC
1051	TAAAACTGAA AGCCCTTTGA TGGGGTCTTA ACTCATATCA GTCATTTGGG
1101	CTTCTCTGAT CCTGAGGCTA AGAAAGGGGA AGAGACCCTC AGGAGGCAGC
1151	
1201	AAACTTCCAC CCTCATGACT GGAATGGAAG AGGGGACCGA GAGCCTCACA

ATCTCGGAGA GGGAGGAGAA ATTCTTAAAA ACAGCTGCTC TCCTGCGCCC 1251 1301 AGCTTCACAG GCAGCCCTGC CCCTTTCTCC TCACCAGCAT GGTACCTGCC CTTACTGCTA GAGCAGCTGC TTGTAGAGGG ACATTCCCTC CTTCCCAGTT 1351 1401 TTAACTGGTG GACCACAGTG GGGGGAAAAA CATTCAAGCG ATATAAAGAC 1451 ACTTGGGCTC TTTGCAGATG CCTATACTTC CAACACTACC ATGTCCACAA ACCACCCTGG GGGAGGGCCC TTCCAAAGGG AGGCTTGCTA GTTTCAGCGT 1501 CTAGCAGTTG GGTCCTCACT TTTACTCCAA TTGTGAAAAT AGCCCACGTA 1551 CCCTCGCAGT GTCCAGTAGG GATCCCAGAG GCACATAACC AAGAAAGGAT 1601 1651 TTTGACTTTG TCACAGTGAC TATTTAAAAT AATCTATTCG AAGTCCAAAC 1701 CAAACACAAA GCCTGTGATA TTTTAGGTTA TTAAGGTAAC TGCTAATGAA GGATTTTAAA AAGTGTCCTC AAAAAGGACT TAGCCCCGGG AGTTGTTTAT 1751 AAAATTTCCC CCACTTGTAT ACAGTGTGCA CTAAAAGAAA ATGTATTTTA 1801 1851 ATATCTAATG CCTGGGCTCT GAGCGTCATG CTTCTTGGTG GTAAACATGC AGTCCTGTTC CTAAGTGACT CAGAGGCATC AGAATTTCTC CACGTTACCC 1901 1951 ATCTGCTTGG CACTCGGAAC TGAGCGTGTG AAATCCATAG CGCTGCCCAC 2001 AACCTGTTCT CACTGCTTAG CTCCCAGCTG GATTAAAGAC ACCTGCTCAG GCGGGAGAGA GAGAGAGAGA GCGAGCTTTT ACCTTGGAAA AGGTAAAGAT 2051 GGAAATGTAC ACCAAAAAAG ACAATTTTTA CATTTAATGG AACATTCTTT 2101 TTTTTTACAA GTATATTTTT CTACTGATAG TTTCAGAACA CTAATCTTAT 2151 ATTCACTCTA ATCTTAAACA TGTTTCTTTA AATATTTATA AGGCAGTTTA 2201 2251 TTACAGAATA TTTTCATGCA ATCATGTGCA CATTATTGGT AGCAAACATA GTATATCCTT TAGTACTTTA GCATATTTTT GTTAAAATAC TTTTAATGGT 2301 2351 AAGAAATGAA CTTGAGGTCC CAGGAGGTTT TGTTGCCTTT TCATTGATTA 2401 GAGACAATAA ATATCTTGTA ACTTCCTAAC CAGATCTGAG CTGTGCTCAC 2451 AATAATAATA ATGAAATCAG ATTCTTTGAT GCTGGACTCA GGAGGGAAAT

2501 CATTAGCCAA CTGTTGACTT ACTTATAGCT AGATGTCTAT GTGAGAAAGT 2551 ATAATATATA TATATACACA TATATATGAC ATGTAAGAGT CACTTTTATT TATCTGTCTT TGTTCACTTA TGAAGCCGGT AACTGCAGCA GTATGTTGGT 2601 2651 GATGTCATGA TGCACAGAAG TCCCATGTGG AGTGTTTTTC CCACACTGAC AACTTGGCCT CCTTTCTGTG TGTTCAGTCT GTTGTCTGAA CTAACACTCC 2701 CGCGAGCACT ATACTCTTTA TACTCTGATC CCCCTAGTTC ATCTTAAATT 2751 2801 TGTCTGTGGC CCTGGCAAGA TAGCGTACAC AAGATTCCAT GACTCCAGAG CATCTTGAAG AAACATACAT ATTTTGAAAG AGGGGAAATG TAGCAGATAG 2851 2901 TTCACAAGCT GCGGGTTGTA GCTAAATATT CCATTTCTTT GAAATCATGT TTCTAAATTC TTTACCATCA GAAAGAAAAG GAGTGTCATA CACTTTCAAG 2951 GGAAGGCTTG GTCTGCGTTT TCTGTGTTTTG GATTATTTTT ATACTTTGCT 3001 GATCTTTAAG CTATCCATGG GGGAAATTTT ATACCAACGA GTTAATAATT 3051 3101 CTCATTCATC GTTTACACAA TGTAACATGT GTCATACTGG GGCCAGCGAG 3151 ATGGCTCAGT AGGTAAAGGT GCTTGATGCT AAGCCCGGCA GCCTGTGTTT CATCTACAGG ATGCACAACA TAAAAGAAAA GATCTGATTC CCACAGGTTC 3201 TCTTCTGACC TACACACAC CACACTAAAA TAACATTTAA AAATATGTGC 3251 CAAATTATAT TTGTTCGGGT GCCACCTTCC ACCAGCTTAC CACTACGGTA 3301 GAACTGTCAA ATTCATCTCC CTGAATTTGT CTTAAAGGGG TGTCCATGCA 3351 CAGGCCCAAG AGTCACCTCC AATGAAATAA ATGTAATACT GAAGTATGCC 3401 ATGATGTTTG TTGTTTTCTT TCATCGTAAG CCTGTAAGCA GGAAAAATAC 3451 3501 GTCAAATCAG ATAGAATAGA GCATTTACCA GTGGTCGATG GCCTGGTCAG 3551 TCCTGTGCCG GGTGACTTAG GACCAGGCAC GTCAGCTCTC TGAGCCTCCC 3601 CTTCCCTTGT TGTCACAAGG GAATAGAAGC AGAAGAAGCT GAGAGCCTCC 3651 CTATTCCCAG ATGCCCTGGT GGAATGACCT GCCTCTCTGC CGTTTCTGCC AACGTGTTGG TGCTATAAGC TGCTTCAAAT ACCAGTTTGT CTGTAGTGTG 3701 3751 TACTCACCTA ATCACTTGTT ATCCAGTGCC TGTTCTAGGT TTATGGACTT

3801	AACTATTTCT	GTGATGTTTC	ATTTTTAGCC	ATGTTAACTC	CTAACACATA
3851	TTCTCTTATG	TCTCAGTAAA	GTTTCATTTG	ATAAGTTGTT	GAGATTCTGT
3901	TATTTGATAA	TATTCTTCGG	CTGTCCATCC	AGCATCTTAA	TCACTTTAAA
3951	ACTGTGATTG	TTATTTGCAA	CTCTGTTCTT	TGGAAAGAAT	AAAAGCATTT
4001	TTTTTCACTT	GCTAACATGC	TCACAAATGT	GAGAGAAGAG	TCATTAAAAG
4051	CTTTACTTAC	TGGGTCAGTG	CGTCATTGAC	TCCTTTCTGT	GTTTTGCCCA
4101	ATAAATTAAT	AAAAGACCAA	АААААААА	AAAAAAAA	AAAAAA

Figure 3: cDNA sequence of $mG\gamma12$ variant 2 (SEQ ID NO:3)

1	GCAGCGGCGG CGGCGGCG	AC GACGGCGAAG	G AGTTCATATO	G GGAAGGACTT
51	TGGGGTGAGC ATCTTCTC	TA TTTCCAGCTC	G GCTTTTCTGA	TTCACCCCAC
101	CATTTAAAAC CTGGAGGC	AC TGGGCCACAC	: AAAGCCTTGC	TGATTTTCAG
151	AAAGAAGACT CATCAAAGA	AT GTCCAGCAAG	ACGGCAAGCA	CCAACAGCAT
201	AGCCCAAGCC AGGAGAAC	rg tgcagcagci	' GAGATTGGAA	GCCTCCATCG
251	AAAGAATAAA GGTCTCAAA	AA GCATCAGCAG	ACCTGATGTC	ATACTGTGAG
301	GAGCATGCCC GGAGCGAC	CC CCTGCTGATG	GGCATACCGA	CCTCAGAAAA
351	CCCGTTCAAG GATAAGAAC	A CCTGCATCAT	CTTATAGTGG	ACCAGGAAGC
401	GCCCCTTGCC TCTTAACGC	CA AACCACAGCA	GCAACCTGAA	GGGATTCCTT
451	CAGCTTACCT GGTAACCAC	CA GCTAGTAACT	AAAACACCCT	TCTCTCGGAA
501	TAATAGACCC TGAAGTCTC	T CTTTTTCAAG	TTGTCCTTTC	TTCACCCTTT
551	ACTGATTTAA TACAGAATA	A CAATCTTATT	TTCTATTTGA	TAACTATGGT
601	ATCATATTGG GTTACTGTA	T AAGGAAAATG	GCAGGGGAGT	TGTGGGAAGC
651	TTGTCTTTAC AAAATATAA	T TGATTAAGAT	ATGTCAAGAC	CTACATTGTC
701	TAAGCACCGG CAAATTAAA	A TGTCGAGAAT	CACTTCAGTC	AAAAACCTTT
751	ATATTCTGTT CTTAATAAT	G TTTGTGCCAA	CCTATATCCC	ATGTAAGGGA
801	TCTGGGGAGG AGGCATGTG	T CTACAACCAT	ACCTTTTTGC	ACTATGGGCA
851	CTAACCACCC TGAAACTTC	C TGCGGTAGCT	CCCTCCCTTC	AGAGTTACAT
901	CATTATCCTG ACTCTGTGT	A GGTAAATTTC	CGTGAAATTT	TTGTACAAAA
951	AAAAGGTAAT GAAAGAACG	T TGCAAAGATC	ATCTGCATTA	TAATGAGTTG
1001	ATGCTGTTCT CACTCCTCT	C TTGGAATTGT	GCTGGCCCCT	TAGTCTACAA
1051	TAAACTGTGC CAATTAAAA	A CCTAAGGCTA	AAACTGAAAG	CCCTTTGATG
1101	GGGTCTTAAC TCATATCAG	T CATTTGGGCT	TCTCTGATCC	TGAGGCTAAG
1151	AAAGGGGAAG AGACCCTCA	G GAGGCAGCTT	CCACTCCAGG	GCTCTTGATC

TCTGCTGGAT TGGGGGTGGC CACCTCAGAA ACTTCCACCC TCATGACTGG 1201 1251 AATGGAAGAG GGGACCGAGA GCCTCACAAT CTCGGAGAGG GAGGAGAAAT 1301 TCTTAAAAAC AGCTGCTCTC CTGCGCCCAG CTTCACAGGC AGCCCTGCCC 1351 CTTTCTCCTC ACCAGCATGG TACCTGCCCT TACTGCTAGA GCAGCTGCTT GTAGAGGGAC ATTCCCTCCT TCCCAGTTTT AACTGGTGGA CCACAGTGGG 1401 GGGAAAAACA TTCAAGCGAT ATAAAGACAC TTGGGCTCTT TGCAGATGCC 1451 TATACTTCCA ACACTACCAT GTCCACAAAC CACCCTGGGG GAGGGCCCTT 1501 CCAAAGGGAG GCTTGCTAGT TTCAGCGTCT AGCAGTTGGG TCCTCACTTT 1551 1601 TACTCCAATT GTGAAAATAG CCCACGTACC CTCGCAGTGT CCAGTAGGGA TCCCAGAGGC ACATAACCAA GAAAGGATTT TGACTTTGTC ACAGTGACTA 1651 TTTAAAATAA TCTATTCGAA GTCCAAACCA AACACAAAGC CTGTGATATT 1701 1751 TTAGGTTATT AAGGTAACTG CTAATGAAGG ATTTTAAAAA GTGTCCTCAA 1801 AAAGGACTTA GCCCCGGGAG TTGTTTATAA AATTTCCCCC ACTTGTATAC 1851 AGTGTGCACT AAAAGAAAAT GTATTTTAAT ATCTAATGCC TGGGCTCTGA GCGTCATGCT TCTTGGTGGT AAACATGCAG TCCTGTTCCT AAGTGACTCA 1901 GAGGCATCAG AATTTCTCCA CGTTACCCAT CTGCTTGGCA CTCGGAACTG 1951 AGCGTGTGAA ATCCATAGCG CTGCCCACAA CCTGTTCTCA CTGCTTAGCT 2001 CCCAGCTGGA TTAAAGACAC CTGCTCAGGC GGGAGAGAGA GAGAGAGAC 2051 GAGCTTTTAC CTTGGAAAAG GTAAAGATGG AAATGTACAC CAAAAAAGAC 2101 AATTTTTACA TTTAATGGAA CATTCTTTTT TTTTACAAGT ATATTTTTCT 2151 ACTGATAGTT TCAGAACACT AATCTTATAT TCACTCTAAT CTTAAACATG 2201 2251 TTTCTTTAAA TATTTATAAG GCAGTTTATT ACAGAATATT TTCATGCAAT 2301 CATGTGCACA TTATTGGTAG CAAACATAGT ATATCCTTTA GTACTTTAGC 2351 ATATTTTTGT TAAAATACTT TTAATGGTAA GAAATGAACT TGAGGTCCCA 2401 GGAGGTTTTG TTGCCTTTTC ATTGATTAGA GACAATAAAT ATCTTGTAAC

2451 TTCCTAACCA GATCTGAGCT GTGCTCACAA TAATAATAAT GAAATCAGAT 2501 TCTTTGATGC TGGACTCAGG AGGGAAATCA TTAGCCAACT GTTGACTTAC 2551 TTATAGCTAG ATGTCTATGT GAGAAAGTAT AATATATAT TATACACATA 2601 TATATGACAT GTAAGAGTCA CTTTTATTTA TCTGTCTTTG TTCACTTATG 2651 AAGCCGGTAA CTGCAGCAGT ATGTTGGTGA TGTCATGATG CACAGAAGTC CCATGTGGAG TGTTTTTCCC ACACTGACAA CTTGGCCTCC TTTCTGTGTG 2701 2751 TTCAGTCTGT TGTCTGAACT AACACTCCCG CGAGCACTAT ACTCTTTATA 2801 CTCTGATCCC CCTAGTTCAT CTTAAATTTG TCTGTGGCCC TGGCAAGATA 2851 GCGTACACAA GATTCCATGA CTCCAGAGCA TCTTGAAGAA ACATACATAT 2901 TTTGAAAGAG GGGAAATGTA GCAGATAGTT CACAAGCTGC GGGTTGTAGC 2951 TAAATATTCC ATTTCTTTGA AATCATGTTT CTAAATTCTT TACCATCAGA AAGAAAAGGA GTGTCATACA CTTTCAAGGG AAGGCTTGGT CTGCGTTTTC 3001 3051 TGTGTTTGGA TTATTTTTAT ACTTTGCTGA TCTTTAAGCT ATCCATGGGG 3101 GAAATTTTAT ACCAACGAGT TAATAATTCT CATTCATCGT TTACACAATG 3151 TAACATGTGT CATACTGGGG CCAGCGAGAT GGCTCAGTAG GTAAAGGTGC TTGATGCTAA GCCCGGCAGC CTGTGTTTCA TCTACAGGAT GCACAACATA 3201 AAAGAAAAGA TCTGATTCCC ACAGGTTCTC TTCTGACCTA CACACACACA 3251 3301 CACTAAAATA ACATTTAAAA ATATGTGCCA AATTATATTT GTTCGGGTGC 3351 CACCTTCCAC CAGCTTACCA CTACGGTAGA ACTGTCAAAT TCATCTCCCT GAATTTGTCT TAAAGGGGTG TCCATGCACA GGCCCAAGAG TCACCTCCAA 3401 TGAAATAAAT GTAATACTGA AGTATGCCAT GATGTTTGTT GTTTTCTTTC 3451 ATCGTAAGCC TGTAAGCAGG AAAAATACGT CAAATCAGAT AGAATAGAGC 3501 3551 ATTTACCAGT GGTCGATGGC CTGGTCAGTC CTGTGCCGGG TGACTTAGGA 3601 CCAGGCACGT CAGCTCTCTG AGCCTCCCCT TCCCTTGTTG TCACAAGGGA 3651 ATAGAAGCAG AAGAAGCTGA GAGCCTCCCT ATTCCCAGAT GCCCTGGTGG AATGACCTGC CTCTCTGCCG TTTCTGCCAA CGTGTTGGTG CTATAAGCTG 3701

3751	CTTCAAATAC	CAGTTTGTCT	GTAGTGTGTA	CTCACCTAAT	CACTTGTTAT
3801	CCAGTGCCTG	TTCTAGGTTT	ATGGACTTAA	CTATTTCTGT	GATGTTTCAT
3851	TTTTAGCCAT	GTTAACTCCT	AACACATATT	CTCTTATGTC	TCAGTAAAGT
3901	TTCATTTGAT	AAGTTGTTGA	GATTCTGTTA	TTTGATAATA	TTCTTCGGCT
3951	GTCCATCCAG	CATCTTAATC	ACTTTAAAAC	TGTGATTGTT	ATTTGCAACT
1001	CTGTTCTTTG	GAAAGAATAA	AAGCATTTTT	TTTCACTTGC	TAACATGCTC
1051	ACAAATGTGA	GAGAAGAGTC	ATTAAAAGCT	TTACTTACTG	GGTCAGTGCG
101	TCATTGACTC	CTTTCTGTGT	TTTGCCCAAT	AAATTAATAA	AAGACCAAAA
151	AAAAAAAAA	AAAAAAAAA	AAAA		

amino acid sequence of human Gy12 (SEQ ID NO:4) Figure 4:

1. MSSKTASTNN IAQARRTVQQ LRLEASIERI KVSKASADLM SYCEEHARSD 51. PLLIGIPTSE NPFKDKKTCI IL

FIGURE 5