ESERCIZI 10

- 1. Dato uno spazio euclideo di dimensione finita e un suo riferimento cartesiano, spiegare come si rappresenta un suo sottospazio euclideo nel riferimento cartesiano fissato.
- **2.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino i punti A(1,-1,2), B(2,1,-1), C(0,1,2). Tenendo conto del fatto che due vettori sono paralleli se formano un insieme linearmente dipendente,
 - (i) determinare un punto D tale che il vettore \overrightarrow{CD} sia parallelo al vettore \overrightarrow{AB} .
 - (ii) Determinare il punto E tale che il vettore \overrightarrow{CE} sia uguale al vettore \overrightarrow{AB} .
- **3.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si consideri la retta r passante per il punto P(2,1,0) e con giacitura $\overrightarrow{r} = \mathcal{L}(u)$, dove u è il vettore di componenti (3,-2,1).
 - (i) Determinare la giacitura di un piano che sia parallelo a r.
 - (ii) Determinare la giacitura di un piano che non sia parallelo a r.
- **4.** Fissato un riferimento cartesiano di un piano euclideo, si considerino i punti A(1,-1), B(-1,-3) e C(1,1). Determinare le componenti del vettore \overrightarrow{AB} e quelle del vettore \overrightarrow{BC} . Dire se A, B e C sono allineati (tre punti si dicono allineati se appartengono a una stessa retta).
- **5.** Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 2, si considerino i punti A(1,1), B(2,2), C(0,0), D(3,-2).
 - (1) Dire se tra i punti dati ce ne sono tre allineati (ossia, che sono contenuti in una stessa retta) e, in tal caso, scrivere la retta che contiene i tre punti.
 - (2) Rappresentare la retta r per $B \in D$.
 - (3) Rappresentare la retta s per C di vettore direzionale $\mathbf{v}(0,1)$ (ossia, la sua giacitura è generata da \mathbf{v}).
 - (4) Rappresentare la retta per D con stessa giacitura della retta s.
- 6. Fissato un riferimento cartesiano in uno spazio euclideo di dimensione 3:
 - (1) rappresentare la retta passante per P(1,3,-2) e con giacitura $\mathcal{L}(v(2,0,1);$
 - (2) rappresentare il piano (sottospazio di dimensione 2) per il punto Q(2,1,1) e giacitura $\mathcal{L}(u(3,1,2),u'(1,1,1))$; dimostrare che la giacitura della retta considerata nel punto (1) è contenuta nella giacitura di questo piano;
 - (3) rappresentare la retta s per C(2,1,0) e con giacitura $\mathcal{L}(v(2,3,1);$ determinare l'intersezione di questa retta con il piano considerato al punto (2).
- 7. Fissato un riferimento cartesiano di uno spazio euclideo di dimensione 3, si considerino la retta $s: \left\{ \begin{array}{ccc} x+z+2 &=& 0 \\ -x+2y+1 &=& 0 \end{array} \right.$ e il punto B(1,0,1).
 - (a) Calcolare un vettore direzionale di s.
 - (b) Dire se la retta s': $\begin{cases} x = 1+t \\ y = 2t \\ z = 1+2t \end{cases}$ è incidente, parallela o sghemba con s (due t)
 - rette sono sghembe se non sono incidenti e non sono parallele).
 - (c) Determinare il piano per B contenente s. Questo piano è parallelo a s'?
 - (d) Determinare una retta r passante per B e incidente s. Rappresentare il piano che contiene r ed s.