MSADS 31010 - Linear and Non-Linear Models Final Project (Team 3)

Used Cars Dataset in United States

Team members: Forough Mofidi, Naoki Tsumoto, Shaojie Chen, Bonny Mathew

```
In [1]: #Import necessary packages
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          import numpy as np
          # Set Pandas options to display a maximum of 1000 rows
          pd.set_option('display.max_rows', 1000)
          EDA and Data-Preprocessing steps:
           1. data distribution
           2. check for missing values
           3. impute missing values
           4. conduct PCA for variables that are highly correlated
 In [8]: #from google.colab import drive
          #drive.mount('/content/drive')
In [95]: # Reading the dataset
          loc = "/Users/foroughmofidi/Downloads/U of Chicago/Winter 2024/Linear Non-Linear/Final Project _ LNL/Data/used_cars.csv"
          df = pd.read_csv(loc,
                           low_memory=False,
                           nrows= 100000,
                           verbose=True)
         /var/folders/zx/0n2pn4p50s159drz1fg2x01w0000gn/T/ipykernel_91967/797224431.py:4: FutureWarning:
         The 'verbose' keyword in pd.read_csv is deprecated and will be removed in a future version.
          Tokenization took: 811.40 ms
          Type conversion took: 1794.20 ms
          Parser memory cleanup took: 7.03 ms
In [96]: # Checking the snapshot of the data
          df.head()
```

Out[96]:		vin bac	ck_legroom	bed bed_height	bed_length	body_type	cabin	city	city_fuel_economy	combine_fuel_economy	daysonmarket	dealer_zip	description	engine_cylinders	engine_displacement
	O ZACNJABB5KPJ92	2081	35.1 in 1	NaN NaN	NaN	SUV / Crossover	NaN	Bayamon	NaN	NaN	522	960	[!@@Additional Info@@!]Engine: 2.4L I4 ZERO EVAP M-AIR,Full Size Temporary Use Spare Tire,Manufacturer's Statement of Origin,Quick Order Package 2XB,Tires: 215/60R17 BSW AS Touring,Transmission: 9- Speed 948TE Automatic,Wheels: 17' x 7.0' Aluminum		1300.0
	1 SALCJ2FX1LH85	58117	38.1 in 1	NaN NaN	NaN	SUV / Crossover	NaN	San Juan	NaN	NaN	207	922	[!@@Additional Info@@!]Keyless Entry,Ebony Morzine Headliner,Chrome Wheel Protection Pack,Powered Tailgate,Loadspace Mat,Wheels: 18' Style 5075 Gloss Sparkle Silver,Cargo Carrier,High Speed Emergency Braking,Adaptive Cruise Control w/Stop & Go,Sunshade,12-Way Electric Front Seats,Rubber Mats,Drive Pack,Basic Rear Seat Convenience Pack,Premium Interior Protection,Blind Spot Assist,Cargo Net		2000.0
	2 JF1VA2M67G9829	9723	35.4 in l	NaN NaN	NaN	Sedan	NaN	Guaynabo	17.0	NaN	1233	969	NaN	Н4	2500.0
	3 SALRR2RV0L2433		37.6 in I		NaN	SUV / Crossover	NaN	San Juan	NaN	NaN	196	922	[!@@Additional Info@@!]Fog Lights,7 Seat Package,Wheels: 21' 9 Spoke,GVWR: 6,900 lbs,Full Length Black Roof Rails,Twin-Speed Transfer Case,Cargo Carrier,Car Care Kit,Rubber Mat Set,Electronic Air Suspension,Prem Interior Protection/Storage Pack,Ebony Headlining,Wheel Protection Pack Chrome Locks,Cargo Mat,Tire Pressure Gauge,Windshield Sunshade,Basic Rear Seat Convenience Pack,Chrome Wheel Locks,Front Center Console Cooler Compartment,Tires: 21',Cabin Air Ionisation	V6	3000.0

In [97]: # Checking the datatypes and dims of dataset print('The dimensions of the dataset are:',df.shape) df.info()

The dimensions of the dataset are: (100000, 66) <class 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999 Data columns (total 66 columns): # Column Non-Null Count Dtype 0 vin 100000 non-null object 95046 non-null object 1 back_legroom 2 bed 607 non-null object 3 8123 non-null bed_height object bed length 8123 non-null object 99599 non-null body_type object 1667 non-null object 6 cabin 7 city 100000 non-null object city_fuel_economy 83984 non-null float64 combine_fuel_economy 0 non-null float64 9 daysonmarket 100000 non-null int64 10 dealer_zip 100000 non-null int64 11 12 description 97457 non-null object engine cylinders 97002 non-null object 13 engine_displacement 94661 non-null float64 14 engine_type 97002 non-null object exterior_color 98607 non-null object 16 17 fleet 56925 non-null object frame damaged 56925 non-null object franchise_dealer 100000 non-null bool 19 franchise_make 74584 non-null object 20 front legroom 95046 non-null object fuel_tank_volume 95046 non-null object 23 fuel_type 97541 non-null object 56925 non-null object 24 has accidents 95046 non-null object 25 height 83984 non-null highway_fuel_economy float64 26 27 horsepower 94661 non-null float64 interior color 88208 non-null object 28 29 isCab 56925 non-null object 30 is_certified 0 non-null float64 31 8730 non-null object is_cpo 32 is_new 100000 non-null bool 33 6110 non-null object is_oemcpo 34 latitude 100000 non-null float64 35 length 95046 non-null object 36 listed date 100000 non-null object 37 100000 non-null object listing color listing_id 100000 non-null int64 38 39 longitude 100000 non-null float64 main_picture_url 85008 non-null object major_options 93516 non-null object 100000 non-null make name object 42 maximum_seating 95046 non-null 43 object 44 mileage 96443 non-null float64 model_name 100000 non-null object 45 owner count 54278 non-null float64 46 47 power 85697 non-null object 100000 non-null float64 48 price salvage 56925 non-null object 49 100000 non-null int64 savings_amount 51 seller_rating 99358 non-null float64 100000 non-null int64 52 sp_id 53 100000 non-null object sp_name 54 theft_title 56925 non-null object 55 torque 84650 non-null object 56 transmission 98999 non-null object Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js non-null object

```
58 trimId
                                          96177 non-null object
           59 trim name
                                          96159 non-null
                                                           object
           60 vehicle_damage_category 0 non-null
                                                            float64
           61 wheel system
                                          95376 non-null object
           62 wheel_system_display
                                          95376 non-null object
           63 wheelbase
                                          95046 non-null
                                                           object
           64 width
                                          95046 non-null object
           65 year
                                          100000 non-null int64
          dtypes: bool(2), float64(13), int64(6), object(45)
          memory usage: 49.0+ MB
In [98]: # Check summary of numerical variables
          df.describe()
                                                                                                                                                                     listing_id
                                                                                                                                                                                   longitude
Out[98]:
                city_fuel_economy combine_fuel_economy daysonmarket
                                                                         dealer_zip engine_displacement highway_fuel_economy
                                                                                                                            horsepower is_certified
                                                                                                                                                         latitude
                                                                                                                                                                                                  mileage
                                                                                                                                                                                                           owner_count
                    83984.000000
                                                   0.0 100000.000000 100000.000000
                                                                                         94661.000000
                                                                                                              83984.000000 94661.000000
                                                                                                                                               0.0 100000.000000 1.000000e+05 100000.000000 96443.000000 54278.000000
          count
                       22.236700
                                                           77.682170
                                                                      14346.712650
                                                                                          2802.220555
                                                                                                                 29.091696
                                                                                                                             245.387414
                                                                                                                                                        41.418281 2.752572e+08
                                                                                                                                                                                              31130.643437
                                                                                                                                                                                                               1.454346
                                                  NaN
                                                                                                                                              NaN
                                                                                                                                                                                  -74.962234
          mean
                        7.807983
                                                          109.629986
                                                                      15502.216726
                                                                                           1159.202851
                                                                                                                  7.058758
                                                                                                                              86.521390
                                                                                                                                                        1.106694 8.943492e+06
                                                                                                                                                                                   3.935869
                                                                                                                                                                                             42835.631267
                                                                                                                                                                                                               0.815929
            std
                                                  NaN
                                                                                                                                              NaN
           min
                        8.000000
                                                  NaN
                                                            0.000000
                                                                       922.000000
                                                                                           700.000000
                                                                                                                 11.000000
                                                                                                                              70.000000
                                                                                                                                              NaN
                                                                                                                                                       18.346700 9.873062e+07
                                                                                                                                                                                 -122.320000
                                                                                                                                                                                                 0.000000
                                                                                                                                                                                                               1.000000
           25%
                       18.000000
                                                                                                                 25.000000
                                                                                                                                                                                  -74.331500
                                                                                                                                                                                                               1.000000
                                                  NaN
                                                           14.000000
                                                                      6704.000000
                                                                                          2000.000000
                                                                                                                             176.000000
                                                                                                                                              NaN
                                                                                                                                                       40.755800 2.744280e+08
                                                                                                                                                                                                 7.000000
           50%
                       21.000000
                                                           36.000000
                                                                                          2500.000000
                                                                                                                 28.000000
                                                                                                                             241.000000
                                                                                                                                                       41.126400 2.783952e+08
                                                                                                                                                                                  -73.830500
                                                                                                                                                                                             15236.000000
                                                                                                                                                                                                               1.000000
                                                  NaN
                                                                      7960.000000
                                                                                                                                              NaN
           75%
                       25.000000
                                                           82.000000
                                                                      11743.000000
                                                                                          3500.000000
                                                                                                                 32.000000
                                                                                                                                                       42.300500 2.803310e+08
                                                                                                                                                                                  -73.021800 43304.000000
                                                                                                                                                                                                              2.000000
                                                  NaN
                                                                                                                             295.000000
                                                                                                                                              NaN
                       127.000000
                                                         2150.000000
                                                                     98108.000000
                                                                                          8400.000000
                                                                                                                127.000000
                                                                                                                             808.000000
                                                                                                                                                                                                              15.000000
           max
                                                  NaN
                                                                                                                                              NaN
                                                                                                                                                       47.549200 2.816772e+08
                                                                                                                                                                                  -66.078500 785778.000000
In [99]: # Check if the target variable (price) has any values below zero
          df[df['price']< 0]</pre>
           vin back_legroom bed bed_height bed_length body_type cabin city_city_fuel_economy combine_fuel_economy daysonmarket dealer_zip description engine_cylinders engine_displacement engine_type exterior_color fleet
In [100... # plot a histogram of the target variable: the plot shows a highly skewed distribution hence there is a need to scale
          # the dataset by taking log
          plt.hist(df['price'], color = 'maroon')
          plt.title('Histogram of Price')
          plt.ylabel('Frequency')
          plt.show()
```

Histogram of Price 100000 80000 60000 Frequency 40000 20000 0.0 0.2 0.6 0.4 0.8 1.0 1.2 1.4 1e6

```
In [15]: # Taking the log of the price variable
df['log10_price'] = df['price'].apply(lambda x: np.log10(x))

In [16]: # plot a histogram of the transformed target variable

plt.hist(df['log10_price'], color = 'maroon')
plt.title('Histogram of Log of Price')
plt.ylabel('Frequency')
plt.show()
```



```
In [17]: # histogram plots of few of the numerical variables
         y = df['city_fuel_economy']
         x = df['daysonmarket']
         z = df['horsepower']
         s = df['mileage']
         plt.subplot(1, 3, 1)
         plt.hist(y, color = 'maroon')
         plt.axvline(y.mean(), color='w', linestyle='dashed', linewidth=1)
         min_ylim, max_ylim = plt.ylim()
         plt.text(y.mean()*1.1, max_ylim*0.9, ' Mean: {:.2f}'.format(y.mean()))
         plt.title("CityFuelEconomy")
         plt.subplot(1, 3, 2)
         plt.hist(x, color = 'grey')
         plt.axvline(x.mean(), color='w', linestyle='dashed', linewidth=1)
         min_ylim, max_ylim = plt.ylim()
         plt.text(x.mean()*1.1, max_ylim*0.9, ' Mean: {:.2f}'.format(x.mean()))
         plt.title("DaysonMarket")
         plt.subplot(1, 3, 3)
         plt.hist(z, color = 'black')
         plt.axvline(z.mean(), color='w', linestyle='dashed', linewidth=1)
         min_ylim, max_ylim = plt.ylim()
         plt.text(z.mean()*1.1, max_ylim*0.9, ' Mean: {:.2f}'.format(z.mean()))
         plt.title("Horsepower")
         plt.suptitle("HISTOGRAM PLOTS")
         Text(0.5, 0.98, 'HISTOGRAM PLOTS')
```

HISTOGRAM PLOTS


```
In [18]: # histogram plots of few of the numerical variables
         s = df['mileage']
         t = df['engine displacement']
         u = df['savings_amount']
         plt.subplot(1, 3, 1)
         plt.hist(s, color = 'maroon')
         plt.axvline(s.mean(), color='w', linestyle='dashed', linewidth=1)
         min_ylim, max_ylim = plt.ylim()
         plt.text(s.mean()*1.1, max_ylim*0.9, ' Mean: {:.2f}'.format(s.mean()))
         plt.title("Mileage")
         plt.subplot(1, 3, 2)
         plt.hist(t, color = 'grey')
         plt.axvline(t.mean(), color='w', linestyle='dashed', linewidth=1)
         min_ylim, max_ylim = plt.ylim()
         plt.text(t.mean()*1.1, max_ylim*0.9, ' Mean: {:.2f}'.format(t.mean()))
         plt.title("EngineDisplacement")
         plt.subplot(1, 3, 3)
         plt.hist(u, color = 'black')
         plt.axvline(u.mean(), color='w', linestyle='dashed', linewidth=1)
         min_ylim, max_ylim = plt.ylim()
         plt.text(u.mean()*1.1, max_ylim*0.9, '
                                                      Mean: {:.2f}'.format(u.mean()))
         plt.title("SavingsAmount")
         plt.xlim(0, 50000)
         plt.suptitle("HISTOGRAM PLOTS")
         Text(0.5, 0.98, 'HISTOGRAM PLOTS')
```

Out[18]:

Checking for Missing Values

```
In [19]: # Identify if there are any variables with null values
         df.isnull().sum().head()
                             0
         vin
Out[19]:
                         4954
         back_legroom
                         99393
                         91877
         bed_height
         bed_length
                         91877
         dtype: int64
In [20]: # Identfify what percentage of the values are missing for each variable
         null_percentage = df.isnull().sum()/df.shape[0]*100
         null_percentage
```

	vin	0.000
Out[20]:	back_legroom	4.954
	bed	99.393
	bed_height	91.877
	bed_length	91.877
	body_type	0.401
	cabin	98.333
	city	0.000
	city_fuel_economy	16.016
	combine_fuel_economy	100.000
	daysonmarket	0.000
	dealer_zip	0.000
	description	2.543
	engine_cylinders	2.998
	engine_displacement	5.339 2.998
	<pre>engine_type exterior_color</pre>	1.393
	fleet	43.075
	frame_damaged	43.075
	franchise_dealer	0.000
	franchise make	25.416
	front_legroom	4.954
	fuel_tank_volume	4.954
	fuel_type	2.459
	has_accidents	43.075
	height	4.954
	highway_fuel_economy	16.016
	horsepower	5.339
	interior_color	11.792
	isCab	43.075
	is_certified	100.000
	is_cpo	91.270
	is_new	0.000
	is_oemcpo	93.890
	latitude	0.000 4.954
	length listed_date	0.000
	listing_color	0.000
	listing_id	0.000
	longitude	0.000
	main_picture_url	14.992
	major_options	6.484
	make_name	0.000
	maximum_seating	4.954
	mileage	3.557
	model_name	0.000
	owner_count	45.722
	power	14.303
	price	0.000
	salvage	43.075
	savings_amount	0.000
	<pre>seller_rating sp_id</pre>	0.642 0.000
	sp_ru sp_name	0.000
	theft_title	43.075
	torque	15.350
	transmission	1.001
	transmission_display	1.001
	trimId	3.823
	trim_name	3.841
	vehicle_damage_category	100.000
	wheel_system	4.624
1 11	wheel system display	4.624
Loading [Math	Jax]/jax/output/CommonHTML/fonts	s/ rex/fontdata.js

```
width
                                           4.954
                                          0.000
          year
          log10_price
                                          0.000
          dtype: float64
In [21]: # Identifying variables to drop
          cols todrop = null percentage[null percentage > 50].keys()
          cols todrop
          Index(['bed', 'bed_height', 'bed_length', 'cabin', 'combine_fuel_economy',
Out[21]:
                  'is_certified', 'is_cpo', 'is_oemcpo', 'vehicle_damage_category'],
                 dtype='object')
In [22]: # Dropping variables with more than 50% missing values
          df_clean = df.drop(['price'], axis = 1)
          df clean = df clean.drop(cols todrop, axis=1)
          df_clean.head()
Out[22]:
                             vin back_legroom body_type
                                                               city city_fuel_economy daysonmarket dealer_zip
                                                                                                                  description engine_cylinders engine_displacement ... transmission transmission_display trimId trim_name wheel_si
                                                                                                               [!@@Additional
                                                   SUV /
                                                                                                              Info@@!]Engine:
                                                                                                                                                                                    9-Speed Automatic
                                                                                                                                                                                                                Latitude
          0 ZACNJABB5KPJ92081
                                                          Bayamon
                                                                                NaN
                                                                                              522
                                                                                                                                          14
                                                                                                                                                          1300.0 ...
                                                                                                                                                                                                      t83804
                                                Crossover
                                                                                                                 2.4L I4 ZERO
                                                                                                                                                                                            Overdrive
                                                                                                                                                                                                                  FWD
                                                                                                                        EV...
                                                                                                               [!@@Additional
                                                                                                              Info@@!]Keyless
                                                                                                                                                                                     9-Speed Automatic
                                                          San Juan
                                                                                                         922
                                                                                              207
                                                                                                                                          14
                                                                                                                                                                                                                 S AWD
          1 SALCJ2FX1LH858117
                                                                                NaN
                                                                                                                                                          2000.0 ...
                                                Crossover
                                                                                                                  Entry, Ebony
                                                                                                                                                                                            Overdrive
                                                                                                                       Mor...
          2 JF1VA2M67G9829723
                                        35.4 in
                                                   Sedan Guaynabo
                                                                                 17.0
                                                                                              1233
                                                                                                         969
                                                                                                                        NaN
                                                                                                                                          Н4
                                                                                                                                                          2500.0 ...
                                                                                                                                                                               М
                                                                                                                                                                                       6-Speed Manual t58994
                                                                                                                                                                                                                   Base
                                                                                                               [!@@Additional
                                                                                                                 Info@@!]Fog
                                                                                                                                                                                                                 V6 HSE
                                                                                                                                                                                     8-Speed Automatic
                                                          San Juan
                                                                                              196
                                                                                                         922
                                                                                                                                          ٧6
                                                                                                                                                          3000.0 ...
          3 SALRR2RV0L2433391
                                                                                NaN
                                                                                                                                                                               Α
                                                                                                                                                                                                      t86074
                                                Crossover
                                                                                                                 Lights,7 Seat
                                                                                                                                                                                            Overdrive
                                                                                                                                                                                                                   AWD
                                                                                                                     Packa...
                                                                                                               [!@@Additional
                                                                                                              Info@@!]Keyless
                                                                                                                                                                                    9-Speed Automatic
                                                          San Juan
                                                                                NaN
                                                                                               137
                                                                                                         922
                                                                                                                                          14
                                                                                                                                                          2000.0 ...
                                                                                                                                                                                                      t86759
                                                                                                                                                                                                                 S AWD
          4 SALCJ2FXXLH862327
                                                Crossover
                                                                                                                  Entry, Ebony
                                                                                                                                                                                            Overdrive
                                                                                                                       Mor...
```

5 rows × 57 columns

In [25]: !pip instatt reature-engine

Dealing with missing character variables

```
In [23]: df_obj = df_clean.select_dtypes(include=['object'])
           #dropping character variables that are either ids or ones with too much granularity
           df_obj = df_obj.drop(['description','vin','main_picture_url','trimId','major_options','torque'], axis = 1)
           cols = df_obj.columns
           #convert variables to categorical
           df_obj[cols] = df[cols].astype('category')
 In [24]: df_obj.isnull().sum().head()
                               4954
           back_legroom
 Out[24]:
                                401
           body_type
           city
                                  0
           engine_cylinders
                               2998
                               2998
           engine type
           dtype: int64
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
Collecting feature-engine
           Obtaining dependency information for feature-engine from https://files.pythonhosted.org/packages/62/60/77fcc9d3cfaabab34027aa8ea0025c5e2d4cf9561fa9725a38f0785b43aa/feature engine-1.6.2-py2.p
         y3-none-any.whl.metadata
           Downloading feature engine-1.6.2-py2.py3-none-any.whl.metadata (8.8 kB)
         Requirement already satisfied: numpy>=1.18.2 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from feature-engine) (1.24.3)
         Requirement already satisfied: pandas>=1.0.3 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from feature-engine) (2.2.0)
         Requirement already satisfied: scikit-learn>=1.0.0 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from feature-engine) (1.3.0)
         Requirement already satisfied: scipy>=1.4.1 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from feature-engine) (1.11.1)
         Requirement already satisfied: statsmodels>=0.11.1 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from feature-engine) (0.14.0)
         Requirement already satisfied: python-dateutil>=2.8.2 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from pandas>=1.0.3->feature-engine) (2.8.2)
         Requirement already satisfied: pytz>=2020.1 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from pandas>=1.0.3->feature-engine) (2023.3.post1)
         Requirement already satisfied: tzdata>=2022.7 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from pandas>=1.0.3->feature-engine) (2023.3)
         Requirement already satisfied: joblib>=1.1.1 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from scikit-learn>=1.0.0->feature-engine) (1.2.0)
         Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from scikit-learn>=1.0.0->feature-engine) (2.2.0)
         Requirement already satisfied: patsy>=0.5.2 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from statsmodels>=0.11.1->feature-engine) (0.5.3)
         Requirement already satisfied: packaging>=21.3 in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from statsmodels>=0.11.1->feature-engine) (23.1)
         Requirement already satisfied: six in /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages (from patsy>=0.5.2->statsmodels>=0.11.1->feature-engine) (1.16.0)
         Downloading feature_engine-1.6.2-py2.py3-none-any.whl (328 kB)
                                                  - 328.9/328.9 kB 615.7 kB/s eta 0:00:00a 0:00:01
         Installing collected packages: feature-engine
         Successfully installed feature-engine-1.6.2
         from feature engine.imputation import CategoricalImputer
         imputer = CategoricalImputer()
In [28]: df catg = imputer.fit transform(df obj)
In [29]: df_catg.isnull().sum().head()
         back_legroom
                             0
Out[29]:
         body_type
                             0
         city
         engine cylinders
         engine_type
         dtype: int64
         Dealing with missing numerical variables
```

```
In [30]: df_cleanNum = df_clean.select_dtypes(include=np.number)
    df_cleanNum
```

Out[30]:		city_fuel_economy	daysonmarket	dealer_zip	engine_displacement	highway_fuel_economy	horsepower	latitude	listing_id	longitude	mileage	owner_count	savings_amount	seller_rating	sp_id	year	log10_price
•	0	NaN	522	960	1300.0	NaN	177.0	18.3988	237132766	-66.1582	7.0	NaN	0	2.800000	370599	2019	4.364382
	1	NaN	207	922	2000.0	NaN	246.0	18.4439	265946296	-66.0785	8.0	NaN	0	3.000000	389227	2020	4.667453
	2	17.0	1233	969	2500.0	23.0	305.0	18.3467	173473508	-66.1098	NaN	3.0	0	NaN	370467	2016	4.672052
	3	NaN	196	922	3000.0	NaN	340.0	18.4439	266911050	-66.0785	11.0	NaN	0	3.000000	389227	2020	4.828853
	4	NaN	137	922	2000.0	NaN	246.0	18.4439	270957414	-66.0785	7.0	NaN	0	3.000000	389227	2020	4.689131
	•••														•••		
	99995	16.0	55	49091	6200.0	22.0	420.0	41.7981	276733070	-85.4287	NaN	NaN	0	5.000000	49994	2020	4.703962
	99996	19.0	187	2920	2000.0	25.0	240.0	41.7982	267873284	-71.4481	67989.0	1.0	1764	4.000000	273779	2016	4.184691
	99997	24.0	34	1776	2000.0	31.0	248.0	42.3632	278561440	-71.3953	4456.0	1.0	3022	4.203390	292659	2020	4.720143
	99998	19.0	22	3446	3500.0	26.0	280.0	42.8770	279630854	-72.2333	2.0	NaN	0	5.000000	59061	2021	4.617839
	99999	22.0	265	48327	2500.0	29.0	197.0	42.6595	261052660	-83.4022	NaN	NaN	0	4.105263	50111	2020	4.456685
	100000	rows × 16 columns															
In [31]:						aining variables als mputation by Chained				h missing	values.						
		klearn.experimen klearn.impute im	•	_	ative_imputer												
		e = df_cleanNum. mputer = Iterati		e)													
		e.iloc[:,0:16] = e.iloc[:,0:16].i			sform(df_mice.iloc	[:,0:16])											
Out[31]:	daysonr dealer		0 0 0														

In [32]: df_mice.head()

Out[32]:	city_fuel_ec	conomy	daysonmarket	dealer_zip	engine_displacement	highway_fuel_economy	horsepower	latitude	listing_id	longitude	mileage	owner_count	savings_amount	seller_rating	sp_id	year	log10_price
	0 17.	.720172	522	960	1300.0	31.164089	177.0	18.3988	237132766	-66.1582	7.000000	1.229669	0	2.80000	370599	2019	4.364382
	1 19.2	243680	207	922	2000.0	30.554924	246.0	18.4439	265946296	-66.0785	8.000000	1.094793	0	3.00000	389227	2020	4.667453
:	2 17.0	000000	1233	969	2500.0	23.000000	305.0	18.3467	173473508	-66.1098	8846.303906	3.000000	0	1.64467	370467	2016	4.672052
;	3 19.4	424641	196	922	3000.0	29.590618	340.0	18.4439	266911050	-66.0785	11.000000	1.134808	0	3.00000	389227	2020	4.828853
4	4 19.	.313519	137	922	2000.0	30.572730	246.0	18.4439	270957414	-66.0785	7.000000	0.967691	0	3.00000	389227	2020	4.689131

In [33]: #dropping irrelevant numerical column
df_mice = df_mice.drop(['listing_id','sp_id'], axis = 1)
df_mice

Out[33]:		city_fuel_economy	daysonmarket	dealer_zip	engine_displacement	highway_fuel_economy	horsepower	latitude	longitude	mileage	owner_count	savings_amount	seller_rating	year	log10_price
	0	17.720172	522	960	1300.0	31.164089	177.0	18.3988	-66.1582	7.000000	1.229669	0	2.800000	2019	4.364382
	1	19.243680	207	922	2000.0	30.554924	246.0	18.4439	-66.0785	8.000000	1.094793	0	3.000000	2020	4.667453
	2	17.000000	1233	969	2500.0	23.000000	305.0	18.3467	-66.1098	8846.303906	3.000000	0	1.644670	2016	4.672052
	3	19.424641	196	922	3000.0	29.590618	340.0	18.4439	-66.0785	11.000000	1.134808	0	3.000000	2020	4.828853
	4	19.313519	137	922	2000.0	30.572730	246.0	18.4439	-66.0785	7.000000	0.967691	0	3.000000	2020	4.689131
	•••		•••								•••		•••		•••
	99995	16.000000	55	49091	6200.0	22.000000	420.0	41.7981	-85.4287	18038.217898	0.862026	0	5.000000	2020	4.703962
	99996	19.000000	187	2920	2000.0	25.000000	240.0	41.7982	-71.4481	67989.000000	1.000000	1764	4.000000	2016	4.184691
	99997	24.000000	34	1776	2000.0	31.000000	248.0	42.3632	-71.3953	4456.000000	1.000000	3022	4.203390	2020	4.720143
	99998	19.000000	22	3446	3500.0	26.000000	280.0	42.8770	-72.2333	2.000000	0.622905	0	5.000000	2021	4.617839
	99999	22.000000	265	48327	2500.0	29.000000	197.0	42.6595	-83.4022	-888.275552	1.000794	0	4.105263	2020	4.456685

100000 rows × 14 columns

x = df_mice.drop(['log10_price'], axis = 1)
corr = x.corr()
corr.style.background_gradient(cmap='coolwarm')

Out[34]:		city_fuel_economy	daysonmarket	dealer_zip	engine_displacement	highway_fuel_economy	horsepower	latitude	longitude	mileage	owner_count	savings_amount	seller_rating	year
	city_fuel_economy	1.000000	0.020887	-0.043245	-0.430908	0.927919	-0.524845	0.015134	0.049500	-0.134692	-0.122924	-0.095949	-0.036044	0.127261
	daysonmarket	0.020887	1.000000	0.020473	-0.012478	0.002952	0.029877	-0.045088	-0.017996	-0.120289	0.077727	-0.046967	0.001331	0.058476
	dealer_zip	-0.043245	0.020473	1.000000	-0.009597	-0.046298	0.037699	0.365235	-0.980085	-0.110616	-0.084715	-0.098251	0.112400	0.112019
	engine_displacement	-0.430908	-0.012478	-0.009597	1.000000	-0.520661	0.753661	-0.000099	0.006606	0.189029	0.161303	0.145596	0.028964	-0.199483
	highway_fuel_economy	0.927919	0.002952	-0.046298	-0.520661	1.000000	-0.595318	-0.007215	0.052268	-0.128849	-0.112280	-0.082562	-0.041858	0.139383
	horsepower	-0.524845	0.029877	0.037699	0.753661	-0.595318	1.000000	-0.035482	-0.043208	-0.028937	0.054987	0.173728	0.093318	-0.002152
	latitude	0.015134	-0.045088	0.365235	-0.000099	-0.007215	-0.035482	1.000000	-0.339016	-0.036790	-0.061740	-0.093484	0.231367	0.046121
	longitude	0.049500	-0.017996	-0.980085	0.006606	0.052268	-0.043208	-0.339016	1.000000	0.088780	0.063596	0.088780	-0.107569	-0.092807
	mileage	-0.134692	-0.120289	-0.110616	0.189029	-0.128849	-0.028937	-0.036790	0.088780	1.000000	0.604561	0.227873	-0.013067	-0.805111
	owner_count	-0.122924	0.077727	-0.084715	0.161303	-0.112280	0.054987	-0.061740	0.063596	0.604561	1.000000	0.170565	-0.022750	-0.681418
	savings_amount	-0.095949	-0.046967	-0.098251	0.145596	-0.082562	0.173728	-0.093484	0.088780	0.227873	0.170565	1.000000	-0.117730	-0.202366
	seller_rating	-0.036044	0.001331	0.112400	0.028964	-0.041858	0.093318	0.231367	-0.107569	-0.013067	-0.022750	-0.117730	1.000000	-0.008549
	year	0.127261	0.058476	0.112019	-0.199483	0.139383	-0.002152	0.046121	-0.092807	-0.805111	-0.681418	-0.202366	-0.008549	1.000000

In [35]: #create heatmap using seaborn package

import seaborn as sns
x = df_mice.drop(['log10_price'], axis = 1)
ax = sns.heatmap(x.corr(), annot=True, fmt=".1f")

```
- 0.75
                        dealer_zip --0.0 0.0 1.0 -0.0 -0.0 0.0 0.4 -1.0 -0.1 -0.1 -0.1 0.1 0.1
                                                                                                 - 0.50
             engine_displacement --0.4 -0.0 -0.0 1.0 -0.5 0.8 -0.0 0.0 0.2 0.2 0.1 0.0 -0.2
           highway fuel economy - 0.9 0.0 -0.0 -0.5 1.0 -0.6 -0.0 0.1 -0.1 -0.1 -0.1 -0.0 0.1
                                                                                                 - 0.25
                      horsepower --0.5 0.0 0.0 0.8 -0.6 1.0 -0.0 -0.0 -0.0 0.1 0.2 0.1 -0.0
                          latitude - 0.0 -0.0 0.4 -0.0 -0.0 -0.0 1.0 -0.3 -0.0 -0.1 -0.1 0.2 0.0
                                                                                                 - 0.00
                         longitude - 0.0 -0.0 -1.0 0.0 0.1 -0.0 -0.3 1.0 0.1 0.1 0.1 -0.1 -0.1
                                                                                                 - -0.25
                         mileage --0.1 -0.1 -0.1 0.2 -0.1 -0.0 -0.0 0.1 1.0 0.6 0.2 -0.0 -0.8
                     owner_count --0.1 0.1 -0.1 0.2 -0.1 0.1 -0.1 0.1 0.6 1.0 0.2 -0.0 -0.7
                                                                                                 -0.50
                  savings amount -0.1 -0.0 -0.1 0.1 -0.1 0.2 -0.1 0.1 0.2 0.2 1.0 -0.1 -0.2
                      seller rating -0.0 0.0 0.1 0.0 -0.0 0.1 0.2 -0.1 -0.0 -0.0 -0.1 1.0 -0.0
                                                                                                 - -0.75
                             year - 0.1 0.1 0.1 -0.2 0.1 -0.0 0.0 -0.1 -0.8 -0.7 -0.2 -0.0 1.0
                                                                 longitude
                                                                      mileage
                                                                                       year
                                        daysonmarket
                                                                                  seller_rating
                                    city_fuel_economy
                                                 engine_displacement
                                                                           owner_count
                                                                               savings_amount
                                                     highway_fuel_economy
                                                         horsepower
In [36]: pos_threshold = 0.6
          neg threshold = -0.6
          def high poscor function(df):
               cor = df.corr()
               corrm = np.corrcoef(df.transpose())
               corr = corrm - np.diagflat(corrm.diagonal())
               print("max corr:",corr.max(), ", min corr: ", corr.min())
               c1 = cor.stack().sort_values(ascending=False).drop_duplicates()
               high_cor = c1[c1.values!=1]
               thresh = pos_threshold
               display(high_cor[high_cor>thresh])
          def high_negcor_function(df):
               cor = df.corr()
               corrm = np.corrcoef(df.transpose())
               corr = corrm - np.diagflat(corrm.diagonal())
               print("max corr:",corr.max(), ", min corr: ", corr.min())
               c1 = cor.stack().sort_values(ascending=False).drop_duplicates()
               high cor = c1[c1.values!=1]
               thresh = neg threshold
               display(high_cor[high_cor<thresh])</pre>
In [37]: print('highly positively correlated variables are:', high_poscor_function(df_mice.drop('log10_price',axis = 1)))
          print('highly negatively correlated variables are:', high_negcor_function(df_mice.drop('log10_price',axis = 1)))
```

- 1.00

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js -0.9800852281203005

city_fuel_economy - 1.0 0.0 -0.0 -0.4 0.9 -0.5 0.0 0.0 -0.1 -0.1 -0.1 -0.0 0.1

```
engine displacement
           horsepower
                                                       0.753661
           owner_count
                                 mileage
                                                        0.604561
           dtype: float64
           highly positively correlated variables are: None
           max corr: 0.9279194843034885 , min corr: -0.9800852281203005
                      owner count -0.681418
           year
                                    -0.805111
           mileage
                    year
           longitude dealer_zip
                                   -0.980085
           dtype: float64
           highly negatively correlated variables are: None
           Feature Engineering
 In [38]: # Taking variables that are highly correlated and running PCA on them to reduce dimensionality
           features = df_mice[['highway_fuel_economy','city_fuel_economy','horsepower','engine_displacement','owner_count','mileage','year','longitude','dealer_zip']]
           features = features.columns
           features
           Index(['highway_fuel_economy', 'city_fuel_economy', 'horsepower',
 Out[38]:
                  'engine_displacement', 'owner_count', 'mileage', 'year', 'longitude',
                  'dealer zip'],
                dtype='object')
 In [39]: from sklearn.preprocessing import StandardScaler
           # Separating out the features
           x = df_mice.loc[:, features].values
           # Separating out the target
           y = df mice.loc[:,['log10 price']].values
           # Standardizing the features
           x = StandardScaler().fit_transform(x)
 In [40]: from sklearn.decomposition import PCA
           pca = PCA()
           principalComponents = pca.fit_transform(x)
           principalComponents
           array([[ 9.90330600e-01, 1.06735820e+00, -1.87905834e+00, ...,
 Out[40]:
                   1.13741011e-01, -5.50363319e-01, -9.63386253e-01],
                  [ 5.90952602e-01, 6.05824252e-01, -2.21903352e+00, ...,
                  -8.68653233e-02, -3.93383422e-01, -9.78114847e-01],
                  [-1.68263466e+00, 1.60916724e+00, -1.44851718e+00, ...,
                   1.73412379e-01, 2.27863177e-01, -1.00480977e+00],
                  [ 9.39426652e-01, 2.19910495e-01, -1.31721491e+00, ...,
                  -1.30220311e-01, 5.25521915e-03, -6.44742267e-02],
                  [-1.74568148e-01, -8.81771454e-01, -1.74264720e+00, ...,
                  -5.24462853e-02, -2.22197119e-02, 2.60832522e-02],
                  [ 8.82228483e-01, -2.17264590e+00, 2.23838679e+00, ...,
                   1.14261084e-01, 1.99862067e-03, -2.03403351e-02]])
 In [41]: plt.plot(range(1, len(pca.explained_variance_ratio_) + 1),
                    pca.explained variance ratio , marker='o')
           plt.title('Scree Plot')
           plt.xlabel('Principal Components')
           plt.ylabel('Explained Variance Ratio')
           plt.show()
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

highway_fuel_economy city_fuel_economy

0.927919


```
In [42]: explained_variance_ratio = pca.explained_variance_ratio_
         cumulative_variance_ratio = explained_variance_ratio.cumsum()
         singular_values = pca.singular_values_
         summary_df = pd.DataFrame({
             'PC': range(1, len(explained_variance_ratio) + 1),
             'Explained Variance Ratio': explained_variance_ratio,
             'Cumulative Variance Ratio': cumulative_variance_ratio,
             'Singular Values': singular_values
         })
         print(summary_df)
            PC Explained Variance Ratio Cumulative Variance Ratio Singular Values
             1
                                0.344451
                                                           0.344451
                                                                          556.781602
                                0.262635
                                                           0.607086
                                                                          486.180442
             2
             3
                                0.202647
                                                           0.809732
                                                                          427.062096
                                0.090125
                                                           0.899857
                                                                          284.801886
                                                                          207.166829
             5
                                0.047687
                                                           0.947544
                                0.022480
                                                           0.970024
                                                                          142.238311
                                0.020572
                                                           0.990596
                                                                          136.069441
                                                           0.997827
                                                                           80.672801
             8
                                0.007231
                                0.002173
                                                           1.000000
                                                                           44.225007
In [43]: pca_fnl = PCA(n_components=4)
         pca_fnl.fit(x)
         x_org = pca_fnl.fit_transform(x)
         x_org
```

```
Out[43]: array([[ 0.9903306 , 1.0673582 , -1.87905834, -1.39356099],
                   [0.5909526, 0.60582425, -2.21903352, -0.61855636],
                  [-1.68263466, 1.60916724, -1.44851718, -0.56109426],
                  [0.93942665, 0.2199105, -1.31721491, -0.19667717],
                  [-0.17456815, -0.88177145, -1.7426472, 0.02545762],
                  [ 0.88222848, -2.1726459 , 2.23838679, -0.29882646]])
 In [44]: # Principal components correlation coefficients
           loadings = pca_fnl.components_
           # Number of features before PCA
           n_features = pca_fnl.n_features_in_
           # Feature names before PCA
           feature names = features
           # PC names
           pc_list = [f'PC{i}' for i in list(range(1, n_features + 1))]
           # Match PC names to loadings
           pc_loadings = dict(zip(pc_list, loadings))
           # Matrix of corr coefs between feature names and PCs
           loadings df = pd.DataFrame.from dict(pc loadings)
           loadings_df['features'] = features
           loadings_df = loadings_df.set_index('features')
           loadings_df
 Out[44]:
                                    PC1
                                              PC2
                                                       PC3
                                                                 PC4
                       features
           highway_fuel_economy
                                0.465391
                                          0.231496
                                                    0.110515
                                                             0.419447
               city_fuel_economy 0.443897
                                          0.216125
                                                   0.099114 0.532225
                    horsepower -0.398064
                                         -0.275613
                                                   -0.176944 0.442052
             engine_displacement -0.424726
                                         -0.137108
                                                   -0.110590 0.582958
                                          0.380711
                                                   0.267693 0.053978
                    owner_count -0.274748
                        mileage -0.285613 0.424469
                                                   0.277149 -0.029163
                                0.299256
                                         -0.433915
                                                  -0.283444 -0.008753
                      longitude -0.016465
                                                  -0.597998 -0.028622
                                          0.377297
                      dealer_zip 0.025168 -0.386249 0.589924 0.029864
           loadings_component1 = pca_fnl.components_[0]
           loadings component2 = pca fnl.components [1]
           plt.figure(figsize=(8, 6))
           plt.scatter(loadings_component1, loadings_component2, marker='o')
           plt.title('Component 1 Loadings vs Component 2 Loadings')
           plt.xlabel('Component 1 Loadings')
           plt.ylabel('Component 2 Loadings')
           for i, feature in enumerate(features):
               plt.annotate(feature, (loadings_component1[i], loadings_component2[i]))
               plt.arrow(
                   0, 0, # coordinates of arrow base
                   loadings_component1[i], # length of the arrow along x
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js ength of the arrow along y
                   color='g',
```

head_width=0.01
)
plt.show()

PC1 - high_fuel_economy and city_fuel_economy --> fuel economy PC2 - mileage, year and owner_count --> mileage PC3 - longitude and dealer_zip --> dealer location PC4 - engine_displacement and horsepower --> engine power

```
scaler = StandardScaler()
scaler.fit(x_org)
# X_orig = np.dot(x_org, pca_fnl.components_) don't need this

Out[46]:

v StandardScaler
StandardScaler()

In [47]: scaler = StandardScaler()

# Perform the inverse transformation
X_orig_backscaled = scaler.inverse_transform(x_org)
In [48]: X_orig_backscaled
```

In [46]: #converting principal components to original scale -- need help here!

```
[1.04048908, 0.93141696, -2.99678019, -0.55708586],
                 [-2.96261152, 2.47399414, -1.95620641, -0.5053342],
                 [1.65404665, 0.33809865, -1.77888415, -0.17713191],
                 [-0.30736179, -1.35566854, -2.35342575, 0.02292771],
                 [ 1.55333795, -3.34030739, 3.02291658, -0.26912988]])
In [49]: df_pca = pd.DataFrame(data = X_orig_backscaled
                       , columns = ['fuel_economy', 'mileage','dealer_location','engine_power'])
          df_pca
Out[49]:
                                mileage dealer_location engine_power
                 fuel_economy
              0
                     1.743673
                              1.640997
                                            -2.537647
                                                         -1.255073
                     1.040489
                               0.931417
                                            -2.996780
                                                         -0.557086
              2
                     -2.962612
                             2.473994
                                            -1.956206
                                                         -0.505334
                     -0.515961
                               0.271485
                                            -3.387703
                                                          0.300200
              4
                     1.139372 0.827917
                                            -3.061594
                                                         -0.560325
          99995
                     -4.354919 -5.944582
                                             2.191628
                                                          1.661834
          99996
                     -0.887101 1.442887
                                            -0.955877
                                                         -0.926741
          99997
                     1.654047 0.338099
                                            -1.778884
                                                          -0.177132
          99998
                     -0.307362 -1.355669
                                            -2.353426
                                                          0.022928
                                             3.022917
                                                         -0.269130
          99999
                     1.553338 -3.340307
         100000 rows × 4 columns
In [50]: # Combining the final list of variables: get the original categorical and numerical variables and combine them with the principal components:
          pd.set_option('display.max_columns', 1000)
          df_num = df_mice.drop(features,axis = 1)
          df_final = pd.concat([df_num, df_catg, df_pca], axis=1)
          df_final.shape
          df_final.head()
```

Out[48]: array([[1.74367313, 1.64099657, -2.53764748, -1.25507258],

```
Out[50]:
             daysonmarket latitude savings_amount seller_rating log10_price back_legroom body_type
                                                                                                     city engine_cylinders engine_type exterior_color
                                                                                                                                                   fleet frame_damaged franchise_make front_legroom fuel_tank_volume fu
                                                                                          SUV /
          0
                     522 18.3988
                                                     2.80000
                                                               4.364382
                                                                                                Bayamon
                                                                                                                     14
                                                                                                                                      Solar Yellow Missing
                                                                                                                                                                 Missing
                                                                                                                                                                                 Jeep
                                                                                                                                                                                              41.2 in
                                                                                                                                                                                                             12.7 gal
                                                                                      Crossover
                                                                                                                     14
                     207 18.4439
                                              0
                                                     3.00000
                                                               4.667453
                                                                                                                                      Narvik Black Missing
                                                                                                                                                                            Land Rover
                                                                                                                                                                                              39.1 in
                                                                                                                                                                                                             17.7 gal
                                                                                                                                                                 Missing
                                                                                      Crossover
                                              0
                                                                                                                     Н4
                                                                                                                                Н4
                                                                                                                                                                                  FIAT
                                                                                                                                                                                             43.3 in
          2
                    1233 18.3467
                                                     1.64467
                                                               4.672052
                                                                              35.4 in
                                                                                         Sedan Guaynabo
                                                                                                                                          Missing
                                                                                                                                                   False
                                                                                                                                                                  False
                                                                                                                                                                                                             15.9 gal
                                              0
                                                               4.828853
                                                                                                San Juan
                                                                                                                     V6
          3
                     196 18.4439
                                                     3.00000
                                                                                                                                ٧6
                                                                                                                                        Eiger Gray Missing
                                                                                                                                                                            Land Rover
                                                                                                                                                                                              39 in
                                                                                                                                                                                                            23.5 gal
                                                                                                                                                                 Missing
                                                                                      Crossover
                      137 18.4439
                                                               4.689131
                                                                                                San Juan
                                                                                                                     14
                                                                                                                                                                            Land Rover
                                                                                                                                                                                              39.1 in
                                                                                                                                                                                                             17.7 gal
                                                     3.00000
                                                                                                                                      Narvik Black Missing
                                                                                                                                                                 Missing
In [51]: #removing variables based on industry knowledge
          df_subset = df_final.drop(['latitude','power','engine_cylinders','wheel_system_display'], axis = 1)
In [52]: # removing characters from potential numerical variables
          df_subset['wheelbase'] = df_subset['wheelbase'].str.split().str[0]
          df_subset['back_legroom'] = df_subset['back_legroom'].str.split().str[0]
          df_subset['front_legroom'] = df_subset['front_legroom'].str.split().str[0]
          df_subset['fuel_tank_volume'] = df_subset['fuel_tank_volume'].str.split().str[0]
          df subset['height'] = df subset['height'].str.split().str[0]
          df_subset['length'] = df_subset['length'].str.split().str[0]
          df_subset['width'] = df_subset['width'].str.split().str[0]
          cols = ['wheelbase','back_legroom','front_legroom','fuel_tank_volume','height','length','width']
          df_subset[cols] = df_subset[cols].replace('Missing', 0).replace('--', 0).apply(pd.to_numeric)
In [53]: def convert(value):
              if value == True:
                  return 1
              elif value == False:
                  return 0
              else:
                  return 999
          df_subset['frame_damaged'] = df_subset['frame_damaged'].apply(lambda x: convert(x))
          df_subset['fleet'] = df_subset['fleet'].apply(lambda x: convert(x))
          df_subset['has_accidents'] = df_subset['has_accidents'].apply(lambda x: convert(x))
          df_subset['isCab'] = df_subset['isCab'].apply(lambda x: convert(x))
          df subset['theft title'] = df subset['theft title'].apply(lambda x: convert(x))
          df_subset['salvage'] = df_subset['salvage'].apply(lambda x: convert(x))
          df_subset
```

Out[53]:		daysonmarket	savings_amount	seller_rating	log10_price	back_legroom	body_type	city	engine_type	exterior_color	fleet	frame_damaged	franchise_make	front_legroom	fuel_tank_volume	fuel_type	has_accidents
	0	522	0	2.800000	4.364382	35.1	SUV / Crossover	Bayamon	14	Solar Yellow	999	999	Jeep	41.2	12.7	Gasoline	999
	1	207	0	3.000000	4.667453	38.1	SUV / Crossover	San Juan	14	Narvik Black	999	999	Land Rover	39.1	17.7	Gasoline	999
	2	1233	0	1.644670	4.672052	35.4	Sedan	Guaynabo	H4	Missing	0	0	FIAT	43.3	15.9	Gasoline	0
	3	196	0	3.000000	4.828853	37.6	SUV / Crossover	San Juan	V6	Eiger Gray	999	999	Land Rover	39.0	23.5	Gasoline	999
	4	137	0	3.000000	4.689131	38.1	SUV / Crossover	San Juan	14	Narvik Black	999	999	Land Rover	39.1	17.7	Gasoline	999
	•••											•••					
,	99995	55	0	5.000000	4.703962	43.4	Pickup Truck	Sturgis	V8	Northsky Blue Metallic	999	999	Chevrolet	44.5	24.0	Gasoline	999
	99996	187	1764	4.000000	4.184691	39.4	SUV / Crossover	Cranston	14	Silver	0	0	Missing	44.1	18.8	Gasoline	0
	99997	34	3022	4.203390	4.720143	36.5	Sedan	Sudbury	14	Mediterranean Blue Metallic	0	0	BMW	41.4	18.0	Gasoline	0
,	99998	22	0	5.000000	4.617839	38.4	SUV / Crossover	Swanzey	V6	Gray	999	999	Honda	40.9	19.5	Gasoline	999
!	99999	265	0	4.105263	4.456685	37.5	SUV / Crossover	Waterford	14	Ebony Twilight Metallic	999	999	Buick	40.9	17.3	Gasoline	999

100000 rows × 38 columns

```
In [54]: # file_path = 'data.csv'
    # df_subset.to_csv(file_path, index=False)
    # print(f"Data has been exported to {file_path}.")
```

In [55]: # from google.colab import files
files.download(file_path)

Linear Models

```
In [56]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from patsy import dmatrices
from sklearn.metrics import mean_squared_error
from math import sqrt
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
from sklearn.metrics import r2_score
          from sklearn.model selection import train test split
In [57]: #df = pd.read csv('data.csv')
          df_lm = df_subset.drop(columns=['interior_color', 'exterior_color', 'city', 'trim_name' , 'sp_name'])
          df lm.head()
            daysonmarket savings_amount seller_rating log10_price back_legroom body_type engine_type fleet frame_damaged franchise_make front_legroom fuel_tank_volume fuel_type has_accidents height isCab length listed_d
Out[57]:
                                                                                 SUV /
                                                                                                                                                                                                              2019-
          0
                     522
                                      0
                                            2.80000
                                                      4.364382
                                                                                               14 999
                                                                                                                                                                                                 999
                                                                                                                                                                                                      166.6
                                                                        35.1
                                                                                                                  999
                                                                                                                                Jeep
                                                                                                                                             41.2
                                                                                                                                                             12.7
                                                                                                                                                                   Gasoline
                                                                                                                                                                                    999
                                                                                                                                                                                          66.5
                                                                             Crossover
                                                                                 SUV /
                                                                                                                                                                                                              2020-
                     207
                                      0
                                            3.00000
                                                      4.667453
                                                                                               14 999
                                                                                                                  999
                                                                                                                                             39.1
                                                                                                                                                                                                 999
                                                                                                                                                                                                       181.0
                                                                        38.1
                                                                                                                          Land Rover
                                                                                                                                                             17.7
                                                                                                                                                                   Gasoline
                                                                                                                                                                                    999
                                                                                                                                                                                          68.0
          1
                                                                             Crossover
                                                                                                                                                                                                              2017-
          2
                    1233
                                      0
                                             1.64467
                                                      4.672052
                                                                        35.4
                                                                                Sedan
                                                                                              Н4
                                                                                                    0
                                                                                                                    0
                                                                                                                                FIAT
                                                                                                                                             43.3
                                                                                                                                                             15.9
                                                                                                                                                                   Gasoline
                                                                                                                                                                                      0
                                                                                                                                                                                           58.1
                                                                                                                                                                                                   0 180.9
                                                                                 SUV /
                                                                                                                                                                                                              2020-
          3
                     196
                                      0
                                            3.00000
                                                      4.828853
                                                                        37.6
                                                                                               V6 999
                                                                                                                  999
                                                                                                                          Land Rover
                                                                                                                                             39.0
                                                                                                                                                                   Gasoline
                                                                                                                                                                                    999
                                                                                                                                                                                          73.0
                                                                                                                                                                                                 999
                                                                                                                                                                                                       195.1
                                                                                                                                                             23.5
                                                                             Crossover
                                                                                                                                                                                                              2020-
                                                                                 SUV /
                     137
                                      0
                                            3.00000
                                                                                               14 999
                                                                                                                  999
                                                                                                                                             39.1
                                                                                                                                                                                                 999
                                                                                                                                                                                                       181.0
                                                       4.689131
                                                                        38.1
                                                                                                                           Land Rover
                                                                                                                                                              17.7
                                                                                                                                                                   Gasoline
                                                                                                                                                                                    999
                                                                                                                                                                                          68.0
                                                                             Crossover
In [58]: # Convert log10_price to normal price
          df lm['price'] = np.power(10, df lm['log10 price'])
          df lm.drop(columns=['log10 price'], inplace=True)
          # Prevent dates from being one hot encoded: Date them number of days from 30 Sept 2020, which is the estimated day that th edata was generated.
          # Convert original date column to date type
          df lm['listed date'] = pd.to datetime(df lm['listed date'], format='%Y-%m-%d')
          # Calculate days from date
          reference date = pd.to datetime('2020-09-30')
          df_lm['days_listed'] = (-(df_lm['listed_date'] - reference_date)).dt.days
          df_lm.drop(columns=['listed_date'], inplace=True)
In [59]: # Choose variables
          from sklearn.model selection import train test split
          formula = 'price ~ make name + model name + fuel type + mileage + days listed' # Automatically handles 'x1' as categorical
          y, X = dmatrices(formula, data=df_lm, return_type='dataframe')
          # Train Test Split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=123)
In [60]: #GLM MODEL
          TG_model = sm.GLM(y_train, X_train, family=sm.families.Gaussian(sm.families.links.log())).fit()
          gy pred = TG model.predict(X test)
          # RMSF
          rmse = sqrt(mean_squared_error(y_test, gy_pred))
          print(f'RMSE: {rmse}')
          # R2
          r2 = r2_score(y_test, gy_pred)
          print(f'R^2: {r2}')
          /Users/foroughmofidi/anaconda3/lib/python3.11/site-packages/statsmodels/genmod/families/links.py:13: FutureWarning: The log link alias is deprecated. Use Log instead. The log link alias will b
          e removed after the 0.15.0 release.
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

R^2: 0.6778321592820891

In [61]: # Visualise GLM Predictions

plt.figure(figsize=(10, 6))
plt.scatter(y_test, gy_pred, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4)
plt.xlabel('Actual Prices')
plt.ylabel('Predicted Prices')
plt.title('Actual vs. Predicted Prices')

Actual vs. Predicted Prices


```
In [62]: # OLS MODEL

TO_model = sm.OLS(y_train, X_train).fit()
y_pred = TO_model.predict(X_test)

# RMSE
rmse = sqrt(mean_squared_error(y_test, y_pred))
print(f'RMSE: {rmse}')

# R2
r2_score_test = r2_score(y_test, y_pred)
print(f'R^2 score for the test set: {r2_score_test}')

RMSE: 11806.488479409896
```

R^2 score for the test set: 0.6730071975640429

RMSE: 11719.059092439848

plt.show()

```
In [63]: # Visualise OLS Predictions

plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2) # Diagonal line
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs. Predicted Values')
plt.show()
```


Explainable Boosting Machine (EBM)

```
import pandas as pd
import numpy as np

pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_colwidth', 500)

In [102... #!pip install interpret-core dash-cytoscape
from interpret import set_visualize_provider
from interpret.provider import InlineProvider
set_visualize_provider(InlineProvider())
```

```
from sklearn.model_selection import train_test_split
         from sklearn.metrics import roc auc score,accuracy score,f1 score,confusion matrix
         from interpret.glassbox import ExplainableBoostingClassifier
         from interpret.glassbox import ClassificationTree
         from interpret.data import Marginal
         from interpret.perf import RegressionPerf
         from interpret.glassbox import ExplainableBoostingRegressor, LinearRegression, RegressionTree
         from interpret import show
         import matplotlib.pyplot as plt
         import seaborn as sns
         Read Data - From CSV File
In [138... # Read from CSV File "data.csv"
         df = pd.read_csv("data.csv")
         df = df.drop(columns=['interior_color', 'exterior_color', 'city', 'trim_name', 'sp_name'])
         #df ebm = df subset
In [139... # Count unique values in df
         unique_categories_counts = {}
         for column in df.columns:
             unique_categories_counts[column] = df[column].nunique()
         print("Number of unique categories in each column:")
         print(unique_categories_counts)
         Number of unique categories in each column:
         {'daysonmarket': 848, 'savings amount': 5663, 'seller rating': 1048, 'log10 price': 27707, 'back legroom': 187, 'body type': 10, 'engine type': 30, 'fleet': 3, 'frame damaged': 3, 'franchise m
         ake': 41, 'front_legroom': 82, 'fuel_tank_volume': 160, 'fuel_type': 8, 'has_accidents': 3, 'height': 415, 'isCab': 3, 'length': 702, 'listed_date': 849, 'listing_color': 15, 'make_name': 59,
         'maximum_seating': 13, 'model_name': 843, 'salvage': 3, 'theft_title': 3, 'transmission_display': 36, 'wheel_system': 6, 'wheelbase': 400, 'width': 259, 'fuel_economy': 9998
         8, 'mileage': 99988, 'dealer_location': 99988, 'engine_power': 99988}
         Categorical Variables
In [140... column_types = df.dtypes
```

print(column_types)

daysonmarket float64 float64 savings_amount float64 seller_rating log10_price float64 back_legroom float64 body_type object object engine_type fleet int64 int64 frame_damaged franchise_make object float64 front_legroom fuel_tank_volume float64 fuel_type object has_accidents int64 height float64 isCab int64 length float64 listed_date object listing_color object make_name object maximum_seating object model_name object salvage int64 theft_title int64 object transmission transmission_display object wheel_system object wheelbase float64 width float64 float64 fuel_economy mileage float64 dealer_location float64 engine_power float64

Convert to dummies

dtype: object

In [109... data_dummies = pd.get_dummies(df[categorical_cols], drop_first=True)
 data_dummies = data_dummies.astype(int) # 0 and 1
 data_dummies.head()

Out[109]

9]:	body_type_Coupe	body_type_Hatchback	body_type_Minivan	body_type_Pickup Truck	body_type_SUV / Crossover	body_type_Sedan	body_type_Van	body_type_Wagon	body_type_Missing	engine_type_H4 Hybrid	engine_type_H6	engine_type_I2 engine
(0	0	0	0	1	0	0	0	0	0	0	0
,	0	0	0	0	1	0	0	0	0	0	0	0
2	2 0	0	0	0	0	1	0	0	0	0	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0	0	0

Merge dummies with numerical cols¶

In [141... noncategorical_cols = [col **for** col **in** df.columns **if** col **not in** categorical_cols noncategorical_cols

```
['daysonmarket',
Out[141]:
            'savings_amount',
            'seller_rating',
            'log10_price',
            'back_legroom',
            'fleet',
            'frame damaged',
            'front_legroom',
            'fuel_tank_volume',
            'has_accidents',
            'height',
            'isCab',
            'length'
            'salvage',
            'theft_title',
            'wheelbase',
            'width',
            'fuel_economy',
            'mileage',
            'dealer location',
            'engine_power']
In [142... data_preprocess = pd.concat([df[noncategorical_cols], data_dummies], axis=1)
In [143... # Sample
          sample_df = data_preprocess.sample(frac=0.5)
          sample df.shape
          (50000, 1928)
Out[143]:
In [144... # numeric Columns
          numeric = df[noncategorical_cols]
```

Train, Test

```
In [145... X = sample_df.drop('log10_price', axis=1) # Features: the entire df except target column
y = sample_df['log10_price'] # Target: just the column "log price"

In [146... X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

EBM Model

```
In [147... seed = 42
np.random.seed(seed)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=seed)

In [148... %time
ebm = ExplainableBoostingRegressor(random_state=seed, interactions=0)

CPU times: user 62 µs, sys: 165 µs, total: 227 µs
Wall time: 241 µs

In [149... %time
ebm.fit(X_train, y_train)

CPU times: user 8.44 s, sys: 200 ms, total: 8.64 s
Mall time: 13min 12s
Loading [MathJax]/Jax/uput/CommonHTML/fonts/TeX/fontdata.js
```

```
Out[149]: 
▼ ExplainableBoostingRegressor

ExplainableBoostingRegressor(interactions=0)
```

Global Explanation¶

Local Explanations

Evaluate EBM performance

```
In [154... column_names = sample_df.columns
          column names
          Index(['daysonmarket', 'savings_amount', 'seller_rating', 'log10_price',
Out[154]:
                  'back_legroom', 'fleet', 'frame_damaged', 'front_legroom',
                 'fuel_tank_volume', 'has_accidents',
                 'transmission_display_9-Speed Automatic Overdrive',
                 'transmission display Automatic',
                 'transmission_display_Continuously Variable Transmission',
                 'transmission_display_Manual', 'transmission_display_Missing',
                 'wheel_system_4X2', 'wheel_system_AWD', 'wheel_system_FWD',
                 'wheel_system_RWD', 'wheel_system_Missing'],
                dtype='object', length=1928)
In [155... column_names = [col for col in column_names if col != 'log10_price']
         ebm_perf = RegressionPerf(ebm, column_names).explain_perf(X_test, y_test, name='EBM')
          show(ebm_perf)
```

Other Explainable Models

```
In [157... lr = LinearRegression(column_names)
lr.fit(X_train, y_train)

rt = RegressionTree(column_names, random_state=seed)
rt.fit(X_train, y_train)

Out[157]: <interpret.glassbox._decisiontree.RegressionTree at 0x4a4ff6050>
```

Compare performance using the Dashboard

```
In [158... lr_perf = RegressionPerf(lr, column_names).explain_perf(X_test, y_test, name='Linear Regression')
show(lr_perf)

In [159... rt_perf = RegressionPerf(rt, column_names).explain_perf(X_test, y_test, name='Regression Tree')
show(rt_perf)
```

Glassbox

```
In [160... lr_global = lr.explain_global(name='Linear Regression')
show(lr_global)
In [175... rt_global = rt.explain_global(name='Regression Tree')
show(rt_global)
```

Propensity Score Matching

```
In [176... #pip install causalinference
In [177... import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from causalinference import CausalModel
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler

In [167... #df = pd.read_csv("data.csv")
#df = df.drop(columns=['interior_color', 'exterior_color', 'city', 'trim_name', 'sp_name'])
#df_psm = df_subset
In [178... df['price'] = np.power(10, df['log10_price'])
df.drop(columns=['log10 price'], inplace=True)
```

```
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js vehicles
```

```
'V6 Hybrid',
               'I4 Hybrid',
               'H4 Hybrid',
               'V8 Hybrid'
          # Set a flag indicating whether each vehicle is a hybrid (1) or not (0)
          df['is_hybrid'] = df_psm['engine_type'].apply(lambda x: 1 if x in hybrid_types else 0)
In [180... df.head()
              daysonmarket savings_amount seller_rating back_legroom body_type engine_type fleet frame_damaged franchise_make front_legroom fuel_tank_volume fuel_type has_accidents height isCab length listed_date listing_
Out[180]:
                                                                                                                                                                                                           2019-04-
                                                                         SUV /
                                                                                        14 999
                                                                                                                                        41.2
                                                                                                                                                                                             999 166.6
                                                                                                                                                                                                                        YEI
           0
                     522.0
                                       0.0
                                               2.80000
                                                                35.1
                                                                                                           999
                                                                                                                          Jeep
                                                                                                                                                         12.7
                                                                                                                                                               Gasoline
                                                                                                                                                                                999
                                                                                                                                                                                       66.5
                                                                      Crossover
                                                                                                                                                                                                                06
                                                                         SUV /
                                                                                                                                                                                                           2020-02-
                                                                                                                                                                                       68.0
                                                                                                                                                                                             999 181.0
                                                                                                                                                                                                                         В
           1
                     207.0
                                       0.0
                                               3.00000
                                                                38.1
                                                                                        14 999
                                                                                                           999
                                                                                                                     Land Rover
                                                                                                                                        39.1
                                                                                                                                                         17.7
                                                                                                                                                              Gasoline
                                                                                                                                                                                999
                                                                      Crossover
                                                                                                                                                                                                                 15
                                                                                                                                                                                                           2017-04-
           2
                     1233.0
                                       0.0
                                               1.64467
                                                                35.4
                                                                                              0
                                                                                                             0
                                                                                                                          FIAT
                                                                                                                                        43.3
                                                                                                                                                                                       58.1
                                                                                                                                                                                                0 180.9
                                                                                                                                                                                                                      UNKN
                                                                         Sedan
                                                                                       Η4
                                                                                                                                                         15.9
                                                                                                                                                               Gasoline
                                                                                                                                                                                                                 25
                                                                                                                                                                                                           2020-02-
                                                                         SUV /
                     196.0
                                       0.0
                                               3.00000
                                                                37.6
                                                                                       V6 999
                                                                                                                                        39.0
                                                                                                                                                                                999
                                                                                                                                                                                       73.0
                                                                                                                                                                                             999
                                                                                                                                                                                                  195.1
           3
                                                                                                           999
                                                                                                                     Land Rover
                                                                                                                                                        23.5
                                                                                                                                                               Gasoline
                                                                     Crossover
                                                                                                                                                                                                           2020-04-
                                                                         SUV /
                                                                                        14 999
                                                                                                                                        39.1
                                                                                                                                                                                999
                                                                                                                                                                                             999
                                                                                                                                                                                                  181.0
                                                                                                                                                                                                                         В
           4
                      137.0
                                       0.0
                                               3.00000
                                                                38.1
                                                                                                           999
                                                                                                                     Land Rover
                                                                                                                                                         17.7
                                                                                                                                                               Gasoline
                                                                                                                                                                                       68.0
                                                                      Crossover
                                                                                                                                                                                                                 25
In [185... df.info()
```

```
RangeIndex: 100000 entries, 0 to 99999
          Data columns (total 34 columns):
               Column
                                     Non-Null Count
                                                      Dtype
               daysonmarket
                                     100000 non-null float64
           0
               savings amount
                                     100000 non-null float64
           1
               seller rating
                                     100000 non-null float64
           2
               back_legroom
           3
                                     100000 non-null float64
               body_type
                                     100000 non-null object
           4
           5
               engine_type
                                     100000 non-null object
                                     100000 non-null int64
           6
               fleet
               frame_damaged
                                     100000 non-null int64
           7
           8
               franchise_make
                                     100000 non-null object
               front legroom
                                     100000 non-null float64
               fuel tank volume
                                     100000 non-null float64
           10
           11 fuel type
                                     100000 non-null object
           12 has_accidents
                                     100000 non-null int64
           13 height
                                     100000 non-null float64
           14 isCab
                                     100000 non-null int64
           15 length
                                     100000 non-null float64
           16 listed_date
                                     100000 non-null object
           17 listing color
                                     100000 non-null object
                                     100000 non-null object
           18 make_name
           19 maximum seating
                                     100000 non-null object
           20 model_name
                                     100000 non-null object
           21 salvage
                                     100000 non-null int64
           22 theft title
                                     100000 non-null int64
           23 transmission
                                     100000 non-null object
           24 transmission display
                                    100000 non-null object
               wheel system
                                     100000 non-null object
           26 wheelbase
                                     100000 non-null float64
               width
           27
                                     100000 non-null float64
           28 fuel_economy
                                     100000 non-null float64
           29 mileage
                                     100000 non-null float64
               dealer location
                                     100000 non-null float64
           31 engine_power
                                     100000 non-null float64
           32 price
                                     100000 non-null float64
           33 is hybrid
                                     100000 non-null int64
           dtypes: float64(15), int64(7), object(12)
          memory usage: 25.9+ MB
 In [186... # Specify the names of categorical and numerical columns
           categorical cols = df.select dtypes(include=['object']).columns
           numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns.drop(['price', 'is_hybrid'])
           # Create a ColumnTransformer for encoding categorical variables and scaling numerical variables
           preprocessor = ColumnTransformer(
               transformers=[
                   ('num', StandardScaler(), numeric_cols),
                   ('cat', OneHotEncoder(), categorical_cols)
              ]
           # Create a pipeline
           pipeline = make_pipeline(
               preprocessor,
               LogisticRegression()
           # Define features and target variable
          X = df.drop(columns=['price', 'is hybrid'])
           v = df['is hvbrid']
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

<class 'pandas.core.frame.DataFrame'>

```
pipeline.fit(X, y)
         # Calculate propensity scores
         df['propensity_score'] = pipeline.predict_proba(X)[:, 1]
In [187... # Initialize the CausalModel
         causal = CausalModel(
             Y=df['price'].values,
             D=df['is_hybrid'].values,
             X=df['propensity score'].values
         # Perform matching
         causal.est_via_matching()
         # Display the results
         print(causal.estimates)
         Treatment Effect Estimates: Matching
                               Est.
                                          S.e.
                                                       Z
                                                               P>|z|
                                                                          [95% Conf. int.]
```

Est. S.e. z P>|z| [95% Conf. int.]

ATE -24881.877 12082.623 -2.059 0.039 -48563.818 -1199.937

ATC -25049.739 12303.722 -2.036 0.042 -49165.035 -934.443

ATT -15971.235 21042.825 -0.759 0.448 -57215.172 25272.702

Train the model using the pipeline

The results indicate that being a hybrid vehicle (HV) has a statistically significant negative impact on price (average price difference = \$25,000). However, based on the results from the EBM analysis, it is understood that in the US market, vehicles with conflicting characteristics of high fuel efficiency and high engine power are advantageous. Typically, both HV and EV (Electric Vehicles) would meet these conditions, but given the period of data collection, only HVs were considered, leading to the observed negative impact. It is hypothesized that while HVs show a negative impact on the market overall, there might be a strong premium on specific brands.

```
In [188... # Column name storing the brand names
           brand col = 'make name'
           # Loop through each brand
           for brand in df[brand col].unique():
               # Extract data for the current brand
               df_brand = df[df[brand_col] == brand].copy()
               # Check if both hybrid and non-hybrid vehicles exist
               if df brand['is hybrid'].nunique() < 2:</pre>
                   continue # Skip if both classes do not exist
               # Specify the names of categorical and numerical columns
               # Exclude the brand name column
               categorical_cols = df_brand.select_dtypes(include=['object']).columns.drop([brand_col])
               numeric_cols = df_brand.select_dtypes(include=['int64', 'float64']).columns.drop(['price', 'is_hybrid'])
               # Create a ColumnTransformer for encoding categorical variables and scaling numerical variables
               preprocessor = ColumnTransformer(
                   transformers=[
                       ('num', StandardScaler(), numeric_cols),
                       ('cat', OneHotEncoder(), categorical cols)
               # Create a pipeline
               pipeline = make pipeline(
                   preprocessor,
                   LogisticRegression()
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
# Define features and target variable
# Exclude the brand name column as well
X = df_brand.drop(columns=['price', 'is_hybrid', brand_col])
y = df_brand['is_hybrid']

# Train the model using the pipeline
pipeline.fit(X, y)

# Calculate propensity scores
df.loc[df[brand_col] == brand, 'propensity_score'] = pipeline.predict_proba(X)[:, 1]
```

```
In [189... # Column name storing the brand names
         brand col = 'make name'
         # Loop through each brand
         for brand in df[brand col].unique():
             # Extract data for the current brand
             df brand = df[df[brand col] == brand].copy()
             # Check if both hybrid and non-hybrid vehicles exist
             if df brand['is hybrid'].nunique() < 2:</pre>
                 continue # Skip if both classes do not exist
             # Check if propensity scores are calculated and not null
             if 'propensity_score' not in df_brand.columns or df_brand['propensity_score'].isnull().any():
                 print(f"Skipping {brand} due to missing propensity scores.")
                 continue
             try:
                 # Initialize the CausalModel
                 causal = CausalModel(
                     Y=df brand['price'].values,
                     D=df_brand['is_hybrid'].values,
                     X=df_brand[['propensity_score']].values
                 # Perform matching
                 causal.est_via_matching()
                 # Display the results
                 print(f"Brand: {brand}")
                 print(causal.estimates)
                 print("\n")
             except ValueError as e:
                 print(f"Skipping {brand} due to an error: {e}")
                 continue
```

Brand: Subaru

Treatment Effect Estimates: Matching

	Est.	S.e.	z P> z	[95%	Conf. int.]
ATE -111 ATC -111 ATT 90		3.186 –5.33	35 0.000	-15234.149 -15270.051 -8941.385	-7064.760

Brand: Hyundai

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95%	Conf. int.]
=	-14435.804 -14330.096	7378.419 7512.241	-1.956 -1.908	0.000	-28897.506 -29054.090	
ATT	-20107.151	9369.626	-2.146	0.032	-38471.618	-1742.684

Brand: Chevrolet

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% (Conf. int.]
=	-9441 . 030		-2 . 093	0.000	-18282.514	0001010
	-9442.602		-2.092			-595.651
AII	-7271 . 571	135/0.159	-0 . 536	0.592	-33869.082	19325 . 939

Brand: Lexus

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% (Conf. int.]
=	-19195.736 -22234.775		-1.437 -1.498	0.101		6977 . 573 6854 . 002
ATT	5736.184	16169.254	0.355	0.723	-25955.552	37427.921

Skipping Cadillac due to an error: Too few treated units: $N_t < K+1$ Brand: Nissan

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95%	Conf. int.]
ATE	-3730 . 163	6087.675	-0.613		-15662 . 006	
	-3742.901	6094.745	0.0		-15688.601	
ATT	5842 . 125	9872.092	0.592	0.554	-13507.175	25191.425

Brand: Honda

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Conf. int.]			
-7038.657 -7064.760 27133.785			
Conf. int.] 25.897 393.897 -1742.684			
Conf. int.]			
-599.545 -595.651 19325.939			
Conf. int.]			
6977.573 6854.002 37427.921			
Conf. int.]			
8201.679 8202.799 25191.425			

		Est.	S.e.	Z	P> z	[95% C	conf. int.]
	ATC	-2516.354 -3167.390 22181.276	7554.383		0.675	-16952.329 -17973.980 4508.172	11639.200
Brand: Kia							
Treatment I	Effec	t Estimates:	: Matching				
		Est.	S.e.	Z	P> z	[95% C	onf. int.
	ATC	4933.803	5648.958	0.754 0.873 -2.552	0.382	-6138.155	16005.761
	,,,,						
Brand: For							

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% (Conf. int.]
···-	19998.726 20217.763	00001==0	2.097 2.063	0.036 0.039	1009.893	38689.723 39425.633
ATT	12422.509	16245.941	0.765	0.444	-19419.536	44264.553

Brand: Lincoln

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% C	onf. int.]
···-	-251.743	100.0100	-0.024	0.00-	-21119.577	
	-195.196 -1656.463		-0.018 -0.084	0.000	-21835.707 -40161.591	

Brand: Volkswagen

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95%	Conf. int.]
	-13603.810 -13609.203	236.280 235.944	-57 . 575 -57 . 680			-13140.701 -13146.753
ATT	-9071.667	11000.173	-0.825	0.410	-30632.007	12488.673

Brand: Porsche

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% Conf. int.]
oading [MathJax]/jax/output/CommonHTML	_/fonts/TeX/f	ontdata.js	-17 . 004	0.000	-53515.088 -42453.176

		-48117.096 -17402.500				-53624.591 -135233.293	
Brand: Toy	ota/						
Treatment	Effe	ct Estimates	: Matching				
		Est.	S.e.	Z	P> z	[95% (Conf. int.]
		9905.989 8700.779 20115.397	12053.766	0.913 0.722 1.740	0.470	-11363.560 -14924.602 -2539.100	32326.160
Brand: INF	INIT	Γ					
Treatment	Effe	ct Estimates	: Matching				
		Est.	S.e.	z	P> z	[95% (Conf. int.]
	ATC	-3482.261 -3516.774 3926.500	5273.336		0.505	-13779.150 -13852.512 -24744.971	6818.964
Brand: GMC	2						
Treatment	Effe	ct Estimates	: Matching				
		Est.	S.e.	z	P> z	[95% (Conf. int.]
		-26819.485 -26852.106 5752.500	9250.328 9254.934 17816.944	-2.899 -2.901 0.323	0.004	-44950.128 -44991.777 -29168.709	-8712.435
Brand: Acu	ıra						
Treatment	Effe	ct Estimates	: Matching				
		Est.	S.e.	Z	P> z	[95% (Conf. int.]
	ATE ATC ATT			0.222 0.222 0.055	0.825	-25293.663 -25565.914 -29812.388	32081.932
Brand: Mer	cury						
Treatment	Effe	ct Estimates	: Matching				
		Est.	S.e.	Z	P> z	[95% (Conf. int.]

Brand: Mercury

Treatment Effect Estimates: Matching

Est. S.e. z P>|z| [95% Conf. int.]

ATE -2468.841 905.753 -2.726 0.006 -4244.117 -693.565
ATC -2584.619 884.186 -2.923 0.003 -4317.624 -851.614
ATT -37.500 4894.678 -0.008 0.994 -9631.069 9556.069

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Looking at the scores by brand, it was found that there is a hybrid vehicle (HV) premium for the brands Acura, Toyota, Ford, and Kia. Considering the period of data collection, it cannot be asserted with statistical significance due to the small number of data on HVs. However, as a general trend, it can be considered that there is an HV premium in the US market for these four brands. This means that choosing HVs from these four brands when purchasing a new car could result in a higher resale value.

```
# Aggregate the data based on 'make name' and 'is hybrid', counting the number of records for each
In [190...
         brand hybrid counts = df.groupby(['make name', 'is hybrid']).size().unstack(fill value=0)
         # Filter out brands with a total count of less than 100 vehicles
         brand_hybrid_counts = brand_hybrid_counts[brand_hybrid_counts.sum(axis=1) >= 100]
         # Sort the brands by the total number of vehicles in ascending order
         # This will result in the brands with the most vehicles being at the bottom of the chart,
         # which is the top when displayed as a horizontal bar chart
         brand_hybrid_counts = brand_hybrid_counts.sort_values(by=[0, 1], ascending=True)
         # Display the horizontal bar chart
         brand_hybrid_counts.plot(kind='barh', stacked=True, color=['#1f77b4', '#ff7f0e'])
         plt.title('Number of Vehicles by Brand and Hybrid Status')
         plt.xlabel('Number of Vehicles')
         plt.ylabel('Brand')
         plt.legend(['Non-Hybrid', 'Hybrid'], title='Hybrid Status')
         plt.tight_layout()
         plt.show()
```

