Mateusz Stasiak Indeks: 262339

Weryfikacja hipotez statystycznych

1. Zadanie 1

1.1. Wstęp

Hipotezą zerową nazywamy założenie, że wartość średnia μ naszych danych wyniesie 1.5. Hipotezę tę oznaczamy symbolem H_0 i piszemy H_0 : $\mu = \mu_0 = 1.5$. Drugą hipotezę nazywamy hipotezą alternatywną i oznaczamy ją przez H_1 . W naszym przypadku:

- (a) $H_1: \mu \neq \mu_0$
- (b) $H_1: \mu > \mu_0$
- (c) $H_1: \mu < \mu_0$.

Jeśli zachodzi hipoteza zerowa, to nasze dane mają rozkład N(1.5,0.2). Do weryfikacji H_0 będziemy potrzebować jakiejś statystyki testowej. Zauważmy, że parametr σ jest znany i wynosi 0.2, dlatego mądrym pomysłem będzie wykorzystanie średniej z dostępnych obserwacji. Ta zmienna losowa \overline{X} ma rozkład $N(\mu, \frac{\sigma}{\sqrt{n}})$. Zatem najwygodniej będzie dodatkowo przeprowadzić standaryzację tej średniej i użyć statystyki

$$Z = \frac{\overline{X} - \mu_0}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}, \qquad Z \sim N(0,1).$$

Gdy hipoteza zerowa H_0 jest fałszywa, wzór na statystykę Z można zapisać następująco:

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \underbrace{\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}}_{\sim N(0,1)} + \frac{\mu - \mu_0}{\frac{\sigma}{\sqrt{n}}}.$$

Ze wzoru widać, że kluczem do weryfikacji hipotezy jest sprawdzenie czy statystyka Z przyjmuje wartości charakterystyczne dla założonego rozkładu N(0,1). Jeśli nie, to niepoprawny będzie również rozkład przewidywany dla \overline{X} , a tym samym odrzucimy naszą hipotezę zerową. Zbiór liczb, które prowadzą do odrzucenia hipotezy H_0 na korzyść H_1 nazywamy zbiorem krytycznym C. Jego rozmiar zależy od miary dokładności wykonywanego testu, czyli tzw. poziomu istotności. Wyznacza on prawdopodobieństwo popełnienia błędu pierwszego rodzaju - odrzucenia hipotezy zerowej, gdy jest ona prawdziwa. Poziom istotności oznaczamy poprzez symbol α . W zadaniu przyjmujemy, że jest on równy 0.05.

Wprowadźmy jeszcze pojęcie p-wartości. Jest to najmniejszy poziom istotności α , przy którym zaobserwowana wartość statystyki testowej Z prowadzi do odrzucenia hipotezy zerowej H_0 .

1.2. Hipoteza alternatywna H_1 : $\mu \neq 1.5$, $\alpha = 0.05$

Z teorii estymacji przedziałowej dla danych z rozkładu normalnego wiemy, że $P_{H_0}(z_{\frac{\alpha}{2}} \leqslant Z \leqslant z_{1-\frac{\alpha}{2}}) = P_{H_0}(-z_{1-\frac{\alpha}{2}} \leqslant Z \leqslant z_{1-\frac{\alpha}{2}}) = 1 - \alpha$. Powyższe kwantyle rozkładu N(0,1) wynoszą $z_{0.025} = -1.96$ oraz $z_{0.975} = 1.96$. Zbiór krytyczny testu przyjmuje wtedy postać

$$C = \left\{ Z : Z \leqslant z_{\frac{\alpha}{2}} \lor Z \geqslant z_{1-\frac{\alpha}{2}} \right\} = \left\{ Z : Z \leqslant -1.96 \lor Z \geqslant 1.96 \right\}.$$

Ponieważ statystyka testowa Z wynosi -7.041, czyli znajduje się w przedziale krytycznym, to odrzucamy hipotezę zerową H_0 i przyjmujemy hipotezę alternatywną H_1 . Zilustrujmy powyższy wniosek.

Rysunek 1. Zbiór krytyczny C dla hipotezy zerowej H_0 , jeśli $H_1: \mu \neq \mu_0$

P-wartość dla tego podpunktu wynosi $\alpha_p = 2P_{H_0}(Z > |z_{\alpha_p}|) = 2 - 2P_{H_0}(Z \le |-7.041|) = 2 - 2F_Z(7.041) = 1.909 \cdot 10^{-12}$.

1.3. Hipoteza alternatywna H_1 : $\mu > 1.5$, $\alpha = 0.05$

Z teorii estymacji przedziałowej dla danych z rozkładu normalnego wiemy, że $P_{H_0}(Z \geqslant z_{1-\alpha}) = \alpha$. Kwantyl rzędu $1-\alpha$ rozkładu N(0,1) wynosi $z_{0.95} = 1.6449$. Zbiór krytyczny testu przyjmuje wtedy postać

$$C = \{Z : Z \geqslant z_{1-\alpha}\} = \{Z : Z \geqslant 1.6449\}.$$

Ponieważ statystyka testowa Z = -7.041 jest mniejsza niż 1.6449, czyli nie znajduje się w przedziale krytycznym, to nie ma podstaw do odrzucenia hipotezy zerowej H_0 . Zilustrujmy powyższy wniosek.

Rysunek 2. Zbiór krytyczny C dla hipotezy zerowej H_0 , jeśli H_1 : $\mu > \mu_0$

P-wartość dla tego podpunktu wynosi $\alpha_p = P_{H_0}(Z > z_{\alpha_p}) = 1 - P_{H_0}(Z \le -7.041) = 1 - F_Z(-7.041) \approx 1.$

1.4. Hipoteza alternatywna H_1 : $\mu < 1.5$, $\alpha = 0.05$

Z teorii estymacji przedziałowej dla danych z rozkładu normalnego wiemy, że $P_{H_0}(Z \geqslant z_{1-\alpha}) = P_{H_0}(Z \leqslant -z_{1-\alpha}) = P_{H_0}(Z \leqslant z_{\alpha}) = \alpha$. Kwantyl rzędu α rozkładu N(0,1) wynosi $-z_{0.95} = z_{0.05} = -1.6449$. Zbiór krytyczny testu przyjmuje wtedy postać

$$C = \{Z : Z \leqslant z_{\alpha}\} = \{Z : Z \leqslant -1.6449\}.$$

Ponieważ statystyka testowa Z = -7.041 jest mniejsza niż -1.6449, czyli wpada do przedziału krytycznego, to odrzucamy hipotezę zerową H_0 i przyjmujemy hipotezę alternatywną H_1 . Zilustrujmy powyższy wniosek.

Rysunek 3. Zbiór krytyczny C dla hipotezy zerowej H_0 , jeśli H_1 : $\mu < \mu_0$

P-wartość dla tego podpunktu wynosi $\alpha_p = P_{H_0}(Z \leqslant z_{\alpha_p}) = P_{H_0}(Z \leqslant -7.041) = F_Z(-7.041) = 9.543 \cdot 10^{-13}$.

Przypomnijmy, że poziom istotności α to z definicji miara dokładności wykonywanego testu. Przyjęcie niższego poziomu istotności w powyższych podpunktach spowoduje zmniejszenie przedziału krytycznego, a w konsekwencji zmniejszenie p-wartości. Analogicznie dla zwiększenia poziomu istotności α .

1.5. Wnioski dla hipotezy H_0 : $\mu = 1.5$

Podsumujmy zebrane informacje w tabeli:

Hipoteza H_1	Kwantyle z	Statystyka ${\cal Z}$	Zbiór krytyczny C	Hipoteza H_0	P-wartość
$\mu \neq 1.5$	$z_{0.025} = -1.96, z_{0.975} = 1.96$	-7.041	$(-\infty, -1.96) \cup (1.96, \infty)$	odrzucona	$1.909 \cdot 10^{-12}$
$\mu > 1.5$	$z_{0.95} = 1.6449$	-7.041	$(1.6449, \infty)$	przyjęta	≈ 1
$\mu < 1.5$	$z_{0.05} = -1.6449$	-7.041	$(-\infty, -1.6449)$	odrzucona	$9.543 \cdot 10^{-13}$

Biorąc pod uwagę przyjmowane hipotezy alternatywne H_1 , możemy wysnuć wniosek, że nasze dane pochodzą z rozkładu normalnego, gdzie μ ma wartość mniejszą niż 1.5. Zgadza się to z p-wartością bliską 1 przy H_1 : $\mu > 1.5$.

2. Zadanie 2

2.1. Wstęp

Hipotezą zerową nazywamy założenie, że wariancja σ^2 naszych danych wyniesie 1.5. Hipotezę tę oznaczamy symbolem H_0 i piszemy H_0 : $\sigma^2 = \sigma_0^2 = 1.5$. Drugą hipotezę nazywamy hipotezą alternatywną i oznaczamy ją przez H_1 . W naszym przypadku:

- (a) $H_1: \sigma^2 \neq \sigma_0^2$ (b) $H_1: \sigma^2 > \sigma_0^2$ (c) $H_1: \sigma^2 < \sigma_0^2$

Jeśli zachodzi hipoteza zerowa, to nasze dane mają rozkład $N(0.2,\sqrt{1.5})$. Zauważmy, że parametr μ jest znany i wynosi 0.2. Do weryfikacji H_0 będziemy potrzebować jakiejś statystyki testowej. W celu zbadania wariancji w rodzinie rozkładów normalnych używa się statystyki

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2},$$
 gdzie $S^2 = \frac{1}{n-1} \sum_{i=1}^n (\mu - x_i)^2.$

Ta zmienna losowa χ^2 ma rozkład χ^2 z (n-1) stopniami swobody. Gdy hipoteza zerowa H_0 jest fałszywa, wzór na statystykę χ^2 można zapisać następująco:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \underbrace{\frac{(n-1)S^2}{\sigma_{2n-1}^2}}_{\sim \chi_{n-1}^2} \cdot \frac{\sigma^2}{\sigma_0^2}.$$

Ze wzoru widać, że kluczem do weryfikacji hipotezy jest sprawdzenie czy statystyka χ^2 przyjmuje wartości charakterystyczne dla jej założonego rozkładu χ_{n-1}^2 . Jeśli nie, to niepoprawny będzie również rozkład $N(0.2,\sqrt{1.5})$ przewidywany dla naszych danych, a tym samym odrzucimy hipotezę zerową. Zbiór liczb, które prowadzą do odrzucenia hipotezy H_0 na korzyść H_1 nazywamy zbiorem krytycznym C. Jego rozmiar zależy od miary dokładności wykonywanego testu, czyli tzw. poziomu istotności. Wyznacza on prawdopodobieństwo popełnienia błędu pierwszego rodzaju - odrzucenia hipotezy zerowej, gdy jest ona prawdziwa. Poziom istotności oznaczamy poprzez symbol α . W zadaniu przyjmujemy, że jest on równy 0.05.

Wprowadźmy jeszcze pojęcie p-wartości. Jest to najmniejszy poziom istotności α , przy którym zaobserwowana wartość statystyki testowej χ^2 prowadzi do odrzucenia hipotezy zerowej H_0 .

2.2. Hipoteza alternatywna H_1 : $\sigma^2 \neq 1.5$, $\alpha = 0.05$

Z teorii estymacji przedziałowej dla danych z rozkładu normalnego wiemy, że $P_{H_0}(x_{\frac{\alpha}{2}} \leqslant \chi^2 \leqslant x_{1-\frac{\alpha}{2}}) = 1 - \alpha$. Powyższe kwantyle rozkładu χ^2_{n-1} wynoszą $x_{0.025} = 913.3$ oraz $x_{0.975} = 1088.49$. Zbiór krytyczny testu przyjmuje wtedy postać

$$C = \left\{ \chi^2 : \chi^2 \leqslant x_{\frac{\alpha}{2}} \lor \chi^2 \geqslant x_{1 - \frac{\alpha}{2}} \right\} = \left\{ \chi^2 : \chi^2 \leqslant 913.3 \lor \chi^2 \geqslant 1088.49 \right\}.$$

Ponieważ statystyka testowa χ^2 wynosi 1110.968, czyli znajduje się w przedziale krytycznym, to odrzucamy hipotezę zerową H_0 i przyjmujemy hipotezę alternatywną H_1 . Zilustrujmy powyższy wniosek.

Rysunek 4. Zbiór krytyczny C dla hipotezy zerowej H_0 , jeśli $H_1: \sigma^2 \neq 1.5$

P-wartość dla tego podpunktu wynosi $\alpha_p = 2P_{H_0}(\chi^2 > |x_{\alpha_p}|) = 2 - 2P_{H_0}(\chi^2 \leq |x_{\alpha_p}|) = 2 - 2F_{\chi^2_{000}}(1110.968) = 0.015.$

2.3. Hipoteza alternatywna $H_1: \sigma^2 > 1.5, \alpha = 0.05$

Z teorii estymacji przedziałowej dla danych z rozkładu normalnego wiemy, że $P_{H_0}(\chi^2 \geqslant x_{1-\alpha}) = \alpha$. Kwantyl rzędu $1-\alpha$ rozkładu χ^2_{999} wynosi $x_{0.95}=1073.64$. Zbiór krytyczny testu przyjmuje wtedy postać

$$C = \left\{ \chi^2 : \chi^2 \geqslant x_{1-\alpha} \right\} = \left\{ \chi^2 : \chi^2 \geqslant 1073.64 \right\}.$$

Ponieważ statystyka testowa $\chi^2 = 1110.968$ jest większa niż 1073.64, czyli wpada do przedziału krytycznego, to odrzucamy hipotezę zerową H_0 i przyjmujemy hipotezę alternatywną H_1 . Zilustrujmy powyższy wniosek.

Rysunek 5. Zbiór krytyczny C dla hipotezy zerowej H_0 , jeśli H_1 : $\sigma^2 > 1.5$

P-wartość dla tego podpunktu wynosi $\alpha_p = P_{H_0}(\chi^2 > x_{\alpha_p}) = 1 - P_{H_0}(\chi^2 \le 1110.968) = 1 - F_{\chi^2_{999}}(1110.968) = 0.0075.$

2.4. Hipoteza alternatywna $H_1\colon \sigma^2 < 1.5,\ \alpha = 0.05$

Z teorii estymacji przedziałowej dla danych z rozkładu normalnego wiemy, że $P_{H_0}(\chi^2 \geqslant x_{1-\alpha}) = P_{H_0}(\chi^2 \leqslant x_{\alpha}) = \alpha$. Kwantyl rzędu α rozkładu χ^2_{999} wynosi $x_{0.05} = 926.63$. Zbiór krytyczny testu przyjmuje wtedy postać

$$C = \left\{ \chi^2 : \chi^2 \leqslant x_\alpha \right\} = \left\{ \chi^2 : \chi^2 \leqslant 926.63 \right\}.$$

Ponieważ statystyka testowa $\chi^2 = 1110.968$ jest większa niż 926.63, czyli nie znajduje się w przedziale krytycznym, to nie ma podstaw do odrzucenia hipotezy zerowej H_0 . Zilustrujmy powyższy wniosek.

Rysunek 6. Zbiór krytyczny C dla hipotezy zerowej H_0 , jeśli H_1 : $\sigma^2 < 1.5$

P-wartość dla tego podpunktu wynosi $\alpha_p = P_{H_0}(\chi^2 \leqslant x_{\alpha_p}) = P_{H_0}(\chi^2 \leqslant 1110.968) = F_{\chi^2}(1110.968) = 0.992.$

Przypomnijmy, że poziom istotności α to z definicji miara dokładności wykonywanego testu. Przyjęcie niższego poziomu istotności w powyższych podpunktach spowoduje zmniejszenie przedziału krytycznego, a w konsekwencji zmniejszenie p-wartości. Analogicznie dla zwiększenia poziomu istotności α .

2.5. Wnioski dla hipotezy H_0 : $\sigma^2 = 1.5$

Podsumujmy zebrane informacje w tabeli:

Hipoteza H_1	Kwantyle x	Statystyka χ^2	Zbiór krytyczny C	Hipoteza H_0	P-wartość
$\sigma^2 \neq 1.5$	$x_{0.025} = 913.3, x_{0.975} = 1088.49$	1110.968	$(-\infty,913.3) \cup (1088.49,\infty)$	odrzucona	0.015
$\sigma^2 > 1.5$	$x_{0.95} = 1073.64$	1110.968	$(1073.64, \infty)$	odrzucona	0.0075
$\sigma^2 < 1.5$	$x_{0.05} = 926.63$	1110.968	$(-\infty, 926.63)$	przyjęta	0.992

Biorąc pod uwagę przyjmowane hipotezy alternatywne H_1 , możemy wysnuć wniosek, że nasze dane pochodzą z rozkładu normalnego, gdzie σ^2 ma wartość większą niż 1.5. Zgadza się to z p-wartością bliską 1 przy H_1 : $\sigma^2 < 1.5$.

3. Zadanie 3

3.1. Wstęp

Błąd pierwszego rodzaju to prawdopodobieństwo odrzucenia hipotezy zerowej, gdy ta jest prawdziwa. Jego teoretyczna wartość jest równa poziomowi istotności α . Aby wyznaczyć symulacyjnie błąd I rodzaju musimy wygenerować prostą próbę losową z rozkładu normalnego o parametrach zgodnych z H_0 ($\mu=1.5$ oraz $\sigma=0.2$) i sprawdzić ile razy odrzucimy hipotezę zerową. Algorytm:

- 1. Ustalamy $\alpha = 0.05, n = 1000$
- 2. Generujemy X_1,\ldots,X_n prostą próbę losową z rozkładu $N(\mu,\sigma)$ (parametry zgodne z H_0)
- 3. Wyznaczamy wartość statystyki testowej Zlub χ^2
- 4. Wyznaczamy obszar krytyczny (jego postać zależy od hipotezy alternatywnej H_1)
- 5. Sprawdzamy, czy statystyka Z lub χ^2 jest w obszarze krytycznym
- 6. Powtarzamy kroki od 2) do 5) N = 1000 razy i zliczamy ile razy statystyka Zlub χ^2 jest w obszarze krytycznym
- 7. Ilość Z (lub $\chi^2)$ w obszarze krytycznym podzielone przez N to w przybliżeniu błąd I rodzaju

Błąd drugiego rodzaju to prawdopodobieństwo przyjęcia fałszywej hipotezy zerowej i odrzucenia prawdziwej hipotezy alternatywnej. Jego wartość zależy m.in. od tego jak daleko jesteśmy od hipotezy zerowej, tzn. ile wynosi wartość parametru μ (lub σ^2). Aby wyznaczyć symulacyjnie błąd II rodzaju musimy wygenerować prostą próbę losową z rozkładu normalnego o parametrach zgodnych z H_1 (ale blisko tych z H_0) i sprawdzić ile razy przyjmujemy hipotezę zerową. Algorytm:

- 1. Ustalamy $\alpha=0.05, n=1000$. Wartości parametrów μ i σ dobieramy zgodnie z hipotezą alternatywną H_1 , ale blisko hipotezy zerowej H_0 przykładowo oddalone maksymalnie o 0.03 od wartości z H_0)
- 2. Generujemy X_1, \ldots, X_n prostą próbę losową z rozkładu $N(\mu, \sigma)$
- 3. Wyznaczamy wartość statystyki testowej Z lub χ^2
- 4. Wyznaczamy obszar krytyczny (jego postać zależy od hipotezy alternatywnej H_1)
- 5. Sprawdzamy, czy statystyka Zlub χ^2 jest poza obszarem krytycznym
- 6. Powtarzamy kroki od 2) do 5) N = 1000 razy i zliczamy ile razy statystyka Z lub χ^2 jest poza obszarem krytycznym
- 7. Ilość Z (lub $\chi^2) poza obszarem krytycznym podzielone przez <math display="inline">N$ to w przybliżeniu błąd II rodzaju

3.2. Wyniki symulacji błędu I rodzaju dla testów μ

Rysunek 7. Wykres pudełkowy przedstawiający wartości błędów I rodzaju dla μ przy hipotezie alternatywnej $H_1\colon \mu \neq 1.5$

Rysunek 8. Wykres pudełkowy przedstawiający wartości błędów I rodzaju dla μ przy hipotezie alternatywnej $H_1\colon \mu>1.5$

Rysunek 9. Wykres pudełkowy przedstawiający wartości błędów I rodzaju dla μ przy hipotezie alternatywnej $H_1\colon \mu<1.5$

3.3. Wyniki symulacji błędu I rodzaju dla testów σ^2

Rysunek 10. Wykres pudełkowy przedstawiający wartości błędów I rodzaju dla σ^2 przy hipotezie alternatywnej $H_1\colon\sigma^2\neq 1.5$

Rysunek 11. Wykres pudełkowy przedstawiający wartości błędów I rodzaju dla σ^2 przy hipotezie alternatywnej $H_1\colon\sigma^2>1.5$

Rysunek 12. Wykres pudełkowy przedstawiający wartości błędów I rodzaju dla σ^2 przy hipotezie alternatywnej $H_1\colon\sigma^2<1.5$

3.4. Wnioski dla symulacji błędów I rodzaju

Wartości wszystkich wykresów pudełkowych oscylują wokół 0.05. Tyle samo wynosi poziom istotności α , czyli teoretyczna wartość błędu I rodzaju. Możemy zatem wnioskować, że testy zostały przeprowadzone poprawnie.

3.5. Wyniki symulacji błędu II rodzaju dla testów μ

Rysunek 13. Wykres pudełkowy przedstawiający wartości błędów II rodzaju dla $\mu=1.51$ przy hipotezie alternatywnej $H_1\colon \mu\neq 1.5$

Rysunek 14. Wykres pudełkowy przedstawiający wartości błędów II rodzaju dla $\mu=1.51$ przy hipotezie alternatywnej $H_1\colon \mu>1.5$

Rysunek 15. Wykres pudełkowy przedstawiający wartości błędów II rodzaju dla testów $\mu=1.49$ przy hipotezie alternatywnej $H_1\colon \mu<1.5$

3.6. Wyniki symulacji błędu II rodzaju dla testów σ^2

Rysunek 16. Wykres pudełkowy przedstawiający wartości błędów II rodzaju dla $\sigma^2=1.55$ przy hipotezie alternatywnej $H_1\colon\sigma^2\neq1.5$

Rysunek 17. Wykres pudełkowy przedstawiający wartości błędów II rodzaju dla $\sigma^2=1.55$ przy hipotezie alternatywnej $H_1\colon\sigma^2>1.5$

Rysunek 18. Wykres pudełkowy przedstawiający wartości błędów II rodzaju dla $\sigma^2=1.45$ przy hipotezie alternatywnej $H_1\colon\sigma^2<1.5$

3.7. Wnioski dla symulacji błędów II rodzaju

Podsumujmy zebrane informacje w tabelach.

Hipoteza alternatywna H_1	μ	Wartość średnia błędu II rodzaju	Średnia moc testu
$\mu \neq 1.5$	1.51	0.64722	0.35278
$\mu > 1.5$	1.51	0.525405	0.474595
$\mu < 1.5$	1.49	0.525083	0.474917

Hipoteza alternatywna H_1	σ^2	Wartość średnia błędu II rodzaju	Średnia moc testu
$\sigma^2 \neq 1.5$	1.55	0.886972	0.113028
$\sigma^2 > 1.5$	1.55	0.82109	0.17891
$\sigma^2 < 1.5$	1.45	0.809961	0.190039

Zauważmy, że wartość średnia błędu II rodzaju i średnia moc testu sumują się do 1. Dwa ostatnie rzędy pierwszej tabeli przyjmują podobne wartości ze względu na dobór parametrów i symetrię rozkładu normalnego.