LOGISTIC

REGRESSION

Overview

- want to separate classes
- smooth decision function

Example: "AND" Gate

• linearly separable

Example: "OR" Gate

• linearly separable

Example: "XOR" Gate

• not linearly separable

Binary Classification

- training set S with labels $\{0, 1\}$
- find a classifier H

$$H: X \mapsto \{0, 1\}$$

- low generalization error
- linear classification (based on logistic regression)
- dividing (hyper)plane is called linear discriminant

Background: Linear Regression

• example of a Generalized Linear Model (GLM)

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Simple Linear Regression

choose line to minimize loss

$$Loss = \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Classification Problem

• how do we transform a linear prediction model to classification problem?

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Issues

- linear regression: continuous variables
- classification: discrete
- probabilities must be in [0, 1]
- solution:

linear regression \mapsto classification

• how: use logit function

logit Function

$$\frac{1}{1 + \exp(-x)} = \frac{\exp(x)}{1 + \exp(x)}$$

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Probability and Odds

- assume probability P
- define odds as

$$odds = \frac{P}{1 - P}$$

- ex.1: $P = 0.25 \rightarrow \text{odds} = 1/3$
- ex.2: $P = 0.50 \mapsto \text{odds} = 1$
- ex.3: $P = 0.75 \rightarrow \text{odds} = 3/1$

Main Idea:

- estimate logit(odds)
- use regression

$$\log\left(\frac{P}{1-P}\right) = b_0 + b_1 x$$

$$\frac{P}{1-P} = \exp(b_0 + b_1 x)$$

$$P = \frac{\exp(b_0 + b_1 x)}{1 + \exp(b_0 + b_1 x)}$$

• note:

$$\frac{\exp(b_0 + b_1 x)}{1 + \exp(b_0 + b_1 x)} = \frac{1}{1 + \exp(-(b_0 + b_1 x))}$$

Illustration

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Logistic Regression

- supervised learning
- estimate label probabilities by sigmoid function

Linear Regression

• real-valued output from weighted sum of inputs

Linear vs. Logistic

- linear regression:
 - 1. estimate w_0, w_1, \ldots, w_n using min squared error
 - 2. predict $y = w_0 + w_1 x_2 + \cdots + w_n x_n$
- logistic regression:
 - 1. estimate w_0, w_1, \ldots, w_n using min squared error
 - 2. compute $y = w_0 + w_1 x_2 + \cdots + w_n x_n$
 - 3. apply the signoid function z(y) to compute label probabilities

Linear Separability

- draw a hyperplane
- difficult in many cases

Logistic Regression

- dependent variable is class label - categorical
- output is a weighted sum of inputs

$$y = w_0 + w_1 x_1 + \dots + w_m x_m$$

• weighted sum is passed through a sigmoid function

$$z(y) = \frac{1}{1 + e^{-y}}$$

• assign labels based on z(y)

Sigmoid Function z(y)

- z(y) > 0.5 if y > 0 (class 1)
- z(y) < 0.5 if y < 0 (class 0)

A Numerical Dataset

object	Height	Weight	Foot	Label
$ x_i $	(H)	(W)	(F)	$\left \begin{array}{c} \left(L \right) \end{array} \right $
x_1	5.00	100	6	green
$ x_2 $	5.50	150	8	green
x_3	5.33	130	7	green
$ x_4 $	5.75	150	9	green
x_5	6.00	180	13	red
$ x_6 $	5.92	190	11	red
$ x_7 $	5.58	170	12	red
x_8	5.92	165	10	red

Code for the Dataset

ipdb> data

```
id Height Weight Foot Label
     5.00
0
  1
              100
                    6
                       green
1
   2 5.50
             150
                    8
                       green
2
  3 5.33
             130
                    7
                       green
3
  4 5.75
             150
                    9
                       green
4
  5 6.00
             180
                   13
                         red
5
  6 5.92
                   11
             190
                         red
  7 5.58
6
             170
                   12
                         red
7 8 5.92
             165
                   10
                         red
```

A Dataset Illustration

A New Instance

$$(H=6, W=160, F=10) \rightarrow ?$$

Separability in Detail

Computing Class Labels

•
$$z(y^*) < 0.5 - \text{"red"} \text{ (class 0)}$$

Summary of Logistic Regression

- feature vector: $X = (1, x_1, \dots, x_m)$
- weights $W = (w_0, w_1, \dots, w_m)$
- compute

$$y = W \cdot X = w_0 + w_1 x_1 + \dots + w_m x_m$$

• compute probability h(x):

$$h(x) = \frac{1}{1 + e^{-W \cdot X}}$$

• assign label C(X):

$$C(X) = \begin{cases} 1, & \text{if } h(x) > 0.5\\ 0, & \text{if } h(x) < 0.5 \end{cases}$$

How to Compute *W*?

• maximize likelihood

$$L = \prod_{X} h(X)^{C(X)} \cdot [1 - h(X)]^{1 - C(X)}$$

Cost Function

• minimize cost ("loss"):

$$Q = -\sum_{X} [C(X) \log(h(X))$$

$$+ (1 - C) \log(1 - h(X))]$$

Cost Intuition

- correct classification cost: 0
- misclassification cost: $\mapsto \infty$

Computing Gradient

• gradient (with respect to w_i):

$$\frac{\partial Q}{\partial w_i} = \sum_{X} \left[h(X) - C(X) \right] \cdot x_i$$

- computation of weights:
 - 1. initialize weights
 - 2. (simultaneously) update

$$w_i = w_i - \alpha \sum_X \left[h(X) - C(X) \right] x_i$$

3. α is the learning rate

Computing Weights

iterations	$ w_0 $	w_1	$ w_2 $	accuracy
100	0.021	0.084	-0.084	50%
250	0.053	0.221	-0.166	75%
1000	0.177	0.741	-0.482	100%

Effect of Lower Rate

• need more iterations

Effect of Higher Rate

• get higher accuracy for the same number of iterations

Logistic Regression (original dataset)

- predict(x^*)=red
- accuracy = 100%

Code: Log. Regression

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, LabelEncoder
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],}
        'Label': ['green', 'green', 'green', 'green',
                        'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75, 6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150, 180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight', 'Foot', 'Label'] )
X = data[['Height', 'Weight']].values
scaler = StandardScaler()
scaler.fit(X)
X = scaler.transform(X)
Y = data['Label'].values
log_reg_classifier = LogisticRegression()
log_reg_classifier.fit(X,Y)
new_x = scaler.transform(np.asmatrix([6, 160]))
predicted = log_reg_classifier.predict(new_x)
accuracy = log_reg_classifier.score(X, Y)
ipdb> predicted[0]
red
ipdb> accuracy
0.875
```

F/W/H Change

id	Height	Weight	Foot	Label
$\boxed{1}$	$5 \mapsto 6$	$100 \mapsto 170$	$6 \mapsto 10$	green

$$(H=6, W=160, F=10) \rightarrow ?$$

Logistic Regression (modified dataset)

Logistic Regression

(scaled) Height

- predict(x^*)=green
- accuracy = 87.5%

Code: Log. Regression (modified dataset)

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, LabelEncoder
data = pd.DataFrame( {'id': [ 1,2,3,4,5,6,7,8],
        'Label': ['green', 'green', 'green', 'green',
                        'red', 'red', 'red', 'red'],
        'Height': [5, 5.5, 5.33, 5.75, 6.00, 5.92, 5.58, 5.92],
        'Weight': [100, 150, 130, 150, 180, 190, 170, 165],
        'Foot': [6, 8, 7, 9, 13, 11, 12, 10]},
         columns = ['id', 'Height', 'Weight', 'Foot', 'Label'] )
data['Height'].iloc[0] = 6;
data['Weight'].iloc[0] = 170;
data['Foot'].iloc[0] = 10
X = data[['Height', 'Weight']].values
scaler = StandardScaler().fit(X)
X = scaler.transform(X)
Y = data['Label'].values
log_reg_classifier = LogisticRegression()
log_reg_classifier.fit(X,Y)
new_x = scaler.transform(np.asmatrix([6, 160]))
predicted = log_reg_classifier.predict(new_x)
accuracy = log_reg_classifier.score(X, Y)
ipdb> predicted[0]
green
ipdb> accuracy
0.875
```

Categorical Dataset

Day	Weather	Temperature	Wind	Play
1	sunny	hot	low	no
2	rainy	mild	high	yes
3	sunny	cold	low	yes
4	rainy	cold	high	no
5	sunny	cold	high	yes
6	overcast	mild	low	yes
7	sunny	hot	low	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no
10	rainy	mild	low	yes

- $x^* = (sunny, cold, low) \mapsto ?$
- need numeric values for attributes

Change to Dummy Variables

Day	Weather		Temp.		Wind			
Ω	0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Series 1	Auuns 1 0 1 0 1 0 0 0 0	P[OS] 0 0 1 1 1 0 0 0 0 0 0	tot 1	plim 0 1 0 0 0 1 0 0 1	ysiy 0 1 0 1 1 0 0 1 1 0 0 1 1 0	$ \begin{array}{c cccc} & & & & \\ & & & & \\ & & & & \\ & & & &$
1	0	0	1	0	1	0	0	1
2	0	1	0	0	0	1	1	0
3	0	0	1	1	0	0	0	1
4	0	1	0	1	0	0	1	0
5	0	0	1	1	0	0	1	0
6	1	0	0	0	0	1	0	1
7	0	0	1	0	1	0	0	1
1 2 3 4 5 6 7 8 9	1	0	0	0	1	0	1	$\mid 0 \mid$
9	$\mid 0 \mid$	1	0	0	1	0	1	$\mid 0 \mid$
10	0	1	0	0	0	1	0	1

Python Code

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
data = pd.DataFrame(
        {'Day':
                        [1,2,3,4,5,6,7,8,9,10],
        'Weather':
                       ['sunny','rainy','sunny','rainy',
                        'sunny', 'overcast', 'sunny', 'overcast',
                         'rainy', 'rainy'],
        'Temperature': ['hot', 'mild', 'cold', 'cold', 'cold',
                        'mild', 'hot', 'hot', 'hot', 'mild'],
                       ['low','high','low','high','high',
        'Wind':
                        'low', 'low', 'high', 'high', 'low'],
                        ['no', 'yes','yes','no','yes',
        'Play':
                         'yes','yes','yes','no','yes']},
        columns = ['Day', 'Weather', 'Temperature', 'Wind', 'Play'])
input_data = data[['Weather', 'Temperature', 'Wind']]
dummies = [pd.get_dummies(data[c]) for c in input_data.columns]
binary_data = pd.concat(dummies, axis=1)
X = binary_data[0:10].values
le = LabelEncoder()
Y = le.fit_transform(data['Play'].values)
log_reg_classifier = LogisticRegression()
log_reg_classifier.fit(X,Y)
\# sunny -> (0,0,1), cold-> (0,1,0), low -> (0,1)
new_instance = np.asmatrix([0,0,1,1,0,0,0,1])
prediction = log_reg_classifier.predict(new_instance)
accuracy = log_reg_classifier.score(X, Y)
ipdb> prediction[0]
1
ipdb> accuracy
0.8
```

Iris Histograms

Iris Dataset:

Iris: Python Code

```
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
url = r'https://archive.ics.uci.edu/ml/' + \
           r'machine-learning-databases/iris/iris.data'
data = pd.read_csv(url, names=['sepal-length', 'sepal-width',
                     'petal-length', 'petal-width', 'Class'])
features = ['sepal-length', 'sepal-width']
class_labels = ['Iris-setosa', 'Iris-versicolor']
X = data[features].values
le = LabelEncoder()
Y = le.fit_transform(data['Class'].values)
X_train,X_test,Y_train,Y_test = train_test_split(X, Y,
                       test_size=0.5, random_state=3)
log_reg_classifier = LogisticRegression()
log_reg_classifier.fit(X_train,Y_train)
prediction = log_reg_classifier.predict(X_test)
accuracy = np.mean(prediction == Y_test)
ipdb> accuracy
1.0
```

Iris: Logistic Regression

(scaled) sepal-length

- accuracy = 100%
- easy to separate

Iris: Python Code

```
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
url = r'https://archive.ics.uci.edu/ml/' + \
           r'machine-learning-databases/iris/iris.data'
data = pd.read_csv(url, names=['sepal-length', 'sepal-width',
                     'petal-length', 'petal-width', 'Class'])
features = ['sepal-length', 'sepal-width']
class_labels = ['Iris-versicolor', 'Iris-virginica']
X = data[features].values
le = LabelEncoder()
Y = le.fit_transform(data['Class'].values)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
                       test_size=0.5, random_state=3)
log_reg_classifier = LogisticRegression()
log_reg_classifier.fit(X_train,Y_train)
prediction = log_reg_classifier.predict(X_test)
accuracy = np.mean(prediction == Y_test)
ipdb> accuracy
0.68
```

Iris: Logistic Regression

(scaled) sepal-length

- accuracy = 68%
- difficult to separate

Concepts Check:

- (a) linear separability
- (b) logistic vs. linear regression
- (c) odds and logit function
- (d) computing weights
- (e) analysis of categorical data