Chapter 3: Continuous Wave (CW) Modulation Amplitude and Frequency Modulations

Part A: Amplitude Modulation

October 2018
Lectured by Prof. Dr. Thuong Le-Tien

Slides with references from HUT Finland; Mc. Graw Hill Co.; A.B. Carlson's Communication Systems Book; Simon Haykin - Communication Systems Book. R.Ziemer&H.Transfer – Principles of Communications Book

Linear continuous wave (CW) modulation

- Bandpass systems and signals
- Lowpass (LP) equivalents
- Amplitude modulation (AM)
- Double-sideband modulation (DSB)
- Modulator techniques
- Suppressed-sideband (Single Sideband) amplitude modulation (LSB, USB)
- Vestigial Sideband modulation (VSB)
- Detection techniques of linear modulation
 - Coherent detection
 - Noncoherent detection

Baseband and CW communications

- Baseband communications is used in
 - PSTN local loop

- PCM communications for instance between exchanges
- (fiber-) optical communication
- Using carrier to shape and shift the frequency spectrum (eg CW techniques) enable modulation by which several advantages are obtained
 - different radio bands can be used for communications
 - wireless communications
 - multiplexing techniques become applicable
 - exchanging transmission bandwidth to received SNR

Defining bandpass signals

The bandpass signal is band limited

$$V_{bp}(f) = 0, |f| < f_c - W \land |f| > f_c + W$$
$$V_{bp}(f) \neq 0, \text{otherwise}$$

We assume also that (why?)

$$W \ll f_c$$

- In telecommunications bandpass signals are used to convey messages over medium
- In practice, transmitted messages are never strictly band limited due to
 - their nature in frequency domain (Fourier series coefficients may extend over very large span of frequencies)
 - non-ideal filtering

Example of a bandpass system

Consider a simple bandpass system: a resonant (tank) circuit

$$z_{p} = \frac{j\omega L / j\omega C}{j\omega L + 1 / j\omega C} \quad z_{i} = R + z_{p} \quad V_{in}(\omega)H(\omega) = V_{out}(\omega)$$

$$H(\omega) = V_{out}(\omega) / V_{in}(\omega) = z_p / z_i \implies H(\omega) = 1/[1 + jQ(f / f_0 + f_0 / f)]$$

Bandwidth and Q-factor

The bandwidth is inversely proportional to Q-factor:

$$B_{3dB} = f_0 / Q$$
 (for the tank circuit: $Q = R\sqrt{C/L}$)

System design is easier if the fractional bandwidth 1/Q=B/f₀ is kept relatively small:

$$0.01 < B / f_0 < 0.1$$

Some practical examples:

100 kHz	2177
100 1411	2 kHz
5 MHz	100 kHz
100 MHz	2 MHz
5 GHz	100 MHz
100 GHz	2 GHz
$5 \times 10^{14} \text{Hz}$	10 ¹³ Hz
	100 MHz 5 GHz 100 GHz

System design is easier for smaller fractional bandwidths (FB).

- Antenna and bandpass amplifier design is difficult for large FB:s:
 - one will have "difficult to realize" components or parameters in circuits as
 - too high Q
 - too small or large values for capacitors and inductors
- These structures have a bandpass nature because one of their important elements is the resonant circuit.
 Making them broadband means decreasing resistive losses that can be difficult

 In I-Q presentation bandpass signal carrier and modulation parts are separated into different terms

$$v_{bp}(t) = A(t)\cos[\omega_C t + \phi(t)]$$

$$v_{bp}(t) = v_i(t)\cos(\omega_C t) - v_q(t)\sin(\omega_C t)$$

$$v_i(t) = A(t)\cos\phi(t), v_q(t) = A(t)\sin\phi(t)$$

Bandpass signal in frequency domain

Bandpass signal in time domain

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta)$$
dashed line
denotes envelope
 $-\sin(\alpha)\sin(\beta)$

The phasor description of bandpass signal

■ Bandpass signal is conveniently represented by a phasor rotating at the angular carrier rate $\omega_c t + \phi(t)$:

$$v_{bp}(t) = v_{i}(t)\cos(\omega_{C}t) - v_{q}(t)\sin(\omega_{C}t)$$

$$v_{i}(t) = A(t)\cos\phi(t), \ v_{q}(t) = A(t)\sin\phi(t)$$

$$A(t) = \sqrt{v_{i}^{2}(t) + v_{q}^{2}(t)} \quad \phi(t) = \begin{cases} v_{i}(t) \ge 0, \arctan(v_{q}(t)/v_{i}(t)) \\ v_{i}(t) < 0, \pi + \arctan(v_{q}(t)/v_{i}(t)) \end{cases}$$

Lowpass (LP) signal

$$v_{bp}(t) = v_i(t)\cos(\omega_C t) - v_q(t)\sin(\omega_C t)$$
$$v_i(t) = A(t)\cos\phi(t), v_q(t) = A(t)\sin\phi(t)$$

Lowpass signal is defined by yielding in time domain

$$V_{lp}(f) \approx \frac{1}{2} \left[V_i(f) + jV_q(f) \right]$$

$$v_{lp}(t) = F^{-1} [V_{lp}(f)] = \frac{1}{2} [v_i(t) + jv_q(t)]$$

Taking rectangular-polar conversion yields then

$$v_{lp}(t) = A(t) \left[\cos\phi(t) + j\sin\phi(t)\right]/2$$

$$v_{lp}(t) = \frac{1}{2} A(t) \exp j\phi(t)$$

$$|v_{lp}(t)| = A(t)/2$$
, arg $v_{lp}(t) = \phi(t)$

Transforming lowpass signals and bandpass signals

$$v_{bp}(t) = A(t)\cos[\omega_c t + \phi(t)]$$

$$v_{bp} = \text{Re}\left\{A(t)\exp[j\omega_c t + \phi(t)]\right\}$$

$$v_{bp} = 2\text{Re}\left\{\frac{A(t)}{2}\exp[j\phi(t)]\exp[j\omega_c t]\right\}$$

$$v_{bp} = 2\text{Re}\left\{v_{lp}(t)\exp[j\omega_c t]\right\}$$

Physically this means that the lowpass signal is **modulated** to the carrier frequency ω when it is transformed to bandpass signal. Bandpass signal can be transformed into lowpass signal The physical meaning of this is a spectrum translation.

$$V_{lp}(f) = V_{bp}(f + f_{c})u(f + f_{c})$$

Amplitude Modulation (AM full)

- Four linear modulation methods: (1) AM (amplitude modulation),
 (2) DSB (double sideband modulation), (3) SSB (single sideband modulation),
 (4) VSB (vestigial sideband modulation)
- AM signal:

$$x_{C}(t) = A_{c}[1 + \mu x_{m}(t)]\cos(\omega_{c}t + \phi(t))$$

$$= \underbrace{A_{c}\cos(\omega_{c}t + \phi(t))}_{\text{Carrier}} + A_{c}\mu \underbrace{x_{m}(t)\cos(\omega_{c}t + \phi(t))}_{\text{Information carrying part}} \begin{cases} 0 \le \mu \le 1 \\ |x_{m}(t)| \le 1 \end{cases}$$

• $\phi(t)$ is an arbitrary *constant*. Hence we note that no information is transmitted via the phase. Assume for instance that $\phi(t)=0$, then the LP components are

$$v_{i}(t) = A(t)\cos(\phi(t)) = A(t) = A_{c}[1 + \mu x_{m}(t)]$$

 $v_{i}(t) = A(t)\sin(\phi(t)) = 0$

 Also, the <u>carrier component</u> contains no information-> Waste of power to transmit the unmodulated carrier, but can still be useful (how?)

AM: waveforms and bandwidth

AM in frequency domain:

$$\begin{aligned} x_c(t) &= A_c[1 + \mu x_m(t)]\cos(\omega_c t) \\ &= \underbrace{A_c\cos(\omega_c t)}_{\text{Carrier}} + \mu \underbrace{x_m(t)\cos(\omega_c t)}_{\text{Information carrying part}} \end{aligned}$$

$$X_c(f) = \underbrace{A_c \delta(f - f_c)/2}_{\text{Carrier}} + \mu \underbrace{A_c X_m (f - f_c)/2}_{\text{Information carrying part}} \quad f > 0 \text{ (for brief notations)}$$

AM bandwidth is twice the message bandwidth W:

$$v(t)\cos(\omega_c t + \phi) \leftrightarrow \frac{1}{2} \left[V(f - f_c) \exp j\phi + V(f + f_c) \exp - j\phi \right]$$

AM waveforms

- (a): modulation
- (b): modulated carrier
- with μ <1
- (c): modulated carrier with $\mu>1$ with distortion
- (d) Modulation Index $\mu = (A_{max} - A_{min})/2A_c$.

Envelope distortion!

(AM signal:
$$x_c(t) = A_c[1 + \mu x_m(t)]\cos(\omega_c t)$$
)

AM power efficiency

AM wave total power consists of the idle carrier part and the useful signal part: $\langle x_c^2(t) \rangle = \langle A_c^2 \cos^2(\omega_c t) \rangle$

(AM signal:
$$x_c(t) =$$

$$A_c[1 + \mu x_m(t)]\cos(\omega_c t)$$

(AM signal:
$$x_c(t) =$$

$$A_c[1 + \mu x_m(t)]\cos(\omega_c t))$$

$$= \underbrace{A_c^2/2 + \mu^2 A_c^2 \underbrace{x_m^2(t)}_{P_C}\cos^2(\omega_c t)}_{P_{CM}} >$$

Assume $A_C=1$, $S_X=1$, then for $\mu=1$ (the max value) the total power is

$$P_{T \max} = 1/2 + 1/2 = 50\% + 50\%$$

$$carrier + \operatorname{mod} ulated \ power$$

- Therefore at least half of the total power is wasted on carrier
- Detection of AM is simple by enveloped detector that is a reason why AM is still used. Also, sometimes AM makes $\frac{A^2}{T} \cdot \int_{-T}^{T} \cos\left(2 \cdot \frac{\pi \cdot t}{T}\right)^2 dt \to \frac{1}{2} \cdot A^2$ system design easier, as in fiber optic communications

AM-Double SideBand (DSB)

In DSB the wasteful carrier is suppressed:

$$x_c(t) = A_c x_m(t) \cos(\omega_c t)$$

 The spectra is otherwise identical to AM and the transmission BW equals again double the message BW

$$X_c(f) = A_c X_m(f - f_c)/2, f > 0$$

In time domain **each** modulation signal zero crossing produces *phase reversals* of the carrier. For DSB, the total power S_T and the power/sideband P_{SB} have the relationship

$$S_{T} = A_{c}^{2} S_{X} / 2 = 2P_{SB} \implies P_{SB} = A_{c}^{2} S_{X} / 4(DSB)$$

Therefore AM transmitter requires twice the power of DSB transmitter to produce the same coverage assuming S_x=1. However, in practice S_x is usually smaller than 1/2, under which condition at least four times the DSB power is required for the AM transmitter for the same coverage

$$AM: x_c(t) = A_c[1 + \mu x_m(t)]\cos(\omega_c t)$$

AM-Double SideBand DSB and spectra

AM in frequency domain with

$$x_{\scriptscriptstyle m}(t) = A_{\scriptscriptstyle m} \cos(\omega_{\scriptscriptstyle m} t)$$

$$X_c(f) = \underbrace{A_c \delta(f - f_c)/2}_{\text{Carrier}} + \mu \underbrace{A_c X_m(f - f_c)/2, f > 0}_{\text{Information carrying part}} \text{ (general expression)}$$

$$X_{c}(f) = \frac{A_{c}}{2} \delta(f - f_{c}) + \frac{\mu A_{c} A_{m}}{4} \delta(f - f_{c} - f_{m}) + \frac{\mu A_{c} A_{m}}{4} \delta(f - f_{c} + f_{m})$$

 In summary, difference of AM and DSB at frequency domain is the missing carrier component. Other differences relate to power efficiency and detection techniques.

Example of DSB Modulator

AM phasor analysis, tone modulation

 AM and DSB can be inspected also by trigonometric expansion yielding for instance for AM

$$x_{c}(t) = A_{c}A_{m}\mu\cos(\omega_{m}t)\cos(\omega_{c}t) + A_{c}\cos(\omega_{c}t)$$

$$= \frac{A_{c}A_{m}\mu}{2}\cos(\omega_{c}-\omega_{m})t + \frac{A_{c}A_{m}\mu}{2}\cos(\omega_{c}+\omega_{m})t$$

$$+ A_{c}\cos(\omega_{c}t)$$

This has a nice phasor interpretation; take for instance μ =2/3, A_m =1:

AM signal:
$$x_c(t) = \underbrace{A_c[1 + \mu x_m(t)]}_{A(t)} \cos(\omega_c t)$$

Examples of modulators

- Both AM and DSB can be generated by
 - Analog or digital multipliers
 - Special nonlinear circuits
 - based on semiconductor junctions (as diodes, FETs etc.)
 - based on analog or digital nonlinear amplifiers as
 - log-antilog amplifiers:

- (a) Product modulator
 - (b) respective schematic diagram=multiplier+adder

Circuit for Variable transconductance multiplier

(AM signal: $x_c(t) = A_c[1 + \mu x_m(t)]\cos(\omega_c t)$) 21

Square-law modulator (for AM)

Square-law modulators are based on nonlinear elements:

(a) functional block diagram, (b) circuit realization

Balanced modulator (for DSB)

By using balanced configuration non-idealities on square-law characteristics can be compensated resulting a high degree of carrier suppression:

 Note that if the modulating signal has a DC-component, it is not cancelled out and will appear at the carrier frequency of the modulator output

Synchronous detection

- All linear modulations can be detected by synchronous detector
- Regenerated, in-phase carrier replica required for signal regeneration that is used to multiple the received signal
- Consider an universal*, linearly modulated signal:

$$x_c(t) = [K_c + K_{\mu}x(t)]\cos(\omega_c t) + K_{\mu}x_q(t)\sin(\omega_c t)$$

The multiplied signal y(t) is:

The envelope detector

- Important motivation for using AM is the possibility to use the envelope detector that
 - has a simple structure (also cheap)
 - needs no synchronization
 (e.g. no auxiliary, unmodulated carrier input in receiver)
 - no threshold effect (
 SNR can be very small and receiver still works)

Envelope detector analyzed

Assume diode half-wave rectifier used to rectify AM-signal.
 Therefore after the diode AM modulation is in effect multiplied with the half-wave rectified sinusoidal signal w(t)

$$v_{R} = \left[A + m(t)\right] \cos \omega_{c} t \left[\frac{1}{2} + \frac{2}{\pi} \left(\cos \omega_{c} t - \frac{1}{3} \cos 3\omega_{c} t + ...\right)\right]$$

$$v_{R} = \frac{1}{\pi} \left[A + m(t)\right] + \text{ other higher order terms}$$

- The diode detector is then followed by a lowpass circuit to remove the higher order terms
- The resulting DC-term may also be blocked by a capacitor
- Note the close resembles of this principle to the synchronousdetector.

$$\cos^{2}(x) = \frac{1}{2} [1 + \cos(2x)]$$

Amplitude modulation. (a) Message signal. (b) Modulator output for a < 1. (c) Modulator

Envelope detection. (a) Circuit. (b) Waveform. (c) Effect of RC time constant.

COHERENT DETECTION FOR DSB SIGNALS

$$v(t) = A'_{c} \cos(2\pi f_{c}t + \phi)s(t)$$

$$= A_{c}A'_{c} \cos(2\pi f_{c}t) \cos(2\pi f_{c}t + \phi)m(t)$$

$$= \frac{1}{2} A_{c}A'_{c} \cos(4\pi f_{c}t + \phi)m(t) + \frac{1}{2} A_{c}A'_{c} \cos\phi m(t)$$

- Pass the signal through a filter we get the output with
- ■cos is a contact phase error

$$\nu_o(t) = \frac{1}{2} A_c A_c' \cos \phi \ m(t)$$

COSTAS RECEIVER FOR DSB SIGNALS

AM Single SideBand (SSB) GENERATION

SSB Generationm(t) is the messageand its Fourier Tranform M(f)

Response of the LP filter

$$\begin{split} H_L(f) &= \frac{1}{2}[\text{sgn}(f + f_c) - \text{sgn}(f - f_c)] \\ X_{\text{DSB}}(f) &= \frac{1}{2}A_cM(f + f_c) + \frac{1}{2}A_CM(f - f_c) \end{split}$$

Lower Sideband signal

$$\begin{split} X_c(f) &= \frac{1}{4} A_c [M(f+f_c) \mathrm{sgn}(f+f_c) + M(f-f_c) \mathrm{sgn}(f+f_c)] \\ &- \frac{1}{4} A_c [M(f+f_c) \mathrm{sgn}(f-f_c) + M(f-f_c) \mathrm{sgn}(f-f_c)] \\ X_c(f) &= \frac{1}{4} A_c [M(f+f_c) + M(f-f_c)] \\ &+ \frac{1}{4} A_c [M(f+f_c) \mathrm{sgn}(f+f_c) - M(f-f_c) \mathrm{sgn}(f-f_c)] \end{split}$$

DSB signal

$$\frac{1}{2}A_c m(t)\cos(2\pi f_c t) \leftrightarrow \frac{1}{4}A_c [M(f+f_c) + M(f-f_c)] \tag{*}$$

Hilbert Transform

$$\widehat{m}(t) \leftrightarrow -j(\operatorname{sgn} f)M(f)$$

$$m(t)e^{\pm j2\pi f_c t} \leftrightarrow M(f \mp f_c)$$

$$\widehat{m}(t)e^{\pm j2\pi f_c t} \leftrightarrow -jM(f \mp f_c)\operatorname{sgn}(f \mp f_c)$$

$$\mathfrak{F}^{-1} \left\{ \frac{1}{4} A_c [M(f + f_c) \operatorname{sgn}(f + f_c) - M(f - f_c) \operatorname{sgn}(f - f_c)] \right\}$$

$$= -A_c \frac{1}{4i} \widehat{m}(t) e^{-j2\pi f_c t} + A_c \frac{1}{4i} \widehat{m}(t) e^{+j2\pi f_c t} = \frac{1}{2} A_c \widehat{m}(t) \sin(2\pi f_c t)$$
(**)

Combining (*) and (**), we get the lower-Sideband SSB

$$x_c(t) = \frac{1}{2} A_c m(t) \cos(2\pi f_c t) + \frac{1}{2} A_c \widehat{m}(t) \sin(2\pi f_c t)$$

Or similar for the Upper-sideband SSB

$$x_c(t) = \frac{1}{2} A_c m(t) \cos(2\pi f_c t) - \frac{1}{2} A_c \widehat{m}(t) \sin(2\pi f_c t)$$

Phase shift method for SSB generation

$$x_c(t) = \frac{A_c}{2} x(t) \cos \omega_c t \pm \frac{A_c}{2} \hat{x}(t) \cos (\omega_c t - 90^\circ)$$

 $x_c(t) = v_1 \pm v_2$ where v_1 is the signal from the upper part of the loop and v_2 is from the lower part. Taking these separately, the input to the upper LPF is $\cos 2\pi f_m t \cos 2\pi \frac{w}{2} t$. The output of LPF1 is multiplied by $\cos 2\pi (f_c \pm \frac{w}{2})t$, resulting in $v_1 = \frac{1}{4}[\cos 2\pi (f_c \pm \frac{w}{2} - \frac{w}{2} + f_m)t + \cos 2\pi (f_c \pm \frac{w}{2} + \frac{w}{2} - f_m)t]$. The input to the lower LPF is $\cos 2\pi f_m t \sin 2\pi \frac{w}{2} t$. The output of LPF2 is multiplied by $\sin 2\pi (f_c \pm \frac{w}{2})t$, resulting in $v_2 = \frac{1}{4}[\cos 2\pi (f_c \pm \frac{w}{2} - \frac{w}{2} + f_m)t + \cos 2\pi (f_c \pm \frac{w}{2} - \frac{w}{2} + f_m)t]$. Taking the upper signs, $x_c(t) = 2 \times \frac{1}{4}\cos 2\pi (f_c \pm \frac{w}{2} - \frac{w}{2} + f_m)t = \frac{1}{2}\cos (\omega_c + \omega_m)t$, which corresponds to USSB. Similarly, we achieve LSSB by taking the lower signs, resulting in $x_c(t) = \frac{1}{2}\cos (\omega_c - \omega_m)t$.

Quadrature carrier multiplexing or quadrature amplitude modulation QAM

***VESTIGIAL SIDEBAND (VSB) MODULATION**

- Generation VSB
- ■a. DSB Magnitude
- ■b. VSB filter
- c. VSB spectrum

(c)

Given Modulating Signal $m(t) = A\cos(2\pi f_1 t) + B\cos(2\pi f_2 t)$

DSB signal

$$e_{DSB}(t) = \frac{1}{2} A \cos[2\pi (f_c - f_1)t] + \frac{1}{2} A \cos[2\pi (f_c + f_1)t] + \frac{1}{2} B \cos[2\pi (f_c + f_2)t] + \frac{1}{2} B \cos[2\pi (f_c + f_2)t]$$

VSB filter response

$$H(f_c - f_2) = 0$$
, $H(f_c - f_1) = \epsilon e^{-j\theta_a}$
 $H(f_c + f_1) = (1 - \epsilon)e^{-j\theta_b}$, $H(f_c + f_2) = 1e^{-j\theta_c}$

DSB signal

$$x_{DSB}(t) = \text{Re}\left[\left(\frac{A}{2}e^{-j2\pi f_1 t} + \frac{A}{2}e^{j2\pi f_1 t} + \frac{B}{2}e^{-j2\pi f_2 t} + \frac{B}{2}e^{j2\pi f_2 t}\right)e^{j2\pi f_2 t}\right]$$

VSB signal

$$x_{c}(t) = \text{Re} \left\{ \left[\frac{A}{2} \epsilon e^{-j(2\pi f_{1}t + \theta_{a})} + \frac{A}{2} (1 - \epsilon) e^{j(2\pi f_{1}t - \theta_{b})} + \frac{B}{2} e^{j(2\pi f_{2}t - \theta_{c})} \right] e^{j2\pi f_{c}t} \right\}$$

SOME APPLICATIONS OF AMPLITUDE MODULATION

■TV Signal using VSB modulation

Frequency conversion using SSB

■Satellite transponder with frequency conversion

Synchronous detection

$$x_c(t) = [K_c + K_{\mu} x(t)] \cos \omega_c t - K_{\mu} x_q(t) \sin \omega_c t$$

$$x_{c}(t)A_{LO}\cos \omega_{c} t$$

$$= \frac{A_{LO}}{2} \{ [K_{c} + K_{\mu} x(t)] + [K_{c} + K_{\mu} x(t)] \cos 2\omega_{c} t - K_{\mu} x_{q}(t) \sin 2\omega_{c} t \}$$

$$y_{D}(t) = K_{D}[K_{c} + K_{\mu} x(t)]$$

VSB spectra. a) Message; b) Modulated signalC) Frequency-translated signal before lowpass filtering