概率论与数理统计 2018-2019-1 学期期末练习题

一、单项选择题

1、对于样本空间中任意	两个事件 A 与 B ,下列	事件关系中 不正确 的	是 ().
(A) $A - B = A\overline{B}$		(B) A∪B=	$A \cup (B - AB)$
(C) $A = AB \cup A\overline{B}$		(D) (A∪B)	-B = A
2、设事件 A 与 B 是互不	泪容,且 <i>P(A)</i> > 0 , <i>P(</i>	B) > 0,则下列式子	正确 的是().
(A) $P(B A) > 0$		(B) P(A B)	= P(A)
(C) $P(A \mid B) = 0$		(D) $P(AB) =$	P(A)P(B)
3、若随机变量 <i>x</i> 的概率	E 密度为: $f(x) = \begin{cases} a/\\ 0, \end{cases}$	(x² +1), -1 < x <1 其他	,则a的取值为:
().			
(A) $\frac{2}{\pi}$	(B) $\frac{\pi}{2}$	(C) 0	(D) 无法
确定	-		
4、设 X ₁ , X ₂ , ···, X _n 和 Y _n	,, Y₂,···, Y″ 均来自正态/	总体 $N(0,\sigma^2)$ 的两个	独立样本,则统
计量 $U = \frac{X_1 + X_2 + \cdots}{\sqrt{Y_1^2 + Y_2^2 + \cdots}}$	·+ <i>X</i> _n ··+ <i>Y</i> _n 的分布是().	
(A) $\chi^2(n)$	(B) t(n) (C) F (n, n)	(D) 不能确定
5、设 <i>X</i> ₁ , <i>X</i> ₂ , <i>X</i> ₃ , <i>X</i> ₄ 是来	(自正态分布总体 <i>X ~ I</i>	$V(\mu,\sigma^2)$ 的样本,其	中 μ 未知, σ 已
知,下列估计量中,关	于 μ 的最有效的无偏估	i计量是().	
(A) $T_1 = \frac{1}{6}(X_1 + X_2) + \frac{1}{6}(X_1 + X_2)$	$\frac{1}{3}(X_3 + X_4)$	(B) $T_2 = \frac{1}{5} (X_1 + 2X)$	₂ +3 X ₃ +4 X ₄)
(C) $T_3 = \frac{1}{4} (X_1 + X_2 +$	$X_3 + X_4$)	(D) $T_4 = \frac{1}{5}(X_1 + 2X_2)$	$(X_2 + X_3 + X_4)$
二、填空题			
1、设事件 <i>A</i> 与 <i>B</i> 相互独	立,且满足 <i>P(A ∪ B)</i> =	= 0.8 , $P(B) = 0.5$,	则 P(AB) =

- 2、若一批产品中 90%是合格品,检查时一个合格品被误认为是次品的概率为 0.05,一个次品被误认为是合格品的概率为 0.05,则一个经检查后被认为是合格品的产品确是合格品的概率为______.
 - 3、设随机变量 x 的分布律为: $P\{x = k\} = \frac{k}{10}$, k = 1, 2, 3, 4 ,则 $P\{\frac{1}{2} < x \le \frac{5}{2}\} = \frac{1}{2}$
- - 5、设样本 X₁, X₂, ···, X₄ 来自总体 N (0,1) ,且

$$Y = (X_1 + X_2)^2 + (X_3 + X_4)^2 + (X_5 + X_6)^2$$
,要使变量 CY 服从 χ^2 分布,则常数 $C = \chi^2$

三、一加法器同时收到 30 个噪声电压 V_{k} ($k=1,2,\cdots,30$),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布,记 $V=\sum_{k=1}^{30}V_{k}$,求 $P\{V>130\}$ 的近似值. (结果用标准正态分布函数 $\Phi(x)$ 表示, x>0)

四、设随机变量(X,Y)的概率分布律为:

X	0	1	2
-1	0.1	0.1	0.4
1	0.1	0.2	0.1

求(1) 关于 Z = X + Y 的分布律;(2) 概率 $P\{X + Y \le 1\}$;(3) E(Y) 和 D(Y) ;(4) Cov(X,Y).

五、设二维随机变量(X,Y)的概率函数为:

$$f(x, y) = \begin{cases} Cxy, & 0 < x < 1, 0 < y < x^2; \\ 0, &$$
其他.

(1) 求常数 C ; (2) 求关于 X 和 Y 的边缘概率密度; (3) 问 X 和 Y 是否相互独立? 需说明理由; (4) 求 E(XY) . (5) 求 $Z = X^2 - Y$ 的分布函数.

六、 设总体 x 具有指数分布,其概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}}, x>0 \\ 0, x\leq 0 \end{cases}$,其中 θ 是未知参数.

又 X_1, X_2, \dots, X_n 为来自该总体的一个样本, X_1, X_2, \dots, X_n 为样本值. 试**分别**求未知参数 θ 的 矩估计量和最大似然估计量 $\hat{\theta}$.

七、设测量零件的长度产生的误差 x 服从正态分布 $N(\mu, \sigma^2)$,其中 μ 和 σ^2 均未知,今随 机地测量 25 个零件,得样本均值 $\overline{x}=0.5$,样本均方差 s=1.52,求 μ 的置信水平为 0.95 的置信区间.

(已知: $t_{0.025}(25) = 2.0595$, $t_{0.05}(25) = 1.7081$, $t_{0.025}(24) = 2.0639$, $t_{0.05}(24) = 1.7109$)

八、 设两位化验员 A、B 独立地对某种聚合物含氯量用相同的方法各作 10 次测定,其测定值的样本方差依次为 $S_A^2=0.552$ 和 $S_B^2=0.606$. 设 σ_A^2 和 σ_B^2 分别为 A、B 所测定的测定值总体的方差,设两个总体均为正态的,且两样本独立,问根据这些数据能否推断这种聚合物含氯量的波动性有无显著的变化. 即检验假设: $H_0:\sigma_A^2=\sigma_B^2$, $H_1:\sigma_A^2\neq\sigma_B^2$,取显著性水平 $\alpha=0.05$. (已知: $F_{0.025}(9,9)=4.03$, $F_{0.05}(9,9)=3.18$)

九、设随机变量 x 的密度函数为 $f(x) = \begin{cases} \frac{x^n}{n!} e^{-x}, x > 0\\ 0, x \le 0 \end{cases}$,用切比雪夫不等式证明:

$$P\{0 < X < 2(n+1)\} \ge \frac{n}{n+1}.$$