Lista 1

Luís Felipe Ramos Ferreira

lframos.lf@gmail.com

- 1. Capítulo lido
- 2. (1.5.3)
 - (a) A seguinte argumentação pode ser feita para provar a igualdade usando contagem dupla. Olhando para o lado esquerdo, sabemos que $\binom{n}{k}\binom{k}{m}$ representa o número de maneira de escolher um conjunto S de k elementos dentre n elementos, e depois escolher um conjunto S' subconjunto de S com m elementos. Somando esse valor onde k varia de m até n retorna o número de maneiras de fazer a divisão em conjuntos citada de modo que o conjunto S' final tenha tamanho m. Podemos ntoar que o conjunto S' de tamanho m pode ser escolhido de $\binom{n}{m}$ diferentes. Dessas maneiras, podemos escolher 2^{n-m} subconjutnos dos n elementos originais que não estão em S'. Logo, existem $2^{n-m}\binom{n}{m}$ maneiras de fazer a divisão. Portanto, ambos lados da equação são iguais.

Figure 1: Questão 1.5.3 - a)

(b) OK Do lado esquerdo, temos $\binom{n}{m}\binom{m}{k}$. Sabemos que $\binom{n}{m}$ representa o número de subconjuntos de tamanho m de um conjunto com n elementos. Por sua vez, $\binom{m}{k}$ representa o número de subconjuntos de tamanho k de um conjunto com m elementos. Desse modo, esse produto representa o número de maneiras de escolher k elementos de um conjunto de m elementos que foram previamente escolhidos de um conjunto de n elementos. Do lado direito da equação, temos $\binom{n}{k}\binom{n-k}{m-k}$. Sabemos que $\binom{n}{k}$ representa o número de subconjuntos de tamanho k de um conjunto de tamanho n. $\binom{n-k}{m-k}$, por sua vez, é o número de conjuntos de tamanho m-k de um conjunto de tamanho n-k. O produto final então é o número de subconjuntos de tamanho k de um subconjunto de tamanho k de um conjunto de tamanho k0 e um conjunto de tamanho k1 e um subconjunto de tamanho k2 e um subconjunto de tamanho k3 e um subconjunto de tamanho k4 e um conjunto de tamanho k5 e um subconjunto de tamanho k6 e um conjunto de tamanho k7 e sentam o mesmo valor combinatório, eles são iguais. Uma prova algébrica também pode ser obtida como visto abaixo.

Figure 2: Questão 1.5.3 - b)

(c) Podemos pensar numa solução para esse problemas utilizando contagem dupla da seguinte forma. Suponha que estamos escolhendo livros de uma livraria. O lado direito da equação, $\binom{n+1}{m+1}$, conta diretamente de quantas maneiras podemos escolher m+1 livros de uma livraria com n+1 livros. O lado esquerdo da equação $\sum_{k=m}^{n} \binom{k}{m}$, pode ser interpretado da seguinte maneira. Vamos supor que o último livro escolhido foi enumerado com o valor k+1. Logo, os m livros que ainda não tiveram um valor atribuído a eles devem ter um valor escolhido entre 1 e k e, combinatoriamente, existem $\binom{k}{m}$ maneiras de fazer isso. Como k pode ter qualquer valor entre m e n e somarmos esse valor, teremos a parte da esquerda da expressão. Essa igualdade também pode ser demonstrada algebricamente, como visto na imagem abaixo.

Figure 3: Questão 1.5.3 - c)

- OK (1.5.6) Seja G um grafo qualquer com n vértices. Suponha, por contradição, que não existam dois vértices em G com o mesmo grau. Logo, como existem n vértices no grafo, os n possíveis graus que um vértice pode ter são $\{0,1,\ldots,n-1\}$, logo podemos dizer que estes são os graus dos vértices de G. No entanto, isso é absurdo, pois existiram um vértice de grau 0 e um vértice de grau n-1 em um grafo com n vértices, o que não faz sentido. Logo, a premisa inicial estava errada, e podemos afirmar que todo grafo com n vértices, $n \geq 2$, possui dois vértices com o mesmo grau.
- (1.5.11) indução?
- 3. OK (2.8.3) Seja G um grafo com número cromático igual a $\mathcal{X}(G)$. Sabemos que, para qualquer par de cores c_1, c_2 da coloração mínima, deve existir ao menos uma aresta entre vértices v_1 , com cor c_1 , e v_2 , com cor c_2 . Caso contrário, todos os vértices com cor c_2 , poderiam ser coloridas com a cor c_1 (sem perda de generalidade), o que seria contraditório com o fato da coloração ser mínima. Logo, para cada par de cores na coloração, deve existir ao menos uma aresta, e como cada aresta conecta exatamente dois vértices, temos que $e(G) \geq {\mathcal{X}(G) \choose 2}$.
 - (2.8.9) Seja G um grafo bipartido.

- OK (2.8.15) A prova será feita considerando uma indexação diferente da usada no livro. Isso não altera a semântica do problema. Provaremos que se $k \in \mathcal{N}$ e T é uma árvore cm k vértices, então T é subárvore de qualquer grafo G com $\delta(G) \geq k$. A prova por ser feita por inducão no número de arestas da árvore. A solução é trivial para o caso base em que e(T) = 1. Para e(T) = 1, T é uma aresta e trivialmente é subgrafo de qualquer grafo G com $\delta(G) \geq 1$. Suponha que o resultado vale para qualquer árvore com k arestas, k > 1. Seja T uma árvore qualquer com k+1 arestas e $T'=T-\{v\}$ para alguma folha $v \in V(T)$ e seja w o vizinho de v em T, que com certeza existe e é único já que v é uma folha. Pela hipótese indutiva, sabemos que T' é um subgrafo de todo grafo G tal que $\delta(G)=k+1$. Como o grau de w em G é maior ou igual a k+1 e T' possui k-1 vértices diferentes de v, podemos afirmar que existe um vizinho de w em Gque não está em T'. Escolhemos esse vértice, vamos denotá-lo por l. Adicionamos a aresta wl à T' para obter uma árvore isomorfa à Tem G. Demonstramos então que se a afirmativa é verdade para uma árvore com k arestas, então também é verdade para uma árvore com k+1 arestas, o que conclui a prova do teorema.
- 4. (3.5.1) Primeiramente, mostraremos que $ex(m, K_{k+1}) \leq (1 \frac{1}{n}) \frac{n^2}{2}$. A prova será feita por indução em n. No caso base, considere $n \leq k$. Desse modo, temos que $ex(n, K_{k+1}) = \binom{n}{2} \leq t_k$. Seja agora G um grafo com n > k vértices, livre de K_{k+1} , tal que o número de arestas em G está maximizado. Sabemos que G possui um K_k como subgrafo, pois caso contrário a adição de uma aresta não introduziria um K_{k+1} no grafo e isso aumentaria o número de arestas dele, um absurdo pois assumimos que o número de arestas era máximo.

Seja agora $H = G - K_k$. Pela hipótese, $|E(H)| \le (1 - \frac{1}{n}) \frac{n^2}{2}$. Logo temos que $|E(G)| \le (1 - \frac{1}{n}) \frac{n^2}{2} + (n - k)(k - 1) + \binom{n}{2}$, como queríamos demonstrar.

- (3.5.5)
- (3.5.6)
- (3.5.7)
- \bullet (3.5.8)
- (3.5.9)