Brandvain and Coop. Sperm dependent female meiotic drive

```
In[80]:= ClearAll["Global`*"]
```

Model I. Female drive depends on sperm haplotype

The B allele is transmited with probability, d, in heterozygous females when fertilized by B-bearing sperm.

x represents the deviation from Hardy - Weinberg Equilibrium

Setup

```
In[89]:= (*Allele and Genotype frequencies*)
      fA = 1 - fB;
      fAA = fA^2 + fAfBx;
      fAB = 2 fA fB (1-x);
       fBB = fB^2 + fAfBx;
       Drive
In[93]:= (*Genotype frequencies after drive*)
       fAA<sub>Drive</sub> = FullSimplify[fA (fAA + fAB / 2)];
       fAB_{Drive} = FullSimplify[fB(fAA + fAB * (1 - d)) + fA(fAB / 2 + fBB)];
       fBB<sub>Drive</sub> = FullSimplify[fB (fAB d + fBB)];
       Selection
ln[113]:= wAA = 1; wAB = 1 - hs; wBB = 1 - s; (*genotypic fitnesses*)
      \overline{W} = FullSimplify[fAA<sub>Drive</sub> wAA + fAB<sub>Drive</sub> wAB + fBB<sub>Drive</sub> wBB]; (*mean fitness*)
       fAA_{Sel} = FullSimplify[(fAA_{Drive} * wAA) / \overline{W}];
       fAB_{Sel} = FullSimplify[(fAB_{Drive} * wAB) / \overline{W}];
       fBB_{Sel} = FullSimplify[(fBB_{Drive} wBB) / \overline{W}];
       fA<sub>Sel</sub> = FullSimplify[fAA<sub>Sel</sub> + fAB<sub>Sel</sub> / 2];
       fB_{Sel} = FullSimplify[fBB_{Sel} + fAB_{Sel} / 2];
      \Delta fA = FullSimplify[fA_{Sel} - fA];
      \triangle fB = FullSimplify[fB_{Sel} - fB];
```

Analysis

Note, we assume no deviation from Hardy-Weinberg [i.e. x=0] for all analytical results, and therefore these answers are approximations. In the supplamentary material we show thats results of exact recursions are remarkably consistant from these approximate analystical solutions.

Assuming the cost of drive is fully recessive [i.e. hs is zero]

Invasion

 $\ln[147] = \Delta fBinvade = (FullSimplify[\Delta fB /. hs \rightarrow 0 /. x \rightarrow 0] / fB^2 /. fB \rightarrow 0)$ Out[147]= $\frac{1}{2}$ (-1+d (2-4s))

In[167]:= spermDepReceesiveInvade = Solve[ΔfBinvade == 0, s]

$$\text{Out[167]= } \left\{ \left\{ s \, \rightarrow \, \frac{\text{-1+2} \, d}{\text{4} \, d} \right\} \right\}$$

In[252]:= plotInvasion4spermDepRecessive =

 $Plot[s /. spermDepRecesiveInvade [[1]], \{d, .5, 1\}, PlotStyle \rightarrow \{Black, Thick\}];$

 $ln[253] = plotRelChange4RarespermDepRecessive = ContourPlot[{\Delta fBinvade}, {d, 0.5, 1}, {s, 0, 1},$ PlotLegends → Automatic, FrameLabel → {"d (dirve)", "s (selection)"}, PlotLabel → "Invasion of recessive sperm dependent driver"];

In[254]:= Show[plotRelChange4RarespermDepRecessive, plotInvasion4spermDepRecessive]

Fixation

 $\log(22) = \Delta f B f i x = Full Simplify [Full Simplify [\Delta f B /. hs \rightarrow 0 /. x \rightarrow 0] / f A] /. f B \rightarrow 1$ -1 + 2 d - 2 sOut[222]= 2 - 2 s

```
In[223]:= spermDepReceesiveFix = Solve[ΔfBfix == 0, s]
      (s /. spermDepReceesiveFix [[1]])
Out[246]= \frac{1}{2} (-1 + 2 d)
In[255]:= plotFixation4spermDepRecessive =
         Plot[s /. spermDepReceesiveFix [[1]], \{d, .5, 1\}, PlotStyle \rightarrow \{Red, Thick\}];
_{	ext{ln}[256]:=} (*Note we artificially rescaled z to be -.1 for all negative values*)
      plotRelChange4CommonSpermDepRecessive =
         ContourPlot[If[s > (s /. spermDepRecesiveFix [[1]]), -.1, \trianglefBfix], {d, 0.5, 1},
          {s, 0, 1}, PlotLegends → Automatic, FrameLabel → {"d (dirve)", "s (selection)"},
```

In[257]:= Show[plotRelChange4CommonSpermDepRecessive, plotFixation4spermDepRecessive]

PlotLabel → "Fixation of recessive sperm dependent driver"];

Bistability Point

```
ln[274] = FBbistabSpermDepRecesive = Solve[FullSimplify[\Delta fB /. hs \rightarrow 0 /. x \rightarrow 0] == 0, fB][[4]]
\text{Out}[274] = \left\{ fB \to \frac{1 - 2 d + 4 d s}{-2 s + 4 d s} \right\}
ln[284] = bistab = ContourPlot[(If[fB < 0, 0, If[fB > 1, 1, fB]]) /. FBbistabSpermDepRecesive,
          \{d, .5, 1\}, \{s, 0, 1\}, PlotLegends \rightarrow Automatic,
          FrameLabel → {"d (dirve)", "s (selection)"}, PlotLabel →
           "Threshold frequency for fixation of recessive self-promoting driver"]
In[285]:= Show[bistab, plotFixation4spermDepRecessive, plotInvasion4spermDepRecessive]
```


Cannot invade

0.7

Assuming the cost of drive is not fully recessive [i.e. hs is nonzero]

0.8

d (dirve)

Invades and fixes

Bistable

0.9

1.0

0.5

0.3

0.1

Invasion

0.4

0.2

0.0

0.6

Note with any heterozgous cost (i.e. hs > 0) a self - promoting driver cannot invade

$$\label{eq:local_local_local} $$ \ln[293]:= $$ FullSimplify[FullSimplify[\Delta fB /. x \to 0] / fB] /. fB \to 0 $$$$

 $\mathsf{Out}[\mathsf{293}] = -hs$

Fixation

$$\label{eq:linear_line$$

In[303]:= spermDepNotReceesiveFix = Solve[ΔfBfix == 0, s]

Out[303]=
$$\left\{ \left\{ s \to \frac{1}{2} (-1 + 2 d + 3 hs - 2 d hs) \right\} \right\}$$

ln[317]:= spermDepAddFix = Solve[Δ fBfix == 0 /. hs \rightarrow s / 2, s]

$$\text{Out} [\text{317}] = \left. \left\{ \left\{ s \rightarrow \frac{2 \ \left(-1 + 2 \ d \right)}{1 + 2 \ d} \right\} \right\}$$

In[318]:= plotspermDepAddFix =

 $Plot[s /. spermDepAddRecesiveFix , \{d, .5, 1\}, PlotStyle \rightarrow \{Red, Thick\}];$

Bistability Point

ln[319]= FBbistabSpermDepNotReceesive = Solve[FullSimplify[$\Delta fB /. x \rightarrow 0$] == 0, fB][[3]]

$$\text{Out[319]= } \left\{ fB \rightarrow \left(-1 + 2 \ d + 3 \ hs + 2 \ d \ hs - 4 \ d \ s - \sqrt{-8 \ hs \ \left(-2 \ hs + 4 \ d \ hs + 2 \ s - 4 \ d \ s \right) \ + \ \left(1 - 2 \ d - 3 \ hs - 2 \ d \ hs + 4 \ d \ s \right)^{2}} \ \right) \right/ \\ \left(2 \ \left(-2 \ hs + 4 \ d \ hs + 2 \ s - 4 \ d \ s \right) \ \right) \right\}$$

An Example of a non - recessive driver [Assuming additivity]

In[332]:= bistab = ContourPlot[

 $(If[fB < 0, 0, If[fB > 1, 1, fB]]) / .FBbistabSpermDepNotRecessive / .hs \rightarrow (s / 2),$ $\{d, .5, 1\}, \{s, 0, 1\}, PlotLegends \rightarrow Automatic,$ FrameLabel → { "d (dirve) ", "s (selection) "}, PlotLabel → "Threshold frequency for fixation of recessive self-promoting driver"];

In[333]:= Show[bistab, plotspermDepAddFix]

