Stochastic Process

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	Stochastic Process				
	1.1	Definitions	1		
	1.2	Accessibility and Communication	2		
	1.3	Periodicity	3		
	1.4	Transience and Recurrence	4		
2	Cor	avergence of Random Variables	5		
	2.1	Definitions	5		
	2.2	Markov's Inequality	6		
	2.3	Properties	6		
	2.4	Law of Large Numbers	7		
3	Ma	rkov Decision Process	9		
4	Poi	sson Process	11		
	4.1	Homogeneous Poisson Process	11		

ii *CONTENTS*

Stochastic Process

1.1 Definitions

Definition (Stochastic Process). Let \mathcal{T} be an index set. Let X(t) be a random variable. We define a **stochastic process** to be the net $(X(t))_{t\in\mathcal{T}}$.

Definition (Discrete-Time Stochastic Process). Let $(X(t))_{t\in\mathcal{T}}$ be a stochastic process. We say that it is a **discrete-time stochastic process** if the index set \mathcal{T} is countable.

Definition (Markov Property). Let S be a state space. Let $(X_n)_{n\in\mathbb{N}}$ be a discrete-time stochastic process. We say that is has the **Markov property** if

$$\forall n \in \mathbb{N}, \forall x_0..x_{n+1} \in \mathcal{S}, \quad \Pr(X_{n+1} = x_{n+1} \mid (X_n)_{n=0}^n = (x_n)_{n=0}^n) = \Pr(X_{n+1} = x_{n+1} \mid X_n = x_n).$$

This property states that the conditional distribution of any future state X_{n+1} given the past states $X_0, ..., X_{n-1}$ and the present state X_n is independent of the past states.

i.e., if we know the value taken by te process at a given time, we will not get any additional information about the future behavior of the process by gathering more knowledge about the past.

Definition (Markov Chain). We define a **Markov chain** to be a discrete-time stochastic process with the Markov property.

Proposition 1.1.1.

$$\forall n \in \mathbb{N}, \forall j \in \{0..n-1\}, \forall x_0..x_{n+1} \in \mathcal{S}, \quad \Pr(X_{n+1} = x_{n+1} \mid X_n = x_n, (X_i)_{i=1}^{j-1} = (x_i)_{i=1}^{j-1}, (X_i)_{i=j+1}^{n-1} = (x_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1} = (x_i)_{i=1}^{n-1}, (X_i)_{i=j+1}^{n-1} = (x_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1} = (x_i)_{i=1}^{n-1}, (X_i)_{i=j+1}^{n-1} = (x_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1} = (X_i)_{i=1}^{n-1}, (X_i)_{i=j+1}^{n-1} = (X_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1} = (X_i)_{i=1}^{n-1}, (X_i)_{i=j+1}^{n-1} = (X_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1} = (X_i)_{i=1}^{n-1}, (X_i)_{i=j+1}^{n-1} = (X_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1} = (X_i)_{i=1}^{n-1}, (X_i)_{i=j+1}^{n-1} = (X_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1}, (X_i)_{i=1}^{n-1}, (X_i)_{i=j+1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1}, (X_i)_{i=1}^{n-1}, (X_i)_{i=1}^{n-1}, (X_i)_{i=1}^{n-1}) = \Pr(X_i = x_i, (X_i)_{i=1}^{n-1}, (X_i)_{i=1}^$$

Proof.

$$\Pr(X_{n+1} = x_{n+1} \mid X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})$$
(1.1)

$$= \frac{\Pr(X_{n+1} = x_{n+1}, X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})}{\Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})}$$
(1.2)

$$= \frac{\sum_{x_j=0}^{\infty} \Pr(X_{n+1} = x_{n+1}, X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j}, X_j = x_j)}{\Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})}$$
(1.3)

$$=\frac{\sum_{x_{j}=0}^{\infty}\Pr(X_{n+1}=x_{n+1}\mid X_{n}=x_{n},(X_{i})_{i\neq j}=(x_{i})_{i\neq j},X_{j}=x_{j})\Pr(X_{n}=x_{n},(X_{i})_{i\neq j}=(x_{i})_{i\neq j},X_{j}=x_{j})}{\Pr(X_{n}=x_{n},(X_{i})_{i\neq j}=(x_{i})_{i\neq j})}$$

$$(1.4)$$

$$= \frac{\sum_{x_j=0}^{\infty} \Pr(X_{n+1} = x_{n+1} \mid X_n = x_n) \Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j}, X_j = x_j)}{\Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})}$$
(1.5)

$$= \Pr(X_{n+1} = x_{n+1} \mid X_n = x_n) \frac{\sum_{x_j=0}^{\infty} \Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j}, X_j = x_j)}{\Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})}$$
(1.6)

$$= \Pr(X_{n+1} = x_{n+1} \mid X_n = x_n) \frac{\Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})}{\Pr(X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j})}$$
(1.7)

$$= \Pr(X_{n+1} = x_{n+1} \mid X_n = x_n). \tag{1.8}$$

That is,

$$\Pr(X_{n+1} = x_{n+1} \mid X_n = x_n, (X_i)_{i \neq j} = (x_i)_{i \neq j}) = \Pr(X_{n+1} = x_{n+1} \mid X_n = x_n).$$

Definition (Transition Probability). Let i and j be a pair of states. Let n be some time step. We define the **transition probability** from state i at time n to state j at time n+1, denoted by $P_{n,i,j}$. to be the conditional probability given by

$$P_{n,i,j} = \Pr(X_{n+1} = j \mid X_n = i).$$

Definition (Stationary / Homogeneous). We say that a discrete-time Markov chain is stationary or homogeneous if $\forall i, j \in \mathcal{S}, \ \forall n \in \mathbb{N}, \ P_{n,i,j} = P_{i,j} \ for \ some \ P_{i,j}$.

Theorem 1 (Chapman-Kolmogorov Equations).

$$P^{(n)} = P^{(m)}P^{(n-m)}$$

1.2 Accessibility and Communication

Definition (Accessible). Let i and j be two states. We say that state j is **accessible** from state i if $\exists n \in \mathbb{N}$ such that $P_{i,j}^{(n)} > 0$.

Definition (Communicate). Let i and j be two states. We say that state i and state j communicate if i and j are accessible from each other.

Proposition 1.2.1. The communication relation is an equivalence relation. i.e., it is reflexive, symmetric, and transitive.

1.3. PERIODICITY 3

Proof. Transitivity:

Let i, j, k be states. Assume that $i \leftrightarrow j$ and $j \leftrightarrow k$. We are to prove that $i \leftrightarrow k$. Since $i \leftrightarrow j$, $\exists n \in \mathbb{N}$ such that $P_{i,j}^{(n)} > 0$. Since $j \leftrightarrow k$, $\exists m \in \mathbb{N}$ such that $P_{i,j}^{(m)} > 0$. By the Chapman-Kolmogorov equation, we get

$$P_{i,k}^{(n+m)} = \sum_{l=0}^{\infty} P_{i,l}^{(n)} P_{l,k}^{(m)} \ge P_{i,j}^{(n)} P_{j,k}^{(m)} > 0.$$

That is, $P_{i,k}^{(n+m)} > 0$. So $i \to k$. Similarly, we can show that $k \to i$. So $i \leftrightarrow k$.

Proposition 1.2.2. Let i and j be two states. If state j is not accessible from state i, then

$$Pr(DTMC \ ever \ exists \ state \ j \mid X_0 = i) = 0.$$

Proof. Since state j is not accessible from state i, we have $\forall n \in \mathbb{N}, P_{i,j}^{(n)} = 0.$

 $Pr(DTMC \text{ ever exists state } j \mid X_0 = i)$

$$= \Pr(\bigcup_{n=0}^{\infty} \{X_n = j\} \mid X_0 = i) \le \sum_{n=0}^{\infty} \Pr(X_n = j \mid X_0 = i)$$
$$= \sum_{n=0}^{\infty} P_{i,j}^{(n)} = 0.$$

That is,

 $Pr(DTMC \text{ ever exists state } j \mid X_0 = i) = 0.$

Definition (Communication Class). We define a communication class to the set of states that communicate with each other.

Definition (Irreducible, Reducible). We say that a discrete-time Markov chain is irreducible if it has only one communication class; and we say that it is reducible otherwise.

1.3 Periodicity

Definition (Period). Let i be a state. We define the **period** of i, denoted by d(i), to be the number given by

$$d(i) := \gcd\{n \in \mathbb{Z}_+ : P_{i,i}^{(n)} > 0\}.$$

Definition (Aperiodic). We say that a state i is **aperiodic** if d(i) = 1. We say that a discrete-time Markov chain is **aperiodic** if d(i) = 1 for all state i.

Proposition 1.3.1. Let i and j be two states. If $i \leftrightarrow j$, then d(i) = d(j).

Proof. Since $i \leftrightarrow j$, $\exists n \in \mathbb{Z}_+$ such that $P_{i,j}^{(n)} > 0$; $\exists m \in \mathbb{Z}_+$ such that $P_{j,i}^{(m)} > 0$; and $\exists s \in \mathbb{Z}_+$ such that $P_{j,j}^{(s)} > 0$. Note that

$$P_{i,i}^{(n+m)} \ge P_{i,j}^{(n)} P_{j,i}^{(m)} > 0.$$

and

$$P_{i,i}^{(n+s+m)} \ge P_{i,j}^{(n)} P_{j,j}^{(s)} P_{j,i}^{(m)} > 0.$$

So $d(i) \mid (n+m)$ and $d(i) \mid (n+s+m)$. So $d(i) \mid ((n+s+m)-(n+m)) = s$. Since $\forall s \in \mathbb{Z}_+ : P_{j,j}^{(s)} > 0$, $d(i) \mid s$, we get $d(i) \mid d(j)$. Similarly, we have $d(j) \mid d(i)$. So d(i) = d(j).

1.4 Transience and Recurrence

Convergence of Random Variables

2.1 Definitions

Definition (Convergence in Distribution). Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let F_n be the cumulative distribution function of X_n . Let X be a random variable. Let F_X be the cumulative distribution function of X. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges in distribution to X, denoted by $X_n \stackrel{d}{\longrightarrow} X$, if $\forall x$ at which F is continuous,

$$\lim_{n \to \infty} F_n(x) = F_X(x).$$

In this case, we say F_X is the asymptotic distribution of $\{X_n\}_{n\in\mathbb{N}}$.

Definition (Convergence in Probability). Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges in probability to X, denoted by $X_n \stackrel{p}{\longrightarrow}$, if

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) = 0.$$

Or equivalently,

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1.$$

Definition (Almost Sure Convergence). Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges almost surely to X if

$$P(\lim_{n\to\infty} X_n = X) = 1.$$

Definition (Sure Convergence). Let Ω be a sample space of the underlying probability space. Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n\in\mathbb{N}}$ converges surely to X if

$$\forall \omega \in \Omega, \quad \lim_{n \to \infty} X_n(\omega) = X(\omega).$$

Definition (Convergence in Mean). Let $r \geq 1$. Let $\{X_n\}_{n \in \mathbb{N}}$ be a sequence of random variables. Let X be a random variable. We say that the sequence $\{X_n\}_{n \in \mathbb{N}}$ converges in the r^{th} mean to X, denoted by $X_n \xrightarrow{L^r} X$, if the r^{th} absolute moments $\mathbb{E}[|X_n^r|]$ and $\mathbb{E}[|X|^r]$ of X_n and X exists and

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X|^r] = 0.$$

2.2 Markov's Inequality

Theorem 2 (Markov's Inequality). Let X be a random variable. Let k and c be arbitrary positive numbers. Then

$$P(|X| \ge c) \le \frac{\mathbb{E}[|X|^k]}{c^k}.$$

Corollary.

$$P(|X - \mathbb{E}[X]| > k\sqrt{\operatorname{var}[X]}) \le \frac{1}{k^2}.$$

2.3 Properties

Proposition 2.3.1. Convergence in probability implies convergence in distribution.

Proposition 2.3.2. Almost sure convergence implies convergence in probability.

Proposition 2.3.3. Convergence in the r^{th} mean for $r \geq 1$ implies convergence in probability.

Proposition 2.3.4. Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of random variables. Let c be a constant. Then $\{X_i\}_{i\in\mathbb{N}}$ converges to c in distribution if and only if $\{X_i\}_{i\in\mathbb{N}}$ converges to c in probability.

Sketch Proof.

$$P(|X_i - c| \ge \varepsilon) = P(X_i \ge c + \varepsilon) + P(X_i \le c - \varepsilon)$$

$$= 1 - P(X_i < c + \varepsilon) + F_i(c - \varepsilon)$$

$$\le 1 - P(X_i \le c + \varepsilon/2) + F_i(c - \varepsilon)$$

$$= 1 - F_i(c + \varepsilon/2) + F_i(c - \varepsilon)$$

$$\begin{split} &\lim_{i\to\infty}\left[1-F_i(c+\varepsilon/2)+F_i(c-\varepsilon)\right]\\ &=1-F(c+\varepsilon/2)+F(c-\varepsilon)\\ &=1-1+0\\ &=0. \end{split}$$

Proposition 2.3.5 (Continuous Map). Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of random variables. Let g be a continuous function on the X_i 's. Then

- (1) if $X_i \xrightarrow{d} X$, we have $g(X_i) \xrightarrow{d} g(X)$.
- (2) if $X_i \xrightarrow{p} c$, we have $g(X_i) \xrightarrow{p} g(c)$.

Proposition 2.3.6 (Slutsky's Theorem). Let $\{X_i\}_{i\in\mathbb{N}}$ and $\{Y_i\}_{i\in\mathbb{N}}$ be sequences of random variables. Suppose $X_i \stackrel{d}{\longrightarrow} X$ for some random variable X and $Y_i \stackrel{p}{\longrightarrow} c$ for some constant c. Then

- (1) $X_i + Y_i \xrightarrow{d} X + c$.
- (2) $X_i Y_i \stackrel{d}{\longrightarrow} cX$.
- (3) $X_i/Y_i \stackrel{d}{\longrightarrow} X/c$.

2.4 Law of Large Numbers

Theorem 3 (Strong Law of Large Nubmers). Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of independent and identically distributed random variables. Suppose that $\mathbb{E}[X_i] = \mu$ for some $\mu \in \mathbb{R}$ for all $i \in \mathbb{N}$. Then their cumulative average \bar{X}_n converges almost surely to μ . That is,

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \overset{almost surely}{\longrightarrow} \mu.$$

Markov Decision Process

Poisson Process

4.1 Homogeneous Poisson Process

4.1.1 Definitions

Definition (Homogeneous Poisson Process). We say a counting process is a homogeneous **Poisson counting process** with rate $\lambda > 0$ if it has the following three properties:

- N(0) = 0;
- it has independent increments; and
- the number of events in any interval of length t is a Poisson random variable with parameter λt .

Definition (Homogeneous Poisson Process). We say a point process is a homogeneous **Poisson point process** with rate $\lambda > 0$ if the following two conditions hold:

• The probability $\mathbb{P}\{N(a,b]=n\}$ of the number N(a,b] of points of the process in the interval (a,b] being equal to some counting number n is given by

$$\mathbb{P}\{N(a,b] = n\} = \frac{[\lambda(b-a)]^n}{n!}e^{-\lambda(b-a)}.$$

 $i.e.\ the\ number\ of\ arrivals\ in\ each\ finite\ interval\ has\ a\ Poisson\ distribution.$

• For any positive integer k and non-overlapping intervals $(a_1, b_1], ..., (a_k, b_k],$

$$\mathbb{P}\left\{ \bigwedge_{i=1}^{k} N(a_i, b_i] = n_i \right\} = \prod_{i=1}^{k} \mathbb{P}\{N(a_i, b_i] = n_i\}.$$

i.e. the number of arrivals in disjoint intervals are independent random variables.