

A.M: 201100079	Επώνυμο: <i>Κορομηλάς</i>	Όνομα: <i>Χρήστος</i>
Ημ/νία(Ημέρα,Ώρα) εκτέλεσης της άσκησης: 04/05/2022 (Τετάρτη, 15:30-18:00)		
Ημ/νία παράδοσης της άσκησης: 04/05/2022		

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΣΥΝΕΧΟΥΣ ΧΡΟΝΟΥ ΚΑΙ ΔΕΙΓΜΑΤΟΛΗΨΙΑ

Μια εργασία η οποία αποσκοπεί στο να μας εξοικειώσει στην υλοποίηση προγραμμάτων στη MATLAB, και πιο συγκεκριμένα στο μετασχηματισμό **Fourier** Συνεχούς χρόνου και στη Δειγματοληψία.

Άσκηση 1^η :

Ακολουθεί το πρόγραμμα deigma1. m στη λειτουργική του μορφή και το αποτέλεσμα εκτέλεσης:

```
%% deigma1
close all;
clear all;
clc;
Dt = 5e-5;
t = -5e-3:Dt:5e-3;
x = \exp(-1000*abs(t));
W_{max} = 2*pi*2000;
iter max = 500;
iter = 0:1:iter max;
W = (iter/iter_max)*W_max;
X = x*exp(-1i*t'*W)*Dt;
X = real(X);
W = [-fliplr(W), W(2:501)];
X = [fliplr(X), X(2:501)];
figure(1);
subplot(2,1,1);
plot(1000*t,x);
xlabel('t [msec]');
ylabel('x(t)');
title('analog signal');
subplot(2,1,2);
plot(W/(2*pi),X);
xlabel('f [Hz]');
ylabel('X [i\omega]');
title('Coninuous-time Fourier transform');
print -depsc progr10;
```


Ασκηση 2^η :

Ακολουθούν τα προγράμματα deigma2a. m και deigma2b. m στην λειτουργική τους μορφή και τα αποτελέσματα εκτέλεσης αντίστοιχα:

```
%%deigma2a
close all;
clc;
clear all;
Dt = 5e-5;
t = -5e-3:Dt:5e-3;
x = exp(-1000*abs(t));
Ts = 2e-4;
n = -25:1:25;
x_d = exp(-1000*abs(n*Ts));
iter_max = 500;
iter = 0:1:iter_max;
w = (iter/iter_max)*pi;
X_d = x_d*exp(-i*n'*w);
X_d = real(X_d);
w = [-fliplr(w), w(2:iter_max+1)];
X_d = [fliplr(X_d), X_d(2:iter_max+1)];
figure(1);
subplot(2,1,1);
plot(1000*t,x);
xlabel('t [msec]');
ylabel('x(t)');
title('Discrete signal(Ts=0.2msec)');
hold on ;
stem(n*Ts*1000 ,x_d);
hold off;
subplot(2,1,2);
plot(w/pi,X_d);
xlabel('f [\pi units]');
ylabel('X(i\Omega)');
title('Discrete-time Fourier trasnform');
print -depsc progr22;
```

```
%%deigma2b
close all;
clc;
clear all;
Dt = 5e-5;
t = -5e-3:Dt:5e-3;
x = exp(-1000*abs(t));
Ts = 1e-3;
n = -5:1:5;
x_d = exp(-1000*abs(n*Ts));
iter_max = 500;
iter = 0:1:iter_max;
w = (iter/iter_max)*pi;
X_d = x_d*exp(-i*n'*w);
X_d = real(X_d);
w = [-fliplr(w), w(2:iter_max+1)];
X_d = [fliplr(X_d), X_d(2:iter_max+1)];
figure(1);
subplot(2,1,1);
plot(1000*t,x);
xlabel('t [msec]');
ylabel('x(t)');
title('Discrete signal(Ts=1msec)');
hold on ;
stem(n*Ts*1000 ,x_d);
hold off;
subplot(2,1,2);
plot(w/pi,X_d);
xlabel('f [\pi units]');
ylabel('X(i\Omega)');
title('Discrete-time Fourier trasnform');
print -depsc progr23;
```


Απάντηση ερωτήσεων:

Ερώτημα 1:

Στο πρώτο πρόγραμμα, κατά την εκκίνηση του αρχικοποιούνται τα \mathbf{t} και \mathbf{Dt} ακριβώς όπως και στο $\mathbf{deigma1}.m$. Έπειτα, υπολογίζονται τιμές του \mathbf{x} για κάθε \mathbf{t} και αρχικοποείται η μεταβλητή $\mathbf{Ts} = 2e - 4$. Ο πίνακας \mathbf{n} παίρνει τιμές από το -25 έως το +25 με βήμα $\mathbf{1}$ και για κάθε τιμή του \mathbf{t} υπολογίζεται το \mathbf{x} , ενώ για κάθε τιμή του \mathbf{n} υπολογίζεται το \mathbf{x}_{-} d. Ακολουθεί η διαδικασία με το \mathbf{iter} και \mathbf{iter}_{-} max που είδαμε και στο προηγούμενο κώδικα, μόνο που τώρα οι τιμές του \mathbf{iter} κυμαίνονται μεταξύ του $\mathbf{0}$ και του $\mathbf{500}$ με βήμα $\mathbf{1}$. Υπολογίζεται ο μετασχηματισμός $\mathbf{Fourier}$, \mathbf{X}_{-} d = \mathbf{x}_{-} d * $\mathbf{exp}(-\mathbf{i}*\mathbf{n}'*\mathbf{w})$. Η εντολή \mathbf{X}_{-} d = $\mathbf{real}(\mathbf{X}_{-}$ d) καλεί η συνάρτηση \mathbf{real} με παράμετρο το \mathbf{x}_{-} d και επιστρέφει το πραγματικό μέρος του \mathbf{X}_{-} d. Λαμβάνονται υπόψιν και οι αρνητικές τιμές του \mathbf{w} , καθώς και οι αντίστοιχες τιμές που παίρνει το \mathbf{x}_{-} d σε αυτές, επομένως αφού στο πραγματικό μέρος του μετασχηματισμού $\mathbf{Fourier}$ είναι συμμετρικό ως προς τον άξονα \mathbf{y} ισχύει ότι \mathbf{X}_{-} d(\mathbf{iw}). Πριν συμβεί ο τερματισμός του προγράμματος, τυπώνονται γραφικά οι ποσότητες $\mathbf{x}(\mathbf{t})$ και $\mathbf{X}(\mathbf{i}\Omega)$ και αποθηκεύονται τα δεδομένα του προγράμματος, όπως ακριβώς είδαμε και στις προηγούμενες εργασίες.

Στο δεύτερο πρόγραμμα, η εκκίνηση είναι αντίστοιχη των προηγούμενων προγραμμάτων. Ορίζεται η μεταβλητή Ts=1e-3 και ο πίνακας η κυμαίνεται από το -5 έως το +5 με βήμα 1. Υπολογίζεται το δειγματοληπτόμενο $x_d=exp(-1000*abs(n*Ts))$ για κάθε τιμή του n και ακολουθείται η διαδικασία με το iter και $iter_max$ όπως ακριβώς την είδαμε και στο προηγούμενο κώδικα. Αποθηκεύονται οι τιμές του w με τη γραμμή $w=(iter/iter_max)*pi$ για κάθε τιμή του iter και, στη συνέχεια πραγματοποιείται ο μετασχηματισμός Fourier και οι εντολές που περιγράφονται στα παρακάτω ερωτήματα. Πριν συμβεί ο τερματισμός του προγράμματος, τυπώνονται γραφικά οι ποσότητες x(t)και $X(i\Omega)$ και αποθηκεύονται τα δεδομένα του προγράμματος όπως ακριβώς είδαμε και στις προηγούμενες εργασίες.

Ακόμη σημειώνεται πως, η εντολή **hold on** που χρησιμοποιείται κατά την τύπωση των αποτελεσμάτων σταματάει το πρόγραμμα πριν γίνει η γραφική απεικόνιση του μετασχηματισμού **Fourier**, ενώ η εντολή **hold of f** επιτρέπει στο πρόγραμμα να συνεχίσει τον υπολογισμό της επόμενης γραφικής παράστασης αφού έχει πραγματοποιηθεί η γραφική διακριτού σήματος.

Ερώτημα 2:

Στη γραμμή **17** του προγράμματος deigma2b.m υπολογίζεται ο μετασχηματισμός **Fourier** από το δειγματοληπτούμενο σήμα x_d ο οποίος είναι ίσος με $x_d * exp(-i * n' * w)$, όπου n πίνακας γραμμής και επιλέγεται ο πίνακας στήλης n' για να μπορέσει να πραγματοποιηθεί ο πολλαπλασιασμός n' * w. Στη γραμμή **18** καλείται η συνάρτηση real με παράμετρο x_d και επιστρέφεται το πραγματικό μέρος του x_d στο πίνακα x_d .

Ερώτημα 3-4:

Στις γραμμές 19-20 του προγράμματος deigma2b. m, παίρνουμε και τις αρνητικές τιμές του w και τις αντίστοιχες τιμές που παίρνει το X_d σε αυτές. Γιατί εφόσον το πραγματικό μέρος του μετασχηματισμού Fourier είναι συμμετρικό ως προς τον άξονα y, ισχύει ότι $X_d(-iW) = X_d(+iW)$.

> Άσκηση 3^η :

Ερώτημα α:

εκτέλεσης:

Αναζητούμε αρχικά το πεδίο ορισμού της συνάρτησης, δηλαδή αναζητούμε t: να ισχύει x(t)-> 0 . Έτσι αναζητώντας το: $1/(1+t^2) \rightarrow e^{-5}$ => $t \approx \pm 13$ Εάν επιλέξουμε $\Delta t = 5*10^{-5}$ τότε ισχύει πως $\Delta t << t$. Ακόμη ισχύει $F_s = 100~\delta \epsilon$ ίγματα/sec συνεπώς $T = 10^{-2}~sec/\delta \epsilon$ ίγμα. Άρα, σε χρόνο t = 13s υπάρχουν $t = 13/10^{-2}$ δείγματα και έτσι έχουμε t = 1300 δείγματα με το t = 1300 να κυμαίνεται από τη τιμή

-1300 μέχρι τη τιμή 1300 με βήμα 1. Ακολουθεί το πρόγραμμα: deigma3a. m στην λειτουργική του μορφή και το αποτέλεσμα

```
%%deigma3a
clear all;
close all;
clc;
Dt = 5e-5;
t = -13:Dt:13;
x = 1./(t.^2+1);
Ts = 0.01;
n = -1300:1:1300;
x_d = 1./((n.*Ts).^2.+1);
iter_max = 500;
iter = 0:1:iter_max;
w = (iter/iter_max)*pi;
X_d = x_d*exp(-1i*n'*w);
X_d = real(X_d);
w = [-fliplr(w), w(2:iter max+1)];
X_d = [fliplr(X_d), X_d(2:iter_max+1)];
figure(1);
subplot(2,1,1);
plot(t,x);
xlabel('t [sec]');
ylabel('x(t)');
title('Discrete signal(Ts=0.01sec)');
hold on ;
stem(n*Ts,x_d);
hold off;
subplot(2,1,2);
plot(w/pi,X_d);
xlabel('f [\pi units]');
ylabel('X(i\Omega)');
title('Discrete-time Fourier trasnform');
print -depsc progr31;
```


Ερώτημα β:

Γνωρίζουμε ότι για να ισχύει x(t)->0 , $t\approx\pm13$ Εάν επιλέξουμε $\Delta t=5*10^{-5}$ τότε ισχύει πως $\Delta t<< t$. Ακόμη ισχύει

 $F_s=10000~\delta \epsilon$ ίγματα/sec συνεπώς $T_s=10^{-4}~sec/\delta \epsilon$ ίγμα. Άρα, σε χρόνο t=13s υπάρχουν $n=13/10^{-4}~\delta \epsilon$ ίγματα και έτσι έχουμε $130000~\delta \epsilon$ ίγματα με το n να κυμαίνεται από τη τιμή $-130000~\mu \epsilon$ χρι τη τιμή $130000~\mu \epsilon$ βήμα 1.

Ακολουθεί το πρόγραμμα: deigma3b. m στην λειτουργική του μορφή και το αποτέλεσμα εκτέλεσης:

```
%%deigma3b
clear all;
close all;
clc;
Dt = 5e-5;
t = -13:Dt:13;
x = 1./(t.^2+1);
Ts = 0.0001;
n = -130000:1:130000;
x_d = 1./((n.*Ts).^2.+1);
iter max = 500;
iter = 0:1:iter max;
w = (iter/iter_max)*pi;
X_d = x_d*exp(-1i*n'*w);
X_d = real(X_d);
w = [-fliplr(w), w(2:iter_max+1)];
X_d = [fliplr(X_d), X_d(2:iter_max+1)];
figure(1);
subplot(2,1,1);
plot(t,x);
xlabel('t [sec]');
ylabel('x(t)');
title('Discrete signal(Ts=0.0001sec)');
hold on;
stem(n*Ts,x_d);
hold off;
subplot(2,1,2);
plot(w/pi,X_d);
xlabel('f [\pi units]');
ylabel('X(i\Omega)');
title('Discrete-time Fourier trasnform');
print -depsc progr32;
```

