Definitions and statements—ODE

• Ordinary differential equations.

Definition.

Ordinary differential equation of order n (ODE) is any equation of the form $F(x, y, y', \dots, y^{(n)}) = 0$, where F is a function of n + 2 variables in which $y^{(n)}$ really appears.

Its solution on an (open) interval I is any function y = y(x) on interval I that has all derivatives up to order n on I and $\forall x \in I$ satisfies $F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$.

Let y, v be some solutions of a given ODE on open intervals I, J respectively. We say that v is an **extension** of y if $I \subset J, I \neq J$ and v = y on I.

We say that a solution y of a given ODR on some open interval is a **maximal solution** if it cannot be extended, that is, if there is no other solution that would be an extention of y.

Definition. If the set of all solutions of a given ODE on a certain open interval can be expressed using one formula with parameters, we say that it is a **general solution** of this ODE. One solution, obtained by a concrete choice of these parameters, is then called a **particular solution**.

Definition. Consider an ODE of order n $F(x, y, y', \dots, y^{(n)}) = 0$.

Cauchy problem or Initial Value Problem for this equation is a problem of the form

- (1) $F(x, y, y', \dots, y^{(n)}) = 0;$
- (2) $y(x_0) = y_0, y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}$, where $x_0, y_0, y_1, \ldots, y_{n-1}$ are some fixed real numbers (initial conditions).

Definition.

Consider a Cauchy problem with initial conditions at some x_0 .

We say that this problem is **uniquely solvable** if for every two solutions u, v of this problem there exists a neighborhood U of x_0 such that u = v on U.

We say that this problem is **uniquely solvable on an interval** I (containing x_0) if for any two solutions u, v of this problem on intervals I_u, I_v containing I one has that u = v on I.

• ODE of order 1

Theorem. (on existence and uniqueness for ODE of order 1 with isolated y)

Consider an ODE that can be written in the form y' = f(x, y). (O1)

Let I, J be open intervals such that f is continuous on the set $I \times J$. Then $\forall (x_0, y_0) \in I \times J$ there exists a solution of the Cauchy problem (O1), $y(x_0) = y_0$ on some neighborhood of x_0 and this solution can be extended to the boundary of $I \times J$.

If moreover $\frac{\partial f}{\partial y}$ is continuous or bounded on $I \times J$, then this solution is unique.

Definition.

By a **separable ODE of order 1** we mean any ODE that can be expressed in the form y' = g(x)h(y) for some functions g, h.

Fact

Consider a separable ODE of order 1, y' = g(x)h(y). If y_0 satisfies $h(y_0) = 0$ and I is an open interval satisfying $I \subset D(g)$, then the function $y(x) = y_0$ is a solution to the given ODE on I (so-called **stationary solution**).

Theorem.

Consider a separable ODE of order 1, y' = g(x)h(y). Consider open intervals $I \subset D(g)$ and $J \subset D(h)$. If g is continuous on I, h is continuous on J and $h \neq 0$ on J, then there is a solution to the given equation on I.

Let G(x) be an antiderivative of g(x) on I and H(y) be an antiderivative of $\frac{1}{h(y)}$ on J. If H has an inverse function H_{-1} , then a general solution of the given equation on I can be expressed as $y(x) = H_{-1}(G(x) + C)$.

• Linear ODE of order 1

Definition.

By a linear ODE of order 1 we mean any ODE that can be written in the form y' + a(x)y = b(x), where a, b are some functions.

This equation is called **homogeneous** if b(x) = 0.

Given an ODE y' + a(x)y = b(x), we define its associated homogeneous equation y' + a(x)y = 0.

Fact. If a, b are continuous on an open interval I, then $\forall x_0 \in I$ and $\forall y_0 \in IR$ there exists a solution of the Cauchy problem y' + a(x)y = b(x), $y(x_0) = y_0$ on I and it is unique there.

Theorem. (on **solution** of homogeneous linear ODE of order 1)

If a is continuous on an open interval I, then the equation y' + a(x)y = 0 has a solution on I in the form $y(x) = C e^{-A(x)}$, where A is some antiderivative of a on I.

Theorem. (on **solution** of a linear ODE of order 1)

If a, b are continuous on an open interval I, then the equation y' + a(x)y = b(x) has a solution on I in the form $\left(\int b(x)e^{A(x)}dx\right)e^{-A(x)}$, where A is some antiderivative of a on I.

If B is some antiderivative of $b(x)e^{A(x)}$ on I, then a general solution of this equation on I is $y(x) = (B(x) + C)e^{-A(x)}$.

Theorem. (on structure of solutions of linear ODE of order 1)

Let y_p be some particular solution of the equation y' + a(x)y = b(x) on an open interval I. Then the set of all solutions of this equation on I is

 $\{y_p + y_h; y_h \text{ is a solution of the associated homogeneous equation on } I\}.$

• Linear ODE of order n.

Definition. By a linear **ODE** of order n we mean any ODE that can be written in the form

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x),$$

where a_{n-1}, \ldots, a_0, b are some functions.

This equation is called **homogeneous** if b(x) = 0.

Given a linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$, we define its **associated homogeneous equation** as $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x) = 0$.

Theorem. (on existence and uniqueness for linear ODE)

Consider an equation
$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$
. (L)

If a_{n-1}, \ldots, a_0, b are continuous on an open interval I, then $\forall x_0 \in I$ and $\forall y_0, y_1, \ldots, y_{n-1} \in \mathbb{R}$ there exists a solution to the Cauchy problem (L), $y(x_0) = y_0, y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}$ on I and it is unique there.

Theorem. (on structure of solutions of linear ODE)

Let y_p be some particular solution of a given linear ODE on an open interval I. Then the set of all solutions of this equation is

 $\{y_p + y_h; y_h \text{ is a solution of the associated homogeneous equation on } I\}.$

Theorem. (on structure of solutions of homogeneous linear ODE)

Consider a homogeneous linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0$. If a_i are continuous on an open interval I, then the set of all solutions of this equation on I is a linear space of dimension n.

Definition

Consider a linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$. Assume that a_i are continuous on an open interval I. By a **fundamental system** of this equation on I we mean an arbitrary basis of the space of solutions of its associated homogeneous equation.

Definition.

Let y_1, y_2, \ldots, y_n be (n-1)-times differentiable functions. We define their **Wronskian** as

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix}$$

Theorem. Consider a homogeneous linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0$.

Let a_i be continuous on an open interval I. Let y_1, y_2, \ldots, y_n be solutions of this equation on I, let W be their Wronskian.

These functions form a linearly independent set (and thus a fundamental system) if and only if $W(x) \neq 0$ on I if and only if $\exists x_0 \in I$: $W(x_0) \neq 0$.

Theorem. (principle of superposition)

Consider a linear ODE with left hand-side $L(y) = y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y$. Let y_1 be a solution of $L(y) = b_1(x)$ on an open interval I and y_2 be a solution of $L(y) = b_2(x)$ on I. Then $y_1 + y_2$ is a solution of $L(y) = b_1(x) + b_2(x)$ on I.

Definition. By a linear **ODE** with constant coefficients we mean any linear ODE for which $a_0(x) = a_0, a_1(x) = a_1, \ldots, a_{n-1}(x) = a_{n-1}$ are constant functions.

Definition.

Consider a linear ODE with constant coefficients $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = b(x)$.

We define its characteristic polynomial by $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0$.

We define its **characteristic equation** as $p(\lambda) = 0$. The solutions of this equation are called **characteristic** numbers of the given ODE.

Theorem. (on fundamental system for linear ODE with constant coefficients)

Consider a linear ODE with constant coefficients $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = b(x)$. Let λ be its characteristic number of multiplicity m.

- (1) If $\lambda = \alpha \in I\!\!R$, then $e^{\alpha x}$, $x e^{\alpha x}$, ..., $x^{m-1}e^{\alpha x}$ are solutions of the associated homogeneous equation on $I\!\!R$ and they are linearly independent.
- (2) If $\lambda = \alpha \pm \beta j \in \mathbb{C}$, $\beta \neq 0$, then $e^{\alpha x} \sin(\beta x)$, $x e^{\alpha x} \sin(\beta x)$, ..., $x^{m-1} e^{\alpha x} \sin(\beta x)$, $e^{\alpha x} \cos(\beta x)$, $x e^{\alpha x} \cos(\beta x)$, ..., $x^{m-1} e^{\alpha x} \cos(\beta x)$ are solutions of the associated homogeneous equation on \mathbb{R} and they are linearly independent.
- (3) The set of functions from (1) and (2) for all characteristic numbers is linearly independent and it forms a fundamental system of the given equation on \mathbb{R} .

(on **guessing solution** for special right hand-side)

Consider a linear ODE with constant coefficients $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = b(x)$. Assume that $b(x) = e^{\alpha x} [P(x)\sin(\beta x) + Q(x)\cos(\beta x)]$ for some polynomials P, Q with $m = \max(\deg(P), \deg(Q))$. Let k be the multiplicity of the number $\alpha \pm \beta j$ as a characteristic number of the given equation (we put k=0 if it is not a char. no. at all).

Then there are polynomials \widetilde{P} , \widetilde{Q} of order at most m such that $y(x) = x^k e^{\alpha x} [\widetilde{P}(x) \sin(\beta x) + \widetilde{Q}(x) \cos(\beta x)]$ is a solution of the given equation on \mathbb{R} .

• Systems of linear ODE's with constant coefficients.

Definition. By a system of linear ODE's of order 1 with constant coefficients we mean a system

$$y_1' = a_{11}y_1 + a_{12}y_2 + \ldots + a_{1n}y_n + b_1(x)$$

$$y_2' = a_{21}y_1 + a_{22}y_2 + \ldots + a_{2n}y_n + b_2(x)$$

$$\vdots$$

$$y_n' = a_{n1}y_1 + a_{n2}y_2 + \ldots + a_{nn}y_n + b_n(x)$$
where $b_i(x)$ are right hand-sides, $a_{ij} \in \mathbb{R}$.
A Cauchy problem for such a system has initial conditions $y_1(x_0) = y_{10}$, $y_2(x_0) = y_{10}$

A Cauchy problem for such a system has initial conditions $y_1(x_0) = y_{10}, y_2(x_0) = y_{20}, \dots, y_n(x_0) = y_{n0}$.

Every system of n linear ODE's of order 1 can be transformed via elimination to one linear ODE of order n, and vice versa.

Theorem. (on existence and uniqueness for systems)

Consider a system as in the definition above. If $b_i(x)$ are continuous on an open interval I, then for every $x_0 \in I$ and all $y_{10}, y_{20}, \ldots, y_{n0} \in \mathbb{R}$ there exists a solution of the corresponding Cauchy problem on I and it is unique.

Matrix notation:
$$\vec{y}(x) = \begin{pmatrix} y_1(x) \\ \vdots \\ y_n(x) \end{pmatrix}, \ \vec{y}' = \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}, \ \mathbf{matrix} \ \mathbf{of} \ \mathbf{the} \ \mathbf{system} \ A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}, \ \mathbf{we} \ \mathbf{also} \ \mathbf{use} \ \vec{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}_{n \times 1},$$

$$\mathbf{vector} \ \mathbf{of} \ \mathbf{RHS} \ \vec{b}(x) = \begin{pmatrix} b_1(x) \\ \vdots \\ b_n(x) \end{pmatrix}, \quad \mathbf{the} \ \mathbf{equation} \ \mathbf{is} \ \mathbf{then} \ \vec{y}' = A\vec{y} + \vec{b}, \ \mathbf{init.} \ \mathbf{conditions} \ \mathbf{are} \ \vec{y}(x_0) = \vec{y}_0.$$

(on existence and uniqueness for systems)

Let $A \in \mathbb{R}^{n \times n}$ be a matrix of the given system. If $\vec{b}(x)$ is continuous on an open interval I, then for all $x_0 \in I$, $\vec{y_0} \in \mathbb{R}^n$ there exists a solution of the Cauchy problem $\vec{y}' = A\vec{y} + \vec{b}(x), \ \vec{y}(x_0) = \vec{y_0}$ on I and it is unique. **Theorem.** (on **structure of solutions** for systems) Let $A \in \mathbb{R}^{n \times n}$ be a matrix.

The set of solutions of the system $\vec{y}' = A\vec{y}$ on some open interval I is a linear space of dimension n.

If \vec{y}_p is some solution of the system $\vec{y}' = A\vec{y} + \vec{b}(x)$ on I, then the set of its solutions on I is

 $\{\vec{y}_p + \vec{y}_h; \ \vec{y}_h \text{ is a solution of } \vec{y}' = A\vec{y} \text{ on } I\}.$ Let $A \in \mathbb{R}^{n \times n}$ be a matrix.

By a **fundamental system** of solutions of a system $\vec{y}' = A\vec{y} + \vec{b}(x)$ on an open interval I we mean an arbitrary basis of the space of solutions of $\vec{y}' = A\vec{y}$ on I.

For a particular fundamental system $\{\vec{y}_1,\ldots,\vec{y}_n\}$ we define its **fundamental matrix solution** on I by $Y(x) = (\vec{y}_1(x) \quad \cdots \quad \vec{y}_n(x))$ (matrix $n \times n$).

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. If Y(x) is a fundamental matrix solution on I of a system $\vec{y}' = A\vec{y}$, then Fact. a general solution of this system on I is $\vec{y}_h(x) = Y(x) \cdot \vec{c}$ for $\vec{c} \in \mathbb{R}^n$.

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. Let $\vec{y}_1, \dots, \vec{y}_n$ be solutions of a system of n linear ODE's $\vec{y}' = A\vec{y}$ on an open interval I. $\{\vec{y}_1,\ldots,\vec{y}_n\}$ is a fundamental system on I if and only if $\det(Y(x))\neq 0$ on I if and only if $\exists x \in I$: $\det(Y(x)) \neq 0$.

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. Definition.

We define its **characteristic polynomial** by $p(\lambda) = \det(A - \lambda E)$.

The roots of $p(\lambda)$ are called **eigenvalues** of matrix A.

If λ is an eigenvalue, by an eigenvector of A associated with λ we mean an arbitrary vector $\vec{v} \in \mathbb{R}^n$, $\vec{v} \neq \vec{0}$ satisfying $(A - \lambda E)\vec{v} = \vec{0}$.

Consider a system of linear ODE's $\vec{y}' = A\vec{y}$, where $A \in \mathbb{R}^{n \times n}$.

If \vec{v} is an eigenvector corresponding to an eigenvalue λ of matrix A, then $\vec{y} = \vec{v}e^{\lambda x}$ is a solution of the given

If $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of the matrix A, then the corresponding solutions form a linearly independent set.