MLE For the poisson distribution 3.6 Poisson Pmfi Poi (XIA) - e^{i} λ^{x} [Note the support in 0,1,2. in all natural number]

Hence Let $D = \{(x_i)\}_{i=1}^{N}$ be our Λ observations from this (Points 4) distribution log liklihood of Dis = log P(D) = log II. Poi (xil) = > log Poi(xil) = E log e 1/Xi = \frac{N}{2} (-1) + \frac{N}{2} \times \log \lambda \cdot \frac{N}{2} \log \log \left(\cdot \c Taking derivative with respect to 1 and equaling to zero $-N + \underbrace{z}_{X'} = 0 \Rightarrow \lambda = \underbrace{z}_{X'}$ P(XID) & P(DIA) P(X) d (it Poi(x1/1)) Gra(1/4/b) (using Griven conjugate
prior Gra(1/4/b) for 1 (2 points « [i] [xi] (= 16) each $\frac{x_{i}}{\sum_{i=1}^{N} x_{i} + a - 1} = N\lambda - b\lambda$ (a,b/--) = Ga (1 | a + Exi, b+N) $E[\lambda ID] = \frac{a + \sum xi}{1 + i N}$ it tends to MLE estimate in on 1

3.11 (only for ENCE 4630)

(2 Pointends)

(2 Pointends) it should be L(0) = NWO - 0 \(\infty \) \(\infty \) For MLE estimete of 0, take derivative and equate to 3000 $\frac{\partial L(0)}{\partial \theta} = \frac{V}{\theta} - \frac{\sum x_i}{i} \Rightarrow \hat{\theta} = \frac{\sum x_i}{i}$ $\hat{G}_{MLE}(D) = \hat{\Theta}_{MLE}(\{x_1 = 5, x_2 = 6, x_3 = 4\})$ (: $D = \{5, 6, 4\}$) $=\frac{3}{5+6+4}=\frac{3}{15}=\frac{1}{5}$ $E(0) = V_{\lambda} = \frac{1}{3} \Rightarrow \hat{\lambda} = 3$ ($e^{0} = \frac{1}{2} = \frac{1}{2}$ (d) posterier P(OID, 21 & P(D10) P(OIS) is a special case of summa 203-180 2 9-1-180 20-1-180 20-1-180 (-67/019,6) 20 EB (e) yes, exponential is a special case (f) posterier P(010,1) is Gra(014,18)

Hence mean = 4/18

(3) Posterior mean (4/8) is a probabilishe adjustement
between poier mean (3, expert choice) and deta
doven mean (MLE=1/5). In small smaple size we should
take expert advice "Hence posterior"

3.20 (3 point each)

(a) since feature are not conditionally indepent we need to specify probability for each configuration of bit in XE {011} Hence we need 2P-1 parameters | class or c (2P-1) parameter for classes

we would need a different probability distribution P'(XIC) or Histogram. [One ctroip can be

Les bino mial (K; D, 0) [3]

Les bability of K success in D toial of coin with parameter 0]

Note: We cannot use multivariate Granssian as data

is binary vector.

- (b) Maive Bayes based model will work better as it has less number of parameters. With less sample size it will not overfit and parameters estimation will be more reliable.
- as it is more accurate and there is enough data to reliably restimate parameters.

If we have pre-computed $Z(x_n|y_0)$ (5) then in naive bayes we need O(v) time For Full model we need to enquerate over all 2" values of Xn e Eo, 13h for mar gralising ZP(Xv, Xv14, 6). Hence it takes $O(D2^h)$ if $DCC2^h$ computational time 4-1 (4 points) E[X] = 0, $Var[X] = (1-61)^{2}/12 = 1/3$ E[Y] = E[X2] = var [X] + (E[X])2 = 1/3+0=1/3 $E[XY] = \int xy P(x) dx = \int \frac{x^3}{3} dx = 2 \int \frac{x^4}{4} dx = 0$ P = COV [X,4] = [F[XY] - F[X] E[4] = 0 6x 6y 64 64

4.14 (2 print each) (a) prior on mean pe P(M) = (2T 52) 2 exp [-1 (4-m)2] D= {xiling are taken I-I-D then P(OIM) = TT N(M,6) $= \frac{m}{\pi} R \pi 6^{2} R \pi 6^{2} R \pi \exp \left(\frac{1}{2} \left(\frac{x_{i} - \mu_{i} + x_{j}}{6^{2}}\right)\right)$ $= A \pi \exp \left(\frac{1}{2} \left(\frac{x_{i} - \mu_{i} + x_{j}}{6^{2}}\right)\right)$ $= A \pi \exp \left(\frac{1}{2} \left(\frac{x_{i} - \mu_{i} + x_{j}}{6^{2}}\right)\right)$ Hence posterior on mean P(MID) & P(DIA) P(M) For maximizing posterior we can take log Hence log [P(D/H)P(M)] = log A - \frac{1}{262} \frac{2}{62} (xi-M)^2 - \frac{1}{232} \log (21752) - \frac{(M-m)^2}{232} For MAP Estimate we need to take derivative of use need to take derivative of above posterior of usin neg pect to using the processing of the second of the 2 [P(D/M) P(M)] 0 - 3 (xi/M) (-1) -0 - 3 (M-m) = 12 \(\tau_{i=1}^{\text{M-m}} \) - \(\lambda_{i=1}^{\text{M-m}} \right) - \(\lambda_{i=2}^{\text{M-m}} \right) \) $= -\frac{M}{52} + \frac{m}{52} + \frac{1}{62} = \frac{2}{61} \times \frac{m}{62}$ $= -\frac{M}{52} + \frac{m}{52} + \frac{1}{62} = \frac{2}{61} \times \frac{m}{62}$ let set it zero and solve for M $0 = -\frac{M}{s^2} + \frac{m}{s^2} + \frac{4m\bar{x}}{6^2} - \frac{n}{6^2} = \frac{M}{s^2}$

Hence
$$\int_{map}^{m} = \frac{1}{6^2} \times \frac{1}{5^2} = \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} = \frac{1}{100} \times \frac{1}{100$$