CLAIMS

1. A mutant α -amylase which is derived from an α -amylase having an amino acid sequence represented by SEQ ID No. 1 or showing at least 60% homology thereto by substitution or deletion of at least one amino acid residue corresponding to any one of Pro₁₈, Gln₈₆, Glu₁₃₀, Asn₁₅₄, Arg₁₇₁, Ala₁₈₆, Glu₂₁₂, Val₂₂₂, Tyr₂₄₃, Pro₂₆₀, Lys₂₆₉, Glu₂₇₆, Asn₂₇₇, Arg₃₁₀, Glu₃₆₀, Gln₃₉₁, Trp₄₃₉, Lys₄₄₄, Asn₄₇₁ and Gly₄₇₆ of the amino acid sequence.

5

20

25

- 2. A mutant α-amylase derived from an α-amylase having an amino acid sequence represented by SEQ ID No. 2 or showing at least 60% homology thereto by substitution or deletion of at least one amino acid residue corresponding to any one of Asp₁₂₈, Gly₁₄₀, Ser₁₄₄, Arg₁₆₈, Asn₁₈₁, Glu₂₀₇,
 Phe₂₇₂, Ser₃₇₅, Trp₄₃₄ and Glu₄₆₆ of the amino acid sequence.
 - 3. A mutant α -amylase according to claim 1, wherein the substitution or deletion of at least one amino acid residue is substitution of the amino acid residue corresponding to Pro_{18} with Ser or Thr, the amino acid residue corresponding to Gln_{86} with Glu, the amino acid residue corresponding to Glu_{130} with Val or Gln, the amino acid residue corresponding to Asn_{154} with Asp, the amino acid residue corresponding to Arg_{171} with Cys or Gln, the amino acid residue corresponding to Ala_{186} with Val or Asn, the amino acid residue corresponding to Ala_{186} with Val or Asn, the amino acid residue corresponding to Glu_{212} with Asp, the

amino acid residue corresponding to Val₂₂₂ with Glu, the amino acid residue corresponding to Tyr₂₄₃ with Cys or Ser, the amino acid residue corresponding to Pro₂₆₀ with Glu, the amino acid residue corresponding to Lys₂₆₉ with Gln, the amino acid residue corresponding to Glu₂₇₆ with His, the amino acid residue corresponding to Asn₂₇₇ with Ser or Phe, the amino acid residue corresponding to Arg₃₁₀ with Ala, the amino acid residue corresponding to Glu₃₆₀ with Gln, the amino acid residue corresponding to Glu₃₆₀ with Gln, the amino acid residue corresponding to Trp₄₃₉ with Arg, the amino acid residue corresponding to Trp₄₃₉ with Arg, the amino acid residue corresponding to Lys₄₄₄ with Arg, the amino acid residue corresponding to Asn₄₇₁ with Asp or Glu, or the amino acid residue corresponding to Gly₄₇₆ with Asp;

4. A mutant α -amylase according to claim 2, wherein the substitution or deletion of at least one amino acid residue is substitution of the amino acid residue corresponding to Asp_{128} with Val or Gln, the amino acid residue corresponding to Gly_{140} with Ser, the amino acid residue corresponding to Ser_{144} with Pro, the amino acid residue corresponding to Arg_{168} with Gln, the amino acid residue corresponding to Gln_{181} with Val, the amino acid residue corresponding to Gln_{181} with Asp, the amino acid residue corresponding to Phe_{272} with Ser, the amino acid residue corresponding to Ser_{375} with Pro, the amino acid residue corresponding to Ser_{375} with Pro, the amino acid residue corresponding to Ser_{375} with Pro, the amino acid

- 67 -

residue corresponding to Glu466 with Asp.

- 5. A gene encoding a mutant α -amylase as claimed in any one of claims 1 to 4, or a vector containing said gene.
- A cell transformed by a vector as claimed in claim
 5
 - 7. A method for producing a mutant α -amylase, which comprises cultivating a transformant cell as claimed in claim 6.
- 8. A detergent composition comprising a mutant $\alpha-$ amylase as claimed in any one of claims 1 to 4.