	l. (១៥ ពិន្ទុ) គណនាលិមិត				
	$ 7. \lim_{x \to 1} \frac{1 - x^2}{x^3 - x^2 + x - 1} $	$2.\lim_{x\to 0}\frac{\sin 3x}{-x}$	$\mathbf{\hat{n}} \cdot \lim_{x \to 0} \frac{\sqrt{2}}{x}$	$\frac{2+x-\sqrt{2-x}}{\sin x}$ 1	
ធៀបពៀងដោយ	II. (១០ ពិន្ទុ) ក្នុងថ្នាក់រៀនមួយមានសិស្សពូកែ 10 នាក់ ដែលក្នុងនោះ 4 នាក់ជាសិស្សស្រីនិង 6 នាក់ជាសិស្សប្រុស។ រៀបចំសិស្សជាក្រុមក្នុងមួយក្រុមមានសិស្ស 4 នាក់ដោយចៃដន្យ យកទៅប្រកួតជាមួយក្រុមសិស្សថ្នាក់ដ៏ទៃ។ រកប្រាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖				
	២. $B:$ ក្រុមសិស្សដែលជ្រើសរើសបានសុទ្ធតែប្រុស "។ ៣. $C:$ ក្រុមសិស្សដែលជ្រើសរើសបាន 50% ជាសិស្សប្រុស "។				
	III. (១៥ ពិន្ទុ) គេមានចំនូនកុំផ្លិច	'			

មធ្យមសិក្សា

សេចក្តីណែនាំ៖

9. សរសេរ z_1 ជាទម្រង់ត្រីកោណមាត្រ។

 $\overrightarrow{\mathbf{n}}$. រកវ៉ិចទ័រ \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BC} , \overrightarrow{CD} ។

 \mathbf{m} . សរសេរផលគុណ $z_1 \times z_2$ ជាទម្រង់ពីជគណិត។

f b. រកម៉ូឌុលនិងអាគុយម៉ង់ z_1^3 ។

IV. (២៥ ពិន្ទូ)

សម័យប្រឡង៖ <mark>១០ សីហា ២០១៨</mark>

រយៈពេល៖ ១២៥ នាទី

នាមត្រកូល និងនាមខ្លូន៖ ថ្ងៃខែឆ្នាំកំណើត៖

ហត្ថលេខា៖

បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រឡងឡើយ។ សន្លឹកប្រឡងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទុស្វន្យ។

១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រវកាត់ចេញ។

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤។

<u>-[ဆီအာ့</u>း]-

9. ក្នុងលំហប្រដាប់ដោយតម្រុយ $(O, \vec{i}, \vec{j}, \vec{k})$ គេមានចំណុច A(-2,1,0), B(0,1,1), C(1,2,2) និង D(0,3,-4) ។

 $oldsymbol{2}$. គណនាប្រវែង $oldsymbol{AB,AC,AD,BD}$ និង $oldsymbol{CD}$ ។ ទាញបង្ហាញថាត្រីកោណ $oldsymbol{ABD}$ និង $oldsymbol{ACD}$ កែងត្រង់ $oldsymbol{A}$ ។

 ${f b}$. គេមានសមីការ $9y^2-16x^2=144$ ។ បង្ហាញថាសមីការនេះជាសមីការអ៊ីពែបូល។

V. (១៥ ពិន្ទុ) គណនាអាំងតេក្រាល $I = \int_1^3 (x - 2 + 3x^3) \, \mathrm{d}x; J = \int_0^{\frac{\pi}{4}} (\sin 2x - \cos x) \, \mathrm{d}x;$

 $K = \int_0^1 \frac{x^3 + (x+1)^2}{x^2 + 1} \mathrm{d}x$ ។ ដើម្បីគណនា K យើងត្រូវបង្ហាញថា $\frac{x^3 + (x+1)^2}{x^2 + 1} = x + 1 + \frac{x}{x^2 + 1}$ ។

រកកូអរដោនេរបស់កំពូលទាំងពីរនិងកំណុំទាំងពីរនៃអ៊ីពែបូល។ រកសមីការអាស៊ីមតូតរបស់អ៊ីពែបូលនេះ និងសង់អ៊ីពែបូលនេះ។

ពិន្ទ៖ ១៥០

លេខបន្ទប់៖

លេខតុ៖ មណ្ឌលប្រទ្បុង៖

លេខសម្ងាត់៖

លេខសម្ងាត់៖

ដែទាំ១អសុរូតាំឧសម មួចអ្នមឹប

វិទ្យាល័យ **មេតូឌីស្តកម្ពុជា**

ឈ្មោះ និងហត្ថលេខាអនុរក្ស៖

វិញ្ញាសា៖ <mark>គណិតវិទ</mark>្យា

ពិន្ទុសរុប

ប្រឡង**សញ្ញាបត្រ ទុតិយភូមិ** ថ្នាក់ទី១២

	VI. (១០ ពិន្ទុ)				
	9. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល $(E): y'' - 3y' + 2y = 0$ ។ ២. រកចម្លើយពិសេសមួយនៃសមីការឌីផេរ៉ង់ស្យែល (E) ដែល $y(0) = 1$ និង $y'(1) = e^2$ ។				
	VII. (៣៥ ពិន្ទុ) គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x)=x+rac{1-3e^x}{1+e^x}$ ។ គេតាងដោយ C ក្រាបរបស់វានៅក្នុងប្លង់ ប្រដាប់ដោយតម្រុយអរគ្គណរម៉ាល់ $(0,\vec i,\vec j)$ ។				
	9. បង្ហាញថា $f(x) = x + 1 - \frac{4e^x}{1 + e^x}$ និងគណនាលីមីតនៃ f ត្រង់ $-\infty$ ។ ស្រាយបំភ្លឺថាបន្ទាត់ d_1 ដែលមានសមីការ $y = x + 1$ អាស៊ីមត្ងតទៅនឹងក្រាប C ត្រង់ $-\infty$ ។ សិក្សាទីតាំងនៃក្រាប C ធៀបនឹងបន្ទាត់ d_1 ។ b. គណនាលីមីត f ត្រង់ $+\infty$ ។ ស្រាយបំភ្លឺថាបន្ទាត់ d_2 ដែលមានសមីការ $y = x - 3$ អាស៊ីមតូតទៅនឹងក្រាប C ត្រង់ $+\infty$ ។ សិក្សាទីតាំងក្រាប C ធៀបនឹងបន្ទាត់ d_2 ។				
	$oldsymbol{m.f.}$. គណនាដេរីវេ $f'(x)$ និងបង្ហាញថាគ្រប់ចំនួនពិត x , $f'(x) = \left(rac{e^x-1}{e^x+1} ight)^2$ ។				
	$egin{array}{c} (e^{r}+1) \\ 2. & \delta \ ag{N}$ ក្សាអថេរភាពនៃ f រួចសង់តារាងអថេរភាពនៃ f ។ សង់ក្រាប C និងអាស៊ីមត្ងូត d_1 និង d_2 របស់វា។				
	(၁ နွဲ တ				
មៀបមៀងដោយ					
	·)				