

MACHINE LEARNING FOR GEOMODELLING

BABACAR DIOUF

MOHAMMED OUEDRHIRI

PARFAIT FANGUE

HIROTO YAMAKAWA

PRÉSENTATION DE l'ÉQUIPE

Geoxilia

Startup spécialisée en géosciences constituée de géologues, géophysiciens et des ingénieurs réservoirs. Spécialisée dans l'analyse et la prédiction des réservoirs d'hydrocarbures.

Jamyl BRAHAMI

Managing Director

Adeline AUVINET **Senior Geologist**

BearingPoint_®

BearingPoint

Cabinet indépendant de conseil en management et en technologie, proposant une offre de solutions en data science depuis 2012, avec l'acquisition de HyperCube.

Pauline MAURY
Lead Data Scientist

Eya KALBOUSSI

Data Scientist

Tuteur académique: Thomas BONALD

Groupe Fil Rouge

Babacar DIOUF Mohammed OUEDRHIRI Parfait FANGUE Hiroto YAMAKAWA

PLAN

- 1. Le contexte et les enjeux
- 2. La démarche
- 3. Preprocessing
- 4. Analyse Exploratoire
- 5. Machine Learning
- 6. Prochaines étapes

LE CONTEXTE ET LES ENJEUX

Le GEOMODELLING?

Problématiques:

Peut-on trouver des **alternatives plus efficaces** aux **méthodes traditionnelles** utilisées par les experts durant la réalisation d'un modèle géologique ?

Objectifs:

Explorer et entraîner des algorithmes de Machine Learning pour **optimiser la phase de modélisation** et anticiper les étapes critiques

LABEL / TARGET: Lithologie = couche de roche Ex :{ARGILE}

Études portées sur les réservoirs de la mer du Nord

Quatre champs: BEATRICE / CROMARTY / JACKY / ALWYN

LE CONTEXTE ET LES ENJEUX

Logs importants selon Geoxilia - logs (= Variables explicatives)

1

2

3

4

5

6

7

CALIPER (CAL)

Diamètre du puit

GAMMA RAY (GR)

radioactivité naturelle DENSITE (DENS & DCOR)

Densité et densité corrigé

PHOTO ELECTRIC (PEF)

absorption photoélectrique NEUTRON (PHIN)

contenu d'hydrogène SONIC (DTC) ralentissement

de la vitesse des ondes de compression résistivité à différentes profondeurs latérales

Remarque : à l'échelle des réservoirs d'hydrocarbures de la mer du Nord, <mark>la profondeur</mark> des champs étudiés n'est pas assez élevée. Nous faisons l'hypothèse que ce paramètre n'a pas d'influence sur l'identification des lithologies.

Note: Mesures prises tous les 0,5 m sur le long du puit (de 1000 à 4000 m) pendant ou après le forage.

PLAN

- 1. Le contexte et les enjeux
- 2. La démarche
- 3. Preprocessing
- 4. Analyse Exploratoire
- 5. Machine Learning
- 6. Prochaines étapes

LA DÉMARCHE

TODAY

Compréhension du métier

Réunion avec Geoxilia et Bearingpoint pour apprendre sur le métier et le travail des géophysiciens

Early NOV 2019 Late DEC 2019 Late JAN 2020

Mid OCT 2019

Cleaning des données

Uniformisation des données transmises par Geoxilia sous un format exploitable.

Mise en base

Créer un dataset d'apprentissage avec les données de champs matures sur plusieurs puits.

Analyse exploratoire

explicatives importantes pour

sélectionner le modèle approprié

Identification des variables

Premiers algorithmes

Comparaison des modèles de Machine Learning pour identifier les lithologies: Algorithme supervisé

PLAN

- 1. Le contexte et les enjeux
- 2. La démarche
- 3. Preprocessing
- 4. Analyse Exploratoire
- 5. Machine Learning
- 6. Prochaines étapes

PREPROCESSING - Quelques chiffres

Données

- 114 fichiers (.las) contenant les logs sur différents puits (68 puits distincts)
- 3 fichiers (.xls) contenant les lithologies associées à chaque profondeur (78 lithologies)

Problèmes

- Données inexploitables en l'état pour de la prédiction
- Données très hétérogènes
- Diversité des unités pour une même mesure physique

Solutions

 Pré-traitement des données et mise en place d'une base de données sur SQLITE (Faible volume de données < 1 GB)

PREPROCESSING - Quelques chiffres

PREPROCESSING - Quelques chiffres

Observations	Pourcentage	Description
698355	100%	Nombre total d'observations dans la base de données
<mark>260584</mark>	<mark>37%</mark>	Observations labellisées

PLAN

- 1. Le contexte et les enjeux
- 2. La démarche
- 3. Preprocessing
- 4. Analyse Exploratoire
- 5. Machine Learning
- 6. Prochaines étapes

Différentes bases utilisées selon l'exploitabilité des variables

DF LOG	df1	df2	df2 _bis	df3	df3 _bis	df4
GR	X	X	X	X	X	X
CAL	X	X		X		X
DCOR	X	X		X	X	X
DENS	X	X		X	X	X
PHIN	X	X		X		X
RESD	X	X	X	X	X	X
RESM	X	X		X		X
SP	X					X
PE	X			X	X	

100 % = 260584 observations labellisées

Matrix Correlation

Classifieurs non linéaires mieux adaptés à nos données

PLAN

- 1. Le contexte et les enjeux
- 2. La démarche
- 3. Preprocessing
- 4. Analyse Exploratoire
- 5. Machine Learning
- 6. Prochaines étapes

MACHINE LEARNING – Premiers résultats

Classifieurs utilisés:

- CART
- SVM
- KNN

Encodage du target / Label

- 1 pour argile
- 0 pour non argile

Sélection de modèle:

Cross Validation : 10 folds

Indicateurs de Performance:

- F1-score
- Accuracy
- Précision

MACHINE LEARNING — Zoom sur le modèle CART retenu

Variables sélectionnées:

GR, DCOR, DENS, RESD, PE

Base utilisée: *df3_bis*

CART:

hyperparamètre : profondeur de 4

indicateurs de performances:

1. **Accuracy Score**: 0.85

2. **F1-score**: 87%

3. **Précision**: 94%

Modèle de sélection:

Cross Validation: 10

Avantage:

Performant et facile à interpréter

TELECOM Paris

MACHINE LEARNING — Modèle sélectionné VS règles métiers

Résultats du modèle avec les mêmes variables utilisées par les règles "métier": arbre de classification

PLAN

- 1. Le contexte et les enjeux
- 2. La démarche
- 3. Preprocessing
- 4. Analyse Exploratoire
- 5. Machine Learning
- 6. Prochaines étapes

PROCHAINES ÉTAPES - perspectives

Comparaison du modèle avec les règles métier

Modèles non supervisés

Modèles capable de gérer les NaN Prédiction des volumes

Comparer les performances de notre modèle aux règles métier utilisées pour identifier les lithologies.

Exploitation de modèles non supervisés sur le jeu de données non labellisées.

Mettre en place un algorithme permettant de remplacer les valeurs nulles.

S'intéresser à la prédiction des volumes d'hydrocarbures dans les réservoirs.

RESSOURCES

- Pour calculs imposants : AWS ElasticMapReduce
- Utilisation des crédits restants sur les comptes Educate

ANNEXE: Modèle CART avec df1

Variables sélectionnées:

GR, CAL, DCOR, DENS, PHIN, RESD, RESM, SP, PE

Base utilisée: df1

CART:

hyperparamètre :

profondeur de 5

indicateurs de performances:

1. **Accuracy Score**: 0.83

2. **F1-score**: 71%

3. **Précision**: 90%

Modèle de sélection:

ANNEXE: Modèle CART avec df2

Variables sélectionnées:

GR, CAL, DCOR, DENS, PHIN, RESD, RESM

Base utilisée: df2

CART:

hyperparamètre : profondeur de 2

indicateurs de performances:

1. **Accuracy Score**: 0.86

2. **F1-score**: 67%

3. **Précision**: 86%

Modèle de sélection:

ANNEXE: Modèle CART avec df2_GR_RESD

Variables sélectionnées:

GR, RESD

Base utilisée: df3_bis

CART:

hyperparamètre :

profondeur de 4

indicateurs de performances:

1. **Accuracy Score**: 0.86

2. **F1-score**: 67%

3. **Précision**: 86%

Modèle de sélection:

ANNEXE: Modèle CART avec df3

Variables sélectionnées:

GR, DCOR, DENS, RESD, PE

Base utilisée: df3

CART:

hyperparamètre: profondeur de 5

indicateurs de performances:

1. **Accuracy Score**: 0.89

2. **F1-score**: 87%

3. **Précision**: 94%

Modèle de sélection:

ANNEXE: Modèle CART avec df4

Variables sélectionnées:

GR, DCOR, DENS, RESD, PE

Base utilisée: df4

CART:

hyperparamètre :

profondeur de 5

indicateurs de performances:

1. **Accuracy Score**: 0.85

2. **F1-score**: 46%

3. **Précision**: 76%

Modèle de sélection:

ANNEXE: Modèle SVM avec df2_bis

Variables sélectionnées:

GR, RESD

Base utilisée: df2_bis

SVM:

hyperparamètres:

gamma = 0.01

C = 100

		Matrix confusion		
		Predict classes		
		0	1	
Actual classes	0	7 297	290	
	1	1 095	1 639	

	precision	recall	f1-score	Accuracy	
0	0.87	0.96	0.91	0.87	
1	0.85	0.60	0.70		

ANNEXE: Modèle SVM avec df3_bis

Variables sélectionnées:

GR, CAL, DCOR, DENS, RESD

Base utilisée: df3_bis

SVM:

hyperparamètres:

gamma = 0.01

C = 100

		Matrix c	onfusion	
		Predict	redict classes	
		0	1	
Actual classes	0	7 325	262	
	1	531	2 203	

	precision	recall	f1-score	Accuracy	
0	0.93	0.97	0.95	0.02	
1	0.89	0.81	0.85	0.92	

ANNEXE : les abaques experts

ANNEXE: Répartition du Travail

Répartition du temps de travail

