This textbook provides future data analysts with the tools, methods, and skills needed to answer data-focused, real-life questions; to carry out data analysis; and to visualize and interpret results to support better decisions in business, economics, and public policy.

Data wrangling and exploration, regression analysis, machine learning, and causal analysis are comprehensively covered, as well as when, why, and how the methods work, and how they relate to each other.

As the most effective way to communicate data analysis, running case studies play a central role in this textbook. Each case starts with an industry-relevant question and answers it by using real-world data and applying the tools and methods covered in the textbook. Learning is then consolidated by 360 practice questions and 120 data exercises.

Extensive online resources, including raw and cleaned data and codes for all analysis in Stata, R, and Python, can be found at www.gabors-data-analysis.com.

"This exciting new text covers everything today's aspiring data scientist needs to know, managing to be comprehensive as well as accessible. Like a good confidence interval, the Gabors have got you almost completely covered!"

Professor Joshua Angrist, Massachusetts Institute of Technology

"A beautiful integration of econometrics and data science that provides a direct path from data collection and exploratory analysis to conventional regression modeling, then on to prediction and causal modeling. Exactly what is needed to equip the next generation of students with the tools and insights from the two fields."

Professor David Card, University of California—Berkeley

"This textbook is excellent at dissecting and explaining the underlying process of data analysis. Békés and Kézdi have masterfully woven into their instruction a comprehensive range of case studies. The result is a rigorous textbook grounded in real-world learning, at once accessible and engaging to novice scholars and advanced practitioners alike. I have every confidence it will be valued by future generations."

Professor Kerwin K. Charles, Yale School of Management

Békés and Kézdi

DATA ANALYSIS
FOR BUSINESS,
ECONOMICS, AND POLICY

DATA ANALYSIS

FOR BUSINESS, ECONOMICS, AND POLICY

Gábor Békés | Gábor Kézdi

Cover images: the cover illustrates steps and methods of data analysis. We reorganize messy into tidy datasets (L1), describe our data (C1), and estimate regression to uncover the patterns of association between variables (R1). To make predictions, we fit fluctuations in time series (L2) and use machine learning based on decision trees (C2). To learn the causal impact of interventions, we study events (R2). Cover illustration by Ágoston Nagy, 2019. Cover design: Andrew Ward

MBRIDGI

DATA ANALYSIS FOR BUSINESS, ECONOMICS, AND POLICY

This textbook provides future data analysts with the tools, methods, and skills needed to answer datafocused, real-life questions; to carry out data analysis; and to visualize and interpret results to support better decisions in business, economics, and public policy.

November 23, 2020 16:44

Data wrangling and exploration, regression analysis, machine learning, and causal analysis are comprehensively covered, as well as when, why, and how the methods work, and how they relate to each other.

As the most effective way to communicate data analysis, running case studies play a central role in this textbook. Each case starts with an industry-relevant question and answers it by using real-world data and applying the tools and methods covered in the textbook. Learning is then consolidated by 360 practice questions and 120 data exercises.

Extensive online resources, including raw and cleaned data and codes for all analysis in Stata, R, and Python, can be found at http://www.gabors-data-analysis.com.

Gábor Békés is an assistant professor at the Department of Economics and Business of the Central European University, and Director of the Business Analytics Program. He is a senior fellow at KRTK and a research affiliate at the Center for Economic Policy Research (CEPR). He has published in top economics journals on multinational firm activities and productivity, business clusters, and innovation spillovers. He has managed international data collection projects on firm performance and supply chains. He has done policy-advising (the European Commission, ECB) as well as private-sector consultancy (in finance, business intelligence, and real estate). He has taught graduate-level data analysis and economic geography courses since 2012.

Gábor Kézdi is a research associate professor at the University of Michigan's Institute for Social Research. He has published in top journals in economics, statistics, and political science on topics including household finances, health, education, demography, and ethnic disadvantages and prejudice. He has managed several data collection projects in Europe; currently, he is co-investigator of the Health and Retirement Study in the USA. He has consulted for various governmental and nongovernmental institutions on the disadvantage of the Roma minority and the evaluation of social interventions. He has taught data analysis, econometrics, and labor economics from undergraduate to PhD levels since 2002, and supervised a number of MA and PhD students.

"This exciting new text covers everything today's aspiring data scientist needs to know, managing to be comprehensive as well as accessible. Like a good confidence interval, the Gabors have got you almost completely covered!'

CUP/CUP-BEKES

Professor Joshua Angrist, Massachusetts Institute of Technology

"This is an excellent book for students learning the art of modern data analytics. It combines the latest techniques with practical applications, replicating the implementation side of classroom teaching that is typically missing in textbooks. For example, they used the World Management Survey data to generate exercises on firm performance for students to gain experience in handling real data, with all its guirks, problems, and issues. For students looking to learn data analysis from one textbook, this is a great way to proceed."

Professor Nicholas Bloom, Department of Economics and Stanford Business School, Stanford University

"I know of few books about data analysis and visualization that are as comprehensive, deep, practical, and current as this one; and I know of almost none that are as fun to read. Gábor Békés and Gábor Kézdi have created a most unusual and most compelling beast: a textbook that teaches you the subject matter well and that, at the same time, you can enjoy reading cover to cover."

Professor Alberto Cairo, University of Miami

"A beautiful integration of econometrics and data science that provides a direct path from data collection and exploratory analysis to conventional regression modeling, then on to prediction and causal modeling. Exactly what is needed to equip the next generation of students with the tools and insights from the two fields."

Professor David Card, University of California-Berkeley

"This textbook is excellent at dissecting and explaining the underlying process of data analysis. Békés and Kézdi have masterfully woven into their instruction a comprehensive range of case studies. The result is a rigorous textbook grounded in real-world learning, at once accessible and engaging to novice scholars and advanced practitioners alike. I have every confidence it will be valued by future generations."

Professor Kerwin K. Charles, Yale School of Management

"This book takes you by the hand in a journey that will bring you to understand the core value of data in the fields of machine learning and economics. The large amount of accessible examples combined with the intuitive explanation of foundational concepts is an ideal mix for anyone who wants to do data analysis. It is highly recommended to anyone interested in the new way in which data will be analyzed in the social sciences in the next years."

Professor Christian Fons-Rosen, Barcelona Graduate School of Economics

"This sophisticatedly simple book is ideal for undergraduate- or Master's-level Data Analytics courses with a broad audience. The authors discuss the key aspects of examining data, regression analysis, prediction, Lasso, random forests, and more, using elegant prose instead of algebra. Using well-chosen case studies, they illustrate the techniques and discuss all of them patiently and thoroughly."

Professor Carter Hill, Louisiana State University

"This is not an econometrics textbook. It is a data analysis textbook. And a highly unusual one - written in plain English, based on simplified notation, and full of case studies. An excellent starting point for future data analysts or anyone interested in finding out what data can tell us."

Professor Beata Javorcik, University of Oxford

"A multifaceted book that considers many sides of data analysis, all of them important for the contemporary student and practitioner. It brings together classical statistics, regression, and causal inference, sending the message that awareness of all three aspects is important for success in this field. Many 'best practices' are discussed in accessible language, and illustrated using interesting datasets."

Professor Ilya Ryzhov, University of Maryland

"This is a fantastic book to have. Strong data skills are critical for modern business and economic research, and this text provides a thorough and practical guide to acquiring them. Highly recommended."

Professor John van Reenen, MIT Sloan

"Energy and climate change is a major public policy challenge, where high-quality data analysis is the foundation of solid policy. This textbook will make an important contribution to this with its innovative approach. In addition to the comprehensive treatment of modern econometric techniques, the book also covers the less glamorous but crucial aspects of procuring and cleaning data, and drawing useful inferences from less-than-perfect datasets. An important and practical combination for both academic and policy professionals."

Laszlo Varro, Chief Economist, International Energy Agency

DATA ANALYSIS FOR BUSINESS, ECONOMICS, AND POLICY

Gábor Békés

Central European University, Vienna and Budapest

Gábor Kézdi

University of Michigan, Ann Arbor

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108483018 DOI: 10.1017/9781108591102

© Gábor Békés and Gábor Kézdi 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in Singapore by Markono Print Media Pte Ltd 2021

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-48301-8 Hardback ISBN 978-1-108-71620-8 Paperback

Additional resources for this publication at www.cambridge.org/bekeskezdi and www.gabors-data-analysis.com

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

BRIEF CONTENTS

	Why Use This Book Simplified Notation Acknowledgments	page xxi xxiv
ı		XXV
1	DATA EXPLORATION	1
1	Origins of Data	3
2	Preparing Data for Analysis	30
3	Exploratory Data Analysis	58
4	Comparison and Correlation	96
5	Generalizing from Data	118
6	Testing Hypotheses	143
II	REGRESSION ANALYSIS	169
7	Simple Regression	171
8	Complicated Patterns and Messy Data	200
9	Generalizing Results of a Regression	236
10	Multiple Linear Regression	266
11	Modeling Probabilities	297
12	Regression with Time Series Data	329
Ш	PREDICTION	363
13	A Framework for Prediction	365
14	Model Building for Prediction	391
15	Regression Trees	417
16	Random Forest and Roosting	438

9781108483018pre CUP/CUP-BEKES November 23, 2020 16:44 Page-**vi**

	D.: - J	Cont	
VI	Rriei	: Coni	PHIS

17	Probability Prediction and Classification	457
18	Forecasting from Time Series Data	487
IV	CAUSAL ANALYSIS	517
19	A Framework for Causal Analysis	519
20	Designing and Analyzing Experiments	555
21	Regression and Matching with Observational Data	588
22	Difference-in-Differences	620
23	Methods for Panel Data	649
24	Appropriate Control Groups for Panel Data	681
	References	704 710

CONTENTS

		page xxi
	Simplified Notation	xxiv
	Acknowledgments	XXV
1	DATA EXPLORATION	1
1	Origins of Data	3
1.1	What Is Data?	4
1.2	Data Structures	5
I.A1	CASE STUDY – Finding a Good Deal among Hotels: Data Collection	6
1.3	Data Quality	7
1.B1	CASE STUDY – Comparing Online and Offline Prices: Data Collection	9
1.C1	CASE STUDY – Management Quality and Firm Performance: Data Collection	10
1.4	How Data Is Born: The Big Picture	11
1.5	Collecting Data from Existing Sources	12
I.A2	CASE STUDY – Finding a Good Deal among Hotels: Data Collection	14
1.B2	CASE STUDY – Comparing Online and Offline Prices: Data Collection	15
1.6	Surveys	16
1.C2	CASE STUDY – Management Quality and Firm Size: Data Collection	18
1.7	Sampling	18
1.8	Random Sampling	19
1.B3	CASE STUDY – Comparing Online and Offline Prices: Data Collection	21
1.C3	CASE STUDY – Management Quality and Firm Size: Data Collection	21
1.9	Big Data	22
1.10	Good Practices in Data Collection	25
1.11	Ethical and Legal Issues of Data Collection	26
1.12	Main Takeaways	27
	Practice Questions	27
	Data Exercises	28
	References and Further Reading	29
2	Preparing Data for Analysis	30
2.1	Types of Variables	31
2.2	Stock Variables, Flow Variables	33
2.3	Types of Observations	33
2.4	Tidy Data	35
2.A1	CASE STUDY – Finding a Good Deal among Hotels: Data Preparation	36
2.5	Tidy Approach for Multi-dimensional Data	37
2.B1	CASE STUDY – Displaying Immunization Rates across Countries	37
2.6	Relational Data and Linking Data Tables	38

viii Contents

2.C1 2.7	CASE STUDY – Identifying Successful Football Managers Entity Resolution: Duplicates, Ambiguous Identification, and Non-entity	40
	Rows	42
2.C2	CASE STUDY – Identifying Successful Football Managers	43
2.8	Discovering Missing Values	44
2.9	Managing Missing Values	46
2.A2	CASE STUDY – Finding a Good Deal among Hotels: Data Preparation	47
2.10	The Process of Cleaning Data	48
2.11	Reproducible Workflow: Write Code and Document Your Steps	49
2.12	Organizing Data Tables for a Project	50
2.C3	CASE STUDY – Identifying Successful Football Managers	52
2.C4	CASE STUDY – Identifying Successful Football Managers	53
2.13	Main Takeaways	54
	Practice Questions	54
	Data Exercises	55
	References and Further Reading	56
2.U1	Under the Hood: Naming Files	56
3	Exploratory Data Analysis	58
3.1	Why Do Exploratory Data Analysis?	59
3.2	Frequencies and Probabilities	60
3.3	Visualizing Distributions	61
3.A1	CASE STUDY – Finding a Good Deal among Hotels: Data Exploration	62
3.4	Extreme Values	65
3.A2	CASE STUDY – Finding a Good Deal among Hotels: Data Exploration	66
3.5	Good Graphs: Guidelines for Data Visualization	68
3.A3	CASE STUDY – Finding a Good Deal among Hotels: Data Exploration	71
3.6	Summary Statistics for Quantitative Variables	72
3.B1	CASE STUDY – Comparing Hotel Prices in Europe: Vienna vs. London	74
3.7	Visualizing Summary Statistics	77
3.C1	CASE STUDY – Measuring Home Team Advantage in Football	78
3.8	Good Tables	80
3.C2	CASE STUDY – Measuring Home Team Advantage in Football	82
3.9	Theoretical Distributions	83
3.D1	CASE STUDY – Distributions of Body Height and Income	85
3.10	Steps of Exploratory Data Analysis	87
3.11	Main Takeaways	88
	Practice Questions	88
	Data Exercises	89
	References and Further Reading	90
3.U1	Under the Hood: More on Theoretical Distributions	90
	Bernoulli Distribution	91
	Binomial Distribution	91
	Uniform Distribution	92
	Power-Law Distribution	92

	Contents	ix
4	Comparison and Correlation	96
4.1	The <i>y</i> and the <i>x</i>	97
4.A1	CASE STUDY – Management Quality and Firm Size: Describing Patterns of	
	Association	98
4.2	Conditioning	100
4.3	Conditional Probabilities	101
4.A2	CASE STUDY – Management Quality and Firm Size: Describing Patterns of	
	Association	102
4.4	Conditional Distribution, Conditional Expectation	103
4.5	Conditional Distribution, Conditional Expectation with Quantitative x	104
4.A3	CASE STUDY – Management Quality and Firm Size: Describing Patterns of	
	Association	105
4.6	Dependence, Covariance, Correlation	108
4.7	From Latent Variables to Observed Variables	110
4.A4	CASE STUDY – Management Quality and Firm Size: Describing Patterns of	
	Association	111
4.8	Sources of Variation in x	113
4.9		114
	Practice Questions	115
	Data Exercises	115
	References and Further Reading	116
4.U1	Under the Hood: Inverse Conditional Probabilities, Bayes' Rule	116
5	Generalizing from Data	118
5.1	When to Generalize and to What?	119
5.A1	CASE STUDY – What Likelihood of Loss to Expect on a Stock Portfolio?	121
5.2	Repeated Samples, Sampling Distribution, Standard Error	122
5.A2	CASE STUDY – What Likelihood of Loss to Expect on a Stock Portfolio?	123
5.3	Properties of the Sampling Distribution	125
	CASE STUDY – What Likelihood of Loss to Expect on a Stock Portfolio?	127
5.4	The confidence interval	128
5.A4	CASE STUDY – What Likelihood of Loss to Expect on a Stock Portfolio?	129
5.5	Discussion of the CI: Confidence or Probability?	129
5.6		130
5.A5		132
5.7		133
5.A6		134
5.8		135
5.A7		136
5.9		137
5.10		138
	Practice Questions	138
	Data Exercises	139
E 114	References and Further Reading Under the Hood: The Law of Large Numbers and the Central Limit Theorem	139
2 1 1 1	THOUGH THE HOOD. THE LAW OF LARGE MILMINGER AND THE LANTEST LIMIT INCOME.	17111

x Contents

6	Testing Hypotheses	143
6.1	The Logic of Testing Hypotheses	144
5.A1	CASE STUDY – Comparing Online and Offline Prices: Testing the Difference	145
6.2	Null Hypothesis, Alternative Hypothesis	148
6.3	The t-Test	149
6.4	Making a Decision; False Negatives, False Positives	150
6.5	The p-Value	154
5.A2	CASE STUDY – Comparing Online and Offline Prices: Testing the Difference	155
6.6	Steps of Hypothesis Testing	157
6.7	One-Sided Alternatives	158
6.B1	CASE STUDY – Testing the Likelihood of Loss on a Stock Portfolio	159
6.8	Testing Multiple Hypotheses	160
5.A3	CASE STUDY – Comparing Online and Offline Prices: Testing the Difference	161
6.9	p-Hacking	162
6.10	Testing Hypotheses with Big Data	164
6.11	Main Takeaways	165
	Practice Questions	165
	Data Exercises	166
	References and Further Reading	167
Ш	REGRESSION ANALYSIS	169
7	Simple Regression	171
7.1	When and Why Do Simple Regression Analysis?	172
7.2	Regression: Definition	172
7.3	Non-parametric Regression	174
7.A1	CASE STUDY – Finding a Good Deal among Hotels with Simple	
	Regression	175
7.4	Linear Regression: Introduction	178
7.5	Linear Regression: Coefficient Interpretation	179
7.6	Linear Regression with a Binary Explanatory Variable	180
7.7	Coefficient Formula	181
7.A2		183
7.8	Predicted Dependent Variable and Regression Residual	184
7.A3	CASE STUDY – Finding a Good Deal among Hotels with Simple Regression	185
7.9	Goodness of Fit, R-Squared	188
7.10	Correlation and Linear Regression	189
7.11	Regression Analysis, Regression toward the Mean, Mean Reversion	190
7.12	Regression and Causation	190
7.A4	CASE STUDY – Finding a Good Deal among Hotels with Simple	400
7 4 2	Regression	192
7.13	Main Takeaways	192
	Practice Questions Pata Eversions	193
	Data Exercises	193
	References and Further Reading	194

	Contents	хi
7.U1	Under the Hood: Derivation of the OLS Formulae for the Intercept and Slope Coefficients	194
7.U2	Under the Hood: More on Residuals and Predicted Values with OLS	196
8	Complicated Patterns and Messy Data	200
8.1	When and Why Care about the Shape of the Association between y and x ?	201
8.2	Taking Relative Differences or Log	202
8.3	Log Transformation and Non-positive Values	204
8.4	Interpreting Log Values in a Regression	205
8.A1	CASE STUDY – Finding a Good Deal among Hotels with Nonlinear Function	207
8.5	Other Transformations of Variables	210
8.B1	CASE STUDY – How is Life Expectancy Related to the Average Income of a	
	Country?	210
8.6	Regression with a Piecewise Linear Spline	215
8.7	Regression with Polynomial	216
8.8	Choosing a Functional Form in a Regression	218
8.B2	CASE STUDY – How is Life Expectancy Related to the Average Income of a	
	Country?	219
8.9		221
8.10	Measurement Error in Variables	222
8.11	Classical Measurement Error	223
8.C1	CASE STUDY – Hotel Ratings and Measurement Error	225
8.12	Non-classical Measurement Error and General Advice	227
8.13	Using Weights in Regression Analysis	228
8.B3	CASE STUDY – How is Life Expectancy Related to the Average Income of a	220
0.14	Country?	230
8.14		230
	Practice Questions	231
	Data Exercises	232
0 111	References and Further Reading	232
8.U1	3 11	233
8.U2		234
	Error	234
9	Generalizing Results of a Regression	236
9.1	Generalizing Linear Regression Coefficients	237
9.2	Statistical Inference: CI and SE of Regression Coefficients	238
9.A1	CASE STUDY – Estimating Gender and Age Differences in Earnings	240
9.3	Intervals for Predicted Values	243
9.A2	CASE STUDY – Estimating Gender and Age Differences in Earnings	245
9.4	Testing Hypotheses about Regression Coefficients	249
9.5	Testing More Complex Hypotheses	251
9.A3	CASE STUDY – Estimating Gender and Age Differences in Earnings	252
9.6	Presenting Regression Results	253
9.A4		254
9.7	Data Analysis to Help Assess External Validity	256

xii Contents

9.B1	CASE STUDY – How Stable is the Hotel Price–Distance to Center	
	Relationship?	256
9.8	Main Takeaways	260
	Practice Questions	261
	Data Exercises	261
	References and Further Reading	262
9.U1	Under the Hood: The Simple SE Formula for Regression Intercept	262
9.U2	Under the Hood: The Law of Large Numbers for $\hat{\beta}$	263
9.U3	Under the Hood: Deriving $SE(\hat{\beta})$ with the Central Limit Theorem	264
9.U4	Under the Hood: Degrees of Freedom Adjustment for the SE Formula	265
40	Madelala Lincon December	200
10	Multiple Linear Regression	266
10.1	Multiple Regression: Why and When?	267
10.2	Multiple Linear Regression with Two Explanatory Variables	267
10.3	Multiple Regression and Simple Regression: Omitted Variable Bias	268
10.A1		270
10.4	Multiple Linear Regression Terminology	272
10.5	Standard Errors and Confidence Intervals in Multiple Linear Regression	273
10.6	Hypothesis Testing in Multiple Linear Regression	275
10.A2	9	275
10.7	Multiple Linear Regression with Three or More Explanatory Variables	276
10.8	Nonlinear Patterns and Multiple Linear Regression	277
10.A3	3	278
10.9	Qualitative Right-Hand-Side Variables	279
10.A4		280
10.10	Interactions: Uncovering Different Slopes across Groups	282
	CASE STUDY – Understanding the Gender Difference in Earnings	284
10.11	Multiple Regression and Causal Analysis	286
	CASE STUDY – Understanding the Gender Difference in Earnings	287
10.12	Multiple Regression and Prediction	290
10.B1	CASE STUDY – Finding a Good Deal among Hotels with Multiple Regression	292
10.13	Main Takeaways	294
	Practice Questions	294
	Data Exercises	295
40.114	References and Further Reading	296
10.U1	Under the Hood: A Two-Step Procedure to Get the Multiple Regression	
	Coefficient	296
11	Modeling Probabilities	297
11.1	The Linear Probability Model	298
11.2	Predicted Probabilities in the Linear Probability Model	299
	CASE STUDY – Does Smoking Pose a Health Risk? Logit and Probit	301 307
	3	308
11.A2 11.4	CASE STUDY – Does Smoking Pose a Health Risk? Marginal Differences	309
	9	
11.A3	CASE STUDY – Does Smoking Pose a Health Risk?	311

	Contents	XIII
11.5	Goodness of Fit: R-Squared and Alternatives	312
11.6	· ·	314
11.7	Bias and Calibration	314
11.B1	CASE STUDY – Are Australian Weather Forecasts Well Calibrated?	315
11.8	Refinement	317
11.A4	CASE STUDY – Does Smoking Pose a Health risk?	318
11.9	Using Probability Models for Other Kinds of y Variables	321
11.10	Main Takeaways	323
	Practice Questions	323
	Data Exercises	324
	References and Further Reading	325
	Under the Hood: Saturated Models	325
	Under the Hood: Maximum Likelihood Estimation and Search Algorithms	326
11.U3	Under the Hood: From Logit and Probit Coefficients to Marginal Differences	327
12	Regression with Time Series Data	329
12.1		330
12.2	Trend and Seasonality	332
12.3	Stationarity, Non-stationarity, Random Walk	333
12.A1	CASE STUDY – Returns on a Company Stock and Market Returns	335
12.4	Time Series Regression	338
12.A2	CASE STUDY – Returns on a Company Stock and Market Returns	339
12.5	Trends, Seasonality, Random Walks in a Regression	343
12.B1	CASE STUDY – Electricity Consumption and Temperature	346
12.6	Serial Correlation	349
12.7		350
	CASE STUDY – Electricity Consumption and Temperature	352
	Lags of x in a Time Series Regression	355
	CASE STUDY – Electricity Consumption and Temperature	357
12.9		359
12.10	Main Takeaways	360
	Practice Questions	360
	Data Exercises	361
42.114	References and Further Reading	362
12.01	Under the Hood: Testing for Unit Root	362
Ш	PREDICTION	363
13	A Framework for Prediction	365
	Prediction Basics	366
	Various Kinds of Prediction	367
	CASE STUDY – Predicting Used Car Value with Linear Regressions	369
13.3	· ·	369
	CASE STUDY – Predicting Used Car Value with Linear Regressions	371
13.4	The Loss Function	373

xiv Contents

13.5	Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)	375
13.6		376
13.7	The Task of Finding the Best Model	377
13.8	Finding the Best Model by Best Fit and Penalty: The BIC	379
13.9	Finding the Best Model by Training and Test Samples	380
13.10	Finding the Best Model by Cross-Validation	382
	CASE STUDY – Predicting Used Car Value with Linear Regressions	383
13.11	External Validity and Stable Patterns	384
	CASE STUDY – Predicting Used Car Value with Linear Regressions	386
13.1213.13	Machine Learning and the Role of Algorithms Main Takeaways	387 389
13.13	Practice Questions	389
	Data Exercises	390
	References and Further Reading	390
	References and ruttier reading	330
14	Model Building for Prediction	391
14.1	Steps of Prediction	392
14.2	Sample Design	393
14.3	Label Engineering and Predicting Log y	394
14.A1	CASE STUDY – Predicting Used Car Value: Log Prices	395
14.4	Feature Engineering: Dealing with Missing Values	397
14.5	Feature Engineering: What x Variables to Have and in What Functional	
	Form	398
14.B1	CASE STUDY – Predicting Airbnb Apartment Prices: Selecting a Regression	
	Model	399
14.6	We Can't Try Out All Possible Models	402
14.7	Evaluating the Prediction Using a Holdout Set	403
14.B2		
	Model	404
14.8	Selecting Variables in Regressions by LASSO	407
14.B3	CASE STUDY – Predicting Airbnb Apartment Prices: Selecting a Regression	
	Model	409
14.9	Diagnostics	410
14.B4	CASE STUDY – Predicting Airbnb Apartment Prices: Selecting a Regression	
	Model	411
14.10	Prediction with Big Data	412
14.11	Main Takeaways	414
	Practice Questions	414
	Data Exercises	415
1 / 1 1 4	References and Further Reading	415
14.U1	3	415
14.02	Under the Hood: Log Correction	416
15	Regression Trees	417
15.1	The Case for Regression Trees	418
	Regression Tree Rasics	<i>I</i> 19

	Contents	χv
15.3	Measuring Fit and Stopping Rules	420
15.A1		421
15.4	Regression Tree with Multiple Predictor Variables	425
15.5	Pruning a Regression Tree	426
15.6	A Regression Tree is a Non-parametric Regression	426
15.A2	CASE STUDY – Predicting Used Car Value with a Regression Tree	427
15.7		430
15.8	3 3	431
	CASE STUDY – Predicting Used Car Value with a Regression Tree	433
15.9		435
	Practice Questions	435
	Data Exercises	436
	References and Further Reading	437
16	Random Forest and Boosting	438
	From a Tree to a Forest: Ensemble Methods	439
16.2	Random Forest	440
16.3	The Practice of Prediction with Random Forest	442
16.A1	CASE STUDY – Predicting Airbnb Apartment Prices with Random Forest	443
16.4	Diagnostics: The Variable Importance Plot	444
16.5	Diagnostics: The Partial Dependence Plot	445
16.6	Diagnostics: Fit in Various Subsets	446
16.A2	CASE STUDY – Predicting Airbnb Apartment Prices with Random Forest	446
16.7	An Introduction to Boosting and the GBM Model	449
16.A3	CASE STUDY – Predicting Airbnb Apartment Prices with Random Forest	450
16.8	A Review of Different Approaches to Predict a Quantitative y	452
16.9	Main Takeaways	454
	Practice Questions	454
	Data Exercises	455
	References and Further Reading	456
17	Probability Prediction and Classification	457
17.1	Predicting a Binary y: Probability Prediction and Classification	458
17.A1	CASE STUDY – Predicting Firm Exit: Probability and Classification	459
17.2	The Practice of Predicting Probabilities	462
17.A2	CASE STUDY – Predicting Firm Exit: Probability and Classification	463
17.3	Classification and the Confusion Table	466
17.4	Illustrating the Trade-Off between Different Classification Thresholds: The	
	ROC Curve	468
17.A3	CASE STUDY – Predicting Firm Exit: Probability and Classification	469
17.5	Loss Function and Finding the Optimal Classification Threshold	471
	CASE STUDY – Predicting Firm Exit: Probability and Classification	473
17.6		475
	CASE STUDY – Predicting Firm Exit: Probability and Classification	477
17.7	Class Imbalance The Process of Prediction with a Rinary Target Variable	480 481
1 / X	The Process of Prediction With a Kinary Jarget Variable	ZIXT

xvi Contents

17.9	Main Takeaways	482
	Practice Questions	482
	Data Exercises	483
	References and Further Reading	483
17.U1	Under the Hood: The Gini Node Impurity Measure and MSE	484
17.U2	Under the Hood: On the Method of Finding an Optimal Threshold	485
18	Forecasting from Time Series Data	487
18.1	Forecasting: Prediction Using Time Series Data	488
18.2	Holdout, Training, and Test Samples in Time Series Data	489
18.3	Long-Horizon Forecasting: Seasonality and Predictable Events	491
	Long-Horizon Forecasting: Trends	492
	CASE STUDY – Forecasting Daily Ticket Volumes for a Swimming Pool	494
	Forecasting for a Short Horizon Using the Patterns of Serial Correlation	500
18.6	Modeling Serial Correlation: AR(1)	500
18.7	Modeling Serial Correlation: ARIMA	501
18.B1	CASE STUDY – Forecasting a Home Price Index	503
	VAR: Vector Autoregressions	505
	CASE STUDY – Forecasting a Home Price Index	507
	External Validity of Forecasts	509
	CASE STUDY – Forecasting a Home Price Index	510
18.10	Main Takeaways Practice Questions	512 512
	Data Exercises	512
	References and Further Reading	513
18 111	Under the Hood: Details of the ARIMA Model	514
	Under the Hood: Auto-Arima	516
10.02		
IV	CAUSAL ANALYSIS	517
19	A Framework for Causal Analysis	519
19.1	Intervention, Treatment, Subjects, Outcomes	520
19.2	Potential Outcomes	522
19.3	The Individual Treatment Effect	523
19.4	Heterogeneous Treatment Effects	524
19.5	ATE: The Average Treatment Effect	525
19.6	Average Effects in Subgroups and ATET	527
19.7		527
19.A1	CASE STUDY – Food and Health	528
19.8	Ceteris Paribus: Other Things Being the Same	530
19.9	Causal Maps	531
19.10	Comparing Different Observations to Uncover Average Effects	533
19.11	Random Assignment	535
19.12	Sources of Variation in the Causal Variable	536
19.A2	CASE STUDY – Food and Health	537

	Contents	xvii
19.13	Experimenting versus Conditioning	539
	Confounders in Observational Data	541
	From Latent Variables to Measured Variables	543
	Bad Conditioners: Variables Not to Condition On	544
	CASE STUDY – Food and Health	545
	External Validity, Internal Validity	549
	Constructive Skepticism	551
19.19	Main Takeaways	552
	Practice Questions	552
	Data Exercises	553
	References and Further Reading	554
	3	
20	Designing and Analyzing Experiments	555
20.1	Randomized Experiments and Potential Outcomes	556
20.2	Field Experiments, A/B Testing, Survey Experiments	557
20.A1	CASE STUDY – Working from Home and Employee	
	Performance	558
20.B1	CASE STUDY – Fine Tuning Social Media Advertising	559
20.3	The Experimental Setup: Definitions	560
20.4	Random Assignment in Practice	560
20.5	Number of Subjects and Proportion Treated	562
20.6	Random Assignment and Covariate Balance	563
20.A2	CASE STUDY – Working from Home and Employee Performance	565
20.7	Imperfect Compliance and Intent-to-Treat	567
20.A3	CASE STUDY – Working from Home and Employee Performance	569
20.8	Estimation and Statistical Inference	570
20.B2	CASE STUDY – Fine Tuning Social Media Advertising	571
20.9	Including Covariates in a Regression	572
20.A4	CASE STUDY – Working from Home and Employee Performance	573
20.10	Spillovers	576
20.11	Additional Threats to Internal Validity	577
	CASE STUDY – Working from Home and Employee Performance	579
	External Validity, and How to Use the Results in Decision Making	581
20.A6	CASE STUDY – Working from Home and Employee Performance	582
20.13	Main Takeaways	584
	Practice Questions	584
	Data Exercises	585
	References and Further Reading	585
	Under the Hood: LATE: The Local Average Treatment Effect	586
20.U2	Under the Hood: The Formula for Sample Size Calculation	586
21	Regression and Matching with Observational Data	588
21.1	Thought Experiments	589
21.A1	CASE STUDY – Founder/Family Ownership and Quality of Management	590
21.2	Variables to Condition on, Variables Not to Condition On	591
21 / 2	CASE STUDY - Founder/Family Ownership and Quality of Management	592

xviii Contents

21.3	Conditioning on Confounders by Regression	595
21.4	Selection of Variables and Functional Form in a Regression for Causal	
21 42	Analysis	597
	CASE STUDY – Founder/Family Ownership and Quality of Management Matching	598 601
	Common Support	603
	Matching on the Propensity Score	604
	CASE STUDY – Founder/Family Ownership and Quality of Management	605
	Comparing Linear Regression and Matching	607
	CASE STUDY – Founder/Family Ownership and Quality of Management	608
	Instrumental Variables	610
	Regression-Discontinuity	612
	Main Takeaways	614
	Practice Questions	614
	Data Exercises	615
	References and Further Reading	616
21.U1	Under the Hood: Unobserved Heterogeneity and Endogenous x in a	
	Regression	616
21.U2	Under the hood: LATE is IV	618
22	Difference-in-Differences	620
22.1	Conditioning on Pre-intervention Outcomes	621
22.2	Basic Difference-in-Differences Analysis: Comparing Average Changes	622
22.A1	CASE STUDY – How Does a Merger between Airlines Affect Prices?	625
	The Parallel Trends Assumption	629
	CASE STUDY – How Does a Merger between Airlines Affect Prices?	631
	Conditioning on Additional Confounders in Diff-in-Diffs Regressions	633
	CASE STUDY – How Does a Merger between Airlines Affect Prices?	635
	Quantitative Causal Variable	637
	CASE STUDY – How Does a Merger between Airlines Affect Prices?	638
	Difference-in-Differences with Pooled Cross-Sections	640
	CASE STUDY – How Does a Merger between Airlines Affect Prices?	643
22.7	Main Takeaways	645 646
	Practice Questions Data Exercises	647
	References and Further Reading	648
	References and ruttler Reading	040
23	Methods for Panel Data	649
23.1	Multiple Time Periods Can Be Helpful	650
23.2	Estimating Effects Using Observational Time Series	651
23.3	Lags to Estimate the Time Path of Effects	653
23.4	Leads to Examine Pre-trends and Reverse Effects	653
23.5	Pooled Time Series to Estimate the Effect for One Unit	654
	CASE STUDY – Import Demand and Industrial Production	656
	Panel Regression with Fixed Effects	659
127	Aggregate Trend	661

	Contents	xix
23.B1	CASE STUDY – Immunization against Measles and Saving Children	662
23.8	Clustered Standard Errors	665
23.9	Panel Regression in First Differences	666
23.10	Lags and Leads in FD Panel Regressions	667
23.B2	CASE STUDY – Immunization against Measles and Saving Children	669
23.11	Aggregate Trend and Individual Trends in FD Models	671
23.B3	CASE STUDY – Immunization against Measles and Saving Children	672
23.12	Panel Regressions and Causality	674
23.13	First Differences or Fixed Effects?	675
23.14	Dealing with Unbalanced Panels	677
23.15	Main Takeaways	678
	Practice Questions	678
	Data Exercises	680
	References and Further Reading	680
24	Appropriate Control Groups for Panel Data	681
24.1	When and Why to Select a Control Group in xt Panel Data	682
24.2	Comparative Case Studies	682
24.3	The Synthetic Control Method	683
24.A1	CASE STUDY – Estimating the Effect of the 2010 Haiti Earthquake on GDP	684
24.4	Event Studies	687
24.B1	CASE STUDY – Estimating the Impact of Replacing Football Team Managers	690
24.5	Selecting a Control Group in Event Studies	694
24.B2	CASE STUDY – Estimating the Impact of Replacing Football Team Managers	696
24.6	Main Takeaways	700
	Practice Questions	701
	Data Exercises	702
	References and Further Reading	702
	References	704
	Index	710

An applied data analysis textbook for future professionals

Data analysis is a process. It starts with formulating a question and collecting appropriate data, or assessing whether the available data can help answer the question. Then comes cleaning and organizing the data, tedious but essential tasks that affect the results of the analysis as much as any other step in the process. Exploratory data analysis gives context to the eventual results and helps deciding the details of the analytical method to be applied. The main analysis consists of choosing and implementing the method to answer the question, with potential robustness checks. Along the way, correct interpretation and effective presentation of the results are crucial. Carefully crafted data visualization help summarize our findings and convey key messages. The final task is to answer the original question, with potential qualifications and directions for future inquiries.

Our textbook **equips future data analysts with the most important tools, methods, and skills** they need through the entire process of data analysis to answer data focused, real-life questions. We cover all the fundamental methods that help along the process of data analysis. The textbook is divided into four parts covering **data wrangling and exploration, regression analysis, prediction with machine learning, and causal analysis**. We explain when, why, and how the various methods work, and how they are related to each other.

Our approach has a **different focus compared to the typical textbooks** in econometrics and data science. They are often excellent in teaching many econometric and machine learning methods. But they don't give much guidance about how to carry out an actual data analysis project from beginning to end. Instead, students have to learn all of that when they work through individual projects, guided by their teachers, advisors, and peers – but not their textbooks.

To cover all of the steps that are necessary to carry out an actual data analysis project, we **built** a large number of fully developed case studies. While each case study focuses on the particular method discussed in the chapter, they illustrate all elements of the process from question through analysis to conclusion. We facilitate individual work by **sharing all data and code in Stata, R, and Python**.

Curated content and focus for the modern data analyst

Our textbook focuses on the most relevant tools and methods. Instead of dumping many methods on the students, we selected the most widely used methods that tend to work well in many situations. That choice allowed us to discuss each method in detail so students can gain a deep understanding of when, why, and how those methods work. It also allows us to compare the different methods both in general and in the course of our case studies.

The textbook is divided into four parts. The first part starts with data collection and data quality, followed by organizing and cleaning data, **exploratory data analysis** and data visualization, generalizing from the data, and hypothesis testing. The second part gives a thorough introduction to **regression analysis**, including probability models and time series regressions. The third part covers **predictive analytics** and introduces cross-validation, LASSO, tree-based machine learning methods such as random forest, probability prediction, classification, and forecasting from time series data. The fourth part covers **causal analysis**, starting with the potential outcomes framework and causal maps, then discussing experiments, difference-in-differences analysis, various panel data methods, and the event study approach.

When deciding on which methods to discuss and in what depth, we drew on our own experience as well as the advice of many people. We have taught Data Analysis and Econometrics to students in Master's programs for years in Europe and the USA, and trained experts in business analytics, economics, and economic policy. We used earlier versions of this textbook in many courses with students who differed in background, interest, and career plans. In addition, we talked to many experts both in academia and in industry: teachers, researchers, analysts, and users of data analysis results. As a result, this textbook offers a curated content that reflects the views of data analysts with a wide range of experiences.

Real-life case studies in a central role

CUP/CUP-BEKES

A cornerstone of this textbook are 43 case studies spreading over one-third of our material. This reflects our view that working through case studies is the best way to learn data analysis. Each of our case studies starts with a relevant question and answers it in the end, using real-life data and applying the tools and methods covered in the particular chapter.

Similarly to other textbooks, our case studies illustrate the methods covered in the textbook. In contrast with other textbooks, though, they are much more than that.

Each of our case studies is a fully developed story linking business or policy questions to decisions in data selection, application of methods and discussion of results. Each case study uses real-life data that is messy and often complicated, and it discusses data quality issues and the steps of data cleaning and organization along the way. Then, each case study includes exploratory data analysis to clarify the context and help choose the methods for the subsequent analysis. After carrying out the main analysis, each case study emphasizes the correct interpretation of the results, effective ways to present and visualize the results, and many include robustness checks. Finally, each case study answers the question it started with, usually with the necessary qualifications, discussing internal and external validity, and often raising additional questions and directions for further investigation.

Our case studies cover a wide range of topics, with a potential appeal to a wide range of students. They cover consumer decision, economic and social policy, finance, business and management, health, and sport. Their regional coverage is also wider than usual: one third are from the USA, one third are from Europe and the UK, and one third are from other countries or includes all countries from Australia to Thailand.

Support material with data and code shared

We offer a truly comprehensive material with data, code for all case studies, 360 practice questions, 120 data exercises, derivations for advanced materials, and reading suggestions. Each chapter ends with practice questions that help revise the material. They are followed by data exercises that invite students to carry out analysis on their own, in the form of robustness checks or replicating the analysis using other data.

We share all raw and cleaned data we use in the case studies. We also share the codes that clean the data and produce all results, tables, and graphs in Stata, R, and Python so students can tinker with our code and compare the solutions in the different software.

All data and code are available on the textbook website:

http://gabors-data-analysis.com

Why Use This Book xxiii

Who is this book for?

This textbook was written to be a **complete course** in data analysis. It introduces and discusses the most important concepts and methods in exploratory data analysis, regression analysis, machine learning and causal analysis. Thus, readers don't need to have a background in those areas.

The textbook includes formulae to define methods and tools, but it **explains all formulae in plain English**, both when a formula is introduced and, then, when it is used in a case study. Thus, understanding formulae is not necessary to learn data analysis from this textbook. They are of great help, though, and we encourage all students and practitioners to work with formulae whenever possible. The mathematics background required to understand these formulae is quite low, at the the level of basic calculus.

This textbook could be useful for university students in graduate programs as **core text** in applied statistics and econometrics, quantitative methods, or data analysis. The textbook is best used as core text for non-research degree Masters programs or part of the curriculum in a PhD or research Masters programs. It may also **complement online courses** that teach specific methods to give more context and explanation. Undergraduate courses can also make use of this textbook, even though the workload on students exceeds the typical undergraduate workload. Finally, the textbook can serve as a **handbook for practitioners** to guide them through all steps of real-life data analysis.

SIMPLIFIED NOTATION

A note for the instructors who plan to use our textbook.

We introduced some new notation in this textbook, to make the formulae simpler and more focused. In particular, our **formula for regressions is slightly different** from the traditional formula. In line with other textbooks, we think that it is good practice to write out the formula for each regression that is analyzed. For this reason, it important to use a notation for the regression formula that is as simple as possible and focuses only on what we care about. Our notation is intuitive, but it's slightly different from traditional practice. Let us explain our reasons.

Our approach starts with the definition of the regression: it is a model for the conditional mean. The formulaic definition of the simple linear regression is $E[y|x] = \alpha + \beta x$. The formulaic definition of a linear regression with three right-hand-side variables is $E[y|x_1, x_2, x_3] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$.

The regression formula we use in the textbook is a simplified version of this formulaic definition. In particular, we have y^E on the left-hand side instead of E[y|...]. y^E is just a shorthand for the expected value of y conditional on whatever is on the right-hand side of the regression.

Thus, the formula for the simple linear regression is $y^E = a + \beta x$, and y^E is the expected value of y conditional on x. The formula for the linear regression with three right-hand-side variables is $y^E = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$, and here y^E is the expected value of y conditional on x_1 , x_2 , and x_3 . Having y^E on the left-hand side makes notation much simpler than writing out the conditional expectation formula E[y]...], especially when we have many right-hand-side variables.

In contrast, the traditional regression formula has the variable y itself on the left-hand side, not its conditional mean. Thus, it has to involve an additional element, the error term. For example, the traditional formula for the linear regression with three right-hand-side variables is $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + e$.

Our notation is simpler, because it has fewer elements. More importantly, our notation makes it explicit that the regression is a model for the conditional mean. It focuses on the data that analysts care about (the right-hand-side variables and their coefficients), without adding anything else.

ACKNOWLEDGMENTS

Let us first thank our students at the Central European University, at the University of Michigan, and at the University of Reading. The idea of writing a textbook was born out of teaching and mentoring them. We have learned a lot from teaching them, and many of them helped us writing code, collecting data, reading papers, and hunting for ideas.

Many colleagues helped us with their extremely valuable comments and suggestions. We thank Eduardo Arino de la Rubia, Emily Blanchard, Imre Boda, Alberto Cairo, Gergely Daróczi, János Divényi, Christian Fons-Rosen, Bonnie Kavoussi, Olivér Kiss, Miklós Koren, Mike Luca, Róbert Lieli, László Mátyás, Tímea Laura Molnár, Arieda Muço, Jenő Pál, and Ádám Szeidl and anonymous reviewers of the first draft of the textbook.

We have received help with our case studies from Alberto Cavallo, Daniella Scur, Nick Bloom, John van Reenen, Anikó Kristof, József Keleti, Emily Oster, and MyChelle Andrews. We have learned a lot from them.

Several people helped us a great deal with our manuscript. At Cambridge University Press, our commissioning editor, Phil Good, encouraged us from the day we met. Our editors, Heather Brolly, Jane Adams, and Nicola Chapman, guided us with kindness and steadfastness from first draft to proofs. We are not native English speakers, and support from Chris Cartwrigh and Jon Billam was very useful. We are grateful for Sarolta Rózsás, who read and edited endless versions of chapters, checking consistency and clarity, and pushed us to make the text more coherent and accessible.

Creating the code base in Stata, R and Python was a massive endeavour. Both of us are primarily Stata users, and we needed R code that would be fairly consistent with Stata code. Plus, all graphs were produced in R. So we needed help to have all our Stata codes replicated in R, and a great deal of code writing from scratch. Zsuzsa Holler and Kinga Ritter have provided enormous development support, spearheading this effort for years. Additional code and refactoring in R was created by Máté Tóth, János Bíró, and Eszter Pázmándi. János and Máté also created the first version of Python notebooks. Additional coding, data collection, visualization, and editing were done by Viktória Kónya, Zsófia Kőműves, Dániel Bánki, Abuzar Ali, Endre Borza, Imola Csóka, and Ahmed Al Shaibani.

The wonderful cover design is based on the work by Ágoston Nagy, his first but surely not his last. Collaborating with many talented people, including our former students, and bringing them together was one of the joys of writing this book.

Let us also shout out to the fantastic R user community – both online and offline – from whom we learned tremendously. Special thanks to the Rstats and Econ Twitter community – we received wonderful suggestions from tons of people we have never met.

We thank the Central European University for professional and financial support. Julius Horvath and Miklós Koren as department heads provided massive support from the day we shared our plans.

Finally, let us thank those who were with us throughout the long, and often stressful, process of writing a textbook. Békés thanks Saci; Kézdi thanks Zsuzsanna. We would not have been able to do it without their love and support.

