Iterator-Based Optimization of Imperfectly-Nested Loops

DANIEL FESHBACH, MARY GLASER, MICHELLE STROUT, DAVID WONNACOTT

Overview

- Motivation: Approaches to Performance Tuning
- Quick overview of Polyhedral Model
- Quick review of Chapel Iterators
- Detailed Discussion of Deriche Image Processing Example
- Details of Nussinov are in paper (and past work)
- Details of FFT may be in future paper (we hope)

Performance tuning of compute-intensive code...

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions

```
// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
   for x in 1..N-2 do
    for y in 1..N-2 do
        A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
              A[t%2,x ,y] + A[t%2,x,y+1] +
              A[t%2,x+1,y]) / 5;
        // note: t%2 stores two time steps
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions
 - Then, update compiler to tile for multicore systems
 - Then, write another compiler for distributed memory
 - ► Then, write another compiler for GPGPU's

```
// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
   for x in 1..N-2 do
    for y in 1..N-2 do
        A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
              A[t%2,x ,y] + A[t%2,x,y+1] +
              A[t%2,x+1,y]) / 5;
        // note: t%2 stores two time steps
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions
 - Then, update compiler to tile for multicore systems
 - Then, write another compiler for distributed memory
 - Then, write another compiler for GPGPU's

```
// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
   for x in 1..N-2 do
    for y in 1..N-2 do
        A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
              A[t%2,x ,y] + A[t%2,x,y+1] +
              A[t%2,x+1,y]) / 5;
        // note: t%2 stores two time steps
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions
 - Then, update compiler to tile for multicore systems
 - ▶ Then, write another compiler for distributed memory
 - Then, write another compiler for GPGPU's

```
// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
   for x in 1..N-2 do
    for y in 1..N-2 do
        A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
              A[t%2,x ,y] + A[t%2,x,y+1] +
              A[t%2,x+1,y]) / 5;
        // note: t%2 stores two time steps
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student

```
// Example (actual code is more complex)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
   for x in 1..N-2 do
    for y in 1..N-2 do
        A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
              A[t%2,x ,y] + A[t%2,x,y+1] +
              A[t%2,x+1,y]) / 5;
        // note: t%2 stores two time steps
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
 - Grad student replaces or hoists %

```
// Example (actual code is more complex)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
   for x in 1..N-2 do
    for y in 1..N-2 do
        A[t&1, x, y] = // t&1 == t%2
            (A[1-(t&1),x-1,y]+A[1-(t&1),x,y-1]+
            A[1-(t&1),x ,y]+A[1-(t&1),x,y+1]+
            A[1-(t&1),x +1,y]) / 5;
        // note: t%2 stores two time steps
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
 - Grad student replaces or hoists %
 - Grad student may have heard of loop tiling, may try it

```
// Example (actual code is more complex)
// iterative Jacobi stencil
// Repeatedly update each A[i, j], based on
       previous values of it and neighbors
// Loop over tile wavefronts.
for kt in ceild(3,tau) .. floord(3*T,tau) {
 // The next two loops iterate within a tile wavefront.
 // Assumes a square iteration space.
 var k1 lb: int = floord(3*L+2+(kt-2)*tau, tau*3);
 var k1 ub: int = floord(3*U+(kt+2)*tau-2, tau*3);
 var k2 lb: int = floord((2*kt-2)*tau-3*U+2, tau*3);
 var k2 ub: int = floord((2+2*kt)*tau-3*L-2, tau*3);
 // Loops over tile coordinates within a parallel wavefront of
 forall k1 in k1 lb .. k1 ub {
   for x in k2 lb .. k2 ub {
     var k2 = x-k1;
     // Loop over time within a tile.
     for t in max(1,floord(kt*tau,3)) .. min(T,floord((3+kt)*tau))
       write = t & 1; // equivalent to t mod 2
       read = 1 - write;
       // Loops over the spatial dimensions within each tile.
       for i in max(L, max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau+t))
             .. min(U, min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau-t-1)
         for j in max(L, max(tau*k1-t, t-i-(1+k2)*tau+1))
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
 - Grad student replaces or hoists %
 - Grad student may have heard of loop tiling, may try it
 - Grad student spends nights reading about vectorization

```
// Example (actual code is more complex)
// iterative Jacobi stencil
// Repeatedly update each A[i,j], based on
        previous values of it and neighbors
// Loop over tile wavefronts.
for kt in ceild(3,tau) .. floord(3*T,tau) {
 // The next two loops iterate within a tile wavefront.
 // Assumes a square iteration space.
 var k1 lb: int = floord(3*L+2+(kt-2)*tau, tau*3);
 var k1 ub: int = floord(3*U+(kt+2)*tau-2, tau*3);
 var k2 lb: int = floord((2*kt-2)*tau-3*U+2, tau*3);
 var k2 ub: int = floord((2+2*kt)*tau-3*L-2, tau*3);
 // Loops over tile coordinates within a parallel wavefront of tiles.
 forall k1 in k1 lb .. k1 ub
   for x in k2 lb ... k2 ub {
     var k2 = x-k1;
     // Loop over time within a tile.
     for t in max(1,floord(kt*tau,3)) .. min(T,floord((3+kt)*tau-3,3))
       write = t & 1; // equivalent to t mod 2
       read = 1 - write;
       // Loops over the spatial dimensions within each tile.
       for i in max(L, max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau+2))
             .. min(U, min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau))
         for j in max(L, max(tau*k1-t, t-i-(1+k2)*tau+1))
               .. min(U, min((1+k1)*tau-t-1, t-i-k2*tau)) {
           A[write, x, y] =
             (A[read, x-1, y] + A[read, x, y-1] +
              Almond .. ... I Almond .. ... 11
```

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
 - Grad student replaces or hoists %
 - Grad student may have heard of loop tiling, may try it
 - Grad student spends nights reading about vectorization
 - Next grad students can work on multicore, cluster, and GPGPU versions
 - Formal or Ad-Hoc approach to software management

```
// Example (actual code is more complex)
// iterative Jacobi stencil
// Repeatedly update each A[i,j], based on
         previous values of it and neighbors
// Loop over tile wavefronts.
for kt in ceild(3,tau) .. floord(3*T,tau)
 // The next two loops iterate within a tile wavefront.
 // Assumes a square iteration space.
 var k1 lb: int = floord(3*L+2+(kt-2)*tau, tau*3);
 var k1 ub: int = floord(3*U+(kt+2)*tau-2, tau*3);
  var k2 lb: int = floord((2*kt-2)*tau-3*U+2, tau*3);
  var k2 ub: int = floord((2+2*kt)*tau-3*L-2, tau*3);
  // Loops over tile coordinates within a parallel wavefront of tiles.
  forall k1 in k1 lb .. k1 ub {
   for x in k2 lb .. k2 ub {
     var k2 = x-k1;
     // Loop over time within a tile.
     for t in max(1,floord(kt*tau,3)) .. min(T,floord((3+kt)*tau-3,3)) {
       write = t & 1; // equivalent to t mod 2
       read = 1 - write;
       // Loops over the spatial dimensions within each tile.
       for i in max(L, max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau+2))
             .. min(U, min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau))
         for j in max(L, max(tau*k1-t, t-i-(1+k2)*tau+1))
               .. min(U, min((1+k1)*tau-t-1, t-i-k2*tau))
          A[write, x, y] =
             (A[read, x-1, y] + A[read, x, y-1] +
             A[read, x, y] + A[read, x, y+1] +
             A[read, x+1, y]) / 5;
```

Goal: Best of Both Worlds (in Chapel)

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
- Can we combine the best elements of both worlds?
 - Think of compiler optimizer as a way to make *clean* code run fast (rather than a way to make *some* code run fast)
 - Not primarily a language/complier comparison, but Chapel does seem appealing
 - first, a quick review of technologies...

```
// Example
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for (t, x, y) in Jacobi2d(T, N, N) do

A_2s[t+1, x, y] =
    (A_2s[t,x-1,y] + A_2s[t,x,y-1] +
    A_2s[t,x ,y] + A_2s[t,x,y+1] +
    A_2s[t,x+1,y]) / 5;
    // note: A 2s stores two time steps
```

- Linear constraints on integer variables
 - Integer Linear Programming/Presburger Arithmetic
 - Efficient for simple subscripts and loop bounds

```
// Example success:
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
  for x in 1..N-2 do
   for y in 1..N-2 do
      A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
            A[t%2,x ,y] + A[t%2,x,y+1] +
            A[t%2,x+1,y]) / 5;
```

- Linear constraints on integer variables
 - Integer Linear Programming/Presburger Arithmetic
 - Efficient for simple subscripts and loop bounds
- Exact Instance-wise array dataflow
 - For any execution of a line, which execution(s) of which line(s) produce the value under what conditions?

```
e.g., iteration (1, 5, 10), i.e. when t=7, x=5, y=10 the algorithm writes to A[1, 5, 10] using values from iterations (0, 4, 10), (0, 5, 9), (0, 5, 10), (0,5,11), and (0, 6, 10) if T-1 >= 1 and N-2 >= 5 and N-2 >= 10
```

```
// Example success:
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
  for x in 1..N-2 do
   for y in 1..N-2 do
    A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
        A[t%2,x ,y] + A[t%2,x,y+1] +
        A[t%2,x+1,y]) / 5;
```

- Linear constraints on integer variables
 - Integer Linear Programming/Presburger Arithmetic
 - Efficient for simple subscripts and loop bounds
- Exact Instance-wise array dataflow
 - For any execution of a line, which execution(s) of which line(s) produce the value under what conditions?
- Extends beyond unimodular loop transformations by allowing imperfectly nested loops

```
// Example success:
// iterative Jacobi stencil
for t in 0..T-1 do
  for x in 1..N-2 do
    for y in 1..N-2 do
      A[(t+1) %2, x, y] =
        (A[t%2, x-1, v] + ...)/5
// Equivalently, two arrays
for t in 0..T-1 do {
  for x in 1..N-2 do
    for y in 1..N-2 do
      new A[x, y] =
           (A[x-1, y] + ...)/5
  for x in 1..N-2 do
    for y in 1..N-2 do
      A[x, y] = new A[x, y]
```

- Linear constraints on integer variables
 - Integer Linear Programming/Presburger Arithmetic
 - Efficient for simple subscripts and loop bounds
- Exact Instance-wise array dataflow
 - For any execution of a line, which execution(s) of which line(s) produce the value under what conditions?
- Extends beyond unimodular loop transformations by allowing imperfectly nested loops
- Allows search for/deduction of efficient schedules for many codes, but...

"Polyhedral Model" Limitations

- Allows search for/deduction of efficient schedules for many codes, but limited success with
 - non-linear subscript expressions,
 - e.g. fast fourier transform (Dataflow figure from Polat, Gokhan, Const et al., 2015, ETRI Journal, vol. 37, no. 4,)


```
// FFT
proc butterfly(wk1, wk2, wk3, X:[?D]) {
an,const i0 = D.low,
    i1 = i0 + D.stride,
    i2 = i1 + D.stride,
    i3 = i2 + D.stride;

var x0 = X(i0) + X(i1),
    x1 = X(i0) - X(i1),
    x2 = X(i2) + X(i3),
    x3rot = (X(i2) - X(i3))*1.0i;

X(i0) = x0 + x2;
    x0 -= x2;
    X(i2) = wk2 * x0;

/// etc...
```

"Polyhedral Model" Limitations

- Allows search for/deduction of efficient schedules for many codes, but limited success with
 - **non-linear** subscript expressions,
 - e.g. fast fourier transform
 - cases outside assumptions/search-space of optimizer
 - e.g. Nussinov's Algorithm (or Zuker's)

"Polyhedral Model" Limitations

- Allows search for/deduction of efficient schedules for many codes, but limited success with
 - non-linear subscript expressions,
 - e.g. fast fourier transform
 - cases outside assumptions/search-space of optimizer
 - e.g. Nussinov's Algorithm (or Zuker's)
 - cases that require data-space transformation
 - e.g. Deriche image filtering algorithm

```
// Deriche.c [YP15], Chapel-ized [Glaser '18]
for i in 0..w-1 {
  ym1 = 0.0; ym2 = 0.0; xm1 = 0.0;
  for j in 0..h-1 {
    y1[i,j] =
a1*imqIn[i,j]+a2*xm1+b1*ym1+b2*ym2;
    xm1=imqIn[i,j]; ym2=ym1; ym1=y1[i,j]; }}
// for i in 0..w-1
// for j in 0..h-1 by -1
      build y2, similarly to above
for i in 0..w-1
  for j in 0..h-1
     imgOut[i,j] = c1 * (y1[i,j] + y2[i,j]);
// three j/i loop nests for horizontal sweep
```

Varying Execution Order without Iterators

Faster in Machine 1: for row = 1 to N { for col = 1 to N { a[row][col] = b[row][col] + c[row][col]; }}

Faster in Machine 2:

```
for col = 1 to N {
    for row = 1 to N {
        a[row][col] = b[row][col] + c[row][col]; }}
```

Iterators to Abstract Execution Order

```
iter rowMajor(N) {
    for row = 1 to N {
        for col = 1 to N {
            yield (row, col); }}}
iter colMajor(N) {
    for col = 1 to N {
        for row = 1 to N {
            yield (row, col); }}}
```

```
if Machine 1 {
    bestMatrixOrder = rowMajor;
}
else if Machine 2 {
    bestMatrixOrder = colMajor;
}

for (row, col) in bestMatrixOrder(N) {
    a[row][col] = b[row][col] + c[row][col]; }
```

Iterators for Imperfect Loop Nests

```
iter ij_forwards(w: int, h: int): (int, int, int) {
  for i in 0..w-1 {
    yield (i, 0, -9999);
    for j in 0..h-1
    yield (i, 1, j); }}
```

```
for (i, statement, j) in ij_forwards(w, h) {
  if (statement == 0) {
    ym1 = 0.0; ym2 = 0.0; xm1 = 0.0; }
  else if (statement == 1) {
    y1[i,j] = a1*imgln[i,j] + a2*xm1
    + b1*ym1 + b2*ym2;
    xm1 = imgln[i,j]; ym2 = ym1; ym1 = y1[i,j]; }}
```

Iteration-Space Performance Tuning

- Loop body expresses core computation
- lterator expresses the loop transformation
- Record (or class) expresses the storage transformation
- This lets the programmer explore possible optimizations
- It needs limited help from the compiler
 - Enables performance (good basic optimizations, emphasis on a few specifics)
 - Could confirm legality of transformations in most cases (easier than optimizing)

Deriche Image Processing Algorithm

- PolyBench suite: challenge problems for Polyhedral compilers
- Edge detection and smoothing to 2D images
- Computational core: six doubly-nested loops
- Challenges:
 - (No problem with non-affine subscripts.)
 - May be hard to find best iteration order?
 - Best iteration order requires data transform

```
// Deriche.c [YP15], Chapel-ized [Glaser '18]
for i in 0..w-1
 ym1 = 0.0; ym2 = 0.0; xm1 = 0.0;
 for j in 0..h-1 {
    y1[i,j] = a1*imqIn[i,j]+a2*xm1+b1*ym1+b2*ym2;
    xm1=imqIn[i, j]; ym2=ym1; ym1=y1[i, j]; }}
// for i in 0..w-1
// for j in 0..h-1 by -1
       build y2, similarly to above
for i in 0..w-1
  for j in 0..h-1
    imgOut[i,j] = c1 * (y1[i,j] + y2[i,j]);
// three j/i loop nests for horizontal sweep
```

Deriche Data Flow

Two Phases

imgIn

column by column pass

imgOut (use y1 and y2)

row by row pass

imgOut

```
iter deriche_iterations(w: int, h: int): (int, int, int) {
    for i in 0..w-1 {
        for j in 0..h-1
            yield (0, i, j);
        for j in 0..h-1 by -1
            yield (1, i, j);
        for j in 0..h-1
            yield (2, i, j);
    }
```

```
for j in 0..h-1 {
  for i in 0..w-1
    yield (3, i, j);
  for i in 0..w-1 by -1
    yield (4, i, j);
  for i in 0..w-1
    yield (5, i, j);
}
```

Two Phases (Detail)

Phase One: column by column pass

Note: store only one column of each array at a time

Storage Transformations: Chapel Records

y1 abstraction:

A 2-dimensional image

(y2, x1, x2 are similar)

y1 representation:

Could be 2-d array Could be 1-d vector Could be *per-core* vector

(y2, x1, x2 can be similar)

This one is more likely to fit in cache!

Main Code for Optimizable Deriche

```
// Deriche.c [YP15], Chapel-ized [Glaser '18]
                                                        // Optimizable Deriche [Glaser '18]
                                                        for (statement,i,j) in deriche iterations(w,h) {
                                                          if (statement == 0)
for i in 0..w-1 {
  ym1 = 0.0; ym2 = 0.0; xm1 = 0.0;
                                                            y1.set(i, j, a1*imgIn.get(i, j) +
                                                                        a2*imgIn.jlower(i,j) + // i, j-1
 for j in 0..h-1 {
   y1[i,j] = a1*imgIn[i,j]+a2*xm1+b1*ym1+b2*ym2;
                                                                        b1*y1.jlower(i,j) +
    xm1=imqIn[i,j]; ym2=ym1; ym1=y1[i,j]; }}
                                                                        b2*v1.jlowerlower(i,j));
// for i in 0..w-1
// for j in 0..h-1 by -1
                                                          else if (statement == 1)
   build y2, similarly to above
                                                            y2.set(i,j, a3*imgIn.jhigher(i,j) + ...
for i in 0..w-1
 for j in 0..h-1
                                                          else if (statement == 2)
   imgOut[i,j] = c1 * (y1[i,j] + y2[i,j]);
                                                            imgMid.set(i,j, c1*(y1.get(i,j)+y2.get(i,j)));
                                                        // stmts 3,4 build intermediate arrays from imgMid
// three j/i loop nests for horizontal sweep
                                                        // stmt 5 then builds final imgOut from those
```

Checking for Correctness

- Static Check possible in Compiler
 - Apply Polyhedral Model's tests
 - Assume simplest iterator/storage is correct
- Dynamic check via "careful arrays"
 - Check correctness at runtime
- See paper for details

"Careful Array" [Feshbach] stores value at each row, e.g. 1.1 stores index of last write, e.g. (3, 5)

read y1[3,5]: good read y1[2,5]: error read y1[4,5]: error

Table of Results (See Mary Glaser's thesis)

Array sizes	Original C		Original Chapel		Two phases, scalars		Two phases, vectors	
wxh	Seconds	MFLOPS	Seconds	MFLOPS	Seconds	MFLOPS	Seconds	MFLOPS
64x64	0.000110	1192.53	0.000036	3641.71	5.90e-5	2221.56	6.20e-5	2114.06
192x128	0.000682	1152.93	0.000265	2966.91	4.40e-4	1787.35	3.19e-4	2465.30
720x480	0.009089	1216.77	0.012636	875.23	1.49e-2	741.03	5.01e-3	2209.19
1680x1320	0.071262	995.81	0.087314	812.74	8.74e-2	812.32	2.94e-2	2415.85
4000x4000	0.544893	939.63	0.670132	764.03	8.10e-1	631.93	2.41e-1	2122.64
8000x6600	1.922052	879.06	2.124119	795.44	2.22	762.17	7.37e-1	2293.51
7700x9900	2.922805	834.60	3.177009	767.82	2.59	778.59	9.30e-1	2167.27

MFLOPS Graph (see Mary Glaser's Thesis)

Conclusions/Take-Away Messages

- Iterator-based Performance Tuning of Dense Array Codes:
 - When polyhedral approach works, Chapel matches C using best known tiling
 - ▶ [Bertolacci et. al, ICS '15]
 - Works fine for imperfectly nested loops
 - Allows manual search for good (best?) iteration order in Deriche
 - Associated record definition can express data transformation
 - (In principle, should work for non-affine subscripts ... work in progress)
 - Iterator/record abstractions allow static or run-time correctness checking
 - Our Iterator/record combination runs faster than automatically-optimized C

Related and Future Work

- Related Work
 - Improving polyhedral compilers
 - good, but not done yet, at least three distinct major challenges
 - Programmer-directed tools (AlphaZ, CHILL, etc.)
 - good, but requires tool-specific learning, additional software to update
- Future Work
 - More benchmarks, including FFT
 - Implement static correctness check
 - More optimizations: multi-core, distributed/cluster computing, vectorizing
 - Sparse computations
- Questions?