

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

VERIFICAÇÃO DA SEQUÊNCIA DE FASES DAS TENSÕES

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Dezembro / 2019

Sumário

1	Ob.	jetivos		2		
2	to teórica	2				
3	Preparação					
	3.1	Mater	riais e ferramentas	3		
	3.2	2 Montagem				
		3.2.1	Verificação da sequência de fases	3		
		3.2.2	Verificação da sequência de fases - Fase A aberta	5		
		3.2.3	Verificação da sequência de fases - Fase C aberta	5		
4	Dados Experimentais					
		4.0.1	Verificação da sequência de fases	6		
		4.0.2	Verificação da sequência de fases - Fase A aberta	7		
		4.0.3	Verificação da sequência de fases - Fase C aberta	8		
5	Ana	álise so	obre segurança	9		
6	Ref	lexão		9		
		6.0.1	E na ausência de um voltímetro?	9		
		6.0.2	Sobre a importância da sequência de fase em um circuito elétrico	10		
7	Sim	ıulação	o computacional	10		
		7.0.1	Verificação da sequência de fases	10		
		7.0.2	Verificação da sequência de fases - Fase A aberta	11		
		7.0.3	Verificação da sequência de fases - Fase C aberta	12		
8	Cor	ıclusõe	es	13		

1 Objetivos

Pretende-se verificar experimentalmente conceitos teóricos de como encontrar a correta sequência de fase diante da ausência de um sequencímetro (método do voltímetro).

2 Introdução teórica

O sequencímetro é um instrumento de medida elétrica analógica ou digital que tem por finalidade a verificação da sequência de fases de um motor trifásico (circuito alimentado por corrente alternada), ou seja, indica a fase aberta e o sentido de rotação do motor. Na Figura 1, é observado um fasímetro, que possui a mesma função, havendo poucas diferenças, entre elas, estão a tensão de entrada e a faixa de frequência. Sobre seu funcionamento diz-se que, a partir do momento em que o sequencímetro detecta a passagem por zero (pulso positivo de curta duração) de cada fase é aplicado em um circuito sequencial feito com flip-flop e indica a sequência da rede [3].

Na ausência desse tipo de equipamento, circuitos desequilibrados podem ser utilizados para a verificação de sequência de fases em certo sistema elétrico. Basendose na queda de tensão em cada fase, é possível provar matematicamente qual é a sequência de fases utilizada, por meio da análise do circuito, sendo os resultados teóricos dispostos na Sessão 4.

Figura 1: Fasímetro com indicador led 690 volts - MFA-862 [4].

3 Preparação

3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60 Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.
- 5 **Resistor de** 50Ω: Carga resistiva para compor a carga do circuito trifásico.
- 6 Capacitor de 45, 9μF: Sendo sua resistência quase nula, portanto desprezível nessa aplicação (Esquenta pouco, logo dissipa menos energia).

3.2 Montagem

3.2.1 Verificação da sequência de fases

A montagem para o método do voltímetro pode ser realizado por meio de voltímetros analógicos, como mostra a Figura 2, ou mediante equipamento digital, como na Figura 3. Para este experimento utilizou o medidor digital Kron, com configuração TL=0000 (Trifásico Equilibrado ou Desequilibrado Estrela - 3F + N - 3 elementos 4 fios). Assim, no caso de equipamento digital, aplica-se uma tensão linha $V_L = 100V$ com o auxílio do Varivolt, em frequência de 60Hz, e parâmetros de carga: $R = 50\Omega$ e $C = 45,9\mu F$. Ademais, como procedimento de segurança, é verificado sempre se existe algum curto-circuito em alguma das fases em baixa tensão.

Figura 2: Método do voltímetro, utilizando-se voltímetros analógicos.

Figura 3: Método do voltímetro, utilizando-se equipamento digital.

3.2.2 Verificação da sequência de fases - Fase A aberta

A primeira montagem com a fase A aberta resulta na montagem da Figura 4.

Figura 4: Montagem 1 com fase A aberta.

3.2.3 Verificação da sequência de fases - Fase C aberta

A primeira montagem com a fase C aberta resulta na montagem da Figura 5.

Figura 5: Montagem 1 com fase C aberta.

4 Dados Experimentais

Embora, esta sessão seja reservada para os dados obtidos experimentalmente, também são comptemplados, nas tabelas que seguem, os resultados teóricos.

4.0.1 Verificação da sequência de fases

Da análise teórica do circuito, determina-se ainda os fasores teóricos I_{ac} e $I_{bn'}$, para assim compará-lo com o dado experimental, conforme a Tabela 1. Ademais, a partir dos fasores determinados da teoria, desenha-se os fasores de tensão e corrente para cada caso, como na Figura 6. Vale lembrar que os fasores estão escalados de diferentes fatores para melhor visualização.

$$\begin{split} Z_A &= j \; \frac{1}{2\pi \cdot 60 \cdot 45, 9\mu} = -j \; 57, 79 \; [\Omega] \\ \\ Z_C &= 50 \; [\Omega] \\ \\ 57, 74 \angle 0^\circ - (50 - j \; 57, 79) \; I_A = 54, 74 \angle 120^\circ \\ \\ I_A &= \frac{57, 74 \angle 0^\circ - 57, 74 \angle 120^\circ}{50 - j \; 57, 79} = 1,309 \angle 19,13^\circ \\ \\ V_{n'} &= 57, 74 \angle 0^\circ + j \; 57, 79 \cdot I_A = 78,68 \angle 65,24^\circ \\ \\ V_{b'n'} &= V_{b'} - V_{n'} = 54,74 \angle - 120^\circ - 78,68 \angle 65,24^\circ = 136,3 \angle - 117^\circ \\ \end{split}$$

O cálculo é análogo para a fase CBA, assim tem-se:

$$\begin{bmatrix} I_{ac} \\ V_{bn'} \end{bmatrix} = \begin{bmatrix} 1,309\angle 19,13^{\circ} \\ 136,3\angle -117,0^{\circ} \end{bmatrix} \text{ para ABC e } \begin{bmatrix} I_{ac} \\ V_{bn'} \end{bmatrix} = \begin{bmatrix} 1,309\angle 79,13^{\circ} \\ 37,82\angle 109,0^{\circ} \end{bmatrix} \text{ para CBA}.$$

Tabela 1: Verificação da sequência de fases

	Sequência abc		Sequência cba	
	I_{ac} (A)	$V_{bn'}$ (V)	I_{ac} (A)	$V_{bn'}$ (V)
Teórico	1,309	136,3	1,309	37,82
Medido	1,297	139,7	1,277	39,10
Erro(%)	-0,917	2,494	-2,445	3,384

Figura 6: Diagrama fasorial para a montagem 1 em fase ABC e CBA respectivamente.

4.0.2 Verificação da sequência de fases - Fase A aberta

Para o caso da fase A aberta, tem-se os dados experimentais da Tabela 2. Ainda da análise teórica determina-se I_{ac} e $V_{bn'}$, para assim poder desenhar os fasores dessas grandezas, que encontram dispostos na Figura 7.

$$\begin{bmatrix} I_{ac} \\ V_{bn'} \end{bmatrix} = \begin{bmatrix} 0 \\ 100 \angle -90^{\circ} \end{bmatrix} \text{ para ABC e } \begin{bmatrix} I_{ac} \\ V_{bn'} \end{bmatrix} = \begin{bmatrix} 0 \\ 100 \angle 90^{\circ} \end{bmatrix} \text{ para CBA}.$$

Tabela 2: Verificação da sequência de fases - fase A aberta

	Sequência ABC		Sequência CBA	
	I_{AC} (A)	$V_{BN'}$ (V)	I_{AC} (A)	$V_{BN'}$ (V)
Teórico	0	100,0	0	100,0
Medido	0	102,2	0	101,7
Erro(%)	0	2,2	0	1,7

Figura 7: Diagrama fasorial para a montagem 2 em fase ABC e CBA respectivamente.

4.0.3 Verificação da sequência de fases - Fase C aberta

Já para o caso da fase C aberta, tem-se os dados experimentais da Tabela 3. Ainda da análise teórica determina-se I_{ac} e $V_{bn'}$, para assim poder desenhar os fasores dessas grandezas, que encontram dispostos na Figura 8.

$$\begin{bmatrix} I_{ac} \\ V_{bn'} \end{bmatrix} = \begin{bmatrix} 0 \\ 100 \angle -150^{\circ} \end{bmatrix} \text{ para ABC e } \begin{bmatrix} I_{ac} \\ V_{bn'} \end{bmatrix} = \begin{bmatrix} 0 \\ 100 \angle 150^{\circ} \end{bmatrix} \text{ para CBA}.$$

Tabela 3: Verificação da sequência de fases - fase C aberta

	Sequência ABC		Sequência CBA	
	I_{ac} (A)	$V_{bn'}$ (V)	I_{ac} (A)	$V_{bn'}$ (V)
Teórico	0	100,0	0	100,0
Medido	0	100,4	0	101,0
Erro(%)	0	0,4	0	1,0

Figura 8: Diagrama fasorial para a montagem 3 em fase ABC e CBA respectivamente.

5 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [2]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

6 Reflexão

6.0.1 E na ausência de um voltímetro?

Na ausência de voltímetros, amperímetros ou sequencímetro, pode-se utilizar equipamentos permitam de forma visual ou sensitiva identificar a fase com maior e maior tensão, para assim prosseguir com a análise realizada neste experimento. No caso de tensão na fase superior à tensão de linha aplicada a sequência de fases correspondente é ABC, enquanto que se for inferior, será sequência de fases CBA. Por exemplo, é possível verificar o mesmo efeito conectando-se lâmpadas aos terminais V_{ab} e $V_{bn'}$ para assim constatar a ddp entre os terminais em que estão conectadas por meio da viasualização da intensidade do brilhar da lâmpada.

6.0.2 Sobre a importância da sequência de fase em um circuito elétrico

Saber a sequência de fase em um circuito desequilibrado é de grande importância. Para circuitos equilibrados, o efeito é mínimo, uma vez que os módulos das tensões e correntes de linha e de fase são idênticos, e há somente uma defasagem entre elas. No entanto, para cargas desequilibradas, que são mais comuns e trata-se de uma situação, é essencial conhecer a sequência de fases em que trabalha, seja para evitar danos em equipamentos conectados às fases ou determinar a direção de rotação de uma motor de indução conectado à fonte de tensão trifásica.

7 Simulação computacional

Para a simulação foi utilizada uma fonte CBA, por isso pode haver alguma estranheza no circuito por parte do leitor. No entanto, a análise é a mesma.

7.0.1 Verificação da sequência de fases

Figura 9: Método do voltímetro, utilizando-se equipamento digital.

Figura 10: Simulação para determinação de sequência de fase CBA.

7.0.2 Verificação da sequência de fases - Fase A aberta

Figura 11: Método do voltímetro, utilizando-se equipamento digital.

Figura 12: Simulação para determinação de sequência de fase CBA.

7.0.3 Verificação da sequência de fases - Fase C aberta

Figura 13: Método do voltímetro, utilizando-se equipamento digital.

Figura 14: Simulação para determinação de sequência de fase CBA.

8 Conclusões

Ter conhecimento sobre a sequência de fases em circuito equilibrado é de extrema importância, uma vez que do desequíbrio pode resultar correntes elevadas em determinada fase e assim danificar algum equipamento, além de ser essencial na determinação da direção de rotação de uma motor de indução conectado à fonte de tensão trifásica. Para isso, tem-se equipamentos como o fasímetro e o sequencímetro. Entretanto, na ausência desses equipamentos sofisticados, o engenheiro deve ser capaz de determinar a sequência de fases utilizando-se de equipamentos de menor custo, como o voltímetro ou visualizando-se a intensidade do brilhar de uma lâmpada.

Assim, neste experimento é tratado o método dos voltímetros, e verificou-se que considera-se sequência de fases ABC, no caso de tensão na fase B $V_{bn'} > V_{ab}$. Enquanto que para $V_{bn'} < V_{ab}$ considera-se sequência de fases CBA. A conclusão do experimento terminou na verificação do mesmo efeito, porém utilizando-se lâmpadas nos terminais V_{ab} e $V_{bn'}$, para visualizar o mesmo efeito na intensidade do brilhar.

Referências

- [1] P. H. O. Rezende, "Circuitos Polifásicos Desequilibrados", 2018.
- [2] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.
- [3] B. M. Nascimento, J. Carneiro, P. Viecilli, "Sequencímetro de Baixo Custo", Fundação Universidade Federal de Rondônia UNIR. Disponível em: https://brunomarquesunir.wixsite.com/sequencimetro. Acesso em: dez. 2019.
- [4] Dutra Máquinas. Disponível em: https://m.dutramaquinas.com.br/p/fasimetro-com-indicador-led-690-volts-mfa-862-mfa-862. Acesso em: dez. 2019.