SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO - MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Uvod u složeno pretraživanje podataka Simultano klasteriranje dokumenata i riječi

Petra Sočo, Jelena Zaninović Zagreb, 20.12.2020.

Sadržaj

1	Uvod	2
2	Model bipartitnog grafa	2
3	Uloga svojstvenog problema u particioniranju grafa	3
4	Veza s dekompozicijom singularnih vrijednosti	7
5	Algoritam	8
6	Testni primjer	9
7	Eksperimentalni rezultati	10
	7.1 Obrada podataka	10
	7.2 Pokusi	11

1 Uvod

Klasteriranje kolekcije podataka je sasvim općenito grupiranje elemenata na temelju sličnosti. Skup podataka koji imamo na raspolaganju mogu biti primjerice riječi ili dokumenti. Većina postojećih algoritama klasterira riječi i dokumente odvojeno. U pozadini klasteriranja dokumenata je distribucija riječi koje se pojavljuju: dva dokumenta su slična ako se u njima pojavljuju iste riječi. Grupiranje riječi ide po principu zajedničkog pojavljivanja: dvije riječi su slične ako se zajedno pojavljuju u nekom dokumentu. Iz prethodnog se može primijetiti dualnost između ta dva procesa i ima ih smisla pokušati simultano provesti. Jedan od pristupa može biti da promatramo riječi i dokumenate kao bipartitni graf pa se tada problem simultanog klasteriranja svodi na problem particioniranja bipartitnog grafa. Algoritam će se sastojati od dva dijela: dekompozicije singularnih vrijednosti pripadajuće matrice i provođenja k-means algoritma na jednodimenzionalnom skupu podataka. U danjem tekstu opravdavamo taj postupak prateći teoriju iz [1] i provodimo eksperimente na različitim skupovima podataka.

2 Model bipartitnog grafa

Težinski, neusmjereni graf je uređeni par $G = (\mathcal{V}, E)$ zadan skupom vrhova $\mathcal{V} = \{1, 2, \dots, |\mathcal{V}|\}$ i bridova $\{i, j\}$, gdje svaki brid ima težinu E_{ij} . Za takav graf možemo definirati matricu susjedstva \mathbf{M} na sljedeći način:

$$M_{ij} := \begin{cases} E_{ij} & \exists \ brid \ \{i, j\}, \\ 0 & ina\check{c}e. \end{cases}$$

k-particija skupa S je familija $\mathcal{P} = \{U_1, \dots, U_k\}, U_i \subseteq S$ takvih da: $\emptyset \notin \mathcal{P}$; $\bigcup_{i=1}^k U_i = S$ i $U_i \cap U_j = \emptyset$ za $i \neq j$. Neka je \mathcal{V}_1 i \mathcal{V}_2 proizvoljna 2-particija skupa \mathcal{V} . Njihova razlika može se mjeriti kao ukupna težina bridova koji ih povezuju i tu mjeru povezanosti nazivamo rez particije, tj. definiramo:

$$cut(\mathcal{V}_1, \mathcal{V}_2) := \sum_{i \in \mathcal{V}_1, j \in \mathcal{V}_2} M_{ij}.$$

Prethodna definicija može se lako poopćiti na k-particiju:

$$cut(\mathcal{V}_1,\ldots,\mathcal{V}_k) := \sum_{i < j} M_{ij}.$$

Uvedimo sada pojam bipartitnog grafa. Neusmjereni, bipartitni graf je uređena trojka $G = (\mathcal{D}, \mathcal{W}, E)$ gdje su $\mathcal{D} = \{d_1, \ldots, d_n\}$ i $\mathcal{W} = \{w_1, \ldots, w_m\}$ dva skupa vrhova, a $E = \{\{d_i, w_j\} : d_i \in \mathcal{D}, w_j \in \mathcal{W}\}$ je skup bridova. U našem slučaju \mathcal{D} je skup dokumenata, a \mathcal{W} skup riječi koje su sadržane u njima. Brid $\{d_i, w_i\}$ postoji ako se riječ w_i pojavljuje u dokumentu d_i , a

jačina te veze izražena je pozitivnom težinom E_{ij} koju postavljamo na brid koji ih povezuje. Matrica susjedsva bipartitnog grafa $\mathbf M$ ima oblik

$$\mathbf{M} = \begin{bmatrix} 0 & \mathbf{A} \\ \mathbf{A}^T & 0 \end{bmatrix},$$

gdje je **A** dimenzije $m \times n$ i vrijedi $A_{ij} = E_{ij}$. Dakle, prvih m redaka i stupaca odgovaraju riječima, a zadnjih n odgovaraju dokumentima.

Cilj je simultano grupirati dokumente i riječi, a u pozadini je činjenica da klasteriranje riječi generira klastere dokumenata i obratno. Pretpostavimo da smo dokumente grupirali u k klastera $\mathcal{D}_1, \ldots, \mathcal{D}_k$. Tada riječ w_i pripada klasteru \mathcal{W}_m ako je njena veza s klasterom \mathcal{D}_m jača od veza s ostalim klasterima. Jačinu veze smo mjerili težinom na bridovima pa tražene klastere riječi \mathcal{W}_m možemo karakterizirati s

$$\mathcal{W}_m = \{ w_i : \sum_{j \in \mathcal{D}_m} A_{ij} \ge \sum_{j \in \mathcal{D}_l} A_{ij}, \ \forall l = 1, \dots, k \}, \ m = 1, \dots, k.$$

Slično, uz zadane kalstere riječi W_1, \ldots, W_k , možemo grupirati dokumente

$$\mathcal{D}_m = \{ d_j : \sum_{i \in \mathcal{W}_m} A_{ij} \ge \sum_{i \in \mathcal{W}_l} A_{ij}, \ \forall l = 1, \dots, k \}, \ m = 1, \dots, k.$$

"Najbolje" grupiranje dokumenata i riječi predstavljeno je nekom particijom bipartitnog grafa. Dakle, tražimo particiju grafa u kojoj će težine koje povezuju različite klastere biti što manje moguće, a to postižemo kad je rez particije minimiziran, tj.

$$cut(\mathcal{W}_1 \cup \mathcal{D}_1, \dots, \mathcal{W}_k \cup \mathcal{D}_k) = \min_{\mathcal{V}_1, \dots, \mathcal{V}_k} cut(\mathcal{V}_1, \dots, \mathcal{V}_k),$$

gdje je $\mathcal{V}_1, \dots, \mathcal{V}_k$ neka k-particija grafa.

3 Uloga svojstvenog problema u particioniranju grafa

Nalaženje optimalne particije grafa svodi se na nalaženje podskupova \mathcal{V}_1^* i \mathcal{V}_2^* takvih da je $cut(\mathcal{V}_1,\mathcal{V}_2)$ minimiziran. Rješavanju takvog problema može se pristupiti na više načina, ali ovdje ćemo usmjeriti pažnju na spektralno particioniranje grafa koje će aproksimirati traženi minimizator.

Neka je graf $G = (\mathcal{V}, E)$ zadan s n vrhova i m bridova kojima su pridružene težine E_{ij} . Definiramo prvo $n \times m$ matricu incidencije \mathbf{I}_G . Stupac matrice \mathbf{I}_G koji pripada bridu $\{i, j\}$ ima na i-tom i j-tom mjestu $\sqrt{E_{ij}}$, $-\sqrt{E_{ij}}$ redom, dok su na ostalim mjestima nule.

Definicija 1 Laplaceova matrica $\mathbf{L} = \mathbf{L}_G$ grafa G je $n \times n$ simetrična matrica takva da

$$L_{ij} = \begin{cases} \sum_{k} E_{ik} & i = j, \\ -E_{ij} & i \neq j, \ \exists \ brid \ \{i, j\}, \\ 0 & ina\check{c}e. \end{cases}$$

Teorem 2 Laplaceova matrica $L = L_G$ grafa G ima sljedeća svojstva:

- 1. $\mathbf{L} = \mathbf{D} \mathbf{M}$, gdje je \mathbf{M} matrica incidencije, a \mathbf{D} dijagonalna matrica takva da $D_{ii} = \sum_{k} E_{ik}$.
- 2. $\mathbf{L} = \mathbf{I}_G \mathbf{I}_G^T$.
- 3. L je simetrična pozitivno semi-definitna matrica.
- 4. Neka je $e = [1, ..., 1]^T$. Tada je Le = 0.
- 5. Ako graf G ima c komponenti povezanosti, tada \mathbf{L} ima c svojstvenih vrijednosti jednakih 0.
- 6. Za proizvoljni vektor \mathbf{x} , $\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{\{i,j\} \in E} E_{ij} (x_i x_j)^2$.
- 7. Za proizvoljni vektor \mathbf{x} i skalare α i β vrijedi

$$(\alpha \mathbf{x} + \beta \mathbf{e})^T \mathbf{L} (\alpha \mathbf{x} + \beta \mathbf{e}) = \alpha^2 \mathbf{x}^T \mathbf{L} \mathbf{x}.$$

Napomena: Iz 3. tvrdnje slijedi da su su sve svojstvene vrijednosti matrice \mathbf{L} realne i ne-negativne, a pomoću 4 vidimo da je $(\mathbf{0}, \mathbf{e})$ jedan svojstveni par matrice \mathbf{L} .

Dokaz: 1 i 2 slijede iz definicije matrice **L** i direktnim računom, tj. množenjem matrica. Iz tvrdnje 2 za proizvoljni vektor **x** imamo $\mathbf{x}^T \mathbf{L} \mathbf{x} = \mathbf{x}^T \mathbf{I}_G \mathbf{I}_G^T \mathbf{x} = \mathbf{y}^T \mathbf{y} \geq 0$ iz čega slijedi tvrdnja 3.

Iz rastava $\mathbf{L}\mathbf{x} = \mathbf{I}_G(\mathbf{I}_G^T\mathbf{x})$ za proizvoljni vektor \mathbf{x} , vidimo da vrijedi

$$(\mathbf{I}_G^T \mathbf{x})_k = \sqrt{E_{ij}} (x_i - x_j) \tag{1}$$

pa kad je $\mathbf{x} = \mathbf{e}$, tada je $\mathbf{L}\mathbf{e} = \mathbf{0}$. Time je dokazana 4. tvrdnja. 6. slijedi iz raspisa (1), a 7. iz tvrdnje 4.

Nadalje pretpostavljamo da graf G ima jednu komponentu povezanosti. Za proizvoljnu 2-particiju $\mathcal{V}_1, \mathcal{V}_2$ definiramo vektor \mathbf{p} kao vektor particije na

sljedeći način

$$p_i := \begin{cases} +1 & i \in \mathcal{V}_1 \\ -1 & i \in \mathcal{V}_2. \end{cases}$$

Teorem 3 Neka je **L** Laplaceova matrica grafa G i **p** vektor particije. Tada za Rayleighov koeficijent vrijedi

$$\frac{\mathbf{p}^T \mathbf{L} \mathbf{p}}{\mathbf{p}^T \mathbf{p}} = \frac{4}{n} cut(\mathcal{V}_1, \mathcal{V}_2).$$

4

Dokaz: Vrijedi $\mathbf{p}^T \mathbf{p} = n$. Iz 6. tvrdnje prethodnog teorema slijedi

$$\mathbf{p}^T \mathbf{L} \mathbf{p} = \sum_{\{i,j\} \in E} E_{ij} (p_i - p_j)^2.$$

Stoga, bridovi koji se nalaze unutar neke od particija \mathcal{V}_1 , \mathcal{V}_2 ne pridonose prethodnoj sumi budući da će zbog definicije vektora \mathbf{p} biti $p_i = p_j$. Bridovi koji povezuju element iz \mathcal{V}_1 s elementom iz \mathcal{V}_2 doprinose sumi s $(1+1)^2 E_{ij} = 4E_{ij}$.

Prisjetimo se da je cilj s početka priče bio minimizirati $cut(\mathcal{V}_1, \mathcal{V}_2)$, a iz prethodnog teorema lako vidimo da se to postiže za vektor \mathbf{p} takav da su svi p_i jednaki 1 ili -1. Sama minimizacija reza može proizvesti skupove koji su malih veličina u odnosu na ostatak particije. Stoga trebamo funkciju cilja koja će uz minimalni rez, uzeti u obzir i potrebu za "balansiranim" particijama. Pretpostavimo prvo da smo svakom vrhu pridružili neku težinu w(i) i neka je matrica \mathbf{W} dijagonalna $n \times n$ matrica sastavljena od tih težina. Za podskup vrhova \mathcal{V}_l definiramo težinu kao $w(\mathcal{V}_l) = \sum_{i \in \mathcal{V}_l} w(i) = \sum_{i \in \mathcal{V}_l} W_{ii}$. Reći ćemo da je 2-particija "balansirana" ako su težine podskupova približno jednake pa uzimamo sljedeću funkciju kao funkciju cilja koju želimo minimizirati.

$$Q(\mathcal{V}_1, \mathcal{V}_2) = \frac{cut(\mathcal{V}_1, \mathcal{V}_2)}{w(\mathcal{V}_1)} + \frac{cut(\mathcal{V}_1, \mathcal{V}_2)}{w(\mathcal{V}_2)}$$
(2)

Za dvije različite particije s istom vrijednosti reza, prethodna funkcija je manja za onu particiju koja je više "balansirana"¹.

Lema 4 Neka su **L** i **W** Laplaceova i matrica težina vrhova nekog grafa G. Tada generalizirani vektor particije **q** definiran s

$$q_i := \begin{cases} +\sqrt{\frac{\eta_2}{\eta_1}} & i \in \mathcal{V}_1 \\ -\sqrt{\frac{\eta_1}{\eta_2}} & i \in \mathcal{V}_2. \end{cases}$$

zadovoljava $\mathbf{q}^T \mathbf{W} \mathbf{e} = 0 \ i \ \mathbf{q}^T \mathbf{W} \mathbf{q} = w(\mathcal{V}).$ Gdje je $\eta_1 = w(\mathcal{V}_1) \ i \ \eta_2 = w(\mathcal{V}_2).$

Dokaz: Neka je $\mathbf{y} = \mathbf{W}\mathbf{e}$. Tada je $y_i = w(i) = W_{ii}$. Slijedi

$$\mathbf{q}^T \mathbf{W} \mathbf{e} = \sqrt{\frac{\eta_2}{\eta_1}} \sum_{i \in \mathcal{V}_1} w(i) - \sqrt{\frac{\eta_1}{\eta_2}} \sum_{i \in \mathcal{V}_2} w(i) = 0.$$

Slično je i $\mathbf{q}^T \mathbf{W} \mathbf{q} = \sum_{i=1}^n W_{ii} q_i^2 = \eta_1 + \eta_2 = w(\mathcal{V}).$

¹Zanemarimo na trenutak značenje riječi "balansirana"

Teorem 5 Koristeći notaciju prethodne leme, vrijedi

$$\frac{\mathbf{q}^T \mathbf{L} \mathbf{q}}{\mathbf{q}^T \mathbf{W} \mathbf{q}} = \frac{cut(\mathcal{V}_1, \mathcal{V}_2)}{w(\mathcal{V}_1)} + \frac{cut(\mathcal{V}_1, \mathcal{V}_2)}{w(\mathcal{V}_2)}$$

Dokaz: Vektor q možemo zapisati kao

$$\mathbf{q} = rac{\eta_1 + \eta_2}{2\sqrt{\eta_1\eta_2}} \ \mathbf{p} + rac{\eta_1 - \eta_2}{2\sqrt{\eta_1\eta_2}} \ \mathbf{e}$$

Iz tvrdnje 7. teorema 2 imamo

$$\mathbf{q}^T \mathbf{L} \mathbf{q} = \frac{(\eta_1 + \eta_2)^2}{4\eta_1\eta_2} \mathbf{p}^T \mathbf{L} \mathbf{p}.$$

Uvrštavanjem izraza za $\mathbf{p}^T \mathbf{L} \mathbf{p}$ i $\mathbf{q}^T \mathbf{W} \mathbf{q}$ iz teorema 3 i leme 4, laganim računom dolazimo do tvrdnje teorema.

Vidimo da je desna strana izraza u prethodnom teoremu upravo funkcija koju želimo minimizirati (2) pa pažnju sada možemo usmjeriti na lijevu stranu, odnosno traženje "optimalnog" generaliziranog vektora particije **q** uz uvjete dane lemom 4. Sljedeći teorem omogućuje da diskretni problem nalaženja optimalnog generaliziranog vektora **q** zamijenimo kontinuiranim, odnosno prebacivanjem u realnu domenu možemo aproksimirati traženi vektor.

Teorem 6 Minimum problema

$$\min_{\mathbf{q} \neq 0} \frac{\mathbf{q}^T \mathbf{L} \mathbf{q}}{\mathbf{q}^T \mathbf{W} \mathbf{q}}, \ uz \ uvjet \ \mathbf{q}^T \mathbf{W} \mathbf{e} = 0$$

se postiže za svojstveni vektor druge najmanje svjostvene vrijednosti generaliziranog svojstvenog problema

$$\mathbf{L}\mathbf{z} = \lambda \mathbf{W}\mathbf{z}.\tag{3}$$

Dokaz: Iz napomene nakon iskaza teorema 2 imamo da je $(0, \mathbf{e})$ je jedan svojstveni par generaliziranog svojstvenog problema uz najmanju svojstvenu vrijednost pa uz uvjet $\mathbf{q}^T \mathbf{W} \mathbf{e} = 0$ tvrdnja slijedi iz Courant Ficherovog teorema o spektru simetrične matrice (v.[3]).

Treba još spomenuti problematiku odabira težina vrhova koje smo koristili u prethodnim računima. Jedan izbor može biti w(i) = 1 za svaki vrh i. Time funkcija cilja iz (2) ima sljedeći oblik

$$\mathcal{Q}(\mathcal{V}_1, \mathcal{V}_2) = \frac{cut(\mathcal{V}_1, \mathcal{V}_2)}{|\mathcal{V}_1|} + \frac{cut(\mathcal{V}_1, \mathcal{V}_2)}{|\mathcal{V}_2|}.$$

Vidimo da ćemo takivm odabirom težina za vrhove dobiti 2-particije koje će biti "balansirane" u smislu veličina. Budući da pokušavamo grupirati dokumente i riječi po sličnosti, više smisla ima težinu vrha mjeriti pomoću težina koje "izlaze" iz njega budući da one sadrže informaciju o jačini veze dokumenta i riječi, tj. stavit ćemo $w(i) = \sum_k E_{ik}$. Takvim pristupom dolazimo do kriterija normaliziranog reza. Primijetimo da će u tom slučaju matrica \mathbf{W} svojstvenog problema (3) biti jednaka matrici \mathbf{D} iz teorema 2.

4 Veza s dekompozicijom singularnih vrijednosti

U prethodnom odjeljku vidjeli smo da nam drugi svojstveni vektor generaliziranog svojstvenog problema $\mathbf{L}\mathbf{z} = \lambda \mathbf{D}\mathbf{z}$ nudi relaksaciju diskretnog optimizacijskog problema traženja minimalnog normaliziranog reza. U ovom odjeljku predstavljamo algoritme za klasteriranje riječi i dokumenata koristeći model bipartitnog grafa. Račun provodimo za nalaženje 2-particije, a zatim algoritam generaliziramo za k-particiju. U slučaju bipartitnog grafa:

$$\mathbf{L} = \begin{bmatrix} \mathbf{D_1} & -\mathbf{A} \\ -\mathbf{A^T} & \mathbf{D_2} \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} \mathbf{D_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{D_2} \end{bmatrix}$$

gdje su $\mathbf{D_1}$ i $\mathbf{D_2}$ dijagonalne matrice t.d. $D_1(i,i) = \sum_j A_{i,j}, D_2(j,j) = \sum_i A_{i,j}$. Stoga se $\mathbf{Lz} = \lambda \mathbf{Dz}$ može zapisati kao

$$\begin{bmatrix} \mathbf{D_1} & -\mathbf{A} \\ -\mathbf{A^T} & \mathbf{D_2} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{D_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{D_2} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$
(4)

Pretpostavimo li da su D_1 i D_2 regularne, jednadžbe možemo zapisati kao

$$\begin{split} &D_1^{1/2}x - D_1^{-1/2}Ay \ = \ \lambda D_1^{1/2}x, \\ &-D_2^{-1/2}A^Tx + D_2^{1/2}y \ = \ \lambda D_2^{1/2}y. \end{split}$$

Neka su $\mathbf{u} = \mathbf{D}_1^{1/2}\mathbf{x}$ i $\mathbf{v} = \mathbf{D}_2^{1/2}\mathbf{y}$. Uvrstimo li ih u gornje jednadžbe, dobijemo

$$\begin{split} \mathbf{D}_1^{-1/2} \mathbf{A} \mathbf{D}_2^{-1/2} \mathbf{v} &= (1 - \lambda) \mathbf{u}, \\ \mathbf{D}_2^{-1/2} \mathbf{A}^{\mathrm{T}} \mathbf{D}_1^{-1/2} \mathbf{u} &= (1 - \lambda) \mathbf{v}, \end{split}$$

Ove jednadžbe definiraju dekompoziciju singularnih vrijednosti (SVD) normalizirane matrice $\mathbf{A_n} = \mathbf{D_1^{-1/2}} \mathbf{A} \mathbf{D_2^{-1/2}}$. Posebno, \mathbf{u} i \mathbf{v} su redom lijevi i desni singularni vektori, dok je (1 - λ) pripadna singularna vrijednost. Stoga, umjesto računanja svojstvenog vektora druge (najmanje) svojstvene vrijednosti iz (4), možemo izračunati lijevi i desni singularni vektor koji pripadaju drugoj (najvećoj) singularnoj vrijednosti od $\mathbf{A_n}$,

$$\mathbf{A_n v_2} = \sigma_2 \mathbf{u_2}, \quad \mathbf{A_n^T u_2} = \sigma_2 \mathbf{v_2}$$
 (5)

gdje je $\sigma_2 = 1 - \lambda_2$. Numerički je lakše raditi s $w \times d$ matricom $\mathbf{A_n}$ nego s $(w+d)\times(w+d)$ matricom \mathbf{L} . Desni singularni vektor $\mathbf{v_2}$ dat će biparticiju dokumenata, dok će lijevi singularni vektor $\mathbf{u_2}$ dati biparticiju riječi. Proučimo li relacije u (5), jasno je da se ovo rješenje slaže s našom intuicijom da particija dokumenata inducira particiju riječi, dok particija riječi implicira particiju dokumenata.

5 Algoritam

Iz prethodne priče zaključujemo da singularni vektori \mathbf{u}_2 i \mathbf{v}_2 "nose" informaciju o aproksimaciji optimalne particije, ali još ostaje otvoreno pitanje kako čitati te podatke. Drugi svojstveni vektor matrice \mathbf{L} je dan s

$$\mathbf{z}_2 = \begin{bmatrix} \mathbf{D_1}^{-1/2} \mathbf{u}_2 \\ \mathbf{D_2}^{-1/2} \mathbf{v}_2 \end{bmatrix}. \tag{6}$$

Budući da je cilj 2-particija, tražimo bi-modalne vrijednosti m_1 i m_2 koje ćemo pridružiti riječima i dokumentima kako bismo direktno čitali rješenje. Jedan od pristupa je tražiti m_i takve da minimiziraju funkciju

$$\sum_{j=1}^{2} \sum_{\mathbf{z}_2(i) \in m_j} (\mathbf{z}_2(i) - m_j)^2.$$

Prethodni izraz je upravo funkcija cilja koju minimizira klasični k-means algoritam pa je naš postupak sljedeći:

Algoritam biparticije

- 1. Za dani \mathbf{A} , izračunati $\mathbf{A}_n = \mathbf{D}_1^{-1/2} \mathbf{A} \mathbf{D}_2^{-1/2}$,
- 2. Izračunati druge singularne vektore \mathbf{u}_2 i \mathbf{v}_2 matrice \mathbf{A}_n i definirati \mathbf{z}_2 kao u (6),
- 3. Provesti k-means algoritam na jednodimenzionalnim podacima \mathbf{z}_2 .

Prethodni postupak možemo generalizirati na traženje k klastera riječi i dokumenata. Iskoristimo $l = \lceil \log_2 k \rceil$ singularnih vektora $\mathbf{u}_2, \dots, \mathbf{u}_{l+1}$ i $\mathbf{v}_2, \dots, \mathbf{v}_{l+1}$ i definiramo

$$\mathbf{Z} = \begin{bmatrix} \mathbf{D_1}^{-1/2} \mathbf{U} \\ \mathbf{D_2}^{-1/2} \mathbf{V} \end{bmatrix}. \tag{7}$$

gdje je $\mathbf{U}=[\mathbf{u}_2,\ldots,\mathbf{u}_{l+1}]$ i $\mathbf{V}=[\mathbf{v}_2,\ldots,\mathbf{v}_{l+1}]$. Tražimo l-dimenzionalne točke $m_j,\ j=1,\ldots,k$ koje ćemo pridružiti dokumentima i riječima. Stoga, mnimiziramo funkciju

$$\sum_{j=1}^k \sum_{\mathbf{Z}(i) \in m_j} ||\mathbf{Z}(i) - \mathbf{m}_j||^2,$$

gdje je redak $\mathbf{Z}(i)$, $i = 1, \dots, d + w$ dokument ili riječ.

Algoritam k-particije

- 1. Za dani \mathbf{A} , izračunati $\mathbf{A}_n = \mathbf{D}_1^{-1/2} \mathbf{A} \mathbf{D}_2^{-1/2}$,
- 2. Izračunati $l = \lceil \log_2 k \rceil$ singularnih vektora $\mathbf{u}_2, \dots, \mathbf{u}_{l+1}$ i $\mathbf{v}_2, \dots, \mathbf{v}_{l+1}$ matrice \mathbf{A}_n i definirati matricu \mathbf{Z} kao u (7),
- 3. Provesti k-means algoritam na l-dimenzionalnim podacima \mathbf{Z} .

6 Testni primjer

Pretpostavimo da je zadan sljedeći težinski, bipartitni graf.

Matrice koje su uključene u prethodni račun dane su sa:

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 8 & 7 & 0 \\ 0 & 6 & 0 \\ 2 & 0 & 2 \\ 0 & 0 & 8 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^T & \mathbf{0} \end{bmatrix},$$

$$0 \quad 0 \quad 0 \quad 0 \quad -3 \quad 0 \quad 0$$

$$\mathbf{L} = \begin{bmatrix} \mathbf{3} & 0 & 0 & 0 & 0 & -3 & 0 & 0 \\ 0 & \mathbf{15} & 0 & 0 & 0 & -8 & -7 & 0 \\ 0 & 0 & \mathbf{6} & 0 & 0 & 0 & -6 & 0 \\ 0 & 0 & 0 & \mathbf{4} & 0 & -2 & 0 & -2 \\ 0 & 0 & 0 & 0 & \mathbf{8} & 0 & 0 & -8 \\ -3 & -8 & 0 & -2 & 0 & \mathbf{13} & 0 & 0 \\ 0 & -7 & -6 & 0 & 0 & 0 & \mathbf{13} & 0 \\ 0 & 0 & 0 & -2 & -8 & 0 & 0 & \mathbf{10} \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^T & \mathbf{0} \end{bmatrix}.$$

Rezultat koji daje algoritam je $\mathcal{D}_0 = \{1, 2\}, \ \mathcal{D}_1 = \{3\}$, a korespondirajući klasteri riječi su $\mathcal{W}_0 = \{a, b, c\}, \ \mathcal{W}_1 = \{d, e\}.$

7 Eksperimentalni rezultati

Budući da ćemo pokušati testirati algoritam na velikom skupu dokumenata, treba prvo reći i nešto o dohvaćanju i obradi podataka što je teorija sama za sebe i postoji opsežna literatura i na tu temu. Ovdje samo navodimo postupak koji je korišten u ovom slučaju budući da on ovisi i o setu podataka s kojim raspolažemo.

7.1 Obrada podataka

Manji skupovi dokumenata pripremljni su manualno, a veći skupovi preuzeti su iz "TMDB 5000 Movie" (www.kaggle.com/tmdb/tmdb-movie-metadata) i "BBC News Summary" (www.kaggle.com/pariza/bbc-news-summary). Tekstovi su obrađeni koristeći MATLAB-ov Text Analytics Toolbox: tekstove smo pretvorile u niz riječi (tokenizedDocument); odstranile smo najčešće riječi (removeStopWords); izbrisale smo interpunkcijske znakove (removePunctuation); izvadile smo korijene riječi (normalizeWords).

Primjer obrađenog dokumenta:

childhood hour other seen other saw bring passion common spring same sourc taken sorrow awaken heart joi same tone lovd lovd alon childhood dawn ...

Dokumenti poput potonjeg su reprezentirani *bag-of-words* modelom, a pritom je zanemaren poredak riječi i sačuvan podatak o broju pojavljivanja svake riječi. Primjerice, iz modela ćemo znati da se u gornjem tekstu "childhood"

javlja 2 puta, ali ne znamo da se "hour" javlja prije "spring". Dobivene podatke ćemo analizirati mjerom term frequency-inverse document frequency.

Term frequency-inverse document frequency je mjera koja određuje težinu riječi u skupu dokumenata. Jedna varijanta formule za riječr, dokument d i skup dokumenata D je dana sljedećim formulama:

$$tf(r,d) = f_{r,d}$$
, $idf(r,D) = \ln \frac{N}{n_r}$

$$tfidf(r, d, D) = tf(r, d) \times idf(r, D)$$

gdje je $f_{r,d}$ = "broj ponavljanja r u d", N = card(D) i $n_r = \{d \in D : r \in d\}$. Naime, ovom formulom "težina" riječi u dokumentu raste s brojem pojavljivanja u tom dokumentu, a opada s brojem dokumenata u kojima se pojavljuje. Ideja je da "kaznimo" riječ ako se ponaša kao "stop word" i prioritiziramo ju ako se ponaša kao ključna riječ.

Slijedi par pokusa na različitim skupovima podataka, od lakših reprezentativnijh pema težima kojima ćemo "izazvati" algoritam.

7.2 Pokusi

Primjer 1

Koristile smo baze dokumenata s receptima, opisima lijekova i političkim vijestima. Budući da je svaki skup dokumenata bogat karakterističnim ključnim riječima, dobile smo potpuno preciznu particiju (Tablica 1). Ovim primjerom se prvenstveno provjerila "točnost" obrade podataka.

	recepti	lijekovi	politika	
\mathcal{D}_0 :	50	0	0	
\mathcal{D}_1 :	0	50	0	
\mathcal{D}_2 :	0	0	50	
\mathcal{W}_0 : minut, add, cook, heat, salt				
\mathcal{W}_1 : medicin, take, doctor, effect, side				
W_2 : mr, govern, blair, labour, ministr				

Tablica 1: Primjer idealne particije

Primjer 2

Skup podataka "BBC News" dijeli sažetke vijesti u 5 kategorija: *sport, entertainment, politics, business, tech.* U ovom primjeru smo koristile skupove s najmanje preklapanja u pojmovima. Konačni rezultat nije savršen, ali odudaranje od idealne particije je jako maleno te se "teme" klastera dokumenata lako određe preko pripadnih klastera riječi.

	sport	business	tech	
\mathcal{D}_0 :	1	48	1	
\mathcal{D}_1 :	49	0	1	
\mathcal{D}_2 :	0	2	48	
\mathcal{W}_0 :	year, gr	owth, new	compani	
\mathcal{W}_1 : olymp, world, athlet, athen				
\mathcal{W}_2 : mobil, peopl, gadget, user				

Tablica 2: Klasterima lako odredimo temu, što je indikator dobre particije

Primjer 3, 4 i 5

Broj dokumentata algoritmu obično nije predstavljao problem. Kad smo konstruirale skupine pjesama s jasnom temom (božićne, mjuzikl Mačke), particija bi bila precizna bez obzira na broj pjesama. Kasnije smo pridodale skup pjesama E.A.Poe-a, koje dijele ključne riječi međusobno, ali i s ostalim pjesmama. Algoritam je stoga dokumente tog skupa nasumično grupirao ili zajedno, ili skupa s ostalim pjesmama. Možemo zaključiti da u slučajevima poput toga program nema dovoljno informacija da uspješno grupira dokumente i riječi. Kako je i vidljivo u razlici tablica 4 i 5, dokumenti koji su jednako povezani s nekim klasterom znaju "šetati" između klastera. Razlike u tablicama su dobivene samo ponovnim pokretanjem programa. Unatoč tome, ovaj problem nam i ne smeta previše budući da se očekuje da "dobar algoritam" grupiranja dobro radi na velikom skupu podataka pa eventualne prednosti i zaostatke radije tražimo u sljedećim primjerima.

	Christmas	E.A.Poe	Cats		
\mathcal{D}_0 :	3	0	0		
\mathcal{D}_1 :	0	3	0		
\mathcal{D}_2 :	0	0	2		
\mathcal{W}_0 :	\mathcal{W}_0 : snow, let, christma, merri, dai				
\mathcal{W}_1 : sea, love, annabel, lee, kingdom					
W_2 : macav, cat, rum, tum, curious					

Tablica 3: Particija pjesama (točna)

	Christmas	E.A.Poe	Cats			
\mathcal{D}_0 :	3	1	0			
\mathcal{D}_1 :	0	2	0			
\mathcal{D}_2 :	0	0	2			
\mathcal{W}_0 :	\mathcal{W}_0 : snow, let, christma, merri, dai					
\mathcal{W}_1 : sea, love, annabel, lee, kingdom						
W_2 : macav, cat, rum, tum, curious						

Tablica 4: Particija pjesama (s greškom)

	Christmas	E.A.Poe	Cats		
\mathcal{D}_0 :	3	2	0		
\mathcal{D}_1 :	0	1	0		
\mathcal{D}_2 :	0	0	2		
\mathcal{W}_0 : snow, christma, love, sea, annabel					
\mathcal{W}_1 : childhood, other, same, lovd, hour					
W_2 : macav, cat, rum, tum, curious					

Tablica 5: Particija pjesama (s greškom)

Primjer 6 i 7

U ovom primjeru smo koristile 500 članaka o sportu i 400 o tehnologiji. Nakon biparticioniranja su Tech dokumenti grupirani skupa, dok su Sport dokumenti rascjepkani. Zanimljivo je što smo povećanjem broja klastera na 4 dobile bolji rezultat, što se vidi u Tablici 7. Ovim primjerom dolazi do izražaja sama obrada podataka i primjedba s početka da taj proces predstavlja teoriju za sebe i ovisi o skupu podataka budući da smo dobili relativno zadovoljavajuće grupirane dokumente u klasterima \mathcal{D}_1 i \mathcal{D}_2 , a sadržaj klastera \mathcal{W}_0 i \mathcal{W}_3 nije "progutao" ključne riječi vezane uz sport i tehnologiju.

	sport	tech
\mathcal{D}_0 : \mathcal{D}_1 :	172	400
\mathcal{D}_1 :	328	0
\mathcal{W}_0 :	olymp, v	world, athlet, athen
\mathcal{W}_1 :	year, ne	w, mobil, peopl

Tablica 6: *Tech* dokumenti su odlično raspoređeni, dok su *Sport* dokumenti rascjepkani

	sport	tech
\mathcal{D}_0 :	4	0
\mathcal{D}_1 :	23	400
\mathcal{D}_2 :	471	0
\mathcal{D}_3 :	2	0
\mathcal{W}_0 :	harrier,	ac, stade, treviso
\mathcal{W}_1 :	peopl, g	game, mobil, phon
\mathcal{W}_2 :	game, w	vin, plai, against
\mathcal{W}_3 :	republ,	ireland, franc, faro

Tablica 7: Uvođenjem dodatnih klastera, dobile smo točniju particiju originalnih dokumenata

Primjer 8

Koristeći primjere iz svih kategorija vijesti, nismo uspjele dobiti dobru particiju. Kao razlog naslućujemo preklapanje u ključnim riječima između većine kategorija. Particiju smo pokušale poboljšati povećanjem broja dokumenata, korištenjem dužih verzija dokumenata (podsjetnik: u prethodnim primjerima su korišteni sažeci vijesti) te variranjem broja klastera, no nismo uspjele povećati točnost.

	sport	entertainment	politics	business	tech	
\mathcal{D}_0 :	4	19	0	0	1	
\mathcal{D}_1 :	0	1	0	0	0	
\mathcal{D}_2 :	0	2	0	0	0	
\mathcal{D}_3 :	45	23	48	50	49	
\mathcal{D}_4 :	1	5	2	0	0	
\mathcal{W}_0 :	\mathcal{W}_0 : best, award, film, book, year, winner					
\mathcal{W}_1 :	\mathcal{W}_1 : la, fenic, viotti, opera, director, includ					
\mathcal{W}_2 :	W_2 : christian, andersen, han, prize, author, booker					
\mathcal{W}_3 : mr, year, new, govern, peopl, world						
\mathcal{W}_4 : film, famili, border, ballet, white, year						

Tablica 8: Primjer loše particije

Literatura

- [1] Inderjit S. Dhillon, Co-clustering documents and words using Bipartite Spectral Graph Partitioning, 2001.
- [2] Zlatko Drmač Uvod u složeno pretraživanje podataka, predavanja 2020-2021
- [3] Zlatko Drmač Numerička analiza 1, predavanja 2020-2021
- [4] 'Text Analytics Toolbox' dokumentacija www.mathworks.com