Algebra FE Inequality

February 24, 2025

Problem. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x+y) + y \le f(f(f(x)))$$

holds for all $x, y \in \mathbb{R}$

Solution. All functions such that f(x) = c - x where $c \in \mathbb{R}$ are the only solution to the following equation. It's clear all such function satisfy the following equation, lets prove they are the only one.

Let P(x,y) be the assertion that $f(x+y)+y \leq f(f(f(x)))$. Then $P(x,f(f(x))-x) \implies f(f(x)) \leq x$. Hence,

$$f(x+y) + y \le f(f(f(x))) \le f(x)$$

which implies $f(x+y) + x + y \le f(x) + x$. Let g(x) = f(x) + x, then $g(x+y) \le g(x)$.

This implies g(x) is contant, hence f(x) = c - x, and all such functions satisfy the assertion.

Exploration. N/A

 ${\bf Tags.}\ Algebra\ ,\ FE\ ,\ Functional\ Equation\ ,\ Functional\ Inequality\ ,\ Inequality$