Chương 3: KHÔNG GIAN VECTOR

Không gian con

Tổ hợp tuyến tính

Độc lập tuyến tính - phụ thuộc tuyến tính

Phần I

Lý thuyết

1 Không gian vector

Cho V là 1 tập hợp khác rỗng, các phần tử trong V quy ước gọi là các vector, trong đó quy định 2 phép toán nhân vô hướng (1 vector và 1 số thực, hoặc phức) và cộng vô hướng (giữa 2 vector). Khi đó, V là 1 không gian vector nếu thoả mãn 8 tính chất:

- $1. \ u + v = v + u$
- 2. (u+v) + w = u + (v+w)
- 3. Tồn tại vector $0 \in V : u + 0 = u$
- 4. Tồn tại vector $-u \in V : u + (-u) = 0$
- 5. $(\alpha.\beta).u = \alpha.(\beta.u)$
- 6. $(\alpha + \beta).u = \alpha.u + \beta.u$
- 7. $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$
- 8. 1.u = u

Ví dụ:

 $P_2[\mathbb{R}] = \{ax^2 + bx + c | a, b, c \in \mathbb{R}\}, \text{ xác định 2 phép toán:}$

- Phép cộng 2 vector: phép cộng 2 đa thức
- Phép nhân vô hướng vector: là phép nhân đa thức với 1 số thực

$$M_2[x] = \left\{ egin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in R \right\}$$
, xác định 2 phép toán:

- Phép cộng 2 vector: phép cộng 2 ma trận
- Phép nhân vô hướng vector: là phép nhân ma trận với 1 số thực

Khi đó $P_2[x]$ và $M_2[\mathbb{R}]$ là các không gian vector.

2 Tổ hợp tuyến tính

Vector $v \in V$ được gọi là tổ hợp tuyến tính với tập hợp con $M = \{v_1, v_2, v_3, ..., v_n | v_i \in V\}$ nếu tồn tại 1 bộ số $\{a_1, a_2, ... a_n\}$ thoả mãn:

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$

Như vậy, vector 0 là tổ hợp tuyến tính với mọi bộ k vector là phần tử của V.

Ví dụ $v_1 = (1,0), v_2 = (0,1), v_3 = (3,5)$, khi đó $v_3 = 3v_1 + 5v_2$ nên v_3 là tổ hợp tuyến tính của $\{v_1, v_2\}$. Dạng bài tập:

- Nhận xét u có phải là tổ hợp tuyến tính của 1 bộ vector u_1, u_2, \dots không, nếu có hãy tìm dạng biểu diễn tuyến tính.
- Tìm điều kiện để u là tổ hợp tuyến tính của 1 bộ vector u_1, u_2, \dots

3 Độc lập tuyến tính và phụ thuộc tuyến tính

Xét phương trình:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$$

- Nếu phương trình chỉ có nghiệm tầm thường $(a_1, a_2, ..., a_n) = (0, 0, ...0)$ thì ta nói $v_1, v_2, ..., v_n$ độc lập tuyến tính.
- Ngược lại, nếu phương trình tồn tại nghiệm khác thì ta nói $v_1, v_2, ..., v_n$ phụ thuộc tuyến tính.

Với $M = \{v_1, v_2, ..., v_n\}$, ta có 1 số nhận xét sau.

- 1. Một tập hợp vector M hoặc là phụ thuộc tuyến tính, hoặc là độc lập tuyến tính.
- 2. M phụ thuộc tuyến tính khi và chỉ khi tồn tại 1 vector v_i là tổ hợp tuyến tính của n-1 vector còn lại.
- 3. Nếu M chưa vector 0, M phụ thuộc tuyến tính.
- 4. Nếu M phu thuộc tuyến tính, thêm vector bất kỳ vào M, ta có 1 tập phu thuộc tuyến tính.
- 5. Nếu M độc lập tuyến tính, xoá vector bất kỳ trong M, ta có 1 tập độc lập tuyến tính.

Dạng bài tập:

• Nhận xét 1 bộ vector $u_1, u_2, ...$ là độc lập tuyến tính hay phụ thuộc tuyến tính.

4 Không gian vector con, không gian dòng, không gian nghiệm

4.1 Không gian vector con

Cho W là 1 tập hợp con khác rỗng của V, ta gọi W là 1 không gian vector con của V, ký hiệu là $W \leq V$, nếu với phép toán nhân và cộng vô hướng từ V, là 1 không gian vector.

Như vậy, $W \leq V$ nghĩa là:

- Tập chứa các vector của W là tập hợp con khác rỗng của V.
- \bullet W là 1 không gian vector, 2 phép toán nhân và cộng vô hướng được định nghĩa như của V.

Dạng bài tập:

 \bullet Nhận xét xem W có phải là không gian vector con của V hay không.

4.2 Không gian dòng của ma trận

$$\text{V\'oi } A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Với:

$$u_1 = (a_{11}, a_{12}, ..., a_{1n})$$

 $u_2 = (a_{21}, a_{22}, ..., a_{2n})$

...

$$u_m = (a_{m1}, a_{m2}, ..., a_{mn})$$

$$Va W = \langle u_1, u_2, ... u_m \rangle$$

Ta gọi $u_1, u_2, ..., u_m$ là các không gian dòng của A, và W_A là không gian dòng của A. Một số tính chất:

- Bổ đề: Nếu A và B là hai ma trận tương đương dòng thì $W_A = W_B$.
- Định lý: $dim(W_A) = rank(A)$, và tập hợp các vector dòng khác 0 trong dạng bậc thang của A là cơ sở của W_A .

4.3 Không gian con sinh bởi tập hợp

Cho V là 1 không gian vector trên \mathbb{R} , S là 1 tập hợp con khác rỗng của V, khi đó, nếu W là 1 tập hợp tất cả các tổ hợp tuyến tính của S. Khi đó:

- $W \leq V$
- W là không gian vector nhỏ nhất trong tất cả không gian con của V mà chứa S. Khi đó $W = \langle S \rangle$ gọi là không gian sinh bởi tập hợp S.

Giải thích:

- Dựa vào tính chất tuyến tính của không gian vector và tổ hợp tuyến tính.
- Dùng phản chứng để chỉ ra W là không gian vector nhỏ nhất trong tất cả không gian con của V mà chứa S.

4.4 Không gian nghiệm của hệ phương trình tuyến tính

Gọi W là tập nghiệm của hệ phương trình tuyến tính thuần nhất:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + a_{13}x_3 + \dots + a_{2n}x_n \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n \end{cases}$$
Có thể viết lại:
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 và
$$u = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{pmatrix}$$
Thì
$$W - \{ u \in \mathbb{R}^n | Au = 0 \}$$

4.5 Không gian tổng

Cho W_1, W_2 là 2 không gian vector con của V, khi đó, xác định không gian tổng:

$$W = W_1 + W_2 = \{v_1 + v_2 | v_1 \in W_1, v_2 \in W_2\}$$

Khi đó, $W \leq V$ vì:

- $W_1 + W_2 \subset V$, vì W1, W2 là 2 tập hợp con của V.
- $0 \in W_1, 0 \in W_2 \to 0 \in W_1 + W_2$, vậy $W_1 + W_2$ không rỗng.
- Với $u_1, v_2 \in W_1, u_2, v_2 \in W_2$ và $u = u_1 + u_2, v = v_1 + v_2$, theo như định nghĩa, $u, v \in W_1 + W_2$ Như vậy, theo tính chất tuyến tính, ta có: $\alpha.u_1 + v_1 \in W_1, \alpha.u_2 + v_2 \in W_2$. Suy ra $\alpha.u + v = \alpha.(u_1 + u_2) + (v_1 + v_2) = (\alpha.u_1 + v_1) + (\alpha.u_2 + v_2)$. Có dạng theo định nghĩa, vậy $W_1 + W_2$ đủ các yếu tố là không gian vector con của V, nên $W_1 + W_2 \leq V$.

Ngoài ra, nếu $W_1 = \langle S_1 \rangle$, $W_2 = \langle S_2 \rangle$, thì $W_1 + W_2 = \langle S_1 \cup S_2 \rangle$

4.6 Không gian giao

Cho V là không gian vector và W_1, W_2 là 2 không gian vector con của V, khi đó, nếu $W_1 = \langle S_1 \rangle$ và $W_2 = \langle S_2 \rangle$ thì $W = W_1 \cap W_2$ được gọi là không gian giao của W_1 và W_2 và $u \in W$ khi và chỉ khi u là tổ hợp tuyến tính của cả S_1 và S_2 .

Định lý:

Cho W_1, W_2 là 2 không gian vector con của V, khi đó, ta có:

$$dim(W_1 + W_2) = dimW_1 + dimW_2 - dim(W_1 \cap W_2)$$

Dạng bài tập:

• Tìm cơ sở và số chiều của các loại không gian.

Phần II

Bài tập và phương pháp giải

1 Tổ hợp tuyến tính, độc lập/phụ thuộc tuyến tính

Bài toán: Xét xem u có là tổ hợp tuyến tính của bộ vector $A = \{u_1, u_2, ..., u_n\}$ hay không. Phương pháp giải:

- 1. Lập ma trận mở rộng $\left(u_1^T \ u_2^T \ ... \ u_m^T \ \middle| \ u^T\right)(\star)$
- 2. Giải (⋆):
 - Nếu (\star) có nghiệm $(a_1, a_2, ... a_m)$ thì u là tổ hợp tuyến tính của $u_1, u_2, ..., u_n$.

$$u = a_1u_1 + a_2u_2 + \dots + a_mu_m$$

• Nếu (\star) vô nghiệm thì u không là tổ hợp tuyến tính của $u_1, u_2, ..., u_n$.

Bài toán: Xét xem bộ vector $A = \{u_1, u_2, ..., u_n\}$ là độc lập tuyến tính hay phụ thuộc tuyến tính. Phương pháp giải:

- 1. Lập ma trận $A = \left(u_1^T \ u_2^T \ \dots \ u_m^T\right)(\star)$
- 2. Tìm hạng (rank) của (\star) :
 - Nếu rank(A) = m thì kết luận $u_1, u_2, ..., u_n$ độc lập tuyến tính.
 - Nếu rank(A) < m thì kết luận $u_1, u_2, ..., u_n$ phụ thuộc tuyến tính.
 - rank(A) không thể lớn hơn m.

Ngoài ra nếu A là ma trận vuông, có thể dùng định thức để xác định nhanh hạng của A.

Tóm lại, ta có thể nhận xét:

- 1. Nếu $r(A) = r(A \cup \{v\})$ thì v là THTT với A.
- 2. Nếu $r(A) < r(A \cup \{v\})$ thì v không là THTT với A.
- 3. Nếu r(A) = m thì A là ĐLTT.
- 4. Nếu r(A) < m thì A là PTTT.

Một số ví dụ:

1. Xét xem u=(4,3,5) có là THTT của các vector $u_1=(1,2,5), u_2=(1,3,7), u_3=(-2,3,4)$ không.

$$\text{Lập } \left(u_1^T \ u_2^T \ u_3^T \ \middle| \ u^T \right) = \begin{pmatrix} 1 & 1 & -2 & | \ 4 \\ 2 & 2 & 3 & | \ 5 \\ 5 & 7 & 4 & | \ 5 \end{pmatrix} \xrightarrow{d_2 - 2d_1} \begin{pmatrix} 1 & 1 & -2 & | \ 4 \\ 0 & 1 & 7 & | \ -5 \\ 0 & 2 & 14 & | \ -15 \end{pmatrix} \xrightarrow{d_3 - 2d_2} \begin{pmatrix} 1 & 1 & -2 & | \ 4 \\ 0 & 1 & 7 & | \ -5 \\ 0 & 0 & 0 & | \ -5 \end{pmatrix}$$

Như vậy $r(A) < r(A \cup \{u\})$ nên u không là THTT của $A = \{u_1, u_2, u_3\}$.

2. Cho $u_1 = (1, 1, 1, 1), u_2 = (2, 3, -1, 0), u_3 = (-1, -1, 1, 1)$ Tìm điều kiện để u = (a, b, c, d) là THTT của $A = \{u_1, u_2, u_3\}$

$$\text{Lập}\left(u_{1}^{T}\ u_{2}^{T}\ u_{3}^{T}\ |\ u^{T}\right) = \begin{pmatrix} 1 & 2 & -1 & a \\ 1 & 3 & -1 & b \\ 1 & -1 & 1 & c \\ 1 & 0 & 1 & d \end{pmatrix} \xrightarrow{d_{2}-d_{1}}_{d_{3}-d_{1}} \begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 0 & b-a \\ 0 & -3 & 2 & c-a \\ 0 & -2 & 2 & d-a \end{pmatrix} \xrightarrow{d_{4}+2d_{2}}_{d_{3}+3d_{2}} \begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 0 & b-a \\ 0 & 0 & 2 & -4a+3b+c \\ 0 & 0 & 2 & -2a+3b+d \end{pmatrix}$$

$$\frac{d_4 - d_3}{d_4 - d_3} \xrightarrow{\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 0 & b - a \\ 0 & 0 & 2 & -4a + 3b + c \\ 0 & 0 & 0 & a - b - c + d \end{pmatrix}$$

Như vậy $r(A) = r(A \cup \{u\})$ thì a - b - c + d = 0 hay u là THTT của A thì a + d = b + c.

3. Cho $A=v_1=(1,2,-1), v_2=(2,5,-3), v_3=(3,7,-5)$ là tập con của không gian vector \mathbb{R}^3 . M là ĐLTT hay PTTT?

$$\text{Lập } \left(v_1^T \ v_2^T \ v_3^T \right) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -1 & -3 & -5 \end{pmatrix} \xrightarrow[d_2-2d_1]{d_3+d_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -1 & -2 \end{pmatrix} \xrightarrow[d_3+d_2]{d_3+d_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

Như vậy, r(A) = 3 = số vector trong A, nên A ĐLTT.

2 Không gian vector con, không gian dòng, không gian nghiệm, không gian sinh bởi tập hợp, không gian tổng, không gian giao

2.1 Không gian vector con

Bài toán: Kiểm tra xem không gian vector W có là không gian vector con của không gian vector V. Phương pháp kiểm tra:

Bước 0 Kiểm tra W có là tập con của V hay không.

- ullet Nếu W không là tập con của V, kết luận W không là không gian con của V.
- Nếu W là tập con của V, tiếp tục kiểm tra bước 1.

Bước 1 Kiểm tra vector $0 \in W$:

- Nếu $0 \notin W$, kết luận W không là không gian con của V.
- Nếu $0 \in W$, tiếp tục kiểm tra bước 2.

Bước 2 Với mọi $u, v \in W, \alpha \in \mathbb{R}$

- Nếu $u + v \in W$ và $\alpha u \in W$, kết luận W là không gian con của V.
- Ngược lại, chỉ cần đưa ra 1 trường hợp để 1 trong 2 điều kiện trên sai thì kết luận W không là không gian con của V.

Một số ví dụ:

1. Cho $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 3x_2 + x_3 = 1\}$. Hỏi W có là không gian con của \mathbb{R}^3 không. Bước 0 hiển nhiên đúng (đề cho), Kiểm tra bước $1, 0 = (0, 0, 0) \notin W$ nên W không là không gian con của \mathbb{R}^3

2. Cho $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | 2x_1 + x_2 - x_3 = 0\}$. Hỏi W có là không gian con của \mathbb{R}^3 không. Bước 0 hiển nhiên đúng (đề cho),

Kiểm tra bước 1, $0 = (0, 0, 0) \in W$ vì 2.0 + 0 - 0 = 0.

Kiểm tra bước 2, với mọi $u=(x_1,x_2,x_3), v=(y_1,y_2,y_3)\in W, \alpha\in\mathbb{R}$, ta có:

- $u+v=(x_1+y_1,x_2+y_2,x_3+y_3)$, mà $2(x_1+y_1)+(x_2+y_2)-(x_3+y_3)=(2x_1+x_2-x_3)+(2y_1+y_2-y_3)=0$, như vậy $u+v\in W$
- $\alpha u = (\alpha x_1, \alpha x_2, \alpha x_3)$, mà $2\alpha x_1 + \alpha x_2 \alpha x_3 = \alpha(2x_1 + x_2 x_3) = 0$, như vậy $\alpha u \in W$

Vậy W là không gian con của V.

Ngoài ra, muốn tìm 1 cơ sở của W, ta có thể làm theo cách sau:

- Gọi $u=(a,b,c)\in W$, nhờ điều kiện đã cho, 2a+b-c=0 suy ra c=2a+b.
- Vì u = (a, b, 2a + b) = a(1, 0, 2) + b(0, 1, 1) nên u là THTT của $v_1 = (1, 0, 2), v_2 = (0, 1, 1)$, vậy $\{v_1, v_2\}$ là tập sinh của W. Ngoài ra, 2 vector này ĐLTT nên cũng là cơ sở của W.

2.2 Không gian dòng của ma trận

Bài toán: Tìm cơ sở của 1 không gian vector cho bởi một tập vector $M = \{u_1, u_2, ..., u_n\}$. Phương pháp:

Bước 1 Lập ma trận hàng là các vector của M.

Bước 2 Đưa về dạng ma trận bậc thang, số hàng khác 0 là số chiều, các vector hàng là cơ sở của ma trận tổng.

2.3 Không gian con sinh bởi tập hợp

Bài toán: Thêm vector vào một tập vector $M = \{u_1, u_2, ..., u_n\}$ để nó là cơ sở của 1 không gian vector có số chiều là m > n.

Phương pháp:

- Bước 1 Nếu M có ít hơn m vector, chọn 1 vector u với dạng tổng quát, ngược lại, tới bước 4.
- Bước 2 Lập ma trận mở rộng $\left(u_1^T\ u_2^T\ ...\ u_n^T\ \middle|\ u^T\right)$. Tìm điều kiện để $M\cup\{u\}$ là ĐLTT.
- Bước 3 Chọn 1 vector thoả mãn đ
k ở bước 2 rồi thêm vào M, quay về bước 1.
- Bước 4 Kết luận M là cơ sở của không gian vector cần tìm.

Hoặc

- Bước 1 Lập ma trận hàng.
- Bước 2 Đưa về dạng bậc thang.
- Bước 3 Thêm m rank(M) vector nữa (độc lập tuyến tính ma trận hàng ở bước 2).
- Bước 4 Kết luận m rank(M) trên.

2.4 Không gian nghiệm của hệ phương trình

Bài toán: Tìm cơ sở của không gian nghiệm của 1 hệ phương trình.

Phương pháp:

- Bước 1 Giải hệ phương trình, tìm nghiệm tổng quát.
- Bước 2 Lần lượt cho các ẩn tự do các giá trị (1,0,...0),...,(0,0,...,1) (số thành phần trong 1 bộ giá trị bằng số ẩn tự do) ta được các nghiệm cơ bản $u_1,u_2,...,u_m$.
- Bước 3 Khi đó, không gian nghiệm có 1 cơ sở là $\{u_1, u_2, ..., u_m\}$.

2.5 Không gian tổng, không gian giao

Bài toán: Cho W_1, W_2 là 2 không gian con của V, tìm cơ sở của không gian tổng $W_1 + W_2$. Phương pháp:

- Bước 1 Tìm 1 tập sinh của W_1 và W_2 .
- Bước 2 Lập ma trận hàng gồm các vector hàng là tập sinh của cả W_1 và W_2 .
- Bước 3 Đưa về dạng ma trận bậc thang, số hàng khác 0 là số chiều, các vector hàng là cơ sở của ma trận tổng.

Bài toán: Cho W_1, W_2 là 2 không gian con của V, tìm cơ sở của không gian giao $W_1 \cap W_2$. Phương pháp:

- Bước 1 Tìm 1 cơ sở của W_1 và W_2 là S_1 và S_2 .
- Bước 2 Gọi vector u tổng quát, tìm điều kiện để u là tổ hợp tuyến tính của S_1 (điều kiện 1), tìm điều kiện để u là tổ hợp tuyến tính của S_2 (điều kiện 2)
- Bước 3 Lập hệ phương trình gồm điều kiện 1 và điều kiện 2. Xác định không gian nghiệm của hệ phương trình. Không gian nghiệm đó là không gian giao của W_1 và W_2 .

Môt số ví du:

1. Trong không gian \mathbb{R}^4 cho các vector:

$$u_1 = (1, 2, 1, 1)$$

 $u_2 = (3, 6, 5, 7)$

$$u_3 = (4, 8, 6, 8)$$

$$u_4 = (4, 16, 12, 16)$$

 $u_5 = (1, 3, 3, 3)$

$$u_6 = (2, 5, 5, 6)$$

$$u_7 = (3, 8, 8, 9)$$

$$u_8 = (6, 16, 16, 18)$$

Và $W_1=\langle u_1,u_2,u_3,u_4\rangle,\,W_2=\langle u_5,u_6,u_7,u_8\rangle,\,$ tìm 1 cơ sở và số chiều của $W_1+W_2,W_1\cap W_2$

• Tìm cơ sở của
$$W_1$$
: Lập $A_1 = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 6 & 5 & 7 \\ 4 & 8 & 6 & 8 \\ 8 & 16 & 12 & 16 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Vậy cơ sở của W_1 là $v_1 = (1, 2, 1, 1), v_2 = (0, 0, 1, 1, 1)$

• Tìm cơ sở của
$$W_1$$
: Lập $A_2 = \begin{pmatrix} u_5 \\ u_6 \\ u_7 \\ u_8 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 & 3 \\ 2 & 5 & 5 & 6 \\ 3 & 8 & 8 & 9 \\ 6 & 16 & 16 & 18 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 3 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Vậy cơ sở của W_2 là $v_3 = (1, 3, 3, 3), v_4 = (0, 1, 1, 0)$

• Vậy W_1 và W_2 được sinh ra bởi các vector: $v_1 = (1, 2, 1, 1), v_2 = (0, 0, 1, 2), v_3 = (1, 3, 3, 3), v_4 = (1, 2, 1, 1), v_4 = (1, 2, 1, 1), v_5 = (1, 2, 1, 1), v_6 = (1, 2, 1, 1), v_7 = (1, 2, 1, 1), v_8 = (1, 2, 1$

$$\text{Lập } A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 3 & 3 & 3 \\ 0 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Vậy số chiều của $W_1 + W_2$ là 3 và có 1 cơ sở là $\{w_1 = (1, 2, 1, 1), w_2 = (0, 0, 1, 2), w_3 = (0, 1, 1, 0)\}$

• Gọi vector $u = (a, b, c, d) \in W_1 \cap W_2$, khi đó u là tổ hợp tuyến tính của $\{v_1, v_2\}$, u cũng là tổ hợp tuyến tính của $\{v_3, v_4\}$. Như vậy:

$$r \begin{pmatrix} v_1^T & v_2^T \end{pmatrix} = r \begin{pmatrix} v_1^T & v_2^T & u^T \end{pmatrix} \begin{pmatrix} \star \\ v_3^T & v_4^T \end{pmatrix} = r \begin{pmatrix} v_3^T & v_4^T & u^T \end{pmatrix} \begin{pmatrix} \star \\ \star \end{pmatrix}$$

$$(\star): \begin{pmatrix} 1 & 0 & a \\ 2 & 0 & b \\ 1 & 1 & c \\ 1 & 2 & d \end{pmatrix} \to \begin{pmatrix} 1 & 0 & a \\ 0 & 0 & b - 2a \\ 0 & 1 & c - a \\ 0 & 0 & d + a - 2c \end{pmatrix}$$

Diều kiện thứ nhất: $\begin{cases} b-2a=0\\ d+a-2c=0 \end{cases}$

$$(\star\star) \colon \begin{pmatrix} 1 & 0 & a \\ 3 & 1 & b \\ 3 & 1 & c \\ 3 & 0 & d \end{pmatrix} \to \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b - d \\ 0 & 0 & c - b \\ 0 & 0 & d - 3a \end{pmatrix}$$

Điều kiện thứ hai: $\begin{cases} b-c=0\\ d-3a=0 \end{cases}$ Như vậy ta có bộ điều kiện: $\begin{cases} -2a+b=0\\ a-2c+d=0\\ b-c=0\\ -3a+d=0 \end{cases}$

$$\operatorname{Hay} \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & -2 & 1 \\ 0 & 1 & -1 & 0 \\ -3 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = 0 = Au$$

$$\operatorname{M\`a} A \to \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Có nghiệm (t, 2t, 2t, 3t) = t(1, 2, 2, 3) Vậy số chiều và cơ sở của $W_1 \cap W_2$ lần lượt là 1 và (1, 2, 2, 3)