

**Project Update** 

# Data-Driven Classification of Canadian Crude Oils

Ryan Bulger DTSA-5506 University of Colorado Boulder

# **Problem Definition**

### **Assessing Current Crude Oil Classifications**

### **Grouping Limitations**

Existing classifications of crude oils may not accurately reflect the **true similarities** among different types, leading to potential inefficiencies in management and utilization of these resources.

# Importance of Reclassifying Crude Oils

### Marketing

Improved classifications can enhance **targeted marketing strategies** effectively.

### **Pricing**

Accurate groupings lead to **fair pricing structures** in the market.

### **Efficiency**

Optimized classifications promote **efficient pipeline utilization** and resource management.

# **Related Work**

### Overview of traditional and modern methods

### **Traditional Approaches**

Traditional methods like API gravity and sulfur content often **fail to capture the complexities** of crude oil. These simplistic classifications may overlook significant variations in crude oil characteristics.

### **Modern ML Studies**

Recent machine learning approaches, such as **FTIR spectroscopy combined with clustering techniques**, have shown promise. However, they often rely on limited datasets, leading to potential inaccuracies in classifications.

# Project Steps



# Data Collection

### **CrudeMonitor API**

Data was captured using CrudeMonitor's API endpoints.

### **Dataset Shape**

The dataset contains over **8,500 rows and 133 columns** 

### **Data Types**

The datatypes are 1 datetime, 4 categorical, and 128 numeric columns.

# Missing Values

### Heatmap

The heatmap color reveals **large swaths of missing data** throughout the dataset



# Categorical Frequencies

### **Crude Grades**

Majority of the dataset's rows are related to the production of **heavy oils and their by-products** 



### **Sample Locations**

Oil production typically **flows from northern Alberta**, through Edmonton, and onto Hardisty



# Numeric Distributions

### **Crude Quality Columns**

Noticeable patterns in the distributions suggest that many groups of crudes share similar properties



## **Numeric Correlations**

### **Correlation Heatmap**

**Strong correlations** are found throughout the crude quality and distillation temperature columns



# Clustering Algorithms

### **K-Means**

K-Means is a **baseline clustering** method that partitions data into K distinct clusters by minimizing intra-cluster variance, allowing for efficient and straightforward classification of crude oil samples.

### Agglomerative

Agglomerative clustering is a **hierarchical approach** that builds clusters by merging similar data points iteratively, resulting in a tree-like structure that captures the relationships among crude oils.

### **GMM**

Gaussian Mixture Models (GMM) utilize a **probabilistic framework** to model data as a mixture of multiple Gaussian distributions, providing flexibility and capturing complex data distributions in crude oil classification.

# Model Evaluation

### **Internal Metrics**

Internal metrics of **Silhouette Score**, **DBI**, and **CHI** are used to assess clustering quality using statistical measures

### **External Metrics**

External metrics of **ARI, NMI, and FMI** are used to compare cluster assignments to known labels

### **Visualization Plots**

Visualization plots are used to illustrate clustering results and distribution patterns

# **Evaluation Metrics**

### **Best Performer**

Models with **two to three clusters** showed the strongest performance, with Agglomerative Clustering and GMM performing best at three clusters



# **Evaluation Plots**

### **Dimensionally Reduced Clustering**

The silhouette and scatter plots clearly show that **three clusters** provide the most distinct and well–separated groupings



# Unsupervised<br/>Confusion Matrix

### **Significant Misclassifications**

Distinct patterns suggest natural groupings



# Supervised Benchmarking

### Comparing key machine learning methods

### **Logistic Regression**

Logistic Regression serves as a fundamental method, modeling the **probability of class membership** using a linear approach, effective for binary classification problems in crude oil analysis.

### **Support Vector Classifier**

SVC utilizes hyperplane separation to classify data points, **excelling in high-dimensional spaces**, providing robust classification through kernel trick adaptations tailored for complex crude oil datasets.

### **Gradient Boosting Classifier**

Gradient Boosting Classifier builds an ensemble of decision trees where each model corrects the errors of the previous one, producing an accurate and flexible classifier that captures nonlinear relationships in complex crude oil data.

# Supervised Confusion Matrix

### Better Performance then Unsupervised

Persistent misclassification further suggest **common groupings** 



# Project Timeline



# Conclusion

### **Key Findings**

Unsupervised models consistently identified **two to three natural clusters**, revealing a simpler structure than the current eleven-grade classification

### **Model Agreement**

K-Means, Agglomerative, and GMM **all produced similar groupings**, confirmed by supervised models showing the same overlapping crude categories

### **Industry Insight**

Results suggest Canadian crudes exist on a **continuous quality spectrum**, better represented by broader heavy, medium, and light/synthetic families

### **Future Direction**

Expanding the analysis with **economic, carbon, and yield data** could strengthen classification accuracy and industry applicability