Estimation of CGE Parameters

Saketh Aleti

June 8, 2018

Outline

- CES vs. CET Theory
- Fossil Fuel Results
- Renewables Results

Theory

CES/CET Problem

Prod./Trans. Function:
$$Q = \theta \cdot \left(\sum_{i} \alpha_{i} \cdot X_{i}^{\phi}\right)^{1/\phi}$$

Budget Constraint:
$$B = \sum_{i} p_i \cdot X_i$$

- p_i are prices, θ is the scaling coefficient, α_i is the share coefficient, B is the budget
- ullet The elasticity of substitution is $\sigma=1/(1-\phi)$
- ullet The elasticity of transformation is $\psi=1/(\phi-1)$

CES versus CET - CES Example

Figure 6.2 Isoquant of the CES function for the Armington composite good

• Isoquant of imported good M_i and domestic good D_i shows combination needed to produce a fixed quantity \tilde{Q}_i

- Consumer wants to satisfy a utility function including the composite Q_i
- Convexity shows diminishing returns to consuming only M_i or D_i

CES versus CET - CET Example

- Isoquant of exports E_i and domestic supply D_i of some good i
- ullet Shows combination needed to reach a GDP of $ilde{Z}_i$
- Firms maximize profit by selling goods where they are most valued
- Concavity shows diminishing returns to selling everything domestically versus exporting everything

CES/CET Solution

CES/CET Problem

Prod./Trans. Function:
$$Q = \theta \cdot \left(\sum_i \alpha_i \cdot X_i^{\phi}\right)^{1/\phi}$$

Budget Constraint:
$$B = \sum_{i} p_i \cdot X_i$$

Profit Maximization
$$\implies \frac{X_i}{X_j} = \left(\frac{\alpha_i \cdot p_j}{\alpha_j \cdot p_i}\right)^{1/(1-\phi)}$$

$$\implies \ln\left(\frac{X_i}{X_j}\right) = \sigma \cdot \ln\left(\frac{\alpha_i \cdot p_j}{\alpha_j \cdot p_i}\right) = \psi \cdot \ln\left(\frac{\alpha_j \cdot p_i}{\alpha_i \cdot p_j}\right)$$

Methodology

CES ⇒ Functional Form

$$\ln\left(\frac{X_{i,s,t}}{X_{j,s,t}}\right) = \sigma \cdot \ln\left(\frac{p_{j,s,t}}{p_{i,s,t}}\right) + c_{s,t} + \varepsilon_{s,t}$$

- Inputs i and j in state s at time t
- X_i and X_j are the input quantities, p_i and p_j are the input prices
- Share parameters from previous equation are absorbed into the constant term

6

Methodology (cont.)

CES \Longrightarrow Functional Form

$$\ln\left(\frac{X_{i,s,t}}{X_{j,s,t}}\right) = \sigma \cdot \ln\left(\frac{p_{j,s,t}}{p_{i,s,t}}\right) + c_{s,t} + \varepsilon_{s,t}$$

- Elasticity of substitution/transformation is the same between all commodities in the production/transformation function
- Suppose coal (i), natural gas (j), and oil (k) are all part of the same production function for electricity

$$\implies \ln(X_i/X_j) = \sigma \ln(p_j/p_i) + c_{1,s,t} + \varepsilon_{1,s,t}$$

$$= \ln(X_j/X_k) = \sigma \ln(p_k/p_j) + c_{2,s,t} + \varepsilon_{2,s,t}$$

$$= \ln(X_i/X_k) = \sigma \ln(p_k/p_i) + c_{3,s,t} + \varepsilon_{3,s,t}$$

7

Methodology (cont.)

CES \Longrightarrow Functional Form

$$\ln\left(\frac{X_{i,s,t}}{X_{j,s,t}}\right) = \sigma \cdot \ln\left(\frac{p_{j,s,t}}{p_{i,s,t}}\right) + c_{s,t} + \varepsilon_{s,t}$$

 Elasticity of substitution/transformation is the same between all commodities in the production/transformation function

$$\implies corr(\ln(X_i/X_j), \ln(p_j/p_i))$$

$$= corr(\ln(X_j/X_k), \ln(p_k/p_j))$$

$$= corr(\ln(X_i/X_k), \ln(p_k/p_i))$$

 So, regressions are done by regressing all unique pairs with coefficients constrained to be equal

Methodology (cont.)

- Constrained regressions on n*(n-1)/2-1 sets of equations
- EG: (Coal/NatGas + Oil/NatGas), (Coal/NatGas + Oil/Coal), (Oil/Coal + Oil/NatGas)
- Theoretically, any set of equations in parenthesis should give the same results as another set of equations in parenthesis
- Data comes from the EIA for each state in 2016
 - Factor input quantities are set to the amount of each used to generate electricity
 - Factor prices are set to the be the average cost of the each input
 - Coal given thousand tons, Natural gas in thousand McF, and oil in thousand barrels

 Table 1: Elasticity of Substitution for Fossil Fuels

	Dependent variable: Difference in Log Inputs							
	In (Coal/NatGas)	In(Coal/Oil)	In(Coal/NatGas)	In (Oil/Nat Gas)	In(Coal/Oil)	In(Oil/NatGas)		
$\ln(p_{natgas}/p_{coal})$	1.002*** (0.209)		1.013*** (0.210)					
$\ln(p_{oil}/p_{coal})$		1.002*** (0.209)			1.004*** (0.209)			
$\ln(p_{natgas}/p_{oil})$				1.013*** (0.210)		1.004*** (0.209)		
Constant	-2.429*** (0.398)	-1.782*** (0.190)	$-2.411^{***} (0.399)$	-0.623 (0.519)	-1.783*** (0.190)	-0.643 (0.517)		
State Dummies	✓	✓	✓	✓	✓	✓		
Observations	109	109	109	109	109	109		
R ² Chi ²	0.9284 1414***	0.9399 1732***	0.9284 1427***	0.8643 706***	0.9399 1725***	0.8642 701***		

Methodology - A Different Approach

CES Parameter Optimization

$$\min_{\theta,\phi,\alpha,\beta} \ || - \ln \left(Q_{elec} \right) + \ln (\theta) + \frac{1}{\phi} \cdot \ln \left(\alpha_{coal} X_{coal}^{\phi} + \alpha_{natgas} X_{natgas}^{\phi} + \alpha_{oil} X_{oil}^{\phi} \right) + \beta \cdot D_{state} ||_{2}^{2}$$

- Can estimate all parameters at once using non-linear least squares
- D_{state} represents indicator variables for each state
- Can also check fit statistics to see if CES functional form matches the data

Table 2: CES Parameter Estimation for Fossil Fuels - NLS

θ	1.144 (0.609)	0.676*** (0.0941)			
ϕ	0.917*** (0.0916)	0.900*** (0.0658)			
$\ln(lpha_{\it coal})$	0.533 (0.433)	1.147			
$\ln(lpha_{\it natgas})$	-1.323* (0.536)	-0.925*** (0.165)			
$\ln(lpha_{oil})$	1.308 (.)	-25.94 (.)			
State Dummies	✓				
Observations	518	518			
R ²	0.934	0.796			
Adj. R ²	0.928	0.795			

$\mathsf{CES} \to \mathsf{Cobb}\text{-}\mathsf{Douglas}$

$$\lim_{\phi \to 0} \theta \cdot \left(\sum_{i} \alpha_{i} \cdot X_{i}^{\phi} \right)^{1/\phi} = \theta \cdot \prod_{i} X_{i}^{\alpha_{i}}$$

- Elasticity of substitution $(\sigma = \frac{1}{1-\phi})$ varied by approach
 - Ratios between commodities led to σ around 1 (Cobb-Douglas)
 - Non-linear least squares led to estimates around 10 (strong substitutes)
- Could try estimating the Translog Function
 - ullet Second Order Taylor Polynomial of CES around $\phi=0$
 - ullet Works best when $\phi pprox 0 \implies$ true function is almost Cobb-Douglas

- Still working on getting production costs for solar and wind
- Currently have solar and wind elasticities are estimated using 3SLS
- Structural Equation Model:
 - Solar Supply
 - Solar Demand
 - Wind Supply
 - Wind Demand

- Instrumental Variables Approach
 - Are price and quantity changes caused by shifts in demand or shifts in supply?
 - $Q_s = \beta_1 \cdot P + \gamma \cdot Z + \varepsilon_1$
 - $Q_d = \beta_2 \cdot P + \varepsilon_2$
 - ullet Z is an instrument in the supply equation \implies identifies the demand curve
 - ullet Must have Z has independent of demand and good at explaining supply
- Instruments for each equation
 - Solar Supply: Average Solar Radiation, Land Area
 - Solar Demand: Population, Cooling/Heating Degree Days
 - Wind Supply: Average Wind Speed, Land Area
 - Wind Demand: Population, Cooling/Heating Degree Days

- Solar Supply Instruments
 - Solar energy generation \approx Efficiency \cdot Area \cdot Radiation
 - Taking logs \implies In(solar generation) is linear with In(solar radiation)
 - Land area does not seem to have a log-log relationship with ln(solar generation)
- Solar Demand Instruments
 - Population likely multiplicative with solar generation ⇒ linear function with logs
 - Cooling/Heating Degree Days number of degrees that a day's average temperature is below/above room temperature

- Wind Supply Instruments
 - Land area used again here
 - Wind generation seems to increase exponentially with wind speed in theory
 - ullet Again, taking logs $\Longrightarrow \ln(\textit{wind generation})$ is linear with (average wind speed)

• Wind Demand Instruments are the same as those for solar

 Table 3: Elasticities for Solar and Wind - 3SLS Estimation

	Dependent Variable				
	In(Solar Net Gen)	In(Solar Net Gen)	In(Wind Net Gen)	In(Wind Net Gen)	
log(Electricity Price)	14.46***	-4.619*	4.997***	-16.98***	
(cents/kWh)	(1.597)	(1.911)	(1.487)	(4.086)	
$\log(\text{Average Solar Radiation}) \ (kWh/m^2)$	101.5* (51.33)				
$Log(Average\;Wind\;Speed)$ (m/s)			0.678*** (0.0811)		
Land Area (m^2)	1.14e-11*** (1.16e-12)		1 41e-11*** (9 79e-13)		
Log(Population)		1.085*** (0.136)		1.166*** (0.286)	
Log(Cooling Degree Days)		-0.164 (0.102)		-0.322 (0.191)	
Log(Heating Degree Days)		-0.169 (0.101)		-0.0660 (0.182)	
Constant	-66.97*** (7.367)	7.541 (7.963)	-24.11*** (6.961)	65.21*** (16.81)	
State Dummies	✓	✓	✓	✓	
Obs	504	504	504	504	
Chi ²	109.3***	81.32***	76.64***	41.26***	

Future Work

- Working on non-linear least squares approach for renewables
- Adding biomass, hydroelectric, nuclear, and geothermal elasticities
- Elasticity of substitution between clean and dirty energy
- Can verify final results with price elasticity estimates

Questions?