한양대학교 인공지능연구실			
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild			
210118_LabSeminar 강사무엘			

Abstract

The method is based on an **autoencoder** that factors each input image into depth, texture, viewpoint and illumination.

Author model objects that are probably, but not certainly, symmetric **by predicting a symmetry probability map**, learned end-to-end with the other components of the model.

- 1. Author use the fact that many object categories are bilaterally symmetric (양쪽 대칭)
- 2. The appearance of object instances is never perfectly symmetric. Model also estimates, for each pixel in the input image, a confidence score that explains the probability of the pixel having a symmetric counterpart in the image (conf σ , σ')
- 3. Choose high confidence score and use it

$$\hat{\mathbf{I}} = \Pi\left(\Lambda(a, d, l), d, w\right)$$

$$\hat{\mathbf{I}}' = \Pi\left(\Lambda(a', d', l), d', w\right), \quad a' = \text{flip } a, \quad d' = \text{flip } d.$$

α : texture , d: depth map, l : global light direction

w: viewpoint

 Π : lighting fucntion Λ : reprojection fuction

view w depth d depth d' light l texture a texture a'
shading

Renderer

canonical view

econstruction I

한양대학교 인공지능연구실

Experiment

Training Data : CelebA, BFM

Test Data: 3DFAW

Metrics : Depth Correlation

Encoder (5 layer) + Decoder(5 layer)	Depth map (# of outChannel :1, non-activation) Texture (# of outChannel :3)
Encoder (6 layer)	Viewpoint (# of outChannel :6) Lighting & Reprojection Function (# of outChannel :4)
Encoder (5 layer) + Decoder(5 layer)	Confidence Map (# of outChannel : 2)

	Depth Corr. ↑
Ground truth AIGN [61] (supervised, from [40]) DepthNetGAN [40] (supervised, from [40])	50.81 58.68
MOFA [57] (model-based, from [40]) DepthNet [40] (from [40]) DepthNet [40] (from GitHub)	15.97 26.32 35.77
Ours Ours (w/ CelebA pre-training)	48.98 54.65

Figure 4: Reconstruction of faces, cats and cars.

14

Conclusion

- 1. Novel Method for 3D reconstruction by using only 2D Image
- 2. Only using (close to) symmetric Image Data
- 3. Ignore shadows leads to inaccurate reconstructions under extreme lighting conditions

