SỞ GD&ĐT VĨNH PHÚC TRƯỜNG THPT NGÔ GIA TƯ

KÌ THI KSCL ÔN THI THPT QUỐC GIA LẦN III NĂM HOC 2016 - 2017

Đề thi môn: Toán học

Mã đề thi: 132

Thời gian làm bài 90 phút, không kể thời gian giao đề (Đề thi gồm 50 trắc nghiệm)

Câu 1: Tìm tập nghiệm của bất phương trình $\log_2(x-3) + \log_2 x \ge 2$.

A.
$$(3;+\infty)$$
.

B.
$$(-\infty; -1] \cup [4; +\infty)$$
. **C.** $[4; +\infty)$. **D.** $(3; 4]$.

Câu 2: Cho hàm số $y = x^4 + 2x^2 + 3$. Tìm khẳng định **sai**?

A. Hàm số đạt cực đại tại x = 0.

B. Hàm số đồng biến trên khoảng $(-\infty;0)$.

C. Hàm số đạt cực tiểu tại x = 0.

D. Hàm số nghịch biến trên khoảng $(0; +\infty)$.

Câu 3: Cho hàm số $y = x^3 - 3x + 2$ có đồ thị (C). Gọi d là đường thẳng đi qua A(3;20) và có hệ số góc m. Giá trị của m để đường thẳng d cắt (C) tại 3 điểm phân biệt là

A.
$$m \ge \frac{15}{4}$$
.

B.
$$m > \frac{15}{4}, m \neq 24$$

A.
$$m \ge \frac{15}{4}$$
. **B.** $m > \frac{15}{4}$, $m \ne 24$. **C.** $m < \frac{15}{4}$, $m \ne 24$. **D.** $m < \frac{15}{4}$.

D.
$$m < \frac{15}{4}$$
.

Câu 4: Hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao $SA = a\sqrt{6}$. Thể tích khối chóp là

A.
$$V = \frac{a^3 \sqrt{2}}{2}$$
. **B.** $V = \frac{a^3 \sqrt{6}}{3}$. **C.** $V = \frac{a^2 \sqrt{2}}{2}$. **D.** $V = 2a^3 \sqrt{6}$.

B.
$$V = \frac{a^3 \sqrt{6}}{3}$$

C.
$$V = \frac{a^2 \sqrt{2}}{2}$$

D.
$$V = 2a^3 \sqrt{6}$$

Câu 5: Điều kiện của tham số m để đồ thị của hàm số $y = 2x^3 - 6x - 2m$ cắt trục hoành tại ít nhất hai điểm phân biệt là

A.
$$\begin{bmatrix} m \le -2 \\ m \ge 2 \end{bmatrix}$$
. **B.** $m = \pm 2$. **C.** $-2 < m < 2$. **D.** $-2 \le m \le 2$.

B.
$$m = \pm 2$$
.

$$\mathbf{C}_{\bullet} - 2 < m < 2$$
.

D.
$$-2 \le m \le 2$$

Câu 6: Trong không gian với hệ trục Oxyz, mặt phẳng (Q) đi qua ba điểm không thẳng hàng M(2;2;0), N(2;0;3), P(0;3;3) có phương trình:

A.
$$9x + 6y + 4z - 30 = 0$$

B.
$$9x - 6y + 4z - 6 = 0$$

C.
$$-9x - 6y - 4z - 30 = 0$$

D.
$$-9x + 6y - 4z - 6 = 0$$

Câu 7: Một đoàn tàu chuyển động thẳng khởi hành từ một nhà ga. Quãng đường $s(m\acute{e}t)$ đi được của đoàn tàu là một hàm số của thời gian t (giay), hàm số đó là $s = 6t^2 - t^3$. Thời điểm t (giây) mà tại đó vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất là

A.
$$t = 4s$$
.

B.
$$t = 2s$$
.

C.
$$t = 6s$$
.

D.
$$t = 8s$$
.

Câu 8: Tìm tất cả các giá trị của tham số m để hàm số $y = \frac{1}{3}x^3$ mx + đồng biến trên $(-\infty; +\infty)$?

A.
$$m \in (-\infty; +\infty)$$
. **B.** $m \le 0$.

B.
$$m \le 0$$

C.
$$m \ge 0$$
.

D.
$$m = 0$$

Câu 9: Tìm tất cả các giá trị của tham số m để phương trình $9^x - 2m \cdot 3^x + 2m = 0$ có hai nghiệm phân biệt x_1 ; x_2 sao cho $x_1 + x_2$ 3= là

A.
$$m = \frac{3}{2}$$
. **B.** $m = \frac{27}{2}$. **C.** $m = 3\sqrt{3}$. **D.** $m = \frac{9}{2}$.

B.
$$m = \frac{27}{2}$$
.

C.
$$m = 3\sqrt{3}$$
.

D.
$$m = \frac{9}{2}$$
.

Câu 10: Kết quả tích phân $I = \int_{0}^{1} (2x + 3)e^{x} dx$ được viết dưới dạng I = ae + b với a, b là các số hữu tỉ. Tìm khẳng định đúng.

A.
$$a^3 + b^3 = 28$$
.

B.
$$a+2b=1$$
. **C.** $a-b=2$.

C.
$$a - b = 2$$

D.
$$ab = 3$$
.

Câu 11: Tính diện tích S của miền hình phẳng giới hạn bởi đồ thị của hàm số $y = x^3$ $3x^2$ và trục hoành.

A.
$$S = \frac{13}{2}$$
.

B.
$$S = \frac{29}{4}$$
.

A.
$$S = \frac{13}{2}$$
. **B.** $S = \frac{29}{4}$. **C.** $S = \frac{27}{4}$. **D.** $S = \frac{27}{4}$.

D.
$$S = \frac{27}{4}$$

Câu 12: Cho bất phương trình: $\log_4 x \cdot \log_2(4x) + \log_{\sqrt{2}}\left(\frac{x^3}{2}\right) < 0$. Nếu đặt $t = \log_2 x$, ta được

bất phương trình nào sau đây?

A.
$$t^2 + 14t - 4 < 0$$
. **B.** $t^2 + 11t - 3 < 0$. **C.** $t^2 + 14t - 2 < 0$. **D.** $t^2 + 11t - 2 < 0$.

B.
$$t^2 + 11t - 3 < 0$$
.

$$\mathbf{C.} \ t^2 + 14t - 2 < 0.$$

D.
$$t^2 + 11t - 2 < 0$$

Câu 13: Hàm số $y = xt^3 - 3x - 5$ đồng biến trên khoảng nào sau đây?

A.
$$(1;+\infty)$$
.

B.
$$(-1;1)$$
.

$$\mathbf{C}.\ \left(-\infty;-1\right).$$
 $\mathbf{D}.\ \left(-\infty;1\right).$

D.
$$(-\infty;1)$$

Câu 14: Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x - y - 2z + 6 = 0. Khẳng định nào sau đây sai?

A. Điểm M(1; 3; 2) thuộc mặt phẳng (P).

B. Một vecto pháp tuyến của mặt phẳng (P) là $\vec{n} = (2; \frac{1}{2}; \frac{2}{2})$.

C. Mặt phẳng (P) cắt trục hoành tại điểm H(-3;0;0)

D. Khoảng cách từ gốc tọa độ O đến mặt phẳng (P) bằng 2.

Câu 15: Cho hàm số: $y = \frac{\sqrt{1-x^2}}{x}$, tìm khẳng định đúng.

- **A.** Đồ thị hàm số có 2 đường tiệm cận ngang là các đường thẳng y = 1, y = 4.
- **B.** Đồ thị hàm số chỉ có một tiệm cận đứng là đường thẳng x = 0
- C. Đồ thị hàm số có 3 đường tiệm cận là các đường thắng x = 0; y = 1, y = 1.
- **D.** Đồ thị hàm số không có tiệm cận.

Câu 16: Kết quả tính đạo hàm nào sau đây sai?

$$\mathbf{A.} \left(e^{5x} \right)' = e^{5x}.$$

B.
$$(2^x)' = 2^x \ln 2$$
.

$$\mathbf{C.} \left(\ln x \right)' = \frac{1}{x}.$$

A.
$$(e^{5x})' = e^{5x}$$
. **B.** $(2^x)' = 2^x \ln 2$. **C.** $(\ln x)' = \frac{1}{x}$. **D.** $(\log_3 x)' = \frac{1}{x \ln 3}$.

Câu 17: Phương trình $2\log_9 x + \log_3 (10 - x) = \log_2 9.\log_3 2$ có hai nghiệm. Tích của hai nghiệm đó bằng

Câu 18: Nếu $a^{\frac{1}{2}} = 2$, $b^{\frac{1}{3}}$ 3 th $\pm t$ doing:

Câu 19: Đồ thị trong hình bên dưới là đồ thị của hàm số $y = x^4 + 4x^2$. Dựa vào đồ thị bên hãy tìm tất cả các giá trị thực của tham số m sao cho phương trình $x^4 - 4x^2 + m - 2 = 0$ có đúng hai nghiệm thực phân biệt?

A.
$$m < 0, m = 4$$
.

B.
$$m < 0$$
.

C.
$$m < 2; m = 6$$
. **D.** $m < 2$.

D.
$$m < 2$$
.

Câu 20: Hàm số $y = \sqrt{3-2^{x+1}-4^x}$ có tập xác định là

$$\mathbf{A.} \ \mathbb{R}$$
 .

B.
$$[0; +\infty)$$
.

D.
$$(-\infty; 0]$$
.

Câu 21: Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của đỉnh A' lên trên mặt phẳng đáy trùng với trung điểm H của cạnh BC. Gọi M là trung điểm của cạnh AB, góc giữa đường thắng A'M với mặt phẳng (ABC) bằng 60° . Tính thế tích khối lăng trụ.

A.
$$V = \frac{a^3 \sqrt{3}}{6}$$
. **B.** $V = \frac{a^3}{8}$. **C.** $V = \frac{3a^3}{4}$. **D.** $V = \frac{3a^3}{8}$.

B.
$$V = \frac{a^3}{8}$$
.

C.
$$V = \frac{3a^3}{4}$$
.

D.
$$V = \frac{3a^3}{8}$$

Câu 22: Hàm số $F(x) = 3x^4 + \sin x + 3$ là một nguyên hàm của hàm số nào sau đây?

A.
$$f(x) = 12x^3 + \cos x + 3x$$

B.
$$f(x) = 12x^3 \cos x$$

C.
$$f(x) = 12x^3 \cos x$$
 D. $f(x) = 12x^3 - \cos x + 3x$

Câu 23: Thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi Parabol (P): $y = x^2$ và đường thẳng d: y = 2x quay xung quanh trục Ox bằng:

A.
$$\pi \int_{0}^{2} (x^{2} - 2x)^{2} dx$$
. **B.** $\pi \int_{0}^{2} (2x - x^{2}) dx$. **C.** $\pi \int_{0}^{2} 4x^{2} dx + \pi \int_{0}^{2} x^{4} dx$. **D.** $\pi \int_{0}^{2} 4x^{2} dx - \pi \int_{0}^{2} x^{4} dx$.

Câu 24: Cho hàm số $y = \frac{1}{2}x$ \sqrt{x} , tìm khẳng định đúng?

- **A.** Hàm số đã cho có một cực tiểu duy nhất là y = 1.
- **B.** Hàm số đã cho chỉ có cực đại duy nhất là $y = \frac{1}{2}$.
- C. Hàm số đã cho chỉ có một cực tiểu duy nhất là $y = \frac{1}{2}$.
- D. Hàm số đã cho không có cực trị.

Câu 25: Công thức nào sau đây sai?

A.
$$\int e^{3x} dx = \frac{1}{3}e^{3x}$$
 C. +

B.
$$\int \frac{1}{\cos^2 x} dx = \tan x \quad C . +$$

$$\mathbf{C.} \int \frac{1}{x} \mathrm{d}x = \ln x \quad C. +$$

$$\mathbf{D.} \int \sin 2x dx = \frac{1}{2} \cos 2x \quad C.$$

Câu 26: Đồ thị của hàm số nào sau đây có ba đường tiệm cận?

$$\mathbf{A.} \ \ y = \frac{x}{\sqrt{x^2 - 4}} \, .$$

A.
$$y = \frac{x}{\sqrt{x^2 - 4}}$$
. **B.** $y = \frac{\sqrt{x}}{x^2 - 3x + 2}$. **C.** $y = \frac{\sqrt{x}}{x^2 - 2x - 3}$. **D.** $y = \frac{x + 3}{2x - 1}$.

C.
$$y = \frac{\sqrt{x}}{x^2 - 2x - 3}$$

D.
$$y = \frac{x+3}{2x-1}$$

Câu 27: Tìm tập tất cả các giá trị của a để $\sqrt[2]{a^5} > \sqrt[7]{a^2}$?

A.
$$\frac{5}{21} < a < \frac{2}{7}$$
. **B.** $0 < a < 1$. **C.** $a > 1$. **D.** $a > 0$.

B.
$$0 < a < 1$$

C.
$$a > 1$$

D.
$$a > 0$$
.

Câu 28: Xét tích phân $I = \int_{0}^{1} (2x^2 + 4)e^{2x} dx$. Nếu đặt $u = 2x^2 + 4$, $-v' = e^{2x}$, ta được tích phân

$$I = \phi(x)\Big|_0^1 \int_0^1 2xe^{-2x} dx$$
, trong đó:

A.
$$\phi(x) = (2x^2 \ 4)e^{2x}$$
.

B.
$$\phi(x) = (x^2 \ 2)e^{2x}$$
.

C.
$$\phi(x) = (x^2 \ 2)e^x$$
. **D.** $\phi(x) = \frac{1}{2}(2x^2 \ 4)e^x$.

Câu 29: Tiếp tuyến của đồ thị hàm số $y = 4x^3 - 3x + 4$ tại điểm có hoành độ bằng 1 có phương trình:

$$A. v = 9x 11$$

B.
$$y = 9x - 7$$

C.
$$y = 9x + 11$$
.

A.
$$y = 9x \ 11$$
. **B.** $y = 9x \ 7$. **C.** $y = 9x \ 11$. **D.** $y = 9x \ 7$.

A. $m = 1$. B. $m = -1$. C. $m = 3$.	D. $m = 2$.
cực trị nằm trên đường thẳng d khi:	
Câu 30: Cho đường thẳng $d: y=4x$ 1. Đồ thị của hàm số $y=x^3$ 3.	Bm∗ 1 có hai điểm

Câu 31: Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Diện tích hình phẳng giới hạn bởi đường cong y = f(x), trục hoành, các đường thẳng x = a, x b là=

A.
$$\int_{a}^{b} |f(x)| dx.$$
B.
$$\int_{a}^{b} f(x) dx.$$
C.
$$\int_{b}^{a} f(x) dx.$$
D.
$$-\int_{a}^{b} f(x) dx.$$

Câu 32: Giải phương trình: $3^x - 8.3^{\frac{x}{2}} + 15 = 0$

A.
$$\begin{bmatrix} x = \log_3 5 \\ x = \log_3 25 \end{bmatrix}$$
B.
$$\begin{bmatrix} x = 2 \\ x = \log_3 5 \end{bmatrix}$$
C.
$$\begin{bmatrix} x = 2 \\ x = \log_3 25 \end{bmatrix}$$
D.
$$\begin{bmatrix} x = 2 \\ x = 3 \end{bmatrix}$$

Câu 33: Diện tích miền phẳng giới hạn bởi các đường: $y = 2^x$, y = +x 3 và y = 1 là:

A.
$$S = \frac{1}{\ln 2} - \frac{1}{2}$$
. **B.** $S = \frac{1}{\ln 2} - 1$. + **C.** $S = \frac{47}{50}$. **D.** $S = \frac{1}{\ln 2} - 3$. +

Câu 34: Cho hình trụ có hai đáy là hai đường tròn (O) và (O'), chiều cao bằng 2R và bán kính đáy R. Một mặt phẳng (α) đi qua trung điểm của OO' và tạo với OO' một góc 30° , (α) cắt đường tròn đáy theo một dây cung. Tính độ dài dây cung đó theo R.

A.
$$\frac{4R}{3\sqrt{3}}$$
. **B.** $\frac{2R\sqrt{2}}{\sqrt{3}}$. **C.** $\frac{2R}{\sqrt{3}}$. **D.** $\frac{2R}{3}$.

Câu 35: Tất cả các giá trị thực của tham số m để hàm số $y = 2x^3 + 3(m-1)x^2 + 6(m-2)x + 2017$ nghịch biến trên khoảng (a;b) sao cho b-a>3 là

A.
$$m > 6$$
. **B.** $m = 9$. **C.** $m < 0$. **D.** $m < 0$. $m > 6$.

Câu 36: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, AC = 5a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy, cạnh bên SB tạo với đáy một góc bằng 60° . Tính theo a thể tích của khối chóp S.ABCD.

A.
$$2\sqrt{2}a^3$$
. **B.** $4\sqrt{2}a^3$. **C.** $6\sqrt{2}a^3$. **D.** $2a^3$.

Câu 37: Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x-2y+2x+9=0. Mặt cầu (S) tâm O tiếp xúc với mặt phẳng (P) tại H(a;b;c), tổng a+b+c bằng:

Câu 38: Cho hình chóp tứ giác đều S.ABCD có thể tích $V = \frac{\sqrt{2}}{6}$. Gọi M là trung điểm của cạnh SD. Nếu $SB \perp SD$ thì khoảng cách từ B đến mặt phẳng (MAC) bằng:

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{\sqrt{2}}$$
.

C.
$$\frac{2}{\sqrt{3}}$$
.

D.
$$\frac{3}{4}$$
.

Câu 39: Cho mặt cầu (S) ngoại tiếp một khối lập phương có thể tích bằng 1. Thể tích khối cầu (S) là:

A.
$$\frac{\pi\sqrt{6}}{6}$$

B.
$$\frac{\pi\sqrt{2}}{3}$$

$$\mathbf{C}.\frac{\pi}{6}$$

D.
$$\frac{\pi\sqrt{3}}{2}$$

Câu 40: Một hình nón có bán kính đường tròn đáy bằng 40 cm, độ dài đường sinh bằng 44cm. Thể tích khối nón này có giá trị gần đúng là

A.
$$30700cm^3$$
.

B.
$$92090cm^3$$
.

C.
$$30697cm^3$$
.

D.
$$92100cm^3$$
.

Câu 41: Hàm số $y = \frac{x^2 - 3x}{x + 1}$ giá trị lớn nhất trên đoạn [0,3] là

Câu 42: Một ngôi biệt thự có 10 cây cột nhà hình trụ tròn, tất cả đều có chiều cao bằng 4,2~m. Trong đó, 4 cây cột trước đại sảnh có đường kính bằng 40~cm, 6 cây cột còn lại bên thân nhà có đường kính bằng 26~cm. Chủ nhà dùng loại sơn giả đá để sơn 10 cây cột đó. Nếu giá của một loại sơn giả đá là $380.000~d^2/m^2$ (kể cả phần thi công) thì người chủ phải chi ít nhất bao nhiêu tiền để sơn 10 cây cột nhà đó (đơn vị đồng)?

Câu 43: Xét tích phân $I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x dx}{\sqrt{1 + \cos x}}$. Nếu đặt $t = \sqrt{1 + \cos x}$, ta được:

A.
$$I = \int_{\sqrt{2}}^{1} \frac{4t^3 - 4t}{t} dt$$
. **B.** $I = 4 \int_{1}^{\sqrt{2}} (t^2 - 1) dt$. **C.** $I = \int_{\sqrt{2}}^{1} \frac{-4t^3 + 4t}{t} dx$. **D.** $I = 4 \int_{1}^{\sqrt{2}} (x^2 - 1) dx$.

Câu 44: Trong không gian với hệ tọa độ Oxyz, cho mặt $(S): x^2 + y^2 + z^2 - 4x + 2y + 6z - 2 = 0$. Mặt cầu (S) có tâm I và bán kính R là:

A.
$$I(-2;1;3), R = 2\sqrt{3}$$
.

B.
$$I(2;-1;-3), R = \sqrt{12}$$
.

C.
$$I(2;-1;-3)$$
, $R=4$.

D.
$$I(-2;1;3), R=4$$
.

Câu 45: Trong không gian với hệ tọa độ Oxyz, đường thẳng d đi qua hai điểm M(2; 3; 4), N(3; 2; 5) có phương trình chính tắc là

A.
$$\frac{x-3}{1} = \frac{y-2}{-1}$$
 $\frac{z-5}{1}$

B.
$$\frac{x-2}{1} = \frac{y-3}{-1} = \frac{z-4}{-1}$$

C.
$$\frac{x-3}{-1} = \frac{y-2}{-1} = \frac{z-5}{1}$$

D.
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{1}$$

Câu 46: Trong không gian với hệ tọa độ Oxyz, tọa độ giao điểm của mặt phẳng (P): 2x+y-z-2=0 và đường thẳng $\Delta: \frac{x+1}{1} = \frac{y-2}{-2} = \frac{z}{1}$ là M(a;b;c). Tổng a+b+cbằng

$$A. -2.$$

$$\mathbf{R}$$
 -1

Câu 47: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (Q): 2x + 2y - z - 4 = 0. Gọi M, N, P lần lượt là giao điểm của mặt phẳng (Q) với ba trục tọa độ Ox, Oy, Oz. Đường cao MH của tam giác MNP có một vécto chỉ phương là

A.
$$\vec{u} = (3;4;2)$$
. **B.** $\vec{u} = (2;4;2)$. **C.** $\vec{u} = (5;4;2)$. **D.** $\vec{u} = (-5;-4;2)$.

B.
$$\vec{u} = (2; 4; 2)$$

C.
$$\vec{u} = (5; 4; 2)$$
.

D.
$$\vec{u} = (-5; -4; 2)$$

Câu 48: Phương trình $5^{2x+1} - 13.5^x + 6 = 0$ có hai nghiệm là x_1 , x_2 , khi đó, tổng $x_1 + x_2$ bằng

A.
$$1 - \log_5 6$$
.

B.
$$-2 + \log_5 6$$

$$C. 2 - \log_5 6$$

A.
$$1 - \log_5 6$$
. **B.** $-2 + \log_5 6$. **C.** $2 - \log_5 6$. **D.** $-1 + \log_5 6$.

Câu 49: Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $f(x) = 2x + 4\sqrt{6} + x$ trên đoạn [-3; 6]. Tổng M + m có giá trị là

$$\mathbf{C}_{\bullet} - 12$$
.

D.
$$-4$$

Câu 50: Có bao nhiều giá trị của a trong đoạn $\left[\frac{\pi}{4}; 2\pi\right]$ thỏa mãn $\int_{a}^{a} \frac{\sin x}{\sqrt{1+3\cos x}} dx = \frac{2}{3}$.

A. 2.

B. 1.

C. 4.

D. 3.

HÊT