1 Семинар 6: Бодлого, Дасгал

- 1. Хэрэв $\vec{a}=2\vec{i}-3\vec{j}+\vec{k},\,\vec{b}=\vec{j}-\vec{k}$ ба $\vec{c}=6\vec{i}-2\vec{j}+3\vec{k}$ бол тоон утга буюу векторын компонентуудыг ол.
 - **a.** $\vec{a} \cdot \vec{b}$
 - **b.** $(\vec{b} \cdot \vec{c})\vec{a}$
 - **c.** $(2\vec{a} 3\vec{b}) \cdot \vec{c}$
 - **d.** $2\vec{i} \cdot \hat{a}$
 - e. $|2\vec{a}|\vec{b}\cdot\vec{c}$
 - **f.** $(3\vec{a} 4\vec{c}) \cdot (2\vec{i} + 3\vec{a} 2\vec{b})$
 - $\mathbf{g}. \ \vec{c} \cdot \hat{c}$
 - h. $\frac{(105\vec{a} + 240\vec{b}) \cdot (105\vec{a} + 240\vec{b})}{|105\vec{a} + 240\vec{b}|^2}$
 - i. $|\vec{a} \vec{b} + \vec{k}|(\vec{j} + \vec{c}) \cdot \vec{k}$
 - 1. $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} (\vec{a} + \vec{c}) \cdot \vec{b}$
- 2. Хэрэв $\vec{a}=(3,1,4),\,\vec{b}=(-1,2,0)$ ба $\vec{c}=(-2,-3,5)$ бол тоон утга буюу векторын компонентуудыг ол.
 - a. $\vec{b} \times \vec{c}$
 - **b.** $(-3\vec{a}) \times (2\vec{b})$
 - **c.** $\vec{a} \cdot (\vec{b} \times \vec{c})$
 - **d.** $\hat{a} \times \hat{c}$
 - e. $((3\vec{a}) \times \vec{c}) + (\vec{a} \times \vec{b})$
 - f. $\vec{a} \times (3\vec{b} \vec{c})$
 - g. $\frac{\vec{c} \times \vec{a}}{|\vec{a} \times \vec{b}|}$
 - h. $(\vec{a} \times \vec{c}) (\vec{a} \times \vec{b}) + (\vec{a} \times (2\vec{a} + \vec{b}))$
 - i. $(\vec{a} \times \vec{b}) \times \vec{c}$
 - 1. $\vec{a} \times (\vec{b} \times \vec{c})$
- 3. Өгөгдсөн векторууд перпендикуляр эсэхийг тогтоо.
 - **a.** (1,2), (3,5)
 - **b.** (2,4), (-8,4)
 - c. (1,3,6), (-2,1,-4)
 - **d.** (2,3,-6), (-6,6,1)
- 4. Өгөгдсөн векторуудын хоорондох өнцгийг ол.
 - **a.** (3,4), (2,-5)
 - **b.** (1,6), (-4,7)
 - $\mathbf{c}.\ (4,2,3),\ (1,5,6)$
 - **d.** (3,1,-1), (-2,1,4)
 - **e.** (2,0,5), (0,3,0)

f.
$$(1,3,-2), (-2,-6,4)$$

- 5. Тухайн векторын компонентуудыг ол.
 - **а.** (1,3,5), (-2,1,4) векторуудад перпендикуляр байх
 - **b.** Oy тэнхлэг ба $(2,4,-3),\ (1,5,6)$ цэгүүдийг холбох векторт перпендикуляр байх
 - **с.** (-1,0,3), (5,1,2) ба (-6,2,4) цэгүүд дээр оройтой гурвалжинд перпендикуляр байх
- 6. (??) тэнцэтгэл зөв эсэхийг шалга.
- 7. (??) тэнцэтгэлийг ашиглан

$$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2|\vec{a}|^2 + 2|\vec{b}|^2$$

тэнцэтгэлийг батал. Энэ тэнцэтгэлийг ихэвчлэн параллелограммын дүрэм гэдэг.

- 8. Өгөгдсөн векторын чиглүүлэгч өнцгүүдийг ол.
 - **a.** (1, 2, -3)
 - **b.** (0,1,-3)
 - c. (-1, -2, 6)
 - $\mathbf{d}.\ (-2,3,4)$
- 9. Вектор үржвэр ассоциатив биш өөрөөр хэлбэл ерөнхий тохиолдолд $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$ гэж харуул.
- 10. а. Хэрэв $\vec{a} \neq \vec{0}$ бол $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ хоёр нөхцөл үнэн гэдгээс $\vec{b} = \vec{c}$ байна гэж харуул.
 - b. (a.) өгүүлбэрт буй нөхцөлүүдийн аль нэг үнэн, харин нөгөө нөхцөл үл биелэгдэх бол \vec{b} нь \vec{c} вектортой тэнцэхгүй гэж харуул.
- 11. $\vec{a} \cdot \vec{b} \times \vec{c}$ тоог \vec{a} ба \vec{b} , \vec{c} векторуудын холимог уржвэр юм.
 - а. Хэрэв $\vec{a} = (6, -1, 0)$ ба $\vec{b} = (1, 3, 4), \ \vec{c} = (-2, -1, 4)$ бол $\vec{a} \cdot \vec{b} \times \vec{c}$ холимог уржвэрийн утгыг ол.
 - b. $\vec{a} \cdot \vec{b} \times \vec{c} = \vec{a} \times \vec{b} \cdot \vec{c}$ тэнцэтгэлийг батал.
 - с. $|\vec{a} \cdot \vec{b} \times \vec{c}|$ нь Зураг1-т үзүүлсэн параллелепипедийн эзлэхүүнтэй тэнцүү болохыг харуул.
 - d. Тэг биш \vec{a} ба \vec{b} , \vec{c} гурван вектор нэг хавтгай дээр орших зайлшгүй ба хүрэлцээтэй нөхцөл бол $\vec{a} \cdot \vec{b} \times \vec{c} = 0$ гэдгийг шалга.
- 12. Өгөгдсөн адилтгалуудыг батал.
 - **a.** $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{r}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{r}) (\vec{a} \cdot \vec{r})(\vec{b} \cdot \vec{c})$
 - **b.** $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$
- 13. Зураг 2-т үзүүлсэн гурвалжны хувьд $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ синусийн теоремыг вектор ашиглан батал.

Зураг 1

- 14. $(|\vec{b}|\vec{a}+|\vec{a}|\vec{b})/||\vec{a}|\vec{b}+|\vec{b}|\vec{a}|$ вектор нэгж вектор бөгөөд \vec{a} ба \vec{b} векторуудын хоорондох өнцгийг таллан хуваана гэж үзүүл.
- 15. Өгөгдсөн оройнууд бүхий гурвалжны талбайг ол.
 - **a.** (1,0), (4,2), (2,6)
 - **b.** (-1,0,3), (5,1,2), (-6,2,4)
 - c. (1,1,1), (-3,4,-2), (-1,-2,3)
 - **d.** (1,2,3), (3,5,10), (-3,-4,-11)
- 16. Өгөгдсөн оройнууд бүхий параллелограммын талбайг ол.
 - **a.** (1,2,3), (4,3,7), (-1,3,6), (2,4,10)
 - **b.** (1, -2, 4), (3, 5, 7), (4, 6, 8), (2, -1, 5)
- 17. $\vec{b}=(1,-4,3)$ векторын заагдсан чиглэл дэх проекцыг (буюу компонент) ол.
 - **a.** (1, 2, -3)
 - **b.** (-1,2,3) цэгээс (4,-3,2) цэгт хүрэх чиглэлд
- 18. Хүчний моментыг ол.
 - а. (-1,4,2) цэгийг тойрон эргэх (1,3,2) цэгт үйлчлэх $\vec{F}=2\vec{i}+3\vec{j}-4\vec{k}$ хүчний момент
 - **b.** (2,1,-5) цэгийг тойрон эргэх (1,1,0) цэгт үйлчлэх $\vec{F}=\vec{i}+2\vec{j}$ хүчний момент
 - **с.** (-1,3,0) цэгийг тойрон эргэх (0,0,0) цэгт үйлчлэх $\vec{F}=-\vec{i}+3\vec{k}$ хүчний момент
 - **d.** (2,2,2) цэгийг тойрон эргэх (1,1,1) цэгт үйлчлэх $\vec{F}=3\vec{i}-\vec{j}+4\vec{k}$ хүчний момент
 - ${\bf e.}\ (2,0,0)$ цэгийг тойрон эргэх (0,1,3) цэгт үйлчлэх $\vec{F}=6\vec{i}$ хүчний момент
- 19. \hat{b} ба \hat{c} векторуудыг перпендикуляр эсэхийг шалгаж $\vec{a} = \lambda \hat{b} + \rho \hat{c}$ байх λ , ρ тоонуудыг ол.
 - а. $\hat{b} = (1/\sqrt{2}, 1/\sqrt{2}), \, \hat{c} = (1/\sqrt{2}, -1/\sqrt{2})$ ба $\vec{a} = (2,1)$
 - **b.** $\hat{b}=(\vec{i}-2\vec{j})/\sqrt{5},\,\hat{c}=(2\vec{i}+\vec{j})/\sqrt{5}$ fa $\vec{a}=3\vec{i}-2\vec{j}$
- 20. \hat{a} , \hat{b} ба \hat{c} векторууд хос хосоороо харилцан перпендикуляр эсэхийг шалгаж $\vec{r} = \lambda \hat{a} + \rho \hat{b} + \mu \hat{c}$ байх λ , ρ ба μ тоонуудыг ол.
 - a. $\hat{a}=(2,1,0)/\sqrt{5},\,\hat{b}=(-1,2,3)/\sqrt{14}$ fa $\hat{c}=(3,-6,5)/\sqrt{70},$ fa $\vec{r}=(1,3,-4)$
 - **b.** $\hat{a}=(\vec{i}+\vec{j}+\vec{k})/\sqrt{3},\,\hat{b}=(\vec{i}+\vec{j}-2\vec{k})/\sqrt{6}$ for $\hat{c}=(\vec{i}-\vec{j})/\sqrt{2},$ for $\vec{r}=2\vec{i}-\vec{k}$
- 21. $\vec{a}=(3,2),\ \vec{b}=(1,-3)$ ба $\vec{c}=(6,2)$ бол $\vec{b},\ \vec{c}$ векторууд перпендикуляр болохыг шалгаад, $\vec{a}=\lambda\vec{b}+\rho\vec{c}$ байх $\lambda,\ \rho$ тоонуудыг ол. \vec{b} ба \vec{c} нэгж векторууд биш гэдгийг шалгаарай.

- 22. Хэрэв $\vec{a}=(1,0,1),\,\vec{b}=(1,1,-1),\,\vec{c}=(-1,2,1)$ ба $\vec{r}=(-2,-3,4)$ бол $\vec{a},\,\vec{b}$ ба \vec{c} векторууд хос хосоороо харилцан перпендикуляр болохыг шалгаж $\vec{r}=\lambda\vec{a}+\rho\vec{b}+\mu\vec{c}$ байх $\lambda,\,\rho$ ба μ тоонуудыг ол. Өмнөх бодлогын адил $\vec{a},\,\vec{b}$ ба \vec{c} нэгж векторууд биш гэдгийг шалгаарай.
- 23. Хэрэв пүрш бүрэн агшсан үедээ (ачаа зүүгээгүй) l урттай байх ба энэ нь AC-ын уртаас бага бол Жишээ \ref{Mu} -т буй бодлогыг дахин бодно уу?
- 24. Oxy хавтгайн (5,5) ба (-2,3) координаттай цэгүүд дээр харгалзан q_1 ба q_2 цэнэгүүд (эерэг) байрлаж байв. Ox тэнхлэгийн дагуу x=1 байрлалаас x=-1 байрлал руу хөдөлж буй гурав дах q_3 цэнэгт (эерэг) q_1 ба q_2 цэнэгүүдийн цахилгаан статик орны хүчний зүгээс хийх нийт ажлыг ол.
- 25. Зураг 3-д бөмбөрцөг хэлбэртэй жижиг гарагийн хажуугаар пуужин нисэн өнгөрч байна. Ингэхдээ пуужин уг гарагт гравитацын хүчний нөлөөгөөр GmM/r^2 хэмжээгээр татагдана. Энд m ба M харгалзан пуужин болон жижиг гарагийн масс бөгөөд G гравитацын тогтмол, харин r нь пуужингаас жижиг гарагийн төв хүртэлх зай юм. Пуужин A цэгээс B цэг хүртэл шулуун замаар нисэхийн тулд гравитацын хүчний эсрэг хийх ажлыг тодорхойл.

27. Уян харимхайн коэффициентууд нь харгалзан k ба 2k байх хоёр пүрш C цэг дээр хоорондоо залгагдах ба тэдгээрийн нөгөө төгсгөлүүд A ба B цэгүүд дээр Зураг 4-д үзүүлсний адилаар бэхлэгджээ. Тэдгээр пүршний залгаа C цэг дээр байх үед хоёр пүрш сунгагдахгүй бас шахагдахгүй. Хэрэв залгаасыг CD шулууны дагуу AB-д перпендикуляраар татвал ямар ажил хийгдэх вэ?

Зураг 4

Зураг 3

A

R

Хариу

- 1 a. -4 b. (-10, 15, -5) c. 57 d. $4/\sqrt{14}$ e. $-10\sqrt{14}$ f. -178 g. 7 h. 1 i. $3\sqrt{29}$ l. 0
- **2** a. $10\vec{i} + 5\vec{j} + 7\vec{k}$ b. (48, 24, -42) c. 63 d. $(2\sqrt{247})^{-1}(17, -23, -7)$ e. (43, -73, -14) f. (-41, 11, 28) g. $1/\sqrt{129}(-17, 23, 7)$ h. (17, -23, -7) i. (1, 26, 16) l. (-10, 19, 5)
- **3 а.** Перпендикуляр биш **b.** Перпендикуляр **c.** Перпендикуляр биш **d.** Перпендикуляр
- **4 a.** 2.12 **b.** 0.684 **c.** 0.716 **d.** 2.20 **e.** $\pi/2$ **f.** π
- **5** a. $\lambda(1, -2, 1)$ b. $\lambda(9, 0, 1)$ c. $\lambda(3, -1, 17)$
- 7 **a.** 1.30, 1.01, 2.50 **b.** $\pi/2$, 1.25, 2.82 **c.** 1.73, 1.89, 0.36 **d.** 1.95, 0.980, 0.734

a. 108

14 a. 8 **b.**
$$\sqrt{299}/2$$
 c. $\sqrt{529}/2$ **d.** 0

15 a.
$$3\sqrt{35}$$
 b. $\sqrt{42}$

16 a.
$$-16/\sqrt{14}$$
 b. $22/\sqrt{51}$

17 b.
$$(-10, 5, -2)$$
 d. $(-5, 1, 4)$

18 b.
$$7/\sqrt{5}$$
, $4/\sqrt{5}$

19 b.
$$1/\sqrt{3}$$
, $4/\sqrt{6}$, $\sqrt{2}$

21 1,
$$-3$$
, 0

23
$$q_3(4\pi\epsilon_0)^{-1}[q_1(1/\sqrt{41}-1/\sqrt{61})+q_2(\sqrt{2}/6-1/\sqrt{10})]$$