Лекция 10

Шифрование информации. Стандартные алгоритмы шифрования

DES

(Data Encryption Standard)

□ Общеправительственный стандарт шифрования некритичной информации

DES

(Data Encryption Standard)

- □ симметричный алгоритм шифрования, разработанный фирмой IBM и утвержденный правительством США в 1977 году как официальный стандарт (FIPS 46-3).
- □ DES имеет
 - блоки по 64 бита и
 - 16 цикловую структуру сети Фейстеля,
 - **д**ля шифрования использует ключ с длиной **56** бит.
- □ Алгоритм использует комбинацию нелинейных (S-блоки) и линейных (перестановки E, IP, IP⁻¹) преобразований.

Блочный шифр

- Вход: блок размером п бит и k-битный ключ
- □ Алгоритм: шифрующее преобразование
- □ Выход: n-битный зашифрованный блок
- □ Примечание_1: преобразование таково, что незначительные различия входных данных приводят к существенному изменению результата.
- □ Примечание_2: Блочные шифры реализуются путём многократного применения к блокам исходного текста некоторых базовых преобразований.
- □ Примечание_3: Входной файл бинарный

Преобразования Сетью Фейстеля

- □ Преобразование над векторами (блоками) представляющими собой левую и правую половины регистра сдвига.
- В алгоритме DES используются
 - прямое преобразование сетью Фейстеля в шифровании и
 - обратное преобразование сетью Фейстеля в расшифровании

Прямое преобразование сетью Фейстеля

Обратное преобразование сетью Фейстеля

Схема шифрования алгоритма DES

- □ Исходный текст блок 64 бит.
- □ Процесс шифрования состоит в
 - начальной перестановке,
 - 16 циклах шифрования и
 - конечной перестановке.

Начальная перестановка IP

□ Исходный текст Т (блок 64 бит) преобразуется с помощью начальной перестановки ІР, определяемой таблицей

58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5	63	55	47	39	31	23	15	7

□ По таблице первые 3 бита результирующего блока **IP(T)** после начальной перестановки IP являются битами 58, 50, 42 входного блока T, а его 3 последние бита являются битами 23, 15, 7 входного блока

Циклы шифрования -16 циклов преобразования Фейстеля

- \Box T₀ = IP(T) = L₀R₀ (L₀-32 bit, R₀-32 bit)
- \square После і-й итерации: $T_{i-1} = L_{i-1} R_{i-1}$
- \Box $T_i = L_i R_i : L_i = R_{i-1}, R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$
- □ f функция шифрования

f – функция шифрования. f(R_{i-1}, k_i)

- Аргументы:
 R_{i-1} 32 bit,
 k_i 48 bit
- □ Результат:f(R_{i-1}, k_i) 32 bit
- □ Включает:
 - Функцию расширения Е,
 - преобразование S, состоящее из 8 преобразований S-блоков S1,...,S8
 - перестановку Р

Схема работы функции f

Функция расширения Е

- □ Расширяет 32-битовый вектор R_{i-1} до 48-битового вектора $E(R_{i-1})$ путём дублирования некоторых битов из R_{i-1}
- \square Порядок битов вектора $E(R_{i-1})$:
- □ Первые три бита вектора $E(R_{i-1})$ являются битами 32, 1, 2 вектора R_{i-1} . Последние 3 бита вектора $E(R_{i-1})$ это биты 31, 32, 1 вектора R_{i-1} .
- □ Биты 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32 дублируются.
- Полученный после перестановки блок $E(R_{i-1})$ складывается по модулю 2 с ключами k_i и затем представляется в виде восьми последовательных блоков $B_1, B_2, \dots B_8$.
- $\Box E(R_{i-1}) = B_1 B_2 ... B_8$

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

^{© 2010,} А.М.Кадан, кафедра системного программирования и компьютерной безопасности, ФаМИ, ГрГУ, Гродно, Беларусь

Преобразование S

$$E(R_{i-1}) = B_1 B_2 ... B_8 \Rightarrow B'_1 B'_2 ... B'_8$$

- \square Каждый B_i является 6-битовым блоком.
- Каждый из блоков B_j трансформируется в 4-битовый блок B'_j с помощью преобразований S_j .
- $lue{}$ Преобразования S_i определяются таблицей

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	s_1
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10	
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	S ₂
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15	
3	13		10 20												14		ам

Пусть $B_1 = 101111$, и мы хотим найти B_1 .

Первый и последний разряды B_1 являются двоичной записью числа a, 0 <= a <= 3, средние 4 разряда представляют число b, 0 <= b <= 15.

Двоичное представление числа (a,b) дает B_1 .

При $a = 11_2 = 3$, $b = 0111_2 = 7$, (3,7) = 7. Его двоичное

), А.М. Кадан, кафедра системного программиру редуставление $B_1=0111$.

Перестановка Р: $f(R_{i-1}, k_i) = P(B'_1 B'_2 ... B'_8)$

$$B'_1B'_2...B'_8$$
 - 32 bit $f(R_{i-1}, k_i)$ - 32 bit

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Согласно таблице, первые четыре бита вектора $f(R_{i-1}, k_i)$ — это биты 16, 7, 20, 21 вектора $B'_1B'_2...B'_8$

Генерирование ключей k_i Расширение ключа k (56 бит) до 64 бит

- □ Восемь битов, находящих в позициях 8, 16, 24, 32, 40, 48, 56, 64 добавляются в ключ к таким образом чтобы каждый байт (64 бита = 8 байт) содержал нечетное число единиц.
- Это используется для обнаружения ошибок при обмене и хранении ключей.
- □ Затем делают перестановку для расширенного ключа (кроме добавляемых битов 8, 16, 24, 32, 40, 48, 56, 64)

Перестановки расширенного ключа

57	49	41	33	25	17	9	1	58	50	42	34	26	18	C ₀
10	2	59	51	43	35	27	19	11	3	60	52	44	36	
63	55	47	39	31	23	15	7	62	54	46	38	30	22	D_0
14	6	61	53	45	37	29	21	13	5	28	20	12	4	

1. Перестановка определяется
двумя блоками C_0 и D_0 по 28 бит
каждый. Первые 3 бита C_0 есть
биты 57, 49, 41 расширенного
ключа. А первые три бита D_0 есть
биты 63, 55, 47 расширенного
ключа.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Число сдвига	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

14	17	11	24	1	5	3	28	15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2	41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56	34	53	46	42	50	36	29	32

- **2.** C_i , D_i i=1,2,3...получаются из C_{i-1} , D_{i-1} одним или двумя левыми циклическими сдвигами
- 3. Ключ k_i , i=1,...16 состоит из 48 бит, выбранных из битов вектора C_iD_i (56 бит) Первый и второй биты k_i есть биты 14, 17 вектора

Конечная перестановка IP^{-1}

 \square Действует на T_{16} и используется для восстановления позиции

40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26	33	1	41	9	49	17	57	25

Схема расшифрования

- При расшифровании данных все действия выполняются в обратном порядке.
- □ В 16 циклах расшифрования используется обратное преобразование сетью Фейстеля:

$$R_{i-1} = L_i$$

 $L_{i-1} = R_i + f(L_i, k_i)$

При расшифровании ключ k_i , i=1,...,16, функция f, перестановка IP и IP^{-1} такие же как и в процессе шифрования.

Режимы использования DES

Режимы использования DES

- □ Режим электронной кодовой книги (ECB — Electronic Code Book)
- □ Режим сцепления блоков (CBC Cipher Block Chaining)
- □ Режим обратной связи по шифротексту (CFB — Cipher Feed Back)
- □ Режим обратной связи по выходу (OFB Output Feed Back)

Режим электронной кодовой книги — ECB

Обычное использование DES как блочного шифра. Шифруемый текст разбивается на блоки, при этом, каждый блок шифруется отдельно, не взаимодействуя с другими блоками

Режим сцепления блоков

□ Каждый очередной блок C_i i>=1, перед зашифровыванием складывается по mod 2 со следующим блоком открытого текста M_{i+1} . Вектор C_0 — начальный вектор. Меняется ежедневно и хранится в тайне

Режим обратной связи по шифротексту

 \square В режиме CFB вырабатывается блочная «гамма» Z_0, Z_1, \dots $Z_i = DES_k(C_{i-1})$. $C_i = M_i \oplus Z_i$ Начальный вектор C_0 сохраняется в

Режим обратной связи по выходу

 \square Вырабатывается блочная «гамма» Z_0, Z_1, \ldots ,

$$\square$$
 $Z_i = DES_k(Z_{i-1})C_i = M_i \oplus Z_i$, i >= 1

Криптостойкость алгоритма DES

Выбор S-блоков. Требует соблюдения нескольких условий

- □ Каждая строка каждого блока должна быть перестановкой множества {0,1,2,.....,15}
- S-блоки не должны являться линейной или афинной функцией своих аргументов.
- Изменение одного бита на входе S-блока должно приводить к изменению по крайней мере двух битов на выходе.
- Для каждого S-блока и любого аргумента х значение S(x) и $S(x \oplus 001100_2)$ должны различаться по крайней мере двумя битами.

Полный перебор ключей

- □ Ключей всего 2⁵⁶ возможность их перебора
- □ В 1998 году The Electronic Foundation на специальном компьютере DES-Cracker, удалось взломать DES за 3 дня.

Слабые ключи

- □ Слабыми ключами называется ключи k такие что $DES_k(DES_k(x)) = x$, x 6лок 64 бит.
- □ Известны 4 слабых ключа. Для каждого слабого ключа существует 2^{32} «постоянные точки», то есть таких 64-битовых блоков х, в которых $DES_k(x) = x$

Слабые ключи(hexadecimal)	C ₀	D_0
0101-0101-0101	[0] ²⁸	[0] ²⁸
FEFE-FEFE-FEFE	[1] ²⁸	[1] ²⁸
1F1F-1F1F-0E0E-0E0E	[0] ²⁸	[1] ²⁸
E0E0-E0E0-F1F1-F1F1	[1] ²⁸	[0] ²⁸

Частично-слабые ключи

- Пары ключей (k_1,k_2) такие что $DES_{k1}(DES_{k2}(x))=x$
- Существуют 6 частично-слабых пар ключей. Для каждого из 12 частично-слабых ключей существуют 2^{32} «анти-постоянные точки», то есть такие блоки х, что $DES_k(x) = \tilde{x}$

C ₀	D_0	Пары частично-слабых ключей	C ₀	D_0
[01] ¹⁴	[01] ¹⁴	01FE-01FE-01FE-01FE,FE01-FE01-FE01	[10] ¹⁴	[10] ¹⁴
[01] ¹⁴	[01] ¹⁴	1FE0-1FE0-1FE0-1FE0,E0F1-E0F1-E0F1	[10] ¹⁴	[10] ¹⁴
[01] ¹⁴	[0] ²⁸	01E0-01E0-01F1-01F1,E001-E001-F101-F101	[10] ¹⁴	[0] ²⁸
[01] ¹⁴	[1] ²⁸	1FFE-1FFE-0EFE-0EFE,FE1F-FE1F-FE0E-FE0E	[0] ²⁸	[1] ²⁸
[0] ²⁸	[01] ¹⁴	O11F-011F-010E-010E,1F01-1F01-0E01-0E01	[0] ²⁸	[10] ¹⁴
[1] ²⁸	[01] ¹⁴	E0FE-E0FE-F1FE-F1FE,FEE0-FEE0-FEF1-FEF1	[1] ²⁸	[10] ¹⁴

Известные атаки на DES

Методы атаки	Известные откр. тексты	Выбранные отк. тексты	Объём памяти	Количество операций
Полный поиск	1	-	Незначительный	2 ⁵⁵
Линейный Криптоанализ	2 ⁴³ (85%)	-	Для текста	2 ⁴³
Линейный Криптоанализ	2 ³⁸ (10%)	-	Для текста	2 ⁵⁰
Диффер. Криптоанализ	-	2 ⁴⁷	Для текста	2 ⁴⁷
Диффер. Криптоанализ	2 ⁵⁵	-	Для текста	2 ⁵⁵

Увеличение криптостойкости DES

- □ Методы 2DES и 3DES основаны на DES, но увеличивают длину ключей (2DES 112 бит, 3DES 168 бит).
- \square Схема 3DES имеет вид $DES(k_3,DES(k_2,DES(k_1,M)))$, где k_1,k_2,k_3 ключи для каждого шифра DES.
- □ Существует 3 типа алгоритма 3DES:

DES-EEE3: Шифруется три раза с 3 разными ключами.

DES-EDE3: 3DES операции шифровкарасшифровка-шифровка с 3 разными ключами.

$$C = E_{k_3}(E_{k_2}^{-1}(E_{k_1}(P))) \quad P = E_{k_1}^{-1}(E_{k_2}(E_{k_3}^{-1}(C)))$$

DES-EEE2 и DES-EDE2: Как и предыдущие, за исключением того, что первая и третья операции используют одинаковый ключ.

© 2010, А.М.Кадан, кафедра системного программирования и компьютерной безопасности, ФаМИ, ГрГУ, Гродно, Беларусь