A Demonstration on the Use of R to Reconcile Similar but Not Identical Spreadsheets

Anthony J. Castellani

This is a demonstration of the use of R to solve a simple, common, yet often frustrating office situation: the presence of two similar but not identical spreadsheets that need to be reconciled. There are ways to do this in Microsoft Excel, but many users of R prefer to maximize the use of R, while minimizing the use of Excel. By using the dplyr package, this can be accomplished in very few lines of code.

Note that for the purposes of this demonstration, the package pander is also used. This package is only used here to generate more attractive tables, and plays no functional role in the manipulation of the data.

To begin, a sample data set will be created, using set.seed for repeatability.

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4
a	43491	66620	54793	68650
b	61557	15562	74585	21301
С	91738	28538	99271	34050
d	28152	25891	44203	44750
e	90854	71832	79970	11206
f	95020	44570	94123	44415
g	69471	79285	29093	88271

From the source spreadsheet two similar but different spreadsheets will be generated.

Here is Spreadsheet "A":

```
spreadsheetA <- spreadsheet0[c(1,2,3,4,5),]
pander::pander(spreadsheetA)</pre>
```

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4
a	43491	66620	54793	68650
b	61557	15562	74585	21301
С	91738	28538	99271	34050
d	28152	25891	44203	44750
e	90854	71832	79970	11206

And here is Spreadsheet "B":

```
spreadsheetB <- spreadsheet0[c(1,2,3,6,7),]
pander::pander(spreadsheetB)</pre>
```

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4
a	43491	66620	54793	68650
b	61557	15562	74585	21301
С	91738	28538	99271	34050
f	95020	44570	94123	44415
g	69471	79285	29093	88271

The first exercise in reconciliation will be to use dplyr to recombine the two spreadsheets without any duplicates.

```
full <- dplyr::union(spreadsheetA, spreadsheetB)
full <- dplyr::arrange(full, UniqueID)
pander::pander(full)</pre>
```

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4
a	43491	66620	54793	68650
b	61557	15562	74585	21301
С	91738	28538	99271	34050
d	28152	25891	44203	44750
e	90854	71832	79970	11206
f	95020	44570	94123	44415
g	69471	79285	29093	88271

The next exercise will return only those rows of data that are common to both spreadsheets.

pander::pander(dplyr::intersect(spreadsheetA, spreadsheetB))

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4
a	43491	66620	54793	68650
b	61557	15562	74585	21301
С	91738	28538	99271	34050

After that we will highlight those rows of data that are unique to each spreadsheet.

First the unique rows in Spreadsheet "A":

pander::pander(dplyr::setdiff(spreadsheetA, spreadsheetB))

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4
d	28152	25891	44203	44750
e	90854	71832	79970	11206

Then the unique rows in Spreadsheet "B":

pander::pander(dplyr::setdiff(spreadsheetB, spreadsheetA))

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4
f	95020	44570	94123	44415
g	69471	79285	29093	88271

Finally, let's look at the unique rows from the two spreadsheets combined into one.

pander::pander(dplyr::bind_rows(dplyr::setdiff(spreadsheetA, spreadsheetB),
dplyr::setdiff(spreadsheetB, spreadsheetA)))

UniqueID	Attribute1	Attribute2	Attribute3	Attribute4	
d	28152	25891	44203	44750	
e	90854	71832	79970	11206	
f	95020	44570	94123	44415	
g	69471	79285	29093	88271	