VitaGuard® VG 3100 Apnea, heart, and SpO₂ monitor

Operating instructions

Who should read which sections in these operating instructions?

The sections 3 to 8 colored blue at the top of the page and in the table of contents are intended specifically for caregivers without medical background knowledge.

The other sections are intended in particular for doctors and qualified medical staff.

- 1 General view and list of accessories
- 2 Intended use
- 3 Safety
- 4 Description
- 5 Steps before and after monitoring
- 6 Preparing for SpO₂ monitoring
- 7 Preparing for heart rate and apnea monitoring
- 8 Alarms, displays, and views during monitoring
- 9 Alarm and monitor settings
- 10 Information for the doctor and qualified medical staff
- 11 Algorithms and measuring principles
- 12 Evaluating stored data on a PC
- 13 Specifications
- 14 Table of figures

NOTE Words and passages in SMALL CAPITALS in these operating instructions also appear on the display.

Table of contents

1	Gene	ral view and list of accessories	11		
2	Inten	Intended use			
2.1	Label c	Label on the back of the device			
2.2		Symbols and warnings			
2.3	-	ions	16		
	2.3.1	SpO ₂ and pulse rate monitor	16		
	2.3.2	Heart rate and apnea monitor	16		
2.4	VitaGu	iard® modes of operation	17		
2.5		ed use and performance	18		
2.6		tions on VitaGuard®'s intended use	19		
	2.6.1	Obstructive apneas are not detected	19		
	2.6.2	Limitations of the heart rate and central apnea monitor	20		
	2.6.3	Limitations of the SpO ₂ and pulse rate monitor	20		
2.7	Inform	ation for the doctor on these operating instructions	21		
3	Safet	y	22		
3.1	Caregivers' tasks				
3.2	Allergy	risks to patients	24		
3.3		le external interference to monitoring	24		
	3.3.1	Installation and environment	25		
	3.3.2	Noise risks to monitoring	25		
	3.3.3	Electrostatic interference	26		
	3.3.4	Electromagnetic interference	26		
3.4	Safety	with approved accessories only	27		
3.5	_	ng patient cables	28		
3.6		supply reliability	29		
	3.6.1	Battery voltage indicator	30		
	3.6.2	Interruptions to the power supply	31		
	3.6.3	Using the rechargeable block battery	31		
3.7	Safety	with proper maintenance only	32		
	3.7.1	Cleaning VitaGuard® and accessories	32		
	3.7.2	Checking and cleaning the battery terminals	33		
3.8	Dispos	ing of non-rechargeable batteries, the device, and			
	access	ories	34		

4	Descr	Description 3		
4.1	Power	Power supply 3		
	4.1.1	Power failure with inserted batteries	37	
	4.1.2	Power failure without batteries	37	
	4.1.3	Replacing batteries	38	
	4.1.4	Using the automobile power supply adapter	39	
4.2	VitaGu	ard® connections	40	
	4.2.1	Patient cable for SpO ₂ sensors	40	
	4.2.2	Patient cable for electrodes	41	
	4.2.3	Power adapter	41	
	4.2.4	Sound outlet (no socket)	41	
	4.2.5	USB port	42	
	4.2.6	AUX port	42	
4.3	Memb	rane key panel	43	
	4.3.1	Direction keys	44	
	4.3.2	<enter> key</enter>	44	
	4.3.3	<esc> key</esc>	44	
4.4	Color L	Color LEDs (Light Emitting Diodes)4		
	4.4.1	Alarm LED	45	
	4.4.2	Heart and respiration LEDs	45	
	4.4.3	Power supply and battery LEDs	46	
4.5	The dis	splay	46	
5	Steps	before and after monitoring	48	
5.1	Summa	ary of steps before monitoring	48	
5.2	Switching on4			
5.3	Switch	Switching off 5		
5.4	Summa	ary of steps after monitoring	50	
6	Prepa	ring for SpO ₂ monitoring	51	
6.1		instructions for SpO ₂ monitoring	51	
6.2	Operation of SpO ₂ sensors			
6.3	-	ensor adapted to the patient's size and weight	53	
6.4	. –	Choosing the sensor site		
6.5		Repositioning or replacing the sensor 54		
6.6	-	ns for unconvincing SpO ₂ values	54	

6.7	Why th	ne pulse rate is not displayed	55		
6.8	Attach	ing the SpO ₂ sensor to an infant's foot	55		
6.9		ing the SpO ₂ sensor to an adult's finger	56		
6.10	Conne	cting the SpO ₂ sensor and patient cable	58		
6.11	Conne	cting the SpO ₂ patient cable to VitaGuard®	58		
6.12	Discon	necting the SpO ₂ sensor from the patient cable	59		
6.13	Discon	necting the SpO ₂ patient cable from VitaGuard®	59		
6.14	Reusin	g and refastening SpO ₂ sensors	59		
7	Prepa	ring for heart rate and apnea monitoring	61		
7.1	Safety	information when monitoring heart rate and apnea	61		
7.2	Conne	cting electrodes, the patient cable, and VitaGuard®	64		
7.3	Techni	cal alarm from the electrode contact monitor	64		
7.4	Detern	nining the optimal electrode configuration	65		
	7.4.1	ECG lead, electrode color coding	65		
	7.4.2	Optimizing the heart and respiration signals – signal			
		amplitudes in View 1	66		
7.5	Checki	ng the basal impedance	67		
8	Alarm	ns, displays, and views during monitoring	69		
8.1	Alarm test				
8.2	HEART	RATE values based on age groups	69		
8.3	Alarm	message priorities in the status line	70		
8.4	Physiological and technical alarms				
8.5	Differe	entiating physiological and technical alarm signals	71		
8.6	Acoust	ic information signals	72		
	8.6.1	Information signals from the alarm unit next to			
		the display	72		
	8.6.2	Information signals from the sound aperture			
		between the sockets	72		
8.7	The vis	sual alarm signals	73		
8.8	Status	line displays	73		
8.9	SpO ₂ n	nonitor alarms	74		
	8.9.1	Physiological SpO ₂ alarms	74		
	8.9.2	1 2	75		
8.10	Heart rate and apnea monitoring				
	8.10.1	Differentiating between heart and pulse rate	75		

	8.10.2	Heart and pulse rate alarms	76		
	8.10.3	Apnea alarms	77		
0 1 1	8.10.4	Technical heart rate and apnea alarms	77		
8.11		messages – meanings and other information	77 - 2		
	8.11.1	Order of equal-priority alarm conditions	78		
	8.11.2		78		
	8.11.3	Table of technical alarm messages	81		
8.12	Table c	of information messages	84		
9	Alarm	and monitor settings	85		
9.1	Safety	instructions for the alarm settings	85		
9.2	Summa	ary of views and menus	86		
9.3	Additio	onal views	86		
	9.3.1	VIEW 2 – Large data presentation and waveforms	87		
	9.3.2	VIEW 3 – Smaller data presentation and waveforms	87		
9.4	Changi	ing the settings	87		
9.5	System	ı menu – general settings	89		
	9.5.1	\ Screen saver (Off/ On)	89		
	9.5.2	\ LCD BRIGHTNESS	89		
	9.5.3	\ LCD contrast	89		
	9.5.4	\ SIGNAL BEEP TONE	90		
	9.5.5	\ ALARM TONE PITCH	90		
	9.5.6	\ RS232 format	90		
	9.5.7	\ SETTINGS PROTECTION ON, LIMITED, OFF	91		
9.6	SPO ₂ d	isplay and menu	92		
	9.6.1	SPO ₂ view	92		
	9.6.2	SPO ₂ menu – alarm settings			
		(SETTINGS PROTECTION LIMITED)	93		
9.7	HEART	HEART RATE display and menu			
	9.7.1	HEART RATE display	95		
	9.7.2	Неаrт rate menu – alarm settings			
		(SETTINGS PROTECTION LIMITED)	95		
9.8	RESPIRA	ATION display and menu	96		
	9.8.1	RESPIRATION display	97		
	9.8.2	RESPIRATION menu – alarm settings			
		(SETTINGS PROTECTION LIMITED)	98		

10	Inform	ation for the doctor and qualified medical staff	99
10.1	Safety ii	nstructions	99
	10.1.1	Preparing for a new patient	99
	10.1.2	Connections to the USB and AUX ports	101
	10.1.3	VitaGuard® and other medical devices	101
	10.1.4	Safety instructions for the doctor –SpO ₂ monitor	102
10.2	Info dis	play	103
	10.2.1	\ LAST STATUS MESSAGES	103
	10.2.2	\ GENERAL	103
	10.2.3	\ MEASUREMENTS: SPO ₂	104
	10.2.4	\ MEASUREMENTS: PULSE RATE	105
	10.2.5	\ MEASUREMENTS: HR & RESP.	105
	10.2.6	\ SETTINGS: OXIMETER	106
	10.2.7	\ SETTINGS: HEART RATE	107
	10.2.8	\ SETTINGS: APNEA MONITOR	107
	10.2.9	\ MEMORY/ INTERNET	107
	10.2.10	\ VERSIONS	108
10.3	Settings	s in the System menu (Settings protection Off)	109
	10.3.1	Changing multiple-component settings	109
	10.3.2	OPERATING AREA: HOME OF CLINIC	110
	10.3.3	\ADMIT NEW PATIENT — restoring factory settings	110
	10.3.4	\ Pre- and Post-Alarm time	112
	10.3.5	\ ALARM MUTE TIME	112
	10.3.6	\ Date/ time	112
	10.3.7	\Language	113
	10.3.8	\ ANALOG INPUT 1 + 2	113
	10.3.9	\INTERVAL RECORDING	113
	10.3.10	\ Show PR/ HR	113
10.4	Data sto	orage functions	113
10.5		torage	114
	10.5.1	SILENT ALARM LIMITS	116
	10.5.2	MANUAL DATA STORAGE OF TRANSMIT DATA	116
	10.5.3	Summary of stored EVENTS	117
10.6	TRENDS	torage	
10.7	LONG TE	RM storage over eight hours	119

Table of contents

10.8	PROTOCOL storage of operating and device data	119	
10.9	Summary of stored signals and data 1		
10.10	Settings in the SpO ₂ menu (Settings protection Off)	121	
10.11	Settings in the Heart rate menu (Settings protection Off)	123	
10.12	Changing the ECG lead for signal optimization	127	
10.13	Settings in the Respiration menu (Settings protection Off)	129	
10.14	Combining apnea alarms with heart rate and SpO ₂ alarms	130	
10.15	Table of operating modes	131	
11	Algorithms and measuring principles	133	
11.1	Alarm condition and report delays	133	
	11.1.1 Alarm condition delay for the heart rate	133	
	11.1.2 Alarm condition delay for oxygen saturation	134	
	11.1.3 Alarm condition delay for respiration	134	
	11.1.4 Alarm report delays	134	
11.2	Measuring principle for the SpO ₂ monitor	135	
11.3	Measuring principle for the heart rate monitor	138	
11.4	Measuring principle for the apnea monitor	139	
12	Evaluating stored data on a PC	141	
13	Specifications	143	
13.1	General	143	
13.2	SpO ₂ monitor	145	
13.3	Heart rate monitor	146	
13.4	Apnea monitor	146	
13.5	Intervals for calculating average values in the INFO mask	147	
13.6	Memory	147	
13.7	Ports	147	
13.8	Miscellaneous	148	
13.9	Selection of applied standards	149	
14	Table of figures	151	

1 General view and list of accessories

The general view shows the monitoring system's most important components.

Fig. 1 General view of the monitoring system

The accessories listed in the following can be used together with VitaGuard® and can be ordered with the specified article numbers from getemed AG or authorized dealers. Please consult getemed AG or your authorized dealer for other approved accessories.

Product Article no. / REF
VitaGuard® VG 3100 Monitor (with Masimo SET®), complete system
NA 3000-2 external power adapter (110 V-240 V~/50-60 Hz)
NAK 3000-2 automobile power supply adapter
PK1-8P ECG patient cable
Kitty Cat™ neonatal electrodes (PU = 30 pcs)
Masimo PC08 SpO ₂ patient cable (2.44 m)
Masimo LNOP® NeoPt SpO $_2$ sensor (PU = 20 pcs) (for one patient use only, infants < 1 kg)
Masimo LNOP® Neo SpO $_2$ sensor (PU = 20 pcs) (for one patient use only, infants < 10 kg)
Masimo LNOP® Pdt SpO $_2$ sensor (PU = 20 pcs) (for one patient use only, pediatric/ slender finger 10–50 kg) . 70252

Masimo LNOP® Adt SpO ₂ sensor (PU = 20 pcs) (for one patient use only, adult > 30 kg)	70253
Masimo LNOP® DCI reusable sensor (> 30 kg)	
Other models are available in addition to the SpO ₂ sensors listed here.	
Operating instructions (English)	
Operating instructions (German)	
Operating instructions (Turkish)	
Device bag	
AUX 01 RS232 cable for connecting VitaGuard® to a serial PC port	7341 2002
AUX-02 modem cable for connecting a modem to VitaGuard®	7341 3001
AUX-03 cable for connecting an external alarm unit to VitaGuard®	7341 5001
AUX-04 cable for connecting VitaGuard® to a nurse call system with 4 kV isolation	7341 5011
AUX-06 cable for connecting two external signal sources to VitaGuard®	7341 6001

2 Intended use

This section provides information on the intended use of VitaGuard® and the limitations of this intended use.

CAUTION Do not attempt to use VitaGuard® for detecting obstructive apneas. Obstructive apneas, i.e. respiratory arrest following an occluded respiratory tract, are not detected by VitaGuard®. Food debris or vomit, for example, can occlude the respiratory tract.

The doctor treating the patient is responsible for the application of VitaGuard®. The specific "Information for the doctor and qualified medical staff" can be found on page 99.

getemed AG recommends qualified training for the caregivers in potentially necessary resuscitation techniques. Clearing the respiratory tract and the resuscitation of babies and infants require particular know-how that the treating doctor should communicate to the caregivers.

2.1 Label on the back of the device

The device label serves as a unique identifier for VitaGuard®. In addition, the label bears important cautionary information.

On the device label you will find the manufacturer's name and address as well as the product and model name. The serial number of your device is given next to SN.

Fig. 2 Device label on the bottom of the device

2.2 Symbols and warnings

This symbol warns you that failure to observe these operating instructions can cause death or injury to the patient.

The book symbol means that you must not use the device when you are not familiar with the information contained in these operating instructions.

With this CE label and the CE approval number 0197 getemed AG confirms that VitaGuard® complies with all the pertinent regulations and in particular the requirements in Annex I of the Medical Devices Directive 93/42/EWG and that this has been approved by a notified body (TÜV Rheinland Product Safety).

This symbol means that the VitaGuard®'s ECG socket is a type CF (cardio floating) application part and that it is protected against the effects of defibrillation.

This symbol means that the VitaGuard®'s SpO₂ socket is a type BF (body floating) application part that is protected against the effects of defibrillation.

The factory symbol shows the year of manufacture.

Note the warnings on the device label.

Do not use in explosive atmospheres!

Use the NA 3000-2 power adapter only!

Warning: Do not connect to an electrical socket controlled by a wall switch!

Only new alkaline batteries (LR6 or AA) must be used when the device is powered by non-rechargeable batteries! Note the polarity!

2.3 Indications

VitaGuard® can be used to monitor patients with, for example, the following symptoms or treatment:

- unstable respiration
- oxygen therapy
- life-threatening cardiac dysrhythmia
- conspicuous sleep laboratory findings
- facial and/ or cervical and thoracic dysmorphia
- distinct gastro-esophageal reflux
- ataxia

2.3.1 SpO₂ and pulse rate monitor

The SpO_2 and pulse rate monitor with the attached accessories is suitable for the permanent, non-invasive monitoring of arterial blood oxygen saturation (SpO_2) and of the pulse rate as measured with the SpO_2 sensor. The functional blood oxygen saturation displayed as $\% SpO_2$ is determined exclusively from the measurements of oxygenated and deoxygenated hemoglobin.

The SpO₂ and pulse rate monitor is suitable for adult, pediatric, and infant patients, in mobile or stationary indoor and outdoor applications, including patients with weak blood flow and those in hospitals and other institutions.

2.3.2 Heart rate and apnea monitor

The heart rate and apnea monitor is suitable for adult, pediatric, and infant patients at home or in rooms used for medical purposes.

The apnea monitor is specifically intended for monitoring central apneas. Successful apnea monitoring requires a stable underground and a patient that lies quietly without moving.

2.4 VitaGuard® modes of operation

Depending on the risk group and the latest diagnosis, VitaGuard® allows the treating doctor to combine three monitoring parameters:

- SpO₂ monitoring
- heart or pulse rate monitoring
- apnea monitoring

The doctor can deactivate the apnea monitor in the RESPIRATION menu, or combine the apnea monitor alarms with the heart rate and oxygen saturation monitor. In this case, apnea alarms are triggered only when, after detecting apnea, the device also detects deviations from particular average values in the monitored heart rate and/ or the monitored SpO_2 . This combination helps to reduce false apnea alarms.

When VitaGuard® is to be used to monitor heart rate and respiration only, the doctor can deactivate the SpO_2 monitor in the SpO_2 menu.

In addition to the fixed alarm limits for the heart or pulse rate monitor and the SpO_2 monitor, the doctor or the qualified medical staff can also configure percentage deviations as alarm conditions.

The doctor or the qualified medical staff can find all other explanations they may need in the following sections:

- "Settings in the SpO₂ menu (Settings protection Off)" on page 121,
- "Settings in the Heart rate menu (Settings protection Off)" on page 123,

- "Settings in the RESPIRATION menu (SETTINGS PROTECTION OFF)" on page 129,
- "Combining apnea alarms with heart rate and SpO₂ alarms" on page 130,
- "Table of operating modes" on page 131.

In the event of electrode allergies it may prove convenient, after consultation with the treating doctor, to dispense with the electrodes entirely for a time and to operate the device as a pulse oximeter. The display then shows the Pulse rate monitored by the SpO_2 sensor instead of the Heart rate.

2.5 Intended use and performance

The intended use of VitaGuard® is to detect central apneas when the patient is completely immobile on a stable underground and to monitor the heart or the pulse rate as well as the oxygen saturation. VitaGuard® is designed for applications at home and in rooms used for medical purposes. VitaGuard® has no therapeutic effect.

VitaGuard® emits an acoustic and visual alarm when no respiration or movement is detected within a set period, when the measured heart rate and/or oxygen saturation values violate the set alarm limits for a period also set by the operator, and/or when no heartbeat has been detected for a set period. The alarm limits can be set within particular values specified by VitaGuard®.

Respiration and heart rate are monitored with adhesive ECG electrodes and blood oxygen saturation and pulse rate with an SpO_2 sensor suitable to the patient's age and weight.

VitaGuard® determines the heart rate from the ECG signal detected by the electrodes and the pulse rate from the signal detected by the SpO₂ sensor. The doctor can choose whether the pulse or the heart rate is used for alarm triggering.

VitaGuard® features an impedance monitor that triggers a technical alarm when an electrode exhibits impedance values that are not compatible with proper operation. This is the case, for example, when an electrode has become detached.

When the signal registered by the SpO₂ sensor is inadequate for the reliable measurement of values, a message appears on the display.

Physiological data measured for a set period before and after an alarm are stored and can afterwards be evaluated and documented.

VitaGuard® can be operated with the NA3000-2 power adapter (9 V), the NAK3000-2 automobile power adapter (e.g. in the cigarette lighter), four non-rechargeable batteries, or a rechargeable block battery. Non-rechargeable batteries or the rechargeable block battery serve above all to safeguard the monitor's functions during a power failure and to continue monitoring the heart rate and oxygen saturation when patients are in transit.

2.6 Limitations on VitaGuard®'s intended use

Even when operated in accordance with its intended use, VitaGuard® cannot detect all life-threatening situations under certain unfavorable conditions.

2.6.1 Obstructive apneas are not detected

Obstructive apneas are not detected by VitaGuard®. The caregiver may have to remove food debris from the patient's oral cavity.

When an obstructive apnea at the same time triggers a bradycardia alarm (heart rate too low) or an oxygen saturation alarm (SpO_2 value too low), resuscitation measures may need to be taken.

2.6.2 Limitations of the heart rate and central apnea monitor

VitaGuard® could misinterpret movements as respiration, e.g. in ambulances, cars, and prams or when a child is held in the arms. For this reason central apneas can be detected only when the patient is sleeping or is lying still, does not move, and is not being moved.

The heart rate can be monitored with electrodes also when the patient is moving, but sudden, vigorous movements can adversely affect the measuring accuracy.

A false heart rate is displayed during ventricular fibrillation or when the heart rate exceeds 270 beats per minute.

2.6.3 Limitations of the SpO₂ and pulse rate monitor

The monitoring of SpO₂ and pulse rate is adversely affected when the patient moves vigorously or is vigorously moved.

When the sensor is not attached correctly, ambient light can falsify measurements. One remedy is to cover the sensor with a dark or opaque material.

The monitor operates properly only when the SpO_2 sensor is correctly attached.

2.7 Information for the doctor on these operating instructions

In full knowledge of these operating instructions, the treating doctor must decide:

- whether the caregivers have to be trained in the performance of resuscitation measures,
- how the caregivers can be best prepared for monitoring and above all for the measures that must be taken in the event of an alarm,
- which view should be displayed

Information on Settings protection that sets the display modes and user configurations can be found on page 91.

"Information for the doctor and qualified medical staff" is found on page 99.

Safety 3

The doctor decides whether the caregivers are able to use Vita-Guard® for monitoring and whether they can implement appropriate measures in the event of an alarm.

Caregivers' tasks 3.1

With "caregivers" we mean those persons who are responsible during monitoring for the monitored patient's well-being, for example:

- parents or other members of the family,
- babysitters, when they too have been thoroughly prepared for the situation,
- nurses and other medically trained staff.

Observe in particular the information in those sections of the operating instructions that, like here, address you directly.

Observe the extensive safety instructions at the beginning of the section "Preparing for SpO₂ monitoring" on page 51.

Observe the extensive safety instructions at the beginning of the section "Preparing for heart rate and apnea monitoring" on page 61.

VitaGuard® has no therapeutic effect. You may have to implement resuscitation measures in the event of an alarm.

The potential applications of VitaGuard® for high-risk patients are so many and diverse that we are unable to give any specific instructions on procedure in the event of an alarm. It is the doctor's task to inform high-risk patients and their caregivers in detail on the correct procedure in this case.

An alarm chart is available from getemed AG when monitoring children. This alarm chart presents a sequence of activities that are considered suitable by many medical specialists and pediatricians.

Do not attempt to use VitaGuard® on more than one patient at a time.

Never modify settings without consulting the responsible doctor. Only the doctor knows the correct alarm limits and monitor configuration for each patient.

Never leave the patient's room without first making sure that the LEDs for heart and respiration are flashing.

Make absolutely sure that you can react to an alarm within a few seconds. Move away from patients only so far that you can reach them within ten seconds.

When you are not sure that VitaGuard® is in perfect operating order, check the patient's vital functions. Under no circumstances should you use VitaGuard® when you suspect a device defect.

In the event of ANY suspected VitaGuard® malfunction, continue to observe the patient until you can use a replacement monitor, or VitaGuard® has been examined by the doctor or authorized dealer.

Stop using VitaGuard® after the servicing interval of eighteen months has expired. Before the end of this period, make an appointment with your authorized dealer to check the safety and operability of your device.

Test the acoustic alarm unit every time you switch on VitaGuard®. This is explained in the section "Alarm test" on page 69.

CAUTION! When attaching the electrodes make sure that the plugs do not touch any other electrically conducting parts. Make sure that there can also be no contact with other electrically conducting parts when the electrodes become detached during monitoring.

Treat all leads and connections with particular care, and never use the connecting cables to lift VitaGuard®.

Switch off VitaGuard® before boarding an aircraft. When you want to transport VitaGuard® in your luggage, you should remove the batteries. This prevents other pieces of luggage from switching on

the device by accident. An activated, but disconnected VitaGuard® will generate acoustic alarm signals.

3.2 Allergy risks to patients

Attach ECG electrodes and SpO₂ sensors to intact areas of skin only.

So that the permanent contact with the electrodes does not put too much of a strain on the patient's skin, the electrodes can be placed in the vicinity of the optimal site.

All materials that are used with VitaGuard® and can come into contact with patient or caregivers during normal operations are free of latex and are non-toxic in accordance with the standard ISO 10993-1.

getemed AG recommends replacing the adhesive electrodes used to monitor heart rate and apnea as soon as they start to lose their adherence. The special gel for the electrodes has been developed to avoid skin irritation, even after several months' monitoring on newborns.

Nevertheless, patients with sensitive skin may suffer allergic reactions in the form of reddened skin and blistering that in serious cases may look like burns. When the skin exhibits such changes, you must immediately inform the doctor. A change of electrode type may help.

The use of SpO₂ sensors with adhesive materials may cause problems when the patient develops an allergy to adhesive tape or similar.

3.3 Possible external interference to monitoring

Please bear in mind the possibility of other risks that are not listed here that can be caused by your specific monitoring environment.

3.3.1 Installation and environment

We recommend hanging VitaGuard® in the delivered bag at a place where the display can be easily viewed.

Check, as described in the section "Alarm test" on page 69, that you can hear alarms and where you can hear them. Think also of the activities that cause noises, for example showering or vacuuming. Think before you raise the volume of your television or stereo. Also, the VitaGuard®'s alarm outlet should not be obstructed by any objects that absorb sound.

Never place VitaGuard® or the power adapter such that they could fall on the patient. For example, the power adapter could become detached from an overhead socket when the cable is pulled.

Do not immerse either VitaGuard® or the accessories in liquids.

Variations in temperature and air humidity could lead to condensation forming in and on VitaGuard®. Wait for at least two hours after VitaGuard® has visibly dried on the outside before using it for monitoring.

Do not operate VitaGuard® in environments containing explosive gases, flammable substances, nitrous gases, or highly oxygen-enriched atmospheres. Do not use VitaGuard® at extreme temperatures below 5 °C or above 40 °C. Do not place VitaGuard® near heat sources such as radiators, ovens, etc. Do not expose it to direct sunlight.

Always lay all cables and in particular any extension cables so that nobody can trip over them.

Do not place VitaGuard® directly next to the patient's head: risk of hearing damage!

3.3.2 Noise risks to monitoring

When the alarm cannot be set to a volume that is sufficiently above the prevailing ambient noise levels, you must keep VitaGuard® and

its display within view. The visual signals from the alarm LED and display must then be relied upon to recognize critical situations.

You can also use the external alarm unit available from getemed AG that raises the volume of the alarm signals from VitaGuard®.

Information on the alarm signal types and volumes can be found in "Alarms, displays, and views during monitoring" on page 69. The alarm pitch is set as explained in the section "System menu – general settings" on page 89.

3.3.3 Electrostatic interference

Electrostatic build-up that, for example, a person can pick up on certain carpets must not discharge through the VitaGuard® connector sockets or the electrodes' electrically conducting parts.

For this reason, avoid touching the electrically conducting parts, or discharge any electrostatic build-up beforehand by, for example, touching an earthed water pipe or heater.

3.3.4 Electromagnetic interference

VitaGuard® is not designed for applications near strong electromagnetic fields. These interference fields are frequently emitted by devices with large electric power consumptions. Keep a good distance from e.g. washing machines, computers, microwaves, vacuum cleaners, power tools, etc.

The device and the system can be used in the home and in all other environments that public utilities supply directly.

Bear in mind that portable and mobile HF communication devices, e.g. cellular phones, radio equipment, walkie-talkies, etc., can interfere with the monitor and influence its operability.

Bear in mind that non-approved accessories can amplify emitted interference and reduce the device's immunity.

Do not place the monitor directly next to other electrical equipment, and do not stack monitors on top of each other.

When the monitor has to be placed next to or on other equipment, check that the monitor operates as designed in this environment. We recommend you to check at regular intervals:

- that the displayed signals are not disrupted when the patient is not moving,
- whether the same technical alarm messages are repeatedly displayed.

When you discover disruptions:

- if possible, switch off the interfering equipment or move this equipment to another site.

VitaGuard® uses high-frequency signals exclusively for its internal functions. As a result, its emitted interference is very low, and disruption to neighboring electronic equipment is unlikely.

False diagnoses are possible when monitored values are corrupted by interference from electric or electromagnetic fields and this escapes the doctor's attention. Every time you analyze stored data, consider the possibility of interference from electric or electromagnetic fields.

VitaGuard®'s emitted interference and immunity to external interference are within the limits for life-supporting systems stipulated in the standard EN 60601-1-2.

3.4 Safety with approved accessories only

Use VitaGuard® only with the delivered or approved accessories and in accordance with the information contained in these and the accessories' operating instructions.

Electrodes, SpO₂ sensors, cables, and power adapters can be ordered from your authorized dealer or directly from getemed AG. The telephone number of your authorized dealer was given to you during

your training on how to operate the device, or it is found on a label your authorized dealer has attached to VitaGuard®.

Bear in mind that monitoring can continue without interruption only as long as the required consumables are available. In emergencies of this nature you can call your authorized dealer, who provides 24-hour emergency services. Please try, however, to avoid unnecessary stress for both yourself and your authorized dealer, and order your consumables in good time.

The modem used to transfer monitoring data must comply with the requirements under the German and European standard DIN EN 60950 "Safety of IT Equipment" with the amendments A1–A4. These details are found in the modem's operating instructions.

3.5 Handling patient cables

Always lay patient cables at a good distance from the patient's head and neck. Lay each patient cable inside the clothing, and secure it in place in such a way that no harm can come to the patient or cable (strangulation, twisting).

Make sure when laying and securing patient cables that these cannot kink (kinking causes damage).

For hygiene reasons, always use the same patient cable on the one patient. Disinfect patient cables before using them on a new patient.

When more than one monitor is used in the one environment, each monitor should always be connected to the same patient cables and the same power adapter. Faults can therefore be located and remedied faster.

3.6 Power supply reliability

Before first using VitaGuard® for monitoring, familiarize yourself with the section "Power supply" on page 36. Monitoring is safeguarded only when the power supply is in perfect operating order.

CAUTION: Danger of electric shock! Never open the external power adapter or the connecting cable.

Exclusively the NA 3000-2 approved for VitaGuard® must be used as the external power adapter.

VitaGuard® is usually delivered with the external power adapter for European supply networks. For other supply networks, use only the plug adapters available from getemed AG.

Do not use the external power adapter in sockets that can be switched off or dimmed.

When the VitaGuard® external power adapter is plugged into a multiple socket outlet, only the modem may be connected to this outlet simultaneously.

When an extension cable is used with a multiple socket outlet, this outlet must not lie on the floor. Otherwise water may penetrate the outlet and damage the monitor.

The external power adapter and the power outlet must be free of damage.

Never use the external power adapter's cable to lift VitaGuard®.

Stop using the external power adapter when it has fallen or been dropped.

Do not operate the external power adapter in a damp environment (e.g. in the bathroom).

Always leave the batteries in VitaGuard®, even when this is operated through the external power adapter.

VitaGuard® operates with batteries: either non-rechargeable batteries or a rechargeable block battery. VitaGuard® must be operated only with the rechargeable block battery available from getemed AG or new alkaline non-rechargeable 1.5 V batteries (LR6 or AA), e.g. VARTA UNIVERSAL ALKALINE. Bear in mind that cheaper non-alkaline non-rechargeable batteries can have a considerably reduced operating lifetime, in some cases only 10–15% of the brand name batteries we recommend.

Do not under any circumstances use single rechargeable batteries available on the market.

Never use a non-rechargeable battery and a rechargeable battery together in the device, and never mix old and new batteries.

To prevent leaking batteries from damaging health and property, remove non-rechargeable batteries from VitaGuard® when it is not used for longer than a week. Information on "Replacing batteries" can be found on page 38.

3.6.1 Battery voltage indicator

When VitaGuard® is powered only by non-rechargeable batteries, check the battery voltage indicator on the display every hour. At least one quarter of the battery symbol must be black.

Fig. 3 Battery voltage indicator

When VitaGuard® is powered from the supply network and commercially available non-rechargeable batteries are inserted, check the battery voltage indicator on the display every day. Even when the device is powered from the supply network, you must replace the non-rechargeable batteries as soon as one quarter of the battery symbol on the display is black.

If necessary, a display message will prompt you to insert new non-rechargeable batteries or to recharge the block battery.

3.6.2 Interruptions to the power supply

When the external power adapter is connected VitaGuard® operates automatically in supply network mode. When the supply network fails, VitaGuard® switches automatically to battery mode – when batteries are inserted.

As long as VitaGuard® is powered from the external power adapter or the automobile power supply, the green LED next to the power adapter symbol lights up.

Normal voltage fluctuations in the supply network do not adversely affect monitoring with VitaGuard[®]. Following a power supply failure, the current alarm settings are retained for at least thirty days and are again available when the device is switched back on.

3.6.3 Using the rechargeable block battery

Note the warnings on the rechargeable block battery's label.

Do not open or short-circuit!

Do not throw into a fire!

Avoid temperatures over 50 °C!

The charging time for the block battery is at most six hours.

Fig. 4 Rechargeable block battery

Also note the recycling symbol on the label. This means that the block battery must be recycled when its service life has expired.

Do not expose the block battery to direct sunlight. For example, temperatures greater than 50 °C can easily occur on a vehicle's dashboard or rear shelf.

When you intend to use VitaGuard® powered from the rechargeable battery block and disconnected from the supply network, you must first make sure that the block battery is fully charged. For this reason, check the "Battery charging" LED. The battery is being charged as long as this LED light is continuously on. When the LED flashes every second, the battery is full and compensation charging is activated.

Sometimes the light will go out for a short time in the interval between battery and compensation charging.

3.7 Safety with proper maintenance only

VitaGuard® can operate safely and reliably over the long term only when it is subject to proper maintenance and use.

Check visually for any damage on VitaGuard®, the patient cables including the connections, the external power adapter, the electrodes, and the SpO₂ sensor every time you use VitaGuard® for monitoring.

Every eighteen months at the latest VitaGuard® and accessories must be serviced by getemed AG to comply with safety regulations.

Repairs must be performed by getemed AG only. Clarify the necessary procedure with your authorized dealer.

For the protection of our service personnel, disinfect VitaGuard® and the patient cables with Virkon®, available as a spray or wiping solution, before sending them to getemed AG.

3.7.1 Cleaning VitaGuard® and accessories

Before cleaning VitaGuard®, remove the batteries.

Before cleaning VitaGuard®, detach the electrodes and cables from the monitor and from the patient.

Do not under any circumstances use solvents like ether, acetone, or benzene. These substances can cause malfunctions and attack the housing plastic.

Also, do not use any cleaning agents containing abrasive substances and no coarse brushes or hard objects.

VitaGuard® and accessories can be cleaned any number of times when the recommended cleaning agents are used.

VitaGuard® and accessories must not be sterilized.

VitaGuard® and the cable plugs must not be immersed or otherwise penetrated by liquid.

Cleaning the exterior is best done with a non-linting cloth moistened slightly with water or a mild soap solution.

getemed AG recommends disinfecting the device with Virkon®, available as a spray or wiping solution.

Patient cables can be cleaned with liquid Cable Care or with a 70% alcohol solution. Baby oil has proved to be effective in removing residue from adhesive strips.

The VitaGuard® bag can be washed by hand at 30 C. It must not be put in the laundry dryer.

3.7.2 Checking and cleaning the battery terminals

Check the battery compartment every month for traces of leaking and for deposits on the battery terminals indicating leaks. Contact your authorized dealer and clarify further procedures when a battery starts to leak.

The battery compartment and how to replace the batteries are explained in the section "Replacing batteries" on page 38.

3.8 Disposing of non-rechargeable batteries, the device, and accessories

getemed AG takes back all of the parts it delivers. For hygiene reasons these parts do not extend to consumables like electrodes and sensors that have been in direct contact with the patient.

The symbol of the crossed-out waste container on the battery packaging is to remind you that under no circumstances must you dispose of batteries in normal household waste. As the end consumer you are legally obliged to return used batteries or dispose of them properly. You can return used batteries to us.

Place consumables like electrodes and sensors in a plastic bag before disposing of them in household waste.

Please do NOT send us ANY used electrodes or sensors.

Like every electronic device, VitaGuard® and accessories contain metal and plastic parts that must be disposed of in such a way that they do not pollute the environment after their service live. For this reason, the device and accessories may be sent to getemed AG in an adequately stamped package, when possible in the original packaging, for free and proper disposal.

4 Description

We recommend placing VitaGuard® in the bag provided. This bag protects the monitor and can be hung from a site where it cannot fall.

Fig. 5 VitaGuard® and bag with power and patient cables

4.1 Power supply

VitaGuard® is usually delivered with the power adapter for European supply networks. For other supply networks, contact getemed for the appropriate plug adapter. Observe the information in "Power supply reliability" on page 29.

Fig. 6 Power adapter socket

VitaGuard® is normally supplied by the power adapter (Fig. 7, left) in the 230 V/ 50 Hz supply network.

The NAK 3000-2 automobile power supply adapter (Fig. 7, right) for vehicle dashboards can be inserted in this socket.

Fig. 7 Power adapter for 230 V/ 50 Hz supply network and automobile power supply

When VitaGuard® is supplied by the external power adapter, the green LED lights up next to the power adapter symbol. In addition, the display backlight is activated when VitaGuard® is switched on.

When VitaGuard® is supplied by the power adapter only, without inserted batteries, a display message will prompt you to insert batteries.

When VitaGuard® is supplied by the power adapter, charging of the inserted rechargeable block battery is activated. The LED next to the battery symbol illuminates.

4.1.1 Power failure with inserted batteries

VitaGuard® automatically switches to battery mode when the external power supply fails or the power adapter is disconnected. In this event a technical alarm is permanently emitted until the power supply has been reinstated or the <Esc> key pressed.

When the supply network LED is off, but you can still see the usual monitor displays, VitaGuard® is being supplied by the batteries.

4.1.2 Power failure without batteries

VitaGuard® is fitted with an internal battery. This provides the voltage for an acoustic signal that is emitted when monitoring cannot be continued during a power failure.

The acoustic alarm from the internal battery does not stop until VitaGuard® has been switched back on after the power adapter has been reconnected or batteries have been inserted.

A power failure jeopardizes monitoring when

- the batteries in the VitaGuard® are nearly depleted or
- no batteries have been inserted and VitaGuard® is disconnected from the external power adapter.

To stop the power draw on the internal battery, it is important that non-rechargeable batteries are inserted as quickly as possible or, better, the power adapter is reconnected.

VitaGuard® must not be used for monitoring when the internal battery is depleted. This status appears on the display.

A new internal battery can be installed at getemed AG only, so you must continue monitoring with a replacement device until the internal battery has been displaced.

4.1.3 Replacing batteries

Switch off VitaGuard® before replacing batteries.

Push back the catch and lift off the battery cover to open the battery compartment. Insert either four non-rechargeable batteries or the rechargeable block battery.

Fig. 8 Opening the battery compartment

Make sure that the + symbols on the batteries and in the compartment match before inserting non-rechargeable batteries.

Fig. 9 Opened battery compartment and polarity

Observe the following instructions when you use the rechargeable block battery.

- Never use force to insert the block battery.
- The bottom of the block battery has a guide groove that prevents the battery from being inserted the wrong way. Make sure when inserting the block battery that the labeled side is on the top and the metal terminals point to the device label.

 You will feel a slight pressure from the terminal spring connections when inserting the block battery.

Fig. 10 The arrows show how the block battery is correctly inserted.

4.1.4 Using the automobile power supply adapter

Use only the NAK 3000-2 automobile power supply adapter to operate VitaGuard® from a vehicle's dashboard.

Do not leave the automobile power supply adapter overnight in the vehicle (particularly during the cold season). Otherwise condensation may form on and in the device.

The NAK 3000-2 automobile power supply adapter is connected to the VitaGuard® power adapter socket. NAK 3000-2 features a universal safety plug (DIN ISO 4165) for the dashboard lighter. Automobile power supply mode is indicated on VitaGuard® by the green LED beside the power adapter symbol.

The specifications of the automobile power supply adapter are as follows:

Input /	Automobile voltage supply at 12–24 V
Output	9 Vdc
Max current	<500 mA
Operating temperature	+5 to +50 °C
Connection to VitaGuard®	3-pin plug
Connection to automobile supply	Universal safety plug (DIN ISO 4165)
Connecting cable length	2 m ± 20 cm

4.2 VitaGuard® connections

Fig. 11 Overview of VitaGuard® connections

For safety reasons, only those accessories that getemed AG has delivered or approved must be connected to VitaGuard[®].

Hold VitaGuard® firmly with one hand when connecting and disconnecting plugs.

Never use force when connecting and disconnecting cables. Always insert and remove the plugs parallel to the sockets to prevent damage to the sensitive contacts.

Only the doctor, in full knowledge of the information under "Connections to the USB and AUX ports" on page 101, must decide which devices are connected to the USB and AUX ports.

4.2.1 Patient cable for SpO₂ sensors

Fig. 12 SpO₂ socket

The patient cable for the SpO₂ sensors is connected to the SpO₂ socket.

4.2.2 Patient cable for electrodes

Fig. 13 Electrode socket

The patient cable for the electrodes for heart rate and apnea monitoring is connected to this socket.

4.2.3 Power adapter

Fig. 14 Power adapter socket

The external power adapter socket is for connecting the NA 3000-2 external power adapter or the NAK 3000-2 automobile power supply adapter.

4.2.4 Sound outlet (no socket)

Fig. 15 Sound aperture

The outlet in the figure is not a socket, but a sound hole for the internal system monitor buzzer.

This outlet emits a pulsating sound when the external power adapter is disconnected from the monitor and no batteries are inserted.

The sound outlet is located between the cable sockets so that it cannot be covered by objects such as cushions or curtains.

4.2.5 USB port

Fig. 16 USB port

The USB (universal serial bus) port serves to read out stored data and to modify the VitaGuard® settings via a PC.

4.2.6 AUX port

Fig. 17 AUX port

The AUX (auxiliary) port can take the following connections:

- Two analog inputs
- Modem for communicating data
- Nurse call unit
- External alarm unit

VitaGuard® cannot confirm whether an alarm signal has been reported by a nurse call unit. As explained in the section "Alarm test" on page 69, check each time you switch on the device that an alarm signal is really transferred and the alarm reported.

Measure the time it takes for an alarm to be reported and the time needed to reach the patient. No more than ten seconds must pass between these times. Observe the operating instructions for the nurse call unit.

4.3 Membrane key panel

Do not apply excess pressure to the keys.

VitaGuard® recognizes key presses only when the keys have been pressed for about one second.

There are six membrane keys on the top side of VitaGuard®.

Fig. 18 Keys on the top side

4.3.1 Direction keys

With the direction keys you navigate from one window to the next.

The direction keys also allow you to navigate within the menu structure.

Fig. 19 Direction keys

4.3.2 <Enter> key

- The <Enter> key switches VitaGuard® on and off.
- The <Enter> key also lets you confirm changes to the monitor settings.

Fig. 20 <Enter> key

4.3.3 <Esc> key

When an alarm is triggered, the <Esc> key serves to deactivate the acoustic alarm signal for a set alarm mute time. During an alarm condition the red alarm LED and the violated alarm limit flash. The acoustic alarm is again emitted if the alarm condition persists af-

ter the alarm mute time has expired. Pressing the <Esc> key during the alarm mute time a second time reactivates the acoustic alarm.

Fig. 21 <Esc> key

 Also when an alarm has automatically ended (because the vital functions have restabilized by themselves) the alarm LED and the violated alarm limit continue to flash until you press the <Esc> key. The alarm LED, however, flashes slower than during an alarm.

 The <Esc> key cancels unsaved changes to the monitor settings or moves back to the next-higher menu.

4.4 Color LEDs (Light Emitting Diodes)

When VitaGuard® is switched on, all LEDs light up for a short time so that you can see they work properly. During this time, the alarm LED first lights up red and then yellow.

4.4.1 Alarm LED

- In the event of a higher-priority alarm, i.e. a physiological alarm, the alarm LED flashes red.
- In the event of a medium-priority alarm, i.e. a technical alarm, the alarm LED flashes yellow.

Fig. 22 Alarm LED

4.4.2 Heart and respiration LEDs

The LED with the heart symbol flashes with every heartbeat of the patient. In other words, this LED flashes as fast as the heart beats.

The LED with the lungs symbol lights up with every detected breath of the patient when the patient does not move and is not moved. In other words, this LED flashes as fast as the patient breathes.

Fig. 23 Heart and respiration LEDs

These two flashing green LEDs show you even in complete darkness that monitoring is activated.

Also, the System menu lets you switch on and off an acoustic signal that is emitted synchronously with the heartbeat or respiration.

4.4.3 Power supply and battery LEDs

When the LED with the power adapter symbol lights up, VitaGuard® is being powered from the supply network or an automobile power supply.

Fig. 24 Power supply LEDs

When the LED with the power adapter symbol does not light up, but the usual monitor displays are visible, VitaGuard® is being supplied by batteries (four non-rechargeable batteries or the rechargeable block battery).

The light from the LED with the battery symbol is permanently on when the block battery is being charged in VitaGuard®. A depleted block battery takes up to six hours to recharge.

When the block battery is fully charged the LED with the battery symbol flashes every second to indicate that compensation charging is active. The block battery must therefore be fully charged at all times in the event that the power supply from the external power adapter fails.

4.5 The display

Each of the "Alarms, displays, and views during monitoring" are explained on page 69. Pressing the \triangleleft key in View 1 takes you to the Info screen with the current information for the doctor. Pressing it again takes you to the System menu for the basic VitaGuard® settings.

After the monitor is switched on it can take up to twenty seconds before the first values are displayed.

Fig. 25 Current values and alarm limits in View 1

- 1 The status line at the top of the display shows messages (on the left) and symbols (on the right) for the external power supply and alarm activation.
- 2 For all vital functions, as here SpO₂ [2], the current value for each vital function [2a] is shown in large digits. Smaller digits to the right show the set alarm limits [2b].
- In addition to the The HEART RATE [3], the quality of the signal amplitude [3a] is shown on the left. PULSE RATE will be displayed instead of HEART RATE [3] and PR [3b] instead of HR if the pulse oximeter is selected as the source for the heart rate alarms (rather than the ECG electrodes). The SYSTEM menu lets you deactivate the simultaneous display of PR or HR [3b].
- 4 RESPIRATION [4] shows in addition on the left the quality of the amplitude [4a] and the basal impedance in ohms [4b]. This term is explained in the section "Checking the BASAL IMPEDANCE" on page 67. A respiration bar [4c] moves up and down synchroneously with the patient's breathing.

5 Steps before and after monitoring

The following summary shows you all the necessary measures that need to be taken before monitoring. Also read information on how VitaGuard® is switched on and off.

The doctor and the qualified medical staff are responsible for all other important activities when "Preparing for a new patient" (see page 99).

5.1 Summary of steps before monitoring

- Insert the battery or batteries (do not switch on yet!).
- Use the external power adapter to connect VitaGuard® to the supply network (do not switch on yet!).
- Attach the SpO₂ sensor to the patient.
- Connect the SpO₂ patient cable to VitaGuard®.
- Connect the SpO₂ sensor to the patient cable.
- Connect the ECG patient cable to VitaGuard®.
- Attach the ECG electrodes to the patient.
- Connect the ECG electrodes to the patient cable.
- Switch on VitaGuard® as explained in the next section.
- Make sure that after the monitor is switched on the indicator lamps light up briefly and a short sound is emitted by the alarm buzzers.
- Check that the alarm limits displayed are the same as those recommended by the doctor.

5.2 Switching on

Press the <Enter> key for several seconds to switch on VitaGuard®.

In the first minute of operation no acoustic signals are emitted so that you have time to check all cables. The alarm bell is crossed out for this time and the remaining time is shown next to it. Text messages, on the other hand, are shown from the beginning.

When no patient cable is connected, an acoustic reminder signal is emitted as a short tone every twenty seconds after the monitor is switched on. The technical alarms for cable and electrode monitoring are not activated until the patient cable is connected and the first plausible data have been calculated. A text message in the status line reports from the beginning that the cables are being checked.

After the device has been switched on, the following displays and signals show you that the monitoring system is fully operable.

- All indicator LEDs light up briefly. During this time the alarm LED first lights up red and then yellow.
- A brief tone is emitted to indicate that the acoustic alarm buzzer is fully operable.

If the alarm buzzer does not emit the acoustic signal after the device has been switched on, you must immediately send VitaGuard® to getemed AG or your authorized dealer for inspection. Please consult your authorized dealer for a replacement device.

Observe the patient carefully until the replacement device arrives. Bear in mind that the patient is not being monitored at this time and that no alarm will be reported in an emergency.

5.3 Switching off

Always switch off VitaGuard® in the manner described here.

- 1 Press the <Enter> key and keep this pressed: the message Press Esc key appears.
- 2 Briefly press the <Esc> key, still keeping the <Enter> key pressed, and then release both keys.

The switch off command is acknowledged by two short beeps.

Data must be stored before the device finally switches off. For this reason, VitaGuard® needs about another two seconds after the keys are released until it switches off completely.

5.4 Summary of steps after monitoring

- Switch off VitaGuard® as explained in the previous section.
- Carefully detach the ECG electrodes from the patient.
- Disconnect the ECG electrodes from the patient cable.
- Detach the SpO₂ sensor, carefully removing the adhesive strip from the skin.

If the procedure concerning stored data has not been clarified during your training, then please contact your doctor.

6 Preparing for SpO₂ monitoring

The information in this section refers primarily to the use of adhesive strip sensors. Also available, however, are SpO_2 sensors that can be disinfected and reused (permanent sensors) for brief examinations and for monitoring patients with allergies.

- LNOP® Neo will be explained as an example SpO₂ sensor for children.
- LNOP® Adt will be explained as an example SpO₂ sensor for adults.

Preparing for SpO₂ monitoring involves:

- attaching the sensors to the patient
- laying and securing the patient cable
- connecting the SpO₂ patient cable to VitaGuard®

6.1 Safety instructions for SpO₂ monitoring

For hygiene reasons, check that there is no damage to the sensor's packaging before opening it. Use adhesive strip sensors on the one patient only.

Remove the adhesive sensors no later than every eight hours and permanent sensors no later than every four hours so that you can inspect and, if necessary, clean the attachment sites on the patient's skin.

When the blood flow or attachment site is not satisfactory, attach the sensor to a different site, and inspect this site more often.

Be particularly careful with patients exhibiting weak blood flow: failing to check the sensors frequently may lead to skin damage and pressure-induced necrosis. Check no later than every two hours in these cases.

52

Connect the SpO₂ sensors only to the corresponding patient cable and this only to the corresponding socket on VitaGuard®.

Do not use adhesive strip SpO_2 sensors on patients exhibiting allergic reactions to adhesive strips or similar.

Securing sensors incorrectly, e.g. too tightly, can damage tissue.

Do not use damaged sensors. Replace sensors immediately if they exhibit any damage.

Do not immerse the sensors in liquids and do not attempt to sterilize them.

An improperly attached sensor can falsify measurements.

Do not attach the SpO₂ sensor to a limb that has or will have a catheter or pressure cuff during monitoring.

Secure the sensors and cables so that they cannot harm, strangle, or be swallowed by the patient. Always lay the patient cable at a safe distance from the patient's head and neck. Lay the patient cable when monitoring small children inside their clothing so that it exits at the foot. On larger children and adults you can, for example, lay the patient cable so that it exits between the trousers and pullover.

To prevent damage, avoid all kinks, folds, and any other unnecessary bends in the sensor cable.

6.2 Operation of SpO₂ sensors

 SpO_2 sensors consist of a transmitter diode (referred to as "transmitter" in the following) and a receiver. The transmitter is identified by the red star symbol on the adhesive strip. The receiver is identified by its round window and the white plastic part on the adhesive strip behind it.

The transmitter emits light, the receiver detects this light. When this light penetrates arterial blood vessels, the composition and intensity of the light picked up by the receiver change.

The SpO_2 monitor can calculate the percentage level of blood oxygenation from the composition of the light picked up by the receiver. However, it is important that no other light, whether daylight or ambient light, can reach the receiver. More detailed explanations can be found in the section "Measuring principle for the SpO_2 monitor" on page 135.

6.3 SpO₂ sensor adapted to the patient's size and weight

The following lists a number of SpO₂ sensors that are also available.

- The LNOP® Neo delivered with VitaGuard® is an adhesive strip sensor for measuring the functional arterial blood oxygen saturation (SpO₂) of infants weighing up to 10 kg.
- Sensors of the type LNOP® NeoPt are available for monitoring premature infants with sensitive skin.
- The sensor LNOP® Pdt can be used on children weighing between 10 and 50 kg.
- The sensor LNOP® Adt is suitable for patients over 30 kg.

Information on other sensors can be obtained from getemed AG or your authorized dealer.

6.4 Choosing the sensor site

- Always choose a site that is intact, has good blood flow, and covers completely the receiver window. Information on choosing the right attachment site can be found on the sensor's packaging.
- Choose a site such that the sensor's transmitter and receiver can lie exactly opposite each other.
- The distance between the transmitter and the receiver should not be greater than two centimeters.

- On infants with thick or swollen feet, the big toe is often better than the whole foot.
- Clean and dry the attachment site.
- Choose a site where the sensor and patient cable can least restrict the patient's freedom of movement.

6.5 Repositioning or replacing the sensor

Sensors used for a long time do not adhere as well as new ones.

When VitaGuard® does not display plausible values for the pulse rate and oxygen saturation, the sensor may not be attached to the optimal site or may not be properly secured.

- Check the sensor's position, and if necessary, move the sensor to a different site.
- Always replace a sensor when the displayed pulse rate and the displayed percentage level of oxygen saturation remain unconvincing despite the sensor's new site.

6.6 Reasons for unconvincing SpO₂ values

Clarify with the doctor whether one of the following situations may have arisen:

- the sensor is improperly secured or used (e.g. when the transmitter and receiver do not lie exactly opposite each other),
- the patient moves vigorously,
- the sensor picks up bright ambient light, e.g. from powerful lamps, IR heater lamps, direct sunlight, etc.,
- venous pulsation,
- a catheter or pressure cuff has been applied to the same limb as the sensor,

- the blood exhibits appreciable quantities of dysfunctional hemoglobin, e.g. carboxyhemoglobin or methemoglobin,
- blood dyes have been used such as indocyanine green, methylene blue, or other substances that contain coloring agents and therefore affect the blood color.

6.7 Why the pulse rate is not displayed

Clarify with the doctor whether one of the following situations may have arisen:

- The sensor is secured too tightly (dangerous for the patient),
- Bright ambient light,
- Inflated blood pressure cuff on the same limb as the sensor,
- Arterial occlusion near the sensor,
- Low blood pressure, serious vasoconstriction, anemia, hypothermia, cardiac arrest, or shock.

6.8 Attaching the SpO₂ sensor to an infant's foot

Note that the SpO₂ sensor type LNOP® Neo for infants is described here as an example. The doctor must decide which SpO₂ sensor type to use in each case.

LNOP® Neo is an SpO₂ sensor for use with one patient only weighing less than 10 kg.

Fig. 26 Label on the LNOP® Neo SpO₂ sensor

LNOP® Neo is free of latex, is not sterile, and cannot be sterilized.

The foot is the preferred attachment site on newborns. Alternative sites are also the palms and backs of the hands.

On infants weighing between 3 and 10 kg with thick or swollen feet, the LNOP® Neo sensor can be secured to the big toe. In this case, the following information for the sensor's receiver does not refer to the sole of the foot, but to the underside of the big toe. An alternative attachment site is also the thumb.

1 Open the packaging and remove the sensor. Hold the sensor at the stem of the Y and remove the protective cover from both the

sensor and the adhesive strip. Align the end of the sensor so that the contacts point away from the patient. Align the receiver along the fourth toe and press it against the sole of the foot (Fig. 27).

Fig. 27 Positioning the sensor

2 Align the transmitter window along the top of the foot directly opposite the receiver. Wrap the adhesive strip around the foot to secure the transmitter and receiver (Fig. 28). Check and if necessary correct the positions.

Fig. 28 Aligning the sensor and receiver

3 The opening in the receiver window must be completely covered by the foot (Fig. 29).

Fig. 29 Correctly attached LNOP® Neo sensor

6.9 Attaching the SpO₂ sensor to an adult's finger

Note that the SpO₂ sensor type LNOP® Adt for adults is described here as an example. The doctor must decide which SpO₂ sensor type to use in each case.

The LNOP® Adt sensor designed for adults weighing over 30 kg is identified by the label illustrated on the right.

Fig. 30 Label on the LNOP® Adt SpO₂ sensor

The preferred attachment sites on adults are the ring and middle fingers of the non-dominant hand. Alternative attachment sites are the other fingers of the non-dominant hand. On immobilized patients or patients whose hands cannot be used as attachment sites, the big or middle toe can be used.

1 Open the packaging and remove the sensor. Hold the sensor with the printed beige side downwards and bend it back to draw off the rear side. Align the sensor so that the receiver can be attached first (Fig. 31).

Fig. 31 Positioning the sensor

2 Now press the receiver on the fingertip and wrap the adhesive T ends around the finger (Fig. 32).

Fig. 32 Positioning the receiver on the fingertip

3 Next wrap the sensor with the transmitter and the finger design around the fingernail, and wrap the flaps downwards, one after the other, around the finger (Fig. 33).

Fig. 33 Aligning the sensor and receiver

the tissue.

When the transmitter and receiver are correctly attached, they should be exactly opposite each other (Fig. 34). Check and if necessary correct the sensor's position. The receiver window must be completely covered by

Fig. 34 Correctly attached LNOP® Adt sensor

Connecting the SpO₂ sensor and patient cable 6.10

Hold the sensor's contact blade so that the metal contacts are on the top and the two Masimo symbols on the blade and patient cable are opposite each other. Insert the contact blade into the patient cable

until it engages (Fig. 35). Pull carefully on the contact blade to check that it has engaged properly. You can now secure the patient cable to the patient with an adhesive strip.

Fig. 35 Connecting the patient cable and sensor contact

6.11 Connecting the SpO₂ patient cable to VitaGuard®

Insert the patient cable's monitor plug into the SpO₂ socket on VitaGuard®. The Masimo inscription on the monitor plug must be on top. You should feel the monitor plug engage.

Fig. 36 SpO₂ socket

6.12 Disconnecting the SpO₂ sensor from the patient cable

Use the thumb and index finger of one hand to carefully press the two buttons on the side of the patient cable's socket (Fig. 37). Carefully pull the end of the sensor to withdraw it.

Fig. 37 Disconnecting the sensor from the patient cable

6.13 Disconnecting the SpO₂ patient cable from VitaGuard®

Using your thumb and index finger, carefully press the two levers in the patient cable's monitor plug, and carefully pull out the plug.

Fig. 38 Two levers for securing and releasing the patient cable plug

6.14 Reusing and refastening SpO₂ sensors

When the SpO_2 sensors are treated with care they can be used several times on the same patient as long as the adhesive surfaces still adhere and the transmitter and receiver windows are cleaned at regular intervals.

Disconnect the sensor from the patient cable before you reattach or refresh it.

There are replacement adhesive strips available for the LNOP®
 Neo sensor used on infants.

- When sensors have been in use for a short time only, you can refresh the adhesive surfaces with a cotton swab saturated with a 70% isopropanol solution. Leave the sensor to dry thoroughly in air before reattaching it.
- A sensor can be secured with an adhesive strip on less sensitive patients. Velcro strips are available for more sensitive patients.

Use a new sensor when the old one can no longer be properly secured.

7 Preparing for heart rate and apnea monitoring

This section is divided into the following parts.

- Safety information when monitoring heart rate and apnea
- Connecting electrodes, the patient cable, and VitaGuard®
- Technical alarm from the electrode contact monitor
- Determining the optimal electrode configuration
- ECG lead, electrode color coding
- Optimizing the heart and respiration signals signal amplitudes in View 1
- Checking the BASAL IMPEDANCE

7.1 Safety information when monitoring heart rate and apnea

Observe the following points before monitoring with VitaGuard®.

CAUTION Interference signals can prevent a heart rate alarm from being reported when under certain unfavorable conditions the monitor misinterprets these interference signals as heart signals. Interference signals can originate from the power supply or electrical apparatus in the monitor's environment. Observe the instructions under "Electromagnetic interference" on page 26.

The doctor can deactivate the Apnea Alarms as described in the section "Settings in the Respiration Menu (Settings protection Off)" on page 129. The Apnea Alarms are then no longer activated and Off is displayed instead of the respiration rate. When a new age

group is selected under ADMIT NEW PATIENT, the APNEA ALARMS are reactivated together with the other factory settings.

Use only those electrodes that getemed AG or an authorized dealer has delivered or approved. Other electrodes can, in particular when monitoring apnea, cause malfunctions and in addition cause damage to the patient's skin. Read and observe the operating instructions for the electrodes.

Do not continue using damaged electrodes or cables. Do not immerse electrodes or cables in water, solvents, or liquid cleaning agents.

Store the electrodes in a cool dry place. Observe the storage instructions on the packaging.

Do not use electrodes after their expiration dates (this date is printed on the packaging, e.g. FEB2006 or 2006-02 = February 2006).

The electrodes provided are designed for short-term applications. Using the same electrodes several times can lead to malfunctions when the adhesive surface fails to adhere properly.

Do not open the electrode's packaging until shortly before the electrode is to be used. Open the packaging and remove the electrodes. Hold the sides of the electrode and peel off the transparent film. Do not pull on the electrode's cable. Avoid finger contact with the electrode's gel-coated surface as much as possible.

If you intend to reuse the same electrode a short time later, carefully reattach them to the transparent film. This helps to prevent the electrode from drying out or becoming soiled.

Use exclusively the ECG patient cable delivered by getemed AG. Connect the ECG electrodes only to the ECG patient cable and this only to the corresponding VitaGuard® socket.

CAUTION Make sure when attaching electrodes that neither the electrodes nor their plug connectors come into contact with other electrically conducting parts. There must also be no contact with

other electrically conducting parts when electrodes become detached during monitoring.

Attach the electrodes only to intact areas of skin.

Secure the electrodes and cables so that they cannot harm, strangle, or be swallowed by the patient. Always lay the patient cable at a safe distance from the patient's head and neck. Lay the patient cable when monitoring small children inside their clothing so that it exits at the foot. On larger children and adults you can, for example, lay the patient cable so that it exits between the trousers and pullover.

Place the gel-coated side of the electrode on the chosen site and carefully press it several times for a good contact.

New electrodes may be reattached several times. Peel them gently from the skin starting at the edge.

When disconnecting the electrodes from the patient cable, do not pull on the electrode's cable. Pull the plug only.

If necessary, secure the cable with an adhesive strip. The skin should be dry and free of oil and grease.

Make sure when attaching and securing the patient cable that it cannot kink. Kinking can cause damage.

Do not pull on the cable: this is unpleasant for the patient and in addition can damage the electrodes.

7.2 Connecting electrodes, the patient cable, and VitaGuard®

Insert the electrode's plug into the ECG patient cable's distributor. Note the color coding of the electrodes and the distributor's sockets.

Fig. 39 Color-coded sockets on the ECG patient cable's distributor

Insert the plug from the ECG patient cable into the socket marked with the heart and lungs symbol.

Fig. 40 Electrode socket

7.3 Technical alarm from the electrode contact monitor

The electrode contact monitor reports an alarm when:

- the electrodes have become detached,
- the electrodes are too dry (e.g. the expiration date has been exceeded or the electrodes have been used several times), giving rise to too high a value of basal impedance.

When electrodes have become detached or when the electrical resistance between the electrode and skin is too high, the respiration and ECG signals are displayed as a zero line.

When new electrodes have become detached you can reattach these by pressing them gently.

You must replace electrodes that have become detached more than once or that exhibit too high a resistance between the electrode and skin. Further explanations can be found in the section "Checking the BASAL IMPEDANCE" on page 67.

7.4 Determining the optimal electrode configuration

The respiration and heart signals are detected using the same electrodes. The optimal electrode configuration involves finding good signal amplitudes for both the respiration and the heart signals simultaneously.

getemed AG recommends that the responsible doctor determine the optimal electrode configuration. In most cases this configuration can be retained for the whole period of monitoring.

7.4.1 ECG lead, electrode color coding

Start with the electrode configuration depicted in Fig. 41 (see next page). First arrange

- the electrodes on infants as depicted in Fig. 41 a)
 (this electrode configuration has often proved successful because
 the abdominal wall of infants clearly moves synchronously with
 the respiration),
- the electrodes on all other patients as depicted in Fig. 41 b)

Fig. 41 Recommended electrode configuration

If the electrode configuration depicted in Fig. 41 does not yield a good signal quality, you can also try the alternative electrode configuration depicted in Fig. 42.

Fig. 42 Alternative electrode configuration for optimizing the heart and respiration signals

7.4.2 Optimizing the heart and respiration signals – signal amplitudes in VIEW 1

The amplitudes of the heart and respiration signals are displayed under the headings HEART RATE and RESPIRATION respectively in VIEW 1.

Fig. 43 Electrode signal amplitude in View 1

CAUTION When AMPLITUDE: POOR is displayed, the values for the monitored heart rate and apnea may be imprecise.

Amplitude	Meaning
POOR	the signal is not or only sporadically detected
MEDIUM	the signal is detected, but interference, e.g. due to movement, can cause false alarms
GOOD	a clear signal is detected

A correct HEART RATE is detected when the heart LED flashes synchronously with the patient's heartbeat.

When the signal amplitude is GOOD or MEDIUM, there should be no deterioration in the detected heart rate when the patient moves normally.

Observe the LED with the lungs symbol and the respiration bar on the VitaGuard® display. Carefully change the positions of the red and yellow electrodes. Whenever possible, try to obtain the largest possible deflections.

tions in the respiration bar. Also, the respiration bar must move and the LED flash synchronously with the respiration.

7.5 Checking the BASAL IMPEDANCE

The basal impedance is displayed in View 1, the respiration display, and the display INFO\MEASUREMENTS: HR & RESP. The basal impedance is the sum of all impedances in the measuring circuit:

- skin and tissue impedance between the red and the yellow electrode
- impedance of the electrode-skin interface
- impedance of the electrodes themselves and the patient cable

The basal impedance slowly falls for the first few hours after the electrodes have been attached. This is caused by a reduction in the impedance at the electrode-skin interface.

The displayed basal impedance should be less than 1000 Ω . If not, wait for about fifteen minutes. When the basal impedance has still not fallen, you should use new electrodes.

When the displayed basal impedance does not lie within the specified range or when false alarms frequently occur, the doctor or the medical caregivers should observe the instructions in the section "Changing the ECG lead for signal optimization" on page 127.

8 Alarms, displays, and views during monitoring

Immediately call the emergency services when a patient remains unconscious after being shaken or addressed.

8.1 Alarm test

CAUTION: When beginning monitoring at a new site, make sure that you can clearly hear the alarm signal and quickly reach the patient. For this purpose, deliberately trigger a technical alarm.

When a patient is connected there are two ways you can deliberately trigger an alarm:

1 pull the red electrode plug out of the distributor on the ECG patient cable

or

2 disconnect the SpO_2 sensor from the SpO_2 patient cable.

8.2 HEART RATE values based on age groups

Bear in mind that the HEART, PULSE, and RESPIRATION RATES drop considerably with increasing age. The doctor must check and, if necessary, adapt the alarm limits for each patient's age group.

The percentage level of arterial blood oxygenation displayed as $\%SpO_2$ normally ranges between 97 and 99%, irrespectively of the patient's age group.

The average heart rate of an infant is much higher than that of an adult. Accordingly, the alarm limit e.g. for bradycardia (too low a heart rate) must be set considerably higher for an infant than for an adult patient. As an orientation aid, the following table lists some medically

acknowledged approximate heart rates for various age groups and stress situations.

Age group	Heart rate / min		
	Sleep	Rest	Stress (e.g. fever)
Newborns	80–160	100–180	max 220
1 week to 3 months	80–200	100–220	max 220
3 months to 2 years	70–120	80–150	max 200
2 to 10 years	60–90	70–110	max 200
10 years and older	50–90	55–90	max 200

8.3 Alarm message priorities in the status line

Fig. 44 Status line on the VitaGuard® display

Physiological alarms have high priority. The text messages of physiological alarms end with three exclamation marks.

Technical alarms have medium priority. The text messages of technical alarms end with two exclamation marks.

8.4 Physiological and technical alarms

VitaGuard® generates two types of alarms: physiological and technical alarms.

 A physiological alarm is generated when VitaGuard® detects values that violate one or more of the set alarm limits for longer than the set period.

There are simple alarm limits, e.g. the LOWER LIMIT for the HEART RATE, and there are alarm limits based on the interaction of several monitor settings, e.g. the deviation alarms.

"Combining apnea alarms with heart rate and SpO₂ alarms" is explained on page 130.

 A technical alarm is generated when monitoring is no longer reliable, e.g. when electrodes have become loose.

The reasons for incorrect values can be detached electrodes or other technical defects. When a technical alarm condition occurs, a life-threatening situation may escape detection.

When, for example, a technical alarm condition relevant to SpO_2 has occurred, yet at the same time a physiological alarm condition has been detected by the heart rate and apnea monitor, the physiological alarm condition has priority and the physiological alarm is reported.

When, on the other hand, a technical alarm condition has been detected by the heart rate and apnea monitor and at the same time the SpO₂ monitor detects a physiological alarm condition, again the physiological alarm condition takes priority.

NOTE An alarm mute time of ten seconds follows a technical alarm triggered by problems with the ECG electrodes or the SpO_2 sensor. This delay is to prevent false alarms when the physiological parameters are being recalculated. During the alarm mute time, the bell symbol in the status line is crossed out.

8.5 Differentiating physiological and technical alarm signals

The ALARM TONE PITCH can be set in the System menu so that alarms are heard over the prevailing background noise.

The urgency or priority of an acoustic alarm can be recognized by its characteristics described in the following.

High-priority messages emit two sequences of five tones that are repeated every ten seconds.

The interval between each tone packet is two seconds. Also, there is a

slightly longer interval between the third and fourth tone of each sequence.

Fig. 45 Characteristics of the high-priority acoustic alarm signal

Medium-priority messages emit a sequence of three tones which is repeated every 5.2 seconds.

8.6 Acoustic information signals

If wished, the alarm unit next to the display can produce a short acoustic signal to accompany each heartbeat or each breath.

8.6.1 Information signals from the alarm unit next to the display

After the monitor is switched on, an acoustic reminder signal is emitted every twenty seconds until all sensors and electrodes are connected and plausible data have been detected.

8.6.2 Information signals from the sound aperture between the sockets

A pulsating tone is emitted if the external power adapter is disconnected and no batteries are installed.

8.7 The visual alarm signals

 A high-priority alarm, i. e. physiological alarm, causes the alarm LED to flash red.

 A medium-priority alarm, i. e. technical alarm, causes the alarm LED to flash yellow.

8.8 Status line displays

During monitoring the status line is displayed in all views.

Fig. 46 The status line displayed in all views

The monitor's text messages appearing on the left are explained in detail in the section "Alarm messages – meanings and other information" on page 77. On the right of the status line are three symbols.

Power supply

The power supply symbol indicates whether the NA3000-2 external power adapter or the automobile power supply adapter is connected. When a power adapter is connected, the symbol appears as illustrated on the right. Otherwise the symbol is crossed out.

Battery voltage indicator

The battery voltage indicator depicts the voltage from the batteries. When the block battery is being recharged this symbol is animated, i. e. a filling animation is displayed.

Alarm indicator

When you interrupt an acoustic alarm by pressing the <Esc> key, the bell symbol is crossed out. To the left of the bell, the remaining alarm mute time is displayed in seconds. This mute time applies only to the current alarm type.

When a new alarm condition is detected, the acoustic alarm is emitted before the alarm mute time has expired.

Pressing the <Esc> key a second time immediately ends the ALARM MUTE TIME.

The alarm bell outline indicates that all acoustic alarm signals are enabled.

In the event of an alarm, the alarm bell is filled out and flashes.

8.9 SpO₂ monitor alarms

After the monitor has been switched on, it can take up to twenty seconds before the first values are displayed.

8.9.1 Physiological SpO₂ alarms

The currently set alarm limits are always displayed. When the displayed SpO_2 value falls below the SpO_2 Lower limit for longer than the period set under Hypoxia alarm delay or exceeds the SpO_2 Upper limit for longer than the period set under Hyperoxia alarm delay, an acoustic alarm signal is emitted and the corresponding message is displayed. The affected alarm limit and the alarm LED flash.

Go immediately to the patient when an alarm occurs and check the patient's condition.

When the SpO₂ value returns within the permitted range the alarm is ended automatically. In this case, the affected alarm limit and the alarm LED continue to flash until the <Esc> key is pressed to indicate that an alarm has occurred.

The SpO₂ UPPER LIMIT is deactivated when it is set to 100% (factory setting). We recommend setting an upper limit when the patient is undergoing oxygen therapy.

In addition to the alarms based on permanently set limits, deviation alarms can also be activated as explained in the section "Combining apnea alarms with heart rate and SpO_2 alarms" on page 130.

8.9.2 Technical SpO₂ alarms

The section "Table of technical alarm messages" on page 81 can be consulted for the technical alarm signals and the recommended troubleshooting procedures.

The SpO_2 monitor displays technical alarms with the corresponding messages. Until the problem has been eliminated, the SpO_2 value and the pulse rate are replaced by a question mark symbol. Perfusion and signal IQ are set to zero.

8.10 Heart rate and apnea monitoring

After the monitor is switched on, it may take up to twenty seconds before the first values are displayed.

8.10.1 Differentiating between heart and pulse rate

In the menu SpO_2 , submenu SpO_2 Monitor, the doctor can set the source for monitoring the heart rate when activating the SpO_2 module.

Menu setting	SpO ₂ monitor	Source for monitoring heart rate	
OFF	switched off	switched off ECG signal (heart rate)	
ON (HR:ECG)	switched on	ECG signal (heart rate)	
ON (PR:Masimo)	switched on	SpO ₂ sensor (pulse rate)	

■ When the ECG signal is set as the source for monitoring the heart rate, HEART RATE appears as the heading in various views. In addition — when this option has been activated — VIEWS 1 and 2 simultaneously display the current pulse rate determined via the SpO₂ sensor below the abbreviation PR.

When the SpO₂ sensor is set as the source for monitoring the heart rate, the word PULSE RATE appears as the heading in various views. In addition – when this option has been activated – VIEWS 1 and 2 display the current heart rate determined via the ECG electrodes below the abbreviation HR.

We recommend using the Pulse RATE for monitoring the heart rate only when the electrodes cannot be used, e.g. owing to allergic reactions.

The heart and pulse rates can differ when irregular heartbeats fail to pump enough blood that can be recognized as a pulse.

8.10.2 Heart and pulse rate alarms

The currently set alarm limits are always displayed.

When the displayed HEART or Pulse RATE [HR or PR]

- falls below the Lower Limit for longer than the set Bradycardia
 DELAY or
- exceeds the UPPER LIMIT for longer than the set TACHYCARDIA
 DELAY
- or when the ECG signal is not detected for longer than the set
 ASYSTOLE DELAY

VitaGuard® emits an acoustic alarm signal and displays the corresponding message. The violated alarm limit and the alarm LED flash.

Go immediately to the patient when an alarm is reported and check the patient's condition.

The alarm is ended automatically when the heart rate returns within the permitted limits.

Deviation alarms can also be activated in addition to the alarms based on permanently set limits.

8.10.3 Apnea alarms

An alarm is reported when apnea, i.e. respiratory arrest, is detected for longer than the set Apnea delay. An alarm message then appears on the display, the alarm LED flashes, and an acoustic warning is emitted.

Go immediately to the patient when an alarm occurs and check the patient's condition. When the patient resumes breathing, the alarm is switched off automatically. Both the delay time and the alarm LED continue to flash to show that apnea has occurred for longer than the set Apnea Delay. Pressing the <Esc> key stops the flashing.

8.10.4 Technical heart rate and apnea alarms

The section "Table of technical alarm messages" on page 81 can be consulted for the technical alarm signals and the recommended troubleshooting procedure. The heart rate and apnea monitors display technical alarms with the corresponding messages. Until the problem has been eliminated, the heart and respiration rates are replaced by a question mark symbol.

When VitaGuard® is to be used as a pulse oximeter only, the absence of an ECG patient cable would normally generate a technical alarm. To prevent this technical alarm, the doctor can deactivate the apnea monitor and switch to Pulse RATE instead of HEART RATE as the source for heart related alarms.

8.11 Alarm messages – meanings and other information

The tables in this section list in alphabetical order all the text messages that can appear on the VitaGuard® display together with more detailed explanations and troubleshooting hints.

8.11.1 Order of equal-priority alarm conditions

The numbers in the No. column on the right indicate the internal priorities that VitaGuard® uses to process the respective messages. This is of importance to the doctor only.

8.11.2 Table of physiological alarm messages

Physiological alarms are reported with high priority.

Message	Meaning	Information	No.
Apnea	A respiration signal has	When there is no apnea:	10
detected!!!	not been detected for	- The electrodes are badly placed, i.e. the	
	longer than the set	signal is too small to be detected.	
	Apnea delay.	- Cardiogenic artifacts are superim-	
		posed on the respiration signal so that	
		it is rejected.	
		- The monitor, cable, or electrode is	
		defect.	
		- The set Apnea delay is too short.	
Apnea and	An SpO ₂ and apnea alarm	See messages and information for	4
SpO ₂ !!!	have occurred simulta-	"Apnea detected" and "SpO₂ too low".	
	neously.		
ECG	The monitor could not	When there is no asystole (cardiac arrest	5
amplitude	detect the ECG signal for	or delay):	
low!!!	longer than the set	- The electrodes are badly placed.	
	Asystole delay.	- The ECG signal is too small to be	
		detected.	
		- The monitor, cable, or electrode is	
		defect.	
Heart rate	A heart rate alarm and an	See the messages and information for	3
and	apnea alarm have	"Heart rate too high/ too low" and	
apnea!!!	occurred simultaneously.	"Apnea detected".	
Heart rate	A heart rate alarm and an	See the messages and information for	2
and SpO₂!!!	SpO ₂ alarm have occurred	"Heart rate too high/ too low" and	
	simultaneously.	"SpO₂ too low".	

Message	Meaning	Information	No.
Heart rate	The calculated heart rate	When there is no tachycardia:	7
too high!!!	exceeds the set Upper	- T wave peaks are interpreted as R	
	цилт for longer than the	waves so that the calculated heart rate	
	set Tachycardia delay.	is too high.	
		- The electrodes are badly placed.	
		- Artifacts caused by excessive move-	
		ment trigger false alarms.	
		- 50 Hz or other sources of electromag-	
		netic interference trigger false alarms:	
		suspected interference sources must	
		be removed	
		- The electrode has become detached.	
		- The monitor, cable, or electrode is defect.	
		- The set Upper limit is too low.	
Heart rate	The calculated heart rate	When there is no bradycardia:	6
too low!!!	falls below the set Lower	- Heartbeats are not detected.	
	ыміт for longer than the	- The electrodes are badly positioned.	
	set Bradycardia delay.	- Abnormal beats, e.g. extrasystoles, are	
		not detected.	
		- The electrode has become detached.	
		- The monitor, cable, or electrode is	
		defect.	
		- The set Lower limit is too high.	
Heart rate	The current heart rate	When there is no heart rate drop:	11
drop	falls below the value	- The heart rate and/ or the average	
detected!!!	based on the set AVERAG-	heart rate is incorrectly calculated for	
(when	ING INTERVAL by more	the reasons given under "Heart rate	
activated)	than the percentage	too low"	
	deviation value set under		
	Trend deviation (–).		
Heart rate	A heart rate rise is	When there is no heart rate rise:	12
rise	detected in the same	- The heart rate and/ or its average is	
detected!!!	manner as a heart rate	incorrectly calculated for the reasons	
(when	drop, but Trend devia-	given under "Heart rate too high".	
activated)	тюм (+) is used instead.		

Message	Meaning	Information	No
Multiple	An SpO₂ alarm, a heart	See the messages and information for	1
alarms!!!	rate alarm, and an apnea	"Heart rate too high/ too low", "SpO₂	
	alarm have occurred	too low", and "Apnea detected".	
	simultaneously.		
Pulse rate	A pulse rate alarm and an	See the messages and the information	3
and	apnea alarm have	for "Pulse rate too high/ too low" and	
apnea!!!	occurred simultaneously.	"Apnea detected".	
Pulse rate	A pulse rate alarm and an	See the messages and information for	2
and SpO ₂ !!!	SpO ₂ alarm have occurred	"Pulse rate too high/ too low" and "SpO $_{2}$	
	simultaneously.	too low".	
Pulse rate	The calculated pulse rate	When there is no tachycardia:	7
too high!!!	exceeds the set Upper	- Strong artifacts caused by excessive	
	ымыт for longer than the	movement trigger false alarms.	
	set Tachycardia delay.	- The monitor, cable, or sensor is defect.	
		-The set Upper limit is too low.	
Pulse rate	The calculated pulse rate	When there is no bradycardia:	6
too low!!!	has fallen below the set	- No pulse is detected.	
	Lower Limit for longer	- There are abnormal beats.	
	than the set BRADYCARDIA	- The monitor, cable, or sensor is defect.	
	DELAY.	-The set Lower Limit is too high.	
Pulse rate	The current pulse rate	When there is no pulse rate drop:	11
drop	has fallen below the	-The pulse rate and/ or the average	
detected!!!	value based on the set	pulse rate is incorrectly calculated for	
(when	Averaging interval by	the reasons given under "Pulse rate	
activated)	more than the percent-	too low".	
	age deviation value set		
	under Trend deviation (–).		
Pulse rate	A pulse rate rise is	When there is no pulse rate rise:	12
rise	detected in the same	- The pulse rate and/or the average	
detected!!!	manner as a pulse rate	pulse rate is incorrectly calculated for	
(when	drop, but Trend devia-	the reasons given under "Pulse rate	
activated)	тюм (+) is used instead.	too high".	

Message	Meaning	Information	No.
SpO ₂ too	The calculated SpO ₂	When SpO₂ is not too high:	9
high!!!	exceeds the set UPPER	- The sensor is incorrectly attached, e.g.	
	ымыт for longer than the	it is too loose or too tight, the trans-	
	set Hyperoxia alarm	mitter and receiver are too far apart, or	
	DELAY.	they are not exactly opposite each other.	
		- The sensor has become detached	
		- The blood flow is weak or obstructed	
		e.g. by a pressure cuff.	
		- Strong artifacts caused by movements	
		corrupt the signal.	
		- The monitor, cable, or sensor is defect.	
		-The set Upper limit is too low.	
SpO ₂ too	The calculated SpO ₂ has	See "SpO₂ too high!!!".	8
low!!!	fallen below the set		
	Lower Limit for longer		
	than the set Hypoxia		
	ALARM DELAY.		
SpO ₂ drop	The currently measured	When there is no SpO₂ drop:	13
detected!!!	SpO ₂ has fallen below the	- The present SpO ₂ or the value based on	
(when	value based on the set	the set averaging interval is incorrect	
activated)	Averaging interval by	for the reasons given under "SpO ₂ too	
	more than the percent-	high".	
	age deviation value set		
	under Trend deviation (–).		

8.11.3 Table of technical alarm messages

Message	Meaning	Cause or elimination	No.
Check ECG	The monitor discovers	- Check the ECG cable.	22
cable!!	that the ECG cable is not		
	connected.		
Check	The monitor discovers that	- Check the electrodes: If this message	23
electrodes!!	one or more electrodes	persists, use new electrodes or replace	
	are not connected.	the ECG cable.	

Alarms, displays, and views during monitoring

Message	Meaning	Cause or elimination	No.
Check	The measured voltage	- Check that the stipulated power	16
power	from the power adapter	adapter is being used.	
adapter!!	is less than 8 V or greater	- Check and, if necessary, replace the	
	than 10 V.	NA3000-2 power adapter.	
Conflicting	The heart rate's Lower	- Correct the heart rate limits.	19
HR limits!!	циит has been set higher		
	than the Upper Limit.		
Conflicting	The SpO ₂ Lower Limit has	- Correct the SpO ₂ limits.	20
SpO ₂	been set higher than the		
limits!!	Upper limit.		
Corrupted	The ECG signal is	- Attach the electrodes as symmetrically	24
ECG signal!!	corrupted too strongly by	as possible.	
	50 Hz interference	- Replace the electrodes.	
	signals from the supply	- Select the "I YE-RD, 3" lead.	
	network.	- Proceed in accordance with the section	
		"Electromagnetic interference" on page 26.	
Hardware	The monitor has detected	- Switch off the monitor, wait for thirty	14
fault!!	an internal fault.	seconds, and switch it back on: if this	
		message persists, the monitor is defect.	
Internal	The internal software	- Switch off the monitor, wait for thirty	18
data error!!	monitor has detected a	seconds, and switch it back on: if this	
	data transfer error.	message persists, the monitor is defect.	
No cables	The monitor discovers	- Connect the patient cables for SpO ₂	21
connected!!	that both patient cables	and ECG.	
	are not connected.		
No power	The power adapter has	- Reconnect the external power adapter	17
adapter !!	been disconnected.	or press the <esc> key.</esc>	
Recharge	The battery voltage is too	- Operate the monitor with the external	32
battery!!	low: the monitor can no	power adapter to recharge the block	
	longer operate reliably	battery, or insert non-rechargeable	
		batteries.	
Replace	The battery voltage is too	- Insert new batteries or a new block	33
batteries!!	low: the monitor can no	battery or operate the monitor with	
	longer operate reliably.	the external power adapter.	

Message	Meaning	Cause or elimination	No.
SpO ₂ : Check	The SpO ₂ module reports	- Connect the SpO ₂ cable.	26
cable!!	that the SpO ₂ cable is not	- Replace the SpO ₂ cable, if this message	
	connected.	persists.	
SpO ₂ :	The SpO ₂ module reports	- Replace the SpO ₂ sensor.	27
Defective	that the SpO ₂ sensor is		
sensor!!	defect.		
SpO ₂ :	The SpO ₂ module is not	- Switch off the monitor, wait for thirty	15
Hardware	supplying data.	seconds, and switch it back on: if this	
fault!!		message persists, the monitor is defect.	
SpO ₂ :	The SpO ₂ module detects	- Locate any interference sources in the	30
Interfer-	electromagnetic interfer-	direct vicinity and, if necessary, remove	
ence!!	ence.	them.	
SpO ₂ : Pulse	When switched on, at	- When this message is displayed during	34
search!!	first, the SpO₂ module	monitoring, check whether the sensors	
	reports that it is search-	are secured and positioned properly.	
	ing for the pulse.		
SpO ₂ :	The SpO ₂ sensor is defect	- Check whether the SpO ₂ sensor is	28
Sensor off!!	or not connected.	correctly connected to the cable; if	
		necessary replace the sensor.	
SpO ₂ : Too	The SpO ₂ module reports	- Protect the SpO ₂ sensor from light	31
much	that there is too much	sources, e.g. by covering it.	
light!!	light.		
SpO ₂ :	The SpO ₂ module reports	- Replace the SpO ₂ sensor	29
Unrecog-	that an unrecognized	(use only the sensors from Masimo Inc.).	
nized	sensor is connected.		
sensor!!			

8.12 Table of information messages

Message	Cause	Meaning	No.
Calculating	The current heart rate	The current heart rate is displayed	37
heart rate	cannot be displayed	after it has been calculated.	
	while it is being		
	calculated.		
Heart and pulse	The heart rate deter-	- Check the ECG electrodes and the	38
rates diverge!!	mined via the ECG	SpO₂ sensor.	
	electrodes differs from	- See also the messages for "Heart	
	the pulse rate by more	rate too high", "Heart rate too low",	
	than ±40%.	"Pulse rate too high", "Pulse rate too	
		low".	
Internal battery	The internal battery for	- The monitor is defect i. e. the	39
too low	alarms during a power	internal battery needs to be replaced	
	failure is depleted.	by a technician.	
SpO ₂ : Low	The SpO ₂ module	- Either use a different attachment	35
perfusion	reports that the blood	site, or set Sensitivity to maximum	
	flow is too weak.	in the SpO₂ menu.	
SpO ₂ : Low signal	The SpO ₂ module	- Use a different attachment site, or	36
IQ	reports that the signal	check for the presence of light or	
	quality is low.	electromagnetic interference	
		sources in the vicinity.	
		- Whenever possible, prevent vigorous	
		movements by the patient.	
Status: ok	No messages		40

9 Alarm and monitor settings

The functions described in this section can be accessed only when the doctor has set Settings protection to Limited in the System menu. This setting requires a code.

The function ADMIT NEW PATIENT in the SYSTEM menu overwrites all earlier settings.

The set alarm limits and other monitor parameters are stored and retained when the monitor is switched back on after a battery change.

9.1 Safety instructions for the alarm settings

It is important that the doctor responsible sets new alarm limits and monitor parameters for each patient and for each new medical situation. Never change alarm limits without consulting the treating doctor.

Never set the alarm limits to extreme values that render the monitoring system useless.

When you have been given a code for changing alarm limits, it is important that you treat this code as confidential. Life is in danger when alarm limits are not adapted specifically to each and every patient.

9.2 Summary of views and menus

The views presented here are intended to provide extensive information on the monitoring situation. When Settings protection is set to LIMITED, they can be accessed with the direction keys \triangleleft and \triangleright .

The keys \triangle and ∇ let you access more detailed information and enter menus for changing monitor settings.

- The \triangle or ∇ key takes you from the System view to the System menu. The first setting is highlighted.
- The \triangle or ∇ key leafs through pages on the INFO display.
- The △ or ▽ key takes you from View 1, 2, or 3 to the menu "Manual data storage or Transmit data". This is explained in the corresponding section on page 116.
- The SpO₂, Heart rate, and Respiration displays each feature a menu for adjusting the respective settings and can be accessed with the \triangle or ∇ key. The first setting is highlighted.
- The \triangle or ∇ key takes you from the EVENTS or TRENDS views to detailed views, WAVEFORMS, and TRENDS.

9.3 Additional views

When the doctor has configured VitaGuard® so that also the caregivers can change settings, i.e. Settings protection is set to Limited, Views 2 and 3 are also activated in addition to View 1. View 1 is explained in the section "The display" on page 46.

9.3.1 VIEW 2 – Large data presentation and waveforms

VIEW 2 displays in large digits the current values for the monitored vital functions and, on the right in smaller digits, the set alarm limits.

Also, each section on the left presents a waveform of the monitored vital function.

Fig. 47 View 2

9.3.2 VIEW 3 – Smaller data presentation and waveforms

The top half of VIEW 3 displays the current measured values and the alarm limits.

The bottom half of VIEW 3 displays the waveforms over a longer interval than VIEW 2.

Fig. 48 View 3

9.4 Changing the settings

Use the direction keys to highlight a menu option or an entry in this option. Once you have highlighted the option you want, press the <Enter> key to change it. When you do not want to keep your changes, press the <Esc> key.

The \triangle key takes you to the menus. The first entry in the list is highlighted. Use the ∇ key to highlight the setting LCD BRIGHTNESS ("Changing multiple-component settings" is explained on page 109 for the doctor and qualified medical staff).

Fig. 49 Menu system, "LCD brightness: 80%" highlighted

Press the <Enter> key. A window appears where you can change the old value.

Use the \triangle and ∇ keys to change the highlighted value.

Screen saver	On
LCD brightness	80 %
LCD contrast	70 %
Signal beep tone	Off
Alarm tone pitch	Medium (DIN)
RC 222 format SE LCD brightness	O++
80 %	
System	

Fig. 50 System, "LCD brightness" highlighted in the change window

Pressing the <Enter> key after changing a value causes a prompt to appear with Accept: No highlighted. Press the < key to highlight Accept: Yes.

Fig. 51 System, accept change to LCD brightness highlighted

Confirming the prompt Accept: Yes with the <Enter> key displays the changed value in the list. To exit the menu press the <Esc> key.

9.5 System menu – general settings

NOTE You can familiarize yourself with the menus without changing values. Simply press the <Esc> key to exit each menu and submenu without saving changes.

Fig. 52 System menu – general settings

9.5.1 System\ Screen saver (Off/On)

When Screen saver is set to On, an animation appears on the display when no key has been pressed for five minutes.

When you press a key or an alarm is triggered, the previous mask is displayed again.

9.5.2 System\ LCD Brightness

You can set the LCD BRIGHTNESS from 0% to 100% in steps of 5%. When 0%, the display's backlight illumination is switched off. The factory setting is 95%.

9.5.3 System\LCD contrast

You can set the display's contrast from 0% to 100% in steps of 5%. The factory setting is 70%.

9.5.4 SYSTEM\ SIGNAL BEEP TONE

You can configure the monitor to emit a brief signal tone with every detected respiration (RESPIRATION) or with every detected heartbeat

(HEART/ PULSE BEAT).

When this tone disturbs the patient or caregivers, choose the setting Off.

The factory setting is Off.

Fig. 53 System\ submenu "Signal beep tone"

9.5.5 System\ Alarm tone pitch

You can set the pitch of the acoustic alarm signals to Low, Medium, or High so that they can be heard over the expected background noise. The DIN settings (DIN) match the alarm tone characteristics as described from page 71 on in the section "Differentiating physiologi-

cal and technical alarm signals". As an alternative, you can set the alarm tone characteristic (gtm) as familiar from other getemed devices.

The factory setting is MEDIUM.

Fig. 54 System\ submenu "Alarm tone pitch"

9.5.6 System\ RS232 FORMAT

This submenu lets you assign the format for online data output from the AUX serial port.

Fig. 55 System\ RS232 format

9.5.7 System\ Settings protection On, Limited, Off

The codes that protect the alarm defaults from unauthorized changes must be given by the doctor to those persons only whom the doctor judges to be adequately informed about monitoring and their responsibility for the patient. The doctor should point out that the code must be treated as confidential, that settings should be changed at the doctor's request only, and that all changes must be confirmed by the doctor.

VitaGuard® provides the following three settings for Settings protection.

- SETTINGS PROTECTION ON deactivates all options to change monitor settings. The display presents only VIEW 1, the INFO display, and the SYSTEM menu.
- **SETTINGS PROTECTION LIMITED** enables access to all views and menus. Of all the monitor settings, however, only the alarm limits can be changed.
- Settings protection Off enables all views and menus and allows changes to all monitor settings.

The factory setting is Settings Protection Limited.

After highlighting the function Settings Protection, press the <Enter> key to open a submenu.

- This submenu always displays Settings Protection as "00" irrespectively of the current setting. Pressing the <Enter> key activates Settings Protection.
- When you enter a code Settings Protection appears as Limited.
- When you enter a different code, Settings protection appears as Off.

When the wrong code has been entered three times Settings protection cannot be so easily deactivated. In this case, consult your authorized dealer.

9.6 SpO₂ display and menu

The \triangleright key takes you from View 1, 2, or 3 to the SpO₂ display. Here you can open the menu with the \triangle or ∇ key. Having highlighted a row, press the <Enter> key to change its contents.

9.6.1 SpO₂ view

The top half of the display presents:

- 1 the status line
- 2 the current value with the set alarm limits
- 3 the current three-minute trend views that update the last value every two seconds

Fig. 56 SpO₂ view, plethysmogram, perfusion index, and signal IQ

The SpO₂ trend displays the SpO₂ values between 70 and 100% over the last three minutes.

The first row under the trend view is the Signal IQ as vertical bars, the second the Plethysmogramme. At the bottom perfusion index [PI] and pulse rate [PR] are displayed.

When the monitor is switched on, it can take up to twenty seconds before the first values are displayed.

Bear in mind that the plethysmogram is NOT proportional to the pulse volume. A regular plethysmogram, for example, indicates that the SpO₂ sensor is correctly secured.

Every time the SpO_2 monitor detects a pulse beat a vertical bar appears in the $Signal\ IQ$ row. The higher this bar, the better the signal from the SpO_2 sensor. A high $Signal\ IQ$ indicates that:

- the sensor is correctly attached,
- an adequately strong signal is detected for the arterial blood flow,
- the patient does not move or is not moved too vigorously.

The calculated percentage value for Perfusion (PI) can vary between 0 and 20%. When this value is very low, SpO_2 and the pulse rate are no longer monitored. When the Sensitivity in the SpO_2 menu is set to Maximum, the cut-off limit is 0.02%; when set to Standard, this limit ranges from 0.5 to 0.02%, depending on the signal quality.

The principal of operation for this calculation can be found in the section "Measuring principle for the SpO_2 monitor" on page 135.

9.6.2 SpO₂ menu – alarm settings (Settings protection Limited)

The SpO₂ menu lets you view and change the current SpO₂ alarm settings.

Changes are permitted only when Settings Protection is set to Limited in the System menu.

Factory settings are shown in bold type.

Fig. 57 SpO₂ menu for viewing and setting alarm limits

LOWER LIMIT 50, 51 ... **88** ... 99, 100 %

Lower alarm limit for the measured arterial oxygen saturation; an alarm is reported when the measured value falls below this limit for longer than the set HYPOXIA ALARM DELAY

UPPER LIMIT 50, 51 ... 88 ... 99, **100** %

Upper alarm limit for the measured arterial oxygen saturation; an alarm is reported when the measured value exceeds this limit for longer than the set

HYPEROXIA ALARM DELAY

SPO₂ MONITOR Off/

On (HR: ECG) /

On (PR: Masimo)

Here you can view or set the following: whether the SpO_2 monitor is deactivated or, when it is activated, whether the heart rate derived from the ECG electrode signals or the pulse rate derived from the SpO_2 sensor is used as the alarm criterion.

9.7 HEART RATE display and menu

Depending on the setting in the SpO_2 menu, you can decide whether the heart rate derived from the ECG electrode signals or the pulse rate derived from the SpO_2 sensor is used as the alarm criterion.

The \triangleright key takes you from View 1, 2, or 3 to the heart rate display. From here you can open the menu with the \triangle or ∇ key. When a row is highlighted, press <Enter> to change the corresponding value.

9.7.1 HEART RATE display

The top half of the display presents:

- 1 the status line
- 2 the current values with the set alarm limits
- 3 the current three-minute trends that update the last value every two seconds

Fig. 58 Heart rate display

The heart rate trend display presents the heart rate over the last three minutes. This display varies with the set age group:

	0 to 2 years	2 to 6 years	>6 YEARS
HEART RATE	between 230 and 50	between 180 and 50	between 150 and 45
TREND DISPLAY			
[PER MIN]			

The bottom half of the display presents the ECG. A small vertical bar above the ECG indicates every detected heartbeat. Under the ECG you can see the evaluated amplitude of the ECG signal known from View 1.

9.7.2 HEART RATE menu – alarm settings (SETTINGS PROTECTION LIMITED)

The HEART RATE menu lets you view and, if necessary, change the current heart rate settings. You may have to adapt the default age group alarm limits to the current patient. These settings can be changed only when Settings protection has been set to Limited in the System menu.

Different heart rate alarm limits can be set as the default values for each age group:

Default	0 to 2 years	2 to 6 years	>6 YEARS
LOWER HEART RATE LIMIT [/MIN]	80	60	55
Upper heart rate limit [/min]	220	150	140

In the event of persistent false alarms, a different lead can be set in the HEART RATE menu as explained in the section "Changing the ECG lead for signal optimization" on page 127.

The heart rate's LOWER LIMIT can be set from 30 to 180 beats and the heart rate's UPPER LIMIT from 100 to 255, each in steps of five beats per minute.

Factory settings are shown in bold type.

Fig. 59 Heart rate menu for viewing and setting alarm limits

LOWER LIMIT (heart rate) 30, 35 ... 80 ... 175, 180/min

Lower limit for the heart rate; an alarm is reported when the heart rate falls below this limit for longer than the set

BRADYCARDIA DELAY

UPPER LIMIT (heart rate) 100, 105 ... 220 ... 250, 255/min

Upper limit for the heart rate; an alarm is triggered when the heart rate exceeds this limit for longer than the set

TACHYCARDIA DELAY

9.8 RESPIRATION display and menu

The \triangleright key takes you from View 1, 2, or 3 to the Respiration display. From here you can open the menu with the \triangle or ∇ key. Having highlighted a row, press <Enter> to change the corresponding value.

9.8.1 RESPIRATION display

The top half of the display presents:

- 1 the status line
- 2 the current values with the set alarm limits
- 3 the current three-minute trends that update the last value every two seconds

Fig. 60 Respiration display, respiration graph

The RESPIRATION trend display presents the respiration rate over the last three minutes. This display varies with the set age group:

	0 to 2 years	2 to 6 years	>6 YEARS
RESPIRATION RATE TREND	between 0 and 60	between 0 and 60	between 0 and 30
DISPLAY [PER MIN]			

The bottom half of the Respiration display presents the respiration waveform. A small vertical bar above the respiration waveform indicates every detected respiration signal. Under the respiration curve you can see the respiration signal's BASAL IMPEDANCE in ohms, as in VIEW 1.

The displayed respiration rate is not used in the alarm assessment and is calculated and displayed only when the respiration signal exhibits an adequate amplitude and is relatively free of movement artefacts. Otherwise a question mark is displayed. This has no negative effects on either the alarm function or the detection of central apneas.

RESPIRATION menu – alarm settings (SETTINGS 9.8.2 PROTECTION LIMITED)

These settings can be changed only when Settings protection is set to Limited in the System menu.

Factory settings are shown in bold type.

Fig. 61 Respiration menu for viewing and setting alarm limits

VitaGuard® interprets apnea and triggers an alarm when a respiration signal or movement is not detected and APNEA DELAY is exceeded. The doctor must have set Apnea Alarms to Always.

OFF/ALWAYS/COMBINED APNEA ALARMS ...

CAUTION A deactivated apnea monitor can no longer detect apnea!

Off and **ALWAYS** switches off and on the apnea monitor. In both cases the respiration waveform is displayed and stored. When Apnea Alarms is set to COMBINED, an apnea alarm is triggered only when at the same time an apnea is detected shortly before a change in HEART RATE and/ or SpO₂ (see Section 10.14).

10 Information for the doctor and qualified medical staff

The treating doctor is responsible for monitoring with VitaGuard®. This also applies to ambulatory monitoring.

This section contains all safety and settings information that only the treating doctor can make decisions on. Remember that all the information and instructions in the sections "Intended use" on page 14 and "Safety" on page 22 must also be observed.

Only getemed AG personnel or authorized dealers certified by getemed AG as medical product advisers in accordance with § 31 MPG (German Medical Products Act) may instruct the doctor and the qualified medical staff on how to handle and use VitaGuard®. This certification is awarded only to those persons that have received adequate training from getemed AG for its products.

10.1 Safety instructions

The safety instructions in this section address special technical and medical issues that are of particular importance to the doctor and qualified medical staff.

10.1.1 Preparing for a new patient

When more than one VitaGuard® monitor with differing settings are used in the same environment, there is a risk of mixing monitors and a particular patient may be monitored with unsuitable settings. For this reason check the currently set alarm limits every time the monitor is switched on.

It is important that VitaGuard® is configured so that false alarms are avoided to the greatest possible extent. Frequent false alarms can prove detrimental to the alertness of caregivers.

When VitaGuard® is to be used for a new patient, the doctor or the qualified medical staff are obliged to take the following important precautionary measures.

- Place used consumables such as electrodes or sensors in a plastic bag before disposing of them in household or medical waste.
- Clean the device and disinfect all cables (e.g. as described in the guidelines from the Robert Koch Institute).
- Insert new batteries or a fully charged block battery.
- Select the age group in SYSTEM\ ADMIT NEW PATIENT as explained under "SYSTEM\ ADMIT NEW PATIENT – restoring factory settings" on page 110.
- Check that the monitor settings are suitable for the patient and, if necessary, adapt them.
- Consider that the monitor settings may need to be changed at a future date and, as appropriate, arrange appointments to change these settings.
- Check that the acoustic alarm signal is loud enough to be heard over the prevailing or expected noise levels in the monitor's environment.
- When necessary, set Settings protection to Limited.
- When necessary, train caregivers in the necessary resuscitation measures.

10.1.2 Connections to the USB and AUX ports

The USB port is designed to transfer data to a PC. The AUX port can interface with a modem for remote data transfer.

Observe the standard DIN EN 60601-1-1 for connections to systems consisting of multiple medical devices and to systems consisting of medical and non-medical devices.

A device must comply with the regulations under DIN EN 60601-1 for medical devices or under DIN EN 60950 for communication technology devices before it is connected to the USB or AUX ports. In addition, the leakage current from the VitaGuard® must be measured as stipulated in the standard DIN EN 60601-1-1. This leakage current must not exceed 100 μ A. Only qualified medical device technicians can check whether the leakage current conforms to the standards.

When several devices are connected to each other, the individual leakage currents can add up and may pose a risk to the patient.

Do not connect printers, cameras, scanners, or other devices.

10.1.3 VitaGuard® and other medical devices

When VitaGuard® is to operate at the same time as a defibrillator, the monitoring results may be invalid for a short time. In addition, defibrillation can damage the cables. Check the monitoring system after defibrillation.

Bear in mind that an external defibrillation pulse can be attenuated. A test in accordance with DIN EN 60601-2-49 showed that defibrillation pulses emitted during monitoring with electrodes and SpO_2 sensors are attenuated by less than 10 %.

Do not use VitaGuard® in conjunction with HF surgical equipment, TENS devices, or nerve stimulators.

VitaGuard® correctly interprets pacer pulses with amplitudes greater than 5 mV, so VitaGuard® can be used on patients with pace makers.

Warn your pacemaker patients that the displayed heart rate may possibly be affected by stimulating pulses. Point out to the caregivers that they must carefully observe pacemaker patients.

Do not operate VitaGuard® near MRI devices (magnetic resonance imaging) or other systems that generate strong electromagnetic fields. The electrode leads, for example, can heat up by induction, causing burns under the electrodes and fire in the cables. The strong magnetic fields generated by magnetic resonance image devices can cause permanent damage to VitaGuard®.

10.1.4 Safety instructions for the doctor – SpO₂ monitor

Regard the SpO₂ monitor as an early warning device. When the SpO₂ monitor tends towards too low blood oxygen saturation, blood samples should be analyzed to clarify the situation.

Intravascular coloring agents and the associated possible rise in carboxyhemoglobin (COHb) and methemoglobin (MetHb) levels can lead to imprecise Sp0₂ measurements.

An intra-aortic balloon pump can distort these values. For this reason, check the pulse rate against the ECG heart rate.

Circulatory centralization, i.e. when the organism contracts the vessels to reduce the flow of blood to the extremities, can suppress or otherwise distort the monitored SpO_2 values. Circulatory centralization can arise when e.g. patients are anesthetized, suffer from shock, or are under great physical strain. Ear sensors, for example, are available for short-term applications.

A pulse oximeter may not be used as an apnea monitor.

10.2 INFO display

The Info display quickly presents the doctor with a summary of the monitor settings and data. Other Info windows can be accessed with the direction keys \triangle and ∇ .

The current page number and the total number of pages are displayed in the top right. For example, "1/10" means "the first of ten pages".

10.2.1 INFO\ LAST STATUS MESSAGES

The last status messages provide information on the directly preceding monitoring period. Here you can see when and why a message appeared.

Fig. 62 Info\ Last status messages

10.2.2 INFO\ GENERAL

INTERNAL BATTERY

This displays the state of the INTERNAL BATTERY permanently installed in VitaGuard®.

Fig. 63 Info\ General

Patient name/ Patient ID

The patient's name and ID are displayed when VitaWin® has transferred these from a PC to VitaGuard® or when they have been keyed in as explained in the section "System\ Admit New Patient – restoring factory settings" on page 110.

AGE

This displays the age group that has been set as explained in the section "System\ Admit New Patient – restoring factory settings" on page 110.

PACER DETECTION

When the patient has a pacemaker, set PACER DETECTION in the HEART RATE menu to ON: this prevents the monitor from processing stimulating pacemaker pulses as R waves.

Auto-ID

This displays the ID number that is automatically assigned every time the ADMIT NEW PATIENT function is executed.

■ DATE, TIME

This displays the date and time of the internal clock which can be set in the System menu.

10.2.3 Info\ Measurements: SpO₂

INFO\ MEASUREMENTS: SPO₂ displays various average values for SPO₂ calculated since the monitor was switched on.

These values are lost when the monitor is switched off.

Fig. 64 Info\ Measurements: SpO₂

 SPO_2 : AVERAGE is calculated over the AVERAGING INTERVAL set in the SPO_2 menu. The CURRENT DEVIATION shows how much the current SpO_2 deviates from the AVERAGE in percent. This deviation is used for reporting deviation alarms when SPO_2 ALARMS in the SPO_2 menu has been set to LIMITS & TRENDS.

10.2.4 INFO\ MEASUREMENTS: PULSE RATE

INFO\ MEASUREMENTS: PULSE RATE displays the various average pulse rate values calculated since the monitor was switched on.

These values are lost when the monitor is switched off.

Fig. 65 Info\ Measurements: Pulse rate

PR: Average is calculated over the Averaging interval set in the Heart rate menu. The Current deviation shows how much the current pulse rate deviates from the Average in percent.

10.2.5 INFO\ MEASUREMENTS: HR & RESP.

INFO\ MEASUREMENTS: HR & RESP. displays the various average heart rate values calculated since the monitor was switched on. These values are lost when the monitor is switched off.

Fig. 66 Info\ Measurements: HR & Resp.

HR: Average is calculated over of the Averaging interval set in the Heart rate menu.

HR: CURRENT DEVIATION shows how much the current heart rate deviates from the AVERAGE in percent.

This deviation is used for triggering deviation alarms when Heart RATE ALARMS has been set to Limits & Trends in the Heart RATE menu and when On(HR:ECG) (i.e. heart rate and not pulse rate) has been selected as the source for heart rate alarms under $SpO_2 \ SpO_2 \ Monitor.$ This setting is restored as the factory setting when the ADMIT NEW PATIENT function is executed in the System menu.

PERIODIC RESPIRATION displays the time in percent that PERIODIC RESPIRATION has been detected since the monitor was switched on. This value is displayed only when the function PERIODIC RESPIRATION is set to On in the RESPIRATION menu and when AGE GROUP is set to 0 to 2 YEARS under SYSTEM\ ADMIT NEW PATIENT.

BASAL IMPEDANCE displays the value measured between the yellow and the red electrode (see "Checking the BASAL IMPEDANCE" on page 67).

10.2.6 Info\Settings: Oximeter

This window presents all the settings for SpO_2 monitoring that are not shown in Views 1 to 3.

0 111 0 1 1	6 (40	
Settings: Oximeter	6/10	
SpO2 Monitor	On (HR: ECG)	
Sensitivity	Standard	
FastSat	Off	
SpO2 average time	8 s	
Silent lower limit	50 %	
Silent upper limit	100 %	
Hypoxia alarm delay	10 s	
Hyperoxia alarm délay	10 s	
Averaging interval	60 s	
Trend deviation (-)	- 5 %	
Sp02 alarms	Limits only	
•	•	
System Info V	/iew 1 View 2 →↑	
System Info V	iew i view 2 -	

Fig. 67 Info\ Settings: Oximeter

10.2.7 INFO\ SETTINGS: HEART RATE

This window presents all the settings for heart rate monitoring that are not shown in Views 1 to 3.

Fig. 68 Info\ Settings: Heart rate

10.2.8 INFO\ SETTINGS: APNEA MONITOR

This window presents all the settings for apnea monitoring that are not shown in Views 1 to 3.

Fig. 69 Info\ Settings: Apnea monitor

10.2.9 INFO\ MEMORY/ INTERNET

This displays the current Memory used and the total Memory size.

Also displayed is Telephone, i.e. the modem number that the monitor automatically dials for remote data transfer. This telephone number must be loaded by the evaluation software VitaWin® and cannot be edited directly in the monitor.

Here you can also view the details for transferring data as an e-mail attachment.

Fig. 70 Info\ Memory

10.2.10 INFO\ VERSIONS

INFO\ VERSIONS displays the software and hardware version numbers

The software and hardware from Masimo for monitoring SpO_2 are also displayed, followed by the monitor's serial number (SN).

Versions	10 / 10
getemed: SW DAQ SW IO Hardware	1.0.4.0 1.0.3.16 1.0.0.0
Masimo: Product ID DSP MCU Hardware	4.3.2.1 4.3.2.1 4.3.2.1 4.3.2.1
SN	803 04 0000
System Info	View 1 ↑

Fig. 71 Info\ Versions

10.3 Settings in the SYSTEM menu (SETTINGS PROTECTION OFF)

When SETTINGS PROTECTION is switched off in the System menu, the doctor can configure Vita-Guard® for specific monitoring requirements.

Use the direction keys to highlight an entry. When you want to change the entry, press the <Enter> key. Pressing the <Esc> key discards any changes without saving.

Fig. 72 Separately protected settings in the System menu

10.3.1 Changing multiple-component settings

The following example for changing the date and time in the System menu is intended to explain how you can change system settings consisting of several components.

Use the ∇ key to highlight the entry DATE/ TIME.

Press <Enter>. A window appears for changing the old entry.

Use the keys \triangleleft and \triangleright to highlight the component you want to change.

The highlighted value is changed with the keys \triangle and ∇ .

Fig. 73 System\ Date/ time

After changing a value, pressing the <Enter> key a second time causes a prompt to appear with ACCEPT: No highlighted. Press the < key to highlight ACCEPT: YES. Confirming the prompt ACCEPT: YES with the <Enter> key displays the changed value in the list. To exit the menu press the <Esc> key.

10.3.2 System\Operating area: Home or Clinic

OPERATING AREA lets you decide whether the value you have entered for Settings protection is retained the next time VitaGuard® is switched on.

When you select Home, Settings protection is On when the device is

next switched on.

When you select CLINIC, SETTINGS PROTECTION is set to the selected value when the device is next switched on.

Fig. 74 Operating area: Home or Clinic

10.3.3 SYSTEM\ ADMIT NEW PATIENT – restoring factory settings

IMPORTANT: This deletes all stored data and all monitor settings for a specific patient.

Check that the new monitor settings are suitable for the patient.

All data are deleted and all user settings are restored to the factory

values, so you are prompted whether you want to CONTINUE.
Press the < key to highlight ACCEPT:
YES and then the <Enter> key.

Fig. 75 Warning before changes under System\ Admit new patient

The submenus for ID, FIRST NAME, and SURNAME are displayed one

after the other.

Use the \triangleleft and \triangleright keys to position the cursor.

Use the \triangle and ∇ keys to enter letters and numbers.

Press the <Enter> key after you have entered your data in each submenu.

These inputs are optional and can be skipped by pressing the <Enter> key.

Fig. 76 System\ ID, First name, and Surname

Pressing the <Enter> key to confirm your entry in the SURNAME menu opens the submenu for setting the age group. Here too, press the <Enter> key to confirm your age group settings.

Fig. 77 System\ Age group

Use the < key to highlight ACCEPT: YES and then press the <Enter> key, your settings for the new patient are stored.

Fig. 78 Confirming the age group setting

The ADMIT NEW PATIENT function restores the factory settings.

VitaGuard® is delivered with alarm limits for patients in the 0 το 2 YEARS age group.

The following settings vary with the age group:

■ the minimum Respiration rate in the Respiration menu

• the Lower Limit and the Upper Limit in the Heart rate menu.

The table lists the factory settings for each age group:

	0 to 2 years	2 to 6 years	>6 YEARS
MIN. RESPIRATION RATE [/MIN]	10	5	4
LOWER HEART RATE LIMIT [/MIN]	80	60	55
UPPER HEART RATE LIMIT [/MIN]	220	150	120

All other settings are not specific to age groups.

The values set last are retained when VitaGuard® is switched off and when the supply network or batteries fail to provide power.

10.3.4 System\ Pre- and Post-Alarm Time

In the event of an alarm, data for the PRE-ALARM and POST-ALARM TIMES set here are stored in addition to the duration of the alarm. These times can be set from 30 to 180 seconds for PRE-ALARM and from 30 to 250 seconds for POST-ALARM in steps of ten seconds.

Also the menu item "System\ Interval recording" explained on page 113 records data for the duration of the pre-alarm and post-alarm times.

10.3.5 System\ ALARM MUTE TIME

In order to allow caregivers to tend to a patient in peace during an alarm, the acoustic alarm signal can be temporarily deactivated with the <Esc> key. Set the Alarm MUTE TIME to 30, 60, 90, or 120 seconds as required. The acoustic alarm signal is automatically reactivated after this time.

10.3.6 System\ Date/ time

How to change these values is explained in the section "Changing multiple-component settings" on page 109. This is used to set the current date and the current time, e.g. for summer and winter times.

10.3.7 System\ Language

The menu option LANGUAGE is marked with a flag symbol in the event that you do not understand the set language.

The submenu Language lets you choose between the languages supported by your monitor version.

10.3.8 System\ Analog input 1+2

You can activate and deactivate the two analog inputs separately. Both analog inputs have an input range from 0 to 2.5 V. An analog signal at input 1 (when activated) is scanned with 1 Hz and stored, a signal at input 2 is scanned with 32 Hz and stored.

10.3.9 SYSTEM\INTERVAL RECORDING

The doctor can use Interval Recording for specific situations and can set an interval in steps of ten minutes after which monitored data are again stored. After each of these intervals, the monitor stores data for the Pre-alarm and Post-alarm times. The setting 0 min deactivates interval recording.

10.3.10 System\ Show PR/ HR

This lets you set whether the HEART RATE HR and the PULSE RATE PR are displayed simultaneously in View 1 and 2.

10.4 Data storage functions

The function ADMIT NEW PATIENT in the SYSTEM menu overwrites all the currently stored data and restores the factory settings. If necessary, transfer the data beforehand to a PC.

The memory contents of VitaGuard® are also retained when the power adapter or batteries fail.

VitaGuard® features the following data storage functions:

- EVENT storage (automatic storage of ALARMS and SILENT ALARMS or MANUAL STORAGE)
- TREND storage (automatically for max 72 hours)
- Interval storage (set in the System menu)
- Long term storage (automatically for max eight hours)
- PROTOCOL storage (automatic)

The VitaGuard® display lets you view stored EVENTS and stored TRENDS. LONG TERM and PROTOCOL storage can be evaluated on a PC only. The "Summary of stored signals and data" on page 120 presents the signals and sample rates for the respective memory. The currently utilized memory capacity is shown on the INFO display. The installed memory can store up to 200 events of two minutes each.

10.5 EVENT storage

Please bear in mind that you must wait for the Post-ALARM TIME to expire after an alarm has ended before the current alarm event can be completely stored.

Fig. 79 List of the stored events

M/I marks the episodes that have been stored via Manual Storage or Interval recording set in the System menu. The minimum and maximum values of the respective physiological parameters are seen at the bottom of the window.

Highlighting an alarm event with the direction keys △ and ▽ and pressing the 〈Enter〉 key opens a mask with initial detailed information on this event. Highlighting Waveforms and pressing the 〈Enter〉 key displays the waveforms recorded with this event.

Fig. 80 Detailed information on a highlighted event

The black symbol between the displayed times for the start and end of the event marks the section of the stored event currently displayed. The two small vertical bars mark the start and end of the alarm event itself.

Fig. 81 Stored waveforms

Highlighting TRENDS and pressing the $\langle Enter \rangle$ key displays the TRENDS for SpO_2 and heart rate recorded with this alarm.

Fig. 82 Stored trends

10.5.1 SILENT ALARM LIMITS

The monitor also lets you store signal sequences that are important for evaluating the selected alarm limits. To store these so-called "silent alarms", activate Silent Alarm limits in the corresponding monitoring menu.

When measurements violate the SILENT ALARM LIMITS, the current episode is stored without triggering an acoustic or visual alarm. For example, when the SILENT LOWER LIMIT is set higher than the LOWER LIMIT in the HEART RATE menu, silent bradycardia alarms are stored.

10.5.2 MANUAL DATA STORAGE OF TRANSMIT DATA

The △ or ▽ key takes you from VIEW 1, 2, or 3 to the MANUAL DATA STORAGE OF TRANSMIT DATA menu. In addition to the automatic storage of alarm events, you can also store current data manually. MANUAL DATA STORAGE stores data for the set PRE- and POST-ALARM TIMES just like in an alarm situation.

Fig. 83 View\ Manual data storage

The AUX socket is used to transmit data via a modem. The setting Since last transmission transfers only those new episodes stored since the last transfer, but no more than twenty.

The setting LAST 20 EPISODES always transfers the last twenty episodes.

Fig. 84 View\ Transmit data

10.5.3 Summary of stored EVENTS

The symbols next to the name of each event appear on the EVENTS display in the columns for each physiological parameter following the time and duration of the event.

SpO₂ low

■ oxygen saturation lower than the set Lower Limit

Silent SpO₂ low (♣) measurement lower than the set silent alarm limit

Silent SpO₂ high (1) measurement higher than the set silent alarm limit

SpO₂ drop ■ when activated

QRS ■ ORS signal amplitude lower than the internal trigger threshold – an QRS

alarm is reported when the ECG signal has not been detected, e.g. owing to badly positioned electrodes.

Silent bradycardia (♣) ... heart rate lower than the set silent LOWER LIMIT

Tachycardia ★ heart rate higher than the set UPPER LIMIT

Silent tachycardia (1) ... heart rate higher than the set silent

UPPER LIMIT

Heart rate drop ■ when activated

Heart rate rise 🛊 when activated

Manual manual storage (see "Manual data M STORAGE or TRANSMIT DATA" on page 116) INTERVAL storage (see "System\ INTERVAL Interval RECORDING" on page 113) Apnea X one or more successive apneas Silent apnea **(X)** one or more short silent apnea phases, shorter than the set Apnea Delay, but longer than the SILENT APNEA DELAY Periodic respiration **P** periodic respiration (see section 10.13)

10.6 Trend storage

When an episode is highlighted, pressing <Enter> once displays the details, and pressing it a second time the trends.

Fig. 85 List of the episodes stored in the trend memory

Over a max period of 72 hours the TREND memory stores all of the signals checked in the TREND column of the table on page 120.

Fig. 86 Detailed information on a highlighted trend episode

10.7 Long term storage over eight hours

Independent of alarm events, all signals are stored continuously for a maximum total time of eight hours for subsequent evaluation on a PC (full disclosure). After this period, the oldest data are overwritten.

10.8 Protocol storage of operating and device data

The Protocol memory registers e.g. when monitor settings are changed and when the device has been switched on and off. The following changes are stored in Protocol memory:

- Monitor On/Off
- SpO₂ monitor On/Off
- Apnea monitor On/Off
- Admission of a new patient
- Changes to Settings Protection

The following data are stored with every change:

- Date and time of the change
- The current monitor settings

Protocol memory deletes the oldest data when more than 256 entries are stored.

10.9 Summary of stored signals and data

Data type	Sample rate [Hz]	Alarms	LONG TERM	Trend
ECG waveform	256	✓	~	
Current heart rate	1	✓	~	~
Average heart rate for trend	1	V	~	~
deviation				
Average heart rate over 1 min	0.2	V	~	~
Average heart rate over 1 h	0.2	~	•	~
Average heart rate over 6 h	0.2	V	~	~
Average heart rate over 12 h	0.2	V	~	~
Respiration	128	V	~	
Respiration rate	1	V	~	~
Basal impedance	1	V	~	~
Current SpO ₂	1	~	~	~
Average SpO ₂ for trend deviations	1	V	~	~
Average SpO₂ over 1 min	0.2	V	~	~
Average SpO ₂ over 1 h	0.2	~	~	~
Average SpO ₂ over 6 h	0.2	V	~	~
Average SpO ₂ over 12 h	0.2	V	V	~
Current pulse rate	1	V	~	~
Average pulse rate for trend	1	✓	~	~
deviation				
Average pulse rate over 1 min	0.2	V	~	~
Average pulse rate over 1 h	0.2	V	~	~
Average pulse rate over 6 h	0.2	~	~	~
Average pulse rate over 12 h	0.2	~	~	~
Plethysmogram	64	V	~	
Perfusion	1	~	~	~
Signal IQ	1	~	~	>
Status graph	0.1	~	~	~
AUX1	1	¥	~	~
AUX2	32	•	V	

10.10 Settings in the SPO₂ menu (SETTINGS PROTECTION OFF)

For these settings, SETTINGS PROTECTION must be set to OFF as explained under "SYSTEM\ SETTINGS PROTECTION ON, LIMITED, OFF" on page 91. The possible settings when SETTINGS PROTECTION is set to LIMITED are explained in the section "SPO₂ menu – alarm settings (Settings PROTECTION LIMITED)" on page 93.

Factory settings are shown in bold type.

Fig. 87 Settings in the SpO₂ menu

SENSITIVITY	
SENSIIIVIIY	•••••

The Maximum setting is intended for patients with weak blood flow, but its higher sensitivity can hinder the correct detection of a loose SpO₂ sensor.

The MINIMUM setting is intended for patients with good blood flow. This setting utilizes the APOD™ (adaptive probe off detection) algorithm from Masimo Inc., a method that can correctly detect a loose sensor in almost all situations. On the other hand, patients with weak blood flow can trigger technical alarms more often.

In most cases the factory setting **STAN- DARD** is recommended.

FASTSAT™

When FastSAT™ is **On**, this effectively takes a pulse-to-pulse measurement

suitable for detecting sudden, short desaturations.

When the AVERAGE TIME is set to 4 or 6, FastSAT™ is automatically activated, even when it has been deactivated in this submenu.

AVERAGE TIME 4, 6, 8, 10, 12, 14, 16 seconds

Here you can view or set the period during which the SpO_2 module uses the sensor data to determine each SpO_2 and pulse rate value.

SILENT LOWER LIMIT (SpO₂) .. **50**, 51 ... 99, 100%

Lower alarm limit for the measured arterial oxygen saturation; when the measured value falls below this limit for longer than the set HYPOXIA ALARM DELAY, a silent alarm is stored.

SILENT UPPER LIMIT (SPO₂) 50, 51 ... 99, **100**%

As SILENT LOWER LIMIT (SPO_2), but with the Hyperoxia alarm delay.

Time between when desaturation is detected (SpO_2 too low) and the corresponding alarm is triggered.

Hyperoxia alarm delay 1, 2 ... 10 ... 19, 20 seconds

As above, but with the UPPER LIMIT for SpO₂

AVERAGING INTERVAL 10, 20 ... 60 ... 110, 120 seconds

The average SpO_2 measured over the set interval yields the reference value for calculating the TREND DEVIATION (-).

Trend deviation (-) -3, -4 ...-10 ... -24, -25%

The current SpO_2 is compared every second with the average SpO_2 measured over the averaging interval. When the current value falls below the average by more than the value set here and when SpO_2 Alarms is set to Limits & Trends, an alarm is triggered.

SPO₂ ALARMS

When SPO₂ ALARMS is set to **LIMITS ONLY**, alarms are reported only when the measured values violate the set alarm limits. When SPO₂ ALARMS is set to LIMITS & TRENDS, alarms are reported when the measured values violate the set alarm limits AND when they deviate from the average SPO₂ measured over the set interval.

10.11 Settings in the HEART RATE menu (SETTINGS PROTECTION OFF)

This menu can refer to Pulse rate or Heart rate depending on the settings under $SpO_2 \setminus SpO_2$ monitor. In the example the heart rate is determined with ECG electrodes (the menu bears the caption Heart rate).

For this setting, SETTINGS PROTECTION must be set to OFF as explained under "System\ SETTINGS PROTECTION ON, LIMITED, OFF" on page 91.

The possible settings when SETTINGS PROTECTION is set to LIMITED are explained in the section "HEART RATE menu – alarm settings (Settings PROTECTION LIMITED)" on page 95.

Factory settings are shown in bold type.

Fig. 88 Settings in the Heart rate/ Pulse rate menu

SILENT LOWER LIMIT (HEART)

30, 35 ... 50 ... 175, 180/min Lower limit for the heart rate; when the measured value falls below this limit for longer than the set Bradycardia delay, a silent alarm is stored.

SILENT UPPER LIMIT (HEART) . 100, 105 ... 255/min

100, 105 ... **255**/min See Silent Lower Limit.

Delay between when bradycardia is detected and the corresponding alarm is triggered.

TACHYCARDIA DELAY 1, 2, 3, 4, 5 ... 15 ... 23, 24 seconds

See Bradycardia delay, but for tachycardia.

ASYSTOLE DELAY 1, 2, 3, **4**, 5 ... 14, 15 seconds

See Bradycardia delay, but for asystole

2. 4, 6, **8** ... 14, 16 beats RR AVERAGING Number of heartbeats used to calculate the heart rate the displayed heart rate used to detect alarm conditions is calculated as an average value over the number of heartbeats set here. The greater the value chosen for RR averaging, the slower the system's reaction, particularly in the event of bradycardia, to report an alarm. When the pulse rate is used instead of the heart rate, the settings for RR averaging have no effect on the measurement. 10, 20 ... **60** ... 110, 120 seconds AVERAGING INTERVAL The average heart rate measured over the set interval yields the reference value for calculating TREND DEVIATION (+) and Trend Deviation (-). Trend deviation (+) 5, 10, 15, 20, **25**, 30, 35, 40, 45, 50% The current heart rate is compared with the average heart rate measured over the averaging interval and an alarm is reported when the set percentage deviation is exceeded. This alarm is reported only when HEART RATE ALARMS is set to Limits & Trends. Trend deviation (–) See Trend Deviation (+), but the value falls below the set percentage deviation.

50 Hz filter

Setting the 50 Hz filter to **On** sup-

presses interference signals, but also fil-

LEAD, Nr. of ELECTRODES I YE-RD, 3 (yellow-red, 3 electrodes)

II BK-RD, 3 (black–red, 3 electrodes)
III BK-YE, 3 (black–yellow, 3 electrodes)
I YE-RD, 2 (yellow–red, 2 electrodes)
Here you can determine which lead is used with two or three electrodes for detecting the ECG signal (explanations in the following).

PACER DETECTION

Activate this for pacemaker patients so that stimulating pacemaker pulses are not mistakenly processed as R waves; explanations can be found under "VitaGuard® and other medical devices" on page 101.

HEART RATE ALARMS

- When HEART RATE ALARMS is set to LIMITS ONLY, acoustic alarms are reported when the measured values violate the set alarm limits.
- When HEART RATE ALARMS is set to LIMITS & TRENDS, acoustic alarms are reported when the measured values violate the set alarm limits AND when there is a positive or negative deviation from the average heart rate measured over the set interval.

10.12 Changing the ECG lead for signal optimization

When the used lead frequently causes false heart rate alarms, another lead can be chosen. The default is lead I YE-RD, 3 (yellow-red, 3 electrodes). Signals can be optimized only when the patient is still or sleeping.

Bear in mind when optimizing the ECG lead that there must be no changes to the optimized positions of the red and yellow electrodes for detecting the respiration signal. When optimization becomes necessary, only the black electrode must be repositioned.

When replacing the electrodes, always choose the same electrode position and color.

To avoid too much of a strain on the patient's skin, you can also arrange the electrodes in a small circle around the optimal position.

By changing the ECG lead you can optimize separately the detection of respiration and heart signals for VitaGuard®.

Fig. 89 Heart rate menu \ "Lead, Nr. of electrodes" submenu

■ IYE-RD, 3 (yellow-red, 3 electrodes)

Both signals, the heart and the respiration signal, are measured between <yellow> and <red>.

II BK-RD, 3 (black–red, 3 electrodes)

Like lead I, the respiration signal is measured between <red> and <yellow>, the heart signal on the other hand between <black> and <red>.

III BK-YE, 3 (black-yellow, 3 electrodes)

Like lead I, the respiration signal is measured between <yellow> and <red>, the heart signal on the other hand between <black> and <yellow>.

I YE-RD, 2 (yellow–red, 2 electrodes)

This lead is used when only two electrodes are to be attached.

Test the quality of the signal from the heart rate monitor with all leads.

When View 1 displays the quality level Good for at least one of these leads, further optimization is not necessary.

The following explanations follow from the section "Determining the optimal electrode configuration" on page 65.

The electrode arrangement as depicted in Fig. 41 b (on page 66) is the standard Einthoven arrangement and normally yields good results for heart rate monitoring with the (yellow–red) lead.

- 1 Select the HEART RATE display, and note the amplitude of the displayed ECG signal. Press △ to open the menu, and note the setting for the ECG LEAD, e.g. "I YE-RD, 3".
- 2 Select a different ECG LEAD, e.g. "II BK-RD, 3". Press <Esc> to return to the HEART RATE display, and again note the displayed ECG amplitude.
- 3 Repeat the procedure for the last setting, i.e. "III BK-YE, 3".
- 4 Select from all three leads the one that produces the greatest deflection. It is not important here whether this deflection is negative or positive.

Select the lead "I YE-RD, 3" when this is one of two leads that have produced approximately equal amplitudes.

When none of the leads produces a particularly large amplitude you should change the position of the black electrode and repeat the procedure. Carefully reapply the black electrode until you obtain the best signal amplitude.

When you reposition the electrodes, e.g. as depicted in Fig. 41 a), you must again check the ECG amplitude and, by repeating these steps, select the best lead for this new electrode configuration.

10.13 Settings in the RESPIRATION menu (SETTINGS PROTECTION OFF)

For these settings, Settings protection must be set to Off as explained under "System\ Settings protection On, Limited, Off" on

page 91. The possible settings when SETTINGS PROTECTION is set to LIMITED are explained in the section "RESPIRATION menu – alarm settings (SETTINGS PROTECTION LIMITED)" on page 98.

Factory settings are shown in bold type.

Fig. 90 Settings in the Respiration menu

Same as Apnea Delay, but a silent alarm is stored when exceeded.

Periodic respiration Yes/No

This activates the detection of periodic respiration.

NOTE Activating the monitor for periodic respiration only operates if the age group 0–2 years has been previously selected.

Period T1 (Delay) 6, 8, 10 ... 18, 20 seconds

For the detection of periodic respiration apnea must be longer than T1, but shorter than the set Apnea DELAY.

NOTE Changing the min respiration rate to 5/min has an effect only when the age group has been set to 0 to 2 years under System\ Admit New Patient – restoring factory settings" on page 110). For the age group 2 to 6 years the min respiration rate is fixed at 5/min, for the age group > 6 years at 4/min.

10.14 Combining apnea alarms with heart rate and SpO₂ alarms

When Apnoe Alarms is set to Combined, it is important before monitoring that the Averaging interval and the Trend limit(s) are set in the SpO_2 and Heart rate menus.

A threatening central apnea causes changes to the heart rate and oxygen saturation. Setting Apnea Alarms to Always, however, frequently reports an apnea alarm when in fact only the signal amplitudes are too low. Setting Apnea Alarms to Combined helps prevent these false alarms.

Setting Apnea Alarms to Combined starts an observation period of at least 60 s when no respiration has been detected

- for at least 8 s for the age group 0 to 2 YEARS,
- for at least 12 s for the age group 2 to 6 YEARS,
- for at least 15 s for the age group > 6 YEARS.

During this observation period the currently measured values for heart rate and oxygen saturation are compared with the average values measured over the set AVERAGING INTERVAL before the event.

When in these sixty seconds neither the heart rate nor SpO_2 experiences a negative trend, the monitor assumes a false apnea alarm and does not report it.

10.15 Table of operating modes

In the following table the heading "Menu settings" is divided into two columns: one for the settings in the Respiration menu and one for the settings in the SpO₂ menu. The Heart rate menu cannot be used to set any values relevant to operating modes. Which of the four vital parameters are monitored and whether apnea monitoring is Combined with Heart rate and SpO₂ depend on how the settings are combined. The operating mode marked with [1] is the standard monitoring mode for heart rate and respiration as provided by Vita-Guard® VG 2100. The operating mode marked with [2] is the pulse oximetry monitoring mode as provided by VitaGuard® VG 310.

^{*}The setting "Respiration = COMBINED" takes effect only when the SpO_2 monitor is activated.

Menu settings Monitored vital paramet			neters	Operating modes		
Apnea	SpO ₂ monitor	SpO ₂	Pulse	Heart	Apnea	Monitored vital
alarms			rate	rate		parameters
				.,		
Respira- tion = OFF	SpO ₂ monitor = OFF	No	No	Yes	No	Heart rate
Respira- tion = ALWAYS	SpO ₂ monitor = OFF	No	No	Yes	Yes	Heart rate and apnea without combined alarm [1]
Respira- tion = COMBINED	SpO ₂ monitor = OFF	No	No	Yes	Yes	Heart rate and apnea without combined alarm*
D. a. a. i. a. a	C O	V	NI -	V	NI-	CO d l
Respira- tion = OFF	SpO ₂ monitor = ON (HR:ECG)	Yes	No	Yes	No	SpO ₂ and heart rate
Respira- tion = ALWAYS	SpO ₂ monitor = ON (HR:ECG)	Yes	No	Yes	Yes	SpO ₂ , heart rate, and apnea without combined alarm
Respira- tion = COMBINED	SpO ₂ monitor = ON (HR:ECG)	Yes	No	Yes	Yes	SpO ₂ , heart rate, and apnea with combined alarm
Respira- tion = OFF	SpO ₂ monitor = ON (PR:Masimo)	Yes	Yes	No	No	SpO ₂ and pulse rate [2]
Respira-	SpO ₂ monitor =	Yes	Yes	No	Yes	SpO ₂ , pulse rate, and
tion = ALWAYS	ON (PR:Masimo)					apnea without combined alarm
Respira- tion = COMBINED	SpO ₂ monitor = ON (PR:Masimo)	Yes	Yes	No	Yes	SpO ₂ , pulse rate, and apnea with combined alarm

11 Algorithms and measuring principles

Knowledge of the following calculation bases is essential if VitaGuard® is to be properly configured.

11.1 Alarm condition and report delays

As prescribed in the standard IEC 60601-1-8 "General requirements for safety – Collateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems", this section allows the doctor to become familiar with the set and inherent delays for the correct configuration of the alarm limits and monitoring parameters.

- The alarm *condition* delay is the time from the occurrence of a triggering event on the patient or in the monitor to the decision by the alarm system to confirm an alarm condition.
- The alarm report delay is the time between when an alarm condition is detected and when it is reported.
- The alarm condition delay and the alarm report delay are added to yield the ALARM SYSTEM delay.

The algorithms listed here are based on worst credible cases, i.e. the calculations always return the maximum possible delays.

11.1.1 Alarm condition delay for the heart rate

The current heart rate used for detecting alarm conditions is calculated as the average value over a set number of heartbeats (two to sixteen).

The higher the value selected for RR AVERAGING, the longer VitaGuard® needs before the displayed heart rate

$$T_{AC(MAX)}\Big|_{HR} = 60\sum_{n=0}^{N-1} \frac{1}{HR_n}$$

whereby N = AVERAGING

reflects the patient's actual heart rate. When, for example, a value N = 16 is chosen, the actual heart rate is not displayed until after sixteen heartbeats.

The longest alarm condition delay for the heart rate therefore occurs when it is at its lowest. When, for example, the heart rate suddenly drops to thirty beats a minute, a beat is detected every two seconds. When RR AVERAGING is set to 16, a heart rate of thirty is not displayed until after thirty-two seconds.

11.1.2 Alarm condition delay for oxygen saturation

An alarm *condition* delay as defined in the standard does not occur when oxygen saturation is monitored. Please observe though the information on alarm *report* delays below.

11.1.3 Alarm condition delay for respiration

The impedance pneumography used to monitor apnea must rule out cardiac artifacts as the source of changes to measured impedance. When central apnea has occurred the applied algorithm detects cardiac artifacts after max four heartbeats.

The alarm condition delay for respiration depends in addition on the signal amplifier's recovery time. When in the worst case the amplifier is saturated owing to sudden, violent movements by the patient directly before the occurrence of apnea, the zero line is reached in six seconds. From then, again in the worst case, a period of four beats is needed before any cardiac artifacts can be detected.

$$T_{AC(MAX)}\Big|_{apnea} = 4\left(\frac{60}{HR}\right) + 6$$
 (6 = amplifier's max recovery time in seconds)

11.1.4 Alarm report delays

The alarm report delays for bradycardia, tachycardia, hypoxia, and hyperoxia can be set within certain limits.

 $TA_{(max)}$ for bradycardia: set Bradycardia Delay + 2 s

 $TA_{(max)}$ for tachycardia: set Tachycardia Delay + 2 s

 $TA_{(max)}$ for asystole: set Asystole Delay + 2 s

 $TA_{(max)}$ for hypoxia: set Hypoxia alarm delay + 2 s

TA_(max) für hyperoxia: set Hyperoxia alarm delay + 2 s

The purpose of these alarm report delays is to prevent alarms from being reported every time the alarm limits are violated for short times only.

In other words, the maximum alarm report delay corresponds to the maximum set delay. The monitor outputs measurements e.g. to the display every second. The technology's contribution to the total alarm report delay is specified as maximum two seconds overall.

11.2 Measuring principle for the SpO₂ monitor

The pulse oximeter with Masimo SET® (SET = Signal Extraction Technology®) is based on the following three principles.

- 1 Oxyhemoglobin (oxygenated hemoglobin) and deoxyhemoglobin (unoxygenated hemoglobin) differ in their absorption of red and infrared light (spectrophotometry).
- 2 A heartbeat gives rise to a pulse wave that during its cycle changes the volume of arterial blood and therefore its light absorption at the monitoring site (plethysmography).
- 3 In particular movements also give rise to blood flows that resemble pulse waves and generate interference signals.

Like conventional pulse oximeters, SET® oximeters determine oxygen saturation by directing red and infrared light through tissue and measuring the absorption of light by the blood flow. Light-emitting

diodes (LEDs) serve as light sources and a photodiode as the receiver attached opposite.

Conventional pulse oximetry assumes that all pulsations in the light absorption are caused by the arterial pulse cycle. For this to work, the venous blood in the sensor area must flow completely and therefore constantly through the capillary bed. Conventional pulse oximetry then calculates the ratio of the pulsatile to the mean absorption for both wavelengths (660 nm and 940 nm).

The quotient of the two signals is then formed as follows:

$$R = S(660)/S(940)$$

The result R is used to read the corresponding SpO₂ value out of an empirically calibrated table mapped in the oximeter software. These tables were drawn up in trials with volunteers who underwent temporary induced hypoxia. During these trials a conventional pulse oximeter was used for the measurements; at the same time, arterial blood was extracted and examined for its oxygen content.

Unlike conventional pulse oximeters, Masimo SET® pulse oximeters assume that not only the arterial, also the venous blood flow varies greatly. Changes to venous light absorption are regarded as a significant source of interference to the pulse signal. The SpO₂ module separates the signals for both wavelengths S(660) and S(940) into an arterial signal S and a noise component N that are then used to calculate the ratio R:

$$S(660) = S1 + N1$$

$$S(940) = S2 + N2$$

$$R = (S1 + N1) / (S2 + N2)$$

N1 and N2 are the noise components generated by venous blood.

The DST™ method (discrete saturation transform) isolates and therefore compensates for venous interference components.

The SET® software goes through all the possible values for R (corresponding to SpO_2 between 1 and 100%) and calculates the associated interference components. An adaptive noise canceller, or ANC, then takes this value N'(R) to calculate the amplitude of the noise energy, or the so-called output power of the ANC. The result is a DST^{TM} plot (Fig. 92) that exhibits at least the arterial peak. This peak demonstrates the particularly effective noise suppression for the affected SpO_2 value when a precisely defined source of signal fluctuations, the arterial pulse cycle, has been identified. Other, also higher peaks can occur during venous fluctuations. Venous blood is saturated less with oxygen, so the peak with the maximum SpO_2 value (in the right half

of the graph) always corresponds to the arterial oxygen saturation. In Fig. 92 the right peak corresponds to an SpO₂ of 97%. The DST calculation is repeated every two seconds on the latest raw data over the preceding four seconds.

Fig. 92 DST™ plot: relative noise cancellation as a function of SpO₂

The peak at 80% is caused by venous blood and would, with the conventional method, have completely corrupted the measurement for a false desaturation.

The Perfusion index (a percentage value) displayed on the monitor is calculated from the electric signal of infrared light captured by the sensor's photodiode. This signal has a constant and a varying component depending on whether the infrared light is absorbed by bone, connective tissue, skin, or pulsatile blood.

The ratio of constant to variable signal component is used to calculate the perfusion index, a value between 0 and 20%. When the Perfusion index is very small, SpO_2 and the pulse rate are no longer monitored. When the Sensitivity in the SpO_2 menu is set to Maxi-

MUM, the cut-off limit is 0.02%; when set to STANDARD, the limit varies from 0.5 to 0.02% depending on the signal quality.

Further information about FastSat™, APOD™ (adaptive probe off detection), perfusion index, and signal IQ can be found in the white papers at www.masimo.com.

11.3 Measuring principle for the heart rate monitor

Every heartbeat, i.e. contraction of the cardiac muscle, generates a myopotential that propagates through the body as an electric signal and that can be measured by two sensing electrodes attached to the body. The graphical depiction of the measured signal is called an electrocardiogram (ECG).

The amplitude and the polarity (positive or negative) of the measured signal depend on both the arrangement of the sensing electrodes and the individual location of the heart.

The signal is very weak (typically one millivolt), so it must be amplified before it can be used to calculate the heart rate.

For this purpose an instrumention amplifier is used in conjunction with filter circuitry. This amplifies the ECG signal and reduces all other unwanted secondary signals, e.g. movement-induced artifacts and electromagnetic interference.

Interference signals can be optimally suppressed, when a third, so-called reference electrode is used. Without this reference electrode, the ECG measuring circuitry must suppress interference signals solely with the aid of filters. When, however, interference signals exceed a certain limit, suppression is no longer possible and the ECG signal can no longer be measured; false alarms are the consequence. The use of a reference electrode is the most common method for effecting an essentially greater suppression of interference.

The adhesive quality and the composition of the gel applied to the electrodes have an additional important effect on ECG measurements. The best results are obtained when the electrodes adhere well. Electrodes that have dried out or adhere badly are unsuitable.

Irrespectively of all interference signals, the heart rate can be measured only when the amplitude of the measured ECG signal itself is large enough to be detected by the monitor. Normally the amplitude of the ECG signal detected on the body surface cannot be influenced and varies from person to person.

The monitor measures the potential difference between the two sensing electrodes. Depending on where the electrodes are attached, the measured signal is strong, weak, positive, or negative. It is even possible that a signal cannot be seen at all. This is the case when the electrodes are inadvertently placed on the same potential line. The propagating signal from a heartbeat can be pictured as contour lines around a hill on a map. When two persons are standing on the same line, the difference in height between these persons is zero. Accordingly, no ECG signal can be measured when the sensing electrodes are placed on such a line on the body surface. To prevent too weak ECG signals from triggering false alarms, it is therefore important that the optimal electrode positions are determined before the start of monitoring.

11.4 Measuring principle for the apnea monitor

Unlike the heartbeat, respiration is not accompanied by its own electric signal. A different principle must therefore be adopted for measuring respiration. The most common method is the so-called impedance pneumography. Fluctuations in impedance are caused by both respiratory movements of the thorax and other movements. For this reason, an apnea monitor can function correctly only when the patient is lying still. Here too, the measured signals are very weak and must be amplified. To prevent false alarms wherever possible, it is

very important that the optimal electrode positions are determined before the start of monitoring.

The essential advantage of the described method is that the same electrodes can be used for monitoring the heart rate and respiration.

12 Evaluating stored data on a PC

getemed AG has developed the Windows®-based software VitaWin® for evaluating the recorded monitoring data. This software is provided only to doctors and authorized dealers who are or supply VitaGuard® users.

The stored data can be downloaded through the USB (universal serial bus) port to a PC where they can be stored, viewed, and evaluated.

VitaWin® presents each alarm's context based on the signals Respiration, Respiration rate, Basal impedance, ECG, Heart rate, Pulse rate, SpO₂, Plethysmogramme, Signal IQ, and Perfusion.

VitaWin® also provides functions for drawing up reports and assessing the patient's monitored data.

Fig. 93 VitaWin®\ register "Events in graph form"

13 Specifications

13.1 General

Weight approx. 650 g with non-rechargeable

batteries

approx. 700 g with rechargeable block

battery

Dimensions 13.5 x 20.3 x 4.5 cm

Non-rechargeable batteries 4 x 1.5 V (type LR6, AA), alkaline

Chargeable block battery ... NiMH/4.8 V/2000 mAh

Charging time 6 hours

Battery life e.g. VARTA UNIVERSAL ALKALINE:

min 8 hours with SpO₂ monitor min 2 days without SpO₂ monitor

Keys 6 membrane keys

Battery change displayed message

Depleted battery acoustic alarm

Power consumption < 10 W

Power adapter NA3000-2 power adapter

Manufacturer: FRIWO Gerätebau GmbH

Type: FW 7555MM / 09
Output: 9 V, 1500 mA, DC

Input: 100–240 V, 50–60 Hz,

400 mA, AC

Ingress of protection: IP 40

Characteristics of acoustic alarm signals

acoustic alarm signals acoustic signals for higher-priority alarms consist of two acoustic sequences of five tones each:

Pulse duration	1	155 ms ± 5 ms
Rise and fall time	ı	17 ms ± 3 ms
Time between start of pulse	T_1	215 ms ± 20 ms
1 and start of pulse 2		
Time between start of pulse	T_1	215 ms ± 20 ms
2 and start of pulse 3		
Time between start of pulse	T_2	440 ms ± 20 ms
3 and start of pulse 4		
Time between start of pulse	T_1	215 ms ± 20 ms
4 and start of pulse 5		
Time between start of burst	T ₃	2 s ± 0.1 s
1 and start of burst 2		
Repeat time for the whole	-	10 s ± 0.2 s
sequence		

acoustic signals for medium-priority alarms consist of three-pulse bursts:

Pulse duration	185 ms ± 5 ms
Rise and fall time	17 ms ± 3 ms
Time between start of pulse	375 ms ± 20 ms
1 and start of pulse 2	
Time between start of pulse	375 ms ± 20 ms
2 and start of pulse 3	
Repeat time for the whole	5.2 s ± 0.2 s
sequence	

Characteristics of

system monitoring signals pulsating tone of 4 kHz and 1 Hz pulse

rate from the sound aperture between

the sockets

Displays LEDs and LCD graphic display with

240 x 360 dots

Display refresh rate 1 Hz

Expected service life (as per

DIN EN ISO 18778) min seven years

Inspection and servicing intervals

getemed AG prescribes safety checks, function checks, and servicing every eighteen months. The next appointment is specified on a label in the bat-

tery compartment.

13.2 SpO₂ monitor

 SpO_2 display range 1–100 %

Pulse rate range 25–240/min

Perfusion index 0.02 %–20 %

* SpO₂ accuracy

(calibrated range)

for all age groups – when $SpO_2 > 70 \%$, ±3 digits when

patient moving or still

- when SpO₂ < 70 %, unspecified

* Pulse rate accuracy

for all age groups ± 3/min when patient still

± 5/min when patient moving

SpO₂ resolution 1 %

Pulse rate resolution 1/min

Heat emission max 50 mW (at the LNOP® sensor)

Accuracy with weak perfusion (i.e. pulse amplitude > 0.02 % and

transmission > 5 %) SpO₂ ±2 digits

pulse rate ±3 digits

13.3 Heart rate monitor

Heart rate range 20–270/min

Accuracy ±1 % for heartbeats of similar morphol-

ogy (averaged over 4 to 16 beats)

Sensitivity 0.2 mV (sin² signal with 40 ms width)

Input impedance > 10 M Ω at 10 Hz

13.4 Apnea monitor

Max.

respiration rate 120 breaths/min

Min.

AGE GROUP setting

Alarm quit 2 breaths within 6 seconds

Sensitivity of

respiration amplifier approx. 0.2 $\Omega/1000~\Omega$

Measuring method impedance pneumography

^{*} The specified tolerances correspond to a standard deviation of \pm 1. This means that within these tolerances, the pulse rate and %SpO₂ can be determined for 68% of the population.

Measuring current frequency 38 kHz

Measuring current < 100 μA

13.5 Intervals for calculating average values in the INFO mask

Minute values

for SpO₂, HR, PR 1 s

Hour values

for SpO₂, HR, PR 30 s

Six-hour values

for SpO₂, HR, PR 300 s

Twelve-hour values

for SpO₂, HR, PR 300 s

13.6 Memory

Storage medium 64 MB compact flash memory card

(memory extendable on request)

Nr. of episodes max 200 episodes of two minutes each

Trend max 72 hours

Long term (full disclosure) .. max 8 hours

13.7 Ports

USB mini USB port

AUX – modem port (RS232)

- socket for a nurse call system

- socket for an external alarm unit

socket for two analog inputs from 0 to

2.5 V at 1 or 32 Hz

13.8 Miscellaneous

German "Hilfsmittel-

nummer" 21.24.02.5005

Calibrating time after

activation < 60 s

MPG device class IIb

Device protection class II as per DIN EN 60601-1

Application part BF for SpO₂, CF for heart rate and

respiration

Ingress protection IP 21

Operating temperature 5-40 °C

Operating humidity 5–95%, non-condensing

Ambient pressure,

height above sea level 1060–500 mbar, -304 to +5486 m

*Storage and transport

conditions -40 to +70 °C; humidity 15–95%,

non-condensing

EMC classification CISPR 11, class B

^{*}Observe the information on the electrodes' packaging for the storage temperature of electrodes.

13.9 Selection of applied standards

IEC 601-1	Medical electrical equipment – Part 1: General requirements for safety, incl. A 13
IEC 60601-1-1	Medical electrical equipment – Part 1-1: General requirements for safety – Colla- teral standard: Safety requirements for medical electrical systems
IEC 60601-1-2	Medical electrical equipment – Part 1-2: General requirements for safety – Collateral standard: Electromagnetic compatibility – Requirements and tests
IEC 60601-1-4	Medical electrical equipment – Part 1-4: General requirements for safety – Collateral standard: Programmable electrical medical systems
IEC 62A/422/CDV:2003	
(prEN 60601-1-6:2003)	Medical electrical equipment – Part 1-6: General requirements for safety – Collateral standard: Usability
IEC 60601-1-8	Medical electrical equipment – Part 1-8: General requirements for safety – Collateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems
IEC 601-2-27	Medical electrical equipment – Part 2-27: Particular requirements for the safety, including essential performance, of electrocardiographic monitoring equip- ment

DIN EN 60601-2-49 Medical electrical equipment – Part 2-49:
Particular requirements for the safety of
multifunctional patient monitoring
equipment

DIN EN 865 Pulse oximeters – Particular requirements
prEN ISO 18778 Infant Monitors – Particular requirements

14 Table of figures

Fig. 1	General view of the monitoring system	11
Fig. 2	Device label on the bottom of the device	14
Fig. 3	Battery voltage indicator	30
Fig. 4	Rechargeable block battery	31
Fig. 5	VitaGuard® and bag with power and patient cables	35
Fig. 6	Power adapter socket	36
Fig. 7	Power adapter for 230 V/ 50 Hz supply network and	
	automobile power supply	36
Fig. 8	Opening the battery compartment	38
Fig. 9	Opened battery compartment and polarity	38
Fig. 10	The arrows show how the block battery is correctly inserted	39
Fig. 11	Overview of VitaGuard® connections	40
Fig. 12	SpO ₂ socket	40
Fig. 13	Electrode socket	41
Fig. 14	Power adapter socket	41
Fig. 15	Sound aperture	41
Fig. 16	USB port	42
Fig. 17	AUX port	42
Fig. 18	Keys on the top side	43
Fig. 19	Direction keys	44
Fig. 20	<enter> key</enter>	44
Fig. 21	<esc> key</esc>	44
Fig. 22	Alarm LED	45
Fig. 23	Heart and respiration LEDs	45
Fig. 24	Power supply LEDs	46
Fig. 25	Current values and alarm limits in View 1	47
Fig. 26	Label on the LNOP® Neo SpO ₂ sensor	55
Fig. 27	Positioning the sensor	56
Fig. 28	Aligning the sensor and receiver	56
Fig. 29	Correctly attached LNOP® Neo sensor	56
Fig. 30	Label on the LNOP® Adt SpO ₂ sensor	57
Fig. 31	Positioning the sensor	57
Fig. 32	Positioning the receiver on the fingertip	57

Fig. 33	Aligning the sensor and receiver	57
Fig. 34	Correctly attached LNOP® Adt sensor	58
Fig. 35	Connecting the patient cable and sensor contact	58
Fig. 36	SpO ₂ socket	58
Fig. 37	Disconnecting the sensor from the patient cable	59
Fig. 38	Two levers for securing and releasing the patient cable plug	59
Fig. 39	Color-coded sockets on the ECG patient cable's distributor	64
Fig. 40	Electrode socket	64
Fig. 41	Recommended electrode configuration	66
Fig. 42	Alternative electrode configuration for optimizing the	
	heart and respiration signals	66
Fig. 43	Electrode signal amplitude in View 1	66
Fig. 44	Status line on the VitaGuard® display	70
Fig. 45	Characteristics of the high-priority acoustic alarm signal	72
Fig. 46	The status line displayed in all views	73
Fig. 47	View 2	87
Fig. 48	View 3	87
Fig. 49	Menu system, "LCD brightness: 80%" highlighted	88
Fig. 50	System, "LCD brightness" highlighted in the change window	88
Fig. 51	System, accept change to LCD brightness highlighted	88
Fig. 52	System menu – general settings	89
Fig. 53	System\ submenu "Signal beep tone"	90
Fig. 54	System\ submenu "Alarm tone pitch"	90
Fig. 55	System\ RS232 format	90
Fig. 56	SpO ₂ view, plethysmogram, perfusion index, and signal IQ .	92
Fig. 57	SpO ₂ menu for viewing and setting alarm limits	93
Fig. 58	Heart rate display	95
Fig. 59	Heart rate menu for viewing and setting alarm limits	96
Fig. 60	Respiration display, respiration graph	97
Fig. 61	Respiration menu for viewing and setting alarm limits	98
Fig. 62	Info\ Last status messages	103
Fig. 63	Info\ General	103
Fig. 64	Info\ Measurements: SpO ₂	104
Fig. 65	Info\ Measurements: Pulse rate	105
Fig. 66	Info\ Measurements: HR & Resp	105
Fig. 67	Info\ Settings: Oximeter	106

Fig. 68	Info\ Settings: Heart rate	107
Fig. 69	Info\ Settings: Apnea monitor	107
Fig. 70	Info\ Memory	108
Fig. 71	Info\ Versions	108
Fig. 72	Separately protected settings in the System menu	109
Fig. 73	System\ Date/ time	109
Fig. 74	Operating area: Home or Clinic	110
Fig. 75	Warning before changes under System\ Admit new patient	110
Fig. 76	System\ ID, First name, and Surname	111
Fig. 77	System\ Age group	111
Fig. 78	Confirming the age group setting	111
Fig. 79	List of the stored events	114
Fig. 80	Detailed information on a highlighted event	115
Fig. 81	Stored waveforms	115
Fig. 82	Stored trends	115
Fig. 83	View\ Manual data storage	116
Fig. 84	View\ Transmit data	116
Fig. 85	List of the episodes stored in the trend memory	118
Fig. 86	Detailed information on a highlighted trend episode	118
Fig. 87	Settings in the SpO ₂ menu	121
Fig. 88	Settings in the Heart rate/ Pulse rate menu	124
Fig. 89	Heart rate menu \ "Lead, Nr. of electrodes" submenu	127
Fig. 90	Settings in the Respiration menu	129
Fig. 91	Periodic respiration	129
Fig. 92	DST^TM plot: relative noise cancellation as a function of SpO_2	137
Fig. 93	VitaWin®\ register "Events in graph form"	142

Distributed by:

Manufacturer:

getemed

Medizin- und Informationstechnik AG

Oderstr. 77

D-14513 Teltow

tel. +49 (0)3328 3942- 0 fax +49 (0)3328 3942-99

fax +49 (0)3328 3942-99 e-mail info@getemed.de

internet www.getemed.de

REF 7381 2021 0027H1-LAB-Rev-B 08.06.2005 15:27