Proyecto 1: Rutas Optimas (Algoritmo de Floyd)

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

September 18, 2025

1 Problema de la Mochila (Knapsack Problem)

El problema de la mochila es un clasico de la optimizacion combinatoria. Se dispone de una mochila con una capacidad maxima W y un conjunto de n objetos. Cada objeto i tiene un peso w_i y un valor v_i . El objetivo es seleccionar los objetos de manera que:

- \bullet La suma total de los pesos no exceda la capacidad W.
- Se maximice el valor total de los objetos elegidos.

1.1 Variantes principales

0/1 Knapsack Cada objeto puede elegirse una sola vez o no elegirse: decision binaria.

Bounded Knapsack Cada objeto puede seleccionarse un numero limitado de veces.

Unbounded Knapsack Se permite una cantidad ilimitada de cada objeto.

1.2 Solucion

0/1 Knapsack Se resuelve comunmente con programacion dinamica. Sea dp[i][w] el valor maximo al considerar los primeros i objetos y capacidad w.

$$dp[i][w] = \begin{cases} dp[i-1][w] & \text{si } w_i > w, \\ \max(dp[i-1][w], v_i + dp[i-1][w - w_i]) & \text{si } w_i \le w. \end{cases}$$

Unbounded Knapsack Similar al 0/1 pero permitiendo repeticiones:

$$dp[w] = \max(dp[w], v_i + dp[w - w_i]).$$

Tipo de problema: 0/1 Knapsack

Capacidad máxima: 7 Número de objetos: 10

Datos del Problema

Objeto	Costo	Valor	Cantidad
A	0.00	0.00	1
В	0.00	0.00	1
С	0.00	0.00	1
D	0.00	0.00	1
E	0.00	0.00	1
F	0.00	0.00	1
G	0.00	0.00	1
Н	0.00	0.00	1
I	0.00	0.00	1
J	0.00	0.00	1

Tabla de Programación Dinámica

Capacidad/Objetos	Ninguno	A	В	С	D	E	F	G	Н	I	J
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
2											
3	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0
5											
6											
7	0	0	0	0	0	0	0	0	0	0	0

Solución Óptima

Valor máximo obtenido: 0 Objetos seleccionados: Ninguno

Capacidad utilizada: 0