Introduction to Generalized Nonlinear Models

Heather Turner

Independent statistical/R consultant Department of Statistics, University of Warwick, UK

Zurich, 2015–05–11 Updated for package changes 2018–06–20

Copyright © Heather Turner 2018

Preface

Generalized linear models (logit/probit regression, log-linear models, etc.) are now part of the standard empirical toolkit.

Sometimes the assumption of a *linear* predictor is unduly restrictive.

This short course shows how *generalized nonlinear models* may be viewed as a unified class, and how to work with such models in R.

Plan

Getting Started

Association Models

Other Multiplicative Models

Other Specialized Models

Getting Started
Outlines

Section 1

Getting Started

Linear and generalized linear models

Linear models:

e.g.,

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 z_i$$

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2$$

$$E(y_i) = \beta_0 + \gamma_1 \delta_1 x_i + \exp(\theta_2) z_i$$

In general

$$E(y_i) = \eta_i(\beta) = \text{linear function of unknown parameters}$$

Also assumes variance essentially constant:

$$var(y_i) = \phi a_i$$

Linear and generalized linear models

Linear models:

e.g.,

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 z_i$$

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2$$

$$E(y_i) = \beta_0 + \gamma_1 \delta_1 x_i + \exp(\theta_2) z_i$$

In general

$$E(y_i) = \eta_i(\beta) = \text{linear function of unknown parameters}$$

Also assumes variance essentially constant:

$$var(y_i) = \phi a_i$$

Linear and generalized linear models

Linear models:

e.g.,

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 z_i$$

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2$$

$$E(y_i) = \beta_0 + \gamma_1 \delta_1 x_i + \exp(\theta_2) z_i$$

In general

$$E(y_i) = \eta_i(\beta) = \text{linear function of unknown parameters}$$

Also assumes variance essentially constant:

$$var(y_i) = \phi a_i$$

Linear and generalized linear models

Linear models:

e.g.,

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 z_i$$

$$E(y_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2$$

$$E(y_i) = \beta_0 + \gamma_1 \delta_1 x_i + \exp(\theta_2) z_i$$

In general:

$$E(y_i) = \eta_i(\beta) = \text{linear function of unknown parameters}$$

Also assumes variance essentially constant:

$$var(y_i) = \phi a_i$$

Linear and generalized linear models

Generalized linear models

Problems with linear models in many applications:

- ▶ range of y is restricted (e.g., y is a count, or is binary, or is a duration)
- effects are not additive
- variance depends on mean (e.g., large mean ⇒ large variance)

Generalized linear models specify a non-linear link function and variance function to allow for such things, while maintaining the simple interpretation of linear models.

Linear and generalized linear models

Generalized linear models

Problems with linear models in many applications:

- ▶ range of y is restricted (e.g., y is a count, or is binary, or is a duration)
- effects are not additive
- variance depends on mean (e.g., large mean ⇒ large variance)

Generalized linear models specify a non-linear link function and variance function to allow for such things, while maintaining the simple interpretation of linear models.

Linear and generalized linear models

Generalized linear model:

$$g[E(y_i)] = \eta_i = ext{linear function of unknown parameters} \ ext{var}(y_i) = \phi a_i V(\mu_i)$$

with the functions g (link function) and V (variance function) known.

Linear and generalized linear models

Examples:

- binary logistic regressions
- rate models for event counts
- log-linear models for contingency tables (including multinomial logit models)
- multiplicative models for durations and other positive measurements
- hazard models for event history data

etc., etc.

Linear and generalized linear models

e.g., binary logistic regression:

$$y_i = \begin{cases} 1 & \text{event happens} \\ 0 & \text{otherwise} \end{cases}$$

 $\mu_i = E(y_i) = \text{probability that event happens}$

$$var(y_i) = \mu_i (1 - \mu_i)$$

Variance is completely determined by mean.

Common link functions are logit, probit, and (complementary) log-log, all of which transform constrained μ into unconstrained η .

Linear and generalized linear models

e.g., binary logistic regression:

$$y_i = \begin{cases} 1 & \text{event happens} \\ 0 & \text{otherwise} \end{cases}$$

 $\mu_i = E(y_i) = \text{probability that event happens}$

$$var(y_i) = \mu_i(1 - \mu_i)$$

Variance is completely determined by mean.

Common link functions are logit, probit, and (complementary) log-log, all of which transform constrained μ into unconstrained η .

Linear and generalized linear models

e.g., binary logistic regression:

$$y_i = \begin{cases} 1 & \text{event happens} \\ 0 & \text{otherwise} \end{cases}$$

 $\mu_i = E(y_i) = \text{probability that event happens}$

$$var(y_i) = \mu_i(1 - \mu_i)$$

Variance is completely determined by mean.

Common link functions are logit, probit, and (complementary) log-log, all of which transform constrained μ into unconstrained η .

Getting Started
Linear and generalized linear models

e.g., multiplicative (i.e., log-linear) rate model for event counts.

'Exposure' for observation i is a fixed, known quantity t_i .

Rate model

$$E(y_i) = t_i \exp(\beta_0) \exp(\beta_1 x_i) \exp(\beta_2 z_i)$$

i.e.

$$\log E(y_i) = \log t_i + \beta_0 + \beta_1 x_i + \beta_2 z_i$$

effects are rate multipliers.

Variance is typically taken as the Poisson-like function $V(\mu)=\mu$ (variance is equal to, or is proportional to, the mean).

Getting Started
Linear and generalized linear models

e.g., multiplicative (i.e., log-linear) rate model for event counts.

'Exposure' for observation i is a fixed, known quantity t_i . Rate model:

$$E(y_i) = t_i \exp(\beta_0) \exp(\beta_1 x_i) \exp(\beta_2 z_i)$$

i.e.,

$$\log E(y_i) = \log t_i + \beta_0 + \beta_1 x_i + \beta_2 z_i$$

effects are rate multipliers.

Variance is typically taken as the Poisson-like function $V(\mu)=\mu$ (variance is equal to, or is proportional to, the mean).

Getting Started
Linear and generalized linear models

e.g., multiplicative (i.e., log-linear) rate model for event counts.

'Exposure' for observation i is a fixed, known quantity t_i .

Rate model:

$$E(y_i) = t_i \exp(\beta_0) \exp(\beta_1 x_i) \exp(\beta_2 z_i)$$

i.e.,

$$\log E(y_i) = \log t_i + \beta_0 + \beta_1 x_i + \beta_2 z_i$$

— effects are rate multipliers.

Variance is typically taken as the Poisson-like function $V(\mu)=\mu$ (variance is equal to, or is proportional to, the mean).

Getting Started
Generalized nonlinear models

Generalized linear: $\eta=g(\mu)$ is a linear function of the unknown parameters. Variance depends on mean through $V(\mu)$.

Generalized *nonlinear*: still have g and V, but now relax the linearity assumption.

Many important aspects remain unchanged:

- ▶ fitting by maximum likelihood or quasi-likelihood
- analysis of deviance to assess significance of effects
- diagnostics based on residuals, etc.

But technically more difficult [essentially because $\partial \eta/\partial \beta=X$ becomes $\partial \eta/\partial \beta=X(\beta)$].

Generalized nonlinear models

Generalized linear: $\eta=g(\mu)$ is a linear function of the unknown parameters. Variance depends on mean through $V(\mu)$.

Generalized *nonlinear*: still have g and V, but now relax the linearity assumption.

Many important aspects remain unchanged:

- ▶ fitting by maximum likelihood or quasi-likelihood
- analysis of deviance to assess significance of effects
- diagnostics based on residuals, etc.

But technically more difficult [essentially because $\partial \eta/\partial \beta=X$ becomes $\partial \eta/\partial \beta=X(\beta)$].

Generalized nonlinear models

Some practical consequences of the technical difficulties:

- automatic detection and elimination of redundant parameters is very difficult — it's no longer just a matter of linear algebra
- automatic generation of good starting values for ML fitting algorithms is hard
- great care is needed in cases where the likelihood has more than one maximum (which cannot happen in the linear case).

Getting Started
Structured interactions

Some motivation: structured interactions

GNMs are not exclusively about structured interactions, but many applications are of this kind.

A classic example is log-linear models for structurally-square contingency tables (e.g., pair studies, before-after studies, etc.).

Pairs are classified twice, into row and column of a table of counts.

The independence model is

$$\log E(y_{rc}) = \theta + \beta_r + \gamma_c$$

or with glm

```
glm(y ~ row + col, family = poisson)
```

```
Getting Started
Structured interactions
```

Some standard (generalized linear) models for departure from independence are

quasi-independence,

```
y ~ row + col + Diag(row, col)
```

quasi-symmetry,

```
y ~ row + col + Symm(row, col)
```

symmetry,

```
y ~ Symm(row, col)
```

Functions Diag and Symm are provided by the gnm package along with the function Topo for fully-specified *topological* association structures, see ?Topo.

Structured interactions

Row-column association

The uniform association model (for ordered categories) has

$$\log E(y_{rc}) = \beta_r + \gamma_c + \delta u_r v_c$$

with the u_r and v_c defined as fixed, equally-spaced scores for the rows and columns.

A natural generalization is to allow the *data* to determine the scores (Goodman, 1979). This can be done either heterogeneously,

$$\log E(y_{rc}) = \beta_r + \gamma_c + \phi_r \psi_c$$

or (in the case of a structurally square table) homogeneously

$$\log E(y_{rc}) = \beta_r + \gamma_c + \phi_r \phi_c$$

These are generalized non-linear models.

Structured interactions

Row-column association

The uniform association model (for ordered categories) has

$$\log E(y_{rc}) = \beta_r + \gamma_c + \delta u_r v_c$$

with the u_r and v_c defined as fixed, equally-spaced scores for the rows and columns.

A natural generalization is to allow the *data* to determine the scores (Goodman, 1979). This can be done either heterogeneously,

$$\log E(y_{rc}) = \beta_r + \gamma_c + \phi_r \psi_c$$

or (in the case of a structurally square table) homogeneously,

$$\log E(y_{rc}) = \beta_r + \gamma_c + \phi_r \phi_c$$

These are generalized non-linear models.

Introduction to the gnm package

Introduction to the **gnm** package

The **gnm** package aims to provide a unified computing framework for specifying, fitting and criticizing generalized nonlinear models in R.

The central function is gnm, which is designed with the same interface as glm.

Since generalized linear models are included as a special case, the gnm function can be used in place of glm, and will give equivalent results.

For the special case $g(\mu)=\mu$ and $V(\mu)=1$, the gnm fit is equivalent to an nls fit.

Introduction to the gnm package

Nonlinear model terms

Nonlinear model terms are specified in model formulae using functions of class "nonlin".

These functions specify the term structure, possibly also labels and starting values.

There are a number of "nonlin" functions provided by gnm. Some of these specify basic mathematical functions of predictors, e.g. heterogeneous row and column scores

$$\phi_r \psi_c$$

are specified as Mult(row, col).

Other basic "nonlin" functions include Exp and Inv.

 $ldsymbol{oxedsymbol{oxedsymbol{oxedsymbol{\mathsf{G}}}}$ Getting Started

Introduction to the gnm package

Specialized "nonlin" functions

There are two specialized "nonlin" functions provided by gnm

MultHomog: for homogeneous row and column scores, as in

$$\phi_r \phi_c$$

specified as MultHomog(row, col)

Dref: 'diagonal reference' dependence on a square classification,

$$w_1\gamma_r + w_2\gamma_c$$

(Sobel, 1981, 1985) specified as Dref(row, col)

Introduction to the gnm package

Specialized "nonlin" functions

There are two specialized "nonlin" functions provided by gnm MultHomog: for homogeneous row and column scores, as in

$$\phi_r \phi_c$$

specified as MultHomog(row, col)

Dref: 'diagonal reference' dependence on a square classification,

$$w_1\gamma_r + w_2\gamma_c$$

(Sobel, 1981, 1985) specified as Dref(row, col)

Introduction to the gnm package

Specialized "nonlin" functions

There are two specialized "nonlin" functions provided by gnm MultHomog: for homogeneous row and column scores, as in

$$\phi_r \phi_c$$

specified as MultHomog(row, col)

Dref: 'diagonal reference' dependence on a square classification,

$$w_1\gamma_r + w_2\gamma_c$$

(Sobel, 1981, 1985) specified as Dref(row, col)

Introduction to the gnm package

Specialized "nonlin" functions

There are two specialized "nonlin" functions provided by gnm MultHomog: for homogeneous row and column scores, as in

$$\phi_r \phi_c$$

specified as MultHomog(row, col)

Dref: 'diagonal reference' dependence on a square classification,

$$w_1\gamma_r + w_2\gamma_c$$

(Sobel, 1981, 1985) specified as Dref(row, col)

Introduction to the gnm package

Over-parameterization

The gnm function makes no attempt to remove redundant parameters from nonlinear terms. This is deliberate.

As a consequence, fitted models are typically represented in a way that is *over-parameterized*: not all of the parameters are 'estimable' (i.e., 'identifiable', 'interpretable').

A simple example:

$$\phi_r \psi_c$$

is equivalent to

$$\phi_r^* \psi_c^* = (2\phi_r)(\psi_c/2)$$

gnm will return one of the infinitely many parameterizations at random.

Introduction to the gnm package

Over-parameterization

The gnm function makes no attempt to remove redundant parameters from nonlinear terms. This is deliberate.

As a consequence, fitted models are typically represented in a way that is *over-parameterized*: not all of the parameters are 'estimable' (i.e., 'identifiable', 'interpretable').

A simple example:

$$\phi_r \psi_c$$

is equivalent to

$$\phi_r^* \psi_c^* = (2\phi_r)(\psi_c/2)$$

gnm will return one of the infinitely many parameterizations at random.

Getting Started
☐ Introduction to the gnm package

Over-parameterization

The gnm function makes no attempt to remove redundant parameters from nonlinear terms. This is deliberate.

As a consequence, fitted models are typically represented in a way that is *over-parameterized*: not all of the parameters are 'estimable' (i.e., 'identifiable', 'interpretable').

A simple example:

$$\phi_r \psi_c$$

is equivalent to

$$\phi_r^* \psi_c^* = (2\phi_r)(\psi_c/2)$$

gnm will return one of the infinitely many parameterizations at random.

Practical I

Practical I

- 1. Load the **gnm** package. This provides the occupationalStatus data set, which is a contingency table classified by the occupational status of fathers (origin) and their sons (destination).
- 2. Use the generic function plot to create a mosaic plot of the table. Print occupationalStatus to see the cell frequencies represented by the plot.
- 3. If a table is passed to the data argument of gnm, it will be converted to a data frame with a column for each of the row and column factors and a column for the frequencies named Freq.

Use gnm to fit an independence model to these data (see p13), assigning the result to a suitable name. Print this object.

Practical I

- 4. Type ?plot.gnm to open the help page on the gnm method for the plot function. Find out how to use plot to create a plot of residuals vs. fitted values and do this for the independence model. The poor fit should be very apparent!
- 5. Load the **vcdExtra** package. This provides the generic function mosaic, which has a method for "gnm" objects. Use this to visualize the goodness-of-fit of the independence model across the contingency table.
- 6. Fit a row-column association model with a homogeneous multiplicative interaction between origin and destination (see p15, p18). Check the fit with mosaic. Investigate the effect of modelling the diagonal elements separately, by adding Diag(origin, destination).

Practical I

- 7. Keeping the Diag term in the model, use coef to access the coefficients and assign the result. Re-run the model fit and assign the coefficients of the re-fitted model to another name. Compare the coefficients side-by-side using cbind. Which parameters have been automatically constrained to zero? Which coefficients are the same in both models?
- 8. Standard errors can only be obtained for estimable parameters. Use summary to confirm which parameters are estimable in the current model. The homogeneous scores can be identified by setting one of them to zero. Re-fit the model using the argument constrain = "MultHomog(origin, destination)1". Compare the summary of the constrained model to the summary of the unconstrained model.

Association Models

Section 2

Association Models

└─Association Models └─RC(M) Models

RC(M) Models

The row-column association models introduced in Section I are special cases of the RC(M) model:

$$\log(\mu_{rc}) = \alpha_r + \beta_c + \sum_{k=1}^{K} \sigma_k \phi_{kr} \psi_{kc},$$

We will use this class of models to further explore the issues of identifiability, parameterization and obtaining standard errors.

☐Association Models
☐RC(1) with Homogeneous Scores

RC(1) with Homogeneous Scores

For the RC(1) model with homogeneous scores, we have

$$\alpha_r + \beta_c + \phi_r \phi_c = -k^2 + (\alpha_r - k\phi_r) + (\beta_c - k\phi_c) + (\phi_r + k)(\phi_c + k)$$

= $\alpha_r^* + \beta_c^* + \phi_r^* \phi_c^*$

Constraining one of the ϕ_r to a constant fixes the location of the homogeneous scores so the parameterization is unique.

Let $k = -\phi_1$, then

$$\phi_1^* = \phi_1 - \phi_1 = 0 \phi_r^* = \phi_r - \phi_1 r \neq 1$$

So constraining one parameter to zero is equivalent to fitting the unconstrained model, then estimating simple contrasts.

Association Models

RC(1) with Homogeneous Scores

RC(1) with Homogeneous Scores

For the RC(1) model with homogeneous scores, we have

$$\alpha_r + \beta_c + \phi_r \phi_c = -k^2 + (\alpha_r - k\phi_r) + (\beta_c - k\phi_c) + (\phi_r + k)(\phi_c + k)$$

= $\alpha_r^* + \beta_c^* + \phi_r^* \phi_c^*$

Constraining one of the ϕ_r to a constant fixes the location of the homogeneous scores so the parameterization is unique.

Let $k=-\phi_1$, then

$$\phi_1^* = \phi_1 - \phi_1 = 0$$

$$\phi_r^* = \phi_r - \phi_1 \qquad r \neq 1$$

So constraining one parameter to zero is equivalent to fitting the unconstrained model, then estimating simple contrasts.

Association Models

RC(1) with Homogeneous Scores

For the RC(1) model with homogeneous scores, we have

$$\alpha_r + \beta_c + \phi_r \phi_c = -k^2 + (\alpha_r - k\phi_r) + (\beta_c - k\phi_c) + (\phi_r + k)(\phi_c + k)$$

= $\alpha_r^* + \beta_c^* + \phi_r^* \phi_c^*$

Constraining one of the ϕ_r to a constant fixes the location of the homogeneous scores so the parameterization is unique.

Let $k = -\phi_1$, then

$$\phi_1^* = \phi_1 - \phi_1 = 0$$
 $\phi_r^* = \phi_r - \phi_1 \qquad r \neq 1$

So constraining one parameter to zero is equivalent to fitting the unconstrained model, then estimating simple contrasts.

```
Association Models
RC(1) with Homogeneous Scores
```

Example: Occupational Status Data

As in Practical I, we fit a homogeneous row-column association model, separating out the diagonal effects, then use getContrasts

```
RCh <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
              MultHomog(origin, destination), family = poisson,
           data = occupationalStatus, verbose = FALSE)
getContrasts(RCh, pickCoef(RCh, "MultHomog"))
##
                                              SE quasiSE quasiVar
                                   estimate
                                      0.000 0.000 0.1573 0.02473
  MultHomog(origin, destination)1
   MultHomog(origin, destination)2
                                      0.218 0.235 0.1190 0.01416
   MultHomog(origin, destination)3
                                      0.816 0.167 0.0611 0.00374
   MultHomog(origin, destination)4
                                      1.400 0.160 0.0518
                                                          0.00269
   MultHomog(origin, destination)5
                                      1.418 0.172 0.0798
                                                          0.00637
   MultHomog(origin, destination)6
                                      1.929 0.157
                                                 0.0360
                                                          0.00129
   MultHomog(origin, destination)7
                                                  0.0796
                                                          0.00634
                                      2.345 0.173
  MultHomog(origin, destination)8
                                      2.589 0.189
                                                  0.1095
                                                          0.01200
```

```
Association Models
RC(1) with Homogeneous Scores
```

Standard errors will change depending on the reference category:

```
getContrasts(RCh, pickCoef(RCh, "MultHomog"), ref = "last")
##
                                  estimate SE quasiSE quasiVar
                                                0.1573
  MultHomog(origin, destination)1
                                    -2.589 0.189
                                                         0.02473
  MultHomog(origin, destination)2
                                  -2.371 0.158 0.1190 0.01416
  MultHomog(origin, destination)3
                                  -1.773 0.120 0.0611 0.00374
                                  -1.189 0.116 0.0518 0.00269
  MultHomog(origin, destination)4
  MultHomog(origin, destination)5
                                    -1.171 0.131 0.0798
                                                        0.00637
  MultHomog(origin, destination)6
                                  -0.660 0.116 0.0360
                                                        0.00129
  MultHomog(origin, destination)7
                                                         0.00634
                                    -0.244 0.158 0.0796
## MultHomog(origin, destination)8
                                    0.000 0.000 0.1095
                                                         0.01200
```

Quasi standard errors allow the calculation of an approximate standard error for any contrast; they are independent of the choice of reference category. For the theory see Firth and de Menezes (2004).

Association Models

RC(1) with Heterogeneous Scores

RC(1) with Heterogeneous Scores

Now since, for example,

$$\alpha_r + \beta_r + \phi_r \psi_c = \alpha_r + (\beta_r - \psi_c) + (\phi_r + 1)\psi_c$$
$$= \alpha_r + \beta_r + (2\phi_r)(\psi_c/2)$$

we need to constrain both the location and scale.

A standard convention is to constrain the scores so that

$$\sum_r \phi_r \pi_r = \sum_c \psi_c \pi_c = 0$$
 and
$$\sum_r \phi_r^2 \pi_r = \sum_c \psi_c^2 \pi_c = 1$$

where π_r and π_c are the row and column probabilities respectively. The full interaction is then given by $\sigma\phi_r\psi_c$, where $\sigma>0$ is the *intrinsic* association parameter.

Association Models

RC(1) with Heterogeneous Scores

RC(1) with Heterogeneous Scores

Now since, for example,

$$\alpha_r + \beta_r + \phi_r \psi_c = \alpha_r + (\beta_r - \psi_c) + (\phi_r + 1)\psi_c$$
$$= \alpha_r + \beta_r + (2\phi_r)(\psi_c/2)$$

we need to constrain both the location and scale.

A standard convention is to constrain the scores so that

$$\sum_r \phi_r \pi_r = \sum_c \psi_c \pi_c = 0$$
 and
$$\sum_r \phi_r^2 \pi_r = \sum_c \psi_c^2 \pi_c = 1$$

where π_r and π_c are the row and column probabilities respectively. The full interaction is then given by $\sigma\phi_r\psi_c$, where $\sigma>0$ is the *intrinsic* association parameter.

```
Association Models
```

Example: Mental Health Data

1660 residents of Manhattan cross-classified by child's mental impairment and parents' socioeconomic status (?).

```
xtabs(count ~ SES + MHS, mentalHealth)
     MHS
##
  SES well mild moderate impaired
        64
                     58
                             46
##
            94
##
    B 57 94
                     54
                             40
                    65
##
    C 57 105
                             60
    D 72 141
##
               77
                            94
    E
        36 97
                             78
##
                     54
        21
                             71
##
            71
                     54
```

We require treatment contrasts for the RC(1) model

```
mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
mentalHealth$SES <- C(mentalHealth$SES, treatment)</pre>
```

RC(1) with Heterogeneous Scores

```
Association Models
```

Example: Mental Health Data

1660 residents of Manhattan cross-classified by child's mental impairment and parents' socioeconomic status (?).

```
xtabs(count ~ SES + MHS, mentalHealth)
##
    MHS
  SES well mild moderate impaired
       64 94
                  58
                          46
##
##
    B 57 94
                  54
                          40
##
    C 57 105 65
                         60
    D 72 141 77
##
                         94
    E 36 97 54
                         78
##
       21 71
                          71
##
                  54
```

We require treatment contrasts for the RC(1) model

```
mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
mentalHealth$SES <- C(mentalHealth$SES, treatment)</pre>
```

RC(1) with Heterogeneous Scores

```
Association Models
```

☐RC(1) with Heterogeneous Scores

We fit the RC(1) using the ofInterest argument to specify that only the parameters of the multiplicative interaction should be shown in model summaries.

```
RC <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson,
          data = mentalHealth, verbose = FALSE, ofInterest = "Mult")
coef(RC)
## Coefficients of interest:
                                    Mult(.. MHS).SESB
##
          Mult(., MHS).SESA
##
                   -0.38132
                                             -0.38444
          Mult(.. MHS).SESC
                                    Mult(.. MHS).SESD
##
                   -0.12790
                                               0.00821
##
          Mult(., MHS).SESE
                                    Mult(., MHS).SESF
##
                    0.34440
                                               0.62060
##
##
       Mult(SES, .).MHSwell
                                 Mult(SES, .).MHSmild
##
                   -0.82733
                                             -0.07881
  Mult(SES, .).MHSmoderate Mult(SES, .).MHSimpaired
##
                    0.05627
                                              0.67798
```

Association Models

RC(1) with Heterogeneous Scores

The constraints that the weighted sum of column scores should sum to zero and the weighted sum of squares should sum to one are met by the scaled contrasts

$$\frac{\psi_c - \sum_c \psi_c \pi_c}{\sqrt{\sum_c \pi_c (\psi_c - \sum_c \psi_c \pi_c)^2}}$$

These contrasts can be obtained with <code>getContrasts</code> as follows:

```
## Mult(SES, .).MHSwell -1.678 0.194
## Mult(SES, .).MHSmild -0.140 0.200
## Mult(SES, .).MHSmoderate 0.137 0.280
## Mult(SES, .).MHSimpaired 1.414 0.172
```

```
Association Models
```

RC(1) with Heterogeneous Scores

The constraints that the weighted sum of column scores should sum to zero and the weighted sum of squares should sum to one are met by the scaled contrasts

$$\frac{\psi_c - \sum_c \psi_c \pi_c}{\sqrt{\sum_c \pi_c (\psi_c - \sum_c \psi_c \pi_c)^2}}$$

These contrasts can be obtained with getContrasts as follows:

```
☐ Association Models
☐ RC(1) with Heterogeneous Scores
```

The row scores are computed in a similar way

Then the intrinsic association parameter can be computed directly

Since this value depends on the particular scaling used for the contrasts, it typically not of interest to conduct inference on this parameter directly. The standard error could be obtained, if desired, via the delta method.

```
Association Models
RC(1) with Heterogeneous Scores
```

The row scores are computed in a similar way

Then the intrinsic association parameter can be computed directly

Since this value depends on the particular scaling used for the contrasts, it typically not of interest to conduct inference on this parameter directly. The standard error could be obtained, if desired, via the delta method.

```
Association Models
RC(1) with Heterogeneous Scores
```

The row scores are computed in a similar way

Then the intrinsic association parameter can be computed directly

Since this value depends on the particular scaling used for the contrasts, it typically not of interest to conduct inference on this parameter directly. The standard error could be obtained, if desired, via the delta method.

Association Models
RC(2), RC(3), . . .

RC(2), RC(3), ...

Additional multiplicative terms can be added via instances, e.g.

```
RC2 <- update(RC, count ~ SES + MHS + instances(Mult(SES, MHS), 2))</pre>
```

The sum of the multiplicative terms is a low rank approximation to the full interaction matrix. For the parameters to be identified, the multiplicative terms must be orthogonal to each other. This means constraining the rotation as well as the location and scale.

Decomposing a matrix into a sum of separable matrices (where a separable matrix can be written as the outer product of two vectors) is equivalent to singular value decomposition. Incorporating marginal probability weights is tricky. Furthermore, standard errors can not be directly computed. The **logmult** package helps with both these issues.

—Association Models ☐RC(2), RC(3), ...

RC(2), RC(3), ...

Additional multiplicative terms can be added via instances, e.g.

```
RC2 <- update(RC, count ~ SES + MHS + instances(Mult(SES, MHS), 2))</pre>
```

The sum of the multiplicative terms is a low rank approximation to the full interaction matrix. For the parameters to be identified, the multiplicative terms must be orthogonal to each other. This means constraining the rotation as well as the location and scale.

Decomposing a matrix into a sum of separable matrices (where a separable matrix can be written as the outer product of two vectors) is equivalent to singular value decomposition. Incorporating marginal probability weights is tricky. Furthermore, standard errors can not be directly computed. The **logmult** package helps with both these issues.

```
Association Models

RC(2), RC(3), ...
```

RC(2), RC(3), ...

Additional multiplicative terms can be added via instances, e.g.

```
RC2 <- update(RC, count ~ SES + MHS + instances(Mult(SES, MHS), 2))
```

The sum of the multiplicative terms is a low rank approximation to the full interaction matrix. For the parameters to be identified, the multiplicative terms must be orthogonal to each other. This means constraining the rotation as well as the location and scale.

Decomposing a matrix into a sum of separable matrices (where a separable matrix can be written as the outer product of two vectors) is equivalent to singular value decomposition. Incorporating marginal probability weights is tricky. Furthermore, standard errors can not be directly computed. The **logmult** package helps with both these issues.

Introduction to the logmult package

The **logmult** package enhances the **gnm** package by providing a number of functions to support analyses involving log-multiplicative models.

Particular features include

- wrapper functions for fitting common models, including RC(M)
- specialized print and plot methods
- jackknife and bootstrap standard errors

 [─] Association Models
 └─ Introduction to the logmult package

Association Models
Introduction to the logmult package

Example: Mental Health Data Revisited

```
MHtab <- xtabs(count ~ SES + MHS, data = mentalHealth)
rc(MHtab, verbose = FALSE)
## Call:
## rc(tab = MHtab, verbose = FALSE)
##
  Intrinsic association coefficients:
##
  Dim1
## 0.166
##
## Normalized row scores:
## A B C D E
## 1.112 1.121 0.371 -0.027 -1.010 -1.818
##
## Normalized column scores:
  well mild moderate impaired
##
## 1.678 0.140 -0.137 -1.414
##
## Normalization weights: marginal
```

Association Models

Introduction to the logmult package

RC <- rc(MHtab, se = "jackknife", verbose = FALSE, ncpus = 1)
plot(RC, conf.int = 0.95)</pre>

__<u>Ass</u>ociation Models

Introduction to the logmult package

RC2 <- rc(MHtab, nd = 2, se = "jackknife", verbose = FALSE, ncpus = 1)
plot(RC2, conf.int = 0.95)</pre>

Loading required namespace: ellipse

Analysis of Association

An analysis of association compares successive RC(M) models to the independence model.

```
anoas(MHtab, nd=2, verbose = FALSE)
## Fitting independence model...
## Fitting model with 1 dimension...
## Fitting model with 2 dimensions...
        Res. Df Res. Dev Dev./Indep. (%) Dissim. (%) BIC AIC Dev. Df
##
             15 47.4
                                             5.5 -64 17 NA NA
  Indep.
                                  100
## RC(1)
           8 3.6
                                         1.8 -56 -12 -44 -7
       3 0.5
                                           0.7 -22 -5 -3 -5
## RC(2)
```

Association Models

Introduction to the logmult package

Introduction to the logmult package

Other Multiplicative Association Models

The **logmult** package also provides facilities for the following:

► Models with skew-symmetric terms, either HMSkew:

$$\nu_r \omega_c - \omega_r \nu_c$$

or YMSkew:

$$\delta_{r < c} \omega_r (\omega_c - \omega_r) - \delta_{c > r} \omega_c (\omega_r - \omega_c)$$

which can replace or supplement RC(M) association terms.

- ▶ RC(M)-L models, an extension of RC(M) to three-way tables
- The UNIDIFF model, also for three-way tables

Of these, the UNIDIFF model is most commonly used in practice.

└─Association Models └─UNIDIFF Model

UNIDIFF Model

UNIDIFF models postulate a simplified three-way interaction as follows:

$$\log(\mu_{rct}) = \alpha_{rt} + \beta_{ct} + \exp(\gamma_t)\delta_{rc}$$

This implies a common pattern of log ratios, modulated by a positive constant that is specific to the two-way table at each value of t.

This model can be specified in **gnm** via

Interest focuses of the γ_t parameters, for which simple contrasts are estimable.

└─Association Models
└─UNIDIFF Model

UNIDIFF Model

UNIDIFF models postulate a simplified three-way interaction as follows:

$$\log(\mu_{rct}) = \alpha_{rt} + \beta_{ct} + \exp(\gamma_t)\delta_{rc}$$

This implies a common pattern of log ratios, modulated by a positive constant that is specific to the two-way table at each value of t. This model can be specified in $\operatorname{\mathbf{gnm}}$ via

Interest focuses of the γ_t parameters, for which simple contrasts are estimable.

—Association Models —UNIDIFF Model

UNIDIFF Model

UNIDIFF models postulate a simplified three-way interaction as follows:

$$\log(\mu_{rct}) = \alpha_{rt} + \beta_{ct} + \exp(\gamma_t)\delta_{rc}$$

This implies a common pattern of log ratios, modulated by a positive constant that is specific to the two-way table at each value of t. This model can be specified in $\operatorname{\mathbf{gnm}}$ via

Interest focuses of the γ_t parameters, for which simple contrasts are estimable.

—Association Models └─Practical II

Practical II

1. The yaish data set from gnm is a 3-way contingency table classified by father's social class (orig), son's social class (dest) and son's education (educ). Remove the last level of dest (due to low counts), then put educ as the third dimension (as required by unidiff).

```
yaish <- as.table(yaish[,,-7])
yaish <- aperm(yaish, c("orig", "dest", "educ"))</pre>
```

2. Fit the UNIDIFF model using the unidiff function from logmult and print the result. The *layer coefficients* are $\exp(\gamma_t)$, with γ_1 constrained to zero. The two-way interaction has been constrained s.t.

$$\sum_{r} \delta_{rc} \pi_r = \sum_{c} \delta_{rc} \pi_c = 0$$

where π_r and π_c are the marginal probabilities, factoring out an intrinsic association coefficient ϕ . The *layer intrinsic association coefficients* are $\phi \exp(\gamma_t)$.

-Association Models └-Practical II

3. Plot the layer coefficients with confidence intervals, using

```
plot(model, se.type = "se")
```

This computes confidence intervals for the γ_t parameters, then exponentiates to give the displayed result.

4. Re-fit the UNIDIFF model using gnm, setting γ_1 to zero with constrain = "[.]educ1" (see p40). Use pickCoef to select all the γ_t parameters. Exponentiate the result to obtain the layer coefficients returned by unidiff.

- −Association Models

 Practical II
 - 5. The confidence intervals produced in step 3 assume that the likelihood surface is approximately quadratic around the maximum likelihood solution. We can check if this is the case by profiling the likelihood. Use **profile** to profile the γ_t parameters, assigning the result. Plot this result using **plot**: if the likelihood surface is quadratic, the profile plot will show a straight line.
- 6. Obtain confidence intervals based on the profile likelihood by passing the profile object to confint, assigning the result. Re-plot the layer coefficients as in step 3. Add the confidence intervals based on profile likelihood via

```
segments(1:5+0.1, exp(conf[,1]), 1:5+0.1, exp(conf[,2]), col = "red")
```

and compare.

Other Multiplicative Models

Section 3

Other Multiplicative Models

Other Multiplicative Models

Several models with multiplicative terms have been proposed outside of the context of association modelling.

Prominent examples include

- ▶ the stereotype model (Anderson, 1984), for ordered categorical response
- certain Rasch models, for item responses
- ▶ the Lee-Carter model (Lee and Carter, 1992) for mortality data

In some cases the multiplicative term provides a simpler, more interpretable structure, whilst in other cases it provides a simple extension to a more flexible model.

Other Multiplicative Models

Several models with multiplicative terms have been proposed outside of the context of association modelling.

Prominent examples include

- ▶ the stereotype model (Anderson, 1984), for ordered categorical response
- certain Rasch models, for item responses
- ▶ the Lee-Carter model (Lee and Carter, 1992) for mortality data

In some cases the multiplicative term provides a simpler, more interpretable structure, whilst in other cases it provides a simple extension to a more flexible model.

- Other Multiplicative Models
 - Stereotype model for ordinal response

Stereotype Models

The stereotype model (Anderson, 1984) is suitable for ordered categorical data. It is a special case of the multinomial logistic model:

$$pr(y_i = c | \boldsymbol{x}_i) = \frac{\exp(\beta_{0c} + \boldsymbol{\beta}_c^T \boldsymbol{x}_i)}{\sum_r \exp(\beta_{0r} + \boldsymbol{\beta}_r^T \boldsymbol{x}_i)}$$

in which only the *scale* of the relationship with the covariates changes between categories:

$$pr(y_i = c | \boldsymbol{x}_i) = \frac{\exp(\beta_{0c} + \gamma_c \boldsymbol{\beta}^T \boldsymbol{x}_i)}{\sum_T \exp(\beta_{0r} + \gamma_r \boldsymbol{\beta}^T \boldsymbol{x}_i)}$$

- Other Multiplicative Models
 - Stereotype model for ordinal response

Poisson Trick

The stereotype model can be fitted as a GNM by re-expressing the categorical data as category counts $Y_i = (Y_{i1}, \dots, Y_{ik})$.

Assuming a Poisson distribution for Y_{ic} , the joint distribution of Y_i is Multinomial $(N_i, p_{i1}, \ldots, p_{ik})$ conditional on the total count N_i .

The expected counts are then $\mu_{ic}=N_ip_{ic}$ and the parameters of the stereotype model can be estimated through fitting

$$\log \mu_{ic} = \log(N_i) + \log(p_{ic})$$
$$= \alpha_i + \beta_{0c} + \gamma_c \sum_r \beta_r x_{ir}$$

where the "nuisance" parameters $lpha_i$ ensure that the multinomial denominators are reproduced exactly, as required.

- Other Multiplicative Models
 - Stereotype model for ordinal response

Poisson Trick

The stereotype model can be fitted as a GNM by re-expressing the categorical data as category counts $Y_i = (Y_{i1}, \dots, Y_{ik})$.

Assuming a Poisson distribution for Y_{ic} , the joint distribution of Y_i is Multinomial $(N_i, p_{i1}, \ldots, p_{ik})$ conditional on the total count N_i .

The expected counts are then $\mu_{ic}=N_ip_{ic}$ and the parameters of the stereotype model can be estimated through fitting

$$\log \mu_{ic} = \log(N_i) + \log(p_{ic})$$
$$= \alpha_i + \beta_{0c} + \gamma_c \sum_r \beta_r x_{ir}$$

where the "nuisance" parameters $lpha_i$ ensure that the multinomial denominators are reproduced exactly, as required.

- Other Multiplicative Models
 - Stereotype model for ordinal response

Poisson Trick

The stereotype model can be fitted as a GNM by re-expressing the categorical data as category counts $Y_i = (Y_{i1}, \dots, Y_{ik})$.

Assuming a Poisson distribution for Y_{ic} , the joint distribution of Y_i is Multinomial $(N_i, p_{i1}, \dots, p_{ik})$ conditional on the total count N_i .

The expected counts are then $\mu_{ic}=N_ip_{ic}$ and the parameters of the stereotype model can be estimated through fitting

$$\log \mu_{ic} = \log(N_i) + \log(p_{ic})$$
$$= \alpha_i + \beta_{0c} + \gamma_c \sum_r \beta_r x_{ir}$$

where the "nuisance" parameters α_i ensure that the multinomial denominators are reproduced exactly, as required.

Example: Back Pain Data

The backPain data are from an example in Anderson (1984). For 101 patients, 3 prognostic variables are recorded at baseline and their level of back pain is recorded again after 3 weeks.

The function expandCategorical converts the categorical data into sets of counts, by default grouping individuals with common covariates.

Grouping individuals reduces the size of the data set and does not affect comparisons between models.

The function expandCategorical converts the categorical data into sets of counts, by default grouping individuals with common covariates.

Grouping individuals reduces the size of the data set and does not affect comparisons between models.

The stereotype model can be fitted to these data as follows

The eliminate argument of gnm is used to specify that the id parameters replace the intercept in the model. This has two benefits:

- gnm exploits the structure of these parameters to estimate them more efficiently
- these nuisance parameters are excluded from summaries of the model object

Other Multiplicative Models

We can compare the stereotype model to the multinomial logistic model:

```
logistic \leftarrow gnm(count ~ pain + pain:(x1 + x2 + x3),
               eliminate = id, family = poisson, data = backPainLong)
anova(stereotype, logistic)
## Analysis of Deviance Table
##
## Model 1: count ~ pain + Mult(pain, x1 + x2 + x3) - 1
## Model 2: count ~ pain + pain:x1 + pain:x2 + pain:x3 - 1
    Resid. Df Resid. Dev Df Deviance
##
## 1
       48 55.9
## 2 40 51.8 8 4.09
```

```
Other Multiplicative Models

Stereotype model for ordinal response
```

In order to make the category-specific multipliers identifiable, we must constrain both the location and scale.

One way to do this is to set the last multiplier to one and fix the coefficient of the first covariate to one. We can do this using offset along with the constrain and constrainTo arguments of gnm:

We can (re-)define the coefficients of interest after fitting the model

```
## Mult(., x2 + x3 + offset(x1)).painworse, Mult(., x2 + x3 + ## offset(x1)).painsame, Mult(., x2 + x3 + ## offset(x1)).painslight.improvement, Mult(., x2 + x3 + ## offset(x1)).painmoderate.improvement, Mult(., x2 + x3 + ## offset(x1)).painmarked.improvement, Mult(., x2 + x3 + ## offset(x1)).paincomplete.relief, Mult(pain, . + x3 +
```

```
Other Multiplicative Models

Stereotype model for ordinal response
```

In order to make the category-specific multipliers identifiable, we must constrain both the location and scale.

One way to do this is to set the last multiplier to one and fix the coefficient of the first covariate to one. We can do this using offset along with the constrain and constrainTo arguments of gnm:

We can (re-)define the coefficients of interest after fitting the model

```
ofInterest(stereotype) <- pickCoef(stereotype, "Mult")

## Mult(., x2 + x3 + offset(x1)).painworse, Mult(., x2 + x3 +

## offset(x1)).painsame, Mult(., x2 + x3 +

## offset(x1)).painslight.improvement, Mult(., x2 + x3 +

## offset(x1)).painmoderate.improvement, Mult(., x2 + x3 +

## offset(x1)).painmarked.improvement, Mult(., x2 + x3 +

## offset(x1)).paincomplete.relief, Mult(pain, . + x3 +</pre>
```

```
Other Multiplicative Models
```

Stereotype model for ordinal response

```
parameters(stereotype)
## Coefficients of interest:
##
                  Mult(., x2 + x3 + offset(x1)).painworse
##
                                                      6.372
##
                   Mult(., x2 + x3 + offset(x1)).painsame
##
                                                      2.662
##
     Mult(., x2 + x3 + offset(x1)).painslight.improvement
##
                                                      2.862
   Mult(., x2 + x3 + offset(x1)).painmoderate.improvement
##
                                                      3.739
     Mult(., x2 + x3 + offset(x1)).painmarked.improvement
##
                                                      1.760
##
        Mult(., x2 + x3 + offset(x1)).paincomplete.relief
##
                                                      1.000
##
##
                        Mult(pain, . + x3 + offset(x1)).x2
                                                      0.574
##
                        Mult(pain, x2 + . + offset(x1)).x3
##
##
                                                      0.505
```

```
Other Multiplicative Models
```

Stereotype model for ordinal response

Is the scale of the relationship with the covariates really different for each category?

Consider common multiplier for same and slight.improvement

```
.pain <- backPainLong$pain
levels(.pain)[2:3] <- paste(levels(.pain)[2:3], collapse = " | ")</pre>
stereotype5 <- update(stereotype,</pre>
                      \sim pain + Mult(.pain, x1 + x2 + x3))
anova(stereotype, stereotype5)
## Analysis of Deviance Table
##
## Model 1: count ~ pain + Mult(pain, offset(x1) + x2 + x3) - 1
## Model 2: count ~ pain + Mult(.pain, x1 + x2 + x3) - 1
##
    Resid. Df Resid. Dev Df Deviance
## 1
        48 55.9
## 2 49 56.0 -1 -0.118
```

In fact, only three different multipliers are necessary

```
## Analysis of Deviance Table
##
## Model 1: count ~ pain + Mult(pain, offset(x1) + x2 + x3) - 1
## Model 2: count ~ pain + Mult(.pain, x1 + x2 + x3) - 1
## Model 3: count ~ pain + Mult(.pain, x1 + x2 + x3) - 1
## Model 4: count ~ pain + Mult(.pain, x1 + x2 + x3) - 1
## Model 5: count ~ pain + Mult(.pain, x1 + x2 + x3) - 1
    Resid. Df Resid. Dev Df Deviance
##
## 1
          48 55.9
       49 56.0 -1 -0.12
## 2
## 3 50 58.4 -1 -2.35
## 4
       51 61.6 -1 -3.19
## 5
          52 83.4 -1 -21.79
```

└─Other Multiplicative Models └─Rasch Models

Rasch Models

Rasch models are used in Item Response Theory to model the binary responses of *subjects* over a set of *items*.

The simplest one parameter logistic (1PL) model has the form

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \alpha_i + \gamma_s$$

The one-dimensional Rasch model extends the 1PL as follows:

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \alpha_i + \beta_i \gamma_s$$

where β_i measures the discrimination of item i: the larger β_i the steeper the item-response function that maps γ_s to π_{is} .

└─Other Multiplicative Models └─Rasch Models

Rasch Models

Rasch models are used in Item Response Theory to model the binary responses of *subjects* over a set of *items*.

The simplest one parameter logistic (1PL) model has the form

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \alpha_i + \gamma_s$$

The one-dimensional Rasch model extends the 1PL as follows:

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \alpha_i + \beta_i \gamma_s$$

where β_i measures the discrimination of item i: the larger β_i the steeper the item-response function that maps γ_s to π_{is} .

└─Other Multiplicative Models └─Rasch Models

Rasch Models

Rasch models are used in Item Response Theory to model the binary responses of *subjects* over a set of *items*.

The simplest one parameter logistic (1PL) model has the form

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \alpha_i + \gamma_s$$

The one-dimensional Rasch model extends the 1PL as follows:

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \alpha_i + \beta_i \gamma_s$$

where β_i measures the discrimination of item i: the larger β_i the steeper the item-response function that maps γ_s to π_{is} .

Rasch Models

Example: US House of Representatives

Votes on 20 roll calls selected by Americans for Democratic Action (ADA)

Rasch Models

Other Multiplicative Models

The data are prepared for modelling as shown in ?House2001, specifically

- removing uninformative House members (too many NAs)
- creating a data frame with factors member and rollCall.

For representatives that always vote "For" or "Against" the ASA position, maximum likelihood will produce infinite γ_s estimates, so that the fitted probabilities are 0 or 1 (complete separation).

To mitigate this, the response is "flattened": 0 becomes 0.03 and 1 becomes 0.97.

Other Multiplicative Models

Rasch Models

The data are prepared for modelling as shown in ?House2001, specifically

- removing uninformative House members (too many NAs)
- creating a data frame with factors member and rollCall.

For representatives that always vote "For" or "Against" the ASA position, maximum likelihood will produce infinite γ_s estimates, so that the fitted probabilities are 0 or 1 (complete separation).

To mitigate this, the response is "flattened": 0 becomes 0.03 and 1 becomes 0.97.

Other Multiplicative Models

Rasch Models

For a large model such as this, we need good starting values. The utility function residSVD can be used to decompose multiplicatively the residuals from a smaller model:

The one-dimensional Rasch model is then fitted via

Other Multiplicative Models

Rasch Models

For a large model such as this, we need good starting values. The utility function residSVD can be used to decompose multiplicatively the residuals from a smaller model:

The one-dimensional Rasch model is then fitted via

Other Multiplicative Models

Rasch Models

- Other Multiplicative Models
 - Lee-Carter models for mortality trends

Lee-Carter model for mortality trends

For the study and projection of age-specific population mortality rates, Lee and Carter (1992) proposed a model that has been the basis of many subsequent analyses.

Suppose that death count D_{ay} for individuals of age a in year y has mean μ_{ay} and quasi-Poisson variance $\phi\mu_{ay}$.

Lee-Carter model:

$$\log(\mu_{ay}/e_{ay}) = \alpha_a + \beta_a \gamma_y,$$

$$\Rightarrow \log(\mu_{ay}) = \log(e_{ay}) + \alpha_a + \beta_a \gamma_y$$

where e_{ay} is the *exposure* (number of lives at risk).

Other Multiplicative Models

Lee-Carter models for mortality trends

The Lee-Carter model can be fitted with gnm as follows

where

- ightharpoonup Exp(Age) is used to constrain the parameters representing the "sensitivity" of age group a to have the same sign,
- Age is "eliminated" since it will typically have many levels,
- offset is used to add the log exposure with a coefficient of 1,
- the quasipoisson family is used so that the dispersion parameter ϕ is estimated rather than fixed to 1.

Other Multiplicative Models

Practical III

Practical III

- 1. Use read.table to read the file Canada.txt provided on your USB stick: data from the Human Mortality Database on male deaths in Canada between 1921 and 2003. Convert Year and Age to factors and fit a simplified version of the Lee-Carter model in which the multiplicative term is replaced by a linear Year effect. Eliminate Age as on p62.
- 2. Extract the eliminated age coefficients via

```
AgeCoef <- attr(coef(model1), "eliminated")
```

Fit the Lee-Carter model using update, specifying the new formula and

```
start = c(AgeCoef, rep(0, length(AgeCoef)), 0, coef(model1))
```

This starts the gnm with the linear effects of age set to their estimates from the first model, the age multipliers set to one $(=\exp(0))$, and the year multipliers set to their linear effects from the first model, including the effect for the first year which was constrained to zero by default.

─Other Multiplicative Models └─Practical III

- 3. Use deviance and df.residual to compare the deviance of the Lee-Carter model relative to the degrees of freedom. You should notice severe overdispersion (deviance » df).
- 4. Use residuals to obtain the Pearson residuals from the Lee-Carter model. Plot the residuals vs. Age. The overdispersion is not evenly spread through the data, but is largely concentrated in two age groups, roughly ages 25–35 and 50–65. Plot the residuals vs. Year for each of these subgroups, in separate windows. There is a clear (and roughly cancelling) dependence on year, indicating that the assumed bilinear interaction between age and year does not hold for the full range of ages and years considered here.

—Other Multiplicative Models └─Practical III

- 5. Use update to re-fit the Lee-Carter model for males aged 45 or over. Look at the deviance and degrees of freedom: the over-dispersion should be much reduced. Plot the residuals against Age and Year to look for departures from the assumed bilinear structure.
- 6. Use getContrasts to compute quasi-standard errors for the logarithms of β_a this takes several seconds! Use plot to plot the resulting qv object, using levelNames = 45:98 to name the levels (the parameter for age 99 is unestimable). Consider the expected and unexpected features of this plot.

Other Specialized Models

Section 4

Other Specialized Models

Other Specialized Models

We have already seen an example of a specialized "nonlin" term, MultHomog. A specialized term is required if it

- requires common parameters to be estimated across different factors,
- ► cannot be expressed as a function of existing "nonlin" terms.

In this section we look at the other specialized "nonlin" term provided by gnm, Dref, and some examples of custom "nonlin" functions encountered in practice.

Diagonal Reference Terms

Diagonal reference terms model the effect of factors with common levels. For factors indexed by i(f), the term is defined as

$$\sum_{f} w_f \gamma_{i(f)}$$

where w_f is a weight for factor f and γ_l is the diagonal effect for level l.

The weights are constrained to be non-negative and to sum to one so that γ_l is the value for observations with level l across all the factors.

Unlike the GNMs models considered so far, which structure interaction terms, this structures the main effects of the corresponding factors.

Dref specifies the constraints on the weights by defining them as

$$w_f = \frac{e^{\delta_f}}{\sum_i e^{\delta_i}}$$

- Other Specialized Models
 - Diagonal Reference Model

Diagonal Reference Terms

Diagonal reference terms model the effect of factors with common levels. For factors indexed by i(f), the term is defined as

$$\sum_{f} w_f \gamma_{i(f)}$$

where w_f is a weight for factor f and γ_l is the diagonal effect for level l.

The weights are constrained to be non-negative and to sum to one so that γ_l is the value for observations with level l across all the factors. Unlike the GNMs models considered so far, which structure interaction terms, this structures the main effects of the corresponding factors.

Dref specifies the constraints on the weights by defining them as

$$w_f = \frac{e^{\delta_f}}{\sum_i e^{\delta_i}}$$

Other Specialized Models

Diagonal Reference Model

Example: Conformity to parental rules

Data from van der Slik et al. (2002).

An analysis of the value that parents place on their children conforming to their rules.

Two response variables: mother's conformity score (MCFM), father's (FCFF).

Covariates are education level of mother and of father (MOPLM, FOPLF) plus 5 others.

Other Specialized Models

Diagonal Reference Model

Basic diagonal reference model for MCFM:

$$E(y_{rc}) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}} \gamma_r + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}} \gamma_c$$

Note that including an intercept in the model would require one of the diagonal effects to be set to zero for identifiability – the intercept would then be γ_1 and the other diagonal effects would be $\gamma_r - \gamma_1$.

If the model included another factor, say nationality, a reference level must be set, e.g.

- setting first level of nationality to zero
- setting first diagonal effect to zero
- adding intercept and setting first diagonal effect to zero

Other Specialized Models

Diagonal Reference Model

Basic diagonal reference model for MCFM:

$$E(y_{rc}) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}} \gamma_r + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}} \gamma_c$$

Note that including an intercept in the model would require one of the diagonal effects to be set to zero for identifiability – the intercept would then be γ_1 and the other diagonal effects would be $\gamma_r - \gamma_1$.

If the model included another factor, say nationality, a reference level must be set, e.g.

- setting first level of nationality to zero
- setting first diagonal effect to zero
- adding intercept and setting first diagonal effect to zero

```
Other Specialized Models

Diagonal Reference Model
```

```
A <- gnm(MCFM ~ -1 +

AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF),

family = gaussian, data = conformity, verbose = FALSE)
```

In order for the diagonal weights to be identified, one of the δ_f must be constrained to zero. DrefWeights computes the weights w_f , re-fitting the model constraining $\delta_1=0$ if necessary:

```
w <- DrefWeights(A)
w

## $MOPLM
## weight se
## 0.423 0.144
##
## $FOPLF
## weight se
## 0.577 0.144</pre>
```

```
Other Specialized Models

Diagonal Reference Model
```

Inference on the Weights

If the diagonal weights are near to 0.5, then a Normal approximation can be use to obtain a confidence interval, e.g.

```
w$MOPLM["weight"] + qnorm(c(0.025, 0.975)) * w$MOPLM["se"]
## [1] 0.140 0.705
```

Since $0 < w_f < 1$, a t-test is not a valid test of $H_0: w_1 = 0$. Instead use anova to compare against the implied GLM, e.g.

```
## Analysis of Deviance Table

##

## Model 1: MCFM ~ AGEM + MRMM + FRMF + MWORK + MFCM + FOPLF - 1

## Model 2: MCFM ~ AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF)

## 1

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 577 428

## 2 576 425 1 2.9 0.048
```

```
Other Specialized Models

Diagonal Reference Model
```

Inference on the Weights

If the diagonal weights are near to 0.5, then a Normal approximation can be use to obtain a confidence interval, e.g.

```
w$MOPLM["weight"] + qnorm(c(0.025, 0.975)) * w$MOPLM["se"]
## [1] 0.140 0.705
```

Since $0 < w_f < 1$, a t-test is not a valid test of $H_0: w_1 = 0$. Instead use anova to compare against the implied GLM, e.g.

```
## Analysis of Deviance Table
##
  Model 1: MCFM ~ AGEM + MRMM + FRMF + MWORK + MFCM + FOPI.F - 1
  Model 2: MCFM ~ AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF)
##
      1
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
##
## 1
           577
                     428
## 2
          576
                     425 1
                             2.9
                                         0.048
```

└─Other Specialized Models └─Diagonal Reference Model

The Dref function allows dependence of the weights on other variables. van der Slik et al. (2002) consider weights dependent upon mother's conflict score (MFCM), as in

$$\delta_k = \xi_k + \phi_k x_5 \qquad (k = 1, 2)$$

which can be specified in R as

```
F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Dref(MOPLM, FOPLF, delta = ~ 1 + MFCM),

family = gaussian, data = conformity, verbose = FALSE)
```

```
Other Specialized Models

Diagonal Reference Model
```

In this case there are two sets of weights, one for when the mother's conflict score is less than average (coded as zero) and one for when the score is greater than average (coded as one).

```
## $MOPLM
## MFCM weight se
## 1  1 0.0297 0.228
## 2  0 0.7447 0.201
##
## $FOPLF
## MFCM weight se
## 1  1 0.970 0.228
## 2  0 0.255 0.201
```

Other Specialized Models

Custom "nonlin" Functions

Custom "nonlin" Functions

A ""nonlin"" function creates a list of arguments for the internal function nonlinTerms.

The term is viewed as a function of

predictors linear predictors with coefficients to be estimated, including the special case of single parameters

variables variables included in the term with a coefficient of 1

Example: Modelling Prey Consumption

A ecology student wished to use the Holling Type II function to model the number of prey eaten by a certain predator in a given time period:

$$y(x) = \frac{ax}{1 + ahx}$$

where x is the number of prey at the start of the experiment, a is the attack rate and h is the time the predator spends handling the prey.

In addition, she wished to allow the parameters to depend on a factor specifying the catchment.

We consider the simpler model first

Example: Modelling Prey Consumption

A ecology student wished to use the Holling Type II function to model the number of prey eaten by a certain predator in a given time period:

$$y(x) = \frac{ax}{1 + ahx}$$

where x is the number of prey at the start of the experiment, a is the attack rate and h is the time the predator spends handling the prey.

In addition, she wished to allow the parameters to depend on a factor specifying the catchment.

We consider the simpler model first.

```
Other Specialized Models
Custom "nonlin" Functions
```

The model can be broken down into predictors and variables as follows

$$\frac{ax}{1+\{a\}\{h\}x}$$

We start to build our nonlin function as follows:

```
TypeII <- function(x){
  list(predictors = list(a = 1, h = 1),
       variables = list(substitute(x)))
}
class(TypeII) <- "nonlin"</pre>
```

```
Other Specialized Models
Custom "nonlin" Functions
```

The term argument of nonlinTerms takes labels for the predictors and variables and returns a departed expression of the term:

Or using sprintf

```
Other Specialized Models
Custom "nonlin" Functions
```

Complete Function

```
Other Specialized Models

Custom "nonlin" Functions
```

Some test data were provided:

```
Density <- rep(c(2,5,10,15,20,30), each = 4)
Eaten <- c(1,1,0,0,2,2,1,1,1,2,3,2,2,2,3,3,3,3,4,3,3,3,4,3)
```

The counts are expected to be underdispersed so we use the ${\tt quasipoisson}$ family with link = "identity". Both a and h should be positive, so we provide starting values

Number of iterations: 7

```
Other Specialized Models
 Custom "nonlin" Functions
 ##
 ## Call:
 ##
 ## gnm(formula = Eaten ~ -1 + TypeII(Density), family = quasipoisson(link
       start = c(a = 0.1, h = 0.1))
 ##
 ##
 ## Deviance Residuals:
 ##
   Min 10 Median 30
                                       Max
 ## -1.1154 -0.2854 -0.0166 0.3345 0.5938
 ##
 ## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
 ##
 ## a 0.3546 0.0778 4.56 0.00016
 ## h 0.1975 0.0415 4.76 9.5e-05
 ##
 ## (Dispersion parameter for quasipoisson family taken to be 0.208)
 ##
 ## Residual deviance: 5.7279 on 22 degrees of freedom
 ## AIC: NA
 ##
```

```
Other Specialized Models

Custom "nonlin" Functions
```

Incorporating dependence

The parameters a and h can be allowed to depend on a factor as follows

```
Other Specialized Models

Custom "nonlin" Functions
```

```
Catchment <- factor(rep(1:2, 6, each = 2))
mod2 <- gnm(Eaten ~ -1 + TypeII(Catchment, Density),</pre>
            start = rep(0.2, 4),
           family = quasipoisson(link = "identity"))
## Running main iterations......
## Done
coef (mod2)
## Coefficients:
## aCatchment1 aCatchment2 hCatchment1 hCatchment2
        0.697
                    0.246
                                 0.318
                                             0.107
##
```

```
Other Specialized Models

Custom "nonlin" Functions
```

If instead we wanted to allow a general predictor to be supplied by the user as a formula we would use

Note additional parentheses!

```
Other Specialized Models
Custom "nonlin" Functions
```

```
mod2 <- gnm(Eaten ~ -1 + TypeII(~ 1 + Catchment, Density),</pre>
           start = c(0.2, -0.1, 0.2, -0.1),
           family = quasipoisson(link = "identity"))
## Running main iterations.....
## Done
coef (mod2)
## Coefficients:
## a(Intercept) aCatchment2 h(Intercept) hCatchment2
         0.697 -0.451
                                  0.318
                                              -0.211
##
```

More Complex "nonlin" Terms

The "nonlin" features introduced in the last example will be sufficient in many cases. The **gnm** vignette gives further details on

- specifying homologous parameters
- ▶ implementing *dot-style* parameter labelling
- implementing term-specific starting values
- enabling multiple instances

Other Specialized Models

Practical IVa

1. The voting data in gnm are from the 1987 British general election. The data frame comprises the percentage voting Labour (percentage), the total number of people (total), the class of the head of household (destination) and the class of their father (origin). We shall fit a diagonal reference model to these data.

First we want to convert percentage into a binomial response. So that gnm will automatically weight the proportion of successes by the group size, we choose to do this by creating a two-column matrix with the columns giving the number of households voting Labour ('success') and the number of households voting otherwise ('failure'):

```
count <- with(voting, percentage/100 * total)
yvar <- cbind(count, voting$total - count)</pre>
```

- Other Specialized Models
 - 2. Use gnm to model yvar by a diagonal reference term based on origin and destination (see p71), with family = binomial. Look at the summary does the model fit well? Use the mosaic function from vcdExtra to examine the residuals over the origin by destination table. Since the data were not provided to gnm as a table, you will need to provide a formula with the cross-classifying factors.
 - 3. It could be that the diagonal weights should be different for the upwardly mobile. Define a variable to indicate this group as follows:

```
origin <- as.numeric(as.character(voting$origin))
destination <- as.numeric(as.character(voting$destination))
upward <- origin > destination
```

Using this variable, refit the diagonal reference model to have separate weights for the upwardly and downwardly mobile (note the stable are modelled by the diagonal effects). Do the weights differ between the two groups?

Other Specialized Models

4. It could be that individuals which have come into or out of the salariat (class 1) vote differently from other individuals. Define variables indicating movement in and out of class 1 as follows:

```
in1 <- origin != 1 & destination == 1
out1 <- origin == 1 & destination != 1</pre>
```

Re-fit the diagonal reference model, specifying $\sim 1 + \text{in}1 + \text{out}1$ as the formula argument of Dref, so the weights are parameterized by a main effect with additional effects for in1 and out1.

5. Evaluate the weights under the new model. The weights for groups that have moved in to the salariat are similar to the general weights. Fit a model that only has separate weights for the groups moving out of the salariat. Is this model a significant improvement on the standard diagonal reference model?

Practical IVb

1. The generalized logistic function or Richard's curve is defined as

$$y(t) = A + \frac{K - A}{(1 + \exp(-B(t - M))^{1/v})}$$

where

A is the lower asymptote

K is the upper asymptote

B is the growth rate

v affects near which asymptote the growth rate is at its maximum

M is the time at which the growth rate is at its maximum

Create a custom ""nonlin"" function to fit this model.

Other Specialized Models

2. Some test data are provided in the file Richard.txt on your USB stick. Plot y against t. Since y decreases as t increases (i.e. the growth rate is negative) the upper asymptote is the value as $t \to -\infty$ and the lower asymptote is the value as $t \to \infty$. Given that if v = 1, M is the value of t at which y is half-way between the lower and upper asymptotes, make reasonable guesses for starting values of A, K, B, vand M. Use gnm to fit the Richard's curve to these data, with family = gaussian and start set to your guessed values. Note the starting values must be in the same order as specified by the predictors element of your "nonlin" term.

Other Specialized Models

- 3. Add the fitted line to your plot. Does the model fit well? Look at the summary for your fitted model. Are all the parameters significant? Investigate whether one or more of the following simplifications is reasonable:
 - v = 1
 - ightharpoonup A = 0
 - K = 100

Concluding Remarks

Many frequently-used GNMs can be handled by gnm and convenience functions for association models are available in **logmult**.

Other examples in the gnm vignette/documentation include

- ► GAMMI models (RC(M) models for a general response)
- biplot models for two-way data
- compound exponential decay curves
- ▶ double UNIDIFF model for 4-way table ?cautres

Formula interface to gnm encourages experimentation and uninhibited modelling.

- Anderson, J. A. (1984). Regression and Ordered Categorical Variables. *J. R. Statist. Soc. B* 46(1), 1–30.
- Firth, D. and R. X. de Menezes (2004). Quasi-variances. Biometrika 91, 65-80.
- Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. *J. Amer. Statist. Assoc.* 74, 537–552.
- Lee, R. D. and L. Carter (1992). Modelling and forecasting the time series of {US} mortality. *Journal of the American Statistical Association 87*, 659–671.
- Sobel, M. E. (1981). Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility effects. Amer. Soc. Rev. 46, 893–906.
- Sobel, M. E. (1985). Social mobility and fertility revisited: Some new models for the analysis of the mobility effects hypothesis. *Amer. Soc. Rev. 50*, 699–712.
- van der Slik, F. W. P., N. D. de Graaf, and J. R. M. Gerris (2002). Conformity to Parental Rules: Asymmetric Influences of Father's and Mother's Levels of Education. *Europ. Soc. Rev.* 18, 489–502.