M16600 Lecture Notes

Section 8.2: Area of a Surface of Revolution

Section 8.2 textbook exercises, page 595: # 1, 2, 3, 7.

A *surface of revolution* is formed when a curve is rotated about a line. How do we find the area of such a surface?

The area of the *i* band is $2\pi f(x_i^*)\sqrt{1+\left[f'(x_i^*)\right]^2}\Delta x$. See the discussion on page 591–592 of the textbook for more detail. Then an approximation of the surface area is

$$\sum_{i=1}^{n} 2\pi f(x_i^*) \sqrt{1 + \left[f'(x_i^*) \right]^2} \Delta x$$

Thus, the surface area is

$$\lim_{n \to \infty} \sum_{i=1}^{n} 2\pi f(x_i^*) \sqrt{1 + \left[f'(x_i^*) \right]^2} \Delta x$$

$$= \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx.$$

Area of a Surface of Revolution about the x-axis. The surface area of a surface obtained by rotating the curve y = y(x), $a \le x \le b$, about the x-axis is

$$S = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx$$

Example 1: The curve $y = \sqrt{4 - x^2}$, $-1 \le x \le 1$, is an arc of the circle $x^2 + y^2 = 4$. Find the area of the surface obtained by rotating this arc about the x-axis.

Area of a Surface of Revolution about the y-axis.

The surface area of a surface obtained by rotating the curve y = y(x), $a \le x \le b$, about the y-axis is

$$S = \int_{a}^{b} 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx$$

Example 2: The arc of the parabola $y = x^2$ from (1,1) to (2,4) is rotated about the y-axis. Find the area of the resulting surface.

