6-DOF SCARA Robot Simulation

Installation & Operating Instructions

Based on Ben-Gurion University Research July 2, 2025

1 System Requirements

- Python 3.7+
- OS: Windows 10+, macOS 10.14+, Ubuntu 18.04+
- RAM: 4GB minimum
- Graphics: OpenGL 2.1 compatible

2 Installation

2.1 Install Python

Windows: Download from https://python.org (check "Add to PATH")

 ${f macOS:}$ brew install python

Linux: sudo apt install python3 python3-pip

2.2 Install Dependencies

```
# Create virtual environment (recommended)
python -m venv scara_env

# Activate environment
# Windows: scara_env\Scripts\activate
# macOS/Linux: source scara_env/bin/activate
# Install required packages
pip install numpy matplotlib pillow
```

2.3 Setup Files

```
1 mkdir scara_simulation
2 cd scara_simulation
3 # Save the Python code as: scara_simulator.py
```

3 Operation

3.1 Run Simulation

3.2 Simulation Features

- 6-DOF robot with joint limits
- Trajectory planning with trapezoidal velocity profile
- Real-time 3D visualization
- Workspace boundary display
- Animated GIF export

4 Customization

4.1 Modify Trajectory

Edit in run_simulation() method:

```
1 start_position = np.array([-150.0, 150.0, 1050.0]) # [x,y,z] mm
2 end_position = np.array([0.0, 400.0, 1200.0]) # [x,y,z] mm
```

4.2 Adjust Motion Parameters

Edit in plan_trajectory() method:

5 Robot Configuration

Joint	Type	Range	Description
$\overline{\theta_1}$	Rotational	± 180	Base rotation
l_1	Prismatic	0-500 mm	Vertical extension
l_2	Prismatic	$0-500~\mathrm{mm}$	Horizontal extension
θ_2	Rotational	± 180	Wrist pitch
θ_3	Rotational	± 135	Wrist roll
θ_4	Rotational	± 180	End effector

6 Forward Kinematics

End effector position equations:

$$x = -150\sin\theta_1 - 150\cos\theta_3\sin\theta_1 - l_2\sin\theta_1 - 150\cos\theta_1\cos\theta_2\sin\theta_3$$
 (1)

$$y = 150\cos\theta_1 + 150\cos\theta_1\cos\theta_3 + l_2\cos\theta_1 - 150\cos\theta_2\sin\theta_1\sin\theta_3 \tag{2}$$

$$z = l_1 + 150\sin\theta_2\sin\theta_3 + 800\tag{3}$$

7 Troubleshooting

7.1 Common Issues

Import Error:

```
1 pip install numpy matplotlib pillow
```

No Animation Window:

- Ensure GUI environment available
- For SSH: use ssh -X

Slow Performance:

```
1 # Reduce animation frames
2 frame_indices = range(0, len(trajectory_data['joint_configs']), 4)
3
4 # Increase time step
5 time_step = 0.08 # Instead of 0.04
```

GIF Export Fails:

```
1 # Disable GIF export
2 self.create_robot_animation(trajectory, save_animation=False)
```

8 Verification

Test installation:

```
1 python -c "import_numpy,_matplotlib;_print('Dependencies_OK')" 2 python scara_simulator.py
```

Successful run should display 3D animation window and generate GIF file.