

Przepływomierze wirowe Racine® Vortex

Badger Meter Europa GmbH Nürtinger Str. 76 72639 Neuffen (Germany) Tel. + 49-7025-9208-0 Fax + 49-7025-9208-15 www.badgermeter.de badger@badgermeter.de

Przepływomierze wirowe Vortex o wysokiej dokładności do gazów, cieczy i powietrza w wykonaniu międzykołnierzowym, wkładkowym i liniowym

Racine® Vortex kontra popularne konstrukcje

Przepływomierze Racine® Vortex wykorzystują technologię ultradźwiękową do pomiaru drobnych wirów wytworzonych podczas przepływu medium wokół poprzeczki lub przegrody. Liczba powstałych wirów jest wprost proporcjonalna do natężenia przepływu co daje w rezultacie przepływomierz o dużej zakresowości (do 70:1) i wysokiej dokładności pomiaru (±1% odczytu)

W połączeniu z inteligentną elektroniką i komunikacją HART®, przepływomierz Racine® Vortex jest doskonałym wyborem dla fabryk i rafinerii. Brak części ruchomych i potrzeby konserwacji powodują że przepływomierze są wybierane przez biura projektowe do współpracy z urządzeniami w wodociągach i oczyszczalniach.

Typowe przepływomierz wirowe wykorzystują dużą przegrodę, często w połączeniu z czujnikiem piezoelektrycznym lub przetwornikiem ciśnienia. Te wielkie przegrody są potrzebne w celu wygenerowania opływu, momentu obrotowego lub różnicy ciśnienia o odpowiedniej wielkości (przykład poniżej). Przepływomierze Racine® Vortex wykorzystują technologię ultradźwiękową, pozwalając na działanie z niezwykle małą przegrodą. W rezultacie powstaje bardzo mały spadek ciśnienia i powiększona zakresowość.

Widok od czoła rurociągu

Przepływomierz międzykołnierzowy Racine Vortex 1.5" do gazu. Przegroda blokuje 9% przekroju poprzecznego.

Typowy przepływomierz 1.5" do gazu. Przegroda blokuje 43% przekroju poprzecznego.

Aplikacje

- Gaz/Biogaz
- Ciecze
- Powietrze/Sprężone powietrze

Zasada działania

Wewnątrz przepływomierza, wiry powstałe w wyniku przepływającego wokół przegrody medium również drgają lecz na małą skalę. Przepływomierz transmituje ultradźwiękowy sygnał poprzecznie do przepływu wirów. Podczas przepływu wirów przez falę ultradźwiękową sygnał ulega modulacji. Modulacja ta jest mierzalna i proporcjonalna do ilości wirów. Cyfrowa obróbka sygnału pozwala na zliczenie ilości wirów a wartość ta jest konwertowana następnie na prędkość przepływu. Oprogramowanie przelicza prędkość na przepływ objętościowy w jednostkach wybranych przez użytkownika. Przepływomierze Racine® Vortex wykorzystują najmniejszą przegrodę w przemyśle, która pozwala na wysoki poziom czułości, wysoka wydainość przy niskich przepływach, dużą zakresowość i mały spadek ciśnienia. Dzieki wewnetrznemu czujnikowi temperatury RTD i zewnetrznemu czujnikowi ciśnienia (opcja), oprogramowanie przepływomierza będzie kompensowało zmiany temperatury i ciśnienia dla dokładnego pomiaru przepływu masy (przepływomierze do gazu).

*Racine® Federated jest częścią Badger Meter, Inc.

Przepływomierze Vortex do gazów – ze stali nierdzewnej

Seria RWG i RWBG do montażu międzykołnierzowego

Aplikacje

- Powietrze do spalania
- Sprężone powietrze
- Gazy palne
- · Gaz ziemny
- Azot
- Gaz wysypiskowy (Biogaz: CH4 + CO2)
- Procesy chemiczne

Dane techniczne

	0 10 1				
Media	Gaz/Powietrze				
Zakres pomiaru	0.1 - 7.5 do 9.5 - 280 l/s				
Dokładność	± 1% of odczytu przez powyżej 90% zakresu pomiaru				
Powtarzalność	0.5% odczytu				
Sygnał wyj.	2-przewody, pętla 4-20 mA				
Zasilanie	24 VDC				
Certyfikaty	CE: EN61326-1:2002				
	Opcja: ATEX II 2G Ex ib IIB T4				
	Zone 1 Group IIB T4 and AEx ib IIB T4				

Cechy

- Niski spadek ciśnienia
- Kalibracja NIST
- Protokół komunikacji HART®

Seria RNG typu insert do gazów

Cechy

- Nieczuły na zmiany składu gazu
- Wysoka dokładność w pomiarach gazów mokrych
- Zakresowość 70:1
- Protokół komunikacji HART®

Aplikacje

- Gazy z pochodni
- Gazy kominowe
- Gaz ziemny
- Gaz wysypiskowy (Biogaz: CH₄ + CO₂)
- Powietrze

Dane techniczne

14 E	0 /B : .
Media	Gaz/Powietrze
Zakres pomiaru	0.6 – 43 m/s
Dokładność	± 1% of odczytu przez powyżej 90% zakresu pomiaru
Powtarzalność	0.5% odczytu
Sygnał wyj.	2-przewody, pętla 4-20 mA
Zasilanie	24 VDC
Certyfikaty	CE: EN61326-1:2002
	Opcja: ATEX II 2G Ex ib IIB T4
	Zone 1 Group IIB T4 and AEx ib IIB T4

Przepływomierze Vortex do cieczy – ze stali nierdzewnej

Seria RNL typu "insertion" do cieczy

Aplikacje

- Preparowanie wody zasilającej i kondensatu
- · Wieże chłodnicze
- Wody basenowe
- · Procesy chemiczne
- Wody wodociągowe
- · Monitoring wód podziemnych
- Systemy nawadniania

Dane techniczne

Media	Ciecze
Zakres pomiaru	0.6 - 5.5 m/s
Dokładność	±2% odczytu
Powtarzalność	0.5% odczytu
Sygnał wyj-	2-przewody, pętla 4-20 mA
ściowy	3-przewody, 4-20 mA i/lub impulsy
Zasilanie	13 do 32 VDC
Certyfikat	CE

Cechy

- Rurociągi 4" (DN100) i większe
- · Bardzo mały spadek ciśnienia

Przepływomierze Vortex do cieczy – z materiałów termoplastycznych

Seria przepływomierzy RVL wykorzystuje technologie vortexshedding do zapewnienia powtarzalnego pomiaru o dokładności do 1% pełnej skali. Przepływomierz nie posiada żadnych części ruchomych a jakiekolwiek zagrożenie zanieczyszczenia cieczą jest wyeliminowane poprzez zastosowanie konstrukcji plastikowej odpornej na korozję. Przepływomierz zawiera kompaktowy, 2-przewodowy (4-20mA) lub 3-przewodowywire (0-5 VDC lub impulsy) transmiter, umieszczony wewnatrz wygodnym, wymienialnym module elektronicznym. Cała część elektroniczna jest umieszczona w odpornej na korozję obudowie. W przeciwieństwie do przepływomierzy metalowych lub z częściami ruchomymi, seria RVL jest idealna do pomiaru ciecz agresywnych i zanieczyszczonych. Zakres aplikacji zawiera się od ultra czystej wody po wysoko korozyjne chemikalia i zawiesiny. Urządzenie może być skalibrowane a wyjście zaprogramowane już na miejscu instalacji. Przepływomierze RVL są dostępne w wykonaniu z materiałów: CPVC, PVC, PVDF i polipropylenu (PP).

Zasada działania

Działanie przepływomierzy RVL bazuje na zasadzie powstawania wirów. Podczas przepływu cieczy wokół przegrody powstają wiry. Powstają one naprzemiennie z każdej strony powodując zmiany ciśnienia. Zmiany te są wykrywane przez kryształ piezoelektryczny umieszczony w korpusie a następnie zamieniane na sygnał 4-20mA, 0-5 VDC lub impulsowy. Częstotliwość powstawania wirów jest wprost proporcjonalna do natężenia przepływu. Rezultatem jest pomiar o wysokiej dokładności i powtarzalności bez użycia części ruchomych.

Aplikacje

- Wyposażenie półprzewodnikowe
- Zawiesiny o małej lepkości
- Procesy chemiczne/wysoce korozyjne ciecze
- Woda dejonizowana: przemysł półprzewodnikowy
- Woda/ścieki, ultra-czysta woda
- Przemysł farmaceutyczny

Seria RVL do zabudowy liniowej

Dane techniczne

Przyłącza	Czołowe lub gwinty NPT
Średnice	1/2" do 2" (DN15 - DN50)
Zakres pomiaru	2 - 18 I/min do 60 - 750 I/min (0.6 - 5 GPM dp 16.7 - 200 GPM)
Dokładność	± 1% skali, 4-20 mA i 0-5 VDC ± 2% skali, impulsy
Powtarzalność	±0.25% bieżącego przepływu
Sygnał wyj- ściowy	4-20 mA, 0-5 VDC lub impulsowy (source-sink driver; 1A source / 1.5A sink; typowa rezystan- cja wyjścia 10 ohm)
Zasilanie	13 do 30 VDC
Certyfikaty	CSA standard C22.2 n° O-M i n° 142-M; CE
Materialy	PVC, CPVC, PVDF

Seria RVL do zabudowy międzykołnierzowej

Dane techniczne

Przyłącza	Zabudowa międzykołnierzowa
Średnice	1/2" do 3" (DN15 – DN80)
Zakres pomiaru	0.08 – 1 l/s do 1.5 - 20 l/s (1.3 - 15 GPM do 25 – 300 GPM)
Dokładność	± 1% skali, 4-20 mA i 0-5 VDC ± 2% skali, impulsy
Powtarzalność	±0.25% bieżącego przepływu
Sygnał wyj-	4-20 mA, 0-5 VDC lub impulsowy (source-sink
ściowy	driver; 1A source / 1.5A sink; typowa rezystan-
	cja wyjścia 10 ohm)
Zasilanie	13 do 30 VDC
Certyfikaty	CSA standard C22.2 n° O-M i n° 142-M; CE
Materiały	PVC, CPVC, PP, PVDF

Seria RVL do zabudowy liniowej z przyłączami tulejowymi

Dane techniczne

Przyłącza Tulejowe (flare-end) Średnice 1/2" do 1" (DN15 – DN25) Zakres pomiaru 0.03 – 0.3 l/s do 0.1 – 1.5 l/s (0.6 – 5 GPM do 2.1 – 25 GPM) Dokładność ± 1% skali, 4-20 mA i 0-5 VDC ± 2% skali, impulsy Powtarzalność ± 0.25% bieżącego przepływu Sygnał wyj- ściowy 4-20 mA, 0-5 VDC lub impulsowy (source-sink driver; 1A source / 1.5A sink; typowa rezystancja wyjścia 10 ohm) Zasilanie 13 do 30 VDC						
Zakres pomiaru 0.03 - 0.3 l/s do 0.1 - 1.5 l/s (0.6 - 5 GPM do 2.1 - 25 GPM) bokładność ± 1% skali, 4-20 mA i 0-5 VDC ± 2% skali, impulsy Powtarzalność 50.25% bieżącego przepływu 4-20 mA, 0-5 VDC lub impulsowy (source-sink driver; 1A source / 1.5A sink; typowa rezystancja wyjścia 10 ohm)	Przyłącza	Tulejowe (flare-end)				
(0.6 - 5 GPM do 2.1 - 25 GPM) bokładność ± 1% skali, 4-20 mA i 0-5 VDC ± 2% skali, impulsy Powtarzalność ± 0.25% bieżącego przepływu 4-20 mA, 0-5 VDC lub impulsowy (source-sink driver; 1A source / 1.5A sink; typowa rezystancja wyjścia 10 ohm)	Średnice	1/2" do 1" (DN15 - DN25)				
± 2% skali, impulsy + 0.25% bieżącego przepływu Sygnał wyj- ściowy 4-20 mA, 0-5 VDC lub impulsowy (source-sink driver; 1A source / 1.5A sink; typowa rezystancja wyjścia 10 ohm)	Zakres pomiaru					
Sygnał wyj- ściowy 4-20 mA, 0-5 VDC lub impulsowy (source-sink driver; 1A source / 1.5A sink; typowa rezystancja wyjścia 10 ohm)	Dokładność	•				
ściowy driver; 1A source / 1.5A sink; typowa rezystan- cja wyjścia 10 ohm)	Powtarzalność	±0.25% bieżącego przepływu				
cja wyjścia 10 ohm)	Sygnał wyj-	4-20 mA, 0-5 VDC lub impulsowy (source-sink				
Zasilanie 13 do 30 VDC	ściowy					
	Zasilanie	13 do 30 VDC				
Certyfikaty CSA standard C22.2 n° O-M i n° 142-M; CE	Certyfikaty	CSA standard C22.2 n° O-M i n° 142-M; CE				
Materialy PVDF	Materialy	PVDF				

Wybór materiału

Podczas wyboru przepływomierza dla danej aplikacji, konieczna jest znajomość cieczy mierzonej, jej stężenie, minimalna i maksymalna temperatura, ciśnienie robocze, lepkość, zawartość części stałych, gęstość i najważniejsze: oczekiwany zakres przepływu.

Jedną z zalet wykorzystania przepływomierza vortex serii RVL jest to że w przepływomierzu nie ma żadnych uszczelek i elastomerów. Dlatego należy wziąć pod uwagę tylko materiał termoplastyczny użyty w konstrukcji korpusu. W przypadku użycia na rurociągu tworzywowym, materiał przepływomierza powinien być taki sam jak materiał rurociągu jeśli to tylko możliwe.

Odporność chemiczna

		Odporność		
Ciecz	PVC	PVDF	CPVC	PP
Wodorotlenek glinu	Α	Α	Α	Α
Woda chlorowa	Α	В	Α	D
Olej napędowy	Α	В	N/A	Α
Olej hydrauliczny	Α	Α	N/A	D
Kwas solny 37%	В	Α	Α	С
Kwas fluorowodorowy 20%	В	А	С	Α
Alkohol izopropylowy	Α	N/A	С	Α
Kwas azotowy (stężony)	В	Α	D	D
Kwas fosforowy (>40%)	В	В	Α	Α
Wodorotlenek potasu	Α	Α	Α	Α
Glikol polipropylenowy	С	N/A	С	Α
Kwas siarkowy(10-75%)	Α	Α	Α	Α
A – Doskonała 💮 🕳 – Dobra	C – Czę	ściowo odpo	rny D –	Nieodporny

Dobór przepływomierza

Racine® Vortex oferuje zaawansowane oprogramowanie do zastosowania w procesie doboru przepływomierza. Program bierze pod uwagę wartość ciśnienia i temperatury jak również gęstość, lepkość i ciężar właściwy cieczy. Dostępny jest wybór jednostek oraz wartości ciśnień i temperatury. Program może zostać pobrany za darmo ze strony www.racinevortex.com.

