Theory of Constrained Optimization. Week 1

Thought of Constitution Optimization Work

min f(x) 5.t. $\begin{cases} Ci(x)=0, & i \in E \leftarrow \text{ equality constraints} \\ Ci(x) > 0, & i \in I \leftarrow \text{ inequality constraints} \end{cases}$ Objective

function

(4)

Feasible set in: = {xeRn; ci(x)=0, i ∈ E; ci(x) >0, i ∈ I}

(\$) can be rewritten as min f(x) XELO

(x*) (x*)

1/9/2022

Def: $x^* \in \Omega$ is a local solution/minimizer of (4) if \exists a neighborhood N of x^* st. $f(x) \ni f(x^*) \forall x \in N \cap \Omega$. \equiv an open ball around x^*

["local solution" m> "strict local solution" when ">" m> ">"]

For Simplicity, assume the objective function f and all constraint functions ci, $i \in EUX$, are C^2 smooth.

For unconstrained optimization problem (i.e. $L = \mathbb{R}^n$),

Necessary conditions: Local unconstrained minimizers have $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ positive semidefinite.

Sufficient conditions: Any point x^* at which $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite is a strong local minimizer of f.

strict

[Please Study the proofs, they use the quadratic Taylor approximation in tandem with the spectral theorem.]

[Some subtle details will be found in the Hw.]

Example: min $(x_2 + 100)^2 + 0.01 x_1^2 = [x_1, x_2 - (-100)] [Noo 0] [x_1] = [x_2 - (-100)]$ S.t. 2/2 - cos 24 > 0 a strictly convex quadratic, with a

2052

Aside: If f: R^>R is a convex function
LC CR^n is a convex Set then f: N → R is also convex. In this case, the solution set of min flx) is also a convex set.

e.g. f(x1,7/2) = 1,x12+ 2222, 1, 1,22>0 LN = a line < comex

unique global minimiser at (0,-100).

Solution: local minimizers at the boundary of D, more specifically, at

 $(\chi,\chi) = (k\pi,\cos(k\pi)),$ 化二生1,±3,±5,…

global minimizers at

(メリング)=(土下,一)

plot of $f(x_1, \cos(x_1))$, $x_1 \in [-80, 80]$

Note: That we assume $C_i(x)$ to be C^2 smooth does not mean the boundary of $L \mathcal{D}$ cannot have "kinks".

E.g. \(\P(\) = \(\)

can be rewritten as

{xer2: x,+x2 <1, x,-x2 <1, -x,+x2 <1, -x,-x2 <1}

More interestingly, nonsmooth, unconstrained optimization problems can sometimes be reformulated as smooth constrained problems.

Here is a toy example: $\min_{x \in \mathbb{R}} f(x) = \max_{x \in \mathbb{R}} (x^2, x)_{\text{non-smooth}}$ can be recast as $\min_{t \in \mathbb{R}} t$ s.t. $t \ni x$, $t \ni x^2$

A more serious example: robust L'regression A basic machine learning problem: Given data (x_i , y_i) i=1, -, m, find a function y=f(x) that best explains the data". ie. Find f st. Mi ~ f(xi) \vi. But this is meaningless if allow f to be any function. (why?) Quite often, one may restrict attention to $f(x) = d_0 + d_1 x$ or $f(x) = d_0 + d_1 x + d_2 x^2$

The least square method:

find do, d, de so that $\sum_{i=1}^{m} (do + d_i x_i + d_2 x_i^2 - y_i)^2$ is minimited.

This is not only a smooth, unconstrained optimization problem in 3 variables, but also have a simple closed-form solution because the objective is a quadratic. Note:

the objective is a quadratic. Note:

$$\frac{m}{2} \left(\frac{1}{2} + \frac{1}{$$

The celebrated least square method is widely used. The problem is that when just a few of the data values y; are very erronous, the "square" may become very unforgiving.

Idea: change 12 to 1.1.

Least L' regression solves:

min Z do + di xi + de xi² - yi |

dodide i=1

Now, an ingenious trick: the unconstrained, but nonsmooth optimization problem above is equivalent to:

min $\gamma_1 + \cdots + \gamma_m$ st. $-\gamma_i \leq d_0 + d_1 \gamma_i + d_2 \gamma_i^2 - \gamma_i \leq \gamma_i$ $d_0 d_1 d_2$ $\gamma_1, \cdots, \gamma_m \geq 0$ $j=1, \cdots, m$

Note: all the objective and constraint functions cannot possibly be any smoother, they are LINEAR functions!

The latter constraint optinitation problem is an example of LINEAR PROGRAM (LP).

Definition:

The active set A(x) at any feasible x consists of the equality constraint indices from \mathcal{E} together with the indices of the inequality constraints i for which $c_i(x) = 0$; that is,

$$\mathcal{A}(x) = \mathcal{E} \cup \{i \in \mathcal{I} \mid c_i(x) = 0\}.$$

At a feasible point x, the inequality constraint $i \in \mathcal{I}$ is said to be *active* if $c_i(x) = 0$ and *inactive* if the strict inequality $c_i(x) > 0$ is satisfied.

You may recall from your multivariate calculus course that:

 $\nabla f(x)$ is orthogonal to the level surface $\{y \in \mathbb{R}^n : f(y) = f(x)\}$ at x. or curve? f-1(f(x))

If you find this confusing, it is because it is!

Recall:

 $f(\gamma) \approx f(x) + \nabla f(x)^{T}(\gamma - x)$, $\gamma \approx x$

Expect:

curved $\begin{cases} (n-1)-dimensional \\ if <math>\nabla f(x) \neq 0 \end{cases}$ 1×7f(x)

V36() null(Vfox)

The implicit function theorem tells us that the level set f'(f(x)), in a neighborhood of x, is indeed a C' hypersurface (i.e. the graph of a C' function $h: UCR^{n-1} \to \mathbb{R}$) when $\nabla f(x) \neq \overline{O}$.

In this case, the hyperplane $x + null(\nabla f(x)^T)$ is tangent to the hypersurface $f^{-1}(f(x))$.

Also Ofix) I the tangent plane.

what if $\nabla f(x) = 0$? The local linear approximation loses its power in telling you how $f^{-1}(f(x))$ looks like near x!

Consider $f: \mathbb{R}^n \to \mathbb{R}'$ $f(x) = \sum_{i=1}^n x_i^2$, $f'(f(\vec{\partial})) = \{\vec{\partial}\}$ Consider $f: \mathbb{R}^n \to \mathbb{R}'$ f(x) = 0, $f'(f(any pt)) = \mathbb{R}^n \geq n \dim$.

In each case, the level set is not a hypersurface! $\nabla f(x) = \vec{\partial}$.

more generally, $\operatorname{Consider} f: \mathbb{R}^{n} \ni \mathbb{R}^{1} \quad f(x) = \sum_{i=1}^{k} x_{i}^{2} = \left[x_{i}, \dots, x_{n} \right] \left[x_{i} \right]$ $f^{1}(f(\vec{\sigma})) = \begin{cases} 0 \\ x_{k+1} \\ x_{n} \end{cases} : x_{k+1}, \dots, x_{n} \in \mathbb{R} \end{cases} \leftarrow (n-k) \text{ dimensional}$

This simple example tells us that when $\nabla f(x) = \vec{\partial}$, the level set f'(f(x)) can have any dimension from O to n!

Never forget that f'(x,p) directional derivative of f at x in the direction p $\frac{d}{dt} f(x+tp)|_{t=0} = \nabla f(x) p$

If $\nabla f(x) = 0$, f(x+tp) > f(x) for small the descent dir.) $\nabla f(x) = 0$, f(x+tp) < f(x) for small the descent dir.)

Half-spaces:

If VER", V+0

 $v^{\perp} = \{d \in \mathbb{R}^n : v^{\top}d = 0\} \leftarrow (n-1) \text{ dimesional},$

Selen: vtd>0} ← a closed half space

all the points on the same side of vt as v, including points in vt.

Similarly, EdeRn: vtd>0} = an open half space

all the points on the same side of vt as v, excluding points in vt.

This is why if x is a local minimizer or maximizer of f, then it is necessary that $\nabla f(x) = 0$, for otherwise $\nabla f(x) \neq 0$ and we can choose

 $p = \nabla f(x)$ to make $\nabla f(x)^T p = \nabla f(x)^T \nabla f(x) = ||\nabla f(x)||_2^2 > 0$,

meaning that in the + \(\forall f(x) \) direction f increases.

Similarly, in the - \(\forall f(x) \) direction, \(\text{f decreases.} \)

To conclude: $\nabla f(x) \neq \vec{O} \Rightarrow x$ cannot be a local min or max.

(Fermat's theorem is just the contrapositive of the above.)

The fact that $\frac{d}{dt}f(x-t\nabla f(x))|_{t=0}=-\nabla f(x)^T\cdot\nabla f(x)<0$ when $\nabla f(x)=\emptyset$ is the foundation of the gradient descent method for unconstrained optimization.

What if there are constraints?

min $x_1 + x_2$ s.t. ∇c_1 ∇c_2 ∇c_1 ∇c_2 ∇c_2 ∇c_3 ∇c_4 ∇c_5 ∇c_5 ∇c_7 ∇c_7

$$x_1^2 + x_2^2 - 2 = 0$$

$$\nabla f(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \nabla c_1(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = 2x$$

Q: If x is a solution, what condition must it satisfy?

Note:

If
$$\exists A \in \mathbb{R}^2$$
 st. $\nabla c_i(x)^T d = 0$ means

und C1(x+Ed) ~C1(x

then we can decrease means
the value of f by moving $f(x+\epsilon d) < f(x)$ to a nearby point within C'(c(x)).

If x is a solution, it should be that #dst. $\nabla c_i x x^T d = 0 B \nabla f(x)^T d < 0$ inconvenient to work with.....

(Assume V + 0)

Note: \$\frac{1}{2}d \text{ s.t. } \text{v}^T d = 0 \text{ and } \text{w}^T d < 0 ヨ 2eR s.t. W=AU.

(€) If w=10, then Vd=0 > wd= 15d=0

(=>) If V and W are not parallel,

let $d = -\left(W - \frac{W^T V}{V^T V} \cdot V\right)$

and $\sqrt{d} = 0$, $\sqrt{d} < 0$.

Conclusion: If x*is a solution, it should be that I x*ER

 $\nabla f(x^*) = \gamma^* \nabla c_i(x^*)$ L Lagrange multiplier

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda \cdot 2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ can only be satisfied}$$
and $C_i(x) = 0$

$$0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\lambda = \frac{1}{2} \quad \lambda = -\frac{1}{2}$$

It is clear that the only minimizer is $x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. $(x^* = -\frac{1}{2})$

By introducing the Lagragian function $\mathcal{L}(x, \lambda_1) = f(x) - \lambda_1 c_1(x)$.

Noting that $\nabla_{x} \mathcal{L}(x, \lambda_{1}) = \nabla_{y} f(x) - \lambda_{1} \nabla_{c_{1}}(x)$ (n+1)(nonlinear)

equations in the necessary condition can be written as (x+1) variables $\nabla_{x} \mathcal{L}(x, \lambda_{1}) = \overline{\partial}$, $c_{1}(x) = 0$ Notice that if we change the constraint $x_1^2+x_2^2-2=0$ to $2-x_1^2-x_2^2=0$, the problem does not change, but

$$\nabla c_1(x) = -2\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $\lambda_1^* = \frac{1}{2}$
(sign flipped) (same as before) (sign flipped)

Now, let's modify the example to min x_1+x_2 s.t. $2-x_1^2-x_2^2 \ge 0$.

What is a necessary condition for x to be a solution?

new Ci

(I) If $c_1(x) > 0$ and x is a solution, then it is necessary that $\nabla f(x) = \overrightarrow{O}$. (why?)

(II) If $C_1(x) = 0$ and x is a solution, then it is necessary that

Tt. Sh	ould be	eriden	it thai	t :				
	ould be Ed: V	CIOTA	>0}	\cap	Ea:	7465	de	93
		^				_ `		
	a closed	half	space		an o	pen ha	uf sp	ace
						•	•	
	7	74(x)	and	VC1(x) poù	nts iv	1 the	sa sa
		• 1			•			
			ie.	Vf(x))=0	L Vc.	(X)	for
								,
If $\nabla f(x)$ and $\nabla c_1(x)$ do not point in the same direction,							X.	/
point	in the	same	directi	on,			•	
then				•			``.	
Sd:	TRINTA	702 C	51.	TRAT	d 100	١	`.	

Ed: $\nabla e_i(x)^T d \geqslant 0$? $\cap Ed: \nabla f(x)^T d < 0$? —

ϕ is a cone.

For any d in this cone, $e_i(x + Ed) > 0$

f(x+2d) < f(x),

meaning that x cannot be a solution.

 $e_i(x)$ for some $\frac{\lambda_1}{20}$

the same direction

 ∇c_1

Any *d* in this cone is a good search direction, to first order

To conclude: A necessary condition for optimality is

 $C_1(x^*) > 0$ & $\nabla f(x^*) = D$ or $C_1(x^*) = D$ & $\nabla f(x^*) = \lambda^* \nabla C_1(x^*)$ 1×20

Solution to the problem:

$$x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
, $x^* = \frac{1}{2}$. the inequality constraint is active at this solution. (i.e. $C_1(x^*) = 0$)

(there is no solution that satisfies
$$C_1(x*)>0$$
 as $\nabla f(x*)=\begin{bmatrix}1\\1\end{bmatrix}+\overrightarrow{O}$)

Finally, there is a cute way to rewrite the optimality condition above:

$$\nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}) = 0$$
 for some $\lambda^{*} \geqslant 0$ and $\lambda^{*} \mathcal{L}(x^{*}) = 0$.

1x can only be strictly positive when the corresponding constraint is active.

Let's add one more constraint:

min
$$x_1 + x_2$$
 S.t. $2 - x_1^2 - x_2^2 \ge 0$, $x_2 \ge 0$
= $f(x)$ = $c_1(x)$ = $c_2(x)$

Just like before, if x is a solution, then

(I) If C(x)>0, C(x)>0, then
$$\nabla f(x) = \overrightarrow{\partial} \leftarrow$$

(I) If $C_1(x)=0$, $C_2(x)>0$, then

d st. $\nabla C_1(x)^T d \geqslant 0$ and $\nabla f(x)^T d < 0 \iff \nabla f(x)=\lambda_1 \nabla C_1(x)$, $\lambda \geq 0$ impossible

(II) If $c_1(x) > 0$, $e_2(x) = 0$, then $\exists d : x \in \nabla c_2(x) = 0$ and $\nabla f(x) = \nabla f(x) = 0$ impossible

(II) If $c_1(x) = 0$, $c_2(x) = 0$, then # d s.t. $\nabla c_1(x)^T d \not = 0$, $\nabla c_2(x)^T d \not = 0$ and $\nabla f(x)^T d \not = 0$.

$$C_1(x) = 0$$
, $C_2(x) = 0$ \iff $x = \begin{bmatrix} -\sqrt{2} \\ 0 \end{bmatrix}$ or $x = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}$

#d s.t. VC1005d70, VC2005d70 and Vf005d20. (\$) {d: ∇c,(x) d > 0} n &d: ∇c,(x) d > 0} n &d: ∇f(x) d < 0} = Ø be true from the figure below? $\nabla f(x) = \Lambda_1 \nabla G(x) + \Lambda_2 \nabla G(x)$ for some $\Lambda_1, \Lambda_2 \geqslant 0$ > 7c(x) {2, 7c, (x) + 227c, (x): 2, 2≥0} Of (x) is in this cone exactly when the optimality condition (x) is Satisfied. > VC2(X) Armed with this condition, we can see that $x^* = \begin{bmatrix} -\sqrt{2} \\ 0 \end{bmatrix}$ is the only minimizer. Exercise: Show [o] does not satisfy the optimality condition.

more generally, given bi, ..., bm & Rn, g & Rn

consider the cone $K = \{ \lambda_1 b_1 + \cdots + \lambda_m b_m : \lambda_i > 0 \}$

Theorem: Mr. Ld: bitd >0} n ld: gtd >0} = Ø

€7 gek

(€) If g = 5,70 bi , 2070

and 3d st. bid >0 ti

then gd = 5/21 bild >0. So (18a: bild>0} \langle 18d: gd >0? = \$\frac{1}{2} \frac{1}{2} \f

(=>) Less obvious. We shall prove a slightly more general version of it called Farkas' lemma.