KATTAR NEET 2026

Physics By Manish Raj Sir

Vectors

If two vectors $\overset{
ightarrow}{A}$ and $\overset{
ightarrow}{B}$ having equal magnitude R are inclined at an angle θ , then

$$\left. \left(\mathsf{A}
ight) \middle| \overrightarrow{A} - \overrightarrow{B} \middle| = \sqrt{2}R\sinrac{ heta}{2}$$

(B)
$$\left| \overrightarrow{A} + \overrightarrow{B} \right| = 2R \sin rac{ heta}{2}$$

(C)
$$\left| \overrightarrow{A} + \overrightarrow{B} \right| = 2R \cos \frac{ heta}{2}$$

(D)
$$\left| \overrightarrow{A} - \overrightarrow{B}
ight| = 2R\cosrac{ heta}{2}$$

- If \overrightarrow{a} and \overrightarrow{b} makes an angle $\cos^{-1}\left(\frac{5}{9}\right)$ with each other, then $\left|\overrightarrow{a}+\overrightarrow{b}\right|=\sqrt{2}\left|\overrightarrow{a}-\overrightarrow{b}\right|$ for $\left| \overrightarrow{a} \right| = n \left| \overrightarrow{b} \right|$. The integer value of n is
 - (A)3
 - (C) 2
- The magnitude of vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} in Q3 the given figure are equal. The direction of $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC}$ with x-axis will be

- $\begin{array}{l} \text{(A)}_{\,tan}^{-1} \, \frac{(\sqrt{3}-1+\sqrt{2})}{(1-\sqrt{3}+\sqrt{2})} \\ \text{(B)}_{\,tan}^{-1} \, \frac{(1+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})} \\ \text{(C)}_{\,tan}^{-1} \, \frac{(1-\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})} \\ \text{(D)}_{\,tan}^{-1} \, \frac{(\sqrt{3}-1+\sqrt{2})}{(1+\sqrt{3}-\sqrt{2})} \end{array}$

Statement-I: If three forces \vec{F}_1,\vec{F}_2 and $\overset{\rightarrow}{F_3}$ are represented by three sides of a triangle and, $\overrightarrow{F}_1 + \overrightarrow{F}_2 = -\overrightarrow{F}_3$ then these satisfy the condition for equilibrium.

Statement-II: A triangle made up of three forces \vec{F}_1,\vec{F}_2 and \vec{F}_3 as its sides taken in the same order, the resultant force is zero.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) Statement-I is false but Statement-II is true
- (B) Both Statement-I and Statement-II are true
- (C) Statement-I is true but Statement-II is false
- (D) Both Statement-I and Statement-II are false
- Q5 In the cube of side 'a' shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be:

- $\begin{array}{ll} \text{(A)} \ \tfrac{1}{2}a\Big(\hat{k}-\hat{i}\Big) & \text{(B)} \ \tfrac{1}{2}a\Big(\hat{i}-\hat{k}\Big) \\ \text{(C)} \ \tfrac{1}{2}a\Big(\hat{j}-\hat{i}\Big) & \text{(D)} \ \tfrac{1}{2}a\Big(\hat{j}-\hat{k}\Big) \end{array}$

- Q6 Which of the following relations is true for two unit vectors \widehat{A} and \widehat{B} making an angle θ with each other?

$$\begin{array}{l} \text{(A)} \left| \widehat{A} + \widehat{B} \right| = \left| \widehat{A} - \widehat{B} \right| \tan \frac{\theta}{2} \\ \text{(B)} \left| \widehat{A} - \widehat{B} \right| = \left| \widehat{A} + \widehat{B} \right| \tan \frac{\theta}{2} \\ \text{(C)} \left| \widehat{A} + \widehat{B} \right| = \left| \widehat{A} - \widehat{B} \right| \cos \frac{\theta}{2} \\ \text{(D)} \left| \widehat{A} - \widehat{B} \right| = \left| \widehat{A} + \widehat{B} \right| \cos \frac{\theta}{2} \end{array}$$

- Two vectors \overrightarrow{A} and \overrightarrow{B} have equal magnitudes. Q7 The magnitude of $\left(\overrightarrow{A} + \overrightarrow{B}\right)$ is 'n' times the magnitude of $(\overrightarrow{A}-\overrightarrow{B})$. The angle between $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ is: $\begin{array}{ll} \text{(A)}_{\cos^{-1}} \left[\frac{n^2-1}{n^2+1} \right] & \text{(B)}_{\cos^{-1}} \left[\frac{n-1}{n+1} \right] \\ \text{(C)}_{\sin^{-1}} \left[\frac{n^2-1}{n^2+1} \right] & \text{(D)}_{\sin^{-1}} \left[\frac{n-1}{n+1} \right] \end{array}$
- Q8 Let $\left|\overrightarrow{A}_{1}\right|=3,\left|\overrightarrow{A}_{2}\right|=5$ and $\left|\overrightarrow{A}_{1}+\overrightarrow{A}_{2}\right|=5.$ $\left(2\overrightarrow{A}_1+3\overrightarrow{A}_2
 ight)$. $\left(3\overrightarrow{A}_1-2\overrightarrow{A}_2
 ight)$ is: (A) -112.5(B) -106.5(C) -118.5
- If $\stackrel{
 ightarrow}{P}=3\hat{i}+\sqrt{3}\hat{j}+2\hat{k}$ Q9 $\overrightarrow{Q}=4\hat{i}+\sqrt{3}\hat{j}+2.\,5\hat{k}$ then, the unit vector in the direction of $\overset{
 ightarrow}{P} imes\overset{
 ightarrow}{Q}$ $rac{1}{x}\Big(\sqrt{3}\hat{i}+\hat{j}-2\sqrt{3}\hat{k}\Big)$ the value of x is: (A)4(C) 3(D)2
- Q10 Match List-I with List-II.

List-I		List-II	
A.	$ \overrightarrow{C} - \overrightarrow{A} - \overrightarrow{B} = 0$	I.	\vec{A} \vec{B}
В.	$\overrightarrow{A} - \overrightarrow{C} - \overrightarrow{B}$	II.	\vec{C}

Choose the correct answer from the options given below:

- (A) A-IV, B-I, C-III, D-II
- (B) A-IV, B-III, C-I, D-II
- (C) A-I, B-IV, C-II, D-III
- (D) A-III, B-II, C-IV, D-I
- Q11 Assertion A: If A, B, C and D are four points on a semicircular arc with centre at 'O' such that

$$\left|\overrightarrow{AB}\right| = \left|\overrightarrow{BC}\right| = \left|\overrightarrow{CD}\right|,$$
 then $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 4\overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{OC}$

Reason R: Polygon law of vector addition yields

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = 2\overrightarrow{AO}$$

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) A is not correct but R is correct.
- (B) A is correct but R is not correct.
- (C) Both A and R are correct and R is the correct explanation of A.
- (D) Both A and R are correct but R is not the correct explanation of A.
- The angle between vector \overrightarrow{Q} and the resultant of $\left(2\overrightarrow{Q}+2\overrightarrow{P}
 ight)$ and $\left(2\overrightarrow{Q}-2\overrightarrow{P}
 ight)$ is:
 - (B) $\tan^{-1} \frac{\left(2\overrightarrow{Q}-2\overrightarrow{P}\right)}{2\overrightarrow{Q}+2\overrightarrow{P}}$ (C) $\tan^{-1} \left(\frac{P}{Q}\right)$

 - (D) $\tan^{-1}\left(\frac{2Q}{P}\right)$

Q13 The resultant of these forces

 $\overrightarrow{OP}, \overrightarrow{OQ}, \overrightarrow{OR}, \overrightarrow{OS} \text{ and } \overrightarrow{OT}$ in the given figure is approximately N.

Take $\sqrt{3}=1.7,\ \sqrt{2}=1.4.$ Given \hat{i} and \hat{j} unit vectros along x, y axis]

- (A) $9.\,25\hat{i}\,+5\hat{j}$
- (B) $2.5\hat{i}-14.5\hat{j}$
- (C) $-1.5\hat{i} 15.5\hat{j}$
- Q14 The angle between vector

$$\left(\overrightarrow{A}\right)$$
 and $\left(\overrightarrow{A}-\overrightarrow{B}\right)$ is:

- (A) $\tan^{-1}\left(\frac{\sqrt{3}B}{2A-B}\right)$
- (B) $\tan^{-1}\left(\frac{B\cos\theta}{A-B\sin\theta}\right)$
- (C) $\tan^{-1} \left(\frac{A}{0.7i} \right)$
- (D) $\tan^{-1}\left(\frac{\frac{-B}{2}}{A-B^{\frac{\sqrt{3}}{2}}}\right)$

Statement-I: Two forces $\left(\stackrel{
ightarrow}{P}+\stackrel{
ightarrow}{Q}
ight)$ and $\left(\stackrel{
ightarrow}{P}-\stackrel{
ightarrow}{Q}
ight)$ where $\stackrel{
ightarrow}{P}\perp\stackrel{
ightarrow}{Q}$, when act at an

angle $heta_1$ with each other, the magnitude of their resultant is $\sqrt{3(P^2+Q^2)}$ and when they act at an angle $heta_2$, the magnitude of their resultant becomes $\sqrt{2(P^2+Q^2)}$. This is possible only when $\theta_1 < \theta_2$.

Statement-II: In the situation given above. $heta_1=60^{
m o}$ and $heta_2=90^{
m o}$.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) Both Statement-I and Statement-II are true
- (B) Both Statement-I and Statement-II are false
- (C) Statement-I is true but Statement-II is false
- (D) Statement-I is false but Statement-II is true
- Q16 For the figure-

- (B) $\overrightarrow{B} + \overrightarrow{C} = \overrightarrow{A}$
- (c) $\overrightarrow{C} + \overrightarrow{A} = \overrightarrow{B}$
- (D) $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$
- Q17 The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is:

- (A) 120°
- (B) 150°
- (C) 135°
- (D) None of these
- Two forces, F_1 and F_2 are acting on a body. One force is double that of the other force and the magnitude of resultant is equal to that of the greater force. Then the angle between the two forces is -
 - (A) $\cos^{-1}(1/2)$
 - (B) $\cos^{-1}(-1/2)$
 - (C) $\cos^{-1}(-1/4)$
 - (D) $\cos^{-1}(1/4)$
- If the magnitudes of the vectors \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} Q19 are 6, 8, 10 units respectively and if

 $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$, then the angle between A and C

- (A) $\pi/2$
- (B) $\cos^{-1}(0.6)$
- (C) tan^{-1} (0.75)
- (D) $\pi/4$
- **Q20** The linear velocity of a rotating body is given by $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$, where ω is the angular velocity and r is the radius vector. The angular velocity of a body $\omega = \hat{i} - 2\hat{j} + 2\hat{k}$ and their radius vector $r=4\hat{j}-3\hat{k},\left|\overrightarrow{v}
 ight|$ is:
 - (A) $\sqrt{29}$ units
- (B) 31 units
- (C) $\sqrt{37}$ units
- (D) $\sqrt{41}$ units
- If \overrightarrow{a} and \overrightarrow{b} are two vectors with $\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|$ and $\left|\overrightarrow{a}+\overrightarrow{b}\right|+\left|\overrightarrow{a}-\overrightarrow{b}\right|=2\left|\overrightarrow{a}\right|$, then angle between \overrightarrow{a} and \overrightarrow{b} -
 - (A) 0°
 - (B) 90°
 - (C) 60°
 - (D) Both (1) and (2)
- If $\overrightarrow{P}=5a\hat{i}+6\hat{j}$ and $\overrightarrow{Q}=3a\hat{i}+10\hat{j}$. The Q22 vectors \overrightarrow{P} + \overrightarrow{Q} makes an angle α with \overrightarrow{P} and β with \overrightarrow{Q} . If a = 2,
 - (A) $\alpha = \beta$
 - (B) $\alpha > \beta$
 - (C) $\alpha < \beta$
 - (D) None of these
- If $\overrightarrow{A}=2\hat{i}+\hat{j}+\hat{k}$ then the unit vector:
 - (A) perpendicular to $\overset{}{A}$ is $\left(\frac{\hat{j}+\hat{k}}{\sqrt{2}} \right)$
 - (B) parallel to $\overset{}{A}$ is $\left(\frac{\hat{j}+\hat{k}}{\sqrt{2}} \right)$
 - (C) perpendicular to $\overset{
 ightarrow}{A}$ is $\left(\frac{\hat{k}-\hat{j}}{\sqrt{2}}\right)$
 - (D) parallel to $\stackrel{\longrightarrow}{A} \left(\frac{\hat{k} \hat{j}}{\sqrt{2}} \right)$
- **Q24**

A vector is equally inclined to all of the coordinates axes then the angle made by it with x-axis

is θ then-

- $\begin{array}{ll} \text{(A)}\cos\theta=\frac{2}{\sqrt{3}} & \text{(B)}\cos\theta=\frac{1}{\sqrt{4}} \\ \text{(C)}\sin\theta=\sqrt{\frac{2}{3}} & \text{(D)}\sin\theta=\frac{1}{\sqrt{3}} \end{array}$
- **Q25** A vector \overrightarrow{P}_1 is along the positive x-axis. If its vector product with another vector $\overset{
 ightarrow}{P}_2$ is zero, then $\overset{
 ightarrow}{P}_2$ could be-

- (C) $\left(\hat{j} + \hat{k}\right)$ (D) $-\left(\hat{i} + \hat{j}\right)$
- **Q26** The vector $5\hat{i} + 2\hat{j} \ell\hat{k}$ is perpendicular to the vector $3\hat{i} + \hat{j} + 2\hat{k}$ for ℓ =
- (C) 6.3
- (D) 8.5
- **Q27** If $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$, then:
 - (A) $\left| \overrightarrow{C} \right|$ is always greater than $\left| \overrightarrow{A} \right|$
 - (B) It is possible to have $\left|\overrightarrow{C}\right| < \left|\overrightarrow{A}\right|$ and $\left|\overrightarrow{C}\right| <$
 - (C) C is always equal to A + B
 - (D) C is never equal to A + B
- **Q28** Let the angle between two non zero vectors \vec{A} an \overrightarrow{B} be 120° and its resultant be \overrightarrow{C} . Then-
 - (A) C must be equal to |A B|
 - (B) C must be less than |A B|
 - (C) C must be greater than |A B|
 - (D) C may be equal to |A B|
- The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes 4i + (4x - 2) j + 2k. The values of x are
 - (A) $-\frac{2}{3}$
 - (B)2
 - (C) $\frac{2}{3}$
 - (D) Both (1) and (2)

- **Q30** If a vector $2\hat{i}+3\hat{j}+8\hat{k}$ is perpendicular to the vector $2\hat{i}+4\hat{j}+\alpha\hat{k}$, then the value of lpha is:
 - (A) -2
- (C) $-\frac{1}{2}$
- The resultant of two vectors $\overset{\displaystyle \rightarrow}{A}$ and $\overset{\displaystyle \rightarrow}{B}$ is **Q31** perpendicular to $\stackrel{\displaystyle o}{A}$ and its magnitude is half that of $\stackrel{\longrightarrow}{B}$. The angle between vectors $\stackrel{\longrightarrow}{A}$ and $\overset{
 ightarrow}{B}$ is
 - (A) 120°
- (B) 150°
- (C) 60°
- (D) 45°
- When vector $\overrightarrow{A}=2\hat{i}+3\hat{j}+2\hat{k}$ is subtracted **Q32** from vector \overrightarrow{B} , it gives a vector equal to $2\hat{j}$. Then the magnitude of vector \overrightarrow{B} will be:
 - (A) $\sqrt{33}$
- (B)3
- (C) $\sqrt{6}$
- (D) $\sqrt{5}$
- Q33 A vector in x-y plane makes an angle of 30° with y-axis. The magnitude of y-component of vector is $2\sqrt{3}$. The magnitude of x-component of the vector will be:
 - (A) $\frac{1}{\sqrt{3}}$
- (B)6
- (C) $\sqrt{3}$
- (D) 2
- Q34 In an octagon ABCDEFGH of equal side, what is the sum of

$$\overrightarrow{\mathrm{AB}} + \overrightarrow{\mathrm{AC}} + \overrightarrow{\mathrm{AD}} + \overrightarrow{\mathrm{AE}} + \overrightarrow{\mathrm{AF}} + \overrightarrow{\mathrm{AF}} + \overrightarrow{\mathrm{AG}} + \overrightarrow{\mathrm{AH}}, \ \mathrm{if}, \overrightarrow{AO} = 2\hat{i} + 3\hat{j} - 4\hat{k}$$

- (A) $16\hat{i}+24\hat{j}-32\hat{k}$
- (B) $16\hat{i}-24\hat{j}+32\hat{k}$
- (C) $-16\hat{i} 24\hat{j} + 32\hat{k}$
- (D) $16\hat{i}+24\hat{j}+32\hat{k}$
- **Q35**

Vectors $a\hat{i} + b\hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j} + 4\hat{k}$ are perpendicular to each other when 3 a+2 b=7, the ratio of a to b is $\frac{x}{2}$. The value of x is

(A) 1

- (C) 1/2
- (D) 3/2
- If $\overset{\longrightarrow}{A}$ and $\overset{\longrightarrow}{B}$ are two vectors satisfying the Q36 relation $\overrightarrow{A}\cdot\overrightarrow{B}=\left|\overrightarrow{A} imes\overrightarrow{B}\right|$. Then the value

of
$$\left|\overrightarrow{A}-\overrightarrow{B}
ight|$$
 will be: (Given $heta < 90^\circ$)

(A)
$$\sqrt{A^2+B^2-\sqrt{2}AB}$$

(B)
$$\sqrt{A^2+B^2}$$

(C)
$$\sqrt{A^2+B^2+2AB}$$

(D)
$$\sqrt{A^2+B^2+\sqrt{2}AB}$$

- Fwo vectors $\overset{
 ightarrow}{A}$ and $\overset{
 ightarrow}{B}$ have equal magnitudes. Q37 If magnitude of $\overrightarrow{A} + \overrightarrow{B}$ is equal to two times the magnitude of $\overset{
 ightarrow}{A}-\overset{
 ightarrow}{B}$, then the angle between \vec{A} and \vec{B} will be:
 - (A) $\sin^{-1}\left(\frac{3}{5}\right)$ (C) $\cos^{-1}\left(\frac{3}{5}\right)$
- (B) $\sin^{-1}\left(\frac{1}{3}\right)$
- (D) $\cos^{-1}\left(\frac{1}{3}\right)$
- Q38 Two forces P and Q, of magnitude 2F and 3F, respectively, are at an angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle θ is:
 - (A) 120°
- (B) 60°
- $(C) 90^{\circ}$
- (D) 30°
- \overrightarrow{A} is a vector quantity such that $\left|\overrightarrow{A}
 ight|=$ non-Q39 zero constant. Which of the following expression is true for $\stackrel{\frown}{A}$?

(A)
$$\overrightarrow{A} \cdot \overrightarrow{A} = 0$$

(B)
$$\overrightarrow{A} imes \overrightarrow{A} < 0$$

(C)
$$\overrightarrow{A} imes \overrightarrow{A} = 0$$

(D)
$$\overrightarrow{A} \times \overrightarrow{A} > 0$$

Two vectors $\overset{
ightarrow}{X}$ and $\overset{
ightarrow}{Y}$ have equal magnitude. The magnitude of $\left(\stackrel{\rightarrow}{X}-\stackrel{\rightarrow}{Y}\right)$ is n times the

magnitude of $\left(\overrightarrow{X} + \overrightarrow{Y}\right)$. The angle between

 \overrightarrow{X} and \overrightarrow{Y} is:

(A)
$$\cos^{-1}\left(\frac{n^2+1}{n^2-1}\right)$$

(B)
$$\cos^{-1}\left(\frac{-n^2-1}{n^2-1}\right)$$

(C)
$$\cos^{-1}\left(\frac{n^2-1}{-n^2-1}\right)$$

(A)
$$\cos^{-1}\left(\frac{n^2+1}{n^2-1}\right)$$
 (B) $\cos^{-1}\left(\frac{-n^2-1}{n^2-1}\right)$ (C) $\cos^{-1}\left(\frac{n^2-1}{-n^2-1}\right)$ (D) $\cos^{-1}\left(\frac{n^2+1}{-n^2-1}\right)$

Q41 What will be the projection of vector

$$\overrightarrow{A} = \hat{i} + \hat{j} + \hat{k}$$
 on vector $\overrightarrow{B} = \hat{i} + \hat{j}$?

$$^{ ext{(A)}}\,2ig(\hat{i}+\hat{j}+\hat{k}ig)$$

(B)
$$\sqrt{2} \left(\hat{i} + \hat{j} \right)$$

(C)
$$(\hat{i} + \hat{j})$$

$$\begin{array}{ccc} \text{(A)} & 2\left(\hat{i}+\hat{j}+\hat{k}\right) & \text{(B)} & \sqrt{2}\left(\hat{i}+\hat{j}\right) \\ \text{(C)} & \left(\hat{i}+\hat{j}\right) & \text{(D)} & \sqrt{2}\left(\hat{i}+\hat{j}+\hat{k}\right) \end{array}$$

Q42 Two forces having magnitude A and $\frac{A}{2}$ are perpendicular to each other. The magnitude of their resultant is

Q43 A vector may change if -

- (A) frame of reference is translated
- (B) vector is rotated
- (C) frame of reference is rotated
- (D) vector is translated parallel to itself

Q44 Let $\overrightarrow{A} = \frac{1}{\sqrt{2}} \cos \theta \hat{i} + \frac{1}{\sqrt{2}} \sin \theta \hat{j}$ be any vector. What will be the unit vector $\widehat{\mathbf{n}}$ in the direction of

- (A) $\cos\theta \hat{i} + \sin\theta \hat{j}$
- (B) $-\cos\theta\hat{i} \sin\theta\hat{j}$
- $^{ ext{(C)}}\,1/\sqrt{2}\Big(\cos heta\,\hat{ ext{i}}\,+\sin heta\,\hat{ ext{j}}\,\Big)$
- (D) $1/\sqrt{2} \left(\cos \theta \hat{\mathrm{i}} \sin \theta \hat{\mathrm{j}}\right)$

If \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} are vectors having a unit magnitude. If $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = \overrightarrow{0}$ then $\overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{B} \cdot \overrightarrow{C} + \overrightarrow{C} \cdot \overrightarrow{A}$ will be:-(A) 1

- (C) $-\frac{1}{2}$

Q46 Two forces act on a particle simultaneously as shown in the figure. Find net force in milli newton on the particle. [Dyne is the CGS unit of force (1 $dyne = 10^{-5} N)$

- (A) $\sqrt{3}$
- (B) $\sqrt{2}$

(C)1

(D) 2

Q47 For figure the correct relation is:-

- (A) $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{E} = \overrightarrow{0}$
- (B) $\overrightarrow{C} \overrightarrow{D} = \overrightarrow{A}$
- (C) $\overrightarrow{B} + \overrightarrow{E} \overrightarrow{C} = \overrightarrow{D}$
- (D) all of the above

Q48 The dot product of two vectors of magnitudes 3 units and 5 units cannot be

(A) 2

- (B) -2
- (C)20
- (D) zero

The ratio of maximum and minimum magnitudes Q49 of the resultant of two vector \overrightarrow{a} and \overrightarrow{b} is 3:1. Now $|\overrightarrow{a}|$ is equal to :

Vector $\overset{
ightarrow}{R}$ is the resultant of the vectors $\overset{
ightarrow}{{
m A}}$ and **Q50** $\stackrel{
ightarrow}{
m B}$. Ratio of minimum value of $\left|\stackrel{
ightarrow}{
m R}
ight|$ and maximum value of $|\overrightarrow{R}|$ is $\frac{1}{4}$. Then $\frac{|\overrightarrow{A}|}{|\overrightarrow{B}|}$ may be:-

- (A) 4/1
- (B) 2/1
- (C) 3/5
- (D) 1/4
- Two vectors $\stackrel{\displaystyle \rightarrow}{A}$ and $\stackrel{\displaystyle \rightarrow}{B}$ have equal magnitude of Q51 5 units each and are such that

 $\overrightarrow{A} + \overrightarrow{B} | = 5\sqrt{3}$ units. What is the value of

- (A) 5 units (B) $5\sqrt{2}$ units (C) $\frac{5}{\sqrt{3}}$ units (D) $\frac{5}{\sqrt{2}}$ units
- Two vectors $\stackrel{
 ightarrow}{A}$ and $\stackrel{
 ightarrow}{B}$ are as shown below. The dot product $\overset{\displaystyle \rightarrow}{A}$. $\overset{\displaystyle \rightarrow}{B}$ is given by;

- (A) AB $\cos \theta$
- (B) AB $\cos \theta$
- (C) AB $\sin \theta$
- (D) AB $\sin \theta$
- Q53 How many minimum number of vectors in different planes should be added to give zero resultant?
 - (A)2

(B)3

(C)4

- (D)5
- Q54 A vector \overrightarrow{S} having magnitude of $5\sqrt{2}$ units is along +x-axis. Another vector $\stackrel{'}{R}$ has magnitude of 5 units lies on the line y = x. The magnitude of resultant of \vec{S} and \vec{R} can be;

 - (A) $5\sqrt{5}$ units (B) $5\sqrt{2}$ units
 - (C) 10 units
- (D) $3\sqrt{2}$ units
- **Q55** A particle *P* is moving anticlockwise in a circle with uniform speed 5 m/s as shown. What is the velocity vector when the line joining the center and the particle P makes an angle of 37° with + xaxis?

(A)
$$\left(-4\hat{i}\,+3\hat{j}
ight)$$
m/s

(B)
$$(+3\hat{i}-4\hat{j})$$
m/s

(C)
$$\left(+4\hat{i}-3\hat{j}\right)$$
m/s

(D)
$$\left(-3\hat{i}+4\hat{j}\right)$$
m/s

- If $\overrightarrow{a}=2\hat{i}+\sqrt{5}\hat{j}$ & $\overrightarrow{b}=5\hat{i}+\sqrt{5}\hat{j}+4\hat{k}$ Q56 then find a vector of same magnitude as \overrightarrow{a} and parallel to vector $\overrightarrow{a} - \overrightarrow{b}$:-

- For the given vector $\overset{
 ightarrow}{{
 m A}}=3\hat{{
 m i}}\,-4\hat{{
 m j}}\,+10\widehat{{
 m k}}$, the **Q57** ratio of magnitude of its component on the x-y plane and the component on z-axis is
 - (A) 2

(B) 1/2

(C) 1

- (D) None of these
- Q58 If \overrightarrow{A} vector makes angle 90° & 30° with the x and y axis respectively then angle it makes with the z axis can be:
 - (A) 120°
- $(B) 30^{\circ}$
- (C) 45°
- (D) 90°
- The angle between two vectors

$$\overrightarrow{R} = -\hat{\mathbf{i}} + rac{1}{3}\hat{\mathbf{j}} + \widehat{\mathbf{k}}$$
 and

$$\stackrel{
ightarrow}{ ext{S}} = x \hat{ ext{i}} + 3 \hat{ ext{j}} + \left(x-1
ight) \widehat{ ext{k}}$$

- (A) Is obtuse angle
- (B) Is acute angle
- (C) Is right angle
- (D) Depends on x
- **Q60** If the angle between \hat{a} & \hat{b} is 60°, then which of the following vector(s) have magnitude one:-

- $(\mathrm{A}) \, rac{\hat{\mathrm{a}} + \widehat{\mathrm{b}}}{\sqrt{3}} \ (\mathrm{B}) \, \widehat{a} \widehat{b}$
- (C) â
- (D) \hat{b}
- (A) Only C,D
- (B) Only B,C,D
- (C) Only A,C,D
- (D) All

Answer Key

Q1	(C)	

Q15 (A)

(C) Q16

Q17 (B)

Q18 (C)

- (C) **Q23**
- (C) Q24
- **Q25** (B)
- (D) **Q26**
- **Q27** (B)
- (B) **Q28**
- **Q29** (D)
- Q30 (A)

- (B) Q31
- Q32 (A)
- Q33 (D)
- Q34 (A)
- (A) Q35
- Q36
- (A)
- (C) Q37
- (A) Q38
- Q39 (C)
- (C) Q40
- Q42 (D)

Q41

(C)

- Q43 (B)
- Q44 (A)
- Q45 (B)
- (C) Q46
- Q47 (A)
- Q48 (C)
- (B) Q49
- Q50 (C)
- Q51 (A)
- Q52 (B)
- Q53 (C)
- (A) Q54
- Q55 (D)
- Q56 (C)
- (B) Q57
- (A) **Q58**
- (C) Q59
- Q60 (D)

Hints & Solutions

Q1 Text Solution:

Resultant vector,

$$\overrightarrow{R}=\sqrt{a^2+b^2+2ab\cos heta}$$

According to question, a = b = R

$$\overrightarrow{R} = \sqrt{R^2 + R^2 + 2R^2 \cos \theta}$$

$$= R\sqrt{2}\sqrt{1 + \cos \theta}$$

$$= \sqrt{2}R\sqrt{2\cos^2\frac{\theta}{2}} = 2R\cos\frac{\theta}{2}$$

Q2 Text Solution:

Given: $\cos \theta = \frac{5}{9}$

$$\Rightarrow \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ab} = \frac{5}{9}$$

$$\Rightarrow \left| \overrightarrow{a} + \overrightarrow{b} \right| = \sqrt{2} \left| \overrightarrow{a} - \overrightarrow{b} \right|$$

$$\Rightarrow a^{2} + b^{2} + 2 \overrightarrow{a} \cdot \overrightarrow{b} = 2a^{2} + 2b^{2} - 4 \overrightarrow{a} \cdot \overrightarrow{b}$$

$$\Rightarrow 6 \overrightarrow{a} \cdot \overrightarrow{b} = a^{2} + b^{2}$$

$$\Rightarrow 6 \times \frac{5}{9}ab = a^{2} + b^{2}$$

$$\Rightarrow \frac{10}{3}ab = a^{2} + b^{2} & \Rightarrow a = nb$$

$$\Rightarrow 3n^{2} - 10n + 3 = 0$$

$$\Rightarrow n = \frac{1}{3} \text{ and } n = 3$$
Thus, $n = 3$

Q3 Text Solution:

According to diagram, let magnitude be equal to $\boldsymbol{\lambda}$

$$\overrightarrow{OA} = \lambda \left[\cos 30^{\circ} \hat{i} + \sin 30 \hat{j} \right]$$

$$= \lambda \left[\frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right]$$

$$\overrightarrow{OB} = \lambda \left[\cos 60^{\circ} \hat{i} - \sin 60 \hat{j} \right]$$

$$= \lambda \left[\frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j} \right]$$

$$egin{aligned} \overrightarrow{OC} &= \lambda \left[\cos 45\,^\circ \left(-\hat{i}
ight) + \sin 45\,\hat{j}
ight] \ &= \lambda \left[-rac{1}{\sqrt{2}}\,\hat{i} + rac{1}{\sqrt{2}}\,\hat{j}
ight] \ dots \ \overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC} \ &= \lambda \left[\left(rac{\sqrt{3}+1}{2} + rac{1}{\sqrt{2}}
ight) \hat{i} + \left(rac{1}{2} - rac{\sqrt{3}}{2} - rac{1}{\sqrt{2}}
ight) \hat{j}
ight] \ an^{-1} \left[rac{rac{1}{2} - rac{\sqrt{3}}{2} - rac{1}{\sqrt{2}}}{rac{\sqrt{3}}{2} + rac{1}{2} + rac{1}{\sqrt{2}}}
ight] = an^{-1} \left[rac{\sqrt{2} - \sqrt{6} - 2}{\sqrt{6} + \sqrt{2} + 2}
ight] \ &= an^{-1} \left[rac{1 - \sqrt{3} - \sqrt{2}}{\sqrt{3} + 1 + \sqrt{2}}
ight] \end{aligned}$$

Q4 Text Solution:

 \therefore For equilibrium $F_{net} = 0$

Q5 Text Solution:

$$G \equiv \left(rac{a}{2},0,rac{a}{2}
ight), \qquad H \equiv \left(0,rac{a}{2},rac{a}{2}
ight) \ \overrightarrow{GH} = -rac{a}{2}\hat{i} + rac{a}{2}\hat{j} = rac{a}{2}\left(\hat{j} - \hat{i}
ight)$$

Q6 Text Solution:

$$\begin{vmatrix} \overrightarrow{A} + \overrightarrow{B} \\ \end{vmatrix} = \sqrt{\begin{vmatrix} \overrightarrow{A} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{B} \end{vmatrix}^2 + 2 \begin{vmatrix} \overrightarrow{A} \end{vmatrix} \begin{vmatrix} \overrightarrow{B} \end{vmatrix} \cos \theta}$$

$$= \sqrt{1 + 1 + 2 \cos \theta} = 2 \cos \theta / 2$$

$$\begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \\ \end{vmatrix}$$

$$= \sqrt{\begin{vmatrix} \overrightarrow{A} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{B} \end{vmatrix}^2 - 2 \begin{vmatrix} \overrightarrow{A} \\ \end{vmatrix} \begin{vmatrix} \overrightarrow{B} \end{vmatrix} \cos \theta}$$

$$= \sqrt{1 - 2 \cos \theta} = 2 \sin \theta / 2$$

$$\begin{vmatrix} \overrightarrow{A} + \overrightarrow{B} \\ \begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \end{vmatrix} = \cot \theta / 2$$

$$\begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \\ \end{vmatrix} = \begin{vmatrix} \overrightarrow{A} + \overrightarrow{B} \end{vmatrix} \tan \frac{\theta}{2}$$

Q7 Text Solution:

$$igg|\overrightarrow{A}+\overrightarrow{B}igg|=nigg|\overrightarrow{A}-\overrightarrow{B}igg|$$
 $\Rightarrow A^2+B^2+2AB\cos heta$
 $=n^2ig(A^2+B^2-2AB\cos hetaig)$
 $As\ ig|\overrightarrow{A}igg|=ig|\overrightarrow{B}igg|,$
 $\Rightarrow\cos hetaigg(1+n^2igg)=rac{2A^2(n^2-1)}{2A^2}$
 $\cos heta=rac{n^2-1}{n^2+1}$

Q8 Text Solution:

$$\frac{\sqrt{|A|^{1} + |A|^{2} + 2|A|^{1} |A|^{2}}}{5 = \sqrt{9 + 25 + 2 \times 3 \times 5 \cos \theta}}$$

$$\Rightarrow \cos \theta = -\frac{3}{10}$$

$$\left(2\overrightarrow{A}_{1} + 3\overrightarrow{A}_{2}\right) \cdot \left(3\overrightarrow{A}_{1} - 2\overrightarrow{A}_{2}\right)$$

$$= 6\left|\overrightarrow{A}_{1}\right|^{2} + 9\overrightarrow{A}_{1} \cdot \overrightarrow{A}_{2} - 4\overrightarrow{A}_{1} \cdot \overrightarrow{A}_{2}$$

$$-6\left|\overrightarrow{A}_{2}\right|^{2}$$

=-118.5

Q9 Text Solution:

$$\begin{array}{l} \overrightarrow{P} \times \overrightarrow{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & \sqrt{3} & 2 \\ 4 & \sqrt{3} & 2.5 \end{vmatrix} \\ = \sqrt{3}\frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \sqrt{3}\hat{k} \\ \text{and} \\ \Rightarrow \left| \overrightarrow{P} \times \overrightarrow{Q} \right| = \frac{1}{2} \\ \Rightarrow \frac{\overrightarrow{P} \times \overrightarrow{Q}}{\left| \overrightarrow{P} \times \overrightarrow{Q} \right|} = \frac{1}{2} \left(\sqrt{3}\frac{i}{2} + \frac{\hat{j}}{2} - \sqrt{3}\hat{k} \right) \\ = \frac{1}{4} \left(\sqrt{3}\hat{i} + \hat{j} - 2\sqrt{3}\hat{k} \right) \Rightarrow x = 4 \end{array}$$

Q10 Text Solution:

Apply the triangle law of addition, to get answer.

Q11 Text Solution

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}, \overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC}, \overrightarrow{AD}$$

$$\overrightarrow{AO} + \overrightarrow{OD} = 2\overrightarrow{AO}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 4\overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{OC}$$

Q12 Text Solution:

Let the resultant of both the vectors be \overrightarrow{R} , then $\overrightarrow{R} = \left(2\overrightarrow{Q} + 2\overrightarrow{P}\right) + \left(2\overrightarrow{Q} - 2\overrightarrow{P}\right)$ $\overrightarrow{R} = 4\overrightarrow{Q}$ Angle between \overrightarrow{Q} and \overrightarrow{R} is zero.

Q13 Text Solution:

The horizontal component of forces,

$$\overrightarrow{F}_{x}$$

$$= \left[10 \times \frac{\sqrt{3}}{2} + 20 \times \frac{1}{2} + \frac{20}{\sqrt{2}} - \frac{15}{\sqrt{2}} - \frac{15\sqrt{3}}{\sqrt{2}}\right]$$

$$= 9.25\hat{i}$$

$$\overrightarrow{F}_{y}$$

$$= \left[15 \times \frac{1}{2} + 20 \times \frac{\sqrt{3}}{2} + 10 \times \frac{1}{2} - \frac{15}{\sqrt{2}} - \frac{15}{\sqrt{2}} - \frac{15}{\sqrt{2}} - \frac{20}{\sqrt{2}}\right]$$

$$= 5j$$

$$\therefore \overrightarrow{F}_{R} = \overrightarrow{F}_{x} + \widehat{F}_{y} = 9.25\hat{i} + 5\hat{j}$$

Q14 Text Solution:

According to diagram,

Angle between $\overset{\longrightarrow}{A}$ and $\overset{\longrightarrow}{B}$, $\theta=60^{\rm o}$ Angle between $\overset{\longrightarrow}{A}$ and $\overset{\longrightarrow}{-B}$, $\theta=120^{\rm o}$ If angle between $\overset{\longrightarrow}{A}$ and $\overset{\longrightarrow}{A}-\overset{\longrightarrow}{B}$ is α

$$an lpha = rac{\left|-\overrightarrow{B}
ight|\sin heta}{\left|\overrightarrow{A}
ight| + \left|-\overrightarrow{B}
ight|\cos heta} \ = rac{B\sin g120^\circ}{A + B\cos 120^\circ} = rac{Brac{\sqrt{3}}{2}}{A - rac{B}{2}} \ \Rightarrow an lpha = rac{\sqrt{3}B}{2A - B}$$

Hence, the angle between vector \overrightarrow{A} and $\left(\overrightarrow{A}-\overrightarrow{B}\right)$ is

$$\tan \alpha = \frac{\sqrt{3}B}{2A-B}$$

Q15 Text Solution:

According to question the given data is two

$$\begin{split} & \text{forces} \left(\overrightarrow{P} + \overrightarrow{Q}\right) \text{ and } \left(\overrightarrow{P} - \overrightarrow{Q}\right) \\ & \overrightarrow{A} = \overrightarrow{P} + \overrightarrow{Q} \& \overrightarrow{B} = \overrightarrow{P} - \overrightarrow{Q} \& \overrightarrow{P} \perp \overrightarrow{Q} \\ & \Rightarrow \left|\overrightarrow{A}\right| + \left|\overrightarrow{B}\right| = \sqrt{2 \left(P^2 + Q^2\right) \left(1 + \cos\theta\right)} \\ & \Rightarrow \text{For } \theta_1 = 60^{\text{o}} \\ & \Rightarrow \left|\overrightarrow{A} + \overrightarrow{B}\right| = \sqrt{3 \left(P^2 + Q^2\right)} \\ & \Rightarrow \text{For } \theta_2 = 90^{\text{o}} \left|\overrightarrow{A} + \overrightarrow{B}\right| \\ & = \sqrt{2 \left(P^2 + Q^2\right)} \end{split}$$

Q16 Text Solution:

From figure (b) we can say that

$$\overrightarrow{C} = \left(-\overrightarrow{A} \right) + \overrightarrow{B}$$
 Hence $\overrightarrow{B} = \overrightarrow{C} + \overrightarrow{A}$

Q17 Text Solution:

Given

$$\begin{vmatrix} \overrightarrow{R} \end{vmatrix} = \frac{1}{2} \begin{vmatrix} \overrightarrow{B} \end{vmatrix}$$
 $B\cos\theta = R = \frac{B}{2}$

$$\cos heta = rac{1}{2} \ heta = 60^{
m o}$$

Hence angle between $\overset{
ightarrow}{A} \, \overset{
ightarrow}{\&} \, \overset{
ightarrow}{B}$ is (90+60)=150°

Q18 Text Solution:

Given that

$$egin{aligned} \left| \overrightarrow{F}_1
ight| &= 2 \middle| \overrightarrow{F}_2 \middle| \ \left| \overrightarrow{R} \middle| &= \middle| \overrightarrow{F}_1 \middle| \ \left| \overrightarrow{R} \middle| &= \middle| \overrightarrow{F}_1 + \overrightarrow{F}_2 \middle| \ R &= \sqrt{F_1^2 + F_2^2 + 2F_1F_2} \cos heta \ F_1^2 &= F_1^2 + rac{F_1^2}{4} + 2 \Big(F_1 \Big) \left(rac{F_1}{2} \right) \cos heta \ -rac{F_1^2}{4} &= F_1^2 \cos heta \ heta &= \cos^{-1} \left(rac{-1}{4}
ight) \end{aligned}$$

Q19 Text Solution:

$$\cos heta = rac{ ext{Base}}{ ext{Hypotaneous}} \ \cos heta = rac{6}{10} = 0.6 \ heta = \cos^{-1} ig(0.6 ig)$$

Q20 Text Solution:

$$\overrightarrow{v} = \overrightarrow{w} \times \overrightarrow{r}$$

$$\Rightarrow \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 0 & 4 & -3 \end{bmatrix}$$

$$\overrightarrow{w} = \overrightarrow{r} = \hat{i} (6 - 8) - j (-3 - 0)$$

$$+ \hat{k} (4 - 0)$$

$$\overrightarrow{v} = -2\hat{i} + 3\hat{j} + 4\hat{k}$$

$$|\overrightarrow{v}| = \sqrt{4 + 9 + 16} = 9 \text{ units}$$

Q21 Text Solution:

$$\left|\overrightarrow{a}+\overrightarrow{b}
ight|+\left|\overrightarrow{a}-\overrightarrow{b}
ight|=2\left|\overrightarrow{a}
ight|$$

$$\begin{array}{l} \sqrt{a^2+b^2+2ab\cos\theta}\\ +\sqrt{a^2+b^2-2ab\cos\theta}=2a\\ \text{As, } \left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|\\ \sqrt{2}\left(\sqrt{1+\cos\theta}+\sqrt{1-\cos\theta}\right)=2\\ \left(\sqrt{1+\cos\theta}+\sqrt{1-\cos\theta}\right)=\sqrt{2}\\ \text{Above equation is satisfy when }\theta=0^\circ,90^\circ \end{array}$$

Q22 Text Solution:

Q23 Text Solution:

Vectors are perpendicular if their dot product is zero.

for option (3)

$$\overrightarrow{A}$$
. $\left(rac{\hat{k}-\hat{j}}{\sqrt{2}}
ight) = \left(2\hat{i}\,+\hat{j}+\hat{k}
ight)$. $\left(rac{\hat{k}-\hat{j}}{\sqrt{2}}
ight)$

Q24 Text Solution:

Given that vector is equally inclined to all of the coordinate

Let A vector = $a\hat{i} + a\hat{j} + a\hat{k}$ $\cos heta = rac{a}{\sqrt{a^2 + a^2 + a^2}} = rac{1}{\sqrt{3}}$ If $\cos heta$ is $rac{1}{\sqrt{3}}$ then

$$\sin heta = \sqrt{rac{2}{3}}$$

Q25 Text Solution:

$$\overrightarrow{A} imes\overrightarrow{B}=AB\sin heta=0 \ heta=0^{
m o}\ or\ 180^{
m o} \ ext{So}\ \overrightarrow{P}_{2}=-4\hat{i}$$

Q26 Text Solution:

$$\overrightarrow{A} \cdot B = 15 + 2 - 2\ell = 0$$
 $2\ell = 17 \Rightarrow \ell = \frac{17}{2} = 8.5$

Q27 Text Solution:

It is possible to have $\left|\overrightarrow{C}\right|<\left|\overrightarrow{A}\right|$ and $\left| \overrightarrow{C}
ight| < \left| \overrightarrow{B}
ight|$ when angle between $\overrightarrow{A} \, \& \, \overrightarrow{B}$ is greater than $\frac{\pi}{2}$

Q28 Text Solution:

$$\begin{vmatrix} \overrightarrow{A} + \overrightarrow{B} \end{vmatrix}^2 = \begin{vmatrix} \overrightarrow{A} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{B} \end{vmatrix}^2 + 2\overrightarrow{A} \cdot \overrightarrow{B} \dots (i)$$

$$\begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \end{vmatrix}^2 = \begin{vmatrix} \overrightarrow{A} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{B} \end{vmatrix}^2 - 2\overrightarrow{A} \cdot \overrightarrow{B} \dots (ii)$$

$$\begin{vmatrix} \overrightarrow{A} + \overrightarrow{B} \end{vmatrix}^2 - \begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \end{vmatrix}^2 = 4\overrightarrow{A} \cdot \overrightarrow{B}$$

$$\overrightarrow{C} = \begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \end{vmatrix}^2 + 4AB\cos 120^\circ$$

$$\overrightarrow{C} = \begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \end{vmatrix} - 2AB$$

So, C must be less then |A - B|.

Q29 Text Solution:

Since, the vector $i + x_i + 3k$ is doubled in magnitude, then it becomes

$$4i + (4x - 2) j + 2k$$

$$2 (i + xj + 3k) = 4i + (4x - 2) j + 2k$$

$$2\sqrt{1 + x^2 + 9} = \sqrt{16 + (4x - 2)^2 + 4}$$

$$40 + 4x^2 = 20 + (4x - 2)^2$$

$$3x^2 - 4x - 4 = 0$$

$$(x - 2) (3x + 2) = 0$$

$$x = 2, -\frac{2}{3}$$

Q30 Text Solution:

Dot product = 0 $4 + 12 + 8\alpha = 0$ $16 = -8\alpha$ $\alpha = -2$

Text Solution: Q31

According to the question.

$$B\cos\theta = \frac{B}{2} \Rightarrow \theta = 60^{\circ}$$

Hence, the angle between $\stackrel{.}{A}$ & $\stackrel{.}{B}$ 90° + 60° = 150°

Q32 Text Solution:

$$\overrightarrow{B}-\overrightarrow{A}=2\hat{j},\overrightarrow{B}=2\hat{j}+2\hat{i}+3\hat{j}+2\hat{k}$$

$$\therefore \overrightarrow{B} = 2\hat{i} + 5\hat{j} + 2\hat{k} \ \left| \overrightarrow{B} \right| = \sqrt{\left(2\right)^2 + \left(5\right)^2 + \left(2\right)^2} = \sqrt{33}$$

Q33 Text Solution:

Let the vector be P.

$$egin{aligned} P_y &= P\cos 30\,^\circ = 2\sqrt{3} \ \Rightarrow Prac{\sqrt{3}}{2} &= 2\sqrt{3} \Rightarrow P = 4 \ ext{Now } P_x &= P\sin 30\,^\circ = 4 imes rac{1}{2} = 2 \end{aligned}$$

Q34 Text Solution:

$$\overrightarrow{AB} + \overrightarrow{AH} = \overrightarrow{AO} \Rightarrow \overrightarrow{AC} + \overrightarrow{AG} = 2\overrightarrow{AO}$$

$$\overrightarrow{AD} + \overrightarrow{AF} = 3\overrightarrow{AO} \Rightarrow \overrightarrow{AE} = 2\overrightarrow{AO}$$

Adding all,

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} + \overrightarrow{AG}$$
 $+ \overrightarrow{AH} = 8\overrightarrow{AO}$
 $= 16\hat{i} + 24\hat{j} - 32\hat{k}$

Q35 Text Solution:

For two perpendicular vectors

$$\left(a\hat{i}\,+b\hat{j}+\hat{k}
ight)\cdot\left(2\hat{i}\,-3\hat{j}+4\hat{k}
ight)=0$$
 2a $-$ 3b $+$ 4 = 0 ...(i) On solving, 2a $-$ 3b = $-$ 4

Also given 3a + 2b = 7 ...(ii)

Form (i) & (ii) We get a = 1, b = 2 $\frac{1}{2} = \frac{a}{b} = \frac{x}{2} \Rightarrow x = 1$

Q36 Text Solution:

Given that,
$$\overrightarrow{A} \cdot \overrightarrow{B} = \left| \overrightarrow{A} \times \overrightarrow{B} \right| \Rightarrow \operatorname{AB} \cos \theta = \operatorname{ABsin} \theta \Rightarrow \theta = 45^{\circ}$$

$$\left| \overrightarrow{A} - \overrightarrow{B} \right| = \sqrt{A^2 + B^2 - 2AB \cos \theta}$$

$$= \sqrt{A^2 + B^2 - 2AB \times \frac{1}{\sqrt{2}}}$$

$$=\sqrt{A^2+B^2-\sqrt{2}AB}$$

Q37 Text Solution:

According to the guestion

$$\begin{vmatrix} \overrightarrow{A} + \overrightarrow{B} \end{vmatrix} = 2 \begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \end{vmatrix} \dots (1)$$
Squaing equation (i) both side. $[\because A = B]$
 $\begin{vmatrix} \overrightarrow{A} + \overrightarrow{B} \end{vmatrix}^2 = \left(2 \begin{vmatrix} \overrightarrow{A} - \overrightarrow{B} \end{vmatrix}\right)^2$
 $\Rightarrow 2A^2 + 2A^2 \cos \theta = 4(2A^2 - 2A^2 \cos \theta)$

$$\Rightarrow \cos \theta = \frac{3}{5}$$
$$\therefore \theta = \cos^{-1}(3/5)$$

Q38 Text Solution:

$$2 \left| \overrightarrow{P} + \overrightarrow{Q} \right| = \left| \overrightarrow{P} + 2 \overrightarrow{Q} \right|$$

$$\Rightarrow 13 + 12 \cos \theta = 10 + 6 \cos \theta$$

$$\cos = -\frac{1}{2} \Rightarrow \theta = 120^{\circ}$$

Q39 Text Solution:

Given.

$$egin{aligned} \left|A
ight|
eq 0 \overrightarrow{A} imes \overrightarrow{A} &= \left|A
ight| A \left|\sin heta \widehat{n}
ight| \ &= \left|A
ight| A |\sin 0 \, \widehat{n} \end{aligned}$$

= 0 [Since Angle between the vectors are zero degree]

$$\overrightarrow{A} \times \overrightarrow{A} = \mathbf{0}$$

Q40 Text Solution:

Given,
$$\left|\overrightarrow{x}\right| = \left|\overrightarrow{y}\right|$$
 and $\left|\overrightarrow{x}-\overrightarrow{y}\right| = n\left|\overrightarrow{x}+\overrightarrow{y}\right|$ $x^2+y^2-2\overrightarrow{x}\cdot\overrightarrow{y}$ $= n^2\left(x^2+y^2+2\overrightarrow{x}\cdot\overrightarrow{y}\right)$ $\left(1-n^2\right)\left(x^2+y^2\right) = \left(1+n^2\right)2\overrightarrow{x}\cdot\overrightarrow{y}$ $\left(1-n^2\right)\left(x^2+y^2\right) = \left(1+n^2\right)2xy\cos\theta$ $\cos\theta = \frac{1-n^2}{1+n^2}$ $\therefore 2xy = x^2+y^2$ $\theta = \cos^{-1}\left(\frac{n^2-1}{-n^2-1}\right)$

Q41 Text Solution:

Projection of
$$\overrightarrow{A}$$
 on $\overrightarrow{B} = \left(\overrightarrow{A} \cdot \widehat{B}\right) \widehat{B}$

$$= \left[\left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \frac{\left(\hat{i} + \hat{j}\right)}{\sqrt{2}}\right] \frac{\left(\hat{i} + \hat{j}\right)}{\sqrt{2}}$$

$$egin{aligned} &=rac{1}{2}\Big(1+1\Big)\Big(\hat{i}\,+\hat{j}\Big)\ &=\Big(rac{1}{\sqrt{2}}+rac{1}{\sqrt{2}}\Big)rac{\left(\hat{i}+\hat{j}
ight)}{\sqrt{2}}\ &=\hat{i}\,+\hat{j} \end{aligned}$$

Q42 Text Solution:

$$egin{aligned} \overrightarrow{F} &= \left(\overrightarrow{F}_1 + \overrightarrow{F}_2
ight) \Rightarrow \left|\overrightarrow{F}_1
ight| = A, \left|\overrightarrow{F}_2
ight| \ &= rac{A}{2} \ heta &= 90^\circ \ dots \left|\overrightarrow{F}
ight| = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos heta} \ \left|\overrightarrow{F}
ight| = \sqrt{A^2 + rac{A^2}{4}} = rac{A\sqrt{5}}{2} \end{aligned}$$

Q43 Text Solution:

Vector has both magnitude and direction, of rotation, direction change. Hence vector changes.

Q44 Text Solution:

$$A = \sqrt{\frac{\cos^2\theta + \sin^2\theta}{2}} = \frac{1}{\sqrt{2}}$$

Hence the unit vector

$$rac{ ext{A}}{| ext{A}|} = \sqrt{2} \left(rac{\cos\! heta \hat{ ext{i}}}{\sqrt{2}} \!+\! rac{\sin\! heta \hat{ ext{j}}}{\sqrt{2}}
ight)$$

Q45 Text Solution:

Since A+B+C=0

$$0=|A+B+C|^2=|A|^2+|B|^2+|C|^2+2(A\cdot B+B\cdot C+C\cdot A)$$

With each $|A|=|B|=|C|=1$, this gives

 $0=3+2(A \cdot B+B \cdot C+C \cdot A) \Longrightarrow A \cdot B+B \cdot C+C \cdot A=-3/2.$

Q46 Text Solution:

100 dyne = 1 mN

$$F_{
m net} = \sqrt{1^2+1^2+2ig(1ig)ig(1ig)\cos120^\circ}$$
 = 1 mN

Q47 Text Solution:

$$\overrightarrow{A} + \overrightarrow{B} = -\overrightarrow{E}$$

$$\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{E} = 0$$

Q48 Text Solution:

For vector of magnitudes 3 and 5, their dot product is

A.B = (3) (5) $\cos \theta = 15 \cos \theta$, and since $-1 \le \cos \theta \le 1$, the product ranges from -15 to +15. Hence 20 is impossible.

Q49 Text Solution:

Let |a|=A and |b|=B. The maximum resultant is A+B and the minimum is |A-B|. Given

$$\frac{A+B}{A-B}=3$$
 \Longrightarrow A + B = 3A - 3B \Longrightarrow 4B = 2A \Longrightarrow A = 2B

Q50 Text Solution:

$$R_{\min} = |A-B|$$

$$R_{max} = A + B$$

Given

$$\frac{|A-B|}{A+B} = \frac{1}{4}$$

$$\Rightarrow \frac{|A|B-1|}{A|B+1} = \frac{1}{4}$$

Let
$$A/B = x$$

$$4 |(x - 1)| = x + 1$$

on solving, $x = \frac{3}{5}$ or $\frac{5}{3}$

Q51 Text Solution:

$$\left(5\sqrt{3}
ight)^2=5^2+5^2+2\Big(5\Big)\Big(5\Big)\cos heta$$

$$75 = 50 + 50\cos\theta$$

$$\cos heta = rac{1}{2} ext{ or } heta = 60^\circ$$

Angle between $\overset{ au}{A}-\overset{ o}{B}$ is 120°

$$\left|\overrightarrow{A}-\overrightarrow{B}
ight|=\sqrt{5^2+5^2+2ig(5ig)ig(5ig)ig(-rac{1}{2}ig)}$$
 = 5 units

Q52 Text Solution:

Angle between the vectors is $(180^{\circ} - \theta)$

$$\therefore \overrightarrow{A} \cdot \overrightarrow{B} = AB\cos(180^{\circ} - \theta)$$

 $\Rightarrow \overrightarrow{A} \cdot \overrightarrow{B} = -AB\cos\theta$

Q53 Text Solution:

Minimum four vectors in different planes can give zero resultant.

Q54 Text Solution:

Angle between the two vectors is 45°

$$\begin{aligned} \text{Resultant} &= \sqrt{25+50+2\times5\times5\sqrt{2}\times\frac{1}{\sqrt{2}}}\\ &= \sqrt{75+50} = \sqrt{125} = 5\sqrt{5} \text{ units.} \end{aligned}$$

Q55 Text Solution:

$$egin{array}{l} \overrightarrow{v} &= -5\cos 53^{\circ} \hat{i} + 5\sin 53^{\circ} \hat{j} \ &= -3\hat{i} + 4\hat{j} \mathrm{\ m/s} \end{array}$$

Q56 Text Solution:

Difference vector

$$egin{aligned} ext{a-b} &= \left(2-5
ight)\hat{i} + \left(\sqrt{5}-\sqrt{5}
ight)\hat{j} \ &+ \left(0-4
ight)\hat{k} = -3\hat{i} - 4\hat{k} \end{aligned}$$

Its magnitude is |a – b|=

$$=\sqrt{\left((-3)^2+(-4)^2\right)}=5$$

Magnitude of a is
$$|\mathbf{a}| = \sqrt{2^2 + \left(\sqrt{5}\right)^2} = 3$$
.

Unit vector parallel to \mathbf{a} : $\frac{\left(-3\hat{i}-4\hat{k}\right)}{5}$.

Q57 Text Solution:

The x-y-plane component of

$$\stackrel{
ightarrow}{\stackrel{
ightarrow}{A}}=3\hat{i}\,-4\hat{j}+10\hat{k}$$
 is $\stackrel{
ightarrow}{A}_{xy}=3\hat{i}\,-4\hat{j}$

Magnitude in the x-y plane

$$\left|\overrightarrow{A}_{xy}
ight| = \sqrt{3^2 + \left(-4
ight)^2} = 5$$

Magnitude along the z-axis

$$\left| \overrightarrow{A}_z \right| = \left| 10 \right| = 10$$

Required ratio

$$rac{\left|\overrightarrow{A}_{xy}
ight|}{\left|\overrightarrow{A}_{z}
ight|}=rac{5}{10}=rac{1}{2}.$$

Text Solution:

Using the direction-cosine relation $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 11$:

$$\begin{split} &\alpha\text{=}90^\circ\Rightarrow\cos\alpha\text{=}0\\ &\beta\text{=}30^\circ\Rightarrow\cos\beta\text{=}\sqrt{\frac{3}{2}}\\ &\cos^2\gamma=1-0^2-\left(\frac{\sqrt{3}}{2}\right)^2=1-\frac{3}{4}=\frac{1}{4}\\ &\Rightarrow\cos\gamma=-\frac{1}{2},\ \gamma=120^\circ \end{split}$$

Q59 Text Solution:

Dot product

R.S=
$$(-1)(x)+\frac{1}{3}(3)+1(x-1)=-x+1+x-1=0$$

Since R·S=0, the cosine of the angle is zero, so the vectors are perpendicular. Therefore the angle is 90°

option (3) "right angle".

Q60 Text Solution:

$$\begin{array}{l} \text{(A)} \ \, \frac{\left| \hat{a} + \hat{b} \right|}{\sqrt{3}} = \frac{\sqrt{1 + 1 + 2\cos 60^{\circ}}}{\sqrt{3}} = 1 \\ \text{(B)} \, \widehat{a} - \hat{b} = \sqrt{1 + 1 - 2\cos 60^{\circ}} = 1 \end{array}$$

(B)
$$\widehat{a} - \widehat{b} = \sqrt{1 + 1 - 2\cos 60^{\circ}} = 1$$

(C)
$$(\widehat{a}) = 1$$

(D)
$$\left|\hat{b}\right|=1$$

