Capítulo 1

- 1. Sea X_1, X_2, X_3 una muestra aleatoria de una distribución uniforme en el intervalo [0,1]. Defina la variable aleatoria $Z = X_{(3)} X_{(l)}$. Calcule $P\left(Z < \frac{1}{3}\right)$.
- 2. Sea X_1, X_2, \cdots, X_n una muestra aleatoria de una distribución uniforme en el intervalo[0,1]. Encuentre la distribución condicional de $X_{(i)}$ dado $X_{(i)}$ con i < j.
- 3. La duración X de cierto tipo de componente (en horas), es una variable aleatoria con p.d.f dada por $f(x) = \frac{1}{100} \exp\left(-\frac{x}{100}\right)$, x > 0. Un sistema está conformado por dos de estos componentes, los cuales funcionan de manera independiente.
 - a) Si los componentes funcionan en serie, calcule la probabilidad de que la duración del sistema sea superior a 100 horas.
 - b) Si los componentes funcionan en paralelo, calcule la probabilidad de que la duración del sistema sea superior a 100 horas.
- 4. Sea X_1, X_2, \cdots, X_n una muestra aleatoria de una distribución uniforme en el intervalo $\begin{bmatrix}0,1\end{bmatrix}$. Encuentre $P(X_{(1)} \le 0.6)$.
- 5. Sea X_1, X_2, \cdots, X_n una muestra aleatoria de una distribución uniforme en el intervalo [0,1]. Encuentre la p.d.f de $R = X_{(n)} X_{(l)}$.
- 6. Sea X_1, X_2, X_3 una muestra aleatoria de una p.d.f. f(x), con soporte S = [a,b]. Suponga que la c.d.f de esta muestra es $F(x) = \int_a^x f(t) dt$. Calcule $P(X_{(2)} < m)$, donde m es tal que $F(m) = \frac{1}{2}$.