DEUTSCHES PATENTAMT

.

21) Aktenzeichen:

P 44 34 569.0

2 Anmeldetag:

28. 9.94

43 Offenlegungstag:

30. 3.95

③ Unionspriorität: ② ③ ③ ④
29.09.93 US 129633

(71) Anmelder:

Becton Dickinson and Co., Franklin Lakes, N.J., US

74 Vertreter:

von Kreisler, A., Dipl.-Chem.; Selting, G., Dipl.-Ing.; Werner, H., Dipl.-Chem. Dr.rer.nat.; Fues, J., Dipl.-Chem. Dr.rer.nat.; Böckmann gen. Dallmeyer, G., Dipl.-Ing.; Hilleringmann, J., Dipl.-Ing.; Jönsson, H., Dipl.-Chem. Dr.rer.nat.; Meyers, H., Dipl.-Chem. Dr.rer.nat.; Weber, T., Dipl.-Chem. Dr.rer.nat., Pat.-Anwälte, 50667 Köln

② Erfinder:

Edwards, Floyd V., Sandy, Utah, US; Erskine, Timothy J., Sandy, Utah, US; Peterson, Gerald H., Salt Lake City, Utah, US; Purdy, Edmund R., Fruit Heights, Utah, US

(54) Kathetereinführvorrichtung mit Blutdichtung

Die Kathetereinführvorrichtung mit einer Blutdichtung besteht aus einer Nadel (14) mit einem proximalen (17) und einem distalen Ende (15). Die Nadel (14) ist mit einem Bereich (14c) vergrößerten Durchmessers versehen, der einen Nadelspitzenschutz (16) bzw. eine Dichtvorrichtung daran hindert, von der Nadel (14) zu gleiten. Am proximalen Ende (17) der Nadel (14) ist ein Nadelansatz (12) angebracht. Eine aus einer Katheterkanüle (19) und einem Katheteradapter (52) gebildete Katheteranordnung (18) ist auf der Nadel (14) axial verlaufend angeordnet. Die Katheterkanüle (19) sitzt derart konzentrisch auf der Nadel (14), daß die Katheteranordnung (18) auf der Nadel (14) gleitend verschiebbar ist und die Nadel (14) von der Katheteranordnung (18) abgezogen werden kann. Die Dichtvorrichtung (16) ist auf der Nadel (14) an den Katheteradapter (52) angrenzend derart befestigbar, daß die Dichtvorrichtung (16) auf der Nadel (14) gleitend verschieb-

bar ist. Die Dichtvorrichtung (16) enthält eine Dichtung (100), die den Blutfluß von dem Katheteradapter (52) her begrenzt.

Die Erfindung betrifft eine Kathetereinführvorrichtung mit einer Blutdichtung zur Verminderung des Austritts von Blut bei der Einführung eines Katheters in ein Blutgefäß gemäß dem Oberbegriff der Ansprüche 1 und

Im medizinischen Bereich werden Katheter häufig als Mittel zur Schaffung eines Zugangs zu dem Gefäßsystem eines Patienten verwendet. Ein Katheter wird übli- 10 cherweise unter Zuhilfenahme einer Nadel in ein Blutgefäß eingeführt, die das Blutgefäß punktiert, wobei eine Öffnung entsteht, durch die der Katheter in das Gefäß eindringen kann. Während dieses Vorgangs wird die Nadel mit Blut kontaminiert. Seit dem Auftreten von 15 16 befestigt. AIDS ist man sich zunehmend der Möglichkeit bewußt, daß das Blut eines Patienten AIDS-Viren oder andere Erreger, wie beispielsweise Hepatitis-Viren, enthalten kann. Das Austreten von Blut während des Einführens eines Katheters in einen Patienten kann das Risiko der 20 Übertragung von derartigen im Blut vorhandenen Erregern erhöhen.

Der Erfindung liegt die Aufgabe zugrunde, eine Kathetereinführvorrichtung zu schaffen, die das Risiko einer solchen Übertragung durch Vorsehen einer Blut- 25 dichtung, die das Austreten von Blut auf ein Minimum reduziert, verringert.

Diese Aufgabe wird mit einer Kathetereinführvorrichtung mit den Merkmalen der Ansprüche 1 bzw. 7 gelöst.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angeführt.

Die Erfindung betrifft eine Kathetereinführvorrichtung, zu der eine Nadel mit einem proximalen und einem ein Ansatz befestigt. Eine aus einer Katheterkanüle und einem an dieser befestigten Katheteradapter bestehende Katheteranordnung ist axial auf der Nadel anbringbar. Die Katheterkanüle kann konzentrisch derart auf der Nadel angebracht werden, daß die Katheteranordnung auf der Nadel gleitend verschiebbar ist und die Nadel aus der Katheteranordnung herausgezogen werden kann. Die Einführvorrichtung ist mit einer Dichtvorrichtung versehen, die an dem Katheteradapter derart befestigt werden kann, daß die Dichtvorrichtung auf 45 der Nadel gleitend verschiebbar ist. Die Dichtvorrichtung trägt eine Dichtung zum Begrenzen des Blutflusses aus dem Katheteradapter. Ferner ist ein Nadelspitzenschutz an der Nadel befestigbar, der Stichverletzungen nach der Benutzung der Kathetereinführvorrichtung 50 verhindert.

Im folgenden werden bevorzugte Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die Zeichnungen näher erläutert.

Es zeigen:

Fig. 1 eine perspektivische Ansicht der Kathetereinführvorrichtung,

Fig. 2 eine perspektivische Ansicht des Nadelschutzes und der Blutdichtung,

delschutzes.

Fig. 4 eine perspektivische Ansicht der den Nadelschutz an der Nadel sichernden Schnappvorrichtung,

Fig. 5, 6, 7 und 8 die Funktion der Vorrichtung veran-Linie 5-5 in Fig. 1.

Fig. 9 eine perspektivische Explosionsdarstellung eines zweiten Ausführungsbeispiels eines Nadelschutzes und einer Blutdichtu nd

Fig. 10 einen Längsschnitt durch einen Teil der zusammengebauten Vorrichtung gemäß Fig. 9.

Die Kathetereinführvorrichtung 10 weist einen Nadelansatz 12, eine Nadel 14 mit einem distalen Ende 15 und einem an dem Nadelansatz 12 befestigten proximalen Ende 17 sowie einen an dem Schaft der Nadel 14 gleitend verschiebbar angebrachten Nadelspitzenschutz 16 auf. Relativ zu dem Schaft der Nadel 14 verschiebbar ist eine Katheteranordnung 18 mit einer Katheterkanüle 19 und einem Adapter 52 angebracht. Die Katheterkanüle 19 weist ein Lumen 13 auf. Die Katheteranordnung 18 ist relativ zum Nadelschaft gleitend verschiebbar und abnehmbar an dem Nadelspitzenschutz

Der Nadelansatz 12 weist einen einstückig geformten, transparenten Körper 20 mit im wesentlichen ebenen Ober- und Unterseiten 22a, 22b und zwei Seitenwänden 24, 26 auf, die im allgemeinen konkav sind, um die Handhabung des Nadelansatzes 12 zwischen Daumen und Finger zu erleichtern. Jedes Ende der Seitenwände 24, 26 weist einen abgestuften Bereich 28 auf. Das hintere (proximale) Ende des Nadelansatzes 12 ist gegabelt. Ein zylindrisches Rohr 29 erstreckt sich durch den gegabelten Endbereich und steht mit dem hinteren Ende der Nadel 14 in Verbindung. Am hinteren Ende des Rohres 29 kann ein Stopfen 30 befestigt sein.

Der Nadelspitzenschutz 16 weist einen länglichen, im wesentlichen hohlen Körper 38 auf. Der Nadelschutz 16 trägt eine im folgenden zu beschreibende Dichtung 100. Da die Aufgabe des Nadelspitzenschutzes 16 darin besteht, sowohl die Dichtung 100 zu tragen als auch die Nadel 14 zu schützen, wird für ihn auch der Ausdruck "Dichtvorrichtung 16" verwendet. Durch eine Seite des distalen Ende gehört. Am proximalen Ende der Nadel ist 😘 Körpers 38 verläuft ein Längsschlitz 40 und durch seine gegenüberliegende Seite eine rechtwinklige Öffnung 42. Zwei ebene Flächen bilden Teile von zwei anderen Seiten des Körpers 38.

> In dem Nadelansatz 12 ist ein zylindrischer Durchlaß 32 ausgebildet. In diesem Durchlaß 32 kann das proximale Ende 38b des Nadelspitzenschutzes 16 positioniert werden. In dem Nadelansatz 12 erstreckt sich angrenzend an die Unterseite 22b ein Schlitz 34, der sich an den Durchlaß 32 anschließt (vergl. Fig. 3). Das proximale Ende 38b des Nadelspitzenschutzes 16 weist einen radial gerichteten Vorsprung 70 auf, der in den Schlitz 34 ragt und in diesem gleitet. Dadurch wird verhindert, daß sich der Nadelspitzenschutz 16 in bezug auf den Nadelansatz 12 dreht.

Ein radial gerichteter Flansch 48 steht von dem Körper 38 ab und schließt sich an ein Ende des Längsschlitzes 40 an. Der Flansch 48 ist bis auf eine ebene Fläche 48a an seiner einen Seite und einen von der gegenüberliegenden Seite abstehenden Ansatz 48b im wesentlichen ringförmig. Dieser Ansatz 48b ermöglicht es dem Benutzer, während des Einführens der Katheterkanüle 19 und des Entfernens der Nadel 15 den Nadelspitzenschutz 16 und die Katheteranordnung 18 von dem Nadelansatz 12 wegzuschieben. Von dem Flansch 48 ste-Fig. 3 eine geschnittene Ansicht eines Teiles des Na- 60 hen mehrere axial gerichtete, umfangsmäßig gekrümmte Vorsprünge 50 ab, die gemeinsam einen Aufnahmekäfig 53 für den Katheteradapter 52 bilden. Die vorderen Enden der Vorsprünge weisen nach innen ragende Lippen 54 auf, die einen Flansch 56 des Katheteradapschaulichende Längsschnitte der Vorrichtung längs der 65 ters 52 mit der Dichtvorrichtung 16 lösbar verbinden. Die gekrümmten Vorsprünge 50 und die Lippen 54 sollen an dem Flansch 56 angreifen, so daß es leichter ist, den Nadelspitzenschutz 16 mittels des Ansatzes 48b von

dem Nadelansatz 12 wegzuschie , als den Katheteradapter 52 aus dem Aufnahmekäfig 53 zu entfernen. Dadurch wird der Benutzer gehindert, den Katheteradapter 52 zu entfernen und damit das distale Ende der Nadel 15 freizulegen und er wird veranlaßt, die erfindungsgemäße passive Abschirmung so zu nutzen, wie im folgenden beschrieben ist. An einem Ende des rohrförmigen Körpers 38 ist ein koaxialer Stutzen 38a vorgesehen, der in den Katheteradapter 52 hineinragt.

In dem Stutzen 38a des Nadelspitzenschutzes 16 wird eine Dichtung 100 untergebracht. Die Dichtung 100 ist ein becherförmiges Teil aus Elastomermaterial, vorzugsweise aus Silikongummi. Sie ist aus einem im wesentlichen zylindrischen rohrförmigen Abschnitt 102 104 ist mit einer nach außen gerichteten Umfangslippe 106 versehen, die das Einsetzen der Dichtung 100 in den Stutzen 38a erleichtern soll. Der äußere Teil der Umfangslippe 106 berührt die Innenwand des Kathetera-Katheteradapter 52 eine Dichtung gebildet wird. Das rohrförmige hintere Teil 102 der Dichtung 100 erstreckt sich innerhalb des Stutzens 38a. In dem Boden 104 ist eine Öffnung 108 ausgebildet, die so bemessen ist, daß das Material der Dichtung 100 die Nadel 14 eng um- 25 tung. schließt, wodurch eine Blutdichtung gebildet wird. Die Dichtung 100 ist radial komprimiert in dem Stutzen 38a angeordnet, um das Verschließen der Öffnung 108 beim Durchführen der Nadel 14 durch diese zu erleichtern. daß beim Zurückziehen des distalen Endes 15 der Nadel 14 gemäß Fig. 8 die Öffnung 108 selbsttätig im wesentlichen verschlossen wird, wodurch verhindert wird, daß Blut in den Stutzen 38a eindringt.

Gemäß Fig. 5 ist die Nadel 14 vor Benutzung vom 35 Rand 110 der Öffnung 108 der Dichtung 100 eng umschlossen. Sobald die Venenpunktion mittels der Nadel 14 durchgeführt worden ist, wird die Nadel 14 zurückgezogen und ihr distales Ende 15 wird gemäß den Fig. 6-8 von dem Benutzer zu dem Nadelspitzenschutz 16 40 hin gezogen. Wenn sich die Nadel 14 im Lumen 13 der Katheterkanüle 19 bewegt, bildet ein verdickter dritter Schaftteil 14c der Nadel 14 eine Blutdichtung, da er eng passend in dem Lumen 13 sitzt. Der Aufbau der Nadel 14 wird im folgenden ausführlich beschrieben. Wenn das 45 Schaftteil 14c vorgesehen. Das breitere Ende des vierdistale Ende 15 in den Katheteradapter 52 gelangt und der dritte Schaftteil 14c die Wand der Katheterkanüle 19 nicht mehr berührt (siehe Fig. 7), kann Blut in den Aufnahmekäfig 53 des Katheteradapters 52 gelangen. Wenn keine Dichtung 100 vorhanden wäre, könnte die- 50 ses Blut aus dem Katheteradapter 52 austreten und in den Nadelspitzenschutz 16 gelangen.

Nachdem das distale Ende 15 die Öffnung 108 der Dichtung 100 passiert hat, schließt sich die Öffnung 108 wieder, wodurch verhindert wird, daß Blut in den Nadel- 55 schräg angeschliffenen Spitze 15. Vorzugsweise ist sein spitzenschutz 16 gelangt. Wenn sich die Nadel 14 aus der in Fig. 5 gezeigten Position in die in Fig. 8 gezeigte Position bewegt, wird die Nadel 14 von dem Rand 110 der Öffnung 108 überstrichen, wodurch die Nadel 14 bei Verlassen der Katheteranordnung 18 abgewischt wird 60 wa 3,048 mm (ca. 0,030 bis ca. 0,12 inches) betragen. und im wesentlichen frei von Blut ist.

Die Fig. 9 und 10 zeigen ein zweites Ausführungsbeispiel der Erfindung. Es unterscheidet sich von dem ersten bevorzugten Ausführungsbeispiel darin, daß der Stutzen 38a entfällt. Die Bezugsziffern der Teile in den 65 Fig. 9 und 10 entsprechen, wenn nicht anders gekennzeichnet, denen in den Fig. 1-8 in der Zweihundert-Zahlenfolge.

Eine Dichtung 20 zt in einer Ausnehmung 238 in dem Nadelspitzenschutz 216. Die Ausnehmung 238 ist kreisförmig und koaxial zur Achse der Nadel 214. Die Dichtung 200 ist eine Scheibe aus Elastomermaterial, 5 vorzugsweise aus Silikongummi. Die Dichtung 200 ist mit einer Durchbrechung in Form eines Schlitzes 208 versehen, der so bemessen ist, daß die Dichtung 200 um die Nadel 214 herum eng passend ist, wodurch eine Blutdichtung gebildet wird. Sobald das distale Ende der Nadel 214 den Schlitz 208 der Dichtung 200 passiert hat, schließt sich der Schlitz 208 wieder, wodurch ein Hineinlecken von Blut in den Nadelspitzenschutz 216 auf ein Minimum reduziert wird. Die Dichtung 200 wischt die Nadel 214 in der vorstehend mit Bezug auf das erste und einem vorderen Boden 104 aufgebaut. Der Boden 15 Ausführungsbeispiel beschriebenen Weise ab. Der Luer-Anschluß des Katheteradapters 252 weist eine Stirnfläche 219 auf. Vor der Einführung des Katheters in ein Gefäß liegt die Stirnfläche 219 gegen die Vorderfläche 202 der Dichtung 200 an, wodurch zwischen dem Kathedapters 52, wodurch zwischen dem Stutzen 38a und dem 20 teradapter 252 und der den Nadelspitzenschutz 216 und die Dichtung 200 aufweisenden Anordnung eine Dichtung gebildet wird. Diese minimiert den Blutdurchtritt zwischen dem Nadelspitzenschutz 216 und dem Katheteradapter 252 während der Betätigung der Vorrich-

Bei der bevorzugten Ausführungsform ist die Kathetereinführvorrichtung 10 mit einem Nadelspitzenschutz versehen. Eine ausführliche Beschreibung einer derartigen Vorrichtung ist in US-PS-5 215 528 (EP 554 841) Die Öffnung 108 ist ferner so bemessen und ausgebildet, 30 enthalten, die durch Bezugnahme Teil dieser Anmeldung ist.

> Wie Fig. 5 zeigt, weist die Nadel 14 einen an den Nadelansatz 12 angrenzenden ersten Schaftteil 14a und einen an die scharfe Spitze 15 angrenzenden zweiten Schaftteil 14b auf. Der erste und der zweite Schaftteil 14a. 14b haben im wesentlichen denselben Außendurchmesser. Zwischen dem ersten und dem zweiten Schaftteil befindet sich ein dritter Schaftteil 14c. Dieser Schaftteil 14c hat einen größeren Außendurchmesser als der erste und der zweite Schaftteil 14a, 14b. Der Durchmesser des durch den Schaft verlaufenden (nicht dargestellten) Lumens ist im wesentlichen konstant.

> Ein vierter Schaftteil 14d von im wesentlichen konischer Form ist zwischen dem ersten 14a und dem dritten ten Schaftteils 14d grenzt an den dritten Schaftteil 14c an. Gemäß Fig. 5 bildet der vierte Schaftteil 14d einen glatten und gleichmäßigen Übergang von dem ersten Schaftteil 14a zu dem dritten Schaftteil 14c der Nadel 14.

> Zwischen dem zweiten Schaftteil 14b und dem dritten Schaftteil 14c kann ein fünfter Schaftteil 14e vorgesehen sein. Wie der vierte Schaftteil 14d ist er im wesentlichen konisch.

> Der dritte Schaftteil 14c befindet sich in der Nähe der Außendurchmesser um etwa 0,1016 mm (0,004 inches) größer als der Nenndurchmesser der Nadel 14, d. h. der Durchmesser der ersten und zweiten Schaftteile 14a, 14b. Vorzugsweise kann seine Länge etwa 0,762 bis et-

> Der vierte Schaftteil 14d hat vorzugsweise eine Länge von etwa 0,381 bis 1,143 mm (ca. 0,015 bis 0,045 inches) und befindet sich etwa 7,62 mm (ca. 0,3 inches) entfernt vom Ende der schräg angeschliffenen Spitze 15. Da die Gesamtlänge der Nadel 14 zwischen etwa 60,96 und 76,2 mm (ca. 2,4 und 3,0 inches) liegt, liegen der dritte 14c und vierte Schaftteil 14d dem distalen Ende 15 wesentlich näher als dem Nadelansatz 12. Der fünfte

Schaftteil 14e kann im wesentlic gleich dem vierten Schaftteil 14d sein.

Die Form und Abmessungen der Nadel 14, einschließlich der Schaftteile 14a-e, sind so gewählt, daß die Nadel 14 leicht in ein Gefäß eingeführt und aus diesem herausgezogen und die Katheteranordnung 18 auf einfache Weise von der Nadel 24 heruntergezogen werden kann.

Der verdickte dritte Schaftteil 14c bildet eine Dichtung zwischen der Wand des Lumens 13 der Katheterk- 10 anüle 19 und dem übrigen Nadelschaft. Die Dichtung verhindert ein Lecken von Blut, bis die Nadel vollständig von der Katheterkanüle 19 abgenommen worden ist. Wie aus den Fig. 3 und 4 hervorgeht, ragt das verjüngte Schaftteil 14c hinaus. Damit wird ein Lecken von Blut hinter den dritten Schaftteil 14c beim Eindringen der Nadel 14 in ein Blutgefäß verhindert.

Eine weitere Aufgabe des verdickten dritten Schaftteils 14c besteht darin, eine Trennung des Nadelspitzen- 20 schutzes 16 von dem Nadelschaft zu verhindern. Wenn der Nadelspitzenschutz 16 abnehmbar an dem Katheteradapter 52 befestigt ist, bleibt er solange mit dem Katheteradapter 52 verbunden, bis der verdickte dritte Teil 14c des Nadelschaftes an der Endward 60 einer Blattfe- 25 der 58 angreift. Diese Anlage verhindert, daß der Nadelspitzenschutz 16 von der Nadel 14 getrennt wird und bewirkt, daß das distale Ende 15 in dem Nadelspitzenschutz 16 gefangen wird, wodurch das Risiko von Stichverletzungen durch die Nadel 14 auf ein Minimum redu- 30 ziert wird. Ein weiteres Zurückziehen des Nadelansatzes 12 in bezug auf diese Stelle bewirkt, daß der Nadelspitzenschutz 16 von dem Katheteradapter 52 gelöst wird. Die Einführvorrichtung 10 wird völlig von der Katheteranordnung 18 getrennt und entsorgt, wobei ein 35 Querschenkel 63 der Blattfeder 58 die Nadelspitze 15 abdeckt.

Der verdickte Bereich 14c der Nadel 14 kann durch Elektroätzen des Materials diesseits und jenseits dieses Bereiches gebildet werden, um den Durchmesser der 40 übrigen Nadellänge zu verringern. Andere Alternativen, um der Nadel 14 die gewünschte Form zu geben, sind spitzenloses Schleifen und Kaltstauchen. Bei jeder der beiden Techniken erhält man eine profilierte einstückig gestaltete Nadel, was bevorzugt wird. Andere mögliche 45 Techniken umfassen ein Plattieren des zu verbreiternden Bereiches oder Einsatz-Spritzguß um die Nadel mit einem Band aus Polymermaterial.

Da die Katheterkanüle 19 sowohl während des Einführens der Nadel 14 in das Blutgefäß als auch die längs- 50 te Zeit während des Abstreifens der Katheterkanüle 19 von der Nadel 14 über den verdickten dritten Schaftteil 14c der Nadel 14 ragt, wird ein Lekken zwischen Katheterkanüle 19 und Nadel 14 im wesentlichen verhindert. Zwischen dem dritten Schaftteil 14c und der Innenwand 55 der Katheterkanüle 19 tritt beim Entfernen der Katheterkanüle 19 von der Nadel 14 Reibungsschluß auf.

Während des Einführens der Katheterkanüle 19 in ein Blutgefäß ist das distale Ende 15 der Nadel 14 geschützt. Es liegt in der Katheteranordnung 18, wenn es zunächst 60 zurückgezogen wird, und befindet sich schließlich in dem Nadelspitzenschutz 16. Wenn die Spitze 15 der Nadel 14 an dem Querwandteil 63 der seitlich ausgelenkten Feder 58 vorbei gezogen worden ist, bewegt sich die Feder 58 in die in Fig. 8 gezeigte Position. Da- 65 durch wird verhindert, daß der Nadelspitzenschutz 16 sich den Nadelschaft hinab gegen den Nadelansatz 12 bewegen kann. Der Abstand zwischen dem verdickten

地 表示。

A LANGE A .A.

der Spitze 15 der Nadel 14 ist dritten Schaftteil 14 geringer als der Abstand zwischen dem Querwandteil 63 und der Endwand 60 der Blattfeder 58. Daher erreicht der dritte Schaftteil 14c die Endwand 60 unmittelbar nachdem die Feder 58 sich über die Nadelspitze 15 hinweg bewegt hat. Da sich dieser Schaftteil 14c nicht durch eine kleinere Öffnung 59 in der Endwand 60 hindurchbewegen kann, wird verhindert, daß der Nadelspitzenschutz 16 von dem Ende 15 der Nadel 14 entfernt

Auch der Flansch 48 trägt dazu bei, daß verhindert wird, daß die Nadelspitze 15 aus dem Nadelspitzenschutz 16 herauskommt. Wenn Kraft aufgebracht wird, um den Nadelspitzenschutz 16 entlang der Nadel 14 vordere Ende der Katheterkanüle 19 über den dritten 15 zum Katheteradapter 52 zurückzuschieben, stößt das distale Ende 15 gegen den Querwandteil 63, der sich im Uhrzeigersinn biegt (vergl. Fig. 8). Wenn dies geschieht, wird ein weiteres Verbiegen des Querwandteiles 63 erhindert, wenn er auf die Innenseite des Flansches 48 auftrifft. Somit ist ein Ausgang für das distale Ende 15 der Nadel 14 sicher versperrt.

Patentansprüche

1. Kathetereinführvorrichtung, mit:

 einer Nadel (14) mit einem proximalen (17) und einem distalen Ende (15) sowie einem Bereich (14c) mit vergrößertem Durchmesser, - einem an dem proximalen Ende (17) der

Nadel (14) befestigten Nadelansatz (12), und einer Katheteranordnung (18) mit einer Katheterkanüle (19), die einen Katheteradapter (52) trägt, wobei die Katheterkanüle (19) die Nadel (14) konzentrisch umgibt, beide Teile relativ zueinander gleitend verschiebbar sind und die Nadel (14) von der Katheteranord-

nung (18) abgezogen werden kann, dadurch gekennzeichnet,

> - daß an dem Katheteradapter (52) eine Dichtvorrichtung (16) derart lösbar befestigt ist, daß sie auf der Nadel (14) gleitend verschiebbar ist, und

- daß die Dichtvorrichtung (16) eine Dichtung (100) aufweist, die den Blutfluß von dem Katheteradapter (52) her begrenzt und die eine Einrichtung aufweist, die an dem Nadelbereich (14c) mit vergrößertem Durchmesser angreift, um die Dichtvorrichtung (16) im Bereich des distalen Endes (15) der Nadel (14) festzulegen, wenn die Katheteranordnung (18) gleitend über die Nadel (14) verschoben wird.

2. Kathetereinführvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Dichtvorrichtung (16) zwischen dem Nadelansatz (12) und der Katheteranordnung (18) angeordnet ist.

Kathetereinführvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Dichtung (100) in dem Katheteradapter (52) angeordnet ist.

4. Kathetereinführvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dichtvorrichtung (16) einen hohlen Stutzen (38a) aufweist, der axial in den Katheteradapter (52) hin-

5. Kathetereinführvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Dichtung (100) von dem Stutzen (38a) getragen wird.

6. Kathetereinführvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Dichtung (100) konzentris m die Nadel (14) paßt.

7. Kathetereinführvorrichtung, mit:

- einer Nadel (14) mit einem proximalen (17) und einem distalen Ende (15),

— einem an dem proximalen Ende (17) der Nadel (14) befestigten Nadelansatz (12), und mit

— einer Katheteranordnung (18) mit einer Katheterkanüle (19) mit einem proximalen und 10 einem distalen Ende und einem an dem proximalen Ende der Katheterkanüle (19) angebrachten Katheteradapter (52), wobei die Katheterkanüle (19) die Nadel (14) konzentrisch umgibt und die Katheteranordnung (18) auf 15 der Nadel (14) gleitend verschiebbar ist,

dadurch gekennzeichnet,

— daß an dem proximalen Endbereich (17) der Nadel (14) ein Nadelspitzenschutz (16) befestigbar ist, der relativ zur Nadel (14) gleitend 20 verschiebbar ist und Mittel (58) aufweist, die an einem Nadelschaftbereich (14c) mit vergrößertem Durchmesser angreifen, um den Nadelspitzenschutz (16) in der Nähe des distalen Endes (15) der Nadel (14) festzulegen, wenn 25 die Katheteranordnung (18) gleitend über die Nadel (14) verschoben wird, und daß

— an dem Nadelspitzenschutz (16) eine Dichtung (100) befestigt ist, die eine Blutdichtung zwischen dem Nadelspitzenschutz (16) und 30 dem Katheteradapter (52) bildet.

8. Kathetereinführvorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß sie eine Einrichtung zum Verbinden des Nadelspitzenschutzes (16) mit der Katheteranordnung (18) aufweist.

9. Kathetereinführvorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Nadelspitzenschutz (16) zwischen dem Nadelansatz (12) und der Katheteranordnung (18) angeordnet ist.

10. Kathetereinführvorrichtung nach einem der 40 Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Dichtung (100) in dem Katheteradapter (52) angeordnet ist.

11. Kathetereinführvorrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß 45 der Nadelspitzenschutz (16) einen axialen hohlen Stutzen (38a) aufweist, der in den Katheteradapter (52) hineinragt.

12. Kathetereinführvorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Dichtung (100) 50 von dem Stutzen (38a) getragen ist.

13. Kathetereinführvorrichtung nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß die Dichtung (100) konzentrisch um die Nadel (14) paßt.

14. Kathetereinführvorrichtung nach einem der Ansprüche 1 bis 6 bzw. 7 bis 13, dadurch gekennzeichnet, daß die Dichtung (100) als becherförmiger Elastomerkörper gestaltet ist,

daß im Boden (104) des Elastomerkörpers eine die 60 Nadel (14) dicht umschließende Öffnung (108) aus-

und daß eine radial auswärts gerichtete Umfangslippe (106) an die Innenfläche des Katheteradapters (52) abdichtend angreift.

15. Kathetereinführvorrichtung nach einem der Ansprüche 1 bis 6 bzw. 7 bis 13, dadurch gekennzeichnet, daß die Dichtung (200) eine Elastomerscheibe mit zen Schlitzung (208) ist.

Hierzu 7 Seite(n) Zeichnungen

FIG-1

FIG-2

DE 44 34 509 A1 A 61 M 25/01 30. März 1995

F1G-9

FIG-10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.