End-Term Exam (1/2)

Basic Econometrics Fall 2018 Tadao Hoshino

Name.	
ID.	
Section 1	Section 2
1. Let X be a continuous uniform random variable on $[-2,4]$. 1. Calculate the probability $\Pr(1 \le X \le 2)$.	Decide whether the following statements are True or False. 1. For random events A and B , if they are independent, the joint probability $Pr(A, B)$ is equal to the marginal probability $Pr(A)$.
2. Calculate the probability $Pr(-4 \le X \le 1)$.	 □ True □ False 2. For random variables X and Y, if they are uncorrelated, E(Y X = x₁) = E(Y X = x₂) holds for any (x₁, x₂) in the support of X. □ True □ False
3. Calculate the expectation $E(X)$.	 3. Consistency implies unbiasedness. □ True □ False 4. Suppose that there are two consistent estimators θ̂₁ and θ̂₂. If the variance of θ̂₁ is larger than that of θ̂₂, θ̂₁ is more efficient than θ̂₂.
4. Calculate the variance $V(X)$.	□ True □ False 5. Let Z be distributed as the standard normal $N(0,1)$. Then, $\Pr(Z \le 2) > 0.95$. □ True □ False
 Let S be a dummy random variable with Pr(S = 1) = 0.7 and Pr(S = 0) = 0.3, and let X and Y be normally distributed as N(0,3) and N(0,9), respectively. Further, let Z = SX + (1 - S)Y. X, Y, and S are assumed to be independent. Calculate the expected value of (XY)², E((XY)²). 	 6. Reducing the probability of Type I error increases the probability of Type II error. □ True □ False 7. Consider the following simple regression model: Y = β₀ + Xβ₁ + ε, where Y is a dependent variable, X is an explanatory variable, and ε is an error term with E(ε) = 0. Assume that ε is independent of X.
2. Calculate the expected value of Z , $E(Z)$.	 X is an exogenous explanatory variable. □ True □ False • If β₁ = 0, X does not affect Y. □ True □ False 8. Let Y be a dependent variable, and X be an endogenous explanatory variable. When a random variable Z is correlated with Y, Z is not a valid instrument for X.
3. Calculate the variance of Z , $V(Z)$. (Hint: As S is a dummy variable, $S^2=S$.)	 □ True □ False 9. Let Y be an outcome variable, T be a binary treatment variable, and X be a set of covariates. Further, let Y₁ and Y₀ be the potential value of Y when T = 1 and when T = 0, respectively. When the data are collected in a randomized experiment, it holds that
	$(Y_1, Y_0) \perp \!\!\! \perp T \mid X,$

i.e., (Y_1, Y_0) and T are independent conditional on X.

 \Box True \Box False

End-Term Exam (2/2)

Basic Econometrics Fall 2018 Tadao Hoshino

Name.			
ID.			

Section 3

1. Consider the following simple regression model:

$$Y_i = \beta_0 + X_i \beta_1 + \epsilon_i \quad i = 1, \dots, n.$$

Derive the OLS estimator for β_1 .

2. The following is the regression result on a sample of 1000 apartment houses in a Japanese city (standard errors in parentheses):

$$\widehat{rprice} = \underset{(9.9)}{71.3} + \underset{(0.3)}{1.4} \cdot area - \underset{(0.5)}{1.9} \cdot age + \underset{(0.4)}{0.9} \cdot renov - \underset{(0.1)}{0.3} \cdot AirPollut$$

where rprice is the monthly rental price (1,000JPY), area is the area size (m^2) of the house, age is the age of the apartment (years), renov is a dummy variable renov = 1 if the apartment was renovated, and AirPollut is the amount of air pollutant emission from nearby manufacturing plants (measured in some unit, e.g., ppm).

- 1. Suppose that an apartment owner renovates the apartment. What is the predicted increase in the rental price of a house in the apartment?
- 2. Suppose that instead of measuring rprice and area in 1,000JPY and m^2 , these variables are measured in 100JPY and $10m^2$. What is the regression coefficient estimate of area from this new regression?
- 3. Is the hypothesis H_0 : renovated and un-renovated apartments have the same economic value rejected at the 5% significance level? If yes (no), what about the significance level at 1% (10%)?

4. Do you think the variable *AirPollut* should be treated as endogenous? Why?

Section 4

Describe (1) the problem of selection bias in the estimation of treatment effects, and (2) how randomized experiments can eliminate the bias. (You can answer either mathematically or in words.)