Revisiting Event Study Designs: Robust and Efficient Estimation

 $\hbox{Kirill Borusyak}^{1,4} \quad \hbox{Xavier Jaravel}^{2,4} \quad \hbox{Jann Spiess}^3$

¹UCL ²LSE ³Stanford ⁴CEPR

DiD Reading Group, June 2021

Event study designs / diff-in-diff with staggered adoption

	i = A	i = B	i = C	i = D
t = 1				
t=2				
t=3				
t = 4				
t=5				
t = 6				

Outcomes Y_{it}

Treatment indicator:
$$D_{it} = \begin{cases} 1, & \text{treated} \\ 0, & \text{not treated} \end{cases}$$

From diff-in-diff to two-way fixed effects

	i = A	i = B
t = 1		
t=2		

Desired estimator:

$$\hat{\tau} = (Y_{A2} - Y_{A1}) - (Y_{B2} - Y_{B1})$$

is obtained from two-way FE regression:

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau + \varepsilon_{it}$$

Event study design and two-way fixed effect regression

	i = A	i = B	i = C	i = D
t=1				
t=2				
t=3				
t=4				
t = 5				
t=6				
	$E_i = 2$	$E_i = 3$	$E_i = 5$	$E_i = \infty$

Dynamic specifications:

$$Y_{it} = \tilde{\alpha}_i + \tilde{\beta}_t + \sum_{\substack{h=-a\\h\neq -1}}^{b-1} \tau_h \mathbb{1}\left[t = E_i + h\right] + \tau_{b+1}\left[t \geq E_i + b\right] + \varepsilon_{it}$$

Static specification:

$$Y_{it} = \tilde{\alpha}_i + \tilde{\beta}_t + D_{it}\tau + \varepsilon_{it}$$

Implicit assumptions

$$Y_{it} = lpha_i + eta_t + D_{it} \ au + arepsilon_{it}$$
 no anticipation

This paper

- 1 Make assumptions explicit and separate them from goals
- 2 Relate problems with common practice to mismatch between assumptions and convenience regressions (building upon original Borusyak and Jaravel (2017) version)
- 3 Derive robust and efficient estimator from first principles, work out "imputation" structure (in baseline case)
- 4 Provide large-sample theory and inference for this estimator
- 5 Propose approach to testing, separate from estimation
- 6 Compare with alternative robust estimation strategies
- 7 Discuss extensions beyond event studies

Related event-studies literature

- Problems with simple OLS regressions in event study designs Borusyak and Jaravel (2017); Goodman-Bacon (2018); Strezhnev (2018); De Chaisemartin and D'Haultfœuille (2020); Sun and Abraham (2021); Schmidheiny and Siegloch (2020); Baker et al. (2021)
- Estimators that are robust to heterogeneity

 De Chaisemartin and D'Haultfœuille (2020); Sun and Abraham (2021);

 Callaway and Sant'Anna (2021); Cengiz et al. (2019)
- Justification and testing of, robustness wrt parallel trends
 Roth (2018); Rambachan and Roth (2020); Roth and Sant'Anna (2020)
- Randomization-based and doubly-robust estimation
 Athey and Imbens (2018); Arkhangelsky and Imbens (2019); Callaway and Sant'Anna (2021); Roth and Sant'Anna (2021)
- Imputation-based estimation in panel data Gobillon and Magnac (2016); Xu (2017); Liu et al. (2020); Gardner (2021)

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- 3. Imputation-Based Estimation and Testing
- 4. Asymptotic Theory and Inference
- 5. Testing
- 6. Comparison to Other Estimators
- 7. Extensions

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- Imputation-Based Estimation and Testing
- Asymptotic Theory and Inference
- Testing
- 6. Comparison to Other Estimators
- 7. Extensions

Setup: fixed sample

	i = A	i = B	i = C	i = D
t = 1				
t=2				
t=3				
t=4				
t=5				
t=6				
	$E_i = 2$	$E_i = 3$	$E_{i} = 5$	$E_i = \infty$

 $D_{it}=1[t\geq E_i]$ — treatment indicator $\Omega_1=\{it;D_{it}=1\}$ — set of treated observations $\Omega_0=\{it;D_{it}=0\}$ — set of untreated observations (both not-yet-treated and, if any, never-treated)

Estimation Target

$$au_w = \sum_{it \in \Omega_1} w_{it} au_{it} \equiv w_1' au ext{ (where } au_{it} = Y_{it} - \underbrace{Y_{it}(0)}_{ ext{outcome if never treated}}$$

Estimation Target

$$au_w = \sum_{it \in \Omega_1} w_{it} au_{it} \equiv w_1' au ext{ (where } au_{it} = Y_{it} - \underbrace{Y_{it}(0)}_{ ext{outcome if never treated}}$$

- Sample ATT
- Horizon-specific ATT $(E_i = t + h)$

Estimation Target

$$au_w = \sum_{it \in \Omega_1} w_{it} au_{it} \equiv w_1' au ext{ (where } au_{it} = Y_{it} - \underbrace{Y_{it}(0)}_{\text{outcome if never treated}}$$

- Sample ATT
- Horizon-specific ATT $(E_i = t + h)$
- Differences btw subgroup ATTs

- Size-weighted ATT
- Balance unit composition across horizons

Estimation Target

$$au_w = \sum_{it \in \Omega_1} w_{it} au_{it} \equiv w_1' au ext{ (where } au_{it} = Y_{it} - \underbrace{Y_{it}(0)}_{ ext{outcome if never treated}}$$

- Sample ATT
- Horizon-specific ATT $(E_i = t + h)$
- Differences btw subgroup ATTs

- Size-weighted ATT
- Balance unit composition across horizons

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$
 with $\mathbb{E}\left[\varepsilon_{it}\right] = 0$, non-stochastic α_i, β_t

Estimation Target

$$au_w = \sum_{it \in \Omega_1} w_{it} au_{it} \equiv w_1' au ext{ (where } au_{it} = Y_{it} - \underbrace{Y_{it}(0)}_{\text{outcome if never treated}}$$

- Sample ATT
- Horizon-specific ATT $(E_i = t + h)$
- Differences btw subgroup ATTs

- Size-weighted ATT
- Balance unit composition across horizons

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$
 with $\mathbb{E}\left[\varepsilon_{it}\right] = 0$, non-stochastic α_i, β_t

A1': Generalized Fixed-Effects Model

$$Y_{it}(0) = A'_{it}\lambda_i + X'_{it}\delta + \varepsilon_{it} = Z'_{it}\pi + \varepsilon_{it}$$

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model (optional!)

Restrictions $B\tau=0$ hold for a known matrix B

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model (optional!)

Restrictions $B\tau = 0$ hold for a known matrix B

 \Leftrightarrow Model $\tau = \Gamma \theta$ holds for unknown parameters θ , known matrix Γ

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

 $Y_{it} = Y_{it}(0)$ for all $it \in \Omega_0$

A3: Treatment-Effect Model (optional!)

Restrictions $B\tau=0$ hold for a known matrix B

 \Leftrightarrow Model $\tau = \Gamma \theta$ holds for unknown parameters θ , known matrix Γ

"True" model for observed outcomes:

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}, \qquad \tau = \Gamma\theta$$

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- 3. Imputation-Based Estimation and Testing
- 4. Asymptotic Theory and Inference
- Testing
- 6. Comparison to Other Estimators
- 7. Extensions

Under-identification of the fully-dynamic specification

$$Y_{it} = \alpha_i + \beta_t + \sum_{\substack{h = -\infty \\ h \neq -1}}^{\infty} \tau_h \mathbb{1}[t = E_i + h] + \varepsilon_{it}$$

Under-Identification

Without never-treated units, path $\{\tau_h\}_{h\neq -1}$ not point identified in fully-dynamic OLS: adding a linear trend to this path, $\{\tau_h + \kappa \left(h+1\right)\}$ fits the data equally well

Under-identification of the fully-dynamic specification

$$Y_{it} = \alpha_i + \beta_t + \sum_{\substack{h = -\infty \\ h \neq -1}}^{\infty} \tau_h \mathbb{1}[t = E_i + h] + \varepsilon_{it}$$

Under-Identification

Without never-treated units, path $\{\tau_h\}_{h\neq -1}$ not point identified in fully-dynamic OLS: adding a linear trend to this path, $\{\tau_h + \kappa \, (h+1)\}$ fits the data equally well

Under-identification of the fully-dynamic specification

$$Y_{it} = \alpha_i + \beta_t + \sum_{\substack{h = -\infty \\ h \neq -1}}^{\infty} \tau_h \mathbb{1}[t = E_i + h] + \varepsilon_{it}$$

Under-Identification

Without never-treated units, path $\{\tau_h\}_{h\neq -1}$ not point identified in fully-dynamic OLS: adding a linear trend to this path, $\{\tau_h+\kappa\,(h+1)\}$ fits the data equally well

Estimation Target

$$au_{\it w} = \sum_{\it it \in \Omega_1} {\it w_{\it it} au_{\it it}}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model

$$\tau = \Gamma \theta$$

Negative weighting in the static regression

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau + \varepsilon_{it}, \qquad D_{it} = 1[t \ge E_i]$$

OLS estimand

$$au = \sum_{it \in \Omega_1} w_{it}^{\text{OLS}} au_{it}$$
 for some weights w_{it}^{OLS} with $\sum_{it \in \Omega_1} w_{it}^{\text{OLS}} = 1$

Negative weighting in the static regression

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau + \varepsilon_{it},$$
 $D_{it} = 1[t \ge E_i]$

OLS estimand

$$au = \sum_{it \in \Omega_1} w_{it}^{\mathsf{OLS}} au_{it}$$
 for some weights w_{it}^{OLS} with $\sum_{it \in \Omega_1} w_{it}^{\mathsf{OLS}} = 1$

Negative weights

Under A1, A2, OLS can put negative weight on treatment effects. Here, $\tau=\tau_{A2}+\frac{1}{2}\tau_{B3}-\frac{1}{2}\tau_{A3}$

$\mathbb{E}\left[Y_{it}\right]$	i = A	i = B
t = 1	α_{A}	α_{B}
t = 2	$\alpha_A + \beta_2 + \tau_{A2}$	$\alpha_B + \beta_2$
t = 3	$\alpha_A + \beta_3 + \tau_{A3}$	$\alpha_B + \beta_3 + \tau_{B3}$
	$E_i = 2$	$E_i = 3$

Why negative weights?

Negative weights

Under A1, A2, OLS can put negative weight on treatment effects

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model

$$\tau = \Gamma \theta$$

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau + \varepsilon_{it} \longleftrightarrow Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}$$

Why negative weights?

Negative weights

Under A1, A2, OLS can put negative weight on treatment effects

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model

$$\tau = \Gamma \theta$$

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau + \varepsilon_{it} \longleftrightarrow Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}$$

Forbidden comparisons

Efficient variance weighting

Spurious identification of long-run causal effects

$\mathbb{E}\left[Y_{it}\right]$	i = A	i = B
t = 1	α_{A}	$\alpha_{\mathcal{B}}$
t = 2	$\alpha_A + \beta_2 + \tau_{A2}$	$\alpha_B + \beta_2$
t = 3	$\alpha_A + \beta_3 + \tau_{A3}$	$\alpha_B + \beta_3 + \tau_{B3}$
	$E_i = 2$	$E_i = 3$

Spurious Identification of Long-Run Effects

Without never-treated units A1, A2 do not identify long-run effects, while dynamic OLS specifications produce some estimates

Spurious identification of long-run causal effects

$\mathbb{E}\left[Y_{it}\right]$	i = A	i = B
t = 1	α_{A}	$\alpha_{\mathcal{B}}$
t = 2	$\alpha_A + \beta_2 + \tau_{A2}$	$\alpha_{B} + \beta_{2}$
t = 3	$\alpha_A + \beta_3 + \tau_{A3}$	$\alpha_B + \beta_3 + \tau_{B3}$
	$E_i = 2$	$E_i = 3$

Spurious Identification of Long-Run Effects

Without never-treated units A1, A2 do not identify long-run effects, while dynamic OLS specifications produce some estimates

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model

$$\tau = \Gamma \theta$$

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- 3. Imputation-Based Estimation and Testing
- 4. Asymptotic Theory and Inference
- Testing
- 6. Comparison to Other Estimators
- 7. Extensions

Efficient estimation under homoskedasticity

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model

$$\tau = \Gamma \theta$$

A4: Homoscedasticity

$$\mathbb{E}\left[\varepsilon_{it}\varepsilon_{is}\right] = \sigma^2 1[it = js]$$

Analysis conditional on panel, only randomness is ε_{it}

Efficient estimator

Efficient Estimator

Among linear unbiased estimators of τ_w , the (unique) efficient estimator $\hat{\tau}_w^*$ can be written as:

I Estimate θ by $\hat{\theta}$ from the linear regression (where we assume that θ is identified)

$$Y_{it} = \alpha_i + \beta_t + D_{it}\Gamma'_{it}\theta + \varepsilon_{it}$$

- **2** Estimate the vector of treatment effects au by $\hat{ au} = \Gamma \hat{ heta}$
- 3 Estimate the target τ_w by $\hat{\tau}_w^* = w_1'\hat{\tau}$

With no restrictions on treatment effects ($\Gamma = \mathbb{I}$), this $\hat{\tau}_w^*$ can be obtained as an imputation estimator:

- **1** Estimate: Within $it \in \Omega_0$, estimate α_i, β_t from $Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$
- **2** Extrapolate: $\hat{Y}_{it}(0) = \hat{\alpha}_i + \hat{\beta}_t$ and $\hat{\tau}_{it} = Y_{it} \hat{Y}_{it}(0)$ for $it \in \Omega_1$
- 3 Take averages: $\hat{ au}_w^* = \sum_{it \in \Omega_1} w_{it} \hat{ au}_{it}$

With no restrictions on treatment effects ($\Gamma = \mathbb{I}$), this $\hat{\tau}_w^*$ can be obtained as an imputation estimator:

- **I** Estimate: Within $it \in \Omega_0$, estimate α_i, β_t from $Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$
- **2** Extrapolate: $\hat{Y}_{it}(0) = \hat{\alpha}_i + \hat{\beta}_t$ and $\hat{\tau}_{it} = Y_{it} \hat{Y}_{it}(0)$ for $it \in \Omega_1$
- 3 Take averages: $\hat{ au}_w^* = \sum_{it \in \Omega_1} w_{it} \hat{ au}_{it}$

Remarks:

Efficiency is finite-sample

With no restrictions on treatment effects ($\Gamma = \mathbb{I}$), this $\hat{\tau}_w^*$ can be obtained as an imputation estimator:

- **I** Estimate: Within $it \in \Omega_0$, estimate α_i, β_t from $Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$
- **2** Extrapolate: $\hat{Y}_{it}(0) = \hat{\alpha}_i + \hat{\beta}_t$ and $\hat{\tau}_{it} = Y_{it} \hat{Y}_{it}(0)$ for $it \in \Omega_1$
- 3 Take averages: $\hat{ au}_w^* = \sum_{it \in \Omega_1} w_{it} \hat{ au}_{it}$

Remarks:

- Efficiency is finite-sample
- For specific w_{it} yields Liu et al. (2020); Gardner (2021)

With no restrictions on treatment effects ($\Gamma = \mathbb{I}$), this $\hat{\tau}_w^*$ can be obtained as an imputation estimator:

- **I** Estimate: Within $it \in \Omega_0$, estimate α_i, β_t from $Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$
- **2** Extrapolate: $\hat{Y}_{it}(0) = \hat{\alpha}_i + \hat{\beta}_t$ and $\hat{\tau}_{it} = Y_{it} \hat{Y}_{it}(0)$ for $it \in \Omega_1$
- **3** Take averages: $\hat{ au}_w^* = \sum_{it \in \Omega_1} w_{it} \hat{ au}_{it}$

Remarks:

- Efficiency is finite-sample
- For specific w_{it} yields Liu et al. (2020); Gardner (2021)
- Imputation structure generalizes to non-trivial Γ (extra step: adjusted the estimand)

Imputation structure of the efficient estimator

With no restrictions on treatment effects ($\Gamma = \mathbb{I}$), this $\hat{\tau}_w^*$ can be obtained as an imputation estimator:

- **I** Estimate: Within $it \in \Omega_0$, estimate α_i, β_t from $Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$
- **2** Extrapolate: $\hat{Y}_{it}(0) = \hat{\alpha}_i + \hat{\beta}_t$ and $\hat{\tau}_{it} = Y_{it} \hat{Y}_{it}(0)$ for $it \in \Omega_1$
- **3** Take averages: $\hat{ au}_w^* = \sum_{it \in \Omega_1} w_{it} \hat{ au}_{it}$

Remarks:

- Efficiency is finite-sample
- For specific *w_{it}* yields Liu et al. (2020); Gardner (2021)
- Imputation structure generalizes to non-trivial Γ (extra step: adjusted the estimand)
- Also generalizes to any unbiased estimator of τ_w , with the estimation step possibly done inefficiently

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- Imputation-Based Estimation and Testing
- 4. Asymptotic Theory and Inference
- Testing
- 6. Comparison to Other Estimators
- 7. Extensions

Assumptions for asymptotic theory

Estimation Target

$$au_{w} = \sum_{it \in \Omega_{1}} w_{it} au_{it}$$

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

A2: No Anticipation

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

A3: Treatment-Effect Model

$$\tau = \Gamma \theta$$

A5: Clustered Errors

Error terms clustered by units i

Consider some $\hat{\tau}_w = \sum_{it} v_{it} Y_{it}$, with $\hat{\tau}_w^*$ as special case

Asymptotic properties

Consistency and asymptotic Normality

Under a Herfindahl condition on the weights, $\hat{\tau}_w$ is consistent. Under additional moment condition on the weights, also

$$\sigma_w^{-1}(\hat{\tau}_w - \tau_w) \stackrel{d}{\rightarrow} \mathcal{N}(0,1)$$

for
$$\sigma_w^2 = \text{Var}(\hat{\tau}_w)$$

Sufficient conditions for complete, short panels

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}, \qquad \sigma_w^2 = \mathbb{E}\left[\sum_i \left(\sum_t v_{it}\varepsilon_{it}\right)^2\right]$$

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}, \qquad \sigma_w^2 = \mathbb{E}\left[\sum_i \left(\sum_t v_{it}\varepsilon_{it}\right)^2\right]$$

Two challenges with plug-in estimation

■ In short panels, $\hat{\alpha}_i$ and thus $\hat{\varepsilon}_{it}$ are not consistent

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}, \qquad \sigma_w^2 = \mathbb{E}\left[\sum_i \left(\sum_t v_{it}\varepsilon_{it}\right)^2\right]$$

Two challenges with plug-in estimation

- In short panels, $\hat{\alpha}_i$ and thus $\hat{\varepsilon}_{it}$ are not consistent
- The imputation procedure fits $it \in \Omega_1$ perfectly, $\hat{\varepsilon}_{it} = 0$

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}, \qquad \sigma_w^2 = \mathbb{E}\left[\sum_i \left(\sum_t v_{it}\varepsilon_{it}\right)^2\right]$$

Two challenges with plug-in estimation

- In short panels, $\hat{\alpha}_i$ and thus $\hat{\varepsilon}_{it}$ are not consistent not a problem with clustered SE (Stock and Watson 2008)
- The imputation procedure fits $it \in \Omega_1$ perfectly, $\hat{\varepsilon}_{it} = 0$

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}, \qquad \sigma_w^2 = \mathbb{E}\left[\sum_i \left(\sum_t v_{it}\varepsilon_{it}\right)^2\right]$$

Two challenges with plug-in estimation

- In short panels, $\hat{\alpha}_i$ and thus $\hat{\varepsilon}_{it}$ are not consistent not a problem with clustered SE (Stock and Watson 2008)
- The imputation procedure fits $it \in \Omega_1$ perfectly, $\hat{\varepsilon}_{it} = 0$ solve by using $\tilde{\varepsilon}_{it} = Y_{it} \hat{\alpha}_i \hat{\beta}_t \hat{\tau}_{it}$ instead, where $\hat{\tau}_{it} \stackrel{p}{\to} \bar{\tau}_{it}$ is some average of many treatment effects

$$Y_{it} = \alpha_i + \beta_t + D_{it}\tau_{it} + \varepsilon_{it}, \qquad \sigma_w^2 = \mathbb{E}\left[\sum_i \left(\sum_t v_{it}\varepsilon_{it}\right)^2\right]$$

Two challenges with plug-in estimation

- In short panels, $\hat{\alpha}_i$ and thus $\hat{\varepsilon}_{it}$ are not consistent not a problem with clustered SE (Stock and Watson 2008)
- The imputation procedure fits $it \in \Omega_1$ perfectly, $\hat{\varepsilon}_{it} = 0$ solve by using $\tilde{\varepsilon}_{it} = Y_{it} \hat{\alpha}_i \hat{\beta}_t \hat{\tau}_{it}$ instead, where $\hat{\tau}_{it} \stackrel{p}{\to} \bar{\tau}_{it}$ is some average of many treatment effects

Conservative Inference

Under regularity conditions on v_{it} , the variance estimator is asymptoically conservatively valid (and asy. exact if $\tau_{it} \equiv \bar{\tau}_{it}$)

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- Imputation-Based Estimation and Testing
- Asymptotic Theory and Inference
- 5. Testing
- 6. Comparison to Other Estimators
- 7. Extensions

A1: Parallel Trends

A2: No Anticipation

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

Two existing approaches to testing A1 and A2:

A1: Parallel Trends

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

Two existing approaches to testing A1 and A2:

Coefficients on leads in OLS

A1: Parallel Trends

A2: No Anticipation

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

Two existing approaches to testing A1 and A2:

Coefficients on leads in OLS

Placebo tests based on robust estimators

A1: Parallel Trends

A2: No Anticipation

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

Two existing approaches to testing A1 and A2:

- Coefficients on leads in OLS
 - contaminated by treatment effect heterogeneity (Sun and Abraham, 2021). We use pre-treatment observations only
- Placebo tests based on robust estimators

A1: Parallel Trends

A2: No Anticipation

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

Two existing approaches to testing A1 and A2:

- Coefficients on leads in OLS
 - contaminated by treatment effect heterogeneity (Sun and Abraham, 2021). We use pre-treatment observations only
- Placebo tests based on robust estimators
 - does not distinguish estimation and testing.

A1: Parallel Trends

A2: No Anticipation

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

$$Y_{it} = Y_{it}(0)$$
 for all $it \in \Omega_0$

Two existing approaches to testing A1 and A2:

- Coefficients on leads in OLS
 - contaminated by treatment effect heterogeneity (Sun and Abraham, 2021). We use pre-treatment observations only
- Placebo tests based on robust estimators
 - does not distinguish estimation and testing.

We propose to estimate by OLS:

$$y_{it} = \alpha_i + \beta_t + W_{it}'\gamma + \tilde{\varepsilon}_{it}$$
 on $it \in \Omega_0$ only

where W_{it} are e.g. indicators of pre-periods $-1, \ldots, -K$

Robustness to pre-testing

OLS-based pre-trend coefficients are correlated with treatment effect estimates, biasing inference (Roth, 2018)

Robustness to pre-testing

OLS-based pre-trend coefficients are correlated with treatment effect estimates, biasing inference (Roth, 2018)

Robustness to pre-testing

Tests based on outcome Y_{it} for $it \in \Omega_0$ alone are orthogonal to $\hat{\tau}_w^*$ under homoskedasticity. Thus, conditioning on the pre-trend passing does not affect asymptotic inference.

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- Imputation-Based Estimation and Testing
- Asymptotic Theory and Inference
- Testing
- 6. Comparison to Other Estimators
- 7. Extensions

- Estimate cohort-average treatment effects CATT_{et}
- Average them in some way

- Estimate cohort-average treatment effects *CATT*_{et}
- Average them in some way
- Can be represented in an imputation way with some $\hat{Y}_{it}(0)$, but not efficient under homoskedasticity

- Estimate cohort-average treatment effects CATT_{et}
- Average them in some way
- Can be represented in an imputation way with some $\hat{Y}_{it}(0)$, but not efficient under homoskedasticity
- Main difference: they only use period e-1 for $CATT_{et}$, even if parallel trends are imposed on all not-yet-treated units

- Estimate cohort-average treatment effects CATT_{et}
- Average them in some way
- Can be represented in an imputation way with some $\hat{Y}_{it}(0)$, but not efficient under homoskedasticity
- Main difference: they only use period e-1 for $CATT_{et}$, even if parallel trends are imposed on all not-yet-treated units

$\mathbb{E}\left[Y_{it}\right]$	i = A	i = B	i = C
t = 1	$\alpha_{\mathcal{A}}$	$\alpha_{\mathcal{B}}$	$\alpha_{\mathcal{C}}$
t = 2	$\alpha_A + \beta_2 + \tau_{A2}$	$\alpha_{B}+eta_{2}$	$\alpha_{\mathcal{C}} + \beta_{2}$
t = 3	$\alpha_A + \beta_3 + \tau_{A3}$	$\alpha_B + \beta_3 + \tau_{B3}$	$\alpha_C + \beta_3$
	$E_i = 2$	$E_i = 3$	$E_i = 4$

- Transparently maps $Y_{it}(0)$ model to estimator
 - \Rightarrow immediately extends beyond event studies

- Transparently maps $Y_{it}(0)$ model to estimator \Rightarrow immediately extends beyond event studies
- Separates testing from estimation
 - \Rightarrow mitigates the pre-testing bias of Roth (2018)

- Transparently maps $Y_{it}(0)$ model to estimator \Rightarrow immediately extends beyond event studies
- Separates testing from estimation
 ⇒ mitigates the pre-testing bias of Roth (2018)
- Does not require random sampling⇒ allows for richer class of estimands

- Transparently maps $Y_{it}(0)$ model to estimator \Rightarrow immediately extends beyond event studies
- Separates testing from estimation

 ⇒ mitigates the pre-testing bias of Roth (2018)
- Does not require random sampling⇒ allows for richer class of estimands
- Analtyical and computationally efficient SE

Simulations

Baseline DGP

- I = 250 units, T = 6 periods
- $E_i = 2, ..., 7$ with equal probabilities
- Growing treatment effects: $\tau_{it} = 1 + (t E_i)$
- lacksquare Residuals $arepsilon_{it} \sim \operatorname{iid} \mathcal{N}(0,1)$

Simulations

Baseline DGP

- I = 250 units, T = 6 periods
- $E_i = 2, ..., 7$ with equal probabilities
- Growing treatment effects: $\tau_{it} = 1 + (t E_i)$
- lacksquare Residuals $arepsilon_{it} \sim \operatorname{iid} \mathcal{N}(0,1)$

Deviations

- Four extra pre-periods: t = -3, ..., 0
- Heteroskedasticity: $\varepsilon_{it} \sim \mathcal{N}(0, \sigma_{it}^2)$, $\sigma_{it}^2 = t$
- Autocorrelation: AR(1) process with $\rho = 0.5$
- Anticipation effects: $1/\sqrt{I} = 0.0632$ at $t = E_i 1$

31

Simulation results: 15-41% lower variance in baseline case

Horizon	Estimator	Baseline simulation Var Covrg		More pre- periods <i>Var</i>	Heterosk. errors <i>Var</i>	AR(1) errors <i>Var</i>	Antici effect Bias
		(1)	(2)	(3)	(4)	(5)	(6)
h = 0	Imputation	0.0099	0.942	0.0080	0.0347	0.0072	-0.056
	DCDH	0.0140	0.938	0.0140	0.0526	0.0070	-0.091
	SA	0.0115	0.938	0.0115	0.0404	0.0066	-0.075
h = 1	Imputation	0.0145	0.936	0.0111	0.0532	0.0143	-0.071
	DCDH	0.0185	0.948	0.0185	0.0703	0.0151	-0.097
	SA	0.0177	0.948	0.0177	0.0643	0.0165	-0.08
h = 2	Imputation	0.0222	0.956	0.0161	0.0813	0.0240	-0.088
	DCDH	0.0262	0.958	0.0262	0.0952	0.0257	-0.102
	SA	0.0317	0.950	0.0317	0.1108	0.0341	-0.08
h = 3	Imputation	0.0366	0.928	0.0255	0.1379	0.0394	-0.110
	DCDH	0.0422	0.930	0.0422	0.1488	0.0446	-0.108
	SA	0.0479	0.952	0.0479	0.1659	0.0543	-0.093
h = 4	Imputation	0.0800	0.942	0.0546	0.3197	0.0773	-0.148
	DCDH	0.0932	0.950	0.0932	0.3263	0.0903	-0.12
	SA	0.0932	0.954	0.0932	0.3263	0.0903	-0.126

2

Comparison to other imputation results

Similar imputation-based approaches:

- Gobillon and Magnac (2016); Xu (2017) for factor models
- Liu et al. (2020); Gardner (2021) applied to event studies to estimate the overall or horizon-specific ATT

Comparison to other imputation results

Similar imputation-based approaches:

- Gobillon and Magnac (2016); Xu (2017) for factor models
- Liu et al. (2020); Gardner (2021) applied to event studies to estimate the overall or horizon-specific ATT

Our contribution:

- Derive this estimator as the most efficient one
- Allow for restrictions on treatment effects
- More general class of estimands
- Extensions to other models
- Asymptotic theory with unit FEs

Outline

- 1. Setting and Framework
- 2. Conventional Practice and Associated Problems
- Imputation-Based Estimation and Testing
- Asymptotic Theory and Inference
- Testing
- 6. Comparison to Other Estimators
- 7. Extensions

■ Repeated cross-sections (i.e. different samples of *i* in the same groups *g* every year):

$$Y_{it}(0) = \alpha_{g(i)} + \beta_t + \varepsilon_{it}$$

■ Repeated cross-sections (i.e. different samples of *i* in the same groups *g* every year):

$$Y_{it}(0) = \alpha_{g(i)} + \beta_t + \varepsilon_{it}$$

■ Two-dimensional cross-sections: e.g. by region i and age group g in single period, different age threshoulds for eligilibity across regions $(D_{ig} = 1 [g \ge E_i])$ $Y_{ig}(0) = \alpha_i + \alpha_g + \varepsilon_{ig}$

■ Repeated cross-sections (i.e. different samples of *i* in the same groups *g* every year):

$$Y_{it}(0) = \alpha_{g(i)} + \beta_t + \varepsilon_{it}$$

- Two-dimensional cross-sections: e.g. by region i and age group g in single period, different age threshoulds for eligilibity across regions $(D_{ig} = 1 [g \ge E_i])$ $Y_{ig}(0) = \alpha_i + \alpha_g + \varepsilon_{ig}$
- Triple-differences: $Y_{igt}(0) = \alpha_{ig} + \alpha_{it} + \alpha_{gt} + \varepsilon_{it}$

Repeated cross-sections (i.e. different samples of i in the same groups g every year):

$$Y_{it}(0) = \alpha_{g(i)} + \beta_t + \varepsilon_{it}$$

- Two-dimensional cross-sections: e.g. by region i and age group g in single period, different age threshoulds for eligilibity across regions $(D_{ig} = 1 [g \ge E_i])$ $Y_{ig}(0) = \alpha_i + \alpha_g + \varepsilon_{ig}$
- Triple-differences: $Y_{igt}(0) = \alpha_{ig} + \alpha_{it} + \alpha_{gt} + \varepsilon_{it}$
- Generic data: $Y_j(0) = Z'_j \pi + \varepsilon_j$

■ Plain vanilla simultaneous treatment DiD (at $E_i = e$ or never): OLS has no negative weights but still inefficient and not robust to pre-testing — estimation and testing are conflated

- Plain vanilla simultaneous treatment DiD (at $E_i = e$ or never): OLS has no negative weights but still inefficient and not robust to pre-testing estimation and testing are conflated
- Simultaneous treatment + unit-specific trends or controls:
 Same problems of OLS, imputation solution

- Plain vanilla simultaneous treatment DiD (at $E_i = e$ or never): OLS has no negative weights but still inefficient and not robust to pre-testing estimation and testing are conflated
- Simultaneous treatment + unit-specific trends or controls:
 Same problems of OLS, imputation solution
- Treatment switching on and off:
 Imputation solution applies if no spillovers from treated to untreated periods

- Plain vanilla simultaneous treatment DiD (at $E_i = e$ or never): OLS has no negative weights but still inefficient and not robust to pre-testing estimation and testing are conflated
- Simultaneous treatment + unit-specific trends or controls:
 Same problems of OLS, imputation solution
- Treatment switching on and off:
 Imputation solution applies if no spillovers from treated to untreated periods
- Multiple events per unit:
 Introduce appropriate A3 restrictions, e.g. that effects stabilize after P periods after the event (and before next event)

Recap: Framework to understand issues and organize solutions

- Make assumptions explicit and separate them from goals
- 2 Relate problems with common practice to mismatch between assumptions and convenience regressions (building upon original Borusyak and Jaravel (2017) version)
- 3 Derive robust and efficient estimator from first principles, work out "imputation" structure (in baseline case)
- 4 Provide large-sample theory and inference for this estimator
- **5** Propose approach to testing, separate from estimation
- 6 Compare with alternative robust estimation strategies
- Discuss extensions beyond event studies

Stata packages available:

```
ssc install did_imputation
ssc install event_plot
```

References

- Arkhangelsky, D. and Imbens, G. W. (2019). Double-Robust Identification for Causal Panel Data Models.
- Athey, S. and Imbens, G. W. (2018). Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption. Working Paper.
- Baker, A. C., Larcker, D. F., and Wang, C. C. Y. (2021). How Much Should We Trust Staggered Difference-In-Differences Estimates? *Working Paper*.
- Borusyak, K. and Jaravel, X. (2017). Revisiting Event Study Designs. Working Paper.
- Callaway, B. and Sant'Anna, P. H. (2021). Difference-in-Differences with Multiple Time Periods and an Application on the Minimum Wage and Employment. Journal of Econometrics.
- Cengiz, D., Dube, A., Lindner, A., and Zippere, B. (2019). The Effect of Minimum Wages on Low-Wage Jobs. The Quarterly Journal of Economics, pages 1405–1454.
- De Chaisemartin, C. and D'Haultfœuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. *American Economic Review*, 110(9):2964–2996.
- Gardner, J. (2021). Two-stage differences in differences. Working Paper.
- Gobillon, L. and Magnac, T. (2016). Regional policy evaluation: Interactive fixed effects and synthetic controls. *Review of Economics and Statistics*, 98(3):535–551.
- Goodman-Bacon, A. (2018). Difference-in-Differences with Variation in Treatment Timing. Working Paper.
- Liu, L., Wang, Y., and Xu, Y. (2020). A Practical Guide to Counterfactual Estimators for Causal Inference with Time-Series Cross-Sectional Data. SSRN Electronic Journal.
- Rambachan, A. and Roth, J. (2020). An Honest Approach to Parallel Trends. Working Paper.
- Roth, J. (2018). Pre-test with Caution: Event-study Estimates After Testing for Parallel Trends. Working Paper, pages 1–55.
- Roth, J. and Sant'Anna, P. H. (2020). When Is Parallel Trends Sensitive to Functional Form? Working Paper.
- Roth, J. and Sant'Anna, P. H. C. (2021). Efficient Estimation for Staggered Rollout Designs. Working Paper.
- Schmidheiny, K. and Siegloch, S. (2020). On Event Study Designs and Distributed-Lag Models: Equivalence, Generalization and Practical Implications. Working Paper.
- Strezhnev, A. (2018). Semiparametric weighting estimators for multi-period difference-in-differences designs. Working Paper.
- Sun, L. and Abraham, S. (2021). Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects. Journal of Econometrics.
- Xu, Y. (2017). Generalized synthetic control method: Causal inference with interactive fixed effects models. Political Analysis, 25(1):57–76.