The ETF Tangency Portfolio

David Puelz, Carlos Carvalho and Richard Hahn

McCombs School of Business and Booth School of Business SBIES 2015

June 10, 2015

Overview

Investor's Dilemma

Solving the Dilemma - A Selection Algorithm

Results

The Factor Zoo

Many factors and anomalies with positive alpha exist!

- Size
- Value
- Momentum
- Short and long term reversal
- \blacktriangleright Betting against β
- Direct profitability
- Dividend initiation
- **.**..

Investor's Dilemma

How can I access these unattainable factor returns?

Is there an *optimal* way to allocate among passive ETF's?

Investors Desire Advice

Opportunities for Improvement

Ad-hoc selection of assets

- Highly constrained optimization
- Unclear exposure of investor's portfolio

Our Contribution

► Model unattainable (target) returns via ETF factor models

- Develop algorithm to select ETF factors
- Provide an optimal portfolio of a small number ETF's

Algorithm for ETF Selection

- 1. Sample ETF's via Matrix-Variate SSVS
- 2. Calculate a model-implied optimal portfolio
- 3. Loss function selection of ETF's using sampled optimal portfolio (similar to Hahn and Carvalho, *JASA* 2015)

An ETF-APT Model

- ► Target Assets: $\{R_j\}_{j=1}^q$
- ▶ ETF Factors: $\{ETF_i\}_{i=1}^p$

$$R_j = \beta_{j1}ETF_1 + \cdots + \beta_{jp}ETF_p + \epsilon_j$$
 $\epsilon_j \sim N(0, \sigma^2)$

Sampling the Model

Matrix-Variate SSVS:

$$M_{\gamma}: \ \mathbf{R} \sim \mathrm{MN}_{N,q} \left(\mathbf{E}_{\gamma} \boldsymbol{\beta}_{\gamma}, \ \sigma^2 \mathbb{I}_{N \times N}, \ \mathbb{I}_{q \times q} \right)$$

- ▶ Prior on σ and β : g-priors (Empirical Bayes)
- Prior on model space: $\mathbf{P}(M_{\gamma})$ (Uniform $(\frac{1}{2^p})$ or Multiplicity Adjusted $(\frac{1}{p+1}\frac{1}{\binom{p}{k_{\alpha}}})$)

Implied Optimal Portfolio

Model implied moments

$$\mu_{R} = \mathbb{E}[\mathbf{R}] = \mu_{E_{\gamma}}^{T} \boldsymbol{\beta}_{\gamma}$$
$$\Sigma_{R} = var[\mathbf{R}] = \boldsymbol{\beta}_{\gamma} \Sigma_{E_{\gamma}} \boldsymbol{\beta}_{\gamma}^{T} + \Psi$$

Optimal weights

$$w_R^* \propto \mu_R^T \Sigma_R^{-1}$$

Optimal portfolio return

$$y_R^* = w_R^{*T} \mathbf{R}$$

Selection via a Loss Function

- ► For each MCMC draw, save implied optimal portfolio
- $ightharpoonup ar{y}$: point-wise mean return of sampled optimal portfolio
- $m{
 ho} \ \gamma_{\lambda}^* = {
 m argmin} \ \|ar{y} m{E}\gamma\|_2^2 + \lambda \|\gamma\|_1 \ {
 m with} \ \gamma \geq 0$

ETF portfolio defined by sparse optimal weight vector: γ_{λ}^*

An Example (2003-2013)

► Target assets: Fama-French five, long and short term reversal, momentum

► ETF's: top 46 most liquid equity ETF's

Solution Path

Sampled Sharpe Ratios - implied optimal portfolio

Selected Portfolio

ETF	IWD	IJR	IVW	XLE	XLP
weight	28.5%	31.2%	10.9%	10.4%	19%

Many Extensions

- Choosing different target assets
- Mutual Fund benchmarking
- ▶ DSS Loss Function: $\gamma_{\lambda}^* = \operatorname{argmin} \|\mathbf{E}\bar{\beta} \mathbf{E}\gamma\|_2^2 + \lambda \|\gamma\|_1$ (Hahn and Carvalho, *Decoupling shrinkage and selection in Bayesian linear models: a posterior summary perspective*, JASA 2015)

Thanks!

A: Importance of APT assumption

Errors uncorrelated across test assets

A. The Search Algorithm for ETF Selection

1. Calculate Bayes Factors of two models:

$$\gamma_{a} = (\gamma_{1}, \dots, \gamma_{i-1}, 1, \gamma_{i+1}, \dots, \gamma_{p})$$
$$\gamma_{b} = (\gamma_{1}, \dots, \gamma_{i-1}, 0, \gamma_{i+1}, \dots, \gamma_{p})$$

- 2. Sample Model Parameters
- 3. Calculate Inclusion Probabilities via Gibbs Sampler

A: Prior on α^i , σ , $\boldsymbol{\beta}_{\gamma}^i$

$$\begin{split} \pi_{\gamma}^{i}\left(\alpha^{i},\beta_{\gamma}^{i},\sigma\mid g_{\gamma}^{i}\right) &= \sigma^{-1}\mathrm{N}_{k_{\alpha}}\left(\beta_{\gamma}^{i}\mid \mathbf{0},g_{\gamma}^{i}\sigma^{2}(\mathbf{X}_{\gamma}^{T}\mathbf{X}_{\gamma})^{-1}\right) \\ \Longrightarrow \\ B_{\gamma0} &= \Pi_{i=1}^{\rho} \frac{\left(1+g_{\gamma}^{i}\right)^{(N-k_{\gamma}-1)/2}}{\left(1+g_{\gamma}^{i}\frac{SSE_{\gamma}^{i}}{SSE_{0}^{i}}\right)^{(N-1)/2}} \end{split}$$

A: Gibbs Sampler

1. Choose column $\mathbf{Y}^{rot(i)}$ and consider two models γ_a and γ_b :

$$\gamma_{a} = (\gamma_{1}, \dots, \gamma_{i-1}, 1, \gamma_{i+1}, \dots, \gamma_{p})$$
$$\gamma_{b} = (\gamma_{1}, \dots, \gamma_{i-1}, 0, \gamma_{i+1}, \dots, \gamma_{p})$$

- 2. For each model, calculate B_{a0} and B_{b0} .
- 3. Sample

$$\gamma_i \mid \gamma_1, \cdots, \gamma_{i-1}, \gamma_{i+1}, \cdots, \gamma_p \sim Ber(p_i)$$

where:

$$p_i = \frac{B_{a0} \mathbf{P} \left(M_{\gamma_a} \right)}{B_{a0} \mathbf{P} \left(M_{\gamma_a} \right) + B_{b0} \mathbf{P} \left(M_{\gamma_b} \right)}$$