ANNA L. HAGSTROM

Department of Chemical & Environmental Engineering, Yale University 17 Hillhouse Avenue, New Haven, CT 06511 anna.hagstrom@yale.edu | (315) 271-6978

EDUCATION

Yale University | New Haven, CT

2013-2018 (expected)

Advisor: Prof. Jaehong Kim

Ph.D. Candidate in Chemical & Environmental Engineering

Dissertation: *Solid-state dual-sensitizer triplet-triplet annihilation upconversion systems for broadband photocatalysis* M.S. and M.Phil. in Chemical & Environmental Engineering

Cumulative GPA: 3.8

Amherst College | Amherst, MA

2009-2013

Bachelor of Arts in Chemistry, Magna cum Laude, Phi Beta Kappa

Cumulative GPA: 3.9

Universidad Nacional | Heredia, Costa Rica

Fall 2011

RESEARCH EXPERIENCE

Graduate Research Fellow

Fall 2013-present

Yale University | Advisor: Prof. Jaehong Kim

- Microfluidic synthesis of polymer-shell triplet-triplet annihilation upconversion microcapsules
- Development and characterization of solid-state dual-sensitizer triplet—triplet annihilation upconversion polymer film systems for improved light harvesting under broadband radiation
- Integration of polymer film systems into devices for photovoltaic energy production and photocatalytic degradation of environmental pollutants to enable harvesting of sub-bandgap photons

Undergraduate Research Assistant

Amherst College | Advisor: Prof. Cindy Kan

Aug. 2012-May 2013

- Undergraduate honors thesis in organic chemistry
- Progressed the organic synthetic pathway of the core moiety of natural product lucentamycin A

Penn State | Advisors: Profs. Carsten Krebs, J. Martin Bollinger, Squire Booker

May-Aug. 2012

- NSF Research Experience for Undergraduates
- Cloned gene inserts for a cyanobacterial acyl carrier protein into the pET28a vector, overexpressed within *E. coli* in order to study its role in in cyanobacterial alkane biosynthesis

Hamilton College | Advisor: Prof. Adam Van Wynsberghe

May-July 2011, May-Aug. 2010

- Determined the prevalent conformations of the thrombomodulin binding sites of wild type and mutant thrombin through analysis of molecular dynamics simulations
- Conducted Brownian dynamics simulations using these prevalent binding site conformations in order to study their effect on thrombin–thrombomodulin binding

PUBLICATIONS

Hagstrom, A. L., Deng, F., Kim, J.-H. "Enhanced triplet–triplet annihilation upconversion in dual-sensitizer systems: Translating broadband light absorption to practical solid-state materials." *ACS Photon.* **2017**, *4*, 127–137.

Kim, H.-i., Weon, S., Kang, H., **Hagstrom, A. L.**, Kwon, O. S., Lee, Y.-S., Choi, W., Kim, J.-H. "Plasmon-enhanced sub-bandgap photocatalysis via triplet–triplet annihilation upconversion for volatile organic compound degradation." *Environ. Sci. Technol.* **2016**.

Li, C., Koenigsmann, C., Deng, F., **Hagstrom, A.**, Schmuttenmaer, C. A., Kim, J.-H. "Photocurrent enhancement from solid-state triplet-triplet annihilation upconversion of low-intensity, low-energy photons." *ACS Photon.* **2015**, *3*, 784–790.

SELECTED AWARDS AND HONORS

Top Presentation Award, Robert M. Langer Symposium at Yale University	2015
NSF Graduate Research Fellowship, National Science Foundation	2014
Phi Beta Kappa, Amherst College	2013
David R. Belvetz '54 Memorial Prize, Amherst College chemistry department	2012
National Merit Scholarship, Amherst College	2009