ncnnAccel RegMap

ALU 寄存器

alu 寄存器组中包含了 mathFunc 和 activationFunc 的配置信号。

- [0:0] ALU mathFunc 运算使能 高电平有效
- [2:1] ALU mathFunc 运算 操作数个数

1: src_num = 1

2: src_num = 2

其他: 无效

• [5:3] ALU mul_src1_sel

1: dma_i_data1

2: math_alpha

其他: 无效

• [8:6] ALU add_src0_sel

1: dma i data0

2: mul_o

其他: 无效

• [11:9] ALU add_src1_sel

1: dma_i_data1

2: beta

其他: 无效

- [12:12] ALU sub_en
- [13:13] ALU add_en
- [14:14] ALU mul_en
- [15:15] ALU max_en

- [16:16] ALU min_en
- [23:26] ALU op

1: abs_en

2: threshold

3: equal_en

其他: 无效

actfunc_ctrl_reg									
ID: 1 offset: 0x0004									
高 16 位 [31:16]									
低 16 位 [15:0]									

- [0:0] ALU activationFunc 运算使能 高电平有效
- [2:1] ALU activationFunc 激活函数性质

00:monotonic function

01:odd function

10:even function

- [4:3] ALU activationFunc 运算 输入数据来源
 - 1: from dma controller

2: from oscaleAndBias Module

其他: 无效

● [6:5] ALU activationFunc 运算 输出数据去向

1: to alu dma controller

2: to opfusion Module

其他: 无效

• [23:16] act_op

.....

以下寄存器均为 32 位宽 (input)

name	ID	offset	description
alu_veclen_ch0_reg	2	0x0008	CH0 向量长度
src0_addr_ch0_reg	3	0x000C	CH0 源操作数 0 地址

src1_addr_ch0_reg	4	0x0010	CH0 源操作数 1 地址
dst_addr_ch0_reg	5	0x0014	CH0 目的地址
alu_veclen_ch1_reg	6	0x0018	CH1 向量长度
src0_addr_ch1_reg	7	0x001C	CH1 源操作数 0 地址
src1_addr_ch1_reg	8	0x0020	CH1 源操作数 1 地址
dst_addr_ch1_reg	9	0x0024	CH1 目的地址
math_alpha_reg	10	0x0028	用于计算 Y=alpha*X+beta
math_beta_reg	11	0x002C	用于计算 Y=alpha*X+beta
act_range_reg[0]	12	0x0030	range x[0]
act_range_reg[1]	13	0x0034	range x[1]
act_range_reg[2]	14	0x0038	range x[2]
act_range_reg[3]	15	0x003C	range x[3]
act_coefficient_a[0]	16	0x0040	coefficient: a
act_coefficient_a[1]	17	0x0044	coefficient : a
act_coefficient_a[2]	18	0x0048	coefficient : a
act_coefficient_a[3]	19	0x004C	coefficient: a
act_coefficient_a[4]	20	0x0050	coefficient: a
act_coefficient_b[0]	21	0x0054	coefficient : b
act_coefficient_b[1]	22	0x0058	coefficient : b
act_coefficient_b[2]	23	0x005C	coefficient : b
act_coefficient_b[3]	24	0x0060	coefficient : b
act_coefficient_b[4]	25	0x0064	coefficient : b
act_coefficient_c[0]	26	0x0068	coefficient : c
act_coefficient_c[1]	27	0x006C	coefficient : c
act_coefficient_c[2]	28	0x0070	coefficient : c
act_coefficient_c[3]	29	0x0074	coefficient : c
act_coefficient_c[4]	30	0x0078	coefficient : c

									ID	D : 31	offs	set: 0x0	007C
高 16 位 [31:16]													
	低 16 位 [15:0]												

● [0:0] ALU innerproductFunc 运算使能 高电平有效

以下寄存器均为 32 位宽 (output)

name	ID	offset	description
alu_odata_reg	34	0x0088	用于 sum 等运算的单个数据返回

池化寄存器

pool 寄存器用于描述池化单元的相关控制信号。

- [0:0] 池化运算使能 高电平有效
- [2:1] 池化类型
 - 0: 均值池化
 - 1:最大值池化
 - 其他:保留
- [4:3] kernel_w
- [6:5] kernel_h
- [8:7] stride_w
- [10:9] stride_h

● [12:11] pool 单元数据输入来源

1: from dma

2: from activation Module

其他: 保留

- [17:16] pad_bottom
- [19:18] pad_top
- [21:20] pad_right
- [23:22] pad_left
- [24:24] pad_mode

0: padding const // 补 pad_value_reg 的值

1: padding edge

以下寄存器均为 32 位宽 (input)

name	ID	offset	description
pool_shape_ic_reg	41	0x00A4	输入特征图的 ic,低 16 位有效
pool_shape_iwh_reg	42	0x00A8	输入特征图的 iwh 高 16 位为 iw,低 16 位为 ih
pool_shape_icstep_reg	43	0x00AC	输入特征图的 cstep,用于地址对齐
pool_shape_oc_reg	44	0x00B0	输出特征图的 oc, 低 16 位有效
pool_shape_owh_reg	45	0x00B4	输出特征图的 owh 高 16 位为 ow,低 16 位为 oh
pool_shape_ocstep_reg	46	0x00B8	输出特征图的 cstep,用于地址对齐
pool_ifm_addr_reg	47	0x00BC	输入特征图地址
pool_ofm_addr_reg	48	0x00C0	输出特征图地址
pool_pad_value_reg	49	0x00C4	pad_mode = 0 时 pad_value 的值

GEMM 寄存器

gemm_ctrl_reg		
	ID: 60	offset: 0x00F0

- [0:0] gemm 单元使能 高电平有效
- [2:1] gemm 加速类型
 - 0: 卷积
 - 1: 深度卷积
 - 2: 矩阵乘
 - 3: 保留
- [5:3] 卷积核长宽尺寸, kernel_w = kernel_h
- [8:6] 卷积核步进, stride_w = stride_h
- [10:9] padding 模式
 - 0: 填充 0
 - 1: 填充边缘数据 (尚未支持)
- [12:11] left 侧 padding 长度
- [14:13] right 侧 padding 长度
- [16:15] top 侧 padding 长度
- [18:17] bottom 侧 padding 长度
- [19:19] bias 使能, 高电平有效
- [20:20] 重量化使能,高电平有效
- [21:21] layout 使能, 高电平有效
- [22:22] oscale 使能, 高电平有效
- [23:23] div_ifm_c_en 权重缓冲区或 oscaleAndBias 缓冲区不足, 引起的 ic 分块

name	ID	offset	description
quant_data_reg	61	0x00F4	量化因子,单精度浮点
requant_data_reg	62	0x00F8	重量化因子,单精度浮点
dequant_addr_reg	63	0x00FC	反量化因子地址
bias_addr_reg	64	0x0100	偏置地址

ifm_shape_c_reg	65	0x0104	输入特征图的 ic
ifm_shape_wh_reg	66	0x0108	输入特征图的 iwh 高 16 位为 iw,低 16 位为 ih
ifm_shape_cstep_reg	67	0x010C	输入特征图的 cstep,用于地址对齐
ofm_shape_c_reg	68	0x0110	输入特征图的 oc
ofm_shape_wh_reg	69	0x0114	输入特征图的 owh 高 16 位为 ow,低 16 位为 oh
ofm_shape_cstep_reg	70	0x0118	输入特征图的 cstep,用于地址对齐
wgt_len_reg	71	0x011C	权重长度
ifm_baseaddr_reg	72	0x0120	输入特征图基地址
wgt_baseaddr_reg	73	0x0124	权重基地址
ofm_baseaddr_reg	74	0x0128	输出特征图基地址
div_ifm_c_reg	75	0x012C	oc 分块时,ic 对齐到 32 的值