Review of Lecture 17

Occam's Razor

The simplest model that fits the data is also the most plausible.

complexity of $h \longleftrightarrow complexity$ of \mathcal{H}

unlikely event ←→ significant if it happens

Sampling bias

Data snooping

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 18: Epilogue

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

It's a jungle out there

semi-supervised learning	overfitting	stochastic g	gradient d	escent SVM	I Q _. learning
Gaussian pro distribution–free li		istic noise C dimension	data	snooping	learning curves
collaborative filtering decision trees	nonlinear transform	nation	sampling	<mark>bias</mark> neural netw	mixture of experons
active learning		uining versus t	<i>esting</i> ariance tra	noisy targets	Bayesian prior
ordinal regression	cross validation	logistic regr		data contamination	k learners on
ensemble learning		types of learn		perceptrons	hidden Markov mo
ploration versus exploitation	error measures on	kernel n	nethods	_	nical models
•	is learning feasible?		soft-order constraint		
clustering	regularizati	weight c	lecay	Occam's razor	Boltzmann mach

3/23 Learning From Data - Lecture 18

The map

THEORY

VC

bias-variance

complexity

bayesian

linear

neural networks

SVM

nearest neighbors

RBF

gaussian processes

SVD

graphical models

supervised

unsupervised

reinforcement

active

online

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

Probabilistic approach

Extend probabilistic role to all components

 $P(\mathcal{D} \mid h = f)$ decides which h (likelihood)

How about $P(h = f \mid \mathcal{D})$?

The prior

 $P(h = f \mid \mathcal{D})$ requires an additional probability distribution:

$$P(\mathbf{h} = f \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \mathbf{h} = f) P(\mathbf{h} = f)}{P(\mathcal{D})} \propto P(\mathcal{D} \mid \mathbf{h} = f) P(\mathbf{h} = f)$$

P(h = f) is the **prior**

 $P(h = f \mid \mathcal{D})$ is the **posterior**

Given the prior, we have the full distribution

Example of a prior

Consider a perceptron: h is determined by $\mathbf{w}=w_0,w_1,\cdots,w_d$

A possible prior on \mathbf{w} : Each w_i is independent, uniform over [-1,1]

This determines the prior over h - P(h=f)

Given \mathcal{D} , we can compute $P(\mathcal{D} \mid h = f)$

Putting them together, we get $P(h = f \mid \mathcal{D})$

$$\propto P(h = f)P(\mathcal{D} \mid h = f)$$

A prior is an assumption

Even the most "neutral" prior:

The true equivalent would be:

If we knew the prior

 \dots we could compute $P(h=f\mid \mathcal{D})$ for every $h\in \mathcal{H}$

 \Longrightarrow we can find the most probable h given the data

we can derive $\mathbb{E}(h(\mathbf{x}))$ for every \mathbf{x}

we can derive the error bar for every x

we can derive everything in a principled way

Learning From Data - Lecture 18 10/23

When is Bayesian learning justified?

1. The prior is **valid**

trumps all other methods

2. The prior is **irrelevant**

just a computational catalyst

Learning From Data - Lecture 18 11/23

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

Learning From Data - Lecture 18 12/23

What is aggregation?

Combining different solutions h_1, h_2, \cdots, h_T that were trained on \mathcal{D} :

Regression: take an average

Classification: take a vote

a.k.a. ensemble learning and boosting

Different from 2-layer learning

In a 2-layer model, all units learn **jointly**:

In aggregation, they learn independently then get combined:

Learning From Data - Lecture 18 14/23

Two types of aggregation

1. After the fact: combines existing solutions

Example. Netflix teams merging "blending"

2. Before the fact: creates solutions to be combined

Example. Bagging - resampling \mathcal{D}

Learning From Data - Lecture 18 15/23

Decorrelation - boosting

Create h_1, \cdots, h_t, \cdots sequentially: Make h_t decorrelated with previous h's:

Emphasize points in ${\mathcal D}$ that were misclassified

Choose weight of h_t based on $E_{
m in}(h_t)$

Learning From Data - Lecture 18 16/23

Blending - after the fact

For regression,
$$h_1, h_2, \cdots, h_T \longrightarrow g(\mathbf{x}) = \sum_{t=1}^I \alpha_t \; h_t(\mathbf{x})$$

Principled choice of α_t 's: minimize the error on an "aggregation data set" pseudo-inverse

Some α_t 's can come out negative

Most valuable h_t in the blend?

Learning From Data - Lecture 18 17/23

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

Course content

Professor Malik Magdon-Ismail, RPI

Professor Hsuan-Tien Lin, NTU

Learning From Data - Lecture 18 19/23

Course staff

Carlos Gonzalez (Head TA)

Ron Appel

Costis Sideris

Doris Xin

Filming, production, and infrastructure

Leslie Maxfield and the AMT staff

Rich Fagen and the IMSS staff

Learning From Data - Lecture 18 21/23

Caltech support

IST - Mathieu Desbrun

E&AS Division - Ares Rosakis and Mani Chandy

Provost's Office - Ed Stolper and Melany Hunt

Many others

Caltech TA's and staff members

Caltech alumni and Alumni Association

Colleagues all over the world

To the fond memory of

Faiza A. Ibrahim