MATHS EXPERTES

Suites de matrices et chaines de Markov

Exercice 1

On étudie l'évolution dans le temps du nombre de jeunes et d'adultes dans une population d'animaux.

Pour tout $n \in \mathbb{N}$, on note j_n et a_n le nombre d'animaux jeunes et adultes après n années d'observation.

On compte la première année, 200 animaux jeunes et 500 animaux adultes. Ainsi $j_0=200$ et $a_0=500$.

On admet que, pour tout $n \in \mathbb{N}, \begin{cases} j_{n+1} = 0.125 j_n + 0.525 a_n \\ a_{n+1} = 0.625 j_n + 0.625 a_n \end{cases}$

On pose
$$A = \begin{pmatrix} 0.125 & 0.525 \\ 0.625 & 0.625 \end{pmatrix}$$
 et $U_n = \begin{pmatrix} j_n \\ a_n \end{pmatrix}$

1.

- a. Montrer que pour tout $n \in \mathbb{N}$, $U_{n+1} = AU_n$
- b. Calculer U_1 et U_2 . Les résultats seront donnés à l'unité près.

On admettra que pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$

2. Soit
$$Q = \begin{pmatrix} 7 & 3 \\ -5 & 5 \end{pmatrix}$$
 et $D = \begin{pmatrix} -0.25 & 0 \\ 0 & 1 \end{pmatrix}$

- a. Montrer que Q est inversible et calculer Q^{-1}
- b. Montrer que $A = QDQ^{-1}$
- c. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $A^n = QD^nQ^{-1}$

3.

- a. Vérifier que pour tout $n \in \mathbb{N}^*$, $A^n = \begin{pmatrix} 0.3 + 0.7(-0.25)^n & 0.42 0.42(-0.25)^n \\ 0.5 0.5(-0.25)^n & 0.7 + 0.3(-0.25)^n \end{pmatrix}$
- b. En déduire les expressions de j_n et a_n en fonction de n.
- c. Déterminer les limites de j_n et a_n
- d. Que peut-on en conclure quant à la population des animaux étudiés

Exercice 2

Un simulateur de jeux est programmé pour le niveau difficile de la façon suivante :

- Si la personne a gagné, elle a une probabilité de gagner le jeu suivant de 25%
- Si la personne a perdu, elle a une probabilité de gagner le jeu suivant de 40%

On sait que la personne a une probabilité de réussite au premier jeu de 15%

Soit X_n la variable aléatoire qui correspond à la réussite du joueur au n_ième jeu.

On note les états G « gagné » et P « perdu »

1.

- a. Représenter le graphe décrivant la chaine de Markov X_n .
- b. Donner la matrice de transition P (on donnera les coefficients en respectant l'ordre alphabétique).

2.

- a. Donner la distribution $\pi_0=(g_0-p_0)$ de cette chaine. On rappelle que $\pi_{n+1}=\pi_n P$
- b. En déduire, à l'aide de la calculatrice, la probabilité qu'un joueur gagne le cinquième jeu.
- c. Montrer que $\pi = \left(\frac{8}{23} \frac{15}{23}\right)$ est la distribution invariante de cette chaine
- d. En déduire la probabilité de gagner à long terme.