DOCUMENT RESUME

EP 293 889 TM 011 485

AUTHOR Bock, Darrell R.

TITLE Project: Toward a National Educational Testing

Network. Final Report.

INSTITUTION California Univ., Los Angeles. Center for the Study

> of Evaluation.; Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

Office of Educational Research and Improvement (ED), SPONS AGENCY

Washington, DC.

PUB DATE Sep 87

OERI-G-86-0003 GRANT

NOTE 84p.; Small print in tables. A paper is presented

within this document entitled "Comprehensive

Educational Assessment for the States: The Duplex

Design" (R. D. Bock and R. J. Mislevy).

PUB TYPE Reports - Evaluative/Feasibility (142)

MF01/PC04 Plus Postage. EDRS PRICE

DESCRIPTORS Academic Achievement; *Achievement Tests; Curriculum

Evaluation; *Educational Assessment; Elementary Secondary Education; Grade 8; *Instructional Effectiveness; *Latent Trait Theory; National

Surveys; *Standardized Tests; State Surveys; Student

Records; Testing Programs

IDENTIFIERS California Assessment Program; *Duplex Design; *Ite.

Parameters

ABSTRACT

Three fiscal year 1987 deliverables due for the "Toward a National Educational Testing Network: Feasibility Study of Duplex Design" are presented. The study is concerned with implementation of statewide and interstate testing of student attainment. The report includes: (1) a duplex design (DD) review paper discussing the means by which the DD will meet local and state information needs; (2) sample students' score reports from the Illinois pilot implementation of the design; and (3) item parameter estimates (IPEs) and standard errors for sub-skills of the eight second-stage forms of the duplex instrument used in Illinois. The DD review covers educational information needs, uses of attainment information, the combination of student achievement testing and assessment of curricular objectives, the contribution of modern Item Response Theory (IRT), adaptive testing, reporting results, and interstate comparisons. The California Assessment Program is described. The DD proposed supplies achievement scores for individual students in the main areas of proficiency and content, while evaluating the progress of schools in attaining the objectives of the instructional program and curriculum. The DD uses IRT, matrix sampling, and two-stage testing techniques. The IPEs are tabulated on 24 pages. (TJH)

************** Reproductions supplied by EDRS are the best that can be made

from the original document.

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it.

- Minor changes have been made to improve reproduction quality
- Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

1

PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

LISA SIEGEL

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) "

Center for Research on Evaluation, Standards, and Student Testing

Peliverable - September 1987

PROJECT: TOWARD A NATIONAL EDUCATIONAL TESTING NETWORK

"Final Report"

Project Director: Darrell Bock

Grant Number: OERI-G-86-0003

Graduate School of Education
University of California, Los Angeles

The project presented, or reported herein, was performed pursuant to a Grant from the Office of Educational Research and Improvement/Department of Education (OERI/ED). However, the opinions expressed herein do not necessarily reflect the position or policy of the OERI/ED and no official endorsement by the OERI/ED should in inferred.

Table of Contents

Incroduction/Overview

- I. Comprehensive Educational Assessment for the States: The Duplex Design
- II. Sample Score Reports from the Illinois Tryout
- III. Item Parameter Estimates

INTRODUCTION

This report presents the three FY1987 deliverables due for the Toward a National Educational Testing Network: Feasibility Study of Duplex Design. Included are the following documents:

- A. Duplex design review paper discussing topics of how the duplex design will meet local and state information needs; this paper will be published in Evaluation
 Comment.
- B. Sample score reports from the Illinois tryout.

 These include the student reports, one copy of which was supplied to the teacher and one to each student; the School reports supplied to the school principals and District Superintendents; and State reports provided to District Superintendents and to the Illinois State Board of Education. The three schools represented in these sample reports were drawn from the low, middle and high ability levels of the schools.
 - C. Item parameter estimates and standard errors for subskills of the eight second-stage forms of the duplex instrument used in Illinois. The item designations include letters E, M and D to identify the easy, intermediate and difficult test booklets of the second stage forms. Items that are marked by two letters, for example E and M, are link items common to the corresponding test booklets. A three parameter logistic model was used. Items that fail to fit the model at the .05 level are marked by a single asterisk; those at the .01 level by a double asterick. Very few items in the entire set of 888 failed to fit the model.

I. Comprehensive Educational Assessment for the States: The Duplex Design

ERIC
Full Text Provided by ERIC

COMPREHENSIVE EDUCATIONAL ASSESSMENT FOR THE STATES: THE DUPLEX DESIGN¹

R. Darrell Bock
University of Chicago
and
Robert J. Mislevy
Educational Testing Service

According to a 1985 survey, 47 of the 50 states mandate some form of statewide testing of student attainment (Winfield, 1986). These testing programs vary widely in design: some employ traditional every-pupil achievement testing, others are limited to minimum competency testing, still others make use of matrix sampled assessment at benchmark grade levels.

The most widespread program is minimum competency testing: 23 states have centrally directed programs, and another 16 allow local options of test content and administration; in 23 of these 39 states, satisfactory performance on the test is a requirement for high school graduation. Standards for passing are set variously by state legislatures, state boards of education, and local education authorities.

Many states have multiple programs, usually some combination of outcome assessment and individual achievement testing. States that have achievement measurement or minimum competency programs test every pupil at selected grade levels, but some of those using matrix sampled assessment test in a sample of schools. Others, such as California, use matrix sampling

¹We are indebted to Linda Winfield, Leigh Burstein, David Wiley, Zalman Usiskin, Tej Pandey, Pat McCabe, Joan Baron and Mervin Brennan for valuable suggestions. Preparation of this paper was supported in part by the Center for Student Testing, Evaluation and Standards, School of Education, UCLA, and in part by a grant from the Spencer Foundation.

methods, but test in all schools.

California is a prime example of a multiple-program state: the California Assessment Program provides curriculum-oriented evaluations of school outcomes; local school systems are required to conduct their own minimum competency testing; and data from the National Assessment of Educational Progress (NAEP) are available in California for purposes of comparison with national results.

States that have no centrally directed program may nevertheless require the districts to conduct periodic achievement testing. In Iowa, all districts test annually and, in fact, all use the same test. Finally, end-of-high-school tests in specialized subject matter areas are administered to selected students in some states (New York State Regents Examination, California Golden State examination). Winfield (1986) and Eurstein, et al. (1985) give detailed accounts of existing and projected state testing programs.

Considering that the information needed to assess educational productivity must be much the same in all states, the variety of these programs is at first glance surprising. Closer examination reveals, however, that they arise from different emphases on outcomes for which schools should be held responsible. Where the main concern is certification of essential skills and knowledge, minimum competency testing is emphasized. Where the focus is on student attainment at all levels, especially when student guidance is involved, a commercial achievement testing program is usually relied upon. Where progress toward detailed curricular objectives is monitored, a matrix-sampling assessment program is the only practical approach. To the extent that mandated testing is committed to these disparate goals, the multiplicity of the existing state programs, with limited comparability of the resulting data, would seem to be inevitable.

We will argue, however, that with a suitable measurement design, a single, comprehensive assessment program can serve all of these purposes. We base this conclusion on an analysis of the information needs of the main users of educational test results within the states. The design we propose meets their needs directly and efficiently. In particular, it provides measures of achievement suitable for certifying attainment, for counseling students and parents, and for monitoring the effectiveness of schools and school districts. At the same time, it offers the detail and precision necessary for the evaluation of instructional methods and materials, and for basic educational

research. Moreover, it performs these functions in a cost-effective manner. We also suggest how results from independent state assessments based on the duplex design can be referred to a common scale to allow comparisons among states.

1. Educational information users

Anyone concerned with the conduct of education is conscious of the need for regular appraisals of student progress. Without such information, there can be no objective basis for guiding the student, for planning instruction, for evaluating schools, school systems and programs, or for correcting deficiencies or rewarding progress. It is not as well understood, however, that different forms of information about educational outcomes are required in these different applications. The first step in formulating the design must be an analysis of the anticipated uses of the results. These uses depend, of course, upon the users of the information. We delineate seven categories of such users.

Teachers, school counselors, parents, and the student. Standardized individual achievement tests, independent of particular teachers or courses, are widely used as aids to informed and fair decisions on student advancement and placement. In this role, the tests must have three important characteristics: 1) they must cover content that is relevant to the course work for which the student is responsible; 2) they must be sufficiently reliable that scores on alternative forms of the same test will, with high probability, lead to the same recommendations on individual advancement or placement; 3) the results must be presented in a form readily understandable to the parties involved.

Typically, content coverage is assured by specification of domains defined by a taxonomy of subject-matter topics. Items then are written for each category of the domain specification. The validity of the item classification may be checked empirically by inspection of the item-by-test score correlations, or by factor analyzing intercorrelations among items in a given content area. For the most part, writing items is reasonably straightforward once the domain specification has been formulated.

To construct from such items a number of test forms that will produce consistent differential measurement of students is, however, a more difficult

task. The problem is that decisions about students are made at all levels of the score distribution: low ranking students may be kept back or sent to remedial programs; high ranking students may be put ahead of their grade or assigned to honors programs; students in the middle range may be assigned to tracked classrooms differentially. To be accurate over the entire range, an achievement test must have a sufficient number of items to measure accurately at difficulty levels throughout the expected score distribution. To span this wide a range, an individual achievement test must be rather long.

As a result the testing time available usually restricts the number of proficiencies that can be tested to a relatively small number. A test that reliably estimates achievement in six areas, for example, may require three to four hours to administer. A major problem in comprehensive assessment is how to reduce the time required for dependable measurement of individual student achievement. Fortunately, new methods of adaptive testing, described below, make such savings possible.

In communicating achievement test results to teachers, parents, and students, we depend upon the normative nature of guidance-oriented use of test information. Teachers rarely make decisions about the student on an absolute basis; they can single out for special treatment only those students who deviate from the local standard. Because only rank-order information is required for such decisions, any form of reporting that indicates the student's standing in a reference group is suitable. In other words, "norm referenced" reporting is quite adequate for guidance purposes.

Designers of curricula and planners of instruction. In designing curricula or developing instructional methods and materials for the classroom, it is not the individual student that is to be evaluated, but the overall performance of students taught under different conditions. Although the classroom teacher has an interest in the outcome of such evaluations, it is primarily the school department head and principal, the professional curriculum specialist, and the textbook and workbook writer who will make direct use of these results. These workers need much more detail about student attainment than is available in traditional achievement testing. The problem is that measures of broad content areas produced by achievement tests tend to be insensitive to differential curricular effects. Although it has not been emphasized in the evaluation litera ure, this fact has been amply demonstrated in empirical

1 - 4

studies of alternative curricula. Walker & Schaffarzick (1974), in a lengthy review of research on science and mathematics curricula from 1956 to 1972, found that any given curriculum tends to be superior to others only in respect to material that is distinctive to it. Where the content and presentation are common among curricula, all perform equally well; thus, the differential outcomes are seen in contrasting score profiles, not in overall performance. A corollary of this finding is that the tests employed in such comparisons must be sufficiently detailed to measure separate outcomes for distinctive parts of the curricula. An instrument used to evaluate "new" math and traditional math, for example, would have to produce reliable scores for both of these types of content.

By the same token, instructional planners need to examine student performance in the units of content that can be manipulated in instruction. To write lesson plans for mathematics, for example, the instructors need to know the specific units-computation, number systems, problem-solving, applications, etc., that need attention. These units are almost always tested formatively, but time restrictions necessarily prevent their separate evaluation during summative testing of individual achievement.

The experience of the California Assessment Program suggests that, to be useful, an evaluation instrument must distinguish perhaps 20 to 40 curricular objectives at a given grade level. Although it is not possible to test this many topics with individual achievement tests, individual measurement is not necessary in program evaluation: only the average performance of classrooms or other experimental units need be measured for this purpose. If the number of students in the programs is sufficiently large, good precision in estimating program effects can be obtained without the use of long tests. The generalizability of the group mean scores is the important consideration, not the reliability of scores for individual students.

It has been known for some time that to obtain adequate generalizability in estimating program effects, evaluation should not be based on the traditional achievement test, but on an instrument in which each student responds to only a few items sampled from each of numerous content elements, while different students respond to different samples of items. This approach assures good generalizability of the group mean for each element with minimal demands on testing time. It is the basis for the multiple matrix-sampling designs used in the National Assessment of Educational Progress and in

I-5

numerous state testing programs. In these designs, the test instrument is constructed in many forms, 15 to 30, or sometimes more, with a small number of items assigned randomly to each form from the pool representing each curricular objective or element. Lord (1980) has shown that the most efficient matrix sample is one in which each student in the group is assigned one distinct item from each element. In that case, the number of curricular objectives that can be assessed in one form is then equal to the number of items that the student can respond to during the testing period, usually 30 to 40. This number is quite adequate for a highly detailed curricular evaluation.

The scoring of matrix sampled instruments is also different from that of achievement tests. In the original formulation of matrix sampling (see Lord, 1962), the scores are not presented in any normative form, but simply as average percent correct for each content element. Classrooms, groupings of students, instructional programs, schools, and other aggregations are then compared with respect to the strengths and weaknesses revealed in the profile of average percent correct scores over detailed curricular elements. Since these elements usually correspond to units or topics of instruction, definite recommendations about teaching practices or emphasis can be made from such results.

More recently, Bock, Mislevy and Woodson (1981) have shown how matrix-sample data can also be analyzed and scored by use of scaling techniques based on item response theory (IRT). According to this theory, the probability that a student will respond correctly to a given test item is a function of the student's location on the proficiency dimension and of properties of the item, such as its difficulty and validity. The properties of each of the items in a test can be estimated from large samples of responses and used to estimate a "scale score" for the student indicating his or her proficiency levil.

Average percent correct scoring and IRT scale scoring both retain the detail necessary for curricular evaluation and instructional planning, but scale scores have the advantage of remaining comparable as items are added to or retired from the instrument from time to time. This consistency of interpretation as the item content is updated is essential if educational progress is to be followed over long periods of time. Recently developed IRT test maintenance systems provide for the detection and correction of drift in the relative difficulties of items that may occur over time.

1-6

Local school system managers, officers, and boards. In making decisions on personnel, resource allocation, and policy, school officials must be able to support their actions with data on educational outcomes in the schools for which they are responsible In addition to such operational statistics as number of students in school, number of hours of schooling, teacher/student ratio, etc., they need measures of outcomes in the relevant subject matter areas at a number of grade levels. The detail required depends somewhat on the style of administration or oversight of the persons involved. Superintendents and boards that have considerable experience with education and instruction probably will be interested in more detail than is available from achievement testing, although perhaps not to the same extent as the curriculum specialist. They will not, however, be interested in a level of score reporting below that of the classroom or school. Because their concern is with group-levelrather than individual outcomes, they can make profitable use of the matrix sampling methods of program evaluation. The only difference is that classrooms or schools rather than programs are being evaluated, a distinction that is conveyed by describing the activity as "assessment" rather than "evaluation".

Assessment procedures based on matrix sampling designs have the advantage of providing a detailed profile of aggregate outcomes without intruding excessively on classroom time. Equally advantageous, however, is their resistance to effects of "teaching to the test". Because there are so many items in the forms that make up assessment instruments, it is difficult for a teacher to discuss enough of the items to have any great effect on the school outcome. Indeed, if the assessment represents the full range of curricular objectives, an attempt to teach a majority of the items would be virtually equivalent to teaching the subject matter of the course. In addition, if scale scoring is used, a proportion of items can be replaced periodically to protect further the integrity of the test.

Achievement tests, in contrast, typically exist in only a few forms and are not always updated regularly. If school districts use the same achievement tests from year to year, the items tend to become known to the teachers, who may then consciously or unconsciously teach the specific information required to answer particular items. If so, the tests will tend to show year-to-year average gains that do not reflect increased general knowledge of the subject matter on the part of the student. The more pressure the teachers are

under to improve student outcomes, the greater the probability that these teaching-to-the-test effects will appear.

Whether the information on student progress comes from achievement tests or assessment, it is important to school officials that the scores be reported on a scale with fixed origin and unit so that gains or losses in each subject matter area can be compared over a period of years. The sort of rank order information that is acceptable for comparing individual students is not suitable for monitoring the progress of schools and school systems. Average number correct scores in assessment results have this property, but they have the disadvantage of losing their comparability if some items are retired from or added to the co .tent areas assessed. As Lord (1980) has discussed, IRT scoring of tests facilitates both the equating of test forms and the updating of item content within forms. This theory also allows accurate calculation of measurement error variances at all points on the scale. These error-variance estimates can in turn be used in obtaining efficient, weighted estimates when aggregating data to the school or district level, and in expressing results in the form of confidence intervals that convey uncertainty due to the sampling of both students and items. We discuss below these and other contributions of item response theory to educational assessment.

State departments of education. The activities of most state departments of education are sufficiently varied to benefit from all of the outcome measures described above. Department that formulate curricular or set objectives need feedback from the assessment of detailed curricular objectives. Most states employ for these activities professional specialists whose work depends critically on this type of information. At the same time, most departments of education are also concerned with the performance of schools as measured by numbers of students reaching or exceeding defined levels of achievement, whether minimal, ordinary, advanced, or outstanding. For these purposes, individual achievement measures ir road subject matter areas are required. For just this reason many states operate assessment programs simultaneously with conventional, in many cases commercial, achievement testing.

Some states have limited assessment programs based on sampling of schools and students within schools. If the state also has a policy of accountability of school districts for levels of student attainment, however, this type of sampling is not sufficient, and a complete census based on every-pupil

testing is preferable. The effort can be well repayed: because the census provides accurate information at the level of the individual schools, results can be reported in a form that is interesting and informative locally, and schools with exceptional outcome patterns can be identified throughout the state. If the state makes special grants to improve average student performance, or rewards such performance financially, then a complete census is, of course, essential.

An additional problem with a sampling assessment is that the schools have no immediate payoff. Motivation for cooperation on the part of both sta i and students is minimal, and levels of performance may suffer as a result. Apart from the lower cost of sampling assessment, there is little to recommend it over an every-pupil program.

The quality of information that state departments of education have at their disposal is also generally better when the test data take the form of original response records of the individual students. Although districts may have the capability of scoring tests and reporting summary statistics, the information can be analyzed more consistently and in more detail if primary rather than secondary data are available to the department.

State legislators and officials. At the state level, representatives not exclusively involved in education can attend only to rather general indices of educational outcomes. They cannot go into the detail that would interest the curriculum specialist, or even the more limited achievement profiles required for student counseling. Their concern is primarily with the main subject matter areas measured at a few benchmark grade levels, e.g., 4, 8, and 12. Often, year-to-year gains and losses are of more interest than absolute levels of attainment. The statistics necessary for these general summaries of educational progress can readily be obtained by aggregating the more detailed assessment figures at the school or district level. The precision and generalizability of these statistics will be so high that the confidence intervals required at lower levels of aggregation will seldom be necessary, although they can be calculated if required. If reported in the form of scale scores, the results will remain comparable over relatively long periods of time, and long-run changes in the average performance of students in the state can be traced.

By examining such data, state officials may be able to infer the impact

of current social trends on student performance (e.g., television viewing or microcomputer use). They may then be able to anticipate educational problems that will eventually influence public policy or legislation. Long-term stability and consistency of a state's assessment program and procedures are essential to such inferences.

The media and the public. Communicating school performance data to the general public is a challenging task for the educational evaluator. The key to success is making the findings understandable to the journalists who must report such information in the newspapers and on radio and television. Reporting of average percent correct for a content area, which provides only relative information and varies in level from one content area to another, is especially troublesome because the audience has to keep in mind that the scales are not comparable. A much better practice is to employ scale scoring, defining a scale with a common origin and unit for all subject matter areas and employing it uniformly until its characteristics become well-known. Comparisons between schools or groups of students can then be expressed in familiar numbers, and year-to-year gains or declines in student performance can be followed in units that have a widely understood meaning. Certain achievement scales, such as that used to report Scholastic Aptitude Test (SAT) scores, have achieved this status.

An even more comprehensible form of reporting, however, is to state the percent of students who fall above or below certain thresholds on the attainment scale. If these points correspond to administrative cutting points (e.g., for graduation, special honors, admission to college, etc.) their practical implication is entirely clear. If these objective criteria do not exist, the item content typical of selected score levels can be exhibited to convey the nature of the tasks that students at these levels can typically perform. The NAEP reading scale, for example, is characterized for reporting purposes by displays of items that students at the 150, 200, 250, 300 and 350 points on the scale have an 80 percent chance of answering correctly.

Another possibility is to take a normative approach and to designate certain arbitrary percentile points in the population of students. The 25, 50 and 75 percent points, for example, might be referred to as the "basic," "intermediate," and "advanced" mastery levels. In this connection, however, it must be mentioned that achievement testing and assessment are quite dif-

ferent when it comes to estimating the percent of students above a specified performance threshold. In achievement data, it is a simple matter to obtain these percentages by enumerating students whose individual scores fall in the defined intervals. But from matrix sampled assessment data, individual scores are not available, and the percent of students above some point on the scale of the group means can be estimated only if the distribution of proficiencies within the group can be described. Up to now, the information necessary to estimate these within-group distributions has not been part of assessment results; it has had to come separately from conventional achievement tests rather than matrix sampled assessment designs. One of the main strengths of the duplex design is that the proportions of students exceeding specified mastery levels can be estimated in the same manner as in achievement testing. This enables percents of students at specified levels to be estimated directly.

Educational research specialists. A constituency independent of school systems, yet having an interest in the information generated by state testing programs, consists of academic and professional research workers engaged in study of education and the schools. In principle, they can use information from either achievement testing or assessment. But like the curriculum specialists, they are also often interested in detailed areas of attainment, not just the broad skill areas measured by individual achievement tests. The data from assessment programs may be more relevant to them than traditional test scores. Assessment data will also typically have higher generalizability indices, and thus clearer relationships with other variables.

The effect of matrix sampling on generalizability is demonstrated by the estimated correlation coefficients shown in Table 1. The data are reading score means in California schools measured in two successive years. _.otice that the sizes of the correlations increase (the school means become more accurate) as the sizes of the samples of students increase from row 1 to row 3. Similarly, the correlations increase when student sample size remains fixed, but the numbers of items sampled increase from 85 in a single test form, to 128 in 16 forms, to 400 in 40 forms. This latter effect arises from the increased generalizability due to item sampling. It would be even more pronounced if different items were sampled each year. It would then maximally suppress the effects of item heterogeneity that attenuate relationships between student

TABLE 1

Effect of sampling of students and sampling of items on the year-to-year correlations of sixth grade mean reading attainment scores of California schools

	Number of items in matrix sample				
		85	128	400	
Number of students	50	.59	.73	.79	
sampled	100	.67	.78	.88	
per grade	200	.76	.81	.93	

attainment and the background variables.

Because most standard computer packages require scores for individual respondents, matrix sampled assessment data can present something of a dilemma to research wo kers. Only more advanced investigators currently know how to use matrix sampled data directly by hierarchical methods; (see Mislevy, 1985). Until computer packages become available for these methods of analyzing scores that exist only at the group level, the data obtained from matrix sampling designs will not be convenient for secondary analysis. In this respect, the duplex design proposed in this paper has a marked advantage: it supports scoring of the item response data at both the individual and the group level. Research workers can thus make use of either of these types of data depending on their statistical expertise.

2. Uses of attainment information

The uses of information on student attainment identified above can be classified in terms of the decision-making activities supported.

Guidance: counseling, placement, promotion, and certification of individual students. Each of these uses accurate test scores in at least the main areas of proficiency and subject matter in the curriculum. Standardized achievement testing is a main source of this information.

Evaluation: choosing among competing curricula, instructional programs, or educational materials. These choices require information on the perfor-

T - 12

mance levels of groups of students pursuing alternative programs or using different materials. Matrix-sampling assessment, making minimal demands on student testing time, provides this type of information at the group level, but scores for individual students are not available by this method.

Management: monitoring student attainment in programs, schools, and school systems. Managerial decisions can utilize measures of attainment at the classroom or school level. They need much the same level of detail as evaluation studies. Resistance to teaching-to-the test is vital in this use. This information need is better served by assessment methods than by individual student achievement testing.

Policy: judging the overall progress of an educational system, or its main components, for purposes of formulating legislation and allocating resources. Policy decisions can utilize statistics of attainment aggregated to the district or state level. They do not require the level of detail needed in program evaluation or school management. The required information can be obtained equally well by achievement testing or by assessment results summarized in broad areas of proficiencies or subject matter.

Research: secondary studies of the conditions and background variables that influence student attainment. Statistical methods in educational research typically depend upon accurate scores for individual students. The existence of widely used, well-defined scales for reporting results greatly facilitates such studies. Student achievement testing based on standardized measures has traditionally served this purpose.

3. Combining student achievement testing and assessment of curricular objectives

It should be clear from the preceding discussion that traditional individual achievement testing differs in important ways from assessment of the success of schools or programs in attaining specific curricular objectives. Up to now, these two types of educational measurement have been conducted in separate testing programs using different instruments. Because the item content of these instruments is much the same, however, substantial duplication of cost, effort, and demand on classroom time is incurred to obtain the same information in different forms.

We suggest that with a suitably designed assessment instrument, both of

these forms of information can be obtained in a single test administration requiring no more classroom time than conventional achievement testing. The instrument we propose for this purpose, which we call a "duplex design", has multiple stratified random test forms like those used in assessment. The items are assigned to forms in such a way that a student's response to a particular form can be scored in broad skill and content areas, while responses over forms can be aggregated to provide scores for detailed curricular objectives at the school or other group level. An example of the layout of an instrument of this type in eighth grade mathematics is shown in Table 2.

The design in Table 2 is based on the assumption that mathematics attainment is expressed in three broad categories of behavior, called "proficiencies". These proficiencies are derived from cog-tive distinctions between procedural knowledge, semantic knowledge, and problem solving. The mathisematical substance of the proficiencies is classified in the content categories of the discipline as reflected in current curricula and textbooks at this grade level. Scores for individual students can be calculated within forms in three ways. First, scores for each of the three proficiencies are obtained by aggregating over content. Second, diagnostic scores in the main content categories (Numbers, Algebra, Geometry, Measurement, and Probability & Statistics) are obtained by aggregating over the proficiencies and over the subtopics within the main content categories. Third, an overall score for mathematics is computed by aggregating over all items.

At the same time, scores for schools or other groups of students can be calculated for each of the 57 elements in the table by aggregating over test forms. When the scoring methods described in Mislevy & Bock (1987) are used for this purpose, the mean of the proficiency or of the content area scores of students in a given school will equal the mean of the school-level content-element scores within that proficiency. Thus, the several types of information extracted from the duplex design are expressed on the same scale of measurement.

Depending on the item pool, not all of the curricular elements may be included when the design is implemented. In a prototype of the grade 8 mathematics design based on items from the California and Illinois Assessments, content categories 15 (irrationals), 23 (inequalities), and 44 (other systems of measurement), 52 (experiments and surveys) were not represented. In the

TABLE 2 A GRADE 8 MATHEMATICS DUPLEX DESIGN

			Proficiencies	
Content Categories		a. Procedural	b. Knowledge	c. Higher
* `	~	Skills ²	of Facts &	Level
			Concepts b	Thinking
	Numbers			
	Integers	11a	11b	11c
	Fractions	12a	12b	12c
	Percent	13a	13b	13c
	Decimals	14a	14b	14c
	Irrationals	15a	156	15c • .
20.	Algebra			
	Expressions	· 21a	215	21c
	Equations	22a	225	22c
	Inequalities	23a	23b	23c
	Functions	24a	24b	24c
30.	Geometry ·			
	Figures	311	31b	31c
	Relations & Transformations	22a	32b	32c
	Coordinates	30a	335	_33€
4 G.	Measurement		•	
	English & metric units	41a	416	41c
	Length, area & volume	42a.	42b	42c
	Angular measure	43a	43b	40c
	Other systems (time, etc.)	44a	44b	44c
50.	Probability & Statistics	,		
	Probability	518	51b	51c
	Experiments & surveys	52a	525	52c
	Descriptive Statistics	50a	535	53c

^{*}Calculating, rewriting, constructing, estimating, executing algorithms. Terms, definitions, concepts, principles.
*Proof, reasoning, problem solving, real-world applications.

prototype instrument, these elements were replicated in 24 booklets containing a total of 1080 items. The items in any given form were chosen randomly from the pools representing each of the curricular elements.

In the administration of this type of instrument, the booklets are distributed in rotation within classrooms. The fact that different students may be responding to different forms and items does not typically present any difficulty. This method of test administration has been used widely in assessment programs with good success. In particular, the experience of the California Assessment shows that, when expendable test forms are used, group testing with this type of instrument can be carried out as early as the third grade.

4. The contribution of modern item response theory (IRT)

Efficient estimation of comparable scores for all students, regardless of which test form they are assigned, requires the use of modern IRT methods of item scaling. Because the item content of each of the scales is perfectly balanced in the auplex design, the scoring is robust in the presence of minor departures from the conditional independence assumed in conventional IRT methods. In the implementation of these methods, the instrument is administered initially to a probability sample of students at the selected grade level. The test items are then calibrated, preferably by the marginal maximum likelihood method (Bock and Aitkin, 1981), with the unit and origin of measurement chosen so that the mean and standard deviation in the population of students is the same for all scales in the base year. The resulting item parameters are then used to compute students' scores by maximum likelihood or Bayes methods, and each score is accompanied by a standard error or posterior standard deviation. Scores computed in succeeding years with these item parameters have constant origin and unit and are suitable for measuring growth and change in the population from the base year onward. Because IRT methods are used, it is possible to add and retire items from the test without altering the initial definition of the scale. This updating can be done as part of the operational administration of the test without additional field trials. New developments in item response theory also account for effects of so called "item-parameter drift" while retaining the original scale definition

(Bock and Muraki, 1986). This armamentarium of IRT techniques, along with provisions for writing and critiquing new items, constitutes the item maintenance system that supports the comprehensive assessment program.

Scores for schools or other groups of students can be estimated by IRT methods using the models for group data described by Mislevy (1984). These methods provide scores for the curricular elements on the assumption that each pupil responds to one item from each element. The duplex design satisfies this condition. This type of scoring is especially easy to carry out because it uses, as statistics, the number of students who attempt each item within the classroom or school and, among those, the number who respond correctly. Thus, the calculations require only a classroom or school summary file rather than the much larger file of individual item responses required for the scoring of students in the skill areas.

5. Adaptive testing

With the aid of IRT scoring methods, it is possible to minimize testing time by using some form of adaptive test administration. Ideally, one would prefer individual, fully adaptive, computerized test administration in which each item presented to the examinee is most informative, given the provisional estimate of the examinee's proficiency. But almost equal gains in efficiency can be obtained by group-administered, two-stage testing (Lord, 1980). In this form of testing, each student takes a short pre-test of general knowledge in the subject matter area. This pre-test is then scored by the teacher prior to the main test, and the student is assigned the appropriate second-stage form according to the result. A feasibility trial of a two-stage form of the duplex design for eighth-grade mathematics described above is presently being conducted in Illinois and California as a project of the OFRI Center for Student Testing, Evaluation and Standards. The assessment, instrument for this study consists of a 12-item pretest and 8 second-stage forms at each of three levels of difficulty—easy, intermediate and hard. At the student level, the instrument tests three mathematics proficiencies and five main content areas, and at the classroom and school level, 45 distinct curricular elements. A report of this study is in preparation (Bock, et al., 1987).

6. Reporting

To be most broadly useful, a comprehensive assessment should produce reports for a variety of audiences. Computer generated reports, with explanatory comments, should be supplied to students, classroom teachers, school department heads and principals, district supervisors, the state department of education, and the media. Possible content and reporting forms for this purpose are suggested in this section and illustrated for the duplex design in Table 2. The results shown are taken from the Illinois field trial of the duplex design in eighth grade mathematics. The names of the student, teacher, and school have been changed.

Students. A report to individual students, to be shared with their parents, and a similar copy supplied to the student's classroom teacher, might take the form shown in Figure 1. The student's profile of scale-scores in the main skill and content areas is presented both graphically and numerically. In the graph, the score value is represented by a small diamond bracketed by a 66% confidence interval on the true score. The numerical value of the score is also shown at the right. The heavy vertical line represents the student's overall mathematics score.

The origin and unit of the scale scores are assigned in the first year of the assessment and remain fixed thereafter. In Figure 1, a scale similar to that used by the California Assessment Program and by NAEP is shown: the mean for the state is set at 250 and the standard deviation at 50. The range of the scale is 0 to 500.

To aid in the normative interpretation of the scale, percentile points of various score distributions are shown for selected points on the scale. The student reports include percentiles for the classroom to which the student is assigned, for the school, and for the state or higher level population. Percentiles for the state are the same on all forms and can be printed beforehand; those for the school and classroom are overprinted by computer along with the information pertaining to the particular student.

In addition, the scale is criterion-referenced to certain mastery levels defined by test items having thresholds near these points. In the displays shown here, three mastery levels are distinguished: basic, intermediate and advanced. The implication is that students who fall in the basic range are candidates for some form of additional instruction or remediation, those in

I-18

the intermediate range are progressing at the normal pace, and those in the advanced range should be given opportunities for special instruction or activities in the relevant subject matter.

The deviation of the students confidence intervals about the heavy vertical line to the right indicates areas of relative strength, and to the left, areas of relative weakness. In the display of a student showing uniform progress, (not requiring additional work in any skill or topic), all confidence intervals would overlap the vertical line.

Schools. The reports intended for the district superintendents and school principals take the two forms shown in Figure 2. The first form, shown in Figure 2A, summarizes the proficiency and content scores of all students at the grade level. The distributions of student scores are depicted as histograms, and the percent of students at each mastery level is shown. The school means for each skill and topic is shown at the right along with the corresponding state percentile. The percentile refers here to the state-wide distribution of school means and not to the distribution of individual student scores. Each percentile shows the ranking of the mean of this particular school among the means of all schools in the state. The heavy vertical line represents the overall mathematics mean score for the school; it is also expressed as a percentile of the state-wide distribution of school means.

The second form of the school report, shown as Figures 2B and 2C, summarizes the school scores for each of the 45 cuirricular elements covered in the duplex design. The school level score for each element is marked by a diamond, and the corresponding horizontal bar is the plus-or-minus one standard error confidence interval on the school true score. Not be that the confidence intervals are shorter than those for individual students because of the greater stability of school level scores. The range of the scale can also be shorter because the variation between schools is less than that between students.

Emulating the reports of the California Assessment Program, the school report also includes a rectangular box or "comparison band" for each curricular element. The band represents the range of scale scores for the element that would be expected on the basis of the resources and community background of the school. The length of the confidence band allows for both the prediction error and the measurement error of the respective element scores. From data for the state as a whole, relationships are empirically determined

to best predict the performance of the school from measures of economic and social characteristics of the school district. These relationships give a range of scores that would reasonably be expected from knowledge of the characteristics alone. They permit the performance of the reported school to be compared with that of other schools with similar characteristics. If the scale-score of the school lies to the right of this band, then the effectiveness of its instruction for the curricular element is better than might have been expected. If the scale score falls to the left of the comparison band, the effectiveness of the school's instruction in the curricular element is poorer than might have been expected. These comparisons reveal relative strengths and weaknesses in the school's instructional program.

State. Fc. state-level summaries of student and school performance, the displays in Figures 3A and 3B are informative and easily understood by the general public. The state-level information is summarized in terms of overall mathematics achievement rather than scores for proficiencies, content, or curricular elements. Figure 3A shows the estimated distribution of overall mathematics scores for all students in the state. Data for the current year and the previous year are presented in order to show the direction of change. Both the state's scale score and the corresponding national percentile are presented. The 1985 data and the national percentile in Figure 3A are hypothetical; the 1986 data are based on the Illinois field trial. The median score of students in the state is shown as a heavy line, and the percent of students in each of the mastery levels is also given. The graphs convey both the numbers and the percent of students who are achieving in eighth grade mathematics at recognized levels of mastery. This is the form of data that is of most interest to state officials, legislators, and public.

Graphical presentations similar to Figure 3B, which shows here the absolute and relative overall mathematics performance of the 32 schools in the Illinois field trial, would be of special interest to state departments of education and the media. By the use of code numbers, the display shows the mathematics achievement scale score for each school relative to the score that would be predicted on the basis of the school's characteristics and resources. It is apparent from Figure 3B that these predictions are relatively accurate in the Illinois data. The middle diagonal black line on the graph shows the expected score, and the vertical distance of a school's location from that

line indicate 'ative performance. If this distance is greater than the 97.5 percent bound indicated by the upper diagonal line, the school is performing better than expected from community characteristics, if it is below the 2.5 percent bound indicated by the lower diagonal line, the school is performing more poorly than would be expected on these grounds. On this graph, anyone privileged to view the key to the school codes could see immediately those schools that are relatively more effective in teaching eighth-grade mathematics, and those that are relatively less effective. The chart is a basis for addressing the accountability of schools for the attainment of their students in this subject matter.

Media. Any of the foregoing reports from the school level upward could be released to the media. A considerable amount of descriptive material and comment may have to accompany the quantitative reports in order to make them understandable to reporters and the public. As an aid to interpretation of the results, a good practice is to display actual items from the test. The pre-test items of the two-stage testing serve this purpose admirably. Because of the high level of exposure of these items, they would be replaced annually and thus will be available for release to the public immediately following the testing. Having been chosen from among items of high discriminating power and covering a wide range of general mathematics proficiency, they are among the most powerful indicators of overall attainment in the subject matter. The locations of their thresholds on the scale score continuum can be presented graphically as a means of content-referencing the scale.

7. Between-state comparisons

The utility of state assessments can be further enhanced by expressing the results in terms of a common scale, preferably one for which national norms exist. State can then be compared with state, and state with nation, for purposes of evaluating educational programs and promoting economic development. National norms could, of course, be obtained by administering the state test in a nation-wide sample of schools, but the prospect of all, or most, of the fifty states undertaking such surveys is not pleasant to contemplate. By use of equating methods, a much more efficient and less intrusive approach is possible. All that is needed is to administer, to a sample of

1 - 21

students who have taken the state test, a nationally normed test covering approximately the same content as part or all of the assessment instrument. Statistical methods could then be used to obtain the best unbiased prediction of the national test scores from the scores on the state test. The predicted national test scores could then be aggregated to the school district or state level for purposes of comparing educational performance in one state with the national norm or with any other state using a similar procedure to express its assessment results.

From the normative score distribution of the national test, the predicted scores could be interpreted in terms of percentiles of the national population in the same way that the student scores are interpreted in local and state percentiles. This method has already been used to express the reading comprehension scale of the California Assessment Program in the units of the Degrees of Reading Power test at the eighth grade level (Bock, Sykes, and Schilling, 1987). As a source of national test scales in terms of which state assessment results could be expressed, the National Assessment of Educational Progress is an obvious candidate, provided it could produce scores at the pupil level suitable for this purpose.

8. Conclusions

Our analysis of the potential users of data on educational outcomes—students, parents, teachers, school counselors, school administrators, boards and officials, curriculum experts, textbook writers, state legislators and departments of education, and educational rese of specialists—leads us to conclude that currently existing programs for evaluating educational productivity should, and can, be redesigned to serve the needs of this varied community. We propose for this purpose the "duplex design", which supplies achievement scores for individual students in the main areas of proficiency and content while at the same time evaluating the progress of schools in attaining the detailed objectives of the instructional program and curriculum. Based on new developments in educational statistics and measurement, including item-response theory, matrix sampling, and two-stage testing, the duplex design is capable of delivering this range of information with no greater demand on testing resources and classroom time than is now required in conventional every-pupil achievement testing.

T - 22

REFERENCES

- Bock, R.D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: an application of an EM algorithm. *Psychometrika*, 46, 443-459.
- Bock. R.D., Brennen, M., Dossey, J., Pandy, T. & Zimowski, M. (1987). Feasibility study of the duplex design for assessment of eighth grade mathematics attainment (in preparation).
- Bock, R.D., Misleyr, R.J., & Woodson, C. (1982). The next stage in educational assessment. Educational Researcher, 11, 4-11, 16.
- Bock, R.D. & Muraki, E. (1986). Detecting and modeling item parameter drift (in preparation).
- Bock, R.D., Sykes, R., & Schilling, S. (1987). CAP Reading Comprehension Skill expressed in units of the Degrees of Reading Power test. NORC technical report to the California Assessment Program.
- Burstein, L., Baker, E.L., Aschbacher, P. & Keesling, J.W. (1985). Using state test data for national indicators of educational quality: a feasibility study. Los Angeles: Center for the Study of Evaluation, UCLA Graduate School of Education.
- Lord, F.M. (1962). Estimating norms by item sampling. Educational and Psychological Measurement, 22, 259-267.
- Lord, F.M. (1980). Applications of item response theory to practical testing problems. Hillsdale (N.J.): Earlbaum.
- Mislevy, R.J. (1984). Personal Communication.
- Mislevy, R.J. (1985). Inferences about Latent Populations from Complex Samples. NAEP Research Report, 85-41. Princeton: Educational Testing-Service.
- Mislevy, R.J. & Bock, R.D. (1987). Analyzing and scoring the duplex design (in preparation).
- Walker, D. & Schaffarzick, J. 1974). Comparing curricula. Review of Educational Research, 44, 83-111.
- Winfield, L.F. (1986). The relation ip between minimum competency testing and students' reading proficiency: implications for NAEP (unpublished manuscript).

Survey Test of Grade 8 Mathematics

STUDENT REPORT

Student: David Taylor Teacher: Mary Jones Class: Math8G School: Sanderson

Date of Testing: December 12, 1986

Your personal Math achievement profile

EXPLANATION:

Your scores for five areas of mathematics are shown in the graph above. Each bar on the graph has a 2/3 chance of including your true score. The diamond marks the best estimate of your true score. Scores toward the right hand side of the graph indicate relative strength in the mathematics skill or topic. Scores toward the left indicate relative weakness. The heavy black verticle line marks your overall average score in mathematics. The overall math score, and the class, school, and state percentiles corresponding to it, are shown below the graph.

Survey Test of Grade 8 Mathematics

SCHOOL REPORT

School:

Sanderson

Date of Testing: December 12, 1986

Number of Students Tested: 72

EXPLANATION:

Each • represents about three students. The heavy black vertical line marks the overall average score of the school in mathematics.

SCHOOL REPORT (page 2)

School performance on curricular objectives

Procedures: Calculating, rewriting, constructing, estimating.

Knowledge: Terms, uefinitions, concepts, principles.

Problem Solving: Proof, reasoning, real-world applications.

T - 26

SCHOOL REPORT (page 3)

NORC The University of Chicago

STATE SUMMARY

Mathematics scores of 8th Grade Students in 1985 and 1986

EXPLANATION:

Overall mathematics attainment of 8th grade students in December of 1985 and 1986. Each box (*) represents 1000 students. The heavy line (I) is the median score for each year.

NORC The University of Chicago

1-28 34

STATE SUMMARY

School Performance Chart 8th Grade Mathematics

Scale score expected for school based on community characteristics and resources.

EXPLANATION:

The location of schools on the performance chart is indicated by their identification codes. Absolute performance levels are given by the positions of the schools on the scale on the left. Performance relative to other schools with the same community characteristics and resources is indicated by the vertical distance of the school code from the heavy diagonal line. Schools located above the upper light diagonal line are performing better than expected. Those below the lower light diagonal line are performing less well than expected.

NORC The University of Chicago

II. Sample Score Reports from the Illinois Tryout

ERIC Full Text Provided by ERIC

STUDENT REPORT

Student: Eric Jones Teacher: Mr. Rivera

Class: 9:10

School: Hamilton Jr. High Date of Testing: 11-20-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Robert Cobden Teacher: Mr. Rivera

Class: 9:55

School: Hamilton Jr. High Date of Testing: 11-20-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Laura Williams Teacher: Thomas Tucker

Class: 9:55

School: Hamilton Jr. High Date of Testing: 11-20-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Steve Marcus
Teacher: Cindy Caldwell

Class: 10:40

School: Hamilton Jr. High Date of Testing: 11-20-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Thomas Williams

Teacher: John Wilson

Class: 9:15

School: Whitesboro Elem. Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: James Hopper Teacher: Tom Barnes

Class: 9:15

School: Whitesboro Elem. Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Chris Stewart Teacher: Susan Smith

Class: 9:15

School: Whitesboro Elem. Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Susan Gray Teacher: John Wilson

Class: 9:15

School: Whitesboro Elem. Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Terry Jones Teacher: Bill Stevens

Class: 9:13

School: Sanderson

Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Steven Livingston

Teacher: Martha Thomas

Class: 8:22

School: Sander on

Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Bill Johnson Teacher: Mary White

Class: 8:22

School: Sanderson

Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

STUDENT REPORT

Student: Susan Jones Teacher: Bill Stevens

Class: 9:13
School: Sanderson

Date of Testing: 11-11-86

Your personal Math achievement profile

EXPLANATION:

SCHOOL REPORT

School: Hamilton Jr. High Date of Testing: 11-20-86 Number of Students Tested: 76

EXPLANATION: Each • represents about three students. The heavy black vertical line marks the overall average score of the school in

vertical line marks the overall average score of the school in mathematics.

SCHOOL REPORT (page 2)

School performance on curricular objectives

Procedures: Calculating, rewriting, constructing, estimating.

Knowledge: Terms, definitions, concepts, principles.

Problem Solving: Proof, reasoning, reas-world applications.

11_1/

SCHOOL REPORT (page 3)

SCHOOL REPORT

School: Whitesboro Elem.

Date of Testing: 11-11-86

Number of Students Tested: 83

EXPLANATION: Each • represents about three students. The heavy black vertical line marks the overall average score of the school in mathematics.

SCHOOL REPORT (page 2)

School performance on curricular objectives

Procedures: Calculating, rewriting, constructing, estimating.

Knowledge: Terms, definitions, concepts, principles.

Problem Solving: Proof, reasoning, real-world applicions.

SCHOOL REPORT (page 3)

SCHOOL REPORT

School: Sanderson
Date of Testing: 11-11-86
Number of Students Tested: 72

EXPLANATION: Each • represents about three students. The heavy black vertical line marks the overall average score of the school in mathematics.

SCHOOL REPORT (page 2)

School performance on curricular objectives

Procedures: Calculating, rewriting, constructing, estimating.

Knowledge: Terms, definitions, concepts, principles.

Problem Solving: Proof, reasoning, real-world applications.

SCHOOL REPORT (page 3)

STATE SUMMARY

Mathematics scores of 8th Grade Students in 1985 and 1986

EXPLANATION:

Overall mathematics attainment of 8th grade students in December of 1985 and 1986. Each box (•) represents 1000 students. The heavy line (I) is the median score for each yea.

STATE SUMMARY

School Performance Chart 8th Grade Mathematics

Scale score expected for school based on community characteristics and resources.

EXPLANATION:

The location of schools on the performance chart is indicated by their identification codes. Absolute performance levels are given by the positions of the schools on the scale on the left. Performance relative to other schools with the same community characteristics and resources is indicated by the vertical distance of the school code from the heavy diagonal line. Schools located above the upper light diagonal line are performing better than expected. Those below the lower light diagonal line are performing less well than expected.

III. Item Parameter Estimates

ITEM PARAMETER ESTIMATES EIGHT SUBTESTS

		Num	bers Subtest	(27 items)	ı	
E2 E3 E4 E5 E6 E7M E8 E9M E110M E11 M M2D M3D M4D M5D M6D M8D M8D M8D M8D M8D M8D M8D M8D M8D M8	SIOPE 0.333 0.333 0.374 0.608 0.402 0.824 1.431 0.302 0.755 1.228 0.386 0.265 0.808 0.570 0.834 0.257 0.716 0.831 0.440 0.310 0.861 1.110 0.515 0.5515 0.5515	5.0. 0.068 0.054 0.056 0.096 0.094 0.071 0.228 0.039 0.057 0.039 0.046 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.043 0.043 0.065 0.065 0.065 0.065 0.065	Threshold -1.934 -1.104 0.755 0.601 -0.503 0.453 0.561 0.851 0.349 1.018 -1.143 4.302 -0.091 -0.126 -0.030 0.929 0.601 0.621 -0.934 1.686 -0.061 0.750 1.762 -0.039 0.505	0.253 0.186 0.186 0.112 0.083 0.090 0.055 0.125 0.043 0.125 0.049 0.126 0.033 0.041 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055	Asymptote 0.106 0.116 0.129 0.108 0.109 0.089 0.099 0.051 0.125 0.070 0.117 0.091 0.087 0.117 0.087 0.117 0.089 0.087 0.117 0.087 0.104 0.104 0.104 0.104 0.104 0.104 0.109 0.104 0.109 0.087	5.9. 0.047 0.036 0.022 0.732 0.013 0.013 0.015 0.014 0.029 0.018 0.016 0.014 0.029 0.018 0.019 0.021 0.019 0.021 0.022 0.033
Item	\$1ope 0.727	* . • .	Threshold	s.e.	Asymptote	s. e.
E13 E15 E167M E18 E19 E20M M145 M145 M145 M160 M19 O135 D19 D21	0.727 0.444 0.401 0.7326 0.781 0.560 0.4327 1.1276 0.561 1.124 0.812 0.424 0.645 1.206 0.632 0.552 0.719	0.114 0.075 0.070 0.092 0.046 0.124 0.100 0.083 0.054 0.098 0.104 0.147 0.089 0.089 0.089 0.089 0.089	0.294 0.780 0.442 -1.938 -1.022 0.349 0.453 2.808 1.251 -0.494 -0.066 3.792 -0.069 0.213 -1.037 -0.015 0.840 1.805 0.959 1.977 2.308 0.247	0.074 0.094 0.095 0.095 0.095 0.080 0.425 0.066 0.066 0.068 0.052 0.101 0.103 0.101 0.103 0.105	0.125 0.160 0.162 0.130 0.130 0.1123 0.142 0.171 0.116 0.093 0.104 0.135 0.102 0.135 0.104 0.133 0.104 0.130	0.026 0.024 0.027 0.057 0.057 0.025 0.026 0.026 0.013 0.017 0.009 0.017 0.018 0.019 0.013 0.015 0.015
Item	Slope		Threshold		Asymptote	
E22 E23 M E23 M E24 E25 E27 E28 E29 E30 M24 M25 M25 M25 M25 M25 M25 M25 M28 M29 D22 D23 D24 D23 D24 D23 D24	0.504 0.596 0.445 0.713 0.445 0.433 0.509 0.464 0.601 0.416 0.572 0.483 0.816 0.816 0.404	0.085 0.065 0.081 0.092 0.112 0.093 0.081 0.082 0.085 0.073 0.069 0.073 0.069 0.071 0.060 0.071 0.072 0.072 0.073	-0.277 0.391 0.313 0.700 -0.928 2.409 1.335 1.044 0.936 -0.401 2.121 0.852 0.131 2.272 2.177 2.008 0.256 0.521 -1.548 0.057 2.163 0.351 1.548 0.057 2.163 0.351 1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.521 -1.548 0.440 0.490 0.490 0.521 -1.548 0.490 0.490 0.490 0.490 0.490 0.521 -1.548 0.490 0.490 0.490 0.490 0.490 0.521 -1.548 0.490 0.4	O. 075 O. 075 O. 076 O. 129 O. 158 O. 523 O. 199 O. 076 O. 183 O. 076 O. 131 O. 045 O. 0463 O. 198 O. 0566 O. 237 O. 059 O. 070 O. 070	0.137 0.128 0.141 0.122 0.136 0.127 0.140 0.135 0.148 0.129 0.132 0.140 0.132 0.147 0.145 0.145 0.145 0.147 0.147	0.033 0.017 0.028 0.024 0.041 0.041 0.023 0.023 0.023 0.027 0.014 0.018 0.015 0.025 0.026 0.025 0.025 0.025 0.025
Item	Slope		ement Subtes Threshold			_
E31M E32 E33 E34M E35 E36 E37 E38 M32 M32 M35 M35 M35 M35 D31 D31 D33 D34 D35 D38	0.806 0.397 0.397 0.615 0.456 0.5328 0.456	0.071 0.083 0.075 0.062 0.133 0.072 0.127 0.120 0.120 0.128 0.065 0.065 0.065 0.065 0.065 0.065 0.066 0.066 0.066 0.067	0.598 1.073 0.867 0.719 0.906 -0.709 2.709 2.164 1.835 0.030 2.143 -0.274 0.079 0.892 4.9057 1.361 2.1361 2.143 -0.274 0.079 0.892 4.9057 1.361 2.143 0.756	0.065 0.231 0.179 0.082 0.130 0.729 0.729 0.729 0.265 0.265 0.049 0.383 0.042 0.033 1.454 0.174 0.175 0.174 0.174	Asymptote 0.085 0.141 0.140 0.126 0.077 0.134 0.088 0.132 0.153 0.118 0.090 0.179 0.110 0.123 0.142 0.098 0.144 0.098 0.118 0.118 0.118 0.118 0.118 0.118	5.0. 0.013 0.022 0.014 0.014 0.0135 0.0135 0.015 0.015 0.015 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.015 0.015 0.015 0.015

61

	Probability	end Statisti	cs Subtest	(16 items)		
1 t em Slop E40 0.45: E41 0.47! E42M 0.66: E43 0.52! E44 0.51! E45 0.72: M40 0.42: M41 0.74: M43 0.70: M44 0.46: M45D 0.65: D40 0.74: D40 0.75: D40 0.50: D41 0.75: D42 0.50: D43 0.51:	0.087 0.073 0.109 0.089 0.171 0.090 0.089 0.087 0.069 0.067 0.069 0.152 0.088 0.057	Threshold 2.358 -1.32 0.734 -0.019 -2.560 0.133 3.916 -0.9667 1.698 0.800 -1.508 -0.000 2.572 0.932 3.195	0.574 0.213 0.090 0.053 0.448 0.066 0.835 0.123 0.095 0.263 0.095 0.263 0.052 0.053	Asymptots U.128 0.135 0.122 0.126 0.132 0.138 0.085 0.124 0.108 0.146 0.135 0.125 0.125 0.123 0.123	8.0. 3.017 0.040 0.014 0.030 0.058 0.010 0.035 0.019 0.016 0.014 0.027 0.014 0.027 0.015	•
Item Slope		Threshold	_\$	Asymptote	£. •.	
E1 0.48E E4 0.62C E7M 0.525 E10M 0.75E E13 0.632 E16 0.47 E19 0.58E E22 0.437 E25 0.46C E28 0.5E E31M 0.692 E31M 0.47 E34M 0.41 E37 0.5E E43 0.47 M1C 0.36C M40 0.85E M18 0.56 M19 0.47 M19 0.47 M19 0.47 M19 0.47 M10 0.808 M10 0.56 M10 0.56 M10 0.56 M10 0.603 M10 0.56 M10 0.56 M10 0.56 M10 0.56 M10 0.56 M10 0.56 M10 0.603	0.068 0.100 0.058 0.091 0.092 0.093 0.095	-2.082 0.583 0.391 -2.925 0.655 -0.674 0.566 0.5752 2.223 2.603 -0.281 3.696 -0.5752 2.223 2.003 -0.281 -0.892 -0.672 -0.672 -0.672 -0.706 3.721 0.743 1.859 -0.743 1.859 -0.743 1.859 -0.743 1.859 -0.743 1.859 -0.743 -0.895 -0.905 -0.900 -0.90	0.297 0.114 0.065 0.045 0.054 0.446 0.053 0.116 0.088 0.113 0.057 0.085 0.587 0.692 0.068 0.032 0.088 0.032 0.085 0.032 0.085 0.032 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085	0. 105 0. 105 0. 095 0. 095 0. 095 0. 095 0. 096 0. 101 0. 097 0. 101 0. 097 0. 102 0. 130 0. 094 0. 105 0. 096	0.047 0.022 0.014 0.014 0.025 0.026 0.023 0.023 0.024 0.015 0.016 0.016 0.016 0.017 0.026 0.017 0.026 0.017 0.026 0.017 0.026 0.017 0.026 0.017 0.026 0.027	•
•	owiedge of Fe					
1 tom	0.057 0.068 0.068 0.063 0.042 0.050 0.050 0.072 0.086 0.126 0.071 0.049 0.070 0.071 0.081 0.072 0.083 0.052 0.071 0.063 0.052 0.075 0.075 0.075 0.075 0.075 0.065	Threshold -0.821 -0.823 -0.240 0.577 -1.114 3.201 0.296 -1.001 0.725 0.785 1.500 0.336 -1.109 -2.820 -0.031 -2.820 -0.095 1.253 1.225 1.989 0.452 -1.402 1.782 0.025 -1.403 1.782 0.025 -1.403 1.603 1.403 1.403 1.403 1.403 1.500 0.921 0.921	2.0.061 0.103 0.341 0.103 0.585 0.103 0.585 0.132 0.124 0.203 0.123 0.123 0.123 0.035 0.03	Asymptots 0.132 0.036 0.132 0.089 0.125 0.103 0.127 0.124 0.127 0.124 0.127 0.134 0.125 0.134 0.125 0.134 0.127 0.142 0.117 0.134 0.179 0.140 0.134 0.179 0.143 0.143 0.143 0.143 0.157 0.144 0.179 0.140 0.131 0.124 0.113	0.035 0.031 0.014 0.025 0.014 0.026 0.016 0.041 0.023 0.016 0.023 0.018 0.019 0.017 0.017 0.017 0.017 0.015 0.019	•

ERIC

Item	Slope		Threshold			
E3	0.396	2.083	1.134	0.345	Asymptote	
ĒĞ	0.679	0.102	-0.454	0.245	0.177	0.022
E9M	0.438	0.050	0.787	0.087	0.134	0.033
E 12M	0.475	0.049		0.096	0.152	0.015
E 15	0.456		-0.787	0.088	0.156	0.024
E18	0,567	0.685	0.238	0.070	0.164	0.027
E21M	0.310	0.110	0.356	0.089	0.141	0.026
E24	0.333	0.052	2.111	0.357	0.208	0.013
E27	0.678	0.067	0.490	0.112	0.172	0.027
E30	0.565	0.114	1.590	0.280	0.122	0.017
E33	0.474	0.107	0.706	0.147	0.155	↑.023
E36	0.629	0.090	0.760	0.155	0.150	J.024
E39		0.095	-0.545	0.099	0.139	0.035
E42M	0.476 0.711	0.106	2.818	0 641	0.146	0.015
E42M E45	0.784	0.070	0.676	0.078	0.140	0.014
M3	0.542	0.150	0.124	0.064	0.133	0.036
MED		0.065	0.096	0.042	0.136	0.022
	0.817	0.060	0.620	0.059	0.138	0.013
M15	0.415	0.135	4.531	1.483	0.085	0.009
M18	0.637	0.081	0.604	0.090	0.152	0.018
M24	0.384	0.071	2.626	0.489	0.172	0.013
M47D	1.Q66	0.061	1.575	0.113	0.170	0.009
M30 M33	0.353	0.051	0.319	0.060	0.163	0.022
M33D	0.933 0.773	0.112	0.009	0.047	0.108	0.022
		0.071	-0.231	0.039	0.139	0.020
M39 M45D	0.384	0.124	4.776	1.551	0.107	0.010
D3	0.558	0.045	0.910	0.082	0.139	0.014
D9	0.697	0.059	1.355	0.131	0.140	0.017
D12	0.859	0.062	1.957	0.161	0.072	0.012
D15	0.634	0.068	0.412	0.066	0.143	0.024
	1.268	·0.097	0.902	0.105	0.135	0.018
D18	0.75	0.072	0.895	0.104	Q. 15 <u>5</u>	0.020
D21 D24 🕳 🔭	0.65	0.077	0.175	0.053	0.148	0.026
	0.430 4	0.048	0.284	0.055	0.148	0.026
D30	0.573	0.063	0.846	0.107	0.157	0.022
D33	0.648	0.064	2.203	0.232	0.130	0.014
D39	0.768	0.076	0.855	0.103	0.134	0.020
D42	0.399	0.061	3.286	0.514	0.128	0.014

* p < .05

		Numi	bers Subtest	(27 items)	
1 t em E1 E2 E3 E4 E5 E6 E7M E6 E9M E11M E'2M M1D M2D M4 M5 M6 M1D D3 D4 D5 D5 D7 D8 D9 D11	SI ope 0.3661 0.4461 0.7434 0.602 0.7555 0.8641 0.6488 0.488 0.730 0.730 0.730 0.7451 0.6694 0.461 0.461 0.461 0.461 0.461 0.471 0.637 0.438	0.07: 0.067 0.053 0.068 0.074 0.065 0.085 0.044 0.047 0.048 0.082 0.048 0.082 0.047 0.082 0.040 0.082 0.040 0.056 0.056 0.056 0.056	Threshold 1.059 -0.478 -0.832 1.690 -1.092 -0.235 0.899 -0.738 0.854 -1.917 -0.950 -0.000 0.646 0.088 0.289 -0.722 0.927 0.906 -0.856 -0.303 -0.587 1.323 1.342 1.267 0.722 -0.499 -0.259	0.218 0.004 0.070 0.360 0.135 0.060 0.091 0.092 0.195 0.094 0.030 0.066 0.029 0.053 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.094 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.094 0.065	Asymptote 0.137 0.125 0.116 0.131 0.121 0.117 0.074 0.130 0.109 021 0.118 0.117 0.136 0.093 0.114 0.079 0.126 0.113 0.126 0.120 0.118 0.096 0.091 0.115 0.091	0.022 0.033 0.024 0.018 0.011 0.037 0.011 0.032 0.018 0.018 0.018 0.018 0.020 0.030 0.030 0.031 0.031 0.031 0.031 0.031 0.031
• •		∽. Alge	bre Subtest	(21 items		
1 t em E13 E14 E15 E16 E17 E18 E19M E20 E21 M13D M15 M15 M15 M15 M15 M15 M15 M15 M15 M15	Slope 0.380 0.651 0.900 0.693 0.571 0.601 0.530 0.530 0.574 0.999 0.527 0.719 0.719 0.719 0.751 0.850 0.850	0.070 0.070 0.113 0.135 0.081 0.095 0.095 0.095 0.095 0.061 0.050 0.055 0.059 0.059 0.065 0.065	Threshold -0.044 1.329 -0.723 -0.776 -1.118 -0.234 0.549 0.799 0.462 1.635 -0.345 -0.345 -0.345 0.691 1.172 2.214 0.256 0.691 2.455 0.350	0.054 0.246 0.125 0.132 0.170 0.089 0.083 0.103 0.103 0.098 0.103 0.073 1.223 0.044 0.197 0.086 0.197 0.086	Asymptote 0.217 0.230 0.179 0.199 0.190 0.195 0.201 0.232 0.232 0.232 0.147 0.202 0.144 0.170 0.181 0.194 0.195 0.158	\$.0.039 0.039 0.039 0.042 0.035 0.015 0.025 0.015 0.026 0.010 0.022 0.010 0.022 0.012 0.025 0.010 0.025
		Geos	metry Subtest	(26 item	•)	
1t em E223 E244 E255 E267 E28 E29M E300 M223 M244 M26 M27 M28 M28 M200 M25 M26 M27 M28 M300 M29 M200 M200 M200 M200 M200 M200 M20	Slope 0.582 0.671 0.475 0.475 0.475 0.520 0.410 0.520 0.531 0.801 0.395 0.395 0.642 0.795 0.642 0.795 0.827 0.827 0.827	0.084 0.0860 0.0957 0.071 0.086 0.086 0.045 0.045 0.049 0.053 0.045 0.042 0.042 0.053 0.045 0.045 0.045 0.045 0.045 0.045 0.045	Threshold 1.284 -0.045 1.705 -0.526 -1.789 0.927 1.713 0.984 0.683 0.1849 0.089 2.1445 1.390 -0.992 1.276 3.451 1.282 1.588 -0.314 1.597 0.937 1.476 -0.009	0.048 0.048 0.087 0.213 0.104 0.057 0.090 0.053 0.137 0.064 0.064 0.064 0.489 0.489 0.489 0.033 0.101 0.103 0.033 0.103 0.035 0.033	Asymptote 0.101 0.134 0.086 0.097 0.119 0.120 0.112 0.111 0.122 0.100 0.092 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.119 0.109 0.119 0.109 0.119 0.109 0.119	0.024 0.035 0.021 0.039 0.022 0.028 0.021 0.014 0.017 0.015 0.015 0.013 0.024 0.024 0.009 0.007 0.005 0.007 0.007 0.008 0.009
		Meesur	ement Subtes	t (22 item	n s)	
1tem E31M E32M E33 E34M E35 E36 E37 E38 E39 M35D M37 M36D M37 M39 D31 D31 D31 D32 D33 D33 D33	Slope 0.837 0.445 0.488 0.399 0.616 0.571 0.527 0.638 0.800 0.378 0.437 1.244 0.931 0.851 0.870 0.704 0.840 0.428 0.428 0.428	0.065 0.050 0.122 0.049 0.117 0.094 0.126 0.126 0.060 0.060 0.046 0.212 0.080 0.087 0.087 0.086 0.086 0.086	Threshold 0.887 0.649 3.268 0.815 1.442 0.604 2.290 0.406 1.922 1.877 2.215 0.243 0.885 0.750 0.430 0.909 1.638 0.185 1.491	0.081 0.081 0.831 0.106 0.106 0.116 0.100 0.304 0.270 0.047 0.072 0.093 0.259 0.100 0.197 0.197 0.055	Asymptote	6.0.012 0.014 0.014 0.015 0.023 0.015 0.025 0.015 0.017 0.027 0.014 0.020 0.023 0.023 0.029 0.023 0.019

Probability and Statistics Subtast (17 items) \$1ope 0.591 0.481 0.797 0.559 0.753 0.897 Threshold 1.242 -0.065 0.900 -0.475 -0.222 0.138 1.344 -0.526 3.106 0.627 5.4. 0.083 0.076 0.052 0.077 0.113 Asymptote 0.171 0.189 0.147 0.176 Item E40 E41 E42M E43 E44 E45 M40 M41 M43 M44 M45 8.8. 0.213 0.051 0.072 0.061 0.051 0.018 0.026 0.011 0.011 0.029 0.027 0.023 0.014 0.026 0.009 0.015 0.023 0.021 0.176 0.156 0.161 0.207 0.188 0.112 0.051 0.079 0.165 0.077 0.363 0.399 0.948 0.606 0.865 0.049 0.101 0.069 0.080 0.363 0.068 0.054 0.058 0.658 0.128 0.112 0.192 0.160 0.109 0.069 0.110 0.087 0.103 0.118 0.865 0.905 0.807 0.482 0.520 0.904 0.651 0.570 0.080 0.096 0.060 0.076 0.045 C.075 0.627 -0.265 -1.004 3.753 1.099 -0.072 -1.826 0.495 D40 D41 D42 D43 0.010 0.013 0.029 0.011 0.038 0.108 0.074 D44 D45 0.045 Procedure! Skills Subtest (38 items) Asymptote 0.156 0.145 0.142 0.136 0.162 0.169 0.160 0.129 0.151 0.157 0.157 0.157 0.158 0.158 0.144 \$1 ope 0.380 0.459 0.928 0.837 0.298 0.405 0.505 0.5675 0.385 Item E1 E4 E7M E10 E13 E16 E19M Threshold: .270
1.259
1.259
-1.511
-0.430
-1.374
0.639
-1.910
0.5827
0.744
2.043
0.997
-0.424
0.785
0.656
4.482 0.021 0.017 0.010 0.049 0.032 0.040 0.015 0.076 0.096 0.066 0.080 0.057 0.068 0.053 0.262 0.417 0.105 0.162 0.096 0.228 0.076 E22 E25 E28 == E31M 0.056 0.334 0.112 0.078 0.027 0.046 0.012 0.015 0.017 0.022 0.014 0.019 0.011 0.017 0.014 0.017 0.014 0.017 0.019 0.011 0.055 0.098 0.071 0.046 0.109 0.385 0.590 0.911 0.38, 0.530 0.630 0.560 0.497 0.737 E34M E37 E40 E43 M1D 0.096 0.426 0.181 0.084 0.083 U. 086 0.048 0.084 0.044 0.040 0.065 0.065 0.065 0.071 0.074 0.083 0.063 0.074 0.070 1.184 0.145 0.610 0.218 0.066 0.737 0.503 0.420 0.324 0.485 0.618 0.580 0.589 0.645 0.681 M10D M13D M16 M22 M25 0.147 0.110 0.150 0.161 0.100 0.149 0.131 0.135 0.125 0.125 0.126 0.163 0.163 0.1096 0.145 0.163 1.067 3.075 1.963 0.556 2.789 -0.710 1.386 0.544 0.087 -1.027 -0.185 1.904 0.876 1.876 1.876 M28 M37 M40 M43 0.358 0.101 0.152 0.075 0.053 0.131 0.053 0.246 0.114 0.207 0.111 D4 D7 0.079 0.065 0.070 0.078 0.084 0.072 0.643 0.691 0.699 0.724 0.535 0.516 0.646 0.879 0.536 0.427 D16 D19 D22 D25 D28 D31 D34 D37 D40 D43 0.022 0.029 0.040 0.029 0.016 0.072 0.063 0.064 0.082 0.058 0.057 20 0.016 0.034 0.066 0.689 Knowledge of Fects and Concepts Subtest (38 items) Slope 0.435 0.430 0.558 0.537 0.419 0.596 0.512 0.553 0.499 0.775 Threshold -0.174 -1.083 -0.689 -0.733 -1.347 -1.254 -0.6677 -0.895 -0.430 -0.468 -1.602 -1.468 -0.146 -0.146 -0.146 -0.146 -0.15 -1.217 -1.831 -0.792 -1.480 -7.544 -1.515 \$.e.0 0.073 0.064 0.086 0.076 0.076 0.111 0.074 0.103 0.056 0.076 0.149 0.089 0.077 0.055 0.085 0.073 0.065 0.073 0.064 0.073 0.073 Asymptote
0.189
0.189
0.189
0.176
0.176
0.177
0.174
0.176
0.183
0.146
0.178
0.185
0.186
0.190
0.191
0.155
0.186
0.156
0.156
0.156
0.156
0.156
0.157
0.166
0.173
0.133
0.137 E2 E5 E8 E11M ~14 E17 E23 E26 E29M E32M 0.029 0.037 0.033 0.021 0.042 0.022 0.036 0.016 0.016 0.016 0.018 0.059 0.169 0.113 0.079 0.079 0.293 0.149 0.139 0.172 0.055 0.061 0.339 0.104 0.057 E35 E38 E41 E44 M2D 0.510 0.464 0.544 0.028 0.029 0.016 0.030 0.017 0.009 M5 M8 0.688 0.098 0.192 0.130 0.041 0.142 0.112 0.205 0.240 0.132 0.111 0.158 0.256 0.256 0.195 0.067 M14D M17 M20D M23 M26 0.851 0.430 0.516 0.565 0.439 0.822 0.450 0.903 0.963 0.965 0.553 0.565 0.566 0.073 0.013 0.018 0.015 0.011 0.015 0.030 0.018 M350 M38 M41 M44 1.073 -0.848 -0.753 1.426 1.577 -0.323 2.252 1.639 2.104 0.370 -0.004 -0.000 3.940 0.065 0.06F 0.057 0.066 0.151 D5 D8 0.015 D11 D17 D23 0.055 2.058 0.064 0.084 0.057 0.089 0.016 0.017 0.015 0.026 0.028

D26 D29

, 4

0.175 0.165 0.082 0.188

0.86

0.029 0.011 0.045

-1.936

0.063

Item		Slope		s	Threshold			
E3M		9.749		0.058	-0.756	0.068	Asymptote	
E6		0.402		0.071	0.164	0.059	0.147 0.177	0.024
E?M		0.502		0.054	1.097	0.124	9.144	0.027
E · 2M		0.609		0.060	0.100	0.034	0.154	0.013
E15		0.948		0.096	-0.935	0.116	0.151	0.039
£18		0.366		0.062	-0.547	0.105	0.183	0.033
E21		0.484		0.078	0.063	0.054	0.179	0.027
E24		0 761		0.130	0.514	0.109	0.149	0.022
E27	•	0.323		9.083	0.036	0.055	0.197	0.029
E30		0.430		0.076	D.068	0.055	0.195	0.028
E33 E36		0.528		0.149	3.121	0.898	0.132	0.014
E39		0.515		C.095	0.782	0.156	0.181	0.022
E42M		0.473		9.152	3.455	1.125	0.135	0.014
E45		0.416		0.053	1.625	0.213	0.167	0.013
M60		0.771		0.099	0.216	0.067	0.137	0.026
M15		0.693		0.087	1,140	0.084	0.147	0.011
MIBO		0.871		0.062	-0.299	0.058	0.163	0.026
M210		0.482		0.043	0.902 2.301	0.078	0.198	0.012
M24		0.557		0.072	0.874	0.211	0.124	0.010
M27		0.477		C.062	-0.388	0.123	0.176	0.017
M30		0.604		0.115	3.746	0.737	0.173	0.026
M33		0.427		0.068	1.718	0.282	0.082 0.213	0.009
M360		0.644		0.054	0.344	0.044	0.165	0.015
M39		0.498		0.080	2.439	0.400	0.168	U.013
M45		0.801		0.094	-0.370	0.063	0.155	0.026
D3		1 102		0.163	-0.182	0.067	0.149	0.030
09		0.851		0.064	0.891	0.090	0.137	0.019
012		0.677		.0.083	-0.112	0.052	0.165	0.029
015 024		0.552		0.068	0.234	0.057	0.179	0.026
027		0.646		0.062	2.307	0.238	0.137	0.014
030	•	0.879	₩ .	0.072	1.210	0 121	0.159	0.017
033		0.805		0.076	1.502	0.149	0.167	0.016
039		0.493		0.082 0.056	0.601	0.083	0.155	0.022
042		0.796		0.056	1.798	0.214	0.170	0.018
045		0.540		0.058	1.878 1.317	0.182	0.182	0.015
		0.340		U. UDO	1.317	0.153	0 164	0.019

* p < .05 ** p < .01

FORM 3 ITEM PARAMETER ESTIMATES EIGHT SUBTESTS

		Numbers Subtes	t (29 items)		
Item E12 E23M E4 E56 E78 E9 O E111M E12M M12D M5D M6 M7 M8D M10D M10D M10D M10D M10D M10D M10D M10	0.725 0.440 0.554 0.855 0.903 0.947 0.549 0.549 0.526 1.031 0.647 0.662 0.864 0.864 1.287 0.947 0.947 0.947 0.549 0.	5.8. Threshold .078 -0.361 .061 -0.458 .045 -0.680 .105 -0.680 .105 -0.899 .144 -0.367 .138 -1.134 .075 -0.020 .1060 -1.054 .106 -0.637 .044 -1.171 .053 -0.362 .074 -0.586 .094 -0.155 .078 -0.401 .111 -0.278 .139 -0.441 .052 -2.357 .090 -0.811 .052 -2.357 .090 -0.811 .044 -0.305 .078 -0.840 .092 -0.247 .095 -0.247 .095 -0.247 .095 -0.247 .095 -0.247 .096 -0.513 .067 -0.877 .080 -0.870	0.068 0.081 0.064 0.070 0.099 0.164 0.132 0.084 0.087 0.044 0.068 0.03 0.045 0.045 0.076 0.068 0.076 0.082 0.082 0.082 0.088 0.088	Asymptots 0.133 0.137 0.162 0.162 0.162 0.184 0.1090 0.1667 0.155 0.155 0.155 0.122 0.169 0.123 0.122 0.122 0.122 0.123 0.140 0.186 0.186 0.186	8.8. 0.0301 0.031 0.022 0.022 0.022 0.014 0.027 0.037 0.037 0.019 0.016 0.013 0.013 0.014 0.039 0.014 0.039 0.018 0.034 0.021 0.021 0.021 0.021 0.021
Item	Slope	s.e. Threshold	8.0.	Asymptote	1.0.
E 38 E 39 E 440 E 441 E 442 E 443 M 37 E 445 M 37 M 440 M 441 M 445 D 38 D 39 D 40 D 41 D 445 D 445	0.465 0 0.472 0 0.550 0 0.624 0 0.499 0 0.333 0 0.531 0 0.333 0 0.469 0 0.362 0 0.362 0 0.463 0 0.474 0 0.287 0 0.495 0 0.496 0 0.4	.090 1.297 .088 -0.692 .100 -0.515 .1014 -0.311 .090 1.536 .067 0.617 .072 1.348 .097 0.091 .072 0.586 .100 4.420 .077 0.935 .072 1.314 .055 0.707 .097 5.258 .072 1.963 .076 0.168 .096 -0.812 .078 1.373 .075 -0.233 .076 3.743 .070 2.666	0.253 0.108 0.108 0.287 0.297 0.297 0.056 0.082 0.116 1.231 0.162 0.089 1.317 0.293 0.053 0.151 0.158 0.058	O. 104 O. 112 O. 109 O. 106 O. 095 O. 109 O. 125 O. 109 O. 119 O. 073 O. 113 O. 108 O. 115 O. 101 O. 115 O. 1110 O. 112 O. 110 O. 112 O. 109 O. 112 O. 109 O. 110 O. 110 O	0.022 0.037 0.035 0.032 0.020 0.015 0.029 0.029 0.021 0.011 0.017 0.017 0.017 0.015 0.017 0.011 0.011 0.011 0.015 0.016 0.036 0.036 0.036
• • -		Geometry Subter	st (21 items)		
Item E113M E114 E116 E116 E116 E116M E116M E116M E210M M116 M117D M119 M119 D114 D118 D118 D120	0.889 0. 0.643 0. 0.526 0. 0.267 0. 0.274 0. 0.459 0. 0.457 0. 0.645 0. 0.665 0. 0.531 0. 0.668 0. 0.591 0. 0.589 0. 0.589 0. 0.589 0. 0.457 0. 0.457	Threshold 0.76 0.76 0.82 0.82 0.80 0.82 0.80 0.82 0.80 0.82 0.80 0.82 0.81 0.82 0.83 0.85 0.87 0.78 0.89 0.87 0.71 0.84 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89	0.067 0.172 0.033 0.078 0.051 1.155 0.098 0.159 0.111 0.152 0.149 0.150 0.150 0.079 0.497 0.231 0.231	Asymptoty 0.076 0.076 0.107 0.107 0.107 0.107 0.986 0.063 0.093 0.074 0.102 0.078 0.078 0.078 0.078 0.078 0.093	0.013 0.020 0.020 0.028 0.029 0.016 0.016 0.014 0.024 0.015 0.073 0.015 0.015 0.015 0.015 0.015
		Meesurement Subte	st (21 items)	
Item F22 E23 E24 E254 E26M E27 E26 E27 E30 M22 M23 M24D M27 M28D M30D M30D M30D M30D M30D M30D M30D M30	0.552 0. 0.731 0. 0.534 0. 0.680 0. 0.683 0. 0.6649 0. 0.5649 0. 0.5658 0. 0.5556 0. 0.416 0. 0.440 0. 0.440 0. 0.480 0. 0.480 0. 0.522 0. 0.522 0. 0.584 0.	Threshold 092 0.241 133 0.333 082 -0.432 061 0.051 076 0.635 094 0.523 114 0.162 068 0.214 111 0.836 C82 2.532 067 1.228 053 1.971 072 0.800 052 1.793 060 2.559 060 2.559 070 0.823 070 0.823 086 1.086 0086	s.e. 0.070 0.089 0.086 0.033 0.081 0.110 0.069 0.043 0.180 0.528 0.249 0.195 0.145 0.176 0.222 0.488 0.1248 0.1248 0.1248	Asymptota 0.145 0.134 0.160 0.152 0.131 0.149 0.159 0.159 0.159 0.158 0.168 0.168 0.175 0.164 0.175 0.175 0.175 0.141 0.175 0.142 0.164 0.175 0.142 0.164 0.175 0.149	0.026 0.024 0.031 0.018 0.014 0.026 0.018 0.026 0.015 0.019 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.029 0.022 0.022 0.022 0.029

	Probe	bility end	Statistics	Subtest (15 (tems)	
E31	927 927 662 671 3693 718 428 436 428 436 530 455 576 742	0.061 0.059 0.043 0.056 0.101 0.069 0.096 0.097 0.073 0.047 0.059 0.052 0.070 0.089	Threshold 1.848 -0.515 -0.06 0.708 -0.598 -0.639 3.416 -1.17 0.327 1.035 -0.321 0.451 0.936 -0.250	0.182 0.030 0.044 0.075 0.032 0.029 0.757 0.145 0.082 0.114 0.057 0.044 0.059 0.109	Asymptote 0.155 0.178 0.155 0.178 0.135 0.074 0.150 0.150 0.160 0.114 0.118 0.111 0.109 0.117 0.097	0.006 0.016 0.013 0.007 0.016 0.016 0.008 0.025 0.017 0.013 0.015 0.015 0.023
Item Si			Skills Sub			
E4 O. E7 O. E10 O. E10 O. E18 O. E22 O. E25M C. E25M C. E25 O. E25 O. E31 O. E44 O. E43 Mac O. M10 O. M10 O. M10 O. M10 O. M10 O. M10 O. M28 O. M31 O. M34 O. M37 O. M34 O. M37 O. M34 O. M37 O. M10 O. M37 O. M28 O. M31 O. M37 O. M34 O. M37 O. M28 O. M31 O. M37 O. M34 O. M37 O. M34 O. M37 O. M34 O. M37 O. M34 O. M37 O. M37 O. M40 O	598 4398 4398 5986 5994 9975 626 5852 5974 9976 5852 5974 797 747 747 747 747 747 747 747 747	0.112 0.091 0.131 0.131 0.082 0.082 0.059 0.059 0.080 0.121 0.126 0.055 0.091 0.055 0.095 0.055 0.095 0.064 0.088 0.083 0.083 0.083 0.085 0.087 0.056 0.087 0.056 0.056 0.059 0.074 0.062 0.059 0.079 0.054 0.054 0.054 0.054 0.054 0.054	Treshold -0.375 -0.501 -1.271 -0.765 0.765 0.715 3.072 0.205 -0.162 0.280 2.642 1.576 -0.535 0.166 -0.329 1.380 1.102 2.241 1.016 1.980 0.2538 0.753 0.605 -0.338 0.753 0.605 -1.318 2.338 2.000 1.318 2.338 2.000 1.318 2.338 2.338 2.353	0.076 0.076 0.193 0.193 0.071 0.055 0.899 0.063 0.071 0.055 0.259 0.0615 0.259 0.067 0.036 0.077 0.066 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.077 0.086 0.075 0.074 0.075 0.075 0.074 0.075 0.075 0.074 0.075	Asymptote 0.104 0.105 0.121 0.081 0.103 0.089 0.121 0.129 0.125 0.098 0.110 0.125 0.098 0.111 0.106 0.098 0.111 0.106 0.098 0.1114 0.192 0.120 0.114 0.192 0.114 0.192 0.114 0.192 0.1159 0.116 0.0114 0.192 0.1159 0.116 0.116 0.1114 0.192 0.117 0.192 0.116 0.118	0.030 0.023 0.023 0.014 0.035 0.012 0.015 0.025 0.025 0.015 0.016 0.016 0.016 0.015 0.017 0.017 0.021 0.017 0.022 0.017 0.022 0.017 0.022 0.017 0.022 0.017 0.022 0.015
Item Si		_	end Concept			
E2 O. E5 O. E8 O. E11M O. E114 O. E114 O. E20M O. E226M O. E229M O. E32 O. E35 O. E35 O. E31 O. E41 O. M50 O. M14 O. M50 M170 O. M350 O. M310 O. M41 O. M44 O. M44 O. M611 O. M44 O. M611 O. M	631 374 658 8242 5381 3394 7376 3394 7376 3393 339	0.053 0.067 0.060 0.047 0.137 0.051 0.053 0.071 0.051 0.072 0.060 0.068 0.081 0.050 0.086 0.086 0.055 0.	-0.472 -1.690 -0.538 0.254 0.254 -2.444 -2.689 -0.815 -0.815 -0.314 -1.575 -0.314 -1.575 -0.294 -2.881 -0.4960 -2.488 0.519	\$.8. A 0.121 0.130 0.105 0.093 0.1093 0.1095 0.085 0.085 0.085 0.120 0.036 0.055 0.036 0.055 0.036 0.055 0.014 0.038 0.129 0.164 0.043 0.043 0.043 0.044 0.038 0.057 0.106 0.066 0.065 0.065 0.077 0.375 0.066 0.208 0.375 0.066 0.208 0.375 0.066 0.208 0.375 0.067 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307	*ymptote	*. • . 0 0.032 0.038 0.027 0.0228 0.014 0.014 0.014 0.017 0.029 0.031 0.022 0.031 0.022 0.022 0.023 0.017 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.030 0.022 0.030 0.022 0.036 0.0229 0.035 0.0229 0.036 0.0229 0.036 0.0229 0.036 0.0229 0.036 0.0229 0.036 0.0229 0.036

ERIC

		Higher Level	l Thinking	Subtest (36	items)	
Item	Slope		Threshold	S . O .	Asymptote	
E3M	0.597	0.053	-0.579	0.061	0.125	0.023
E6	0.471	0.077	0.638	0.118	0.131	0.024
E9	0.524	0.071	-1.018	0.149	0.139	0.038
E 12M	0.534	0.052	-0.273	0.041	0.136	0.020
E 15M	0.477	0.048	-0.051	0.031	0.133	0.019
E 18M	0.462	0.048	0.477	0.059	0.122	0.016
E21	0.751	0.102	0.426	0.084	0.112	0.023
E24	0.382	0.061	-0.386	0.079	0.141	0.032
E27	0.617	0.094	0.515	0.098	0.126	0.023
E30	0.597	0.096	0.804	0.145	0.134	0.022
E33	0.580	0.089	0.273	0.071	0.140	0.025
E36	0.741	0.104	-0.353	0.076	0.130	0.031
E39	0.415	0.063	-0.779	0.130	0.149	0.036
E42	0.680	0.093	1.076	0.164	0.101	0.020
E45	0.442	0.071	0.091	0.054	0.141	0.028
M6	0.765	0.106	0.398	0.074	0.171	0.019
M9	0.763	0.070	1,224	0.124	C.091	0.014
M2 1	0.749	0.073	0.976	0.107	0.102	0.016
M240	0.588	0.052	2.019	0.186	0.162	0.010
M27	0.371	0.056	0 724	0.117	0.155	0.020
M3OD	0.511	0.052	2.135	0.223	0.145	0.011
м33	0.381	0.057	0.803	0.127	0.150	0.019
M360	0.361	0.039	0.517	0.064	0.147	0.017
м39	0.398	0.116	4.532	1.330	0.092	0.010
M420	0.467	0.042	0.795	0.079	0.128	0.015
M45	0.357	0.059	0.997	0.170	0.162	0.020
03	0.884	0.111	-0.608	0.096	0.137	0.035
06	0.603	0.076	0.365	0.069	0.159	0.024
09	0.506	0.057	0.648	0.088	0.138	0.023
012	0.552	•0.077	-1.665	0.239	0.140	0.047
018	0.497	0.062	2.368	0.309	0.122	0.015
021	0.790	0.094	0.409	0.075	0,162	0.022
027 🕳 🦜	0.925	∽ 0.079	1.011	0.108	0.085	0.019
033	0.464	0.054	0.167	0.050	0.143	0.027
039	0.631	0.076	-0.635	(091	C. 133	0.036
045	0.821	0.079	0.799	097	C.113	0.020

* p < .05

ERIC

Full Text Provided by ERIC

Numbers Subtest (31 items) Item E1 E2 E3 E4 E5M E6 E7M E8 E9 E10 \$1 op * 0 . 7919 0 . 7919 0 . 7631 0 . 4464 0 . 499 0 . 5478 0 . 5589 0 . 7688 0 . 7588 0 . 7 Threshold O. A66 O. A66 O. A66 O. A66 O. A23 O. 628 O. 185 I. C51 I. G51 J. C51 J. C51 O. C52 O. C52 O. C55 O. C52 O. L65 J. A65 Asymptote 0.174 0.185 0.178 0.1884 0.1884 0.189 0.114 0.175 0.199 0.1175 0.199 0.175 0.199 0.175 0.199 0.178 0.199 0.178 0.199 0.178 0.199 0.178 0.020 0.025 0.31 0.1246 0.1049 0.047 0.1058 0.1147 0.058 0.1147 0.095 0.082 0.083 0.095 0.084 0.095 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.083 0.095 0.084 0.095 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.083 0.083 0.084 0.085 0 0.155 0.096 0.074 0.113 0.038 0.181 0.199 0.656 0.065 0.145 01/ 0.012 0.013 0.030 0.039 0.029 0.042 0.021 0.027 0.014 0.029 0.020 0.015 0.024 0.025 0.025 0.037 0.029 0.029 0.037 E11 E12 0.141 0.054 0.072 0.068 M2 M2 M30 M40 M6 M8 M9 M10 M110 0.068 0.033 0.050 0.307 0.056 0.199 0.047 0.045 0.085 01 02 05 06 07 08 09 011 ~ 0.057 0.093 0.126 3.055 0.179 0.091 0.109 Algebra Subtest (22 items) \$10p#0.787 0.787 0.997 0.771 0.5618 0.794 0.794 0.793 1.090 0.593 1.090 0.589 0.589 0.693 0.592 0.993 0.993 0.993 Threshold -0.272 0.141 0.930 0.667 2.019 0.296 0.299 3.695 0.256 0.322 1.198 -0.183 0.183 0.679 1.042 2.709 1.923 0.833 4.259 1.918 2.735 As ymptote 0.176 0.159 0.212 0.222 0.234 0.164 0.167 0.185 0.185 0.174 0.141 0.174 0.183 0.183 0.183 0.124 0.124 0.121 0.121 0.149 Item E37 0.128 0.183 0.074 0.C59 0.140 0.130 0.231 0.095 0.100 0.060 0.163 0.079 0.070 0.077 0.077 0.077 0.128 0.077 0.031 0.026 0.013 0.015 0.017 0.024 0.024 8.0. 0.073 0.073 0.102 0.086 0.074 0.079 1.436 0.071 0.053 0.086 0.086 E38 E39M E40M E41 E42 E43 E44 E45 M370 M380 M41 M42 0.024 0.013 0.027 0.016 0.011 0.021 0.025 0.018 0.017 0.02: 0.015 0.021 0.012 0.052 0.092 0.134 0.294 0.110 0.160 0.094 0.956 0.167 0.324 M43 M44 M44 M450 039 040 041 042 043 Geometry Subtest (22 items) Threshold 0.538 1.360 -0.668 0.476 0.375 2.146 1.714 1.365 0.536 1.581 1.466 Asymptote 0.120 0.120 0.117 0.125 0.109 0.109 0.109 0.114 0.126 0.103 0.114 0.126 0.103 0.117 Item E13 E14 E15 \$\cong \percent{0.344} \\ 0.304 \\ 0.304 \\ 0.308 \\ 0.270 \\ 0.314 \\ 0.304 \\ 0.314 \\ 0.455 \\ 0.455 \\ 0.428 \\ 0.477 \\ 0.455 \\ 0.455 \\ 0.422 \\ 0.475 \\ 0.455 \\ 0.482 \\ 0.482 \\ 0.482 \\ 0.485 \\ 0.885 \\ 0.88 0.093 0.076 0.108 0.105 0.105 0.057 0.057 0.056 0.074 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.154 0.401 0.177 0.139 0.112 0.681 0.214 0.085 0.241 0.053 0.536 0.536 0.536 0.503 0.103 0.103 0.103 0.103 0.025 0.022 0.033 0.025 0.027 0.020 0.013 0.015 0.019 0.024 0.012 0.020 0.020 0.020 0.020 0.020 0.020 E16 E17 E18 E19 E20M E21M M13 M140 M150 1.466 -0.383 -3.570 -0.147 2.902 1.104 2.325 -2.286 1.192 0.621 1.415 1.355 M16 M17 ' M17 M180 M19 D13 O16 O17 0.117 0.093 0.079 0.116 0.102 0.097 9.103 0.982 0.063 020 0.819 Meesurement Subtest (23 items) Item E22 E23 E24 E25 E26M Threshold 2.227 -0.025 3.110 0.343 0.950 -0.201 0.515 -0.206 2.073 1.184 -0.040 0.747 0.241 0.502 0.259 0.986 -0.011 0.813 \$10pe 0.583 0.517 0.481 0.742 0.569 0.729 0.660 0.593 0.746 0.444 0.467 0.855 0.098 0.091 0.113 0.134 0.057 0.127 0.067 0.092 0.095 0.095 0.096 0.100 0.110 0.110 391 .053 0.744 0.015 0.029 0.014 0.031 0.015 0.031 0.015 0.023 0.019 0.023 0.019 0.744 0.088 0.103 0.069 0.065 0.063 0.289 C.163 0.040 E 29 E 30 M22 M23 M25 M27 0.105 0.046 0.068 0.061 0.064 0.160 0.050 0.118 0.239 0.171 0.063 0.855 0.806 0.972 0.350 0.452 0.575 0.592 0.595 M290 M30 022 023 0.018 0.026 0.022 0.028 0.021 0.018 0.018

0.060 0.069 0.095 0.077 0.081

			Probability a	ind Statistic	s Subtest	(14 items)		
	1t em E31M E32 E33 E34M E35 E36M M320 M33 M35 D31 D33 D34 D35	Slope 0.478 0.455 0.668 0.668 0.648 0.371 0.377 0.384 0.504 0.504 0.587	0.072 0.075 0.105 0.077 0.068 0.073 0.052 0.063 0.124 0.088 0.076 0.081	Threshold 3.487 -0.566 -0.703 519 2.089 0.561 -0.128 1.460 1.672 0.449 1.076 3.672 1.697 -0.596	0.596 0.106 0.108 0.070 0.232 0.073 0.073 0.245 0.278 0.104 0.104 0.104 0.353	Asymptote 0.075 0.125 0.125 0.110 0.107 0.122 0.101 0.132 0.130 0.130 0.111 0.117 0.127 0.125	0.008 0.032 0.034 0.015 0.052 0.019 0.018 0.017 0.024 0.020 0.016 0.019 0.033	
	11	C1		al Skills Su				
•	Item E1 E1 E1 E2 E10 E13 E16 E22 E25 E23 E23 E23 M E34 E34 M E34 M M M M M M M M M M M M M M M M M M M	Siope 0.694 0.537 0.537 0.547 0.470 0.470 0.424 0.424 0.424 0.424 0.424 0.426 0.3215 0.725 0.725 0.735	0.119 0.075 0.075 0.075 0.075 0.096 0.096 0.096 0.092 0.068 0.068 0.083 0.084 0.044 0.045 0.066 0.066 0.066 0.066 0.068 0.059 0.088 0.059 0.088 0.059 0.088	Threshold O.530 O.5970 1.1119 O.406 2.759 1.422 O.258 O.258 O.2585 O.5930 O.5107 O.5933 O.5107 O.262 -0.1094 1.8628 O.980 1.0265 O.3652 O.3652 O.3657 O.5721 O.677 O.677 O.6822 1.889	0.146 0.146 0.156 0.085 0.727 0.066 0.727 0.066 0.049 0.062 0.065 0.054 0.059 0.059 0.104 0.059	Asymptote 0.124 0.124 0.124 0.135 0.142 0.135 0.146 0.150 0.097 0.145 0.134 0.192 0.119 0.188 0.154 0.154 0.152 0.154 0.157 0.136 0.136 0.136 0.137 0.138 0.137 0.138 0.137 0.138 0.137 0.138 0.137 0.138 0.137 0.137 0.138	5.021 0.036 0.040 0.024 0.016 0.025 0.017 0.015 0.023 0.016 0.023 0.016 0.023 0.019 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017	1
			wiedge of Fac	ts and Conce	pts Subtes			
	1 tem E	Siope 0.5364 0.5364 0.31693 0.3401 0.34027 0.5693 0.4020 0.5693 0	0.099 0.060 0.120 0.083 0.083 0.085 0.077 0.059 0.158 0.076 0.094 0.094 0.094 0.094 0.094 0.094 0.095 0.050 0.050 0.051 0.050 0.051 0.052 0.052 0.052 0.085 0.085 0.085 0.085 0.086	Threshold O.300 O.011 3.800 1.768 O.540 1.768 O.540 -0.066 -0.828 -0.280 -1.595 0.453 2.1664 -0.595 0.1566 1.595 0.113 -0.113 -0.668 0.014 1.204 0.800 -1.6713 1.6713 1.548 1.397 0.762 3.192	0.079 0.032 1.147 0.048 0.403 0.120 0.375 0.102 0.071 0.068 0.171 0.068 0.171 0.071 0.071 0.068 0.171 0.071	Asymptote 0.149 0.149 0.161 0.105 0.171 0.162 0.176 0.176 0.176 0.164 0.164 0.164 0.164 0.164 0.164 0.170 0.145 0.165	1.0.0 1.	•

ERIC

Full Text Provided by ERIC

71 .

		Higher Level	Thinking	Subtest (38	ıtems)	
Item	Slope	1.0.	Threshold		Asymptote	: e.
E3	0.531	0.071	-0.776	0.116	0.159	0.633
E6	0.643	0.114	0.467	0.102	0. 135	0.022
E9	0.609	0.076	-0.677	0.100	0.160	
E12	0.480	0.059	-1.756	0.224	0.159	0.031
E15	0.537	C.074	-0.646	0.102		0.043
E18	0.479	0.140	2.023	0.602	0.165	0.031
E21M	0.722	0 070	0.581	0.070	0.184	0.217
E24	0.496	0.169	2 768	0.953	0.194	0.014
E27	0.585	0.079	-0.561	0.093	0.145	0.014
E30	0.656	0.176	1.850		0.157	0.031
E33	0.643	0.075	-0.790	0.508	0.094	0.015
E36M	1.016	0.081	0.407	0.106	0 157	0.033
E39M	0.538	0.056	0.875	0.053	0.137	0.013
E42	0.586	0.096		0.099	0.160	0 014
:45	0.456	0.080	0.066	0.055	0.151	0.025
430	0.474	0.041	0.014 0.834	0.054	0.171	0.027
M6	0.664	0.065	0.186	0.079	0 161	0.015
m)	0.653	0.073		0.045	0.131	0.022
M12	0.691	0.073	-0.129	0.045	0.164	0.024
M150	C. 579	0.050	-0.021	0.042	0.146	0.023
M180	0.404	0.042	-0.127	0.033	0.158	0.019
M24	0.606	0.057	2.233	0.237	0, 155	0.011
M27	0.931	0.093	0.573	0.069	Q. 128	0.020
M30	0.748	0.069	-0.262	0.055	0.148	0.025
M33	0.565	0.069	0.584	0.070	0.125	0.019
M42	0.319	0.044	1.166	0 135	0.160	0.016
M4 50	0.338	0.051	-0.112	0.041	0.182	0.025
06	0.638	0.051	3.539	0.541	0.167	0.010
09	0.716		1.012	0.108	0.134	0.020
012	0.239	0.076 0.042	0.440	0.069	0.135	0.025
021	C. 653		-1.569	0.283	i) 189	0.037
024	0.602	0.061	2 025	0.208	J. 144	0.017
027	0.790	0.089	0.122	0.053	0.166	0.028
030 ~ `	0.591	- 0.068 0.077	1.326	0.134	0.127	0.019
033	0.753	0.071	0.341	0.066	0.162	0.026
036	0.555	0.076	1.341	0.144	0.179	0.017
C39	0.927		-0.300	0.063	0.16 <u>1</u>	0.032
042	0.422	0.086 0.082	1.003	0.116	0.145	0.02n
V-/A	U Z Z	0.082	4.418	O 876	0 007	0 0.3

* p < .05 ** p < .01

ERIC

72

		Nun	nbers Subtest	(29 1 tems)	
It em E1 E1 E2 E3 E5 E7M E8 E10 E11 E12 M10 M3 M450 M68 M90 M11 O2 O3 O4 O67 O61	\$1 ope 0.404 0.566 0.785 0.4684 0.4988 0.418 0.6443 0.6644 0.5346 0.5785 0.8785	0.063 0.079 0.062 0.072 0.070 0.080 0.081 0.102 0.062 0.077 0.092 0.052 0.046 0.073 0.046 0.073 0.046 0.073 0.046 0.057 0.046 0.057	Threshold -0.273 -0.068 -0.560 -1.873 -1.855 -0.368 -0.037 0.193 0.190 -1.679 -0.215 0.060 -0.411 0.381 -1.244 -0.220 -0.320 -1.709 -1.087 -0.186 -0.125 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165	\$.0. 0.364 0.032 0.105 0.312 0.185 0.073 0.060 0.057 0.255 0.099 0.063 0.063 0.069 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.060 0.057 0.051 0.057 0.057 0.057	Asymptote 0.139 0.131 0.130 0.139 0.127 0.134 0.107 0.139 0.143 0.120 0.131 0.142 0.123 0.135 0.058 0.132 0.132 0.132 0.131 0.134 0.132 0.132 0.131 0.134 0.132 0.132 0.132 0.132 0.132 0.133	0.030 0.042 0.025 0.042 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
E30 E31 E32 E33M E34 E35 E36 M30 M310 M32 M34 M35 O28 O28 O30 O32 O32	Slope 0.354 0.282 0.502 0.625 0.414 0.792 0.407 0.487 0.622 0.448 0.662 0.448 0.622 0.380 0.437 0.451 0.451 0.4547	0.068 0.045 0.080 0.103 0.053 0.101 0.081 0.074 0.077 0.097 0.096 0.090 0.103 0.103 0.090 0.103 0.090	Thresheld -0.722 1.343 1.035 0.413 3.157 1.790 -0.211 1.111 2.548 0.150 0.150 0.223 0.721 0.515 3.152 0.759 -0.546 1.244 4.372 1.231 -0.782 3.312 2.495 -1.386	0.147 0.217 0.217 0.086 0.235 0.068 0.157 0.512 0.046 0.188 0.087 0.613 0.114 0.111 0.111 0.114 0.114 0.114 0.115 0.221 1.044 0.147 0.214 0.802 0.264	Asymptote 0.113 0.121 0.096 0.097 0.098 0.117 0.091 0.099 0.103 0.101 0.094 0.093 0.102 0.105 0.	8.4. 0.0:4 0.0:5 0.021 0.0:13 0.0
Item E37 E38 E39M E40 E41 E42 E43M E44 E45 M370 M3800 M41 M400 M41 M450 O39 O44	Slope 0.405 0.404 0.459 0.472 0.415 0.555 0.518 0.379 0.618 0.548 0.560 0.527 0.607 0.865 1.195	0.108 0.086 0.087 0.089 0.131 0.070 0.090 0.136 0.055 0.075 0.070 0.080 0.095 0.113 0.106 0.055 0.072 0.068	Threshold 3.232 0.616 3.216 1.425 0.101 4.036 2.015 1.741 -0.099 2.571 0.738 4.252 -0.326 2.904 1.378 2.363 1.1945 1.945 0.472 0.365	0.87i 0.136 0.695 0.283 0.283 0.260 0.311 0.059 0.379 0.092 0.883 0.758 0.758 0.758 0.758 0.758 0.758	Asymptote 0.164 0.159 0.146 0.145 0.145 0.130 0.135 0.165 0.164 0.139 0.153 0.165 0.164 0.139 0.153 0.107 0.143 0.137 0.143 0.137 0.143	5.0.0 0.015 0.026 0.021 0.030 0.014 0.018 0.031 0.014 0.026 0.011 0.016 0.016 0.016 0.016 0.017 0.017
I t em E 13 E 15 E 15 E 16 M 18 E 20 E 18 E 22 E 18 E 22 M 14 M 14 M 16 M 19 O 11 O 11 O 12 O 12 O 12 O 12 O 12 O 12	Slope 0.5807 0.485 0.485 0.572 0.572 0.572 0.665 0.527 0.3807 0.3807 0.3807 0.427 0.3807 0.427 0.624 0.652 0.624 0.652 0.652 0.652 0.665	0.086 0.149 0.082 0.077 0.095 0.085 0.085 0.057 0.054 0.085 0.054 0.078 0.082 0.082 0.082 0.084 0.080 0.090 0.107 0.090	Threshold 1.726 -0.179 2.256 2.364 -0.153 0.073 0.832 -0.414 2.360 -0.618 2.333 2.750 0.220 -0.034 0.406 0.957 0.406 0.957 0.892 0.807 2.106 1.014 -0.270	8.0. 0.266 0.067 0.392 0.448 0.054 0.151 0.091 0.281 0.130 0.349 0.060 0.060 0.061 0.088 0.200 0.103 0.391 0.136 0.136 0.136 0.136	Asympt ot e 0.118 0.122 0.115 0.124 0.162 0.125 0.137 0.128 0.137 0.140 0.170 0.155 0.154 0.149 0.158 0.114 0.149 0.158 0.114 0.149 0.088 0.124 0.088	\$.0.017 0.031 0.016 0.017 0.029 0.029 0.033 0.010 0.029 0.023 0.022 0.022 0.022 0.022 0.021 0.052 0.019 0.016 0.016

Probability and Statistics Subtest (14 items) Threshold 4.860 0.314 -0.261 1.543 -0.866 -0.253).218 1.119 4.230 -1.379 0.326 -0.191 -2.733 -1.799 \$10pe 0.262 0.548 0.656 0.412 C.454 0.356 0.344 0.258 C.330 1tem E22M E23 E24 E26 E27M M23D M24 M26 D22 D24 D25 D26 D27 Asymptote O.055 O.077 O.078 0.008 0.025 0.029 0.012 0.034 0.020 0.018 1.307 0.082 0.075 0.253 0.168 0.053 0.046 0.300 1.261 0.211 0.077 0.055 0.111 0.134 0.067 0.084 0.058 0.058 0.068 0.083 0.139 0.139 0.761 0.076 O.078 O.080 O.085 O.088 O.090 O.093 O.050 O.081 O.081 O.081 O.087 0.018 0.020 0.013 0.040 0.023 0.028 C.330 C.564 O.792 O.513 O.279 O.407 0.604 0.043 Procedure! Skills Subtest (36 Threshold -0.252 -2.331 0.055 -1.700 1.928 2.584 1.077 Item E1 E4 E7M \$1 ope
0.268
0.268
0.405
0.410
0.281
0.281
0.534
0.535
0.305
0.305
0.305
0.305
0.307
0.307
0.307
0.307
0.307
0.307
0.307
0.308
0.483
0.270
0.483
0.486
0.574
0.4508
0.574
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0.4508
0. 0.054 0.059 0.063 0.073 0.062 0.062 0.062 0.062 0.089 0.162 0.089 0.162 0.065 0.065 0.065 0.065 0.065 0.065 0.069 0.050 0.070 0.519 0.032 0.315 0.392 Asymptote
O.129
O.129
O.129
O.105
O.116
O.097
O.101
O.101
O.101
O.105
O.106
O.106
O.107
O.088
O.119
O.106
O.107
O.088
O.119
O.085
O.119
O.085
O.119
O.085
O.119
O.085
O.1110
O.097
O.1114
O.106
O.100
O.101 0.034 0.017 0.042 0.017 0.017 0.017 0.017 0.017 0.010 0.018 0.025 0.031 0.029 0.022 0.031 0.022 0.031 0.022 0.031 0.022 0.031 0.022 0.031 0.022 0.031 0.023 0.031 0.023 0.031 E10 E13 E16 E19 E22M 0.51 1.333 0.215 0.133 0.084 0.133 0.084 0.300 0.284 0.030 0.284 0.030 0.075 0.052 0.052 0.052 0.052 0.065 0 1.077 5.346 1.657 -0.715 0.344 -0.368 1.729 1.523 2.232 E22M E25M E28 E31 E34 E37 E40 E43M M1D M4 M10 M13 M16 M19 M28 M31D M34 M37D E40 -0.033 -0.889 -0.879 -0.879 -0.341 0.879 3.879 2.738 4.C21 -0.306 0.297 0.863 -2.172 M37D M40D D4 D7 D13 D16 D19 0.072 0.076 0.067 0.077 0.061 0.074 0.063 0.079 0.057 2.500 -1.355 0.086 -0.486 3.727 D22 D25 D28 0.623 Knowledge of Fects and Concepts Subtest (38 items) Item E2M E5 E8 E11 E14 E17M \$1 ope
0.533
0.867
0.570
0.570
0.488
0.749
0.570
0.570
0.383
0.469
0.469
0.469
0.469
0.469
0.469
0.469
0.570
0.469
0.570
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.550
0.577
0.551
0.500
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577
0.577 Threshold
-0.008
-1.685
0.237
-2.556
-0.248
-0.251
0.520
-0.514
1.139
3.985
1.807
1.951
-1.708
2.315
0.550
0.591
3.9744
1.141
0.298
1.462
0.0967
0.517 0.051 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.076 0.076 0.076 0.086 0.059 0.086 0.059 0.086 0.051 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.086 0.071 0.031 0.100 0.063 J.100 0.067 0.085 0.085 0.085 0.1036 0.297 0.088 0.0297 As ymptot • O. 134 O. 134 O. 134 O. 135 O. 123 O. 117 O. 124 O. 188 O. 117 O. 128 O. 128 O. 128 O. 128 O. 128 O. 128 O. 150 O. 150 O. 128 O. 150 O. 1 0.018 0.026 0.032 0.032 0.032 0.033 0.034 0.033 0.024 0.033 0.024 0.033 0.026 0.026 0.026 0.026 0.027 0.036 0.027 0.036 0.037 0.036 0.037 E20 E23 E26 E29M E32 E35 E35 E41 E44 M5D M8 M11 M14D 0.677 0.181 0.318 0.111 0.091 0.174 0.096 0.051 0.051 0.051 0.051 0.151 0.599 0.147 0.241 0.241 0.964 M23D M26 M32 M35 M38D M41 M44 D2 D8 D11 D17 D20 0.752 1.132 1.760 -2.878 1.098 2.134 2.065 1.574 0.419 D26 D29 D32 0.556 0.018

٠,

•

* p < .05

,

ERIC

111-15 75

		Numbers Subtest	(34 items)		
1 t em E1 E1 E2 E3 E5 E67 M2 M3 M4 M5 M7 M10 M11 O1 O3 O4 O5 O7 O1 O1 O1 O1	0.581 0.484 0.382 0.4657 0.458 0.0657 0.458 0.0657 0.5458 0.07548 0.0679 0.5487 0.394 0.478 0.478 0.478 0.679 0.579 0	Threshold .089 -0.403 .070 -1.448 .070 -1.448 .079 -0.627 .098 .0.008 .079 -0.222 .046 -1.579 .070 -0.392 .046 -1.579 .075 -1.436 .076 -0.360 .076 -0.360 .055 -0.639 .075 -0.639 .075 -0.151 .055 -0.639 .075 -0.151 .055 -0.639 .055 -0.639 .055 -0.639 .055 -0.639 .051 -1.965 .051 -1.965 .051 -0.969 .051 -0.969 .051 -0.969 .052 -1.994 .050 -0.151 .059 -1.994 .050 -0.151 .059 -1.994 .050 -0.151 .059 -1.994 .050 -0.151 .059 -1.994 .050 -0.151 .059 -1.994 .050 -0.151 .051 -0.599 .059 -1.994 .050 -0.151 .051 -0.599 .059 -1.994 .051 -0.969 .070 -0.151 .051 -0.969 .070 -0.151 .051 -0.969 .070 -0.151 .051 -0.969 .070 -0.151	O. 081 O. 222 O. 116 O. 053 O. 065 O. 065 O. 165 O. 072 O. 234 O. 025 O.	Asymptote 0.121 0.121 0.122 0.135 0.118 0.126 0.124 0.120 0.126 0.124 0.124 0.124 0.124 0.124 0.124 0.127 0.131 0.127 0.131 0.127 0.131 0.127 0.132 0.120 0.122	0.033 0.044 0.029 0.033 0.032 0.032 0.030 0.025 0.030 0.022 0.043 0.027 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.033
Item	Stope	Algebre Subtest		Asymptote	
E28 E29 E30M E31 E32M E33 E34M E35 E36 M28 M29 M310 M35 M35 M350 O28 O28 O39 O30	0.487 0. 0.315 0. 0.296 0. 0.466 0. 0.514 0. 0.569 0. 0.453 0. 0.453 0. 0.4673 0. 0.308 0. 0.454 0. 0.661 0. 0.677 0. 0.625 0. 0.807 0. 0.807 0. 0.562 0. 0.840 0. 0.5627 0.	093 -0.590 086 2.151 080 2.151 092 -0.593 064 0.429 127 -0.534 122 2.592 102 0.561 095 -0.098 054 0.547 066 -0.282 089 -0.526 089 -0.526 089 -0.526 089 -0.527 042 0.323 076 -0.793 083 0.727 047 -0.090 090 -0.460	0.124 0.591 0.255 0.128 0.063 0.068 0.067 0.708 0.141 0.044 0.104 0.441 0.042 0.081 0.050 0.188 0.325 0.118 0.092	0.119 0.136 0.140 0.121 0.121 0.127 0.117 0.117 0.130 0.130 0.130 0.130 0.111 0.111 0.087 0.114 0.087 0.117 0.089	5.0. 0.019 0.014 0.034 0.016 0.027 0.022 0.026 0.021 0.026 0.021 0.028 0.021 0.028 0.016 0.021 0.025 0.021 0.025 0.025 0.025 0.025 0.025 0.026 0.027
	_	Geometry Subtes	t (21 items)		
1 tem E 37 E 38 M E 39 E 40 M E 4 1 E 42 E 4 3 M E 45 M M 37 O M 40 O 38 D 39 O 40 O 42 O 43 O 44 D 45	1.149 O. O.744 O. 1.197 O. O.971 O. O.828 O. O.647 O. O.757 O. O.454 O. O.662 O. O.6614 O. O.662 O. O.663 O. O.664 O. O.665 O. O.665 O. O.665 O. O.665 O. O.666 O. O.666 O. O.966 O. O. O.966 O. O.066 O. O.966 O. O.966 O. O.966 O. O.966 O. O.966 O. O.966 O. O.066 O. O.966 O. O.	Threshold 157	0.051 0.091 0.149 0.137 0.132 0.148 0.076 0.139 0.170 0.093 0.034 0.549 0.182 0.117 0.113 0.072 0.086 0.116 0.116	Asymptote 0.163 0.177 0.177 0.159 0.201 0.2047 0.206 0.190 0.205 0.1215 0.165 0.165 0.196 0.196 0.197	0.023 0.023 0.022 0.023 0.010 0.023 0.012 0.025 0.014 0.010 0.020 0.018 0.012 0.017 0.017 0.018 0.031 0.022 0.025
14		Measurement Subte	•		
1 tom E13 E14M E16 E16 E176 E18M E19M E20 M15 M16 M17 M200 M21 O14 O15 O17 D18	0.750 0. 1.006 0. 0.676 0. 1.048 0. 0.810 0. 0.776 0. 0.776 0. 0.776 0. 0.557 0. 0.650 0. 0.708 0. 1.072 0. 0.728 0. 0.728 0. 0.701 0. 0.534 0. 1.198 0. 1.707 0. 1.385 0.	Threshold 117	5.90 0.126 0.043 0.7720 0.175 0.068 0.055 0.041 0.176 0.034 0.051 0.095 0.257 0.047 0.047 0.070 0.144 0.115 0.142	Neymptote 0.204 0.197 0.188 0.166 0.229 0.241 0.240 0.274 0.235 0.222 0.188 0.221 0.215 0.221 0.215 0.225 0.221 0.215 0.221 0.215 0.221	6.021 0.021 0.017 0.015 0.048 0.027 0.015 0.020 0.022 0.018 0.022 0.016 0.005 0.024 0.025 0.027 0.027 0.027

			Probability	and Statistics	Subtest	(13 1tems)	
	1tom D21 E22 E23 E24 E25 E26 E27M M22D M240 M240 M25 D D D D D D D D D D D D D D D D D D D	\$1 ope 0.967 0.410 0.369 0.752 0.413 0.380 0.373 0.723 0.723 0.785 0.309 0.560	0.100 0.118 0.108 0.213 0.084 0.086 0.059 0.049 0.047 0.082 0.077 0.066 0.081	Threshold 0.830 3.097 3.049 0.406 -1.383 -1.042 0.902 1.661 -0.409 -0.361 -0.294 0.794 3.664 0.140	0.111 0.900 0.903 0.130 0.224 0.145 0.208 0.059 0.052 0.052 0.052	Asymptote 0.218 0.082 0.087 0.10 0.110 0.108 0.133 0.113 0.099 0.105 0.097 0.102	0.019 0.014 0.016 0.025 0.024 0.038 0.015 0.012 0.021 0.024 0.013 0.014 0.028
	Itom	Slope		ral Skills Sub			
-	E1 E4 E7 E10 E16 E19M E22 E28 E31 E34 ME37 E43M E37 E43M M10 M10 M13D M10 M13D M25 M31D O1 O1 O25 D16 O25 D28 D34 O4 O4 O4 O4 O4 O4 O4 O4 O4 O4 O4 O4 O4	0.452 0.564 0.565 0.854 0.423 0.423 0.67 0.399 0.636 0.636 0.485 0.4	\$.0.070 0.101 0.090 0.090 0.109 0.090 0.126 0.055 0.061 0.055 0.061 0.050 0.075 0.061 0.083 0.075 0.061 0.083 0.077 0.043 0.053 0.077 0.043 0.077 0.043 0.077 0.062 0.077 0.100 0.077 0.100 0.078 0.078 0.078 0.077 0.100 0.077 0.100 0.077 0.100 0.077 0.100 0.077 0.100 0.077 0.100 0.077 0.100 0.077 0.100	Threshold -0.392 0.006 0.502 0.453 0.453 0.196 -0.007 -1.519 -0.387 -0.509 0.293 2.034 -0.352 0.856 -0.121 -0.1210 -0.280 0.865 -0.083 2.982 1.830 -0.165 -0.083 2.982 1.6523 -0.1981 0.278 0.2982 1.6523 -0.1981 0.278 0.2982 1.6523 -0.1981 0.278 0.1982 -1.151 3.753 -1.6677 0.104	\$.0.079 0.079 0.056 0.098 0.140 0.086 0.140 0.032 1.184 0.268 0.062 0.086 0.086 0.086 0.086 0.086 0.087 0.133 0.055 0.042 0.217 0.133 0.055 0.042 0.217 0.143 0.055 0.062 0.086	Asymptote 0.160 0.142 0.142 0.142 0.128 0.158 0.158 0.162 0.166 0.166 0.166 0.166 0.162 0.143 0.144 0.145 0.149 0.141 0.147 0.148 0.193 0.149 0.123 0.149 0.126 0.155 0.149 0.155 0.149 0.165	0.032 0.024 0.022 0.022 0.022 0.022 0.018 0.018 0.014 0.031 0.032 0.024 0.010 0.023 0.025 0.015 0.023 0.025 0.019 0.023 0.021
	Item			ts and Concep			
	11 cm E2 E2 E2 E2 E1 AM E1 T E2 E1 AM E1 T E2	\$1opes 0.3345 0.345 0.537 0.5769 0.5769 0.6765 0.625 0.625 0.525 0.6580 0.700 0.525 0.6580 0.700 0.5792 0.5792 0.5802 0.769 0.	0.061 0.063 0.063 0.070 0.073 0.073 0.083 0.088 0.062 0.133 0.088 0.062 0.062 0.062 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059	Threshold -1.9E5 -0.433 -1.963 -1.963 -1.503 -0.104 -0.304 -0.556 -0.918 -0.556 -0.134 -1.748 -0.560 -1.556 -0.918 -0.560 -1.556 -0.918 -0.400 -0.020	8. e. 0. 0. 364 0. 100 0. 258 0. 118 0. 132 0. 132 0. 132 0. 132	Asymptote O. 181 O. 184 O. 184 O. 186 O. 169 O. 157 O. 170 O. 188 O. 169 O. 169 O. 169 O. 174 O. 169 O. 174 O. 160 O. 174 O. 175 O. 175	0.043 0.043 0.043 0.043 0.043 0.018 0.030 0.022 0.015 0.015 0.015 0.016 0.024 0.027 0.027 0.017 0.017 0.027 0.019 0.027 0.019 0.027 0.019 0.020 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021

ERIC

* p < .05

,

	Numbers Subtest (31 items)							
Item E11 E22 E3M E56 E79 E110 E112 M12 M50 M7 M8 M9 M111 D12 D3 D4 D5 D9 D111 D12	Slope 1.022 0.528 0.627 0.875 0.947 0.678 0.788 1.060 0.954 0.554 0.620 1.180 0.554 0.620 1.180 0.590 1.180 0.727 1.023 0.6626 0.743 0.765 0.785	0.134 0.081 0.079 0.127 0.137 0.127 0.136 0.092 0.085 0.095 0.093 0.112 0.093 0.071 0.074 0.076 0.079 0.079 0.083 0.079 0.083 0.093 0.093 0.093 0.093	Threshold -0.358 0.170 1.942 0.398 -0.284 0.513 1.327 1.282 -0.449 -1.201 -0.128 -1.285 0.983 1.041 2.263 1.558 -0.337 -0.057 -0.057 -0.088 -0.471 0.714 0.888 -0.471 0.714 0.436 -1.617 0.339 -1.453 -0.203	0.079 0.056 0.056 0.075 0.075 0.110 0.267 0.106 0.106 0.106 0.125 0.143 0.143 0.143 0.144 0.048 0.143 0.143 0.143 0.146 0.048 0.153 0.110 0.089	Asymptote 0.182 0.252 0.355 0.226 0.196 0.228 0.309 0.229 0.367 0.224 0.251 0.236 0.200 0.231 0.200 0.231 0.200 0.233 0.131 0.210 0.238 0.245 0.245 0.247 0.227 0.149 0.216 0.233 0.149 0.244 0.244	5. \$. 0.031 0.025 0.014 0.029 0.029 0.017 0.032 0.045 0.028 0.028 0.028 0.020 0.017 0.017 0.017 0.017 0.017 0.017 0.026 0.021 0.025 0.020 0.020 0.021 0.025	**	
Item E19 E20 E21 E22 E24 E25M E26M E19 M20 M21D M22 M23 M24 M27 D19 D20 D22 D23 C25 D27	S1497 0.9564 0.5511 0.5511 0.5991 0.628 0.616 0.628 0.616 0.637 0.688 0.594 0.688 0.724 0.831 0.749 0.831 0.749 0.831 0.749 0.831 0.749 0.759 0.759 0.759 0.759	0.080 0.161 0.094 0.088 0.102 0.051 0.055 0.075 0.078 0.078 0.078 0.078 0.078 0.106 0.106 0.110 0.079 0.106 0.110	Threshold 0.404 0.454 1.248 -0.764 0.281 0.526 -0.587 0.359 3.060 -0.362 -0.364 2.529 0.519 1.385 0.607 0.402 0.775 2.252 4.194 -0.116	0.055 0.095 0.094 0.226 0.073 0.073 0.069 0.049 0.064 0.042 0.084 0.084 0.140 0.140 0.135 0.142 0.140 0.135 0.0122 0.344 0.057	Asymptote 0:162 0:162 0:170 0:178 0:178 0:169 0:176 0:148 0:161 0:165 0:081 0:164 0:164 0:167 0:114 0:156 0:143 0:156	0.027 0.027 0.024 0.020 0.036 0.017 0.034 0.017 0.031 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.038 0.021 0.038 0.021 0.038 0.021 0.038 0.021 0.038 0.021 0.038 0.021 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.039 0.	•	
Item E28 E28 E304 E31 E32 E33 E34M E36 M29 M310 M32 M336 D28 D28 D30 D34 D35 D36	Slopa 0.473 0.479 0.760 0.760 0.414 0.576 0.614 0.556 0.653 0.554 0.653 0.653 0.653 0.6891 0.685 0.685 0.685	0.092 0.087 0.071 0.158 0.126 0.076 0.075 0.087 0.103 0.056 0.110 0.056 2.093 0.073 0.073 0.073	Th/eshold 1.388 1.192 0.527 0.171 0.685 2.780 2.284 1.589 -0.489 -1.413 0.761 1.047 1.903 1.329 0.471 0.619 0.073 -0.316 -0.070 1.320	0.280 0.265 0.086 0.071 0.139 0.671 0.326 0.214 0.097 0.300 0.150 0.244 0.085 0.098 0.070 0.055 0.075 0.152	Asymptote 0.207 0.207 0.236 0.207 0.175 0.195 0.196 0.216 0.209 0.201 0.197 0.192 0.196 0.209 0.208 0.185 0.185 0.163	0.021 0.023 0.016 0.027 0.017 0.017 0.010 0.017 0.019 0.017 0.011 0.017 0.023 0.023 0.023 0.028 0.021	• • • • • • • • • • • • • • • • • • • •	
1 t em E37M E38M E39 E40 E41 E42 E43 E44 E45M M40 M41 M43 D37 O40 O41 D43 D43 D45	Slope 0.968 0.761 0.893 0.673 1.638 0.681 1.296 0.905 0.985 0.985 0.852 1.053 0.834 0.634 0.649 2.197 1.196 0.636 0.969	Meesur 5.081 0.077 0.1077 0.1077 0.102 0.196 0.102 0.057 0.052 0.058 0.108 0.088 0.089 0.086 0.086 0.085 0.085 0.085 0.085	Threshold -0.071 2.104 -0.428 0.704 0.366 1.143 0.437 1.236 1.221 0.314 2.165 2.753 1.268 0.534 0.332 2.574 1.027 1.129 1.779 1.779 1.779 1.779 0.356	\$ (22 \ \text{tem}\$ 5.0. 0.039 0.231 0.080 0.108 0.108 0.109 0.101 0.041 0.041 0.251 0.466 0.130 0.078 0.043 0.078 0.043 0.133 0.174 0.174 0.178 0.065	Asymptote 0.159 0.218 0.171 0.151 0.151 0.151 0.159 0.097 0.162 0.106 0.203 0.192 0.181 0.131 0.105 0.205 0.205 0.105 0.205 0.105 0.105	0.017 0.010 0.021 0.021 0.019 0.020 0.014 0.016 0.011 0.013 0.018 0.016 0.016 0.016 0.017 0.017	** *	

ERIC
Full Text Provided by ERIC

		Probability	end Stetisti	cs Subtest	(13 items)	
I tem E13 E14 E16 E17 E18 M130 M160 M170 M170 M170	\$1 ope 0.633 0.826 0.254 0.254 0.646 0.232 0.345 0.668 0.568 0.599 0.515	0.092 0.122 0.045 0.103 0.112 0.056 0.046 0.055 0.109 0.107	Threshold -1.185 0.711 0.898 2.858 1.138 -0.054 3.426 0.562 -0.094 2.221 0.311 -0.799 -0.641	0.182 0.122 0.152 0.741 0.1-7 0.052 0.685 0.084 0.200 0.072 0.152	Asymptote 0.091 0.075 0.110 0.108 0.060 0.086 0.090 0.112 0.089 0.051 0.089 0.092	0.041 0.020 0.016 0.0'9 0.0 6 0.028 0.010 0.016 0.019 0.008 0.020
Item	Slope		rel Skills S Threshold			
E1 E4M E7 E10 E113 E16 E122 E254 E31 E37M E37M E433 M10 M10 M150 M10 M150 M10 M150 M10 M150 M10 M10 M10 M10 M10 M10 M10 M10 M10 M1	0.7991 0.605 0.405 0.405 0.395 0.3148 0.595 0.411 0.764 0.924 0.656 0.924 0.656 0.556 0.766	0.088 0.056 0.074 0.075 0.075 0.075 0.079 0.079 0.078 0.099 0.078 0.099 0.078 0.098 0.099 0.078 0.098	-0.579 -0.153 -0.745 -0.745 -0.714 -1.196 -0.196 -0.306 -1.456 -0.306 -1.140 -0.186 -0.308 -1.204 -0.308 -1.204 -0.509 -0.509 -0.509 -0.509 -0.364 -0.478 -0.478 -0.641 -0.573 -0.401	0.085 0.035 0.147 0.109 0.109 0.050 0.046 0.225 0.061 0.658 0.161 0.072	Asymptote	5.0.31 0.031 0.031 0.016 0.023 0.032 0.040 0.017 0.020 0.017 0.020 0.017 0.020 0.017 0.020 0.018 0.028 0.018 0.028 0.018 0.028 0.018 0.028 0.018 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.028 0.016 0.028
		owledge of Fa	cts end Conce	pts Subtès	t (38 items))
1tem E2E5 E114 E120 E223M E229 C35M E341 E42 M5 M110 M1170 M23 M29 M311 M23 M29 M310 M329 M310 M329 M310 M329 M320 M320 M320 M320 M320 M320 M320 M320	Slope 0.377 0.710 0.589 0.589 0.531 0.531 0.254 0.537 0.254 0.680 0.507 0.6674 0.687 0.687 0.387 0.387 0.387 0.407 0.407 0.408 0.407 0.408 0.409 0.409 0.409 0.508 0.409 0.409 0.409 0.508	0.063 0.083 0.086 0.075 0.114 0.074 0.059 0.113 0.046 0.055 0.085 0.090 0.060 0.060 0.060 0.057 0.085 0.095 0.085 0.095 0.085 0.095 0.086 0.086 0.085 0.086	Threshold -0.117 -0.397 -1.668 0.981 1.543 0.502 -0.842 0.722 0.459 2.4603 0.752 1.998 0.112 0.818 1.970 -1.610 0.563 1.954 3.377 -0.563 1.954 3.377 -0.563 1.954 3.377 -0.563 1.954 3.377 -0.563 1.954 3.377 -0.563 1.954 3.377 -0.563 1.954 3.377 -0.563 1.9563	1. e. 0. 0.051 0.072 0.215 0.205 0.145 0.206 0.129 0.137 0.095 0.129 0.042 0.137 0.093 0.450 0.319 0.046 0.119 0.046 0.119 0.05687 0.113 0.05687 0.113 0.05687 0.1150 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.076 0.104 0.306 0.076 0.077 0.077 0.077 0.077 0.077 0.076 0.104 0.363	Asymptote 0.153 0.153 0.153 0.1315 0.132 0.083 0.136 0.147 0.127 0.127 0.143 0.143 0.139 0.131 0.145 0.131 0.145 0.131 0.145 0.131 0.145 0.131 0.145 0.131 0.135 0.135 0.135 0.135 0.135	0.029 0.031 0.046 0.019 0.018 0.036 0.017 0.025 0.021 0.011 0.016 0.021 0.016 0.017 0.016 0.017 0.018 0.012 0.018 0.012 0.018 0.025 0.025 0.025 0.021

* p < .05 ** p < .01

ITEM PARAMETER ESTIMATES EIGHT SUBTESTS

		Numl	pers Subtest	(32 items)		
1 t em E1 E2 E3 E4 E5 E6 E7 E8 E9M E10 E11 E12 M12 M3 M4 M5 M7 M8 M1120 O2 O3 O4 O5 O67 O7 O7 O7 O7 O7 O7 O7 O7 O7 O7 O7 O7 O7	SIOP® 0.6104 0.7024 0.7024 0.7024 0.7025 0.7027	0.071 0.089 0.096 0.150 0.087 0.051 0.059 0.063 0.100 0.129 0.045 0.071 0.055 0.071 0.053 0.204 0.053 0.204 0.053 0.204 0.053 0.067 0.067 0.067 0.067	Threshold -1.230 -0.960 -0.291 0.379 1.203 0.487 -0.218 0.734 2.130 -0.499 -0.236 0.137 0.757 -1.377 -1.377 -1.377 -1.377 -1.375 -0.492 0.623 0.791 0.626 -1.335 0.956 -1.335 0.956 -1.335 0.956 -1.335 0.956 -1.335 0.956 -1.335 0.956 -1.335 0.956 -1.335 0.956 -1.335 0.956 -1.335	0.155 0.151 0.067 0.089 0.055 0.055 0.145 0.066 0.066 0.062 0.083 0.105 0.063 0.105 0.064 0.039 0.131 0.064 0.039 0.131 0.052 0.083 0.131 0.065 0.065 0.066	Asymptote 0.172 0.172 0.159 0.143 0.171 0.201 0.189 0.145 0.179 0.160 0.160 0.160 0.159 0.145 0.179 0.160	0.042 0.031 0.021 0.019 0.015 0.025 0.025 0.033 0.029 0.025 0.016 0.016 0.016 0.016 0.029 0.020 0.023 0.021 0.024 0.023 0.024 0.033 0.023 0.024 0.033 0.025
Item	Slope	Alge	bra Subtest Threshold		Asymptoto	
£19M E201M E221M E223M E23M E24 E25 E26M E27 M27 O19 O21 O223 O224 O226 O27	0.723 0.971 0.401 0.850 0.819 0.509 0.516 0.634 0.351 0.334 0.542 0.899 0.430 1.005 0.478 0.893 0.715 0.446 0.467	O.062 O.174 O.097 O.093 O.072 O.107 O.061 O.065 O.057 O.059 O.058 O.098 O.098 O.107 O.065 O.098	1.011 1.300 4.559 -0.369 1.189 1.669 0.237 0.859 -1.176 0.635 2.036 0.547 1.638 -0.194 3.446 0.977 -0.376 1.025 2.049 0.222	8.9. 0.257 1.120 0.055 0.118 0.074 0.091 0.208 0.081 0.255 0.079 0.225 0.0722 0.126 0.126 0.158 0.051	Asymptote 0.130 0.095 0.122 0.149 0.212 0.152 0.168 0.140 0.174 0.175 0.187 0.137 0.137 0.138 0.138 0.158 0.158 0.158 0.158	5. 0. 0.013 0.015 0.009 0.022 0.018 0.025 0.014 0.036 0.017 0.030 0.017 0.030 0.014 0.030 0.017 0.030 0.017
Item	Slope	Geom s.e.	etry Subtest Threshold		_	
E28 E29 E31 E32 E33 E34 E35 E36M M29 M320 M320 M340 M340 O28 O29 O31 O33	0.768 0.483 0.710 0.429 0.716 0.530 0.776 0.509 0.748 0.465 0.790 0.569 0.459 0.459 0.6823 0.6823 0.6825 0.648	0.088 0.080 0.104 0.082 0.110 0.084 0.101 0.046 0.090 0.121 0.046 0.067 0.051 0.051 0.054 0.059 0.059	2.006 1.073 0.856 2.054 1-0.511 1.282 -0.150 3.022 -1.050 2.402 0.007 0.855 0.781 2.835 1.630 1.214 -0.444 0.766 1.951 0.359	8. e. 0. 0.247 0.188 0.140 0.398 0.096 0.213 0.060 0.782 0.125 0.433 0.097 0.554 0.122 0.122 0.088 0.223 0.233 0.064	Asymptote 0.055 0.125 0.097 0.119 0.103 0.114 0.106 0.118 0.087 0.105 0.107 0.102 0.122 0.094 0.131 0.128 0.105 0.105 0.105 0.105 0.105 0.105	5.0. 0.021 0.021 0.021 0.034 0.034 0.030 0.030 0.016 0.025 0.011 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013
<u>Item</u>	elana.		ement Subtest			
E38 E39 E40 E41 E42 E43 M38 M390 M400 M410 M410 M450 O37 O38 O44	Slope 0.581 0.348 0.353 0.336 0.407 0.235 0.865 0.865 0.865 0.875 0.812 0.948 0.565 0.948 0.565 0.909 1.049 0.767	8.0. 0.004 0.017 0.004 0.012 0.006 0.007 0.012 0.047 0.029 0.100 0.058 0.058 0.058 0.058 0.056 0.066 0.061 0.061 0.0663 0.150 0.066	Threshold -1.551 0.043 1.079 3.554 0.901 0.463 0.397 3.348 0.528 0.696 1.527 1.916 1.683 1.122 0.598 1.321 2.426 0.890 0.890 1.840 0.233 1.189	8	Asymptote 0.082 0.103 0.079 0.085 0.085 0.080 0.079 0.083 0.151 0.138 0.119 0.146 0.1463 0.191 0.192 0.178 0.178	5.0.08 0.008 0.009 0.002 0.004 0.003 0.003 0.003 0.004 0.018 0.012 0.008 0.011 0.010 0.011 0.020 0.023 0.013 0.023

	ŗ	Probability	and Statisti	cs Subtest	(16 items)			
Item E13 E14 E15 E16M E17 E18 M13D M14 M15 M17 M18 D14 D15 D17	\$10; 0.433 0.468 0.299 0.417 0.336 0.620 0.341 0.339 0.296 0.465 0.403 0.263 0.380 0.380	8.8. 0.101 0.113 0.120 0.060 0.095 0.091 0.076 0.082 0.080 0.101 0.108 0.1024 0.077 0.066 0.083 0.072	Threshold 3.781 0.699 0.863 0.433 -2.513 -0.394 2.001 1.920 -5.425 -0.280 -0.917 1.048 2.303 -3.012	1.184 0.190 0.228 0.092 0.579 0.116 0.114 0.427 0.457 1.860 0.076 0.157 0.207 0.582 0.666	0.112 0.110 0.126	0.015 0.025 0.024 0.017 0.053 0.032 0.018 0.016 0.016 0.026 0.026 0.022 0.020	**	
14			ra Skills S	ubtest (36	itens)			
111 em 121 em 12	0.625 0.787		The shold			0.042 0.023 0.029 0.013 0.012 0.014 0.016 0.028 0.031 0.015 0.017 0.016 0.021 0.011 0.021		
Item	Slope				t (39)tems)			
E2	0.538	0.073 0.110 0.069 0.075 0.210 0.075 0.079 0.122 0.054 0.083 0.101 0.085 0.101 0.065 0.065 0.065 0.065 0.065 0.072 0.065 0.072 0.054 0.072 0.065 0.065 0.072 0.065 0.072 0.078	Threshold -1.277 -1.277 0.590 -0.283 -0.2588 -2.4488 -2.4488 -2.4488 -2.455 0.828 -0.571 -0.571 2.590 0.964 2.652 3.071 -1.623 -0.894 -2.478 -4.783 0.282 0.397 -0.833 1.204 -0.833 1.204 0.785 -0.282 0.397 -0.124 0.786 -0.293	1. c. 6. 176 0. 201 0. 1031 0. 066 0. 085 0. 225 0. 460 0. 1031 0. 103	Asymptote 0.160 0.164 0.187 0.153 0.161 0.133 0.161 0.179 0.142 0.164 0.126 0.188 0.195 0.175 0.165 0.188 0.195 0.155 0.165	5 0.41 0.019 0.025 0.031 0.025 0.013 0.013 0.014 0.022 0.034 0.016 0.022 0.016 0.030 0.018 0.030 0.015 0.018 0.030 0.015 0.018 0.030 0.015 0.016 0.022 0.017 0.022 0.031 0.015 0.031 0.017 0.022 0.031 0.022		

* p < .05

`

