Bit-By-Bit: The Side Channel Hackathon Challenge -3

Side-Channel Key Recovery With Neural Networks

Methodology and Justification

This project focuses on recovering the first byte of the AES encryption key using power traces and deep learning. Our approach involves a profiling attack, where a deep neural network is trained on a labeled dataset (Dataset B) and then used to predict probabilities for each possible key byte on a target dataset (Dataset A) without known keys.

We target the intermediate value $z = SBox[Plaintext \oplus Key]$, as it is a common leakage point in AES and has been shown to correlate well with power consumption. The label for training is derived from z, and we used Hamming Weight (HW) of z as the label (set by USE_HW_LABEL=True) because it is easier to learn and generalizes better across devices.

The power traces were pre-processed using the following steps:

- 1. Standardization: to normalize the signal.
- 2. Bandpass filtering: to remove low- and high-frequency noise.
- 3. Derivative computation: to highlight signal transitions.
- 4. Feature combination : original + derivative signals were concatenated to enhance temporal information.

We split the profiling dataset into training and validation sets using stratified sampling to maintain class balance.

CNN Architecture Description

We used 1D Convolutional Neural Network (CNN) called Enhanced 1D CNN, tailored for time-series data like power traces. Here's a high-level description:

- Input: Single-channel power trace.
- Initial Conv Layer: Extracts low-level features.
- 3 Residual Blocks: Each with increasing filters (64 → 128 → 256 → 512) to capture complex patterns.
- Attention Mechanism: Learns which time regions are important in the trace.
- Global Pooling: Reduces temporal dimension.

 Classifier: A fully connected network with dropout and ReLU activation, outputting class probabilities (either 256 classes for key bytes or 9 for HW values).

CNNs are a standard choice for side-channel analysis because:

CNNs effectively capture local patterns and temporal dependencies in power traces. They are robust to misalignment and noise, which are common in side-channel signals.

Key Guess Results

The trained model is evaluated on Dataset A. The model outputs probability distributions over possible labels for each trace, which we use to compute log-likelihood scores for all 256 key byte values.

These scores are then sorted to produce a key ranking is shown in the picture below:

```
val_loss=1.7386, val_acc=0.318, val_loss=1.7138, val_acc=0.330, val_loss=1.6767, val_acc=0.351, val_loss=1.7524, val_acc=0.320,
Epoch 5: train_loss=1.6742,
Epoch 6: train_loss=1.6303,
Epoch 7: train_loss=1.5908,
Epoch 8: train_loss=1.5417,
Epoch 9: train_loss=1.4952,
                                                                                                                                                                                                                               lr=0.000150
                                                                                train_acc=0.406,
train_acc=0.432,
Epoch 9: train_loss=1.4952, train_acc=0.455, val_
Epoch 10: train_loss=1.4615, train_acc=0.481, val
Epoch 11: train_loss=1.6045, train_acc=0.392, val
Epoch 12: train_loss=1.5724, train_acc=0.410, val
Epoch 13: train_loss=1.5708, train_acc=0.429, val
Epoch 14: train_loss=1.5749, train_acc=0.412, val
Epoch 15: train_loss=1.4929, train_acc=0.458, val
Epoch 16: train_loss=1.4929, train_acc=0.485, val
Epoch 17: train_loss=1.3974, train_acc=0.518, val
Epoch 18: train_loss=1.3359, train_acc=0.553, val
Epoch 19: train_loss=1.3814, train_acc=0.527, val
Epoch 20: train_loss=1.2435, train_acc=0.612, val
                                                                                                                                               _loss=1.6261,
_loss=1.6672,
                                                                                                                                                                                    val_acc=0.350,
                                                                                                                                                                                                 acc=0.339,
                                                                                                                                                                                                                                  lr=0.000293
                                                                                                                                                loss=1.7627.
                                                                                                                                                                                                 acc=0.339.
                                                                                                                                                                                                                                  lr=0.000256
                                                                                                                                             _loss=1.0249,
L_loss=1.7663,
L_loss=2.9638,
                                                                                                                                                                                                                                  lr=0.000218
                                                                                                                                                                                                                                  lr=0.000197
                            train_loss=1.2435,
train_loss=1.2042,
                                                                                                                                               _
_loss=2.3860,
_loss=1.9979,
                                                                                                                                                                                                 _
_acc=0.239,
                                                                                                                                                                                                                                  lr=0.000150
                                                                                                                                                                                      val_acc=0.373.
Epoch 21:
                                                                                    train acc=0.646,
                                                                                                                                                                                                                                  lr=0.000127
 Epoch 22: train_loss=1.0187,
Epoch 24: train_loss=0.9549,
Epoch 25: train_loss=0.8907,
                                                                                   train_acc=0.765,
train_acc=0.809,
                                                                                                                                              _
_loss=2.1283,
_loss=1.9675,
                                                                                                                                                                                     val_acc=0.375,
val_acc=0.375,
                                                                                                                                   val
                                                                                                                                                                                                                                  lr=0.000083
                                                                                   train_acc=0.850,
                                                                                                                                   val loss=2.0795,
                                                                                                                                                                                     val acc=0.378,
                stopping at epoch 25
        Key=AD,
        Kev=50.
```

Conclusion

In this project, we have applied a deep learning-based profiling attack on AES using power traces. By targeting the Hamming Weight of the SBox output and leveraging a tailored CNN architecture, we have ranked key byte candidates based on their computed log-likelihood scores derived from the model's predicted probabilities.

The scripts are available at https://github.com/suryaarasu11/bitbybit/.