Lecture 8	Experted Utility	(2019. 3.16)
8.1 From CAPM to General Equilibrium		
	CAPM	C-CAPM
Preference	Mean-Variance	Expected utility (Lev 8)
Behavior	Portfolio optimization	Decision under uncertainty (9)
Equilibrium	Partial (asset market)	General (whole ewnomy) (10
Asset Pricing	CAPM (SML)	
Asset Pricing CAPM (SML) C-CAPM (11,12) Problems regarding M-V preference Pational Preference (XCR+ choice set) (i) complete Yx, y \in X, either x \in Y or y \in X holds (or both hold)		
factional preference (\(\tau \tau \tau \tau \tau \tau \tau \tau		
\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac\		
Mean-Vari	and preference is not	complete. (Eu) B. 7
$u(r) = E(r) - A\sigma^{2}(r)$		
Where does this utility function come from)		
, For any random variable X.		
E(x-c)k Moment of order k (kis apositive integer)		
Mean: $k=1$, $c=0$		
Variance: $k=2$, $c=E(x)$ In Mean-Variance preference, information of higher orders		
is los	t.	$\int (x) \int (x,y)$
	: stewness	10)
le=4:	kurtosis	J(X)

- Problems regarding partial equilibrium

Individual asset returns are linked to market return in CAPM. But we can't say anything about underlying driving forces of the market — our analysis stops at the assumptions.

- We need a more general framework to get a deeper

understanding.

8.2 Experted Hility (EU)

Expected Payoff =
$$\frac{1}{2} \times 1 + (\frac{1}{2})^2 \times 2 + (\frac{1}{2})^3 \times 4 + \cdots$$

= $\sum_{n=1}^{\infty} (\frac{1}{2})^n \cdot 2^{n-1} = \frac{1}{2} \sum_{n=1}^{\infty} 1^n = +\infty$.
Expected U+i(Hy = $\sum_{n=1}^{\infty} (\frac{1}{2})^n \cdot \ln(2^{n-1})$
= $\ln 2 \sum_{n=1}^{\infty} (\frac{1}{2})^n \cdot (n-1)$
= $\ln 2 \cdot (\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \cdots + \frac{1}{16} + \frac{1}{32} + \cdots + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \cdots + \frac{1}{16} + \frac{1}{32} + \cdots + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \cdots + \frac{1}{16} + \frac{1}{32} + \cdots + \frac{1}{16} + \frac{1}{32} + \cdots + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \cdots + \frac{1}{16} + \frac{1}{32} + \cdots + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \cdots + \frac{1}{16} + \cdots + \frac{1}{16} + \cdots + \frac{1}{$

 $= \ln 2 \cdot \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots\right)$ $= \ln 2 < +\infty$

With lograthm utility, people will only pay 2 (= e^{ln²}) at most to join the gamble.

· Continuous preference $\chi^n \gtrsim y^n \forall n$, $\lim_{n \to \infty} \chi^n \gtrsim \lim_{n \to \infty} y^n$, Proposition 8.1: A rational and continuous preference can be represented by a continuous function. x & y () u(x) > u(y) 8.2.3 EU Theory Step 1: modeling choice set under uncertainty Step 2: Describing preference under uncertainty Step 3: Finding out a utility function . Without uncertainty, elements in the choice set are consumption bundles. Apple Pear $(2,1) \in \mathbb{Z} \subseteq \mathbb{R}_{+}$ $(1,2) \in \mathbb{Z} \subset \mathbb{R}_{+}^{2}$. Under uncertainty, elements are probabilities of different consumption bundles. · Definition 8.3 (Simple lottery) $L = (p_1, \dots, p_N) \cdot p_n \geq o(\forall n), \sum_{n=1}^{\infty} p_n = 1$ Possible outcomes are certain comsumption bundles , Definition 8.4 (Compound (othery)

Possible outcomes are lotteries.

compound lotteries can be represented as simple lotteries.

Example A = (2 Apples, 1 pear) B= (1 Apple, 2 Pears) $L_1 = (0.5, 0.5)$, $L_2 = (0.25, 0.75)$ Compound lottery $(L_{1},L_{2};0.5,0.5) = (0.375,0.625)$ $=0.5\times0.5+0.5\times0.25$ $=0.5\times0.5+0.5\times0.75$ · I = space of all (simple) lotteries . Definition 8.5 (Independence Axiom) A.B.C EL, Ha E [0,1] If A & B () XA+(1-d) C & XB+(1-d) C Then we say & satisfies Independence Axiom (IA) · Independ Axiom is not that innocent as it seems. A = beef. B = bitter melon (#TA). C=pork A >B , but not necessarily dA+ (1-d) c > dB+ (1-d) d But we need IA to have expected utility function. · Proposition 8.2 (Expected Utility Theorem) & on I rational, continuous, IA U(L) = Sin na(Xn) · We can use EU to order any two different lotteries. For some lotteries, order can be given regardless of utility (all the people will make the same choice). - Stochastic dominance (Appendix 8.A)

· Allais Paradox U25 U5 Win 2.5 million win 0.5 million broken legs $L'_{1} = (0.1), 0.89, 0.01)$ $L_{2} = (0, 0.11, 0.89)$ $L_2 = (0.1, 0.9)$ For most people LI>Li, Li>Lz U5 > 0.1 Mw +0.89U5 + 0.01U0 (L,>Li) (+0.89 U0-0.89 U5 at both sides) 0.11Us + 0.89 U. > 0.1 U25 + 0.9 U0 (Lz>Cí!) - Despite the Allais Paradox and other anormaties, EU is still the main work horse in economic analysis under uncertainty (No better alternatives!) 8.3 Measurment of Risk Aversion U, E(U) MC(), V(c) E[nco] E[V(c)]

Cev

0

C+A

risk premium = c - ce (certainty equivalence) affected by c and s (as well as curvature of u, v) we need a measurment of risk aversion only affected by utility function. 8.3.2 (defficient of Absolute Risk Aversion (ARA) $u(y) = \pi^* u(y+h) + (1-\pi^*) u(y-h)$ gamble TI* - probability of win in the gamble that makes the person indifferent More risk averse -> higher TT* Taylor expansion to order 2 (It is important to $u(y+h) = u(y) + h u'(y) + \frac{h^2}{2}u''(y) + \dots$ get to order 2) n (y-h) = n (y) -h u'cy) + 1 n"(y) + ... $u(y) = \pi^* \left[u(y) + hu'(y) + \frac{h^2}{2} u''(y) \right]$ + (1-11*) [ucy) - hu'cy) + 2 ""(y)] $\Rightarrow 0 = (2\pi^*-1)hu'(y) + \frac{h^2}{2}u''(y)$ $\Rightarrow \quad \pi^* = \frac{1}{2} + \frac{h}{4} \left[-\frac{u''(y)}{u'(y)} \right]$ $R_A(y) \triangleq -\frac{u''(y)}{u'(y)}$ (ARA)

People usually have different ARA at different consumption levels.

8.3.3 (oefficient of Relative Risk Aversion (RRA)

$$u(y) = \pi^* u(y+\theta y) + (1-\pi^*)u(y-\theta y)$$

$$h = \theta y$$

$$\Rightarrow \pi^* = \frac{1}{2} + \frac{\theta y}{4} \left[-\frac{u''(y)}{u'(y)} \right] = \frac{1}{2} + \frac{\theta}{4} \left[-\frac{yu''(y)}{u'(y)} \right]$$

$$R_{R}(y) \stackrel{\triangle}{=} -\frac{yu''(y)}{u'(y)} \quad (RRA)$$
8.3.4 Commonly used utility functions
$$CARA: \quad u(c) = -e^{-\alpha c} \quad RA(c) = \alpha$$

$$CRRA: \quad u(c) = \frac{c^{1-t}-1}{1-r} \quad R_{R}(c) = \beta$$

$$u(c) = \ln c \quad (\text{when } t = 1)$$

$$Linear \quad (\text{Risk neutral})$$

$$u(c) = \alpha c \quad , \quad RA(c) = R_{R}(c) = 0$$
8.4 M-V preference as a special case of EU

. Quadratic utility function
. CARA + (ognormal return
$$\beta = \ln x \sim N(\mu, \sigma^2)$$

$$E(e^{\delta}) = E(x) = e^{M+\frac{1}{2}\sigma^2} \quad (Appendix 8.B)$$

$$u(c) = -e^{-\alpha c}$$

$$E[u(c)] = E[-e^{-\alpha c}] = -e^{-\alpha E(c)+\frac{1}{2}\alpha^2 Varce}$$

$$\max E[u(c)] \Leftrightarrow \max E(c) = \frac{1}{2}\alpha^2 Varce}$$