FITS FOR DARK MATTER DIRECT DETECTION

Lauren Street

University of Cincinnati

Motivation

- Dark matter (DM) to explain^[1]
 - Flat galactic rotation curves, etc.

- Direct detection
 - DM-nuclei scattering

Credit: Mario De Leo
[CC BY-SA 4.0
(https://creativecommo
ns.org/licenses/bysa/4.0)], from
Wikimedia Commons

Credit: HAP/A.
Chantelauze
(http://www.hapastroparticle.org/186.p
hp)

Xenon100

Liquid Xe – various isotopes^[5]

$$DM + iso Xe \rightarrow DM + iso Xe$$

- Describe process using effective field theory (EFT)
 - Various couplings Wilson coefficients (WC)

Compare EFT to exp. → constrain values for WC's

Plan for comparison

• Xenon100 → scattering events in energy bin

• EFT → scattering events as function of WC's

- Minimize chi-squared → best fit values for WC's
 - Easy example: Lagrangian depends on only one WC C610

Procedure

• Mathematica packages DirectDM^[3] and DMFormfactor^{[2],[4]}

$$\to \frac{d\sigma(v,E_R,\hat{C})}{dE_R}$$

• C61u from two main pipelines:

General code - Hardcoded for

inputs relevant Xenon100 – input

parameters recoil energy

Procedure – Differential rate

•Integrate $\frac{d\sigma(v,E_R,\hat{C})}{dE_R}vf_E(v)$ over velocity $o \frac{dR(\hat{C})}{dE_R}$

• Use scipy.integrate.quad

• Assume DM mass and $f_E(v)$ of DM halo

Procedure – Scattering events

- •Integrate $\frac{dR}{dE_R}G_j(E_R)$ over recoil energy $\to R_j(\hat{C})$ [5]
 - Use numpy.trapz
 - Depends on detector
 efficiency ^[5]

• Multiply $R_j(\hat{C})$ by exposure time $\to N_j(\hat{C})$

Procedure – Minimize chi-squared

• N_{obs} and $N_{pred} \rightarrow \chi^2$ [6]

•
$$\chi^{2}(\hat{C}) = \sum_{j=1}^{n} \frac{\left[N_{0,j} - \left(N_{b,j} + N_{j}(\hat{C})\right)\right]^{2}}{\delta N_{0,j}^{2}}$$

 $\bullet N_{0,j}$, $N_{b,j}$, and $\delta N_{0,j}$ from Xenon100 [5]

 Use scipy.optimize.minimize → C61u that gives best fit to data

12/5/2018

Results

Results (for $m_\chi=10\,{ m GeV}$)

• Found C61u that gives best fit to data to be:

$$C610|_{best} = 7.9 * 10^{-9}$$

• Chi-squared min per d.o.f.:

$$\frac{\chi_{min}^2}{d.o.f.} = 41.2$$

Future

- Some functions hardcoded for Xenon100 very slow
- General code to depend on variable parameters

- Velocity
 - Distributions from simulations
- WC's
 - Add more WC's to fit

Conclusions

Found WC that gives best fit to Xenon100 data

- Code in python takes cross-section from Mathematical
 - \rightarrow chi-squared \rightarrow C61u
 - Two different pipelines

Many things to fix in future

References

- [1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- [2] N. Anand, A.L. Fitzpatrick, and W.C. Haxton (2013) e-print: 1308.6288.
- [3] F. Bishara, J. Brod, B. Grinstein, and J. Zupan (2017) e-print: 1708.02678.
- [4] A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu (2012) e-print: 1203.3542.
- [5] XENON collaboration and B. Farmer (2017) e-print: 1705.02614
- [6] M. Maltoni and T. Schwetz (2013) e-print: 0304176.

Backup: Formulation

- Experiments measure scattering of dark matter (DM) off of nuclei
- Theoretical rate [5]
 - Differential rate

$$\frac{dR}{dE_R} = N_T n_{\chi} \sum_{i} n_i \int_{v_{min}}^{\infty} \left(\frac{d\sigma(v, E_R)}{dE_R} \right)_i v f_E(v) d^3 v$$

Total rate

$$R_j(\hat{C}) = \int \frac{dR}{dE_R} G_j(ES_R) dE_R$$

Chi-squared function [6]

$$\chi^{2}(\hat{C}) = \sum_{j=1}^{n} \frac{\left[N_{0,j} - \left(N_{b,j} + N_{j}(\hat{C})\right)\right]^{2}}{\delta N_{0,j}^{2}}$$