

第五章 插值法

第二节 几种常用插值多项式求法

5.2.1 Lagrange插值公式

由于插值多项式 $\varphi_n(x) \in P_n[x]$,而 $P_n[x] = span[1,x,\cdots,x^n]$ 是一个 n+1 维线性空间。如果 $l_0(x), l_1(x), \cdots, l_n(x)$ 是 $P_n[x]$ 的一组基函数,且满足: φ

(1) $l_i(x)$ 是阶数不超过n次的多项式, $i=0,1,\dots,n$;

(2)
$$l_i(x_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 (5.2.1)

则称 $l_0(x), l_1(x), \dots, l_n(x)$ 为以 x_0, x_1, \dots, x_n 为插值节点的基本插值多项式,简称基函数。

注:可证明 $l_0(x)$, $l_0(x)$ …, $l_0(x)$ 线性无关

基函数构造

由条件 (1) 可知:
$$l_i(x) = k_i \prod_{k=0, k \neq i}^n (x - x_k)$$
 ($i = 0, 1, \dots, n$)。

再由条件 (2) 知:
$$1 = l_i(x_i) = k_i \prod_{k=0, k \neq i}^n (x_i - x_k)$$
 , 即

$$k_i = \frac{1}{\prod_{k=0, k \neq i}^{n} (x_i - x_k)} \circ \varphi$$

因此基本插值多项式为。

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$
 (5.2.2)

于是,在基函数 $l_0(x), l_1(x), \cdots, l_n(x)$ 的基础上,以 y_0, y_1, \cdots, y_n 为线性组合系数,可得

$$\varphi_n(x) = \sum_{i=0}^n y_i \cdot l_i(x) \, \varphi$$

显然, $\varphi_n(x_j) = \sum y_i \cdot l_i(x_j) = y_j$ ($j = 0, 1, \dots, n$),即满足插值条件。

Lagrange插值公式

这种通过基本插值多项式(或基函数)构造插值多项式的方法就称为 Lagrange 插值法,所获得的插值多项式就称为 Lagrange 插值公式,记为 $L_n(x)$,即。

$$L_n(x) = \sum_{i=0}^n y_i \cdot l_i(x) = \sum_{i=0}^n \left(y_i \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} \right)$$
 (5.2.3)

注:基函数与函数值无关,只与插值节点有关。

Lagrange插值例题

例1 已知x=1, 4, 9 的平方根值,用抛物插值公式, 求 $\sqrt{7}$

$$\begin{aligned} \mathbf{p}_{2}(x) &= \frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} \ y_{0} + \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} \ y_{1} \\ &+ \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})} \ y_{2} \end{aligned}$$

$$x_{0}=1, \ x_{1}=4, \ x_{2}=9 \qquad y_{0}=1, \ y_{1}=2, \ y_{2}=3$$

$$\mathbf{p}_{2}(7) &= \frac{(7-4)(7-9)}{(1-4)(1-9)} * 1 + \frac{(7-1)(7-9)}{(4-1)(4-9)} * 2$$

$$+ \frac{(7-1)(7-4)}{(9-1)(9-4)} * 3$$

$$= 2.7$$

例2 已知f(x)的观测数据

构造Lagrange插值多项式

解 四个点可构造三次Lagrange插值多项式:基函数为

$$l_0(x) = \frac{(x-1)(x-2)(x-4)}{(0-1)(0-2)(0-4)} = -\frac{1}{8}x^3 + \frac{7}{8}x^2 - \frac{7}{4}x + 1$$

$$l_1(x) = \frac{(x-0)(x-2)(x-4)}{(1-0)(1-2)(1-4)} = \frac{1}{3}x^3 - 2x^2 + \frac{8}{3}x$$

$$l_2(x) = \frac{(x-0)(x-1)(x-4)}{(2-0)(2-1)(2-4)} = -\frac{1}{4}x^3 + \frac{5}{4}x^2 - x$$

$$l_3(x) = \frac{(x-0)(x-1)(x-2)}{(4-0)(4-1)(4-2)} = \frac{1}{24}x^3 - \frac{1}{8}x^2 + \frac{1}{12}x$$

Lagrange插值多项式为

$$L_3(x) = \sum_{k=0}^{3} y_k l_k(x)$$

$$= l_0(x) + 9l_1(x) + 23l_2(x) + 3l_3(x)$$

$$= -\frac{11}{4}x^3 + \frac{45}{4}x^2 - \frac{1}{2}x + 1$$

例 5.2.1: 给定函数表如下↓

X 4	₽	0.1₽	0.2₽	0.3₽	0.4₽	0.5₽	₽	ته
$y = e^{x}$	₽	1.1052	1.2214	1.3499₽	1.4918₽	1.6487₽	₽	₽

试用线性插值与抛物插值求 $e^{0.354}$ 的近似值,并估计截断误差。 $_{+}$

解:在插值计算中,为减少极端误差,一般选择离x较近的点作为节点(即选取节点

的就近原则) 4

在本题中由于 x = 0.354,介于 0.3 与 0.4 之间,故作线性插值时取 $x_0 = 0.3$, $x_1 = 0.4$,

由 Lagrange 插值公式可得线性公式为:
$$L_1(x) = 1.3499 \cdot \frac{x - 0.3}{0.3 - 0.4} + 1.4918 \cdot \frac{x - 0.3}{0.4 - 0.3}$$

于是,线性插值公式所得近似值为 $e^{0.354} \approx L_1(0.354) = 1.4265$ 。

而误差由公式(5.1.5)可得: -

$$|R_1(0.354)| = \left| \frac{f''(\xi)}{2!} (0.354 - 0.3) \cdot (0.354 - 0.4) \right|$$

$$= \left| \frac{e^{\xi}}{2!} \times 0.054 \times 0.046 \right| \le \frac{e^{0.4}}{2} \times 0.054 \times 0.046 = 0.001853 \, \text{a.s.}$$

$$L_{2}(0.354) = 1.3499 \frac{(x-0.4)(x-0.5)}{(0.3-0.4)(0,3-0.5)} + 1.4918 \frac{(x-0.3)(x-0.5)}{(0.4-0.3)(0.4-0.5)} + 1.6487 \frac{(x-0.3)(x-0.4)}{(0.5-0.3)(0.5-0.4)}$$

于是用抛物插值公式所得近似值为:

$$e^{0.354} \approx L_2(0.354) = 1.4247$$

由公式 (5.1.5) 可计算得: ₽

$$|R_1(0.354)| \le \frac{e^{0.5}}{3!} \times 0.054 \times 0.046 \times 0.146 = 0.00009966$$

实际计算误差0.0018

实际计算误差9.2549e-05

5.2.2 Newton插值公式

Lagrange 插值虽然易算,但若要增加一个节点时,全部基函数 $l_i(x)$ 都需要重新算过。

将
$$L_n(x)$$
 改写成 $a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+\cdots+a_n(x-x_0)\cdots(x-x_{n-1})$ 的形式,希

望每加一个节点只附加一项上去即可。。

A 差商。

定义 5.2.1: 给定函数 f(x) 及一系列互不相同的点 $x_0, x_1, \dots, x_n, \dots$,称。

$$f[x_i,x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

为f(x)关于点 x_i, x_j 的一**阶差商**,也称均差。 x_i

差商定义

称一阶差商的差商 $f[x_i,x_j,x_k] = \frac{f[x_i,x_j] - f[x_j,x_k]}{x_i - x_k}$ 为函数 f(x) 关于点 x_i,x_j,x_k 的

二阶差商。』

称
$$f[x_0, x_1, \dots, x_k] = \frac{f[x_0, x_1, \dots, x_{k-1}] - f[x_1, \dots, x_k]}{x_0 - x_k}$$
 为函数 $f(x)$ 关于点 x_0, x_1, \dots, x_n

的 k 阶差商。↓

f(x) 的零阶差商即为 f(x) 的函数值,即 $f[x_i] = f(x_i)$ 。

如果有重点,如 x_i 为重点,即 $x_i = x_{i+1}$,从定义中容易看到:如果f(x)在f(x) x_i 点可导,则。

$$\lim_{x \to x_i} \frac{f(x_i) - f(x)}{x_i - x} = f'(x_i)$$

因此规定: $f[x_i, x_i] = f'(x_i)$ 。

差商性质

(1) <u>各阶差商</u>都具有线性性质,即若 $f(x) = a\varphi(x) + b\psi(x)$,其中 a , b 为常数,则对任意正整数 k 均有: φ

$$f[x_0, x_1, \dots, x_k] = a\varphi[x_0, x_1, \dots, x_k] + b\psi[x_0, x_1, \dots, x_k];$$

(2) $\underline{f(x)}$ 的 k 阶差商 $\underline{f(x_0, x_1, \dots, x_k)}$ 可表示成 $\underline{f(x_0)}$, $\underline{f(x_1)}$, \dots , $\underline{f(x_k)}$ 的线性组合,且,

$$f[x_0, \dots, x_k] = \sum_{i=0}^k \frac{f(x_i)}{w'_{k+1}(x_i)}$$

其中,
$$w_{k+1}(x) = \prod_{j=0}^{k} (x - x_i)$$
, $w'_{k+1}(x_i) = \prod_{j=0, j \neq i}^{k} (x_i - x_j)$;

- (3) f(x) 的各阶差商均具有对称性,即改变节点的位置(或次序),差商不变; ϕ
- (4) 若f(x)是n次多项式,则一阶差商 $f[x,x_i]$ 为n-1次多项式。+

差商表计算各阶差商

例3 求 $f(x_i)=x^3$ 在节点 x=0, 2, 3, 5, 6上的各阶差商值解: 计算得如下表

Xi	f[x _i]	$f[x_i,x_{i+1}]$	$f[x_{i},x_{i+1},x_{i+2}]$	$f[x_i,x_{i+1},x_{i+2},x_{i+2}]$
0	0			
2	8	$\frac{8-0}{2-0}=4$		
3	27	$\frac{27 - 8}{3 - 2} = 19$	$\frac{19-4}{3-0}=5$	10 5
5	125	$\frac{125 - 27}{5 - 3} = 49$	$\frac{49-19}{5-2}=10$	$\left \frac{10-5}{5-0} = 1 \right $
6	216	$\frac{216 - 125}{6 - 5} = 91$	$\frac{91 - 49}{6 - 3} = 14$	$\frac{14-10}{6-2}=1$

差商公式

B Newton 插值公式。

根据差商定义,有品

$$f(x) = f(x_0) + (x - x_0) f[x, x_0]$$

$$f[x, x_0] = f[x_0, x_1] + (x - x_1) f[x, x_0, x_1]$$

$$f[x, x_0, x_1] = f[x_0, x_1, x_2] + (x - x_2) f[x, x_0, x_1, x_2]$$

$$...$$

$$f[x, x_0, ..., x_{n-1}] = f[x_0, x_1, ..., x_n] + (x - x_n) f[x, x_0, ..., x_n]$$

将上面的n个等式两边分别乘以 1, $(x-x_0)$, $(x-x_0)(x-x_1)$, …, $w_n(x)$,然后将等式左右两边相加可得: ω

$$f(x) = \underbrace{f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \cdots}_{+f[x_0, x_1, \dots, x_n]w_n(x) + f[x, x_0, x_1, \dots, x_n]w_{n+1}(x)}$$

则有 ↵

$$f(x) = N_n(x) + R_n(x)$$
 (5.2.6)

显然, $N_n(x)$ 是不超过n次的多项式, $R_n(x_i) = 0$,且满足。

$$N_n(x_i) = f(x_i) = y_i \quad (i = 0, 1, \dots, n)_{\circ}$$

这种由差商求插值多项式的方法就称为 Newton 插值方法。求得的插值公式(5.2.4)就称为 Newton 插值公式。。

注: 可以看出,牛顿插值公式计算方便,增加一个插值点,只要多计算一项,而N_n(x)的各项系数恰好是各阶差商值,很有规律

差商与导数

由插值多项式的唯一性可知 $N_n(x) = L_n(x)$, 只是算法不同故其余项也相同, 即。

$$\frac{f^{(n+1)}(\xi)}{(n+1)!} w_{n+1}(x) = R_n(x) = f[x, x_0, x_1, \dots, x_n] w_{n+1}(x)$$

可得↓

$$\frac{f^{(n+1)}(\xi)}{(n+1)!} = f[x, x_0, x_1, \dots, x_n] \approx N_n[x, x_0, x_1, \dots, x_n]$$
 (5.2.7)

当 f(x) 未知情况下,利用 Newton 插值多项式近似计算 f(x) 所产生的误差(插值余项)的

估计问题可通过公式(5.2.7)得到解决,即 $R_n(x) \approx N_n[x, x_0, x_1, \dots, x_n] w_{n+1}(x)$

注:
$$f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

例4 已知 $f(x) = x^7 + x^4 + 3x + 1$

求 $f[2^0, 2^1, \dots 2^7]$ 及 $f[2^0, 2^1, \dots 2^7, 2^8]$

分析:本题f(x)是一个多项式,故应利用差商的性质

解: 由差商与导数之间的关系

Newton插值公式计算

Newton 插值公式可下表计算。n次 Newton 插值公式 $N_n(x)$ 为表中对角线上的差商值与右端因式乘积之和。 ι

表 5.2.2 差商表4

X _i ₽	y_{i} φ	1 阶差商↩	2 阶差商₽	₽	n 阶差商₽	4
<i>x</i> ₀ ₽	$\mathcal{Y}_{\theta}^{\varphi}$	4	4	Ð	₽	1₽
<i>x</i> ₁ ₽	y_1 φ	$\mathcal{J}[x_0,x_1] \in$	4	Ð	₽	x - x ₀ «
<i>x</i> ₂ <i>\varphi</i>	y_2 $^{\circ}$	$f[x_1, x_2] \omega$	$f[x_0, x_1, x_2] \varphi$	Ð	₽	$(x-x_0)(x-x_1)$
X ₃ ₽	<i>y</i> ₃ •	$f[x_2, x_3] \varphi$	$f[x_1, x_2, x_3]$	₽	₽	4
₽	₽	₽	4	₽	4	-
$X_n \circ$	y_n φ	$f[x_{n-1},x_n] \circ$	$f[x_{n-2},x_{n-1},x_n] \circ$	₽	$f[x_0, x_1, \cdots, x_n] \varphi$	$\prod_{j=0}^{n-1} (x-x_j) \varphi$

例5 求 √ 7 的 值估计其误差

解: 作函数 $f(x) = \sqrt{x}$

取 $x_0=4$, $x_1=9$, $x_2=6.25$, 建立差商表

x	f(x)	$f[x_{i},x_{i+1},]$	$f[x_{i},x_{i+1},x_{i+2}]$
4	2		
9	3	$\frac{3-2}{9-4} = 0.2$	
6.25	2.5		$\frac{0.18182 - 0.2}{6.25 - 4} = \boxed{-0.00808}$

$$N_2(7) = 2 + (7-4)*0.2 + (7-4)*(7-9)*(-0.00808) = 2.64848$$

例 5.2.2: 已知x与y的函数表如下 ϕ

X 42	0.40₽	0.55∉	0.65₽	0.80₽	0.90₽	1.05₽	
•••	0.10	0.55	0.05	0.00	0.50	1.05	4J

根据x与y的函数表作如下的差商表: ϕ

	x .	y ,	1 阶差商₽	2 阶差商₽	3 阶差商₽	4 阶差商₽	5 阶差商₽
0.	.40₽	0.41075	ę.	ę.	ę.	÷.	₽
0.	.55₽	0.57815₽	1.11600	₽	₽	÷	₽
0.	.65₽	0.69675₽	1.18600₽	0.28000₽	₽	÷	₽
0.	.80₽	0.88811	1.27573₽	0.35892₽	0.19730₽	ę.	₽
0.	.90₽	1.02652₽	1.38410₽	0.43348₽	0.21303₽	0.03146	₽
1.	.05₽	1.25385₽	1.51553₽	0.52572₽	0.23060₽	0.03514₽	0.00566

可得五次 Newton 插值公式为。

$$N_5(x) = 0.41075 + 1.11600(x - 0.4) + 0.28000(x - 0.4) \cdot (x - 0.55) + 0.19730(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) + 0.03146(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) + 0.00566(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) \cdot (x - 0.90) + 0.00566(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) \cdot (x - 0.90) + 0.00566(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) \cdot (x - 0.90) + 0.00566(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) \cdot (x - 0.90) + 0.00566(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) \cdot (x - 0.90) + 0.00566(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) \cdot (x - 0.90) + 0.00566(x - 0.4) \cdot (x - 0.55) \cdot (x - 0.65) \cdot (x - 0.80) \cdot (x - 0.90) \cdot (x - 0.90$$

于是, $f(0.596) \approx N_5(0.596) = 0.63192$,

将 f(0.596)≈ 0.63192 放上表做最后一行差商(如上表)可得误差为。

x_{ϕ}	<i>y</i> ,	1 阶差商₽	2 阶差商₽	3 阶差商₽	4 阶差商₽	5 阶差商₽	6 阶差商₽
0.40₽	0.41075	4	4	₽	¢	₽	₽
0.55₽	0.57815₽	1.11600₽	¢	₽	¢	₽	₽
0.65₽	0.69675₽	1.18600₽	0.28000₽	ę.	÷	P	ę.
0.80₽	0.88811	1.27573₽	0.35892	0.19730₽	¢	₽	₽
0.90₽	1.02652	1.38410₽	0.43348	0.21303₽	0.03146₽	ę.	ę.
1.05₽	1.253854	1.51553₽	0.52572₽	0.23060₽	0.03514₽	0.005664	₽
0.596₽	0.63192	1.36989₽	0.47908	0.228627₽	0.03654	0.03043	0.12638₽

$$R_5(0.596) = 0.12638 \cdot 0.196 \cdot 0.046 \cdot (-0.054) \cdot (-0.204) \cdot (-0.304) \cdot (-0.454)$$

$$\approx 0.173239 \times 10^{-5} \text{ p}$$

注: Newton插值误差计算 $R_n(x) \approx N_n[x, x_0, x_1, \cdots, x_n] w_{n+1}(x)$

5.2.3 **艾尔米特** (Hermite) 插值

Lagrange与Newton插值的不足:

- 均满足插值条件 $L_n(x_i) = N_n(x_i) = f(x_i)$, $i = 0, 1, \dots, n$ 即在插值节点上有相同的函数值——"过点"
- 但在插值节点上y = f(x)与 $y = L_n(x)$ 一般不相切,即 $f'(x_i) \neq L_n(x_i)$ —"光滑性较差"

已知函数 y=f(x) 在 n+1个互异节点 x_0,x_1,\cdots,x_n 处的函数值 y_0,y_1,\cdots,y_n 以及导数值 y_0',y_1',\cdots,y_n' ,要求次数不超过 2n+1 的多项式 H(x),使得。

$$\begin{cases}
H(x_i) = y_i \\
H'(x_i) = y_i'
\end{cases} (i = 0, 1, \dots, n)$$
(5.2.22)

满足条件(5.2.22)的多项式H(x)称为Hermite插值多项式

差商方法求解Hermite插值

例 6 已知函数 y = f(x) 的数据如下表.

i	0	1	2
x_i	-1	0	1
y_i	-1	0	1
y'i		0	

求一次数不超过三的 Hermite 插值多项式 $H_3(x)$,使 $H_3(x_i) = y_i$, (i = 0, 1, 2), $H'_3(x_1) = y_1'$.

				差商表		
		(()	差商			
i	x,	$f(x_i)$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	
0	-1	- 1				
1	0	0	1			
1	0	0	0	-1		
2	1	1	1	1	1	

注:在重节点 x_1 处的差商 $f[x_1,x_1] = f'(x_1)$.

$$H_{3}(x) = f(x_{0}) + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{1}]$$

$$\cdot (x - x_{0})(x - x_{1}) + f[x_{0}, x_{1}, x_{1}, x_{2}]$$

$$\cdot (x - x_{0})(x - x_{1})^{2}$$

$$= -1 + 1 \cdot (x + 1) + (-1) \cdot (x + 1) x$$

$$+ 1 \cdot (x + 1) x^{2} = x^{3}.$$

插值余项

$$R_n(x) = \frac{f^{(4)}(\xi)}{4!} (x - x_0)(x - x_1)^2 (x - x_2)$$

= $f[x, x_0, x_1, x_1, x_2](x - x_0)(x - x_1)^2 (x - x_2)$

