8.9 SPD Matrices and the Cholesky Decomposition

Definition 8.4. A real $n \times n$ matrix A is symmetric positive definite, for short SPD, iff it is symmetric and if

$$x^{\top}Ax > 0$$
 for all $x \in \mathbb{R}^n$ with $x \neq 0$.

The following facts about a symmetric positive definite matrix A are easily established (some left as an exercise):

- (1) The matrix A is invertible. (Indeed, if Ax = 0, then $x^{T}Ax = 0$, which implies x = 0.)
- (2) We have $a_{ii} > 0$ for i = 1, ..., n. (Just observe that for $x = e_i$, the *i*th canonical basis vector of \mathbb{R}^n , we have $e_i^{\top} A e_i = a_{ii} > 0$.)
- (3) For every $n \times n$ real invertible matrix Z, the matrix $Z^{\top}AZ$ is real symmetric positive definite iff A is real symmetric positive definite.
- (4) The set of $n \times n$ real symmetric positive definite matrices is convex. This means that if A and B are two $n \times n$ symmetric positive definite matrices, then for any $\lambda \in \mathbb{R}$ such that $0 \le \lambda \le 1$, the matrix $(1 \lambda)A + \lambda B$ is also symmetric positive definite. Clearly since A and B are symmetric, $(1 \lambda)A + \lambda B$ is also symmetric. For any nonzero $x \in \mathbb{R}^n$, we have $x^{\top}Ax > 0$ and $x^{\top}Bx > 0$, so

$$x^{\top}((1-\lambda)A + \lambda B)x = (1-\lambda)x^{\top}Ax + \lambda x^{\top}Bx > 0,$$

because $0 \le \lambda \le 1$, so $1-\lambda \ge 0$ and $\lambda \ge 0$, and $1-\lambda$ and λ can't be zero simultaneously.

(5) The set of $n \times n$ real symmetric positive definite matrices is a cone. This means that if A is symmetric positive definite and if $\lambda > 0$ is any real, then λA is symmetric positive definite. Clearly λA is symmetric, and for nonzero $x \in \mathbb{R}^n$, we have $x^{\top}Ax > 0$, and since $\lambda > 0$, we have $x^{\top}\lambda Ax = \lambda x^{\top}Ax > 0$.

Remark: Given a complex $m \times n$ matrix A, we define the matrix \overline{A} as the $m \times n$ matrix $\overline{A} = (\overline{a_{ij}})$. Then we define A^* as the $n \times m$ matrix $A^* = (\overline{A})^\top = (\overline{A}^\top)$. The $n \times n$ complex matrix A is Hermitian if $A^* = A$. This is the complex analog of the notion of a real symmetric matrix.

Definition 8.5. A complex $n \times n$ matrix A is Hermitian positive definite, for short HPD, if it is Hermitian and if

$$z^*Az > 0$$
 for all $z \in \mathbb{C}^n$ with $z \neq 0$.

It is easily verified that Properties (1)-(5) hold for Hermitian positive definite matrices; replace \top by *.