LINE

VEMULAPALLI BAVYA SRI

October 2022

Problem Statement -Let P=(-1, 0), Q = (0, 0) and R = (3, 3 $\sqrt{3}$) be three point. The equation of the bisector of the $\angle(PQR)$

$$\|\mathbf{n_2}\| = \sqrt{\mathbf{n_2}^\top \mathbf{n_2}} \tag{13}$$

1 Solution

Given $\mathbf{P} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} 3 \\ -3\sqrt{3} \end{pmatrix}$

Let ${\bf M}$ be a point on the bisector. ${\bf M}$ is equidistant from both the lines ${\bf PQ}$ and ${\bf QR}$

Equation of the PQ is given by

$$\mathbf{n_1}^{\top} \mathbf{x} = 0 \tag{1}$$

$$\mathbf{PQ} = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{2}$$

$$\mathbf{n_1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \tag{3}$$

$$\mathbf{n_1}^{\top} = \begin{pmatrix} 0 & -1 \end{pmatrix} \tag{4}$$

$$\mathbf{n_1}^{\mathsf{T}} \mathbf{x} = \begin{pmatrix} 0 & -1 \end{pmatrix} \mathbf{x} = 0$$

$$\|\mathbf{n_1}\| = \sqrt{\mathbf{n_1}^\top \mathbf{n_1}}$$

$$=\sqrt{(0)^2+(-1)^2}=1$$

Equation of the $\mathbf{Q}\mathbf{R}$ is given by

$$\mathbf{n_2}^{\mathsf{T}}\mathbf{x} = 0 \tag{8}$$

$$\mathbf{QR} = \begin{pmatrix} 3\\3\sqrt{3} \end{pmatrix} \tag{9}$$

$$\mathbf{n_2} = \begin{pmatrix} 3\sqrt{3} \\ -3 \end{pmatrix} \tag{10}$$

$$\mathbf{n_2}^{\top} = \left(3\sqrt{3} - 3\right) \tag{11}$$

$$\mathbf{n_2}^{\top} \mathbf{x} = (3\sqrt{3} - 3) \mathbf{x} = 0 \tag{12}$$

$$=\sqrt{(3\sqrt{3})^2 + (-3)^2} = 6\tag{14}$$

As M is equidistant from PQ and QR

$$\frac{|\mathbf{n_1}^{\top}\mathbf{x}|}{\|\mathbf{n_1}\|} = \frac{|\mathbf{n_2}^{\top}\mathbf{x}|}{\|\mathbf{n_2}\|}$$
(15)

$$\frac{\left(0 - 1\right)\mathbf{x}}{1} = \frac{\left(3\sqrt{3} - 3\right)\mathbf{x}}{6} \tag{16}$$

By solving the above expression we get,

$$\left(\sqrt{3}\ 1\right)\mathbf{x} = 0\tag{17}$$

$$and\left(\sqrt{3}-1\right)\mathbf{x}=0\tag{18}$$

Equations (17) and (18) represent the equations of internal and external angular bisectors of $\angle(\mathbf{PQR})$.

Hence the required equation of the internal angular bisector of the $\angle(\mathbf{PQR})$ is

The generalised form of the above equation is given by

$$\sqrt{3}x + y = 0 \tag{20}$$

2 Construction

Symbol	Value	Description
P	(-1,0)	point P
Q	(0,0)	point Q
R	$(3\sqrt{3},3)$	point R
M	(-0.7,1.21)	point M

(5)

(6)

Figure 1: Bisector

The above construction is realized by executing the following code.

https://raw.githubusercontent.com/BavyaVemulapalli/FWC-IITH/main/Line/Code/line.py

3 Conclusion

Hence, the equation of the bisector of angle PQR was found using matrices.