Prova Totale di **Ottimizzazione Combinatoria** 27 Settembre 2010

Cognome	
Nome	
Matricola	

Domanda 1

- 1. Dare la definizione di matroide.
- 2. Dati
 - $U = \{\text{Insieme finito di vettori di } R^n \}$
 - $I = \{$ sottoinsiemi F di U linearmente indipendenti $\}$ dimostrare che la coppia (U,I) è un matroide.

Esercizio 1

1. Dire se il grafo in figura *G* soddisfa il teorema di König (motivando la risposta).

2. Se possibile, determinare sul grafo in figura il massimo matching e il minimo trasversale spiegando nel dettaglio i passi dell'algoritmo utilizzato.

Esercizio 2

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	1	2	3	4	5	6	7
1	-	10	10	30	20	10	10
2	10	-	20	20	30	20	10
3	10	20	-	20	10	20	20
4	30	20	20	-	20	30	20
5	20	30	10	20	-	20	30
6	10	20	20	30	20	-	10
7	10	10	20	20	30	10	-

Calcolare il valore di una soluzione euristica tramite l'algoritmo di Christofides (spiegando nel dettaglio i passi dell'algoritmo).

Esercizio 3

Si consideri il seguente problema di programmazione lineare intera:

$$\max 4x_1 - x_2 6x_1 + 2x_2 \ge 18 8x_1 - 4x_2 \le 20 3x_2 \le 15 x_1, x_2 \in Z^+$$

Calcolare la soluzione ottima del problema applicando il metodo del branch and bound. Calcolare il rilassamento continuo per via grafica ad ogni nodo.

Esercizio 4

Disegnare un grafo la cui matrice di incidenza nodi-archi sia totalmente unimodulare (motivare la totale unimodularità della matrice).