1. Кратные интегралы

1.1. Определения и свойства

Определение 1. Совокупность измеримых открытых множеств $T = \{\Omega_k\}_{k=1}^n$ называется разбиением множества Ω , если:

- 1. $\Omega_k \subset \Omega$, $k = \overline{1,n}$
- 2. $\Omega_k \cap \Omega_j = \emptyset$, если $k \neq j$
- 3. $\bigcup_{k=1}^n \overline{\Omega}_k = \overline{\Omega}$

Определение 2. $\Delta(\Omega) = \sup_{x,y \in \Omega} \rho(x,y)$ - диаметр множества. (Ω - огранич. мн-во)

Определение 3. Число $\Delta_T = \max_{1 \le k \le n} \Delta(\Omega_k)$ - называется мелкостью разбиения $T = \{\Omega_k\}_{k=1}^n$ Определение 4. Разбиение $T' = \{\Omega_j'\}$ - называется измельчением разбиения $T = \{\Omega_k\}$ если $\forall \Omega_j' \subset T \ \exists \Omega_k \subset T : \Omega_j' \subset \Omega_k$

Свойства измельчения:

- 1. Если T' измельчение T, а T'' измельчение T' то T' измельчение T''
- 2. Для двух разбиений $T'=\{\Omega_k'\}$ и $T''=\{\Omega_j''\}$ множества Ω \exists разбиение T множества Ω , что T будет измельчением разбиений T' и T''

Замечание: Если $G = \bigcup_{j=1}^p Q_j$ клеточное множество и $\Omega \subset G$ то в качестве разбиения множества Ω можно взять $T = \{\Omega_k\}$, где $\Omega_k = \Omega \cap int(Q_k), \ k = \overline{1,p}$

1.2. Интегральные суммы. Кратный интеграл Римана. Необходимое усл. существования кр. интеграла Римана

$$T = \{\Omega_k\}_{k=1}^n, \omega = f(x), x \in \mathbb{E}, \text{ опред. на } \overline{\Omega}; \ \xi = \{\xi_1, \dots, \xi_n\} : \xi \in \overline{\Omega_k}$$

Определение 5. $I\{T,\xi\} = \sum\limits_{k=1}^n f(\xi_k) m(\Omega_k)$ — интегральная сумма функции f

Определение 6. $m(\Omega_k)$ - мера множества Ω_k

Определение 7. Число I называется пределом интегральных сумм $I\{T,\xi\}$, при мелкости разбиения стремящейся к 0, если:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0: \ \forall T: \Delta_T < \delta \ \& \ \forall \varepsilon \Rightarrow |I\{T,\xi\} - T| < \varepsilon$$

Определение 8 (Кратный интеграл Римана). Число I, являющееся пределом интегральных сумм при $\Delta_t \to 0$ называется кратным интегралом Римана функции f по множеству Ω [$\overline{\Omega}$]. А функция f называется интегрируемой по риману по множеству Ω [$\overline{\Omega}$].

Обозначение:
$$\int\limits_{\Omega}f(x)d\omega=\int\limits_{\Omega}...\int\limits_{\Omega}f(x_1,\ldots,x_m)dx_1\ldots dx_m=\int\limits_{\Omega}...\int\limits_{\Omega}fdx_1\ldots dx_m$$

Теорема 1. Пусть $\Omega \subset \mathbb{E}^m f$ - измеримая область, а $\omega = f(x)$ опред. и инт. на $\overline{\Omega}$ тогда эта функция ограничена на $\overline{\Omega}$

Пример: $\omega = f(x) \equiv c; \ \forall x \in \overline{\Omega}, \ \Omega$ - измеримое множество.

$$\forall T = \{\Omega_k\}_{k=1}^n \ \forall \xi \ \ I = \{T, \xi\} = \sum_{k=1}^n C \cdot m(\Omega_k) = C \cdot m(\Omega)$$

Теорема 2. Пусть $\Omega \subset \mathbb{E}^m$ - измеримая область, $\omega = f(x)$ опр. и огр на $\overline{\Omega}$. $f(x) \equiv 0$ на $\overline{\Omega} \setminus \Gamma$, $m(\Gamma) = 0$, тогда f интегрируема на Ω и $\int_{\Omega} f d\omega = 0$

Доказательство.
$$\exists c>0: \forall x\in\overline{\Omega}\to |f(x)|\leq c$$
 $\forall \varepsilon>0 \exists G_{\varepsilon}=\cup_{j=1}^pQ_j: \Gamma\subset G_{\varepsilon}$ и $0\leq m\Gamma\leq m(G_{\varepsilon})<\frac{\varepsilon}{c}$ $T=\{\Omega_k\}_{k=1}^n,\widetilde{T}=T'\cup T''=\{\Omega_k'\}\cup\{\Omega_j''\};$ где $\Omega_k'=\Omega_k\backslash\overline{G_{\varepsilon}}$ и $\Omega_j''=\Omega_j\cap(int(Q_i)), i=\overline{1,p}, j=\overline{1,n}.$ И т.к. на Ω_k' функция $f(x)\equiv 0$, а Ω_j'' содержит точки из Γ получим: $\forall \xi\to |I\{\widetilde{T},\xi\}|=|\sum_j f(\xi_i)m(\Omega_j'')|\leq c\cdot m(G_{\varepsilon})< c\cdot \frac{\varepsilon}{c}=\varepsilon$

1.3. Суммы Дарбу. критерий интегрируемости.

Интеграл непрерывных функций

 $\Omega\subset\mathbb{E}^m$ измеримая область. $\omega=f(x)$ определена и ограниченна на $\overline{\Omega}$. $T=\{\Omega_k\}_{k=1}^n$ разбиение Ω . $m_k=\inf_{x\in\overline{\Omega}_k}f(x), M_k=\sup_{x\in\overline{\Omega}_k}f(x)$

$$S_*(T) = \sum_{k=1}^n m_k m(\Omega_k); \ S^*(T) = \sum_{k=1}^n M_k m(\Omega_k);$$
 - нижняя и верхняя суммы Дарбу

Теорема 3 (Критерий интегрируемости). Пусть $\omega \subset \mathbb{E}$ - измеримая область, а функция $\omega = f(x)$ опр. и огр. на $\overline{\Omega}$. Для того, чтобы f была интегрируема на Ω необходимо и достаточно чтобы $\forall \varepsilon > 0 \; \exists T : |S^*(T) - S_*(T)| < S|$

Теорема 4 (Интегрируемость функции, непрерывной на замкнутом измеримом мн-ве). Φ ункция $\omega = f(x)$ непр. на замыкании измеримой области Ω интегрируема на ней.