Работа 3.4.5

Петля гистерезиса (динамический метод)

Киркича Андрей, Б01-202, МФТИ

Экспериментальная установка

В работе используются: понижающий трансформатор, реостат, резистор, интегрирующая цепочка, амперметр и вольтметр (мультиметры), электронный осциллограф, делитель напряжения, переключатель, тороидальные образцы с двумя обмотками.

Схема установки представлена ниже. Напряжение сети через разделительный понижающий трансформатор Тр. подаётся на намагничивающую обмотку N_0 образца. Значение тока в обмотке измеряется амперметром A, с ним последовательно подключено сопротивление R_0 , напряжение с которого подаётся на вход X электронного осциллографа ЭО. Это напряжение пропорционально току в обмотке N_0 , а значит и напряжённости магнитного поля H в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm I\! I}$ на вход интегрирующей RC-цепочки подаётся напряжение $U_{\rm BX}$, пропорциональное производной $\frac{dB}{dt}$, а с выхода снимается напряжение $U_{\rm BMX}=U_{C}$, пропорциональное величине B, и подаётся на вход Y электронного осциллографа.

Обработка результатов измерений

Изучение петель гистерезиса

С помощью автотрансформатора были подобраны коэффициенты усиления осциллографа и ток питания в намагничивающей обмотке таким образом, чтобы предельная петля гистерезиса занимала большую часть экрана. Характеристики катушек разных материалов представлены в таблице ниже.

Материал	N_0	$N_{\scriptscriptstyle \mathrm{II}}$	S, cm ²	$2\pi R$, cm
Феррит	40	400	3,0	25,0
Пермаллой	20	300	0,8	13,3
Крем. железо	25	250	2,0	11,0

Для каждого образца мы получили передельные петли гистерезиса, по коэффициентам усиления K_x и K_y рассчитали масштабы, определили двойные амплитуды коэрцетивной

силы [2x(c)] и индукции насыщения [2y(s)]. Масштабы по осям X и Y рассчитаны по формулам:

$$H = IN_0/(2\pi R), \qquad B = R_{\rm M}C_{\rm M}U_{\rm BMX}/(SN_{\rm M}),$$

где $I = K_x/R_0$, $U_{\text{вых}} = K_y$. Результаты измерений и вычислений представлены в таблице ниже.

Материал	[2x(c)], дел	[2y(s)], дел	$K_x, \frac{{}_{ m MB}}{{}_{ m дел}}$	$K_y, \frac{{}_{ m MB}}{{}_{ m Дел}}$	$I_{ m 9}$ ф, мА	$H, \frac{A \cdot \mathrm{M}^{-1}}{\mathrm{дел}}$	$B, \frac{\mathrm{T}_{\mathrm{J}}}{\mathrm{д}\mathrm{e}_{\mathrm{J}}}$
Феррит	1,0	4,8	20	20	215	14,5	0,07
Пермаллой	3,6	3,6	20	50	165	13,7	0,88
Крем. железо	1,2	4,4	100	50	238	103,3	0,40

Материал	H_c , A/M	B_s , Тл	$H_c^{ m Teop},{ m A/m}$	B_s^{reop} , Тл
Феррит	$7,3 \pm 0,8$	$0,16 \pm 0,01$	20	0,27
Пермаллой	$24,6 \pm 2,2$	$1,58 \pm 0,13$	11–40	1,51
Крем. железо	$62,0 \pm 7,3$	$0,88 \pm 0,06$	50-100	1,21

Зная масштабы по осям, можно определить значения коэрцетивной силы H_c и индукции насыщения B_s . Сравни-

вая полученные данные с табличными можно утверждать, что они совпадают, по крайней мере, по порядку величины. Ниже приведены фотографии предельных петель гистерезиса.

Рис. 1: Предельные петли гистерезиса феррита, пермаллоя и кремнистого железа (слева направо)

Проверка калибровки осциллографа

Была проверена калибровка осциллографа по оси X. Для этого мы отключили намагничивающую обмотку N_0 от цепи, соединив оба провода, идущих к обмотке, на одной ее клемме. С помощью автотрансформатора был подобран такой ток через R_0 , при котором горизонтальная прямая занимала большую часть экрана. При $K_x = 0, 1~\mathrm{B/дел}$ была рассчиатана чувствительность $m_x = 0,097~\mathrm{B/дел}$, аналогичные действия были проведены при $K_x = 0,02~\mathrm{B/дел}$. Получили $m_x = 0,019~\mathrm{B/дел}$.

Так как $m_x \approx K_x$, осциллограф откалиброван по оси X корректно.

Также нужно было проверить калибровку по оси Y. Для этого мы соединили вход Y с клеммами делителя "1:100 - земля". Не меняя рабочего коэффициента $K_y=0,05~\mathrm{B/дел}$, подбрали с помощью трансформатора напряжение, при котором вертикальная прямая занимала большую часть экрана. Подключив вольтметр V к тем же клеммам делителя и используя измеренное $U_{\mathrm{эф}}$, рассчитали чувствительность $m_y=0,048~\mathrm{B/дел}$, те же действия повторили при $K_y=0,02~\mathrm{B/дел}$. Получили $m_y=0,017~\mathrm{B/дел}$.

Так как $m_y \approx K_y$, осциллограф откалиброван по оси Y корректно.

Заключение

В ходе выполнения данной лабораторной работы были исследованы петли гистерезиса для трех различных образцов и получены характерные величины для каждого образца, которые сошлись с табличными значениями по порядку величины. Кроме того, была проверена применимость используемого метода в условиях нашего эксперимента. В итоге было установлено, что условия применимости выполняются и метод является неплохим способом определения характерных параметров для ферромагнитных материалов.

Список литературы

- 1. Сивухин Д.В. Общей курс физики. Том 3. Электричество и магнетизм, 2004
- 2. Кириченко Н.А. Электричество и магнетизм, 2011
- 3. *Максимычев А.В.*, *Никулин М.Г.* Лабораторный практикум по общей физике. Том 2. Электричество и магнетизм.