

Quick recap on what we learned so far

- Fully Neural Network
- Convolutional Neural Network
- An NN architecture
 - How many layers?
 - How many neurons? and
 - How the neurons are connected?
- The parameters values (weights!)
- Components
 - Filters:
 - Convolutional Filter
 - Pooling Filters
 - Activation Functions
 - Sigmoid
 - ReLu etc.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, *86*(11), 2278-2324.

Quick recap on what we learned so far

- How many layers should we use?
 - Theoretically:
 - A NN with one Hidden layer is a universal function approximator (*Cybenko, 1989*)
 - Empirically:
 - Before year 2006: There should be at least 2 6 hidden layers.
 - After year 2006 : There should be at least 5+ hidden layers.
- How the decision boundary works?
 - 0 Hidden Layer
 - 1 Hidden Layer
 - 2 Hidden Layer

Quick recap on what we learned so far

Learning from Network

- The two Components:
 - Architecture
 - Parameters (W_1, W_2)
- Learning Steps:
 - 1. Initialize the **weights**, W_n
 - 2. Calculate the *forward propagation*
 - 3. Calculate the loss function
 - 4. Perform *backpropagation*
 - 5. Update the parameters
 - 6. Repeat until convergence!

Step 1: Weight Initialization

- Q1. How to initialize the weights, W_n ?
 - Randomly initialize the parameters to small values (e.g., normally distributed round zero; \mathcal{N} (0, 0.1)).
- Q2. What will happen if we initialize the weights as zero?
 - The first layer will always be the same since, $W^{[1]}x^i + b^{[1]} = 0^{3\times 1}x^i + 0^{3\times 1}$ where, $0^{n\times m}$ denotes a matrix of size $n\times m$ filled with zeros.
 - Again, the output of the network has a sigmoid function, thus no matter what input we provide we will get an output probability of 0.5 i.e. $\sigma(0) = 0.5$.

Step 1: Weight Initialization

- Q3. What if we initialized all parameters to be the same non-zero value?
 - Each element of the activation vector will be the same (because $W^{[1]}$ contains all the same values). This behavior will occur at all layers of the neural network. As a result, when we compute the gradient, all neurons in a layer will be equally responsible for anything contributed to the final loss
 - Summary: All neurons will learn the same thing.
- Q4. Is there a better approach than randomly initializing?
 - Yes, there is one! It's called Xavier/He initialization.

$$w^{[\ell]} \sim \mathcal{N}\left(0, \sqrt{\frac{2}{n^{[\ell]} + n^{[\ell-1]}}}\right)$$

Step 2: Forward Propagation

Input Layer Hidden Layer Output Layer Hidden Layer Calculation (with activation), $a_i = \sigma(W_1^T X + b_1)$

Step 2: Forward Propagation

Step 3: Loss Function

• Loss function is defined as – $\mathcal{L}(y, \hat{y}, X) = \frac{1}{2} (y - \hat{y})^2$ Predicted outcome

• In terms of log-loss, the loss function is defined as –

$$\mathcal{L}(y, \hat{y}, X) = -[(1-y)\log(1-\hat{y}) + y\log\hat{y}]$$

Step 4:Back Propagation

• The partial derivative of \mathcal{L} can be decomposed as a sum of partial derivatives of individual losses:

$$\frac{\partial \mathcal{L}}{\partial W^l} = \sum_{k=1}^n \frac{\partial \mathcal{L}(y, \hat{y})}{\partial W^l}$$

- Say, we have the network parameters, $W^1, W^2, W^3, b^1, b^2, b^3$.
- We will first calculate the gradient with respect to W^3 as its due to influence of W^1 on output is complex than that of W^3 .

Step 4: Updating the Parameters (Back Propagation)

• Thus we have,

$$\frac{\partial \mathcal{L}}{\partial W^{3}} = -\frac{\partial}{\partial W^{3}} \left((1 - y) \log(1 - \hat{y}) + y \log \hat{y} \right)
= -(1 - y) \frac{\partial}{\partial W^{3}} \log\left(1 - \sigma(1 - W^{3}a^{2} + b^{3}) \right) - y \frac{\partial}{\partial W^{3}} \log\left(\sigma(W^{3}a^{2} + b^{3}) \right)
= (1 - y)\sigma(W^{3}a^{2} + b^{3})a^{2^{T}} - y \left(1 - \sigma(W^{3}a^{2} + b^{3}) \right)a^{2^{T}}
= (1 - y) a^{3}a^{2^{T}} - y(1 - a^{3})a^{2^{T}}
= (a^{3} - y)a^{2^{T}}$$

• To compute the gradient with respect to W^2 :

$$\frac{\partial \mathcal{L}}{\partial W^{2}} = \frac{\partial \mathcal{L}}{\partial a^{3}} \frac{\partial a^{3}}{\partial z^{3}} \frac{\partial z^{3}}{\partial a^{2}} \frac{\partial a^{2}}{\partial z^{2}} \frac{\partial z^{2}}{\partial W^{2}}$$

$$a^{3} - y \quad W^{3} \quad \sigma'(z^{2}) \quad a^{1}$$
Note: $\sigma' = \sigma(1 - \sigma)$

Step 4.1: Regularization (if applicable)

- Similar to what we covered in Lecture 13. (Remember for linear regression)
- Is used to reduce the overfitting of neural networks.

Hypothesis:
$$h \ \beta \ (x \) = \ \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

Cost Function: $J \ (\beta) = \frac{1}{2n} \Biggl[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \cdots - \beta_p x_p^{(i)})^2 + \lambda \sum_{j=1}^p \beta_{j=1}^2 \Biggr]$

Parameters: $\beta_0, \beta_1, \dots, \beta_p$

min $J \ (\beta)$

Gradient descent:

Repeat until convergence $\{ \beta_0 \coloneqq \beta_0 + \alpha \frac{1}{n} \Biggl[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \cdots - \beta_p x_p^{(i)}) \Biggr]$
 $\beta_1 \coloneqq \beta_1 + \alpha \frac{1}{n} \Biggl[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \cdots - \beta_p x_p^{(i)}) x_1^{(i)} - \lambda \beta_1 \Biggr]$

...

 $\beta_p \coloneqq \beta_p + \alpha \frac{1}{n} \Biggl[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \cdots - \beta_p x_p^{(i)}) x_p^{(i)} - \lambda \beta_p \Biggr]$

NOTE:

$$\beta_p := \beta_p \left(1 - \alpha \frac{\lambda}{n} \right) + \alpha \frac{1}{n} \left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)}) x_p^{(i)} \right]$$

Step 5: Updating the Parameters

• Optimize/update the parameters by using gradient descent optimization. For a given number of layer, l:

$$W^l = W^l - \alpha \frac{\partial \mathcal{L}}{\partial W^l}$$

$$b^l = b^l - \alpha \frac{\partial \mathcal{L}}{\partial b^l}$$

- This computation is non-trivial at hidden layers (l < L (Output Layer)) but has complex chain of influence via activation values at subsequent layers.
- This problem is already addressed by backpropagation.

Example: Backpropagation

$$X_1$$
 X_2
 X_2

$$f = X_1 - X_2$$

$$\frac{\partial f}{\partial X_1} = 1$$

$$\frac{\partial f}{\partial X_2} = 1$$

$$f = X_1 - X_2 = X_1 - (X_3 + X_4)$$

$$\frac{\partial X_2}{\partial X_3} = 1 \qquad \frac{\partial X_2}{\partial X_4} = 1$$

$$\frac{\partial f}{\partial X_3} = ?$$

$$\frac{\partial f}{\partial X_3} = \frac{\partial f}{\partial X_2} \frac{\partial X_2}{\partial X_3} = -1 \times 1 = -1$$

Example: Backpropagation

Example: Learning a Neural Network

Learning the Convolution filter by backpropagation:

Remember the convolution step:

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

Input Filter Output

Learning the Convolution filter by backpropagation:

(For detailed derivation check blackboard)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Learning the Convolution filter by backpropagation:

(For detailed derivation check blackboard)

Sigmoid $\sigma(x) = \frac{1}{1 + e^{-x}}$

tanh (x)

ReLU $\max(0, x)$

- Converted range: [0 1]

Leaky ReLU $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

- Saturated activation causes gradients to vanish (over the chain of multiplication)
- Outputs are not zero centered
- Calculating "exponential" is computationally expensive.

 $\begin{array}{l} \textbf{Leaky ReLU} \\ \max(0.1x,x) \end{array}$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

tanh(x)

- Converted range: [-1 1]
- Zero Centered

 Saturated activation causes gradients to vanish (over the chain of multiplication)

$$f(x) = \max(0, x)$$

- Doesn't Saturate (+ve Region only)
- Converges faster than the previous two

Maxout $\max(w_1^T x + b_1, w_2^T x + b_2)$

- Not zero centered
- Neurons with negative values will never activate!

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU $\max(0, x)$

$$f(x) = \max(0.01x, x)$$

- Doesn't Saturate
- Computationally efficient
- Converges faster than the previous two

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

- Not zero centered
- Neurons with negative values will never activate!

Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$ Leaky ReLU $\max(0.1x,x)$ tanh $\tanh(x)$ Maxout $\max(w_1^Tx + b_1, w_2^Tx + b_2)$ ELU $\begin{cases} x & x \geq 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

$$f(x)$$

= max($w_1^T x + b_1, w_2^T x + b_2$)

- Doesn't saturate the activation.
- Generalizes ReLU and Leaky ReLU.
- Increased number of parameters!

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

-10

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU max(0.1x, x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

 Calculating "exponential" is computationally expensive

- Everything ReLU
- Closer to Zero mean
- Adds some robustness to noise.

Few more things

- Regularization
 - Normalization / Batch Normalization
 - Dropout
- Optimizers
 - SGD
 - SGD + Momentum
 - AdaGrad
 - RMSProp
 - Adam

- Hyper-parameter optimization
 - Grid Search
 - Bayesian Optimization
 - DoE
- Transfer Learning