Trabajo Práctico No. 1: Vectores y aplicaciones.

Vectores

- 1. a) Dados los puntos A(1,3) y B(-1,2). Halle las componentes de los vectores \overrightarrow{AB} y \overrightarrow{BA} .
 - b) Halle las coordenadas del origen P del vector $\mathbf{u} = (-3, 2)$, si su extremo coincide con Q(0, 8).
 - c) Halle las coordenadas del extremo B del vector $\mathbf{u} = (-3, 2)$, si su origen coincide con A(3, 5).
- 2. a) Dado $\mathbf{a} = (x, -3)$. Halle, en caso de ser posible, el/los valor/es de $x \in \mathbb{R}$ de manera tal que $\|\mathbf{a}\| = 4$.
 - b) ¿Un vector queda determinado por su módulo? Es decir, si dos vectores tienen el mismo módulo, ¿son el mismo vector?
- 3. Dados los vectores $\mathbf{a}=(3,-1), \mathbf{b}=(-2,-2)$ y $\mathbf{c}=-3\mathbf{i}-\mathbf{j}$ halle, analítica y geométricamente, los vectores:
 - a) $\mathbf{a} \mathbf{b}$
 - b) a + 2b
 - $c) \frac{1}{2}\mathbf{a} \mathbf{b}$
- 4. a) Dado $\mathbf{v} = 3\mathbf{i} + \mathbf{j}$ halle un vector \mathbf{b} de módulo 3, con igual dirección y sentido contrario a \mathbf{v} .
 - b) Dado $\mathbf{v} = 3\mathbf{i} + \mathbf{j}$ halle un vector unitario \mathbf{c} paralelo a \mathbf{v} . Es único?
- 5. Dados los puntos A(1,3), B(2,-5), C(1,0) y los vectores $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{AC}$ y $\mathbf{w} = \overrightarrow{BC}$, calcule:
 - $a) \langle \mathbf{u}, \mathbf{v} \rangle$
 - b) $\langle 2\mathbf{u} + 3\mathbf{v}, -\mathbf{w} \rangle$
 - c) $\|\mathbf{u} \mathbf{w}\|^2$
 - $d) \langle \mathbf{w}, \mathbf{v} \rangle \mathbf{w}$
 - $e) \frac{\langle \mathbf{u}, \mathbf{w} \rangle}{\|\mathbf{w}\|}$
 - $f) \operatorname{proy}_{\mathbf{v}} \mathbf{u}$
 - g) proy $\operatorname{esc}_{\mathbf{v}} \mathbf{u}$
- 6. Usando los puntos del ejercicio anterior, halle el perímetro y los ángulos interiores del triángulo con vértices A, B y C.

- 7. Para los vectores \mathbf{u} y \mathbf{v} definidos en el punto 5, calcule el módulo y el ángulo con cada uno de los ejes cartesianos.
- 8. Dados los vectores a y b en cada inciso, determine si son paralelos u ortogonales.
 - a) $\mathbf{a} = (2, -4) \text{ y } \mathbf{b} = (-1, 2)$
 - b) $\mathbf{a} = (4,2) \text{ y } \mathbf{b} = \left(-\frac{1}{2},1\right)$
- 9. Dados los vectores **a** y **b**:
 - a) $\mathbf{a} = (2, -4 + t) \text{ y } \mathbf{b} = (-1, 2t)$
 - b) $\mathbf{a} = (4, 2t^2) \text{ y } \mathbf{b} = \left(-\frac{1}{2}, 1\right)$

Halle, en caso de ser posible, los valores de t para que los vectores sean paralelos y/o perpendiculares.

- 10. a) Halle, en caso de ser posible, las componentes de un vector \mathbf{u} sabiendo que es perpendicular al vector (-2,3) y que $\langle \mathbf{u}; \mathbf{i} 3\mathbf{j} \rangle = 5$.
 - b) Halle, en caso de ser posible, las componentes de un versor sabiendo que es perpendicular al vector (-2,3).
- 11. a) Halle $\langle 3\mathbf{u} + 2\mathbf{x}, \mathbf{v} \rangle$ sabiendo que $\|\mathbf{u}\| = 3$, proy $\operatorname{esc}_{\mathbf{u}} \mathbf{v} = 4$ y que \mathbf{x} es ortogonal a \mathbf{v} .
 - b) Encuentre el módulo del vector **w** sabiendo que $\mathbf{c}=(2,3)$ es perpendicular al vector $\mathbf{u}, \langle \mathbf{u}+2\mathbf{w},\mathbf{c}\rangle = 2\sqrt{13}$ y el ángulo que forma **w** con **c** es $\frac{\pi}{3}$.
 - c) ¿Qué condición deben satisfacer los vectores \mathbf{u} y \mathbf{v} para que $\mathbf{u} + \mathbf{v}$ sea ortogonal a $\mathbf{u} \mathbf{v}$? Interprete geométricamente.

Aplicaciones

12. (Ejercicio opcional) Un barco navega hacia el norte con una velocidad de 12 nudos. Sabiendo que la velocidad de la marea es de 5 nudos y dirigida hacia el oeste, calcule el módulo, dirección y sentido del vector resultante del barco. Represente gráficamente.

Figura 1: Ejercicio 13

- 13. (Ejercicio opcional) Un avión viaja a 200 km/h con velocidad $\mathbf{v}_1 \propto (\cos 120^\circ, \sin 120^\circ)$. Al llegar a un cierto punto se encuentra con un viento de 70 km/h en dirección NE, es decir, con velocidad $\mathbf{v}_2 \propto (\cos 45^\circ, \sin 45^\circ)$. Ver Figura 1.
 - a) Encuentre el vector velocidad resultante \mathbf{v} . Grafique \mathbf{v} en un nuevo sistema a partir de la suma geométrica de los vectores \mathbf{v}_1 y \mathbf{v}_2 .
 - b) Calcule proy_{\mathbf{v}_2} \mathbf{v}_1 .

Figura 2: Ejercicio 14

14. (Ejercicio opcional) Resolver:

- a) La fuerza **F** tiene una magnitud de 500 N. Exprese la fuerza como un vector en forma de componentes y en términos de los versores **i** y **j**. Ver gráfico en la Figura 2a.
- b) La magnitud de la fuerza **F** es de 400 lb. Exprese **F** como un vector en términos de los vectores unitarios **i** y **j**. Ver gráfico en la Figura 2b.
- c) La pendiente de la fuerza \mathbf{F} se muestra en la figura. Exprese \mathbf{F} como un vector en términos de los versores \mathbf{i} y \mathbf{j} . Ver gráfico en la Figura 2c.
- d) La recta de acción de la fuerza **F** se muestra en la figura, pasa por los puntos A y B. Determine las componentes del vector **F**. Ver gráfico en la Figura 2d.

Rectas

- 15. Halle alguna expresión paramétrica y vectorial de la recta:
 - a) que pasa por $P_0(1,2)$ y es paralela al vector $\mathbf{u}=(-1,4)$. Grafique.
 - b) que pasa por $P_0(1,2)$ y $P_1(3,5)$.
 - c) que representa el eje Y.
 - d) que pasa por el origen de coordenadas y es perpendicular al vector $\mathbf{u} = (-2, 3)$.
 - e) Perpendicular a la recta L: -5x + 3y = 1 que pasa por el punto P(0,2). Halle su ecuación implícita y segmentaria. Grafique las dos rectas.
- 16. Considere las rectas $L_1: 2x y = 2$, $L_2: x 3y = 0$, $L_3: \begin{cases} x = -1 + 2t \\ y = -1 \end{cases}$, $t \in \mathbb{R}$ y $L_4: \begin{cases} x = 3t \\ y = 6t \end{cases}$, $t \in \mathbb{R}$.
 - a) Halle analíticamente: $L_1 \cap L_3$, $L_2 \cap L_4$. En caso de intersectarse, calcular el ángulo determinado por las rectas.
 - b) Dar la expresión segmentaria de L_1 y una expresión simétrica de L_2 .
- 17. Sea L: $\begin{cases} x=1+2t \\ y=2+kt \end{cases}$, $t\in\mathbb{R}$. Halle, en caso de ser posible, el/los valor/es de $k\in\mathbb{R}$ de modo que:
 - a) El punto P(2,3) pertenezca a L.
 - b) L sea paralela a la recta 3x + 5y = 2.
 - c) L sea perpendicular a la recta 3x + 5y = 2.
 - d) L sea perpendicular al eje X.