Si tenemos un microprocesador que es capaz de realizar las siguientes operaciones:

Tipo Operación	Media de Instrucciones por
	Programa
Enteros	8 millones por programa
Coma Flotante	35 millones por programa
Memoria	45 millones por programa
Salto	17 millones por programa

Tabla 1. Relación entre el tipo de instrucción y la media de esas operaciones en cada programa.

Y sabemos que la arquitectura necesita de los siguientes ciclos para hacer cada una de esas instrucciones:

Tipo Operación	Ciclos que Tarda en
	Completarse
Enteros	4 CPI
Coma Flotante	15 CPI
Memoria	6 CPI
Salto	7 CPI

Tabla 2. Relación entre el tipo de instrucción y los ciclos que consume en su ejecución.

Ahora, diferentes grupos de investigación han conseguido las siguientes mejoras en la ejecución de las diferentes operaciones, y nosotros tenemos que decidir con que tecnología dotamos a nuestro procesador ya que tenemos presupuesto para hacer solo una de estas mejoras.

Operación	Incremento en la Velocidad
Enteros	3.0
Coma Flotante	2.0
Memoria	3.0
Salto	5.0

Tabla 3. Relación entre el tipo de instrucción y la mejora conseguida por grupos de investigación.

SOLUCION:

Lo primero es saber el porcentaje de ejecución de cada una de las órdenes en el procesador:

Enteros: 8*100/(8+35+45+17) = 7.62 %Coma flotante: 35*100/(8+35+45+17) = 33.3 %Memoria: 45*100/(8+35+45+17) = 42.8 % Salto: 17 *100/(8+35+45+17) = 16.2 %

Tiempo de ejecución de cada tipo de orden:

Enteros: 0.0762 * 4 CPI * Tciclo Coma flotante: 0.333 * 15 CPI * Tciclo Memoria: 0.428 * 6 CPI * Tciclo Saltos: 0.162 * 7 CPI * Tciclo

Caso A. Mejora de las operaciones con enteros:

P = 3.0

F=Tiempo sin mejora / Tiempo total

$$F = (0.333*15 + 0.428*6 + 0.162*7) / (0.0762*4 + 0.333*15 + 0.428*6 + 0.162*7) \\ F = 0.97$$

G=P/(1+F(P-1))

G=3/(1+0.97(3-1)) = 1.02 => 1 % de mejora

Caso B. Mejora de las operaciones en coma flotante:

P=2

F=Tiempo sin mejora / Tiempo total

$$F = ((0.0762*4 + 0.428*6 + 0.162*7) / (0.0762*4 + 0.333*15 + 0.428*6 + 0.162*7) \\ F = 0.44$$

G=P/(1+F(P-1))

G=2/(1+0.44(2-1)) = 1.39 => 39 % de mejora

Caso C. Mejora de las operaciones con memoria:

P=3

F=Tiempo sin mejora / Tiempo total

$$F = \left(\left(0.0762 * 4 + 0.333 * 15 + 0.162 * 7 \right) / \left(0.0762 * 4 + 0.333 * 15 + 0.428 * 6 + 0.162 * 7 \right) \\ F = 0.715$$

$$G=P/(1+F(P-1))$$

$$G=3/(1+0.715(3-1)) = 1.23 => 23 \%$$
 de mejora

Caso D. Mejora de las operaciones con saltos:

P=5

F=Tiempo sin mejora / Tiempo total

$$F = ((0.0762 * 4 + 0.333 * 15 + 0.428 * 6) / (0.0762 * 4 + 0.333 * 15 + 0.428 * 6 + 0.162 * 7) \\ F = 0.87$$

$$G=P/(1+F(P-1))$$

$$G=5 / (1+0.864(5-1)) = 1.11 => 11 \%$$
 de mejora

Nos quedamos con la tecnología que mejora el procesador en las operaciones en coma flotante.