Data wykonania ćwiczenia: 26 października 2024r

Laboratorium 2 Charakteryzacja czujników ciśnienia

1 Spis przyrządów

Do wykonania ćwiczenia wykorzystano:

- Przetwornik ciśnienia Pt100
- Przetwornik ciśnienia Pt101
- Multimetr cyfrowy Sigilent SDM 3055
- Cylinder pomiarowy
- Kolumna do pomiaru ciśnienia wody wywieranej na przetworniki

2 Przebieg i cele doświadczenia

Celem ćwiczenia jest zapoznianie się z budową oraz zasadą działania przetworników ciśnienia z czujnikiem piezorezystancyjnym oraz wyznaczenie gęstości wody na podstawie pomiaru ciśnienia hydrostatycznego.

Pominięto pomiar dla objętości 1600 [ml] gdyż ciecz nie mieściła się w kolumnie pomiarowej. Poniżej przedstawiono schemat układu pomiarowego jaki zastosowano w ćwiczeniu:

3 Obliczenia i analiza wyników

Poniżej umieszczone zostają parametry sali w której przeprowadzano doświdczenie:

$$p = 1009.9[hPa]$$

 $T = 25.24[^{\circ}C]$
 $RH = 51.8[\%]$

Ciśnienie w oparciu o sygnał wyjściowy przetwornika ciśnienia wyliczamy z poniższego wzoru:

$$p = \frac{p_{max} - p_{min}}{U_{max} - U_{min}} \cdot U_{out} + p_{min} \tag{1}$$

Gdzie:

p - ciśnienie mierzone,

 p_{max}, p_{min} - wartość maksymalna i minimalna zakresu pomiaru ciśnienia dla przetwornika, U_{max}, U_{min} - wartość maksymalna i minimalna zakresu napięcia wyjściowego dla przetwornika, U_{out} - napięcie wyjściowe przetwornika,

Przykładowo dla czujnika Pt100 dla ciśnienia atmosferycznego:

$$p = \frac{1.15[bar] - 0.95[bar]}{10[V]} \cdot 2.97[V] + 0.95[bar] = 1.0094[bar] = 1009.4[hPa]$$
 (2)

Dla czujnika Pt101 dla ciśnienia atmosferycznego:

$$p = \frac{0.1[bar]}{10[V]} \cdot 44.9[mV] = 0.000449[bar] = 0.449[hPa]$$
(3)

Wysokość słupa wody wyliczono przekształcając wzór na objętość walca:

$$V = P_p \cdot h = \pi \cdot r^2 \cdot h \tag{4}$$

Gdzie:

V - objętość walca (w naszym przypadku objętość dolewanej wody),

h - wysokość walca (w naszym przypadku słupa cieczy),

 P_p - pole podstawy,

r - promień walca,

Przekształcając:

$$V = \pi \cdot r^2 \cdot h \quad / \pi \cdot r^2 \tag{5}$$

$$h = \frac{V}{\pi \cdot r^2} \tag{6}$$

Dla naszego walca wysokość słupa cieczy przy dolaniu 100[ml] wody wynosi:

$$h = \frac{100[ml]}{\pi \cdot (\frac{45[mm]}{2})^2} = \tag{7}$$

$$= \frac{100[cm^3]}{15.904312[cm^2]} = 6.2876\dots[cm]$$
 (8)

Na podstawie danych uzyskanych przy pomocy powyższych wzorów wyznaczono wykresy zależności p=f(h) dla obu przetworników:

Gęstość wody wyznaczamy z równiania:

$$a = \rho g \tag{9}$$

Gdzie:

a - współczynnik kierunkowy zależności p=f(h),

 ρ - gęstość wody,

g - przyśpieszenie ziemskie (przyjmujemy 9.81 $[\frac{m}{s^2}]),$

Gęstość wody będzie przedstawiona wzorem:

$$\rho = \frac{a}{g} \tag{10}$$

Dla czujnika Pt100:

$$\rho = \frac{97.62011 \left[\frac{Pa}{cm}\right]}{9.81 \left[\frac{m}{s^2}\right]} = 9.951082 \left[\frac{kg}{cm \cdot m^2}\right] = \tag{11}$$

$$=995.1082\left[\frac{kg}{m^3}\right] \tag{12}$$

Dla czujnika Pt101:

$$\rho = 999.527 \left[\frac{kg}{m^3} \right] \tag{13}$$

4 Wnioski

Dla wody w temperaturze $25[^{\circ}C]$ gęstość wynosi $997[\frac{kg}{m^3}]$. Możemy więc stwierdzić że wartości wyznaczone w doświdczeniu są poprawne. Lekkie odbieganie wartości obliczonych od wartości tablicowej może wynikać z niedokładności odczytu objętości wody wlewanej do cylindra oraz z niepewności wynikających z parametrów doświadczenia.

References

- [1] https://en.wikipedia.org/wiki/Pressure
- [2] https://en.wikipedia.org/wiki/MEMS
- $[3] \ https://pubchem.ncbi.nlm.nih.gov/substance/329798917$

V[ml]	h[cm]	$p_{pt100}[\mathrm{bar}]$	$p_{pt100}[\mathrm{Pa}]$	$p_{pt101}[\mathrm{bar}]$	$p_{pt101}[\mathrm{Pa}]$
atm	0	1.0094	100940	0.000449	44.9
0	0	1.01258	101258	0.00364	364
100	6.2876	1.018682	101868.2	0.009743	974.3
200	12.5752	1.02475	102475	0.01588	1588
300	18.8628	1.030914	103091.4	0.022072	2207.2
400	25.1504	1.037196	103719.6	0.028357	2835.7
500	31.438	1.043444	104344.4	0.034535	3453.5
600	37.7256	1.049658	104965.8	0.04075	4075
700	44.0132	1.055742	105574.2	0.046951	4695.1
800	50.3008	1.061862	106186.2	0.053119	5311.9
900	56.5884	1.067932	106793.2	0.059251	5925.1
1000	62.876	1.074086	107408.6	0.06539	6539
1100	69.1636	1.08011	108011	0.071506	7150.6
1200	75.4512	1.08623	108623	0.077642	7764.2
1300	81.7388	1.09229	109229	0.083751	8375.1
1400	88.0264	1.098436	109843.6	0.089893	8989.3
1500	94.314	1.104692	110469.2	0.09602	9602