(Due: Dec.28,2021)

1. (10')

考虑单位反馈系统, 其开环传递函数如下,

$$G(s) = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$

当 $r(t) = 2\sin t$ 时,系统的稳态输出

$$c_{ss}(t) = 2\sin\left(t - 45^{\circ}\right)$$

试确定系统参数 ω_n , ζ 。

2. (10')

绘制下列传递函数的对数幅频渐近特性曲线

(1)
$$G(s) = \frac{2}{(2s+1)(8s+1)};$$

(2)
$$G(s) = \frac{200}{s^2(s+1)(10s+1)};$$

(3)
$$G(s) = \frac{8\left(\frac{s}{0.1}+1\right)}{s(s^2+s+1)\left(\frac{s}{2}+1\right)};$$

(4)
$$G(s) = \frac{10\left(\frac{s^2}{400} + \frac{s}{10} + 1\right)}{s(s+1)\left(\frac{s}{0.1} + 1\right)}$$
.

3. (10')

一阶环节的传递函数为

$$G(s) = \frac{T_1 s + 1}{T_2 s - 1}$$
 $1 > T_1 > T_2 > 0$

试绘制该环节的 Nyquist 图以及 Bode 图。

4. (10')

设某系统的开环传递函数为

$$G(s)H(s) = \frac{Ke^{-0.1s}}{s(0.1s+1)(s+1)}$$

试通过该系统的频率响应确定剪切频率 $\omega_c = 5 \, rad/s$ 时的开环增益 K。

5. (10')

若系统的单位阶跃响应为

$$y(t) = 1 - 1.8e^{-4t} + 0.8e^{-9t}$$
 $t \ge 0$

试求取该系统的频率响应。

6. (10')

已知最小相位系统 Bode 图的幅频特性如题 6 图所示。试求取该系统的开环传递函数。

题 6 图

7. (10')

已知最小相位系统 Bode 图的幅频特性如题 7 图所示。试求取该系统的开环传递函数。

题 7 图

8. (10')

已知最小相位系统 Bode 图的幅频特性如题 8 图所示。试求取该系统的开环传递函数。

题8图

9. (10')

已知最小相位系统 Bode 图的幅频特性如题 9 图所示。试求取该系统的开环传递函数。

题 9 图

10. (10')

已知最小相位系统 Bode 图的幅频特性如题 10 图所示。试求取该系统的开环传递函数。

题 10 图