Linear Algebra and its Applications HW#9

Note for HW#8 Problem 2:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \\ 1 & -1 & 0 \end{bmatrix}.$$

- (c) The pseudoinverse of A is defined as A^+ such that $A^+Ax=x_r$
- (e) Since A is not full-rank, the right inverse of A. does not exit.
- 1. Apply the Gram-Schmidt process to $a=[1, 1, 0]^T$, $b=[1, 0, 1]^T$ and $c=[0, 1, 1]^T$ and write the result in the form A=QR.
- 2. Find the best parabola: $y = C + Dt + Et^2$ fit to the following measurements:

$$y = 2$$
 at $t = -1$,
 $y = 0$ at $t = 0$,
 $y = 3$ at $t = 1$,
 $y = 5$ at $t = 2$.

Find your approximate solution by QR factorization and plot a figure in the Excel to illustrate the observations with best-fit parabola using Excel.

- 3. Find the Fourier coefficients a_0 , a_1 , b_1 , a_2 , b_2 of the step function y(x) which equals -1 on the interval $0 \le x \le 3\pi/2$ and 4 on the remaining interval $3\pi/2 \le x \le 2\pi$. Plot y(x) and the Fourier series on the same figure (you may use Excel to create the figure).
- 4. Find the closest degree-2 polynomial function $C + Dx + Ex^2$ to fit $f(x) = \cos x$ over $0 \le x \le 2\pi$ by:
 - (1) solving the normal equation
 - (2) minimizing the least square and
 - (3) the Legendre polynomials.

Plot the two functions on the same figure (you may use Excel to create the figure). Note that:

$$\int x \cos x dx = \cos x + x \sin x + C;$$

$$\int x^n \cos x dx = x^n \sin x + nx^{n-1} \cos x - n(n-1) \int x^{n-2} \cos x dx;$$

$$\int x \sin x dx = \sin x - x \cos x + C;$$

$$\int x^n \sin x dx = -x^n \cos x + nx^{n-1} \sin x - n(n-1) \int x^{n-2} \sin x dx.$$