

Europäisches Patentamt

European Patent Office

Office eur péen des brevets

(11) EP 0 784 059 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 16.07.1997 Bulletin 1997/29

(21) Application number: 95932194.4

(22) Date of filing: 20.09.1995

(51) Int. Cl.⁶: **C07K 14/295**, C12N 15/31, C12N 1/21, C12P 21/02, C12P 21/08, C12Q 1/68, G01N 33/569

(86) International application number: PCT/JP95/01896

(87) International publication number:WO 96/09320 (28.03.1996 Gazette 1996/14)

-(84)-Designated-Contracting-States: BE CH DE ES FR GB IT LI SE

(30) Priority: 20.09.1994 JP 224711/94

28.04.1995 JP 106006/95 28.04.1995 JP 106008/95 28.04.1995 JP 106009/95 28.04.1995 JP 106010/95 28.04.1995 JP 106011/95

(71) Applicant: HITACHI CHEMICAL CO., LTD. Tokyo 163-04 (JP)

(72) inventors:

• IZUTSU, Hiroshi Ibaraki 300-32 (JP)

OBARA, Kazuhiko
 Tsukuba-shi Ibaraki 300-32 (JP)

 MATSUMOTO, Akira Okayama 701-01 (JP)

(74) Representative: VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

(54) ANTIGENIC POLYPEPTIDE OF CHLAMYDIA PNEUMONIAE

(57)An antigenic polypeptide of Chlamydia pneumoniae comprising the polypeptide A containing the sequence of at least five consecutive amino acid residues in the polypeptide of SEQ ID NO: 1; a DNA coding for the polypeptide; a recombinant vector containing the DNA; a transformant containing the vector; a process for producing an anti-C. pneumoniae antibody by using the antigenic polypeptide as the antigen; methods for detecting and assaying the anti-C. pneumoniae antibody; the use of the antigenic polypeptide; a fused protein consisting of a dihydrofoliate reductase and an antigenic polypeptide C. pneumoniae, wherein the polypeptide of SEQ ID NO: 14 has bound to the polypeptide A containing the sequence of at least five consecutive amino acid residues in the polypeptide of SEQ ID NO: 1; a DNA coding for the fused protein; a recombinant vector containing the DNA; a transformant containing the vector; a process for producing an anti-C. pneumoniae antibody by using the fused protein as the antigen; methods for detecting and assaying the anti-C. pneumoniae antibody by using the fused protein as the antigen; the use of the fused protein; a pr be and a primer for detecting and assaying C. pneumoniae genes; methods for detecting and assaying C. pneumoniae genes by using the probe or primer; and the use of the probe or primer.

BZ

Description

FIELD OF THE INVENTION

The invention relates to <u>Chlamydia pneumoniae</u> antigenic polypeptides, fused proteins containing the polypeptides, DNAs coding therefor, recombinant vectors carrying the DNAs, transformants containing the recombinant vectors, a method for production of antibody, a method and reagents for detection and/or measurement of antibody, a method and agents for diagnosis of <u>Chlamydia pneumoniae</u> infections, probes and primers for detection and/or measurement of <u>Chlamydia pneumoniae</u> gene, and a method and reagents for detection and/or measurement of <u>Chlamydia pneumoniae</u> gene. The invention can be effectively used in the pharmaceutical industry, particularly in the preparation of agents for diagnosis of <u>Chlamydia pneumoniae</u> infections.

BACKGROUND ART

Several kinds of species are known in <u>Chlamydia</u>, that is, <u>Chlamydia trachomatis</u>, <u>Chlamydia psittaci</u>, <u>Chlamydia pecorum</u>, <u>Chlamydia pneumoniae</u> and the like. <u>Chlamydia trachomatis</u> causes trachoma, venereal lymphogranuloma, urogenital infections, inclusion conjunctivitis, neonatal pneumonia and the like. <u>Chlamydia psittaci</u> causes psittocosis and the like. <u>Chlamydia pneumoniae</u> causes respiratory infections, atypical pneumonia and the like.

Since the symptoms of infections in the respiratory apparatus which are caused by Chlamydia pneumoniae are similar to those of infections caused by Mycoplasma pneumoniae or Influenza virus, physicians often make a wrong diagnosis. Hence, there is a need for the development of a simple method for diagnosing the infections caused by Chlamydia pneumoniae.

In general, an infection can reliably be diagnosed by detecting the causative bacterium in the infected site or by detecting an antibody against the causative bacterium in body fluids such as a sera and the like. The former method is called an antigen test and the latter is called an antibody test. Both of them are clinically important. As for <u>Chlamydia pneumoniae</u>, there is known an antibody test which is carried out by a method in which an antibody is detected by using an elementary body of <u>Chlamydia pneumoniae</u>.

However, this method has the disadvantage that the elementary body of <u>Chlamydia pneumoniae</u> reacts not only with an antibody against <u>Chlamydia pneumoniae</u> but also with antibodies against other species of <u>Chlamydia</u>, thus being fairly unspecific. This is because the elementary body of <u>Chlamydia pneumoniae</u> contains an antigen which is also present in other species of geneus <u>Chlamydia</u> than <u>Chlamydia pneumoniae</u>, that is, <u>Chlamydia trachomatis</u> and <u>Chlamydia psittaci</u>.

As a plasmid which can be used for the expression of a large amount of a protein in <u>E</u>. <u>coli</u>, pBBK10MM is known (Japanese Unexamined Patent Publication No. Hei 4-117284). This plasmid can be used for the expression of a fused prot in of an anti-allergic peptide with DHFR. The expressed fused protein also maintains the enzymatic activity of DHFR and can therefore be purified easily by utilizing the characteristic properties and activities of DHFR.

Genetic screening has been carried out to diagnose infections. In this screening, the presence of the gene of a microorganism to be detected in a sample is examined using nucleic acid probes and the like.

As for <u>Chlamydia pneumoniae</u>, there is known a genetic screening method which is carried out as disclosed in Japanese Unexamined Patent Publication No. Sho 64-500083, U.S.P. No. 5,281,518 and WO94/04549.

However, Japanese Unexamined Patent Publication No. Sho 64-500083 and U.S.P. No. 5,281,518 only disclose that a chromosomal DNA of <u>Chlamydia pneumoniae</u> or a DNA fragment which is obtained by cleaving the chromosomal DNA with a restriction enzyme or the like is used as a probe. The base sequences of these DNA molecules are not determined and the specificity of these probes are therefore unclear. In addition, it is difficult to determine the reaction conditions

Although WO94/04549 discloses a method using a probe which is hybridized to ribosome RNA or DNA corresponding thereto, the specificity of these probes is not reliable because the homology of ribosomal RNA is relatively high in all organisms.

DISCLOSURE OF THE INVENTION

It is an object of the invention to provide antigenic polypeptides that do not react with antibodies against species of geneus <u>Chlamydia</u> other than <u>Chlamydia pneumoniae</u>, such as <u>Chlamydia trachomatis</u>, <u>Chlamydia psittaci</u> and the like and which react only with a <u>Chlamydia pneumoniae</u>-specific antibody and can thereby detect the <u>Chlamydia pneumoniae</u>-specific antibody.

Another object of the invention is to provide a method for synthesizing large amounts of the antigenic polypeptides by using gene recombination techniques.

A further object of the invention is to provide a method for production of an anti-<u>Chlamydia pneumoniae</u>-specific antibody, a method and reagents for detection and/or measurement of the anti-<u>Chlamydia pneumoniae</u>-specific anti-

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/01896

ategory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No				
	December 3, 1993 (03. 12. 93) & EP, 402993, A1 & CA, 2017520, A & FI, 9002990, A & US, 5085986, A & KR, 9209424, B1					
		-				

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

INTERNATIONAL SEARCH REPORT PCT/JP95/01896 CLASSIFICATION OF SUBJECT MATTER C07K14/295, C12N15/31, C12N1/21, C12P21/02, C12P21/08, Int. Cl6 C1201/68, G01N33/569 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07K14/295, C12N15/31, C12N1/21, C12P21/02, C12P21/08, Int. Cl6 C12Q1/68, G01N33/569 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE, WPI, WPI/L, BIOSIS PREVIEWS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* KIKUTA L. C. et al., "Isolation and Sequence 1. - 1.5Α 1.9 - 30 Analysis of the Chlamydia pneumoniae GroE Operon" INFECTION AND IMMUNITY, Dec. 1991, Vol. 59, No. 12, pages 4665-4669 1 - 14KORNAK J. M. et al., "Sequence Analysis of the A Gene Encoding the Chlamydia pneumoniae DnaK 19 - 29 Protein Homolog* INFECTION AND IMMUNITY, Feb. 1991, Vol. 59, No. 2, pages 721-725 1 - 14MELGOSA M. P. et al., "Sequence Analysis of A 1.9 - 29the Major Outer membrane Protein Gene of Chlamydia pneumoniae* INFECTION AND IMMUNITY, Jun. 1991, Vol. 59, No. 6, pages 2195-2199 1.6 - 1.8, JP, 4-297871, A (Hitachi Chemical Co., Ltd.), A 31 - 33October 21, 1992 (21. 10. 92) & EP, 456524, Al & US, 5318892, A 34 - 45JP, 5-317097, A (Fuso Pharmaceutical Co., A Ltd.), See patent family annex X Further documents are listed in the continuation of Box C. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not come to be of particular relevance document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral discionure, use; exhibition or other document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search December 26, 1995 (26. 12. 95) December 8, 1995 (08. 12. 95) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telephone No. Facsimile No.

93

Form PCT/ISA/210 (second sheet) (July 1992)

SUPPLEMENTARY EUROPEAN SEARCH REPORT

Application Number EP 95 93 2194

	DOCUMENTS CONSID Citation of document with in	Relevant	CLASSIFICATION OF THE		
Category	of relevant passa		to claim	APPLICATION (Int.CI.6)	
A	Chlamydia pneumonia psittaci in sputum JOURNAL OF CLINICAL vol. 46, 1 January pages 313-317, XP00 ISSN: 0021-9746	samples by PCR" PATHOLOGY, 1993 (1993-01-01), 2087036	1-22		
	* the whole documen TJHIE, H.T.J., ET A Chlamydia pneumonia	 L.: "detection of	1-22		
	Chlamydia polymeras species differentia hybridisation" JOURNAL OF MICROBIO	e chain reaction with tion after LOGICAL METHODS, s 137-150, XP000405961			
				TECHNICAL FIELDS SEARCHED (Int.Cl.5)	
	•			·	
	The supplementary search report set of claims valid and available s	has been based on the last t the start of the search.			
	Place of search	Date of completion of the search		Examiner	
•	THE HAGUE	20 September 199	99 Holi	torf, S	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier patent de after the filing d. er D : document atted L : document cited	in the application for other reasons	ned on, or	

EPO FORM 1503 03.02 (P04C04)

SUPPLEMENTARY **EUROPEAN SEARCH REPORT**

Application Number EP 95 93 2194

2-12-1	Citation of document with in	dication, where appropriate,		evant	CLASSIFICATION OF THE APPLICATION (Int.CI.6)			
Category	of relevant passa			laim				
X	Chlamydia pneumonia	nant in humans"	of 1		C07K14/295 C12N15/31 C12N1/21 C12P21/02			
	JOURNAL OF CLINICAL vol. 32, no. 3, Margages 583-588, XP00 * the whole documen	ch 1994 (1994-03), 2115816			C12P21/08 C12P21/68 C12Q1/68 G01N33/569			
χ	KANAMOTO, Y., ET AL		1.5	,16,				
^	characterization of isolated in Hiroship MICROBIOLOGY AND IM	Chlamydia pneumoniae ma, Japan" MUNOLOGY,						
	vol. 37, no. 6, 199 XP002088968							
	abstract, page 486, 497, page 498; Fig.							
A	of Chlamydia pneumo	AL.: "identification niae-specific protein	1-2	2				
	antigens in immunob CLINICAL MICROBIOLO DISEASES,	GY AND INFECTIOUS	AND INFECTIOUS					
	vol. 12, no. 12, De	cember 1993 (1993-12) 2115818	i		C07K			
	abstract, table 1, column; page 951, l	Fig. 1; page 950, rig eft column	nt					
A	CONTAINING A SPECIE	A GENE ENCODING A E 76-KILODALTON PROTE S-SPECIFIC EPITOPE"	1-2 IN	22				
	pages 880-886, XP00 ISSN: 0019-9567	arch 1994 (1994-03-01 2059939).					
	* the whole documen	t *						
		-/						
	The supplementary search reposet of claims valid and available	rt has been based on the last at the start of the search.						
	Place of search	Date of completion of the search	,		Examiner			
	THE HAGUE	20 September 1	999	Но	ltorf, S			
X:pa	ATEGORY OF CITED DOCUMENTS	T : theory or prin E : earlier paten after the filing	i documen date	t, but pub	fished on, or			
	ticularly relevant if combined with anot sument of the same category	her D : document cit L : document cit						

PCT/JP95/01896 EP 95 93 2194.4 Hitachi Chemical Company, Ltd.

Our Ref.: B 1515 EP

CLAIMS

- A <u>Chlamydia pneumoniae</u> antigenic polypeptide, which comprises a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO:1.
- 2. The antigenic polypeptide of claim 1, wherein in said polypeptide at least one amino acid is deleted from the polypeptide of SEQ ID NO:1.
- 3. The antigenic polypeptide of claim 1, wherein in said polypeptide at least one amino acid in the polypeptide of SEQ ID NO:1 is replaced with another amino acid or a polypeptide in which at least one amino acid is added in the polypeptide of SEQ ID NO:1.
- 4. The antigenic polypeptide of claim 1, wherein in said polypeptide an amino acid or a peptide sequence is bound to a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO:1.
- 5. The antigenic polypeptide of claim 1, wherein said polypeptide contains the amino acid sequence of SEQ ID NO:1.
- 6. The antigenic polypeptide of claim 1, wherein said polypeptide contains the amino acid sequence of SEQ ID NO:2.
- 7. The antigenic polypeptide of claim 1, wherein said polypeptide contains the amino acid sequence of SEQ ID NO:5.

- 8. A fused protein of a Chlamydia pneumoniae antigenic polypeptide with dihydrofolate reductase, in which the antigenic polypeptide of anyone of claims 1 to 7 is bound to the polypeptide of SEQ ID NO:14 either directly or via an intervening amino acid or amino acid sequence.
- 9. The fused protein of claim 8 which is a polypeptide containing the amino acid sequence of SEQ ID NO: 15 or SEQ ID NO:16.
- 10. A DNA encoding the antigenic polypeptide of any one of claims 1 to 7, or the fused protein of claim 8 or 9, or a DNA complementary thereto.
- 11. The DNA of claim 10, which contains the base sequence of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:7, SEQ ID NO:17 or SEQ ID NO:18.
- 12. A recombinant vector carrying the DNA of claim 10 or 11.
- 13. The recombinant vector of claim 12, which is plasmid pCPN533α containing the base sequence of SEQ ID NO: 10 or plasmid pCPN533T (FERM BP5222).
- 14. A transformant containing the recombinant vector of claim 12 or 13.
- 15. A method for production of an anti-Chlamydia pneumoniae antibody, wherein the antigenic polypeptide of any one of claims 1 to 7 or the fused protein of claim 8 or 9 is used as an antigen.
- 16. A method for the detection and/or measurement of an anti Chlamydia pneumoniae antibody, wherein the antigenic polypeptide of any one of claims 1 to 7 or the fused protein of claim 8 or 9 is used as an antigen.

SCHOOLD SED 028406084 1

- 17. A reagent for detection and/or measurement of an anti-Chlamydia pneumoniae antibody, which comprises the antigenic polypeptide of any one of claims 1 to 7 or the fused protein of claim 8 or 9 as an antigen.
- 18. A probe or primer for detection and/or measurement of Chlamydia pneumonia gene, which comprises any one of
 - (a) a DNA containing a sequence of at least 10 consecutive bases in the DNA of SEQ ID NO:3.
 - (b) a DNA complementary to DNA (a), or
 - -(c) a DNA having at least 90% homology to DNA (a) or (b).
- The probe or primer of claim 18, which contains the base sequence of SEQ ID NO:20 or SEQ ID NO:19.
- 20. A method for the detection and/or measurement of Chlamydia pneumoniae gene, wherein the probe or primer of claim 18 or 19 is used.
- 21. A reagent for detection and/or measurement of Chlamydia pneumoniae gene, which comprises the probe or primer of claim 18 or 19.
- A reagent for diagnosis of a Chlamydia pneumoniae infection, which comprises the antigenic polypeptide of any one of claims 1 to 7, the fused protein of claim 8 or 9, or the probe or primer of claim 18 or 19 as an active ingredient.

		Activity
and the second of the second		
ing and the second seco		in Marine
		nestratous companyes est est est est est est est est est e
and the second s	taggeforeit i tan vervoloti. Heterof generalige i staggi etim etterometteljen stem i vervenenteljen sette verve i dette et verteljen grove foreit etterometteljen grove foreit etteromet	
en e		
		Maria Cara
		· · · · · · · · · · · · · · · · · · ·

- (19)-(23) is used as an antigen.
- (31) A method for detection and/or measurement of an anti-Chlamydia pneumoniae antibody, wherein the fused protein of any one of (19)-(23) is used as an antigen.
- (32) A reagent for detection and/or measurement of an anti-Chlamydia pneumoniae antibody, which comprises the fused protein of any one of (19)-(23) as an antigen.
- (33) A reagent for diagnosis of a <u>Chlamydia pneumoniae</u> infection, which comprises the fused protein of any one of (19)-(23) as an active ingredient.
- (34) A probe for detection and/or measurement of Chlamydia pneumoniae gene, which comprises any one of
 - (a) a DNA containing a sequence of at least 10 consecutive bases in the DNA of SEQ ID NO: 3,
 - (b) a DNA complementary to DNA (a), or
 - (c) a DNA having at least 90% homology to DNA (a) or (b).
- (35) The probe of (34), which contains the base sequence of SEQ ID NO: 19.
- (36) The probe of (34), which contains the base sequence of SEQ ID NO: 20.
- (37) A method for detection and/or measurement of <u>Chlamydia pneumoniae</u> gene, characterized in that the probe of any one of (34)-(36) is used.
- (38) A reagent for detection and/or measurement of <u>Chlamydia pneumoniae</u> gene, which comprises the probe of any one of (34)-(36).
- (39) An agent for diagnosis of a Chlamydia pneumoniae infection, which comprises the probe of any one of (34)-
- (36) as an active ingredient.

10

35

- (40) A primer for detection and/or measurement of Chlamydia pneumoniae gene, which comprises any one of
 - (a) a DNA containing a sequence of at least 10 consecutive bases in the DNA of SEQ ID NO: 3,
 - (b) a DNA complementary to DNA (a), or
 - (c) a DNA having at least 90% homology to DNA (a) or (b).
- (41) The primer of (40), which contains the base sequence of SEQ ID NO: 19.
- (42) The primer of (40), which contains the base sequence of SEQ ID NO: 20.
- (43) A method for detection and/or measurement of <u>Chlamydia pneumoniae</u> gene, wherein the primer of any one of (40)-(42) is used.
- (44) A reagent for detection and/or measurement of Chlamydia pneumoniae gene, which comprises the primer of any one of (40)-(42).
- (45) A reagent for diagnosis of a Chlamydia pneumoniae infection, which comprises the primer of any one of (40)-
- (42) as an active ingredient.
- (46) A Chlamydia pneumoniae antigenic polypeptide, which is selected from the group consisting of
 - (a) the polypeptide of SEQ ID NO: 5,
 - (b) a polypeptide in which at least one amino acid is deleted from the polypeptide of SEQ ID NO: 5,
 - (c) a polypeptide in which at least one amino acid in the polypeptide of SEQ ID NO: 5 is replaced with another amino acid, and
 - (d) a fused polypeptide of any one of (a)-(c) with another amino acid or peptide.
- (47) A Chlamydia pneumoniae antigenic polypeptide, which is selected from the group consisting of
 - (a) the polypeptide of SEQ ID NO: 6,
 - (b) a polypeptide in which at least one amino acid is deleted from the polypeptide of SEQ ID NO: 6,
 - (c) a polypeptide in which at least one amino acid in the polypeptide of SEQ ID NO: 6 is replaced with another amino acid, and
 - (d) a fused polypeptide of any one of (a)-(c) with another amino acid or peptide.
- (48) A DNA encoding the polypeptide of (46), or a DNA complementary thereto.
- (49) A DNA encoding the polypeptide of (47), or a DNA complementary thereto.
- (50) The DNA of (48), wherein said DNA encoding the polypeptide of (46) is the DNA of SEQ ID NO: 7.
- (51) The DNA of (49), wherein said DNA encoding the polypeptide of (47) is the DNA of SEQ ID NO: 8.
- (52) A recombinant vector carrying the DNA of any one of (48)-(51).

body, and agents for diagnosis of Chlamydia pneumoniae infections, all by using said antigenic polypeptides.

A still further object of the invention is to provide probes and primers for detecting and/or measuring specifically Chlamydia pneumoniae gene, a method and reagents for detection and/or measurement of Chlamydia pneumoniae gene and agents for diagnosis of Chlamydia pneumoniae infections, all by using the probes or primers.

An even further object of the invention is to provide antigenic polypeptides for detection of an antibody which reacts with geneus Chlamydia including Chlamydia pneumoniae, Chlamydia trachomatis, Chlamydia psittaci and the like.

SUMMARY OF THE INVENTION

10

15

20

25

30

45

50

55

The subject matters of the invention are as follows:

- (1) A Chlamydia pneumoniae antigenic polypeptide, which comprises polypeptide containing a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO: 1 (hereinafter referred to as "polypeptide A").
- (2) The antigenic polypeptide of (1), wherein said polypeptide A is a polypeptide in which at least one amino acid is deleted from the polypeptide of SEQ ID NO: 1.
- (3) The antigenic polypeptide of (1), wherein said polypeptide A is a polypeptide in which at least one amino acid in the polypeptide of SEQ ID NO: 1 is replaced with other amino acid or a polypeptide in which at least one amino acid is added in the polypeptide of SEQ ID NO: 1.
- (4) The antigenic polypeptide of (1), wherein said polypeptide A is a polypeptide in which an amino acid or a peptide sequence is bound to a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO: 1.
- (5) The antigenic polypeptide of (1), wherein said polypeptide A is a polypeptide containing the amino acid sequence of SEQ ID NO: 1.
- (6) The antigenic polypeptide of (1), wherein said polypeptide A is a polypeptide containing the amino acid sequence of SEQ ID NO: 2.
- (7) The antigenic polypeptide of (1), wherein said polypeptide A is a polypeptide containing the amino acid sequence of SEQ ID NO: 5.
 - (8) A DNA encoding the antigenic polypeptide of any one of (1)-(7), or a DNA complementary thereto.
 - (9) The DNA of (8), which contains the base sequence of SEQ ID NO: 3.
 - (10) The DNA of (8), which contains the base sequence of SEQ ID NO: 4.
- (11) The DNA of (8), which contains the base sequence of SEQ ID NO: 7.
- (12) A recombinant vector carrying the DNA of any one of (8)-(11).
- (13) The recombinant vector of (12), which is plasmid pCPN533 α containing the base sequence of SEQ ID NO: 10.
- (14) A transformant containing the recombinant vector of (12) or (13).
- (15) A method for production of an anti-Chlamydia pneumoniae antibody,
- wherein the antigenic polypeptide of any one of (1)-(7) is used as an antigen. 35
 - (16) A method for detection and/or measurement of an anti-Chlamydia pneumoniae antibody, wherein the antigenic polypeptide of any one of (1)-(7) is used as an antigen.
 - (17) A reagent for detection and/or measurement of an anti-Chlamydia pneumoniae antibody, which comprises the antigenic polypeptide of any one of (1)-(7) as an antigen.
- (18) A reagent for diagnosis of a Chlamydia pneumoniae infection, which comprises the antigenic polypeptide of 40 any one of (1)-(7) as an active ingredient.
 - (19) A fused protein of a Chlamydia pneumoniae antigenic polypeptide with dihydrofolate reductase, in which polypeptide containing a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO: 1 is bound to the polypeptide of SEQ ID NO: 14 (hereinafter referred to as "polypeptide B") either directly or via an intervening amino acid or amino acid sequence.
 - (20) The fused protein of (19), wherein said polypeptide B is a polypeptide in which at least one amino acid is deleted from the polypeptide of SEQ ID NO: 1.
 - (21) The fused protein of (19), wherein said polypeptide B is a polypeptide in which at least one amino acid in the polypeptide of SEQ ID NO: 1 is replaced with other amino acids or a polypeptide in which at least one amino acid is added in the polypeptide of SEQ ID NO: 1.
 - (22) The fused protein of (19), which is a polypeptide containing the amino acid sequence of SEQ ID NO: 15.
 - (23) The fused protein of (19), which is a polypeptide containing the amino acid sequence of SEQ ID NO: 16.
 - (24) A DNA encoding the fused protein of any one of (19)-(23), or a DNA complementary thereto.
 - (25) The DNA of (24), which contains the base sequence of SEQ ID NO: 17.
 - (26) The DNA of (24), which contains the base sequence of SEQ ID NO: 18.
 - (27) A recombinant vector carrying the DNA of any one of (24)-(26).
 - (28) The recombinant vector of (27), which is plasmid pCPN533T.
 - (29) A transformant containing the recombinant vector of (27) or (28).
 - (30) A method for production of an anti-Chlamydia pneumoniae antibody, wherein the fused protein of any one of

Method for production of antigen polypeptide

The method of chemical synthesis and the method of gene recombination are available for the production of the antigen polypeptide of this invention.

Among the methods of chemical synthesis is counted the MAP (multiple antigen peptide) method, for example. The MAP method befits the synthesis of a peptide formed of not more than 30 amino acid sequences. This synthesis can be implemented by the use of a commercially available peptide synthesizing device.

Among the methods of gene recombination is counted a method which comprises inserting a DNA coding for the antigen polypeptide of this invention in a vector thereby constructing a recombinant vector, inserting the recombinant vector in a host thereby producing a transformant, and isolating the peptide aimed at from the transformant.

The DNA coding for the antigen polypeptide of this invention will be described afterward.

The vector may be plasmid, phage, etc.

As concrete examples of the host, Escherichia coli, Bacillus subtilis, yeast, etc. may be cited.

Now, the method for forming the transformant and the method for refining the peptide aimed at by the use of the transformant will be described in detail below.

Preparation of Recombinant Vector Carrying the DNA Encoding the Antigenic Polypeptide and Transformants Containing the Same

The λ phage obtained by screening (see infra) is already a kind of recombinant vector carrying the DNA of the invention. Additional recombinant vectors can be prepared by inserting in a known plasmid vector or phage vector the DNA encoding the <u>Chlamydia pneumoniae</u> antigenic polypeptide (see infra) in a conventional procedure. In this case, a linker may be used if necessary. As the known plasmid vector, pBR322, pUC18, pUC19, pBBK10MM or the like can be used. Plasmids pBR322, pUC18 and pUC19 are commercially available and pBBK10MM is described in detail in Japanse Unexamined Patent Publication No. Hei 4-117284. As the phage vector, λ gt11 phage, λ gt10 phage or the like can be used. In any case, recombinant vectors corresponding to the parent vectors used can be obtained.

The recombinant vectors carrying the DNA of the invention include plasmid pCPN533 α , 53-3S λ phage and the like (see infra).

The obtained recombinant vector is introduced into a host to prepare a transformant. If an <u>E. coli</u>-derived plasmid or λ phage is used, an <u>E. coli</u> strain such as HB 101 can be used as a host. The host is treated to become a competent cell. A competent cell obtained by treating <u>E. coli</u> strain HB101 is commercially available from Takara Shuzo Co., Ltd. A method of introducing the recombinant vector into a host to prepare a transformant is described in "Molecular Cloning".

The obtained transformant is cultured to form colonies. Plasmid DNAs are obtained from each of the colonies and cleaved with an appropriate restriction enzyme. A transformant having a desired recombinant plasmid is selected according to the results of agarose gel electrophoretic analysis of the cleaved plasmid DNA. The plasmid vectors thus prepared include plasmid pCPN533 α .

Examples of the transformant thus prepared include \underline{E} . coli strain HB101 containing the recombinant vector pCPN533 α .

Preparation of Recombinant Vectors Carrying the DNA Encoding Fused Protein of the <u>Chlamydia pneumoniae</u> Antigenic Polypeptide with DHFR and Transformants Containing the Same

The DNA molecule encoding the <u>Chlamydia pneumoniae</u> antigenic polypeptide (see infra) is ligated to the DNA molecule encoding DHFR (see infra) by means of a commercially available kit. In the ligation, a linker may be used if necessary. A DNA ligation kit (Takara Shuzo Co., Ltd) can be used as a commercially available kit. If the DNA obtained by the ligation does not have a replication origin and does not therefore function as a plasmid, the DNA is inserted in a separate plasmid vector, which may be pBR322, pUC18 or the like.

The ligated DNA is introduced into a host to prepare a transformant. If an <u>E. coli</u>-derived plasmid is used, an <u>E. coli</u> strain such as HB 101 can be used as a host. The host is treated to become a competent cell. A competent cell obtained by treating <u>E. coli</u> strain HB101 is commercially available from Takara Shuzo Co., Ltd. The method of introducing the ligated DNA into a host to prepare a transformant is described in "Molecular Cloning".

The obtained transformant is cultured to form colonies. Plasmid DNAs are obtained from each of the colonies and cleaved with an appropriate restriction enzyme. A transformant having a desired recombinant plasmid is selected according to the results of agarose gel electrophoretic analysis. An example of the plasmid vector thus prepared is plasmid pCPN533T.

An example of the transformant thus prepared is <u>E. coli</u> strain HB101 containing the recombinant vector pCPN533T.

The transformant is cultured by shaking an incubator containing the transformant at an appropriate temperature in a medium that allows the transformant to grow until a sufficient amount of the desired antigenic polypeptide is accumu-

DETAILED DESCRIPTION OF THE INVENTION

In the specification, deoxynucleotides having only one base are referred to as "monodeoxynucleotides" and deoxynucleotides having at least two bases are referred to as "DNAs", unless otherwise indicated.

The invention will now be explained in detail.

Antigen polypeptide

15

50

The antigen polypeptide of the present invention is formed of polypeptides containing at least five continued amino acid sequences in a polypeptide of SEQ ID No. 1 (hereinafter referred to as "Polypeptide A") from the viewpoint of the minimum size in which a peptide is allowed to possess antigenicity.

Since the antigen-antibody reaction can be expected to gain in sensitivity in proportion as the length of amino acid sequence increases, the polypeptide A is appropriately formed of not less than 20, preferably not less than 100, and more preferably not less than 250 amino acids.

So long as the polypeptide A possesses the antigenicity inherent in Chlamydia pneumoniae, it tolerates the loss of amino acids (1 - 250 amino acids, for example) from the polypeptide of SEQ ID No. 1. If the number of missing amino acids is unduly large, the polypeptide A will tend to suffer the antigenicity inherent in Chlamydia pnuemoniae to be impaired.

When the number of missing amino acids is large (five or more, for example), the polypeptide A prefers such missing amino acids (five or more, for example) to occur in a continued series for the sake of retaining the antigenicity of Chlamydia pneumoniae.

So long as the polypeptide A possesses the antigenicity inherent in Chlamydia pneumoniae, it tolerates the substitution of part of the amino acids (1 - 100 amino acids, for example) by other amino acids or the insertion of amino acids (1 - 100 amino acids, for example) in the polypeptide of SEQ ID No. 1. If the number of amino acids involved in the substitution or insertion is unduly large, the polypeptide A will tend to suffer the antigenicity inherent in Chlamydia pnuemoniae to be impaired. When the number of amino acids involved in the substitution or insertion is large (five or more, for example), the polypeptide A prefers the amino acids (five or more, for example) to occur in a continued series for the sake of retaining the antigenicity of Chlamydia pneumoniae. The amino acids to be involved in the substitution are preferred to possess such similar qualities as are observed in the substitution between glycine and alanine, for example.

So long as the polypeptide A possesses the antigenicity inherent in Chlamydia pneumoniae, it may be a polypeptide having amino acids or peptides ligated directly or through the medium of an intervening amino acid sequence to at least five continued amino acid sequences in the polypeptide of SEQ ID No. 1.

The peptides for the ligation are appropriately formed of not more than 1000 amino acid sequences, preferably not more than 500 amino acid sequences, and more preferably not more than 200 amino acid sequences for the sake of retaining the antigenicity inherent in Chlamydia pneumoniae.

As concrete examples of such amino acids or peptides, leucine, leucine-methionine, dihydrofolic acid reductase (DHFR), and β-galactosidase may be cited.

As concrete examples of the polypeptide A using DHFR or β -galactosidase as a peptide, DHFR-Chlamydia pneumoniae antigen polypeptide-fused protein and β -galactosidase-Chlamydia pneumoniae antigen polypeptide-fused protein may be cited. DHFR or β -galactosidase may be ligated either directly or through the medium of an intervening amino acid sequence with Chlamydia pneumoniae antigen polypeptide.

As concrete examples of the polypeptide A, the polypeptides of SEQ ID No. 1, SEQ ID No. 2, and Sequence No. 5 may be cited.

Though the intervening amino acid sequence is not defined particularly, the amino acid sequences of leucine and leucine-methionine are examples.

As concrete examples of the fused protein of the present invention, the polypeptide formed of amino acid sequences of SEQ ID No. 15 and the polypeptide formed of amino acid sequences of SEQ ID No. 16 may be cited.

Among the fused proteins cited above, the polypeptide formed of the amino acid sequences of SEQ ID No. 15 including the whole antigen polypeptide of 53 kDa of Chlamydia pneumoniae proves particularly advantageous.

The method of chemical synthesis and the method of gene recombination are available for the production of the antigen polypeptide of this invention.

The polypeptide of SEQ ID No. 1 of this invention is an antigen polypeptide formed of 488 amino acid residues as shown in the table of sequences.

The polypeptide of SEQ ID No. 2 of this invention is an antigen polypeptide formed of 271 amino acid residues as shown in the table of sequences.

The polypeptide of SEQ ID No. 5 of this invention is an antigen polypeptide formed of 259 amino acid residues as shown in the table of sequences.

Among other antigen polypeptides mentioned above, the polypeptide of SEQ ID No. 1 containing the whole antigen polypeptide of 53 kDa of Chlamydia pnuemoniae proves particularly advantageous.

Culture of Chlamydia pneumoniae

A suspension of cells is prepared from cultured HL cells. The supernatant of the culture is removed and the suspension of <u>Chlamydia pneumoniae</u> is then added to the resulting cell sheet. After incubation, <u>Chlamydia pneuminiae</u> infected HL cells are obtained by centrifugation. As <u>Chlamydia pneumoniae</u>, strain YK41 (Y. Kanamoto et al., Micro biol. Immunol., Vol. 37, p.495-498, 1993) can be used.

Purification of Elementary Body of Chlamydia pneumoniae

The <u>Chlamydia pneuminiae</u>-infected HL cells are disrupted and centrifuged, thereby recovering the supernatant. The obtained supernatant is layered onto a continuous density gradient solution containing Urografin (Schering) is centrifuged.

The yellowish white band was recovered because in the preliminary experiment, it was confirmed to contain the elementary body of Chlamydia pneumoniae with the aid of an electron microscope.

Preparation of Genomic DNA of Chlamydia pneumoniae

The elementary body of <u>Chlamydia pneumoniae</u> is suspended in 10 mM Tris-HCl buffer (pH 8.0) containing 1 mM ethylene diaminetetra acetate (EDTA) (hereinafter referred to as "TE buffer"). To the resulting suspension are added a 1% aqueous solution of sodium dodecyl sulfate (SDS) and an aqueous solution of Proteinase K (1 mg/ml) and the elementary body is lysed while incubating. To the resulting solution is added phenol saturated with 0.1 M Tris-HCl buffer (pH 8.0). The mixture is stirred and centrifuged to recover an aqueous layer. The obtained aqueous layer is treated successively with RNase and phenol/chloroform/isoamyl alcohol, followed by ethanol precipitation. As a result, genomic DNA of <u>Chlamydia pneunomiae</u> is obtained.

Preparation of Genomic DNA Expression Library

The genomic DNA is digested with restriction enzymes Accl, Haelll and Alul. The digest is treated with phenol/chloroform/isoamyl alcohol and subjected to ethanol precipitation to yield partially digested DNAs. To the partially digested DNAs are added a linker, adenosine 5'-triphosphate (hereinafter abbreviated to "ATP") and T4 ligase, thereby ligating the linker to the partially digested DNAs.

The linker-ligated partially digested DNAs are applied to a Chroma spin 6000 column in which the mobile phase is 10 mM Tris-HCl buffer containing 0.1 M NaCl and 1 mM EDTA. The eluate is collected and fractions containing 1-7 kbp DNA fragments are recovered. To the resulting fractions are added ATP and T4 polynucleotide kinase and a reaction is conducted to phosphorylate the 5' end of the DNA fragments. The reaction solution is treated with phenol/chloro-form/isoamyl alcohol and subjected to ethanol precipitation to yield 5'-end-phosphorylated DNA fragments.

To the resulting DNA fragments are added λ gt11 DNA preliminarily digested with restriction enzyme EcoRI, ATP and T4 ligase and a reaction is conducted. The resulting recombinant λ gt11 DNA is packaged with a commercially available packaging kit to prepare a gemonic DNA expression library.

Cloning of DNA Encoding Antigenic Polypeptide

Cultured cells of <u>E. coli</u> strain Y1090r- are infected with the gemonic DNA expression library and incubated in an agar medium. A protein produced in the cells by the expression of the inserted DNA is transferred to a nitrocellulose filter immersed in an aqueous solution of isopropylthio-β-D-galactoside (IPTG). The filter is blocked with a bovine serum albumin and washed. The filter is then reacted with a <u>Chlamydia pneumoniae</u>-specific monoclonal antibody. As the <u>Chlamydia pneumoniae</u>-specific monoclonal antibody, AY6E2E8 and SCP53 can be used. A hybridoma cell line forming AY6E2E8 has been deposited with the National Institute of Bioscience and Human-Technology, the Agency of Industrial Science and Technology (1-3, Higashi 1 chome Tsukubashi Ibaraki-ken 305, Japan) as FERM BP-5154 under the terms of the Budapest Treaty. A hybridoma cell line forming SCP53 is disclosed in J. Clin. Microbil., Vol.132, p.583-588, 1994. After the reaction, the filter is washed and reacted with an anti-mouse IgG antibody labeled with an enzyme such as peroxidase or the like. After the reaction, the filter is washed and reacted with a color-developing substrate solution. As the color-developing substrate solution, a mixture of an aqueous solution of hydrogen peroxide and a solution of 4-chloro-1-naphthol in methanol can be used. After the reaction, the filter is washed and dried in air.

Plaques corresponding to the color-developing spots on the filter are identified and λ phage contained in the plaques is obtained. The above procedure is repeated until all the plaques react with the aforementioned monoclonal antibody. As a result, the DNA encoding an antigenic polypeptide is cloned and λ phage expressing the <u>Chlamydia pneumoniae</u>-specific antigenic polypeptide having reactivity with the <u>Chlamydia pneumoniae</u>-specific monochonal antibody is obtained.

lated in the transformant. If \underline{E} , \underline{coli} strain HB101 containing the recombinant vectors pCPN533 α or pCPN533T are used as a transformant, the cell is cultured while shaking in ampicillin-containing LB medium at 37 °C overnight. Subsequently, the culture is inoculated in ampicillin-containing TB medium and further cultured while shaking at 37°C overnight. A method for preparing the TB medium is described in "Molecular Cloning".

The cultured transformant is harvested by centrifugation and suspended in a buffer. The transformant is disrupted by sonication of the suspension. If the transformant is <u>E</u>. <u>coli</u>, the cell may be lysed by successively adding lysozyme and an SDS-containing buffer to the suspension.

When the polypeptide aimed at is secretory in quality, the culture broth is centrifuged to obtain the supernatant.

After the disruption of the transformant, the cell residue is removed by centrifugation, thereby obtaining the supernatant. Streptomycin sulfate is added to the supernatant. The mixture is stirred for a certain period of time and centrifuged to precipitate nucleic acids, thereby obtaining the supernatant.

This supernatant is precipitated with ammonium sulfate and centrifuged. Generally, the precipitate is recovered as the product. Since the supernatant possibly contains the peptide aimed at, the practice of sampling and analyzing the supernatant thereby confirming the presence or absence of the peptide proves advantageous.

Either the solution of the precipitate in a small amount of buffer solution or the supernatant is fractionated by liquid chromatography. The proteins contained in the fractions are blotted by the Western blotting method using a Chlamydia pneumoniae-specific monoclonal antibody to obtain the fractions containing antigen polypeptide. When the polypeptide A is a protein fused with DHFR, a Methotrexate column can be used as the column for the liquid chromatography. Specific procedures of the removal of residues such as a cell membrane and the like, the removal of DNA by addition of streptomycin sulfate, the recovery of proteins by addition of ammonium sulfate and a Western blotting method are described in "Molecular Cloning".

DNAs Encoding the Antigenic Polypeptides

50

In the invention, the DNA encoding the polypeptide of SEQ ID NO: 1 means DNAs selected from the group of DNAs which are obtained by translating the amino acids of the polypeptide of SEQ ID NO: 1 to triplets in accordance with the genetic code (each amino acid is assigned 1-6 sets of nucleotide sequences). This group of DNAs includes the DNA of SEQ ID NO: 3.

The DNA encoding the antigenic polypeptide A means DNAs encoding the polypeptide A. These DNAs are selected from the group of DNAs which are obtained by translating the amino acid sequence for the polypeptide A to triplets in accordance with the genetic code.

As the polypeptide A, those polypeptides which have been described under the item "Antigenic Polypeptides" above may be given. As the DNA encoding the polypeptide A, nucleotides sequences which correspond to the amino acid sequences for those polypeptides may be given.

Similarly, the DNA encoding the polypeptide of SEQ ID NO: 2 means DNAs selected from the group of DNAs which are obtained by translating the amino acids of the polypeptide of SEQ ID NO: 2 to triplets in accordance with the genetic code. This group of DNAs includes the DNA of SEQ ID NO: 4.

Additionally, the DNA encoding the polypeptide of SEQ ID NO: 5 means DNAs selected from the group of DNAs which are obtained by translating the amino acids of the polypeptide of SEQ ID NO: 5 to triplets in accordance with the genetic code. This group of DNAs includes the DNA of SEQ ID NO: 7.

Moreover, the DNA encoding the polypeptide of SEQ ID NO: 6 means DNAs selected from the group of DNAs which are obtained by translating the amino acids of the polypeptide of SEQ ID NO: 6 to triplets in accordance with the genetic code. This group of DNAs includes the DNA of SEQ ID NO: 8.

DNAs encoding the fused proteins comprise codons corresponding to the amino acid sequence of the fused protein. The DNAs include but are not limited to the DNAs of SEQ ID NOs: 17 and 18.

The base sequence of SEQ ID No. 17 is the base sequence of the DNA coding for the fused protein of DHFR and the whole antigen polypeptide of 53 kDa of Chlamydia pneumoniae and the base sequence of SEQ ID No. 18 is the base sequence of the DNA coding for the fused protein of DHFR and (part of) the antigen polypeptide of 53 kDa of Chlamydia pneumoniae.

These DNA's can be manufactured by the method of chemical synthesis or the method of gene recombination.

Among the methods of chemical synthesis is counted the phosphoamidite method which fits the synthesis of a DNA formed in a length of not more than 100 base sequences. This chemical synthesis can be attained by a commercially available DNA synthesizing device.

Among the methods of gene recombination are counted a method for cloning the DNA from the elementary body of Chlamydia pneumoniae in the manner already described and the PCR method utilizing the already acquired DNA as a template and using a primer manufactured by adopting the base sequence at a position arbitrarily selected in that DNA. The method of gene recombination is capable of manufacturing a long DNA of more than 100 bases.

Now, the method for cloning the DNA coding for the antigen polypeptide from the elementary body of Chlamydia pneumoniae will be described in detail below.

Method and Reagents for Detection and/or Measurement of Anti-<u>Chlamydia pneumoniae</u> Antibody Using the Antigenic Polypeptide as Antigen, and Agents for Diagnosis of <u>Chlamydia pneumoniae</u> Infections Comprising the Antigenic Polypeptide as Active Ingredient

A method for detection and/or measurement of an anti-<u>Chlamydia pneumoniae</u> antibody comprises, for example, the steps of immobilizing the antigenic polypeptide on a support, applying a sample, washing, adding a labeled secondary antibody, washing and detecting and/or measuring the label either directly or indirectly.

Examples of the support include latex particles, cellulose threads, plastic assay plates and particles and the like.

The antigenic polypeptide may be immobilized on the support through covalent bonding or physical adsorption.

Examples of the sample include human sera and the like. It is preferred to block the surface of the support with bovine serum albumin or the like before the addition of a sample so as to insure that other antibodies in the sample will not bind to the support unspecifically.

The support is washed with a surfactant-containing phosphate buffer or the like.

An example of the labeled secondary antibody is a labeled anti-human monoclonal antibody. Useful labels include various kinds of enzymes such as alkaline phosphatase, luciferase, peroxidase, β-galactosidase and the like, various fluorescent compounds such as fluorescein and the like. A chemical compound such as biotin, avidin, streptoavidin, digoxigenin or the like may be inserted between the antibody and the label.

When the label is an enzyme, it may be detected and/or measured by adding a substrate and detecting and/or measuring the light emission or color development which occurs due to the catalytic action of the enzyme or by measuring the change in light absorbance. When the label is a fulorescent compound, it may be detected and/or measured by irradiating the reaction system with UV light and detecting and/or measuring the emitted fluorescence. A sensitizer may be used if necessary.

Reagents for detection and/or measurement of the anti-<u>Chlamydia pneumoniae</u> antibody using the antigenic polypeptide of interest as an antigen include the antigenic polypeptides which are immobilized on a support and those with which the necessary amounts of the secondary antibody and the substrate are enclosed.

The aforementioned reagents can be used as agents for diagnosis of Chlamydia pneumoniae infections.

Probes and Primers for Detection and/or Measurement of Chlamydia pneumoniae Gene

DNA encoding the <u>Chlamydia pneumoniae</u> 53 kDa antigenic polypeptide has the base sequence of SEQ ID NO: 3. The probes and primers of the invention comprise DNA containing any one of

- (a) a DNA containing a sequence of at least 10 consecutive bases in the DNA of SEQ ID NO: 3,
- (b) a DNA complementary to DNA (a), or
- (c) a DNA having at least 90% homology to DNA (a) or (b).

The length of the base sequence of the probes and primers is preferably 10-50 bp, more preferably 15-20 bp. Specific examples of the probes and primers of the invention include a DNA comprising the base sequence of SEQ ID NO: 19 and a DNA comprising the base sequence of SEQ ID NO: 20.

The probes and primers of the invention can be synthesized easily with a commercially available DNA synthesizer. DNA synthesizers are commercially available from Applied Biosystems and the like. Alternatively, the probes and primers of the invention can be prepared by chemically synthesizing a short DNA fragment and synthesizing a long DNA fragment by PCR using the short DNA as a primer.

The probes and primers of the invention include those prepared by labeling such DNAs.

Exemplary labels include chemical compounds such as biotin, avidin, streptoavidin, digoxigenin and the like; enzymes such as alkaline phosphatase, luciferase, peroxidase, β-galactosidase and the like; and fluorescent compounds such as fluorescein and the like. Biotin may be bound to the probes by, for example, adding biotinated deoxyuridine 5'-triphosphate to the probes in the presence of a terminal transferase. A kit containing a terminal transferase and biotinated deoxyuridine 5'-triphosphate can be purchased from Boehringer Mannheim. In the case where a label other than biotin is to be bound, a commercially available kit can also be used. Such a kit can be purchased from Takara Shuzo Co., Ltd and TOYOBO CO., LTD. Alternatively, the label may be bound by a method described in "Molecular Cloning".

If desired, radioactive isotopes can be used as labels. In this case, $(\gamma^{-32}P)$ dATP is added to the probes and primers in the presence of T4 polynucleotide kinase. A general procedure of labeling with a radioactive isotope is described in "Molecular Cloning". T4 polynucleotide kinase can be purchased from TOYOBO CO., LTD. and $(\gamma^{-32}P)$ dATP from Amersham.

RNAs corresponding to the base sequences of the probes and primers of the invention, that is, nucleic acids in which thymine is replaced with uracil in the base moiety and in which deoxyriboses are replaced with riboses in the sugar chain, can be used as the probes and primers of the invention instead of the aforementioned probes and primer

Production of DNA Encoding the Chlamydia pneumoniae-Specific Antigenic Polypeptide

E. coli strain Y1090r- is infected with the obtained λ phage and cultured to yield a large amount of λ phage. DNA molecules are obtained and purified from the λ phage using a commercially available kit. To the obtained DNA molecules are added a primer, Taq polymerase and deoxynucleotides. The steps of heating, cooling and incubating are repeated, thereby amplifying the DNA molecule inserted in λ gt11. λ gt11 forward primer and λ gt11 reverse primer (Takara Shuzo Co. Ltd.) can be used as primers and AmpliTaq DNA polymerase can be used as a Taq polymerase. A general procedure of DNA amplification is known as the PCR method, which is described in detail in J. Sambrook et al., Molecular Cloning, 2nd ed., Cold Spring Harbor Laboratory Press (1989) (hereinafter referred to as "Molecular Cloning").

The amplified DNA is obtained and its base sequence is determined and analyzed. The amplified DNA can be obtained with a commercially available kit such as Wizard PCR Prep kit (Promega). The base sequence can be determined by fluorescence-labeled terminator cycle sequencing using Taq polymerase. This sequencing can be performed with a kit commercially available from Perkin-Elmer Japan. For analysis of the base sequence, a commercially available apparatus such as Model 373A DNA Sequencer (Applied Biosystems) can be used.

Following the determination of the base sequence, the base sequence of the DNA is analyzed using a DNA sequencing software package such as DNASIS (Hitachi Software Engineering) to estimate an editing, junctional and amino acid-translational regions.

If it is found that a full-length gene has not been obtained, DNA molecules upstream and downstream of the available DNA are obtained by genome walking. The genome walking can be performed with a kit commercially available from Takara Shuzo Co., Ltd.

Preparation of DNA Encoding DHFR

DNA encoding DHFR is obtained by digesting the DNA with a restriction enzyme from a plasmid vector containing the DNA or by amplifying the DNA by PCR using a template plasmid DNA or genomic DNA containing the DNA with an appropriate primer.

In the former method, plasmid vector pBBK10MM and recombinant vector pCPN533T of the invention can be used as the plasmid vector containing DNA encoding DHFR. <u>E. coli</u> containing pCPN533T and <u>E. coli</u> containing pBBK10MM have been deposited with the National Institute of Bioscience and Human-Technology, the Agency of Industrial Science and Technology as FERM BP-5222 and FERM BP-2394, respectively. Plasmid pCPN533T can be obtained from the deposited <u>E. coli</u> by a conventional method for obtaining plasmid DNA, which is described in "Molecular Cloning". When plasmid pBBK10MM is used, a DNA fragment having a length of about 4.8 kbp may be excised with restriction enzymes BamHI and XhoI.

In the latter method, pBBK10MM and pCPN533T (see supra) can be used as a plasmid DNA and genomic DNA of <u>Bacillus subtilis</u> can be used as a genomic DNA. Genomic DNA can be obtained by a conventional method for obtaining gemonic DNA, which is described in "Molecular Cloning".

The primer to be used in the latter method can be designed and synthesized in consideration of base sequences at the 5' and 3' ends of DNA encoding DHFR. For example, an oligonucleotide having the 1-20 sequence in the base sequence of SEQ ID NO: 17 and one having a sequence complementary to the 461-480 sequence in the base sequence of SEQ ID NO: 5 can be used. These oligonucleotides can be synthesized chemically with a commercially available DNA synthesizer.

In the antigen polypeptides mentioned above, the polypeptide of SEQ ID NO. 1 containing the whole antigen polypeptide of 53 kDa of Chlamydia pneumoniae is particularly preferred.

Method of Production of Anti-Chlamydia pneumoniae Antibody by Using the Antigenic Polypeptide as Antigen

An anti-<u>Chlamydia pneumoniae</u> antibody can be produced by immunizing a mouse with the antigenic polypeptide of the invention as an antigen, separating a spleen cell from the immunized mouse, fusing the spleen cell with a myeloma cell line to produce hybridomas, selecting a hybridoma recognizing the <u>Chlamydia pneumoniae</u> 53 kDa antigenic polypeptide from the produced hybridomas and culturing the selected hydridoma.

Exemplary myeloma cell lines include P3X63Ag8.653 (ATCC CRL-1580) and P3/NSI/1-Ag4-1 (ATCC TIB-18).

The anti-Chlamydia pneumoniae antibody is produced by a known general procedure for obtaining antibodies by immunization of mouse, except that the antigenic polypeptide of the invention is used as an antigen.

55

45

containing 10% (v/v) bovine fetal serum. The HL cells adhering to the flask interior were removed by pipetting to obtain a cell suspension.

The culture in a plastic culture flask (75 cm²) was implemented by charging the culture flask with 1 ml of the cell suspension mentioned above and 5 to 20 ml of the Dulbecco MEM culture medium containing 10% (v/v) bovine fetal serum and the culture in a 6-well plastic culture vessel was effected by placing in each of the six wells 4 ml of a mixed solution consisting of 8 ml of the cell suspension mentioned above and 292 ml of the Dulbecco MEM culture medium containing 10% bovine fetal serum and performing culture under an ambience containing 5% (v/v) carbon dioxide gas.

(B) Culture of Chlamydia pneumoniae YK41

10

25

From the culture solution of the HL cells propagated in a 6-well plastic culture vessel (on the bottom surface thereof), the supernatant was removed with a pipet. The residual cell sheet in the culture vessel, after adding 2 ml per well of the suspension of the YK41 strain of Chlamydia pneumoniae (Kanamoto et al., Microbiol. Immunol., Vol. 37, p.495-498, 1993) [the supernatant obtained by diluting a preserved solution of Chlamydia pneumoniae YR41 to 12 to 24 times the original volume with an aqueous solution containing 75 g of sucrose, 0.52 g of monopotassium phosphate, 1.22 g of dipotassium phosphate, and 0.72 g of glutamic acid liter (hereinafter referred to as "SPG"), treating the diluted solution with a supersonic wave for one minute, and subjecting the resultant diluted solution to centrifugal separation at 2,000 rpm for three minutes], was subjected to centrifugal adsorption at 2,000 rpm for one hour. After the centrifugal adsorption, the Chlamydia pneumoniae suspension was removed from the resultant cell sheet. The residual cell sheet after adding 4 ml per well of a Dulbecco MEM culture medium containing 1 µg of cyclo-heximide per ml and 10% (v/v) of bovine fetal serum, was cultured at 36 °C for three days under an ambience containing 5% (v/v) carbon dioxide gas. After this culture, the cells adhering to the culture vessel were separated with a sterilized silicone blade and recovered. The cells were centrifuged at 8,000 rpm for 30 minutes. The sediment obtained consequently was resuspended in SPG and the resultant suspension was put to storage at -70 °C.

(C) Purification of elementary body of Chlamydia pneumoniae YK41

The frozen suspension of HL cells infected with the <u>Chlamydia pneumoniae</u> YK41 preserved at -70 °C was melted and homogenized by the use of a homogenizer. The homogenate was centrifugally separated at 2,500 rpm for 10 minutes and the supernatant consequently formed was recovered. The sediment was again suspended in SPG and treated in the same manner as described above to recover a new supernatant. This procedure was repeated twice more. The successive supernatants were joined into one volume.

Separately, in a centrifuging tube, a 0.03M tris-hydrochloride buffer (pH 7.4) containing 50% (w/v) sucrose was placed, then a mixed solution of 3 parts by volume of urografin 76% (produced by Schering Corporation) with 7 parts by volume of 0.03M tris hydrochloride buffer (pH 7.4) was superposed, and subsequently the supernatant recovered as described above was attentively superposed on the layer of the mixed solution. The superposed layers in the centrifuging tube were centrifuged at 8,000 rpm for one hour. The layer of the 0.03M tris hydrochloride buffer (pH 7.4) containing 50% (w/v) sucrose and the sediment were recovered from the tube. The recovered solution and SPG added thereto in an equal volume were subjected to centrifugation at 10,000 rpm for 30 minutes. From the resultant separated phases, the supernatant was discarded and the sediment was suspended in SPG. In the centrifuging tubes, continuous densitygradient solutions consisting 35% to 50% of Urografin 76% (produced by Schering Corporation) in 0.03M tris hydrochloride buffer (pH 7.4) (ratios by volume of the former component to the total volume of solution) were placed and the suspension mentioned above was superposed thereon. The superposed layers in the tubes were centrifuged at 8,000 rpm for one hour. When a small amount of the yellowish white band was sampled and observed under an electron microscope, it was found to contain the elementary body of Chlamydia pneumoniae. So, this band was recovered and diluted with SPG to twice the original volume, and centrifuged at 10,000 rpm for 30 minutes. The sediment obtained in consequence of the centrifugation was suspended in SPG, assayed for protein concentration (with the aid of a protein analysis kit produced by Biorad Corp, with bovine serum albumin as a standard), and put to storage at -70 °C.

(D) Preparation of genome DNA of Chlamydia pneumoniae YK-41 strain

Three hundred (300) µl of a suspension of the elementary body of the purified <u>Chlamydia pneumoniae</u> YK-41 strain mentioned above (protein concentration: 1.37 mg/ml) was centrifuged at 4 °C at 12,000 rpm for five minutes. The resultant sediment was suspended in 500 µl of 10 mM tris buffer (pH 8.0) containing 1 mM EDTA (hereinafter referred to as "TE buffer"). The same centrifugation was repeated and the resultant sediment was suspended in 300 µl of TE buffer. The produced suspension and 30 µl of an aqueous 2% SDS solution and 30 µl of an aqueous solution of 1 mg/ml proteinase K added thereto were incubated at 56 °C for 30 minutes to effect solution of the elementary body. The incubated solution and 350 µl of phenol-saturated 0.1M tris hydrochloride buffer (pH 8.0) added thereto were thoroughly stirred with a vortex mixer. The resultant mixture was centrifuged at 4 °C at 12,000 rpm for five minutes. From the separated

comprising DNAs as structural units. These probes and primers comprising RNAs as structural units can be used in the method and reagents for detection and/or measurement of the invention.

Method for Detection and/or Measurement of Chlamydia pneumoniae Gene

Chlamydia pneumoniae gene is detected and/or measured by, for example, separating DNA in a sample on the basis of the difference in molecular weight by elecrophoresis, transferring the obtained DNA to a nitrocellulose filter, nylon membrane filter or the like for its identification, adding the labeled probe of the invention, and detecting and/or measuring the label. This method is called the Southern blotting technique and its general procedure is described in "Molecular Cloning".

<u>Chlamydia pneumoniae</u> gene is detected and/or measured with the primer of the invention by, for example, the PCR method which was described above. The method for detecting and/or measuring <u>Chlamydia pneumoniae</u> gene by PCR using the primer of the invention comprises the following steps.

- (i) A buffer containing the primer of the invention, DNA polymerase, dATP, dCTP, dGTP and dTTP is added to a sample containing DNA and the mixture is heated.
- (ii) The reaction solution is cooled, held at a constant temperature and heated.
- (iii) Step (ii) is repeated.

5

15

20

25

40

45

55

(iv) The DNA contained in the reaction solution is detected and/or measured.

The DNA-containing sample to be used in step (i) may be nucleic acids as extracted from tunica mucosa pharyngsis of a patient.

The DNA polymerase to be used in step (i) may be a Taq polymerase, which can be purchased from TOYOBO CO.,

In step (i), the mixture is heated by, for example, leaving it to stand at 90-100°C for 0.5-10 minutes.

In step (ii), the reaction solution is cooled by, for example, leaving it to stand at 45-65°C for 0.5-5 minutes, held at a constant temperature by, for example, at 70-80°C for 1-10 minutes, heated by, for example, leaving it to stand at 90-100°C for 0.5-5 minutes.

The heating in step (i), and cooling, holding at a constant temperature and heating in step (ii) can be carried out by using a DNA thermal cycler[®] (Perkin-Elmer Cetus).

Step (iii) may be repeated any number of times, preferably about 30 times.

The DNA contained in the reaction solution is detected and/or measured in step (iv) by, for example, electrophoresing the reaction solution with an agarose gel containing ethidium bromide, and thereby separating the DNA in the reaction solution on the basis of the difference in molecular weight and irradiating the agarose gel with UV light. If the primer of the invention is a labeled one, DNA is detected and/or measured with the aid of the label.

In another embodiment of the invention, after steps (i)-(iii), the primer of the invention may be replaced with one having another base sequence and steps (i)-(iii) are repeated, followed by step (iv).

Reagents for Detection and/or Measurement of Chlamydia pneumoniae Gene

An exemplary reagent for detection and/or measurement of <u>Chlamydia pneumoniae</u> gene according to the invention is an aqueous solution of the probe or primer of the invention which is packed frozen in a plastic container.

BEST MODE FOR CARRYING OUT THE INVENTION

Now, this invention will be described in detail below with reference to examples. It is to be distinctly understood that the invention is not limited in any sense to these examples.

Now, the component steps of the process from the culture of host cells of <u>Chlamydia pneumoniae</u> through the determination of gene DNA sequence/amino acid sequence of the antigenic polypeptide of <u>Chlamydia pneumoniae</u> will be described below in the order of their occurrence.

Example 1: Preparation of DNA coding for 53K antigenic polypeptide specific to Chlamydia pneumoniae

(A) Culture of host cells (HL cells)

The HL cells cultured in advance confluently on the bottom surface of a plastic culture flask (75 cm²) were washed with 5 ml of a magnesium-free (-) solution of a phosphate buffer physiological saline solution (hereinafter referred to as "PBS"), coated throughout on the entire surface thereof with 5 ml of a PBS containing 0.1% (w/v) trypsin, deprived of the excess solution, kept warmed at 37 °C for 10 minutes, and made to add 5 ml of a Dulbecco MEM culture medium

(F) Production of Chlamydia pneumoniae-specific monoclonal antibody

Cultivation and transfer of the myeloma cell strain

The myeloma cell strain used for the production of the monoclonal antibody was P3/NSI/1-Ag 4-1 (ATCC TIB-18). It was incubated and subjected to successive transfer culture in the RPMI 1640 culture medium containing 10% (v/v) bovine fetal serum. Two weeks prior to the cell fusion, the strain was incubated for one week in the RPMI 1640 culture medium containing 0.13 mM of 8-azaguanine, 0.5 µg/ml of a mycoplasma expellant (produced by Dainippon Pharmaceutical Co., Ltd. and marketed under product code of "MC-210"), and 10% (v/v) bovine fetal serum and then it was incubated in a standard culture medium for one week.

Immunization of mouse

Two hundred (200) μ I of the suspension of the aforementioned elementary body having a protein concentration of 270 μ g/ml was centrifuged at 12000 rpm for 10 minutes. The precipitate and 200 μ I of PBS added thereto were together suspended. The suspension was emulsified by the addition of 100 μ I of Freund's adjuvant. A portion, 150 μ I in volume, of the emulsion was hypodermally injected into the back of a mouse (0'th day of experiment). On the 14th, 34th, and 49th day, the suspension of the purified elementary body having a protein concentration of 270 μ g/ml was intra-abdominally injected in a fixed dose of 100 μ I into the mouse. Further, 50 μ I of the suspension of the purified elementary body having a protein concentration of 800 μ g/ml was intra-abdominally injected into the mouse on the 69th day and 100 μ I of the same suspension was similarly injected into the mouse on the 92nd day. On the 95th day, the mouse was sacrificed to extract the spleen, which was put to use in the cell fusion.

Cell fusion

25

In a round bottom glass tube, 10⁸ spleen cells obtained from the spleen of the immunized mouse and 10⁷ myeloma cells were thoroughly mixed and centrifuged at 1400 rpm for five minutes. The supernatant was removed and the remaining cells were further mixed thoroughly. The cells and 0.4 ml of the RPMI 1640 culture medium containing 30% (w/v) polyethylene glycol and kept in advance at 37°C were together left standing at rest for 30 seconds. The resultant mixture was centrifuged at 700 rpm for six minutes. The glass tube containing this mixture and 10 ml of the RPMI 1640 culture medium added anew thereto was slowly rotated to ensure thorough dispersion of polyethylene glycol and centrifuged at 1400 rpm for five minutes. The supernatant was completely removed. The precipitate and 5 ml of the HAT culture medium added thereto were together left standing at rest for five minutes. The resultant mixture and 10 - 20 ml of the HAT culture medium added thereto were together left standing at rest for 30 minutes and then diluted by the addition of the HAT culture medium until the myeloma cell concentration reached 3.3 x 10⁵/ml to suspend the cells. The suspension was dispensed two drops each to the wells of a 96-well plastic incubation vessel by the use of a Pasteur's pipet. The suspension was incubated in the atmosphere of 5% (v/v) carbon dioxide gas at 36°C. After one day, 7 days, and 14 days following the start of the incubation, the HAT culture medium was added one to two drops each to the wells.

Screening of antibody-producing cells

The purified elementary body of the Chlamydia pneumoniae YK 41 strain was solubilized with 1% (w/v) SDS, dialyzed against a 0.05M sodium bicarbonate buffer solution (pH 9.6) containing 0.02% of sodium azide, diluted until the protein concentration reached a level in the range of 1 - 10 µg/ml, dispensed 50 µl each to the wells of a 96-well EIA grade plate made of vinyl chloride, and left standing at rest overnight at 4°C to induce adsorption of the antigen. The supernatant was removed. 150 μl of the PBS containing 0.02% (w/v) Tween 20 was added to the wells and the plate was left standing at rest for three minutes. The wells were deprived of the PBS and cleaned. After the wells were given a cleaning treatment once more, 100 µl of the PBS containing 1% (v/v) bovine serum albumin was added to the wells and left standing at rest overnight at 4°C to effect blocking. The wells were deprived of the PBS containing the bovine serum albumin, cleaned twice in the same manner as above with the PBS containing 0.02% (w/v) Tween 20 and, after adding 50 µl of the culture supernatant of the fused cells, left at rest at room temperature for two hours. The wells were cleaned three times in the same manner as above with the PBS containing 0.02% (w/v) Tween 20 and, after adding 50 μl of the goat anti-mouse IgG antibody (25 ng/ml) labeled with peroxidase, left standing at rest at room temperature for two hours. The wells were cleaned three times in the same manner as above with the PBS containing 0.02% (w/v) Tween 20 and, after adding 50 µl of the ABTS solution (produced by KPL Corp.), left standing at rest at room temperature for 15 minutes - one hour to induce a coloring reaction. The contents of the wells were tested for absorbance at 405 nm by the use of a 96-well EIA plate grade photometer.

As a result, positive wells were detected and the supernatants of culture broth in these wells were found to contain an antibody capable of reacting the elementary body. The cells in these wells were recovered severally with the Pas-

layers, the aqueous layer was recovered (for extraction of DNA). This procedure of extraction was repeated once more. The aqueous layer and 2 μl of a 10 mg/ml RNase solution added thereto were incubated at 37 °C for two hours to effect decomposition of RNA. The incubated solution and 300 µl of a mixed solution consisting of a phenol-saturated 0.1M tris-hydrochloride buffer (pH 8.0), chloroform, and isoamyl alcohol at a volumetric ratio of 25:24:1 (hereinafter referred to as "PCI") were thoroughly stirred with a vortex mixer. The resultant mixture was centrifuged at 4 °C at 12,000 rpm for five minutes. From the separated layers, the aqueous layer was recovered. This procedure was repeated until a fifth

One part by volume of the resultant solution and 1/10 part by volume of an aqueous 10M ammonium acetate solution and two parts by volume of ethanol added thereto were left standing for five minutes to effect precipitation of DNA. The resultant mixed solution was centrifuged at 4 °C at 12,000 rpm for five minutes. The sediment plus 600 μl of an aqueous 70% ethanol solution was thoroughly stirred and centrifuged at 4 °C at 12,000 rpm for five minutes to effect purification. This procedure was repeated twice more. The contents of the centrifuging tubes were left standing for 15 minutes with the lids of the tubes kept open to dry the sediment. The dry sediment was dissolved with 200 µl of TE and the resultant solution was put to storage at -20 °C.

(E) Preparation of genome DNA expression library

15

One hundred (100) μl of a genome DNA solution and 10 μl of a restriction endonuclease grade M-buffer and 10 μl of a restriction endonuclease mixed solution (obtained by mixing 0.4 μl each of Accl, Hae III, and 1/50 dilution Alul with 20 μl of TE) added thereto were left reacting at 37 °C for 20 minutes. The reaction time of 20 minutes mentioned above was a duration necessary for DNA to be decomposed into partially digested DNA fractions of sizes ranging from 1 kbp through 7 kbp. It was empirically found in advance by using a small amount of genome DNA. The resultant reaction solution and 100 µl of PCI added thereto were thoroughly stirred with a vortex mixer and the produced mixture was centrifuged at 4 °C at 12,000 rpm for five minutes. The aqueous phase was recovered from the separated layers consequently obtained. The recovered aqueous layer and 10 μl of an aqueous 3M sodium acetate solution and 220 μl of ethanol added thereto were left standing at -80 °C for 15 minutes to effect precipitation of partially digested DNA. The produced mixed solution was centrifuged at 4 °C at 12,000 rpm for five minutes. From the separated layers, the supernatant was discarded. The sediment was mixed with 600 µl of an aqueous 70% ethanol solution and the produced mixture was again centrifuged at 12,000 rpm for five minutes. The supernatant was discarded and the sediment was dried under a reduced pressure.

The partially digested DNA consequently obtained was dissolved in 20 µl of purified water. The amount 19 µl of the DNA solution and 14 μl of a linker (20 pmole/μl) represented by the following base sequence, 4.5 μl of 10 mM ATP, 4.5 μl of a 0.2M tris-hydrochloride buffer (pH 7.6; hereinafter referred to as "tenfold concentration ligation grade buffer") containing 50 mM MgCl₂, 50 mM dithiothreitol, and 500 μg/ml bovine serum albumin, 2 μl of purified water, and 1 μl of T4 ligase added thereto were left reacting at 16 °C for four hours to effect addition of the linker.

5'-AATTCGAACCCCTTCG-3'

3'-GCTTGGGGAAGCp-5'

The partially digested DNA adding the linker as described above was treated with a column (Chroma Spin 6000) using a 10 mM tris-hydrochloride buffer containing 0.1M NaCl and 1 mM EDTA as a migration phase. From the eluate, fractions each of two drops were separated. Each fraction was partly analyzed by 0.8% agarose gel electrophoresis to recover a fraction containing DNA segments of sizes from 1 kbp through 7 kbp. The amount 144 μl of the produced fraction and 13 µl of purified water, 20 µl of 10 mM ATP, 20 µl of a 0.5M tris-hydrochloride buffer (pH 7.6 maximum; hereinafter referred to as "tenfold concentration phosphorization grade buffer") containing 0.1M MgCl₂, 50 mM dithiothreitol, 1 mM spermidine hydrochloride, and 1 mM EDTA, and 3 µl of T4 polynucleotide kinase added thereto were left reacting at 37 °C for 30 minutes to effect phosphorization of the 5' terminal of the DNA fragment. The resultant reaction solution and 200 µl of PCI added thereto were thoroughly mixed by shaking. The produced mixture was centrifuged at 4 °C at 12,000 rpm for five minutes. From the separated layers, the aqueous layer was recovered. The aqueous phase was made to precipitate nucleotide by addition of 1 μl of an aqueous 20 mg/ml glycogen solution, 20 μl of an aqueous 3M sodium acetate solution, and 400 µl of ethanol. The produced solution was centrifuged at 4 °C at 12,000 rpm for 10 minutes. The supernatant was discarded. The sediment was mixed with 200 μl of 70% ethanol and again centrifuged. From the separated layers, the supernatant was discarded. The sediment was air dried and then dissolved in, 1 µl of purified water.

The amount 0.6 μ l of the resultant aqueous solution and 1 μ l of λ gtll DNA (1 μ g/ μ l, produced by Stratagene Corp.) cleaved in advance with a restriction endonuclease EcoRI, 0.5 μl of a tenfold concentration ligation grade buffer, 0.5 μl of 10 mM ATP, 0.4 µl of T4 ligase, and 2 µl of purified water added thereto were left reacting overnight at 4 °C. Then, the recombinant λ gtll DNA consequently obtained was packaged by the use of a packaging kit (produced by Stratagene Corp. and marketed under trademark designation of Gigapack II Gold").

of identification of subclass, the subclass of this antibody was found to be IgG.

(G) Cloning of DNA coding for antigenic polypeptide

One platinum loop full of the Y1090r-strain of Escherichia coli was inoculated to an LB (containing 5 g of NaCl, 10 g of polypeptone, and 5 g of yeast extract per liter of water) culture medium containing 0.2% maltose and 50 μ g/ml of ampicillin and shaken cultured at 37 °C overnight. The resultant culture solution was centrifuged at 2,000 rpm for 10 minutes. The sediment (Escherichia coli) was mixed with 9 ml of an aqueous 10 mM MgSO 4 solution. The amount 0.35 ml of the Escherichia coli suspension and 0.1 to 10 μ l of the λ gtll (DNA library) suspension added thereto were incubated at 37°C for 20 minutes to infect the Escherichia coli with λ gtll. The λ gtll-infected Escherichia coli mentioned above was added to 2.5 ml of a liquid LB agar culture medium kept warmed in advance at 47 °C and the resultant mixture was scattered on an LB agar culture medium. After the upper-layer culture medium was solidified, the entire culture medium was cultured at 42 °C for three to four hours. At the time that a plaque was observed, a nitrocellulose filter (containing perforations 82 mm in diameter) immersed in advance in an aqueous 10 mM IPTG solution was mounted in the upper-layer agar culture medium. Then, the whole culture medium was cultured at 37 °C for 12 hours. With a syringe having the tip of the nozzle thereof smeared with black ink, the filter was pierced at three asymmetrical points selected as marks on the filter. Then, the filter now bearing the marks of the black ink was extracted from the agar culture medium and washed three times with a 20 mM tris-hydrochloride buffer (pH 7.5) containing 150 mM NaCl and 0.1% Tween 20 (hereinafter referred to as "TTBS buffer"). The residual agar culture medium was put to storage in a refrigerator.

The filter was immersed in a 0.1% bovine serum albumin-containing solution of a 20 mM tris-hydrochloride buffer (pH 7.5) containing 150 mM NaCl (hereinafter referred to as "TBS buffer") and shaken at 37 °C for one hour to effect a blocking reaction thereon. Then, the filter was washed twice with the TTBS buffer, immersed in the 10 µg/ml TTBS solution of a monoclonal antibody specific to <u>Chlamydia pneumoniae</u>, and shaken at 37 °C for one hour. The filter was washed three times with the TTBS buffer and then shaken in a peroxidase-labelled anti-mouse IgG antibody solution (TTBS buffer, 50 ng/ml) at 37 °C for one hour. The filter was washed three times with the TTBS buffer and three times with the TBS buffer, then immersed in a color ground substance solution (prepared by adding 60 µl of an aqueous 30% hydrogen peroxide solution and 20 ml of a methanolic 0.3% 4-chloro-1-naphthol solution to 100 ml of the TBS buffer), and left standing therein at room temperature for about 30 minutes. At the time that the filter was thoroughly colored, this filter was extracted from the solution, washed with purified water, and air-dried.

The plaques formed on the agar culture medium at the positions corresponding to the colored spots on the filter were searched out and identified. The relevant portions of the agar were pierced with a Pasteur pipet to recover the plaques. Each recovered plaque was placed in a 50 mM tris-hydrochloride buffer (pH 7.5) containing 0.1 M NaCl, 8 mM magnesium sulfate, and 0.01% gelatin (hereinafter referred to as "SM buffer") and one drop of chloroform, and left standing therein at 4 °C overnight to effect extraction of the λ phage from the plaque. The procedure just described was repeated until the plaque wholly reacted with the monoclonal antibody mentioned above to obtain a clone of the DNA coding for the antigen polypeptide.

As a result, the λ phage which expressed a <u>Chlamydia pneumoniae</u>-specific antigen polypeptide reactive with a <u>Chlamydia pneumoniae</u>-specific monoclonal antibody was obtained and designated as 53-3S λ phage.

(H) Culture of 53-3S λ phage and purification of DNA

40

Plaques were formed by following the procedure described in (F) above. One of the plaques was recovered, placed in 100 μ l of the SM buffer, and left standing therein at 4 °C overnight to effect extraction of the λ phage. In the LB culture medium in which 250 μ l of the Y1090r- strain of Escherichia coli was cultured overnight, 5 to 10 μ l of the λ phage solution was placed and left standing therein at 37 °C for 20 minutes to effect infection of the Escherichia coli with the λ phage. The infected Escherichia coli was inoculated to 50 ml of the LB culture medium containing 10 mM magnesium sulfate and kept warm in advance at 37 °C and shaken cultured therein at 37 °C for five to seven hours until the bacteriolysis of the Escherichia coli by the λ phage occurred. The resultant culture solution, after adding 250 μ l of chloroform, was centrifuged at 3,000 rpm for 10 minutes to effect removal of the residual cells of Escherichia coli and obtain a suspension of the λ phage. The λ phage DNA was purified by the use of a special device (produced by Promega Corp. and marketed under trademark designation of "Wizard λ Preps Kit").

(I) Amplification of DNA coding for Chlamydia pneumoniae antigenic polypeptide

A 600 μ l grade microtube was charged with 61.5 μ l of purified water, 10 μ l of a tenfold concentration of reaction buffer (a tris-hydrochloride buffer, pH 8.3, containing 500 mM KCl, 15 mM MgCl₂, and 0.01% gelatin), 1 μ l of 20 mM dNTP, 0.1 μ l of 53-3S λ phage DNA solution, 1 μ l of 20 nM λ gtll forward primer (produced by Takara Shuzo Co., Ltd.), 1 μ l of 20 nM λ gtll reverse primer (produced by Takara Shuzo Co., Ltd.), and 0.5 μ l of AmpliTaq DNA Polymerase, with

teur's pipet, transferred to a 24-well plastic incubation vessel and, after adding 1 - 2 ml of the HAT culture medium, incubated in the same manner as above.

Cloning by limiting dilution method

The fused cells propagated in the 24-well plastic incubation vessel were tested for cell concentration and diluted with the HT culture medium to adjust the number of cells to 20/ml. Separately, the thymocytes of 4- to 6-week old mice suspended in the HT culture medium were dispensed to a 96-well plastic culture vessel at a rate of 2 x 10⁵/well and, after adding the aforementioned fused cells (cell concentration 20/ml) at a rate of 50 µl/well, incubated in an atmosphere of 5% (v/v) carbon dioxide gas at 36°C. After 1 day, 7 days, and 14 days following the start of the incubation, the HT culture medium was added to the culture vessel at a rate of 1 to two drops/well. From the wells observed to have propagated cells, the supernatant of the culture broth was recovered in a fixed volume of 50 µl per well and then analyzed in the same manner as above to confirm the production of an antibody.

From the wells in which only one cell colony was present, cells producing an antibody able to react with the elementary body and showing quick propagation were recovered and allowed to continue propagation in a 24-well plastic culture vessel. The same cloning procedure was repeated until a hybridoma AY6E2E8 was ultimately obtained.

Production of monoclonal antibody

20

50

55

The hybridoma AY6E2E8 was cultured in a 75 cm² plastic cell culture flask holding therein 20 ml of the RPMI 1640 culture medium containing 10% (v/v) bovine fetal serum. From the culture broth formed in the flask, a sample, 16 - 18 ml in volume, was extracted at intervals of three to four days. The residual culture broth was meanwhile replenished to a total volume of 20 ml with a fresh supply of the RPMI 1640 culture medium containing 10% (v/v) bovine fetal serum. Thus, the subculture of the hybridoma was continued. The samples extracted from the culture broth were centrifuged at 1200 rpm for five minutes to recover the supernatant (the culture supernatant containing the monoclonal antibody).

To a Balb/c mouse which had received intra-abdominal injection of 0.5 ml of pristane two weeks in advance of the experiment, the hybridoma strain suspended in the PBS at a concentration of $1 - 5 \times 10^6$ /ml was intra-abdominally injected in a volume of 1 ml. After three weeks thence, the ascites was recovered from the Balb/c mouse and centrifuged at 1200 rpm for five minutes to recover the supernatant (ascites containing the monoclonal antibody).

Identification of subclass of monoclonal antibody

The subclass of the monoclonal antibody was identified with the ISOTYPE Ab-STAT (produced by Sang Stat Medical Corp.). As a result, the subclass of the monoclonal antibody produced by the hybridoma AY6E2E8 was identified to be IgG2b.

Purification of monoclonal antibody

The monoclonal antibody produced by the hybridoma AY6E2E8 was purified as follows. A mixture of 1 part by volume of the monoclonal antibody-containing ascites obtained by injecting the hybridoma AY6E2E8 intra-abdominally to the mouse with 3 parts by volume of PBS was centrifuged at 3000 rpm for ten minutes. The resultant supernatant was passed through a filter, 0.22 µm in pore size. The filtrate was purified by the HPLC using Chromatop Superprotein A Column (4.6 mm Diam. x 100 mm, produced by NGK Insulators Ltd. This column was equilibrated with the PBS in advance of the treatment.

A sample, 1 ml in volume, of the filtrate emanating from the 0.22 µm filter was injected into the column. The column was washed by passing the PBS first at a flow rate of 1 ml/min for three minutes and then at a flow rate of 5 ml/min for four minutes. The monoclonal antibody adsorbed on the column was eluted by passing a solution of 8.77 g of NaCl, 16.7 g of citric acid (monohydrate), and 14.72 g of Na2HPO4 • 12H2O in 1 liter of purified water through the interior of the column at a flow rate of 2 ml/min for five minutes. The fractions of the desorbed monoclonal antibody were gathered and diluted with a TTBS solution.

The elementary body of Chlamydia pnuemoniae was dissolved to obtain the peptide contained in the elementary body. The peptide and the monoclonal antibody mentioned above were subjected to the Western blotting to determine the specificity of the acquired monoclonal antibody.

As a result, the acquired monoclonal antibody was found to be capable of recognizing the Chlamydia pneumoniae

53 kDa antigen polypeptide.

A hybridoma 70 was acquired in the same manner as the hybridoma AY6E2E8. When the monoclonal antibody producing the hybridoma 70 was t sted for specificity by following the procedure described above, it was found that this monoclonal antibody was capable of recognizing the Chlamydia pneumoniae 73 kDa antigen polypeptide.

When the monoclonal antibody produced by the hybridoma 70 was examined in the same manner as above by way

centrifuged to obtain a precipitate. This precipitate and 5 μ I of the Hind III cassette DNA (20 ng/ μ I) in the PCR in vitro Cioning Kit (proprietary designation of Takara Shuzo Co., Ltd.) and 15 μ I of ligation solution added thereto were kept together at 16°C for 30 minutes.

The resultant reaction solution was extracted from phenol. The extract and ethanol added thereto are centrifuged together to acquire a precipitate. This precipitate was dissolved in 10 μ l of purified water.

The resultant solution and 78.5 μ l of purified water, 10 μ l of a PCR grade buffer concentrated to 1/10 times the original volume, 8 μ l of 2.5 mM dNTP, and 0.5 μ l (5 U/ μ l) of Taq polymerase added thereto and 1 μ l of a DNA possessing the base sequence of SEQ ID No. 26 (20 pmol/ μ l) and 1 μ l of a DNA possessing the base sequence of SED ID No. 28 (20 pmol/ μ l) (enclosed as Primer Cl in the aforementioned kit) further added thereto as primer DNA's were placed together in a microtube, 0.6 ml in volume, with two drops of mineral oil superposed on the resultant mixture in the microtube. The mixture was subjected to 30 temperature cycles each consisting of 30 seconds at 94°C, 2 minutes at 55°C, and 3 minutes at 72°C. This procedure will be referred to hereinafter as "PCR process."

One (1) μ l of the reaction solution resulting from the PCR process and 1 μ l of a DNA possessing the base sequence of SEQ ID No. 27 (20 pmol/ μ l) and 1 μ l of a DNA possessing the base sequence of SED ID No. 29 (20 pmol/ μ l) (enclosed as Primer C2 in the aforementioned kit) added thereto as primer DNA's were subjected to the PCR process.

The reaction solution resulting from the second PCR process was subjected to electrophoresis with 1.2% low melting agarose gel to separate an agarose gel containing a DNA, about 1.4 kbp in size. The Wizard PCR Prep kit (Promega Corp) was used for the purification of the DNA. The separated agarose gel and the buffer solution enclosed in the kit were together heated to dissolve the agarose gel. The purifying resin enclosed in the kit was added to the resultant solution to adsorb the DNA. The resultant mixture was centrifuged to obtain the purifying resin as a precipitate. The precipitate was washed with propanol and centrifuged again to obtain a precipitate. Purifying water was added to the precipitate to dissolve the DNA out of the purifying resin. The resultant mixture was centrifuged to obtain a supernatant (aqueous DNA solution). The process described above will be referred to herein below as "DNA purifying process."

The acquired aqueous DNA solution was caused to undergo a sequence reaction by the fluorescence-labeled terminator sequence method using the Taq DNA polymerase templated by the contained DNA and was analyzed for the base sequence of DNA with a DNA sequencer, Model 373A, (Applied Biosystems Corp.). The DNA base sequence consequently obtained was compiled and ligated by the software for gene sequence analysis (produced by Hitachi Software Engineering Co., Ltd. and marketed under trademark designation of "DNASIS") to estimate the amino acid translation region. The process just described will be referred to herein below as "base sequence analyzing process."

When the acquired DNA was analyzed for base sequence, it was found that this DNA possessed about 50 bp of base sequences on the 3' terminal side of the DNA encoding the antigen polypeptide of Chlamydia pneumoniae acquired in Example 1. It was further found that about 0.7 kb of coding region containing a stop codon existed on the downstream side of the base sequence.

A DNA possessing the base sequence of SEQ ID No. 30 was synthesized as a primer corresponding to the upstream part of the DNA encoding the antigen polypeptide of Chlamydia pneumoniae based on the base sequence of SEQ ID No. 9 and a DNA possessing the base sequence of SEQ ID No. 31 was synthesized as a primer corresponding to the downstream part of the DNA encoding the antigen polypeptide of Chlamydia pneumoniae based on the base sequence containing the aforementioned about 0.7 kb of code zone severally by the use of the DNA synthesizer.

The PCR process was performed on 1 μ I of the DNA possessing the base sequence of SEQ ID No. 30 DNA and 1 μ I of the DNA possessing the base sequence of SEQ ID No. 31 as a primer DNA by using 1 μ I of the aqueous solution of the genome DNA of the Chlamydia pneumoniae YK 41 strain obtained in Example 1.

The DNA purifying process mentioned above was carried out on the reaction solution resulting from the third round of the PCR process to obtain about 1.5 kbp of DNA.

The base sequence analyzing process mentioned above was carried out on the acquired aqueous solution of DNA. When the base sequence of the acquired DNA was analyzed, it was found that this DNA possessed the base sequence of SEQ ID No. 3 and encoded the amino acid sequence of SEQ ID No. 1.

DNA coding for the entire 53KDa antigenic polypeptide of <u>Chlamydia pneumoniae</u> was obtained by effecting a genome walking by the use of the plasmid pCPN533a and the DNA library of λ gtll.

Example 4: Preparation of recombinant vector containing DNA coding for entire 53KDa antigenic polypeptide of Chlamydia pneumoniae and preparation of transformant carrying the vector

The recombination vector containing the DNA coding for the whole Chlamydia pneumoniae 53 kDa antigen polypeptide and the transformant containing the vector can be manufactured as follows.

A recombinant vector containing a DNA coding for the entire 53KDa antigenic polypeptide of <u>Chlamydia pneumoniae</u> and a transformant carrying the vector are prepared by following the procedure of Example 2 using the DNA coding for the entire 53KDa antigenic polypeptide of <u>Chlamydia pneumoniae</u>.

two or three drops of mineral oil placed to form a top layer. The contents of the microtube were subjected to 30 circles of incubation, each consisting of 30 seconds' standing at 94 °C, 30 seconds' standing at 55 °C, and two minutes' standing at 73 °C to effect amplification of the DNA. After the reaction, the reaction solution was subjected to 1.2% low-melting temperature agarose gel electrophoresis to excise the amplified DNA. This amplified DNA was purified by the use of "Wizard PCR Prep Kit" (produced by Promega Corp.).

(J) Analysis for DNA base sequence

The analysis of the DNA for base sequence was effected by subjecting a sample to a sequence reaction in accordance with the fluorescence-labelled terminator cycle sequence method using a Taq DNA polymerase with a PCR-amplified DNA as a template and analyzing the reaction product by a DNA sequencer (produced by Applied Biosystems Corp. and marketed under product code of "Model 373A"). The DNA base sequence consequently obtained was examined by the gene sequence analysis soft (produced by Hitachi Software Engineering Co., Ltd. and marketed under trademark designation of "DNASIS") to estimate agglutination, ligation, and amino acid translation region. Consequently, the sequence was identified as SEQ ID No: 9.

The results of the analysis of the sequence of SEQ ID No: 9 show that about 60% of the amino acid sequence of the 53KDa antigenic polypeptide from the N terminal thereof toward the C terminal was elucidated.

The DNA which codes for the Chlamydia pneumoniae antigen polypeptide is specific to Chlamydia pneumoniae and it has been cloned by utilizing a monoclonal antibody recognizing the 53 Kda antigen polypeptide. Thus, this DNA apparently encodes the 53 kDa antigen polypeptide.

The search for homology of both the base sequence and the amino acid sequence of SEQ ID No: 9 was carried out in accordance with the GenBank data base confirmed absence of a known series exhibiting high homology.

Example 2: Preparation of recombinant vector containing DNA coding for polypeptide containing part of antigenic polypeptide of Chlamydia pneumoniae, and preparation of transformant carrying the vector.

Though the acquired DNA evidently coded for the 53 KDa antigen polypeptide as mentioned above, it was expressed as shown below to determine whether or not it would react with the antibody mentioned above by way of precaution.

A plasmid pBBK10MM was severed with restriction enzymes of BamHI and XhoI and subjected to 1.2% low melting temperature solution agarose gel electrophoresis to excise about 4.6 Kbp of DNA fragment. This fragment was purified. The synthetic DNA's of SEQ ID No: 11 and SEQ ID No: 12 were added each in an amount of 1 ng to 100 ng of the DNA fragment and they were ligated by the use of a DNA ligation kit (produced by Takara Shuzo Co., Ltd.) The resultant reaction product was placed in an Escherichia coli HB101 strain-competent cell (produced by Takara Shuzo Co., Ltd.) to prepare a transformant and acquire a plasmid, which was designated as pADA431. This plasmid was severed with a restriction enzyme MunI and then subjected to an alkali phosphatase reaction to effect removal of the 5' phosphoric acid base.

Separately, the 53-3S λ phage DNA was severed with a restriction enzyme EcoRI. One hundred (100) ng of the pADA431 plasmid DNA severed with the restriction enzyme Munl mentioned above was added to 50 ng of the DNA fragment and they were ligated in the same manner as described above to prepare a transformant and acquire a plasmid incorporating therein the restriction enzyme EcoRI fragment of 53-3S λ phage DNA, which was designated as pCPN533 α. This plasmid was a DNA of a length of about 5.7 kbp possessing a base sequence of SEQ ID No: 10 and was capable of expressing the polypeptide containing part of 53K antigenic polypeptide with a host Escherichia coli. The base sequence of the DNA coding for the polypeptide containing part of the 53K antigenic polypeptide was shown by SEQ ID No: 2. An Escherichia coli carrying the plasmid pCPN533a was subjected to culture, electrophoresis, transfer to a nitrocellulose membrane, and detection with a monoclonal antibody in the same manner as described above. As a result, the occurrence of a colored band corresponding to the polypeptide mentioned above was visually conformed. This fact indicates that the Escherichia coli carrying the plasmid pCPN533a expressed the 53K antigenic polypeptide capable of reacting with a monoclonal antibody specifically reactive with Chlamydia pneumoniae.

Example 3: Acquisition of DNA coding for the entire 53KDa antigenic polypeptide of Chlamydia pneumoniae

A DNA possessing base sequences of SEQ ID Nos. 26 and 27 was synthesized based on the base sequence of SEQ ID No. 9 by the use of a DNA synthesizing device.

Ten (10) μ I of the aqueous solution of genome DNA of the Chlamydia pneumoniae YK 41 strain (DNA content: about 1 μ g) obtained in Exampl 1 and 5 μ I of a K buffer concentrated to 1/10 times the original volume, 35 μ I of purified water, and 5 μ I of a limiting enzyme Hind III (19 U/ μ I) added thereto were kept together at 37°C for three hours.

The resultant reaction solution was extracted from phenol. The extract and ethanol added thereto were together

(D) Screening of antibody-producing cells

The antigenic polypeptide mentioned above is suspended in a 0.05M sodium bicarbonate suspension (pH 9.6) containing 0.02% (w/v) sodium azide so as to set the protein concentration in the range of from 1 to 10 μg/ml. The resultant suspension is dialyzed against a 0.05M sodium bicarbonate buffer (pH 9.6) containing 0.02% of sodium azide. The dialyzate is diluted so as to set the protein concentration in the range of from 1 to 10 µg/ml. The diluted dialyzate is dispensed at a rate of 50 µl to each of the wells of a 96-well plate for EIA made of vinylchloride and left standing therein at 4 °C overnight to effect adsorption of the antigen. The supernatant consequently formed is removed from the wells. To each of the wells, 150 µl of PBS containing 0.02% (w/v) Tween 20 is added, left standing therein for three minutes, then removed, and washed. The washing is repeated once more. To the well, 100 μl of PBS containing 1% (v/v) bovine serum albumin is added and left standing at 4 °C overnight to effect blocking. The PBS containing the bovine serum albumin is removed and then washed twice more with the PBS containing 0.02% (w/v) Tween 20 in the same manner as described above. Then, 50 µl of the culture supernatant of fused cells is added to the well and left standing therein at room temperature for two hours. The well is washed three times with the PBS containing 0.02% (w/v) Tween 20 in the same manner as described above. In the well, 50 µl of a goat anti-mouse IgG antibody labelled with peroxidase (25 ng/ml) is placed and left standing at room temperature. The well is washed three times with the PBS containing 0.02% (w/v) Tween 20 in the same manner as described above. In the well, 50 µl of an ABTS solution (produced by KPL Corp.) is placed and left standing at room temperature for 15 minutes to one hour to effect a reaction of coloration. The culture solution in the well is tested for absorbance at 405 nm with the photometer for 96-well EIA plate. The cells in the positive wells are severally recovered with the Pasteur pipet, transferred into a 24-well plastic culture vessel and, after adding 1 to 2 ml of the HAT culture medium, cultured in the same manner as described above.

(E) Cloning by limiting dilution method

25

The fused cells of two strains propagated in a 24-well plastic culture vessel are tested for cell concentration and severally diluted with a HT culture medium until the number of cells decreased to 20/ml. Separately, the thymocytes of four- to six-weeks old mice suspended in the HT culture medium are dispensed at a rate of 1 to 2 x 10^5 /well to a 96-well plastic culture vessel and the fused cells mentioned above (cell concentration 20/ml) are dispensed at a rate of 50 μ l/well to the same culture vessel and cultured under an ambience of 5% (v/v) carbon dioxide gas at 36 °C. One day, seven days, and 14 days thereafter, the HT culture medium is added thereto at a rate of one to two drops per well. From each of the wells in which the growth of cells is observed, the culture supernatant is recovered in a fixed amount of 50 μ l. This supernatant is analyzed in the same manner as in (D) titled "Screening of antibody-producing cells" to confirm the production of an antibody therein.

The cells which allowed the occurrence of a single cellular colony in a well, produced an antibody capable of reacting with an elementary body, and achieved quick proliferation are recovered from the relevant wells and are subsequently proliferated in a 24-well plastic culture vessel. Further, a hybridoma producing an anti-Chlamydia pneumoniae antibody is obtained by repeating the same cloning process as described above. This hybridoma is cultured and the anti-Chlamydia pneumoniae antibody is produced from the resultant culture supernatant.

Example 7: Detection and determination of anti-<u>Chlamydia pneumoniae</u> antibody using an antigenic polypeptide as an antigen

The anti-Chlamydia pneumoniae antibody can be detected and measured by using the antigen polypeptide of this invention as an antigen as follows.

The polypeptide formed of the amino acid sequence of SEQ ID No: 1 is used as an antigenic polypeptide. It is fixed on a microtiter plate, made to add a PBS containing bovine serum albumin, and left standing overnight at 4 °C to effect blocking. The PBS containing the bovine serum albumin was removed and the well is washed twice with the PBS containing 0.02% (w/v) Tween 20. The blood serum from a patient is added to the well thereto and is left standing at room temperature for two hours. The resultant solution is removed and the well is washed three times with the PBS containing 0.02% (w/v) Tween 20 in the same manner as described above. In each of the wells, a peroxidase-labelled mouse antihuman IgG antibody is placed and left standing at room temperature for two hours. The solution in the well is removed and the well is washed three times with the PBS containing 0.02% (w/v) Tween 20 in the same manner as described above. In the well, an ABTS solution (produced by KPL Corp.) is placed and left standing at room temperature for 15 minutes to one hour to effect a reaction of coloration. The solution is then tested for absorbance at 405 nm by the use of a photometer for 96-well EIA plate.

Example 5: Preparation of DNA coding for 73K antigenic polypeptide of Chlamydia pneumoniae

A hybridoma 70 was acquired by the same method as used for the acquisition of a hybridoma AY6E2E8. The murine ascites was acquired by using the hybridoma 70. The supernatant of the ascites was analyzed for the quality of the monoclonal antibody contained therein. The results of this analysis indicate that this monoclonal antibody was specific to the antigen polypeptide of 73 KDa of Chlamydia pneumoniae.

A clone 70-2S λ phage was obtained by following the procedure of Example 1 while using a monoclonal antibody 70 in the place of the monoclonal antibody SCP53 or AY6E2E8. From the phage, a sequence of SEQ ID No: 13 was obtained

The results of the analysis of the sequence of SEQ ID No: 13 clearly indicate that about 90% of the amino acid sequence of the 73K antigenic protein of <u>Chlamydia pneumoniae</u> from the N terminal toward the C terminal thereof was clarified.

The search for homology of both the base sequence and the amino acid sequence of SEQ ID No: 13 was effected in accordance with the GenBank data base. The results of the search clearly show that these sequences exhibited high homology with the gene base sequence isolated from Chlamydia trachomatis [L. M. Sardinia et al: J. Bacteriol., Vol. 17., 335-341 (1989)].

Example 6: Production of anti-Chlamydia pneumoniae antibody using antigenic polypeptide of Chlamydia pneumoniae as antigen

The anti-Chlamydia pneumoniae antibody can be produced by using the antigen polypeptide of Chlamydia pneumoniae as follows.

(A) Culture and passage of myeloma cell strain

As a myeloma cell strain, P3X63Ag8.653 (ATCC CRL-1580) is cultured and passed in a RPMI1640 culture medium containing 10% (v/v) bovine fetal serum. Two weeks before the strain is subjected to cellular fusion, this strain is cultured for one week in the RPMI1640 culture medium containing 0.13 mM of 8-azaguanine, 0.5 µg/ml of a mycoplasma removing agent (produced by Dainippon Pharmaceutical Co., Ltd. and marketed under product code of "MC-210"), and 10% (v/v) bovine fetal serum. The subsequent one week is spent for culture in an ordinary culture medium.

(B) Immunization of mouse

10

20

25

The amount 200 μ I of a solution of the antigenic polypeptide mentioned above and having a protein concentration of 270 μ g/ml is emulsified by addition of 200 μ I of a Freund's complete adjuvant. The produced emulsion is hypodermically injected in an amount of 150 μ I into the back of a mouse (the date of this injection reckoned as 0th day). On the 14th day, 34th day, and 49th day, 100 μ I of a suspension of the antigenic polypeptide having a protein concentration of 270 μ g/ml is intraabdominally injected into the mouse. Further, 50 μ I of a suspension of the same antigenic polypeptide having a protein concentration of 800 μ g/ml is intraabdominally injected into the mouse on the 69th day and 100 μ I of the same suspension injected intraabdominally to the mouse on the 92nd day. On the 95th day, the mouse is sacrificed to extract the spleen. This spleen is utilized for cellular fusion.

(C) Cellular fusion

In a round-bottom glass tube, 10⁸ splenic cells obtained from the spleen mentioned above and 10⁷ myeloma cells are thoroughly mixed. The resultant mixture is centrifuged at 1,400 rpm for five minutes and, with the consequently formed supernatant removed therefrom, further mixed thoroughly. The produced mixture is added to 0.4 ml of a RPMI1640 culture medium containing 30% (w/v) polyethylene glycol and kept warmed in advance at 37 °C and left standing therein for 30 seconds. The culture medium now containing the mixture is centrifuged at 700 rpm for six minutes. The glass tube, after adding 10 ml of the RPMI1640 culture medium, is gently rotated so as to permit thorough mixture of the polyethylene glycol. The mixture is then centrifuged at 1,400 rpm for five minutes. The supernatant consequently formed is thoroughly removed. The sediment and 6 ml of the HAT culture medium added thereto are left standing for five minutes. The resultant mixture and 10 to 20 ml of the HAT culture medium added thereto are left standing for 30 minutes. The HAT culture medium is further added thereto in such an amount as to set a myeloma cell concentration at 3.3 x 10⁵/ml to obtain a suspension of cells. The suspension is dispensed at a rate of two drops to each of the 96-well plastic culture vessel by the use of a Pasteur pipet. The suspension is cultured under an ambience of 5% (v/v) carbon dioxide gas at 36 °C. Then, one or two drops of the HAT culture medium are added to each of the wells after the elapse of one day, seven days, and 14 days.

Example 8: Production of recombinant vector carrying DNA coding for fused protein of peptide containing DHFR and part of antigenic polypeptide of <u>Chlamydia pneumoniae</u> and production of transformant containing the recombinant vector

A plasmid pBBK10MM was severed with restriction enzymes of BamHI and XhoI and subjected to 1.2% low melting temperature solution agarose gel electrophoresis to excise about 4.6 Kbp of DNA fragment. This fragment was purified.

5

25

Separately, a 53-3S $\hat{\lambda}$ phage DNA was severed with a restriction enzyme EcoRI to obtain about 1.0 Kbp of DNA fragment similarly in a purified form. This DNA segment was further severed with a restriction enzyme Avall to obtain about 0.8 Kbp of a DNA segment similarly in a purified form. The amount 100 ng of about 4.6 Kbp of DNA segment, 100 ng of about 0.8 Kbp of DNA segment mentioned above, and 1 ng of each of the synthetic DNA's of SEQ ID Nos: 21 through 24 added thereto were subjected to DNA ligation by the use of the DNA ligation kit (produced by Takara Shuzo Co., Ltd.). The reaction product was placed in an <u>Escherichia coli</u> HB101 strain competent cell (produced by Takara Shuzo Co., Ltd.) to produce a transformant.

This transformant was spread on a LB agar culture medium containing 50 mg/L of ampicillin and cultured thereon at 37 °C for 24 hours. The Escherichia coli colony consequently obtained was inoculated to 3 ml of the LB culture medium containing 50 mg/L of ampicillin and then shaken cultured overnight at 37 °C. The plasmid vector was separated from the culture medium by the alkali lysis method, severed with a restriction enzyme Nrul, and analyzed by 0.8% agarose gel electrophoresis to select an Escherichia coli possessing a recombinant plasmid vector which had produced DNA segments of 616 bp and 4822 bp. The recombinant plasmid vector thus obtained was designated as pCPN533T. This-plasmid-vector-was-a-DNA-of-a-length-of-about-5.4-kbp-possessing a base sequence of SEQ ID No: 25. It was capable of expressing a fused protein having a polypeptide containing part of the 53KDa antigenic polypeptide of Chlamydia pneumoniae ligated to the C terminal of DHFR. The base sequence of the DNA coding for this fused protein was shown by SEQ ID No: 18. The amino acid sequence deduced from this base sequence was shown by SEQ ID No: 16.

Example 9: Recognition of fused protein of polypeptide containing DHFR and part of 53KDa antigenic polypeptide of Chlamydia pneumoniae

One platinum loop full of the HB101 strain of Escherichia coli retaining plasmid pCPN533T was inoculated to 3 ml of the LB culture medium containing 50 mg/l of ampicillin and shaken cultured overnight at 37°C. The amount 10 μl of the culture medium containing the Escherichia coli and 10 μ l of loading buffer (a 0.156M tris-hydrochloride buffer containing 0.01% of bromophenol blue, 10% of mercapto ethanol, 20% of glycerol, and 5% of SDS and having pH 6.8) added thereto were heated at 80 °C for five minutes. The resultant reaction solution was subjected to 5-20% polyacrylamide gradient gel electrophoresis. On the anode plate of a semi-dry blotting device, one filter paper wetted with a 0.3M tris aqueous solution containing 10% of methanol and 0.05% sodium dodecyl sulfate, one filter paper wetted with a 25 mM tris aqueous solution containing 10% of methanol and 0.05% of sodium dodecyl sulfate, one filter paper wetted with a 25 mM tris aqueous solution containing 10% of methanol and 0.05% of sodium dodecyl sulfate, one nitrocellulose membrane wetted with a 25 mM tris aqueous solution containing 10% of methanol, 0.05% of sodium dodecyl sulfate, and 40 mM aminocaproic acid, the polyacryl amide gel completely undergone the aforementioned electrophoresis and two filter papers wetted with a 25 mM tris aqueous solution containing 40 mM aminocaproic acid were superposed sequentially in the order mentioned. A cathode plate was set as opposed to the anode plate across the superposed filters and an electric current was passed through the filters at a current density of 2.5 mA/cm² for one hour to effect transfer of the protein in the polyacrylamide gel to the nitrocellulose membrane. The nitrocellulose membrane was placed in a TBS buffer containing 0.1% of bovine serum albumin and left standing therein at room temperature for not less than one hour to effect blocking. The nitrocellulose membrane was washed twice with the TTBS buffer and then shaken in a monoclonal antibody solution produced by the hybridoma SCP53 (in the 5 to 10 µg/ml TTBS buffer) at 37 °C for one hour. The nitrocellulose membrane was washed three times with the TTBS buffer and then shaken in an aqueous solution of an anti-mouse IgG antibody labelled with peroxidase (in the 50 ng/ml TTBS buffer) at 37 °C for one hour. The nitrocellulose membrane was washed three times with the TTBS buffer and then placed in a coloring ground substance solution (obtained by mixing 100 ml of the TBS buffer with 60 µl of an aqueous 30% hydrogen peroxide solution, and 20 ml of a methanolic solution of 4-chloro-1-naphthol) and left reacting at room temperature for 30 minutes. The nitrocellulose membrane was extracted, washed with purified water, and then air-dried. As a result, colored bands were observed at positions corresponding to sizes of fused protein. This fact indicates that the Escherichia coli possessing the plasmid pCPN533T expressed the fusion protein containing 53KDa antigen capable of reacting with the monoclonal antibody specifically reacting Chlamydia pneumoniae.

Example 10: Acquisition of DNA coding for entire 53KDa antigenic polypeptide of Chlamydia pneumoniae

The DNA encoding the whole 53 kDa antigen polypeptide of Chlamydia pneumoniae was already acquired in

Example 3. However, it was separately obtained the DNA as follows.

A DNA coding for the entire 53KDa antigenic polypeptide of Chlamydia pneumoniae was also obtained by effecting a genome walking by the use of the plasmid pCPN533T and the DNA library of λ gtll. When these DNAs were analyzed for base sequence, it was found to possess the 484th through 1947th base sequences of SEQ ID No: 17 and code for the 162nd through 649th amino sequences of SEQ ID No: 15.

Example 11: Production of recombinant vector carrying DNA coding for fused protein of DHFR and entire 53KDa antigenic polypeptide of Chlamydia pneumoniae and production of transformant containing the recombinant vector

The recombinant vector containing the DNA encoding the fused protein of DHFR and the whole 53 kDa antigen polypeptide of Chlamydia pneumoniae and the transformant containing the recombinant vector can be produced as follows.

A recombinant vector containing a DNA coding for the fused protein of the DHFR and the entire 53KDa antigenic polypeptide of Chlamydia pneumoniae is produced by following the procedure of Example 8 while using a DNA coding for the plasmid pBBK10MM and the entire 53KDa antigenic polypeptide of Chlamydia pneumoniae mentioned above and the transformant containing the recombinant vector was produced. The base sequence of the DNA coding for the fused protein is shown by SEQ ID No: 17 and the amino acid sequence deduced from this base sequence is shown by SEQ ID No: 15.

Example 12: Production of anti-Chlamydia pneumoniae antibody by use of fused protein as an antigen

The anti-Chlamydia pneumoniae antibody can be produced by using the fused protein of this invention as an anti-

A hybridoma producing an anti-Chlamydia pneumoniae antibody is obtained by following the procedure of Example gen as follows. 6 while using the fused protein mentioned above as an antigen for immunization. This hybridoma is cultured and the anti-Chlamydia pneumoniae antibody is produced from the culture supernatant consequently formed.

Example 13: Detection and determination of anti-Chlamydia pneumoniae antibody by using fused protein as antigen

The anti-Chlamydia pneumoniae can be detected and measured by using the fused protein of this invention as an 30 antigen as follows.

The polypeptide formed of the amino acid sequence of SEQ ID No: 15 is used as a fused protein. It is fixed on a microtiter plate, made to add a PBS containing bovine serum albumin, and left standing overnight at 4 °C to effect blocking. The PBS containing the bovine serum albumin is removed and the plate is washed twice with the PBS containing 0.02% (w/v) Tween 20. The blood serum from a patient is added to the wells and is left standing at room temperature for two hours. The well is washed three times with the PBS containing 0.02% (w/v) Tween 20 in the same manner as described above. In each of the wells, a peroxidase-labelled mouse anti-human IgG antibody is placed and left standing at room temperature for two hours. The culture solution in the well is washed three times with the PBS containing 0.02% (w/v) Tween 20 in the same manner as described above. In the well, an ABTS solution (produced by KPL Corp.) is placed and left standing at room temperature for 15 minutes to one hour to effect a reaction of coloration. The culture solution is then tested for absorbance at 405 nm by the use of a photometer for 96-well EIA plate.

Example 14: Detection of Chlamydia pneumoniae gene by PCR method

A DNA formed of a base sequence of SEQ ID No: 19 and a DNA formed of a base sequence of SEQ ID No: 20 were chemically synthesized with a DNA synthesizing device produced by Applied Biosystems Corp and were designated respectively as Primer 53F2 and Primer 53R2.

The cells infected with the YK41 strain of Chlamydia pneumoniae or the L2 strain of Chlamydia trachomatis or the Bugd. 17-SL strain of Chlamydia psittaci were recovered by centrifugation. The cells plus 0.1 ml of a 50 mM tris-hydrochloride buffer (pH 8.3) containing 50 mM of KCl, 2.5 mM of MgCl₂, 0.1 mg/ml of gelatin, 0.45% of Nonidet P40, 0.45% of Tween 20, and 0.1 mg/ml of proteinase K were kept warmed at 56 °C for one hour and then heated at 95 °C for 10 minutes to inactivate the proteinase K and obtain a sample containing the gene of relevant chlamydia.

One (1) μI of the sample was combined with 78.5 μI of purified water, 8 μI of an aqueous 2.5 mM dNTP solution, 10 μl of a 100 mM tris-hydrochloride buffer (pH 8.3) containing 500 mM of KCl and 15 mM of MgCl₂, 1 μl each of the aqueous solutions of 30 μ M Primer 53F2 and Primer 53R2 mentioned above, and 0.5 μ l of 5 U/ μ l of Taq polymerase. The resultant mixture was superposed by 50 μl of mineral oil and subjected to 30 cycles of a procedure which consisted of heating at 94 °C for 30 seconds, at 60 °C for 30 seconds, and at 72 °C for 60 seconds, cooling, and warming.

After the reaction was completed, 2 µl of the reaction solution was subjected to agarose gel electrophoresis, with the gel immersed in $0.5\,\mu\text{/ml}$ of ethidium bromide to make a band of DNA visible by irradiation of an ultraviolet light.

As a result, the sample obtained from the YK41 strain of <u>Chlamydia pneumoniae</u> was found to form a visible band of DNA of a size of 360 bp corresponding to a region interposed between the base sequence of Primer 53F2 and a base sequence complementary to the base sequence of Primer 53R2 in all the base sequences of SEQ ID No: 3. The samples obtained from the other strains were not found to form any visible band of DNA.

INDUSTRIAL APPLICABILITY

10

The antigenic polypeptide of this invention formed of a polypeptide A containing at least five continuous amino acid sequences in the polypeptides of SEQ ID No: 1 can be utilized as for the examination of an antibody of Chlamydia pneumoniae.

The antigenic polypeptide of this invention the polypeptide A of which is a polypeptide arising from the loss of 1 to 250 amino acids from the polypeptides of SEQ ID No: 1 has an amino acid sequence of a small length and, therefore, is enabled to increase the number of antigenic peptides which can be fixed as on a carrier. Thus, it can be utilized for the production of a diagnostic agent of high sensitivity.

The antigenic polypeptide of this invention the polypeptide A of which is a polypeptide resulting from the substitution of 1 to 100 amino acids in the polypeptides of SEQ ID No: 1 by other amino acids is capable of forming a structure only sparingly susceptible of the decomposition by a protease and, therefore, is excellent in stability as an antigen.

The antigenic polypeptide of this invention the polypeptide A of which is a polypeptide having an amino acid or 2 to 1000 amino acid sequences ligated to at least five continuous amino acid sequences in the polypeptides of SEQ ID No: 1 can be fixed as to a carrier by making use of the amino acid or 2 to 1000 amino acid sequences and, therefore, does not easily yield to decline or loss of the antigenecity by fixation.

The antigenic polypeptide of this invention the polypeptide A of which is a polypeptide formed of amino acid sequences of SEQ ID No: 1 possesses the whole of antigenic polypeptides specific to <u>Chlamydia pneumoniae</u> and, therefore, is highly suitable for the examination of antigens and for accurate diagnosis of infections involving <u>Chlamydia pneumoniae</u>.

The antigenic polypeptide of this invention the polypeptide A of which is a polypeptide formed of amino acid sequences of SEQ ID No: 2 or ID No: 5 possesses an antigenic part specific to <u>Chlamydia pneumoniae</u> and, therefore, is highly suitable for the examination of antigens and for accurate diagnosis of infections involving <u>Chlamydia pneumoniae</u>.

The DNA of this invention which is a DNA coding for any of the antigenic polypeptides mentioned above or a DNA complementary thereto can be utilized for the production of an antigenic polypeptide suitable for the examination of antigens of Chlamydia pneumoniae, the diagnosis of infections involving Chlamydia pneumoniae, and the like.

The DNA of this invention the base sequence of which is a base sequence of SEQ ID No: 3 codes for the whole of the antigenic polypeptide specific to <u>Chlamydia pneumoniae</u> can be utilized for the production of an antigenic polypeptide suitable for the examination of antibodies specific to <u>Chlamydia pneumoniae</u>.

The DNA of this invention the base sequence of which is a base sequence of SEQ ID No: 4 or ID No: 7 codes for the antigenic part specific to <u>Chlamydia pneumoniae</u> can be utilized for the production of an antigenic polypeptide suitable for the examination of antigens specific to <u>Chlamydia pneumoniae</u>.

The recombinant vector of this invention containing any of the DNA's mentioned above can be utilized for the production of an antigenic polypeptide suitable for the examination of an antibody of <u>Chlamydia pneumoniae</u> and the diagnosis of infections involving <u>Chlamydia pneumoniae</u>.

The recombinant vector of this invention which is a pCPN533a plasmid possessing a base sequence of SEQ ID No: 10 is capable of expressing a polypeptide possessing an antigenic part specific to <u>Chlamydia pneumoniae</u> and, therefore, can be utilized for the production of an antigenic polypeptide highly suitable as for the examination of antibodies specific to <u>Chlamydia pneumoniae</u>.

The transformant of this invention which contains any of the recombinant vectors mentioned above can be utilized for the production of an antigenic polypeptide suitable as for the examination of antibody specific to <u>Chlamydia pneumoniae</u>.

The method of this invention for the production of an anti-<u>Chlamydia pneumoniae</u> antibody which is characterized by using any of the antigenic polypeptides mentioned above as an antigen can be utilized for the production of a diagnostic agent for infections involving <u>Chlamydia pneumoniae</u>.

The method of this invention for the detection and determination of an anti-<u>Chlamydia pneumoniae</u> antibody which is characterized by using any of the antigenic polypeptides mentioned above as an antigen can be utilized for the examination of antibodies of <u>Chlamydia pneumoniae</u> and the diagnosis of infections involving <u>Chlamydia pneumoniae</u>.

Particularly when an antigenic polypeptide having an amino acid sequence of a small length is utilized, it manifests high sensitivity because it allows an increase in the number of antigenic polypeptides to be fixed as on a carrier.

When an antigenic polypeptide having amino acids inherent therein substituted by other amino acids is utilized for the detection and determination mentioned above, the results of the detection and determination are highly reliable because the antigenic polypeptide is capable of forming a structure only sparingly susceptible to decomposition by a protease and, consequently, excellent in stability.

When an antigenic polypeptide adding other amino acid sequences is utilized for the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the role ideally because it enables a polypeptide being used as an antigen to be fixed as on a carrier by making use of amino acids or 2 to 1000 amino acid sequences and only sparingly incurs decline or loss of the antigenicity due to the fixation.

When an antigenic polypeptide formed of amino acid sequences of SEQ ID No: 1 is utilized for the examination of antibodies or the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the examination or the diagnosis with perfect accuracy because a polypeptide being used as an antigen possesses the whole antigenic polypeptide specific to Chlamydia pneumoniae.

When an antigenic polypeptide formed of amino acid sequences of SEQ ID No: 2 or ID No: 5 is utilized for the examination of antibodies or the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the examination or the diagnosis with perfect accuracy because a polypeptide being used as an antigen possesses an antigenic part specific to Chlamydia pneumoniae.

The reagent of this invention for the detection and determination of an anti-Chlamydia pneumoniae antibody which contains any of the antigenic polypeptides mentioned above as an antigen ideally fits the examination of antibodies of Chlamydia pneumoniae and the diagnosis of infections involving Chlamydia pneumoniae.

Particularly, when an antigenic polypeptide having an amino acid sequence of a small length is utilized for the reagent, the reagent enjoys high sensitivity because it allows an increase in the number of antigenic polypeptides to be fixed as on a carrier.

When an antigenic polypeptide having amino acids inherent therein substituted by other amino acids is utilized for the detection and determination mentioned above, the results of the examination and determination are highly reliable because the antigenic polypeptide is capable of forming a structure only sparingly susceptible to decomposition by a protease and, as a result, excellent in stability.

Further, when an antigenic polypeptide adding other amino acid sequences is utilized for the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the role ideally because it enables a polypeptide being used as an antigen to be fixed as on a carrier by making use of amino acids or 2 to 1000 amino acid sequences and only sparingly incurs decline or loss of the antigenicity due to the fixation.

Then, when an antigenic polypeptide formed of amino acid sequences of SEQ ID No: 1 is utilized for the examination of antibodies or the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the examination or the diagnosis with perfect accuracy because a polypeptide being used as an antigen possesses the whole antigenic polypeptide specific to Chlamydia pneumoniae.

When an antigenic polypeptide formed of amino acid sequences of SEQ ID No: 2 or ID No: 5 is utilized for the examination of antibodies or the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the examination or the diagnosis with perfect accuracy because a polypeptide being used as an antigen possesses an antigenic part specific to Chlamydia pneumoniae.

The diagnostic agent of this invention which has any of the antigenic polypeptides mentioned above as an active component ideally fits the diagnosis of infections involving Chlamydia pneumoniae.

Particularly, when an antigenic polypeptide having an amino acid sequence of a short length is adopted for the agent, the agent enjoys high sensitivity because it allows an increase in the number of antigenic polypeptides to be fixed as on a carrier.

When an antigenic polypeptide having amino acids inherent therein substituted by other amino acids is utilized for the detection and determination mentioned above, the results of the examination and determination are highly reliable because the antigenic polypeptide is capable of forming a structure only sparingly susceptible to decomposition by a protease and, as a result, excellent in stability.

Further, when an antigenic polypeptide adding other amino acid sequences is utilized for the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the role ideally because it enables a polypeptide being used as an antigen to be fixed as on a carrier by making use of amino acids or 2 to 1000 amino acid sequences and only sparingly incurs decline or loss of the antigenicity due to the fixation.

Then, when an antigenic polypeptide formed of amino acid sequences of SEQ ID No: 1 is utilized for the examination of antibodies or the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the examination or the diagnosis with perfect accuracy because a polypeptide being used as an antigen possesses the whole antigenic polypeptide specific to Chlamydia pneumoniae.

When an antigenic polypeptide formed of amino acid sequences of SEQ ID No: 2 or ID No: 5 is utilized for the examination of antibodies or the diagnosis of infections involving Chlamydia pneumoniae, it fulfills the examination or the diagnosis with perfect accuracy because a polypeptide being used as an antigen possesses an antigenic part specific to Chlamydia pneumoniae.

The fused protein of this invention which has ligated to a polypeptide of SEQ ID No: 14 either directly or through the medium of an amino acid sequence a polypeptide A containing at least five continuous amino acid sequences in the polypeptides of SEQ ID No: 1 can be utilized as for the examination of antibodies of Chlamydia pneumoniae.

The fused protein of this invention the polypeptide A of which is a polypeptide arising from the loss of 1 to 250 amino acids from the polypeptides of SEQ ID No: 1 has an amino acid sequence of a small length and, therefore, is enabled to increase the number of antigenic peptides which can be fixed as on a carrier. Thus, it can be utilized for the production of a diagnostic agent of high sensitivity.

The fused protein of this invention the polypeptide A of which is a polypeptide resulting from the substitution of 1 to 100 amino acids in the polypeptides of SEQ ID No: 1 by other amino acids is capable of forming a structure only sparingly susceptible of the decomposition by a protease and, therefore, is excellent in stability as an antigen.

The fused protein of this invention which is a polypeptide formed of amino acid sequences of SEQ ID No: 15 is highly suitable for the examination of antibodies and the diagnosis of infections involving <u>Chlamydia</u> <u>pneumoniae</u> because it possesses the whole of antigenic polypeptides specific to <u>Chlamydia</u> <u>pneumoniae</u>.

The fused protein of this invention which is a polypeptide formed of amino acid sequences of SEQ ID No: 16 is highly suitable for the examination of antibodies and the diagnosis of infections involving <u>Chlamydia pneumoniae</u> because it possesses an antigenic part specific to <u>Chlamydia pneumoniae</u>.

The DNA of this invention which is a DNA coding for any of the fused proteins mentioned above or a DNA complementary thereto can be utilized for the production of a fused protein suitable for the examination of antibodies of Chlamydia pneumoniae, the diagnosis of infections involving Chlamydia pneumoniae, and the like.

The DNA of this invention the base sequences of which are base sequences of SEQ ID No: 17 can be utilized for the production of a fused protein suitable as for the examination of antibodies specific to <u>Chlamydia pneumoniae</u> because the fused protein coded for by this DNA possesses the whole of antigenic polypeptides specific to <u>Chlamydia</u> pneumoniae.

The DNA of this invention the base sequences of which are base sequences of SEQ ID No: 18 can be utilized for the production of a fused protein suitable as for the examination of antibodies specific to Chlamydia pneumoniae because the fused protein coded for by this DNA possesses an antigenic part specific to Chlamydia pneumoniae.

The recombinant vector of this invention which carries any of the DNA's mentioned above can be utilized for the production of a fused protein suitable for the examination of antibodies of <u>Chlamydia pneumoniae</u> and the diagnosis of infections involving <u>Chlamydia pneumoniae</u>.

The recombinant vector of this invention which is a pCPN533T plasmid can be utilized for the production of a fused protein highly suitable as for the examination of antibodies specific to <u>Chlamydia pneumoniae</u> because it is capable of expressing a fused protein possessing an antigenic part specific to <u>Chlamydia pneumoniae</u>.

The transformant of this invention which contains any of the recombinant vectors mentioned above can be utilized for the production of a fused protein suitable as for the examination of antibodies specific to Chlamydia pneumoniae.

The method of this invention for the production of an anti-<u>Chlamydia pneumoniae</u> antibody which is characterized by using any of the fused proteins mentioned above as an antigen can be utilized for the production of a diagnostic agent for infections involving <u>Chlamydia pneumoniae</u>.

The method of this invention for the detection and determination of an anti-<u>Chlamydia pneumoniae</u> antibody which is characterized by using any of the fused proteins mentioned above as an antigen is suitable for the examination of antibodies of <u>Chlamydia pneumoniae</u> and the diagnosis of infections involving <u>Chlamydia pneumoniae</u>.

Particularly, when a fused protein having an amino acid sequence of a short length is adopted for the method, the method enjoys high sensitivity because this fused protein allows an increase in the number of antigenic polypeptides to be fixed as on a carrier.

When a fused protein having amino acids inherent therein substituted by other amino acids is utilized for the detection and determination mentioned above, the results of the examination and determination are highly reliable because the fused protein is capable of forming a structure only sparingly susceptible to decomposition by a protease and, as a result, excellent in stability.

A fused protein which is formed of amino acid sequences of SEQ ID No: 15 is highly suitable for the examination of antibodies and the diagnosis of infections involving <u>Chlamydia pneumoniae</u> because a fused protein being used as an antigen possesses the whole of antigenic polypeptides specific to <u>Chlamydia pneumoniae</u>.

A fused protein which is formed of amino acid sequences of SEQ ID No: 16 is highly suitable for the examination of antibodies and the diagnosis of infections involving <u>Chlamydia pneumoniae</u> because a fused protein being used as an antigen possesses an antigenic part specific to <u>Chlamydia pneumoniae</u>.

The reagent of this invention which contains any of the fused proteins mentioned above as an antigen is suitable for the examination of antibodies of <u>Chlamydia pneumoniae</u> and the diagnosis of infections involving <u>Chlamydia pneumoniae</u>.

Particularly, when a fused protein having an amino acid sequence of a small length is utilized for the reagent, the reagent enjoys high sensitivity because it allows an increase in the number of antigenic polypeptides to be fixed as on a carrier.

When a fused protein having amino acids inherent therein substituted by other amino acids is utilized for the detection and determination mentioned above, the results of the examination and determination are highly reliable because the fused protein is capable of forming a structure only sparingly susceptible to decomposition by a protease and, as a

result, excellent in stability.

A fused protein which is formed of amino acid sequences of SEQ ID No: 15 is highly suitable for the examination of antibodies and the diagnosis of infections involving Chlamydia pneumoniae because a fused protein being used as an antigen possesses the whole of antigenic polypeptides specific to Chlamydia pneumoniae.

A fused protein which is formed of amino acid sequences of SEQ ID No: 16 is highly suitable for the examination of antibodies and the diagnosis of infections involving Chlamydia pneumoniae because a fused protein being used as an antigen possesses an antigenic part specific to Chlamydia pneumoniae.

The diagnostic medicine of this invention having any of the fused proteins mentioned above as an active component thereof is suitable for the examination of antibodies of Chlamydia pneumoniae and the diagnosis of infections involving Chlamydia pneumoniae.

Particularly, when a fused protein having an amino acid sequence of a small length is utilized for the agent, the agent enjoys high sensitivity because it allows an increase in the number of antigenic polypeptides to be fixed as on a carrier.

When a fused protein having amino acids inherent therein substituted by other amino acids is utilized for the detection and determination mentioned above, the results of the examination and determination are highly reliable because the fused protein is capable of forming a structure only sparingly susceptible to decomposition by a protease and, as a result, excellent in stability.

A fused protein which is formed of amino acid sequences of SEQ ID No: 15 is highly suitable for the examination of antibodies and the diagnosis of infections involving Chlamydia pneumoniae because a fused protein being used as an antigen possesses the whole of antigenic polypeptides specific to Chlamydia pneumoniae.

A fused protein which is formed of amino acid sequences of SEQ ID No: 16 is highly suitable for the examination of antibodies and the diagnosis of infections involving Chlamydia pneumoniae because a fused protein being used as an antigen possesses an antigenic part specific to Chlamydia pneumoniae.

The probe and the primer of this invention are suitable for the detection and determination of a Chlamydia pneumoniae gene and the diagnosis of infections involving Chlamydia pneumoniae.

Particularly, a probe and a primer which possesses base sequences of SEQ ID No: 19 or ID No: 20 can be utilized for accurate diagnosis of infections involving Chlamydia pneumoniae because they possess base sequences specific to Chlamydia pneumoniae.

The method of this invention for the detection and determination of a Chlamydia pneumoniae gene by the use of any of the probes or primers mentioned above is suitable for the diagnosis of infections involving Chlamydia pneumoniae.

The reagent of this invention for the detection and determination of a Chlamydia pneumoniae which contains any of the probes or the primers mentioned above is ideally suitable for the diagnosis of infections involving Chlamydia pneumoniae.

The diagnostic agent of this invention which has any of the probes or the primers mentioned above as an active component is ideally suitable for the diagnosis of infections involving Chlamydia pneumoniae.

26

35

40

45

50

Sequence Listing

5	INF	ORMA	TION	FOR	SEQ	DI	NO:	1:								
	(i) SEQUENCE CHARACTERISTICS:															
	(A) LENGTH: 488 amino acids															
10	(B) TYPE: amino acid															
	(ii) MO	LECU	LE T	YPE:	pep	tide									
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:															
	Met	Ser	Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile	Met
	1				5					10					15	
.20	-Ser	-Gln	-Va-l-	–Leu	-Thr	-Ser	Thr	Pro	-Gln	Gly	-Val	Pro	Gln	Gln	Asp	Lys
				20					25					30		
	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly	Lys
25			35					40		·			45			
	Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly	Lys
		50					55					60				
30	Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln	Gly
	65					70					75					80
35	Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala	Asp
					85					90					95	
	Thr	Gly	Val	Ser	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn	Thr	Ala	Thr
40				100					105					110		
	Lys	Ile	Ala	Met	Gln	Thr	Ser	Ile	Glu	Glu	Ala	Ser	Lys	Ser	Met	Glu
			115					120					125			
45	Ser	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gln	Met	Lys	Glu
		130					135					140				
50	Val	Glu	Ala	Val	Val	Val	Ala	Ala	Leu	Ser	Gly	Lys	Ser	Ser	Gly	Ser
	145					150					155					160
	Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	Arg

					165					170					175	
	Ser	Glu	Val	Ile	Glu	Ile	Gly	Leu	Ala	Leu	Ala	Lys	Ala	Ile	Gln	Thr
5				180					185					190		
	Leu	Gly	Glu	Ala	Ìhr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr	Gln
			195					200					205			
10	Ala	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	Ile
		210					215					220				
15	Lys	Ile	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	Glu
15	225					230					235					240
	Gln	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr	Val
20					245					250					255	
	Met	Ile	Ala	Val	Ser	Val	Ala	Ile	Thr	Val	Ile	Ser	Ile	Val	Ala	Ala
				260					265					270		
25	Ile	Phe	Thr	Cys	Gly	Ala	Gly	Leu	Ala	Gly	Leu	Ala	Ala	Gly	Ala	Ala
			275					280					285			
	Val	Gly	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Ala	Gly	Ala	Ala	Ala	Ala	Thr
30		290					295					300				
	Thr	Val	Ala	Thr	Gln	Ile	Thr	Val	Gln	Ala	Val	Val	Gln	Ala	Val	Lys
35	305					310					315					320
	Gln	Ala	Val	Ile	Thr	Ala	Val	Arg	Gln	Ala	Ile	Thr	Ala	Ala	Ile	Lys
					325					330					335	
40	Ala	Ala	Val	Lys	Ser	Gly	Ile	Lys	Ala	Phe	Ile	Lys	Thr	Leu	Val	Lys
				340					345					350		•
	Ala	Ile	Ala	Lys	Ala	Ile	Ser	Lys	Gly	Ile	Ser	Lys	Val	Phe	Ala	Lys
45			355					360					365			
	Gly	Thr	Gln	Met	Ile	Ala	Lys	Asn	Phe	Pro	Lys	Leu	Ser	Lys	Val	Ile
50		370					375					380				
50	Ser	Ser	Leu	Thr	Ser	Lys	Trp	Val	Thr	Val	Gly	Val	Gly	Val	Val	Val
	385					390					395		-			400

		Ala	Ala	Pro	Ala	Leu	Gly	Lys	Gly	Ile	Met	GIn	Met	Gin	Leu	Ser	GIU
=						405					410					415	
5		Met	Gln	Gln	Asn	Val	Ala	Gln	Phe	Gln	Lys	Glu	Val	Gly	Lys	Leu	Gln
					420	•				425					430		
10		Ala	Ala	Ala	Asp	Met	Ile	Ser	Met	Phe	Thr	Gln	Phe	Trp	Gln	Gln	Ala
				435					440					445			
		Ser	Lys	Ile	Ala	Ser	Lys	Gln	Thr	Gly	Glu	Ser		Glu	Met	Thr	Gln
15			450					455					460			• 2,	
		Lys	Ala	Thr	Lys	Leu	Gly	Ala	Gln	Ile	Leu		Ala	Tyr	Ala	Ala	
		465					470					475					480
20	-	.Ser	-G1 <u>y</u> -	Ala	-I·l·e-	Ala-	-Gl-y-	-A-l-a-	-A-l-a-						-		
						485			488		*						
25																	
		INFO	ORMAT	NOI	FOR	SEQ	ID I	NO: 2	2:								
		(i)	SEQU	JENCE	E CHA	ARACI	CERIS	STICS	S:								
30		(P	() LE	ENGTI	i:271	l ami	ino a	acids	5								
		(E	3) TY	PE:	amir	no ac	cid										
35		(ii)	MOI	ECUI	LE TY	PE:	pept	ide									
		(xi)	SEC	QUENC	E DE	ESCRI	PTIC	ON: S	SEQ I	D NC): 2:	:					
		Met	Ser	Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile	Met
40		1				5					10					15	
		Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp	Lys
					20					25					30		
45		Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly	Lys
				35					40					45			
50		Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly	Lys
			50					55					60				
		Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln	Gly
55																	

29

100010 .ED 070/050/11

<i>-</i>					70					75					80
65		Ala	G1	T		Sor	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala	Asp
. Val	Ala	Ala	GIY		GIU	Jer	501	-	90		-			95	
				85			_ •	mb		212	Sar) en	ፕ ክ r	Ala	Thr
Thr	Gly	Val	Ser	Gly	Ala	Ala	Ala		THE	Ala	261	HOII			
			100					105					110		
Lys	Ile	Ala	Met	Gln	Thr	Ser	Ile	Glu	Glu	Ala	Ser	Lys	Ser	Met	GIU
		115					120					125			
Ser	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gln	Met	Lys	Glu
	130					135					140				
Val	Glu	Ala	val	Val	Val	Ala	Ala	Leu	Ser	Gly	Lys	Ser	Ser	Gly	Ser
145					150					155					160
		Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	Arg
1120	-1-			165					170					175	
Cor	. Clu	Val	Tle		Ile	Glv	Leu	Ala	Leu	Ala	Lys	Ala	Ile	Gln	Thr
361	GIG		180			•		185					190		
		Glu			T	50*	λla			Asn	Tvr	Ala	Ser	Thr	Gln
Lev	ı Gly			Thr	гÃ2	Ser					-4-	205			
		195					200		- G1	Tan	C111			Ala	Tle
Ala	a Glr	a Ala	. Asp	Gln	Thr	Asn	Lys	Leu	GIY	Tea			G1.		
	210					215					220		_ •		5 1
Lys	s Ile	a Asp	Lys	Glu	Arg	Glu	Glu	Туг	Gln	Glu	Met	. Lys	: Ala	Ala	
225					230					235					240
Gli	n Lys	s Ser	Lys	s Asp	Leu	Glu	Gly	Thi	Met	: As	Thr	Val	Asn	Thr	· Val
				245	5				250)				255	,
Me ⁻	t Ile	e Ala	Ly:	s Gly	y Phe	G1v	ı Lev	ı Pro	Tr	G13	Pro	Lev	ılle	e Asr	1
			26					265						271	

INFORMATION FOR SEQ ID NO: 3:
(i) SEQUENCE CHARACTERISTICS:

	ł	'a) T	YPE:	nuc	leic	aci	d										
5	•		TRAN														
			DLECU					uc l e	ic a	cid.	Syn	thet	ic r	NA			
														••••			
10	-		QUEN														
	ATG	TCI	TTA	TCA	TCT	TCT	TCA	GGA	CCT	GAC	AAT	CAA	. AAA	AAT	ATC	ATG	48
15	Met	. Ser	. Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile	Met	
	1	•			5					10					15		
	TCT	CAA	GTT	CTG	ACA	TCG	ACA	CCC	CAG	GGC	GTG	CCC	CAA	CAA	GAT	AAG	96
- 20			-			-		-	-			-				-	
	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp	Lys	
				20					25					30			
25	CTG	TCT	GGC	AAC	GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	AAA	144
	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly	Lys	
30			35					40					45				
	AAC	ACT	GAG	ATG	GAA	AGC	GAT	GCC	ACT	ATT	GCT	GGT	GCT	TCT	GGA	AAA	192
35	Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	lle	Ala	Gly	Ala	Ser	Gly	Lys	•
		50					55					60					
40	GAC	AAA	ACT	TCC	TCG	ACT		AAA	ACA	GAA	ACA		CCA	CAA	CAG	GGA	240
40																	
	λsn	T.ve	Thr	Sar	502	Th -	Th-	Tire	Th-	Clu	The	λίο	Pro	Cln	Gin	Clu	
45	65	Lys	1111	361	361		1111	DÃ2	1111	GIU		. ATG	FIO	GIII	GIII		
						70					75					.80	-00
	GTT	GCT	GCT	GGG	AAA	GAA	TCC	TCA	GAA	AGT	CAA	AAG	GCA	GGT	GCT	GAT	288
50																	
	Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala	Asp	
					85					90		•			95		

	ACT	GGA	GI	A 7	ГСА	GGA	GCG	GCT	GCT	ACT	ACA	GCA	TCA	AAT	ACT	GCA	ACA	336	
	Thr	Gly	. Va			Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn	Thr	Ala	Thr		
0	AAA	ATI	· GC		100 ATG	CAG	ACC	TCT	ATT		GAG	GCG	AGC	AAA	AGT	ATG	GAG	384	
	Lys	Ile			Met	Gln	Thr	Ser	11e	Glu	Glu	Ala	Ser	Lys 125	Ser	Met	Glu		
15	TCT	ACC		15 TA	GAG	TCA	CTT	CAA	AGC	CTC	AGT	GCC	GCG		ATG	AAA	GAA	432	
20	Ser			eu	Glu	Ser	Leu			Leu	Ser	Ala	Ala	Gln	Met	Lys	Glu		
0.5	GTC	130 GA		CG	GTT	GTT	GTT	135 GCT		CTC	TCA	GGG		AGT	TCG	GGT	TCC	480)
25	Val	. Gl	u A	.la	Val	Val	Val	Ala	ı Ala	Leu	Ser			ser	Ser	Gly	Ser		
30	145 GCA		ΑΊ	TG	GAA	ACA	150 CCT		CTC	ccc	: AAG	155 CCC		GTG	ACA	CCA	160 AGA	528	3
35	Ala	a Ly	s I	ceu	Glu			Glu	ı Lev	Prc			Gly	· Val	Thr	: Pro	Arg		
	TC!	A GA	.G C	GTT	ATC	165 GAA		GG2	A CTO	GCC	170 CTI		AAA '	GC#	ATT		ACA	570	6
40	Se	r Gl	u s	Val			ı Ile	e Gly	y Le			ı Ala	ı Lys	: Ala	a Ile 190		n Thr		
4 5	TT	G GC	SA (GAA	180 GC0		A AA	A TC	T GC	185 TT		AA 1	TAT	r GC			A CAA	62	4
50	Le	u G	ly (Glu	ı Ala	a Thi	Ly:	s Se			u Se	r Ası	а Ту			r Th	r Gln		
	GC	A C		195 GCA		C CA	A AC	A AA	20 T AA		a GG	T CT	A GA	20 A AA		A GC	G ATA	67	'2

	Ala	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	Ile	
		210					215					220					
5	AAA	ATC	GAT	AAA	GAA	CGA	GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	GAA	720
10	Lys	Ile	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	Glu	
	225					230					235					240	
	CAG	AAG	TCT	AAA	GAT	CTC	GAA	GGA	ACA	ATG	GAT	ACT	GTC	AAT	ACT	GTG	768
15																	
	Gľn	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr	Val	
÷					245					250					255		
-20	ATG	ATC	GCG	GTT	TCT	GTT	GCC	ATT	ACA	GTT	ATT	TCT	ATT	GTT	GCT	GCT	816
																	,
25	Met	Ile	Ala	Val	Ser	Val	Ala	Ile	Thr	Val	Ile	Ser	Ile	Val	Ala	.Ala	
20				260					265					270			•
	ATT	TTT	ACA	TGC	GGA	GCT	GGA	CTC	GCT	GGA	CTC	GCT	GCG	GGA	GCT	GCT	864
30																	
	Ile	Phe		Cys	Gly	Ala	Gly		Ala	Gly	Leu	Ala		Gly	Ala	Ala	
			275					280					285				
<i>35</i>	GTA	GGT	GCA	GCG	GCA	GCT	GGA	GGT	GCA	GCA	GGA	GCT	GCT	GCC	GCA	ACC	912
	Val	_	Ala	Ala	Ala	Ala	_	Gly	Ala	Ala	Gly		Ala	Ala	Ala	Thr	
40		290					295					300					
	ACG	GTA	GCA	ACA	CAA	ATT	ACA	GTT	CAA	GCT	GTT	GTC	CAA	GCG	GTG	AAA	960
45																	
		Val	Ala	Thr	Gln		Thr	Val	Gln	Ala		Val	Gln	Ala	Val	-	
	305					310					315					320	
50	CAA	GCT	GTT	ATC	ACA	GCT	GTC	AGA	CAA	GCG	ATC	ACC	GCG	GCT	ATA	AAA	1008

	Gln	Ala	Val	Ile	Thr	Ala	Val	Arg	Gln	Ala	Ile	Thr	Ala	Ala	Ile	Lys	
					325					330					335		
5	GCG	GCT	GTC	AAA	TCT	GGA	ATA	AAA	GCA	TTT	ATC	AAA	ACT	TTA	GTC	AAA	1056
10	Ala	Ala	Val		Ser	Gly	Ile	Lys	Ala	Phe	Ile	Lys	Thr	Leu 350	Val	Lys	
			GCC	340						አጥC	ጥርጥ	AAG	GTT		GCT	AAG	1104
	GCG	ATT	GCC	AAA	GCC	ATT	101	AAA	GGA	AIC							
15										-1-	6	T 110	17-1	Phe	Δla	T.ve	
	Ala	Ile	Ala	Lys	Ala	Ile	Ser		Gly	lie	ser	гĀ2		FILE	Ald	БуЗ	
			355					360					365				1157
20	GGA	ACT	CAA	ATG	ATT	GCG	AAG	AAC	TTC	CCC	AAG	CTC	TCG	AAA	GTC	ATC	1152
							÷										
	Gly	Thr	Gln	Met	Ile	Ala	Lys	Asn	Phe	Pro	Lys	Leu	Ser	Lys	Val	Ile	
25		370					375					380					
	тCG	TCT	CTT	ACC	AGT	AAA	TGG	GTC	ACG	GTT	GGG	GTT	GGG	GTT	GTA	GTT	1200
30	Ser	Ser	Leu	Thr	Ser	Lys	Trp	Val	Thr	Val	Gly	Val	Gly	Val	Val	Val	
	385					390			,		395					400	
			CCT	GCT	CTC	GGT	AAA	GGG	ATT	ATG	CAA	ATG	CAG	CTC	TCG	GAG	1248
35	000																
	• • •			1 -	T ou	. C1v	, Tue	- Glv	Tle	Met	Glo	Met	Gln	Leu	ı Ser	Glu	
	Ala	. Ale	PIO	, WIT				. Ulj		410					415		
40					405								י ככא	222			1296
	ATG	CA	A CAA	AAC	GTC	: GCI	CAA	. TTT	CAG	, AAA	GAA	GIC	, GGA	·		CAG '	
45															_	6 1	
4 5	Met	Gli	n Glm	Asn	Val	Ala	Glr	Phe	Gln	Lys	Glu	ı Val	Gly			ı Gln	
				420)				425	,				430)		
50	GCT	GCC	G GCT	GAI	ATC	ATT	TCI	TATO	TTC	ACI	CA	A TTI	TGG	CA	A CAC	G GCA	1344
50																•	
	Ala	a Ala	a Ala	a Asp	Met	: Ile	e Ser	. Met	. Phe	Thi	Gli	n Phe	e Trp	9 G1:	n Glı	n Ala	
6 6																	
<i>5</i> 5																	

	435 440 445	
5	AGT AAA ATT GCC TCA AAA CAA ACA GGC GAG TCT AAT GAA ATG ACT CAA	1392
	Ser Lys Ile Ala Ser Lys Gln Thr Gly Glu Ser Asn Glu Met Thr Gln	
10	450 455 460	
	AAA GCT ACC AAG CTG GGC GCT CAA ATC CTT AAA GCG TAT GCC GCA ATC 1	440
15	Lys Ala Thr Lys Leu Gly Ala Gln Ile Leu Lys Ala Tyr Ala Ala Ile	
	465 470 475 480	
	AGC GGA GCC ATC GCT GGC GCA GCA	464
- 20 · -		
	Ser Gly Ala Ile Ala Gly Ala Ala	
	485 488	
25		
	INFORMATION FOR SEQ ID NO: 4:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:813	
35	(B) TYPE: nucleic acid	
3 3	(C) STRANDEDNESS: double	
	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	ATG TCT ATT TCA TCT TCT TCA GGA CCT GAC AAT CAA AAA AAT ATC ATG	48
45	Met Ser Ile Ser Ser Ser Gly Pro Asp Asn Gln Lys Asn Ile Met	
	1 5 10 15	
	TCT CAA GTT CTG ACA TCG ACA CCC CAG GGC GTG CCC CAA CAA GAT AAG	96
50	ord non red nen eee end dae dee enn enn dat nad	,,
	Sor Cla Val Jan Sha Car Sha Dao Cla Cla Val Dao Cla Cla Da	
	Ser Gln Val Leu Thr Ser Thr Pro Gln Gly Val Pro Gln Gln Asp Lys	
55		

				20					25					30				
5	CTG	TCT	GGC	AAC	GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	AAA		144
J	Leu	Ser	Gly	Asn	Ğlu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly	Lys		
			35					40					45					
10	AAC	ACT	GAG	ATG	GAA	AGC	GAT		ACT	ATT	GCT	GGT	GCT	TCT	GGA	AAA		192
	Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly	Lys		
75		50					55					60						
	GAC		ACT	TCC	TCG	ACT	ACA	AAA	ACA	GAA	ACA	GCT	CCA	CAA	CAG	GGA		240
20																		
	Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln	Gly		
	65					70					75					80		
25		GCT	GCT	GGG	AAA	GAA	TCC	TCA	GAA	AGT	CAA	AAG	GCA	GGT	GCT	GAT		288
30	Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser	Glu		Gln	Lys	Ala	Gly		Asp		
					85					90					95			
	ACT	GGA	. GTA	TCA	GGA	GCG	GCT	GCT	ACT	ACA	GCA	TCA	AAT	ACT	GCA	ACA	,	336
35	Thr	Gly	. Val	Ser	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn	Thr	Ala	Thr		
				100					105					110				
40	AAA	ATI	GCT	ATG	CAG	ACC	TCT	ATT	GAA	GAG	GCG	AGC	AAA	AGT	ATG	GAG		384
	Lys	Ile	e Ala	Met	Gln	Thr	Ser	Ile	Glu	Glu	Ala	Ser	Lys	Ser	Met	Glu		
45			115					120	ı				125					
	TCT	' ACC	TTA	GAG	TCA	CTI	CAA	AGC	CTC	AGT	GCC	GCG	CAA	ATG	AAA	GAA		432
50	Ser	Th	Lev	ı Glu	. Ser	: Leu	Gln	Ser	Leu	Ser	Ala	a Ala	Glr	. Met	. Lys	: Glu		
	502			- -	-							140						
		130	J				135	,					•					

	GTC	GAA	GCG	GTT	GTT	GTT	GCT	GCC	CTC	TCA	GGG	AAA	AGT	TCG	GGT	TCC	480
5	บรา	clu.	λla	V a 1	Va 1	Val	Ala	Ala	Leu	Ser	Glv	Lvs	Ser	Ser	Gly	Ser	
	145	GIU	YIG	Vai		150				•	155	-4			•	160	
		AAA	TTG	GAA	ACA	•	GAG	CTC	CCC	AAG	CCC	GGG	GTG	ACA	CCA	AGA	528
10																	
	Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	Arg	
15					165					170					175		
	TCA	GAG	GTT	ATC	GAA	ATC	GGA	CTC	GCG	CTT	GCT	AAA	GCA	ATT	CAG	ACA	576
_20	Ser	-Glu	-Va-1-	Tie	Glu	Tie	-GJA	Leu	Ala	Leu	Ala	_Lys	Ala	Tle	Gln	Thr	
				180					185					190		-	
25	TTG	GGA	GAA	GCC	ACA	AAA	TCT	GCC	TTA	TCT	AAC	TAT	GCA	AGT	ACA	CAA	624
						_		_ •	_	_	_				~ }_	C1-	
	Leu	Gly		Ala	Thr	Lys	Ser	Ala	Leu	Ser	ASN	Tyr	205	ser	THE	GIN	
30	CCA	CAA	195	CAC	(7)	3 C 3	ידיממ	200 AAA	מיזי	CCT	СТА	GAA		CAA	ece	АТА	672
	GCA	CAA	GCA	GAC	CAA	ACA		AAA	CIA	551	C1	0.2.		0.2.	-	••••	
35	Ala	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	Ile	
		210		_			215	_				220					
	AAA	ATC	GAT	AAA	GAA	CGA	GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	GAA	720
40																	
	Lys	Ile	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	Glu	
45	225					230					235					240	
45	CAG	AAG	TCT	AAA	GAT	CTC	GAA	GGA	ACA	ATG	GAT	ACT	GTC	AAT	ACT	GTG	768
50	Gln	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr	Val	
					245					250					255		
	ATG	ATC	GCG	AAG	GGG	TTC	GAA	TTG	CCA	TGG	GGG	CCC	TTA	ATT	AAT		813

	Met	Ile .	Ala	Lys	GIY	Phe '	GIU.			115,	LIY	PIU		115	ASD	
				260					265					270	271	
		•			•											
	INFO	RMAT	ION	FOR	SEQ	ID N	0: 5	:								
)	(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:								
	(A) LE	NGTH	:259	ami	no a	cids									
5	(B) TY	PE:	amin	o ac	id						•				
	(D) TC	POLC	GY:	line	ar										
	(ii)	MOL	ECUI	E TY	PE:	pept	ide				•					
o						PTIC										
	Met	Ser	Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile	Met
	1				5					10					15	
25	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp	Lys
				20					25					30		
20	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr		Gln	Gly	Lys
30			35					40					45	•		
						507			mb	T1-	ATA	Glv	Δla	C ~ ~	Gly	Lys
	Asn	Thr	Glu	Met	Glu	251	Asp	Ala	THE	116			nıu	Ser	•	
3 <i>5</i>		50					55					60				
35		50					55					60		Gln		Gly
35	Asp 65	50 Lys	Thr	Ser	Ser	Thr	55 Thr	Lys	Thr	Glu	Thr 75	60 Ala	Pro	Gln	Gln	Gly 80
35 4 0	Asp 65	50 Lys	Thr	Ser	Ser	Thr	55 Thr	Lys	Thr	Glu	Thr 75	60 Ala	Pro		Gln Ala	Gly 80
	Asp 65 Val	50 Lys Ala	Thr	Ser Gly	Ser Lys 85	Thr 70 Glu	55 Thr Ser	Lys Ser	Thr Glu	Glu Ser 90	Thr 75 Gln	60 Ala Lys	Pro	Gln Gly	Gln Ala 95	Gly 80 Asp
	Asp 65 Val	50 Lys Ala	Thr	Ser Gly	Ser Lys 85	Thr 70 Glu	55 Thr Ser	Lys Ser	Thr Glu	Glu Ser 90	Thr 75 Gln	60 Ala Lys	Pro	Gln Gly Thr	Gln Ala 95	Gly 80 Asp
	Asp 65 Val	50 Lys Ala Gly	Thr Ala	Ser Gly Ser 100	Ser Lys 85 Gly	Thr 70 Glu Ala	55 Thr Ser	Lys Ser Ala	Thr Glu Thr 105	Glu Ser 90 Thr	Thr 75 Gln Ala	60 Ala Lys Ser	Pro Ala Asn	Gln Gly Thr 110	Gln Ala 95 Ala	Gly 80 Asp
40	Asp 65 Val	50 Lys Ala Gly	Thr Ala	Ser Gly Ser 100	Ser Lys 85 Gly	Thr 70 Glu Ala	55 Thr Ser	Lys Ser Ala	Thr Glu Thr 105	Glu Ser 90 Thr	Thr 75 Gln Ala	60 Ala Lys Ser	Pro Ala Asn Lys	Gln Gly Thr 110 Ser	Gln Ala 95 Ala	Gly 80 Asp
40	Asp 65 Val Thr	50 Lys Ala Gly	Thr Ala Val Ala 115	Ser Gly Ser 100 Met	Ser Lys 85 Gly	Thr 70 Glu Ala Thr	55 Thr Ser Ala Ser	Lys Ser Ala Ile 120	Thr Glu Thr 105 Glu	Glu Ser 90 Thr	Thr 75 Gln Ala Ala	60 Ala Lys Ser	Pro Ala Asn Lys 125	Gln Gly Thr 110 Ser	Gln Ala 95 Ala Met	Gly 80 Asp Thr

	130			135		140		
	Val Glu	Ala Val	Val Val	. Ala Ála	Leu Ser	Gly Lys	Ser Ser	Gly Ser
5	145		i50	1		155		160
	Ala Lys	Leu Glu	Thr Pro	Glu Leu	Pro Lys	Pro Gly	Val Thr	Pro Arg
			165		170			175
10	Ser Glu	Val Ile	Glu Ile	Gly Leu	Ala Leu	Ala Lys	Ala Ile	Gln Thr
		180			185		190	
15	Leu Gly	Glu Ala	Thr Lys	Ser Ala	Leu Ser	Asn Tyr	Ala Ser	Thr Gln
		195		200			205	
	Ala Gln	Ala Asp	Gln Thr	Asn Lys	Leu Gly	Leu Glu	Lys Gln	Ala Ile
	-210-			215		220		
	Lys Ile	Asp Lys	Glu Arg	Glu Glu	Tyr Gln	Glu Met	Lys Ala	Ala Glu
	225		230			235		240
25	Gln Lys	Ser Lys	Asp Leu	Glu Gly	Thr Met	Asp Thr	Val Asn	Thr Val
			245		250			255
	Met Ile	Ala						
30		259						
								•
35								
	INFORMAT	TION FOR	SEQ ID	NO: 6:	•			
	(i) SEQU	ENCE CHA	RACTERI	STICS:				
40	(A) LE	NGTH:571	amino	acids				
	(B) TY	TPE: amin	no acid					
	(D) TO	POLOGY:	linear					
45	(ii) MOL	ECULE TY	PE: pep	tide				
	(xi) SEQ	UENCE DE	SCRIPTI	ON: SEQ 1	ID NO: 6:	:		-
50	Met Pro	Lys Gln	Ala Glu	Tyr Thr	Trp Gly	Ser Lys	Lys Ile	Leu Asp
50	1		5		10			15
	Asn Ile	Glu Cys	Leu Thr	Glu Asp	Val Ala	Glu Phe	Lys Asp	Leu Leu
<i>55</i>								

			20					25					30		
Tyr	Thr	Ala	His	Arg	Ile	Thr	Ser	Ser	Glu	Glu	Glu	Ser	Asp	Asn	Glu
		35					40					45			
Ile	Gln	Pro	Gly	Ala	Ile	Leu	Lys	Gly	Thr	Val	Val	Asp	Ile	Asn	Lys
	50					55					60				
Asp	Phe	Val	Val	Val	Asp	Val	Gly	Leu	Lys	Ser	Glu	Gly	Val	Ile	Pro
65					70					75					80
Met	Ser	Glu	Phe	Ile	Asp	Ser	Ser	Glu	Gly	Leu	Val	Leu	Gly	Ala	Glu
•				85					90					95	
Val	Glu	Val	Tyr	Leu	Asp	Gln	Ala	Glu	Asp	Glu	Glu	Gly	Lys	Val	Val
			100					105					110		
Leu	Ser	Arg	Glu	Lys	Ala	Thr	Arg	Gln	Arg	Gln	Trp	Glu	Tyr	Ile	Leu
		115					120					125			
Ala	His	Cys	Glu	Glu	Gly	Ser	Ile	Val	Lys	Gly	Gln	Ile	Thr	Arg	Lys
	130					135					140				
Val	Lys	Gly	Gly	Leu	Ile	Val	Asp	Ile	Gly	Met	Glu	Ala	Phe	Leu	Pro
145					150					155					160
Gly	Ser	G1n	Ile	Asp	Asn	Lys	Lys	Ile	Lys	Asn	Leu	Asp	Asp	Tyr	Val
				165				•	170					175	
Gly	Lys	Val	Cys	Glu	Phe	Lys	Ile	Leu	Lys	Ile	Asn	Val	Glu	Arg	Arg
			180					-185					190		
Asn	Ile	Val	Val	Ser	Arg	Arg	Glu	Leu	Leu	Glu	Ala	Glu	Arg	Ile	Ser
		195					200					205	٠		•
Lys	Lys	Ala	Glu	Leu	Ile	Glu	Gln	Ile	Ser	Ile	Gly	Glu	Tyr	Arg	Lys
	210					215					220				
Gly	Val	Val	Lys	Asn	Ile	Thr	Asp	Phe	Gly	Val	Phe	Leu	Asp	Leu	Asp
225					230					235					240
Gly	Ile	Asp	Gly	Leu	Leu	His	Ile	Thr	Asp	Met	Thr	Trp	Lys	Arg	Ile
				245					250					255	

	Arg	His	Pro	Ser	Glu	Met	Val	Glu	Leu	Asn	Gln	Glu	Leu	Glu	Val	Ile
5				260					265					270		
-	Ile	Leu	Ser	Val	Asp	Lys	Glu	Lys	Gly	Arg	Val	Ala	Leu	Gly	Leu	Lys
			275		•			280					285			
10	Gln	Lys	Glu	His	Asn	Pro	Trp	Glu	Asp	Ile	Glu	Lys	Lys	Tyr	Pro	Pro
		290					295					300				
	Gly	Lys	Arg	Val	Leu	Gly	Lys	Ile	Val	Lys	Leu	Leu	Pro	Tyr	Gly	Ala
15	305					310					315					320
	Phe	Ile	Glu	Ile	Glu	Glu	Gly	Ile	Glu	Gly	Leu	Ile	His	Ile	Ser	Glu
					325					330					335	
20	Met	Ser	Trp	Val	Lys	Asn	Ile	Val	Asp	Pro	Ser	Glu	Val	Val	Asn	Lys
				340					345					350		
<i>25</i>	Gly	Asp	Glu	Val	Glu	Ala	Ile	Val	Leu	Ser	Ile	Gln	Lys	Asp	Glu	Gly
23			355					360					365			
	Lys	Ile	Ser	Leu	Gly	Leu	Lys	Gln	Thr	Glu	Arg	Asn	Pro	Trp	Asp	Asn
30		370					375					380				
	Ile	Glu	Glu	Lys	Tyr	Pro	Ile	Gly	Leu	His	Val	Asn	Ala	Glu	Ile	Lys
	380					385					390					395
35	Asn	Leu	Thr	Asn	Tyr	Gly	Ala	Phe	Val	Glu	Leu	Glu	Pro	Gly	Ile	Glu
					400					405					410	
	Gly	Leu	Ile	His	Ile	Ser	Asp	Met	Ser	Trp	Ile	Lys	Lys	Val	Ser	His
40				415					420					425		
	Pro	Ser	Glu	Leu	Phe	Lys	Lys	Gly	Asn	Ser	Val	Glu	Ala	Val	Ile	Leu
4 5			430					435					440			
	Ser	Val	Asp	Lys	Glu	Ser	Lys	Lys	Ile	Thr	Leu	Gly	Val	Lys	Gln	Leu
		445					450					455				
50	Ser	Ser	Asn	Pro	Trp	Asn	Glu	Ile	Glu	Ala	Met	Phe	Pro	Ala	Gly	Thr
	460					465					470					475
	Val	Ile	Ser	Gly	Val	Val	Thr	Lys	Ile	Thr	Ala	Phe	Gly	Ala	Phe	Val

	480	485	490
	Glu Leu Gln Asn Gly Ile Glu Gly Leu	ı Ile His Val Ser Glu	Leu Ser
5	495 500	505	
	Asp Lys Pro Phe Ala Lys Ile Glu As	Ile Ile Ser Ile Gly	Glu Asn
	510 515	520	
10	Val Ser Ala Lys Val Ile Lys Leu As	Pro Asp His Lys Lys	Val Ser
	525 530	535	
15	Leu Ser Val Lys Glu Tyr Leu Ala As	o Asn Ala Tyr Asp Gln	Asp Ser
	540 545	550	560
	Arg Thr Glu Leu Asp Phe Lys Asp Se	r Gln Gly	
20	565	570 571	
٠			
25	INFORMATION FOR SEQ ID NO: 7:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH:777 base pairs		
30	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: double		
35	(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE:Genomic DNA		
	(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 7:	
40	ATGTCTATTT CATCTTCTTC AGGACCTGAC	ATCAAAAAA ATATCATGTC	TCAAGTTCTG 60
		-	•
	ACATCGACAC CCCAGGGCGT GCCCCAACAA	ATAAGCTGT CTGGCAACGA	AACGAAGCAA 120
45			
	ATACAGCAAA CACGTCAGGG TAAAAACACT	AGATGGAAA GCGATGCCAC	TATTGCTGGT 180
50			
50	GCTTCTGGAA AAGACAAAAC TTCCTCGACT	CAAAAACAG AAACAGCTCC	ACAACAGGGA 240

	GTTGCTGCTG GGAAAGAATC CTCAGAAAGT CAAAAGGCAG GTGCTGATAC TGGAGTATCA	300
5	GGAGCGGCTG CTACTACAGC ATCAAATACT GCAACAAAAA TTGCTATGCA GACCTCTATT	360
10	GAAGAGGCGA GCAAAAGTAT GGAGTCTACC TTAGAGTCAC TTCAAAGCCT CAGTGCCGCG	420
	CAAATGAAAG AAGTCGAAGC GGTTGTTGTT GCTGCCCTCT CAGGGAAAAG TTCGGGTTCC	480
15	GCAAAATTGG AAACACCTGA GCTCCCCAAG CCCGGGGTGA CACCAAGATC AGAGGTTATC	540
-20- · ·	-GAAATCGGAC-TCGCGCTTGC-TAAAGCAATT-CAGACATTGG-GAGAAGCCAC AAAATCTGCC	600
25	TTATCTAACT ATGCAAGTAC ACAAGCACAA GCAGACCAAA CAAATAAACT AGGTCTAGAA	660
	AAGCAAGCGA TAAAAATCGA TAAAGAACGA GAAGAATACC AAGAGATGAA GGCTGCCGAA	720
30	CAGAAGTCTA AAGATCTCGA AGGAACAATG GATACTGTCA ATACTGTGAT GATCGCG	777
35		
	INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH:1712 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
4 5	(D) TOPOLOGY: linear	•
	(ii) MOLECULE TYPE:Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
50	ATGCCAAAAC AAGCTGAATA TACTTGGGGA TCTAAAAAAA TTCTGGACAA TATAGAATGC	60

CTCACAGAAG	ACGTTGCCGA	ATTTAAAGAT	TTGCTTTATA	CGGCACACAG	AATTACTTCG	120
AGCGAAGAAG	AATCTGATAA	CGAAATACAG	CCTGGCGCCA	TCCTAAAAGG	TACCGTAGTT	180
GATATTAATA	AAGACTTTGT	CGTAGTTGAT	GTTGGTCTGA	AGTCTGAGGG	AGTGATCCCT	240
ATGTCAGAGT	TCATAGACTC	TTCAGAAGGT	TTAGTGCTTG	GAGCTGAAGT	AGAAGTCTAT	300
CTCGACCAAG	CCGAAGACGA	AGAGGGCAAA	GTTGTCCTTT	CTAGAGAAAA	AGCCACACGA	360
CAACGTCAAT	GGGAATACAT	CTTAGCTCAT	TGTGAAGAAG	GTTCTATTGT	TAAAGGTCAA	420
ATTACACGTA	AAGTCAAAGG	CGGCCTTATT	GTAGATATTG	GAATGGAAGC	CTTCCTACCT	480
GGATCACAAA	TTGACAACAA	GAAAATCAAA	AATTTAGATG	ATTATGTCGG	AAAAGTTTGT	540
GAATTCAAAA	TTTTAAAAAT	TAACGTTGAA	CGTCGCAATA	TTGTTGTCTC	AAGAAGAGAA	600
CTCTTAGAAG	CTGAGAGAAT	CTCTAAGAAA	GCCGAACTTA	TTGAACAAAT	TTCTATCGGA	660
GAATACCGCA	AAGGAGTTGT	TAAAAACATT	ACTGACTTTG	GTGTATTCTT	AGATCTCGAT	720
GGTATTGACG	GTCTTCTCCA	CATTACCGAT	ATGACCTGGA	. AGCGCATACG	ACATCCTTCC	. 780
GAAATGGTCG	AATTGAATCA	AGAGTTGGAA	GTAATTATTT	TAAGCGTAGA	TAAAGAAAAA	840
GGACGAGTTO	CTCTAGGTCT	CAAACAAAAA	GAGCATAATO	CTTGGGAAGA	TATTGAGAAG	900
AAATACCCTC	CTGGAAAACG	G AGTTCTTGGT	· AAAATTGTGA	AGCTTCTCCC	CTACGGAGCT	960

	TTCATTGAAA	TTGAAGAGGG	CATTGAAGGT	CTAATTCACA	TTTCTGAAAT	GTCTTGGGTG	102
5	AAAAATATTG	TAGATCCTAG	TGAAGTCGTA	AATAAAGGCG	ATGAAGTTGA	AGCCATTGTT	1080
10	CTATCTATTC	AGAAGGACGA	AGGAAAAATT	TCTCTAGGAT	TAAAGCAAAC	AGAACGTAAT	1140
15	CCTTGGGACA	ATATCGAAGA	AAAATATCCT	ATAGGTCTCC	ATGTCAATGC	TGAAATCAAG	1200
,,	ÄACTTAACCA	ATTACGGTGC	TTTCGTTGAA	TTAGAACCAG	GAATTGAGGG	TCTGATTCAT	1260
20	ATTTCTGACA	TGAGTTGGAT	TAAAAAAGTC	TCTCACCCTT	CAGAACTATT	CAAAAAAGGA	1320
25	AATTCTGTAG	AGGCTGTTAT	TTTATCAGTA	GACAAAGAAA	GTAAAAAAAT	TACTTTAGGA	1380
	GTTAAGCAAT	TAAGTTCTAA	TCCTTGGAAT	GAAATTGAAG	CTATGTTCCC	TGCTGGCACA	1440
30	GTAATTTCAG	GAGTTGTGAC	TAAAATCACT	GCATTTGGAG	CCTTTGTTGA	GCTACAAAAC	1500
35	GGGATTGAAG	GATTGATTCA	CGTTTCAGAA	CTTTCTGACA	AGCCCTTTGC	AAAAATTGAA	1560
4 0	GATATTATCT	CCATTGGAGA	AAATGTTTCT	GCAAAAGTAA	TTAAGCTAGA	TCCAGATCAT	1620
	AAAAAAGTTT	CTCTTTCTGT	AAAAGAATAC	TTAGCTGACA	ATGCTTATGA	TCAAGACTCT	1680
4 5	AGGACTGAAT	TAGATTTCAA	GGATTCTCAA	GG			1712

INFORMATION FOR SEQ ID NO: 9:

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:1048 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
0	(ii) MOLECULE TYPE:Genomic DNA	
	(vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: Chlamydia pneumoniae	
	(B) STRAIN: YK-41	
	(vii) IMMEDIATE SOURCE:	
20	(B) CLONE: 53-3S	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
25	(B) LOCATION: 236 to 1012	
	(C) IDENTIFICATION METHOD: P	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
30	TCAGTATCGG CGGAATTCGA ACCCCTTCGC GGCTCTTTCT GGAACTCTAG AATCTTTACA	60
35	TCTCGAAGAG TTAACTCAAG GATTATTCCC TTCTGCCCAA GAAGATGCCA ACTTCGCAAA	120
35		
	GGAGTTATCT TCAGTAGTAC ACGGATTAAA AAACCTAACC ACTGTAGTTA ATAAACAAAT	180
40		
	GGTTAAAGGC GCTGAGTAAA GCCCTTTGCA GAATCAAACC CCTTAGGATA CAAAC ATG	238
45	Met	
	· 1	
	TCT ATT TCA TCT TCT TCA GGA CCT GAC AAT CAA AAA AAT ATC ATG TCT	286
50		
	Ser Ile Ser Ser Ser Gly Pro Asp Asn Gln Lys Asn Ile Met Ser	

				5	5				10	ı				15			
5	CAA	GTI	CTG	ACA	TCG	ACA	ccc	CAG	GGC	GTG	ccc	CAA	CAA	GAT	AAG	CTG	334
	. Gla	val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gl'n	Asp	Lys	Leu	
			20					25					30)			
10	TCT	GGC	AAC	GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	AAA	AAC	382
15	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly	Lys	Asn	
		35					40					45					
	ACT	GAG	ATG	GAA	AGC	GAT	GCC	ACT	ATT	GCT	GGT	GCT	TCT	GGA	AAA	GAC	430
-20	-	_		-		-	-	· · -	-			Ē			-	-	
•	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly	Lys	Asp	
	50					55					60					65	
25	AAA	ACT	TCC	TCG	ACT	ACA	AAA	ACA	GAA	ACA	GCT	CCA	CAA	CAG	GGA	GTT	478
30	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln	Gly	Val	
					70					75					80		
	GCT	GCT	GGG	AAA	GAA	TCC	TCA	GAA	AGT	CAA	AAG	GCA	GGT	GCT	GAT	ACT	526
35	212	21-	C1	T	C1.,	5 0=	50 =	C1	So=	C15	T ***C	A 1 a	C1	31 -) cp	Th =	
	Ala	MIG	GIY	85 85	Glu	Sei	Sei	Giu	90	GIII	гåг	Ald	GIY	95	ASP	IIII	
40	GGA	GTA	TCA		GCG	GCT	GCT	ACT		GCA	TCA	AAT	ACT		ACA	AAA	574
	Gly	Val	Ser	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn	Thr	Ala	Thr	Lys	
45			100					105					110				
	ATT	GCT	ATG	CAG	ACC	TCT	ATT	GAA	GAG	GCG	AGC	AAA	AGT	ATG	GAG	TCT	622
50	Ile	Ala	Met	Gln	Thr	Ser	Ile	Glu	Glu	Ala	Ser	Lys	Ser	Met	Glu	Ser	
		115					120					125					

	ACC	TTA	GAG	TCA	CTT	CAA	AGC	CTC	AGT	GCC	GCG	CAA	ATG	AAA	GAA	GTC	670
	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gln	Met	Lys	Glu	Val	
	130				•	135					140					145	
0	GAA	GCG	GTT	GTT	GTT	GCT	GCC	CTC	TCA	GGG	AAA	AGT	TCG	GGT	TCC	GCA	718
÷	Glu	Ala	Val	Val		Ala	Ala	Leu	Ser		Lys	Ser	Ser	Gly	Ser	Ala	
15					150					155							766
	AAA	TTG	GAA	ACA	CCT	GAG	CTC	CCC	AAG	CCC	GGG	GTG	ACA	CCA	AGA	TCA	766
20	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	Arg	Ser	
	-			165					170					175			
25	GAG	GTT	ATC		ATC	GGA	CTC	GCG	CTT	GCT	AAA	GCA	ATT	CAG	ACA	TTG	814
	Glu	Val	Ile	Glu	Ile	Gly	Leu	Ala	Leu	Ala	Lys	Ala		Gln	Thr	Leu	
30			180					185					190				
30	GGA	GAA	GCC	ACA	AAA	TCT	GCC	TTA	TCT	AAC	TAT	GCA	AGT	ACA	CAA	GCA	862
<i>35</i>	Gly	Glu	Ala	Thr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr		Ser	Thr	Gln	Ala	
		195					200					205					
•	CAA	GCA	GAC	CAA	ACA	AAT	AAA	CTA	GGT	CTA	GAA	AAG	CAA	GCG	ATA	AAA	910
40																	
	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	Ile	Lys	
	210					215					220					225	
45	ATC	GAT	AAA	GAA	CGA	GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	GAA	CAG	958
50	Ile	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	Glu	Gln	
					230					235					240		
	AAG	TCI	AAA	GAT	CTC	GAA	GGA	ACA	ATG	GAT	ACT	GTC	AAT	ACT	GTG	ATG	1006

	Lys Ser Lys Asp Leu Glu Gly Thr Met Asp Thr Val Asn Thr Val Met	
_	245 250 255	
5	ATC GCG AAGGGGTTCG AATTCCAGCT GAGCGCCGGT CGCTAC	1048
10	Ile Ala	
10	259	
		-
15		
	INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:	
20 ·	(A) LENGTH: 5702 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
25	(ii) MOLECULE TYPE: Other nucleic acid; Plasmid	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
30	ATCGATGTTA ACAGATCTAA GCTTAACTAA CTAACTCCGG AAAAGGAGGA ACTTCCATGA	60
	TCAGTCTGAT TGCGGCGTTA GCGGTAGATC GCGTTATCGG CATGGAAAAC GCCATGCCGT	120
35		
	GGAACCTGCC TGCCGATCTC GCCTGGTTTA AACGCAACAC CTTAAATAAA CCCGTGATTA	180
40	TGGGCCGCCA TACCTGGGAA TCAATCGGTC GTCCGTTGCC AGGACGCAAA AATATTATCC	240
45	TCAGCAGTCA ACCGGGTACG GACGATCGCG TAACGTGGGT GAAGTCGGTG GATGAAGCCA	300
	TCGCGGCGTG TGGTGACGTA CCAGAAATCA TGGTGATTGG CGGCGGTCGC GTTTATGAAC	360
50		
	AGTTCTTGCC AAAAGCGCAA AAACTGTATC TGACGCATAT CGACGCAGAA GTGGAAGGCG	420

ACACCCATTT	CCCGGATTAC	GAGCCGGATG	ACTGGGAATC	GGTATTCAGC	GAATTCCACG	480
ATGCTGATGC	GCAGAACTCT	CACAGCTATG	AGTTCGAAAT	TCTGGAGCGG	CGGATCCAAT	540
TCGAACCCCT	TEGEGGETET	TTCTGGAACT	CTAGAATCTT	TACATCTCGA	AGAGTTAACT	600
CAAGGATTAT	TCCCTTCTGC	CCAAGAAGAT	GCCAACTTCG	CAAAGGAGTT	ATCTTCAGTA	660
GTACACGGAT	TAAAAAACCT	AACCACTGTA	GTTAATAAAC	AAATGGTTAA	AGGCGCTGAG	720
TAAAGCCCTT	TGCAGAATCA	AACCCCTTAG	GATACAAACA	TGTCTATTTC	ATCTTCTTCA	780
GGACCTGACA	ATCAAAAAAA	TATCATGTCT	CAAGTTCTGA	CATCGACACC	CCAGGGCGTG	840
CCCCAACAAG	ATAAGCTGTC	TGGCAACGAA	ACGAAGCAAA	TACAGCAAAC	ACGTCAGGGT	900
AAAAACACTG	AGATGGAAAG	CGATGCCACT	ATTGCTGGTG	CTTCTGGAAA	AGACAAAACT	960
TCCTCGACTA	CAAAAACAGA	AACAGCTCCA	CAACAGGGAG	TTGCTGCTGG	GAAAGAATCC	1020
TCAGAAAGTC	: AAAAGGCAGG	TGCTGATACT	GGAGTATCAG	GAGCGGCTGC	TACTACAGCA	1080
TCAAATACTG	CAACAAAAT	TGCTATGCAG	ACCTCTATTG	: AAGAGGCGAG	CAAAAGTATG	1140
GAGTCTACCT	TAGAGTCACT	TCAAAGCCTC	AGTGCCGCGC	AAATGAAAGA	AGTCGAAGCG	1200
GTTGTTGTTG	CTGCCCTCTC	AGGGAAAAGT	TCGGGTTCCG	G CAAAATTGGA	AACACCTGAG	1260

20--

0

CTCCCCAAGO	CCGGGGTGAC	: ACCAAGATCA	GAGGTTATCO	AAATCGGACT	CGCGCTTGCT	1320
AAAGCAATTO	AGACATTGGG	AGAAGCCACA	AAATCTGCCT	TATCTAACTA	A TGCAAGTACA	1380
CAAGCACAAG	CAGACCAAAC	AAATAAACTA	GGTCTAGAAA	AGCAAGCGAT	AAAAATCGAT	1440
AAAGAACGAG	AAGAATACCA	AGAGATGAAG	GCTGCCGAAC	AGAAGTCTAA	AGATCTCGAA	1500
GGAACAATGG	ATACTGTCAA	TACTGTGATG	ATCGCGAAGG	GGTTCGAATT	GCCATGGGGG	1560
CCCTTAATTA	ATTAACTCGA	GAGATCCAGA	TCTAATCGAT	GATCCTCTAC	GCCGGACGCA	1620
TCGTGGCCGG	CATCACCGGC	GCCACAGGTG	CGGTTGCTGG	CGCCTATATC	GCCGACATCA	1680
CCGATGGGGA	AGATCGGGCT	CGCCACTTCG	GGCTCATGAG	CGCTTGTTTC	GGCGTGGGTA	1740
TGGTGGCAGG	CCCGTGGCCG	GGGGACTGTT	GGGCGCCATC	TCCTTGCATG	CACCATTCCT	1800
TGCGGCGGCG	GTGCTCAACG	GCCTCAACCT	ACTACTGGGC	TGCTTCCTAA	TGCAGGAGTC	1860
GCATAAGGGA	GAGCGTCGAC	CGATGCCCTT	GAGAGCCTTC	AACCCAGTCA	GCTCCTTCCG	1920
GTGGGCGCGG	GGCATGACTA	TCGTCGCCGC	ACTTATGACT	GTCTTCTTTA	TCATGCAACT	1980
CGTAGGACAG	GTGCCGGCAG	CGCTCTGGGT	CATTTTCGGC	GAGGACCGCT	TTCGCTGGAG	2040
CGCGACGATG	ATCGGCCTGT	CGCTTGCGGT	ATTCGGAATC	TTGCACGCCC	TCGCTCAAGC	2100
CTTCGTCACT	GGTCCCGCCA	CCAAACGTTT	CGGCGAGAAG	CAGGCCATTA	TCGCCGGCAT	2160
	AAAGCAATTO CAAGCACAAC AAAGAACGAG GGAACAATGO CCCTTAATTA TCGTGGCCGG CCGATGGGCAGG TGCGGCGGCG GCATAAGGGA GTGGGCGCGG CGTAGGACAG CGTAGGACAG CGCGACGATG	AAAGCAATTC AGACATTGGG CAAGCACAAG CAGACCAAACC AAAGAACGAG AAGAATACCA GGAACAATGG ATACTGTCAA CCCTTAATTA ATTAACTCGA TCGTGGCCGG CATCACCGGC CCGATGGGGA AGATCGGGCT TGGTGGCAGG CCCGTGGCCG GCATAAGGGA GAGCGTCAACG GCATAAGGGA GAGCGTCGAC GTGGGCGGG GGCATGACTA CGTAGGACAG GTGCCGGCAG CGCGACGATG ATCGGCCTGT	AAAGCAATTC AGACATTGGG AGAAGCCACA CAAGCACAAG CAGACCAAAC AAATAAACTA AAAGAACGAG AAGAATACCA AGAGATGAAG GGAACAATGG ATACTGTCAA TACTGTGATG CCCTTAATTA ATTAACTCGA GAGATCCAGA TCGTGGCCGG CATCACCGGC GCCACAGGTG CCGATGGGAA AGATCGGCCT CGCCACTTCG TGGTGGCAGG CCCGTGGCCG GGGGACTGTT TGCGGCGGGG GTGCTCAACG GCCTCAACCT GCATAAGGGA GAGCGTCGAC CGATGCCCTT GTGGGCCGG GGCATGACTA TCGTCGCCGC CGTAGGACAG GTGCCGGCAG CGCTCTGGGT CGCGACGATG ATCGGCCGCT	AAAGCAATTC AGACATTGGG AGAAGCCACA AAATCTGCCTC CAAGCACAAG CAGACCAAAC AAATAAACTA GGTCTAGAAA AAAGAACGAG AAGAATACCA AGAGATGAAG GCTGCCGAACC GGAACAATGG ATACTGTCAA TACTGTGATG ATCGCGAAGG CCCTTAATTA ATTAACTCGA GAGATCCAGA TCTAATCGAT TCGTGGCCGG CATCACCGGC GCCACAGGTG CGGTTGCTGG CCGATGGGGA AGATCGGGCT CGCCACTTCG GGCTCATGAG TGGTGGCAGG CCCGTGGCCG GGGGACTGTT GGGCGCCATC GCGATAAGGGA GAGCGTCGAC CGATGCCCTT GAGAGCCTTC GTGGGCGGG GGCATGACTA TCGTCGCCGC ACTTATGACT CGTAGGGACAG GTGCCGGCAG CGCTCTGGGT CATTTCGGC CGCAGGACAG GTGCCGGCAG CGCTCTGGGT CATTTTCGGC CGCGACGATG ATCGGCCTGT CGCTTGCGGT ATTCGGAATC	AAAGCAATTC AGACATTGGG AGAAGCCACA AAATCTGCCT TATCTAACTA CAAGCACAAG CAGACCAAAC AAATAAACTA GGTCTAGAAA AGCAAGCGAT AAAGAACGAG AAGAATACCA AGAGATGAAG GCTGCCGAAC AGAAGTCTAA GGAACAATGG ATACTGTCAA TACTGTGATG ATCGCGAAGG GGTTCGAATT CCCCTTAATTA ATTAACTCGA GAGATCCAGA TCTAATCGAT GATCCTCTAC TCGTGGCCGG CATCACCGGC GCCACAGGTG CGGTTGCTGG CGCCTATATC CCGATGGGGA AGATCGGGCT CGCCACTTCG GGCTCATGAG CGCTTGTTTC TGGTGGCAGG CCCGTGGCCG GGGGACTGTT GGGCGCCATC TCCTTGCATG TGCGGGGGG GTGCTCAACG GCCTCAACCT ACTACTGGGC TGCTTCCTAA GCATAAGGGA GAGCGTCGAC CGATGCCCTT GAGAGCCTTC AACCCAGTCA GTGGGCCGG GGCATGACTA TCGTCGCCGC ACTTATGACT GTCTTCTTTA CGTAGGACAG GTGCCGGCAG CGCTCTGGGT CATTTTCGGC GAGGACCGCT CGCGACGATG ATCGGCCTGT CGCTTGCGGT ATTCGGAATC TTGCACGCCC	CTCCCCAAGC CCGGGGTGAC ACCAAGATCA GAGGTTATCG AAATCGGACT CGCGCTTGCT AAAGCAATTC AGACATTGGG AGAAGCCACA AAATCTGCCT TATCTAACTA TGCAAGTACA CAAGCACAAG CAGACCAAAC AAATAAACTA GGTCTAGAAA AGCAAGCGAT AAAAATCGAT AAAGAACGAG AAGAATACCA AGAGATGAAG GCTGCCGAAC AGAAGTCTAA AGATCTCGAA GGAACAATGG ATACTGTCAA TACTGTGATG ATCGCGAAGG GGTTCGAATT GCCATGGGGG CCCTTAAATTA ATTAACTCGA GAGATCCAGA TCTAATCGAT GATCCTCTAC GCCGGACGCA TCGTGGCCGG CATCACCGGC GCCACAGGTG CGGTTGCTGG CGCCTATATC GCCGGACGCA CCGATGGGGA AGATCGGGCT CGCCACTTCG GGCTCATGAG CGCTTGTTTC GGCGTGGGTA TGGTGGCAGG CCCGTGGCCG GGGGACTGTT GGGCGCCATC TCCTTGCATG CACCATTCCT TGCGGCGGGG GTGCTCAACG GCCTCAACCT ACTACTGGGC TGCTTCCTAA TGCAGGAGTC GCATAAGGGA GAGCGTCGAC CGATGCCCTT GAGAGCCTTC AACCCAGTCA GCTCCTTCCG GTGGGCGCGG GGCATGACTA TCGTCGCCGC ACTTATGACT GTCTTCTTTA TCATGCAACT CGTAGGACAG GTGCCGGCAG CGCTCTGGGT CATTTTCGGC GAGGACCGCT TTCGCTGGAG CGCGACGATG ATCGGCCTGT CGCTTGCGGT ATTCGGAATC TTGCACGCCC TCGCTCAAGC CTTCGTCACT GGTCCCGCCA CCAAACGTTT CGGCGGAGAAG CAGGCCATTA TCGCCGGCAT

GGCGGCCGAC	GCGCTGGGCT	ACGTCTTGCT	GGCGTTCGCG	ACGCGAGGCT	GGATGGCCTT	2220
CCCCATTATG	ATTCTTCTCG	CTTCCGGCGG	CATCGGGATG	CCCGCGTTGC	AGGCCATGCT	2280
GTCCAGGCAG	GTAGATGACG	ACCATCAGGG	ACAGCTTCAA	GGATCGCTCG	CGGCTCTTAC	2340
CAGCCTAACT	TCGATCACTG	GACCGCTGAT	CGTCACGGCG	ATTTATGCCG	CCTCGGCGAG	2400
CACATGGAAC	GGGTTGGCAT	GGATTGTAGG	CGCCGCCCTA	TACCTTGTCT	GCCTCCCCGC	2460
GTTGCGTCGC	GGTGCATGGA	GCCGGGCCAC	CTCGACCTGA	ATGGAAGCCG	GCGGCACCTC	2520
GCTAACGGAT	TCACCACTCC	AAGAATTGGA	GCCAATCAAT	TCTTGCGGAG	AACTGTGAAT	2580
GCGCAAACCA	ACCCTTGGCA	GAACATATCC	ATCGCGTCCG	CCATCTCCAG	CAGCCGCACG	2640
CGGCGCATCT	CGGGCAGCGT	TGGGTCCTGG	CCACGGGTGC	GCATGATCGT	GCTCCTGTCG	2700
TTGAGGACCC	: GGCTAGGCTG	GCGGGGTTGC	CTTACTGGTT	AGCAGAATGA	ATCACCGATA	2760
CGCGAGCGAA	CGTGAAGCGA	CTGCTGCTGC	AAAACGTCTG	; CGACCTGAGC	AACAACATGA	2820
ATGGTCTTCG	GTTTCCGTGT	TTCGTAAAGT	CTGGAAACGC	: GGAAGTCAGC	: GCCCTGCACC	2880
ATTATGTTCC	GGATCTGCAT	CGCAGGATGC	TGCTGGCTAC	CCTGTGGAAC	ACCTACATCT	2940
GTATTAACG	A AGCGCTGGCA	TTGACCCTGA	GTGATTTTT	TCTGGTCCCC	CCGCATCCAT	3000

	ACCGCCAGTT	GTTTACCCTC	ACAACGTTCC	AGTAACCGGG	CATGTTCATC	ATCAGTAACC	3060
5	CGTATCGTGA	GCATCCTCTC	TCGTTTCATC	GGTATCATTA	CCCCCATGAA	CAGAAATTC	3120
10	CCCCTTACAC	GGAGGCATCA	AGTGACCAAA	CAGGAAAAAA	CCGCCCTTAA	CATGGCCCG	3180
15	CTTTATCAGA	AGCCAGACAT	TAACGCTTCT	GGAGAAACTC	AACGAGCTGG	ACGCGGATG	3240
15	AACAGGCAGA	CATCTGTGAA	TCGCTTCACG	ACCACGCTGA	TGAGCTTTAC	CGCAGCTGC	3300
- <u>20</u> -	CTCGCGCGTT	TCGGTGATGA	CGGTGAAAAC	CTCTGACACA	TGCAGCTCCC	GGAGACGGT	3360
<i>25</i>	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGG	3420
	GTGTTGGCGG	GTGTCGGGGC	GCAGCCATGA	CCCAGTCACG	TAGCGATAGC	GGAGTGTAT	3480
30	ACTGGCTTAA	CTATGCGGCA	TCAGAGCAGA	TTGTACTGAG	AGTGCACCAT	ATGCGGTGT	3540
35	GAAATACCGC	ACAGATGCGT	AAGGAGAAAA	TACCGCATCA	GGCGCTCTTC	CGCTTCCTC	3600
40	GCTCACTGAC	TCGCTGCGCT	CGGTCGTTCG	GCTGCGGCGA	GCGGTATCAG	CTCACTCAA	3660
	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	ATGTGAGCA	3720
4 5	AAAGGCCAGC	AAAAGGCCAG	GAACCGTAAA	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAG	3780
50	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	TCGACGCTCA	AGTCAGAGGT	GGCGAAACC	3840
	CGACAGGACT	ATAAAGATAC	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	CGCTCTCCT	3900

GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGC	3960
GCTTTCTCAA	TGCTCACGCT	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGC	4020
TGGGCTGTGT	GCACGAACCC	CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC	GGTAACTAT	4080
CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	CACTGGTAA	4140
CAGGATTAGC	AGAGCGAGGT	ATGTAGGCGG	TGCTACAGAG	TTCTTGAAGT	GGTGGCCTA	4200
ACTACGGCTA	CACTAGAAGG	ACAGTATTTG	GTATCTGCGC	TCTGCTGAAG	CCAGTTACC	4260
TTCGGAAAAA	GAGTTGGTAG	CTCTTGATCC	GGCAAACAAA	CCACCGCTGG	TAGCGGTGG	4320
TTTTTTTGTT	TGCAAGCAGC	AGATTACGCG	CAGAAAAAA	GGATCTCAAG	AAGATCCTT	4380
TGATCTTTTC	TACGGGGTCT	GACGCTCAGT	GGAACGAAAA	CTCACGTTAA	GGGATTTTG	4440
GTCATGAGAT	TATCAAAAAG	GATCTTCACC	TAGATCCTTT	TAAATTAAAA	ATGAAGTTT	4500
TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	GCTTAATCA	4560
GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	TGACTCCCC	. 4620
GTCGTGTAGA	TAACTACGAT	ACGGGAGGGC	TTACCATCTG	GCCCCAGTGC	TGCAATGAT	4680
ACCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	CAGCCGGAA	4740

	GGGCCGAGCG	CAGAAGTGGT	CCTGCAACTT	TATCCGCCTC	CATCCAGTCT	ATTAATTGT	4800
5	TGCCGGGAAG	CTAGAGTAAG	TAGTTCGCCA	GTTAATAGTT	TGCGCAACGT	TGTTGCCAT	4860
10	TGCTGCAGGC	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	GCTTCATTCA	GCTCCGGTT	4920
	CCCAACGATC	AAGGCGAGTT	ACATGATCCC	CCATGTTGTG	CAAAAAAGCG	GTTAGCTCC	4980
15	TTCGGTCCTC	CGATCGTTGT	CAGAAGTAAG	TTGGCCGCAG	TGTTATCACT	CATGGTTAT	5040
	GGCAGCACTG	CATAATTCTC	TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	CTGTGACTG	5100
25	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	TGCTCTTGC	5160
	CCGGCGTCAA	CACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCAT	5220
30	TGGAAAACGT	TCTTCGGGGC	GAAAACTCTC	AAGGATCTTA	CCGCTGTTGA	GATCCAGTT	5280
35	CGATGTAACC	CACTCGTGCA	CCCAACTGAT	CTTCAGCATC	TTTTACTTTC	ACCAGCGTT	5340
40	TCTGGGTGAG	CAAAAACAGG	AAGGCAAAAT	GCCGCAAAAA	AGGGAATAAG	GGCGACACG	5400
40	GAAATGTTGA	ATACTCATAC	TCTTCCTTTT	TCAATATTAT	TGAAGCATTT	ATCAGGGTT	5460
45	ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	GTATTTAGAA	ааатааасаа	ATAGGGGTT	5520
50	CCGCGCACAT	TTCCCCGAAA	AGTGCCACCT	GACGTCTAAG	AAACCATTAT	TATCATGAC	5580
	ATTAACCTAT	AAAAATAGGC	GTATCACGAG	GCCCTTTCGT	CTTCAAGAAT	TAATTGTTA	5640

	TCCGCTCACA ATTAATTCTT GACAATTAGT TAACTATTTG TTATAATGTA TTCATAAGC	5700
·	TT	5702
o	INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH:35	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
o	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	GATCCAATTG CCATGGGGGC CCTTAATTAA TTAAC	35
5		
		٠
10	INFORMATION FOR SEQ ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:35 base pairs	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	35
	TCGAGTTAAT TAATTAAGGG CCCCCATGGC AATTG	35

	INFORMATION FOR SEQ 15 No. 13.
	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH:1954 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
10	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE:Genomic DNA
1 <i>5</i>	(vi) ORIGINAL SOURCE:
	(A) ORGANISM: Chlamydia pneumoniae
	(B) STRAIN: YK-41
20	-(-vi-i-)-IMMEDIATE-SOURCE:-
	(B) CLONE: 70-25
	(ix) FEATURE:
<i>2</i> 5	(A) NAME/KEY: -35 signal
	(B) LOCATION:146 to 151
	(C) IDENTIFICATION METHOD: by similarity with known sequence or to an
30	established consensus sequence
	(ix) FEATURE:
35	(A) NAME/KEY: -10 signal
	(B) LOCATION:169 to 174
	(C) IDENTIFICATION METHOD: by similarity with known sequence or to an
40	established consensus sequence
	(ix) FEATURE:
	(A) NAME/KEY: RBS
45	(B) LOCATION:199 to 205
	(C) IDENTIFICATION METHOD: by similarity with known sequence or to an
	established consensus sequence
50	(ix) FEATURE:
	(A) NAME/KEY: CDS

()	B) L(CAT	ON : 2	215 t	0 19	927											
((C) II	DENT	FIC	OITA	N MET	HOD:	by	simi	ilari	ity v	vith	knov	vn se	ednei	nce or	to	an
est	tabl	ished	i cor	sens	sus s	seque	ence										
(xi) SE(QUENC	CE DI	ESCR	PTIC	ON: 9	SEQ :	ID NO	o: 13	3							
TTG	ACAC	CAG A	ACCA	ACTG	ST A	ATGG1	ragco	G ACC	CGGCC	GCTC	AGCT	GGA	ATT (CGAA	CCCTT		60
											-						
CGC	CTTA:	rac 2	ATCT	CTAG	AA CO	GGAA	STATA	A GG	ATTT?	racg	ATTA	ATT	CGA 1	TAT	ATAGAA		120
CTA	ATCG:	rcr (CTG	CAAGO	GG AC	GTC	rTGC	C TT	TTTT	AAGG	TTTA	TAT	TA (CACT	GTCTTT		180
TTT	GACT:	rtg :	ragt:	rttt?	AG GA	AGAAT	raaca	A ATA	AA AT	rg co	CA AA	AA CZ	AA G	CT G	AA TAT		235
									Me	et P	co Ly	s G	ln A.	la G	lu Tyr	•	
										1				5			
ACT	TGG	GGA	TCT	AAA	AAA	ATT	CTG	GAC	AAT	ATA	GAA	TGC	CTC	ACA	GAA		283
Thr	Trp	Gly	Ser	Lys	Lys	Ile	Leu	Asp	Asn	Ile	Glu	Cys	Leu	Thr	Glu		
		10					15					20	3				
GAC	GTT	GCC	GAA	TTT	AAA	GAT	TTG	CTT	TAT	ACG	GCA	CAC	AGA	ATT	ACT		331
Asp	Val	Ala	Glu	Phe	Lys	Asp	Leu	Leu	Tyr	Thr	Ala	His	Arg	Ile	Thr		
	25					30					35						
TCG	AGC	GAA	GAA	GAA	TCT	GAT	AAC	GAA	ATA	CAG	CCT	GGC	GCC	ATC	CTA .		379
Ser	Ser	Glu	Glu	Glu	Ser	Asp	Asn	Glu	Ile	Gln	Pro	Gly	Ala	Ile	Leu		
40					45					50					55		
AAA	GGT	ACC	GTA	GTT	GAT	ATT	AAT	AAA	GAC	TTT	GTC	GTA	GTT	GAT	GTT		427
Lys	Gly	Thr	Val	Val	Asp	Ile	Asn	Lys	Asp	Phe	Val	Val	Val	Asp	Val		
-	-				_												

					60)				65	5				70)	
	GG:	r CT	g AAC	TCT	GAG	GGA	GTC	ATC	cci	ATO	TC	A GAG	TTC	ATA	GAC	тст	475
5																	
	Gly	, Le	ı Lys	Ser	Ġlu	Gly	Val	Ile	Pro	Met	Ser	Glu	Phe	Ile	e Asp	Ser	
10				75	;				80					85	;		
	TCA	A GAZ	A GGT	TTA	GTG	CTT	GGA	GCT	GAA	. GTA	. GAA	GTC	TAT	CTC	GAC	CAA	523
15	Ser	Gli			Val	Leu	Gly			Val	Glu	. Val			Asp	Gln	
			90					95					100				
	GCC	: GAZ	A GAC	GAA	GAG	GGC	AAA	GTT	GTC	CTT	TCT	AGA	GAA	AAA	GCC	ACA	571
20	 	-			- -•		_		-			-			_		-
·	Ala		_	Glu	Glu	Gly	_		Val	Leu	Ser	Arg	Glu	Lys	Ala	Thr	
25	<i></i>	105		.	mcc.	63.3	110			~~	63 m	115					6.10
	CGA	CAA	CGT	CAA	TGG	GAA	TAC	ATC	TTA	GCT	CAT	TGT	GAA	GAA	GGT	тст	619
	λτα	G15	<u> እ</u> ዮብ	Gln	ጥተኮ	Glu	ጥህ∽	Tle	Ten	212	ui e	Cve	Glu	Glu	G) v	Ser	
30	120		,	02		125	-1-		202		130	0,0	014	014	017	135	
			AAA	GGT	CAA		ACA	CGT	AAA	GTC		GGC	GGC	CTT	ATT		667
35	Ile	Val	Lys	Gly	Gln	Ile	Thr	Arg	Lys	Val	Lys	Gly	Gly	Leu	Ile	Val	
					140					145					150		
40	GAT	Ile	Gly	Met	Glu	Ala	Phe	Leu	Pro	Gly	Ser	Gln	Ile	Asp	Asn	Lys	715
	Asp	ATT	GGA	ATG	GAA	GCC	TTC	CTA	CCT	GGA	TCA	CAA	ATT	GAC	AAC	AAG	
45				155					160					165			
	Lys	ATC	AAA	AAT	TTA	GAT	GAT	TAT	GTC	GGA	AAA	GTT	TGT	GAA	TTC	AAA	763
50	AAA	Ile	Lys	Asn	Leu	Asp .	Asp	Tyr	Val	Gly	Lys	Val	Cys	Glu	Phe	Lys	
			170					175					180				

	ATT	TTA	AAA	ATT	AAC	GTT	GAA	CGT	CGC	AAT	ATT	GTT	GTC	TCA	AGA	AGA	811
5	Ile	Leu	Lys	Ile	Asn	Val	Glu	Arg	Arg	Asn	Ile	Val	Val	Ser	Arg	Arg	
		185			•		190					195					
10	GAA	CTC	TTA	GAA	GCT	GAG	AGA	ATC	TCT	AAG	AAA	GCC	GAA	CTT	ATT	GAA	859
	Glu	Leu	Leu	Glu	Ala	Glu	Arg	Ile	Ser	Lys	Lys	Ala	Glu	Leu	Ile	Glu	
15	200					205					210					215	
	CAA	ATT	TCT	ATC	GGA	GAA	TAC	CGC	AAA	GGA	GTT	GTT	AAA	AAC	ATT	ACT	907
20	Gln	Ile	Ser	Ile	Gly	Glu	Tyr	Arg	Lys	Gly	Val	Val	Lys	Asn	Ile	Thr	
					220					225					230		
25	GAC	TTT	GGT	GTA	TTC	TTA	GAT	СТС	GAT	GGT	ATT	GAC	GGT	CTT	СТС	CAC	955
	Asp	Phe	Gly	Val	Phe	Leu	Asp	Leu	Asp	Gly	Ile	Asp	Gly	Leu	Leu	His	
	•		-	235					240					245			
30	ATT	ACC	GAT		ACC	TGG	AAG	CGC		CGA	CAT	CCT	TCC	GAA	ATG	GTC	1003
or.	Tle	Thr	Asp	Met	Thr	Trp	Lvs	Arq	Ile	Arq	His	Pro	Ser	Glu	Met	Val	
<i>35</i>			250				-4	255		ĺ			260				
	GAA	TTG		CAA	GAG	TTG	GAA	GTA	ATT	ATT	TTA	AGC	GTA	GAT	AAA	GAA	1051
40																	
	Glu	Leu	Asn	Gln	Glu	Leu	Glu	Val	Ile	Ile	Leu	Ser	Val	Asp	Lys	Glu ·	
		265					270					275					
45	AAA	GGA	CGA	GTT	GCT	СТА	GGT	CTC	AAA	CAA	AAA	GAG	CAT	AAT	CCT	TGG	1099
	Lys	Gly	Arg	Val	Ala	Leu	Gly	Leu	Lys	Gln	Lys	Glu	His	Asn	Pro	Trp	
50	280					285					290					295	
	GAA	GAT	ATT	GAG	AAG	AAA	TAC	ССТ	ССТ	GGA	AAA	CGA	GTT	CTT	GGT	AAA	1147

	Glu	Asp	Ile	Glu	Lys	Lys	Tyr	Pro	Pro	Gly	Lys	Arg	Val	Leu	Gly	Lys	
					300					305					310		
5	ATT	GTG	AAG	CTT	CIC	ccc	TAC	GGA	GCT	TTC	ATT	GAA	ATT	GAA	GAG	GGC	1195
10	Ile	Val	Lys	Leu	Leu	Pro	Tyr	Gly	Ala	Phe	Ile	Glu	Ile	Glu	Glu	Gly	
				315					320					325			
	ATT	GAA	GGT	CTA	ATT	CAC	ATT	TCT	GAA	ATG	TCT	TGG	GTG	AAA	AAT	ATT	1243
15																	
	Ile	Glu	Gly	Leu	Ile	His	Ile	Ser	Glu	Met	Ser	Trp	Val	Lys	Asn	Ile	
			330					335					340				
20-	 GTA	GAT	CCT	AGT	GAA	GTC	GTA	AAT	AAA	GGC	GAT	GAA	GTT	GAA	GCC	ATT	1291
05	Val	Asp	Pro	Ser	Glu	Val	Val	Asn	Lys	Gly	Asp	Glu	Val	Glu	Ala	Ile	
25		345					350					355					
	GTT	CTA	TCT	ATT	CAG	AAG	GAC	GAA	GGA	AAA	ATT	TCT	CTA	GGA	TTA	AAG	1339
30													,				
	Val	Leu	Ser	Ile	Gln	Lys	Asp	Glu	Gly	Lys	Ile	Ser	Leu	Gly	Leu	Lys	
	360					365					370					375	
35	CAA	ACA	GAA	CGT	AAT	CCT	TGG	GAC	AAT	ATC	GAA	GAA	AAA	TAT	CCT	ATA	1387
	Gln	Thr	Glu	Arg		Pro	Trp	Asp	Asn	Ile	Glu	Glu	Lys	Tyr		Ile	
40					380					385					390		
	GGT	CTC	CAT	GTC	AAT	GCT	GAA	ATC	AAG	AAC	TTA	ACC	AAT	TAC	GGT	GCT	1435
45																	
	Gly	Leu			Asn	Ala	Glu	Ile	_	Asn	Leu	Thr	Asn		Gly	Ala	
				395				-	400		_			405			
50	TTC	GTT	GAA	TTA	GAA	CCA	GGA	ATT	GAG	GGT	CTG	ATT	CAT	ATT	TCT	GAC	1483

	Phe	Val	Glu	Leu	Glu	Pro	Gly	Ile	Glu	Gly	Leu	Ile	His	Ile	Ser	Asp	
			410					415					420				
5	ATG	AGT	TGG	ATT	AAA	AAA	GTC	TCT	CAC	CCT	TCA	GAA	CTA	TTC	AAA	AAA	1531
10	Met	Ser	Trp	Ile	Lys	Lys	Val	Ser	His	Pro	Ser		Leu	Phe	Lys	Lys	
		425					430					435				,	-
	GGA	AAT	TCT	GTA	GAG	GCT	GTT	ATT	TTA	TCA	GTA	GAC	AAA	GAA	AGT	AAA	1579
15	Gly	Asn	Ser	Val	Glu	Ala	Val	Ile	Leu	Ser	Val	Asp	Lys	Glu	Ser	Lys	
•	440					445					450					455	
20	AAA	ATT	ACT	TTA	GGA	GTT	AAG	CAA	TTA	AGT	TCT	AAT	CCT	TGG	AAT	GAA	1627
	Lys	Ile	Thr	Leu	Gly	Val	Lys	Gln	Leu	Ser	Ser	Asn	Pro	Trp	Asn	Glu	
25					460					465					470		
	ATT	GAA	GCT	ATG	TTC	CCT	GCT	GGC	ACA	GTA	ATT	TCA	GGA	GTT	GTG	ACT	1675
30	Ile	Glu	Ala	Met	Phe	Pro	Ala	Gly	Thr	Val	Ile	Ser	Gly	Val	Val	Thr	
				475					480					485			*
35	AAA	ATC	ACT	GCA	TŢT	GGA	GCC	TTT	GTT	GAG	CTA	CAA	AAC	GGG	ATT	GAA	1723
	Lys	Ile	Thr	Ala	Phe	Gly	Ala	Phe	Val	Glu	Leu	Gln	Asn	Gly	Ile	Glu	
40			490					495					500				
	GGA	TTG	ATT	CAC	GTT	TCA	GAA	CTT	TCT	GAC	AAG	ccc	TTT	GCA	AAA	ATT.	1771
45	Gly	Leu	Ile	His	Val	Ser	Glu	Leu	Ser	Asp	Lys	Pro	Phe	Ala	Lys	Ile	
		505					510					515					
50	GAA	GAT	ATT	ATC	TCC	ATT	GGA	GAA	AAT	GTT	TCT	GCA	AAA	GTA	ATT	AAG	1919
	Glu	Asp	Ile	Ile	Ser	Ile	Gly	Glu	Asn	Val	Ser	Ala	Lys	Val	Ile	Lys	

	520		525	530		535
	CTA GAT	CCA GAT CAT	AAA AAA GTT	TCT CTT TCT GT	A AAA GAA TAC	TTA 1867
5						
	Leu Asp	Pro Asp His	Lys Lys Val	Ser Leu Ser Val	l Lys Glu Tyr	Leu
		540		545	550	
10	GCT GAC	AAT GCT TAT	GAT CAA GAC	TCT AGG ACT GAA	A TTA GAT TTC	AAG 1915
15	Ala Asp	Asn Ala Tyr	Asp Gln Asp	Ser Arg Thr Glu	ı Leu Asp Phe	Lys
•		555		560	565	
	GAT TCT	CAA GGC GAA	GGG GTT CGA	ATT CCG CCG ATA	CTG	1954
20			· +			
	-	- -		Ile Pro Pro Ile		
_		570	575		580	
25				•		
	TNEODMATT	ION FOR SEQ	TD NO. 14.			
30		ENCE CHARACT				
		NGTH:160 am:				
		PE: amino a		•		
3 5		ECULE TYPE:				
	(xi) SEQU	JENCE DESCRI	IPTION: SEQ I	D NO: 14:		
40	Met Ile S	Ser Leu Ile	Ala Ala Leu	Ala Val Asp Arg	Val Ile Gly	Met
40	1	5		10	15	
	Glu Asn A	Ala Met Pro	Trp Asn Leu	Pro Ala Asp Leu	Ala Trp Phe	Lys
45		20		25	30	
	Arg Asn T	hr Leu Asn	Lys Pro Val	Ile Met Gly Arg	His Thr Trp	Glu
		35	40		45	
50	Ser Ile G	ly Arg Pro	Leu Pro Gly	Arg Lys Asn Ile	Ile Leu Ser	Ser
	50		55	60		

Gln	Pro	Gly	Thr	Asp	Asp	Arg	Val	Thr	Trp	Val	Lys	Ser	Val	Asp	Glu
65					70					75					80
Ala	Ile	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	Ile	Met	Val	Ile	Gly	Gly
				85					90					95	
Gly	Arg	Val	Tyr	Glu	Gln	Phe	Leu	Pro	Lys	Ala	Gln	Lys	Leu	Tyr	Leu
			100			~		105					110		
Thr	His	Ile	Asp	Ala	Glu	Val	Glu	Gly	Asp	Thr	His	Phe	Pro	Asp	Tyr
		115					120					125			
Glu	Pro	Asp	Asp	Trp	Glu	Ser	Val	Phe	Ser	Glu	Phe	His	Asp	Ala	Asp
	130					135					140				
Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	Ile	Leu	Glu	Arg	Arg	Ile
145					150					155					160
INF	ORMA'	TION	FOR	SEQ	ID 1	NO:	15:								
(i)	SEQ	UENC:	E CH	ARAC'	reri:	STIC	S:								
				9 am:		acid:	s								
				no a											
				YPE:						_					
-		_		ESCR:			_								
Met	Ile	Ser	Leu		Ala	Ala	Leu	Ala		Asp	Arg	Val	Ile	Gly	Met
1				5					10					15	
Glu	Asn	Ala		Pro	Trp	Asn	Leu		Ala	Asp	Leu	Ala		Phe	Lys
			20					25					30		
Arg	Asn		Leu	Asn	Lys	Pro		Ile	Met	Gly	Arg		Thr	Trp	Glu
		35					40					45			
Ser		Gly	Arg	Pro-	Leu		Gly	Arg	Lys	Asn		Ile	Leu	Ser	Ser
	50					55					60				
Gln	Pro	Gly	Thr	Asp	Asp	Arg	Val	Thr	Trp	Val	Lys	Ser	Val	Asp	Glu

	65					70)				75					80
	Ala	Ile	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	Ile	Met	Val	Ile	Gly	Gly
5					85					90					95	
	Gly	Arg	Val	Tyr	Glu	Gln	Phe	Leu	Pro	Lys	Ala	Gln	Lys	Leu	Tyr	Lev
				100					105					110		
10	Thr	His	Ile	Asp	Ala	Glu	Val	Glu	Gly	Asp	Thr	His	Phe	Pro	Asp	Tyr
			115					120					125			
15	Glu	Pro	Asp	Asp	Trp	Glu	Ser	Val	Phe	Ser	Glu	Phe	His	Asp	Ala	Asp
		130					135					140				
	Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	Ile	Leu	Glu	Arg	Arg	Ile
20	145					1-50					155		· ·			160
	Leu	Met	Ser	Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile
					165					170		•			175	
25	Met	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp
				180					185					190		
30	Lys	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly
30			195					200					205			
	Lys	Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly
35		210					215					220				
	Lys	Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln	Gln
	225					230					235					240
40	Gly	Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala
					245					250					255	
	Asp	Thr	Gly	Val	Ser	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn	Thr	Ala
45				260					265					270		
	Thr	Lys	Ile	Ala	Met	Gln	Thr	Ser	Ile	Glu	Glu	Ala	Ser	Lys	Ser	Met
50			275					280					285			
50	Glu	Ser	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gln	Met	Lys
		290					295					300				

Glu	Val	Glu	Ala	Val	Val	Val	Ala	Ala	Leu	Ser	Gly	Lys	Ser	Ser	Gly
305					310					315					320
Ser	Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro
				325					330					335	
Arg	Ser	Glu	Val	Ile	Glu	Ile	Gly	Leu	Ala	Leu	Ala	Lys	Ala	Ile	Gln
			340					345					350		
Thr	Leu	Gly	Glu	Ala	Thr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr
		355					360					365			
Gln	Ala	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala
	370		٠			375					380				
Ile	Lys	Ile	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala
385					390					395					400
Glu	Gln	Lys	Ser	Lys	Asp	Leu	Glu	Gly	Thr	Met	Asp	Thr	Val	Asn	Thr
				405					410					415	
Val	Met	Ile	Ala	Val	Ser	Val	Ala	Ile	Thr	Val	Ile	Ser	Ile	Val	Ala
			420					425					430	- (
Ala	Ile	Phe	Thr	Cys	Gly	Ala	Gly	Leu	Ala	Gly	Leu	Ala	Ala	Gly	Ala
		435					440					445			
Ala	Val	Gly	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Ala	Gly	Ala	Ala	Ala	Ala
	450					455					460				
Thr	Thr	Val	Ala	Thr	Gln	Ile	Thr	Val	Gln	Ala	Val	Val	Gln	Ala	Val
465					470					475					480
Lys	Gln	Ala	Val	Ile	Thr	Ala	Va1	Arg	Gln	Ala	Ile	Thr	Ala	Ala	.Ile
				485					490					495	
Lys	Ala	Ala	Val	Lys	Ser	Gly	Ile	Lys	Ala	Phe	Ile	Lys	Thr	Leu	Val
			500					505					510		
Lys	Ala	Ile	Ala	Lys	Ala	Ile	Ser	Lys	Gly	Ile	Ser	Lys	Val	Phe	Ala
		515					520					525			
Lys	Gly	Thr	Gln	Met	Ile	Ala	Lys	Asn	Phe	Pro	Lys	Leu	Ser	Lys	Val

			530					535					540)			
		Ile	Ser	Ser	Leu	Thr	Ser	Lys	Trp	Val	Thr	Val	Gly	. Val	Gly	Va.	l Val
5		545					550					555					560
		Val	Ala	Ala	Pro	Ala	Leu	Gly	Lys	Gly	Ile	Met	Gln	Met	Glr	Let	ser Ser
10						565					570					575	5
70		Glu	Met	Gln	Gln	Asn	Val	Ala	Gln	Phe	Gln	Lys	Glu	Val	Gly	Lys	Leu
					580					585					590		
15		Gln	Ala	Ala	Ala	Asp	Met	Ile	Ser	Met	Phe	Thr	Gln	Phe	Trp	Glr	Gln
				595					600					605			
		Ala	Ser	Lys	Ile	Ala	Ser	Lys	Gln	Thr	Gly	Glu	Ser	Asn	Glu	Met	Thr
—20·			-610					-61-5		. =		-	-620-	-	÷		
		Gln	Lys	Ala	Thr	Lys	Leu	Gly	Ala	Gln	Ile	Leu	Lys	Ala	Tyr	Ala	Ala
		625					630					635					640
25		Ile	Ser	Gly	Ala	Ile	Ala	Gly	Ala	Ala							
						645				649							
30																	
		INFO															
3 5		(i) :															
							no a	cids									
					amin												
40	•	(ii)															
		(xi)											_				
4 5		Met I	ile :	ser .	Leu .		Ala A	Ala I	Leu i	Ala '		Asp /	Arg	Val	Ile	_	Met
40		1	\c= 1		4-4-	5	n 1	·			10		_		_	15 	
		Glu A	isn A	Ala (ero :	rrp A	Asn I	Jeu I		Ala A	Asp 1	Leu .	Ala '		Phe	Lys
50		A = a = A	T	nb *	20	· •	· •	·		25					30	_	
		Arg A	ioii I		seu f	isn I	rås F	FFO V		TE P	set (ary i	arg 1		rnr	Trp	Glu
				35					40					45			

Ser	Ile	Gly	Arg	Pro	Leu	Pro	Gly	Arg	Lys	Asn	Ile	Ile	Leu	Ser	Ser
	50					55					60				
Gln	Pro	Gly	Thr	Asp	Asp	Arg	Val	Thr	Trp	Val	Lys	Ser	Val	Asp	Glu
65					70					75					80
Ala	Ile	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	Ile	Met	Val	Ile	Gly	Gly
				85					90					95	
Gly	Arg	Val	Tyr	Glu	Gln	Phe	Leu	Pro	Lys	Ala	Gln	Lys	Leu	Tyr	Leu
			100					105					110		
Thr	His	Ile	Asp	Ala	Glu	Val	Glu	Gly	Asp	Thr	His	Phe	Pro	Asp	Tyr
٠		115					120					125			
Glu	Pro	Asp	Asp	Trp	Glu	Ser	Val	Phe	Ser	Glu	Phe	His	Asp	Ala	Asp
	130					135					140				
Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	Ile	Leu	Glu	Arg	Arg	Ile
145					150					155					160
Leu	Met	Ser	Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile
				165					170					175	
Met	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp
			180					185					190		
Lys	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly
		195					200					205			
Lys	Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly
	210					215				•	220				
Lys	Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Glu	Thr	Ala	Pro	Gln.	Gln
225					230					235					240
Gly	Val	Ala	Ala	Gly	Lys	G1u	Ser	Ser	Glu	Ser	Gln	Lys	Ala	Gly	Ala
				245					250					255	
Asp	Thr	Gly	Val	Ser	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser	Asn	Thr	Ala
			260					265					270		
Thr	Lys	Ile	Ala	Met	Gln	Thr	Ser	Ile	Glu	Glu	Ala	Ser	Lys	Ser	Met

			275					280					285					
	Glu	ser	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser	Ala	Ala	Gln	Met	Lys		
5		290					295					300						
	Glu	val	Glu	Ala	Val	Val	Val	Ala	Ala	Leu	Ser	Gly	Lys	Ser	Ser	Gly		
10	305	;				310					315					320		
	Ser	Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	•	
					325					330					335			
15	Arg	Ser	Glu	Val	Ile	Glu	.Ile	Gly	Leu	Ala	Leu	Ala	Lys	Ala	Ile	Gļn		
				340					345					350				
	Thr	Leu	Gly	Glu	Ala	Thr				Leu	Ser	Asn	Tyr	Ala	Ser	Thr		
-20			-3-5-5					–3·6·0·	-			-	-3·6·5·					-
	Gln	Ala	Gln	Ala	Asp	Gln	•	Asn	Lys	Leu	Gly		Glu	Lys	Gln	Ala		
05		370					375					380						
25		Lys	Ile	Asp	Lys		Arg	Glu	Glu	Tyr		Glu	Met	Lys	Ala			
	385					390					395					400		
30	Glu	Gln	Lys	Ser		Asp	Leu	Glu	Gly		Met	Asp	Thr	Val		Thr		
	1		_,		405		_,		_	410	_		_	_	415			
	Val	Met	Ile		Lys	GIĀ	Phe	Glu		Pro	Trp	Gly	Pro		Ile			
35				420					425					430		432		
	TMEC	מאמר	TON	EOD	CEO	TD 1	.o. 1	7 .										
40		RMAT			_			. / :										
		SEQU						•										
45) TY				_												
45		;) ST																
		MOL						clai	c ac	ا داد	Simt'	hot i	- DN	n				
50		SEQ										"EFT	C DN	n				
		ATC .										rer <i>i</i>	مست	ልጥር	ccc	ATC		A D
				-13 /	'	JCG (JCG (arw (-n.	د د د	311 ·	nic '		NIG.		48

	Met	Ile	Ser	Leu	Ile	Ala	Ala	Leu	Ala	Val	Asp	Arg	Val	Ile	Gly	Met	
	1				5					10					15		
;	GAA	AAC	GCC	ATG	ccg	TGG	AAC	CTG	CCT	GCC	GAT	CTC	GCC	TGG	TTT	AAA	96
0	Glu	Asn	Ala	Met	Pro	Trp	Asn	Leu	Pro	Ala	Asp	Leu	Ala	Trp	Phe	Lys	
				20		•	•		25					30			
	CGC	AAC	ACC	TTA	AAT	AAA	CCC	GTG	ATT	ATG	GGC	CGC	CAT	ACC	TGG	GAA	144
5								_				_	•		_		
	Arg	Asn			Asn	Lys	Pro		Ile	Met	Gly	Arg		Thr	Trp	Glu	
			35					40				3.00	45	CmC	166	1.Cm	100
20	TCA	ATC	GGT	CGT	CCG	TTG	CCA	GGA	CGC	AAA	AAT	ATT	ATC	CTC	AGC	AGT	192
	_	_,	- 3			.	n	G1	>	T	3	Tla	T10	T all	5	S	
25	Ser		GIĀ	Arg	Pro	Leu	Pro 55	GIY	Arg	Lys	ASN	60	116	reu	ser	Ser	
		50	c c m		536	C N TT		CELY	».cc	mcc	CTC		TCC	CTC	CAT	GAA	240
	CAA	CCG	GGI	ACG	GAL	GAT	CGC	GIA	ACG	166	GIG	AAG	100	GIG	GAI	GAA	240
30	Gln	Pro	Gly	ም ስ ተ	Δen	Acn	Ara	Va 1	ጥb -	Trp	Val	T.vs	Ser	۷al	Asp	Glu	
	65	110	Gry	****	АЗР	70	419	141	****		75	<i>D</i> ₁ 0				80	
		ATC	GCG	GCG	TGT		GAC	GTA	CCA	GAA		ATG	GTG	ATT	GGC		288
35																	
	Ala	Ile	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	Ile	Met	Val	Ile	Gly	Gly	
					85		-			90					95	-	
40	GGT	CGC	GTT	TAT	GAA	CAG	TTC	TTG	CCA	AAA	GCG	CAA	AAA	CTG	TAT	CTG	336
45	Gly	Arg	Val	Tyr	Glu	Gln	Phe	Leu	Pro	Lys	Ala	Gln	Lys	Leu	Tyr	Leu	
				100					105					110	-		
	ACG	CAT	ATC	GAC	GCA	GAA	GTG	GAA	GGC	GAC	ACC	CAT	TTC	CCG	GAT	TAC	384
50																	

	Thi	Hi	s Ile	e Asp	Ala	Glu	ı Val	l Glu	ı Gly	y Asi	Th	His	Phe	Pro) Asp	Tyr	
-			115	5				120)				125				
•	GAC	CCC	G GAT	GAC	TGG	GA#	TCC	G GTA	A TTO	C AGC	GA#	A TTC	CAC	GAT	GCI	GAT	432
10	Glu		_	Asp	Trp	Glu			. Phe	e Ser	Glu			Asp	Ala	Asp	
		130)				135	5				140					
15	GCG	CAC	AAC	TCT	CAC	AGC	TAT	GAG	TTC	GAA	ATI	CTG	GAG	CGG	CGG	ATC	480
15	Ala	Glr	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	Ile	Leu	Glu	Arg	Arg	Ile	
	145				•	150					155					160	
20	CTG	_ATG	_TCT	_ATT	_TCA	-TCT	_TCT	-TCA	GGA	-cet	-GAG	ААТ	-CAA	-AAA	-AAT	-ATC-	528
	Leu	Met	Ser	Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile	
25					165					170					175		
	ATG	TCT	CAA	GTT	CTG	ACA	TCG	ACA	ccc	CAG	GGC	GTG	ccc	CAA	CAA	GAT	576
30	Met	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp	
				180					185					190			
35	AAG	CTG	TCT	GGC	AAC	GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	624
	Lys	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly	
40			195					200					205				
	AAA	AAC	ACT	GAG	ATG	GAA	AGC	GAT	GCC	ACT	ATT	GCT	GGT	GCT	TCT	GGA	672
4 5	Lys	Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly	
		210					215					220					
50	AAA	GAC	AAA	ACT	TCC	TCG	ACT	ACA	AAA	ACA	GAA	ACA	GCT	CCA	CAA	CAG	720
	Lys	Asp	Lys	Thr	Ser	Ser	Thr	Thr	Lys	Thr	Gļu	Thr	Ala	Pro	Gln	Gln	

	225					230					235					240	
5	GGA	GTT	GCT	GCT	GGG	AAA	GAA	TCC	TCA	GAA	AGT	CAA	AAG	GCA	GGT	GCT	768
	Gly	Val	Ala	Ala	Gly	Lys	Glu	Ser	Ser		Ser	Gln	Lys	Ala		Ala	•
10					245					250					255		
70	GAT	ACT	GGA	GTA	TCA	GGA	GCG	GCT	GCT	ACT	ACA	GCA	TCA	AAT	ACT	GCA	816
15	Asp	Thr	Gly	Val	Ser	Gly	Ala	Ala	Ala	Thr	Thr	Ala	Ser		Thr	Ala	
				260					265					270			
20	ACA	AAA	ATT	GCT	ATG	CAG	ACC	TCT	ATT	GAA	GAG	GCĠ	AGC	AAA	AGT	ATG	864
	Thr	Lys	Ile	Ala	Met	Gln	Thr	Ser	Ile	Glu	Glu	Ala		Lys	Ser	Met	
			275					280					285				
25	GAG	TCT	ACC	TTA	GAG	TCA	CTT	CAA	AGC	CTC	AGT	GCC	GCG	CAA	ATG	AAA	912
30	Glu	Ser	Thr	Leu	Glu	Ser	Leu	Gln	Ser	Leu	Ser			Gln	Met	Lys	
		290					295					300					
	GAA	GTC	GAA	GCG	GTT	GTT	GTT	GCT	GCC	CTC	TCA	GGG	AAA	AGT	TCG	GGT	960
35	Glu	Val	Glu	Ala	Val	Val	Val	Ala	Ala	Leu	Ser	Gly	Lys	Ser	Ser	Gly	
	305					310					315	,				320	
40	TCC	GCA	AAA	TTG	GAA	ACA	CCT	GAG	CTC	ccc	: AAG	ccc	GGG	GTG	, ACA	CCA	1008
	Ser	Ala	Lys	Leu	Glu	t Thi	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Va]		Pro	
4 5					325	5				330) <u>.</u>				335	5	
	AGA	TC2	GAG	GTT	`ATC	GA/	ATC	: GG#	CTC	GCG	CTI	GCI	AAA 1	GC#	TTA A	CAG	1056
50	Arg	Ser	Glu	ı Val	Ile	e Glu	ı Ile	: G1 <u>y</u>	Let	ı Ala	. Le	ı Ala	Lys			e Gln	
				340)				345	5				350	כ		

	ACA	TTG	GGA	GAA	GCC	ACA	AAA	TCT	GCC	TTA	TCT	AAC	TAT	GCA	AGT	ACA	1104
5	Thr	Leu	Gly	Glu	Ala	Thr	Lys	Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr	
			355		•			360					365				
10	CAA	GCA	CAA	GCA	GAC	CAA	ACA	AAT	AAA	CTA	GGT	CTA	GAA	AAG	CAA	GCG	1152
	Gln	Ala	Gln	Ala	Asp	Gln	Thr	Asn	Lys	Leu	Gly	Leu	Glu	Lys	Gln	Ala	
	· · · ·				•		375		•		-	380		-			
15		370								m. c	<i>-</i>		.		com	666	1200
	ATA	AAA	ATC	GAT	AAA	GAA	CGA	GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	1200
_20	Ile	Lys	Ile	Asp	Lys	Glu	Arg	Glu	Glu	Tyr	Gln	Glu	Met	Lys	Ala	Ala	
	385					390					395					400	
	GAA	CAG	AAG	TCT	AAA	GAT	CTC	GAA	GGA	ACA	ATG	GAT	ACT	GTC	AAT	ACT	1248
2 5																	
	Glu	Gln	Lvs	Ser	Lvs	Asp	Leu	Glu	Glv	Thr	Met	Asp	Thr	Val	Asn	Thr	
			-1-		405	•			•	410		-			415		
30																	1206
	GTG	ATG	ATC	GCG	GTT	TCT	GTT	GCC	ATT	ACA	GTT	ATT	TCT	ATT	GTT	GCT	1296
3 5	Val	Met	Ile	Ala	Vaļ	Ser	Val	Ala	Ile	Thr	Val	Ile	Ser	Ile	Val	Ala	
				420					425					430			
	GCT	ATT	TTT	ACA	TGC	GGA	GCT	GGA	CTC	GCT	GGA	CTC	GCT	GCG	GGA	GCT	1344
40																	
	Ala	Ile	Phe	Thr	Cvs	Glv	Ala	Gly	Leu	Ala	Glv	Leu	Ala	Ala	Glv	Ala	
					•,,,	,		440			1		445		1		
45			435														
	GCT	GTA	GGT	GCA	GCG	GCA	GCT	GGA	GGT	GCA	GCA ,	GGA	GCT	GCT	GCC	GCA	1392
50	Ala	Val	Gly	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Ala	Gly	Ala	Ala	Ala	Ala	
50		450					455					460					
	ACC	ACG	GTA	GCA	ACA	CAA	ATT	ACA	GTT	CAA	GCT	GTT	GTC	CAA	GCG	GTG	1440

	Thr	Thr	Val	Ala	Thr	Gln	Ile	Thr	Val	Gln	Ala	Val	Val	Gln	Ala	Val	
	465					470					475					480	
5	AAA:	CAA	GCT	GTT	ATC	ACA	GCT	GTC	AGA	CAA	GCG	ATC	ACC	GCG	GCT	ATA	1488
10	Lys	G1n	Ala			Thr	Ala	Val	Arg		Ala	Ile	Thr	Ala		Ile	
	AAA	GCG	GCT		485 AAA	TCT	GGA	ATA	AAA	490 GCA	TTT	ATC	AAA	ACT	495 TTA	GTC	1536
15	Lys	Ala	Ala	Val	Lys	Ser	Gly	Ile	Lys	Ala	Phe	Ile	Lys	Thr	Leu	Val	
				500					505					510			
20	AAA	GCG	ATT	GCC	AAA	GCC	ATT	TCT	AAA	GGA	ATC	TCT	AAG	GTT	TTC	GCT	1584
	Lys	Ala	Ile	Ala	Lys	Ala	Ile		Lys	Gly	Ile	Ser		Val	Phe	Ala	
25			515					520					525				
	AAG	GGA	ACT	CAA	ATG	ATT	GCG	AAG	AAC	TTC	CCC	AAG	CTC	TCG	AAA	GTC	1632
30	Lys		Thr	Gln	Met	Ile	Ala	Lys	Asn	Phe	Pro		Leu	Ser	Lys	.Val	
		530					535					540					
35	ATC	TCG	TCT	CTT	ACC	AGT	AAA	TGG	GTC	ACG	GTT	GGG	GTT	GGG	GTT	GTA	1680
	Ile	Ser	Ser	Leu	Thr	Ser	Lys	Trp	Val	Thr	Val	Gly	Val	Gly	Val	Val	
	545					550					555					560	
40		GCG	GCG	CCT	GCT	CTC	GGT	AAA	GGG	ATT	ATG	CAA	ATG	CAG	CTC	TCG .	1728
45	Val	Ala	Ala	Pro	Ala	Leu	Gly	Lys	Gly	Ile	Met	Gln	Met	Gln	Leu	Ser	
					565					570					575		
	GAG	ATG	CAA	CAA	AAC	GTC	GCT	CAA	TTT	CAG	AAA	GAA	GTC	GGA	AAA	CTG	1776

	Glu	Met G	ln Gln	Asn	Val	Ala	Gln	Phe	Gln	Lys	Glu	Val	Gly	Lys	Leu		
			580					585					590				
5	CAG	GCT G	CG GCT	GAT	ATG	ATT	TCT	ATG	TTC	ACT	CAA	TTT	TGG	CAA	CAG	•	1824
10	Gln		la Ala 95	Asp	Met	Ile	Ser 600	Met	Phe	Thr	Gln	Phe	Trp	Gln	Gln		
	GCA		AA ATT	GCC	TCA	AAA		ACA	GGC	GAG	TCT		GAA	ATG	ACT		1872
15			ys Ile	Ala	Ser		Gln	Thr	Gly	Glu		Asn	Glu	Met	Thr		
_20		610 -AAAG	et-acc	-aag	-стс	615 -GGC-	-GCT-	-CAA-	-ATC-	-CTT-	620 AAA	-GCG-	TAT	-GCC	GCA-		1920
95	Gln	Lys A	la Thr	Lys	Leu	Gly	Ala	Gln	Ile	Leu	Lys	Ala	Tyr	Ala	Ala		
25	625 ATC	AGC G	GA GCC	ATC	630 GCT	GGC	GCA	GCA		635					640		1947
30	Ile	Ser G	ly Ala		Ala	Gly	Ala	Ala 649									
35				645				049									
40			ON FOR														
			STH:12				i										
45			ANDEDNI				clei	.c ac	:id;	Synt	heti	.c DN	IA				
50			ENCE DI								CGC	GTT	ATC	GGC	ATG		48

Met	Ile	Ser	Leu	Ile	Ala	Ala	Leu	Ala	Val	Asp	Arg	Val	Ile	Gly	Met	
1				5					10					15		
GAA	AAC	GCC	ATG	CCG	TGG	AAC	CTG	CCT	GCC	GAT	CTC	GCC	TGG	TTT	AAA	96
Glu	Asn	Ala	Met	Pro	Trp	Asn	Leu	Pro	Ala	Asp	Leu	Ala	Trp	Phe	Lys	
			20					25					30			
CGC	AAC	ACC	TTA	AAT	AAA	CCC	GTG	ATT	ATG	GGC	CGC	CAT	ACC	TGG	GAA	144
Arg	Asn	Thr	Leu	Asn	Lys	Pro	Val	Ile	Met	Gly	Arg		Thr	Trp	Glu	
		35					40					45				
TCA	ATC	GGT	CGT	CCG	TTG	CCA	GGA	CGC	AAA	AAT	ATT	ATC	CTC	AGC	AGT	192
Ser	Ile	Gly	Arg	Pro	Leu	Pro	Gly	Arg	Lys	Asn	Ile	Ile	Leu	Ser	Ser	
	50					55					60					
CAA	CCG	GGT	ACG	GAC	GAT	CGC	GTA	ACG	TGG	GTG	AAG	TCG	GTG	GAT	GAA	240
Gln	Pro	Gly	Thr	Asp	Asp	Arg	Val	Thr	Trp	Val	Lys	Ser	Val	Asp	Glu	
65					70					75					80	
GCC	ATC	GCG	GCG	TGT	GGT	GAC	GTA ·	CCA	GAA	ATC	ATG	GTG	ATT	GGC	GGC	288
Ala	Ile	Ala	Ala	Cys	Gly	Asp	Val	Pro	Glu	Ile	Met	Val	Ile		Gly	
				85					90					95		
GGT	CGC	GTT	TAT	GAA	CAG	TTC	TTG	CCA	AAA	GCG	CAA	AAA	CTG	TAT	CTG	336
Gly	Arg	Val			Gln	Phe	Leu		Lys	Ala	Gln	Lys			Leu	
			100					105					110			
ACG	CAT	ATC	GAC	GCA	GAA	GTG	GAA	GGC	GAC	ACC	CAT	TTC	CCG	GAT	TAC	384
Thr	His	Ile	Asp	Ala	Glu	Val	Glu	Gly	Asp	Thr	His	Phe	Pro	Asp	Tyr	

			115	;				120	ı				125				
5	GAC	cco	G GAT	GAC	TGG	GAA	TCG	GTA	TTC	AGC	GA.ª	TTC	CAC	GAT	GCI	GAT	432
	Glu	130	_	Asp	Trp	Glu	Ser		Phe	Ser	Glu	Phe	His	Asp	Ala	Asp	
10	GCC	CAG	; AAC	TCT	CAC	AGC	TAT	GAG	TTC	GAA	ATT	CTG	GAG	CGG	CGG	ATC	480
15	Ala	Gln	Asn	Ser	His	Ser	Tyr	Glu	Phe	Glu	Ile	Leu	Glu	Arg	Arg	Ile	
	145	•				150					155					160	
	CTG	ATG	TCT	ATT	TCA	TCT	TCT	TCA	GGA	CCT	GĄC	AAT	CAA	AAA	AAT	ATC	528
— <i>20-</i> ·			-	-					-		-						**
	Leu	Met	Ser	Ile	Ser	Ser	Ser	Ser	Gly	Pro	Asp	Asn	Gln	Lys	Asn	Ile	
	·				165					170					175		
25	ATG	TCT	CAA	GTT	CTG	ACA	TCG	ACA	ccc	CAG	GGC	GTG	CCC	CAA	CAA	GAT	576
20	Met	Ser	Gln	Val	Leu	Thr	Ser	Thr	Pro	Gln	Gly	Val	Pro	Gln	Gln	Asp	
30				180					185					190			
	AAG	CTG	TCT	GGC	AAC	GAA	ACG	AAG	CAA	ATA	CAG	CAA	ACA	CGT	CAG	GGT	624
35																	
	Lys	Leu	Ser	Gly	Asn	Glu	Thr	Lys	Gln	Ile	Gln	Gln	Thr	Arg	Gln	Gly	
			195					200					205				
40	AAA	AAC	ACT	GAG	ATG	GAA	AGC	GAT	GCC	ACT	ATT	GCT	GGT	GCT	TCT	GGA	672
	Lys	Asn	Thr	Glu	Met	Glu	Ser	Asp	Ala	Thr	Ile	Ala	Gly	Ala	Ser	Gly	
4 5		210					215					220					
	AAA	GAC	AAA	ACT	TCC	TCG	ACT	ACA	AAA	ACA	GAA	ACA	GCT	CCA	CAA	CAG	720
50	Lvs	Asp	Lvc	ፓስ ተ	Ser	Ser	ጥኮ ተ	ጥክ ፦	T.ve	ጥ ኮ -	Glu	Thr	21s	Pro	Gla	G) n	
	225		-, 5				- • • •		- 73			****	nza	. 10	3111		
	223					230					235					240	

	GGA	GTT	GCT	GCT	GGG	AAA	GAA	TCC	TCA	GAA	AGT	CAA	AAG	GCA	GGT	GCT	768
5	Gly	Val	Ala	Ala	Gly 245	Lys	Glu	Ser	Ser	Glu 250	Ser	Gln	Lys	Ala	Gly 255	Ala	
10	GAT	ACT	GGA	GTA		GGA	GCG	GCT	GCT	ACT	ACA	GCA	TCA	AAT	ACT	GCA	816
	Asp	Thr	Gly	Val 260	Ser	Gly	Ala	Ala	Ala 265	Thr	Thr	Ala	Ser	Asn 270	Thr	Ala	
15	ACA	AAA	ATT		ATG	CAG	ACC	TCT		GAA	GAG	GCG	AGC		AGT	ATG	864
20	Thr	Lys		Ala	Met	Gln	Thr		Ile	Glu	Glu	Ala	Ser 285	Lys	Ser	Met	
25	GAG	TCT	275 ACC	TTA	GAG	TCA	CTT	280 CAA	ĀGC	CTC	AGT	GCC		CAA	ATG	AAA	912
	Glu	Ser	Thr	Leu	Glu	Ser		Gln	Ser	Leu	Ser		Ala	Gln	Met	Lys	
30	GAA	290 GTC	GAA	GCG	GTT	GTT	295 GTT	GCT	GCC	СТС	TCA	300 GGG	AAA	AGT	TCG	GGT	960
<i>35</i>	Glu	Val	Glu	Ala	Val	Val	Val	Ala	Ala	Leu		Gly	Lys	Ser	Ser		
	305 TCC	GCA	AAA	TTG	GAA	310 ACA	CCT	GAG	CTC	ccc	315 AAG	ccc	GGG	GTG	ACA	320 CCA	1008
40	Ser	Ala	Lys	Leu	Glu	Thr	Pro	Glu	Leu	Pro	Lys	Pro	Gly	Val	Thr	Pro	
45	AGA	TCA	GAG	GTT	325 ATC	GAA	ATC	GGA	CTC	330 GCG	CTT	GCT	AAA	GCA	335 ATT	CAG	1056
	Arg	Ser	Glu	Val	Ile	Glu	Ile	Gly	Leu	Ala	Leu	Ala	Lys	Ala	Ile	Gln	
50	ACA	TTG	GGA	340 GAA	GCC	ACA	AAA	TCT	345 GCC	TTA	TCT	AAC	TAT	350 GCA	AGT	ACA	1104

	Thr Le	u Gly	Glu Ala	Thr Ly	s Ser	Ala	Leu	Ser	Asn	Tyr	Ala	Ser	Thr	
	٠	355			360					365				
5	CAA GC	A CAA	GCA GAC	CAA AC	A AAT	AAA	CTA	GGT	CTA	GAA	AAG	CAA	GCG	1152
			,											
10			Ala Asp			Lys	Leu	Gly		Glu	Lys	Gln	Ala	
	37			37	•				380					
	ATA AA	A ATC (GAT AAA	GAA CG	A GAA	GAA	TAC	CAA	GAG	ATG	AAG	GCT	GCC	1200
15	_, _	-,		63 3-	- 61	C1		C1-	61	14-4	.	• • •		
	_	s lle A	Asp Lys		g Gin	GIU	Tyr		GIU	Met	Lys	Ala		
20-	385			390	*	-aa-	-1-01-	395	- 0 3-m-	- à · ⁄à-m-	-čmá		400	'4707/10 ⁷⁷⁷
	-GAA-CA	G AAG 1	rct aaa	GAT CT	. GAA	GGA	AÇA	ATG	GAT	ACT	GTC	AAT	ACT	1248
	Clu Cl	n Tue S	Ser Lys	Acn Le	ı Glu	Clu	ωp ~	Ma+	a en	Th-	tra 1	A = =	mb -	
25	GIU GI.	n bys a	405	rap ne	. 014	Gly	410	nec	rap	1111	Vai	415		
	GTG AT	S ATC 6	SCG AAG	ር ርር ተፕ(GAA	ፐፐር		тсс	ccc	CCC	тта		ልልጥ	1296
	010				0.1.			100	000				1212	1250
30	Val Me	t Ile A	la Lys	Gly Phe	Glu	Leu	Pro	Trp	G1v	Pro	Leu	Ile	Asn	
			20			425					430		432	
35														
33														
	INFORM	ATION F	OR SEQ	ID NO:	19:									
40	(i) SE(QUENCE	CHARACT	ERISTIC	s:									
	(A) I	ENGTH:	20 base	pairs										
•	(B) 1	YPE: n	ucleic	acid										
45	(C) s	TRANDE	DNESS:	single										
	(ii) MC	LECULE	TYPE:	Other n	uclei	c ac	id;	Synt	heti	c DN	A			
	(xi) SE	QUENCE	DESCRI	PTION:	SEQ I	D NO	: 19	:						
50	AGCTGTC	TGG CA	ACGAAAC	G										20

	INFORMATION FOR SEQ ID NO: 20:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:20 base pairs	
	(B) TYPE: nucleic acid	
o ·	(C) STRANDEDNESS: single	
<i>0</i> ·	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SÉQ ID NO: 20:	
5	GCAGCAACAA CAACCGCTTC	20
20	INFORMATION FOR SEQ ID NO: 21:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:29 base pairs	
25	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	GATCCTGATG TCTATTTCAT CTTCTTCAG	29
35		
	INFORMATION FOR SEQ ID NO: 22:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 28 base pairs	
	(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single	
	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	

	GTCCTGAAGA AGATGAAATA GACATCAG		28
5			
	INFORMATION FOR SEQ ID NO: 23:	,	
10	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH:30 base pairs		
	(B) TYPE: nucleic acid		
1 <i>5</i>	(C) STRANDEDNESS: single		
	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:		
-20-	AATTGCCATG GGGGCCCTTA ATTAATTAAC		30
25	INFORMATION FOR SEQ ID NO: 24:		
	(i) SEQUENCE CHARACTERISTICS:		
30	(A) LENGTH:30 base pairs		
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
35	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:		
	TCGAGTTAAT TAATTAAGGG CCCCCATGGC		30
40			
		· ·	
	INFORMATION FOR SEQ ID NO: 25:		
45	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH:5438 base pairs		
50	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: double		
	(ii) MOLECULE TYPE: Other nucleic acid; Plasmid		

	(xi) SEQUEN	CE DESCRIPT	ION: SEQ IL) NO: 23:			
5	ATCGATGTTA	ACAGATCTAA	GCTTAACTAA	CTAACTCCGG	AAAAGGAGGA	ACTTCCATGA	60
	TCAGTCTGAT	TGCGGCGTTA	GCGGTAGATC	GCGTTATCGG	CATGGAAAAC	GCCATGCCGT	120
10	GGAACCTGCC	TGCCGATCTC	GCCTGGTTTA	AACGCAACAC	CTTAAATAAA	CCCGTGATTA	180
15	TGGGCCGCCA	TACCTGGGAA	TCAATCGGTC	GTCCGTTGCC	AGGACGCAAA	AATATTATCC	240
	TCAGCAGTCA	ACCGGGTACG	GACGATCGCG	TAACGTGGGT	GAAGTCGGTG	GATGAAGCCA	300
20	TCGCGGCGTG	TGGTGACGTA	CCAGAAATCA	TGGTGATTGG	CGGCGGTCGC	GTTTATGAAC	360
25	AGTTCTTGCC	AAAAGCGCAA	AAACTGTATC	TGACGCATAT	CGACGCAGAA	GTGGAAGGCG	420
30	ACACCCATTT	CCCGGATTAC	GAGCCGGATG	ACTGGGAATC	GGTATTCAGC	GAATTCCACG	480
	ATGCTGATGC	GCAGAACTCT	CACAGCTATG	AGTTCGAAAT	TCTGGAGCGG	CGGATCCTGA	540
35	TGTCTATTTC	ATCTTCTTCA	GGACCTGACA	ATCAAAAAAA	TATCATGTCT	CAAGTTCTGA	600
40	CATCGACACC	CCAGGGCGTG	CCCCAACAAG	ATAAGCTGTC	TGGCAACGAA	ACGAAGCAAA	660
4 5	TACAGCAAAC	ACGTCAGGGT	AAAAACACTG	AGATGGAAAG	CGATGCCACT	ATTGCTGGTG	720
	CTTCTGGAAA	AGACAAAACT	TCCTCGACTA	. CAAAAACAGA	AACAGCTCCA	CAACAGGGAG	780
50	TTGCTGCTGG	GAAAGAATCC	TCAGAAAGTC	AAAAGGCAGG	; TGCTGATACT	GGAGTATCAG	840

	GAGCGGCTGC	TACTACAGCA	. TCAAATACTG	CAACAAAAAT	TGCTATGCAG	ACCTCTATTG	900
5	AAGAGGCGAG	CAAAAGTATG	GAGTCTACCT	TAGAGTCACT	TCAAAGCCTC	AGTGCCGCGC	960
10	AAATGAAAGA	AGTCGAAGCG	GTTGTTGTTG	CTGCCCTCTC	AGGGAAAAGT	TCGGGTTCCG	1020
15	CAAAATTGGA	AACACCTGAG	CTCCCCAAGC	CCGGGGTGAC	ACCAAGATCA	GAGGTTATCG	1080
15	AAATCGGACT	CGCGCTTGCT	AAAGCAATTC	AGACATTGGG	AGAAGCCACA	AAATCTGCCT	1140
20	TATCTAACTA	TGCAAGTACA	CAAGCACAAG	CAGACCAAAC	AAATAAACTA	GGTCTAGAAA	1200
25	AGCAAGCGAT	AAAAATCGAT	AAAGAACGAG	AAGAATACCA	AGAGATGAAG	GCTGCCGAAC	1260
	AGAAGTCTAA	AGATCTCGAA	GGAACAATGG	ATACTGTCAA	TACTGTGATG	ATCGCGAAGG	1320
30	GGTTCGAATT	GCCATGGGG	CCCTTAATTA	ATTAACTCGA	GAGATCCAGA	TCTAATCGAT	1380
35	GATCCTCTAC	GCCGGACGCA	TCGTGGCCGG	CATCACCGGC	GCCACAGGTG	CGGTTGCTGG	1440
40	CGCCTATATC	GCCGACATCA	CCGATGGGGA	AGATCGGGCT	CGCCACTTCG	GGCTCATGAG	1500
	CGCTTGTTTC	GGCGTGGGTA	TGGTGGCAGG	CCCGTGGCCG	GGGGACTGTT	GGGCGCCATC	1560
45	TCCTTGCATG	CACCATTCCT	TGCGGCGGCG	GTGCTCAACG	GCCTCAACCT	ACTACTGGGC	1620
5 <i>0</i>	TGCTTCCTAA	TGCAGGAGTC	GCATAAGGGA	GAGCGTCGAC	CGATGCCCTT	GAGAGCCTTC	1680
	AACCCAGTCA	GCTCCTTCCG	GTGGGCGCGG	GGCATGACTA	TCGTCGCCGC	ACTTATGACT	1740

GTCTTCTTTA	TCATGCAACT	CGTAGGACAG	GTGCCGGCAG	CGCTCTGGGT	CATTTTCGGC	1800
GAGGACCGCT	TTCGCTGGAG	CGCGACGATG	ATCGGCCTGT	CGCTTGCGGT	ATTCGGAATC	1860
TTGCACGCCC	TCGCTCAAGC	CTTCGTCACT	GGTCCCGCCA	CCAAACGTTT	CGGCGAGAAG	1920
CAGGCCATTA	TCGCCGGCAT	GGCGGCCGAC	GCGCTGGGCT	ACGTCTTGCT	GGCGTTCGCG	1980
ACGCGAGGCT	GGATGGCCTT	CCCCATTATG	ATTCTTCTCG	CTTCCGGCGG	CATCGGGATG	2040
CCCGCGTTGC	AGGCCATGCT	GTCCAGGCAG	GTAGATGACG	ACCATCAGGG	ACAGCTTCAA	2100
GGATCGCTCG	CGGCTCTTAC	CAGCCTAACT	TCGATCACTG	GACCGCTGAT	CGTCACGGCG	2160
ATTTATGCCG	CCTCGGCGAG	CACATGGAAC	GGGTTGGCAT	GGATTGTAGG	CGCCGCCCTA	2220
TACCTTGTCT	GCCTCCCCGC	GTTGCGTCGC	GGTGCATGGA	GCCGGGCCAC	CTCGACCTGA	2280
ATGGAAGCCG	GCGGCACCTC	GCTAACGGAT	TCACCACTCC	AAGAATTGGA	GCCAATCAAT	2340
TCTTGCGGAG	AACTGTGAAT	GCGCAAACCA	ACCCTTGGCA	GAACATATCC	ATCGCGTCCG	2400
CCATCTCCAG	CAGCCGCACG	CGGCGCATCT	CGGGCAGCGT	TGGGTCCTGG	CCACGGGTGC	2460
GCATGATCGT	GCTCCTGTCG	TTGAGGACCC	GGCTAGGCTG	GCGGGGTTGC	CTTACTGGTT	2520
AGCAGAATGA	ATCACCGATA	CGCGAGCGAA	CGTGAAGCGA	CTGCTGCTGC	AAAACGTCTG	2580

CGACCTGAGC	AACAACATGA	ATGGTCTTCG	GTTTCCGTGT	TTCGTAAAGT	CTGGAAACGC	2640
GGAAGTCAGC	GCCCTGCACC	ATTATGTTCC	GGATCTGCAT	CGCAGGATGC	TGCTGGCTAC	2700
CCTGTGGAAC	ACCTACATCT	GTATTAACGA	AGCGCTGGCA	TTGACCCTGA	GTGATTTTTC	2760
TCTGGTCCCG	CCGCATCCAT	ACCGCCAGTT	GTTTACCCTC	ACAACGTTCC	AGTAACCGGG	2820
CATGTTCATC	ATCAGTAACC	CGTATCGTGA	GCATCCTCTC	TCGTTTCATC	GGTATCATTA	2880
-GGGGGATGAA-	-cagaaattcc-	-eccttacacg-	-GAGGCATCAA	-GTGAGGAAAG-	-ЭАААААБӘА-	2940-
CGCCCTTAAC	ATGGCCCGCT	TTATCAGAAG	CCAGACATTA	ACGCTTCTGG	AGAAACTCAA	3000
CGAGCTGGAC	GCGGATGAAC	AGGCAGACAT	CTGTGAATCG	CTTCACGACC	ACGCTGATGA	3060
GCTTTACCGC	AGCTGCCTCG	CGCGTTTCGG	TGATGACGGT	GAAAACCTCT	GACACATGCA	3120
GCTCCCGGAG	ACGGTCACAG	CTTGTCTGTA	AGCGGATGCC	GGGAGCAGAC	AAGCCCGTCA	3180
GGGCGCGTCA	GCGGGTGTTG	GCGGGTGTCG	GGGCGCAGCC	ATGACCCAGT	CACGTAGCGA	3240
TAGCGGAGTG	TATACTGGCT	TAACTATGCG	GCATCAGAGC	AGATTGTACT	GAGAGTGCAC	3300
CATATGCGGT	GTGAAATACC	GCACAGATGC	GTAAGGAGAA	AATACCGCAT	CAGGCGCTCT	3360
TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	TCGGTCGTTC	GGCTGCGGCG	AGCGGTATCA	3420
GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	3480

ATGTGAGCAA	AAGGCCAGCA	AAAGGCCAGG	AACCGTAAAA	AGGCCGCGTT	GCTGGCGTTT	3540
TTCCATAGGC	TCCGCCCCCC	TGACGAGCAT	CACAAAAATC	GACGCTCAAG	TCAGAGGTGG	3600
CGAAACCCGA	CAGGACTATA	AAGATACCAG	GCGTTTCCCC	CTGGAAGCTC	CCTCGTGCGC	3660
TCTCCTGTTC	CGACCCTGCC	GCTTACCGGA	TACCTGTCCG	CCTTTCTCCC	TTCGGGAAGC	3720
GTGGCGCTTT	CTCAATGCTC	ACGCTGTAGG	TATCTCAGTT	CGGTGTAGGT	CGTTCGCTCC	3780
AAGCTGGGCT	GTGTGCACGA	ACCCCCCGTT	CAGCCCGACC	GCTGCGCCTT	ATCCGGTAAC	3840
TATCGTCTTG	AGTCCAACCC	GGTAAGACAC	GACTTATCGC	CACTGGCAGC	AGCCACTGGT	3900
AACAGGATTA	GCAGAGCGAG	GTATGTAGGC	GGTGCTACAG	AGTTCTTGAA	GTGGTGGCCT	3960
AACTACGGCT	ACACTAGAAG	GACAGTATTT	GGTATCTGCG	CTCTGCTGAA	GCCAGTTACC	4020
TTCGGAAAAA	GAGTTGGTAG	CTCTTGATCC	GGCAAACAAA	CCACCGCTGG	TAGCGGTGGT	4080
TTTTTTGTTT	GCAAGCAGCA	GATTACGCGC	AGAAAAAAAG	GATCTCAAGA	AGATCCTTTG	4140
ATCTTTTCTA	CGGGGTCTGA	CGCTCAGTGG	AACGAAAACT	CACGTTAAGG	GATTTTGGTC	4200
ATGAGATTAT	CAAAAAGGAT	CTTCACCTAG	ATCCTTTTAA	ATTAAAAATG	AAGTTTTAAA	4260
TCAATCTAAA	GTATATATGA	GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	AATCAGTGAG	4320

	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	TTGCCTGACT	CCCCGTCGTG	4380
5	TAGATAACTA	CGATACGGGA	. GGGCTTACCA	TCTGGCCCCA	GTGCTGCAAT	GATACCGCGA	4440
10	GACCCACGCT	CACCGGCTCC	AGATTTATCA	GCAATAAACC	AGCCAGCCGG	AAGGCCGAG	4500
	CGCAGAAGTG	GTCCTGCAAC	TTTATCCGCC	TCCATCCAGT	CTATTAATTG	TTGCCGGGAA	4560
15	GCTAGAGTAA	GTAGTTCGCC	AGTTAATAGT	TTGCGCAACG	TTGTTGCCAT	TGCTGCAGGC	4620
-20	ATCGTGGTGT	_CACGCTCGTC	GTTTGGTATG	_GCTTCATTCA	_GCTCCGGTTC	CCAACGATCA	-4680-
25	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	AAAAAAGCGG	TTAGCTCCTT	CGGTCCTCCG	4740
	ATCGTTGTCA	GAAGTAAGTT	GGCCGCAGTG	TTATCACTCA	TGGTTATGGC	AGCACTGCAT	4800
30	AATTCTCTTA	CTGTCATGCC	ATCCGTAAGA	TGCTTTTCTG	TGACTGGTGA	GTACTCAACC	4860
35	AAGTCATTCT	GAGAATAGTG	TATGCGGCGA	CCGAGTTGCT	CTTGCCCGGC	GTCAACACGG	4920
	GATAATACCG	CGCCACATAG	CAGAACTTTA	AAAGTGCTCA	TCATTGGAAA	ACGTTCTTCG	4980
40	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA	GTTCGATGTA	ACCCACTCGT	5040
45	GCACCCAACT	GATCTTCAGC	ATCTTTTACT	TTCACCAGCG	TTTCTGGGTG	AGCAAAAACA	5100
50	GGAAGGCAAA	ATGCCGCAAA	AAAGGGAATA	AGGGCGACAC	GGAAATGTTG	AATACTCATA	5160
	СТСТТССТТТ	TTCAATATTA	TTGAAGCATT	TATCAGGGTT	ATTGTCTCAT	GAGCGGATAC	5220

ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA	5280
GTGCCACCTG ACGTCTAAGA AACCATTATT ATCATGACAT TAACCTATAA AAATAGGCGT	5340
ATCACGAGGC CCTTTCGTCT TCAAGAATTA ATTGTTATCC GCTCACAATT AATTCTTGAC	5400
AATTAGTTAA CTATTTGTTA TAATGTATTC ATAAGCTT	5438
INFORMATION FOR SEQ ID NO: 26:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
GCTGCCGAAC AGAAGTCTAA	20
INFORMATION FOR SEQ ID NO: 27:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
CTCGAAGGAA CAATGGATAC	20

	INFORMATION FOR SEQ ID NO: 28:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 23 base pairs	
	(B) TYPE: nucleic acid	•
10	(C) STRANDEDNESS: single	
10	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
15	GTACATATTG TCGTTAGAAC GCG	23
	•	
20-	INFORMATION—FOR—SEQ—ID—NO: 29:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 base pairs	
25	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	TAATACGACT CACTATAGGG AGA	23
35		
	INFORMATION FOR SEQ ID NO: 30:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 28 base pairs	
	(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single	
	(ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
~=	GCGGATCCTG ATGTCTATTT CATCTTCT	28

INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (ii) MOLECULE TYPE: Other nucleic acid; Synthetic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

ATCTCGAGTT TTATGCTGCT GCGCCAGCGA

30

o Claims

- A <u>Chlamydia pneumoniae</u> antigenic polypeptide, which comprises polypeptide A containing a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO: 1.
- The antigenic polypeptide of claim 1, wherein said polypeptide A is a polypeptide in which at least one amino acid
 is deleted from the polypeptide of SEQ ID NO: 1.
 - 3. The antigenic polypeptide of claim 1, wherein said polypeptide A is a polypeptide in which at least one amino acid in the polypeptide of SEQ ID NO: 1 is replaced with other amino acid or a polypeptide in which at least one amino acid is added in the polypeptide of SEQ ID NO: 1.
 - 4. The antigenic polypeptide of claim 1, wherein said polypeptide A is a polypeptide in which an amino acid or a peptide sequence is bound to a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO: 1.
- The antigenic polypeptide of claim 1, wherein said polypeptide A is a polypeptide containing the amino acid sequence of SEQ ID NO: 1.
 - 6. The antigenic polypeptide of claim 1, wherein said polypeptide A is a polypeptide containing the amino acid sequence of SEQ ID NO: 2.
 - 7. The antigenic polypeptide of claim 1, wherein said polypeptide A is a polypeptide containing the amino acid sequence of SEQ ID NO: 5.
 - 8. A DNA encoding the antigenic polypeptide of any one of claims 1-7, or a DNA complementary thereto.
 - 9. The DNA of claim 8, which contains the base sequence of SEQ ID NO: 3.
 - 10. The DNA of claim 8, which contains the base sequence of SEQ ID NO: 4.
- 11. The DNA of claim 8, which contains the base sequence of SEQ ID NO: 7.
 - 12. A recombinant vector carrying the DNA of any one of claims 8-11.
 - 13. The recombinant vector of claim 12, which is plasmid pCPN533 α containing the base sequence of SEQ ID NO: 10.
 - 14. A transformant containing the recombinant vector of claim 12 or 13.
 - 15. A method for production of an anti-<u>Chlamydia pneumoniae</u> antibody, wherein the antigenic polypeptide of any one of claims 1-7 is used as an antigen.

- 16. A method for detection and/or measurement of an anti-Chlamydia pneumoniae antibody, wherein the antigenic polypeptide of any one of claims 1-7 is used as an antigen.
- 17. A reagent for detection and/or measurement of an anti-<u>Chlamydia pneumoniae</u> antibody, which comprises the antigenic polypeptide of any one of claims 1-7 as an antigen.
- 18. A reagent for diagnosis of a <u>Chlamydia pneumoniae</u> infection, which comprises the antigenic polypeptide of any one of claims 1-7 as an active ingredient.
- 19. A fused protein of a <u>Chlamydia pneumoniae</u> antigenic polypeptide with dihydrofolate reductase, in which polypeptide B containing a sequence of at least 5 consecutive amino acids in the polypeptide of SEQ ID NO: 1 is bound to the polypeptide of SEQ ID NO: 14 either directly or via an intervening amino acid or amino acid sequence.
- 20. The fused protein of claim 19, wherein said polypeptide B is a polypeptide in which at least one amino acid is deleted from the polypeptide of SEQ ID NO: 1.
 - 21. The fused protein of claim 19, wherein said polypeptide B is a polypeptide in which at least one amino acid in the polypeptide of SEQ ID NO: 1 is replaced with other amino acids or a polypeptide in which at least one amino acid is added in the polypeptide of SEQ ID NO: 1.
 - 22. The fused protein of claim 19, which is a polypeptide containing the amino acid sequence of SEQ ID NO: 15.
 - 23. The fused protein of claim 19, which is a polypeptide containing the amino acid sequence of SEQ ID NO: 16.
- 5 24. A DNA encoding the fused protein of any one of claims 19-23, or a DNA complementary thereto.
 - 25. The DNA of claim 24, which contains the base sequence of SEQ ID NO: 17.
 - 26. The DNA of claim 24, which contains the base sequence of SEQ ID NO: 18.
 - 27. A recombinant vector carrying the DNA of any one of claims 24-26.
 - 28. The recombinant vector of claim 27, which is plasmid pCPN533T.

5

-20

30

45

- 29. A transformant containing the recombinant vector of claim 27 or 28.
 - 30. A method for production of an anti-<u>Chlamydia pneumoniae</u> antibody, wherein the fused protein of any one of claims 19-23 is used as an antigen.
- 40 31. A method for detection and/or measurement of an anti-<u>Chlamydia pneumoniae</u> antibody, wherein the fused protein of any one of claims 19-23 is used as an antigen.
 - 32. A reagent for detection and/or measurement of an anti-<u>Chlamydia pneumoniae</u> antibody, which comprises the fused protein of any one of claims 19-23 as an antigen.
 - 33. A reagent for diagnosis of a <u>Chlamydia pneumoniae</u> infection, which comprises the fused protein of any one of claims 19-23 as an active ingredient.
 - 34. A probe for detection and/or measurement of Chlamydia pneumoniae gene, which comprises any one of
 - (a) a DNA containing a sequence of at least 10 consecutive bases in the DNA of SEQ ID NO: 3,
 - (b) a DNA complementary to DNA (a), or
 - (c) a DNA having at least 90% homology to DNA (a) or (b).
- 55 35. The probe of claim 34, which contains the base sequence of SEQ ID NO: 19.
 - 36. The probe of claim 34, which contains the base sequence of SEQ ID NO: 20.
 - 37. A method for detection and/or measurement of Chlamydia pneumoniae gene, wherein the probe of any one of

claims 34-36 is used.

10

20

- 38. A reagent for detection and/or measurement of Chlamydia pneumoniae gene, which comprises the probe of any one of claims 34-36.
- 39. A reagent for diagnosis of a Chlamydia pneumoniae infection, which comprises the probe of any one of claims 34-36 as an active ingredient.
- 40. A primer for detection and/or measurement of Chlamydia pneumoniae gene, which comprises any one of
 - (a) a DNA containing a sequence of at least 10 consecutive bases in the DNA of SEQ ID NO: 3,
 - (b) a DNA complementary to DNA (a), or
 - (c) a DNA having at least 90% homology to DNA (a) or (b).
- 41. The primer of claim 40, which contains the base sequence of SEQ ID NO: 19.
 - 42. The primer of claim 40, which contains the base sequence of SEQ ID NO: 20.
 - 43. A method for detection and/or measurement of Chlamydia pneumoniae gene, wherein the primer of any one of claims 40-42 is used.
 - 44. A reagent for detection and/or measurement of Chlamydia pneumoniae gene, which comprises the primer of any one of claims 40-42.
- 45. A reagent for diagnosis of a Chlamydia pneumoniae infection, which comprises the primer of any one of claims 40-42 as an active ingredient.