Nodo de Actualización TCDS Base Teórica, Límites y Verificación

Proyecto TCDS – Genaro Carrasco Ozuna

Octubre 2025

1. Núcleo formal mínimo

Los campos fundamentales son la coherencia Σ y el sustrato χ .

$$\mathcal{L} = \frac{1}{2}(\partial \Sigma)^2 + \frac{1}{2}(\partial \chi)^2 - V(\Sigma, \chi), \qquad V = -\frac{1}{2}\mu^2 \Sigma^2 + \frac{1}{4}\lambda \Sigma^4 + \frac{1}{2}m_{\chi}^2 \chi^2 + \frac{1}{2}g\Sigma^2 \chi^2.$$

Del potencial surge la predicción del Sincronón σ con masa

$$m_{\sigma} = \sqrt{2} \, \mu.$$

La relación entre curvatura y coherencia es

$$R \propto \nabla^2 \Sigma$$
.

y la dinámica mesoscópica efectiva:

$$\partial_t \Sigma = \alpha \Delta \Sigma - \beta \phi + Q.$$

La métrica de compatibilidad es

$$\kappa_{\Sigma} = \frac{v_{\mathrm{group}}}{v_{\mathrm{máx}}} \to 1 \quad \text{en vacío plano}.$$

2. Parámetros libres y dominios de validez

- μ, λ : escala y autoacoplo de Σ .
- g: portal de acoplamiento $\Sigma \chi$.
- m_{χ} : masa efectiva del campo inerte.

El sector efectivo es consistente si $\lambda > 0$, $\mu^2 > 0$, y g cumple límites de corto alcance y precisión electrodébil a nivel ppm. Ventana experimental esperada: m_{σ} en el rango meV–eV, con longitudes submilimétricas (0,1-1 mm).

3. Límites y cotas que estructuran el programa

3.1. Fuerzas submilimétricas tipo Yukawa

- Objetivo: acotar $(\alpha_5, \ell_{\sigma})$ derivados de g, m_{σ} .
- Criterio: consistencia si $\alpha_5 \ll 10^{-4} G_N$ para $\ell_\sigma \sim 0, 1-1$ mm.
- Salidas: curvas de exclusión $\alpha_5(\ell)$ con ajuste χ^2 y RMSE.

3.2. Relojes y cavidades

- Objetivo: limitar $\Delta f/f$ inducido por Σ a menos de 10^{-18} – 10^{-19} .
- Criterio: κ_{Σ} debe permanecer ≈ 1 en vacío; locking sólo si $A_c > 0$ y $\Delta f(0) = 0$.

3.3. Transistor de Coherencia Σ FET

- Objetivo: demostrar control activo de coherencia.
- KPIs: $LI \ge 0.9$, R > 0.95, $RMSE_{SL} < 0.1$, reproducibilidad $\ge 95\%$.
- Firma: ensanchamiento de la lengua de Arnold $\Delta f_{\text{lock}}(A_c)$ y reducción $S_{\phi}(\omega) \geq 10 \text{ dB}$ dentro de la lengua.

3.4. Campo Lógico Humano (CSL-H)

- Objetivo: métricas robustas y reproducibles con $N \geq 30$.
- Criterio: ICC inter-evaluador > 0,9, pre-registro, cegamiento parcial, tamaño de efecto $d \ge 0,8$.

4. Estado a la fecha

- \bullet Ontología y formalismo $\Sigma\text{--}\chi\text{:}$ completo; parámetros $\{\mu,\lambda,g,m_\chi\}$ sin fijar.
- \blacksquare Puentes fenomenológicos: $R \propto \nabla^2 \Sigma$, tiempo emergente dt_{Σ} definidos.
- Σ FET/SYNCTRON: protocolo y KPIs definidos; falta prototipo v0.1 con datos de lengua y S_{ϕ} .

- Submilimétrico: banco de torsión propuesto; falta corrida de exclusión $\alpha_5(\ell)$.
- Relojes/cavidades: esquema definido; falta serie estable.
- CSL-H: manuales y métricas establecidos; falta cohorte y pre-registro.

5. Ruta de cierre de brechas

- 1. Σ **FET v0.1**: barrido $A_c \rightarrow \Delta f_{lock}$, espectros de fase, $n \geq 30$ corridas.
- 2. Torsión 100 µm-1 mm: curva $\alpha_5(\ell)$ y publicación de nulos.
- 3. Relojes/cavidades: límite $\Delta f/f$ con modulación controlada; análisis Allan.
- 4. **CSL-H piloto**: N = 30, ICC, d, pre-registro; liberar dataset y scripts.
- 5. **Ajuste global**: parámetros $\{\mu, \lambda, g, m_\chi\}$ con verosimilitud y bandas 95 %.

6. Estructura de datos y evidencias

- Σ FET: CSV con $A_c, f_0, \Delta f_{lock}, LI, R, RMSE_{SL}, S_{\phi}$.
- Submilimétrico: pares (r, F(r)) con incertidumbre, ajuste Yukawa.
- lacktriangle Relojes: series $\Delta f/f$ y varianza Allan.
- CSL-H: tablas $\{R, D\Sigma, \phi, Q, LI, C_{cyc}\}$ y protocolos anonimizados.

7. Criterios de aceptación o rechazo

- \blacksquare Aceptación condicional: cumplimiento de KPIs $\Sigma \text{FET} + \text{límites sub-mm}$ compatibles + $\Delta f/f$ nulo.
- Rechazo: ausencia de lengua reproducible, violación de límites sub-mm o señal incompatible con $\kappa_{\Sigma} \to 1$.

8. Riesgos y mitigación

- Confusores térmicos/EMI: blindaje, control térmico, cargas dummy, pruebas A/B.
- Sobreajuste multi-canal: validación cruzada y preregistro.
- Degeneraciones paramétricas: observables ortogonales y priors jerárquicos.

9. Entregables próximos

- \blacksquare D1: Informe $\Sigma {\rm FET}$ v0.1 con figuras de lenguas y $S_\phi(\omega).$
- D2: Preprint sub-mm con curvas $\alpha_5(\ell)$.
- D3: Nota técnica de límites en relojes.
- D4: Dataset CSL-H piloto.

10. Autocrítica y verificación

- Riesgo: parámetros $\{m_{\sigma}, g\}$ subdeterminados. Solución: cuatro canales experimentales y KPIs ortogonales.
- Riesgo: falsos positivos por no linealidades triviales. Solución: exigir firma dual lengua+reducción S_{ϕ} y reproducibilidad $\geq 95\%$.
- Método: derivación desde corpus base $\Sigma \chi$ y control cruzado con límites experimentales estándar.
- Pendiente: datos crudos y ajuste bayesiano global.