Esercizi sui vettori nel piano, nello spazio e \mathbb{R}^n Corso di laurea in informatica A.A 2003-2004

Docente: Andrea Loi

Correzione Esercitazione

0. Sia $\lambda = 3$, $\mu = 2$; $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$ e $\mathbf{w} = \mathbf{i} + \mathbf{j}$ calcolare $\mathbf{u} = \lambda \mathbf{v} + \mu \mathbf{w}$, $\mathbf{t} = \mu \mathbf{v} + \lambda \mathbf{w}$: Calcolare inoltre il loro prodotto scalare.

Soluzione:

Ricordando che dati $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ e $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}$ $\mathbf{u} + \mathbf{v} = (u_1 + v_1)\mathbf{i} + (u_2 + v_2)\mathbf{j}$ e $\lambda \mathbf{u} = (\lambda u_1)\mathbf{i} + (\lambda u_2)\mathbf{j}$ si ha

$$\mathbf{u} = 3(2\mathbf{i} - \mathbf{j}) + 2(\mathbf{i} + \mathbf{j}) = (6\mathbf{i} - 3\mathbf{j}) + (2\mathbf{i} + 2\mathbf{j}) = (8\mathbf{i} - \mathbf{j})$$

analogamente

$$\mathbf{t} = 2(2\mathbf{i} - \mathbf{j}) + 3(\mathbf{i} + \mathbf{j}) = (7\mathbf{i} + \mathbf{j})$$

Calcoliamo infine $\mathbf{u} \cdot \mathbf{t}$ ricordando che dati $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ e $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}$ $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$

$$\mathbf{u} \cdot \mathbf{t} = (8\mathbf{i} - \mathbf{j}) \cdot (7\mathbf{i} + \mathbf{j}) = 56 - 1 = 55$$

1. Calcolare il prodotto scalare e vettoriale tra i vettori $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$ e $\mathbf{w} = -3\mathbf{i} - \mathbf{j} + \mathbf{k}$. Verificare inoltre la disuguaglianza di Cauchy-Schwarz $|\mathbf{v} \cdot \mathbf{w}| \le ||\mathbf{v}|| ||\mathbf{w}||$

Soluzione:

$$\mathbf{v} \cdot \mathbf{w} = (\mathbf{i} - 2\mathbf{j} + \mathbf{k})(-3\mathbf{i} - \mathbf{j} + \mathbf{k}) = 0$$

il prodotto vettoriale si ottiene dalla seguente

$$\mathbf{u} \wedge \mathbf{v} = \det \begin{pmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} = (u_2 v_3 - v_2 u_3) \mathbf{i} - (u_1 v_3 - v_1 u_3) \mathbf{j} + (u_1 v_2 - v_1 u_2) \mathbf{k}$$

pertanto

$$\mathbf{v} \wedge \mathbf{w} = (-2+1)\mathbf{i} - (1+3)\mathbf{j} + (-1-6)\mathbf{k} = -\mathbf{i} - 4\mathbf{j} - 7\mathbf{k}$$

Infine
$$|\mathbf{v} \cdot \mathbf{w}| = 0 \le ||\mathbf{v}|| ||\mathbf{w}|| = \sqrt{6}\sqrt{11} = \sqrt{66}$$

2. Siano \mathbf{v} e \mathbf{w} due vettori di \mathbb{R}^3 e λ e μ due numeri reali. Dimostrare che:

$$(\lambda \mathbf{v} + \mu \mathbf{w}) \wedge \mathbf{u} = \lambda (\mathbf{v} \wedge \mathbf{u}) + \mu (\mathbf{w} \wedge \mathbf{u}).$$

Soluzione:

Siano $\mathbf{v} = (v_1, v_2, v_3), \ \mathbf{w} = (w_1, w_2, w_3), \ \mathbf{u} = (u_1, u_2, u_3), \ \text{si ha:}$ $(\lambda \mathbf{v} + \mu \mathbf{w}) \wedge \mathbf{u} = (\lambda v_1 + \mu w_1, \lambda v_2 + \mu w_2, \lambda v_3 + \mu w_3) \wedge (u_1, u_2, u_3) =$ $= (\lambda v_2 + \mu w_2)u_3 - (\lambda v_3 + \mu w_3)u_2 - (\lambda v_1 + \mu w_1)u_3 + (\lambda v_3 + \mu w_3)u_1 +$ $+ (\lambda v_1 + \mu w_1)u_2 - (\lambda v_2 + \mu w_2)u_1 =$ $= \lambda((v_2u_3 - v_3u_2) - (v_1u_3 - v_3u_1) + (v_1u_2 - v_2u_1)) + \mu((w_2u_3 - w_3u_2) - (w_1u_3 - w_3u_1) + (w_1u_2 - w_2u_1)) =$ $= \lambda(\mathbf{v} \wedge \mathbf{u}) + \mu(\mathbf{w} \wedge \mathbf{u}).$

3. Sia $S = {\mathbf{v} = (1, 1, 1), \mathbf{w} = (2, 2, 2)}$. Descrivere S^{perp} .

Soluzione:

v ew sono proporzionali quindi individuano la stessa direzione.

Per descrivere S^{perp} ricerchiamo un vettore $\mathbf{u}=(x,y,z)$ tale che $\mathbf{v}\cdot\mathbf{u}=0$. Si ha

$$\mathbf{v} \cdot \mathbf{u} = x + y + z = 0$$

tale equazione rappresenta un piano.

4. Siano \mathbf{v} e \mathbf{w} due vettori di \mathbb{R}^3 .

a. Se $\mathbf{w} = -\mathbf{v}$ quanto vale $pr_w(v)$?

b. Se $ang(v, w) = \theta$, calcolare $pr_w(v)$ e $pr_v(w)$.

Soluzione:

a. $pr_w(v)$ è la proiezione ortogonale di \mathbf{v} in direzione \mathbf{w} , poiché $\mathbf{w} = -\mathbf{v}$ si ha $pr_w(v) = \|\mathbf{v}\|_{\|\mathbf{w}\|}$

b. Si ha
$$pr_w(v) = \|\mathbf{v}\| cos \widehat{\mathbf{v}} \widehat{\mathbf{w}} \frac{\mathbf{w}}{\|\mathbf{w}\|} e pr_v(w) = \|\mathbf{w}\| cos \widehat{\mathbf{v}} \widehat{\mathbf{w}} \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

5. Siano $\mathbf{v} = (1, 4, 5)$ e $\mathbf{w} = (0, -2, -1)$. Calcolare l'area del parallelogramma di vertici $O, \mathbf{v}, \mathbf{w}, \mathbf{w} + \mathbf{v}$. Tale parallelogramma è un rombo, un rettangolo, e (o) un quadrato?

Soluzione:

L'area del parallelogramma è data dalla norma di $\mathbf{v} \wedge \mathbf{w}$ pertanto si ha

$$\mathbf{v} \wedge \mathbf{w} = \det \begin{pmatrix} i & j & k \\ 1 & 4 & 5 \\ 0 & -2 & -1 \end{pmatrix} = (-4+10)\mathbf{i} - (-1)\mathbf{j} + (-2)\mathbf{k} = 6\mathbf{i} + \mathbf{j} - 2\mathbf{k}.$$

Ricordando che $\|u\|=\sqrt{u_1^2+u_2^2+u_3^2}\,$ si ha

$$\|\mathbf{v} \wedge \mathbf{w}\| = \sqrt{36 + 1 + 4} = \sqrt{41}$$

Se il parallelogramma considerato fosse un rettangolo \mathbf{v} e \mathbf{w} sarebbero perpendicolari, ossia $\cos\widehat{\mathbf{v}}\widehat{\mathbf{w}} = 0$; inoltre se fosse un rombo $\|\mathbf{v}\| = \|\mathbf{w}\|$ infine se fosse un quadrato sarebbero soddisfatte contemporaneamente le suddette. poiché

$$\cos\widehat{\mathbf{v}}\widehat{\mathbf{w}} = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{-13}{\sqrt{42}\sqrt{5}} \neq 0$$

e $\|\mathbf{v}\| = \sqrt{42} \neq \|\mathbf{w}\| = \sqrt{5}$ il parallelogramma non è nessuno dei suddetti.

- **6.** Siano \mathbf{v} e \mathbf{w} vettori di \mathbb{R}^n e λ un numero reale.
 - a) dimostrare che $\|\lambda \mathbf{v}\| = \lambda \|\mathbf{v}\|$.
 - **b)** dimostrare che se \mathbf{w} è ortogonale a \mathbf{v} , allora è ortogonale anche a tutti i multipli di \mathbf{v} .

Soluzione:

a) sia
$$\mathbf{v} = (v_1, v_2,, v_n)$$
 allora $\lambda \mathbf{v} = (\lambda v_1, \lambda v_2,, \lambda v_n)$ e
$$\|\lambda \mathbf{v}\| = \sqrt{\lambda^2 v_1^2 + \lambda^2 v_2^2 + + \lambda^2 v_n^2} = \sqrt{\lambda^2 (v_1^2 + v_2^2 + v_n^2)} = \sqrt{\lambda^2 \sqrt{v_1^2 + v_2^2 + v_n^2}} = |\lambda| \|\mathbf{v}\|$$

b) w ortogonale a v significa $\mathbf{v} \cdot \mathbf{w} = 0$, consideriamo un qualunque multiplo di \mathbf{v} , $\lambda \mathbf{v} = (\lambda v_1, \lambda v_2,, \lambda v_n)$ e calcoliamo

$$(\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda (\mathbf{v} \cdot \mathbf{w}) = \lambda 0 = 0$$

7. Dimostrare che $\mathbf{e}_1 = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j})$ e $\mathbf{e}_2 = \frac{1}{\sqrt{2}}(\mathbf{i} - \mathbf{j})$ è una base ortonormale nel piano. Scrivere le componenti del vettore $\mathbf{v} = 3\mathbf{i} - \mathbf{j}$ rispetto alla base $(\mathbf{e}_1, \mathbf{e}_2)$. Come si scrivono le componenti di un vettore $x\mathbf{i} + y\mathbf{j}$ rispetto alla base $(\mathbf{e}_1, \mathbf{e}_2)$.

Soluzione:

Verifichiamo che $(\mathbf{e}_1, \mathbf{e}_2)$ costituiscono una base ortonormale:

$$\begin{split} \mathbf{e}_1 \cdot \mathbf{e}_2 &= \tfrac{1}{\sqrt{2}} \tfrac{1}{\sqrt{2}} - \tfrac{1}{\sqrt{2}} \tfrac{1}{\sqrt{2}} = 0 \text{ e} \\ \|\mathbf{e}_1\| &= \sqrt{(\tfrac{1}{\sqrt{2}})^2 + (\tfrac{1}{\sqrt{2}})^2} = \sqrt{1} = 1, \text{ analogamente } \|\mathbf{e}_2\| = 1. \\ \text{Rispetto alla base } (\mathbf{e}_1, \mathbf{e}_2) \text{ si ha } \mathbf{v} &= a\mathbf{e}_1 + b\mathbf{e}_2 = \tfrac{a}{\sqrt{2}}(\mathbf{i} + \mathbf{j}) + \tfrac{b}{\sqrt{2}}(\mathbf{i} - \mathbf{j}). \\ \text{Pertanto} \end{split}$$

$$\left(\frac{a}{\sqrt{2}} + \frac{b}{\sqrt{2}}\right)\mathbf{i} + \left(\frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}}\right)\mathbf{j} = 3\mathbf{i} - \mathbf{j}$$

Si tratta quindi di risolvere l sistema

$$\begin{cases} \frac{a}{\sqrt{2}} + \frac{b}{\sqrt{2}} = 3\\ \frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = -1 \end{cases}$$

si ottiene

$$\begin{cases} a = \sqrt{2} \\ b = 2\sqrt{2} \end{cases}$$

consideriamo infine $\mathbf{v} = x\mathbf{i} + y\mathbf{j}$, uguagliamo:

$$x\mathbf{i} + y\mathbf{j} = (\frac{a}{\sqrt{2}} + \frac{b}{\sqrt{2}})\mathbf{i} + (\frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}})\mathbf{j}$$

Si tratta quindi di risolvere l sistema

$$\begin{cases} x = \frac{a}{\sqrt{2}} + \frac{b}{\sqrt{2}} \\ y = \frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} \end{cases}$$

si ottiene

$$\begin{cases} a = \frac{\sqrt{2}}{2}(x+y) \\ b = \frac{\sqrt{2}}{2}(x-y) \end{cases}$$