Esame di Calcolo Numerico — 11 settembre 2023

Corso di Laurea in Ingegneria Chimica

Tempo a disposizione: 2 ore. È consentito consultare appunti e testi (cartacei).

Esercizio 1 (15 punti) Dati un vettore $\mathbf{b} \in \mathbb{R}^n$ e una funzione $f : \mathbb{R} \to \mathbb{R}$, vogliamo costruire un'approssimazione di f della forma

$$r(x) = \sum_{j=1}^{n} \frac{w_j}{x + b_j}.$$

$$\tag{1}$$

Nella (1) compaiono dei coefficienti incogniti $\mathbf{w} = [w_1, w_2, \dots, w_n] \in \mathbb{R}^n$, e vogliamo determinarli imponendo che valga l'uguaglianza

$$f(x_i) = r(x_i), \quad i = 1, 2, \dots, n,$$
 (2)

per n reali distinti x_1, x_2, \ldots, x_n .

- 1. Formulare il sistema di equazioni (2) come sistema lineare nell'incognita \mathbf{w} , scrivendone esplicitamente la matrice e il vettore dei termini noti (in funzione di $\mathbf{b}, \mathbf{x}, f$). Qual è la dimensione di questa matrice?
- 2. Scrivere una function $\mathbf{w} = \text{ratinterp}(\mathbf{b}, \mathbf{x}, \mathbf{y})$ che calcoli il vettore dei coefficienti \mathbf{w} a partire dai vettori $\mathbf{b}, \mathbf{x} = [x_1; x_2; \dots; x_n]$ e $\mathbf{y} = [f(x_1); f(x_2); \dots; f(x_n)]$. Riportarne sul foglio il codice.
- 3. Utilizzando la funzione scritta, calcolare (e riportare sul foglio) il vettore \mathbf{w} che risolve questo problema di approssimazione con $f(x) = \exp(-x)$,

$$\mathbf{x} = \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}.$$

- 4. (*) Per ognuno dei quattro valori $z \in \{1, 3, 5, 7\}$, calcolare (e riportare sul foglio) l'errore di interpolazione |r(z) f(z)|. Suggerimento: un modo possibile di farlo è scrivere una breve funzione che calcola il valore di r(z) in un punto z a partire da $\mathbf{b}, \mathbf{w}, z$.
- 5. (*) Due dei valori calcolati al punto precedente dovrebbero essere significativamente minori degli altri due; come mai?

Esercizio 2 (15 punti) Vogliamo risolvere un problema ai valori iniziali utilizzando il metodo di Runge–Kutta con tabella di Butcher

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\hline
& \frac{1}{2} & \frac{1}{2}.
\end{array}$$
(3)

- 1. Scrivere esplicitamente le equazioni che legano y_{n+1} a y_n , per un'equazione differenziale generica y' = f(t, y), usando tale metodo (3).
- 2. Scrivere una function [T, Y] = rkeuler(N, lambda) che, dato in ingresso il numero di intervalli N e un numero $\lambda \in \mathbb{C}$, risolve il problema test $y' = \lambda y$, y(0) = 1 sull'intervallo [0, 1] con il metodo (3), restituendo $T, Y \in \mathbb{R}^{N+1}$ che contengono rispettivamente le approssimazioni t_n e y_n calcolate dal metodo ad ogni passo $n = 0, 1, \ldots, N$. Riportare sul foglio il codice Matlab della funzione.
- 3. Per $\lambda = -2.5$ e $N \in \{50, 100, 200\}$, riportare l'errore globale di discretizzazione $E_N = \max_{n=1,2,...,N} \|y(t_n) y_n\|_{\infty}$ tra la soluzione numerica calcolata e quella esatta. Cosa indicano i risultati ottenuti sull'ordine di convergenza del metodo?
- 4. Verificare (calcolandola) che la funzione di stabilità del metodo (3) è uguale a $(1 + \frac{1}{2}q)^2$. Qual è la regione di stabilità di questo metodo?

Esercizio 1 (15 punti)

1. Scrivendo per esteso le (2), otteniamo il sistema lineare

$$\begin{bmatrix} \frac{1}{x_1+b_1} & \frac{1}{x_1+b_2} & \cdots & \frac{1}{x_1+b_n} \\ \frac{1}{x_2+b_1} & \frac{1}{x_2+b_2} & \cdots & \frac{1}{x_2+b_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{x_n+b_1} & \frac{1}{x_n+b_2} & \cdots & \frac{1}{x_n+b_n} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}.$$

2. Una soluzione possibile è la seguente.

```
function w = ratinterp(b, x, y)
n = length(b);
if not(length(x) == n) || not(length(y) == n)
    error('b, \( \_{\pi} \x, \( \_{\pi} \) \) devono \( \_{\pi} \) avere \( \_{\pi} \) langhezza')
end

X = zeros(n, n);
for i = 1:n
    for j = 1:n
        X(i, j) = 1 / (x(i) + b(j));
    end
end

w = X \ y;
```

3. Una soluzione possibile è la seguente.

4. Scrivendo la funzione

```
function r = calcola(b, w, z)
r = 0;
n = length(b);

for j = 1:n
    r = r + w(j) / (z + b(j));
end

possiamo calcolare
>> abs(calcola(b, w, 1) - exp(-1))
ans =
    4.4409e-16
>> abs(calcola(b, w, 3) - exp(-3))
ans =
    1.2143e-15
>> abs(calcola(b, w, 5) - exp(-5))
```

```
ans =
    8.3201e-04
>> abs(calcola(b, w, 7) - exp(-7))
ans =
    0.0049
```

5. I primi due valori sarebbero uguali a zero se facessimo tutti i calcoli in aritmetica esatta, perché tra le condizioni (2) stiamo imponendo che f(1) = r(1) e f(3) = r(3). Quindi il piccolo valore che osserviamo è solo un errore algoritmico dell'ordine della precisione di macchina. Gli altri valori invece sono più grandi, perché in generale $f(5) \neq r(5)$, $f(7) \neq r(7)$: le due funzioni f(x) e r(x) non hanno nessun motivo per essere uguali al di fuori dei punti appartenenti al vettore \mathbf{x} .

Esercizio 2 (15 punti)

1. Usando direttamente la definizione dei metodi di Runge-Kutta, le equazioni risultano

$$\kappa_1 = f(t_n, y_n) \tag{4a}$$

$$\kappa_2 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}h\kappa_1) \tag{4b}$$

$$y_{n+1} = y_n + \frac{1}{2}h\kappa_1 + \frac{1}{2}h\kappa_2 \tag{4c}$$

2. Una soluzione possibile è la seguente.

```
function [T, Y] = rkeuler(N, lambda)
h = 1 / N;
T = 0:h:1;
Y = zeros(1, N+1);
Y(1) = 1;
for n = 1:N
    k1 = lambda * Y(n);
    k2 = lambda * (Y(n) + h/2*k1);
    Y(n+1) = Y(n) + h/2*k1 + h/2*k2;
end
```

3. Come abbiamo visto a lezione, la soluzione esatta del problema test è $y(t) = \exp(\lambda t)$. Quindi abbiamo

```
>> [T, Y] = rkeuler(50, -2.5);
>> E50 = max(abs(Y - exp(-2.5*T)))
E50 =
    0.0046
>> [T, Y] = rkeuler(100, -2.5);
>> E100 = max(abs(Y - exp(-2.5*T)))
E100 =
    0.0023
>> [T, Y] = rkeuler(200, -2.5);
>> E200 = max(abs(Y - exp(-2.5*T)))
E200 =
    0.0012
>> E50 / E100, E100 / E200
ans =
    2.0106
ans =
    2.0052
```

I rapporti calcolati sono vicini a 2, il che indica che il metodo ha ordine di convergenza 1.

4. Per calcolare la funzione di stabilità, applichiamo il metodo al problema test, ottenendo

$$\kappa_{1} = \lambda y_{n}$$

$$\kappa_{2} = \lambda (y_{n} + \frac{1}{2}h\kappa_{1}) = \lambda (1 + \frac{1}{2}h\lambda)y_{n}$$

$$y_{n+1} = y_{n} + \frac{1}{2}h\kappa_{1} + \frac{1}{2}h\kappa_{2} = y_{n}(1 + \frac{1}{2}h\lambda + \frac{1}{2}h\lambda(1 + \frac{1}{2}h\lambda)).$$

Sostituendo $h\lambda=q$, otteniamo che y_n nell'ultimo termine è moltiplicato per

$$R(q) = 1 + \frac{1}{2}q + \frac{1}{2}q + \frac{1}{4}q^2 = 1 + q + \frac{1}{4}q^2 = (1 + \frac{1}{2}q)^2.$$

La regione di stabilità è l'insieme dei punti per cui |R(q)| < 1; questo succede quando $|1 + \frac{1}{2}q| < 1$, o equivalentemente |2 + q| < 2. Dobbiamo quindi determinare la regione dei punti q nel piano complesso che distano meno di 2 dal punto -2, che è l'interno di un cerchio di centro -2 e raggio 2 (quindi tangente all'origine).

Nota: definendo $y_{n+1/2}=y_n+\frac{1}{2}hf(t_n,y_n)$, possiamo manipolare le (4) per ottenere

$$y_{n+1/2} = y_n + \frac{1}{2}hf(t_n, y_n),$$
 $y_{n+1} = y_{n+1/2} + \frac{1}{2}hf(t_n + \frac{1}{2}h, y_{n+1/2}).$

Questo vuol dire che effettuare un passo del metodo (3) è equivalente a effettuare in sequenza due passi del metodo di Eulero esplicito con lunghezza del passo $\frac{1}{2}h$ ognuno; quindi il comportamento del metodo (3) è lo stesso del metodo di Eulero esplicito con passo $\frac{1}{2}h$, in particolare per quanto riguarda l'ordine di convergenza e la regione di assoluta stabilità.