

CS182: Introduction to Machine Learning – Learning Theory (Finite Case & Infinite Case)

Yujiao Shi SIST, ShanghaiTech Spring, 2025

Finite Case

10/21/24

1. Data points are generated i.i.d. from some *unknown* distribution

$$\mathbf{x}^{(n)} \sim p^*(\mathbf{x})$$

2. Labels are generated from some *unknown* function

$$y^{(n)} = c^*(\boldsymbol{x}^{(n)})$$

- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest training error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Statistical Learning Theory Model

Types of Error

True error rate

- 上海科技大学 ShanghaiTech University
- Actual quantity of interest in machine learning
- How well your hypothesis will perform on average across all possible data points
- Test error rate
 - Used to evaluate hypothesis performance
 - Good estimate of your hypothesis's true error
- Validation error rate
 - Used to set hypothesis hyperparameters
 - Slightly "optimistic" estimate of your hypothesis's true error
- Training error rate
 - Used to set model parameters
 - Very "optimistic" estimate of your hypothesis's true error

Types of Risk (a.k.a. Error)

• Expected risk of a hypothesis h (a.k.a. true error)

$$R(h) = P_{\boldsymbol{x} \sim p^*} (c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}))$$

Empirical risk of a hypothesis h (a.k.a. training error)

$$\widehat{R}(h) = P_{x \sim \mathcal{D}} \left(c^*(x) \neq h(x) \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1} \left(c^*(x^{(n)}) \neq h(x^{(n)}) \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1} \left(y^{(n)} \neq h(x^{(n)}) \right)$$

where $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ is the training data set and $x \sim \mathcal{D}$ denotes a point sampled uniformly at random from \mathcal{D}

Three Hypotheses of Interest

1. The true function, c*

2. The expected risk minimizer,

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h)$$

3. The empirical risk minimizer,

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h)$$

上海科技大学 ShanghaiTech University

Poll Question 1: Which of the following are always true?

A.
$$c^* = h^*$$

$$\mathsf{B.}\ c^* = \hat{h}$$

$$C.h^* = \hat{h}$$

D.
$$c^* = h^* = \hat{h}$$

E. None of the above

F.TOXIC

The true function, c*

• The expected risk minimizer,

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h)$$

• The empirical risk minimizer,

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h)$$

Key Question

 Given a hypothesis with zero/low training error, what can we say about its true error?

PAC = <u>P</u>robably <u>A</u>pproximately <u>C</u>orrect

PAC Learning

PAC Criterion:

$$P(|R(h) - \hat{R}(h)| \epsilon \ge) \mathcal{H} \ni h \forall \delta - 1 \le$$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

• We want the PAC criterion to be satisfied for ${\cal H}$ with small values of ϵ and δ

Sample Complexity

- The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ
- Four cases
 - Realizable vs. Agnostic
 - Realizable $\rightarrow c^* \in \mathcal{H}$
 - Agnostic $\rightarrow c^*$ might or might not be in \mathcal{H}
 - Finite vs. Infinite
 - Finite $\rightarrow |\mathcal{H}| < \infty$
 - Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with

$$\widehat{R}(h) = 0$$
 have $R(h) \le \epsilon$

Proof of Theorem 1: Finite, Realizable Case

- 1. Assume there are K "bad" hypotheses in \mathcal{H} , i.e., h_1, h_2, \dots, h_K that all have $R(h_k) > \epsilon$
- 2. Pick one bad hypothesis, h_k
 - A. Probability that h_k correctly classifies the first training data point $< 1 \epsilon$
 - B. Probability that h_k correctly classifies all M training data points $< (1 \epsilon)^M$
- 3. Probability that at least one bad hypothesis correctly classifies all M training data points = $P(h_1 \text{ correctly classifies all } M \text{ training data points } \cup h_2 \text{ correctly classifies all } M \text{ training data points } \cup$

•

 \cup h_K correctly classifies all M training data points)

Proof of
Theorem 1:
Finite,
Realizable Case

 $P(h_1 \text{ correctly classifies all } M \text{ training data points } \cup h_2 \text{ correctly classifies all } M \text{ training data points } \cup \vdots$

 \cup h_K correctly classifies all M training data points)

$$\leq \sum_{k=1}^{K} P(h_k \text{ correctly classifies all } M \text{ training data points})$$

by the union bound:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $\leq P(A) + P(B)$

Proof of Theorem 1: Finite,

Realizable Case

$$< k(1 - \epsilon)^M \le |\mathcal{H}|(1 - \epsilon)^M$$

because $k \leq |\mathcal{H}|$

- 3. Probability that at least one bad hypothesis correctly classifies all M training data points $\leq |\mathcal{H}|(1-\epsilon)^{M}$
- 4. Using the fact that $1 x \le \exp(-x) \ \forall x$, $|\mathcal{H}|(1 \epsilon)^M \le |\mathcal{H}| \exp(-\epsilon)^M = |\mathcal{H}| \exp(-M\epsilon)$
- 5. Probability that at least one bad hypothesis correctly classifies all M training data points $\leq |\mathcal{H}| \exp(-M\epsilon)$, which we want to be low, i.e., $|\mathcal{H}| \exp(-M\epsilon) \leq \delta$

Proof of
Theorem 1:
Finite,
Realizable Case

$$|\mathcal{H}| \exp(-M\epsilon) \le \delta \to \exp(-M\epsilon) \le \frac{\delta}{|\mathcal{H}|}$$

$$\to -M\epsilon \le \ln\left(\frac{\delta}{|\mathcal{H}|}\right)$$

$$\to M \ge \frac{1}{\epsilon} \left(-\ln\left(\frac{\delta}{|\mathcal{H}|}\right)\right)$$

$$\to M \ge \frac{1}{\epsilon} \left(\ln\left(\frac{|\mathcal{H}|}{\delta}\right)\right)$$

$$\to M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right)\right)$$

Proof of Theorem 1: Finite, Realizable Case

6. Given
$$M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$
 labelled training data points, the probability that \exists a bad hypothesis $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ and $\widehat{R}(h_k) = 0$ is $\leq \delta$

Given
$$M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$
 labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 - \delta$

Aside: Proof by Contrapositive

- The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$
- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"
 is the same as saying

"Henry didn't bring an umbrella ⇒ it's not raining"

Proof of Theorem 1: Finite, Realizable Case

7. Given
$$M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$
 labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 - \delta$

Given
$$M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$
 labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $\widehat{R}(h_k) = 0$ have $R(h_k) \leq \epsilon$ is $\geq 1 - \delta$ (proof by contrapositive)

Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with

$$\widehat{R}(h) = 0$$
 have $R(h) \le \epsilon$

Making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have

$$R(h) \le \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case

• For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy

$$\left| R(h) - \hat{R}(h) \right| \le \epsilon$$

- Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points
- Again, making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal H$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Infinite Case

10/21/24 **23**

What happens when $|\mathcal{H}| = \infty$?

• For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal H$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$?

• For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal H$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

$$P\{A \cup B\} \le P\{A\} + P\{B\}$$

The Union Bound...

$$P\{A \cup B\} \le P\{A\} + P\{B\}$$

$$P\{A \cup B\} = P\{A\} + P\{B\} - P\{A \cap B\}$$

The Union Bound is Bad

Intuition

If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events

- " h_1 is consistent with the first m training data points"
- " h_2 is consistent with the first m training data points"

will overlap a lot!

Intuition

If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events

- " h_1 is consistent with the first m training data points"
- " h_2 is consistent with the first m training data points"

will overlap a lot!

Labellings

- Given some finite set of data points $S = (x^{(1)}, ..., x^{(M)})$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a <u>labelling</u>
 - $\left(h(\boldsymbol{x}^{(1)}), \dots, h(\boldsymbol{x}^{(M)})\right)$ is a vector of M +1's and -1's
- Given $S = (x^{(1)}, ..., x^{(M)})$, each hypothesis in \mathcal{H} induces a labelling but not necessarily a unique labelling
 - The set of labellings induced by \mathcal{H} on S is

$$\mathcal{H}(S) = \left\{ \left(h(\mathbf{x}^{(1)}), \dots, h(\mathbf{x}^{(M)}) \right) \mid h \in \mathcal{H} \right\}$$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

 h_1 h_2

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\left(h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)}), h_1(\mathbf{x}^{(4)})\right)$$

$$= (-1, +1, -1, +1)$$

 h_1

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\left(h_2(\mathbf{x}^{(1)}), h_2(\mathbf{x}^{(2)}), h_2(\mathbf{x}^{(3)}), h_2(\mathbf{x}^{(4)})\right)$$

$$= (-1, +1, -1, +1)$$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\left(h_3(\mathbf{x}^{(1)}), h_3(\mathbf{x}^{(2)}), h_3(\mathbf{x}^{(3)}), h_3(\mathbf{x}^{(4)})\right)$$

$$= (+1, +1, -1, -1)$$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\mathcal{H}(S)$$

$$= \{(+1, +1, -1, -1), (-1, +1, -1, +1)\}$$

$$|\mathcal{H}(S)| = 2$$

 $h_1 \qquad h_2$

$$\mathcal{H}=\{h_1,h_2,h_3\}$$

$$\mathcal{H}(S) = \{(+1, +1, -1, -1)\}$$

$$|\mathcal{H}(S)| = 1$$

 h_1 h_2

上海科技大学 Shanghai Tech University Hon S

\cdot $\mathcal{H}(S)$ is the set of all labellings induced by $\overset{\mathtt{ShanghaiTech\ University}}{\mathcal{H}}$ on $\overset{\mathtt{ShanghaiTech\ University}}{\mathcal{H}}$

- If |S| = M, then $|\mathcal{H}(S)| \leq 2^M$
- \mathcal{H} shatters S if $|\mathcal{H}(S)| = 2^M$
- The <u>VC-dimension</u> of \mathcal{H} , $VC(\mathcal{H})$, is the size of the largest set S that can be shattered by \mathcal{H} .
 - If ${\mathcal H}$ can shatter arbitrarily large finite sets, then $d_{VC}({\mathcal H})=\infty$
- To prove that $VC(\mathcal{H}) = d$, you need to show
 - 1. \exists some set of d data points that \mathcal{H} can shatter and
 - 2. $\not\exists$ a set of d+1 data points that \mathcal{H} can shatter

VC-Dimension

• $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?

上海科技大学 Shanghai Tech University separators

• $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can ${\mathcal H}$ shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?

VC-Dimension:

Example

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

Example

• $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter **some** set of 3 points?

VC-Dimension:

Example

• $\pmb{x} \in \mathbb{R}^2$ and $\pmb{\mathcal{H}}=$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

上海科技大学 ShanghaiTech University Separators

- $\pmb{x} \in \mathbb{R}^2$ and $\pmb{\mathcal{H}}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

$$|\mathcal{H}(S_1)| = 6$$

$$|\mathcal{H}(S_2)| = 8$$

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

- $\mathbf{x} \in \mathbb{R}^2$ and $\mathbf{\mathcal{H}}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

VC-Dimension:

Example

• $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

- $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

convex hull

At least one point inside the convex hull

• $\pmb{x} \in \mathbb{R}^2$ and $\mathcal{H}=$ all 2-dimensional linear separators

- $VC(\mathcal{H}) = 3$
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

上海科技大学 • $\pmb{x} \in \mathbb{R}^d$ and $\mathcal{H}=$ all \pmb{d} -dimensional linear separators

•
$$VC(\mathcal{H}) = d + 1$$

上海科技大学 $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

Poll Question 1:

What is $VC(\mathcal{H})$?

A. 0

B. 1

C. 1.5 (TOXIC)

D. 2

E. 3

• $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

• $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

•
$$VC(\mathcal{H}) = 2$$

Theorem 3: Vapnik-Chervonenkis (VC)-Bound

• Infinite, realizable case: for any hypothesis set ${\cal H}$ and distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon} \left(VC(\mathcal{H})\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with

$$\hat{R}(h) = 0$$
 have $R(h) \le \epsilon$

Statistical Learning Theory Corollary 3

• Infinite, realizable case: for any hypothesis set \mathcal{H} and distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have

$$R(h) \le O\left(\frac{1}{M}\left(VC(\mathcal{H})\log\left(\frac{M}{VC(\mathcal{H})}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Theorem 4: Vapnik-Chervonenkis (VC)-Bound

• Infinite, agnostic case: for any hypothesis set ${\cal H}$ and distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon^2} \left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ have

$$|R(h) - \hat{R}(h)| \le \epsilon$$

Statistical Learning Theory Corollary 4

• Infinite, agnostic case: for any hypothesis set $\mathcal H$ and distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal H$ have

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Approximation Generalization Tradeoff

How well does *h* generalize?

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)$$

How well does *h* approximate *c**?

Approximation Generalization Tradeoff

 $Increases as \\ VC(\mathcal{H}) \text{ increases} \\ R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right) \\ \text{Decreases as} \\ VC(\mathcal{H}) \text{ increases} \\$

Learning Theory Learning Objectives

You should be able to...

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world machine learning examples