

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen VI

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Rafael Ortega Ríos.

Descripción Convocatoria Ordinaria

Fecha 10 de enero de 2024.

Ejercicio 1. Resuelve el problema de valores iniciales siguiente, indicando si la solución está definida en todo \mathbb{R} :

$$x' = -\frac{x}{x+t}, \quad x(0) = -1.$$

Hay dos opciones:

Razonar de forma no rigorsa Tenemos que se trata una ecuación homogénea con dominio

$$D = \{(t, x) \in \mathbb{R}^2 \mid x + t < 0\}.$$

Podríamos intentar resolverlo aplicando la teoría, pero no podemos aplicar el cambio de variable y=x/t para la condición inicial dada. Resolvemos por tanto el problema sin tener en cuenta la condición inicial. Para poder aplicar dicho cambio de variable, tomamos como dominio $D'=\{(t,x)\in\mathbb{R}^2\mid x+t<0,t<0\}$. Aplicamos el cambio de variable siguiente:

$$\varphi = (\varphi_1, \varphi_2): D' \longrightarrow D'_1$$

 $(t, x) \longmapsto (s, y) = (t, x/t)$

Calculamos la inversa de φ :

$$\varphi^{-1}: D'_1 \longrightarrow D'$$

 $(s,y) \longmapsto (t,x) = (s,sy)$

Tenemos que φ es un difeomorfismo entre D' y D'_1 por ser φ y φ^{-1} biyectivas y de clase C^1 . Además, es admisible puesto que no modifica la primera variable. Por tanto, la ecuación transformada es:

$$y' = -\frac{x}{t^2} + \frac{x'}{t} = -\frac{y}{t} + \frac{1}{t} \cdot \left(-\frac{y}{y+1}\right) = \frac{1}{t} \cdot \frac{-2y - y^2}{y+1}.$$

Esta nueva ecuación diferencial es de variables separadas, con solución constante:

$$y(t) = -2 \qquad \forall t \in \mathbb{R}^-.$$

Para obtener las soluciones no constantes teniendo en cuenta que $-2y-y^2 > 0$, tenemos que:

$$\int \frac{y+1}{-2y-y^2} dy = \int \frac{dt}{t} \Longrightarrow -\frac{1}{2} \ln(-2y-y^2) = \ln(-t) + C \Longrightarrow$$

$$\Longrightarrow \ln(-2y-y^2) = -\ln(t^2) - 2C \Longrightarrow -2y - y^2 = \frac{1}{t^2} e^{-2C} \Longrightarrow$$

$$\Longrightarrow y^2 + 2y + \frac{K}{t^2} = 0 \Longrightarrow y(t) = -1 \pm \sqrt{1 - \frac{K}{t^2}}, \qquad t \in \left] -\sqrt{K}, 0\right[.$$

Deshaciendo el cambio de variable, obtenemos la solución en el dominio original:

$$x(t) = ty(t) = t\left(-1 \pm \sqrt{1 - \frac{K}{t^2}}\right) = -t \mp \sqrt{t^2 - K}, \qquad t \in \left] -\sqrt{K}, 0\right[.$$

Retomamos ahora nuestro problema de valores iniciales, suponiendo que t=0 pertenece al dominio, veamos el valor de K:

$$x(0) = -1 = -0 - \sqrt{0 - K} \Longrightarrow K = -1.$$

Por tanto, y a modo de heurística¹, consideramos la función $x(t) = -t - \sqrt{t^2 + 1}$, que está definida en todo \mathbb{R} y cumple x(0) = -1. Veamos que x(t) es solución de la ecuación diferencial:

- En primer lugar tenemos que x es derivable en todo \mathbb{R} .
- Veamos ahora que $(t, x(t)) \in D$ para todo $t \in \mathbb{R}$:

$$(t,x(t)) \in D \iff x(t)+t < 0 \iff -t-\sqrt{t^2+1}+t < 0 \iff -\sqrt{t^2+1} < 0$$

■ Por último, es necesario ver que $x'(t) = -\frac{x(t)}{x(t)+t}$ para todo $t \in \mathbb{R}$:

$$x'(t) = -1 - \frac{t}{\sqrt{t^2 + 1}} = \frac{-t - \sqrt{t^2 + 1}}{\sqrt{t^2 + 1}} = -\frac{x(t)}{x(t) + t} \quad \forall t \in \mathbb{R}.$$

Por tanto, la solución del problema de valores iniciales es $x(t) = -t - \sqrt{t^2 + 1}$, que está definida en todo \mathbb{R} .

Razonar de forma rigurosa Tiene como dominio $D = \{(t, x) \in \mathbb{R}^2 \mid x + t < 0\}$. Aplicamos el cambio de variable y = x + t, de forma que:

$$\varphi: D \longrightarrow D_1$$

 $(t,x) \longmapsto (s,y) = (t,x+t)$

Calculamos la inversa de φ :

$$\varphi^{-1}: D_1 \longrightarrow D$$

 $(s,y) \longmapsto (t,x) = (s,y-s)$

Calculamos ahora $D_1 = \varphi(D)$:

$$D_1 = \{(s, y) \in \mathbb{R}^2 \mid (s, y - s) \in D\} = \{(s, y) \in \mathbb{R}^2 \mid y < 0\}$$

Por tanto, φ es un difeomorfismo entre D y D_1 y es admisible al no modificar la primera variable. La ecuación transformada es:

$$y' = \frac{dy}{dt} = 1 + x' = 1 - \frac{x}{x+t} = 1 - \frac{y-s}{y} = \frac{s}{y}$$
 con dominio D_1 .

Tenemos que y' es una ecuación de variables separadas que no tiene soluciones constantes. Por tanto, la solución general es:

$$\int y dy = \int s ds \Longrightarrow y^2 - s^2 = C \Longrightarrow y(s) = -\sqrt{s^2 + C}, \quad \text{con dominio } \mathbb{R}$$

¹Esto es igual de válido, ya que hemos demostrado que efectivamente es una solución. Los pasos hasta llegar a esta función pueden serles útiles al lector.

Deshaciendo el cambio de variable, obtenemos la solución en el dominio original:

$$x(t) = y - s = -t - \sqrt{t^2 + C}, \qquad t \in \mathbb{R}.$$

Para obtener la solución del problema de valores iniciales, calculamos C:

$$x(0) = -1 = -0 - \sqrt{0 + C} \Longrightarrow C = 1.$$

Por tanto, la solución del problema de valores iniciales es $x(t) = -t - \sqrt{t^2 + 1}$, que está definida en todo \mathbb{R} .

Ejercicio 2. Se considera la transformación

$$\varphi: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$

$$(t,x) \quad \longmapsto \quad (s,y) = (-2e^x, e^{-3t})$$

Determina $\Omega = \varphi(\mathbb{R}^2)$ y prueba que φ define un difeomorfismo entre \mathbb{R}^2 y Ω . Se considera la ecuación diferencial

$$x' = f(t, x)$$

con $f: \mathbb{R}^2 \to \mathbb{R}$ continua. ¿Bajo qué condiciones sobre f se puede asegurar que el difeomorfismo es admisible para esta ecuación? Encuentra la ecuación transportada al dominio Ω .

Buscamos la inversa de φ , para lo cual despejamos t y x en función de s e y:

$$s = -2e^x \Longrightarrow x = \ln\left(-\frac{s}{2}\right),$$

 $y = e^{-3t} \Longrightarrow t = -\frac{1}{3}\ln y.$

Por tanto, la inversa es:

$$\varphi^{-1}: \Omega \longrightarrow \mathbb{R}^2$$

$$(s,y) \longmapsto (t,x) = \left(-\frac{1}{3}\ln y, \ln\left(-\frac{s}{2}\right)\right)$$

Para que φ^{-1} esté bien definida, es necesario que y>0 y s<0. Por tanto, $\Omega\subset\mathbb{R}^-\times\mathbb{R}^+.$

$$\Omega = \varphi(\mathbb{R}^2) = \{(s, y) \in \mathbb{R}^2 \mid (-1/3 \ln y, \ln(-s/2)) \in \mathbb{R}^2\} = \mathbb{R}^- \times \mathbb{R}^+$$

Para que φ defina un difeomorfismo entre \mathbb{R}^2 y Ω , es necesario que φ sea biyectiva y que φ y φ^{-1} sean de clase C^1 . Lo primer es directo por haber despejado de forma única t y x en función de s e y. Para lo segundo, como el logaritmo lo es y la composición de funciones es de clase C^1 , φ y φ^{-1} son de clase C^1 . Por tanto, φ define un difeomorfismo entre \mathbb{R}^2 y Ω .

Para que sea admisible, considerando $\varphi = (\varphi_1, \varphi_2)$, es necesario que:

$$\frac{\partial \varphi_1}{\partial t} + \frac{\partial \varphi_1}{\partial x} f(t, x) = -2e^x \cdot f(t, x) \neq 0 \Longrightarrow f(t, x) \neq 0 \qquad \forall (t, x) \in \mathbb{R}^2.$$

La ecuación transportada al dominio Ω es:

$$y' = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{-3e^{-3t}}{-2e^x f(t, x)} = \frac{-3y}{sf\left(-\frac{1}{3}\ln y, \ln\left(-\frac{s}{2}\right)\right)}, \quad \text{con dominio } \Omega.$$

Ejercicio 3. Se considera la ecuación

$$x'' + a(t)x = 0$$

donde $a:I\to\mathbb{R}$ es una función continua en un intervalo abierto I. Se supone que φ es una solución que cumple

$$\varphi(t) > 0 \quad \forall t \in I.$$

1. Demuestra que existe una única función $\psi: I \to \mathbb{R}$ que cumple

$$W(\varphi, \psi)(t) = 7, \quad t \in I, \quad \psi(0) = 0.$$

2. Demuestra que la pareja φ, ψ forma un sistema fundamental de la ecuación de partida.

Ejercicio 4. Responda a las siguientes cuestiones:

1. Calcula e^A para la matriz

$$A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix},$$

con $a, b, c \in \mathbb{R}$.

2. Encuentra una matriz fundamental del sistema

$$x'_1 = x_1 + ax_2 + bx_3,$$

 $x'_2 = x_2 + cx_3,$
 $x'_3 = x_3.$