DAFTAR PUSTAKA

- Afianto, M. F., Faraby, S. Al, & Adiwijaya. (2017). *Kategorisasi Teks pada Hadits Sahih Al-Bukhari menggunakan Random Forest.* 4(3), 4874–4881.
- Aini, S. H. A., Sari, Y. A., & Arwan, A. (2018). Seleksi Fitur Information Gain untuk Klasifikasi Penyakit Jantung Menggunakan Kombinasi Metode K-Nearest Neighbor dan Naïve Bayes. *Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer*, 2(9), 2546–2554.
- Alpaydin, E. (2010). *Introduction to Machine Learning*. https://books.google.co.id/books?id=tZnSDwAAQBAJ&sitesec=buy&hl=id&source=gbs_vpt_read
- Andreanus, J., & Kurniawan, A. (2018). Sejarah, Teori Dasar dan Penerapan Reinforcement Learning: Sebuah Tinjauan Pustaka. *Jurnal Telematika*, *12*(2), 113–118
- Anies. (2015). Kolesterol dan Penyakit Jantung Koroner. Ar-Ruzz Media.
- Annisa, R. (2019). Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung. *Jurnal Teknik Informatika Kaputama (JTIK)*, *3*(1), 22–28. https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/141/156
- Arulkumaran, K., Deisenroth, M., Brundage, M., & Bhatarath, A. (2017). Deep reinforcement learning: A brief survey. *IEEE Signal Process Mag*, *34*, *n*.
- Ayu, M. S. K. (2019). Proteksi Radiasi Pada Pasien, Pekerja, dan Lingkungan di Dalam Instalasi Radiologi. *Institut Ilmu Kesehatan Strada Indonesia*.
- Biel, L., Pettersson, O., Philipson, L., & Wide, P. (2001). ECG analysis: A new approach in human identification. *IEEE Transactions on Instrumentation and Measurement*, 50(3), 808–812. https://doi.org/10.1109/19.930458
- Briggs, L. J. (1991). *Instrukticonal Design: Principles and Aplications*. Educational Technology.
- Dewi, S. (2016). Komparasi 5 Metode Algoritma Klasifikasi Data Mining Pada Prediksi Keberhasilan Pemasaran Produk Layanan Perbankan. *Techno Nusa Mandiri*, *XIII*(1), 60–66
- Djohan, T. B. A. (2004). Penyakit Jantung Koroner Dan Hypertensi. *E-USU Repository*, *November*, 1–7.
- Dr. Bernatal Saragih, S.P., M. S. (2011). *Kolesterol dan Usaha-Usaha Penurunannya* (T. Budiyanto (ed.); 1st ed., Issue September). Penerbit Bimotry Yogyakarta.
- Farkouh, M. E., Smars, P. A., Reeder, G. S., Zinsmeister, A. R., Evans, R. W., Meloy, T. D., Kopecky, S. L., Allen, M., Allison, T. G., Gibbons, R. J., & Gabriel, S. E. (1998).
 A Clinical Trial of a Chest-Pain Observation Unit For Patients With Unstable Angina. c, 2–8.
- Ghani, M. A., & Subekti, A. (2018). Email Spam Filtering Dengan Algoritma Random Forest. *IJCIT* (Indonesian Journal on Computer and Information Technology, Vol.3, No.(2), 216~221.
- Ginting, S. L., Zarman, W., & Hamidah, I. (2014). Analisis dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Memprediksi Masa Studi Mahasiswa Berdasarkan Data Nilai Akademik. *Snast*, *November*, 159.
- Gunawan, V. A., Fitriani, I. I., & Putra, L. S. A. (2020). Sistem Diagnosis Otomatis Identifikasi Penyakit Jantung Coroner Menggunakan Ektraksi Ciri GLCM dan Klasifikasi SVM. *Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer*, *15*(1), 13. https://doi.org/10.30872/jim.v15i1.2495
- Hanifa, T. T., Al-faraby, S., & Adiwijaya. (2017). Analisis Churn Prediction pada Data Pelanggan PT . Telekomunikasi dengan Logistic Regression dan Underbagging.

- *Universitas Telkom*, 4(2), 78.
- Haqie, Z. A., Nadiah, R. E., & Ariyani, O. P. (2020). Inovasi Pelayanan Publik Suroboyo Bis Di Kota Surabaya. *JPSI (Journal of Public Sector Innovations)*, *5*(1), 23. https://doi.org/10.26740/jpsi.v5n1.p23-30
- Ibrahem Ahmed Osman, A., Najah Ahmed, A., Chow, M. F., Feng Huang, Y., & El-Shafie, A. (2020). Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. *Ain Shams Engineering Journal*, *xxxx*. https://doi.org/10.1016/j.asej.2020.11.011
- Indriyono, B. V., Utami, E., & Sunyoto, A. (2015). Pemanfaatan Algoritma Porter Stemmer Untuk Bahasa Indonesia Dalam Proses Klasifikasi Jenis Buku. 301–310.
- Jothikumar, R., & Siva Balan, R. (2016). C4.5 classification algorithm with back-track pruning for accurate prediction of heart disease. *ISSN: 0970-938X (Print)*. https://www.biomedres.info/biomedical-research/c45-classification-algorithm-with-backtrack-pruning-for-accurate-prediction-of-heart-disease.html
- Karo, I. M. K. (2020). Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan. 1(1), 10–16.
- Kusuma, P. P. B., & Srinandi, I. G. A. M. (2013). Prediksi Waktu Ketahanan Hidup Dengan Metode Partial Least Square. *E-Jurnal Matematika*, 2(1), 49. https://doi.org/10.24843/mtk.2013.v02.i01.p028
- Latha, C. B. C., & Jeeva, S. C. (2019). Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. *Informatics in Medicine Unlocked*, *16*(November 2018). https://doi.org/10.1016/j.imu.2019.100203
- Lestari, M. (2014). Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk Mendeteksi Penyakit Jantung. *Faktor Exacta*, 7(September 2010), 366–371.
- Lubis, C., & Gondawijaya, F. (2019). Heart Sound Diagnose System with BFCC, MFCC, and Backpropagation Neural Network. *IOP Conference Series: Materials Science and Engineering*, 508(1). https://doi.org/10.1088/1757-899X/508/1/012119
- Marleni, L., & Alhabib, A. (2017). Faktor Risiko Penyakit Jantung Koroner di RSI SITI Khadijah Palembang. *Jurnal Kesehatan*, 8(3), 478. https://doi.org/10.26630/jk.v8i3.663
- Muslim, F. (2019). Penerapan Brute Force dan Decrease and Conquer pada Parameter Tuning XGBoostClassifier.
- Mustofa, W. A. (2021). Manfaat Foto Rongten dan Dampaknya. *Intitut Ilmu Kesehatan Strada Indonesia*.
- Nahdliyah, N. (2019). Penelitian Tentang Detak Jantung. *Jurusan Sistem Komputer Universitas Sriwijaya*, 52(1), 1–5.
- Nilsson, S., Scheike, M., Engblom, D., Karlsson, L. G., Mölstad, S., Åkerlind, I., Örtoft, K., & Nylander, E. (2003). Chest Pain and Ischaemic Heart Disease in Primary Care. *British Journal of General Practice*, *53*(490), 378–382.
- Normawati, D., & Winarti, S. (2017). Seleksi Fitur Menggunakan Penambangan Data Berbasis Variable Precision Rough Set (VPRS) untuk Diagnosis Penyakit Jantung Koroner. *Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika*, *3*(2), 100. https://doi.org/10.26555/jiteki.v3i2.8072
- Novandya, A. (2017). Penerapan Algoritma Klasifikasi Data Mining C4.5 Pada Dataset Cuaca Wilayah Bekasi. *KNiST*, *XIV*(2), 368–372.
- Nurhayati, Busman, & Iswara, R. P. (2019). Pengembangan Algoritma Unsupervised Learning Technique Pada Big Data Analysis di Media Sosial sebagai media promosi Online Bagi Masyarakat. *Jurnal Teknik Informatika*, *12*(1), 79–96. https://doi.org/10.15408/jti.v12i1.11342

- Omer, M. K., Sheta, O. E., Adrees, M. S., Stiawan, D., Riyadi, M. A., & Budiarto, R. (2018). Deep neural network for heart disease medical prescription expert system. *Indonesian Journal of Electrical Engineering and Informatics*, 6(2), 217–224. https://doi.org/10.11591/ijeei.v6i2.456
- Pareza Alam Jusia. (2018). Analisis komparasi pemodelan algoritma decision tree menggunakan metode particle swarm optimization dan metode adaboost untuk prediksi awal penyakit jantung. *Seminar Nasional Sistem Informasi 2018*, 1048–1056.
- Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. *Journal of Applied Informatics and Computing*, 4(1), 45–51. https://doi.org/10.30871/jaic.v4i1.2017
- Pinata, N. N. P., Sukarsa, I. M., & Rusjayanthi, N. K. D. (2020). *Prediksi Kecelakaan Lalu Lintas di Bali dengan XGBoost pada Python*. 8(3), 188–196.
- Prasetyo, E., & Prasetiyo, B. (2020). *PENINGKATAN AKURASI KLASIFIKASI ALGORITMA C4.5 MENGGUNAKAN TEKNIK BAGGING PADA DIAGNOSIS PENYAKIT JANTUNG*. 7(5), 1035–1040. https://doi.org/10.25126/jtiik.202072379
- Purbo, O. W., & Sudiarta, P. (2015). Inovasi Teknologi Informasi dan Komunikasi Dalam Menunjang Technopreneurship. *Angewandte Chemie International Edition*, 6(11), 951–952.. 5–24.
- Purnamasari, D., Henrata, J., Sasmita, Y. P., Ihsani, F., & Wicaksana, I. W. S. (2013). *Get Easy Using WEKA*.
- Puspitasari, A. M., Ratnawati, D. E., & Widodo, A. W. (2018). Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine. *Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer*, 2(2), 802–810.
- Putra, P. D., & Rini, D. P. (2019). Prediksi Penyakit Jantung dengan Algoritma Klasifikasi. *Prosiding Annual Research Seminar* 2019, 5(1), 978–979.
- Rahayu, E. S., Satria, R., & Supriyanto, C. (2015). Penerapan Metode Average Gain, Threshold Pruning dan Cost Complexity Pruning Untuk Split Atribut Pada Algoritma C4.5. *Journal of Intelligent Systems*, *1*(2), 91–97.
- Retnasari, T., & Rahmawati, E. (2017). Diagnosa Prediksi Penyakit Jantung Dengan Model Algoritma Naïve Bayes Dan Algoritma C4.5. *Konferensi Nasional Ilmu Sosial & Teknologi (KNiST)*, 7–12.
- Rohman, A., Suhartono, V., & Supriyanto, C. (2017). Penerapan Agoritma C4.5 Berbasis Adaboost Untuk Prediksi Penyakit Jantung. *Jurnal Teknologi Informasi*, *13*, 13–19.
- Rosmalinda, Karim, D., & Dewi, A. P. (2014). Gambaran Tingkat Pengetahuan Perawat Irna Medikal Dalam Menginterpretasi Hasil EKG. 1.
- Saifullah, Zarlis, M., Zakaria, & Sembiring, R. W. (2017). Analisa Terhadap Perbandingan Algoritma Decision Tree Dengan Algoritma Random Tree Untuk Pre-Processing Data. *J-SAKTI (Jurnal Sains Komputer Dan Informatika)*, 1(2), 180. https://doi.org/10.30645/j-sakti.v1i2.41
- Sanjaya, W. (2008). *Perencanaan dan Desain Sistem Pembelajaran*. Kencana Group. Santoso, & Setiawan. (2005). *Penyakit Jantung Koroner*. 147, 5–9.
 - https://doi.org/10.31227/osf.io/stwk5
- Septadaya, A., Dewi, C., & Rahayudi, B. (2019). Implementasi Extreme Learning Machine dan Fast Independent Component Analysis untuk Klasifikasi Aritmia Berdasarkan Rekaman Elektrokardiogram. *Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer E-ISSN*, 2548(5), 964X.
- Setiawati, D., Taufik, I., Jumadi, J., & Zulfikar, W. B. (2016). Klasifikasi Terjemahan Ayat Al-Quran Tentang Ilmu Sains Menggunakan Algoritma Decision Tree Berbasis Mobile. *Jurnal Online Informatika*, 1(1), 24. https://doi.org/10.15575/join.v1i1.7

- Supriyono, M. (2008). Faktor-Faktor Risiko Yang Berpengaruh Terhadap Kejadian Penyakit Jantung Koroner Pada Kelompok Usia Kurang Dari 45 Tahun. *Universitas Diponegoro*, 1(2), 275–283.
- Syukron, M., Santoso, R., & Widiharih, T. (2020). Perbandingan Metode Smote Random Forest dan Smote XgBoost Untuk Klasifikasi Tingkat Penyakit Hepatitis C Pada Imbalance Class Data. 9, 227–236.
- Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. *Jurnal Media Informatika Budidarma*, 4(2), 437. https://doi.org/10.30865/mib.v4i2.2080
- Wahyu Kusuma. (2016). Self Acceptance Pada Remaja Penderita Thalasemia. 8–27.
- Wibisono, A. B., & Fahrurozi, A. (2019). Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner. *Jurnal Ilmiah Teknologi Dan Rekayasa*, 24(3), 161–170. https://doi.org/10.35760/tr.2019.v24i3.2393
- Widiastuti, N. A., Santosa, S., & Supriyanto, C. (2014). Algoritma Klasifikasi Data Mining Naïve Bayes Berbasis Particle Swarm Optimization Untuk Deteksi Penyakit Jantung. *Pseudocode*, *1*, 11–14.
- Wiharto, W., Suryani, E., & Cahyawati, V. (2019). The methods of duo output neural network ensemble for prediction of coronary heart disease. *Indonesian Journal of Electrical Engineering and Informatics*, 7(1), 50–57. https://doi.org/10.11591/ijeei.v7i1.458
- Wisana, I. D. G. H. (2013). Identifikasi Isyarat Elektrokardiogram Segmen ST dan Kontraksi Ventrikel Prematur Berbasis Gelombang Singkat. *Universitas Gadjah Mada Yogyakarta*.
- Yualinda, S., Wijaya, D. R., & Hernawati, E. (2020). Aplikasi Berbasis Dataset E-Commerce Untuk Prediksi Kemiskinan Menggunakan Algoritma Naive Bayes, XgBoost dan Similarity Based Feature Selection. *Jurnal Borneo Cendekia*, *3*(2), 40–46.
- Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. *IEEE Access*, 6, 21020–21031. https://doi.org/10.1109/ACCESS.2018.2818678