by U(X) in **Alt**. In fact, one may verify that the semi-direct product $B \ltimes_{\varphi} U(X)$ with multiplication

$$(b,x)\cdot(b',x')=(bb',xx'+\varphi(b)x'+x\varphi(b'))$$

is an alternative algebra. We thus have a natural isomorphism

$$SplExt(-, U(X)) \cong Hom_{Alt}(-, U(X))$$

and we can state the following.

Theorem 3.2. The category \mathbf{Alt}_1 is action representable with the actor of a unitary alternative algebra X being isomorphic to X itself.

4. Poisson algebras

The aim of this section is to prove that the categories \mathbf{Pois}_1 of unitary Poisson algebras and \mathbf{CPois}_1 of unitary commutative Poisson algebras over a field \mathbb{F} with $\mathrm{char}(\mathbb{F}) \neq 2$ are action representable.

We recall that a Poisson algebra is a vector space X over \mathbb{F} equipped with two bilinear multiplications

$$: X \times X \to X$$
 and $[-,-]: X \times X \to X$

such that (X, \cdot) is an associative algebra, (X, [-, -]) is a Lie algebra and the *Poisson identity* holds:

$$[x, yz] = [x, y]z + y[x, z], \quad \forall x, y, z \in X.$$

A Poisson algebra is said to be *commutative* (resp. *unitary*) if the underlying associative algebra is commutative (resp. unitary).

It was proved in [6] that for any Poisson algebra X there exists a natural monomorphism of functors

$$\tau \colon \operatorname{SplExt}(-, X) \rightarrowtail \operatorname{Hom}_{\mathbf{Alg}^2}(\tilde{U}(-), [X]),$$

where \mathbf{Alg}^2 denotes the category of algebras with two non-necessairly associative bilinear operations, $\tilde{U} \colon \mathbf{Pois} \to \mathbf{Alg}^2$ is the forgetful functor and

$$[X] = \{ f = (f * -, - * f, [f, -]) \in Bim(X) \times Der(X) \mid \cdots \}$$

 $\cdots \mid f*[x,y] = [f*x,y] - [f,y]x, [x,y]*f = [x*f,y] - x[f,y], [f,xy] = [f,x]y + x[f,y]$ is the universal strict general actor of X, which is endowed with the bilinear multiplications

$$f \cdot q = (f * (f' * -), (- * f) * f'), f * [f', -] + [f, -] * f')$$

and

$$[f,q] = (f * [f',-] - [f',f*-],[f',-] * f - [f',-*f],[f,[f',-]] - [f',[f,-]]).$$

Furthermore, a morphism $\varphi = (\varphi_1, \varphi_2, \varphi_3) \colon \tilde{U}(B) \to [X]$ belongs to $\operatorname{Im}(\tau_B)$ if and only if $(\varphi_1, \varphi_2) \colon (B, \cdot) \to \operatorname{Bim}(X)$ is an acting morphism in **Assoc**.

If X has trivial annihilator or $(X^2, \cdot) = (X, \cdot)$, then eq. (3.1) holds in Bim(X) and we have a natural isomorphism

$$\operatorname{SplExt}(-, X) \cong \operatorname{Hom}_{\mathbf{Alg}^2}(\tilde{U}(-), [X]).$$

This happens, for instance, when X is a unitary Poisson algebra. In this case, it is possible to prove that [X] is a Poisson algebra. Indeed, by the results in Section 3, the universal strict general actor [X] may be described as the subalgebra of all pairs $(\alpha, [f, -]) \in X \times \mathrm{Der}(X)$ such that

$$\alpha[x, y] = [\alpha x, y] - [f, y]x,$$

$$[x, y]\alpha = [x\alpha, y] - x[f, y]$$