

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05314538 A

(43) Date of publication of application: 26 . 11 . 93

(51) Int. Cl

G11B 7/24

G11B 7/24

G11B 7/26

G11B 11/10

(21) Application number: 04119082

(22) Date of filing: 12 . 05 . 92

(71) Applicant: SHARP CORP

(72) Inventor: INUI TETSUYA
TAKAHASHI AKIRA
OTA KENJI

(54) OPTICAL DISK AND ITS PRODUCTION

(57) Abstract:

PURPOSE: To enable the execution of exact tracking by obtaining a strong tracking signal and to obtain an exact address information by using a light spot smaller than double the width of grooves.

CONSTITUTION: A photoresist 5 is applied on the magneto-optical disk constituted by forming the grooves 1..., only the side walls 1a... on one side of which meander according to address information and setting the average value of the width of the grooves 1 so as to be equal to the average value of the width of the lands 2 and a glass substrate 4. The photoresist 5 is irradiated with at least two pieces of laser beams by aparting the beams in a direction of the direction where the grooves 1... does not extend. The photoresist 5 is exposed by the irradiation while only the one laser beam is oscillated in a radial direction according to the address information.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-314538

(43)公開日 平成5年(1993)11月26日

(51)Int.Cl. ⁵	識別記号	序内整理番号	F I	技術表示箇所
G 11 B 7/24	5 7 1 C	7215-5D		
	5 6 1	7215-5D		
7/26	5 0 1	7215-5D		
11/10	A	9075-5D		

審査請求 未請求 請求項の数 2(全 7 頁)

(21)出願番号 特願平4-119082

(22)出願日 平成4年(1992)5月12日

(71)出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 乾 哲也

大阪府大阪市阿倍野区長池町22番22号 シ
ャープ株式会社内

(72)発明者 高橋 明

大阪府大阪市阿倍野区長池町22番22号 シ
ャープ株式会社内

(72)発明者 太田 賢司

大阪府大阪市阿倍野区長池町22番22号 シ
ャープ株式会社内

(74)代理人 弁理士 原 謙三

(54)【発明の名称】光ディスクおよびその製造方法

(57)【要約】

【構成】上記のグループ1…の一方の側壁1a…だけがアドレス情報に応じて蛇行しており、かつ、グループ1の幅の平均値はランド2の幅の平均値に等しくなるように設定されている光磁気ディスクおよび、ガラス基板4にフォトレジスト5を塗布し、少なくとも二本のレーザー光をグループ1…が延びている方向でない方向に離間させて照射し、一本のレーザー光だけをアドレス情報に応じて半径方向に振動させながら照射してフォトレジスト5を感光させる光磁気ディスクの製造方法。

【効果】強いトラッキング信号を得ることができるので、正確なトラッキングを行うことができる。また、グループの幅の倍よりも小さい光スポットを使用すれば、正確なアドレス情報を得ることができる。しかも、製造が容易である。

【特許請求の範囲】

【請求項1】トラッキング用のグループを有し、このグループをアドレス情報に応じて蛇行させた光ディスクにおいて、

上記のグループの一方の側壁だけが蛇行しており、かつ、グループの幅の平均値はグループ間のランドの幅の平均値に等しくなるように設定されていることを特徴とする光ディスク。

【請求項2】ガラス基板にフォトレジストを塗布し、アドレス情報に応じてレーザー光を半径方向に振動させながら照射することにより、蛇行したトラッキング用のグループのパターンを形成するようにフォトレジストを感光させる光ディスクの製造方法であって、少なくとも二本のレーザー光をグループが延びている方向でない方向に離間させて照射し、一本のレーザー光だけをアドレス情報に応じて半径方向に振動させながら照射することを特徴とする光ディスクの製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、トラッキング用のグループを有し、このグループをアドレス情報に応じて蛇行させた光ディスクおよび、この光ディスクの製造方法に関するものである。

【0002】

【従来の技術】従来、光を用いて情報を記録再生する光メモリーの内、記録媒体として垂直磁化膜からなる記録膜を用い、レーザー光を照射しながら磁場を印加して、光スポット内の磁化を上向き、または、下向きにすることにより、情報を記録する光磁気ディスクが実用化されている。

【0003】光磁気ディスクには、図4(a)の平面図および同図(b)の縦断面図に示すように、グループ51…が設けられており、光スポット52を正確に螺旋状のトラックに追従させることができるようになっている。グループ51の幅はトラックピッチに応じて設定されており、トラックピッチを例えれば1.6μmとすると、グループ51の幅は1~1.2μmに設定される。

【0004】上記のグループ51…は、トラックのアドレス情報に応じて半径方向に蛇行(ウォーブル)するように形成されており、トラッキング信号から蛇行周波数の成分を取り出すことにより、光スポット52が走査中のトラックのアドレス情報を求めることができる。

【0005】情報の記録再生は、グループ51…に一致するトラックに対して行われる。トラックピッチは光スポット52の直径程度に設定されており、光スポット52の直径は、レーザー光の波長と、レーザー光を光スポット52に収斂する対物レンズの開口数とによって決まっている。レーザー光の波長は、通常、780~830nmであり、対物レンズの開口数は0.45~0.6である。したがって、光スポット52の直径は1.2~1.4μmと

なり、トラックピッチは1.4~1.6μmに設定されている。このため、磁化が上向き、または、下向きの記録ドメインの大きさは、最小0.8μm程度となる。

【0006】近年、この光磁気ディスクの内、記録膜を多層構造にすることにより、記録膜に磁気超解像(Magnetic Super Resolution)の効果を持たせ、これにより、光スポットのサイズよりもはるかに小さい記録ドメインを形成して、記録密度を向上させる方策が取られている。この磁気超解像を用いれば、上記のほぼ1/2の大きさの記録ドメインを安定して形成することが可能であり、したがって、トラックピッチを上記のほぼ1/2の0.8μm程度にすることが可能があるので、記録密度を飛躍的に向上させることができる。この磁気超解像に関しては、例えば、日本応用磁気学会誌、Vol.15, No.5, 1991 pp.838-845が詳しい。

【0007】

【発明が解決しようとする課題】しかしながら、上記従来の構成では、トラックピッチを0.8μm程度にすると、トラッキング信号が弱くなるため、正確なトラッキングを行うことができないという問題点を有している。

【0008】また、トラッキング信号から蛇行周波数の成分を取り出すことが困難になるので、正確なアドレス情報を求めることができないという問題点を有している。

【0009】

【課題を解決するための手段】請求項1の発明に係る光ディスクは、上記の課題を解決するために、トラッキング用のグループを有し、このグループをアドレス情報に応じて蛇行させた光ディスクにおいて、上記のグループの一方の側壁だけが蛇行しており、かつ、グループの幅の平均値はグループ間のランドの幅の平均値に等しくなるように設定されていることを特徴としている。

【0010】請求項2の発明に係る光ディスクの製造方法は、上記の課題を解決するために、ガラス基板にフォトレジストを塗布し、アドレス情報に応じてレーザー光を半径方向に振動させながら照射することにより、蛇行したトラッキング用のグループのパターンを形成するようにフォトレジストを感光させる光ディスクの製造方法であって、少なくとも二本のレーザー光をグループが延びている方向でない方向に離間させて照射し、一本のレーザー光だけをアドレス情報に応じて半径方向に振動させながら照射することを特徴としている。

【0011】

【作用】請求項1の構成によれば、トラッキング用のグループを有し、このグループをアドレス情報に応じて蛇行させた光ディスクにおいて、上記のグループの一方の側壁だけが蛇行しており、かつ、グループの幅の平均値はグループ間のランドの幅の平均値に等しくなるように設定されているので、強いトラッキング信号を得ることができる。したがって、正確なトラッキングを行うこと

ができる。しかも、グループの幅の倍よりも小さい光スポットを使用すれば、二つの蛇行した側壁に光スポットが同時に当たることがない。このため、正確なアドレス情報を得ることができる。

【0012】請求項2の構成によれば、ガラス基板にフォトレジストを塗布し、アドレス情報に応じてレーザー光を半径方向に振動させながら照射することにより、蛇行したトラッキング用のグループのパターンを形成するようにフォトレジストを感光させる光ディスクの製造方法であって、少なくとも二本のレーザー光をグループが延びている方向でない方向に離間させて照射し、一本のレーザー光だけをアドレス情報に応じて半径方向に振動させながら照射するので、一方の側壁だけが蛇行したグループを有する光ディスクを容易に製造できる。

【0013】

【実施例】本発明の一実施例について図1ないし図3に基づいて説明すれば、以下の通りである。

【0014】本実施例の光磁気ディスクには、図1

(a) の平面図および同図(b) の縦断面図に示すように、螺旋状または同心円状のグループ1…が設けられている。グループ1の幅の平均値およびグループ1・1間のランド2の幅の平均値は、互いに等しく、かつ、トラックピッチに等しくなるように設定されている。

【0015】上記のグループ1…の一方の側壁1a…は、トラックのアドレス情報に応じて光磁気ディスクの半径方向に蛇行するように形成されている。側壁1a…の蛇行周波数は、トラッキングサーボ系(図示されていない)の追従周波数より高く、かつ、記録時の記録周波数よりも低い周波数に設定されている。

【0016】上記の構成において、情報の記録は、グループ1…上のトラックおよびランド2…上のトラックに対して行われる。光スポット3をグループ1上のトラックを追従させるか、ランド2上のトラックを追従させるかは、トラッキング信号の極性を反転することによって容易に選択できる。トラッキング信号は例えばブッシュブル法によって得られる。

【0017】光スポット3が走査中のトラックのアドレス情報は、トラッキング信号から側壁1a…の蛇行周波数の成分を取り出すことによって求められる。

【0018】すなわち、光スポット3を例えばグループ1に追従させると、蛇行周波数が追従周波数より高いので、光スポット3は、グループ1の幅の二分割点を結んだ中心線上をトラッキングするのではなく、グループ1の平均幅の二分割点を結んだ線上をトラッキングする。このため、グループ1の蛇行振幅の半分に等しいトラッキング誤差が常に生じている。したがって、トラッキング信号からこれを取り出せば、蛇行周波数の信号成分が得られる。光スポット3をランド2に追従させた場合についても、同様である。

【0019】なお、トラッキング誤差が蛇行振幅の半分

になるので、従来と同じ大きさの蛇行周波数の信号成分を得るためにには、蛇行振幅を従来の倍にしなければならない。例えば、従来の蛇行振幅を±30nmとすると、これを±60nmにする必要がある。

【0020】しかしながら、グループ1の幅、ランド2の幅がそれぞれ0.8μmであるときのトラッキング信号の大きさは、グループ1の幅、ランド2の幅がそれぞれ1.2μm、0.4μmであるときのトラッキング信号の大きさの1.4倍になるので、蛇行振幅は従来のほぼ1.4倍(=2/1.4)でよい。

【0021】また、グループ1の幅、ランド2の幅がそれぞれ1.3μm、0.3μmであるときと比較すると、蛇行振幅はほぼ1.1倍でよい。さらに、グループ1の幅、ランド2の幅がそれぞれ1.1μm、0.5μmであるときと比較すると、蛇行振幅はほぼ1.7倍でよい。

【0022】したがって、従来とほぼ同じ大きさの蛇行周波数の信号成分を取り出すためには、蛇行振幅を±35nmから±50nmの範囲に設定すればよい。

【0023】本実施例の光磁気ディスクでは、グループ1の一方の側壁1aだけを蛇行させているので、光スポット3の直径をトラックピッチよりも大きく、かつ、トラックピッチの二倍よりも小さく設定しておけば、二つの蛇行した側壁1a・1aに光スポット3が同時に当たることがない。このため、正確なアドレス情報が得られる。

【0024】なお、本実施例では、グループ1に対応したトラックのアドレス情報は、このグループ1の側壁1a側に隣接したランド2に対応したトラックのアドレス情報と同一になるが、上述のように、これらのトラックをトラッキングサーボ系によって容易に選択できるので、特定トラックを指定することは容易である。

【0025】上記の光磁気ディスクに磁気超解像効果を用いて情報を記録する場合、記録ドメインの直径を0.4μm程度にできる。このため、トラックの幅を0.8μmにする(すなわち、グループ1の幅およびランド2の幅を共に0.8μmに設定する)と、容易に記録再生を行うことができる。また、トラックピッチを従来の1.6μmから半分の0.8μmにできるので、記録密度を大幅に向上させることができる。しかも、大きなトラッキング信号を得ることができ、正確なアドレス情報を得ることができる。

【0026】また、記録再生に用いるレーザー光の波長を短くすると、光スポット3をより小さくできる。このため、トラックピッチをさらに小さくできる。例えば、レーザー光の波長を830nmから458nmになると、トラックピッチを(458/830)倍にできる。すなわち、記録密度をほぼ倍にできる。

【0027】以上の実施例では、トラッキング信号から蛇行周波数の信号成分を取り出したが、光磁気ディスクからの反射光の光量から蛇行周波数の信号成分を取り出

してもかまわない。すなわち、グループ1の幅あるいはランド2の幅が狭くなっていると反射光が弱くなり、広くなっていると反射光が強くなる。したがって、光スポット3の反射光の光量変化を取り出せば、蛇行周波数の信号成分を得ることができる。

【0028】上記の光磁気ディスクのマスターリング・プロセスについて図2に基づいて説明すれば、以下のとおりである。

【0029】まず、ガラス基板4の片面にフォトトレジスト5を塗布する(同図(a))。それから、レーザー光を対物レンズ7によってフォトトレジスト5上に収斂し、フォトトレジスト5を所望のグループ1のパターンに感光させる(同図(b))。これを現像することによって、不要なフォトトレジスト5を除去し、ガラス基板4上に残ったフォトトレジスト5a…により、所望のパターンを形成する(同図(c))。

【0030】次に、フォトトレジスト5a…からなるパターン上に導電性の薄膜8をスパッタリング、あるいは、無電解メッキなどによって形成する(同図(d))。薄膜8の材料には、Ni、Ta、Crまたはその合金、あるいはそれらの複合膜が用いられる。それから、薄膜8上に例えばNiからなる金属層9を電鋳で形成し(同図(e))、これを剥離すると、金属層9と、その上に形成された薄膜8からなるスタンパー10が得られる(同図(f))。

【0031】このスタンパー10を用いてポリカーボネート等のプラスチックを成型することにより、所望のグループ1を有する光磁気ディスク用の基板が製造される。この基板上に記録媒体を形成すると、上記の光磁気ディスクが得られる。

【0032】上記のフォトトレジスト5をグループ1のパターンに感光させる工程では、二本のレーザー光が使用される。これらのレーザー光はフォトトレジスト5上に二個の光スポット6a・6bを形成する。光スポット6a・6bと、光スポット6a・6bにより形成されたグループ1との関係を図1(a)に示す。

【0033】螺旋状のグループ1を形成する場合、ガラス基板4に相対的に光スポット6a・6bを螺旋状に移動させるが、光スポット6aについては螺旋状に移動させながら、アドレス情報に応じて光磁気ディスクの半径方向にも振動させる。これにより、アドレス情報に応じて一方の側壁1aが蛇行したグループ1のパターンをフォトトレジスト5上に形成することができる。

【0034】例えば、各光スポット6a・6bの直径を $0.4\mu m$ とし、トラックピッチを $0.8\mu m$ とすると、光スポット6a・6bは互いに平均して $0.4\mu m$ だけ光磁気ディスクの半径方向に離れて配置される。また、各光スポット6a・6bの直径を $0.5\mu m$ とし、トラックピッチを $0.7\mu m$ とすると、光スポット6a・6bは互いに平均して $0.2\mu m$ だけ光磁気ディスクの半径方向に離

れて配置される。

【0035】上記のフォトトレジスト5をグループ1のパターンに感光させる記録装置の一例を図3に示す。

【0036】記録装置は、フォトトレジスト5を感光させるためのレーザー光源11aと、対物レンズ7のフィーカシング用のレーザー光源11bを備えている。レーザー光源11aには、例えばアルゴンレーザーが使用され、レーザー光源11bには、例えばHe-Neレーザーが使用される。

【0037】レーザー光源11aからのレーザー光は、ノイズ抑制装置12aによって光ノイズを低減させられた後、ミラー19・20で反射され、ビームスプリッター21に入射する。レーザー光はビームスプリッター21によって二分割され、それぞれ、光変調器18a・18bに入射する。光変調器18a・18bとしては、例えば音響光学素子を用いることができる。その場合、光変調器18a・18bの前後にそれぞれ収束用の凸レンズ22・22を配置する必要がある。

【0038】光変調器18aを通った光ビームは光偏向器23に入射した後、プリズムミラー24で直角方向に反射される。光偏向器23としては、例えば、電気光学効果、あるいは、音響光学効果を用いて進行方向を変えることのできる素子を用いることができる。一方、光変調器18bを通った光ビームは(1/2)波長板25に入射し、偏光面が90度回転される。

【0039】これらの光ビームは、偏光プリズム26で再び合成された後、ビームエキスパンダー27によって適当な光ビーム径に拡大され、二色ミラー15で反射されて対物レンズ7に入射する。そして、対物レンズ7によってガラス基板4上のフォトトレジスト5に光スポット6a・6bとして収斂される。

【0040】なお、上記の光変調器18a・18bは、それぞれ、ドライバー28a・28bによって制御される。また、光偏向器23はドライバー29によって制御される。

【0041】一方、レーザー光源11bからのレーザー光は、ノイズ抑制装置12bによって光ノイズを低減させられた後、偏光ビームスプリッター13、(1/4)波長板14、二色ミラー15を通り、対物レンズ7によってガラス基板4上のフォトトレジスト5に収斂される。

【0042】その反射光は、対物レンズ7によって集光され、二色ミラー15、(1/4)波長板14、偏光ビームスプリッター13を通り、対物レンズ16およびシリンドリカルレンズ17によって四分割の光検出器18に収斂される。光検出器18からの信号に基づいて、フォーカスサーボ信号が生成され、フォーカスサーボ系(図示されていない)が対物レンズ7をフォーカス方向に駆動する。これにより、スピンドルモーター30で回転しているガラス基板4上のフォトトレジスト5に対物レンズ7の焦点が常に合わされる。

【0043】上記の構成において、まず、光スポット6aの位置決めを行う。すなわち、光スポット6aが、上述したように、光スポット6bから半径方向に所定の平均距離だけ離れた位置に配置されるように、ドライバー29より光偏向器23に印加される直流電圧の大きさと、プリズムミラー24のセッティング角度とが調整される。

【0044】それから、上記の直流電圧に蛇行周波数の信号電圧を重畠させた電圧をドライバー29より光偏向器23に印加する。これにより、光スポット6aを蛇行周波数に応じて半径方向に振動させることができる。

【0045】なお、ドライバー28a・28bから光変調器18a・18bに電圧を印加することにより、光スポット6a・6bをオン・オフすることができる。

【0046】以上の実施例では、光磁気ディスクおよびその製造方法について説明したが、蛇行したグループを有する光ディスクおよびその製造方法に本発明を広く応用できる。

【0047】

【発明の効果】請求項1の発明に係る光ディスクは、以上のように、グループの一方の側壁だけが蛇行しており、かつ、グループの幅の平均値はグループ間のランドの幅の平均値に等しくなるように設定されているので、強いトラッキング信号を得ることができる。したがって、正確なトラッキングを行うことができる。しかも、グループの幅の倍よりも小さい光スポットを使用すれば、二つの蛇行した側壁に光スポットが同時に当たることがない。このため、正確なアドレス情報を得ることができるという効果を奏する。

【0048】請求項2の発明に係る光ディスクの製造方法は、以上のように、少なくとも二本のレーザー光をグ

ループが延びている方向でない方向に離間させて照射し、一本のレーザー光だけをアドレス情報に応じて半径方向に振動させながら照射するので、一方の側壁だけが蛇行したグループを有する光ディスクを容易に製造できるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の蛇行したグループを有する光磁気ディスクの概略構成を示すものであり、(a)は概略の平面図、(b)は(a)の破線における概略の縦断面図である。

【図2】図1の光磁気ディスクで使用される基板のマスターリング・プロセスを示す説明図である。

【図3】図2のマスターリング・プロセスのフォトレジストの感光工程で使用される記録装置の概略を示すブロック図である。

【図4】従来の蛇行したグループを有する光磁気ディスクの概略構成を示すものであり、(a)は概略の平面図、(b)は(a)の破線における概略の縦断面図である。

【符号の説明】

1	グループ
1 a	側壁
2	ランド
3	光スポット
4	ガラス基板
5	フォトレジスト
5 a	フォトレジスト
6 a	光スポット
6 b	光スポット
7	対物レンズ

【図2】

【図1】

(a)

(b)

【図3】

【図4】

【公報種別】特許法第17条の2の規定による補正の掲載
 【部門区分】第6部門第4区分
 【発行日】平成9年(1997)2月7日

【公開番号】特開平5-314538
 【公開日】平成5年(1993)11月26日

【年通号数】公開特許公報5-3146
 【出願番号】特願平4-119082

【国際特許分類第6版】

G11B	7/24	571
		561
	7/26	501
	11/10	511
		541

【F I】

G11B	7/24	571 C 7215-5D
		561 7215-5D
	7/26	501 7215-5D
	11/10	511 D 9075-5D
		541 D 9075-5D

【手続補正書】

【提出日】平成8年1月12日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 光記録媒体、その製造方法及び光記録再生装置

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 トラッキング用のグループと該グループ間のランドを有する光記録媒体において、前記グループの一方の側壁だけを蛇行させたことを特徴とする光記録媒体。

【請求項2】 トラッキング用のグループと該グループ間のランドを有し、記録媒体として光磁気材料を用いた光記録媒体において、前記グループの一方の側壁だけを蛇行させたことを特徴とする光記録媒体。

【請求項3】 トラッキング用のグループと該グループ間のランドを有し、記録媒体として超解像効果を有する材料を用いた光記録媒体において、前記グループの一方の側壁だけを蛇行させたことを特徴とする光記録媒体。

【請求項4】 請求項1、請求項2または請求項3記載

の光記録媒体において、前記グループの一方の側壁は、アドレス情報に応じて蛇行させたことを特徴とする光記録媒体。

【請求項5】 請求項1、請求項2または請求項3記載の光記録媒体において、前記グループの幅の平均値は、前記グループ間のランドの幅の平均値に等しくなるように設定されていることを特徴とする光記録媒体。

【請求項6】 請求項1、請求項2または請求項3記載の光記録媒体において、グループ側壁の蛇行の振幅が+3.0 nmから+5.0 nmの範囲であることを特徴とする光記録媒体。

【請求項7】 一方の側壁が蛇行したグループと該グループ間のランドを有する光記録媒体を用いる光記録再生装置であって、前記グループまたはランドをトラッキングする光スポットと、該光スポットのトラッキング信号を検出する手段と、該トラッキング信号から前記側壁の蛇行周波数成分を取り出すことによってアドレス情報を得る手段と、を備えることを特徴とする光記録再生装置。

【請求項8】 一方の側壁が蛇行したグループと該グループ間のランドを有する光記録媒体を用いる光記録再生装置であって、前記グループまたはランドをトラッキングする光スポットと、該光スポットの反射光量を検出する手段と、該反射光量から前記側壁の蛇行周波数成分を取り出すことによってアドレス情報を得る手段と、を備えることを特徴とする光記録再生装置。

【請求項9】 請求項7または請求項8記載の光記録再生装置において、トラッキング信号の極性を反転させる

手段を有し、グループまたはランド上の所望のトラック位置へ光スポットを移動させることを特徴とする光記録再生装置。

【請求項10】 基板上に感光性材料を塗布し、レーザ光を照射することによりグループのパターンを形成する光記録媒体の製造方法において、グループの延びている方向でない方向に離間させて配置した少なくとも二本のレーザ光を用い、該レーザ光のうちの一本をグループと垂直な方向に振動させて照射することを特徴とする光記録媒体の製造方法。

【請求項11】 請求項10記載の光記録媒体の製造方法において、前記レーザ光は、アドレス情報に応じて振動させることを特徴とする光記録媒体の製造方法。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0001

【補正方法】変更

【補正内容】

【0001】

【産業上の利用分野】本発明は、トラッキング用のグループを有し、このグループをアドレス情報に応じて蛇行させた光記録媒体、その製造方法及び光記録再生装置に関するものである。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0009

【補正方法】変更

【補正内容】

【0009】

【課題を解決するための手段】本発明に係る光記録媒体は、上記の課題を解決するために、トラッキング用のグループを有し、このグループをアドレス情報に応じて一方の側壁だけを蛇行させ、かつグループの幅の平均値はグループ間のランドの幅の平均値に等しくなるように設定していることを特徴としている。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

【0010】また、本発明に係る光記録媒体の製造方法は、上記の課題を解決するために、基板上に感光性材料を塗布し、レーザ光を照射することによりグループのパターンを形成する光記録媒体の製造方法において、グループの延びている方向でない方向に離間させて配置した少なくとも二本のレーザ光を用い、アドレス情報に応じて、該レーザ光のうちの一本をグループと垂直な方向に振動させて照射することを特徴としている。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

【0011】

【作用】本発明の光記録媒体によれば、トラッキング用のグループを有し、このグループをアドレス情報に応じて一方の側壁だけを蛇行させ、かつグループの幅の平均値はグループ間のランドの幅の平均値に等しくなるように設定しているので、強いトラッキング信号を得ることができる。したがって、正確なトラッキングを行うことができる。しかも、グループの幅の倍よりも小さい光スポットを使用すれば、二つの蛇行した側壁に光スポットが同時に当たることがない。このため、正確なアドレス情報を得ることができる。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0012

【補正方法】変更

【補正内容】

【0012】本発明の光記録媒体の製造方法によれば、基板上に感光性材料を塗布し、レーザ光を照射することによりグループのパターンを形成する光記録媒体の製造方法において、グループの延びている方向でない方向に離間させて配置した少なくとも二本のレーザ光を用い、アドレス情報に応じて、該レーザ光のうちの一本をグループと垂直な方向に振動させて照射するので、一方の側壁だけが蛇行したグループを有する光記録媒体を容易に製造できる。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0047

【補正方法】変更

【補正内容】

【0047】

【発明の効果】本発明に係る光記録媒体は、以上のように、グループの一方の側壁だけが蛇行しており、かつ、グループの幅の平均値はグループ間のランドの幅の平均値に等しくなるように設定されているので、強いトラッキング信号を得ることができる。したがって、正確なトラッキングを行うことができる。しかも、グループの幅の倍よりも小さい光スポットを使用すれば、二つの蛇行した側壁に光スポットが同時に当たることがない。このため、正確なアドレス情報を得ることができるという効果を奏する。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0048

【補正方法】変更

【補正内容】

【0048】本発明に係る光記録媒体の製造方法は、以

上のように、少なくとも二本のレーザー光をグループが延びている方向でない方向に離間させて照射し、一本のレーザー光だけをアドレス情報に応じて半径方向に振動

させながら照射するので、一方の側壁だけが蛇行したグループを有する光ディスクを容易に製造できるという効果を奏する。