Quantum Algorithms for the Approximate *k*-List Problem and their Application to Lattice Sieving

Elena Kirshanova¹, Erik Mårtensson², Eamonn W. Postlethwaite³, Subhayan Roy Moulik⁴

December 6, 2019

¹I. Kant Baltic Federal University

²Lund University

³Royal Holloway, University of London

⁴University of Oxford

$$\Lambda = \mathsf{Span}_{\mathbb{Z}}(b_0, \dots, b_{d-1})$$
, $B = \{b_0, \dots, b_{d-1}\} \subset \mathbb{R}^d$ a basis

SVP: find $v \in \Lambda \setminus \{0\}$ such that $\|v\|_2 \le \|w\|_2$ for all $w \in \Lambda \setminus \{0\}$

Some Concrete Sieves

algorithm	variant	log ₂ time	log ₂ memory ¹	tradeoffs
sieving	-	$\Theta(d)$	$\Theta(d)$	_
[HK17] ²	h, c	0.396 <i>d</i>	0.189 <i>d</i>	yes
[LMvdP15]	h, q	0.312 <i>d</i>	0.208 <i>d</i>	no
[HKL18]	h, c, n	0.359 <i>d</i>	0.189 <i>d</i>	yes
[Laa16]	h, q, n	0.265 <i>d</i>	0.265 <i>d</i>	yes³

h: heuristic, n: near neighbour, c: classical, q: quantum

 $^{^{1}}$ classical memory, requiring poly(d) width quantum circuits and assuming QRAM

 $^{^{2}}$ all table values here, e.g. 0.396d, are missing o(d) terms

³although we provide new tradeoffs

Some Concrete Sieves

algorithm	variant	log ₂ time	log ₂ memory ¹	tradeoffs
sieving	_	$\Theta(d)$	$\Theta(d)$	_
[HK17] ² (this work)	h, c	0.396 <i>d</i>	0.189 <i>d</i>	yes
	h, q	0.312 <i>d</i> →0.299 <i>d</i>	0.208 <i>d</i> →0.140 <i>d</i>	yes!
[HKL18]	h, c, n	0.359 <i>d</i>	0.189 <i>d</i>	yes
[Laa16]	h, q, n	0.265 <i>d</i>	0.265 <i>d</i>	yes³

h: heuristic, n: near neighbour, c: classical, q: quantum

 $^{^{1}}$ classical memory, requiring poly(d) width quantum circuits and assuming QRAM

 $^{^{2}}$ all table values here, e.g. 0.396d, are missing o(d) terms

³although we provide new tradeoffs

heuristic says (after normalisation) v_i are i.i.d. uniform on S^{d-1}

search for (k = 3 case) v_a, v_b, v_c such that $||v_a + v_b + v_c||_2 \le 1$

search for (k = 3 case) v_a, v_b, v_c such that $||v_a + v_b + v_c||_2 \le 1$

If we consider $v_1, \ldots, v_k \in S^{d-1}$ and the Gram matrix

$$C = \begin{pmatrix} \langle v_1, v_1 \rangle & \cdots & \langle v_1, v_k \rangle \\ \vdots & \ddots & \vdots \\ \langle v_k, v_1 \rangle & \cdots & \langle v_k, v_k \rangle \end{pmatrix} = \begin{pmatrix} 1 & \cdots & \langle v_1, v_k \rangle \\ \vdots & \ddots & \vdots \\ \langle v_k, v_1 \rangle & \cdots & 1 \end{pmatrix}$$

then

$$\|\mathbf{v}_1 + \dots + \mathbf{v}_k\|_2 \le 1 \iff \mathbb{1}^t C \mathbb{1} \le 1$$
, "good".

Definition (approximate k-List problem)

Given list $L \subset S^{d-1}$ of i.i.d. uniform elements, find |L| tuples $(v_1, \ldots, v_k) \in L \times \cdots \times L$ such that $||v_1 + \cdots + v_k||_2 \le 1$.

 $^{^4}$ up to some small distance arepsilon

Definition (approximate k-List problem)

Given list $L \subset S^{d-1}$ of i.i.d. uniform elements, find |L| tuples $(v_1, \ldots, v_k) \in L \times \cdots \times L$ such that $||v_1 + \cdots + v_k||_2 \le 1$.

We solve the approximate k-List problem by

· picking a good C,

 $^{^4}$ up to some small distance arepsilon

Definition (approximate k-List problem)

Given list $L \subset S^{d-1}$ of i.i.d. uniform elements, find |L| tuples $(v_1, \ldots, v_k) \in L \times \cdots \times L$ such that $||v_1 + \cdots + v_k||_2 \le 1$.

We solve the approximate k-List problem by

- · picking a good C,
- generating a sufficiently large L for this C,

 $^{^4}$ up to some small distance arepsilon

Definition (approximate k-List problem)

Given list $L \subset S^{d-1}$ of i.i.d. uniform elements, find |L| tuples $(v_1, \ldots, v_k) \in L \times \cdots \times L$ such that $||v_1 + \cdots + v_k||_2 \le 1$.

We solve the approximate k-List problem by

- · picking a good C,
- generating a sufficiently large L for this C,
- finding a 1 o(1) fraction of tuples in $L \times \cdots \times L$ with configuration C^4

 $^{^4}$ up to some small distance arepsilon

Memory optimal C; a starting point

Most solutions are concentrated around

$$C = \begin{pmatrix} 1 & -1/k & \cdots & -1/k \\ -1/k & 1 & \cdots & -1/k \\ \vdots & & \ddots & \vdots \\ -1/k & -1/k & \cdots & 1 \end{pmatrix},$$

 \Rightarrow using this configuration requires smallest $L \leftrightarrow$ least memory.

9

Memory optimal C; a starting point

 $\varphi \approx \arccos(-1/3)$, the "edge central angle"

Memory optimal C; a starting point

Most solutions are concentrated around

$$C = \begin{pmatrix} 1 & -1/k & \cdots & -1/k \\ -1/k & 1 & \cdots & -1/k \\ \vdots & & \ddots & \vdots \\ -1/k & -1/k & \cdots & 1 \end{pmatrix},$$

 \Rightarrow using this configuration requires smallest $L \leftrightarrow$ least memory.

Larger $L\leftrightarrow$ more available good $C\leftrightarrow$ more memory, but faster.

9

Running example, classical

```
1: procedure 3-List, memory optimal C
        for v_1 \in L do
2:
3:
            L(v_1) \leftarrow \{v_2 : |\langle v_1, v_2 \rangle| \approx 1/3\}
            for v_2 \in L(v_1) do
4:
                 L(v_1, v_2) \leftarrow \{v_3 : |\langle v_2, v_3 \rangle| \approx 1/3\}
5:
                 output all (v_1, v_2, v_3 \in L(v_1, v_2))
6:
            end for
7:
        end for
8:
   end procedure
```


Running example, classical

```
1: procedure 3-List, memory optimal C
        for v_1 \in L do
2:
             L(v_1) \leftarrow \{v_2 : |\langle v_1, v_2 \rangle| \approx 1/3\}
3:
             for v_2 \in L(v_1) do
4:
                 L(v_1, v_2) \leftarrow \{v_3 : |\langle v_2, v_3 \rangle| \approx 1/3\}
5:
                 output all (v_1, v_2, v_3 \in L(v_1, v_2))
6:
             end for
7:
        end for
8:
   end procedure
```


$$T_c = |L| \cdot (|L| + |L(v_1)|^2) = 2^{0.396d + o(d)}$$

tldr; Grover square roots unstructured list search

For some v_1 , to find a "good" $v_2 \in L$

Notation	Method	Complexity
$\xrightarrow{Brute} \langle v_1, v_2 \rangle \approx 1/3$	check $ \langle v_1, v_2 \rangle \approx 1/3$ for each v_2	O(L)
$\xrightarrow[\langle v_1, v_2 \rangle \approx 1/3]{Grover}$	run quantum circuit encoding $ \langle v_1, v_2 \rangle \approx 1/3$ over superposition of all v_2	$O(\sqrt{ L })$

Given v_1 , use Grover to find one triple, deferring measurement

1.
$$\frac{1}{|L|} \sum_{V_2, V_3 \in L} |V_2\rangle |V_3\rangle \xrightarrow{Grover} \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_2 \rangle| \approx 1/3} \xrightarrow{Grover}$$

Given v_1 , use Grover to find one triple, deferring measurement

1.
$$\frac{1}{|L|} \sum_{v_2, v_3 \in L} |v_2\rangle |v_3\rangle \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_2 \rangle| \approx 1/3} \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_3 \rangle| \approx 1/3}$$

2.
$$\frac{1}{|L(v_1)|} \sum_{v_2, v_3 \in L(v_1)} |v_2\rangle |v_3\rangle \xrightarrow{Grover} \frac{1}{|\langle v_2, v_3 \rangle| \approx 1/3}$$

Given v_1 , use Grover to find one triple, deferring measurement

1.
$$\frac{1}{|L|} \sum_{v_2, v_3 \in L} |v_2\rangle |v_3\rangle \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_2 \rangle| \approx 1/3} \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_3 \rangle| \approx 1/3}$$

2.
$$\frac{1}{|L(v_1)|} \sum_{v_2, v_3 \in L(v_1)} |v_2\rangle |v_3\rangle \xrightarrow{Grover} \frac{1}{|\langle v_2, v_3 \rangle| \approx 1/3}$$

3.
$$\frac{1}{O(1)} \sum_{v_2, v_3 \text{ good}} |v_2\rangle |v_3\rangle$$

Given v_1 , use Grover to find one triple, deferring measurement

1.
$$\frac{1}{|L|} \sum_{v_2, v_3 \in L} |v_2\rangle |v_3\rangle \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_2 \rangle| \approx 1/3} \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_3 \rangle| \approx 1/3}$$

2.
$$\frac{1}{|L(v_1)|} \sum_{v_2, v_3 \in L(v_1)} |v_2\rangle |v_3\rangle \xrightarrow{Grover} \frac{1}{|\langle v_2, v_3 \rangle| \approx 1/3}$$

3.
$$\frac{1}{O(1)} \sum_{v_2, v_3 \text{ good}} |v_2\rangle |v_3\rangle$$

4. Measure the state, check it, and output (v_1, v_2, v_3)

Given v_1 , use Grover to find one triple, deferring measurement

1.
$$\frac{1}{|L|} \sum_{V_2, V_3 \in L} |V_2\rangle |V_3\rangle \xrightarrow{Grover} \xrightarrow{Grover} \xrightarrow{|\langle v_1, v_2 \rangle| \approx 1/3} \xrightarrow{Grover}$$

2.
$$\frac{1}{|L(v_1)|} \sum_{v_2, v_3 \in L(v_1)} |v_2\rangle |v_3\rangle \xrightarrow{Grover} \frac{1}{|\langle v_2, v_3 \rangle| \approx 1/3}$$

3.
$$\frac{1}{O(1)} \sum_{v_2, v_3 \text{ good}} |v_2\rangle |v_3\rangle$$

4. Measure the state, check it, and output (v_1, v_2, v_3)

$$T_q = |L| \cdot \left(\sqrt{\frac{|L|}{|L(v_1)|}} \cdot |L(v_1)| \right) = 2^{0.335d + o(d)} < T_c = 2^{0.396d + o(d)}$$

By generalising these arguments to varying $k = \Theta(1)$ and optimising over good C for time⁵ (rather than memory)

$$log_2 time = 0.299d$$
 $log_2 memory = 0.140d$

 $^{^5}$ again, all missing o(d) terms

By generalising these arguments to varying $k = \Theta(1)$ and optimising over good C for time⁵ (rather than memory)

$$log_2$$
 time = 0.299 d

$$\log_2 \text{time} = 0.299d \qquad \log_2 \text{memory} = 0.140d$$

Compare, in the same model, the "generic" quantum 2-sieve

$$log_2 time = 0.312d$$

$$log_2$$
 memory = 0.208 d

⁵ again, all missing o(d) terms

By generalising these arguments to varying $k = \Theta(1)$ and optimising over good C for time⁵ (rather than memory)

$$log_2 time = 0.299d$$

$$\log_2 \text{time} = 0.299d \qquad \log_2 \text{memory} = 0.140d$$

Compare, in the same model, the "generic" quantum 2-sieve

$$\log_2 \text{time} = 0.312d$$

$$\log_2 \text{time} = 0.312d \qquad \log_2 \text{memory} = 0.208d$$

and the best known sieving time complexity

$$\log_2 \text{time} = 0.265d$$

$$log_2$$
 memory = 0.265 d

⁵ again, all missing o(d) terms

Explicit tradeoffs for specific k

Other contributions of the paper

- embed the problem into a graph and generalise clique listing algorithms in the *QRAM* model
- specialise to 3 cliques (triangles) and solve in the query model, with queries to an adjacency matrix
- give an algorithm in the quantum circuit model, for k=2, using parallel quantum search [BBG+13] with $(\log_2 \operatorname{depth}, \log_2 \operatorname{width}) = (0.104d, 0.208d)$

Thanks!

- new time/memory tradeoffs = faster low memory sieves
- · several approaches in different computational models
- open questions: prove time optimal limit, generalise quantum circuit algorithm to k > 2, move from query model to QRAM model...

https://eprint.iacr.org/2019/1016

- Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel Kutin, Noah Linden, Dan Shepherd, and Mark Stather, *Efficient distributed quantum computing*, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences **469** (2013), no. 2153, 20120686.
- Gottfried Herold and Elena Kirshanova, *Improved* algorithms for the approximate k-list problem in euclidean norm, PKC 2017, Part I (Serge Fehr, ed.), LNCS, vol. 10174, Springer, Heidelberg, March 2017, pp. 16–40.
- Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven, Speed-ups and time-memory trade-offs for tuple lattice sieving, PKC 2018, Part I (Michel Abdalla and Ricardo Dahab, eds.), LNCS, vol. 10769, Springer, Heidelberg, March 2018, pp. 407–436.

