Monte Carlo - Uma variável aleatória

Renato Martins Assunção

DCC - UFMG

Abril/2015

Simulação Monte Carlo

- Simular: Fazer aparecer como real uma coisa que não o é; fingir.
- Simulação: a imitação do comportamento ou das características de um sistema estocástico utilizando um gerador de números aleatórios num computador: simulação Monte Carlo.
- Estes números possuem uma distribuição de probabilidade de interesse.
- Pode ser a distribuição normal (gausssiana), de Poisson, de Pareto (power law) ou outra.
- Os números aleatórios gerados servem para estudar propriedades complexas de algoritmos ou aspectos do problema que não podem ser deduzidos analiticamente (por fórmulas).

Tudo começa com uma uniforme

- Existe uma base para gerar números aleatórios.
- Praticamente todos os métodos conhecidos geram uma variável aleatória U com distribuição uniforme no intervalo (0,1).
- Isto é, U é um número escolhido aoa acaso em (0,1) com densidade uniforme.
- A probabilidade de selecionar X num intervalo (a, b) é o seu comprimento: b a.
- A seguir, eles transformam U de forma a obter uma variável com a distribuição de interesse.
- ullet Assim, todas as variáveis são obtidas a partir da distribuição $\mathcal{U}(0,1).$

Aleatórios mesmo?

- De fato, os núemros aleatórios gerados no computador não são realmente aleatórios mas sim determinísticos.
- Muito trabalho de pesquisa já foi feito para criar bons geradores de números aleatórios.
- São procedimentos que geram uma seqüência de valores U_1, U_2, \ldots
- Para todos os efeitos práticos, eles podem ser considerados i.i.d. com distribuição uniforme em (0,1).
- Além disso, por causa da representação finita nos computadores, não conseguimos de fato gerar números reais com precisão inifinita.

O que veremos agora...

- Não veremos em detalhes os geradores de números com distribuição uniforme no intervalo (0,1).
- Este é um assunto bastante técnico e de pouco uso na prática da análise de dados.
- Vamos dar apenas um ligeira idéia de como eles funcionam.
- Vamos ver um dos algoritmos mais simples existentes.

Divisão inteira

- Eles dependem da operação de divisão inteira.
- Dado um inteiro p > 0, um inteiro n pode ser escrito de forma única como n = kp + r.
- k é um inteiro e $r = 0, \ldots, p-1$.
- O resto é o valor r que vai variar de 0 a p-1.
- Por exemplo,
 - $21 = 7 \times 3 + 0$ e a divisão inteira de 21 por 7 deixa resto 0.
 - $22 = 7 \times 3 + 1$ e o resto é 1.
 - $27 = 7 \times 3 + 6$ e o resto é 6.
 - $4 = 7 \times 0 + 4$ e o resto é 4.
 - Finalmente, $0 = 7 \times 0 + 0$ e o resto é 0.
- Notação: $n \equiv r \pmod{p}$.

Gerador congruencial misto

- Valor inicial inteiro positivo x_0 arbitrário, chamado de semente (seed).
- Recursivamente, calcule x_1, x_2, \ldots por meio da fórmula:

$$ax_{i-1} + b \equiv x_i \pmod{p}$$

onde a, b, e p são inteiros positivos.

- x_i é um dos inteiros $0, 1, \ldots, p-1$.
- A sequência

$$u_1 = x_1/p, u_2 = x_2/p, \dots$$

é uma aproximação para uma sequência de valores de variáveis independentes e com distribuição uniforme em (0,1).

 A qualidade desta aproximação: testes estatísticos incapazes de detectar padrões (não aleatórios) nas sequências geradas.

Exemplo

Gerador dado por

$$32749x_{i-1} + 3 \equiv x_i \pmod{32777}$$

- Iniciando-se com semente $x_0 = 100$, obtenha $32749 \times 100 + 3 = 3274903$.
- A seguir, o resto da divisão inteira por p = 32777: temos $3274903 = 99 \times 32777 + 29980$
- Assim, $x_1 = 29980$
- Primeiro número aleatório entre 0 e 1 é

$$u_1 = x_1/p = 29980/32777 = 0.9146658$$

Exemplo

- O segundo valor x_2 é obtido de forma análoga.
- Temos

$$32749 \times 29980 + 3 = 981815023 = 29954 \times 32777 + 12765$$

- Assim, $x_2 = 12765$
- Portanto, $u_2 = 12765/32777 = 0.3894499$.
- E assim por diante: $u_1 = 0.91466577$, $u_2 = 0.38944992$, $u_3 = 0.09549379$, $u_4 = 0.32626537$, $u_5 = 0.86466120$, $u_6 = 0.78957806$, $u_7 = 0.89190591$,...

Não são contínuos

- O gerador do exemplo gera 32776 restos x_i distintos: os inteiros $0, 1, \ldots, 32776$.
- Assim, apenas 32776 números u_i do intervalo (0,1) podem ser gerados por este procedimento:

$$0/32777, 1/32777, 2/32777, \dots, 32776/32777$$

 Quanto maior o valor de p, maior o número de valores ui distintos possíveis.

São pseudo-aleatórios

- u_1, u_2, \ldots não são realmente aleatórios
- Resultam de uma função matemática aplicada de forma recursiva.
- Usando o mesmo gerador e a mesma semente x_0 , vamos obter sempre os mesmos números.
- Além disso, a sequência de números pseudo-aleatórios rapidamente se repetir.
- Por exemplo, se a = 3, b = 0, m = 30 e $x_0 = 1$, teremos a sequência $\{3, 9, 27, 21, 3, 9, 27, 21, 3, 9, 27, 21, 3, 9, 27, 21, 3, ...\}.$

São pseudo-aleatórios

- Com probabilidade 1, depois de certo tempo, obtem-se um valor x_i igual a algum valor x_{i-k} já obtido anteriormente.
- A partir daí, teremos a sequência repetindo-se com $x_{i+j} = x_{i-k+j}$.
- O número de passos k até obter-se uma repetição numa sequência é chamado de período do gerador.
- Uma importante biblioteca de subrotinas científicas, a NAG, utiliza um gerador congruencial com $a=13^{13}$, b=0 e $p=2^{59}$, que possui um período igual a $2^{57}\approx 1.4410^{17}$.
- Bons geradores tem períodos tão grandes que podem ser ignorados na prática.

A semente

- A semente x_0 costuma ser determinada pelo relógio interno do computador.
- Pode também ser pré-especificada pelo usuário.
- Isto garante que se repita a mesma sequência de números aleatórios.
- De qualquer forma, é um número arbitrário para iniciar o processo.

Gerador de uniforme em (0,1)

- Temos um gerador de números (pseudo)-aleatórios reais no intervalo (0,1).
- Isto é, geramos $U \sim Unif(0,1)$.
- U escolhe um número real completamente ao acaso no intervalo (0,1).
- Se (a, b) é um intervalo contido em (0, 1). Então

$$\mathbb{P}(U \in (a,b)) = (b-a) = \text{comprimento do intervalo}$$

- O comando runif(1) em R gera um valor U(0,1).
- runif(n) gera n valores U(0,1) independentes.

Caso mais simples: Bernoulli

Como gerar

$$X \sim Bernoulli(p):$$

$$\begin{cases}
P(X=1) = p \\
P(X=0) = 1 - p
\end{cases}$$

• Selecione U ao acaso no intervalo (0,1).

Gerando uma Bernoulli(0.35)

- Suponha p = 0.35, por exemplo.
- Podemos usar:

```
p = 0.35
U = runif(1)
if(U <= p) X = 1
    else X = 0</pre>
```

- Mais simples em R: X = runif(1) <= p</p>
- Gerando 215 valores i.i.d.: X = runif(215) <= p

Gerando uma Binomial (n, θ)

- Para gerar $X \sim \text{Bin}(n, p)$, basta repetir o algoritmo Bernoulli n vezes independentemente.
- Por exemplo, se n=100 e $\theta=0.17$, então:

```
n <- 100
p <- 0.35
X <- 0
for(i in 1:n) if(runif(1) < p) X <- X+1</pre>
```

Em R, vetorizando fica muito mais simples:

```
X = sum(runif(n) \le p)
```


Gerando Binomial no R

- Na verdade, o R já possui um gerador de binomial $Bin(m, \theta)$.
- Help do R: rbinom(n, size, prob): geramos n valores, cada um deles de uma Bin(size, prob).
- WARNING: No HELP do R, o argumento n refere-se a quantos valores binomiais Bin(size, prob) queremos gerar. Não confundir com a notação usual em que escrevemos Bin (n, θ) .
- Por exemplo, para gerar n=10 valores indepedentes de uma Bin(100,0.17) (isto é, size=100 e prob= $\theta=0.17$), digitamos:
 - > rbinom(10, 100, 0.17)
 [1] 14 20 20 14 8 14 12 13 17 14

Calculando $\mathbb{P}(X = k)$

A função dbinom(x, size, prob) calcula a P(X = x) quando X é uma v.a. binomial Bin(size,prob).

Por exemplo, se $X \sim \text{Bin}(100, 0.17)$ então $\mathbb{P}(X=13)$ é

> dbinom(13, 100, 0.17) [1] 0.06419966

Podemos pedir vários valores de uma única vez:

> dbinom(13:17, 100, 0.17)

[1] 0.06419966 0.08171369 0.09595615 0.10441012 0.10566807

Gerando v.a. discreta arbitrária

Vamos ver um procedimento geral, que serve para qualquer distribuição discreta, mesmo para aquelas com infinitos valores, como a Poisson, Geométrica e Pareto.

Distribuição de X é dada por:

Χį	$P(x=x_i)=p_i$
<i>x</i> ₁	p_1
<i>X</i> ₂	p_2
<i>X</i> 3	<i>p</i> 3
:	: :
Total	$\sum_i p_i = 1$

Tabela: Distribuição da v.a. discreta X com valores possíveis x_1, x_2, \ldots

Gerando v.a. discreta arbitrária

- Acumulamos as probabilidades obtendo $F(x_k) = P(X \le x_k) = \sum_{i=1}^k p_i$.
- Por exemplo,

$$F(x_1) = p_1$$

 $F(x_2) = p_1 + p_2$
 $F(x_3) = p_1 + p_2 + p_3$ Etc.

- Se $0 < U < F(x_1) = p_1$ faça $X = x_1$
- Se $p_1 \le U < p_1 + p_2$ faça $X = x_2$
- Se $p_1 + p_2 \le U < p_1 + p_2 + p_3$ faça $X = x_3$
- Etc.

Gerando v.a. discreta arbitrária

• Em resumo, faça X = g(U):

$$X = g(U) = \begin{cases} x_0, & \text{se } U < p_0 \\ x_1, & \text{se } p_0 \le U < p_0 + p_1 \\ x_2, & \text{se } p_0 + p_1 \le U < p_0 + p_1 + p_2 \\ \dots & \dots \\ x_i, & \text{se } \sum_{k=1}^{i-1} p_k \le U < \sum_{k=0}^{i} p_k \\ \dots & \dots \end{cases}$$

Exemplo

Gerar X com a seguinte distribuição de probabilidade discreta:

$$X = \left\{ egin{array}{ll} -1, & {
m com~probabilidade}~p_0 = 0.25 \ 2, & {
m com~probabilidade}~p_1 = 0.35 \ 7, & {
m com~probabilidade}~p_2 = 0.17 \ 12, & {
m com~probabilidade}~p_3 = 0.23 \end{array}
ight.$$

ullet Gere $U\sim U(0,1)$ e faça

$$g(U) = X = \begin{cases} -1, & \text{se } U < 0.25 \\ 2, & \text{se } 0.25 \le U < 0.60 \\ 7, & \text{se } 0.60 \le U < 0.77 \\ 12, & \text{se } 0.77 \le U < 1.00 \end{cases}$$

• Por exemplo, se U = 0.4897 então X = 2 pois $0.25 \le 0.4897 < 0.60$.

Exemplo - Poisson

• Para o caso de $X \sim \text{Poisson}(1.61)$ teríamos:

```
X = g(U) = \begin{cases} 0 & \text{se } U < 0.1998876 \\ 1 & \text{se } 0.1998876 \le U < 0.5217067 \\ 2 & \text{se } 0.5217067 \le U < 0.7807710 \\ \dots & \dots \\ i & \text{se } 0.1998876 \sum_{k=1}^{i-1} (1.61)^i/i! \le U < 0.1998876 \sum_{k=0}^{i} (1.61)^i/i! \\ \dots & \dots \end{cases}
```

• Algoritmo? É impossível listar os infinitos possíveis valores de X e só então verificar onde o valor de X caiu.

Algoritmo Poisson

- Trabalhar sequencialmente.
- Verifique se U cai no primeiro intervalo.
- Se sim, pare e retorne X = 0.
- Se n\(\tilde{a}\), calcule o intervalo seguinte e verifique se \(U\) cai neste novo intervalo.
- Se sim, pare e retorne X = 1.
- E etc.

Casos especiais

• Para facilitar o cálculo podemos usar uma relação de recorrência entre as probabilidades sucessivas de uma Poisson com parâmetro λ :

$$p_{i+1} = \frac{\lambda}{i+1} p_i$$

• Com $\lambda = 1.61$:

```
lambda = 1.61
x = -1
i = 0; p = exp(-lambda); F = p
while(x == -1){
   if(runif(1) < F) x = i
   else{
      p = lambda*p/(i+1)
      F = F + p
      i = i+1
   }</pre>
```

Transformada inversa

- X é v.a. contínua com distribuição acumulada $F_X(x)$.
- Por exemplo, se $X \sim \exp(3)$ então $F_X(x) = 1 \exp(-3x)$ para $x \ge 0$.
- Gere uma variável uniforme $U \sim U(0,1)$.
- A seguir, transforme usando $Y = F_X^{-1}(U)$.
- A v.a. Y possui a mesma distribuição que X.
- Isto é, a função distribuição acumulada de Y no ponto y é exatamente F_X(y).

Exemplo

• Gerar $X \sim \exp(1)$. Então

$$F_X(x) = \begin{cases} 1 - \exp(-x), & \text{se } x > 0 \\ 0, & \text{caso contrário} \end{cases}$$

- Se $u = 1 \exp(-x)$, então $x = -\log(1 u) = F_X^{-1}(u)$.
- Gere $U \sim U(0,1)$ e aplique $W = F^{-1}(U) = -\log(1-U)$.
- $W \sim \exp(1)$.

Intuição gráfica

- Gere $U \sim U(0,1)$ e coloque-o no eixo vertical.
- Obtenha a imagem inversa F_X^{-1} .

Exemplo da prova no caso particular da exp(1)

• Gerar $X \sim \exp(1)$:

$$F_X(x) = \left\{ egin{array}{ll} 1 - \exp(-x), & ext{se } x > 0 \ 0, & ext{caso contrário} \end{array}
ight.$$

- Se $u = 1 \exp(-x)$, então $x = -\log(1 u) = F_X^{-1}(u)$.
- $W = F^{-1}(U) = -\log(1-U)$.
- W possui distribuição exponencial 1.
- De fato, se w > 0, nós temos

$$\mathbb{P}(W \le w) = \mathbb{P}(-\log(1 - U) \le x)$$

$$= \mathbb{P}(1 - U \le e^{-x})$$

$$= \mathbb{P}(U \le 1 - e^{-x})$$

$$= 1 - e^{-x}$$

Prova no caso geral

- $U \sim U(0,1)$
- Defina a v.a. $W = F_X^{-1}(U)$.
- Como uma função de distribuição acumulada é não decrescente, se $a \le b$, então $F_X(a) \le F_X(b)$.
- Além disso, $P(U \le a) = a$ se $a \in [0, 1]$.
- Assim,

$$F_{W}(w) = \mathbb{P}(W \leq w)$$

$$= \mathbb{P}(\mathbb{F}_{X}^{-1}(U) \leq w)$$

$$= \mathbb{P}(\mathbb{F}_{X}(\mathbb{F}_{X}^{-1}(U)) \leq \mathbb{F}_{X}(w))$$

$$= \mathbb{P}(U \leq \mathbb{F}_{X}(w))$$

$$= \mathbb{F}_{X}(w)$$

Observações

- Como U e 1-U possuem a mesma distribuição uniforme U(0,1).
- Então $X = -\log(U)$ também é exponencial com parâmetro 1.

•

- Se $X \sim \exp(1)$ então $Y = X/\beta \sim \exp(\beta)$.
- Assim, pode-se gerar $Y \sim \exp(\beta)$ usando a transformação $Y = -1/\beta \, \log(U)$.

Seguro de vida: idade ao morrer

- Uma distribuição muito importante para o mercado de seguros é a distribuição de Gompertz.
- Ela modela muito bem o tempo de vida a partr dos 22 anos.
- A função de de distribuição acumulada F(x) é

$$F(x) = 1 - \exp\left(-\frac{B}{\log(c)}(c^{x} - 1)\right)$$

onde c > 1 e B > 0.

- O parâmetro c usualmente possui um valor em torno de 1.09.
- Um valor típico para $B \in 1.02 \times 10^{-4}$.

Transformada inversa de Gomperz

• Invertendo:

$$F^{-1}(u) = \log(1 - \log(c)\log(1 - u)/B) / \log(c)$$

Assim um código em R para obter a amostra é o seguinte:

```
# Amostra de 10 mil valores iid de Gompertz
## fixa as constantes
ce <- 1.09; B <- 0.000102; k <- B/log(ce)
u <- runif(10000) ## gera valores iid U(0,1)
## Gompertz por metodo da transformada inversa
x <- 1/log(ce) * (log(1-log(1-u)/k))</pre>
```


10 mil vidas Gomperz

 Fazendo um histograma dos 10 mil valores gerados e acrescentando a densidade Gomperz:

```
hist(x, prob=T)
eixox <- seq(0,120,by=1)
dens <- B * ce^eixox * exp(-k * (ce^eixox - 1))
lines(x,y)</pre>
```


Pareto ou power-law em seguros

- Perdas monetárias associadas com uma apólice
- Um parâmetro: $x_0 > 0$, é o valor mais baixo que uma perda pode ter.
- x_0 é um valor de franquia ou um valor stop-loss.
- Seguradora só toma conhecimento de sinistros com valores acima de x_0 .
- Cobre toda a perda acima do valor x_0 .
- Pareto é costuma se ajustar bem a este tipo de dados.
- O 2o. parâmetros, $\alpha > 0$, controla o peso da cauda superior da distribuição em relação aos valores próximos de x_0 .
- Quanto menor α , maior a chance de observarmos valores extremos.

Densidade da Pareto

• Pareto com parâmetros (x_0, α) é dada por

$$f_X(x) = \begin{cases} 0, & \text{se } x \le x_0 \\ \frac{\alpha}{x_0} \left(\frac{x_0}{x}\right)^{\alpha+1}, & \text{se } x > x_0 \end{cases}$$

Figura: Densidade da Pareto com $x_0 = 1$ e $\alpha = 1$

α típicos

- Quais os valores típicos de α na prática de seguros e resseguros?
- A Swiss Re, a maior companhia européia de resseguros, fez um estudo.
- Nos casos de perdas associadas com incêndios, $\alpha \in (1, 2.5)$.
- Esta faixa pode ser mais detalhada: para incêndios em instalações industriais de maior porte, temos $\alpha \approx 1.2$.
- Para incêndios ocorrendo em pequenos negócios e serviços temos $\alpha \in (1.8, 2.5)$.
- No caso de perdas associadas com catástrofes naturais: $\alpha \approx 0.8$ para o caso de perdas decorrentes de terremotos; $\alpha \approx 1.3$ para furações, tornados e vendavais.

Gerando Pareto ou power-law

- Temos $F_X(x) = 1 (x_0/x)^{\alpha}$ se $x > x_0$
- Então

$$X \sim F_X^{-1}(U) = x_0/(1-U)^{-1/\alpha}$$

• Basta digitar x0/(1-runif(1000))^(1/a) no R.

Figura: Amostra de 1000 valres i.i.d. de uma Pareto com $x_0 = 1 \in \alpha = 1$

Amostras de Pareto

Figura: Amostras de 100 valores Pareto com (x_0, α) igual a (1.3, 0.25) (canto superior esquerdo), (1.3, 0.5) (canto superior direito), (10, 5) (canto inferior esquerdo) e (10, 2) (canto inferior direito).

Gerando gaussianas N(0,1)

- Numa gaussiana, F(x) não possui uma fórmula analítica.
- O uso da técnica de transformação $F_X^{-1}(U)$ de variáveis uniformes não pode ser usado.
- Box e Muller propuseram um algoritmo muito simples para gerar gaussianas.
- Pode-se mostrar matematicamente que:
 - se $\theta \sim U(0,2\pi)$ e $V \sim \exp(0.5)$, duas v.a.'s independentes
 - então $X = \sqrt{V}\cos(T) \sim N(0,1)$.
- Como você sabe gerar uniformes e exponenciais...código em R para gerar n valores independentes de uma N(0,1).
- Em *R*:

```
minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))
```


Amostra de gaussiana N(0,1)

```
set.seed(123)
minharnorm = function(n){ sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))}
hist(minharnorm(1000), prob=T)
plot(dnorm, -3,3, add=T)
```


Figura: Histograma padronizado de 1000 valores N(0,1) gerados com minhanorm com a densidade f(x) sobreposta.

Gerando gaussianas $N(\mu, \sigma^2)$

- Como gerar uma gaussiana $N(\mu, \sigma)$: centrada em μ e com dispersão σ em torno de μ .
- Propriedade de probabilidade: se $Z \sim N(0,1)$ então $X = \mu + \sigma Z \sim N(\mu, \sigma^2)$
- Sabemos gerar $Z \sim N(0,1)$.
- Se quiser $X \sim N(10,4)$ (digamos) basta gerar Z e em seguida tomar $X = 10 + \sqrt{4}Z$.
- Em R:
 minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))
 x = 10 + sqrt4 * minhanorm(100)
- É claro que R já possui gerador de gaussianas: rnorm(100, mean=0, sd=1)

Estimando integrais por Monte Carlo

Queremos calcular

$$\theta = \int_0^1 g(x) \, dx$$

- Podemos ver a integral θ como a esperança de uma v.a.: se $U \sim U(0,1)$ então $\theta = E[g(U)]$.
- Se U_1, U_2, \ldots, U_n são i.i.d. U(0,1) então as v.a.'s $Y_1 = g(U_1), Y_2 = g(U_2), \ldots, Y_n = g(U_n)$ também são i.i.d. com esperança θ .
- Pela Lei dos Grandes Números, se $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i} = \frac{1}{n}\sum_{i=1}^{n}g(U_{i}) \to E[g(U)] = \theta$$

• Assim, se n é grande, θ é aprox. a média aritmética dos valores simulados $g(u_i)$.

Exemplo

Queremos

$$\theta = \int_0^1 x^2 \, dx = \frac{1}{3}$$

• Uma amostra i.i.d. de 1000 variáveis aleatórias U(0,1) é gerada:

$$u_1 = 0.4886415, u_2 = 0.1605763, u_3 = 0.8683941, \dots, u_{1000} = 0.3357509$$

Calculamos então

$$\hat{\theta} = \left(u_1^2 + u_2^2 + \dots + u_{1000}^2\right) / 1000$$

$$= \left((0.4886415)^2 + (0.1605763)^2 + \dots + (0.3357509)^2 \right) / 1000$$

$$= 0.33406 \approx \theta$$

- Nova geração, com semente diferente, vai produzir $\hat{\theta}$ ligeiramente diferente.
- Outros 1000 valores da uniforme produzem $\hat{\theta} = 0.3246794$.
- Aumentando tamanho da amostra variação diminui: escolha do tamanho da amostra precisa de desigualdades em probabilidade (logo mais).

Integrais e probabilidades gaussianas

• Se $X \sim N(0,1)$ então

$$\mathbb{P}(X \in (0,1)) = \int_0^1 \frac{\exp(-x^2/2)}{\sqrt{2\pi}} \ dx = \theta$$

- Não existe fórmula para esta integral, deve ser obtida numericamente.
- Usando as funções nativas em R:
 pnorm(1) pnorm(0) que retorna 0.8413447 0.5 = 0.3413447
- Gere 1000 valores i.i.d. de uma U(0,1) e calcule $(y_1 + y_2 + ... + y_{1000})/1000$ onde $y_i = (2\pi)^{-0.5} \exp(-u_i^2/2)$.
- Por exemplo, se $u_i = 0.4886$ então $y_i = (2\pi)^{-0.5} \exp(-0.4886^2/2) = 0.3541$.
- Em R: mean((2*pi)^(-0.5) * exp(-runif(1000)^2/2))
- Quatro simulações sucessivas (e independentes) com 1000 valores: 0.3425249, 0.3413119, 0.3432939 e 0.3400479.
- Comparando com $\theta = 0.3413447$, os erros de estimação são pequenos.

Limites genéricos

Nem sempre a integral terá os limites 0 e 1.

$$\theta = \int_a^b g(x) \, dx$$

- Fazer mudança de variável linear: tome x = a + (b a)y e dx = (b a)dy.
- Então

$$\theta = \int_a^b g(x) \, dx = \int_0^1 g(a + (b - a)y) \, (b - a) \, dy = \int_0^1 h(y) \, dy$$

onde
$$h(y) = (b - a)g(a + (b - a)y)$$
.

• Usamos U(0,1) mesmo quando a integral é num intervalo $(a,b) \neq (0,1)$

Exemplo

• Calcule o valor aproximado de

$$\theta = \int_3^9 \log(2 + |\sin(x)|) e^{-x/20} dx$$

• Uma amostra i.i.d. de 1000 U(0,1) é gerada e calcula-se

$$\bar{w} = \frac{1}{n}(w_1 + \ldots + w_{1000})$$

onde

$$w_i = h(u_i) = 6 \log (2 + |\sin(3 + 6u_i)) \exp \left(-\frac{3 + 6u_i}{20}\right)$$

- Três simulações deram: 4.285739, 4.327516, 4.310637.
- Neste exemplo, não sabemos o verdadeiro valor θ da integral mas as simulações dão aproximadamente o mesmo valor.
- Isto é um sinal de que, ao usar qualquer um deles como estimativa, a integral deve estar sendo estimada com pequeno erro.

Método de aceitação-rejeição

- Queremos gerar amostra de densidade f(x).
- Não conseguimos obter F(x) analiticamente.
- O método da transformada inversa não pode ser usado.
- Uma alternativa: método de aceitação-rejeição
- Idéia básica: gerar de outra distribuição que seja fácil.
- A seguir, retemos alguns dos valores gerados e descartamos os demais.
- Isto é feito de tal maneira que a amostra que resta tem exatamente a densidade f(x).

Essência da ideia

- Sabemos gerar com facilidade da densidade g(x) (linha tracejada).
- Amostra de g(x) produz o histograma abaixo.
- Mas queremos amostra de f(x).
- Eliminamos de forma seletiva alguns valores gerados.

Figura: Linha contínua: densidade f(x) de onde queremos amostrar. Linha tracejada: densidade g(x) de onde sabemos amostrar. histograma de amostra de 20000 elementos de f(x).

Essência da ideia

- Se o processo seletivo for feito de maneira adequada,
- terminamos com uma amostra que, no fim dos dois processos (geração e aceitação-rejeição), é gerada de f(x).

Figura: Linha contínua: densidade f(x) de onde queremos amostrar. Linha tracejada: densidade g(x) de onde sabemos amostrar. histograma de amostra de 20000 elementos de f(x). Histograma dos 3696 elementos da amostra anterior que restaram após rejeitar seletivamente 16304 dos elementos gerados.

Compatibilizando os suportes

- Fixe uma densidade-alvo f(x).
- Quais g(x) podemos escolher?
- Suporte de g(x) deve ser maior que aquele de f(x).
- Isto é, se f(x) pode gerar um valor x então g(x) também deveria ser capaz de gerar este x.
- Ou seja, se f(x) > 0 então g(x) > 0.
- g(x) pode gerar valores impossíveis sob f(x)
- Mas não podemos permitir que valores possíveis sob f(x) sejam impossíveis sob g(x).
- Isto é bem razoável: se inicialmente, usando g(x), gerarmos valores impossíveis sob f(x), podemos rejeitá-los no segundo passo do algoritmo.
- Mas se nunca gerarmos valores de certas regiões possíveis sob f(x), nossa amostra final não será uma amostra de f(x).

Ache M tal que $f(x) \leq Mg(x)$

ullet Precisamos achar uma constante M>1 tal que

$$f(x) \leq Mg(x)$$

para todo x.

- Isto é, multiplicamos a densidade g(x) de onde sabemos amostrar por uma constante M > 1 implicando em elevá-la.
- Por exemplo, se M=2, comparamos o valor de f(x) com 2g(x), duas vezes a altura da densidade g no ponto x.
- Devemos ter sempre $f(x) \leq Mg(x)$.

Exemplo

- Linha contínua é a densidade f(x) de onde queremos amostrar
- Linha tracejada: densidade g(x) de onde sabemos amostrar.
- Direita: gráfico de f(x) e de 5.4 * g(x).
- Temos $f(x) \le 5.4g(x)$ para todo x

Razão r(x)

- Temos f(x) e Mg(x).
- No ponto x=6.0 temos a altura f(x) (contínua) e a a altura 5.4g(x) (tracejada).
- Para todo x, definimos a razão entre estas alturas

$$r(x) = \frac{f(x)}{Mg(x)} < 1$$
 para todo x .

$$r(x) = \frac{f(x)}{Mg(x)} < 1$$

- Sejam x_1, x_2, \ldots o elementos da amostra de g(x). Quais reter?
- Calcule $r(x_1), r(x_2), ...$
- Se $r(x_i) \approx 0$, vamos tipicamente rejeitar x_i
- Se $r(x_i) \approx 1$, vamos tipicamente reter x_i .

$$r(x) = \frac{f(x)}{Mg(x)}$$
 é a probabilidade de retenção

- Para cada elemento x_i gerado por g(x), jogamos uma moeda com probabilidade de cara igual a $r(x_i)$.
- Se sair cara, retemos x_i como um elemento vindo de f(x).
- Se sair coroa, eliminamos x_i da amostra final.
- Se começarmos com n elementos retirados de g(x), o tamanho final da amostra é aleatório e geralmente menor que n

Algoritmo

Y é um valor inicialmente gerado a partir de g(x) e X é um dos valores finalmente aceitos no final do processo.

Algorithm 1 Método da Rejeição.

```
1: I \leftarrow \text{True}

2: while I do

3: Gere Y \sim g(y)

4: Gere U \sim \mathcal{U}(0,1)

5: if U \leq r(Y) = f(Y)/Mg(Y) then

6: X \leftarrow Y

7: I = \text{False}

8: end if
```

9: end while

Exemplo

• Queremos gerar $X \sim Gamma(3,3)$ com densidade:

$$f(x) = \begin{cases} 0, & \text{se } x \le 0 \\ \frac{27}{2} x^2 e^{-3x}, & \text{se } x \ge 0 \end{cases}$$
 (1)

- Sabemos gerar $W \sim exp(1)$ pois basta tomar $W = -\log(1 U)$ onde $U \sim \mathcal{U}(0,1)$.
- A densidade de W é:

$$g(x) = \begin{cases} 0, & \text{se } x < 0 \\ e^{-x}, & \text{se } x \ge 0 \end{cases}$$
 (2)

• O suporte das duas distribuições é o mesmo, o semi-eixo real positivo.

Exemplo

Então:

$$0 \le \frac{f(x)}{g(x)} = \frac{\frac{27}{2}x^2e^{-3x}}{e^{-x}} = \frac{27}{2}x^2e^{-2x}$$
 (3)

- Derivando e igualando a zero temos ponto de máximo $x_0 = 1$.
- Como $\frac{f(1)}{g(1)} = \frac{27}{2}1^2e^{-2} = 1.827 < 2$, temos f(x) < 2g(x) para todo x.

Figura: Esquerda: Densidade-alvo f(x) (linha tracejada) e densidade g(x) de onde sabemos gerar (linha contínua). Direita: Densidade f(x) e a função 2g(x).

Script R

```
set.seed(123); M = 2; nsim = 10000
x = rexp(nsim, 1)
razao = dgamma(x, 3, 3)/(M * dexp(x, 1))
aceita = rbinom(10000, 1, razao)
amostra = x[aceita == 1]
par(mfrow=c(2,1))
xx = seq(0, 4, by=0.1); yy = dgamma(xx, 3, 3)
hist(x, prob=T, breaks=50, xlim=c(0, 8),
             main="f(x) e amostra de g(x)")
lines(xx, yy)
hist(amostra, breaks=20, prob=T, xlim=c(0,8),
             main="f(x) e amostra de f(x)")
lines(xx, yy)
```

Resultado

Figura: Amostra de 10 mil valores de uma $g(x) = \exp(1)$; rejeitando aprox 5000 valores terminamos com amostra de $f(x) = \operatorname{\mathsf{Gama}}(3,3)$.

Script R mais simples

```
set.seed(123)
M = 2; nsim = 10000
x = rexp(nsim, 1)
amostra = x[runif(nsim) < dgamma(x,3,3)/(M*dexp(x, 1))]
```

Pseudo-code

```
1: I ← true
 2: while / do
         Selecione U \sim \mathcal{U}(0,1)
 3:
         Selecione U^* \sim \mathcal{U}(0,1)
 4:
       Calcule \omega = -\log(1 - U)
 5:
         if U^* \leq \frac{f(\omega)}{2g(\omega)} = (27/4)\omega^2 \exp(-2\omega) then
 6:
 7:
              x \leftarrow \omega
              I = False
 8:
         end if
 9:
10: end while
```

Os dois teoremas

Theorem

(Aceitação-Rejeição gera valores de f(x)) A variável aleatória X gerada pelo método de aceitação-rejeição possui densidade f(x).

Prova: Leitura opcional, documento disponível no moodle

Theorem

(Impacto de M) O número de iterações necessários até que um valor seja aceito possui distribuição geométrica com valor esperado M.

Prova: Leitura opcional, documento disponível no moodle

Impacto de M

- Método funciona com qualquer M tal que $f(x) \leq Mg(x)$.
- M_1 é muito maior que M_2 , ambos satisfazendo a condição.
- Se rodarmos o método em paralelo com os dois valores de M, aquele com o maior valor rejeitaria mais frequentemente que o método com o M menor.
- Pelo teorema, devemos selecionar, em média, M valores até que aceitemos um deles.
- Quanto menor M, menos rejeição.
- Não é difícil provar que M deve ser maior ou igual a 1.

Impacto de M

- O máximo de eficiência é obtido quando M = 1.
- Mas neste caso, como a área total debaixo de f(x) e g(x) é igual a 1, devemos ter f(x) = g(x).
- Isto é, a densidade de onde geramos é idêntica à densidade-alvo f(x) e todos os valores são aceitos.
- Se selecionarmos g(x) muito diferente de f(x), especialmente se tivermos $g(x) \approx 0$ numa região em que f(x) não é desprezível, é possível que tenhamos de usar um valor de M muito grande para satisfazer $f(x) \leq Mg(x)$ para todo x.
- Esta será uma situação em que o método de aceitação-rejeição será pouco eficiente pois muitas amostras devem ser propostas (em média, M) para que uma delas seja eventualmente aceita).

Amostragem por importância

- Método muito importante para a geração de simultânea de várias variáveis aleatórias relacionadas entre si (correlacionadas): sabemos gerar facilmente de normal multivariada mas não de outras distribuições multivariadas.
- No método de aceitação-rejeição:
 - ullet selecionamos de uma densidade g(x) de onde sabemos amostrar
 - retemos alguns elementos e rejeitamos outros
 - ullet os elementos retidos possuem a densidade desejada f(x)
- Na amostragem por importância, selecionamos de g(x) mas retemos tudo, não rejeitamos nada.
- Mas ao usar a amostra, damos um peso diferente e apropriado a cada elemento amostrado.
- No final, isto corrige a distorção de não termos uma amostra de f(x).

Densidade-alvo: o que queremos

• f(x), a densidade da distribuição-alvo, de onde queremos amostrar.

- O "tapete" de pontos embaixo representa uma amostra de f(x)
- Todos os pontos com pesos iguais. N\u00e3o sabemos obter esta amostra.
- OBS: Esta figura e as duas seguintes vêm do livro Probabilistic Robotics

Amostre de g(x) ao invés de f(x)

• Amostramos de g(x) em vez de amostrar de f(x).

- Terminamos com a amostra mostrada no "tapete", todos os pontos tem pesos iguais.
- Vamos agora dar pesos diferentes a estes elementos amostrados para que pareçam ter vindo de f(x).
- Intuitivamente, como fazer? Quem recebe mais peso? E menos peso?

Pesos: mais ou menos importância

• Atribuímos pesos w(x) = f(x)/g(x) aos elementos da amostra de g(x).

- Esta amostra PONDERADA pode ser usada para fazer inferência sobre a distribuição f(x)
- Como fazer isto exatamente?

O que você quer saber sobre f(x)?

- Queremos uma amostra Monte Carlo para estimar (conhecer aproximadamente) alguns aspectos de uma v.a. X com distribuição-alvo f(x).
- Por exemplo, podemos querer saber o seguinte:
 - $\mathbb{E}(X)$ sem precisar fazer a integral (pode ser muito difícil)
 - $\mathbb{V}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$, a variância de X.
 - $\mathbb{P}(X > 2)$, a chance de observar X maior que 2, um valor-limite importante na aplicação.
 - $\mathbb{P}(e^{-|X|} > |X|)$, um cálculo probabilístico (uma integral).
 - $\mathbb{P}(X \in A)$, onde A é um conjunto complicado.

O truque: escreva como esperança

- Cada uma das quantidades de interesse pode ser escrita como o valor esperado de uma v.a. que é uma função h(X) da v.a. X.
 - Seja $\theta_1 = \mathbb{E}(X)$: Tome h(X) = X e então $\theta_1 = \mathbb{E}(h(X))$.
 - $\theta_2 = \mathbb{V}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$: Se $h(X) = X^2$ então $\theta_2 = \mathbb{E}(h(X)) \theta_1^2$, se tivermos uma estimativa de θ_1
 - $\theta_3 = \mathbb{P}(X > 2) = E(h(X))$ onde $h(X) = I_{[X > 2]}$, a função indicadora do evento X > 2.
 - $\theta_4 = \mathbb{P}(e^{-|X|} > |X|) = \mathbb{E}_f(h(X))$ onde $h(X) = I_{[X \in A]}$ onde $A = \{x \text{ tais que } e^{-|x|} > |x|\}$
 - $\theta_5 = \mathbb{P}(X \in A) = \mathbb{E}(I_A)$, onde A é um conjunto complicado.

Estimando esperanças

• Pela idéia frequentista, $\mathbb{E}(X)$ é bem aproximada pela média aritmética de uma grande amostra de valores de X:

$$\mathbb{E}(X) \approx \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Pelo mesmo raciocínio, se quisermos estimar o valor esperado $\mathbb{E}(h(X))$ de uma transformação h(X) de X podemos usar a média aritmética dos $h(X_i)$:

$$\mathbb{E}(h(X)) \approx \frac{1}{n} \sum_{i=1}^{n} h(X_i)$$

• Por exemplo, se $h(X) = X^2$ temos

$$\mathbb{E}(X^2) \approx \frac{1}{n} \sum_{i=1}^n X_i^2$$

Estimando esperanças

- Simples: se quiser conhecer o valor esperado de X^2 , tome uma amostra de X, aplique a função quadrática a cada valor e tome a sua média aritmética.
- Para estimar o valor esperado de qualquer função h(X), transforme cada valor de uma grande amostra de $X \sim f(x)$ e tome sua média aritmética.
- Problema: não conseguimos gerar $X \sim f(x)$ desejada.
- Sabemos gerar de OUTRA distribuição g(x).
- Aceitação-rejeição joga fora seletivamente vérios elementos da amostra de modo a terminar com uma maostra de f(x): é como dar pesos iguais a 0 ou 1 a cada valor.
- Amostragem por importância pondera TODOS os valores amostrados de g(x) com pesos mais flexíveis.

Esperança sob QUAL densidade, g ou f?

- Queremos o valor esperado de h(X) onde $X \sim f(x)$ com suporte S.
- Isto é, queremos $\theta = \mathbb{E}_f(h(X))$.
- SUB-INDICE f para indicar a distribuição de X. A partir de agora,X pode ter densidade g(x) ou f(x) e queremos distinguir isto na notação.
- Sabemos gerar apenas de g(x), com suporte maior ou igual a S.
- Vamos mostrar que $\theta = \mathbb{E}_f(h(X))$ pode ser visto como a esperança de OUTRA função $h^*(X)$ quando X tem densidade g.
- Isto é, vamos mostrar que

$$\theta = \mathbb{E}_f(h(X)) = \theta = \mathbb{E}_g(h^*(X))$$

Por que o algoritmo funciona

 O truque mais barato da matemática: multiplique e divida por um memso valor...

$$\theta = \mathbb{E}_f(h(X)) = \int_{\mathbb{R}} h(x) f(x) dx$$

$$= \int_{\mathbb{R}} \left(h(x) \frac{f(x)}{g(x)} \right) g(x) dx$$

$$= \int_{\mathbb{R}} h^*(x) g(x) dx$$

- onde $h^*(x) = h(x)f(x)/g(x) = h(x)w(x)$ é uma nova função.
- Assim, podemos reconhecer a última expressão como uma nova esperança: o valor esperado de $h^*(X)$ quando X segue a densidade g(x)!!

Por que o algoritmo funciona

Isto é,

$$\theta = \mathbb{E}_f(h(X)) = \mathbb{E}_g(h^*(X)) = \mathbb{E}_g\left(h(X)\frac{f(X)}{g(X)}\right) = \mathbb{E}_g(h(X)w(X))$$

- Note que, na última esperança, a v.a. X possui distribuição g(x) e não mais f(x)!!
- Tudo se resume a multiplicar e dividir por um mesmo valor dentro da integral e reconhecer que a nova integral é uma esperança de uma v.a. $h^*(X)$ onde X tem OUTRA distribuição g(x).

O truque

Repetindo

$$\theta = \mathbb{E}_f(h(X)) = \mathbb{E}_g\left(h(X)\frac{f(X)}{g(X)}\right) = \mathbb{E}_g\left(h(X)w(X)\right)$$

- A esperança de h(X) com $X \sim f(x)$ é igual à esperança de $h^*(X) = h(X)w(X)$ onde $X \sim g(x)$.
- Como isto pode ser útil?
- Como sabemos amostrar de $X \sim g(x)$, a última esperança $\mathbb{E}_g(h(X)w(X))$ pode ser estimada facilmente.

Exemplo

- Desejamos $\mathbb{E}_f(X)$ onde $X \sim \mathsf{Gama}(3,3)$. Neste caso, h(X) = X.
- Geramos 200 valores de uma exp(1)
- Para cada um dos 200 valores $x_1, x_2, \dots x_{200}$ calculamos os pesos

$$w(x_i) = \frac{f(x_i)}{g(x_i)} = \frac{\frac{27}{2}x_i^2 e^{-3x_i}}{e^{-x_i}} = \frac{27}{2}x_i^2 e^{-2x_i}$$

Com estes pesos, estimamos

$$\mathbb{E}_f(X) = \mathbb{E}_g(h(X) \ w(X)) = \mathbb{E}_g(X \ w(X)) \approx \frac{1}{200} \sum_{i=1}^{200} x_i w(x_i)$$

• Com o script a seguir, obtive uma estimativa igual a 1.102366 quando o valor exato é igual a 1.

Script R

```
set.seed(123)
nsim = 200
x = rexp(nsim, 1)
wx = dgamma(x, 3, 3)/dexp(x, 1)
theta1 = mean(x*wx)
par(mfrow=c(1,1))
xx = seq(0, 9.1, by=0.1)
fx = dgamma(xx, 3, 3)
gx = dexp(xx, 1)
plot(xx, gx, type="l", ylim=c(-0.2, 1), ylab="densidade")
lines(xx, fx, lty=2)
abline(h=0)
segments(x, -0.2, x, -0.18+wx/20, lwd=2)
legend("topright",lty=1:2,c("g(x)", "f(x)"))
```

Saída do script R

Exemplo

- Queremos gerar de uma N(0,1) sem usar Box-Muller.
- Precisamos simular de uma distribuição com suporte na reta real.
- Sabemos gerar com facilidade uma v.a. Y com distribuição $\exp(1)$: $Y = -\log(U)$ onde $U \sim U(0,1)$.
- Problema: exp(1) possui suporte $(0, \infty)$ e normal possui suporte na reta inteira.
- Truque: selecionamos $Y \exp(1)$. A seguir, jogue uma moeda com probabilidade 1/2: se cara, tome Y; se coroa, tome -Y.
- Esta distribuição é chamada de exponencial dupla ou distribuição de Laplace.
- Ver http://en.wikipedia.org/wiki/Laplace_distribution

Laplace ou exponencial dupla

• Densidade de Laplace padrão ($\mu = 0$ e b = 1):

$$g(x) = \frac{1}{2}e^{-|x|}$$

Exemplo

- Queremos calcular $\mathbb{E}_f(h(X))$ onde $X \sim f(x) = N(0,1)$
- Sabemos gerar de Laplace padrão.
- Queremos estimar:
 - $0 = \theta_1 = \mathbb{E}_f(X)$ onde h(X) = X
 - $1 = \theta_2 = \mathbb{V}_f(X) = \mathbb{E}_f(X^2) (\mathbb{E}_f(X))^2$: Se $h(X) = X^2$ então $\theta_2 = \mathbb{E}_f(h(X)) \theta_1^2$, se tivermos uma estimativa de θ_1
 - 0.02275 = $\theta_3 = \mathbb{P}_f(X > 2) = \mathbb{E}_f(h(X))$ onde $h(X) = I_{[X > 2]}$, a função indicadora do evento X > 2.
 - $\theta_4 = \mathbb{P}(e^{-|X|} > |X|) = E(h(X))$ onde $h(X) = I_A(X)$ onde $A = \{x \text{ tais que } e^{-|x|} > |x|\}$

Exemplo

- Simule X_1, X_2, \ldots, X_B de uma Laplace.
- Calcule os pesos

$$w(x_i) = \frac{f(x_i)}{g(x_i)} = \frac{\frac{1}{\sqrt{2\pi}}e^{-x_i^2/2}}{\frac{1}{2}e^{-|x_i|}}$$

Em seguida, estime

$$\begin{array}{ll} \theta_1 & \approx & \widehat{\theta_1} = \frac{1}{B} \sum_i x_i w_i \\ \\ \theta_2 & \approx & \widehat{\theta_2} = \frac{1}{B} \sum_i x_i^2 w_i - \left(\widehat{\theta_1}\right)^2 \\ \\ \theta_3 & \approx & \widehat{\theta_3} = \frac{1}{B} \sum_i I_{[x_i > 2]} w_i = \text{m\'edia dos } w_i \text{ em que } x_i > 2 \\ \\ \theta_4 & \approx & \widehat{\theta_4} = \frac{1}{B} \sum_i I_{[e^{-|x_i|} > x_i]} w_i = \text{m\'edia dos } w_i \text{ em que } e^{-|x_i|} > x_i \end{array}$$

Script R

```
B = 10000
x \leftarrow (2*(runif(B) > 0.5)-1) * rexp(B) # gerando de uma exponencial dupla
hist(x)
## estimativa via importance sampling
peso <- dnorm(x)/(exp(-abs(x))/2)
a1 <- mean(x * peso)
a2 \leftarrow mean((x^2 * peso)) - a1^2
a3 \leftarrow mean((x > 2) * peso)
a4 \leftarrow mean((exp(-abs(x)) > abs(x)) * peso)
c(a1, a2, a3, a4) # [1] -0.02186748 1.00444225 0.02259828 0.42595014
## Refazendo com B major
B = 50000
x \leftarrow (2*(runif(B) > 0.5)-1) * rexp(B) # gerando de uma exponencial dupla
peso <- dnorm(x)/(exp(-abs(x))/2)
a1 <- mean(x * peso); a2 <- mean( (x^2 * peso) ) - a1^2;
a3 <- mean( (x > 2) * peso); a4 <- mean( (exp(-abs(x)) > abs(x)) * peso)
c(a1, a2, a3, a4) # [1] 0.0004117619 0.9879179922 0.0222652043 0.4345303436
```

Reamostragem da amostragem por importância

- Sampling importance resampling (SIR)
- Para usar amostragem por importância, precisamos conhecer as densiaddes f(x) e g(x), incluindo as suas constantes de integração c_1 e c_2 :

$$f(x) = c_1 f_0(x)$$

$$g(x) = c_2 g_0(x)$$

- ullet O algoritmo SIR dispensa o conhecimento de c_1 e c_2
- Isto n\(\tilde{a}\) \(\tilde{e}\) muito relevante nos casos de v.a. unidimensionais mas se quisermos gerar VETORES de v.a.'s correlacionadas, este problema aparece como uma grande dificuldade.

Algoritmo SIR

- Simule uma amostra X_1, X_2, \dots, X_B de g(x)
- Calcule os pesos $w_i = f_0(x_i)/g_0(x_i)$
- Normalize os pesos $w_i \leftarrow w_i/S$ onde $S = \sum_k w_k$
- REAMOSTRE os B dados da amostra original com reposição e com pesos w_i gerando $X_1^*, X_2^*, \dots, X_n^*$
- Cada X_j^* assume um dos valores $X_1, X_2, ..., X_B$ com probab $w_1, w_2, ..., w_B$.

SIR

- Mostra-se que a distribuição de X_j^* tem densidade aproximadamente igual a f(x).
- SIR começa gerando de g(x) como importance sampling.
- Ao invés de reter todos os valores gerados atribuindo um peso...
- SIR REAMOSTRA os valores gerados com um peso.
- Voltando ao exemplo anterior, queremos estimar $\theta_1 = \mathbb{E}_f(X)$, $\theta_2 = \mathbb{V}_f(X)$, $\theta_3 = \mathbb{P}_f(X > 2)$, $\theta_4 = \mathbb{P}_f(e^{-|X|} > |X|)$. onde $X \sim f(x) = N(0, 1)$.
- Temos $f(x) = (2\pi)^{-1/2} e^{-x^2/2} \propto e^{-x^2/2}$
- Vamos SUPOR que não conhecemos a constante $(2\pi)^{-1/2}$
- Amostramos $X_1, \ldots X_B$ de g(x), uma Laplace padrão.

SIR

- Reamostramos *m* elementos
- Reamostra $X_1^*, X_2^*, \dots, X_m^*$ i.i.d com

$$X_j^* = \left\{ egin{array}{ll} X_1 & ext{com probab } w_1 \ dots \ X_B & ext{com probab } w_B \end{array}
ight.$$

• No final, calculamos uma média aritmética simples de $h(X_i^*)$:

$$\widehat{\theta} = \frac{1}{m} \sum_{j=1}^{m} h(X_j^*)$$

Ver script R

Script R

```
B = 20000
## amostra de exponencial dupla (ou Laplace)
x \leftarrow (2*(runif(B) > 0.5)-1) * rexp(B)
## estimativa via SIR - sampling importance resampling
peso <- \exp(-x^2/2)/(\exp(-abs(x))/2)
peso <- peso/sum(peso)</pre>
xstar <- sample(x, 10000, replace=T, prob=peso)</pre>
a1 <- mean(xstar)
a2 \leftarrow mean(xstar^2) - a1^2
a3 \leftarrow mean(xstar > 2)
a4 <- mean(exp(-abs(xstar)) > abs(xstar))
c(a1, a2, a3, a4)
```

Escolha de g(x)

- Nos métodos de aceitação-rejeição, importance sampling e SIR geramos de g(x) mas o objetivo é estimar quantidades associadas com f(x).
- Como deve ser escolhida g(x)?
- Ela deve ter um suporte maior ou igual a f(x).
- Além disso, ela deve ser o mais parecida possível com f(x).
- Uma má escolha para g(x) põe muita massa de probabilidade numa região (de onde amostramos frequentemente) e esta região tem baixa probabilidade sob f(x).
- Pior: região onde f(x) põe massa de probabilidade tem pouca chance de ser selecionada sob g(x)