The Ostrich Project

Brandon Creighton (cstone) & Jim Rennie ToorCon San Diego, 2011

About Us

Brandon Creighton: I am a hacker.

- Security researcher at Veracode (static analysis)
- I also build hardware gadgets sometimes
- cstone@pobox.com

Jim Rennie: I am an attorney.

- 3 years as a Public Defender in Las Vegas
- I + year doing Internet privacy compliance & policy work in San Francisco

The Devices

SOHO (Small Office, HOme) boxes: networked, single-purpose utilities

- Routers/switches
- Media players (Roku, Dreambox)
- CPE equipment (cable/DSL modems)
- VoIP adapters.... and more

Why?

Ubiquity

Widespread use in homes and offices:

- NAT + wi-fi
- VoIP calls
- Streaming media (pirated or not)
- Printers/scanners/97-in-one devices

Why?

Accessibility

- Easier to understand than Siemens PLCs
- Hardware samples easy to obtain
- No firmware integrity protection
- Often the only Internet-facing device on a network

Why?

Forgotten

- Users tend to ignore them unless they're broken
- Network operators/ISPs don't always know about them
- Vendors rarely add features; no auto-update!

Sounds Like Fun

Sounds Like Fun

But how bad is it?

CSRF Vulns

- Example: CVE-2007-3574
 - Public PoC adds new admin account, opens up console to the WAN
 - Nearly zero user-visible impact (router reboot)
- References: gnucitizen, full-disclosure,
 RSnake (http://ha.ckers.org/blog)

DNS Rebinding

- Attacker-controlled site uses JS + short DNS TTLs (or multiple A records) to reach machines on the browser's LAN
- Good References: Heffner (BHUSA2010), Kaminsky (many!)
- Result: access to device admin consoles
- OpenDNS created fixmylinksys.com

Default Passwords

Default Password List

Last updated: 10.22.2010

Vendor	Model		Access Type	Username	Password	Privileges
ЗСОМ	CoreBuilder	7000/6000/3500/2500	Telnet	debug	synnet	
3COM	CoreBuilder	7000/6000/3500/2500	Telnet	tech	tech	
ЗСОМ	HiPerARC	v4.1.x	Telnet	adm	(none)	
3COM	LANplex	2500	Telnet	debug	synnet	
ЗСОМ	LANplex	2500	Telnet	tech	tech	
3COM	LinkSwitch	2000/2700	Telnet	tech	tech	
Huawei	E960			admin	admin	Admin
3COM	NetBuilder		SNMP		ILMI	snmp-read
ЗСОМ	Netbuilder		Multi	admin	(none)	Admin
ЗСОМ	Office Connect ISDN Routers	5x0	Telnet	n/a	PASSWORD	Admin
ЗСОМ	SuperStack II Switch	2200	Telnet	debug	synnet	
ЗСОМ	SuperStack II Switch	2700	Telnet	tech	tech	
3СОМ	OfficeConnect 812 ADSL		Multi	adminttd	adminttd	Admin
3COM	Wireless AP	ANY	Multi	admin	comcomcom	Admin
3COM	CellPlex	7000	Telnet	tech	tech	User
3COM	cellplex	7000	Telnet	admin	admin	Admin
ЗСОМ	cellplex	7000		operator	(none)	Admin
3COM	HiPerARC	v4.1.x	Telnet	adm	(none)	Admin
зсом	3Com SuperStack 3 Switch 3300XM			security	security	Admin
ЗСОМ	superstack II	1100/3300		3comcso	RIP000	initialize
ЗСОМ	LANplex	2500	Telnet	tech	(none)	Admin
ЗСОМ	CellPlex		НТТР	admin	synnet	Admin
ЗСОМ	NetBuilder			(none)	admin	User
зсом	SuperStack II Switch	2700	Telnet	tech	tech	Admin
ЗСОМ	CellPlex	7000	Telnet	root	(none)	Admin
зсом	HIPerACT	v4.1.x	Telnet	admin	(none)	Admin
зсом	CellPlex	7000	Telnet	tech	(none)	Admin
ЗСОМ	CellPlex	7000	Telnet	admin	admin	Admin

Default Passwords

- Extremely common: admin/admin
- Users aren't always incentivized to change them: 'but I already have a password on the wi-fi network!"
- Vendors should be ashamed of themselves

Example: ETB

From: Cilia Pretel Gallo (cpretelgallo (a) yahoo.com)

Date: Tue Dec 29 2009 - 04:23:24 CST

I've recently discovered a security hole on the modems (which double as routers) used by a Colombian ISP - ET

It so happens that all incoming connections to an IP address on said ISP on port 23 or port 80 land on the mode connected to it. Even if one tries to redirect those ports to a local machine, the modem still gets all the connection Also, connections on ports 23 and 80, from any IP address, will access the modem configuration options. Last year private IP addresses (i.e. 192.168.0/24), but now it can be done, as I said, from anywhere. I've been told that a few forward port 80, but in that case, it's port 8080 that is intercepted by the modem.

The end result is that anyone, from anywhere, can access the modem of anyone on ETB to mess up their config changing the client's username and password, permanently disconnecting them from the internet, and so on) - to administration password. Unfortunately, ETB uses the same login/password on all of their modems since 2006, the web.

Login: Administrator

Password: soporteETB2006

The whole IP range 190.24/14 corresponds to ETB clients. Any IP on that range where ports 80 and 23 are open modem.

Example: ETB

- Late 2010: still vulnerable devices! Why?
 - Lack of automated update infrastructure?
 - Perceived low risk?
 - Nobody involved reads full-disclosure?
 - Nobody exploiting them? (!)

Example: Dreambox

- Linux-based DVR/media player
- Default password: root (no password)
- Accessible by telnet

In Practice: Malware

- Zlob (TROJ_ZLOB.CC*): Windows trojan modifies router settings
- Primarily attacks Linksys/D-Link routers with a pre-defined list of passwords
- If successful, rewrites DNS servers to rogue IP addresses

But How Bad Is it?

- I wanted to find out
- Idea: internet-wide survey for specific publicfacing services (telnet, tftp, http); passive fingerprinting for versions
- net-wide surveys common for some classes of flaws, particularly DNS and SMTP (Men & Mice, djb, The Measurement Factory, others)

But How Bad Is it?

 Reality: hard to do precise version fingerprinting

But How Bad Is it?

- Reality: hard to do precise version fingerprinting
- So: can I try logging in?

Jim Rennie

Surveys: not so good

- Can't scan and get good results (if you're in the US or scanning US machines)
- Logistical problems anyway:

Busted

Hello,

We have received a complain related to your VPS. Cease this type of activity right away. Below is the initial complain:

Hello,

this is an automated warning message from
With this message we inform you about a scan for the service
TCP/23 originating from the following hosts

•

which seem to come from one of your netblocks.

The address

as a recipient for this message has been selected from a WHOIS-query giving this address as possible contact for abuse messages.

If you feel that you are not the right person please give us feedback by hitting reply and/or forward this message to the right person.

Below we provide some lines of our logs leading to this message. Timezone is CEST (UTC+2).

Controversial Opinion

- There is an unknown amount of vulnerable, accessible devices out there
- There is little to no pressure on vendors to improve security on these devices
- Result: Vendors stick their heads in the sand

What Now?

- Even though quantifying the problem is hard, the problems are there
- What should we do about it?

What Now?

- Even though quantifying the problem is hard, the problems are there
- What should we do about it?

I started building rootkits.

Goals

- Transparent to end-users (inject into existing firmware)
- Network traffic interception and manipulation
- Access to any secrets stored on the device
- Remote control

Others' Work

- Enterprise router work
 - Sebastian Muniz wrote a PoC rootkit for IOS devices in 2008
 - Graeme Neilson wrote PoC rootkits for several enterprise routers (CSW2011): http://www.aurasoftwaresecurity.co.nz/
 Publications/wtrc.pdf

Others' Work

- Broader hacking community
 - Third-party firmware: DD-WRT,
 Tomato, RockBox, et al.
 - http://www.devttys0.com/: Awesome blog on reversing/testing routers
 - Etherpuppet: userland sniffer proxy for Linux-based embedded routers

Ostrich Overview

- Ostrich aims to be a portable, extensible framework for building embedded rootkits
- Written in C, initial release here
- Two-layer arch: packet manipulation (PML) and command-and-control (OCTRL)
- Separation of machine-dependent from machine-independent code

Functionality Goals

- Manipulate packets passing through routers
 - Programmatically and interactively (active MITM)
 - Divert packets for analysis elsewhere
 - Flexible filters with accessible state

PML Architecture

- PML is a simple bytecode VM for manipulating packets across interfaces in a device
- Evades complex rulesets
- Not the first packet VM: BPF (used in *BSD, including OS X) is used to match packets today

PML Architecture

- A PML program processes every packet that transits the device
 - Command packets may be excluded
 - PML program itself chooses whether to drop the packet; if you want to MITM, simply send elsewhere and rewrite

PML Machine

Operands:

```
A: accumulator (32-bit)
X: index/GP (32-bit)
Y: index/GP (32-bit)
M[]: memory store, seeded with data
P[]: packet
PC: program counter
channels: (address, port, type) pairs
```

- No built-in stack or function calling
 - but jumps save PC in Y; you can do it if you really want to
- Like BPF, PML is a Harvard architecture

PML Instructions

- Basics: MOV, MOVS (for special values: lengths of P/M, header offsets, PC, etc.)
- Data munging: INSERT, DELETE, COPY, FIND
- Arithmetic: +, -, &, |, ^, <<, >>
- Jumps: JMP, J{GT, LT, GE, LE, EQ, SET}
- Packet diversion: DIVERT
- Misc.: SETFLAG, CHECKSUM, EXIT

Sniffing UDP packets

```
Label PC Instruction
start:
        0
            MOVS A, IP4TLH_OFF # A <- off of transport layer
            JEQ 0, doexit # if A == 0, jump to exit
       12
                     # clear A
            MOVW A, 0
            MOVS X, IPH OFF # X <- offset of IP4 header
       18
       24
            MOVB A, P[X+9] # A[0] <- P[X+9] (protocol byte)
            MOVW X, 17  # X <- 17 (protocol UDP)
       30
            JEQ X, doexit # if A == X, jump to divert
       36
doexit:
            MOVS X, IPH_OFF # X <- offset of IP4 header
            DIVERT P[X], 1, #ffffffff # divert pkt to channel 1
       42
```

Summary: BPF vs. PML

- BPF: no backwards JMP
- BPF only lets you truncate packets
- Arithmetic/bitwise logic
- One scratch register (X)
- Utility instructions for common functions (e.g. ip hdr calc)

- PML is turing-complete
- PML lets you modify, expand, contract packets
- Ditto
- X and Y
- Yes, and more (checksuming, string searching)

Control (OCTRL)

- PoC quality at the moment; pretty basic
- Not very stealthy
 - Watches for commands to a specific UDP (host,port) tuple containing a specific preshared cookie; commands are unencrypted; so APTs, stay away!

OCTRL Functions

- Get the version
- Set the current PML program (filter)
- Get/define channel info (address,port,type)
 - only type so far: plaintext UDP
- Get/modify data in M
- Modify command IP, port, cookie

Release

- C code for Ostrich, documentation, and two implementations:
 - userland: Linux-based harness for shuttling data from one interface to a TAP/TUN if, processing with Ostrich
 - WRT150N: Linksys MIPS(el) Linux-based router; diff against GPL source tree
- Scapy client code

Release

https://github.com/unsynchronized/ostrich

http://unsynchronized.org/ostrich

Caveats

- In heavy development; some things are broken, and some things will change
 - This isn't ready for prime time
 - (What does 'prime time' mean for a router rootkit? Uh oh...)
- No fun talking about something if you can't share it, even if it's broken

Coming

- More platforms!
 - Targeted: Netgear MR814v2 (eCOS), Grandstream HT502
- More utilities!
- More stabilities!

Thanks

- Chris Nelson / far_call / Dan Kaminsky / Aaron Sigel
- Nicole Danos

References

- Zlob trojan family: http://blog.trendmicro.com/new-zlob-rigs-routers/
- DJB surveys (SMTP versions, DNS implementation behavior): http://cr.yp.to/surveys.html
- The Measurement Factory surveys: http://dns.measurement-factory.com/
- Sebastian Muniz's IOS rootkit: http://eusecwest.com/sebastian-muniz-da-ios-rootkit.html
- Dror Shalev gave a Defcon presentation talking about issues is networked embedded devices: http://www.drorshalev.com/dev/upnp/toaster/
- Craig Heffner (BHUSA2010) gave a presentation on the state of DNS rebinding attacks, focusing on SOHO routers: https://media.blackhat.com/bh-us-10/presentations/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-

References

- CSRF attacks in routers (blog post): http://ha.ckers.org/blog/20080202/csrf-yup-its-real-folks/
- More CSRF (attack example): http://www.gnucitizen.org/blog/persistent-xss-and-csrf-on-wireless-g-adsl-gateway-with-speedbooster-wag54gs/
- Another CSF PoC: http://www.exploit-db.com/exploits/15675/
- SourceSec found several admin-access flaws in D-Link routers: http://www.sourcesec.com/2010/01/09/d-link-routers-one-hack-to-own-them-all/
 - http://www.sourcesec.com/Lab/dlink_hnap_captcha.pdf
- Graeme Neilson's CSW2011 presentation on enterprise router rootkits: http://www.aurasoftwaresecurity.co.nz/Publications/wtrc.pdf

References

- http://www.devttys0.com/ is a fantastic resource on reverse-engineering embedded devices; they've released several small tools (particularly binwalk) for investigating device firmware. There's a blog too!
- Etherpuppet is a userland program that routes traffic from one interface to a TUN/TAP interface; it's designed for use in Linux routers. http://www.secdev.org/projects/etherpuppet/
- BPF: The Berkeley Packet Filter is a kernel-level device that runs a bytecode VM not that different from Ostrich's; your best place to learn about it is in the bpf(7) manpage on your nearest BSD-based system, or here: http://www.freebsd.org/cgi/man.cgi?guery=bpf&apropos=0&sektion=0&manpath=FreeBSD+8.2-RELEASE&arch=default&format=html