Subtask1:

In DNA strings, symbols 'A' and 'T' are complements of each other, as are 'C' and 'G'. Given a nucleotide p, we denote its complementary nucleotide as c. The reverse complement of a DNA string $Pattern = p_1 \dots p_n$ is the string $Pattern = c_n \dots c_n$ formed by taking the complement of each nucleotide in Pattern, then reversing the resulting string.

For example, the reverse complement of *Pattern* = "GTCA" is *Pattern* = "TGAC".

Reverse Complement Problem

Find the reverse complement of a DNA string.

Given: A DNA string *Pattern*.

Return: *Pattern*, the reverse complement of *Pattern*.

Sample Dataset

AAAACCCGGT

Sample Output

ACCGGGTTTT

Subtask2:

We say that position i in $string p_1 \dots p_k$ and $q_1 \dots q_k$ is a **mismatch** if $p_i \neq q_i$. For example, CGAAT and CGGAC have two mismatches. The number of mismatches between strings p and q is called the <u>Hamming distance</u> between these strings and is denoted *HammingDistance*(p, q).

Hamming Distance Problem

Compute the Hamming distance between two DNA strings.

Given: Two DNA strings.

Return: An integer value representing the Hamming distance.

Sample Dataset

GGGCCGTTGGT

GGACCGTTGAC

Sample Output

3

Subtask3:

We say that a *Pattern* appears as a substring of *Text* with at most *d* mismatches if there is some substring *Pattern'* of *Text* having *d* or fewer mismatches with *Pattern*,

Approximate Pattern Matching Problem

Find all approximate occurrences of a pattern in a string.

Given: Strings *Pattern* and *Text* along with an integer *d*.

Return: All starting positions where *Pattern* appears as a substring of *Text* with at most *d* mismatches.

Sample Dataset

ATTCTGGA

3

Sample Output

6 7 26 27 78

Subtask4:

Frequent Words with Mismatches Problem

Consider pattern P, it could be consist of ('A', 'C', 'G', 'T') and the length would be k.

Find all the possible most frequent P with d mismatches in a the Text.

Given: A string *Text* as well as integers *k* and *d*.

Return: All possible most frequent *P* with up to *d* mismatches in *Text*.

Sample Dataset

ACGTTGCATGTCGCATGATGCATGAGAGCT

4 1

Sample Output

Subtask5:

Frequent Words with Mismatches and Reverse Complements Problem

Consider pattern P, where it could be consist of ('A', 'C', 'G', 'T') and the length would be k.

Find all the possible most frequent P with d mismatches and reverse complements in the Text.

Given: A string *Text* as well as integers *k* and *d*.

Return: All possible most frequent *P with d mismatches and reverse complements* in *Text*.

Sample Dataset

ACGTTGCATGTCGCATGATGCATGAGAGCT

4 1

Sample Output

ATGT ACAT

Subtasks6:

Implement PatternToNumber

Convert a DNA string to a number.

Given: A DNA string Pattern.

Return: PatternToNumber(Pattern).

Sample Dataset

AGT

Sample Output

11

Subtask7:

Implement NumberToPattern

Convert an integer to its corresponding DNA string.

Given: Integers *index* and *k*.

Return: *NumberToPattern(index, k).*

Sample Dataset

45

4

Sample Output

AGTC