Constructing response models

P(response | stimulus) \rightarrow r(t) given a stimulus s

P(response | stimulus)

Basic coding model: linear response

Basic coding model: temporal filtering

Linear filter:

$$r(t) = \sum_{k=0}^{n} s_{t-k} f_k$$

$$r(t) = \int_{-\infty}^{t} d\tau \, s(t - \tau) f(\tau)$$

Example I: running average

Example II: leaky average

Basic coding model: spatial filtering

Basic coding model: spatial filtering

Basic coding model: spatial filtering

$$r(t) = \sum_{k=0}^{n} s_{t-k} f_k$$
 Temporal filter

$$r(x,y) = \sum_{x'=-n,y'=-n}^{n} s_{x-x',y-y'} f_{x',y'}$$

$$= \int_{-\infty}^{\infty} dx' dy' \, s(x-x',y-y') f(x',y')$$

Spatial filtering and retinal receptive fields

Spatial filtering and receptive fields

Spatial filtering and receptive fields

Spatial filtering

http://docs.gimp.org/2.6/en/plug-in-dog.html

Basic coding model: spatiotemporal filtering

$$r_{x,y}(t) = \iiint dx' dy' d\tau f(x',y',\tau) s(x-x',y-y',t-\tau)$$

Basic coding model: temporal filtering

Linear filter: $r(t) = \int s(t-\tau) f(\tau) d\tau$

...shortcomings?

Next most basic coding model

Linear filter & nonlinearity: $r(t) = g(\int s(t-\tau) f(\tau) d\tau)$

How to find the components of this model

How to find the components of this model

P(response | stimulus)

Our problem is one of dimensionality!

We want to sample the responses of the system to many stimuli so we can characterize what it is about the input that triggers responses.

P(response | stimulus) \rightarrow P(response | s_1)

Dimensionality reduction

Start with a very high dimensional description (eg. an image or a time-varying waveform) and pick out a small set of relevant dimensions.

What is the right stimulus to use?

We want to sample the responses of the system to a variety of stimuli so we can characterize what it is about the input that triggers responses.

P(response | stimulus) \rightarrow P(response | s_{1} , s_{2} , ..., s_{n})

One common and useful method is to use white noise

Determining multiple features from white noise

Determining linear features from white noise

Reverse correlation: the spike-triggered average

Dayan and Abbott, Theoretical Neuroscience

The spike-triggered average

Linear filtering

Stimulus feature f is a vector in a high-dimensional stimulus space

Linear filtering = convolution = projection

How to find the components of this model

Determining the nonlinear input/output function

The input/output function is:

$$P(\text{spike}|\text{stimulus}) \longrightarrow P(\text{spike}|s_1)$$

This can be found from data using Bayes' rule:

$$P(\text{spike}|s_1) = \frac{P(s_1|\text{spike})P(\text{spike})}{P(s_1)}$$

 $P(s_1)$

 $P(s_1|\text{spike})$

Nonlinear input/output function

$$P(\text{spike} | s_1) = P(s_1 | \text{spike}) P(\text{spike}) / P(s_1)$$

Linear/nonlinear models

Linear filter & nonlinearity: $r(t) = g(\int f(t-\tau) s(\tau) dt)$

High-dimensional feature selection

Featured Members

Auntie_Sassy

Age: 35 Location: Greenwood

Woman seeking
• Man for Dating
• Man for Friendship

Worst Haiku Ever

This is my first dip into the online dating pool and quite frankly, I have no idea what I'm doing.... learn more about me »

JohnnyX

Age: 47 Location: Capitol Hill

Man seeking

- · Woman for Dating
- · Woman for Friendship

Sex, Love and Rock-n-Roll

If you don't see how it possible for an older guy to be sexy and exciting, stop reading now because... Learn more about me >>

Less basic coding models

Linear filters & nonlinearity: $r(t) = g(f_1*s, f_2*s, ..., f_n*s)$

Determining multiple features from white noise

Determining multiple features from white noise

Principal component analysis

Principal component analysis: eigenfaces

ATT Labs, Cambridge (via Wikipedia)

Principal component analysis: spike sorting

Koepsell et al., Front. Syst. Neurosci., 2009

Finding interesting features in the retina

