Enunciado:

Usar el principio de superposición para determinar U_0 en el circuito de la figura

Solución:

Al contener el circuito fuentes ideales de corriente y tensión, no puede analizarse ni por el método de las mallas, ni por el de los nudos, dado que no podemos aplicar transformación de fuentes. Aplicamos por tanto el principio de superposición:

Contribución del generador de tensión

La fuente de corriente queda como un circuito abierto, siendo el circuito resultante el mostrado en la figura:

Aplicando el método de mallas con las corrientes indicadas:

$$\begin{bmatrix} 6000 & -4000 \\ -4000 & 12000 \end{bmatrix} \cdot \begin{bmatrix} I_a \\ I_b \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

cuya solución es:

$$I_a = 1,29 \,\text{mA}$$

 $I_b = 0,43 \,\text{mA}$

por lo que $U_{0,1}$:

$$U_{0,1} = U_{6k\Omega} = I_b \cdot R_{6k\Omega} = 0.43 \cdot 10^{-3} \cdot 6000 = 2.58 \,\mathrm{V}$$

Contribución del generador de corriente

La fuente de tensión queda como un cortocircuito, siendo el circuito resultante el mostrado en la figura:

Aplicando el método de los nudos, usando la referencia de potenciales indicada en la figura superior:

$$\begin{bmatrix} \frac{1}{2000} + \frac{1}{4000} + \frac{1}{6000} & -\frac{1}{2000} - \frac{1}{4000} \\ -\frac{1}{2000} - \frac{1}{4000} & \frac{1}{2000} + \frac{1}{4000} + \frac{1}{2000} \end{bmatrix} \cdot \begin{bmatrix} U_A \\ U_B \end{bmatrix} = \begin{bmatrix} 2 \cdot 10^{-3} \\ 0 \end{bmatrix}$$

cuya solución es:

$$U_A = 4,29 \,\mathrm{V} = U_{0,2}$$

 $U_B = 2,57 \,\mathrm{V}$

Finalmente, aplicando el principio de superposición, se obtiene que el valor de U_0 es:

$$U_0 = U_{0,1} + U_{0,2} = 2,58 + 4,29 = 6,87 \,\mathrm{V}$$