An introduction to

The Bits and Bytes to understand your Nucleotides

Pipelines: Outline

- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

Read: a raw sequence originating from a sequencing machine Fragment: the DNA template/amplicon that was loaded on the sequencing machine (is not always completely sequenced)

- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

K-mer is a substring of length k
Usually the word seed is used in mapping context

AGCATACGATCAG

```
AGCAT
GCATA
CATAC
ATACG
TACGA
ACGAT
CGATC
GATCA
ATCAG
```


- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

The total number of sequences generated for a sample. Usually expressed in fragments or reads (for Illumina Paired-end: #fragments*2=#reads)

- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

Coverage is a measure on how much of the target was seen. Coverage can be:

per position (base)	The number of reads that are overlapping this position	
per target (amplicon/exon)	The number of bases mapping to the target / the size of the target	
over complete target or genome	The total number of bases generated by the sequencer / the size of the target or genome	8

- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

The **generation of a reference**, from scratch (*de novo*) or reference assisted.

Overlapping reads are merged to contigs (smallest unitable unit without unknown bases)

Contigs that belong together, but where the connecting sequence is unknown, can be connected to scaffolds, inserting N's for the unknown bases

- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

Mapping:

the process to find the position of the read on the given reference

Alignment:

the process to compare 2 sequences with each other

MATKAVCVLKGDGPVOGIINFEOKESNGPVKVWGSIKGLTE-GLHGFHVHEFGDNTAGCT 59

Mapping

Alignment

- read
- fragment
- k-mer
- sequence depth
- coverage
- assembly
- alignment
- phred score

Phred score:

universal score for the probability of:

- base quality
- mapping quality
- genotype quality

Formula:

$$Q = -10 \, \log_{10} P$$

Phred score	Probability	Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1 000	99.9%
40	1 in 10 000	99.99%

Outline

Sequencing Technologies

illumina®

- Short reads (35-250bp)
- Single reads or Paired end
- Sequencing of clusters
 (groups of multiple same fragment)
- All raw reads have same length

Demux Fastq

Count

- Subreads or CCS
 (same fragment, corrected with multiple passes)
- Single Molecule, Real Time (SMRT)
- Reads have different lengths

PopGen

Outline

Demultiplexing: from image to fastq

Demultiplexing

Illumina Index (RNASeq/Shotgun Seq)

Seq

Demux

Fastq

Map

DESea

PopGen

Count

BioC

Outline

Fastq file

Fastq is a text based format containing the reads (sequences) that came from the machine.

Often this file is several MB to GB in size, therefore it is gzipped (.fastq.gz).

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

Fastq Quality Control

Per base sequence quality

Quality scores across bases

- Indication for the quality of the run, and quality of input DNA for the sample
- First 8-10 bp always lower, since the sequencer (Illumina) needs to find the location of the reads
- Low end?=> Quality trimming

Fastqc: Base Quality

Per base sequence quality

Per base sequence quality

Fastqc: GC content

Seq Demux Fastq Map SNP Count

©Per sequence GC content

Per sequence GC content

Fastqc: Read length

Sequence Length Distribution

Sequence Length Distribution

22

Fastqc: duplication levels

Sequence Duplication Levels

Sequence Duplication Levels

Seq

Fastq Quality Control

Overrepresented Kmers

- indicates frequent found sequence
- ALWAYS visible in amplicon based data (like 16S/GBS)
- Can indicate sequenced adaptors or adaptor dimers

Sequence	Count	Obs/Exp Ov	Obs/Exp Max	Max Obs/E
GCACC	36180	2.423	10.958	6
CACCA	72285	2.389	8.386	7
GGTGC	36190	2.385	7.598	8
TGGTG	71910	2.325	5.228	9
CCACC	33125	2.241	5.2	9
CAGCA	67850	2.22	5.42	9
GCTGC	33145	2.206	6.22	8
GCAGC	33190	2.2	5.622	8
GGTGG	33210	2.166	5.447	8
TGCTG	66130	2.16	5.8	7
CACCT	58125	1.929	5.168	7
AGGTG	59290	1.909	7.338	7 24
CTGCA	54605	1.794	5.487	9
ACACC	40405	4.000	0.205	1

Fastq modifications

- Seq
 Demux
 Fastq
 Map
 SNP Count
 PopGen DESeq BioC
- QC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- adaptor and quality trimming
 - removal of adaptors (will affect mapping)
 - removal of low quality ends (can have an effect on mapping and downstream analysis such as variant calling)
 - Tools:
 - Trimmomatic, bbduk, ea-utils, fastx-toolkit, ...
- read merging
 - Merging of overlapping reads into the original fragments
 - Improvement on mapping and variant calling
 - Tools:
 - FLASH, PEAR, ...

Outline

Mapping

Sequencing Reads

Individual B

Reference Genome

Mapping: Where to start?

Required information:

2. A reference

- a. The reference is species dependent.
- b. It can have any quality (from 1k+ contigs, to chromosome level)
- c. It can be the genome or the transcriptome
- d. As in *de novo* RAD/GBS mode, a set of micro-contigs assembled

Seq

Demux

Fastq

Мар

PopGen

Mapping

- Burrow wheeler transformation
 - Most used, low RAM needed
- Hashmap
 - Needs a lot of RAM

		Seed	Position
AC GTAC GCA		AGGT	1:50
		GGTC	5:1563
		GTAC	3:1563
	Find seed in table (usually multiple	CGGA	3:1566
	seeds)		

Check
surrounding bases (bases
between matching seeds

Seq Demux Fastq Мар PopGen DESea

REF: ...ACGTACGGA... SEQ: **ACGTACCGA** POS:

3:1561

. . .

Mapping: Output format: SAM and BAM format

SAM

Sequence Alignment/Map format
Header starts with @
Mapped Reads are tab-delimited lines
1-based system (includes SAM, VCF, GFF, GTF)

BAM

Binary Alignment/Map format Is the binary form of the SAM format, so reduces storage Contains exact the same information as the SAM format 0-based system (includes BAM, BED)

Demux Fastq

PopGen

Count

i:49 nM:i:0 >gene1:14-64

i:49 nM:i:0 >gene1:17-67

i:48 nM:i:0 >gene1:19-69

i:49 nM:i:0 >gene1:19-69

i:47 nM:i:1 >gene1:26-76

i:49 nM:i:0

>gene1:26-76

>gene1:28-78

i:49 nM:i:0 >gene1:33-83

i:49 nM:i:0 >gene1:33-83

i:49 nM:i:0 >gene1:39-89

i:47 nM:i:1 >gene1:45-95

i:49 nM:i:0

i:49 nM:i:0

i:49 nM:i:0

i:49 nM:i:0 >gene1:66-116

i:49 nM:i:0 >gene1:67-117

i:49 nM:i:0 >gene1:67-117

i:47 nM:i:0 >gene1:68-118

i:47 nM:i:1

>gene1:70-120 i:48 nM:i:0

>gene1:45-95

>gene1:57-107

>gene1:60-110

i:49 nM:i:0

chr0

33

37

38

38

45

45

47

52

52

58

64

76

79

85

86

86

87

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

50M

48M2S

1549M

0

0

0

0

0

0

0

0

0

0

GTATTTTTCTACAGTCGGGTAGCAAAGTATAACTGGATTTAATTTAGAAA

ATTTTCTACAGTCGGGTAGCAAAGTATAACTGGATTTAATTTAGAAAAAA

TTTCTACAGTCGGGTAGCAAAGTATAACTGGATTTAATTTAGAAAAAATA

TTTCTACAGTCGGATAGCAAAGTATAACTGGATTTAATTTAGAAAAAATA

AGTCGGGTAGCAAAGTATAACTGGATTTAATTTAGAAAAAAATACAGGTGT

AGTCGGGTAGCAAAGTATAACTGGATTTAATTTAGAAAAAATACAGGTGT

TCGGGTAGCAAAGTATAACTGGATTTAATTTAGAAAAAATACAGGTGTTG

TAGCAAAGTATAACTGGATTTAATTTAGAAAAAATACAGGTGTTGGTTTC

TAGCAAAGTATAACTGGATTTAATTTAGAAAAAATACAGGTGTTGGTTTC

AGTATAACTGGATTTAATTTAGAAAAAATACAGGTGTTGATTTCTAATTA

ACTGGATTTAATTTAGAAAAAATACAGGTGTTGGTTTCTAATTAGTCGGC

ACTGGATTTAATTTAGAAAAAATACAGGTGTTGGTTTCTAATTAGTCGGC

TTAGAAAAATACAGGTGTTGGTTTCTAATTAGTCGGCGTACGGCCGTTA

GAAAAAATACAGGTGTTGGTTTCTAATTAGTCGGCGTACGGCCGTTACAT

ATACAGGTGTTGGTTTCTAATTAGTCGGCGTACGCCGTTACATTATTCG

TACAGGTGTTGGTTTCTAATTAGTCGGCGTACGGCCGTTACATTATTCGT

TACAGGTGTTGGTTTCTAATTAGTCGGCGTACGGCCGTTACATTATTCAT

ACAGGTGTAGGTTTCTAATTAGTCGGCGTACGGCCGTTACATTATTCGTG

AGGTGTTGGTTTCTAATTAGTCGGCGTACGGCCGTTACATTATTCGTGTA

Sea

8AA@AAAFFFFFFFFF:FFF7FFFF5F<FFF<@FFFFF

BioC

HI:i:1 AS

HI:i:1 AS:

HI:i:1 AS:

HI:i:1 AS:

HI:i:1 AS:

HI:i:1 AS:

HI:i:1 AS:

HI: 131 AS:

NH:i:1 HI:i:1 AS:

Mapping: Output format: SAM format

TTTGTTCATGCGTATTTTTCTACAGTCGGGTAGCAAAGTATAACTGGATT >gene1:3-53 NH:i:1 HI:i:1 AS:i:49 nM:i:0

Sea Demux Fastq

Map

32

Name of the sequence

>gene1:3-53

The flag (containing information about mapped/unmapped, forward/reverse, paired, info of the paired read)

The chromosome chr0

Start position

22

255

50M

TTTGTTCA....

AAAAAA5A....

Mapping quality (phred based, 0 always unmapped, below 10 multi mapping. Old scheme: 255: uniquely mapped)

CIGAR string (info about the alignment) Chromosome of the paired read (no pair here)

Start position of the paired read

Sequence

Quality

Template length or insert size (calculated from the start from the first read, to the end of the second read)

Bam file information

Visible in IGV

http://software.broadinstitute.
org/software/igv/

Seq

Demux

Fastq

Мар

Downstream analysis

Outline

Downstream analysis

Variant Analysis

Based on the alignment of the read

- Variant Calling
 - SNPs, Small Indels, Small polymorphisms
- Structural Variants
 - CNVs, Large Indels

Counting methods

Based on the position of the read

- Differential expression
- Structural Variants
- 16S community analysis

	union	intersection _strict	intersection _nonempty
read gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	gene_A	gene_A
gene_A gene_B	ambiguous	gene_A	gene_A
gene_A	ambiguous	ambiguous	ambiguous

Outline

Counting Methods: Where to start?

Needed information:

- 1. The mapped dataset in bam format
- 2. The definitions of your locations of interest on the reference
 - a. must be the same reference as used for the mapping
 - b. usually in gff or bed format
 - i. gff is used for annotation (location of the genes, exons, ...)
 - ii. bed format is used for locations, often more "self" defined

Outline

Variant Calling: Where to start?

Needed information:

- 1. The mapped dataset in bam format
- 2. The reference
 - a. Must be the same as used for the mapping

Detecting variation at 1 position:

- Depth
- Frequency
- Genotype Quality

Detecting variation on 1 position:

- Depth
 - Cow depth:
 - impossible to distinguish between:
 - error and true variant
 - homozygous or heterozygous

AGC<mark>T</mark>GAG AGC**G**GAG AGCTGAG

Depth: 3 Frequency: ⅓ error, variant? AGOTGAG AGOTGAG AGOTGAG AGOTGAG AGOGGAG

Depth: 5

Frequency: 2/5

=> variant

- Frequency
- Genotype Quality

Seq

Demux

Fastq

Map

DESea

PopGen

Count

BioC

Detecting variation on 1 position:

- Depth
- Frequency
 - Within sample:
 - low or high frequency (<5 or >95%) can be an error or mosaik
 - heterozygous genotypes (A/T) are never distributed 50-50!!!!
 - Within and between population:
 - very low frequency can be a sequencing/PCR error in a single sample
 - very high frequency of alternative allele can be an error in the reference
- Genotype Quality

Detecting variation on 1 position:

- Depth
- Frequency
- Genotype Quality
 - o per sample:
 - combined metric of depth, frequency, base and mapping quality
 - usually preferred over depth filter
 - o multiple sample:
 - combination of GQ per sample, and frequency between samples
 - some bad samples can have a big influence

Format: vcf (variant calling file)


```
##fileformat=VCFv4.0
                                                                               Mandatory header lines
     ##fileDate=20100707
     ##source=VCFtools
                                                                                          Optional header lines (meta-data
     ##reference=NCBI36
                                                                                          about the annotations in the VCF body)
     ##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Alle
VCF header
     ##INFO=<ID=H2.Number=0.Type=Flag.Description="HapMap2 members ip">
     ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype"
     ##FORMAT=<ID=GO.Number=1.Type=Integer.Description="Genotype Quality (phred score)">
     ##FORMAT=<ID=GL, Number=3, Type=Float, Description="Likelimoods for RR, RA, AA genotypes (R=ref, A=alt)">
     ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Redd Depth">
     ##ALT=<ID=DEL, Description="Deletion">
     ##INFO=<ID=SVTYPE, Number=1, Type=String, Description="Type of structural variant">
     ##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant">
                                                                                                         Reference alleles (GT=0)
     #CHROM POS ID
                        REF ALT
                                     OUAL FILTER INFO
                                                                                              SAMPLE
                                                                         FORMAT
                                                                                     SAMPLE1
                        ACG_A,AT
                                          PASS
                                                                         GT:DP
                                                                                     1/2:13
                                                                                              0/0:29
Body
                  rs1
                                          PASS
                                                   H2:AA=T
                                                                         GT:G0
                                                                                     0 | 1:100
                                                                                              2/2:70
                                          PASS
                                                                         GT:GQ
                                                                                     1.0:77
            100
                              <DEL>
                                                   SVTYPE=DEL; END=300
                                                                         GT:GO:DP
                                                                                     1/1:12:3 0/0:20
                                                                                                        Alternate alleles (GT>0 is
                                                                                                        an index to the ALT column)
                                                  Other event
    Deletion
                                                                           Phased data (G and C above
                  SNP
                                        Insertion
                                                                           are on the same chromosome)
                            Large SV
```


Outline

Introduction to NGS Bioinformatics

Are you a biologist, a medical doctor or perhaps a bio-engineer interested on learning the basic bioinformatics skills and techniques that will open the door for analyzing your own NGS data?

The Genomics Core Leuven organizes its first workshop of the year on **March 31**, **2017** on the topic of NGS bioinformatics. NGS data formats, reads mapping and variant calling will be among the covered topics.

Interested on joining the NGS informatics revolution?

More information and **registration as from March 5, 2017** in: <u>www.genomicscore.be</u>

File formats and Tool Overview

File Formats, a small overview

quantseq

DESeq2

	File Format	PipeLine	Tools	Previous step	Interesting for	
Fastq	Fastq	All (Fastq)	bcl2fastq (demultiplexing)	SEQUENCING	raw data	Eabel Separative @FOR 31:00 PASS AND STATE THE CONTROL OF THE CON
Mapped Data DNA	BAM	exome, target, amplicon	BWA Bowtie2	Fastq	mapped vs reference genome	December 2012 - 10 and 3 1000129 for 1000120 for 10001
Mapped Data RNAseq	BAM	rnaseq, mirnaseq, quantseq	STAR (split read) Bowtie2 (short read)	Fastq	mapped vs reference genome	
Genotyping	VCF Excel	exome, target, amplicon	GATK	Mapped Data (DNA or RNA)	SNP and variants	### Interface Control of the Control
Differential Expression	csv Excel	rnaseq, mirnaseq,	htseq-count, EdgeR,	Mapped Data RNAseq	Different expression of genes, compared	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

between 2 conditions

Tools: fastq manipulation

- Quality Control
 - fastqc
- Inline barcode demultiplexing
 - o GBSX
- Adaptor and quality trimming
 - trimmomatic
 - bbduk
 - o ea-utils
 - fastx-toolkit
- Contamination check
 - fastq-screen

Tools: Mapping

- Some reads (like 20)
 - BLAST
 - o BLAT
- Illumina DNA
 - o BWA-mem
 - o Bowtie2
 - bbmap
- Illumina RNA (split read mapping)
 - STAR
 - o HiSat2
- PacBio
 - BLASR
 - o BWA-mem
 - BWA-sw

Tools: Mapping manipulations

- BAM/SAM manipulations (sorting, duplicate marking)
 - elPrep
 - SAMtools
 - BAMtools
 - Picard
 - CRAMtools
- Quality control
 - Picard
 - BAMtools
 - QualiMap
- Visualisation
 - IGV

Tools: Counting methods

- RNAseq
 - htseq-count
 - bbcount
- CNV
 - seqCBS

Tools: Variant Calling

- Variant calling:
 - GATK haplotype caller
 - FreeBayes
 - SAMtools
 - Varscan
- Haplotyping
 - FreeBayes
- Filtering and manipulations:
 - vcflib
 - vcftools

