

Cancer progression

Niko Beerenwinkel

Car breakdown

Breakdown of complex systems

Electrical circuit

Biological signaling pathway

Cancer incidence data

Multistage theory

- $u_i = u \text{ small } \Rightarrow \text{ Prob(one step by time t)} = 1 e^{-ut} \approx ut.$
- Then the incidence is $I_k(t) = (ut)^{k-1}u = u^kt^{k-1}$ and

$$\log I_k = k \log u + (k-1) \log t$$

Outline

- Colon cancer
- Multistage theory, Waiting times
- The Wright-Fisher process
- The speed of adaptation

Polyp formation in a colonic crypt

Tumor progression

10 to 30 years

Genetic progression of colon cancer

The mutational landscape of colon cancer: few mountains, many hills

- In each patient, 15 to 20 mutated genes seem to drive progression.
- This set of genes differs considerably among patients.

Genetic progression of cancer

Multistage theory

- Tumorigenesis is assumed to be a linear, multi-step process.
- Transitions from state j 1 to state j are rare, i.e., u_i is small.
- The waiting time for each step is exponential, Exp(u_j)
- Let τ_k be the waiting time until stage k is reached. Then

$$\tau_k \sim \mathsf{Exp}(u_1) + \cdots + \mathsf{Exp}(u_k)$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The expected waiting time

$$E[\tau_k] = E\left[\sum_{j=1}^k \mathsf{Exp}(u_j)\right]$$

$$= \sum_{j=1}^k E[\mathsf{Exp}(u_j)]$$

$$= \sum_{j=1}^k \frac{1}{u_j}$$

Independent mutations

Each mutation occurs independently at time

$$T_j \sim \mathsf{Exp}(\lambda_j)$$

Waiting time to any k independent mutations

• Let τ_k be the waiting time until any k out of d mutations have occurred,

$$\tau_k = \min_{\{j_1, \dots, j_k\} \subset \{1, \dots, d\}} \max \{T_{j_1}, \dots, T_{j_k}\}$$

• For k = 1, we have

$$\tau_1 = \min\{T_1, \dots, T_d\} \sim \operatorname{Exp}(\lambda_1 + \dots + \lambda_d)$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Independent mutations, identical rates

Hence,

$$E[\tau_k] = \frac{1}{\lambda} \sum_{j=1}^{k} \frac{1}{d-j+1}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mutational pathways

Each total order of mutations

$$j_1 < ... < j_k$$
 defines a mutational pathway in the genotype lattice.

- For a fixed path, let Exit_i denote the set of all possible mutations in step i.
- For example,

•
$$Exit_1 = \{1, 2, 3\}$$

- $Exit_2 = \{1, 3\}$
- $Exit_3 = \{1\}$

Swiss Federal Institute of Technology Zurich

Probability and waiting time of pathways

The probability of a pathway

$$P = j_1 \rightarrow ... \rightarrow j_k$$
 is

$$\operatorname{Prob}(P) = \prod_{i=1}^{k} \frac{\lambda_{j_i}}{\sum_{j \in \operatorname{Exit}_i} \lambda_j}$$

(competing exponentials)

The expected waiting time of P is

$$E(au_P) = \sum_{i=1}^k rac{1}{\sum_{j \in \mathsf{Exit}_i} \lambda_j}$$

Independent mutations, arbitrary rates

 The expected waiting time of k out of d independent mutations is

$$E(\tau_k) = \sum_{P = j_1 \to \dots \to j_k} \operatorname{Prob}(P) E(\tau_P)$$

where P runs over all pathways of length k starting from the wild type.

Posets define the geometry of genotype space

Linear order (multistage theory)

Partial order

Independence

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Wright-Fisher process

generation 1

generation 2

generation 3

generation 4

Wright-Fisher model

Sewall Wright (1889-1988)

Ronald A. Fisher (1890-1962)

The Wright-Fisher process defines a Markov chain

- Consider a haploid population of constant size N.
- There are two different types, A and B.
- Reproduction occurs in discrete, non-overlapping generations, i.e., individuals are synchronized.
- Let X(t) be the number of type A individuals in generation t = 0, 1, 2, 3, ...
- X(t) has state space {0, 1, ..., N}.

Binomial sampling

 Each generation is sampled from the previous generation according to the binomial distribution,

$$(X(t+1) | X(t) = i) \sim Binom(N, i/N)$$

The transition probabilities are given by

$$P_{ij} = P(X(t+1) = j \mid X(t) = i)$$

$$= {N \choose j} \left(\frac{i}{N}\right)^j \left(\frac{N-i}{N}\right)^{N-j}$$

Dynamics

Properties of the Wright-Fisher process

- Expectation: E[X(0)] = X(0) = i
- X(1) ~ Binom(N, p=i/N), hence E[X(1)] = Np = i.
- The Wright-Fisher process is unbiased: the average frequency of type A individuals does not change over time, E[X(t)] = i for all t = 0, 1, 2, ...
- The variance of X(t) is $Ni(1-p)[1-(1-p)^t]$.
- The frequency of type A individuals is subject to random fluctuations.
- The Wright-Fisher process models random genetic drift.

Fixation probabilities

- The Wright-Fisher process has the two absorbing states, X(t) = 0 and X(t) = N.
- Let x_i = lim_{t→∞} P[X(t) = N | X(0) = i] be the probability of fixing type A when starting with i copies of it.
- We have

$$i = \lim_{t \to \infty} E[X(t)] = 0 \cdot (1 - x_i) + N \cdot x_i$$

and therefore $x_i = i/N$.

Mean fixation times

- Let k_i be the mean number of generations before either absorbing state is reached when starting in state i.
- No simple way of calculating k_i, even approximately, is known. We will later use diffusion theory to show that

$$k_1 \approx 2 \lceil \log(N-1) + \gamma \rceil$$

where $\gamma = 0.5772...$ is Euler's constant.

Extensions of the Wright-Fisher process

- Multiple types
- Mutation
- Selection

Wright-Fisher process for accumulating mutations

We consider a binary genome of length d.

- Each locus (independently) undergoes mutation from 0 to 1 at rate u. We ignore back mutations from 1 to 0.
- Let X_j(t) be the number of cells with j mutations (called j-cells) in generation t. Set x_j(t) = X_j(t) / N.
- Initially, the population is homogeneously wild type (0-cells), i.e., X₀(0) = N, and X₁(0) = ... = X_d(0) = 0.
- We assume a constant fitness advantage, s, per mutation.
 Thus, the fitness of a j-cell is proportional to (1 + s)^j.

Swiss Federal Institute of Technology Zurich

What is the probability of sampling a j-cell?

$$\begin{array}{ll} \theta_j(t) &=& \displaystyle\sum_{i=0}^{j} P(\text{i-cell} \rightarrow \text{j-cell}) \\ &=& \displaystyle\sum_{i=0}^{j} P(\text{i-to-j mutation}) P(\text{i-cell parent}) \\ &=& \displaystyle\sum_{i=0}^{j} {d-i \choose j-i} u^{j-i} (1-u)^{d-j} \frac{(1+s)^i x_i(t)}{\sum_{\ell} (1+s)^\ell x_\ell(t)} \end{array}$$

Multinomial sampling

The transition probabilities

$$P_{m,n} = P[X(t+1) = n \mid X(t) = m]$$

of the Markov chain $X(t) = (X_0(t), ..., X_d(t))$ are given by the multinomial distribution,

$$\frac{(n_0 + \dots + n_d)!}{n_0! \dots n_d!} \prod_{j=1}^d \theta_j(t)^{n_j}$$

where $n = (n_0, ..., n_d)$ and $n_0 + ... + n_d = N$.

Dynamics

 The dynamic behavior is complex, but shows some regularity: mutant waves travel at constant speed.

The waiting time to cancer

How long does it take until the first cell with any 20 out of 100 mutations occurs?

Approximating the average waiting time

- We assume:
 - each mutant wave has a Gaussian shape
 - waves travel at constant speed
 - $s \ll 1$, so $(1 + s)^{j} \approx 1 + sj$
- Ansatz:

$$x_j(t) = Ae^{-\frac{(j-vt)^2}{2\sigma^2}}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Determining
$$x_j(t) = Ae^{-\frac{(j-vt)^2}{2\sigma^2}}$$

- $A \approx 1/\sqrt{2\pi}\sigma$ by the case of continuous j.
- The two unknowns, v and σ , are determined by decoupling clonal expansion (driven by selection) and generation of new types (by mutation).
- Clonal expansion is governed by the replicator equation

$$\dot{x}_j = sx_j \left[j - \sum_{i=0}^d i \, x_i(t) \right]$$

Substituting the expression for x_i(t) yields the relation

$$v = s\sigma^2$$

Generating a new mutant

- Let τ be the average time it takes to produce a new mutant.
- The velocity $v = 1/\tau$ is found by solving

$$\frac{1}{N} = x_{j+1}(\tau) = ud \int_0^{\tau} x_j(t) dt$$

where we use the fact that initially x_i grows exponentially.

The speed of adaptation

For the velocity, v, we eventually find

$$v \approx \frac{2s \log N}{\log [s/(ud)]^2}$$

- This is (an approximation of) the speed of adaptation in an asexual population evolving according to the Wright-Fisher process.
- The Moran process leads to very similar approximations.
- Essentially, $v \propto s$.

The waiting time to cancer

 The average time it takes until the first cell with k mutations appears is approximately

$$\tau_k \approx \frac{k \log \left[s/(ud)\right]^2}{2s \log N}$$

- Thus, $\tau_k \propto k/s$. The waiting time is linear in k.
- The selective advantage, s, has a much larger impact on the waiting time than the mutation rate, u, or the population size, N.

Approximation versus simulation

FIG. 2: Expected waiting time for a cell with 20 mutantions, t_{20} , as a function of (a) the population size N, (b) the selective advantage s per mutation, and (c) the per-locus mutation rate u. The circles are the results of 100 independent simulations at each parameter set. We always assumed d = 100 sensitive loci, and set $N = 10^9$ in (b) and (c), s = 0.01 in (a) and (c), and $u = 10^{-7}$ in (a) and (b). The solid curves correspond to the analytic approximation (17).

Summary

- Cancer progression is driven by the accumulation of many mutations in the genome.
- The waiting time to cancer depends on the mutation rate and the fixation rate (i.e., the rate of evolution), and on the number of available mutational pathways.
- The Wright-Fisher process is a stochastic process that describes the evolution of an asexual population and, in particular, the (neutral) allele sampling variance.
- The waiting time to cancer is dominated by the selective advantage per mutation.
- Exercises: #13, #14, #15, #17

References

 Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer Evolution: Mathematical Models and Computational Inference. Systematic Biology 64(1):e1– e25, 2015.