IMO 2008 Problem 1

Ibrahim Karimli January 18, 2024

Sual:

H itibucaqlı ABC üçbucağının hündürlüklərinin kəsişmə nöqtəsi olsun. Mərkəzi BC düz xəttinin orta nöqtəsi olan və H nöqtəsindən keçən Γ_A çevrəsi BC düz xəttini A_1 və A_2 nöqtələrində kəsir. Oxşar şəkildə B_1 , B_2 , C_1 və C_2 nöqtələridə təyin edilmişdir.

İsbat edinki $A_1,\,A_2,\,B_1,\,B_2,\,C_1$ və C_2 nöqtələri eyni çevrə üzərində yerləşir.

Həll:

O ABC üçbucağının xaricinə çəkilmiş çevrənin mərkəzi olsun. A_0 , B_0 və C_0 uyğun olaraq BC, AB və CA parçalarının orta nöqtələri olsun. İlk öncə O nöqtəsindən 6 nöqtəyə qədər olan məsafələrin bərabər olduğunu göstərəciyik.

A' nöqtəsi Γ_B və Γ_C çevrələrinin ikinci kəsişmə nöqtəsidir.

 B_0C_0 düz xətti ABC üçbucağının orta xətti olduğuna görə $BC||B_0C_0$. Deməli $B_0C_0 \perp AH$. Digər tərəfdən B_0C_0 Γ_B və Γ_C çevrələrinin mərkəzlərini birləşdirən düz xətt olduğundan A' və H nöqtələridə B_0C_0 düz xəttinə nəzərən simmetrikdir yəniki $B_0C_0 \perp A'H$. Nəticədə əldə edirik ki A' nöqtəsi AH üzərində yerləşir.

 Γ_B və Γ_C çevrələrinə nəzər yetirdikdə əldə edirik ki: $AC_1*AC_2=AA*AH=AB_1*AB_2$. Deməli B_1,B_2,C_1,C_2 nöqtələri bir çevrə üzərində yerləşir. B_1B_2 və C_1C_2 parçalarının hər ikisinin orta perpendikulyarları O nöqtəsindən keçdiyinə görə, O ($B_1B_2C_1C_2$) çevrəsinin mərkəzidir yəni $OB_1=OB_2=OC_1=OC_2$

Anoloji olaraq $OA_1 = OA_2 = OB_1 = OB_2$ və $OA_1 = OA_2 = OC_1 = OC_2$ bərabərliklərini əldə edirik. Deməli $A_1, A_2, B_1, B_2, C_1, C_2$ nöqtələri mərkəzi O olan çevrə üzərində yerləşir.