BLG456E Robotics Intro to Localisation (Without Probability)

Lecture Contents:

- Intro to perceptual reconstruction.
- Localisation problem & sub-problems.
- Representations.
- Localisation from features.
- Triangulation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Towards cognitive robotics

Reactive robots have huge potential:

- Learning.
- Evolving.

• ...

Cognitive robotics is a good engineering shortcut.

- Representing world information and computing on it → engineering solution.
- BUT:
 - Be careful about *reification*.
 - The world is still out there.
 - Don't be fooled by false introspection.

Reconstruction from sense data

"What must the world be like to get these readings?"

Sensor fusion

• Combine multiple sources of (sense) information.

Discriminative vs. generative models

- Reconstruction usually uses observation model.
- **Discriminative model**: How to reconstruct state from sense data.
- Generative model: How sense data generated.
 - Extra step to get discriminative model.
 - Easier to understand (e.g. causal models, optic models).

BLG456E Robotics Intro to Localisation (Without Probability)

Lecture Contents:

- Intro to perceptual reconstruction.
- Localisation problem & sub-problems.
- Representations.
- Localisation from features.
- Triangulation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Localisation Problem

- Determine robot pose.
- With respect to environment representation (s).
 - e.g. 2D v. 3D.
 - e.g. Coordinates v. grid entry v. location label.
 - e.g. Workspace coordinates v. configuration.
- Use sensors + prediction.

Open loop localisation

- 1. Send motor command.
- 2. Guess new position.

- Simplest approach.
- No sensing!

Dead reckoning

- Only standard odometry (proprioceptive).
- Can estimate change in location.
- Many error sources:
 - Slip, inaccuracy, noise, quantisation errors, kidnapping, etc.
- Error accumulates:
 - Range error.
 - Turn error.

Dead reckoning

Localisation sub-problems

Position tracking:

- Pose wrt last known point.
- Also "odometry" (e.g. visual odometry).

- Pose wrt known locations.
- (see "robot kidnapping problem")

Loop closing:

- Fixing position track when re-reaching known location.
- Solve "drift".

Position

Localisation sensors: examples

- Vision.
- Sonar distance.
- Laser distance scans.
- GPS.
- Compass.
- WLAN signal strength.
- Depth and RGBD cameras.

Active v. Passive Localisation

Passive:

In parallel:

- Complete task.
- Localise from sensors.

Active:

Simultaneously:

- Complete task.
- Localise from sensors.

Acting must satisfy both immediate task and perceptual needs

Considerations

- Map representation?
 - E.g. occupancy grid, polygonal, landmark-based.
- Data used.
 - E.g. optical flow, wi-fi signal, odometry.
- Map-data mapping.
 - E.g. Prediction/likelihood, RANSAC.
- Position prediction.
 - E.g. velocity based.
- Data expectations.
 - E.g. predicted feature locations.

BLG456E Robotics Intro to Localisation (Without Probability)

Lecture Contents:

- Intro to perceptual reconstruction.
- Localisation problem & sub-problems.
- Representations.
- Localisation from features.
- Triangulation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Map representation

Continuous metric.

- Parametric curves/lines/surfaces.
- O(primitives)

Discrete metric.

- Grids/adaptive occupancy grids.
- O(size²)

Topological.

- Waypoints and edges.
- O(places+ways)

Map representation

Landmarks/feature maps.

- Known locations/visual elements.
- O(features)

Mixed maps.

- Topology + metric + etc.
- More tractable, more complicated.

BLG456E Robotics Intro to Localisation (Without Probability)

Lecture Contents:

- Intro to perceptual reconstruction.
- Localisation problem & sub-problems.
- Representations.
- Localisation from features.
- Triangulation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Features: image features

"Monoslam"

Qualities of good features

- Detectable.
 - Looks different from background.
 - E.g. `corner detection`.
- Repeatably detectable.
 - Same features detected reliably.
 - E.g. the same points tend to be detected as corners.

Qualities of good features

- Identifiable.
 - Can recognize it again.
 - E.g. Invariant to angle.
 - E.g. A human face, specific pattern of grays.
- Fusable.
 - Suitable for combining.
 - E.g. Audio source + visual have direction in common?

Raw data / templates.

Low level features.

High level features.

Raw data / templates.

- e.g. laser data, image pixel regions.
- Makes use of all info.
- Lots of extra info \rightarrow low distinctiveness.
- Usually not invariant (to e.g. angle).

Low level features.

- e.g. lines, edges, corners, NARF, SIFT, FPH.
- Aim is discriminability, tractable ambiguity.

High level features.

- e.g. faces, objects.
- Semantic level or full object surfaces.
- Much information removed.
- Discriminability is low.

A landmark-based localisation framework

BLG456E Robotics Intro to Localisation (Without Probability)

Lecture Contents:

- Intro to perceptual reconstruction.
- Localisation problem & sub-problems.
- Representations.
- Localisation from features.
- Triangulation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Triangulation from landmarks/features

- From multiple features:
 - Range → location.

500m

• Bearing \rightarrow location.

45 degrees (North by North East)

• Range + bearing → location.

Note on partial observability

- World is partially observable.
- Features are partially observable:
 - Range.
 - Bearing.
 - Semantics.

•

Triangulation from ranges

Robot at P.

Measures distances d_1 and d_2 to L_1 and L_2 .

Triangulation from ranges

Robot must be on circles from L_1 , L_2 , radii d_1 and d_2 .

Triangulation from ranges

Make a coordinate frame from landmarks.

 L_1 at origin.

 L_2 at (a,0) (a is L_1 - L_2 distance).

$$x = (a^{2} + d_{1}^{2} - d_{2}^{2})/2a$$
$$y = \pm \sqrt{(d_{1}^{2} - x^{2})}$$

(Try e.g. setting $d_1 = a$, $d_2 = 0$)

Two possible solutions.

A priori/known information.

Continuity (spatio-temporal info).

Additional landmarks.

Can you think of any other information that might disambiguate P from P'?

Triangulation from bearings

2 bearings: restrict pose to an arc.

3 bearings: restrict pose to a point.

Triangulation from bearings

2 bearings disambiguate to an arc:

Triangulation from bearings

3 bearings disambiguate to a pose:

BLG456E Robotics Intro to Localisation (Without Probability)

Lecture Contents:

- Intro to perceptual reconstruction.
- Localisation problem & sub-problems.
- Representations.
- Localisation from features.
- Triangulation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Reading

• Chapter 5. Mobile Robot Localization.