DxO Contrast

Retro-Engineering of PhotoLab 7 Contrast Settings

Adib Habbou & Steven Zheng

Original image

More contrast adds more punch to the image

Less contrast makes the image softer

Advanced contrast emphasizes certain elements within the image

What are the contrast settings?

- Contrast: The difference in brightness between the light and dark parts of an image.
- Micro Contrast: Small-scale variations in contrast, enhancing very fine details.
- Fine Contrast: Small-scale contrast variations, enhancing fine details.
- **Highlights:** The **brightest areas** where details might be overexposed.
- Midtones: Areas that lie between the highlights and the shadows (usually main subject).
- **Shadows:** The **darkest areas** where details might be obscured.

How does the contrast settings work?

- All the previous contrast setting works by applying modifications on the RGB histogram
- The algorithm first does image processing by **analyzing** the **histogram** of **RGB channels**
- Then the algorithm applies **local modifications** to the **histograms** following the settings
- Finally the algorithm applies tone mapping by **limiting extreme values** and smoothing tones

How does the contrast work?

- When you increase contrast, you expand between the brightest and darkest parts
- Which results in a wider spread of tonal values across the RGB histogram
- The brighter areas become brighter, and the darker areas become darker
- As a result, the histogram spread out more towards both extremes, with peaks forming at the edges

How does the micro and fine contrast work?

- It affects the mid-range of the histogram, emphasizing subtle differences between adjacent tones.
- Slight increase in the mid-range values, making the transitions between tones more pronounced.

How does the highlights work?

- Increasing the highlight can shift the histogram towards the right side emphasizing the peak
- It could compress the range by reducing the peak's width while intensifying the bright areas

How does the midtones work?

- Modifying midtones can slightly shift the central portion of the histogram and flatten it
- Increasing midtones might elevate the middle values by lifting the central portion of the histogram
- Enhancing the visibility and prominence of the main subject

How does the shadows work?

- Adjusting shadows can shift the histogram towards the left side, accentuating the peak
- Increasing shadow adjustments might expand this area, bringing out more details in darker parts

Block Diagram

Contrast

adjusting tone range to have a wider spread towards both extremes and peaks at edges => algorithm that works on all the range

Micro and Fine Contrast

enhance small-scale contrast by slight increase in the mid-range values of histogram => algorithm that works on small-scales

Highlights, Midtones and Shadows

modify specific tone ranges: beginning (dark region), the middle or the end (bright region) => algorithm that works on specific ranges

How did we try to implement contrast?

- We used a function that **blends two images** by adjusting their contribution
- We blend our original image with a **full black image** (zero value for each pixel)
- alpha: the contribution (i.e weight) of the original image in the contrast adjustment
- gamma: the scalar added to each pixel after contrast adjustment to control brightness
- Both are found using the following **formulas** (the numerical values are found empirically)

$$\alpha = \frac{131 \times (contrast_level + 127)}{127 \times (131 - contrast_level)} \qquad \gamma = 127 \times (1 - \alpha)$$

How did we try to implement micro-contrast?

- We used a function that **blends two images** by adjusting their contribution
- We blend our original image with a blurred version of the original image
- **alpha:** the contribution (i.e weight) of the original image in the contrast adjustment
- gamma: the scalar added to each pixel after contrast adjustment to control brightness
- Both are found using the following **formulas** (the numerical values are found **empirically**)

$$\alpha = 1 + micro_contrast_level$$
 $\gamma = -micro_contrast_level$

How did we try to implement fine-contrast?

- We first convert the image from RGB to LAB
- L: lightness encodes information about how bright or dark a color appears
- A: represents color on a green to red axis
- B: represents color on a blue to yellow axis
- Then it applies contrast to the L channel using CLAHE
- Finally we convert back the image from LAB to RGB

CLAHE = (Contrast Limited Adaptive Histogram Equalization)

How did we try to implement highlights, midtones and shadows?

- We first convert the image from RGB to HSV
- H: hue is the type of color by measuring the degree around a color wheel from 0 to 360
- S: saturation describes the amount of grey in proportion to the hue
- V: value represents the brightness of a color
- Then it applies a **curve** that modifies the **brightness values**
- By modifying the curve we can apply modification on bright or dark parts
- Finally we convert back the image from HSV to RGB

Why our implementation does not perfectly works?

- The formulas used for alpha and gamma maybe not be accurate
- We apply a global transformation to the all the pixels so we lack local adaptation
- We do not take into account the content of the image (portrait, landscape...)
- Human perception is non-linear so applying linear adjustment may not be the best idea
- Global contrast adjustments can unevenly affect individual color channels, causing color shifts
- Convert images to LAB or HSV may not lead into using some details or information

Time for the demo!