DISJOINT-SET DATA STRUCTURE: A Short Introduction

Ramoni ADEOGUN, PhD

Assistant Professor – Machine Learning and AI for Wireless Communications Department of Electronic Systems, Aalborg University, DK

Email: ra@es.aau.dk

Introduction

Consider a situation with 10 persons with specified relationships (fig)

- Query: To find whether x and y belong to same group or not, i.e., to find if x and y are direct/indirect friends.
 - O Is Jack a friend of Jin?
- Solution: Partitioning the individuals into different sets according to the groups in which they fall -> disjoint set data structure:

$$S_1 = \{Jack, Jane, Jin\}$$

 $S_2 = \{John, Juan, Jan\}$
 $S_3 = \{Jo, Jose, Jim\}$
 $S_4 = \{Jimoh\}$

A disjoint set data structure maintains a collection $S = \{S_1, S_2, ..., S_n\}$ of disjoint dynamic sets.

- Each set has a representative -> a member of the set that identifies it, e.g., member with largest index
- Each element is represented as an object
- Operations for an object Jo:
 - FIND(Jo): returns a pointer to the representative of the set having Jo
 - O **UNION(Jo,Jan):** performs the union operation between set having Jo and that with Jan as member
 - O MAKE(x): create a new set with a single member x

Is Jack a friend of Jin?

 If representatives of the sets containing Jack and Jin are same, then they are friends.

Set Operations- Union by Rank

Union by Rank

How about calling find(1) on this?

What happens when we call find(1)?

Set Operations – Union & Path Compression

Conclusion

- Disjoint set data structures are essential in several computer applications
- Disjoint sets models non-overlapping partitioning of items into groups
- Three basic operations are required for disjoint set data structures:
 - FIND -> which set does an item belong to?
 - UNION -> combine the items in two sets having specified members
 - MAKE -> Represent the sets as objects
- Efficient techniques on disjoint set data structure include:
 - Union by rank
 - Path compression