Identification of Bird Species by Image Classification

University of Canberra Pattern Recognition and Machine Learning

Presented By: Alan Gaugler – U885853

About The Author

- Alan Gaugler
- Master of Data Science at University of Canberra
- Studied Electronics Engineering at UC
- 20 + years of experience in RF Engineering

Dataset

Original Dataset: 400 Species, 62388 Images

Image Dimensions: 224 x 224 x 3 pixels

Reduced Dataset:

- 10 Species,
- 1475 Training/Test Images.
- 50 Validation Images

Incorrect species or subspecies removed.

Additional Images Added

- Cropped and Resized
- 1475 Training/Test Images.
- 50 Validation Images

Figure 1 Sample of Images in the Dataset

Methodology - Evaluation of Classifiers

Initial test run on a subset of 5 bird species.

5 Classifiers were evaluated:

- Support Vector Machine 81.2%
- Random Forest 80.2%
- Logistic Regression 77.6%
- Multilayer Perceptron Classifier 57.5%
- Decision Tree 53.8%

Convolutional Neural Network
Selected after extensive literature review

Figure 2. Model Prediction Accuracy on the Sample Dataset

Three models selected: SVM, Random Forest, CNN

Methodology - Building and Training the Models.

Random Forest and Support Vector Machine.

- Dataset imported and validated
- Data Split into training and test sets 80/20
- The default models were tested.
- Standardization was applied to the SVM model
- Hyperparameter tuning with cross-validation in a grid search
- Principal Component Analysis
- For the best model Data Split into training and test sets 70/30
- Evaluate the final model on unseen validation data

Methodology - Building and Training the Models.

Convolutional Neural Network.

A multi-layered CNN was built

Activation function of ReLU

Compiled using the Adam optimizer

Various configurations:

- Activation Function
- Optimizer
- Network Architecture

```
Model: "sequential 19"
                             Output Shape
Layer (type)
                                                        Param #
 conv2d 27 (Conv2D)
                             (None, 222, 222, 32)
                                                        896
 max_pooling2d_18 (MaxPoolin (None, 111, 111, 32)
                                                        0
 g2D)
                             (None, 109, 109, 64)
 conv2d_28 (Conv2D)
                                                        18496
 max pooling2d 19 (MaxPoolin (None, 54, 54, 64)
                                                        0
 g2D)
 conv2d 29 (Conv2D)
                             (None, 52, 52, 128)
                                                        73856
 flatten 19 (Flatten)
                             (None, 346112)
 dense 38 (Dense)
                             (None, 128)
                                                        44302464
 dense 39 (Dense)
                             (None, 10)
                                                        1290
Total params: 44,397,002
Trainable params: 44,397,002
Non-trainable params: 0
```

Figure 3 Architecture of the CNN Built for Image Classification

Results and Evaluation

Including CNN configurations, over 15 models were tested.

Model		Dataset/				
Name	Train/Test	Model	Accuracy	Precision	Recall	F1-Score
rfc_1	80/20	Regular	0.642	0.639	0.642	0.631
rfc_2	80/20	Regular, GS	0.642	0.639	0.642	0.631
rfc_3	80/20	1000 est	0.635	0.636	0.635	0.628
svc_1	80/20	Regular	0.663	0.681	0.663	0.666
svc_2	80/20	Stdn	0.670	0.685	0.670	0.671
svc_3	80/20	Stdn, PCA	0.653	0.676	0.653	0.652
svc_4	80/20	Stdn, PCA, GS	0.688	0.708	0.688	0.688
svc_5	70/30	Stdn, PCA, GS	0.682	0.694	0.682	0.683
cnn_1	80/20	Regular	0.828	0.845	0.828	0.830
cnn_2	80/20	Regular, early stopping	0.814	0.826	0.814	0.814
cnn_3	70/30	Regular	0.778	0.787	0.778	0.779

Table 1 - Summary of Accuracy Results of Evaluated Models

- Model cnn_1 is the most accurate.
- Overfitting was observed in all models

Results and Evaluation

Figure 4 - Model Accuracy and Model Loss without Early Stopping

Figure 5 - Model Accuracy and Model Loss with Early Stopping

- Model cnn_2 with early stopping was chosen.
- 80% accuracy on unseen validation images

Conclusion

- The CNN classifier is clearly the best for image detection.
- Overfitting is present despite efforts to reduce it.

Further Work

- Data Augmentation and increasing the size of the dataset
- Evaluate further reconfigurations of the CNN architecture.
- Pre-trained neural network architectures ResNet-50
- Expand the number of classifications

Thank you for your attention.

References

- Piosenka, G. (n.d.). BIRDS 400 SPECIES IMAGE CLASSIFICATION. [online] Available at: https://www.kaggle.com/datasets/gpiosenka/100-bird-species.
- P. D. Sharma, "PRML_Week12 Lecture Convolutional Neural Networks," https://researchprofiles.canberra.edu.au/en/persons/dharmendra-sharma-am-phd.
- M. Xin and Y. Wang, "Research on image classification model based on deep convolution neural network," EURASIP Journal on Image and Video Processing, vol. 2019, no. 1, Feb. 2019, doi: 10.1186/s13640-019-0417-8.
- Miao, Z., Gaynor, K.M., Wang, J. et al. Insights and approaches using deep learning to classify wildlife. Sci Rep 9, 8137 (2019). https://doi.org/10.1038/s41598-019-44565-w
- K. Sanghvi, "Image Classification Techniques," Medium, Sep. 25, 2020. https://medium.com/analytics-vidhya/image-classification-techniques-83fd87011cac