Multivariable Calculus

Andres Duarte

2018

Contents

1	Line	ear Equations in Linear Algebra	2
	1.1	Systems of Linear Equations	2
		1.1.1 Elementary Row Operations	2
		1.1.2 Questions	2
	1.2	Row Reduction and Echelon Forms	3
	1.3	Vector Equations	4
		1.3.1 Algebraic Properties of \mathbb{R}^n	4

1 Linear Equations in Linear Algebra

1.1 Systems of Linear Equations

Definition 1.1. A linear equation is an equation of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

Definition 1.2. A *linear system* is a set of linear equations involving like variables.

Definition 1.3. A *solution* to a linear system is an ordered set that makes the linear system true.

Definition 1.4. A *solution set* is the set of all possible solutions to the linear system.

Remark. Two linear systems with like solution sets are equivalent.

Remark. A linear system is *consistent* if it has at least one solution, and *inconsistent* if it has no solutions.

Definition 1.5. A *coefficient matrix* is a matrix that consists of the coefficients of the variables of a linear system.

Remark. Each column of the coefficient matrix corresponds to a variable in the linear system.

Definition 1.6. An augmented matrix consists of the coefficient matrix with an added column containing the constants of the RHS of the linear system.

Definition 1.7. An $m \times n$ matrix is a rectangular array of elements with m rows and n columns.

1.1.1 Elementary Row Operations

- add the multiple of one row to another
- switch two rows
- scale a row by a nonzero constant

Remark. Row operations are reversible.

Definition 1.8. Two matrices are *row equivalent* if a sequence of row operations can transform one into the other.

Remark. All row equivalent augmented matrices have the same solution set.

1.1.2 Questions

- does a solution to the linear system exist?
- If it does, is it unique?

1.2 Row Reduction and Echelon Forms

Definition 1.9. The *leading entry* of a row is its left-most non-zero entry.

Definition 1.10. A matrix is in *echelon form* if:

- all non-zero rows are above any all-zero rows
- the leading entry of each row is in a column to the right of the leading entry of the row above it
- all entries in a column below a leading entry are zeros

Definition 1.11. A matrix is in reduced row echelon form if:

- it's in echelon form
- all leading entries are 1
- all leading entries are the only non-zero entries in their columns

Remark. A matrix can be row equivalent with many echelon forms but only one reduced echelon form.

Definition 1.12. A pivot position corresponds to the position of one of the leading entries of the reduced echelon form of a matrix.

Definition 1.13. A column of the coefficient matrix is a *free column* if it doesn't contain a pivot position.

Definition 1.14. A column of the augmented matrix is a *pivot column* if it contains a pivot position.

Remark. Variables corresponding to free columns are *free variables*. Variables corresponding to pivot columns are *basic variables*.

Remark. The solution set of a consistent linear system has a parametric representation in which by convention free variables act as parameters. The solution set of an incosistent linear system is empty and has **no** parametric representation.

Remark. Solving a system amounts to finding a parametric representation of the solution set or determing that the solution set is empty.

Remark. A linear system is consistent iff the right-most column of the augmented matrix is **not** a pivot column.

Remark. A consistent linear system has either a unique solution, if it has no free variables, or infinitely many solutions if it has at least one free variable.

1.3 Vector Equations

$$\mathbb{R}^n := \text{ Set of ordered n-tuples } \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} \text{ where } x_1,\dots,x_n \in \mathbb{R}$$

 $\mathbb{R}^1 := \mathbb{R} = \text{Set of real numbers} = \text{Number line}$

 $\mathbb{R}^2 := \text{Plane}$

 $\mathbb{R}^3 := \text{Space}$

Definition 1.15. A *vector* in \mathbb{R}^n is an element of \mathbb{R}^n .

Remark. Two vectors are equal iff their corresponding entries are equal.

1.3.1 Algebraic Properties of \mathbb{R}^n

$$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n \text{ and } c, d \in \mathbb{R}$$
 (1)

- $\bullet \ \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\bullet (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- $\mathbf{u} + 0 = 0 + \mathbf{u} = \mathbf{u}$
- $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = 0$
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- $c(d\mathbf{u}) = (cd)\mathbf{u}$
- $1\mathbf{u} = \mathbf{u}$

Definition 1.16. Let $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$ and $c_1, \dots, c_p \in \mathbb{R}$, then

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_p$

Definition 1.17. Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$.