Hoja de Problemas 5

Problema 1. Para g continua en [a, b] y con valores en [a, b] si g(a) = a ó g(b) = b ya hemos acabado. En caso contrario g(a) > a y g(b) < b. Definimos la función h(x) = x - g(x). Se tiene que h(a) < 0 y h(b) > 0. Como h es continua en [a, b] aplicando el Teorema de Bozano existe un $c \in (a, b)$ con h(c) = 0. Ese punto c es el punto fijo de g.

Problema 2. Dado $x_1 = g(x_0)$ ($x_1 \neq x_0$ porque ningún iterante es punto fijo) puede ser:

• $x_1 > x_0$ entonces

$$x_1 = g(x_0) < g(x_1) = x_2,$$

continuando el razonamiento, $x_2 < x_3 \dots$ y la sucesión es monónota creciente.

• $x_1 < x_0$ entonces

$$x_2 = g(x_1) < g(x_0) = x_1,$$

continuando con el razonamiento, $x_3 < x_2 \dots$ y la sucesión es monótona decreciente.

Problema 3. Supongamos que $\beta \neq \alpha$ es punto fijo. Si $\beta > \alpha$ entonces $\beta = g(\beta) < g(\alpha) = \alpha$ lo cual es absurdo. Un razonamiento análogo se aplica en el caso $\beta < \alpha$ de donde se deduce que el punto fijo es único. Dado un primer iterante x_0 pueden darse dos casos:

- $x_1 > x_0$. En este caso $x_2 = g(x_1) < g(x_0) = x_1$ y los iterantes van a uno y otro lado de α sucesivamente (se puede iterar el proceso).
- $x_1 < x_0$. En este caso $x_2 = g(x_1) > g(x_0) = x_1$ y los iterantes también son alternados.

Otra forma de verlo es la siguiente:

$$x_{n+1} - \alpha = g(x_n) - g(\alpha) = g'(\xi_n)(x_n - \alpha),$$

donde ξ_n es un punto entre x_n y α . Como g es decreciente entonces $g'(\xi) < 0$ lo que implica que el signo de $x_{n+1} - \alpha$ es distinto del de $x_n - \alpha$.

Problema 4. Consideramos la función $g(x) = \sin(x)$. El 0 es punto fijo de esta función con $g'(0) = \cos(0) = 1$. Tenemos que

$$x_{n+1} - 0 = g(x_n) - 0 = g'(\xi_n)x_n = \cos(\xi_n)x_n$$

donde ξ_n es un punto entre x_n y 0. Si $x_n \in (-\pi/2, \pi/2)$ entonces $\cos(\xi_n) < 1$ lo que implica $x_{n+1} < x_n$ y la sucesión es decreciente. No obstante como

$$\frac{e_{n+1}}{e_n} \to g'(0) = 1,$$

la convergencia es muy lenta.

Para el caso de la tangente, haciendo el mismo razonamiento tenemos que

$$x_{n+1} - 0 = g(x_n) - 0 = g'(\xi_n)x_n = \frac{1}{\cos(\xi_n)^2}x_n,$$

donde ξ_n es un punto entre x_n y 0. En este caso la derivada es mayor que 1 por lo cual $x_{n+1} > x_n$ y la sucesión se aleja del punto por lo que no hay convergencia.

Problema 5. Sea $g(x) = \lambda x(1-x)$. Como la función x(1-x) tiene un máximo relativo en 1/2 donde vale 1/4 entonces $\lambda x(1-x) \le 1$ para $\lambda \le 4$ como además es positiva aplica [0, 1] en [0, 1].

Veamos cuantos puntos fijos tiene. Para ello hacemos $\lambda x(1-x)=x$ y vemos que x=0 es punto fijo. En el caso $x\neq 0$ dividimos por x para obtener $\lambda(1-x)=1$ de donde $x=1-1/\lambda$ es también punto fijo. Como estamos considerando el intervalo [0,1] tenemos que $0\leq 1-1/\lambda\leq 1$ si y solo si $\lambda\geq 1$ y $\lambda>1$ para que el punto sea distinto de 0.

Consideramos el punto fijo x=0. Como $g'(0)=\lambda$ sabemos por la teoría estudiada que si $\lambda>1$ el 0 es repulsor y si $\lambda<1$ el 0 es atractor. En el caso $\lambda=1$ la función es g(x)=x(1-x) y su derivada en 0 es 1. Como g'(x)=1-2x entonces |g'(x)|<1 para $x\in(0,1)$ por lo que aplicando el mismo razonamiento que a la función $g(x)=\sin(x)$ en el Problema 4 se prueba la convergencia junto con la propiedad $e_{n+1}/e_n\to 1$.

Vamos a estudiar ahora el punto fijo $x=1-1/\lambda$ en el caso $\lambda>1$. Tenemos que $g'(x)=\lambda-2\lambda x$. Al evaluar en $1-1/\lambda$ obtenemos $(1-1/\lambda)=-\lambda+2$, Por tanto $|g'(1-1/\lambda)|=2-\lambda$ si $1<\lambda\leq 2$ y $|g'(1-1/\lambda)|=-2+\lambda$ si $2\leq \lambda\leq 4$. Es muy fácil comprobar que para $|g'(1-1/\lambda)|<1$ necesitamos $1<\lambda<3$.

1

Problema 6. Si existen $g'(\alpha)$, $g''(\alpha)$ y $g'''(\alpha)$ se tiene que

$$e_{n+1} = x_{n+1} - \alpha = g(x_n) - g(\alpha) = g'(\alpha)(x_n - \alpha) + \frac{1}{2}g''(\alpha)(x_n - \alpha)^2 + \frac{1}{6}g'''(\alpha)(x_n - \alpha)^3 + o((x_n - \alpha)^3)$$
$$= \frac{1}{6}e_n^3 + o(e_n^3).$$

Por tanto

$$\lim_{n\to\infty} \frac{e_{n+1}}{e_n^3} = \frac{1}{6}g'''(\alpha).$$

Problema 7. Consideramos la función $g(x) = x/2 - x^3$. Para buscar los puntos fijos hacemos $x/2 - x^3 = x$. De aquí deducimos que x = 0 es un punto fijo y es el único. Ahora buscamos β con $g(\beta) = -\beta$, es decir, $\beta/2 - \beta^3 = -\beta$. Obtenemos $\beta = 0$ y $\beta = \pm \sqrt{3/2}$. Observemos además que g(x) = 0 para $x = \pm 1/\sqrt{2}$. Es recomendable hacer un dibujo de la función (por ejemplo en Matlab) para hacer un dibujo de cómo son los iterantes. En el intervalo $(0, 1/\sqrt{2})$ la sucesión converge al punto fijo 0. Ahora vamos a considerar las siguientes sucesiones:

$$\dots \alpha_2 \to -\alpha_1 \to \alpha \to -1/\sqrt{2} \to 0$$

$$\dots -\alpha_2 \to \alpha_1 \to -\alpha \to 1/\sqrt{2} \to 0.$$

La flecha indica el orden en los iterantes. Es decir, $g(\alpha_2) = -\alpha_1$, $g(-\alpha_1) = \alpha$, $g(\alpha) = -1/\sqrt{2}$, $g(-1/\sqrt{2}) = 0$, etc. Observamos que α , α_i son todos positivos. La sucesión positiva definida como:

$$x_0 = 1/\sqrt{2}, \ x_1 = \alpha, \ x_2 = \alpha_1, \ x_3 = \alpha_2, \dots,$$

verifica que

$$g(x_{n+1}) = -x_n.$$

Esta sucesión converge a β que cumple $g(\beta) = -\beta$. Descomponemos el intervalo $(0,\beta)$ de la siguiente forma

$$(0,\beta) = (0,1/\sqrt{2}) \cup [1/\sqrt{2},\alpha) \cup [\alpha,\alpha_1) \cup [\alpha_1,\alpha_2) \dots$$

Si en la iteración de punto fijo comenzamos en alguno de los puntos de los extremos de los intervalos: $0, 1/\sqrt{2}, \alpha, \alpha_1, \alpha_2, \ldots$ tras un número finito de pasos llegamos al punto fijo. Para el primer intervalo $(0, 1/\sqrt{2})$ vamos a cero. Para el segundo $(1/\sqrt{2}, \alpha)$ vamos al intervalo $(-1/\sqrt{2}, 0)$ y de ahí a 0. Para el tercero (α, α_1) vamos a $(-\alpha, -1/\sqrt{2})$, de este intervalo vamos a $(0, 1/\sqrt{2})$ y de ahí la sucesión converge a 0. El razonamiento es similar para el resto de intervalos. Tras un número finito de pasos acabamos en los intervalos $(-1/\sqrt{2}, 0)$ ó $(0, 1/\sqrt{2})$ y desde ahí la sucesión converge a 0 sin cambiarse ya de intervalo.

Por último, la iteración de punto fijo que comienza en β ó $-\beta$ nos da los valores $-\beta$ y β alternados y si partimos de x_0 con $|x_0| > \beta$ la sucesión no converge al punto fijo.

Problema 8. Es muy fácil comprobar que los puntos fijos de $g(x) = \pi \sin(x)/2$ son 0, $\pi/2$ y $-\pi/2$. En la Figura 1 se puede ver la gráfica de la función $g(x) = \pi \sin(x)/2$ y de la recta y = x. Partiendo de un iterante inicial x_0 , se localiza el valor de la función $g(x_0)$ y se traza una recta horizontal para llegar a la recta y = x, seguidamente se calcula el valor de $x_2 = g(x_1)$ en ese punto. Continuando con el procedimiento se obtienen esa especie de escaleras dibujadas en la gráfica que representan los iterantes y se observa cómo convergen al punto fijo $(\pi/2, \pi/2)$.

Es fácil ver que:

- partiendo del intervalo $(0,\pi)$ los iterantes convergen a $\pi/2$
- partiendo de $(-\pi,0)$ los iterantes convergen a $-\pi/2$
- como la función es periódica partiendo de $(\pi, 2\pi)$ los iterantes convergen a $-\pi/2$ como en $(-\pi, 0)$
- como la función es periódica partiendo de $(-2\pi, -\pi)$ los iterantes convergen a $\pi/2$ como en $(0, \pi)$
- ..
- los puntos de la forma $2k\pi$, $k=0,\pm 1,\pm 2,\ldots$ convergen a 0 en un solo paso. La única forma de converger a 0 es partiendo de uno de estos puntos.

FIGURE 1. Función $g(x) = \pi \sin(x)/2$ y ejemplo de iteración de punto fijo.

Problema 9. Vamos a probar en primer lugar i) implica ii). Para ello, usando el desarrollo de Taylor de f podemos escribir

$$f(x) = f(\alpha) + f'(\alpha)(x - \alpha) + \ldots + \frac{f^{(p-1)}(\alpha)}{(p-1)!}(x - \alpha)^{p-1} + \frac{f^{(p)}(\alpha)}{(p)!}(x - \alpha)^p + \frac{f^{(p+1)}(\xi)}{(p+1)!}(x - \alpha)^{p+1},$$

donde ξ es un punto entre x y α . Utilizando el apartado i) deducimos

$$f(x) = \frac{f^{(p)}(\alpha)}{(p)!}(x - \alpha)^p + \frac{f^{(p+1)}(\xi)}{(p+1)!}(x - \alpha)^{p+1} = (x - \alpha)^p \left(\frac{f^{(p)}(\alpha)}{(p)!} + \frac{f^{(p+1)}(\xi)}{(p+1)!}(x - \alpha)\right)$$

LLamando

$$F(x) = \frac{f^{(p)}(\alpha)}{(p)!} + \frac{f^{(p+1)}(\xi)}{(p+1)!}(x - \alpha)$$

tenemos probado ii) (es claro que $F(\alpha) \neq 0$) dado que $f^{(p)}(\alpha) \neq 0$.

Para probar la otra implicación partiendo de $f(x) = (x - \alpha)^p F(x)$ con $F(\alpha) \neq 0$ podemos derivar f aplicando la regla de Leibniz de modo que

$$f^{(p)}(\alpha) = \sum_{j=0}^{p} {p \choose j} [(x-\alpha)^p]^{(j)} F(x)^{(p-j)}.$$

Es fácil ver que $f(\alpha) = f'(\alpha) = \dots = f^{(p-1)}(\alpha) = 0$.

Consideramos la función de iteración del método de Newton para f con un cero de orden p en α :

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Como $f(x) = (x - \alpha)^p F(x)$ deducimos

$$g(x) = x - \frac{(x - \alpha)F(x)}{pF(x) + (x - \alpha)F'(\alpha)}.$$

Calculando $g'(\alpha)$ usando las reglas básicas de derivación obtenemos

$$g'(\alpha) = 1 - \frac{F(\alpha)pF(\alpha)}{p^2F(\alpha)^2} = 1 - \frac{1}{p}.$$

Por tanto, solo en el caso p=1, raiz simple, $g'(\alpha)=0$ y tenemos convergencia cuadrtica. Si p>1 entonces $|g'(\alpha)|<1$ y la convergencia es lineal.

Si aplicamos el método de Newton a la función $f(x) = x^2$ la función de iteración queda $g(x) = x - x^2/(2x) = x - x/2 = x/2$. La iteración es:

$$x_{n+1} = \frac{x_n}{2},$$

de donde la convergencia a 0 verifica

$$\frac{e_{n+1}}{e_n} = \frac{1}{2},$$

el error se divide a cada paso por 2.

Problema 10. Sea g la función de iteración del método de Newton:

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

En los puntos $b_1 = \sqrt{3}/3$ y $-b_1$ la función f(x) tiene un mínimo relativo y un máximo relativo respectivamente. Se puede comprobar gráficamente que en el intervalo $I_1 = (b_1, \infty)$ la iteración de Newton converge a 1 y en el intervalo $J_1 = (-\infty, -\sqrt{3}/3)$ la iteración de Newton converge a -1. Ahora dibujamos en la figura (véase la Figura 2) el punto $-b_2$ que por iteración de Newton va a parar a b_1 . Sea $I_2 = (-b_1, -b_2)$ se verifica que $g(I_2) = I_1$ y por tanto, partiendo de I_2 la iteración de Newton converge a 1. Recíprocamente, si llamamos $J_2 = (b_2, b_1)$ tenemos que $g(J_2) = J_1$ y la iteración de Newton desde J_2 converge a -1. Podemos iterar el proceso calculando ahora b_3 con $g(b_3) = -b_2$, $I_3 = (b_3, b_2)$ verifica $g(I_3) = I_2$ y la iteración converge a 1. Para $J_3 = (-b_2, -b_3)$ se tiene que $g(J_3) = J_2$ y la iteración converge a -1. Iterando el proceso se tiene que si

$$x_0 \in \bigcup_{j=1}^{\infty} I_i, \quad x_n \to 1, \quad x_0 \in \bigcup_{j=1}^{\infty} J_i, \quad x_n \to -1.$$

Si la sucesión b_n converge como $g(b_{n+1}) = -b_n$ lo hará a un punto γ que verifique $g(\gamma) = -\gamma$. Para calcular γ como $g(x) = 2x^3/(3x^2 - 1)$ haciendo g(x) = -x obtenemos $5x^3 = x$ y de ahí $5x^2 = 1$ por lo que $\gamma = 1/\sqrt{5}$. Se puede comprobar gráficamente que si

$$x_0 \in (-\gamma, \gamma)$$
 entonces $x_n \to 0$.

Problema 11. Consideramos el polinomio de Taylor de grado 2 y lo igualamos a 0.

$$p(x) = f(x_n) + f'(x_n)(x - x_1) + \frac{f''(x_n)}{2}(x - x_n)^2 = 0.$$

Llamando $y = (x - x_x)$ tenemos

$$\frac{f''(x_n)}{2}y^2 + f'(x_n)y + f(x_n) = 0.$$

Por tanto

$$y = \frac{-f'(x_n) \pm \sqrt{[f'(x_n)]^2 - 2f''(x_n)f(x_n)}}{f''(x_n)}.$$

De aquí deducimos

$$x_{n+1} = x_n + \frac{-f'(x_n) \pm \sqrt{[f'(x_n)]^2 - 2f''(x_n)f(x_n)}}{f''(x_n)}.$$

FIGURE 2. Función $x^3 - x$.

Ahora queremos tener la siguiente propiedad: si $x_n = \alpha$ hemos encontrado el punto fijo y por tanto $x_{n+1} = \alpha$. Sustituyendo x_n por α obtenemos que

$$\frac{-f'(\alpha) \pm \sqrt{[f'(\alpha)]^2}}{f''(\alpha)}$$

debe ser 0. Por tanto si $f'(\alpha) > 0$ debo escoger el signo + y si $f'(\alpha) < 0$ debo escoger el signo -. Considerando el caso $f'(\alpha) > 0$ tenemos

$$x_{n+1} = x_n + \frac{-f'(x_n) + \sqrt{[f'(x_n)]^2 - 2f''(x_n)f(x_n)}}{f''(x_n)}.$$

Multiplicando por la raiz conjugada, obtenemos

$$x_{n+1} = x_n + \frac{[f'(x_n)]^2 - [f'(x_n)]^2 + 2f(x_n)f''(x_n)}{f''(x_n)\left(-f'(x_n) - \sqrt{[f'(x_n)]^2 - 2f''(x_n)f(x_n)}\right)} = x_n - \frac{f(x_n)}{f'(x_n)} \frac{2}{1 + \sqrt{1 - \frac{2f(x_n)f''(x_n)}{[f'(x_n)]^2}}}.$$

Finalmente derivando se prueba que la función de iteración verifica $g'(\alpha) = g''(\alpha) = 0$.