SAMPLE TEST 1 GRADE 12 LS-GS MECHANICS

EXERCISE 1

CONSERVATION AND NON-CONSERVATION OF MECHANICAL ENERGY

Consider a track ABCD situated in a vertical plane and formed of three rails. AB is a circular rail of center I and radius R = 0.2m, BC is a horizontal rail and CD is a rough inclined plane making an angle $\alpha = 30^{\circ}$ with the horizontal.

Given:

- The force of friction is neglected along ABC.
- The horizontal plane passing through BC is taken as a gravitational potential energy reference.
- Take $g = 10 \text{m/s}^2$.
- CD = 20cm.

A solid (S_1), taken as a particle of mass $m_1 = 100g$, is released without initial velocity from point A. (S_1) passes by point F with a speed $V_F = 1 \text{m/s}$ where IF makes an angle θ with the vertical plane containing IB.

- **1-** Apply the principle of conservation of mechanical energy to determine:
 - **1.1-** the value of θ ,
 - **1.2-** the velocity V_1 of (S_1) as it passes by point B.
- **2-** The solid (S_1) , moving with a velocity V_1 , enters in a perfectly elastic head-on collision with a solid (S_2) , taken as a particle of mass m_2 , and rests on BC. Just after collision, the velocities acquired by (S_1) and (S_2) are V_1' and $V_2' = 2m/s$ respectively.
 - **2.1-** Show that $V_2' = \frac{2m_1V_1}{m_1 + m_2}$
 - **2.2-** Calculate m₂
- **3-** The solid (S_2) reaches point C with a velocity $V_2^{'}$ and moves along the inclined plane where its stops at point D.
 - **3.1-** Show that the solid (S_2) is subjected to a force of friction \vec{f} along CD.
 - **3.2-** Determine the magnitude f of the force of friction \vec{f} along CD.

COLLISION AND PROJECTILE

The system represented in document-1 consists of a simple pendulum (P) formed of a massless and inextensible rope of length L= 180cm that holds at one of its extremities a small sphere (S_1) of mass M=100g. The pendulum is shifted horizontally from its equilibrium position, and then released from point A without initial velocity. When (S_1) reaches its equilibrium position at point D, it enters in a perfectly elastic head-on collision with another small sphere (S_2), of mass m=200g, placed on a horizontal rough table. The sphere (S_2) continues its motion along the table. (S_2) reaches point O with a velocity $\vec{V}_0 = V_0 \vec{\iota}$ and then falls freely describing a parabolic trajectory in the space reference system ($O; \vec{\iota}; \vec{\jmath}$) before it hits the ground at point B situated at a height h=1.25m below O.

The force of friction between the table and (S_2) opposes its motion and is assumed constant of magnitude f = 0.7N. Take:

- the horizontal plane passing through DO as a gravitational potential energy reference,
- $g = 10 \text{m/s}^2$.

- 1- Apply the principle of conservation of mechanical energy to show that the speed of the sphere (S_1) at point D before the collision with (S_2) is $V_1 = 6$ m/s.
- 2- Show that the algebraic value of the velocity of (S_2) just after collision is $V'_2 = 4m/s$.
- **3-** Determine the speed of (S_2) at point O knowing that DO = 100cm.
- **4-** Choose the instant when (S_2) leaves point O as an origin of time $t_0 = 0$.
 - **4.1-** Show that the horizontal and the vertical components of the linear momentum \vec{P} of (S_2) at an instant t are given by:

$$\vec{P} \mid_{P_v}^{P_x} = 0.6 \\ P_v = 2t \quad [SI]$$

- **4.1-** Knowing that (S_2) reaches point B at the instant t = 0.5s, Determine the speed of the (S_2) at point B.
- **4.2-** Verify the result obtained in (4.1) by applying the principle of conservation of mechanical energy.

STUDYING THE MOTION OF A PARTICLE

Consider:

- a rail AOB situated in a vertical plane formed of two straight parts: a horizontal part AO and an inclined part OB making an angle $\alpha = 30^{\circ}$ with the horizontal;
- a solid (S) taken as a particle of mass m = 80g;
- a spring (R), of neglibgible mass, force constant k = 200 N/m and natural length ℓ_0 , fixed from one of its ends to a support at A with the other end free.

Take:

- the horizontal plane containing O as the reference level for gravitational potential energy;
- $g = 10 \text{m/s}^2$.

In order to launch (S), it is placed against the free end of the spring, the spring is compressed by a distance d,

and then the system [(R); (S)] is released from rest as shown in document 1.

When the spring returns to its natural length ℓ_0 ,

(S) leaves the spring with a velocity \vec{V}_0 of magnitude V_0 and parallel to AO.

The force of friction between AO and (S) is neglected.

P [kgm/s]

0.1

0.2

0.3

0.4

0.4

0.3

0.2

0.1

Doc.2

t [s]

- 1- Apply the principle of conservation of mechanical energy to determine the relation between k, m, V_0 and d.
- **2-** At the instant $t_0 = 0$, (S) starts from O on the inclined part OB with a velocity $\vec{V}_0 = V_0 \vec{\imath}$, where $\vec{\imath}$ is the unit vector along the x-axis parallel to OB. On this part, (S) is submitted to a friction force \vec{f} of constant magnitude f and of direction opposite to its motion.

The graph of document 2 represents the variation, as a function of time, of the algebriac value P of (S) during its upward motion along OB.

- **2.2-** Determine the value of V_0 ; then deduce that of d.
- **2.3-** Name and represent the external forces acting on (S) during its motion along the track OB.

- **2.6-** Determine the distance OB knowing that (S) stops at B.