INTRODUCTION TO THE THEORY OF NEURAL COMPUTATION

John Hertz

Anders Krogh
Niels Bohr Institute

Richard G. Palmer

Duke University and the Santa Fe Institute

Lecture Notes Volume I

SANTA FE INSTITUTE
STUDIES IN THE SCIENCES OF COMPLEXITY

Addison-Wesley Publishing Company
The Advanced Book Program

Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo Madrid San Juan Paris Seoul Milan Mexico City Taipei

Contents

	Series Foreword by L. M. Simmons, Jr.	xiii
	Foreword by Jack Cowan	xv
	Foreword by Christof Koch	xvii
	Preface	xix
ONE	Introduction	1
1.1	Inspiration from Neuroscience	2
1.2	History	6
1.3	The Issues	8
TWO	The Hopfield Model	11
2.1	The Associative Memory Problem	11
2.2	The Model	13
2.3	Statistical Mechanics of Magnetic Systems	25
2.4	Stochastic Networks	32
2.5	Capacity of the Stochastic Network	35
THREE	Extensions of the Hopfield Model	43
3.1	Variations on the Hopfield Model	43
3.2	Correlated Patterns	49
3.3	Continuous-Valued Units	53
3.4	Hardware Implementations	58
3.5	Temporal Sequences of Patterns	63
FOUR	Optimization Problems	71
4.1	The Weighted Matching Problem	72
4.2	The Travelling Salesman Problem	76
4.3	Graph Bipartitioning	79
4.4	Optimization Problems in Image Processing	81

X Contents

FIVE	Simple Perceptrons	89
5.1	Feed-Forward Networks	90
5.2	Threshold Units	92
5.3	Proof of Convergence of the Perceptron Learning Rule	100
5.4	Linear Units	102
5.5	Nonlinear Units	107
5.6	Stochastic Units	110
5.7	Capacity of the Simple Perceptron	111
SIX	Multi-Layer Networks	115
6.1	Back-Propagation	115
6.2	Variations on Back-Propagation	120
6.3	Examples and Applications	130
6.4	Performance of Multi-Layer Feed-Forward Networks	141
6.5	A Theoretical Framework for Generalization	147
6.6	Optimal Network Architectures	156
SEVEN	Recurrent Networks	163
7.1	Boltzmann Machines	163
7.2	Recurrent Back-Propagation	172
7.3	Learning Time Sequences	176
7.4	Reinforcement Learning	188
EIGHT	Unsupervised Hebbian Learning	197
8.1	Unsupervised Learning	197
8.2	One Linear Unit	199
8.3	Principal Component Analysis	204
8.4	Self-Organizing Feature Extraction	210
NINE	Unsupervised Competitive Learning	217
9.1	Simple Competitive Learning	218
9.2	Examples and Applications of Competitive Learning	223
9.3	Adaptive Resonance Theory	228
9.4	Feature Mapping	232
9.5	Theory of Feature Mapping	240
9.6	The Travelling Salesman Problem	244
9.7	Hybrid Learning Schemes	246
TEN	Formal Statistical Mechanics of Neural Networks	251
10.1	The Hopfield Model	251
10.2	Gardner Theory of the Connections	265

Contents

APPENDIX	Statistical Mechanics	275
A .1	The Boltzmann-Gibbs Distribution	275
A.2	Free Energy and Entropy	277
A.3	Stochastic Dynamics	279
	Bibliography	281
	Subject Index	307
	Author Index	321