

Абдулзагиров М.М.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технологический университет «СТАНКИН»

Введение

Кинематическое моделирование— нахождение кинематических законов движения механизма.

Что такое Кватернион

Что такое дуальный кватернион

Дуальное число:

$$a + \varepsilon b$$
, $\varepsilon^2 = 0$

с единичным модулем

$$\hat{\mathbf{x}} = \mathbf{p} + \varepsilon \, \mathbf{q} = \begin{bmatrix} \mathbf{p} \\ \mathbf{q} \end{bmatrix}, \quad \varepsilon^2 = 0, \quad \varepsilon \neq 0$$

Где $\mathbf{p} \triangleq (\mathbf{s}_p, \mathbf{v}_p)$ и $\mathbf{q} \triangleq (\mathbf{s}_q, \mathbf{v}_q)$ — кватернионы ориентации и перемещения .

$$\|\hat{\mathbf{x}}\| = \sqrt{\hat{\mathbf{x}}\,\hat{\mathbf{x}}^*} = \sqrt{\left(s_p^2 + \mathbf{v_p}\cdot\mathbf{v_p},\mathbf{0}\right) + \varepsilon 2(s_p\,s_q + \mathbf{v_p}\cdot\mathbf{v_q},\mathbf{0})}$$
— модуль кватерниона

При этом если
$$s_p^2 + \mathbf{v_p} \cdot \mathbf{v_p} = 1$$
, $2(\mathbf{s_p} \ \mathbf{s_q} + \mathbf{v_p} \cdot \mathbf{v_q}) = 0$

то $\|\hat{\mathbf{x}}\| = 1$. То есть $\hat{\mathbf{x}}$ является дуальным кватернионом с единичным модулем

Решение ПЗК

$$\widehat{\underline{\theta}}_{\mathbf{0}} = \left[\widehat{\theta}_{1}, \widehat{\theta}_{2}, \widehat{\theta}_{3}, \dots, \widehat{\theta}_{n}\right] \in D^{n \times 1}$$

Решение ОЗК

Простая иллюстрация того, как прямая задача кинематики применяется к роботу манипулятору с 3 степенями свободы.

Первоначальное положение манипулятора и бутылки (слева). Хотим достичь того, чтобы манипулятор схватил бутылку (средний). Нужно изменить положение бутылки с помощью захвата и поставить её на стол (справа).

Экономическая часть.

Представление	необходимо памяти	Умножения	сложение
матрица однородного преобразования	12	64×	48+
ДКЕМ и с операторами Гамильтона	8	64×	56+
преобразование оси-угла	7	43×	26+
дуальные кватернионы с единичным модулем	8	48×	40+

Расходы для различных представлений преобразования

для вычисления своей ПЗК требуется:

$$Cost(n) = [(n-1), (n-1), n] \begin{bmatrix} 48 \times \\ 40 + \\ 8f \end{bmatrix}$$

Для вычисления Якобиана требуется:

$$Cost(n) = 2 (n - 1) \begin{bmatrix} 48 \times \\ 40 + \end{bmatrix}$$

операці умножения \times и сложения + и блоков памяти с плавающей точкой f. n — число степеней свободы

Вывод

Список литературы

- [Электронный ресурс]. http://www.euclideanspace.com/maths/algebra/
- realNormedAlgebra/quaternions/index.htm
- "Доступно о кватернионах и их преимуществах" [Электронный ресурс]. https://habr.com/ru/post/426863/
- "Кватернионы в программировании игр." [Электронный ресурс]. http://wat.gamedev.ru/articles/quaternions
- "Магия тензорной алгебры: Часть 12 Параметры Родрига-Гамильтона в кинематике твердого тела" [Электронный ресурс]. https://habr.com/ru/post/263533/
- Robotics and Autonomous Systems: Kinematic modeling and control of a robot arm using unit dual quaternions [15 сентября 2015]