卷积神经网络中的即插即用模块

GiantPandaCV 公众号出品

GiantPandaCV-pprp

2020-05-27

Contents

卷积神经网络中的即插即用模块	2
0. 序言	2
1. 即插即用模块简介	3
2. 注意力模块	5
2.1 SENet	5
2.2 SKNet	6
2.3 scSE	8
2.4 Non-Local Net	10
2.5 GCNet	13
2.6 CCNet	17
2.7 CBAM	18
2.8 BAM	22
2.9 SplitAttention	25
3. 其他模块	28
3.1 ACNet	28
3.2 ASPP	31
3.3 SPP	34
3.4 BlazeBlock	35
3.5 深度可分离卷积	37
3.6 FuseConvBn	38
3.7 MixConv2d	39
3.8 PPM	40
3.9 RFB	41
3.10 SEB	47
3.11 SSHContextModule	48
3.12 Strip Pooling	50

卷积神经网络中的即插即用模块

0. 序言

版权声明:此份电子书整理自公众号「GiantPandaCV」,版权所有 GiantPandaCV,禁止任何形式的转载,禁止传播、商用,违者必究! GiantPandaCV公众号由专注于技术的一群 90 后创建,专注于机器学习、深度学习、计算机视觉、图像处理等领域。半年以来已更新 242 篇原创技术文章。我们编写了《从零开始学习 YOLOv3》、《从零开始学习 SSD》、《Faster R-CNN 原理和代码讲解》、《多目标

跟踪快速入门》等系列原创电子书,关注后回复对应关键字即可免费领取。每天更新一到两篇相关推文,希望在传播知识、分享知识的同时能够启发你。欢迎扫描下方二维码关注我们的公众号。

1. 即插即用模块简介

即插即用模块一般是作为一个独立的模块,可以用于取代普通的卷积结构,或者直接插入网络结构中。

最常见的即插即用模块莫过于注意力模块了,近些年好多略显水的工作都用到了注意力模块,仅仅需要简单添加这些注意力模块即可作为论文的创新点,比如 SENet+Darknet53 组合。

虽然笔者觉得这些模块有些真的是用来水文章的,但是不可否认很多模块确实增强了模型的特征表达能力。具体使用和评判还需要各位在自己的实验中以批判的眼光看待。

《卷积神经网络中的即插即用模块》电子书中,笔者将对自己接触过的即插即用模块进行简单讲解,不涉及核心,如果对具体设计思路和原理感兴趣,可以去公众号找对应的文章或者直接看对应的论文。

这里的即插即用模块主要分为注意力模块和其他模块。由于笔者本身涉猎有限,不可能将所有的即插即用模块都总结进来,所以如果有补充的可以联系笔者(微信名片在下),笔者在空闲时间将不断维护这个即插即用模块的项目。

项 目 地 址: https://github.com/pprp/SimpleCVReproduction/tree/master/Plug-and-play% 20module

Figure 1: 笔者微信

一般来说,我们都很喜欢使用即插即用模块,因为其便于实现,可以快速验证,YOLOv4 中就提到了大量的即插即用模块。不过这些即插即用模块不一定对所有的任务都有效,笔者和一些群友交流过注意力模块方面的实验,在 YOLOv3 上通常可以带来1个百分点左右的提升,但是更多情况下是没有任何提升。添加这类即插即用模块还需要注意几个问题:

- 插入的位置:有的模块适合插入在浅层,有的模块适合在深层。具体插在哪里最好看原作者论文中的插入位置作为参考。一般情况可以插入的常见位置有:
 - 1. 瓶颈层:比如 ResNet, DenseNet 的瓶颈层。
 - 2. 上采样层: 比如 FPN 分支, Attention UNet。
 - 3. 骨干网络最后一层:比如 SPP, ASPP等
 - 4. 所有的 3x3 卷积: 比如深度可分离卷积等
- 插入后进行实验为何不生效? 指标没有提高甚至降低?

很多模块虽然说是即插即用,但是并不是无脑插入以后结果就一定会提高。比如说,一个模型感受野已经很大,这时候如果在网络的浅层添加一些用于扩大感受野的模块,那样对结果不但不会有好的用处而且还会带来副作用。正确做法是,分析你网络的需要,根据需求选择对应功能的模块在合适的位置进行插入,如果没有明确合适的位置,那就需要通过实验进行分析,确定哪个位置效果更佳(IBN-Net 中就是对不同位置使用 IBN 的结果进行了分析,最终确定了几种合适的方案)。

另外,通过和几位知友的讨论,得知这些注意力模块通常情况下都需要调参才能维持原本的准确率,在调参效果比较好的情况下才能超过原本的模型。

- 即插即用模块的作用(以下内容的一个到多个):
 - 1. 扩大模型感受野。
 - 2. 加快计算速度。
 - 3. 增加长距离依赖关系。
 - 4. 增加模型容量 (参数量增加了一部分)
 - 5. 提升了模型特征表达的多样性。

2. 注意力模块

2.1 SENet

说明: 最经典的通道注意力模块, 曾夺最后一节 ImageNet 冠军。

论文: https://arxiv.org/pdf/1709.01507

代码:

import torch.nn as nn

```
y = self.fc(y).view(b,c,1,1)
return x * y.expand_as(x)
```

2.2 SKNet

说明: SENet 改进版,增加了多个分支,每个分支感受野不同。

论文: https://arxiv.org/pdf/1903.06586

for i in range(M):

代码:

```
import torch.nn as nn
import torch
class SKConv(nn.Module):
    def __init__(self, features, WH, M, G, r, stride=1, L=32):
        """ Constructor
        Args:
            features: input channel dimensionality.
            WH: input spatial dimensionality, used for GAP kernel size.
            M: the number of branchs.
            G: num of convolution groups.
            r: the radio for compute d, the length of z.
            stride: stride, default 1.
            L: the minimum dim of the vector z in paper, default 32.
        11 11 11
        super(SKConv, self).__init__()
        d = max(int(features / r), L)
        self.M = M
        self.features = features
        self.convs = nn.ModuleList([])
```

```
self.convs.append(
                nn.Sequential(
                    nn.Conv2d(features,
                               features,
                               kernel_size=3 + i * 2,
                               stride=stride,
                               padding=1 + i,
                               groups=G), nn.BatchNorm2d(features),
                    nn.ReLU(inplace=False)))
        # self.gap = nn.AvgPool2d(int(WH/stride))
        print("D:", d)
        self.fc = nn.Linear(features, d)
        self.fcs = nn.ModuleList([])
        for i in range(M):
            self.fcs.append(nn.Linear(d, features))
        self.softmax = nn.Softmax(dim=1)
    def forward(self, x):
        for i, conv in enumerate(self.convs):
            fea = conv(x).unsqueeze_(dim=1)
            if i == 0:
                feas = fea
            else:
                feas = torch.cat([feas, fea], dim=1)
        fea_U = torch.sum(feas, dim=1)
        fea_s = fea_U.mean(-1).mean(-1)
        fea_z = self.fc(fea_s)
        for i, fc in enumerate(self.fcs):
            print(i, fea_z.shape)
            vector = fc(fea_z).unsqueeze_(dim=1)
            print(i, vector.shape)
            if i == 0:
                attention_vectors = vector
            else:
                attention_vectors = torch.cat([attention_vectors, vector],
                                               dim=1)
        attention_vectors = self.softmax(attention_vectors)
        attention_vectors = attention_vectors.unsqueeze(-1).unsqueeze(-1)
        fea_v = (feas * attention_vectors).sum(dim=1)
        return fea_v
if __name__ == "__main__":
    t = torch.ones((32, 256, 24, 24))
```

```
sk = SKConv(256,WH=1,M=2,G=1,r=2)
out = sk(t)
print(out.shape)
```

2.3 scSE

(d) Concurrent Spatial and Channel Squeeze and Channel Excitation (scSE)

说明: scSE 分为两个模块,一个是 sSE 和 cSE 模块,分别是空间注意力和通道注意力,最终以相加的方式融合。论文中只将其使用在分割模型中,在很多图像分割比赛中都有用到这个模块作为 trick。

论文: http://arxiv.org/pdf/1803.02579v2

代码:

```
import torch
import torch.nn as nn

class sSE(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.Conv1x1 = nn.Conv2d(in_channels, 1, kernel_size=1, bias=False)
        self.norm = nn.Sigmoid()

def forward(self, U):
    q = self.Conv1x1(U) # U:[bs,c,h,w] to q:[bs,1,h,w]
```

```
q = self.norm(q)
        return U * q # 广播机制
class cSE(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.Conv_Squeeze = nn.Conv2d(in_channels, in_channels // 2,

    kernel_size=1, bias=False)

        self.Conv_Excitation = nn.Conv2d(in_channels//2, in_channels,

    kernel_size=1, bias=False)

        self.norm = nn.Sigmoid()
   def forward(self, U):
        z = self.avgpool(U) # shape: [bs, c, h, w] to [bs, c, 1, 1]
        z = self.Conv_Squeeze(z) # shape: [bs, c/2]
        z = self.Conv_Excitation(z) # shape: [bs, c]
        z = self.norm(z)
        return U * z.expand_as(U)
class scSE(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.cSE = cSE(in_channels)
        self.sSE = sSE(in_channels)
    def forward(self, U):
        U_sse = self.sSE(U)
        U_cse = self.cSE(U)
        return U_cse+U_sse
if __name__ == "__main__":
   bs, c, h, w = 10, 3, 64, 64
    in_tensor = torch.ones(bs, c, h, w)
    sc_se = scSE(c)
    print("in shape:",in_tensor.shape)
    out_tensor = sc_se(in_tensor)
    print("out shape:", out_tensor.shape)
```

2.4 Non-Local Net

说明: NLNet 主要借鉴了传统方法中的非局部均值滤波设计了 Non-Local 全局注意力,虽然效果好,但是计算量偏大,建议不要在底层网络使用,可以适当在高层网络中使用。

论文: https://arxiv.org/pdf/1711.07971

代码:

import torch
from torch import nn
from torch.nn import functional as F

class _NonLocalBlockND(nn.Module):

,,,,,,,

调用过程

```
bn_layer=bn_layer)
11 11 11
def __init__(self,
             in_channels,
             inter_channels=None,
             dimension=3,
             sub_sample=True,
             bn_layer=True):
    super(_NonLocalBlockND, self).__init__()
    assert dimension in [1, 2, 3]
    self.dimension = dimension
    self.sub_sample = sub_sample
    self.in_channels = in_channels
    self.inter_channels = inter_channels
    if self.inter_channels is None:
        self.inter_channels = in_channels // 2
        # 进行压缩得到 channel 个数
        if self.inter_channels == 0:
            self.inter_channels = 1
    if dimension == 3:
        conv_nd = nn.Conv3d
        max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
        bn = nn.BatchNorm3d
    elif dimension == 2:
        conv_nd = nn.Conv2d
        max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
        bn = nn.BatchNorm2d
    else:
        conv_nd = nn.Conv1d
        max_pool_layer = nn.MaxPool1d(kernel_size=(2))
        bn = nn.BatchNorm1d
    self.g = conv_nd(in_channels=self.in_channels,
                     out_channels=self.inter_channels,
                     kernel_size=1,
                     stride=1,
                     padding=0)
```

```
if bn_layer:
           self.W = nn.Sequential(
               conv_nd(in_channels=self.inter_channels,
                        out_channels=self.in_channels,
                        kernel_size=1,
                        stride=1,
                        padding=0), bn(self.in_channels))
           nn.init.constant_(self.W[1].weight, 0)
           nn.init.constant_(self.W[1].bias, 0)
       else:
           self.W = conv_nd(in_channels=self.inter_channels,
                             out_channels=self.in_channels,
                             kernel_size=1,
                             stride=1,
                             padding=0)
           nn.init.constant_(self.W.weight, 0)
           nn.init.constant_(self.W.bias, 0)
       self.theta = conv_nd(in_channels=self.in_channels,
                             out_channels=self.inter_channels,
                             kernel_size=1,
                             stride=1,
                             padding=0)
       self.phi = conv_nd(in_channels=self.in_channels,
                           out_channels=self.inter_channels,
                           kernel_size=1,
                           stride=1,
                           padding=0)
       if sub_sample:
           self.g = nn.Sequential(self.g, max_pool_layer)
           self.phi = nn.Sequential(self.phi, max_pool_layer)
   def forward(self, x):
       :param x: (b, c, h, w)
       :return:
       111
       batch_size = x.size(0)
       g_x = self.g(x).view(batch_size, self.inter_channels, -1)#[bs, c,
\leftrightarrow w*h7
```

```
g_x = g_x.permute(0, 2, 1)

theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)

phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)

f = torch.matmul(theta_x, phi_x)

print(f.shape)

f_div_C = F.softmax(f, dim=-1)

y = torch.matmul(f_div_C, g_x)

y = y.permute(0, 2, 1).contiguous()

y = y.view(batch_size, self.inter_channels, *x.size()[2:])

W_y = self.W(y)

z = W_y + x

return z
```

2.5 GCNet

(d) Global context (GC) block

```
说明: GCNet 主要针对 Non-Local 计算量过大的问题结合了提出了解决方案
论文: https://arxiv.org/abs/1904.11492
代码:
import torch
from torch import nn
class ContextBlock(nn.Module):
    def __init__(self,inplanes,ratio,pooling_type='att',
                 fusion_types=('channel_add', )):
        super(ContextBlock, self).__init__()
        valid_fusion_types = ['channel_add', 'channel_mul']
        assert pooling_type in ['avg', 'att']
        assert isinstance(fusion_types, (list, tuple))
        assert all([f in valid_fusion_types for f in fusion_types])
        assert len(fusion_types) > 0, 'at least one fusion should be used'
        self.inplanes = inplanes
        self.ratio = ratio
        self.planes = int(inplanes * ratio)
        self.pooling_type = pooling_type
        self.fusion_types = fusion_types
        if pooling_type == 'att':
            self.conv_mask = nn.Conv2d(inplanes, 1, kernel_size=1)
            self.softmax = nn.Softmax(dim=2)
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
        if 'channel_add' in fusion_types:
            self.channel_add_conv = nn.Sequential(
                nn.Conv2d(self.inplanes, self.planes, kernel_size=1),
                nn.LayerNorm([self.planes, 1, 1]),
                nn.ReLU(inplace=True), # yapf: disable
                nn.Conv2d(self.planes, self.inplanes, kernel_size=1))
        else:
            self.channel_add_conv = None
        if 'channel_mul' in fusion_types:
            self.channel_mul_conv = nn.Sequential(
                nn.Conv2d(self.inplanes, self.planes, kernel_size=1),
                nn.LayerNorm([self.planes, 1, 1]),
                nn.ReLU(inplace=True), # yapf: disable
```

```
nn.Conv2d(self.planes, self.inplanes, kernel_size=1))
    else:
        self.channel_mul_conv = None
def spatial_pool(self, x):
    batch, channel, height, width = x.size()
    if self.pooling_type == 'att':
        input_x = x
        \# [N, C, H * W]
        input_x = input_x.view(batch, channel, height * width)
        \# [N, 1, C, H * W]
        input_x = input_x.unsqueeze(1)
        # [N, 1, H, W]
        context_mask = self.conv_mask(x)
        \# [N, 1, H * W]
        context_mask = context_mask.view(batch, 1, height * width)
        \# [N, 1, H * W]
        context_mask = self.softmax(context_mask)
        \# [N, 1, H * W, 1]
        context_mask = context_mask.unsqueeze(-1)
        # [N, 1, C, 1]
        context = torch.matmul(input_x, context_mask)
        # [N, C, 1, 1]
        context = context.view(batch, channel, 1, 1)
    else:
        # [N, C, 1, 1]
        context = self.avg_pool(x)
    return context
def forward(self, x):
    # [N, C, 1, 1]
    context = self.spatial_pool(x)
    out = x
    if self.channel_mul_conv is not None:
        # [N, C, 1, 1]
        channel_mul_term = torch.sigmoid(self.channel_mul_conv(context))
        out = out * channel_mul_term
    if self.channel_add_conv is not None:
        # [N, C, 1, 1]
        channel_add_term = self.channel_add_conv(context)
        out = out + channel_add_term
    return out
```

```
if __name__ == "__main__":
    in_tensor = torch.ones((12, 64, 128, 128))

    cb = ContextBlock(inplanes=64, ratio=1./16.,pooling_type='att')

    out_tensor = cb(in_tensor)

    print(in_tensor.shape)
    print(out_tensor.shape)
```

2.6 CCNet

(a) Non-local block

(b) Criss-Cross Attention block

说明:也是 Non-Local 发展而来的注意力模块,其特殊之处在纵横交叉关注模块,可以以更有效的方式从远程依赖中获取上下文信息。

论文: https://arxiv.org/abs/1811.11721

代码: https://github.com/speedinghzl/CCNet

class CrissCrossAttention(nn.Module):

```
""" Criss-Cross Attention Module"""
def __init__(self, in_dim):
    super(CrissCrossAttention, self).__init__()
    self.chanel_in = in_dim
    self.query_conv = nn.Conv2d(in_channels=in_dim,
                                out_channels=in_dim // 8,
                                kernel_size=1)
    self.key_conv = nn.Conv2d(in_channels=in_dim,
                              out_channels=in_dim // 8,
                              kernel_size=1)
    self.value_conv = nn.Conv2d(in_channels=in_dim,
                                out_channels=in_dim,
                                kernel_size=1)
    self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
    proj_query = self.query_conv(x)
    proj_key = self.key_conv(x)
    proj_value = self.value_conv(x)
    energy = ca_weight(proj_query, proj_key)
    attention = F.softmax(energy, 1)
    out = ca_map(attention, proj_value)
    out = self.gamma * out + x
    return out
```

2.7 CBAM

Figure 2: 通道注意力

Figure 3: 空间注意力

Figure 4: CBAM

```
padding=1,
                     bias=False)
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=4):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.sharedMLP = nn.Sequential(
            nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),

¬ nn.ReLU(),
            nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False))
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        avgout = self.sharedMLP(self.avg_pool(x))
        maxout = self.sharedMLP(self.max_pool(x))
        return self.sigmoid(avgout + maxout)
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        assert kernel_size in (3, 7), "kernel size must be 3 or 7"
        padding = 3 if kernel_size == 7 else 1
       self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        avgout = torch.mean(x, dim=1, keepdim=True)
        maxout, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avgout, maxout], dim=1)
        x = self.conv(x)
        return self.sigmoid(x)
class BasicBlock(nn.Module):
    expansion = 1
    def __init__(self, inplanes, planes, stride=1, downsample=None):
```

```
super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.ca = ChannelAttention(planes)
        self.sa = SpatialAttention()
        self.downsample = downsample
        self.stride = stride
   def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.ca(out) * out # 广播机制
        out = self.sa(out) * out # 广播机制
        if self.downsample is not None:
            print("downsampling")
            residual = self.downsample(x)
        print(out.shape, residual.shape)
        out += residual
        out = self.relu(out)
        return out
if __name__ == "__main__":
    downsample = nn.Sequential(
        nn.Conv2d(16, 32, kernel_size=1, stride=1, bias=False),
        nn.BatchNorm2d(32))
```

```
x = torch.ones(3, 16, 32, 32)
model = BasicBlock(16, 32, stride=1, downsample=downsample)
print(model(x).shape)
```

2.8 BAM

Figure 5: BAM

```
说明:和CBAM同一个作者,将通道注意力和空间注意力用并联的方式连接
论文:https://arxiv.org/abs/1807.06514
代码:
import torch
import torch
import torch.nn as nn
import torch.nn.functional as F

class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.size(0), -1)

class ChannelGate(nn.Module):
    def __init__(self, gate_channel, reduction_ratio=16, num_layers=1):
        super(ChannelGate, self).__init__()
```

```
self.gate_c = nn.Sequential()
        self.gate_c.add_module('flatten', Flatten())
        gate_channels = [gate_channel] # eq 64
        gate_channels += [gate_channel // reduction_ratio] * num_layers #
 \Rightarrow eg 4
        gate_channels += [gate_channel] # 64
        # gate_channels: [64, 4, 4]
        for i in range(len(gate_channels) - 2):
            self.gate_c.add_module(
                'gate_c_fc_%d' % i,
                nn.Linear(gate_channels[i], gate_channels[i + 1]))
            self.gate_c.add_module('gate_c_bn_%d' % (i + 1),
                                   nn.BatchNorm1d(gate_channels[i + 1]))
            self.gate_c.add_module('gate_c_relu_%d' % (i + 1), nn.ReLU())
        self.gate_c.add_module('gate_c_fc_final',
                            nn.Linear(gate_channels[-2], gate_channels[-1]))
    def forward(self, x):
        avg_pool = F.avg_pool2d(x, x.size(2), stride=x.size(2))
        return self.gate_c(avg_pool).unsqueeze(2).unsqueeze(3).expand_as(x)
class SpatialGate(nn.Module):
    def __init__(self,
                 gate_channel,
                 reduction_ratio=16,
                 dilation_conv_num=2,
                 dilation_val=4):
        super(SpatialGate, self).__init__()
        self.gate_s = nn.Sequential()
        self.gate_s.add_module(
            'gate_s_conv_reduce0',
            nn.Conv2d(gate_channel,
                      gate_channel // reduction_ratio,
                      kernel_size=1))
        self.gate_s.add_module('gate_s_bn_reduce0',
                            nn.BatchNorm2d(gate_channel // reduction_ratio))
        self.gate_s.add_module('gate_s_relu_reduce0', nn.ReLU())
```

```
# 进行多个空洞卷积,丰富感受野
        for i in range(dilation_conv_num):
            self.gate_s.add_module(
                'gate_s_conv_di_%d' % i,
                nn.Conv2d(gate_channel // reduction_ratio,
                          gate_channel // reduction_ratio,
                          kernel_size=3,
                          padding=dilation_val,
                          dilation=dilation_val))
            self.gate_s.add_module(
                'gate_s_bn_di_%d' % i,
                nn.BatchNorm2d(gate_channel // reduction_ratio))
            self.gate_s.add_module('gate_s_relu_di_%d' % i, nn.ReLU())
        self.gate_s.add_module(
            'gate_s_conv_final',
            nn.Conv2d(gate_channel // reduction_ratio, 1, kernel_size=1))
    def forward(self, x):
        return self.gate_s(x).expand_as(x)
class BAM(nn.Module):
    def __init__(self, gate_channel):
        super(BAM, self).__init__()
        self.channel_att = ChannelGate(gate_channel)
        self.spatial_att = SpatialGate(gate_channel)
   def forward(self, x):
        att = 1 + F.sigmoid(self.channel_att(x) * self.spatial_att(x))
        return att * x
```

2.9 SplitAttention

Fig. 2: Split-Attention within a cardinal group. For easy visualization in the figure, we use c = C/K in this figure.

```
说明: ResNeSt = SENet + SKNet + ResNeXt
```

论文: https://hangzhang.org/files/resnest.pdf

代码:

```
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Conv2d, Module, Linear, BatchNorm2d, ReLU
from torch.nn.modules.utils import _pair
```

```
_{all} = ['SplAtConv2d']
```

class SplAtConv2d(Module):

```
"""Split-Attention Conv2d
```

```
def __init__(self, in_channels, channels, kernel_size, stride=(1, 1),
    \rightarrow padding=(0, 0),
                dilation=(1, 1), groups=1, bias=True,
                radix=2, reduction_factor=4,
                rectify=False, rectify_avg=False, norm_layer=None,
                dropblock_prob=0.0, **kwargs):
       super(SplAtConv2d, self).__init__()
       padding = _pair(padding)
       self.rectify = rectify and (padding[0] > 0 or padding[1] > 0)
       self.rectify_avg = rectify_avg
       inter_channels = max(in_channels*radix//reduction_factor, 32)
       self.radix = radix
       self.cardinality = groups
       self.channels = channels
       self.dropblock_prob = dropblock_prob
       if self.rectify:
           from rfconv import RFConv2d
           self.conv = RFConv2d(in_channels, channels*radix, kernel_size,

→ stride, padding, dilation,

                                 groups=groups*radix, bias=bias,
→ average_mode=rectify_avg, **kwargs)
       else:
           self.conv = Conv2d(in_channels, channels*radix, kernel_size,

→ stride, padding, dilation,

                               groups=groups*radix, bias=bias, **kwargs)
       self.use_bn = norm_layer is not None
       if self.use bn:
           self.bn0 = norm_layer(channels*radix)
       self.relu = ReLU(inplace=True)
       self.fc1 = Conv2d(channels, inter_channels, 1,

¬ groups=self.cardinality)

       if self.use_bn:
           self.bn1 = norm_layer(inter_channels)
       self.fc2 = Conv2d(inter_channels, channels*radix, 1,

    groups=self.cardinality)

       if dropblock_prob > 0.0:
           self.dropblock = DropBlock2D(dropblock_prob, 3)
       self.rsoftmax = rSoftMax(radix, groups)
   def forward(self, x):
       x = self.conv(x)
       if self.use_bn:
           x = self.bn0(x)
```

```
if self.dropblock_prob > 0.0:
            x = self.dropblock(x)
        x = self.relu(x)
        batch, rchannel = x.shape[:2]
        if self.radix > 1:
            splited = torch.split(x, rchannel//self.radix, dim=1)
            gap = sum(splited)
        else:
            gap = x
        gap = F.adaptive_avg_pool2d(gap, 1)
        gap = self.fc1(gap)
        if self.use_bn:
            gap = self.bn1(gap)
        gap = self.relu(gap)
        atten = self.fc2(gap)
        atten = self.rsoftmax(atten).view(batch, −1, 1, 1)
        if self.radix > 1:
            attens = torch.split(atten, rchannel//self.radix, dim=1)
            out = sum([att*split for (att, split) in zip(attens, splited)])
        else:
            out = atten * x
        return out.contiguous()
class rSoftMax(nn.Module):
    def __init__(self, radix, cardinality):
        super().__init__()
        self.radix = radix
        self.cardinality = cardinality
    def forward(self, x):
        batch = x.size(0)
        if self.radix > 1:
            x = x.view(batch, self.cardinality, self.radix, -1).transpose(1,
 x = F.softmax(x, dim=1)
            x = x.reshape(batch, -1)
            x = torch.sigmoid(x)
        return x
```

3. 其他模块

3.1 ACNet

说明:通过在训练过程中引入1x3 conv和3x1 conv,强化特征提取,实现效果提升

论文: ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks.

代码:

```
import torch.nn as nn
import torch
```

class CropLayer(nn.Module):

```
# E.g., (-1, 0) means this layer should crop the first and last rows of
    \hookrightarrow the feature map. And (0, -1) crops the first and last columns
    def __init__(self, crop_set):
        super(CropLayer, self).__init__()
        self.rows_to_crop = - crop_set[0]
        self.cols_to_crop = - crop_set[1]
        assert self.rows_to_crop >= 0
        assert self.cols_to_crop >= 0
    def forward(self, input):
        return input[:, :, self.rows_to_crop:-self.rows_to_crop,

¬ self.cols_to_crop:-self.cols_to_crop]

class ACBlock(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
```

```
stride=1,
         padding=0,
         dilation=1,
         groups=1,
         padding_mode='zeros',
         deploy=False):
super(ACBlock, self).__init__()
self.deploy = deploy
if deploy:
    self.fused_conv = nn.Conv2d(in_channels=in_channels,
                                out_channels=out_channels,
                             kernel_size=(kernel_size, kernel_size),
                                 stride=stride,
                                 padding=padding,
                                 dilation=dilation,
                                 groups=groups,
                                 bias=True,
                                 padding_mode=padding_mode)
else:
    self.square_conv = nn.Conv2d(in_channels=in_channels,
                                  out_channels=out_channels,
                                  kernel_size=(kernel_size,
                                               kernel_size),
                                  stride=stride,
                                  padding=padding,
                                  dilation=dilation,
                                  groups=groups,
                                  bias=False,
                                  padding_mode=padding_mode)
    self.square_bn = nn.BatchNorm2d(num_features=out_channels)
    center_offset_from_origin_border = padding - kernel_size // 2
    ver_pad_or_crop = (center_offset_from_origin_border + 1,
                       center_offset_from_origin_border)
    hor_pad_or_crop = (center_offset_from_origin_border,
                       center_offset_from_origin_border + 1)
    if center_offset_from_origin_border >= 0:
        self.ver_conv_crop_layer = nn.Identity()
        ver_conv_padding = ver_pad_or_crop
        self.hor_conv_crop_layer = nn.Identity()
        hor_conv_padding = hor_pad_or_crop
    else:
      self.ver_conv_crop_layer = CropLayer(crop_set=ver_pad_or_crop)
```

```
ver_conv_padding = (0, 0)
          self.hor_conv_crop_layer = CropLayer(crop_set=hor_pad_or_crop)
            hor\_conv\_padding = (0, 0)
        self.ver_conv = nn.Conv2d(in_channels=in_channels,
                                   out_channels=out_channels,
                                   kernel_size=(3, 1),
                                   stride=stride,
                                   padding=ver_conv_padding,
                                   dilation=dilation,
                                   groups=groups,
                                   bias=False,
                                   padding_mode=padding_mode)
        self.hor_conv = nn.Conv2d(in_channels=in_channels,
                                   out_channels=out_channels,
                                   kernel_size=(1, 3),
                                   stride=stride,
                                   padding=hor_conv_padding,
                                   dilation=dilation,
                                   groups=groups,
                                   bias=False,
                                  padding_mode=padding_mode)
        self.ver_bn = nn.BatchNorm2d(num_features=out_channels)
        self.hor_bn = nn.BatchNorm2d(num_features=out_channels)
def forward(self, input):
    if self.deploy:
        return self.fused_conv(input)
    else:
        square_outputs = self.square_conv(input)
        square_outputs = self.square_bn(square_outputs)
        # print(square_outputs.size())
        # return square_outputs
        vertical_outputs = self.ver_conv_crop_layer(input)
        vertical_outputs = self.ver_conv(vertical_outputs)
        vertical_outputs = self.ver_bn(vertical_outputs)
        # print(vertical_outputs.size())
        horizontal_outputs = self.hor_conv_crop_layer(input)
        horizontal_outputs = self.hor_conv(horizontal_outputs)
        horizontal_outputs = self.hor_bn(horizontal_outputs)
        # print(horizontal_outputs.size())
        return square_outputs + vertical_outputs + horizontal_outputs
```

3.2 ASPP

说明: ASPP 是 DeepLabv3+ 其中一个核心创新点,用空间金字塔池化模块来进一步提取多尺度信息,这里是采用不同 rate 的空洞卷积来实现这一点。

```
论文: https://arxiv.org/pdf/1802.02611
代码:
```

```
import torch.nn as nn
import torch
```

```
kernel_size,
                                stride,
                                padding,
                                dilation,
                                groups=in_channels,
                                bias=bias)
        self.pointwise = nn.Conv2d(in_channels,
                                    out_channels,
                                    1,
                                    1,
                                    Θ,
                                    1,
                                    bias=bias)
    def forward(self, x):
        x = self.conv1(x)
        x = self.pointwise(x)
        return x
class ASPP(nn.Module):
    def __init__(self, inplanes, planes, rate):
        super(ASPP, self).__init__()
        self.rate = rate
        if rate == 1:
            kernel_size = 1
            padding = 0
        else:
            kernel_size = 3
            padding = rate
            #self.conv1 = nn.Conv2d(planes, planes, kernel_size=3,

→ bias=False,padding=1)

            self.conv1 = SeparableConv2d(planes, planes, 3, 1, 1)
            self.bn1 = nn.BatchNorm2d(planes)
            self.relu1 = nn.ReLU()
            # self.atrous_convolution = nn.Conv2d(inplanes, planes,

    kernel_size=kernel_size,

                                       stride=1, padding=padding,

    dilation=rate, bias=False)

        self.atrous_convolution = SeparableConv2d(inplanes, planes,
                                                    kernel_size, 1, padding,
```

```
rate)
    self.bn = nn.BatchNorm2d(planes)
    self.relu = nn.ReLU()
    self._init_weight()
def forward(self, x):
    x = self.atrous_convolution(x)
    x = self.bn(x)
    \#x = self.relu(x)
    if self.rate != 1:
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
    return x
def _init_weight(self):
    for m in self.modules():
        if isinstance(m, nn.Conv2d):
            torch.nn.init.kaiming_normal_(m.weight)
        elif isinstance(m, nn.BatchNorm2d):
            m.weight.data.fill_(1)
            m.bias.data.zero_()
```

3.3 SPP

(a) Spatial Pyramid Pooling PP_JJ

说明:这里 SPP 首先还是在 yolov3-spp 中提出的,借鉴了 SPP-Net 的处理方式,但是实际上有很大差别。

论文: https://github.com/AlexeyAB/darknet

http://pjreddie.com/darknet/

代码(实际就是几个最大池化层进行的组合):

SPP **###**

[maxpool]
stride=1
size=5

[route]
layers=-2

[maxpool]
stride=1
size=9

[route] layers=-4

```
[maxpool]
stride=1
size=13

[route]
layers=-1,-3,-5,-6

### End SPP ###
```

3.4 BlazeBlock

Figure 1. BlazeBlock (left) and double BlazeBlock

```
说明:来自BlazeFace的一个模块,主要作用是轻量化
论文:https://www.arxiv.org/pdf/1907.05047
代码:

class BlazeBlock(nn.Module):
    def __init__(self, inp, oup1, oup2=None, stride=1, kernel_size=5):
        super(BlazeBlock, self).__init__()
        self.stride = stride
        assert stride in [1, 2]
        self.use_double_block = oup2 is not None
```

```
self.use_pooling = self.stride != 1
    if self.use_double_block:
        self.channel_pad = oup2 - inp
    else:
        self.channel_pad = oup1 - inp
    padding = (kernel_size - 1) // 2
    self.conv1 = nn.Sequential(
        # dw
        nn.Conv2d(inp, inp, kernel_size=kernel_size, stride=stride,
                  padding=padding, groups=inp, bias=True),
        nn.BatchNorm2d(inp),
        # pw-linear
        nn.Conv2d(inp, oup1, 1, 1, 0, bias=True),
        nn.BatchNorm2d(oup1),
    )
    self.act = nn.ReLU(inplace=True)
    if self.use_double_block:
        self.conv2 = nn.Sequential(
            nn.ReLU(inplace=True),
            nn.Conv2d(oup1, oup1, kernel_size=kernel_size,
                     stride=1, padding=padding, groups=oup1, bias=True),
            nn.BatchNorm2d(oup1),
            # pw-linear
            nn.Conv2d(oup1, oup2, 1, 1, 0, bias=True),
            nn.BatchNorm2d(oup2),
        )
    if self.use_pooling:
        self.mp = nn.MaxPool2d(kernel_size=self.stride,

    stride=self.stride)

def forward(self, x):
    h = self.conv1(x)
    if self.use_double_block:
        h = self.conv2(h)
    # skip connection
    if self.use_pooling:
```

```
x = self.mp(x)
        if self.channel_pad > 0:
            x = F.pad(x, (0, 0, 0, 0, self.channel_pad), 'constant', 0)
        return self.act(h + x)
def initialize(module):
    # original implementation is unknown
    if isinstance(module, nn.Conv2d):
        nn.init.kaiming_normal_(module.weight.data)
        nn.init.constant_(module.bias.data, 0)
    elif isinstance(module, nn.BatchNorm2d):
        nn.init.constant_(module.weight.data, 1)
        nn.init.constant_(module.bias.data, 0)
3.5 深度可分离卷积
这个都比较熟悉,直接上代码:
import torch.nn as nn
class DWConv(nn.Module):
    def __init__(self, in_plane, out_plane):
        super(DWConv, self).__init__()
        self.depth_conv = nn.Conv2d(in_channels=in_plane,
                                    out_channels=in_plane,
                                    kernel_size=3,
                                    stride=1,
                                    padding=1,
                                    groups=in_plane)
        self.point_conv = nn.Conv2d(in_channels=in_plane,
                                    out_channels=out_plane,
                                    kernel_size=1,
                                    stride=1,
                                    padding=0,
                                    groups=1)
    def forward(self, x):
        x = self.depth_conv(x)
        x = self.point_conv(x)
        return x
```

return fusedconv

3.6 FuseConvBn

```
折叠 BN 在公众号历史文章中可以看详解,用于在推理过程中加速推理过程。
import torch
def fuse_conv_and_bn(conv, bn):
    # https://tehnokv.com/posts/fusing-batchnorm-and-conv/
   with torch.no_grad():
        # init
        fusedconv = torch.nn.Conv2d(conv.in_channels,
                                    conv.out_channels,
                                    kernel_size=conv.kernel_size,
                                    stride=conv.stride,
                                    padding=conv.padding,
                                    bias=True)
        # prepare filters
       w_conv = conv.weight.clone().view(conv.out_channels, -1)
       w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
        fusedconv.weight.copy_(torch.mm(w_bn,

    w_conv).view(fusedconv.weight.size()))
        # prepare spatial bias
        if conv.bias is not None:
            b_conv = conv.bias
        else:
            b_conv = torch.zeros(conv.weight.size(0))
        b_bn = bn.bias -
   bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
        fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1,
\rightarrow 1)).reshape(-1) + b_bn)
```

3.7 MixConv2d

(b) Our proposed MixConv.net/DD_PP_JJ

说明:这个模块是在 MixNet 中提出的,使用 AutoML 搜索的情况下,对卷积核进行了搜索和调整。

论文: https://arxiv.org/pdf/1907.09595.pdf

代码(以下代码出自 u 版 yolov3):

```
import numpy as np
import torch
import torch.nn as nn
```

```
class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional
→ Kernels https://arxiv.org/abs/1907.09595
    def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1,
     ⇔ bias=True, method='equal_params'):
        super(MixConv2d, self).__init__()
        groups = len(k)
        if method == 'equal_ch': # equal channels per group
            i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch

→ indices

            ch = [(i == g).sum() for g in range(groups)]
        else: # 'equal_params': equal parameter count per group
            b = [out\_ch] + [0] * groups
            a = np.eye(groups + 1, groups, k=-1)
            a -= np.roll(a, 1, axis=1)
            a \star = np.array(k) \star \star 2
            a[0] = 1
```

3.8 PPM

说明:跟 ASPP 类似,只不过 PSPNet 的 PPM 是使用了池化进行的融合特征金字塔,聚合不同区域的上下文信息。

```
论文: https://arxiv.org/abs/1612.01105
代码:
import torch.nn as nn
import torch
import torch.nn.functional as F
class PSPModule(nn.Module):
```

```
def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)):
    super().__init__()
    self.stages = []
    self.stages = nn.ModuleList(
        [self._make_stage(features, size) for size in sizes])
    self.bottleneck = nn.Conv2d(features * (len(sizes) + 1),
                                out_features,
                                kernel_size=1)
    self.relu = nn.ReLU()
def _make_stage(self, features, size):
    prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
    conv = nn.Conv2d(features, features, kernel_size=1, bias=False)
    return nn.Sequential(prior, conv)
def forward(self, feats):
    h, w = feats.size(2), feats.size(3)
    priors = [
        F.upsample(input=stage(feats), size=(h, w), mode='bilinear')
        for stage in self.stages
    ] + [feats]
    bottle = self.bottleneck(torch.cat(priors, 1))
    return self.relu(bottle)
```

3.9 RFB

说明: RFBNet 提出了两种 RFB 模型, RFB 和 RFB-s, 分别用于深层和浅层。和 ASPP, PPM 类似。来看一个对比图:

论文: https://arxiv.org/abs/1711.07767 代码:

import torch.nn as nn
import torch

```
class BasicConv(nn.Module):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 relu=True,
                 bn=True,
                 bias=False):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes,
                               out_planes,
                               kernel_size=kernel_size,
                               stride=stride,
                               padding=padding,
                               dilation=dilation,
                               groups=groups,
```

```
bias=bias)
        self.bn = nn.BatchNorm2d(
           out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU(inplace=True) if relu else None
    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x
class BasicRFB(nn.Module):
    1 1 1
    [rfb]
    filters = 128
    stride = 1 or 2
    scale = 1.0
    111
   def __init__(self, in_planes, out_planes, stride=1, scale=0.1, visual=1):
        super(BasicRFB, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes // 8
        self.branch0 = nn.Sequential(
            BasicConv(in_planes,
                      2 * inter_planes,
                      kernel_size=1,
                      stride=stride),
            BasicConv(2 * inter_planes,
                       2 * inter_planes,
                      kernel_size=3,
                      stride=1,
                      padding=visual,
                      dilation=visual,
                      relu=False))
        self.branch1 = nn.Sequential(
            BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
            BasicConv(inter_planes,
                       2 * inter_planes,
                      kernel_size=(3, 3),
                      stride=stride,
```

```
padding=(1, 1)),
        BasicConv(2 * inter_planes,
                  2 * inter_planes,
                  kernel_size=3,
                  stride=1,
                  padding=visual + 1,
                  dilation=visual + 1,
                  relu=False))
    self.branch2 = nn.Sequential(
        BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
        BasicConv(inter_planes, (inter_planes // 2) * 3,
                  kernel_size=3,
                  stride=1,
                  padding=1),
        BasicConv((inter_planes // 2) * 3,
                  2 * inter_planes,
                  kernel_size=3,
                  stride=stride,
                  padding=1),
        BasicConv(2 * inter_planes,
                  2 * inter_planes,
                  kernel_size=3,
                  stride=1,
                  padding=2 * visual + 1,
                  dilation=2 * visual + 1,
                  relu=False))
    self.ConvLinear = BasicConv(6 * inter_planes,
                                 out_planes,
                                 kernel_size=1,
                                 stride=1,
                                 relu=False)
    self.shortcut = BasicConv(in_planes,
                               out_planes,
                               kernel_size=1,
                               stride=stride,
                               relu=False)
    self.relu = nn.ReLU(inplace=False)
def forward(self, x):
    x0 = self.branch0(x)
    x1 = self.branch1(x)
    x2 = self.branch2(x)
```

```
out = torch.cat((x0, x1, x2), 1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out * self.scale + short
        out = self.relu(out)
        return out
class BasicRFB_small(nn.Module):
    I = I = I
    [rfbs]
    filters = 128
    stride=1 or 2
    scale = 1.0
    1 1 1
    def __init__(self, in_planes, out_planes, stride=1, scale=0.1):
        super(BasicRFB_small, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes // 4
        self.branch0 = nn.Sequential(
            BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
            BasicConv(inter_planes,
                       inter_planes,
                       kernel_size=3,
                       stride=1,
                       padding=1,
                       relu=False))
        self.branch1 = nn.Sequential(
            BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
            BasicConv(inter_planes,
                       inter_planes,
                       kernel_size=(3, 1),
                       stride=1,
                       padding=(1, 0),
            BasicConv(inter_planes,
                       inter_planes,
                       kernel_size=3,
                       stride=1,
                       padding=3,
```

```
dilation=3,
              relu=False))
self.branch2 = nn.Sequential(
    BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
    BasicConv(inter_planes,
              inter_planes,
              kernel_size=(1, 3),
              stride=stride,
              padding=(0, 1)),
    BasicConv(inter_planes,
              inter_planes,
              kernel_size=3,
              stride=1,
              padding=3,
              dilation=3,
              relu=False))
self.branch3 = nn.Sequential(
   BasicConv(in_planes, inter_planes // 2, kernel_size=1, stride=1),
    BasicConv(inter_planes // 2, (inter_planes // 4) * 3,
              kernel_size=(1, 3),
              stride=1,
              padding=(0, 1),
    BasicConv((inter_planes // 4) * 3,
              inter_planes,
              kernel_size=(3, 1),
              stride=stride,
              padding=(1, 0)),
    BasicConv(inter_planes,
              inter_planes,
              kernel_size=3,
              stride=1,
              padding=5,
              dilation=5,
              relu=False))
self.ConvLinear = BasicConv(4 * inter_planes,
                             out_planes,
                             kernel_size=1,
                             stride=1,
                             relu=False)
self.shortcut = BasicConv(in_planes,
                          out_planes,
                           kernel_size=1,
```

3.10 SEB

说明:严格来说,这不属于即插即用模块,但是我比较喜欢这种简单而实用的构造,所以也加进来了。SEB 是 ExFuse 论文中提出的一种特征融合方法,并没有采用传统的相加或者 concatenation 的方法,使用了相乘的方法。

论文: https://arxiv.org/pdf/1804.03821

代码:

```
class SematicEmbbedBlock(nn.Module):
    def __init__(self, high_in_plane, low_in_plane, out_plane):
        super(SematicEmbbedBlock, self).__init__()
        self.conv3x3 = nn.Conv2d(high_in_plane, out_plane, 3, 1, 1)
        self.upsample = nn.UpsamplingBilinear2d(scale_factor=2)

        self.conv1x1 = nn.Conv2d(low_in_plane, out_plane, 1)

    def forward(self, high_x, low_x):
        high_x = self.upsample(self.conv3x3(high_x))
        low_x = self.conv1x1(low_x)
        return high_x * low_x
```

3.11 SSHContextModule

Figure 4: SSH context module.

说明:其实这样一看这个模块就是利用了两个分支不同的感受野,然后进行了融合,使用在人脸识别中,一个小的模块。

论文: https://www.arxiv.org/pdf/1708.03979 论文: import torch import torch.nn as nn

```
class Conv3x3BNReLU(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(Conv3x3BNReLU,self).__init__()
        self.conv3x3 = nn.Conv2d(in_channel, out_channel, 3, 1, 1)
```

```
self.bn = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        return self.relu(self.bn(self.conv3x3(x)))
class SSHContextModule(nn.Module):
    def __init__(self, in_channel):
        super(SSHContextModule, self).__init__()
        self.stem = Conv3x3BNReLU(in_channel, in_channel//2)
        self.branch1_conv3x3 = Conv3x3BNReLU(in_channel//2, in_channel//2)
        self.branch2_conv3x3_1 = Conv3x3BNReLU(in_channel//2, in_channel//2)
        self.branch2_conv3x3_2 = Conv3x3BNReLU(in_channel//2, in_channel//2)
    def forward(self, x):
        x = self.stem(x)
        # branch1
        x1 = self.branch1_conv3x3(x)
        # branch2
        x2 = self.branch2\_conv3x3\_1(x)
        x2 = self.branch2\_conv3x3\_2(x2)
        # concat
        # print(x1.shape, x2.shape)
        return torch.cat([x1, x2], dim=1)
if __name__ == "__main__":
    in_tensor = torch.zeros((6, 64, 128, 128))
   module = SSHContextModule(64)
    out_tensor = module(in_tensor)
    print(out_tensor.shape)
```

3.12 Strip Pooling

说明:跟 CCNet 挺像的,就是对 SPP 这种传统的 Spatial Pooling 进行了改进,设计了新的体系结构。

论文: https://arxiv.org/abs/2003.13328v1

代码:

```
import torch
import torch.nn as nn

import torch.nn.functional as F

///
https://www.cnblogs.com/YongQiVisionIMAX/p/12630769.html
https://github.com/Andrew-Qibin/SPNet/blob/master/models/spnet.py
///
```

class StripPooling(nn.Module):
 def __init__(self, in_channels, pool_size, norm_layer, up_kwargs):
 super(StripPooling, self).__init__()
 self.pool1 = nn.AdaptiveAvgPool2d(pool_size[0])
 self.pool2 = nn.AdaptiveAvgPool2d(pool_size[1])

 self.pool3 = nn.AdaptiveAvgPool2d((1, None))
 self.pool4 = nn.AdaptiveAvgPool2d((None, 1))

 inter_channels = int(in_channels/4)

```
self.conv1_1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels,
    norm_layer(inter_channels),
                                 nn.ReLU(True))
    self.conv1_2 = nn.Sequential(nn.Conv2d(in_channels, inter_channels,
    norm_layer(inter_channels),
                                 nn.ReLU(True))
    self.conv2_0 = nn.Sequential(nn.Conv2d(inter_channels,

    inter_channels, 3, 1, 1, bias=False),

                                 norm_layer(inter_channels))
    self.conv2_1 = nn.Sequential(nn.Conv2d(inter_channels,

    inter_channels, 3, 1, 1, bias=False),

                                 norm_layer(inter_channels))
    self.conv2_2 = nn.Sequential(nn.Conv2d(inter_channels,

    inter_channels, 3, 1, 1, bias=False),

                                 norm_layer(inter_channels))
    self.conv2_3 = nn.Sequential(nn.Conv2d(inter_channels,
     \rightarrow inter_channels, (1, 3), 1, (0, 1), bias=False),
                                 norm_layer(inter_channels))
    self.conv2_4 = nn.Sequential(nn.Conv2d(inter_channels,
    \rightarrow inter_channels, (3, 1), 1, (1, 0), bias=False),
                                 norm_layer(inter_channels))
    self.conv2_5 = nn.Sequential(nn.Conv2d(inter_channels,

    inter_channels, 3, 1, 1, bias=False),

                                 norm_layer(inter_channels),
                                 nn.ReLU(True))
    self.conv2_6 = nn.Sequential(nn.Conv2d(inter_channels,

    inter_channels, 3, 1, 1, bias=False),

                                 norm_layer(inter_channels),
                                 nn.ReLU(True))
    self.conv3 = nn.Sequential(nn.Conv2d(inter_channels*2, in_channels,
    norm_layer(in_channels))
    # bilinear interpolate options
    self._up_kwargs = up_kwargs
def forward(self, x):
    _, _, h, w = x.size()
    x1 = self.conv1_1(x)
    x2 = self.conv1_2(x)
```

```
x2_1 = self.conv2_0(x1)
        x2_2 = F.interpolate(self.conv2_1(self.pool1(x1)),
                             (h, w), **self._up_kwargs)
        x2_3 = F.interpolate(self.conv2_2(self.pool2(x1)),
                             (h, w), **self._up_kwargs)
        x2_4 = F.interpolate(self.conv2_3(self.pool3(x2)),
                             (h, w), **self._up_kwargs)
        x2_5 = F.interpolate(self.conv2_4(self.pool4(x2)),
                             (h, w), **self._up_kwargs)
        x1 = self.conv2_5(F.relu_(x2_1 + x2_2 + x2_3))
        x2 = self.conv2_6(F.relu_(x2_5 + x2_4))
        out = self.conv3(torch.cat([x1, x2], dim=1))
        return F.relu_(x + out)
class PyramidPooling(nn.Module):
    11 11 11
    Reference:
        Zhao, Hengshuang, et al. *"Pyramid scene parsing network."*
    def __init__(self, in_channels, norm_layer, up_kwargs):
        super(PyramidPooling, self).__init__()
        self.pool1 = nn.AdaptiveAvgPool2d(1)
        self.pool2 = nn.AdaptiveAvgPool2d(2)
        self.pool3 = nn.AdaptiveAvgPool2d(3)
        self.pool4 = nn.AdaptiveAvgPool2d(6)
        out_channels = int(in_channels/4)
        self.conv1 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1,
         ⇔ bias=False),
                                   norm_layer(out_channels),
                                   nn.ReLU(True))
        self.conv2 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1,
         ⇔ bias=False),
                                    norm_layer(out_channels),
                                    nn.ReLU(True))
        self.conv3 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1,

    bias=False),
                                   norm_layer(out_channels),
```

```
nn.ReLU(True))
        self.conv4 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1,

    bias=False),
                                    norm_layer(out_channels),
                                    nn.ReLU(True))
        # bilinear interpolate options
        self._up_kwargs = up_kwargs
    def forward(self, x):
        _, _, h, w = x.size()
        feat1 = F.interpolate(self.conv1(self.pool1(x)),
                               (h, w), **self._up_kwargs)
        feat2 = F.interpolate(self.conv2(self.pool2(x)),
                               (h, w), **self._up_kwargs)
        feat3 = F.interpolate(self.conv3(self.pool3(x)),
                               (h, w), **self._up_kwargs)
        feat4 = F.interpolate(self.conv4(self.pool4(x)),
                               (h, w), **self._up_kwargs)
        return torch.cat((x, feat1, feat2, feat3, feat4), 1)
class SPHead(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer, up_kwargs):
        super(SPHead, self).__init__()
        inter_channels = in_channels // 2
        self.trans_layer = nn.Sequential(nn.Conv2d(in_channels,

    inter_channels, 1, 1, 0, bias=False),

                                          norm_layer(inter_channels),
                                          nn.ReLU(True)
        self.strip_pool1 = StripPooling(
            inter_channels, (20, 12), norm_layer, up_kwargs)
        self.strip_pool2 = StripPooling(
            inter_channels, (20, 12), norm_layer, up_kwargs)
        self.score_layer = nn.Sequential(nn.Conv2d(inter_channels,

    inter_channels // 2, 3, 1, 1, bias=False),

                                          norm_layer(inter_channels // 2),
                                          nn.ReLU(True),
                                          nn.Dropout2d(0.1, False),
                                          nn.Conv2d(inter_channels // 2,
 → out_channels, 1))
    def forward(self, x):
```

```
x = self.trans_layer(x)
x = self.strip_pool1(x)
x = self.strip_pool2(x)
x = self.score_layer(x)
return x
```