Dacă U este un subspațiu vectorial al lui V, atunci $\dim U \leq \dim V$.

Demonstrație:

Vom demonstra și vom folosi următoarea Lemă:

Dimensiunea unui spațiu vectorial este egală cu numărul maxim de vectori liniar independenți în acel spațiu vectorial.

Dacă n este numărul maxim de vectori liniar independenți într-un spațiu vectorial V, iar v_1, v_2, \ldots, v_n sunt n vectori liniar independenți, atunci v_1, v_2, \ldots, v_n este și sistem de generatori, deci bază. Într-adevăr, dacă $v \in V$ este un vector oarecare din V, din maximalitatea alegerii lui n rezultă că vectorii v_1, v_2, \ldots, v_n, v sunt liniar dependenți (altminteri am avea n+1 vectori liniar independenți în V).

Atunci există scalarii $\alpha_1, \alpha_2, \ldots, \alpha_n, \alpha$, nu toți nuli, astfel ca $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n + \alpha v = \theta$. Dacă $\alpha = 0$ s-ar contrazice liniar independența lui v_1, v_2, \ldots, v_n . Așadar, $\alpha \neq 0$ și atunci $v = -\frac{\alpha_1}{\alpha} \cdot v_1 - \frac{\alpha_2}{\alpha} \cdot v_2 - \ldots - \frac{\alpha_n}{\alpha} \cdot v_n$, adică vectorul arbitrar v este generat de v_1, v_2, \ldots, v_n .

Revenim la problema inițială. Orice vectori care sunt liniar independenți în U sunt liniar independenți și în V, deci numărul maxim de vectori liniar independenți în U este cel mult egal cu numărul maxim de vectori liniar independenți în V, adică $\dim U \leq \dim V$.