MATHEMATICAL WRITING CHEAT SHEET

LOGICAL PROGRESSION AND REASONING

- Therefore, it follows that...
- Thus, we conclude that...
- Hence, we obtain...
- From this, it follows that...
- As a result, we deduce that...
- Consequently, we see that...
- Since C is always true, we must have...

IF-THEN STATEMENTS AND ASSUMPTIONS

- If X holds, then Y must also hold.
- Suppose that P is true; then we must have...
- Given that A is satisfied, it follows that...
- Assume that f(x) is differentiable; then we can write...
- Under these conditions, we can conclude that...

DEFINITIONS AND EXPLANATIONS

- We define f(x) as follows:
- The term "X" refers to...
- By definition, we have...
- Formally, a function is said to be continuous if ...
- For the sake of clarity, we introduce the notation...

PROOFS AND JUSTIFICATIONS

- To prove this, we proceed as follows...
- We now establish the claim by induction.
- Consider the case where...
- By contradiction, suppose that...
- This result follows directly from Theorem X.
- Applying Lemma Y, we obtain...
- Using the assumption that..., we see that...

Comparisons and Contrasts

- Unlike the previous case, here we find that...
- This result is similar to... but differs in that...
- In contrast to..., we now observe that...
- A key distinction between these cases is that...
- While X holds in general, it does not necessarily imply Y.

Example and Counterexample

- As an example, consider the function...
- For instance, if we take x = 2, then...
- A simple case to illustrate this is...
- However, the following counterexample shows that...
- To demonstrate that this condition is necessary, consider...

SUMMARIZING AND CONCLUDING

- In summary, we have shown that...
- To conclude, we have established that...
- This completes the proof of Theorem X.
- The main result can be summarized as follows...
- Overall, these findings demonstrate that...

TRANSITIONS BETWEEN STEPS

- Next, we consider the case where...
- Proceeding in a similar manner, we obtain...
- We now turn our attention to...
- Applying the previous result, we get...
- Rewriting the equation, we find that...

Name	When to Use	Purpose	Typical Use Case / Example
Theorem	To state a main or central result	Highlight core discoveries or results	Identity for odd powers; main result of the paper
Lemma	To prove a technical or supporting result	Used as a step in proving a theorem	Symmetry of coefficients; bounds or identities needed in proof
Corollary	When a result follows immediately from a theorem or proposi- tion	Show an obvious or elegant consequence	Special case of the main identity for fixed m ; simplification when n is even
Proposition	For results of interest but not central	Formal observation or intermediate result	Recurrence for coefficients; structural property of a sum
Definition	When introducing a new term or concept	Formalize language and notation used in the paper	Definition of symmetric polynomial; custom difference operator
Remark	To provide intuition, clarification, or context	Connect ideas, explain motivation, relate to known results	Analogy with Faulhaber's formula; interpret symmetry
Example	To illustrate a result or concept	Make abstract ideas more concrete	Compute identity for n^3 ; verify identity for $m=1$
Conjecture	To pose a plausible but unproven claim	Suggest direction for future work	General form for even powers; observed numerical pattern

Table 1. Guidelines for Using Mathematical Statement Types in Writing