IoT Final Project

ECS 333 / 533

Alli Khadga Jyoth 19024, DSE November 12, 2021

1 Component 1 Plotting

timestamp, temperature_site1, and humidity_site1 days = 2+4+1=7 to 11

```
[1]: %load_ext lab_black
```

```
[2]: import pandas as pd import matplotlib.pyplot as plt from datetime import datetime as dt
```

Loading and Initial Observations

```
[3]: df = pd.read_csv(
    "weather_data_2sites-1.csv",
    parse_dates=["timestamp"],
    infer_datetime_format="%yyyy-%m-%dd %H:%M:%S",
).drop(columns=["temperature_site2", "humidity_site2", "Unnamed: 0"])
start_date = "2018-03-07 00:00:00"
end_date = "2018-03-12 00:00:00"
df = df[(df["timestamp"] >= start_date) & (df["timestamp"] < end_date)]
df["date"] = df["timestamp"].dt.date
df["time"] = df["timestamp"].dt.time
df["day"] = df["timestamp"].dt.day
df.reset_index(inplace=True, drop=True)
df.plot(x="timestamp", y=["temperature_site1", "humidity_site1"])
plt.show()
print(df)</pre>
```


		timestamp	temperature_site1	humidity_site1	date	\
0 201	.8-03-07	00:00:00	19.0	64.0	2018-03-07	
1 201	.8-03-07	00:30:00	18.5	66.0	2018-03-07	
2 201	.8-03-07	01:00:00	18.0	68.0	2018-03-07	
3 201	.8-03-07	01:30:00	17.5	70.0	2018-03-07	
4 201	.8-03-07	02:00:00	17.0	72.0	2018-03-07	
235 201	.8-03-11	21:30:00	25.0	41.0	2018-03-11	
236 201	.8-03-11	22:00:00	24.0	47.0	2018-03-11	
237 201	.8-03-11	22:30:00	24.0	47.0	2018-03-11	
238 201	.8-03-11	23:00:00	24.0	47.0	2018-03-11	
239 201	.8-03-11	23:30:00	22.0	55.0	2018-03-11	
	time	day				
0 00	0:00:00	7				
1 00	:30:00	7				
2 01	:00:00	7				
3 01	:30:00	7				
4 02	2:00:00	7				
235 21	:30:00	11				
236 22	2:00:00	11				
237 22	2:30:00	11				

```
238 23:00:00 11
239 23:30:00 11
```

[240 rows x 6 columns]

1.1 Line Plots

Preprocessing the data for plotting

```
[4]: k = df[["temperature_site1", "humidity_site1", "date", "time"]]
     \# k = k.
      →melt(id_vars=['time', 'temperature_site1', 'humidity_site1'], value_vars=['date']).
     →set_index([ 'value', 'time']).unstack('value')
     k.set_index(["date", "time"], inplace=True, drop=True)
     k = k.unstack("date")
     k.head()
[4]:
                                                                                \
              temperature_site1
                     2018-03-07 2018-03-08 2018-03-09 2018-03-10 2018-03-11
     date
     time
     00:00:00
                                       20.0
                                                  22.0
                                                              23.0
                                                                         23.0
                            19.0
     00:30:00
                            18.5
                                       20.0
                                                  21.0
                                                              22.0
                                                                         22.0
     01:00:00
                            18.0
                                       19.0
                                                  21.0
                                                              22.0
                                                                         22.0
                                                  20.0
     01:30:00
                            17.5
                                       19.0
                                                              22.0
                                                                         21.0
     02:00:00
                            17.0
                                       19.0
                                                  20.0
                                                              21.0
                                                                         21.0
              humidity_site1
     date
                  2018-03-07 2018-03-08 2018-03-09 2018-03-10 2018-03-11
     time
     00:00:00
                        64.0
                                    60.0
                                               60.0
                                                           53.0
                                                                      57.0
                        66.0
                                    60.0
                                               64.0
                                                           57.0
                                                                      60.0
     00:30:00
     01:00:00
                        68.0
                                    64.0
                                               64.0
                                                           57.0
                                                                      60.0
     01:30:00
                                    64.0
                                               68.0
                                                           57.0
                                                                      64.0
                        70.0
     02:00:00
                        72.0
                                    64.0
                                               64.0
                                                           60.0
                                                                      64.0
[5]: k["temperature_site1"].plot(
         figsize=(10, 10), ylabel="Temperature", title="Time vs Temperature"
     k["humidity_site1"].plot(figsize=(10, 10), ylabel="Humidity", title="Time vs_
      →Humidity")
     plt.show()
```


1.2 Box Plots

```
[6]: k.plot(
         kind="box",
         y="temperature_site1",
         figsize=(15, 10),
         title="Temperature Box Plot",
         ylabel="Temperature",
)
k.plot(
        kind="box",
        y="humidity_site1",
        figsize=(15, 10),
```

```
title="Humidity Box Plot",
  ylabel="Humidity",
)
plt.show()
```


1.3 Scatter Matrix

[]:

2 Component # 2: Analysis

2.0.1 Loading and pre-processing the data

```
[8]: Syn_weather = pd.read_csv(
    "weather_data_2sites-1.csv",
    parse_dates=["timestamp"],
    infer_datetime_format="%yyyy-%m-%dd %H:%M:%S",
    skiprows=[1],
).drop(columns=["temperature_site2", "humidity_site2", "Unnamed: 0"])
```

```
Syn_weather["day-minutes"] = (
    Syn_weather["timestamp"].dt.hour * 60 + Syn_weather["timestamp"].dt.minute
)
Syn_weather["day-of-the-week"] = Syn_weather["timestamp"].dt.dayofweek
Syn_weather["previous-temperature"] = Syn_weather["temperature_site1"].shift()
Syn_weather.drop(columns="timestamp", inplace=True)
Syn_weather.rename(
    columns={"temperature_site1": "temperature", "humidity_site1": "humidity"},
    inplace=True,
)
Syn_weather.index = Syn_weather.index + 1
Syn_weather.loc[1, "previous-temperature"] = Syn_weather.loc[
    1, "temperature"
] # setting the first previous-temperature value to the temperature in its row_
    otherwise,
# it would take 'NaN' value, which will raise an error during the model training.
Syn_weather

temperature humidity day-minutes day-of-the-week \
```

[8]:		temperature	humidity	day-minutes	day-of-the-week	\
	1	21.0	68.0	30	3	
	2	20.0	73.0	60	3	
	3	20.0	73.0	90	3	
	4	20.0	73.0	120	3	
	5	20.0	70.0	150	3	
	5775	28.0	84.0	60	4	
	5776	28.0	84.0	90	4	
	5777	28.0	84.0	120	4	
	5778	28.0	84.0	150	4	
	5779	28.0	84.0	180	4	
		previous-tem	perature			
1			21.0			
	2		21.0			
	3		20.0			
	4		20.0			
	5		20.0			
	5775		28.0			
	5776		28.0			
	5777		28.0			
	5778		28.0			
	5779		28.0			

2.1 Regression

2.2 Linear regression

Making test, train sets of the data and, fitting the model

```
[11]: M1 = skl_lm.LinearRegression()  # defining a Regression model
X_train, X_test, y_train, y_test = train_test_split(
          X, y, test_size=1 / 3, random_state=5
)  # test, train sets are split from the original data
M1.fit(X_train, y_train)  # Fitting the model to the train sets
print("Intercept :", M1.intercept_)
print("Coefficients :", M1.coef_)
```

Intercept : 1.9119579822386612
Coefficients : [-1.52052587e-02 -4.70626721e-04 -7.08096125e-03 9.69701851e-01]

```
[12]: m1_pred = M1.predict(X_test)
rmse = mean_squared_error(
    y_test, m1_pred, squared=False
) # if squared is 'True' it gives MSE or else it gives RMSE
print("RMSE (M1) : %.3f" % rmse)
```

RMSE (M1) : 0.924

2.3 Cross Validation

```
[13]: from sklearn.model_selection import (
         KFold.
      ) # Splitting the data into K folds used for cv (Cross Validation)
      from sklearn.model_selection import cross_val_score # For calculating the RMSE
      from sklearn.model_selection import cross_val_predict # For predictions using cv
[14]: X = Syn_weather[
          ["humidity", "day-minutes", "day-of-the-week", "previous-temperature"]
      ] # Independent Variables
      y = Syn_weather.temperature  # Dependent Variable
      kfold = KFold(
          n_splits=10, random_state=5, shuffle=True
      ) # 10 fold splitting of the input data
      M2 = skl_lm.LinearRegression()
      results = cross_val_score(
         M2, X, y, cv=kfold, scoring="neg_mean_squared_error"
      ) # Calculating the RMSE of Cross Validation method
      rmse = np.mean(np.sqrt(np.abs(results))) # Converting MSE to RMSE
      print("RMSE (M2) : %.3f" % rmse)
```

RMSE (M2): 0.938

2.4 Step-Wise Regression

```
[15]: import statsmodels.api as sm
[16]: x_columns = [
          "humidity",
          "day-minutes",
          "day-of-the-week",
          "previous-temperature",
      ] # getting the regression variables
      y = Syn_weather.temperature
      def stepwise_reg():
          x = Syn_weather[x_columns]
          results = sm.OLS(y, x).fit() # Fitting a OLS model on y,x
          aic = []
          if len(x_columns) != 2: # condition, so we only get top 2 regressors
              re = results.pvalues  # Finding the p values of independent variables
              aic.append(results.aic)
              k = re[
```

```
re == re.max()
].index.array # removing the least favorable regressor ie., max p value.
x_columns.remove(k[0])
# print(results.pvalues,results.aic,x_columns)
stepwise_reg() # looping through the regression once again.
else:
    print(f"The top 2 regressors are : {x_columns[0]}, {x_columns[1]}")
stepwise_reg()
```

The top 2 regressors are : day-minutes, previous-temperature

• Even though the Humidity has highest correlation with temperature, we see that it has less significance compared to day-minutes or previous-temperature

2.5 Corr coeff

```
[17]: corr = Syn_weather.corr()
corr

[17]: temperature humidity day-minutes day-of-the-week \
temperature 1.000000 -0.702853 0.368295 -0.021720
```

```
-0.352824
                                                                 0.007783
humidity
                        -0.702853 1.000000
day-minutes
                        0.368295 -0.352824
                                                1.000000
                                                                -0.000376
                                               -0.000376
day-of-the-week
                        -0.021720 0.007783
                                                                 1.000000
previous-temperature
                        0.988245 -0.691608
                                                0.394892
                                                                -0.021230
```

 $\begin{array}{ccc} & & & & \\ \text{temperature} & & 0.988245 \\ \text{humidity} & & -0.691608 \\ \text{day-minutes} & & 0.394892 \\ \text{day-of-the-week} & & -0.021230 \\ \text{previous-temperature} & & 1.000000 \\ \end{array}$

2.5.1 Correlation Matrix

```
[18]: mask = np.triu(np.ones_like(corr, dtype=bool))
    sns.set_theme(style="white")
    fig, ax = plt.subplots(figsize=(11, 9))
    cmap = sns.diverging_palette(220, 20, n=200, as_cmap=True)
    sns.heatmap(
        corr,
        mask=mask,
        vmax=0.3,
        center=0,
        square=True,
        fmt=".4f",
```

```
annot=True,
  cmap=cmap,
  linewidths=2,
  cbar_kws={"shrink": 0.5},
)
plt.show()
```


- The Correlation between temperature and Humidity is very -ve. This tells that as humidity increases the temperature decreases, which is accurate.
- The 'day-minutes' (basically tells us what time of the day) is +ve correlated to temperature. This is also accurate to the real world.
- From the correlation plot/ matrix, it's very clear that 'day-of-the-week' has very little effect on temperature and humidity.
- Previous temperature has a considerate effect on humidity.

2.6 Plotting

```
[19]: m1_pred = M1.predict(X)
                              pred_M1 = pd.DataFrame({"actual": y, "predicted": m1_pred})
                             m2_pred = cross_val_predict(
                                             M2, X, y, cv=kfold
                              ) # Predicting using Crosss Validation method
                              pred_M2 = pd.DataFrame({"actual": y, "pred": m2_pred})
                              fig, axes = plt.subplots(2, 1, figsize=(23, 20))
                             pred_M1.plot(
                                                 ax=axes [0], \ subplots=False, \ ylabel="Temperature", \ sharex=True, \ title="Model_{\sqcup} respective to the context of the co
                                 ⊹M1"
                              pred_M2.plot(
                                                 ax=axes[1],
                                                 subplots=False,
                                                 ylabel="Temperature",
                                                 xlabel="Observation No. (Index)",
                                                 title="Model M2",
                              plt.show()
```


- Since, both M1 and M2 have an RMSE of <1, we expect a good fit of values
- Considering the RMSE values of M1 and M2 only differ by ~0.01, we expect both the models to be very similar in performance
- Both M1 and M2 models are very accurate and precise and this can be seen by the plots.
- The plots shows that, in this case the Cross Validation method has very minimal improvements over regular Linear regression with test, train split.

[]: