Content

- Added features
- Comparision between linear and non linear H
- Comparision between interpolation methods with/without projective B matrix

Added features

- Cubic H operator and adjoint :
 - H_{nl} : 1) $x \to x^3$, 2) interpolation on obs points.
 - H:1) $x \to 3x^g x^g x^3$, 2) interpolation on obs points.
 - H^* : 1) interpolation on grid points, 2) $x \to 3x^g x^g x^3$.
- Truth:
 - 1) $x^t = \text{rand_normal}(n_h)$.
 - 2) $x^t = B^{1/2}x^t$.
- Observations from the truth :

$$y = Hx^t + N(0, \sigma^o).$$

• Nearest Neighbor interpolation.

Check the observations from x^t

$$\sigma^o = 0.001$$

FIGURE - Obs with a linear H

FIGURE $-x^t$

Check the observations from x^t

$$\sigma^o = 0.001$$

FIGURE - Obs with a cubic H

FIGURE $-x^t$

Comparision between linear and non linear $H: J^o$

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Comparision between linear and non linear $H:J^o$

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Cubic case :

Comparision between linear and non linear H : J_{nl}^{o}

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Cubic case :

Projective B-matrix

Projective B matrix : nearest interpolation : J^o

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Projective B matrix : nearest interpolation : J^b

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Projective B matrix : bilinear interpolation : J^o

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Projective B matrix : bilinear interpolation : J^b

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Non projective B-matrix

Non projective B matrix : spectral interpolation : J^o

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Non projective B matrix : spectral interpolation : J^b

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Non projective B matrix : bilinear interpolation : J^o

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Non projective B matrix : bilinear interpolation : J^b

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Non projective B matrix : nearest interpolation : J^o

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Non projective B matrix : nearest interpolation : J^b

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. Linear case :

Non projective B-matrix with cubic H

Non projective B matrix : spectral interpolation : J

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. cubic case :

Non projective B matrix : spectral interpolation : $J_n^o I$

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. cubic case :

Non projective B matrix : spectral interpolation : J^o

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. cubic case :

Non projective B matrix : spectral interpolation : J^b

$$n_x = n_y = 23,51,101$$
; $\sigma^o = 0.001$; $\sigma^b_{var} = 0$; $L_b = 0.1$; $n_{obs} = 300$. cubic case :

Short conclusion and questions:

- As expected: The only way to get no differences between the methods (th, std, alt) is to have a transitive interpolation AND the projective B matrix condition.
- There is often a change of variation at the first inner loop level (except for the first outer loop).
- Nearest neighbor interpolation seems not transitive (?) (+periodic domain? + very slow...)
- Similar behaviour with H measuring x^4 (not shown).
- Question: What happens if two observations are interpolated at the same grid point with the bilinear and nearest neighbor interpolations?
- Question : equation 38 from the notes.