On appelle **primitive** de f sur I toute fonction F dérivable sur I dont la dérivée F' est égale à f. Pour tout nombre réel x de I, F'(x) = f(x).

• Si F est une primitive de f sur l'intervalle I, alors toutes les primitives de f sur I sont les fonctions G définies sur I par G(x) = F(x) + C où C désigne un nombre réel arbitraire.

Exercices:

Dans chacun des cas suivants, vérifier que la fonction F est une primitive sur \mathbb{R} de la fonction f.

a)
$$F(x) = \frac{x^3}{3} + 2x^2 + 4$$
; $f(x) = x^2 + 4x$.

b)
$$F(x) = 2e^x + \frac{1}{2}x^2$$
; $f(x) = 2e^x + x$.

c)
$$F(x) = e^{-2x} + 3e^x + 5$$
; $f(x) = 3e^x - 2e^{-2x}$.

2 Dans chacun des cas suivants, indiquer en justifiant la réponse si la fonction *F* est une primitive sur l'intervalle *I* de la fonction *f*.

a)
$$I = \mathbb{R}$$
; $F(x) = -\frac{4}{3}x^3 + 4x^2 - 5x + 2$;

$$f(x) = -4x^2 + 8x - 5.$$

b)
$$I =]0; + \infty[; F(x) = 3 \ln x + 5x^2 + 4;$$

$$f(x) = \frac{3}{x} + 10x.$$

c)
$$I = \mathbb{R}$$
; $F(x) = 3e^{-2x} + 5e^x$;

$$f(x) = e^{-2x} + 5e^x.$$

d)
$$I =]0; + \infty[; F(x) = \frac{1}{x^2} + \frac{3}{x};$$

$$f(x) = -\frac{2}{x^3} + 3 \ln x.$$

Correction:

Ex1; MINTER COM

2)
$$F'(x) = -4x^2 + 8x - 5 = f(x)$$

donc oui.

b)
$$F'(x) = \frac{3}{x} + 10x = f(x)$$
done oni.

c)
$$F'(x) = -6e^{-2x} + 5e^{x}$$

donc non.

d)
$$F'(x) = -\frac{2}{x^3} - \frac{3}{x^2}$$

donc non.

Les résultats à connaître

F et G sont des primitives respectives de f et g sur un intervalle I; k est un nombre réel. Alors, F+G est une primitive de f+g sur I et kF est une primitive de kf sur I.

Fonction f	Primitives F	
f(x) = a; a réel	F(x) = ax + C	
$f(x) = \frac{1}{x} (x > 0)$	$F(x) = \ln x + C$	
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + C$	
$f(x) = \frac{1}{\sqrt{x}} \ (x > 0)$	$F(x) = 2\sqrt{x} + C$	
$f(x) = x^n$ (n entier relatif; $n \neq -1$)	$F(x) = \frac{x^{n+1}}{n+1} + C$	

Fonction f	Primitives F	
$f(x) = e^x$	$F(x) = e^x + C$	

Fonction f	Primitives F	
$f(x) = (u(x))^n \times u'(x)$ (n entier relatif; $n \neq -1$)	$F(x) = \frac{(u(x))^{n+1}}{n+1} + C$	
$f(x) = \frac{u'(x)}{u(x)} (u(x) > 0)$	$F(x) = \ln (u(x)) + C$	
$f(x) = e^{u(x)} \times u'(x)$	$F(x) = e^{u(x)} + C$	

Exemple 1. Déterminer les primitives de f définie sur \mathbb{R} par $f(x) = 2x^3 + 4x - 3e^x$.

- L'écriture de f (x) fait intervenir uniquement la somme et le produit par un nombre de fonctions données dans les tableaux page 241.
- · On lit dans les tableaux :

Fonctions	X3	X	e ^x
Primitives	$\frac{x^4}{4}$	$\frac{x^2}{2}$	e*

 En multipliant par les nombres convenables, on obtient :

Fonctions	2x3	4x	- 3e*
Primitives	$2\frac{x^4}{4}$	$4\frac{x^2}{2}$	- 3e×

• Par addition, on obtient donc une primitive F de f: $F(x) = \frac{x^4}{2} + 2x^2 - 3e^x$; donc les primitives de f sont les fonctions G définies sur \mathbb{R} par $G(x) = \frac{x^4}{2} + 2x^2 - 3e^x + C$.

Exemple 2. Déterminer les primitives de f définie sur \mathbb{R} par $f(x) = 5e^{3x}$.

• On pense à écrire f(x) sous la forme $f(x) = ke^{u(x)} \times u'(x)$ avec k réel. On pose u(x) = 3x d'où u'(x) = 3.

$$e^{u(x)} \times u'(x) = e^{3x} \times 3$$
; on écrit alors $f(x) = 5 \times \frac{1}{3} \times e^{3x} \times 3$.

Ainsi
$$f(x) = \frac{5}{3}e^{u(x)} \times u'(x)$$
 d'où une primitive F de f : $F(x) = \frac{5}{3}e^{u(x)} = \frac{5}{3}e^{3x}$.

• Primitives de f : les fonctions G définies sur \mathbb{R} par $G(x) = \frac{5}{3}e^{3x} + C$.

Exemple 3. Déterminer les primitives de f définie sur $[0; +\infty[$ par $f(x)=\frac{3}{2x+1}$.

• On pense à écrire f(x) sous la forme $f(x) = k \frac{u'(x)}{u(x)}$ avec k réel.

On pose u(x) = 2x + 1 d'où u'(x) = 2.

$$\frac{u'(x)}{u(x)} = \frac{2}{2x+1} \text{ ; on \'ecrit alors } f(x) = 3 \times \frac{1}{2} \times \frac{2}{2x+1}.$$

Ainsi, $f(x) = \frac{3}{2} \times \frac{u'(x)}{u(x)}$; sur $[0; +\infty[$ on a u(x) > 0;

d'où une primitive F de f: $F(x) = \frac{3}{2} \ln (u(x)) = \frac{3}{2} \ln (2x + 1)$.

Primitives de f: les fonctions G définies sur [0; + ∞ [par $G(x) = \frac{3}{2} \ln (2x + 1) + C$.

Exercices:

Déterminer les primitives des fanctions suivantes:

 $3I=\mathbb{R}.$

$$f(x) = x^2 - 3x$$
; $g(x) = -2x^3 + 4x - 5$.

4 R $I = \mathbb{R}$.

$$f(x) = 4e^x - 2x$$
; $g(x) = 3x^2 + 5e^x$.

 $[5] I =]0; + \infty[.$

$$f(x) = \frac{1}{x} + 3x$$
; $g(x) = x^2 - \frac{2}{x^2}$.

6 R $I =]0; + \infty[$.

$$f(x) = 3x^2 - \frac{4}{x^2}$$
; $g(x) = 1 + \frac{2}{x^2} - \frac{1}{x^4}$.

7 R $I =]0; + \infty[$.

$$f(t) = t + \frac{2}{t}$$
; $g(t) = 3e^{t} + \frac{5}{t}$.

9 R $I = \mathbb{R}$; $f(x) = 2e^{2x}$.

10 $I = \mathbb{R}$; $f(x) = e^{-x}$.

11 $I = \mathbb{R}$; $f(x) = 2e^{3x+1}$.

12 R $I = \mathbb{R}$; $f(x) = x + 4e^{-3x}$.

13 C $I = \mathbb{R}$; $f(x) = 2x(e^{x^2})$.

14 $I =]2; + \infty[; f(x) = \frac{1}{(x-2)^2}.$

15 $I =]-1; + \infty[; f(x) = \frac{3}{(x+1)^2}.$

16 $I = \mathbb{R}$; $f(x) = x(x^2 + 1)^3$.

17 $I =]2; + \infty[; f(x) = \frac{1}{x-2}.$

Correction:

$$E \times 3$$
: $F(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + C$

$$G(x) = -\frac{x^{h}}{2} + 2x^{2} - 5x + C$$

$$G(x) = x^3 + 5e^x + C$$