折射定律:
$$\frac{\sin i}{\sin \gamma} = \frac{u_1}{u_2}$$

说明:

折射产生的原因: 波在不同介质中的传播速度不同

不同介质
$$\left\{ egin{array}{ll} ic in the proof of the content of the c$$

$$i < \gamma$$

口 波的衍射

波在传播过程中遇到障碍物,能绕过障碍物的边缘,在障碍物的阴影区内继续传播的现象。

孔尺度与波长相近

衍射现象显著与否, 取决于障碍物的线度 和波长之比。

孔尺度与波长相近

惠更斯原理定性地解决了波的传播方向,但各子波的强度分布未能定量给出。

波传播的独立性 几列波在某区域相遇后再分开,传播 情况与未相遇时相同,<u>互不干扰</u>。

叠加原理 在相遇的区域内任一点的振动是各列波单 独传播时在该点引起的振动的合成。

波传播的独立性和叠加原理

半波长,波峰+波峰

半波长,波峰+波谷

微信号:物理学派 Wullxuepai

全波长, 步调一致

全波长, 步调相反

波传播的独立性和叠加原理

不同类型的波相遇

同向的波相遇

・干渉现象

波在叠加时,某些位置的波强始终很强,另一些位置的波强始终很弱,波强的强弱形成有规则的稳定分布的现象。

相干条件

- ① 频率相同;
- ② 振动方向相同; 或相同的偏振分量
- ③位相差恒定。

满足相干条件的波源称为相干波源。

• 波强的分布

设有两相干波源 S_1 和 S_2

波源的振动方程:

$$y_{10} = A_1 \cos(\omega t + \varphi_{10})$$

$$y_{20} = A_2 \cos(\omega t + \varphi_{20})$$

$$y_1 = A_1 \cos(\omega t + \varphi_1)$$
$$y_2 = A_2 \cos(\omega t + \varphi_2)$$

$$P$$
点的振动

P点的振动方程

$$y = y_1 + y_2 = A\cos(\omega t + \varphi)$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$$

$$\tan \varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$$

合振动的强度 $I \propto A^2$

$$A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi$$

$$\rightarrow \Delta \varphi = (\varphi_{20} - \varphi_{10}) - \frac{2\pi}{\lambda} (r_2 - r_1)$$

干涉现象

空间确定的位置,都有恒定的 $\Delta \varphi$,

因而合强度在空间形成稳定的分布

• 干涉图样

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\Delta\varphi$$

干涉相长: $\Delta \varphi = \pm 2k\pi$ $k = 0,1,2,3,\cdots$ 同相

$$A = A_{\text{max}} = A_1 + A_2$$

干涉相消: $\Delta \varphi = \pm (2k+1)\pi$ $k = 0,1,2,3,\cdots$ 反相

$$A = A_{\min} = |A_1 - A_2|$$

讨论:

① 若 $A_1 = A_2 = A$ 相长时: $A_{ch} = 2A$ 波强最强 相消时: $A_{ch} = 0$ 波强最弱 静止

两波源的波振幅相近或相等时干涉现象明显。

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\Delta\varphi$$

讨论:

② 若两相干波源同初相, $\varphi_{10} = \varphi_{20}$

干渉图样
$$\left\{egin{aligned} \delta &= r_2 - r_1 = \pm k \lambda, \quad k = 0,1,2,3,\cdots \end{aligned}
ight.$$
 干渉相长 $\delta &= r_2 - r_1 = \pm (2k+1) rac{\lambda}{2}, \quad k = 0,1,2,3,\cdots
ight.$ 干渉相消

例. S_1 和 S_2 是两相干波源,相距l=

10m, 振动位相相同, 波长 $\lambda=2m$ 。

(1) 试求从 S_2 出发沿着 $S_2 \rightarrow x$ 离 S_2 最近的干涉极小点的位置。

解:波源振动相位相同,则合成极

大或极小值仅由波程差决定

由相干相消条件得
$$\delta = |r_1 - r_2| = (2k+1)\frac{\lambda}{2}, k = 0,1,2,3,...$$

从
$$S_2$$
到无穷远处: $0 < r_1 - r_2 = (2k+1)\frac{\lambda}{2} < l = 10 \longrightarrow 0 \le k \le 4$

显然,
$$k$$
=4时, r_2 最小。 $k = 4 \longrightarrow r_1 - r_2 = 9$ m
$$r_1 = \sqrt{l^2 + r_2^2} \right\} r_2 = \frac{19}{18} \text{ m}$$

(2) 一检测器绕这两个波源一个完整的圆周,最多可测得多少个极大值。

解: 由极大(相干相长)条件:

$$r_1 - r_2 = k\lambda$$
 $k = 0, \pm 1, \pm 2\cdots$

在 S_1 和 S_2 的垂直平分线上

$$r_1 - r_2 = 0$$
 零级极大

在 S_1 和 S_2 的延长线上

$$r_1 - r_2 = \pm 10 = \pm 5\lambda$$
 第5级极大

在1/4圆弧的其他地方 $0<|r_1-r_2|<10\longrightarrow 0< k<5\longrightarrow k=1,2,3,4$

整个圆弧上的极大值: 4×4+4=20

4个极大值

例. 两波源B、D, 振动方向相同, $f_1=f_2=100$ Hz,初相差: $\varphi_D-\varphi_B=\pi$,波速400 m/s, $A_B=A_D$ 。B在坐标原点,两波源发出的平面简谐波沿相反方向传播。求:B、D连线上,因干涉而静止的各点位置。

解: $A_B = A_D$

干涉极小点的合振幅为零

静止

本题求解干涉极小点的位置即可

两波源引起P点振动的位相差:

$$\Delta \varphi = (\varphi_D - \varphi_B) - \frac{2\pi}{\lambda} (r_2 - r_1) = \pi - \frac{2\pi f}{u} [(30 - x) - x] = \pi (x - 14)$$

由干涉极小条件: $\Delta \varphi = (2k+1)\pi$ $k = 0, \pm 1, \pm 2, \pm 3, ...$

解:
$$\Delta \varphi = \pi(x-14)$$

 $\Delta \varphi = (2k+1)\pi$ $\begin{cases} x = 2k+15 \end{cases}$

$$0 \le x \le 30$$

$$\therefore -7 \le k \le 7$$

可得BD间因干涉而静止的点为:

x = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29m.

口 驻波

• 驻波的形成

振幅、频率、传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而形成的一种特殊的干涉现象。

驻波方程

设有两列相干波,分别沿x轴正、负方向传播,初相位为零

右行波
$$y_1 = A\cos(\omega t - \frac{2\pi}{\lambda}x)$$
 } $\Rightarrow y = A\cos(\omega t - \frac{2\pi}{\lambda}x) + A\cos(\omega t + \frac{2\pi}{\lambda}x)$ 左行波 $y_2 = A\cos(\omega t + \frac{2\pi}{\lambda}x)$

驻波方程:
$$y = 2A\cos\frac{2\pi}{\lambda}x \cdot \cos\omega t$$

驻波中各点作圆频率为ω的简谐振动

其振幅为
$$\left| \frac{2A\cos\frac{2\pi}{\lambda}x}{\lambda} \right|$$
 位置的函数,存在静止的点

$$y = 2A\cos\frac{2\pi}{\lambda}x \cdot \cos\omega t$$

• 驻波的基本特点

① 振幅呈周期性的空间分布 $\left| \frac{2A\cos\frac{2\pi}{\lambda}x}{\lambda} \right|$

振幅最大的点
$$\left|\cos\frac{2\pi}{\lambda}x\right|=1$$
 $\longrightarrow \frac{2\pi}{\lambda}x=k\pi$ $k=0,1,2,3,\cdots$ $k=0,1,2,3,\cdots$

振动为零的点
$$\left|\cos\frac{2\pi}{\lambda}x\right| = 0 \longrightarrow \frac{2\pi}{\lambda}x = (2k+1)\frac{\pi}{2}$$
 波节 一位置: $x = (2k+1)\frac{\lambda}{4}$

相邻波腹 (节) 间的距离为: $\frac{\lambda}{2}$

可推测行波波长

② 相位分段相等 按波节分段

两个波节之间的各点振动相位相同

② 相位分段相等 两个波节之间的各点振动相位相同

时间部分提供的相位对于所有的x是相同的,

空间变化带来的相位是不同的。

以
$$-\lambda/4 \le x \le \lambda/4$$
 为例 $y = 2A\cos\frac{2\pi}{\lambda}x \cdot \cos\omega t$ $\cos\frac{2\pi}{\lambda}x \ge 0$ 各点相位均为 ωt

相邻下一段 $\lambda/4 \le x \le 3\lambda/4$ $\cos \frac{2\pi}{2} x \le 0$ 一各点相位均为 $\omega t + \pi$

在波节两侧的点(邻近

<u>多</u> 两段)振动位相相反。

③ 驻波不传播能量

评判依据

能流密度 $\vec{I} = \vec{w}\vec{u} = \frac{1}{2}\rho A^2 \omega^2 \vec{u}$

驻波能流密度: $u\overline{w} - u\overline{w} = 0$

$$dW_k \propto (\frac{\partial y}{\partial t})^2 \quad dW_p \propto (\frac{\partial y}{\partial x})^2$$

→ 主要集中在 波腹

大 主要集中在 势能

位移最大时 波节 X 平衡位置时

平衡位置时: 动能最大

能量在相邻的波腹和波节间往复变化

位移最大时: 势能最大

驻波不是波动

而是一种特殊形式的振动。

没有振动状态或位相的传播, 也没有能量的传播

④ 半波损失 (相位跃变)

发生在波的反射过程

反射波: 波传播到两种**介质的分界面**时, 经界面反射而形成的波。

半波损失: 在反射点**入射波与反射波有相位π的突变**。

垂直入射时,是否发生半波损失由**介质性质**决定:

波的传播方向: 波疏质 ──波密质

波的传播方向:波密质 ──波疏质

有半波损失!

驻波在界面处是波节。

固定端

反射波位相中加π。

无半波损失!

驻波在界面处为波腹。

自由端

反射波相位 τ 加 π 。

波疏质 波密质

• 由波源振动方程写反射波波函数

是否存在半波损失

法1: 将反射点作为反射波波源

已知 ϕ 点振动方程为: $y_o = A\cos(\omega t + \varphi)$

入射波波逐数:
$$y_{\lambda} = A\cos(\omega t - \frac{2\pi}{\lambda}x + \varphi)$$

入射波引起反射点**P**的振动方程: $y_P = A\cos(\omega t - \frac{2\pi}{\lambda}x_P + \varphi + \frac{\pi}{\lambda}$

任意x处质元Q相比P处质元

可能的半波损失

相位落后:
$$\Delta \varphi = \frac{2\pi}{\lambda} \overline{PQ} = \frac{2\pi}{\lambda} (x_P - x)$$

反射波波函数:
$$y_{\mathbb{Q}} = A\cos[\omega t + \varphi - \frac{2\pi(2x_P - x)}{\lambda} \pm \pi]$$

• 由波源振动方程写反射波波函数

法2: 直接将已知点(O点)作为反射波波源

已知 ϕ 点振动方程为: $y_o = A\cos(\omega t + \varphi)$

任意x处质元Q相比波源O点

相位落后
$$\Delta \varphi = \frac{2\pi}{\lambda} (\overline{OP} + \overline{PQ}) \stackrel{\pm \pi}{\longrightarrow}$$
 存在半波损失时需加上

$$=\frac{2\pi}{\lambda}(2x_P-x)\pm\pi$$

反射波波函数:
$$y_{\mathbb{R}} = A\cos[\omega t + \varphi - \frac{2\pi(2x_P - x)}{\lambda} \pm \pi]$$