"Mind Reading": Decode Visual Images from Brain Activities

Data Science Live – STAT 571/701

Shaolong Wu, Yuzhou Lin, Lingqi Zhang

Members

Shaolong Wu

- Hometown: Nanjing, China
- **School:** Wharton, Engineering
- Program: BS in Economics, MSE in Electrical Engineering
- Research Interests: Econometrics

Yuzhou Lin

- Hometown: Sichuan, China
- **School:** College, Engineering
- **Program:** BA in Mathematics MSE in Data Science
- Research Interests: Causal Inference, Bayesian, Biostatistics

Lingqi Zhang

- Hometown: Zhejiang, China
- **School:** Arts and Sciences
- **Program:** PhD in Psychology
- Research Interests: Visual System, Computational Neuroscience

Introduction

 Understanding the brain is one of the most important and challenging problem

•

- ~ 100 billion neurons
- ~ trillions of connections (synapses)
- ~ 20% power, 20 W

- External stimulus Brain activities
- Visual cortex
- Rehabilitation
- Build artificial visual system
- It's really cool

Introduction

functional magnetic resonance imaging (fMRI)

> 8000 voxel, 1750 images for training, 100 images for testing

Introduction

Visual system is *Hierarchical*

Herzog & Clarke, 2014

PROPORTIONS OF TOTAL VOXELS FOR 7 BRAIN REGIONS

Exploratory Data Analysis

Correlation Coefficients of Voxel Variables

power of correlation of variables

Dimensionality Reduction

Analysis – Decoding

Logistic Regression (Family: Binomial),

Formula: Classes ~ Voxels

Classes for Objects:

- 1. Animal
- 2. Not Animal

PCA + LR

PCA + IR + ANOVA

LASSO

LASSO + ANOVA

Training Accuracy Testing Accuracy

0.483

0.692

0.69

0.883

0.855

0.517

0.65

0.675

Analysis – Decoding

ROC Curve: shows the diagnostic ability of a binary classifier system as its discrimination threshold is varied.

LASSO Model: The highest AUC

Final Model: **LASSO** (highest training accuracy in testing, highest AUC, testing accuracy high enough)

Ranking of regions in affecting prediction accuracy (7-most important; 1-least important)

Order	Region	
7	LacOcc	
6	V3	
5	V4	LGN edges and lines shapes
4	V3A	
3	V3B	
2	V2	
1	V1	and objects

(every variable -- a voxel; obtain the ranking above by calculating the proportion of voxels included in the final model for each region)

Analysis – Convolution Neural Network

voxel

Analysis – Issue with Overfitting

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Analysis – Convolution Neural Network Encoding

Analysis - Convolution Neural Network Decoding?

100 images

Analysis - Convolution Neural Network Decoding?

100 images

Analysis - Convolution Neural Network Decoding?

100 images

A simple LASSO regression is able to read-out categorical information about the visual input from later visual cortical activities A pre-trained (on object recognition) convolution neural network can be a pretty good model of brain Key Findings responses to images The network can be used to "decode" visual image from brain activities More advanced decoding method (i.e., non-linear regression) Our current model is only predictable of V1, V2: Extend to higher cortical area **Future** Directions

Thank you for your listening!

https://github.com/lingqiz/STAT-571-DataMining/tree/main/Project