STAT 231: Problem Set 1A

Xander Schwartz

due by 5 PM on Monday, February 3

In order to most effectively digest the textbook chapter readings – and the new R commands each presents – series A homework assignments are designed to encourage you to read the textbook chapters actively and in line with the textbook's Pro Tip on page 33:

"**Pro Tip**: If you want to learn how to use a particular command, we highly recommend running the example code on your own"

A more thorough reading and light practice of the textbook chapter prior to class allows us to dive quicker and deeper into the topics and commands during class. Furthermore, learning a programming lanuagage is like learning any other language – practice, practice, practice is the key to fluency. By having two assignments each week, I hope to encourage practice throughout the week. A little coding each day will take you a long way!

Series A assignments are intended to be completed individually. While most of our work in this class will be highly collaborative, it is important each individual completes the active readings. The problems should be straightforward based on the textbook readings, but if you have any questions, feel free to ask me!

Steps to proceed:

- 1. In RStudio, go to File > Open Project, navigate to the folder with the course-content repo, select the course-content project (course-content.Rproj), and click "Open"
- 2. Pull the course-content repo (e.g. using the blue-ish down arrow in the Git tab in upper right window)
- 3. Copy ps1A.Rmd from the course repo to your repo (see page 6 of the GitHub Classroom Guide for Stat231 if needed)
- 4. In the ps1A.Rmd file in YOUR repo, replace "YOUR NAME HERE" with your name
- 5. Add in your responses, committing and pushing to YOUR repo in appropriate places along the way
- 6. Run "Knit PDF"
- 7. Upload the pdf to Gradescope

1. GDP and education

a.

Figure 3.3 in Section 3.1.1 shows a scatterplot that uses both location and label as aesthetics. Reproduce this figure. Hint: you'll need to define 'g' based on code from earlier in Section 3.1.1.

```
data(CIACountries)

# define the plot object
g <- ggplot(data = CIACountries, aes(y=gdp, x=educ))

# print the plot
g+ geom_point(size=3)</pre>
```

Warning: Removed 64 rows containing missing values (geom_point).


```
g+ geom_point(aes(color =net_users ), size =3)
```


g+ geom_text(aes(label = country, color =net_users), size =3)

b.

Now, update the plot with more informative labels. Label the x-axis "% of GDP spent on education" and the y-axis "Gross Domestic Product (GDP)". Hint: see Section 3.2.2 for an example of one way to label the axes.

```
# define the plot object
g <- ggplot(data = CIACountries, aes(y=gdp, x=educ))

# print the plot
g+ geom_text(aes(label = country, color =net_users ), size =3)+ xlab("% of GDP spent on education")+yl</pre>
```


 $\mathbf{c}.$

Next, move the legend so that it's located on the top of the plot as opposed to the right of the plot. Hint: see Section 3.1.4 for an example on how to change the legend position.

```
# define the plot object
g <- ggplot(data = CIACountries, aes(y=gdp, x=educ))

# print the plot
g+ geom_text(aes(label = country, color =net_users ), size =3)+ xlab("% of GDP spent on education")+yl</pre>
```


d.

Lastly, Section 3.1.2 discusses *scale*, and demonstrates how to display GDP on a logarithmic scale to better discern differences in GDP. Update the figure so GDP is on a log10 scale.

```
# define the plot object
g <- ggplot(data = CIACountries, aes(y=gdp, x=educ))

# print the plot
g+ geom_text(aes(label = country, color =net_users ), size =3)+ xlab("% of GDP spent on education")+yl</pre>
```


2. Medical procedures

a.

Consider Figure 3.7 in Section 3.2.1. What does reorder(drg, mean_charge) do? Recreate the plot, but use x = drg instead of $x = reorder(drg, mean_charge)$. What happens?

ANSWER: The chart is unordered by average charge.

```
data(MedicareCharges)
ChargesNJ <- MedicareCharges %>% filter(stateProvider == "NJ")

## Warning: Detecting old grouped_df format, replacing `vars` attribute by `groups`
```

```
# create the plot object
```

```
# Create the piot object
p <- ggplot(data=ChargesNJ, aes(x=drg,y=mean_charge))+geom_bar(fill="gray",stat="identity")+theme(axis."
# print the plot
p</pre>
```


b.

Replace x = drg with $x = reorder(drg, mean_charge)$, but also remove the theme() line. Now what happens? What was the purpose of the theme() line? Hint: You may need to knit the document and look

at the pdf to better observe what's happening.

ANSWER: It orders the data by average charge. The theme line allows the bottom row of numbers to be legible horizontally, rather than overlap vertically.

p <- ggplot(data=ChargesNJ, aes(x=reorder(drg,mean_charge),y=mean_charge))+geom_bar(fill="gray",stat="interpolar to the content of the c

3. Historical baby names

As you read through (and, better yet – code along with (not required, but useful practice!)) – the extended example on historical baby names in section 3.3.1, write down two questions you have about any of the R code used in that example. (Your questions could be about what a specific part of the code – ggplot or not – is actually doing, or a more general question about any of the commands used.) Please be thoughtful about your questions; we will use them (anonymously) in an exercise in class this week.

ANSWER: What are the differences in different pipings ("%>%" vs "%+%")? What are the different ways to add features to an object? Is it better to pipe or just redefine the object as "x <-x+..."? In Java there is a distinct difference between "=" and "==". I noticed both being used in R. What is the difference here?

