微积分疑难讲座

(一) 函数的极限

【总结】求极限的方法:

(1)直接用四则运算法则;

 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 型:消去致零因子

(2)恒等变形后用四则法则:

∞ 型: 抓大头∞ - ∞型: 合并为乘积或i

∞-∞型: 合并为乘积或商 无限项: 化无限为有限法

- (3)利用无穷小的性质;
- (4)复合函数的极限运算法则(变量代换法);
- (5)利用极限存在的充要条件求极限(如分段函数);
- (6)利用夹逼准则和单调有界准则;
- (7)重要极限法;
- (8)等价无穷小代换法;

【思考每种方法的理论依据、条件及适用范围】

【例1】统计资料显示,到 2010 年末,某市垃圾堆积已达 100 万吨.据预测,从 2011 年起该市还将以 5 万(吨/年)的速度产生新垃圾.如果该市每年处理上一年堆积垃圾的 20%,长此以往,该市垃圾能否全部处理完成?

【例 2】设某物体作变速直线运动,已知速度 $v(t)=t^2$,求物体在时间间隔[0,1]内所经过的路程.

【例3】设
$$\lim_{x\to 0} \frac{a \tan x + b(1-\cos x)}{c \ln(1-2x) + d(1-e^{-x^2})} = 2$$
,其中 $a \cdot c \neq 0$,则必有(___)

(A)
$$b = 4d$$
 (B) $b = -4d$ (C) $a = 4c$ (D) $a = -4c$

【例 4】 求
$$\lim_{x\to 0} \frac{\ln(\sin^2 x + e^x) - x}{\ln(x^2 + e^{2x}) - 2x}$$
.

【例 5】 求极限
$$\lim_{x\to 0} \frac{1}{x^3} \left[\left(\frac{2+\cos x}{3} \right)^x - 1 \right].$$

【例 6】求极限
$$\lim_{n\to\infty} \tan^n \left(\frac{\pi}{4} + \frac{2}{n}\right)$$
.

【例7】 求
$$\lim_{x\to\infty} \left(\sqrt[3]{a^3 - x^3} + x \right)$$
.

【例8】求极限
$$\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{(k+1)!}$$
.

【例9】 求极限
$$\lim_{x \to \frac{\pi}{2}} \left[\lim_{n \to \infty} \left(\cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} \right) \right].$$

【例 10】设
$$a_n>0$$
 且 $a_1\geq a_2\geq \cdots (n\in {\bf N})$, $\lim_{n\to\infty}\sum_{k=1}^n a_k=+\infty$, 求证:

$$\lim_{n \to \infty} \frac{a_1 + a_3 + \dots + a_{2n-1}}{a_2 + a_4 + \dots + a_{2n}} = 1.$$

【例 11】若
$$a_n>0$$
 $(n=1,2,\cdots)$, $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l<1$, 求证 $\lim_{n\to\infty}a_n=0$.

【例 12】
$$\begin{subarray}{c} x_0 > 0 \end{subarray} , \quad x_{n+1} = \frac{1}{1+x_n} \end{subarray} (n=0,1,2,\cdots) \end{subarray} , \quad \begin{subarray}{c} $x_{n+1} = \frac{1}{1+x_n} \end{subarray}$$

(二) 函数的连续性

【例 1】设
$$f(x) = \frac{x}{a + e^{bx}}$$
 在 $(-\infty, +\infty)$ 内连续,且 $\lim_{x \to \infty} f(x) = 0$,则常数 a , b 满足_____.

【例 2】设 f(x) 在 (0,1) 内有定义,且 $e^x f(x)$ 与 $e^{-f(x)}$ 在 (0,1) 内都是单调增加,证明 f(x) 在 (0,1) 内连续.

【例 3】设 f(x) 在 $(-\infty, +\infty)$ 有定义,并满足 f(2x) = f(x) ,若 f(x) 在点 x = 0 连续,证明 f(x) 在 $(-\infty, +\infty)$ 为常数.

【例 4】求函数
$$f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)}$$
 在 $\left[-\pi, \pi\right]$ 上的间断点并判别其类型.

【例 5】设
$$a_1$$
、 a_2 、 a_3 为正数, $\lambda_1 < \lambda_2 < \lambda_3$,证明方程 $f(x) = \frac{a_1}{x - \lambda_1} + \frac{a_2}{x - \lambda_2} + \frac{a_3}{x - \lambda_3} = 0$ 在 (λ_1, λ_2) 和 (λ_2, λ_3) 内分别存在根.

【例 6】设
$$f(x) \in C[a,b]$$
, $f(a) = f(b)$, 求证: $\exists \alpha, \beta \in [a,b]$, 且 $\beta - \alpha = \frac{1}{2}(b-a)$, 使 得 $f(\alpha) = f(\beta)$.

【例 7】设
$$f(x) \in C[a,b]$$
,且 $\forall x \in [a,b]$, $\exists y \in [a,b]$, 使 $|f(y)| \le \frac{1}{2} |f(x)|$, 证明: $\exists \xi \in [a,b]$,使 $f(\xi) = 0$.