

TD EM2 – Actions mécaniques du champ magnétique

D.Malka – MPSI 2015-2016 – Lycée Saint-Exupéry

Dans tous les exercices, les effets d'induction seront négligés.

EM1-Interaction entre deux fils parcourus par un courant

On considère deux fils rectilignes, parallèles, de même longueur $L=1\,m$ et distant de $d=1\,cm$ (fig.1). Les deux fils sont parcourus par des courants $i=10\,A$ de même sens. En négligeant les effets de bords, le champ magnétique créé par chacun des fils peut s'écrire :

$$\overrightarrow{B} = \frac{\mu_0 i}{2r} \vec{e}_{\theta}$$

Figure 1 – Les deux fils conducteurs

1. Représenter les lignes de champ magnétique du fil de droite dans un plan orthogonal à son axe.

- 2. Exprimer le champ \overrightarrow{B} généré par le fil de droite au niveau du fil de gauche.
- 3. Les deux fils s'attirent-ils ou se repoussent-ils?
- 4. Evaluer l'intensité de la force exercée par le fil de droite sur le fil de gauche. Commenter.

EM2-Barre conductrice dans un champ magnétique

On considère une barre rectiligne, horizontale de longueur L et de masse m, parcouru par un courant I stationnaire (fig.2). Cette barre est fixée en O par une liaison pivot d'axe Oz et plongée dans un champ magnétique $\vec{B} = B_0 \vec{e}_z$ uniforme et stationnaire. Le moment d'inertie de la barre par rapport à Oz vaut $J = \frac{1}{3}mL^2$. Au cours du mouvement, un moment résistant $-\lambda\dot{\theta},~\lambda>0$, par rapport à Oz s'exerce sur la barre.

FIGURE 2 – Barre conductrice dans un champ magnétique

1. Calculer le moment des forces de Laplace par rapport à Oz. On admettra que tout se passe comme si la résultante des forces de Laplace s'appliquait au milieu J de la barre.

- 2. Ecrire l'équation du mouvement vérifiée par la barre.
- 3. Montrer qu'au but d'un certain temps (à déterminer), la barre est animée d'un mouvement de rotation uniforme autour de Oz à la vitesse angulaire Ω à déterminer.

EM3-Moteur synchrone

On considère un modèle simple pour décrire un moteur synchrone. Le rotor, décrit par un moment magnétique \vec{m} , tourne avec la même vitesse angulaire que la champ magnétique \vec{B} qui l'entraine. Le moment d'inertie du rotor par rapport à l'axe de rotation vaut J. On note $\theta=(\vec{m},\vec{B})$ l'angle interne du moteur et et \vec{M} le couple exercé par le champ magnétique.

Figure 3 – Principe du moteur synchrone

Valeurs numériques : $B = 0, 2T, m = 8, 0 A.m^2$ et f = 50 tours/s.

- 1. Donner l'expression de \overrightarrow{M} en fonction de θ .
- 2. On se place en régime permanent.
 - 2.1 Le moteur doit entraı̂ner une charge mécanique qui exerce un coupe résistant $M_T=0,65\,N.m.$ Calculer l'angle interne du moteur puis la puissance fournie par le moteur.
 - 2.2 Quel est le couple maximal M_{max} que peut fournir ce moteur?
 - 2.3 Que se passe-t-il si $M_T > M_{max}$?