Assignment # 1 Group Assignment: ISM2015501, IRM2015003, IRM2015001, IRM2015006, IHM2015005

Objective :- To run gradient descent and normal equation method on housing price dataset to obtain the weights of the hypothesis parameters.

Features taken:-

- lotsize
- number of bedrooms
- number of bathrooms
- number of stories

Hypothesis:-

 $w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 = 0$

where,

 x_1 - lotsize

 x_2 - number of bedrooms

 x_3 - number of bathrooms

 x_4 - number of stories

Results:-

1. Gradient Descent

The hypothesis parameters obtained:-

Learning Rate	Iterations
6	Does not converge
0.6	14
0.06	126
0.006	951
0.0006	6573

2. Normal Equation

The hypothesis parameters obtained:-

weights =
$$\begin{bmatrix} -5.20176035e-17 \\ 4.40828948e-01 \\ 7.80010411e-02 \\ 3.21671859e-01 \\ 2.48238713e-01 \end{bmatrix}$$

Observations:-

- The gradient descent and normal equation give approximately same weight values. The small difference is due to stopping the gradient descent when difference in change in cost goes below 0.0000001.
- Normal equation gives faster result than gradient descent. The result from normal equation method is the accurate result.
- The normal equation method does not work when the matrix (X^TX) is not invertible.
- The gradient descent algorithm may not converge if we take the learning rate to be very high.

Notes:-

- Batch Gradient Descent is used in the gradient descent algorithm.
- Data has been normalised before use using mean normalisation.
- Regularisation has not been performed.