Welcome back to my random tidbits file! When I come up with interesting problems, I will put them here.

1 Probability Distributions and Weight Loss

I was keeping track of my own weight when I realized that my scale was sufficiently inconsistent that my weight loss was dominated by the statistical noise. So then I was curious what the best way of mitigating this is, mean or median of multiple measurements. One would suspect it's the mean, or one would know simply by having taken any real statistics class, but I'm curious.

1.1 Mean-based averaging

This one is easy. Assume we have n iid variables X_i with mean μ and variance σ^2 , then the random variable corresponding to their average $\langle X_i \rangle$ has mean μ and variance $\frac{\sigma^2}{n}$, so standard deviation $\frac{\sigma}{\sqrt{n}}$. Thus, we have an unbiased estimator of the true mean and a variance that falls off like $\sim n^{-1/2}$.

1.2 Median-based averaging

This one is a bit more fun. Let's start with n=3, then defining f(x) the probability density function and $F_X(x)=f_X(X\leq x)$ the cumulative distribution function, the probability density of the median $f_{\eta}(y)$ is given

$$f_{\eta}(y) = 6f_X(y)F_X(y)(1 - F_X(y)) \tag{1}$$

the probability we choose one value greater than y the median and one less, multiplied by 6 for orderings. This seems to be a bit difficult to verify to be normalized in the general case, or that

$$\int_{-\infty}^{\infty} f_{\eta}(y) \, \mathrm{d}y = \int_{-\infty}^{\infty} \left[6f_X(y) \int_{-\infty}^{y} f_X(\xi) \, \mathrm{d}\xi \int_{y}^{\infty} f_X(\zeta) \, \mathrm{d}\zeta \right] \mathrm{d}y = 1 \tag{2}$$

Let's just verify this in the uniform distribution case, and leave the general case as an exercise to brighter colleagues. We consider the normalized uniform distribution $f_X(x) = 1, x \in [0, 1]$, or $F_X(x) = x, x \in [0, 1]$. We confirm that the expression for f_{η} is normalized:

$$\int_{0}^{1} 6y(1-y) \, \mathrm{d}y = 1 \tag{3}$$

We then wish to examine whether $f_{\eta}(y)$ is an unbiased estimator of μ . Again, we begin with examining a sub-case, where $f_X(x)$ is symmetric about its mean μ . This yields that $F_X(\mu) = 0.5$ and is odd about μ^1 and so that $F_X(y) (1 - F_X(y))$ is also even/symmetric about μ . Finally, this implies that $f_{\eta}(y)$ as defined in Equation 1 is also symmetric about μ and we are done.

However, this analysis breaks down in the asymmetric case. We see that $F_X(y) (1 - F_X(y))$ is always symmetric about the median η of f_X , since $F_X(\eta) = 0.5$. In general, the mean and median of a probability distribution are not equal, so there is no guarantee that $\langle f_{\eta}(y) \rangle = \langle f(y) \rangle$, and indeed we can verify for some contrived probability distribution such as

$$f_X(x) = \begin{cases} 2 & 0 \le x \le 0.25 \\ 1 & 0.5 \le x \le 1 \\ 0 & \text{else} \end{cases}$$
 (4)

that $\langle f_X(x) \rangle = 0.4375$ while

$$\langle f_{\eta}(y) \rangle = \int_{0}^{0.25} 24y^{2}(1-2y) \, dy + \int_{0.5}^{1} 6y^{2}(1-y) \, dy$$
 (5)

$$\approx 0.4218\tag{6}$$

¹This is a slight abuse of terminology: we mean that $F_X(x-\mu) - 0.5 = -(F_X(-(x-\mu)) - 0.5)$.

1.3 Open Questions Yubo Su — Tidbits

1.3 Open Questions

- If we have discretized measurements, what are the statistics of mode-based averaging?
- Did I actually normalize the median-based averaging correctly, for a general probability distribution?

2 Feynman-style number theory

In case you have not yet seen http://www.lbatalha.com/blog/feynman-on-fermats-last-theorem yet, it's quite a fun read! Would recommend. That sort of thinking inspired this section.

2.1 Asymptotic behavior of primes

Call $\Pi(N)$ the prime number counting function, how many primes are below N. The Prime Number Theorem is a well known result that postulates two approximations to $\Pi(N)$:

$$\Pi(N) \approx \frac{N}{\log N} \approx \int_{2}^{N} \frac{1}{\log x} \, \mathrm{d}x$$
(7)

We will attempt to derive the latter approximation. Consider P(N) the probability density that N is a prime, roughly the statement "if I randomly choose a number near N, what is the probability it is a prime?" The relationship between P(N) and $\Pi(N)$ is then

$$P(N) = \frac{\mathrm{d}\Pi}{\mathrm{d}N} \tag{8}$$

To attempt to derive P(N), consider that a number N is prime iff it is not divisible by any primes less than it. Thus, we have that

$$P(N) \approx \prod_{p \in primes}^{N} \left(1 - \frac{1}{p}\right) \tag{9}$$

Taking a leap of faith, we recognize that two consecutive contributions to the product above differ roughly by $\frac{1}{P(p)}$, the local inverse probability density that p is prime. Thus, we can rewrite each contribution as $\frac{1}{P(p)}$ contributions of $\left(1-\frac{1}{p}\right)^{P(p)}$, and then allow p to run over all integers. We thus propose the approximation

$$P(N) \approx \prod_{k=2}^{N} \left(1 - \frac{1}{k}\right)^{P(k)} \tag{10}$$

Taking the logarithm of both sides, we obtain

$$\log P(N) = \sum_{k=2}^{N} P(k) \log \left(1 - \frac{1}{k}\right) \tag{11}$$

Approximating the right hand side with an integral, we obtain

$$\log P(N) = \int_{2}^{N} P(k) \log \left(1 - \frac{1}{k}\right) dk \tag{12}$$

2.2 Scratch work Yubo Su — Tidbits

Differentiating both sides now, we obtain

$$\frac{P'(N)}{P(N)} = P(N)\log\left(1 - \frac{1}{N}\right) \tag{13}$$

$$\frac{\mathrm{d}P}{\mathrm{d}N} = P^2 \log \left(1 - \frac{1}{N}\right) \tag{14}$$

$$\frac{\mathrm{d}P}{P^2} = \mathrm{d}N\log\left(1 - \frac{1}{N}\right) \tag{15}$$

$$-\frac{1}{P} = N\log\left(1 - \frac{1}{N}\right) - \log(N - 1) \tag{16}$$

$$P(N) = \frac{1}{\log(N-1) + O(1)} \tag{17}$$

$$\approx \frac{1}{\log N} \tag{18}$$

This recovers the expression $\Pi(N) = \int_{2}^{N} P(N) dN = \int_{2}^{N} \frac{1}{\log N} dN$.

2.2 Scratch work

What follows is me working out loud, which is a lot less interesting.

It's a well-known result (Prime Number Theorem) that the number of primes below N is approximated by $\Pi(N) = N/\log(N)$. Can we try to get a handle on this behavior via application of continuum analysis?

One way of thinking of the problem is to instead look at it from a probabilistic standpoint, that arbitrarily choosing a number n, it has some probability of being prime. Can we estimate this probability and recover the prime number theorem? We should be able to obtain

$$\frac{\mathrm{d}\Pi}{\mathrm{d}N} \approx \frac{\log N - 1}{\log^2(N)} \tag{19}$$

2.2.1 First attempt

Let's consider the probability that some large number N is divisible by some divisor d; this is just $\frac{1}{d}$. We might think that the probability that N is prime then just the product of probabilities it is not divisible by any number smaller than it

$$P(N) = \prod_{k=2}^{N} \left(1 - \frac{1}{k} \right) \tag{20}$$

To try to evaluate this product, we take the logarithm of both sides

$$\log P(N) = \sum_{k=2}^{N} \log \left(1 - \frac{1}{k} \right) \tag{21}$$

$$\approx \int_{k=2}^{N} \log\left(1 - \frac{1}{k}\right) \, \mathrm{d}k \tag{22}$$

(23)

To compute this antiderivative, it's easiest to separate the integrand

$$\int \log\left(\frac{k-1}{k}\right) dk = \int \log(k-1) dk - \int \log k dk$$
(24)

$$= (k-1)\log(k-1) - k - k\log(k) + k + C \tag{25}$$

$$= k \log \left(1 - \frac{1}{k}\right) - \log(k - 1) + C \tag{26}$$

2.2 Scratch work Yubo Su — Tidbits

with C some undetermined constant that becomes irrelevant when we consider the definite integral. Thus, we return to our primary expression

$$\log P(N) \sim N \log \left(1 - \frac{1}{N}\right) - \log(N - 1) \tag{27}$$

where we drop the evaluation of the antiderivative at k=2 since it's a constant in the scaling. Then, we find

$$P(N) \sim \frac{\left(1 - \frac{1}{N}\right)^N}{N - 1} = \frac{1/e}{N - 1}$$
 (28)

In fact, a quick google search shows that Equation 20 evaluates to $\frac{1}{N}$, and so our result is pretty reasonable; we're off by a constant factor since our integral approximation Equation 22 misestimates by a constant factor, no surprise there. So where did we go wrong?

2.2.2 Second attempt

The iusse, as some people smarter than me may have noticed, is that our expression Equation 20 is faulty: we should only be multiplying *over primes*! While this is correct, primes are not divisible by any primes smaller than them, it's a bit difficult to handle under our present formalism, where we only attach a probability to a number's being prime or not.

Let's think carefully about how to integrate this into our formalism. If a number k is not prime, it should contribute 1 to our product, and if it is prime then it should contribute $\left(1 - \frac{1}{k}\right)$. Since we're doing products, the natural way to "average" is via geometric mean, so we modify expression Equation 20 to

$$P(N) = \prod_{k=2}^{N} \left(1 - \frac{1}{k}\right)^{P(k)} \tag{29}$$

where we average each k-th contribution as $\left(1-\frac{1}{k}\right)^{P(k)}(1)^{1-P(k)}$ geometric mean². Doing the usual trick,

$$\log P(N) = \int_{2}^{N} P(k) \log \left(1 - \frac{1}{k}\right) dk \tag{30}$$

Differentiating both sides,

$$\frac{P'(N)}{P(N)} = P(N)\log\left(1 - \frac{1}{N}\right) \tag{31}$$

$$\frac{\mathrm{d}P}{\mathrm{d}N} = P^2(N)\log\left(1 - \frac{1}{N}\right) \tag{32}$$

$$\frac{\mathrm{d}P}{P^2} = \log\left(1 - \frac{1}{N}\right)\mathrm{d}N\tag{33}$$

$$-\frac{1}{P} = N\log\left(1 - \frac{1}{N}\right) - \log\left(N - 1\right) \tag{34}$$

$$P(N) \approx \frac{1}{\log N} \tag{35}$$

Interestingly, this expression is a better approximation to $\Pi(N)$ than the aforementioned $\Pi(N) \approx \frac{N}{\log(N)}$, so it looks like this is a satisfactory conclusion, namely that

$$\Pi(N) \approx \int_{2}^{N} \frac{1}{\log(m)} \, \mathrm{d}m \tag{36}$$

However, we pursue one last direction of thought out of curiosity.

Intuitively, this means that we need to multiply $\frac{1}{P(k)}$ of these factors before getting a single one that contributes, i.e. the distance between primes.

Scratch work Yubo Su — Tidbits

2.2.3Third attempt

In Equation 29, maybe we only need to check up until \sqrt{N} in the product. Continuing our thought above, we obtain

$$\frac{P'(N)}{P(N)} = P(\sqrt{N})\log\left(1 - \frac{1}{\sqrt{N}}\right) \tag{37}$$

$$\approx -\frac{P(\sqrt{N})}{\sqrt{N}}\tag{38}$$

At this point, our expression doesn't seem particularly amenable to solution, but we can at least check how well $P(N) \sim$ $\frac{1}{\log N}$ works:

$$\frac{-\frac{1}{N\log^2 N}}{\frac{1}{\log N}} = -\frac{2}{\sqrt{N}\log N}$$

$$-\frac{1}{N\log N} = \frac{2}{\sqrt{N}\log N}$$
(39)

$$-\frac{1}{N\log N} = \frac{2}{\sqrt{N}\log N} \tag{40}$$

which doesn't seem to work too well. How about the original estimate $P(N) \sim \frac{\log N - 1}{\log^2 N}$?

$$\frac{\frac{2-\log N}{N\log^3 N}}{\frac{\log N-1}{\log^2 N}} = -\frac{\frac{\log \sqrt{N}-1}{\log^2 \sqrt{N}}}{\sqrt{N}} \tag{41}$$

$$\frac{\frac{2 - \log N}{N \log^3 N}}{\frac{\log N - 1}{\log^2 N}} = -\frac{\frac{\log \sqrt{N} - 1}{\log^2 \sqrt{N}}}{\sqrt{N}}$$

$$\frac{2 - \log N}{N \log N (\log N - 1)} = \frac{2(2 - \log N)}{\sqrt{N} \log^2 N}$$
(41)

which is even worse. The obvious problem is that the \sqrt{N} has nowhere the go since the probability density P depends only on the logarithm of N. So interesting, considering the further optimization of only going up to \sqrt{N} ruins the accuracy of our prediction!