SIN 251 – Organização de Computadores (PER-3 2021-1)

Aula 06 – Circuitos Combinatórios

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- Simplificação algébrica (sem Mapas de Karnaugh)
- Projeto de circuitos lógicos
- Universalidade das portas lógicas: AND, OR, NOT / AND, NOT / OR, NOT
- Universalidade das portas NAND e NOR
- [EXEMPLO] Universalidade das portas NAND e NOR
- Multiplexadores (MUX)
- Decodificadores
- [EXEMPLO] Decodificação de Endereços
- Memórias apenas de leitura (Memória ROM)
- Adição binária
- Adição binária Usando XOR
- Somador de 4 bits
- "Vai um" antecipado (carry lookahead)
- Somador de 32 bits usando somadores de 8 bits

Simplificação algébrica (sem Mapas de Karnaugh)

- Aplicar as identidades da álgebra booleana para gerar uma função equivalente com menos variáveis
 - Apenas para expressões mais simples.
- Para expressões mais complexas
 - Utilizar os Mapas de Karnaugh
- EXEMPLO:
 - F = A'B + BC' \rightarrow 5 operadores
 - Simplificada: F = B(A' + C') → 4 operadores

Projeto de circuitos lógicos

- Geralmente não utilizamos todos os tipos de portas lógicas em uma implementação de circuito lógico.
 - Um número menor de portas lógicas torna o projeto mais simples.
- Conjunto de portas lógicas funcionalmente completos:
 - Qualquer função booleana pode ser implementada usando apenas as portas de um conjunto
 - AND, OR, NOT
 - AND, NOT
 - OR, NOT
 - NAND
 - NOR

Universalidade das portas lógicas: AND, OR, NOT / AND, NOT / OR, NOT

AND, OR, NOT:

 Conjunto funcionalmente completo pois representam as três operações básicas da álgebra booleana.

AND, NOT:

- Para ser funcionalmente completo é necessário representar a função OR usando AND e NOT
 - Pelas leis de De Morgan: A + B = (A' · B')'
 - A OR B = NOT ((NOT A) AND (NOT B))

• OR, NOT:

- Analogamente ao conjunto AND, NOT
 - Pelas leis de De Morgan: A · B = (A' + B')'
 - A AND B = NOT ((NOT A) OR (NOT B))

Universalidade das portas NAND e NOR

 As funções AND, OR e NOT podem ser implementadas usando apenas a porta NAND ou apenas a porta NOR.

[EXEMPLO] Universalidade das portas NAND e NOR

$$F=B(\overline{A}+\overline{C})$$

$$F = B(\overline{A} + \overline{C}) = (\overline{A}B) + (B\overline{C})$$

Por De Morgan:

$$F = (\overline{\overline{A}B}) \bullet (\overline{B}\overline{\overline{C}})$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Multiplexadores (MUX)

- Várias entradas.
- Uma única saída.
- A cada instante uma única entrada passa para a saída.
- Determinado por um conjunto de linhas de seleção.
- Para n linhas de controle:
 - 2ⁿ entradas

Multiplexadores (MUX)

Tabela verdade do multiplexador 4-para-1

S2	S1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Decodificadores

- Circuito combinatório:
 - Um certo número de linhas de saída.
 - Apenas uma é ativada em cada instante,
 - dependendo do padrão de sinais de entrada.

Figura A.15 Decodificador com 3 entradas e $2^3 = 8$ saídas.

[EXEMPLO] Decodificação de Endereços

- Memória de 1 Kbyte
 - 4 pastilhas de memória RAM de 256 bytes (256 palavras de 8 bits)

Endereço	Pastilha
0000-00FF	0
0100-01FF	1
0200-02FF	2
0300-03FF	3

- Endereços de 10 bits
 - 8 bits menos significativos (2⁸ = 256 palavras)
 - 2 bits mais significativos (2² = 4 pastilhas)
 - Selecionar uma das quatro pastilhas (decodificador)

[EXEMPLO] Decodificação de Endereços

Figura A.16 Decodificação de endereços.

Memórias apenas de leitura (Memória ROM)

- Circuitos combinatórios:
 - São circuitos "sem memória".
- ROM (Read-Only-Memory)
 - Memória implementada usando circuitos combinatórios.
 - Um decodificador e um conjunto de portas OR.
- Memória ROM de 64 bits
 - 16 palavras de 4 bits

Memórias apenas de leitura (Memória ROM)

Tabela A.8 Tabela verdade para uma ROM

	Entr	ada		,		Sa	ída	
0	0	0	0	,	0	0	0	
0	0	0	1		0	0	0	
0	0	1	0		0	0	1	
0	0	1	1		0	0	1	
0	1	0	0		0	1	1	
0	1	0	1		0	1	1	
0	1	1	0		0	1	0	
0	1	1	1		0	1	0	
1	0	0	0		1	1	0	
1	0	0	1		1	1	0	
1	0	1	0		1	1	1	
1	0	1	1		1	1	1	
1	1	0	0		1	0	1	
1	1	0	1		1	0	1	
1	1	1	0		1	0	0	
1	1	1	1		1	0	0	

São as posições da memória ROM.

Os dados que você quer armazenar.

ROM de 64 bits

Circuitos Somadores

- Circuito combinatório
 - Operações aritmética
- Adição binária
 - Vai-um (Carry)

Adição binária

(a) Adição de um único bit

A	В	Soma	'Vai-um'
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(b) Adição com uma entrada de bit de 'vai-um'

Cin	Α	В	Soma	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Soma =
$$A'BC' + AB'C' + A'B'C + ABC$$

$$Vai-um = ABC' + A'BC + AB'C + ABC$$

Obs.:
$$C = C_{in}$$
.

Adição Binária

Soma =
$$A'BC' + AB'C' + A'B'C + ABC$$

Vai-um = $ABC' + A'BC + AB'C + ABC$

Soma = A'BC' + AB'C' + A'B'C + ABCVai-um = AB + AC + BC

Adição binária – Usando XOR

(a) Adição de um único bit

A	В	Soma	'Vai-um'
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(b) Adição com uma entrada de bit de 'vai-um'

Cin	Α	В	Soma	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
	0 0 0 0 1 1	0 0 0 0 0 0 1 0 1 1 0 1 0 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Soma =
$$A \oplus B \oplus Cin$$

$$Vai-um = AB + AC + BC$$

Obs.:
$$C = C_{in}$$
.

 $A \oplus B$

Adição binária – Usando XOR

(b) Adição com uma entrada de bit de 'vai-um'

Cin	A	В	Soma	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Soma = $A \oplus B \oplus Cin$

Vai-um = AB + AC + BC

Obs.: $C = C_{in}$.

Somador de 4 bits

"Vai um" antecipado (carry lookahead) – 4 bits

- Cada <u>somador</u> depende do "vai um" do <u>somador anterior</u>.
 - Atraso crescente do bit menos significativo par o mais significativo.
 - Para somadores grandes o atraso acumulado é inaceitável
 - SOLUÇÃO: Calcular o "vai um" antecipadamente.

"Vai um" antecipado (carry lookahead) – 4 bits

$$\begin{split} &C_0 = A_0 B_0 \\ &C_1 = A_1 B_1 + A_1 A_0 B_0 + B_1 A_0 B_0 \\ &C_2 = A_2 B_2 + \\ &A_2 A_1 B_1 + A_2 A_1 A_0 B_0 + A_2 B_1 A_0 B_0 + \\ &B_2 A_1 B_1 + B_2 A_1 A_0 B_0 + B_2 B_1 A_0 B_0 \\ &C_3 = A_3 B_3 + \\ &A_3 A_2 B_2 + A_3 A_2 A_1 B_1 + A_3 A_2 A_1 A_0 B_0 + A_3 A_2 B_1 A_0 B_0 + A_3 B_2 A_1 B_1 + A_3 B_2 A_1 A_0 B_0 + A_3 B_2 B_1 A_0 B_0 + \\ &B_3 A_2 B_2 + B_3 A_2 A_1 B_1 + B_3 A_2 A_1 A_0 B_0 + B_3 A_2 B_1 A_0 B_0 + B_3 B_2 A_1 B_1 + B_3 B_2 A_1 A_0 B_0 + B_3 B_2 B_1 A_0 B_0 \end{split}$$

"Vai um" antecipado (carry lookahead) – 4 bits

Somador de 32 bits usando somadores de 8 bits

- O "vai um" antecipado se torna complexo para somadores grandes.
 - SOLUÇÃO:
 - "Vai-um" antecipado para blocos pequenos
 - 4 a 8 bits, no máximo.
 - Propagação do "vai-um" entre esses blocos "grandes".

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A

Material complementar

- How Computers Calculate the ALU: Crash Course Computer Science #5
 - https://www.youtube.com/watch?v=1I5ZMmrOfnA

FIM – Aula 06