AVT1 Abgabe 1

Protokoll

Bunea (52509256)

&

Strasser (52000610)

Aufgabe 1 - Leitungsüberprüfung

Funktionstest

Die Durchgangsprüfung des Multimeters war erfolgreich. Beim Verbinden der Messspitzen hat der Multimeter den Piepton ausgelöst.

Abb. 1: Durchgangsprüfung Multimeter

Audioleitung

Es wurde die Durchgangsprüfung und die Kontrolle der Pinbelegung eines XLR-Audiokabels durchgeführt. Mithilfe des Multimeters wurde der Widerstand zwischen jeder Möglichen Pin-Kombination gemessen und in folgender Tabelle dargestellt:

	Pin 1	Pin 2	Pin 3
Pin 1	~1,1 Ω	OL	OL
Pin 2	OL	~1,2 Ω	OL
Pin 3	OL	OL	~1,0 Ω

Tabelle 1: XLR-Widerstandsmessung

Da nur ein Widerstand zwichen den jeweils zugehörigen Pins gemessen wurde, ist Durchgangsprüfung erfolgreich und es besteht keine Gefahr eines Kurzschlusses.

Abb. 2: Messung XLR Kabel

Aufgabe 2 – Gleichstromkreis

Der Schaltplan in Abb. 3 wird mithilfe eines Steckbretts aufgebaut.

Abb. 3: Schaltplan Aufgabe 2

Kontrolle vom Aufbau

Der 1 k $\!\Omega$ Widerstand wurde mit dem Multimeter geprüft.

Abb. 4: Widerstand Überprüfung

Das Netzteil wurde auf ~10 V eingestellt.

Abb. 5: Netzteil 10V Kontrolle

Widerstandsmessung

Abb. 6: Schaltplan Widerstandsmessung

Im Steckbrett wurde der Widerstand gemessen. Das Resultat der Widerstandsmessung beträgt $0.995~k\Omega$. Es ist im Toleranzbereich des 1 k Ω Widerstands.

Abb. 7: Widerstandsmessung

Spannungsmessung

Abb. 8: Schaltplan Spannungsmessung

Da die Spannung des Schaltkreises auf 10~V eingestellt ist. Sollten auch 10~V gemessen werden. Die Messung beträgt $\bf 9.96~V$.

Abb. 9: Spannungsmessung

Strommessung

Abb. 10: Schaltplan Strommessung

Mithilfe des Ohm'schen Gesetzen kann der zu erwartender Strom berechnet werden.

$$I = \frac{U}{R}$$

$$I = \frac{10 V}{1000 \Omega}$$

$$I = 0.01 A = 10 mA$$

Es ist ein Strom von 10 mA zu erwarten. Bei der Messung wurde ein Strom von **9,8 mA** gemessen.

Conclusio

Diese Übung hat den Zweck uns die Grundlagen von der Verwendung eines Multimeters, um elektrische Werte zu Messen und uns mit der Verwendung von dem Steckbrett und Labor-Equipment vertraut zu werden. An Anfang der Übung hatten wir noch Probleme mit dem Verstehen der Leitungen des Steckbretts, aber wir haben diese Herausforderung überstanden.