

生产运作管理

第07章 综合计划

管理学院 Management School

计划体系概述 Planning System Introduction

❖国外体系(Western Planning System):

计划体系概述 Planning System Introduction

综合计划的重要性

若没有有效的长期考虑,短期的决策可能会伤 害长期的利益。

综合计划的重要性

- ❖Henry Ford 医院的综合计划设计匹配可获得能力、劳动力、供应高度可变的顾客需求模式
 - ▶903张床被安排在30个护理单元
 - ▶拒绝一个病人的成本为\$5,000 (小病)
 - ▶一个8床模块的空置成本是 \$35,000/月或 \$420,000/年
 - ▶高度需求不确定性
 - 在少于两周的时间里, 床位需求变化高达16%

综合计划的重要性

- ❖Henry Ford医院裁员不久,又要招聘新成员
 - ▶招聘新员工
 - ▶裁员和招新都发生了

综合计划

❖综合计划涉及一定时期(3-18个月)的综合决策,而不 是库存单元(SKU, stock-keeping unit)水平的决策

综合计划的作用

- ❖综合计划:按产品族制定决策(而不是库存单元SKU),时间周期3-18个月,决定计划期内的产能、生产、转包、库存、缺货、定价等,使利润最大化
- ❖计划期的运作参数:
 - ▶生存率
 - ▶劳动力
 - ▶加班量
 - ▶机器产能水平
 - >转包
 - ▶延期交货
 - ▶ 现有库存

综合计划所需信息

- ❖每一时期的需求预测
- ◆生产成本
 - >劳动力成本(正常时间,加班时间)
 - >转包成本
 - ▶改变产能成本:雇佣或裁员成本,增加或减少机器产能成本
- ❖每单位产品需要的工时
- ❖库存持有成本
- *缺货或延迟交货成本
- ❖约束: 加班约束, 劳动力, 资金可得到性, 缺货和延迟交货

综合计划的输出

- ❖正常时间、加班时间和转包时间的生产量
- ❖持有库存:决定需要多少仓库空间和资金
- ❖缺货或延迟交货的数量: 用来决定顾客服务水平
- ❖机器产能的增加或减少:用来决定需要购买多少生产设备
- ❖一个不好的综合计划会导致销量减少、利润减少、过度的库存、过度的能力

综合计划策略

基本策略:

- ❖平稳策略Level strategy (以库存为杠杆) ►
 - >生产率与长期需求保持一致,如泳衣
- ❖追赶策略Chase strategy (以能力为杠杆) ►
 - >生产率与需求保持一致,如快餐店
- ❖时间柔性策略Time flexibility strategy (以利用率为杠杆) ►
 - ▶大量的过剩能力,如军队
- ❖混合策略
 - ▶前三种策略的混合

平稳策略

- ❖维持稳定的机器产能和劳动力水平,保持稳定的 产出率
- ❖缺货和剩余会导致库存水平的波动
- ❖要么根据未来需求预测提前建立库存,要么将旺季需求延期至淡季交货
- ❖有利于员工士气
- ❖可能会出现大量的存货和延迟交货
- ❖适用于库存成本和延期交货成本相对较低的情况

追赶策略

- ❖当需求变动时,通过调整机器产能或雇佣和解雇 劳动力,使得产出率和需求保持一致
- ❖但是实际上很难很快改变产能和劳动力
- ❖如果变化产能的成本很高,那么这个策略就很昂贵
- ❖不利于员工士气
- ❖库存水平低
- ❖适用于库存成本高而改变产能成本低的情况

时间柔性策略

- ❖如果有多余机器产能,则可以使用该策略
- ❖劳动力保持稳定,但劳动时间需要不断改变以契合需求
- ❖使用加班或灵活的工作安排
- ❖需要柔性的劳动力,但避免了追赶策略的士气问题
- ❖适用于库存成本高,产能很便宜的情况

案例分析结果

- ❖一般说来,追赶策略用于
 - ▶高价值产品
 - >产品体积大或难以存储
 - ▶易逝产品
 - ▶产品的多样性高
- ❖一般说来, 平稳策略用于
 - >操作人员需要很长时间的锻炼才能有效地完成关键任务
 - >产品过时的可能性低
 - >产品的多样性低

例子: RedTomato综合计划

RedTomatoTools

>一个小的园林设备制造商

综合计划的输入

- ❖每期的需求预测
- ◆生产成本
 - >劳动力成本(正常时间,加班时间)
 - >转包成本
 - ▶改变产能成本:雇佣或裁员成本,增加或减少机器产 能成本
- **❖**其他成本
 - ▶单位产品所需的劳动力/机器时间
 - >库存持有成本
 - ➤缺货或延迟交货成本

例子: RedTomato综合计划

❖约束

- ▶劳动力、雇佣和裁员约束
- ▶产能约束
- >库存平衡约束
- ▶加班约束
- ▶第6期末库存至少 500
- ▶第6期末缺货为零

例子: RedTomato综合计划

Month	Demand forecast		
January	1,600		
February	3,000		
March	3,200		
April	3,800		
May	2,200		
june	2,200		

Red Tomato Tools综合计划

综合计划基本权衡

- ❖产能(正常时间,加班时间,转包)
- ❖库存
- ❖缺货

基本策略

- ❖追赶策略Chase strategy
- ❖劳动力或产能时间柔性策略
- ❖平稳策略

综合计划

Item	Cost			
材料	\$10/unit			
库存持有成本	\$2/unit/month			
缺货边际成本	\$5/unit/month			
雇佣、培训成本	\$300/worker			
裁员成本	\$500/worker			
劳动小时数	4/unit			
正常时间成本	\$4/hour			
加班时间成本	\$6/hour			
转包成本	\$30/unit			

综合计划 (定义决策变量)

 $W_t = t$ 月员工数量,t = 1, ..., 6 $H_t = t$ 月初雇佣的员工数量, t = 1, ..., 6 $L_t = t$ 月初解雇的员工数量, t = 1, ..., 6 $P_t = t$ 月生产数量, t = 1, ..., 6 $I_t = t$ 月末库存, t = 1, ..., 6 $S_t = t$ 月末缺货量,t = 1, ..., 6 $C_t = t$ 月外包数量,t = 1, ..., 6 $O_t = t$ 月加班工时,t = 1, ..., 6

定义目标函数

$$\min \sum_{t=1}^{6} 640 W_{t} + \sum_{t=1}^{6} 300 H_{t}
+ \sum_{t=1}^{6} 500 L_{t} + \sum_{t=1}^{6} 6O_{t} + \sum_{t=1}^{6} 2I_{t}
+ \sum_{t=1}^{6} 5S_{t} + \sum_{t=1}^{6} 10 P_{t} + \sum_{t=1}^{6} 30 C_{t}$$

变量之间的关联

❖根据雇佣、解雇的数量,确定每月的劳动力数量

$$W_{t} = W_{t-1} + H_{t} - L_{t}$$
, or
 $W_{t} - W_{t-1} - H_{t} + L_{t} = 0$
for $t = 1,..., 6$, where $W_{0} = 80$.

约束

❖每月的产量不能超过能力

$$P_{t} \le 40 W_{t} + O_{t}/4,$$
 $40 W_{t} + O_{t}/4 - P_{t} \ge 0,$
 $for t = 1,..., 6.$

约束

❖每月的库存平衡

$$I_{t-1} + P_t + C_t = D_t + S_{t-1} + I_t - S_t,$$

 $I_{t-1} + P_t + C_t - D_t - S_{t-1} - I_t + S_t = 0,$
 $for \ t = 1,..., 6, where \ I_0 = 1,000,$
 $S_0 = 0, and \ I_6 \ge 500.$

约束

❖每月的加班

$$O_t \le 10 W_t$$
,
 $10 W_t - O_t \ge 0$,
 $for \ t = 1,..., 6$.

主生产计划

Master production scheduling

- ❖确定每一具体的最终产品在每一具体的时间段内的生产数量
 - ▶最终产品:本企业最终完成、要出厂的完成品
 - ▶计划时间单位:周(旬、日、月)

综合计划

月	1月	2月	3月
计划产出割草机	200	300	400

主生产计划

	月	1月	2月	3月
计划产出	推式割草机	100	100	100
	自力推进式割草机	75	150	200
	骑式割草机	25	50	100
	总计	200	300	400

主生产计划

61	June			July				
64	1	2	3	4	5	6	7	8
Forecast	30	30	30	30	40	40	40	40
Customer orders (committed)	33	20	[10	4	2			
Projected on-hand inventory	31 /	1	41	/ 11	41	1	31	61
MPS			70		70		70	70
Available-to-promise inventory (uncommitted)	11		56		68		70	70

时界 Time Fences

❖对MPS计划期间中的不同部分所允许的变化予以限制,常设定时界(如在第4、8周设定),确定允许的变化程度。

产能Capacity

时界 Time Fences

- ❖冻结状态 Frozen
 - >计划不允许有任何的改变.
- ❖稳定状态 Moderately Firm
 - ▶允许产品族内部一些特殊的微小变化(只要所需部件可获得).
- ❖灵活状态 Flexible
 - ▶允许某种程度较大的变化(只要总体能力需求水平基本保持不变).
- ❖开放状态 Open
 - ▶允许任何的改变。

粗生产能力计划

- ❖在利用MPS模型制定出MPS的初步方案后,生产管理人员接下来必须根据资源约束条件来看该方案是否可行,通常用RCCP (Rough Cut Capacity Planning) 来检查MPS方案的可行性。
- ❖粗生产能力计划 (RCCP) 对实际资源需求的一个大致估计
 - ▶ "能力清单"法(capacity bill):能力清单类似于MRP中的物料清单(BOM),但它不是用来确定物料需求,而是用来确定MPS产品的能力需求
 - ➤ "资源描述"法(resource profiles): 利用能力清单来确定产品在 其整个生产周期中每一阶段对关键资源的需求量

生产运作计划的制定程序

作业

- ❖制订综合计划的所需信息?
- ❖综合计划的输出?
- ❖综合计划的策略?