उद्धारिए पाणि क्षिद्देकिन्दिन्ध

এসএসসি ও দাখিল (ভোকেশনাল)

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক প্রকাশিত বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক প্রণীত

প্রথম পত্র

প্রথম অখ্যায় ওয়েন্ডিং অ্যান্ড ফেব্রিকেশন ট্রেডের ব্যান্তি (Scope of Welding and Fabrication Trade)

১.১ বরেকিং (Welding) :

ওরেন্ডিং হলো ধাতব পদার্থের মধ্যে স্থারী জোড় পদ্ধতি। লোহার প্রিল তৈরির কারখানায় হরেক রকমের প্রিল তৈরি হয়; যেখানে একাধিক ধাতৃ খণ্ডকে জোড়া লাগানো হয়। আবার কামারশালায় ধাতৃ খণ্ডকে উত্তও করে অর্থগলিত অবস্থায় এনে হাতৃড়ির সাহায্যে পিটিয়ে শিকল বা চেইন তৈরি করা হয়। উভয় ক্ষেত্রে জোড়া হয় স্থায়ী। তবে প্রিল তৈরির কারখানায় জোড়া লাগানোর জন্য জোড়া স্থানে চাপ প্রয়োগ করতে হয় না। কিন্ত কামারশালায় শিকল বানাতে জোড়া স্থানে হাতৃড়ির আঘাত বা চাপ প্রয়োগ করতে হয়।

विव : ১.১ ७एम्सिर

সূতরাং একই ধাত্র তৈরি বা ভিন্ন ধাতৃর তৈরি দৃটি বা ততোধিক ধাতব খণ্ডের একটি উপর আরেকটিকে রেখে বা পাশাপাশি অবস্থানে রেখে, উত্তাপের সাহায্যে গণিত বা অর্থগণিত অবস্থায় এনে, চাপ প্রয়োগ করে বা বিনা চাপে, কিলার মেটাল ছাড়া বা কিলার মেটাল সহযোগে, স্থায়ীভাবে জ্যোড়া দেয়ার পদ্ধতিকে ওরেভিং (Welding) বলে। যেমন- আর্ক ওয়েভিং, গ্যাস ওয়েভিং ইত্যাদি।

১.২ কেব্ৰিকেশন (Fabrication) :

ফেব্রিকেশন এমন একটি পদ্ধতি যেখানে বহুমুখী ওয়েন্ডিং কর্ম প্রক্রিরার সমাহারে বাস্তবভিত্তিক ধাতব কাঠামো তৈরি করা হয়। অভএব, ধাতব কাঠামো তৈরির কাজে যে সমস্ত ধাতব পদার্থ যেমন- লোহা বা ইস্পাতের প্রেট, অ্যাকেল, চ্যানেল, এইচ বিম, রড প্রভৃতি ধাতু খণ্ডকে প্রয়োজনীয় টুলস ও ইকুইপমেন্ট-এর

সাহায্যে নকশা অনুসারে কেটে ওয়েন্ডিং করে জোড়া (joint) দিয়ে ইন্সিত কাঠামো বা স্ট্রাকচার গঠন করার প্রক্রিয়াকে ফেব্রিকেশন (Fabrication) বলা হয়। যেমন– গাড়ির বডি, চেসিস, আলমিরা, জানালার প্রিল ইত্যাদি কাঠামো তৈরি করাই ফেব্রিকেশন।

চিত্র: ১.২ ফেব্রিকেশন

ওয়েন্ডিং করে সহজেই স্থায়ী জোড়া তৈরি করা যায়। ফেব্রিকেশন কাজে স্থায়ী জোড়া তৈরির জন্য ওয়েন্ডিং অপরিহার্য। ওয়েন্ডিং ক্ষুদ্র পরিসরে আর ফেব্রিকেশন বৃহৎ পরিসরে ব্যাপৃত দুটি পরিভাষা যা স্থায়ী জোড়া তৈরিতে অধিক সমাদৃত।

১.৩ শিল্প উৎপাদনে ওয়েন্ডিং অ্যান্ড কেব্রিকেশনের ভূমিকা (Scope of Welding and Fabrication for Industrial production):

শিল্প উৎপাদনে এমন কোনো মেশিন বা যন্ত্রাংশ খুঁজে পাওয়া যাবে না, যা ওয়েন্ডিং কর্মবিহীন তৈরি হয়েছে। প্রকৃত অর্থে আধুনিক প্রযুক্তিবিদ্যা বর্তমান সভ্যতায় যে সমস্ত অবদান রেখেছে তার মধ্যে ওয়েন্ডিং অ্যান্ড ফেব্রিকেশনের গুরুত্বপূর্ণ ভূমিকা রয়েছে। বর্তমান যান্ত্রিক যুগে লৌহ, ইস্পাত ও বিভিন্ন ধাতব পদার্থের ব্যবহার ব্যাপক বৃদ্ধির সাথে সাথে ওয়েন্ডিং অ্যান্ড ফেব্রিকেশন-এর ব্যবহার দিন দিন সমহারে বৃদ্ধি পাচেছ।

শিল্পকারখানা ও বিভিন্ন অবকাঠামো নির্মাণের জন্য ধাতব খণ্ডের স্থায়ী জোড়া তৈরি অত্যাবশ্যক। ধাতব খণ্ডের স্থায়ী জোড়া তৈরির অন্যতম উপাদানই হচ্ছে ওয়েন্ডিং। এরূপ নির্মাণ অবকাঠামো, কলকারখানায় যন্ত্রপাতির ফাটল বা ভাঙা অংশ মেরামতের কাজে ওয়েন্ডিং প্রয়োজন। আজকাল উন্নততর ওয়েন্ডিং যন্ত্রপাতি ও ওয়েন্ডিং কৌশল আবিষ্কৃত হওয়ায় অল্প সময়ে ও অল্প ব্যয়ে উত্তম ও শক্তিশালী জোড়া তৈরি করা সম্ভব হচ্ছে।

১.৩ ওয়েন্ডিং অ্যান্ড কেব্রিকেশন ট্রেডের কর্মক্ষেত্র (Working Field of Welding and Fabrication Trade):

নিম্নে ওয়েন্ডিং অ্যান্ড ফেবিকেশন ট্রেডের কর্মক্ষেত্র উল্লেখ করা হলো :

- মেরামত ও রক্ষণাবেক্ষণ কারখানা ।
- ২. বস্ত্র ও পাটশিল্প।
- ৩. খনিজ এবং তেল উৎপাদনের কারখানা।
- 8. মেশিন টুলস কারখানা।
- ৫. ভারী যন্ত্রপাতি তৈরির শিল্পকারখানা।
- ৬. উড়োজাহাজ তৈরির শিল্পকারখানা।
- ৭. সেতু নির্মাণ।
- ৮. অটোমোবাইল শিল্পকারখানা।
- ৯. জাহাজ তৈরির কারখানা।
- ১০. বিল্ডিং নির্মাণ।
- ১১. পাইপ লাইন তৈরির কার্যক্ষেত্র।
- ১২. শিপ ইয়ার্ড বা ডক ইয়ার্ড।
- ১৩. কৃষি যন্ত্রপাতি তৈরির কর্মক্ষেত্র।
- ১৪. রেলওয়ে কারখানা।
- ১৫. ধাতব আসবাবপত্র তৈরির শিল্পকারখানা ।
- ১৬. ইলেকট্রনিক শিল্প।
- ১৭. রসায়ন শিল্প।
- ১৮. স্ট্রাকচারাল শিল্প।
- ১৯. ঔষধ শিল্প।
- ২০. খাদ্য প্রক্রিয়াজাতকরণ শিল্প।
- ২১, সাবান ও প্রসাধনী শিল্প।
- ২২. নভোযান তৈরি শিল্প।
- ২৩. ছাপাখানা ইত্যাদি।

প্রশ্নমালা-১

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ওয়েন্ডিং বলতে কী বোঝায়?
- ২. ফেব্রিকেশন বলতে কী বোঝায়?
- ৩. ওয়েন্ডিং ও ফেব্রিকেশনের মূল পার্থক্য কী?
- 8. দুটি ওয়েন্ডিং পদ্ধতির নাম কী?
- ৫. ওয়েন্ডিং-এর দুটি কর্মক্ষেত্রের নাম লিখ।

সংক্ষিপ্ত প্রশ্নাবলি :

- ওয়েল্ডিং ও ফেব্রিকেশন ট্রেডের প্রয়োজনীয়তা লিখ।
- ২. ওয়েন্ডিং অ্যান্ড ফেব্রিকেশন ট্রেডের ৫টি কর্মক্ষেত্র উল্লেখ কর।
- ওয়েল্ডিং ও ফেব্রিকেশন ট্রেডের উদ্দেশ্য লিখ।
- 8. ওয়েন্ডিং ও ফেব্রিকেশনের মধ্যে পার্থক্য লিখ।
- ৫. ওয়েন্ডিং ও ফেব্রিকেশনের ভূমিকা বিবৃত কর।

রচনামূলক প্রশ্নাবলি:

- ১. ধাতব পদার্থের মধ্যে স্থায়ী জোড় তৈরিতে ওয়েল্ডিং-এর ভূমিকা ব্যাখ্যা কর।
- ২. ওয়েন্ডিং অ্যান্ড ফেব্রিকেশনের গুরুত্ব আলোচনা কর।
- ৩. ওয়েন্ডিং অ্যান্ড ফেব্রিকেশনের মাধ্যমে তৈরি করা হয় এমন আসবাবপত্রের নাম লিখ।
- 8. ওয়েন্ডিং ও ফেব্রিকেশন পদ্ধতির বর্ণনা দাও।
- ওয়েল্ডিং অ্যান্ড ফেব্রিকেশন ট্রেডের কর্মক্ষেত্র উল্লেখ কর।
- ৬. 'এমন কোনো বস্তু নেই যা ওয়েন্ডিং পদ্ধতিতে জোড়া দেওয়া যায় না'- কথাটি ব্যাখ্যা কর।

ধিতীয় অধ্যায় ফেব্রিকেশন কর্মক্ষেত্রের সতর্কতা

Precuation of Fabrication Work Field

২.১ কেব্ৰিকেশন কৰ্মকেন্ত্ৰের সন্তৰ্কভাৰ উদ্দেশ্য (Purpose of Precuation of Fabrication Work Field) :

ফেব্রিকেশন কর্মক্ষেত্র বলতে এমন একটি ভরুত্বপূর্ণ কার্যক্ষেত্রকে বোরার, ষেবানে মানুষ যত্রের সাহায্যে প্রোজনীয় প্রবাসামগ্রী (Product) তৈরি করে বা ফেটিপূর্ণ যত্রপাতি মেরামত করে। এরপ কর্মক্ষেত্রে মানুষ ভবা কারিগর এবং মেশিন গালাপালি থাকে, সেই সাথে থাকে প্ররোজনীয় কাঁচামাল এবং অন্যান্য সাহাব্যকারী মালামাল ও যত্রাংশ। কারিগরকে কোনো না কোনো মেশিন চালাতে হয়। যদি কারিগর সভর্কভার সাথে মেশিন চালনা না করে তাহলে বিভিন্ন প্রকার দুর্ঘটনা ঘটার আলহা থাকে। কর্মকেক্রের এই দুর্ঘটনার কলে কারিগরের অলহানি, স্থায়ী পকৃত্ব এমনকি মৃত্যু পর্যন্ত হতে পারে অথবা কর্মশালার মালামাল বা যত্রপাতি ধ্যংস হতে পারে।

চিত্র : ২.১ কেব্রিকেশন কর্মক্ষেত্রে সচেতনতা

কর্মশালার দূর্বটনা কারো কাম্য নয়, কারণ প্রটি ব্যক্তি, পরিবার, সমাজ কিবো আডির জন্য অত্যন্ত ক্ষতিকর। একজন কারিণার বর্ধন দূর্বটনাম শতিত হর তথন বেমন শারীরিক কট জোল করে, পালাসালি ভার পরিবারের সদস্যও সে সমর মানসিক কট পার। সে যতদিন আযাতের কারণে কান্ধ করা হতে বিরত থাকে ততদিন তার গোটা পরিবার অর্থনৈতিক কটে দিন কাটার। তাহাড়া উক্ত কারিণরের চিকিসোর জন্য ব্যর হয় প্রচুর অর্থ।

কারিগর যতদিন কান্ধ করতে পারে না ততদিন দেশ তার কান্ধ হতে বঞ্চিত হয়। এতকিছু ক্ষতির মূলে যে দুর্ঘটনা, তা অধিকাংশ ক্ষেত্রে ঘটে কর্মীর ব্যক্তিগত সতর্কতার অভাবে। আর অভি অক্স সংখ্যক দুর্ঘটনা ঘটে যত্ত্রপাতি ও পরিবেশ পরিস্থিতির দোবে। তাই ফেব্রিকেশন কর্মক্ষেত্রে কান্ধ করার প্রথম শর্তই হলো নিরাপন্তা নিশ্চিত করার পর কর্ম সম্পাদন (Safety First than Work)।

छिख : २.२

অতএব, ফেব্রিকেশন কর্মক্ষেত্রে (Safety first than work) অর্থাৎ নিরাপন্তা নিশ্চিত করার পর কর্ম-এই মল্লে দীক্ষিত হয়ে নিম্নরূপ সতর্কতাশুলি পালনে মনোযোগী হওয়া একান্ত কর্তব্য :

- ১. কেব্রিকেশন যন্ত্রপাতি ও আনুষঙ্গিক সরঞ্জামগুলো নিয়মতান্ত্রিক উপায়ে সাঞ্জিয়ে রাখতে হবে ।
- ২. নিরাপন্তামূলক কর্মক্ষেত্রের ব্যবস্থা নিশ্চিত করতে হবে।
- ৩. কেব্রিকেশন-মেশিন ও যন্ত্রপাতিশুলো ব্যবহারের ক্ষেত্রে যে ধারাবাহিক নিয়ম রয়েছে, তা জেনে নিতে হবে।
- 8. গ্যাস বা আর্ক ওয়েন্ডিং-এর সময় যে ধোঁয়া বের হয় তা যেন শ্বাস-প্রশ্বাসের সঙ্গে দেহে প্রবেশ না করে।
- ৫. ফেব্রিকেশন কর্মক্ষেত্রে কাজ করার সময় দাহ্য তৈলাক্ত পদার্থ দূরে রাখতে হবে।
- ৬. প্রত্যেকটি টুলস, মালামাল ও যন্ত্রপাতি নির্দিষ্ট জায়গায় সাজিয়ে রাখতে হবে।
- শরীরের কোনো অংশ কেটে বা পুড়ে গেলে সঙ্গে সঙ্গে প্রাথমিক চিকিৎসা নিতে হবে এবং প্রয়োজনে ডাক্তারের শরণাপর হতে হবে ।
- ৮. কর্মক্ষেত্রে ধারালো টুলস সাবধানে রাখতে হবে।
- ৯. উত্তপ্ত ধাতব পদার্থ হাত দিয়ে স্পর্শ না করে টংস (Tongs) ব্যবহারের অভ্যাস করতে হবে যাতে হাত বা শরীরের কোনো অংশ পুড়ে না যায়।

২.২ কেব্রিকেশন-এ নিরাপদ ও স্বাস্থ্যসম্ভ কর্মপরিবেশের প্রয়োজনীয়তা (Necessity of Safety and Healthy Environmental Work Field in Fabrication):

ফেব্রিকেশন বলতে আর্ক, বিদ্যুৎ ও অর্ধগলিত বা গলিত ধাতৃ নিয়ে কাজকর্ম বোঝায়। তিনটিই শরীরের পক্ষে বিশেষ ক্ষতিকারক বিষয়। এ ক্ষতির হাত থেকে রক্ষা পেতে হলে ফেব্রিকেশন কর্মক্ষেত্রে নিরাপদ ও স্বাস্থ্যসম্মত পরিবেশের একান্ত প্রয়োজন। নিচের কাজগুলো নিরাপদ ও স্বাস্থ্যসম্মত কর্মপরিবেশ বজায় রাখতে সহায়ক ভূমিকা পালন করে:

- ১. ফেব্রিকেশন যন্ত্রপাতি ব্যবহারের নিয়মকানুন সঠিকভাবে জেনে এবং মেনে কর্ম করা।
- ওয়ার্কশপে পর্যাপ্ত আলো-বাতাসের সুব্যবস্থা নিশ্চিত করা।
- ৩. তেল বা তেল জাতীয় পদার্থ যেখানে সেখানে ফেলে না রাখা।
- 8. যেখানে সেখানে কফ বা থুথু না ফেলা।
- কারখানার মধ্যে কখনও বিকট শব্দ না করা ।
- ৬. অসুস্থ বা তন্ত্রাভাব নিয়ে কাজ না করা।
- ৭. কাজের সময় গল্পগুজবে লিগু না হওয়া।
- ৮. কাজ শেষে কাজের জায়গা অবশ্যই পরিষ্কার রাখা।

এসব নিম্নম সঠিকভাবে মেনে চললে কর্মস্থল নিরাপদ ও স্বাস্থ্যসম্মত হবে এবং সৃষ্ট দেহ-মনে কাজকর্ম করতে পারার ফলে কারখানার উৎপাদন ও সর্বোপরি লভ্যাংশ বৃদ্ধি পাবে।

২.৩ কেব্রিকেশন কর্মক্ষেত্রে বিপজ্জনক অবস্থাদি শনাক্তকরণ (Identification of Danger sitiuation of Fabrication Work Field):

ফেব্রিকেশন উত্তাপ ও উত্তপ্ত ধাতব পদার্থ এবং ওয়েন্ডিং জ্বনিত বিষাক্ত গ্যাসের উৎপত্তিস্থল। যে কোনো দুর্ঘটনার হাত থেকে নিরাপদ থাকতে হলে পূর্বাহ্নে বিপজ্জনক অবস্থাদি শনাক্তকরণ প্রয়োজন। নিম্নে ফেব্রিকেশন কর্মক্ষেত্রে বিপজ্জনক অবস্থাদি প্রদন্ত হলো-

- ফেব্রিকেশন কর্মক্ষেত্রে অপর্যাপ্ত আলো-বাতাস শারীরিক ক্ষতির আশঙ্কা হতে পারে।
- আর্ক ওয়েন্ডিং ধোঁয়া ফুসফুসে প্রবেশের দরুন শরীরের ক্ষতি হতে পারে।
- ৩. ওয়েন্ডিং পরিবেশ দৃষণ করে।
- 8. আর্ক রশ্মি থেকে চোখের ক্ষতি হতে পারে।

- ফেব্রিকেশন কর্মক্ষেত্রে গ্যাস দ্বারা আগুন লাগতে পারে ।
- ৬. ঢিলা জামাকাপড় পরিধান করে কাজ করলে দুর্ঘটনা ঘটতে পারে।
- ৭. চিপিং করার সময় চিপস চোখে এসে চোখের ক্ষতি করতে পারে।
- ৮. লম্বা চুল দ্রিল মেশিন বা কোনো ঘূর্ণায়মান মেশিনে আটকে গিয়ে তা থেকে বিপদ ঘটতে পারে।
- ৯. ভিজা বা সাঁ্যাতসেতে জায়গায় দাঁড়িয়ে ওয়েন্ডিং করলে বিদ্যুৎস্পৃষ্ট হতে পারে।
- ১০. গ্যাস সিলিন্ডার অসতর্কভাবে ব্যবহারে বিক্ষোরণসহ দুর্ঘটনা ঘটতে পারে।
- ১১. আংটি বা ঘড়ি পরে কাজ করলে তা মেশিনে আটকে দুর্ঘটনা ঘটতে পারে।
- ১২, ভেন্টিলেশন-এর অভাবে ওয়েল্ডিংজনিত বিষাক্ত গ্যাস শরীরকে নিস্তেজ করতে পারে।

২.৪ ফেব্রিকেশন কর্মক্ষেত্রে ব্যক্তির বিপজ্জনক কাজকর্মসমূহ (Danger sitiuation of Fabrication Work Field):

ফেব্রিকেশন কর্মক্ষেত্রে ব্যক্তিকে তাপ-বিদ্যুৎ ও উত্তপ্ত ধাতব পদার্থ নিয়ে কাজকর্ম করতে হয়। ব্যক্তিকে যে কোনো দুর্ঘটনার হাত থেকে নিরাপদ থাকতে হলে পূর্বাহ্নে বিপজ্জনক অবস্থাদি সম্পর্কে সম্যক ধারণা থাকা প্রয়োজন। নিম্নে ফেব্রিকেশন কর্মক্ষেত্রে ব্যক্তির বিপজ্জনক অবস্থাদিসমূহ উল্লেখ করা হলো−

- ফেব্রিকেশন কর্মক্ষেত্রে উত্তপ্ত ধাতব পদার্থের সংস্পর্শে পুড়ে গিয়ে দুর্ঘটনা ঘটতে পারে ।
- ২. ফেব্রিকেশন কর্মক্ষেত্রে কোনো ভারী মালামাল পরিবহন করার সময় তা পড়ে গিয়ে দুর্ঘটনা ঘটতে পারে।
- চিপিং কালে চিপস বা ধাতব কণা চোখে পড়ে দুর্ঘটনা ঘটতে পারে।
- 8. ক্রেন এর মাধ্যমে মালামাল সরানোর সময়ও অসতর্ক মুহুর্তে দুর্ঘটনা ঘটতে পারে।
- ৫. ভিজে স্যাতসেঁতে জায়গায় দাঁড়িয়ে ওয়েন্ডিং করলে বিদ্যুৎস্পৃষ্ট হয়ে দুর্ঘটনা ঘটতে পারে।
- ৬. ফেব্রিকেশন কাজে কোনো বস্তু কাটার সময় গ্যাস ব্যবহার করা হয়, তাতেও দুর্ঘটনা ঘটতে পারে।
- ৭. মেশিনে কাজ করার সময় অন্যমনস্ক বা অহেতুক কথাবার্তার জন্য দুর্ঘটনা ঘটতে পারে।
- ৮. মেশিনে কাজ করার সময় অসাবধানতা অবলম্বন করলে দুর্ঘটনা ঘটতে পারে।
- ৯. ফেব্রিকেশন কাজের শেষে যে ময়লা হয় তা পরিষ্কার না করলে তা হতেও দুর্ঘটনা ঘটতে পারে।

২.৫ ফেব্রিকেশন কর্মক্ষেত্রের হাউজকিপিং এর বিষয়াদি বিবৃতকরণ (House keeping of Fabrication Work Field):

উত্তম হাউজকিপিং যে কোনো কর্মক্ষেত্রের সুষ্ঠু ও সুন্দর পরিবেশ গড়ার পূর্বশর্ত। তাই ফেব্রিকেশন কর্মক্ষেত্রে হাউজকিপিং একটি অত্যন্ত গুরুত্বপূর্ণ জরুরি বিষয়। কাজের শেষে কর্মস্থল ঠিকমতো পরিষ্কার না করলে যে কোনো সময় দুর্ঘটনা ঘটতে পারে। অপরিচ্ছন্নতার জন্য রোগজীবাণু ছড়াতে পারে। অপরিষ্কার জায়গায় কাজ করলে কাজের বিদ্ন ঘটে। ফলে কাজ্জ্যিত মানের কার্যবস্তু তৈরি হয় না। তাই কাজের শেষে অবশ্যই প্রতিদিন যন্ত্রপাতি, কাঁচামাল নির্দিষ্ট স্থানে কার্যোপযোগী করে রাখতে হবে। উত্তম হাউজকিপিং উন্নতমানের জব তৈরি নিশ্চিত করে এবং নিরাপদ কর্মপরিবেশ বজায় রাখে।

অতএব ফেব্রিকেশন কর্মক্ষেত্রে হাউজকিপিং-এর প্রয়োজনীয়তা অনস্বীকার্য।

প্রশ্নমালা-২

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ফেব্রিকেশন কর্মক্ষেত্রে কাজ করার প্রথম শর্ত কী?
- ২. ফেব্রিকেশন কর্মক্ষেত্রে বিপজ্জনক অবস্থা বলতে কী বোঝায়?
- ৩. ফেব্রিকেশনে নিরাপদ কর্মপরিবেশ বলতে কী বোঝায়?
- 8. ফেব্রিকেশন কর্মক্ষেত্রের হাউজকিপিং (House Keeping) বলতে কী বোঝায়?
- ৫. শরীরের কোনো অংশ কেটে গেলে কী ব্যবস্থা নিতে হবে?
- ৬. ফেব্রিকেশন যন্ত্রপাতি কী উপায়ে রাখতে হবে?

সংক্ষিপ্ত প্রশ্নাবলি:

- ফব্রিকেশন কর্মক্ষেত্রের সতর্কতার উদ্দেশ্য লিখ।
- ফেব্রিকেশন কর্মক্ষেত্রের ব্যক্তির বিপজ্জনক কজকর্ম উল্লেখ কর।
- ফব্রিকেশনে স্বাস্থ্যসম্মত কর্মপরিবেশের প্রয়োজনীয়তা লিখ।
- 8. ফেব্রিকেশনে কী উপায়ে দুর্ঘটনা কমিয়ে আনা সম্ভব হয়?
- ৫. ফেব্রিকেশন কর্মক্ষেত্রে কেন নিরাপদ কর্মপরিবেশের প্রয়োজন হয়?

রচনামূলক প্রশ্নাবলি:

- ফেব্রিকেশন কর্মক্ষেত্রের বিপজ্জনক অবস্থাদির বর্ণনা দাও।
- ফব্রিকেশন কর্মক্ষেত্রের হাউজিকিপিং বিষয়য়্তলো আলোচনা কর ।
- ফেব্রিকেশন কর্মক্ষেত্রের ব্যক্তির বিপজ্জনক কাজকর্মের বর্ণনা দাও।
- 8. ফেব্রিকেশন-এ নিরাপদ ও স্বাস্থ্যসম্মত কর্মপরিবেশের প্রয়োজনীয়তা উল্লেখ কর।
- ৫. ফেব্রিকেশন কর্মক্ষেত্রে 'Safety First than work' কথাটির আলোকে নিরাপত্তামূলক সতর্কতার বর্ণনা দাও।

ভৃতীয় অধ্যায় ফেব্রিকেশন মেশিনসমূহের পরিচিতি

(Introduction of Fabrication Machines)

- ৩.১ ফেব্রিকেশন মেশিনসমূহের নাম (Name of Fabrication Machines) : ফেব্রিকেশন কর্মক্ষেত্রে নানাবিধ ধাতব কাজের সুবিধার্থে বিভিন্ন ধরনের মেশিনপত্র ব্যবহৃত হয়ে থাকে । নিম্নে ফেব্রিকেশন কর্মক্ষেত্রে ব্যবহৃত প্রধান প্রধান মেশিনসমূহের নাম উল্লেখ করা হলো :
- ১. স্থ্রিপ রোল ফরমিং মেশিন (Slip Roll Forming Machine)
- ২. রোটারি মেশিন (RotaryMachine)
- ৩. কর্নিক ব্রেক মেশিন (Cornic Brake Machine)
- 8. হ্যান্ড লিভার শিয়ার (Hand Lever Shear)
- ৫. স্করার শিরার মেশিন (Square Shear Machine)
- ৬. বক্স অ্যান্ড প্যান ব্ৰেক মেশিন (Box and Pan Brake Machine)
- ৭. সার্কেল শিয়ার্স (Circle Shears)
- ৮. বার ফোল্ডিং মেশিন (Bar Folding Machine)
- ৯. সেটিং ডাউন মেশিন (Setting Down Machine)
- ১০. ডবল সিমিং মেশিন (Double Seaming Machine)
- ১১. গ্রুভিং মেশিন (Grooving Machine)
- ৩.২ ফেব্রিকেশন মেশিনসমূহ শনাক্তকরণ (Identification of Fabrication Machines): ফেব্রিকেশন মেশিন কাজের ধরনের উপর ভিত্তি করে শনাক্ত করা হয়। নিম্লে ফেব্রিকেশন মেশিনসমূহ শনাক্ত করা হলো:
- (১) স্থ্রিপ রোল ফরমিং মেশিন (Slip Roll Forming Machine):
 স্থ্রিপ রোল ফরমিং মেশিন ফেব্রিকেশন কাজে ব্যবহৃত অন্যতম মেশিন। এটি প্রধানত তিনটি রোলার নিয়ে
 গঠিত। সামনের দুটি কাজের ধরন অনুযায়ী ফাঁক করা হয় এবং পিছনেরটি অলসভাবে মেটালের আকৃতি
 দিতে সাহায্য করে।

চিত্র : ক্রিপ রোল ফরমিং মেশিন

(২) রোটারি মেশিন (RotaryMachine) :

মূলত দুই প্রকার রোটারি মেশিনের সাহায্যে ওয়্যার এক্স কাচ্চ করা হয়। একটি টার্নিং মেশিন অন্যটি ওয়্যারিং মেশিন। একমাত্র রোলার ছাড়া উভয় মেশিনের অন্য কোনো পার্থক্য নেই। রোটারি মেশিন অ্যাডজার্নিটং ক্সু, ক্র্যাংক ক্স এবং ক্স হ্যাডেল নিয়ে গঠিত।

চিত্র : রোটারি মেশিন

(৩) কৰ্নিক ব্ৰেক মেশিন (Cornic Brake Machine) :

কর্নিক ব্রেক মেশিন শিউকে সরু আকৃতির বেড করতে ব্যবহার করা হয়। বেশি চওড়া বেমন- বাক্সের পার্শ বেড করতে ব্রেক মেশিন বা হাডে করা যেডে পারে। এই মেশিন দুই প্রকার -কর্নিক ব্রেক মেশিন এবং বক্স আড প্যান ব্রেক মেশিন। কর্নিক ব্রেক উপ-শিক এবং লোয়ার বেডিং শিক, ফ্ল্যাপিং হ্যান্ডেল, হ্যান্ডেল, ব্যান্ডেল ওয়েট, বেডিং এক্সবার ইড্যাদি অংশ নিরে গঠিত।

চিত্র: কর্নিক ব্রেক মেলিন

(৪) হ্যাভ শিভার শিয়ার (Hand Lever Shear) :

হ্যান্ড শিন্তার শিয়ার হস্তচাশিত মেশিন। এতে দৃটি ব্লেড বর্তমান। একটি স্থির অপরটি চলমান। হাতলটি চেপে নিচের দিকে নামালে চলমান ব্লেডটি নেমে এসে শিটকে কেটে ফেলে।

এর সাহায্যে পুরু শিটকে সরল রেখা বরাবর অল্প চাপে সহজেই কাটা যায় এবং সময় ও প্রম কম লাগে।

চিত্র : হ্যান্ড লিন্ডার শিরার

(৫) করার শিরার বেশিন (Square Shear Machine) :

স্করার শিরার মেশিন বেড (Bed), ফুট ট্রেডল (Foot Treadle), দুটি কাটিং ব্লেড (Cutting Blade), ব্রুক্ট গেজ (Front gauge), ব্যাক গেজ (Back gauge) এবং দুটি গাইড গেজ (Guide Gauge) নিরে গঠিত। ব্লেডের সম্মুখে পরিমাপের জন্য একটি স্কেল আছে, যার প্রতি ইঞ্চিতে ১৬ ভাগে ভাগ করা আছে। উক্ত কেল দিরেই শিট কাটার পরিমাণ নির্ণয় করা যায়। ব্লেডের প্রত্যেক পার্শে স্টিল বারে নির্মিত গাইড গেজেন্তলি বোল্ট দ্বারা আবদ্ধ। গাইড গেজের যে কোনো পার্শ্ব দিরে শিটের প্রান্তে স্থাপন করে মেশিনের কাটিং এজ-এর সমান্তরালে ইহা কাটা যায়।

চিত্র : ক্ষয়ার শিল্পার মেশিন

(৬) বন্ধ স্থাভ ব্যান ব্ৰেক মেশিন (Box and Pan Brake Machine) :

বন্ধ আছে গ্যান ব্ৰেক এবং কৰ্নিক ব্ৰেকের মধ্যে প্রাথমিক পার্থক্য হবে উপরের 'ছ' (Jaw) এর ডিজাইনের প্রকৃতি। কর্নিক ব্রেকের একটি মাত্র উপরের বেভিং বার থাকে, কিন্তু বন্ধ আছে গ্যান ব্ৰেক মেশিন অনেকঙলো হোট ছোট পৃথক বারের সমস্বরে গঠিত এবং যা কিন্তার নামে গরিচিত।

চিত্ৰ : ৰক্স খ্যান্ত শ্যান ব্ৰেক্ষ মেশিন

(१) नार्क्न निवार्न (Circle Shears) :

এটা হস্তচালিত মেলিন। হাডলটিকে স্থালে ঢালু করা কটার দুটির সাধ্যমে পিট অভি অক্স সমরে সহজেই এবং কম গরিপ্রমে বৃস্তাকারে কর্ডিত হয়ে যার।

চিত্র। সার্কেল শিল্পার্স

(৮) বাৰ কোন্ডিং মেশিন (Bar Folding Machine) :

এটি শিট মেটাল কাজে প্রায়ই ব্যবহার করতে হয়। এই মেশিনের সাহায্যে শিট বে কোনো কোনে বেড করা, চ্যানেল তৈরি, হেমের ভাঁজ করা এবং গুয়ার এজ উৎপদ্ধ করা হয়। এই মেশিনের সবচেরে উল্লেখযোগ্য সভর্কভার বিষয় হলো ক্যাপানিটির অতিরিক্ত পূরু শিট ব্যবহার না করা। বার কোকিং মেশিনে 20 বা 22 পেজ (SWG) পর্বন্ধ পুরু শিট ব্যবহার করা বেতে পারে।

চিত্ৰ : বাৰ ফোডিং মেশিন

(১) সেটিং ডাউন বেশিন (Setting Down Machine) :

সাধারণত সেটিং ভাউন মেশিনের সাহায্য সিমেল সিম এক উৎপন্ন করা যার। শিটের প্রাক্তকে ব্রোলের মধ্যে স্থাপন করে ত্রমাংক স্থাতেলকে মুরানো হয়। মেশিনের উপর অবস্থিত ত্রমাংক স্থা-এর সাহায্যে উপরের রোপারের মাধ্যমে চাপ নিয়ন্ত্রণ করে মেটালের উপর চাপ প্রয়োগ করা হয়।

চিত্র। লেটিং ডাউন মেশিন

(১০) ছবল সিবিং নেশিন (Double Seaming Machine) :

ভবল সিমিং মেশিন হর্ন, নিচের রোল, উপরের রোল, হ্যান্ড হুইল, ক্র্যাংক হ্ন, অ্যান্ত্লার সারকেস, হোঁচ হুইল এবং ক্র্যাংক হ্যান্ডেল প্রভৃতি নিরে গঠিত। ডবল সিমিং করার জন্য কার্যবস্তুকে হর্নের উপর নিচের রোলারে হালন করতে হবে। উপরে রোলারকে হ্যান্ড হুইল-এর সাহায্য বাইরের দিকে সরাতে হবে। ক্র্যাংক ক্রুকে যুরিরে, অ্যান্ত্লার সারকেসকে উপরের রোল-এর বিপরীত সীমার উপরের এজে আনতে হবে। এই কাজে হোঁট হুইল মেটালকে ধারণ করতে সহারতা করে। এখন ক্র্যাংক হ্যান্ডেলকে যুরাতে হবে। এতে শিটের প্রান্ত বাঁকা হরে চ্যান্ট্যা অবস্থার সৃষ্টি হবে।

চিম : ডবল নিমিং নেশিন

(১১) ঞ্চান্তিং মেশিন (Grooving Machine) :

মূলত প্রান্তিং মেশিনের সাহায্যে সিম জরেউকে দৃঢ় ও নিপুঁতভাবে সম্পন্ন করা যায়। প্রথমে কার্যবন্ধকে নিরম মোতাবেক প্রান্ত ভান্ধ করে অটিকিয়ে (Hook) দিয়ে সিম প্রান্তিং মেশিনে সেট করতে হবে। এই মেশিন ব্যবহার করতে প্রথমে হর্মকে অ্যাভজাস্ট করতে হবে। যদি সিম কার্যবন্ধর উপর তলে থাকে, ভাহলে হর্মকে সুরাতে হবে বেন সমতল সারকেস উপরে থাকে। সিম কার্যবন্ধর ভিতরের দিকে থাকলে সঠিক মাপের গ্রান্ত করে হর্মকে গ্রন্থকে গ্রন্থকে ব্যবহার বিবাহিক প্রত্ত উঠে আসে।

চিত্ৰ: প্ৰাভিং মেশিন

৩.৩ ফেব্রিকেশন মেশিনের ব্যবহার (Uses of Fabrication Machine) :

কেব্রিকেশন মেশিন ধাতব কাঠামো তৈরির কাজে অর্থাৎ ধাতব পদার্থ যেমন- লোহা বা ইস্পাতের প্লেট, অ্যানেশ, চ্যানেশ, এইচ বিম, রড প্রভৃতি ধাতৃ খণ্ডকে প্রয়োজনীয় টুশস ও ইক্ট্ইপমেন্ট-এর সাহায্যে নকশা (Drawing) অনুসারে কেটে ওয়েন্ডিং করে জোড়া (joint) দিয়ে ইন্সিত কাঠামো বা স্ট্রাকচার গঠন করার ক্ষেত্রে সর্বাধিক ব্যবহৃত হয়।

নিম্নে বিভিন্ন প্রকার কেব্রিকেশন মেশিনের ব্যবহার সংক্রেপে উল্লেখ করা হলো :

শিয়ার কাটিং মেশিন : কোনো ধাতব খণ্ডকে বা পাতকে কাটার জন্য এটি ব্যবহার করা হয় । এর দারা রড, ফ্রাট বার, রাউন্ড বার, অ্যান্দেশ বার ইত্যাদি কাটা যায় ।

রাউড বার বা পাইপ বেন্ডিং মেশিন : রাউড বার বা পাইপ বেন্ডিং করার কাজে এ জাতীয় মেশিন ব্যবহার করা হয় । এর মাধ্যমে গাইপের বা রাউড বারের বিভিন্ন অ্যাকেল ও আকৃতি দেওরা যায় ।

শিট বেভিং মেশিন : কোনো শিট বেভিং বা অ্যাফেল করার কাজে এই মেশিন ব্যবহার করা হয়।

অটো প্রেট কাটার : এটি সাধারণত ধাতব প্রেট কাটার কাজেই বেশি ব্যবহৃত হয়। এটি ইলেকট্রিসিটির মাধ্যমে চলে। এটি বড় কলকারখানায় ব্যবহৃত হয়।

প্লেট বা শিট রোশিং মেশিন : কোনো ধাতব প্লেট বা শিট রোশিং করার জন্য এটি ব্যবহৃত হয়। এর মাধ্যমে রাউড, হাক রাউড রোশিং করা যায়।

প্রাইন্ডিং মেশিন : প্রাইন্ডিং মেশিনের সাহায্যে টেপার, সিনিড্রিক্যান, অভ্যন্তরীণ, সেন্টারলেস ইত্যাদি সকল প্রকার তলকে সহজেই গ্রাইন্ডিং করা হয় । পাওয়ার 'স' : বড় ব্যাস বিশিষ্ট পাইপ, ক্ষয়ার বার, রাউন্ড বার, রড, মোটা ধাতব প্লেট ইত্যাদি কাটার জন্য এই মেশিন ব্যবহার করা হয়।

পাওয়ার দ্রিল মেশিন : কোনো বস্তুর উপর ছিদ্র করার কাজে এই দ্রিল মেশিন ব্যবহার করা হয়।

প্রেট বেন্ডিং মেশিন: এই জাতীয় মেশিন খুবই ভারি। এটি সাধারণত বড় বড় কলকারখানায় ব্যবহৃত হয়। বিশেষ করে শিপ ইয়ার্ড বা ডক ইয়ার্ডে এর ব্যবহার বেশি দেখা যায়। এটি হাইড্রোলিক চালিত হওয়ায় মোটা বা পুরু সাইজের প্লেটকে বেন্ডিং করা সহজ হয়।

৩.৪ ফেব্রিকেশন মেশিনের যত্ন ও রক্ষণাবেক্ষণের বর্ণনা (Care and Maintenance of Fabrication Machines):

ফেব্রিকেশন মেশিনের সর্বাধিক ব্যবহার এদের যথাযথ যত্ন ও রক্ষণাবেক্ষণের উপর নির্ভরশীল। ফেব্রিকেশন মেশিনের সর্বাধিক ব্যবহার নিশ্চিত করার লক্ষ্যে এর যত্ন ও রক্ষণাবেক্ষণে নিম্নলিখিত ব্যবস্থা গ্রহণ করা প্রয়োজন–

- ১. ওয়েন্ডিং মেশিনের সুইচ, ইনপুট এবং আউটপুট লাইনের ক্যাবলের ইন্সুলেশন ঠিকমতো আছে কি না, দেখে নিতে হবে। যদি না থাকে তাহলে মেরামত করতে হবে।
- ২. ধুলাবালি, কার্বনের গুঁড়া জমে মেশিনের কাজে বিঘ্ন ঘটাতে পারে, তাই পরিষ্কার করে নিতে হবে।
- ৩. যেসব মেশিনে তেল বা প্রিজ দিতে হয়, তা ভালো করে পরীক্ষা করে নিয়ে তারপর মেশিন চালু করতে হবে।
- মেশিন চালনার সময় শব্দ বেশি হলে তা খুলে চেক করে নিতে হবে এবং প্রয়োজনবোধে মেরামত করে
 নিতে হবে ।
- ৫. মেশিনে কাজ করার আগে চালুকরণ পদ্ধতি জেনে নিতে হবে।
- ৬. ঘূর্ণায়মান ও চলমান মেশিনের উপর ঢাকনা দিয়ে রাখতে হবে।
- ৭. ব্রাশ দিয়ে মেশিন ও চারপাশ পরিষ্কার করে রাখতে হবে।
- কাজ শেষে মেশিন পরবর্তী কাজের উপযোগী করে রাখতে হবে ।

প্রশ্নমালা-৩

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ফেব্রিকেশন মেশিন ব্যবহার করার মূল কারণ কী?
- ২. ফেব্রিকেশন মেশিন বলতে কী বোঝায়?
- ৩. তিনটি প্রয়োজনীয় ফেব্রিকেশন মেশিনের নাম লিখ।
- ফেব্রিকেশন মেশিন রক্ষণাবেক্ষণ বলতে কী বোঝায়।

সংক্ষিপ্ত প্রশাবলি :

- ১. ফেব্রিকেশন মেশিন কিসের উপর ভিত্তি করে শনাক্ত করা হয়?
- ২. পাঁচটি ফেব্রিকেশন মেশিনের নাম উল্লেখ কর।
- ৩. চারটি ফেব্রিকেশন মেশিনের ব্যবহার লিখ।
- 8. তিনটি ফেব্রিকেশন মেশিনের যত্ন ও রক্ষণাবেক্ষণ লিখ।

রচনামূলক প্রশ্নাবলি:

- একটি ফেব্রিকেশন মেশিনের কার্যপদ্ধতি বর্ণনা কর।
- ২. ফেব্রিকেশন মেশিনের যত্ন ও রক্ষণাবেক্ষণের বর্ণনা দাও।
- পাঁচটি ফেব্রিকেশন মেশিনের ব্যবহার লিখ।

চতুৰ্থ অধ্যায় ফেব্ৰিকেশন হ্যান্ড টুলস

(Fabrication Hand Tools)

8.১ ফেব্রিকেশন হ্যান্ড টুলসের নাম (Name of the Fabrication Hand Tools) :

ফেব্রিকেশন কাজে নানাবিধ হ্যান্ড টুলস ব্যবহৃত হয়।

তাদের মধ্যে নিমুলিখিত হ্যান্ড টুলসসমূহ অন্যতম-

- ১. স্টিল রুল (Steel Rule)
- ২. ট্রাই-স্কয়ার (Tri-square)
- ৩. ব্লাকস্মিথ টং (Blacksmith Tong)
- 8. অ্যাডজাস্ট্যাবল রেঞ্জ (Adjustable Wrench)
- ৫. চিপিং হ্যামার (Chipping Hammer)
- ৬. ওয়েন্ডিং ক্ল্যাম্প (Welding Clamp)
- ৭. ওয়্যার ব্রাশ (Wire Brush)
- ৮. সেন্টার পাঞ্চ (Center Punch)
- ৯. হাতুড়ি (Hammer)
- ১০. সি-ক্লাম্প (C-Clamp)
- ১১. স্টিল বার ক্ল্যাম্প (Steel Bar Clamp)
- ১২. ভাইস (Vice)
- ১৩. ক্ল্যাম্প (Clamp)
- ১৪. চিজেল (Chisel)
- ১৫. ফাইল (File)
- ১৬. দ্ৰিল বিট (Drill bit)
- ১৭ হ্যাক'স (Hack Saw)
- ১৮. পাইপ কাটার (Pipe Cutter)
- ১৯. হ্যান্ড গ্রাইন্ডার (Hand Groover)
- ২০. স্নিপ (Snip)
- ২১. স্টিল টেপ (Steel Tape)
- ২২. ক্সু-ড্রাইভার (Screw Driver)

এছাড়াও ওয়েন্ডিং কার্যে নিমুলিখিত টুলসগুলি ব্যবহৃত হয়ে থাকে -

- ১. ব্লেঞ্চ (Wrench)
- ২, স্নিপ (Snip)
- ৩. গ্যাস হিটার টর্চ (Gas Heater Torch)
- 8. হাতুড়ি (Hammer)
- ৫. ট্যাপ (Tap) এবং ডাই (die)
- ৬. স্কু-দ্রাইভার (Screw Driver)
- ৭. রিভেট (Rivet)
- ৮. প্লায়ার্স (Pliers)
- ৯. চিজেল (Chisel)
- ১০. পাঞ্চ (Punch)
- ১১. হেলমেট (Halmet)
- ১২. হ্যান্ডশিল্ড (Hand Shield)
- ১৩. গগলস (Goggles)

৪.২ ফেব্রিকেশন হ্যান্ড টুলস শনাক্তকরণ (Identification of Fabrication Hand Tools) :

ফেব্রিকেশন হ্যান্ড টুলস ধাতব কাঠামো তৈরির কাজে অর্থাৎ ধাতব পদার্থ যেমন- লোহা বা ইস্পাতের প্লেট, অ্যান্সেল, চ্যানেল, এইচ বিম, রড প্রভৃতি ধাতু খন্ডকে প্রয়োজনীয় নকশা অনুসারে কেটে গুয়েন্ডিং করে জ্যোড়া (joint) দিয়ে ইন্সিত কাঠামো বা স্ট্রাকচার গঠন করার কাজে গুরুত্বপূর্ণ ভূমিকা পালন করে থাকে।

নিম্নে বিভিন্ন প্রকার ফেব্রিকেশন কাজে ব্যবহৃত হ্যাভ টুলসসমূহ শনাক্ত করা হলো-

১. স্টিল রুল (Steel Rule) :

२. द्वीर-कन्नान (Tri-Square) :

কেব্ৰিকেশন ব্যাক টুলন ২১

e. ड्रांकन्यित हर (Blacksmith Tong) :

a. जांक्यांन्नांत्र तक (Adjustable Wrench) :

e. हिनिर कांबाव (Chipping Hammer) ।

অরকিং ক্লাম্প (Welding Clamp) :

१, ज्यान वान (Wire Brush)

৮. সেউাৰ পাঞ্চ (Center Punch) :

৯. হাড়ড়ি (Hammer) :

১০. দি-ক্লাম্প (C-Clamp) :

ষেব্রকেশন হ্যান্ড টুলস

১১. স্টিল বার ক্ল্যাম্প (Steel Bar Clamp) :

১২. চিজেল (Chisel) :

১৩. ফাইল (File) :

১৪. क्वांदेवात (Scriber) :

১৫. পোর্টাবল পাওয়ার দ্বিল মেশিন (Portable Power Drill Machine) :

১৬. দ্ৰিল বিট (Drill bit) :

১৭. হ্যাক'স (Hack Saw) :

১৮. হ্যাভ থাইভার (Hand Groover) :

১৯. শ্লিপ (Snip) :

ষেব্রিকেশন হ্যান্ড টুলস

२०. जिन (Steel Tape) :

২১. ছ-দ্রাইভার (Screw Driver) :

৪.৩ ফেব্রিকেশন হ্যান্ড টুলসের ব্যবহার (Uses of Fabrication Hand Tools) :

ধাতৰ কঠিমো তৈরির কাজে অর্থাৎ ধাতৰ পদার্থ বেমন- দোহা বা ইস্পাতের প্রেট, আ্যানেস, চ্যানেস, এইচ বিম, রড প্রতৃতি ধাতৃ থথকে প্রয়োজনীয় নকশা অনুসারে কেটে ওরেন্ডিং করে জোড়া (joint) দিয়ে ইন্সিত কঠিমো বা স্ট্রাকচার গঠন করার কাজে ফ্রেবিকেশন হ্যান্ড টুলস-এর ব্যবহার সর্বাধিক।

নিত্রে বিভিন্ন একার কেব্রিকেশন হ্যাড় টুলস-এর ব্যবহার সংক্রেপ উল্লেখ করা হলো :

- ১. স্থামার : কোনো বস্তব উপর আখাত করার মতো সাধারণ কাচ্ছে হ্যামার ব্যবহৃত হয়।
- ২. ব্যান্ত প্ৰাইন্ডার : সাধারণত প্রাইডিং এবং কাটিং-এর কালে বিশেষ করে জোড়া এবং পার্বদেশ ও রুট প্রন্তুত করার কালে ব্যবহার করা হর ।
- ৩. স্টিন রূপ : কোনো বস্তর দৈর্ঘ্য, গ্রন্থ, উচ্চতা মাপার কাজে ব্যবহার করা হয়।
- ৪. ব্লিপ । পাতলা ধাতৰ শিট কাটাৰ কাজে ব্যবস্কৃত হয় ।
- ৫. স্টিল টেগ : বড় এবং ছেটি আকারের কোনো বছকে মাপার জন্য স্টিল টেগ ব্যবহার করা হয়।
- ছ-ছাইভার : কার্যবন্ধকে ছু দারা অটকালো ও বোলার জন্য ব্যবহৃত হয় ।
- ৭. হ্যান্ত গ্যাস কটার : কেব্রিকেশন কাজে কোনো পূক মেটাল, আছেল বাব, ফ্লাট বার, প্রেট ইত্যাদি কটার জন্য এটি ব্যবহার করা হয় । হ্যান্ত গ্যাস কটার-এর মাধ্যমে মেটাল কটিলে কাটা ছান খুব মসৃশ হয় না ।

- b. পাইপ কাটার : পাইপ কাটার কাজে এটি ব্যবহার করা হয়।
- ১০. স্থাক 'স' : ধাতব মালামাল কাটার জন্য হ্যাক-স ব্যবহার করা হয়।
- ১১. পাঞ্চ : ধাতব জবের গায়ে সৃক্ষ্ণ অথচ সুস্পষ্ট চিহ্ন অঙ্কন করতে পাঞ্চ ব্যবহার করা হয়।
- ১২. চিজেন : সাধারণত ফেব্রিকেশন কাজে ধাতু চিপিং করা এবং বাড়তি মেটাল কাটার কাজে এটি ব্যবহার করা হয়।

- ১৩. ক্লাম্প : ফেব্রিকেশন কাজে ওয়ার্কপিসকে আটকানোর জন্য ক্ল্যাম্প ব্যবহার করা হয়।
- ১৪. বিভেশ প্রোট্রাষ্টর : প্রধানত জবের কোণ মাপার জন্য বা বস্তু সমতল আছে কি না তা দেখার জন্য বিভেল প্রোট্রাষ্ট্রর ব্যবহার করা হয়।

8.8 কেব্রিকেশন হাভ ট্লসের যত্ন ও রক্ষণাবেক্ষণ (Care and Maintenance of Fabrication Hand Tools):

নিম্নে ফেব্রিকেশন হ্যাভ টুলসের যত্ন ও রক্ষণাবেক্ষণ উল্লেখ করা হলো :

- ১. ফেব্রিকেশন হ্যান্ড টুলস ব্যবহারের পর নির্দিষ্ট জায়গায় সঠিক নিয়মে রাখতে হবে।
- ২. টুলস যত্রতত্ত্ব নিক্ষেপ করা বা না রাখা। এতে টুলস ভেঙে যেতে পারে অথবা টুলসের আঘাতে কেউ আহত বা নিহত হতে পারে এবং টুলস-এর কাটিং এজ নষ্ট হতে পারে।
- ৩. টুলস ব্যবহারের পর ভালো করে পরিষ্কার করে রাখতে হবে।
- ৪. টুলস ব্যবহারের নিয়মকানুন জেনে ব্যবহার করতে হবে।
- টুলসকে মরিচা থেকে রক্ষা করার জন্য প্রয়োজনীয় স্থানে রং, প্রিজ ইত্যাদির প্রলেপ দিতে হবে ।

ফেব্রিকেশন হ্যান্ড টুলস

প্রশ্নমালা-8

অতিসংক্ষিপ্ত প্রশ্নাবলি :

- ১. ফেব্রিকেশন হ্যান্ড টুলস বলতে কী বোঝায়?
- ২. ফেব্রিকেশন হ্যান্ড টুলস রক্ষণাবেক্ষণ বলতে কী বোঝায়?
- তিনটি ফেব্রিকেশন হ্যান্ড টুলসের নাম লিখ।
- 8. হ্যান্ড গ্রাইন্ডারের ব্যবহার লিখ।
- ৫. সারফেস প্লেট কী কাজে ব্যবহৃত হয়?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ফেব্রিকেশন হ্যান্ড টুলসের নাম শ্রেণিবিন্যাস কর।
- ২. ৫টি ফেব্রিকেশন হ্যান্ড টুলসের ব্যবহার লেখ।
- ফেব্রিকেশন হ্যান্ড টুলসের ৫টি যত্ন উল্লেখ কর।

রচনামূলক প্রশ্নাবলি:

- ১. ফেব্রিকেশন হ্যান্ড টুলসের যত্ন ও রক্ষণাবেক্ষণের বর্ণনা দাও।
- ২. ফেব্রিকেশন হ্যান্ড টুলসের ব্যবহার লিখ।
- ৩. ফেব্রিকেশন হ্যান্ড টুলস শনাক্তকরণ উল্লেখ কর।

পঞ্চম অখ্যার কেব্রিকেশন কাজে লেব্লিং আউট অ্যান্ড মার্কিং (Laying out and Marking off Fabrication Works)

৫.১ কেব্রিকেশন কাজে লেবিং আউট আড মার্কিং (Laying out and Marking off Fabrication Works):

লেরিং আউট : কেব্রিকেশন কান্তে জব তৈরি করতে হবে ভার মাপ অনুযারী শিটের উপর দাগান্ধিতকরণ কৌশলকে লেরিং আউট বলে।

মার্কিং: ফেব্রিকেশন কান্তে জব তৈরির জন্য শিট বা বস্তুর উপর লেরিং আউট অনুযায়ী দাগ দিয়ে বা পাঞ্চিং করে চিহ্নিতকরণ কৌশলকে মার্কিং বলে।

e.২ ফেব্রিকেশন দেরিং আউট টুলস শনাক্তকরণ (Identification of Fabrication Laying Out Tools):

নিম্নে লেরিং আউট টুলসের নাম শনাক্ত করা হলো:

১। মার্কিং শেক্ত (Marking Gauge):

২। পেলিল (Pencil) :

৩। ক্রাইবার (Scriber) :

৭।ভি-ব্লক (Vee-Block):

প্যারালাল বার (Parallel Bar) :

৮। কমিনেশন ক্ষয়ার (Comibination Square) :

৯। পাঞ্চ (Punch):

১০। অৱেশ স্টোন (Oil Stone) :

১১। সারকেস পেজ (Surface Gauge) :

১২। ডিভাইছার (Divider) :

১৩। কেইট এজ (Straight Edge) :

১৪। সারকেস শ্রেট (Surface Plate) :

৫.৩ কেব্ৰিকেশন সেবিং আউট টুলসের ব্যবহার (Uses of Fabrication Laying Out Tools) : সেরিং আউট ও মার্কিং টুলসের ব্যবহার সম্পর্কে আলোচনা করা হলো

 সাহকেল প্রেট : বেখালে খুবই সূজ ও সঠিক আকারের লে-আউট করতে হয় ঐসব ছলে এই সারকেল প্রেট ব্যবহার করা হয় । লে-আউট করার কাজে এটি একটি ভক্তপুপূর্ণ বয় ।

- ২. বেঞ্চ প্লেট : এটি সাধারণ কাজে যেখানে সৃক্ষতা ও আকারের বিশেষ সঠিকতার দরকার হয় না, সেসব ক্ষেত্রে বেঞ্চ প্লেট ব্যবহার করা হয়।
- ৩. **অ্যান্দেল প্লেট**: একে সমতল পাতের উপর রেখে যন্ত্রাংশের সমকোণ পরীক্ষা করা হয়। সময় সময় লেদ মেশিনের মুখ পাতের সঙ্গে আটকিয়ে বিভিন্ন রকমের কাজ করা হয়।
- 8. প্যারালাল বার : এটি সেপার, ড্রিল, বোরিং মিলিং মেশিনে ভাইস যন্ত্রাংশ বাঁধার সময় ব্যবহার করা হয়।
- ৫. কিমিনেশন সেট: এটা দ্বারা কোনো জবের সন্নিহিত দুটি সমতল একই সমকোণ আছে কি না তা পরীক্ষা করার জন্য ব্যবহার করা হয়।
- ৬. ট্রাইক্ষয়ার : এটা দ্বারা কোনো জবের সন্নিহিত দুটি সমতল একই সমকোণে আছে কি না তা পরীক্ষা করার জন্য ব্যবহার করা হয়।
- ৭. সারফেস গেজ: বিভিন্ন যন্ত্রাংশের সমান্তরাল ও সমানত্র পরীক্ষা করার জন্য এটি ব্যবহার করা হয়
- b. স্টেইট এজ: বড় বড় যন্ত্রাংশের সমতলের সমানত পরীক্ষা ও সমান্তরাল সরলরেখা অঙ্কনে ব্যবহার করা হয়।
- ৯. পাঞ্চ: জবের উপর বৃত্ত অঙ্কন করার পূর্বে কেন্দ্রে এটি দ্বারা চিহ্ন করা হয় এবং রেখার উপর চিহ্ন অঙ্কন করার কাজেও পাঞ্চ ব্যবহার করা হয়।
- ১০. ওয়েল স্টোন : চিজেলের ধার ভোঁতা হয়ে গেলে এর উপর ঘষে ধার করা হয়।
- ১১. ভি ব্লক : এই ব্লক দ্বারা গোলাকার জবকে নিরাপদ ও শক্তভাবে ভি-খাঁজের উপর বেঁধে অঙ্কন, কেন্দ্রবিন্দু নির্ধারণ ও ছিদ্র করা হয়ে থাকে ।

৫.৪ ফেব্রিকেশন লেয়িং আউট টুলসের যত্ন ও রক্ষণাবেক্ষণ (Care and Maintenance of Fabrication Laying Out Tools):

ফেব্রিকেশন লেরিং আউট টুলসের যত্ন ও রক্ষণাবেক্ষণ সম্পর্কে নিম্লে উল্লেখ করা হলো :

- ১. ফেব্রিকেশন লেয়িং আউট টুল ব্যবহারের পর সঠিক নিয়মে নির্দিষ্ট জায়গায় রাখতে হবে।
- ২. টুলস ব্যবহার করার পর ভালোভাবে পরিষ্কার করে রাখতে হবে।
- ৩. টুলস ব্যবহারের নিয়মকানুন জেনে ব্যবহার করতে হবে।
- টুলস যত্রতত্র নিক্ষেপ করা উচিত নয়। এতে টুলস ভেঙে যেতে পারে অথবা টুলসের আঘাতে কেউ
 আহত হতে পারে এবং টুলস-এর কাটিং এজ নয়্ট হতে পারে।
- কেব্রিকেশন লেয়িং আউট টুলসকে মরিচা থেকে রক্ষা করার জন্য প্রয়োজনীয় স্থানে রং, প্রিজ ইত্যাদির প্রলেপ দিতে হবে।
- ৬. কাজ শেষে লেয়িং আউট টুলস-এর জন্য নির্দিষ্ট কাঠের বাক্সে সংরক্ষণ করতে হবে।

প্রশ্নমালা-৫

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ফেব্রিকেশন কাজে লে-আউট কী?
- ২. ফেব্রিকেশন কাজে মার্কিং কী?
- ৩. ৩টি লে-আউট টুলসের নাম লেখ।
- 8. ৩টি মার্কিং টুলসের টুলসের নাম লেখ।

সংক্ষিপ্ত প্রশ্নাবলি :

- ফেব্রিকেশন কাজে লেয়িং আউট বলতে কী বোঝায়?
- ২. ফেব্রিকেশন কাজে মার্কিং বলতে কী বোঝায়?
- ৫টি লেয়িং-আউট অ্যান্ড মার্কিং টুলসের ব্যবহার লেখ।
- 8. লেয়িং-আউট অ্যান্ড মার্কিং টুলসের শ্রেণিবিন্যাস কর।

রচনামূলক প্রশ্নাবলি:

- ১. লেয়িং-আউট ও মার্কিং প্রক্রিয়ার বর্ণনা দাও।
- ২. ফেব্রিকেশনে লেয়িং-আউট টুলসের ব্যবহার লেখ।
- ৩. লেয়িং-আউট অ্যান্ড মার্কিং টুলসের শ্রেণিবিন্যাস দেখাও।

ষষ্ঠ অধ্যায় ম্যানুয়াল মেটাল কাটিং

(Manual Metal Cutting)

৬.১ ম্যানুরাল মেটাল কাটিং-এ ব্যবহৃত টুলস শনাক্তকরণ (Identification of Manual Metal Cutting Tools):

হাতে ব্যবহার করা যায় এমন যে সকল টুলস ব্যবহার করে ধাতব বস্তু (মেটাল) কর্তন, অপসারণ, ছিদ্রকরণ ইত্যাদি কাজ সমাধা করে তাকে ম্যানুয়াল মেটাল কাটিং টুলস বলে।

ম্যানুরাল মেটাল কাটিং-এ বে সকল টুলস ব্যবহৃত হয় তাদেরকে নিম্নে শনাক্ত করা হলো:

- (ক) ফাইল (File)
- (খ) চিজেল (Chisel)
- (গ) শ্লিপ (Snip)
- (ম) ক্রেপার (Scraper)
- (ঙ) সিজার (Scissors)
- (চ) হ্যাক-স (Hack-saw)
- (ছ) দ্বিল-বিট (Drill Bit)

৬.২ চিজেলের সাহায্যে মেটাল কাটিং পদ্ধিত (Procedure of Metal Cutting by Chisel) : চিজেল দ্বারা কোনো মেটাল কাটার সময় বেঞ্চ ভাইসের মধ্যে কার্যবস্তুকে ভালোভাবে আটকাতে হবে। এরপর মেটালের মার্কিং অনুযায়ী চিজেল দ্বারা কাটতে হবে। কাটিং করার সময় চিজেলের কাটিং এজ-এর কোণ ৬০° হতে ৭০° অ্যাঙ্গেলে রেখে ব্যবহার করতে হবে।

চিত্র: চিজেলের সাহায্যে মেটাল কাটিং পদ্ধতি

৬.৩ হ্যান্ড হ্যাক-সন্নিং পদ্ধতি (Procedure of Hand Hack-Sawing) :

নিম্লে হ্যান্ড হ্যাকস সয়িং পদ্ধতি সম্পর্কে ব্যাখ্যা করা হলো-

কোনো ধাতব কার্যবস্তুকে হাতের পেশিশক্তি প্রয়োগ করে কাটার জন্য হ্যাক-স ব্যবহার করা হয়। প্রথমে জবকে সঠিকভাবে মার্কিং করে পাঞ্চ করে নিতে হবে। এরপর ভালোভাবে বেঞ্চ ভাইসে বেঁধে নিতে হবে। প্রয়োজনবোধে হ্যামার দিয়ে টাইট দিতে হবে। হ্যাক-স ফ্রেমের সাথে ব্লেড ভালোভাবে টাইট দিয়ে নিতে হবে। ব্লেডটির যদি কাটিং ক্ষমতা কম থাকে বা কাটিং ক্ষমতা না থাকে, তখন ব্লেডটি পান্টিয়ে নিতে হবে। হ্যাক-স দিয়ে কাটিং করার সময় ফ্রেমে খুব জোরে চাপ দেওয়া উচিত নয়। বেশি জোরে চাপ দিলে ব্লেড ভেঙে যেতে পারে এবং হাত জখম হতে পারে। ধাতু কাটার সময় লক্ষ রাখতে হবে যেন হ্যাক-স চিহ্নিত দাগ বরাবর হয়। প্রাক্তলো খাড়া ও কোণগুলো যেন ৯০° হয়।

চিত্র: সরিং পদ্ধতি

৬.8 স্থিপের সাহায্যে মেটাল কাটার পদ্ধিতি (Procedure of Metal Cutting By Snip) : স্থিপ হলো একটি কাটিং টুলস্ । এই টুলস্-এর মাধ্যমে ধাতব শিট কাটা যায় । প্রথমে কোনো জবকে কাটার আগে দ্রিয়িং অনুযায়ী মার্কিং করে নিতে হবে । মার্কিং করার পর প্লিপ এমনভাবে চালনা করতে হবে যাতে স্থিপ সব সময় মার্কিং-এর উপর দিয়ে চলে । প্লিপ দিয়ে কাজ করার সময় সব সময় সাবধানতার সাথে মেটাল কাটতে হবে । সাবধানতার সাথে কাজ না করলে দুর্ঘটনা ঘটতে পারে ।

চিত্র : স্লিপের সাহায্যে মেটাল কাটার পদ্ধতি

ম্যানুয়াল মেটাল কাটিং ৩৭

৬.৫ পাইপ কাটারের সাহায্যে পাইপ কাটিং পদ্ধতি (Procedure of Pipe Cutting by Pipe cutter):

সরু পাইপ বা নল (tube)-কে হ্যাস-স (Hack Saw) দিয়ে দ্বিখণ্ড করা যায়। কিন্তু পাইপ যদি বড় ব্যাসের হয় তা হলে হ্যাক-স উপযোগী হয় না। এর জন্য 'পাইপ কাটার' নামে এক বিশেষ যন্ত্র ব্যবহার করার প্রয়োজন হয়ে থাকে। এ দ্বারা পাইপকে অতি শিদ্র, কম পরিশ্রমে দ্বিখণ্ড করা যায়। নিচে সচরাচর ব্যবহৃত একটি 'পাইপ কাটার' দেখানো হলো। এর বিভিন্ন অংশের বর্ণনা দেওয়া হলো–

চিত্র: পাইপ কাটারের বিভিন্ন অংশের নাম

- A- ফ্রেম-এর প্রান্তে 'গাইড রোলার' (D) অবস্থিত।
- B- স্থাইড-এর উপরের দিকে 'কাটার' (E) যুক্ত করা।
- C- হাতল-একে ডান বা বাম দিকে ঘুরান যায়। ঘুরালে 'স্লাইড' (B) এবং 'কাটার' (E) উভয়ই সরে।
- D- গাইড রোলার সংখ্যায় এটি দুটি। 'কাটার হুইল' দিয়ে যখন পাইপের উপর চাপ প্রয়োগ করা হয়, তখন এটা পাইপকে যথাস্থানে ধরে রাখে।
- E- কাটার হুইল -এর সাহায্যে পাইপ দ্বিখণ্ডিত হয়। এর মুখ 'ভি' (V) আকারের। শক্ত স্টিল দ্বারা এটি তৈরি এবং 'টেম্পার' দেওয়া।
- F- সেট ক্স-একে ভেতরের দিকে প্রবেশ করালে হাতল আর ঘুরতে পারে না।

নিচের চিত্রে যে প্রকার 'পাইপ কাটার' দেখানো আছে এটি দুটি 'গাইড রোলার' বিশিষ্ট। চারটি 'গাইড রোলার'সহ 'পাইপ কাটার'-ও কোনো কোনো স্থানে ব্যবহৃত হয়ে থাকে।

ব্যবহার প্রণালি :

যে পাইপটিকে দ্বিখণ্ড করতে হবে প্রথমে তাকে 'পাইপ ভাইস'-এ দৃঢ়ভাবে আবদ্ধ করতে হবে। এরপর 'সেট ক্রু'টিকে ঢিলা করে 'পাইপ কাটার'টিকে পাইপের উপর এভাবে স্থাপন করা হয় যাতে যে রেখাসূত্রে দ্বিখণ্ড করা প্রয়োজন এর সাথে 'কাটার হুইল'-এর মুখটি ঠিক মিলে এবং 'গাইড রোলার' সামান্য ঢিলাভাবে অবস্থান করে। পরে হাতলটিকে ডানদিকে ঘ্রিয়ে রোলারগুলোকে পাইপের উপর সামান্য চাপ দিতে হবে। এখন সেট-ক্সুকে ভেতরে প্রবেশ করে নিয়ে হাতলের সাহায্যে সমগ্র ফ্রেমটিকে একবার সম্মুখ দিকে এবং একবার পশ্চাৎ দিকে এই প্রকারে ধীরে ধীরে পাইপের উপর দিয়ে দুই-এক পাক ঘুরাতে হবে।

পাইপটিকে 'পাইপ ভাইস'-এ কিছুক্ষণ অন্তর ঘুরিয়ে আবদ্ধ করে নিয়ে এই পাক দেওয়ার পক্ষে সুবিধা হবে। ক্রেমটিকে এই প্রকার ঘুরাবার ফলে 'কাটার' পাইপটিকে কাটবে এবং ফলে এটা সামান্য ঢিলাবোধ হবে। 'কাটার হুইল'-এর পূর্ব চাপ বজায় রাখার জন্য সেট-ক্সুকে ঢিলা করে নিয়ে হাতলটিকে ডানদিকে সামান্য একটু ঘুরাতে হবে এবং সেট-ক্সুকে পুনরায় ভেতরে প্রবেশ করাতে হবে।

পূর্বের ন্যায় ফ্রেমটিকে সম্মুখ এবং পশ্চাৎ দিকে দুই-এক পাক ঘুরাতে হবে। এভাবে 'কাটার হুইল'কে কয়েকবার নিয়ন্ত্রণ করে ফ্রেম ঘুরিয়ে পাইপ দ্বিখণ্ড করা যাবে।

মাানুয়াৰ মেটাৰ কাটিং

৬.৬ পাধ্যার-স মেশিন (Power-Saw Machine) ।

পাওয়াৰ-স থাতু কটাৰ এমন একটি মেশিন বা বৈদ্যুতিক মেটাৰেৰ সাধ্যৰো একটি 'স' বা কৰাতকৈ সামনে একং পিছনের সিকে সাসনা করে বাতু কর্তন করে বা কাটে। এই মেশিনের সাধ্যয়ে থাতু কটাকে পাওৱার ভাক সমিং কবা হয়।

চিত্ৰ: পাজান-স মেশিন

পাৰবার ব্যাক সমিং-বর প্রয়োগ ক্ষেত্র

হাতে চালিত হ্যাক'ল দিয়ে যোটা বা বড় কোনো জব কটিতে পেলে অনেক সময় এবং অধিক পৰিশ্ৰম হয়, এই সকল কেন্তৰ পাওৱাৰ হ্যাক'ল যাৰহাৰ কৰা হয়। বেলি হ্যানের পাইপ, করার বাব, মোটা ধাকৰ প্রেট, যোটা শ্যাকট, বড় ওয়েকিং জোড়া ইত্যাদি কাটার জন্য এটা অত্যন্ত উপস্ক । একটি বিষয়ে সক্য রাখতে হবে: যে বন্ধ কটি হচেত্ ভার শক্তা ব্রেডের পক্তভার চেয়ে অবশাই কম হতে হবে।

পাওয়ার ব্যাক'ল-এর প্রধান কলেনসূহ

- ১. মেটিৰ (Motor)
- ২. নেস (Base)
- o. 'ৰ' জেৰ (Saw Frame)
- 8. ভাইস (Vice)
- e. সুক্তাউ পাস্প (Coolant pump)
- 6. (Blade)
- ९. काटनकिए बर्फ (Connecting rod)
- ৮. জ্যাক ডিক (Crank Disc)

চিত্র। পাওয়ার-স মেশিনের বিভিন্ন অধুশের নাম

ম্যানুয়াল মেটাল কাটিং

পাওয়ার ত্যাক স-এর প্রধান প্রধান কন্টোলসমূহের নাম:

- ১. মেশিন সুইচ (Machine Switch)
- ২. স্পিড চেঞ্জ লিভার (Speed Change Lever)
- ৩. ব্লেড টেনশনিং নাট (Blade Tensioning Nut)
- 8. প্রেসার কন্ট্রোল লিভার (Pressure Control Lever)

সেটিংসমূহের নাম:

- ১. ব্লেড সেটিং (Blade Setting)
- ২. জব বা ম্যাটেরিয়াল সেটিং (Job or Material Setting)
- ৩. কুল্যান্ট সেটিং (Coolant Setting)
- 8. স্পিড সেটিং (Speed Setting)

৬.৭ ফাইল ও ফাইলিং (File and Filing) :

ফাইল (File) :

ফাইলকে চলতি ভাষায় উখা বা রেতি বলে। কোনো বস্তুর উপবিভাগে বা ছিদ্রের ভেতরে প্রয়োজনের অতিরিক্ত অল্প পরিমাণ ধাতু থাকলে ফাইল দিয়ে ঘষে ক্ষয় করে ধাতু অপসারণ করা হয়।

ফাইলের প্রধান অংশগুলো হলো-

- ১. ট্যাং (Tang)
- ২. হিল (Heel)
- ৩. এজ (Edge)
- 8. ফেস (Face) এবং
- ৫. পয়েন্ট (Point)

ফাইল কাস্ট স্টিল দিয়ে তৈরি হয় এবং বিভিন্ন আকার (Shape), স্তর (Grade) এবং দৈর্ঘ্য মাপের হয়ে থাকে। ফাইলের দৈর্ঘ্য ৫০ মিমি হতে ৪৫০ মিমি পর্যন্ত হয়। ফাইলের আকার ফ্লাট, স্কয়ার, রাউন্ড, হাফ-রাউন্ড, ট্রাঙ্গুলার (Traingular), নাইফ (Knife) হয়ে থাকে। ফাইলের স্তর (Grade), রাফ (Rough), বাস্টার্ড (Bastard), সেকেন্ড কটি (Second cut), স্মুখ (Smooth), এবং (Dead Smooth) হয়ে থাকে।

ফাইলিং (Filing) :

কোনো বস্তুর উপরিভাগকে ফাইল দিয়ে ক্ষয় করার প্রণালিকে 'ফাইলিং' করা বলে। 'ফাইলিং'-এর নীতি মূলত 'চিপিং'-এর অনুরূপ। ফাইলের ক্ষেত্রে এর প্রত্যেকটি দাঁত চিজেলের 'কাটিং এজ'-এর ন্যায় কাজ করে থাকে। কোনো প্রশস্ত স্থানকে ক্ষয় করতে হলে, চিজেলের স্থলে যেমন প্রথমে এর 'কাটিং এজ' দিয়ে কতকগুলো নালি

তৈরি করে পরে অবশিষ্ট উঁচু স্থানজগোকে আড়ভাবে কটা বা কয় করা হয়, কহিলের স্থগেও কার্যত এটাই করা হয়ে থাকে । কাইল চালনা করলে, এই উভয় ক্রিয়া বথাক্রমে একই সময়ে সম্পন্ন হয় ।

চিত্ৰ: কহিল ধরার কৌশল

অপ্রসর হওয়ার সমর কাইলের সম্থাবর দাঁতভলো ধাত্ত্ব মধ্যে প্রবেশ করে স্থ্র স্থা নালি তৈরি করে চলে এবং এর ঠিক পেছনের দাঁতভলো (কোণিকভাবে কাটা খাকায়) অবশিষ্ট উচ্চ শিরভলোকে আড়ভাবে কেটে কয় করে। ফলে, স্থানটি সমতল হয়ে যার

চিত্ৰ : কাইলিং করার কৌশল

ম্যানুয়াল মেটাল কাটিং

প্রশ্নমালা-৬

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. 'ফাইলিং'-এর নীতি কী?
- ২. ম্যানুয়াল মেটাল কাটিং কাকে বলে?
- ৩. পাওয়ার-স মেশিন কী?
- 8. ফাইলিং কী?
- ৫. ফাইলকে চলতি ভাষায় কী বলে?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ফাইলের প্রধান অংশগুলো কী কী?
- ২. স্নিপ দিয়ে কীভাবে শিট মেটাল কাটতে হবে?
- ৩. পাওয়ার-স মেশিন কীভাবে মেটাল কাটে?
- 8. ফাইলিং বলতে কী বোঝায়?
- ৫. ম্যানুয়াল মেটাল কাটিং টুলসগুলোর নাম লেখ।

রচনামূলক প্রশ্নাবলি :

- ১. পাওয়ার হ্যাক'স এর প্রধান অংশগুলো কী কী?
- ২. পাওয়ার হ্যাক'স এর প্রধান প্রধান কন্ট্রোলসমূহের নাম লেখ।
- ৩. পাইপ কাটিং পদ্ধতি বর্ণনা কর।
- 8. হ্যান্ড হ্যাক সয়িং পদ্ধতির বর্ণনা দাও।
- পাঁচটি ম্যানুয়াল মেটাল কাটিং টুলস-এর সংক্ষিপ্ত বর্ণনা লেখ।

সঙ্গম অধ্যার শিয়ারিং মেশিনে মেটাল কাটিং

(Metal Cutting by Shearing Machine)

৭.১ ধাৰুৰ বজের বিভিন্ন ধয়দের সেকশন শ্লাক্তকরণ (Identification of Different Types of Metal):

খাতব খতের বিভিন্ন ধরনের সেকশন নিম্নে পনাক্ত করা হলো। কথা-

১. नीम-व्योग (Gun Metal) ।

২. পেটা পৌৰ (Wrought Iron) :

ও. ইম্পাত (Steel) :

8. **ঢালাই লৌহ (Cast Iron)** :

e. जानुमिनियां (Aluminum) :

৬. সিসা (Lead) :

৭, ভাষা (Copper):

৭.২ রাউভ বার শিরাবিং শক্তিরা (Round Bar Shearing Process) : রাউভ বার শিরারিং প্রক্রিয়া হাইছোলিক বা হ্যাভ শিরার মেশিনের মাধ্যমে করা হয় । এখানে হ্যাভ শিয়ার মেশিনের বর্ণনা দেওবা হলো :

চিত্র : হ্যান্ড শিয়ারের সাহাব্যে মেটাল শিয়ারিং

(ক) হ্যান্ড শিরার একটি হস্তচালিত মেশিন। এতে দুটি ব্লেড থাকে। একটি ব্লেড স্থির থাকে এবং অন্য ব্লেডটি চলমান। রাউন্ড বারকে শিরার মেশিনের মধ্যে রেখে হাতলটিকে চেপে নিচের দিকে নামালে চলমান ব্লেডটি নেমে এসে রাউন্ড বারকে কেটে ফেলে। এটি পুরাতন পদ্ধতি। তবে, রাউন্ড বার কাটার (Shearling) জন্য বর্তমানে সহজ ও উন্নতমানের মেশিন ব্যবহৃত হচ্ছে, যার নাম রড কাটিং মেশিন (Rod Cutting Machine)।

(খ) এটি বিদ্যুতে চলে। এটি পাতলা Cutting Disk এর ঘর্ষণ প্রক্রিয়ায় রাউন্ড বারকে কেটে ফেলে।

৭.৩ ফ্লাট বার শিরারিং কৌশল (Flat Bar Shearing Technique) :

ফ্লাট বার শিরারিং প্রক্রিরা হাইড্রোলিক বা হ্যান্ড শিরার মেশিনের মাধ্যমে করা হয়। হ্যান্ড শিরার লিভার ব্যবস্থায় একটি হস্তচালিত মেশিন। এই হ্যান্ড শিরার মেশিনে ২টি ব্লেড থাকে যার নিচের ব্লেডটি স্থির এবং উপরের ব্লেডটি চলনশীল। ফ্লাট বার প্রক্রত্ব অনুষারী ব্লেড দৃটিকে বারকে ফাঁকা করে নিতে হয়। এর পর হাতলটিকে নিচের দিকে নামালে, চলনশীল ব্লেডটি এর সাহায্যে বেশি পুরুত্বের ফ্লাট বারকে সোজা বা সরল রেখা সূত্রে, কম পরিশ্রমে এবং সম্প্র সময়ে দ্বিখন্ডিত করা যায়।

৭.৪ জ্যাদেল বার শিয়ারিং কৌশল ব্যাখ্যাকরণ (Angle Bar Shearing Technique) :
জ্যাদেল বার শিয়ারিং কৌশল বিভিন্ন ধরনের শিয়ার মেশিনের মাধ্যমে হতে পারে। এখানে
হাইড্রোইলেকট্রিক শিয়ার মেশিনের মাধ্যমে জ্যাদেল বার শিয়ারিং কৌশল আলোচনা করা হলো।

চিত্ৰ। আলেল বার শিহারিং বেশিনের সাহাত্যে বাতব শিরারিং কৌশল

এই শিয়ার মেশিনেও দূটি কাটিং ব্রেড থাকে, বা একটি স্থির থাকে এবং অপরটি চলমান। এটি বিদ্যুতে চলে। এছাড়া এই মেশিনের চলমান ব্রেডটি হাইড্রোলিক ক্যামের মাধ্যমে উঠানামা করে। বর্ণন হাতে বা পায়ের লিভারকে চাল দেওরা হয় তথন চলমান ব্রেডটি নেমে অ্যাদেল বার কেটে ফেলে।

৭.৫ পিঁট মেটাল শিল্পাবিং কৌশল (Sheet Metal Shearing Technique) : করার শিল্পার মেলিনের মাধ্যমে নিট মেটাল শিল্পারিং কৌলল নিম্নে আলোচনা করা বলো-

কুট ট্রেডল, দৃটি কাটিং ব্রেড, ফ্রন্ট গেজ, ব্যাক সেজ এবং দৃটি সাইড গেজ নিরে গঠিত। ব্রেডের সম্বৃধি পরিমাণের জন্য একটি কেল আছে, যার প্রতি ইঞ্চি ১৬ তালে ভাল করা হয়েছে। উচ্চ স্কেল দিয়ে শিট কটিার গরিমাণ নির্ণয় করা যায়। ব্রেডের প্রত্যেক পার্শ্ব দিরে শিটের প্রতির প্রান্ত স্থাপন করে মেশিনের কটিং এজ-এর সমাজ্বরাল কটি যায়।

আয়তাকাৰ ফ্রন্ট পেজ বার বিভ বরাবর উঠানামা করতে পারে। উক্ত বার প্রয়োজনে ব্রেডের যে কোনো দ্রত্ব সেট করা যাবে। অধিক লখা পিট কটোতে মেলিনের সম্মুখতালে এক্সটেনশন আর্মে খাঁজ কটা থাকার ফ্রন্ট পেজকে যে কোনো দ্রত্বে নিয়ন্ত্রণ করা যার। ফ্রন্ট পেজের মাধ্যমে একই সাইজের এবং মাপের পিট কটা বার।

প্রশ্নমালা-৭

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. শিট মেটাল শিয়ারিং কৌশল কী?
- ২. ফ্লাট বার শিয়ারিং কৌশল কী?
- ৩. অ্যাংগুলার শিয়ারিং কৌশল কী?

সংক্ষিপ্ত প্রশ্নাবলি :

- শিট মেটাল শিয়ারিং কৌশল বলতে কী বোঝায়?
- ২. রাউন্ড বার ও শিট মেটাল শিয়ারিং-এর মধ্যে পার্থক্য লেখ।
- ৩. রাউভ বার শিয়ারিং কোন প্রক্রিয়ায় করা হয় লেখ।

রচনামূলক প্রশ্নাবলি:

- ১. শিট মেটাল শিয়ারিং পদ্ধতির বর্ণনা দাও।
- ২. অ্যাংগুলার শিয়ারিং পদ্ধতি আলোচনা কর।
- ৩. দশ প্রকার ধাতব খণ্ডের সেকশন চিত্রের সাহায্যে দেখাও।

অটম অখ্যায় क्षिणिश शक्रिया (Drilling Process)

৮.১ श्विनिश-वत्र नरूका (Definition of Drilling) । ৰে কোনো গুৱাৰ্কশলে এটা অভিহাৰোজনীয় একটি যুৱাংশ। এর সাহায্যে গদার্থের উপর গোল ছিল্ল বা গর্জ তৈরি করা বাব । দ্রিল-এর সাহায়ে কোনো পদার্থের উপর ছিদ্র ছৈবি করার কালকে দ্রিলিং কলা হয় ।

(Na : (B)(P)

৮.२ श्विनिर-वन बंदबानं रक्तव (Application of Drilling):

অধিকাপে নির্মাণ কার্বে দ্রিলিং একটি অভিথ্যরোজনীয় কাজ। ধাড়ুর উপর পর্ত তৈরি করতে দ্রিলিং করা वाबायन । अकटि चर्टमा किछात यांत अकटि चर्म वादन कविता म्यांत मृहकात श्रवक्रि कवांत यन्त অনেক সময় দ্ৰিল কৰাৰ ব্যৱোজন হয়। ভয়েভিং শগের প্রডিটি কর্মীকে এই কান্ধ জানতে হয়। কারণ বে কোনো বস্তু নিৰ্মাণ করছে হলে জ্বিলিং অভি প্রয়োজনীয় । একজন প্রয়েক্তার-এর কথা ধরা বাক । সে বখন रे-नाएक नामबी नित्र एउदा नदबा-बामाना रेजी क्याङ मधारमध करमक बादमा बरदाङ विधास ब्रिनिर করতে হর । হালকা কাজ ছাডাও জাহাজ নির্মাণের মতো ভারি শিল্প প্রতিষ্ঠানেও দ্রিলিং-এর ব্যাপক প্ররোগ बरबट्ट ।

৮.৩ জ্বিল নেশিলের নেশিকিয়াল (Classification of Drill Machine) : क्षिरमंत्र काळ या त्यिनित कता दह जारक क्षिम त्यिन वरण। देखिनहातिर वहार्वनरंभ विकिन्न शहरनंद क्षिम মেশিন আছে। তথাৰ্কণপের সকল শ্রেণির ক্রিল মেশিনকে সাধারণত দুই শ্রেণিতে ভাগ করা যায় :

- (১) হাত দ্বিল মেশিন (Hand Drill Machine)
- (২) শক্তিচালিক দ্বিল মেশিন (Power Drill Machine)

হ্যান্ড দ্বিলিং মেশিন (Hand Drilling Machine) :

এই শ্রেণির ড্রিল মেশিনগুলো হাতের শক্তিতেই চলে এবং খুব সহজে এক স্থান হতে অন্য স্থানে বহন করা যায়। পাতলা শিট মেটাল-এর কাজ বা নরম পদার্থে যেমন কাঠের উপর কাজ করার জন্য হ্যান্ড ড্রিলগুলো অধিক উপযুক্ত।

(ক) ছোট হ্যান্ড ড্রিল মেশিন:

এই শ্রেণির দ্রিল মেশিন অত্যন্ত হালকা কাজে ব্যবহৃত হয়, কাঠমিস্ত্রিরা এই ধরনের দ্রিল মেশিন বেশি ব্যবহার করে।

(খ) ব্রেস্ট দ্বিল মেশিন (Breast Drill Machine):

এটা ছোট হ্যান্ড ড্রিলের অনুরূপ শুধু পার্থক্য এখানে বুকের চাপ দেওয়ার জন্য হাতল ছাড়াও একটি ইস্পাতের পাতলা হাত লাগানো থাকে যা ড্রিল করার সময় কর্মী বুকের উপর চেপে ধরে ফলে জবের উপর বেশি চাপ প্রয়োগ করা যায়। ছোট হ্যান্ড ড্রিলের চেয়ে কিছুটা ভারী কাজে এই ধরনের ড্রিল ব্যবহৃত হয়।

(গ) ইলেকট্রিক হ্যান্ড ড্রিল (Electric Hand Drilling Machine) :

এই শ্রেণির ড্রিলও কর্মী হাতে ধরে থাকেন, শুধু পার্থক্য এখানে ড্রিল বিটটি কর্মীর পেশির শক্তিতে না ঘুরে ছোট ইলেকট্রিক মোটরের সাহায্যে ঘোরে। মোটরটি গিয়ার বা দাঁত চাকার সাহায্যে ড্রিল চাকার সাথে যুক্ত থাকে। ছোট একটি ট্রিপার এর সাহায্যে মোটরটি চালু এবং বন্ধ করা যায়। কর্মী যতক্ষণ ট্রিগারটির উপর আঙুল দিয়ে চাপ দিয়ে থাকেন ততক্ষণ পর্যন্ত ড্রিলটি ঘুরতে থাকে। আঙুলের চাপ দেওয়া বন্ধ করলে ড্রিলটির ঘূর্ণয়ন বন্ধ হয়। ইলেকট্রিক মিস্তিরা গৃহে ওয়্যারিং-এর কাজে এই শ্রেণির ড্রিল বেশি ব্যবহার করে।

(ঘ) নিউম্যাটিক হ্যান্ড ড্রিল:

বাতাস এবং বাষ্প দিয়ে চালিত মেশিনগুলো নিউম্যাটিক মেশিন, নাম হতে বোঝা যায় এই ধরনের হ্যান্ড দ্রিল বাতাসের বা বাষ্প্রের সাহয্যে চলে। এই ধরনের কাজে কম্প্রেসার নামক একটি যন্ত্রের সাহায্যে একটি পাত্রে অধিক চাপে বায়ু সংগ্রহ করা হয়। পরে বায়ুকে নলের সাহায্যে এরূপ হ্যান্ড দ্রিল মেশিনে নেওয়া হয়। উক্ত সংক্চিত বাতাস একটি মোটরকে ঘুরায় এবং সেই মোটরটি দ্রিলকে ঘুরায়। কারখানায় রিভেটিং কাজে এর ব্যাপক ব্যবহার। যে স্থানে বিদ্যুৎ সরবরাহ নেই সেখানে কম্প্রেসরকে নিয়ে গিয়ে এই ধরনের হ্যান্ড দ্রিল দিয়ে কাজ করা যায়।

শক্তিচালিত মেশিনগুলোকে প্রধানত নিমুলিখিত ভাগে ভাগ করা যায়

- (ক) ভার্টিক্যাল স্পিন্ডল (Vertical Spindle)
- (খ) মালটি স্পিডল (Multi Spindle)
- (গ) রেডিয়াল (Radial)

দ্রিলিং প্রক্রিয়া

চিত্র: হ্যান্ড দ্ধিল মেশিন

চিত্র : শক্তিচালিত দ্ধিল মেশিন

ভার্টিক্যাল স্পিডল দ্রিলিং মেশিনসমূহকে মোটামূটি ডিন শ্রেণিডে ভাগ করা যায়।

(১) প্লেইন ভার্টিক্যাল স্পিন্ডল ফ্রিলিং মেশিন (Plain Vertical Drilling Machine) :

এই ধরনের মেশিন একটি বেসে বা ভিন্তির উপর খাড়া কলামকে ধারণ করে যার সাথে কার্যবস্ত্ বা চ্ছবকে (Job) ধারণ করার চ্ছন্য একটি টেবিল থাকে। এই টেবিলকে মেশিন কলামের চারদিকে ৯০° বরাবর ঘূরতে পারে এবং উপর ও নিচে উঠানামা করতে পারে।

এই শ্রেণির দ্রিলিং মেশিন ওয়ার্কশপে সাধারণ কাজে, কাউন্টার সিংকিং, ট্যাপিং ইত্যাদি কাজে ব্যবহৃত হয়।

(২) সেনসেটিভ ফ্রিলিং মেশিন (Sensetive Drilling Machine):

এই ধরনের দ্রিল মেশিন একটি বেলের উপরে একটি কলাম আটকানো থাকে এবং উক্ত কলামই কার্যবস্ত্র্ ধারণ করার টেবিল বহন করে। টেবিলকে কলামের চারদিকে যুরানো যায় এবং নিচে নামানো যায়। এই শ্রেণির মেশিন খুব হালকা কান্ডের জন্য ব্যবহৃত হয়।

(৩) বেভি ডিউটি ফ্রিল মেশিন (Heavy Duty Drill Machine) : অনেক বড় ধরনের ছিদ্র করার জন্য এই ধরনের মেশিন অধিক উপযুক্ত।

চিত্ৰ: হেতি ডিউটি দ্বিল মেশিন

(খ) মান্টি স্পিডল বা গ্যাং দ্বিলিং মেশিন (Multi Spindle Drilling Machine) :
মান্টি অর্থ বহু এবং গ্যাং অর্থ দল সূতরাং নাম হতে বোঝা যায় বে, এই ধরনের মেশিনে একাধিক স্পিডল থাকে এবং পৃথক পৃথক মোটর দিয়ে ঐ স্পিডলগুলো চালিত হয়। এই ধরনের মেশিন তখন বেশি উপযুক্ত যখন কোনো কাজের উপর পর্যায়ক্রমে কয়েকটি অপারেশন করা দরকার।

চিত্ৰ: প্ৰেইন ভার্টিক্যাল ছিলিং মেলিন

চিত্ৰ: সেনসিটিভ দ্ৰিলিং মেশিন

দ্রিশিং প্রতিস্থা

চিত্র: মাল্টি স্পিডল দ্রিলিং মেশিন

(গ) রেডিয়াল দ্রিলিং মেশিন (Radial Drilling Machine) :

এই শ্রেণির দ্রিল মেশিনের সুবিধা হলো, বড় কোনো জবের যে কোনো স্থানে দ্রিল মেশিনের হেডকে স্থাপন করা যায় এবং সে স্থানেই দ্রিল সম্পন্ন করা যায়।

চিত্র : রেডিয়াল দ্রিলিং মেলিন

৮.৫ দ্রিলিং স্পিত ও কিড নির্বারণ :

ভাহলে একক সমরে চিগসের দৈর্ঘ্যই হলো ড্রিলের কাটিং স্পিড।

দ্রিল মেশিনে কান্ধ করতে হলে এবং ভালো কান্ধ পেতে হলে দ্রিলের কাটিং স্পিড এবং কিড সম্পর্কে জানা অতি প্রয়োজন। প্রথমেই আলোচনা করা যাক কাটিং স্পিড সম্পর্কে (Cutting speed) কাটিং স্পিড বৃবতে হলে আরপিএম (RPM) এবং পরিধির সরল গতি বা পেরিফেরাল স্পিড বৃবতে হবে। ধরা যাক একটি রিকশার চাকা মিনিটে ২০ (কৃড়ি) বার ঘূরছে তাহলে রিকশার চাকার আরপিএম হল ২০। আরপিএম এর পূর্ণ অর্থ হলো রেভিউলেশন পার মিনিট (Ruvolution per minute)। এখন এক মিনিটে ২০ বার ঘূরে ঐ চাকা যত দূরত্ব অভিক্রম করে ভাকে চাকার পেরিকেরাল স্পিড বলে। দ্রিল বিট একটি গোলাকার দণ্ড যা প্রতি একক সময়ে অর্থাৎ ১ মিনিটে বা ১ সেকেন্ডে এর পরিধি বরাবর যতখানি বন্ধ কাটে ভতখানি এর কাটিং স্পিড অর্থাৎ যদি চিপসগুলো না ভাঙত বা না বাঁকা হতো, সোজা অবস্থার ধাকত

অঙ্কের হিসাবে কাটিং স্পিড, $C_S=\pi DN/_{2000}$ মিটার/মিনিট এখানে, $C_S=$ কাটিং স্পিড

D = ড্রিল বিটের ব্যাস মিলিমিটারে

N =দ্রিল বিটটির প্রতি মিনিটের ঘূর্ণয়ন। (মিলিমিটারের মাপকে প্রকাশ করার জন্য ১০০০ দিয়ে ভাগ করা হয়েছে।)

কাটিং স্পিড হিসাব করা (Calculation of cutting speed):

সমস্যা-১ : একটি মাইন্ড স্টিলের ফ্লাটবারে ১৮ মিলিমিটার ব্যাসের ড্রিল বিট দিয়ে ছিদ্র করা হচ্ছে, ড্রিল বিটটির প্রতি মিনিটের ঘূর্ণয়ন ৪০০ বার হলে কাটিং স্পিড কত হবে?

সমাধান : আমরা জানি,
$$Cs = \frac{\pi DN}{2000} = \frac{\pi \times 25 \times 800}{2000}$$
 $Cs = 22.92$ মিটার/মিনিট (উত্তর) $Cs = 2$

সমস্যা-২। গ্রে কাস্ট আয়রন-এর তৈরি জবের উপর ১৫ মিলিমিটার ব্যাসের ছিদ্র করতে হবে, যদি কাটিং স্পিড ২৬ মিটার/মিনিট হয়, তবে ড্রিলের প্রতি মিনিটের ঘূর্ণয়ন কত হবে?

সমাধান : আমরা জানি,
$$Cs = \frac{\pi DN}{5000}$$

$$Cs X 5000 = \pi DN$$

$$N = \frac{Cs \times 100}{\pi D} = \frac{26 \times 5000}{\pi \times 50}$$

$$N = 662 \text{ বার প্রতি মিনিটে (উত্তর)}$$
 (দেওয়া আছে,
$$D = 56 \text{ মিলিমিটার}$$

$$N = ?$$

$$Cs = 26 \text{ মিটার/মিনিট}$$

$$N = 662 \text{ বার প্রতি মিনিটে (উত্তর)}$$

কিড: ড্রিল বিটটি ঘুরতে ঘুরতে অগ্রসর হয়। প্রতি এক ঘূর্ণয়নে ড্রিল বিটটি যতটুকু অগ্রসর হয় তাকে ফিড বলা হয়। কাটিং স্পিড সম্পর্কে প্রাথমিক আলোচনায় বোঝা গেল যে বড় ড্রিল বিট বা বেশি ডায়ামেটারের ড্রিল বিটকে ধীরে ধীরে ঘুরাতে হবে এবং ছোট ড্রিল বিটকে দ্রুত ঘুরাতে হবে। আবার শক্ত ধাতুর ক্ষেত্রে ফিড কম দিতে হবে তা না হলে ড্রিলের মাথা ভোতা হয়ে যাবে। আবার ড্রিল বিটটি কোনো পদার্থের তৈরি তার উপর ভিত্তি করেও ফিড দিতে হবে। বেশি শক্ত পদার্থের তৈরি ড্রিল বিটের ক্ষেত্রে বেশি ফিড দেওয়া যাবে।

ष्ट्रिनिং श्रक्तिया

কাটিং স্পিড ও ফিড নির্ধারণ :

বিভিন্ন পদার্থের জন্য কাটিং স্পিড এবং ফিডের তালিকা এই তালিকা হতে বিভিন্ন পদার্থের জন্য কাটিং স্পিড এবং ফিড নির্ধারণ করা যাবে

টেবিল নং-৪

জ্বিসের ব্যাস মিশিমিটার	ন্রম ইস্পাত		শক্ত ইস্পাত		কাস্ট আররন (নরম)		কাস্ট আররন (শক্ত)	
	কাটিং স্পিড মিটার/মিনিট	কিড মিশিমিটার স্থ্গয়ন	কাটিং স্পিড মিটার/মিনিট	কিড মিলিমিটার স্বৃর্ণয়ন	কাটিং স্পিড মিটার/মিনি ট	কিড মিশিমিটার স্থূর্ণরন	কাটিং স্পিড মিটার/মিনি ট	কিড মিশিমিটা র যুর্ণয়ন
ર-૯	२०-२৫	0.5	30-38	90.0¢	২৫-৩০	6.0	25-7A	0.5
&-33	२०-२৫	0.3	\$o-\$8	۷.٥	9 0-80	0.3	78-72	0.50
2 ダー2A	90-9E	0,20	2 ダ-7A	0.56	২৫-৩০	0.00	36-35	0.20
১৯− ২৫	90-9¢	0,0	১৬-২০	0.2	২০	0.6	১৬-২০	0,0
२৫-৫०	२৫-७०	0.8	78-76	0.0	२०	5.00	<i>>%</i> ->>	0.8

৮.৬ দ্রিলিং-এর সতর্কতা :

দ্রিল বিট একটি ধারালো কাটার যন্ত্র । সূতরাং এটা যখন ঘূরতে থাকে তখন বিপদের আশঙ্কা বেশি থাকে । তবে সতর্কতার সাথে কাজ করলে ভয়ের কোনো কারণ নাই । দুর্ঘটনা এড়িয়ে কাজ করতে হলে নিচের সতর্কতাগুলো মেনে চলা উচিত ।

- ১) যে বস্তু বা জবের উপর ড্রিল করতে হবে, সেটি শক্তভাবে টেবিল ভাইসে আটকানো উচিত অন্যথায় মারাত্মক দুর্ঘটনার আশঙ্কা থাকে।
- ২) গলার মাফলার বা গায়ের চাদরের মতো ঢিলা কাপড় পড়ে ড্রিলিং-এর কাজ করা উচিত নয়, কারণ এরূপ ঢিলা কাপড় ঘূর্ণায়মান ড্রিলের সাথে পেঁচিয়ে মারাত্মক দুর্ঘটনা ঘটাতে পারে।

চিত্র : এই পোশাকগুলো নিরাপদ নয়

- ৩) মাথার চুল লম্বা হলে হ্যাট পরা উচিত অন্যথায় লম্বা চুল ড্রিলে পেঁচিয়ে দুর্ঘটনা ঘটাতে পারে।
- 8) ঘূর্ণায়মান দ্রিল বিটের কাছে হাতের আঙুল নিয়ে যাওয়া উচিত নয়।
- ৫) দ্রিল চাকে যাতে দ্রিল বিটটি শক্ত এবং সুন্দরভাবে আটকানো থাকে সেই দিকে খেয়াল রাখা উচিত।
- ৬) ড্রিল মেশিনের টেবিল হতে কোনো ভারী বস্তু পায়ের উপর পড়ে যেন আঘাত বা জখম না করে সেদিকে লক্ষ্য রাখতে হবে এবং শক্ত চামড়ার জুতা পরতে হবে।

চিত্র: ভুল পদ্ধতি

- ৭) ড্রিলিং-এর সময় যে চিপস (Chips) তৈরি হয় সেগুলো ধারালো এবং অত্যন্ত গরম থাকে। সূতরাং ঐগুলো হাতে স্পর্শ না করে ব্রাশের সাহায্য সরাতে হবে।
- ৮) যে সমস্ত ধাতব পদার্থ ভঙ্গুর গুণসম্পন্ন তাদের ড্রিল করার সময় চিপগুলো ছোট ছোট টুকরায় পরিণত হয়ে ছিটকে পড়ে। এক্ষেত্রে চোখ ও পোশাক রক্ষার জন্য গগ্লস এবং অ্যাপ্রোন পরতে হবে।

দ্রিলিং প্রক্রিয়া

প্রশ্নমালা-৮

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১) দ্রিলিং বলতে কী বোঝায়?
- ২) ড্রিলিং স্পিড কী?
- ৩) ড্রিলিং ফিড বলতে কী বোঝায়?
- 8) শক্ত ধাতুর ক্ষেত্রে কীরূপ ফিড দিতে হয়?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১) কাটিং স্পিড নির্ণয়ের সমীকরণটি লিখ।
- ২) দ্রিলিং-এর প্রয়োগ ক্ষেত্র উল্লেখ কর।
- ৩) দ্রিলিং মেশিনের শ্রেণিবিন্যাস কর।
- 8) রেডিয়াল ড্রিলিং মেশিনের সুবিধা লিখ।
- ৫) দ্রিল মেশিনে কাজ করতে হলে কী কী বিষয় জানা প্রয়োজন?

রচনামূলক প্রশ্লাবলি:

- ১) দ্রিল মেশিনের শ্রেণিবিন্যাস কর।
- ২) ইলেকট্রিক হ্যান্ড ড্রিল-এর ব্যবহার কৌশল সম্পর্কে যা জান লেখ।
- ৩) দ্রিলিং-এর সতর্কতা বর্ণনা কর।
- 8) একটি ড্রিল মেশিন অঙ্কন করে প্রধান অংশগুলো চিহ্নিত কর।
- ৫) গ্রে কাস্ট আয়রন-এর তৈরি জবের উপর ২৫ মিলিমিটার ব্যাসের ছিদ্র করতে হবে, যদি কাটিং স্পিড ২০ মিটার/মিনিট হয়, তবে দ্রিলের প্রতি মিনিটের ঘূর্ণায়ন (RPM) কত হবে?

নবম অধ্যায়

গ্যাস ওয়েন্ডিংকালে সম্ভাব্য বিপদ প্রতিরোধ ব্যবস্থা

(Preventive Measure of Possible Danger in Gas Welding)

- ৯.১ গ্যাস ওয়েন্ডিংকালে সম্ভাব্য বিপদসমূহ (Possible Danger in Gas Welding) :
- গ্যাস ওয়েন্ডিং-এর সময় অগ্নিশিখা, চাপযুক্ত গ্যাস এবং উত্তপ্ত ধাতুখণ্ড নিয়ে একজন কর্মী কাজ করেন। সুতরাং গ্যাস ওয়েন্ডিং হতে নিম্নলিখিত বিপদসমূহের আশঙ্কা থাকে।
- অগ্নিশিখার তীব্র আলোক রশ্যি এবং উত্তাপের কারণে চোখ এবং দেহের ক্ষতি।
- ২. জলন্ত অগ্নিশিখা দেহের কোনো অংশে লেগে পুড়ে যেতে পারে বা পোশাকে আগুন ধরে যেতে পারে।
- ৩. অগ্নিশিখা হতে অগ্নিকাণ্ডের সূত্রপাত হতে পারে।
- 8. গ্যাস লিক হওয়ার কারণে যে কোনো সময় আগুন লেগে যেতে পারে।
- ৫. তেল বা গ্রিজ জাতীয় কোনো পদার্থ ব্লোপাইপ, রেগুলেটর বা হোজ পাইপে লেগে থাকা অবস্থায় ওয়েল্ডিং করলে যে কোন সময় আগুন লেগে যেতে পারে।
- ৬. গ্যাস সিলিন্ডার বিস্ফোরিত হয়ে মারাত্মক অগ্নিকাণ্ডের সূত্রপাত হতে পারে।
- ৭. অতিরিক্ত ধোঁয়া বা কালির কারণে আবহাওয়া দৃষিত হয়ে শ্বাস-প্রশ্বাসের বিদ্ধ ঘটাতে পারে।

৯.২ গ্যাস ওয়েন্ডিংকালে সম্ভাব্য বিপদের কারণসমূহ (Causes of Possible Danger in Gas Welding):

- ১. অগ্নিশিখার তীব্র আলোক রশ্মি ওয়েন্ডারের চোখে ক্ষতিসাধন করে, এবং প্রচণ্ড উত্তাপ তার দেহের জন্য অত্যন্ত ক্ষতিকর বলে বিবেচিত হয়।
- ২. অসতর্ক মুহূর্তে জ্বলম্ভ অগ্নিশিখা। ওয়েন্ডারের দেহের কোনো অংশে লেগে পুড়ে যেতে পারে। (Flame) কাজের বিরতির সময় অগ্নিশিখা নিভিয়ে না রাখলে তা দাহ্য কোনো বস্তুর স্পর্শে এসে অগ্নিকাণ্ড ঘটাতে পারে।
- ৩. তেল বা গ্রিজ জাতীয় পদার্থ ব্লোপাইপ, রেগুলেটর বা হোজ পাইপে লেগে থাকলে আগুন লাগার আশঙ্কা থাকে।
- 8. অগ্নিশিখার অতি নিকটে গ্যাস সিলিভার রাখলে সিলিভারগুলোকে মাঝে মাঝে গ্যাস সরবরাহকারী প্রতিষ্ঠানের নিকট হতে চেক না করালে সিলিভার বিস্ফোরণের মতো ভয়াবহ দুর্ঘটনার আশঙ্কা থাকে।
- ৫. ওয়েন্ডিং-এর সময় সৃষ্ট ধোঁয়া এবং কালি বের হয়ে যাওয়ার রাস্তা না থাকলে ওয়েন্ডারের দেহে তা বিরূপ প্রতিক্রিয়া সৃষ্টি করে।

- ১.৩ ন্যাস ধরেন্ডিকোলে সভাব্য বিশলের প্রতিরোধ ব্যবস্থা (Preventive Measures of Possible Danger in Gas Welding):
- ১. অগ্নিশিখার তীব্র আলোক রশ্যি হতে ওয়েন্ডারের চোখ রক্ষার জন্য ওয়েন্ডিং গগ্লস পরতে হবে।

- ২, প্রচণ উত্তাপ হতে হাত বা দেহকে রক্ষার জন্য চামড়ার জ্যাপ্রোন গায়ে দিতে হবে এবং হাতে হ্যাভ গ্লোভস পরতে হবে।
- ৩. কাজের বিরতির সময় অগ্নিশিখাকে নিভিরে রাখতে হবে। তেল বা প্রিন্ধ জাতীয় কোনো পদার্থ ব্লোপাইপ রেঙপেটর বা হুজ পাইপে লাগপে তা অত্যন্ত যদ্মের সাথে পরিষার করতে হবে।
- সিশিভারগুলোর সেকটি ভাষ ঠিক আছে কিনা ভা গ্যাস সরবরাহকারী প্রতিষ্ঠানের কাছ থেকে চেক করে।
- পিলিভারগুলোকে উর্কের কাছ থেকে নিরাপদ দূরত্বে রাখতে হবে।
- ৬. সিলিভারের গ্যাস লিক করছে বলে মনে হলে সাবান গানির ফেনা দিয়ে তা পরীকা করতে হবে। আগুন জ্বালিয়ে গ্যাসলিক পরীকা করা সমূহ বিপদের কারণ।

চিত্র: সাবান পানি দিয়ে গ্যাস লিক পরীকা

৭. টর্চ স্থাপানোর জন্য সব সময় ঞ্রিকসন পাইটার ব্যবহার করতে হবে, দিয়াশপাই-এর কাঠি ব্যবহার করা উচিত নর কারণ এতে হাতে আঙন দাগার আশবা থাকে।

চিত্ৰ: কিকশন লাইট

৮. গরম জব কথনও হান্ত দিয়ে নাড়াচাড়া করার চেটা করা উচিত নয়, সব সময় এ কাজে টংস ব্যবহার করতে হবে।

৯.৪ গ্যাস ক্ষেতিং যৰণাতিৰ সভৰ্কচামূলক ব্যবস্থাসমূহ (Preventive Measures of Gas Welding Machine):

- ১. প্যাস সিলিভারকে অপ্লিলিখা হতে দূরে রাখতে হবে।
- ২. কাজ শেষে যৱগাতি সঠিক ছানে ও অবস্থানে রাখতে হবে।
- ৩. প্যাস ওরেন্ডিং যত্রপাতিতে তেল, মবিল, প্রিজ ইত্যাদি লেগে থাকলে তা ভালোভাবে পরিবার করতে হবে।
- 8. হোজ পাইপের সংবোগছলে দিরে বাডে গ্যাস বের হডে না পারে এরপভাবে সংবোগ দিতে হবে।
- প্রতি উচ্চচাপে গ্যাস সিলিভারে গ্যাস ভর্তি না করা।
- ৬, প্যাস সিলিভারের রেজনেটারকলো ঠিকমডো কাজ না করলে ভা পাল্টিরে নতুন রেজনেটর সাসাতে হবে ।
- ৭. গ্যাস সিলিভারের শোরানো অবস্থার না রাখা।

চিত্রে দেখালো অবস্থার ট্রলিডে চেইন দিরে অটিকিরে রাখতে হবে।

চিত্ৰ: ট্ৰলিজে গ্যাস সিলিভাৰ

প্রশ্নমালা-৯

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- অগ্নিশিখার তীব্র আলোক রশ্মি ওয়েল্ডারের কী ক্ষতি করতে পারে?
- ২. গ্যাস ওয়েন্ডিংকালে ম্যাচ বা দিয়াশলাই ব্যবহার করা উচিত নয় কেন?
- ৩. গ্যাস ওয়েন্ডিংকালে বিপদ প্রতিরোধ ব্যবস্থা বলতে কী বোঝায়?
- 8. গ্যাস সিলিভারকে অগ্নিশিখা হতে কোথায় রাখতে হবে?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. টংস এর ব্যবহার উল্লেখ কর।
- ২. গ্যাস ওয়েন্ডিংকালে সম্ভাব্য বিপদের পাঁচটি কারণ লেখ।
- ৩. গ্যাস ওয়েন্ডিংকালে সম্ভাব্য বিপদের ৫টি প্রতিরোধ ব্যবস্থা কী?
- 8. সিলিভারের গ্যাস লিক কীভাবে পরীক্ষা করতে হয়?

রচনামূলক প্রশ্নাবলি:

- ১. গ্যাস ওয়েল্ডিংকালে সম্ভাব্য বিপদের প্রতিরোধ ব্যবস্থাদি উল্লেখ কর।
- ২. গ্যাস ওয়েন্ডিং যন্ত্রপাতির সতর্কতামূলক ব্যবস্থাসমূহ বর্ণনা কর।
- ৩. গ্যাস ওয়েল্ডিংকালে সম্ভাব্য বিপদসমূহ আলোচনা কর।

দশম অধ্যায়

গ্যাস ওয়েন্ডিংকালে সতর্কতামূলক পোশাক ও সরঞ্জামাদির প্রয়োগ (Application of Safety Dress and Protective Devices for Gas Welding)

- ৯.১ গ্যাস ওয়েন্ডিংকালে ব্যবহার্য ব্যক্তিগত সতর্কতামূলক পোশাক ও সরক্ষামাদির নাম (Name of Safety Dress and Protective Deviecs for Gas Welding)
- ১. কটন জাতীয় মোটা কাপড়ের পোশাক (Cotton Dress)।
- ২. সেফটি গগলস (Protective Goggles)।
- ৩. হ্যান্ড গ্লান্ডস (Hand Gloves) ।
- 8. লেদার অ্যাপ্রোন (Leather Apron)।
- ৫. সেফটি সুজ (Safety Shoes)।
- ৬. স্বাল ক্যাপ (Skall Cap)।
- ৯.২ গ্যাস ওয়েন্ডিং কালে ব্যবহার্য ব্যক্তিগত সতর্কতামূলক পোশাক ও সরঞ্জামাদির ব্যবহার (Uses of Safety Dress and Protective Deviecs for Gas Welding)
- পোশাক : ওয়েন্ডিং করার সময় ওয়েন্ডারের কটন জাতীয় মোটা কাপড়ের পোশাক পরিধান করতে হবে । কারণ কটন জাতীয় কাপড়ে সহজে আগুন ধরে না ।
- ২. সেফটি গগলস : অগ্নিশিখার তীব্র আলোকরশ্মি হতে চোখকে রক্ষা করার জন্য গগলস ব্যবহার করতে হবে।
- ৩. হ্যান্ড গ্রান্ডস : অগ্নিশিখার তীব্র উত্তাপ থেকে হাতকে রক্ষা করার জন্য হ্যান্ড গ্রান্ডস ব্যবহার করা হয়।
- 8. অ্যাপ্রোন: প্রচণ্ড উত্তাপের হাত থেকে দেহকে রক্ষা করার জন্য অ্যাপ্রোন ব্যবহার করা হয়।
- শেক্টি সুজ : পা রক্ষা করার জন্য সেফটি সুজ ব্যবহার করা হয়।
- ৬. **স্কাল ক্যাপ:** ওভারহেড ওয়েন্ডিং করার সময় মাথার চুলকে রক্ষা করার জন্য এটি ব্যবহৃত হয়।

চিত্র: সতর্কতামূলক পোশাক পরিধান

- ৯.১ গ্যাস ওয়েন্ডিংকালে ব্যবহার্য ব্যক্তিগত সতর্কমূলক পোশাক ও সরঞ্জামাদির যত্ন ও রক্ষণাবেক্ষণ (Care and Maintenance of Safety Dress and Protective Devices for Gas Welding):
- ১. ওয়েন্ডিং করার পর শরীর খুব ঘামে, সেজন্য পোশাককে প্রতিদিন পরিষ্কার করে নিতে হয়।
- ২. গগলসকে নিক্ষেপ করা যাবে না ।
- কাজ শেষে গগলসকে নির্দিষ্ট স্থানে রাখতে হবে ।
- 8. লেদার গ্রাভসে যাতে তেল বা গ্রিজ না লাগে সেটা খেয়াল করতে হবে।
- ৫. গ্লাভস পানিতে ভিজানো যাবে না, তাহলে গ্লাভস সহজেই নষ্ট হয়ে যাবে।
- ৬. কাজ শেষে অ্যাপ্রোন ও সুজ নির্দিষ্ট জায়গায় রাখতে হবে।
- কাজ শেষে অ্যাপ্রোন খুলে কর্মস্থলে নির্দিষ্ট স্থানে ঝুলিয়ে রাখতে হবে। অ্যাপ্রোন অপরিষ্কার বা নোংরা হলে ডিটারজেন্ট বা সাবান দিয়ে ধুয়ে পরিষ্কার করে ব্যবহার করতে হবে।

প্রশ্নমালা-১০

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ওয়েন্ডিং করার সময় ওয়েন্ডারের কী জাতীয় পোশাক পরিধান করতে হয়?
- ২. গ্যাস ওয়েন্ডিংকালে সতর্কতামূলক ৩টি পোশাক ও সরঞ্জামাদির নাম লেখ।
- ৩. গ্যাস ওয়েন্ডিংকালে ব্যক্তিগত সতর্কতামূলক একটি সরঞ্জামাদির ব্যবহার লেখ।

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. হ্যান্ড গ্লাভস ব্যবহার দেখাও।
- ২. সেফটি গগলস কীভাবে গ্যাস ওয়েল্ডিং-এর সময় সতর্কতামূলক কাজ করে?
- ৩. গ্যাস ওয়েন্ডিংকালে ব্যবহার্য দুটি ব্যক্তিগত পোশাকের ব্যবহার দেখাও।

রচনামূলক প্রশ্নাবলি:

- ১. গ্যাস ওয়েন্ডিংকালে ব্যবহার্য ব্যক্তিগত সতর্কতামূলক পোশাক ও সরপ্তামাদির নাম লেখ।
- ২. গ্যাস ওয়েন্ডিংকালে ব্যবহার্য সতর্কতামূলক সরঞ্জামাদির রক্ষণাবেক্ষণ বর্ণনা দাও।
- ৩. গ্যাস ওয়েন্ডিংকালে সতর্কতামূলক পোশাক ও সঞ্জামাদির ব্যবহার লেখ।

একাদশ অধ্যায় গ্যাস সিলিন্ডার ও সরঞ্জামাদি

(Gas Cylinder and Equipments)

১১.১ গ্যাস সিলিভারের প্রকারভেদ (Type of Gas Cylinder):

গ্যাস ও ওয়েন্ডিং-এ ব্যবহৃত গ্যাস সিলিন্ডার প্রধানত দুই প্রকার । যথা-

- ১. অক্সিজেন সিলিন্ডার (Oxygen Cylinder) ও
- ২. অ্যাসিটিলিন সিলিন্ডার (Acetylene Cylinder)।

১১.২ বিভিন্ন প্রকার গ্যাস সিশিভার শনাক্তকরণ (Identification of Different Gas Cylinder) : নিম্নে বিভিন্ন প্রকার গ্যাস সিশিভার শনাক্ত করার উপায়গুলো বর্ণনা করা হলো :

অক্সিজেন সিলিন্ডার ও অ্যাসিটিলিন সিলিন্ডার

অক্সিজেন সিলিভার শনাক্ত করার উপায়সমূহ

- ১. অক্সিজেন সিলিভার কালো হয়ে থাকে।
- ২. এটি অ্যাসিটিলিন সিলিভারের চেয়ে চিকন ও লম্বা হয়।
- এতে ভান হাতি প্যাচযুক্ত গ্যাস রেগুলেটর সিলিন্ডারের মাথায় আটকানো থাকে ।
- 8. গ্যাস রেগুলেটরের গেজের রং সবুজ নীল রং-এর হয় এবং চাপের পরিমাণ করার জন্য
- গেজ পাইপের রং দাগাঙ্কিত থাকে ।

অ্যাসিটিলিন সিলিভার শনাক্ত করার উপায়সমূহ

- সিলিন্ডার-এর রঙ খয়েরি লাল বা মেরুন।
- ২. এটি অক্সিজেন সিলিভার-এর চেয়ে বেশি মোটা ও খাটো হয়ে থাকে।
- ৩. এতে বাম হাতি প্যাচযুক্ত রেগুলেটর থাকে।

১১.৩ গ্যাস সিলিভারের মাউন্টিং, নজেল, রেগুলেটর ও হোজ পাইপ সংযোগ পদ্ধতি (Connection Method of Mounting, Nozzel, Regulator and Hose Pipe of Gas Cylinder):

চিত্র : অক্সিজেন ও অ্যাসিটিলিন গ্যাস সিলিভারের মাউন্টিং রেগুলেটর ও হোজ পাইপ সংযোগ

অক্সিজেন সিলিভার ও অ্যাসিটিলিন সিলিভারের মাথায় যে প্রেসার গেজ ও সরঞ্জাম থাকে তাকে মাউন্টিং বলে। অক্সিজেন ও অ্যাসিটিলিন উভয় সিলিভারে Valve থাকে। Valve বন্ধ করলে সিলিভার থেকে গ্যাস নির্গমন বন্ধ হয়ে যায়।

সিলিভার প্রেসার গেজ দিয়ে সিলিভারের গ্যাসের পরিমাপ করা হয় এবং আউটলেট প্রেসার গেজ দিয়ে কত চাপে গ্যাস বের হয় তা জানা যায়। রেগুলেটর দিয়ে ব্লো-পাইপে সরবরাহ গ্যাসের চাপ নিয়ন্ত্রণ করা যায়। দুইটি রাবারের হোজ পাইপ দুটি গ্যাস সিলিভার রেগুলেটরের সাথে সংযুক্ত করা হয়। অক্সিজেন সিলিভারের হোজ পাইপ কাল রংঙের এবং অ্যাসিটিলিট সিলিভারের রেগুলেটরের সাথে সংযুক্ত হোজ পাইপ লাল রঙের হয়। হোজ পাইপ দুটির মুক্ত প্রান্তব্যক্ত ব্লো-পাইপের দুটি ছিদ্রের সাথে বায়ুরোধী করে সংযুক্ত করা হয়। সিলিভার দুটি হতে গ্যাস ছাড়লে ব্লো-পাইপের Mixing Chambr-এ মিশ্রিত হয়। Blow পাইপের নব (Knob) ঘুরিয়ে মিশ্রিত গ্যাসকে নজেলের ভেতর দিয়ে প্রবাহিত করা হয়। নজেলের মুখে অগ্নিশিখা জ্যালালে মিশ্রিত গ্যাস জুলতে থাকে।

১১.৪ গ্যাস সিলিভার হ্যাভলিং পদ্ধতি (Handling Process of Gas Cylinder) :

গ্যাস ভর্তি সিলিভার খুবই ভারী, তাই এটিকে ট্রলির সাহায্যে এক স্থান থেকে অন্য স্থানে আনা নেওয়া
করা উচিত । সিলিভার যাতে ট্রলি থেকে গড়িয়ে না পড়তে পারে সেজন্য চেইন বা তার (Chain or
Wire) দ্বারা ট্রলির সাপোর্টের সাথে আটকিয়ে রাখতে হবে ।

- গ্যাস ভর্তি সিলিভার ভারী হওয়ায় দুইজনে নড়াচড়া করানো উচিত।
- গ্যাস ভর্তি সিলিভার কখনও ওপর থেকে বা গড়িয়ে নেওয়া উচিত নয়।
- বেশি উঁচু কোনো স্থানে সিলিন্ডার স্থাপন করা উচিত নয়।
- গ্যাস সিলিভার অগ্নিশিখা হতে দূরে রেখে ওয়েভিং করতে হবে ।
- কাজ শেষে এবং স্থানান্তরের সময় সিলিভার ভালভ ভালোভাবে বন্ধ রাখতে হবে ।

চিত্র: গ্যাস সিলিভার সেটকে ট্রলিতে স্থাপন

১১.৫ গ্যাস সিশিভারের রক্ষণাবেক্ষণ ব্যবস্থা (Maintenance Process of Gas Cylinder) :

- সিলিভারকে শোয়ানো অবস্থায় রাখা উচিত নয়।
- ২. সিলিন্ডার সর্বদা ধুলাবালিমুক্ত রাখতে হবে।
- সিলিভারে কখনও তেল বা গ্রিজ জাতীয় পদার্থ লাগানো যাবে না ।
- 8. সিলিন্ডারের স্পিন্ডল ভালভে লিক দেখা দিলে সঠিক মাপের স্প্যানার দিয়ে গ্র্যান্ড নাট টাইট দিতে হবে।
- প্রিলিভারের গ্যাস লিক করে কি না তা সাবান পানির ফেনা দিয়ে পরীক্ষা করতে হবে ।
- ৬. আগুন বা জ্বলন্ত ওয়েন্ডিং টর্চের নিকট সিলিন্ডার উন্মক্ত করা উচিত নয়।
- ৭. স্কুলিঙ্গ সৃষ্টি করতে পারে এমন কোনো বস্তু দিয়ে সিলিন্ডারের গায়ে আঘাত করা উচিত নয়।
- ৮. সিলিন্ডার স্থানান্তরের সময় সিলিন্ডারের ভালভ ভালোভাবে বন্ধ করতে হবে।
- খালি সিলিভারের ভালভ বন্ধ করে মাথায় সেফটি ক্যাপ লাগিয়ে রাখতে হবে ।
- ১০. খালি সিলিভারের গায়ে খালি কথাটি লিখে আলাদা রাখতে হবে।
- ১১. ইলেকট্রিক স্পার্ক হয় এমন স্থানে গ্যাস সিলিভার রাখা উচিত নয়।
- ১২. সিলিন্ডার রাখার জায়গা ওকনা ও প্রচুর আলো-বাতাসযুক্ত হতে হবে।

প্রশ্নমালা-১১

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. অক্সিজেন সিলিভার কী রঙের হয়?
- ২. অ্যাসিটিলিন সিলিভার কী রঙের হয়?
- ৩. সিলিন্ডারকে কোনু অবস্থায় রাখা উচিত নয়?
- 8. সিলিভারের মাউটিং বলতে কী বোঝায়?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. গ্যাস ও ওয়েল্ডিং-এ ব্যবহৃত গ্যাস সিলিন্ডার কত প্রকার ও কী কী?
- ২. গ্যাস সিলিভার ট্রলির মাধ্যমে এক স্থান থেকে অন্য স্থানে আনা নেওয়া করা উচিত কেন?
- ৩. অক্সিজেন গ্যাস সিলিভার চেনার উপায় লেখ।
- 8. অ্যাসিটিলিন গ্যাস সিলিভার চেনার উপায় লেখ।
- ৫. সিলিন্ডারে রেগুলেটর ও হোজ পাইপ সংযোগ পদ্ধতি লেখ।

রচনামূলক প্রশ্নাবলি:

- ১. গ্যাস সিলিন্ডার হ্যান্ডলিং (Handling) পদ্ধতি বর্ণনা দাও।
- ২. গ্যাস সিলিভার রক্ষণাবেক্ষণের বর্ণনা দাও।

দাদশ অধ্যায় গ্যাস ওয়েল্ডিং-এ ব্যবহৃত গ্যাসসমূহের বৈশিষ্ট্য (Characteristics of Gas Welding gases)

১২.১ গ্যাস ওয়েন্ডিং-এ ব্যবহৃত বিভিন্ন গ্যাসের রাসায়নিক প্রতীকসহ নাম (The Name including Chemical Symbol of Different Gases uses in Gas Welding):

রাসায়নিক নাম	প্রতীক	রাসায়নিক নাম	প্রতীক
(ক) অ্যাসিটিলিন	C ₂ H ₂	(ছ) বুটেন	C ₄ H ₁₀
(খ) হাইড্রোজেন	H ₂	(জ) প্রোপেন	C ₃ H ₄
(গ) অক্সিজেন	O ₂	(ঝ) মিথেন	CH ₄
(ঘ) আরগন	A _r	(ঞ) কোল গ্যাস	
(ঙ) হিলিয়াম	He	(ট) কার্বন ডাই-অক্সাইড	CO ₂
(চ) প্রাকৃতিক গ্যাস			1975

১২.২ গ্যাস ওয়েন্ডিং-এ ব্যবহৃত গ্যাসসমূহের ওয়েন্ডিং সংশ্লিষ্ট গুণাগুণ (The Charasteristics of Different Gases uses in Gas Welding):

অক্সিজেন গ্যাসের গুণাগুণ: অক্সিজেন একটি বর্ণহীন, গন্ধহীন ও স্বাদহীন গ্যাস। এটি নিজে জ্বলে না, কিন্তু অন্যকে জ্বলতে সাহায্য করে। পানিতে এটি দ্রবণীয়। তাই পানির ভেতর মাছ ও অন্যান্য প্রাণী বেঁচে থাকতে পারে। ধাতুর সাথে বিক্রিয়া করে একটি অক্সাইড তৈরি করে। লোহার উপরে যে মরিচা পড়ে তা লোহা ও অক্সিজেনের বিক্রিয়ায় তৈরি হয়। গরম ধাতুতে এটি দ্রুত বিক্রিয়া করে অক্সাইড তৈরি করে। এই গ্যাস অধিক চাপে সিলিভারের ভেতরে রাখা যায়।

অ্যাসিটিলিন গ্যাসের গুণাগুণ: অ্যাসিটিলিন গ্যাস বর্ণহীন, গন্ধযুক্ত গ্যাস। এই গ্যাস নিজে জ্বলে, তবে অক্সিজেনের সংস্পর্শে এটি আরও ভালোভাবে জ্বলে। এটিকে অক্সিজেনের মতো অধিক চাপে রাখা যায় না।

১২.৩ সিলিভারে গ্যাস সংরক্ষণ ব্যবস্থা (Preserving Method of Gases into the Cylinder) :

- অক্সিজেন সিলিন্ডারের তাপমাত্রা ২১.১১৫° সে এবং ১৩৭.৮৫ হতে ১৭২.৩৫ বার (Bar) চাপে গ্যাস সংরক্ষণ থাকে। অপর দিকে অ্যাসিটিলিন সিলিন্ডারে ১৫.৫১ হতে ১৭.২৫ বার চাপে গ্যাস থাকে।
- 🕨 অ্যাসিটিলিন উচ্চ দহনশীল পদার্থ। তাই এটিকে অপেক্ষাকৃত ঠান্ডা স্থানে রাখতে হবে।
- উন্মুক্ত অগ্নির সংস্পর্শ হতে দূরে রাখতে হবে ।
- 🕨 অ্যাসিটিলিন সিলিন্ডারের ভালভ ১/২ প্যাচের বেশি খোলা উচিত নয়।

- অ্যাসিটিলিন সিলিভারকে সবসময় Up-Right অবস্থানে রাখতে হবে ।
- 🕨 এই সিলিন্ডারের নিকট বা রুমে দাহ্য পদার্থ রাখা উচিত নয়।
- অ্যাসিটিলিন চেম্বারের ধারণ ক্ষমতা ১.৬৯ হতে ৮.৫ ঘনমিটার পর্যন্ত পক্ষান্তরে অক্সিজেনের ৩.৩৮ হতে ৭.০০ ঘনমিটার পর্যন্ত।
- যখন গ্যাস সিলিভার ব্যবহৃত হবে না তখন একটি সিলিভারের মাথায় একটি টুপি (Cap) পরাতে হবে।
- গ্যাস সিলিন্ডার যাতে পড়ে না যায় তার জন্য শিকল দিয়ে বেঁধে রাখতে হবে ।
- 🕨 গ্যাস সিলিন্ডারগুলো যাতে একটি অপরটিকে জোরে আঘাত করতে না পারে সেভাবে রাখা উচিত।
- 🕨 গ্যাস সিলেন্ডার ফ্লোরের সাথে জোরে আঘাত না পায় সেটা করা উচিত।
- 🗲 গ্যাস সিলিভার গড়িয়ে নেওয়া ঠিক নয় এবং কোনো ভারী লোডের সাপোর্ট হিসাবে ব্যবহার করা যাবে না ।
- 🕨 গ্যাস সিলিভার শুকনো ও পর্যাপ্ত আলো-বাতাস এবং দাহ্য পদার্থমুক্ত গুদামে রাখতে হবে।
- 🕨 যে স্থানে গ্যাস সিলিভার রাখা হবে সেখানে আগুন জ্বালানো বা ধূমপান করা উচিত নয়।
- অ্যাসিটিলিন ও অক্সিজেন সিলিভারকে দূরের আলাদা-আলাদা স্টোরে গুদামজাত করতে হবে । কখনই একই গুদামে রাখা উচিত নয় ।
- গাড়িতে পরিবহনের ক্ষেত্রে গ্যাস সিলিভার ঝুলন্ত অবস্থায় বা পড়ে যেতে পারে এ অবস্থায় বহন করা উচিত নয়।
- 🕨 স্টোরে সংরক্ষণের সময় সিলিভারের গায়ে গ্যাসের পূর্ণ নাম লিখে রাখতে হবে।
- পানি, তেল, গ্রিজ ও অন্যান্য দাহ্য জাতীয় পদার্থ কখনোই সিলিভারের ভালভের বা হোজ পাইপের ও রেগুলেটরের সংস্পর্শে না আসে এভাবে রাখতে হবে ।
- 🕨 শূন্য গ্যাস সিলিভারের ভালব অবশ্যই বন্ধ করে গুদামজাত করতে হবে।
- 🗲 ক্রটিযুক্ত চাবি দিয়ে গ্যাস সিলিন্ডার খোলা ও বন্ধ করা উচিত নয়।

প্রশুমালা-১২

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. অ্যাসিটিলিন গ্যাসের রাসায়নিক প্রতীক কী?
- ২. সিলিভারে গ্যাস সংরক্ষণ বলতে কী বোঝায়?
- ৩. হিলিয়াম গ্যাসের রাসায়নিক প্রতীক কী?
- 8. বুটেন গ্যাসের রাসায়নিক প্রতীক কী?
- ৫. গ্যাস ওয়েল্ডিংয়ে কী কী গ্যাস ব্যবহৃত হয়?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. অক্সিজেন গ্যাসের গুণাগুণ লেখ।
- ২. অ্যাসিটিলিন গ্যাসের গুণাগুণ লেখ।
- ৩. অক্সিজেন ও অ্যাসিটিলিন গ্যাসের পার্থক্য লেখ।

রচনামূলক প্রশ্লাবলি :

- ১. গ্যাস ওয়েন্ডিং-এ ব্যবহৃত গ্যাসগুলোর গুণাগুণ লেখ।
- ২. সিলিভারে গ্যাস সংরক্ষণ ব্যবস্থার বর্ণনা দাও।
- ৩. গ্যাস ওয়েন্ডিং-এ ব্যবহৃত গ্যাসসমূহের রাসায়নিক প্রতীকসহ গুণাগুণ বর্ণনা কর।

ত্রয়োদশ অধ্যায় গ্যাস ওয়েন্ডিং ফ্লেমের বৈশিষ্ট্য

(Characteristics of Gas welding Flame)

১৩.১ গ্যাস ওরেন্ডিং ফ্লেমের প্রকারভেদ (Types of Gas welding Flame) :

অক্সি-অ্যাসিটিলিন গ্যাস প্রয়োগ ফ্রেম ৩ প্রকার যথা-

- (১) কার্বোরাইজিং ফ্লেম (Carborizing Flame)
- (২) অক্সিডাইজিং ফ্লেম (Oxidizing Flame)
- (৩) নিউট্রাল ফ্লেম(Neutral Flame)

১৩.২ গ্যাস ওয়েন্ডিং ফ্লেমের প্রকৃতি তাপমাত্রাসহ ব্যাখ্যাকরণ (Nature Including Temperature of Gas welding Flame):

গ্যাস ওয়েন্ডিং ফ্লেমের সর্বোচ্চ তাপমাত্রা (অক্সিজেন বিশুদ্ধভেদে) ৩২০০° সেন্টিগ্রেড থেকে ৩৫০০° সেন্টিগ্রেড পর্যন্ত হয়ে থাকে। তবে বিভিন্ন জ্বালানিভেদে ফ্লেমের তাপমাত্রাও বিভিন্ন হয়ে তাকে। যেমন—অক্সি-অ্যাসিটিলিন ফ্লেমের স্বাভাবিক তাপমাত্রা ৩১০০° সেঃ গ্রেড থেকে ৩২০০° সেঃ গ্রেড। অক্সি-হাইড্রোজেন ফ্লেমের স্বাভাবিক তাপমাত্রা ২৩০০° সেঃ গ্রেড থেকে ২৪০০° সেঃগ্রেড। অক্সি-বুটেন ফ্লেমের স্বাভাবিক তাপমাত্রা ২৯০০° সেঃ গ্রেড। অক্সি-প্রপেন ফ্লেমের স্বাভাবিক তাপমাত্রা ২৬০০° সেঃ গ্রেড। অক্সি-প্রলপিজি ফ্লেমের স্বাভাবিক তাপমাত্রা ২২৭০° সেঃ গ্রেড। অক্সি-প্রকৃতিক গ্যাস ফ্লেমের স্বাভাবিক তাপমাত্রা ২২৭৮৮° সেঃ গ্রেড।

চিত্র: অক্সি-জ্যাসিটিলিন গ্যাস শিখা

১৩.৩ বিভিন্ন ধরনের গ্যাস ধরেন্ডিং ফ্লেম শনাক্তকরণ (Identidication of Gas welding Flame) :

১. কার্বোরাইজিং ফ্রেম :

কার্বোরাইজিং ফ্রেম সৃষ্টির জন্য নির্দিষ্ট অ্যাসিটিলিন গ্যাস দহনের জন্য যতটুকু অক্সিজেন গ্যাসের প্রয়োজন, তার চেয়ে কম দেওয়া হয়। এই শিখা প্রজ্বলিত হলে খৃবই উজ্জ্বল সাদাটে এবং হলুদ বর্ণের হয় এবং অগ্নিশিখার আয়তন অনেকটা কমে যায়। এই শিখার তাপমাত্রা ৩০৬৫° সে. এর কাছাকাছি।

- ২. অক্সি-ডাইজিং ক্রেম : এই শিখার অ্যাসিটিলিন গ্যাস দহনের প্রয়োজনের তুলনার বেশি পরিমাণ অক্সিজেন গ্যাস থাকে। এই শিখা অন্য দূই শিখার চেয়ে লম্বায় একটু ছোট এবং অভ্যন্তরীণ শিখার অংশ একটু ছোট এবং কিঞ্চিৎ বেগুনি রপ্তের হয়ে থাকে।
- ৩. নিউট্রাল ফ্রেম: নির্দিষ্ট পরিমাণ অ্যাসিটিলিন প্যাস দহনের জন্য বতটুকু অক্সিজেন গ্যাস প্রয়োজন, ঠিক ডভটুকু অক্সিজেন গ্যাস প্রয়োগ করে যে শিখা উৎপন্ন হয়, তাকে নিউট্রাল ফ্রেম বলে। সাধারণত অক্সিজেন ও অ্যাসিটিলিন গ্যাস সমপরিমাণ ব্যবহারে এই ফ্রেম উৎপন্ন হয়। এই শিখার রং সাধারণত চার ধরনের হয়ে থাকে। যথা-
 - (ক) অভি উজ্জ্বল নীলাভ শ্বেত ফ্রেম.

(ब) कीन क्याकारन नीन वर्न क्रुय

(গ) বচ্ছ নীলাভ ফ্লেম ও

(খ) সবুজ ফ্রেম।

এই ক্লেমের ভাপমাত্রা ৩২৩২° সে এর কাছাকাছি। এই শিখার অভ্যন্তরীণ কোণ (Inner Cone)
মসৃণ হয় এবং জ্বলার সময় সুন্দর হালকা আওয়াজ (Pleasing soft sound) হয়। এই শিখা দারা
ওয়েন্ডিকোলে মূল ধাড়ুর সাথে কোনো প্রকার রাসায়নিক বিক্রিয়া ঘটে না।

চিত্র: ৩ প্রকার প্যাস শিখার চিত্র

১৩.৪ গ্যাস ওয়েন্ডিং ফ্লেমের ব্যবহার (Uses of Gas welding Flame :

১. কার্বোরাইজিং ফ্রেম:

নিম্ন গলনাঙ্কের ধাতুর ওয়েন্ডিং, লো-কার্বন স্টিল, অ্যালুমিনিয়াম, নিকেল, মোনেলমেটাল ইত্যাদি ওয়েন্ডিং, উচ্চতাপ ঝালাই (Hard soldring), ব্রেজিং, হার্ড ফেসিং, ডিপোজিটিং ইত্যাদি কাজে এই ফ্রেম ব্যবহার করা যায়।

২. অক্সি-ডাইজিং ফ্রেম:

পিতল, ব্রোঞ্জ জাতীয় ধাতুর ওয়েন্ডিং করতে এই ফ্রেম ব্যবহার করা হয়, অথবা মেটালিক শিট ও প্রেট কাটার ব্যাপারেও ব্যবহার করা হয়। এই ফ্রেমের তাপমাত্রা ৩৩১৫° সে-এর কাছাকাছি। এই শিখা জ্বলার সময় এক ধরনের হিসিং শব্দ (Hissing Sound) হয়।

৩. নিউট্রাল ফ্লেম:

এই ফ্লেম ব্যবহার করা হয় কাস্ট আয়রন, মাইভ স্টিল, অ্যালুমিনিয়াম, কপার ইত্যাদিতে ওয়েল্ডিং করতে।

প্রশ্নমালা-১৩

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. অক্সিডাইজিং ফ্লেম বলতে কী বোঝায়?
- ২. নিউট্রাল ফ্রেম বলতে কী বোঝায়?
- ৩. কার্বোরাইজিং ফ্লেম বলতে কী বোঝায়?
- 8. অক্সি-অ্যাসিটিলিন ফ্লেমের স্বাভাবিক তাপমাত্রা কত?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. অক্সিডাইজিং ও কার্বোরাইজিং ফ্লেমের তফাৎ কী?
- ২. গ্যাস ওয়েন্ডিং ফ্লেম কত প্রকার ও কী কী?
- ৩. নিউট্রাল শিখার রং সাধারণত কী কী ধরনের হয়ে থাকে।
- 8. অক্সিডাইজিং ও কার্বোরাইজিং ফ্লেমের ব্যবহার লেখ।

রচনামূলক প্রশ্নাবলি :

- গ্যাস ওয়েল্ডিং ফ্লেমগুলোর চিত্রসহ ব্যবহার বর্ণনা কর।
- ২. গ্যাস ওয়েন্ডিং ফ্লেমের প্রকৃতি তাপমাত্রাসহ ব্যাখ্যা কর।
- ৩. বিভিন্ন ধরনের গ্যাস ওয়েন্ডিং ফ্লেম শনাক্তকরণ কৌশল বিবৃত কর।

চতুর্দশ অধ্যায় গ্যাস ওয়েল্ডিং ফিলার মেটালের বৈশিষ্ট্য

(Characteristics of Gas Welding Filler Metals)

১৪.১ বিভিন্ন ধরনের গ্যাস ওয়েন্ডিং ফিলার মেটাল (Different Types of Gas Welding Filler Metals):

গ্যাস ওয়েন্ডিং জোড়ার ফাঁকা স্থান পূরণ করার জন্য যে পূরক ধাতু/মেটাল ব্যবহার করা হয়, তাকে ফিলার মেটাল বলে। সাধারণত ফিলার মেটাল রড বা তারের আকৃতিতে পাওয়া যায়। রড আকৃতির ফিলার মেটালকে ফিলার রড বলে।

ফিলার রড দুই প্রকার । যথা-

- (ক) আবৃত (Coated) ফিলার রড ও
- (খ) অনাবৃত (Bare) ফিলার রড।

তিনটি আবৃত বা কোটেড ফিলার রডের নাম যথাক্রমে-

- মাইন্ড স্টিল কপার কোটেড ফিলার রড।
- মিডিয়াম কার্বন স্টিল কোটেড ফিলার রড।
- লা-কার্বন স্টিল কোটেড ফিলার রড।

উপরে উল্লিখিত ফিলার মেটালগুলি কেবল লৌহজাত ধাতু বা ফেরাস মেটালের ক্ষেত্রে ব্যবহার করা হয়। অলৌহজাত বা ননফেরাস বা সংকর (Alloy) ধাতু ওয়েল্ডিং-এর ক্ষেত্রে এ ধরনের ফিলার রড ব্যবহার করা হয়ে থাকে।

এছাড়া সুপার সিলিকন ও ফেরোসিলিকন নামে ফিলার মেটাল ব্যবহৃত হয়।

১৪.২ গ্যাস ওয়েন্ডিং ফিলার মেটালের আকার (Size of Gas Welding Filler Metals): গ্যাস ওয়েন্ডিং ফিলার মেটাল সাধারণত দুই ধরনের হয়। যেমন-

- ১. আবৃত ফিলার মেটাল এবং
- ২. অনাবৃত ফিলার মেটাল।

ফিলার মেটাল দপ্তাকৃতি, জড়ানো তারের আকৃতি, তারের কুণ্ডলী এবং ধাতুর সরু ফালির মতো হয়ে থাকে। ফিলার মেটাল সাধারণত ১৬ মিমি হতে ৯৫ মিমি ব্যাসের এবং ১০০ সেমি লম্বা হয়। অনেক সময় ফিলার রডের ব্যাস মূল ধাতুর পুরুত্বের সমান নেওয়া হয়।

ওয়ার ইলেকটোডের ব্যবহার

১৪.৩ গ্যাস ওয়েন্ডিং কিলার মেটালের ভণাভণ (Characteristics of Gas Welding Filler Metals) : সাধারণত ফিলার মেটালের উপাদনসমূহ ও গুণাবলি মূল ধাতুর ন্যায় হওয়া বাঞ্ছনীয় । এ সমস্ত ফিলার রডের ধাতু যাতে অতিসহজে ওয়েন্ডিং স্থানে প্রবাহিত হতে পারে সেই ভাবে বিভিন্ন উপাদানসহ ফিলার রড তৈরি করা হয় । বিশেষ ধরনের মূল ধাতুর জন্য উপযোগী ফিলার মেটাল পাওয়া না গেলে মূল ধাতুর টুকরা ফিলার রড হিসাবে ব্যবহার করা হয় ।

অ্যালুমিনিয়ামের জ্বন্য ফিলার রড নির্ধারণ: বিভিন্ন পরিমাণ সিলিকন মিশ্রিত ওয়েন্ডিং রড ব্যবহৃত হয়। সিলিকন, রডের গলনাঙ্ক কমায় এবং তারল্যতা বাড়ায়। যত বেশি সিলিকন থাকবে তত গলনাঙ্ক হোস পাবে। বাণিজ্যিক ভিত্তিতে ওয়েন্ডিং রডের বিকল্প হিসাবে অ্যালুমিনিয়াম শিট হতে কাটা ছোট টুকরা ব্যবহার করা যেতে পারে।

স্টেইনলেস স্টিলের জন্য কিলার রড নির্ধারণ: স্টেইনলেস স্টিলকে সপ্তোষজনকভাবে ওয়েন্ডিং করার জন্য বিশেষভাবে তৈরি 'কলামবিয়াম ১৮-৮' ফিলার রড প্রয়োজন। যদি বিশেষ ধরনের রড না পাওয়া যায় সেক্ষেত্রে মূল ধাতুর টুকরা কেটে রড হিসেবে ব্যবহার করা ভালো।

কপার-এর জন্য কিলার রড নির্বাচন : কপারের জন্য ফিলার রড সাধারণত ডি-অক্সিডাইজড ধরনের ব্যবহার করতে হবে। বর্তমানে এমন কতকশুলো অ্যালয় রড ডি-অক্সিডাইজারস এবং অন্যান্য উপাদান থাকে যথা সিলভার যা গলিত ধাতুর তারল্যতা বাড়ায় এবং এতে ভালো ফল পাওয়া যায়।

বিভিন্ন ধরনের ফিলার মেটালের মিশ্রণ নিম্নে প্রদর্শিত হলো:

ফিলার			শতকরা হ	রে মিশ্রণ		
সিলিকন ম্যাঙ্গানিজ অ্যালয়েড অয়্যার	কার্বন ০.১	সিলিকন ০.৫	ম্যাঙ্গানিজ ১.১			
মলিবডেনাম অ্যালয়েড অয়্যার	কার্বন ০.১	সিলিকন ০.৫	ম্যাঙ্গানিজ ১.১	মলিবডেনাম ০.৫		
ক্রেমিয়াম/মলিবডেনাম	কার্বন	সিলিকন	ম্যাঙ্গানিজ	ক্রোমিয়াম	মলিবডেনাম	
অ্যালয়েড অয়্যার	০.১	০.৫	১.০	১.২	০.৫	
এক্সট্রা লো-কার্বন	কার্বন	সিলিকন	ম্যাঙ্গানিজ	ক্রোমিয়াম	নিকেল	
স্টেইনলেস অয়্যার রড	০.০২	০.৪	১.৮	২০	১০	
নোবিয়াম স্টেবিলাইজড	কার্বন	সিলিকন	ম্যাঙ্গানিজ	ক্রোমিয়াম	নিকেল	নোবিয়াম
স্টেইনলেস অয়্যার রড	০.০৫	০.৪	১.৩	১৯	৯	০.৯
বিশুদ্ধ অ্যালুমিনিয়াম অয়্যার রড (৯৯.৫% অ্যালুমিনিয়াম)	অ্যালুমিনিয়াম ৯৯.৫	সিলিকন ০.৩	ফেরাস ০.8			
সিলিকন অ্যালয়েড	সিলিকন	ম্যাঙ্গানিজ	ফেরাস	ইনকোলেন	অ্যালুমিনেয়াম	
অ্যালুমিনিয়াম অয়্যার রড	৫.২	০.৫	০.৬	০.৩	অবশিষ্ট	
ম্যাগনেশিয়াম অ্যালয়েড	ম্যাগনেশিয়াম	ফেরাস	সিলিকন	ম্যাঙ্গানিজ	অ্যালুমিনেয়াম	
অয়্যার রড	৫.০	০.৫	০.৫	০.৬	অবশিষ্ট	

বিভিন্ন ধরনের মূল ধাতুর জন্য বিভিন্ন ধরনের ফিলার মেটালের তালিকা

ফিলার মেটাল	মূল ধাতু
সিলিকন-ম্যাঙ্গানিজ অ্যালয়েড অয়্যার	মাইন্ড স্টিল অথবা লো-অ্যালয় স্টিল টেনসাইল স্ট্রেংথ ৫১০-৫৭০ নিউটন/মিমি ^২
সিলিকন ম্যাঙ্গানিজ অ্যালয়েড অয়্যার	মাইন্ড স্টিল এবং লো-অ্যালয় স্টিল
মলিবডেনাম অ্যালয়েড অয়্যার	মাইন্ড স্টিল এবং লো অ্যালয় হাই-টেনসাইল স্টিল এবং ক্রিপ রেজিস্ট্যান্স স্টিল।
ক্রোমিনিয়াম/মলিবডেনাম অ্যালয়েড অয়্যার	ক্রিপ রেজিস্ট্যান্স স্টিল
এক্সট্রা-লো-কার্বন স্টেইনলেস অয়্যার রড	করোশন রেজিস্ট্যান্স স্টিল
নোবিয়াম স্টেবিলাইজড স্টেইনলেস অয়্যার রড	করোশন রেজিস্ট্যান্স স্টিল
বিশুদ্ধ অ্যালুমিনিয়াম অয়্যার রড (৯৯.৫%) অ্যালুমিনিয়াম	অ্যালুমিনিয়াম এবং অ্যালুমিনিয়াম অ্যালয়সমূহ
সিলিকন অ্যালয়েড অ্যালুমিনিয়াম রড	অ্যালুমিনিয়াম সিলিকন অ্যালয় এবং অ্যালুমিনিয়াম ম্যাগনেশিয়াম সিলিকন অ্যালয়।
ম্যাগনেশিয়াম অ্যালয়েড অয়্যার রড	সামুদ্রিক পানিজনিত ক্ষয় প্রতিরোধক অ্যালুমিনিয়াম ম্যাগনেশিয়াম অ্যালয়সমূহ

১৪.৪ গ্যাস ওয়েন্ডিং ফিলার মেটাল নির্বাচনে বিবেচ্য বিষয়সমূহ (Terms & Condition for Selection of Gas Welding Filler Metals):

- যে মেটালকে ওয়েল্ডিং করা হবে, ফিলার মেটাল সেই একই জাতীয় হতে হবে।
- ২. ফিলার মেটাল গলনাঙ্ক বেস মেটাল হতে কম হবে।
- ৩. ফিলার মেটালের অভ্যন্তরীণ গঠন সুষম হতে হবে।
- 8. ফিলার মেটাল প্রবাহিত হওয়ার সময় যথেষ্ট তারল্য ধর্ম থাকতে হবে।
- ৫. ফিলার মেটাল তাড়াতাড়ি জমে জোড়া গঠনের ক্ষমতা থাকতে হবে।
- ৬. ফিলার মেটাল ভেতরে কোনো প্রকার বিষাক্ত উপাদান থাকবে না এবং যান্ত্রিক গুণাবলির (Mechanical Properties) অধিকারী হতে হবে।

প্রশ্নমালা-১৪

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. স্টেইনলেস স্টিলকে সম্ভোষজনকভাবে ওয়েন্ডিং করার জন্য কীরূপ ফিলার রড অত্যাবশ্যক?
- ২. গ্যাস ওয়েন্ডিং ফিলার মেটাল বলতে কী বোঝায়?
- ৩. সিলিকন অ্যালয়েড অ্যালুমিনিয়াম রড কোন ধাতু ওয়েল্ডিং-এ ব্যবহৃত হয়?
- 8. বিশেষ ধরনের মূল ধাতুর জন্য উপযোগী ফিলার মেটাল পাওয়া না গেলে ফিলার রড হিসাবে কী ব্যবহৃত হয়?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ফিলার মেটাল কত প্রকার ও কী কী?
- ২. ওয়েন্ডিং জোড়ার ফাঁকা স্থান পূরণ করার জন্য কী কী ব্যবহার করা হয়?
- ৩. সিলিকন ম্যাঙ্গানিজ অ্যালয়েড অয়্যার ফিলার মেটালের মিশ্রণের শতকরা হার কত?
- 8. সাধারণত ফিলার মেটালের উপাদনসমূহ ও গুণাবলি কেমন হওয়া উচিত?

রচনামূলক প্রশ্নাবলি:

- ১. গ্যাস ওয়েন্ডিং ফিলার মেটালের গুণাগুণ বর্ণনা কর।
- ২. গ্যাস ওয়েন্ডিং ফিলার মেটালের আকার বর্ণনা কর।
- গ্যাস ওয়েল্ডিং ফিলার মেটাল নির্বাচনের বিবেচ্য বিষয়াদি লেখ ।
- 8. ইলেকট্রোড ও ফিলার রডের পার্থক্য দেখাও।

পঞ্চদশ অধ্যায়

গ্যাস ওয়েন্ডিং ফ্লাক্স

(Gas Welding Flux)

১৫.১ ওয়েন্ডিং ফ্লাক্সের প্রয়োজনীয়তা (Neccessity of Gas Welding Flux):

গ্যাস ওয়েন্ডিং করার সময় উত্তপ্ত ধাতুর সঙ্গে বাতাসের অক্সিজেনের বিক্রিয়া হয়ে অক্সাইড গঠন করে। এ বিক্রিয়াকে অক্সিডেশন বলে। অক্সিডেশনের ফলে জোড়া স্থানে কখনও কখনও ফোসকার মতো, কখনও বা ছিদ্র তৈরি হয়। ফলে জোড়া স্থান দুর্বল হয়। ফ্লাক্স হলো এক প্রকার রাসায়নিক যৌগ, যা ওয়েন্ডিং-এর সময় অক্সিডেশন এবং অন্যান্য অনাকাজ্মিত রাসায়নিক বিক্রিয়া প্রতিরোধ করার জন্য ব্যবহৃত হয়। ফ্লাক্স ওয়েন্ডিং পদ্ধতি সহজতর করতে সাহায্য করে এবং ক্রটিমুক্ত ওয়েন্ড তৈরি নিশ্চিত করে। ওয়েন্ডিং-এর সময় জোড় স্থানে এসি প্রয়োগ করতে হয়। কখনো বা উত্তপ্ত ফিলার রড ফ্লাক্সে ডুবিয়ে নেওয়া হয়। ফ্লাক্স সাধারণত সিলিকন, লোহা, ম্যাঙ্গানিজ ইত্যাদি ধাতুর অক্সাইড ও সেলুলুজ (Cellulose) এর সংমিশ্রণে গঠিত হয়।

ফ্লাক্সের কার্যকারিতা নিম্নে প্রদত্ত হলো:

- (ক) ওয়েল্ড তল হতে ময়লা দূরীভূত করে।
- (খ) নতুন অক্সাইড তৈরিতে বাধা দেয়।
- (গ) গলিত ফিলার মেটালের সারফেস টেনশন কমিয়ে এর প্রবাহ নিশ্চিত করে।
- (ঘ) গলিত ফিলার মেটালকে সঠিক স্থানে পৌঁছে দেয়।
- (%) অন্য যে কোনো অপদ্রব্য দূরীভূতকরণে সাহায্য করে ।
- (চ) ওয়েল্ডিং প্রক্রিয়াকে সহজতর করে।
- (ছ) ওয়েল্ডকে অধিক শক্তিশালী ও নমনীয় করে।

মৌলিকভাবে ফ্লাক্সকে তিনভাবে ভাগ করা যায়। যথা:

- (১) হাইলি করোসিভ ফ্লাক্স (Highly corrosive flux)
- (২) ইন্টারমিডিয়েট করোসিভ ফ্লাক্স (Intermediate corrosive flux)
- (৩) নন-করোসিভ ফ্লাক্স (Non corrosive flux)

করোসিভ ফ্লাক্স না জ্বলিয়ে অথবা লাল বর্ণ ধারণ না করেও উচ্চ তাপ সহ্য করতে পারে, যা অন্য সব ফ্লাক্সের ক্ষেত্রে সম্ভব হয় না। গ্যাস ওয়েন্ডিং উচ্চ তাপের প্রয়োজন হয় বলে হাইলি করোসিভ ফ্লাক্স গ্যাস ওয়েন্ডিং এ ব্যবহারের জন্য উপযোগী। এই ফ্লাক্সে অজৈব এসিড বা লবণ থাকে যা অক্সাইডের সাথে বিক্রিয়া করে। এই বিক্রিয়া অনেক সময় স্বাভাবিকভাবেও ঘটে থাকে। আবার এই ফ্লাক্সের বিক্রিয়া কোনো কোনো সময় তাপ প্রয়োগের পর শুরু হয়। সাধারণত ফ্লাক্স পাউডার পেস্টের মতো হয়।

১৫.২ ফ্লাক্সের উপাদানসমূহ (Composion of Gas Welding Flux):

ফ্লাব্রের উপাদান হিসাবে রাসায়নিক দ্রব্যসমূহ হলো– সোডিয়াম, পটাশিয়াম, লিথিয়াম, বোরাক্স, বোরিক অ্যাসিড, বোরেটস ও অ্যালকালি। সাধারণত ফ্লাক্স কঠিন, তরল, পেস্ট ও পাউডার আকারে প্রয়োগ করা হয়।

১৫.৩ বিভিন্ন কাজে ফ্লাক্সের নাম (Function of Gas Welding Flux) :

ধাতুর নাম	ফ্লাক্সের নাম		
ব্রাশ ও ব্রোঞ্জ	বোরাক্স শ্রেণিভূক্ত। এতে সোডিয়াম বোরেটের সাথে অন্যান্য উপাদান থাকে।		
তামা	ফ্লাক্স ছাড়াও ওয়েল্ডিং করা যায় তবে অক্সিজেন রোধের জন্য বোরাক্স ব্যবহার করা হয়।		
অ্যালুমিনিয়াম ও অ্যালুমিনিয়াম অ্যালয়	লিথিয়াম ক্লোরাইড, পটাশিয়াম ক্লোরাইড, পটাশিয়াম বাই সালফেট, পটাশিয়াম ক্লোরাইড।		
কাস্ট আয়রন	সোডিয়াম, পটাশিয়াম বা অ্যালকালিন, বোরেট, কার্বোনেটস, বাইকার্বোনেটস এবং স্লাগ তৈরির উপাদানসমূহ।		
স্টেইনলেস স্টিল	কম্পাউন্ড অব বোরাক্স, বরিক অ্যাসিড, ফ্লোরস্পার।		
ম্যাগনেসিয়াম ও অ্যালয়সমূহ	সোডিয়াম ফ্লোরাইড, পটাশিয়াম ফ্লোরাইড, ম্যাগনেসিয়াম ক্লোরাইড, বেরিয়াম ক্লোরাইড।		
নিকেল ও অ্যালয়সমূহ	বিশুদ্ধ নিকেলের জন্য ফ্লাক্সের প্রয়োজন নেই।		
মাইন্ড স্টিল	বোরাক্স		

কয়েকটি সাধারণ ফ্লাক্সের বিবরণ দেওয়া হলো:

কাস্ট আয়রন ফ্লাক্স:

এটা গুঁড়া জাতীয়, দেখতে অনেকটা লালচে রঙের। প্রধানত আয়রন অক্সাইড, সোডিয়াম কার্বোনেট ও বাই কার্বোনেট সংমিশ্রণে প্রস্তুত করা হয়।

অ্যালুমিনিয়াম ফ্লাক্স:

অ্যালুমিনিয়াম ও এর সংকর ধাতু ওয়েন্ডিং বা ব্রেজিং-এর জন্য নির্দিষ্ট ফ্লাক্স ব্যবহার অপরিহার্য। এই ফ্লাক্স সাধারণত সোডিয়াম ক্লোরাইড, সোডিয়াম সালফেট, লিথিয়াম ক্লোরাইড, পটাশিয়াম ক্লোরাইড এবং ব্রায়োনাইট সংমিশ্রণে প্রস্তুত করা হয়।

ব্ৰেজিং ফ্লাক্স:

যে ধরনের ধাতু ব্রেজিং করতে হবে তার ওপর নির্ভর করে ফ্লাক্স নির্বাচন করা হয়। সাধারণত পরিশোধিত এবং বিশুদ্ধ বোরাক্স এবং ধাতুর ক্লোরাইড সংমিশ্রণে এই ফ্লাক্স প্রস্তুত করা হয়। গ্যাস ওয়েন্ডিং ফ্লাক্স

তামা বা তামা জাতীয় ধাতুর ফ্লাক্স:

এই জাতীয় যে সকল ফ্লাক্স বাজারে দেখা যায়, তার বেশির ভাগই কিউপ্রাস অক্সাইড হতে তৈরি।

স্টেইনলেস স্টিলের ফ্লাক্স:

জোড় সুন্দর, মজবুত এবং গলিত ধাতুর উত্তম নিয়ন্ত্রণের জন্য ফ্লাক্স হিসেবে বোরাক্স, বোরিক অ্যাসিড ও ফ্লোরোস্পার ব্যবহার।

ম্যাগনেসিয়াম ও ম্যাগনেসিয়াম সংকর ধাতুর ওয়েন্ডিং-এর জন্য ফ্লাক্স:

সোডিয়াম ক্লোরাইড, পটাশিয়াম ক্লোরাইড, বেরিয়াম ক্লোরাইড ইত্যাদি ফ্লাক্স হিসাবে ব্যবহার করা হয়। যেহেতু উক্ত ধাতুতে ব্যবহৃত ফ্লাক্স খুবই করোসিভ সেজন্য ওয়েন্ডিং-এর কাজ সমাপ্ত হওয়ার পরপরই চিপিং করে ওপরের ধাতুমল সরিয়ে ফেলতে হয় এবং পরে ওয়্যার ব্রাশ দিয়ে ভালো করে জোড় পরিষ্কার করতে হয়।

নিকেল ও নিকেল সংকর ধাতুর ফ্লাক্স:

বিশুদ্ধ নিকেলের জন্য কোন ফ্লাক্সের দরকার হয় না। কিন্তু নিকেল অ্যালয় যেমন ইনকনেল (Inconel) এবং মোনেল মেটাল-এর জন্য ফ্লাক্স-এর দরকার হয়।

ইনকনেল সংকর ধাতুর জন্য ব্যবহৃত ফ্লাক্স:

এতে ৮০% নিকেল, ১৫% ক্রোমিয়াম এবং ৫% আয়রন থাকে। ক্যালসিয়াম হাইড্রোক্সাইড $Ca(OH)_2$, বোরিক অ্যানহাইড্রাইড (B_2O_3) ইত্যাদি ফ্লাক্স এতে ব্যবহৃত হয়।

মোনেল মেটাল-এর জন্য ফ্লাক্স:

৬৬.৫% নিকেল, ৩১.৫% কপার যুক্ত মোনেল মেটালের জন্য ব্যবহৃত ক্যালসিয়াম ফেরাইট ($Ca\ FeO_2$)2, বেরিয়াম ফেরাইট ($Ba\ Fe_2O_4$) এবং গাম অ্যারাবিক ইত্যাদি ফ্লাক্স ব্যবহৃত হয়।

প্রশ্নমালা-১৫

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- (১) ফ্লাক্স বলতে কী বোঝায়?
- (২) করোসিভ ফ্লাক্সের ব্যবহারের ক্ষেত্রে আলাদা বিশেষত্ব কী?
- (৩) ফ্লাক্সের উপাদানের নাম লেখ।

সংক্ষিপ্ত প্রশ্নাবলি :

- (১) ফ্লাক্স কত প্রকার ও কী কী?
- (২) ফ্লাক্স সাধারণত কী কী ধাতুর সংমিশ্রণে গঠিত হয়।
- (৩) ওয়েন্ডিং ফ্লাক্সে কী কী উপাদান থাকে?

রচনামূলক প্রশ্নাবলি :

- (১) বিভিন্ন প্রকার ধাতু ওয়েল্ডিং-এ ব্যবহৃত ফ্লাক্সের নাম লেখ।
- (২) গ্যাস ওয়েল্ডিং-এ ফ্লাক্সের প্রয়োজনীয়তা ব্যাখ্যা কর।

ষোড়শ অধ্যায় স্পট ওয়েন্ডিং (Spot Welding)

১৬.১ স্পট থয়েন্ডিং (Spot Welding) :

রেজিস্ট্যান্স গুরেন্ডিং-এর যে পদ্ধতিতে কাজের উপর দুইটি পরেন্টেড (Pointed) বা ডোমড (Domed) ইলেকট্রোড কর্তৃক প্রদন্ত চাপের পর বৈদ্যুতিক প্রবাহ চালনার ফলে সৃষ্ট রেজিস্ট্যান্স হতে তাপের সাহায্যে গুরেন্ড বা কোলেসিন (Coalascene) তৈরি করে গুরেন্ডিং করা হয় তাকে স্পট গুরেন্ডিং বলে। এটি রেজিস্ট্যান্স গুরেন্ডিং-এর একটি শাখা।

সাধারণত ০.২৫ মিমি - ১৩ মিমি পুরু ধাতব পাতকে ল্যাপ জয়েন্ট করতে এই পদ্ধতি ব্যবহৃত হয়। তবে অধিকাংশ ক্ষেত্রে ৬ মিমি পুরু পাতের ক্ষেত্রে ইহা বেশি ব্যবহৃত হয় এবং সর্বেচ্চ ৭৬ মিমি পুরু পাতকে ওয়েন্ডিং করা বায়। ভামার পাতের ক্ষেত্রে অবশ্য ১ মিমি এর কম পুরু পাতকে এই পদ্ধতিতে ওয়েন্ডিং করা ক্ষরন।

স্পট ওয়েন্ডিং প্রধানত দুই প্রকার। যথা-

- ১। সিকেল স্পট গুয়েন্ডিং (Single Spot Welding)
- ২। মালটিগল স্পট ধ্বয়েন্ডিং (Multiple Spot Welding)

চিত্র: ১৬.২ সিংগেল স্পট ওয়েন্ডিং

চিত্র: ১৬,৩ মালটিপল স্পট ওয়েন্ডিং

প্রথমোক্ত পদ্ধতিতে একবার বিদ্যুৎ প্রবাহে কাজের এক স্থানে একটি মাত্র স্পট তৈরি হবে। শেষোক্ত পদ্ধতিতে একই সময়ে দুই বা ততোধিক স্পট তৈরির মাধ্যমে জোড়া দেওয়া হয়।

স্পট ওয়েন্ডিং-এর স্বিধা হলো-

- ১। খরচ কম।
- ২। বহুল নির্ভরশীলতা।
- ৩। গুয়েন্ডিং স্পিড বেশি।
- ৪। কম দক্ষ অপারেটর প্রয়োজন।
- ৫। ডিশটরশন কম হয়।
- ७। कात्ना किनात त्रष्ठ मत्रकात रहा ना ।

স্পট ওয়েন্ডিং

স্পট ওয়েন্ডিং-এর অসুবিধা হলো-

- ১। সিম ওয়েন্ডিং-এর চেয়ে ওভার ল্যাপ বেশি।
- ২। প্রাথমিক খরচ বেশি।
- ৩। বেশি পুরু পাতকে জোড়া দেওয়া যায় না।

১৬.২ স্পট ওয়েন্ডিং মেশিন

যে ওয়েন্ডিং মেশিনে স্পট ওয়েন্ডিং করা হয় তাকে স্পট ওয়েন্ডিং মেশিন বলা হয়। স্পট ওয়েন্ডিং মেশিন প্রধানত দুই প্রকার। যথা-

- ১। সিঙ্গেল স্পট ওয়েন্ডিং মেশিন (Single Spot Welding Machine)
- ২। মালটিপল স্পট ওয়েন্ডিং মেশিন (Multiple Spot Welding Machine)

চিত্র: ১৬.৪ সিঙ্গেল স্পট ওয়েন্ডিং মেশিন

চিত্র: ১৬.৫ মালটিপল স্পট ওয়েন্ডিং মেশিন

স্পট ওয়েন্ডিং মেশিনে ব্যবহৃত ইলেকট্রোড নন-কনজুম্যাবল। অধিকাংশ ইলেকট্রোড লো রেজিস্ট্যাঙ্গ কপার অ্যালয় দিয়ে তৈরি। তবে কোনো কোনো সময় অন্যান্য উচ্চ তাপ প্রতিরোধক ধাতুও ব্যবহৃত হয়। ইলেকট্রোডকে ঠাডা রাখার জন্য প্রতিটি ইলেকট্রোডকে ফাঁপা করে তৈরি করা হয়। ওয়েন্ড এরিয়া হতে যত তাড়াতাড়ি সম্ভব তাপ পরিহারের জন্য শীতলীকরণ ব্যবস্থা জরুরি। কাজের আকার অনুযায়ী ইলেকট্রোড-এর মুখের আকার নির্ধারিত হয়।

ইলেকট্রোডের মুখের আকার ডোম, ফ্লাট, একসেন্ট্রিক, ট্রাংকেটেড বা রেডিয়াস ধরনের হতে পারে।

১৬.৩. স্পট ওয়েন্ডিং মেশিন চালনার কৌশল

স্পট ওয়েন্ডিং-এ সাধারণত পয়েন্টেড (চোখা) ইলেকট্রোড (কনডাক্টর) ব্যবহার করা হয়। কার্যবস্তুকে দুটি ইলেকট্রোডের মাঝে স্থাপন করে ইলেকট্রোডদ্বয়ের সাহায্যে চাপ দিয়ে ধরার পর কম ভোল্টের উচ্চ বিদ্যুৎ প্রবাহ চালনা করা হয়। এতে এক ইলেকট্রোড হতে অপর ইলেকট্রোডে বিদ্যুৎ প্রবাহের ফলে প্রয়োজনীয় তাপ ও চাপের সৃষ্টি হয়। ফলে নির্দিষ্ট সময়ে কার্যবস্তুর দুই পাশে (উপরে ও নিচে) যে স্থলে ইলেকট্রোডদ্বয়ের মাধ্য ম্বোম্থি অবস্থানে আছে, উক্ত প্রান্ত বরাবর মেটালে গলন ধরে এবং ইলেকট্রোডদ্বয়ের মাধ্যমে চাপ প্রয়োগে স্পটের আকারে ধাতু গলে জোড়া তৈরি হয়।

চিত্র: ১৬.৬ স্পট ধরেন্ডিং মেশিন চালনার কৌশল

সময় ও কার্যবস্তুর বিবেচনায় স্পট ওয়েন্ডিং প্রক্রিয়া তিনটি স্তরে সম্পন্ন হয়। যেমন-

- ১। স্কুইজ টাইম (Squeeze Time)
- ২। ওয়েন্ড টাইম (Weld Time)
- ৩। হোল্ড টাইম (Hold Time)

স্পট ওয়েন্ডিং

এই তিনটি স্তরে সম্পন্ন অপারেশন-এর পূর্বে অবশ্যই ওয়ার্কপিসের মরিচা, অপদ্রব্য বা কেমিক্যালসহ অন্যান্য তেল মুক্ত করে নিতে হয়

১। স্কুইজ টাইম (Squeeze Time):

বিদ্যুৎ সরবরাহের পূর্বে ইলেকট্রোডকে ওয়ার্কপিসের সংস্পর্শে আনার সময়কে স্কুইজ টাইম বলে।

২। ওয়েল্ড টাইম (Weld Time):

বিদ্যুৎ সরবরাহের সময়কে ওয়েল্ড টাইম (Weld Time) বলে।

৩। হোল্ড টাইম (Hold Time)

যে সময়ের জন্য বিদ্যুৎ সরবরাহ বন্ধ থাকে অথচ ওয়ার্কপিসের উপর চাপ প্রদান অব্যাহত থাকে তাকে হোল্ড টাইম (Hold Time) বলে ।

১৬.৪ স্পট ওয়েন্ডিং মেশিনের রক্ষণাবেক্ষণ:

- ১। স্পট ওয়েন্ডিং মেশিনকে দ্রুত ঠান্ডা করার জন্য ইলেকট্রোডের অভ্যন্তরের পানির লাইন অবশ্যই পরিষ্কার রাখতে হবে।
- ২। কার্যবস্তুর আলোকে সঠিক মাত্রায় কারেন্ট ও ভোল্টেজ সেট করতে হবে।
- ৩। কার্য শেষে মেশিন বা যন্ত্রপাতি পরিষ্কার ও যথাস্থানে সাজিয়ে রাখতে হবে।

প্রশ্নমালা-১৬

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১। স্পট ওয়েল্ডিং-এ কীরূপ ইলেকট্রোড ব্যবহার করা হয়?
- ২। স্পট ওয়েন্ডিং কোন ওয়েন্ডিং-এর একটি শাখা?
- ৩। ওয়েল্ড টাইম কাকে বলে?
- ৪। স্কুইজ টাইম কাকে বলে?

সংক্ষিপ্ত প্রশ্নাবলি :

- 🕽 । স্পট ওয়েল্ডিং বলতে কী বোঝায়?
- ২। স্পট ওয়েল্ডিং-এর ব্যবহারিক ক্ষেত্র লিখ।
- ৩। স্পট ওয়েল্ডিং মেশিন বলতে কী বোঝায়?
- ৪। স্পট ওয়েন্ডিং প্রক্রিয়া কী কী স্তরে বিভক্ত হয়?

রচনামূলক প্রশ্নাবলি :

- 🕽 । স্পট ওয়েন্ডিং কত প্রকার ও কী কী? প্রত্যেক প্রকারের বর্ণনা দাও ।
- ২। স্পট ওয়েন্ডিং মেশিন সম্পর্কে যা জান লিখ।
- ৩। স্পট ওয়েন্ডিং মেশিন চালনার কৌশল বিবৃত কর।
- ৪। স্পট ওয়েন্ডিং মেশিনের রক্ষণাবেক্ষণ আলোচনা কর।

সঙ্গদশ অধ্যায় গ্যাস ওয়েন্ডিং জোড়ের সম্ভাব্য ক্রটি ও প্রতিকার (Remedies of Defects of Gas Welling Joints)

১৭.১ গ্যাস থরেন্ডিং-এর ক্রটিসমূহ: গ্যাস ওয়েন্ডিং-এর সময় অপ্রত্যাশিত যে ক্রটিন্তলো দেখা যায় সেওলো নিমুরূপ:

ক) বিকৃতি (Distortion) :

ওরেন্ডিং-এর সময় মূল ধাতৃ অসমতাবে উত্তও হওয়ার কলে এবং পরবর্তীতে ঠান্ডা হওয়ার সময় সংকোচন ও প্রসারণজ্ঞনিত কারণে বেঁকে, মুড়িয়ে কিবো ক্চকিয়ে যাওয়াকে বিকৃতি বলে। এর কলে ওয়েন্ড কাজের অনুপ্রোপী হয়ে যায় এবং এই কারণে বিকৃতি রোধ অত্যাবশ্যক।

विव : विकृष्टि

বিকৃতি ভিন প্রকার। বধা-

- ১. কৌপিক বিকৃতি (Angular Distortion)
- ২. লখালখি বিকৃতি (Longitudinal Distortion)
- ৩. আড়াআড়ি বিকৃতি (Transverse Distortion)
- খ) **ধাতুমল অন্তর্গৃক্তি (Slag Inclusion) : ওয়েন্ড ধাতু জ্মটি বাঁধার সময় এর অভ্যন্তরে ধাতুমল** আটকিয়ে পড়াকেই ধাতুমল অন্তর্গৃক্তি বলে । এতে জোড় দুর্বল হয় ।

চিত্র : স্থাপ ইন্ফুশন

ণ) আভার কাট (Undercut) : গুরেন্ডিং করার সময় মাত্রাভিরিক্ত উত্তাপ এবং ক্রুটিপূর্ণ গুরেন্ড গতির ফলে মূল ধাতুর পার্শ্বদেশ কিংবা গুয়েন্ড ধাতু কেটে অসম কর্তন রেখার সৃষ্টি করে, এটাই আভার কাট।

চিত্ৰ : আভাব কটি (অন্তৰ্দেশ)

চিত্র: আভার কাট (বহির্দেশ)

য) কম বা অসম্পূৰ্ণ পেনিট্ৰেশন (Poor Penetration) :

মূল ধাতুর অভ্যন্তরে মেটালের অপর্যাপ্ত কম অনুপ্রবেশই কম বা অসম্পূর্ণ পেনিট্রেশন নামে পরিচিত। এতে জ্যোড় দূর্বল হয় এবং জ্যোড় লিক প্রুক্ষ (Leak Proof) নাও হতে পারে।

চিত্ৰ: কম বা অসম্পূৰ্ণ পেনিট্ৰেশন

ঙ) মাত্রতিরিক্ত পেনিট্রেশন (Excess Peneration) : জ্বোড়ের রুটে মাত্রাতিরিক্ত ধাতু জমানোই অতিরিক্ত পেনিট্রেশনের লক্ষণ। মাত্রাতিরিক্ত পেনিট্রেশনে জ্বোড়-এর বিকৃতি বেশি হয়, খরচ বেশি হয় এবং পাইপ ওয়েন্ডিং-এ ভেতরের ব্যাসহাস পায়।

চিত্র: মাত্রতিরিক্ত পেনিট্রেশন

চ) স্প্যাটার (Spatter) : কার্যবস্তু অথবা ওয়েন্ডিং অত্যধিক তাপের তারতম্যতাহেতু গলিত ধাতু পুরোপুরিভাবে নির্দিষ্ট স্থানে না জমা হয়ে বিক্ষিপ্তভাবে জোড়ার চারদিকে ছড়িয়ে পড়ে, এটাই স্প্যাটার।

চিত্র: স্প্যাটার

ছ) কম গলন (Lack of Fusion): মূল ধাতু ওয়েন্ড মেটালের সঙ্গে পুরোপুরিভাবে মিশ্রণের অভাবকেই কম গলন বলা হয়। জ্বোড়ে ওয়েন্ড মেটাল এবং মূল ধাতুর মধ্যে কিংবা ওয়েন্ড মেটালের সঙ্গে ওয়েন্ড মেটালের কম বা অসম্পূর্ণ গলনের ফলে জ্বোড় দুর্বল হওয়ায় মারাত্মক দুর্ঘটনা ঘটতে পারে।

हिन्न : कम नंजम

জ) ব্লো-হোল (Blow hole) : ওয়েন্ড মেটাল তরল অবস্থা হতে কঠিন অবস্থার রূপান্তরিত হওরার সময় গ্যাস আটকিয়ে গর্ভের সৃষ্টি করে যার ব্যাস ২-৩ মিমি হয়ে থাকে। এটাই ব্লো-হোল। এটা ওয়েন্ড ডলের উপরে বা অক্তরের হতে পারে। এটা ওয়েন্ড মেটালের শক্তি বা ওপাগুলের মান,হ্রাস করে।

विव : खा-व्हान

ৰা) পুড়ে ছেদ হওৱা (Burn Through) : অত্যধিক পেনিট্রেশনের দরুন জোড়া ছানে গর্ত হরে যায় ফলে গলিত থাড়ু জোড়া ছানে ক্ষমা না হয়ে পড়ে যায়।

চিত্র। পুড়ে ছেল হওয়া

ঞঃ) ওভার শ্যাপ (Over lap) : বেসমেটাল পুরাপুরি না গলে মাত্রাতিরিক্ত ওয়েল্ড ধাতু এর উপর জমে থাকলে ওভার ল্যাপের সৃষ্টি হয়। জোড়া স্থান কাঞ্জিকত শক্তি সম্পন্ন হয় না।

চিত্র: ওভার ল্যাপ

- ট) মাত্রাতিরিক্ত অবতশ কিংবা উত্তপ আকৃতি (Execss Convexity and Concavity) : জ্বোড়ে অনেক সময় প্রয়োজনের অধিক (চিত্রে দেখানো হয়েছে) গুয়েল্ড মেটাল জমা হয় । এটা মাত্রাতিরিক্ত উত্তপ । গুয়েল্ডিং-এর গতি অত্যধিক মন্থর কিংবা ওয়েল্ডিং কোণ যথাযথভাবে বজায় না রাখার দরুন এইরূপ ক্রটি সংঘটিত হয়ে থাকে । অনুরূপভাবে জ্বোড়ে প্রয়োজনের তুলনায় কম ধাতু (যা দেখতে অনেকটা ইংরেজি 'সি' অক্ষরের মতো) জমা হয় ।
- ঠ) ফাটল (Crack) : ফিলার মেটাল এবং মূল ধাতুর গুণাগুণের মধ্যে পার্থক্যজনিত কারণে ওয়েন্ডিং করার পর ওয়েন্ড মেটাল কিংবা তাপ প্রবাহিত জোনে অথবা উভয় অংশেই ফাটল হতে পারে । এই ফাটল যা খালি চোখে দেখা যায় তাকে ম্যাক্রো ক্র্যাকিং বলে । আর যা খালি চোখে দেখা যায় না অর্থাৎ এমন ফাটলকে মাইক্রোসকোপের সাহায্যে দেখতে হয় তাকে মাইক্রো ক্র্যাকিং বলে ।

চিত্ৰ: ফাটল

১৭.৩ গ্যাস ওয়েন্ডিং ক্রুটির কারসমূহ:

ক্রটি	কারণ		
বিকৃতি	ধাতুর অসম প্রসারণ ও সংকোচন		
স্লাগ ইনকুশান	অপরিষ্কার ধাতু, ইলেকট্রোড চালনা সঠিক নয়, কারেন্টের মান খুব		
	বেশি কিংবা খুব কম। ইলেকট্রোড নির্বাচন সঠিক নয়, পূর্ববর্তী রানের		
	স্লাগ যথাযথভাবে পরিষ্কার করা হয়নি।		
আন্ডার কাট	- ওয়েল্ডিং কোণ সঠিক নয়		
	- জোড়ের তুলনায় ইলেকট্রোড খুব বেশি বড়		
	- জোড়ের কিনারায় স্বল্প বিরতি		
	- এটি চালনার গতি অত্যধিক বেশি		
অসম্পূর্ণ	- জোড়ের প্রস্তুতি সঠিক নয়		
পেনিট্রেশন	- রুট ফাঁক খুব কম		
	- এটি কোণ সঠিক নয়		
	- ওয়েল্ডিং খুব বেশি দীর্ঘ		
গভীর	- জোড়ের প্র স্তু তি সঠিক নয়		
পেনিট্রেশন	- রুট ফাঁক বেশি		
	- জোড়ের তুলনায় ফিলার রডের সাইজ খুব ছোট		
	- এটি চালনার গতি খুব মন্থ্র		
স্প্যাটার	- দীর্ঘ ফ্লেম		
	- আর্কের দৈর্ঘ্য খুব বেশি		
	- আর্দ্র ইলেকট্রোড		
কম গলন	-কার্যবস্তুর পুরুত্বের তুলনায় ইলেকট্রোড ব্যাস খুব ছোট		
	- গ্যাস প্রবাহ কম		
	-ইলেকট্রোড কোণ সঠিক নয়		
	-ইলেকট্রোড চালনার গতি সঠিক নয়		
	-ময়লা কিংবা মিলস্কেল জোড়ের তলদেশে থাকায়		
	-একাধিক রানের ওয়েল্ডের পর্যায়ক্রমে কিংবা ধাপসমূহ সঠিক নয়		
ব্লো-হোল	-অতিদীর্ঘ আর্ক		
	-আর্দ্র ইলেকট্রোড		
পুড়ে ছেদ হওয়া	-অতি দীর্ঘ আর্ক		
	-অত্যধিক কারেন্ট		
	-অতি মন্থর গতি		

ওভার ল্যাপ	
মাত্রাতিরিক্ত উত্তল কিংবা	- গ্যাস প্রবাহ বেশি
অবতল আকৃতি	- এটি চালনার কোণ সঠিক নয়
অবতল	- ফিলার রডের সাইজ সঠিক নয়
উত্তল	- গ্যাসের প্রবাহ কম
	- ইলেকট্রোড চালনার কোণ সঠিক নয়
	- ইলেকট্রোড সাইজ কার্যবস্তুর পুরুত্বের তুলনায় খুব বেশি
ফাটল	-সঠিক ধরনের ফিলার রড ব্যবহার না করলে
	-ওয়েল্ডিং-এর পর্যায়ক্রম সঠিক না হলে
	-ওয়েল্ডিং তাপমাত্রা অত্যধিক হলে

১৭.৪ গ্যাস ওয়েন্ডিং ক্রটিসমূহের প্রভাব :

ক্রটিসমূহ	প্রভাব		
বিকৃতি (Distortion)	এর ফলে বেঁকে, মুড়িয়ে, কিংবা কুচকিয়ে যায়, ওয়েল্ড কাজের অনুপযোগী হয়ে যায়।		
স্লাগ ইনকুশন	এতে জোড় দুর্বল হয়।		
আভার কাট	মূল ধাতুর পার্শ্বদেশ কিংবা ওয়েল্ড ধাতু কেটে অসম কর্তন রেখার সৃষ্টি করে		
অসম্পূর্ণ পেনিট্রেশন	এতে জোড় দুর্বল হয় এবং জোড় লিক প্রুফ (Leak Proof) নাও হতে পারে।		
গভীর পেনিটেশন	এর ফলে জোড়-এর বিকৃতি বেশি হয়, খরচ বেশি হয় এবং পাইপ ওয়েন্ডিং এ ভেতরের ব্যাস হ্রাস পায়।		
স্প্যাটার	ওয়েন্ডিং অত্যধিক তাপের তারতম্যতাহেতু গলিত ধাতু পুরোপুরিভাবে নির্দিষ্ট স্থানে না জমা হয়ে বিক্ষিপ্তভাবে জোড়ার চারদিকে ছড়িয়ে পড়ে		
কম গলন	জোড়ে ওয়েল্ড মেটাল এবং মূল ধাতুর মধ্যে কিংবা ওয়েল্ড মেটালের সঙ্গে ওয়েল্ড মেটালের কম বা অসম্পূর্ণ গলনের ফলে জোড় দুর্বল হয়।		
ব্লো-হোল	এটা ওয়েল্ড মেটালের শক্তি বা গুণাগুণের মানহ্রাস করে।		
পুড়ে ছেদ হওয়া	অত্যধিক পেনিট্রেশনের দরুন জোড়া স্থানে গর্ত হয়ে যায় ফলে গলিত ধাতু জোড়া স্থানে জমা না হয়ে পড়ে যায়।		
ওভার ল্যাপ	বেসমেটাল পুরোপুরি না গলে মাত্রাতিরিক্ত ওয়েল্ড ধাতু এর উপর জমে থাকলে ওভার ল্যাপের সৃষ্টি হয়। জোড়া স্থান কাঞ্চ্হিত শক্তি সম্পন্ন হয় না।		

মাত্রাতিরিক্ত উত্তল কিংবা অবতল আকৃতি অবতল	ওয়েন্ডিং-এর গতি অত্যধিক মন্থর, জোড়ে প্রয়োজনের তুলনায় কম ধাতু জমা হয়।
উত্তল	গ্যাসের প্রবাহ কম যার ফলে ইলেকট্রোড চালনার কোণ সঠিক হয় না।
ফাটল	ফিলার মেটাল এবং মূল ধাতুর গুণাগুণের মধ্যে পার্থক্যজনিত কারণে ওয়েন্ডিং করার পর ওয়েন্ড মেটাল কিংবা তাপ প্রবাহিত জোনে অথবা উভয় অংশেই ফাটল হতে পারে।

১৭.৫ গ্যাস ওয়েন্ডিং ক্রুটিসমূহ নিরসনের উপায়:

ক্রটি	প্রতিকার
বিকৃতি	স্ট্রেস উপশমকরণ প্রি-সেটিং পিনিং স্টেপ ম্যাথড ওয়াভারিং বা স্কিপ ম্যাথড জিগ এবং ফিকচার দ্বারা।
স্লাগ ইনকুশন	ধাতু যথাযথভাবে পরিষ্কার করা। সঠিক কোণে ক্লোপাইপ চালনা করা, সঠিক কারেন্টে ওয়েল্ডিং করা, সঠিক ফিলার মেটাল নির্বাচন করা, পূর্ববর্তী রানের স্লাগ যথাযথভাবে পরিষ্কার করা।
আন্ডার কাট	 ক্রেম সঠিক মাত্রায় রাখা সঠিক কোণে ও সঠিক গতিতে ক্লোপাইপ চালনা করা অপেক্ষাকৃত ছোট ব্যাসের ফিলার রড ব্যবহার করা জোড়া কিনারায় ধাতু জমার জন্য সঠিক সময় দেওয়া
অসম্পূর্ণ পেনিট্রেশন	-সঠিকভাবে জোড় প্রস্তুতকরণ -সঠিক আকৃতি এবং ধরনের ফিলার মেটাল বাছাইকরণ -সঠিক ফ্রেম ব্যবহার করা -সটিক রুট ফাঁক বজায় রাখা -সঠিক কোণে ব্লো-টর্চ চালনা করা -কার্যবস্তু ও ব্লো-টর্চের দূরত্ব সঠিক রাখা
গভীর পেনিট্রেশন	-সঠিকভাবে জোড় প্রস্তুত করা - সঠিক ফ্রেম ব্যবহার করা -সঠিক রুট ফাঁক বজায় রাখা -সঠিক ধরনের ও আকৃতির ফিলার রড ব্যবহার করা -সঠিক গতিতে ব্লো-টর্চ চালনা করা
স্প্যাটার	-সঠিক ফ্লেম ব্যবহার করা - কার্যবস্তু ও ব্লো-টর্চের দূরত্ব সঠিক রাখা

	-শুষ্ক ফিলার মেটাল ব্যবহার করা	
কম গলন	–সঠিক ফ্লেম ওয়েন্ডিং করা	
	-সঠিক কোণে টর্চ চালনা করা	
	-সঠিক গতিতে টর্চ চালানো	
	-ওয়েল্ডিং-এর পূর্বে জোড় স্থান ভালোভাবে পরিষ্কার করা	
	-ওয়েন্ডিং-এর পর্যায়ক্রম কিংবা ধাপসমূহ সঠিকভাবে বজায় রাখা	
ব্লো-হোল	- কার্যবস্তু ও ব্লো-টর্চের দূরত্ব সঠিক রাখা	
	-শুষ্ক ফিলার রড ব্যবহার করা	
পুড়ে ছেদ হওয়া	-যথাযথ টর্চের দূরত্ব বজায় রাখা	
	-সঠিক ফ্লেম ব্যবহার করা	
	-সঠিক এবং একই গতিতে	
	-সঠিক এবং একই গতিতে ফিলার রড চালনা করা	
ওভার ল্যাপ	-সঠিক ফ্লেম ব্যবহার করা	
	- কার্যবস্তু ও টর্চ লেংথ ছোট এবং একই রাখা	
	-ধাতু যথাযথভাবে পরিষ্কার করা	
	-সঠিক গতিতে এটি চালানো	
	-সঠিক সাইজের ফিলার রড ব্যবহার করা	
মাত্রাতিরিক্ত উত্তল কিংবা	-সঠিক ফ্লেম ব্যবহার করা	
অবতল আকৃতি	-সঠিক কোণে এটি চালনা করা	
অবতল	-সঠিক সাইজের ফিলার রড ব্যবহার করা	
উত্তৰ	-সঠিক ফ্লেম ব্যবহার করা	
	-সঠিক কোণে ইলেকট্রোড চালানো	
	-সঠিক সাইজের ফিলার রড ব্যবহার করা	
ফাটল	-সঠিক ধরনের ও আকৃতির ফিলার রড ব্যবহার করা	
	-ওয়েন্ডিং-এর পর্যায়ক্রম সঠিক ও বজায় রাখা	
	–সঠিক তাপমাত্রায় ওয়েল্ডিং করা	

প্রশ্নমালা-১৭

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. গ্যাস ওয়েন্ডিং ক্রটি বলতে কী বোঝায়?
- ২. আন্ডার কাট বলতে কী বোঝায়?
- ৩. ব্লো-হোল কী?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. গ্যাস ওয়েন্ডিং-এর তিনটি ক্রটি বর্ণনা দাও।
- ২. স্পেটারিং ও কমপেনিট্রেশন কেন হয়?

রচনামূলক প্রশ্নাবলি :

- ১. গ্যাস ওয়েল্ডিং-এর ক্রটিসমূহ নিরসনের উপায় বর্ণনা কর।
- ২. গ্যাস ওয়েল্ডিং-এর ক্রটিসমূহের কারণ বর্ণনা কর।

ব্যবহারিক-১ ওপেন এন্ডেড রেঞ্চ তৈরি

১.১ লে-আউট কাজে ব্যবহৃত টুলস:

- ১. স্টিল রুল (Steel Rule)
- ২. পাঞ্চ (Punch)
- ৩. ক্রাইবার (Scriber)
- 8. হ্যামার (Hammer)
- ৫. ডিভাইডার (Divider)
- ৬. ক্যালিপার্স (Celipers)
- ৭. ট্রামেল (Trammel)
- ৮. ট্রাইস্কয়ার (Try-square)
- ৯. হারমাফ্রোডাইট ক্যালিপার্স (Hermaphrodite Callipers)
- ১০. কম্বিনেশন সেট (Combination Set)
- ১১. সারফেস প্লেট (Surface Plate)
- ১২. সারফেস গেজ (Surface Gauge)
- ১৩. ক্রাইবিং ব্লক (Seribing Block)
- ১৪. আঙ্গেল প্লেট (Angle-Plate)
- ১৫. ডেপথ গেজ (Depth Gauge)
- ১৬. টুল মেকার্স ভাইস (Tool Makers Vice)
- ১৭. বিভেল প্রোটেক্টর (Bevel Protractor)

১.২ লে-আউট

১. স্টিল রুল দিয়ে মাপন (Measuring with Steel Rule):

স্টিল রুল দিয়ে মাপ গ্রহণের সময় কার্যবস্তুর উপরিতলে স্টিল রুল এমনভাবে ধরতে হবে যেন, রুলের রেখাগুলো কার্যবস্তুকে স্পর্শ করে। মাপ নেওয়ার সময় ১০ মিমি মার্ক থেকে নিতে হবে, কারণ রুলের শেষ প্রান্ত ভাঙা থাকতে পারে। চিত্রে একটি স্টিল রুলের ব্যবহার দেখানো হলো।

চিত্র: স্টিল রুলের সাহায্যে মাপ গ্রহণ

২. জাইবার দিয়ে লাইন টানা (Lines) :

মেটালের পৃষ্ঠদেশ (চক দ্বারা) কালার করার পর এটা লে-আউট করার উপযোগী হয়। সরল রেখা টানার জন্য স্টিল রুল, স্কয়ার অথবা বেভেল প্রোট্রেক্টরকে যথাস্থানে রেখে শব্দ করে বাম হাতে ধরে রাখতে হবে। ডান হাতে ক্রাইবার ধরে দাগ টানতে হবে। এতে সরল রেখা উৎপন্ন হবে।

১.৩ লে-আউটের পর মার্কিং:

পাঞ্চিং (Prick Punching) :

কালারিং (Colouring) এবং ক্লাইব লাইন অনেক সময় হাতের ঘষায় মুছে যেতে বা নষ্ট হতে পারে। অধিক স্থায়িত্বের লক্ষ্যে প্রিক পাঞ্চিং করা হয়। প্রিক পাঞ্চের সেন্টারটি অবশ্যই সঠিকভাবে লাইনের উপর রেখে হাতুড়ি দিয়ে হালকাভাবে আঘাত দিতে হবে। প্রিক পাঞ্চরে মার্কটি ২ মি.মি. দূরে দূরে হবে। নিচের চিত্রে প্রিক পাঞ্চিং-এর মাধ্যমে একটি লাইন সার্কিট করা দেখানো হলো।

চিত্ৰ: পাঞ্চিঞ্

১.৪ লে-আউট ওয়ার্কপিস আটকানো :

- জবটির পুরুত্ব বিবেচনা করে ভাইসের হাতল যুরিয়ে ভাইসের চলনশীল 'জ' (Jaw) ফাঁক করতে হবে ।
- উক্ত ফাঁকের মধ্যে জব সমতলভাবে রেখে ভাইসের হাতলে চাপ দিয়ে জব শক্তভাবে আটকাতে হবে ।
- ভাইসের হাতলের সাথে অতিরিক্ত পাইপ লাগিয়ে বেশি চাপ দিতে চেষ্টা করা উচিত নয়, এতে ভাইস
 নষ্ট হতে পারে।

এভাবে সঠিকভাবে লে-আউট প্রস্তুত করা হলো ।

यावहात्रिक ५०७

১.৫ হ্যাক-স ক্লেম ও ব্লেড নিৰ্বাচন :

হ্যাক-স ব্রেভের বির্বাচন করতে হলে লক্ষ্য করতে হবে যে ছান কাটা হচ্ছে সে ছানের উপর কমপক্ষে

হ্যাক-স ব্রেভের ভিনটি দাঁত বেন অবছান করতে পারে, নতুবা ব্রেড ভাতার আলহা থুব বেলি থাকে।

কী খাছু কটা হছে ব্রেভ নির্বাচনের সমর তা বিবেচনা করতে হবে। ব্রেভ অনুবারী হ্যাক-স ব্রেভ ও
 ক্রেম নির্বাচন করতে হবে। বেমন :

ধাড়ুর নায/জবের নাম	ব্ৰেছের দাঁড পিচ মিলিমিটার	এতি ইঞ্চিতে দাঁত সংখ্যা
মাইন্ড স্টিল, কাস্ট আয়ৱন ইত্যাদি	7.6	38
টুল স্টিল, হাই কার্বনস্টিল, হাইস্পিড স্টিল ইড্যাদি	3.8	75
ব্রাশ, কপার, রট আয়রন ইত্যাদি	3.00	48
কডুইট এবং পাডদা পাইপ, পাডদা নিট ইভ্যাদি	0.8	৩২

১.৬ লে-আউটকৃত খয়াৰশিট আটকালো :

- জবের আকৃতি অনুসারে জবকে ভাইসে অটকাতে হবে ।
- নিম্রের চিক্রন্তলোতে বিভিন্ন আকৃতির জবকে ভাইসে আটকানোর কৌশল দেখানো হলো—

চিত্র : জবের আকৃতি অনুসারে ভাইসে আটকানো পছতি

- ভাইস টাইট দিতে হবে ।
- হাভুড়ি দিয়ে ভাইল টাইট দেওরা উচিত নর, হাতের টাইটই বথেট।

চিত্ৰ। বাকুদ্ধি বারা আবাত করে কার্যবন্ধ আটকানো নিবিদ্ধ

১.৭ প্রাক্শিন কাটিং সম্পন্নকরণ :

- বাম হাতের বুড়া আঙুল দাসের পার্বে রেখে সামান্য পরিমাণ কাটতে হবে।
- ব্রেড তিলা মনে হলে উইং নাটে টাইট নিজে হবে।
- ব্রেড ধার দেই এসব মদে হলে পুরাতন ব্রেড খুলে নতুন ব্রেভ লাগাতে হবে।
- ডান হাতে হ্যাক-ল এর হ্যান্ডেল এবং বাম হাতে ক্রেমের অর্যভাগ ধরে ধাতৃ কটিতে উক্ল করতে হবে।
- সেহের অবস্থান সোজা হবে তবে হ্যাক-স এর ডালে ডালে সেহের সামসের অংশ সামান্য সোলাতে হবে।
- হ্যাক-স সামনের দিকে বাধরার সমর কাটে কিন্তু পিছনের দিকে আসার সমর কাটে না । ভাই সামনের
 দিকে বাধরার সময় মৃদু চাপ দিতে হবে এবং পিছনের দিকে আসার সময় হ্যাক-স এর মাধাকে সামান্য
 উচু করে টেনে দিতে হবে ।
- খাছু কটিার সময় য়াক-স ফ্রেমে খুব জায়ে চাপ দেওয়া বাবে না । বেলি চাপ দিলে ক্রেড তেঙে দুর্বটনা
 বটতে পারে ।
- প্রাতন ব্রেড দিরে থানিক দ্র কটার পর নতুন ব্রেড ব্যবহার না করা ভালো, কারণ এতে ব্রেড ভাঙার আশকা খৃব বেশি এবং ব্রেড ভাঙার সময় অনেক কেরে হাত জখম হয়। সুতরাং কর্তনের মধ্যবর্তী সমরে ব্রেড বদলানোর চেটা করা উচিত নয়।

১.৮ কটার সময় ও কটার পরে পরীকা :

- কটিার সময় শক্ষ্য করতে হবে বে, চিহ্নিত রেখা বরাবর কটিা হচেহ কিনা?
- কর্তনের পর দেখতে হবে কটা প্রান্তরূপি খাড়া কিনা?
- সন্নিহিত তলের কোণভাল ৯০° হয়েছে কিলা? ট্রাইক্রার দিয়ে তা পরীকা করতে হবে।

চিত্র : ট্রাইস্কয়ারের সাহায্যে দুটি ভল ৯০° অবস্থানে আছে কিনা তা পরীকা করা হচ্ছে

১.৯ कारेनिर बख्नांछि निर्वाहन :

ফাইল নির্বাচনের সময় নিচের বিষয়গুলি বিবেচনা করতে হবে-

- ১) কভখানি ধাতু কর করতে হবে?
- ২) জবের আকৃতি কেমন হবে?
- ৩) জবের ফিনিসিং কেমন হবেঃ
- এই কাজের জন্য ভাবল কাট ফ্লাট ফাইল ব্যবহার করতে হবে।
- কাইলিং-এর জন্য যে সকল যন্ত্রগাতির প্রয়োজন। কাইল, কিল রুল, ক্লাইবার, টেবিল ভাইস, গুরার ব্রাল।

১.১০ লে-আউটকৃত ধরাকীপস আটকানো :

- জবটির পুরুত্ব বিবেচনা করে ভাইসের হাতল ঘুরিয়ে ভাইসের চলনশীল 'ড়' (Jaw) ফাঁক করতে হবে।
- উক্ত কাঁকের মধ্যে জব সমতলভাবে রেখে ভাইসের হাতলে চাপ দিয়ে জব লক্তভাবে অটিকাতে হবে ।
- ভাইনের হাতলের সাথে অতিরিক্ত গাইগ লাগিরে বেশি চাগ দিতে চেটা করা উচিত নয়, এতে ভাইস
 নট্ট হতে পারে।

১.১১ কাইলিং সম্পন্ন :

- ওয়ার্কিং বেঞ্চ হতে ৪৫° কোপ করে দাঁড়াতে হবে ।
- কাইল ব্যবহারের পূর্বে টেবিলে এর বাটটি ধাক্কা দিয়ে নিতে হবে। যাতে বাটটি কাইলে শক্তভাবে আটকে বাকে।
- ডান হাতে ফাইল হাতল ধরে এবং বাম হাত ফাইলের মাথায় রাখতে হবে ।
- খাড়ু ফাইলিং সম্পন্ন করা (ভবল 'গু' তৈরি করতে হবে) ।

টিল। কৰিবিং কৰাৰ প্ৰতি

১.১২ কী পরিবাণ থাড় কর করতে হবে ভার উপর কবিশিং করার কৌশল নির্ভর করে :

- নাথারণ কাজ করার জন্য কাইলিং কর।
- काळ त्नांदव किनिनिश क्रवतांद्र कना कविनिश कद ।
- দীর্ব উপরিভাগের উপর হতে কর গাড় কর করার ক্ষ্যা কটিলিং কর।
- জৰ কোবে মাৰ্কিং করা আছে সেই অনুসায়ে কাইলিং সম্পদ্ধ কর ।

১.১৩ কবিনিং-এর সদর ও পরে নিরীকা :

চিত্ৰ : ভবল 'ভি'

- ভোষার ভৈরি ক্ষব থালা চিরের মডো কিনাঃ এবং কৃষিশিকেড ফল মলুণ কিনাঃ
- দুই পার্থের তি সধান ব্যাহে কিনা?
- উচ্চকা ৪ মিলিমিটার আহে কিনা?

ধাৰু ফাইলিং কৰে নিৰ্দিষ্ট মাপের 'ডি' ভৈনি করতে যে বিষয়কলো নিন্তীকা করতে কৰে :

জব মার্কিং করার সময় কবিবার দাপ কেন সরল রেখা হয়। সেউার পাককে হাতৃদ্ধি দিয়ে সাবধানে আবাত করতে হবে। জবটি ভাইসে আটকানোর সময় হাতৃদ্ধি ব্যবহার না করে ব্যাত নিয়ে তালোমতো টাইটি নিজে হবে। কারণ ভাইসের হাতলে হাতদ্ধি নিয়ে বেশি আবাত করলে ভাইস নই হতে পারে। মার্কিং অনুসারে সাববালে কহিল করতে হবে।

অনুশীলনী-১

- ১) লে-আউট টুলস বলতে কী বোঝায়?
- ২) কমিনেশন ক্ষয়ার দ্বারা কী কাজ করা হয়?
- ৩) ডিভাইডার ও ক্যালিপার্সের কাজের বিভেদ উল্লেখ কর।
- 8) হ্যাক-স এর বিভিন্ন অংশের নাম লেখ।
- ৫) হ্যাক-স ব্লেডের টিপিআই বলতে কী বোঝায়?
- ৬) কী কী কারণে হ্যাক-স ব্লেড ভেঙে যায়?
- ৭) ফাইলিং বলতে কী বোঝায়?
- ৮) কয়েক প্রকার ফাইলের নাম লেখ।
- ৯) ফাইল নির্বাচন পদ্ধতি লেখ।

ব্যবহারিক-২ (ক) পোর্টেবল ড্রিলের সাহায্যে ড্রিলিং

২.১ দ্রিলিং যন্ত্রপাতি নির্বাচন :

- ১) পোর্টেবল ড্রিল,
- ২) ভাইস.
- ৩) ড্রিল বিট,
- ৪) সেন্টার পাঞ্চ,
- ৫) হ্যামার,
- ৬) স্টিল রুল,
- ৭) ক্রাইবার।

২.২ ওয়ার্কপিস প্রস্তুতকরণ :

- ওয়ার্কপিস লে-আউট করার সাজ-সরঞ্জাম ক্রাইবার, সেন্টার পাঞ্চ, স্টিল রুল ও হাতুড়ি নিতে হবে।
- লে-আউট করতে প্রথমে স্টিল রুল দিয়ে মাপ নিয়ে ক্রাইবারের দাগ দিতে হবে ।
- দ্রায়িং অনুসারে সেন্টার পাঞ্চ দিয়ে সঠিকভাবে পাঞ্চিং করতে হবে ।

২.৩ ওয়ার্কপিস আটকানো:

■ হ্যান্ড ডিলিং-এর জন্য সুবিধাজনক মাউন্টিং ডিভাইস নির্বাচন করে ওয়ার্কপিস স্থাপন ও আবদ্ধ করতে হবে। সাধারণত বহনযোগ্য মাউন্টিং যেমন- সি — ক্ল্যাম্প, হ্যান্ড ভাইস অথবা অন্য কোনো নির্ভরযোগ্য উপায়ে দৃঢ়ভাবে ওয়ার্কপিস অবশ্যই আবদ্ধ করতে হবে।

২.৪ ড্রিল বিট সেটকরণ:

- দ্রিল বিটের আকার সাধারণত তার শ্যাঙ্কে চিহ্নিত থাকে। তবে অতি ছোট ব্যাসের দ্রিল বিটের আকার
 চিহ্নিত থাকে না।
- অতি ছোট ব্যাসের আকার চিহ্নিত থাকে না বলে এটির আকার মেপে বের করতে হয়।
- দ্রিল বিটের আকার মাপার জন্য প্রধানত দ্রিল গেজ ব্যবহৃত হয়।
- দ্রিল বিটকে দ্রিলের চাক (Chuch) ঘুরিয়ে মেশিনে সেট করতে হবে ।
- চাক ঘুরানো জন্য চাক-কি (Chuch key) ব্যবহার করতে হবে ।

बावराविक ५०५

क्रिय : ख्रिनटभक्त

২.৫ দ্বিলিং সম্পন্নকরণ :

- বে ছানে খ্রিল করতে হবে লেখানে লেন্টার পাঞ্চ দিয়ে চিহ্নিত করতে হবে।
- রেস্ট-এর উপর বা হাত দিয়ে চাপ দিতে হবে।
- ভান হাত দিয়ে হ্যান্ডেল সুরাতে হবে।
- আন্তে আন্তে চাগ দিকে হবে।
- খেনে খেনে দ্রিল করে কাছ লেখ করতে হবে।

চিত্র : গোর্টেবল দ্বিল মেশিন

- ব্যান্ত দ্রিলিং খাড়াভাবে এবং অনুভূমিক অবছার করা বার ।
- যে সমন্ত কাজে সুবিধাজনকভাবে স্ট্যান্ডার্ড দ্বিলিং মেলিনে দ্রিল করা বায় না তা দ্রিল করতে পোর্টেবল
 দ্রিলিং মেলিন ব্যবস্তৃত হয়। এ মেলিন ১২.৭ মিমি পর্বন্ত দ্রিল বিট ধারণ করতে সক্ষম। হ্যান্ড কিডিং
 এবং সাম্যাবস্থা বন্ধায় রেখে দ্রিলিং সম্পন্ন করতে হবে।

চিত্র : অনুস্থমিক অবস্থানে কার্ববস্তুর ওপর ফ্রিল করা

২.৬ ফ্রিলিং-এর সময় ও পরে পরীক্ষাকরণ :

- ১) গিয়ার এবং বেল্টের গর্জগুলা ম্রিলিং মেশিনের সেকটি ডিভাইস । ইহা সঠিক আছে কি?
- ছ্রিলিং মেশিলের সেকটি ডিভাইসকলোকে বন্ধ রাখতে সর্বদা যত্নবান হতে হবে।
- দ্রিলিং কর করার পূর্বে একটি কেন্দ্রে অবশ্যই পাঞ্চ দিয়ে মার্ক করে নিতে হবে। মার্কটি দ্রিল বিটের কোরের চেয়ে চওড়া হওয়া উচিত।
- সাধারণত ক্রটিপূর্ণভাবে প্রাইভিং করা সক্র দ্বিলভলো কেন্দ্রের বাইরে চলে বার, কাজেই দ্বিল বিট সঠিকভাবে প্রাইভিং করে নিতে হবে।
- দ্রিল বিট সঠিকভাবে গ্রাইন্ডিং করতে দ্রিল শ্যাপেনিং ডিভাইস ব্যবহার করা উচিত। দ্রিল বিট ধার দিতে
 এবং দুর্ঘটনা এড়াতে একে অবশাই ক্ল্যাম্পিং করে নিতে হবে।

২.৭ ক্রটিপূর্ণভাবে প্রাইডিং-এর কারণে:

- পয়েন্ট অ্যাঙ্গেল অসমান হবে।
- একটি লিপ অপরটি অংশকা বৃহত্তম হবে।
- ড্রিল করা গর্জের ব্যাস বড় হবে।
- পয়েউ অ্যাকেল অবশ্যই পয়েউ অ্যাকেল গেজ দিয়ে পরীক্ষা করতে হবে।
- যদি গর্ভ কেন্দ্র হতে সরে যায় ভবে প্রথমেই একে সংশোধন করে নিতে হবে । এতে গর্ভটিকে বে দিকে
 সারাতে হবে সে দিকে একটি প্রভ কেটে নেওয়া হয় ।
- প্রয়োজনে বড় দ্রিল গর্জ করার পূর্বে হোট দ্রিল করে নিতে হয়।
- লখা চুল চিলা পোণাক সম্পর্কে অপারেটরকে অবশ্যই সতর্ক থাকতে হবে।

দ্রিল বিটটি যাতে নই না হয় সে জন্য সঠিক ছিদ্রসম্পন্ন কাঠের ব্লকে সংরক্ষণ রাখা উচিত।

চিত্র : কাঠের ব্লকের ছিদ্রের মধ্যে ড্রিল বিট রাখার কৌশল

প্রশ্নমালা-২ (ক)

- ১) পোর্টেবল ড্রিল বলতে কী বোঝায়?
- ২) দ্রিল বিটের আকার বা সাইজ কোথায় লেখা থাকে?
- ৩) দ্রিল গেজ দিয়ে কী মাপা হয়?

ব্যবহারিক-২ (খ) পেডেস্টাল ড্রিলের সাহায্যে ড্রিলিং

২.১ পেডেস্টাল ড্রিলিং যন্ত্রপাতি নির্বাচন:

- ১) পেডেস্টাল ড্রিল (Pedestal Drill)
- ২) ওয়ার্ক পিস ক্ল্যাম্পিং ভাইস (Vice)
- ৩) দ্ৰিল বিট (টইস্ট দ্ৰিল) (Drill Bit)
- 8) ড্রিল চাক (Drill chuck)
- ৫) চাক কি (Chuck key)
- ৬) স্থিভ (Sleeve)
- ৭) ড্রিল ড্রিফ্ট (Drill Drift)
- ৮) অয়েল ক্যান (Oil Can)
- ৯) সেন্টার পাঞ্চ (Center Punch)
- ১০) হ্যামার (Hammer)
- ১১) ক্রাইবার (Scriber)
- ১২) ট্রাইস্কয়ার (Trysquare)

২.২ ওয়ার্কপিস প্রস্তুতকরণ:

- লে-আউট করার জন্য ওয়ার্ক সারফেস হিসাবে ব্যবহার করতে সারফেস প্রেট প্রয়োজন। কার্যবস্তু সারফেস প্রেটের উপর বসাতে হবে।
- কার্যবস্তুর তলে সোজা কিনারার সাথে সমকোণে মার্কিং লাইন টানতে, তার তল সমতল ও পার্শ্ব বর্গাকার কি না তা পরীক্ষা করতে ট্রাইস্কয়ার প্রয়োজন।
- ক্রাইবারের সাহায্যে লেয়িং আউট বা মার্কিং কাজের জন্য লাইন টানতে হয় ।
- লে-আউট বা মার্কিং করা লাইনের উপর যে স্থানে ড্রিল করতে হবে উক্ত স্থানে পাঞ্চের সাহায্যে ক্ষুদ্র গর্ত করতে হয়।

২.৩ ওয়ার্কপিস আটকানো :

দ্রিল ভাইসে ক্ল্যাম্পিং ব্যতিরেকে দ্রিলিং করলে দুর্ঘটনা ঘটতে পারে । ওয়ার্কপিস ও দ্রিল নষ্ট হতে
 পারে ।

নিনিত্রিকাল ওরার্কশিল প্রিলিং-এর জন্য ওরার্কশিল ক্ল্যালিগং করতে ক্ল্যাল্পনহ ডি-ক্লক ব্যবহার করা
হর । জ্লিলিং-এর সমর ভাইলের মধ্যে ওরার্কশিল নিচের দিকে দেবে বার । এরূপ দেমে বাওরা রোব
করতে ওরার্কশিলের নিচে কাঠের প্যাকিং নিরে ওরার্কশিল ক্ল্যালিগং করা হর ।

চিত্র: কার্যবস্তুর অভিকারে। পদ্ধতি

২ এ ক্লিল বিট লেটকাৰ ।

- ১) জ্বিল চাকের 'জ' ও শ্যাক এবং মেশিন শিশক্তন বোর চিপম্ক করতে ব্বে।
- ২) ছোট সাইজের বেট্রইট শ্যাক দ্বিল বিটকে সরাসরি দ্বিল চাকে (Chack) সেট করা হর।
- শ্রেট সাইজের টেপার শ্যাক দ্বিল হলে একাধিক শ্রিক ব্যবহার করা হয়।
- ৪) বড় সাইজের টেগার শ্যাক দ্বিল হলে সরাসরি মেশিন শ্পিডলে সেট করা হয়।
- প্রিল বিট অপসারশের জন্য ফ্রিল ফ্রিকট ব্যবহার করা হয়।

চিত্র : দ্বিল চাকে দ্বিল বিট অভিকানের পদ্ধতি

২.৫ কাটিং স্পিড ও ফিড সেটকরণ :

■ বিভিন্ন সাইজের ড্রিল বিটের জন্য বিভিন্ন স্পিভল ব্যবহার অত্যাবশ্যক। স্পিভল স্পিড নির্বাচন করতে ওয়ার্কপিস ম্যাটেরিয়াল ও ড্রিলের ব্যাস বিবেচনা করা হয়। অতঃপর সূত্রের সাহায্যে মেশিন স্পিভল স্পিড নির্বায় করা হয়। স্পিভল নির্বাচন করতে ওয়ার্কপপে সংরক্ষিত চার্টও ব্যবহার করা হয়।

$$Cs = \frac{\pi DN}{1000}$$

Cs = কাটিং স্পিড (মিটার/মিনিট)

D = দ্রিলের ব্যাস (মি.মি.)

N = প্রতি মিনিটে ঘূর্ণন সংখ্যা

ড্রিলিং-এর জন্য কাটিং স্পিড চার্ট :

ওয়ার্কপিস ম্যাটেরিয়াল	কাটিংয় স্পিড মিটার/মিনিট			
	হাইস্পিড স্টিল	সিমেন্টাইড কাৰ্বহিড		
লো কার্বন স্টিল	২৫-৪০	-		
মিডিয়াম কার্বন স্টিল	২০-৩০	. =2		
হাই কার্বন স্টিল	১ ৫-২৫	২০-৩০		
কাস্ট আয়রন (নরম)	২৫-8০	¢o-\$00		
কাস্ট আয়রন (শক্ত)	২০-৩০	80-bo		
কাস্ট স্টিল	২০-৩০	೨೦-৮೦		
ব্ৰাশ (শক্ত)	90-320	200-260		
ব্রাশ (নরম), বোঞ্জ	೨ ೦-৫೦	(0-po		
কপার, অ্যালুমিনিয়াম	90-336	-		

বিভিন্ন আকারের ড্রিল বিটের জন্য নির্বাচিত ফিড:

ড্রিল বিটের ব্যাস	ফিড/ড্রিল বিটের প্রতি ঘূর্ণনে	
৩ মিলিমিটার নিচে	০.০২৫ থেকে ০.০৫ মিমি	
৩ থেকে ৬ মিমি	০.০৫ থেকে ০.১০ মিমি	
৬ থেকে ১২ মিমি	০.১০ থেকে ০.১৮ মিমি	
১২ থেকে ২৫ মিমি	০.১৮ থেকে ০.৩৮ মিমি	
২৫ মিমি হতে উধের্ব	০.৩৮ থেকে ০.৬৩ মিমি	

২.৬ দ্রিলিং সম্পন্নকরণ :

- ১) দ্রিলিং-এর সময় নিরাপত্তার প্রতি বিশেষ গুরুত্ব দিতে হয়।
- ছিল মেশিনটি কার্য উপযোগী কিনা পরীক্ষা করতে হবে।

- ১) মেশিন চালু করতে হবে।
- 8) হ্যান্ড হুইনের হাতল ঘুরিয়ে ফিড দিতে হবে।
- কুল্যান্ট পদ্ধতি চালু করতে হবে।
- ৬) মাঝে মাঝে ড্রিল বিট উঠিয়ে চিপ অপসারণ করতে হবে।
- ৭) পর্যায়ক্রমে ড্রিলিং সম্পন্ন করতে হবে।
- ৮) দ্রিলিং পরীক্ষা করতে হবে।

দ্রিলিং-এর সময় কুল্যান্ট ব্যবহার:

■ দ্রিলিং করতে দ্রিকশনের ফলে দ্রিল বিট গরম হয়ে যায়। ফলে ক্লিয়ারেন্স অ্যাঙ্গেল ও কাটিং এজ (EDGE) নষ্ট ও বিট ভেঙে যেতে পারে। তাপ উৎপাদনের ফলে কার্যবস্তুর গুণের পরিবর্তন হয়ে যায়। দ্রিল বিট এবং কার্যবস্তু ঠান্ডা রাখতে কুল্যান্ট একান্ত প্রয়োজন। এ কারণে দ্রিলিং মেশিনে কুল্যান্ট পদ্ধতি সেট করে নেওয়া হয়।

২.৭ ড্রিলিং-এর সময় ও পরে পরীক্ষা করা:

 দ্রিলিং-এর সময় সঠিকভাবে দ্রিলিং হচ্ছে কি না পরীক্ষা করা দরকার। ফ্রিকশনের করণে বিটের কাটিং
 এজ পুড়ে যায়। এতে দ্রিলের আকার পরিবর্তন হয়ে যায়। তাই দ্রিলিং করার এবং পরে দ্রিল বিটের কাটিং এজ এবং দ্রিলের সাইজ পরীক্ষা করে দেখতে হবে।

প্রশ্নমালা-২ (খ)

- ১) ড্রিল চাকের কাজ কী?
- ২) ড্রিল-ড্রিফট (DRILL DRIFT)-এর কাজ কী?
- ৩) দ্রিলিং-এর সময় কুলেন্ট ব্যবহার করা হয় কেন?

ব্যবহারিক-৩ পোর্টেবল/বেঞ্চ গ্রাইন্ডারের সাহায্যে মেটাল গ্রাইন্ডিং

৩.১ গ্রাইন্ডিং হুইল নির্বাচন :

- ১) মেটালের প্রকারের উপর ভিত্তি করে গ্রাইন্ডিং হুইল নির্বাচন করতে হবে।
- ২) যে মেশিনে গ্রাইন্ডিং হবে তা কোন ধরনের।
- গ্রাইন্ডিং হুইলের আকার অর্থাৎ পরিধির পরিমাণ কতটুকু।
- 8) মেটালের ক্ষয়ের হার, মসৃণতার আলোকে গ্রাইন্ডিং হুইল নির্বাচন কর।

৩.২ ওয়ার্কপিস প্রস্তুতি :

- গ্রাইভিং মেশিনের গ্রাইভিং হুইলের মধ্যে ওয়ার্কপিসটি ঠিকভাবে ধরে গ্রাইভিং করতে পারে, সেভাবে ওয়ার্কপিস প্রস্তুত কর।
- ওয়ার্কপিসটি গ্রাইভিং করে ক্ষয় করার লক্ষ্যে বিভিন্ন ক্রিয়ারেন্স অ্যাঙ্গেল অনুযায়ী লে-আউটসহ মার্কিং কর ।

নিচে গ্রাইন্ডিং-এর জন্য লেদ টুল বিটের জন্য নির্ধারিত বিভিন্ন অ্যাঙ্গেল টেবিল প্রদত্ত হলো :

ওয়ার্কপিস ম্যাটেরিয়াল	ফ্রন্ট ক্লিয়ারেন্স অ্যান্দেল (ডিগ্রি)	ফ্রন্ট এজ কাটিং অ্যাঙ্গেল (ডিগ্রি)	সাইড কাটিং এজ অ্যাঙ্গেল (ডিগ্রি)	সাইড কাটিং এজ অ্যাক্ষেল (ডিগ্রি)	সাইড রেক অ্যা সেল (ডিগ্রি)	টপ/ব্যাক রেক অ্যাক্ষেল (ডিগ্রি)
স্টিল, শক্ত	b - ን¢	১৫ - ৩০	৬ - ১০	১o - ২o	৬ - ১৫	30 - 3¢
স্টিল, শক্ত	b - ን¢	১৫ - ৩০	৬ - ১০	১o - ২o	৬ - ১৫	30 - 3¢
কাস্ট আয়রন, নরম	⊳ − ን ₢	3 @ - 9 0	& - So	১ ० - २०	৬ - ১৫	०-७
কাস্ট আয়রন, শক্ত	b - ን¢	SC - 90	৬ - ১০	১० - ২०	৬ - ১৫	0 - b
ব্রাশ, ব্রোঞ্জ	b - ን¢	\$6 - 90	৬ - ১০	১o - ২o	0 - 30	0 - 30
কপার	৮ - ১ ৫	SG - 90	৬ - ১০	۵o - ২o	৬ - ১৫	30 - 2¢
অ্যালুমিনিয়াম	b - ን¢	30 - 90	৬ - ১০	১० - ২०	৬ - ১৫	20 - 26

৩.৩ ওয়ার্কপিস আটকানো:

- ওয়ার্কপিস গ্রাইভিং হুইল বরাবর সুবিধাজনক স্থানে আটকাতে হবে ।
- ওয়ার্কপিসটি হাতে ধরার জন্য হ্যান্ড গ্লাভস ব্যবহার করে ধরতে হবে এবং চোখে গগ্লস পরতে হবে।

৩.৪ প্রাইডিং সম্পদ্ন :

প্রাইডিং মেশিন প্রাইডিং করার পূর্বে দেখে নিতে হবে যে, তার সাথে আনুষদিক ফিটিং সংযুক্ত আছে কিনা। যেমন-টুলরেস্ট, হুইল গার্ডার, সেফটি গ্লাস গার্ডার ইত্যাদি। এগুলো না থাকলে গ্রাইডিং-এর সময় দুর্ঘটনা ঘটতে পারে।

থাইভিং-এর সময় চোঝে সেকটি গগন্স ও হাতে হ্যান্ত গ্লান্তস লাগানো উচিত। যে কার্যবন্ধ প্রাইন্ডিং করতে হবে ভার কাটিং অবস্থা বৃঝতে হবে। এরপর মেশিন চালু করে নিতে হবে। যেহেতু প্রাইন্ডিং হইল-এর মুর্থন গতি খুব বেশি, প্রথমে কার্যবন্ধকে টুলরেন্টের উপর স্থাপন করে ধীরে ধীরে হইলের সংস্পর্শে আনতে হবে। প্রথমে ধীরে ধীরে প্রাইন্ডিং করে হাতের ব্যালেন্সে ঠিক করে নিতে হবে। প্রতিটি কাজ ভালো করে সম্পর্ক করতে নিয়মিত অভ্যানের প্রয়োজন। প্রাইন্ডিং-এর ক্ষেত্রে যেহেতু হাতের ব্যালেন্স ক্ষর করা হয়, সেজন্য নিয়মিত অভ্যান প্রধান বিবেচ্য বিষয়।

চিত্র: প্রাইডিং ভূইলে জব ধরার কৌশল

৩.৫ প্রাইডিং-এর সময় ও পরে পরীকা :

থাইন্ডিং-এ বেশি দুর্ঘটনা হয়, হাত হতে কার্যবন্ধ ছিটকে গিয়ে বা খসে গিয়ে। তাই প্রাইন্ডিং-এর সময় অবশ্যই কার্যবন্ধকে ভালোভাবে ধরে টুলরেস্ট স্থাপনপূর্বক প্রাইন্ডিং করা উচিত। এছাড়া জবটি সঠিকভাবে প্রাইন্ডিং সম্পন্ন হয়েছে কি না তা পরীক্ষা করে নিশ্চিত হতে হবে।

গ্রাইন্ডিং-এর সময় মেটালের ক্ষুদ্র কণা বেগে ছিটকে আসে সেজন্য চোখ রক্ষার জন্য অবশ্যই সেফটি গগলস পরতে হবে এবং ক্রমাম্বয়ে ফিড দিতে হবে।

প্রশুমালা-৩

- ১) পোর্টেবল গ্রাইন্ডার মেশিন বলতে কী বোঝায়?
- ২) গ্রাইডিং করা হয় কেন?
- ৩) গ্রাইন্ডিং মেশিনের প্রধান অংশগুলোর নাম লেখ।

ব্যবহারিক-৪ সোন্ডারিং করার দক্ষতা অর্জন

ওয়াকিশিস প্রস্তুত :

ওয়ার্কপিস পুরোপুরিভাবে পরিষ্কার করা সোন্ডারিং-এর পূর্বশর্ত। ওরার্কপিসের উপরিভাগের যে কোনো অপ্রয়োজনীয় পদার্থ যেমন - ময়লা, প্রিজ ইত্যাদি সোন্ডারিং-এ বাধা প্রদান করে, তাই যান্ত্রিক বা রাসায়নিকভাবে উপর তল পরিষ্কার করা হয়। যেমন-

- ১) ফাইন গ্রেড ওয়ার ব্রাশ দিয়ে:
- २) काइँनिश् मिस्रः
- ৩) ওয়্যার ব্রাশ বা ক্রেপিং দিয়ে এবং
- ৪) গরম পানি দিয়ে ওয়ার্কপিস পরিকার করে।

চিত্র: ফাইল দিয়ে ওয়ার্কপিস পরিষ্কারকরণ

৪.২ লোন্ডার নির্বাচন :

সোন্ডারিং প্রণালিকে প্রধানত দুই শ্রেণিতে বিভক্ত করা যায়।

- ১) সফট সোন্ডারিং বা নরম ঝালাই (Soft Soldering)
- ২) হার্ড সোন্ডারিং বা শব্দ ঝালাই (Hard Soldering)

সফট সোন্ডারিং ও হার্ড সোন্ডারিং-এর অন্তর্বতী আরেকটি শ্রেণির সোন্ডারিং-এর প্রচলন আছে, এর নাম সিলভার সোন্ডারিং বা রুপার ঝালাই (Silver Soldering)

- ১) সকট সোন্ডারিং (Soft Soldering) : এই সোন্ডারিং-এ সাধারণত তিন ভাগ টিন (60%) এবং দুই ভাগ দস্তা (40%) মিশিয়ে সকট সোন্ডার তৈরি করা হয়।
- ২) হার্ড সোন্ডারিং (Hard Soldering) : হার্ড বা শক্ত সোন্ডারকে অনেক সময় স্পেশটার (Spelter) বলে। চার ভাগ ভামা এবং এক ভাগ দন্তা মিশিয়ে হার্ড সোন্ডার তৈরি করা হয়। এ সোন্ডারিং-এর জ্বোড়া বা সংযোগ বেশি মজবুত এবং ছারী হয়।

৪.৩ ফ্লাক্স নির্বাচন :

সোন্ডারিং করার সময় বিভিন্ন ধাতুতে এবং বিভিন্ন প্রণালি অনুসরণ করতে সাধারণত নিম্নলিখিত ফ্লাক্স ব্যবহার করা হয়ে থাকে।

ধাতু প্রণালি	ফ্লাক্স		
১) সোন্ডারিং (Soldering)	রেজিন, রেজিন + অ্যালকোহল, জিঙ্ক ক্লোরাইড, অ্যামোনিয়াম ক্লোরাইড।		
২) ব্ৰজিং (Brazing)	বোরাক্স (Borax) বা সোহগা।		
৩) আয়রন (Iron)	সোহগা বা বোরাক্স		
8) টিন শিট (Tin Sheet)	হাইজ্রোক্লোরিক অ্যাসিড (Hydrohloric Acid) (মোম + রেজিন+জিক্ক+ক্লোরাইড+অ্যালকোহল)।		
৫) তামা ও পিতল (Coppr and Brass)	রেজিন+জিশ্ব+ক্লোরাইড।		
৬) সিসা ও টিন (Lead and Tin)	রেজিন (Resin) অথবা তিষির তেল।		
৭) লিড (Lead)	রেজিন (Resin) ভেসলিন (Vasline)।		
৮) স্টেইনলেস স্টিল (Stainless Steel)	ফসফরিক অ্যাসিড (Phosphoric Acid)		
৯) অ্যালুমিনিয়াম (Aluminium)	প্যারাফিন (Paraffin) জিঙ্ক ক্লোরাইড (Zinc chloride) বোরাক্স (Borax)		
১০) গ্যালভানাইজড শিট (Galvanized Sheet)	হাইড্রোক্লোরিক অ্যাসিড (Hydrohloric Acid)		
১১) কপার (Copper) ও এর মিশ্র ধাতু ইস্পাত, ঢালাই লোহা, পেটা মেটাল (Wrought Iron)	জিন্ধ ক্লোরাইড (Zinc Chloride)।		

8.8 সোন্ডারিং শুরুর সঠিক সময় নিরূপণ:

- গ্যাস এয়ার টর্চ রো পাইপ প্রজ্বালন করে সোল্ডারিং করা যায়। অ্যাসিটিলিন গ্যাস শুধু জ্বালানি হিসেবে
 ব্যবহৃত হয় এবং ভালভ (Valve) এর সাহায়্যে নিয়ন্ত্রণ করা হয়। অনেক সময় প্রোপেন গ্যাসও
 জ্বালানি হিসেবে ভিন্ন ধরনের রেগুলেটর দ্বারা নিয়ন্ত্রণ করে ব্যবহার করা হয়। এ ধরনের রো পাইপগুলো
 টর্চ বদল করে ব্যবহার করা যায়।
- স্পার্ক লাইটার দিয়ে প্রজ্বালন করে শিখা তৈরি করে সোল্ডারিং করা যায়।

क्रित : निशा जुलावाद विक्रित वर्ष

সোভারিং-এর সঠিক সমন্ত নিমুদ্ধণ :

- শোক্তবিং আয়য়লের টিপ (মাখা) পরিকার করতে হতে । কবিল বা এখাবি ক্লোথ (Emery cloth) লিয়ে
 পরিকার করা বার । প্রয়োজনবোধে অ্যামোলিয়াম ক্লোরাইত বারা। সোক্তারিং আয়য়ল পরিকার করা হর ।
- পরিছার সোন্ধারিং আয়রদকে উত্তর্ভ করতে করে ।
- শোন্ডারিং আয়য়নকে উত্তও করার জন্য ব্রো টর্চ বা গ্যাসের অগ্নিশিখার উপর সোন্ডারিং আয়য়ন টিনকে
 ছাপন করতে হবে।
- বদি সোভাবিং আন্নরন বিদ্যুক্তালিত হয় তবে বৈদ্যুতিক শক্তি দিয়ে উত্তর্ভ করতে হবে।

৪.৫ সোন্ধারিং সম্পন্ন :

- শক্ত ও সিলভার সোভারিং-এর জন্য সিলভার সোভার ব্যবহার করতে হবে।
- क्ष्मिक्रा दनकार होन करा लाकांतर जायकालत अनुवक्षण द्वांक्र नित्य क्षम्र गतियाल किकास मिरठ करन ।
- লোভারিং আরবন টিনের উপর লোভার গলিরে জোভার প্ররোগ করতে হবে।
- সোভার ভাররন বীরে শীরে সোভারিং পরেন্ট সরিয়ে সকল ছালে দিতে হবে বেন সোভারিং পরেন্ট সোভারের গলনাম ভাগমাত্রার আলে।

विव : मान्त्रविং शक्तिवा

৪.৬ সোল্ডারিং-এর সময় ও পরে পরীক্ষাকরণ:

- সোল্ডারিং করার পর এর বিড (Bead) চওড়া ও উচ্চতা সমান হলো কিনা দেখতে হবে ।
- ফাটল আছে কিনা পরীক্ষা করতে হবে । প্রয়োজনে হাতুড়ি দিয়ে হালকাভাবে আঘাত করে পরীক্ষা করতে হবে ।
- শব্দ পরীক্ষা দিয়েও টেস্ট (Test) করা যেতে পারে ।

প্রশ্নমালা-8

- সোল্ডারিং বলতে কী বোঝায়?
- হার্ড সোল্ডারে (Hard Solder) তামা ও দস্তার ভাগ কত?
- সোল্ডারিং আয়য়য়েয় কাজ কী?

ব্যবহারিক-৫ (ক) স্পট ওয়েন্ডিং করার দক্ষতা অর্জন

৫.১ ওয়ার্কপিস প্রস্তুত করা:

- ১.৫মি মি পুরু এবং ৭০ মি মিx২০০ মিমি দুই খণ্ড কপারশিটের ল্যাপ (lap) জোড়া তৈরি করার জন্যে
 নিতে হবে।
- ব্রাশ ও এম্যারি পেপার দ্বারা জবটি ভালোভাবে পরিষ্কার করে নিতে হবে ।

৫.২ স্পট ওয়েন্ডিং যন্ত্রপাতি মেশিনের কার্যাবলি জানা:

রেজিস্ট্যান্স ওয়েল্ডিং-এর যে পদ্ধতিতে কাজের উপর দুইটি পয়েন্টেড (Pointed) বা ডোমড (Domed) ইলেকট্রোড কর্তৃক প্রদত্ত চাপের পর বৈদ্যুতিক প্রবাহ চালনার ফলে সৃষ্ট রেজিস্ট্যান্স হতে তাপের সাহায্যে ওয়েল্ড বা কোলেসিন (Coalascene) তৈরি করে ওয়েল্ডিং করা হয় তাকে স্পট ওয়েল্ডিং বলে। এটি রেজিস্ট্যান্স ওয়েল্ডিং-এর একটি শাখা।

সাধারণত ০.২৫ মিমি - ১৩ মিমি পুরু ধাতব পাতকে ল্যাপ জয়েন্ট করতে এই পদ্ধতি ব্যবহৃত হয়। তবে অধিকাংশ ক্ষেত্রে ৬ মিমি পুরু পাতের ক্ষেত্রে ইহা বেশি ব্যবহৃত হয় এবং সর্বোচ্চ ৭৬ মিমি পুরু পাতকে ওয়েল্ডিং করা যায়। তামার পাতের ক্ষেত্রে অবশ্য ১ মিমি এর কম পুরু পাতকে এই পদ্ধতিতে ওয়েল্ডিং করা কষ্টকর।

৫.৩ কারেন্ট সেটিং :

ইলেকট্রোডের ব্যাসের উপর নির্ভর করে কারেন্ট সেট করতে হবে।

৫.৪ স্পট ওয়েন্ডিং সময় নির্ধারণ :

সময় ও কার্যবস্তুর বিবেচনায় স্পট ওয়েন্ডিং প্রক্রিয়া তিনটি স্তরে সম্পন্ন হয়। যেমন-

- ১। স্কুইজ টাইম (Squeeze Time)
- ২। ওয়েল্ড টাইম (Weld Time)
- ৩। হোল্ড টাইম (Hold Time)

এই তিনটি স্তরে সম্পন্ন অপারেশন-এর পূর্বে অবশ্যই ওয়ার্কপিসের মরিচা, অপদ্রব্য বা কেমিক্যালসহ অন্যান্য তেল মুক্ত করে নিতে হয়

১। স্কুইজ টাইম (Squeeze Time):

বিদ্যুৎ সরবরাহের পূর্বে ইলেকট্রোডকে ওয়ার্কপিসের সংস্পর্শে আনার সময়কে স্কুইজ টাইম বলে।

২। ওয়েল্ড টাইম (Weld Time) :

বিদ্যুৎ সরবরাহের সময়কে ওয়েল্ড টাইম (Weld Time) বলে ।

৩। হোল্ড টাইম (Hold Time) যে সময়ের জন্য বিদ্যুৎ সরবরাহ বন্ধ থাকে অথচ ওয়ার্কপিসের উপর চাপ প্রদান অব্যাহত থাকে তাকে হোল্ড টাইম (Hold Time) বলে।

৫.৫ স্পট ওয়েন্ডিং সম্পন্ন করা :

विदा : ১७.১ স্পট ওয়েন্ডিং

ব্যবহারিক-৫ (খ) গ্যাস ব্রেজিং (Gas Biaging)

৫.৬ ওয়ার্কপিস প্রস্তুতকরণ :

- ১.৫ মিমি পুরু এবং ৭০ মিমি × ২০০ মিমি দুই খণ্ড কপারশিটের ল্যাপ (lap) জোড়া তৈরি করার জন্যে নিতে হবে।
- ব্রাশ ও এম্যারি পেপার দ্বারা জবটি ভালোভাবে পরিষ্কার করে নিতে হবে ।

৫.৭ নজল নির্বাচন করা:

ব্রেজিং এর জন্য সঠিক নজল নির্বাচন করতে হবে।

৫.৮ ফিলার মেটাল নির্বাচন :

২ মিমি ব্যাস বিশিষ্ট ব্রোঞ্জ ফিলার রড নির্বাচন করতে হবে।

৫.৯ ফ্লাক্স নির্বাচন :

- ❖ বিভিন্ন ধাতু ব্রেজিং করার জন্য ব্রেজিং ফ্লাক্স কৌটাতে পাওয়া যায়। বেছে নাও।
- ❖ ফ্লাক্সকে ডিস্টিল ওয়াটারের সাথে মিশিয়ে পেস্ট তৈরি করতে হবে এবং ব্রেজিং করার পূর্বে ব্রাশ দ্বারা কার্যস্থানে লাগাতে হবে ।

৫.১০ গ্যাসের চাপ অ্যাডজাস্ট :

- ❖ অক্সিজেন সিলিন্ডারের অ্যাডজাস্টিং হ্যান্ডেল ঘুরিয়ে কার্যচাপ ২-৩ পিএসআইতে অ্যাডজাস্ট কর।
- ★ অ্যাসিটিলিন সিলিভারের অ্যাডজাষ্টিং হ্যাভেল ঘুরিয়ে কার্যচাপ ২-৩ পিএসআইতে অ্যাডজাস্ট করতে হবে।

৫.১১ সঠিক অগ্নিশিখা (Flame) তৈরি :

কপার ব্রেজিং করার জন্য নিয়য়্রিত কার্বোরাইজিং শিখা তৈরি করতে হবে ।

৫.১২ ওয়ার্কপিস ট্যাক:

💠 ওয়ার্কপিস ল্যাপ জোডের জন্য একই সমতলে ল্যাপ অবস্থায় রাখ এবং ট্যাক কর।

৫.১৩ ব্রেজিং সম্পন্নকরণ :

- ব্লো-পাইপ নজলকে বৃত্তাকারে ঘুরিয়ে জোড়া স্থানে তাপ প্রয়োগ করতে হবে ।
- ওয়ার্কপিস ঠিক ব্রেজিং টেম্পারেচারে পৌছাবার সাথে সাথে ফিলার রঙ প্রয়োগ করে সম্পন্ন কর ।
- ★ ব্রেজিং করার পর শতকরা পাঁচ ভাগ কস্টিক সোডাযুক্ত দ্রবণের মধ্যে ছুবালে, জবের ওপর থেকে লেগে
 থাকা ফ্লাক্স সহজে দূর হয়ে যায়।

চিত্ৰ: ল্যাপ জোড়

৫.১৪ ব্ৰেচ্ছিং নিরীক্ষণ :

- সমবিভ হলো কিনা দেখতে হবে ।
- ❖ জোড়টি ব্লো-হোল ও পোরোসিটি মুক্ত কিনা দেখতে হবে।
- ♦ সঠিক গলন হয়েছে কিনা দেখতে হবে।

প্রশ্নমালা-৫ (খ)

- কপার ব্রেজিং করতে কোন প্রকার গ্যাস শিখা ব্যবহার করা হয়?
- ২. কপারকে ব্রেজিং করতে কি ফিলার মেটাল ব্যবহার করা হয়?
- ৩. ব্রেজিং এর সময় ফ্লাক্স ব্যবহার করা হয় কেন?

ব্যবহারিক-৬ গ্যাস ওয়েন্ডিং যন্ত্রপাতি সেটআপ ও ফ্লেম তৈরি

গ্যাস সিপিভার শনাক্তকরণ :

গ্যাস ওয়েন্ডিং যন্ত্রপাতি ও সরঞ্জামসমূহ: অক্সিজেন সিলিভার, ট্রলি, অক্সিজেন রেগুরেটর, অক্সিজেন হোজ পাইপ, অ্যাসিটিলিন হোজ পাইপ, অ্যাসিটিলিন সিলিভার পাইপ, অ্যাসিটিলিন সিলিভার টিপ, স্থাইড রেঞ্জ, সিলিভার ইত্যাদি।

চিত্র: সহজে স্থানান্তরের জন্য অক্সিজেন ও অ্যাসিটিলিন সিলিভার স্থাপন

অক্সিজেন সিলিভার:

- সিলিভারটির ব্যাস অ্যাসিটিলিন সিলিভারের তুলনায় কম এবং একটু লঘা হয়।
- এই সিলিভারটির গায়ের রং কালো অথবা সবুজ থাকে ।
- সিলিভারের সংযোগগুলোতে ডানহাতি প্যাঁচ বা রাইট হ্যান্ড প্রেড থাকে।
- হোজ পাইপের রং কালো/সবুজ।
- রেগুলেটরের চাপ অনেক বেশি, এর রং কালো/সবুজ/নীল।
- নিশ্চিত হতে হবে, এই সিন্ডািরটি অক্সিজেন সিলিভার।

অ্যাসিটিলিন সিলিভার:

- অক্সিঞ্জেন সিলিভারটির চেয়ে এটি মোটা ও খাটো হয়ে থাকে ।
- সিলিভারটির রং মেরুন অথবা লাল হয়ে থাকে ।
- সিলিভারটির সংযোগতলো বামহাতি বা লেকট হ্যাভ প্রেড থাকে ।
- হোজ পাইপের রং লাল/মেরন।

न्।वर्शिक

- রেগুলেটরের চাপ নির্দেশক খাঁজ কটি। অনেক কম এবং বং লাল/যেকন।
- নিশ্চিক হতে হবে, এই সিলিভারটি জ্যাসিটিলিন সিলিভার।

৬.২ সিলিভার ভাস্ত পরিফার করা :

- সিলিভার ভালভটি কাগন্ত বা স্কুট দিয়ে সুন্দরভাবে পরিকার করতে হবে।
- সিলিভার ভাল্ভ সবর্দা ভেল ও বিজ জাতীয় পদার্থমুক রাখতে হবে ।

চিত্ৰ : সিলিকার ভাল্ড বন্ধ ও খোলার কৌশল

সিলিভার ভালভটি খৃব অল্প সমরের জন্য খুলতে এবং বন্ধ করতে হবে ।

৬.৩ সিলিভারের রেখরেটর সংযোগ :

- সিলিভার দৃটি ট্রলির সাথে বা অন্য কিছুর সাথে শিকল বেঁধে রাখতে হবে।
- সোজাভাবে সিলিভার-এর মাখার রেগুরেটর সেটটি বসাতে হয়।
- অক্সিজেন বেভরেটর ভানহাতি পাঁাতে এবং অ্যাসিটিলিন বেভরেটর বামহাতি পাঁতে লাগাতে হবে।
- অক্সিজেন রেছরেটরের বং সবৃজ/কালো/নীল।
- জ্যাসিটিলিন রেশুরেটরের রং লাল/মেরুন।
- হাত দিয়ে টাইট দিতে হবে।
- পরে সঠিক মাপের স্প্রানার দিরে টাইট দিতে হবে ।

চিত্ৰ: সিলিভাবের রেখরেটর সংযোগকরণ

৬.৪ রেওরেটর ও ব্লো পাইপ শ্যাকে হোজ সংবৃক্ত করা :

- হোজ পাইপগুলোর রং লক্ষ্য করতে হবে।
- হোজ পাইপের রং কালো/সবুজ।
- রেগুলেটরের চাপ অনেক বেশি, এর রং কালো/সবুজ/নীল।
- হোজ গাইপের বং লাল/মেরুন।
- রেগুলেটরের চাপ নির্দেশক খাঁজ কাটা অনেক কম এবং রং লাল/মেরুন।
- সিলিভারের সাথে মিলিয়ে এগুলোকে সংযুক্ত করতে হবে।
- প্রথমে রেপ্তলেটর আউটপুটের সাথে নিপল (Nipple) টাইট করে লাগানোর পর হোচ্ছ পাইপের শাখা
 নিপলের মধ্যে সেট করে নিপল ক্লিপ দিয়ে আটকাতে হবে ।
- একইভাবে ব্লো গাইপের ক্ষেত্রেও করতে হবে ।
- মান্টি-পারশাস সিলিভার 'কি' (Key) ব্যবহার করে উত্তমরূপে টাইট দিতে হবে।
- ব্রো পাইপের নবন্ধলোর রং লক্ষ্য করতে হবে, হোজ পাইপের রং মিলিয়ে হোজ সংযোজন করতে হবে
 এবং টাইট দিতে হবে।

চিত্ৰ: প্ৰয়েক্তিং টৰ্চের সাথে অক্সিজেন ও জ্যাসিটিলিন হোজ পাইপ সংযোগ

চিত্র : ধরেন্ডিং টর্র্রে অক্সিজেন ও আসিটিলিন গ্যাস নিরন্ত্রণ কৌশল

৬.৫ ব্লো পাইপ শ্যাঙ্কে নজল সংযোগ:

- একে নজল বা টিপও বলা হয়।
- প্রথমে হাতে টাইট দিতে হবে, এরপর অ্যাডজাস্টেবল রেঞ্জ-এর সাহয্যে ভালোভাবে টাইট দিতে হবে।

৬.৬ গ্যাস লিকেজ পরীক্ষা করা:

- একটি পাত্রে কিছু সাবান পানি নিতে হবে ।
- একটি নরম পেইন্ট ব্রাশ নিতে হবে ।
- ব্রো পাইপ বা টর্চের দুটি নব বন্ধ করতে হবে ।
- অক্সিজেন সিলিন্ডার ভাল্ভ খুলে প্রেসার গেজে ১৫ পাউন্ড /বর্গ ইঞ্চি (15 psi) চাপ সেট করতে হবে।
- ভালোভাবে লক্ষ্য করতে হবে ।
- যদি চাপ কমে, তবে নিশ্চিত হতে হবে লাইনে লিক আছে।
- চাপ কমলে বিভিন্ন সংযোগ স্থানে ব্রাশ করে সাবান পানি দিলে বুদবুদ উঠলে বোঝা যাবে লিকেজ।
- একই ভাবে : এবার অক্সিজেন রেগুলেটরের ভাল্ভ বন্ধ করে অ্যাসিটিলিন সিলিভারের ক্ষেত্রেও একই টেস্ট করে লিকেজ নিশ্চিত হতে হবে ।

৬.৭ গ্যাস লিকেজ বন্ধকরণ:

- রেগুলেটর এবং হোজের সংযোগস্থলে ।
- ব্লো পাইপের সংযোগস্থলে ।
- সিলিন্ডার ভাল্ভ-এর গোড়ায়।

এই সমস্ত স্থানে সাবান পানি দিয়ে লক্ষ্য করতে হবে বুদ্বুদ উঠে কি না। বুদ্বুদ উঠলে বোঝা যাবে সেখানে লিকেজ আছে। সুতরাং টাইট দিয়ে লিক বন্ধ করতে হবে। অনুরূপকভাবে অ্যাসিটিলিন সিলিভারের পুরো লাইন পরীক্ষা করতে হবে।

- সংযোগগুলো টাইট দিয়ে যদি লিক বন্ধ না হয়, তবে সংযোগ স্থানগুলো খুলে পরীক্ষা করতে হবে এবং
 পুনরায় নতুন করে সংযোগ দিতে হবে ।
- যত্নের সাতে ময়লা পরিষ্কার করে আবার পূর্বের পরীক্ষা চালিয়ে নিশ্চিত হতে হবে যে, আর কোথায়
 লিক নেই।
- যদি সংযোগস্থল ছাড়া হোজ পাইপের বিভিন্ন স্থানে লিক থাকে তবে হোজ পাইপ পরিবর্তন করে নতুন হোজ পাইপ সংযোগ দিতে হবে ।

সিলিভার ভাল্ভ খোলা:

- ব্লো পাইপের অক্সিজেন এবং অ্যাসিটিলিন নিডল ভাল্ভ বন্ধ রাখতে হবে ।
- আন্তে আন্তে অক্সিজেন সিলিভার ভাল্ভ খুলতে হবে ।
- অনুরূপভাবে অ্যাসিটিলিন সিলিন্ডার ভাল্ভ খুলতে হবে ।

য়েহলেটয়-এর আউটলেট ভাল্ভ খোলা।

ক্রেরসেটর-এর আইটসেট ভাগৃত গুলে কাজের জন্য প্রবোজনীর প্রক্রিবা সম্পন্ন করতে হরে।

ত্রো পরিপ শ্যাক্ষের ভালভ খোলা :

- অক্সিজেন নিক্ষল ভাল্ত বন্ধ প্রেণে আলিটিলিন নিক্ষল ভাল্ত প্রায় এক-চতুর্বাংশ পরিমাণ বাম দিকে
 প্রাচ দিয়ে পুলক্ষে হবে। (এই নিক্ষণ ভাল্ত-এর মাধার লাল রং করা বাকে।)
- অল্প সময় আসিটিলিন গাসে বেরিয়ে বেডে দিতে হবে, এডে ব্রো পাইপের ভিতর পূর্বের যে সকল গাসে
 নির্মণ ছিল সেকলো বেরিয়ে বাবে এবং ব্যাক কায়ারের আপকা কমে বাবে।

৬,৮ গ্যান হোনার আভকান্ট করা :

পরিমাণমতো অ্যাত্রভাস্টেকন নব বৃরিয়ে চাপ নির্ধারণ করতে ব্বে।

৬,৯ ক্লিকণন সৃষ্টিটাত্তৰ সাহায্যে ব্লো পাইগ খ্যাস জালিয়ে নিউট্ৰাল শিখা তৈৰি করা :

- লো পাইপের অ্যানিটিলিন কর বৃত্তিরে সামান্য পরিমাণ অ্যানিটিলিন প্যাল বের ব্ধরা মাত্র ক্রিকশন
 লাইটার বাম হাতে ট্রিনার টিপে মজেকের মুখে শিখা তৈরি করতে হবে ।
- কালো শৌরা বের হলে জ্যালিটিলিদ নব সুরিত্রে এবন অবস্থানে আদক্ষে হবে বেল কালো শৌরা বের
 হওরা বর হর।
- অক্সিজেন ভালত পুলে বীরে বীরে অক্সিজেনের পরিমাণ বাড়াভে হবে।
- শিশার হলুদ রাঞ্জে পরিবর্তম হত্রে হালকা নীল বং হবে।
- নজদের ঠিক মুখে শিখার ভিকর উজ্জ্বল একটি ছোট ইনার কোল (Inner Cone) সৃটি ব্বে।
- শিধার (Flame) গত গত শত দুর ব্যয় মৃদু শব হবে।

চিত্ৰ। বিষ্যাল শিবা

- এই শিবাটি নিউট্রাল শিবা। এর সর্বোচ্চ ভাগসারা প্রার ৩২৬০° লেফিপ্রেড।
- অধিকাশে বাতুর করেন্ডিং কাজে এই শিখা ব্যবহৃত হয়, য়েমন
 মান্ত নিজের্ড আয়য়ন, আয়য়য়িনয়ায়
 ইভাদি।

স্বান্ধিভাইজিং জেন ভৈন্নি করা।

- चित्राक्टस्य भविमान त्यनि नक्ष्यवाद् काव चित्रक्षिक्षित् निथा (Flame) देववि कवा द्व ।
- পূর্বের নিউট্রাল শিখাটিতে থাবার করিছেলে নিজন ভালত খুলে অনেকটা থেশি করিছেল সরবার্যক করতে করে।
- শিখার আকৃতি হোট ব্বে, টিপের মাখার বে ইবার কোশটি হিল সেটি হোট এবং তীক্ষ হবে।
- नियां दिन दिन नंग कादन, क्यन नृदेश्क बहुन योगे व्यक्तिकारिकिर नियां।

দিন। অজিভাইনিং ফ্রেৰ

- এই শিধার সর্বোচ্চ ভাগমাত্রা প্রান্ন ৩৪৮২° সেকিয়েড।
- বাড়ু কটার কান্ধ হাড়াও এই শিখা নিয়ে শিতল, ব্রোজ, ভাষা ইত্যানি থাড়ুকে সূক্রভাবে ওয়েতিং করা বায়।

কাৰ্যোৱাইজিং ফ্লেম ভৈৱি :

- च्यांनिर्विनिदनव गविमानं वाक्षित्व कारवीवायिक्त निर्धा (Flame) देखि कवा बांव ।
- অক্সিজেন নব-এব সাবাহের অক্সিজেনের পরিসাণ ক্যাতে হবে।
- পূর্বের তৈরি অক্সিজাইজিং শিখাটি নিউট্রাল শিখার পরিণত হবে।
- এবপর আশিটিলিম মধ-এর সাহাব্যে ব্যানিটিলিমের পরিমাশ বাড়াকে হবে।
- শিখার দিকে লক্ষ্য করলে দেখা বাবে, শিখাটির তিনটি অংশ।
- টিলের মাধার উজ্জ্ব একটি হোট ইনার কোব।
- ইনার কোশের পর আরেকটি অংশ, বার নাম হবে ইউারবিভিরেট কোনর। এটি হালকা সকুর রঙের হবে।
- এরপর থাকবে আরেকটি অংশ, হার নাম আউটার ইনকলপ (Outer Envelope)। এটি কিছুটা বেখনি রাজর করে।

विव : कार्याचांववित दक्ष्य

- এই শিখার তাপমাত্রা কিছুটা কম, সর্বোচ্চ মান প্রায় ৩০৩৪° সেন্টিগ্রেড।
- কোনো জবের উপরের পৃষ্ঠ শক্ত করার কাজ ছাড়াও অ্যালুমিনিয়াম এবং মোনেল মেটাল ওয়েন্ডিং করতে
 এই শিখা ব্যবহার করা যায়।

ফ্রেম সংরক্ষণ :

প্রয়োজনীয় ফ্রেম তৈরির পর এটা সংরক্ষণ করতে হবে যতক্ষণ ওয়েল্ডিং সম্পন্ন না হয়। ফ্রেমে অক্সিজেন ও অ্যাসিটিলিনের অনুপাত স্থির রেখে ফ্রেম সংরক্ষণ করতে হবে।

৬.১০ ফ্রেম নিভানো :

- প্রথমে অ্যাসিটিলিন নিডল ভালভ বন্ধ করতে হবে ।
- পরে অক্সিজেন নিডল বন্ধ করতে হবে ।
- প্রথমে অক্সিজেন নিডল ভালভ বন্ধ করলে প্রচুর কালি বা ধোঁয়া বের হবে এবং টিপ অপরিষ্কার হবে ।
 স্বল্প সময়ের কাজের জন্য বিরতির ক্ষেত্রে এরপভাবে ব্রো পাইপ নিভিয়ে রাখলেই চলবে, কিন্তু দীর্ঘ
 সময়ের জন্য হলে সিলিভার ভালভ বন্ধ করে রেগুলেটরের প্রেসার রিলিজ করে রাখতে হবে ।

প্রশ্নমালা-৬

- ১) গ্যাস ওয়েন্ডিং যন্ত্রপাতির নাম লেখ।
- ২) হোজ পাইপের কাজ লেখ।
- ৩) রেগুলেটরের কাজ লেখ।
- 8) গ্যাস ওয়েন্ডিং ফ্লেম বলতে কী বোঝায়?
- ৫) তিনটি ফ্রেমের তাপমাত্রা লেখ।
- ৬) ফ্রিকশন লাইটারের দারা কেন গ্যাস প্রজ্বলন করা হয়?

ব্যবহারিক-৭

গ্যাস ওয়েন্ডিং পদ্ধতিতে সমতল অবস্থানে ফিলার মেটাল ছাড়া একক সোজা বিড তৈরি

৭.১ ওয়ার্কপিস প্রস্তুত করা :

- ২ মিলিমিটার পুরু এবং ৭৫ মিলিমিটার x ১৫০ মিলিমিটার মাপের একখণ্ড মাইল্ড স্টিল শিট নিতে হবে।
- ওয়ার্কপিসের উপর হতে তেল প্রিজ জাতীয় পদার্থ তারের ব্রাশ দিয়ে খুব ভালোভাবে পরিষ্কার করতে হবে।

৭.২ নজল নির্বাচন করা:

- ধাতুর পুরুত্বের প্রতি লক্ষ্য রেখে টেবিল অনুসারে নজল নির্বাচন করতে হবে। নজল সাইজ ২ হবে।
 টিপের সাইজ বা আকার এর প্রান্তের সৃক্ষ ছিদ্রের ব্যাস দ্বারা নির্দেশ করা হয় এবং তা সংখ্যা দ্বারা
 চিহ্নিত করা হয়।
 ওয়েল্ডিং টর্চ দ্বারা কাজ করার সময় নিম্নবর্ণিত বিয়্নসমূহ সৃষ্টি হতে পারে। এই সমস্ত বিয়্ন যাতে না ঘটে
 তার জন্য প্রয়োজনীয় সতর্কতা অবলম্বন করতে হবে।
- ব্যাক ফায়ার (Back fire) : ওয়েলিং করার সময় হঠাৎ করে শিখা নিভে গিয়ে টিপের মাথায়
 তীব্রভাবে চি চি ও পত পত শব্দ হতে থাকে । এটাই ব্যাক ফায়ার ।
- ফ্লাশ ব্যাক (Flash Back): এই অবস্থায় টিপ হতে শিখা নিভে গিয়ে টর্চের ভেতর পশ্চাংগমন করে এবং তীব্র হিচিং বা চিঁ চিঁ শব্দসহকারে টিপ দিয়ে কালো ধোঁয়া নির্গত হতে থাকে এবং অক্সিজেন সহযোগে জ্বলতে থাকে। এই অবস্থায় গ্যাসপ্রবাহ বন্ধ করে দিতে হবে।
- শাসটেইন ব্যাক ফায়ার (Sustain back fire) : শিখা প্রজ্জ্বলিত থেকে টর্চের নেকে (Neck) বা টর্চের ভেতরে প্রবেশ করে নজলের ছিদ্র হতে ছোট শাখা শিখা বের হয় এবং ফট ফট কিংবা চি চি শব্দ করে নজলের ভেতরে ছোট ছোট অনেক বিক্ষোরণ হতে থাকে । এই অবস্থাকেই সাসটেইন ব্যাক ফায়ার বলে ।

৭.৩ গ্যাসের প্রেসার অ্যাডজাস্ট :

টেবিল অনুসারে গ্যাসের চাপ নির্বাচন করতে হবে। অবশ্য নজল সাইজ পরিবর্তন হলে গ্যাসের চাপও
পরিবর্তিত হবে। ধাতুর পুরুত্বের উপর নজল সাইজ ও গ্যাসের চাপ নির্ধারণ করতে হবে। গ্যাসের
প্রেসার অ্যাডজাস্ট কর ০.১৪ কেজি/সে.মি^২ চাপে।

৭.৪ ব্লো-পাইপ প্রচ্ছুলন :

- অক্সিজেন ও অ্যাসিটিলিন ভালভ বন্ধ রাখতে হবে ।
- অ্যাসিটিলিন ভালভ পুরো না খুলে এক-চতুর্থাংশ খুলতে হবে ।
- অ্যাসিটিলিন গ্যাস অল্প কিছু সময় বের হয়ে য়েতে দিতে হবে, এতে রো-পাইপার ভিতরের পুরাতন
 গ্যাস মিশ্রণ বের হয়ে য়াবে এবং প্রজ্বালনের পর ব্যাক ফায়ারের আশঙ্কা কমে য়াবে।
- ফ্রিকশন লাইটারের সাহায্যে অ্যাসিটিলিন গ্যাসকে জ্বালাতে হবে।
- অ্যাসিটিলিন নবের সাহায়্যে অ্যাসিটিলিন পরিমাণ এমনভাবে বাড়াতে হবে যেন কালো ধোঁয়া বা কালি বের না হয়।

৭.৫ গ্যাস ফ্রেম অ্যাডছাস্ট :

অক্সিচ্ছেন ভালভ ধীরে ধীরে খুলতে হবে এবং পরিমাণ বাড়াতে হবে, যখন দেখা যাবে নজলের সামনে
সুন্দর উজ্জ্বল ইনার কোণ দেখা দিয়েছে এবং শিখা হিস হিস বা পত পত শব্দ না করে নরম শব্দ করছে,
তখন নাড়াচাড়া বন্ধ করতে হবে এবং নিউট্রিল ফ্রেম তৈরি করতে হবে ।

৭.৬ সোজা বিড প্রয়েন্ড তৈরিকরণ :

- চিত্র অনুযায়ী ব্লো-পাইপকে জবের সাথে ৪৫° হতে ৬০° কোপে ধরতে হবে ।
- ইনার কোণ মূল ধাতু হতে ২-৩ মিলিমিটার উপরে রাখতে হবে।
- মূল ধাতু গলনের জন্য অল্প সময় ব্লো-পাইপ ও ফিলার মেটার এক স্থানে রাখতে হবে ।
- যখনই দেখা যাবে মূল ধাতুর গলন শুরু হয়েছে, তখন বুনন কৌশল টর্চকে সমগতিতে এগিয়ে নিয়ে
 য়েতে হবে এবং বিড তৈরি করতে হবে ।

চিত্র: ওরেন্ডিং বিড তৈরিতে গলিত মেটালের বুনন কৌশল

৭.৭ ওয়েন্ডিং-এর সময় ও পরে পরীক্ষা:

- বিড-এ স্থাপ প্রবেশ করেছে কি না ।
- বিডের চওড়া সকল স্থান সমান হয়েছে কিনা।
- বিড দেখতে সুন্দর হয়েছে কি না ।
- আন্তারকাট মুক্ত কি না ।
- ডভার ল্যাম্প মুক্ত কি না? বিষয়৽য়লা পরীক্ষা করে দেখতে হবে ।

প্রশ্নমালা-৭

- ১. একক সোজা বিড বলতে কী বোঝায়?
- ২. সোজা বিড তৈরি করতে ব্লো-পাইপকে জবের সাথে কত ডিগ্রি কোণে ধরতে হবে।
- ৩. গ্যাস ওয়েন্ডিং-এর সময় শিখার ইনার কোণ জব থেকে কতটুকু উপরে রাখতে হবে?

ব্যবহারিক-৮ গ্যাস ওয়েন্ডিং পদ্ধতিতে সমতল অবস্থানে ফিলার রড ছাড়া স্কয়ার বাট জোড়া তৈরি

৮.১ ওয়ার্কপিস প্রস্তুতকরণ :

- ২ মিলিমিটার পুরু এবং ১৬০ মিলিমিটার × ৬০ মিলিমিটার মাপের দুই টুকরা মাইন্ড স্টিলের শিট
 নিতে হবে।
- প্রেট দৃটিকে তারের ব্রাশ দিয়ে ভালোভাবে পরিষ্কার করতে হবে ।
- ভাইসে বেঁধে ওয়ার্কপিসের পার্শ্বদ্বয় ফাইল দিয়ে পরিয়ার করতে হবে।

৮.২ নজন নিব্চিন করা:

টেবিল হতে ধাতুর পুরুত্বানুসারে নজল বা টিপ সাইজ নির্বাচন করতে হবে।

৮.৩ গ্যাসের প্রেসার অ্যাডজাস্ট করা :

- অক্সিজেন সিশিন্ডারের আডজাস্টেবল হ্যান্ডেল খুরিয়ে কার্যচাপ ০.১ কেজি/সে.মি²-এ সেট করতে হবে ।
- অ্যাসিটিলিন সিলিভারের অ্যাভজাস্টিং হ্যাভেল ঘুরিয়ে কার্যচাপ ০.১ কেজি/সে.মি^২-এ সেট করতে হবে ।

৮.৪ ফ্রেম অ্যাডজাস্ট করা :

- অক্সিঞ্চেন নিডল ভালৃত সামান্য খুলতে হবে । এই ভালৃত সাধারণত নীল রং করা থাকে ।
- অ্যাসিটিলিন নিডল ভালৃভ একটু বেশি খুলতে হবে । এই ভালৃভ সাধারণত লাল রঙের করা থাকে ।
- নজল হতে আসা অক্সিজেন ও অ্যাসিটিলিন-এর মিশ্রণ ফ্রিকশন লাইটার ঘারা প্রজ্জালন করতে হবে ।

৮.৫ খয়েন্ড সম্পন্ন করা :

- টর্চ বা ব্রো পাইপকে জবের সাথে ৭০° হতে ৮০° কোণে ধরতে হবে ।
- প্রেন্ড করার পূর্বে সামান্য সময় জোড়া স্থানে ভাপ দিতে হবে ।

চিত্র: অক্সি অ্যাসিটিলিন শিখা দ্বারা বাট জয়েন্ট ওয়েন্ডিকেরণ

- এবার ফ্লেমের ইনার কোণের উচ্চতা জব হতে প্রায় ২ মি.মি উচ্চে রেখে ওয়েন্ডিং ওরু করতে হবে ।
- লেফট হ্যান্ডের কৌশল ডান দিকে হতে ওয়েন্ডিং ওরু করে বাম দিকে অশ্বসর হতে হবে।
- বুনন কৌশল অবলঘন করে রো-পাইপ চালনা করতে হবে ।
- টর্চের টিপ যেন মূল ধাভুর সাথে লেগে না যায় সেদিকে লক্ষ্য রাখতে হবে, কারণ এতে ব্যাক কায়ারের
 আশহা থাকে।
- টিপের মাথার ছিদ্রে মেটাল গেলে ফ্রেম নিন্ডিয়ে টিপ ক্রিনার দিয়ে পরিকার করে পুনরায় কাজ করতে হবে ।

চিত্র : টিপ ক্রিনার দারা টিপের দিদ্রের পরীকা করা

আজুবিশ্বাস ও একারভার সাথে অনুশীলন করতে হবে ।

৮.৬ ওয়েন্ডিং-এর সময় ও পরে পরীকা করা :

- বিডের উচ্চতা এবং চওড়া সকল স্থানে সমান হয়েছে কি না?
- পেনিটেশন উত্তম হয়েছে কি না?
- আভারকাট মুক্ত কি না? পরীক্ষা করতে হবে ।

প্রশুমালা-৮

- অক্সিজেন নিডল ভালতে সাধারণত কী বং থাকে?
- ২. অ্যাসিটিলিন নিডল ভাল্ভে সাধারণত কী রং থাকে?
- ৩. গ্যাস ধ্রমেন্ডিং-এর ক্ষেত্রে লেফ্ট হ্যান্ড কৌশল বলতে কী বোঝায়?

গ্যাস ওয়েন্ডিং পদ্ধতিতে সমতল অবস্থানে ফিলার মেটাল যোগে বাট (Butt) জোড়া তৈরি

৯.১ ওয়ার্কপিস প্রস্তুত করা :

- ৩ মি. মি. পুরু এবং কমপক্ষে ৫০ মি.মি. × ২০০ মি.মি. দুই খণ্ড এমএস প্লেট নিতে হবে।
- প্রেট দুইটির এক প্রান্তে বাট জোড়ের জন্য মসৃণ ও সমান করতে হবে।
- মরিচা, গ্রিজ ইত্যাদি ওয়্যারব্রাশ বা এম্যারি পেপার দিয়ে তুলে ফেলতে হবে ।

৯.২ নজল নির্বাচন :

- নজলের আকার অনুযায়ী (পরিশিষ্টতে চিত্র দ্রষ্টব্য) ০,১,২,৩,৪,৫ ইত্যাদি নম্বর দেওয়া আছে । ধাতুর
 পুরুত্ব অনুযায়ী সঠিক নজলটি বেছে নিতে হবে । নজল নম্বর যত বেশি হবে, প্রতি সেকেন্ডে গ্যাসের
 পরিমাণও বৃদ্ধি পাবে ।
- ৩ মি.মি. পুরু এমএস প্লেট জোড়ার জন্য ২ নং নজলটি বেছে নিতে হবে ।

৯.৩ ফিলার মেটাল নির্বাচনকরণ:

- এমএস ধাতুর জোড়ের জন্য এমএস ফিলার মেটাল নির্বাচন কর ।
- প্রদত্ত টেবিল হতে ৩ মি.মি. ব্যাসের ফিলার মেটাল নির্বাচন কর ।

৯.৪ গ্যাস প্রেসার অ্যাডজাস্টকরণ :

- অক্সিজেন সিলিন্ডারের অ্যাডজাস্টিং হ্যান্ডেল ঘুরিয়ে কার্যচাপ ০.১৪ কেজি/সে.মি^২ এ সেট কর।
- অ্যাসিটিলিন সিলিন্ডারের অ্যাডজাস্টিং হ্যান্ডেল ঘুরিয়ে কার্যচাপ ০.১৪ কেজি/সে.মি^২ এ সেট কর ।

৯.৫ ফ্লেম অ্যাডজাস্টকরণ :

- অ্যাসিটিলিন নিডল ভাল্ভ একটু অল্প খোল । এই ভাল্ভ সাধারণত লাল রং হয়ে থাকে ।
- নজল হতে আসা অক্সিজেন এবং অ্যাসিটিলিন-এর মিশ্রণ ফ্রিকশনলাইটার দ্বারা প্রজ্ঞালন কর।
- অক্সিজেন নিডল ভাল্ভ সামান্য খোল । এই ভাল্ভ সাধারণত নীল রং হয়ে থাকে ।
- অক্সিজেন এবং অ্যাসিটিলিন নিডল ভালভ ঘুরিয়ে শিখা তৈরি কর ।
- এমএস প্লেট জোডের জন্য শিখা তৈরি কর।

৯.৬ গুৱাৰ্কশিস ট্যাককরণ :

- প্রেট দুইটি ২.২৫ মি.মি.গ্যাপ করে একই সমতলে রাখ।
- = ধাতুর বিকৃতি রোধ ও গ্যাপ ঠিক রাখার জন্য ২ বা এটি ট্যাকওয়েন্ড কর ।

চিত্ৰ : ৰটি জোড় ভৱাৰশিস্থয়কে ট্যাক্করণ

৯.৭ খরেন্ড সম্পন্নকরণ :

চিত্ৰ: গুৱাৰ্কশিলের সাথে কিলার রড ও গুৱেন্ডিং টর্চের কৌশিক অবস্থান

- ব্রা- গাইল, নমল এবং কিলার রছকে ওয়ার্কলিসের সাথে ৪৫° কোণে ব্রেখে চিত্রানুষায়ী ওয়েন্ড সম্পদ্ধ কর ।
- ওয়েত করার সময় শিখার কোনের সামনের দিকে ধাতুর গশিতাংশ হতে ১.৫-৩ মি.মি. উপরে রাখ।

৯.৮ থরেন্ডিং-এর সময় ও পরে পরীকা :

- আন্তারকটি, পোরোসিটি, স্থাগ ইনকুশান আছে কিনা দেখতে হবে ।
- অভিরিক্ত খাড়ু জোড়ে জনা হলো কিনা দেখতে হবে ।

প্রশালা-১

- ১. বটি (Butt) জোড়া কাকে বলে?
- ২. এমএস প্রেট জোড়ার জন্য কোন শিখা ব্যবহার করা হয়?
- ৬. কিলার রভ গুয়ার্কশিস থেকে কন্ত ডিব্রি কোলে থাকে?

ব্যবহারিক-১০ গ্যাস ওয়েল্ডিং পদ্ধতিতে সমতল অবস্থানে ফিলার মেটালযোগে ল্যাপ জোড়া

১০.১ ওয়ার্কপিস প্রস্তুতকরণ :

- ৩ মিলিমিটার পুরু এবং ৫০ মিলিমিটার × ২০০ মিলিমিটার মাপের দুই খণ্ড মাইভ স্টিল শিট নিতে
 হবে।
- কার্যবস্তু দুটিকে ভালোভাবে পরিষ্কার করতে হবে ।

১০.২ নজল নির্বাচনকরণ :

- নজলের আকার অনুযায়ী ০,১,২,৩,৪,৫ ইত্যাদি নম্বর দেওয়া আছে। ধাতুর পুরুত্ব অনুযায়ী সঠিক নজলটি বেছে নিতে হবে।
- ৩ মি.মি. পুরু এমএস প্লেট জোড়ার জন্য ২ নং নজলটি বেছে নিতে হবে ।

১০.৩ ফিলার মেটাল নির্বাচন করা:

- টেবিল (পরিশিষ্ট দ্রষ্টব্য) হতে ধাতুর পুরুত্ব অনুসারে ফিলার রড নির্বাচন করতে হবে ।
- ফিলার রড নির্বাচনের সময় মূল ধাতুর পুরুত্ব বিবেচ্য।
- কতখানি ফাঁকা স্থান পূরণ করতে হবে তা বিবেচ্য ।
- ওয়েন্ডিং পজিশন বিবেচনা করতে হবে ।
- কোনো ধাতু ওয়েল্ডিং করতে হবে ইত্যাদি বিষয় বিবেচনা করতে হবে এবং ৩ মি.মি. ফিলার মেটাল
 নির্বাচন কর।

১০.৪ গ্যাসের প্রেসার অ্যাডজাস্টকরণ :

- ব্লো-পাইপের অক্সিজেন এবং অ্যাসিটিলিন ভালভ বন্ধ রাখতে হবে ।
- প্রেসার গেজ দেখে খুব আস্তে অক্সিজেন সিলিভারের ভালভ সামান্য খুলতে হবে ।
- যেহেতু সিলিভারে অধিক চাপে গ্যাস আছে তাই একবারে খুললে অতিরিক্ত চাপ রেগুলেটরের ভিতরের যান্ত্রিক ব্যবস্থাকে নষ্ট করতে পারে।
- প্রেসার রেগুলেটর-এর সাহায্য প্রয়োজনীয় চাপ ওয়ার্কিং প্রেসার গেজে সেট করতে হবে ।
- অনুরূপভাবে অ্যাসিটিলিন সিলিভার খুলতে হবে এবং রেগুলেটর-এর সাহায্যে ওয়ার্কিং প্রেসার সেট করতে হবে ।

ব্যবহারিক ১৪১

১০.৫ क्लम च्याप्रकार्ण :

- আনিটিলিন নিডল ভালভ একটু খুলতে হবে। এই ভালভ সাধারণত লাল রং করা থাকে।
- নজল হতে আসা অ্যাসিটিলিন ফ্রিকশন লহিটার ধারা গ্রন্থালন করতে হবে ।
- অক্সিজেন নিম্বল ভালত সামান্য খুলতে হবে। এই ভালত সাধারণত নীল নং করা বাকে।
- অক্সিজেন এবং আাসিটিলিন ভালত বৃদ্ধিয়ে শিখা আভজাস্ট করতে হবে।
- এমএস প্রেট জোড়ের জন্য নিউট্রাল শিখা তৈরি করতে হবে।

১০.৬ ডবাৰ্কসিসকে ট্যাক দেওৱা :

- একটি পাতের উপর আরেকটি পাত রাখতে হবে দ্যাপ জোড়ু তৈরির জন্য।
- ভয়েব্রিং টর্চকে ওয়ার্কপিসের সাথে ৪৫°হতে ৬০° কোশে ধরতে হবে ।

টির: দ্যাপ জেড়ে থাবুতে জব ট্যাককরণ

- ভালোভাবে লক্ষ্য করতে হবে মূল প্লেট গলছে কি না। মূল প্লেট গললে ফিলার রড প্ররোগ করতে হবে।
- ওয়ার্কশিসের দুই মাধার দুটি এবং মারে একটি ট্যাক ওরেন্ড করতে হবে।
- প্রতিটি ট্যাক ওয়েন্ড ৮ হতে ১০ মি.মি লখা করতে হবে।

১০.৭ ওয়াৰ্কশিস ওয়েন্ড করা :

- প্রক্রেক্টিং টর্চকে সমান গতিতে চালনা করতে হবে।
- ডান দিক হতে ওয়েন্ড তরু করে বাম দিকে অগ্রসর হতে হবে।
- বুনন কৌশল বিভ টানতে হবে । এইভাবে দ্যাপ জোড়া ভৈরি করতে হবে ।

চিত্র: গ্যাস শিখার সাহায্যে ফিলার রড গলিয়ে ল্যাপ জ্যোড় সম্পন্নকরণ

ওয়েন্ডিং-এর সময় এবং পরে পরীক্ষা:

- বিড সকল স্থানে সমান চওড়া কি না ।
- আভারকাট ও অন্যান্য ক্রটি হয়েছে কি না ।
- জবটিকে ভাইসে বেঁধে হাতৃড়ি দিয়ে আঘাত করে জোড়ার সামর্থ্য পরীক্ষা করা ।

প্রশ্নমালা-১০

- গ্যাসের প্রেসার অ্যাডজাস্ট করার সময় রো-পাইপের অক্সিজেন ও অ্যাসিটিলিন ভালভ কী অবস্থায় রাখতে হবে?
- ২. অতিরিক্ত চাপে রেগুলেটরের কী ক্ষতি হয়?
- ৩. গ্যাসের ওয়ার্কিং প্রেসার বলতে কী বোঝায়?

ব্যবহারিক-১১ গ্যাস ওয়েন্ডিং পদ্ধতিতে সমতল অবস্থানে ফিলার মেটালযোগে 'টি' জোড়া তৈরি

১১.১ ওয়ার্কপিস প্রস্তুতকরণ :

- ১.৫ মি.মি পুরু এবং ৬০ মি.মি. ২৫০ মি.মি. মাপের দুই খণ্ড মাইল্ড স্টিল শিট নিতে হবে ।
- প্রেট দৃটিকে ভালোভাবে পরিষ্কার করতে হবে ।
- এটি প্রেটের মাঝামাঝি স্টিল রুল এবং ক্রাইবারের সাহায্যে দাগ দিতে হবে ।

১১.২ নজল নির্বাচন করা:

নজল নামার যত বেশি হবে তার মাথার ছিদ্র তত মোটা হবে, সূতরাং বেশি পুরুত্বের ধাতুর জন্য বেশি
নম্বরের নজল এবং কম পুরুত্বের ধাতুর জন্য কম নামারের নজল ব্যবহার করতে হবে। প্লেটের পুরুত্ব
অনুযায়ী টেবিল হতে নজল নির্বাচন করতে হবে।

১১.৩ ফিলার মেটাল নির্বাচন করা:

- ধাতুর পুরুত্ব অনুসারে ফিলার রড নির্বাচন করতে হবে।
- ফিলার রড নির্বাচনের সময় মূল ধাতুর পুরুত্ব।
- কতখানি ফাঁকা স্থান পূরণ করতে হবে ।
- ওয়েন্ডিং পজিশন কী হবে ।
- কোন ধাতু ওয়েল্ডিং করতে হবে ইত্যাদি বিষয় বিবেচনা করতে হবে ।

১১.৪ গ্যাসের প্রেসার অ্যাডজাস্টকরণ :

- অক্সিজেন সিলিভারের অ্যাডজাস্ট হ্যাভেল ঘুরিয়ে কার্যচাপ ০.১৪ কেজি/সে.মি^২ এ সেট করতে হবে ।
- অ্যাসিটিলিন সিলিভারের অ্যাডজাস্ট হ্যান্ডেল ঘুরিয়ে কার্যচাপ ০.১ কেজি/সে.মি^২ এ সেট করতে হবে ।

১১.৫ ফ্রেম অ্যাডজাস্টকরণ :

- অ্যাসিটিলিন নিডল ভালভ একটু খুলতে হবে । এই ভালভ সাধারণত লাল রং করা থাকে ।
- নজল হতে আসা অ্যাসিটিলিন ফ্রিকশন লাইটারের দ্বারা প্রজ্বালন করতে হবে ।
- অক্সিজেন নিডল ভালব সামান্য খুলতে হবে। এই ভালভ সাধারণত নীল রং করা থাকে।
- শিখা শনাক্ত করতে হবে ।

- অক্সিজেন ও অ্যাসিটিলিন ভালভ ঘুরিয়ে শিখা অ্যাডজাস্ট করতে হবে।
- এমএস প্লেট জোড়ার জন্য নিউট্রাল শিখা তৈরি করতে হবে।

১১.৬ ওয়ার্কপিসে ট্যাককরণ :

- যে শিটটির মধ্যভাগে দাগ দেয়া হয়েছে, সেটি টেবিলের উপর রাখতে হবে এবং অন্যটি ঐ দাগের উপর
 রেখে T অবস্থায় প্রায়ার্স দিয়ে ধরে ট্যাক দিতে হবে ।
- ট্যাক দেওয়ার সময় ব্লো-পাইপকে জবের সাথে ৪৫° হতে ৬০° কোণে ধরতে হবে। এবং ট্যাক দেওয়ার পর জব T আকৃতির হবে।

১১.৭ ওয়েন্ড সম্পন্নকরণ :

- ওয়ার্কপিসের সাথে ব্লো-পাইপকে ৫০° হতে ৬০° কোণে এবং ফিলার রডকে ৪৫° কোণে ধরতে হবে।
- একই গতিতে টর্চকে ও ফিলার রডকে এগিয়ে নিতে হবে ।
- সাবধানতার সাথে মনোযোগ দিয়ে কাজ শেষ করতে হবে ।

১১.৮ ওয়েন্ডের সময় ও পরে পরীক্ষাকরণ :

- পেনিট্রেশন ভালো হয়েছে কি না ।
- বিডের সমতল স্থান সমান চওড়া কি না।
- আভারকাট মুক্ত কি না ।
- ওভার ল্যাপ মুক্ত কি না? পরীক্ষা করতে হবে।

প্রশ্নমালা-১১

- ১. 'টি' জোড়া বলতে কী বোঝায়?
- ২. এম.এস প্লেট জোড়ার জন্য কোন শিখা তৈরি করা উচিত?
- ৩. অক্সিজেন নিডল ভালভে সাধারণত কী রং করা থাকে?

ব্যবহারিক-১২ গ্যাস কাটিং

১২.১ ওয়ার্কপিস প্রস্তুতকরণ :

- ৬ মি.মি হতে ১২ মি.মি. পুরুত্বের মাইল্ড স্টিল প্লেট নিতে হবে।
- তারের ব্রাশ দিয়ে সুন্দরভাবে ওয়ার্কপিস পরিষ্কার করতে হবে ।
- লে-আউট করতে হবে এবং লে-আউট মাফিক দাগ দিতে হবে ।
- স্টিল রুল এবং ক্রাইবারের সাহায্যে প্লেটের যেদিকে হতে কাটিং করতে হবে সেদিক হতে দাগ দিতে হবে ।
- সেন্টার পাঞ্চ এবং হাতুড়ি দিয়ে দাগের উপর চিহ্নিত করতে হবে ।

১২.২ কাটিং টিপ নির্বাচন :

ধাত্র পুরুত্ব অনুযায়ী নজল নির্বাচন করতে হবে। মোটা বা বেশি পুরুত্বের ধাতুর জন্য বড় সাইজের কাটিং টিপ এবং অল্প পুরুত্বের জন্য ছোট সাইজের কাটিং টিপ ব্যবহার করতে হয়। নজল প্রস্তুতকারী প্রতিষ্ঠান যে ম্যানুয়াল কাটিং টিপ বাক্সের মধ্যে প্রেরণ করে তা ভালোভাবে পড়ে কাটিং টিপ নির্বাচন করতে হবে। নিচের টেবিলের সাহায্যে কাটিং টিপ নির্বাচন করা যেতে পারে।

কাটিং টিপ নাম্বার	ধাতুর পুরুত্ব (মিলিমিটারে)		
00	৩ হতে ৬		
o	৬ হতে ১০		
>	১০ হতে ১৫		
২	১৫ হতে ২৫		
•	২৫ হতে ৪০		
8	৪০ হতে ৬৫		
¢	৬৫ হতে ১০০		
৬	১০০ হতে ১৫০		
٩	১১৫০ হতে ২২০		
ъ	২২০ হতে ২৩০		

টিপ বা নজল নির্বাচনের সাথে গ্যাসের চাপ নির্ধারণও বিশেষ গুরুত্বপূর্ণ বিষয়। গ্যাসের চাপ নির্ধারণের জন্য একটি নমুনা তালিকা নিম্নে প্রদত্ত হলো–

প্লেটের গুরুত্ব মি.মি.	টিপ এর নম্বর	অক্সিজেন চাপ কেজি/বর্গ সেমি.	কাটিং স্পিড মিটার/ঘণ্টা	অ্যাসিটিলিন খরচ লিটার/মিনিট	অক্সিজেন খরচ লিটার/মিনিট
æ	0	2	74	২০	90
30	0	2	20	২৩	250
20	3	9	20	20	220
90	۵	8	22	೨೦	७२०
(to	2	æ	8	œ0	000
90	2	6	9.0	90	900

১২.৩ প্রয়োজনীয় শিখা তৈরিকরণ :

- ♦ ব্লো-পাইপের ভাল্ভ দুটি বন্ধ রাখতে হবে।
- অ্যাসিটিলিন সিলিন্ডার ভাল্ভ খুলে, চার্ট অনুসারে ওয়ার্কিং প্রেসার সেট করতে হবে।
- একইভাবে অক্সিজেন সিলিভার ভাল্প খুলে এবং ওয়ার্কিং প্রেসার সেট করতে হবে ।
- ব্লো-পাইপের অ্যাসিটিলিন ভালভ অল্প পরিমাণ খুলতে হবে ।
- ফ্রিকশন লাইটারকে ২০ হতে ২৫ মিলিমিটার দরে রেখে ফ্রেম জ্বালাতে হবে।
- अग्रामिणिलानत अतिमाण किमरत वा वाफिरत मिथा निराञ्चण कत्रक रदा ।
- প্রাথমিকভাবে ওয়েন্ডিং করার মতো একটি শিখা তৈরি করতে হবে ।
- কিল্ক অক্সিজেনের টিগার চেপে অতিরিক্ত অক্সিজেন সরবরাহ করে দেখতে হবে ধাতু কাটার সামর্থ্য এই
 শিখার আছে কিনা ।
- শিখার ধাতু কাটার সামর্থ্য না থাকলে ব্লো-পাইপের নব ঘ্রিয়ে গ্যাসের পরিমাণ বৃদ্ধি করতে হবে ।
- গ্যাসের পরিমাণ বৃদ্ধি করেও যদি ধাতু কাটা সম্ভব না হয় তবে নতুন করে গ্যাসের চাপ নির্ধারণ করতে হবে এবং শিখা তৈরি করতে হবে ।

১২.৪ কাটিং সম্পন্নকরণ :

- কর্তন আরল্পের পূর্বে কার্যস্থান অবশ্যই পরিষ্কার করতে হবে।
- কার্যবস্তু কাটিং টেবিলের ওপরে কিংবা অন্য কোনো সুবিধাজনক স্থানে স্থাপন করে সম্ভব হলে এর নিচে স্থাগ বাকেট স্থাপন করতে হবে।
- থাতুর পুরুত্বের সাথে টিপ-সাইজ (Tip-Size)
 সঙ্গতিপর্ণ কিনা তা নিশ্চিত হতে হবে।
- ♦ ভালো কর্তন নিশ্চিত করার জন্য কাটার সময় এক হাতে টর্চ ধরতে হলে এবং অন্য হাত দিয়ে তাকে সার্পোট দিতে হবে, যাতে কার্যবস্তু হতে নজলের দ্রত্ব একই রকম থাকে এবং হাতের কম্পন রোধ হয়।

फिर्ज : काण्डि-धर कमा मक्का शक्कि

यायश्रीक

♦ চিত্র অনুযায়ী টর্চের নজল কার্যবন্ধর অপর খাড়াভাবে ধরতে হবে (৯০°) এবং এর ইনার কোশের দূরত্ব কার্যবন্ধ হতে প্রায় ২ মি.মি. রাখতে হবে।

চিত্ৰ : কাটিং-এর অন্য টর্টের অবস্থান

♦ চিত্র অনুবায়ী কর্তন ছল খ্রি-বিটিং শিখার সাহায়্যে উজ্জ্বল লাল রং পর্যন্ত উত্তাপ দেওরার পর কাটিং অক্সিজেন শিভারে বীরে বীরে চাপ দিছে হবে। এই পর্যায়ে কার্যবন্ধর নিচে দিয়ে জাওনের ফুলকি বের হয়ে আসবে। এমতাবছার কাটিং অক্সিজেন নিভারকে পুরোপুরি চাপ দিতে হবে।

চিত্ৰ। কৰ্তন পদ্ধতিতে খাতু কাঁটা থক কৰা

- একবার ভালোভাবে কর্তন করু হলে উর্চকে কাটিং মার্ক বরাবর দৃচ্ভাবে ধীরপতিতে চালনা করতে হবে।
- টর্চ চালদার গতি এমদ হওয়া উচিত বাতে কার্ববস্তর ধার অধিক পদিত বা অক্সিডাইড লা হর।
- কর্তনে বিল্ল, বধা ব্যাকফালার, স্প্যাটারিং ইত্যাদি রোধ করণার্থে টর্চের ইনার কোনোক্রমেই কার্ববস্তুর
 পথর স্পর্শ করা বাবে দা।
- ♦ উপরোক্ত নিয়য় অবলগনে কর্ডন কার্য সমাও হওয়ার পর প্রথমে কাটিং অক্সিকেন শিভারকে চাপমৃক্ত করতে হবে । অভঃপর প্রথমে অ্যাসিটিলিন ও অক্সিকেন ভালত বন্ধ করতে হবে ।

১২.৫ গ্যাস কাটিং-এর ক্ষেত্রে বে সকল কারণে ক্রটি হয় :

- কর্তনগতি (Cutting-Speed) সভাবিক মহর হলে
 - 🗸 ভগরের প্রান্ত গলিত হয়
 - নিচের প্রান্ত অসমান হয়
 - 🗸 কর্ডিত ফেনে ভারী মরলাযুক্ত থাকে

- ✓ কর্তিত ফেসের নিমুভাগ খাঁজকাটা, খাদবিশিষ্ট এবং অনিয়মিত থাকে
- ✓ নিচের পার্ষে ময়লা আটকে থাকে

কর্তন গতি অতি দ্রুত হলে

- ✓ ওপরের প্রান্ত মসৃন হয় না কিংবা আভারকোট সম্পন্ন হয়
- ✓ কর্তনরেখা অত্যন্ত অসমান হয়় এবং পেছনে হেলানো থাকে
- ✓ কর্তিত প্রান্ত অসমান হয়
- √ নিচের প্রান্ত গোলাকার হয়

■ প্রি-হিটিং ফ্লেম (Pre-heating flame) খুব বেশি উঁচু হলে

- ✓ ওপারের প্রান্ত গোলাকার হয়
- ✓ নিচের প্রান্তে খুব বেশি স্লাগ দৃঢ়ভাবে লেগে থাকে

প্রি-হিটিং ফ্লেম খুব বেশি নিচু হলে

✓ কর্তনের গতি অত্যধিক মন্তর হওয়ার দরুন যে অবস্থা দাঁড়ায় এই ক্ষেত্রেও তাই হয়।

টর্চের গতি একই রকম না হলে

- ✓ অসমান কর্তন রেখা হয়

ইনার কোণ খুব বেশি উঁচু হলে

- ✓ ওপরের ধার অত্যধিক গলে যায়
- ✓ কর্তিত ফেসের ওপরে আন্ডারকাট হয়

উল্লিখিত ত্রুটিসমূহ নিরসনের উপায় নিমুরূপ:

- ক্রটিমুক্ত কর্তনের বৈশিষ্ট্য
 - ✓ খাড়া দ্রাগ লাইন (কর্তন রেখা)
 - ✓ পরিষ্কার কর্তন তল
 - ✓ ওপর ও নিচের ধার সোজা ও খাড়া হবে।

প্রশ্নমালা-১২

- গ্যাস কাটিং বলতে কী বোঝায়?
- ২. গ্যাস কাটিং-এর সময় কোনো প্রকার শিখা ব্যবহার করা হয়?
- ৩. কাটিং-এর সময় কার্যবস্তু হতে নজলকে কতটুকু উপরে রাখতে পারে?

দ্বিতীয় পত্ৰ

প্রথম অধ্যায় ওয়েন্ডের প্রি-হিটিং ও পোস্ট-হিটিং-এর প্রয়োগ ক্ষেত্র (Pre-Heating And Post-Heating)

১.১ ওরেন্ডিং এ প্রি-হিটিং ও পোস্ট হিটিং-এর ভূমিকা :

মূল ধাতুকে ওয়েন্ডিং করার পূর্বে উত্তপ্ত করার প্রক্রিয়াই হচ্ছে প্রি-হিটিং। ওয়েন্ড স্থান ও চারপাশ ধাতুকে সুষমভাবে উত্তপ্ত করে ওয়েন্ডিং করলে ফাটলের সৃষ্টি হয় না, তাই প্রি-হিটিং-এর একান্ত দরকার। সুতরাং প্রি-হিটিং কৌশল, প্রয়োগ ইত্যাদি সম্পর্কে ওয়েন্ডারকে অত্যন্ত যত্নবান হতে হবে।

প্রি-হিটিং : এটি ওয়েন্ডিং শুরু করার পূর্বে মূলত ধাতুতে তাপ প্রয়োগের একটি কৌশল। ওয়েন্ডিং-এর তাপ অত্যন্ত প্রখর এবং এক স্থান সীমাবদ্ধ থাকে, সূতরাং তাপমাত্রার তারতম্য দূরীকরণের জন্য ঠান্ডা ধাতুতে প্রি-হিটিং করা হয় যাতে তা বিকৃত না হয়।

চিত্র: (ক) অসম তাপের ফল

চিত্র: (খ) প্রি-হিটিং এর সুবিধা

পোস্ট হিটিং :

পোস্ট হিটিং স্ট্রেস রিলিফকরণের একটি পদ্ধতি। কতকগুলো কার্বনসমৃদ্ধ স্টিল ওয়েন্ডিং-এর জন্য পোস্ট হিটিং, প্রি-হিটিং-এর মতোই শুরুত্বপূর্ণ। যদিও পোস্ট-হিটিং কুলিং রেট কমার তবুও ওয়েন্ড এলাকার স্ট্রেস আটকা পড়ে থাকার সম্ভাবনা সর্বদাই একটি বিবেচ্য বিষয় থাকে। যদি এসব স্টেস দূর না করা হয় তবে সম্পূর্ণ ঠান্ডা হওয়ার পর ফাটল দেখা দিতে পারে অথবা বিশেষ করে মেশিনিং অপারেশনের পর উক্ত অংশ বিকৃত হতে পারে।

চিত্র : নিয়ন্ত্রিভ প্রি-হিটিং এবং পোস্ট হিটিং-এ চুল্লির ব্যবহার

প্রি-হিটিং-এর কার্যকারিডা:

প্রি-হিটিং-এর কার্যকারিতা নিম্নে প্রদন্ত হলো :

- কোন্ড ক্র্যাক প্রতিরোধ করে
- হিট অ্যাফেকটিড জোনের হার্ডনেস ক্যায়
- রেসিডিউঅ্যাল স্ট্রেস কমায়
- বিকৃতি কমার

পোস্ট হিটিং এর কার্বকারিতা :

পোস্ট হিটিং-এর কার্যকারিতা নিম্নে প্রদন্ত হলো :

- স্ট্রেস রিপিক করে
- ফাঁটা প্রতিরোধ করে
- বিকৃতি দমন করে

১.২ প্রি-হিটিং ভাগমাত্রা শনাক্তকরণ :

প্রি-হিটিং-এর জন্য সঠিক তাপমাত্রা একটি শুরুত্বপূর্ণ বিবেচ্য বিষয়। কার্বনের উপর নির্ভর করে মাইড স্টিলের প্রি-হিটিং তাপমাত্রা ২০০-৭০০ ডিপ্রি কা. (৯৪-৩৭০ ডিপ্রি সে.) হওয়া উচিত। কার্বনের পরিমাণ যত বেশি হবে, প্রি-হিটিং তাপমাত্রা তত বেশি হবে। প্রি-হিটিং তাপমাত্রা বিভিন্ন উপায়ে নির্ণয় করা বেতে পারে। এখানে কতগুলো পদ্ধতি প্রদত্ত হলো:

চিত্র: সারকেস টেম্পারেচার পাইরোমিটার

পৃষ্ঠদেশে কাঠমিন্তি ব্ৰ-চকের দাগ দিয়ে। তাপমাত্রা প্রায় ৬২৫ ডিপ্রি ফা. (৩৩০ ডিম্রি সে.) পৌছলে এই চকের দাগ সাদাটে ধৃসর রং এ পরিবর্তিত হয়।

চিত্র : টেম্পারেচার সেনসেটিভ ক্রেয়ন

- ৫০-৫০ সোন্ডার পৃষ্ঠদেশে ঘষার মাধ্যমে। ৩৬০ ডিগ্রি ফা. (১৮২ ডিগ্রি সে.) তাপমাত্রায় সোন্ডার গলতে আরম্ভ করে।
- পাইন কাঠের কাঠি উত্তপ্ত স্থানে ঘষে। পাইন প্রায় ৬৩৫ ডিগ্রি ফা. এ (৩৩৫ ডিগ্রি সে.) পুড়ে অঙ্গার হয়।
- ক্রেয়ন ব্যবহার করে।

১.৩ পোস্ট হিটিং তাপমাত্রা শনাক্তকরণ :

ওয়েন্ডিং-এর পরে বেসমেটালকে বা জোড়ার স্থানকে ঠান্ডা হবার হারকে কমিয়ে আনাকে পোস্ট হিটিং বলে। এই পদ্ধতিতে প্রি-হিটিং-এর তাপমাত্রায় ওয়েন্ড জয়েন্টকে উত্তপ্ত রাখে এবং ধীরগতিতে ঠান্ডা হতে দেয়। পোস্ট হিটিং করা না হলে অনেক ধাতব বিকৃতি বা ক্রাক (Crack) ক্রটি দেখা দেয়।

১.৪ প্রিহিটিং কৌশল বর্ণনাকরণ :

ধাতব খণ্ডের ওয়েন্ডিং স্থানে এবং এর চারপার্শ্বে কার্বোরাইজিং শিখা দ্বারা বা ফারনেসে (Furnace) উত্তপ্ত করা যায়, যাতে ওয়েন্ড স্থান প্রসারণের জন্য কোনো প্রকার ফাটলের সৃষ্টি না হয়। সে জন্য প্রি-হিটিং করা হয়।

১.৫ পোস্ট হিটিং কৌশল বর্ণনাকরণ :

ধাতব খণ্ডের ওয়েন্ডিং স্থান দ্রুত ঠান্ডা হলে হঠাৎ সংকোচনের জন্য ফাটলের সৃষ্টি হতে পারে। এই ফাটল প্রতিরোধ করার জন্য ওয়েন্ড স্থান ধীরে ধীরে ঠান্ডা করতে হয়। এই জন্য জোড় স্থানকে ফ্রেমের সাহায্যে বা ফারনেসের ভিতর রেখে ধীরে ধীরে ঠান্ডা করতে হবে।

প্রশ্নমালা-১

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- প্র-হিটিং তাপমাত্রা কী দিয়ে নির্ণয় করা হয়?
- ২. প্রি-হিটিং কেন করা হয়?
- ৩. প্রি-হিটিং বলতে কী বোঝায়?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. পোস্ট-হিটিং বলতে কী বোঝায়?
- ২. প্রি-হিটিং-এর ভূমিকা বর্ণনা কর?
- ৩. প্রি-হিটিং তাপমাত্রায় পৌছালে বু-চকের দাগ কেমন হয়?

রচনামূলক প্রশ্লাবলি :

- ১. প্রি-হিটিং পদ্ধতির বর্ণর্না কর।
- ২. প্রি-হিটিং-এর কার্যকারিতা লিখ।
- ৩. পোস্ট-হিটিং-এর কার্যকারিতা আলোচনা কর।

বিতীয় অধ্যায় কাস্ট আয়ব্রন ওয়েন্ডিং কৌশল (Techniques Of Cast Iron Welding)

কান্ট আম্বরন অত্যন্ত ভদুর ও ওয়েন্ডিং-এর সময় এতে ফটিল সৃষ্টি হয়, তাই ওয়েন্ডিং করা অত্যন্ত কঠিন। সুতরাং মি-বিটিং বিশেষ কৌশল ও অত্যন্ত সতর্কতার সাথে ওয়েন্ডারকে কাস্ট আম্বরন ওয়েন্ডিং করতে হয়।

১.১ কাস্ট ভায়রন ওরেজিং-এর উপবোগিতা :

কাস্ট আররণ থরেন্ডিং করা কঠিন। বিশেষ ধরনের ইনেকট্রোড এবং কৌশলের সাহাব্যে সাকল্যের সাবে প্রয়েন্ড করা যায়। অক্সি-আসিটিনিন গ্যাস এবং ইলেকট্রিক আর্ক প্রয়েন্ডিং এই দুই গছডিকে কাস্ট আররনকে প্রয়েন্ডিং করা হয়ে থাকে। এটি ছাড়াথ শিলভেড আর্ক প্রয়েন্ডিং ইলেকট্রোড, মোনেল মেটাল ইলেকট্রোড এবং কসকরাস-ব্রোপ্ত ইলেকট্রোড দিয়েও থো-কাস্ট আররনকে প্রয়েন্ডিং করা হয়।

১.২ কাস্ট আরবদ ভরেন্ডিং-এর পূর্বে বিবেচ্য বিবরাদি । বিবেচ্য বিবরাদি নিম্নে প্রদন্ত হলো :

- ব্যৱতি
- ইলেকটোর নির্বাচন
- **12-10**18t
- কারেন্ট সেটিং
- খরেন্ডিং
- পোন্ট বিটিং

কাল্ট জান্তবদের জ্যোত প্রস্তুতির বর্ণনা :

কাস্ট আয়রন বা ঢালাই লোহার পৃষ্ঠদেশের আবরণ যা ওয়েন্ড জিন নামে পরিচিত। ওয়েন্ড ছান হতে তা সম্পূর্ণরূপে উঠিয়ে ফেলতে হবে। ঐতলো উঠানো বিশেষভাবে প্রয়োজন কেননা ঐতলো অপদ্রব্য পূর্ণ বাকায় গুয়েন্ডিয়ে ফ্রাট দেখা দেয়।

চিত্ৰ: ৰৱেকিং ক্বৰা কটিল মেয়াৰত

জোড় প্রস্তৃতি : কাস্টিং-এর পুরুত্ব ধবং ধরনের উপর নির্ভর করে নিয়ের চিত্রের সাহাব্যে জোড় প্রস্তৃতি দেখানো হলো-

টিয় : জোড় প্রকৃতির বিভিন্ন প্রকার পদ্ধতি

অপেকাকৃত অধিক পুরুত্তের ভাঙা কান্টিং খরেন্ড করার জন্য মাইন্ড স্টিল স্টাভিং ব্যবহৃত হয়।

विवा : विरेणस्मार्ट्स चना न्यास्त्र गायबाब

কাস্ট আয়রন খরেন্ডিং-এ ইলেকট্রোডের নির্বাচন।

কাস্ট আররন ওয়েভিং-এ কাস্ট আররন, লো-কার্যন স্টিল, নিকেল বেস জ্যালয় এবং কণার বেস জ্যালয় কিলার মেটাল হিসেবে ব্যবহৃত হয়।

আবরণ যুক্ত নিকেল বেন ইলেকট্রোডকে তিন তাগে তাগ করা হয়েছে বখা বিভন্ধ নিকেল, নিকেল আররন এবং নিকেল কপার।

যদিও ঐত্তপো ব্যৱবহন, কিন্তু নিকেল এবং নিকেল আয়রন ইলেকট্রোডই সবচেয়ে ফলপ্রস্ বহুল ব্যবহৃত ইলেকট্রোড। সাধারণত সবচেয়ে বিভন্ন নিকেলের তুলনায় নিকেল আয়রন ইলেকট্রোড অধিক ওপসম্পদ্ধ কারণ ঃ

- ভৱেন্ড মেটাল ধাসারণ এবং সংকোচন কম বয়
- ওরেক্ত মেটালের শক্তি ও নমনীরতা বৃদ্ধি পার

- গরম অবস্থায় ফাটল হওয়ার প্রবণতা খুব কম

চিত্র : নিকেশ আররন ইলেকট্রোড দিয়ে কাস্ট আররন গুয়েন্ডিং

কপার বেস ইলেকট্রোডস কপার টিন কিংবা কপার অ্যালুমিনিয়াম ধরনের। যেহেতু ফিলার মেটাল (ইলেকট্রোড) কাস্ট আয়রনের তুলনায় অনেক কম তাপমাত্রায় গলে, সেহেতু এই আর্ক ওয়েন্ডিংকে এক ধরনের ব্রোঞ্জ ওয়েন্ডিং হিসেবে বিবেচনা করা যেতে পারে।

চিত্র: কপার বেস অ্যালয় ইলেকট্রোড দিয়ে কাস্ট আয়রন ওয়েন্ডিং

কাস্ট আয়রন ওয়েন্ডিং-এ প্রি-হিটিং-এর বর্ণনা :

সমভাবে তাপ নিয়ন্ত্রণের নিমিত্তে কাস্ট আয়রনের জব (Job) উপযুক্ত প্রি-হিটিং এবং পোস্ট হিটিং করতে হয়। যদি চুল্লি সহজ্ঞপত্য না হয় কিংবা জব-এর আকৃতি খুব বড় হয় তাহলে একে গ্যাস টর্চের সাহায্যে তাপ (প্রি-হিট) দিতে হবে। সমভাবে তাপ বন্টন বজার রাখার জন্য জব-এর চারদিকে তাপ প্রতিরোধক বস্তু যথা ফারার ক্লে ইত্যাদি দিয়ে ঢেকে দিতে হবে। এমন তাপের উৎস ব্যবহার করতে হবে যাতে জব-এ প্রয়োজনীয় তাপ সমভাবে প্রদানের যথেষ্ট ক্ষমতা থাকে।

চিত্র: নিয়ন্ত্রিভ প্রি-হিটিং ও পোস্ট হিটিং-এর জন্য চুপ্রির ব্যবহার।

সাধারণত ৫০০-১২০০ ডিগ্রি ফা. তাপ প্রি-হিটিং-এর জন্য অনুমোদিত। যেক্ষেত্রে প্রি-হিটিং সম্ভব নয় সেখানে ছোট ছোট বিড গুয়েল্ড করে কার্স্টিং উত্তপ্ত রাখা যায়। প্রথম বিড গুয়েল্ড করার পর দিতীয় বিড গুয়েল্ড-এর পূর্বে হাতে স্পর্শ করা যায় এরপ ঠালা করতে হবে। ঠালা হওয়ার সময় হাতৃড়ির হালকা আঘাতে চিপিং করতে হবে।

কাস্ট আয়রন ওয়েন্ডিং পদ্ধতির ধাপসমূহের বর্ণনা : ধাপসমূহ :

- বুননবিহীন সোজা বিড ওয়েন্ড করতে হবে।
- কম এম্পিয়ার (Ampere) ব্যবহার করতে হবে।
- প্রি-হিট ছাড়া ওয়েন্ডিং করতে বিডের মধ্যস্থিত তাপমাত্রা ৯৫ ডিগ্রি সেঃ অতিক্রম করা উচিত নয়।
- প্রি-হিটিং ব্যবস্থা ব্যবহৃত হলে, বিডের মধ্যস্থিত তাপমাত্রা প্রি-হিটিং তাপমাত্রাকে অতিক্রম করা চলবে না।
- ওয়েভিং করার জন্য সৃষ্ট স্ট্রেস কমাবার জন্য ব্যাক স্টেপ সিকোয়েল সোজা রান ওয়েভ করতে হবে

 যার দৈর্ঘ্য অনধিক ৫০-৭৫ মিমি হবে ।
- গলনের জন্য প্রয়্রোজন ব্যতিরেকে জব অতিরিক্ত গলানো উচিত নয়।
- মেশিনিং গুণ বাড়ানোর জন্য দুই বা ততোধিক স্তর ওয়েন্ড করতে হবে।
- প্রস্তুত করা প্রান্তে সর্বদা আর্ক করতে হবে, কখনও জব-এর উপর নয়।

প্রশ্নমালা-২

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. কাস্ট আয়রন ওয়েন্ডিং-এ অনুমোদিত প্রি-হিটিং তাপমাত্রা কত?
- ২. কাস্ট আয়রন ওয়েন্ডিং-এ কী ইলেকট্রোড ব্যবহার হয়?
- ৩. কাস্ট আয়রন ওয়েল্ডিং-এ প্রি-হিটিং প্রয়োজন কেন?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. কাস্ট আয়রন ওয়েন্ডিং-এ কী কী ইলেকট্রোড ব্যবহৃত হয়?
- ২. ইস্পাতের তুলনায় কাস্ট আয়রন ওয়েন্ডিং-এর পার্থক্য কী?
- ৩. কাস্ট আয়রন ওয়েল্ডিং-এর প্রাক্কালে বিবেচ্য বিষয়গুলো কী কী?

রচনামূলক প্রশাবলি:

- ১. কাস্ট আয়রন ওয়েন্ডিং-এ প্রি-হিটিং পদ্ধতির বর্ণনা দাও।
- ২. কাস্ট আয়রনের জোড় প্রস্তুতি বর্ণনা কর।
- কাস্ট আয়য়ন ওয়েল্ডিং-এয় উপয়োগিতা বর্ণনা কয়।

তৃতীয় অধ্যায় স্টেইনলেস স্টিল ওয়েন্ডিং কৌশল

(Techniques of Stainless Steel Welding)

৩.১ স্টেইনলেস স্টিলের ওয়েন্ডিং উপযোগিতা:

ওয়েন্ডিং-এর শর্তাবলিতে স্টেইনলেস স্টিলের ভৌত গুণাবলি বিবেচনা করলে সম্ভোষজ্ঞনক ওয়েন্ড জোড় তৈরি করা যেতে পারে । প্রেইন কার্বন স্টিলের ভুলনায় স্টেইনলেস স্টিলে হয় :

- অধিকতর প্রসারণ ও সংকোচন
- কম তাপ পরিবহন

অধিক ইলেকট্রিক্যান রেজিস্টেন্স ওয়েন্ডিং-এর সময় এইসব বিষয় তাপের জোগান বৃদ্ধি প্রভাবিত করে এবং কলশ্রুতিতে বিকৃতি ঘটায়।

চিত্র : ক ও থ এর মাধ্যমে স্টেইনলেস স্টিলের ভাপীর গুণাগুণ ব্যক্ত করা হরেছে

স্টেইনলেস স্টিলের ছোড়-এ কাটল সৃষ্টি হওয়ার কারণ:

- যেহেতু ওয়েন্ড মেটালের স্ট্রাকচার কঠিন হয়।
- ওয়েন্ড মেটালের অসম মিশ্রণ।
- ঠাভা হওয়ার ফলে জোড় (Joint) এ সৃষ্ট স্ট্রেস (Stress)

সঠিক ওয়েন্ডিং সিকোয়েন্স ব্যবহার করে গরম অবস্থায় সৃষ্ট কাটন প্রতিরোধ করা যেতে পারে। স্টেইনসেস স্টিলের ভৌত গুণাবলির দরুন সাধারণত প্রি-হিটিং-এর প্রয়োজন নাই। তবে পোস্ট ওয়েন্ড স্ট্রেস রিলিভিং প্রয়োজন হতে পারে এবং বিস্তৃত তাপমাত্রায় সীমার এটি সম্পন্ন করা হয় যা স্ট্রেস দ্রীকরণের পরিমাণের উপর নির্ভর করে।

৩.২ স্টেইনলেস স্টিল ওয়েন্ডিং-এর প্রাক্তালে বিবেচ্য বিষয়সমূহ : ওয়েন্ডিং-এর প্রাক্তালে বিবেচ্য বিষয়সমূহ নিম্নে প্রদন্ত হলো :

- জোড়ের সঠিক ডিজাইন বাছাইকরণ

- সঠিক আকৃতির টিপ নির্ধারণ
- ফ্রেম অ্যাডাজাস্টকরণ
- ফিলার রড নির্ধারণ
- ফ্রাক্সের ব্যবহার নির্ধারণ
- ওয়েল্ডিং পদ্ধতি নির্ধারণ

৩.৩ স্টেইনলেস স্টিল ওয়েন্ডিং পদ্ধতির ধাপসমূহের বর্ণনাকরণ:

- জোড়ের সঠিক ডিজাইন বাছাইকরণ: পাতলা ধাতুর জন্য ফ্রেঞ্জ টাইপ জোড়াই সবচেয়ে সন্তোষজনক
 ডিজাইন। ৩ মিমি পুরু পর্যন্ত শিট মুখোমুখি জোড়া দেওয়া যেতে পারে। জোড়ের তলদেশ পর্যন্ত
 ভালোভাবে গলনের জন্য ৩ মিমি এর উধ্বের্ধ পুরু প্লেটে বিভেল করতে হবে।
- সঠিক আকৃতির টিপ নির্ধারণ: স্টেইনলেস স্টিলে অক্সি-অ্যাসিটিলিন ওয়েল্ডিং করতে মাইন্ড স্টিলের তুলনায় এক কিংবা দুই সাইজ ছোট টিপের প্রয়োজন। ফ্রেম ছোট হলে ধাতুর গুণাগুণ নষ্ট হওয়ার আশঙ্কা কম।
- ক্রেম অ্যাডজাস্টকরণ: স্টেইনলেস স্টিল ওয়েল্ডিং-এর জন্য নিউট্রাল ফ্রেম অত্যাবশ্যক।
- কিলার রড নির্ধারণ: স্টেইনলেস স্টিল সন্তোষজনকভাবে ওয়েন্ডিং-এর জন্য বিশেষভাবে তৈরি কলাম বিয়াম ১৮-৮ ফিলার রড অত্যাবশ্যক। যদি বিশেষ ধরনের রড না পাওয়া যায়, সেক্ষেত্রে মূল ধাতুর টুকরা কেটে রড হিসাবে ব্যবহার করা ভালো।
- ফ্লাক্সের ব্যবহার নির্ধারণ: স্টেইনলেস স্টিল ওয়েল্ডিং-এ কেবল ক্রোমিয়াম সহজে অক্সিডাইসড হয়
 না বরং ওয়েল্ডিং-এর সময় সৃষ্ট অক্সাইড ফ্লেম এবং কার্যবস্তুর মধ্যে একটি অপরিবাহী প্রতিবন্ধক হিসাবে
 কাজ করে। সুতরাং গলিত ধাতু ভালোভাবে নিয়য়্রণ করতে, শক্তিশালী, পরিষ্কার ও ভালো আকৃতির
 ওয়েল্ড তৈরি করতে ফ্লাক্সের প্রয়োজন।
 - পাউডার ফ্লাক্স পানির সাথে মিশ্রিত করে পাতলা পেস্ট তৈরি করা হয়, অতঃপর ব্রাশের সাহায্যে তা জোড় মুখে, ফিলার রডে কিংবা উভয়েই ফ্লাক্স লাগানো হয়। অক্সিডেশন প্রতিরোধ করতে এবং জোড়ের তলদেশ বরাবর অধিকতর নিখুঁত জোড়া তৈরির জন্য জোড়ের নিচের পৃষ্ঠেও ফ্লাক্সের আবরণ দেওয়া ভালো।
- ওয়েন্ডিং: বামহাতি পদ্ধতি ব্যবহৃত হবে। ফ্লেমের ইনার কোণের টিপ গলিত ধাতুর স্থূপাকৃতি হতে প্রায়
 ১.৬ মিমি উপরে রাখতে হবে। টর্চের কোণ প্রায় ৪৫ ডিগ্রি হবে। জোড়ের যে প্রান্তে ওয়েন্ড আরম্ভ হবে
 সে প্রান্ত কিছুটা উঁচু রাখতে হবে যাতে ফ্লাক্স এবং গলিত ধাতু সামান্য গড়িয়ে গিয়ে অক্সিজেন সৃষ্টি হতে
 বাধা দান করতে পারে। ফিলার রড যোগ করার সময় তা কোণের খুব কাছাকাছি ধরতে হবে। এপাশ
 ওপাশ দোলন গতিতে ওয়েন্ড করতে হবে।

ওয়েভিং খ্যাভ কেব্রিকেশন-২

চিত্র : বাষহাতি ওরেন্ডিং

৩.৪ স্টেইনলেস স্টিল ধরেন্ডিং-এ গৃহীতব্য বিশেষ ব্যবস্থার ব্যাখ্যা : নিম্নে স্টেইনলেস স্টিল ধরেন্ডিং-এর বিশেষ ব্যবস্থাসমূহ প্রদন্ত হলো :

- স্টেইনলেস স্টিল ওয়েন্ডিং করতে যেখানে সম্ভব কপার ব্যাকিং ব্যবহার করতে হবে ।
- মাইভ স্টিল গুয়েন্ডিং-এর ভুলনায় এক কিংবা দুই সাইজ ছোট টিপ ব্যবহার করতে হবে।
- বিকৃতি এবং মোচড়ানো কমাবার জন্য ওয়ার্কিগস ভালোভাবে ক্লাম্প করতে হবে।
- ফ্রেম পুরোপুরি নিউট্রাল অথবা সামান্য রিডিউসিং কিনা তা নিশ্চিত হতে হবে।
- স্টেইনলেস স্টিলের জন্য বিশেষভাবে ডিজাইন করা ফ্রাক্স ব্যবহার করতে হবে ।
- পাতলা শিটের ওয়েন্ডিং-এ বামমুখী পদ্ধতি ব্যবহার করতে হবে ।

প্রশ্নমালা-৩

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. স্টেইনলেস স্টিল ওয়েন্ডিং করতে কীরূপ ফ্লাক্স দরকার?
- ২. স্টেইনলেস স্টিল ওয়েন্ডিং করতে কোন ধাতুর ব্যাকিং দরকার?
- ৩. স্টেইনলেস স্টিল ওয়েল্ডিং করার জন্য কোন ফ্লেম উপযোগী?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. স্টেইনলেস স্টিলের ওয়েন্ডিং-এর সতর্কতাগুলো লেখ।
- ২. স্টেইনলেস স্টিলের ওয়েন্ডিং-এর প্রাক্কালে বিবেচ্য বিষয়গুলোর নাম লিখ।
- ৩. স্টেইনলেস স্টিলের ওয়েন্ডিং উপযোগিতাগুলো কী কী?

রচনামূলক প্রশ্লাবলি:

- ১. স্টেইনলেস স্টিলের ওয়েন্ডিং উপযোগিতা বর্ণনা কর।
- ২. স্টেইনলেস স্টিলের ওয়েল্ডিং-এর প্রাক্কালে বিবেচ্য বিষয়গুলোর বর্ণনা দাও।
- ৩. স্টেইনলেস স্টিলের ওয়েন্ডিং-এর সতর্কতাগুলো বর্ণনা কর।

চতুর্থ অধ্যায় অ্যালুমিনিয়াম ওয়েল্ডিং কৌশল

(Techniques Of Alluminium Welding)

8.১ অ্যালুমিনিয়াম ওয়েন্ডিং উপযোগিতা বর্ণনা :

পৃথিবীতে প্রাচুর্যের দিক দিয়ে অক্সিজেনের পরেই অ্যালুমিনিয়ামের স্থান। মাটিতে অ্যালুমিনিয়াম প্রায় ৭.৪৭% ভাগ। ইঞ্জিনিয়ারিং ম্যাটেরিয়াল হিসাবে অ্যালুমিনিয়াম খুবই গুরুত্বপূর্ণ। কারণ ইহা হালকা (প্রতি ঘন সেন্টিমিটারে ২.৭ গ্রাম ওজন)। লোহার ওজনের প্রায় তিন ভাগের এক ভাগ এবং ইহা বায়ুমগুলীয় আক্রমণ (Atmospheric attack) হতে মুক্ত। ইহা তাপ ও বিদ্যুৎ সুপরিবাহী। ইহা পলিশ করা হলে আলো ও তাপ প্রতিফলিত (Reflect) করে।

খাঁটি অ্যালুমিনিয়ামের কার্যক্ষমতা কম। এর সঙ্গে অন্য ধাতু মিশালে এর কার্যক্ষমতা বাড়ে। এই মিশ্রিত ধাতুকে এলয় বলে। অ্যালুমিনিয়ামের সাথে সাধারণত তামা, ম্যাঙ্গানিজ, ম্যাগনেসিয়াম, দস্তা, সিলিকন প্রভৃতি মিশিয়ে অ্যালয় করা হয়।

বাতাসের সংস্পর্শে আসার সঙ্গে সঙ্গে অ্যালুমিনিয়ামের সঙ্গে অক্সিজেনের রাসায়নিক বিক্রিয়ার ফলে অ্যালুমিনিয়াম অক্সাইড তৈরি হয় এবং এই অক্সাইড অ্যালুমিনিয়ামের গায়ে আবরণের মত শব্দু হয়ে যায়। এই আবরণই অতঃপর তখন অ্যালুমিনিয়ামের সঙ্গে বাতাসের পরবর্তী সংযোগে বাধা সৃষ্টি করে। ফলে আবরণ লাগার পরে রসায়নিক বিক্রিয়া হতে পারে না।

অ্যালুমিনিয়ামকে প্রথমত তিন ভাগে ভাগ করা যায়। যথা:

- বাণিজ্যিক খাঁটি অ্যালুমিনিয়াম
- রট (Wrought) অ্যালুমিনিয়াম
- কাস্ট (Cast) অ্যালুমিনিয়াম

খাঁটি অ্যালুমিনিয়ামের ব্যবহার সীমিত। ইহা বৈদ্যুতিক তার (Electic wire) রাসায়নিক যন্ত্রপাতি (Chemical apparatus), ঘরের কাজের বাসনপত্র (Household) এবং অন্য মেটালের গায়ে আবরণ (Coating) দেওয়ার কাজে ব্যবহৃত হয়। শিল্পক্ষেত্রে অধিক হারে ব্যবহার হয় অ্যালুমিনিয়াম এলয়। এই এলয়কে আবার দুই ভাগে ভাগ করা হয়।

- রট এলয় (Wrought Alloy)
- কাস্ট এলয় (Cast Alloy)

রট এলয় আবার দুই ভাগে বিভক্ত

- হিট ট্রিটযোগ্য এলয়
- হিট ট্রিট অযোগ্য এলয়

হিট ট্রিট অযোগ্য এলয়সমূহ নিমুরূপ:

- অ্যালুমিনিয়াম-ম্যাঙ্গানিজ এলয় যাতে ম্যাঙ্গানিজ-এর পরিমাণ ১.৩%
- অ্যালুমিনিয়াম-ম্যাগনেসিয়াম-ম্যাঙ্গানিজ এলয় যাতে ম্যাগনেসিয়ায়ের পরিমাণ ২.৫% এবং ম্যাঙ্গানিজ এর পরিমাণ ০.৩%।

যে সমস্ত অ্যালুমিনিয়াম এলয় এ কপার, ম্যাগনেসিয়াম, সিলিকন অথবা দস্তা মেলানো হয় সে এলয়গুলি হিট ট্রিট যোগ্য।

অ্যালুমিনিয়ামের কাস্ট এলয় এর মধ্যে কপার, সিলিকন, ম্যাগনেসিয়াম, দস্তা, নিকেল, ম্যাঙ্গানিজ, টিন, ক্রোমিয়াম এবং বেরিয়াম বিভিন্ন অনুপাতে মেশানো হয়।

খাঁটি অ্যালুমিনিয়ামের হিট ট্রিট অযোগ্য গ্রুপে পড়ে। হিট ট্রিট অযোগ্য অ্যালুমিনিয়াম ওয়েন্ডিং করা সহজ। তবে হিট ট্রিট যোগ্য অ্যালুমিনিয়াম এলয় ফিউশন (Fusoin) ওয়েন্ডিং করা অসুবিধা।

8.২ অ্যালুমিনিয়াম ওয়েল্ডিং-এর প্রাক্কালে বিবেচ্য বিষয়সমূহ:

অ্যালুমিনিয়ামের ফিউশন (Fusion) ওয়েল্ডিং আরম্ভ করার প্রাক্কালে তিনটি মৌলিক বিষয় বিশেষভাবে মনে রাখা প্রয়োজন।

- গরম হওয়ার প্রাক্কালে লোহা যেরূপ রং পরিবর্তন করে অ্যালুমিনিয়াম সেরূপ রং পরিবর্তন করে না ।
 ফলে গরম হওয়ার প্রাক্কালে অ্যালুমিনিয়াম কী পরিমাণে গরম হলো তা বোঝা যায় না, হঠাৎ গলতে শুরু
 করে ।
- সকল অ্যালুমিনিয়াম গায়ে মজবুতভাবে অক্সাইড (Oxide) লেগে থাকে। এই অক্সাইডের গলনায়
 ১৯৮০° সেঃ অথচ অ্যালুমিনিয়ামের নিজস্ব গলনায় ৬৫৫° সেঃ। এই অক্সাইড অপসারণ করার জন্য
 ফ্রাক্স ব্যবহার করতে হয়। ফ্রাক্স অক্সাইডকে ভেঙে (Fuse) দেয়। তখন ইহা স্লাগ (Slag) আকারে
 গলিত অ্যালুমিনিয়ামের উপর ভেসে উঠে।

অ্যালুমিনিয়াম ওয়েল্ডিং-এর গুণাগুণ ভালো পেতে হলে একে ওয়েল্ডিং-এর পূর্বে গরম করে নিতে হবে। অ্যালুমিনিয়াম গরম করার সময় এর তাপমাত্রা অনুভব করা যায় না। তবে এর ওয়েল্ডিং তাপমাত্রা জানার জন্য ছয়টি পদ্ধতি আছে তা নিমুরূপঃ

- ১. পাইন গাছের লাঠি দিয়ে গরম জায়গা ঘষে দেখতে হয়। যখন লাঠির মাথা পুড়ে কালো আকার ধারণ করে তখন বুঝতে হবে যে ওয়েন্ডিং উপযোগী তাপে মেটালটি গরম হয়ে উঠেছে।
- ২. ঠান্ডা অ্যাপুমিনিয়াম পোহার হাত্ডি দিরে আঘাত করলে রিং আকারে দাগ পড়ে। কিন্তু অ্যাপুমিনিয়াম গরম হতে থাকলে রিং-এর ছাপের মাত্রা কমতে থাকে এবং যখন ওয়েন্ডিং-এর উপযোগী তাপমাত্রায় পৌছাবে তখন রিং-এর ছাপ পৌছাবে না।
- ৩. নীল (যা কারপেন্টারগণ ব্যবহার করে থাকে) চক দিয়ে অ্যালুমিনিয়ামে দাগ দেওয়ার পর অ্যালুমিনিয়াম গরম করতে থাকলে যখন চক এর রং সাদা হয়ে আসবে তখন মনে করতে হবে যে ওয়েন্ডিং-এর উপযোগি তাপমাত্রা পৌছে গেছে।
- ৪, তাপমাত্রা মাপার যন্ত্র দিয়ে মাপা।
- ৫. গ্যাস দিয়ে গরম করে ওয়েন্ডিং রড দিয়ে টোকা মারা । এই অবস্থায় যদি ওয়েন্ডিং রডের মাথা নরম হয়ে আসে তখন মনে করতে হবে যে ওয়েন্ডিং-এর উপযোগী তাপমাত্রায় পৌছে গেছে ।
- ৬. কালো কার্বন দিয়ে প্রলেপ দেওয়া। অ্যানুমিনিয়াম গরম করার সময় কার্বন প্রলেপ পুড়ে গেলে মনে করতে হবে যে ওয়েন্ডিং-এর উপযোগী তাপমাত্রায় পৌছে গেছে।

ওয়েন্ডিং : অ্যালুমিনিয়াম ওয়েন্ডিং বৃত্তাকার বুনন প্রক্রিয়ায় একই গতিতে প্রায় ৩০°-৪০° কোণে টর্চ চালনা করতে হবে। ওয়েন্ডিং সমাপ্ত না হওয়া পর্যন্ত অব্যাহত রাখতে হবে। ওয়েন্ডের উভয় তল হতে ফ্লাক্স সম্পূর্ণরূপে পরিষ্কার করতে হবে।

চিত্র: অ্যালুমিনিয়াম ওয়েন্ডিং

৪.৩ জ্যালুমিনিরাম ওরেন্ডিং-এর ধাপসমূহ:

ক্লাক্স ব্যবহার :

যে কোনো ধরনের ওয়েন্ডিং যথা গ্যাস, মেটাল আর্ক, কার্বন আর্ক অথবা এটমিক হাইড্রোজেন ওয়েন্ডিং এবং ব্রেজিং করার সময়ও অক্সাইড কোটিং অপসারপের জন্য একটি ফ্লাক্স ব্যবহার করা প্রয়োজন। প্রায় সকল অ্যালুমিনিয়াম ওয়েন্ডিং ফ্লাক্সে ক্রোরাইড (Chloride) এবং ক্লোরাইড (Floride) মেশানো থাকে। সোডিয়াম অব পটাশিয়াম সময়য়ে ফ্লাক্স তৈরি হয়। এর সঙ্গে অ্যালকালি ক্লোরাইড (Alkali Chloride) এবং লিথিয়াম ক্লোরাইড যুক্ত করা হয় যাতে ফ্লাক্সের কার্যকারিতা বৃদ্ধি পায়।

কিলার মেটাল : অ্যাল্মিনিয়াম গুরেন্ডিং-এ সাধারণত বেজ-মেটাল যে উপাদনে তৈরি ফিলার মেটালও সে উপাদানের ব্যবহার করা হয়। তবে কার্বকারিতা বাড়ানোর জন্য ৫% সিলিকন মেটালে বুক্ত করা হয়।

বিকৃতি : আল্মিনিরাম ও এর এলয়-এর ভাপ পরিবাহী ক্ষমতা তুলনামূলকভাবে বেশি। তাই ওয়েন্ডিং করার সময় লৃষ্ট তাপের কারণে মেটালটি যেন বাকা বা বিকৃত কম হয় সেই জন্য জোড়া যথাযথভাবে ডিজাইন করা দরকার। পোরসিটি (Porasity) কমানোর জন্য কিনারা হতে ৪০ মিমি ভিতর হতে ওয়েন্ডিং আরম্ভ করতে হয়।

জ্ঞাড় ডিজাইন : আলুমিনিয়ামের প্যাস ওরেন্ডিং-এ মৃলত তিন ধরনের জোড় ব্যবহার করা হর । যথা :

- ল্যাণ (Lap) জোড়
- ফেল (Flange) জোড়
- বাট (Butt) জ্বোড়

ৰাট জয়েন্ট জাবার জিন প্রকার :

- লোচড্-ডি-বাট
- সিলেগল-ভি নোচড় বাট এবং
- ডাবল-ভি-বাট

हिन : Alluminium/Magnesium joint designs

ওরেন্ডিং সম্পন্নকরণ :

অ্যাসুমিনিয়াম ওয়েন্ডিং-এর জন্য প্রথমে কার্ববন্তুকে জোড়ার ধরন অনুবারী অবস্থানে রাখতে হবে। এবং জোড় দেবার স্থানে ফ্লাক্স সংযোগ করে প্রি-হিট দারা জোড় উত্তপ্ত করার পর ট্যাক দিতে হবে। এবার শিখার উত্তাপে ফ্লাক্স গলতে শুরু করলে জবের একপ্রান্ত থেকে শেষ প্রান্ত পর্যন্ত ওয়েন্ডিং দ্রুত সম্পন্ন করতে হবে। বেশি উত্তাপে জোড় স্থান গলে না যায় সে বিষয় সাবধান থাকতে হবে।

िवः Welding procedure for plate

8.8 অ্যালুমিনিয়াম ওয়েন্ডিং-এর সাবধানতা:

- অ্যালুমিনিয়ামের তৈরি কোনো বস্তুর ওয়েভিং করার জন্য জোড় স্থান খুব ভালোভাবে পরিষ্কার করা প্রয়োজন । অক্সাইড অপসারণের জন্য কস্টিক সোডা, নাইট্রিক বা সালফিউরিক অ্যাসিডের দ্রবণ ব্যবহার করা যেতে পারে । একটি ওয়ার ব্রাণ দিয়ে সুন্দররূপে ঘষে পরিষ্কার করার পর গরম পানি দিয়ে বৌত করে নিতে হবে । ১ মি.মি. পুরু পাতের ক্ষেত্রে সমকোণ ও ফাইলিং করা যেতে পারে । ৩ মি. মি. এর উধের্ব পুরু পাতের জন্য ৯০° ভি আকৃতির প্রান্ত এবং ৬ মি.মি. এর বেশি পুরু পাতের বেলায় উভয় পার্শ্বে ৯০° ভি (বর্গাকার) আকৃতি করতে হবে ।
- ওয়েভিংকালিন তাপমাত্রা যাতে অধিক হয়ে কার্যবস্তু হঠাৎ গলে না পড়ে সেজন্য মাঝে মাঝে বিরতি
 দিয়ে ওয়েভিং করতে হয় ।
- ওয়েন্ডিং-এর প্রক্লালে বিবেচ্য বিষয়গুলির দিকে অবশ্যই সতর্ক হতে হবে ।
- অ্যালুমিনিয়াম ওয়েল্ডিং-এর ধাপসমূহ যথাযথভাবে মেনে চলতে হবে ।

প্রশ্নমালা-8

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. অ্যালুমিনিয়াম ওয়েল্ডিং-এর উপযোগিতা কী?
- ২. অ্যালুমিনিয়াম ওয়েন্ডিং-এর বিশেষ সাবধানতা কী?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. অ্যালুমিনিয়াম ওয়েন্ডিং-এর প্রাক্কালে ৫টি বিবেচ্য বিষয়সমুহের নাম লিখ।
- २. ज्यानूमिनियाम ওয়েन्छिः धांপश्चलात नाम निर्थ ।

রচনামূলক প্রশ্লাবলি :

- ১. অ্যালুমিনিয়াম ওয়েন্ডিং-এর সাবধানতা বর্ণনা কর।
- অ্যালুমিনিয়াম ওয়েল্ডিং পদ্ধতির বর্ণনা দাও।

পঞ্চম অধ্যায় কপার ওয়েন্ডিং কৌশল

(Techniques of Copper Welding)

৫.১ কপার ওয়েন্ডিং-এর উপযোগিতা বিবৃতকরণ :

তামা বা কপার একটি মূল্যবান ধাতু। এর উচ্চ তাপ ও বিদ্যুৎ পরিবাহী ক্ষমতা, অক্সিজেন-এর সাথে রাসায়নিক বিক্রিয়ায় কম প্রবণতা এবং উচ্চ ডাকটাইল (Ductile) গুণের জন্য প্রকৌশল কার্যের জগতে বহুলভাবে ব্যবহৃত।

খাঁটি কপারের যান্ত্রিক শক্তি অপেক্ষাকৃত কম। খাঁটি কপার প্রধানত তড়িৎ প্রকৌশল কাজে যথা কেবল (Cable), ব্রাশ বার (brush bar), এবং তার (Wire) তৈরিতে বেশি ব্যবহৃত হয়। কিন্ত কপার এলয়- এর ব্যবহার আরও অধিক। কপার বেজ এলয়গুলিকে প্রধানত দুই ভাগে ভাগ করা যায়:

- ১. কপার এলয় যার মধ্যে অতি অল্প পরিমাণ অন্য ধাতু মেশানো থাকে। এই বিভাগের এলয়গুলি হচ্ছে— সিলভার—কপার, ক্রোমিয়াম—কপার, ক্যাডমিয়াম—কপার, টেলুরিয়াম—কপার, বেলিরিয়াম—কপার এবং কপার—নিকেল সিলিকন এলয়।
- ২. কপার এলয় যার মধ্যে উল্লেখযোগ্য পরিমাণ অন্য ধাতু মেশানো থাকে। এই গ্রুপের এলয়গুলি হচ্ছে ব্রাশ ও ব্রোঞ্জ।

ব্রাশ : ব্রাশ হচ্ছে কপার ও জিংক এর এলয়। এই এলয়-এর গুণাগুণ বৃদ্ধির জন্য এর সঙ্গে অল্প পরিমাণ অন্যান্য ধাতু যথা : টিন, নিকেল, ম্যাগনেসিয়াম, অ্যালুমিনিয়াম মেশানো হয়।

ব্রোঞ্জ: ব্রোঞ্জ হচ্ছে কপার ও টিন এর এলয়। অবশ্য এদের সঙ্গে আরও কয়েকটি ধাতু যথা অ্যালুমিনিয়াম, সিলিকন, ম্যাগনেসিয়াম, আয়রন এবং বেরিয়াম মেশানো হয়। কপার এবং টিনের সঙ্গে জিংক মেশানো হলে তাকে গান-মেটাল বলা হয়।

ওয়েন্ডিং উপযোগিতার বিষয়ে কপারকে প্রধানত দুই ভাগে ভাগ করা যায় :

- ইলেকট্রোরাইট কপার এতে ০.০১% হতে ০.০৮৫ অক্সিজেন থাকে। অক্সিজেন থাকার কারণে এই জাতীয় কপার ওয়েন্ডিং করা অসুবিধাজনক।
- ডি-অক্সিডাইজড্ কপার-এই জাতীয় কপার হতে অক্সিজেন বের করে নেওয়া হয়েছে। সুতরাং ওয়েন্ডিং
 করতে আর অসুবিধা থাকে না। কপার এবং কপার এলয়কে প্রায় সকল সাধারণ ওয়েন্ডিং পদ্ধতিতে
 জোড়া দেওয়া যায় অর্থাৎ গ্যাস ওয়েন্ডিং, আর্ক ওয়েন্ডিং, ব্রেজ ওয়েন্ডিং, ব্রেজিং এবং সোল্ডারিং-এর
 মাধ্যমে জোড়া দেওয়া যায়।

কগার ধয়েন্ডিং কৌশল

৫.২ কণার ওয়েন্ডিং-এর প্রাকালে বিবেচ্য বিষয়সমূহের বর্ণনা :

High coefficient of thermal expansion থাকার কারণে ভাগ প্রয়োগের সময় কপার অধিক হারে প্রসারিত এবং ওরেন্ডিং-এর পরে ঠান্ডা হওয়ার সময় সংকৃতিত হয়। এইভাবে প্রসারণের পর সংকোচনকালে অভ্যন্তরীণ স্ট্রেস আবদ্ধ হয়ে পড়ে। ফলে কার্য বস্তুতে ফাটল ধরে। এই অসুবিধা দূর করার জন্য তিনটি স্ট্রেস (Internal stress) নিরোধক পদ্ধতি অবলঘন করা বেতে পারে।

- কার্যবস্তুতে তাপের অপচয়ন (Insulate) নিবারণ করা। ইহা এসবেসটস-এর মাধ্যমে করা বেতে
 পারে। অথবা
- কার্ববস্তুতে ওয়েন্ডিং-এর পূর্বে গরম করে নেয় । অথবা
- প্রয়েন্ডিং-এর সময় একাধিক অক্সি-টর্চ ব্যবহার করা ।

উপরোক্ত ডিনটি পদ্ধতির মধ্যে অক্সি-টর্চ-এর সাহায্যে কার্যবস্তুকে ওয়েন্ডিং-এর পূর্বে গরম করার পদ্ধতি অধিক ব্যবহৃত হয়।

চিত্র: ওরেন্ডিং-এর জন্য কণার প্রেট থকুতকরণ

৫.৩ কণার ওয়েভিং গছতির ধাণসমূহের বর্ণনা : কণার ওয়েভিং-এর ধাণসমূহ নিয়ৣরণ :

কপার এবং কপার অ্যালর-এর জোড়া দেওরা পদ্ধতি স্টিলের মতোই। তবে গলিত কপারের তরলতা
বেলি হওয়ার কারণে কার্যবন্ধুর নিচে জোগান (backup) দিতে হয়। এই জোগানের মধ্যে ওয়েভিং
জোড় বরাবর বাঁজ কেটে দিতে হয়। বাঁজ না দিলে ওয়েভিং-এ পূর্ণ পেনিট্রেশন হয় না।

- একই পুরুত্তের স্টিল ওয়েন্ডিং-এর তুলনায় কপার ও কপার এলয় ওয়েন্ডিং করার জন্য এক অথবা দুই
 সাইজ বড় অক্সি-অ্যাসিটিলিন টর্চ টিপ ব্যবহার করতে হবে । ফিউশন ওয়েন্ডিং-এর ক্ষেত্রে টর্চ শিখা
 নিউট্রাল হবে এবং ব্রেজিং-এর ক্ষেত্রে কিছুটা অক্সিডাইজিং শিখা হবে ।
- যথাসম্ভব একই রানে ওয়েল্ডিং সম্পন্ন করতে হবে। যদি কার্যবস্তুটি খুব বেশি পুরু হয় সেই অবস্থায়
 দিতীয় রান দেওয়ার সময় ১০ মি.মি. ভিতর থেকে আরম্ভ করতে হবে। ওয়েল্ডিং করার সময় একই
 ডিরেকশন (Direction) অবলম্বন করতে হবে।
- ব্রেজ ওয়েভিং করার পর ওয়েভিং জোড় কোনো সতর্কতামূলক ব্যবস্থা গ্রহণ করার প্রয়োজন পড়ে না।
 তবে ফিউশন ওয়েভিং-এর পর হাতুড়ি দিয়ে ওয়েভিং জোড় পিটাতে হয় যাতে মেটালের দানা ছোট
 ছোট হয়, কিউপ্রাস-অক্সাইড গ্রেইন (Cuprous oxide grain) ভেঙে যায় এবং অবরুদ্ধ স্ট্রেস কমে
 যায়। এই কাজে বলপিন হাতুড়ি ব্যবহার করা যেতে পারে।
- সাধারণত ওয়েল্ডিং-এর পর কপারকে এনিলিং (Annealing) করা হয়। লাল বা কালো রং ধারণ না
 করা পর্যন্ত তাপ প্রয়োগ করতে হয়। তারপর সঙ্গে সঙ্গে পানিতে ভুবিয়ে ঠান্ডা করতে হয়।

৫.৪ কপার ওয়েন্ডিং-এর সতর্কতা :

কপার ওয়েল্ডিং-এর সময় নিমুবর্ণিত সতর্কতা অবলম্বন করা দরকার:

- Hot shortness-অর্থাৎ ২৭৫° সেঃ আরম্ভ হয়ে ৫০০° সেঃ এর মধ্যে কপারের কার্যক্ষমতা
 (Strength) কমে যায় (প্রায় ৪০%)।
- তাপ বৃদ্ধিতে প্রসারণ এবং তাপ কমে যাওয়াতে সংকোচন-এর হার বেশি (বিশেষ করে Hot short মাত্রার মধ্যে) হওয়ার কারণে বিকৃতি করতে পারে এমন কি ভাঙন ধরতে পারে ।
- গলিত অবস্থায় কপার কার্বন-মনো অক্সাইড, হাইড্রোজেন প্রভৃতি শোষণ করে এবং কঠিন আকার ধারণ (Solidification) করার সময় উক্ত গ্যাস বহিষ্কার করে দেয়। ফলে ওয়েল্ডের মধ্যে শূন্যতা বা পোরসিটি হয় এবং ঘনত্ব কমে যায়।
- দ্রুত মিশ্রণযোগ্য অক্সাইড সৃষ্টি হওয়ার কারণে যান্ত্রিক ক্ষমতা বিশেষভাবে ক্ষতিগ্রস্ত হয়।

কপার ওয়েন্ডিং কৌশল

প্রশ্নমালা-৫

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. কপার ওয়েন্ডিং-এর জন্য কীরূপ ফিলার রড দরকার?
- ২. কপার ওয়েন্ডিং-এর জন্য সঠিক ফ্লেম কোনটি?
- ৩. কপার ওয়েল্ডিং-এর জন্য ব্লো-পাইপের কোণ কত ডিগ্রি হবে?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. কপার ওয়েন্ডিং করার জন্য বিবেচ্য বিষয়গুলো কী কী?
- ২. কপার ওয়েল্ডিং-এর জন্য কীরূপ জোড় ডিজাইনের দরকার?
- ৩. কপার ওয়েন্ডিং-এর উপযোগিতা বর্ণনা কর।

রচনামূলক প্রশ্নাবলি :

- ১. কপার ওয়েন্ডিং-এর জন্য বিবেচ্য বিষয়গুলোর বর্ণনা কর।
- ২. কপার ওয়েন্ডিং-এর জন্য সতর্কতামূলক ব্যবস্থাদি বর্ণনা কর।
- ৩. কপার ওয়েন্ডিং-পদ্ধতির বর্ণনা দাও।

ষষ্ঠ অধ্যায় ব্রাশ ওয়েন্ডিং কৌশল

(Techniques Of Brass Welding)

৬.১ ব্রাশ ওয়েন্ডিং-এর উপযোগিতা বিবৃতকরণ :

কপার এবং জিংকের সংকরের নামই ব্রাশ। যখন ব্রাশ ও তার সংকরসমূহ উত্তপ্ত হয়ে গলনাঙ্কে পৌছায় তখন জিংক অক্সিডাইজড হয়ে প্রচুর পরিমাণ কুণ্ডলায়িত ধোঁয়ার সৃষ্টি করে এবং যদি তা অব্যাহত থাকে তাহলে সম্পূর্ণ ওয়েল্ড বুদ্বুদ সৃষ্টিজনিত গর্ত এবং দুর্বল হবে।

অক্সিডাইজিং ফ্রেম ব্যবহার করে এটি প্রতিরোধ করা যেতে পারে।

७.२ वाण ध्याष्टिश-अत शाकारण विरवछ विषयमभृव :

ব্রাশ ওয়েন্ডিং-এর প্রাক্কালে বিবেচ্য বিষয়সমূহ নিম্নে প্রদন্ত হলো :

- ওয়ার্কপিস প্রস্তৃতি
- টিপ নির্ধারণ
- ফ্রেম অ্যাডজাস্টমেন্ট
- ফিলার ও ফ্লাক্স বাছাইকরণ
- ওয়েন্ডিংকরণ

৬.৩ ব্রাশ ওয়েন্ডিং পদ্ধতির ধাপসমূহ:

প্রস্তুতি: ওয়ার্কপিস জোড়ের ধার ও ফেস পরিষ্কার করতে হবে এবং ব্যবহৃত স্বাভাবিক নিয়মে তা প্রস্তুত করতে হবে। ৩.২ মিমি এর অধিক পুরু শিট ৯০ ডিগ্রি ডি করতে হবে।

টিপ নির্ধারণ : অধিক তাপ পরিবহনের দরুন একই পুরুত্বের স্টিলের তুলনায় বড় নজল ব্যবহৃত হবে। ফ্লেম অ্যাডজাস্টমেন্ট : অক্সিডেশন প্রতিরোধের জন্য অক্সিডাইজিং ফ্লেম ব্যবহৃত হবে।

চিত্র: হেভি টক্সি ফিউম

ব্রাশ ওয়েন্ডিং কৌশল ১৭৩

ফিলার রড ও ফ্লাক্স বাছাইকরণ : উত্তম ব্রাশ ওয়েল্ড পেতে হলে সিলিকন ব্রোঞ্জ ফিলার রড ব্যবহার করতে হবে । এই ফিলার রডের উপাদানগুলোর অনুপাত নিম্নরপ :

94%	Min-cu	
2.8-4.0%	Si	
1.5%	Zn	
1.5%	Mn এবং	
0.5%	Fe	

অনেক সময় বেস মেটালের অনুরূপ ফিলার রড ব্যবহার করা হয়।

ওয়েন্ডিং : ব্রাশ সাধারণত Fore hand technique এবং গ্যাস ওয়েন্ড করা হয়। টর্চ বৃত্তাকার গতিতে চালনা করে প্রেট গরম করতে হবে।

- ব্লো-পাইপ নজল এবং ফিলার রডের কোণ হবে ৩০°-৪৫°।

চিত্র : ব্রাশ ওয়েন্ডিং

- ওয়েল্ড পুল হতে ফ্রেমের কোণ প্রায় ১ মিমি উপরে রেখে একই গতিতে তা চালনা করতে হবে।
- ফিলার রড কিছুটা এপাশ-ওপাশ এবং উপরে-নিচে দোলাতে হবে এবং ওয়েন্ডিং সম্পন্ন করতে হবে।

৬.৪ ব্রাশ ওয়েন্ডিং-এর সতর্কতা :

ব্রাশ ওয়েল্ডিং-এ নিম্নলিখিত ক্ষেত্রে সতর্কতামূলক ব্যবস্থা গ্রহণ করতে হবে :

- জোড়-এর রুট ফাঁক নিয়ন্ত্রণ করতে হবে।
- ফ্রেম অ্যাডজাস্টমেন্ট সঠিক করতে হবে।
- টর্চ ও ফিলার রড সঠিকভাবে চালনা করতে হবে।
- Backing মেটাল হিসাবে কার্বন প্লেট ব্যবহার করতে হবে।

প্রশ্নমালা-৬

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ব্রাশ ওয়েন্ডিং-এর জন্য ব্লো-পাইপের কোণ কত হওয়া দরকার?
- ২. ব্রাশ ওয়েন্ডিং-এর জন্য কীরূপ টিপের প্রয়োজন?
- ৩. ব্রাশ ওয়েল্ডিং-এর জন্য কীরূপ ফ্লেমের প্রয়োজন?

সংক্ষিপ্ত প্রশ্নাবলি :

- ব্রাশ ওয়েন্ডিং-এর প্রস্তৃতি বর্ণনা করা।
- ২. ব্রাশ ওয়েন্ডিং-এর উপযোগিতা বর্ণনা কর।
- ৩. ব্রাশ ওয়েন্ডিং-এর জন্য কীরূপ ফ্লাক্সের দরকার?

রচনামূলক প্রশ্নাবলি :

- ১. ব্রাশ ওয়েল্ডিং-এর সাবধানতাগুলো লেখ।
- ২. ব্রাশ ওয়েন্ডিং পদ্ধতির বর্ণনা দাও।
- ৩. ব্রাশ ওয়েন্ডিং-এর প্রাক্কালে বিবেচ্য বিষয়গুলোর বর্ণনা দাও।

সঙ্গ অধ্যায় টিগ ওয়েন্ডিং মেশিন

(TIG Welding Machine)

৭.১ টিগ ওয়েন্ডিং-এর কার্যনীতি বর্ণনাকরণ :

Tungsten Inert Gas এর সংক্ষিপ্ত নাম TIG। এই পদ্ধতিতে ইলেকট্রিক আর্ক (Electric arc) তৈরির জন্য ইলেকট্রোড হিসেবে একটি Tungsten rod ব্যবহার করা হয় এবং আর্ক ও গলিত ধাতুকে বাতাসের (Atmospheric attack) আক্রমণ হতে রক্ষার জন্য আবরণ হিসেবে (Shielding) ইনার্ট গ্যাস (Inert gas) (আর্গন, হিলিয়াম, নিয়ন) ব্যবহার করা হয়।

চিত্র: টিপ ওয়েন্ডিং মেশিন

এই পদ্ধতিতে ওয়েন্ডিং-এর জন্য নিম্নে বর্ণিত সরঞ্জামাদি ব্যবহার করা হয় । সরঞ্জামাদিগুলি নিম্নরূপ :

- ওয়েন্ডিং-এর জন্য বিদ্যুতের উৎস একটি জেনারেটর বা ট্রালফরমার
- ইনার্ট প্যাস সরবরাহের ব্যবস্থা
- একটি গ্যাস রেগুলেটর

- ইলেকট্রোডের জন্য একটি মানানসই (Adjustable) হোল্ডার (টিগ টর্চ)
- ঠান্ডা করার জন্য পানির সরবরাহ
- এই সমস্ত সরঞ্জাম সংযোগের জন্য মানানসই (Adjustable) হোজ এবং কেবল

এছাড়া আরও কিছু সাহায্যকারী অপশনাল ইক্ইপমেন্ট আছে। উপরে উল্লেখিত মেশিনগুলোর ধরন মোটামুটি চার রকম হতে পারে।

- হস্তচালিত ইকুইপমেন্ট
- আধা-যান্ত্রিক ইকুইপমেন্ট
- যান্ত্রিক ইকুইপমেন্ট

৭.২ টিগ ওয়েন্ডিং মেশিনের বিভিন্ন অংশ শনাক্তকরণ :

- মোটর জেনারেটর তথু ডিসি
- এসি ট্রালফর্মার
- রেকটিফায়ারসহ এসি ট্রালফর্মার
- হাজ পাইপ
- সিন্ডিং গ্যাস সিলিভার
- ওয়্যার রিল
- কন্ট্রোল সিস্টেম
- ওয়্যার ফিড ছ্রাইভ মোটর ইত্যাদি।

টিগ প্রয়েন্ডিং মেশিন ১৭৭

টিগ ওয়েন্ডিং-এ মূলত তিন ধরনের বিদ্যুৎ সরবরাহ ব্যবহার করা হয়। তা হচ্ছে DCSP (Direct Current Straight Polarity), DCRP (Direct Current Reverse Polarity), এবং ACHF (Alternating Current High Frequencys)। ডিসি এসপি বিদ্যুৎ সরবরাহে ট্যাংগস্টন ইলেকট্রোড নেগিটিভ (Negative) টারমিনালে এবং কার্যবন্ধটি (Positive) টার্মিনালে যুক্ত করা হয়। অপরপক্ষে ডিসিআরপি বিদ্যুৎ সরবরাহে টাংস্টেন ইলেকট্রোড পজিটিভ টারমিনালে এবং কার্যবন্ধটি নেগেটিভ টারমিনালে যুক্ত করা হয়।

हिबा: Tig DCSP

च्यि : Base-Metal Penetration

ওরেন্ডিং টর্চ : ইহা সাধারণত দুই প্রকারের হয়ে থাকে।

- ১. পানি দ্বারা শীতলকৃত, যা অপেক্ষাকৃত পুরু ধাতু এবং বাণিজ্ঞ্যিক ভিন্তিতে দীর্ঘ বিরতিহীনভাবে কাজ করার ক্ষেত্রে ব্যবহৃত হয়ে থাকে এবং
- ২. বাভাস দারা শীতসকৃত।

विवा: ग्रिम श्रादास्थिर विर्व

মেশিন ও সাজ-সরঞ্জামের ব্যবহার :

- শুরোকিং ট্রালকরমার: এটি লো-ভোপ্টেল ও উচ্চ কারেন্ট কৈরিতে ব্যবহার করা হয়।
- ২, আর্থন গ্যাস সিলিভার: ওয়েন্ডিং কালীন জোডকে অক্সিডেশন হতে রক্ষা করে।
- উর্চের ব্যবহার: টর্চের কোপ সাধারণত ৭০% ৮০ ° এর মধ্যে রাখতে হবে। আর্ক লেংগ ইলেকট্রোডের ব্যাস-এর উপর নির্ভন করে। সাধারণত ৩.২৫-৫ মি.মি. হরে থাকে। ফিলার রডের কোপ সাধারণত মৃদ ধাতুর সঙ্গে ১০%-২০° হয় চিত্রানুষায়ী। মৃদ ধাতুর ধরন, পুরুত্ব এবং তাপমাত্রার ভিত্তিতে গলিত থাতুর অথবর্তী অংশে নিয়মিত বিরভিতে ফিলার রড বোগ করতে হয়। নিচের হবি দ্রউব্য। ওয়েভ জোড়ের ডিজাইনের উপর নির্ভর করে টাংস্টেন ইলেকট্রোড কতথানি নজলের বাইরে থাকবে, বিষয়টি চিত্রে দেখালো হলো:

छित्र : Torch and filler metal angles

চালনার পঞ্জি: সঠিক পতিতে টর্চ ও ফিলার রড চালনা করতে হর । অ্যালুমিনিয়াম উত্তও হলে পতি
বাড়াতে হর । মূল থাতুর সলে ঝাকিং বার (Backing bar) সংযুক্ত হলে গতি কমাতে হর ।

টিগ ওয়েন্ডিং মেশিন ১৭৯

ওয়েল্ডিং আরম্ভ করার পূর্বে কারেন্ট, গ্যাস, পানি এবং স্বয়ংক্রিয় সেটিংসমূহ নিরীক্ষা করতে হবে ।

- গ্যাস ও পানির লাইন বাতাসমুক্ত করতে হবে ।
- অক্সিডাইজিং প্রতিরোধ করার জন্য ফিলার রডের অগ্রভাগে গ্যাসের আবরণীর মধ্যে রাখতে হবে ।
- গলিত ধাতুর পুলে ফিলার রড যুক্ত করার সময় মূল ধাতুর সংস্পর্শে রাখা নিশ্চিত করতে হবে। এতে ওয়েল্ডপুল ভালোভাবে নিয়ন্ত্রণ করা যাবে এবং ইলেকট্রোডের সঙ্গে এর স্পর্শ হওয়ার আশঙ্কা কমে যাবে। ফলে ইলেকট্রোড কলুষিত হওয়া এবং অপারেটরের তড়িতাহত হওয়ার আশঙ্কা দুরীভূত হবে।
- ইলেকট্রোড এবং মূল ধাতুর অক্সিডেশন প্রতিরোধ করার জন্য ওয়েল্ডিং-এর শেষে যখন সুইচ বন্ধ করা হয় তখন গ্যাস প্রবাহিত অবস্থায় রানের প্রান্তে টর্চ ১০-১৫ সেকেন্ড ধরে রাখতে হবে।
- আর্গনের আবরণকে সঠিকভাবে বজায় রাখবার জন্য ওয়েল্ডিং-এর অবস্থান দমকা বাতাসমুক্ত হওয়া উচিত।
- আন্তসংযোগীয় কেবলস এবং হোজসমূহ (Inernal connections cables & hosses) : এদের ভিতর দিয়ে একই সঙ্গে সিন্ডিং গ্যাস, বৈদ্যুতিক প্রবাহ এবং কোনো কোনো ক্ষেত্রে ঠাভা পানি প্রবাহ একটি মাইক্রো সুইচের সাহায্যে নিয়ন্ত্রণের মাধ্যুমে টর্চ সরবরাহ করা হয়।

৭.৩ টিপ ওয়েন্ডিং যন্ত্রপাতি ও সাজ-সরঞ্জামের যত্ন ও রক্ষণাবেক্ষণ :

যে কোনো শিল্প কারখানায় মেশিন বা যন্ত্রপাতি অন্যান্য খুচরা যন্ত্রাংশ কারখানার নির্দিষ্ট স্থানে রাখা উচিত। কাজ শেষে মেশিন বা যন্ত্রপাতি পরিষ্কার করে খুচরা যন্ত্রাংশ যথাস্থানে রাখা দরকার। কখনও তা ময়লা বা অপরিষ্কার অবস্থায় রাখা উচিত নয়। প্রয়োজন হলে খুচরা যন্ত্রাংশ বা কাঁচামাল রাখার জন্য ভিন্ন ভিন্ন ভিন্ন ব্যাক বা সেলফ রাখা উচিত এবং সেই মোতাবেক সাজিয়ে রাখা উচিত। এখানে উল্লেখ্য যে, যে কোনো জিনিসের স্থায়িত্ব এর যত্ন ও রক্ষণাবেক্ষণের উপর অনেকাংশে নির্ভর করে। সুতরাং মেশিন ও সাজ-সরঞ্জামের সঠিক রক্ষণাবেক্ষণ একান্ত দরকার।

প্রাথমিক প্রস্তুতি ও মূল ধাতু পরিষ্কারকরণ: মূল ধাতুর প্রান্ত প্রস্তুত করা হয় গ্যাস ওয়েন্ডিং-এর ন্যায়, তবে পরিষ্কারকরণ প্রক্রিয়া অত্যন্ত সতর্কতার সাথে এবং যত্ন সহকারে করতে হবে।

কারেন্ট এবং গ্যাসের প্রবাহ সেটিং : ইলেকট্রোড সাইজের জন্য অনুমোদিত ধাপে (Range) কারেন্ট রাখতে হবে । কারেন্ট খুব কম হলে আর্ক এদিক-সেদিক দৌড়াদৌড়ি করবে এবং মাত্রাতিরিক্ত কারেন্ট ব্যবহারে ওয়েল্ডের মধ্যে টাংস্টেন ইনকুশন বা দূষণ হতে পারে । ভার্টিক্যাল ও ওভারহেড অবস্থানে ১০% কারেন্ট কমাতে হবে ।

প্রশ্নমালা-৭

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. ডিসি সাসপ্রেসার ইউনিট কী?
- ২. টিগ ওয়েল্ডিং-এ ব্যবহৃত বৈদ্যুতিক শক্তির উৎসের নাম লেখ।
- ৩. হাই ফ্রিকোয়েন্সি ইউনিট কী স্থায়ী করে?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. টিপ ওয়েন্ডিং-এর জন্য গ্যাসের বর্ণনা দাও।
- ২. টিগ ওয়েন্ডিং মেশিনের বিভিন্ন অংশের নাম লেখ।
- ৩. টিগ ওয়েন্ডিং-এর সাজ-সরঞ্জামগুলো কী কী?

রচনামূলক প্রশ্লাবলি:

- ১. টিগ ওয়েন্ডিং মেশিনের চিত্র অঙ্কন করে বিভিন্ন অংশ দেখাও।
- ২. টিগ ওয়েন্ডিং মেশিনের সাজ-সরঞ্জামের বর্ণনা দাও।
- ৩. টিগ ওয়েল্ডিং মেশিনের যত্ন ও রক্ষণাবেক্ষণের বর্ণনা দাও।

অষ্টম অধ্যায় টিগ ওয়েল্ডিং-এর সতর্কতা

(Precautions of TIG Welding)

৮.১ টিগ ওয়েন্ডিং মেশিন চালনার সতর্কতা:

ওয়েন্ডিং শুরু করার পূর্বে কারেন্ট, গ্যাস, পানি ও স্বয়ংক্রিয় সেটিংগুলো পরীক্ষা করে নিতে হবে।

- গ্যাস ও পানির লাইন বাতাসমুক্ত করতে হবে ।
- অক্সিজেন প্রতিরোধ করার জন্য ফিলার রডের অগ্রভাগ গ্যাসের আবরণীর মধ্যে রাখতে হবে ।
- গলিত ধাতুর পুলে ফিলার রড যুক্ত করার সময় মূল ধাতুর সংস্পর্শে রাখা নিশ্চিত করতে হবে। এতে ওয়েল্ডপুল ভালোভাবে নিয়ন্ত্রণ করা যাবে এবং ইলেকট্রোডের সঙ্গে এর স্পর্শ হওয়ার আশঙ্কা কমে যাবে। ফলে ইলেকট্রোড কলুষিত হওয়া এবং অপারেটরের তড়িতাহত হওয়ার আশঙ্কা দূর হবে।
- ইলেকট্রোড এবং মূল ধাতুর অক্সিডেশন প্রতিরোধ করার জন্য ওয়েন্ডিং-এর শেষে যখন সুইচ বন্ধ করা হয় তখন গ্যাস প্রবাহিত অবস্থায় রানের প্রান্তে টর্চ ১০-১৫ সেকেন্ড ধরে রাখতে হবে।
- ইলেকট্রোড এবং মূল ধাতুর অক্সিডেশন প্রতিরোধ করবার জন্য ওয়েল্ডিং-এর শেষে যখন সুইচ বন্ধ করা
 হয় তখন গ্যাস প্রবাহিত অবস্থায় রানের প্রান্তে টর্চ ১০-১৫ সেকেন্ডে ধরে রাখতে হবে ।
- আর্গনের আবরণকে সঠিকভাবে বজায় রাখবার জন্য ওয়েলিং-এর অবস্থান দমকা বাতাসমুক্ত হওয়া উচিত ।

টিগ পদ্ধতিতে ওয়েন্ডিং করার সময় নিম্নবর্ণিত সতর্কতামূলক ব্যবস্থা অবলম্বন করা দরকার :

- সঠিকভাবে জোড় প্রস্তুতকরণ।
- একজন অভিজ্ঞ ইলেট্রিশিয়ান/ইলেকট্রিক্যাল ইঞ্জিনিয়ারকে দিয়ে সঠিক বিদ্যুৎ সংযোগ দিতে হবে যাতে বৈদ্যুতিক শক প্রুফ হয়।
- সঠিক ইলেকট্রোড নির্বাচন।
- ধাতু অনুসারে কারেন্ট ও গ্যাস প্রবাহের চার্ট ব্যবহার করা ।
- সঠিক ফিলার মেটাল ব্যবহার করা ।

৮.২ টর্চ হ্যান্ডেলিং এ সতর্কতা:

- টর্চের কোণ সাধারণত ৮০°-৯০° এর মধ্যে রাখতে হবে। আর্কের দৈর্ঘ্য ইলেকট্রোডের ব্যাসের উপর
 নির্ভর করে সাধারণত ৩.২৫ মিমি হয়ে থাকে। ফিলার রডের কোণ সাধারণত মূল ধাতুর সাথে ১০°২০° তে নিচের চিত্রের ন্যায় হয়।
- টর্চ হ্যান্ডলিং-এ সবচেয়ে বেশি সতর্ক হতে হবে যাতে বৈদ্যুতিক শক (Electric Shock) না লাগে।

চিবা : টিগ গুরেন্ডিং টর্চ ৮০"-৯০" ফোলে ধরা

মূল থাতুর ধরন, পুরুদ্ধ ও ভাগমাত্রার ভিন্তিতে গলিত থাতুর পুলের কপ্রবর্তী অংশে অবিরত কিলার রড বোগ করতে হয়।

চালনার গতি :

সঠিক পজিতে টর্চ ও কিলার রড চালনা করতে হর। জ্যালুমিনিরাম পরম হলে ৰাড়াতে হয়। মূল থাতুর সাথে ব্যাকিং বাব (Backing Bar) সংযুক্ত হলে গভি কমাতে হয়।

চিত্ৰ : টৰ্চ চালনাৰ পঞ্চি

- ওয়েন্ডিং ওরু করার পূর্বে কারেন্ট, গ্যাস, পানি ও বয়ংক্রিয় সেটিংগ্রেলা পরীক্ষা করে নিতে হবে।
- প্যাস ও পানির লাইন বাডাসমৃক্ত করতে হবে।
- অক্সিজেন প্রতিরোধ করার জন্য ফিলার রডের অগ্রন্তাপ ইনটি প্যাসের আবরণের মধ্যে রাখতে হবে ।
- গলিত থাতুর পূলে কিলার রড যুক্ত করার সময় মৃল থাতুর সংস্পর্শে ভালোভাবে নিয়য়ণ করা বাবে এবং
 ইলেকট্রেন্ডের সঙ্গে এর স্পর্শ কমে বাবে ।
- ইলেকট্রোড ও মূল ভেলন অক্সিজেন রোধ করার জন্য ওয়েজিং-এর পেবে সূইচ বন্ধ করা হয়।

টিগ ওয়েন্ডিং-এর সতর্কতা

৮.৩ শিন্ডিং গ্যাস সিলিন্ডার ব্যবহারে সতর্কতা:

শিল্ডিং গ্যাস (Shielding Gas) হিসেবে সাধারণত নিষ্ক্রিয় গ্যাস ব্যবহৃত হয়। নিষ্ক্রিয় গ্যাস বিষাক্ত নয় কিন্তু জীবন রক্ষাকারীও নয়। TIG ওয়েল্ডিং-এর ক্ষেত্রে সাধারণ হিলিয়াম ও আর্গন গ্যাস ব্যবহৃত হয়। আর্গন শিল্ডিং গ্যাস বাতাসের চেয়ে ভারী। এ জন্যে বন্ধ স্থানে ওয়েল্ডিং করলে শ্বাস বন্ধ হয়ে যেতে পারে তাই সিলিভার ভালভ, রেগুলেটর ইত্যাদি সতর্কতার সাথে ব্যবহার করতে হবে। উৎপন্ন ধোঁয়া মারাত্মক বিষাক্ত বিধায় সতর্কতার সাথে ব্যবহার করতে হবে। এতএব ওয়েল্ডিংকালীন বাতাশের প্রবাহ বজায় রাখতে হবে।

৮.৪ টিগ ওয়েন্ডিং মেশিন ও হোজ পাইপের রক্ষণাবেক্ষণ:

টিগ ওয়েন্ডিং মেশিন ও হোজ পাইপ কাজ শেষে পরিষ্কার করে খুচরা যন্ত্রাংশ যথাস্থানে রাখা প্রয়োজন। প্রয়োজন হলে র্যাকে বা সেলফে সাজিয়ে রাখা উচিত। কারণ যে কোনো জিনিসের স্থায়িত্ব তার যত্ন ও রক্ষণাবেক্ষণের উপর নির্ভর করে। হোজ পাইপ উত্তাপের কারণে নষ্ট হয়ে না যায়, সেদিকে খেয়াল রাখা প্রয়োজন। হোজ পাইপ অবশ্যই তেল, গ্রিজ বা মবিল যুক্ত রাখতে হবে। কাজ শেষে কারেন্ট, গ্যাস ও পানি প্রবাহ বন্ধ করতে হবে এবং গ্যাস ও পানির লাইন বাতাসে মুক্ত অবস্থায় রাখতে হবে। মেশিন সরঞ্জামের সেফটি ডিভাইসগুলো পরীক্ষা করতে হবে।

প্রশ্নমালা-৮

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. শিল্ডিং গ্যাস সিলিভারের কাজ কী?
- ২. টর্চ হ্যান্ডেলিং কাকে বলে?

সংক্ষিপ্ত প্রশ্নাবলি :

- শিল্ডিং গ্যাস ব্যবহারের সতর্কতা কী?
- ২. টর্চ হ্যান্ডেলিং-এর সতর্কতা লেখ।

রচনামূলক প্রশ্নাবলি :

- টিগ ওয়েল্ডিং মেশিন চালনার সতর্কতা লিপিবদ্ধ কর ।
- ২. টর্চ হ্যান্ডেলিং ও শিল্ডিং গ্যাস ব্যবহারের সতর্কতা বর্ণনা কর।

নবম অধ্যায় টিগ ওয়েন্ডিং পদ্ধতি

(TIG Welding process)

১.১ টিগ ওয়েন্ডিং পদ্ধতি কী তা ব্যক্তকরণ :

টিগ ওয়েন্ডিং পদ্ধতিতে টাংস্টেন ধাতুর ইলেকট্রোড ও কাজের (Work Picec) মধ্যে আর্ক সৃষ্টি করে ফিলার মেটাল গলিয়ে ধাতৃ জ্লোড়া দেওয়া হয়। এই সময় অক্সিডাইজিং থেকে রক্ষার জন্য আর্কের নিব্রিয় গ্যাসের (আর্গন, হিলিয়াম) প্রবাহ বজায় রাখা হয়।

এখন গ্যাস প্রবাহিত অবস্থায় রানের প্রান্তে টর্চ ১০-১৫ সেকেন্ড ধরে রাখতে হর । আর্গনের আবরণকে সঠিকভাবে বজায় রাখার জন্য গুয়েন্ডিং-এর অবস্থান দমকা বাতাসমুক্ত হওয়া আবশ্যক ।

টিগ ওয়েন্ডিং পদ্ধতির ধাপসমূহ নিমুরূপ:

১. কার্ববস্তুর জ্বোড় পরিছারকরণ : মৃল ধাড়ুর প্রান্ত পরিছার করা হয় প্যাস ওয়েন্ডিং-এর মতো। তবে পরিছার অত্যন্ত সতর্কতার সাথে ও যত্ন সহকারে করতে হবে।

টিগ ওরেন্ডিং করার জন্য প্রোজনীয় সকল মেশিন, যন্ত্রপাতি যথাযথভাবে সংযুক্ত করতে হবে । পূর্ণ ওরেন্ডিং সেটের ছবি নিম্নে দেখানো হলো ।

চিত্র: টিগ স্বয়েন্ডিং মেশিন

কারেন্ট এবং গ্যাসের প্রবাহ সেটিং: ইলেকট্রোড সাইজের জন্য অনুমোদিত ধাপে (Range) কারেন্ট সেট রাখতে হবে। কারেন্ট খুব কম হলে আর্ক এদিকে সেদিকে দৌড়াদৌড়ি করবে আবার মাত্রাতিরিক্ত কারেন্ট ব্যবহারে ওয়েল্ডের মধ্যে টাংস্টেন ইনকুশন বা দৃষণ হতে পারে। ভার্টিক্যাল ও ওভারহেড অবস্থানে ১০% কারেন্ট কমাতে হবে।

- ২. **ট্যাকিং ও একত্রীকরণ (Tacking and axxembling) :** মূল ধাতুকে জিগ ফিকচারের সাহায্যে এবং ট্যাক ওয়েল্ডিং-এর সাহায্যে যন্ত্রাংশসমূহের একই অক্ষরেখা বজায় রাখতে হবে ।
- ৩. **ওয়েন্ডিং :** টিগ ওয়েন্ডিং আর্ক এবং গ্যাস উভয় ধরনের ওয়েন্ডিং-এর সাথে অনেক মিল আছে। ওয়েন্ডিং-এর ভালো ফল নির্ভর করে অপারেটরের যন্ত্রপাতিগুলোর উপর নিয়ন্ত্রণ।

৯.২ টর্চ চালনার গুরুত্বপূর্ণ বিষয়াদি

- টর্চের কোণ সাধারণত ৭০° ৮০° এর মধ্যে রাখতে হবে। আর্ক লেংথ ইলেকট্রোডের ব্যাস-এর উপর
 নির্ভর করে। সাধারণত ৩.২৫-৫ মি.মি. হয়ে থাকে। ফিলার রডের কোণ সাধারণত মূল ধাতুর সাথে
 ১০° ২০° হয়।
- চালনার গতি : সঠিক গতিতে টর্চ ও ফিলার রড চালনা করতে হয় । অ্যালুমিনিয়াম উত্তপ্ত হলে গতি
 বাড়াতে হয় । মূল ধাতুর সঙ্গে ব্যাকিং বার (Baking bar) সংযুক্ত হলে গতি কমাতে হয় ।
- ওয়েন্ডিং আরম্ভ করার পূর্বে কারেন্ট, গ্যাস, পানি এবং স্বয়ংক্রিয় সেটিংসমূহ নিরীক্ষা (Test) করতে
 হবে।
- গ্যাস ও পানির লাইন বাতাসমুক্ত করতে হবে ।
- অক্সিজেন প্রতিরোধ করার জন্য ফিলার রডের অগ্রভাগ গ্যাসের আবরণীর মধ্যে রাখতে হবে ।
- গলিত ধাতুর পুলে ফিলার রড যুক্ত করার সময় মূল ধাতুর সংস্পর্শে রাখা নিশ্চিত করতে হবে। এতে
 ওয়েল্ডপুল ভালোভাবে নিয়য়্রণ করা যাবে এবং ইলেকট্রোডের সঙ্গে এর স্পর্শ হওয়ার আশঙ্কা কমে
 যাবে। ফলে ইলেকট্রোড কলুষিত হওয়া এবং অপারেটরের তড়িতাহত হওয়ার আশঙ্কা দূর হবে।
- ইলেকট্রোড এবং মূল ধাতুর অক্সিডেশন প্রতিরোধ করবার জন্য ওয়েল্ডিং-এর শেষে যখন সুইচ বন্ধ করা হয় তখন গ্যাস প্রবাহিত অবস্থায় রানের প্রান্তে টর্চ ১০-১৫ সেকেন্ড ধরে রাখতে হবে।
- আর্গনের আবরণকে সঠিকভাবে রজায় রাখবার জন্য ওয়েল্ডিং-এর অবস্থান দমকা বাতাসমুক্ত হওয়া
 উচিত। অতিরিক্ত শক্তিশালী ধোঁয়া নির্গমন যন্ত্র (Fume extractor) অনুরূপ প্রতিক্রিয়া করতে
 পারে। আর্ক তৈরির কৌশল নিম্লের ছবিতে দেখানো হলো।

টিগ ওয়েন্ডিং পদ্ধতি ১৮৭

Gas tungsten arc welding (GTAW).

চিত্র: আর্ক তৈরির কৌশল

৯.৩ টিগ ধয়েন্ডিং ইলেকট্রোড প্রস্তুতপ্রণালি :

টিগ ওয়েন্ডিং পদ্ধতিতে ৫ প্রকার ইলেকট্রোড ব্যবহৃত হয়। ইলেকট্রোডগুলোর রং দেখে পরিচয় পাওয়া যায়।

- ক) বিশুদ্ধ টাংস্টেন ইলেকট্রোড (সবুজ)
- খ) ১% খোরিয়ামযুক্ত টাংস্টেন ইলেকট্রোড (হলুদ)
- গ) ২% থোরিয়ামযুক্ত টাংস্টেন ইলেকট্রোড (লাল)
- ঘ) জিরকোনিয়ামযুক্ত টাংস্টেন ইলেকট্রোড (বাদামি)
- ঙ) স্ট্রাইপযুক্ত টাংস্টেন ইলেকট্রোড (নীল)

উত্তম ফলাফল পাওয়ার জন্য টাংস্টেন ইলেকট্রোডের আকৃতি (tips) নিম্নরূপ হওয়া দরকার

চিত্র : টাংস্টেন ইলেকট্রোড আকৃতি

ওপরের চিত্রে বিভিন্ন প্রকার টাংস্টেন ইলেকট্রোডের প্রান্তীয় অবস্থা দেখানো হলো।

৯.৪ টিগ ওয়েন্ডিং মেশিন চালনার সতর্কতা :

টিগ ওয়েন্ডিং মেশিন চালনার ক্ষেত্রে যে সকল সতর্কতা অবলম্বন করা হয় তা নিমুরূপ-

- ওয়েন্ডিং আরম্ভ করার পূর্বে কারেন্ট, গ্যাস, পানি এবং স্বয়ংক্রিয় সেটিংসমূহ নিরীক্ষা করতে হবে ।
- গ্যাস ও পানির লাইন বাতাসমুক্ত করতে হবে ।
- অক্সিজেন প্রতিরোধ করার জন্য ফিলার রডের অগ্রভাগ ইনার্ট গ্যাসের আবরণীর মধ্যে রাখতে হবে ।

- গলিত ধাতুর পুলে ফিলার রড যুক্ত করার সময় মৃল ধাতুর সংস্পর্শে রাখা নিশ্চিত করতে হবে। এতে
 ওয়েন্ডপুল ঠিকমতো নিয়য়্রণ করা যাবে এবং ইলেকট্রোডের সাথে এর স্পর্শ হবার আশঙ্কা কমে যাবে।
 ফলে ইলেকট্রোড কলুষিত হওয়া এবং অপারেটরের তড়িতাহত হওয়ার আশঙ্কা কম হবে।
- ইলেকট্রোড ও মূল ধাতুর অক্সিডেশন প্রতিরোধ করার জন্য ওয়েন্ডিং শেষে সুইচ যখন বন্ধ করা হয়,
 তখন গ্যাস প্রবাহিত অবস্থায় রানের প্রান্তে টর্চটি ১০-১৫ সেকেন্ড ধরে রাখতে হবে।
- সার্গনের আবরণকে সঠিকভাবে বজায় রাখার জন্য ওয়েন্ডিং-এর অবস্থান দমকা বাতাসমুক্ত রাখতে
 হবে ।
- অভ্যন্তরীণ কেব্লস (Internal Connection Cable) ও হোজসমূহ (Hoses) এর ভেতর দিয়ে
 একই সঙ্গে সিল্ডিং গ্যাস, বৈদ্যুতিক প্রবাহ এবং ঠান্ডা পানির প্রবাহ টর্চে (Torch) সরবরাহ নিশ্চিত
 করতে হবে। লক্ষ রাখতে হবে, যেহেতু বৈদ্যুতিক প্রবাহ ও গ্যাস সরবরাহের বিষয় এখানে আছে,
 সেহেতু যাতে কোনোক্রমেই বৈদ্যুতিক লেগে বা নিষ্ক্রিয় গ্যাস অধিক প্রবাহে কিংবা বিষাক্ত (Fume)
 শ্বাস-প্রশাস বন্ধ হয়ে মারাত্মক বিপদ না ঘটে। এজন্য প্রশিক্ষণপ্রাপ্ত অপারেটর ছাড়া মেশিন চালনা করা
 উচিত নয়।
- উল্লেখ্য, বর্তমানে অল্প পরিমাণ এবং শুধু ৫-১০ মিমি. ওয়েন্ডিং করার পর নির্দিষ্ট বা অনির্দিষ্ট বিরতিতে
 TIG ওয়েন্ডিং করার জন্য 'পোটেবল TIG ওয়েন্ডিং মেশিন' (Portable TIG Welding
 Machine) বছল জনপ্রিয়তা অর্জন করেছে। এতে অধিক তাপ উৎপন্ন হয় না বিধায় পানি প্রবাহের
 প্রয়োজন হয় না।

চিত্র: TIG ওয়েন্ডিং মেশিন

মেশিন ও সাজ-সরঞ্জাম উত্তমরূপে রক্ষণাবেক্ষণ করতে হবে ।

টিগ ওয়েন্ডিং পদ্ধতি

প্রশ্নমালা-৯

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- ১. টিগ ওয়েন্ডিং পদ্ধতি বলতে কী বোঝায়?
- ২. টিগ ওয়েল্ডিং-এ কোন ধরনের ইলেকট্রোড ব্যবহৃত হয়?
- ৩. টিগ ওয়েল্ডিং-এ ব্যবহৃত ইনার্ট গ্যাসের নামগুলো লেখ।
- 8. পোর্টেবল TIG ওয়েন্ডিং মেশিন কী?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. টিগ ওয়েন্ডিং-এর ইলেকট্রোডের আকৃতিগুলো চিত্রের সাহায্যে দেখাও।
- ২. টর্চ চালানোর গুরুত্বপূর্ণ বিষয়গুলো কী কী?
- ৩. টিগ ওয়েন্ডিং এবং সাধারণ ওয়েন্ডিং-এর পার্থক্য লেখ।

রচনামূলক প্রশ্নাবলি:

- ১. টিগ ওয়েন্ডিং ইলেকট্রোড প্রস্তুতপ্রণালি বর্ণনা কর।
- ২. টিগ ওয়েন্ডিং মেশিন চালানোর সতকর্তা ব্যখ্যা কর।

দশম অধ্যায়

মিগ ওয়েন্ডিং মেশিন

(MIG Welding Machine)

১০.১ মিগ ওয়েন্ডিং মেশিনের কার্বনীতি:

পাতলা নগ্ন তারের ইলেকট্রোড ও ওয়ার্ক পিসের মধ্যে ডিসি আর্ক প্রজ্বালনের আধা স্বয়ংক্রিয় প্রক্রিয়াই মিগ (Metal Inert Gas) ওয়েন্ডিং।

এই পদ্ধতিতে আর্ক ও ওয়েন্ডিং এলাকা নিষ্ক্রিয় গ্যাসের আবরণ দ্বারা ঢাকা থাকে। তারের একটি কুঞ্জী হতে স্বয়ংক্রিয়ভাবে ফিড (Fed) দেওয়া হয়। টর্চটি পজেটিভ (+) টারমিনালের সাথে যুক্ত থাকে এবং হাতের সাহায্যে চালনা করে ওয়েন্ডিং সম্পন্ন করা হয়। মিগ ও টিগ ওয়েন্ডিং মূলত একই ওয়েন্ডিং পদ্ধতি। প্রভেদ শুধু টিগ ওয়েন্ডিং-এ ইলেকট্রোড ক্ষয় হয় না, অন্যদিকে মিগ ওয়েন্ডিং-এ ইলেকট্রোড ক্ষয় হয়ে যায়। উন্নতমানের ও সূক্ষ কাজে টিগ ও মিগ ওয়েন্ডিং পদ্ধতি ব্যবহার করা হয়। যেমন- বিমান, মিসাইল এবং রাসায়নিক শিল্পে। মিগ ওয়েন্ডিং-এ ইলেকট্রোড আর্ক তৈরি করে এবং একই সাথে গলে গিয়ে ফিলার ধাড়ু সরবরাহ করে থাকে।

চিত্র: মিগ ওরেন্ডিং মেশিন

মিগ ওয়েন্ডিং মেশিন ১৯১

১০.২ মিগ ওয়েন্ডিং মেশিনের সাজ সরঞ্জাম :

Metal Inert Gas-এর সংক্ষিপ্ত নাম MIG। এই পদ্ধতিতে ফিলার মেটাল হিসাবে যে ফিলার গুরার ব্যবহার করা হয় তাই ইলেকট্রোড হিসাবে কাজ করে। এই গুরেন্ডিং-এর জন্য নিমু বর্ণিত সরঞ্জামাদি ব্যবহার হয়। সরঞ্জামাদিগুলি নিম্নরূপ:

- A. সিন্ডিং-এর জন্য ইনার্ট গ্যাসের সরবরাহ সিলিভার
- B. একটি রেগুলেটর (৬ প্রসার)
- C. গ্যাস প্রবাহ মাপের যন্ত্র (Flow Meter)
- D. মানানসই হোজ পাইপ ও কানেকশনসমূহ
- E. ওয়েন্ডিং-এর জন্য বিদ্যুৎ সরবরাহ
- F. মিগ ওয়েন্ডিং গান
- G. তার (Wire) সরবরাহ যন্ত্র (Filler Metal Wire) এবং ইলেকট্রোড ওয়্যার রিল
- H. বিমোট কন্টোল ইউনিট
- I. প্রয়োজনমতো ঠান্তা করার পানি সরবরাহ।

J. 通河

১০.৩ মিগ ওয়েন্ডিং মেশিনের সাচ্চ সরক্লামের কার্যনীতি:

বিদ্যুৎ সরবরাহ : মিগ ওয়েন্ডিং-এ প্রধানত বিদ্যুৎ সরবরাহ করা হয় ডিসিআরপি (DCRP-Direct Current Reverse Polarity) পদ্ধতিতে । এই পদ্ধতিতে কার্যবস্তুটি নেগেটিভ টার্মিনালের সঙ্গে এবং ওয়্যার ইলেকট্রোড পজিটিভ টার্মিনালের সঙ্গে বৃক্ত করা হয় । ডিসিআরপি বিদ্যুৎ সববরাহ পদ্ধতিতে প্রধানত দুই ধরনের মেলিন ব্যবহার করা হয় । ডিসি জেনারেটর এবং রেকটিকাইড এসি ট্রান্সকর্মার । মিগ ওয়েন্ডিং মেলিনকে একান্ডভাবে দ্বির আর্ক ভোল্ট (CAV-Constant Arc Volt) অথবা উদীয়মান আর্ক ভোল্ট

(RAV-Rising Arc Volt) উৎপন্ন করতে হয়। দ্বির আর্ক ভোল্ট উদীয়মান আর্ক ভোল্ট উভয় মেশিনেই একটি করে অ্যাডজাস্টেবল এম্পিয়ার মিটার ও ভোল্ট মিটার থাকে। অপারেটরকে ভার প্রভ্যাশিত লেভেলে ভোল্ট নির্ধারণ করে নিতে হয়।

ওয়ার ফিট মেকানিজম (Wire Feed Mechanigm) : মূলত ওয়ার ফিড মেকানিজম দুই ধরনের একটা হচ্ছে সাধারণ মিগ সেটের সাথে ব্যবহার হয় এবং অপরটি ফ্লাক্স কোরড ওয়েন্ডিং-এ ব্যবহৃত হয়। ছিতীয় ধরনের ওয়ার ফিড কন্ট্রোলটি হচ্ছে ম্যাগনেটিক ফ্লাক্স মিগ ওয়েন্ডিং। স্টিক আউট (Stick Out) এর পরিমাণ অধিকাংশ ওয়ার ফিড কন্ট্রোল মেকানিজম-এ পূর্ব হতে নির্ধারণ করে দেওয়া হয়।

िष्य :Wire -feed mechanism

মিগ গান : মিগ গান মৌলিকভাবে দুই ধরনের । তা হচ্ছে

- ডিয়ার পুশ গান (Wire push gun)
- ওয়্যার পুল গান (Wire pull gun)

মিগ ওয়েন্ডিং মেশিন

c) Air cooled push gun

চিত্র: মিগ প্রয়েন্ডিং গান

ফ্রো-মিটার : এই পদ্ধতিতে সাধারণ ইনার্ট গ্যাস ফ্লো-মিটার ব্যবহার করা হয় । গ্যাসের টাইপ অনুযায়ী ফ্লো-মিটার ক্যালিব্রেট (Calibrate) করা হয় । একই ফ্লো-মিটার আর্গন ও হিলিয়াম গ্যাসের জন্য ব্যবহার করা যায় না । কারণ গ্যাস দুইটির ঘনতু দুই রকম ।

সেই জন্য এই দুই গ্যাসের জন্য ফ্লো-মিটার আলাদাভাবে ক্যালিব্রেট করতে হয়। অন্য গ্যাসের জন্যও আলাদাভাবে ফ্লো-মিটার ক্যালিব্রেট করা প্রয়োজন।

মেশিন ও সরজামের ব্যবহার:

বর্তমানে তিন ধরনের ওয়েন্ডিং মেশিন পাওয়া যায়। যথা- spray arc, short arc, pulse arc সিস্টেম। অন্যান্য ওয়েন্ডিং মেশিনের মতো সকল ক্ষেত্রেই এটা ব্যবহার করা যায়। অনেক রকমের মেটাল এই মেশিন দিয়ে ওয়েন্ডিং করা যায়। বিভিন্ন মেটাল ওয়েন্ডিং-এর জন্য যে পরিবর্তন আনতে হয় তা হলো-আ্যালুমিনিয়াম, ম্যাগনেসিয়াম, স্টেইনলেস স্টিল, কপার, খাঁটি সিলভার, টাইটেনিয়াম, সকল কপার এলয় এবং সকল নিকেল এলয়। মিগ ওয়েন্ডিং-এর তিনটি variable বিশেষভাবে বিবেচনায় আনতে হবে। এই variable গুলি হচ্ছে- operator manupulation-controled variables, machine-controled variables এবং base metal-controled variables। এই variables তিনটি সকল ওয়েন্ডিং প্রস্সে এর মান নির্ধারক।

অপারেশন-ম্যানিপুলেশন-কন্ট্রোন্ড variables গুলি যা সৃক্ষভাবে পরিমাপ করা যায় না যেমন ইলেকট্রোডের stick out, নজলের কোণ, মিগ গানের কোণ বা ফিলার ওয়্যার-এর গতি। এই variables গুলি semi automatic ওয়েন্ডিং কাজে ওয়েন্ডার কর্তৃক নিয়ন্ত্রণ করা হয়। যদিও এইগুলির মধ্যে কিছুটা মেশিন কন্ট্রোলের অংশ রয়েছে। stick out এর পরিমাণ সাধারণত ওয়ার কন্ট্রোল মেকানিজম-এ প্রি-সেট করা থাকে। তারের stick out আর্ক কলামের পেনেট্রেশন নির্ধারণ করে। stick out-এর দৈর্ঘ্য কারেন্ট density নিয়ন্ত্রণ করে। stick out-এর দৈর্ঘ্য বেশি হলে ইলেকট্রোডে রেজ্ডিস্ট্যান্স বেড়ে যাবে।

অপর একটি অপারেশন variales হচ্ছে মিগ টর্চের কোণ যেভাবে মিগ গান ধরে ওয়েন্ডিং করা হয়।

हिंग : Nozzle angle

সর্বশেষ অপারেটর কন্ট্রোল হচ্ছে মিগ টর্চ manipulation pattern-এই সকল pattern এর মধ্যে সবচেয়ে মানানসই pattern হচ্ছে drug pattern । অন্য pattern গুলি হচ্ছে whip, C, U, Lazy ।

िव : Torch manipultion patterns

মিগ ওয়েন্ডিং মেশিন

মেশিন কন্ট্রোল variable হচ্ছে আর্ক-ভোল্ট, ওয়েন্ডিং কারেন্ট এবং ওয়েন্ড-বিড ট্রাভেল স্পিড। এই variable তিনটি মেশিনে কন্ট্রোল করে। তবে এরা base-metal variable-এর সঙ্গে সম্পর্কযুক্ত। welding systemটি spray-arc বা short arc, নাকি pull arc হবে তা আর্ক-ভোল্টের ওয়েন্ডিং কারেন্ট কর্তৃক নির্ধারিত হয়। এই দু'টি কন্ট্রোল অর্থাৎ voltage এবং amperage ওয়েন্ড বিড-এর travel speed নির্ধারণ করে। মিগ ওয়েন্ডিং প্রসেস মেটাল ট্রান্সফার short-arc হবে, না কি spray-arc হবে, তা উক্ত প্রসেসে ব্যবহৃত amperage কর্তৃক নির্ধারিত হয়।

िव : CAV power supply

এ সকল মেশিন variable নির্ধারণ করার পূর্বে ঐ সকল variable নির্ধারণ করতে হয় যা নির্ভর করে base metal composition-এর উপর।

Base metal composition নিম্নবর্ণিত variables খলি নির্ধারণ করে:

- সিল্ডিং গ্যাসের প্রকৃতি এবং পরিমাণ
- জোড়ের প্রকৃতি
- ইলেকট্রোড ওয়্যার প্রকৃতি
- ওয়েন্ডিং-এর অবস্থান
- ওয়েন্ড মেটালে যান্ত্রিক গুণাগুণ।

১০.৪ মিগ ওয়েন্ডিং মেশিনের যত্ন ও রক্ষণাবেক্ষণ :

মেশিন ও সরঞ্জামের সূষ্ঠ্ রক্ষণাবেক্ষণ না করলে মেশিনের সৃক্ষতা নই হয় এবং যন্ত্রপাতির আয়ুষ্কাল কমে আসে। তাই কাজ শেষে যন্ত্রপাতি ভালোভাবে পরিষ্কার করতে হবে এবং নিরাপদ জায়গায় রাখতে হবে। এর জন্য নির্দিষ্ট র্যাক (Rack) থাকা দরকার। মেশিন সাজ-সরঞ্জামের প্রস্তুতকারকদের নির্দেশনা মোতাবেক মেশিন রক্ষণাবেক্ষণ করতে হবে। মেশিন ও সাজ-সরঞ্জামের ব্যাপারে সতর্কতা অবলম্বন বিষয়ে প্রতিটি মেশিন ও সাজ-সরঞ্জামের প্রস্তুতকারকগণ কতকগুলি নির্দেশনা দিয়ে থাকেন, সেগুলি যথাযথভাবে পালন করতে হবে।

প্রশ্নমালা-১০

অতি সংক্ষিপ্ত প্রশ্নাবলি :

- মিগ ওয়েল্ডিং মেশিনের কার্যনীতি বলতে কী বোঝায়?
- ২. মিগ ওয়েল্ডিং মেশিনের প্রয়োজনীয় সরঞ্জামের নাম লেখ।

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. মিগ ওয়েন্ডিং মেশিনের সরঞ্জামগুলো কী কী?
- ২. মিগ ওয়েন্ডিং মেশিনে ফিলার মেটাল কেন ব্যবহার করা হয় না?

রচনামূলক প্রশ্নাবলি:

- ১. মিগ ওয়েল্ডিং মেশিনের যত্ন ও রক্ষণাবেক্ষণ বর্ণনা কর।
- ২. মিগ ওয়েন্ডিং মেশিনের সরঞ্জামের কার্যনীতি বর্ণনা কর।
- ৩. একটি মিগ মেশিনের চিত্র (Sketch) এঁকে বিভিন্ন অংশ চিহ্নিত কর।

একাদশ অখ্যার মিগ ওরেন্ডিং পদ্ধতি

(MIG WELDING PROCESS)

১১.১ বিশ থরেতিং শছতি :

এই পদানিতে স্কৃতি ব্যাসের ইলেকট্রান্ত সন্থার বা অবিরত আর্কের (Arc) সৃষ্টি করে এবং একই সাথে ইলেকট্রান্ত নিজেই গলে নিরে জোড়া হানে প্রয়োজনীর কিলান মেটাল গলিরে বে কৌনসের মাধ্যমে জোড়েরর মধ্যে মেটাল কলা হানাছরিত হর তাকে মিগ ওয়েন্ডিং কলে। এই পদানিতে একটি মুক্ত ও পরিজের জোড়া তৈরি হয়। এই পদানিতে আর্ক ও ওয়েন্ডিং এলাকা নিষ্ক্রির গ্যাসের আবরণ নিরে ঢাকা বাকে। তারের একটি কুজনী হতে সন্থাবিন্যভাবে কিছ (Feed) সেরা হয়। উঠিট পজেটিত (+) টার্যদিনালের সাবে মুক্ত বাকে এবং হাতের সাহায়্যে চালনা করে ওয়েন্ডিং সম্পন্ন করা হয়।

১১.২ বিপ ওয়েজিং-এ টর্চ চালনাকরণ :

ওতার কিভিং দেকানিজন করক্রেজভাবে ভারের ইলেকটোড, ভারের কুক্সী হতে গান এবং ভারের সংখ্য টেনে নেয়। প্যানেল নিয়ন্ত্রণ আডজাস্ট করে ভয়ার কিঙিং শিশুডের ভারতম্য করা বেতে পারে। এ মৃঞ্জাঙ প্যানেল নিয়ন্ত্রণে সাবারণত একটা ভরেজিং পাওয়ার কন্টাইর এবং সলেনয়েছ সংযুক্ত থাকে বা প্যানের প্রবাহ সক্রিয় করে।

हिन : निर्म च्याचिर-न गायक्य जन क्षेत्रात्र च्याप विकिर स्थिति

মিগ ওরেন্ডিং গানের কার্যকারিতা:

ওয়েন্ডিং গানের কাজ হলো ইলেকট্রোড ভার, শিন্ডিং গ্যাস এবং ওয়েন্ডিং কারেন্ট আর্ক এলাকায় সরবরাহ করা। হস্তচালিত গান পানি অথবা বাতাস দ্বারা ঠান্ডাকৃত। বাতাস দিয়ে ঠান্ডাকৃত গান বিশেষ করে পাতলা ধাতৃ ওয়েন্ডিং করার জন্য ডিজাইন করা হয়েছে যাতে ২০০ অ্যাম্পিয়ারের কম কারেন্টের সাথে শিন্ডিং গ্যাস হিসাবে আর্গন ব্যবহৃত হয়। কার্বন ডাই-অক্সাইড শিন্ডিং গ্যাসের সাহায্যে গান ঠান্ডাকরণের ফলে এই ধরনের টর্চ উচ্চ অ্যাম্পিয়ারে (৩০০ অ্যাম্পিয়ার) সচরাচর কাজ করতে পারে। সাধারণত ২০০ অ্যাম্পিয়ারের উথের্ব ওয়েন্ডিং-এর জন্য পানি দ্বারা ঠান্ডাকৃত গান সবচেয়ে ভালো।

গানসমূহ পুস কিংবা পুল ধরনের । সোজা কিংবা বাঁকানো নজল সম্পন্ন গান পাওয়া যায় ।

১১.৩ মিগ ওয়েন্ডিং-এ ওয়্যার কিড মেকানিজমের বর্ণনা :

মিগ-ওয়েন্ডিং-এর অপর নাম গ্যাস মেটাল আর্ক ওয়েন্ডিং (GMAW)। এই পদ্ধতিতে ইলকট্রোড তারের কুওলী আকারে থাকে; তারের ব্যাস ০.৮ মিমি হতে ২.৪ মিমি হয়।

ওরেন্ডিং-এর সময় ওয়ার ফিড মেকানিজমের দারা তার বা ইলেকট্রোডকে ফিড দেওয়া হয় যাতে অবিরাম আর্ক তৈরি হয়। ফিড মেকানিজমের সাহায্যে ক্ষয়িষ্ট্ (Consumable) ইলেকট্রোডকে পূর্বনির্ধারিত গতিতে ফিড দেওয়া হয়।

চিত্র : মিগ গুরোন্ডিং-এর স্বয়ংক্রিয় পদ্ধতি

মিগ ওয়েন্ডিং পদ্ধতি ১৯৯

১১.৪ মিগ ওয়েল্ডিং-এ মেশিন চালনার সতর্কতা :

ক) মেশিন ও সাজ-সরঞ্জামের ব্যাপারে সতর্কতা অবলম্বন বিষয়ে প্রতিটি মেশিন ও সাজ-সরঞ্জামের প্রস্তুতকারকগণ কতকগুলো নির্দেশনা দিয়ে থাকেন সেগুলো যথাযথভাবে পালন করতে হবে।

- খ) মেশিন সরঞ্জাম সুষ্ঠভাবে ব্যবহার না করলে মেশিনের সূক্ষতা নষ্ট হয় এবং যন্ত্রপাতির আয়ুষ্কাল কমে যায়।
- গ) মেশিন চালনার পর কার্যস্থানে সাধারণ বায়ু চলাচল (General ventilation) থাকতে হবে। শ্বাস-প্রশ্বাস যন্ত্র প্রয়োজনে পরে নিতে হবে। সিল্ডিং গ্যাস হিসেবে কার্বন ডাই-অক্সাইড গ্যাস ব্যবহার করলে শ্বাস-প্রশ্বাস যন্ত্রের ক্ষেত্রে বিশেষ সতর্কতা অবলম্বন করতে হবে। যেমন সিসা, কপার, দস্তা ইত্যাদি কিছু বিশেষ ধাতু ওয়েল্ডিং-এর ক্ষেত্রে বিষাক্ত গ্যাস বের হয়। এক্ষেত্রেও শ্বাস-প্রশ্বাস যন্ত্র নিতে হবে।
- ঘ) দাহ্য কোনো বস্তু কার্যস্থান থেকে দূরে রাখতে হবে।
- ঙ) ইলেট্রিক আর্ক চোখের ক্ষতি করতে পারে। এজন্য হ্যান্ড শিল্ড ব্যবহার করতে হবে।
- চ) বৈদ্যুতিক শক মৃত্যুর কারণ হতে পারে। এজন্য কখনোই বৈদ্যুতিক সংযোগ দেওয়া আছে এমন যন্ত্রাংশে হাত দিয়ে স্পর্শ করা উচিত নয়।
- ছ) ওয়েন্ডিং গান রিপেয়ার বা মেরামত করার সময় অবশ্যই মেশিনের সুইচ বন্ধ রাখতে হবে এবং মেশিনের ভিতরে কোনো মেরামতের সময় মেশিনে বিদ্যুৎ সংযোগ বিচ্ছিন্ন করে নিতে হবে।
- জ) যদি মেশিন চালু অবস্থায় ইলেকট্রোড ও কার্যবস্তু বা গ্রাউন্ড কেবলে একসাথে হাত দিয়ে গানের ট্রিগারে চাপ দিলে শক করবে।
- ঝ) ভিজা কাপড় বা হাত দিয়ে মেশিন চালু অবস্থায় গানের ধাতব অংশে বা ইলেকট্রোডে হাত দিলে শক করবে।
- ঞ) ইলেকট্রোড রোলের ফিড মেকানিজম অ্যাডজাস্ট করার সময় অবশ্যই মেশিনের বিদ্যুৎ সংযোগ বন্ধ রাখতে হবে। অন্যথায় আঙুলে অসতর্ক অবস্থায় আঘাত করতে বা ছিঁড়ে যেতে পারে।
- ট) ওয়েল্ডিং কালি ধোঁয়া ও স্লার্ক হলো M/G ওয়েল্ডিং-এর প্রদানে দুটি সমস্যা। এজন্য অবশ্যই মাস্ক ব্যবহার করতে হবে।
- ঠ) কার্যস্থানে এ পরিমাণ আলো থাকতে হবে যাতে কার্যবস্তু স্পষ্ট দেখা যায়।
- ড) কাজ করার পূর্বে অবশ্যই কেবল, হোজ পাইপ ইত্যাদির লিকেজ টেস্ট করে প্রয়োজনে মেরামত বা পরিবর্তন করতে হবে।
- ঢ) উচ্চ চাপের গ্যাস সিলিভার M/G ওয়েন্ডিং-এ ব্যবহৃত হয় বিধায় দুর্ঘটনা এড়াতে সিলিভারকে চেইন দিয়ে বেঁধে নিতে হয়।
- ণ) গ্যাস সিলিভারের সংযোগ যথাযথ আছে নিশ্চিত হওয়া ছাড়াও সংযোগে তেল, গ্রিজ, মবিল মুক্ত হতে হবে।

প্রশ্নমালা-১১

অতি সংক্ষিপ্ত প্রশ্নাবলিঃ

- ১. মিগ ওয়েন্ডিং পদ্ধতি বলতে কী বোঝায়?
- ২. মিগ ওয়েন্ডিং পদ্ধতিতে কী কী নিষ্ক্রিয় গ্যাস ব্যবহার করা হয়?

সংক্ষিপ্ত প্রশ্নাবলি :

- ১. মিগ ওয়েন্ডিং-এর টর্চ চালানোর কৌশল লেখ।
- ২. শিল্ডেড গ্যাস হিসেবে আর্গন ও হিলিয়াম কেন বেশি ব্যবহৃত হয়?

রচনামূলক প্রশ্নাবলি :

- ১. মিগ ওয়েন্ডিং মেশিন চালনার সতর্কতা বর্ণনা কর।
- ২. মিগ ওয়েন্ডিং মেশিনের ফিড মেকানিজম বর্ণনা কর।

ব্যবহারিক-১ কাস্ট আয়রন ওয়েন্ডিং (মেরামতি কাজ)

১.১ ওরাকীশস প্রকৃত :

একটি ফেটে যাওয়া কাস্ট আয়রনের কাস্টিং বা যদ্রাংশ নির্বাচন করতে হবে। গ্রাইন্ডিং এবং কাইনিং করে প্লেটের প্লান্ত ৬০° সিকেল ডি-বটি জোড়ের জন্য প্রস্তুত করতে হবে।

চিত্র : গুরাকশিল প্রস্তুতকরণ

क्रांज निर्वाटन :

টেবিল দেখে কাস্ট আয়রন ফ্লাক্স নির্বাচন করতে হবে বা সোডিয়াম বাই-কার্বোনেট সোডা কার্বোনেট, সোহাগা ও সিলিকন মিশ্রনে তৈরি।

১.২ ভয়াকশিল প্রি-বিট :

- 💠 কাস্ট আয়রনের পাত দুইটিকে গুয়ার্কিং টেবিলে স্থাপন করতে হবে।
- প্রি-ছিটের জন্য কার্বোরাইছিং শিখা তৈরি করতে হবে।
- শাতুর জোড়ার ছানে শিখা দিয়ে আছে আছে প্লি-হিট করতে হবে। এই তাপমাত্রা সাধারণত ৩০০°C –
 ৪০০°C হওরা দরকার।

চিত্ৰ : কাৰ্বোৱাইজিং শিখার সাহায্যে জবটি জ্বি-হিটকৰণ

চিত্ৰ: কেটে বাওৱা কান্ট আৱন্তদের বছাপে

১.৩ ওয়াৰ্কপিস ট্যাক :

- প্রেট দৃটি প্রাট অবস্থার একই সমতলে রেখে এক প্রান্তে ২টি অথবা ওটি ট্যাক ওয়েন্ড করতে হবে।
- অনুরপভাবে অপর প্রান্তেও ট্যাক ওয়েন্ড করতে হবে।
- ক্ষবটির মধ্য ভাগে আরও একটি ট্যাক করতে হবে।

চিত্র : ওয়ার্কশিস একই সমতলে রেখে ট্যাককরণ

১.৪ জবের ওয়েন্ড সম্পন্ন :

- ক্রা-পাইপ নক্ষল এবং ফিলার রছকে জোড়ের সাথে ৪৫° কোপে রাখতে হবে।
- কাস্ট আয়য়ন গুয়েন্ডিং-এর জন্য লো-কার্বন স্টিল, নিকেল বেস অ্যালয় বা কপার বেস অ্যালয় ফিলায় মেটাল হিসেবে ব্যবহার করতে হবে।

চিত্র : ব্রো-পাইপ ও ফিলার রডের অবস্থান

- প্রতি ৩০-৪০ মিমি বিডের পর ফিলার রডে ফ্লাক্স দিতে হবে।
- একবারে বটম বিভ ৪০-৫০ মিমি হতে ওয়েন্ড করার পরে বাকিটা ধাপে ধাপে করতে হবে ।

ব্যবহারিক ২০৩

চিত্র : কয়েকটি ধাপে গুরেন্ডিং সম্পন্নকরণ

১.৫ ওয়ার্কশিসকে পোস্ট হিট :

- প্রেন্ডিং জ্বোড়া সম্পর্
 হবার পর এতে শিখার সাহাব্যে উন্তপ্ত রাখতে হয় যাতে জ্বোড়া দ্রুত ঠান্তা না
 হতে পারে।
- জবটিকে ধীরগতিতে ঠান্ডা হবার পর জোড়া পরিষ্কার করতে হবে।

১.৬ কাস্ট আয়রন ওয়েন্ডিং-এর সময় ও পরে পরীকা :

- ক্র্যাক হলো কিনা দেখতে হবে।
- পেটিট্রেশন ও সম বিভ হলো কিনা দেখতে হবে।

ष्टिव : Equal bead

আভার কাট ওভার ল্যাপ, স্প্যাটার, ব্রো-হোল হলো কি না পরীক্ষা করে দেখতে হবে-

চিত্র: বিভিন্ন ধকার গুরেন্ডিং ক্রটি

প্রশালা-১

- ১. প্রি-হিটের জন্য কোন প্রকার শিখা ব্যবহৃত হয়?
- ২. প্রি-হিট তাপমাত্রা সাধারণত কত হয়?
- ৩, কাস্ট আয়রন ওয়েন্ডিং-এর জন্য কোন প্রকার ফিলার মেটাল ব্যবহৃত হয়?

ব্যবহারিক-২ স্টেইনলেস স্টিল গুরেন্ডিং

২১ ভয়াৰশিস প্ৰকৃত :

- ♦ ৮ মিমি ও ৩০ মিনি ও ১০ নিমি সাইজের দৃষ্টি কেইনদেন নিজ প্লেট করার বাট জোড়ের কন্য বেছে নিজে করে। উন্নতমানের ওয়েও পাওয়ার জন্য প্লেট দৃটি হতে বাজিক বা রাসায়নিক প্রক্রিয়ায় তেল, বিজ, বং, অল্লাইত, কোটিং, অপ্রতা ইত্যানি অপ্রত্য বধাববভাবে দ্ব করতে হরে।
- প্রেট দুটির কিনারা খয়্যার ব্রাশ দিয়ে এবং এফারি শেশার দিয়ে তালোভাবে পরিভার করতে হবে।

২.২ স্টেইনজন ইলেক্ট্রাড নিবছিন :

- প্রেটের প্রত্ত্বর ওপর ইলেকট্রাছের সাইজ নির্কর করে। স্টেইনলেস স্টিলের ইলেকট্রাছ নির্বাচন করতে হবে।
- এইক্ষেত্রে ৪ বিমি ব্যাস ইলেকট্রোড দেওরা বেডে পারে।

২৩ খন্নাৰ্শিস সংযোজন :

তয়ার্কশিস দুটিকে সমকল অবস্থানে বাঁচ জোড়ে স্থাপন করতে হবে।

২,৪ ইলেকট্রাত রোপ্টিং : ইলেকট্রাতকে কার্সেসে রেখে পর্যাও পরিয়াণ উত্তর করে সমস্ত প্রকার জনীয় ও উবারী পর্যাবসমূহ দূর করাকে ইলেকট্রাড রোপ্টিং বলে।

রোল্টিং করার কলে ইলেকট্রোভের ওরেভবিবিলিটি ভণ কৃষি পার কলে শক্তিপালী ও নিপুঁত ওরেজ তৈরি হয়।

২.৫ ইলেকটোড অটকালো :

 ইলেকট্রাত হোতার প্রত্তকারকের প্রদন্ত নির্দেশ ও দিয়বে ইলেকট্রাতকে, ইলেকট্রাত হোতারে ছাপদ করে অটিকাতে হবে।

यावदातिक २०१

২,৬ কারেন্ট নেট :

প্রেটের প্রত্ত্বর ওপর নির্ভর করে কারেন্ট নিরুপণ করতে হবে। চার্ট হতে প্রেটের পূর্ত্ব অনুসারে
কারেন্ট সেট করতে হবে।

ইলেকট্ৰোভের সাইজ	কোৱ ব্যাস (বি.মি.)	ইলেকটোডেৰ দৈৰ্ঘ্য (মি.মি.)	অ্যাম্পিরার	জবের পুরুত্ব মি.মি.
78	۹.0	900	90-90	ю
25	₹.€	৩৫০	@ 0-90	9
20	9.50	800	200-240	*
8	8,0	800	200-260	24
•	0.9	800	200-200	24
8	७.७	840	২৫০-৩০ ০	24

২২০ জ্যাম্পিয়ার নির্ধারণ করতে হবে ।

২.৭ ওয়াৰ্কশিল থ্ৰি-বিটিং :

♦ বিটিং ফার্নেসে বা প্যাস শিখার সাহায্যে কার্যবস্তুকে প্রি-বিটিং করতে হবে।

২৮ গুৱাকশিস ট্যাক :

- গুরার্কশিস প্রকৃত করার পর প্রেট দৃটিকে গাশাপাশি রেখে প্রি-হিট করার পর গুরার্কশিসের দৈর্ঘ্য
 অনুসারে ও অথবা ৪টি ট্যাপ গুরেন্ড করতে হবে।
- ট্যাগ ওরেন্ডিং করার সমর শেরাল রাখতে হবে বে ক্রেট দুটি বেল একই সমতলে ও অক্সরেখা করাবর থাকে।

চিত্র : ভয়াকীপসভ্যকে ট্যাক ভয়েভিংকরণ

২,৯ ধরেন্ড সম্পন্ন :

প্রবেতিং আরম্ভ করার পূর্বে কারেন্ট, আর্থিং ও ইলেকট্রোড হোন্ডার ইত্যাদির সেটিংসমূহ পরীক্ষা করতে
হবে । ইলেকট্রোডের কোনো জবের সাথে ৪৫° থেকে ৭০° এর মধ্যে রাখতে হবে । আর্ক তৈরির পর
আত্তে আত্তে প্রেন্ডিং সম্পন্ন করতে হবে ।

চিত্র: ওয়েন্ডিংকরণ

গুরোজিং সম্পন্ন করার পরে জোড়া স্থানে যে অপদ্রব্য জমা হয় তা পরিদার করার জন্য ৫০ ডিব্রি সেন্টিরেড ভাপে নাইট্রিক অ্যাসিডের জলীয় মিশ্রণ প্রয়োগ করে তারের ব্রাশ দিয়ে ঘবে পরিদার করা যায়। আবার উন্তাপের কারণে পার্বস্থান কালচে বর্ণ ধারণ করলে ৫০° সে. তাপে ৫০% হাইদ্রোক্রোরিক অ্যাসিড সমিউলনে ৫% নাইট্রিক এসিড মিলিয়ে এর মধ্যে জবটিকে ছ্বিয়ে রাখলে কালচে রং দূর হয়।

২.১০ ওয়েন্ডিং-এর সময় ও পরে পরীকা :

- প্রয়েক্তিং-এর সময় ও পরে বটি জোড়া সঠিক হয়েছে কিনা পরীকা করতে হবে।
- থয়েন্ড গর্ভ (Cavity) মৃক্ত কিলা দেখতে হবে ।
- ওয়েন্ড আভার কাট, ওভার দ্যাপ, স্পেটার, ব্রোহোল, ক্রটি যুক্ত কিনা দেখতে হবে।

চিত্র : বিভিন্ন প্রকার ওরেকিং ক্রাটর চিত্র

ব্যবহারিক

প্রশ্নমালা-২

- ১. স্টেইনলেস স্টিল ওয়েল্ডিং-এ প্রি-হিট কেন করা হয়?
- ২. স্টেইনলেস স্টিল ওয়েন্ডিং-এ কোন ধরনের ইলেকট্রোড ব্যবহৃত হয়?
- ৩. স্টেইনলেস স্টিল ওয়েন্ডিং কীভাবে করা যাবে?

ব্যবহারিক-৩ গ্যাসে অ্যালুমিনিয়াম ওয়েল্ডিং

৩.১ ওয়ার্কপিস প্রস্তুতকরণ :

- ★ ৮ মিমি × ৬০ মিমি × ৯০ মিমি সাইজের দুইটি অ্যালুমিনিয়াম প্লেট ক্ষয়ার বাট জোড়ের জন্য বেছে নিতে হবে। উন্নমানের ওয়েল্ড পাবার জন্য প্লেট দুটি হতে তেল, আর্দ্রতা, অক্সাইড কোটিং ও অন্যান্য অপদ্রব্য যান্ত্রিক বা রাসায়নিক উপায়ে দূর করতে হবে।
- ❖ প্লেট দুটির কিনার ওয়্যার ব্রাশ দিয়ে এবং এম্যারি পেপার দিয়ে ভালোভাবে পরিষ্কার করতে হবে।

৩.২ নজল নির্বাচন : ওয়েন্ডিং টিপ সাইজ (পরিশিষ্টতে টেবিল দ্রষ্টব্য) যেহেতু বেজ-মেটালের পুরুত্ব ৮ মিমি টর্চের টিপ হবে ৬ নং।

চার্ট দেখে নজলের আকার অনুসারে ০,১,২,৩,৪,৫ ইত্যাদি নম্বর দেওয়া হয়েছে। ধাতুর পুরুত্ব অনুসারে সঠিক নজলটি বেছে নিতে হবে। এক্ষেত্রে নজলের সাইজ হবে ৬। চার্ট দেওয়া আছে

ফিলার মেটাল নিবচিন:

চার্ট দেখে ৩.৫-৫ মিমি ব্যাস বিশিষ্ট অ্যালুমিনিয়াম ফিলার রড নির্বাচন করতে হবে।

৩.৩ ফিলার মেটাল নির্বাচন : নিম্নের চার্ট হতে ফিলার মেটাল নির্বাচন করতে হবে :

Sl.No.	Thickness of Metal	Diameter of Welding	
		Rod	
1.	Less than 2 SWG	1-2 mm	
2.	Above 20 SUG to 3 mm	1-2 mm	
3	Above 3 to 4.5 mm	3-3.5 mm	
4.	Above 4.5 to 7.5 mm	3-3.5 mm	
5	8 to 16 mm	3.5-5 mm	
6	Above 16 mm	6 mm	

উপরের চার্ট হতে প্লেটের পুরুত্ব অনুসারে ৩.৫ হতে ৫ মিমি ব্যাস বিশিষ্ট ফিলার মেটাল নির্বাচন কর।

गुवश्कि २०४

৩.৪ ফ্লাক্স নিব্যচনকরণ :

কৌটার পায়ে লেখা অ্যাপৃমিনিয়াম প্রেট জোড়ের জন্য ফ্লাক্স নির্বাচন করতে হবে।

- 💠 ভালো ফল পাওরার জন্য ফ্লাক্স পানির সঙ্গে মিশিরে নিতে হবে ।
- ক্লাক্সকে ডিস্টিল গুরাটারের সাথে মিশিরে পেস্ট জৈরি করে গুরেন্ডিং করার পূর্বে ব্রাল দিয়ে কার্যস্থানে লাগাতে হবে।

চিত্র: ক্লাক্স পাউডারের সাথে পানি মিশিরে পেস্ট তৈরিকরণ

৩.৫ গ্যাস চাপ অ্যাডজাস্ট :

 অক্সিজেন সিলিভারের অ্যাভজাস্টিং হ্যান্ডেল খুরিয়ে কার্য চাপ ০.০৪ কেজি /বর্গ সে.মি. এ অ্যাভজাস্ট করতে হবে।

চার্ট হতে ৮ মিমি পুরু বেছ-মেটালের বিপরীত অক্সিজেনও অ্যাসিটিলিন চাপ হবে নিমুক্তপ।

	চাপ	প্ৰবাহ	
	কেন্দি/বর্গ সেন্টিমিটার	বনমিটার/ঘণ্টা	
অক্সিজেন	0,80	3,00	
অ্যাসিটিপিন	0.80	04.0	

চিত্র : অক্সিজেন সিপিডার প্রেসার পেজ

৹ অ্যাসিটিলিন সিলিভারের অ্যাডজাস্টিং হ্যাভেল ঘুরিয়ে কার্য চাপ ০.৪ কেজি/বর্গ সে.মি. অ্যাডজাস্ট
করতে হবে ।

৩.৬ সঠিক অগ্নিশিখা তৈরিকরণ :

অগ্নিশিখা তৈরি : অক্সিজেন ও অ্যাসিটিলিন নিডল ভাল্প ঘুরিয়ে শিখা তৈরি করতে হয় ।

মেটালের ভিত্তিতে প্রয়োজনীয় শিখা ও ফিলার মেটেরিয়াল চার্ট Selction of required flame and filler material based on metal

Metal	Flame Adjustment	Flux	Filler Materials
Cast Steel	Neutral	-	Steel
Steel	Neutral	:=.	Steel
High Carbon-Steel	Carburizing		Steel
Manganese	Slightly Oxidizing		Base Metal
Chrome Steel	Neutral	Yes	Steel
Cast iron	Neutral	Yes	Base Metal
Chrome-nickel steel casting	Neutral	Yes	Chrome nickel or columbium stainless steel
Chrome nickel steel	Neutral	Yes	Columbium stainless steel
Chromium steel	Neutral	Yes	Chrome nickel or columbium stainless steel
Chromium iron	Neutral	Yes	Chrome nickel or columbium stainless steel

- ❖ অক্সিজেন ও অ্যাসিটিলিন ভাল্ব আস্তে আস্তে ঘুরিয়ে নিয়ন্ত্রিত নিউট্রাল শিখা তৈরি করতে হবে।
- ❖ অক্সিজেন এবং অ্যাসিটিলিনের নিডল ভাল্প ঘুরিয়ে আন্তে আন্তে কার্বোরাইজড শিখা তৈরি করতে হবে।

৩.৭ ওয়ার্কপিসে ট্যাক দেওয়া:

* প্লেট দুটিকে একই সমতলে ২-৩ মিমি ফাঁক রাখতে হবে।

ব্যবহারিক ২১১

চিত্ৰ : ট্যাৰু সেওয়াৰ জন্য ওয়াকশিস দুটিৰ মাথে গ্যাপ

* ওরার্কশিসে ক্লাল্স ব্যবহার করে ট্যাক ওরেন্ড করে ডালোভাবে পরিছার করতে হবে ।

৩.৮ গুৱাৰশিল হি-বিটকরণ :

* ক্লাক্স মাখানো অবস্থায় শিখা নিয়ন্ত্রণ করে ওয়ার্কশিসকে এমনভাবে প্রি-হিট করতে হবে বাতে প্রেট গলে শা বার।

৩,৯ থবেত সম্পন্নকরণ :

* ব্লো-পাইপ নক্ষলকে ৬০° - ৭০° কোপে ওয়ার্কলিসের সঙ্গে রেখে বামমুখী ওয়েন্ড করতে হবে।

চিত্র: প্যাস থয়েকিং-এর জন্য কিলার বড় ও ব্রোপাইপের অবস্থান

- मृज थाकृ भनात সাথে সাথে ফ্লাক মাথানো বড কার্যস্থানে ধরতে কবে ।
- * সঠিক গলন ও পেনিট্রেশন করে ওয়েন্ড সম্পন্ন কর ।

৩.১০ থৱেন্ড নিৰীক্ষণ :

- * ধরেন্ড গর্ড (Cavity) মৃক্ত কিনা দেখা।
- 🕈 ওরেন্ড আভার কাঁট, ওভার দ্যাগ, স্প্যাটার, ব্রোহোদ ত্রুটিমুক্ত কিনা দেখা ।

প্রশ্নমালা-৩

- ১। ফ্লাক্সকে পানির সাথে মিশানো হয় কেন?
- ২। অ্যালুমিনিয়ামকে গ্যাস ওয়েল্ড করার জন্য কোন প্রকার শিখা ব্যবহার করতে হবে?
- ৩। বেজ মেটালের পুরুত্ব ১২ মি.মি. হলে টর্চের টিপের সাইজ কত হবে?

ব্যবহারিক-৪ গ্যাসে কপার ওয়েন্ডিং

৪.১ ওয়ার্কশিস প্রস্তুতকরণ :

* ২.৫ মিমি × ৭০ মিমি × ১৮০ মিমি দুইখানা কপার শিট প্রস্তুত করে নিতে হবে।

চিত্র : গুয়ার্কশিস প্রস্তুকরণ

স্কার বাট জোড়ার জন্য ফাইল এবং ভয়্যাব ব্রাশের সাহাব্যে ভয়ার্কপিলের উপর হতে ধাত্র ময়লা ভ
আবরণ তুলে কোণ ভ ধার মসৃণ করতে হবে।

8,२ नक्षम निर्वीष्टन :

* প্রদন্ত টেবিল (পরিশিষ্টতে টেবিল দ্রাইব্য) দেখে ধাজুর পুরুত্ব অনুসারে সঠিক নক্ষল বেছে নিজে হবে । নজলের আকার অনুসারে ০, ১, ২, ৩, ৪, ৫ ইড্যাদি নম্বর দেওয়া থাকে । এ ক্ষেত্রে নজল সাইজ হবে ২ নং ।

৪.৩ কিলার মেটাল নির্বাচন :

- * श्रम्स र्छिवेन वा ठाउँ भर्यालाञ्चा करत श्राह्मक्रीय क्रिनात स्प्रोन व्याह निर्फ ट्रा ।
- * এক্ষেত্রে ২ মিমি ব্যাসের কপার কিলার রড বেছে নিতে হবে।

8.8 ङ्राष्ट्र निर्वीष्टन :

- * কপার শিট জোড়ের জন্য বোরাক্স জাতীয় ফ্লাক্স যা কৌটার গারে সেখা আছে দেখে বেছে নিতে হবে । প্যানের চাপ অ্যাডজাস্ট :
- * অক্সিজেন সিলিভারের অ্যাভজাস্টিং হ্যাভেল যুরিয়ে কার্য চাপ ০.১৫ কেজি/বর্গ সেমি অ্যাভজাস্ট করতে হবে।
- *অ্যাসিটিলিন সিলিভারের অ্যাডজাস্টিং হ্যান্ডেল যুরিয়ে কার্যচাপ ০.১৫ কেন্ডি/ বর্গ অ্যাডজাস্ট করতে হবে ।

৪,৫ সঠিক অল্লিশিখা তৈরি :

- * ধদন্ত টেবিল হতে কপারের জন্য শিখা শনাক্ত করতে হবে।
- * কপারের জন্য নিউট্রাল শিখা অ্যাডজাঠ্ট করতে হবে। তালো জোড়ের জন্য সামান্য অক্সিডাইজিং শিখা করতে হবে।

৪.৬ ভয়াৰ্কশিস ট্যাক :

শিট দুটি একই সমতলে খুব কাছে গাশাপাশি রাখতে হবে।

চিত্র। প্ররাক্ষণিসবয়কে ট্যাক গুরেডিং-এর জন্য ছাপনকরণ

* একদিকে খুব সামান্য প্যাপ করে ধয়াকশিস দুটিকে ট্যাক গুরেন্ড করতে হবে।

৪.৭ খৰাকশিল থি-থিট :

* গ্যাস শিখার সাহায্যে আড়াআড়িভাবে গুরাকীসসকে শ্রি-হিট করতে হবে। বডক্রণ না এতে রং কালো দেখা যায়।

8.b श्रदाक जम्मेन :

* ব্রো-পাইপ নজন গুরাকশিসের সাথে ৬০° কোণে এবং ফিলার রম্ভকে ৩০°-৪০° কোপে গুয়াকশিসের সঙ্গে রাখতে হবে ।

চিত্ৰ : কণাৱ ওৱেতিং-এৰ সমৰ কিলাৱ ৰত ও সকলেৰ অবস্থান

ৰ্যবহারিক ২১৫

* চিত্রানুবারী ওরাকশিসের প্রান্ত হতে ৬ মিমি বাদ দিয়ে জ্যোড় আরম্ভ করতে হবে এবং প্রথমে ১৯ মিমি জ্যোড় করতে হবে। পরে আগের ছান হতে ওয়েন্ড করতে হবে।

চিত্ৰ। খ**ন্নেন্ডিং জোড় গুৱুতকরশ**

৪.৯ খরেন্ড দিরীকণ :

🕈 খাতৃ জ্বোড় ফাটল মৃক্ত কিনা পরীকা করতে হবে।

চিত্র : খয়েবিং এরপর বিভিন্ন প্রকার এনটি

- 🕈 সঠিকভাবে রুট পেনিট্রেশন হলো কিনা পরীক্ষা করতে হবে।
- * থয়েন্ড আভার কাঁট, ব্লোহোল, স্প্যাটার, ওভার দ্যাপ ব্রুটি যুক্ত কিনা, পরীকা কর ।

প্রশ্নমালা-৪

- ১। কপারকে গ্যাস ওরেন্ডিং করার জন্য কোন ফ্লাক্স ব্যবহার করা হয়?
- ২। কপারকে গ্যাস ওয়েন্ডিং করার জন্য কোন প্রকার শিখা ব্যবদ্বত হব?
- ও। কণারকে গ্যাস থয়েন্ডিং করার জন্য নজন ও ফিলার রড কত ডিগ্রি কোণে রাখতে হবে?

ব্যবহারিক-৫ (ক) সমতল অবস্থানে টিগ ওয়েন্ডিং পদ্ধতিতে স্টেইনলেস স্টিলের সোজা একক বিড তৈরি

৫.১ ওয়ার্কপিন প্রস্তুতকরণ :

* ৬ মিমি পুরুত্ত্বের স্টেইনলেস স্টিলের পাত নিতে হবে। পাতের যে পার্শ্ব একক বিচ্চ গুরোজিং করতে হবে তা কাইল দিয়ে যবে সুন্দরভাবে পরিদার করতে হবে। তবে পরিদার প্রক্রিয়া অত্যন্ত সতর্কভার সাথে এবং বত্ত সহকারে করতে হবে।

৫.২ ইলেকটোড নিৰ্বাচন :

 শ্রেটের পুরুত্ব অনুসারে ইলেকট্রাড সাইজ নির্ভর করে। টেবিল (পরিশিইতে) হতে ইলেকট্রাড নির্বাচন করে নিতে হবে। এক্ষেত্রে ৪ (চার) যিমি ট্যাংস্টেন ইলেকট্রোড নেওরা বেতে পারে।

৫.৩ কিলাৰ মেটাল নিৰ্বাচন।

* উক্ত চার্ট থেকে বিশার মেটাল নির্বাচন করতে হবে । এ ক্ষেত্রে ৪ (চার) মি.মি. ব্যাসের ফিলার রড নিতে হবে ।

৫.৪ গুয়াৰুশিস সংযোগ :

* পাডটিকে সমতল অবস্থার স্থাপন করতে হবে।

চিত্র। স্টেইনলেস ন্টিলের ব্যয়ার্কলিস

৫.৫ ইলেকটোড প্রতকরণ :

* ইলেকট্রোডের প্রান্তটি সুন্দরভাবে ট্যাপার (Taper) করে নিতে হবে। ভারপর টর্চের মধ্যে যথাবর্থভাবে স্থাপন করতে হবে।

সাধারণ কাজের জন্য-

চিন্ত্র : ইলেকট্রোডের গঠনাকৃতি

৫.৬ ইলেকট্রোড আটকানো :

* টর্চ প্রস্তুতকারকের নির্দেশনা মোতাবেক ইলেকট্রোড টর্চে স্থাপন করতে যথাযথভাবে আটকাতে হবে।

৫.৭ গ্যাসের প্রবাহ নির্বাচন :

* গ্যাস প্রবাহ সাধারণত পাতের পুরুত্ত্বের উপর নির্ভর করে। (পরিশিষ্টতে দ্রষ্টব্য) চার্ট হতে সঠিক প্রবাহ নির্বাচন করতে হবে। এক্ষেত্রে গ্যাস প্রবাহের পরিমাণ হবে প্রতি মিনিটে ৮ লিটার।

৫.৮ কারেন্ট সেট :

* ধাতৃ বা প্লেটের পুরুত্বের উপর নির্ভর করে কারেন্ট নিরূপণ করতে হবে। বর্ণিত চার্ট হতে প্লেটের পুরুত্ব অনুসারে ক্যারেন্ট নিরূপণ করতে হবে। এক্ষেত্রে ২২০ - ৩৪০ অ্যাম্পিয়ার হবে।

৫.৯ সোজা বিড ওয়েন্ড সম্পন্ন :

* ওয়েন্ডিং আরম্ভ করার পূর্বে কারেন্ট, গ্যাস, পানি ও স্বয়ংক্রিয় সেটিংসমূহ নিরীক্ষা করতে হবে। টর্চের কোণ সাধারণত ৮০° - ৯০° এর মধ্যে রাখতে হবে। ফিলার রডের কোণ সাধারণত মূল ধাতুর সাথে ১০° -২০° নিম্নের চিত্রানুযায়ী রাখতে হবে। আস্তে ওয়েন্ডিং কাজ সম্পন্ন করতে হবে।

চিত্র : টর্চ ও ফিলার রডের অবস্থান

৫.১০ ওয়েন্ডিং-এর সময় ও পরে পরীক্ষা :

* ওয়েন্ড সমাপ্ত করার পর সোজা বিড সঠিক হয়েছে কিনা পরীক্ষা করতে হবে। মূল ধাতু গলেছে কিনা দেখতে হবে। তাছাড়া আন্ডার কাট হয়েছে কিনা পরীক্ষা করতে হবে। পরিশেষে চাহিদা মোতাবেক নিখুঁত ও মজবুত সোজা বিড হয়েছে কিনা দেখতে হবে।

প্রশ্নমালা-৫ (ক)

- ১। স্টেইনলেস স্টিলের টিগ ওয়েন্ডিং করতে কী ধাতুর ইলেকট্রোড ব্যবহার করতে হবে?
- ২। টিগ ওয়েন্ডিং-এর ক্ষেত্রে কিসের বিদ্যুৎ প্রবাহ নির্ধারণ করা হয়।
- ৩। টিগ ওয়েন্ডিং টর্চ সাধারণত কত ডিগ্রির মধ্যে রাখতে হবে।

ব্যবহারিক-৫ (খ) সমতল অবস্থানে টিগ ওয়েন্ডিং পদ্ধতিতে অ্যালুমিনিয়ামের সোজা একক বিড তৈরি

৫.১ গুৱাৰ্কশিল প্ৰস্তুত :

* ও মিমি পুরুত্তের অ্যালুমিনিয়ামের পাত নিতে হবে। পাতের যে পার্শ্ব একক বিচ্চ ওরেন্ডিং করতে হবে তা কাইল দিয়ে সুন্দরভাবে পরিষ্কার করতে হবে। তবে পরিষ্কার প্রক্রিয়া অত্যন্ত সতর্কতার সাথে এবং বত্ন সহাকারে করতে হবে।

৫.২ ইলেকটোড নিৰ্বাচন :

 প্রেটের পুরুত্ব অনুসারে ইলেকট্রোড সাইজ নির্ভর করে। টেবিল হতে ইলেকট্রোড নির্বাচন করে নিতে হবে। এক্ষেত্রে ৪ (চার) মিমি ট্যাংস্টেন ইলেকট্রোড নেওয়া থেতে পারে।

৫.৩ ফিলার মেটাল নিবীচন :

* চার্ট থেকে ফিলার মেটাল নির্বাচন করতে হবে । এ কেতে ৪ (চার) মি.মি. ব্যাসের কিলার রড নিতে হবে ।

ওরার্কশিল সহযোগ :

পাতটিকে সমতল অবস্থায় স্থাপন করতে হবে।

চিত্র : জ্বটি সমতল অবস্থানে জ্যালুনিনিয়ান ওয়াকীপস

৫.৪ ইলেকটোড প্রত :

* টাংস্টেন ইলেকট্রোভের প্রান্তটি সুন্দরভাবে ট্যাপার (Taper) করে নিতে হবে। ভারপর টর্চের মধ্যে বধাযথভাবে স্থাপন করতে হবে।

সাধারণ কাজের জন্য-

চিত্ৰ : ইলেকট্ৰোড পঠশাকৃতি

৫.৫ ইলেকট্রোড আটকানো:

* টর্চ প্রস্তুতকারকের পরামর্শ মোভাবেক ইলেকট্রোড টর্চে স্থাপন করতঃ যথাযথভাবে আটকাতে হবে।

৫.৬ গ্যাসের প্রবাহ নির্বাচন :

* গ্যাস প্রবাহ সাধারণত পাতের পুরুত্বের উপর নির্ভর করে। চার্ট হতে সঠিক প্রবাহ নির্বাচন করতে হবে। এক্ষেত্রে গ্যাস প্রবাহের পরিমাণ হবে প্রতি মিনিটে ৮ লিটার।

৫.৭ কারেন্ট সেট :

* ধাতু বা প্লেটের পুরুত্বের উপর নির্ভর করে কারেন্ট নিরূপণ করতে হবে । বর্ণিত চার্ট হতে প্লেটের পুরুত্ব অনুসারে ক্যারেন্ট নিরূপণ করতে হবে । এক্ষেত্রে ২২০ - ৩৪০ অ্যাম্পিয়ার হবে ।

৫.৮ গেজা বিড ওয়েন্ড সম্পন্ন :

* গুয়েন্ডিং আরম্ভ করার পূর্বে কারেন্ট, গ্যাস, পানি ও স্বয়ংক্রিয় সেটিংসমূহ নিরীক্ষা করতে হবে। টার্চের কোণ সাধারণত ৮০° - ৯০° এর মধ্যে রাখতে হবে। ফিঙ্গার রডের কোণ সাধারণত মূঙ্গ ধাতুর সাথে ১০° - ২০° নিম্নের চিত্রানুষায়ী রাখতে হবে। আন্তে গুয়েন্ডিং কাজ সম্পন্ন করতে হবে।

চিত্র: ফিলার রড ও টর্চের অবস্থান

৫.৯ ওয়েন্ডিং-এর সময় ও পরে পরীকা:

* ওয়েন্ড সমাপ্ত করার পর সোজা বিড সঠিক হয়েছে কিনা পরীক্ষা করতে হবে। মূল ধাতু গলেছে কিনা দেখতে হবে। তাছাড়া আভার কাট হয়েছে কিনা পরীক্ষা করতে হবে। পরিশেষে চাহিদা মোতাবেক নিখুঁত ও মজবুত সোজা বিড হয়েছে কিনা দেখতে হবে।

প্রশ্নমালা-৫ (খ)

- ১। অ্যালুমিনিয়াম ধাতৃকে টিগ ওয়েন্ডিং করার জন্য কোন ধাতৃর তৈরি ইলেকট্রোড ব্যবহার করতে হবে?
- ২। অ্যাশুমিনিয়ামের জন্য কোন ধাতুর ফিলার রড ব্যবহৃত হবে?
- ৩। একক সোজা বিডের জন্য ইলেকট্রোডের প্রান্ত কেমন হবে?

ব্যবহারিক-৬ (ক) সমতল অবস্থানে টিগ প্রয়েন্ডিং পদ্ধতিতে স্টেইনলেসের বাট জ্বোড় প্রয়েন্ড তৈরি

৬.১ ভরাকিপিস প্রস্তুতকরণ :

* ৬ মিনি পুরুত্ত্বের দৃটি স্টেইনলেস স্টিলের পাত নিজে হবে। পাতধ্যের যে পার্ধহয় ওয়েন্ডিং করতে হবে তা ফাইল দারা ঘষে ঢালু করতে হবে এবং স্করভাবে পরিষ্কার করতে হবে। তবে পরিষ্কার প্রক্রিয়া অত্যন্ত সতর্কতার সাথে এবং যত্ন সহকারে করতে হবে।

७.२ देशक्द्रीफ निर्वादन :

প্লেটের পুরুত্ব অনুসারে ইলেকট্রোভ সাইছ নির্ভর করে। টেবিল হতে ইলেকট্রোভ নির্বাচন করে নিতে
 হবে। এক্ষেত্রে ৪ (চার) মিমি ট্যাংস্টেন ইলেকট্রোভ নেওয়া বেভে পারে।

৬.৩ কিলার মেটাল নির্বাচন :

* চার্ট থেকে বিন্সার মেটাল নির্বাচন করতে হবে। এ ক্ষেত্রে ৪ (চার) মি.মি. ব্যাসের বিন্সার রড নিতে হবে।

৬.৪ ওয়ার্কশিস সংযোগ :

🕈 পাত দুটিকে বটি জোড় সমতল অবস্থায় স্থাপন করতে হবে ।

চিত্র: বটি ওয়েন্ডিং-এ পাত সুটির অবস্থান

৬.৫ ইলেকটোড প্রস্তুকরণ :

* ইলেকট্রোডের প্রান্তটি সুন্দরভাবে ট্যাপার (Taper) করে নিতে হবে। তারপর টর্চের মধ্যে যথাযথভাবে স্থাপন করতে হবে।

সাধারণ কাজের জন্য-

চিত্র : ইলেকট্রোডের পঠনাকৃতি

৬.৬ ইলেকট্রোড আটকানো:

* টর্চ প্রস্তুতকারকের পরামর্শ মোতাবেক ইলেকট্রোড টর্চে স্থাপন করতে যথাযথভাবে আটকাতে হবে।

৬.৭ গ্যাসের প্রবাহ নির্বাচন :

* গ্যাস প্রবাহ সাধারণত পাতের পুরুত্বের উপর নির্ভর করে। (পরিশিষ্টতে দ্রন্টব্য) চার্ট হতে সঠিক প্রবাহ নির্বাচন করতে হবে। এক্ষেত্রে গ্যাস প্রবাহের পরিমাণ হবে প্রতি মিনিটে ৮ লিটার।

৬.৮ কারেন্ট সেট :

* ধাতু বা প্লেটের পুরুত্বের উপর নির্ভর করে কারেন্ট নিরূপণ করতে হবে। চার্ট হতে প্লেটের পুরুত্ব অনুসারে কারেন্ট নিরূপণ করতে হবে। এক্ষেত্রে ২২০-৩৪০ অ্যাম্পিয়ার হবে।

৬.৯ ওয়াকিপিস ট্যাক :

* ওয়ার্কপিস প্রস্তুত করার পর প্লেট দুটি পাশাপাশি রেখে ফিকচারে বেঁধে ওয়ার্কপিসের দৈর্ঘ্য অনুসারে ৩-৪ টি ট্যাক ওয়েন্ড করতে হবে। ট্যাক ওয়েন্ড করার সময় খেয়াল রাখতে হবে যে, প্লেট দুটি যেন একই সমতল ও অক্ষরেখা বরাবর থাকে।

৬.১০ বাট জোড় টিগ প্রয়েল্ড সম্পনুকরণ :

* গুয়েন্ডিং আরম্ভ করার পূর্বে কারেন্ট, গ্যাস, পানি ও স্বয়ংক্রিয় সেটিংসমূহ নিরীক্ষা (Test) করতে হবে। টর্চের কোণ সাধারণত ৮০° - ৯০° এর মধ্যে রাখতে হবে। ফিলার রডের কোণ সাধারণত মূল ধাতুর সাথে ১০° - ২০° কোণে রাখতে হবে। আন্তে আন্তে গুয়েন্ডিং কাব্ধ সম্পন্ন হবে।

টিন । বটি স্বেক

৬,১১ ভরেতিং-এর সময় ৬ পরে পরীকা।

* থাকের সমার্য করার পর জ্যান্ত সঠিক ব্যৱহার কিলা পরীক্ষা করতে ব্যবে। মূল থাতু পালেকে কিলা সেখাতে ব্যবে। ভারত্তা আন্তার কটি করেছে কিলা পরীক্ষা করতে ব্যবে। পরিশেবে চাবিদা মোভাবেক নিবৃতি ও বজসুত বটি জ্যোন্ত ব্যৱহার কিলা সেখাতে করে।

खनुनीननी-७ (क)

- ১। স্টেইনসেস স্টিসের টিগ ওয়েভিং-এর জন্য কোন শাকুর ভৈরি ইলেকট্রোড ব্যবহার করতে হরে?
- ২। সেইবালেন সিলের জন্য কোন প্রকার কিলার মেটাল ব্যবহৃত হয়।
- ৩।টিগ ব্যাক্তিং-কর জন্য কিলের উপর বিস্তাৎ নিরুপণ করা হয়?

ব্যবহারিক-৬ (খ) সমতল অবস্থানে টিগ ওয়েন্ডিং পদ্ধতিতে অ্যালুমিনিয়ামের বাট জোড় ওয়েন্ড তৈরি

৬.১ ওয়ার্কশিস প্রস্তুতকরণ :

* ৬ মিমি পুরুত্ত্বের দুইটি অ্যানুমিনিরামের পাত নিতে হবে । পাতহয়ের যে পার্বহর ওরেন্ডিং করতে হবে তা ফাইল হারা ঘবে ঢালু করতে হবে এবং সুন্দরভাবে পরিষ্কার করতে হবে । তবে পরিষ্কার প্রক্রিয়া অত্যন্ত সতর্কতার সাথে এবং যত্ন সহকারে করতে হবে ।

৬.২ ইলেকট্রোড নির্বাচন :

প্রেটের প্রত্ত্ব অনুসারে ইলেকট্রোড সাইজ নির্ভর করে। টেবিল হতে ইলেকট্রোড নির্বাচন করে নিতে
 হবে। এক্ষেত্রে ৪ (চার) মিমি ট্যাংস্টেন ইলেকট্রোড নেওয়া বেতে পারে।

৬.৩ কিলার মেটাল নির্বাচন :

* চার্ট থেকে ফিলার মেটাল নির্বাচন করতে হবে। এ ক্ষেত্রে ৪ (চার) মি.মি. ব্যাসের ফিলার রড নিতে হবে।

৬.৪ ওয়াকশিস সংবোগ :

পাত দুটিকে বাট জোড় সমতল অবস্থায় স্থাপন করতে হবে।

চিত্র : বাট ওয়েন্ডিং-এ পাত দু'টির অবস্থান

৬.৫ ইলেকটোড গ্ৰন্থত :

* ইলেকট্রোডের প্রান্তটি সুন্দরভাবে ট্যাপার (Taper) করে নিতে হবে। তারপর টর্চের মধ্যে ষধাষথভাবে স্থাপন করতে হবে।

गथान्य कार्यस सम्।-

চিত্ৰ : ইলেকটোচেত্ৰ গঠনাকৃতি

৬,৬ ইলেকটোড অটিকালো :

* টর্চ প্রস্তুতনারকের নির্চাশনা নোভাবেক ইলেকট্রাভ টর্চে ছাপন করভঃ কথাকথভাবে ঘটিকারে হবে।

৬.৭ গ্যাসের প্রবাহ নির্বাচন :

* প্যান ধৰাৰ নাথাৰণত পাজেৰ পুৰুতত্ত্ব উপৰ নিৰ্ভৰ কৰে। (পৰিপিটতে দ্ৰটৰা) চাৰ্ট ব্যৱ নঠিক ধৰাৰ নিৰ্বাচন কৰাতে কৰে। একেনে প্যাস প্ৰবাহেৰ বাব ব্যৱ প্ৰতি নিৰ্মিট ৮ নিটাৰ।

৬.৮ কারেক নেট :

শাহু বা প্লেটের প্লেছের উপর নির্ভর করে কারেউ নির্নাপ করতে হবে। চার্ট হতে প্লেটের প্রকৃত্ব
 অনুসারে ক্যাকেট নির্নাপ করতে হবে। একেরে ২২০ – ৩৪০ আম্পিরার হবে।

৬,৯ ভরাকশিন ট্যাক।

* গুৱাৰশিল প্ৰছত কৰাৰ পৰ প্লেট দৃটি পাশাপাশি ৰেখে কিৰ্কাৰে বেঁথে গুৱাৰ্থশিলেৰ দৈৰ্ঘ্য অনুসাৱে ৩-৪টি টাকি গুৱাৰু কৰতে হবে। টাকি কৰাৰ সময় খেৱাল ৱাৰ্থতে হবে যে, প্লেট দৃটি কেন একই সমতল ও অক্ষেত্ৰা ব্যাহৰ সেকে।

৬.১০ বটি ছোড় টিগ খয়েক সম্পদ্ধ :

* ব্যক্তিৰ আৰম্ভ করার কারেণ্ট, পটাস, পালি ও স্বয়ন্তির সেটিংসমূহ নিরীকা করতে হবে। টর্চের কোণ সাধারণক ৮০° - ৯০° নিয়ের চিলামুবারী রাধ্যক হবে। আতে আতে ধ্যরেণ্ডিং কাক সম্পন্ন করতে হবে। ग्रम्भिक

৩.১১ খয়েজিং-এর সময় ৩ পরে পরীকা।

* খন্তেত সমাৰ্থ কৰাৰ পৰ জোড় সঞ্জিক ব্ৰেছে কিনা পৰীকা (Test) কৰকে ছবে। মূল থাড় পলেছে কিনা দেশতে হবে। আহাড়া আভাৱ কটি হয়েছে কিনা পঞ্জিকা কয়তে হবে। পরিপেবে চাহিনা মোভাবেক নিবুঁত ও মজবুত বটি জোড় হয়েছে কিনা দেশতে হবে।

बन्नमाना-७ (व)

- ১। স্যাপুমিনিরামের টিগ ওয়েতিং-এর জন্য কোন বাতৃর তৈরি ইলেকট্রোড ব্যবহার করতে হবে?
- ২। আদ্বিনিয়াৰেৰ জন্য কোন প্ৰকাৰ বিলাৰ মেটাল ব্যবস্থত হয়।
- ৩। টিগ ওয়েজিং–এর জন্য কিসের উপর বিদ্যুৎ নিরুপণ করা ব্য় গ্

ব্যবহারিক-৭ (ক) সমতল অবস্থায় মিগ ওয়েল্ডিং পদ্ধতিতে স্টেইনলেস স্টিলের সোজা একক বিড তৈরি

৭.১ ওয়ার্কপিস প্রস্তুতকরণ :

* ৮ মিমি \times ৫০ মিমি \times ১০০ মিমি পরিমাপের স্টেইনলেস স্টিল প্লেট নিতে হবে। প্লেটের উপরিতল ও অন্য পার্শ্ব ফাইল দিয়ে ঘষে মসৃণ ও পরিষ্কার করতে হবে।

৭.২ ইলেকট্রোড নির্বাচন:

* প্রেটের গুণাগুণ এর উপর নির্ভর করে ইলেকট্রোড নির্বাচন করতে হবে। এই প্রেটের জন্য ১.৫ মিমি ব্যাসের ইলেকট্রোড বাছাই করা যেতে পারে।

৭.৩ ওয়ার্কপিস সংযোগ:

* ওয়ার্কপিস সমতল অবস্থানে সুন্দরভাবে দৃঢ় করে ক্ল্যাম্প বা ফিকচারের সাহায্যে আটকাতে হবে।

৭.৪ প্যাসের প্রবাহ নির্বাচন :

* এক্ষেত্রে প্রতি মিনিটে ৭-১০ লিটার গ্যাস প্রবাহ নির্ধারণ করা যেতে পারে।

৭.৫ ভোল্টেজ সেট :

* এক্ষেত্রে ২০ - ৩০ এর মধ্যে ভোল্টেজ নিরূপণ করা যেতে পারে।

৭.৬ কারেন্ট সেট :

* ইলেকট্রোডের উপর নির্ভর করে কারেন্ট সেটিং হয়। এর বেলায় ৩৫০ অ্যাম্পিয়ার কারেন্ট সেট করা যেতে পারে।

৭.৭ ওয়্যার ফিড অ্যাডজাস্ট :

* আর্ক তৈরি করার পূর্বে ওয়্যার ফিড অ্যাডজাস্ট করতে হবে। এই ওয়্যার ইলেকট্রোড হিসাবে আর্ক তৈরি করবে এবং ওয়্যার ফিড হয়ে আর্ক সংরক্ষণ করবে ও তৃতীয় পুরক ধাতু (Filler metal) হিসেবে কাজ করবে।

৭.৮ সোজা একক বিড ওয়েল্ড সম্পন্ন :

* এই প্রক্রিয়ার ওয়েভিং খুব সাবধানতার সাথে করতে হবে। নিচের চিত্রের মতো নিচ থেকে আস্তে অস্তে ওয়েল্ড করে আগাতে হবে এবং এইভাবে ওয়েল্ড সম্পন্ন করতে হবে। ব্যৰহাবিক ২২৭

চিব : বটি জোড়

- ৭,৯ থরেন্ডিং-এর সময় ৩ পরে পরীকা।
- * খরেকিং-এর সময় এবং কাজ সম্পন্ন করার পর আজার কটি, ওতার দ্যাপ, ত্র্যাক ব্রেছে কিনা ইত্যাদি নিরীকা করতে হবে।

ধলুমালা-৭ (ক)

- ১। মিপ ধরেন্ডিং-এর জন্য কোন গালি ব্যবহৃত হর?
- ২। মিগ ওয়েক্টিং-এ কারেট সেটিং কিসের উপর নির্ভর করে।
- ৩। মিগ ধরেজিং-এর ক্ষেত্রে ইলেকট্রোর করগ্রার্থ হর কিনা?

ব্যবহারিক-৭ (খ) সমতল অবস্থায় মিগ ওয়েল্ডিং পদ্ধতিতে অ্যালুমিনিয়ামের সোজা একক বিড তৈরি

৭.১ ওয়ার্কপিস প্রস্তুতকরণ :

* ৮ মিমি × ৫০ মিমি × ১০০ মিমি পরিমাপের অ্যালুমিনিয়ামের প্লেট নিতে হবে। প্লেটের উপরিতল ও অন্য পাশ ফাইল দিয়ে ঘষে মসৃণ করতে হবে।

৭.২ ইলেকট্রোড নির্বাচন:

* প্রেটের গুণাগুণের উপর নির্ভর করে ইলেকট্রোড নির্বাচন করতে হবে। এই প্রেটের জন্য ১.৫ মিমি ব্যাসের ইলেকট্রোড বাছাই করা যেতে পারে।

৭.৩ ওয়ার্কপিস সংযোগ:

* ওয়ার্কপিস সমতল অবস্থানে সুন্দরভাবে দৃঢ় করে ক্ল্যাম্প বা ফিকচারের সাহায্যে আটকাতে হবে।

৭.৪ গ্যাসের প্রবাহ নির্বাচন :

* এক্ষেত্রে প্রতি মিনিটে ৭ -১০ লিটার গ্যাস প্রবাহ নির্ধারণ করা যেতে পারে।

৭.৫ ভোল্টেজ সেট:

* এক্ষেত্রে ২০-৩০ এর মধ্যে ভোল্টেজ নির্ধারণ করা যেতে পারে।

৭.৬ কারেন্ট সেট :

* ইলেকট্রোডের পুরুত্বের উপর নির্ভর করে কারেন্ট সেটিং করতে হয়। এর বেলায় ৩৫০ অ্যাম্পিয়ার কারেন্ট সেট করা যেতে পারে।

৭.৭ ওয়্যার ফিড অ্যাডজাস্ট :

* আর্ক তৈরি করার পূর্বে ওয়্যার ফিড অ্যাডজাস্ট করতে হবে। এই ওয়্যার ইলেকট্রোড হিসাবে আর্ক তৈরি করবে এবং ওয়্যার ফিড হয়ে আর্ক সংরক্ষণ করবে ও তৃতীয ধাতু (ফিলার মেটাল) সরবরাহ করবে।

৭.৮ সোজা একক বিড ওয়েল্ড সম্পন্ন :

* এই প্রক্রিয়ায় ওয়েল্ডিং খুব সাবধানতার সাথে করতে হবে। নিচের মতো নিচ থেকে আন্তে ওয়েল্ড করে আগাতে হবে এবং এইভাবে ওয়েল্ড কাজ শেষ করতে হবে।

सम्बद्धतिक ५५%

টিন । সোজা একক বিভ প্রভাকরণ

৭৯ ভরেকিং-এর সময় ভ পরে পরীকা :

* কাজ সম্পন্ন করার পর আভার কটি, ওজার দ্যাপ, জ্যাক হরেছে কিনা ইত্যাদি নির্দ্তীকা করতে হবে।

ধানুমালা-৭ (খ)

- ১।মিগ ওরেকিং-এর জন্য কোন গ্যাল ক্রম্ভ হয়।
- ২। নিগ খ্যান্তিং-এ কাজেট সেটিং কিলের উপর নির্ভন করে।
- ৩। মিগ ভারতিং-এর ক্ষেত্রে ইলেকট্রাড করবাথ হয় কিনা?

ব্যবহারিক-৮ মিগ ওয়েল্ডং পদ্ধতিতে সিঙ্গেল ভি-বাট ওয়েল্ড

৮.১ ওয়ার্কপিস প্রস্তুতকরণ :

* ৮ মিমি \times ৫০ মিমি \times ১০০ মিমি পরিমাপের দুইটি স্টেইনলেস স্টিল প্লেট দিতে হবে। প্লেটদ্বয়ের পার্শ্বদ্বয় ৩০° বিভেল করতে হবে এবং অন্য পাশ ফাইল দিয়ে ঘষে মসুণ করতে হবে।

৮.২ ইলেকট্রোড নির্বাচন:

* প্রেটের গুণাগুণের উপর ভিত্তি করে ইলেকট্রোড নির্বাচন করতে হবে । এই প্লেটের জন্য ১.৫ মিমি ব্যাসের ইলেকট্রোড বাছাই করা যেতে পারে ।

৮.৩ ওয়ার্কপিস সংযোগ:

* ওয়ার্কপিসদ্বয় পরস্পর পাশাপাশি এমনভাবে অবস্থান করতে হবে যাতে করে এদের মধ্যে ৩ মিমি পরিমাণ জারগা ফাঁক থাকে। এই অবস্থানে সুন্দরভাবে দৃঢ় করে ক্ল্যাম্প বা ফিকচারের সাহায্যে আটকাতে হবে।

৮.৪ গ্যাসের প্রবাহ নির্বাচন :

এক্ষেত্রে প্রতি মিনিটে ৭ - ১০ লিটার গ্যাস প্রবাহ নির্ধারণ করা যেতে পারে ।

৮.৫ ভোল্টেজ সেট:

* এক্ষেত্রে ২০ -৩০ এর মধ্যে ভোল্টেজ নিরূপণ করা যেতে পারে।

৮.৬ কারেন্ট সেট :

* ইলেকট্রোডের উপর নির্ভর করে কারেন্ট সেটিং হয়। এর বেলায় ৩৫০ অ্যাম্পিয়ার কারেন্ট সেট করা যেতে পারে।

৮.৭ জোড়ের ট্যাক :

* পূর্বের সব প্রস্তুতি শেষ করার পর ওয়ার্কপিসের দৈর্ঘ্য অনুসারে প্রয়োজন মতো ২-৩টি ট্যাক ওয়েন্ডিং করতে হবে।

৮.৮ ওয়ার্কপিস প্রিসেট:

* ট্যাক ওয়েল্ড করার পর বাট জোড়ার অবস্থানে রেখে ক্ল্যাম্প বা ফিকচারের সাহায্যে সঠিকভাবে আটকাতে হবে।

৮.৯ খরেন্ড সম্পন্ন :

* এই প্রক্রিয়ার গুরেন্ডিং খুব সাৰ্থান্তার সাথে করতে হবে। মিচের চিত্রের মতো নিচ থেকে আরে আরে ব্যবেন্ড করে আগাতে হবে এবং এক রাম শেব করতে হবে।

* এইভাবে একাধিক রানে ওয়েন্ড সম্পন্ন করকে হবে।

চিন্ন। বৃদ্ধি জোড়

৮.১০ থরেন্ডিং-এর সময় ও পরে পরীকা :

* কাজ সম্পন্ন করার পর আন্তার কটি, ওচার দ্যাপ, ত্রনাক হরেছে কিমা ইড্যালি নিরীকা করতে হবে।

खन्**नीननी**-४

- ३ । कि-वॉर्ट क्षांक्षांत्र विज जडन करा ।
- ২। জোড়ের ট্যাককরণ বলতে কী বোঝার?
- ও। নিগ খলেজিং-এর সুবিধা কী কী?

ব্যবহারিক-৯ মিগ ওয়েন্ডিং পদ্ধতিতে ল্যাপ ওয়েন্ডিং

৯.১ ওয়ার্কপিস প্রস্তুতকরণ :

* ৫ মিমি × ৫০ মিমি × ১০০ মিমি পরিমাপের দুই খণ্ড অ্যালুমিনিয়াম প্লেট নিতে হবে। উভয় প্লেটের চার পাশ ফাইল ও ওয়্যার ব্রাশ দিয়ে ঘষে পরিষ্কার করতে হবে।

৯.২ ইলেকট্রোড নির্বাচন:

* প্লেটের গুণাগুণ ও পুরুত্বের উপর নির্ভর করে ১.৫ মি.মি ব্যাসের ইলেকট্রোড নির্বাচন করতে হবে।

৯.৩ ওয়ার্কপিস সংযোগ:

* যে দুটি প্লেট এর ল্যাপ জোড় করতে হবে তাদের একটি অপরটির উপর স্থাপন করে সঠিকভাবে ক্ল্যাম্প দিয়ে আটকাতে হবে।

৯.৪ গ্যাসের প্রবাহ নির্বাচন :

* গ্যাসের প্রবাহ প্রতি মিনিটে ৭-১০ লিটার নির্ধারণ করা যেতে পারে। এক্ষেত্রে আরগন কিংবা হিলিয়াম গ্যাস নির্বাচন করা যেতে পারে।

৯.৫ ভোল্টের সেট :

* এক্ষেত্রে ২০-৩০ এর মধ্যে ভোল্টেজ নির্ধারণ করা যেতে পারে।

৯.৬ কারেন্ট সেট :

* ইলেকট্রোডের ব্যাসের উপর নির্ভর করে কারেন্ট নিরূপণ করতে হবে। এই কাজের জন্য ১৭৫ - ২৭৫ অ্যাম্পিয়ার কারেন্ট সেট করা যেতে পারে।

৯.৭ ওয়্যার ফিড অ্যাডজাস্ট :

* আর্ক তৈরি করার পূর্বে ওয়্যার ফিড অ্যাডজাস্ট করতে হবে। এই ওয়্যার ইলেকট্রোড হিসাবে আর্ক তৈরি করবে এবং ওয়্যার ফিড হয়ে আর্ক সংরক্ষণ করবে ও তৃতীয় ধাতু (ফিলার মেটাল) সরবরাহ করবে।

৯.৮ ল্যাপ জোড় ওয়েন্ড সম্পন্ন :

* মেশিন সেটিং সম্পন্ন হওয়ার পর প্রথমে বাম থেকে আন্তে ওয়েন্ডিং আরম্ভ করতে হবে এবং শেষ প্রাপ্ত পর্যন্ত আগাতে হবে । তারপর প্লেট উল্টিয়ে অনুরূপভাবে ওয়েন্ডিং শেষ করতে হবে ।

চিত্র: ল্যাপজোড়

৯.৯ ওয়েন্ডের সময় ও পরে পরীকা:

* ওয়েন্ড সম্পন্ন করার পর আভার কাট, ওভার শ্যাপ, ক্র্যাংক এবং স্লাগ ইনক্লশন হয়েছে কিনা ইত্যাদি নিরীক্ষা করতে হবে।

প্রশ্নমালা-৯

- ১। মিগ ওয়েন্ডিং-এ ওয়্যার ফিড বলতে কী বোঝায়?
- ২। আর্ক সংরক্ষণ বলতে কী বোঝায়?
- ৩। মিগ ওয়েন্ডিং-এর অসুবিধা কী কী?

ব্যবহারিক-১০ মিগ ওয়েল্ডিং পদ্ধতিতে টি জোড় ওয়েল্ডকরণ

১০.১ ওয়ার্কপিস প্রস্তুতকরণ :

* ৬ \times ৭৫ \times ২৫০ মিমি মাপের দুটি অ্যালুমিনিয়াম প্লেট নিতে হবে। ফাইল দিয়ে প্লেটের চারদিক ঘষে পরিষ্কার করতে হবে। যে প্লেটটি অপর প্লেটের উপর খাড়া অবস্থান করবে সেই প্লেটের উভয় পার্শ্বে বিভেল করে নিতে হবে।

১০.২ ইলেকট্রোড নির্বাচন :

* যে ধাতু ওয়েন্ডিং করতে হবে তার গুণাগুণ এবং অবস্থান বিবেচনা করে ইলেকট্রোড নির্বাচন করতে হবে। এক্ষেত্রে ১.৫ মিমি ব্যাসের তারের ইলেকট্রোড নির্বাচন করা যেতে পারে।

১০.৩ ওয়ার্কপিস সংযোগ:

* যে প্লেটের একদিকে বিভেল করা আছে এই পার্শ্বটি অন্য প্লেটের উপর স্পর্শ করে খাড়া করে ধরে ক্ল্যাম্প দিয়ে সঠিকভাবে টি ('T') জোড়ার আকৃতিতে আটকাতে হবে।

১০.৪ গ্যাসের প্রবাহ নির্বাচন :

* গ্যাসের প্রবাহ প্রতি মিনিটে ৭-১০ লিটার নির্ধারণ করতে হবে।

১০.৫ ভোল্টেজ সেট :

* এক্ষেত্রে ভোল্টেজ ২০-৩০ এর মধ্যে নির্ধারণ করা যেতে পারে।

১০.৬ কারেন্ট সেট :

* ইলেকট্রোডের ব্যাসের উপর নির্ভর করে কারেন্ট নিরূপণ হয়। এক্ষেত্রে ১৭৫-২২৫ অ্যাম্পিয়ার কারেন্ট সেটিং করা যেতে পারে।

১০.৭ ওয়্যার ফিড অ্যাডজাস্ট :

* জবের পুরত্ব ও গুণাগুণ অনুসারে ওয়্যার ফিড মেকানিজম অ্যাডজাস্ট করতে হবে।

১০.৮ ট্যাক ওয়েন্ড :

* সঠিক অবস্থানে সেটিং এবং ক্ল্যাম্প করার পর ওয়ার্কপিসের দৈর্ঘ্য অনুসারে প্রয়োজনমতো ২-৩ টি ট্যাক ওয়েন্ড করতে হবে।

চিত্ৰ: টি জোড়া

১০.৯ ওয়ার্কপিস প্রিসেটিং :

* টি জোড়ার আকৃতিতে গুয়ার্কপিকে প্রিসেটিং করতে হবে।

১০.১০ টি জ্বোড় ধয়েন্ড সম্পন্ন :

- * ট্যাক ওয়েন্ড ও মেশিন সেটিং সম্পন্ন করার পর খাড়া প্লেটের এক পাশে বাম দিক হতে ওয়েন্ড আরম্ভ করে আন্তে আন্তে অগ্রসর হয়ে কাজ সমাপ্ত করা যেতে পারে। অনুরূপ খাড়া প্লেটের বিপরীত পাশে ওয়েন্ডিং সম্পন্ন করতে হবে।
- * আন্তে আন্তে এক প্রান্ত থেকে অন্য প্রান্ত ওয়েন্ডিং শেষ করতে হবে। তারপর প্লেটের বিপরীত পাশে অনুরূপভাবে ওয়েন্ডিং করে টি (T-Joint) জোড় তৈরি করতে হবে।

১০.১১ ওয়েন্ডিং-এর সময় ও পরে পরীক্ষা:

* কাজ সম্পন্ন হবার পর জোড়া-এ আন্ডার কাট, ওভার-স্যাপ, ব্লো-হোস ক্র্যাক ইত্যাদি ক্রটি আছে কিনা নিরীক্ষা করতে হবে।

প্রশ্নমালা-১০

- ১। মিগ ওয়েন্ডিং-এর জন্য মেশিন সেটিং বলতে কী বোঝায়?
- ২। মিগ ওয়েন্ডিং পদ্ধতিতে গ্যাসের প্রবাহ করা হয় কেন?
- ৩। টিগ ও মিগ ওয়েন্ডিং-এর পার্থক্য দেখাও।

পরিশিষ্ট নিম্নের তালিকায় টিপের আকার, চাপ ও গ্যাস দেখানো হলো :

টিপের সাইজ বা নজল	টিপ ছিদ্রের ব্যাস (মি.মি.)	প্লেটের পুরুত্ব মিলিমিটারে	কাজের জন্য গ্যাসের আনুমানিক চাপ কেজি/বর্গ সেন্টিমিটার		ফিলার রডের ব্যাস (মিলিমিটারে)	গ্যাসের আনুমানিক খরচ ঘনমিটার/ঘন্টা	
সাইজ			অক্সিজেন	অ্যাসিটিলিন		অ্যাসিটিলিন	অক্সিজেন
٥	ত.৯৮	০.৭১- ১.৫৯	0.09	0.09	১.৫৯	১১৩.২৭	330.29
২	٥.0٩	১.৫৯-৩.১৭	0.28	0.38	১.৫৯-৩.১৭	አ 83.৫৮	አ 8১.৫৮
9	2.80	৩.১৭-৪.৭৬	٥.২১	0.25	٥.১٩	২২৬.৫০	২২৬.৫০
8	১.৬০	8.৭৬-৭.৯৪	০.২৮	0.28	8.9৬	৩৩৯.৮০	৩৩৯.৮০
œ	٥.٤٥	4.88-55.5	o. ৩ ৫	0.00	8.9৬	৫৩৮.০০	৫৩৮.০০
৬	٧.১৮	ን৯.১১-১৫.৮৭	૦.8২	0.8২	৬.৩৫	৬৫১.২৮	৬৫১.২৮
٩	₹.8€	\$2.90-\$5.¢0	o.8%	0.8%	২৬.৩৫	১৯১.০৮	বত.ধের
b ⁻	২.৭০	১৫.৮৭-২৫.৪০	০.৫৬	0.69	৬.৩৫	১৩৫৯.২০	১৩৫৯.২০
৯	২.৯৫	২৫.৪ এর বেশি	0.60	ం.৬৩	৬.৩৫	४७.8८७८	₹0.8¢€¢
30	৩.৫৬	হেভী ডিউটি	0.90	0.90	৬.৩৫	২৬৯০.১০	২৬৯০.১০
77	৩.৭৩	হেভী ডিউটি	0.90	0.90	৬.৩৫	২৮৩১.৭০	২৮৩১.৭০
১২	৩.৭৮	হেভী ডিউটি	0.90	0.90	৬.৩৫	৩১১৪.৮৫	94.8660

টিগ মাইভ, লো-এলয়, স্টেইনলেস স্টিল ওয়েন্ডিং DCSP

ধাতৃর পুরুত্ব মি.মি.	ইলেকট্রোডের ব্যাস (মি.মি.)	ওয়েন্ডিং-এর জন্য কারেন্ট (এ.সি) অ্যাম্পিয়ার	গ্যাস নজর নিতে হবে (নম্বর)	গ্যাসের পরিমাণ লিটার/ মি.	ফিলার রডের ব্যাস (মি.মি.)	ওয়েন্ডিং-এর গতি মিমি./মিনিট	মন্তব্য
٥.٥	٥.٥	80 - 60	8	৪ - ৬	r <u>=</u>	800	ফ্লাজিং
3.6	১.৬	৬০ -৭০	৪ - ৬	৪ - ৬	٥	900 - 9CO	
২.০	১.৬	४०- ५०	৪ - ৬	e - 6	২	೨ 00 - ೨ (0	
೦.೦	₹.8	320 -380	æ - 9	৬ - ৭	২ - ৩	২৬০ - ৩০০	
0.0	৩.২	২০০ - ২৪০	৬- ৮	b - 20	9-6	২২০ - ৩৫০	
৬.০	8.0	২২০ -৩৪০	ъ	p - 70	8	২০০ - ২৫০	
b.0	8.8	೨ ೦೦ - ೨ ৫೦	p -70	১২	8 - &	320 - 380	২টি স্তর
\$2.0	७-8.€	800 -600	20	78	e - &	€0 - ⊌0	২টি বা ৩টি স্তর

গ্রন্থপঞ্জি

1. Giachino Weeks & Johnson : Welding technology, American Technical Society, 5th ed. 1973, Chicago, U.S.A. : Welding Principles for Engineers, 2. Morris, J.L Prentice Hall, 4th ed 1951, New York, U.S.A 3. Brumbaugh, J.E : Audels Welders Guide and Handbook, Holoard W. Sams & Co. Inc, Indiana, U.S.A 4. Galyen, J; Sear, G; & Tutle, C.A. **Fundamentals** : Welding Procedures, John Wileys 7 Sons Inc. 7th ed 1984, NewYork, U.S.A. : Welding Welding 5. Little, R.L. and Technology, Mac Graw- hill Book Company, Inc 1976, New York, U.S.A 6. Althouse, A.D & Tumpuist, C.H. : Modern Welding Practice, The Good Hearth, Will Cox Co. nc. 3rded. 1958, Chicago, U.S.A. : Introduction to Welding and 7. Milner, D.R. & Apps, R.L. Brazing, Pergamon Press, 2nf ed, 1969, Burmingham, U.K. 8. Gourd, L.M. : Principles of Welding 6^{th} ed. Technology. E.L.B.S. 1986, London, U.K. 9. Koenings berger, F& Adair, J.R. : Welding Teachnology, Mackmillan & Company Ltd. 1970, London, U.K.

Technology Khanna Publishers, 4th Edition-2005 Delhli, India.

10. Voellhoffer, L.Monz A.F & Hornberger, E. G.	: Welding Process and Practice. John Willy & Sons Inc. 2 nd ed, 1988, NewYork, U.S.A
11. Davis, A.C.	: The Science and Practice of Welding, Cambridge University Press, 4th ed, U.K
12. Sacks, R.J	: Theory and Practice of Welding, D. Van Nostrand Company Inc. 3 rd ed.1960, NewYork, U.S.A.
13. Woods, P.F	: Fundamentals of Welding Skills, Mackmillan press Ltd. 3 rd ed. 1965 London, U.K.
14. BOC	: Electrode Guide, No. 1 in Welding Prblishied by BOC, Dhaka Bangladesh.
15. Rossi, B.E.	: Welding Engineering, Mac Graw- hill Company, Inc 1954, New York, U.S.A.
16. Oates, J.A.	: Welding Engineer's Hand book, George Newness Co.Ltd. 7 th ed 1961, Livrrpool, U.K.
17. Jain, R.K	: Production Technology, Khanna Publishers, 9 th ed. 1987, New- Delhi, India
18. O.P.Khanna	: A Text Book of Welding Technology HDANPAT RAI Publication (P) Ltd. Reprint-2006
19. Dr. R.S Parmar	: Eelding Engineering and

: মডার্ন আর্ক ওয়েল্ডিং প্র্যাকটিস, শ্রীভূমি ২০. সরকার, এস পাবলিশিং, ষষ্ঠ সংস্করণ ১৯৯৩, কলিকাতা, ইন্ডিয়া। ২১. মিয়া, টিসি এবং মিয়া, এম এস : ওয়েন্ডিং প্রয়োগ ও পদ্ধতি, কল্পনা পাবলিশার্স ১ম সংস্করণ, ১৯৮৪, ঢাকা, বাংলাদেশ। : ওয়েন্ডিং শিক্ষা উপাদান, ১-৭ ইউনিট ১ম ২২. বাকাশিবো প্রকাশ ১৯৮৯-৯০, ঢাকা, বাংলাদেশ। : ওয়েন্ডিং ট্রেড-২, ১ম সংস্করণ এপ্রিল-২০০০, ২৩. বাকাশিবো ঢাকা, বাংলাদেশ। ২৪. বাকাশিবো : ওয়েল্ডিং অ্যান্ড ফেব্রিকেশন-২ ১ম সংস্করণ, মে-২০০০ ঢাকা, বাংলাদেশ। : প্রাথমিক ফিটিং শিক্ষা (দ্বিতীয় খণ্ড), একাদশ ২৫. শ্রী হেমন্ত কুমার ভট্টাচার্য্য সংস্করণ সোমনাথ বুক এজেন্সী, ৬/২ বেনীমাস্টার লেন, কলিকাতা -৭০০০৬১। ২৬. টি.টি.টি.সি : এডভান্স ওয়েল্ডিং।

সমাপ্ত

২০১৮ শিক্ষাবর্ষ ওয়েভিং অ্যাভ ফেব্রিকেশন-২

শিক্ষা নিয়ে গড়ব দেশ শেখ হাসিনার বাংলাদেশ

কারিগরি শিক্ষা আত্মনির্ভরশীলতার চাবিকাঠি

নারী ও শিশু নির্যাতনের ঘটনা ঘটলে প্রতিকার ও প্রতিরোধের জন্য ন্যাশনাল হেল্পলাইন সেন্টারে ১০৯ নম্বর-এ (টোল ফ্রি, ২৪ ঘন্টা সার্ভিস) ফোন করুন

২০১০ শিক্ষাবর্ষ থেকে গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য