- Suites & Fonctions

Dans tout le cours, on note :

• pour a < b réels, [a, b] l'ensemble des **réels** compris entre a et b:

$$[a,b] = \{x \in \mathbb{R} ; a \leqslant x \leqslant b\}.$$

• pour $0 \le a < b$ entiers, $[\![a,b]\!]$ l'ensemble des **entiers** compris entre a et b :

$$\llbracket a, b \rrbracket = \{ n \in \mathbb{N} ; \ a \leqslant x \leqslant b \}.$$

I - Suites

I.1 - Suites usuelles

Définition 1 - Suite arithmétique

Soit $a \in \mathbb{R}$. La suite u définie par $u_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + a$ est une suite arithmétique de raison a.

Proposition 1

Soit u une suite arithmétique de raison a. Pour tout $n \in \mathbb{N}$,

- $u_n = u_0 + na$.
- $\sum_{k=0}^{n} u_k = (n+1)u_0 + \frac{n(n+1)}{2}a$.

Exemple 1 - Une suite arithmétique

Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = u_n + 12$. Soit n un entier naturel.

D'après les propriétés des suites arithmétiques, pour tout n entier naturel,

$$u_n = 12n + 3.$$

Ainsi,

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} (12k+3) = 12 \sum_{k=0}^{n} k + \sum_{k=0}^{n} 3$$
$$= 12 \frac{n(n+1)}{2} + 3(n+1)$$
$$= 3(n+1)(2n+1).$$

Définition 2 - Suite géométrique

Soit $q \in \mathbb{R}^* \setminus \{1\}$. La suite u définie par $u_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = qu_n$ est une suite géométrique de raison q.

Proposition 2

Soit u une suite géométique de raison q. Pour tout $n \in \mathbb{N}$,

- $\bullet \ u_n = q^n u_0.$
- $\sum_{k=0}^{n} u_k = u_0 \frac{1-q^{n+1}}{1-q} = u_0 \frac{q^{n+1}-1}{q-1}$.

Exemple 2 - Une suite géométrique

Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = 12 \cdot u_n$. Soit n un entier naturel.

D'après les propriétés des suites géométriques, pour tout n entier naturel,

$$u_n = 12^n u_0 = 3 \times 12^n$$

En utilisant le résultat sur la somme des termes d'une suite géo-

métrique dont la raison est différente de 1,

$$\sum_{k=0}^{n} u_k = 3 \times \frac{12^{n+1} - 1}{12 - 1} = \frac{3}{11} \left(12^{n+1} - 1 \right).$$

Définition 3 - Suite arithmético-géométrique

Soient $a \in \mathbb{R}$, $q \in \mathbb{R}^* \setminus \{1\}$. La suite u définie par $u_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = qu_n + a$ est une suite arithmético-qéométrique.

Exemple 3 - Étude des suites arithmético-géométriques 🕰

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout n entier naturel, $u_{n+1} = 2u_n + 3$.

• Commençons par chercher une solution ℓ de l'équation $\ell = 2\ell + 3$.

On obtient $\ell = -3$.

• Pour tout n entier naturel, on pose $v_n = u_n - \ell = u_n + 3$. Montrons que (v_n) est une suite géométrique. Soit $n \in \mathbb{N}$.

$$v_{n+1} = u_{n+1} + 3$$

$$= (2u_n + 3) + 3$$

$$= 2u_n + 6$$

$$= 2(u_n + 3)$$

$$= 2v_n.$$

Ainsi, (v_n) est une suite géométrique de raison 2. De plus, $v_0 = u_0 + 3 = 4$.

• D'après les résultats sur les suites géométriques,

$$\forall n \in \mathbb{N}, v_n = 2^n v_0 = 2^{n+2}.$$

Ainsi,

$$\forall n \in \mathbb{N}, u_n = 2^{n+2} - 3.$$

I.2 - Études locale & globale

Définition 4 - Monotonie

Soit (u_n) une suite de nombres réels.

- (u_n) est croissante si $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$.
- (u_n) est décroissante si $\forall n \in \mathbb{N}, u_n \geqslant u_{n+1}$.
- (u_n) est constante si $\forall n \in \mathbb{N}, u_n = u_{n+1}$.
- (u_n) est stationnaire s'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, u_{n+1} = u_n$.

Exemple 4 - Suites arithmétiques & géométriques

• Soit (u_n) une suite arithmétique de raison r. Alors, pour tout n entier naturel,

$$u_{n+1} - u_n = r.$$

Ainsi,

- \star Si r > 0, alors la suite (u_n) est croissante.
- \star Si r < 0, alors la suite (u_n) est décroissante.
- \star Si r=0, alors la suite (u_n) est constante.
- Soit (u_n) une suite géométrique de raison q > 0 et de premier terme $u_0 > 0$. Alors, pour tout n entier naturel, $u_n = q^n u_0 > 0$. De plus,

$$\frac{u_{n+1}}{u_n} = q.$$

Ainsi,

2

- \star Si q > 1, alors la suite (u_n) est croissante.
- \star Si q < 1, alors la suite (u_n) est décroissante.
- \star Si q=1, alors la suite (u_n) est constante.

Définition 5 - Majorée, Minorée

Soit (u_n) une suite de nombres réels.

• La suite (u_n) est majorée s'il existe un réel M tel que $\forall n \in \mathbb{N}, u_n \leq M$.

- La suite (u_n) est *minorée* s'il existe un réel m tel que $\forall n \in \mathbb{N}, m \leq u_n$.
- La suite (u_n) est bornée si elle est majorée et minorée.

Exemple 5 - Une suite géométrique

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^n \frac{1}{2^k}$.

- Comme u_n est la somme de termes positifs, alors $u_n \ge 0$ et la suite (u_n) est minorée par 0.
- D'après les résultats sur la somme des termes d'une suite géométrique, pour tout n entier naturel,

$$u_n = \sum_{k=0}^n \left(\frac{1}{2}\right)^k = 1 \times \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} = 2\left(1 - \frac{1}{2^{n+1}}\right) \leqslant 2.$$

Ainsi, la suite (u_n) est majorée par 2. Finalement, la suite (u_n) est bornée.

I.3 - Limites

Proposition 3 - Opérations sur les limites

Soit (u_n) et (v_n) deux suites telles que $\lim_{n\to +\infty} u_n = a$ et $\lim_{n\to +\infty} v_n = b$.

• La somme $(u_n + v_n)$

	$b \in \mathbb{R}$	$+\infty$	$-\infty$
$a \in \mathbb{R}$	a+b	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	×
$-\infty$	$-\infty$	×	$-\infty$

• Le produit $(u_n v_n)$

	$b \in \mathbb{R}$	$+\infty$	$-\infty$
$a \in \mathbb{R}$	ab	$\pm \infty \ (a \neq 0)$	$\pm \infty \ (a \neq 0)$
$+\infty$	$\pm \infty \ (b \neq 0)$	$+\infty$	$-\infty$
$-\infty$	$\pm \infty \ (b \neq 0)$	$-\infty$	$+\infty$

• Le quotient (u_n/v_n)

	$b \in \mathbb{R}^*$	$+\infty$	$-\infty$	
$a \in \mathbb{R}$	a/b	0	0	
$+\infty$	$\pm \infty$	×	×	
$-\infty$	$\pm \infty$	×	×	

Exemple 6 - Calculs de limites

• Pour tout $n \ge 0$, on pose $u_n = n^2 + \sqrt{n}$. Comme $\lim_{n \to +\infty} n^2 = +\infty$ et $\lim_{n \to +\infty} \sqrt{n} = +\infty$, alors

$$\lim_{n \to +\infty} u_n = +\infty.$$

• Pour tout $n \ge 0$, on pose $v_n = n^2 - \sqrt{n}$. La forme obtenue ainsi est une forme indéterminée. Or, pour n > 0,

$$v_n = \sqrt{n} \left(n^{3/2} - 1 \right).$$

Comme $\lim_{n\to+\infty} \sqrt{n} = +\infty$ et $\lim_{n\to+\infty} n^{3/2} = +\infty$, alors

$$\lim_{n \to +\infty} v_n = +\infty.$$

• Pour tout $n \geqslant 0$, on pose $w_n = \frac{1}{\sqrt{n+3}}$. Comme $\lim_{n \to +\infty} \sqrt{n+3} = +\infty$, alors

$$\lim_{n \to +\infty} w_n = 0.$$

Proposition 4 - Limites classiques

Soit $q \in \mathbb{R}$.

- Si q > 1, alors $\lim_{n \to +\infty} q^n = +\infty$.
- Si -1 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$.

Exemple 7 - Série géométrique

Soit $x \in]-1,1[$. Pour tout n entier naturel, on pose $S_n = \sum_{k=0}^n x^k$.

D'après le résultat sur la somme des termes d'une suite géométrique,

$$S_n = \frac{1 - x^{n+1}}{1 - x}.$$

Comme $x \in]-1,1[$, alors $\lim_{n \to +\infty} x^{n+1} = 0$. Ainsi,

$$\lim_{n \to +\infty} S_n = \frac{1}{1 - x}.$$

Théorème 1 - Théorème d'encadrement

Soient u, v, w trois suites réelles et $\ell \in \mathbb{R}$ telles que, à partir d'un certain rang,

$$v_n \leqslant u_n \leqslant w_n$$
.

- Si (v_n) et (w_n) convergent vers un même réel ℓ , alors (u_n) converge également vers ℓ .
- Si (v_n) tend vers $+\infty$, alors (u_n) tend vers $+\infty$.
- Si (w_n) tend vers $-\infty$, alors (u_n) tend vers $-\infty$.

Exemple 8 - Factorielle vs puissance

Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{3^n}{n!}$. Pour tout $n \ge 4$, $\frac{3}{n} \le \frac{3}{4}$. Ainsi,

$$0 \leqslant u_n = \frac{3 \times 3 \times \dots \times 3}{1 \times 2 \times \dots \times n}$$
$$\leqslant \frac{3}{1} \times \frac{3}{2} \times \frac{3}{3} \times \frac{3}{4} \times \dots \frac{3}{4}$$
$$\leqslant \frac{9}{2} \times \left(\frac{3}{4}\right)^{n-3}.$$

Comme $\frac{3}{4} \in]0,1[$, alors $\lim_{n\to +\infty} \left(\frac{3}{4}\right)^{n-3}=0$. D'après le théorème d'encadrement,

$$\lim_{n \to +\infty} \frac{3^n}{n!} = 0.$$

Théorème 2 - Théorème de la limite monotone

Soit u une suite croissante.

- Si u est majorée, alors elle converge.
- Si u n'est pas majorée, alors elle tend vers $+\infty$.

Soit v une suite décroissante.

- ullet Si v est minorée, alors elle converge.
- Si v n'est pas minorée, alors elle tend vers $-\infty$.

Exemple 9 - Série exponentielle

Pour tout *n* entier naturel, on pose $S_n = \sum_{k=0}^n \frac{1}{k!}$.

 \bullet D'une part, pour tout n entier naturel,

$$S_{n+1} - S_n = \frac{1}{(n+1)!} > 0.$$

Ainsi, la suite (S_n) est croissante.

Chapitre I - Suites & Fonctions

D 2

• D'autre part, pour tout $n \ge 2$,

$$n! = 1 \times 2 \times \dots \times n$$
$$\geqslant 2^{n-1}.$$

Ainsi,

$$S_n = \sum_{k=0}^n \frac{1}{k!} = \frac{1}{0!} + \frac{1}{1!} + \sum_{k=2}^n \frac{1}{k!}$$

$$\leq 1 + 1 + \sum_{k=2}^n \frac{1}{2^{k-1}}$$

$$\leq 2 + \frac{1}{2} \frac{1 - \left(\frac{1}{2}\right)^{n-1}}{1 - \frac{1}{2}}$$

$$\leq 3.$$

Ainsi, la suite (S_n) est majorée par 3.

La suite (S_n) est croissante et majorée, donc elle est convergente.

Pour la culture, il est bon de savoir que $\lim_{n\to+\infty}\sum_{k=0}^{n}\frac{1}{k!}=e$.

II - Fonctions

II.1 - Régularité

Définition 6 - Continuité & Dérivabilité - Définition informelle

Soit f une fonction définie sur un intervalle I non vide et $x_0 \in I$.

• La fonction f est continue en x_0 si

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0).$$

• La fonction f est dérivable en x_0 si

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$
 existe.

Cette limite est le nombre dérivé de f en x_0 et est notée $f'(x_0)$.

Définition 7 - Classe \mathscr{C}^n

Une fonction f est dite de classe \mathscr{C}^n si :

- ses dérivées successives $f, f', \ldots, f^{(n)}$ existent,
- $f^{(n)}$ est continue.

II.2 - Étude d'extrema

Théorème 3 - Régularité & Variations

Soit f une fonction dérivable sur un intervalle I:

- Si f' est nulle sur I, alors f est constante sur I.
- Si f' est strictement positive sur I, sauf éventuellement en des points isolés en lesquels elle s'annule, alors f est strictement croissante sur I.
- Si f' est strictement négative sur I, sauf éventuellement en des points isolés en lesquels elle s'annule, alors f est strictement décroissante sur I.

Exemple 10

Soit $f: x \mapsto x^3 - 6x^2 + 1$.

La fonction f est dérivable comme fonction polynomiale et pour tout x réel,

$$f'(x) = 3x^2 - 12x = 3x(x - 4).$$

De plus, les fonctions polynomiales se comportent en l'infini

comme leur terme de plus haut degré, donc

$$\lim_{x \to -\infty} f(x) = -\infty \text{ et } \lim_{x \to +\infty} f(x) = +\infty.$$

On obtient ainsi le tableau de variations suivant :

x	$-\infty$		0		4		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$, 1 <		-31	^	. +∞

Théorème 4 - Dérivation & Extrema

Soit f une fonction dérivable sur un ouvert I et $x_0 \in I$. Si f admet un extremum local en x_0 , alors $f'(x_0) = 0$.

Exemple 11

• Soit $f: x \mapsto x^3$. La fonction f est dérivable et $f'(x) = x^2$. Ainsi, f'(0) = 0. Cependant,

$$f(-1) = -1 < 0 = f(0) < f(1).$$

Ainsi, f n'atteint pas d'extremum en 0.

• Sur $[-2, +\infty[$, on définit $f(x) = -x^3 + x^2$. La fonction f est dérivable et, pour tout x réel

$$f'(x) = -3x^2 + 2x = x(-3x + 2).$$

On obtient ainsi le tableau de variations suivant :

x	-2		0		2/3		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	-16		• 0		4/27		$-\infty$

Ainsi, f ne possède pas de minimum et son maximum (atteint en 2/3), vaut $\frac{4}{27}$.

II.3 - Inégalité des accroissements finis

Théorème 5 - Théorème de Rolle

Soient a < b deux réels et f une fonction continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b). Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Illustration du théorème de Rolle

Théorème 6 - Théorème des accroissements finis

Soient a < b deux réels et f une fonction continue sur [a,b] et dérivable sur [a,b]. Alors

$$\exists c \in]a, b[; f(b) - f(a) = f'(c)(b - a).$$

Illustration du théorème des accroissements finis

7

Théorème 7 - Inégalité des accroissements finis

Soient f une fonction dérivable sur I, m, M deux réels tels que pour tout $x \in I$, $m \le f'(x) \le M$. Alors, pour tout $(x, y) \in I^2$, si $x \le y$, alors $m(y - x) \le f(y) - f(x) \le M(y - x)$.

Exemple 12 - Inégalité

Soit k un entier strictement positif. La fonction ln est continue et dérivable sur [k, k+1]. De plus, sa dérivée est $x \mapsto \frac{1}{x}$. Ainsi,

$$\frac{1}{k+1} \leqslant \ln(k+1) - \ln(k) \leqslant \frac{1}{k}.$$

II.4 - Formule de Taylor

Définition 8 - Relations de comparaison

Soit $a \in \overline{\mathbb{R}}$ et f, g deux fonctions définies au voisinage de a telles que g ne s'annule pas au voisinage de a.

- f et g sont équivalentes en a, noté $f \sim_a g$ si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$.
- f est négligeable devant g en a, si $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$.

Proposition 5 - Croissances comparées

- Au voisinage de $+\infty$:
 - $\star \operatorname{Si} \alpha, \beta, \gamma > 0,$

$$\lim_{x \to +\infty} \frac{(\ln x)^{\gamma}}{x^{\beta}} = 0, \lim_{x \to +\infty} \frac{x^{\beta}}{e^{\alpha x}} = 0.$$

 \star Si α , β , γ < 0,

$$\lim_{x \to +\infty} \frac{x^{\beta}}{(\ln x)^{\gamma}} = 0, \lim_{x \to +\infty} \frac{e^{\alpha x}}{x^{\beta}} = 0.$$

• Au voisinage de 0 : si $\beta < 0, \gamma > 0$,

$$\lim_{x \to 0} \frac{|\ln x|^{\gamma}}{x^{\beta}} = 0.$$

Exemple 13

• Soit $f: x \mapsto \sqrt{x} \ln \left(\frac{x^2}{1+x} \right)$. On remarque que

$$f(x) = \sqrt{x} \left[\ln(x^2) - \ln(1+x) \right] = \sqrt{x} \left[2 \ln(x) - \ln(1+x) \right].$$

D'une part, d'après le théorème des croissances comparées,

$$\lim_{x \to 0^+} \sqrt{x} 2 \ln(x) = 0.$$

D'autre part, $\lim_{x\to +\infty} \sqrt{x} = 0$ et $\lim_{x\to 0} \ln(1+x) = 0$. Finalement.

$$\lim_{x \to 0^+} f(x) = 0.$$

• Soit $g: x \mapsto \frac{\ln(x) + x}{x^2 + 1}$. On remarque que

$$g(x) = \frac{\ln(x)}{x^2 + 1} + \frac{x}{x^2 + 1} = \frac{\ln(x)}{x} \frac{1}{x + \frac{1}{x}} + \frac{1}{x + \frac{1}{x}}.$$

D'après le théorème des croissances comparées, $\lim_{x\to +\infty}\frac{\ln(x)}{x}=0$. D'après les opérations sur les limites, $\lim_{x\to +\infty}x+\frac{1}{x}=+\infty$. Finalement,

$$\lim_{x \to +\infty} g(x) = 0.$$

Chapitre I - Suites & Fonctions D 2

Théorème 8 - Équivalent et dérivation

Si f est une fonction dérivable en a et $f'(a) \neq 0$, alors

$$f(x) - f(a) \sim_a f'(a) \cdot (x - a).$$

Exemple 14 - Équivalents classiques en 0

• Comme $x \mapsto \ln(1+x)$ est dérivable sur] $-1, +\infty$ [de dérivée $x \mapsto \frac{1}{1+x}$,

$$\ln(1+x) - \ln(1) \sim_0 \frac{1}{1+0}(x-0)$$
$$\ln(1+x) \sim_0 x.$$

• Comme $x \mapsto e^x$ est dérivable sur \mathbb{R} de dérivée $x \mapsto e^x$,

$$e^{x} - e^{0} \sim_{0} e^{0}(x - 0)$$

 $e^{x} - 1 \sim_{0} x$.

• Soit $\alpha \in \mathbb{R}$. Comme $x \mapsto (1+x)^{\alpha}$ est dérivable sur $]-1,+\infty[$ de dérivée $x \mapsto \alpha(1+x)^{\alpha-1},$

$$(1+x)^{\alpha} - (1+0)^{\alpha} \sim_0 \alpha (1+0)^{\alpha-1} (x-0)$$
$$(1+x)^{\alpha} - 1 \sim_0 \alpha x.$$

Proposition 6 - Relations de comparaison & Opérations

- \sim_a est une relation d'équivalence.
- Si $f(x) \sim_a g(x)$, alors f et g sont de même signe sur un voisinage de a.
- Si $f_1 \sim g_1$ et $f_2 \sim g_2$, alors $f_1 f_2 \sim g_1 g_2$.
- Si $f_1 \sim g_1$, $f_2 \sim g_2$ et g_1 , g_2 ne s'annulent pas au voisinage de a, alors $\frac{f_1}{f_2} \sim_a \frac{g_1}{g_2}$.

Exemple 15

• On remarque que

$$1 + x \sim_0 1$$
 et $1 + 2x \sim_0 1$.

Cependant,

$$\ln(1+x) \sim_0 x \text{ et } \ln(1+2x) \sim_0 2x.$$

Ainsi, il **ne** faut **pas** composer des équivalents.

• On remarque que

$$\frac{1}{1+2x} \sim_0 1$$
 et $1-2x \sim_0 1$.

Cependant,

$$\frac{1}{1+2x} - 1 + 2x = \frac{1+2x-2x}{1+2x} - 1 + 2x$$

$$= 1 - 2\frac{x}{1+2x} - 1 + 2x$$

$$= 2x \left(1 - \frac{1}{1+2x}\right)$$

$$= 2x \frac{2x}{1+2x}$$

$$\sim_0 4x^2.$$

Ainsi, il **ne** faut **pas** additionner des équivalents.

Définition 9 - Développement limité à l'ordre 1 ou 2

Soit a un réel et f une fonction définie sur un voisinage de a.

• f admet un développement limité à l'ordre 1 en 0 s'il existe a_0 et a_1 réels et ε une fonction satisfaisant $\lim_{x\to a} \varepsilon(x) = 0$ tels que

$$f(x) = a_0 + a_1(x - a) + (x - a)\varepsilon(x).$$

 $\bullet \ f$ admet un développement limité à l'ordre 2 en 0 s'il existe

 a_0 , a_1 et a_2 réels et ε une fonction satisfaisant $\lim_{x\to a} \varepsilon(x) = 0$ tels que

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + (x - a)^2 \varepsilon(x).$$

Exemple 16 - Polynômes et Inverse

• Soit $f: x \mapsto 3 + 2x + 4x^2 + 3x^5 + 25x^{72}$. Alors,

$$f(x) = 3 + 2x + 4x^{2} + x^{2} (3x^{3} + 25x^{70})$$
$$= 3 + 2x + 4x^{2} + x^{2} \varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x)=0$. Ainsi, f admet un développement limité à l'ordre 2 en 0.

• Soit $f: x \mapsto \frac{1}{1-x}$. En utilisant la somme des termes d'une suite géométrique,

$$1 + x + x^{2} = \frac{1 - x^{3}}{1 - x}$$

$$\frac{1}{1 - x} = 1 + x + x^{2} + \frac{x^{3}}{1 - x}$$

$$= 1 + x + x^{2} + x^{2} \frac{x}{1 - x}$$

$$= 1 + x + x^{2} + x^{2} \varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x) = 0$. Ainsi, f admet un développement limité à l'ordre 2 en 0.

• Soit $f: x \mapsto 4x^3 + 2x^2 + x + 1$. On remarque que

$$f(x) = 1 + x + 2x^{2} + x^{2} \times x = 1 + x + 2x^{2} + x^{2}\varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x) = 0$. Ainsi, f admet un développement limité à l'ordre 2 en 0.

• Soit $f: x \mapsto \frac{1}{1+x}$. On remarque que

$$f(x) = \frac{1}{1+x} = \frac{1+x-x}{1+x}$$

$$= 1 - x\frac{1}{1+x} = 1 - x\frac{1+x-x}{1+x}$$

$$= 1 - x + x^2\frac{1}{1+x} = 1 - x + x^2\frac{1+x-x}{1+x}$$

$$= 1 - x + x^2 - x^2\frac{x}{1+x}$$

$$= 1 - x + x^2 - x^2\varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x) = 0$. Ainsi, f admet un développement limité à l'ordre 2 en 0.

Proposition 7 - Développement limité & Régularité

Soit f une fonction définie sur un intervalle I et $a \in I$.

- f admet un développement limité à l'ordre 0 en a si et seulement si f est continue en a. En particulier, si $f(x) = a_0 + \varepsilon(x)$, alors $\lim_{x \to a} f(x) = \frac{1}{x}$
 - En particulier, si $f(x) = a_0 + \varepsilon(x)$, alors $\lim_{x \to a} f(x) = f(a) = a_0$.
- f ademt un développement limité à l'ordre 1 en a si et seulement si f est dérivable en a.
 - En particulier, si $f(x) = a_0 + a_1(x-a) + (x-a)\varepsilon(x)$, alors $a_0 = f(a) = \lim_{x \to a} f(x)$ et $a_1 = f'(a)$. La tangente en f à a a donc pour équation $a_0 + a_1(x-a)$.

Théorème 9 - Formule de Taylor-Young

Soit $f: I \to \mathbb{K}$ une fonction de classe \mathscr{C}^n . Pour tout $a \in I$, il existe une fonction ε_a telle que $\lim_{x \to a} \varepsilon_a(x) = 0$ et

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + (x-a)^{n} \varepsilon(x).$$

Exemple 17 - Développements limités classiques en 0

• La fonction $f: x \mapsto e^x$ est de classe \mathscr{C}^2 sur \mathbb{R} et

$$f': x \mapsto e^x,$$

 $f'': x \mapsto e^x.$

Ainsi,

$$e^{x} = e^{0} + e^{0}(x - 0) + \frac{e^{0}}{2}(x - 0)^{2} + x^{2}\varepsilon(x)$$
$$= 1 + x + \frac{x^{2}}{2} + x^{2}\varepsilon(x).$$

• La fonction $f: x \mapsto \ln(1+x)$ est de classe \mathscr{C}^2 sur $]-1, +\infty[$ et

$$f': x \mapsto \frac{1}{1+x},$$

$$f'': x \mapsto -\frac{1}{(1+x)^2}.$$

Ainsi,

$$\ln(1+x) = \ln(1+0) + \frac{1}{1+0}x - \frac{\frac{1}{(1+0)^2}}{2}x^2 + x^2\varepsilon(x)$$
$$= x - \frac{x^2}{2} + x^2\varepsilon(x).$$

• Soit $\alpha \in \mathbb{R}$. La fonction $f: x \mapsto (1+x)^{\alpha}$ est de classe \mathscr{C}^2 sur $]-1,+\infty[$ et

$$f': x \mapsto \alpha(1+x)^{\alpha-1},$$

$$f'': x \mapsto \alpha(\alpha-1)(1+x)^{\alpha-2}.$$

Ainsi,

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + x^2\varepsilon(x).$$

• On considère la fonction $f: x \mapsto e^{\sqrt{1+x}}$. On utilise les développements limités classiques et on note ε , ε_1, \ldots des fonctions qui tendent vers 0 en 0 mais dont la valeur peut varier d'une ligne à l'autre :

$$f(x) = \exp\left(\sqrt{1+x}\right)$$

$$= \exp\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)\right)$$

$$= \exp\left(\frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)\right)$$

$$= \exp\left(1 + \left(\frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)\right) + \cdots\right)$$

$$\cdots + \frac{1}{2}\left(\frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)\right)^2 + \cdots$$

$$\cdots + \left(\frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)\right)\varepsilon_1\left(\frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)\right).$$

Ainsi, en factorisant par x^2 et en regroupant les termes qui tendent vers 0, on obtient

$$f(x) = e\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{2} \times \frac{1}{4}x^2 + x^2\varepsilon(x)\right)$$
$$= e\left(1 + \frac{1}{2}x + x^2\varepsilon(x)\right)$$
$$= e + \frac{e}{2}x + x^2\varepsilon(x).$$

A. Camanes

Chapitre I - Suites & Fonctions

D 2

Proposition 8 - Développement limité & Comportement local

Soit f une fonction de classe \mathscr{C}^2 sur un intervalle I contenant a.

- Si f''(a) > 0, alors f se situe au-dessus de sa tangente sur un voisinage de 0.
- Si f''(a) < 0, alors f se situe au-dessous de sa tangente sur un voisinage de 0.

Si f''(a) = 0 et si f est suffisamment régulière, on effectuera un développement limité à un ordre supérieur.

Exemple 18

Comportement au voisinage de 1 de $f: x \mapsto e^{1-\sqrt{x}}$. La fonction f est de classe \mathscr{C}^2 et

$$f': x \mapsto -\frac{e^{1-\sqrt{x}}}{2\sqrt{x}},$$
$$f'': x \mapsto \frac{\sqrt{x}+1}{4x^{3/2}} e^{1-\sqrt{x}}.$$

D'après la formule de Taylor-Young

$$e^{1-\sqrt{x}} = 1 - \frac{1}{2}(x-1) + \frac{1}{4}(x-1)^2 + (x-1)^2 \varepsilon(x-1).$$

En particulier, il existe une fonction ε qui tend vers 0 en 0 telle que

$$e^{1-\sqrt{x}} - \underbrace{\left[1 - \frac{1}{2}(x-1)\right]}_{\text{éq. de la tangente}} = \frac{1}{4}(x-1)^2 + (x-1)^2 \varepsilon(x-1)$$
$$= \frac{(x-1)^2}{4} + (x-1)^2 \varepsilon(x-1)$$
$$= \frac{1}{4}(x-1)^2 (1 + \varepsilon(x-1)).$$

Ainsi, lorsque x est proche de 1, alors $1 + \varepsilon(x - 1) > 0$ et $(x - 1)^2 \ge 0$. Donc $f(x) - \left[1 - \frac{1}{2}(x - 1)\right] \ge 0$ et la courbe représentative de f se trouve au-dessus de la tangente.

II.5 - Fonctions convexes

Définition 10 - Convexité pour les fonctions de classe \mathscr{C}^2

Soit $f \in \mathcal{C}^2(I)$. f est une fonction convexe si $f'' \geqslant 0$.

Proposition 9 - Convexité & Tangentes

Soit f une fonction convexe et dérivable sur I. Alors,

$$\forall x, a \in I, f(x) \geqslant f(a) + (x - a)f'(a).$$

II.6 - Plan d'étude de fonction

- (i). Ensemble de définition.
- (ii). Limites aux bornes de l'ensemble d'étude.
- (iii). Dérivabilité, Variations.
- (iv). Branches infinies.
- (v). Représentation graphique avec les tangentes remarquables.

Exemple 19 - Étude de fonction

Soit $f: x \mapsto x - 1 + \frac{1}{x-2}$ et C_f sa courbe représentative dans un repère orthonormé.

- (i). f est définie sur $\mathbb{R}\setminus\{2\}$.
- (ii). f est dérivable sur $]-\infty,2[$ et sur $]2,+\infty[$. Sur chacun de ces intervalles,

$$f'(x) = 1 - \frac{1}{(x-2)^2} = \frac{(x-1)(x-3)}{(x-2)^2}.$$

On en déduit le tableau de variations suivant :

\boldsymbol{x}	$-\infty$		1		2		3		$+\infty$
f'(x)		+	0	_		_	0	+	
f(x)	$-\infty$	T	-1			∞	* 3 ~	\	$+\infty$

La fonction f est deux fois dérivable et $f''(x) = \frac{1}{(x-2)^3}$. Ainsi, $f''(x) \ge 0$ pour tout $x \ge 2$ et f est convexe sur $]2, +\infty[$. Comme $f''(x) \le 0$ pour tout $x \le 2$, alors f est concave sur $]-\infty, 2[$.

- (iii). Étude des branches infinies.
 - Comme $\lim_{x\to 2^-} f(x) = +\infty$, alors la droite d'équation y=2 est une asymptote verticale à la courbe.
 - Comme $\lim_{x\to 2^+} f(x) = -\infty$, alors la droite d'équation y=2 est une asymptote verticale à la courbe.
 - y=2 est une asymptote verticale à la courbe. • Comme $\lim_{x\to +\infty} \frac{f(x)}{x} = 1$ et $\lim_{x\to +\infty} f(x) - x = -1$, alors la droite d'équation y=x-1 est asymptote à \mathcal{C}_f en $+\infty$. De plus, $f(x)-x+1=\frac{1}{x-2}\geqslant 0$ pour tout x>2. Ainsi, \mathcal{C}_f se trouve au-dessus de son asymptote au voisinage de $+\infty$.
 - Comme $\lim_{x \to -\infty} \frac{f(x)}{x} = 1$ et $\lim_{x \to -\infty} f(x) x = -1$, alors la droite d'équation y = x 1 est asymptote à C_f en $-\infty$. De plus, $f(x) x + 1 = \frac{1}{x-2} \le 0$ pour tout x < 2. Ainsi, f se trouve au-dessous de son asymptote.
- (iv). Tracé.

D 2