Zaki Glenroy Lindo, Assignment 4

Assignment 4: Due Monday October 2, 2017, no later than 8pm.

$$p.38 - 39 \# 42, 43, 46, 60, 66$$

#42. Prove or disprove that $H = \{0, 2, 4, 6, 16\}$ is a subgroup of $(\mathbb{Z}_{18}, +_{18})$

Counter Example:

Let
$$x = 2$$
.

Let y = 6.

As we defined H, $x, y \in H$. However, $x * y = 2 +_{18} 6 = 8$. $8 \notin H$, therefore, H is not closed under its operation, $+_{18}$. Thus, H is not a subgroup of $(\mathbb{Z}_{18}, +_{18})$.

#43. Prove or disprove that $H = \{(0,0), (0,2), (1,0), (1,2)\}$ is a subgroup of $\mathbb{Z}_2 \times \mathbb{Z}_4$ under the operation using $+_2$ in the first coordinate and $+_4$ in the second coordinate.

$+_{2} \times +_{4}$	(0,0)	(0,2)	(1,0)	(1,2)
(0,0)	(0,0)	(0,2)	(1,0)	(1,2)
(0,2)	(0,2)	(0,0)	(1,2)	(1,0)
(1,0)	(1,0)	(1,2)	(0,0)	(0,2)
(1,2)	(1,2)	(1,0)	(0,2)	(0,0)

Proof: We want to show that H is a subgroup of $\mathbb{Z}_2 \times \mathbb{Z}_4$ under the operation using $+_2$ in the first coordinate and $+_4$ in the second coordinate. We need to show $H \neq \emptyset^1$, H is closed under the operation², and H is closed under inverses³:

- 1) $(H \neq \emptyset)$: As $H = \{(0,0), (0,2), (1,0), (1,2)\}$, there are elements in H. Thus, $H \neq \emptyset$.
- 2) (H is closed under the operation): We want to show that for all $x, y \in H$, $x * y \in H$. Looking at the Cayley Table, we can see that for all $x, y \in H$, $x * y \in H$. Thus, H is closed under the operation.
- 3) (H is closed under inverses): We want to show that for all $a \in H$, $a^{-1} \in H$.

a=(0,0):

Looking at the Cayley Table, we see that (0,0) * (0,0) = (0,0). As (0,0) is

the identity of H(as seen on the Cayley Table), (0,0) is the inverse of (0,0). Thus, $(0,0)^{-1} \in H$.

a=(0,2):

Looking at the Cayley Table, we see that (0,2)*(0,2)=(0,0). As (0,0) is the identity of H(as seen on the Cayley Table), (0,2) is the inverse of (0,2). Thus, $(0,2)^{-1} \in H$.

a=(1,0):

Looking at the Cayley Table, we see that (1,0)*(1,0)=(0,0). As (0,0) is the identity of H(as seen on the Cayley Table), (1,0) is the inverse of (1,0). Thus, $(1,0)^{-1} \in H$.

a=(1,2):

Looking at the Cayley Table, we see that (1,2)*(1,2)=(0,0). As (0,0) is the identity of H(as seen on the Cayley Table), (1,2) is the inverse of (1,2). Thus, $(1,2)^{-1} \in H$.

As for each element $a \in H$, $a^{-1} \in H$, H is closed under inverses.

Hence, as $H \neq \emptyset^1$, H is closed under the operation², and H is closed under inverses³, H is a subgroup of $\mathbb{Z}_2 \times \mathbb{Z}_4$ under the operation using $+_2$ in the first coordinate and $+_4$ in the second coordinate.

#46. Determine if the set $H = \{\frac{1}{n} : n \in \mathbb{Z}, n \neq 0\}$ is a subgroup of (\mathbb{Q}^*, \cdot) (nonzero rational numbers under multiplication). Either prove that it is or give a specific example of how it fails.

Counter Example:

Let n = 12. We know that for $12, \frac{1}{12} \in H$.

Under the usual multiplication on nonzero rational numbers, $(\frac{1}{12})^{-1} = 12$. However, $12 \notin H$. Thus, H is not closed under inverses.

As H is not closed under inverses, H is not a subgroup of (\mathbb{Q}^*,\cdot)

#60. Determine if the function $f: M_2(\mathbb{R}) \to \mathbb{R}$ defined by $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a+b$ is a homomorphism. Note that $M_2(\mathbb{R})$ is a group under matrix addition and \mathbb{R} is a group under usual real number addition.

Proof: We want to show that $f: M_2(\mathbb{R}) \to \mathbb{R}$ defined by $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a+b$ is a homomorphism. That is, for every $x,y \in M_2(\mathbb{R}), \ f(x+y) = f(x)+f(y)$. Let $x=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and let $y=\begin{bmatrix} e & f \\ g & h \end{bmatrix}$.

We want to show that $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix}\right) = f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) + f\left(\begin{bmatrix} e & f \\ g & h \end{bmatrix}\right)$.

Now, $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix}\right) = f\left(\begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}\right)$ by Matrix multiplication. By f, $f\left(\begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}\right) = (a+e)+(b+f)$. By associativity and commutativity of addition of real numbers, (a+e)+(b+f)=a+b+e+f. Thus, $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) + f\left(\begin{bmatrix} e & f \\ g & h \end{bmatrix}\right) = a+b+e+f$ Now, $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) + f\left(\begin{bmatrix} e & f \\ g & h \end{bmatrix}\right) = (a+b)+(e+f)$. By associativity of addition of real numbers, (a+b)+(e+f)=a+b+e+f. Thus, $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) + f\left(\begin{bmatrix} e & f \\ g & h \end{bmatrix}\right) = a+b+e+f$ Therefore, $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) + f\left(\begin{bmatrix} e & f \\ g & h \end{bmatrix}\right) = f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) + f\left(\begin{bmatrix} e & f \\ g & h \end{bmatrix}\right)$. Hence, the function $f: M_2(\mathbb{R}) \to \mathbb{R}$ defined by $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a+b$ is a homomorphism.

#66. Suppose $f:G\to K$ and $g:K\to H$ are homomorphisms of groups G, K, and H. Prove that the function $g\circ f$ is a homomorphism from G to H.

Proof: Let $a,b \in G$. We want to show that $g \circ f(ab) = g \circ f(a)g \circ f(b)$. By composition of functions, $g \circ f(ab) = g(f(ab))$. Since f is a homomorphism, g(f(ab)) = g(f(a)f(b)). Since $f: G \to K$ and $g: K \to H$, $f(a), f(b) \in K$. Since g is a homomorphism, g(f(a)f(b)) = g(f(a))g(f(b)). By composition of functions, $g(f(a)) = g \circ f(a)$. Similarly, $g(f(b)) = g \circ f(b)$. Thus, $g \circ f(ab) = g \circ f(a)g \circ f(b)$. Therefore, $g \circ f$ is a homomorphism from $G \to H$.