Consistencia de estimadores puntuales

Sea $\hat{\Theta}_n$ un estimador del parámetro θ , basado en una muestra aleatoria $\left(X_1,X_2,...,X_n\right)$ de tamaño n. Se dice que $\hat{\Theta}_n$ es un estimador consistente de θ si

$$\lim P(|\hat{\Theta}_n - \theta| \ge \varepsilon) = 0 \quad \text{para todo } \varepsilon > 0$$

Consistencia de estimadores puntuales

Ejemplo:

Sea X una variable aleatoria que describe alguna característica numérica de los individuos de una población y sean $\mu = E(X)$ y $\sigma^2 = V(X)$ la esperanza poblacional y la varianza poblacional, respectivamente. Sea $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ la esperanza muestral basada en una muestra aleatoria

. Entonces \overline{X} es un estimador consistente de la esperanza poblacional $\mu = E(X)$.

Sabemos que

a)
$$E(\overline{X}) = \mu = E(X)$$
 $\forall n$

b)
$$V(\overline{X}) = \frac{\sigma^2}{n} = \frac{V(X)}{n} \quad \forall n$$

La propiedad a) ya me dice que \overline{X} es un estimador insesgado de $\mu = E(X)$.

Por otra parte si a) vale para todo n, también vale en particular en el límite $n \to \infty$:

$$\lim_{X\to\infty} E(\overline{X}) = \mu = E(X).$$

Además, de b) deducimos inmediatamente que

$$\lim_{n\to\infty}V(\overline{X})=0$$
.

Por lo tanto vemos que \overline{X} es un estimador consistente de $\mu = E(X)$.