STAT 500: HW6

Jasmine Mou 11/7/2017

Attachment: RMarkdown Codes

1. Using the ozone data, fit a model with O3 as the response and temp, humidity and ibh as predictors. Use the Box–Cox method to determine the best transformation on the response.

```
require(MASS)
data(ozone, package="faraway")
lm_ozone <- lm(03 ~ temp + humidity + ibh, data=ozone)</pre>
```

Check whether the response needs transformation and plot the results. The first plot is too broad so we narrow down the range of λ in the second plot.

```
par(mfrow=c(1,2))
boxcox(lm_ozone, plotit=T)
boxcox(lm_ozone, plotit=T, lambda=seq(0.1,0.4,by=0.05))
```


The λ that optimizes the log-Likelihood is picked at some point between 0.25 and 0.30, with 95% confidence interval being ~ (0.15,0.4), which is far from and excludes 1. Thus we need the transformation. Let's pick $\hat{\lambda}$ being 0.28.

```
lambda_hat <- 0.28
lm_ozone_transformed_response <- lm(03^lambda_hat ~ temp + humidity + ibh, data=ozone)
summary(lm_ozone)</pre>
```

```
##
## Call:
## lm(formula = 03 ~ temp + humidity + ibh, data = ozone)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -11.5291 -3.0137
                      -0.2249
                                2.8239
                                        13.9303
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.049e+01 1.616e+00
                                      -6.492 3.16e-10 ***
## temp
                3.296e-01
                           2.109e-02
                                      15.626 < 2e-16 ***
                7.738e-02 1.339e-02
                                       5.777 1.77e-08 ***
## humidity
               -1.004e-03 1.639e-04 -6.130 2.54e-09 ***
## ibh
## ---
```

```
##
## Residual standard error: 4.524 on 326 degrees of freedom
## Multiple R-squared: 0.684, Adjusted R-squared: 0.6811
## F-statistic: 235.2 on 3 and 326 DF, p-value: < 2.2e-16
summary(lm_ozone_transformed_response)
##
## Call:
## lm(formula = 03^lambda_hat ~ temp + humidity + ibh, data = ozone)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
   -0.63939 -0.12797 0.01051 0.14760
                                        0.58732
##
##
  Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                          0.0739886
                                     11.750 < 2e-16 ***
## (Intercept)
                0.8693842
                           0.0009655
                                      16.252 < 2e-16 ***
## temp
                0.0156913
## humidity
                0.0035916
                           0.0006130
                                       5.859 1.14e-08 ***
## ibh
               -0.0000578
                           0.0000075
                                      -7.706 1.58e-13 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.2071 on 326 degrees of freedom
## Multiple R-squared: 0.7162, Adjusted R-squared: 0.7136
## F-statistic: 274.3 on 3 and 326 DF, p-value: < 2.2e-16
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

By comparing the summary results of models before and after the transformation, we can see that the residual standard error has been reduced from 4.524 to 0.2071, and the adjusted R^2 has rised from 0.6811 to 0.7136. Thus the transformed model for OS is:

$$O3^{0.28} = -0.1049 + 0.3296 * temp + 0.0774 * humidity - 0.001 * ibh$$

2. Use the pressure data to fit a model with pressure as the response and temperature as the predictor using transformations to obtain a good fit.

Plot pressure versus temperature and find out there seems existing polynomial relationship between them. Construct orthogonal polynomials of temperature up to power of 10.

```
data(pressure)
plot(x=pressure$temperature, y=pressure$pressure, xlab="temperature", ylab="pressure")
```



```
summary(lm pressure)
##
## Call:
## lm(formula = pressure ~ poly(temperature, 10), data = pressure)
##
## Residuals:
                      Median
##
       Min
                 1Q
                                   3Q
                                           Max
## -0.32109 -0.02985 0.00889 0.04763 0.21745
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                          124.33671
                                       0.04097 3034.705 < 2e-16 ***
## poly(temperature, 10)1 722.17059
                                       0.17859 4043.712 < 2e-16 ***
## poly(temperature, 10)2
                          545.94688
                                       0.17859 3056.967
                                                         < 2e-16 ***
## poly(temperature, 10)3
                          280.65281
                                       0.17859 1571.483
                                                         < 2e-16 ***
## poly(temperature, 10)4
                           97.13691
                                       0.17859
                                                543.907 < 2e-16 ***
## poly(temperature, 10)5
                           20.07923
                                       0.17859
                                                112.431 4.38e-14 ***
## poly(temperature, 10)6
                            1.24400
                                       0.17859
                                                  6.966 0.000117 ***
## poly(temperature, 10)7
                           -0.42142
                                       0.17859
                                                 -2.360 0.045980 *
## poly(temperature, 10)8
                           -0.07879
                                       0.17859
                                                 -0.441 0.670748
## poly(temperature, 10)9
                           -0.07262
                                       0.17859
                                                 -0.407 0.694952
## poly(temperature, 10)10 -0.18567
                                       0.17859
                                                 -1.040 0.328900
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1786 on 8 degrees of freedom
## Multiple R-squared:
                            1, Adjusted R-squared:
## F-statistic: 2.847e+06 on 10 and 8 DF, p-value: < 2.2e-16
```

lm_pressure <- lm(pressure ~ poly(temperature,10), data=pressure)</pre>

By checking summary statistics, the p-value of terms to the power below 8 are all significant (<0.05). Thus the fitted model of pressure with temperature will be (P: pressure, T: temperature):

$$P = 124.34 + 722.17 * T + 545.95 * T^2 + 280.65 * T^3 + 97.14 * T^4 + 20.08 * T^5 + 1.24 * T^6 + -0.42 * T^7$$

- 3. Use the cars data with distance as the response and speed as the predictor.
- (a) Plot dist against speed.
- (b) Show a linear fit to the data on the plot.
- (c) Show a quadratic fit to the data on the plot.
- (d) Now use sqrt(dist) as the response and fit a linear model. Show the fit on the same plot.

Speed v.s. Distance

(e) Compute the default smoothing spline fit to the plot and display on a fresh plot of the data. How does it compare to the previous fits?

Speed v.s. Distance

Compared to the previous fits, though smoothing spline fit captures the points of inflexion, the valleys before speed=15 and after speed=20 is fit too roughly.

```
Attachment: RMarkdown Codes
title: 'STAT 500: HW6'
author: "Jasmine Mou"
date: "11/7/2017"
output: pdf document
1. Using the `ozone` data, fit a model with `O3` as the response and
`temp`, `humidity` and `ibh` as predictors. Use the Box—Cox method to
determine the best transformation on the response.
```{r message=FALSE}
require(MASS)
data(ozone, package="faraway")
lm ozone <- lm(03 ~ temp + humidity + ibh, data=ozone)</pre>
*Check whether the response needs transformation and plot the results.
The first plot is too broad so we narrow down the range of λ in
the second plot. *
```{r, fig.width=8, fig.height=3}
par(mfrow=c(1,2))
boxcox(lm_ozone, plotit=T)
boxcox(lm ozone, plotit=T, lambda=seq(0.1,0.4,by=0.05))
*The $\lambda$ that optimizes the log-Likelihood is picked at some point
between 0.25 and 0.30, with 95% confidence interval being \sim (0.15, 0.4),
which is far from and excludes 1. Thus we need the tranformation. Let's
pick $\hat{\lambda}$ being 0.28. *
```{r}
lambda hat <- 0.28</pre>
lm ozone transformed response <- lm(O3^lambda hat ~ temp + humidity +</pre>
ibh, data=ozone)
summary(lm ozone)
summary(lm ozone transformed response)
*By comparing the summary results of models before and after the
transformation, we can see that the residual standard error has been
reduced from 4.524 to 0.2071, and the adjusted R^2 has rised from
0.6811 to 0.7136. Thus the tranformed model for ^{\circ}O3^{\circ} is: $$O3^{\circ} {^{\circ}r
lambda_hat^{} = -0.1049 + 0.3296 * temp + 0.0774 * humidity - 0.001 *
ibh$$ *
2. Use the `pressure` data to fit a model with `pressure` as the
response and `temperature` as the predictor using transformations to
obtain a good fit.
*Plot `pressure` versus `temperature` and find out there seems existing
polynomial relationship between them. Construct orthogonal polynomials
of `temperature` up to power of 10.*
```{r, fig.width=4, fig.height=3}
data(pressure)
```

```
plot(x=pressure$temperature, y=pressure$pressure, xlab="temperature",
ylab="pressure")
lm pressure <- lm(pressure ~ poly(temperature,10), data=pressure)</pre>
summary(lm pressure)
*By checking summary statistics, the p-value of terms to the power below
8 are all significant (<0.05). Thus the fitted model of pressure with
temperature will be (P: `pressure`, T: `temperature`):
$$P = `r round(lm pressure$coefficients[1],2)` +
`r round(lm pressure$coefficients[2],2)`*T +
`r round(lm pressure$coefficients[3],2)`*T^2 +
`r round(lm pressure$coefficients[4],2)`*T^3 +
`r round(lm pressure$coefficients[5],2)`*T^4 +
`r round(lm pressure$coefficients[6],2)`*T^5 +
`r round(lm pressure$coefficients[7],2)`*T^6 +
`r round(lm_pressure$coefficients[8],2)`*T^7 $$*
3. Use the `cars` data with distance as the response and speed as the
predictor.
(a) Plot `dist` against `speed`.
(b) Show a linear fit to the data on the plot.
(c) Show a quadratic fit to the data on the plot.
(d) Now use `sqrt(dist)` as the response and fit a linear model. Show
the fit on the same plot.
```{r, fig.width=5, fig.height=3.5}
data(cars)
lm cars linear <- lm(dist~speed, data=cars)</pre>
lm cars quad <- lm(dist~speed+I(speed^2), data=cars)</pre>
lm cars sqrt <- lm(sqrt(dist)~speed, data=cars)</pre>
bind<-cbind(cars$dist, lm cars quad$fit, lm cars linear$fit,
lm cars sqrt$fit)
matplot(cars$speed, bind, type="pll1", pch=1, lty=c(1,2,5,3),
 xlab="speed", ylab="distance", main="Speed v.s. Distance")
legend(x=3.5,y=123, legend=c("original", "quadratic", "linear", "sqrt"),
 lty=c(NA,5,2,3), pch=c(1,NA,NA,NA), col=seq len(ncol(bind)))
(e) Compute the default smoothing spline fit to the plot and display on
a fresh plot of the data. How does it compare to the previous fits?
```{r, warning=FALSE, fig.width=5, fig.height=3.5}
library(splines)
ssf <- smooth.spline(cars$speed, cars$dist)</pre>
bind smooth <- cbind(cars$dist, ssf$y)</pre>
matplot(cars$speed, bind_smooth, type="pl", pch=1, lty=1,
        xlab="speed", ylab="distance", main="Speed v.s. Distance")
legend(x=3.5,y=123, legend=c("original", "smooth spline"),
       lty=c(NA,1), pch=c(1,NA), col=seq len(ncol(bind smooth)))
. . .
*Compared to the previous fits, though smoothing spline fit captures the
points of inflexion, the valleys before `speed`=15 and after `speed`=20
is fit too roughly.*
```