Minimax Lower Bound

 $_{
m JB}$

Let $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ be the collection of probability measures on $(\mathcal{V},\mathcal{B}(\mathcal{V}))$, \mathcal{V} and Θ are metric spaces. Let $\hat{\theta}: \mathbb{M} \to \Theta$ be measurable, which is a estimator of θ . Let d be the metric of Θ .

Definition 1. We say $\hat{\theta}_0$ is minimax optimal over Θ if \exists constant $C \geq c$ and $\phi \geq 0$ which relates to model s.t.

(Upper bound)
$$\sup_{\theta \in \Theta} \mathbb{E}_{\theta} d(\hat{\theta}_0, \theta) < C\phi$$
, (Lower bound) $\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\theta} d(\hat{\theta}, \theta) \geq c\phi$.

Among ϕ is called the minimax optimal rate of the estimation θ over Θ .

Remark 1. General reduction scheme for lower bound is to find ϕ (a constant relates to model) s.t. $\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{P}_{\theta} \{ d(\hat{\theta}, \theta) \ge \phi \} \ge c$ since $\mathbb{E}_{\theta} \frac{d(\hat{\theta}, \theta)}{\phi} \ge \mathbb{P}_{\theta} \{ d(\hat{\theta}, \theta) \ge \phi \}$ by Markov Inequality.

The second step is to find finite $\{\theta_j\}_{j\leq m}$ satisfied $d(\theta_j,\theta_k)>2\phi$, then

$$\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{P}_{\theta} \{ d(\hat{\theta}, \theta) \ge \phi \} \ge \inf_{\hat{\theta}} \sup_{j} \mathbb{P}_{\theta_{j}} \{ d(\hat{\theta}, \theta_{j}) \ge \phi \}$$

Let $\varphi(\hat{\theta}) = arg \min_j d(\hat{\theta}, \theta_j)$. Claim: $\inf_{\hat{\theta}} \sup_j \mathbb{P}_{\theta_j} \{ d(\hat{\theta}, \theta_j) \geq \phi \} \geq \inf_{\hat{\theta}} \sup_j \mathbb{P}_{\theta_j} \{ \varphi(\hat{\theta}) \neq j \}$ since if $\varphi(\hat{\theta}) \neq j$, then $\exists k \neq j$ s.t. $d(\hat{\theta}, \theta_k) < d(\hat{\theta}, \theta_j) \Rightarrow d(\hat{\theta}, \theta_j) \geq d(\theta_k, \theta_j) - d(\hat{\theta}, \theta_k) \geq d(\theta_k, \theta_j) = d(\theta_k, \theta_j) + d(\theta_k, \theta_j) = d(\theta_k, \theta_k) =$

$$\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{P}_{\theta} \{ d(\hat{\theta}, \theta) \ge \phi \} \ge \inf_{\hat{\theta}} \sup_{j} \mathbb{P}_{\theta_{j}} \{ \varphi(\hat{\theta}) \ne j \}$$

The last step is to transform minimax problem into a hypothesis testing problem. Let $\hat{\varphi} \in \{1,...,m\}$. Note that $\varphi(\hat{\theta})$ is also a testing statistics valued in $\{1,...,m\}$, then

$$\inf_{\hat{\theta}} \sup_{i} \mathbb{P}_{\theta_{j}} \{ \varphi(\hat{\theta}) \neq j \} \ge \inf_{\hat{\varphi}} \sup_{i} \mathbb{P}_{\theta_{j}} \{ \hat{\varphi} \neq j \}$$

Summary: For lower bound, we need to specify ϕ , find $\{\theta_j\}_{j\leq m}$ s.t. $d(\theta_j,\theta_k)>2\phi$ and c>0 s.t. $\inf_{\hat{\varphi}}\sup_{j}\mathbb{P}_{\theta_j}\{\hat{\varphi}\neq j\}\geq c$. To show ϕ is optimal, we need to find $\hat{\theta}_0$ s.t. $\sup_{\theta\in\Theta}\mathbb{E}_{\theta}d(\hat{\theta}_0,\theta)< C\phi$, which means that $\inf_{\hat{\theta}}\sup_{\theta\in\Theta}\mathbb{E}_{\theta}d(\hat{\theta},\theta)\asymp \phi$ and $\sup_{\theta\in\Theta}\mathbb{E}_{\theta}d(\hat{\theta}_0,\theta)\asymp \phi$.

Definition 2. Let \mathcal{V} be \mathbb{R}^n and probability measure \mathbb{P} on \mathbb{R}^n . Define the total variation of \mathbb{P}_i :

$$||\mathbb{P}_1 - \mathbb{P}_2||_{TV} = \sup_{A \in \mathcal{B}(\mathbb{R}^n)} |\mathbb{P}_1(A) - \mathbb{P}_2(A)|$$

If $\mathbb{P}_i << \lambda$, let f_i be the Radon derivative of \mathbb{P}_i . Then $||\mathbb{P}_1 - \mathbb{P}_2||_{TV} = \frac{1}{2} \int |f_1 - f_2| = 1 - \int \min(f_1, f_2)$.

Lemma 1. (Neyman-Pearson) $\mathbb{P}_{\theta_2}\{\hat{\varphi}=1\} + \mathbb{P}_{\theta_1}\{\hat{\varphi}=2\} \geq 1 - ||\mathbb{P}_1 - \mathbb{P}_2||_{TV}$.

Lemma 2. (Le Cam) $\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\theta} d(\hat{\theta}, \theta) \ge \frac{\phi}{2} (1 - ||\mathbb{P}_{\theta_1} - \mathbb{P}_{\theta_2}||_{TV}), \text{ if } d(\theta_1, \theta_2) > 2\phi.$

Proof.

It's sufficient to show $\inf_{\hat{\varphi}} \sup_{j=1,2} \mathbb{P}_{\theta_j} \{ \hat{\varphi} \neq j \} \geq \frac{1 - ||\mathbb{P}_{\theta_1} - \mathbb{P}_{\theta_2})||_{TV}}{2}$, which is true since that $\sup_{j=1,2} \mathbb{P}_{\theta_j} \{ \hat{\varphi} \neq j \} \geq \frac{\mathbb{P}_{\theta_2} \{ \hat{\varphi} = 1 \} + \mathbb{P}_{\theta_1} \{ \hat{\varphi} = 2 \}}{2}$.

Remark 2. $\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\theta} d(\hat{\theta}, \theta) \ge \frac{d(\theta_1, \theta_2)}{4} (1 - ||\mathbb{P}_{\theta_1} - \mathbb{P}_{\theta_2}||_{TV})$

Example 1. (Minimax rate for Gaussian mean) Let $\mathbb{P}_{\theta} \sim N(\theta, \sigma^2)$.

Upper bound: We apply the MLE \bar{X} for θ , then $\sup_{\theta \in \Theta} \mathbb{E}|\bar{X} - \theta|^2 = \frac{\sigma^2}{n}$.

Lower bound: To bound $||\mathbb{P}_1 - \mathbb{P}_2||_{TV}$ when \mathbb{P} is a Gaussian measure, a more convenient divergence is K-L divergence: $D(\mathbb{P}_1||\mathbb{P}_2) = \int f_1 \log \frac{f_1}{f_2}$.

(Pinsker) $||\mathbb{P}_1 - \mathbb{P}_2||_{TV} \leq \sqrt{D(\mathbb{P}_1||\mathbb{P}_2)}$. Then we have

$$\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\theta} d(\hat{\theta}, \theta) \ge \frac{d(\theta_1, \theta_2)}{4} (1 - \sqrt{D(\mathbb{P}_1 || \mathbb{P}_2)})$$

Note that $D(\mathbb{P}_{\theta_1}||\mathbb{P}_{\theta_2}) = \frac{n||\theta_1 - \theta_2||_2^2}{2\sigma^2}$. Choose θ_1 and θ_2 s.t. $||\theta_1 - \theta_2||^2 = \frac{\alpha}{n}$, then we have $||\mathbb{P}_{\theta_1} - \mathbb{P}_{\theta_2}||_{TV} \leq \sqrt{D(\mathbb{P}_{\theta_1}||\mathbb{P}_{\theta_2})} = \sqrt{\frac{n||\theta_1 - \theta_2||_2^2}{2\sigma^2}} = \sqrt{\frac{\alpha}{2\sigma^2}}$. Choose a α s.t. $1 - ||\mathbb{P}_{\theta_1} - \mathbb{P}_{\theta_2}||_{TV} > 0$, then we know $\frac{1}{n}$ is optimal.

Theorem 1. (Fano) $\inf_{\hat{\varphi}} \sup_{j \leq m} \mathbb{P}_{\theta_j} \{ \hat{\varphi} \neq j \} \geq 1 - \frac{\frac{1}{m^2} \sum_{j,k} D(\mathbb{P}_{\theta_j} || \mathbb{P}_{\theta_k}) + \log 2}{\log m}$.

Proof.

Let
$$P_j = \mathbb{P}_{\theta_j}\{\hat{\varphi} = j\}$$
, $Q_j = \frac{1}{m}\sum_k \mathbb{P}_{\theta_k}\{\hat{\varphi} = j\}$, then $\bar{Q} = \frac{1}{m}$. Let $K(p_1, p_2) = D(\mathbb{P}_1||\mathbb{P}_2)$, $\mathbb{P}_i \sim B(1, p_i)$, then $K(p, q) = p\log\frac{p}{q} + (1 - p)\log\frac{1 - p}{1 - q}$ and K is convex. So

$$K(\bar{P}, \bar{Q}) = \bar{P} \log \bar{P} + (1 - \bar{P}) \log (1 - \bar{P}) - \bar{P} \log \bar{Q} - (1 - \bar{P}) \log (1 - \bar{Q}) \ge -\log 2 + \bar{P} \log m$$

$$\Rightarrow \bar{P} \leq \frac{K(\bar{P}, \bar{Q}) + \log 2}{\log m} \leq \frac{\frac{1}{m} \sum_{j} K(P_{j}, Q_{j}) + \log 2}{\log m} \leq \frac{\frac{1}{m^{2}} \sum_{j,k} K(\mathbb{P}_{\theta_{j}} \{\hat{\varphi} = j\}, \mathbb{P}_{\theta_{k}} \{\hat{\varphi} = j\}) + \log 2}{\log m}$$

$$\Rightarrow \sup_{j \le m} \mathbb{P}_{\theta_j} \{ \hat{\varphi} \ne j \} \ge \frac{1}{m} \sum_j \mathbb{P}_{\theta_j} \{ \hat{\varphi} \ne j \} \ge 1 - \frac{1}{m} \sum_j (1 - \mathbb{P}_{\theta_j} \{ \hat{\varphi} \ne j \}) = 1 - \bar{P}$$

$$\ge 1 - \frac{\frac{1}{m^2} \sum_{j,k} K(\mathbb{P}_{\theta_j} \{ \hat{\varphi} = j \}, \mathbb{P}_{\theta_k} \{ \hat{\varphi} = j \}) + \log 2}{\log m}$$

What we need to do is to show $K(\mathbb{P}_{\theta_j}\{\hat{\varphi}=j\}, \mathbb{P}_{\theta_k}\{\hat{\varphi}=j\}) \leq D(\mathbb{P}_{\theta_j}||\mathbb{P}_{\theta_k}).$

$$D(\mathbb{P}_{\theta_j}||\mathbb{P}_{\theta_k}) = \int f_i \log \frac{f_i}{f_k} = \int_{\hat{\varphi}=j} f_j \log \frac{f_j}{f_k} + \int_{\hat{\varphi}\neq j} f_j \log \frac{f_j}{f_k}$$

Let
$$f_k^j(\cdot) = f_k(\cdot|\hat{\varphi} = j) = \frac{f_k(\cdot)\mathbb{I}(\hat{\varphi}(\cdot) = j)}{\mathbb{P}_{\theta_k}\{\hat{\varphi} = j\}}$$
,

$$\int_{\hat{\varphi}=j} f_j \log \frac{f_j}{f_k} = \mathbb{P}_{\theta_j} \{ \hat{\varphi} = j \} \left(\int f_j^j \log \frac{\mathbb{P}_{\theta_j} \{ \hat{\varphi} = j \}}{\mathbb{P}_{\theta_k} \{ \hat{\varphi} = k \}} + D(\mathbb{P}_{\theta_j}^{\hat{\varphi}=j} || \mathbb{P}_{\theta_k}^{\hat{\varphi}=j}) \right)$$

$$\geq \mathbb{P}_{\theta_j} \{ \hat{\varphi} = j \} \log \frac{\mathbb{P}_{\theta_j} \{ \hat{\varphi} = j \}}{\mathbb{P}_{\theta_k} \{ \hat{\varphi} = k \}}$$

Similarly, $\int_{\hat{\varphi}\neq j} f_j \log \frac{f_j}{f_k} \ge \mathbb{P}_{\theta_j} \{ \hat{\varphi} \neq j \} \log \frac{\mathbb{P}_{\theta_j} \{ \hat{\varphi}\neq j \}}{\mathbb{P}_{\theta_k} \{ \hat{\varphi}\neq k \}}.$

Remark 3. $\inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\theta} d(\hat{\theta}, \theta) \ge \left(\min_{\theta_i \neq \theta_j} \frac{d(\theta_i, \theta_j)}{2}\right) \left(1 - \frac{\frac{1}{m^2} \sum_{j,k} D(\mathbb{P}_{\theta_j} || \mathbb{P}_{\theta_k}) + \log 2}{\log m}\right)$

Example 2. (Minimax rate for sparse vector) $\mathbb{P}_{\theta} \sim N(\theta, \sigma^2 I_p), ||\theta||_0 \leq s.$

Upper bound: Let $\hat{\theta}_0 = arg\min_{||a|| \le s} ||x-a||_2^2$, then $\sup_{\theta \in \Theta} \mathbb{E}_{\theta} ||\theta - \hat{\theta}_0||^2 = O(\frac{s \log(1 + \frac{p}{2s})}{n})$. Lower bound: If $\exists \, \beta > 0$ and $\{\theta_j\}_{j \le m}$ s.t. $\frac{s \log(1 + \frac{p}{2s})}{n} \beta \le ||\theta_j - \theta_k||^2$ and $1 - \frac{\frac{1}{m^2} \sum_{j,k} D(\mathbb{P}_{\theta_j} ||\mathbb{P}_{\theta_k}) + \log 2}{\log m} > 0$

0. Then ϕ is optimal.

(Gilbert-Varshamov) If $1 \le s \le \frac{p}{8}$, then there exist $\{\omega_j\}_{j \le m} \subset \{0,1\}^p$ s.t. $||\omega||_0 = s$, $\log m \geq \tfrac{1}{16} s \log (\tfrac{1 + \frac{p}{2s}}) \text{ and } \rho(\omega_i, \omega_j) := \textstyle \sum_{k \leq q} I(\omega_i^{(k)} \neq \omega_j^{(k)}) \geq \tfrac{s}{2}.$

Let $\theta_j = \omega_j \sqrt{\frac{\log(1+\frac{p}{2s})}{n}\beta}$, then

$$\frac{1}{2} \frac{s \log(1 + \frac{p}{2s})}{n} \beta \le ||\theta_j - \theta_k||^2 \le 2 \frac{s \log(1 + \frac{p}{2s})}{n} \beta \le \frac{32\beta}{n} \log m$$

$$\Rightarrow 1 - \frac{\frac{1}{m^2} \sum_{j,k} D(\mathbb{P}_{\theta_j} || \mathbb{P}_{\theta_k}) + \log 2}{\log m} \ge 1 - \frac{\frac{32\beta}{2\sigma^2} \log m + \log 2}{\log m}$$

Let β be small enough s.t. $1 - \frac{\frac{16\beta}{\sigma^2}\log m + \log 2}{\log m} > 0$.

Lemma 3. (Assouad) Let $\Theta = \{0,1\}^p$ and \hat{T} is an estimator of $\psi(\theta)$, then

$$\inf_{\hat{T}} \max_{\theta \in \Theta} \mathbb{E}_{\theta} 2^s d^s(\hat{T}, \psi(\theta)) \ge \left(\min_{\theta \ne \theta'} \frac{d^s(\psi(\theta), \psi(\theta'))}{\rho(\theta, \theta')} \right) \frac{p}{2} \min_{\rho(\theta, \theta') = 1} (1 - ||\mathbb{P}_{\theta} - \mathbb{P}_{\theta'}||_{TV}).$$

Proof.

$$\max_{\theta \in \Theta} \mathbb{E}_{\theta}(2d(\hat{T}, \psi(\theta)))^{s} \ge \frac{1}{2^{p}} \sum_{\theta \in \Theta} \mathbb{E}_{\theta}(2d(\hat{T}, \psi(\theta)))^{s}$$

Let $\hat{\theta} = arg \min_{\theta \in \Theta} d(\hat{T}, \psi(\theta))$, then

$$\frac{1}{2^{p}} \sum_{\theta \in \Theta} \mathbb{E}_{\theta} (2d(\hat{T}, \psi(\theta)))^{s} \geq \frac{1}{2^{p}} \sum_{\theta \in \Theta} \mathbb{E}_{\theta} (d(\hat{T}, \psi(\theta) + d(\hat{T}, \psi(\hat{\theta})))^{s} \geq \frac{1}{2^{p}} \sum_{\theta \in \Theta} \mathbb{E}_{\theta} (d(\psi(\hat{\theta}), \psi(\theta)))^{s} \geq \frac{1}{2^{p}} \sum_{\theta \in \Theta} \mathbb{E}_{\theta} \frac{d^{s}(\psi(\hat{\theta}), \psi(\theta))}{\max\{\rho(\theta, \hat{\theta}), 1\}} \rho(\theta, \hat{\theta}) \\
\geq \min_{\theta \neq \theta'} \frac{d^{s}(\psi(\theta), \psi(\theta'))}{\rho(\theta, \theta')} \frac{1}{2^{p}} \sum_{\theta \in \Theta} \mathbb{E}_{\theta} \rho(\theta, \hat{\theta})$$

$$\sum_{\theta \in \Theta} \frac{1}{2^{p}} \mathbb{E}_{\theta} \rho(\theta, \hat{\theta}) = \frac{1}{2^{p}} \sum_{\theta \in \Theta} \sum_{j \leq p} \mathbb{P}_{\theta} \{ \hat{\theta}_{j} \neq \theta_{j} \} = \frac{1}{2^{p}} \sum_{j \leq p} \sum_{\theta_{-j}} \sum_{\theta_{j} = 1, 0} \mathbb{P}_{\theta} \{ \hat{\theta}_{j} \neq \theta_{j} \}$$

$$\geq \frac{1}{2^{p}} \sum_{j \leq p} \sum_{\theta_{-j}} \min_{\rho(\theta^{*}, \theta') = 1} (1 - ||\mathbb{P}_{\theta^{*}} - \mathbb{P}_{\theta'}||_{TV}) = \frac{p}{2} \min_{\rho(\theta^{*}, \theta') = 1} (1 - ||\mathbb{P}_{\theta^{*}} - \mathbb{P}_{\theta'}||_{TV}).$$

Example 3. (Minimax rate for functional data) $Y_{ij} = \mathcal{X}_i(t_{ij}) + \varepsilon_{ij}$, i = 1, ..., n, j = 1, ..., k. ε_{ij} are mutually independent and zero mean s.t. $\mathbb{E}\varepsilon^2 = \sigma^2 < \infty$.

 \mathcal{X}_i is iid random function valued in $\mathbb{W}_q[0,1]$, which is independent to ε_{ij} and $\mathbb{E}\mathcal{X}_i=m$.

 t_{ij} is the observed location which is fixed and $\mathbb{E}||\mathcal{X}^{(q)}||_2^2 \leq M_0$. Let $\mathcal{P}(q, M_0)$ be all the probability measure of \mathcal{X} s.t. $\mathbb{E}||\mathcal{X}^{(q)}||_2^2 \leq M_0$.

Upper bound: One can show that if we use smoothing spline \hat{m}_{λ} for estimation of m, then $\sup_{\mathbb{P}\in\mathcal{P}(q,M_0)}\mathbb{E}_{\mathbb{P}}||\hat{m}_{\lambda}-m||_2^2=O(k^{-2q}+n^{-1})$, if the tuning parameter satisfies some conditions.

Lower bound: Let \hat{m} be the estimator, let $\mathcal{P}_1 = \{\mathbb{P} \in \mathcal{P}(q, M_0); \mathbb{P}\{\mathcal{X} \text{ is a constant function}\} = 1\}$, then

$$\inf_{\hat{m}} \sup_{\mathbb{P} \in \mathcal{P}(q, M_0)} \mathbb{E}_{\mathbb{P}} ||\hat{m} - m||_2^2 \ge \inf_{\hat{m}} \sup_{\mathbb{P} \in \mathcal{P}_1} \mathbb{E} ||\hat{m} - m||_2^2 \gtrsim n^{-1}$$

Let $\phi_j \in \mathbb{W}_q[0,1]$ with distinct support and same norm $\sqrt{Ck^{-(2q+1)}}$, j=1,...,2k. Define \mathcal{P}_2 : the collection of all the probability measure valued in $\{\sum_j \theta_j \phi_j; \theta \in \{0,1\}^{2k}\}$. It's sufficient to show $\min_{\theta \neq \theta'} \frac{||(\psi(\theta) - \psi(\theta')||_2^2}{\rho(\theta,\theta')} = Ck^{-(2q+1)}$, where $\psi(\theta) = \sum_j \theta_j \phi_j$. This is true since $\min_{\theta \neq \theta'} \frac{||(\psi(\theta) - \psi(\theta')||_2^2}{\rho(\theta,\theta')} = ||\phi_j||_2^2 = Ck^{-(2q+1)}$.