"স্থির তড়িৎ"

- প্রশ্ন- (১): সংজ্ঞা লিখ: (i) বিদ্যুৎ বা তড়িৎ (ii) বৈদ্যুতিক চার্জ (iii) চার্জিত বস্তু।
- (i) বিদ্যুৎ বা তড়িৎ (Electricity): বিদ্যুৎ এক প্রকার শক্তি। ঘর্ষনের ফলে কোন বস্তুতে যে অজ্ঞাত শক্তির সৃষ্টি হয়, যার প্রভাবে বস্তুটি ছোট ছোট কাগজ বা কাঠের টুকরা ইত্যাদিকে আকর্ষণ করে তাকে বিদ্যুৎ বা তড়িৎ বলে। অন্যভাবে বলা যায়, স্থির বা গতিশীল চার্জের প্রকৃতি ও ক্রিয়াকে তড়িৎ বলে। বিদ্যুৎ বা তড়িৎ দুই প্রকার। যথা (i) স্থির তড়িৎ (Statical electricity) ও (ii) চল তড়িৎ (Current electricity)
- (ii) বৈদ্যুতিক চার্জ (Electric Charge): কোন বস্তুতে যার স্থিতিতে স্থির বিদ্যুৎ শক্তি সঞ্চার হয় এবং গতিতে বিদ্যুৎ প্রবাহ, বৈদ্যুতিক ও চৌম্বক ক্ষেত্রের সৃষ্টি হয় তাকে বৈদ্যুতিক চার্জ বলে। কোন বস্তুতে মোট ইলেকট্রনের সংখ্যা মোট প্রোটন সংখ্যার তুলনায় কম বা বেশী হলে এ বস্তুতে চার্জের সৃষ্টি হয়। বৈদ্যুতিক চার্জ দুই প্রকার। যথা ধনাত্মক চার্জ (Positive charge) ও ঋণাত্মক চার্জ (Negative Charge)।
- (iii) চার্জিত বস্তু (Charged particle): চার্জগ্রন্থ বস্তুকে চার্জিত বস্তু বলে। যে বস্তুতে মোট ইলেকট্রন সংখ্যা মোট প্রোটন সংখ্যার তুলনায় কম বা বেশী সেই বস্তুই চার্জিত বস্তু। যে বস্তুতে প্রোটন অপেক্ষা ইলেকট্রন সংখ্যা কম সেই বস্তুটি হবে ধন চার্জযুক্ত এবং যে বস্তুতে প্রোটন অপেক্ষা ইলেকট্রন সংখ্যা বেশী সেই বস্তুটি হবে ঋণাত্মক চার্জযুক্ত।
- প্রশ্ন- (২): বৈদ্যুতিক মাধ্যম কি? ইহা কত প্রকার ও কি কি? উদাহরণ দাও।
- উত্তরঃ বৈদ্যুতিক মাধ্যম (Electric Medium): যে সকল পদার্থের মধ্যদিয়ে বিদ্যুৎ বা তড়িৎ চলাচল করে বা করতে চায় তাদেরকে বৈদ্যুতিক মাধ্যম বলে। বৈদ্যুতিক মাধ্যম তিন প্রকার । যথা (i) পরিবাহী (ii) অর্ধপরিবাহী এবং (iii) অপরিবাহী বা অন্তরক।
- (i) পরিবাহী (Conductor): যে সকল পদার্থের মধ্যদিয়ে বিদ্যুৎ অতি সহজেই প্রবাহিত হয় তদেরকে পরিবাহী বলে। যেমন-তামা, সোনা, রূপা, এসিড, মানবদেহ ইত্যাদি।
- (ii) অর্ধপরিবাহী (Semiconductor): যে সকল পদার্থের মধ্যদিয়ে বিদ্যুৎ আংশিক ভাবে প্রবাহিত হয় তাদেরকে অর্ধপরিবাহী বা কুপরিবাহী বলে। যেমন- জার্মেনিয়াম, সিলিকন, ইনডিয়াম, কেরোসিন, অ্যালকোহল ইত্যাদি।
- (iii) অপরিবাহী বা অন্তরক (Non-Conductor or Insulator): যে সকল পদার্থের মধ্যদিয়ে বিদ্যুৎ মোটেই চলাচল করতে পারে না তাদেরকে অপরিবাহী বা অন্তরক বলে। যেমন- কাচ, মোম, ইবোনাইট, রাবার শুকনো কাঠ, পশম ইত্যাদি।
- প্রশ্ন- (৩): চার্জের আকর্ষণ সূত্র ও বিকর্ষণ সূত্র বিবৃত কর। তড়িৎবীক্ষণ যন্ত্র কি?

উত্তরঃ চার্জের আকর্ষণ সূত্র: বিপরীত ধর্মী চার্জ পরস্পরকে আকর্ষণ করে। একে চার্জের আকর্ষণ সূত্র বলে।

চার্জের বিকর্ষণ সূত্র: সমধর্মী চার্জ পরস্পরকে বিকর্ষণ করে। একে চার্জের বিকর্ষণ সূত্র বলে।

তড়িৎবীক্ষণ যন্ত্র (Electroscope): যে যন্ত্রের সাহায্যে কোন বস্তুতে চার্জের অস্তিত্ব প্রকৃতি ও পরিমাণ নির্ণয় করা যায় তাকে তড়িৎবীক্ষণ যন্ত্র বলে। তড়িৎবীক্ষণ যন্ত্র দু ধরনের হয়ে থাকে। যথা- শোলাবল তড়িৎবীক্ষণ যন্ত্র ও স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্র।

প্রশ্ন- (৪): তড়িৎ চার্জে ভূষিত হওয়ার আধুনিক বা ইলেকট্রন মতবাদটি বর্ণনা কর।

অথবাঃ তড়িতাহিতকরণে বা চার্জিতকরণে ইলেকট্রনের ভূমিকা আলোচনা কর।

উত্তর: আমরা জানি, সকল বস্তুই অসংখ্য ক্ষুদ্র ক্ষুদ্র পরমাণু দ্বারা গঠিত। পরমাণু আবার ইলেকট্রন, প্রোটন ও নিউট্রন এই তিনটি মৌলিক কণার সমন্বয়ে গঠিত। এই তিনটি কণার মধ্যে ইলেকট্রনগুলো ঋনাত্মক চার্জগ্রন্থ, প্রোটনগুলো ধনাত্মক চার্জগ্রন্থ এবং নিউট্রনগুলো চার্জশূন্য বা চার্জ নিরপেক্ষ। প্রোটন ও নিউট্রন মিলে পরমাণুর নিউক্লিয়াস গঠিত, আর ইলেকট্রনগুলো $2n^2$ সূত্রানুসারে নিউক্লিয়াসের চারদিকে বিভিন্ন কক্ষপথে বিন্যস্ত হয়ে ঘুরতে থাকে। একটি পরমাণুতে যতটি প্রোটন থাকে উহার বিভিন্ন কক্ষপথে ঠিক ততটি ইলেকট্রন থাকে। ইলেকট্রন ও প্রোটনের চার্জ সমান ও বিপরীত বিধায় স্বাভাবিক অবস্থায় প্রত্যেকটি পরমাণু চার্জ নিরপেক্ষ থাকে। কিন্তু ঘর্ষণ, তাপ, রাসায়নিক শক্তি ইত্যাদির প্রভাবে বিশেষ ধরনের কিছু পরমাণু থেকে সর্ববহি:স্থ কক্ষপথের মুক্ত ইলেকট্রন বিচ্ছিন্ন হয়েঅন্য বিশেষ ধরনের পরমাণুতে যুক্ত হয়। যে পরমাণু থেকে মুক্ত ইলেকট্রন চলে যায় সেই পরমাণুতে ইলেকট্রনের ঘাটতি হওয়ায় ইহা ধনাত্মক চার্জগ্রন্থ হয়, আবার যে পরমাণুতে ইলেকট্রন যুক্ত হয় সেই পরমাণুতে ইলেকট্রনের আধিক্য হওয়ায় উহা ঋণাত্মক চার্জগ্রন্থ হয়।

অতএব, চার্জিতকরণে ইলেকট্রনের ভূমিকা অপরিসীম।

প্রশ্ন- (৫): চার্জের নিত্যতা বা সংরক্ষণশীলতা এবং চার্জের কোয়ান্টায়ন বলতে কি বুঝ? ব্যাখ্যা কর।

উত্তর: চার্জের নিত্যতা বা সংরক্ষণশীলতাঃ চার্জকে সৃষ্টি বা ধ্বংস করা যায় না। মহাবিশ্বে মোট চার্জের পরিমাণ (ধনাত্মক ও ঋণাত্মক) নিদিষ্ট ও অপরিবর্তনীয়। বিভিন্ন উপায়ে চার্জকে শুধু এক বস্তু থেকে অন্যবস্তুতে স্থানান্তর করা যায় মাত্র। উদাহরণ স্বরূপ ঘর্ষণের ফলে একটি বস্তু যতটি ইলেকট্রন হারায় অন্য বস্তুটি ঠিক ততটি ইলেকট্রনই গ্রহণ করে। ফলে একটি বস্তুতে যে পরিমাণ ধনাত্মক চার্জ সৃষ্টি হয় অন্য বস্তুতে ঠিক তত পরিমাণ ঋনাত্মক চার্জ সৃষ্টি হবে। আবার বস্তুদ্বয়কে স্পর্শ করালে উহারা আবার চার্জ নিরপেক্ষ হবে। অর্থাৎ ঘর্ষনের পূর্বে ও পরে চার্জের পরিমাণ অভিন্ন।

চার্জের কোয়ান্টায়নঃ চার্জ নিরবিচ্ছিন্ন ফ্রুইডের প্রবাহ নয়, প্রকৃতিতে মোট চার্জ একটি নির্দিষ্ট ন্যূনতম মানের পূর্ণ সংখ্যক গুণিতক। চার্জের এই ন্যূনতম মান একটি ইলেকট্রন বা একটি প্রোটনের চার্জের সমান $\left(e=\pm 1.6\times 10^{-19}c\right)$ । এই ন্যূনতম চার্জের মানকে

মৌলিক চার্জ বলে। একটি ধারকে যত চার্জই সঞ্চিত করা হোক না কেন, তার পরিমাণ অবশ্যই এই মৌলিক চার্জ e এর পূর্ণসংখ্যক গুণতক হবে। ইহাই চার্জের কোয়ান্টায়ন।

প্রশ্ন- (৬)ঃ তড়িৎ আবেশ কি? উদাহরন দাও। মুক্তচার্জ ও বদ্ধচার্জের সংজ্ঞা দাও। দেখাও যে, পূর্বে আবেশ পরে আকর্ষণ।

তড়িৎ আবেশ (Electric induction): একটি চার্জিত বস্তুর প্রভাবে অপর একটি অচার্জিত বস্তুকে ক্ষণস্থায়ীভাবে চার্জিত করার প্রক্রিয়াকে তড়িৎ আবেশ বলে।

যেমন একটি চার্জিত বস্তুকে একটি অচার্জিত স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্রের চাকতির নিকট আনলে তড়িৎ আবেশের ফলে স্বর্ণপাত দুটিতে সমধর্মী চার্জ সৃষ্টি হয় এবং পাতদ্বয় ফাকা হয়ে যায়। চার্জিত বস্তুকে সরিয়ে নিলে তড়িৎবীক্ষণ যন্ত্রটি আবার অচার্জিত হয়ে যায়।

মুক্তচার্জ: আবিষ্ট বস্তুর যে প্রান্ত আবেশী বস্তু থেকে দূরে থাকে সে প্রান্ত আবেশী চার্জের সমধর্মী চার্জ সৃষ্টি হয়। ফলে এই চার্জের উপর আবেশী চার্জের কোন আকর্ষণ থাকে না এবং ভূসংযুক্ত করলে এই চার্জ নিদ্ধিয় হয়ে যায়। আবিষ্ট বস্তুর এই চার্জকে মুক্ত চার্জ বলে। চিত্র - (১)।

বদ্ধ চার্জ: আবিষ্ট বস্তুর যে প্রান্ত আবেশী বস্তুর নিকটতম থাকে সে প্রান্তে আবেশী চার্জের বিপরীতধর্মী চার্জ সৃষ্টি হয়। ফলে এই চার্জ সমূহ আবেশী চার্জের আকর্ষণে বাঁধা থাকে এবং ভূ-সংযুক্ত করলেও এর নিষ্ক্রিয় হয় না। আবিষ্ট বস্তুর এই চার্জকে বদ্ধ চার্জ বলে। চিত্র- (১)

পূর্বে আবেশ পরে আকর্ষণ: আরমা জানি একটি চার্জিত বস্তু অন্য যে কোন অচার্জিত বস্তুকে আকর্ষণ করে থাকে। এর মূল কারণ হলো তড়িৎ আবেশ। যখন একটি চার্জিত বস্তুকে কোন অচার্জিত বস্তুর নিকটে আনা হয়, তখন আবেশ প্রক্রিয়ায় অচার্জিত বস্তুটিতে ক্ষণস্থায়ীভাবে চার্জের সঞ্চার হয়। বস্তুটির নিকটতম প্রান্তে বিপরীতধর্মী বন্ধ চার্জ এবং দূরবর্তী প্রান্তে সমধর্মী মুক্তচার্জের সৃষ্টি হয়। বিপরীত ধর্মী চার্জ পরস্পরকে আকর্ষণ করে বলে বস্তুদ্বয়ের মধ্যে আকর্ষণ ঘটে। তাই আমরা বলতে পারি আগে আবেশ পরে আকর্ষণ। চিত্র- (১)। প্রমাণিত

প্রশ্ন- (৭): ফ্যারাডের প্রজাপতি জাল পরীক্ষার সাহায্যে দেখাও যে, চার্জ সবসময় পরিবাহীর উপরিতলে জমা থাকে।

উত্তর: যন্ত্রের বর্ণনা: চিত্র- (২)- এ ফ্যারাডের পজাপতি জাল দেখানো হয়েছে। এই যন্ত্রে একটি ধাতব আংটি R থাকে। এই আংটি R একটি অপরিবাহী দন্ড T এর মাথায় বসানো থাকে। আবার একটি মসলিন বা কার্পাস সুতার মোচাকৃতির জাল আংটি R -এর সাথে চিত্রের মত আটকানো থাকে। জালটিকে তড়িৎ পরিবাহী করার জন্য এর উপর পরিবাহী পদার্থের রং দেয়া হয়। জালটির সরু প্রান্তে পরস্পর বিপরীত দিকে দুগাছি সিল্কের সুতা A ও B বাধা থাকে। A ও B সুতাকে টেনে জালটিকে ইচ্ছেমত উল্টানো যায়।

কার্যপদ্ধতিঃ প্রথমে চার্জ উৎপাদক যন্ত্রের সাহায্যে জালটিকে চার্জিত করা হয়। এবার একটি চার্জ পরীক্ষক দারা জালের ভিতরের প্রান্তকে স্পর্শ করে চার্জ পরীক্ষকটিকে একটি অচার্জিত স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্রের কাছে আনা হয়। এতে দেখা যায় স্বর্ণপাত দ্বয় ফাঁক হয় না। অতএব, প্রমাণিত হল যে, জালের ভিতরের পৃষ্ঠে কোন চার্জ নেই।

এবার চার্জ পরিক্ষকটি দ্বারা জালের উপরের পৃষ্ঠ স্পর্শ করিয়ে পুনরায় উহাকে অচার্জিত স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্রের নিকট আনা হয়। এতে দেখা যায় যে, স্বর্ণ পাতদুটি ফাঁক হয়ে যায়। এতে প্রমানিত হয় যে, জালের উপরের পৃষ্ঠে চার্জ রয়েছে।

এখন সিল্কের সুতার সাহায্যে জালটিকে উল্টিয়ে উপরোক্ত পরীক্ষাটি আবারো করা হয়। এক্ষেত্রেও দেখা যায় জালটির ভিতরের পৃষ্ঠে কোন চার্জ নেই শুধু বাইরের পৃষ্ঠে চার্জ রয়েছে। অতএব, প্রমাণিত হল যে, চার্জ সব সময় পরিবাহীর উপরিতলে থাকে।

প্রশ্ন- (৮): একটি স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্রকে (i) ধন চার্জে এবং (ii) ঋণ চার্জে চার্জিত করার পদ্ধতি সচিত্র আলোচনা কর।

- (i) ধন চার্জে চার্জিত করণ: (a) একটি ধন চার্জে চার্জিত দন্ত R (যেমন-ফ্লানেল কাপড়ে ঘষা ইবোনাইট দন্ত) কে একটি অচার্জিত তড়িৎবীক্ষণ যন্ত্রের চাকতি D এর নিকটে আনি। তড়িৎ আবেশের ফলে চাকতি D তে বদ্ধ ধনচার্জ এবং স্বর্ণপাত দুটিতে মুক্ত ঋণ চার্জ সৃষ্টি হবে। এতে স্বর্ণপাতদ্বয় ফাঁক হয়ে যাবে। স্বর্ণপাতের দুই পার্শ্বে অবস্থিত টিনের পাতে সমপরিমান ধনচার্জ আবিষ্ট হবে। চিত্র- ৩ (ক)
- (b) এখন R দশুটিকে স্বস্থানে রেখে চাকতি D কে পরিবাহী তার দ্বারা ভূ-সংযুক্ত করি। এতে স্বর্ণপাত দুটির মুক্ত ঋণ চার্জ পরিবাহী তারের মধ্যদিয়ে মাটিতে চলে যাবে। স্বর্ণপাতদ্বয় চার্জহীন হয়ে নির্মিলিত হবে এবং টিনের পাতের চার্জও নিষিক্রয় হয়ে যাবে। চিত্র- ৩ (খ)।
- (c) এবার চাকতি D এর সাথে ভূ-সংযোগ বিচ্ছিন্ন করার পর চার্জিত দন্ড R কে সরিয়ে নিই। তখন চাকতি D- এর বন্ধ ধনচার্জগুলো স্বর্ণপাত ও চাকতিতে ছড়িয়ে পরবে এবং স্বর্ণপাতদ্বয় কিছুটা ফাঁক হয়ে যাবে। এভাবেই একটি স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্রেকে ধনচার্জে চার্জিত করা যায়।
- (ii) ঋণ চার্জে চজিত করণ: (a) একটি ধন চার্জে চার্জিত দন্ড R (যেমন- রেশমী কাপড় দ্বারা ঘষা কাচদন্ড) কে স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্রের চাকতি D- এর নিকটে আনি। তড়িৎ আবেশের ফলে চাকতি D- তে বদ্ধ ঋণাত্মক চার্জ এবং স্বর্ণপাতদ্বয়ে মুক্ত ধনাত্মক চার্জ সৃষ্টি হবে। এতে স্বর্ণপাতদ্বয় ফাঁক হয়ে যাবে। স্বর্ণপাতদ্বয়ের দুই পার্শ্বে অবস্থিত টিনের পাতে সমপরিমাণ ঋণাত্মক চার্জ আবিষ্ট হবে। চিত্র- 8 (ক)।

- (b) এখন R দন্ডটিকে স্বস্থানে রেখে চাকতি D পরিবাহী তার দ্বারা ভূ-সংযুক্ত করি। এতে স্বর্ণ পাত দুটির মুক্ত ধনাত্মক চার্জ মাটি থেকে আসা ইলেকট্রন (e^-) দ্বারা নিষ্ক্রিয় হবে এবং পাতদ্বয় নির্মিলিত হবে। এতে টিনের পাতে সৃষ্ট ঋনাত্মক চার্জও নিষ্ক্রিয় হয়ে যাবে। চিত্র- ৪ (খ)।
- (c) এবার চাকতি D —এর সাথে ভূ-সংযোগ বিচ্ছিন্ন করার পর চার্জিত দন্ড R কে সরিয়ে নেই। এখন চাকতি D —এর বদ্ধ ঋণচার্জগুলো চাকতি ও স্বর্ণপাতে ছড়িয়ে পড়বে এবং পাতদ্বয় কিছুটা ফাঁক হয়ে যাবে। এভাবেই একটি স্বর্ণপাত তড়িৎবীক্ষণ যন্ত্রকে ঋণাত্মক চার্জে চর্জিত করা যায়।

প্রশ্ন- (৯): চার্জের তলঘনত্ব বলতে কি বুঝ? ব্যাখ্যা কর।

উত্তরঃ চার্জের তলঘনত্বঃ কোন পরিবাহী পৃষ্ঠের কোন বিন্দুর চতুর্দিকে একক ক্ষেত্রফলে যে পরিমান চার্জ বিদ্যামান থাকে তাকে ঐ বিন্দুতে উক্ত পরিবাহীর চার্জের তলঘনত্ব বলে। ইহা চার্জের তলমাত্রিক ঘনত্ব নামেও পরিচিত। একে σ দ্বারা প্রকাশ করা হয়। ব্যাখ্যাঃ ধরি, একটি পরিবাহী পৃষ্ঠের ক্ষেত্রফল =A এবং উহাতে মোট Q পরিমাণ চার্জ বিদ্যামান আছে। তাহলে চার্জের তলঘনত্ব, $\sigma=\frac{Q}{A}$ ।

এখন, যদি পরিবাহীটি একটি গোলক হয় এবং উহার ব্যাসার্ধ =r হয় তাহলে উহার ক্ষেত্রফল $A=4\pi r^2$ । অতএব, গোলকটির চার্জের তলঘনত্ব, $\sigma=\frac{Q}{4\pi r^2}$ ।

প্রশ্ন- (১০): দুটি বিন্দু চার্জ সম্পকীয় কুলম্বের সূত্রটি বিবৃত ও ব্যাখ্যা কর। তা থেকে চার্জের ব্যবহারিক একক কুলম্বের সংজ্ঞা দাও। কুলম্বের সূত্রটির ভেক্টর রূপ বাহির কর।

উত্তর: দুটি বিন্দু চার্জ সম্পর্কীয় কুলম্বের সূত্রটি নিম্নে বিবৃত ও ব্যাখ্যা করা হল:

কুলম্বের সূত্রঃ দুটি বিন্দু চার্জ তাদের মধ্যবর্তী সংযোজক সরলরেখা বরাবর পরস্পর পরস্পরকে একটি বল দ্বারা আকর্ষণ বা বিকর্ষণ করে। এই বলের মান চার্জ দ্বয়ের মানের গুণফলের সমানুপাতিক এবং মধ্যবর্তী দূরত্বের বর্গের ব্যস্তানুপাতিক।

ব্যাখ্যাঃ ধরি কোন মাধ্যমে Q_1 ও Q_2 মানের দুটি বিন্দু চার্জ পরস্পর হতে r দূরে অবস্থিত। কুলম্বের সূত্রানুসারে এদের মধ্যবর্তী বলের মান F হলে আমরা পাই,

এখানে k একটি সমানুপাতিক ধ্রুবক যার মান রাশিগুলির পরিমাপের একক পদ্ধতির উপর এবং মাধ্যমের প্রকৃতির উপর নির্ভরশীল। (k কে অনেক সময় কুলম্বের ধ্রুবক বলা হয়) এস. আই পদ্ধতিতে এবং বায়ু বা শূন্য মাধ্যমের ক্ষেত্রে $k=\frac{1}{4\pi \in _0}=9\times 10^9 Nm^2c^{-2}$ । যেখানে $\in _o=$ বায়ু বা শূন্য মাধ্যমের তড়িৎ প্রবেশ্যতা বা ভেদনযোগ্যতা। অতএব, সমীকরণ (১)

যেকে পাই;
$$F = \frac{1}{4\pi \in_o} \quad \frac{Q_1 Q_2}{r^2} - - - - - - - - - - - - (2)$$

কুলম্বের সূত্রের ভেক্টর রূপঃ যেহেতু বল F একটি ভেক্টর রশি সেহেতু সমীকরণ (২) ও (৩) কে ভেক্টররূপে প্রকাশ করা যায়। সমীকরণ (৩) -এর ভেক্টর রূপ।

এখনে \hat{n} হচ্ছে চার্জদ্বয়ের সংযোজক সরলরেখা বরাবর একটি একক ভেকটর। Q_1 কে বল প্রয়োগকারী চার্জ বিবেচনা করলে \hat{n} হবে Q_1 থেকে Q_2 -এর দিকে, আবার Q_2 কে বল প্রয়োগকারী চার্জ বিবেচনা করলে \hat{n} হবে Q_2 থেকে Q_1 এর দিকে।

কুলম্বের সংজ্ঞাঃ কুলম্ব হল চার্জের ব্যবহারিক একক। একে C দ্বারা প্রকাশ করা হয়। পরীক্ষায় দেখা যায় যে, যদি $Q_1=1C$, $Q_2=1C$ এবং বায়ু বা শূন্য মাধ্যমে এদের মধ্যবর্তী দূরত্ব 1m হয় তাহলে সমীকরণ (২) অনুসারে এদের মধ্যবর্তী বিকর্ষণ বল হয় $9\times 10^9 N$ হয়। অতএব আমরা বলতে পারি, দুটি সমান এবং সমধর্মী বিন্দু চার্জকে বায়ু বা শূণ্য মাধ্যমে পরস্পর হতে এক মিটার দূরে স্থাপন করলে যদি এদের মধ্যে বিকর্ষণ বলের মান $9\times 10^9 N$ হয় তবে এদের প্রত্যেককে এক কুলম্ব চার্জ বলে।

st[বি: দ্র: সি. জি. এস পদ্ধতিতে এবং বায়ু বা শূন্য মাধ্যমের ক্ষেত্রে k=1 হয়। এক্ষেত্রে কুলম্বের সূত্রটি দ্বারায়, $F=rac{Q_1Q_2}{r^2}$ ।

প্রশ্ন- ১০ (i): কোন মাধ্যমের মাধ্যমাংক বা পরাবৈদুতিক ধ্রুবক বা ডাই ইলেকট্রিক ধ্রুবক বা আপেক্ষিক আবেশিক ধারকত্ব বলতে কি বুঝ? ব্যাখ্যা কর।

উত্তর: ধরি, দুটি বিন্দুচার্জ Q_1 ও Q_2 বায়ু বা শূন্য মাধ্যমে পরস্পর r দূরত্বে থাকলে পরস্পরের উপর F_o বল প্রয়োগ করে। আবার, এই চার্জদ্বয় অন্য কোন মাধ্যমে একই দূরত্বে থাকলে ধরি পরস্পরের উপর F_m বল প্রয়োগ করে। তাহলে কুলম্বের সূত্র

থেকে পাই,
$$F_o = \frac{1}{4\pi \in_o} \frac{Q_1Q_2}{r^2} - - - - - - - (1)$$
 এবং $F_m = \frac{1}{4\pi \in} \frac{Q_1Q_2}{r^2} - - - - - - - (2)$

এখানে, \in ও \in যথাক্রমে বায়ু বা শূন্য মাধ্যমের এবং অন্য মাধ্যমের প্রবেশ্যতা। এখন সমীকরণ (১) \div (২) করে পাই,

$$\dfrac{F_o}{F_m}=\dfrac{\in}{\in_o}$$
। তাহলে $\dfrac{F_o}{F_m}$ বা $\dfrac{\in}{\in_o}$ কে বলা হয় ঐ মাধ্যমের মাধ্যমাংক বা পরাবৈদ্যুতিক ধ্রুবক।

অতএব, আমরা বলতে পারি, দুটি বিন্দু চার্জ নিদিষ্ট দ্রত্বে থেকে বায়ু বা শূন্য মাধ্যমে পরস্পরের উপর যে বল প্রয়োগ করে তার মান চার্জদ্বয় একই দূরত্বে থেকে অন্যকোন মাধ্যমে পরস্পরের উপর যে বল প্রয়োগ করে তার মানের অনুপাতকে ঐ মাধ্যমের মাধ্যমাংক বা পরাবৈদ্যুতিক ধ্রুবক বা ডাই ইলেকট্রিক ধ্রুবক বলে। একে সাধারণত k দ্বারা প্রকাশ করা হয়। আবার বলা যায়, কোন মাধ্যমের তড়িৎ প্রবেশ্যতার অনুপাতকে ঐ মাধ্যমের তড়িৎ মাধ্যমাংক বা ডাই-

ইলেকট্রিক ধ্রুবক বা পরাবৈদ্যুতিক ধ্রুবক বলে। অর্থাৎ মাধ্যমাংক
$$k=rac{\in}{\in_o}=rac{F_o}{F_m}$$
।

প্রশ্ন- (১১): তড়িৎক্ষেত্র ও তড়িৎ বলরেখা কি? তড়িৎ বলরেখার ধর্ম উল্লেখ কর।

উত্তর: তড়িৎক্ষেত্র (Electric field): কোন একটি চার্জিত বস্তু তার চতুর্দিকে যে অঞ্চল জুড়ে তার প্রভাব বিস্তার করে সেই অঞ্চলকে ঐ চার্জিত বস্তুর তড়িৎ ক্ষেত্র বা বৈদ্যুতিক ক্ষেত্র বলে। গাণিতিক ভাবে এই ক্ষেত্র অসীম পর্যন্ত বিস্তৃত কিন্তু বাস্তবে এই ক্ষেত্র নির্দিষ্ট সীমা পর্যন্ত বিস্তৃত থাকে।

তড়িৎ বলরেখা (Electric lines of force): তড়িৎক্ষেত্রে একটি মুক্ত ধনাত্মক চার্জ স্থাপন করলে এটি যে পথে পরিভ্রমণ করে তাকে তড়িৎ বলরেখা বলে। তড়িৎ বলরেখা সাধারনত খোলা বক্ররেখা এবং এদের কোন বিন্দুতে ম্পর্শক টানলে স্পর্শকটি উক্ত বিন্দুর তড়িৎ ক্ষেত্রের দিক নির্দেশ করে।

তড়িৎ বলরেখার ধর্ম: (i) তড়িৎ বলরেখা সাধারণত খোলা বক্ররেখা। কারণ পরিবাহীর মধ্যে কোন তড়িৎ চার্জ বা তড়িৎ বলরেখা থাকে না।

- (ii) বলরেখাগুলি ধন চার্জ হতে উৎপন্ন হয়ে ঋণ চার্জে চেয়ে শেষ হয়।
- (iii) বলরেখাগুলি ধনচার্জযুক্ত পরিবাহীর তল হতে অভিলম্বভাবে বের হয় এবং ঋণ চার্জযুক্ত পরিবাহীর তলে অভিলম্বভাবে প্রবেশ করে।
- (iv) বলরেখাগুলি পরস্পরের উপর পার্শ্বচাপ প্রয়োগ করে। এজন্য দুটি বলরেখা কখনো পরস্পরকে ছেদ করে না।
- (v) বলরেখাগুলি সর্বদা টান করা স্থিতিস্থাপক সুতারন্যায় দৈর্ঘ্য বরাবর সংকুচিত এবং পার্শ্বের দিকে প্রসারিত হতে চায়। এজন্য সমধর্মী চার্জ পরস্পরকে বিকর্ষণ করে এবং বিপরীত ধর্মী চার্জ পরস্পরকে আকর্ষণ করে।
- (vi) বলরেখাগুলির কোন বিন্দুতে অঙ্কিত স্পর্শক উক্ত বিন্দুর তড়িৎ ক্ষেত্রের বা তড়িৎ ক্ষেত্র প্রাবল্যের দিক নির্দেশ করে।
- প্রশ্ন- (১২): তড়িৎ প্রাবল্য ও তড়িৎ বিভব বলতে কি বুঝ? ব্যাখ্য কর। তড়িৎ ক্ষেত্র প্রাবল্যের রাশিমালা বাহির কর। তড়িৎ প্রাবল্য ও তড়িৎ বিভবের মধ্যে সম্পর্ক দেখাও।

তড়িৎ প্রাবল্য (Electric Intensity): তড়িৎ ক্ষেত্রের কোন বিন্দুতে একটি একক ধন চার্জ স্থাপন করলে উহা যে বল অনুভব করে তাকে ঐ বিন্দুর তড়িৎ প্রাবল্য বা তড়িৎ ক্ষেত্র প্রাবল্য বলে। একে সাধারণত E দ্বারা প্রকাশ করা হয় এবং ইহা একটি ভেক্টর রাশি।

ব্যাখ্যাঃ কোন তড়িৎ ক্ষেত্রের কোন একটি বিন্দুতে Q পরিমাণ ধনচার্জ স্থাপন করলে উহা যদি F পরিমাণ বল অনুভব করে তাহলে ঐ বিন্দুর প্রাব্য, $E=rac{F}{Q}$ । তড়িৎ প্রাবল্যের ব্যবহারিক একক Nc^{-1} ।

উদাহরণ স্বরূপ বলা যায়, কোন বিন্দুর তড়িৎ প্রাবল্য $100NC^{-1}$ বলতে বুঝায় তড়িৎক্ষেত্রের ঐ বিন্দুতে 1C ধনাত্মক চার্জ স্থাপন করলে এটি 100N বল অনুভব করবে।

তড়িৎ বিভব (Electric potential): অসীম দূর হতে একক ধনাত্মক চার্জকে তড়িৎ ক্ষেত্রের কোন বিন্দুতে আনতে যে পরিমাণ কাজ সাধিত হয় তাকে ঐ বিন্দুর তড়িৎ বিভব বলে। একে সাধারণত V দ্বারা প্রাকশ করা হয়।

ব্যাখ্যাঃ অসীম দূর হতে Q পরিমাণ ধন চার্জকে তড়িৎ ক্ষেত্রের কোন বিন্দুতে আনতে যদি w পরিমান কাজ সাধিত হয় তাহলে ঐ বিন্দুর তড়িৎ বিভব, $V=rac{W}{Q}$ । তড়িৎ বিভবের ব্যবহারিক একক jc^{-1} । তবে এই এককটি ভোল্ট নামেই বেশী পরিচিত। $V=rac{W}{Q}$

সমীকরণে যদি w=1j এবং Q=1C হয় তাহলে $V=1jc^{-1}$ বা 1volt হবে ।

অতএব, আমরা বলতে পারি, অসীম দূর হতে 1c ধনাত্মক চার্জকে তড়িৎ ক্ষেত্রের কোন বিন্দুতে আনতে যদি 1j কাজ সাধিত হয় তাহলে ঐ বিন্দুর বিভবকে এক ভোল্ট বিভব বলে।

[অনুরূপভাবে, কোন বিন্দুর বিভব 220V বলতে বুঝায়, অসীম দূর হতে 1c ধন চার্জকে তড়িৎ ক্ষেত্রের ঐ বিন্দুতে আনতে 220jকাজ সাধিত হয়] তড়িৎ ক্ষেত্র প্রাবল্যের রাশিমালাঃ মনেকরি বায়ু বা শূন্য মাধ্যমে +Q পরিমাণ চার্জের জন্য একটি তড়িৎ ক্ষেত্রের সৃষ্টি হয়েছে। এই চার্জ হতে r দূরত্বে অবস্থিত কোন একটি বিন্দুতে তড়িৎ প্রাবল্যের মান নির্ণয় করতে হবে। যদি +Q চার্জ হতে r দূরে অবস্থিত বিন্দুতে +q পরিমাণ চার্জ স্থাপন করা হয়, তাহলে কুলম্বের সূত্রানুসারে +Q চার্জ কর্তৃক +q চার্জর উপর প্রযুক্ত বল,

$$F = \frac{1}{4\pi \in_{o}} \frac{Q.q}{r^2}$$

অতএব, +Q চার্জ কর্তৃক একক ধনাত্মক চার্জের উপর প্রযুক্ত বল তথা তড়িৎ ক্ষেত্র প্রাবল্য,

$$E = \frac{F}{q} = \frac{1}{4\pi \in_{o}} \cdot \frac{Q \cdot q}{r^{2}} \cdot \frac{1}{q} = \frac{1}{4\pi \in_{o}} \cdot \frac{Q}{r^{2}}$$

অর্থাৎ, তড়িৎ প্রাবল্য,
$$E = \frac{1}{4\pi \in \mathbb{R}} \cdot \frac{Q}{r^2}$$

তড়িৎ প্রাবল্য ও তড়িৎ বিভবের মধ্যে সম্পর্কঃ মনেকরি কোন একটি তড়িৎ ক্ষেত্রের মধ্যে খুব কাছাকাছি অবস্থিত A ও B দুটি বিন্দু। ধরি A ও B বিন্দুদয়ের মধ্যবর্তী দূরত্ব =dx এবং A বিন্দুর তড়িৎ বিভব =V+dv এবং B বিন্দুর তড়িৎ বিভব =v তাহলে,

A ও B বিন্দুম্বয়ের বিভব পার্থক্য =V+dv-v=dv------(1)

এখন যেহেতু A ও B বিন্দুদ্বয় খুব কাছাকাছি সেহেতু বিন্দুদ্বয়ের মধ্যে সকল স্থানে তড়িৎ প্রাবল্যের মান সমান হবে। ধরি এই প্রাবল্য =E। এবার বিভব পার্থক্যের সংজ্ঞানুসারে আমরা পাই A ও B বিন্দুর বিভব পার্থক্য =B থেকে একক ধনাত্মক চার্জকে A তে আনতে কৃতকাজ।

বা, dv = - বল \times সরণ বা, dv = - প্রাবল্য \times সরন

বা,
$$dv = -E \times dx$$
 : $E = -\frac{dv}{dx}$ ----(2)

সমীকরণ (২) থেকে বলা যায়, তড়িৎ ক্ষেত্রের কোন বিন্দুর তড়িৎপ্রাবল্য ঐ বিন্দুর তড়িৎ বিভবের ঋণাত্মক নতিমাত্রার $\left(-rac{dv}{dx}
ight)$

সমান। [সমীকর (২) থেকে আরও বলা যায়;

তড়িৎ প্রাবল্য = বিভব পার্থক্য । সমীকরণ (২) থেকে তড়িৎ প্রাবলোর একটি সংজ্ঞা দেয়া যায়। দূরত্ব সাপেক্ষে তড়িৎ বিভবের পরিবর্তনের হারকে তড়িৎ প্রাবল্য বলে

প্রশ্ন- (১৩): দেখাও যে, বিন্দু চার্জ
$$+Q$$
 এর জন্য r দূরত্বে কোন বিন্দুর বিভব, $V=rac{1}{4\pi \in Q} rac{Q}{r}$ ।

অথবা: তড়িৎ বিভব কি? তড়িৎ বিভবের সাধারণ রাশিমারা বের কর।

উত্তরঃ তড়িৎ বিভবঃ অসীম দূর হতে একটি একক ধনাত্মক চার্জকে তড়িৎ ক্ষেত্রের কোন বিন্দুতে আনতে যে কাজ সাধিত হয় তাকে ঐ বিন্দুর তড়িৎ বিভব বলে।

তড়িৎ বিভবের সাধারণ রাশিমালাঃ ধরি, বায়ু বা শূণ্য মাধ্যমে A বিন্দুতে +Q পরিমান চার্জ আছে। এই চার্জের দরুন A বিন্দুথেকে r দূরত্বে B বিন্দুতে তড়িৎ বিভব নির্ণয় করতে হবে। এখন, অসীম দূর হতে একটি একক ধনচার্জকে B বিন্দুতে আনতে যেপরিমান কাজ সাধিত হয় সেই পরিমাণ কাজই হবে B বিন্দুর তড়িৎ বিভব। চিত্র- (৮)।

এখন, B বিন্দুতে একক ধনাত্মক চার্জ রাখা হলে +Q চার্জ কর্তৃক এই একক ধনাত্মক চার্জের উপর প্রযুক্ত বল তথা প্রাবল্য,

$$E = \frac{1}{4\pi \in Q} \frac{Q}{r^2}$$

এবার B এর খুব কাছাকাছি অন্য একটি বিন্দু C নেয়া হল যেন BC=dr হয়। dr খুব ক্ষুদ্র দূরত্ব বলে BC -এর মধ্যে সকল স্থানে বল তথা প্রাবল্য সমান হবে।

এখন, একটি একক ধনাতাক চার্জকে C থেকে B বিন্দুতে আনতে কৃত কাজ,

dw=- বল imes সরণ =-E imes dr[এখানে বলের বিরুদ্ধে কাজ বলে ঋনাত্মক (-) চিহ্ন ব্যবহার হয়েছে]

অতএব, অসীম দূর হতে একক ধনাতাক চার্জকে B বিন্দুতে আনতে কৃত কাজ, $w=\int\limits_{-\infty}^{r}dw$

$$w = \int_{-\infty}^{r} -\frac{1}{4\pi \in {}_{o}} \cdot \frac{Q}{r^{2}} \cdot dr = -\frac{Q}{4\pi \in {}_{o}} \int_{-\infty}^{r} r^{-2} dr$$

$$\therefore B$$
 বিন্দুতে তড়িৎ বিভব, $V=rac{1}{4\pi \in_o}.rac{Q}{r}-----(2)$

ইহাই তড়িৎ বিভবের সাধারণ সমীকরণ বা রাশিমারা।

প্রশ্ন- (১৪)ঃ তড়িৎ প্রাবল্য এবং চার্জের তলঘনত্বের মধ্যে সম্পর্ক স্থাপন কর।

উত্তরঃ মনেকরি, বায়ু বা শূন্য মাধ্যমে অবস্থিত একটি গোলকীয় পরিবাহীর কেন্দ্র =0, এবং ব্যাসার্ধ =r। গোলকটিতে Q পরিমাণ ধনচার্জ প্রদান করা হলে এই চার্জ গোলকটির পৃষ্ঠে সুষমভাবে ছড়িয়ে পড়বে এবং প্রত্যেকটি ধনচার্জ থেকে তড়িৎ বলরেখা অভিলম্ব ভাবে বের হবে। বলরেখা গুলোকে পিছনের দিকে বর্ধিত করলে কেন্দ্র O -তে মিলিত হবে। সুতরাং Q পরিমাণ চার্জ পৃষ্ঠে না থেকে কেন্দ্র O -তে জমাটবদ্ধ থাকলেও বলরেখা গুলো একইপথে নির্গত হবে। অতএব, Q পরিমান চার্জ কেন্দ্র O থাকলে গোলকের পৃষ্ঠে তড়িৎ প্রাবল্য,

গোলকের পৃষ্ঠে চার্জের তলঘনত্ব $=\sigma$ হলে আমরা পাই, $\sigma=rac{Q}{A}$ বা, $Q=\sigma\!A$ বা, $Q=\sigma\!A$ বা, $Q=\sigma\!A$ বা, $Q=\sigma\!A$

এখন সমীকরণ (২) থেকে Q এর মান সমীকরণ (১) -এ বসাই।

$$E = \frac{1}{4\pi \in_{o}} \cdot \frac{\sigma \cdot 4\pi r^{2}}{r^{2}} = \frac{\sigma}{\in_{o}}$$

বা,
$$E = \frac{\sigma}{\epsilon_o}$$
 ----(3)

ইহাই বায়ু বা শূন্য মাধ্যমে তড়িৎ প্রাবল্য এবং চার্জের তল ঘনত্বের মধ্যে সম্পর্ক। বায়ু বা শূন্য মাধ্যম ছাড়া k মাধ্যমাংক বিশিষ্ট মাধ্যমে সম্পর্কটি হবে,

প্রশ্ন- (১৫): ধারকত্ব কি? কোন পরিবাহীর ধারকত্ব কি কি বিষয়ের উপর নির্ভর করে?

দেখাও যে, Q = CV যেখানে প্রতীকগুলো প্রচলিত অর্থে ব্যবহৃত।

উত্তর: তড়িৎ ধারকত্ব (Capacitance): প্রত্যেক বস্তুরই তড়িৎ বা চার্জ ধারনের একটি নির্দিষ্ট ক্ষমতা আছে। তড়িৎ ধারকত্ব হল এই ক্ষমতা পরিমাপক একটি রাশি। অন্যভাবে বলা যায়, কোন পরিবাহীর বিভব এক একক বৃদ্ধি করতে যে পরিমাণ চার্জের প্রয়োজন হয় তাকে ঐ পরিবাহীর ধারকত্ব বলে। একে c দ্বারা প্রাকশ করা হয়। এর ব্যবহারিক একক হল ফ্যারাড।

পরিবাহীর ধারকত্ব নিম্নের বিষয়গুলোর উপর নির্ভর করে-

- (i) পরিবাহীর ক্ষেত্রফলঃ পরিবাহীর পৃষ্ঠের ক্ষেত্রফল বৃদ্ধি পেলে উহার ধারকত্ব বৃদ্ধি পায় এবং ক্ষেত্রফল<u>হা</u>স পেলে ধারকত্ব<u>হা</u>স পায়।
- (ii) পরিবাহীর চারিপাশ্বস্থ মাধ্যমঃ পরিবাহীর চারপাশে বায়ু বা শূন্য মাধ্যম ছাড়া উচ্চ মাধ্যমাংক বিশিষ্ট মাধ্যম যেমন- কাচ, রাবার, ইবোনাইট ইত্যাদি থাকলে ধারকত্ব বৃদ্ধিপায়।
- (iii) অপর কোন পরিবাহী বা ভূ-সংযুক্ত পরিবাহীর সান্নিধ্যঃ একটি অন্তরীত পরিবাহীর নিকট অপর একটি অচার্জিত পরিবাহী বিশেষ করে ভূ-সংযুক্ত পরিবাহী থাকলে অন্তরীত পরিবাহীর ধারকত্ব অনেক গুন বৃদ্ধি পায়।

ধারকত্ব (C), বিভব (V) ও চার্জ (Q) এর মধ্যে সম্পর্কঃ কোন পরিবাহীতে চার্জের পরিমাণ যত বেশী হয় উহার বিভব তত বেশী হয়। অর্থ্যৎ চার্জ ও ভিভব পারস্পর সমানুপাতিক। অতএব, কোন পরিবাহীতে Q পরিমাণ চার্জ প্রদান করায় যদি উহার বিভব V হয়। তাহলে আমরা পাই, $Q \propto V$ বা, Q =ধ্রুবক $\times V$

এই ধ্রুবককে পরিবাহীর ধারকত্ব বলে। একে c দ্বারা প্রকাশ করা হয়। অতএব সম্পর্ক টিকে লেখা যায়, Q=cv (প্রমাণিত)

প্রশ্ন- (১৫): (i): একক ধারকত্ব ও ফ্যারাডের সংজ্ঞা দাও। কোন পরিবাহীর ধারকত্ব 10F (10 ফ্যারাড) বলতে কি বুঝ?

উত্তর: আমরা জানি, Q=CV । অতএব, $C=rac{Q}{V}$ । এখানে, Q=1 এবং V=1 হলে C=1 হবে । অতএব, আমরা বলতে পারি, কোন পরিবাহীর বিভব এক একক বৃদ্ধি করতে যদি এক একক চার্জের প্রয়োজন হয় তাহলে উহার ধারকত্বকে একক ধারকত্ব বলে ।

ধারকত্বের ব্যবহারিক একক হচ্ছে ফ্যারাড (F) । $C=rac{Q}{V}$ সমীকরণে যদি Q=1C এবং V=1V হয় তাহলে উহার ধারকত্বকে এক ফ্যারাড (1F) বলে ।

st আবার, $C=rac{Q}{V}$ সমীকরনে যদি Q=10C এবং V=1V হয় তবে C=10F হবে।

অতএব, কোন পরিবাহীর ধারকত্ব $\ 10F$ বলতে বুঝায় ঐ পরিবাহীর বিভব $\ 1V$ বৃদ্ধি করতে $\ 10C$ চার্জের প্রয়োজন।

ফ্যারাড খবু বড় একক হওয়ায় মাইক্রো ফ্যারাড (μF) কেও ব্যবহার করা হয়। এক ফ্যারাডের ১০ লক্ষ ভাগের এক ভাগকে এক মাইক্রো ফ্যারাড বলে। অর্থাৎ, $1\mu F=10^{-6}F$ । এবং $1F=10^6\mu F$ ।

আবার, এক মাইক্রো ফ্যারাডের দশলক্ষ ভাগের এক ভাগকে এক পিকো ফ্যারাড (PF) বলে।

অর্থাৎ,
$$1PF = 10^{-6} \mu F = 10^{-6} \times 10^{-6} F = 10^{-12} F$$

প্রশ্ন- ১৬ঃ একটি গোলকীয় পরিবাহীর ধারকত্বের রাশিমালা বের কর। উহা থেকে দেখাও যে, গোলকীয় পরিবাহীর ধারকত্ব উহার ব্যাসার্ধের সমানুপাতিক।

উত্তরঃ মনেকরি বায়ু বা শূন্য মাধ্যমে অবস্থিত একটি গোলকীয় পরিবাহীর কেন্দ্র =0 এবং ব্যাসার্ধ =r । গোলকটিতে +Q পরিমাণ চার্জ প্রদান করায় যদি উহার বিভব =V হয় তাহল আমরা পাই, Q=CV যেখানে C= ধারকত্ব ।

এখন, +Q পরিমাণ চার্জ গোলকটির মুক্ত পৃষ্ঠে সুষমভাবে ছড়িয়ে পড়বে এবং প্রত্যেকটি ধনচার্জ হতে বলরেখাগুলো অভিলম্বভাবে বের হবে। চিত্র (১০)। এই বলরেখা গুলোকে পিছনের দিকে বর্ধিত করলে উহারা গোলকের কেন্দ্র O- তে মিলিত হয়। অতএব, +Q পরিমাণ চার্জ গোলকটির কেন্দ্রে জমাট বদ্ধ থাকলেও বলরেখাগুলি একইভাবে একই পথে নির্গত হবে। এখন +Q পরিমাণ চার্জকে কেন্দ্র O- তে জমাটবদ্ধ কল্পণা করলে গোলকটির পৃষ্ঠে তড়িং বিভব,

$$V = \frac{1}{4\pi \in_{o}} \cdot \frac{Q}{r} - - - - - - - - (2)$$

সমীকরণ (২) থেকে V এর মান (১) -এ বসাই, $C = Q \times \frac{4\pi \in_{o} r}{O}$

গোলকটির চারপার্শ্বে বায়ু বা শূন্য মাধ্যম ছাড়া অন্য কোন K মাধ্যমাংক বিশিষ্ট মাধ্যম থাকলে আমরা পাই,

$$C = 4\pi \in_{o} kr = 4\pi \in r - - - - - - - (4)$$

সমীকরণ (৩) বা (৪) গোলকীয় পরিবাহীর ধারকত্বের রাশিমালা নির্দেশ করে।

এখন, সমীকরণ (৩) এবং (৪) থেকে দেখা যাচ্ছে যে, $4\pi\in_{o}$ অথবা $4\pi\in$ হল ধ্রুব রাশি। অতএব C= ধ্রুবক $\times r$ $\therefore c \propto r$ ।

অর্থাৎ, গোলকীয় পরিবাহীর ধারকত্ব উহার ব্যাসার্ধ্যের সমানুপাতিক। (প্রমাণিত)

[বি: দ্র: বায়ু বা শূন্য মাধ্যমে এবং সি. জি. এস. পদ্ধতিতে $\frac{1}{4\pi \in C_0} = 1$ $\therefore 4\pi \in C_0 = 1$ । অতএব সমীকরণ (৩) থেকে পাই,

c=r। ... সি. জি. এস. পদ্ধতিতে বায়ু বা শূণ্য মাধ্যমে গোলকীয় পরিবাহীর ধারকত্ব সংখ্যাগতভাবে উহার ব্যাসার্ধের সমান] প্রশ্ন- ১৬ (র): ধারক কি? ধারকের ধারকত্বের সংজ্ঞা দাও।

উত্তরঃ ধারক (Capacitor or condenser): যে যান্ত্রিক কৌশলের সাহায্যে পরিবাহীতে চার্জ সঞ্চিত বা জমা রাখা হয় তাকে ধারক বলে। ধারকের প্রতীক হল — |

আমরা জানি, একটি অন্তরীত পরিবাহীর নিকট অপর একটি ভূসংযুক্ত পরিবাহী থাকলে অন্তরীত পরিবাহীর ধারকত্ব অনেকগুনে বৃদ্ধি পায়। এই কৌশলকে কাজে লাগিয়ে ধারক তৈরী করা হয়।

ধারকের ধারকত্ব: কোন একটি ধারকের দুই পরিবাহীর মধ্যে একক বিভব পার্থক্য সৃষ্টি করার জন্য অন্তরীত পরিবাহীতে যে পরিমাণ

চার্জ প্রদান করতে হয় তাকে উক্ত ধারকের ধারকত্ব বলে।

অথ্যাৎ, ধারকের ধারকত্ব = অন্তরীত পরিবাহীর চার্জ দুই পরিবাহীর মধ্যে বিভব পার্থক্য

প্রশ্ন- (১৭): একটি সমান্তরাল পাত ধারকের গঠনও কার্য প্রণালী বর্ণনা কর এবং উহার ধারকত্বের রাশিমালা বের কর।

সমান্তরাল পাত ধারকের গঠনঃ সমান্তরাল পাত ধারকে দুটি একই ধরনের ধাতব পাত M ও N থাকে। M ও N পাতের মধ্যে M পাতটি অন্তরীত অবস্থায় এবং N পাতিটি ভূ-সংযুক্ত অবস্থায় থাকে। (চিত্র- ১১)। পাতদ্বয়ের মধ্যবর্তী দূরত্ব খুবই সমান্য এবং মধ্যবর্তী স্থানে বায়ু বা অন্য কোন উচ্চ মাধ্যমাংক বিশিষ্ট মাধ্যম যেমন- কাচ, রাবার, ইবোনাইট, অন্ত ইত্যাদি দ্বারা পূর্ণ থাকে। পাতদ্বয়ের মধ্যে বায়ুর পরিবর্তে উচ্চ মাধ্যমাংক বিশিষ্ট মাধ্যম ব্যবহার করলে ধারকের ধারকত্ব বৃদ্ধি পায়।

কার্যপ্রণালীঃ অন্তরীত পাত M -এ যখন ধনাতাক চার্জ সঞ্চিত করা হয় সঙ্গে স্থ-সংযুক্ত পাত N -এ সমপরিমাণ ঋণাতাক চার্জ আবিষ্ট হয়। ফলে M পাতে আরও অধিক পরিমান চার্জ সঞ্চয় করা সম্ভব হয়।এভাবে সমান্তরাল পাত ধারকের ধারকত্ব অনেক গুণ বৃদ্ধি করা যায়।

সমান্তরাল পাত ধারকের ধারকত্বের রাশিমালাঃ ধরি, M ও N পাতদ্বয়ের উভয়ের ক্ষেত্রফল =A এবং পাতদ্বয়ের মধ্যবর্তী দূরত্ব =d । এই দূরত্ব খুবই ক্ষুদ্র বলে পাতদ্বয়ের মধ্যে সকল স্থানে তড়িৎ প্রাবল্যের মান সমান হবে। মনেকরি এই প্রাবল্য =E এবং পাতদ্বয়ের মধ্যবর্তী স্থান বায়ু দ্বারা পূর্ণ।

N পাতটি ভূ–সংযুক্ত বলে এর বিভব শূণ্য। M পাতে +Q পরিমাণ চার্জ প্রদান করা হলে যদি এর বিভব =V হয়, তাহলে দুইপাতের মধ্যে বিভব পার্থক্যও V হবে। এখন ধারকটির ধারকত্ব C হলে আমরা পাই, Q=CV

vযেহেতু M পাতের ক্ষেত্রফল =A এবং চার্জের পরিমাণ $=Q\,,$ অতএব পাতটির চার্জের তল ঘনতু,

আবার যেহেতু দুই পাতের মধ্যে বিভব পার্থক্য =V , অতএব আমরা পাই, V=N পাত হতে M পাতে একক ধনাত্মক চার্জ আনতে কৃত কাজ

বা, V= একক ধনাত্মক চার্জের উপর বল imes সরণ

এখন, তড়িৎ প্রাবল্য এবং চার্জের তল ঘনত্বের মধ্যে সম্পর্ক হল, $E=rac{\sigma}{\in_o}$ যেখানে, $\in_o=$ বায়ু বা শূন্য মাধ্যমের তড়িৎ প্রবেশ্যতা।

সমীকরন (৩) -এ E এর মান বসাই,

এবার সমীকরণ (২) ও (৪) থেকে যথাক্রমে Q ও V -এর মান সমীকরণ (১)-এ বসাই,

সমীকরণ (৫) সমান্তরাল পাত ধারকের ধারকত্বের রাশিমালা যখন পাতদ্বয়ের মধ্যে বায়ু মাধ্যম থাকে। পাতদ্বয়ের মাঝে বায়ু মাধ্যমের পরিবর্তে K মাধ্যমাংক বিশিষ্ট মাধ্যম থাকলে ধারকত্ব K গুণ বৃদ্ধিপাবে। সেক্ষেত্রে ধারকত্ব,

এখানে, ∈= K মাধ্যমাংক বিশিষ্টি মাধ্যমের প্রবেশ্যতা।

প্রশ্ন- (১৮)ঃ দুই বা ততোধিক ধারকের (i) শ্রেণীবদ্ধ সংযোজনীতে এবং (ii) সমান্তরাল সংযোজনীতে সমতুল্য ধারকত্বের রাশিমালা বের কর। সমতুল্য ধারকত্ব কি?

সমতুল্য বা তুল্য ধারকত্ব: একাধিক ধারকের সমন্বয়ে প্রাপ্ত ধারকত্ব যদি অন্য কোন একটি ধারকের ধারকত্বের সমান হয় এবং উভয় ক্ষেত্রে চার্জ এবং বিভব পার্থক্য সমান থাকে তাহলে উক্ত ধারকটির ধারকত্বকে সমন্বিত ধারকগুলোর সমতুল্য ধারকত্ব বা তুল্য ধারকত্ব বলে। ধারকের সমন্বয় বা সমবায় দুই প্রকার যথা (i) শ্রেণীবদ্ধ সমবায় এবং (ii) সমান্তরাল সমবায়।

(i) শ্রেণী সমবায় (Series combination): যখন কতকগুলো ধারককে এমন ভাবে যুক্তকরা হয় যে, প্রথম ধারকের দ্বিতীয় পাতের সাথে দ্বিতীয় ধারকের প্রথম পাত দ্বিতীয় ধারকের দ্বিতীয় পাতের সাথে তৃতীয় ধারকের প্রথম পাত এরূপভাবে যুক্ত করার পর শেষ ধারকের দ্বিতীয় পাতকে ভূসংযুক্ত করা হয় তখন এধরনের সমবায়কে ধারকের শ্রেণী সমবায়বলে। চিত্র (১২)।

প্রশ্ন- (১৮)ঃ একটি চার্জিত ধারকের স্থিতিশক্তি বা সঞ্চিত শক্তির রাশিমালা বের কর।

[ইহা থেকে ধারকের একক আয়তনে সঞ্চিত স্থিতি শক্তির রাশিমালা বের কর]

চার্জিত ধারকের স্থিতিশক্তি বা বিভব শক্তিঃ আমরা জানি, কোন একটি ধারককে চার্জিত করতে যে পরিমাণ কাজ সাধিত হয় সেই পরিমাণ কাজই ঐ চার্জিত ধারকের স্থিতি বা বিভব শক্তি। ধরি কোন একটি ধারকের ধারকত্ব =C, উহাতে Q পরিমাণ চার্জ প্রদান করায় উহার দুই পাতের মধ্যে বিভব পার্থক্য হল =V।

ধারকটিতে Q পরিমাণ চার্জ একসাথে যোগ করা সম্ভব হয়নি, এই চার্জ আল্প অল্প করে যোগ করতে হয়েছে। ধারকটিতে Q পরিমাণ চার্জ যোগ করার পর উহাতে আরও dQ পরিমাণ চার্জ যোগ করতে কৃত কাজ, dw = V.dQ

বা,
$$dw = \frac{Q}{C}dQ$$
 : বিভব= $\frac{\overline{\Phi}}{\overline{\Phi}}$

∴কাজ= বিভব×চার্জ

 \therefore ধারকটিতে 0 থেকে Q পরিমাণ চার্জ প্রদান করতে মোট কাজ,

$$w = \int_{0}^{Q} \frac{Q}{c} dQ = \frac{1}{c} \int_{0}^{Q} Q dQ = \frac{1}{c} \left[\frac{Q^{2}}{2} \right]_{0}^{Q} = \frac{1}{2c} \left[Q^{2} - O \right]$$

$$\therefore w = \frac{Q^2}{2c} = \frac{c^2v^2}{2c} = \frac{1}{2}cv^2 = \frac{1}{2}cv \cdot v = \frac{1}{2}QV$$

অতএব, চার্জিত ধারকের স্থিতি শক্তি
$$E_p=w=rac{Q^2}{2c}=rac{1}{2}cv^2=rac{1}{2}QV------(2)$$

[ধারকের একক আয়তনে স্থিতি শক্তিঃ ধরি, ধারকটির প্রত্যেকপাতের ক্ষেত্রফল =A, পাতদ্বয়ের মধ্যেবর্তী দূরত্ব =d । অতএব, ধারকের আয়তন =Ad । অতএব, একক আয়তনে স্থিতিশক্তি,

$$U = \frac{E_p}{Ad} = \frac{\frac{1}{2}CV^2}{Ad} = \frac{\frac{1}{2}CE^2d^2}{Ad} \qquad \text{a.} \quad U = \frac{1}{2} \cdot \frac{A \in_o}{d} \cdot \frac{E^2d}{A} = \frac{1}{2} \in_o E^2 \quad [\because V = E \times d]$$

বায়ু ছাড়া অন্য মাধ্যম থাকলে, $U = \frac{1}{2} \in KE^2 = \frac{1}{2} \in E^2$]

প্রশ্ন- (২০)ঃ একটি চার্জিত লোগকের অভ্যন্তরে তড়িৎ প্রাবল্য শূন্য কিন্তু বিভব উহার পৃষ্ঠের বিভবের সমান। ব্যাখ্যা কর। সমবিভব তল কি?

চার্জিত গোলকের অভ্যন্তরে প্রাবল্য শূন্যঃ ধরি বায়ু বা শূল্য মাধ্যমে 0 কেন্দ্রবিশিষ্ট এবং r ব্যাসার্ধ বিশিষ্ট একটি গোলক রয়েছে। গোলকটিতে +Q পরিমাণ চার্জ প্রদান করায় এই চার্জ গোলকটির পৃষ্ঠে সুষমভাবে ছড়িয়ে পরে। চিত্র- (১৩) প্রত্যেকটি ধন চার্জ হতে বলরেখাগুলো গোলকের পৃষ্ঠের সাথে লম্বভাবে নির্গত হয়। সুতরাং বলরেখা গুলোকে পিছনের দিকে বর্ধিত করলে উহারা কেন্দ্র 0- তে মিলিত হয়। অতএব +Q পরিমাণ চার্জ গোলকের পৃষ্ঠে না থেকে কেন্দ্র 0- তে জমাটবদ্ধ আছে বলে কল্পণা করা যায়। অতএব, গোলকের কেন্দ্র হতে r দূরতে অর্থাৎ পৃষ্ঠে প্রাবল্য,

$$E = \frac{1}{4\pi \in_{o}} \cdot \frac{Q.1}{r^2} = \frac{1}{4\pi \in_{o}} \cdot \frac{Q}{r^2}$$

কিন্তু গোলকের অভ্যন্তরে (অর্থাৎ r অপেক্ষা কম দূরত্বে) কোন চার্জ থকে না অর্থাৎ Q=0 । অতএব, গোলকের অভ্যন্তরে তড়িৎ প্রাবল্য E=Q ।

গোলকের অভ্যন্তরে সর্বত্র বিভব তার পৃষ্ঠের বিভবের সমানঃ ধরি, একটি চার্জিত গোলকের পৃষ্ঠে বিভব =V এবং উহার অভ্যন্তরে কোন একটি বিন্দুর বিভব $=V_0$ । এখন গোলকটির পৃষ্ঠ ও অভ্যন্তরের বিন্দুটির বিভব পার্থক্য, $V-V_o=$ প্রাবল্য \times দূরত্ব। কিন্তু গোলকের অভ্যন্তরে প্রাবল্য E=O বলে, $V-V_o=0$ $\therefore V=V_o$ । অতএব প্রমাণিত হলো গোলকের অভ্যন্তরে সর্বত্র বিভব উহার পৃষ্ঠের বিভবের সমান।

সমবিভব তলঃ যে তলের সকল বিন্দুতে বৈদ্যুতিক বিভবের মান সমান তাকে সম বিভব তল বলে। সমবিভব তলের উপর অবস্থিত যে কোন দুই বিন্দুর মধ্যকার বিভব পার্থক্য শূন্য। সমবিভব তল বরাবর কোন তড়িৎ প্রবাহিত হয় না। একটি অন্তরীত চার্জিত পরিবাহীর তল হলো সমবিভব তল।

"স্থির তড়িৎ"(গানিতিক সমস্যা)

সমস্যা- (১)ঃ $5 \times 10^{-11} m$ ব্যাসার্ধের একটি গোলকীয় পরিবাহীতে ২২টি ইলেক্ট্রনের সমান ঋণ চার্জ আছে। এর পৃষ্ঠে চার্জের তলমাত্রিক ঘনত্ব নির্ণয় কর। প্রতিটি ইলেক্ট্রনের চার্জ $1.6 \times 10^{-19} C$ । উঃ $112.1 cm^{-2}$

[সংকেতঃ $r=5\times 10^{-11}m$ মোট চার্জ $Q=22\times 1.6\times 10^{-19}C$ তলঘনত্ব $\sigma=?$ আমরা জানি, $\sigma=\frac{Q}{A}=\frac{Q}{4\pi r^2}$ এখন মান বসাও]

সমস্যা- (২)ঃ 0.02m ব্যাসার্ধের 64 টি গোলাকৃতি ফোটাকে একত্রিত করে একটি বৃহদাকার গোলাকার ফোটায় পরিণত করা হল। প্রত্যেক ফোটায় $44 imes 10^{-8} C$ চার্জ থাকলে বৃহদাকার ফোটার চার্জের তলমাত্রিক ঘনত্ব কত?

সিংকেতঃ ছোট ফোটাগুলোর ব্যাসার্ধ r=0.02m, ছোট ফোটার সংখ্যা =64 টি। বড় ফোটায় মোট চার্জ, $Q=64\times44\times10^{-8}c$ বড় ফোটার চার্জের তল ঘনত্ব $\sigma=?$ ধরি বড় ফোটা ক্ষেত্রফল =A এবং ব্যাসার্ধ =R।

্ব বিষয়ে সভাগ বন্ধ
$$\sigma=R$$
 ব্যাস বৃদ্ধ বেশ্ব স্থাস $=R$ ব্যাস বৃদ্ধের ক্ষেত্র $=R$ বৃদ্ধের বিষয়ে $=R$ কি বৃদ্ধের ক্ষায়তন $=R$ কি বিদ্ধের ক্ষায়তন $=R$ কি ছোট ক্ষায়তন $=R$ কি ছোট ক্ষায়তন $=R$ কি ছোট

ফোটার আয়তন, অর্থাৎ $\frac{4}{3}\pi R^3 = 64 \times \frac{4}{3}\pi r^3$]

সমস্যা- (৩)ঃ দুটি পিতলের বলের ব্যাসার্ধ যথাক্রমে 0.03m এবং 0.06m । বল দুটিতে যথাক্রমে $2.5 \times 10^{-9}c$ এবং $5 \times 10^{-9}c$ চার্জ দেয়া হলো । এদের চার্জের তলমাত্রিক ঘনত্বের তুলনা কর । উত্তর: 2ঃ1 ।

[সংকেতঃ $r_1=0.03m, \ r_2=0.06m, \ Q_1=2.5\times 10^{-9}c, \ Q_2=5\times 10^{-9}c, \ \sigma_1:\sigma_2=?$

আমরা জানি,
$$\sigma_1 = \frac{Q_1}{4\pi r_1^2} - \cdots - (1)$$
 এবং $\sigma_2 = \frac{Q_2}{4\pi r_2^2} - \cdots - (2)$ এখন $(1)\div(2)$ কর]

সমস্যা- (8): বায়ুতে দুটি ধনচার্জের মধ্যবর্তী দূরত্ব 0.05m এবং এদের মধ্যবর্তী পারস্পরিক বিকর্ষণ বল $8\times 10^{-5}N$ । চার্জ দুটির একটি অপরটির দ্বিগুণ হলে তাদের পরিমাণ নির্ণয় কর । উত্তর: $3.33\times 10^{-9}c$ এবং $6.66\times 10^{-9}c$

[সংকেতঃ $r=0.05m,\; F=8\times 10^{-5}N$ ধরি একটি চার্জ $=Q_1$ এবং অপরটি $=Q_2$ । শর্তানুসারে $Q_2=2Q_1$ । এখন $F=\frac{1}{4\pi \in _0}.\frac{Q_1Q_2}{r^2}$ সূত্র ব্যবহার কর]

সমস্যা (৫): সমপরিমাণে চার্জিত দুটি ক্ষুদ্র বল বায়ুতে 2.0mm ব্যবধানে রাখলে পরস্পরকে $4\times 10^{-5}N$ বলে বিকর্ষণ করে। প্রত্যেক বলে চার্জের পরিমাণ কত? উত্তর: $1.33\times 10^{-10}C$ ।

সমস্যা (৬): লোহার নিউক্লিয়াসে অবস্থানরত দুটি প্রোটনের মধ্যে ক্রিয়াশীল বল নির্ণয় কর। এক্ষেত্রে দুটি প্রোটনের মধ্যবর্তী দূরত্ব $4 imes 10^{-15} m$ ।

[কুলম্বের সূত্র ব্যবহার কর। এক্ষেত্রে $Q_{\!\scriptscriptstyle 1} = Q_{\!\scriptscriptstyle 2} = 1.6 \! imes \! 10^{-19} C$]

সমস্যা- (৭): বায়ু মাধ্যমে 100C চার্জ হতে 1m দূরে কোন বিন্দুতে তড়িৎ প্রাবল্য নির্ণয় কর।

[সংকেত:
$$E=rac{1}{4\pi \in C_0}.rac{Q}{r^2}$$
 সূত্র ব্যবহার কর] উত্তর: $9 imes 10^{11}NC^{-1}$

সমস্যা- (৮): দুটি চার্জ 30C ও 60C বায়ু মাধ্যমে পরস্পর হতে 0.12m দূরে অবস্থিত। এদের সংযোজক সরলরেখার ঠিক মধ্যস্থলে তড়িৎ প্রাবল্যের মান কত হবে? উত্তর: $75 \times 10^{12} NC^{-1}$ ।

[সংকেত: এখানে $Q_1=30C$, $Q_2=60C$, Q_1 ও Q_2 - এর মধ্যস্থলে প্রাবল্য, E? ধরি Q_1 ও Q_2 চার্জের জন্য প্রাবল্য যথাক্রমে,

$$E_1$$
 ও E_2 । এক্ষেত্রে $r = \frac{d}{2} = \frac{0.12m}{2} = .06m$

$$\therefore E = E_2 - E_1 = \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} - \frac{1}{4\pi \in_o} \cdot \frac{Q_1}{r^2} \quad \text{fi}, \quad E = \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} - \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} \quad \text{fill} \quad E = \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} - \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} \quad \text{fill} \quad E = \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} - \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} \quad \text{fill} \quad E = \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} - \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} \quad \text{fill} \quad E = \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} - \frac{Q_2}{r^2} - \frac{Q_2}{r^2} - \frac{Q_2}{r^2} - \frac{Q_2}{r^2} \quad \text{fill} \quad E = \frac{1}{4\pi \in_o} \cdot \frac{Q_2}{r^2} - \frac{Q_2}{r^2}$$

সমস্যা- (৯): দুটি ক্ষুদ্র গোলক A ও B -তে যথাক্রমে 9c ও 16c চার্জ প্রদান করা হল। যদি গোলকদ্বয়ের মধ্যবর্তা দূরত্ব 0.28m হয় তবে এদের সংযোজক সরলরেখার কোন বিন্দুতে নিরপেক্ষ বিন্দু পাওয়া যাবে? (অর্থাৎ কোথায় তড়িৎ প্রাবল্য সমান ও বিপরীত হবে)। উত্তর: দূর্বল চার্জ হতে 0.12m ও সবল চার্জ হতে 0.16m দূরে]

[সংকেত: ধরি, $Q_1=9c$, $Q_2=16c$, d=0.28m। ধরি, দূর্বল চার্জ থেকে x দূরে এবং সবল চার্জ থেকে d-x দূরে নিরপেক্ষ বিন্দু অবস্থিত। Q_1 ও Q_2 চার্জের জন্য পাবল্য যথাক্রমে E_1 ও E_2 হলে, নিরপেক্ষ বিন্দুতে $E_1=E_2$

$$\boxed{4}, \ \frac{9}{x^2} = \frac{16}{(d-x)^2} \ \therefore \left(\frac{3}{x}\right)^2 = \left(\frac{4}{d-x}\right)^2]$$

সমস্যা- (১০): দুটি চার্জের ম্যধবর্তী দূরত্ব 0.06m হলে এরা পরস্পরকে $16 \times 10^{-5}N$ বলে বিকর্ষণ করে এদের মধ্যবর্তী দূরত্ব 0.08m হলে এদের বিকর্ষণ বলের মান কত হবে? উত্তর: $9 \times 10^{-5}N$ ।

সমস্যা- (১১): 0.002kg ভরের একটি শোলাবল $10^{-4}C$ চার্জে চার্জিত। শোলাবলটিকে অভিকর্ষীয় ক্ষেত্রে শূণ্যে স্থির রাখতে কি পরিমাণ তড়িৎ ক্ষেত্রের প্রয়োজন? উত্তর: $196NC^{-1}$

[সংকেত: $m=0.002kg,\ Q=10^{-4}c$ আমরা জানি, $g=9.8ms^{-2}$ । তড়িৎ ক্ষেত্র E=? শোলাবলটির ওজন ও তড়িৎবল F , পরস্পর সমান হলে উহা শূণ্যে স্থির থাকবে। অর্থাৎ F=mg বা, QE=mg $\therefore E=\frac{mg}{O}$ এখন মান বসাও] $[\therefore$ প্রাবল্য

$$E = \frac{F}{O} \quad \therefore F = QE$$

সমস্যা- (১২): $8.4 \times 10^{-16} kg$ ভরের একটি চার্জিত প্লাস্টিক বল $2.6 \times 10^{14} Volts / m$ মানের সুষম তড়িৎ ক্ষেত্রে ঝুলন্ত অবস্থায় আছে। বলটিতে চার্জের পরিমাণ কত? অভিকর্ষীয় তুরন $g=10ms^{-2}$ । উ: $3.23 \times 10^{-19} c$

[বি: দ্র: ১১ ও ১২ নং সমস্যায় অনেক সময় বলটির ভর m নির্ণয় করতে বলতে পারে]

সমস্যা- (১৩): কত প্রাবল্যের একটি বৈদ্যুতিক ক্ষেত্রের মধ্যে একটি ইলেকট্রন স্থাপন করলে তার ওজনের সমান বল অনুভব করবে?

[সংকেত: এখানে বল, F= ইলেকট্রনের ওজন $=mg=9.1\times 10^{-31}kg\times 9.8ms^{-2}=89.18\times 10^{-31}N$, ইলেকট্রনের চার্জ $Q=1.6\times 10^{-19}C$, প্রাবল E=? । আমরা জানি $E=\frac{F}{Q}$ । এখন মান বসাও]

সমস্যা- (১৪): একটি সুষম তড়িৎ ক্ষেত্রে 50cm ব্যবধানে অবস্থিত দুটি বিন্দুর বিভব পার্থক্য 200V । তড়িৎ ক্ষেত্র প্রাবল্য নির্ণয় কর। উত্তর: $400NC^{-1}$ বা, $400Vm^{-1}$

[সংকেত: তড়িৎ প্রাবল্য $E=rac{ ext{বিভব পার্থক্য}}{ extstyle au_{ extstyle au} ag{7}}=rac{\Delta V}{r}$

সমস্যা- (১৫): 0.50m ব্যাসার্ধের একটি গোলকে 20C চার্জ দেয়া হল। গোলকের কেন্দ্র হতে 0.40m ও 0.80m দূরে কোন বিন্দুতে তড়িৎ বিভব কত? উত্তর: $3.6 \times 10^{11}V$ ও $2.25 \times 10^{11}V$

[এখানে গোলকের ব্যাসার্ধ r=0.50m, চার্জ Q=20c ১ম বিন্দুর দূরত্ব $r_1=0.40m$, ২য় বিন্দুর দূরত্ব $r_2=0.80m$ । ১ম বিন্দুর বিভব $V_1=?$ এবং ২য় বিন্দুর বিভব, $V_2=?$ আমরা জানি গোলকের অভ্যন্তরের কোন বিন্দুর বিভব তার পৃষ্ঠের বিভবের সমান। $r_1=0.40m$ দূরের বিন্দুটি গোলকের অভ্যন্তরে বলে উহার বিভব $V_1=\frac{1}{4\pi \in _o}.\frac{Q}{r}$ । আবার ২য় বিন্দুতে বিভব $V_2=\frac{1}{4\pi \in _o}.\frac{Q}{r_2}$ । এখন মান বসাও]

সমস্যা- (১৬): একটি বর্গক্ষেত্রের প্রত্যেকটি বাহুর দৈর্ঘ্য 2m এবং বর্গক্ষেত্রটির প্রত্যেক কোণায় $2 \times 10^{-9} C$ চার্জ স্থাপন করা হলো। বর্গক্ষেত্রটির কেন্দ্রে তড়িৎ বিভব কত? উত্তর: 50.91V

[সংকেত: এখানে বর্গক্ষেত্রের প্রত্যেক কোণায় চার্জ $Q=2\times 10^{-9}C$, প্রত্যেক বাহুর দৈর্ঘ্য =2m AC ও BD কর্ণদ্বয়ের ছেদবিন্দ্রি O হবে বর্গক্ষেত্রিটির মধ্যবিন্দু O বিন্দুতে তড়িৎ বিভব, V=? এখন আমরা পাই,

$$V = \frac{1}{4\pi \in_{o}} \left(\frac{Q}{AO} + \frac{Q}{BO} + \frac{Q}{CO} + \frac{Q}{DO} \right)$$

এখানে, AO = BO = CO = DO = d (ধরি)

এখন, ABC সমকোণী ত্রিভূজে $AC^2 = AB^2 + BC^2 = 4 + 4 = 8$ $\therefore AC = \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}m$.

$$\therefore AO = \frac{AC}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}m$$
 । অর্থাৎ $d = \sqrt{2}m$ । এখন Q ও d এর মান (১) এ বসাও।

সমস্যা- (১৭)ः কোন বর্গক্ষেত্রের তিনটি কোণিক বিন্দুতে যথাক্রমে $6\times10^{-9}C$, $-12\times10^{-9}C$ এবং $14\times10^{-9}C$ আধান স্থাপন করা হল। চতুর্থ কৌণিক বিন্দুতে কত আধান স্থাপন করলে বর্গক্ষেত্রটির কেন্দ্রে তড়িৎ বিভব শূণ্য হবে? উত্তরঃ $-8\times10^{-9}C$

সংকেত: এখানে $Q_1=6\times 10^{-9}C$, $Q_2=-12\times 10^{-9}C$, $Q_3=14\times 10^{-9}C$, $Q_4=?$ কেন্দ্র O তে তড়িৎ বিভব V=O এখানে AO=BO=CO=DO=d (ধরি) অতএব, বর্গক্ষেত্রটির কেন্দ্র O তে তড়িৎ বিভব,

$$V = \frac{1}{4\pi \in \mathcal{Q}_1} \left(\frac{Q_1}{d} + \frac{Q_2}{d} + \frac{Q_3}{d} + \frac{Q_4}{d} \right)$$

বা,
$$O = \frac{1}{4\pi \in d} \left(6 \times 10^{-9} - 12 \times 10^{-9} + 14 \times 10^{-9} + Q_4 \right)$$
 এখন হিসাব কর]

সমস্যা- (১৮): 4cm বাহুবিশিষ্ট একটি বর্গক্ষেত্রের তিন কোণায় যথাক্রমে $2\times10^{-9}C$, $3\times10^{-9}C$ এবং $4\times10^{-9}C$ চার্জ স্থাপন করা হল । চতুর্থ কোণায় তড়িৎ বিভব নির্ণয় কর । উত্তর: 1832.13V

সিংকেত: ধরি ABCD বর্গক্ষেত্রের A,B ও C তিন কোণায় যথাক্রমে, $Q_1=2\times 10^{-9}C$, $Q_2=3\times 10^{-9}C$ এবং $Q_3=4\times 10^{-9}C$ চার্জ স্থাপন করা হল । চতুর্থ কৌণিক বিন্দু D তে তড়িৎ বিভব, V=?

এখানে
$$AB = BC = CD = 4cm = 0.04m + BD = \sqrt{(.04)^2 + (.04)^2}$$

বা,
$$BD=0.056m$$
 । অতএব, D বিন্দুতে তড়িৎ বিভব, $V=\frac{1}{4\pi \in _{o}}\left(\frac{Q_{1}}{AD}+\frac{Q_{2}}{BD}+\frac{Q_{3}}{CD} \right)$ এখন মান বসাও]

সমস্যা- (১৯): তিনটি ধারকের ধারকত্ব যথাক্রমে 2,3 ও $4\mu F$ । উহাদিগকে প্রথমে শ্রেণীবদ্ধ এবং পরে সমান্তরালে সাজানো হল। উভয় ক্ষেত্রে তুল্য ধারকত্বের তুলনা কর। উত্তর: 4:39

[সংকেতঃ এখানে $C_1=2\mu F$, $C_2=3\mu F$ এবং $C_3=4\mu F$ । ধরি এদের শ্রেণীতে এবং সমান্তরালে ধারকত্ব যথাক্রমে C_s ও

$$C_p$$
। তাহলে $C_s:C_p=$? আমরা জানি $\dfrac{1}{C_s}=\dfrac{1}{C_1}+\dfrac{1}{C_2}+\dfrac{1}{C_3}-\cdots-\cdots-$ (1) এবং

 $C_p=C_1+C_2+C_3-------(2)$ । (1) ও (2) এর মান সবায়ে C_s ও C_p এর মান নির্ণয় কর । অতঃপর C_s : C_p নির্ণয় কর]

সমস্যা- (২০): দুটি ধারকের সমান্তরালে ধারকত্ব $5\mu F$ এবং শ্রেণী সংযোগে ধারকত্ব $1.2\mu F$ । ধারকদ্বয়ের পৃথক পৃথক ধারকত্ব কত? উত্তর: $3\mu F$ ও $2\mu F$ অথবা $2\mu F$ ও $3\mu F$

[সংকেত: এখানে সমান্তরালে ধারকত্ব $C_p=5\mu F$ শ্রেণীতে ধারকত্ব $C_s=1.2\mu F$ । $C_1=?$ এবং $C_2=?$ আমরা পাই,

$$C_p = C_1 + C_2 \qquad \therefore C_1 + C_2 = 5 - - - - - (1) \quad \text{with } \quad \frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} \quad \text{th}, \quad \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{1.2} \quad \text{th}, \quad \frac{C_1 + C_2}{C_1 C_2} = \frac{1}{1.2} \quad \text{th}, \quad \frac{1}{C_1 + C_2}$$

$$\frac{5}{C_1C_2} = \frac{1}{1.2}$$
 বা, $C_1C_2 = 6$ $\therefore C_2 = \frac{6}{C_1} + C_2$ -এর মান (১) -এ বসাও। তাহলে $C_1 = 3\mu F$ বা, $2\mu F$ হবে। সমীকরণে (১)

এ $C_1=3\mu F$ বসালে $C_2=2\mu F$ হবে। আবার $C_1=2\mu F$ বসালে $C_2=3\mu F$ হবে।]

সমস্যা- (২১): তিনটি ধারকের ধারকত্ব যথাক্রমে 3,2 এবং $1\mu F$ । এদের দ্বিতীয় ও তৃতীয়টিকে শ্রেণী সমবায়ে সাজিয়ে প্রথমটির সাথে সমান্তরাল সমবায়ে সাজানো হল । বর্তনীর তুল্য ধারকত্ব নির্ণয় কর । উ: $3.66\mu F$

[সংকেত:
$$C_1=3\mu F$$
, $C_2=2\mu F$ এবং $C_3=1\mu F+\frac{1}{C_s}=\frac{1}{C_2}+\frac{1}{C_3}$ থেকে C_s বের কর। অতপর, $C_p=C_1+C_s$]

সমস্যা- (২২): প্রমাণ কর যে সমান ধারকত্বের 4টি ধারকের (i) শ্রেণী সমবায়ে থাকাকালীন সমতুল্য ধারকত্ব সমান্তরাল সংযোজনীতে থাকাকালীন ধারকত্বের $\frac{1}{16}$ গুণ এবং (ii) সমান্তরালে থাকাকালীন ধারকত্ব শ্রেণীতে থাকাকালীন ধারকত্বের ১৬ গুণ।

[সংকেত: ধরি প্রত্যেকটি ধারকের ধারকত্ব=C । $\therefore \frac{1}{C_s} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \frac{1}{C}$ এবং $C_p = C + C + C + C$ এখন C_s কে C_p

দ্বারা ভাগ কর। তাহলে $C_S = \frac{1}{16}C_p$ এবং $C_p = 16C_s$ (প্রমাণিত)]

সমস্যা- (২৩): প্রমাণ কর যে, সমান ধারকত্বের তিনটি ধারককে সমান্তরালে সাজালে তুল্য ধারকত্ব হবে প্রত্যেক ধারকের ধারকত্বের তিনগুণ এবং শ্রেণীতে সাজালে তুল্য ধারকত্ব হবে প্রত্যেক ধারকের ধারকত্বের $\frac{1}{3}$ গুণ। [সংকেত: $C_p=3C$ এবং

$$C_s = \frac{1}{3}C$$
 প্রমাণ কর]

সমস্যা- (২৪): একটি গোলকীয় ধাতব পরিবাহীর ব্যাসার্ধ 0.12m $_{\parallel}$ (i) বায়ুতে এবং (ii) 1.2 তড়িৎ মাধ্যমাংক বিশিষ্ট মাধ্যমে এর ধারকত্ব কত? উত্তর: (i) $13.34 \times 10^{-12}F$ ও (ii) $16 \times 10^{-12}F$ ।

[সংকেত: (i) $C=4\pi\in_{o}r$ এবং (ii) $C=4\pi\in_{o}kr$ সূত্র ব্যবহার কর]

সমস্যা- (২৫): $4\mu F$ ও $8\mu F$ ধারকত্ব বিশিষ্ট দুটি ধারককে 100V ব্যাটারীর সাথে সমান্তরালে যুক্ত করা হল। (i) ধারকদ্বয়ের তুল্য ধারকত্ব এবং (ii) প্রত্যেক ধারকে চার্জ নির্ণয় কর।

[সংকেত: $C_p = C_I + C_2$; $Q_I = C_I V$ ও $Q_2 = C_2 V$ ব্যবহার কর] উত্তর: $12 \times 10^{-6} \, F$, $4 \times 10^{-4} \, C$ ও $8 \times 10^{-4} \, C$

সমস্যা- (২৬): একটি সমান্তরাল পাত ধারকের প্রত্যেক পাতের ক্ষেত্রফল $10^{-2}\,m^2$ এবং পাতদ্বয়ের মধ্যবর্তী দূরত্ব $10^{-3}\,m$ । পাতদ্বয়ের মধ্যবর্তী স্থান অভ্রদ্বারা ভর্তি । ধারকটিতে 300V বিভব প্রয়োগ করলে এবং অভ্রের K=6 হলে ধারকটির ধারকত্ব এবং প্রত্যেক পাতে চার্জের পরিমাণ নির্ণয় কর ।

উত্তর: $C = 531 \times 10^{-12} F$ এবং $Q = 15.93 \times 10^{-8} C$

[সংকেত:
$$C = \frac{AK \in_o}{d}$$
, $\in_o = 8.85 \times 10^{-12} Fm^{-2}$ এবং $Q = CV$ সূত্র ব্যবহার কর]

সমস্যা- (২৭): একটি সমান্তরাল পাত ধারকের পাতদ্বয় বৃত্তাকার এবং এদের ব্যাসার্ধ $8\times 10^{-2}m$ । পাতদ্বয়ের মধ্যবর্তী দূরত্ব $2\times 10^{-3}m$ । ধারকটিতে 100V প্রয়োগ করলে ধারকটির ধারকত্ব, প্রত্যেক পাতে চার্জের পরিমাণ ও সঞ্চিত শক্তি নির্ণয় কর। উত্তর: $8.9\times 10^{-11}F$, $8.9\times 10^{-9}C$, $4.45\times 10^{-7}j$

[সংকেতঃ
$$c = \frac{A \in_0}{d}$$
 : $A = \pi r^2$, $Q = cv$ এবং $E = \frac{1}{2}cv^2$ সুত্র ব্যবহার কর]

সমস্যা- (২৮) $1.2\mu F$ ধারকবিশিষ্ট একটি ইলেকট্রনিক যন্ত্রের টার্মিনালদ্বয়ের মধ্যে 2000V বিভব দেওয়া হল। ধারকে সঞ্চিত শক্তিকত? [$E=rac{1}{2}CV^2$ সুত্র ব্যবহার কর] উত্তর: 2.4J ।

সমস্যা-(২৯) 0.02m ব্যাসার্ধ বিশিষ্ট 64 টি গোলাকার ফোটাকে একত্রিত করে বড় ফোটায় পরিনত করা হল। প্রত্যেক ছোট ফোটায় 1c চার্জ থাকলে বড় ফোটার ধারকত্ব ও বিভব কত?

[সংকেতঃ সমস্যা ২ এর মত ।
$$c=4\pi\in_0 R$$
 ও $V=\frac{Q}{C}$] উত্তর: $8.9\times 10^{-12}F,\ 7.19\times 10^{12}V$