EDA - Exploratory Data Analysis:

- It's the practice of exploring your dataset, by utilizing visualization tools and statistical measures to understand and extract underlying patterns and information within the data.
- This gives a clearer picture of the data, helps us make data-informed decisions and solve crucial business problems with much fewer assumptions and more facts.
- This step is the backbone of any Data Science project and takes up a major chunk of the project timeline.

Additional Note:

- The term EDA was coined by the late mathematician, John Tukey
- First introduced in his book "Exploratory Data Analysis" (1977)
- Mr. Tukey also introduced the "Box Plot"

Vol-) Tune
Lo Best porometros
Retroin
Lo Best porom
Lo Best porom
Lo Train + Vol Set

What is done in EDA stage?

Look at and analyze numbers and plots

- Descriptive Statistics
 - Central Tendency ~
 - Dispersion / Spread \
 - O Distribution of Variables
 - Symmetry and Shape of variables
- Inferential Statistics:
 - Strength of Association (correlation)
 - Hypothesis Testing
- Plots / Graphs:
 - Univariate
 - Bivariate
 - Multivariate

Jammoer, 3 Doto, m.s

Population

1. Measure of Location:

- Mean
- Mode
- Median
- Percentiles
- Quartiles

moment of distribut

2. Measure of Spread:

- Variance
- Standard Deviation
- Coefficient of Variance
- Mean Absolute Error (MAE)
- Inter Quartile Range (IQR)
- o Median Absolute Deviation from Median (MAD)

Ind moment

3. Measure of Symmetry:

Skewness

4. Measure of Shape:

Kurtosis

- sebeneraje

Inferential Statistics Monday, April 22, 2024 11:30 PM 1. Strength of Association: Pearson's Correlation ○ Spearman's Rank Correlation o Cramer's V 2 Cookganial variones 2. Hypothesis Testing: ○ *Test for Normality:* Wormolity - minaric ■ Shapiro-Wilk Test Anderson-Darling Test • Test for Association: Numeric Variables: □ Pearson's Test □ Spearman's Test Categorical Variables: ☐ Chi-Square Test ₹ Numeric - Categorical Variable:

□ One-way ANOVA Test \

□ Kruskal-Wallis Test

Steps Involved:

Steps Involved:

Cot3

- State the hypotheses:
 - □ Null Hypothesis

Mo

mw.vod

- \square Alternate Hypothesis \bigvee_{P}
- Determine significance level (alpha ~ 5%)

2

Determine which test to perform

Test

Collect necessary data (sample)

0a/

- Obtain Critical values → (hwd on (1))
- Compute Test Statistic (and p-value) 7 (800)
- Compare:
 - □ Significance level vs p-value; or
 - □ Critical values vs Test Statistic
- State conclusions t

bearing

OSLA

M-Samo

Frequency

Frequency

Test-Stabstic

X2

Test-Stabstic

X3

Test-Stabstic

X4

Test-Stabstic

X5

Test-Stabs

1. Univariate:

• Numeric:

- Histrogram
- · KDE Plot (Som other Mistry an)
- Rug Plot
- Box Plot
- Violin Plot (box plot + kde plot)
- o Q-Q Plot

- Count Plot
- Pie Chart

• Time-related:

- Line Plot
- Aggregated Line Plot

mess 25th Greediers 03

03+1.5×IOR

01-1-5x28R

2. Bivariate:

• Numeric - Numeric:

- Scatter Plot
- Hexagonal Bin Plot
- Contour Density Plot

• Numeric - Categorical:

Bar Plot

- Box Plot
- KDE Plot
- Violin Plot

• <u>Categorical - Categorical:</u>

- Bar Plot
- Stacked Bar Plot
- Frequency Heatmap

3. Multivariate:

• Pair Plots

• Correlation Heatmap:

- Pearson
- Spearman's Rank
- Cramer's V

• Facet Grid (Seaborn)

Sequence of Steps:

- Import libraries $\sqrt{}$
- Read the 'training' data subset
 - Check data types
 - Fix data types (if applicable)
- Gather high-level summary of the data
 - o .info() method
 - o .describe() method on numeric and categorical features
- High-level analysis of missing values:
 - o Bar plot
 - o Count plot
 - o Missingno
- High-level analysis of outliers:

- Pair plots
- Correlation Analysis (heatmaps)
 - Numeric (Pearson's / Spearman's)
 - Categorical (Cramer's V)
- Detailed Analysis of each Feature:
 - Summary

- Univariate plots
- Bivariate plots (w.r.t. the target variable)
- Hypothesis Testing (normality, strength of association)
- Multivariate plots
- o Inspect missing values and extreme values in-depth
 - Filter for necessary subsets
 - Inspect values of other features (plots, summary stats)
- Note observations
- Feature Engineering
 - Create new features
 - Repeat above steps for newly created features
- Repeat above steps iteratively
- Note all observations

Steps Page 95

Steps Page 96

(will, word),) (voll, voll,) default="obe"

[1,2, 10,50, 50, 100, 120) 50/6

1. Medios

2. var - medias

3. | var- predicas |

4 medios vor 3 jonports outliers TOR 3 not inp. onles

Pouro(X) = Pores

Automated EDA

Tuesday, April 23, 2024 12:52 AM

- Pandas Profiling (ydata-profiling)
- Sweetviz
- Autoviz
- D-Tale