CS7800: Advanced Algorithms

Lecture 20: Streaming I

- Streaming Algorithms
- Distinct Elements

Jonathan Ullman 11-29-2022

Streaming Algorithms

- · Stream of elements x1, x2, x3, ... from a universe U
- · Dant to only store a small number of bits S at any time
- Dant to approximate some function $f(x_1, x_2, x_3, ...)$

Warmup: Uniform Sampling in a Stream

- Vitte down x:

Inputs: a stream of elements X1, X2, X3, ... from U

Goal: output a uniformly random element s from the stream

If stream has length n then P(s=x:) = n

Reservoir Sampling

$$X_{1} = \frac{1}{2} \times \frac{1}{2$$

$$S = \frac{2}{3} \left(\frac{1}{2} \times_{1} + \frac{1}{2} \times_{2} \right) + \frac{1}{2} \times_{3}$$

$$= \frac{1}{3} \times_{1} + \frac{1}{3} \times_{2} + \frac{1}{3} \times_{3}$$

$$U.p. \frac{1}{3}, | p+ s = \times_{3}$$

$$U.p. \frac{2}{3}, do nothing$$

Reservoir Sampling

for
$$i=1,2,3,...$$
:

get x_i :

 $u.p.$ $1/i$ set $s_i=x_i$:

 $u.p.$ $1-1/i$ set $s_i=s_{i-1}$

return s_n

Thm: For every n, so is a random sample from {x1, x2, --., xn}

Assume that S_{n-1} is random from $\{x_1, \dots, x_{n-1}\}$ ($\{p(s_{n-1}=x_i)=\frac{1}{n-1}\}$)

 $P(s_n = x_7) = (1 - \frac{1}{n}) \cdot (\frac{1}{n-1}) = \frac{1}{n}$ for $i \le n-1$ $P(s_n = x_n) = \frac{1}{n}$ [by construction]

Reservoir Sampling for 2 samples ulo replacement

$$X_{1} \quad X_{2} \quad X_{3} \quad X_{4} \quad X_{5} \quad ... \quad X_{i}$$

$$S = \{x_{1,1}x_{2}\}$$

$$U.p. 1 - \frac{2}{i}, hold \quad i(i-1) = \frac{2}{i}$$

$$U.p. \frac{2}{i}, kerp x_{i}$$
and one of your
$$A = \frac{1}{3}(x_{1}x_{2})$$

$$A = \frac{1}{3}(x_{1}x_{3})$$

$$A = \frac{1}{3}(x_{1}x_{3})$$

$$A = \frac{1}{3}(x_{1}x_{3})$$

Reservoir Sampling

$$h(x) = md5(s||x)$$

Counting Distinct Elements

Inputs: a stream of elements X1, X2, X3, ... from U

Goal: the (approximate) number of distinct elements in the stream

c-approximate means

DEx= | {uell: Xi=u for some i} |

to DE & DE & co DE

with high probability

taltmit: 5

Baselme: storing all the elements you've seen so far takes

DEx·log | W| bits of space

store a flag for each element takes IUI bits of space

A Simplification: Threshold Testing

Goal is to design an algorithm A_{τ} such that

(1) If $DE \subseteq T$ then $P(A_{\tau} = low) >, l-8$ (2) If DE >, 2T then $P(A_{\tau} = high) >, l-8$

Threshold Testing Distinct Elements I

suppose the distinct elements are y 1, --- , ya suppose I assign a random number in [0,1] to each use hashing to O yr y8 y19 y2 y13 assign the same number to multiple copies of one elt Information about the top distinct elements is found in the width of these 9915

Threshold Testing Distinct Elements I

Choose a random hash function

h: U→ {0,1,2,...,T-13}

Threshold

For each x: m the stream:

[If h(x:)=0 output high

Output low

Suppose
$$DE \leq T$$
 $P(lou) = (1 - \frac{1}{7})^T \approx \frac{1}{6}$

Unit $P(lou) > 1 - 8$

Suppose $DE > 2T$
 $P(lou) = (1 - \frac{1}{7})^{2T}$
 $= ((1 - \frac{1}{7})^T)^2 \approx \frac{1}{6}$

Unit $P(lou) \leq 8$