Teleinformática y Comunicaciones

ppt #03

Donde se explica el núcleo de la suite TCP-IP

Capa de Red

Protocolo Internet (IP)

IP allows a user to think of an internet as a single virtual network that interconnects all hosts, and through which communication is possible; its underlying architecture is both hidden and irrelevant.

Capas conceptuales

APPLICATION SERVICES

RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

No garantiza la entrega, los paquetes se pueden perder, duplicar, retrasar. Trabaja al mejor esfuerzo

Paquete Internet

- □ Conocido como "Datagrama"
- Servicio NO orientado a la conexión
 - No arma un camino antes de la transmisión
- Header (Encabezado) + Payload (Datos)

DATAGRAM HEADER

DATAGRAM DATA AREA

Formato IPv4

0	4	8	16	19	24	31
VERS	HLEN	TYPE OF SERVICE	TOTAL LENGTH			
	IDE	NT	FLAGS	FRAGMENT OFFSET		
TTL TYPE			HEADER CHECKSUM			
SOURCE IP ADDRESS						
DESTINATION IP AUDRESS						
IP OPTIONS (MAY BE OMITTED) PADDING						
BEGINNING OF PAYLOAD (DATA)						

Version utilizada del protocolo IP

Log total medida en octetos de header + datos

		0	16		10		24	2.7
0	4	8	16		19		24	31
VERS	HLEN	TYPE OF SI	ERVICE	TOTAL LENGTH				
IC			FLA	AGS	FRAGMENT OFFSET			
1	TTL	ТҮРЕ			HE	ADER C	HECKSUM	
	Long del encabezado medido en				en			
		palabras de 32 bits						
IP OPTIONS (MAY BE OMITTED) PADDING								
BEGINNING OF PAYLOAD (DATA)								

Formato IP

Complemnto a 1
Solo sobre el
header

Ejemplo simplificado Cálculo de CS

Formato IP

Header IPv6 std

Extensiones

Códigos.

Extension Header	Next Header Value	Description			
Hop-by-Hop Options header	0	read by all devices in transit network			
Routing header	43	contains methods to support making routing decision			
Fragment header	44	contains parameters of datagram fragmentation			
Destination Options header	60	read by destination devices			
Authentication header	51	information regarding authenticity			
Encapsulating Security Payload header	50	encryption information			

Enlace de Headers

Comparación

Encapsulado IPv4

Detalle Encapsulado - 1 - Trama

Detalle Encapsulado – 2 - IP

Maximun Transfer Unit

■ Maximo tamaño de datagrama

• Ej: La maxima area de data para Ethernet es 1500

MTU IPv6

- □ Link MTU: MTU de la capa de enlace de datos
- □ Path MTU: Mínimo MTU entre origen y destino.

□ MTU min IPv6: 1280 Bytes

MTU Path Discovery IPv6

- Encuentra el MTU del camino completo
- La fragmentación la maneja el origen
 - Libera del proceso a las redes
 - Aumenta la eficiencia
- MínimoMTU 1280 Octetos
 - Recomendado 1500 Octetos

Fragmentación IPv4

- Realizada por los ruteadores
- Los datagramas se dividen en datagramas mas pequeños llamados fragmentos
- Los header de los fragmentos son del mismo formato que el original
- Cada fragmento se rutea independientemente
- En IPv6 los routers NO FRAGMENTAN

Header

data₁ 400 bytes data₂ 400 bytes data_s 400 bytes

Header₁

data₁

fragment #1 (offset of 0)

Header₂

data,

Notar que el offset da el orden

fragment #2 (offset of 400)

Header₃

data_a

fragment #3 (offset of 800)

Ejemplo

Ejemplo II

Reensamblado

- En destino final
- Timer
 - Cuando llega el primer fragmento se activa
 - Al finalizar se descarta el datagrama si no llego completamente

Importante

Transmission of an IP datagram between two machines on a single physical network does not involve routers. The sender encapsulates the datagram in a physical frame, binds the destination IP address to a physical hardware address, and sends the resulting frame directly to the destination.

Enviar a 140.252.13.33

Delivery bsdi -> sun

Concepto

bsdi > ftp.uu.nt

icmp

ICMP

- Mecanismo de reporte de errores
- Usado principalmente por los ruteadores
- También reportan funcionalidades
- Corre sobre IP
- No producen nuevos mensajes de error
- □ Se informa solo al origen

Encapsulamiento

Mensaje ICMP

0	8	16							
TYPE (8 or 0)	CODE (0)	CHECKSUM							
IDENT	TIFIER	SEQUENCE NUMBER							
OPTIONAL DATA									

Mensajes ICMP

TIPO	DESCRIPCION
0 3 4 5 8 11 12	Echo Reply Destination Unreachable Source Quench Redirect (cambio de ruta) Echo request Time Exceeded for a datagram Parameter Problem on a datagram
13 14	Timestamp request Timestamp Reply

Detalle

NOTA
Continua de
detalles anteriores

02	07	01	00	27	ba	80	00	2b	0d	44	а7	80	00	45	00
00	54	82	68	00	00	ff	01	35	21	80	0a	02	03	80	0a
02	80	08	00	73	0b	d4	6d	00	00	04	3b	8c	28	28	20
0d	00	80	09	0a	0b	0с	0d	0e	0 f	10	11	12	13	14	15
16	17	18	19	1a	1b	1c	1d	1e	1f	20	21	22	23	24	25
26	27	28	29	2a	2b	2c	2d	2e	2f	30	31	32	33	34	35
36	37														

Ejemplo de uso de PING

Queremos averiguar el MTU de SLIP Se envian Ping desde Solaris Aumentamos el tamaño hasta que se vean fragmentos

