AMENDMENTS TO THE CLAIMS

The listing of the claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (currently amended): A method for analyzing multivariate images, comprising:
 - a) providing a data matrix **D** containing measured spectral data,
- b) transforming the data matrix \mathbf{D} , using a wavelet transform, applying at least one wavelet transform to the data matrix \mathbf{D} to obtain a transformed data matrix $\tilde{\mathbf{D}}$ comprising an approximation matrix $\tilde{\mathbf{D}}_a$ and a detail matrix $\tilde{\mathbf{D}}_d$,
- c) thresholding the wavelet coefficients of the transformed data matrix $\tilde{\mathbf{D}}_{\bar{\tau}}$
- d) c) performing an image analysis on the transformed data matrix $\tilde{\mathbf{D}}$ to obtain a spatially compressed concentration matrix $\tilde{\mathbf{C}}$ and a approximation matrix $\tilde{\mathbf{D}}_a$ to obtain an approximation concentration matrix $\tilde{\mathbf{C}}_a$ and a spectral shapes matrix \mathbf{S} , and
- e) <u>d</u>) computing a concentration matrix \mathbf{C} from the spatially compressed concentration matrix $\underline{\tilde{\mathbf{C}}}_a$, the detail matrix $\underline{\tilde{\mathbf{D}}}_d$, and the spectral shapes matrix $\underline{\mathbf{S}}$.
- 2. (canceled)
- 3. (currently amended): The method of Claim 1, wherein the <u>at least one</u> wavelet transform comprises a Haar transform.
- 4. (canceled)
- 5. (canceled)
- 6. (currently amended): The method of Claim 1, wherein the image analysis of step d) c) comprises an alternating least squares analysis and the spatially compressed concentration matrix $\tilde{\mathbf{C}}$ approximation concentration matrix $\tilde{\mathbf{C}}$ and

the spectral shapes matrix \mathbf{S} are obtained from a constrained least squares solution of $\min_{\widetilde{\mathbf{C}},\mathbf{S}} \|\widetilde{\mathbf{D}} - \widetilde{\mathbf{C}} \mathbf{S}^{\mathsf{T}}\|_{\mathbf{F}} \min \|\widetilde{\mathbf{D}}_a - \widetilde{\mathbf{C}}_a \mathbf{S}^{\mathsf{T}}\|_{\mathbf{F}}$.

- 7. (currently amended): The method of Claim 6, wherein the alternating least squares analysis comprises a transformed non-negativity constraint $\tilde{\mathbf{C}}_a \geq 0$.
- 8. (currently amended): The method of Claim 1, wherein the computing step e) \underline{d}) comprises:

computing a detail concentration matrix $\underline{\tilde{\mathbf{C}}_d}$ from the detail matrix $\underline{\tilde{\mathbf{D}}_d}$ and the spectral shapes matrix \mathbf{S} ;

9. (canceled)

- 10. (previously presented): A method for analyzing multivariate images, comprising:
- a) providing a data factor matrix **A** and a data factor matrix **B** obtained from a factorization of measured spectral data **D**,
- b) transforming the data factor matrix ${\bf A}$, using a wavelet transform, to obtain a transformed data factor matrix $\tilde{{\bf A}}$,
- c) thresholding the wavelet coefficients of the transformed data factor matrix $\tilde{\mathbf{A}}$,
- d) performing an image analysis on the transformed data factor matrix $\tilde{\bf A}$ and data factor matrix ${\bf B}$ to obtain a spatially compressed concentration matrix $\tilde{\bf C}$ and a spectral shapes matrix ${\bf S}$, and
- e) computing a concentration matrix ${\bf C}$ from the spatially compressed concentration matrix $\tilde{{\bf C}}$.
- 11. (previously presented): The method of Claim 10, wherein the data factor matrix \mathbf{A} comprises a total of j blocks of data factors \mathbf{A}_i and the data factor matrix \mathbf{B} comprises k blocks of data factors \mathbf{B}_i , thereby providing a concentration block \mathbf{C}_i in step e), and wherein steps a) through e) are repeated sequentially until the concentration matrix \mathbf{C} is accumulated blockwise, according to

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \cdots & \mathbf{C}_{j-1} & \mathbf{C}_j \end{bmatrix}.$$

- 12. (original): The method of Claim 10, wherein the wavelet transform comprises a Haar transform.
- 13. (canceled)
- 14. (previously presented): The method of Claim 10, wherein the thresholding comprises decimating the detail coefficients.
- 15. (previously presented): The method of Claim 10, wherein the image analysis of step d) comprises an alternating least squares analysis and the spatially

compressed concentration matrix $\tilde{\mathbf{C}}$ and the spectral shapes matrix \mathbf{S} are obtained from a constrained least squares solution of $\min_{\tilde{\mathbf{C}},\mathbf{S}} \left\| \tilde{\mathbf{A}} \mathbf{B}^\mathsf{T} - \tilde{\mathbf{C}} \mathbf{S}^\mathsf{T} \right\|_F$.

- 16. (original): The method of Claim 15, wherein the alternating least squares analysis comprises a transformed non-negativity constraint.
- 17. (previously presented): The method of Claim 10, wherein the computing step e) comprises applying an inverse wavelet transform to the spatially compressed concentration matrix $\tilde{\mathbf{C}}$ to provide the concentration matrix \mathbf{C} .
- 18. (previously presented): The method of Claim 10, wherein the computing step e) comprises projecting the product of the data factor matrix **A** and the data factor matrix **B** from step a) onto the spectral shapes matrix **S** from step d), according to $\min \|\mathbf{A}\mathbf{B}^\mathsf{T} \mathbf{C}\mathbf{S}^\mathsf{T}\|_{\mathsf{F}}$ and subject to appropriate constraints.
- 19. (original): The method of Claim 10, wherein the data factor matrix **A** comprises a scores matrix **T** and the data factor matrix **B** comprises a loadings matrix **P**, and wherein **T** and **P** are obtained from a principal components analysis of the measured spectral data **D**, according to $D = TP^T$.
- 20. (original): The method of Claim 19, wherein **T** and **P** represent the significant components of the principal components.
- 21. (previously presented): The method of Claim 1, wherein the data matrix **D** is weighted.
- 22. (previously presented): The method of Claim 10, wherein the data factor matrix **A** and the data factor matrix **B** are weighted.

23. (new): The method of Claim 1, wherein the wavelet transform applying step b) comprises:

folding the data matrix **D** into a (x+1)-dimensional multiway array **D** consisting of x spatial dimensions and 1 spectral dimension comprising p spectral channels, wherein x = 1, 2, or 3;

applying an independent wavelet transform to each of the x spatial dimensions for each of the p spectral channels to provide a transformed multiway array $\underline{\tilde{\mathbf{D}}}$;

partitioning the transformed multiway array $\underline{\tilde{\mathbf{D}}}_{a}$ into a multiway approximation array $\underline{\tilde{\mathbf{D}}}_{a}$ and a multiway detail array $\underline{\tilde{\mathbf{D}}}_{d}$; and unfolding the multiway approximation array $\underline{\tilde{\mathbf{D}}}_{a}$ to obtain the approximation matrix $\underline{\tilde{\mathbf{D}}}_{a}$ and the detail matrix $\underline{\tilde{\mathbf{D}}}_{d}$,.

24. (new): The method of Claim 23, wherein the computing step d) comprises: computing a detail concentration matrix $\tilde{\mathbf{C}}_d$ from the detail matrix $\tilde{\mathbf{D}}_d$ and the spectral shapes matrix \mathbf{S} ;

combining the approximation concentration matrix $\tilde{\mathbf{C}}_a$ and the detail concentration matrix $\tilde{\mathbf{C}}_d$ to provide a transformed concentration matrix $\tilde{\mathbf{C}}$;

folding the transformed concentration matrix $\tilde{\mathbf{C}}$ into an (x+1)-dimensional transformed concentration matrix $\tilde{\mathbf{C}}$;

applying an independent inverse wavelet transform to each of the x spatial dimensions of the transformed concentration array $\underline{\tilde{\mathbf{C}}}$ to obtain the multiway concentration array $\underline{\mathbf{C}}$; and

unfolding the multiway concentration array $\underline{\mathbf{C}}$ to obtain the concentration matrix \mathbf{C} .

- 25. (new): The method of Claim 1, wherein **D** is a 2D data matrix comprising m rows and n columns and the wavelet transforms **W** are applied according to $(\mathbf{W}_n \otimes \mathbf{W}_m) \times \mathbf{D} = \widetilde{\mathbf{D}}$.
- 26. (new): A method for analyzing multivariate images, comprising:
 - a) providing a data matrix **D** containing measured spectral data,
- b) applying at least one wavelet transform to the data matrix \mathbf{D} to obtain a transformed data matrix $\widetilde{\mathbf{D}}$ comprising an approximation matrix $\widetilde{\mathbf{D}}_a$,
- c) performing an image analysis on the approximation matrix $\tilde{\mathbf{D}}_a$ to obtain a spectral shapes matrix \mathbf{S} , and
- d) computing a concentration matrix **C** from the data matrix **D**, and the spectral shapes matrix **S**.
- 27. (new): The method of Claim 26, wherein the at least one wavelet transform comprises a Haar transform.
- 28. (new): The method of Claim 26, wherein the image analysis of step c) comprises an alternating least squares analysis and an approximation concentration matrix $\tilde{\mathbf{C}}_a$ and the spectral shapes matrix \mathbf{S} are obtained from a constrained least squares solution of min $\|\tilde{\mathbf{D}}_a \tilde{\mathbf{C}}_a \mathbf{S}^{\mathsf{T}}\|_{\mathbf{F}}$.
- 29. (new): The method of Claim 28, wherein the alternating least squares analysis comprises a transformed non-negativity constraint $\tilde{\mathbf{C}}_a \geq 0$.
- 30. (new): The method of Claim 26, wherein the computing step d) comprises projecting the data matrix **D** from step a) onto the spectral shapes matrix **S** from step c), according to $\min_{\mathbf{C}} \|\mathbf{D} \mathbf{CS}^{\mathsf{T}}\|_{\mathbf{F}}$, subject to constraints.

31. (new): The method of Claim 26, wherein the wavelet transforms applying step b) comprises:

folding the data matrix **D** into a (x+1)-dimensional multiway array **D** consisting of x spatial dimensions and 1 spectral dimension comprising p spectral channels, wherein x = 1, 2, or 3;

applying an independent wavelet transform to each of the x spatial dimensions for each of the p spectral channels to provide a transformed multiway array $\underline{\tilde{\mathbf{D}}}$;

decimating the detail coefficients of the transformed multiway array $\tilde{\underline{\mathbf{D}}}$ to obtain a multiway approximation array $\tilde{\underline{\mathbf{D}}}_a$; and

unfolding the multiway approximation array $\underline{\tilde{\bf D}}_a$ to obtain the approximation matrix $\tilde{\bf D}_a$.