MATH-F211: Topologie

TP 5 - Homéomorphismes et topologie quotient

Thomas Saillez, Andriy Haydys

Exercice 1 (2.1.10). Quelles lettres de l'alphabet latin sont homéomorphes ? On utilise une police sans-serif. La topologie utilisée correspond à celle de sous-espace de \mathbb{R}^2 comme écrit sur la feuille.

$$A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z$$

Il y a deux cas:

- 1. Si on suppose que les lettres sont infiniments fines, par exemple le I est l'ensemble $\{0\} \times [0,1]$.
- 2. Si on suppose que les lettres sont épaisses, par exemple le l'est l'ensemble $[0,\epsilon]\times[0,1].$

Exercice 2. Donner un homéomorphisme entre \mathbb{R}^2 et $B_1(0) \subset \mathbb{R}^2$.

Exercice 3. Donner un exemple où l'application identité n'est pas un homéomorphisme.

Exercice 4. Soit X un ensemble muni de sa topologie cofinie. Démontrer que toute bijection $f: X \to X$ est un homéomorphisme.

Exercice 5 (2.3.1). Soient X un espace topologique et \simeq une relation d'équivalence sur X. On suppose également qu'on a une relation d'équivalence \sim sur X/\simeq . On définit alors une troisième relation d'équivalence \doteq sur X par $x \doteq y \leftrightarrow [x] \sim [y]$. Démontrer que X/\doteq est homéomorphe à $(X/\simeq)/\sim$.

Exercice 6 (2.3.2). Soient X et Y des espaces topologiques. On pose la relation d'équivalence suivante sur $X \times Y$: $(x,y) \simeq (r,s) \leftrightarrow x = r$. Démontrer que l'espace quotient $X \times Y / \simeq$ est homéomorphe à Y.

Exercices frigo

Exercice 7. Donner un exemple d'espace non-Hausdorff X muni d'une relation d'équivalence tel que X/\sim soit Hausdorff.

Exercice 8. Sur $\bar{D}=\left\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\right\}$ on définit une relation d'équivalence par

$$(x,y) \sim (0,1)$$
 lorsque $x^2 + y^2 = 1$.

Démontrer que \bar{D}/\sim et S^2 sont homéomorphe.