

人工智能实验

Week10 文本情感分类

• 实验内容

- 二选一实现: k-NN 分类器、朴素贝叶斯分类器
- 在给定文本数据集完成文本情感分类训练,在测试集完成测试,计算准确率。

• 实验要求

- 不可直接调用机器学习库中的分类器算法(仅可用于和自己的方法对比准确率)
- 可使用各种提取文本特征的辅助工具,如 OneHotEncoder、TfidfVectorizer 等

• 其他说明

- 可以对比不同方法(不同编码、不同参数、自己实现和调库)或进行优化得到更高的准确率
- 由于是多分类问题,准确率在 20% 以上就差不多了,最高也不会超过 40%
- 时限: 5.9 (周四) 晚 23:59, 命名: E6_学号

分类问题

• 文本的情感分类任务:

• 输入: 文本

• 输出: 类标签

Document number	Sentence words	Emotion
train 1	Step by step, we succeed	joy
train 2	I step on shit	sad
train 3	I trip on step	sad
train 4	The trip is shit	sad
test 1	We succeed	?

Step by step, we succeed

X	step	by	we	succeed	Ι	on	shit	trip	the	is
One hot	1	1	1	1	0	0	0	0	0	0
TF	0.4	0.2	0.2	0.2	0	0	0	0	0	0
TF-IDF	0	0.06	0.06	0.06	0	0	0	0	0	0

• 编码方式: 遍历两遍输入,第一遍数有多少个词确定向量长度,第二遍编码

• One hot:构建词表,化成词向量,单词出现设1,否则设0。

• TF: 词频=**某词出现数**(频数)**/本文档词语总数**(标准化为频率)

• TF-IDF: TF和IDF的乘积

• TF: 词频

• IDF: 逆文档频率=**log(文档总数/(包含该词的文档数+1))** 【+1避免分母为0】

• 处理仅在测试集出现的词:

• 可忽略, 也可考虑其他的处理方式, 如映射到随机向量(自行了解)

One hot 编码

• 之前的例子的 one hot 矩阵

Document number	step	by	we	succeed	I	on	shit	trip	the	is
train 1	1	1	1	1	0	0	0	0	0	0
train 2	1	0	0	0	1	1	1	0	0	0
train 3	1	0	0	0	1	1	0	1	0	0
train 4	0	0	0	0	0	0	1	1	1	1
test 1	0	0	1	1	0	0	0	0	0	0

• 如果某个词或短语 t_i 在一篇文章 d_j 中出现的频率 TF 高,并且包含这个词语的文章出现的频率 DF 低,则认为此词或者短语具有很好的类别区分能力,适合用来分类

$$\bullet \ TF_{i,j} = \frac{n_{i,j}}{\sum_k n_{k,j}}$$

• $n_{i,j}$ 表示词条 t_i 在文档 d_j 出现的次数

•
$$IDF_i = lg \frac{|D|}{\left|\left\{j \mid t_i \in d_j\right\}\right| + 1}$$

- |D|为文档总数
- $|\{j \mid t_i \in d_j\}|$ 为 t_i 出现的文档数
- $TFIDF_{i,j} = TF_{i,j} \times IDF_i$,即TF-IDF是TF和IDF的乘积

k-NN

• k-nearest neighbours classifier:

$$f(q) = maj\left(g\left(\Phi_{X,k}(q)\right)\right)$$

- 其中:
 - $\Phi_{X,k}(q)$: 返回训练集X中距离q最近的k个样本
 - $g(\cdot)$: 返回(训练)样本的标签
 - maj(·): 返回众数

半径大小 表示 K值大小

- 1. 处理成 one hot 矩阵 (或别的特征)
- 2. 相似度计算: 计算test1与每个train的距离
- L_p距离(闵氏距离): L_p $(x_i, x_j) = \left\{ \sum_{l=1}^n \left| x_i^{(l)} x_j^{(l)} \right|^p \right\}^{\frac{1}{p}}$
 - p=1,曼哈顿距离
 - p=2, 欧氏距离 (一般说的距离)
 - *p* = ∞ 是什么距离?
- 余弦相似度: $\cos\left(\frac{1}{A},\frac{1}{B}\right) = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}||\overrightarrow{B}|}$, 其中 和 录表示两个文本特征向量
 - 值越大,两个向量越相似
- 3. 类别计算: 最相似的k个样本之标签的众数
- 之前的例子,若k=1, test1的标签即为train1的标签joy;
- 若k=4, test1的标签为train1,train2,train3,train4的标签中数量较多的,即为sad。

- 通过验证集对参数(k值)进行调优
 - k过大: 学习样本更多, 会引入更多的噪音 → 可能存在欠拟合的情况;
 - k过小:参考样本少→容易出现<u>过拟合</u>的情况
 - 经验公式: $-般取k = \sqrt{N}$, N为训练集实例个数
 - k取N时,实际只会输出训练集的众数(joy,三成左右)
 - 大家可以尝试一下取不同的k
- 权重归一化(感兴趣的同学可以了解)

Name	Formula	Explain
Standard score	$X' = \frac{X - \mu}{\sigma}$	μ is the mean and σ is the standard deviation
Feature scaling	$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$	X_{min} is the min value and X_{max} is the max value

- 要求某个特征组合T出现在某个类别 c_i 的概率 $P(c_i|T)$
- 贝叶斯公式

$$P(c_j|T) = \frac{P(T|c_j)P(c_j)}{P(T)}$$

• 假定特征之间相互独立

$$P(c_j|T) = \frac{\prod_{t_i \in T} P(t_i|c_j) P(c_j)}{\prod_{t_i \in T} P(t_i)}$$

• 因此使用 $P(t_i|c_j)$ 、 $P(t_i)$ 和 $P(c_j)$ 可以计算样本属于类别 c_j 的概率

• 之前的例子

$$P(c_{joy}|we\ succeed) = \frac{P(we|c_{joy})P(succeed|c_{joy})P(c_{joy})}{P(we)P(succeed)}$$

$$P(c_{sad}|we\ succeed) = \frac{P(we|c_{joy})P(succeed|c_{joy})P(c_{joy})}{P(we)P(succeed|c_{sad})P(c_{sad})}$$

- 比较两个概率的大小
 - 从训练集中计算出 $P(c_{joy})$ 、 $P(we|c_{joy})$ 、 $P(succeed|c_{joy})$ 、 $P(c_{sad})$ 、 $P(we|c_{sad})$ 、 $P(succeed|c_{sad})$
 - 分母一致,无需参与比较

- 关键是求出 $P(t_i|c_j)$,单词 t_i 在情感类别 c_j 下出现的概率
- 在TF-IDF特征下

$$P(t_i|c_j) = \frac{\sum_{class(d_k)=c_j} TFIDF_{i,k}}{\sum_{u \in U_{all}} \sum_{class(d_k)=c_j} TFIDF_{u,k}}$$

即 t_i 的TF-IDF值的总和在 c_i 类的文章 d_k 的占比, U_{all} 为总单词集

- 然而对训练集中未出现的单词,上面的计算会为0
- Laplace平滑: 为每个单词的权重加 $\lambda(\lambda \geq 0)$

$$P(t_i | c_j) = \frac{\lambda + \sum_{class(d_k) = c_j} TFIDF_{i,k}}{\sum_{u \in U_{all}} (\lambda + \sum_{class(d_k) = c_j} TFIDF_{u,k})}$$