RSA Conference 2019 San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-R03

Efficient Fully-Leakage Resilient One-More Signature Schemes

Antonio Faonio

IMDEA Software Institute

19 20

RSAConference 20

RSAC

Cryptographers seldom sleep well

Silvio Micali

Boyle, Segev, Wichs - EC'11 and Malkin et al - TCC'11

Let f_1, f_2, \ldots adaptively chosen leakage functions:

Bounded Leakage Model

$$\sum_{i} |f_i(SK)| \leqslant \frac{\lambda}{\lambda} < |SK|$$

Where λ is the leakage parameter.

Our Goal: Small Signatures AND Large Leakage Resilience

$$|\sigma| \ll \lambda < |sk|$$

Our Goal: Small Signatures AND Large Leakage Resilience

$$|\sigma| \ll \lambda < |sk|$$

 \mathcal{A} can always leak $f(sk) := \operatorname{Sign}_{sk}(m)$.

Our Goal: Small Signatures AND Large Leakage Resilience

$$|\sigma| \ll \lambda < |sk|$$

 \mathcal{A} can always leak $f(sk) := \operatorname{Sign}_{sk}(m)$.

Even worse...

Let
$$n = \lceil \frac{\lambda}{|\sigma|} \rceil$$
, \mathcal{A} can always leak $f(sk) := (\operatorname{Sign}_{sk}(m_1), \operatorname{Sign}_{sk}(m_1), \ldots, \operatorname{Sign}_{sk}(m_n))$.

One More Unforgeability [NielsenVZ PKC'13, FaonioNV ICALP'15]

 \mathcal{A} can forge $n := \lceil \lambda/|\sigma| \rceil$ signature

One More Unforgeability [NielsenVZ PKC'13, FaonioNV ICALP'15]

$${\mathcal A}$$
 can forge $n:=\lceil \lambda/|\sigma| \rceil$ signature **but not** $n+1$.

One More Unforgeability [NielsenVZ PKC'13, FaonioNV ICALP'15]

$${\mathcal A}$$
 can forge $n:=\lceil \lambda/|\sigma|
ceil$ signature
$${f but\ not\ } n+1.$$

Graceful degradation:

- If $\lambda = 0$ then standard notion of EUF:
- If $\lambda < |\sigma|$ then standard notion of LR-EUF;
- ▶ If $\lambda \geqslant |\sigma|$ then the \mathcal{A} cannot forge more signatures than it can leak: the best it can do.

Weird Looking Scheme

- ► Let Sign be one-more leakage-resilient unforgeable.
- ▶ Define Sign'(sk, M) to output ($\sigma || \sigma$) where $\sigma \leftarrow \text{Sign}(sk, M)$.

Weird Looking Scheme

- ▶ Let Sign be one-more leakage-resilient unforgeable.
- ▶ Define Sign'(sk, M) to output ($\sigma || \sigma$) where $\sigma \leftarrow \text{Sign}(sk, M)$.

Introducing the slack parameter γ :

$$n = \frac{1}{\gamma} \cdot \lceil \frac{\lambda}{|\sigma|} \rceil$$

Contributions

Scheme	Fully	γ	Assumption
NVZ14	X	O(1)	DLIN
$FNV15_2$	✓	$O(1/q_{sign})$	DLIN
\mathcal{SS}_1	1	O(1/k)	SXDH
\mathcal{SS}_2	✓	1	KEA

Roadmap

The Marvelous Knowledge of The Exponent Assumption

A Simplified Scheme

Ideas behind the Proof

Efficiency

- ▶ Let $[\vec{h}, \alpha \vec{h}]_1 \in \mathbb{G}_1^{2 \times 2}$ the commitment key 1
- Let Commit $(m, r) := (m, r) \cdot [\vec{h}, \alpha \vec{h}]_1$

The commitment scheme is extractable

¹We use the implicit notation where $[x]_1 := g_1^x \in \mathbb{G}_1$.

KEA-based Pedersen Commitment

- ▶ Let $[\vec{h}, \alpha \vec{h}]_1 \in \mathbb{G}_1^{2 \times 2}$ the commitment key ¹
- ▶ Let Commit $(m, r) := (m, r) \cdot [\vec{h}, \alpha \vec{h}]_1$

The commitment scheme is extractable and perfectly hiding!

¹We use the implicit notation where $[x]_1 := g_1^x \in \mathbb{G}_1$.

KEA-based Pedersen Commitment

- ▶ Let $[\vec{h}, \alpha \vec{h}]_1 \in \mathbb{G}_1^{2 \times 2}$ the commitment key ¹
- ▶ Let Commit $(m, r) := (m, r) \cdot [\vec{h}, \alpha \vec{h}]_1$

The commitment scheme is extractable and perfectly hiding!

KE-Pedersen is linearly homomorphic!

¹We use the implicit notation where $[x]_1 := g_1^x \in \mathbb{G}_1$.

#RSAC

Process 1

- ightharpoonup c = Commit(s, r)
- ▶ Leak I = f(r)
- ightharpoonup Output (c, l, s)

Process 2

- ightharpoonup c = Commit(0, r')
- Leak I = f'(s) where:
 - 1. Find r s.t. c = Commit(s, r),
 - 2. return f(r)
- **▶ Output** (*c*, *l*, *s*)

Process 1

- ightharpoonup c = Commit(s, r)
- ▶ Leak I = f(r)
- ▶ Output (c, l, s)

Process 2

- ightharpoonup c = Commit(0, r')
- Leak I = f'(s) where:
 - 1. Find r s.t. c = Commit(s, r),
 - 2. return f(r)
- **▶ Output** (*c*, *l*, *s*)

We **reduce** leakage on r to leakage on s

Perfect Indistinghuishability is the **perfect** tool against leakage from the randomness!

Section 2

A Simplified Scheme

- ► KEA-Pedersen Commitment.
- ▶ Perfect NIZK for knowledge of the "opening of a Pedersen".

$$\delta_i, \delta, m \in \mathbb{F}$$

$$\begin{array}{|c|}
\hline
\delta = \sum_{i} \delta_{i} m^{i} \\
\hline
c = \sum_{i} [c_{i}] m^{i}
\end{array}$$

$$c = \sum_i [c_i] m^i$$

- $\mathbf{1} \ \mathbf{\overline{c}} = \mathsf{Com}(\mathbf{\delta})$
- $\pi = \text{Prove}(\overline{c}, \overline{c}, \overline{\delta})$

Relation

$$\left\{ (c, \overline{c}), \delta \,\middle|\, \begin{array}{l} c = \operatorname{Com}(\delta) \\ \overline{c} = \operatorname{Com}(\delta) \end{array} \right\}$$

$$\sigma = \overline{c} \pi$$

Section 3

Ideas behind the Proof

Extractability of KEA-based Pedersen kicks in!

- From **signature** of m we **extract** $\sum_i \delta_i m^i$.
- ▶ With n + 1 we can **interpolate** the polynomial.

Extractability of KEA-based Pedersen kicks in!

- ► From **signature** of m we **extract** $\sum_i \delta_i m^i$.
- ▶ With n + 1 we can **interpolate** the polynomial.

The absurd.

- With $\mathbb{P}[A]$ wins] the δ is uniquely defined.
- ▶ Leakage $\ell = |\delta| k$ then guess with prob. $1/2^k$

Efficiency

► Kiltz-Wee QA-NIZK for subspace + KEA

► Kiltz-Wee QA-NIZK for subspace + KEA

Signature size: 8 group elements;

Sign: constant number exp;

Verify: constant number of pairing.

Efficient Fully-Leakage-Resilient Signatures with Graceful Degradation

Antonio Faonio

IMDEA Software Institute

Thanks!