MACM 201 Homework 6 (Quiz Oct. 24)

Textbook problems:

Section	Question
9.2	1
9.2	2
9.2	4
9.2	6
9.2	8
10.4	1

Instructor question(s):

1. Define the generating functions $B(x) = \sum_{n=0}^{\infty} 2^n x^n$ and $F(x) = \sum_{n=0}^{\infty} f_n x^n$ where f_n is the Fibonacci sequence determined by the recurrence relation

$$f_0 = 0 \qquad \text{and} \qquad f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2}$$
 for $n \ge 2$

Find the coefficients of the first four terms (constant up to x^3) of each GF

- (a) F(x) + B(x)
- (b) $F(x) \times B(x)$
- (c) $F(x) \times F(x) \times F(x)$
- 2. In each problem below you are given an infinite sequence b_0, b_1, b_2, \ldots determined by a recurrence relation. Use this recurrence relation to express the GF for this sequence $B(x) = \sum_{n=0}^{\infty} b_n x^n$ as a rational function.

(a)
$$b_0 = 2$$
, $b_1 = 3$, $b_n - 3b_{n-1} + 7b_{n-2} = 0$ for $n \ge 2$

(b)
$$b_0 = 1$$
, $b_1 = 2$, $b_n - 5b_{n-1} + 3b_{n-2} = 1$ for $n \ge 2$

(c)
$$b_0 = 1$$
, $b_1 = 0$, $b_2 = 3$, $b_n - 2b_{n-1} + b_{n-3} = n$ for $n \ge 3$

- 3. The goal in this problem is to determine the generating function W(x) for the counting sequence of the family W of binary strings with the special property that every 1 is followed by an odd number of 0's. (So, if $W(x) = \sum_{n=0}^{\infty} w_n x^n$, then w_n is the number of strings in W of length n).
 - (a) Show that the generating function $W_{s,1}$ for the family $W_{s,1}$ of strings composed of a single 1 followed by an odd number of zeros satisfies

$$W_{s,1} = \frac{x^2}{1 - x^2}.$$

(b) Show that the generating function W_s for the family W_s of strings in W that start with a 1 satisfies

$$W_s = 1 + W_{s,1} + W_{s_1}^2 + W_{s,1}^3 + \dots$$

(c) Use the rational expression for $1 + x + x^2 + \dots$ together with (a) and (b) and an infinite substitution to show that

$$W_s(x) = \frac{1 - x^2}{1 - 2x^2}.$$

(d) Use (c) to show that

$$W(x) = \frac{1+x}{1-2x}.$$