-		
COGNOME	. NOME	MATRICOLA
\bigcirc Gr. 1 Bader (A-G)	○ Gr. 2 Ci	offi (H-Z)
Risolvere gli esercizi inserendo le r calcoli effettuati e fornendo spiega	- ·	
NON SI ACCETTANO RISPOSTE		

1. Esiste un sistema lineare di 3 equazioni in 3 incognite compatibile che abbia infinite soluzioni? Se sì, se ne scriva un esempio; se no, si dica perché.

2. Sia V uno spazio vettoriale sul campo reale e sia W un suo sottoinsieme. Cosa vuol dire che W è un sottospazio vettoriale di V? Esibire (cioè, scriverne un esempio) un sottospazio vettoriale di \mathbb{R}^3 che abbia dimensione 2.

3. Dire per quali valori del parametro reale t il sistema di vettori $\{(t, 1, 1), (1, -t, 2t), (2t, 0, 3)\}$ è una base di \mathbb{R}^3 .

- Calcolare una base del nucleo ed una base dell'immagine di ciascuna delle seguenti applicazioni lineari:

 - (i) $f: \mathbb{R}_2[x] \mapsto \mathbb{R}^2$ tale che $f(ax^2 + bx + c) = (a b, c 2a)$; (ii) $g: \mathbb{R}^4 \mapsto \mathbb{R}^3$ tale che g(x, y, z, t) = (x + 2y, z y, x + y + z).

5. Dire se la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ è invertibile e in caso affermativo calcolarne l'inversa

- **6.** Data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(x, y, z) = (x, 4y, x + 4z),
 - (i) calcolare autovalori ed autospazi di f;
 - (ii) dire, giustificando la risposta, se f è diagonalizzabile e, in caso affermativo, scrivere una base di \mathbb{R}^3 formata da autovettori di f.

7. Fissato in un piano della geometria elementare un riferimento cartesiano monometrico ortogonale, dimostrare che le rette r:(x,y)=t(1,-3)+(-1,3) e s:3x+y-4=0 sono parallele e calcolarne la distanza.

8. Fissato nello spazio un riferimento cartesiano monometrico ortogonale, si considerino il piano π : x+2z-3=0 ed il suo punto A(-1,5,2). Rappresentare le due sfere di raggio 4 tangenti π in A.

- 9. Fissato nello spazio della geometria elementare un riferimento cartesiano monometrico ortogonale, si considerino il piano $\pi: x+3y-z-3=0$, la retta $r: \begin{cases} 2x-y+z=0\\ 3x-2y+2z=1 \end{cases}$ e il punto A(-1,1,0). Si rappresentino
 - (i) la retta per A parallela a r;
 - (ii) il piano per A parallelo a re ortogonale a $\pi.$