Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -2850.000 -2900.000 -2950.000 Radiell fart m/s -3000.000 -3050.000 -3100.000 -3150.000 -3200.000 ò 500 1000 1500 2000 2500 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 9.70e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

 $\operatorname{STJERNE}$ A) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

STJERNE B) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

STJERNE C) radiusen er 1000 ganger solas radius.

STJERNE D) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE E) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 8.285e+06 kg/m3̂ og temperatur 37 millioner K.

Kjernen i stjerne B har massetet
thet 3.299e+06 kg/m3̂ og temperatur 27 millioner K.

Kjernen i stjerne C har massetet
thet 2.736e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne D har massetet
thet 3.481e+06 kg/m3̂ og temperatur 29 millioner K.

Kjernen i stjerne E har massetet
thet 7.581e+06 kg/m3̂ og temperatur 15 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er nærmest oss

Påstand 2: denne stjerna er lengst vekk

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 4: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 4.892e+05 kg/m3̂ og temperatur 17.25 millioner K.

Kjernen i stjerne B har massetet
thet 2.312e+05 kg/m3̂ og temperatur 33.09 millioner K.

Kjernen i stjerne C har massetet
thet 2.250e+05 kg/m3̂ og temperatur 35.24

millioner K.

Kjernen i stjerne D har massetet
thet 2.176e+05 kg/m3̂ og temperatur 19.77 millioner K.

Kjernen i stjerne E har massetet
thet 3.816e+05 kg/m3̂ og temperatur 31.77 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 142.97 dager etter første observasjon.

0.93

0.88

0.83

0.73

0.68

0.3172

0.3182

0.3192

0.3202

0.3212

0.3222

0.3232

0.3242

Bølgelengde (nm) minus 656nm

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.79 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Vinkelforflytning 0.98 buesekunder i løpet av et millisekund. 43.72 38.86 y-posisjon (10⁻⁶ buesekunder) 34.00 29.14 24.29 19.43 14.57 9.71 4.86 0.00 14.57 19.43 24.29 29.14 34.00 4.86 9.71 0.00 x-posisjon (10⁻⁶ buesekunder)

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 99.44920 km/t.

Filen 3E.txt

Tog1 veier 86200.00000 kg og tog2 veier 55300.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 458 km/s.

Filen 4E.txt

Massen til gassklumpene er 1800000.00 kg.

Hastigheten til G1 i x-retning er 22800.00 km/s.

Hastigheten til G2 i x-retning er 28200.00 km/s.

Filen 4G.txt

Massen til stjerna er 28.20 solmasser og radien er 4.95 solradier.