Parcial 2 - Lenguajes 2015

Enuncie los lemas que aplique.

- 1. Sea $F = \lambda x \alpha \left[\sum_{t=7}^{t=2x} Pred(x)^{Pred(|\alpha|)+t} \right]$. Dar el dominio de F y probar que F es Σ -PR.
- 2. Sea $\Sigma = \{\#, @\}.$ Pruebe que la función $\lambda i\alpha[[\alpha]_i]$ es $\Sigma\text{-PR}.$
- 3. V o F, justifique.
 - (a) Sean $g: \omega^3 \to \omega$ y $f: \omega \to \omega$. Entonces $R(f,g) \circ \left(C_1^{1,3}, C_2^{1,3}\right) = g \circ (f \circ C_2^{1,3}, C_0^{1,3}, C_2^{1,3})$.
 - (b) Por definición un estado es un par $((x_1,...,x_n),(\alpha_1,...,\alpha_m)) \in \omega^n \times \Sigma^{*m}$, donde $n,m \geq 0$.
 - (c) Sea $\mathcal{P} \in Pro^{\Sigma}$ tal que $n(\mathcal{P}) = 3$. Entonces $\mathcal{P} \in Ins^{\Sigma} \times Ins^{\Sigma} \times Ins^{\Sigma}$.
 - (d) Sea < un orden total estricto para Σ . Si $P: \omega \times \Sigma^* \to \{0,1\}$ entonces $M^{<}(P \circ (\#^{<} \circ p_2^{0,2}, p_1^{0,2}))$ y M(P) tienen el mismo dominio.