

线性代数

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

课程信息

- 课时:
 - 10 周 40 课时:
 - 2024-09-24 ~ 2024-11-27
- 课程 QQ 群 (入群答案 1400071B)
 - 003 班 (自动化) 973042523
 - 004 班 (电气) 980820998
- 教材: 唐烁 朱士信《线性代数》

作业 15 分

作业为配套练习册,每章交一次.作业不允许迟交.没带的请当天联系助教补交,迟一天交-50%当次作业分,迟两天或以上0分.请假需提前交给我请假条.

期末考试 50 分

期末卷面需要达到 45 分 才计算总评分数, 45 分以下 直接不及格.

课堂测验 25 分

课堂测验共 3 次, 取最高的两次平均. 测验范围和时间会提前通知. 测验时在教室内作答, 否则按未考处理.

期末报告 10 分

期末之前会告知主题.请交手写纸质版,并自行留存电子版本以免意外丢失.

线性代数是一门利用代数方法研究线性方程、线性空间、线性变换等线性结构的 课程.

线性代数是一门利用代数方法研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它.

线性代数是一门利用代数方法研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它. 这便是线性代数它的意义.

线性代数是一门利用代数方法研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它. 这便是线性代数它的意义.

线性代数的应用之广泛, 使得它成为了高等教育中大多数学科的必修数学课程.

线性代数是一门利用代数方法研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它. 这便是线性代数它的意义.

线性代数的应用之广泛, 使得它成为了高等教育中大多数学科的必修数学课程. 我们不在此处逐一列举, 在之后的课程中我们会见到它的各种应用.

课程内容

课程学习方法

第一章 行列式

- 1 行列式的定义
- 2 行列式的性质
- 3 克拉默法则

非考试内容

线性代数起源于线性方程组的求解问题.

非考试内容

线性代数起源于线性方程组的求解问题. 考虑二元线性方程组

$$3x_1 - 2x_2 = 12,$$
 (1)
 $2x_1 + x_2 = 1.$ (2)

线性代数起源于线性方程组的求解问题. 考虑二元线性方程组

$$\begin{cases} 3x_1 - 2x_2 = 12, \\ 2x_1 + x_2 = 1. \end{cases} \tag{1}$$

$$2(2)+(1)$$
 可得 $7x_1=14$.

线性代数起源于线性方程组的求解问题. 考虑二元线性方程组

$$\begin{cases} 3x_1 - 2x_2 = 12, \\ 2x_1 + x_2 = 1. \end{cases} \tag{1}$$

$$2(2)+(1)$$
 可得 $7x_1=14$. 从而 $x_1=2, x_2=-3$.

考虑一般情形:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$
 (1)

考虑一般情形:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

分别作
$$a_{22} \times (1), a_{12} \times (2)$$
 得到

$$b_1 a_{22},$$
 (1)

$$\begin{cases} a_{22}a_{11}x_1 + a_{22}a_{12}x_2 = b_1a_{22}, \\ a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12}. \end{cases}$$

考虑一般情形:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

分别作 $a_{22} \times (1), a_{12} \times (2)$ 得到

$$\begin{cases} a_{22}a_{11}x_1 + a_{22}a_{12}x_2 = b_1a_{22}, \\ a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12}. \end{cases}$$

$$(a_{11}a_{22} - a_{12}a_{21})x_1 = b_1a_{22} - b_2a_{12}.$$

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}.$$

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}.$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}.$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题?

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22} - a_{12}a_{21} = 0$ 时, 不能使用这种方式求解.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22} - a_{12}a_{21} = 0$ 时, 不能使用这种方式求解. 实际上此时无解或有无穷多个解.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时无解或有无穷多个解.

当 $a_{11}a_{22} - a_{12}a_{21} \neq 0$ 时, 方程组有唯一解.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时无解或有无穷多个解.

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时, 方程组有唯一解. 所以这个数值就充当了该方程组 "判别式" 的作用.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时无解或有无穷多个解.

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时, 方程组有唯一解. 所以这个数值就充当了该方程组 "判别式" 的作用.

对于 n 个未知数 n 个方程的线性方程组, 能不能定义出类似的量来刻画它何时有唯一解呢?

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时无解或有无穷多个解.

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时, 方程组有唯一解. 所以这个数值就充当了该方程组 "判别式" 的作用.

对于 n 个未知数 n 个方程的线性方程组,能不能定义出类似的量来刻画它何时有唯一解呢?这便是行列式的由来.

第一节 行列式的定义

- 行列式的归纳定义
- 行列式的几何意义

矩阵和方阵

本章我们将回答如何判断 n 个未知数 n 个方程的线性方程组何时有唯一解.

矩阵和方阵

本章我们将回答如何判断 n 个未知数 n 个方程的线性方程组何时有唯一解. 首先引入矩阵的概念.

本章我们将回答如何判断 n 个未知数 n 个方程的线性方程组何时有唯一解. 首先引入矩阵的概念. 将 mn 个数按照每行 n 个元素, 一共 m 行排列, 得到的数表称为 m 行 n 列矩阵, 或简称为 $m \times n$ 矩阵:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

本章我们将回答如何判断 n 个未知数 n 个方程的线性方程组何时有唯一解. 首先引入矩阵的概念. 将 mn 个数按照每行 n 个元素, 一共 m 行排列, 得到的数表称为 m 行 n 列矩阵, 或简称为 $m \times n$ 矩阵:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

其中 a_{ij} 表示 A 的第 i 行 j 列元素, 并记 $A = (a_{ij})_{m \times n}$.

本章我们将回答如何判断 n 个未知数 n 个方程的线性方程组何时有唯一解. 首先引入矩阵的概念. 将 mn 个数按照每行 n 个元素, 一共 m 行排列, 得到的数表称为 m 行 n 列矩阵, 或简称为 $m \times n$ 矩阵:

$$m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ dots & dots & \ddots & dots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

其中 a_{ij} 表示 A 的第 i 行 j 列元素, 并记 $A = (a_{ij})_{m \times n}$. 当 m = n 时, 称之为 n 阶方阵.

对于线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

对于线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

未知量 x_1, \ldots, x_n 前面的系数就构成了一个 $m \times n$ 矩阵, 称之为系数矩阵

$$m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

2 阶行列式

当 m=n 时, 方阵 \boldsymbol{A} 的行列式 $\det(\boldsymbol{A})=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式".

当 m=n 时, 方阵 \boldsymbol{A} 的行列式 $\det(\boldsymbol{A})=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式". 首先约定单位矩阵

$$m{E}_n = m{I}_n := egin{pmatrix} 1 & & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix} \qquad (即方程组 \left\{ egin{array}{ll} x_1 = b_1 & & & \\ x_2 = b_2 & & & \\ \vdots & & & & \\ x_n = b_n & & \end{array}
ight.$$

行列式为 1.

当 m=n 时, 方阵 \boldsymbol{A} 的行列式 $\det(\boldsymbol{A})=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式". 首先约定单位矩阵

$$m{E}_n = m{I}_n := egin{pmatrix} 1 & & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix} \qquad (即方程组 \left\{ egin{array}{ll} x_1 = b_1 & & & \\ x_2 = b_2 & & & \\ \vdots & & & & \\ x_n = b_n & & & \end{array}
ight.$$

行列式为 1. 作此约定之后, 2 阶方阵的行列式就应当为

$$\det(\mathbf{A}) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} := a_{11}a_{22} - a_{12}a_{21}$$

而不是它的一个非零倍数了.

当 m=n 时, 方阵 \boldsymbol{A} 的行列式 $\det(\boldsymbol{A})=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式". 首先约定单位矩阵

$$m{E}_n = m{I}_n := egin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix} \qquad (即方程组 \left\{ egin{array}{ll} x_1 = b_1 & & & \\ x_2 = b_2 & & & \\ \vdots & & & & \\ x_n = b_n & & \end{array}
ight.$$

行列式为 1. 作此约定之后, 2 阶方阵的行列式就应当为

$$\det(\mathbf{A}) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} := a_{11}a_{22} - a_{12}a_{21}$$

而不是它的一个非零倍数了.

对于 3 阶方阵, 可通过计算发现其行列式为 (注意 $|E_3|=1$)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

对于 3 阶方阵, 可通过计算发现其行列式为 (注意 $|E_3|=1$)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

对于 3 阶方阵, 可通过计算发现其行列式为 (注意 $|E_3|=1$)

$$\begin{vmatrix} a_{14} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

对于 n 阶方阵 $\mathbf{A}=(a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

定义

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

定义

- 对于一般的 n, 归纳定义

$$|\mathbf{A}| = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - \dots + (-1)^{n+1}a_{1n}M_{1n},$$

其中 M_{ij} 表示 A 去掉第 i 行和 j 列得到的 n-1 阶方阵的行列式.

对于 n 阶方阵 $A = (a_{ij})$, 按照如下方式定义行列式 |A|:

定义

- $\exists n = 1 \text{ th}, |A| := a_{11};$
- 对于一般的 n, 归纳定义

$$|\mathbf{A}| = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - \dots + (-1)^{n+1}a_{1n}M_{1n},$$

其中 M_{ij} 表示 A 去掉第 i 行和 j 列得到的 n-1 阶方阵的行列式.

定义

称 M_{ij} 为 a_{ij} 的余子式; 称 $A_{ij} = (-1)^{i+j} M_{ij}$ 为 a_{ij} 的代数余子式.

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

定义

- 对于一般的 n, 归纳定义

$$|\mathbf{A}| = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - \dots + (-1)^{n+1}a_{1n}M_{1n},$$

其中 M_{ij} 表示 A 去掉第 i 行和 j 列得到的 n-1 阶方阵的行列式.

定义

称 M_{ij} 为 a_{ij} 的余子式; 称 $A_{ij} = (-1)^{i+j} M_{ij}$ 为 a_{ij} 的代数余子式.

那么

$$|\mathbf{A}| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + \dots + a_{1n}A_{1n}.$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{bmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$
$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix}
1 & 3 & 2 \\
3 & -5 & 1 \\
2 & 1 & 4
\end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$

$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix}
1 & 3 & 2 \\
3 & -5 & 1 \\
2 & 1 & 4
\end{vmatrix} = 1 \times \begin{vmatrix}
-5 & 1 \\
1 & 4
\end{vmatrix} - 3 \times \begin{vmatrix}
3 & 1 \\
2 & 4
\end{vmatrix} + 2 \begin{vmatrix}
3 & -5 \\
2 & 1
\end{vmatrix}$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$

$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix} - 3 \times \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix} = -21 - 3 \times 10 + 2 \times 13 = -25.$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$

$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix} - 3 \times \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix} = -21 - 3 \times 10 + 2 \times 13 = -25.$$

如果 k > 0 且 $\begin{vmatrix} k & 2 & 1 \\ 2 & k & 1 \\ k & 1 & 2 \end{vmatrix} = 0$, 那么 k =_____.

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$

$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix} - 3 \times \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix} = -21 - 3 \times 10 + 2 \times 13 = -25.$$

如果
$$k > 0$$
 且 $\begin{vmatrix} k & 2 & 1 \\ 2 & k & 1 \\ k & 1 & 2 \end{vmatrix} = 0$,那么 $k = 2$.

(1) 行列式将一个方阵映射到一个数.

- (1) 行列式将一个方阵映射到一个数.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.

注记

- (1) 行列式将一个方阵映射到一个数.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.
- (3) 2,3 阶行列式可以用对角线法直接得到展开式, 但是更高阶的没有这种表示方法.

- (1) 行列式将一个方阵映射到一个数.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.
- (3) 2,3 阶行列式可以用对角线法直接得到展开式, 但是更高阶的没有这种表示方法.

(4) 对角阵的行列式
$$\begin{vmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{vmatrix} = a_1 a_2 \cdots a_n.$$

- (1) 行列式将一个方阵映射到一个数.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.
- (3) 2,3 阶行列式可以用对角线法直接得到展开式, 但是更高阶的没有这种表示方法.

(4) 对角阵的行列式
$$\begin{vmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{vmatrix} = a_1 a_2 \cdots a_n.$$

(5) 从行列式的归纳定义出发依次展开得到, |A| 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得 到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列, 一共有 n! 个这样的项, 其中一半 取 + , 一半取 - ($n \ge 2$).

*la*l

ΙΖŰ				
	$ a_{11} $			
	a_{21}	a_{22}		
	1:	:	٠	
	$ a_{n1} $	a_{n2}		a_{nn}

2

3

练习

判断题:

$$\begin{vmatrix} - & 1 & 2 \\ 3 & 3 & 1 \end{vmatrix}$$

例

$$\begin{vmatrix} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & & & \\ \vdots & \ddots & & \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

练习

判断题:

$$\begin{vmatrix} 1 & & & & \\ & 2 & & & \\ & & 3 & 4 \end{vmatrix} = - \begin{vmatrix} & & & 1 \\ & 3 & & \\ 4 & & & \end{vmatrix}. \times$$

例

$$\begin{vmatrix} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ \vdots & \vdots & \ddots & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & & & \\ \vdots & \ddots & & \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} a_{22} \begin{vmatrix} a_{33} & & & \\ \vdots & \ddots & & \\ a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

练习

判断题:

$$\begin{bmatrix} 2 & & & & & 1 \\ & 3 & & & & 4 \end{bmatrix} = - \begin{bmatrix} & & & 1 \\ & 3 & & & \end{bmatrix}. \times$$

 a_{nn}

例

$$\begin{vmatrix} a_{11} \\ a_{21} & a_{22} \\ \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \cdots \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} \\ \vdots & \ddots \end{vmatrix}$$

 $|a_{n2}|$

$$= a_{11}a_{22}$$

$$\begin{vmatrix} a_{n3} \end{vmatrix}$$

 a_{33}

$$\cdots a_{nn}$$

$$\cdots a_{nn}$$

 $=\cdots=a_{11}a_{22}\cdots a_{nn}.$

例

计算
$$|A|$$
, 其中 $A=egin{pmatrix} &&&a_1\ &&&a_2\ &&&&\\ &&&&&\\ a_n&&&& \end{pmatrix}$

计算
$$|A|$$
, 其中 $A=egin{pmatrix} & & a_1 \ & & a_2 \ & & & \\ & & & \\ & & & \\ a_n \ & & \end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & a_2 \\ a_n & & & \end{vmatrix}$$

例

计算
$$|m{A}|$$
, 其中 $m{A}=egin{pmatrix} & & a_1 \ & & a_2 \ & & \ddots \ & & & \\ a_n \end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & a_2 \\ a_n & & \end{vmatrix} = (-1)^{n+1} a_1 \cdot (-1)^n a_2 \begin{vmatrix} & & & a_3 \\ a_n & & \end{vmatrix}$$

例

计算
$$|m{A}|$$
, 其中 $m{A}=egin{pmatrix} &&&a_1\ &&&a_2\ &&\ddots\ &&&& \end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & a_2 \\ a_n & & \end{vmatrix} = (-1)^{n+1} a_1 \cdot (-1)^n a_2 \begin{vmatrix} & & & a_3 \\ a_n & & & \end{vmatrix}$$

$$= \dots = \prod_{n=1}^{n} (-1)^{n-i} a_i$$

反对角阵的行列式

例

计算
$$|A|$$
, 其中 $A=\begin{pmatrix} & & a_1 \\ & & a_2 \\ & & & \\ a_n & & \end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & & \\ a_n & & & \\ & & & \end{vmatrix} = (-1)^{n+1} a_1 \cdot (-1)^n a_2 \begin{vmatrix} & & & & \\ a_n & & & \\ & & & \end{vmatrix}$$
$$= \dots = \prod_{n=1}^{n} (-1)^{n-i} a_i = (-1)^{\frac{n(n-1)}{2}} a_1 a_2 \dots a_n.$$

设

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix},$$

$$\mathbf{C} = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots & & 0 \\ a_{m1} & \cdots & a_{mm} \\ * & \cdots & * & b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ * & \cdots & * & b_{n1} & \cdots & b_{nn} \end{pmatrix}.$$

证明 $|C| = |A| \cdot |B|$.

证明 对m归纳.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立. 假设命题对于 m-1 成立.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

假设命题对于 m-1 成立. 设 \boldsymbol{A} 在 (1,j) 处的余子式为 M_{1j} , \boldsymbol{C} 在 (1,j) 处的余子式为 N_{1i} .

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

假设命题对于 m-1 成立. 设 \boldsymbol{A} 在 (1,j) 处的余子式为 M_{1j} , \boldsymbol{C} 在 (1,j) 处的余子式为 N_{1i} . 则由归纳假设 $N_{1i}=M_{1i}|\boldsymbol{B}|$.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

假设命题对于 m-1 成立. 设 \boldsymbol{A} 在 (1,j) 处的余子式为 M_{1j} , \boldsymbol{C} 在 (1,j) 处的余子式为 N_{1j} . 则由归纳假设 $N_{1j}=M_{1j}|\boldsymbol{B}|$. 因此

$$|C| = \sum_{j=1}^{m} (-1)^{1+j} a_{1j} N_{1j}$$
$$= \sum_{j=1}^{m} (-1)^{1+j} a_{1j} M_{1j} |B| = |A| \cdot |B|.$$

二阶行列式的几何意义

设平面上有平行四边形 OACB, 其中 A(a,b), B(c,d).

二阶行列式的几何意义

设平面上有平行四边形 OACB, 其中 A(a,b), B(c,d).

二阶行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ 的绝对值就是它的面积.

二阶行列式的几何意义

设平面上有平行四边形 OACB, 其中 A(a,b), B(c,d).

二阶行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ 的绝对值就是它的面积. 它的符号则表示从 OA 沿最短角度旋转到 OB 方向是逆时针还是顺时针.

三阶行列式的几何意义

类似地,如果
$$A(a_1,a_2,a_3),B(b_1,b_2,b_3),C(c_1,c_2,c_3)$$
,则三阶行列式
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

的绝对值就是下述平行六面体的体积.

三阶行列式的几何意义

类似地,如果
$$A(a_1,a_2,a_3),B(b_1,b_2,b_3),C(c_1,c_2,c_3)$$
,则三阶行列式
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

的绝对值就是下述平行六面体的体积.

它的符号则表示使用右手四指从 OA 旋转到 OB 方向时, 大拇指所指方向与 OC 是否在平面 OAB 的同侧.

第二节 行列式的性质

- ■拉普拉斯展开
- 行列式的变换性质
- 使用初等变换和拉普拉斯展开计算行列式
- 三对角和范德蒙型行列式

我们将给出行列式的一系列性质, 这些性质可以帮助我们计算行列式.

我们将给出行列式的一系列性质, 这些性质可以帮助我们计算行列式.

互换两列后, 方阵的行列式变为 -1 倍.

我们将给出行列式的一系列性质, 这些性质可以帮助我们计算行列式.

互换两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i, j 列 (行).

互换两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)-1 次.

互换两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)-1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍.

互换两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)-1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳.

互换两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)-1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳. 当 n=2 时显然成立.

互换两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)-1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳. 当 n=2 时显然成立.

如果命题对于 n-1 成立, 对于 n 阶方阵 $\mathbf{A}=(a_{ij})$, 交换它的 k,k+1 列得到方阵 $\mathbf{B}=(b_{ij})$.

互换两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)-1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳. 当 n=2 时显然成立.

如果命题对于 n-1 成立, 对于 n 阶方阵 $\mathbf{A}=(a_{ij})$, 交换它的 k,k+1 列得到方阵 $\mathbf{B}=(b_{ij})$. 设 \mathbf{A} 在 (i,j) 处的余子式为 M_{ij} , \mathbf{B} 在 (i,j) 处的余子式为 N_{ij} .

• 当 $j \neq k, k+1$ 时, **B** 去掉 1 行 j 列得到的方阵是 **A** 去掉 1 行 j 列得到的方阵互换两列得到的.

• 当 $j \neq k, k+1$ 时, **B** 去掉 1 行 j 列得到的方阵是 **A** 去掉 1 行 j 列得到的方阵互 换两列得到的. 因此 $N_{1j} = -M_{1j}$.

- 当 $j \neq k, k+1$ 时, ${\bf B}$ 去掉 1 行 j 列得到的方阵是 ${\bf A}$ 去掉 1 行 j 列得到的方阵互换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j = k 时, **B** 去掉 1 行 k 列得到的方阵是 **A** 去掉 1 行 k+1 列得到的方阵.

- 当 $j \neq k, k+1$ 时, ${\bf B}$ 去掉 1 行 j 列得到的方阵是 ${\bf A}$ 去掉 1 行 j 列得到的方阵互 换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j = k 时, B 去掉 1 行 k 列得到的方阵是 A 去掉 1 行 k+1 列得到的方阵. 因此 $N_{1k} = M_{1,k+1}$.

- 当 $j \neq k, k+1$ 时, ${\bf B}$ 去掉 1 行 j 列得到的方阵是 ${\bf A}$ 去掉 1 行 j 列得到的方阵互 换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j=k 时, \boldsymbol{B} 去掉 1 行 k 列得到的方阵是 \boldsymbol{A} 去掉 1 行 k+1 列得到的方阵. 因此 $N_{1k}=M_{1,k+1}$.
- 同理 $N_{1,k+1} = M_{1k}$.

- 当 $j \neq k, k+1$ 时, ${\bf B}$ 去掉 1 行 j 列得到的方阵是 ${\bf A}$ 去掉 1 行 j 列得到的方阵互换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j=k 时, ${\bf B}$ 去掉 1 行 k 列得到的方阵是 ${\bf A}$ 去掉 1 行 k+1 列得到的方阵. 因此 $N_{1k}=M_{1,k+1}$.
- 同理 $N_{1,k+1} = M_{1k}$.

故

$$|\mathbf{B}| = \sum_{j \neq k, k+1} (-1)^{1+j} a_{1j} N_{1j} + (-1)^{1+k} a_{1,k+1} N_{1k} + (-1)^{1+(k+1)} a_{1,k} N_{1,k+1}$$

$$= -\sum_{j \neq k, k+1} (-1)^{1+j} a_{1j} M_{1j} + (-1)^{1+k} a_{1,k+1} M_{1,k+1} + (-1)^k a_{1,k} M_{1k}$$

$$= -|\mathbf{A}|.$$

如果 $\mathbf{A} = (a_{ij})_{m \times n}$, 称

$$m{A}^{
m T} = egin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \ a_{12} & a_{22} & \cdots & a_{m2} \ dots & dots & \ddots & dots \ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

为矩阵 A 的转置, 它是 $n \times m$ 矩阵.

如果 $\mathbf{A} = (a_{ij})_{m \times n}$, 称

$$m{A}^{\mathrm{T}} = egin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \ a_{12} & a_{22} & \cdots & a_{m2} \ dots & dots & \ddots & dots \ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

为矩阵 A 的转置, 它是 $n \times m$ 矩阵.

如果 $\mathbf{A} = (a_{ij})_{m \times n}$, 称

$$m{A}^{\mathrm{T}} = egin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \ a_{12} & a_{22} & \cdots & a_{m2} \ dots & dots & \ddots & dots \ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

为矩阵 A 的转置, 它是 $n \times m$ 矩阵.

(1) 转置不改变行列式: $|A^{T}| = |A|$.

根据行列式的归纳定义可知, |A| 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列.

根据行列式的归纳定义可知, |A| 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 |P|, 其中 P 的 i 行 k_i 列为 1, 其余项为零.

根据行列式的归纳定义可知, |A| 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 |P|, 其中 P 的 i 行 k_i 列为 1, 其余项为零. 设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$.

转置的行列式

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 $|\mathbf{P}|$, 其中 \mathbf{P} 的 i 行 k_i 列为 1, 其余项为零.

设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$. 也就是说, 如果把排列看成集合 $\{1,2,\ldots,n\}$ 到自身的双射, ℓ 就是 k 的逆映射.

转置的行列式

根据行列式的归纳定义可知, |A| 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 |P|, 其中 P 的 i 行 k_i 列为 1, 其余项为零. 设 ℓ_1 是一个排列日满足 $k_i=i$ 也就是说 如果把排列看成集合

设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$. 也就是说, 如果把排列看成集合 $\{1,2,\ldots,n\}$ 到自身的双射, ℓ 就是 k 的逆映射. 现在

$$|\mathbf{A}| = \sum |\mathbf{P}| a_{1k_1} \cdots a_{nk_n},$$

$$|\mathbf{A}^{\mathrm{T}}| = \sum |\mathbf{P}| a_{k_1 1} \cdots a_{k_n n}$$

$$= \sum |\mathbf{P}| a_{1\ell_1} \cdots a_{1\ell_n}.$$

根据行列式的归纳定义可知, |A| 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 |P|, 其中 P 的 i 行 k_i 列为 1, 其余项为零.

设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$. 也就是说, 如果把排列看成集合 $\{1,2,\ldots,n\}$ 到自身的双射, ℓ 就是 k 的逆映射. 现在

$$|\mathbf{A}| = \sum |\mathbf{P}| a_{1k_1} \cdots a_{nk_n},$$

$$|\mathbf{A}^{\mathrm{T}}| = \sum |\mathbf{P}| a_{k_1 1} \cdots a_{k_n n}$$

$$= \sum |\mathbf{P}| a_{1\ell_1} \cdots a_{1\ell_n}.$$

因此只需证明 $|P| = |P^{T}|$, 其中 P^{T} 的 i 行 ℓ_i 列为 1, 其余项为零.

注意到交换 P 的 k_i, k_j 列和交换 i, j 行是一回事.

注意到交换 P 的 k_i, k_j 列和交换 i, j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n , 那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵.

注意到交换 P 的 k_i, k_j 列和交换 i, j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n ,那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵. 所以 P^{T} 可通过 a 次互换列变成单位矩阵, $|P^{\mathrm{T}}|=(-1)^a=|P|$. 从而命题得证.

注意到交换 P 的 k_i, k_j 列和交换 i, j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n ,那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵. 所以 P^{T} 可通过 a 次互换列变成单位矩阵, $|P^{\mathrm{T}}|=(-1)^a=|P|$. 从而命题得证. 由此可知:

注意到交换 P 的 k_i, k_j 列和交换 i, j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n ,那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵. 所以 P^{T} 可通过 a 次互换列变成单位矩阵, $|P^{\mathrm{T}}|=(-1)^a=|P|$. 从而命题得证. 由此可知:

注意到交换 P 的 k_i, k_j 列和交换 i, j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n ,那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵. 所以 $P^{\rm T}$ 可通过 a 次互换列变成单位矩阵, $|P^{\rm T}|=(-1)^a=|P|$. 从而命题得证. 由此可知:

(2) 互换两行 (列) 后, 方阵的行列式变为 -1 倍.

注意到交换 P 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n ,那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵. 所以 $P^{\rm T}$ 可通过 a 次互换列变成单位矩阵, $|P^{\rm T}|=(-1)^a=|P|$. 从而命题得证. 由此可知:

(2) 互换两行 (列) 后, 方阵的行列式变为 —1 倍.

如果方阵有相同的两行, 那么交换这两行方阵不变但行列式变为 -1 倍.

注意到交换 P 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n ,那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵. 所以 $P^{\rm T}$ 可通过 a 次互换列变成单位矩阵, $|P^{\rm T}|=(-1)^a=|P|$. 从而命题得证. 由此可知:

(2) 互换两行 (列) 后, 方阵的行列式变为 -1 倍.

如果方阵有相同的两行, 那么交换这两行方阵不变但行列式变为 -1 倍. 于是行列式只能为 0.

注意到交换 P 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 P 可通过 a 次互换列变成单位矩阵 E_n ,那么 $|P|=(-1)^a$ 且 P 可通过 a 次互换行变成单位矩阵. 所以 $P^{\rm T}$ 可通过 a 次互换列变成单位矩阵, $|P^{\rm T}|=(-1)^a=|P|$. 从而命题得证. 由此可知:

(2) 互换两行 (列) 后, 方阵的行列式变为 -1 倍.

如果方阵有相同的两行,那么交换这两行方阵不变但行列式变为 -1 倍. 于是行列式只能为 0.

推论

具有相同的两行 (列) 的方阵的行列式为 0.

上三角阵的行列式

例

计算
$$|A|$$
, 其中 $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$ 是上三角阵.

上三角阵的行列式

例

计算 $|m{A}|$, 其中 $m{A}=egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \end{pmatrix}$

解

由于

$$m{A}^{
m T} = egin{pmatrix} a_{11} & a_{22} & & & & & \\ a_{12} & a_{22} & & & & & \\ \vdots & \vdots & \ddots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

是上三角阵.

是下三角阵,

上三角阵的行列式

例

计算
$$|A|$$
, 其中 $A=egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ & a_{22} & \cdots & a_{2n} \ & & \ddots & \vdots \ \end{pmatrix}$ 是上三角阵.

解

由于

$$oldsymbol{A}^{\mathrm{T}} = egin{pmatrix} a_{11} & & & & \ a_{12} & a_{22} & & & \ dots & dots & \ddots & \ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

是下三角阵, 因此 $|A| = |A^{\mathrm{T}}| = a_{11}a_{22}\cdots a_{nn}$.

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i行移动到第一行的前面得到的方阵为B.

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i 行移动到第一行的前面得到的方阵为 B. 那么 B 就是 A 通过

$$r_i \leftrightarrow r_{i-1}, r_{i-1} \leftrightarrow r_{i-2}, \dots, r_2 \leftrightarrow r_1$$

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i 行移动到第一行的前面得到的方阵为 B. 那么 B 就是 A 通过

$$r_i \leftrightarrow r_{i-1}, r_{i-1} \leftrightarrow r_{i-2}, \dots, r_2 \leftrightarrow r_1$$

一共 i-1 次行互换得到的.

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i 行移动到第一行的前面得到的方阵为 B. 那么 B 就是 A 通过

$$r_i \leftrightarrow r_{i-1}, r_{i-1} \leftrightarrow r_{i-2}, \dots, r_2 \leftrightarrow r_1$$

一共 i-1 次行互换得到的. 从而 $|\mathbf{B}| = (-1)^{i-1} |\mathbf{A}|$.

 $m{B}$ 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

B 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

B 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

再根据转置不改变行列式得到行列式沿一列展开的形式.

B 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

再根据转置不改变行列式得到行列式沿一列展开的形式.

由此也可以看出 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

B 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

再根据转置不改变行列式得到行列式沿一列展开的形式.

由此也可以看出 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第 i, k 行相同的方阵的行列式.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

推论

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

推论

• 行列式中某一行 (列) 的公因子可以提到行列式外面.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

练习 ka_{11} ka_{12} ka_{1n} a_{11} a_{12} a_{1n} ka_{2n} ka_{21} a_{21} a_{22} a_{2n} 判断题: ka_{n1} ka_{n2} ka_{nn} a_{n1} a_{n2} a_{nn}

推论

- 行列式中某一行 (列) 的公因子可以提到行列式外面.
- 如果方阵有一行(列)全为零,则行列式为零.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

练习 ka_{11} ka_{12} ka_{1n} a_{11} a_{12} a_{1n} ka_{2n} ka_{21} a_{21} a_{22} a_{2n} 判断题: ka_{n1} ka_{n2} ka_{nn} a_{n1} a_{n2} a_{nn}

推论

- 行列式中某一行 (列) 的公因子可以提到行列式外面.
- 如果方阵有一行 (列) 全为零, 则行列式为零.
- 如果方阵有两行 (列) 成比例, 则行列式为零.

行列式的线性性

(5) 将方阵一行 (列) 每一个元素都写成两个数之和,则行列式也可拆成两个行列式之和:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + a'_{i1} & a_{i2} + a'_{i2} & \cdots & a_{in} + a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

行列式的线性性

(5) 将方阵一行 (列) 每一个元素都写成两个数之和, 则行列式也可拆成两个行列式 之和:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + a'_{i1} & a_{i2} + a'_{i2} & \cdots & a_{in} + a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

(5) 将方阵一行 (列) 每一个元素都写成两个数之和, 则行列式也可拆成两个行列式 之和:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + a'_{i1} & a_{i2} + a'_{i2} & \cdots & a_{in} + a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

(4) 将方阵一行 (列) 乘常数 k 再加到另一行 (列), 行列式不变.

三种初等变换

计算行列式可以通过下列变换来实施化简:

三种初等变换

计算行列式可以通过下列变换来实施化简:

初等变换

计算行列式可以通过下列变换来实施化简:

初等变换

(1) 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$, 行列式变号;

计算行列式可以通过下列变换来实施化简:

初等变换

- (1) 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$, 行列式变号;
- (2) 一行 (列) 乘非零常数 k: kr_i, kc_i , 行列式变为 k 倍;

计算行列式可以通过下列变换来实施化简:

初等变换

- (1) 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$, 行列式变号;
- (2) 一行 (列) 乘非零常数 k: kr_i, kc_i , 行列式变为 k 倍;
- (3) j 行 (列) 乘 k 加到 i 行 (列): $r_i + kr_j, c_i + kc_j$.

$$\begin{bmatrix} -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{bmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1 \\ r_3 + 3r_1} \xrightarrow{r_2 + 4r_1 \\ r_3 + 3r_1}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1 \\ r_3 + 3r_1} \xrightarrow{r_2 + 4r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1 \\ r_3 + 3r_1} = - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$
$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1 \\ r_3 + 3r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$

$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix} = \frac{r_3 + r_1}{2}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1 \\ r_3 + 3r_1} \xrightarrow{r_2 + 4r_1 \\ r_4 - 2r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$

$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix} \xrightarrow{r_3 + r_1} - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ -6 & 2 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1 \\ r_3 + 3r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$

$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix} \xrightarrow{r_3 + r_1} - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ -6 & 2 & 0 \end{vmatrix} = (-1)^{1+3} \begin{vmatrix} -5 & -5 \\ -6 & 2 \end{vmatrix} = -40.$$

练习

$$-2$$
 0

 501
 200
 200
 299
 $=$ -200

证明:
$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

利用初等列变换来化简.

利用初等列变换来化简.

证明

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = \underbrace{\begin{vmatrix} c_1 - c_2 \\ c_2 - c_2 \end{vmatrix}}_{c_1 - c_2} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

利用初等列变换来化简.

证明

|
$$a_1 + b_1$$
 $b_1 + c_1$ $c_1 + a_1$ $a_2 + b_2$ $b_2 + c_2$ $c_2 + a_2$ $a_3 + b_3$ $b_3 + c_3$ $c_3 + a_3$ $a_3 - c_3$ $a_3 - c_3$

利用初等列变换来化简.

证明

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} \stackrel{c_1 - c_2}{=} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 & b_2 + c_2 & c_2 + a_2 \\ 2a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

利用初等列变换来化简.

证明 $\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \end{vmatrix} \xrightarrow{c_1 - c_2} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \end{vmatrix}$ $\begin{vmatrix} a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$ $\begin{vmatrix} a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$ $\frac{c_1 + c_3}{2a_2} \begin{vmatrix} 2a_1 & b_1 + c_1 & c_1 + a_1 \\ 2a_2 & b_2 + c_2 & c_2 + a_2 \\ 2a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$

利用初等列变换来化简.

证明
$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} \stackrel{c_1 - c_2}{=} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$\stackrel{c_1 + c_3}{=} \begin{vmatrix} 2a_1 & b_1 + c_1 & c_1 + a_1 \\ 2a_2 & b_2 + c_2 & c_2 + a_2 \\ 2a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$\stackrel{c_3 - c_1}{=} 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 \\ a_2 & b_2 + c_2 & c_2 \\ a_3 & b_3 + c_3 & c_3 \end{vmatrix} \stackrel{c_2 - c_3}{=} 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$

练习

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{\qquad}$$

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{ 0}$$

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{\qquad 0}.$$

练习

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ c + c & c + a & a + b \end{vmatrix} = \underline{\qquad}.$$

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{ 0}.$$

练习

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix} = \underline{0}.$$

$$\begin{vmatrix} x+1 & 2 & -1 \\ 2 & x+1 & 1 \\ -1 & 1 & x+1 \end{vmatrix} = 0, \ \mathbb{M} \ x = \underline{\qquad -3, \pm \sqrt{3}}$$

如果
$$abcd=1$$
, 证明 $\mathbf{A}=egin{pmatrix} a^2+\frac{1}{a^2} & a & \frac{1}{a} & 1 \\ b^2+\frac{1}{b^2} & b & \frac{1}{b} & 1 \\ c^2+\frac{1}{c^2} & c & \frac{1}{c} & 1 \\ d^2+\frac{1}{a} & d & \frac{1}{a} & 1 \end{pmatrix}$ 行列式为零.

证明
$$|\mathbf{A}| = \begin{vmatrix} a^2 & a & \frac{1}{a} & 1 \\ b^2 & b & \frac{1}{b} & 1 \\ c^2 & c & \frac{1}{c} & 1 \\ d^2 & d & \frac{1}{d} & 1 \end{vmatrix} + \begin{vmatrix} \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix}$$

$$|\mathbf{A}| = \begin{vmatrix} a^2 & a & \frac{1}{a} & 1 \\ b^2 & b & \frac{1}{b} & 1 \\ c^2 & c & \frac{1}{c} & 1 \\ d^2 & d & \frac{1}{d} & 1 \end{vmatrix} + \begin{vmatrix} \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix} = abcd \begin{vmatrix} a & 1 & \frac{1}{a^2} & \frac{1}{a} \\ b & 1 & \frac{1}{b^2} & \frac{1}{b} \\ c & 1 & \frac{1}{c^2} & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix} + \begin{vmatrix} a & \frac{1}{a^2} & 1 & \frac{1}{a} \\ b & \frac{1}{b^2} & 1 & \frac{1}{b} \\ c & \frac{1}{c^2} & 1 & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix}$$

$$|\mathbf{A}| = \begin{vmatrix} a^2 & a & \frac{1}{a} & 1 \\ b^2 & b & \frac{1}{b} & 1 \\ c^2 & c & \frac{1}{c} & 1 \\ d^2 & d & \frac{1}{d} & 1 \end{vmatrix} + \begin{vmatrix} \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix} = abcd \begin{vmatrix} a & 1 & \frac{1}{a^2} & \frac{1}{a} \\ b & 1 & \frac{1}{b^2} & \frac{1}{b} \\ c & 1 & \frac{1}{c^2} & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix} + \begin{vmatrix} a & \frac{1}{a^2} & 1 & \frac{1}{a} \\ b & \frac{1}{b^2} & 1 & \frac{1}{b} \\ c & \frac{1}{c^2} & 1 & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix} = 0.$$

```
例
```


$$\begin{vmatrix} a & 1 & \cdots & 1 \\ 1 & a & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & a \end{vmatrix} = \underbrace{\begin{bmatrix} a+n-1 & 1 & \cdots & 1 \\ a+n-1 & a & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ a+n-1 & 1 & \cdots & a \end{vmatrix}}_{\substack{i \ge 2}} = \underbrace{\begin{vmatrix} a+n-1 & 1 & \cdots & 1 \\ a+n-1 & a & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ a-n-1 & 1 & \cdots & a \end{vmatrix}}_{\substack{i \ge 2}} = \underbrace{\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & a-1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a-1 \end{vmatrix}}_{\substack{i \ge 2}} = (a+n-1)(a-1)^{n-1}.$$

例

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} \xrightarrow{\underbrace{r_1 - \frac{1}{i}r_i}{i\geqslant 2}} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} = \underbrace{\frac{r_1 - \frac{1}{i}r_i}{i \geqslant 2}}_{\substack{i \geqslant 2}} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix} = \left(1 - \frac{1}{2} - \cdots - \frac{1}{n}\right)n!.$$

例

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} \xrightarrow{\begin{array}{c} r_1 - \frac{1}{i}r_i \\ i \geqslant 2 \end{array}} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix} = \left(1 - \frac{1}{2} - \cdots - \frac{1}{n}\right) n!.$$

练习

计算 n 阶行列式 $\begin{vmatrix} 1+a_1 & a_2 & \cdots & a_n \\ a_1 & 1+a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$

 a_1

 a_2

例

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} \xrightarrow{r_1 - \frac{1}{i}r_i} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix} = \left(1 - \frac{1}{2} - \cdots - \frac{1}{n}\right)n!.$$

 $\cdots 1 + a_n$

练习

计算
$$n$$
 阶行列式
$$\begin{vmatrix} 1+a_1 & a_2 & \cdots & a_n \\ a_1 & 1+a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$$

 a_1

 a_2

性代数 ▶第一章 行列式 ▶2 行列式的性质 ▶C 使用初等变换和拉普拉斯展开计算行列式

```
|a_1-b|
              a_2
                        a_3
                                          a_n
           a_2-b
                        a_3
   a_1
                                 . . .
                                          a_n
                      a_3 - b
              a_2
   a_1
                                          a_n
   a_1
              a_2
                        a_3
```

$$\begin{vmatrix} a_1 - b & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 - b & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 - b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix} \xrightarrow{r_i - r_{i+1}} \begin{vmatrix} -b & b & 0 & \cdots & 0 \\ 0 & -b & b & \cdots & 0 \\ 0 & 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix}$$

$$\begin{vmatrix} a_1 - b & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 - b & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 - b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix} \xrightarrow{\underbrace{r_i - r_{i+1}}_{i=1,2,\dots,n-1}} \begin{vmatrix} -b & b & 0 & \cdots & 0 \\ 0 & -b & b & \cdots & 0 \\ 0 & 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix}$$

$$\xrightarrow{\underbrace{c_{i+1} + c_i}_{i=1,2,\dots,n-1}}} \begin{vmatrix} -b & 0 & 0 & \cdots & 0 \\ 0 & -b & 0 & \cdots & 0 \\ 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_1 + a_2 & a_1 + a_2 + a_3 & \cdots & a_1 + \cdots + a_n - b \end{vmatrix}$$

$$\begin{vmatrix} a_1 - b & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 - b & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 - b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix} \xrightarrow{r_i - r_{i+1}} \begin{vmatrix} -b & b & 0 & \cdots & 0 \\ 0 & -b & b & \cdots & 0 \\ 0 & 0 - b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix}$$

$$\frac{-b}{0} & 0 & 0 & \cdots & 0 \\ 0 & -b & 0 & \cdots & 0 \\ 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_1 + a_2 & a_1 + a_2 + a_3 & \cdots & a_1 + \cdots + a_n - b \end{vmatrix}$$

$$= (a_1 + \cdots + a_n - b)(-b)^{n-1}.$$

练习

计算
$$n$$
 阶行列式
$$\begin{vmatrix} -1 & 0 & 3 & \cdots & n-1 & n \\ -1 & -2 & 0 & \cdots & n-1 & n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -2 & -3 & \cdots & 0 & n \end{vmatrix}$$

n-1

n

练习

计算
$$n$$
 阶行列式
$$\begin{vmatrix} -1 & 0 & 3 & \cdots & n-1 & n \\ -1 & -2 & 0 & \cdots & n-1 & n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -2 & -3 & \cdots & 0 & n \\ -1 & -2 & -3 & \cdots & -(n-1) & 0 \end{vmatrix}$$

n-1

n

练习

计算矩阵
$$\boldsymbol{A}_n = \begin{pmatrix} 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x + a_1 \end{pmatrix}$$

-1

0

的行列式.

练习

计算矩阵
$$\boldsymbol{A}_n = \begin{pmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x+a_1 \end{pmatrix}$$

解

沿着第一列展开得到

$$|\mathbf{A}_n| = x|\mathbf{A}_{n-1}| + (-1)^{1+n}a_n(-1)^{n-1} = x|\mathbf{A}_{n-1}| + a_n,$$

的行列式

练习

计算矩阵
$$\boldsymbol{A}_n = \begin{pmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x + a_1 \end{pmatrix}$$

解

沿着第一列展开得到

$$|\mathbf{A}_n| = x|\mathbf{A}_{n-1}| + (-1)^{1+n}a_n(-1)^{n-1} = x|\mathbf{A}_{n-1}| + a_n,$$

的行列式

因此 $|A_n| = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$.

练习

计算矩阵
$$\boldsymbol{A}_n = \begin{pmatrix} 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{pmatrix}$$

的行列式.

解

设 $D_n = |A_n|$. 沿着第一行展开得到

$$|\mathbf{A}_n| = 2|\mathbf{A}_{n-1}| - \begin{vmatrix} 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix}$$

 $= 2|\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}|,$

8世代数 ▶ 第一章 行列式 ▶2 行列式的性质 ▶D 三对角和范德蒙型行列式

解

设 $D_n = |A_n|$. 沿着第一行展开得到

$$|\mathbf{A}_n| = 2|\mathbf{A}_{n-1}| - \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix} = 2|\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}|,$$

因此

$$|A_n| - |A_{n-1}| = |A_{n-1}| - |A_{n-2}| = \cdots = |A_2| - |A_1| = 1,$$

解

设
$$D_n = |A_n|$$
. 沿着第一行展开得到

$$|\mathbf{A}_n| = 2|\mathbf{A}_{n-1}| - \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix} = 2|\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}|,$$

因此

$$|A_n| - |A_{n-1}| = |A_{n-1}| - |A_{n-2}| = \cdots = |A_2| - |A_1| = 1,$$

从而
$$|\mathbf{A}_n| = n - 1 + |\mathbf{A}_1| = n + 1$$
.

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

这种线性递推数列有通用解法.

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

这种线性递推数列有通用解法. 设 $\lambda^2-2a\lambda+bc=0$ 的两个根为 λ_1,λ_2 , 则

$$|\mathbf{A}_n| = \begin{cases} \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1 - \lambda_2}, & \text{und } \lambda_1 \neq \lambda_2; \\ (n+1)a^n, & \text{und } \lambda_1 = \lambda_2 = a. \end{cases}$$

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

这种线性递推数列有通用解法. 设 $\lambda^2-2a\lambda+bc=0$ 的两个根为 λ_1,λ_2 , 则

$$|\mathbf{A}_n| = \begin{cases} \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1 - \lambda_2}, & \text{und } \lambda_1 \neq \lambda_2; \\ (n+1)a^n, & \text{und } \lambda_1 = \lambda_2 = a. \end{cases}$$

练习

如果
$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 & f \\ b_1 & b_2 & b_3 & f \\ c_1 & c_2 & c_3 & f \\ d_1 & d_2 & d_3 & f \end{pmatrix}$$
, 那么 $A_{11} + A_{21} + A_{31} + A_{41} = \underline{\qquad}$.

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

这种线性递推数列有通用解法. 设 $\lambda^2-2a\lambda+bc=0$ 的两个根为 λ_1,λ_2 , 则

$$|\mathbf{A}_n| = \begin{cases} \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1 - \lambda_2}, & \text{und } \lambda_1 \neq \lambda_2; \\ (n+1)a^n, & \text{und } \lambda_1 = \lambda_2 = a. \end{cases}$$

如果
$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 & f \\ b_1 & b_2 & b_3 & f \\ c_1 & c_2 & c_3 & f \\ d_1 & d_2 & d_3 & f \end{pmatrix}$$
, 那么 $A_{11} + A_{21} + A_{31} + A_{41} = \underline{}$.

例 (范德蒙行列式)

$$\begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}$$

. 证明
$$|A_n| = \prod_{1 \leqslant i < j \leqslant n} (x_j - x_i)$$
.

证明 归纳证明.

证明

归纳证明. 当 n=1,2 时显然成立.

证明

归纳证明. 当 n=1,2 时显然成立. 设 $n \ge 3$, 则由 $r_i - x_1 r_{i-1}$, $i=n,n-1,\ldots,2$ 得到

$$|\mathbf{A}_n| = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1\\ 0 & x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1\\ 0 & x_2(x_2 - x_1) & x_3(x_3 - x_1) & \cdots & x_n(x_n - x_1)\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & x_2^{n-2}(x_2 - x_1) & x_3^{n-2}(x_3 - x_1) & \cdots & x_n^{n-2}(x_n - x_1) \end{vmatrix}$$

续证

沿着第一列展开,然后提取每一列的公因式 (x_j-x_1) 得到

$$|\mathbf{A}_n| = \prod_{j=2}^n (x_j - x_1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}$$

例: 范德蒙行列式

续证

沿着第一列展开,然后提取每一列的公因式 (x_j-x_1) 得到

$$|\mathbf{A}_n| = \prod_{j=2}^n (x_j - x_1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}.$$

由归纳假设可知

$$|\mathbf{A}_n| = \prod_{j=2}^{n} (x_j - x_1) \cdot \prod_{2 \le i \le j \le n} (x_j - x_i) = \prod_{1 \le i \le j \le n} (x_j - x_i).$$

3世代数 ▶ 第一章 行列式 ▶ 2 行列式的性质 ▶ D 三对角和范德蒙型行列式

练习 16

(3) 设
$$a,b,c$$
 两两不等,且 $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = 0$,则 $a+b+c=$ ______

$$(1)\begin{vmatrix} x_1^{-3} & x_2^{-3} & x_3^{-3} & x_4^{-3} \\ x_1^{-1} & x_2^{-1} & x_3^{-1} & x_4^{-1} \\ x_1 & x_2 & x_3 & x_4 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{vmatrix} = \underbrace{ \begin{array}{c} x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i < j \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_4^{-3} \prod\limits_{1 \leqslant i \leqslant 4} (x_j^2 - x_i^2) \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_3^{-3}x_3^{-3}x_3^{-3} \\ \vdots \\ x_1^{-3}x_2^{-3}x_3^{-3}x_$$

(3) 设
$$a,b,c$$
 两两不等,且 $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ b+c & c+a & a+b \end{vmatrix} = 0$,则 $a+b+c=$ ______

(1)
$$\begin{vmatrix} x_1^{-3} & x_2^{-3} & x_3^{-3} & x_4^{-3} \\ x_1^{-1} & x_2^{-1} & x_3^{-1} & x_4^{-1} \\ x_1 & x_2 & x_3 & x_4 \\ x_1^{3} & x_2^{3} & x_3^{3} & x_4^{3} \end{vmatrix} = \underbrace{\begin{array}{c} x_1^{-3}x_2^{-3}x_3^{-3}x_4^{-3} & \prod_{1 \leq i < j \leq 4} (x_j^2 - x_i^2) \\ x_1 & x_2 & x_3 & x_4 \\ x_1^{3} & x_2^{3} & x_3^{3} & x_4^{3} \end{vmatrix}}_{1 = \underbrace{\begin{array}{c} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 65 \end{vmatrix}}_{1 = \underbrace{\begin{array}{c} 14 \\ a^2 & b^2 & c^2 \\ b+c & c+a & a+b \end{vmatrix}}_{1 = 0} = \underbrace{\begin{array}{c} 0 \\ 0 \\ 0 \end{array}}_{1 = 0} = \underbrace{\begin{array}{c} 0 \\ 0 \\ 0 \end{array}}_{1 = 0}.$$

(1) 2,3 阶行列式可用对角线法直接展开.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上 (下) 三角阵行列式等于对角元的乘积.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上(下)三角阵行列式等于对角元的乘积.
- (3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上 (下) 三角阵行列式等于对角元的乘积.
- (3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.
- (4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上(下)三角阵行列式等于对角元的乘积.
- (3) 行列式的计算一般需要用到<mark>三类初等变换</mark>, 创造出足够多的零.
- (4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.
- (5) 范德蒙型行列式可处理方阵为元素幂次递增的情形。

第三节 克拉默法则

- 拉普拉斯展开的应用
- 克拉默法则

回顾下拉普拉斯展开:

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

回顾下拉普拉斯展开:

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

其中代数余子式 A_{ij} 是指去掉方阵 \boldsymbol{A} 的 i 行 j 列得到的方阵的行列式的 $(-1)^{i+j}$ 倍.

例

设
$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{pmatrix}$$
. 计算 $A_{41} + A_{42} + A_{43} + A_{44}$ 和 $M_{41} + M_{42} + M_{43} + M_{44}$.

$$\mathbf{A} \cdot \mathbf{A} = \begin{pmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \end{pmatrix}$$

设 $\mathbf{A} = \begin{pmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{pmatrix}$. 计算 $A_{41} + A_{42} + A_{43} + A_{44}$ 和 $M_{41} + M_{42} + M_{43} + M_{44}$.

由拉普拉斯展开可知

$$A_{41} + A_{42} + A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0.$$

续解

$$M_{41} + M_{42} + M_{43} + M_{44} = -A_{41} + A_{42} - A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix}$$

续解

$$M_{41} + M_{42} + M_{43} + M_{44} = -A_{41} + A_{42} - A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix}$$
$$= 7 \begin{vmatrix} 3 & 4 & 0 \\ 2 & 2 & 2 \\ -1 & -1 & 1 \end{vmatrix} = -28.$$

定理 (克拉默法则)

设线性方程组

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

的系数矩阵为 A, 将 A 的第 j 列换成 b_1, \ldots, b_n 得到的方阵为 A_j . 那么当 $|A| \neq 0$, 该线性方程组有唯一解

$$x_1 = \frac{|A_1|}{|A|}, \quad x_2 = \frac{|A_2|}{|A|}, \quad \dots, \quad x_n = \frac{|A_n|}{|A|}.$$

线性代数 ▶第一章 行列式 ▶3 克拉默法则 ▶B 克拉默法则 田□□□□□□□□□□□□

证明回顾

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = \begin{cases} 0, & i \neq k; \\ |\mathbf{A}|, & i = k. \end{cases}$$

证明

回顾

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = \begin{cases} 0, & i \neq k; \\ |\mathbf{A}|, & i = k. \end{cases}$$

方阵 A_j 沿着第 j 列展开得到

$$|\mathbf{A}_j| = b_1 A_{1j} + b_2 A_{2j} + \dots + b_n A_{nj}.$$

证明

回顾

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = \begin{cases} 0, & i \neq k; \\ |\mathbf{A}|, & i = k. \end{cases}$$

方阵 A_j 沿着第 j 列展开得到

$$|\mathbf{A}_j| = b_1 A_{1j} + b_2 A_{2j} + \dots + b_n A_{nj}.$$

因此

$$\sum_{j=1}^{n} a_{ij} |\mathbf{A}_j| = \sum_{j=1}^{n} a_{ij} \sum_{k=1}^{n} b_k A_{kj} = \sum_{k=1}^{n} b_k \sum_{j=1}^{n} a_{ij} A_{kj} = b_i |\mathbf{A}|.$$

证明

回顾

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = \begin{cases} 0, & i \neq k; \\ |\mathbf{A}|, & i = k. \end{cases}$$

方阵 A_j 沿着第 j 列展开得到

$$|\mathbf{A}_j| = b_1 A_{1j} + b_2 A_{2j} + \dots + b_n A_{nj}.$$

因此

$$\sum_{j=1}^{n} a_{ij} |\mathbf{A}_j| = \sum_{j=1}^{n} a_{ij} \sum_{k=1}^{n} b_k A_{kj} = \sum_{k=1}^{n} b_k \sum_{j=1}^{n} a_{ij} A_{kj} = b_i |\mathbf{A}|.$$

所以
$$x_i = \frac{|A_i|}{|A|}$$
 是题述方程的解.

再证唯一性.

续证

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn} \end{vmatrix}$$

续证

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{\begin{array}{c} c_i + x_j c_j \\ j \neq i \end{array}} \begin{vmatrix} a_{11} & \cdots & b_1 & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{vmatrix}$$

续证

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn} \end{vmatrix} = \underbrace{\begin{vmatrix} c_{i} + x_j c_j \\ j \neq i \end{vmatrix}}_{j \neq i} \begin{vmatrix} a_{11} & \cdots & b_1 & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{vmatrix} = |\mathbf{A}_i|.$$

续证

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn} \end{vmatrix} = \underbrace{\begin{vmatrix} a_{11} & \cdots & b_1 & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{vmatrix}}_{c_i + x_j c_j} = \begin{vmatrix} a_{11} & \cdots & b_1 & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{vmatrix} = |\mathbf{A}_i|.$$

因此
$$x_i = \frac{|A_i|}{|A|}$$
.

续证

再证唯一性. 如果方程有解 x_1, \ldots, x_n , 那么

$$x_{i}|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_{i}a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_{i}a_{ni} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} c_{i}+x_{j}c_{j} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & b_{n} & \cdots & a_{nn} \end{vmatrix} = |\mathbf{A}_{i}|.$$

因此
$$x_i = \frac{|A_i|}{|A|}$$
.

后面我们将会知道, $|A| \neq 0$ 是方程有唯一解的充分必要条件.

续证

再证唯一性. 如果方程有解 x_1, \ldots, x_n , 那么

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn} \end{vmatrix} = \underbrace{\begin{vmatrix} c_{i} + x_j c_j \\ j \neq i \end{vmatrix}}_{j \neq i} \begin{vmatrix} a_{11} & \cdots & b_1 & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{vmatrix} = |\mathbf{A}_i|.$$

因此
$$x_i = \frac{|A_i|}{|A|}$$
.

后面我们将会知道, $|A| \neq 0$ 是方程有唯一解的充分必要条件. 因此我们定义的行列式确实起到了线性方程组的 "判别式"的作用.

例

已知
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 求 λ .

例

已知
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 求 λ .

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

例

已知
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 求 λ .

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2.

例

已知
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 求 λ .

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2. 显然 $\lambda = 1$ 时无解.

例

已知
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 求 λ .

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2. 显然 $\lambda = 1$ 时无解. $\lambda = -2$ 时, $x_1 = t, x_2 = -t, x_3 = 1$ 是方程的解.

例

已知
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 求 λ .

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2. 显然 $\lambda = 1$ 时无解. $\lambda = -2$ 时, $x_1 = t, x_2 = -t, x_3 = 1$ 是方程的解. 因此 $\lambda = -2$.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解. 所以 $|A| = 0 \iff$ 齐次线性方程组有无穷多 (非零) 解.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解. 所以 $|\mathbf{A}| = 0 \iff$ 齐次线性方程组有无穷多 (非零) 解.

对于非齐次线性方程组, 如果 (a_1,\ldots,a_n) 是一组解, 而 (b_1,\ldots,b_n) 是对应的齐次线性方程组的解, 那么 (a_1+b_1,\ldots,a_n+b_n) 也是非齐次线性方程组的解.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解. 所以 $|A| = 0 \iff$ 齐次线性方程组有无穷多 (非零) 解.

对于非齐次线性方程组, 如果 (a_1, \ldots, a_n) 是一组解, 而 (b_1, \ldots, b_n) 是对应的齐次线性方程组的解, 那么 $(a_1 + b_1, \ldots, a_n + b_n)$ 也是非齐次线性方程组的解. 所以 $|A| = 0 \iff$ 非齐次线性方程组无解或有无穷多解.

练习

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \end{cases}$$
 有非零解, 则 $\lambda =$ _____.

练习

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \end{cases}$$
 有非零解,则 $\lambda = 2, -1$.
$$x_1 + x_2 + \lambda x_3 = 0$$

练习

如果 $\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \\ x_1 + x_2 + \lambda x_3 = 0 \end{cases}$ 有非零解, 则 $\lambda = 2, -1$.

例

证明: 如果三条不同的直线

$$ax + by + c = 0$$
$$bx + cy + a = 0$$
$$cx + ay + b = 0$$

相交于一点,则 a+b+c=0.

证明

线性方程组 $\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \end{cases}$ 有非零解 (x, y, 1). $cx_1 + ax_2 + bx_3 = 0$

证明

线性方程组 $\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \\ cx_1 + ax_2 + bx_3 = 0 \end{cases}$ 有非零解 (x, y, 1). 因此 $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0.$

证明

线性方程组
$$\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \\ cx_1 + ax_2 + bx_3 = 0 \end{cases}$$
 有非零解 $(x, y, 1)$. 因此
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0.$$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$

证明

线性方程组
$$\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \\ cx_1 + ax_2 + bx_3 = 0 \end{cases}$$
 有非零解 $(x, y, 1)$. 因此
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0.$$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+b)$$

$$= (a + b + c)(bc + ac + ab - a^2 - b^2 - c^2)$$

证明

线性方程组
$$\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \\ cx_1 + ax_2 + bx_3 = 0 \end{cases}$$
 有非零解 $(x, y, 1)$. 因此
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0.$$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+ab-a^2-b^2-c^2)$$
$$= -\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2].$$

证明

线性方程组
$$\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \\ cx_1 + ax_2 + bx_3 = 0 \end{cases}$$
 有非零解 $(x, y, 1)$. 因此
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0.$$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+ab-a^2-b^2-c^2)$$
$$= -\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2].$$

由于这是三条不同直线, 因此 a,b,c 不可能全部相等, 从而 a+b+c=0.

证明

线性方程组
$$\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \\ cx_1 + ax_2 + bx_3 = 0 \end{cases}$$
 有非零解 $(x, y, 1)$. 因此
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0.$$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+ab-a^2-b^2-c^2)$$
$$= -\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2].$$

由于这是三条不同直线, 因此 a,b,c 不可能全部相等, 从而 a+b+c=0.

想一想: 为什么 a+b+c=0 时, 三条直线一定相交于一点?

小结

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数矩阵行列式非零.

小结

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数矩阵行列式非零. 但由于使用克拉默法则计算量较大, 一般不使用该方法解方程, 仅用于理论研究.

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数 矩阵行列式非零. 但由于使用克拉默法则计算量较大. 一般不使用该方法解方程. 仅用 干理论研究.

练习

设 $a_1 + \cdots + a_n \neq 0$. 何时线性方程组

$$\begin{cases} (a_1 + b)x_1 + a_2x_2 + \dots + a_nx_n = 0 \\ a_1x_1 + (a_2 + b)x_2 + \dots + a_nx_n = 0 \\ \vdots \\ a_1x_1 + a_2x_2 + \dots + (a_n + b)x_n = 0 \end{cases}$$

$$(a_1x_1 + a_2x_2 + \dots + (a_n + b)x_n = 0$$

零解?

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数矩阵行列式非零. 但由于使用克拉默法则计算量较大, 一般不使用该方法解方程, 仅用于理论研究.

练习

设 $a_1 + \cdots + a_n \neq 0$. 何时线性方程组

$$\begin{cases} (a_1 + b)x_1 + a_2x_2 + \dots + a_nx_n = 0 \\ a_1x_1 + (a_2 + b)x_2 + \dots + a_nx_n = 0 \\ \vdots \\ a_1x_1 + a_2x_2 + \dots + (a_n + b)x_n = 0 \end{cases}$$

有非

零解? b = 0.

练习

设 a_i 两两不同. 解方程组

$$\begin{cases} x_1 + a_1 x_2 + \dots + a_1^{n-1} x_n = 1 \\ x_1 + a_2 x_2 + \dots + a_2^{n-1} x_n = 1 \\ \vdots \\ x_1 + a_n x_2 + \dots + a_n^{n-1} x_n = 1 \end{cases}$$

练习

设 a_i 两两不同. 解方程组

$$\begin{cases} x_1 + a_1 x_2 + \dots + a_1^{n-1} x_n = 1 \\ x_1 + a_2 x_2 + \dots + a_2^{n-1} x_n = 1 \\ \vdots \\ x_1 + a_n x_2 + \dots + a_n^{n-1} x_n = 1 \end{cases}$$

答案

由于系数矩阵行列式为范德蒙行列式

$$\prod_{1 \le i < j \le n} (a_j - a_i) \ne 0,$$

因此方程有唯一解 $x_1 = 1, x_2 = \cdots = x_n = 0.$