Снижение размерности пространства обучаемых параметров в задаче адаптации к домену

Ремизова Анна Вадимовна

Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

Научный руководитель к.ф.-м.н. А. В. Грабовой

Москва 2024 г

Введение

Цель: Исследовать методы снижения размерности пространства обучаемых параметров при помощи сингулярного разложения матриц, а также показать кооректность применения изучаемых методов к задаче классификации текстов.

Методы

- Низкоранговое разложение применяемое к матрицам весов (англ. Low Rank Adaptation) в больших языковых моделях.
- Отатистические методы оценки минимизации функции потерь, а также свойтва матриц для доказательства применимости предложенного метода к задаче классификации.

Теоретическая значимость. В работе проведен теоретический анализ проблемы снижения размерности пространства обучаемых параметров. Доказана теорема об применимости модели BERT [1] с адаптером LoRA к задаче много-классовой классификации.

Практическая значимость. Проведен вычислительный эксперимент, показывающий улучшение качества и экономию ресурсов при решении задачи классификации текстов.

Постановка задачи классификации текстов

Для задачи классификации текстов:

$$f_{\theta}: \hat{V} \to [N_c],$$
 (1)

где $\hat{V} \subset V^*$; V — словарь токенов и V^* — его замыкание или множество всех последовательностей над V, $[N_c]$ — множество классов. Таким образом, модель f_{θ} отображает текст из \hat{V} в класс из $[N_c]$.

Тогда $(X_i,c_i)\in \hat{V}\times[N_c]$ для $i\in[N_{data}]$ является парой текст —класс, выбранной из P(X,c), где X_i — входной текст, а c_i — его класс. Таким образом, наша цель — оценить P(c|X).

Постановка задачи классификации текстов

Согласно [2] при дообучении модель инициализируется предварительно обученными весами Φ_0 и обновляется до $\Phi_0 + \Delta \Phi$, где $\Delta \Phi$ — набор дообучаемых параметров такой, что $|\Delta \Phi| = |\Phi_0|$. Тогда задача минимизации функции потерь имеет вид:

$$\min_{\Phi} \left(-\sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi} \left(c_{i} \mid X_{i} \right) \right) \right) =
= \max_{\Phi} \sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi} \left(c_{i} \mid X_{i} \right) \right),$$
(2)

В то время как при использовании LoRA $\Delta\Phi$ задается набором параметров Θ намного меньшего размера: $\Delta\Phi=\Theta$, где $\mid\Theta\mid\ll\mid\Phi_0\mid$ и задача минимизации функции потерь имеет вид:

$$\min_{\Theta} \left(-\sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi_{0} + \Theta} \left(c_{i} \mid X_{i} \right) \right) \right) = \\
= \max_{\Theta} \sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi_{0} + \Theta} \left(c_{i} \mid X_{i} \right) \right). \tag{3}$$

Предложенный метод

В данной работе LoRA применяется к задаче классификации. Структура обновления весов при использовании LoRA адаптера описана в таблице 1,

Fine tuning	LoRA fine tuning
$W_{upd} = W + \Delta W$	$W_{upd} = W + AB$
$\hat{y} = xW_{upd} = x(W + \Delta W)$	$\hat{y} = xW_{upd} = x(W + AB)$
$\hat{y} = xW + x\Delta W$	$\hat{y} = xW + xAB$

Таблица: Структура обновления весов при использовании LoRA адаптера

где $W \in \mathbb{R}^{d \times k}$ — предобученные веса, $\Delta W \in \mathbb{R}^{d \times k}$ — матрица обновленных весов. ΔW приближается с помощью метода LoRA произведением AB, где $A \in \mathbb{R}^{d \times r}$, $B \in \mathbb{R}^{r \times k}$ и r — ранг матрицы, являющийся гиперпараметром модели. Здесь $A \sim \mathcal{N}(0, \sigma^2)$ и $B = [0]_{r \times k}$.

Состоятельность модели трансформер была доказана в работе [3]. Здесь теорема 1 сформулированна для задачи классификации.

Состоятельность предложенной модели

Theorem

Будем считать, что:

• Задана модель с набором параметров Θ^* , генерирующая эмпирическое распределение данных $P_{model}(\cdot,\Theta^*)$, которое аппроксимирует истинное распределение данных P_{true} с минимальным расхождением по KL-дивергенции:

$$\exists \Theta^* : \Theta^* = \underset{\Theta}{\operatorname{arg\,min}} \ D_{KL}(P_{true} \mid\mid P_{model}(\cdot, \Theta)), \tag{4}$$

- **9** При увеличении размера выборки \hat{V} эмпирическое распределение данных $P_{model}(\cdot,\Theta^*)$ приближается к истинному распределению, генерирующему данные.
- $oldsymbol{\vartheta}$ Функция ошибки $\mathscr{L}(\Theta)$ непрерывная, дифференцируемая. Где

$$\mathcal{L}(\Theta) = -\frac{1}{|\hat{V}|} \sum_{X_i \in \hat{V}} \sum_{c_i \in [N_c]} \log \left(P_{\Phi_0 + \Theta} \left(c_i \mid X_i \right) \right). \tag{5}$$

Тогда минимизация функции потерь $\mathcal{L}(\Theta)$ приводит к состоятельной оценке истинного распределения, порождающего данные. Т.е.:

$$\lim_{|\hat{V}| \to \infty} \underset{\Theta}{\arg \min} \mathcal{L}(\Theta) = \Theta^*. \tag{6}$$

О применимости LoRA к задаче классификации

Theorem (Ремизова Анна, 2024)

В рамках задачи классификации, при заданных условиях:

1 Модель семейства BERT с дополнительным слоем

$$\hat{\mathbf{y}} = \operatorname{softmax} \left(W_{upd}^T \mathbf{x} \right) = \frac{\exp \left(W_{upd}^T \mathbf{x} \right)}{\sum_{i=1}^k \exp \left(W_{upd}^T \mathbf{x} \right)_i}, \tag{7}$$

где

$$W_{upd} = W_{(d \times k)} + \Delta W_{(d \times k)}, \tag{8}$$

и x —это выходной результат BERT, W — матрица весов, ΔW — матрица обновленных весов.

9 Данная модель BERT без дополнительного слоя также корректно работает с аппроксимацией

$$\Delta W = A \times B, \\
{}_{(d \times k)} \times B,$$
(9)

 Выполняются условия теоремы 1. (можно считать данную модель состоятельной).

Тогда можно утверждать, что при (9) заданная модель BERT с дополнительным слоем гарантирует корректную выходную матрицу.

Открытый исходный датасет для мультиклассовой классификации текстов, написанных человеком и различными языковыми моделями. В выборке рассматривается 4 класса: ChatGPT, Davinci, Cohere, Humans. Всего в датасете 47327 текстов с разметкой по классам.

В эксперименте на данном датасете обучались модели DistilRoBERTa без использования LoRA адаптера, DistilRoBERTa & LoRA, мультиклассовая классификация и параллельно три DistilRoBERTa & LoRA для бинарной классификации с последующим усреднением результатов.

После обучения для оценки использовались метрики точности, полноты, f1 меры, а также для визуализации ошибки использовалась матрица ошибок (англ. Confusion matrix) как наиболее точно отображающие качетво моделей мультиклассовой классификации [4]. В матрице ошибок по вертикали указаны истинные метки классов, а по горизонтали — предсказанные.

имя класса	точность	полнота	f1 мера
chatGPT	1.000	0.993	0.997
cohere	0.963	0.999	0.981
davinci	0.986	0.996	0.991
human	0.991	0.952	0.971

Таблица: Метрики качетва DistilRoBERTa, мультиклассовая классификация

имя класса	точность	полнота	f1 мера
chatGPT	1.000	0.891	0.942
cohere	0.999	0.837	0.911
davinci	0.996	0.851	0.918
human	0.875	0.999	0.933

Таблица: Метрики качетва DistilRoBERTa & LoRA, бинарные классификаторы

	chatGPT	Cohere	Davinci	Human
chatGPT	0.993	0.002	0.0	0.005
Cohere	0.0	0.999	0.0	0.001
Davinci	0.0	0.001	0.996	0.003
Human	0.0	0.035	0.013	0.952

Таблица: Матрица ошибок, DistilRoBERTa

	chatGPT	Cohere	Davinci	Human
chatGPT	0.79	0.01	0.08	0.12
Cohere	0.0	0.94	0.06	0.003
Davinci	0.001	0.03	0.98	0.0
Human	0.002	0.43	0.25	0.32

Таблица: Матрица ошибок, DistilRoBERTa & LoRA

Итого, в эксперименте, использующем DistilRoBERTa & LoRA для бинарной классификации и последующего усреднения, качество классификации выросло, не потеряв во времени обучения, по сравнению с предобученной моделью DistilRoBERTa.

А также по результатам эксперимента с использованием DistilRoBERTa & LoRA для мультиклассовой классификации, модель сильно выиграла по времени обучения у модели DRoBERTa для мультиклассовой классификации, но проиграв ей в качестве.

Выносится на защиту

- Сформулирована и доказана теорема о применимости LoRA адаптера к задаче классификации текстов
- Переформулирована теорема о состоятельности модели для модели с использованием LoRA адаптера
- в Проведен эксперимент и показана эффективность предложенного метода

Список литературы

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need.

Attention is an you need. Advances in neural information processing systems, 30, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.

Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Minhyeok Lee.

A mathematical investigation of hallucination and creativity in gpt models. $Mathematics,\ 11(10):2320,\ 2023.$

 $arXiv\ preprint\ arXiv:2008.05756,\ 2020.$