

<u>Home</u> <u>Gameboard</u> Maths

Friction 2i

Friction 2i

Figure 1: A particle P resting on a horizontal plane and attached to two light strings.

A particle P of weight $30\,\mathrm{N}$ rests on a horizontal plane. P is attached to two light strings making angles of $30\,^\circ$ and $50\,^\circ$ with the upward vertical, as shown in the **Figure 1**. The tension in each string is $15\,\mathrm{N}$, and the particle is in limiting equilibrium.

Part A Frictional force

Find the magnitude of the frictional force on P correct to 3 significant figures.

Find the direction of the frictional force on P.

Easier question?

Part B Coefficient of friction

Find the coefficient of friction between ${\cal P}$ and the plane correct to 3 significant figures.

Used with permission from UCLES, A Level, June 2008, OCR M1, Question 4

Home Gameboard Maths Geometry Vectors Vectors in 3D 2

Vectors in 3D 2

The position vectors of three points A, B and C relative to the origin O are given by the vectors:

$$ec{OA} = egin{pmatrix} 4 \ 3 \ 3 \end{pmatrix} \qquad ec{OB} = egin{pmatrix} 8 \ 11 \ -1 \end{pmatrix} \qquad ec{OC} = egin{pmatrix} 8 \ 9 \ 5 \end{pmatrix}$$

Part A Midpoint of AB

Find the coordinates of point D, the midpoint of AB.

Give your answer in the form $a \underline{\boldsymbol{i}} + b \boldsymbol{j} + c \underline{\boldsymbol{k}}$.

The following symbols may be useful: i, j, k

Part B Find a unit vector

Find an expression for a unit vector with the same direction as \vec{AB} .

Give your answer in the form $a\underline{i} + b\underline{j} + c\underline{k}$, where \underline{i} , \underline{j} and \underline{k} are unit vectors in the x, y and z directions.

The following symbols may be useful: i, j, k

Part C The length of \vec{DC}

Find an exact expression for the length of \vec{DC} .

Part D Angle \hat{ACB}

Consider the lengths AB and DC. What can you conclude about the size of angle \hat{ACB} ?

- \bigcirc $\hat{ACB} < 45^{\circ}$
- $\bigcirc \quad A\hat{C}B=45^{\circ}$
- \bigcirc $\hat{ACB} > 45^{\circ}$
- \bigcirc $\hat{ACB} < 90^{\circ}$
- $\hat{}$ $\hat{ACB} = 90^{\circ}$
- \bigcirc $\hat{ACB} > 90^{\circ}$

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Single Maths 48 - Vectors & Mechanics Revision

<u>Home</u>

<u>Gameboard</u>

Physics

Mechanics Statics

Forces on a Supported Beam

Forces on a Supported Beam

A uniform beam AB of mass $15.0\,\mathrm{kg}$ and length $4.00\,\mathrm{m}$ is freely hinged to a vertical wall at A. The beam is held in equilibrium in a horizontal position by a light rod PQ of length $1.50\,\mathrm{m}$. P is fixed to the wall vertically below A and PQ makes an angle of 30.0° with the vertical. The force F exerted on the beam at Q by the rod is in the direction PQ. This force is shown in **Figure 1**.

Figure 1: The hinged beam AB supported by the light rod PQ.

Part A The force on the beam at ${\it Q}$

Find the magnitude of F, the force the rod exerts on the beam at Q.

Part B The force on the beam at A

Find the magnitude of the force exerted on the beam at \boldsymbol{A} by the pivot.

Part C The angle of the force at ${\cal A}$

At A the force exerted on the beam is to the left. Find the angle the force makes to the horizontal. Use a positive sign if the force is directed above the horizontal and a negative sign if the force is directed below the horizontal.

Adapted from UCLES, A Level, June 2012, OCR M2, Question 3

Gameboard:

STEM SMART Single Maths 48 - Vectors & Mechanics Revision

<u>Home</u> <u>Gam</u>

<u>Gameboard</u>

Maths

Geometry

Vectors

Vector Equations of Motion 3

Vector Equations of Motion 3

Figure 1 shows a particle of mass $m \lg m$ kg moving on a smooth plane inclined at an angle θ° to the horizontal. A pair of axes is marked on the plane. The y-axis is aligned with the line of greatest slope of the plane. The x-axis is perpendicular to the y-axis and is horizontal.

Figure 1: A particle moving on an inclined plane.

By resolving forces, the resultant force on the particle is found to be $\underline{m F}_{\sf res} = egin{pmatrix} 0 \\ -mg\sin(heta) \end{pmatrix}$.

Part A Expression for \underline{v}

Find an expression for the velocity of the particle $\underline{\boldsymbol{v}} \, \mathbf{m} \, \mathbf{s}^{-1}$ as a function of time $t \, \mathbf{s}$ and $\boldsymbol{\theta}$, given that the velocity of the particle is exactly $2\underline{\boldsymbol{i}} + 2\underline{\boldsymbol{j}} \, \mathbf{m} \, \mathbf{s}^{-1}$ when t = 0. Give your answer in the form $a\underline{\boldsymbol{i}} + b\boldsymbol{j}$, where $\underline{\boldsymbol{i}}$ and \boldsymbol{j} are unit vectors in the x and y directions.

The following symbols may be useful: g, i, j, t, theta

Part B Angle of the plane

The particle passes through the origin when t=0. The particle moves in an arc, and after $0.800\,\mathrm{s}$ the particle is again level with the origin (y=0). Find the angle of the plane to the horizontal, θ° . Give your answer in degrees to $3\,\mathrm{sf}$.

Part C Speed after $1.0\,\mathrm{s}$

Find the speed of the particle $1.00\,\mathrm{s}$ after it passes through the origin. Give your answer to $3\,\mathrm{sf}$.

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Single Maths 48 - Vectors & Mechanics Revision

<u>Home</u> <u>Gan</u>

<u>Gameboard</u>

Projectiles: General 2i

Projectiles: General 2i

Maths

A child is trying to throw a small stone to hit a target painted on a vertical wall. The child and the wall are on horizontal ground. The child is standing a horizontal distance of $8\,\mathrm{m}$ from the base of the wall. The child throws the stone from a height of $1\,\mathrm{m}$ with speed $12\,\mathrm{m}\,\mathrm{s}^{-1}$ at an angle of $20\,^\circ$ above the horizontal.

Part A Finding the angle

Find the direction of motion of the stone when it hits the wall. Give your answer as an angle below the horizontal to 3 significant figures.

The child now throws the stone with a speed of $V\,\mathrm{m\,s^{-1}}$ from the same initial position and still at an angle of $20\,^\circ$ above the horizontal. This time the stone hits the target which is $2.5\,\mathrm{m}$ above the ground.

Find V to 3 significant figures.

Used with permission from UCLES, A Level, June 2014, OCR M2, Question 8

Gameboard:

STEM SMART Single Maths 48 - Vectors & Mechanics Revision

<u>Home</u> <u>Gameboard</u> Maths

Newton's Laws: Advanced 1i

Newton's Laws: Advanced 1i

Figure 1: Two particles P and Q joined by a string which is parallel to the slope of the inclined plane.

Two particles P and Q are joined by a taut light inextensible string which is parallel to a line of greatest slope on an inclined plane on which the particles are initially held at rest. The string is $0.5\,\mathrm{m}$ long, and the plane is inclined at $45\,^\circ$ to the horizontal. P is below the level of Q and $3\,\mathrm{m}$ from the foot of the plane. Each particle has mass $0.2\,\mathrm{kg}$. Contact between P and the plane is smooth. The coefficient of friction between Q and the plane is Q0. The particles are released from rest and begin to move down the plane.

Part A Magnitude of frictional force

Find the magnitude of the frictional force acting on ${\it Q}$ correct to 4 significant figures.

Part B Acceleration of particles

Find the acceleration of the particles correct to 4 significant figures.

Part C Tension in the string

Calculate the tension in the string correct to 3 significant figures.

Part D Speed of the particles

Calculate the speed of the particles at the instant when Q reaches the initial position of P. Give your answer to 3 significant figures.

Part E Acceleration of Q

At the instant when Q reaches the initial position of P, Q becomes detached from the string and the two particles travel independently to the foot of the plane.

Find the acceleration of Q.

Part F Time interval

Calculate the time interval between the arrival of P and the arrival of Q at the foot of the plane.

Adapted with permission from UCLES, A Level, June 2008, OCR M1, Question 7