These slides are being provided with permission from the copyright for in-class (CS2208B) use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

Tutorial 06: Combinational Circuits

Computer Science Department

CS2208: Introduction to Computer Organization and Architecture

Winter 2020-2021

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: <u>elsakka@csd.uwo.ca</u> **Phone:** 519-661-2111 x86996

Music: "Corporate Success" by Scott Holmes, used under Attribution-NonCommercial License

Gates

Gates

- ☐ Are our building blocks when considering hardware realization
- ☐ Can be used to build combinational circuits, as well as latches, flip-flops, and sequential circuits
- □ Come in many flavors, including
 - AND
 - OR
 - NOT
 - NAND (Not AND)
 - NOR (Not OR)
 - XOR

Gates

- AND:
 - □ True only when all input are true
- OR:
 - □ True only when at least one input is true
- NOT:
 - □ Complementing the input Boolean value
- NAND:
 - ☐ The complement of an AND result
- NOR:
 - ☐ The complement of an OR result
- **XOR**:
 - ☐ True only when an odd number of inputs are true

\mathbf{X}_{0}	X_1	X ₂	X_3	P	S	Q	T	R	C ₀	C ₁	C ₂	C ₃	F
0	0	0	0	0	1	0	1	1	В	A		C = A	+ B
0	0	0	1	1	0	1	0	0	0	0		0	
0	0	1	0	1	0	1	0	1	0	1		1	
0	0	1	1	1	0	1	0	0	1	0		1	
0	1	0	0	0	1	1	0	1		-			
0	1	0	1	1	0	1	0	0	1	A 0			
0	1	1	0	1	0	1	0	1	0	1			
0	1	1	1	1	0	1	0	0			_		
1	0	0	0	0	1	0	1	1					
1	0	0	1	1	0	1	0	0					
1	0	1	0	1	0	1	0	1					
1	0	1	1	1	0	1	0	0					
1	1	0	0	0	1	1	0	1					
1	1	0	1	1	0	1	0	0					
1	1	1	0	1	0	1	0	1					
1	1	1	1	1	0	1	0	0					

									•	•				F
X_0	X_1	X ₂	X ₃	P	S	Q	T	R	C_0	C ₁	C ₂	C ₃	F	
0	0	0	0	0	1	0	1	1	0	0				
0	0	0	1	1	0	1	0	0	0	0				x ₀
0	0	1	0	1	0	1	0	1	0	0				
0	0	1	1	1	0	1	0	0	0	0				٦
0	1	0	0	0	1	1	0	1	0	1				
0	1	0	1	1	0	1	0	0	0	0				, 1
0	1	1	0	1	0	1	0	1	0	0				x ₁
0	1	1	1	1	0	1	0	0	0	0				
1	0	0	0	0	1	0	1	1	1	0				P
1	0	0	1	1	0	1	0	0	0	0				
1	0	1	0	1	0	1	0	1	0	0				x ₂
1	0	1	1	1	0	1	0	0	0	0	В	А	C = A	B c ₂
1	1	0	0	0	1	1	0	1	0	1	0	0	0	R
1	1	0	1	1	0	1	0	0	0	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1	0	
1	1	1	0	1	0	1	0	1	0	0	1	1	1	
1	1	1	1	1	0	1	0	0	0	0				x ₃

				_									
X_0	X_1	X_2	X_3	P	S	Q	T	R	C ₀	C_1	C_2	C_3	F
0	0	0	0	0	1	0	1	1	0	0	0	0	
0	0	0	1	1	0	1	0	0	0	0	0	1	
0	0	1	0	1	0	1	0	1	0	0	1	0	
0	0	1	1	1	0	1	0	0	0	0	0	1	
0	1	0	U	B	A 0	C = A))	1	0	1	0	0	
0	1	0	1	0	1	0	0	0	0	0	0	1	
0	1	1		1	0	0	0	1	0	0	1	0	
0	1	1	1	1	1	1	0	0	0	0	0	1	
1	0	0	0	0	1	0	1	1	1	0	0	0	
1	0	0	1	1	0	1	0	0	0	0	0	1	
1	0	1	0	1	0	1	0	1	0	0	1	0	
1	0	1	1	1	0	1	0	0	0	0	0	1	
1	1	0	0	0	1	1	0	1	0	1	0	0	
1	1	0	1	1	0	1	0	0	0	0	0	1	
1	1	1	0	1	0	1	0	1	0	0	1	0	
1	1	1	1	1	0	1	0	0	0	0	0	1	

					_								
X_0	\mathbf{X}_{1}	X_2	X_3	P	S	Q	Т	R	C ₀	C ₁	C ₂	C_3	F
0	0	0	0	0	1	0	1	1	0	0	0	0	0
0	0	0	1	1	0	1	0	0	0	0	0	1	1
0	В	A	(C = A -	В	1	0	1	0	0	1	0	1
0	0	0		0		1	0	0	0	0	0	1	1
0	0	1 0		1		1	0	1	0	1	0	0	1
0	1	1		1		1	0	0	0	0	0	1	1
0	1	1	V	1	U	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	0	0	0	0	1	1
1	0	0	0	0	1	0	1	1	1	0	0	0	1
1	0	0	1	1	0	1	0	0	0	0	0	1	1
1	0	1	0	1	0	1	0	1	0	0	1	0	1
1	0	1	1	1	0	1	0	0	0	0	0	1	1
1	1	0	0	0	1	1	0	1	0	1	0	0	1
1	1	0	1	1	0	1	0	0	0	0	0	1	1
1	1	1	0	1	0	1	0	1	0	0	1	0	1
1	1	1	1	1	0	1	0	0	0	0	0	1	1

				_	-	_	-	_		~	~	~	-
X_0	X_1	X ₂	X_3	P	S	Q	T	R	C_0	$\mathbf{C_1}$	C_2	C ₃	F
0	0	0	0	0	1	0	1	1	0	0	0	0	0
0	0	0	1	1	0	1	0	0	0	0	0	1	1
0	0	1	0	1	0	1	0	1	0	0	1	0	1
0	0	1	1	1	0	1	0	0	0	0	0	1	1
0	1	0	0	0	1	1	0	1	0	1	0	0	1
0	1	0	1	1	0	1	0	0	0	0	0	1	1
0	1	1	0	1	0	1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	0	0	0	0	0	1	1
1	0	0	0	0	1	0	1	1	1	0	0	0	1
1	0	0	1	1	0	1	0	0	0	0	0	1	1
1	0	1	0	1	0	1	0	1	0	0	1	0	1
1	0	1	1	1	0	1	0	0	0	0	0	1	1
1	1	0	0	0	1	1	0	1	0	1	0	0	1
1	1	0	1	1	0	1	0	0	0	0	0	1	1
1	1	1	0	1	0	1	0	1	0	0	1	0	1
1	1	1	1	1	0	1	0	0	0	0	0	1	1

$$P = X_2 + X_3$$

$$S = \overline{P} = \overline{(X_2 + X_3)} = \overline{X_2} \cdot \overline{X_3}$$
 (De Morgan law)

$$Q = X_1 + P = X_1 + X_2 + X_3$$

$$T = \overline{Q} = \overline{X_1 + X_2 + X_3} = \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3} \quad \text{(De Morgan law)}$$

$$\blacksquare$$
 $R = X_3$

$$C_0 = X_0 \cdot T = X_0 \cdot \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3}$$

$$C_1 = X_1 . S = X_1 . \overline{X_2} . \overline{X_3}$$

$$C_2 = X_2 \cdot R = X_2 \cdot X_3$$

•
$$C_3 = X_3$$

$$F = X_0 + Q = X_0 + X_1 + X_2 + X_3$$

$$out = \overline{C} \overline{D} + CD + ABD$$

•
$$out = (\overline{C} \overline{D} + CD + ABD)$$

•
$$out = (\overline{\overline{C}} \, \overline{\overline{D}} \, . \, \overline{CD} \, . \, \overline{ABD})$$

- An inverter can be also replaced by a NAND gate, as $\overline{X} \cdot \overline{X} = \overline{X}$
- The sum-of-products can be implemented by NAND gates only.

9

•
$$out = \overline{C}\overline{D} + CD + ABD$$

•
$$out = (\overline{C} \overline{D} + CD + ABD)$$

•
$$out = (\overline{C} \overline{D} \cdot \overline{CD} \cdot \overline{ABD})$$

CS 2208: Introduction to Computer Organization and Architecture

•
$$out = (B + C + \overline{D}) \cdot (A + C + \overline{D}) \cdot (\overline{C} + D)$$

•
$$out = (B + C + \overline{D}) \cdot (A + C + \overline{D}) \cdot (\overline{C} + D)$$

•
$$out = (\overline{(B+C+\overline{D})} + \overline{(A+C+\overline{D})} + \overline{(\overline{C}+D)})$$

- An inverter can be also replaced by a NOR gate, as $\overline{X + X} = \overline{X}$
- The product-of-sums can be implemented by NOR gates only.

 $= \overline{A}$

A	В	C	D	P	Q	R	S	T	F	G
0	0	0	0	1						
0	0	0	1	1						
0	0	1	0	1						
0	0	1	1	1						
0	1	0	0	1						
0	1	0	1	1						
0	1	1	0	1						
0	1	1	1	1						
1	0	0	0	0						
1	0	0	1	0						
1	0	1	0	0						
1	0	1	1	0						
1	1	0	0	0						
1	1	0	1	0						
1	1	1	0	0						
1	1	1	1	0						

	_
G	P
	_

A	В	C	D	P	Q	R	S	T	F	G
0	0	0	0	1	0					
0	0	0	1	1	0					
0	0	1	0	1	0					
0	0	1	1	1	0					
0	1	0	0	1	0					
0	1	0	1	1	0					
0	1	1	0	1	1					
0	1	1	1	1	1					
1	0	0	0	0	0					
1	0	0	1	0	0					
1	0	1	0	0	0					
1	0	1	1	0	0					
1	1	0	0	0	0					
1	1	0	1	0	0					
1	1	1	0	0	1					
1	1	1	1	0	1					

P	=	\boldsymbol{A}	
Q	=	B	. C

A	В	C	D	P	Q	R	S	Т	F	G
0	0	0	0	1	0	1				
0	0	0	1	1	0	1				
0	0	1	0	1	0	1				
0	0	1	1	1	0	1				
0	1	0	0	1	0	1				
0	1	0	1	1	0	1				
0	1	1	0	1	1	1				
0	1	1	1	1	1	1				
1	0	0	0	0	0	0				
1	0	0	1	0	0	0				
1	0	1	0	0	0	0				
1	0	1	1	0	0	0				
1	1	0	0	0	0	0				
1	1	0	1	0	0	0				
1	1	1	0	0	1	1				
1	1	1	1	0	1	1				

$$P = \overline{A}$$

 $Q = B \cdot C$
 $R = P + Q = \overline{A} + B \cdot C$

A	В	C	D	P	Q	R	S	T	F	G
0	0	0	0	1	0	1	1			
0	0	0	1	1	0	1	0			
0	0	1	0	1	0	1	1			
0	0	1	1	1	0	1	0			
0	1	0	0	1	0	1	1			
0	1	0	1	1	0	1	0			
0	1	1	0	1	1	1	1			
0	1	1	1	1	1	1	0			
1	0	0	0	0	0	0	1			
1	0	0	1	0	0	0	1			
1	0	1	0	0	0	0	1			
1	0	1	1	0	0	0	1			
1	1	0	0	0	0	0	1			
1	1	0	1	0	0	0	1			
1	1	1	0	0	1	1	1			
1	1	1	1	0	1	1	1			

$$P = \overline{A}$$

 $Q = B \cdot C$
 $R = P + Q = \overline{A} + B \cdot C$
 $S = \overline{P \cdot D} = \overline{\overline{A} \cdot D} = \overline{\overline{A}} + \overline{D} = A + \overline{D}$

A	В	C	D	P	Q	R	S	Т	F	G
0	0	0	0	1	0	1	1	0		
0	0	0	1	1	0	1	0	1		
0	0	1	0	1	0	1	1	0		
0	0	1	1	1	0	1	0	1		
0	1	0	0	1	0	1	1	0		
0	1	0	1	1	0	1	0	1		
0	1	1	0	1	1	1	1	0		
0	1	1	1	1	1	1	0	1		
1	0	0	0	0	0	0	1	1		
1	0	0	1	0	0	0	1	1		
1	0	1	0	0	0	0	1	1		
1	0	1	1	0	0	0	1	1		
1	1	0	0	0	0	0	1	1		
1	1	0	1	0	0	0	1	1		
1	1	1	0	0	1	1	1	1		
1	1	1	1	0	1	1	1	1		

$$P = \overline{A}$$

$$Q = B \cdot C$$

$$R = P + Q = \overline{A} + B \cdot C$$

$$S = \overline{P \cdot D} = \overline{\overline{A} \cdot D} = \overline{\overline{A}} + \overline{D} = A + \overline{D}$$

$$T = \overline{P \cdot S} = \overline{\overline{A} \cdot (A + \overline{D})} = \overline{\overline{A} \cdot A} + \overline{A} \cdot \overline{D}) = \overline{\overline{A} \cdot \overline{D}} = A + D$$

A	В	C	D	P	Q	R	S	Т	F	G
0	0	0	0	1	0	1	1	0	0	
0	0	0	1	1	0	1	0	1	1	
0	0	1	0	1	0	1	1	0	0	
0	0	1	1	1	0	1	0	1	1	
0	1	0	0	1	0	1	1	0	0	
0	1	0	1	1	0	1	0	1	1	
0	1	1	0	1	1	1	1	0	0	
0	1	1	1	1	1	1	0	1	1	
1	0	0	0	0	0	0	1	1	0	
1	0	0	1	0	0	0	1	1	0	
1	0	1	0	0	0	0	1	1	0	
1	0	1	1	0	0	0	1	1	0	
1	1	0	0	0	0	0	1	1	0	
1	1	0	1	0	0	0	1	1	0	
1	1	1	0	0	1	1	1	1	1	
1	1	1	1	0	1	1	1	1	1	

$$P = \overline{A}$$

$$Q = B \cdot C$$

$$R = P + Q = \overline{A} + B \cdot C$$

$$S = \overline{P \cdot D} = \overline{\overline{A} \cdot D} = \overline{\overline{A}} + \overline{D} = A + \overline{D}$$

$$T = \overline{P \cdot S} = \overline{\overline{A} \cdot (A + \overline{D})} = \overline{\overline{A} \cdot A} + \overline{A \cdot \overline{D}}) = \overline{\overline{A} \cdot \overline{D}} = A + D$$

$$F = T \cdot R = (A + D) \cdot (\overline{A} + B \cdot C)$$

$$= A \cdot \overline{A} + A \cdot B \cdot C + \overline{A} \cdot D + B \cdot C \cdot D$$

$$= 0 + A \cdot B \cdot C + \overline{A} \cdot D + (A \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot C \cdot D)$$

$$= (A \cdot B \cdot C + A \cdot B \cdot C \cdot D) + (\overline{A} \cdot D + \overline{A} \cdot D \cdot B \cdot C)$$

$$= A \cdot B \cdot C \cdot (1 + D) + \overline{A} \cdot D \cdot (1 + B \cdot C)$$

$$= A \cdot B \cdot C \cdot (1 + D) + \overline{A} \cdot D \cdot (1 + B \cdot C)$$

A	В	C	D	P	Q	R	S	T	F	G	1
0	0	0	0	1	0	1	1	0	0	1	1
0	0	0	1	1	0	1	0	1	1	0	1
0	0	1	0	1	0	1	1	0	0	1	l
0	0	1	1	1	0	1	0	1	1	0	1
0	1	0	0	1	0	1	1	0	0	1	1
0	1	0	1	1	0	1	0	1	1	0	1
0	1	1	0	1	1	1	1	0	0	1	
0	1	1	1	1	1	1	0	1	1	0	
1	0	0	0	0	0	0	1	1	0	0	
1	0	0	1	0	0	0	1	1	0	0	
1	0	1	0	0	0	0	1	1	0	0	
1	0	1	1	0	0	0	1	1	0	0	
1	1	0	0	0	0	0	1	1	0	0	
1	1	0	1	0	0	0	1	1	0	0	
1	1	1	0	0	1	1	1	1	1	1	
1	1	1	1	0	1	1	1	1	1	1	

$$P = \overline{A}$$

$$Q = B \cdot C$$

$$R = P + Q = \overline{A} + B \cdot C$$

$$S = \overline{P \cdot D} = \overline{\overline{A} \cdot D} = \overline{A} + \overline{D} = A + \overline{D}$$

$$T = \overline{P \cdot S} = \overline{A} \cdot (A + \overline{D}) = \overline{A} \cdot A + \overline{A} \cdot \overline{D}) = \overline{A} \cdot \overline{D} = A + D$$

$$F = T \cdot R = (A + D) \cdot (\overline{A} + B \cdot C)$$

$$= A \cdot \overline{A} + A \cdot B \cdot C + \overline{A} \cdot D + B \cdot C \cdot D$$

$$= (A \cdot B \cdot C + A \cdot B \cdot C \cdot D) + (\overline{A} \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot C \cdot D)$$

$$= (A \cdot B \cdot C + A \cdot B \cdot C \cdot D) + (\overline{A} \cdot D + \overline{A} \cdot D \cdot B \cdot C)$$

$$= A \cdot B \cdot C \cdot (1 + D) + \overline{A} \cdot D \cdot (1 + B \cdot C)$$

$$= A \cdot B \cdot C + \overline{A} \cdot D$$

$$G = S \cdot R = (A + \overline{D}) \cdot (\overline{A} + B \cdot C)$$

$$= A \cdot \overline{A} + A \cdot B \cdot C + \overline{A} \cdot \overline{D} + B \cdot C \cdot \overline{D}$$

 $= 0 + A.B.C + \overline{A}.\overline{D} + (A.B.C.\overline{D} + \overline{A}.B.C.\overline{D})$ $= (A.B.C + A.B.C.\overline{D}) + (\overline{A}.\overline{D} + \overline{A}.\overline{D}.B.C)$ $= A.B.C.(1 + \overline{D}) + \overline{A}.\overline{D}.(1 + B.C)$ $= A.B.C + \overline{A}.\overline{D}$