統測數學 Exercise 4

- 一、單選題:(100 小題,每題1分,共100分)
- 1. ()甲生在某次實驗中描繪出下圖,是 $y = a\sin(bx) + c$, $0 \le x \le 4\pi$ 的曲線圖形,圖中所示 A 、 B 、 C 、 D 四點分別是左端點、最高點、最低點、右端點。若它們的坐標分別為 A(0,3) 、 $B(\pi,5)$ 、 $C(3\pi,1)$ 、 $D(4\pi,3)$,則 a+2b+c=?

- (A)4 (B)5 (C)6 (D)7
- **2.** ()已知直角三角形 ABC 三邊長如圖所示,則 $\sin B =$

- 3. () 有一扇形的花園,其半徑為12 公尺,圓心角為 $\frac{2\pi}{3}$,則此花園面積為 (A) 12π 平方公尺 (B) 20π 平方公尺 (C) 24π 平方公尺 (D) 48π 平方公尺
- **4.** () 已知 $\sin^2 \theta = \cos^2 \theta 3\sin \theta + 1$,且 $0 < \theta < \frac{\pi}{2}$,則 $\theta =$ (A) 15° (B) 30° (C) 45° (D) 60°
- 5. ()岩 $3\tan^2\theta 10\tan\theta + 3 = 0$,則 $\tan\theta$ 之值為 (A) $\tan\theta = \frac{1}{3}$ (B) $\tan\theta = -\frac{1}{3}$ (C) $\tan\theta = \frac{1}{3}$ 或 $\tan\theta$ = 3 (D) $\tan\theta = -\frac{1}{3}$ 或 $\tan\theta = -3$
- **6.** ()若下列四個選項中,其中有三個互為同界角,則下列何者**不是**另外三個選項的同界角? $(A) \frac{9\pi}{5} \quad (B) 36^{\circ} \quad (C) \frac{\pi}{5} \quad (D) 1116^{\circ}$
- **7.** () *θ* = 693°之最小正同界角為 (A)33° (B)93° (C)333° (D)3°
- 8. () π°角為 (A)直角 (B)鈍角 (C)平角 (D)銳角
- 9. () 一扇形的弧長為 10, 半徑為 6, 則此扇形的面積為 (A)60 (B)48 (C)45 (D)30
- **10.** () 設 $0 \le x < 2\pi$,則函數 $f(x) = \cos^2 x 3\sin x + 2$ 之最大值為 (A)4 (B)5 (C)10 (D)12
- 11. () 已知 $\sin\theta = -\frac{1}{2}$,且 $270^{\circ} < \theta < 360^{\circ}$,則 $\tan(\pi + \theta) + \sin(90^{\circ} \theta)$ 之值為 (A) $-\frac{\sqrt{3}}{2}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{3}}{6}$ (D) $-\frac{\sqrt{3}}{6}$
- 13. ()若 θ 為第二象限角,下列何者為正數? (A) $\tan(\pi + \theta)$ (B) $\cos(\pi + \theta)$ (C) $\cos(-\theta)$

(D) $\sin(\pi + \theta)$

15. ()
$$\tan 135^{\circ} + \sin 240^{\circ} + \cos 330^{\circ}$$
之值為 (A) $-\frac{\sqrt{2}}{2}$ (B) $\sqrt{2}$ (C) -1 (D) $\sqrt{3}$

16. () 下列何者不正確? (A)sin210° =
$$-\frac{1}{2}$$
 (B)cos90° = 1 (C)tan315° = -1 (D)cos π = -1

17. ()若
$$\sin\theta = \frac{3}{5}$$
,且 θ 為第二象限角,則下列何者正確? (A) $\tan\theta = -\frac{3}{4}$ (B) $\cos\theta = \frac{4}{5}$ (C) $\tan\theta\cos\theta = -\frac{5}{3}$ (D) $\cos^2\theta - 1 = \sin^2\theta$

18. () 在銳角三角形
$$ABC$$
 中, $\overline{AB} = 21$, $\overline{BC} = 13$, $\overline{AC} = 20$,則下列何者為真? (A) $\sin B = \frac{5}{13}$ (B) $\sin B = \frac{12}{13}$ (C) $\cos B = \frac{13}{21}$ (D) $\cos B = \frac{20}{21}$

19. ()試問下列何者為有理數?(說明:有理數即可以表示為兩「整數」比值的數) (A)
$$\sin 30^{\circ}\cos 30^{\circ}$$
 (B) $\tan 45^{\circ}\cos 45^{\circ}$ (C) $\frac{\sin 60^{\circ}}{\cos 60^{\circ}}$ (D) $\frac{\sin 30^{\circ}}{\cos 30^{\circ}} \times \frac{\cos 60^{\circ}}{\sin 60^{\circ}}$

20. () 若
$$\theta = 30^{\circ}$$
 , $\frac{1}{1+\sin^2\theta} + \frac{1}{1+\cos^2\theta}$ 之值為 (A) $\frac{1}{3}$ (B) $\frac{48}{35}$ (C) $\frac{7}{5}$ (D) $\frac{8}{7}$

21. () 若
$$\theta$$
 為銳角,且 $\cos\theta = \frac{2}{3}$,則 $\sin^2\theta - \sin(\frac{\pi}{2} - \theta)$ 之值為 (A) $-\frac{1}{9}$ (B) $-\frac{2}{9}$ (C) 0 (D) $\frac{1}{9}$

22. () 直角
$$\triangle ABC$$
中, $\angle C$ 為直角且 \overline{AC} = 24, \overline{BC} = 7,則下列選項何者正確? (A)sin $A = \frac{25}{7}$ (B)cos $A = \frac{7}{24}$ (C)tan $A = \frac{24}{7}$ (D)tan $A \times \cos A = \frac{7}{25}$

23. ()
$$\sqrt{2}\cos 45^{\circ} - \tan 45^{\circ}$$
之值為 (A)0 (B) $\sqrt{2}$ (C) $\sqrt{2}-1$ (D)1

24. ()若角
$$\theta$$
 之弳度量為 6 ,則 θ 的最大負同界角為 $(A)6-\pi$ $(B)\pi-6$ $(C)2\pi-6$ $(D)6-2\pi$

25. ()
$$\theta = \frac{100\pi}{3}$$
 之最小正同界角為 (A) $\frac{\pi}{3}$ (B) $\frac{4\pi}{3}$ (C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{3}$

26. ()若一直角三角形
$$ABC$$
 中, $\angle C$ 為直角,且 $\tan A = \frac{5}{12}$ 、 $\overline{BC} = 10$,則此三角形之周長為何? (A) 30 (B) 40 (C) 50 (D) 60

27. ()
$$\exists \mathbb{Z} \ a = \sin(-60^\circ) \cdot b = \tan 210^\circ \cdot c = \cos(-225^\circ) \cdot \exists \mathbb{Z} \ (A) \ c > b > a$$
 (B) $c > a > b$ (C) $b > c > a$ (D) $b > a > c$

28. () 設
$$\theta$$
 為銳角,且 $\sin \theta - \cos \theta = \frac{1}{3}$,則 $\sin \theta \cos \theta$ 之值為 (A) $\frac{1}{9}$ (B) $\frac{2}{9}$ (C) $\frac{4}{9}$ (D) $\frac{8}{9}$

30. ()
$$\sin^2 30^\circ - \tan^2 45^\circ + 2\cos^2 60^\circ =$$

(A) $\frac{1}{4}$ (B) $-\frac{1}{4}$ (C) $\frac{7}{4}$ (D) $\frac{3}{4}$

31. ()
$$\frac{13\pi}{5}$$
 之最小正同界角為何? (A) $\frac{8\pi}{5}$ (B) π (C) $\frac{3\pi}{5}$ (D) $\frac{\pi}{5}$

32. () 函數
$$f(x) = 5\sin\left(3x + \frac{\pi}{4}\right) - 2$$
 之週期為 (A) $\frac{11\pi}{12}$ (B) 6π (C) $\frac{2\pi}{3}$ (D) 2π

- 33. ()設 $f(x) = \sin x + \cos^2 x$, $0 \le x \le \pi$,f(x)最大值為 M,最小值為 m,則下列敘述何者正確? (A)M = 2 (B)m < 0 (C)4M + m = 6 (D)M m > 1
- 34. ()設 $a = \sin(\cos 0^\circ)$, $b = \cos(\sin 0^\circ)$, $c = \cos(\sin 90^\circ)$,則 $a \cdot b \cdot c$ 之大小順序為 (A)a > b > c (B)a > c > b (C)c > a > b (D)b > a > c
- 35. () 設 $x = 3\sin\theta 2\cos\theta$, $y = 2\sin\theta + 3\cos\theta$, 則 $x^2 + y^2 = (A)5$ (B)8 (C)10 (D)13
- 36. () 設 $a = \cos 1$, $b = \cos 2$, $c = \cos 3$,則 a,b,c 大小順序為 (A)a > c > b (B)a > b > c (C)b > a > c (D)b > c > a
- **37.** () 已知 θ 為銳角,若 $\tan \theta = \frac{3}{2}$,則 $\frac{3\cos \theta + 4\sin \theta}{2\sin \theta \cos \theta}$ 之值為 (A)7 (B) $\frac{9}{4}$ (C) $\frac{9}{2}$ (D)1
- **38.** ()已知 $y=2\sin x+1$, $0 \le x \le 2\pi$ 的圖形與水平線 y=1 、 y=0 的交點個數分別為a 、 b ,則下列何者正確? (A) a=3 、 b=2 (B) a=2 、 b=2 (C) a=2 、 b=3 (D) a=1 、 b=3
- **39.** ()設一扇形弧長為 2π 公分,半徑為4 公分,則此扇形面積為 (A) 2π 平方公分 (B) 3π 平方公分 (C) 4π 平方公分 (D) 8π 平方公分
- **40.** () $1^{\circ} =$ (A) $\frac{\pi}{180^{\circ}}$ (B) $\frac{\pi}{180}$ (C) $\frac{180}{\pi}$ (D) $\frac{180^{\circ}}{\pi}$
- **41.** () $\frac{21\pi}{5}$ 之最小正同界角為何? (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{5}$
- 42. () $\cos(-240^{\circ}) + \sin 330^{\circ} \times \sqrt{3} \tan(-870^{\circ}) =$ (A) -3 (B) -2 (C) -1 (D) 0
- **43.** ()已知 $\sin\theta > 0$ 且 $\tan\theta < 0$,則 θ 為第幾象限角? (A)— (B)二 (C)三 (D)四
- 44. () 在六十分制中, 30′(分)為 (A)1°(B)0.3°(C)1.5°(D)0.5°
- **45.** () 下列何者與45°互為同界角? (A) $\frac{7\pi}{4}$ (B)-315° (C)-45° (D) $\frac{3\pi}{4}$
- **46.** ()若∠A的最小正同界角為 240°,則∠A的最大負同界角為 (A)-120° (B)-60° (C)-240° (D)-300°
- **47.** () $2\sin^2 30^\circ + \cos^2 45^\circ + \tan^2 60^\circ$ 之值為 (A) 4 (B) $\frac{15}{4}$ (C) $\frac{9}{2}$ (D) $\frac{17}{4}$
- **48.** () 設 θ 為 銳 角 , 若 $\sin^2 \theta 2\sin \theta \cos \theta + \cos^2 \theta = \frac{1}{2}$, 則 $\sin \theta \cos \theta =$ (A) $\frac{1}{8}$ (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{1}{16}$
- **49.** () 下列何者為第二象限角? (A) 270° (B) -135° (C) 855° (D) 220°
- 50. () 已知 θ 為第三象限角,若 $\tan \theta = \frac{12}{5}$,則 $\sin \theta =$ (A) $-\frac{5}{13}$ (B) $-\frac{5}{12}$ (C) $-\frac{13}{12}$ (D) $-\frac{12}{13}$
- 51. ()設 $a = \tan 70^\circ$, $b = \sin 70^\circ$, $c = \cos 70^\circ$,則 $a \cdot b \cdot c$ 的大小順序為 (A) a > b > c (B) b > a > c (C) c > b > a (D) a > c > b
- **52.** ()設 x 為任意實數,則 $f(x) = -2\sin^2 x \sin x + 2$ 的最大值為何? (A)1 (B) $\frac{15}{8}$ (C) $\frac{17}{8}$ (D)
- **53.** () 設 $\theta = 10$,則 θ 的最小正同界角為 (A) $10 3\pi$ (B) $10 2\pi$ (C) 10π (D) $4\pi 10$

- **55.** ()請問 -1520°為第幾象限角? (A)— (B)二 (C)三 (D)四
- **56.** ()已知坐標平面上兩點 $A(\sin\theta,\cos\theta)$, $B(\cos\theta,\sin\theta)$,若 $\sin\theta\cos\theta = \frac{3}{16}$,則線段 \overline{AB} 之長為 (A)1 (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{\sqrt{5}}{2}$ (D)0
- 57. () $\triangle ABC \Leftrightarrow \angle C = 90^{\circ}, \overline{AC} = 4, \overline{BC} = 3, \exists \sin A + \cos A = (A)\frac{7}{5}$ (B) $\frac{5}{3}$ (C) $\frac{4}{5}$ (D) $\frac{4}{3}$
- **58.** ()設 θ 為銳角,下列各式何者**錯誤**? (A) $\sin^2\theta + \cos^2\theta = 1$ (B) $1 \sin^2\theta = \cos^2\theta$ (C) $\tan\theta\cos\theta = \sin\theta$ (D) $\tan\theta\sin\theta = \cos\theta$
- **59.** () 已知 $\tan\theta = -\frac{4}{3}$ 且 $90^{\circ} < \theta < 180^{\circ}$,則 $\frac{5\sin\theta + 2}{5\cos\theta + 1}$ 之值為 (A) -3 (B) -2 (C) -1 (D)2
- **60.** () 設 $\pi < \theta < \frac{3\pi}{2}$,且 $2\sin^2\theta + 3\cos\theta = 0$,則 θ 角為 (A)120° (B)210° (C)225° (D)240°
- 61. () $\cos \frac{3\pi}{2} =$ (A)1 (B)0 (C)-1 (D)無意義
- 63. () 設 $a = \tan 70^{\circ}$, $b = \cos 70^{\circ}$, $c = \sin 70^{\circ}$,則 (A)a > c > b (B)a > b > c (C)b > c > a (D)c > a > b
- **64.** () $f(x) = 5\sin x 4$ 的最大值為 (A)3 (B)2 (C)1 (D)0
- **65.** () 滿足方程式 $2\cos^2\theta+11\cos\theta+5=0$ 的最小正同界角 θ 為 (A)30° (B)60° (C)90° (D) 120°
- **66.** () 四個有向角分別為甲: -640°、乙:123°、丙:275°、丁:640°,則哪幾個有向角在標準位置上是第四象限角? (A)甲、乙 (B)丙、丁 (C)甲、丁 (D)乙、丙
- **67.** () 試求三角函數 $\sin(-960^{\circ})$ 之值。 (A) $\frac{-\sqrt{3}}{2}$ (B) $\frac{-1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{3}}{2}$
- **68.** () 若 $0^{\circ} \le \theta \le 60^{\circ}$,則 $\tan \theta$ 的最大值為 (A)1 (B) $\sqrt{3}$ (C) $\sqrt{2}$ (D)2
- **69.** () $\triangle ABC$ 中,a=6、b=7、 $\angle C=150^{\circ}$,則 $\triangle ABC$ 之面積為多少平方單位? (A)13 (B)12 (C) $\frac{23}{2}$ (D) $\frac{21}{2}$
- **70.** () 如圖,已知從 A 點測得臺北 101 大樓的樓頂之仰角為 60° ,且臺北 101 大樓為 $\triangle ABC$ 的外接圓圓心, $\angle BAC = 30^{\circ}$, $B \cdot C$ 兩點相距 300 公尺,則臺北 101 大樓的高度為

(A)300 公尺 (B)300√3 公尺 (C)600 公尺 (D)150√3 公尺

- 71. () 在△ABC中,已知 $\overline{AB} = 10$, $\overline{AC} = 8$, $\overline{BC} = 7$,则 $\cos C =$ (A) $\frac{13}{56}$ (B) $\frac{1}{56}$ (C) $\frac{12}{112}$ (D) $\frac{13}{112}$
- **72.** () $\triangle ABC$ 中, $\angle A = 60^{\circ}$ 、 $\overline{AB} = 3$ 、 $\overline{AC} = 4$,則 $\triangle ABC$ 的面積為多少平方單位? (A) $\sqrt{2}$ (B)

 $3\sqrt{2}$ (C) $2\sqrt{3}$ (D) $3\sqrt{3}$

- 73. () $\triangle ABC$ 中,a、b、c 分別表示三邊長,a+2b-2c=0 且 a-2b+c=0,則 $\sin A$: $\sin B$: $\sin C=$ (A)1:2:2 (B)4:3:2 (C)2:3:4 (D)2:2:1
- 74. () $\triangle ABC \rightleftharpoons \overline{BC} = 4 \cdot \angle A = 45^{\circ} \cdot \angle C = 105^{\circ} , \text{ [I] } \overline{AC} = (A)2 \quad (B)2\sqrt{2} \quad (C)3 \quad (D)5$
- 75. () 在 $\triangle ABC$ 中,已知 \overline{AB} =13 , \overline{AC} =8 , \overline{BC} =7 ,則 $\angle C$ = (A)30° (B)60° (C)90° (D)120°
- 76. () 若 $\triangle ABC$ 中 , $\overline{AB} = 4$ 、 $\overline{BC} = 5$ 、 $\overline{CA} = 6$ 且 $\theta = \angle BAC$,則 $\sin \theta =$ (A) $\frac{\sqrt{7}}{16}$ (B) $\frac{3\sqrt{7}}{16}$ (C) $\frac{5\sqrt{7}}{16}$ (D) $\frac{3\sqrt{7}}{8}$
- 77. ()已知 $\triangle ABC$ 三邊長 a , b , c 滿足 $(a-b)^2 = c^2 (2+\sqrt{3})ab$,若 $\angle C$ 為邊長 c 所對應的角,則 $\angle C =$ (A) 30° (B) 60° (C) 150° (D) 120°。
- 78. ()設 $a \cdot b \cdot c$ 表△ABC 三邊長 · 若 $b^2 (c a)^2 = ca$ · 則 $\angle B$ 等於 (A)150° (B)120° (C)90° (D)60°
- 79. () $\triangle ABC$ 三邊長 $a = 2\sqrt{2} + 1$ 、 $b = 3 + \sqrt{2}$ 、c = 1 ,則 $\triangle ABC$ 的最大角為 (A)60° (B)75° (C)120° (D)150°
- **80.** () 如圖,等腰三角形 ABC 的頂角 A 為 70° ,若自 B 向 \overline{AC} 邊作垂線 \overline{BE} ,則 \overline{BE} =

- (A) $\overline{BC} \sin 70^{\circ}$ (B) $\overline{AC} \cos 70^{\circ}$ (C) $\overline{AB} \sin 35^{\circ}$ (D) $\overline{BC} \cos 35^{\circ}$
- 81. ()廣場上插了一支紅旗與一支白旗,小明站在兩支旗子之間,利用手邊的儀器,小明測出他與正東方紅旗間的距離為他與正西方白旗間距離的 6 倍;小明往正北方走了 10 公尺之後再測量一次,發現他與紅旗的距離變成他與白旗距離的 4 倍。試求紅白兩旗之間的距離最接近下列哪個選項? (A)60 公尺 (B)65 公尺 (C)70 公尺 (D)75 公尺
- **82.** ()地面上 $A \times B$ 二點相距 $20\sqrt{2}$ 公尺,今測得一屋頂 C 之仰角分別為 $30^\circ \times 45^\circ$,且由 C 测得 $A \times B$ 二點之視角(即 $\angle ACB$)為 135° ,則屋高為

- (A) $4\sqrt{5}$ 公尺 (B) $2\sqrt{5}$ 公尺 (C) $5\sqrt{5}$ 公尺 (D) $5\sqrt{2}$ 公尺
- **83.** ()江小瑢站在神木前100√3 公尺處,測得神木頂的仰角為 60° ,則神木的高為 (A)100 公尺 (B)200 公尺 (C)300 公尺 (D)400 公尺
- **84.** ()某人離一棵樹 20 公尺,且由地面上測得樹頂的仰角為 30°,則樹高為 (A)10 公尺 (B)20 公尺 (C) $\frac{20\sqrt{3}}{3}$ 公尺 (D) $\frac{40}{3}$ 公尺
- **85.** () 如圖,若 $\angle A = 30^{\circ}$, $\angle CDB = 60^{\circ}$ 且 $\overline{AD} = 45$,則 $\overline{BD} = 45$

- **86.** ()文謙自地面 A 處測得一高樓樓頂的仰角為 30° ,朝此高樓水平前進 200 公尺至 B 處,再 測得高樓樓頂的仰角為 45° ,若文謙的身高不計,則此高樓的高度為 $(A)100(\sqrt{3}+1)$ 公尺 (B) $100(\sqrt{3}-1)$ 公尺 (C) $200(\sqrt{3}+1)$ 公尺 (D) $200(\sqrt{3}-1)$ 公尺
- **87.** ()在 $A \times B$ 兩棟大樓地面連接線段的中點,測得 $A \times B$ 兩棟大樓樓頂之仰角分別為 60° 及 30° ,則 A 樓高度為 B 樓高度的幾倍? (A) $\frac{\sqrt{2}}{2}$ (B) 3 (C) 4 (D) $\frac{7}{2}$
- **88.** () 有一棟大樓在下午 2 時太陽照射的影子(如圖之線段 \overline{BC}) 長為 25 公尺,此時從大樓的影子端(即 C 點),測得大樓頂端的光線與地平面所成之夾角($\angle BCA$) 為 60° 。若已知在下午 2 時與 4 時,太陽從大樓頂端射出的光線夾角($\angle CAD$) 為 30° 。則在下午 4 時,此大樓的影子(如圖之線段 \overline{BD}) 長為多少公尺?

(A) 50 (B) $25(1+\sqrt{3})$ (C) 75 (D) $50\sqrt{3}$

89. () 如圖,有一船向北航行,當通過 A 點時在北 30°東的方位發現一燈塔 C,之後繼續向北前進 20 浬到達 B 點,此時燈塔的方位為南 60°東,則此時船與燈塔的距離為

(A)10 浬 (B) $10\sqrt{3}$ 浬 (C)20 浬 (D) $20\sqrt{3}$ 浬

90. () 小明要到麵包店買麵包,當他站在家門口時,測得麵包店的方位為東北方,當他朝東 15° 北的方向前進 50 公尺後,再測得麵包店的方位為東 60°北,如圖所示,則小明家到麵包店的距離為

(A) $(50\sqrt{3}+50)$ 公尺 (B) $50\sqrt{3}$ 公尺 (C) 50 公尺 (D) $(50\sqrt{3}-50)$ 公尺

91. () 某建築物上有一塔,塔頂有一旗桿,已知旗桿長4公尺,今在平地上某點測得建築物之

頂、塔頂、旗桿頂的仰角分別為 45° 、 60° 、 75° ,則建築物的高度為 $(A)\sqrt{3}$ 公尺 (B)2 公尺 $(C)(\sqrt{3}-1)$ 公尺 $(D)(\sqrt{3}+1)$ 公尺

- **92.** () 小美從地面 A 處,測得一大樓樓頂仰角為 45° ,他朝此大樓水平前進 60 公尺後到達大樓底部,則此大樓的高度為 (A) $30\sqrt{2}$ 公尺 (B) $60\sqrt{2}$ 公尺 (C) 30 公尺 (D) 60 公尺
- 93. () 小偉在離塔底 200 公尺的地面某處,測得塔頂的仰角為 60° ,若小偉的身高不計,則此 塔高為 (A) $200\sqrt{3}$ 公尺 (B) $150\sqrt{3}$ 公尺 (C) $100\sqrt{3}$ 公尺 (D) $50\sqrt{3}$ 公尺
- **94.** ()葉小柔於地面一高塔前的正東邊 A 點處,測得此塔之頂端的仰角為 60° ,葉小柔向正南方向走 12 公尺到達 B 點處,再測得塔頂之仰角為 45° ,則此塔的高度為

 $(A)6\sqrt{6}$ 公尺 $(B)6\sqrt{3}$ 公尺 $(C)6\sqrt{2}$ 公尺 (D)6 公尺

- **95.** () $\triangle ABC$ 中,b=5、c=20、 $\angle A=30^{\circ}$,則 $\triangle ABC$ 之面積為 (A) $10\sqrt{2}$ (B)15 (C)20 (D)
- **96.** () 如圖所示,某半徑為100公尺的圓形展覽館,在圓周上設有 $A \times B \times C$ 三個入口,若 $\angle CAB = 30^{\circ}$,則 $B \times C$ 兩入口間的直線距離為多少公尺?

(A) $110\sqrt{3}$ (B)180 (C) $100\sqrt{3}$ (D)100

- 97. () 在 $\triangle ABC$ 中,若 $\overline{AB}=6$, $\angle C=30^\circ$,則 $\triangle ABC$ 外接圓的半徑為 (A)3 (B) $3\sqrt{3}$ (C)6 (D)12
- 98. ()在 $\triangle ABC$ 中,若 $\overline{AB}=8$, $\overline{BC}=10$, $\angle B=30^\circ$,則 $\triangle ABC$ 面積為 (A)20 (B)25 (C)30 (D)35
- 99. () $\triangle ABC$ 中, $\overline{AB} = 6$, $\overline{AC} = 9$, $\angle A = 120^{\circ}$, $\angle A$ 之角平分線交 \overline{BC} 於 D,則 $\overline{AD} = (A)\frac{12}{5}$ (B) $\frac{18}{5}$ (C) $\frac{10}{3}$ (D) $\frac{14}{3}$
- **100.** () 三角形的三邊長為 $4 \cdot 5 \cdot 6$,若其最大內角為 θ ,則 $\cos \theta = (A) \frac{1}{4} (B) \frac{1}{5} (C) \frac{1}{6} (D) \frac{1}{8}$