# In [8]:

```
import tensorflow as tf
```

#### In [9]:

```
from tensorflow.keras.utils import to_categorical
```

### In [10]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from PIL import Image
import os
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout
from tensorflow.keras import layers
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
```

## In [11]:

```
data=[]
labels=[]
classes=43
cur_path='C:\\Users\\is-os\\Desktop\\archive'
```

#### In [12]:

```
#retrieving images and labels
for i in range(classes):
    path=os.path.join(cur_path,'Train',str(i))
    #print(path)
    images=os.listdir(path)
    #print(images)
    for a in images:
        try:
            image = Image.open(path + '\\'+ a)
            image=image.resize((30,30))
            image=np.array(image)
            data.append(image)
            labels.append(i)
        except:
            print(f'error loading image{a}')
```

```
In [13]:
```

```
#change data to array
data = np.array(data)
labels = np.array(labels)
print(data)
   [ 10
          9 11]
          9 11]
   [ 10
     9
          9 11]]
  [[ 11
            13]
        11
   [ 11
         10
            12]
   [ 9
          9 10]
   [ 10
          9 11]
   [ 9
          9 11]
   [ 10
          9 11]]
  [[ 11
            12]
         11
   [ 10
         10 11]
   [ 9
          9
             10]
   [ 10
         9 12]
   [ 10
        10 11]
   [ 10
          9 11]]]]
In [14]:
print(data.shape,labels.shape)
(39209, 30, 30, 3) (39209,)
In [ ]:
In [15]:
#split data
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_
In [16]:
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
(31367, 30, 30, 3) (7842, 30, 30, 3) (31367,) (7842,)
In [17]:
#rescale data
X_train=X_train/255
X_test=X_test/255
```

#### In [18]:

```
#Converting the Labels into one hot encoding
y_train = to_categorical(y_train, 43)
y_test = to_categorical(y_test, 43)
```

#### In [19]:

```
#building model architecture
MODEL=Sequential([
    Conv2D(filters=32, kernel_size=(3,3), activation='relu', input_shape=X_train.shape[1
    Conv2D(filters=32, kernel_size=(3,3), activation='relu'),
    MaxPool2D(pool_size=(2, 2)),
    Dropout(rate=0.25),
    Conv2D(filters=64, kernel_size=(3, 3), activation='relu'),
    Conv2D(filters=64, kernel_size=(3, 3), activation='relu'),
    MaxPool2D(pool_size=(2, 2)),
    Dropout(rate=0.25),
    Flatten(),
    Dense(256, activation='relu'),
    Dropout(rate=0.5),
    Dense(43, activation='softmax')
```

## In [20]:

```
#defining learning rate,epochs and nessessary things to build the model
lr = 0.001
epochs = 30

opt = Adam(learning_rate=lr, decay=lr / (epochs * 0.5))
MODEL.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
```

### In [ ]:

# In [21]:

#fit data to train and validate it
hist = MODEL.fit(X\_train, y\_train, batch\_size=32, epochs=epochs, validation\_data=(X\_test

```
Epoch 1/30
accuracy: 0.6158 - val_loss: 0.1622 - val_accuracy: 0.9628
Epoch 2/30
981/981 [============ ] - 16s 16ms/step - loss: 0.2667 -
accuracy: 0.9187 - val loss: 0.0826 - val accuracy: 0.9767
Epoch 3/30
981/981 [============ ] - 16s 16ms/step - loss: 0.1564 -
accuracy: 0.9503 - val_loss: 0.0396 - val_accuracy: 0.9898
Epoch 4/30
981/981 [=========== ] - 16s 16ms/step - loss: 0.1153 -
accuracy: 0.9653 - val_loss: 0.0331 - val_accuracy: 0.9913
Epoch 5/30
981/981 [=========== ] - 16s 16ms/step - loss: 0.0887 -
accuracy: 0.9726 - val_loss: 0.0276 - val_accuracy: 0.9927
Epoch 6/30
981/981 [=========== ] - 16s 16ms/step - loss: 0.0707 -
accuracy: 0.9785 - val_loss: 0.0214 - val_accuracy: 0.9946
Epoch 7/30
981/981 [============ ] - 16s 16ms/step - loss: 0.0650 -
accuracy: 0.9790 - val_loss: 0.0208 - val_accuracy: 0.9945
981/981 [============ ] - 16s 16ms/step - loss: 0.0589 -
accuracy: 0.9826 - val_loss: 0.0212 - val_accuracy: 0.9954
Epoch 9/30
981/981 [============== ] - 16s 16ms/step - loss: 0.0452 -
accuracy: 0.9861 - val_loss: 0.0177 - val_accuracy: 0.9955
Epoch 10/30
981/981 [============== ] - 16s 16ms/step - loss: 0.0434 -
accuracy: 0.9868 - val_loss: 0.0164 - val_accuracy: 0.9966
Epoch 11/30
981/981 [============ ] - 16s 16ms/step - loss: 0.0355 -
accuracy: 0.9883 - val_loss: 0.0210 - val_accuracy: 0.9955
Epoch 12/30
981/981 [============= ] - 16s 16ms/step - loss: 0.0351 -
accuracy: 0.9884 - val_loss: 0.0195 - val_accuracy: 0.9962
Epoch 13/30
981/981 [=========== ] - 16s 16ms/step - loss: 0.0341 -
accuracy: 0.9897 - val_loss: 0.0165 - val_accuracy: 0.9966
Epoch 14/30
981/981 [================ ] - 16s 16ms/step - loss: 0.0299 -
accuracy: 0.9910 - val loss: 0.0176 - val accuracy: 0.9959
Epoch 15/30
981/981 [============== ] - 16s 16ms/step - loss: 0.0271 -
accuracy: 0.9918 - val_loss: 0.0161 - val_accuracy: 0.9964
Epoch 16/30
981/981 [============== ] - 16s 16ms/step - loss: 0.0245 -
accuracy: 0.9919 - val_loss: 0.0160 - val_accuracy: 0.9966
Epoch 17/30
981/981 [============= ] - 16s 16ms/step - loss: 0.0225 -
accuracy: 0.9934 - val_loss: 0.0183 - val_accuracy: 0.9960
Epoch 18/30
981/981 [=============== ] - 16s 16ms/step - loss: 0.0208 -
accuracy: 0.9934 - val loss: 0.0151 - val accuracy: 0.9967
Epoch 19/30
981/981 [========== ] - 16s 16ms/step - loss: 0.0211 -
accuracy: 0.9932 - val_loss: 0.0163 - val_accuracy: 0.9968
Epoch 20/30
981/981 [============ ] - 16s 16ms/step - loss: 0.0203 -
accuracy: 0.9937 - val loss: 0.0140 - val accuracy: 0.9971
Epoch 21/30
```

```
981/981 [============== ] - 16s 16ms/step - loss: 0.0172 -
accuracy: 0.9945 - val loss: 0.0142 - val accuracy: 0.9973
Epoch 22/30
981/981 [========== ] - 16s 16ms/step - loss: 0.0172 -
accuracy: 0.9945 - val_loss: 0.0182 - val_accuracy: 0.9966
Epoch 23/30
981/981 [============== ] - 16s 16ms/step - loss: 0.0173 -
accuracy: 0.9947 - val_loss: 0.0135 - val_accuracy: 0.9977
Epoch 24/30
981/981 [========== ] - 16s 16ms/step - loss: 0.0157 -
accuracy: 0.9951 - val_loss: 0.0139 - val_accuracy: 0.9971
Epoch 25/30
981/981 [============ ] - 16s 16ms/step - loss: 0.0140 -
accuracy: 0.9956 - val_loss: 0.0143 - val_accuracy: 0.9971
Epoch 26/30
981/981 [========== ] - 16s 16ms/step - loss: 0.0159 -
accuracy: 0.9948 - val_loss: 0.0140 - val_accuracy: 0.9974
Epoch 27/30
981/981 [============ ] - 16s 16ms/step - loss: 0.0139 -
accuracy: 0.9956 - val_loss: 0.0145 - val_accuracy: 0.9969
Epoch 28/30
981/981 [========== ] - 16s 16ms/step - loss: 0.0124 -
accuracy: 0.9962 - val_loss: 0.0148 - val_accuracy: 0.9972
Epoch 29/30
981/981 [============== ] - 16s 16ms/step - loss: 0.0114 -
accuracy: 0.9968 - val_loss: 0.0127 - val_accuracy: 0.9976
Epoch 30/30
981/981 [=========== ] - 16s 16ms/step - loss: 0.0108 -
accuracy: 0.9964 - val_loss: 0.0164 - val_accuracy: 0.9969
```

### In [ ]:

# In [22]:

```
#ploting the performances
plt.figure(0)
plt.plot(hist.history['accuracy'], label='training accuracy')
plt.plot(hist.history['val_accuracy'], label='val accuracy')
plt.title('Accuracy')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show()
```



# In [ ]:

### In [23]:

```
#plot the losses
plt.figure(1)
plt.plot(hist.history['loss'], label='training loss')
plt.plot(hist.history['val_loss'], label='val loss')
plt.title('Loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.legend()
plt.show()
```



# In [24]:

```
#the data has a csv file that contain the names and numbers for classes, it has a column
#column for labels
testdata = pd.read_csv('C:\\Users\\is-os\\Desktop\\archive\\Test.csv')

t_labels = testdata["ClassId"].values
imgs = testdata["Path"].values
```

#### In [25]:

```
#same steps as the training(open,resize,convert to array and rescale)
t_data =[]

for img in imgs:
    try:
        image = Image.open(cur_path+"\\"+img)
        image = image.resize((30,30))
        t_data.append(np.array(image))
    except:
        print(f"error in {img}")
X_test=np.array(t_data)
X_test = X_test/255
```

#### In [26]:

```
print(X_test)
[[[[0.45490196 0.54901961 0.68627451]
   [0.45490196 0.54117647 0.67058824]
   [0.46666667 0.54117647 0.67843137]
               0.46666667 0.588235291
   [0.4
   [0.39607843 0.47843137 0.58431373]
   [0.36470588 0.43921569 0.54509804]]
  [[0.45490196 0.55686275 0.69411765]
   [0.45490196 0.55294118 0.68627451]
   [0.45882353 0.55294118 0.68235294]
   [0.47058824 0.56078431 0.69803922]
   [0.47843137 0.56470588 0.69019608]
   [0.47843137 0.55686275 0.68235294]]
  [[0.4627451 0.55686275 0.68235294]
   [0.45490196 0.55294118 0.68627451]
   [0.44705882 0.54901961 0.6745098 ]
```

## In [27]:

```
#run the prediction
pred = MODEL.predict_classes(X_test)
```

```
C:\Users\is-os\anaconda3\lib\site-packages\tensorflow\python\keras\engine
\sequential.py:455: UserWarning: `model.predict_classes()` is deprecated a
nd will be removed after 2021-01-01. Please use instead:* `np.argmax(mode
l.predict(x), axis=-1)`, if your model does multi-class classification
(e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) >
0.5).astype("int32")`, if your model does binary classification (e.g.
if it uses a `sigmoid` last-layer activation).
  warnings.warn('`model.predict_classes()` is deprecated and '
```

# In [28]:

```
#showing metrics data
from sklearn.metrics import accuracy_score
#Accuracy with the test data
print('Test Data accuracy: ',accuracy_score(t_labels, pred)*100)
```

Test Data accuracy: 97.84639746634997

In [29]:

from sklearn.metrics import classification\_report print(classification\_report(t\_labels, pred))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.00      | 1.00   | 1.00     | 60      |
| 1            | 0.97      | 1.00   | 0.98     | 720     |
| 2            | 0.99      | 0.99   | 0.99     | 750     |
| 3            | 1.00      | 0.96   | 0.98     | 450     |
| 4            | 1.00      | 0.97   | 0.99     | 660     |
| 5            | 0.94      | 0.99   | 0.96     | 630     |
| 6            | 1.00      | 0.87   | 0.93     | 150     |
| 7            | 0.98      | 1.00   | 0.99     | 450     |
| 8            | 1.00      | 0.98   | 0.99     | 450     |
| 9            | 0.98      | 1.00   | 0.99     | 480     |
| 10           | 1.00      | 1.00   | 1.00     | 660     |
| 11           | 0.93      | 0.99   | 0.96     | 420     |
| 12           | 1.00      | 0.98   | 0.99     | 690     |
| 13           | 1.00      | 1.00   | 1.00     | 720     |
| 14           | 1.00      | 1.00   | 1.00     | 270     |
| 15           | 0.98      | 1.00   | 0.99     | 210     |
| 16           | 0.99      | 1.00   | 0.99     | 150     |
| 17           | 1.00      | 1.00   | 1.00     | 360     |
| 18           | 0.98      | 0.88   | 0.92     | 390     |
| 19           | 0.98      | 1.00   |          | 60      |
|              |           |        | 0.99     | 90      |
| 20           | 0.83      | 1.00   | 0.90     |         |
| 21           | 1.00      | 0.96   | 0.98     | 90      |
| 22           | 1.00      | 0.99   | 1.00     | 120     |
| 23           | 0.96      | 0.99   | 0.97     | 150     |
| 24           | 0.76      | 0.98   | 0.85     | 90      |
| 25           | 0.98      | 0.98   | 0.98     | 480     |
| 26           | 0.95      | 0.93   | 0.94     | 180     |
| 27           | 0.97      | 0.50   | 0.66     | 60      |
| 28           | 0.99      | 0.99   | 0.99     | 150     |
| 29           | 0.86      | 1.00   | 0.92     | 90      |
| 30           | 0.96      | 0.75   | 0.84     | 150     |
| 31           | 0.99      | 0.99   | 0.99     | 270     |
| 32           | 1.00      | 1.00   | 1.00     | 60      |
| 33           | 0.98      | 1.00   | 0.99     | 210     |
| 34           | 0.98      | 0.99   | 0.98     | 120     |
| 35           | 1.00      | 1.00   | 1.00     | 390     |
| 36           | 0.98      | 0.97   | 0.98     | 120     |
| 37           | 0.98      | 1.00   | 0.99     | 60      |
| 38           | 0.99      | 1.00   | 0.99     | 690     |
| 39           | 0.93      | 0.98   | 0.95     | 90      |
| 40           | 0.88      | 0.98   | 0.93     | 90      |
| 41           | 0.98      | 0.85   | 0.91     | 60      |
| 42           | 0.98      | 1.00   | 0.99     | 90      |
| accuracy     |           |        | 0.98     | 12630   |
| macro avg    | 0.97      | 0.96   | 0.96     | 12630   |
| weighted avg | 0.98      | 0.98   | 0.98     | 12630   |
| wergined avg | 0.70      | 0.50   | 0.70     | 12000   |

# In [30]:

```
#ploting the results
plt.figure(figsize = (25, 25))
index = 0
for i in range(25):
    plt.subplot(5, 5, i + 1)
   plt.grid(False)
    plt.xticks([])
    plt.yticks([])
    prediction = pred[index + i]
    actual = t_labels[index + i]
    col = 'g'
    if prediction != actual:
        col = 'r'
    plt.xlabel('Actual={} || Pred={}'.format(actual, prediction), color = col)
    plt.imshow(X_test[index + i])
plt.show()
```



| In [31]:                                                       |  |
|----------------------------------------------------------------|--|
| <pre># save for future uses MODEL.save('traffic_new.h5')</pre> |  |
| In [ ]:                                                        |  |
|                                                                |  |
| In [ ]:                                                        |  |
|                                                                |  |
| In [ ]:                                                        |  |
|                                                                |  |
| In [ ]:                                                        |  |
|                                                                |  |
| In [ ]:                                                        |  |
|                                                                |  |
| In [ ]:                                                        |  |
|                                                                |  |
| In [ ]:                                                        |  |
|                                                                |  |