القسم (1)

حالة الاتزان الديناميكي

A STATE OF DYNAMIC BALANCE

1 - التفاعل الغيرانعكاسي (التام) (غالباً النظام مفتوح)

ي هو التفاعل الذي لا يمكن أن تتفاعل خلاله النواتج لتكوين المتفاعلات مرة أخرى .

يرهو التفاعل الذي يكتمل في اتجاه واحد ، حيث تتحول كل المتفاعلات إلى نواتج بمرور الوقت .

⊙ ما السبب في عدم الانعكاسية (التفاعل تام) ؟؟

ج: عندما يكون أحد النواتج في صورة راسب أو غاز خارج النظام المغلق للتجربة أو مادة ضعيفة التفكك مثل الماء مثلاً

$$H_2CO_{3(qq)} \rightarrow H_2O_{(l)} + CO_{2(q)} \uparrow$$
 : -1

$$Na^+Cl_{(aq)}^- + Ag^+NO_{3(aq)}^- \rightarrow Na^+NO3_{(aq)}^- + AgCl(s)$$
 : -2

$$Na^+OH_{(aq)}^- + H^+Cl_{(aq)}^- \to Na^+Cl_{(aq)}^- + H_2O_{(l)}$$
 : -3

مثال: تفاعل احتراق الكربون مع الأكسجين لتكوين غاز ثاني أكسيد الكربون:

[البداية]

[بعد فترة]

[بعد فترة]

[النهاية]

تخير: جميع التفاعلات التالية تتجه نحو الاكتمال عدا:

$$CaCO_{3(s)} \ + \ 251 \ kj \ \rightarrow \ CaO_{(aq)} \ + \ CO_{2(g)} \ - \ \smile \ Ca(OH)_{2(aq)} \ + \ 2HCl_{(aq)} \ \rightarrow \ CaCl_{2(aq)} \ + \ 2H_2O_{(l)} \ - \ ^{1}$$

تدريب خارجي للرسم:

$$H_2CO_{3(aq)} \rightarrow H_2O_{(l)} + CO_{2(q)}$$

2 - التفاعل الانعكاسي (الغير تام) (غالباً النظام مغلق) و التفاعل الذي يمكن أن تتفاعل خلاله النواتج لتكوين المتفاعلات مرة أخرى .

ي تفاعلات تسير في إتجاهين الأمامي والعكسي باستمرار ، وهذه التفاعلات لا تكتمل في اتجاه واحد بل تسير في كلا

مثال: تفاعل غاز الهيدروجين مع غاز النيتروجين لتكوين غاز الأمونيا:

تعليق ومناقشة: \rightleftharpoons $2NH_{3(g)}$ $3H_{2(g)}$ $N_{2(g)}$

[البداية]

[بعدفترة]

[بعد فترة]

[بعد فترة]

[النهاية]

أ - اكتب المتفاعلات والنواتج وحالة الاتزان على الرسم

ب – تركيز و يقل بمرور الزمن بينما يزداد تركيز

تخير: في التفاعل التالي: $2NH_{3(g)} = 2NH_{3(g)}$ يكون الناتج النهائي للتفاعل:

$$NH_3$$
, $N_{2(g)}$, $H_{2(g)}$ - \Rightarrow

$$N_{2(g)}$$
 , $H_{2(g)}$ - \hookrightarrow NH_3 - †

: في التفاعل التالي: $CH_3COOH_{(aq)} + C_2H_5OH_{(aq)} \Rightarrow CH_3COOC_2H_5 + H_2O$ يكون الناتج النهائي للتفاعل يغير التفاعل التفاعل التفاعل التفاعل التفاعل التفاعل التفاعل التفاعل يكون الناتج النهائي التفاعل التفاعل

 $CH_3COOC_2H_5 + H_2O - \int$

 $CH_3COOH_{(aq)} + C_2H_5OH_{(aq)} - \hookrightarrow$

 $CH_3COOH_{(aq)} + C_2H_5OH_{(aq)} + CH_3COOC_2H_5 + H_2O - \Rightarrow$

س : التفاعل الانعكاسي التالي في نظام مغلق: $O_{2(g)} + O_{2(g)} \Rightarrow 2HgO_{(s)} \Rightarrow 2HgO_{(s)}$ متى يصبح التفاعل $rac{\dot{z}u_{c}(l)}{2}$

ج: إذا تم تحرر غاز الأكسجين لخارج النظام. (أو إذا غاب أحد مكونات التفاعل عن حيز النظام) (أي تم فتح النظام)

الثاني عشر (متقدم)

كيمياء الفصل الدراسي الثاني

داد أ / إبراهيم النجار

تجربة: لوصف الاتزان: (ناقش واستنتج)

 $I_{2(s)}
ightharpoonup I_{2(g)}$: (عاز) عناني اليود في حالة انزان تسامي (صلب – غاز) عينتي اليود في حالة انزان تسامي (

المحبس مفتوح: قراءات الاشعاع متساوية في الطرفين ، حيث ينتقل بخار اليود بين الدورقين بسرعات متساوية (حالة اتزان)

مثال: لوصف الاتزان:

الشكل 4-8 عند الاتزان، تكون سرعة تبخر الإيثانول C_2H_5OH مساويةً لسرعة التكثّف. يسمى هذا الاتزان المكون بين حالتين فيزيائيتين للمادة الاتزان غير المتجانس. تعتمد قيمة K_{eq} على K_{eq} فقط.

ملاحظة: التفاعل المتزن لا يتوقف عن التفاعل بل يستمر، أي أن المواد المتفاعلة تتفاعل لتنتج المواد الناتجة، وفي نفس الوقت تتفاعل المواد الناتجة لتنتج المواد المتفاعلة، ويستمر ذلك مع مرور الزمن، ولكن هذه التغيرات لا نستطيع أن نشعر أو نحس بها. وهو ما يسمى بالاتزان الديناميكي.

خواص الاتزان:

- 1 تفاعل الاتزان يحدث في نظام مغلق (فلا يخرج من أو إلى النظام أي من المتفاعلات أو النواتج)
 - 2 درجة الحرارة ثابتة
- 3 المتفاعلات والنواتج في حالة حركة ديناميكية ثابتة (اتزان ديناميكي)، وليس الاتزان ساكناً (استاتيكي)
 - 5 الاتزان نشط ومستمر
- 4 سرعتا التفاعلين العكسيين متساويين
- 7 الخواص المنظورة والملموسة ثابتة
- 6 **تركيز** المواد **ثابت** لا يتغير مع مرور الزمن

(ونادراً ما تتساوى التراكيز)

(3. 3 - 3)

الثاني عشر (متقدم)

كيمياء الفصل الدراسي الثاني

إعداد أ / إبراهيم النجار

```
غاز الأمونيا NH<sub>3</sub>: تُحضير الأمونيا تلقائي وفي الظروف القياسية ، لكن التفاعلات التلقائية ليست سريعة دائماً ،
           وعند إجراء التفاعل ستتكون الأمونيا ببطئ شديد ، لذا يلزم وجود درجة حرارة عالية وضغط مرتفع .
                                                                                                 1 - الاستخدامات:
                   أ _ في الزراعة: 1 _ في صناعة الأسمدة 2 _ تضاف إلى الأعلاف الحيوانية
                             ب - في الصناعة: مادة خام في صناعة الكثير من المنتجات، مثل النايلون
                                    2 - تفاعل الأمونيا: تفاعل تلقائي في الظروف القياسية ( 1 atm , 298 K )
         مناقشة تفاعل هابر لإنتاج الأمونيا: عند وضع N_2 , 3 mol N_2 عند وضع عند وعاء مغلق ( N_2 بناقاعل )
 N_{2(g)} \\
                                                      3H_{2(g)}
                                                                              \rightleftharpoons
                                                                                                  2NH_{3(g)}
         N_{2(g)} + 3H_{2(g)}
                                      N_{2(g)} + 3H_{2(g)} \Rightarrow 2NH_{3(g)}
                                                                                           N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}
                                                      N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}
                                                                                                        [ البداية ]
                                                                                                        [بعد فترة]
                                                                                                         [ النهاية ]
                                   عند الاتزان: التراكيز في النهاية ثابتة لا يصل أحدها للصفر.
```

عداد أ / إبراهيم النجار كيمياء الفصل الدراسي الثاني $ar{5}$ الثاني عشر (متقدم) حالة الاتزان الديناميكي

مخططات الاتزان والمطلوب $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ س: ادرس المخطط التالي للتفاعل أ - اكتب المتفاعلات والنواتج وحالة الاتزان على الرسم التركن ب – تركيز و يقل بمرور الزمن بينما يزداد تركيز . ج - عند الاتزان تراكيز المتفاعلات والنواتج د _ في بداية التفاعل يكون تركيز النواتج = ______ الز من س: صف مع الشرح كيف تتغير تراكيز D,C,B,A ، منذ اللحظة الأولى التي يتم فيها أولاً اتحاد B,A إلى $A + B \Rightarrow C + D$ النقطة التي يتحقق فيها اتزان التفاعل: سرعة التفاعل في البداية : پكون تركيزا A , B = قيمة عظمى ، وتركيزا D = D = صفر حالة الإنزان عند بدء التفاعل A, B بفترة: يقل تركيز هما ، ويبدأ تركيز C, D في الزيادة (تساوي سرعة التفاعلين) في النهاية: نصبح سرعتي التفاعل متساويتان (حالة الاتزان) تراكيز A, B, C, D ثابتة عند نفس الظروف $\mathbf{A} + \mathbf{B} \; ightharpoonup \; \mathbf{C} + \mathbf{D}$ والمطلوب : ادرس المخطط التالي للتفاعل أ - اكتب المتفاعلات والنواتج وحالة الاتزان على الرسم ب - في بداية التفاعل يكون تركيز المتفاعلات وتركيز النواتج جـ - عند الاتزان يكون سرعة التفاعل الأمامي = د - بينما يكون تركيز المتفاعلات والنواتج الزمن والمطلوب $\mathbf{H}_2\mathbf{O}_{(g)} + \mathbf{CO}_{(g)} \ \rightleftharpoons \ \mathbf{H}_{2(g)} + \mathbf{CO}_{2(g)}$ س: ادرس المخطط التالى للتفاعل أ _ اكتب المتفاعلات و النو اتج و حالة الاتز ان على الرسم ب _ في بداية التفاعل تكون سرعة التفاعل الأمامي بين بخار الماء وأول أكسيد الكربون ، وسرعة التفاعل العكسى = صفر ج - بمرور الوقت سرعة التفاعل الأمامي ، و سرعة التفاعل العكسى هـ - وفي النهاية تصبح سرعة التفاعل = الز من س: المخطط التالي بين حالتي التكثيف والتبخير شكل (٢) بلوغ حالة الاتزان شكل(١) معدل التبخير أكبر بين التبخير والتكثيف من معدل التكثيف أ - اكتب على الرسم عمليتي التبخير والتكثيف وحالة الاتزان ب - متى تحدث حالة الاتزان؟ الزمن

حالة الاتزان الديناميكي

الثاني عشر (متقدم)

ج - متى تثبت حالتى التبخير والتكثيف؟

كيمياء الفصل الدراسي الثاني

س: تخير الاجابة الصحيحة من بين الإجابات التالية:

1 - يكون تفاعل كيميائي في حالة اتزان عندما:

جـ ـ تكون سرعة التفاعلين الأمامي والعكسي متساوية د ـ لا يبقى متفاعلات

أ ـ يتوقف التفاعلان الأمامي والعكسي ب ـ يساوى ثابت الاتزان 1

13 - يتحقق التوازن حينما:

أ - تتساوى تراكيز المواد الناتجة والمتفاعلة وتختلف سرعتا التفاعلين المتعاكسين ب - تتساوى تراكيز المواد الناتجة والمتفاعلة وتتساوى سرعتا التفاعلين المتعاكسين

ج - تثبت تراكيز المواد الناتجة والمتفاعلة وتختلف سرعتا التفاعلين المتعاكسين

د - تثبت تراكيز المواد الناتجة والمتفاعلة وتتساوى سرعتا التفاعلين المتعاكسين

17 _ يصل التفاعل الكيميائي إلى حالة الاتزان عندما:

ب ـ يتساوى معدل التفاعل الأمامي مع معدل التفاعل العكسي د - جميع ما سبق

أ - يتساوى كمية النواتج مع كمية المتفاعلات ج ـ يتوقف التفاعل تماماً

18 – التفاعل الذي يمكن أن تتفاعل فيه النواتج لإعادة تكوين المتفاعلات هو

د – غير ممكن ج _ منظم ب — انعکاسی أ _ في حالة اتزان

: عند الاتزان - عند الاتزان

21 - عند الاتزان:

ج _ التفاعل العكسي يستمر فقط د - التفاعل الأمامي والعكسي يستمران

أ – كل التفاعلات تتوقف ب - التفاعل الأمامي يستمر فقط

أ ـ سرعة التفاعل الأمامي أقل من سرعة التفاعل العكسي ب ـ سرعة التفاعل الأمامي أعلى من سرعة التفاعل العكسي ج - سرعة التفاعل الأمامي تساوي من سرعة التفاعل العكسى د - لا يحدث أي تفاعل

22 – أى عمليتين تكونان في حالة اتزان في محلول مشبع من السكر؟

د – تأين و إعادة اتحاد

ج — تفكك و تر كيب

ب ـ ذوبان وتبلور

أ – تبخر وتكثيف

27 - يكون التفاعل الكيميائي الانعكاسي في حالة اتزان عندما:

أ - تتساوى سرعتى التفاعلين الأمامى والعكسى وتتساوى التراكيز

ب - تكون سرعة التفاعل الأمامي أقل من سرعة التفاعل العكسي والتراكيز متساوية

ج - تكون سرعة التفاعل الأمامي أكبر من سرعة التفاعل العكسي والتراكيز ثابتة

د - تتساوى سرعتى التفاعلين الأمامي والخلفي والتراكيز ثابتة

28 - بالإعتماد على التفاعل التالى وعند تسخين الدوارق المخروطية التالية ، أيها يحدث فيها الاتزان ؟

 $CaCO_{3(s)}$

 \triangle CaO_(s) + CO_{2(g)}

CaCO_{3(s)}

CaO_(s)

د - 1 و 2 و 3 فقط

ج - ھ 2 و 4 فقط

ب - 3 و 4 فقط

أ - 2 و 3 و 4 فقط

Equlibrium Expressions

تعابير ثابت الاتزان

قانون الاتزان الكيميائي: للعالمان النرويجيان جولدبرج و بيترويج

"عند درجة حرارة معينة يمكن للتفاعل الكيميائي أن يصل إلى حالة تصبح فيها نسب تراكيز المتفاعلات والنواتج ثابتة"

ثابت الاتزان Keq : هو القيمة العددية لنسبة حاصل ضرب تركيز النواتج على حاصل ضرب تركيز المتفاعلات ، ويُرفع كل تركيز إلى أي يساوي عدد مولاته.

(ملاحظة : ثابت الاتزان قيمة عددية ، ليس له وحدة)

 $\mathbf{Keq} = \frac{[C]^c \ [D]^d}{[A]^a \ [B]^b}$ یکون : $\mathbf{aA} + \mathbf{bB} \ \rightleftharpoons \ \mathbf{cC} + \mathbf{Dd}$ یکون

 $A+B \rightleftharpoons C$, Keq = 10 : في الاتزان : 2 هامة جدا :

فإن قيمة Keq هي المعكوس الضربي عند عكس الاتزان:

$$C \rightleftharpoons A + B$$
 , $Keq = \frac{1}{10}$

[A] و [B] : التراكيز المولارية للمتفاعلات

[D] و [C] : التراكيز المولارية للنواتج

a . b . c . d : معاملات المعادلة الموزونة

: ناتفاعل \mathbf{K}_{C} غند $\mathbf{H}_{2(\mathrm{g})}+\mathbf{I}_{2(\mathrm{g})}$ خدر $\mathbf{H}_{2(\mathrm{g})}+\mathbf{I}_{2(\mathrm{g})}$ كالتفاعل ($\mathbf{K}_{\mathrm{C}}=54.8$) ناتفاعل التفاعل :

 $:425^0$ C عند 2 HI $_{(g)}$ \leftrightarrows 2 H $_{2(g)}$

5.48 - 2 54.8 - 3 0.018 - 9

تفسير قيم ثابت الاتزان Keg

س ما دلالة قيمة ثابت الاتزان K أو (كيف ترتبط قيمة ثابت الاتزان بالكمية النسبية للمتفاعلات والنواتج عند الاتزان؟)

لاحظ : بقدر ما تكون قيمة K كبيرة ، تكون الكميات النسبية للنواتج كبيرة

مثـــال	اتجاه التفاعل المفضل	قيمة ثابت الاتزان Keq
$2SO_{2(g)} + O_{2(g)}$ $2SO_{3(g)}$	نحو النواتج	1< K
$H_2SO_{3(aq)} + H_2O_{(1)} \rightleftharpoons H_3O_{(aq)} + HSO_3^{-}_{(aq)}$	حالة اتزان	1 = K
$H_2CO_{3(aq)} + H_2O_{(1)} \longrightarrow H_3O^+_{(aq)} + HCO_{3(aq)}$	نحو المتفاعلات	1 > K

س حمض الهيدروكلوريك حمض قوي يتأين بشكل تام في الماء ليكون $\frac{{
m Cl}^-}{1}$, $\frac{{
m H}_3{
m O}^+}{1}$ تكون قيمة ${
m K}$ للتفاعل : 1×10^{-2} - أ 1×10^{-2} - أكبر بكثير

برر لإجابتك:

س: النظام المتزن: $\mathbf{C} + \mathbf{D} \Rightarrow \mathbf{C} + \mathbf{D}$ يوجد عند ضغط معين ودرجة حرارة معينة: النظام المتزن: \mathbf{K} ايهما توجد بتركيز ات كبيرة ($\mathbf{C} + \mathbf{D}$) أم ($\mathbf{C} + \mathbf{D}$) عندما يكون ثابت الاتزان

أ _ أقل من الوحدة: (العكسي)

جـ - مساوياً الوحدة : (ليس أي واحد منهما)

داد أ / إبراهيم النجار كيمياء الفصل الدراسي الثاني 8 الثاني عشر (متقدم) حالة الاتزان الديناميكي

تعابير الاتزان

في التفاعل الغير المتجانس

"التفاعل الذي تكون متفاعلاته ونواتجه في حالة فيز بائية مختلفة"

" تحذف المواد الصلبة السائلة علل لثبات كثافتها عند درجة حرارة معينة ، وبالتالي ثبات تركيزها "

في التفاعل المتجانس

"التفاعل الذي تكون متفاعلاته ونواتجه في حالة فيزيائية واحدة"

" تكتب جميع المتفاعلات والنواتج "

ملاحظة: 1 - قيمة ثابت الاتزان تتغير مع تغير درجة الحرارة

2 - يمكن أن تحسب قيمة لنظام ما من خلال التجربة

س: اكتب تعبير ثابت الاتزان تحت كل تفاعل من التفاعلات التالية كما بالجدول:

$CaO_{(s)} + CO_{2(g)} \rightleftharpoons CaCO_{3(s)}$	$2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$
$NH_{3(aq)} + H_2O_{(l)} \leftrightarrows NH_4^+_{(aq)} + OH^{(aq)}$	$CH_3COOH_{(l)}+C_2H_5OH_{(l)} \rightleftharpoons CH_3COOC_2H_{5(l)}+H_2O_{(l)}$
$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$	$2SO_{2(g)} + O_{2(g)} \leftrightarrows 2SO_{3(g)}$
$H_2O_{(l)} \rightleftharpoons H^+_{(aq)} + OH^{(aq)}$	$4HCl_{(g)} + O_{2(g)} \rightleftharpoons 2Cl_{2(g)} + 2H_2O_{(g)}$
$CO_{(g)} + 2H_{2(g)} \leftrightarrows CH_3OH_{(l)}$	$\frac{1}{2}H_{2(g)} + \frac{1}{2}I_{2(g)} \leftrightarrows HI_{(g)}$
$HF_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + F_{(aq)}$	$2FeCl_{3(aq)} + SnCl_{2(aq)} \leftrightarrows 2FeCl_{2(aq)} + SnCl_{4(aq)}$
الثاني عشر (متقدم) حالة الاتزان الديناميكي	إعداد أ / إبراهيم النجار كيمياء الفصل الدراسي الثاني 9

$2PbS_{(s)} + 3O_{2(g)} + C_{(s)} = 2Pb_{(s)} + CO_{2(g)} + 2SO_{2(g)}$	$CO_{2(g)} + NaOH_{(aq)} \hookrightarrow NaHCO_{3(aq)}$
2N-1100	
$2\text{NaHCO}_{3(s)} \leftrightarrows \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}$	$CO_{2(g)} + H_{2(g)} \leftrightarrows CO_{(g)} + H_2O_{(l)}$
$2A_{(aq)} + 3B_{(l)} - C_{(aq)}$	$Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + 2Ag_{(aq)}$
$H_2O_{(l)} \hookrightarrow H_2O_{(g)}$	$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$
2 - (t) 2 - (g)	2.1.2 2.5(s)

10

سائل تدريبية

- $K_{eq} = [NO_{\,2}]^{\,2}/[N_{\,2}O_{\,4}]$.a .1
- $K_{eq} = [H_2]^2 [S_2] / [H_2 S]^2$.b
- $K_{eq}\,=[CH_4][H_2O]/[CO][H_2]^{\,3}\,.c$
- $K_{eq} = [NO] {}^{4}[H_{2}O] {}^{6}/[NH_{3}] {}^{4}[O_{2}] {}^{5}$.d
- $K_{eq} = [CS_2] [H_2]^4 / [CH_4] [H_2S]^2$.e
 - $2CO_{2(g)} \rightleftharpoons 2CO_{(g)} + O_{2(g)}$.2

مسائل تدريبية

1. اكتب تعابير ثابت الاتزان للمعادلات الآتية:

$$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$$
 .a

$$2H_2S_{(g)} \rightleftharpoons 2H_{2(g)} + S_{2(g)}$$
.b

$$CO_{(g)} + 3H_{2(g)} \rightleftharpoons CH_{4(g)} + H_2O_{(g)}$$
.c

$$4NH_{3(g)}+5O_{2(g)} \rightleftharpoons 4NO_{(g)}+6H_2O_{(g)} \ .d$$

$$CH_{4(g)} + 2H_2S_{(g)} \mathop{\rightleftharpoons}\limits CS_{2(g)} + 4H_{2(g)} \ .e$$

$$K_{eq} = \frac{[CO]^2[O_2]}{[CO_2]^2}$$

مسائل تدريبية

- 3. اكتب تعبير ثابت الاتزان غير المتجانس لكل مما يلي:
 - $C_{10}H_{8(s)} \rightleftharpoons C_{10}H_{8(g)}$.a
 - $H_2O_{(1)} \rightleftharpoons H_2O_{(g)}$.b
 - $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$.c
 - $C_{(s)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + H_{2(g)} \ .d$
 - $FeO_{(s)} + CO_{(g)} \rightleftharpoons Fe_{(s)} + CO_{2(g)}$.e
- 4. تحفيز يتفاعل الحديد الصلب مع غاز الكلور لتكوين كلوريد الحديد FeCl₃ III . اكتب معادلة كيميائية موزونة وتعبير ثابت الاتزان للتفاعل.

مسائل تدريبية

$$\begin{split} K_{eq} = & [C_{10}H_{\theta}] \ .a \ .a \\ K_{eq} = & [H_{2}O] \ .b \\ K_{eq} = & [CO_{2}] \ .c \\ K_{eq} = & [CO_{2}] \ /[H_{2}O] \ .d \\ K_{eq} = & [CO_{2}] \ /[CO] \ .e \\ \end{split}$$

 $K_{eq} = 1 / [Cl_2]^3$

11

ثوابت الاتزان : تظل قيمة Keq ثابتة للتفاعل الواحد عند درجة حرارة معينة بغض النظر عن التراكيز الابتدائية

للنواتج والمتفاعلات .

مناقشة وتدريب : مع تفسير قيمة Keq

دول 4-1 بيانات تجريبية لتفاعل يوديد الهيدروجين عند الاتزان							الجدو
$K_{ m eq}$	تراكيز الاتزان			ئية	التر		
$K_{eq} = \frac{[HI]^2}{[H_2][I_2]}$	[HI]	$[I_2]$	[H ₂]	[HI]	[I ₂]	[H ₂]	تجربة
$49.70 = \frac{[1.8682]^2}{[0.06587][1.0659]}$	1.8682	1.0659	0.06587	0	2.0000	1.0000	1
$49.70 = \frac{[3.8950]^2}{[0.5525][0.5525]}$	3.8950	0.5525	0.5525	5.0000	0	0	2
$49.70 = \frac{[1.7515]^2}{[0.2485][0.2485]}$	1.7515	0.2485	0.2485	1.0000	1.0000	1.0000	3

 $K_{eq} = \frac{[0.933]^2}{[0.533][1.600]^3} = 0.399$

قيمة ثابت الاتزان احسب قيمة فيمة $K_{eq} = \frac{[NH_3]^z}{[N_2][H_2]^3}$ إذا علمت أن تراكيز المواد في أحد مواضع

 ${
m [NH_3]}=0.933~{
m mol/L},$ ${
m [N_2]}=0.533~{
m mol/L},$ ${
m [H_2]}=1.600~{
m mol/l}$ الاتزان

1 تحليل المسألة

لقدأعطيت تعبير ثابت الاتزان وتراكيز المتفاعلات والنواتج، يجب حساب ثابت الاتزان.

لعطيات المطلوب

 $\begin{array}{ll} \mbox{K}_{eq} = \mbox{?} & [N_2] = 0.533 \ mol/L & \mbox{K}_{eq} = \frac{[NH_3]^2}{[N_2][H_2]^3} \\ \end{array}$

 $[H_2] = 1.600 \text{ mol/L}$ $[NH_3] = 0.933 \text{ mol/L}$

2 حساب المطلوب

 ${
m [NH_3]} = 0.933 {
m mol/L}$ عوض ${
m [N_2]} = 0.533 {
m mol/L}$, ${
m [H_2]} = 1.6 {
m mol/L}$

3 تقويم الإجابة

. . .

انَّ: احسب قيمة $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ للاتزان K_{eq} إذا علمت أنَّ:

 $[N_2O_4] = 0.0185 \text{ mol/L}, [NO_2] = 0.0627 \text{ mol/L}$

.6 احسب قيمة K_{eq} للاتزان K_{eq} للاتزان K_{eq} اذا علمت أنّ

 $[CO] = 0.0613 \ mol/L, [H_2] = 0.1839 \ mol/L, [CH_4] = 0.0387 \ mol/L, [H_2O] = 0.0387 \ mol/L$

مثال في الصف

. السؤال ما قيمة $K_{\rm eq}$ للاتزان الآي إذا كانت قيم التراكيز هي [N $_2$] = 0.20 mol/L ، [O $_2$] = 0.15 mol/L ، [NO] = 0.0035 mol/L

 $P_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$

 $K_{eq} = \frac{(0.0035)^2}{(0.20)(0.15)} = 4.1 \times 10^{-4}$

حالة الاتزان الديناميكي

مسائل تدريبية

 $K_{eq} = 0.213$.5

 $K_{eq} = 3.93$.6

 $[COCl_2] = 0.27M$.7

الثاني عشر (متقدم)

كيمياء الفصل الدراسي الثاني

إعداد أ / إبراهيم النجار

التقويم 1-4

الخلاصة

- يكون التفاعل في حالة اتزان إذا كانت سرعة التفاعل الأمامي مساوية لسرعة التفاعل العكسي.
- ▶ يعبر عن حالة الاتزان بثابت الاتزان وهو نسبة حاصل ضرب التراكيز المولارية للمواد الناتجة إلى حاصل ضرب التراكيز المولارية للمواد المتفاعلة؛ حيث ترفع هذه التراكيز إلى أسس مساوية لمعاملاتها في المعادلة الكيميائية الموزونة.
- ◄ تكون قيمة تعبير ثابت الاتزان Keq ثابتة عند درجة حرارة معينة.

- : 8. الفكرة (الرئيسة فسر كيف ترتبط قيمة ثابت الاتزان مع كمية النواتج Keq?
 - 9. قارن بين الاتزان المتجانس والاتزان غير المتجانس.
- 10.عد ثلاث خواص يجب أن توجد في خليط تفاعل ليصل إلى حالة
 - 11.12 حسب قيمة Keq عند درجة حرارة 400 K للتفاعل الآتي: $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ إذا علمت أنّ:

 $[PCl_5] = 0.135 \text{ mol/L}$

 $[PCl_3] = 0.550 \text{ mol/L}$

 $[Cl_2] = 0.550 \text{ mol/L}$

12. فسر البيانات يوضح الجدول الآتى قيم ثابت الاتزان عند ثلاث درجات حرارة مختلفة. في أي منها يكون تركيز النواتج أكبر؟ فسر إجابتك.

بحرارة	لاتزان ودرجات ال	ثابت ا
373 K	273 K	263 K
4.500	0.500	0.0250

التقويم 1-4

- 8. كلما زادت قيمة ثابت الاتزان، زادت كمية المواد الناتجة المتكوّنة
- 9. توجد جميع المواد المتفاعلة والناتجة في الحالة الفيزيائية نفسها في 11. 2.24 .11
 - في حالة الاتزان غير المتجانس.

13

10. للوصول إلى حالة الاتزان، يجب أن يكون مزيج التفاعل في

وعاء مغلق وعند درجة حرارة ثابتة، وأن تتواجد جميع المواد المتفاعلة والناتجة في نفس الوعاء.

حالة الاتزان المتجانس، بينها تكون في حالات فيزيائية مختلفة 373K.12 ، سها أن المواد الناتجة تكون في بسيط المعادلة؛ لذا فكلها زادت قيمة Keg، زاد تركيز المواد الناتجة.

كيمياء الفصل الدراسي الثاني

	س : تخير الإجابة الصحيحة من بين الإجابات التالية
ج	س
	1 - يكون تفاعل كيميائي في حالة اتزان عندما: جـ - تكون سرعة التفاعلين الأمامي والعكسي متساوية ب ـ يساوي ثابت الاتزان 1 د ـ لا يبقى متفاعلات
	ج عيدوي حب العران العاد العران العاد العرازة بالعرازة با
	: تأمل التفاعل التالي $2\mathbf{C}_{(\mathrm{s})} + \mathbf{O}_{2(\mathrm{g})} \hookrightarrow 2\mathbf{CO}_{(\mathrm{g})}$ تعبير ثابت الاتزان له هو 3
	$\frac{[co]}{[o_2]}$ - خ $\frac{2[co]}{[o_2][2C]}$ - خ $\frac{[co]^2}{[o_2][C]^2}$ - خ $\frac{[co]^2}{[o_2]}$ - خ $\frac{[co]^2}{[o_2]}$ - خامل المعادلة التالية لنظام متزن $2PbS_{(s)} + 3O_{2(g)} + C_{(s)} \iff 2Pb_{(s)} + CO_{2(g)} + 2SO_{2(g)}$ أي مما يلي 4
	4 - تأمل المعادلة التالية لنظام متزن $2Pb_{(s)} + 2Pb_{(s)} + CO_{2(g)} + 2SO_{2(g)}$ أي مما يلي يظهر تركيزه في مقام تعبير ثابت الاتزان $?$
	$O_{2(g)}$ - $O_{2(g)}$, $O_$
	k - كيف تكون قيمة k ليتضح ان التفاعل يبلغ الاتزان سريعا جدا :
	أ k كبيرة k كبيرة k كبيرة k كبيرة k كبيرة k كبيرة أنه عند الاتزان يحتمل أن :
	أ – توجد النواتج فقط ج – توجد كميات مهمة للمتفاعلات والنواتج ب – توجد المتفاعلات فقط د – يحدث التفاعل بسرعة معتدلة
	ن تحسب قيمة k لنظام ما : 7 ــ يمكن أن تحسب قيمة k
	أ – من الكتل المولية للنواتج والمتفاعلات ج – من الخصائص الكيميائية للنواتج والمتفاعلات ب – من حرارتي التفاعلين الأمامي والعكسي د – من خلال التجربة
	$2A_2B+3CD \leftrightarrows A_4D_3+C_3B_2$: الاتزان الكيميائي للمعادلة $A_4D_3+C_3B_2$
	$\frac{[A_4D_3][C_3B_2]}{[A_2B]^2[CD]^3} - 2 \qquad \frac{[A_2B]^2[CD]^3}{[A_4D_3][C_3B_2]} - \overline{c} \qquad \frac{[A_4D_3][C_3B_2]}{6[A_2B][CD]} - \overline{c} \qquad \frac{6[A_2B][CD]}{[A_4D_3][C_3B_2]} - \hat{b}$
	: هو $NH_{3(g)} + H_2SO_{4(l)} \rightleftharpoons (NH_4)_2SO_{4(s)}$ هو -9
	$\frac{1}{[NH_3]^2} - 2 \qquad \frac{1}{[NH_3]^2 [H_2SO_4]} - \overline{c} \qquad \frac{[(NH_4)_2SO_4]}{[NH_3]^2 [H_2SO_4]} - \overline{c} \qquad \frac{[(NH_4)_2SO_4]}{[NH_3][H_2SO_4]} - \overline{f}$
يناميكي	ـداد أ / إبراهيم النجار كيمياء الفصل الدراسي الثاني الله التران الد

```
\operatorname{CaCO}_{3(s)} 
ightleftharpoons \operatorname{CaO}_{(s)} + \operatorname{CO}_{2(g)}: التعبير الرياضي لثابت الاتزان للتفاعل -10
اً - د - Kc = \frac{[CaO][CO_2]}{[CaCO_3]} - ح - Kc = [CaO][CO_2] - خ - Kc = [CO_2] - أ
                                             4A_{(g)}+5B_{(g)} 
ightharpoonup 4C_{(g)}+6D_{(g)}: يُعبرعن ثابت الاتزان للتفاعل التالي-11
     \mathrm{Kc} = \frac{[C] \ [D]}{[A] \ [B]} - 2 \mathrm{Kc} = \frac{[C]^4 \ [D]^6}{[A]^4 \ [B]^5} - 7 \mathrm{Kc} = \frac{4[C] \ 6[D]}{4[A] \ 5[B]} - 9 \mathrm{Kc} = \frac{4[C] + 6[D]}{4[A] + 5[B]} - \frac{1}{2} \mathrm{Kc} = \frac{4[C] + 6[D]}{4[A] + 5[B]} - \frac{1}{2} \mathrm{CO}_{(g)} + \mathrm{H}_2\mathrm{O}_{(g)} \rightleftharpoons \mathrm{CO}_{2(g)} + \mathrm{H}_{2(g)} \mathrm{CO}_{2(g)} + \mathrm{H}_{2(g)}
             [H_2] \cdot [CO_2] = [H_2O] \cdot [CO] - -  [CO] = [H_2O] = [CO_2] = [H_2] -  [CO] = [H_2O] \cdot [CO_2] = [H_2] -  [CO] = [H_2O] \cdot [CO_2] = [H_2] - 
                                                                             [CO] = [H_2O] = [CO_2] = [H_2] - 
                                                                                                     13 - يتحقق التوازن حينما:
                                   أ - تتساوى تراكيز المواد الناتجة والمتفاعلة وتختلف سرعتا التفاعلين المتعاكسين
                                 ب - تتساوى تراكيز المواد الناتجة والمتفاعلة وتتساوى سرعتا التفاعلين المتعاكسين
                                    ج - تثبت تراكيز المواد الناتجة والمتفاعلة وتختلف سرعتا التفاعلين المتعاكسين
                                    د - تثبت تراكيز المواد الناتجة والمتفاعلة وتتساوى سرعتا التفاعلين المتعاكسين
                                                                \mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{g})}\ 
ightarrow 2\mathrm{CO}_{(\mathrm{g})}: هي \mathrm{Kc} هي -14
اً ـ تتغیر مع الترکیز ب ـ تتغیر مع الوقت ج ـ تتغیر مع درجة الحرارة د ـ هي نفسها تحت كل الظروف K = \frac{[W][X]}{|Y|[Z]} ، ما الذي يمثل تراكيز المتفاعلات ؟
             [Y] \circ [X] = [X] \circ [X]
                                                                                [X] \circ [X] \circ [X] \circ [X]
                                                                          17 _ يصل التفاعل الكيميائي إلى حالة الاتزان عندما:
        ب - يتساوى معدل التفاعل الأمامي مع معدل التفاعل العكسى
                                                                          أ ـ يتساوى كمية النواتج مع كمية المتفاعلات
                                                                                                     ج _ يتوقف التفاعل تماماً
                                                    د – جميع ما سبق
                                                  18 ـ التفاعل الذي يمكن أن تتفاعل فيه النواتج لإعادة تكوين المتفاعلات هو
                   أ _ في حالة اتزان ب _ انعكاسي
                                                                                            _______.
19 ــ إذا سخن HgO <u>في و</u>عاء مغلق
                                                                         أ - لا يحدث أي تفاعل - ب+ + + + يتفكك
HgO_2 د HgO يتفكك ثم يتكون من جديد HgO_2
                                                                                                               20 – عند الاتزان:
                                                                                                     أ - كل التفاعلات تتوقف
                                     ج - التفاعل العكسى يستمر فقط
                             د - التفاعل الأمامي والعكسى يستمران
                                                                                           ب – التفاعل الأمامي يستمر فقط
```

15

كيمياء الفصل الدراسي الثاني

الثاني عشر (متقدم)

حالة الاتزان الديناميكي

عداد أ / إبراهيم النجار

21 – عند الاتزان:
أ ـ سرعة التفاعل الأمامي أقل من سرعة التفاعل العكسي ب ـ سرعة التفاعل الأمامي أعلى من سرعة التفاعل العكسي
ج - سرعة التفاعل الأمامي تساوي من سرعة التفاعل العكسي د - لا يحدث أي تفاعل
22 _ أي عمليتين تكونان في حالة اتزان في محلول مشبع من السكر؟
ا ـ تبخر وتكثيف ب ـ ذوبان وتبلور ج ـ تفكك وتركيب د ـ تأين وإعادة اتحاد
23 - القيمة العالية جداً لـ K تشير إلى أن:
أ ـ عامل حفاز أضيف إلى النظام ج ـ المتفاعلات هي المرجحة
ب – النواتج هي المرجحة د – الاتزان قد تم بلوغه
24 – يعتمد ثابت الاتزان على تغيرات في:
أ ــ الضغط ب ــ التراكيز ج ــ درجة الحرارة د ــ الضغط والتراكيز ودرجة الحرارة
25 – تظهر المعاملات عند كتابة تعبى ثابت الاتزان:
أ ـ كمعاملات ب ـ كرموز سفلية ج ـ كأُسسّ د ـ لا قيمة لها
\mathbf{O}_2 في النظام المتزن الغازي : \mathbf{O}_2 \mathbf{O}_3 يكون تركيز \mathbf{O}_2 . يكون تركيز \mathbf{O}_2 .
ر الله الله الله الله الله الله الله الل
27 – يكون التفاعل الكيميائي الانعكاسي في حالة اتزان عندما:
أ - تتساوى سرعتي التفاعلين الأمامي والعكسي وتتساوى التراكيز ب - تكون سرعة التفاعل الأمامي أقل من سرعة التفاعل العكسي والتراكيز متساوية
ب - تكون سرعة التفاعل الأمامي أفل من سرعة التفاعل العكسي والتراكير مساوية ج - تكون سرعة التفاعل الأمامي أكبر من سرعة التفاعل العكسي والتراكيز ثابتة
ج - تحول شرعه المفاعل الأمامي الحبر من شرعه المفاعل المعتسي والشراخير ثابته د - تتساوى سرعتي التفاعلين الأمامي والخلفي والتراكيز ثابتة
ت - المساوى سرعني المعاعبين الرهامي والحلفي والسراخير للبناء
Λ.
$CaCO_{3(s)} \stackrel{\Delta}{\rightleftharpoons} CaO_{(s)} + CO_{2(g)}$
e e e ii
$CO_{2(g)}$ $CaO_{(s)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$Cuco_{3(s)}$ $Cuco_{(s)}$
(4) (3) (2) (1)
أ - 2 و 3 و 4 فقط ب - 3 و 4 فقط ح - 🏿 2 و 4 فقط د - 1 و 2 و 3 فقط
$2 ext{PbS}_{(s)} + 3 ext{O}_{2(g)} \leftrightarrows 2 ext{Pb}_{(s)} + ext{CO}_{2(g)} + 2 ext{SO}_{2(g)}$ التفاعل التالي: $-2 ext{Pb}_{(s)}$
أي من التالي يمثل تركيز CO ₂ عند الاتزان ؟
$[CO_2] = \frac{[SO_2]^2 \cdot [Pb]^2}{K[PbS]^2 \cdot [O_2]^3 \cdot [C]} - \varepsilon $ $[CO_2] = \frac{K[PbS]^2 \cdot [O_2]^3 \cdot [C]}{[SO_2]^2 \cdot [Pb]^2} - \int$
$[CO_2] = K[PbS]^2 \cdot [O_2]^3 \cdot [C] - \mathcal{E}$ $[SO_2]^2 \cdot [Pb]^2 - \mathcal{E}$
$[SO_2]^2$
$[CO_2] = \frac{[SO_2]^2}{K[O_2]^3}$ $[CO_2] = \frac{K \cdot [O_2]^3}{[SO_2]^2}$
$[CO_2] = \overline{K[O_2]^3}$ $_{CO_2} = \overline{K[O_2]^2}$ $_{CO_2} = \overline{[SO_2]^2}$ $_{CO_2} = \overline{K[O_2]^2}$ $_{CO$
أ - أن النواتج هي المرجحة ج - أنه تم الوصول إلى الاتزان ببطء
ب - أن المتفاعلات هي المرجحة د - أنه تم الوصول إلى الاتزان بسرعة
ب - أن المتفاعلات هي المرجحة
أ $-0 < H < 0$ ب $-0 < H > 0$ ج -1 لمعلومات المتو افرة غير كافية
داد أ / إبراهيم النجار كيمياء الفصل الدراسي الثاني الثاني عشر (متقدم) حالة الاتزان الديناميكي
ـ الدار إبراهيم النجاز للمسلم الدراسي العصل الدراسي العصل الدراسي على المسلم النجاز المسلم النجاز المسلم الدران

 $2SO_{2(g)}+O_{2(g)}\leftrightarrows 2SO_{3(g)}$, \triangle H فإن عند الدرجة $2SO_{2(g)}+O_{2(g)}$ فإن 32 25^{0} C عند 100^{0} C تكون أصغر من قيمتها عند Kc 25^{0} C عند 100^{0} C اکبر من ترکیزه عند SO3 عند SO_2 , O_2 من تركيز كل من عامل مساعد للنظام ينقص من تركيز كل من د _ زيادة الضغط على النظام يزيد من قيمة Kc ن النفاعل: $m H_{2(g)} + I_{2(g)} + I_{2(g)} + I_{2(g)} + 2HI_{(g)}$ التفاعل: m (Kc = 54.8) التفاعل: $^{\circ}$: 425 $^{\circ}$ C عند $^{\circ}$ 2HI (g) \Rightarrow H_{2(g)} + I_{2(g)} 5.48 - 2.2×10^{-3} - 34.8 - : نساوي : $H_{2(g)} + Cl_{2(g)} \leftrightarrows 2HCl_{(g)}$ نساوي : فإن قيمة K_C 4.5×10^2 - ح 2.2×10^{-3} - ح 2.1×10^5 - ب 4.8×10^{-6} – 1

كيمياء الفصل الدراسي الثاني 🛮 17 الثاني عشر (متقدم)

حالة الاتزان الديناميك

عداد أ / إبراهيم النجار

مسائل

أفكار المسائل:

 ~ 3 عند درجة حرارة $\sim 600^{0}$ ، يتفاعل غاز ثاني أكسيد الكبريت مع غاز الأكسجين لينتج غاز ثالث أكسيد الكبريت عند نفس درجة الحرارة ، وُجد أن تركيز SO_2 هو O_2 ، وتركيز O_2 هو O_2 أذا علمت أن ثابت الاتزان لهذا النظام وُجد أن تركيز O_3 يساوى 4.36

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

$$K = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

$$4.36 = \frac{[SO_3]^2}{(1.50)^2(1.25)}$$

$$[SO_3]^2 = 4.36(1.50)^2(1.25) = 12.3mol/L$$

$$[SO_3] = \sqrt{12.3} = 3.50mol/L$$

عند $2N_2O_{(g)}+O_{2(g)} \Rightarrow 4NO_{(g)}:1.7 imes 10^{-13}$ التفاعل التالي عند 10^{-13} للتفاعل التالي عند 10^{-13} الآتزان هما : $NO_{(g)}=0.0035$ الآتزان هما : $NO_{(g)}=0.0035$ عند الآتزان هما : $NO_{(g)}=0.0035$ عند الآتزان $(8.7 \times 10^{-6} \, \text{mol/L})$

 $AB_2C_{(g)} \Rightarrow B_{2(g)} + AC_{(g)}$ عند الاتزان وُجد أن النظام $AB_2C_{(g)} \Rightarrow B_{2(g)} + AC_{(g)}$ عند الاتزان وُجد أن النظام عند درجة $AB_2C_{(g)} \Rightarrow B_2C_{(g)}$ ، و 0.035mol من $AB_2C_{(g)} \Rightarrow B_2C_{(g)}$ ، و 0.084mol من 0.084mol من $AB_2C_{(g)} \Rightarrow B_2C_{(g)}$ من $AB_2C_{(g)} \Rightarrow B_2C_{(g)}$ على النظام عند درجة الحرارة المذكورة

كيمياء الفصل الدراسي الثاني

حالة الاتزان الديناميكم

 $[H_2]=0.80$ اظهر حساب ثابت الاتزان لتفاعل تكوين الأمونيا أنه يساوي $^{5-}0$ \times 20 عند 50 C بعد إجراء التحليل تبين أن $^{5-}0$ \times 20 اظهر حساب ثابت الاتزان لتفاعل تكوين الأمونيا يوجد في و عاء تفاعل سعته $^{5-}0$ 0 عند الاتزان ؟ استخدم معادلة الاتزان التالية : $^{5-}0$ 0 M و $^{5-}0$ 0 M $^{5-$

 $3.13 \times 10^{-3} \text{ mol/L I}_2$ عند درجة حرارة 425^{0C} ، وجد أن خليط اتزان يتكون من $1.83 \times 10^{-3} \text{ mol/L H}_2$ و $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$ للتفاعل $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$ للتفاعل $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$ في $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$ عند درجة حرارة $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$

 $3.8 \times 10^{-4} \, \mathrm{mol/L} \, \mathrm{O_2}$ و $2.2 \times 10^{-3} \, \mathrm{mol/L} \, \mathrm{HCl}$ و $2.2 \times 10^{-4} \, \mathrm{mol/L} \, \mathrm{C}_2$ و $2.2 \times 10^{-2} \, \mathrm{mol/L} \, \mathrm{Cl}_2$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$ ($2.2 \times 10^{-2} \, \mathrm{cm}$) و $2.2 \times 10^{-2} \, \mathrm{cm}$

 $(0.110\,\mathrm{M})$ عند درجة حرارة $450^0\mathrm{C}$ تبلغ قيمة ثابت الاتزان للنظام التالي 8.59×10^{-3} فإذا كانت التراكيز عند الاتزان $N_{2(\mathrm{g})} + 3H_{2(\mathrm{g})} \rightleftharpoons 2NH_{3(\mathrm{g})}$ غند درجة حرارة $N_{2(\mathrm{g})} + 3H_{2(\mathrm{g})} \rightleftharpoons 2NH_{3(\mathrm{g})}$ عند درجة حرارة $N_{2(\mathrm{g})} + 3H_{2(\mathrm{g})} \rightleftharpoons 2NH_{3(\mathrm{g})}$

و عند تحليل مكونات النظام وجد أنها $H_{2(g)} + CO_{2(g)} \leftrightarrows CO_{(g)} + H_2O_{(g)}$ عند $H_2O_{(g)} = 0.11 \text{ mol/L}$ و عند تحليل مكونات النظام وجد أنها [H2O] = 0.11 mol/L , $[CO_2] = 0.16 \text{ mol/L}$

14 - احسب قيمة ثابت الاتزان لكل من التفاعلات التالية : علماً بأن التراكيز بـ mol/L عند الاتزان .

(0.67) $[C] = 4.0, [B] = 3.0, [A] = 2.0 \qquad A + B \iff C -$

(0.52) [G] = 1.2, [F] = 1.8, [E] = 2.0, [D] = 1.5 $D + 2E \leftrightarrows F + 3G - \cdots$

 (3.1×10^2) $[NH_3] = 0.62$, $[H_2] = 0.14$, $[N_2] = 0.45$ $N_{2(g)} + 3H_{2(g)} \stackrel{\leftarrow}{\rightarrow} 2NH_{3(g)} - \frac{1}{2}$

عداد أ / إبراهيم النجار كيمياء الفصل الدراسي الثاني الثاني الثاني عشر (متقدم) حالة الاتزان الديناميك

15 ـ تبلغ قيمة K عند 25^0 للتفاعل التالي $4NO_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)}$ عند الاتزان K عند الاتزان K عند الاتزان K عند الاتزان K هما K عند الاتزان K عند الاتزان K عند الاتزان K هما K عند الاتزان K عند K

17 – أدخل 1 مول من كل من الهيدروجين واليود في وعاء سعته 0.5 لتر عند درجة حرارة معينة ، فإذا كان ثابت الاتزان لهذا التفاعل يساوي 49، احسب تركيز كل المواد والنظام عند الاتزان تبعاً للتفاعل التالى : $H_{2(a)}+I_{2(a)} \Rightarrow 2HI_{(a)}$

$\mathbf{L}(\mathbf{g})$	L(y) (y)	, = ,	
$H_{2(g)}$ -	$I_{2(g)} \rightleftharpoons$	$2HI_{(g)}$	المعادلة
1	1	0	مولات البداية
-X	-X	+2x	المولات المتغيرة
1 - x	1 - x	2x	مولات الاتزان
$\frac{1-x}{0.5}$	$\frac{1-x}{0.5}$	$\frac{2x}{0.5} = 4x$	التركيز بــ "مول/لتر"

$$K=rac{[HI]^2}{[H_2][I_2]}$$

$$K=\frac{[HI]^2}{[H_2][I_2]}$$
 49 $=\frac{[4x]^2}{\left[\frac{1-x}{0.5}\right]\left[\frac{1-x}{0.5}\right]}$ 7 $=\frac{[4x]}{\left[\frac{1-x}{0.5}\right]} o x=.087$ $= \frac{1-x}{0.5} = .044 \text{mol/L}$, $= 4x = 4(0.87) = 3.12 \text{ mol/L}$

 $2IBr \Rightarrow I_2 + Br_2$ في الاتزان المغلق التالي: $I_2 + Br_2 \Rightarrow I_2 + K = 0.06 \; \mathrm{mol}$ إذا وُضع $0.06 \; \mathrm{mol}$ من بروميد اليود في وعاء سعته لتر ، وإذا كانت قيمة $I_2 \times I_3 \times I_4 \times I_5 \times I_5 \times I_5$ احسب تراكيز المواد الثلاثة بالمول / لتر عند الاتزان .

2IBr	=	I_2	+	Br_2	المعادلة
					مولات البداية
					المولات المتغيرة
					مولات الاتزان
					التركيز بــ "مول/لتر"

إعداد أ / إبراهيم النجار كيمياء الفصل الدراسي الثاني 20 الثاني عشر (متقدم) حالة الاتزان الديناميكي