

Process Scheduling System XAVIER INSTITUTE OF ENGINEERING

TEAM MEMBERS: ROHAN TALELE & VARUN SINGH

Abstract

- We propose a java based application with features designed to calculate the different parameters related to process scheduling.
- This application will provide the user with the choice to select the different algorithms used to schedule processes to the CPU.
- At the end the results will be shown in a tabular manner for easier comparison between the distinct algorithms.
- The results will be accompanied by message highlighting the most efficient algorithm to be used for that particular set of inputs.

Introduction

Why do we need scheduling?

- A typical process involves both I/O time and CPU time. In a Uniprogramming system like MS-DOS, time spent waiting for I/O is wasted and CPU is free during this time. In multiprogramming systems, one process can use CPU while another is waiting for I/O. This is possible only with process scheduling.
- This application is designed to schedule the different processes according to the scheduling techniques.
- The main objective of this application is to calculate and provide the parameters like waiting time and turnaround time for each individual process to the user.
- The purpose of this mini-project is to provide the user with some knowledge about how the CPU and the

Methodology

- This GUI java application is named as ProSio. The Pro stands for process and the Sio comes from a popular company manufacturing calculators known as Casio.
- ProsSio will provide the user with the different parameters calculated for each process along with a message emphasizing the most efficient algorithms to be used for that particular set of inputs.
- The comparison for the most efficient algorithm will be done on the basis of average waiting time.
- However ProSio will not simulate and display a Gnatt chart for each algorithm dynamically.

- ProSio is entirely created on the NetBeans IDE for Java. NetBeans features of Drag and Drop has been used extensively for the creation of the GUI.
- ProSio is made up of four classes: Main, App, Cal, Result.
- Main is used as an initializer for the application.
- App provides the Main Screen.
- Cal enables the user to select the different algorithms and provide their inputs.
- Result will display the results in a clear tabular manner for easier comparison accompanied with a message showcasing the most efficient algorithms to be used.

Results

Accessing through the Main Screen.

	- D X								
ProSio									
Have you ever felt annoyed, betrayed, frustrated or just plain stupid when you were being taught the a seemed you were the only one who just couldn't get the right answers among all your friends. Well those days are behind of us	lifferent process scheduling techniques and it								
We present to you ProSio ProSio is exclusively created for the purpose of making your second year of engineering just a little bit Matters.	more comfortable, and as we know every bit								
ProSio will calculate all of the parameters required during process scheduling and display it in a clear a different algorithms along with a message highlighting the most effecient									
Click here to start	For more information regarding ProSio or its workings, Contact Varun Singh: 99691 76748 Rohan Talele:73030 12567 Batch of 2021, Department of Computer Engineering Xavier Institute of Engineering								

Selecting the scheduling algorithms

	Choose your algo	⊕ FCFS ⊕ SJF(NP) Start	● SJF(PRE) ● PRORITY Clear	⊕ ROUND ROBIN Exit	
Process Details	Time Quar	turn is 5			
Process No		Process No Arrival Time		Priority	
Arrival Time	1 2 3 4	2 3 1 5	3 4 4 3 6 2 1 1		
Burst Time					
Priority					
Add Process	Calculate				
Reset Table					

Displaying the calculated parameters

												-	
FCFS						PRIORITY							
Process No	Arrival Time	Burst Time	Completion Time	Turn Around Time	Waiting Time	Process No	Priority	Arrival Time	Burst Time	Completion Time	Turn around Time	Waiting Time	
3	1	6	7 10	6 8	0 5	1 2	4 3	2	3 4	5	3 6	0 2	
2	3	4	14 15	11 10	7	3	2	ĭ	6	14 15	13 10	7	
4	5	1	15	10	9	4	1	5	1	15	10	9	
werage Turn around						Average Turn ard Average Waiting							
SJF(PRE)						SJF(NP)							
Process No	Arrival Time	Burst Time 6	Completion Time	Turn around Time	Waiting Time 8	Process No 3	Arrival Time	Burst Time	Compl	etion Time Tun	n around Time	Waiting Time	
1	2	3	15 5	3	Ô	1	2	3	11	9		6	
2	3	4	10 6	7	3	2	3	4	15 8	12		8	
Average Turn around						Average Turn an							
						ROUND ROBIN							
						Process No	Arrival Time	Burst Time			n around Time	Waiting Time	
гие м	OCT EF	FICIENT	ALGORI	THM TO	HCE IC	3	1 2	6	15 9	14 7		8	
THE M	IUSI EF	PICIENI	ALGUM	IIIM IU	USE IS	2	3	4	13 14	10		6	
						4	5	i	14	9		8	
SJF PR	REEMPT	IVE					ound Time is 10.0						
Back	k		Exit			Average Waiting	Time is 6.5						

Conclusion

- Process scheduling is an integral part of any Operating system. We can't afford to keep our CPU idle indefinitely in the hopes of a process to be executed in any order.
- With these algorithms we get the most efficiency, our throughput increases, latency of the CPU decreases and overall we get a much better performance.
- The industry implementation of schedulers have employed variations based on flavors and hybrids of the standard algorithms. As with most NP-hard problems, in designing the standard algorithms, scholars did not concern themselves with security matters.

References

- https://www.geeksforgeeks.org/
- https://www.thejavaprogrammer.com
- http://www.ijesi.org/papers/Vol(6)11/Version
 -1/L0611016771.pdf
- https://www.cs.uic.edu/~jbell/CourseNotes/ OperatingSystems/5_CPU_Scheduling.html

Contact

Rohan Talele: 73030 12567 rntalele@gmail.com

Varun Singh: 9969176748 varunsingh3000@gmail.com