LES PILES DE CONCENTRATIONS

I. Principe

1.1. Présentation

1.2. Théorie

• <u>Demi-équation</u> : Ag⁺ + e⁻ → Ag_(S)

• Potentiel d'électrode : $E = E^{\circ}_{Ag+/Ag} + 0.06 \text{ Log}[Ag^{+}]$

• f.e.m. de la pile : $e = E_1 - E_2 = 0.06 \text{ Log} \frac{[Ag^+]_0}{[Ag^+]_0}$

II. Détermination d'un produit de solubilité

• Réaction dans la demi-pile 2

$$AgCl_{(S)} \xrightarrow{\rightarrow} Ag^+ + Cl^- \qquad K_S = [Ag+].[Cl^-]$$

• Concentration en Ag⁺ dans la demi-pile ② $[Ag^+]_{\varnothing} = \frac{\kappa_S}{[Cl^-]} = \frac{\kappa_S}{C_2}$

$$[Ag^+]_{\odot} = \frac{K_S}{[Cl^*]} = \frac{K_S}{C_2}$$

• Concentration en Ag+ dans la demi-pile ①

[Ag⁺]_□ = C₁ il n'y a pas de réaction annexe

• Expression littérale de la f.e.m.
e =
$$E_1 - E_2 = 0.06 \text{ Log} \frac{[Ag^+]_{\oplus}}{[Ag^+]_{\oplus}} = 0.06 \text{Log} \frac{C_1C_2}{K_S} = 0.06 \text{pK}_S + 0.06 \text{Log} (C_1.C_2)$$

Résultats

On mesure e = 408 mV

On en déduit $pK_S = 10$

La valeur tabulée est pKs = 9,8

Il faut savoir que le log amplifie les erreurs.

III. Etude d'un complexe

3.1. Détermination du coefficient a

• Tableau d'avancement

Car l'argent faut défaut

 $x = C_a/a$ et $C_a << C_b$

• Concentration en Ag+ dans les demi-piles

Avec la constante d'équilibre on obtient :

$$[Ag^{+}]^{a}$$
₀ = $\frac{C_{a1}/a}{K_{F}C_{b1}^{b}}$ et $[Ag^{+}]^{a}$ ₀ = $\frac{C_{a2}/a}{K_{F}C_{b2}^{b}}$

Avec $C_{b1} = C_{b2}$

Expression littérale de la f.e.m.

$$e = E_1 - E_2 = 0.06 \text{ Log} \frac{[Ag^+]_{\odot}}{[Ag^+]_{\odot}} = \frac{0.06}{a} \text{Log} \frac{C_{a1}}{C_{a2}}$$

• Résultats

e = 123 mV

On en déduit a = 0.97 soit a = 1

3.2. Détermination du coefficient b

• Tableau d'avancement

Car l'argent faut défaut $x = C_a/a$ et $C_a << C_b$

$$x = C_a/a$$
 et $C_a << C_b$

• Concentration en Ag+ dans les demi-piles

Avec la constante d'équilibre on obtient :

$$[Ag^{+}]^{a}_{\odot} = \frac{C_{a1}/a}{K_{F}C_{b1}^{b}} \text{ et } [Ag^{+}]^{a}_{\odot} = \frac{C_{a2}/a}{K_{F}C_{b2}^{b}}$$

Avec $C_{a1} = C_{a2}$

• Expression littérale de la f.e.m.

$$e = E_1 - E_2 = 0.06 \ Log\frac{[Ag^+]_{\odot}}{[Ag^+]_{\odot}} = 0.06 \ Log\left(\frac{C_{b2}}{C_{b1}}\right)^b = \frac{0.06}{b} Log\frac{C_{b2}}{C_{b1}}$$

Résultats

e = -32 mV

On en déduit b = 1,87 soit b=2

3.3. Détermination de pK_F

• Tableau d'avancement dans le bac ①

	aAg⁺ +	b NH₃	<i>,</i> ←	$Ag_a(NH_3)_b^{a+}$
El	Ca	C_b		
EF	C _a – ax	$C_b - bx$		X
Soit	3	$≈C_b$		C _a /a

Car l'argent faut défaut

$$x = C_a/a$$
 et $C_a << C_b$

• Concentration en Ag+ dans la demi-pile ①

Avec la constante d'équilibre on obtient : $[Ag^+]_{\odot} = \frac{C_{a1}}{K_F C_{ca}^2}$

• Concentration en Ag+ dans la demi-pile 2

$$[Ag^+]_{\odot} = C_{a2}$$

• Expression littérale de la f.e.m.

$$e = E_1 - E_2 = 0.06 \ Log \frac{[Ag^+]_{\odot}}{[Ag^+]_{\odot}} = 0.06 \ Log \frac{C_{a1}}{K_F C_{b1}^2 C_{a2}} = 0.06 \ pK_F + 0.06 \ Log \frac{C_{a1}}{C_{b1}^2 C_{a2}}$$

Résultats

e = -485 mV

On en déduit p $K_F = -7.5$

La valeur tabulée est pK_F = -7,2, l'hypothèse est donc valable Il faut savoir que le log amplifie les erreurs.