Reference:

- 프로젝트 배경
- ▶ 프로젝트 주제 및 내용
- ▶ 프로젝트 세부 내용
- ▶ 프로젝트수행 결과물(예시)

- 프로젝트 배경
- 프로젝트 주제 및 내용
- 프로젝트 세부 내용
- ▶ 프로젝트수행결과물(예시)

▶ 프로젝트 수행 배경

프로젝트 계획					
프로젝트명	SoC Semiconductor Peripheral RTC Design Project				
프로젝트 추진배경	 시스템 반도체 설계는 HDL 언어를 이용해 이루어짐 → 우리 나라 업체에서는 대부분 Verilog HDL 언어를 사용 Verilog HDL 언어를 이용하여 반도체 설계 프로젝트를 수행함 조합 논리 회로 순차 논리 회로를 이용하여 반도체 설계를 경험 하드웨어의 소형화 저전력화가 이루어짐으로 SoC(System On Chip) 형태의 반도체가 증가하고 있음. ARM Core 기반의 특정 Peripheral IP 를 설계하여 SoC 설계를 진행 ARM Core 기반의 SoC를 설계하기 위해서 AMBA BUS를 이해해야 함 ARM Core 기반의 Peripheral IP를 설계함으로써 SoC 설계를 이해하고 시스템 반도체 설계 능력을 갖춤. 				
프로젝트 세부사항	기준시간	70h 기준인원 4인		4인	
	활용툴 • Xilinx FPGA Board, VIVADO, Vitis , 오실로스코프 디지털멀티미터 전원공급기 함수발생기				
	과제 결과물	시스템 반도체 구조 설계서 소프트웨어 구조 설계서 소프트웨어 구조 설계서 시스템 반도체 설계 결과 파일 지스템 반도체 설계 결과 파일 최종 보고서		Board	
		세부 직무역량			통합 직무역량
프로젝트 직무역량	 시스템 반도체 설계 능력 ARM Core 활용 능력 반도체 검증 능력 C언어 프로그래밍 DataSheet 작성 능력 Timing, Waveform 독해 능력 계측기 활용 능력 시스템 반도체 설계 디지털 하드웨어 설계 텀워크 수행 역량 			디지털 하드웨어 설계펌웨어 설계	
프로젝트 운영전략	 프로젝트 목표 및 일정, 조 편성, 주제선성, 산출물, 평가 등 사전 OT 진행 학습자 역량, 성향 및 수준을 고려한 조 편성 평가항목 : 아이디어, 기술구현, 프로젝트 관리, 프리젠테이션, 팀 역할분담 				

- 프로젝트 배경
- ▶ 프로젝트 주제 및 내용
- 프로젝트 세부 내용
- ▶ 프로젝트수행결과물(예시)

▶ 프로젝트 주제 및 내용

역량 요구사항	필요 기술(직무 역량)	인력양성 목표(훈련 목표)
1. Verilog HDL 설계 이해	• Verilog HDL 기술	
2. ARM Architecture 이해	• Timing Chart 작성 기술	
3. AMBA BUS 이해	• 활용 기술 EDA Tool	
4. Memory Map I/O 이해	• 계측기 사용 기술	참여자의 역량을 반영한
5. UART/RS485/SPI 통신protocol	• 언어 활용 기술 C	핵심 기술교육과 프로젝트
6. AHB / APB / AXI Bus 이해	• 계측기 측정 기술	
7. Module Level 설계	• 설계 사양 기능별 구체적	수행을 통해 Low Level 개발의
8. Top Level 설계	• 기술 능력	SoC 반도체 Peripheral RTC
9. Memory 동작 이해	• 설계 사양 비교분석 기술	설계 전문가 양성
10. 조합논리회로 설계 이해	• 전체 설계 흐름도 작성 기술	
11. 순차논리회로 설계 이해	• 각 단계별 결과물 정리 및 보고서 작성	
12. C언어 활용 능력	능력	

구분	프로젝트 주제	난이도
팀 프로젝트	SoC Semiconductor Peripheral RTC Design Project	상

- 프로젝트 배경
- 프로젝트 주제 및 내용
- ▶ 프로젝트세부내용
- 프로젝트 수행 결과물(예시)

▶ 프로젝트 주제 및 내용(1)

프로젝트 팀 주제	세부 수행 내용	습득 직무 역량
SoC Semiconductor Peripheral RTC Design Project	 ▶ 반도체 설계 수행 ✓ 계층구조 설계 ✓ 연동 AXI4 Lite Channel ✓ 디지털 IP Block Design ✓ IP Module Test & Verification ✓ ARM Core 와 IP 연동 ✓ Display Control 반도체 설계 ✓ 메모리 설계 ✓ Timer/Counter 설계 ✓ FPGA 보드에서 검증 ✓ Verification 	 ➤ 지식 ✓ Verilog HDL 언어 이해 ✓ 개발목표 및 사양에 대한 구체적 지식 ✓ 설계 흐름도에 맞춰 설계 장비를 선정하는 지식 ✓ 불 대수 ✓ 조합회로 순차회로 설계 및 해석 ✓ FSM 구조 및 해석 ✓ ARM System Architecture 이해 ✓ Memory Mapped I/O 이해 ✓ 메시지 송수신의 Protocol 설계 능력 ✓ 메모리 활용 능력 ✓ CPU 와 Peripheral BUS 간의 통신 이해 능력 ✓ 반도체 설계 검증 능력 ✓ AMBA BUS 이해 ✓ AXI4-Lite Channel 설계 ✓ 사용할 기능 블록과 IP 들에 대한 지식 ✓ SW 구조 설계 방법 ✓ FSM 구조 및 해석 ✓ 동기 비동기 시스템 구조 ✓ Timing and Waverform 해석

▶ 프로젝트 주제 및 내용(2)

프로젝트 팀 주제	세부 수행 내용	습득 직무 역량
SoC Semiconductor Peripheral	► S/W 수행✓ SW 구조 설계	 기술 ✓ Verilog HDL 활용 기술 ✓ 반도체 Timing Chart 검증 기술 ✓ C 언어 활용 기술 ✓ Memory 설계 기술 ✓ Timer/Counter 설계 기술 ✓ AXI4-Lite Channel 설계 기술 ✓ TestBench 작성 기술 ✓ 각 설계 블록별 주요 레지스터 맵 작성 기술 ✓ 시스템 버스를 운영하는 소프트웨어 해석 능력 ✓ 소프트웨어를 포함한 시스템 레벨에서의 분석 및 설계 기술
RTC Design Project	✔ Machine Code 작성(C 언어)	 기술 ✓ 목표 설계부터 구현 검증 버그 해결 그리고 결과물까지 전체 경험 Flow ✓ 요구사양에 대한 분석 및 충분한 이해 ✓ 설계 진행상황을 구체적으로 파악하는 태도 ✓ 문제점 대응 방안을 수립하려는 노력 ✓ 현실적으로 구현 가능한 아키텍처를 능동 적으로 정의하는 태도 ✓ 반도체 제품 내부 시스템을 이해하려는 노력 ✓ 팀 커뮤니케이션 역량 습득 ✓ 결과 발표 역량 습득

- 프로젝트 배경
- ▶ 프로젝트 주제 및 내용
- 프로젝트 세부 내용
- ▶ 프로젝트 수행 결과물(예시)

- 프로젝트 과제 (결과물 예시)
 - ▶ 전공교과에서 학습한 내용과 연계하여 최종 포트폴리오에 활용할 수 있도록 기획
 - 참여기업에서 실제 진행 중이거나 진행한 프로젝트의 연관성을 고려하여 수행
 - 프로젝트별 주제에 참여한 기업 소속의 실무자가 멘토로 참여
 - 종합 실무 프로젝트의 산출물을 활용하여 최종 포트폴리오 완성

프로젝트 구상

- 설계 목표 구상
- SoC Peripheral 반도체 설계
- 시스템반도체 모듈별 설계
- 모듈별 Simulation 검증

프로젝트 구상

- 모듈 통합 작업
- 통합 검증
- Synthesis 후 FPGA 에서 확인
- 프로젝트 제작 보고서
- 프로젝트 구동 영상 자료

최종 포트폴리오

➢ 프로젝트 수행 결과물 (예시) [1/33] → 설계 목표

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

설계목표

- MicroBlaze Soft Processor Core와 AXI4 Lite AMBA BUS를 활용한 Peripheral 설계 프로젝트를 진행한다.
- 개요
 - Microblaze로 세탁기 기능을 FSM을 이용해 설계
 - Microblaze & AXI4Lite AMBA BUS를 이용해 PWM, FND, RTC Peripheral IP 설계
 - 세탁기의 Auto, Select mode별 세탁, 헹굼, 탈수 기능별로 PWM 제어
 - Timer IP: 1second 단위로 INTERRUPT 발생

(a)

• UART IP : Bluetooth 모듈을 이용해 세탁기 제어

목표 설정

➢ 프로젝트 수행 결과물 (예시) [2/33] → 설계 사양(1/3)

➢ 프로젝트 수행 결과물 (예시) [3/33] → 설계 사양(2/3)

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Micro Blaze Design Input/Output Spec

I/O	Signal Name	Bit	Description
Input	Sys_clock	1	Input 100MHz Clock Source
Input	reset	1	Input reset pushbutton
Input	i_btn_tri_io	1	Input Wash Machine control pushbutton
Input	usb_uart_rxd	1	UART Rx signal
Input	o_lcd_tri_io	7	Output LCD Data
Output	o_fnd_font	8	Output 7-Segment font data
Output	o_fnd_sel	4	Output 7-Segment select
Output	o_pump_en	1	Enable for pump
Output	o_motor_en	1	Enable for motor
Output	o_pump_pwm	2	Pump_pwm
Output	o_motor_pwm	2	Motor_pwm
Output	usb_uart_txd	1	UART Tx signal

- ▶ 설계 사양
- → Input Spec
- → Output Spec

➢ 프로젝트 수행 결과물 (예시) [4/33] → 설계 사양(3/3)

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

IP별구현기능

IP	세부 기능		
RTC (Real Time Clock)	시간 설정이 가능한 시계		
FND	각 세탁 모드와 남은 시간 표시		
	각 모드 별		
PWM	세탁기 모터 제어		
	Water Pump 제어		
	UART통신 Bluetooth 제어		
UART	휴대폰 입력 세탁기 제어		
	Blaze RTC 시간 출력		
GPIO	LCD Data, Button		
Timer	Interrupt를 이용해 1초를 count하는		
rimer	down counter제작		

▶ 설계 사양

 \rightarrow IP

RTC(Real

Time Clock)

- FND
- PWM
- UART
- GPIO
- Timer

➤ 프로젝트 수행 결과물 (예시) [5/33] → Block Diagram

➤ 프로젝트 수행 결과물 (예시) [6/33] → SW/HW STACK

➤ 프로젝트 수행 결과물 (예시) [7 / 33] → FSM Mode & PWM

➢ 프로젝트 수행 결과물 (예시) [8/33] → FSM_PWM

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Part 2, FSM

PWM FSM

(a)

PWM

Mode 0 : Stop Mode 1 : Left Mode 2 : Right

Mode 3 : Left \rightarrow Stop \rightarrow Right \rightarrow Stop

Wash: Duty 80 양방향 5초 주기 회전(Mode 3)

Rinse : Duty 80 한방향(Mode2)

+ Duty 80 Water Pump ON(Mode2)

Dehydration : Duty 50 한방향 (Mode2)

각 State 별 Run/Stop 가능

PWM FSM

- → PWM Mode
- 0 : Stop
- 1 : Left
- 2 : Right
- 3: Left StopRight Stop
- → Wash
- Mode 3, 양방향
- Duty 80,5초
- → Rinse
- Mode2, 한방향
- Duty 80
- Water Pump ON
- → Dehydration
- Mode2, 한방향
- Duty 50

➢ 프로젝트 수행 결과물 (예시) [9/33] → IP Block Design

프로젝트 포트폴리오 프로젝트 결과물 예시 프로젝트 내용 IP Block Design **PWM FND** $\rightarrow PWM$ → FND **RTC** \rightarrow RTC Part 3, IP Block Design **GPIO** \rightarrow GPIO Timer → Timer **UART** → UART **Project** → Project

➢ 프로젝트 수행 결과물 (예시) [10 / 33] → IP Block Design → PWM Generate

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

PWM Driver Sub Module - RTL Design IP

Top_Motor_Driver

Part 3.

Clock_Divider: 100MHz → 1Hz

Mode_3_Execute: 5sec mode change

Mux Select pin에 Switch 2bit AND 할당
Mux Input A = input_switch 입력 00, 01, 10 출력 = A
Mux Input B = mod_3 execute 입력 11 출력 = B
11의 경우 Mod 3 Execute 동작 및 Mux Select 변경

→ 모터의 정지, 정방향, 역방향, 자동 방향 조절 모드 별 출력 신호 제어용

PWM_Generator

Clock_Divider_PWM: 100MHz → 1MHz

Counter: 100

Compare: less than

1MHz(1us) 주기 → 100 count 10kHz(100us) 주기 → 10khz PWM 출력 OCR 0~99 와 count 비교로 less than 출력 PWM 생성

 $o_{t} = (i_{e} = 1'b1) ? (i_{a} < i_{b}) : 0$

i_en = 1일 때 i_a(count) < i_b(i_ocr) 참이면 1 거짓이면 0

→PWM 생성용

➤ 프로젝트 수행 결과물 (예시) [11 / 33] → IP Block Design → PWM IP

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

(a)

PWM 양방향 제어 위하여 H/W Motor Driver의 In1, In2에 들어가는 신호를 Demux로 변경

➤ 프로젝트 수행 결과물 (예시) [12 / 33] → IP Block Design → PWM IP & AXI 4 Lite

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Part 3,

PWM Driver Top Module - RTL Design IP

Blaze에서 AXI Bus 이용 Reg 0 8비트 Duty 제어 위한 OCR 설정 출력 IP 입력 받음 Reg 0 2비트 Mode Data 출력 IP 입력 받음

(a)

PWM 양방향 제어 위하여 H/W Motor Driver의 In1, In2에 들어가는 신호를 Demux로 변경

➤ 프로젝트 수행 결과물 (에시) [13 / 33] → IP Block Design → PWM Simulation

TEST BENCH SIMULATION

timescale 1ns / 1ps module pwm_test_tb(top_pwm_gen tpg(); .i_clk(i_clk), .i_en(i_en). reg i_clk; .i_ocr(i_ocr), reg i en: .o_pwm(o_pwm) reg [7:0] i_ocr; wire o_pwm; initial begin i clk = 0; i en = 1; i ocr = 50; always #5 i_clk = ~i_clk; endmodule

Oscilloscope Waveform

➤ 프로젝트 수행 결과물 (예시) [14 / 33] → IP Block Design → PWM Driver RTL

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

PWM Driver RTL View-RTL Design IP

Sub Module

Part 3,

Top Module

> 프로젝트 수행 결과물 (예시) [15 / 33] → IP Block Design → PWM Driver AXI4 RTL & IP

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Part 3, PWM Driver AXI4 RTL View - RTL Design IP

➤ 프로젝트 수행 결과물 (예시) [16 / 33] → IP Block Design → FND IP & AXI4Lite

프로젝트 포트폴리오

FND Top Module - RTL Design IP

AXI 4Lite Top FND

Part 3.

Blaze에서 AXI Bus 이용 Reg 0 32bit FND data 출력 FND 입력 받음

Clock_Divider: 100Mhz → 1khz(0.1sec)

Counter : 2bit(0~3) counter

Decoder_2X4 : 2→4(bit), Select 1 FND of 4 FND

Digit_Divider : 8bit reg data→ time data

4X1_MUX : Select 1 FND FONT

BCDtoFND_Decoder : BCD(4bit) to FND FONT(8bit)

> 프로젝트 수행 결과물 (예시) [17 / 33] → IP Block Design → FND Simulation

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Part 3,

FND Simulation - RTL Design IP

testbench code

```
`timescale Ins / Ips
module fnd_test_tb(
                                         fnd_controller fc123(
   );
                                                 .i_clk(i_clk),
   reg i_clk;
                                                .i_digit_0(i_digit_0).
   reg [7:0] i_digit_0;
                                                _i_digit_1(i_digit_1).
   reg [7:0] i_digit_1;
                                                .i_digit_2(i_digit_2).
   reg [7:0] i_digit_2;
                                                ,i_digit_3(i_digit_3),
   reg [7:0] i_digit_3;
                                                _o_fnd_sel(o_fnd_sel).
   wire [3:0] o_fnd_sel;
                                                .o_fnd_font(o_fnd_font)
   wire [7:0] o_fnd_font:
                                          );
```

endmodule

➤ 프로젝트 수행 결과물 (예시) [18 / 33] → IP Block Design → FND RTL

.xpr

➤ 프로젝트 수행 결과물 (예시) [19 / 33] → IP Block Design → FND AXI4 RTL & IP

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

FND AXI4 RTL View - RTL Design IP

Part 3,

➤ 프로젝트 수행 결과물 (예시) [20 / 33] → IP Block Design → RTC(Real Time Clock)

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

RTC Top Module - RTL Design IP

Part 3,

Blaze에서 AXI Bus 이용 Reg 0 32bit Modify en & time data로 출력하여 IP 입력 받음 Reg 1 32bit IP 출력의 time data를 Blaze로 입력 받음

(a)

Clock_Divider: 100MHz → 10Hz (1msec)

Time_Counter : 시간에 대한 계산

RTC_Memory(Register):

modify 시간 적용 위한 Memory 역할

> 프로젝트 수행 결과물 (예시) [21 / 33] → IP Block Design → RTC IP Simulation

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

RTC Simulation - RTL Design IP

Part 3,

➤ 프로젝트 수행 결과를 (예시) [22 / 33] → IP Block Design → RTC RTL

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Part 3, RTC RTL View - RTL Design IP

IP Top Module

➤ 프로젝트 수행 결과를 (예시) [23 / 33] → IP Block Design → RTC AXI4 RTL & IP

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Part 3, RTC AXI4 RTL View - RTL Design IP

➤ 프로젝트 수행 결과물 (예시) [24 / 33] → IP Block Design → GPIO & Timer & UartLite

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

GPIO & Timer & uartlite - RTL Design IP

GPIO

버튼 입력과 LCD 신호를 출력하기 위해 사용

UART

DATA의 송/수신이 됐을 때, INTERRUPT로 호출될 Handler를 설정하고 instance에 대한 포인터를 '콜백으로 지정해 이용

Timer

axi_smer_0

+ s_AXI
capturetrig0 generateout0
capturetrig1 generateout1
feeste perri0
s_axi_ack interrupt
s_axi_aresidn

AX0 Timer

100MHz의 clock에서 약 1초 간격으로 interrupt를 발생시켜 1초마다 downcount를 하도록 설정 타이머 카운터 인스턴스를 0xFFFFFFF로 설정해 32bit 까지 Upcount되고 overflow 발생 → 인터럽트 발생

100MHz의 clock

- → 약 1초 간격 interrupt 발생 code : #define RESET_VALUE (0xffffffff 100_000_000)
- → XTmrCtr_SetResetValue(&TimerCounterInst, Timer_CNTR_0, RESET_VALUE)

➤ 프로젝트 수행 결과물 (예시) [25 / 33] → IP Block Design → Block Diagram

프로젝트 포트폴리오

IP Block Design

➢ 프로젝트 수행 결과를 (예시) [26 / 33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Purt4 사진 & 영상

▶ 프로젝트 수행 결과물 (예시) [27 / 33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

프로젝트 사진 Part 4,

➢ 프로젝트 수행 결과물 (예시) [28 / 33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

^{Purt4} 프로젝트 사진

➢ 프로젝트 수행 결과를 (예시) [29 / 33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

프로젝트 영상 Part 4,

Automode & 버튼을 이용하여 제어

총 30초 동안 세탁기 자동 동작

세탁: 10초 탈수: 10초 헹굼: 10초 총 : 30초

➤ 프로젝트 수행 결과물 (예시) [30 / 33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

^{Рш14} 프로젝트 영상

Select mode & Bluetooth 제어

모드 별 10초씩 설정해 총 30초 동안 세탁기 자동 동작

세탁: 10초 탈수: 10초 행굼: 10초 총: 30초

➤ 프로젝트 수행 결과물 (예시) [31/33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

^{Рш14} 프로젝트 영상

Wash mode & Bluetooth 제어

세탁 기능만 10초 동작 세탁: 10초

7 ... L 7 H & &

➤ 프로젝트 수행 결과물 (예시) [32 / 33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Purt4, 프로젝트 영상

Rinse mode & Bluetooth 제어

행굼 기능만 10초 동작 세탁: 10초

➤ 프로젝트 수행 결과물 (예시) [33/33] → Project Result

프로젝트 포트폴리오

프로젝트 결과물 예시

프로젝트 내용

Purt 4, 프로젝트 영상

Dehydration mode & Bluetooth 제어

탈수 기능만 10초 동작 세탁: 10초

- 프로젝트 배경
- ▶ 프로젝트 주제 및 내용
- 프로젝트 세부 내용
- 프로젝트 수행 결과물(예시)
- ▶ 결과 및 고찰

▶ 결과 및 고찰 [1/]

결과 및 고찰 [2 /]

문제 해결 Part 5

- Timer IP를 사용하여야 하는데 사용방법을 몰라서 코딩을 할수 없었음
- → Xilinx에서 배포하는 Timer IP의 Datasheet에서의 시간 설정등을 참고하여 문제 해결

```
https://docs.xilinx.com/v/u/en-US/pg079-axi-timer
AXI Timer 2.0
```

- · When the counter is set to count down, TIMING INTERVAL = (TLRx + 2) * AXI CLOCK PERIOD
- Xilinx에서 제공하는 Library의 사용의 생소함으로 인한 설정의 어려움으로 Timer Interrupt가 작동되는 도중에 Bluetooth이 작동되지 않는 문제 → Interrupt를 각자 실행시켜 문제 해결
- When the counter is set to count up, TIMING_INTERVAL = (MAX_COUNT - TLRx + 2) * AXI_CLOCK_PERIOD

where MAX COUNT is the maximum count value of the counter, such as 0xFFFFFFFF for a 32-bit counter.

- 세탁기 PWM 제어 시 각 모드의 Down Count 변수의 조건에서 변수가 0일 경우에 겹치는 부분으로 인한 문제 헹굼 단독 실행과 행굼을 뺀 실행에서 원하지 않는 동작이 출력됨
 - → 이유 : 시간에 대한 범위가 겹치는 경우가 발생
 - → flag로 제어 시도 → 문제 해결 X
 - → 겹치는 부분의 구체적 상황 설정을 위해 FSM을 다시 구성하고 and 연산 추가하여 문제 해결

```
else if ((total time < (set time - (wsh*10)))&&(total time>(set time-(wsh*10)-4)))
else if ((!((set_time-(wsh*10)) == (set_time-(wsh*10)-(rin*10))))&&(total_time < (set_time - (wsh*10)))&&(total_time>(set_time-(wsh*10))-4)))
```

추가

- Hardware적인 문제 :
 - Bluetooth, LCD 등의 모든 회로의 Ground의 연결을 고려하지 못함 → 모든 회로의 Ground를 일치시켜 줌

▶ 결과 및 고찰 [3/]

Purts 문제 해결 - SPI Module

Lorem Ipsum is simply dummy text of the printing and typesetting industry

Verilog를 이용해 SPI모듈을 제작해 구현하기로 함

- → memory overflow error 발생
- → memory를 64GB로 수정해보고

Use Instruction and Data Caches등을 해보았지만 안됨

(a)

→ GPIO IP를 이용해 바로 data신호를 출력함

Resource Estimates

Error code

d:/vitis/2021.2/gnu/microblaze/nt/x86_64-oesdk-mingw32/usr/bin/microblaze-xilinx-elf/../../libexec/microblaze-xilinx-elf/gcc/microblaze-xilinx-elf/10.2.0/real-ld.exe: mb_spi.elf section `.text' will not fit in region

`microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_microblaze_0_local_memory_dlmb_bram_if_cntlr_Mem'

d:/vitis/2021.2/gnu/microblaze/nt/x86_64-oesdk-mingw32/usr/bin/microblaze-xilinx-elf/../../libexec/microblaze-xilinx-elf/gcc/microblaze-xilinx-elf/10.2.0/real-ld.exe: region `microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_microblaze_0_local_memory_dlmb_bram_if_cntlr_Mem' overflowed by 55928 bytes

collect2.exe: error: ld returned 1 exit status
make: *** [makefile:38: mb spi.elf] Error 1

결과 및 고찰 [4/]

Part 5,

느끼점

- Microblaze를 사용할 때, IP 사용에 문제가 발생하면 Bitstream과 Vitis를 실 행시키는 과정에 많은 시간이 소요됨
 - 사전에 설계 단계에서 실수를 줄이기 위한 계획과 시뮬레이션 검증 과정의 중 요성을 느낌
- 빠른 프로젝트의 수행을 위해서 역할 분담과 구체적인 계획의 필요성을 느낌
- 설계 전에 FSM과 Hardware Architecture등의 사전 작업 단계의 중요성을 느 낌

결과 및 고찰 [5/]

Part 5,

느끼점

- Microblaze를 사용할 때, IP 사용에 문제가 발생하면 Bitstream과 Vitis를 실 행시키는 과정에 많은 시간이 소요됨
 - 사전에 설계 단계에서 실수를 줄이기 위한 계획과 시뮬레이션 검증 과정의 중 요성을 느낌
- 빠른 프로젝트의 수행을 위해서 역할 분담과 구체적인 계획의 필요성을 느낌
- 설계 전에 FSM과 Hardware Architecture등의 사전 작업 단계의 중요성을 느 낌

수고하셨습니다.