1 Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks

Based on (Forastiere et al., 2021).

1.1 Background and motivation

- Interference: in experimental and observational studies, when a treatment assigned to one unit has an effect on others.
- Spillover effects: the effects of interference.
- Problem and goal: given a known network where the assignment mechanism of the treatment is unknown, estimate (1) the causal effect of individual treatment and (2) the spillover effect from treatments of others.
- Contributions of paper:
 - 1. A general formulization for the problem of interference in networks under the potential outcome framework.
 - 2. Derivation of the bias for estimators of the treatment effect when SUTVA is wrongly assumed.
 - A joint propensity score (probability of assignment to particular individual and neighborhood treatment given observed covariates) with balancing properties, and a joint propensity score-based estimator.

1.2 Interference based on exposure to neighbourhood treatment

Notation:

- Undirected network $G = (\mathcal{N}, \mathbb{E})$ where \mathcal{N} is a set of N nodes and \mathbb{E} is a set of edges (i, j) = (j, i).
- Define partition $(i, \mathcal{N}_i, \mathcal{N}_{-i})$ around node i where \mathcal{N}_i is set of N_i nodes (neighbourhood) that contains all nodes j connected to i and \mathcal{N}_{-i} is set of all other nodes not i and not in \mathcal{N}_i .
- $Z_i \in \{0,1\}$ treatment assignment to unit i, **Z** treatment vector for population \mathcal{N} , and $(Z_i, \mathbf{Z}_{\mathcal{N}_i}, \mathbf{Z}_{\mathcal{N}_{-i}})$ partitions for $(i, \mathcal{N}_i, \mathcal{N}_{-i})$.
- $Y_i \in \mathcal{Y}$ observed outcome of unit i, \mathbf{Y} outcome vector for population \mathcal{N} , and $(Y_i, \mathbf{Y}_{\mathcal{N}_i}, \mathbf{Y}_{\mathcal{N}_{-i}})$ partitions for $(i, \mathcal{N}_i, \mathcal{N}_{-i})$.
- $\mathbf{X}_i \in \mathcal{X}$ vector of covariates for unit i and decomposes into $\mathbf{X}_i^{\text{ind}} \in \mathcal{X}^{\text{ind}}$ (individual-level characteristics) and $\mathbf{X}_i^{\text{neigh}} \in \mathcal{X}^{\text{neigh}}$ (neighbourhood-level characteristics and aggregates of individual-level covariates).

REFERENCES

References

Forastiere, L., Airoldi, E. M., & Mealli, F. (2021). Identification and estimation of treatment and interference effects in observational studies on networks. *Journal of the American Statistical Association*, 116(534), 901-918. https://doi.org/10.1080/01621459.2020.1768100