Quantum and Classical Algorithms for Approximate Submodular Function Minimization

Yassine Hamoudi, Patrick Rebentrost,
Ansis Rosmanis, Miklos Santha

arXiv: 1907.05378

1. Approximate Submodular Function Minimization

2. Quantum speed-up for Importance Sampling

1

Approximate Submodular Function Minimization

$$\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$$

$$\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$$

Example: area covered by cameras

$$\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$$

Example: area covered by cameras

$$\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$$

Example: size of a cut

$$\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$$

Example: size of a cut

$$\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$$

Other examples:

• F(S) = h(|S|) is submodular iff h is concave

$$\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$$

Other examples:

- F(S) = h(|S|) is submodular iff h is concave
- rank of a set of vectors
- entropy of random variables
- coverage functions
- •

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find
$$S^*$$
 such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong 2015: $\tilde{O}(n^3)$ or $\tilde{O}(n^2\log M)$ where $M=\max |F(S)|$ (lower bound: $\Omega(n)$)

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S^* such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong 2015: $\tilde{O}(n^3)$ or $\tilde{O}(n^2\log M)$ where $M=\max |F(S)|$ (lower bound: $\Omega(n)$)

\varepsilon-Approx. Minimization: find S^* such that $F(S^*) \leq \min_{S \subset [n]} F(S) + \epsilon$

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find
$$S^*$$
 such that $F(S^*) = \min_{S \subset [n]} F(S)$

- Lee, Sidford, Wong 2015: $\tilde{O}(n^3)$ or $\tilde{O}(n^2\log M)$ where $M=\max |F(S)|$ (lower bound: $\Omega(n)$)
- **\epsilon-Approx. Minimization:** find S^* such that $F(S^*) \leq \min_{S \subset [n]} F(S) + \epsilon$
 - Chakrabarty, Lee, Sidford, Wong 2017: $\tilde{O}(n^{5/3}/\epsilon^2)$

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find
$$S^*$$
 such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong 2015: $\tilde{O}(n^3)$ or $\tilde{O}(n^2\log M)$ where $M=\max |F(S)|$ (lower bound: $\Omega(n)$)

\epsilon-Approx. Minimization: find S^* such that $F(S^*) \leq \min_{S \subset [n]} F(S) + \epsilon$

- Chakrabarty, Lee, Sidford, Wong 2017: $\tilde{O}(n^{5/3}/\epsilon^2)$
- Our result: $\tilde{O}(n^{3/2}/\epsilon^2)$ (classical) or $\tilde{O}(n^{5/4}/\epsilon^{5/2})$ (quantum)

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find
$$S^*$$
 such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong 2015: $\tilde{O}(n^3)$ or $\tilde{O}(n^2\log M)$ where $M=\max |F(S)|$ (lower bound: $\Omega(n)$)

\varepsilon-Approx. Minimization: find S^* such that $F(S^*) \leq \min_{S \subset [n]} F(S) + \epsilon$

- Chakrabarty, Lee, Sidford, Wong 2017: $\tilde{O}(n^{5/3}/\epsilon^2)$
- Our result: $\tilde{O}(n^{3/2}/\epsilon^2) \ \ (\text{classical}) \ \ \text{or} \ \ \tilde{O}(n^{5/4}/\epsilon^{5/2}) \ \ (\text{quantum})$
- Axelrod, Liu, Sidford 2019: $\tilde{O}(n/\epsilon^2)$ (classical)

Set function: $F: 2^{[n]} \to \mathbb{R}$

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Set function:
$$F: 2^{[n]} \to \mathbb{R}$$

Continuous Optimization

$$n = 2$$

$$F(\emptyset) = 0$$

$$F(\{1\}) = 10$$

$$F(\{2\}) = 6$$

$$F(\{1,2\}) = 3$$

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

$$n = 2$$
 $F(\emptyset) = 0$
 $F(\{1\}) = 10$
 $F(\{2\}) = 6$
 $F(\{1,2\}) = 3$

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

$$n = 2$$
 $F(\emptyset) = 0$
 $F(\{1\}) = 10$
 $F(\{2\}) = 6$
 $F(\{1,2\}) = 3$

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Lovász extension: $f:[0,1]^n \to \mathbb{R}$

The Lovász extension is:

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Lovász extension: $f:[0,1]^n \to \mathbb{R}$

The Lovász extension is:

Piecewise linear

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Lovász extension: $f:[0,1]^n \to \mathbb{R}$

The Lovász extension is:

- Piecewise linear
- Convex iff F is submodular (Lovász 1983)

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Lovász extension: $f:[0,1]^n \to \mathbb{R}$

The Lovász extension is:

- Piecewise linear
- Convex iff F is submodular (Lovász 1983)
- Evaluable using n queries to F.

Exact Minimization:

Lee, Sidford, Wong 2015:

Cutting plane method on the Lovász extension

ε-Approx. Minimization:

- Chakrabarty, Lee, Sidford, Wong 2017:
- Our result:
- Axelrod, Liu, Sidford 2019:

Stochastic Subgradient Descent on the Lovász extension

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at x: random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at x: random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at x: random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at x: random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at x: random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

Convex function $f: C \to \mathbb{R}$ on a convex set C. (not necessarily differentiable)

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at x: random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

(projected) Stochastic Subgradient Descent

If $\tilde{g}(x)$ has low variance then the number of steps is the same as if we were using g(x).

• each coordinate $g(x)_i$ can be computed with two queries to F

- each coordinate $g(x)_i$ can be computed with two queries to F
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

- each coordinate $g(x)_i$ can be computed with two queries to F
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

A stochastic subgradient $\tilde{g}(x)$ for g(x) can be computed in time:

- each coordinate $g(x)_i$ can be computed with two queries to F
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

A stochastic subgradient $\tilde{g}(x)$ for g(x) can be computed in time:

• Chakrabarty, Lee, Sidford, Wong 2017: $\tilde{O}(n^{2/3})$

- each coordinate $g(x)_i$ can be computed with two queries to F
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

A stochastic subgradient $\tilde{g}(x)$ for g(x) can be computed in time:

- Chakrabarty, Lee, Sidford, Wong 2017: $\tilde{O}(n^{2/3})$
- Our result: $\tilde{O}(n^{1/2})$ (classical) or $\tilde{O}(n^{1/4}/\epsilon^{1/2})$ (quantum)

- each coordinate $g(x)_i$ can be computed with two queries to F
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

A stochastic subgradient $\tilde{g}(x)$ for g(x) can be computed in time:

• Chakrabarty, Lee, Sidford, Wong 2017: $\tilde{O}(n^{2/3})$

• Our result: $\tilde{O}(n^{1/2}) \quad \text{(classical)} \quad \text{or} \quad \tilde{O}(n^{1/4}/\epsilon^{1/2}) \quad \text{(quantum)}$

• Axelrod, Liu, Sidford 2019: $ilde{O}(1)$

For any non-zero vector $u \in \mathbb{R}^n$, define the random variable

For any non-zero vector $u\in R^n$, define the random variable i-th coordinate $\hat{u}=(0,\ \dots\ ,\ 0\ ,\ \mathrm{sgn}(u_i)\|u\|_1\ ,\ 0\ ,\ \dots\ ,\ 0)$

where
$$i$$
 is sampled with probability $p_i = \frac{|u_i|}{\|u\|_1}$

For any non-zero vector $u \in \mathbb{R}^n$, define the random variable

$$\hat{u} = (0, \dots, 0, \operatorname{sgn}(u_i) \|u\|_1, 0, \dots, 0)$$

where i is sampled with probability $p_i = \frac{|u_i|}{\|u\|_1}$

Unbiased:
$$E[\hat{u}] = \sum_{i} \frac{|u_i|}{\|u\|_1} \operatorname{sgn}(u_i) \|u\|_1 \cdot \overrightarrow{e}_i = \sum_{i} u_i \cdot \overrightarrow{e}_i = u$$

For any non-zero vector $u \in \mathbb{R}^n$, define the random variable

 $\hat{u} = (0, \dots, 0, \operatorname{sgn}(u_i) \|u\|_1, 0, \dots, 0)$

where i is sampled with probability $p_i = \frac{|u_i|}{\|u\|_1}$

Unbiased:
$$E[\hat{u}] = \sum_{i} \frac{|u_i|}{\|u\|_1} \operatorname{sgn}(u_i) \|u\|_1 \cdot \overrightarrow{e}_i = \sum_{i} u_i \cdot \overrightarrow{e}_i = u$$

2nd moment:
$$E[\|\hat{u}\|_2^2] = \sum_i \frac{|u_i|}{\|u\|_1} \operatorname{sgn}(u_i)^2 \|u\|_1^2 = \|u\|_1^2$$

For any non-zero vector $u \in \mathbb{R}^n$, define the random variable

 $\hat{u} = (0, \dots, 0, \text{sgn}(u_i) ||u||_1, 0, \dots, 0)$

where i is sampled with probability $p_i = \frac{|u_i|}{\|u\|_1}$

Unbiased:
$$E[\hat{u}] = \sum_{i} \frac{|u_i|}{\|u\|_1} \operatorname{sgn}(u_i) \|u\|_1 \cdot \overrightarrow{e}_i = \sum_{i} u_i \cdot \overrightarrow{e}_i = u$$

2nd moment:
$$E[\|\hat{u}\|_2^2] = \sum_i \frac{|u_i|}{\|u\|_1} \operatorname{sgn}(u_i)^2 \|u\|_1^2 = \|u\|_1^2$$

For the Lovász extension: u = g(x) and $||g(x)||_1 = O(1)$ (low variance) (Jegelka, Bilmes 2011)

i-th coordinate

For any non-zero vector $u \in \mathbb{R}^n$, define the random variable i-th coordinate

 $\hat{u} = (0, \dots, 0, \text{sgn}(u_i) ||u||_1, 0, \dots, 0)$

where i is sampled with probability $p_i = \frac{|u_i|}{\|u\|_1}$ Hard to sample (Importance sampling)

Unbiased: $E[\hat{u}] = \sum_{i} \frac{|u_i|}{\|u\|_1} \operatorname{sgn}(u_i) \|u\|_1 \cdot \overrightarrow{e}_i = \sum_{i} u_i \cdot \overrightarrow{e}_i = u$

2nd moment: $E[\|\hat{u}\|_2^2] = \sum_i \frac{|u_i|}{\|u\|_1} \operatorname{sgn}(u_i)^2 \|u\|_1^2 = \|u\|_1^2$

For the Lovász extension: u = g(x) and $||g(x)||_1 = O(1)$ (low variance) (Jegelka, Bilmes 2011)

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is sparse.

(Chakrabarty, Lee, Sidford, Wong 2017)

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is sparse.

(Chakrabarty, Lee, Sidford, Wong 2017)

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is sparse.

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^0 \longrightarrow \hat{g}(x^0)$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is **sparse.**

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^0 \longrightarrow \hat{g}(x^0)$$

$$x^1 \longrightarrow \hat{g}(x^0) + \tilde{d}(x^0, x^1)$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is **sparse.**

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^0 \longrightarrow \hat{g}(x^0)$$

$$x^1 \longrightarrow \hat{g}(x^0) + \tilde{d}(x^0, x^1)$$

$$x^2 \longrightarrow \hat{g}(x^0) + \tilde{d}(x^0, x^2)$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is sparse.

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^{0} \longrightarrow \hat{g}(x^{0})$$

$$x^{1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{1})$$

$$x^{2} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{2})$$

$$\vdots$$

$$x^{T-1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{T-1})$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is sparse.

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^{0} \longrightarrow \hat{g}(x^{0}) \qquad x^{T} \longrightarrow \hat{g}(x^{T})$$

$$x^{1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{1})$$

$$x^{2} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{2})$$

$$\vdots$$

$$x^{T-1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{T-1})$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is **sparse.**

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^{0} \longrightarrow \hat{g}(x^{0}) \qquad \qquad x^{T} \longrightarrow \hat{g}(x^{T})$$

$$x^{1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{1}) \qquad \qquad x^{T+1} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{T+1})$$

$$x^{2} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{2})$$

$$\vdots$$

$$x^{T-1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{T-1})$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y)=g(y)-g(x) that can be computed efficiently when x-y is **sparse.**

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^{0} \longrightarrow \hat{g}(x^{0}) \qquad x^{T} \longrightarrow \hat{g}(x^{T})$$

$$x^{1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{1}) \qquad x^{T+1} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{T+1})$$

$$x^{2} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{2}) \qquad x^{T+2} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{T+2})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x^{T-1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{T-1}) \qquad x^{2T-1} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{2T-1})$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y) = g(y) - g(x) that can be computed efficiently when x-y is sparse.

(Chakrabarty, Lee, Sidford, Wong 2017)

$$x^{0} \longrightarrow \hat{g}(x^{0}) \qquad x^{T} \longrightarrow \hat{g}(x^{T}) \qquad x^{2T} \longrightarrow \hat{g}(x^{2T})$$

$$x^{1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{1}) \qquad x^{T+1} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{T+1}) \qquad \dots$$

$$x^{2} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{2}) \qquad x^{T+2} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{T+2})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x^{T-1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{T-1}) \qquad x^{2T-1} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{2T-1})$$

Tool: there is an unbiased estimate $\tilde{d}(x,y)$ of d(x,y) = g(y) - g(x) that can be computed efficiently when x-y is sparse.

(Chakrabarty, Lee, Sidford, Wong 2017)

Our construction: (T = parameter to be optimized)

$$x^{0} \longrightarrow \hat{g}(x^{0}) \qquad x^{T} \longrightarrow \hat{g}(x^{T}) \qquad x^{2T} \longrightarrow \hat{g}(x^{2T})$$

$$x^{1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{1}) \qquad x^{T+1} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{T+1}) \qquad \dots$$

$$x^{2} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{2}) \qquad x^{T+2} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{T+2})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x^{T-1} \longrightarrow \hat{g}(x^{0}) + \tilde{d}(x^{0}, x^{T-1}) \qquad x^{2T-1} \longrightarrow \hat{g}(x^{T}) + \tilde{d}(x^{T}, x^{2T-1})$$

T independent samples

T independent samples

2

Quantum speed-up for Importance Sampling

Input: discrete probability distribution $D = (p_1,...,p_n)$ on [n].

Output: T independent samples i₁,...,i⊤ ~ D.

Evaluation oracle access

Classical

Quantum

$$i \mapsto p_i$$

$$U(|i\rangle|0\rangle) = |i\rangle|p_i\rangle$$

Cost = # queries to the evaluation oracle

Preprocessing time: O(n)

Cost per sample: $O(\log n)$

Preprocessing time: O(n)

Cost per sample: $O(\log n)$

Cost for T samples: $O(n + T \log n)$

Preprocessing time: O(n)

Cost per sample: $O(\log n)$

Cost for T samples: $O(n + T \log n)$

Alias Method

(Walker 1974, Vose 1991)

Preprocessing time: O(n)

Cost per sample: O(1)

Cost for T samples: O(n + T)

(Grover 2000)

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding

Sampling (repeat T times):

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle|0\rangle$

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$ $\longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\max}}} |0\rangle + \sqrt{1 \frac{p_i}{p_{\max}}} |1\rangle \right)$

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$ $\longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\text{max}}}} |0\rangle + \sqrt{1 \frac{p_i}{p_{\text{max}}}} |1\rangle \right)$ $= \frac{1}{\sqrt{np_{\text{max}}}} \left(\sum_{i \in [n]} \sqrt{p_i} |i\rangle \right) |0\rangle + \dots |1\rangle$

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$ $\longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\text{max}}}} |0\rangle + \sqrt{1 \frac{p_i}{p_{\text{max}}}} |1\rangle \right)$ $= \frac{1}{\sqrt{np_{\text{max}}}} \left(\sum_{i \in [n]} \sqrt{p_i} |i\rangle \right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$ $\longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\text{max}}}} |0\rangle + \sqrt{1 \frac{p_i}{p_{\text{max}}}} |1\rangle \right)$ $= \frac{1}{\sqrt{np_{\text{max}}}} \left(\sum_{i \in [n]} \sqrt{p_i} |i\rangle \right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing time: $O(\sqrt{n})$

Cost per sample: $O(\sqrt{np_{\text{max}}})$

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$ $\longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\text{max}}}} |0\rangle + \sqrt{1 \frac{p_i}{p_{\text{max}}}} |1\rangle \right)$ $= \frac{1}{\sqrt{np_{\text{max}}}} \left(\sum_{i \in [n]} \sqrt{p_i} |i\rangle \right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing time: $O(\sqrt{n})$

Cost per sample: $O(\sqrt{np_{\text{max}}})$

Cost for T samples: $O(\sqrt{n} + T\sqrt{np_{\text{max}}})$

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$ $\longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\text{max}}}} |0\rangle + \sqrt{1 \frac{p_i}{p_{\text{max}}}} |1\rangle \right)$ $= \frac{1}{\sqrt{np_{\text{max}}}} \left(\sum_{i \in [n]} \sqrt{p_i} |i\rangle \right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing time: $O(\sqrt{n})$

Cost per sample: $O(\sqrt{np_{\text{max}}})$

Cost for T samples: $O(\sqrt{n} + T\sqrt{np_{\text{max}}}) = O(T\sqrt{n})$

Preprocessing:

- 1. Compute $p_{\text{max}} = \max\{p_1, ..., p_n\}$ with quantum Maximum Finding
- 2. Construct the unitary $V(|0\rangle|0\rangle) \longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle|0\rangle$ $\longmapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\text{max}}}} |0\rangle + \sqrt{1 - \frac{p_i}{p_{\text{max}}}} |1\rangle \right)$ $= \frac{1}{\sqrt{np_{\text{max}}}} \left(\sum_{i} \sqrt{p_i} |i\rangle \right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing time: $O(\sqrt{n})$

Cost per sample: $O(\sqrt{np_{\text{max}}})$

Cost for T samples: $O(\sqrt{n} + T\sqrt{np_{\max}}) = O(T\sqrt{n})$ Our result: $O(\sqrt{Tn})$

Element	1	2	3	4	5	6	7
Probability	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	p_6	<i>p</i> ₇

Distribution D

Element	1	2	3	4	5	6	7
Probability	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	p_6	p_7

Distribution D

Distribution D_{Heavy}

Element	1	2	3	4	5	6	7
Probability	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	p_6	p_7

Distribution D

Distribution D_{Heavy}

Distribution D_{Light}

Element	1	2	3	4	5	6	7
Probability	p_1	p_2	p_3	<i>p</i> ₄	<i>p</i> ₅	p_6	<i>p</i> ₇

Distribution D

Distribution D_{Heavy}

Distribution D_{Light}

Use the Alias method

Element	1	2	3	4	5	6	7
Probability	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	p_6	p_7

Distribution D

Distribution D_{Heavy}

Distribution D_{Light}

Use the Alias method

Use Quantum State Preparation

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

3. Apply the preprocessing step of the **Alias Method** on D_{Heavy}.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

3. Apply the preprocessing step of the **Alias Method** on D_{Heavy}.

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

Flip a coin that is head with probability P_{Heavy}:

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost:

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

3. Apply the preprocessing step of the **Alias Method** on D_{Heavy}.

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost:
$$O(\sqrt{nT})$$
 since $|\text{Heavy}| \leq T$

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

3. Apply the preprocessing step of the **Alias Method** on D_{Heavy}.

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost:
$$O(\sqrt{nT})$$
 since $|\text{Heavy}| \leq T$

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$
Cost: $O(T)$

3. Apply the preprocessing step of the **Alias Method** on D_{Heavy}.

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on Dlight.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost:
$$O(\sqrt{nT})$$
 since $|\text{Heavy}| \leq T$

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$
Cost: $O(T)$

3. Apply the preprocessing step of the **Alias Method** on D_{Heavy}.

Cost:
$$O(T)$$

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost:
$$O(\sqrt{nT})$$
 since $|\text{Heavy}| \leq T$

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$
Cost: $O(T)$

3. Apply the preprocessing step of the **Alias Method** on D_{Heavy}.

Cost:
$$O(T)$$

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

Cost:
$$O(\sqrt{n})$$

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample:

Tail: sample i ~ D_{Light} with Quantum State Preparation.

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1)

Tail: sample i ~ D_{Light} with Quantum State Preparation.

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

Tail: sample i ~ D_{Light} with Quantum State Preparation.

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

• Tail: sample i ~ D_{Light} with Quantum State Preparation.

Cost per sample:

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max \left\{ \frac{p_i}{P_{\text{Light}}} : i \in \text{Light} \right\}$

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max \left\{ \frac{p_i}{P_{\text{Light}}} : i \in \text{Light} \right\}$ $\leq \frac{1}{T \cdot P_{\text{Light}}}$

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

• Tail: sample i ~ DLight with Quantum State Preparation.

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max \left\{ \frac{p_i}{P_{\text{Light}}} : i \in \text{Light} \right\}$ $\leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost:

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

Tail: sample i ~ D_{Light} with Quantum State Preparation.

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max \left\{ \frac{p_i}{P_{\text{Light}}} : i \in \text{Light} \right\}$ $\leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost: $O(T \cdot P_{\text{Light}} \cdot \sqrt{np_{\text{max}}})$

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max \left\{ \frac{p_i}{P_{\text{Light}}} : i \in \text{Light} \right\}$ $\leq \frac{1}{T \cdot P_{\text{Light}}}$

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max \left\{ \frac{p_i}{P_{\text{Light}}} : i \in \text{Light} \right\}$ $\leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost:
$$O(T \cdot P_{\text{Light}} \cdot \sqrt{np_{\text{max}}}) = O\left(T \cdot P_{\text{Light}} \cdot \sqrt{\frac{n}{T \cdot P_{\text{Light}}}}\right)$$

$$= O\left(\sqrt{nTP_{\text{Light}}}\right)$$

Flip a coin that is head with probability Pheavy:

Head: sample i ~ D_{Heavy} with the Alias Method.

Cost per sample: O(1) Total cost: O(T)

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max \left\{ \frac{p_i}{P_{\text{Light}}} : i \in \text{Light} \right\}$ $\leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost:
$$O(T \cdot P_{\text{Light}} \cdot \sqrt{np_{\text{max}}}) = O\left(T \cdot P_{\text{Light}} \cdot \sqrt{\frac{n}{T \cdot P_{\text{Light}}}}\right)$$

$$= O\left(\sqrt{nTP_{\text{Light}}}\right) = O\left(\sqrt{nT}\right)$$

Conclusion

Open questions:

- Can we obtain a quantum speedup for exact/ approximate submodular function minimization?
- Can we improve the lower bound for exact/ approximate submodular function minimization?
- Can we prepare T copies of the state $\sum_{i \in [n]} \sqrt{p_i} |i\rangle$ in time $O(\sqrt{nT})$.

arXiv: 1907.05378