Mini-Homework 3

Will Boland

April 22, 2019

^	-
Question	- 1
4 0.0001011	_

A) Claim: $(W \land X) \rightarrow \neg Y, X \vdash \neg (W \land Y).$

Proof:

Let $(W \land X) \rightarrow \neg Y$ and X be true.

- Assume that $W \wedge Y$ is true (will show a contradiction)
- $W \wedge Y$ implies W and Y. (\wedge -elimination)
- From X and Y, $W \wedge X$ (\wedge -elimination)
- Since $(W \land X) \rightarrow \neg Y$ and $W \land X$, $\neg Y$. $(\rightarrow$ -elimination)

Assuming W \land Y, we proved Y and \neg Y, which contradict each other, and therefore \neg (W \land Y) (Contradiction) \square

B) Claim: $\vdash (M \rightarrow \neg N) \rightarrow \neg (M \land N)$

Proof:

- Assume that $M \wedge N$ and $M \rightarrow \neg N$ is true (will show a contradiction)
- From $M \wedge N$, M and N. (\wedge -elimination)
- Since $M \to \neg N$ and M, $\neg N$. Since $(M \to \neg N) \to \neg (M \land N)$ and $M \to \neg N$, $\neg (M \land N)$. (\to -elimination)

Asssuming $M \wedge N$ and $M \rightarrow \neg N$, we proved N and $\neg N$, which contradict each other, and therefore $\neg (M \wedge N)$ (Contradiction)

C) Claim: $Z \rightarrow A$, $\neg A \vdash \neg Z$

Proof:

Assume $Z \rightarrow A$, $\neg A$.

- Assume that Z is true (to show a contradiction)
- Z \rightarrow A and Z, so A (\rightarrow -elimination)

Assuming Z, we proved A and had (under the assumption) $\neg A$, which contradict each other, and therefore $\neg Z$. (Contadiction) \square D) Claim: $Z \rightarrow A, B \rightarrow A, \neg A \vdash \neg Z \land \neg B$

Proof:

Assume $Z \rightarrow A$, $B \rightarrow A$, $\neg A$.

- Assume that Z and B are true (to show a contradiction)
- From Z and B, $Z \land B$ $Z \rightarrow A$ and Z, A. (\rightarrow -elimination)
- -- B \rightarrow A and B, A. (\rightarrow -elimination)

Assuming Z and B, we proved A and had $\neg A$, which contradict each other, and therefore $\neg Z \land \neg B$ (Contradiction) \square

E) Claim: $P \lor (Q \land \neg \neg R), P \rightarrow R \vdash R$

Proof:

Assume $P \lor (Q \land \neg \neg R), P \rightarrow R$

- Case 1: Assume P
- -- P \rightarrow R and P, R (\rightarrow -elimination)
- Case 2: Assume $Q \land \neg \neg R$
- From $Q \land \neg \neg R$, $\neg \neg R$ (\land -elimination)
- From ¬¬R, R (Double-negation)

Under both assumptions (P and $Q \land \neg \neg R$) we proved R. Therefore R. (Cases)

F) Claim: $(F \land G) \lor (H \rightarrow I), H \vdash G \lor I$

Proof:

Assume $(F \land G) \lor (H \rightarrow I)$, H.

- Case 1: Assume $F \wedge G$
- $F \wedge G$, so F and G. (\wedge -elimination)
- From G, $G \lor I$ (\lor -introduction)
- Case 2: Assume $H\rightarrow I$
- $H\rightarrow I$ and $H, I \rightarrow$ -elimination
- From I, GVI (V-introduction)

Under both assumptions $(F \land G \text{ and } H \rightarrow I)$ we proved $G \lor I$, therefore $G \lor I$ (Cases)

G) Claim: $J \rightarrow K \vdash (J \lor \neg \neg K) \rightarrow K$

Proof:

Assume $J \rightarrow K$.

- Assume $J \lor \neg \neg K$
- Case 1: Assume J
- \longrightarrow J \rightarrow K and J, K (\rightarrow -elimination)
- Case 2: Assume ¬¬K
- ¬¬K, K (Double negation)
- In either case of $J \vee \neg \neg K$, K is true. (cases)

H) Claim: $(A \land C) \rightarrow D$, $A \land \neg B \vdash \neg (A \rightarrow B) \land (C \rightarrow D)$

Proof:

Assume $(A \land C) \rightarrow D$, $A \land \neg B$

From $A \land \neg B$, A and $\neg B$ (\land -elimination)

- Assume $A \rightarrow B$ (to show a contradiction)
- A \rightarrow B and A, B. (\rightarrow -elimination)

Assuming $A \rightarrow B$ we proved B and $\neg B$, which contradict each othere, and therefore $\neg (A \rightarrow B)$ (Contradiction)

- Assume $A \wedge C$
- $A \wedge C$, so C (\wedge -elimination)
- Due to $(A \land C) \rightarrow D$ and C from $A \land C$, $C \rightarrow D$ and C, so D. $(\rightarrow$ -elimination)
- $\neg(A \rightarrow B)$ and $C \rightarrow D$, so $\neg(A \rightarrow B) \land C \rightarrow D$ (\land -introduction) \square

Question 2 (Assuming that word phrasing is correct)

- A) Line 2 is wrong because you need to do proof by cases.
- B) Correct
- C) Correct
- D) Correct
- E) Line 2 is incorrect: Need to assume $A \lor \neg B$ before proof by cases due to it all connecting by \rightarrow .
- F) Line 9 is incorrect: K was never used to prove J, it was the double negation after assuming $\neg\neg J$ that proved J.

Question 3:

A) Claim: $A \rightarrow (B \land C) \vdash (A \rightarrow B) \land (A \rightarrow C)$

Proof:

Assume $A \rightarrow (B \land C)$.

- Assume A
- Since $A \rightarrow (B \land C)$ and $A, B \land C (\rightarrow \text{-elimination})$
- Since $B \wedge C$, B and C (\wedge -elimination)

Assuming A, we proved B and C, so $A \rightarrow B$ and $A \rightarrow C$ (Direct Proof)

 $A \rightarrow B$ and $A \rightarrow C$, so $A \rightarrow B \land A \rightarrow C$ (\land -introduction) \square

Claim: $(A \rightarrow B) \land (A \rightarrow C) \vdash A \rightarrow (B \land C)$

Proof:

Assume $(A \rightarrow B) \land (A \rightarrow C)$.

From $(A \rightarrow B) \land (A \rightarrow C)$, $(A \rightarrow B)$ and $(A \rightarrow C)$.

```
— Assume A.
```

—
$$(A \rightarrow B)$$
 and A, B $(\rightarrow$ -elimination)

$$-$$
 (A \rightarrow C) and A, C (\rightarrow -elimination)

— From B and C,
$$B \land C$$
 (\land -introduction)

Assuming A, we proved $B \land C$, therefore $A \rightarrow (B \land C)$ (Direct Proof)

B) Claim:
$$A \rightarrow (B \land C) \equiv (A \rightarrow B) \land (A \rightarrow C)$$

Proof:

 $A \rightarrow (B \land C) \equiv \neg A \lor (B \land C)$ (Implication)

$$\equiv (\neg A \lor B) \land (\neg A \lor C) \ (\lor Distributive)$$

$$\equiv (A \rightarrow B) \land (A \neg \lor C)$$
 (Implication)

$$\equiv (A \rightarrow B) \land (A \rightarrow C) \text{ (Implication)} \square$$

Question 4

A) Claim:
$$A \rightarrow (B \land C) \equiv (A \rightarrow B) \land (A \rightarrow C)$$

Proof:

 $A \rightarrow (B \land C) \equiv \neg A \lor (B \land C)$ (Implication)

$$\equiv (\neg A \lor B) \land (\neg A \lor C) \ (\lor Distributive)$$

$$\equiv (A \rightarrow B) \land (A \neg \lor C)$$
 (Implication)

$$\equiv (A \rightarrow B) \land (A \rightarrow C) \text{ (Implication)} \square$$

C) Claim:
$$(A \rightarrow B) \rightarrow C \equiv (\neg A \rightarrow C) \land (B \rightarrow C)$$

Proof:

 $(A \rightarrow B) \rightarrow C \equiv (\neg A \lor B) \rightarrow C \text{ (Implication)}$

- $\equiv \neg(\neg A \lor B) \lor C \text{ (Implication)}$
- $\equiv (\neg \neg A \land \neg B) \lor C \text{ (DeMorgan's)}$
- $\equiv C \lor (\neg \neg A \land \neg B) (\lor -Commutative)$
- $\equiv C \lor (A \land \neg B)$ (Double negation)
- $\equiv (C \lor A) \land (C \lor \neg B) \ (\lor -Distribution)$
- $\equiv (A \lor C) \land (C \lor \neg B) \ (\lor -commutative)$
- $\equiv (A \lor C) \land (\neg B \lor C) (\lor -commutative)$ $\equiv (\neg A \rightarrow C) \land (\neg B \lor C) \text{ (Implication)}$
- $\equiv (\neg A \rightarrow C) \land (B \rightarrow C) \text{ (Implication)} \square$
 - D) Not Equal. (W=T, X=F, Y=T, Z=F)

E) Claim:
$$\neg((W \land \neg X) \rightarrow (\neg Y \lor Z)) \equiv (Y \land \neg Z) \land (W \land \neg X)$$

Proof:

F)They are equivalent (truth table's are same); however, I can't seem to prove it using proof? Silly error on my part?

Claim: $P \leftrightarrow Q \equiv \neg (P \oplus Q)$

Proof:

$$\begin{array}{l} P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q) \text{ (Bi-Implication)} \\ \equiv \neg ((\neg P \lor \neg Q) \land (P \lor Q)) \text{ (DeMorgan's)} \\ \equiv \neg ((P \rightarrow \neg Q)) \land (P \lor Q)) \text{ (Implication)} \\ \equiv \neg ((P \rightarrow \neg Q)) \land (\neg P \rightarrow Q)) \text{ (implication)} \end{array}$$

$$\begin{split} \neg(P \oplus Q) &\equiv \neg((P \wedge \neg Q) \vee (\neg P \wedge Q)) \text{ (Exclusive Disjunction)} \\ &\equiv ((\neg P \vee Q) \wedge (P \vee \neg Q)) \text{ (DeMorgan's)} \\ &\equiv (P \to Q) \wedge (P \vee \neg Q) \text{ (implication)} \\ &\equiv (P \to Q) \wedge (\neg P \to Q) \Box \end{split}$$