Agricultural Mechanization and Structural Transformation in China

Ling Yao

PhD candidate, Department of Applied Economics, University of Minnesota

2023 AAEA Annual Meeting, July 24

Research question

Does agricultural mechanization facilitate structural transformation by increasing employment in non-agricultural sectors in China?

► Structural transformation in Asia emerging economies drives increasing demand for agricultural mechanization.

Research question

Does agricultural mechanization facilitate structural transformation by increasing employment in non-agricultural sectors in China?

- ► Structural transformation in Asia emerging economies drives increasing demand for agricultural mechanization.
- Various obstacles to machinery adoption

Research question

Does agricultural mechanization facilitate structural transformation by increasing employment in non-agricultural sectors in China?

- ► Structural transformation in Asia emerging economies drives increasing demand for agricultural mechanization.
- Various obstacles to machinery adoption
 - ▶ Risk preferences, the indivisibility of the technology, the cost of learning and credit market imperfections (Just & Zilberman, 1988)

Research question

Does agricultural mechanization facilitate structural transformation by increasing employment in non-agricultural sectors in China?

- ► Structural transformation in Asia emerging economies drives increasing demand for agricultural mechanization.
- Various obstacles to machinery adoption
 - ► Risk preferences, the indivisibility of the technology, the cost of learning and credit market imperfections (Just & Zilberman, 1988)
 - ► Small farm size (Wang, Yamauchi, Huang, & Rozelle, 2020), collective land ownership (Kumar, Turvey, & Kropp, 2013; Lohmar, Gale, Tuan, & Hansen, 2009)

Research question

Does agricultural mechanization facilitate structural transformation by increasing employment in non-agricultural sectors in China?

- ► Structural transformation in Asia emerging economies drives increasing demand for agricultural mechanization.
- ► Various obstacles to machinery adoption
 - ► Risk preferences, the indivisibility of the technology, the cost of learning and credit market imperfections (Just & Zilberman, 1988)
 - ► Small farm size (Wang, Yamauchi, Huang, & Rozelle, 2020), collective land ownership (Kumar, Turvey, & Kropp, 2013; Lohmar, Gale, Tuan, & Hansen, 2009)
- ► The labor displacement of capital depends on the type of machinery/labor and the adoption scenario (Autor, Mindell, & Reynolds, 2019; Autor & Salomons, 2018).

2/20

Figure 1: Crop mechanization index, primary sector employment and subsidy budget

Antecedents

▶ Farming system evolution theory (1986; Prabhu Pingali, 2007; P. Pingali, Bigot, & Binswanger, 1987) predicts various labor displacement effect of mechanization.

Antecedents

- ▶ Farming system evolution theory (1986; Prabhu Pingali, 2007; P. Pingali, Bigot, & Binswanger, 1987) predicts various labor displacement effect of mechanization.
- ► Mixed empirical evidence on unemployment, as summarized by Daum & Birner (2020).

Antecedents

- Farming system evolution theory (1986; Prabhu Pingali, 2007;
 P. Pingali, Bigot, & Binswanger, 1987) predicts various labor displacement effect of mechanization.
- ► Mixed empirical evidence on unemployment, as summarized by Daum & Birner (2020).
- ➤ An RCT study shows that mechanization improves household welfare by releasing family labor from supervision to non-agricultural jobs (Caunedo & Keller, 2021).

▶ Provide empirical evidence in a context of ongoing structural transformation.

- ► Provide empirical evidence in a context of ongoing structural transformation.
- ► Extend the view from employment outcomes within ag to non-ag sectors.

- ► Provide empirical evidence in a context of ongoing structural transformation.
- Extend the view from employment outcomes within ag to non-ag sectors.
- ► Measure mechanization at the regional level, rather than by household possession or usage ← large presence of regional custom machinery service.

- ► Provide empirical evidence in a context of ongoing structural transformation.
- Extend the view from employment outcomes within ag to non-ag sectors.
- ► Measure mechanization at the regional level, rather than by household possession or usage ← large presence of regional custom machinery service.
- ► Combine panel data with shift-share instrument to estimate Local Average Treatment Effects.

Method: Shift-share IV

Driven to Discover™

A snippet of the 2019 Jilin Province subsidy catalog

Category	Sub-category	Item	Size	Size code	Subsidy (yuan)
Power machine	Tractors	Wheeled tractors	30-40 horsepower, 2 wheels	03	5500
Power machine	Tractors	Wheeled tractors	40-50 horsepower, 2 wheels	04	8300
Power machine	Tractors	Wheeled tractors	50-60 horsepower, 2 wheels	05	10350
Power machine	Tractors	Wheeled tractors	60-70 horsepower, 2 wheels	06	11000
Power machine	Tractors	Wheeled tractors	30-40 horsepower, 4 wheels	13	10560
Power machine	Tractors	Wheeled tractors	40-50 horsepower, 4 wheels	14	11840
Power machine	Tractors	Crawler tractors	40-50 horsepower	26	13000
Power machine	Tractors	Crawler tractors	50-60 horsepower	27	13000
Power machine	Tractors	Crawler tractors	60-70 horsepower	28	20000

Shift-share IV construction

Table 1: A hypothetical example

Size	Size code	Subsidy (yuan)	County 1 market shares	County 2 market shares
30-40 horsepower, 2 wheels	03	5500	70 %	0 %
40-50 horsepower, 2 wheels	04	8300	10 %	0 %
50-60 horsepower, 2 wheels	05	10350	5 %	10 %
60-70 horsepower, 2 wheels	06	11000	0 %	30 %
•••				
30-40 horsepower, 4 wheels	13	10560	10 %	0 %
40-50 horsepower, 4 wheels	14	11840	5 %	10 %

40-50 horsepower, crawler	26	13000	0 %	10 %
50-60 horsepower, crawler	27	13000	0 %	20 %
60-70 horsepower, crawler	28	20000	0 %	30 %
Exposure to subsidy			12173.5	14235

$$\widetilde{\Delta Y}_{ct} = \gamma_0^m + \gamma_1^m \widetilde{purchase}_{ct}^m + \gamma_2^m \widetilde{\Delta X}_{ct}^m + e_{ct}^m$$
 (1)

$$\widetilde{\textit{purchase}}_{ct}^{\textit{m}} = \delta_0^{\textit{m}} + \delta_1^{\textit{m}} \sum_{j=1}^{J} \textit{share}_{jct}^{\textit{m}} \times \widetilde{\textit{subsidy}}_{jpt}^{\textit{m}} + \delta_2^{\textit{m}} \widetilde{\boldsymbol{\Delta X}}_{ct}^{\textit{m}} + \boldsymbol{u_{ct}^{\textit{m}}} \ (2)$$

► c - county/city; t - year; p - province, j - machinery size; m - machinery category

$$\widetilde{\Delta Y}_{ct} = \gamma_0^m + \gamma_1^m \widetilde{purchase}_{ct}^m + \gamma_2^m \widetilde{\Delta X}_{ct}^m + e_{ct}^m$$
 (1)

$$\widetilde{purchase}_{ct}^{m} = \delta_{0}^{m} + \delta_{1}^{m} \sum_{j=1}^{J} share_{jct}^{m} \times \widetilde{subsidy}_{jpt}^{m} + \delta_{2}^{m} \widetilde{\Delta X}_{ct}^{m} + u_{ct}^{m}$$
 (2)

- ▶ c county/city; t year; p province, j machinery size; m machinery category
- ► The tildes denote residualizing on county and period FEs

$$\widetilde{\Delta Y}_{ct} = \gamma_0^m + \gamma_1^m \widetilde{purchase}_{ct}^m + \gamma_2^m \widetilde{\Delta X}_{ct}^m + e_{ct}^m$$
 (1)

$$\widetilde{purchase}_{ct}^{m} = \delta_{0}^{m} + \delta_{1}^{m} \sum_{j=1}^{J} share_{jct}^{m} \times \widetilde{subsidy}_{jpt}^{m} + \delta_{2}^{m} \widetilde{\Delta X}_{ct}^{m} + u_{ct}^{m}$$
 (2)

- ▶ c county/city; t year; p province, j machinery size; m machinery category
- ► The tildes denote residualizing on county and period FEs
- $ightharpoonup \Delta Y_{ct}$ change in the number of non-agricultural employees in formal sectors

$$\widetilde{\Delta Y}_{ct} = \gamma_0^m + \gamma_1^m \widetilde{purchase}_{ct}^m + \gamma_2^m \widetilde{\Delta X}_{ct}^m + e_{ct}^m$$
 (1)

$$\widetilde{purchase}_{ct}^{m} = \delta_{0}^{m} + \delta_{1}^{m} \sum_{j=1}^{J} share_{jct}^{m} \times \widetilde{subsidy}_{jpt}^{m} + \delta_{2}^{m} \widetilde{\Delta X}_{ct}^{m} + u_{ct}^{m}$$
 (2)

- c county/city; t year; p province, j machinery size; m machinery category
- ► The tildes denote residualizing on county and period FEs
- $ightharpoonup \Delta Y_{ct}$ change in the number of non-agricultural employees in formal sectors
- purchase^m_{ct} machinery purchase, as proxy for change in mechanization level

Data on mechanization (2015 - 2020)

► Machinery subsidy catalogs (shift)

Data on mechanization (2015 - 2020)

- ► Machinery subsidy catalogs (shift)
 - ► Downloaded from provincial gov websites

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - Downloaded from provincial gov websites
- ► Machinery purchase records (share)

Data on mechanization (2015 - 2020)

- ► Machinery subsidy catalogs (shift)
 - Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - ► Classified by machinery type and size

Data on mechanization (2015 - 2020)

- ► Machinery subsidy catalogs (shift)
 - Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - Classified by machinery type and size
 - ► Aggregated to the county/prefecture city level

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - ▶ Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - Classified by machinery type and size
 - ► Aggregated to the county/prefecture city level

Data on employment

Aggregated

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - ▶ Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - Classified by machinery type and size
 - ► Aggregated to the county/prefecture city level

- Aggregated
 - ► China City Statistical Yearbooks 2016 2019

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - ▶ Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - Classified by machinery type and size
 - ► Aggregated to the county/prefecture city level

- Aggregated
 - ► China City Statistical Yearbooks 2016 2019
 - ► China Statistic Yearbooks (county level) 2016 2019

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - Classified by machinery type and size
 - ► Aggregated to the county/prefecture city level

- Aggregated
 - ► China City Statistical Yearbooks 2016 2019
 - ► China Statistic Yearbooks (county level) 2016 2019
- ► Individual

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - Classified by machinery type and size
 - ► Aggregated to the county/prefecture city level

- Aggregated
 - ► China City Statistical Yearbooks 2016 2019
 - ► China Statistic Yearbooks (county level) 2016 2019
- ▶ Individual
 - China Health and Retirement Longitudinal Survey 2015 and 2018 waves

Data on mechanization (2015 - 2020)

- ▶ Machinery subsidy catalogs (shift)
 - Downloaded from provincial gov websites
- ► Machinery purchase records (share)
 - ► Web-scrapped from gov websites
 - Classified by machinery type and size
 - ► Aggregated to the county/prefecture city level

- ► Aggregated
 - ► China City Statistical Yearbooks 2016 2019
 - ► China Statistic Yearbooks (county level) 2016 2019
- ► Individual
 - China Health and Retirement Longitudinal Survey 2015 and 2018 waves
 - ► Matched to city level mechanization

County-level result

Table 2: 2SLS estimates with county and period fixed effects - county level regressions

_	Dependent variable: Change in the number of employee in the 2nd and 3rd industries (1000 people)								
	Tractor	Rotary tiller	${\sf Seeder, transplanter}$	Grain harvester	Corn harvester	Grain dryer			
	(1)	(2)	(3)	(4)	(5)	(6)			
Subsidized machinery purchase	-0.501 (0.660)	-0.029 (0.032)	-6.276 (26.007)	-32.634 (60.911)	446.203 (496.969)	31.542 (26.054)			
Sum of shares $(0/1)$	-6.057*** (2.340)	-4.828** (2.207)	-4.197*** (1.591)	-5.492** (2.486)	0.377 (3.254)	-1.852 (2.504)			
Observations R ²	3,783 -0.008	3,377 -0.010	3,227 -0.001	3,601 -0.010	1,821 -1.658	2,584 -0.010			
Adjusted R ² Residual Std. Error	-0.009 43.640	-0.010 45.520	-0.001 46.537	-0.011 44.406	-1.661 54.876	-0.011 44.329			
First stage F-stat	100.649	29.820	25.761	9.441	0.771	25.182			

Falsification test: reduced-form regression

Table 3: Falsification test with county and period fixed effects - county level regressions

	Dependent variable:								
	Number of industrial firms								
	Tractors	Rotary tiller	${\sf Seeder, transplanter}$	Grain harvester	Corn harvester	Grain dryer			
	(1)	(2)	(3)	(4)	(5)	(6)			
Shift-share IV	6.197	5.059	-7.714	-14.943***	-2.772	12.989			
	(4.932)	(7.083)	(12.264)	(5.693)	(10.114)	(11.730)			
Sum of shares $(0/1)$	0.100	0.812*	1.072*	0.983**	0.398	0.870			
	(0.448)	(0.437)	(0.577)	(0.466)	(0.658)	(0.715)			
Observations	4,946	4,675	4,113	4,634	2,283	3,328			
R^2	0.0001	0.0003	0.001	0.002	0.0001	0.001			
Adjusted R ²	-0.0003	-0.0001	0.0002	0.001	-0.001	0.0002			
Residual Std. Error	25.652	25.276	22.208	21.115	21.770	23.710			
F Statistic	0.216	0.721	1.332	3.640**	0.110	1.278			

Prefecture city level result

Table 4: 2SLS estimates with city and period fixed effects - city level regressions

	Dependent variable: Change in the number of employees in the 2nd and 3rd industries (1000 people)								
	Tractors	Rotary tiller	Seeder, transplanter	Grain harvester	Corn harvester	Grain dryer			
	(1)	(2)	(3)	(4)	(5)	(6)			
Subsidized machinery purchase	-0.208 (0.440)	0.005 (0.030)	15.778* (8.951)	18.781 (81.589)	-42.779 (690.982)	-1.408 (17.506)			
Sum of shares $(0/1)$	9.283* (5.045)	11.012** (4.684)	10.231*** (3.841)	12.111 (7.568)	21.575*** (5.995)	5.772* (3.495)			
Observations	464	410	460	455	273	440			
R^2	-0.017	0.010	-0.182	-0.013	-0.106	0.002			
Adjusted R ²	-0.021	0.005	-0.187	-0.017	-0.114	-0.002			
Residual Std. Error	47.421	49.060	51.112	47.412	58.343	47.817			
First stage F-stat	33.416	11.861	4.987	2.115	0.022	4.112			

Prefecture city level result by sector, focus on tractors

Table 5: 2SLS estimates with city and period fixed effects - city level regressions

	Dependent variable: Change in the number of employee by sectors (1000 people)				
	Manufacturing (1)	Construction (2)	Wholesale and retail (3)	Hotel and food service (4)	Logistic (5)
Subsidized tractor purchase (1000 horsepower)	-0.158	0.152**	0.013	-0.067	0.002
	(0.158)	(0.072)	(0.025)	(0.083)	(0.015)
Sum of shares $(0/1)$	4.434*	3.021***	1.797***	-0.414	0.474**
	(2.427)	(0.985)	(0.636)	(0.700)	(0.194)
Observations	464	464	464	464	464
R ²	-0.063	-0.079	0.017	-0.068	0.005
Adjusted R ²	-0.068	-0.084	0.013	-0.072	0.001
Residual Std. Error	19.563	11.946	5.867	7.414	3.021
First stage F-stat	33.434	33.434	33.434	33.434	33.434

Figure 3: Correlation between probability of working in agriculture and tractor purchase in residing city (horsepower/hectare of farmland)

Figure 4: Correlation between probability of working on own farm and tractor purchase in residing city (horsepower/hectare of farmland)

Figure 5: Correlation between probability of working as hired agricultural worker and tractor purchase in residing city (horsepower/hectare of

Figure 6: Correlation between probability of working in nonag jobs and tractor purchase in residing city (horsepower/hectare of farmland)

Figure 7: Correlation between probability of living in rural and tractor purchase in residing city (horsepower/hectare of farmland)

► No systematic evidence showing that subsidized mechanization increases non-agricultural employment in formal sectors in the same county.

- ► No systematic evidence showing that subsidized mechanization increases non-agricultural employment in formal sectors in the same county.
- ► Higher administrative level regressions that reduce spillover effect also do not show evidence of increased local overall non-agricultural employment due to mechanization.

- ► No systematic evidence showing that subsidized mechanization increases non-agricultural employment in formal sectors in the same county.
- ► Higher administrative level regressions that reduce spillover effect also do not show evidence of increased local overall non-agricultural employment due to mechanization.
 - Only some positive effect in the construction sector

- No systematic evidence showing that subsidized mechanization increases non-agricultural employment in formal sectors in the same county.
- ► Higher administrative level regressions that reduce spillover effect also do not show evidence of increased local overall non-agricultural employment due to mechanization.
 - Only some positive effect in the construction sector
- ▶ Descriptive statistics show that people in better mechanized regions are more likely to stay in ag.

- No systematic evidence showing that subsidized mechanization increases non-agricultural employment in formal sectors in the same county.
- ► Higher administrative level regressions that reduce spillover effect also do not show evidence of increased local overall non-agricultural employment due to mechanization.
 - Only some positive effect in the construction sector
- Descriptive statistics show that people in better mechanized regions are more likely to stay in ag.
- Subsidized mechanization in China is more likely to have picked up ag production slack left by labor leaving ag and even revived rural economy than further facilitated structural transformation.

- No systematic evidence showing that subsidized mechanization increases non-agricultural employment in formal sectors in the same county.
- ► Higher administrative level regressions that reduce spillover effect also do not show evidence of increased local overall non-agricultural employment due to mechanization.
 - Only some positive effect in the construction sector
- ► Descriptive statistics show that people in better mechanized regions are more likely to stay in ag.
- ► Subsidized mechanization in China is more likely to have picked up ag production slack left by labor leaving ag and even revived rural economy than further facilitated structural transformation.
- ▶ Due to data limitations, I cannot rule out the possibility that mechanization also led to more unemployment and employment in informal sector jobs.