1 Перестановки

Напомним классическое определение. Перестановка — биективная функция, отображающая множество X на себя. Однако, в данной главе в качестве множества X мы будем рассматривать только множества целых чисел от 0 до n-1 (часто такое множество записывают как $\overline{0,n-1}$). Соответственно, определение становится таким:

Определение 1.1. Если $\pi : \overline{0, n-1} \to \overline{0, n-1}$ является биективной, то она — *перестановка*.

Обозначим множество всех перестановок множества $\overline{0,n-1}$ за S_n .

Традиционный способ задания перестановок — с помощью «двухэтажной» записи (обычно называемой nodcmanoskoй):

$$\left(\begin{array}{cccc} 0 & 1 & 2 & \dots & n-1 \\ \pi(0) & \pi(1) & \pi(2) & \dots & \pi(n-1) \end{array}\right)$$

Однако, верхняя строчка в перестановках множества $\overline{0,n-1}$ всегда одинакова, поэтому мы будем её опускать, и записывать только нижнюю часть: $[\pi(0);\pi(1);\ldots;\pi(n-1)]$. Такая запись не является канонической для математики, но зато она очень удобна для наших целей. Например, перестановка пяти элементов, меняющая местами 0 и 1 (и оставляющая на месте 2, 3 и 4), будет задаваться нами так: [1;0;2;3;4]

Также введём специальное обозначение для количества переставляемых элементов.

Определение 1.2. Пусть $\pi: \overline{0, n-1} \to \overline{0, n-1}$, мощностью перестановки π будем называть мощность множества отправления (прибытия). Будем обозначать эту мощность как $|\pi|$. Например, |[0;2;1]|=3.

Также давайте введём понятие префикса перестановки:

Определение 1.3. Пусть $[a_0; a_1; \ldots; a_{n-1}]$ — некоторая перестановка. Тогда последовательность чисел $[a_0; a_1; \ldots; a_{k-1}]$ при $k \leq n - npe \phi u \kappa c$ (начало) перестановки. В частности, префиксами являются пустая последовательность чисел [] и вся исходная перестановка.

Легко заметить, что если последовательность чисел $[a_0; a_1; \dots; a_{k-1}]$ — последовательность попарно различных чисел из диапазона от 0 до n-1:

$$0 \leq k \leq n, \quad 0 \leq a_i < n, \quad a_p \neq a_q$$
 при $q \neq q$

то такая последовательность может быть продолжена до полной перестановки (n-k)! способами.

1.1 Лексикографический порядок

Лексикографический порядок ещё называют словарным. Правила тут должны быть хорошо известны: чтобы сравнить два слова, нужно сравнить у них первые различающиеся буквы в одной и той же позиции. Например, слово PYKA идёт раньше в словаре, чем слово PBEA, поскольку во второй позиции первого слова — буква Y, а у второго слова — буква Y, идущая позже.

Определение 1.4. Обозначим за |S| длину слова S, и за S_i — символ строки номер i. Нумерацию по традиции будем вести с 0. Например, если S= абрикос, то |S|=7 и $S_4=$ к.

Определение 1.5. Пусть даны два слова (S и T) одинаковой длины. Слово S меньше слова T (обозначим это отношение за $S \prec T$), если существует индекс i, что:

$$S_0 = T_0, \quad S_1 = T_1, \quad \dots, \quad S_{i-1} = T_{i-1}, \quad \text{ho } S_i < T_i$$

Данное условие можно обобщить и на случай слов разной длины.

Определение 1.6. $S \prec T$, если выполнено одно из двух условий:

- 1. Либо существует индекс i, такой, что $0 \le i < \min(|S|, |T|)$ и $S_i < T_i$, но для всех индексов $j, \ 0 \le j < i$, выполнено $S_j = T_j$,
- 2. либо |S| < |T|, и для всех индексов $i \ (0 \le i < |S|)$, выполнено $S_i = T_i$

Мы легко могли бы написать функцию сравнения двух списков:

```
let rec is_less a b =
match (a,b) with
     (a1::_,b1::_) when a1 < b1 -> true
     | (a1::ax,b1::bx) when a1 = b1 -> is_less ax bx
     | ([],_::_) -> true
     | _ -> false
```

Но в этом коде нет необходимости, поскольку операции сравнения определены и для списков, причём списки сравниваются лексикографически. Например, сравнения [1;2;3] < [2;1;3], [1] < [2;1] и [] < [9;7;10] вернут true.

1.1.1 Упорядочение перестановок

Определим порядок на перестановках как лексикографический:

Определение 1.7. Перестановку π назовём меньшей перестановки σ (и обозначим это как $\pi \prec \sigma$, если найдётся такой индкес p, что:

1.
$$\pi(0) = \sigma(0), \quad \pi(1) < \sigma(1), \quad \dots, \pi(p-1) = \sigma(p-1)$$

2.
$$\pi(p) < \sigma(p)$$

В частности, p = 0 также можно рассматривать: $[0; 1] \prec [1; 0]$.

1.2 Несколько фактов о лексикографическом порядке на перестанов-

Лемма 1.1. Рассмотрим перестановки равной мощности π и σ (пусть для определённости $\pi \leq \sigma$), такие, что некоторый префикс этих перестановок совпадает:

$$\pi(0) = \sigma(0), \quad \pi(1) = \sigma(1), \quad \dots, \pi(p-1) = \sigma(p-1)$$

Тогда для того, чтобы перестановка τ находилась в лексикографическом порядке между π и σ ($\pi \leq \tau \leq \sigma$), необходимо, чтобы и она имела тот же префикс:

$$\tau(0) = \pi(0), \quad \tau(1) = \pi(1), \quad \dots, \quad \tau(p-1) = \pi(p-1)$$

Доказательство. Докажем от противного. Пусть это не так — тогда найдём минимальный отличающийся элемент перестановки — то есть, такой k, что k < p и выполнены следующие равенства и неравенства:

1.
$$\tau(0) = \pi(0) = \sigma(0)$$
, $\tau(1) = \pi(1) = \sigma(1)$, ..., $\tau(k-1) = \pi(k-1) = \sigma(k-1)$

2.
$$\tau(k) \neq \pi(k) = \sigma(k)$$

Воспользовавшись определением сравнения перестановок, легко убедиться, что в этом случае перестановка τ либо меньше как π , так и σ (если $\tau(k) < \pi(k)$), либо больше (если $\tau(k) > \pi(k)$). В любом случае мы получаем противоречие с условием.

Лемма 1.2. Рассмотрим множество перестановок длины n с префиксом $[a_0; a_1; \ldots; a_{p-1}]$:

$$S_n^a = \{ \pi \in S_n | \pi(0) = a_0 \& \pi(1) = a_1 \& \dots \& \pi(p-1) = a_{p-1} \}$$

где a_i — какие-то заранее заданные значения.

Обозначим минимальную и максимальную перестановки в множестве за ρ и σ :

$$\rho = \min S_n^a, \quad \sigma = \max S_n^a$$

Тогда справедливо следующее:

$$\rho(p) < \rho(p+1) < \ldots < \rho(n-1)$$

$$\sigma(p) > \sigma(p+1) > \ldots > \sigma(n-1)$$

Иными словами, минимальная перестановка с данным префиксом — такая, в которой все оставшиеся элементы перестановки возрастают, а максимальная — в которой оставшиеся элементы убывают.

Например, $\min S_7^{[2;4;1]} = [2;4;1;0;3;5;6]$ и $\max S_7^{[2;4;1]} = [2;4;1;6;5;3;0]$.

Доказательство. В самом деле, пусть дана перестановка $\tau \in S_n^a$, покажем, что $\rho \leq \tau$. Пусть это не так: то есть $\tau \prec \rho$, то есть найдётся минимальный такой t, что

$$\tau(0) = \rho(0), \quad \tau(1) = \rho(1), \quad \dots, \quad \tau(t-1) = \rho(t-1), \quad \text{ho } \tau t < \rho t$$

Заметим, что по определению $\tau \in S_n^a$ и $\rho \in S_n^a$, то есть перестановки τ и ρ совпадают в элементах с 0 по p-1. Значит, t > p.

Может ли t=p? Поскольку перестановки имеют одинаковые префиксы, оставшиеся (непрефиксые) множества элементов совпадают:

$$\{\rho(p), \rho(p+1), \dots, \rho(n-1)\} = \overline{0, n-1} \setminus \{a_0, a_1, \dots, a_{p-1}\} = \{\tau(p), \tau(p+1), \dots, \tau(n-1)\}$$

Однако, $\rho(p) = \min\{\rho(p), \rho(p+1), \dots, \rho(n-1)\} = \min\{\tau(p), \tau(p+1), \dots, \tau(n-1)\}$, то есть $\rho(p) \leq \tau(p)$. По предположению же $\tau \prec \rho$, отсюда неизбежно $\rho(p) = \tau(p)$.

Осталось заметить, что в таком случае мы можем расширить префикс, добавив к нему общий для обеих перестановок элемент номер p:

$$\tau \in S_n^{[a_0;a_1;\dots;a_{p-1};\tau(p)]} = S_n^{[a_0;a_1;\dots;a_{p-1};\rho(p)]} \ni \rho$$

и, повторив рассуждение выше n-p раз, мы покажем, что либо перестановки ρ и τ совпадают, либо в первом различии $\rho(t) < \tau(t)$ (что влечёт $\rho \prec \tau$).

Аналогично можно показать максимальность σ .

Лемма 1.3. Рассмотрим множество перестановок S_n и два префикса перестановок одинаковой длины: a и b ($|a| = |b| \le n$), причём $a \prec b$. Тогда все перестановки из S_n^a меньше перестановок из S_n^b :

$$\forall \pi \in S_n^a \ \forall \tau \in S_n^b \ (\pi \prec \tau)$$

Доказательство. Очевидно из того, что сравнение перестановок идёт слева направо: сперва мы сравниваем префиксы, и приступаем к сравнению «послепрефиксной» части перестановок только если префиксы равны. А поскольку префикс a меньше префикса b ($a \prec b$), то и перестановки из S_n^a меньше перестановок из S_n^b .

1.3 Построение следующей перестановки по перестановке из S_n

Анализ вышеуказанных лемм позволяет нам предложить алгоритм построения следующей перестановки. Пусть дана перестановка $\pi = [a_0; a_1; \dots; a_{n-1}]$. Тогда:

1. Рассмотрим такое минимальное число p, что

$$a_n > a_{n+1} > a_{n+2} > \ldots > a_{n-1}$$

То есть, иными словами, убывающая последовательность имеет максимально возможную длину.

- 2. Среди чисел $a_p, a_{p+1} \dots a_{n-1}$ найдём минимальное, бо́льшее a_{p-1} пусть это a_t .
- 3. Тогда соберём искомую перестановку из трёх частей:

$$[a_0; a_1; \dots; a_{p-2}] @ [a_t] @ sort(\{a_{p-1}, \dots, a_{n-1}\} \setminus \{a_t\})$$

То есть возьмём первые p-1 элементов исходной перестановки, дальше добавим a_t , и все оставшиеся элементы перестановки, отсортированные по возрастанию.

Теорема 1.1. Предложенный выше алгоритм действительно строит следующую перестановку в S_n , при условии, что p > 0.

Доказательство. Пусть мы по перестановке π получили перестановку ρ , пользуясь данным алгоритмом. По лемме 1.2 $\pi = \max S_n^{[a_0;a_1;\dots;a_{p-2};a_{p-1}]}$ и $\rho = \min S_n^{[a_0;a_1;\dots;a_{p-2};a_t]}$.

По построению, $[a_0;a_1;\dots;a_{p-2};a_{p-1}] \prec [a_0;a_1;\dots;a_{p-2};a_t]$, отсюда по лемме 1.3 все элементы из $S_n^{[a_0;a_1;\dots;a_{p-1}]}$ меньше элементов из $S_n^{[a_0;a_1;\dots;a_{p-2};a_t]}$, значит, $\pi \prec \rho$.

По лемме 1.1 между перестановками π и ρ нет перестановок с префиксом, отличным от $[a_0;a_1;\ldots;a_{p-2}]$. Каким же может быть p-1 значение в префиксе? Оно не может быть меньше a_{p-1} (иначе перестановка меньше π) и не может быть больше a_t (иначе перестановка больше ρ). А между a_{p-1} и a_t значений нет. При этом π — максимальная перестановка с префиксом $[a_0;a_1;\ldots;a_{p-2};a_p]$, а ρ — минимальная с префиксом $[a_0;a_1;\ldots;a_{p-2};a_t]$. Значит, π и ρ — соседние.