

Devoir Surveillé 3 – 1 heure

ALGORITHMIQUE ET PROGRAMMATION

Avant-propos - Calcul d'une puissance

On souhaite calculer la puissance b d'un nombre $x:x^b$ avec $x \in \mathbb{R}$ et $b \in \mathbb{N}$. On utilise pour cela la fonction expo basée sur un algorithme naïf prenant comme argument un entier naturel b et un nombre réel x:

```
def expo(x,b):
res = 1
j = b
inv = x
while j>=1:
    res = res * x
    j = j-1
return res
```

Question 1

Proposer une autre formulation de l'algorithme de la fonction expo en utilisant une boucle for.

Ouestion 2

On conserve la fonction expo utilisant la boucle while. Montrer que j est un variant de boucle.

Question 3

On conserve toujours la fonction expo utilisant la boucle while. Montrer que la propriété $\mathcal{P}(n)$ $x^b = i n v_n^{j_n} \cdot res_n$ est un **invariant** de boucle.

Question 4

On note C_e le coût d'une opération élémentaire (affectation, opération mathématique simple, incrémentation de boucle, comparaison). Évaluer la complexité temporelle de l'algorithme proposé dans la fonction expo.

Question 5

Citer une méthode plus efficace permettant de calculer x^b . Détailler brièvement son fonctionnement et préciser sa complexité temporelle.

Calcul de polynômes

On cherche à évaluer un polynôme en différentes valeurs. On note :

$$\forall x \in \mathbb{R} \quad P(x) = \sum_{i=0}^{n} a_i x^i$$

Les coefficients a_i du polynôme sont des entiers positifs stockés dans un tableau a tels que $a = [a_0, a_1, a_2, ..., a_n]$. La fonction suivante appelée evaluer prend comme argument un nombre flottant x et un tableau a contenant les coefficients a_i du polynôme. Ainsi, si a = [0, 1, 2, 3], alors $a[0] = a_0$, $a[1] = a_1$, etc. alors $P(x) = x + 2x^2 + 3x^3$. La fonction evaluer retourne P(x).

```
def evaluer(a,x):
for i in range(len(a)):
    res = res+a[i]*expo(x,i)
return res
```

Question 6

La fonction evaluer a-t-elle l'effet désiré ? Si non, modifier le programme.

Xavier Pessoles 1

Question 7

Estimer la complexité algorithmique de la fonction evaluer.

Méthode de Horner

Afin de diminuer le coût temporel de l'évaluation d'un polynôme, il est possible d'utiliser la méthode de Horner. Elle consiste en une réécriture du polynôme P(x):

$$P(x) = a_0 + x(a_1 + x(a_2 + x(a_3 +)))$$

Ainsi le polynôme $P(x) = x + 2x^2 + 3x^3$ est réécrit ainsi : P(x) = 0 + x(1 + x(2 + 3x)).

```
def horner(a,x):
res = 0
n = len(a)-1
while n>=0:
res = a[n]+x*res
n=n-1
return res
```

Question 8

On prend a = [0,1,2,3] et x = 2. En remplissant un tableau, donner l'évolution des variables res et n à chaque incrément de boucle.

Question 9

Expliquer en quoi l'algorithme proposé répond à la réécriture du polynôme P(x) suivant la méthode de Horner?

Question 10

Estimer la complexité algorithmique de la fonction horner. Conclure sur l'intérêt de cet algorithme.

Intégration numérique

On cherche maintenant à intégrer numériquement P(x) sur l'intervalle [u,v] par la méthode des rectangles à gauche :

$$I = \int_{u}^{v} P(x) \, \mathrm{d}x$$

Question 11

Écrire la fonction integrale_rectangle prenant comme argument le nombre d'échantillons n, le tableau a des coefficients du polynôme ainsi que u et v les bornes de l'intégrale et retournant la valeur I de l'intégrale.

Question 12

Quel est l'ordre de grandeur de l'erreur effectuée sur le calcul de l'intégrale.

Xavier Pessoles 2