Arquitectura de las Computadoras

Práctica Unidad Nº 1

Nivel de Lógica Digital

Ing. Walter Lozano Ing. Alejandro Rodríguez Costello

1.	Números	positivos,	convertir	de	base	10	a	base	2	y	comprobar	el	resultado
	volviendo	a base 2											

- 1.1. $(25,75)_{10}$
- 1.2. $(14,16)_{10}$
- 1.3. $(7,90)_{10}$
- 1.4. $(48,25)_{10}$
- 1.5. $(23,125)_{10}$
- 1.6. $(51,70)_{10}$
- 2. Números enteros signados, convertir de base 10 a base 2 (valor absoluto y signo, complemento a 1, complemento a 2, exceso) utilizando la menor cantidad de bits posible, comprobar el resultado volviendo a base 10
 - 2.1. $(23)_{10}$
 - $2.2. (47)_{10}$
 - $2.3. \quad (-14)_{10}$
 - $2.4. \quad (-21)_{10}$
 - 2.5. $(-27)_{10}$
 - $2.6. (213)_{10}$
- 3. Punto flotante, convertir a IEEE 754 o a notación binaria científica segun corresponda
 - 3.1. $-1.010 \, 2^{-10}$
 - $3.2. \quad 0.001 \, 2^{-1}$
 - $3.3. \quad 1^{2^{-130}}$
 - 3.4. 0 11101011 0100 (esta en IEEE 754, pasar a notación binaria científica)
 - 3.5. 1 00000000 0101 (esta en IEEE 754, pasar a notación binaria científica)
 - 3.6. 0 11111111 1010 (esta en IEEE 754, pasar a notación binaria científica)
 - 3.7. infinito
 - 3.8. NaN
 - 3.9. $122 \cdot 10^3$ (ojo es base 10 no base 2)
 - 3.10. $-25 \cdot 10^{-2}$ (ojo es base 10 no base 2)
 - 3.11. $1,01 \ 2^{-130}$
 - 3.12. -11,101
 - 3.13. 23,125 (ojo es base 10 no base 2)
 - $3.14. -1,101 \ 2^{41}$
- 4. Aritmética, realizar las siguientes operaciones asumiendo que los operandos están en C2

- $4.1. \quad 01111 + 01000$
- $4.2. \quad 01001 + 11000$
- $4.3. \quad 01000 00011$
- $4.4. \quad 00111 10111$
- $4.5. \quad 11000 + 11101$
- $4.6. \quad 00111 + 00011$
- $4.7. \quad 10110 + 10111$
- $4.8. \quad 11110 + 11101$
- 4.9. 111111 + 011111
- 4.10. 01101 01110
- 5. Tablas de Verdad, generar las tabla de verdad a partir de las siguientes funciones
 - 5.1. Z = (A' + B') B
 - 5.2. Z = A + (BC)
 - 5.3. Z = A + A' + (C' + B) (A + B)' + B
 - 5.4. Z = A + B' + (CD) B + AD
- 6. Formas canónicas, generar la función lógica usando formas canónicas a partir de las tablas de verdad (Z vale 1 en las posiciones mencionadas)
 - 6.1. Z = 1 en 2, 6, 9, 12
 - 6.2. Z = 1 en 0, 2, 4, 6, 7
 - 6.3. Z = 1 en 1, 5, 6, 7
 - 6.4. Z=1 en 8, 9, 15
- 7. Minimización, generar la función lógica usando minimización a partir de las tablas de verdad (Z vale 1 en las posiciones mencionadas)
 - 7.1. Z = 1 en 2, 3, 5, 6
 - 7.2. Z = 1 en 0, 2, 4, 5, 6, 7, 8, 10, 15
 - 7.3. Z = 1 en 5, 7, 8, 10, 12, 14, 21
 - 7.4. Z = 1 en 0, 1, 2, 3, 4, 6, 8, 9, 11, 15
 - 7.5. Z = 1 en 0, 1, 2, 4, 6, 8, 9, 10
 - 7.6. Z = 1 en 1, 5, 9, 11, 13, 15
 - 7.7. Z = 1 en 0, 2, 6, 14
 - 7.8. Z = 1 en 0, 1, 2, 3, 6, 8
 - 7.9. Z = 1 en 3, 5, 6, 7, 9, 13, 14, 15
 - 7.10. Z = 1 en 0, 2, 4, 8, 10
- 8. Máquinas de estados finitos
 - 8.1. Realizar una máquina que posea entradas X e Y y una salida Z. El sistema debe calcular la paridad de los bits entrantes por X e Y.

La salida Z será

1 si la cantidad total de bits en uno es impar

0 en caso contrario

X	0	1	1	1	0
Y	0	0	0	1	1
Z	0	1	0	0	1

8.2. Realizar una máquina que posea entradas C, X e Y y una salida Z. El sistema debe calcular la paridad de los bits entrantes por X e Y.

La salida Z será

1 si la cantidad total de bits en uno es impar y C esta en 1

0 en caso contrario

С	0	0	0	0	1
X	0	1	1	1	0
Y	0	0	0	1	1
Z	0	0	0	0	1

8.3. Realizar una máquina que posea entradas C, X e Y y una salida Z. El sistema debe calcular la paridad de los bits entrantes por X e Y

La salida Z será

1 si la cantidad total de bits en uno es impar y C estuvo en 1 en tiempo anterior

0 en caso contrario

C	0	0	0	1	1
X	0	1	1	1	0
Y	0	0	0	1	1
Z	0	0	0	0	1

8.4. Realizar una máquina que posea entradas X e Y y dos salidas Z₀ y Z₁. El sistema debe monitorear la relación entre los valores anteriores de las entradas X e Y

La salida Z presentara la siguiente forma:

X _{ant}	Yant	\mathbf{Z}_{0}	\mathbf{Z}_1
0	0	1	1
0	1	0	1
1	0	1	0
1	1	1	1

X	0	1	1	1	0
Y	0	0	0	1	1
Z_0		1	1	1	1
\mathbf{Z}_1		1	0	0	1

8.5. Realizar una máquina que posea entradas X e Y y una salida Z. El sistema debe monitorear la relación entre el numero binario formado XY anterior y el actual.

La salida Z presentara la siguiente forma:

$$0 \text{ si } XY_{ant} \leq XY_{act}$$

1 si
$$XY_{ant} > XY_{act}$$

- 8.6. Realizar una máquina que posea entrada UP y salidas Z₁ y Z₀. El sistema debe comportarse como un contador binario de 2 bits y la salida debe ser el valor de la cuenta.
- 8.7. Realizar una máquina que posea entradas RESET y UP (con RESET prioritario) y salidas Z_1 y Z_0 . El sistema debe comportarse como un contador binario de 2 bits y la salida debe ser el valor de la cuenta.

RESET	UP	Descripción
0	0	Nada
0	1	Incrementa
1	*	Resetea

8.8. Realizar una máquina que posea entradas RESET, UP y DOWN (con RESET prioritario) y salidas Z_1 y Z_0 . El sistema debe comportarse como un contador binario de 2 bits y la salida debe ser el valor de la cuenta.

RESET	UP	DOWN	Descripción
0	0	0	Nada
0	0	1	Decrementa
0	1	0	Incrementa
0	1	1	Nada
1	*	*	Resetea

- 8.9. Realizar una máquina que posea una entrada X y salida Z. El sistema debe detectar la secuencia "10" y poner en alto la salida Z en tal caso.
- 8.10. Realizar una máquina que posea una entrada X y salida Z. El sistema debe detectar la secuencia "101" y poner en alto la salida Z en tal caso.
- 8.11. Realizar una máquina que posea una entrada X y salida Z. El sistema debe detectar la secuencia "10" o "01" y poner en alto la salida Z en tal caso.
- 8.12. Realizar una máquina que posea una entrada X y salida Z. El sistema debe detectar la secuencia "101" o "111" y poner en alto la salida Z en tal caso.
- 8.13. Realizar una maquina que posea entradas X e Y y salidas Z_0 y Z_1 . El sistema debe indicar la relación (igual, menor, mayor) entre dos números ingresados por las entradas X e Y. Los números ingresan de su cifra menos significativa en adelante (de derecha a izquierda).

$\mathbf{X} 0 0 1$	1
-----------------------	---

Y	0	1	0	0
\mathbf{Z}_0	1	0	1	1
\mathbf{Z}_1	1	1	0	0

- 8.14. Realizar una maquina que posea entradas C, X e Y y salidas Z_0 y Z_1 . El sistema debe indicar la relación (igual, menor, mayor) entre dos números ingresados por las entradas X e Y. Los números ingresan de su cifra menos significativa en adelante (de derecha a izquierda). La salida Z_0 y Z_1 seran validas solo si la entrada C esta activa.
- 8.15. Realizar una maquina que posea entradas R, X e Y y salidas Z_0 y Z_1 . El sistema debe indicar la relación (igual, menor, mayor) entre dos números ingresados por las entradas X e Y. Los números ingresan de su cifra menos significativa en adelante (de derecha a izquierda). Si la entrada R esta activa el sistema se reinicia, tomando los valores de X e Y como nuevos números.