MATH 178 Homework #6
Tamir Enkhjargal
April 2019

$\mathbf{F}\mathbf{F}$

4.

Polynomials of Degree 3	Irreducible Form
$x^3 + 0x^2 + 0x + 0$	$x^2(x)$
$x^3 + 0x^2 + 0x + 1$	$(x^2 + x + 1)(x + 1)$
$x^3 + 0x^2 + x + 0$	$x(x^2+1)$
$x^3 + 0x^2 + x + 1$	Irreducible
$x^3 + x^2 + 0x + 0$	$x^{2}(x+1)$
$x^3 + x^2 + 0x + 1$	Irreducible
$x^3 + x^2 + x + 0$	$x(x^2 + x + 1)$
$x^3 + x^2 + x + 1$	$(x^2+1)(x+1)$

5.

Power of x^2	$\mod(x^3 + x + 1)$	Reduced Form
$(x^2)^1$	x^2	x^2
$(x^2)^2$	x^4	$x^2 + x$
$(x^2)^3$	x^6	$x^2 + x$ $x^2 + 1$
$(x^2)^4$	x^8	x
$(x^2)^5$	x^{10}	x+1
$(x^2)^6$	x^{12}	$x+1$ x^2+x+1
$(x^2)^7$	x^{14}	1

We see that x^2 is a generator in \mathbb{F}_8^* .

6.

(a)

$$x^3 + x + 1 \tag{1}$$

$$*x^3 + x^2 + 1 (2)$$

$$x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \tag{3}$$

$$x^{6} = x^{4} * x^{2} = (x+1)x^{2} = x^{3} + x^{2}$$

$$\tag{4}$$

$$x^5 = x^4 * x = (x+1)x = x^2 + x \tag{5}$$

$$x^4 = x + 1 \tag{6}$$

$$x^2 + x \tag{7}$$

(b)

Power of x	Reduced $mod(x^4 + x + 1)$
x^1	x
x^2	x^2
x^3	x^3
x^4	x+1
x^5	$x^2 + x$
x^6	$x^3 + x^2$
x^7	$x^3 + x + 1$
x^8	$x^2 + 1$
x^9	$x^3 + x$
x^{10}	$x^2 + x + 1$
x^{11}	$x^3 + x^2 + x$
x^{12}	$x^3 + x^2 + x + 1$
x^{13}	$x^3 + x^2 + 1$
x^{14}	$x^3 + 1$
x^{15}	1

(c) x^3 is not a generator of \mathbb{F}_{16}^* , because when x, which is a generator loops and repeats the pattern from x^{16} to x^{30} (and again x^{31} to x^{45}), the only numbers hit are the multiplies of 3, which will be $x^3, x^6, x^9, x^{12}, x^{15}$... The other elements of the set generating \mathbb{F}_{16}^* never gets touched. One thing to note, is that the cardinality of \mathbb{F}_{16}^* and the degree of x are not relatively prime, leading to this problem.

7.

In $\mathbb{F}_{32} = \mathbb{F}_2[x]/(x^5 + x^2 + 1)$, invert $x^3 + x^2 + 1$.

From the rest of the equation, we find that:

$$x^{5} + x^{2} + 1 = (x^{2} + x + 1)(x^{3} + x^{2} + 1) + x$$
 (1)

$$x^{3} + x^{2} + 1 = (x^{2} + x)x + 1$$
(2)

$$1 = (x^3 + x^2 + 1) + (x^2 + x)x \tag{1}$$

$$1 = (x^3 + x^2 + 1) + (x^2 + x)[(x^5 + x^2 + 1) + (x^2 + x + 1)(x^3 + x^2 + 1)]$$
 (2)

$$1 = (x^3 + x^2 + 1) + (x^2 + x)(x^2 + x + 1)(x^3 + x^2 + 1)$$
(3)

$$1 = (x^3 + x^2 + 1) + (x^4 + x)(x^3 + x^2 + 1)$$
(4)

$$1 = (x^3 + x^2 + 1)(x^4 + x + 1)$$
(5)

$$(x^3 + x^2 + 1)(x^4 + x + 1) \equiv 1(\operatorname{mod}(x^5 + x^2 + 1))$$
 (1)

Therefore the inverse of $x^3 + x^2 + 1$ is $x^4 + x + 1$