

Evoluzione delle architetture di rete e dei servizi di telecomunicazione

Parte 1: Fondamenti

Slide adattate da:

J. Kurose, K. Ross: "Reti di calcolatori e Internet (4a edizione)". Pearson Addison Wesley

Introduzione

Obiettivi

- introdurre la terminologia e i concetti di base
- Internet come fonte di esempi

Panoramica

- cos'è Internet ?
- cos'è un protocollo ?
- host, reti di accesso, mezzi trasmissivi
- commutazione di circuito e commutazione di pacchetto
- struttura di Internet
- prestazioni: ritardi, perdite e throughput

Che cos'è Internet?

PC

server

Portatile

Telefono cellulare

Punti di accesso

— Collegam. cablato

- Host = sistema terminale
- Applicazioni di rete
- Collegamenti
 - rame, fibra ottica, onde elettromagnetiche, satellite
 - Frequenza di trasmissione = ampiezza di banda
- Router = instrada i pacchetti verso la loro destinazione finale

Rete mobile

Che cos'è Internet?

- Infrastruttura di comunicazione per applicazioni distribuite
 - Social networks, Web, VoIP, email, giochi, e-commerce, condivisione di file
- Servizi forniti alle applicazioni
 - Servizio affidabile dalla sorgente alla destinazione
 - Servizio "best effort" (non affidabile) senza connessione

Che cos'è Internet?

- Un protocollo definisce il formato e l'ordine dei messaggi scambiati fra due o più entità in comunicazione
 - es.: TCP, IP, HTTP, Skype, Ethernet
- Internet: "rete delle reti"
 - struttura gerarchica
 - Internet pubblica e intranet private
- Standard Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Cos'è un protocollo ?

Protocolli umani:

- "Che ore sono?"
- "Ho una domanda"
- Presentazioni
- ... invio di specifici messaggi
- ... quando il messaggio è ricevuto, vengono intraprese specifiche azioni, o si verificano altri eventi

Protocolli di rete:

- Dispositivi hardware e software
- Tutta l'attività di comunicazione in Internet è governata dai protocolli

Cos'è un protocollo ?

Protocollo umano

Protocollo di rete

Struttura di rete

- ai confini della rete
 - applicazioni
 - sistemi terminali
- reti, dispositivi fisici
 - collegamenti cablati
 - wireless
- al centro della rete
 - router interconnessi
 - la rete delle reti

Ai confini della rete

sistemi terminali (host)

- fanno girare programmi applicativi
 - es.: Web, e-mail
- situati all'estremità di Internet

architettura client/server

- L'host client richiede e riceve un servizio da un programma server in esecuzione su un altro terminale
 - es.: browser/server Web ; client/server email

architettura peer to peer

- uso limitato (o inesistente) di server dedicati
 - es.: Skype, Bit Torrent

Reti d'accesso e mezzi fisici

D: Come collegare sistemi terminali e router esterni?

- reti di accesso residenziale
- reti di accesso aziendale (università, istituzioni, aziende)...
- reti di accesso mobile

Ricordate:

- Banda (bit rate bit/s) disponibile?
- condivise o dedicate?

Accesso residenziale: punto-punto

Modem dial-up

- fino a 56 Kbps di accesso diretto al router (ma spesso è inferiore)
- non è possibile "navigare" e telefonare allo stesso momento

DSL: digital subscriber line

- installazione: in genere da un operatore di rete
- ~ 30 Mbps in upstream
- ~ 100 Mbps in downstream
- linea dedicata

Accesso a Larga Banda di rete fissa

Sistemi XDSL

Family	ITU	Name	Ratified	Maximum Speed capabilities
ADSL	G.992.1	G.dmt	1999	7 Mbps down 800 kbps up
ADSL2	G.992.3	G.dmt.bis	2002	8 Mb/s down 1 Mbps up
ADSL2plus	G.992.5	ADSL2plus	2003	24 Mbps down 1 Mbps up
ADSL2-RE	G.992.3	Reach Extended	2003	8 Mbps down 1 Mbps up
SHDSL (updated 2003)	G.991.2	G.SHDSL	2003	5.6 Mbps up/down
VDSL	G.993.1	Very-high-data-rate DSL	2004	55 Mbps down 15 Mbps up
VDSL2 -12 MHz long reach	G.993.2	Very-high-data-rate DSL 2	2005	55 Mbps down 30 Mbps up
VDSL2 - 30 MHz Short reach	G.993.2	Very-high-data-rate DSL 2	2005	100 Mbps up/down

STOON NO.

Evoluzione della copertura a Larga Banda di rete fissa

Rete di Distribuzione Telefonica

Obiettivo

 Trasporto e trattamento del segnale dalla centrale (SL) all'apparecchio del cliente

E' costituita da

- Portanti fisici (cavi in rame)
- Attestazioni e terminazioni
- Apparati trasmissivi
- Altri dispostivi

Si suddivide nelle seguenti sezioni

- Rete Primaria (~ 1 km)
- Rete Secondaria (~ 200 m)
- Raccordo (~ 50 m)

Architetture ibride rame-fibra (FTTx)

Architetture FTTx

Accesso aziendale: reti locali (LAN)

Una LAN collega i sistemi terminali di aziende e università ad un router

Ethernet

- 10 Mb/s, 100 Mb/s, 1 Gb/s, 10 Gb/s, 100 Gbit/s
- Sistemi terminali collegati mediante uno switch

Accesso wireless

- Una rete condivisa d'accesso wireless collega i sistemi terminali al router
 - Access Point (AP)
- Wireless LAN
 - 802.11b/g (WiFi): 11 o 54 Mbps
- Rete d'accesso wireless geografica
 - gestita da un provider di telecomunicazioni
 - ~ 1 Mbps per i sistemi cellulari (4G)...
 - WiMax per aree più grandi

Reti domestiche

- Componenti di una tipica rete domestica
 - DSL o modem via cavo
 - router/firewall/NAT
 - Ethernet
 - Punto d'accesso wireless

Mezzi trasmissivi

Mezzo fisico

 ciò che sta tra il trasmittente e il ricevente

Mezzi guidati

 i segnali si propagano in un mezzo fisico: fibra ottica, filo di rame o cavo coassiale

Mezzi a onda libera

 i segnali si propagano nell'atmosfera e nello spazio esterno

Twisted Pair (TP)

- due fili di rame distinti
 - Categoria 3: tradizionale cavo telefonico, 10 Mbps Ethernet
 - Categoria 5:100 Mbps Ethernet

Mezzi trasmissivi: cavo coassiale e fibra ottica

Cavo coassiale

- due conduttori in rame concentrici
- bidirezionale
- banda base:
 - singolo canale sul cavo
 - legacy Ethernet
- banda larga

Fibra ottica

- Mezzo sottile e flessibile che conduce impulsi di luce
- Alta frequenze trasmissiva:
 - Elevata velocità di trasmissione punto-punto (da 10 a 100 Gps)
- Basso tasso di errore, immune all'interferenza elettromagnetica

Mezzi trasmissivi: canali radio

- Trasportano segnali nello spettro elettromagnetico
- non richiedono l'installazione fisica di cavi
- bidirezionali
- effetti dell'ambiente di propagazione:
 - riflessione
 - ostruzione da parte di ostacoli
 - interferenza

- Tipi di canali radio
 - Microonde terrestri
 - es.: canali fino a 45 Mbps
 - LAN (es.: Wifi)
 - 11 Mbps, 54 Mbps
 - Wide-area (es.: cellulari)
 - es.: 3G: ~ 1 Mbps
 - Satellitari
 - canali fino a 45 Mbps (o sottomultipli)
 - ritardo punto-punto di 270 msec
 - geostazionari/a bassa quota

Spettro elettromagnetico

Il nucleo della rete

- Rete magliata di router che interconnettono i sistemi terminali
- Come vengono trasferiti i dati attraverso la rete ?
 - Commutazione di circuito: circuito dedicato per l'intera durata della sessione (es. rete telefonica)
 - Commutazione di pacchetto: il flussoinformativo è suddiviso in pacchetti che utilizzano le risorse su richiesta, e di conseguenza potrebbero dover attendere per accedere a un collegamento

Commutazione di circuito (Circuit Switching - CS)

Risorse punto-punto riservate alla "chiamata"

- Banda sui link, capacità nei commutatori
- risorse dedicate alla chiamata: non c'è condivisione
- prestazioni garantite (es. delay)
- necessaria una fase di instaurazione della chiamata

Commutazione di circuito

- Risorse di rete (banda) suddivise in "porzioni" (canali)
- un canale viene assegnato ad una comunicazione (chiamata)
- le risorse rimangono inattive se non utilizzate dalla comunicazione
 - non c'è condivisione di canale

- Suddivisione della banda in "canali"
 - divisione di frequenza
 - divisione di tempo

Commutazione di circuito: FDM e TDM

Un esempio numerico

- Quanto tempo occorre per inviare un file di 640.000 bit dall'host A all'host B su una rete a commutazione di circuito ?
 - Tutti i collegamenti presentano un bit rate di 2.048 Mbps
 - Ciascun collegamento utilizza TDM con 32 slot/sec
 - Si impiegano 500 ms per stabilire un circuito puntopunto
- Provate a calcolare il ritardo

Commutazione di pacchetto (Packet Switching - PS)

- Il flusso di dati punto-punto viene suddiviso in pacchetti
 - I pacchetti condividono le risorse di rete
 - Ciascun pacchetto al momento della trasmissione utilizza completamente il canale
 - Le risorse vengono usate a seconda delle necessità
 - MULTIPLAZIONE STATISTICA

Larghezza di banda suddivisa in pezzi"

Allocazione di dicata

Risonse ri servate

- Store and forward
 - il commutatore deve ricevere l'intero pacchetto prima di poter cominciare a trasmettere sul collegamento in uscita
- Contesa per le risorse (resource contention)
 - Fenomeno di congestione:
 - La richiesta di risorse può eccedere il quantitativo disponibile
 - In caso di congestione i pacchetti sono memorizzati in un buffer in attesa dell'utilizzo del collegamento

Multiplazione statistica

- La sequenza dei pacchetti A e B non segue uno schema prefissato Condivisione di risorse su richiesta: multiplazione statistica
- TDM: ciascun host ottiene uno slot di tempo dedicato unicamente a quella connessione.

Store-and-forward

- Occorrono L/R secondi per trasmettere un pacchetto di L bit su un collegamento in uscita da R bps
- store and forward
 - l'intero pacchetto deve arrivare al router prima che questo lo trasmetta sul link successivo
- ritardo = 3L/R (supponendo che il ritardo di propagazione sia zero)
- Occore approfondire

Esempio:

- L = 7,5 Mbit
- R = 1,5 Mbps
- ritardo = 15 sec

Confronto CS e PS

La commutazione di pacchetto consente a più utenti di usare la rete

- 1 collegamento da 1 Mpbs
- Ciascun utente:
 - 100 kpbs quando è "attivo"
 - attivo per il 10% del tempo

- 10 utenti
- commutazione di pacchetto:
 - con 35 utenti, la probabilità di averne > 10 attivi è inferiore allo 0,0004

D: come è stato ottenuto il valore 0,0004?

Confronto CS e PS

La commutazione di pacchetto è la "scelta vincente?"

- Ottimale per i dati a "burst"
 - Condivisione delle risorse
 - Più semplice della CS, non necessita l'instaurazione della chiamata
- Congestione
 - Pericolo di elevati ritardi e di perdita di pacchetti
 - Sono necessari protocolli per il trasferimento affidabile dei dati e per il controllo della congestione
- D: Come ottenere un comportamento simile al circuito ?
 - è necessario fornire garanzie di larghezza di banda per le applicazioni audio/video
 - Problema difficile

Ritardi e perdita

- I pacchetti sono memorizzati nei buffer dei router
- Se il tasso di arrivo dei pacchetti eccede la capacità del collegamento i pacchetti si accodati nei buffer, in attesa del proprio turno di trasmissione

buffer liberi (disponibili): se non ci sono buffer liberi i pacchetti in arrivo vengono scartati (perdita)

Quattro cause di ritardo per i pacchetti

- 1. Ritardo di elaborazione del nodo
- Terminazione dei protocolli di strato di link (es. Controllo e recupero degli errori sui bit dei pacchetti)
- individuazione del link di uscita (instradamento)

- 2. Ritardo di accodamento
- attesa di trasmissione
- livello di congestione del router

Ritardo nelle reti PS

3. Ritardo di trasmissione (L/R)

- R=frequenza di trasmissione del collegamento (in bps)
- L=lunghezza del pacchetto (in bit)
- Ritardo di trasmissione = L/R

- 4. Ritardo di propagazione (d/s)
- d = lunghezza del collegamento fisico
- s = velocità di propagazione del collegamento (~2×10⁸ m/sec)
- Ritardo di propagazione = d/s

Ritardo di link

$$d_{\text{link}} = d_{\text{elab}} + d_{\text{queue}} + d_{\text{trasm}} + d_{\text{prop}}$$

- d_{elab} = ritardo di elaborazione (processing delay)
 - in genere pochi microsecondi, o anche meno
- d_{queue} = ritardo di accodamento (queuing delay)
 - dipende dalla congestione
- d_{trasm} = ritardo di trasmissione (transmission delay)
 - = L/R, elevato nei collegamenti a basso bit rate
- d_{prop} = ritardo di propagazione (propagation delay)
 - da pochi microsecondi a centinaia di millisecondi

Ritardo di accodamento

- L = lunghezza del pacchetto (bit)
- a = tasso medio di arrivo dei pacchetti

La/R = intensità di traffico

- L·a/R ~ 0: ritardo molto limitato
- L·a/R -> 1: il ritardo cresce in modo fortemente non lineare
- L·a/R > 1: più "lavoro" in arrivo di quanto possa essere effettivamente svolto, ritardo medio infinito

Perdita di pacchetti

I buffer hanno capacità finita

- quando il pacchetto trova la coda piena, viene scartato (e quindi va perso)
- In dipendenza del protocollo utilizzato, un pacchetto perso può essere ritrasmesso dal nodo precedente, dal sistema terminale che lo ha generato, o non essere ritrasmesso affatto

Throughput

- Frequenza (bit/unità di tempo) alla quale i bit sono trasferiti tra mittente e ricevente
 - istantaneo: in un determinato istante
 - medio: in un periodo di tempo più lungo

Throughput (segue)

 $R_s < R_c$ Qual è il throughput medio end to end?

 $R_s > R_c$ Qual è il throughput medio end to end ?

Collo di bottiglia (Bottleneck)

Link di un percorso punto-punto che vincola il throughput end to end

Throughput: scenario Internet

- Throughput end to end per ciascuna connessione
 - $= \min(R_c, R_s, R/10)$
- In pratica, R_c o R_s (link terminali) possono costituire il bottleneck del collegamento

10 collegamenti (equamente) condivisi collegamento collo di bottiglia R bit/sec

DIET DEPT

Networking Group

Ritardi e percorsi in Internet

Traceroute

- programma diagnostico che fornisce una misura del ritardo dalla sorgente al router lungo i percorsi Internet punto-punto verso la destinazione.
 - invia tre pacchetti che raggiungeranno il router i sul percorso verso la destinazione
 - il router i restituirà i pacchetti al mittente
 - il mittente calcola l'intervallo tra trasmissione e risposta

Ritardi e percorsi in Internet

traceroute: da gaia.cs.umass.edu a www.eurecom.fr

3 misure di ritardo da gaia.cs.umass.edu a cs-gw.cs.umass.edu 1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms 2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms 4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms collegamento 7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms transoceanico 8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms ** nessuna risposta (risposta persa, il router non risponde)

19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

DIET DEPT

Networking Group

Struttura di Internet: rete di reti

Fondamentalmente gerarchica

- al centro: "ISP di livello 1"
 - Verizon, Sprint, AT&T, Cable&Wireless
 - copertura nazionale/internazionale
- Comunicano tra di loro come "pari"

Gli ISP di livello 1 sono direttamente connessi a ciascuno degli altri ISP di livello 1

ISP di livello 1 - Un esempio: Sprint

Struttura di Internet

- ISP di livello 2: ISP più piccoli (nazionali o distrettuali)
 - Si può connettere solo al alcuni ISP di livello 1, e possibilmente ad altri ISP di livello 2

Un ISP di livello 2
paga l'ISP di livello 1
che gli fornisce la
connettività per il
resto della rete
un ISP di livello 2 è
cliente di un ISP di
livello 1

Struttura di Internet

- ISP di livello 3 e ISP locali (ISP di accesso)
 - Reti "ultimo salto" (last hop network), le più vicine ai sistemi terminali

Struttura di Internet

Un pacchetto attraversa un numero anche molto elvato di reti

Elementi architetturali di una Computer Network

- Trasmissioni digitali
- Scambio di frames tra elementi di rete adiacenti
 - Framing e error control
- Medium access control (MAC) regola l'accesso ai mezzi condivisi
- Indirizzi identificano il punto di accesso alla rete (interfaccia)
- Trasferimento dei pacchetti in rete
- Calcolo distribuito delle tabelle di routing

Elementi architetturali di una Computer Network

- Congestion control all'interno della rete
- Internetworking tra reti diverse
- Segmentazione e riassemblaggio dei messaggi in pacchetti all'ingresso e all'uscita da una rete
- Protocolli di trasporto end-to-end per comunicazioni tra processi
- Applicazioni che utilizzano le informazioni che attraversano la rete
- Intelligenza ai bordi della rete

Evoluzione delle architetture di rete e dei servizi di telecomunicazione

Parte 2: Evoluzione delle reti

Trends nell'evoluzione della rete

I servizi sono gli elementi trainanti

- Costruire una rete richiede notevoli investimenti
- I servizi generano ricavi che guidano l'evoluzione dell'architettura della rete

Tendenze attuali

- Multimedia applications
- Segnalazione evoluta
- Molti fornitori di servizi e reti overlay
- Il networking è un business

Applicazioni Multimediali

- Digitalizzazione di qualsiasi media
 - Voce digitale standard nei telefoni cellulari
 - Cassette musicali sostituite da CDs e MP3
 - Macchine fotografiche sostituite da videocamere digitali
- Video: digital storage and transmission
 - Cassette video analogiche (VCR) sostituite da DVD
 - TV broadcast analogica TV sostituita dalla TV digitale
 - VCR cameras/recorders sostituiti da digital video recorders and cameras
- Possibilità di offrire applicazioni multimediali ad alta qualità in rete

Segnalazione evoluta

Segnalazione di rete

- La commutazione di pacchetto connectionless mantiene la rete semplice e evita la complessità dovuta ai sistemi di segnalazione
- ma..
- Grandi flussi di pacchetti possono essere trattati più efficinetemente mediante meccanismi circuit-like che richiedono protocolli di segnalazione
- La gestione di cammini ottici richiedono protocolli di segnalazione
- Quindi devono essere definiti nuovi sistemi di segnalazione

Segnalazione End-to-End

- Applicazioni Session-oriented richiedono un protocollo di segnalazione tra endpoints
- Session Initiation Protocol (SIP)

Servers & Services

- Molte applicazioni Internet comportano interazioni tra client (host) e server (computer)
 - Client e server sono posti ai bordi di Internet
 - SMTP, HTTP, DNS, ...
- Servizi telefonici avanzati richiedono l'utilizzo di server
 - Caller ID, voice mail, mobility, roaming, . . .
 - Questi server sono all'interno della rete telefonica
 - Internet-based servers ai bordi della rete possono fornire le stesse funzionalità

P2P and Overlay Networks

- Nel modello client-server le risorse dei client sono spesso sottoutilizzate
- Le applicazioni Peer-to-Peer (P2P) rendono possibile la condivisione delle risorse dei client
 - Napster, Gnutella, Kazaa, Skype
 - Processing & storage (SETI@home)
 - Information & files (MP3s)
 - Creazione di server distribuiti virtuali
- I sistemi P2P creano reti overlay di tipo dinamico
 - Host che sono online in un istante si connettono direttamente uno all'altro per permettere la condivisione delle proprie risorse
 - Produzione di grandi volumi di traffico
 - Problemi di gestione delle rete
 - Nuove opportunità di businesses

Operations, Administration Maintenance e Billing

- Reti di comunicazione come le reti di trasporto
 - I flussi di traffico devono essere monitorati e controllati
 - I pedaggi devono essere raccolti
 - Le strade devono essere manutenute
 - Deve essere prevista l'evoluzione del traffico per pianificare la crescita della rete
- Funzioni esistenti ed evolute nella rete telefonica
- In via di sviluppo in reti IP

Evoluzione delle architetture di rete e dei servizi di telecomunicazione

Parte 3: Fattori chiave nell'evoluzione delle reti

Fattori di successo di un servizio

- Il successo di un nuovo servizio non dipende solo dalla tecnologia
- I fattori da considerare di comunicazione sono tre

Esiste una domanda per il servizio?

Mercato

Tecnologia

Può essere realizzato ad un costo competitivo?

Regolamentazione

E' consentito il servizio?

Tecnologia di trasmissione

- Costante miglioramento delle tecniche trasmissive
- Trasmissione ad alta velocità in coppie in rame
 - DSL Internet Access
- Sempre maggiore capacità nelle reti cellulari
 - Abbassamento dei costi del servizio telefonico mobile
- Capacità virtualmente illimitata nelle fibre ottiche
 - Drastica diminuzione dei costi dei servizi telefonici a lunga distanza
- Possibilità di supporto di "information intensive applications"

Tecnologie di Elaborazione

- Costante miglioramento delle tecnologie di elaborazione e memorizzazione
- Moore's Law: raddoppio della densità di transistor per circuito integrato ogni due anni
- RAM: tabelle più grandi, sistemi più grandi
- Digital signal processing: trasmissione, multiplazione, framing, error control, crittografia
- Network processors: hardware dedicato per routing, switching, forwarding e traffic management
- Microprocessors: supporto di sofisticate applicazioni e protocolli applicativi
- Protocolli e applicazioni di rete a maggiore velocità e throughput

Moore's Law

Tecnologia del Software

- Funzioninalità maggiori e sistemi più complessi
- TCP/IP nei sistemi operativi
- Java and virtual machines
- New application software
- Middleware to connect multiple applications
- Adaptive distributed systems

Mercato

- Network effect: il vantaggio di un servizio aumenta con la dimensione della comunità che lo utilizza
 - Metcalfe's Law: il vantaggio di un servizio è proporzionale al quadrato del numero di utenti
- Economies of scale: il costo per utente diminuisce all'aumentare del volume di produzione
 - Telefoni cellulari, PDAs, PCs
 - Efficienza dalla multiplazione
- S-curve: l'evoluzione di un nuovo servizio è rappresentata da una "S-shaped curve", il punto è raggiungere una massa critica

The S Curve

Service Penetration & Network Effect

- Telephone: T=30 years
 - city-wide & inter-city links
- Automobile: T=30 years
 - roads
- Others
 - Fax
 - Cellular & cordless phones
 - Internet & WWW
 - Napster and P2P

Regulation & Competition

- Il servizio telefonico si è sviluppato in un regime di monopolio
 - Altissimo costo dell'infrastruttura
 - Approccio vantaggioso, evoluzione prevedibile, ma lenta innovazione
- La competizione è possibile con i progressi tecnologici
 - Abbassamento dei costi della trasmissione a lunga distanza mediante la tecnologia ottica
 - Architetture di accesso alternative wired e wireless
 - Spettro Radio spectrum: asta vs. unlicensed
- Basic connectivity vs. application provider
 - Competizione per le parti che generano ritorni economici

Standards

- Le nuove tecnologie sono spesso costose e rischiose
- Gli Standard permettono agli attori in gioco di condividere il rischio e gli eventuali benefici di un nuovo mercato
 - Costo ridotto d'entrata
 - Interoperabilità e "network effect"
 - Competere nell'innovazione
 - Completamento della catena del valore
 - Chips, systems, equipment vendors, service providers
- Esempio
 - 802.11 wireless LAN

Standards Bodies

- Internet Engineering Task Force (IETF)
 - Sviluppo degli Internet standards
 - Request for Comments (RFCs): www.ietf.org
- International Telecommunications Union (ITU)
 - International telecom standards
- IEEE 802 Committee
 - Local area and metropolitan area network standards
- Industry Organizations
 - MPLS Forum, WiFi Alliance, World Wide Web Consortium

RFCs list

#	Title	Date published	Related article	Made obsolete by	Notes
RFC 15	Network Subsystem for Time Sharing Hosts	September 25, 1969	Telnet		
RFC 114	A FILE TRANSFER PROTOCOL	April 16, 1971	FTP	959	
RFC 172	THE FILE TRANSFER PROTOCOL	June 23, 1971	FTP	265	
RFC 196	A MAIL BOX PROTOCOL	July 20, 1971	SMTP	221	
RFC 265	THE FILE TRANSFER PROTOCOL	November 17, 1971	FTP	354	
RFC 354	THE FILE TRANSFER PROTOCOL	July 8, 1972	FTP	542	
RFC 675	SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAM	December 1974	Internet, TCP		
RFC 760	DOD-STANDARD INTERNET PROTOCOL	January 1980	IPv4	791	
RFC 765	FILE TRANSFER PROTOCOL	June 1980	FTP	959	
RFC 768	User Datagram Protocol	August 28, 1980	UDP		
RFC 772	MAIL TRANSFER PROTOCOL	September 1980	SMTP	780	
RFC 783	THE TFTP PROTOCOL (REVISION 2)	June 1981	TFTP	1350	
RFC 790	ASSIGNED NUMBERS	September 1981	IPv4	820	
RFC 791	Internet Protocol	September 1981	IPv4		
RFC 792	INTERNET CONTROL MESSAGE PROTOCOL	September 1981	ICMP		
RFC 793	TRANSMISSION CONTROL PROTOCOL	September 1981	TCP		
RFC 821	SIMPLE MAIL TRANSFER PROTOCOL	August 1982		2821	
RFC 822	STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESSAGES	August 13, 1982	SMTP	2822	
RFC 826	An Ethernet Address Resolution Protocol	November 1982	ARP		
RFC 850	Standard for Interchange of USENET Messages	June 1983	Usenet	1036	
RFC 854	TELNET PROTOCOL SPECIFICATION	May 1983	Telnet		
RFC 855	TELNET OPTION SPECIFICATIONS	May 1983			
RFC 862	Echo Protocol	May 1983	Echo		
RFC 863	Discard Protocol	May 1983	DISCARD		
RFC 864	Character Generator Protocol	May 1983	CHARGEN		
RFC 868	Time Protocol	May 1983	TIME		
RFC 903	A Reverse Address Resolution Protocol	June 1984	RARP		
RFC 918	POST OFFICE PROTOCOL	October 1984	POP v 1	937	
RFC 937	POST OFFICE PROTOCOL - VERSION 2	February 1985	POP v 2		
RFC 951	BOOTSTRAP PROTOCOL (BOOTP)	September 1985	ВООТР		
RFC 959	FILE TRANSFER PROTOCOL (FTP)	October 1985	FTP		
RFC 966	Host Groups: A Multicast Extension to the Internet Protocol	December 1985	IGMP v 0	988	
RFC 977	Network News Transfer Protocol	February 1986	NNTP	3977	
RFC 988	Host Extensions for IP Multicasting	July 1986	IGMP v 0	1054, 1112	

#	Title	Date published	Related article	Made obsolete by	Notes
RFC 1034	DOMAIN NAMES - CONCEPTS AND FACILITIES	November 1987	DNS		
RFC 1035	DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION	November 1987	DNS		
RFC 1036	Standard for Interchange of USENET Messages	December 1987	Usenet		
RFC 1054	Host Extensions for IP Multicasting	May 1988	IGMP v 1	1112	
RFC 1055	A Non-Standard for Transmission of IP Datagrams Over Serial Lines: SLIP	June 1988	SLIP		
RFC 1058	Routing Information Protocol	June 1988	RIP v 1		
RFC 1059	Network Time Protocol (version 1) specification and implementation	July 1988	NTP v 1		
RFC 1067	A Simple Network Management Protocol (SNMP)	August 1988	SNMP v1	1098	
RFC 1071	Computing the Internet Checksum	September 1988	Checksum	1141	
RFC 1081	Post Office Protocol - Version 3	November 1988	POP v 3	1225	
RFC 1087	Ethics and the Internet	January 1989	Internet Ethics		
RFC 1094	NFS: Network File System Protocol Specification	March 1989	NFS	3010	
RFC 1098	A Simple Network Management Protocol (SNMP)	April 1989	SNMP v1	1157	
RFC 1112	Host Extensions for IP Multicasting	August 1989	IGMP v 1		
RFC 1119	Network Time Protocol (version 2) specification and implementation	September 1989	NTP v 2		
RFC 1131	OSPF	October 1989	OSPF	1247	
RFC 1149	A Standard for the Transmission of IP Datagrams on Avian Carriers	April 1, 1990	IP over Avian Carriers		
RFC 1157	A Simple Network Management Protocol (SNMP)	May 1990	SNMP v1		
RFC 1176	INTERACTIVE MAIL ACCESS PROTOCOL - VERSION 2	August 1990	IMAP v 2		
RFC 1225	Post-Office-Protocol - Version-3	May 1991	POP v 3	1460	
RFC 1247	OSPF Version 2	July 1991	OSPF	1583	
RFC 1294	Multiprotocol Interconnect over Frame Relay	January 1992	Frame relay		
RFC 1305	Network Time Protocol (Version 3) Specification, Implementation and Analysis	March 1992	NTP v 3		
RFC 1321	The MD5 Message-Digest Algorithm	April 1992	MD5		
RFC 1350	THE TFTP PROTOCOL (REVISION 2)	July 1992	TFTP		
RFC 1388	RIP-Version 2-Carrying Additional Information	January 1993	RIP	1723, 2453	
RFC 1436	The Internet Gopher Protocol	March 1993	Gopher		
RFC 1441	Introduction to version 2 of the Internet- standard Network Management Framework	April 1993	SNMP v 2		
RFC 1459	Internet Relay Chat Protocol	May 1993	IRC		
RFC 1460	Post Office Protocol - Version 3	June 1993	POP v 3	1725	
RFC 1487	X.500 Lightweight Directory Access Protocol	July 1993	LDAP	1777	
RFC 1490	Multiprotocol Interconnect over Frame Relay	July 1993	Frame relay	2427	

