

동양미래대학교 인공지능소프트웨어학과

인간의 지능과 뉴런

Dongyang Mirae University Dept. Of Artificial Intelligence

중국 명~청 시대의 별궁 북경 시내에서 서북쪽으로 약 19km 떨어진 이화원(頤和園)

인공과 인공지능

- 인공이란 자연과 상반되게 우리 인간이 직접 만든 것을 의미
 - 인공(人工)의 사전적 의미
 - '사람의 힘으로 자연에 대하여 가공하거나 작용을 하는 일'
- 인공지능?
 - 말 그대로 자연의 생물체가 가지는 고유한 지능이 아닌, '인위적으로 또는 그럴듯하게 만들 어진 지능'
- 그러면 왜 우리 인간은 생물만이 가진 지능을 인위적으로 만들려고 할까?
 - 다른 생명체에 비해 뛰어난 지능을 가진 인간
 - 쉬운 일상 생활은 물론 어려운 상황에 부딪혀도 문제를 해결하고 적응해 나가는 능력
 - 이러한 인간의 지능과 견줄 만한 비슷한 인공의 지능이 있다면
 - 우리 인간에게 많은 도움을 줄 수 있을 뿐 아니라 현재까지 인간이 이룩한 문명보다 많은 것을 이룰 수 있기 때문

인간의 지능

- '지능' 자체를 어느 정도 알아야 함
 - 실체가 있는 호수나 섬에 비해 전혀 다른 지능을 인공적으로 만들려면
- 그렇다면 인간의 지능이란 무엇일까?
 - 가장 뛰어나다고 알려진 인간의 지능을 알아보자.
 - 우리 인간은 아직 지능 자체에 대한 지식이 부족
 - 지능은 철학에서 주로 연구되다가 심리학으로, 최근 들어서는 신경과학에서 주로 연구
- 지능의 정의
 - 심리학 분야에서 연구
 - '지능(知能, intelligence)'의 사전적 의미
 - "지혜와 재능을 아울러 이르는 말"로 정의되며 다음으로 요약
 - 어떤 사물이나 현상을 받아들이고 생각하는 능력
 - 새로운 사물이나 현상에 부딪쳐 그 의미를 이해하고 합리적인 적응 방법을 알아내는 지적 활동의 능력으로 사고력, 관찰력, 상상력, 기억력 등이 이에 속함
 - 계산이나 문장 작성 따위의 지적 작업에서, 성취 정도에 따라 정하여지는 적응 능력

다중지능 이론 **하워드 가드너**가 제시한 지능이론 <u>'인간의 지능은 서로 독립적이고 다른 8가지 유형의</u> <u>능력으로 구성된다'</u>는 이론

인간의 지적 능력

지적능력	내용
추론 능력	이미 알고 있거나 확인된 정보로부터 논리적 결론을 도출하는 능력
학습 능력	직·간접적 경험이나 훈련에 의해 지속적으로 지각하고, 인지하며, 변화시키는 능력
지각 능력	심리 감각 기관을 통하여 대상을 인식하거나 사물의 이치나 도리를 분별하는 능력
기억 능력	뇌에 받아들인 인상이나 경험이나 학습을 통해 획득한 정보를 저장·간직하는 능력
언어 능력	실제 언어 표현(말하기, 쓰기) 또는 언어적 사건에 대한 이해(듣기, 읽기) 능력인 언어 수행 능력과 언어의 체계와 어휘, 그리고 이들의 조합에 대한 적합 판별 등의 언어 기저 지식 능력

인간의 뇌와 뉴런

- 신경계(神經系, nervous system)
 - 자신을 둘러싼 환경으로부터 자극을 받아들이고 반응을 일으키는 것과 관련된 시스템
 - 인간의 모든 행동을 가능하게 하기 위해 인체 전체에 흐르는 전기 배선과도 같음
- 우리 인간은 중추 신경계, 말초 신경계, 자율 신경계와 같은 신경망으로 감 각을 느끼고 몸을 조절

신경계

- 정보를 효율적으로 수집, 처리 및 대응하기 위해 신경계는 고도로 조직화된 구조
 - 인간의 신경계는 중추 신경계(CNS: Central Nervous System)와 말초 신경계(PNS: Peripheral Nervous System)의 두 가지 주요 부분으로 나뉨
 - 중추 신경계
 - 뇌와 척수로 구성
 - 말초 신경계
 - 척수에서 팔과 다리 및 기타 기관으로 확장되는 중추 신경계 외부의 모든 신경
 - 중추 신경계는 감각 정보를 통합하고 그에 따른 대응을 담당

뉴런

- 뉴런(neuron)
 - 신경계를 구성하는 신경세포
 - 신경계에서 전기적 및 화학적 신호를 통해 정보를 처리하고 전송하는 역할을 담당
 - 자극을 전달하고 이에 대한 반응을 유도하는 신경계를 이루는 가장 기본적인 단위
 - 우리가 뾰족한 물체에 찔리거나 뜨거운 물이 살갗에 닿았을 때 몸을 피하는 것도 신경세포 가 외부 자극을 뇌에 전달하고, 자극을 피하라는 뇌의 명령을 다시 기관에 전달하기 때문

뇌의 중요성

- 뇌(腦, brain)는 중추 신경계를 관장하며 지능과 학습의 중추 기관
 - 본능적인 생명활동에 있어서 중요한 역할을 담당
 - 여러 기관의 거의 모든 정보가 일단 뇌에 모이고, 뇌에서 여러 기관으로 활동이나 조정 명령을 내림
 - 뇌는 우리 몸의 움직임과 행동을 관장하고 심장의 박동, 혈압, 혈액 내의 농도, 체온 등을 일정하게 유지시키며, 인지, 감정, 기억, 학습기능을 담당
 - 인간의 뇌는 컴퓨터의 중앙처리장치(CPU)
- 지난 2 ~ 3백만 년간
 - 우리 뇌는 평균 1350cc 정도의 부피
 - 부피가 500 cc에서 약 2.5 ~ 3.0배 정도 증가
 - 이는 큰 두뇌가 인간의 생존에 가장 중요한 기관이라는 것을 보여줌

뇌의 구조와 기능

• 뇌를 구성하는 최소단위는 뉴런

- 우리 뇌에는 약 1000억 개 정도의 뉴런
- 뇌는 형태와 기능에 따라 대뇌, 소뇌, 뇌간으로 나뉘며, 뇌간을 좀 더 세분화하면 중간뇌, 연수로 분류

• 뇌의 대부분을 차지하는 대뇌는 좌우 2개의 반구로 구성

 감각, 지각, 운동, 기술, 상상력, 사고 및 추론, 언어능력, 통찰력, 판단, 문제 해결, 감정 및 학습 뿐만 아니라 자율신경계 조절, 호르몬 조절, 항상성 유지 등의 기능을 수행

• 소뇌

- 머리 뒤쪽, 대뇌의 아래쪽에 위치하며 주먹 크기로 뇌 전체의 10%를 차지
- 자발적인 근육 운동을 조정하고 몸의 자세와 근육 긴장도를 교정하여 보다 정밀한 운동이 가능하도록 해주며 자세, 균형 및 평형을 유지

인지능력의 핵심 뇌의 대뇌피질

- 대뇌피질(大腦皮質, Cerebral cortex)
 - 두께가 약 1.5~4밀리미터 정도인 대뇌의 표면
 - 신경세포인 뉴런의 집합으로 기억, 집중, 사고, 언어, 각성 및 의식 등의 중요기능을 담당
 - 대뇌는 한정된 공간에 안에 있기 때문에 표면 쪽으로 융기된 부위와 움푹 들어간 부위로 복잡하게 주름져 있어 표면적이 넓음
- 외부적 위치에 따라 전두엽, 두정엽, 측두엽, 후두엽 4가지로 분류
 - 전두엽
 - 앞쪽 이마 위치이며 언어, 추리, 계획 기억, 운동, 감정, 논리적 사고, 문제 해결 등의 고등행동을 담당
 - 두정엽
 - 대뇌의 위쪽 후방에 위치하며, 촉각, 압각, 통증 등의 체감각 처리에 관여하며 피부, 내장의 감각신호를 담당

인지능력의 핵심 뇌의 대뇌피질

- 외부적 위치에 따라 전두엽, 두정엽, 측 두엽, 후두엽 4가지로 분류
 - 전두엽
 - 앞쪽 이마 위치이며 언어, 추리, 계획 기억, 운동, 감정, 논리적 사고, 문제 해결 등의 고등행동을 담당
 - 두정엽
 - 대뇌의 위쪽 후방에 위치하며, 촉각, 압각, 통증 등의 체감각 처리에 관여하며 피부, 내장의 감각신호를 담당
- 동물이 운동 활동과 인지 활동을 할 수 있게 해주는 뇌의 핵심
 - 신경세포인 뉴런의 활동
 - 뇌 중에서도 인지 기능을 담당하는 대뇌피질의 뉴런 수
 - 지적 능력과 밀접한 관계

뉴런

- 인간의 뇌에는 모두 860 ~ 1000억 개의 뉴런
 - 코끼리 뇌의 뉴런 수는 무려 2510억 개로 사람보다 거의 3배 가량 많다
- 사람이 더 뛰어난 지능을 갖는 이유
 - 코끼리보다 대뇌피질에 뉴런 수가 더 많기 때문
 - 사람 뇌의 대뇌피질에만 약 160억개의 뉴런이 존재하는 것으로 추산
 - 생물의 대뇌피질 중에 가장 많은 뉴런 수로 대뇌피질이 가질 수 있는 최대의 신경세포 수
 - 언어, 의식, 기억, 집중 등 고차원적인 사고활동의 중추적 역할을 하고 있는 대뇌 피질은 다른 동물보다 인간에서 훨씬 더 발달되어 있으며 뉴런 수도 가장 많음

PYTHON PROGRAMMING

———— Python

동양미래대학교 인공지능소프트웨어학과

생물학적 뉴런과 수학적 MP 뉴런 모델

Dongyang Mirae University Dept. Of Artificial Intelligence

뇌는 뉴런으로 구성

- 뇌가 초고효율성인 이유
 - 우리의 뇌는 하루에 불과 바나나 두 개 정도의 적은 에너지로 작업을 계속 수행 가능
 - 신경조직을 이루는 기본 단위인 뉴런 덕분

신경세포(神經細胞)인 뉴런(neuron) 1/2

- 신경계를 구성하는 세포: 한 뉴런에서 다른 뉴런으로 신호를 전달
 - 뉴런은 신경 접합부인 시냅스(Synapse)로 연결
 - 하나의 뉴런에는 수천 개 이상의 시냅스가 존재하므로 수 백조 이상의 시냅스가 있음
 - 사람의 뇌는 1,000억 개의 뉴런으로 구성
- 수상돌기(dendrite)
 - 세포핵(nucleus)이 있는 세포체(cell body, soma)에서 멀리 뻗어 나온 형태
 - 뉴런에서 뻗어 나온 나뭇가지 모양이라 가지돌기라 부름

신경세포(神經細胞)인 뉴런(neuron) 2/2

축삭(axon)

- 수상돌기보다 휠씬 긴 관 형태로 세포체에서 길게 뻗어 있고,
- 미엘린 수초(myelin sheath)로 절연되어 있음
- 일정한 간격으로 절연되지 않은 부위인 랑비에 결절(nodes of ranvier)이 있음
- 축삭의 끝부분은 절연이 벗겨지고 여러 갈래로 나뉘어 축삭 종말(axon terminals)을 형성

시냅스(Synapse)

- 이전 뉴런의 축삭 종말과 다음 뉴런의 수상돌기 사이 지점인 뉴런과 뉴런을 연결하는 부분

자극의 전달 과정

- 외부에서 들어온 자극은 여러 뉴런을 통해 뇌에 전달
 - 뉴런은 시냅시에서 전달 받은 신호를 수상 돌기를 통해 세포체에 전달
 - 다시 나트륨 통로와 칼륨 통로 등의 이온 통로인 축삭을 통해 전기적인 방법으로 신 호가 전달

• 시냅스

- 인접한 다른 뉴런에게 시냅스라는 구조를 통해
 - 화학적 방법으로 신호를 다음 뉴런의 수 상돌기 말단으로 전달
 - 이때 수상돌기는 일정수준을 넘는 강한 신호만 세포체로 전달
 - 수상돌기에서 돌출된 가시는 축삭 종 말의 시냅스전(presynaptic) 뉴런에 서 방출되는 신경전달물질을 포착할 수 있게 되어 있음

시냅스(synapse)의 정보 전달과정

- 시냅스는 뉴런이나 세포들과 접촉하 여 정보가 전달되는 부분
 - 신호를 주는 뉴런을 시냅스전(presynapse) 뉴런이라 부르며
 - 신호를 받는 부분을 시냅스후(postsynapse)라고 부름
 - 시냅스전과 후 뉴런의 막은 20~50nm 정 도의 시냅스 틈(synaptic cleft)으로 분리
- 시냅스의 시냅스전 부위
 - 시냅스전 요소(presynaptic element)
 - 보통 뉴런의 축삭 말단 부위
 - 직경 50nm정도의 수십 개의 시냅스 소 낭(synaptic vesicles)들을 가지고 있음
 - 시냅스 소낭들은 신경전달물질들을 저 장하고 있는 주머니

- 시냅스 전에서 나온 신경전달물질은 시 냅스 후 막의 수용체로 전달
 - 주름이 집중된 구조인 수용체는 신경전 달물질이 다른 곳으로 새지 않고 집중 적으로 수용체 위에 전달되도록 함

McCulloch-Pitts 뉴런

- 생물학적 뉴런에 대한 인류 최초의 수학적 모델
 - 1943년 McCulloch와 Pitts에 의해 생물학적 뉴런의 기능을 모방

- 수상돌기 : 다른 뉴런으로부터 신호를 받습니다.
- 세포체(Soma, cell body) : 정보를 처리합니다.
- 축삭 돌기(Axon) : 이 뉴런의 출력을 전달
- 시냅스(synapse): 다른 뉴런 과 연결되는 지점

McCulloch-Pitts 뉴런

- 1943년 Warren MuCulloch(신경과학자)와 Walter Pitts(논리학자)에 의해 안
 - 뉴런의 첫 번째 계산 모델
 - 2 부분 구성
 - 첫 번째 부분인 g는 입력(dendrite)을 취하여 집계를 수행
 - 두 번째 부분인 f는 집계된 값을 기반으로 결정을 내림
 - _ 입출력은 모두 논리 값인 0, 1

축구 경기시청 판정

- 임의의 축구 경기를 TV에서 볼지 말지 여부에 대해 내 자신의 결정을 예측 하고 싶다고 가정
 - 입력은 모두 논리값(예: {0,1})이고 내 출력 변수도 논리값({0: 볼 예정, 1: 안볼예정})
- 입력: 흥분성 또는 억제성
 - x_1: isPremierLeagueOn
 - 저는 프리미어 리그가 더 좋습니다
 - x_2: isItAFriendlyGame
 - 저는 친선에 대해 덜 신경쓰는 경향이 있습니다
 - x_3: isNotHome
 - 심부름을 할 때 볼 수 없습니다
 - x_4: isManUnitedPlaying
 - 저는 맨유의 열렬한 팬입니다! 등
- 억제성 입력(nhibitory inputs)
 - 다른 입력에 관계없이 의사 결정에 최대 영향을 미치는 자료
 - 즉, x_3 이 1(집이 아님)이면 내 출력은 항상 0
 - 즉, 뉴런은 절대로 발화(fire)하지 않으므로 x_3 은 억제 입력
- 흥분성 입력(Excitatory inputs)
 - 자체적으로 뉴런을 발화(fire)시키는 것은 아니지만 함께 결합될 때 발화할 수 있는 데이터

한국판 지각된 스트레스 척도 (Perceived Stress Scale; PSS)

 https://snudorm.snu.ac.kr/%EC%83%9D%ED%99%9C%EC%95%88%EB %82%B4/%EC%83%81%EB%8B%B4%EC%84%BC%ED%84%B0%EA%B4 %80%EC%8B%AC/%EC%8A%A4%ED%8A%B8%EB%A0%88%EC%8A%A 4-%EC%9E%90%EA%B0%80%EC%A7%84%EB%8B%A8/

MP 뉴런의 임계값 논리

- g(x)
 - 입력의 합인 간단한 집계
- 세타
 - 임계 변수(thresholding parameter)
 - 예를 들어, 합계가 2 이상일 때 내가 항상 경기를 본다면
 - 세타는 2

$$g(x_1, x_2, x_3, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$

$$\begin{aligned} y &= f(g(\mathbf{x})) = 1 & if & g(\mathbf{x}) \ge \theta \\ &= 0 & if & g(\mathbf{x}) < \theta \end{aligned}$$

논리 연산

• 0: false, 1: true

->>-				
INPUT	OUTPUT			
Α				
0	1			
1	0			

NOT

AND

OR

7				
IN	PUT	OUTPUT		
Α	В	OOIFOI		
0	0	0		
1	0 🕂	1		
0	1	1		
1	1	0		

XOR

TU	OUTPUT
В	OUIPUI
0	1
0	1
1	1
1	0
	B 0 0

INPUT		OUTPUT
Α	В	001101
0	0	1
1	0	0
0	1	0
1	1	0

INPUT		OUTPUT	
Α	В	OUIPUI	
0	0	1	
1	0	0	
0	1	0	
1	1	1	

그림 3.32 ▶ 논리연산자 AND, OR, XOR, NAND, NOR, XNOR의 게이트 표시와 진리표

MP 뉴런: 간결한 표현

- 논리 입력 x_1, x_2 및 x_3 에 대해
 - g(x) 즉 sum ≥ theta 이면
 - 뉴런이 실행(1)
 - 그렇지 않으면
 - 실행되지 않음(0)

AND Function

- 모든 입력이 ON일 때만 작동
 - 즉, 여기서 g (x) ≥ 3
 - 세타 == 3

OR Function

- 입력 중 하나라도 ON이면 OR 함수 뉴런이 실행
 - 즉, 여기서 g (x) ≥ 1
 - 세타 == 3

인공 뉴런 퍼셉트론(Perceptron)을 제안

- MP 뉴런의 한계
 - 부울이 아닌(실제) 입력은 어떻습니까?
 - 항상 임계값을 직접 코딩해야 합니까?
 - 모든 입력이 동일합니까? 일부 입력에 더 많은 중요성을 할당하려면 어떻게 해야 합니까?
 - 선형으로 분리할 수 없는 함수는 어떻습니까?
 - XOR 함수
- 미국 심리학자 프랑크 로젠블랫(Frank Rosenblatt)
 - 58년 고전적 지각 모델인 강력한 인공 뉴런 Percetron을 제안
 - MP 뉴런의 한계를 극복
 - McCulloch-Pitts 뉴런보다 더 일반화된 계산 모델
 - 가중치와 임계값을 시간이 지남에 따라 학습 가능

PYTHON PROGRAMMING

Python

억제 입력이 있는 함수

- 금지된 입력, 즉 x_2 가 있으므로
 - x_2 가 1일 때마다 출력은 0
 - x_1이 1이고 x_2가 0일 때만 x_1 AND !x_2가 1을 출력
 - 임계값 매개변수는 1

 $x_1 AND !x_2^*$