Orpheus

By The Dummy Variables

- Motivation
- The dataset
 - o EDA
- Technologies used
- Results
 - Recommender system
 - Aggregation strategy
- Final product

Motivation

Create a multi-user music recommendation system based on mood.

- Motivation
- The dataset
 - o EDA
- Technologies used
- Results
 - Recommender system
 - Aggregation strategy
- Final product

The dataset

The Echo Nest Taste Profile Subset

- ~5 GB
- 1,019,318 unique users
- 384,546 unique songs
- 48,373,586 unique user, song, playcount triplets

The dataset

EDA

- Listening to a Song 5 times is more common occurrence than listening to a song 4 times. 2250999 vs 1805081 occurrences
- 28,755,966 occurrences where songs were listened to once for each user, 19,617,620 occurrences where songs were listened more than one time for each user
- On Average each song is listened to by 125.79 users or 50% of songs are listened to by 13 users
- On Average each user listens to 47 unique songs or 50% of users listen to 27 unique songs
- Each user listens to at least 10 different songs
- Out of 384,546 unique songs, 31,781 songs are only listened to once.

The dataset

- Motivation
- The dataset
 - o EDA
- Technologies used
- Results
 - Recommender system
 - Aggregation strategy
- Final product

Technologies used

- Motivation
- The dataset
 - o EDA
- Technologies used
- Results
 - Recommender system
 - Aggregation strategy
- Final product

Recommender system

Types of recommender systems:

1. Content-based:

- a. Looks at characteristics of users or items. For example;
 - i. Find similarity of songs based on music tempo,
 - ii. Find similar users based on demographics.
- b. Difficult to collect

2. Collaborative filtering (CF):

- a. Modelling users' past behavior or the items' rating. For example;
 - i. Identify users who rated the same item similarly.
- b. Cold start problem.

- 1. Explicit feedback
 - a. User actively input their preference of the product. For example;
 - i. Netflix star rating
- 2. Implicit feedback
 - a. Based in consumption of the item.
 - i. Number of times a song is heard.
 - ii. Repeat purchase of product.

Latent factor model:

Explicit Model

Latent factor model:

Explicit Model

$$\left| \min_{x_{\star},y_{\star}} \sum_{u,i} c_{ui} (p_{ui} - x_{u}^{T}y_{i})^{2} + \lambda \left(\sum_{u} \|x_{u}\|^{2} + \sum_{i} \|y_{i}\|^{2}
ight)
ight|$$

 $c_{ui} = 1 + \alpha r_{ui}$

Implicit Model

- How to Evaluate Implicit Model?
 - RMSE doesn't make sense!
 - Neither regression nor classification
- Mean Average Precision (mAP)
 - Precision-at-k (P)
 - Proportion of correct recommendations within top-k of the predicted ranking
 - Average Precision (AP)
 - Precision at each recall point k
 - Mean Average Precision (mAP)
 - Average over all users
 - Used in Million Song Kaggle Competition

Evaluate mAP

Test Users (Hidden Songs)

Test Users (Visible Songs)

Train Users

Collaborative Filtering MAP vs. Rank

20	11	WiscoDisco ₫	0.11206	5	Tue, 26 Jun 2012 01:21:55 (-28.5h)
21	11	sedielem	0.10952	11	Thu, 09 Aug 2012 17:52:45 (-50.4d)
22	11	Francie	0.10812	3	Fri, 08 Jun 2012 11:27:52
23	11	MML	0.10778	16	Wed, 06 Jun 2012 07:33:46 (-15.3h)
24	_	Superman89 25th out of	0.10117	5	Fri, 20 Jul 2012 15:20:35 (-18.4h)
25	_	eggershead 150 teams!	0.09923	5	Thu, 17 May 2012 00:41:58
26	_	AppleCakeMining	0.09655	12	Mon, 21 May 2012 10:29:26 (-34.8h)
27	_	Andrew Ostapets	0.09132	17	Sun, 29 Jul 2012 21:13:41 (-10d)
28	↑69	seventeen	0.08998	4	Thu, 09 Aug 2012 16:32:37
29	11	holy shit	0.08657	13	Mon, 30 Jul 2012 03:09:46 (-46.1d)
30	11	jose	0.08657	6	Sat, 30 Jun 2012 17:33:16 (-14.4d)

User: 193650

Listening History

	Radiohead - Falk Show Host	Radiohead - Just	Sail To The	Lifehouse - Near Life Experience	Lifehouse - How Long
--	-------------------------------	---------------------	-------------	--	-------------------------

Recommendations

	Radiohead - (Nice Dream)	Lifehouse - All In	Lifehouse - From Where You Are	Lifehouse - Whatever It Takes
--	-----------------------------	-----------------------	--------------------------------------	-------------------------------------

Aggregation strategy

 How to adapt recommendations to a group based on individual members' preference?

	INDIVIDUAL RECOMMENDATIONS: p(u,i)						
USER	Lifehouse - Whatever It Takes	Lifehouse - From Where You Are	Lifehouse - Falling In	Lifehouse - Storm	Lifehouse - All In		
84250	0.95	0.98	1.00	0.97	0.97		
92650	0.86	0.77	0.71	0.64	0.75		
193650	0.86	0.86	0.89	0.84	0.88		

- When forming recommendations for the group:
 - Average strategy: average happiness of the members.
 - Most pleasure: happiness of the most happy member.
 - Least misery: happiness of the least happy member.
 - Multiplicative: product of each member's happiness.

Aggregation strategy

Example of Least Misery aggregation strategy:

	INDIVIDUAL RECOMMENDATIONS						
USER	Lifehouse - Whatever It Takes	Lifehouse - From Where You Are	Lifehouse - Falling In	Lifehouse - Storm	Lifehouse - All In		
84250	0.95	0.98	1.00	0.97	0.97		
92650	0.86	0.77	0.71	0.64	0.75		
193650	0.86	0.86	0.89	0.84	0.88		
	GROUP RECOMMENDATIONS						
LM	0.86	0.77	0.71	0.64	0.75		

Aggregation strategy

- Which strategy performs best?
- What strategy to use based on group characteristics?
 - Best strategy for a group with very similar members?
 - Best strategy for a small group vs big group?
- How to measure group satisfaction?

$$S(u,R) = \frac{\sum_{i \in R} \hat{p}(u,i)}{|R|}$$

$$S(g,R) = \frac{\sum_{u \in g} S(u,R)}{|g|}$$

- Cluster users
 - K-means clustering using latent features.
 - Create homogeneous and heterogeneous groups of 3, 5, and 7 members.
 - O Derive S(g,R) for each aggregation strategy.

Aggregation strategy analysis

> homogenous: 3-members

	LM	MP	AV	MU
means	0.51	0.49	0.56	0.52
sds	0.14	0.13	0.12	0.16
ANOVA p-value		0.5	548	

> homogenous: 5-members

	LM	MP	AV	MU	
means	0.48	0.45	0.53	0.51	
sds	0.11	0.09	0.09	0.12	
ANOVA p-value		0.0	719		

> homogenous: 7-members

	LM	MP	AV	MU
means	0.51	0.46	0.56	0.52
sds	0.15	0.15	0.13	0.18
ANOVA p-value	0.277			

> heterogenous: 3-members

	LM	MP	AV	MU	
means	0.39	0.38	0.47	0.35	
sds	0.08	0.07	0.08	0.15	
ANOVA					
p-value		0.00	481		
TukeyHS	yHSD Post-hoc test: p-value < 0.05				
variable					
S	AV-MP	MU-AV			

> heterogenous: 5-members

r Hotorogorious. o mombors					
	LM	MP	AV	MU	
means	0.25	0.23	0.36	0.19	
sds	0.06	0.06	0.06	0.1	
ANOVA p-value	3.86E-10				
TukeyHS	TukeyHSD Post-hoc test: p-value < 0.05				
variable s	AV-LM	MU-LM	AV-MP	MU-AV	

> heterogenous: 7-members

	LM	MP	AV	MU	
means	0.2	0.19	0.32	0.17	
sds	0.04	0.04	0.04	0.07	
ANOVA p-value	8.83E-16				
TukeyHS	TukeyHSD Post-hoc test: p-value < 0.05				
variable s	AV-LM	AV-MP	MU-AV		

Average aggregation strategy works best especially for heterogenous groups!

- Motivation
- The dataset
 - o EDA
- Technologies used
- Results
 - Recommender system
 - Aggregation strategy
- Final product

Final product

Try Orpheus

References

- Carvalho, L., Macedo, H.: Users' Satisfaction in Recommendation Systems for Groups: an Approach Based on Noncooperative Games (2013)
- Hu, Y., Koren, Y., Volinsky, C.: Collaborative Filtering for Implicit Feedback Datasets
- Masthoff, J.: Group Recommender Systems: Combining Individual Models (2011)
- O' Conner, M., Cosley, D., Konstan, J.A., Riedl, J.: PolyLens: A Recommender System for Groups of Users. ECSCW, Bonn, Germany (2001)
- Segaran, T.: Programming Collective Intelligence (2007) Chapter 2
- Shani, G., Gunawardana, A.: Evaluating Recommendation Systems