

LC²MOS Quad SPST Switches

ADG441/ADG442/ADG444

FEATURES

44 V Supply Maximum Ratings V_{SS} to V_{DD} Analog Signal Range Low On Resistance (< 70 Ω) Low ΔR_{ON} (9 Ω max) Low Power Dissipation Fast Switching Times t_{ON} < 110 ns t_{OFF} < 60 ns Low Leakage Currents (3 nA max) Break-Before-Make Switching Acti

Break-Before-Make Switching Action
Latch-Up Proof
Plug-In Upgrade for
DG201A/ADG201A, DG202A/ADG202A,
DG211/ADG211A

Plug in Replacement for DG441/DG442/DG444

APPLICATIONS

Audio and Video Switching Automatic Test Equipment Precision Data Acquisition Battery Powered Systems Sample Hold Systems Communication Systems

GENERAL DESCRIPTION

The ADG441, ADG442 and ADG444 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG441, ADG442 and ADG444 contain four independent SPST switches. Each switch of the ADG441 and ADG444 turns on when a logic low is applied to the appropriate control input. The ADG442 switches are turned on with a logic high on the appropriate control input. The ADG441 and ADG444 switches differ in that the ADG444 requires a 5 V logic power supply which is applied to the $\rm V_L$ pin. The ADG441 and ADG442 do not have a $\rm V_L$ pin, the logic power supply being generated internally by an on-chip voltage generator.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

Each switch conducts equally well in both directions when ON and has an input signal range that extends to the power supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

- 1. Extended Signal Range
 - The ADG441/ADG442/ADG444 are fabricated on an enhanced LC²MOS, trench-isolated process, giving an increased signal range that extends to the supply rails.
- 2. Low Power Dissipation
- 3. Low Ron
- 4. Trench Isolation Guards Against Latch Up
 A dielectric trench separates the P and N channel transistors
 thereby preventing latch up even under severe overvoltage
 conditions.
- 5. Break-Before-Make Switching
 This prevents channel shorting when the switches are configured as a multiplexer.
- 6. Single Supply Operation
 For applications where the analog signal is unipolar, the ADG441/ADG442/ADG444 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply.

ADG441/ADG442/ADG444—SPECIFICATIONS¹

 $\textbf{Dual Supply} \ (v_{DD} = +15 \ V \pm 10\%, \ V_{SS} = -15 \ V \pm 10\%, \ V_L = +5 \ V \pm 10\% \ (ADG444), \ GND = 0 \ V, \ unless \ otherwise \ noted)$

D	B Version		T Version			
	. 2520	-40°C to	. 2500	-55°C to	.	T O. 11.1. 10
Parameter	+25°C	+85°C	+25°C	+125°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		$ m V_{SS}$ to $ m V_{DD}$		$ m V_{SS}$ to $ m V_{DD}$	V	
R_{ON}	40		40		Ω typ	$V_D = \pm 8.5 \text{ V}, I_S = -10 \text{ mA}$
	70	85	70	85	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
$\Delta R_{ m ON}$		4		4	Ω typ	$-8.5 \text{ V} \le \text{V}_{\text{D}} \le +8.5 \text{ V}$
		9		9	Ω max	
R _{ON} Match		1		1	Ω typ	$V_D = 0 \text{ V}, I_S = -10 \text{ mA}$
		3		3	Ω max	
LEAKAGE CURRENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$
boured off Bearings is (off)	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		±0.01	± 2 0	nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$
Diam of Leaning in (off)	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Channel ON Leakage ID, IS (ON)	±0.08		±0.08	_20	nA typ	$V_S = V_D = \pm 15.5 \text{ V};$
Chamier of Chamage 10, 15 (of 1)	±0.5	±3	±0.5	±40	nA max	Test Circuit 3
					*** * ******	1 out Girouit 3
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I_{INL} or I_{INH}		± 0.00001		± 0.00001	μA typ	$V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$
		± 0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²						
t _{ON}	85		85		ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF};$
	110	170	110	170	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	45		45		ns typ	$R_{L} = 1 \text{ k}\Omega, C_{L} = 35 \text{ pF};$
	60	80	60	80	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
t_{OPEN}	30		30		ns typ	$R_{L} = 1 \text{ k}\Omega, C_{L} = 35 \text{ pF};$
Charge Injection	1		1		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
	6		6		pC max	$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V};$
					_	Test Circuit 5
OFF Isolation	60		60		dB typ	$R_L = 50 \Omega, C_L = 5 pF;$
						f = 1 MHz; Test Circuit 6
Channel-to-Channel Crosstalk	100		100		dB typ	$R_L = 50 \Omega, C_L = 5 pF;$
						f = 1 MHz; Test Circuit 7
C_{S} (OFF)	4		4		pF typ	f = 1 MHz
C_D (OFF)	4		4		pF typ	f = 1 MHz
C_D , C_S (ON)	16		16		pF typ	f = 1 MHz
POWER REQUIREMENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
-						$V_{DD} = +10.3 \text{ V}, V_{SS} = -10.3 \text{ V}$ Digital Inputs = 0 V or 5 V
I _{dd} Adg441/Adg442		80		80	μA max	Digital Inputs – 0 v 01 J v
ADG441/ADG442 ADG444	0.001	00	0.001	00	μΑ max μΑ typ	
ADUTT	1	2.5		2.5		
Ι	0.0001	2.5	0.0001	2.5	μA max	
I_{SS}	1	2.5	1	2.5	μA typ	
I (ADG444 Only)		2.5		2.5	μA max	V - +5 5 V
I _L (ADG444 Only)	0.001	2.5	0.001	0.5	μA typ	$V_L = +5.5 \text{ V}$
	1	2.5	1	2.5	μA max	

-2-REV. 0

NOTES

Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\textbf{Single Supply} \, (v_{DD} = +12 \, \text{V} \pm 10\%, \, V_{SS} = \, 0 \, \text{V}, \, V_L = +5 \, \text{V} \pm 10\% \, (\text{ADG444}), \, \text{GND} = 0 \, \text{V}, \, \text{unless otherwise noted})$

	B Version -40°C to		T Version -55°C to			
Parameter	+25°C	+85°C	+25°C	+125°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		0 to V_{DD}		0 to V_{DD}	V	
$R_{ m ON}$	70	22	70	22	Ω typ	$V_D = +3 \text{ V}, +8 \text{ V}, I_S = -10 \text{ mA};$
	110	130	110	130	Ω max	$V_{DD} = +10.8 \text{ V}$
$\Delta R_{ m ON}$		4		4	Ω typ	$+3 \text{ V} \leq \text{V}_{\text{D}} \leq +8 \text{ V}$
		9		9	Ω max	
R _{ON} Match		1		1	Ω typ	$V_D = 6 \text{ V}, I_S = -10 \text{ mA}$
		3		3	Ω max	
LEAKAGE CURRENT						$V_{DD} = +13.2 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$
	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		±0.01		nA typ	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$
=	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Channel ON Leakage ID, IS (ON)	±0.08		±0.08		nA typ	$V_S = V_D = 12.2 \text{ V/1 V};$
Grando -D) -3 (6-1)	±0.5	±3	±0.5	± 40	nA max	Test Circuit 3
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current		0.0		0.0	VIIIAX	
I _{INL} or I _{INH}		±0.00001		±0.00001	μΑ typ	$V_{IN} = V_{INI}$ or V_{INH}
INL OF INH		±0.5		±0.5	μA max	VIN - VINL OF VINH
DYNAMIC CHARACTERISTICS ²	+				F=	
	105		105		no tren	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF};$
t_{ON}	150	220	150	220	ns typ ns max	$V_S = +8 \text{ V}$; Test Circuit 4
+	40	220	40	220		$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
t_{OFF}	60	100	60	100	ns typ	$V_S = +8 \text{ V}$; Test Circuit 4
	50	100	50	100	ns max	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
t _{OPEN} Charge Injection	2		2		ns typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
Charge injection	6		6		pC typ	
	0		0		pC max	V_{DD} = +12 V, V_{SS} = 0 V; Test Circuit 5
OFF Isolation	60		60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$
OFF Isolation	00		00		ав тур	Test Circuit 6
Channel-to-Channel Crosstalk	100		100		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$
Ghamer to Ghamer Grosstark	100		100		dD typ	Test Circuit 7
C_{S} (OFF)	7		7		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)	10		10		pF typ	f = 1 MHz
$C_D, C_S (ON)$	16		16		pF typ	f = 1 MHz
POWER REQUIREMENTS	1		+ -		1 -7 E	V _{DD} = +13.2 V
I _{DD}						Digital Inputs = 0 V or 5 V
ADG441/ADG442		80		80	μA max	Digital inputs = 0 v of 3 v
ADG441/ADG442 ADG444	0.001	30	0.001	00	μΑ max μΑ typ	
ADOTT	1 0.001	2.5	1	2.5	μΑ typ μΑ max	
I _I (ADG444 Only)	0.001	2.7	0.001	4.9	μΑ max μΑ typ	$V_{L} = +5.5 \text{ V}$
I _L (ADG144 Omy)	1 0.001	2.5	1	2.5	μΑ typ μΑ max	VL = 13.5 V
	1	4.3	1	ر. ب	рга шах	

NOTES

Specifications subject to change without notice.

Table I. Truth Table

ADG441/ADG444 IN	ADG442 IN	Switch Condition
0	1	ON
1	0	OFF

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG441BN	-40°C to +85°C	N-16
ADG441BR	-40°C to +85°C	R-16A
ADG441TQ	-55°C to +125°C	Q-16
ADG442BN	-40°C to +85°C	N-16
ADG442BR	-40°C to +85°C	R-16A
ADG444BN	-40°C to +85°C	N-16
ADG444BR	-40°C to +85°C	R-16A

NOTES

REV. 0 -3-

¹Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

²Guaranteed by design, not subject to production test.

¹To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers.

²N = Plastic DIP, R = 0.15" Small Outline IC (SOIC), Q = Cerdip.

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25$ °C unless otherwise noted)	_
V_{DD} to V_{SS} +44 V	V
V _{DD} to GND0.3 V to +25 V	V
V _{SS} to GND +0.3 V to -25 V	
V_L to GND	
Analog, Digital Inputs ² V_{SS} – 2 V to V_{DD} + 2 V	V
or 30 mA, Whichever Occurs First	G
Continuous Current, S or D	
Peak Current, S or D	S
(Pulsed at 1 ms, 10% Duty Cycle Max)	D
Operating Temperature Range	11
Industrial (B Version)40°C to +85°C	R
Extended (T Version)55°C to +125°C	R
Storage Temperature Range65°C to +150°C	
Junction Temperature+150°C	I_S
Cerdip Package, Power Dissipation900 mW	I_{I}
θ_{JA} , Thermal Impedance	I_{Γ}
Lead Temperature, Soldering (10 sec) +300°C	V
Plastic Package, Power Dissipation	C
θ _{JA} , Thermal Impedance	C
Lead Temperature, Soldering (10 sec) +260°C	C
SOIC Package, Power Dissipation 600 mW	
θ _{JA} , Thermal Impedance	to
Lead Temperature, Soldering	
Vapor Phase (60 sec) +215°C	t_{C}
Infrared (15 sec) +220°C	
NOTES	t_{C}

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential.
V_{SS}	Most Negative Power Supply Potential in dual
	supplies. In single supply applications, it may be
	connected to ground.
$V_{\rm L}$	Logic Power Supply (+5 V).
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R _{ON}	Ohmic resistance between D and S.
R _{ON} Match	Difference between the R _{ON} of any two channels.
I _S (OFF)	Source leakage current with the switch "OFF."
I _D (OFF)	Drain leakage current with the switch "OFF."
$I_D, I_S(ON)$	Channel leakage current with the switch "ON."
$V_{D}(V_{S})$	Analog voltage on terminals D, S.
C _S (OFF)	"OFF" Switch Source Capacitance.
C _D (OFF)	"OFF" Switch Drain Capacitance.
$C_D, C_S(ON)$	"ON" Switch Capacitance.
ton	Delay between applying the digital control
	input and the output switching on.
t _{OFF}	Delay between applying the digital control
	input and the output switching off.
t _{OPEN}	Break-Before-Make Delay when switches are
	configured as a multiplexer.
Crosstalk	A measure of unwanted signal which is coupled
	through from one channel to another as a result
Off Isolation	of parasitic capacitance.
On Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Charge	A measure of the glitch impulse transferred from
Injection	the digital input to the analog output during
	switching.

CAUTION.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG441/ADG442 PIN CONFIGURATION (DIP/SOIC)

IN1 1 16 IN2 D1 2 15 D2 ADG441 S1 3 14 \$2 **ADG442** V_{SS} 4 13 V_{DD} TOP VIEW GND 5 12 NC (Not to Scale) S4 6 11 S3 7 10 D3 D4 IN4 8 9 IN3 NC = NO CONNECT

ADG444 PIN CONFIGURATION (DIP/SOIC)

TRENCH ISOLATION

In the ADG441, ADG442 and ADG444, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, the result being a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch up. With trench isolation, this diode is removed, the result being a latch-up proof switch.

Trench isolation also leads to lower leakage currents. The ADG441, ADG442 and ADG444 have a leakage current of 0.5 nA as compared with a leakage current of several nanoamperes in non-trench isolated switches. Leakage current is an important parameter in sample-and-hold circuits, this current being responsible for the discharge of the holding capacitor with time causing droop. The ADG441/ADG442/ADG444's low leakage current, along with its fast switching speeds, make it suitable for fast and accurate sample-and-hold circuits.

Figure 1. Trench Isolation

Typical Performance Characteristics

Figure 2. R_{ON} as a Function of V_D (V_S): Dual Supply

Figure 3. R_{ON} as a Function of V_D (V_S): Single Supply

REV. 0 -5-

Figure 4. R_{ON} as a Function of V_D (V_S) for Different Temperatures

Figure 5. Leakage Currents as a Function of V_S (V_D)

Figure 6. Crosstalk and Off Isolation vs. Frequency

Figure 7. R_{ON} as a Function of V_D (V_S) for Different Temperatures

Figure 8. Leakage Currents as a Function of V_S (V_D)

Figure 9. Charge Injection vs. Source Voltage

-6- REV. 0

Figure 10. Switching Time vs. Bipolar Supply

Figure 11. Switching Time vs. Single Supply

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

REV. 0 -7-

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

Test Circuit 7. Channel-to-Channel Crosstalk

-8-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Plastic DIP (N-16)

Small Outline IC (R-16A)

Cerdip (Q-16)

