Молекулярно-генетические маркеры

Туранов С.В.

ННЦМБ ДВО РАН

Лаб. Молекулярной систематики

Осень 2018

Сергей Сергеевич Четвериков

«...популяция, "как губка", впитывает рецессивные мутации, оставаясь при этом внешне однородной...» (Четвериков С.С. О некоторых моментах эволюционного процесса с точки зрения современной генетики. 1928).

1. **Классическая теория.** Большинство признаков находятся в гомозиготном состоянии. Отбор непринципиален. Изменения селективно нейтральны. Г.Жд. Мёллер (США, СССР).

$$\frac{++++m+...+++}{++++++...+++} = \frac{++++++...+m+}{++++++...+++}$$

$$\frac{A_3B_2C_2DE_5 \dots Z_2}{A_1B_7C_2DE_2 \dots Z_3} \quad \frac{A_2B_4C_1DE_2 \dots Z_1}{A_3B_5C_2DE_3 \dots Z_1}$$

Г.Дж. Мёллер

Ф.Г. Добржанский

Для решения фундаментальной проблемы необходим был метод, который мог бы свободно оценивать (if any) **гетерозиготность** — т.е. одновременно распознавать разные аллели одного и того же признака.

1957 г. – разработка гистохимических принципов визуализации ферментов (энзимов) и изозимов. **Хантер** и **Маркерт**.

Механизмы визуализации ферментов

«Полоски на киселе»

Ферменты, как оказалось, проявляют такое свойство как полиморфизм.

Полиморфизм — проявление индивидуальной прерывистой изменчивости живых организмов.

Генетический полиморфизм:

- наличие в одной и той же популяции двух или более хорошо различимых форм, способных проявляться в потомстве одной самки и встречающихся с частотой, достаточно высокой для того, чтобы исключить поддержание самой редкой из них повторяющимися мутациями;
- наличие в популяции двух или более аллелей одного локуса, встречающихся с ощутимой частотой.

Изоферменты (или **изозимы**) — генетически детерминированные молекулярные формы одного и того же фермента, отличающиеся по первичной структуре.

Аллозимы – **изоферменты**, кодируемые аллелями одного и того же гена и отражающие внутривидовой полиморфизм.

Ограничения генетики изоферментов:

Избыточность генетического кода (одну аминокислоту, как правило, кодируют несколько различающихся нуклеотидных триплетов).

Изменения в структуре белка могут не вызывать изменения подвижности (полиморфизм есть, но его нельзя выявить). Ферменты должны быть «живыми» (сложности с хранением).

- Альтернатива?
- ДНК.

Основные виды молекулярно-генетических маркеров, используемых в аквакультуре.

Marker	Abbreviation	Prior molecular information requirement	Туре	Polymorphism or power	Expression
Allozyme	<u> </u>	Yes	Type I	Low	Codominant
Amplified fragment length polymorphism	AFLP	No	Type II	High	Dominant
Expressed sequence tags	EST	Yes	Type I	Low	Codominant
Insertions or deletions	Indels	Yes	Type I or Type II	Low	Codominant
Microsatellites	SSR	Yes	Mostly Type II	High	Codominant
Mitochondrial DNA	mtDNA	Yes		-	Maternal inheritance
Random amplified polymorphic DNA	RAPD	No	Type II	Moderate	Dominant
Restriction fragment length polymorphism	RFLP	Yes	Type I or Type II	Low	Codominant
Single nucleotide polymorphisms	SNPs	Yes	Type I or Type II	High	Codominant

Рестриктазы. Полиморфизм длин рестрикционных фрагментов (RFLP (произносится как "риф лип"), ПДРФ)

Механизм разрезания чужеродной ДНК ферментом рестрикции $E.\ coli.$

Вернер Арбер

Рестриктазы. Полиморфизм длин рестрикционных фрагментов (ПДРФ, RFLP)

Кодоминирование

Доминирование

Микросателлиты. Микросателлитная ДНК (VNTR, SSR, STR)

Фракционирование геномной ДНК в плавающем градиенте хлористого цезия.

Использование STR маркеров для идентификации пола

Рис. 5.9. Использование ПЦР в генотипировании. Определение пола. А. Расположение праймеров, фланкирующих фрагменты в 106 и 112 нуклеотидов в первом интроне гена амелогенина в Х- и У-хромосомах соответственно. Б. Электрофорез с последующей Саузерн-гибридизацией выявляет две полосы для генотипа ХУ. Два фрагмента, образующихся в случае генотипа ХХ, при электрофорезе дадут одну слитную полосу размером 106 bp. В. При использовании капиллярного электрофореза гетерозигота ХУ даст два пика, а ХХ — один пик соответственно

Использование STR маркеров в криминалистике

Рис. 5.10. **Одновременный анализ нескольких STR-маркеров.** Шкала для оценки размера ПЦР-продуктов показана сверху. Размер ПЦР-продуктов (слева—направо): А (амелогенин) — гетерозигота XY, 106 bp и 112 bp; D3S (D3S1358) — гетерозигота 127 bp и 129 bp; D8S (D8S1179) — гетерозигота 143 и 151 bp; D5S (D5S818) — гетерозигота 154 bp и 162 bp; VWA — гетерозигота 180 bp и 184 bp; D21S (D21S11) — гетерозигота 200 bp и 210 bp; D13S (D13S317) — гетерозигота 217 и 233 bp; FGA — гетерозигота 228 и 244 bp, D7S (D7S820) — гомозигота 269 bp; D18S (D18S51) — гетерозигота 290 bp и 300 bp.

Схожий принцип используется при паспортизации популяций ценных гидробионтов (осетры, например)

RAPD (Randomly Amplified Polymorphic DNA)

Принцип RAPD-анализа

AFLP (Amplified Fragment Length Polymorphism)

polyacrylamide gel electrophoresis (only labeled fragments detectable)

AFLP (Amplified Fragment Length Polymorphism)

M 1 2 3 4 M M 5 6 7 8 9 10 11 M

Последовательности нуклеотидов. Митохондриальная ДНК.

Некодирующая часть (контрольный регион) может быть использована для популяционно-генетических изысканий (внутривидовой уровень). Но есть исключения. **Белок-кодирующие фрагменты** используются для филогенетических построений (в основном - надвидовой уровень).

Последовательности нуклеотидов. SNP (single nucleotide polymorphism).

SNP: частота в популяции > 6%

Мутация: частота в популяции < 1%

Литература:

- 1. Журавлева Г.А. Генная инженерия в биотехнологии Спб.: Эко-Вектор, 2016. 328 с.
- 2. Алтухов Ю.П., Салменкова Е.А., Курбатова О.Л., и др. Динамика популяционных генофондов при антропогенных воздействиях. Под редакцией Ю.П. Алтухова. М.: Наука. 2004г. 619 стр.
- 3. Кейлоу П. Принципы эволюции. 1986г.
- 4. Левонтин Р. Генетические основы эволюции. 1978г.