Análise Real III

Apontamentos de apoio às aulas teóricas III

(Versão de trabalho, 10/12/2018)

3 Análise/Sucessões de Cauchy e sucessões convergentes

Comecemos por generalizar para um espaço métrico qualquer as noções de sucessão convergente e de sucessão de Cauchy já introduzidas em \mathbb{R}^n considerando neste espaço a métrica induzida pela norma usual.

Definição Sejam (X,d) um espaço métrico e $\{x_n\}_{n\in\mathbb{N}}$ uma sucessão.

- A sucessão é de *Cauchy* se para qualquer $\epsilon>0$ existe $n_0\in\mathbb{N}$ tal que $d(x_n,x_m)<\epsilon,\, \forall n,m\geq n_0$
- A sucessão é *convergente para* x_0 se para qualquer $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x_0) < \epsilon, \ \forall n \geq n_0$

Observações

- A noção de convergência é uma noção topológica e pode ser formulada do seguinte modo: a sucessão $\{x_n\}_{n\in\mathbb{N}}$ é convergente para x_0 se, para qualquer aberto U tal que $x_0\in U$, existe $n_0\in\mathbb{N}$ tal que $x_n\in U$, $\forall n\geq n_0$.

3 Análise/Sucessões de Cauchy e sucessões convergentes

- O limite, se existir, é único. Tal é consequência de uma propriedade verificada pelos espaços métricos: separação de pontos por abertos, isto é dados x, y ∈ X existem abertos disjuntos U e V tais que x ∈ U e y ∈ V.
- Uma sucessão convergente é uma sucessão de Cauchy. Este facto obtém-se directamente da desigualdade triangular:

$$d(x_n,x_m) \leq d(x_n,x_0) + d(x_0,x_m).$$

- A recíproca é falsa. Por exemplo em $(\mathbb{R}\setminus\{0\},|.|)$ a sucessão $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ é uma sucessão de Cauchy mas não é convergente.

Definição Um espaço métrico diz-se *completo* se todas as sucessões de Cauchy forem convergentes.

Exercício Sejam (X,d) um espaço métrico completo e $F\subset X$ um conjunto fechado. Então $(F,d_{|_{FXF}})$ é completo.

Provar directamente que uma sucessão é convergente pressupõe conhecer o seu limite. A vantagem da condição de Cauchy num espaço métrico completo é que esta permite concluir se uma dada sucessão converge ou não independentemente da suspeita de um hipotético limite. Assim os espaços métricos completos são os espaços adequados para recorrer a processos iterativos para provar a existência de soluções de certas equações.

Um exemplo importante neste contexto é o de, dados um conjunto não vazio X e uma aplicação $T: X \to X$, provar a existência de um ponto fixo z_0 , isto é mostrar que a equação T(x) = x tem pelo menos uma solução, z_0 . Definindo $T^0(x) = x$ e, por recorrência, $T^{n+1}(x) = T \circ T^n(x)$ podemos associar a cada ponto $x \in X$ a sucessão $\{T^n(x)\}_{n \in \mathbb{N}}$. Se X tiver uma estrutura de espaço métrico, (X,d), e T for contínua é fácil de verificar que se $\{T^n(x)\}_{n \in \mathbb{N}}$ converge para z_0 então este ponto é um ponto fixo de T.

Se (X,d) for um espaço métrico completo então mostrar a convergência de $\{T^n(x)\}_{n\in\mathbb{N}}$ é equivalente a mostrar que esta sucessão é de Cauchy. Finalmente o facto de que este processo iterativo gera sucessões de Cauchy pode ser garantido impondo condições adicionais sobre a aplicação T, por exemplo exigindo que esta seja uma contracção, como veremos mais à frente.

3 Análise/Sucessões de funções

Para iniciar o estudo da convergêcia de sucessões de funções consideremos dois exemplos.

Exemplo 1

Para cada $n \in \mathbb{N}$ considere-se $f_n : [0,1] \to \mathbb{R}$, com $f_n(x) = 1 - nx$ se $x \in [0, \frac{1}{n}], e f_n(x) = 0 \text{ se } x \in [\frac{1}{n}, 1].$

Fixados $x \in]0,1]$ e $\epsilon > 0$ é claro que se $n \geq n_0$, onde $\frac{1}{n_0} < x$, então $|f_n(x) - 0| = 0 \le \epsilon$ e portanto $\lim_{n \to +\infty} f_n(x) = 0$. Para x = 0 tem-se $f_n(0) = 1, \forall n \in \mathbb{N}$. Assim a sucessão de funções contínuas $\{f_n\}_n$ converge, ponto a ponto, para a função $f:[0,1]\to\mathbb{R}$, com f(x)=0 se $x\in]0,1]$, e f(0) = 1, que não é contínua em 0.

Na prova da convergência escolhemos a ordem condicionada a $\frac{1}{n_0} < x$ mas será possível escolher um natural n_0 que, para $\epsilon > 0$ fixado, não dependa de x?

3 Análise/Sucessões de funções

A resposta é negativa. De facto se fixarmos $\epsilon=\frac{1}{2}$ e $n_0\in\mathbb{N}$ qualquer, para $n>n_0$ é sempre possível escolher $x_n>0$ tal que $1-nx_n>\frac{1}{2}$, isto é $|f_n(x_n)-0|>\frac{1}{2}$.

(Sugestão: esboce o gráfico de f_n e a recta de equação $y = \frac{1}{2}$.)

Exemplo 2

Para cada $n \in \mathbb{N}$ considere-se $g_n : [0,1] \to \mathbb{R}$, com $g_n(x) = \frac{\cos(x)}{n}$. Neste caso, fixado $\epsilon > 0$ qualquer e escolhendo $n_0 \in \mathbb{N}$ tal que $\frac{1}{n_0} < \epsilon$, tem-se

$$|g_n(x) - 0| = \frac{|cos(x)|}{n} \le \frac{1}{n} \le \frac{1}{n_0} < \epsilon,$$

para quaisquer $n \ge n_0$ e $x \in [0, 1]$.

Estas estimativas mostram que $\lim_{n\to+\infty} g_n(x)=0$, isto é pontualmente o limite é a função nula (que é contínua) mas também que a ordem n_0 não depende da variável x, apenas da escolha de ϵ .

3 Análise/Convergência pontual e convergência uniforme

A diferença substancial entre os dois exemplos é que no primeiro $n_0=n_0(x,\epsilon)$ e no segundo $n_0=n_0(\epsilon)$. Grosso modo esta é a diferença entre convergência pontual e convergência uniforme. Observe-se também que nos dois exemplos apenas se usou a estrutura de espaço métrico do conjunto de chegada das funções.

Definição Sejam X um conjunto não vazio, (Y,D) um espaço métrico e, para cada $n \in \mathbb{N}$, $f_n : X \to Y$. A sucessão de funções $\{f_n\}_n$ converge

- a) pontualmente para $f: X \to Y$ se para cada $x \in X$ e para qualquer $\epsilon > 0$ existe $n_0 = n_0(x, \epsilon)$ tal que $D(f_n(x), f(x)) < \epsilon, \ \forall n \geq n_0$;
- b) uniformemente para $f: X \to Y$ se para qualquer $\epsilon > 0$ existe $n_0 = n_0(\epsilon)$ tal que $D(f_n(x), f(x)) < \epsilon, \ \forall n \ge n_0, \ \forall x \in X$.

3 Análise/Convergência uniforme e continuidade

É claro que "convergência uniforme" implica "convergência pontual" sendo a recíproca falsa. No exemplo 1 apresentámos uma sucessão de funções que converge pontualmente mas que não converge uniformemente, e no exemplo 2 apresentámos uma sucessão de funções que converge uniformemente. É também evidente que o limite (pontual ou uniforme) de uma sucessão de funções, se existir, é único.

Vamos agora considerar sucessões de funções contínuas e para tal teremos que considerar uma estrutura de espaço métrico no domínio das funções.

Proposição Sejam (X, d) e (Y, D) espaços métricos e $\{f_n\}_n$, $f_n: X \to Y$, uma sucessão de funções contínuas que converge uniformemente para $f: X \to Y$. Então f é contínua.

3 Análise/Convergência uniforme e continuidade

Demonstração

Para provar a continuidade de f fixemos $x_0 \in X$ e $\epsilon > 0$ arbitrário. Por hipótese existe n_0 tal que $D(f(x), f_n(x)) < \frac{\epsilon}{3}$, $\forall x \in X$ e $n > n_0$. Fixemos $m > n_0$ e, como f_m é contínua em x_0 , seja $\delta > 0$ tal que se $d(x, x_0) < \delta$ então $D(f_m(x), f_m(x_0)) < \frac{\epsilon}{3}$.

Assim, para $d(x,x_0)<\delta$ tem-se $D(f(x),f(x_0))\leq$

$$D(f(x), f_m(x)) + D(f_m(x), f_m(x_0) + D(f_m(x_0), f(x_0) \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

3 Análise/Métrica da convergência uniforme

Sejam (Y, D) um espaço métrico e $C^0([a, b], Y)$ o espaço das funções contínuas de [a, b] em Y munido da métrica da convergência uniforme:

$$d_u(f,g) = \sup\{D(f(x),g(x)); x \in [a,b]\}.$$

Para garantir que a métrica está bem definida (existência do supremo para f e g fixadas) observamos que a aplicação $x \in [a,b] \to D((f(x),g(x))$ é composição das aplicações $x \in [a,b] \to (f(x),g(x)) \in YxY$ e $D: YxY \to \mathbb{R}$. Como ambas são contínuas (porquê?) resulta que a composição também é contínua. Sendo uma aplicação contínua de [a,b] em \mathbb{R} admite valor máximo que é precisamente $d_u(f,g)$.

O próximo resultado é fundamental em várias aplicações do Teorema do Ponto Fixo de Banach (ver mais à frente)

Teorema

Se (Y, D) é um espaço métrico completo então $(C^0([a, b], Y), d_u)$ é um espaço métrico completo.

Demonstração

Seja $\{f_n\}_n$ uma sucessão de Cauchy. Para cada $x\in [a,b]$ a sucessão $f_n(x)_n$ é uma sucessão de Cauchy em (Y,D). Como este espaço é completo a sucessão é convergente. Defina-se $f:[a,b]\to Y$ por $f(x)=\lim_n (f_n(x))$. Fixemos $\epsilon>0$ qualquer e seja $n_0\in\mathbb{N}$ tal que $d_u(f_n,f_m)<\frac{\epsilon}{2}$, para quaisquer $n,m>n_0$. Como $\{f_n\}_n$ converge pontualmente para cada $x\in [a,b]$ existe $m>n_0$ tal que $D(f_m(x),f(x))\leq \frac{\epsilon}{2}$. Assim, para $n>n_0$ e para cada $x\in [a,b]$ tem-se

$$D(f_n(x), f(x)) \leq D(f_n(x), f_m(x)) + D(f_m(x), f(x)) \leq \frac{\epsilon}{2} + \frac{\epsilon}{2},$$

o que mostra que, para $n > n_0$, $D(f_n(x), f(x)) \le \epsilon$. Concluímos assim que $\{f_n\}_n$ converge uniformemente para f e, pela proposição anterior, que f é continua.

Analisando esta demonstração percebe-se que o facto do domínio das funções ser [a,b] com a métrica do módulo só foi essencial para provar que a métrica da convergência uniforme, d_u , está bem definida, isto é que o conjunto $\{D(f(x),g(x));x\in[a,b]\}$ admite supremo (de facto máximo) usando a continuidade da aplicação $x\to D(f(x),g(x))$ e o facto de o domínio ser um intervalo fechado e limitado de $\mathbb R$ Ora tal é válido num contexto bastante mais geral. Para o descrever necessitamos de introduzir mais definições.

Definição Seja (X, d)) um espaço métrico.

- uma cobertura aberta de X é uma família de conjuntos abertos $\{U_{\alpha}\}_{\alpha\in A}$ tais que $\cup_{\alpha\in A}U_{\alpha}=X$, onde A é um conjunto de índices.
- dada uma cobertura aberta $\{U_{\alpha}\}_{\alpha\in A}$ de X uma $sub\text{-}cobertura}$ é uma sub-família $\{U_{\alpha}\}_{\alpha\in B}$ tais que $\cup_{\alpha\in B}U_{\alpha}=X$, onde $B\subset A$. A sub-cobertura diz-se finita quando é formada por um número finito de abertos, isto é o conjunto de índices B é finito

Definição Um espaço métrico (X, d) diz-se *compacto* se qualquer cobertura aberta de X admitir sub-cobertura finita.

Observação A noção de espaço compacto é topológica (e não métrica) uma vez que só depende da família de todos os conjuntos abertos de X.

Exemplos

- é fácil mostrar que [0,1[(métrica usual) não é compacto;
- mais geralmente conclui-se que se $K \subset \mathbb{R}^n$ é compacto (para a métrica usual) então K é um subconjunto fechado e limitado de \mathbb{R}^n ;
- um espaço métrico (X, d) em que X é finito é compacto;
- um sub-conjunto fechado de um espaço métrico compacto é compacto;
- provar que [0,1] é compacto recorrendo apenas à definição não parece ser tarefa fácil...

O próximo resultado caracteriza completamente os subconjuntos compactos de \mathbb{R}^n (métrica usual).

Teorema (Heine-Borel)

 $K \subset \mathbb{R}^n$ é compacto (para a métrica usual) se e somente se é um subconjunto fechado e limitado de \mathbb{R}^n .

Para referir outra caracterização dos espaços métricos compactos necessitamos da seguinte definição

Definição Sejam (X, d) um espaço métrico e $K \subset X$. K diz-se *totalmente limitado* se fixado $\epsilon > 0$ arbitrário existe um número finito de pontos de K, $\{x_1, x_2, ..., x_k\}$, tal que $K \subset \bigcup_{j=1}^k B(x_j; \epsilon)$.

Exemplos [0,1] e [0,1[são totalmente limitados e $[0,+\infty[$ não é totalmente limitado porque não é limitado.

Teorema

Um espaço métrico é compacto se e somente se é completo e totalmente limitado.

Uma propriedade importante de um subconjunto compacto é a seguinte

Teorema

Num espaço métrico compacto qualquer sucessão admite uma sub-sucessão convergente.

Mostra-se facilmente que a imagem por uma função contínua de um conjunto compacto é um conjunto compacto. Do que foi visto decorre que se (X,d) é um espaço métrico compacto e (Y,D) é um espaço métrico então, para quaisquer $f,g\in C^0(X,Y),\ d_u(f,g)$ está bem definido e d_u é uma métrica neste espaço. Além disso se (Y,D) é um espaço métrico completo então $(C^0(X,Y),d_u)$ é um espaço métrico completo.

3 Análise/Contracções em espaços métricos

Definição Seja (X,d) um espaço métrico. $f:X\to X$ diz-se um contracção se existe $\lambda\in]0,1[$ tal que

$$d(f(x), f(y)) \leq \lambda d(x, y), \forall x, y \in X.$$

Um ponto fixo de f é um ponto $x_0 \in X$ tal que $f(x_0) = x_0$. É fácil de verificar que se f é uma contracção então tem no máximo um ponto fixo. Com efeito se x_0 e y_0 são pontos fixos de f tem-se

$$0 \leq d(x_0, y_0) = d(f(x_0), f(y_0)) \leq \lambda d(x_0, y_0),$$

donde se conclui que $d(x_0, y_0) = 0$, isto é $x_0 = y_0$.

3 Análise/Contracções em espaços métricos

Exercício/exemplo:

Considere $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (\frac{x}{2}, \frac{y}{3} + \frac{1}{2})$. Mostra-se que

- 1. f é uma contracção com $\lambda = \frac{1}{2}$;
- 2. por indução $f^n((x,y)) = (\frac{x}{2^n}, \frac{y}{3^n} + \frac{1}{2} \sum_{j=0}^{n-1} \frac{1}{3^j})$
- 3. $\lim_{n\to+\infty} f^n((x,y)) = (0,\frac{3}{4});$
- 4. $(0, \frac{3}{4})$ é o único ponto fixo de f.

No próximo teorema vai-se concluir que em espaços métricos completos a condição 1. (com $\lambda \in]0,1[)$ garante que ocorrem 3. e 4. embora não se conheça o ponto fixo.

3 Análise/Teorema do Ponto Fixo (Banach)

Teorema Sejam (X,d) um espaço métrico completo e $f:X\to X$ uma contracção. Então f tem um único ponto fixo e, para qualquer $x\in X$, $\lim_{n\to+\infty}f^n(x)=x_0$.

Ideia da demonstração. Seja λ uma constante de contracção de f.

- já sabemos que f tem no máximo um ponto fixo;
- usando sucessivamente o facto de f ser uma contracção obtém-se $d(f^n(x), f^n(y)) \le \lambda^n d(x, y), \ \forall x, y \in X, \forall n \in \mathbb{N};$
- da desigualdade anterior obtém-se $d(f^n(x),x) \leq d(f^n(x),f^{n-1}(x)) + d(f^{n-1}(x),x) \leq ... \leq (\lambda^{n-1}+...+\lambda+1) d(f(x),x) \leq \frac{1}{(1-\lambda)} d(f(x),x)$

3 Análise/Teorema do Ponto Fixo (Banach)

- Assim, para $n, m \in \mathbb{N}, n > m$, tem-se $d(f^n(x), f^m(x)) = d(f^m(f^{n-m}(x)), f^m(x)) \le \lambda^m d(f^{n-m}(x), x) \le \lambda^m \frac{1}{(1-\lambda)} d(f(x), x),$ o que prova que a sucessão $\{f^n(x)\}_n$ é uma sucessão de Cauchy;
- como (X, d) é um espaço métrico completo a sucessão $\{f^n(x)\}_n$ converge para $x_0 \in X$;
- como f é contínua decorre que $\{f(f^n(x))\}_n$ converge para $f(x_0)$;
- como a primeira sucessão é uma sub-sucessão da segunda tem-se que $f(x_0) = x_0$;
- como o ponto fixo é único tem-se que $\{f^n(z)\}_n$ converge para x_0 , para qualquer $z \in X$.

Observação Apesar de ser um teorema de existência a demonstração fornece um algoritmo que permite obter aproximações do ponto fixo com um erro tão pequeno quanto se queira. Além disso a velocidade de convergência é exponencial.

Uma vez que um subconjunto fechado de um espaço métrico completo é completo o próximo resultado é uma consequência directa do Teorema do Ponto Fixo:

Corolário 1 Sejam (X,d) um espaço métrico completo, $F \subset X$ um subconjunto fechado e $f: F \to F$ uma contraccção. Então f tem um único ponto fixo.

Exemplo A função $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -\frac{1}{3}x$ se $x \le 0$, e f(x) = -2x se $x \ge 0$, tem um ramo contractivo e um ramo expansivo. No entanto $f^2(x) = \frac{2}{3}x$ é uma contração (e \mathbb{R} com a métrica usual é completo) e por isso f^2 tem um único ponto fixo, x = 0, que de facto é também um ponto fixo de f.

Este exemplo é um caso particular de um resultado mais geral.

Corolário 2 Sejam (X,d) um espaço métrico completo, $f:X\to X$ uma aplicação contínua, e $r\in\mathbb{N}$ tal que f^r é uma contracção. Então f tem um único ponto fixo.

Demonstração

Sejam λ uma constante de contracção de f^r e x_0 o único ponto fixo de f^r . Como f^r é uma contracção fixado $x \neq x_0$ (admitindo que o espaço tem pelo menos dois pontos) tem-se

- $\lim_{n\to+\infty} f^{rn}(x) = x_0$;
- como f é contínua $\lim_{n\to+\infty} f^{rn+1}(x) = f(x_0)$;
- como f^r é uma contracção tem-se $d(f^{rn+1}(x), f^{rn}(x)) = d(f^{rn}(f(x)), f^{rn}(x)) \le \lambda^n d(f(x), x)) \to 0;$

- da desigualdade anterior conclui-se que as sucessões $\{f^{rn+1}(x)\}_n$ e $\{f^{rn}(x)\}_n$ convergem para o mesmo limite;
- desta última observação e das duas primeiras obtém-se que $f(x_0) = x_0$,

o que demonstra que x_0 é um ponto fixo de f. Por outro lado se y_0 é um ponto fixo de f então y_0 é um ponto fixo de f^r o que implica que $y_0 = x_0$.

Suponha-se que U é um aberto não vazio de um espaço métrico completo (X,d) e que $T:U\to X$ é uma contracção de constante λ . Fixado $y_0\in U$ $T(y_0)$ está bem definido mas só poderemos considerar $T(T(y_0))$ se $T(y_0)\in U$. Se conseguirmos garantir que $T^n(y_0)\in U$, $\forall n\in\mathbb{N}$, então esta sucessão é de Cauchy e portanto convergente para x_0 que é um ponto de aderência de U. Se $x_0\in U$ então x_0 é (o único) ponto fixo de T.

Análise Real III - 2018/19

Para garantir as condições referidas observe-se que, sempre que definido,

$$d(f^n(y_0), y_0) \leq \frac{1}{1-\lambda}d(f(y_0), y_0),$$

isto é temos uma estimativa superior uniforme da distância de qualquer iterado de y_0 , $f^n(y_0)$, a y_0 . Assim uma condição incial sobre $d(f(y_0), y_0)$ deve ser suficiente para garantir que todos os iterados de y_0 estão bem definidos e que o limite desta sucessão pertence a U. Esse é precisamente o conteúdo do próximo resultado.

Antes de o enunciar recordemos que a distância de um ponto y a um fechado F é definida por

$$Dist(y, F) = inf\{d(y, z); z \in F\}$$

Corolário 3 Sejam (X,d) um espaço métrico completo, U um aberto não vazio de X e $f:U\to X$ uma contracção com constante $\lambda\in]0,1[$. Suponha-se que existe $y_0\in U$ tal que $d(f(y_0),y_0)<(1-\lambda)r$, onde $r=Dist(y_0,\mathcal{C}U)$. Então f tem um único ponto fixo.

Demonstração

Por hipótese $d(f(y_0), y_0) < (1 - \lambda)r < r$ e portanto $f(y_0) \in U$. Se $f^n(y_0) \in U$) então

$$d(f^{n+1}(y_0), y_0) \le \frac{1}{1-\lambda} d(f(y_0), y_0) < r \quad (1)$$

e portanto $f^{n+1}(y_0) \in U$. Conclui-se assim que a sucessão $\{f^n(y_0)\}_n$ está bem definida e que converge para algum $x_0 \in X$. Passando ao limite a primeira desigualdade em (1) obtém-se $d(x_0, y_0) < r$ e portanto $x_0 \in U$ e é um ponto fixo de f.

Análise Real III - 2018/19

Em algumas aplicações do ponto de fixo de Banach (ver a primeira) a contracção depende de um parâmetro (condição inicial) e é importante saber que o ponto fixo varia continuamente com o parâmetro. Mais precisamente

Corolário 4 Sejam (X, d) um espaço métrico completo, (Y, D) um espaço métrico e $f: XxY \to X$ uma aplicação tal que

- existe $\lambda \in]0,1[$ tal que $\forall y \in Y$, $f_y: X \to X$, $f_y(x) = f(x,y)$, é uma contração de constante λ ;
- para cada $x \in X$ a aplicação $f_x : Y \to X$, $f_x(y) = f(x,y)$ é contínua.

Então para cada $y \in Y$ a aplicação f_y tem um único ponto fixo x_y e a aplicação $F: Y \to X$, $F(y) = x_y$ é contínua.

(o ponto fixo x_y varia continuamente com o parâmetro y.)

Demonstração

Seja $y_0 \in Y$ e fixemos $\epsilon > 0$. Observe-se que

$$d(x_{y}, x_{y_{0}}) = d(f_{y}(x_{y}), f_{y_{0}}(x_{y_{0}}) \leq d(f_{y}(x_{y}), f_{y}(x_{y_{0}})) + d(f_{y}(x_{y_{0}}), f_{y_{0}}(x_{y_{0}})) \leq$$

$$\leq \lambda d(x_{y}, x_{y_{0}}) + d(f_{x_{y_{0}}}(y), f_{x_{y_{0}}}(y_{0})) \leq \lambda d(x_{y}, x_{y_{0}}) + \epsilon,$$

tendo usado a continuidade de $f_{x_{y_0}}$ para obter $d(f_{x_{y_0}}(y), f_{x_{y_0}}(y_0)) \le \epsilon$ desde que $D(y, y_0) < \delta$, para um certo $\delta > 0$.

Assim, para y tal que $D(y, y_0) < \delta$, tem-se

$$d(x_y, x_{y_0}) \leq \frac{1}{1-\lambda}\epsilon,$$

o que prova a continuidade do ponto fixo no parâmetro y_0 .

Jorge Rocha (FCUP)

Sejam I um intervalo aberto de \mathbb{R} e $f:I\to\mathbb{R}$ uma função contínua. Resolver (localmente) a equação diferencial x'=f(x) com a condição inicial $x(0)=x_0\in I$ é obter uma curva $x:[-\epsilon,\epsilon]\to I$ tal que

$$x'(t) = f(x(t)), \ \forall t \in [-\epsilon, \epsilon], \ \text{com a condição inicial } x(0) = x_0.$$
 (0)

Verifica-se facilmente que resolver a equação diferencial com a condição inical dada é equivalente a encontrar uma função $x \in C^0([-\epsilon,\epsilon],\mathbb{R})$, com a restrição $x(0)=x_0$ (condição fechada para a métrica d_u) tal que

$$x(t) = x_0 + \int_0^t f(x(s)) ds$$
 (1)

Para $\epsilon > 0$ considere-se o sub-espaço $\mathcal{C} = \mathcal{C}_{\epsilon}$ das curvas de $C^0([-\epsilon,\epsilon],\mathbb{R})$ que satisfazem a condição $x(0) = x_0$. Este espaço munido com a métrica d_u é um sub-espaço fechado de $(C^0([-\epsilon,\epsilon],\mathbb{R}), d_u)$ e portanto é completo.

Análise Real III - 2018/19

Se considerarmos o operador $T: \mathcal{C} \to \mathcal{C}$,

$$T(y)(t) = x_0 + \int_0^t f(y(s)) ds$$

então provar que existe uma função de C que satisfaz (1) é equivalente a mostrar que o operador T tem um ponto fixo.

A ideia da demonstração do teorema de existência e unicidade local das soluções das equações diferenciais é impor alguma condição razoável sobre f que assegure que para ϵ suficientemente pequeno T é uma contracção. Para se perceber qual é a condição razoável vamos efectuar alguns cálculos:

$$|T(y)(t) - T(z)(t)| = |\int_0^t f(y(s)) - f(z(s)) ds| \le$$

$$\le \int_0^{|t|} |f(y(s)) - f(z(s))| ds \le \int_0^{\epsilon} |f(y(s)) - f(z(s))| ds = (*)$$

Para continuar as majorações introduza-se a seguinte definição

Definição Sejam (X, d) e (Y, D) espaços métricos e f uma aplicação de X em Y. f diz-se Lipschitziana se existe K > 0 tal que

$$D(f(x), f(y)) \le Kd(x, y) \forall x, y \in X.$$

Se agora admitirmos que a função f introduzida em (0) é Lipschitziana com constante K>0 então obtém-se

$$(*) \leq \int_0^{\epsilon} |K|y(s) - z(s)| \, ds \leq \int_0^{\epsilon} |Kd_u(y,z)| \, ds = |K\epsilon d_u(y,z)|, \, \forall t \in [-\epsilon,\epsilon].$$

Portanto $d_u(T(y),T(z)) \leq K\epsilon d_u(y,z), \ \forall y,z\in\mathcal{C}$. Assim, para garantir que T é uma contracção basta fixar $\epsilon>0$ tal que $K\epsilon<1$. Nestas condições T tem um único ponto fixo o que quer dizer que a equação diferencial (0) tem uma única solução com a condição inicial fixada.

Finalmente a versão paramétrica do lema da contracção permite mostrar que as soluções variam continuamente (na métrica d_u) com a condição inicial x_0 .

3 Análise/Teorema da Função Inversa

Teorema (da função inversa)

Sejam U um aberto de \mathbb{R}^n , $f:U\to\mathbb{R}^n$ uma função de classe C^k e $X_0\in U$ tal que $Df(X_0)$ é um isomorfismo. Então f é localmente invertível em X_0 com inversa local de classe C^k , isto é existem abertos V e W com $X_0\in V\subset U$ e $f(X_0)\in W$ tais que f(V)=W e $f|_V:V\to W$ admite inversa $(f|_V)^{-1}$ de classe C^k . Além disso tem-se

$$D((f|_V)^{-1})(f(X_0)) = (Df(X_0))^{-1}.$$

3 Análise/Teorema da Função Implícita

Teorema (da função implícita)

Sejam U aberto de $\mathbb{R}^{n+m}\simeq\mathbb{R}^n\times\mathbb{R}^m$ e $f:U\to\mathbb{R}^m$ uma função de classe C^k , $k\geq 1$. Sejam $(X_0,Y_0))\in U$ e $C\in\mathbb{R}^m$ tais que

$$\bullet \ f(X_0, Y_0) = C,$$

•

$$det \left(\begin{array}{cccc} \frac{\partial f_1}{\partial y_1} \big| (X_0, Y_0) & \cdots & \frac{\partial f_1}{\partial y_m} \big| (X_0, Y_0) \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial y_1} \big| (X_0, Y_0) & \cdots & \frac{\partial f_m}{\partial y_m} \big| (X_0, Y_0) \end{array} \right) \neq 0.$$

Então existem abertos V de \mathbb{R}^{n+m} e W de \mathbb{R}^n , $\operatorname{com}(X_0, Y_0) \in V \subset U$ e $X_0 \in W$, e existe uma função $g: W \to \mathbb{R}^m$, de classe C^k , tais que as seguintes condições são equivalentes:

3 Análise/Teorema da Função Implícita

- 1. $(X, Y) \in V \in f(X; Y) = C$
- 2. $X \in W \in Y = g(X)$

Diz-se que a equação f(X,Y)=C define implicitamente Y como função de X numa vizinhança da solução (X_0,Y_0) . A equação f(X,g(X))=C, definida para $X\in W$, permite calcular as derivadas parciais das funções componentes de g apesar de em geral não se conhecer esta função.