Semantics and Verification

Lecture 2

- informal introduction to CCS
- syntax of CCS
- semantics of CCS

CCS Basics (Sequential Fragment)

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions $\stackrel{\text{def}}{=}$
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the operations above.

CCS Basics (Parallelism and Renaming)

- parallel composition (|)
 (synchronous communication between two components = handshake synchronization)
- restriction $(P \setminus L)$
- relabelling (P[f])

Definition of CCS (channels, actions, process names)

Let

- A be a set of channel names (e.g. tea, coffee are channel names)
- $\mathcal{L} = \mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
 - $\overline{A} = {\overline{a} \mid a \in A}$ (A are called names and \overline{A} are called co-names)
 - by convention $\overline{a} = a$
- $Act = \mathcal{L} \cup \{\tau\}$ is the set of actions where
 - τ is the internal or silent action (e.g. τ , tea, coffee are actions)
- K is a set of process names (constants) (e.g. CM).

Definition of CCS (expressions)

$$P := \begin{array}{c|cccc} K & & & & & & & & & \\ & \alpha.P & & & & & & & \\ & \sum_{i \in I} P_i & & & & & & \\ & \sum_{i \in I} P_i & & & & & & \\ & & & & & & \\ & P_1|P_2 & & & & & \\ & P \setminus L & & & & \\ & P[f] & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The set of all terms generated by the abstract syntax is called CCS process expressions (and denoted by \mathcal{P}).

Notation

$$P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$$
 $Nil = 0 = \sum_{i \in \emptyset} P_i$

Precedence

Precedence

- restriction and relabelling (tightest binding)
- action prefixing
- parallel composition
- summation

Example: $R + a.P|b.Q \setminus L$ means $R + ((a.P)|(b.(Q \setminus L)))$.

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

$$K\stackrel{\mathrm{def}}{=} P$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

- Only one defining equation per process constant.
- Recursion is allowed: e.g. $A \stackrel{\text{def}}{=} \overline{a}.A \mid A$.

Semantics of CCS

HOW?

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) - G. Plotkin 1981

Small-step operational semantics where the behaviour of a system is inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the following LTS ($Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\}$):

- Proc = P (the set of all CCS process expressions)
- $Act = \mathcal{L} \cup \{\tau\}$ (the set of all CCS actions including τ)
- transition relation is given by SOS rules of the form:

RULE
$$\frac{premises}{conclusion}$$
 conditions

SOS rules for CCS ($\alpha \in Act$, $a \in \mathcal{L}$)

$$ACT \quad \frac{}{\alpha.P \stackrel{\alpha}{\longrightarrow} P}$$

$$SUM_j \quad \frac{P_j \xrightarrow{\longrightarrow} P'_j}{\sum_{i \in I} P_i \xrightarrow{\alpha} P'_j} \quad j \in I$$

COM1
$$\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q}$$

COM2
$$\frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'}$$

COM3
$$\xrightarrow{P \xrightarrow{a} P'} Q \xrightarrow{\overline{a}} Q'$$

RES
$$\frac{P \xrightarrow{\alpha} P'}{P \setminus L \xrightarrow{\alpha} P' \setminus L} \quad \alpha, \overline{\alpha} \notin L$$
 REL $\frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]}$

REL
$$\frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]}$$

$$CON \xrightarrow{P \xrightarrow{\alpha} P'} K \stackrel{\text{def}}{=} P$$

Deriving Transitions in CCS

Let
$$A \stackrel{\text{def}}{=} a.A$$
. Then
$$((A \mid \overline{a}.Nil) \mid b.Nil)[c/a] \stackrel{c}{\longrightarrow} ((A \mid \overline{a}.Nil) \mid b.Nil)[c/a].$$

$$\mathsf{REL} \ \frac{\mathsf{ACT} \ \overline{a.A \overset{a}{\longrightarrow} A}}{\mathsf{CON}^{1}} A \overset{a}{\underset{A \overset{a}{\longrightarrow} A}{\longrightarrow} A} A \overset{\text{def}}{=} a.A}{A \overset{a}{\longrightarrow} A} A \overset{\text{def}}{=} a.A$$

$$\mathsf{COM1} \ \frac{\mathsf{COM1} \ \overline{A \mid \overline{a}.Nil \mid \overset{a}{\longrightarrow} A \mid \overline{a}.Nil \mid}}{(A \mid \overline{a}.Nil) \mid b.Nil \overset{a}{\longrightarrow} (A \mid \overline{a}.Nil) \mid b.Nil \mid} (A \mid \overline{a}.Nil) \mid b.Nil) (c/a)$$

LTS of the Process $a.Nil \mid \overline{a}.Nil \mid$

