怎麼樣的PCB才能承受住100 A的電流?

STM32嵌入式開發 2022-02-15 18:00

收錄於話題

#PCB 25 #電流 4 #產品設計 4

通常的PCB設計電流都不會超過10A,甚至5A。尤其是在家用、消費級電子中,通常PCB上持續的工作電流不會超過2A。但是最近要給公司的產品設計動力走線,持續電流能達到80A左右,考慮瞬時電流以及為整個系統留下餘量,動力走線的持續電流應該能夠承受100A以上。

那麼問題就來了, 怎麼樣的PCB才能承受住100 A的電流?

方法一: PCB上走線

要弄清楚PCB的過流能力,我們首先從PCB結構下手。以雙層PCB為例,這種電路板通常是三層式結構:銅皮、板材、銅皮。銅皮也就是PCB中電流、信號要通過的路徑。根據中學物理知識可以知道一個物體的電阻與材料、橫截面積、長度有關。由於我們的電流是在銅皮上走,所以電阻率是固定的。

横截面積可以看作銅皮的厚度,也就是PCB加工選項中的銅厚。通常銅厚以OZ來表示,1OZ的銅厚換算過來就是35 um, 2OZ是70um, 依此類推。那麼可以很輕易地得出結論:在PCB上要通過大電流時,佈線就要又短又粗,同時PCB的銅厚越厚越好。

實際在工程上,對於佈線的長度沒有一個嚴格的標準。工程上通常會用:銅厚/溫升/線徑,這三個指標來衡量PCB板的載流能力。

以下兩個表可以參考:

铜箔厚度	35um	50 um	70 um	105 um	135 um
RE THE	△T=10°C			△T=10°C	
0.15 mm	0.20	0.50	0.70		
0.20 mm	0, 55	0.70	0. 90		
0.30 mm	0.80	1. 10	1. 30		
0.40 mm	1.10	1. 35	1. 70		
0.50 mm	1.35	1, 70	2.00		
0.60 mm	1.60	1.90	2. 30	2.70	
0.80 mm	2.00	2.40	2. 80	3.30	
1.00 mm	2. 30	2.60	3. 20	3.90	6. 30
1.20 mm	2.70	3.00	3. 60	4. 40	7. 20
1.50 mm	3. 20	3.50	4. 20	5. 20	8. 50
2.00 mm	4. 00	4. 30	5. 10	6. 40	10.50
2.50 mm	4. 50	5. 10	6. 00	7.60	12.30
3.00 mm	5. 00	5. 50	6. 40	8.60	14. 10
4.00 mm	5. 40	6, 20	7, 90	10.60	17.30
5.00 mm	5. 60	7. 30	9. 30	12. 50	20. 40
8. 00mm	7. 90	10.30	13. 10	17.60	28. 70
10.00mm	9.30	12. 0	15. 40	20.70	33, 70

铜箔厚度	105 um	135 um	
线宽	△T=20°C		
1.00 mm	7.2	8. 60	
1.20 mm	8. 20	9. 80	
1.50 mm	9. 60	11. 50	
2.00 mm	11.80	14. 20	
2.50 mm	13. 90	16. 70	
3.00 mm	15. 90	19. 10	
4.00 mm	19.60	23. 50	
5.00 mm	23. 10	27. 70	
8. 00mm	32. 40	38. 90	
10.00mm	33. 60	45. 80	

從表中可以大約知道1OZ銅厚的電路板,在10℃溫升時,100mil (2.5mm) 寬度的導線能夠通過4.5A的電流。並且隨著寬度的增加,PCB載流能力並不是嚴格按照線性增加,而是增加幅度慢慢減小,這也是和實際工程裡的情況一致。如果提高溫升,導線的載流能力也能夠得到提高。

通過這兩個表,能得到的PCB佈線經驗是:增加銅厚、加寬線徑、提高PCB散熱能夠增強PCB的 載流能力。那麼如果要走100A的電流,可以選擇4OZ的銅厚,走線寬度設置為15mm,雙面走線, 並且增加散熱裝置,降低PCB的溫升,提高穩定性。

方法二:接線柱

除了在PCB上走線之外,還可以採用接線柱的方式走線,相關文章推薦: PCB走線與過孔的電流承 載能力。

在PCB上或產品外殼上固定幾個能夠耐受100A的接線柱如:表貼螺母、PCB接線端子、銅柱等。 然後採用銅鼻子等接線端子將能承受100A的導線接到接線柱上。這樣大電流就可以通過導線來走。

古法二・中仏領地

	甚至,	• 大三成期314 還可以定做銅排。 用銅排來走大電流	使用銅排來走大電流是工業上常	常見的做法,	例如變壓器,	服務器機櫃
ルと		用調排水足人電流 :載流能力表:	0			

方法四: 特殊工藝

另外還有一些比較特殊的PCB工藝,國內不一定能找得到加工的廠家。英飛凌就有一種PCB,採用3層銅層設計,頂層和底層是信號佈線層,中間層是厚度為1.5mm的銅層,專門用於佈置電源,這種PCB可以輕易做到小體積過流100A以上。

相關推薦

通過動圖科普PCB製作過程

詳解PCB走線與信號完整性問題

PCB佈局思路分析(乾貨)

電子工程師往事——工廠內部那些事

ARM與嵌入式

STM32、嵌入式、單片機、PCB、硬件電路、C語言 9篇原創内容

公眾號

喜歡此內容的人還喜歡

視頻:解密PCB定制全過程

玩轉嵌入式

加速和改進PCB佈線

硬件攻城獅