

Workshop Organizers

ML Development is slow

Time to ship a new model to production

ML Deployment is time-consuming

Share of time spent by data scientists on model deployment

Updates cascade

The Machine Learning process

3. Data Exploration

Explorative analysis

Data cleaning

1. Business **Understanding**

- **Problem statement**
- **Evaluation metrics**
- Literature review

2. Data **Gathering**

- **Source discovery**
- **Data preparation**
- **Quality assessment**

5. Evaluation

- Performance evaluation
- Time evaluation

4. Modelling

- **Feature engineering**
- Model design
- **Model implementation**

6. Deployment

- **Architecture design**
- **Execution scheduling**
- **Performance tuning**
- Integration

The Machine Learning process

3. Data Quality

- Data cleaning
- Automated checks

1. Business Understanding

- Problem statement
- Evaluation metrics
- Literature review

2. Data Gathering

- Source discovery
- Data preparation
- Quality assessment

5. Evaluation

- Performance evaluation
- Time evaluation

4. Modelling

- Feature engineering
- Model design
- Model implementation

6. Deployment

- Execution scheduling
- API generation
- Integration

The Machine Learning process

Offline development

Automated data pre-processing

Automated model lifecycle

AWS Cloud basics

Sagemaker Components

Sagemaker Training

And then you deploy your model to production for realtime inference (or you use Batch Transform for batch inference*)

Then you train and tune your model

You start by building your model and processing raw data, developing your training data

Sagemaker Endpoint

AWS MLOps: Sagemaker Studio

Before we begin...

This is a simplified version of the reality – we have taken some shortcuts: we will highlight which ones along the way.

We will use very simple models; we will talk briefly how to improve them.

We will not cover all the features of SageMaker and AWS, often there are multiple ways of achieving the same goal. We will comment on this whenever possible.

