Analysis steps

Beta bursts

- 1. Preprocess data
 - a. Reject bad electrodes
 - b. Bandpass filter (0.5-100Hz)
 - c. Notch filter (60 Hz)
 - d. Resample to 250Hz
 - e. Re-reference to an average reference
 - f. Remove bad segments through visual inspection
 - g. ICA for eye blinks and muscle artifacts
- 2. Import preprocessed raw file in database
 - a. Motor data epoch time (-1.5s,10.5s)

b. Rest data – Split in blocks of 3.6s

- 3. Reject first 5 trials from rest and motor epochs
- 4. Concatenate time of raw files and extract channels of interest

5. Export the concatenated file to .csv with header following the proper naming convention:

```
# filename = participant_task_session_block.csv
# e.g. AD0109_motor_20Hz_post15.csv
# e.g. AD0109_rest_sham_base.csv
participant (e.g.AD0109), task (rest vs motor), session (20Hz vs 70Hz vs sham), block (base, post15, post45)
```


- 6. Run extract_bursts_filtering_entire_trial.py to extract bursts
 - a. This code will extract the burst characteristics (rate, amplitude, duration) for each of the above file and will be saved as bursts FILENAME.csv
 - b. Before running, make sure to change the parameters as needed, in particular:
 - i. import_folder (where the files from step 5. were saved)
 - ii. export folder (where the beta burst files will be saved)
 - iii. mov_epoch_intervals (depends on the motor task and how epochs were separated in Brainstorm)
 - 1. [-1.1s, -0.1s] Pre-movement
 - 2. [0.5s, 3.5s] Movement
 - 3. [5s, 8s] Post-movement
 - iv. mov epoch name intervals
 - v. rest_intervals (depends on the resting state epochs were separated in Brainstorm)
 - vi. rest name intervals
 - c. The bursts_FILENAME.csv has each line representing one burst within the file. The first column is the burst identifier: channel interval epoch index
 - i. Channel = channel from which the burst was extracted
 - ii. Interval = Movement or Resting state interval as defined in mov_epoch_name_intervals and rest_name_intervals
 - iii. Epoch = In which motor or rest epoch the burst is identified
 - iv. Index = The index number of the burst in the current channel, interval and epoch

- 7. Create the bad channels.csv file
 - a. Run bad channels.py and set the "path" variable as the export folder used above.
 - Open the created file in Excel and manually enter on the second column all the bad channels.
 - i. Bad channels can be obtained in Brainstorm by right clicking on an epoch from each file > View all the bad channels
 - ii. If no bad channels are within a file, write "N"

- 8. Run graph bursts.py to plot the bursts
 - a. Note: graph_bursts.py needs to be changed based on what you need to plot
 - b. Requires:
 - i. A bad channels.csv file
 - ii. functions.py file to be in the same folder
 - c. Change parameters at the top of the file:
 - i. channels
 - ii. motor_intervals_of_interest
 - iii. rest_intervals_of_interest
 - d. Comment/Uncomment the line_error() function calls to plot the data you are interested in