International IOR Rectifier

IRF6648

DirectFET™ Power MOSFET ②

- RoHs Compliant Containing No Lead and Bromide ①
- Low Profile (<0.7 mm)
- Dual Sided Cooling Compatible ①
- Ultra Low Package Inductance
- Optimized for High Frequency Switching ①
- Optimized for Synchronous Rectification for 5V to 12V outputs
- Ideal for 24V input Primary Side Forward Converters
- Low Conduction Losses
- Compatible with Existing Surface Mount Techniques ①

Typical values (unless otherwise specified)

V_{DSS}	V _{GS}	$R_{DS(on)}$	\mathbf{Q}_{g} tot	\mathbf{Q}_{gd}
60V max	±20V max	5.5mΩ@ 10V	36nC	14nC

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

Description

The IRF6648 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6648 is an optimized switch for use in synchronous rectification circuits with 5-12Vout, and is also ideal for use as a primary side switch in 24Vin forward converters. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	60	V
V _{GS}	Gate-to-Source Voltage	±20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V @	86	
I _D @ T _C = 70°C	Continuous Drain Current, V _{GS} @ 10V @	69	
I _{DM}	Pulsed Drain Current ③	260	Α
I _S @ T _C = 25°C	Continuous Source Current (Body Diode) @	81	
I _S @ T _C = 70°C	Continuous Source Current (Body Diode) @	52	
I _{SM}	Pulsed Source Current (Body Diode) 3	260	

Notes:

- ① Click on this section to link to the appropriate technical paper.
- $\ensuremath{\mathfrak{G}}$ T_C measured with thermocouple mounted to top (Drain) of part.
- ② Click on this section to link to the DirectFET Website.
- 3 Repetitive rating; pulse width limited by max. junction temperature.

Electrical Characteristic @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta T_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		0.076		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.5	7.0	mΩ	$V_{GS} = 10V, I_{D} = 17A$ §
$V_{GS(th)}$	Gate Threshold Voltage	3.0	4.0	4.9	V	$V_{DS} = V_{GS}$, $I_D = 150\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-11		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 60V, V_{GS} = 0V$
				250		$V_{DS} = 48V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	31			S	$V_{DS} = 10V, I_{D} = 17A$
Q_g	Total Gate Charge		36	50		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		7.5			$V_{DS} = 30V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		2.7		nC	V _{GS} = 10V
Q_gd	Gate-to-Drain Charge		14	21		I _D = 17A
Q_godr	Gate Charge Overdrive		12			See Fig. 14
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		17			
Q _{oss}	Output Charge		21		nC	$V_{DS} = 16V$, $V_{GS} = 0V$
R _{G (Internal)}	Gate Resistance		1.0		Ω	
t _{d(on)}	Turn-On Delay Time		16			$V_{DD} = 30V, V_{GS} = 10V$ §
t _r	Rise Time		29			I _D = 17A
$t_{d(off)}$	Turn-Off Delay Time		28		ns	$R_G = 6.2\Omega$
t _f	Fall Time		13			See Fig. 16
C _{iss}	Input Capacitance		2120			$V_{GS} = 0V$
Coss	Output Capacitance		600		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		170			f = 1.0MHz
C _{oss}	Output Capacitance		2450			$V_{GS} = 0V, V_{DS} = 1.0V, f=1.0MHz$
C _{oss}	Output Capacitance		440			$V_{GS} = 0V, V_{DS} = 48V, f=1.0MHz$

Avalanche Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
E _{AS}	Single Pulse Avalanche Energy			47	mJ	$T_J = 25^{\circ}C$, $I_S = 34A$, $R_G = 25\Omega$
						L = 0.082mH. See Fig. 13

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 17A$, $V_{GS} = 0V$ §
t _{rr}	Reverse Recovery Time		31	47	ns	$T_J = 25^{\circ}C, I_F = 17A, V_{DD} = 30V$
Q_{rr}	Reverse Recovery Charge		37	56	nC	di/dt = 100A/µs ⑤

Notes:

⑤ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ®	2.8	W
P _D @T _A = 70°C	Power Dissipation ®	1.8	
P _D @T _C = 25°C	Power Dissipation ®	89	
T _P	Peak Soldering Temperature	270	°C
T _J	Operating Junction and	-40 to + 150	
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 68		45	
$R_{\theta JA}$	Junction-to-Ambient ⑦®	12.5		°C/W
$R_{\theta JC}$	Junction-to-Case 48		1.4	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		

Fig 1. Maximum Effective Transient Thermal Impedance, Junction-to-Case ①

Notes:

- © Surface mounted on 1 in. square Cu, steady state (still air).
- ② Used double sided cooling, mounted on 1 in. square Cu board PCB with small clip heatsink (still air).
- $\ensuremath{\$}\ \ensuremath{\mathsf{R}}_{\theta}$ is measured at T_J of approximately 90°C.

Note 6

Note ⑦

IRF6648 International Internat

Fig 2. Typical Output Characteristics

Fig 4. Typical Transfer Characteristics

Fig 6. Typical Capacitance vs.Drain-to-Source Voltage

Fig 3. Typical Output Characteristics

Fig 5. Normalized On-Resistance vs. Temperature

Fig 7. Typical Total Gate Charge vs Gate-to-Source Voltage

International IRF6648

Fig 8. Typical On-Resistance vs. Gate Voltage

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig12. Maximum Safe Operating Area

Fig 9. Typical On-Resistance vs. Drain Current

Fig 11. Typical Threshold Voltage vs. Junction Temperature

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14a. Gate Charge Test Circuit

Fig 14b. Gate Charge Waveform

Fig 15a. Unclamped Inductive Test Circuit

Fig 15b. Unclamped Inductive Waveforms

Fig 16a. Switching Time Test Circuit

Fig 16b. Switching Time Waveforms

Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET™ Substrate and PCB Layout, MN Outline (Medium Size Can, N-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

IRF6648

DirectFET™ Outline Dimension, MN Outline (Medium Size Can, N-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

DirectFET™ Part Marking

IRF6648

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6648). For 1000 parts on 7" reel, order IRF6648TR1

	REEL DIMENSIONS								
S.	TANDARI	O OPTION	(QTY 48	00)	TR	1 OPTION	(QTY 10	00)	
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMPERIAL		
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

Loaded Tape Feed Direction

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS								
	ME	TRIC	IMP	ERIAL				
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0.311	0.319				
В	3.90	4.10	0.154	0.161				
С	11.90	12.30	0.469	0.484				
D	5.45	5.55	0.215	0.219				
E	5.10	5.30	0.201	0.209				
F	6.50	6.70	0.256	0.264				
G	1.50	N.C	0.059	N.C				
Н	1.50	1.60	0.059	0.063				

Data and specifications subject to change without notice.

This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

International

Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/