

Chapter 12

Basic Cement Chemistry

BASIC CEMENT CHEMISTRY CHEMICAL COMPOSITION

CHEMICAL FORMULAE	254
MINERALOGICAL COMPOSITION	255
CHEMICAL PARAMETERS FOR CEMENT-SPECIFIC MATERIALS	255
3.1 Titration	255
3.2 Lime Saturation	256
3.3 Silica Ratio	256
3.4 Alumina Ratio	256
.5 Na₂O-equivalent	257
ONTENT OF CLINKER MINERALS ACCORDING TO BOGUE	257
.1 Applied for	257
IGNIFICANCE OF CLINKER MINERALS FOR CEMENT PROPERTIES	257
IGNIFICANCE OF CLINKER MINERALS FOR ASTM CEMENT TYPES	258
ELATIONSHIPS BETWEEN CHEMICAL MODULI AND CLINKER MINERAL	S 258
XERCISE FOR CALCULATION	262
	HEMICAL PARAMETERS FOR CEMENT-SPECIFIC MATERIALS

Elemental composition in weight percentage. By convention, the elements are expressed in form of their oxides (exception: Cl, F).

Table 1 Usual sequence of elements in cement analysis:

	Example	es
	Limestone	Clinker
L.o.l. ¹	42.2	0.24
SiO ₂	1.9	22.7
Al ₂ O ₃	0.81	5.7
Fe ₂ O ₃	0.52	1.9
CaO	52.2	66.0
MgO	1.4	2.0
SO₃	0.56	0.33
K₂O	0.22	0.74
Na₂O	0.08	0.09
TiO ₂	0.05	0.18
Cr2O ₃		
Mn2O ₃	0.02	0.03
P ₂ O ₅	0.01	0.05
CI	0.01	0.01
F		

¹⁾ loss on ignition, e.g. at 1050°C mainly due to H₂O, CO₂

1. CHEMICAL FORMULAE

The chemical formula indicates the elements occurring in a chemical compound:

 for a molecular compound, type and absolute number of elements in a molecule are given

 H_2O O_2 C_6H_6 water oxygen benzene

• for a mineralogical compound, type and relative number of elements are given

 SiO_2 CaO CaCO₃ Ca₃SiO₅ quartz lime calcite alite

Note: In mineralogical compounds, the elements need not necessarily occur in simple numerical ratios (impurities, solid solution)

• in the cement chemistry, shorthand's are often used:

CaO SiO_2 Al_2O_3 Fe_2O_3 SO_3 H_2O C S A F \overline{S} H

Examples:

C₃S for Ca₃SiO₅ (alite) C₂S for Ca₂SiO₄ (belite) C₃A for Ca₃Al₂O₆ (aluminate) C₄AF for Ca₄Al₂Fe₂O₁₀ (ferrite)

2. MINERALOGICAL COMPOSITION

Table

Arcanite

Free lime

Composition of a material, expressed in weight-percentage of the

occurring minerals

Example:

	Limestone	
Calcite	CaCO ₃	90%
Dolomite	CaMg(C0 ₃) ₂	5%
Quartz	SiO ₂	5%
	Clinker	
Alite	C ₃ S	58%
Belite	C ₂ S	23%
Aluminate	C ₃ A	9%
Ferrite	C₄AF	7%
Periclase	MgO	1%

K₂SO₄

CaO

Table Difference between chemical and mineralogical composition:

1%

1%

		Limestone		
Mineralogical	comp.		Chemical	comp.
Calcite	CaCO ₃	90%	L.O.I.(C0 ₂)	40,0%
Dolomite	CaMg(C0 ₃) ₂	5%	SiO ₂	5,0%
Quartz	SiO ₂	5%	CaO	53,9%
			MgO	1,1%

(simplified, minor elements not included)

3. CHEMICAL PARAMETERS FOR CEMENT-SPECIFIC MATERIALS

3.1 <u>Titration</u>

Content of carbonates as determined by acid-base titration, expressed as CaCO₃ % Titration = 1.786 CaO + 2.48 MgO

Applied for:

- Limestone
- Mari
- Raw Meal

"HOLDERBANK"

3.2 **Lime Saturation**

$$LS = \frac{CaO \times 100}{2.80 \text{ SiO}_2 + 1.18 \text{ Al}_2 \text{O}_3 + 0.65 \text{ Fe}_2 \text{O}_3}$$

or

LSF=
$$\frac{\text{CaO}}{2.8\text{SiO}_2 + 1.2\text{Al}_2\text{O}_3 + 0.65\text{Fe}_2\text{O}_3}$$

The LS is a measure to which extent the CaO-richest compounds C₃S, C₃A and C₄AF can be formed without the necessary presence of free lime. At LS > 100, free lime will unavoidably be present after burning.

Applied for:

- Raw meal
- Clinker
- Cement: neat OPC only $CaO = CaO_{total} - 0.7 SO_3$

Usual range in clinker: 85 - 100

Note: The influence of MgO can be accounted for

$$LS = \frac{(CaO + 0.75MgO) \times 100}{2.80 SiO_2 + 1.18AI_2O_3 + 0.65Fe_2O_3}$$

max. 2 % MgO may be introduced in formula (not applied in cement specifications)

Silica Ratio 3.3

$$SR = \frac{SiO_2}{Al_2O_3 + Fe_2O_3}$$

Applied for

- Siliceous-argillaceous raw components
- Raw meal
- Clinker
- Cement

Usual range in clinker: 1.8 - 3.6 - 264 liquide

3.4 **Alumina Ratio**

$$AR = \frac{Al_2O_3}{Fe_2O_3}$$

Applied for

- Siliceous-argillaceous raw components
- Raw meal
- Clinker

1-3-7 Yhyuish

Cement

Usual range in clinker: 1

ideel 1.5; 1.3

3.5 Na₂O-equivalent

Total alkali content, expressed as Na₂O Na₂O-equivalent = Na₂O +0.658 K₂O

Note: Limit for low alkali cement

Na₂O-equiv. **€** 0.6 %

Applied for Clinker

Cement

4. CONTENT OF CLINKER MINERALS ACCORDING TO BOGUE

Percentage content of clinker minerals, assuming that chemical equilibrium is attaint, and that no impurities are present

 $C_3S = 4.07CaO - 7.6SiO_2 - 6.73Al_2O_3 - 1.43Fe_2O_3$

 $C_2S = 8.6SiO_2 + 5.07Al_2O_3 + 1.08Fe_2O_3 - 3.07CaO$

or $2.87SiO_2 - 0.754C_3S$

 $C_3A = 2.65Al_2O_3 - 1.69Fe_2O_3$

 $C_4AF = 3.04Fe_2O_3$

In reality, the mineralogical composition of industrial clinkers differs to some extent from that calculated according to Bogue.

4.1 Applied for

- ◆ Cement:
 - OPC only (excl. blended cements)
 - correction for CaO in CaSO₄:
 CaO = Ca_{tot} 0 70 SO₃
 - For ASTM: TiO₂ and P₂O₅ to be added to Al₂O₃
- ◆ Clinker:
 - CaO can be corrected for "CaSO₄" or for free lime, depending on objective of calculation

5. <u>SIGNIFICANCE OF CLINKER MINERALS FOR CEMENT PROPERTIES</u>

- C₃S Contributes to early and late strength (1 d ...) Increases heat of hydration
- C₂S Contributes to late strength (28 d ...)
- C₃A Contributes to early strength (1 3 d) Increases heat of hydration Impairs resistance to sulphate attack
- C4AF Little effect (Bry age)

6. SIGNIFICANCE OF CLINKER MINERALS FOR ASTM CEMENT TYPES

Type I Portland

no restrictions regarding clinker minerals

Type II Portland with moderate sulphate resistance

C₃A max. 8 %

Type III Portland with high early strength

C₃A max. 15 %

Type IV Portland with low heat of hydration

C₃S max. 35 % C₂S min 40% C₃A max. 7 %

Type V Portland with high sulphate resistance

C₃A max. 5.0 %

C₄AF + 2 C₃A max. 25 %

or

C₄AF + C₂F max. 25 %

7. RELATIONSHIPS BETWEEN CHEMICAL MODULI AND CLINKER MINERALS

The following relationships are calculated for simplified clinker compositions, i.e. only containing the main elements SiO₂, Al₂O₃, Fe₂O₃, CaO

Fig:

Clinker Minerals as Function of LS SR=2.5 AR=1.5

Fig:

Clinker Minerals as Function of SR LS=95 AR=1.5

Fig:

Clinker Minerals as Function of AR

LS=95 SR=2.5

8. EXERCISE FOR CALCULATION

· <u> </u>	0.0L . 0.1. 0/1L	70 m/(1/0//
	Raw Mix	Potential clinker composition
L.o.l.	35.1	
SiO ₂	14.3	
Al_2O_3	3.6	
Fe ₂ O ₃	2.0	٠٠٠٪ کېږي
CaO	42.0	
MgO	1.8	2,42
SO₃	0.25	<i>g</i> . <u>3</u> 8
K₂O	0.63	9, 94
Na₂O	0.22	0.3%
TiO ₂	0.17	0,26
Mn_2O_3	0.10	04.15
P ₂ O ₅	0.06	<u>0,</u> 03
CI	0.01	. 0, 91
Titration		
LS		39,?2
SR		
AR		

Na₂O-equiv.

Na₂O-equiv.	
C ₃ S	.54, 4
C ₂ S	
C ₃ A	/
C ₄ AF	· · · · · · · · · · · · · · · · · · ·

"Holderbank" Manas ment and Consulting L. - Analytical Laboratory

Loss on lanition		LS	92.13
	22.03		2.55
Al ₂ O ₃	5.55	AR	1.80
Fe ₂ O ₃	3.08		
CaO	64.71	ငး၁	54.3
MgO	2.77	C ₂ S	22.2
SO3	0.39		9.5
K ₂ O	96.0	C,AF	9.4
Na ₂ O	0.34	င်း	54.3
TIO2	0.26		22.2
Mn_2O_3	0.15	C3A	9.5
P ₂ O ₅	60.09	C,AF	9.4
ت ت	0.02		
L		Titration	•
TOTAL	100.35	Clinkerfactor	•
Freelime		Na ₂ O-eq.	0.97
Insoluble Residue		Mol. Alk./SO ₃ 3.16	3.16

"Holderbank" Manage.. ient and Consulting Ltd. Analytical Laboratory

		i
Loss on ignition	35.1	
SIO ₂	14.3	
Al ₂ O ₃	3.6	
Fe ₂ O ₃	2.0	<u> </u>
CaO	42.0	
MgO	1.8	
so³	0.25	
K ₂ O	0.62	
Na ₂ O	0.22	
TiO2	0.17	
Mn ₂ O ₃	0.10	
P_2O_5	90.0	
ت ت	0.01	
TOTAL	100.23	
Freelime		
Insoluble Residue		
		_

	92.13
SR	2.55
AR	1.80
C,S	54.3
C ₂ S	22.2
C ₃ A	9.5
C,AF	9.4
C,S	
C ₂ S	
C,A	
C ₄ AF	
Titration	79.48
Clinkerfactor	1.54
Na ₂ O-eq.	0.97
Mol. Alk./803	3.20