 Sequentielle Schaltungen, Schaltwerke, Automaten 2.1. Begriffsbestimmung – Schaltnetze und Schaltwerke
Schaltnetz
Schaltwerk
Für einen Eingangszustand sind mehre Ausgangszustände möglich, d.h der Ausgangszustand hängt von allen bisherigen Eingangszuständen ab.

2.2. Zähler

Aufgaben für Zählerschaltungen:

- Umwandlung einer Anzahl von Zählimpulsen in einen vorgegeben Code
- Erzeugung spezieller Zählfolgen, z.B zur Steuerung von Abläufen
- Generierung von Zeitverzögerungen von vorgebbarer Dauer

2.2.1. Entwurf synchroner Zähler

Synchron:

Zählimpulse werden den Takteingängen aller FFs zugeführt (gemeinsames Taktsignal).

- Zähler sind einfacher und übersichtlicher aufgebaut und leichter erweiterbar,
- Es treten keine Laufzeitprobleme auf.

2.2.1.1. Mod-5-Vorwärtszähler mit RS-FF

Zustandsgraph

Zustandstabelle

Dez. Zählerstand	Y ₂	Y ₁	Y ₀	Ü
0				
1				
2				
3				
4				

Anzahl der FFs

Impulsdiagramm

Entwurf des Übergangsnetzes

Zustandsfolgetabelle des Übergangsnetzes

Dez. Zählerstand	Q ₂	Q ₁	Q_0	$^{1}Q_{2}$	$^{1}Q_{1}$	$^{1}Q_{0}$	S ₂	R ₂	S ₁	R ₁	S ₀	R ₀
0	0	0	0									
1	0	0	1									
2	0	1	0									
3	0	1	1									
4	1	0	0									
5	1	0	1									
6	1	1	0									
7	1	1	1									

Kontrolle der Nebenbedingung

Wegen RS=0 dürfen Blöcke von R_i und S_i nicht das gleiche x-Feld enthalten.

Entwurf des Ausgangsnetzes

Dez. Zählerstand	Q_2	Q_1	Q_0	Ü
Zählerstand				
0				
1				
2				
3				
4				

Untersuchung der Pseudozustände

	Q ₂	Q ₁	Q_0	S ₂	R ₂	S ₁	R ₁	S ₀	R ₀	$^{1}Q_{2}$	^{1}Q 1	^{1}Q 0	
5	1	0	1										
6	1	1	0										
7	1	1	1										

Schaltung

Zustandsgraph

Zusammenfassung der Entwurfsschritte:

- Bestimmung der Anzahl der FFs
- Auswahl des FF-Typs
- Aufstellen der Zustandstabelle (Automatentabelle)
- Entwurf des Übergangsnetzes
- Entwurf des Ausgangsnetzes
- Überprüfung der Psoudozustände
- Erstellung der Schaltung

Aufgabe 1: Entwerfen Sie den Mod-5-Vorwärtszähler mit D-FFs

a) Entwurf des Übergangsnetzes

Charakteristische Gleichung: ${}^{1}Q = D$

Zustandsfolgetabelle des Übergangsnetzes

Dez. Zählerstand	Q_2	Q_1	Q_0	$^{1}Q_{2}$	^{1}Q 1	$^{1}Q_{0}$	D ₂	D ₁	D ₀
0	0	0	0						
1	0	0	1						
2	0	1	0						
3	0	1	1						
4	1	0	0						
5	1	0	1						
6	1	1	0						
7	1	1	1				•		

b) Untersuchung der Pseudozustände

	Q ₂	Q ₁	Q_0	D ₂	D ₁	D ₀	$^{1}Q_{2}$	$^{1}Q_{1}$	$^{1}Q_{0}$	
5	1	0	1							
6	1	1	0							
7	1	1	1							

c) Schaltung

d) Zustandsgraph

4.5.1.3 Mod-5-Rückwärtszähler mit JK-FF

Zustandsgraph

Entwurf des Übergangsnetzes

Charakteristische Gleichung:

Zustandsfolgetabelle des Übergangsnetzes

Dez. Zählerstand	Q ₂	Q ₁	Q_0	$^{1}Q_{2}$	$^{1}Q_{1}$	$^{1}Q_{0}$	J_2	K ₂	J ₁	K ₁	J ₀	K ₀
4	1	0	0									
3	0	1	1									
2	0	1	0									
1	0	0	1									
0	0	0	0	·								

Untersuchung der Pseudozustände

	Q ₂	Q ₁	Q_0	J_2	K ₂	J_1	K ₁	J_0	K ₀	$^{1}Q_{2}$	$^{1}Q_{1}$	$^{1}Q_{0}$	
5	1	0	1										
6	1	1	0										
7	1	1	1										

Schaltung

Zustandsgraph

2.2.2. Asynchrone Zähler

Min. ein FF wird nicht durch das Taktsignal, sondern durch im Zähler selbst erzeugten Impulse angesteuert.

Vorteil:

Nicht alle FFs müssen für die max. Frequenz des Eingangstaktes ausgelegt sein Der Gatteraufwand ist geringer.

Nachteil:

Es können fehlerhafte Zwischenzustände beim Umschalten auftreten – Laufzeitprobleme.

Asynchroner mod-8-Vorwärtszähler

Schaltung

Impulsdiagramm

2.3. Registerschaltungen

2.3.1. Auffangregister

Schaltung

Schaltsymbol

2.3.1.1. Anwendungen

Mikrocontroller 8051 mit externem RAM und EPROM

HC12 von Freescale (früher Motorola)

Blockschaltbild der SCI des HC12

Datenformat SCI (mit Paritätsbit)

2.3.2. Schieberegister

Schieberegister- Klassen

Dateneingang	Datenausgang	Funktion	Beispiel (8Bit)
seriell	seriell	SISO	->
seriell	parallel	SIPO	<u>→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑</u>
parallel	seriell	PISO	<u> </u>
parallel	parallel	PIPO	<u> </u>

2.3.2.1. Seriell-Parallel-Umsetzer

Der Baustein 74194

74LS194: 4-Bit Bidirectional Universal Shift Register

Funktionstabelle

					Outputs								
Clear	Mo	ode	Clock	Se	rial		Par	allel					
	S_1	S_0		Left	Right	A	В	C	D	QA	QB	Qc	QD
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	Q _{A0}	Q _{B0}	$\mathbf{Q}_{\mathbf{C}0}$	$\mathbf{Q}_{\mathbf{D}0}$
Н	H	H		X	X	a	b	c	d	a	b	c	d
Н	L	H		X	Н	X	X	X	X	Н	QAn	Q _{Bn}	Qcn
Н	L	H		X	L	X	X	X	X	L	QAn	Q _{Bn}	Qcn
Н	H	L		Н	X	X	X	X	X	Q _{Bn}	Qcn	QDn	Н
Н	H	L		L	X	X	X	X	X	Q _{Bn}	Qcn	QDn	L
Н	L	L	X	X	X	X	X	X	X	O _{A0}	Q _{B0}	O _{C0}	O _{D0}

Betriebszustände:

- Für S1 = S0 = L (Mode 0) wird weder geschoben noch geladen. Die gespeicherten Daten liegen unverändert an den Ausgängen.
- Für S1 = SO = H (Mode 3) werden mit der nächsten ansteigenden Taktflanke die an den Eingängen DO, ..., D3 anliegenden Daten parallel geladen.
- S1 = H und SO = L (Mode 2) gibt Schieben in Richtung von Q3 nach QO frei. Ein am seriellen Eingang für 'Linksschieben' (SE L) anliegender Wert wird dabei in Q3 übernommen.
- S1 = L und SO = H (Mode 1) gibt Schieben in Richtung von QO nach Q3 frei. Ein am seriellen Eingang für 'Rechtsschieben' (SE R) anliegender Wert wird dabei in QO übernommen.

Aufgabe 2Entwerfen Sie einen Aikenzähler (2-4-2-1 Code) mit JK-FFs als synchronen Vorwärtszähler.

												Karı	าลน	gh-P	laı
Ε	Q3	Q2	Q1	Q0	¹ Q3	¹ Q2	¹ Q1	¹ Q0							
													ı	ı	1
		l							_						
													<u> </u>	<u> </u>	<u> </u>

Aufgabe 3
Der folgende asynchrone Zähler wird aus JK-Flipflops aufgebaut:

a) Bestimmen Sie das Impulsdiagramm für zehn Taktimpulse.

b) Welche Flipflop-Ausgänge müssen mit den vier Eingängen des zusätzlichen UND-Gatters verbunden werden, damit der

Ausgang dieses Gatters nach sechs Clock-Impulsen auf "high" geht?

Hinweis:

Die nicht verbundenen JK-Eingänge entsprechen auf "high" liegenden Eingangssignalen (bei TTL-Logik). Alle Q-Ausgänge liegen zu Beginn der Taktung auf "0" (QA=QB=QC=QD=0).