

ECE Lyon - ING 2 - Année 2023/2024

Cours de mathématiques

ANALYSE: Chapitre 8 - Intégrales généralisées

8.1 Définitions

8.1.1 Intégrale sur $[a, +\infty[$

Définition. Soit f une fonction continue sur $[a, +\infty[$.

- Si la limite de l'intégrale $\int_a^X f(x) \ dx$ quand X tend vers $+\infty$ **existe** et est **finie**, on dit que $\int_a^{+\infty} f(x) \ dx$ **converge** ou que $\int_a^{+\infty} f(x) \ dx$ est **définie** ou que la fonction f est **intégrable** sur $[a, +\infty[$ et on note : $\int_a^{+\infty} f(x) \ dx = \lim_{X \to +\infty} \int_a^X f(x) \ dx$.
 - Dans le cas contraire, l'intégrale est **divergente** ou f est **non intégrable** sur $[a, +\infty[$.

Etudier la convergence de l'intégrale : $\int_0^{+\infty} e^{-x} dx$.

Remarque.

- 1. On définit de même l'intégrale $\int_{-\infty}^{b} f(x) dx$ pour une fonction continue sur $]-\infty,b]$.
- 2. $\int_{-\infty}^{+\infty} f(x) \ dx = \int_{-\infty}^{c} f(x) \ dx + \int_{c}^{+\infty} f(x) \ dx.$ L'intégrale $\int_{-\infty}^{+\infty} f(x) \ dx \text{ converge si et seulement si } \int_{-\infty}^{c} f(x) \ dx \text{ et } \int_{c}^{+\infty} f(x) \ dx \text{ sont convergentes.}$

1

Intégrale sur [a, b] d'une fonction non bornée 8.1.2

Définition. Soit f une fonction continue sur [a, b[avec $\lim_{x\to b^-} f(x) = \infty$.

- Si la limite de l'intégrale \$\int_a^X f(x) \ dx\$ quand \$X\$ tend vers \$b\$ existe et est finie, on dit que \$\int_a^b f(x) \ dx\$ converge ou que \$\int_a^b f(x) \ dx\$ est définie ou que la fonction \$f\$ est intégrable sur \$[a, b[\$ et on note : \$\int_a^b f(x) \ dx = \lim_{X \to b} \int_a^X f(x) \ dx\$.
 Dans le cas contraire, l'intégrale est divergente ou \$f\$ est non intégrable sur \$[a, b[\$.

Etudier la convergence de l'intégrale : $\int_0^1 \ln x \ dx$.

Remarque.

Remarque.

On définit de même l'intégrale $\int_a^b f(x) dx$ pour une fonction continue sur]a,b] avec $\lim_{x\to a^+} f(x) = \infty$.

8.2 **Propriétés**

Deux intégrales sont de même nature signifie que les deux intégrales sont convergentes en même temps ou bien divergentes en même temps.

Relation de Chasles 8.2.1

Propriété. Soit f une fonction continue sur $[a, +\infty[$ et $a' \in [a, +\infty[$. Alors $\int_a^{+\infty} f(x) \ dx$ et $\int_{a'}^{+\infty} f(x) \ dx$ sont de même nature. De plus, si ces intégrales convergent, $\int_a^{+\infty} f(x) \ dx = \int_a^{a'} f(x) \ dx + \int_{a'}^{+\infty} f(x) \ dx$

2

Propriété. Soit f une fonction continue sur [a,b[avec $\lim_{x\to b^-} f(x)=\infty$ et $a'\in [a,b[$. Alors $\int_a^b f(x)\ dx$ et $\int_{a'}^b f(x)\ dx$ sont de même nature. De plus, si ces intégrales convergent, $\int_a^b f(x)\ dx=\int_a^{a'} f(x)\ dx+\int_{a'}^b f(x)\ dx$

Positivité de l'intégrale

Propriété. Soient f et g deux fonctions continues sur $[a, +\infty[$ telles que $\int_a^{+\infty} f(x) \ dx$ et $\int_a^{+\infty} g(x) \ dx$ convergent. Si $f \leq g$ alors $\int_a^{+\infty} f(x) \ dx \leq \int_a^{+\infty} g(x) \ dx$ En particulier, l'intégrale d'une fonction positive est positive : Si $f \geq 0$ alors $\int_a^{+\infty} f(x) \ dx \geq 0$.

Si
$$f \leq g$$
 alors $\int_{a}^{+\infty} f(x) dx \leq \int_{a}^{+\infty} g(x) dx$

Si
$$f \ge 0$$
 alors $\int_a^{+\infty} f(x) dx \ge 0$.

Propriété. Soient f et g deux fonctions continues sur [a,b[avec $\lim_{x\to b^-} f(x)=\infty$ telles que $\int_a^b f(x)\ dx$ et $\int_a^b g(x)\ dx$ convergent. Si $f\leq g$ alors $\int_a^b f(x)\ dx\leq \int_a^b g(x)\ dx$ En particulier, l'intégrale d'une fonction positive est positive : Si $f\geq 0$ alors $\int_a^b f(x)\ dx\geq 0$.

Si
$$f \le g$$
 alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$

Si
$$f \ge 0$$
 alors $\int_a^b f(x) dx \ge 0$

Linéarité de l'intégrale

1.
$$\int_{a}^{+\infty} (f+g)(x) dx \text{ converge et } \int_{a}^{+\infty} (f+g)(x) dx = \int_{a}^{+\infty} f(x) dx + \int_{a}^{+\infty} g(x) dx.$$

2. Pour tout réel
$$\lambda$$
, $\int_a^{+\infty} \lambda f(x) dx$ converge et $\int_a^{+\infty} \lambda f(x) dx = \lambda \int_a^{+\infty} f(x) dx$

Propriété. Soient
$$f$$
 et g deux fonctions continues sur $[a, +\infty[$ telles que $\int_a^{+\infty} f(x) \ dx$ et $\int_a^{+\infty} g(x) \ dx$ convergent.

1. $\int_a^{+\infty} (f+g)(x) \ dx$ converge et $\int_a^{+\infty} (f+g)(x) \ dx = \int_a^{+\infty} f(x) \ dx + \int_a^{+\infty} g(x) \ dx$.

2. Pour tout réel λ , $\int_a^{+\infty} \lambda f(x) \ dx$ converge et $\int_a^{+\infty} \lambda f(x) \ dx = \lambda \int_a^{+\infty} f(x) \ dx$.

Par ces deux points, nous avons la **linéarité de l'intégrale**: pour tous réels λ, μ , $\int_a^{+\infty} \left(\lambda f(x) + \mu g(x)\right) \ dx$ converge et $\int_a^{+\infty} \left(\lambda f(x) + \mu g(x)\right) \ dx = \lambda \int_a^{+\infty} f(x) \ dx + \mu \int_a^{+\infty} g(x) \ dx$

Propriété. Soient f et g deux fonctions continues sur [a,b[avec $\lim_{x\to b^-} f(x) = \infty$ telles que $\int_a^b f(x) \ dx$ et $\int_a^b g(x) \ dx$ convergent.

1. $\int_a^b (f+g)(x) \ dx$ converge et $\int_a^b (f+g)(x) \ dx = \int_a^b f(x) \ dx + \int_a^b g(x) \ dx$.

2. Pour tout réel λ , $\int_a^b \lambda f(x) \ dx$ converge et $\int_a^b \lambda f(x) \ dx = \lambda \int_a^b f(x) \ dx$.

Par ces deux points, nous avons la **linéarité de l'intégrale**: pour tous réels λ , μ , $\int_a^b \left(\lambda f(x) + \mu g(x)\right) \ dx$ converge et $\int_a^b \left(\lambda f(x) + \mu g(x)\right) \ dx = \lambda \int_a^b f(x) \ dx + \mu \int_a^b g(x) \ dx$

1.
$$\int_{a}^{b} (f+g)(x) dx$$
 converge et $\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$

2. Pour tout réel
$$\lambda$$
, $\int_a^b \lambda f(x) dx$ converge et $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$.

Intégrales de référence 8.3

8.3.1 Intégrale de Riemann

Intégrale de Riemann en $+\infty$

C'est l'intégrale $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ où $\alpha \in \mathbb{R}$.

 $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ **converge** si et seulement si $\alpha > 1$ et vaut $\frac{1}{\alpha - 1}$.

$$\int_1^{+\infty} \frac{dx}{x^{\alpha}} \text{ diverge si } \alpha \le 1.$$

Intégrale de Riemann en 0

C'est l'intégrale $\int_0^1 \frac{dx}{x^{\beta}}$ où $\beta \in \mathbb{R}$.

 $\int_0^1 \frac{dx}{x^\beta} \text{ converge si et seulement si } \beta < 1 \text{ et vaut } \frac{1}{1-\beta}.$ $\int_0^1 \frac{dx}{x^\beta} \text{ diverge si } \beta \ge 1.$

Intégrales de fonctions positives 8.4

On suppose dans tout ce qui suit que soit $b = \infty$ ou que soit $\lim_{x \to b} f(x) = \infty$.

Critère de comparaison 8.4.1

Propriété. Soient deux fonctions f et g continues sur [a,b[telles que

$$\forall x \in [a, b[, 0 \le f(x) \le g(x)]$$

- $\forall \ x \in [a,b[, \ 0 \le f(x)]$ Alors: $\sin \int_a^b f(x) \ dx \ \mathbf{diverge} \int_a^b g(x) \ dx \ \mathbf{diverge}.$ $\sin \int_a^b g(x) \ dx \ \mathbf{converge} \int_a^b f(x) \ dx \ \mathbf{converge}.$

Etudier la convergence de l'intégrale : $\int_0^{+\infty} e^{-x^2} dx$.

Critère d'équivalence

Définition. Deux fonctions f et g sont **équivalentes** en un point b si et seulement si :

$$\lim_{x \to b} \frac{f(x)}{g(x)} = 1$$

Propriété. Soient deux fonctions f et g continues positives sur [a,b[. Si $f \sim g$ alors les $\int_a^b f(x) \ dx$ et $\int_a^b g(x) \ dx$ sont **de même nature**.

5

Etudier la convergence de l'intégrale : $\int_{1}^{+\infty} \frac{x+1}{x^4+x^2+2} dx$.

Critère d'une fonction négligeable devant une autre 8.4.3

Définition. Soient deux fonctions f et g définies au voisinage de b. On dit que f est **négligeable** devant g au voisinage de b si et seulement si :

$$\lim_{x \to b} \frac{f(x)}{g(x)} = 0$$

On note alors : f = o(g)

Propriété. Soient deux fonctions f et g continues positives sur [a,b[.

- Si f = o(g) alors:

 Si $\int_a^b g(x) dx$ converge $\int_a^b f(x) dx$ converge.

 Si $\int_a^b f(x) dx$ diverge $\int_a^b g(x) dx$ diverge

- Exemple \cdot

Etudier la convergence de l'intégrale : $\int_0^{+\infty} e^{-x^2} dx$.

Intégrales de fonctions quelconques 8.5

8.5.1 Intégrales absolument convergentes

Définition. Soit f une fonction continue sur [a,b[. $\int_a^b f(x) \ dx \text{ est absolument convergente si } \int_a^b |f(x)| \ dx \text{ est convergente.}$

Propriété. Si $\int_a^b f(x) dx$ est absolument convergente alors $\int_a^b f(x) dx$ est convergente.

Etudier la convergence de l'intégrale : $\int_1^{+\infty} \frac{x \cos(x^2)}{x^3 + 1} dx$.

8.6 Comparaison intégrales et séries

Propriété. Soit $f:[0;+\infty[\to [0;+\infty[$ une fonction **positive**, **continue** et **décroissante**, alors la série $\sum f(n)$ et l'intégrale $\int_0^\infty f(x)\ dx$ sont de **même nature**.

Démonstration :

 $\forall t \in [n-1, n], \ f(n) \le f(t) \le f(n-1) \ \text{car} \ f \ \text{est décroissante}.$

On a donc:
$$\int_{n-1}^{n} f(n) dt \le \int_{n-1}^{n} f(t) dt \le \int_{n-1}^{n} f(n-1) dt$$

$$\iff f(n) \le \int_{n-1}^{n} f(t) dt \le f(n-1)$$

$$\iff \sum_{n=1}^{N} f(n) \le \sum_{n=1}^{N} \int_{n-1}^{n} f(t) \ dt \le \sum_{n=1}^{N} f(n-1)$$

D'une part,
$$\sum_{n=1}^{N} \int_{n-1}^{n} f(t) dt = \int_{0}^{N} f(t) dt$$

D'autre part, en posant :
$$S_N = \sum_{n=1}^N f(n)$$
, on a : $S_{N-1} = \sum_{n=1}^{N-1} f(n) = \sum_{n=2}^N f(n-1)$

Donc:
$$S_N \le \int_0^N f(t) dt \le S_{N-1} + f(0)$$
.

— Si
$$S_N$$
 converge et a pour somme $S, \int_0^N f(t) dt$ est majorée.

Or
$$\int_0^x f(t) dt$$
 est une fonction croissante (car $\left(\int_0^x f(t) dt\right)' = f(x)$ et $f(x) > 0$).

Donc
$$\int_0^{+\infty} f(t) dt$$
 converge.

— Si
$$\int_0^{+\infty} f(t) dt$$
 converge, alors S_N est majorée.

Or
$$S_N$$
 est croissante (car $S_N = \sum_{n=1}^N f(n)$ et $f(n) > 0$).

Donc S_N converge.

Exemple

Intégrale de Riemann en $+\infty$: $\int_1^{+\infty} \frac{dx}{x^{\alpha}}$ où $\alpha \in \mathbb{R}$.

$$f(x) = \frac{1}{x^{\alpha}}$$
 est positive, continue et décroissante sur $[1; +\infty[$.

La série de terme général $u_n = f(n) = \frac{1}{n^{\alpha}}$ où $\alpha \in \mathbb{R}$ converge si et seulement si $\alpha > 1$.

Donc
$$\int_1^{+\infty} \frac{dx}{x^{\alpha}}$$
 converge si et seulement si $\alpha > 1$.