Álgebra Linear Computacional - COC473

Primeiro Semestre 2022 – Segunda Nota (P2)

Terciro trabalho para ser entregue

Desenvolva uma rotina numérica para resolver a seguinte equação diferencial pelo método Runge-Kutta-Nystron:

$$my''(t) + cy'(t) + ky(t) = F(t)$$

$$F(t) = a_1 \sin(w_1 t) + a_2 \sin(w_2 t) + a_3 \cos(w_3 t)$$

$$y'(0) = y(0) = 0.0$$

INPUTS do Programa (num arquivo de entrada):

- a) Passo de integração;
- b) Tempo total de integração
- c) Valores dos parâmetros m,c e k e também de a₁, a₂, a₃, w₁, w₂ e w₃;

Obs.: Desenvolva seus testes com m=1;c=0.1 e k=2; $a_1 = 1$, $a_2 = 2$, $a_3 = 1.5$, $w_1 = 0.05$, $w_2 = 1$ e $w_3 = 2$;

OUTPUTS do Programa (num arquivo de saída):

- a) Impressão dos dados lidos;
- b) Solução obtida (uma tabela com o tempo, deslocamento, velocidade e aceleração);
- c) Caso possível, seria interessante o usuário poder também visualizar os resultados anteriores;

A entrega deverá conter:

1. Um "pseudo" manual do usuário – orientações mínimas de como usar o programa