

Progress Report

Frequency and Angular Dependence of Low Frequency East China Sea Bottom Scattering Strengths

Y. Dorfman, P.G. Cable (BBN Technologies) D.P. Knobles, T.W. Yudichak (ARL:UT)

ASIAEX Collaborators:

R. Zhang, Z. Peng, F. Li, Z. Li (IOA, Chinese Academy of Sciences)
Ji-Xun Zhou (GT)
P.H. Dahl (APL-UW)
J.H. Miller, G.R. Potty (URI)

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 DEC 2001		2. REPORT TYPE N/A		3. DATES COVERED -		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Frequency and Angular Dependence of Low Frequency East China Sea				5b. GRANT NUMBER		
Bottom Scattering Strengths				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) BBN Technologies, ARL:UT and Collaborators: and IOA, Chinese Academy of Sciences, GT, APL-UW, URI				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited				
13. SUPPLEMENTARY NO Also See: M001452	otes 2, The original docu	ment contains color	images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 23	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Scattering Strength Extraction

- ' $SS = RL(t) + TL(t) ESL 10log 10(\pi CR(t))$
 - SS is empirical scattering strength.
 - RL is time-dependent received level.
 - TL is time-dependent two-way transmission loss.
 - ESL is energy source level.
 - $\pi CR(t) \sim A(t)$ insonified area, R(t) is range, and omnidirectional source is assumed.
- Above, terms explicitly dependent on time are highlighted with red color.
- ' For range-independent environments, $SS=SS(\Theta_{inc},\Theta_{scat})$, and not SS(t).
- ' Initial approach:
 - Use TL as modeled by ARL/UT based on
 - Inversion of environmental properties based on measured 38 g shots propagation.
 - Forward propagation modeling
 - Use use Wakeley model for ESL of the explosive 1 kg source.
 - Use RL as recorded by VLA:
 - Individual sensor for angle-aggregate SS.
 - Beamform to extract angular dependence.
- Turns out, we have problems with source model.
- ' Adjust approach:
 - Do the best possible under circumstances estimate of the SS.
 - Characterize uncertainty in SS resulting from uncertainty in source and TL.

Source Function Sensitivity to Weight Uncertainty

1 kg Shot, Direct Arrival on VLA and Desensitized Phone

- For reference, model results are shown for 1 kg (red) and 1.8 kg (green) source at 30 m depth.
- ' Top: desensitized phone data.
- ' Bottom: direct arrival structure.
 - About 30 m detonation depth.
 - Individual arrivals are hard to identify.
- Features in overloaded direct arrival vaguely hint at 1.8 kg/30 m source. But 1.8 kg actual weight is unlikely for 1 kg nominal charge.

Can infer depth but not weight.

Use nominal weight, quantify error.

Range Dependence in Source Function

With 1 kg charge, observe f-dependence with range.

True feature of nonlinear source or Wakeley model artifact? Implications on SS?

Linear TL model:

- F³ dependence.
- SS increasing with range for 420 Hz.

Non-linear TL:

- F² dependence.
- SS decreases with R for 420.

L/NL

- In between: $F^{2.5}$.
- R-independent.

Different TL models:

- dB-difference not huge, but predict different F-dependence.
- Which Fdependence is right?

Single Sensor SS: Range Dependence, Mid-Water – 44 m

Linear TL:

- SS in dependent of range for 120, 240 Hz.
- SS increasing with range for 420, 840 Hz.
- Increases more for 840 Hz.

L/NL TL:

• SS independent of range.

Is it an accidental fit, or do we really need to consider NL effects?

Question

- Assuming non-linear source, can "straighten" range-dependence of SS.
- Does this mean that we should account for source nonlinearity?
- ' May be, but may be not, as there are potential mechanisms for range dependence of the SS:
 - Range-dependence of environment
 - Scattering into different angles (coupling between modes) increasingly important with range

Results very similar to mid-water sensor

Single Sensor SS, Deep Sensor – 70 m

Results very similar to mid-water and shallow sensors.

Uncertainty in SS Estimate?

- ' Shot-to-shot stability:
- Look at all 4 shots provided.
 - Shallow sensor.
 - Common TL model
 - Linear TL
 - Range-independent src.
- Very similar results for 4 shots

- Observe same SS for shots 1-4.
- Potentially 2.5 dB uncertainty due to weight.
- Uncertainty in level and F-dependence.
 - Linear TL model results in
 - Higher SS above 200 Hz
 - F³ frequency dependence of SS
 - SS increasing with R for R=4-10 km, F>240 Hz.
 - Nonlinear TL model results in
 - Lower SS above 200 Hz
 - F^{2.5} frequency dependence of SS
 - SS independent of range for R=4-10 km.

What is the correct TL model?

Do we need to address non-linear source effects?

Conclude:

- dB-difference between L and NL models not huge within 5dB.
- But TL model affects F-dependence (important for understanding physics/mechanisms of bottom interaction)
- It is important to settle on the correct TL model and determine correct F-dependence of the SS.

Array Processing

- VLA can be used to study dependence of bottom SS on the scattering angle.
- I focus on bottom subarray (middle column). Reasons:
 - Down refracting so to look at low grazing angles need to be close to bottom.
 - Remove contribution from surface, focus on bottom scattering contribution.
 - SNR is good to 5-10 km depending on steering angle and frequency band.

Angular Dependence of Scattering Strength: Procedure

- To determine bottom scattering strength SS(F,R, α_i , α_s), need to normalize beam output by
 - Source function
 - Insonified area
 - TL
- ' Incidence angle α_i :
 - Can not be controlled with explosive source.
 - Can only be determined from modeling.
 - May change as function of range due to stripping of high angles.
- ' Scattering angle α_s :
 - Can be related to steering angle.
- Using different array beams, can obtain SS(F,R, α_{i0} , α_s)
 - α_{i0} is average incidence angle (fixed at each range).
- Caveat 1: As for single sensor, SS potentially depend on range due to scattering into different angles (coupling between modes).
- Caveat 2: SS may depend on range through TL dependent on angle (bounce loss). Need to use $TL(f,R,\theta_s)$, where θ_s is steering angle. Used single-phone TL(f,R) instead.

SS in Beam: Range Dependence

As for sensor, have similar source-induced uncertainty.

- Linear source: dash curves, upward rend
- Nonlinear source: dotted curves, downward trend
- Linear/Nonlinear combination: solid curves.

- $SS(\theta_G,f)$
 - f is frequency
 - θ_G is average array beam incidence angle at the bottom (average scattering angle).
- ' Notation:
 - Negative angles: results observed in down-steered beams.
 - Positive angles: results observed in up-steered beams.

Angular dependence: surprisingly Lambertian

Very steep F-dependence:

• In low beams, steeper than F⁴

Error in SS extract?

Or tells us about scattering mechanisms?

SS in Beam: Angular and Frequency Dependence

Lambertian angular dependence.

Steep F-dependence:

- F⁴ in low beams sub-bottom?
- Any errors in SS extract?
- F⁴ or steeper?

Questions/Issues

- Assuming non-linear source, can "straighten" range-dependence of SS in single sensor and in beam.
- Does this mean that we should account for source nonlinearity?
- May be, but may be not, as there are potential mechanisms for range dependence of the SS:
 - Range-dependence of environment
 - Scattering into different angles (coupling between modes) increasingly important with range
 - Angular dependence of TL for the VLA beam data.

Conclusions

- Generally low bottom SS, increasing with frequency for f>400 Hz.
- ' Steep frequency dependence, steepening with decreasing of grazing scattering angle.
- At each frequency, angular dependence can be approximated by Lambert Law. Assuming 15⁰ incidence angle (which is close to maximum propagating angle), need McKenzie coefficient of about –50 dB (at 120 Hz) to about –40 dB (at 840 Hz).
 - Low values of McKenzie coefficient.
 - Lambert Law provides functional fit but does not correctly describe the physics of scattering. Impossible to relate required values of McKenzie coefficient to environmental parameters.
- Need to compare to physics-based theoretical predictions (e.g.: surface, sediment, volumetric, SP/Born).
 - F-dependence of SS is very important as it may suggest bottom interaction mechanisms
 - For example, F⁴ can be argued due to scattering from small scatterers distributed near water/bottom interface (biologic activity?)
 - Current uncertainty in TL modeling does not result in large dB-difference in SS extractions, but affects frequency dependence.
 - Need to better understand empirical SS for better understanding of scattering mechanisms.

BACKUP

Importance of Nonlinear Effects

- Pierce, "Acoustics": Nonlinearity counts if $\beta \cdot P_0 \cdot 2\pi F_0 / (\rho \cdot C^3) > \alpha$, where:
 - β =3.5 is parameter of nonlinearity.
 - P_0 and F_0 are pressure and frequency characteristic for the waveform.
 - α is linear attenuation (in nepers/m): $\alpha = 10^3/10\log 10(e)$, where a is attenuation in dB/km.
- ' Use empirical expressions from Urick for a charge of W lbs at range R feet:
 - $P_0 = C_0 \cdot 2.16 \cdot 10^4 \cdot (W^{1/3}/r)^{1.13}$ (Pa), where $C_0 = (0.454 \cdot 9.8)/0.0254^2$;
 - $F_0=10^6/\tau$ characteristic frequency, Hz, where $\tau=58\cdot W^{1/3}\cdot (W^{1/3}/r)^{0.22}$ characteristic duration, μs
- Use empirical curves for free water attenuation from Dyer:
 - $a=(3:30) \cdot 10^{-3} \cdot (F_0/1000)^2$ attenuation, dB/km, for $T=4^0-22^0$ C (lower for higher temperature).
 - $\alpha = a \cdot 10^{-3}/10\log 10(e)$.
- In reality, transition to linear happens earlier due to:
 - a and α are higher due to additional attenuation on boundary interaction.
 - P₀ and F₀ were computed with account to spherical spreading, but spreading may further slow steepening

- ' Small source ground truth: 38 g detonated at 50 m.
- From data: detonation depth is about 52 m from first arrival structure on VLA.
- On direct arrival all hydrophones (including desensitized) clipped but multipath and bubble pulse structure is clearly evident.
- Separation between pulses can be used to infer detonation strength.

- Below, data are compared to the Wakeley model.
- Levels between data and model can't be matched because of clipping.
- To fit the scale, source was placed at 100 m.
 - Black dot: $P_{max} \approx 217 \text{ dB}//\mu Pa$ peak level at 100 m per Urick. Shown for reference.
 - Black: data, desensitized hydrophone (clipped).
 - Red: 38 g source at 50 m depth, does not match pulse separation in data.
 - Green: 25 g source at 50 m, matches pulse separation.
 - Blue: 38 g source at 60 m, also matches pulse separation, but depth does not match that inverted from first arrival.

Conclude:

Actual detonation depth is about nominal.

Actual charge is 25 g - 34% less than nominal.