Cuaterniones

February 15, 2018

¿Qué es una rotación?

į...?

- Después de una rotación, los cuerpos rígidos mantienen su forma.
- Siempre hay un punto que queda quieto en el sistema de referencia, al que llamamos origen, o centro.

Rotaciones en 2D: con números complejos

Empecemos por las rotaciones en 2D, usando números complejos.

Nats → Enteros (tienen negativos)

Reales \rightarrow Complejos (\rightarrow ¡Cuaterniones!)

¿Cuánto vale $\sqrt{-1}$? Bueno, llamémoslo i

¿Y qué hacemos con eso? ¿Cómo hacemos cuentas?

Números complejos en el plano

• Longitud ('módulo'):
$$|1+\mathbf{i}| = \sqrt{1^2+|\mathbf{i}|^2} = \sqrt{1+1} = \sqrt{2}$$

• Ángulo:
$$\alpha = \cos^{-1}(\frac{CA}{HIP}) = \cos^{-1}(\frac{1}{\sqrt{2}}) = 45^{\circ} = \frac{\pi}{4}$$

Forma trigonométrica

¡Tener un número complejo es lo mismo que tener su ángulo y su módulo!

De hecho si el número es $a + b \cdot i$ entonces:

$$cos(angulo) \cdot longitud = a$$

$$sen(angulo) \cdot longitud = b$$

¿Cómo operar?

Si z, w son complejos, entonces $z \cdot w$ 'es' sumar los ángulos y multiplicar las longitudes (los 'modulos').

¡Hagamos un ejemplo! ¿Cuánto da $(1+\mathbf{i})\cdot \mathbf{i}$?

Muy lindo, ¿pero y con las rotaciones qué onda?

Pensemos un poco cómo se relacionan.

Ejemplo

¿Cómo llevo el punto (1,1) al punto $(-\sqrt{2},0)$?

¿Cómo invierto una rotación?

¿Será difícil?

Si tengo $a+b\cdot \mathbf{i}$ con ángulo α y quiero otro número complejo con ángulo $-\alpha=2\pi-\alpha$, lo conjugo, es decir, uso $a-b\cdot \mathbf{i}$

Volvamos a i

¿Cuál es la solución de $x^2 = -1$?

$$1 \cdot x^2 = -1$$

¿Cómo rotar 1 a -1?

Volvamos a i (cont)

¿Qué es una rotación (en 3D)?

¿Qué es una rotación en 3D?

¿Qué es una rotación en 3D? Formalismo matemático

¿Qué es una rotación en 3D? Un pisa papas

Otro pisa papas

Por fin, cuaterniones

William Hamilton, el inventor de los horribles, horribles cuaterniones.

Hamilton buscaba esto:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j}$$

(a, b, c son números reales)

...pero no funcionó.

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication 1'= j'= k'= ijk = -1 & cut it on a stone of this bridge

Cuaterniones

Un cuaternión tiene esta pinta:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k}$$

(a, b, c, d son números reales) $(\mathbf{i}, \mathbf{j}, \mathbf{k} \text{ son números 'imaginarios'})$

Reglas:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k} = -1$$

 $\mathbf{i}\mathbf{j} = \mathbf{k} \quad \mathbf{j}\mathbf{k} = \mathbf{i} \quad \mathbf{k}\mathbf{i} = \mathbf{j}$
 $\mathbf{j}\mathbf{i}\mathbf{j} = -\mathbf{k} \quad \mathbf{k}\mathbf{j} = -\mathbf{i} \quad \mathbf{i}\mathbf{k} = -\mathbf{j}$

Una representación alternativa

Así como a un número complejo lo podíamos marcar en un plano (2 dimensiones), un cuaternión es como un vector de 4 dimensiones (no dibujable) y se puede escribir así:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k} \approx (\mathbf{a}, b, c, d)$$

Resumencito

Los números complejos:

- Se pueden marcar sumar, restar, multiplicar, dividir.
- Se pueden marcar en un plano.
- Se les puede medir la longitud y obtener el ángulo.
- Los de módulo 1 representan rotaciones
- Para éstos, el conjugado es el inverso

Resumencito II

- Las rotaciones en 3D son girar alrededor de un eje por un ángulo fijo (un pisapapas).
- Los cuaterniones nos van a servir para representarlas.
- Los cuaterniones son como los complejos pero con 2 letras más y por ende más reglas que solamente $i^2 = -1$.
- Así como los complejos se pueden ver como puntos en un plano (2D), los cuaterniones se pueden ver como puntos de 4 dimensiones (4 números).

Tarea =)

 $\cite{Lorentz} \cite{Lorentz} Lorentz \cite{Lorentz} \cite{Lorentz} Lorentz \cite{Lorentz} \ci$

$$(2+3\cdot\mathbf{i}+2\cdot\mathbf{j}-4\cdot\mathbf{k})\cdot(1-2\cdot\mathbf{i}+1\cdot\mathbf{j}+4\cdot\mathbf{k})=???$$

¡Fin!

¿Preguntas?

¡Cuidado!

Ojo: El producto de cuaterniones en general no es conmutativo.

Segunda clase: cuaterniones!

Operatoria de cuaterniones

¿Cómo eran los cuaterniones?

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{i} + d \cdot \mathbf{k}$$

- En general no conmutan (esa propiedad se pierde)
- El producto de un número real y un cuaternión sí conmutan.
- La suma de dos cuaterniones es conmutativa
- La suma y el producto es asociativo

¿A ustedes como les aparecen cuando los usan?

¿Y por qué no conmutan?

¿Por qué en general $q_1 \cdot q_2 \neq q_2 \cdot q_1$?

Porque las rotaciones no conmutan.

¡Aun hay más!

Cuaterniones como DigiEvolución de los números complejos

Igual a mí me gustaba más Pokemon.

En 2D, si v,z son números complejos, cuando los multiplico me da v rotado en el ángulo de z

$$w = v \cdot z$$

En 3D, si v tiene 3 dimensiones y q es un cuaternión de longitud 1, esta cuenta me devuelve v rotado 'según' el cuaternión:

$$\hat{w} = q \cdot \hat{v} \cdot q^*$$

Conjugación

Dado
$$q=q_0+q_1\mathbf{i}+q_2\mathbf{j}+q_3\mathbf{k}$$
, definimos: $q^*=q_0-q_1\mathbf{i}-q_2\mathbf{j}-q_3\mathbf{k}$ el conjugado de q .

Con los complejos era parecido pero había menos letras:

De paso: longitud de un cuaternión

Longitud de un número complejo $a + b \cdot \mathbf{i} : \sqrt{a^2 + b^2}$

'Longitud' de un cuaternión
$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k} : \sqrt{a^2 + b^2 + c^2 + d^2}$$

Vale que si la longitud del cuaternión es 1, entonces el inverso multiplicativo es el conjugado.

¿Se acuerdan por qué valía con complejos?

'Aumentar' $v \in \mathbb{R}^3$ (3 dim) a $\hat{v} \in Cuat$

Dado $v=(v_1,v_2,v_3)$, defino $\hat{v}=0+v_1\cdot\mathbf{i}+v_2\cdot\mathbf{j}+v_3\cdot\mathbf{k}$ Lo 'aumento' para que tenga 4 dimensiones.

Volvamos a la formulita

Si v es un vector de 3 dimensiones en el espacio y q es un cuaternión de longitud 1, esta cuenta me devuelve v rotado 'según' el cuaternión:

$$\hat{w} = q \cdot \hat{v} \cdot q^*$$

Pasos:

- 'Aumento' al vector v
- Lo multiplico por q
- Lo multiplico por q^* , que es el conjugado de q
- Eso rota v, pero, el resultado queda 'aumentado' (o sea, la parte escalar, que no acompaña a ninguna letra, es 0)

Multiplicar los cuaterniones es como componer las rotaciones

¿Pero en qué orden?

Si tengo:

$$\hat{v_2} = p \cdot \hat{v_1} \cdot p^*$$

y luego hago:

$$\hat{v_3} = q \cdot \hat{v_2} \cdot q^*$$

Esto es lo mismo que:

$$\hat{v_3} = qp \cdot \hat{v_2} \cdot (qp)^*$$

 $C(\psi) = \psi_*$:

Bushetzact panagange a Clifford ale

We shall make : Cit is maccessar

By abstract nonsense, a Clifford algebraid wique isomorphism. Furthermore, it is is generated by the image of ρ , i.e. by $\rho(x)$

ms

Slide optativa: ¿por qué necesitamos dos números más que en 2*D*?

Hay dos cuentas que muestran por qué no anda agregar sólo ${\bf i}$ y ${\bf j}$:

- Porque necesitamos 4 letras para describir a todas las rotaciones en 3D.
- Si usáramos sólo $\bf i$ y $\bf j$ el álgebra se rompería. (Suponés que $\bf ij = a + b \bf i + c \bf j$, multiplicás a izquierda por $\bf i$ y llegás a algo imposible)

Los cuaterniones como rotaciones (con ejemplo)

Si tenemos el eje (el mango del pisapapas) y el ángulo con que queremos rotar, es inmediato definirse el cuaternión que describe *esa rotación*:

Si $N = (n_x, n_y, n_z)$ es un punto (vector) de longitud 1 (el mango del pisapapas) y θ es un ángulo, entonces:

$$q = \cos(\theta/2) + \sin(\theta/2) \ n_{_{\! X}} \ \mathbf{i} + \sin(\theta/2) \ n_{_{\! Y}} \ \mathbf{j} + \sin(\theta/2) \ n_{_{\! Z}} \ \mathbf{k}$$

representa una rotación en los planos perpendiculares a \hat{n} con ese ángulo.

(¿con complejos era parecido?)

Observaciones:

- Si uso q ó -q obtengo la misma rotación. Pero, salvo esto, por cada rotación del espacio hay un sólo cuaternión que la representa.
- Con q = 1 + 0 $\mathbf{i} + 0$ $\mathbf{j} + 0$ \mathbf{k} obtengo la rotación 'no hacer nada'.

¿Por qué multiplicamos el ángulo por 2?

Dos razones:

- como estamos multiplicando dos veces por el cuaternión necesitamos que cada uno 'tenga' la mitad del ángulo de rotación.
- Si no multiplicáramos el ángulo por dos, tendríamos el siguiente problema (dibujito)

SLERP: interpolación a velocidad constante

¿Cómo hacemos si queremos rotar un punto ν a otro punto llamado w a velocidad constante?

Necesariamente w debe ser v rotado, por un quaternión q. O sea, $\hat{w} = q\hat{v}q^{-1}$.

SLERP: interpolación a velocidad constante (cont)

```
Resolvamos un problema más 'genérico' (es más fácil así):
```

Tenemos $p\hat{v}p^{-1}$ y lo queremos mover a $q\hat{v}q^{-1}$.

(Si tomamos p = 1 recuperamos el problema original)

¿Cómo hacemos?

¡La idea va a ser olvidarnos del vector v y mover los cuaterniones!

Primero con numeritos

Queremos mover p a q. Finjamos primero que no son cuaterniones, sino numeritos reales.

$$f(t) = (1 - t) \cdot p + t \cdot q$$

f'(t) = -p + q: se mueve a velocidad constante.

Nota: la misma formulita en 3D anda bien.

Ahora en la circunferencia

Quiero una función f(t) tal que f(0) = p, f(1) = q, y además f' constante (para tener velocidad constante)

 $f(t) = (1-t) \cdot p + t \cdot q$ anda en el sentido de que también se mueve a velocidad constante.

Pero...no se queda en la circunferencia.

Ahora en la circunferencia (II)

$$f(t) = (1-t) \cdot p + t \cdot q$$

¿Cómo hacemos para que vaya por la circunferencia?

Ahora en la circunferencia(III)

- Los puntos de la circunferencia son los que tienen módulo 1
- Si $(x,y) \in \mathbb{R}^2$, entonces $\frac{(x,y)}{||(x,y)||}$ tiene módulo 1, y está en la circunferencia.

$$f(t) = \frac{(1-t) \cdot p + t \cdot q}{||(1-t) \cdot p + t \cdot q||}$$

Pero...no va a velocidad constante. Hay que arreglar un poco las cosas.

¿Y con cuaterniones?

$$(1-t) \cdot p + t \cdot q$$

Una vez arreglada la función para que la velocidad quede igual a 1, sirve para puntos en el plano, y también cuaterniones:

$$Slerp(p, q, t) = \frac{sen(\mathbf{1} - \mathbf{t})\theta)}{sen(\theta)}p + \frac{sen(\mathbf{t}\theta)}{sen(\theta)}q$$

¡Fíjense la simetría que tiene!

(θ se obtiene a partir de p y q, es 'el ángulo' entre ellos)

Volvamos a interpolación de numeritos

$$f(t) = (1-t) \cdot p + t \cdot q$$

Es lo mismo que:

$$f(t) = p - t \cdot p + t \cdot q = p + (-p + q) \cdot t$$

Esa idea se puede trasladar a cuaterniones, miremos cómo:

$$f(t) = p(p^*q)^t$$

donde *elevar a la t* es algo parecido a la exponenciación que todos conocemos de los números reales.

Y como al multiplicar dos cuaterniones se multiplican los módulos, todo anda bien.

Resumencito III

- Los cuaterniones son un upgrade de los complejos.
- Tienen más letras y eso les hace perder la conmutatividad.
- Necesitamos agregar dos letras más porque las necesitamos para 'describir' el eje de rotación y el ángulo
- Rotar con cuaterniones es como complejos pero un poco más feo, multiplicando a izquierda y a derecha por q y haciendo un par más de cosas
- Como multiplicamos dos veces por q, si queremos rotar en un ángulo θ , al cuaternión lo inventamos con $\theta/2$.
- Así como a los complejos se los puede describir con la longitud y el ángulo, a los cuaterniones se los puede describir con 'la normal' (o sea, 'el mango'), y el ángulo. Y de esa manera la rotación queda bien a la vista.
- Para rotar puntos a velocidad consante, rotamos los cuaterniones correspondientes a velocidad constante.

¿Preguntas?