

Model the confinement effect

Intertwined bins for $(D-d)/d^2$ (OD=50~70)

Saturation length R_{∞} vs. $(D-d)/d^2$

We can also look at data from other concentrations.

As expected, at low concentrations, the displacements of inner droplets are so small, so

that the Langevin equation takes the following form

$$\dot{x} = \eta(t) + \gamma x,$$

where $\eta(t)$ is assumed to be an exponentially correlated noise, satisfying $\langle \eta(t)\eta(t')\rangle=Ae^{-\nu|t-t'|}$. It can be shown that this equation predicts the following MSD saturation value R_∞ and transition time τ^* :

$$R_{\infty}=rac{A}{\gamma(
u+\gamma)},$$

$$au^* = rac{1}{\gamma} = rac{\Gamma}{k},$$

where $\Gamma=6\pi\eta r_i$ is the drag coefficient and $k=m^*g/(r_o-r_i)$ is the effective spring constant. Notice that m^* is the buoyant mass of the oil droplet in water, and can be computed as $m^*=\rho^*\frac{4}{3}\pi r_i^3$. Taken together, τ^* can be expressed as

$$au^* = rac{9\eta}{2
ho^*g}rac{r_o-r_i}{r_i^2}.$$

To be consistent with my diameter representation,

$$au^* = rac{9\eta}{
ho^* g} rac{D-d}{d^2}.$$

Use water viscosity $\eta=0.001$ Pa s, we can compute the theoretical coefficient $K=9\eta/\rho^*g=3.9~\mu\mathrm{m}$ s. τ^* is plotted against $(D-d)/d^2$ as below:

R_{∞} and τ^* scaling

The nice linear relation observed at low OD's in the R_∞ vs. $(D-d)/d^2$ plots is not observed in the τ^* plots. If we force a linear fitting to the data points, we obtain a constant slope $\approx 7~\mu{\rm m}$ s for OD up to 90. Although the linear relation is not very pronounced, the value of the prefactor $\approx 7~\mu{\rm m}$ s is quite close to the theoretical prediction $3.9~\mu{\rm m}$ s.

Difference between τ^* and $1/\gamma$

Note that although we stated $au^*=1/\gamma$, it is actually not exact. The figure below plots a typical MSD predicted by the Langevin model, with the definitions of both au^* and $1/\gamma$ illustrated.

If we use the $1/\gamma$ definition to measure the time scale τ^* , the τ^* curves will shift up and deviate more from the theoretical prediction.

Discuss the theoretical saturation value R_{∞}

In the previous section, I show that the time scale au^* (or $1/\gamma$) scales linearly with $(D-d)/d^2$. The Langevin model predicts that

$$R_{\infty} = rac{A}{\gamma(
u + \gamma)}$$

where $\nu=1/\tau>1$ is roughly a constant according to current data. Since $\gamma\ll 1$ holds true in most scenarios, we can assume $\nu\gg\gamma$. The saturation value R_∞ can be approximated as $A\tau\tau^*$. It is also assumed that A, the activity of the active bath, is only a function of the bacterial concentration OD, and does not depend on the confinement. Therefore, at a fixed OD, we expect

$$R_{\infty}pprox A au au^*\propto au^*\propto rac{D-d}{d^2}$$

Look at the R_∞ vs. $(D-d)/d^2$ plots, this is indeed a good prediction for the low OD and large inner size regime. More interestingly, although we derive how R_∞ depends on the confinement through τ^* , R_∞ actually shows better linear relations than τ^* . This has brought new questions:

Why does R_∞ show better linear relation with $(D-d)/d^2$ than τ^* ? Is it because our τ^* is not exactly the $1/\gamma$ in the model? Or $A\tau$ is not a constant, but also depends on the confinement? Or more simply, the model is wrong?

How to understand the limit where the spring assumption breaks down?