Mostre que:
$J) w(f_1 x) > 0 \forall x \in X$
Sija f: x - D IR linutada no conjunto x C IRM, one fixarmo x E X e pona bada 8 >0, supomos um dado J2 C 8] = W I f: X 1 B (x, 3)], onde J2 (8) representa a excidação de fino conjunto dos pontos de X que distam de 8 do ponto x.
J2(8) representa a excidação de fino conjunto des pontos de X que distan de 8 do ponto x. [X C/R] [X
Isto define uma função não regativa: $70,+0$ - 1R, temos que f é limitada, e 72 também é (mas cé inferiormente). Le tomarmo, $8 \le 8' - 17(8) \le 1(8')$ Portanta a ocilorar um $72(8')$ é superior a $72(8)$, entas tomarmos w (f,x) como o limite.
W(f) x = lim n [f] x \(\text{NB}(\text{x}, \overline{\text{J}}) = \inf n [f] \text{X} \(\text{NB}(\text{x}, \overline{\text{J}})}\) It \$ = 0 \text{ o points is a centre de Bola a soci la até armaion das cotos suporiores que is or maior valor de \$\overline{\text{J}} \text{S'}. Entas todas as escilações de \(\text{W}(\overline{\text{J}}, \text{X})\) escilam de 0 ate \$\overline{\text{J}} \text{Para toda } \text{X}.
2) $w(f_1x) = 0$ \leftarrow f é continue em x . Eque $w(f_1x)$ são as excilações dos partes de x até a borda da $B(x, \delta)$, então se $w(f_1x) = 0$ significa que:
$W(f,\chi) = \lim_{N \to \infty} W[f,\chi \cap B(x,\overline{d})] = W[f,\chi \cap B(x,0)] = W[f,\chi \cap B(x)],$ Or sign somewhat or points $\chi \in X$, logs was term excilaçõe. $W(f,\chi) = 0$ It tomormos agora para todo eso dado, podemos ester um

5) A xCIPM é fichado l'uspectivamente compacto lentão para todo C>0 o conjunto 2xEX: W(x) > C & é fichado e respectivamente compacto.
C> = conjunter 2 x E X : W(X) > C & = leglacole e suspectivamente
am nactor
Jamanno um conjunto de m. N. Jahada de Comparta, loga de limitada
Como é labado mones nos estados e sentes es ex con les del
and the same took of the Country of the delivida
Tomamos um conjunto X = IR N fichado e compacto, logo é limitado. Como é fichado possi uma Manincia de posito Xx e X, con Ken fal que N/1Xx/> c para todo KEIN, sendo c uma constante definida em X.
\sim
$W[f,\chi] = W[f,\chi \cap B(\chi_{K}, \delta)] \text{ onde};$ Então $W[f,\chi] = \inf_{X \neq C} W[f,\chi \cap B(\chi_{K}, \delta)]$
Etal million flora River Ell
7 >C
Dista forma lim xx = x Hx EX. gasia Não prolemos ten N(f) x / C
ist un saras de menie dade 4 Como amenimo e maio E i s
in Flix B(xx, X) = n (fix), então trão os cilação deve sez maios
Dusta forma lim $1 \times 2 \times 1 \times $
do qui C, con imp /y-x/> & para todo y, x ∈ x ∩ B(xx, 5).
Entais $v(f(x) \ge C$ e a conjunte $dx \in X$: $v(f(x) \ge C \in P$ e solution
8%c do que c, com ins $ y-x > 5$ para tod $y, x \in x \cap B(xk, 5)$. Entare $w(f,x) > C$ e a conjunte $dx \in X$: $w(f,x) > CE$, e portanto $u(f,x) > CE$.
topora como todo conjunto fechado é limitado, ou seja, é compacto, temo que w[f,x] = inj Z f, x NB(xx, 5)] é limitado um um 5>c rais 8 cupo w(f,x)>c e portanto é compacto.
temo que w(f)x = inf Zf) x 1 B(xx, 5) é limitado um um
ξ>c
rais 8 cupo w(frx)>c e portanto é compacto.