Chemistry Data Booklet

National 5

For use in National Qualification Courses

Publication date: 2013 Publication code: BB6706 ISBN: 978 1 85969 694 1

Published by the Scottish Qualifications Authority The Optima Building, 58 Robertson Street, Glasgow G2 8DQ Lowden, 24 Wester Shawfair, Dalkeith, Midlothian EH22 1FD

www.sqa.org.uk

The information in this publication may be reproduced in support of SQA qualifications. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, then written permission must be obtained from SQA. It must not be reproduced for trade or commercial purposes.

Contents

Relationships for National 5 Chemistry and Specific Heat Capacity of Water
Periodic Table of the Elements
Melting and Boiling Points of Selected Elements
Electron Arrangements of Main Group Elements
Flame Colours
Names, Symbols, Relative Atomic Masses, Densities and Dates of Discovery
Formulae of Selected Ions containing more than one kind of Atom
Solubilities of Selected Compounds in Water
Melting and Boiling Points of Selected Inorganic Compounds
Melting and Boiling Points of Selected Organic Compounds
Electrochemical Series (Reduction Reactions)

Relationships for National 5 Chemistry

$$E_{\scriptscriptstyle h} = cm\Delta T$$

$$n = CV$$

$$n = \frac{m}{GFM}$$

$$\frac{C_1 V_1}{n_1} = \frac{C_2 V_2}{n_2}$$

$$rate = \frac{\Delta quantity}{\Delta t}$$

% by mass =
$$\frac{m}{GFM} \times 100$$

Specific Heat Capacity of Liquid Water

$$c = 4.18 \text{ kJ kg}^{-1} \, \circ \text{C}^{-1}$$

Periodic Table of the Elements

Column 1	Column 2																Colu 3		umn 4	Colum 5	in Co	olumn 6	Column 7	Column 0
1 Hydrogen				Key	A	tomic N																		2 Helium He
3	4				Na	me of E		t									5	(5	7		8	9	10
Lithium	Beryllium					Symb	Οί 										Boro			Nitroge		xygen	Fluorine	Neon
Li	Ве																B	(N	\perp	0	F	Ne
11	12																13	3 1	4	15		16	17	18
Sodium	Magnesium								TRA	NSITION	NETA	LS					Alumii	- 1		Phospho	orus S	Sulfur	Chlorine	Argon
Na	Mg			,					,								_ A	S	Si	Р		S	Cl	Ar
19	20	2	21		22	2 2	.3	24	25	26	2	27	28	29)	30	31	3	2	33		34	35	36
Potassium	Calcium		ndium		Titan			Chromium	Mangan			balt	Nicke			Zinc	Galli		anium	Arseni		lenium	Bromine	Krypton
K	Ca		Sc		Ti	i	V	Cr	Mn	Fe		Co	Ni	Cu		Zn	Gi	a G	ie	As		Se	Br	Kr
37	38	3	39		40) 4	11	42	43	44	4	1 5	46	47	,	48	49	5	0	51		52	53	54
Rubidium	Strontium		rium		Zircon			Nolybdenum	Techneti			dium	Palladiu			Cadmium	Indi		in	Antimo	1	llurium	lodine	Xenon
Rb	Sr		Υ		Zı	- 1	lb	Мо	Тс	Ru	F	₹h	Pd	Ag		Cd	In	S	n	Sb		Те	ı	Xe
55	56	5	57	58-7	1 72	2 7	' 3	74	75	76	7	77	78	79)	80	81	8	2	83		84	85	86
Caesium	Barium	Lantl	hanum		Hafni			Tungsten	Rheniu	m Osmiu	m Iric	dium	Platinu	m Gol	d	Mercury	Thall		ad	Bismut		lonium	Astatine	Radon
Cs	Ba	L	_a		H	f ·	ā	W	Re	Os	ı	lr	Pt	Au	ı	Hg	Т	P	b	Bi		Ро	At	Rn
87	88	8	39	90-10)3 10	4 1	05	106	107	108	3 1	09	110	11	1	112		1	14		1	116		
Francium	Radium	Acti	inium		Rutherfo			eaborgium	Bohriu	m Hassiu	ım Meitr	nerium	Darmstadt	tium Roentge	nium	Copernicium	ו		vium		Live	rmorium		
Fr	Ra	_ A	Ac		Rt	f [b	Sg	Bh	Hs	٨	۸t	Ds	Rg		Cn		F	-[Lv		
						ı	1				ı			1								_		
			5	58	59	60	6	1	62	63	64		65	66		67	68	69		70	71			
					aseodymium	,			marium	Europium —	Gadoliniu	ım 1	Terbium	Dysprosiun	n H	lolmium	Erbium _	Thulium		erbium	Lutetiu •	ım		
			-	Ce	Pr	Nd	Pr		Sm	Eu	Gd		Tb	Dy	1	Но	Er	Tm	+	Yb	Lu	_		
			9	90	91	92	9:	3	94	95	96		97	98		99	100	101	1	102	103			
					otactinium	Uranium			utonium	Americium	Curium	В	erkelium	Californiun	n Eir		Fermium —	Mendeleviur			Lawrenci	ium		
			T	Гһ	Pa	U	N	р	Pu	Am	Cm		Bk	Cf		Es	Fm	Md		No	Lr			

Elements below the dark line are metals.

Melting and Boiling Points of Selected Elements

Group 1	Group 2											Group 3	Group 4	Group 5	Group 6	Group 7	Group 0
1 Hydrogen -259 -253				Key		mic Numb											2 Helium -272 -269
3 Lithium 181 1342	4 Beryllium 1287 2471*					ing Point/ ing Point/						5 Boron 2075 <i>4000</i>	6 Carbon †3825	7 Nitrogen -210 -196	8 Oxygen -219 -183	9 Fluorine -220 -188	10 Neon -249 -246
11 Sodium 98 883	12 Magnesium 650 1090											13 Aluminium 660 2519	14 Silicon 1414 3265	15 Phosphorus 44 280	16 Sulfur 115 445	17 Chlorine -101 -34	18 Argon -189 -186
19 Potassium 63 759	20 Calcium 842 1484	21 Scandium 1541 2836	22 Titanium 1668 3287	23 Vanadium 1910 <i>3407</i>	24 Chromium 1907 2672	25 Manganese 1246 2061	26 Iron 1538 2861	27 Cobalt 1495 2927	28 Nickel 1455 2913	29 Copper 1085 2562	30 Zinc 420 907	31 Gallium 30 2204	32 Germanium 938 2833	33 Arsenic *817 †616	34 Selenium 221 <i>685</i>	35 Bromine —7 59	36 Krypton -157 -153
37 Rubidium 39 688	38 Strontium 777 1382	39 Yttrium 1522 3345	40 Zirconium 1855 4409	41 Niobium 2477 <i>4744</i>	42 Molybdenum 2623 4639	43 Technetium 2157 4265	44 Ruthenium 2333 4150	45 Rhodium 1964 <i>3695</i>	46 Palladium 1555 2963	47 Silver 962 2162	48 Cadmium 321 767	49 Indium 157 2072	50 Tin 232 2602	51 Antimony 631 1587	52 Tellurium 449 988	53 lodine 114 184	54 Xenon -112 -108
55 Caesium 28 671	56 Barium 727 1897	57 Lanthanum 920 3464	72 Hafnium 2223 4602	73 Tantalum 3017 <i>5458</i>	74 Tungsten 3422 5555	75 Rhenium 3185 5596	76 Osmium 3033 <i>5012</i>	77 Iridium 2446 <i>44</i> 28	78 Platinum 1768 3825	79 Gold 1064 2856	80 Mercury -39 357	81 Thallium 304 1473	82 Lead 328 1749	83 Bismuth 271 1564	84 Polonium 254 962	85 Astatine 302	86 Radon -71 -62

^{*} at 28 atmospheres † sublimes

Electron Arrangements of Main Group Elements

Key

Atomic Number Name of Element Symbol Electron arrangement

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 0	
1 Hydrogen H 1							2 Helium He 2	
3 Lithium Li 2,1	4 Beryllium Be 2,2	5 Boron B 2,3	6 Carbon C 2,4	7 Nitrogen N 2,5	8 Oxygen O 2,6	9 Fluorine F 2,7	10 Neon Ne 2,8	
11 Sodium Na 2,8,1	12 Magnesium Mg 2,8,2	13 Aluminium Al 2,8,3	14 Silicon Si 2,8,4	15 Phosphorus P 2,8,5	16 Sulfur S 2,8,6	17 Chlorine Cl 2,8,7	18 Argon Ar 2,8,8	
19 Potassium K 2,8,8,1	20 Calcium Ca 2,8,8,2	31 Gallium Ga 2,8,18,3	32 Germanium Ge 2,8,18,4	33 Arsenic As 2,8,18,5	34 Selenium Se 2,8,18,6	35 Bromine Br 2,8,18,7	36 Krypton Kr 2,8,18,8	
37 Rubidium Rb 2,8,18, 8,1	38 Strontium Sr 2,8,18, 8,2	49 Indium In 2,8,18, 18,3	50 Tin Sn 2,8,18, 18,4	51 Antimony Sb 2,8,18, 18,5	52 Tellurium Te 2,8,18, 18,6	53 lodine I 2,8,18, 18,7	54 Xenon Xe 2,8,18, 18,8	
55 Caesium Cs 2,8,18, 18,8,1	56 Barium Ba 2,8,18, 18,8,2	81 Thallium Tl 2,8,18, 32,18,3	82 Lead Pb 2,8,18, 32,18,4	83 Bismuth Bi 2,8,18, 32,18,5	84 Polonium Po 2,8,18, 32,18,6	85 Astatine At 2,8,18, 32,18,7	86 Radon Rn 2,8,18, 32,18,8	
87 Francium Fr 2,8,18,32, 18,8,1	88 Radium Ra 2,8,18,32, 18,8,2		ents on this are non-met					

Flame Colours

Element	lon	Flame colour		
barium	Ba ²⁺	green		
calcium	Ca ²⁺	orange-red		
copper	Cu ²⁺	blue-green		
lithium	Li ⁺	red		

Element	lon	Flame colour			
potassium	$K^{\scriptscriptstyle{+}}$	lilac			
sodium	Na ⁺	yellow			
strontium	Sr ²⁺	red			

Names, Symbols, Relative Atomic Masses, Densities and Dates of Discovery

(Relative atomic masses, also known as average atomic masses, have been rounded to the nearest 0.5)

Element		Relative	Density	Date of		
	Symbol	atomic mass	(g cm ⁻³)	Discovery		
Actinium	Ac	227	10.1	1899		
Aluminium	Al	27	2.70	1825		
Americium	Am	243	13.7	1944		
Antimony	Sb	122	6.68	Ancient		
Argon	Ar	40	0.0018	1894		
Arsenic	As	75	5.78	~1250		
Astatine	At	210	unknown	1940		
Barium	Ва	137-5	3.62	1808		
Berkelium	Bk	247	14.8	1949		
Beryllium	Be	9	1.85	1798		
Bismuth	Bi	209	9.79	1753		
Boron	В	11	2.47	1808		
Bromine	Br	80	3.12	1826		
Cadmium	Cd	112.5	8.69	1817		
Calcium	Ca	40	1.54	1808		
Californium	Cf	251	unknown	1950		
Carbon	С	12	*	Prehistoric		
Cerium	Ce	140	6.77	1803		
Caesium	Cs	133	1.93	1860		
Chlorine	Cl	35.5	0.0032	1774		
Chromium	Cr	52	7.15	1797		
Cobalt	Со	59	8.86	1739		
Copper	Cu	63.5	8.96	Ancient		
Curium	Cm	247	13.3	1944		
Dysprosium	Dy	162.5	8.55	1886		
Einsteinium	Es	252	unknown	1952		
Erbium	Er	167-5	9.07	1843		
Europium	Eu	152	5.24	1896		
Fluorine	F	19	0.0017	1886		
Francium	Fr	223	unknown	1939		
Gadolinium	Gd	157	7.90	1880		
Gallium	Ga	69.5	5.91	1875		
Germanium	Ge	72.5	5.32	1886		
Gold	Au	197	19.3	Ancient		
Hafnium	Hf	178·5	13.3	1923		
Helium	He	4	0.0002	1868		
Holmium	Но	165	8.80	1879		
Hydrogen	Н	1	0.00009	1766		
Indium	In	115	7.31	1863		
lodine	1	127	4.95	1811		
Iridium	lr	192	22.5	1803		
Iron	Fe	56	7.87	Ancient		
Krypton	Kr	84	0.0037	1898		
Lanthanum	La	139	6.15	1839		
Lead	Pb	207	11.3	Ancient		
Lithium	Li	7	0.53	1817		
Lutetium	Lu	175	9.84	1907		
Magnesium	Mg	24.5	1.74	1808		

^{*}The density of carbon as graphite is $2 \cdot 27 \, \mathrm{g \, cm}^{-3}$ The density of carbon as diamond is $3 \cdot 51 \, \mathrm{g \, cm}^{-3}$

Element	Symbol	Relative atomic mass	Density (g cm ⁻³)	Date of Discovery
Manganese	Mn	55	7.47	1774
Mercury	Hg	200.5	13.5	Ancient
Molybdenum	Мо	96	10.2	1778
Neodymium	Nd	144	7.01	1885
Neon	Ne	20	0.0009	1898
Neptunium	Np	237	20-2	1940
Nickel	Ni	58.5	8.90	1751
Niobium	Nb	93	8.57	1801
Nitrogen	N	14	0.0013	1772
Osmium	Os	190	22.6	1803
Oxygen	0	16	0.0014	1774
Palladium	Pd	106.5	12.0	1803
Phosphorus	Р	31	1.82	1669
Platinum	Pt	195	21.5	1735
Plutonium	Pu	244	19.7	1941
Polonium	Po	209	9.20	1898
Potassium	K	39	0.89	1807
Praseodymium	Pr	141	6.77	1885
Promethium	Pm	145	7.26	1944
Protactinium	Pa	231	15.4	1913
Radium	Ra	226	5.00	1898
Radon	Rn	222	0.0097	1900
Rhenium	Re	186	20.8	1900
Rhodium	Rh	103	12.4	1803
Rubidium	Rb	85.5	1.53	1861
Ruthenium	-	101	12.1	1844
	Ru	150.5	7.52	
Samarium	Sm		-	1853
Scandium	Sc	45	2.99	1879
Selenium	Se	79	4.81	1817
Silicon	Si	28	2.33	1824
Silver	Ag	108	10.5	Ancient
Sodium	Na	23	0.97	1807
Strontium	Sr	87.5	2.64	1790
Sulfur	S	32	2.09	Ancient
Tantalum	Ta	181	16.4	1802
Technetium	Tc	98	11	1937
Tellurium	Te	127.5	6.25	1782
Terbium	Tb	159	8.23	1843
Thallium	Tl	204.5	11.8	1861
Thorium	Th	232	11.7	1828
Thulium	Tm	169	9.32	1879
Tin	Sn	118.5	7.26	Ancient
Titanium	Ti	48	4.51	1791
Tungsten	W	184	19-3	1783
Uranium	U	238	19·1	1789
Vanadium	V	51	6.00	1801
Xenon	Xe	131.5	0.0059	1898
Ytterbium	Yb	173	6.90	1878
Yttrium	Υ	89	4.47	1789
Zinc	Zn	65.5	7.14	Ancient
Zirconium	Zr	91	6.52	1789

Formulae of Selected lons containing more than one kind of Atom

one positive		one negat	tive	two nega	tive	three negative		
lon	Formula	lon	Formula	lon	Formula	lon	Formula	
ammonium	NH ₄ ⁺	ethanoate hydrogencarbonate hydrogensulfate hydrogensulfite hydroxide nitrate permanganate	CH ₃ COO ⁻ HCO ₃ ⁻ HSO ₄ ⁻ HSO ₃ ⁻ OH ⁻ NO ₃ ⁻ MnO ₄ ⁻	carbonate chromate dichromate sulfate sulfite thiosulfate	CO ₃ ²⁻ CrO ₄ ²⁻ Cr ₂ O ₇ ²⁻ SO ₄ ²⁻ SO ₃ ²⁻ S ₂ O ₃ ²⁻	phosphate	PO ₄ 3-	

Solubilities of Selected Compounds in Water

The table shows how some compounds behave in cold water

vs means very soluble (a solubility greater than 10 g l^{-1})

s means soluble (a solubility of between 1 and 10 g l^{-1})

i means insoluble (a solubility of less than $1 g l^{-1}$)

no data

	bromide	carbonate	chloride	iodide	nitrate	phosphate	sulfate
aluminium	VS	_	VS	VS	VS	i	VS
ammonium	VS	VS	VS	VS	VS	VS	VS
barium	VS	i	VS	VS	VS	i	i
calcium	VS	i	VS	VS	VS	i	S
copper(II)	VS	i	VS	_	VS	i	VS
iron(II)	VS	i	VS	VS	VS	i	VS
iron(III)	VS	_	VS	_	VS	i	VS
lead(II)	S	i	S	i	VS	i	i
lithium	VS	VS	VS	VS	VS	i	VS
magnesium	VS	i	VS	VS	VS	i	VS
nickel	VS	i	VS	VS	VS	i	VS
potassium	VS	VS	VS	VS	VS	VS	VS
silver	i	i	i	i	VS	i	S
sodium	VS	VS	VS	VS	VS	VS	VS
tin(II)	VS	i	VS	S	_	i	VS
zinc	VS	i	VS	VS	VS	i	VS

	oxide	hydroxide
	i	i
	_	_
	VS	VS
	S	S
	i	i
	i	i
	i	i
	i	i
	VS	VS
	i	i
	i	i
	VS	VS
	i	_
	VS	VS
	i	i
	i	i
_		

Note: Some of the compounds in the table hydrolyse significantly in water.

Melting and Boiling Points of Selected Inorganic Compounds

COVALENT									
Name of compound	mp/°C	bp/°C							
ammonia	-78	-33							
carbon dioxide	-57	-78							
carbon monoxide	-205	-192							
nitrogen dioxide	-9	21							
silicon dioxide	1713	2950							
sulfur dioxide	-75	-10							
water	0	100							

IONIC			
Name of compound	mp/°C	bp/°C	
barium chloride	961	1560	
calcium oxide	2614	2850	
lithium bromide	550	1265	
magnesium chloride	714	1412	
potassium iodide	681	1323	
sodium chloride	801	1465	

Under normal conditions, carbon dioxide does not melt but sublimes instead. The melting point and boiling point were measured under different conditions.

Melting and Boiling Points of Selected Organic Compounds

Name of compound mp/°C		bp/°C
methane	−182·5	-162
ethane	-183	-89
propane	-188	-42
butane	-138	-1
pentane	-130	36
hexane —		69
heptane	-91	98
octane	-57	126
cyclobutane	-91	13
cyclopentane	-93	49
cyclohexane	7	81
2-methylpropane	-159	-12
2-methylbutane —160		28
2-methylpentane	-154	60
2-methylhexane	-118	90

Name of compound mp/°C		bp/°C	
ethene	-169	-104	
propene	-185	-48	
but-1-ene	-185	-6	
pent-1-ene	-165	30	
hex-1-ene	-140	63	
2-methylpropene	-141	-7	
2-methylbut-1-ene	-138	31	
2-methylpent-1-ene	-136	62	
2-methylhex-1-ene	-103	92	
methanol	−97·5	65	
ethanol	-114	78	
propan-1-ol	-124	97	
propan-2-ol	-88	82	
butan-1-ol	-89	118	
butan-2-ol	-89	100	
methanoic acid	8	101	
ethanoic acid	17	118	
propanoic acid	-21	141	
butanoic acid	-5	164	

Electrochemical Series (Reduction Reactions)

Metal		Reaction	
lithium	Li⁺(aq) + e⁻		Li(s)
potassium	K ⁺ (aq) + e ⁻		K(s)
calcium	Ca ²⁺ (aq) + 2e ⁻		Ca(s)
sodium	Na ⁺ (aq) + e ⁻		Na(s)
magnesium	Mg ²⁺ (aq) + 2e ⁻		Mg(s)
aluminium	Al ³⁺ (aq) + 3e ⁻		Al(s)
zinc	Zn ²⁺ (aq) + 2e ⁻		Zn(s)
iron	Fe ²⁺ (aq) + 2e ⁻		Fe(s)
nickel	Ni ²⁺ (aq) + 2e ⁻		Ni(s)
tin	Sn ²⁺ (aq) + 2e ⁻		Sn(s)
lead	Pb ²⁺ (aq) + 2e ⁻		Pb(s)
	Fe ³⁺ (aq) + 3e ⁻		Fe(s)
hydrogen	2H ⁺ (aq) + 2e ⁻		H ₂ (g)
	$S_4O_6^{2-}(aq) + 2e^-$		2S ₂ O ₃ ²⁻ (aq)
	SO ₄ ²⁻ (aq) + 2H ⁺ (aq) + 2e ⁻		$SO_3^{2-}(aq) + H_2O(\ell)$
copper	Cu ²⁺ (aq) + 2e ⁻		Cu(s)
	$2H_2O(\ell) + O_2(g) + 4e^-$		40H⁻(aq)
	l ₂ (s) + 2e ⁻		21 ⁻ (aq)
	Fe ³⁺ (aq) + e ⁻		Fe ²⁺ (aq)
silver	Ag ⁺ (aq) + e ⁻		Ag(s)
mercury	Hg ²⁺ (aq) + 2e ⁻		$Hg(\ell)$
	$Br_2(\ell) + 2e^-$		2Br ⁻ (aq)
	Cl ₂ (g) + 2e ⁻		2Cl⁻(aq)
gold	Au⁺(aq) + e⁻		Au(s)
	H ₂ O ₂ (aq) + 2H ⁺ (aq) + 2e ⁻		2H ₂ O(ℓ)