Understanding Diffusion with **netdiffuseR**Survival Analysis

Sunbelt 2016 INSNA

George Vega Yon, Stephani Dyal, Timothy Hayes, Thomas Valente

Department of Preventive Medicine University of Southern California

> Newport Beach, CA March 28, 2016

Setup

We will use the medical innovations data

```
# Loading the required packages
library(survival)
library(netdiffuseR)

# Loading the data
data("medInnovationsDiffNet")
medInnovationsDiffNet

## Dynamic network of class -diffnet-
## # of nodes : 125 (1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, ...)
## # of time periods : 18 (1 - 18)
## Type : directed
## Final prevalence : 1.00
## Static attributes : city, detail, meet, coll, attend, proage, length, ... (58)
## Dynamic attributes : -
```

Preparing the data

From **netdiffuseR** we will get the following covariates:

- ► Cohesive exposure: Proportion of ego's adopters at each time period
- Structural equivalence exposure: Same as before but using the structural equivalence graph instead of the baseline network.

```
# Structural equivalence exposure
medInnovationsDiffNet[["seexp"]] <- exposure(
  medInnovationsDiffNet, groupvar="city", alt.graph = "se")

## Warning in exposure(medInnovationsDiffNet, groupvar = "city", alt.graph =
## "se"): To use alt.graph="se" -valued- has been switched to TRUE.

# Cohesive exposure
medInnovationsDiffNet[["cohexp"]] <- exposure(medInnovationsDiffNet)</pre>
```

Coercing data into a dataframe

```
# Cetting the data for running the cox regression

dat <- diffnet.attrs(medInnovationsDiffNet, as.df = TRUE)

dat <- subset(
    dat,
    subset = !is.na(toa) & per <= toa & per >= date & per < 18,
    select = c(id, per, toa, date, city, proage, proage2, seexp, cohexp))

# Creating the event variable

dat$event <- with(dat, toa==per)

head(dat)
```

```
## 1d per toa date city proage proage2 seexp cohexp event

## 40 1058 1 4 1 1 2 2 1 1 0.05297801 0.000000 FALSE

## 67 2007 1 18 1 2 1 1 0.26751697 0.000000 FALSE

## 68 2008 1 7 1 2 2 1 0.26929505 0.6666667 FALSE

## 70 2010 1 1 1 2 2 3 0.024794743 0.000000 TRUE

## 107 3033 1 2 1 3 2 1 0.0000000 0.000000 FALSE

## 107 8033 1 2 1 3 2 1 0.0000000 0.000000 FALSE
```

The survival package

- ▶ In order to work, the survival package works with Surv objects.
- ▶ These store the response/events and the time frame during which these occurred.
- ▶ Usually take the following form: Surv(start, end, event).
- ▶ In the case of longitudinal diffusion data this should be as follows: Surv(period, toa, adopted), so, just like event analysis, we observe individuals since they are exposed until they adopt (and no further).

The survival package

The Suvreg object

created

► First, we need to create the Suvreg object using the function with the same name

```
# Needs a start, stop, event
surv_mi <- with(dat, Surv(date, per, event))
## Warning in Surv(date, per, event): Stop time must be > start time, NA
```

Notice the warning as the time frames should be grater than 1.

Now, let's take a look at the object itself

```
head(surv_mi, 10)

## [1] (NA,1+] (NA,1+] (NA,1+] (NA,1+] (NA,2+] (NA,2+] (NA,2+]

## [9] (NA,2+] (1,2+]
```

Fitting the model

All cities

```
# Fitting a model
set.seed(1988)
mymodel <- formula(surv_mi ~ factor(city) + proage + proage2 + seexp + cohexp)
out <- coxph(mymodel, data=dat)</pre>
```

Fitting the model

All cities (cont.)

Table 1: Fitting Proportional Hazards Regression Model: mymodel

	coef	exp(coef)	se(coef)	z	р
factor(city)2	-2.906	0.05471	0.7609	-3.819	0.000134
factor(city)3	-1.015	0.3623	0.616	-1.648	0.09932
factor(city)4	-1.876	0.1532	0.7801	-2.405	0.01617
proage	-0.06066	0.9411	0.2329	-0.2605	0.7945
proage2	-0.7402	0.477	1.02	-0.7254	0.4682
seexp	-5.427	0.004395	1.264	-4.292	1.767e-0
cohexp	-0.1089	0.8968	0.652	-0.1671	0.8673

Likelihood ratio test=35.75 on 7 df, p=8.077809e-06 n= 265, number of events= 34 (45 observations deleted due to missingness)

Firring the model

City 1

We also can fit the model by city. Further, we can use the subset option of the function and create the Surv on the call:

Table 2: Fitting Proportional Hazards Regression Model: Surv(date, per, event) \sim proage + proage2 + seexp + cohexp

	coef	exp(coef)	se(coef)	z	р
proage proage2 seexp	-0.4172 -2.872 -8.918	0.6589 0.05658 0.0001339	0.2714 1.243 2.09	-1.537 -2.311 -4.268	0.1243 0.02084 1.972e-05
cohexp	-0.1269	0.8809	0.8882	-0.1428	0.8864

Likelihood ratio test=32.91 on 4 df, p=1.243661e-06 n= 137, number of events= 22 (26 observations deleted due to missingness)

Firring the model

All but city 1

Further, we can fit a model where we include all cities but city 1:

Table 3: Fitting Proportional Hazards Regression Model: Surv(date, per, event) \sim proage + proage2 + seexp + cohexp

	coef	exp(coef)	se(coef)	z	р
proage proage2 seexp	0.2173 1.387 -3.198	1.243 4.004 0.04085	0.5158 1.502 1.871	0.4214 0.9237 -1.709	0.6735 0.3557 0.08749
cohexp	-3.111	0.04457	1.394	-2.231	0.02566

Likelihood ratio test=16.03 on 4 df, p=0.002985766 n= 128, number of events= 12 (19 observations deleted due to missingness)

Firring the model

City 1 (cont. 3)

More diganostics can be done as follows:

```
# Diagnostics
fit <- survfit(out)

plot(fit, mark.time=TRUE, lty=1:2,
    xlab="Time period", ylab="Survival")
legend("bottomleft", c("Adopters", "Non-adopters"),
    lty=2:1, bty="n")</pre>
```

