Semestrální zkouška ISS, řádný termín, 12.1.2017, skupina C

	beniestranii zkouska 155, radiiy termin, 12.1.2011, shapma e
Jedna perioda je dňa jako $x(t) = \begin{cases} 10 & \text{pro } 0 \le t < 1s \\ 3 & \text{pro } 1s \le t < 2s \\ 10 & \text{pro } 2s \le t < 3s \\ 0 & \text{pro } 3s \le t < 4s \end{cases}$ $P_s = \qquad \qquad$	
Příklad 2 Ve 2D-signálu (obrázku) o rozměrech 256×256 pixelů má pixel $x[0,0]$ hodnotu 1, všechny ostatní jsou nulové. Určete hodnoty všech koeficientů jeho 2D diskrétní Fourierovy transformace $X[m,n]$ pro $m \in 0 \dots 255$ a $n \in 0 \dots 255$ Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$. $x_1(t) = \begin{cases} 1 & \text{pro } -0.5 \le t \le 0.5 \\ 0 & \text{jinde} \end{cases}$ Označte prosím pečlivě hodnoty na obou osách. Příklad 4 Na obrázku jsou moduly koeficientů Fourierovy řady (FŘ) signálu $x(t)$. Do stejného obrázku nakreslete moduly koeficientů Fř. signálu $y(t) = x(t-3)$ ms). Příklad 5 Spektrální funkce signálu $x(t)$ je $x(t) = x(t)$ pro $t = x(t)$	
Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$. $x_1(t) = \begin{cases} 1 & \text{pro } -0.5 \leq t \leq 0.5 \\ 0 & \text{jinde} \end{cases}$ $x_2(t) = \begin{cases} 1 & \text{pro } 0 \leq t \leq 1 \\ 0 & \text{jinde} \end{cases}$ Označte prosím pečlivě hodnoty na obou osách. Příklad 4 Na obrázku jsou moduly koeficientů Fourierovy řady (FŘ) signálu $x(t)$. Do stejného obrázku nakreslete moduly koeficientů FŘ signálu $y(t) = x(t-3 \text{ ms})$. Příklad 5 Spektrální funkce signálu $x(t)$ je $x(t) = \begin{cases} 50 & \text{pro } -5000 \leq \omega \leq 5000 \\ 0 & \text{jinde} \end{cases}$	Příklad 2 Ve 2D-signálu (obrázku) o rozměrech 256×256 pixelů má pixel $x[0,0]$ hodnotu 1, všechny ostatní jsou nulové. Určete hodnoty všech koeficientů jeho 2D diskrétní Fourierovy transformace $X[m,n]$ pro $m\in 0\ldots 255$ a $n\in 0\ldots 255$
Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$. $x_1(t) = \begin{cases} 1 & \text{pro } -0.5 \leq t \leq 0.5 \\ 0 & \text{jinde} \end{cases}$ $x_2(t) = \begin{cases} 1 & \text{pro } 0 \leq t \leq 1 \\ 0 & \text{jinde} \end{cases}$ Označte prosím pečlivě hodnoty na obou osách. Příklad 4 Na obrázku jsou moduly koeficientů Fourierovy řady (FŘ) signálu $x(t)$. Do stejného obrázku nakreslete moduly koeficientů FŘ signálu $y(t) = x(t-3 \text{ ms})$. Příklad 5 Spektrální funkce signálu $x(t)$ je $x(t) = x(t)$ o pro $x(t) = x(t)$	Viz A
$x_1(t) = \begin{cases} 1 & \text{pro } -0.5 \le t \le 0.5 \\ 0 & \text{jinde} \end{cases} \qquad x_2(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 1 \\ 0 & \text{jinde} \end{cases}$ Označte prosím pečlivě hodnoty na obou osách. $y(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 1 \\ 0 & \text{jinde} \end{cases}$ Příklad 4 Na obrázku jsou moduly koeficientů Fourierovy řady (FŘ) signálu $x(t)$. Do stejného obrázku nakreslete moduly koeficientů FŘ signálu $y(t) = x(t-3 \text{ ms})$. $x_2(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 1 \\ 0 & \text{jinde} \end{cases}$ Příklad 5 Spektrální funkce signálu $x(t)$ je $x(j\omega) = \begin{cases} 50 & \text{pro } -5000 \le \omega \le 5000 \\ 0 & \text{jinde} \end{cases}$	vsldny X[m,n]=1
nakreslete moduly koeficientů FŘ signálu $y(t)=x(t-3 \text{ ms}).$ 2.5 2.5 1.5 1.5 2.6 1.5 2.7 Příklad 5 Spektrální funkce signálu $x(t)$ je $X(j\omega)=\begin{cases} 50 & \text{pro } -5000 \leq \omega \leq 5000 \\ 0 & \text{jinde} \end{cases}$	$x_1(t) = \begin{cases} 1 & \text{pro } -0.5 \le t \le 0.5 \\ 0 & \text{jinde} \end{cases}$ $x_2(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 1 \\ 0 & \text{jinde} \end{cases}$ Označte prosím pečlivě hodnoty na obou osách.
Příklad 5 Spektrální funkce signálu $x(t)$ je $X(j\omega) = \begin{cases} 50 & \text{pro } -5000 \le \omega \le 5000 \\ 0 & \text{jinde} \end{cases}$	nakreslete moduly koeficientů FŘ signálu $y(t) = x(t-3 \text{ ms}).$
Příklad 5 Spektrální funkce signálu $x(t)$ je $X(j\omega) = \begin{cases} 50 & \text{pro} -5000 \le \omega \le 5000 \\ 0 & \text{jinde} \end{cases}$ Napište a nakreslete spektrální funkci $Y(j\omega)$ signálu $y(t) = x(\frac{t}{10})$. $M = \frac{1}{10} $	ω [rad/s] \times 10 7
	Příklad 5 Spektrální funkce signálu $x(t)$ je $X(j\omega) = \begin{cases} 50 \text{ pro } -5000 \le \omega \le 5000 \\ 0 \text{ jinde} \end{cases}$ Napište a nakreslete spektrální funkci $Y(j\omega)$ signálu $y(t) = x(\frac{t}{10})$. $w = \frac{t}{10} =$

Příklad 6 Signál je ideálně vzorkován na vzorkovací frekvenci $F_s=32$ kHz. Napište vztah pro impulsní odezvu ideálního rekonstrukčního filtru $h_r(t)$ a nakreslete ji.
ve A
$h_r(t) = \dots$

Příklad 7 Systém se spojitým časem je popsán diferenciální rovnicí $\beta \frac{dy(t)}{dt} + y(t) = x(t)$, vstup a y(t) je výstup.

Napište přenosovou funkci systému H(s).

Viz A

Příklad 8 Přenosová funkce systému se spojitým časem má nulový bod $n_1 = 0$, dva komplexně sdružené nulové body a dva komplexně sdružené póly:

 $n_{2,3} = \pm 10000j$, $p_{1,2} = -10 \pm 5000j$.

Nakreslete přibližně modulovou frekvenční charakteristiku $|H(j\omega)|$ pro kruhové frekvence $\omega \in [0, 15000] \text{ rad/s}.$

Vypočtěte a do tabulky zapište kruhovou konvoluci dvou signálů s diskrétním časem o délce

= 4:	0	1	2	3
$x_1[n]$	4	3	1	2
$x_2[n]$	1	-1	0	1
$x_1[n] \otimes x_2[n]$	5	0	0	5

Hodnoty dvou vzorků signálu s diskrétním časem x[n] jsou: x[0] = 1, x[1] = -1, ostatní Příklad 10 jsou nulové. Vypočtěte hodnotu Fourierovy transformace s diskrétním časem (DTFT) $\tilde{X}(e^{j\omega})$ tohoto signálu pro kruhovou frekvenci $\omega=\pi$ rad/s.

$$\tilde{X}(e^{j\pi}) = 1.2 \cdot 0.4 + (-1) \cdot 0.4 = 1 + 1 = 2$$

normované kruhové frekvence $\omega \in [0, \pi]$ rad.

1

Příklad 16 Máte k disposici záznam $\Omega = 10^6$ šachových partií. Popište, jak odhadnete sdruženou pravděpodobnost toho, že v té samé partii jel v 5. tahu bílý pěšcem a v 7. tahu černý věží.

Viz A

Příklad 17 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

ω	1	2	3	4	5	6	7	8	9	10
$\xi_{\omega}[7]$	0.53	1.83	-2.25	0.86	0.31	-1.30	-0.43	0.34	3.57	2.76

Viz A

Provedte souborový odhad distribuční funkce F(x,7) a nakreslete ji.

Příklad 18 Na $\Omega=4000$ realizacích náhodného procesu byla naměřena tabulka (sdružený histogram) hodnot mezi časy n_1 a n_2 . Spočítejte korelační koeficient $R[n_1,n_2]$. Pomůcka: Jako reprezentativní hodnoty x_1 a x_2 při numerickém výpočtu integrálu $R[n_1,n_2]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x_1x_2p(x_1,x_2,n_1,n_2)dx_1dx_2$ použijte středy intervalů v tabulce.

intervaly	intervaly x_2						
x_1	[-20, -10]	[-10, 0]	[0, 10]	[10, 20]			
[10, 20]	0	0	0	0			
[0, 10]	0	1000	0	0			
[-10, 0]	0	0	1000	0			
[-20, -10]	0	0	0	2000			

Viz A

 $R[n_1, n_2] = \dots$

Příklad 19 V jazyce C máte v poli Xr o velikosti N/2+1 uložené hodnoty reálné složky diskrétní Fourierovy transformace pro $k=0\dots\frac{N}{2}$ a v poli Xi o stejné velikosti imaginární složky diskrétní Fourierovy transformace pro $k=0\dots\frac{N}{2}$. Napište kód pro odhad spektrální hustoty výkonu, výsledek nechť je v poli PSD o stejné velikosti.

Viz A

Příklad 20 Korelační koeficienty náhodného signálu R[k] jsou: R[0] = 6, R[1] = 1, ostatní jsou nulové. Určete, zda se jedná o bílý šum a svou odpověď zdůvodněte.

viz A

Bílý šum: ANO / NE, zdůvodnění: