Przetwarzanie Sygnałów Cyfrowych

Filtracja sygnałów, Filtry IIR

Jan Rosa 410269 AiR

Zadania do wykonania

W sprawozdaniu powinny znaleźć się:

- 1) Informacje na temat w jaki sposób projektujemy filtry IIR.
- 2) Różnice między filtrami FIR i IIR.
- 3) Wykonane zadania skrypty w m.plikach oraz otrzymane wykresy.
- 4) Wnioski z przeprowadzonych zadań.

Zad. 1

Korzystając z Przykładu 4 zaprojektować filtr IIR:

```
[b,a] = maxflat(4,1,0.3)
oraz
maxflat(4,'sym',0.3)
```

```
clear all; close all;
[b,a] = maxflat(4,1,0.3);
zplane(b ,a)
```


%fvtool(b,a);


```
[b,a] = maxflat(4,'sym',0.3);
zplane(b ,a)
```


%fvtool(b,a)

Zad2Sprawdzić stabilność filtru o współczynnikach

```
b = [1 -0.5]; a = [1 -2];
zplane(b ,a)
isstable(b,a)
```

Sprawdzić stabilność filtru o współczynnikach

```
b = [1 -0.1]; a = [-1 -0.1];
zplane(b ,a)
isstable(b,a)
```

Zad4

Sprawdzić stabilność filtru o współczynnikach

```
b = [0.9 -0.8]; a = [-0.9 -0.8];
zplane(b ,a)
isstable(b,a)
```

Zad5

Sprawdzić stabilność filtru o współczynnikach

```
b = [0.9 -0.8 1 1]; a = [-0.9 -0.8 -1];
zplane(b ,a)
isstable(b,a)
```

Zad6

Sprawdzić stabilność następującego filtru

```
m = [0 0 1 1 1 0 1 1 0 0];
f = [0 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 1];
[b, a] = yulewalk(10, f, m);
zplane(b ,a)
isstable(b,a)
```

Zad7

Przefiltrować sygnał chirp filtrem IIR maxflat(4,1,0.3). Narysować przebieg

czasowy i częstotliwościowy przefiltrowanego sygnału.

```
[b, a] = maxflat(4,1,0.3);
act_flag1 = isstable(b,a)
%zplane(b,a)
% wynik flag = 0
load chirp
t = (0:length(y)-1)/Fs;
% 1.6 sekundy
```

```
xfft=abs(fft(y));
xfft=xfft/13129;
x1=1:1:6564;
figure
subplot(2,2,1)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
subplot(2,2,2)
plot(t,y);
outsignal = filter(b,a,y);
subplot(2,2,4)
plot(t, outsignal);
xfft=abs(fft(outsignal));
xfft=xfft/13129;
x1=1:1:6564;
subplot(2,2,3)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
```

Przefiltrować sygnał chirp filtrem IIR

```
m = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1];
f = [0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.7 \ 0.8 \ 0.9 \ 1];
[b,a] = yulewalk(10,f,m);
act_flag1 = isstable(b,a)
%zplane(b,a)
% wynik flag = 0
%fvtool(b,a)
load chirp
t = (0:length(y)-1)/Fs;
% 1.6 sekundy
xfft=abs(fft(y));
xfft=xfft/13129;
x1=1:1:6564;
figure
subplot(2,2,1)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
subplot(2,2,2)
plot(t,y);
outsignal = filter(b,a,y);
subplot(2,2,4)
plot(t, outsignal);
xfft=abs(fft(outsignal));
xfft=xfft/13129;
x1=1:1:6564;
subplot(2,2,3)
bar(x1(1:6564), xfft(1:6564));
```

```
axis([0,6564, 0,0.01]);
```

Przefiltrować sygnał chirp filtrem IIR. Uwaga filtr jest niestabilny.

```
b = [0.9 - 0.8 \ 1 \ 1]; a = [-0.9 - 0.8 \ -1];
```

Narysować przebieg czasowy i częstotliwościowy przefiltrowanego sygnału.

Narysować charakterystykę częstotliwościową filtru.

```
b = [0.9 -0.8 1 1]; a = [-0.9 -0.8 -1];
act_flag1 = isstable(b,a)
%zplane(b,a)
% wynik flag = 0
%fvtool(b,a)
```



```
load chirp
t = (0:length(y)-1)/Fs;
% 1.6 sekundy
xfft=abs(fft(y));
xfft=xfft/13129;
x1=1:1:6564;

figure
subplot(2,2,1)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);

subplot(2,2,2)
```

```
plot(t,y);
outsignal = filter(b,a,y);

subplot(2,2,4)
plot(t, outsignal);
xfft=abs(fft(outsignal));
xfft=xfft/13129;
x1=1:1:6564;

subplot(2,2,3)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
```

Przefiltrować sygnał chirp filtrem IIR, Butterwortha. Użyć funkcji buttord i butter.

```
[n,Wn] = buttord([2000 3000]/5000,[500 4500]/5000,1,60);
[b, a] = butter(n, Wn);
act_flag1 = isstable(b,a)
%zplane(b,a)
% wynik flag = 0
%fvtool(b,a)
```



```
load chirp
t = (0:length(y)-1)/Fs;
% 1.6 sekundy
xfft=abs(fft(y));
```

```
xfft=xfft/13129;
x1=1:1:6564;
figure
subplot(2,2,1)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
subplot(2,2,2)
plot(t,y);
outsignal = filter(b,a,y);
subplot(2,2,4)
plot(t, outsignal);
xfft=abs(fft(outsignal));
xfft=xfft/13129;
x1=1:1:6564;
subplot(2,2,3)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
```

Przefiltrować sygnał chirp filtrem IIR, Butterwortha. Użyć funkcji buttord i butter.

```
[n,Wn] = buttord([2000 3000]/5000,[1800 3200]/5000,1,60);
[b, a] = butter(n, Wn);
act_flag1 = isstable(b,a)
%zplane(b,a)
% wynik flag = 0
%fvtool(b,a)
```



```
load chirp
t = (0:length(y)-1)/Fs;
% 1.6 sekundy
xfft=abs(fft(y));
xfft=xfft/13129;
x1=1:1:6564;
figure
subplot(2,2,1)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
subplot(2,2,2)
plot(t,y);
outsignal = filter(b,a,y);
subplot(2,2,4)
plot(t, outsignal);
xfft=abs(fft(outsignal));
xfft=xfft/13129;
x1=1:1:6564;
subplot(2,2,3)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
```

Przefiltrować sygnał chirp filtrem IIR, Butterwortha. Użyć funkcji ellipord i ellip.

```
[n,Wn] = ellipord([2200 2700]/5000,[2000 2900]/5000,1,60);
[b, a] = ellip(n,1 , 60, Wn);
act_flag1 = isstable(b,a)
%zplane(b,a)
%wynik flag = 0
%fvtool(b,a)
```



```
load chirp
t = (0:length(y)-1)/Fs;
% 1.6 sekundy
xfft=abs(fft(y));
xfft=xfft/13129;
x1=1:1:6564;

figure
subplot(2,2,1)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);

subplot(2,2,2)
```

```
plot(t,y);
outsignal = filter(b,a,y);

subplot(2,2,4)
plot(t, outsignal);
xfft=abs(fft(outsignal));
xfft=xfft/13129;
x1=1:1:6564;

subplot(2,2,3)
bar(x1(1:6564), xfft(1:6564));
```

Przefiltrować sygnał chirp filtrem IIR, eliptycznym. Użyć funkcji ellipord i ellip.

```
[n,Wn] = ellipord([1000 4000]/5000,[900 4100]/5000,1,60)
[b, a] = ellip(n,1 , 60, Wn);
act_flag1 = isstable(b,a)
%zplane(b,a)
%wynik flag = 0
%fvtool(b,a)
```



```
load chirp
t = (0:length(y)-1)/Fs;
% 1.6 sekundy
```

```
xfft=abs(fft(y));
xfft=xfft/13129;
x1=1:1:6564;
figure
subplot(2,2,1)
bar(x1(1:6564), xfft(1:6564));
axis([0,6564, 0,0.01]);
subplot(2,2,2)
plot(t,y);
outsignal = filter(b,a,y);
subplot(2,2,4)
plot(t, outsignal);
xfft=abs(fft(outsignal));
xfft=xfft/13129;
x1=1:1:6564;
subplot(2,2,3)
bar(x1(1:6564), xfft(1:6564));
```

Przefiltrować sygnał chirp filtrem dolnoprzepustowym Butterwortha z zastosowaniem funkcji butter(), sosfilt().

```
load chirp
t = (0:length(y)-1)/Fs;
[zhi,phi,khi] = butter(7,0.48,'low');
soshi = zp2sos(zhi,phi,khi);
freqz(soshi);
outhi = sosfilt(soshi,y);
figure
subplot(3,1,1)
plot(t,y); grid on;
title('Original Signal')
xlabel('Time (s)')
ys = ylim;
subplot(3,1,2)
plot(t,outhi)
title('Lowpass-Filtered Signal (time)');grid on;
xlabel('Time (s)')
ylim(ys)
subplot(3,1,3)
xfft = abs(fft(outhi));
xfft = xfft/13129;
x1 = 1:1:6564;
```

Przefiltrować sygnał chirp filtrem górnoprzepustowym Butterwortha z zastosowaniem funkcji butter(), sosfilt().

```
load chirp
t = (0:length(y)-1)/Fs;
[zhi,phi,khi] = butter(7,0.48,'high');
soshi = zp2sos(zhi,phi,khi);
freqz(soshi);
outhi = sosfilt(soshi,y);
figure
subplot(3,1,1)
plot(t,y); grid on;
title('Original Signal')
xlabel('Time (s)')
ys = ylim;
subplot(3,1,2)
plot(t,outhi)
title('Lowpass-Filtered Signal (time)');grid on;
xlabel('Time (s)')
ylim(ys)
subplot(3,1,3)
xfft = abs(fft(outhi));
xfft = xfft/13129;
x1 = 1:1:6564;
bar(x1(1:6564), xfft(1:6564)); grid on; xlabel("Frequency [Hz]"); title("Highpass=Filtred | Signature | Signature
```

Odpowiedzi

1) Informacje na temat w jaki sposób projektujemy filtry IIR.

W przypadku projektowania filtrów FIR wystarczyło zdefiniować funkcję transmitancji (czyli de facto określić charakterystykę częstotliwościową filtru), obliczyć odwrotną transformatę Fouriera tej funkcji, wynik transformaty poddać przesunięciu, i uzyskiwaliśmy odpowiedź impulsową filtru w dziedzinie czasu. W przypadku filtru IIR pożądane współczynniki filtru h(k) są dokładnie równe wartościom poszczególnych próbek odpowiedzi impulsowej. W przypadku filtrów IIR możemy postąpić tak samo (tzn. określić pożądaną funkcję transmitancji i obliczyć jej odwrotną transformatę Fouriera, aby uzyskać odpowiedź impulsową filtru), jednakże zła wiadomość jest taka, że nie ma bezpośredniej metody obliczenia współczynników a(k) i b(k) z odpowiedzi impulsowej. A więc stosunkowo proste techniki projektowania filtrów FIR nie mogą być zastosowane do projektowania filtrów IIR. Nie ma to jednak wielkiego znaczenia, bo obecnie nikt nie projektuje filtrów cyfrowych z kartką i ołówkiem w ręku, wykonując mniej lub bardziej żmudne obliczenia. Obecnie wszystko to wykonuje komputer (za pomocą odpowiedniego oprogramowania), a nasze zadanie ogranicza się tylko do wpisania pożądanych parametrów, jakimi ma wykazywać się nasz filtr.

2) Różnice między filtrami FIR i IIR.

Zła wiadomość jest taka, że nie ma takiej jednoznacznej odpowiedzi, który filtr jest lepszy. Nawet gdybyśmy chcieli wybrać jeden z filtrów do konkretnych struktur cyfrowych też trudno jednoznacznie orzec, że ten będzie OK, a tamten nie za bardzo. Spróbujmy jednak wskazać kilka czynników, które pozwolą nam dokonać takiego wyboru.

Tab. 1. Porównanie filtrów FIR i IIR

Właściwość	IIR	FIR
Liczba wymaganych mnożeń	Mała	Duża
Prawdopodobieństwo wystąpienia błędów	Może być duża dla	Bardzo małe
przepełnienia	struktury bezpośredniej	
Stabilność	Musi być projektowana	Zagwarantowana
Liniowość fazy	Nie	Zagwarantowana
Sprzętowe wymagania dla pamięci	Małe	Duże
Złożoność sprzętowa układu sterowania	Umiarkowana	Mała
filtru		
Dostępność oprogramowania	Dobra	Bardzo dobra
wspomagającego projektowanie		
Łatwość projektowania	Umiarkowana	Prosta

3) Kiedy bardziej wskazane jest użycie filtru FIR a kiedy filtru IIR?

Na przykład, jeśli wymagany jest filtr o dokładnie liniowej fazie, to jedynym poprawnym wyborem będzie filtr FIR. Jeżeli jednak wymagane jest, aby filtr pracował z bardzo wielką częstotliwością, a dopuszczalna jest niewielka nieliniowość fazy, możemy skłonić się ku filtrom IIR z ich zredukowaną liczbą operacji mnożenia dla jednej próbki sygnału\ wyjściowego.

4) Czy są jakieś różnice w budowie filtrów FIR i IIR.

Tak, IIR mają sprzężenie zwrotne:

Rys. 2. Struktura filtru FIR

Rys. 3. Struktura filtru IIR