PMPP 2015/16

Performance Tuning (3)

Course Schedule

12.10.2015	Introduction to PMPP
13.10.2015	Lecture CUDA Programming 1
19.10.2015	Lecture CUDA Programming 2
20.10.2015	Lecture CUDA Programming 3
26.10.2015	Lecture Parallel Basics, Exercise 1 assigned
27.10.2015	Questions and Answers (Q&A), S3 19, Room 2.8
2.11.2015	Intro Final Proj., Ex. 1 due, Ex. 2 assigned, Lecture PRAM
3.11.2015	Lecture PRAM (2)
9.11.2015	Final Projects assigned, L. Parallel Sort., Exercise 2 due
10.11.2015	Questions and Answers (Q&A)
16.11.2015	Questions and Answers (Q&A)
17.11.2015	Questions and Answers (Q&A)
23.11.2015	1 st Status Presentation Final Projects
24.11.2015	1st Status Presentation Final Projects (continued)
30.11.2015	Lecture Design Patterns
1.12.2015	Questions and Answers (Q&A)

(Preliminary) Course Schedule

	7.12.2015	Lecture Design Patterns (2), Performance Tuning
	8.12.2015	Questions and Answers (Q&A)
	14.12.2015	Performance Tuning (2)
	15.12.2015	Questions and Answers (Q&A)
	11.1.2016	2 nd Status Presentation Final Projects
	12.1.2016	2 nd Status Presentation Final Projects (continued)
	18.1.2016	Performance Tuning (3)
you are here	19.1.2016	
	25.1.2016	
	26.1.2016	
	1.2.2016	
	2.2.2016	
	8.2.2016	Final Presentation Final Projects
	9.2.2016	Final Presentation Final Projects (continued)

Overview

- Instruction Level Parallelism
- Identifying Performance Limiters
 - Instruction Limited Kernels
 - Latency Limited Kernels
 - Bandwidth Limited Kernels
 - Local Memory Optimizations
- Multi GPU Multi Threading
 - Brief review of the scenarios
 - Single CPU process, multiple GPUs
 - GPU selection, UVA, P2P
 - Multiple processes
 - Needs CPU-side message passing
 - Dual-IOH CPU systems and NUMA

Images and slides partially by developer.nvidia.com

Memory Bandwidth Limited Kernel

- We covered global memory, shared memory and access pattern already but there is one item left
- Additional "memories"
 - Local memory
 - Up next but we don't really want to use it anyways
 - Texture and Constant
 - Read-only
 - Data resides in global memory
 - Read through different caches
 - Additional fast on-chip memory
 - Avoid polluting L1

Local Memory

- Name refers to memory where registers and other thread-data is spilled
 - Usually when one runs out of SM resources
 - "Local" because each thread has its own private area
- Details:
 - Not really a "memory" bytes are stored in global memory
 - Differences from global memory:
 - Addressing is resolved by the compiler
 - Stores are cached in L1

LMEM Access Operation

- A store writes a line to L1
 - If evicted, that line is written to L2
 - The line could also be evicted from L2, in which case it's written to DRAM
- A load requests the line from L1
 - If a hit, operation is complete
 - If a miss, then requests the line from L2
 - If a miss, then requests the line from DRAM
- A store always happens before a load
 - Only GPU threads can access LMEM addresses

When is Local Memory Used?

- Register spilling
 - Fermi hardware limit is 63 registers per thread
 - Programmer can specify lower registers/thread limits:
 - To increase occupancy (number of concurrently running threads)
 - -maxrregcount option to nvcc, __launch_bounds__() qualifier in the code
 - LMEM is used if the source code exceeds register limit
- Arrays declared inside kernels, if compiler can't resolve indexing
 - Registers aren't indexable, so have to be placed in LMEM

How Does LMEM Affect Performance?

- It could hurt performance in two ways:
 - Increased memory traffic
 - Increased instruction count
- Spilling/LMEM usage isn't always bad
 - LMEM bytes can get contained within L1
 - Avoids memory traffic increase
 - Additional instructions don't matter much if code is not instructionthroughput limited

General Analysis/Optimization Steps

- Check for LMEM usage
 - Compiler output
 - nvcc option: –Xptxas –v,–abi=no
 - Will print the number of Imem bytes for each kernel (only if kernel uses LMEM)
 - Profiler
- Check the impact of LMEM on performance
 - Bandwidth-limited code:
 - Check how much of L2 or DRAM traffic is due to LMEM
 - Arithmetic-limited code:
 - Check what fraction of instructions issued is due to LMEM
- Optimize:
 - Try: increasing register count, increasing L1 size, using non-caching loads

Register Spilling: Analysis

- Profiler counters:
 - I1_local_load_hit, I1_local_load_miss, I1_local_store_hit, I1_local_store_miss
 - Counted for a single SM, incremented by 1 for each 128-byte transaction
- Impact on memory
 - Any memory traffic that leaves SMs (goes to L2) is expensive
 - L2 counters of interest: read and write sector queries
 - Actual names are longer, check the profiler documentation
 - Incremented by 1 for each 32-byte transaction
 - Compare:
 - Estimated L2 transactions due to LMEM misses in all the SMs
 - 2*(number of SMs)*4*I1_local_load_miss
 - 2: load miss implies a store happened first
 - Number of SMs: I1_local_load_miss counter is for a single SM
 - 4: local memory transaction is 128-bytes = 4 L2-transactions
 - Sum of L2 read and write queries (not misses)
- Impact on instructions
 - Compare the sum of all LMEM instructions to total instructions issued

When Register Spilling is Problematic

- Try increasing the limit of registers per thread
 - Use a higher limit in –maxrregcount, or lower thread count for __launch_bounds__
 - Likely reduces occupancy, potentially reducing execution efficiency
 - may still be an overall win fewer total bytes being accessed
- Try using non-caching loads for global memory
 - nvcc option: -Xptxas –dlcm=cg
 - Potentially fewer contentions with spilled registers in L1
- Increase L1 size to 48KB
 - Default is 16KB L1, larger L1 increases the chances for LMEM hits
 - Can be done per kernel or per device:
 - cudaFuncSetCacheConfig(), cudaDeviceSetCacheConfig()

Case Study

- Time Domain Finite Difference of the 3D Wave Equation
 - Simulates seismic wave propagation through Earth subsurface
 - Largely memory bandwidth-bound
 - Running more threads concurrently helps saturate memory bandwidth
 - Thus, to run 1024 threads per Fermi SM we specify 32 register maximum per thread
- Check for LMEM Use
 - Spills 44 bytes per thread when compiled down to 32 registers per thread

```
$ nvcc -arch=sm_20 -Xptxas -v,-abi=no,-dlcm=cg fwd_o8.cu -maxrregcount=32 ptxas info : Compiling entry function '_Z15fwd_3D_orderX2blLi4ELi9EEvPfS0_S0_iiiii' for 'sm_20' ptxas info : Used 32 registers, 44+0 bytes Imem, 6912+0 bytes smem, 76 bytes cmem[0], ...
```


Case Study: Impact on Memory

- Using profiler counters:
 - SM counters:
 - I1_local_load_miss: 564,332
 - I1_local_load_hit: 91,520
 - I1_local_store_miss: 269,215
 - I1_local_store_hit: 13,477
 - inst_issued: 20,412,251
 - L2 query counts:
 - Read: 99,435,608
 - Write: 33,385,908
 - Total: 132,821,516
- This was on a 16-SM GPU

Case Study: Impact on Memory

- Using profiler counters:
 - SM counters:

I1_local_load_miss: 564,332

I1_local_load_hit: 91,520

I1_local_store_miss: 269,215

I1_local_store_hit: 13,477

inst_issued: 20,412,251

L2 query counts:

Read: 99,435,608

Write: 33,385,908

■ Total: 132,821,516

This was on a 16-SM GPU

Load L1 hit rate: 13.95%

Estimated L2 queries per SM due

to LMEM:

2*4*564,332 =

4,514,656

Estimated L2 queries due to LMEM

of all 16 SMs:

16*4,514,656 =

72,234,496

Percentage of all L2 queries due to

LMEM:

72,234,496 /

132,821,516 = **53.38%**

Case Study: Impact on Memory

- Using profiler counters:
 - SM counters:
 - |1 |000| load miss. 564.222
 - 11 **53.38%** of memory traffic between
 - I1 the SMs and L2/DRAM is due to
 - I1 LMEM (not useful from the
 - in: application's point of view).
 - L2 qu€
 - Since application is bandwidth-
 - W limited, reducing spilling could help performance.
 - Tot
- This was on a 16-SM GPU

Load L1 hit rate: 13.95%

Estimated L2 queries per SM due

to LMEM:

2*4*564,332 =

4,514,656

Estimated L2 queries due to LMEM of all 16 SMs:

16*4,514,656 =

72,234,496

Percentage of all L2 queries due to LMEM:

72,234,496 /

132,821,516 = **53.38%**

Case Study: Impact on Instructions

- Using profiler counters:
 - SM counters:
 - I1_local_load_miss: 564,332
 - I1_local_load_hit: 91,520
 - I1_local_store_miss: 269,215
 - I1_local_store_hit: 13,477
 - inst_issued: 20,412,251
 - L2 query counts:
 - Read: 99,435,608
 - Write: 33,385,908
 - Total: 132,821,516
- This was on a 16-SM GPU

Total instructions due to LMEM:

938,944

Percentage of instructions due to

LMEM:

938,944 / 20,412,251 =

4.60%

Case Study: Impact on Instructions

- Using profiler counters:
 - SM counters:
 - |1 |0001 load miss. 564.222

 - 11
 - in
 - L2 que
 - Re
- - Tol

4.6% is not significant enough to worry about

(Removing spilling completely cannot improve performance by more than 4.6%, and then only if kernel is instruction-limited)

This was on a 16-SM GPU

Total instructions due to LMEM: 938,944

Percentage of instructions due to LMEM:

> 938,944 / 20,412,251 = 4.60%

Case Study: Optimizations

- Try increasing register count
 - Remove the –maxrregcount=32 compiler option
 - 46 registers per thread, no spilling
 - Performance improved by 1.22x
- Increase L1 cache size
 - Keeping the 32 register maximum and spilling 44 bytes
 - Add cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); call
 - L1 LMEM load hit rate improved to 98.32%
 - Estimated 1.63% of all requests to L2 were due to LMEM
 - way too small to worry about
 - 1.63 was computed as on the previous slides (not by 100% 98.32%)
 - performance improved by 1.45x
- Application was already using non-caching loads for other reasons

Spilling Review

- Doesn't always decrease performance, but when it does it's because of:
 - Increased pressure on the memory bus
 - Increased instruction count
- Use the profiler to determine:
 - Bandwidth-limited codes: LMEM L1 miss impact on memory bus (to L2) for
 - Arithmetic-limited codes: LMEM instruction count as percentage of all instructions
- Optimize by
 - Increasing register count per thread
 - Incresing L1 size
 - Using non-caching GMEM loads

Overview

- Instruction Level Parallelism
- Identifying Performance Limiters
 - Instruction Limited Kernels
 - Latency Limited Kernels
 - Bandwidth Limited Kernels
 - Local Memory Optimizations
- Multi GPU Multi Threading
 - Brief review of the scenarios
 - Single CPU process, multiple GPUs
 - GPU selection, UVA, P2P
 - Multiple processes
 - Needs CPU-side message passing
 - Dual-IOH CPU systems and NUMA

Several Scenarios

- We assume CUDA 4.0 or later
 - Simplifies multi-GPU programming
- Working set is decomposed across GPUs
 - Reasons:
 - To speedup computation
 - Working set exceeds single GPU's memory
 - Inter-GPU communication is needed
- Two cases:
 - GPUs within a single network node
 - GPUs across network nodes

Multiple GPUs within a Node

- GPUs can be controlled by:
 - A single CPU thread
 - Multiple CPU threads belonging to the same process
 - Multiple CPU processes
- Definitions used:
 - CPU process has its own address space
 - A process may spawn several threads, which can share address space

Single CPU thread – Multiple GPUs

- All CUDA calls are issued to the current GPU
 - One exception: asynchronous peer-to-peer memcopies
- cudaSetDevice() sets the current GPU
- Asynchronous calls (kernels, memcopies) don't block switching the GPU
 - The following code will have both GPUs executing concurrently:

```
cudaSetDevice( 0 );
kernel<<<...>>(...);
cudaSetDevice( 1 );
kernel<<<...>>(...);
```


Devices, Streams, and Events

- CUDA streams and events are per device (GPU)
 - Determined by the GPU that's current at the time of their creation
 - Each device has its own default stream (aka 0- or NULL-stream)
- Using streams and events
 - Calls to a stream can be issued only when its device is current
 - Event can be recorded only to a stream of the same device
- Synchronization/query:
 - It is OK to synchronize with or query any event/stream
 - Even if stream/event belong to one device and a different device is current


```
cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;
cudaSetDevice( 0 );
cudaStreamCreate( &streamA); // streamA and eventA belong to device-0
cudaEventCreate( &eventA );
cudaSetDevice(1);
cudaStreamCreate( &streamB); // streamB and eventB belong to device-1
cudaEventCreate( &eventB );
                                                                                                  OK:
kernel<<<..., streamB>>>(...);
                                                                                   • device-1 is current
cudaEventRecord( eventB, streamB );

    eventB and streamB belong to device-1

cudaEventSynchronize( eventB );
```



```
cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;
cudaSetDevice( 0 );
cudaStreamCreate( &streamA); // streamA and eventA belong to device-0
cudaEventCreate( &eventA );
cudaSetDevice(1);
cudaStreamCreate( &streamB); // streamB and eventB belong to device-1
cudaEventCreate( &eventB );
                                                                                               ERROR:
kernel<<<..., streamA>>>(...);

    device-1 is current

cudaEventRecord( eventB, streamB );

    streamA belongs to device-0

cudaEventSynchronize( eventB );
```



```
cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;
cudaSetDevice( 0 );
cudaStreamCreate( &streamA); // streamA and eventA belong to device-0
cudaEventCreate( &eventA );
cudaSetDevice(1);
cudaStreamCreate( &streamB); // streamB and eventB belong to device-1
cudaEventCreate( &eventB );
                                                                                              ERROR:
kernel<<<..., streamB>>>(...);

    eventA belongs to device-0

cudaEventRecord( eventA, streamB );
                                                                          • streamB belongs to device-1
cudaEventSynchronize( eventB );
```



```
cudaStream_t streamA, streamB;
cudaEvent t eventA, eventB;
cudaSetDevice( 0 );
cudaStreamCreate( &streamA );
                                         // streamA and eventA belong to device-0
cudaEventCreaet( &eventA );
cudaSetDevice( 1 );
cudaStreamCreate( &streamB );
                                         // streamB and eventB belong to device-1
cudaEventCreate( &eventB );
kernel<<<..., streamB>>>(...);
cudaEventRecord( eventB, streamB );
cudaSetDevice( 0 );
cudaEventSynchronize( eventB );
kernel<<<..., streamA>>>(...);
```

OK:

- device-0 is current
- synchronizing/querying events/streams of other devices is allowed
 - here, device-0 won't start executing the kernel until device-1 finishes its kernel

CUDA 4.0 and Unified Addressing

- CPU and GPU allocations use unified virtual address space
 - Think of each one (CPU, GPU) getting its own range of virtual addresses
 - Thus, driver/device can determine from the address where data resides
 - Allocation still resides on a single device (can't allocate one array across several GPUs)
 - Requires:
 - 64-bit Linux or 64-bit Windows with TCC driver
 - Fermi or later architecture GPUs (compute capability 2.0 or higher)
 - CUDA 4.0 or later
- A GPU can dereference a pointer that is:
 - an address on another GPU
 - an address on the host (CPU)

UVA and Multi-GPU Programming

- Two interesting aspects:
 - Peer-to-peer (P2P) memcopies
 - Accessing another GPU's addresses
- Both require and peer-access to memory be enabled:
 - cudaDeviceEnablePeerAccess(peer_device, 0)
 - Enables current GPU to access addresses on peer_device GPU
 - cudaDeviceCanAccessPeer(&accessible, dev_X, dev_Y)
 - Checks whether dev_X can access memory of dev_Y
 - Returns 0/1 via the first argument
 - Peer-access is not available if:
 - One of the GPUs is pre-Fermi
 - GPUs are connected to different Intel IOH chips on the motherboard
 - QPI and PCIe protocols disagree on P2P


```
int gpu1 = 0;
int gpu2 = 1;
cudaSetDevice(gpu1);
cudaMalloc( &d_A, num_bytes );
int accessible = 0;
cudaDeviceCanAccessPeer( &accessible, gpu2, gpu1 );
if( accessible )
   cudaSetDevice( gpu2 );
   cudaDeviceEnablePeerAccess( gpu1, 0 );
   kernel<<<...>>>( d A);
```

Even though kernel executes on gpu2, it will access (via PCIe) memory allocated on gpu1

Peer-to-peer Memcopy

- cudaMemcpyPeerAsync(
 void* dst_addr, int dst_dev,
 void* src_addr, int src_dev,
 size_t num_bytes,
 cudaStream_t stream);
 - Copies the bytes between two devices
 - stream must belong to the source GPU
 - There is also a blocking (as opposed to Async) version
- If peer-access is enabled
 - Bytes are transferred along the shortest PCIe path
 - No staging through CPU memory
- If peer-access is not available
 - CUDA driver stages the transfer via CPU memory

How Does P2P Memcopy Help?

- Ease of programming
 - No need to manually maintain memory buffers on the host for inter-GPU exchanges
- Performance
 - Especially when communication path does not include IOH (GPUs connected to a PCIe switch):
 - Single-directional transfers achieve up to ~6.6 GB/s
 - Duplex transfers achieve ~12.2 GB/s
 - 4-5 GB/s if going through the host
 - Disjoint GPU-pairs can communicate without competing for bandwidth

- 1D decomposition of data set, along the slowest varying dimension (z)
- GPUs have to exchange halos with their left/right neighbors
- 2-phase approach:
 - Each GPU sends data to the "right"
 - Each GPU sends data to the "left"

Example 6: One 8-GPU Node Configuration

Example 6: "Right" phase

Example 6: "Right" phase

Dashed lines: "down" direction of transfer on a PCIe link
Solid lines: "up" direction of transfer on a PCIe link
There are no conflicts on the links – PCIe is duplex
All transfers happen simultaneously
Aggregate throughput: ~42 GB/s

Example 6: Code Snippet

- Note that a device isn't set prior to each copy
 - No need as async P2P memcopies use the source device

You may have to insert a device-synchronization between the phases:

- prevents the "last" device from sending in the "right" phase, which would cause linkcontention results is correct, some performance is lost
- this can happen because all the calls above are asynchronous

Typical Pattern for Multi-GPU Code

- Stage 1:
 - Compute halos (data to be sent to other GPUs)
- Stage 2:
 - Exchange data with other GPUs
 - Use asynchronous copies
 - Compute over internal data
- Synchronize

Review Single CPU-thread/multiple-GPUs

- CUDA calls are issued to the current GPU
 - Pay attention to which GPUs streams and events belong
- GPUs can access each other's memory
 - Keep in mind that still at PCIe latency/bandwidth
- P2P memcopies between GPUs enable high aggregate throughputs
 - P2P not possible for GPUs connected to different IOH chips
- Try to overlap communication and computation
 - Issue to different streams

Multiple threads/processes

- Multiple threads of the same process
 - Communication is same as single-thread/multiple-GPUs
- Multiple processes
 - Processes have their own address spaces
 - No matter if they're on the same or different nodes
 - Thus, some type of CPU-side message passing (MPI, ...) will be needed
 - Exactly the same as you would use on non-GPU code

Multiple-Processes

- Inter-GPU transfer pattern:
 - D2H memcopy
 - CPU-CPU message passing
 - H2D memcopy
- Pinned memory:
 - Both GPU and network transfers are fastest when operating with pinned CPU memory
 - Pinning prevents memory pages from being swapped out to disk
 - Enables DMA transfers by GPU or network card
- GPU direct:
 - Enables both NVIDIA GPUs and Infiniband devices to share pinned memory
 - Either can DMA from the same pinned memory region
 - Eliminates redundant CPU-CPU copies

Additional System Issues to Consider

- Host (CPU) NUMA affects PCIe transfer throughput in dual-IOH systems
 - Transfers to "remote" GPUs achieve lower throughput
 - One additional QPI hop
 - This affects any PCIe device, not just GPUs
 - Network cards, for example
- When possible, lock CPU threads to a socket that's closest to the GPU's IOH chip
 - For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY, etc.
- Number of PCIe hops doesn't seem to affect throughput

"Local" H2D Copy: 5.7 GB/s

"Remote" H2D Copy: 4.9 GB/s

"Local" D2H Copy: 6.3 GB/s

"Remote" H2D Copy: 4.3 GB/s

Review Multi GPU

- CUDA provides a number of features to facilitate multi-GPU programming
- Single-process / multiple GPUs:
 - Unified virtual address space
 - Ability to directly access peer GPU's data
 - Ability to issue P2P memcopies
 - No staging via CPU memory
 - High aggregate throughput for many-GPU nodes
- Multiple-processes:
 - GPU Direct to maximize performance when both PCIe and IB transfers are needed
- Streams and asynchronous kernel/copies
 - Allow overlapping of communication and execution
 - Applies whether using single- or multiple processes to control GPUs
- Keep NUMA in mind on multi-IOH systems

