REMARKS

The Office Action mailed July 29, 2004, has been carefully reviewed and the foregoing amendment and following remarks are made in consequence thereof.

Claims 1-3, 5-9, 11-16, and 18 are now pending in this application. Claims 1-3, 5-9, 11-16, and 18 stand rejected. Claims 4, 10, and 17 have been canceled.

Applicant, traverses the objection to the specification and respectfully disagrees with the assertion in the Office Action that a conflict exists between the claimed subject matter and the subject matter described in the specification. Specifically, Figures 2, 4, and 5 illustrate a fuel system interface receiving electrically and mechanically originated overspeed signals that all couple through HI/LO signal 74 to selector valve 50, as described in the specification. Claim 1 recites "the fuel system interface is configured to receive an electrically originated over-speed signal inputted from the engine wherein the fuel system interface is also configured to receive a mechanically originated over-speed signal inputted from the engine." Applicant respectfully submits that there is no conflict between the original specification and Figures in that each describes and illustrates, respectively, three electrical and mechanical devices that originate over-speed signals.

The Office Action alleges that because the electrical and mechanical devices that originate over-speed signals are illustrated separately in Figures 2, 4, and 5 that as such, only embodiments that incorporate only one device that originates an over-speed signal can be claimed. Moreover, the Office Action relies on only limited portions of the specification and claims to narrowly interpret the claims, rather than taking the specification and claims as a whole for what they teach. Furthermore, the Applicant also disagrees with the assertion that Applicant may not amend the specification to conform with the claims because of the alleged conflict. Rather, as described in In re Benno, 226 USPQ 683 (Fed. Cir. 1985). MPEP 2163.06 the premise that "a claim is part of the disclosure" is principally significant in the situation where a patent application, as filed, contains a claim that specifically discloses something not disclosed in the descriptive part of the specification (claims being technically part of the "specification" 35 U.S.C. 112, second paragraph). In such a case, under the reasoning of In re Benno, the Applicant may amend the specification without adding "new

matter" within the meaning of § 132. Accordingly, Applicant respectfully submits that specification may be amended to conform with the claims as originally submitted without adding new matter.

Furthermore, 37 C.F.R. 1.118 recites, "[all amendments to the specification, including the claims, and the drawings filed after the filing date of the application must conform to at least one of them as it was at the time of the filing of the application." Therefore Applicant respectfully submits that the specification may be amended to conform to the claims as originally submitted without adding new matter, and as such, that there is no conflict between the claimed subject matter and the subject matter described in the specification. Specifically, Claim 1, as originally filed, recited a method for assembling a gas turbine engine to prevent rotor over-speeding, wherein the method comprised "coupling a fuel system interface to the gas turbine engine such that the fuel system interface receives electrically and mechanically originated over-speed signals inputted from the engine...." The figures illustrate, and the specification, as originally submitted, describes a fuel system interface including redundant, independent electrically and mechanically originated over-The present specification describes a problem with known fuel system speed signals. interfaces, at page 1, line, in that they are "non-redundant". Therefore, describing and claiming, in one embodiment of the present invention, a redundant fuel system interface that includes independent electrically and mechanically originated over-speed signals describes a system that overcomes the identified problem. Moreover, the fact that each type of electrically or mechanically originated signal is illustrated in separate figures coupled to an identical fuel system interface does not limit the fuel system interface to only these exemplary embodiments when the claims and specification are not so limiting.

Moreover, Applicant respectfully disagrees with the assertion in the Office Action that the specification only supports an embodiment of the invention wherein there can be only one independent speed sensing system that derives only a mechanically originated or an electrically originated signal. Rather, the Office Action only cites a portion of the sentence and does not take the whole sentence into consideration to determine what the specification teaches. Specifically, the specification as originally submitted recites at page 1, line 27 to page 2, line 2, that "[i]n an exemplary embodiment, a fuel system interface for a gas turbine engine prevents a rotor from over-speeding and receives an over-speed signal from either an

electrically or a mechanically originated over-speed sensing system." Typically, as is known in the art, a redundant fuel system interface would only receive a signal from either an electrically or a mechanically originated over-speed sensing system because the first speed sensing system to detect an exceeded a limit, stops the fuel flow to the gas turbine engine such that the turbine speed is reduced before the second of the redundant over-speed sensing system is able to actuate. Moreover, the sentence only describes "an exemplary embodiment," but the Office Action asserts that this can be the only embodiment. Similarly, the Office Action states, "fuel flow can only be initiated when the [emphasis added] overspeed signal is removed," as evidence that the Applicant intended only one over-speed sensing system, however, if only one of a plurality of redundant over-speed sensing systems is able to actuate, then fuel flow would only be able to be initiated when the overspeed signal is removed. Furthermore, the entire sentence referred to in the Office Action states "[f]urthermore priority logic utilized by the overspeed system provides that when the fuel system interface overspeed signal described in this quote is in reference to the priority logic utilized by the over-speed."

Additionally, the Office Action recites, "[t]he interface accommodates overspeed signals that originated from electronic or [emphasis added] mechanically originated signals...," as evidence that Applicant intended embodiments of the present invention only having electrically or mechanical speed sensors. However, the same sentence also recites that "[t]he interface accommodates overspeed signals [emphasis added] that originated from electronic or mechanical speed sensors [emphasis added]...." Applicants respectfully submit that all sentences and the specification, including the claims, and the drawings, should be relied on in assessing the description of the invention as a whole rather than relying only on isolated small portions of a sentence to attempt to show evidence for a particular limited embodiment of the present invention.

Accordingly, for at least the reasons set forth above, Applicant respectfully requests the objection to the specification be withdrawn.

The objection to the drawings under 37 C.F.R. 1.83(a) is respectfully traversed. Applicant respectfully submits that every feature of the invention as recited in the claims is clearly illustrated in the Figures. More specifically, and with respect to the structure of Claim

1 for example, Figure 2 illustrates fuel system interface 36 including selector valve 67 receiving an electrically-originated overspeed signal from an independent speed sensing system 40. Figure 4 illustrates the same fuel system interface selector valve 67 receiving a mechanically-originated overspeed signal from an independent speed sensing system 102. Accordingly, as is recited in Claim 1, Applicant submits that a fuel system interface including a shutoff shuttle valve is illustrated receiving electrically-originated overspeed signals (illustrated in Figure 2) and mechanically-originated overspeed signals (illustrated in Figure 4). For the reasons set forth above, Applicant respectfully requests the objection to the drawings be withdrawn.

The rejection of Claims 1-3, 5 under 35 U.S.C. § 112, first paragraph, is respectfully traversed. Applicant respectfully submits that the specification as originally filed, does in fact describe a fuel system interface which receives electrically and mechanically originated over-speed signals. Claim 1, as originally filed, recited a method for assembling a gas turbine engine to prevent rotor over-speeding, wherein the method comprised "coupling a fuel system interface to the gas turbine engine such that the fuel system interface receives electrically and mechanically originated over-speed signals inputted from the engine...."

As is well established, "the Claims as filed in the original specification are part of the disclosure...the applicant may amend the specification to include the claimed subject matter." In re Benno, 226 USPQ 683 (Fed. Cir. 1985). MPEP 2163.06. Accordingly, the detailed description portion of the specification has been amended to more clearly describe that the fuel system interface illustrated in Figure 2 is the same fuel system interface illustrated in Figures 4 and 5, with the only difference being which independent speed sensing system coupled to the fuel system interface is actually illustrated in each specific Figure. Specifically, Figure 2, as originally filed, illustrates fuel system interface 36 including selector valve 67 receiving an electrically-originated overspeed signal from an independent speed sensing system 40, and Figure 4, as originally filed, illustrates the same fuel system interface selector valve 67 receiving a mechanically-originated overspeed signal from an independent speed sensing system 102.

Moreover, Applicant respectfully submits that one of ordinary skill in the art, after reading the specification in light of the Figures, would understand that the same fuel system

interface selector valve is illustrated in Figures 2, 4, and 5, and as such, would then understand the fuel system interface and the selector valve operation as recited in the Claims, including the interaction between the selector valve and the electrical and mechanical originated overspeed signals.

Furthermore, Applicant respectfully disagrees with the assertion in the Office Action that one of ordinary skill in the art would not know "what is the purpose of having electrically and mechanically originated over-speed signals, and how the electrical and mechanical speed sensors would operate in conjunction with each other, and how they would interface with the fuel control system." The Federal Circuit has opined in Verve LLC v. Crane Cams, Inc., 65 USPQ 2d 1051, 1053-1054 (Fed. Cir. 2002), that "[p]atent documents are written for persons familiar with the relevant field; the patentee is not required to include in the specification information readily understood by practitioners, lest every patent be written as a comprehensive tutorial and treatise for the generalist, instead of a concise statement for persons in the field." In the present case, Applicant respectfully submits that that one skilled in the art would understand the purpose of having electrically and mechanically originated over-speed signals to overcome a shortcoming in the prior art of non-redundant speed sensors. Furthermore Applicant submits that the specification is complete and that one skilled in the art would understand how the fuel system interface receives electrically and mechanically originated over-speed signals because each over-speed sensor couples to the fuel system interface to the same valve. In addition, Applicant also submits that one of ordinary skill in the art would not need to understand how the electrical and mechanical speed sensors would operate in conjunction with each other beyond each sensor being redundant of each other sensor, as the invention is not directed towards the interaction of the electrical and mechanical speed sensors, but rather is directed towards a fuel system interface that receives electrically and mechanically originated over-speed signals from the engine.

Moreover, even if the subject matter of the claim is not shown in the specification or drawings, the claim should not be attacked either by objection or rejection because this subject matter is lacking in the drawing and description. It is the drawing and description that are defective, not the claim. MPEP 608.01(k).

In addition, Applicant respectfully submits that the Section 112 rejections of Claims 1-3, 5-9, 11-16, and 18 is improper, as no express findings of fact, which support the lack of written description conclusion, have been presented to Applicant in accordance with MPEP 2163.04.

Accordingly, for at least the reasons set forth above, Applicant requests the Section 112, first paragraph, rejections of Claims 1-3, and 5 be withdrawn.

The rejection of Claims 6-9, 11-16, and 18 under 35 U.S.C. § 112, first paragraph, is respectfully traversed. Claim 6 recites "[a] fuel system interface for a gas turbine engine including a rotor, said interface coupled to the gas turbine engine to receive an electrically originated over-speed signal from the engine, said interface comprising a shutoff shuttle valve for stopping engine fuel flow in response to the over-speed signal received, and based on pre-defined priority selection logic to prevent the rotor from over-speeding, wherein said priority selection logic relates a plurality of different gas turbine engine operating conditions to the overspeed signal, and provides that when said fuel system interface is activated, as a result of receiving an over-speed indication, fuel flow is only initiated when the over-speed signal is removed." Claim 13 recites a gas turbine engine including "a fuel delivery system configured to supply fuel to said engine for operating said rotor...a fuel system interface coupled to said fuel delivery system and comprising a selector valve coupled to a shutoff shuttle valve, said selector valve configured to receive a mechanically originated over-speed signal from the engine, said shutoff shuttle valve configured for stopping engine fuel flow in response to the over-speed signal received, and based on pre-defined priority selection logic to prevent said rotor from over-speeding, wherein said priority selection logic relates a plurality of different gas turbine engine operating conditions to the overspeed signal, and provides that when said fuel system interface is activated, as a result of receiving an overspeed indication, fuel flow is only initiated when the over-speed signal is removed." Accordingly, Applicants submit that amended Claims 6 and 13 satisfy the requirements of Section 112, first paragraph.

Claims 7-9, 11, and 12 depend from Claim 6, Claims 14-16, and 18 depend from Claim 13 and thereby also satisfy the requirements of Section 112, first paragraph. For at

least the reasons set forth above, Applicants respectfully request that the Section 112 rejection of Claims 6-9, 11-16, and 18 be withdrawn.

The rejection of Claims 1-3, 5-9, 11-16, and 18 under 35 U.S.C. § 112, second paragraph is respectfully traversed.

Applicants respectfully submit that Claims 1-3, 5-9, 11-16, and 18 satisfy the requirements of Section 112, second paragraph. More specifically, Claims 1 and 13 have been amended such that the structural relationship between elements recited in the claims satisfy the requirements of Section 112, second paragraph.

Claim 6 recites "[a] fuel system interface for a gas turbine engine including a rotor, said interface coupled to the gas turbine engine to receive an electrically originated overspeed signal from the engine, said interface comprising a shutoff shuttle valve for stopping engine fuel flow in response to the over-speed signal received, and based on pre-defined priority selection logic to prevent the rotor from over-speeding, wherein said priority selection logic relates a plurality of different gas turbine engine operating conditions to the overspeed signal, and provides that when said fuel system interface is activated, as a result of receiving an over-speed indication, fuel flow is only initiated when the over-speed signal is removed." Claim 13 recites a gas turbine engine including "a fuel delivery system configured to supply fuel to said engine for operating said rotor...a fuel system interface coupled to said fuel delivery system and comprising a selector valve coupled to a shutoff shuttle valve, said selector valve configured to receive a mechanically originated over-speed signal from the engine, said shutoff shuttle valve configured for stopping engine fuel flow in response to the over-speed signal received, and based on pre-defined priority selection logic to prevent said rotor from over-speeding, wherein said priority selection logic relates a plurality of different gas turbine engine operating conditions to the overspeed signal, and provides that when said fuel system interface is activated, as a result of receiving an overspeed indication, fuel flow is only initiated when the over-speed signal is removed." Accordingly, Applicants submit that amended Claims, 1, 6, and 13 satisfy the requirements of Section 112, second paragraph.

Claims 1, 2, and 5 depend from Claim 1, Claims 7-9, 11, and 12 depend from Claim 6, Claims 14-16, and 18 depend from Claim 13 and thereby also satisfy the requirements of

Section 112, second paragraph. For at least the reasons set forth above, Applicants respectfully request that the Section 112 rejection of Claims 1-3, 5-9, 11-16, and 18 be withdrawn.

In view of the foregoing amendments and remarks, all the claims now active in this application are believed to be in condition for allowance. Reconsideration and favorable action is respectfully solicited.

Respectfully Submitted,

Robert B. Reviser, Registration No. 4:

ARMSTRONG TRASDALE LLP

One Metropolitan Square, Suite 2600

St. Louis, Missouri 63102-2740

(314) 621-5070