MC348-Fundamentos Matemáticos da Computação Prof. Ricardo Dahab - Turma B

Quarta Prova - 30/6/2009

- 1. (3,0) Questão 3. Uma árvore é um grafo conexo e sem circuitos simples. Para $T = (V_T, E_T)$ uma árvore qualquer, responda às seguintes questões:
 - (a) Mostre que toda aresta de T é aresta de corte.
 - (b) Mostre que $|V_T| = |E_T| + 1$.
 - (c) Mostre que T é um grafo bipartido.
- 2. (7,0) Se G é um grafo não orientado com n vértices, chamamos de seqüência dos graus de G à n-upla formada pelos graus dos vértices de G em ordem não decrescente. Por exemplo, (0, 1, 2, 2, 2, 2, 2, 3, 4) é a seqüência dos graus do grafo:

Analise cada uma das afirmações seguintes e indique quais são verdadeiras e quais são falsas. Em cada caso, apresente uma justificativa sucinta e convincente.

- (a) Existe um grafo cuja seqüência de graus é (1, 2, 2, 3, 3).
- (b) Existe um grafo simples cuja sequência de graus é (0, 1, 1, 2, 2).
- (c) Existe um grafo simples cuja sequência de graus é (2, 3, 3, 4, 4, 6).
- (d) Existe um grafo simples hamiltoniano cuja seqüência de graus é (2, 2, 2, 3, 3).
- (e) O número de grafos não isomorfos com sequência de graus (1, 1, 1, 1, 1, 3) é dois.

1. Esboço da solução.

- (a) Por contradição: Suponha que a=(u,v) seja uma aresta de $T=(V_T,E_T)$ e que a não seja de corte. Isto é, o grafo T' obtido de T pela remoção de a tem o mesmo número do componentes de T. Isso implica que existe um caminho π de u a v em T'. Mas então $\pi + a$ contém um circuito passando por u e v, que é circuito de T, uma contradição à definição de árvore dada no enunciado.
- (b) Por indução (forte) em $e = |E_T|$. Para e = 0, T deve ser igual a um vértice somente. Portanto, $|V_T| = 1 = 0 + 1 = |E_T| + 1$.

Vamos agora supor que, para um $k \geq 0$ qualquer, todas as árvores com até k arestas obedeçam à fórmula dada. Seja agora T uma árvore com k+1 arestas. Como k+1>0, existe ao menos uma aresta a em T. Seja T' o grafo obtido de T pela remoção de a. Como a é aresta de corte (vide acima), T' tem mais componentes que T e são todos árvores porque são conexos e não têm circuitos (simples ou não). Sejam T_1, T_2, \ldots, T_r esses componentes. Pela hipótese de indução, $|V_{T_i}| = |E_{T_i}| + 1$, para $1 \leq i \leq r$. Além disso, $\sum_{i=1}^r |V_{T_i}| = |V_T|$ e $\sum_{i=1}^r |E_{T_i}| = |E_T| - 1$. Portanto

$$|V_T| = \sum_{i=1}^r |V_{T_i}|$$

 $= \sum_{i=1}^r (|E_{T_i}| + 1) \text{ (pela hip. ind.)}$
 $= r + \sum_{i=1}^r (|E_{T_i}| = r + |E_T| - 1.$

Mas veja que r=2, já que se r>2, T não seria conexa. Portanto $|V_T|=2+|E_T|-1=|E_T|+1$.

(c) Novamente, por indução forte em $|E_T|$. Para $|E_T| = 0$, T deve ser igual a um vértice somente, portanto um grafo bipartido trivial.

Vamos agora supor que, para um $k \geq 0$ qualquer, todas as árvores com até k arestas obedeçam à fórmula dada. Seja agora T uma árvore com k+1 arestas. Como k+10, existe ao menos uma aresta a em T. Seja T' o grafo obtido de T pela remoção de a. Como a é aresta de corte, T' tem dois componentes, que são duas árvores (vide acima). Sejam T_1, T_2 essas árvores. Pela hipótese de indução, T_1 e T_2 são grafos bipartidos, com bipartições $(X_1, Y_1), (X_2, Y_2)$ respectivamente. Claramente, a aresta a = (u, v) retirada de T tem um extremo em T_1 e o outro em T_2 . Suponha que $u \in X_1$ e $v \in Y_2$ (se não for, ajuste o nomes dados às bipartições para que isso ocorra. É possível fazer isso porque mudar os nomes não altera o fato de que o grafo é bipartido). Dessa forma, $(X_1 \cup X_2, Y_1 \cup Y_2)$ é uma bipartição dos vértices de V_T e cada aresta de T possui extremos em lados diferentes da bipartição.

2. Esboço da solução.

(a) Falso. Razão: A soma dos graus deve ser par.

(b) Verdadeiro. Veja o seguinte grafo:

- (c) Falso. Razão: Um grafo simples (não tem laços nem arestas múltiplas) tem grau máximo menor ou igual ao seu número de vértices menos um.
- (d) Verdadeiro. Veja o seguinte grafo:

(e) **Verdadeiro.** Veja os seguintes grafos G_1 e G_2 :

Há duas possibilidades para o vértice de grau 3: ou não tem um laço (e isso determina unicamente o resto do grafo) ou tem laço (e isso também determina unicamente o resto do grafo). Essas duas possibilidades correspondem aos grafos acima.