Multigrid Operators (2)

- ° The restriction operator R; maps P⁽ⁱ⁾ to P⁽ⁱ⁻¹⁾
 - Restricts problem on fine grid P⁽ⁱ⁾ to coarse grid P⁽ⁱ⁻¹⁾ by sampling or averaging
 - $b_{i-1} = R_i (b_i)$
- $^{\circ}$ The interpolation operator In $_{\text{i-1}}$ maps an approximate solution $x_{\text{i-1}}$ to an x_{i}
 - Interpolates solution on coarse grid P⁽ⁱ⁻¹⁾ to fine grid P⁽ⁱ⁾
 - $x_i = In_{i-1}(x_{i-1})$
- ° The solution operator S_i takes P⁽ⁱ⁾ and computes an improved solution x(i) on same grid
 - Uses "weighted" Jacobi or SOR
 - $x_{i, improved} = S_i (b_i, x_i)$
- Details of these operators follow after describing overall algorithm

Multigrid V-Cycle Algorithm (recursive)

Function MGV (b_i , x_i)

... Solve $T_i x_i = b_i$ given b_i and an initial guess for x_i

... return an improved x_i

if
$$(i = 1)$$

compute exact solution x_1 of $P^{(1)}$

return x₁

else

$$x_i = S_i(b_i, x_i)$$

$$r_{i} = T_{i} x_{i} - b_{i}$$
 $d_{i} = In_{i-1}(MGV(R_{i}(r_{i}), 0))$
 $x_{i} = x_{i} - d_{i}$
 $x_{i} = S_{i}(b_{i}, x_{i})$
return x_{i}

Multigrid V-cycle

only 1 unknown.₂

improve solution by damping high frequency error, compute residual, solve $T_i d_i = r_i$ recursively, correct fine grid solution, improve solution again.

Complexity of a V-Cycle

On a serial machine

- Work at each "dot" in the V-cycle is O(the number of unknowns)
- Cost of level *i* is $(2^{i}-1)^{2} = O(4^{i})$ (for a 2D grid)
- If finest grid level is m, total time is:

$$\sum_{i=1}^{m} O(4^{i}) = O(4^{m}) = O(\# unknowns)$$

- ° On a parallel machine (PRAM)
 - with one processor per grid point and free communication, each step in the V-cycle takes constant time, O(1)
 - Total V-cycle time is $O(m) = O(\log \# \text{unknowns})$

Full Multigrid (FMG)

° Intuition:

- improve solution by doing multiple V-cycles
- avoid expensive fine-grid (high frequency) cycles
- analysis of why this works is beyond the scope of this class

```
Function FMG (b_m, x_m)
... return improved x_m given initial guess
compute the exact solution x_1 of P^{(1)}
for i=2 to m
x_i = MGV (b_i, \ln_{i-1}(x_{i-1}))
```

$^{\circ}$ In words:

- Solve the problem with 1 unknown
- Given a solution to the coarser problem, $P^{(i-1)}$, map it to starting guess for $P^{(i)}$
- Solve the finer problem using the Multigrid V-cycle

Full Multigrid Cost Analysis

- One V for each call to FMG
 - one also use "W"s and other compositions
- ° Serial time: $\sum_{i=1}^{m} O(4^{i}) = O(4^{m}) = O(\# unknowns)$
- ° PRAM time: $\sum_{i=1}^{m} O(i) = O(m^2) = O(\log^2 \# \text{ unknowns})$

Complexity of Solving Poisson's Equation

- Theorem: error ε after one FMG call is ≤ c times the error before, where c < 1/2, and independent of # unknowns
- $x^k = FMG$ (b, x^{k-1}) ==> $\epsilon(x^k) < 1/2 \epsilon(x^{k-1})$ (i.e., at least 1 bit per FMG iteration. x^k =solution after k^{th} FMG iteration)
- Corollary: We can make the error ε < tol, for any fixed tolerance in a fixed number of steps, independent of size of the finest grid

- This is the most important convergence property of MG, distinguishing it from other methods, which converge more slowly for large grids
- Total complexity is just proportional to the cost of one FMG call

The Solution Operator S_i - Details

- ° The solution operator S_i, is a weighted Jacobi op.
- ° Consider the 1D problem

° At level i, pure Jacobi replaces:

$$x(j) := 1/2 (x(j-1) + x(j+1) + b(j))$$

° Weighted Jacobi uses:

$$x(j) := 1/3 (x(j-1) + x(j) + x(j+1) + b(j))$$

° In 2D, similar average of nearest neighbors

The Restriction Operator R_i - Details

- ° The restriction operator R_i takes
 - a problem P⁽ⁱ⁾ with RHS b_i and
 - maps it to a coarser problem P⁽ⁱ⁻¹⁾ with RHS b_{i-1}
- ° In 1D, average values of neighbors
 - $x_{coarse}(j) = 1/4 * x_{fine}(j-1) + 1/2 * x_{fine}(j) + 1/4 * x_{fine}(j+1)$

The Restriction Operator R_i - Details

In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

11/8/2021 Lecture 8 20

Interpolation Operator Ini

° In 2D, interpolation requires averaging with 4 nearest neighbors (NW,SW,NE,SE)

Performance Model of parallel 2D Multigrid

- ° Assume 2^m+1 by 2^m+1 grid of unknowns, n= 2^m+1, N=n²
- ° Assume p = 4^k processors, arranged in 2^k by 2^k grid
 - Each processor starts with 2^{m-k} by 2^{m-k} subgrid of unknowns
- ° Consider V-cycle starting at level m
 - At levels m through k of V-cycle, each processor does some work
 - At levels k-1 through 1, some processors are idle, because a 2^{k-1} by 2^{k-1} grid of unknowns cannot occupy each processor

Performance Model of parallel 2D Multigrid (2)

- ° Cost of one level (j) or P^(j) in V-cycle
 - If level j >= k, then cost =

```
O(4^{j-k}) .... Flops, proportional to the number of grid points/processor + O(1)\alpha .... Send a constant # messages to neighbors
```

+ O(2^{j-k}) β Number of words sent

If level j < k, then cost =

```
O(1) .... Flops, proportional to the number of grid points/processor + O(1) \alpha .... Send a constant # messages to neighbors + O(1) \beta .... Number of words sent
```

Sum over all levels in all V-cycles in FMG to get complexity

Comparison of Methods (using p processors)

	# Flops	# Messages	# Words sent
MG	N/p +	(log N) ²	$(N/p)^{1/2} +$
	log p * log N		log p * log N
FFT	N log N / p	p ^{1/2}	N/p
SOR	N ^{3/2} /p	N ^{1/2}	N/p

- ° SOR is slower than others on all counts
- ° Flops for MG and FFT depends on accuracy of MG
- ° MG communicates less total data (bandwidth)
- ° Total messages (latency) depends ...
 - This coarse analysis can't say whether MG or FFT is better when $\alpha >> \beta$

Practicalities

- ° In practice, we don't go all the way to P⁽¹⁾
- ° In sequential code, the coarsest grids are negligibly cheap, but on a parallel machine they are not.
 - Consider 1000 points per processor
 - In 2D, the surface to communicate is 4*sqrt(1000) ~= 128, or 13%
 - In 3D, the surface is 1000-8³ ~= 500, or 50%
 - Data locality ratio α (large α is preferred):

$$\alpha = \frac{\text{computation time between two communication steps}}{\text{communication time}}$$

- ° Apply communication avoiding Jacobi iterations!
- Dealing with coarse meshes efficiently
 - Should we switch to using fewer processors on coarse meshes?
 - Should we switch to another solver on coarse meshes?