Lecture 4: Hypothesis Test and Confidence Intervals

Big Data Analytics, Spring 2019

Zhaopeng Qu

Nanjing University

4/20/2019

- 1 Simple OLS: Hypothesis Test
- Condidence Intervals
- Gauss-Markov theorem and Heteroskedasticity
- 4 OLS with Multiple Regressors: Hypotheses tests

Simple OLS: Hypothesis Test

Introduction: Class size and Test Score

Our Regression Result

$$\widehat{TestScore} = 698.9 - 22.8 \times STR, R^2 = 0.051, SER = 18.6$$

- How can you be sure about the result?
- Don't Forget. We only get the result from the sample.
- Eg.can you reject the claim that cutting the class size will not help boost test scores?

Review: Hypothesis testing:

- Hypothesis testing is one of a fundamental problems in statistics.
- A hypothesis is (usually) an assertion about the unknown **population** parameters such as β_1 in a simple OLS

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

ullet such as whether eta_1 equals to zero or not

$$\beta_1 = 0$$

 Using the data, we want to determine whether an assertion is true or false.

Review: Testing a hypothesis concerning a population mean

- the null hypothesis: $H_0: E(Y) = \mu_{Y,0}$, the alternative hypothesis: $H_1: E(Y) \neq \mu_{Y,0}$
- ullet Step 1 Compute the sample mean $ar{Y}$
- ullet Step 2 Compute the *standard error* of \bar{Y}

$$SE(\bar{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step 3 Compute the t-statistic actually computed

$$t^{act} = \frac{\bar{Y}^{act} - \mu_{Y,0}}{SE(\bar{Y})}$$

• Step 4 See if we can **Reject** the null hypothesis at a certain significance levle α like 5%.

$$|t^{act}| > critical\ value$$

 $p-value < significance\ level$

Two-Sided Hypotheses Concerning β_1

- the null hypothesis: $H_0: \beta_1 = \beta$ and the alternative hypothesis: $H_1: \beta_1 \neq \beta$
- Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
- \bullet Step2: Compute the standard error of $\hat{\beta}_1$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE\left(\hat{\beta}_1\right)}$$

 \bullet Step4: Reject the null hypothesis if $\mid t^{act}\mid > critical \ value \ {\rm or} \ {\rm if} \ p-value < significance \ level$

General Form of the t-Statistics

$$t = \frac{estimator - hypothesized\ value}{standard\ error\ of\ the\ estimator}$$

The Standard Error of $\hat{\beta}_1(1)$

• The standard error of $\hat{\beta}_1$ is an **estimator** of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$, thus

$$SE(\hat{\beta}_1) = \sqrt{\sigma_{\hat{\beta}_1}^2}$$

The Standard Error of $\hat{\beta}_1$

Recall

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$

- Use the sample variance of $(X_i-\mu_X)u_i$, thus $\frac{1}{n-2}\sum(X_i-\bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- Use the sample variance of X_i , thus $\frac{1}{n}\sum (X_i-\bar{X})^2$ to replace population covariance of X_i , thus $Var(X_i)$
- Then it can be shown that

$$SE\left(\hat{\beta}_1\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

Application to Test Score and Class Size

• The regression equation:

$$TestScore_i = \beta_0 + \beta_1 ClassSize_i + u_i$$

. regress test_score class_size

Source	SS	df	MS	Number of obs F(1, 418)	=	420 22.58
Model Residual	7794.11004 144315.484	1 418	7794.11004 345.252353	Prob > F	=	0.0000 0.0512
Total	152109.594	419	363.030056	Adj R-squared	=	0.0490 18.581

test_score	Coef.	Std. Err.	t P> t	[95% Conf. In	nterval]
class_size _cons		.4798256 9.467491	-4.75 0.000 73.82 0.000	-3.22298 680.3231	-1.336637 717.5428

OLS regression results

• the OLS regression line

$$TestScore = 698.9 - 22.8 \times STR, \ R^2 = 0.051, SER = 18.6$$

$$(10.4) \ (0.52)$$

Testing a two-sided hypothesis concerning β_1

- the null hypothesis $H_0: \beta_1 = 0$, and the alternative hypothesis $H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE\left(\hat{\beta}_1\right)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-4.39| > critical\ value = 1.96$
 - $p-value < significance\ level = 0.05$

Critical value of the t-statistic

The critical value of *t*-statistic depends on significance level α

1% and 10% significant levels

- Step4: Reject the null hypothesis at a 10% significance level
 - $|t^{act}| = |-4.39| > critical\ value = 1.64$
 - $p-value = 0.00 < significance\ level = 0.1$
- Step4: Reject the null hypothesis at a 1% significance level
 - $|t^{act}| = |-4.39| > critical\ value = 2.58$
 - $p-value = 0.00 < significance\ level = 0.01$

Two-Sided Hypotheses Concerning β_1 in a certain value

- \bullet Let $\beta_{1,0}=-2$, then Null $H_0:\beta_1=-2$, Alternative $H_1:\beta_1\neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- \bullet Step2: Compute the standard error: $SE(\hat{\beta_1})=0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE\left(\hat{\beta}_1\right)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: We can't reject the null hypothesis at 5% significant level because
- $|t^{act}| = |-4.54| > critical\ value = 1.96$
- $p-value < significance\ level = 0.05$

One-sided Hypotheses Concerning β_1

- \bullet Let $\beta_{1,0}=-2$, then Null $H_0:\beta_1=-2$, Alternative $H_1:\beta_1<-2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- \bullet Step2: Compute the standard error: $SE(\hat{\beta_1})=0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE\left(\hat{\beta}_1\right)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

• Step4: we can't reject the null hypothesis at 5% significant level because $t^{act}=-0.54>critical\ value.-1.96$

Wrap up

Condidence Intervals

Confidence interval for a regression coefficient β_1

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $\mid t^{act} \mid > critical \ value = 1.96$.
- \bullet So $\hat{\beta}_1$ will be in the confidence set if $\mid t^{act} \mid \leq critical \ value = 1.96$
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

Confidence interval for $\beta_{ClassSize}$

. regress test_score class_size

Source	SS	df	MS		of obs =		420
Model Residual	7794.11004 144315.484	1 418	7794.1100 345.25235	4 Prok 3 R-so	418) > F quared	= = =	22.58 0.0000 0.0512 0.0490
Total	152109.594	419	363.03005		R-squared : MSE	=	18.581
test_score	Coef.	Std. Err.	t F)> t	[95% Conf.	Inte	rval]
class_size _cons	-2.279808 698.933	.4798256 9.467491	-4.75 73.82	0.000	-3.2229 680.323		1.336637 717.5 4 28

• Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right) = -2.28 \pm (1.96 \times 0.48) = [-3.3, -1.34]$$

Confidence interval for predicted effets of changing X

- Consider changing X by a given amount, ΔX . The predicted change in Y associated with this change in X is $\beta_1 \Delta$.
- the 95% confidence interval for $\beta_1 \Delta X$ is

$$\hat{\beta}_1 \Delta X \pm 1.96 \cdot SE\left(\hat{\beta}_1\right) \times \Delta X$$

• eg reducing the student-teacher ratio by 2. then the 95% confidence interval is

$$[-3.3 \times 2, -1.34 \times 2] = [-6.6, -2.68]$$

Regression When X is a Binary Variable

$$TestScore = 650 + 7.4 \times D, \ R^2 = 0.037, SER = 18.7$$
(1.3) (1.8)

Introduction

- \bullet Recall we discussed the properties of \bar{Y} in Chapter 2.
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

the fourth OLS assumption

- Three Basic OLS Regression Assumptions
 - Assumption 1
 - Assumption 2
 - Assumption 3
- Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the **Best Linear Unbiased Estimator(BLUE)**: it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1,Y_2,...,Y_n$.

Heteroskedasticity & homoskedasticity

• The error term u_i is **homoskedastic** if the variance of the conditional distribution of u_i given X_i is constant for i=1,...n, in particular does not depend on X_i . Otherwise, the error term is **heteroskedastic**.

An Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_i .
- Variation in (log) wages is higher at higher levels of education.
- This implies that

$$Var(u_i \mid X_i) \neq \sigma_u^2$$

Heteroskedasticity & homoskedasticity

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_1\right) = \sqrt{\hat{\sigma}_{\hat{\beta_1}}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\frac{s_{\hat{u}}^{2}}{\sum (X_{i} - \bar{X})^{2}}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in

Heteroskedasticity & homoskedasticity

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In **Stata**, the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

regress y x, robust

Test Scores and Class Size

. regress test_score class_size

	Source	SS	df	MS	Manager of one	=	420
	Model Residual	7794.11004 144315.484	1 418	7794.11004 345.252353	R-squared	= = =	22.58 0.0000 0.0512
_	Total	152109.594	419	363.030056	Adj R-squared Root MSE	=	0.0490 18.581

test_score	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size _cons		.4798256 9.467491	-4.75 73.82		-3.22298 680.3231	-1.336637 717.5428

. regress test_score class_size, robust

Linear regression	Number of obs	=	420
-	F(1, 418)	=	19.26
	Prob > F	=	0.0000
	R-squared	=	0.0512
	Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class size _cons	-2.279808 698.933	.5194892 10.36436	-4.39 67.44	0.000	-3.3009 4 5 678.5602	-1.258671 719.3057

Test Scores and Class Size

. regress test_score class_size

Source	ss	df	MS	Manager of one	=	420
Model Residual	7794.11004 144315.484	1	7794.11004 345.252353		= =	22.58 0.0000 0.0512
Total	152109.594		363.030056	Adj R-squared	=	0.0490 18.581

test_score	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size _cons		.4798256 9.467491	-4.75 73.82		-3.22298 680.3231	-1.336637 717.5428

. regress test_score class_size, robust

Linear regression	Number of obs	=	420
	F(1, 418)	=	19.26
	Prob > F	=	0.0000
	R-squared	=	0.0512
	Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
class size _cons	-2.279808 698.933	.5194892 10.36436		0.000	-3.3009 4 5 678.5602	-1.258671 719.3057

Heteroskedasticity

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

Assumptions of the Multiple OLS

- Fourth Basic Assumption
 - $\ {\rm Assumption} \ 1: E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0 \\$
 - Assumption 2: i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4 : No perfect multicollinearity.
- \bullet the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples.
- In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)} \sim N(0,1)$$

Hypothesis test for single coefficient

- $\bullet \ H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
- ullet Step2: Compute the standard error of \hat{eta}_j (requires matrix algebra)
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_{j} - \beta_{j,0}}{SE\left(\hat{\beta}_{j}\right)}$$

- Step4: Reject the null hypothesis if
 - $* \mid t^{act} \mid > critical \ value$
 - * or if p-value < significance level

Test Scores and Class Size

. regress test_score class_size

class_size	Coef. -2.279808 698.933	.4798256 9.467491	-4.75	t [95% Conf. 0.000 -3.2229 0.000 680.323	8 -1.336637
Total	152109.594		363.030056		= 18.581
Model Residual	7794.11004 144315.484		7794.11004 345.252353	Prob > F	= 0.0000 = 0.0512 = 0.0490
Source	SS	df	MS	Number of obs = F(1, 418)	420 = 22.58

Case: Class Size and test scores

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-2.54| > critical\ value.1.96$
 - or p-value = 0.011 < significance level = 0.05

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $\begin{aligned} \bullet \ \, H_0: \beta_{meal\;pct} &= 0 \; \& \beta_{calw\;pct} = 0, \\ H_1: \beta_{meal\;pct} &\neq 0 \; and/or \; \beta_{calw\;pct} \neq 0 \end{aligned}$
- If either $t_{meal\;pct}$ or $t_{calw\;pct}$ exceeds 1.96, we should reject?

• We assume that $t_{meal\; nct}$ and $t_{calw\; nct}$ are uncorrelated:

$$\begin{split} ⪻(t_{meal\;pct} > 1.96\; and/or\; t_{calw\;pct} > 1.96) \\ &= 1 - Pr(t_{meal\;pct} > 1.96\; and\; t_{calw\;pct} > 1.96) \\ &= 1 - Pr(t_{meal\;pct} > 1.96) * Pr(t_{calw\;pct} > 1.96) \\ &= 1 - 0.95 \times 0.95 \\ &= 0.0975 > 0.05 \end{split}$$

ullet if $t_{meal\; pct}$ and $t_{calw\; pct}$ are correlated, then it is more complicated.

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- ullet F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \ \& \ \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \ and/or \ \beta_2 \neq 0$$

the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{\rho}_{t_1t_2}$ is an estimator of the correlation between the two t-statistics.

Hypothesis test for single coefficient

- $\bullet \ H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_i$
- Step2: Compute the standard error of \hat{eta}_j (requires matrix algebra)
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - * | t^{act} |> $critical\ value\ *$ or if $p-value\ < significance\ level$

Test Scores and Class Size

. regress test_score class_size

Source	ss	df	MS	Number of obs	=	420
Model Residual	7794.11004 144315.484		7794.11004 345.252353	R-squared	= = =	22.58 0.0000 0.0512 0.0490
Total	152109.594	419	363.030056	Adj R-square Root MSE	a = =	18.581
test_score	Coef.	Std. Err.	t P>	t [95% Co	nf. In	terval]
class_size _cons	-2.279808 698.933	.4798256 9.467491		0.000 -3.2 0.000 680.		-1.336637 717.5428

Case: Class Size and test scores

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-2.54| > critical\ value.1.96$
 - p-value = 0.011 < significance level = 0.05

44 / 56

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $\begin{aligned} \bullet \ \, H_0: \beta_{meal\;pct} &= 0 \; \& \beta_{calw\;pct} = 0, \\ H_1: \beta_{meal\;pct} &\neq 0 \; and/or \; \beta_{calw\;pct} \neq 0 \end{aligned}$
- If either $t_{meal\;pct}$ or $t_{calw\;pct}$ exceeds 1.96, we should reject?

• We assume that $t_{meal\; nct}$ and $t_{calw\; nct}$ are uncorrelated:

$$\begin{split} ⪻(t_{meal\;pct} > 1.96\; and/or\; t_{calw\;pct} > 1.96) \\ &= 1 - Pr(t_{meal\;pct} > 1.96\; and\; t_{calw\;pct} > 1.96) \\ &= 1 - Pr(t_{meal\;pct} > 1.96) * Pr(t_{calw\;pct} > 1.96) \\ &= 1 - 0.95 \times 0.95 \\ &= 0.0975 > 0.05 \end{split}$$

ullet if $t_{meal\; pct}$ and $t_{calw\; pct}$ are correlated, then it is more complicated.

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- ullet F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \ \& \ \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \ and/or \ \beta_2 \neq 0$$

• the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{\rho}_{t_1t_2}$ is an estimator of the correlation between the two t-statistics.

Case: Class Size and test scores

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ • $H_1: \beta_{meal\ pct} \neq 0 \ and/or \ \beta_{calw\ pct} \neq 0$
- ullet The null hypothesis consists of two restrictions q=2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.
- \bullet This implies that we reject H_0 at a 5% significance level because 290.27>3

F-Distribution

General procedure for testing joint hypothesis with q restrictions

- $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- ullet H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

Case: Class Size and test scores: q=3 restrictions

Case: Class Size and test scores: q=3 restrictions

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- ullet H_1 : at least one of q restrictions under H_0 does not hold
- Step1: Estimate by Multiple OLS
- 2 Step2: F Statistic = 481.06
- 3 Step3: We reject the null hypothesis at a 5% significance level because

$$F - Statistic > F_{3,\infty} = 2.6$$

The "overall" regression F-statistic

- The "overall" F-statistic test the joint hypothesis that all the k slope coefficients are zero
- $-H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
- $-H_1$: at least one of q=k restrictions under H_0 does not hold.

The "overall" regression F-statistic

. regress test_score class_size el_pct meal_pct calw_pct, robust

Linear regression Number of obs = 420
F(4, 415) = 361.68
Prob > F = 0.0000
R-squared = 0.7749
Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-1.014353	.2688613	-3.77	0.000	-1.542853	4858534
el pct	1298219	.0362579	-3.58	0.000	201094	0585498
meal pct	5286191	.0381167	-13.87	0.000	6035449	4536932
calw pct	0478537	.0586541	-0.82	0.415	1631498	.0674424
_cons	700.3918	5.537418	126.48	0.000	689.507	711.2767

• The overall F - Statistics = 361.68

The "overall" regression F-statistic

The "Star War" and Regression Table

Dependent variable: average test score in the	e district.				
Regressor	(1)	(2)	(3)	(4)	(5)
Student–teacher ratio (X_1)	-2.28** (0.52)	-1.10* (0.43)	-1.00** (0.27)	-1.31* (0.34)	-1.01* (0.27)
Percent English learners (X_2)		-0.650** (0.031)	-0.122** (0.033)	-0.488** (0.030)	-0.130** (0.036)
Percent eligible for subsidized lunch (X_3)			-0.547* (0.024)		-0.529* (0.038)
Percent on public income assistance (X_4)				-0.790** (0.068)	0.048 (0.059)
Intercept	698.9** (10.4)	686.0** (8.7)	700.2** (5.6)	698.0** (6.9)	700.4** (5.5)
Summary Statistics					
SER	18.58	14.46	9.08	11.65	9.08
\overline{R}^2	0.049	0.424	0.773	0.626	0.773
n	420	420	420	420	420

These regressions were estimated using the data on K-8 school districts in California, described in Appendix (4.1). Heteroskedasticityrobust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5% level or **1% significance level using a two-sided test.