Theoretische Physik 2: ELEKTRODYNAMIK, DVP

Freitag, 21.09.2007

HS1

10:00 - 11:30

1. (a) Berechnen Sie für die folgenden Vektorpotenziale \vec{A}_i das zugehörige Magnetfeld \vec{B}_i :

$$\vec{A}_1 = \begin{pmatrix} 0 \\ 0 \\ B_0 y \end{pmatrix}, \quad \vec{A}_2 = \begin{pmatrix} 0 \\ -B_0 z \\ 0 \end{pmatrix}, \quad \vec{A}_3 = \begin{pmatrix} 0 \\ -\frac{1}{2}B_0 z \\ \frac{1}{2}B_0 y \end{pmatrix}.$$

 \vec{A}_1 und \vec{A}_2 erzeugen dasselbe Magnetfeld. Warum?

(4P)

(b) Berechnen Sie für die folgenden elektrostatischen Ladungsverteilungen das Monopolmoment Q, das Dipolmoment \vec{p} und den spurlosen Quadrupoltensor Q_{ij} in kartesischer Dastellung.

(9P)

- 2. (a) Geben Sie für das statische homogene elektrische Feld $\vec{E} = E_0 \hat{e}_z$ ein skalares Potenzial $\Phi_0(\vec{r})$ an. (2P)
 - (b) Geben Sie das Dipolmoment \vec{p} und die Lage $\vec{r}_{\vec{p}}$ eines elektrischen Dipols an, der auf einer Kugeloberfläche mit Radius R ein elektrostatiches Potenzial $-\Phi_0(\vec{r})$ hervorruft. (4P)
 - (c) Das elektrostatische Feld aus (a) wird durch Einbringung einer leitenden Kugel mit Radius R modifiziert. Geben Sie nun das elektrische Feld innerhalb und außerhalb der Kugel an; skizzieren Sie den Feldlinienverlauf. (3P)
 - (d) Ein homogenes dielektrisches Medium bestehe aus mikroskopisch kleinen isolierten leitenden Kugeln mit Radius R und Dichte $n \ll 1/R^3$. Berechnen Sie die Dielektrizitätskonstante des Mediums. (2P)
- 3. Die Strahlung eines oszillierenden elektrischen Dipols, $\vec{p} = \vec{p_0} e^{-\mathrm{i}\omega t}$, wird im Fernfeld durch das Vektorpotenzial

$$\vec{A} = -i\frac{\mu_0}{4\pi} \frac{e^{i(kr - \omega t)}}{r} \omega \vec{p}_0$$

und das skalare Potenzial

$$\Phi = -i \frac{e^{i(kr - \omega t)}}{4\pi \varepsilon_0 r} \vec{k}_r \cdot \vec{p}_0, \quad k = \frac{\omega}{c_0}, \quad \vec{k}_r = k \frac{\vec{r}}{r},$$

beschrieben.

- (a) Zeigen Sie, dass \vec{A} und Φ für große r in führender Ordnung die Lorentz-Eichung erfüllen. (4P)
- (b) Berechnen Sie die Orts- und Zeitabhängigkeit der Felder \vec{E} und \vec{B} für große r in führender Ordnung. (6P)
- (c) Wie ist die auslaufende Welle polarisiert? (Annahme: $\vec{p_0}$ reell) (2P)
- (d) Berechnen Sie den Poynting-Vektor $\vec{S}(\vec{r},t)$ für große r und die pro Zeiteinheit abgestrahlte Energie. (6P)
- 4. In einem Bezugssystem herrsche ein statisches, homogenes elektrisches Feld \vec{E}_0 parallel zur z-Achse sowie ein statisches, homogenes magnetisches Feld der Stärke $B_0 = 2E_0/c_0$, das in der y-z Ebene liegt und mit der z-Achse den Winkel θ bildet.
 - (a) Berechnen Sie das elektrische und das magnetische Feld in einem Bezugssystem K', das sich in x-Richtung mit Geschwindigkeit v bewegt. (3P)
 - (b) Bestimmen Sie die Geschwindigkeit v des Bezugssystems K', in dem die elektrischen und magnetischen Felder zueinander parallel sind. Wie lauten die Felder in diesem System für $\theta \ll 1$ und $\theta \to \pi/2$? (5P)

Nützliche Information:

• Maxwellgleichungen

$$\vec{\nabla} \cdot \vec{D} = \rho_{\text{frei}} \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon \varepsilon_0 \vec{E}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \vec{j}_{\text{frei}} + \frac{\partial \vec{D}}{\partial t} \qquad \vec{H} = \frac{1}{\mu \mu_0} \vec{B}$$

- Dispersions relation im Vakum: $c_0 = \omega |k|$.
- Lorentz Transformation (K' bewegt sich in x-Richtung)

$$\begin{cases} c_0 t' = x'_0 &= \gamma (x_0 - \beta x_1) \\ x'_1 &= \gamma (x_1 - \beta x_0) \\ x'_2 &= x_2 \\ x'_3 &= x_3, \end{cases}$$
 mit
$$\begin{cases} \gamma &= 1/\sqrt{1 - \beta^2}, \\ \beta &= v/c_0 \end{cases}$$

• Transformation der Felder (K' bewegt sich in x-Richtung)

$$E'_1 = E_1$$
 $B'_1 = B_1$
 $E'_2 = \gamma(E_2 - c_0\beta B_3)$ $B'_2 = \gamma(B_2 + (\beta/c_0)E_3)$
 $E'_3 = \gamma(E_3 + c_0\beta B_2)$ $B'_3 = \gamma(B_3 - (\beta/c_0)E_2)$