Math 103A Homework 2

James Holden

Winter 2019

Question 1. Let X be a non-empty set. Let $S_A = \{f : X \to X | f \text{ is a bijection}\}$. Show that S_A together with composition of functions forms a group.

Proof. We want to show that (S_A, \circ) is a group. Since f is bijective, we know that f(a) = f(b) implies a = b for all $a, b \in X$. To do so we verify the group properties:

1. identity element:

The identity element is the identity function $id: X \to X$ given $x \in X$. Then we have $(f \circ id)(t) = f(id(t)) = f(t) = id(f(t)) = (id \circ f)(t)$

- 2. closed under group operation: for all $a,b\in X\to a\circ b\in X$ $a\circ b\in X$
- 3. inverses exist for ever element in the group: for ever $a \in X$, $\exists a^{-1} \in X$ such that $a \circ a^{-1} = e$ By the definition of f, every element in X must have a inverse because there exists a bijective mapping $f: X \to X$.
- 4. all elements are associative: for $a,b,c\in X$ the relation $a\circ (b\circ c)=(a\circ b)\circ c$ holds by associativity of composition of sets $X\to X$.

Question 2. Let G = P(1,2), the power set of $\{1,2\}$. For any two sets $A, B \in G$ define $A * B = A\Delta B$. It was discussed in class that (G,*) is a group. List all the subgroups of G.

Proof. We define $G = (\{\{\}, \{1\}, \{2\}, \{1,2\}\}, *)$. A subgroup of G is a subset of G that retains the group operation. It is clear that (G, *) is a group.

Listing them out:

```
 \begin{cases} \{ \} \\ \{ \}, \{1\} \} \\ \{ \}, \{2\} \} \\ \{ \}, \{1,2\} \} \\ \{ \}, \{1,2\}, \{1,2,3\} \} \\ \text{are all subgroups.} \\ \{ \}, \{1\}, \{1,2\} \} \\ \{ \}, \{2\}, \{1,2\} \} \end{cases}
```

are not subgroups because they are not closed under multiplication.

Question 3. Let (G,*) be as in problem 2 (above). Show that (G,*) is not isomorphic to $(Z_4,+_4)$. (Hint: suppose there exists an isomorphic from G onto Z_4 , can the element $1 \in Z_4$ be in the image?)

Proof. We define $G = (\{\{\}, \{1\}, \{2\}, \{1,2\}\}, *)$ and $\mathbb{Z}_4 = \{0,1,2,3\}$. Let $f : G \to \mathbb{Z}_4$. We want to show that f is not an isomorphism. According to the hint, $1 \in \mathbb{Z}_4$ is not in the image. This means that there does not exist $a \in G$ such that f(a) = 1.

Let $f:(G,*)\to (Z_4,+_4)$ be an isomorphism. Let f be the sum of the elements of the pairs of the power set, so:

$$\left\{ \begin{array}{l} \{\} \in G \rightarrow 0 \in Z_4 \\ \{1\} \in G \rightarrow 1 \in Z_4 \\ \{2\} \in G \rightarrow 2 \in Z_4 \end{array} \right.$$

1

$$\{1,2\} \in G \to 3 \in Z_4$$

To me it seems like $1 \in Z_4 \in \text{Image}(f)$ because $f(1) = 1 \in Z_4$

Question 4. Let (G, *) be a group and let H be a subgroup of G. Define the relation $g_1 \sim g_2 \Leftrightarrow g_1^{-1} * g_2 \in H$.

(a) Show that \sim is an equivalence relation.

Proof. \sim is an equivalence relation if it

- (1) is reflexive $a \sim a$
- Check: For any $g \in G$, we have $g^{-1} * g = e \in H$ because H is a subgroup of G, hence $g \sim g$.
- (2) is symmetric $a \sim b$ then $b \sim a$

Check: If $g_1 \sim g_2$ then $g_1^{-1} * g_2 \in H$. Since H is a subgroup, it is closed under inverses just like G. Therefore we have:

$$g_1^{-1} * g_2 = (g_2^{-1} * g_1)^{-1} \in H$$
 and hence $g_2 \sim g_1$

- (3) is transitive $a \sim b, b \sim c \rightarrow a \sim c$
- Check: If $g_1 \sim g_2$ and $g_2 \sim g_3$ then $g_2^{-1} * g_1 \in H$ and $g_3^{-1} * g_2 \in H$.

Since H is closed under multiplication, $g_3^{-1} * g_1 = (g_3^{-1} * g_2)(g_2^{-1} * g_1) \in H$ therefore $g_1 \sim g_3$

(b) Find the class of e, the identity element.

Proof. The class of e is just the subgroup H itself. Let $b \in (\text{equivalence class of } e)$. Let a be the equivalence class of e.

$$b \sim e \Leftrightarrow b \sim a$$

$$\Leftrightarrow b^{-1} * a \in H$$

$$\Leftrightarrow b^{-1} * a = h$$
, for some $h \in H$

$$\Leftrightarrow b = ah^{-1}$$
, for some $h \in H$

 $\Leftrightarrow b = ah$, for some $h \in H$ because H is closed under inverses.

$$\Leftrightarrow b \in eH$$

$$\Leftrightarrow b \in H$$

Question 5. Let a be a positive real number. Note that for all $x, y \in R$ there exists a unique $k \in Z$ and a unique $0 \le r \le a$ so that:

$$x + y = r + ka$$
.

Denote [0,a), the half open interval, by \mathbb{R}_a and define the following addition on \mathbb{R}_a .

$$x + ay = r$$
,

where
$$x + y = r + ka$$
 and $r \in [0, a)$.

(a) Show that $(\mathbb{R}_a, +_a)$ is a group.

Proof. Given $(\mathbb{R}_a, +_a)$ with addition x + ay = r, this is the group of positive real numbers including zero up to but not including a, under the specified addition.

Let $g, k \in \mathbb{R}_a$.

(1) identity: e = 0

For
$$t \in \mathbb{R}_a$$
, $t * e = x + e \times y = t$

(2) closed under operation

For
$$s, t \in \mathbb{R}_a$$
, $t * s = x + (x + sy)y = 2x + xy + sy^2 = r \in (\mathbb{R}_a, +_a)$

(3) inverse

For $a \in (\mathbb{R}_a, +_a), a^{-1} \in (\mathbb{R}_a, +_a)$ exists.

(4) associativity

For $a, b, c \in (\mathbb{R}_a, +_a), \ a * (b * c) = (a * b) * c$

(b) Show that $(R_1, +_1)$ is isomorphic to $(R_a, +_a)$ for any a > 0. (Therefore, $(R_a, +_a)$ and $(R_b, +_b)$ are isomorphic for any a, b > 0).

Proof. Let $f:(R_1,+_1)\to (R_a,+_a)$. Let f be the tangent function. The tangent function bijectively maps the real numbers $[0,1)\to (\infty,\infty)$. Therefore, f is an isomorphism and $(R_1,+_1)\cong (R_a,+_a)$.

(c) (Bonus Problem) Prove or disprove: $(R_1, +_1)$ is isomorphic to (R, +).

Proof. $(R_1, +_1)$ cannot be isomorphic to the whole set of real numbers because of the tangent function. The tangent function is well-defined for all real numbers on the domain (-1, 1). Let $f: (R_1, +_1) \to (R, +)$. f is an injective homomorphism.

Question 6. Exercise 4 page 45: 3, 12, 19

Proof. (a) Problem 3: Let * be defined on \mathbb{R}^+ by letting $a * b = \sqrt{ab}$.

Proof. (1) identity:

$$a * e = \sqrt{a \times e} = \sqrt{a} \neq a \text{ for } a \in \mathbb{R}^+$$

Therefore this fails the identity axiom.

(b) Problem 12: All $n \times x$ diagonal matricies.

Proof. Let such a matrix be A.

We know $det(A) \neq 0$ because for diagonal matrices, $det(A) = \prod_{i=1}^{n} a_{ii}$ and we know the diagonal elements are nonzero. Therefore, inverses exists for all such matrices A.

This set of matrices is also closed under matrix multiplication because for diagonal matrix A and diagonal matrix B, $\prod_{i=1}^{n} a_i b_i$.

It also inherits the properties of the group of all invertible $n \times n$ matrices, called the general linear group.

(c) Problem 19 Let $S = \mathbb{R}$ without $\{-1\}$. * on S is

$$a * b = a + b + ab$$

Proof. * is a binary operation on S. This is because *: $S \times S \rightarrow S$.

(S,*) is a group. This is because it is closed on group operation (ie. $a*b \in S$), identity exists (ie. e=0), it is associative, and inverses exist (for every a there exists an a^{-1}).

$$2*x*3=7\in S$$

$$= (2 + x + 2x) * 3 = 7 \in S$$

$$= (2 + x + 2x) + 3 + 3 \times (2 + x + 2x) = 7 \in S$$

$$= 2 + 3x + 3 + 6 + 3x + 6x = 7 \in S$$

$$= 11 + 12x = 7 \in S$$

$$x = -\frac{1}{3}, x \in S$$