

Applicant : Konstantin V. Rodyushkin et al.
Serial No. : 10/623,127
Filed : July 18, 2003
Page : 2 of 4

Attorney's Docket No.: 10559-0831001 / P16146

RECEIVED
CENTRAL FAX CENTER

OCT 21 2008

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1-26. (Cancelled)

27. (Currently Amended) A computer-implemented method comprising:
using a processor to perform the steps of:

receiving a first digital image in a sequence of digital images and eye and mouth coordinates;

outputting eye and mouth coordinates on a subsequent digital image in the sequence of digital images; and

computing transformation parameters that represent a transformation from a base face model for the first digital image to a subsequent deformable model for the subsequent digital image;

wherein receiving comprises estimating the base face model, denoted M_b , and the base face model's transformation parameters, denoted T' , by the eye and mouth coordinates;

wherein outputting comprises:

calculating an initial model, denoted M , for the subsequent digital image as a transformed base model M_b using the transformation parameters T' ,

rotating the subsequent image to the first digital image, denoted $I(x,y)$, to generate a normalized model of the initial model M ;

calculating a horizontal and vertical gradient map on the rotated image; and

estimating new transformation parameters, denoted T^* , by minimizing an energy function $E(T, I(x,y))$ representative of the goodness of fit between the transformed model

Applicant : Konstantin V. Rodyushkin et al.
Serial No. : 10/623,127
Filed : July 18, 2003
Page : 3 of 4

Attorney's Docket No.: 10559-0831001 / P16146

and the corresponding digital image, and of the optimality of the new transformation parameters, where T^* corresponds to the complex argument of the minimum of the energy function, denoted $\arg \min_T E(T, I(x, y))$.

28-30. (Cancelled)

31. (Previously Presented) The method of claim 27 in which minimizing comprises a downhill simplex method with initial transformation parameters $T = T'$.

32. (Previously Presented) The method of claim 27 further comprising calculating the eye centers and the mouth corners by the transformed base model using the transformation parameters T^* .