Information Theory and Coding - Prof. Emere Telatar

Jean-Baptiste Cordonnier, Sebastien Speierer, Thomas Batschelet

October 5, 2017

1 Data compression

Given an alphabet \mathcal{U} (e.g. $\mathcal{U} = \{a, ..., z, A, ..., Z, ...\}$), we want to assign binary sequences to elements of \mathcal{U} , i.e.

$$e: \mathcal{U} \to 0, 1^* = \{\emptyset, 0, 1, 00, 01, ...\}$$

For \mathcal{X} a set

$$\mathcal{X}^n \equiv \{(x_0...x_n), x_i \in \mathcal{X}\}$$
$$\mathcal{X}^* \equiv \bigcup_{n \ge 0} \mathcal{X}^n$$

Definition 1.1. A code C is called singular if

$$\exists (u, v) \in \mathcal{U}^2, u \neq v \quad s.t. \quad C(u) = C(v)$$

Non singular code is defined as opposite

Definition 1.2. A code C is called uniquily decodable if

$$\forall u_1, ..., u_n, v_1, ..., v_n \in \mathcal{U}^* \quad s.t. \quad u_1, ..., u_n \neq v_1, ..., v_n$$

we have

$$C(u_1)C(u_n) \neq C(v_1)C(v_n)$$

i.e, C^* is non-singular

Definition 1.3. Suppose $C: \mathcal{U} \to \{0,1\}^*$ and $\mathcal{D}: \mathcal{V} \to \{0,1\}^*$ we can define

$$\mathcal{C} \times \mathcal{D} : \mathcal{U} \times \mathcal{V} \to \{0,1\}^*$$

as

$$(\mathcal{C} \times \mathcal{D})(u, v) \to \mathcal{C}(u)\mathcal{D}(v)$$

Definition 1.4. Given $C: \mathcal{U} \to \{0,1\}^*$, define

$$\mathcal{C}^*:\mathcal{U}^*\to\{0,1\}^*$$

as

$$\mathcal{C}^*(u_1, u_n) = \mathcal{C}(u_1)...\mathcal{C}(u_n)$$

Kraft-sum Definition: The Kraftsum of a code C is $KS(C) = \sum_{u} 2^{-|C(u)|}$

- if C is prefix free then $KS(C) \leq 1$
- if C is non singular, then $KS(C) \leq 1 + \min_{u} |C(u)|$
- $KS(C^n) = KS(C)^n$

Theorem: for any U and associated p(u) there exists a prefix free code C s.t.

$$E[|C(U)|] < 1 + \sum_{u \in U} p(u) \log \frac{1}{p(u)}$$

Theorem: if $KS(C) \le 1$ then there exists a prefix free code C' such that |C(u)| = |C'(u)| for all u **Corollar:** if C is uniquely decodable, then there exists C' that is prefix free with the same word lengths

Entropy Definition: the entropy of a random variable U is

$$H(U) = \sum_{u \in U} p(u) \log \frac{1}{p(u)} = E_U \left[\log \frac{1}{p(u)} \right]$$

Theorem: if C is uniquely decodable then $E[|C(U)|] \geq H(U)$

Properties of optimal prefix free codes

- 1. $p(u) < p(v) \to |u| \ge |v|$
- 2. The two longest codewords have the same length
- 3. The 2 least probable letters are assigned codewords that differ in the last bit

1.0.1 Hoffman algorithm

- Combine the 2 least likely symbols
- Sum their probability and assign it a new fictive symbol
- Repeat

2 Entropy and mutual information

Definition 2.1 (Joint entropy). Suppose U, V are Random Variables with p(u, v) = P(U = u, V = v), the joint entropy is

$$H(UV) = \sum_{u,v} p(u,v) \log \frac{1}{p(u,v)}$$

Theorem 2.1.

$$H(UV) \le H(U) + H(V)$$

with equality iff U and V are independents.

Proof. We want to show that

$$\sum_{u,v} p(u,v) \log \frac{1}{p(u,v)} \le \sum_{u} p(u) \log \frac{1}{p(u)} + \sum_{v} p(v) \log \frac{1}{p(v)} \iff \sum_{u,v} p(u,v) \log \frac{p(u)p(v)}{p(u,v)} \le 0$$

We use $\ln z \le z - 1 \ \forall z$ (with equality iff z = 1):

$$\sum_{u,v} p(u,v) \log \frac{p(u)p(v)}{p(u,v)} \le \sum_{u,v} p(u,v) \left[\frac{p(u)p(v)}{p(u,v)} - 1 \right] = \sum_{u,v} p(u)p(v) - \sum_{u,v} p(u,v) = 1 - 1 = 0$$

Same definitions of entropy holds for n symbols.

Definition 2.2 (Joint Entropy). Suppose U_1, U_2, \ldots, U_n are RVs and we are given $p(u_1 \ldots u_n)$, the joint entropy is

$$H(U_1,\ldots,U_n) = \sum_{u_1\ldots u_n} p(u_1\ldots u_n) \log \frac{1}{p(u_1\ldots u_n)}$$

Theorem 2.2.

$$H(U_1,\ldots,U_n) \le \sum_{i=1}^n H(U_i)$$

with equality iff Us are independents

Corollary 2.2.1. if U_1, \ldots, U_n are i.i.d. then $H(U_1, \ldots, U_n) = nH(U_1)$

Definition 2.3 (Conditional entropy).

$$H(U|V) = \sum_{u,v} p(u,v) \log \frac{1}{p(u|v)}$$

Theorem 2.3.

$$H(UV) = H(U) + H(V|U) = H(V) + H(U|V)$$

Theorem 2.4.

$$H(U) + H(V) \ge H(U, V) = H(V) + H(U|V)$$

Definition 2.4 (Mutual information).

$$I(U;V) = I(V;U) = H(U) - H(U|V)$$

= $H(V) - H(V|U)$
= $H(U) + H(V) - H(UV)$

We can apply the chain rule on the entropy as follow

$$H(U_1, U_2, \dots U_n) = H(U_1) + H(U_2|U_1) + \dots + H(U_n|U_1, U_2 \dots U_{n-1})$$

Definition 2.5 (Conditional mutual information).

$$I(U; V|W) = H(U|W) - H(U|VW)$$

$$= H(V|W) - H(V|UW)$$

$$= \mathbb{E}_{u,v,w} \left[\log \frac{p(uv|w)}{p(u|w)p(v|w)} \right]$$

Theorem 2.5.

$$I(V; U_1 \dots U_n) = I(V; U_1) + I(V; U_2|U_1) + \dots + I(V; U_n|U_1 \dots U_{n-1})$$

Notation 1.

$$U^n \triangleq (U_1, U_2, \dots U_n)$$

Theorem 2.6.

equality iff conditioned on w, u and v are independent, that is iff U - V - W is a Markov chain.

Proof.

$$I(U; V|W) = \frac{1}{\ln 2} \sum_{u,v,w} p(u,v,w) \ln \frac{p(u|w)p(v|w)}{p(uv|w)}$$

$$\geq \frac{1}{\ln 2} \sum_{u,v,w} p(u,v,w) \left[\frac{p(u|w)p(v|w)}{p(uv|w)} - 1 \right]$$

$$= \frac{1}{\ln 2} \sum_{u,v,w} (p(w)p(u|w)p(v|w) - p(uvw))$$

$$= \frac{1}{\ln 2} (1-1)$$

$$= 0$$

3 Data processing

Theorem 3.1. U - V - W is a $MC \iff I(U; W|V) = 0$

Corollary 3.1.1. $I(U;V) \ge I(U;W)$ and by symetry of $MCI(W;V) \ge I(U;W)$

Proof.

$$I(U; VW) = I(U; V) + I(U; W|V) = I(U; V)$$

and

$$I(U;VW) = I(U;W) + I(U;V|W) \ge I(U;W)$$

Theorem 3.2. Given U a RV taking values in \mathcal{U} then $0 \leq H(U) \leq \log |\mathcal{U}|$. H(U) = 0 iff U is constant, $H(U) = \log |\mathcal{U}|$ iff U is $p(u) = 1/|\mathcal{U}|$ for all u.

Proof. For the lower bound,

$$H(U) = \sum_{u} \underbrace{p(u)}_{\geq 0} \underbrace{\log \frac{1}{p(u)}}_{\geq 0} \geq 0$$

For the upper bound,

$$\begin{split} H(U) - \log |\mathcal{U}| &= \sum_{u} p(u) \log \frac{1}{p(u)} - \sum_{u} p(u) \log |\mathcal{U}| \\ &= \frac{1}{\ln 2} \sum_{u} p(u) \ln \frac{1}{|\mathcal{U}| p(u)} \\ &\leq \frac{1}{\ln 2} \sum_{u} p(u) \left(\frac{1}{|\mathcal{U}| p(u)} - 1 \right) \\ &= \frac{1}{\ln 2} \left[\sum_{u} \frac{1}{|\mathcal{U}|} - \sum_{u} p(u) \right] \\ &= 0 \end{split}$$

Theorem 3.3. $I(U;V) = 0 \iff U \perp V$

Definition 3.1 (Entropy rate of a stochastic process). $\lim_{n\to\infty} \frac{1}{n}H(U^n)$ if the limit exists.

Theorem 3.4. For stationary stochastic process U^n , the sequences

$$a_n = \frac{1}{n}H(U^n) \text{ and } b_n = H(U_n|U^{n-1})$$

are positive and non increasing. Then $a = \lim_{n \to \infty} a_n$ and $b = \lim_{n \to \infty} b_n$ exists and a = b.

Proof. TODO: I didn't write the proof, Thomas can you write it?

Appendices

A Markov chains

 $U_1 - U_2 - \cdots - U_n$ forms a Markov chain if the joint probability distribution of the RVs is

$$p(a, b, c, d) = p(a)p(b|a)p(c|b)p(d|c)$$

which is equivalent to (U_1, \ldots, U_{k-1}) are independent of (U_{k+1}, \ldots, U_n) when conditionned on U_k for any k.

Theorem A.1. The reverse of a MC is a MC

B Stochastic processes

A stochastic process is a collection $U_1, U_2 \dots U_n$ of RVs each taking values in \mathcal{U} . It is described by its joint probability

$$p(u^n) = P(U_1 \dots U_n = u_1 \dots u_n) = P(U^n = u^n)$$

Definition B.1 (Stationary stochastic process). A process U_1, U_2, \ldots is called stationary if for every n and k and $u_1 \ldots u_n$, we have

$$p(u^n) = p(U_1 \dots U_n = u_1 \dots u_n) = p(U_{1+k} \dots U_{n+k} = u_1 \dots u_n)$$

In other words, the process is time shift invariant.