

We claim:

1. A non-naturally occurring compound that specifically inhibits the activity of factor Xa, having the general formula A1-A2-(A3)_m-B, wherein m is 0 or 1;

5 wherein A1 is R₁-R₂-R₃; A2 is R₄-R₅-R₆;
A3 is R₇-R₈-R₉;

wherein R_i is selected from the group consisting of:

i) 1 to 20 amino acids;

10 ii)

wherein X is selected from the group consisting of N, CH and NC=O, and

15 wherein R'₁ and R''₁ independently are selected from the group consisting of -H, alkyl, acyl, aryl, arylalkyl, an amino-protecting group, 1 to 20 amino acids, and

wherein R₁ can be substituted by a substituent;

20

R₁ is -CR₁₀, R₁₁-, wherein R₁₀ and R₁₁ independently are selected from the group consisting of an H; alkyl, arylalkyl, heterocarylalkyl and heterocaryl, and

wherein R₃₁ and R₃₂ independently can be substituted with a substituent;

F₃ is selected from the group consisting of -C(O)-, -CH₂-, -CHR₃₅-C(O)- and -C(O)-NR₃₅-CH₂-C(O)-, wherein R₃₅ is the CHR₃₅ group of the bridging group -C(O)-CR₃₅-;

F₄ is selected from the group consisting of -CH₂- and -NR₅₀-, wherein R₅₀ is selected from the group consisting of H, alkyl, arylalkyl and heterocyclic;

F₅ is -CF₂;R₂₀₁-, wherein F₂₀₁ and R₂₀₂ independently are selected from the group consisting of H, alkyl, aryl and arylalkyl, and wherein R₂₀₁ and R₂₀₂ independently can be substituted with a substituent;

F₆ is selected from the group consisting of -C(O)-, -CH₂- and -CHR₃₆-C(O)-;

F₇ is selected from the group consisting of -CH₂- and -NR₅₁-, wherein R₅₁ is H, alkyl, arylalkyl, heteroalkyl and heteroarylalkyl, and any of these moieties substituted by a substituent selected from the group consisting of Q and -(CH₂)_n-Q, wherein n is 1 to 5 and wherein Q is selected from the group consisting of an amino, amidino, imidazole and guanidine group, which can be substituted with a substituent, and a mono-, di-, tri- or tetra-alkylammonium of a pharmaceutically acceptable salt, isoureaide or isothioureaide thereof;

R₁ is -CR₃₇;R₃₈-, wherein R₃₇ and R₃₈ independently are selected from the group consisting of H, alkyl, alkylaryl and heterocyclic, and any of these moieties substituted by a substituent selected from the group consisting of Q and -(CH₂)_n-Q, wherein n is 1 to 5 and

wherein ϱ is selected from the group consisting of amino, amidino, imidazole and guanidine group, which can be substituted with a substituent, and a mono-, di-, tri- or tetra-alkylammonium of a pharmaceutically acceptable salt,
5 isoureide or isothioureide thereof;

R_9 is selected from the group consisting of
 $-C(O)-$, $-CH_2-$ and $-CH_{2\beta}-C(O)-$; and

wherein, when m is 1, B is selected from the group consisting of 1 to 20 amino acids, $-NHR_{52}$, $-NR_{60}R_{61}$,
10 $-OR_{70}$ and $-CHR_{60}R_{61}$,

wherein R_{52} is selected from the group consisting of H, alkyl, arylalkyl, heterocarylalkyl and heterocaryl;

wherein R_{51} and R_{52} independently are selected
15 from the group consisting of H, alkyl, arylalkyl, aryl, heterocarylalkyl and heterocaryl, and

wherein R_{70} is selected from the group consisting of H, acyl, alkyl, arylalkyl and heterocarylalkyl,

20 and wherein when m is 0, B is selected from the group consisting of 1 to 20 amino acids, $-OR_{70}$, $-NHR_{52}$ and $-NR_{60}R_{61}$, which is joined to R_4 by an amide bond or an ester bond;

wherein B can be substituted with a substituent,
25 provided that

when R_4 is $-CH_2-$ or $-CH_{2\beta}-C(O)-$, R_4 is NR_{61} ;

when R_4 is $-CH_2-$, R_3 is $-C(O)-$ or
 $-CHR_{35}-C(O)-$;

when R_4 is $-CH_2-$, R_3 is $-NHR_{35}-$;

when R_4 is CH_2 , R_3 is $-C(O)-$ or
5 $-CHF_{35}-C(O)-$;

when R_4 is $-NR_{35}-$ and R_1 is $\begin{array}{c} R'_1 \\ \nearrow \\ R''_1 \end{array} > X \longrightarrow ,$

R_{50} and R'_1 are taken together to form a bridging group having the formula: $-C(O)-CHR_{55}-$,

wherein CHR_{55} represents R_{50} and the carbonyl group
10 represents R'_1 , and R''_1 and R_{55} independently are H, C₁ to C₆ alkyl or arylalkyl; and when R_3 is $-C(O)-NR_{35}-CH_2-C(O)-$, then

R_4 is $-NR_{50}-$, R_1 is $\begin{array}{c} R'_1 \\ \nearrow \\ R''_1 \end{array} > X \longrightarrow ,$ R_{35} and R'_1 are taken

together to form a bridging group having the formula
 $-C(O)CHR_{55}-$,

15 wherein C(O) represents R'_1 and CHR_{55} represents R_{50} ; R''_1 and R_{55} independently are H or a C₁ to C₆ alkyl; further wherein the above compound is not one of the following compounds:

- a) RYIRF-NH₂;
- 20 GNFFRF-NH₂;
- KNEFIRF-NH₂;
- KHEYLRF-NH₂;
- SDPNFLRF-NH₂;
- FMRF-NH₂;
- 25 FIRF-NH₂;

5

YMRF-NH₂;
YLRF-NH₂;
pQDPFLFF-NH₂;
SDPFLRF-NH₂;
NDPFLFF-NH₂;
GDPFLRF-NH₂;
SIPYLF-F-NH₂;
SDPYFFF-F-NH₂;
ALAGDHFFRF-NH₂;

10

pQDVEDHVFLRF-NH₂;
pQDVVHSFLRF-NH₂;
SDRNFLRF-NH₂;
TNRNFLRF-NH₂;

/

b) H-D-Phe-Phe-Arg-NH-heptyl;
H-D-Phe-Phe-Arg-NH-lauryl;
H-D-Phe-Phe-Arg-NH-OH;
H-D-Phe-Phe-Arg-NH-isopropyl;
H-D-Phe-Phe-Arg-NH₂;

15

c) H-Phe-Val-Arg-OMe;
H-D-Phe-Val-Arg-H;

20

d) (3-nitro-2-pyridylsulfenyl)-Cys-Val-Asn-Tyr-Ile-Arg-Lys-Arg-Ser-Leu-Gln-Thr-Val-OH;
(Cys)-Val-Asn-Tyr-Ile-Arg-Lys-Arg-Ser-Leu-Gln-Thr-Val-OH;

25

e) Asn-Arg-Val-Tyr-Ala-His-Pro-Phe;
Asn-Arg-Val-Tyr-Abu-His-Pro-Phe;
Asn-Arg-Val-Tyr-Nle-His-Pro-Phe;
Asn-Arg-Val-Tyr-allo-His-Pro-Phe;
Asn-Arg-Val-Tyr-Aev-His-Pro-Phe;
Asn-Arg-Val-Tyr-Cpg-His-Pro-Phe;

30

Asn-Arg-Val-Tyr-Chg-His-Pro-Phe;

f) compounds of the formula:

X_F-Arg-Val-Tyr-Y_F-His-Pro-W_F (II)

wherein in the above Formula (II):

5 X_F stands for sarcosyl, lactoyl or hydroxyacetyl radical;
Y_F is cyclopentylglycyl or cyclohexylglycyl;
W_F is an aliphatic amino acid radical or lactic acid radical;

10

g) compounds of the formulas:

Z_G-X_G-Arg (A)-Val-Tyr (B_G)-Y_G-His (E_G)-Pro-W_G-OG
(III) and

15

Z_G-X_G-Arg (A_G)-Val-Tyr (B_G)-Y_G-His-Pro-W_G-OG
(IV);

wherein in the above Formulas (III) and (IV):

20

Y_G is cyclopentylglycyl or cyclohexylglycyl;

W_G is an aliphatic amino acid radical or lactic acid radical;

25

Z_G is a protecting group removable by acidolysis or catalytic hydrogenation, preferably

benzyloxycarbonyl or
tert-butoxycarbonyl,

5

A_3 is a group suitable for the temporary protection of the guanidine group of arginine, preferably a nitro group,

10

B_3 is a group suitable for the temporary protection of the aromatic hydroxyl group of tyrosine, preferably benzyl or substitute benzyl,

15

E_3 is a group suitable for the temporary protection of the imidazole group of histidine, preferably dinitrophenyl,

20

C_3 is a group suitable for the temporary protection of the C-terminal carboxyl group, resistant to acid treatment but removable for example by catalytic hydrogenation, for example benzyl or substituted benzyl, and

25

X_3 , depending on the meaning of X , represents either a sarcosyl group or an aliphatic carboxylic acid radical containing an aminocxy group in the α -position;

and further wherein B_3 in the above formula is not a chromogenic group which is removable by enzymatic hydrolysis and capable of forming a colored or fluorescent compound containing the chromogenic group B_3 .

5 2. A non-naturally occurring compound that specifically inhibits the activity of factor Xa, having the general formula $A_1-A_2-(A_3)_m-B$, wherein m is 1 or 0;

wherein A_1 is $R_1-R_2-R_3$; A_2 is $R_4-R_5-R_6$; A_3 is $R_7-R_8-R_9$;

10 wherein

R_1 is

X is N;

15 R'_1 is selected from isobutyl, 2-methylpentyl, cyclohexylmethyl, cyclohexenylmethyl, 2-methylbutyl, -H and 2,3-dimethylpentyl;

20 R''_1 is selected from 2-benzofuroyl, alloc, acetyl, trifluoroacetyl, 2-quinolinoyl, 3-pyridoyl, 4-isocoumarinoyl, 5-benzylimidazoyl, 2-naphthylmethyl, 5-pyridimincyl, benzoyl, 2-pyridoyl, tosyl, 3-quinolinoyl, 2-naphthylsulfonyl, 2-methylbenzyl, 2-furyl, 3,4-dichlorobenzoyl, 2-thienylacetyl, 25 N(5-methyl-2-thienyl), ethoxycarbonyl,

2-fluorobenzoyl, t-butoxycarbonyl, benzyl and 1-20 amino acids;

P₂ is -CF_{3A}R_{2B}-, wherein -R_{2A} and -R_{2B} are independently selected from the group consisting of -H, 4-amidinophenylmethyl, 4-aminophenylmethyl, 4-hydroxyphenylmethyl, 2-naphthylmethyl, 4-(N-methylpyridinyl)methyl, (3-iodo-4-aminophenyl)methyl, (4-aminocarbonylphenyl)methyl, (3-iodo-4-hydroxyphenyl)methyl, (4-cyano phenyl)methyl, (4-hydroxyphenyl)methyl;

F₃ is -C(O)-;

15 F₄ is -NH-;

F₅ is -CR_{5A}F_{6B}, wherein -R_{5A} and -R_{5B} are independently selected from the group consisting of -H, 2-butyl, and cyclohexyl;

F₆ is -C(O)-;

20 F₇ is -NH-;

F₈ is -CF_{3A}F_{8B}, wherein -R_{8A} and -R_{8B} are independently selected from the group consisting of -H, 3-guanylpropyl, (dimethylamidinium)aminomethyl, (dimethylamidinium)aminoethyl, 3-(N-methylpyridinyl)methyl, 4-(N-methylpyridinyl)methyl;

R₁ is -C(=O)-; and

B is Leu-Pro-NH₂, Leu-Hyp-NH₂,
 Pen_nCH₂COCH₂-Pro-NH₂, Cys(CH₂COOH)-Pro-NH₂,
 γ-carboxyglutamic acid-Pro-NH₂,
 5 (N-carboxymethyl)Gly-Pro-NH₂,
 (N-carboxyethyl)Gly-Pro-NH₂,
 (N-(1,3-dicarboxypropyl)Gly-Pro-NH₂,
 (N-methyl)Leu-Pro-NH₂, Leu-NH₂, Leu-OH,
 10 -NH-(4-trimethylammoniumbenzyl),
 -NH-[4-(1-methylpyridinium)methyl], and
 -NH-4-amidinobenzyl).

3. A non-naturally occurring compound that specifically inhibits the activity of factor Xa, having the general formula A₁-A₂-(A₃)_m-B, wherein m is 1;

15 wherein A₁ is R₁-R₂-R₃; A₂ is R₄-R₅-R₆; A₃ is R₇-R₈-R₉;

wherein

R₁ is

20 X is N;

R'_1 is selected from H, isobutyl, 2-methylpentyl, cyclohexylmethyl, 3-quinolinyl, 2-methylbutyl, 2,3 dimethyl pentyl, and cyclohexenylmethyl;

F'' ; is selected from 2-benzofuroyl, alloc, acetyl, trifluoroacetyl, 2-quinolinoyl, 3-pyridoyl, 4-isocoumarinoyl, 5-benzimidazoyl, 2-naphthylmethyl, 5-pyrazinoyl, benzoyl, 2-pyridoyl, tosyl, 3-quinolinylyl, 2-naphthylsulfonyl, 2-methylbenzyl, and benzyl;

10 F_2 is $-CR_{2A}F_{2B}$, wherein $-R_{2A}$ and $-R_{2B}$ are independently selected from the group consisting of H, 3-amidinophenylmethyl, 4-amidinophenylmethyl, 4-aminophenylmethyl, 4-hydroxyphenylmethyl, 2-naphthylmethyl, 4-(N-methylpyridinyl)methyl, (3-iodo-4-aminophenyl)methyl, 15 (4-aminocarbonylphenyl)methyl, (3-iodo-4-hydroxyphenyl)methyl, (4-cyanophenyl)methyl, and 3-indolymethyl;

20 F_3 is selected from the group consisting of $-C(O)-$, $-CH_2-$, $-CHR_{35}-C(O)-$ and $-C(O)-NR_{35}-CH_2-C(O)-$, wherein R_{35} is the CHR_{55} group of the bridging group $-C(O)-CR_{55}-$;

F_4 is $-NH-$;

25 R_5 is $-CR_{5A}F_{5B}$, wherein $-R_{5A}$ and $-R_{5B}$ are independently selected from the group consisting of -H, 2-butyl, cyclohexyl and phenyl;

R_7 is $-C(O)-$;

R_8 is $-NH-$;

R₂ is -CR_{1A}R_{2B}, wherein -R_{1A} and -R_{2B} are independently selected from the group consisting of -H, 3-guanylpropyl, (dimethylamidinium)aminomethyl, (dimethylamidinium)aminoethyl, 3-(N-methylpyridinyl)methyl, N-carboxymethyl)(3-pyridinylmethyl), and 4-(N-methylpyridinyl)methyl;

5

R₃ is selected from the group consisting of -C(O)-, -CH₂- and -CHR_{3B}-C(O)-; and

15

B is -NH₂, -OH, Leu-Pro-NH₂, Leu-Hyp-NH₂, Pen(CH₂COOH)-Pro-NH₂, Cys(CH₂COOH)-Pro-NH₂, γ -carboxyglutamic acid-Pro-NH₂, (N-carboxymethyl)Gly-Pro-NH₂, (N-carboxyethyl)Gly-Pro-NH₂, (N-1,3-dicarboxypropyl)Gly-Pro-NH₂, (N-methyl-Leu-Pro-NH₂, Leu-NH₂, and Leu-OH.

4. The compound of claim 3 wherein R₃ is -C(O)-.
5. The compound of claim 3 wherein R₃ is -C(O)-.
- 20 6. The compound of claim 4 wherein R₃ is -C(O)-.
7. A compound selected from the group consisting of CF₃C(O)-(iBu)Phe(NH₂)-Chg-Arg-Leu-Pro-NH₂; Ac-pAph-Ile-Arg-Leu-Pro-NH₂; CF₃C(O)-(iBu)Nal(2)-Chg-Arg-Leu-Pro-NH₂; Ac-Phe(3I,4NH₂)-Chg-Arg-Leu-Pro-NH₂; 25 CF₃C(O)-Tyr-Chg-Arg-Leu-Pro-NH₂; (5-benzimidazoyl)-Phe(NH₂)-Chg-Arg-Leu-Pro-NH₂; CF₃C(O)-(iBu)Tyr-Ile-Arg-Leu-Pro-NH₂; Ac-(Chx-CH₂)Tyr-Ile-Arg-Leu-Pro-NH₂;

D-Tyr-Chg-Arg-Leu-Pro-NH₂; and
 Ac-Trp-Chg-Arg-Leu-Pro-NH₂.

8. A compound selected from the group consisting of
 (2-benzofuryl)-Tyr-Chg-Arg-Pen-Pro-NH₂;

5 (2-benzofuryl)-pAph-Chg-Pal(3)Me-Pen(CH₂COOH)
 -Pro-NH₂;

Ac-pAph-Chg-Arg-Cys(CH₂COOH)-Pro-NH₂;

(Alloc)-pAph-Chg-Arg-Leu-Pro-NH₂;

(2-benzofuryl)-pAph-Chg-Arg-Pen(CH₂COOH)-Pro-NH₂;

10 Ac-pAph-Chg-Pal(3)Me-Pen(CH₂COOH)-Pro-NH₂;

Ac-pAph-Chg-Arg-Leu-Pro-NH₂;

Ac-pAph-Chg-Arg-(HOOC-CH₂)Gly-Pro-NH₂;

Ac-pAph-Chg-Arg(HOOC-CH₂-CH₂)Gly-Pro-NH₂;

15 Ac-pAph-Chg-Arg-Gla-Pro-NH₂;

Ac-pAph-Chg-Arg-Cys(CH₂-COOH)-Pro-NH₂;

Ac-Pal(4)Me-Chg-Arg-Leu-Pro-NH₂;

Ac-(iBu)Nal(2)-Chg-Arg-Leu-Pro-NH₂;

Ac-Phe(p-CO NH₂)-Chg-Arg-Leu-Pro-NH₂;

20 Ac-pAph-Chg-Arg-N[1(1,3-dicarboxy)propyl]Gly
 -Pro-NH₂;

Ac-pAph-Chg-Dap(CH=N(CH₂)₂)-Leu-Pro-NH₂;

(2-quinolinoyl)-Phe(NH₂)-Chg-Arg-Leu-Pro-NH₂;

Ac-pAph-Chg-Arg-N(carboxymethyl)Gly-Pro-NH₂;

Ac-pAph-Chg-Arg-(carboxyethyl)Gly-Pro-NH₂;

25 Ac-mAph-Chg-Arg-Leu-Pro-NH₂;

Alloc-pAph-Chg-Pal(3)Me-Pen(CH₂COOH)-Pro-NH₂;

Ac-pAph-Chg-Arg-N[1(1,3-dicarboxy)propyl]Gly
 -Pro-NH₂;

Ac-pAph-Ile-Arg-Leu-Pro-NH₂;

30 Ac-Phe(pNH₂)-Chg-Arg-(Me)Leu-Pro-NH₂;

Ac-(Chx-CH₂)Tyr-Chg-Arg-Leu-Pro-NH₂;

(5-pyridyl)-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂;

5-pyridyl-Nal 2-Chg-Arg-Leu-Pro-NH₂;

Ac-Pal(4)Me-Chg-Pal(4)Me-Leu-Pro-NH₂;

Alloc-pAph-Chg-Arg-Leu-Pro-NH₂;
 (4-isocoumarinoyl)-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂;
 Ac-pAph-Cha-Pal(3)Me-(Me)Leu-Pro-NH₂;
 Ac-pAph-Chg-Pal(3)Me-Leu-Pro-NH₂;
 5 (2-naphthyl-CH₂)Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂;
 (5-pyrazinoyl)Nal(2)-Chg-Arg-Leu-Pro-NH₂;
 (Benzoyl)-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂;
 Ac-(2-methylpentanyl)-Tyr-Ile-Arg-Leu-Pro-NH₂;
 (2-pyridonyl)Phe(pNH₂)Chg-Arg-Leu-Pro-NH₂;
 10 (Benzoyl)-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂;
 Ac-(2-methylpentyl)Tyr-Ile-Arg-Leu-Pro-NH₂;
 Ac-(iBu)Phe(pCN)-Chg-Arg-Leu-Pro-NH₂;
 Ac-(2-methylbutyl)Tyr-Ile-Arg-Leu-Pro-NH₂;
 Ac-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂;
 15 Ac-Phe(pNH₂)-Chg-Arg-Leu-Hyp-NH₂;
 Ac-Tyr-Chg-Arg-Leu-Pro-NH₂;
 (2-naphthylsulfonyl)-Phe(pNH₂)-Chg-Arg
 -Leu-Pro-NH₂;
 (2-methylbenzyl)-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂;
 20 (2-benzofuroyl)-Phe(pNH₂)-Chg-Dab(CH=N,CH₃)₂
 -Leu-Pro-NH₂;
 Ac-(cyclopentenyl-CH₂)Tyr-Ile-Arg-Leu-Pro-NH₂;
 Ac-Pal(4)Me-Chg-Pal(3)Me-Leu-Pro-NH₂;
 Ac-(iBu)-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂; and
 25 Ac-(Chx-CH₂)-Tyr-Ile-Arg-Leu-Pro-NH₂.

9. A compound selected from the group consisting of
 Ac-pAph-Chg-Arg-Leu-NH₂; and
 Ac-pAph-Chg-Arg-Leu-CH.

10. A compound selected from the group consisting of
 30 (2-benzofuroyl)-pAph-Chg-Pal(3)Me-NH₂; and
 Ac-(iBu)Phe(pNH₂)-Chg-Arg-NH₂.

11. A compound selected from the group consisting of

- Alloc-pAph-Chg-Pal(3)Me-NH₂;
- (2-quinolincyl)-pAph-Chg-Pal(3)Me-NH₂;
- Ac-pAph-Chg-Pal(3)Me-NH-(1-methoxycarbonyl)
5 -1-cyclohexyl;
- Ac-pAph-Chg-Arg-NH₂;
- (2-pyridoyl)-pAph-Chg-Pal(3)Me-NH₂;
- CF₃C(O)-(iBu)Phe(pNH₂)-Chg-Arg-NH₂;
- Ac-pAph-Chg-Pal(3)Me-NH-(1-methoxycarbonyl)
10 -1-cyclopentyl;
- Ac-pAph-Chg-Pal(3)Me-NH-(4-methoxycarbonyl
-cyclohexyl)methyl;
- Ac-pAph-Chg-Pal(3)Me-NH-(3-thienyl-2
-carboxylic acid methyl ester);
- 15 Ac-pAph-Chg-Arg-NH₂;
- CF₃C(O)-(iBu)Tyr-Chg-Arg-OH;
- Ac-pAph-Chg-Pal(3)Me-NH-(4-methoxycarbonyl
-cyclohexyl)methyl;
- Ac-pAph-Chg-Pal(3)Me-NH₂;
- 20 Ac-pAph-Pgl-Pal(3)Me-NH₂;
- Ac-pAph-Chg-Pal(3)(CH₂COOH)-NH₂;
- (2-quinolinecarboxy)-pAph-Chg-Pal(3)Me-NH₂;
- Ac-pAph-Chg-Pal(3)Me-NH-(4-carboxycyclohexyl)
25 methyl; and
- CF₃C(O)(iBu)-Tyr-Ile-Arg-NH₂.

12. A non-naturally occurring compound that specifically inhibits the activity of factor Xa, having the general formula A₁-A₂-(A₃)_m-B, wherein m is 0;

wherein A₁ is R₁-R₂-R₃; and A₂ is R₄-R₅-R₆;

30 wherein

R₁ is

X is N;

R'₁ is selected from the group consisting of H,
alkyl, acyl, aryl, arylalkyl and an amino-
protecting group;

5

R''₁ is selected from 2-furoyl,
3,4-dichlorobenzyl, 2-thienylacetyl,
5-methyl-2-thienoyl, acetyl, ethoxycarbonyl,
2-fluorobenzoyl, alloc, and
t-butoxycarbonyl;

10

15

F₂ is -CR_{2A}R_{2B}-, wherein -R_{2A} and -R_{2B} are
independently selected from the group
consisting of an -H; alkyl, arylalkyl,
heterocarylalkyl and heteroaryl, and wherein
R_{2A} and R_{2B} independently can be substituted
with a substituent;

20

F₃ is selected from the group consisting of
-C(O)-, -CH₂-, -CHR₃₅-C(O)- and -C(O)-NR₃₅-
CH₂-C(O)-, wherein R₃₅ is the CHR₃₅ group of
the bridging group -C(O)-CF₃₅-;

F₄ is -NH-;

F₅ is -CR_{5A}R_{5B}, wherein -R_{5A} and -R_{5B} are
independently selected from the group consisting of -H, and
cyclohexyl;

R₁ is -C(=O)-;

B is -NH-(4-trimethylammoniumbenzyl),
-NH-[4-(1-methylpyridinium)methyl],
-NH-[4-(1-ethylpyridinium)methyl], and
-NH-(4-amidinobenzyl).
5

13. The compound of claim 12 wherein R'₁ is H.

14. The compound of claim 12 wherein -R_{2A} is
p-amidinophenylmethyl.

15. The compound of claim 12 wherein F₃ is -C(=O)-.

10 16. The compound of claim 13 wherein -R_{2A} is
p-amidinophenylmethyl.

17. The compound of claim 16 wherein F₃ is -C(=O)-.

18. The compound Ac-pAph-Chg-NH[4-(1-methyl-
pyridinium)methyl].

15 19. A compound selected from the group consisting of
(2-furoyl)-pAph-Chg-NH-(4-trimethyl
-ammonium benzyl);
(3,4-dichlorobenzoyl)-pAph-Chg-NH-(4-trimethyl
-ammonium benzyl);
20 (2-thienylacetyl)-pAph-Chg-NH-(4-trimethyl
-ammonium benzyl);
(N-(5-methyl-2-thienyl))-pAph-Chg-NH-
(4-trimethyl-ammonium benzyl);
Ac-pAph-Chg-NH-(4-trimethyl
-ammonium benzyl);
25 -Ethoxycarbonyl-pAph-Chg-NH-(4-trimethyl
-ammonium benzyl);

(2-fluorobenzoyl)-pAph-Chg-NH-(4-trimethyl
-ammonium benzyl; ;
Ac-pAph-Chg-NH-(4-amidinobenzyl);
Alloc-pAph-Chg-NH-[4-, -methylpyridinium)
-methyl];
5 (t-Butoxycarbonyl)-pAph-Chg-NH-(4-trimethyl
-ammonium benzyl);
(2-fureyl)-pAph-Chg-NH-1-[3(N-methylpyridyl)]
-1-(methylacetate)ethyl;
10 Ac-pAph-Chg-NH-1-[3(N-methylpyridyl)]
-1-(methylacetate)ethyl;
Ac-pAph-Chg-NH-[1-(1-methyl-4-pyridinium)ethyl;
Ac-pAph-Chg-NH-[1-(1-methyl-4-pyridinium)
methyl; and
15 Ac-pAph-Chg-NH-[1-(1-methyl-4-pyridinium)
-2-hydroxy]ethyl.

20. A compound selected from the group consisting of
Ac-D-pAph-Chg-Arg-Leu-Pro-NH₂
Ac-D-pAph-Chg-Arg-Gla-Pro-NH₂; ;
Ac-D-pAph-Chg-Arg-Cys(CH₂-COOH)-Pro-NH₂; ;
20 Ac-D-pAph-Chg-Arg-N(carboxymethyl)Gly-Pro-NH₂; ;
Ac-D-pAph-Chg-Arg-(carboxyethyl)Gly-Pro-NH₂; ;
Ac-D-pAph-Chg-Arg-N[1(1,3-dicarboxy)propyl]Gly
-Pro-NH₂; ;
25 Ac-D-pAph-Ile-Arg-Leu-Pro-NH₂; ;
Alloc-D-pAph-Chg-Arg-Leu-Pro-NH₂; ;
Ac-D-pAph-Chg-Pal(3)Me-Leu-Pro-NH₂; and
Ac-D-pAph-Chg-Arg-NH₂. ;

21. A compound Ac-D-pAph-Chg-Pal(Me)-Leu-Pro-NH₂. ;

30 22. A compound Ac-D-pAph-Chg-Pal(Me)-NH₂. ;

23. A compound Ac-Phe(pNH₂)-Chg-Arg-Leu-Pro-NH₂.

24. A method of specifically inhibiting the activity of Factor Xa, comprising contacting the factor Xa with the compound of claim 1.

5 25. A method of specifically inhibiting the activity of Factor Xa, comprising contacting the factor Xa with the compound of claim 2.

10 26. A method of specifically inhibiting the activity of Factor Xa, comprising contacting the factor Xa with the compound of claim 12.