M1 - Marine Physics

2019 - 2020

Data Analysis

#3 Statistical analysis of Argo data

This activity will be evaluated and marked. Send by email (gula@univ-brest.fr) your notebook or python script(s) and the figures you plotted.

Due date: Wednesday November 20th 2019.

1 The data

The data you will analyze are stored here

http://stockage.univ-brest.fr/~gula/TS1/argo_subdataset.mat

The file contains $n=33\,028$ Argo vertical profiles from the North Atlantic Ocean. Each profile k has been acquired by a certain profiler (information not given in this datafile) at a certain time t_k , a certain location (ϕ_k, λ_k) . Each profile has been interpolated on m=62 levels z_l , the same for all profiles. The data of each profile consists in : absolute salinity (SA), the conservative temperature (CT) and a virtual density (ρ) (see IAPSO 2010 for more informations on the definition of these variables). The file also contains the corresponding bathymetry on a $1/6^{\circ}$ resolution grid from ETOPO2v2.

name	size	meaning
time	n x 1	time of profile acquisition (in days)
lat	$n \times 1$	latitude of the profile
lon	$n \times 1$	longitude of the profile
z 0	62×1	depth of each data in a profile
ct	$n \ge 62$	conservative temperature
sa	$n \times 62$	absolute salinity
rho	$n \times 62$	virtual density
htopo	$241 \ge 301$	elevation on a $1/6^{\circ}$ grid
xtopo	301×1	longitude of the elevation
ytopo	$241 \ge 1$	latitude of the elevation

Table 1 – List of variables in the data file

2 Descriptive information

Each plot should have proper labels, title, units, colorbar if any. When using colors, control the color axis (caxis). Save each figure in a PNG file as 'figX.Y.png', where X is the section, Y the question.

- 1. do a horizontal plot showing the location of each profile (use a 'o' for each profile)
- 2. do a histogram showing the number of samplings over the whole Argo period of this dataset with a binsize of 1 year
- 3. Most of the vertical profiles start at -2000m but not all of them. Some start less deep. Do the histogram of the maximum depth of each profile (with a binsize of 50 m). You can use the vector of indices ind corresponding to the maximum density sampled for each profile from the command matlab: [~,ind]=max(rho,[],2);, python: ind = np.nanargmax(rho,1). You should find that about 50% of them reach 2000 m.
- 4. do a scatter plot showing each profile location as a colored dot where the color indicates the maximum depth of each profile matlab:scatter(); , python:plt.scatter()

3 Climatology

- 1. do a monthly climatological histogram: number of profiles for each month of the year (twelve bins). You can use module datetime in python to convert the time into the month value.
- 2. do a seasonal climatological histogram: number of profiles for each season of the year (winter, spring, summer, autumn).
- 3. do a scatter plot where the color indicates the temperature at the surface
- 4. do scatter plots where the color indicates the temperature at the surface for the different seasons (winter, spring, summer, autumn)

4 Mode Water

A mode water is defined as an anomalous volume of water with homogeneous characteristics, usually temperature and salinity. Subtropical mode waters are located in the thermocline and play a key role in biology. The mode water formation process usually occurs at the mid-end of the winter through buoyancy loss at the sea surface (temperature loss and/or salinity gain) which triggers mixing and homogenize the water deep in the water column (then a mode water). Among them is the North Atlantic Subtropical Mode Water, often called 18°C water, which is characterized by a temperature of 17.8°C, a salinity of 36.5PSU and a potential density of 26.45 kg/m³.

- 1. do a similar scatter plot where the color indicates the temperature at 200 m depth. Can you see the mode water (around 18°)?
- 2. plot the probability density function (PDF) of the temperature measured between 100 m and 500 m. Can you identify the dominant class of temperature (= mode of the distribution)?
- 3. do a scatter plot for the salinity at 200 m depth.
- 4. plot the PDF of salinity measured between 100 m and 500 m. Can you identify the dominant class of salinity?
- 5. do a scatter plot for the density (ρ) at 200 m depth.
- 6. plot the PDF of density measured between 100 m and 500 m. Can you identify the dominant class of density?

5 Averaging and gridding

The protocol We now want to average and bin the argo data on a regular grid. Let (x_i, y_i) be the location of the grid points. The goal is to estimate $T_i(z_l)$ the temperature at (x_i, y_i, z_l) . For that we introduce a weighting matrix

 w_{ik} whose coefficients are

$$w_{ik} = e^{-d_{ik}^2/(2\sigma^2)} (1)$$

with d_{ik} the distance between (x_i, y_i) and (ϕ_k, λ_k) and σ a smoothing length. Note that all the distances will be measured in degrees. To be exact we should consider the spherical distance but we will assume that the euclidean distance is a good estimate of it

$$d_{ik}^2 = (x_i - \phi_k)^2 + (y_i - \lambda_k)^2$$
 (2)

Once this weight matrix is set, the temperature T_i (for a given depth z_l) is

$$T_i = \frac{\sum_k w_{ik} T_k}{N_i}, \quad \text{with} \quad N_i = \sum_k w_{ik}$$
 (3)

In practice the summation over k should be done only on points whose value is not NaN and the T_i should be computed only on ocean points (although the algorithm is able to give a value on land).

Implementation

- 1. First of all you will create arrays for longitude and latitude xtopo1, ytopo1 on a 1° grid. This is the grid on which you will compute the averaged and binned horizontal fields.
- 2. Coarsen the topography elevation htopo to get topography htopo1 on the 1° grid.
- 3. Implement the following algorithm to average and bin the data:
 - (a) for a given z_l , find the k indices whose T_k is not NaN
 - (b) find the i indices whose T_i are ocean points
 - (c) construct the d_{ik} matrix and the w_{ik}
 - (d) compute T_i and N_i

(e) reshape T_i and N_i on the grid

Do a map of $T_i = T(x_i, y_i)$ at the surface (set the land points to NaN) with $\sigma = 1/2^{\circ}$.

- 4. Redo the map with $\sigma = 1^{\circ}$.
- 5. Repeat the operation for the surface salinity.
- 6. Repeat the operation for the temperature at 200 m during winter.
- 7. Do a map of N_i . Interpret this result : what is the meaning of N? [check what happens when you change σ].
- 8. Pick an ocean point of the grid i_0 and do a scatter plot of the profile locations using w_{i_0k} as a color.
- 9. Do the reverse operation: pick a profile k_0 and do a map (gridded) of w_{ik_0} .
- 10. Equation (3) can be thought as the mean operation where P_{ik}

$$P_{ik} = w_{ik}/N \tag{4}$$

is a probability density function (PDF). Indeed we have $P_{ik} \geq 0$ and $\sum_{k} P_{ik} = 1$.

Adapt the protocol to do a map of the surface temperature standard deviation

$$\sigma_i^T = \sqrt{\sum_k P_{ik} (T_k - \bar{T}_i)^2} \tag{5}$$

with \bar{T}_i the mean temperature computed with (3).