Кирилл Михайлович 89060399998

13/02/2025

Дискретная случайная величина: Эксперимент, различные значения Грань кубика

x_i	1	2	3	4	5	6
p_i	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Непрерывная:

Рост человека:

Вероятность - это площадь. Наапример, $P(160 < \xi < 170)$ Вероятность принять конкретное значение 0. Доход населения (закон Парето):

лстм? эконофизика эконометрика (ранхигс?) Задачи по комбинаторике в матанализе

1. Правило суммы Сколько существует способов поставить белопольного слона на шахматную доску так, чтобы он держал по боем больше 10 полей

7	0	7	0	7	0	7	0
0	9	0	9	0	9	0	7
7	0	11	0	11	0	9	0
0	9	0	13	0	11	0	7
7	0	11	0	13	0	9	0
0	9	0	11	0	11	0	7
7	0	9	0	9	0	9	0
0	7	0	7	0	7	0	7

8

Кружки: математический, английский, спортивный

M	150
Α	80
С	110
MA	40
MC	70
AC	60
MAC	21
0	14

$$\#(M \cup A \cup C \cup n_0) = 14 + 150 + 80 + 110 - 40 - 70 - 60 + 21 = 354 - 170 + 21 = 184 + 21 = 205$$

Правило произведения

Сколько 4значных чётных чисел можно составить из 7 цифр, если цифры могут повторяться

$$egin{array}{lll} 0-1 & [2,4,6]-3 \ 6*5*4 & 5*5*4 \end{array}$$

3. Перестановки

$$P_n = n!$$

Сколькими способами п книг на полку, чтобы т книг стояли рядом

$$(n - m + 1)!m!$$

4. Перестановки с повторениями

$$A-$$
 множество из n элементов, где k_1,k_2,\ldots,k_m - элементов каждого типа $n!=P(k_1,k_2,\ldots,k_n)\cdot\prod_{i=1}^nk_i!\Leftrightarrow P(k_1,k_2,\ldots,k_n)=rac{n!}{\prod_{i=1}^nk_i!}$

Сколько "слов" можно составить из слова параллелограмм

п	1
a	3
р	2
Л	3
е	1

П	1
0	1
Γ	1
М	2

$$\frac{14!}{3!3!2!2!}$$

20/02/2025

Размещения

$$A = \{a_i\}$$

Составим **упорядоченные** наборы из m элементов ($m \le n$)

$$A_n^m=rac{n!}{(n-m)!}$$

Сочетания - неупорядоченные

$$A = \{a_1, a_2, a_3, a_4\}$$

Выпишем все упорядоченные наборы по 2 элемента (A_4^2)

$$a_1a_2, a_1a_3, a_1a_4, a_2a_1, a_2a_3, a_2a_4, a_3a_1, a_3a_2, a_3a_4, a_4a_1, a_4a_2, a_4a_3$$

12

$$A_4^2 = rac{4!}{2!} = 12$$

14 юношей, 15 девушек, 20 билетов. Сколько вариантов распределить билеты так, чтобы юноши и девушки чередовались?

2 случая: В начале юноша / в начале девушка

1 случай: В начале юноша

$$A_{14}^{10}\cdot A_{15}^{10}$$

2 случай аналогичен

$$n=2\cdot A_{14}^{10}\cdot A_{15}^{10}$$

6значные числа, делящиеся на 5, чтобы ни одна цифра не повторялась.

В конце или есть 0, или его нет.

Есть 0:
$$A_9^5 = \frac{9!}{4!} = 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 = 15120$$

Если в конце не 0, то это 5.

$$8 \cdot A_8^4 = 8 \cdot \frac{8!}{4!} = 13440$$

$$n = 13440 + 15120 = 28560$$

Размещения с повторениями

$$\{a_i\}_{1}^{n}$$

Составим упорядоченное множество из m элементов, где элементы могут повторяться

$$ar{A_n^m}=n^m$$

Сколько "слов" Зхсимвольных можно составить из тире и точки? - 2^3 Сочетания:

$$C_n^m = rac{n!}{(n-m)!m!}$$

$$A = \{a_1, a_2, a_3, a_4\}$$

Выпишем сочетания

$$a_1a_2, a_1a_3, a_1a_4, a_2a_3, a_2a_4, a_3a_4$$

6

$$C_4^2 = \frac{4!}{2!2!} = 6$$

- 4 белых, 3 красных
- а) число способов вытащить 2 одинаковых шара

$$C_4^2 + C_3^2 = 6 + 3 = 9$$
 $C_n^1 = n$

б) число способов вытащить 2 шара разного цвета Гипергеометрическая схема 1б 1к

$$C_4^1 \cdot C_3^1 = 4 \cdot 3 = 12$$

Сочетания с повторениями:

Сколько способов существует набрать 10 пирожных 3 видов: наполеон, медовик, птичье молоко

$$|\cdots|$$

Число способов поставить палки вместо точек. C_{12}^2

Могла быть другая задача: сколько способов поставить палки между точками $C_{\mathfrak{g}}^2$

$$\overline{C_n^m} = C_{m+n-1}^{n-1}$$

$$(\Omega,\mathcal{A},P)$$
 Ω — множество элементарных исходов \mathcal{A} - алгебра событий P - вероятность (мера)

Подбрасываем игральный кубик

$$egin{aligned} \Omega &= \{1,2,3,4,5,6\} \ \mathcal{A} : A \in \mathcal{A} &\Longrightarrow \overline{A} \in \mathcal{A} \ B \in \mathcal{A} &\Longrightarrow A \cup B \in \mathcal{A}, A \cap B \in \mathcal{A} \ \Omega, arnothing \in \mathcal{A} \end{aligned}$$

 $2^{\mathcal{A}}$ - является алгеброй

$$A=\{$$
чётное число очков $\}$ $B=\{$ нечётное число очков $\}$ $\mathcal{A}=\{A,B,\varnothing,\Omega\}$ $P\geq 0$ $0\leq P(A)\leq 1$ $P(A+B)=P(A)+P(B)$

Классическая модель

$$P(A) = rac{\#A}{\#\Omega}$$

В урне 10 красных, 7 синих и 6 чёрных шаров. Каковы вероятность события А= "выбраны 1 красный, 2 синих, 3 чёрных", если равновероятно выбираются 6 шаров.

$$A = \{1 \mathrm{\kappa}, 2 \mathrm{c}, 3 \mathrm{u}\} \ \#\Omega = C_{23}^6 \ \#A = C_{10}^1 \cdot C_7^2 \cdot C_6^3 \ P(A) = rac{C_{10}^1 \cdot C_7^2 \cdot C_6^3}{C_{23}^6}$$

Сколько должно быть студентов в группе, чтобы с веротностью большей $\frac{1}{2}$ хотя бы у двух совпадёт день рождения.

r - число студентов

A - хотя бы 2 родились в 1 день

Хотя бы \rightarrow разумно перейти к обратному

 \overline{A} - все в разные дни

$$egin{aligned} \#\Omega &= 365^r \ \overline{A} &= A_{365}^r \ P(\overline{A}) &= rac{A_{365}^r}{365^r} \ P(A) &= 1 - rac{A_{365}^r}{365^r} = 1 - rac{365!}{(365-r)!365^r} > rac{1}{2} \ P(A(23)) &pprox 0.507 \end{aligned}$$

27/03/2025

Дискретный случайный вектор

$$ec{\xi} = egin{pmatrix} \xi_1 \ \xi_2 \ \dots \ \xi_n \end{pmatrix}$$
 - случайный вектор

3 шара случайным образом распределяются по 3 корзинам.

 ξ - число шаров в первой корзине

 η - число шаров во второй корзине

$\etaackslash\xi$	0	1	2	3
0	$\frac{1}{27}$	$\frac{3}{27}$	$\frac{3}{27}$	$\frac{1}{27}$
1	$\frac{3}{27}$	$\frac{6}{27}$	$\frac{3}{27}$	0
2	$\frac{3}{27}$	$\frac{3}{27}$	0	0
3	$\frac{1}{27}$	0	0	0

$$\begin{split} P(\xi=0,\eta=0) &= \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{27} \\ P(\xi=1,\eta=0) &= \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot C_3^1 = \frac{3}{27} \\ P(\xi=1,\eta=1) &= \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot C_3^1 \cdot C_2^1 = \frac{6}{27} \end{split}$$

Найдём распределение компонент:

 ξ :

x_i	0	1	2	3
P_i	$\frac{8}{27}$	$\frac{12}{27}$	$\frac{6}{27}$	$\frac{1}{27}$

 P_i - сумма значений в і+1 столбце

$$M\xi = 1 \ M\xi^2 = rac{45}{27} \ D\xi = M\xi^2 - (M\xi)^2 = rac{18}{27}$$

 η :

y_{j}	0	1	2	3
P_{j}	$\frac{8}{27}$	$\frac{12}{27}$	$\frac{6}{27}$	$\frac{1}{27}$

P_j - сумма значений в j+1 строке

Ковариация:

$$egin{aligned} \cos(\xi,\eta) &= M(\xi-M\xi)(\eta-M\eta) = M(\xi\eta) - M\xi M\eta \ \cos(\xi,\xi) &= D_{\xi} \ M(\xi\eta) &= \sum_{i} \sum_{j} x_{i} y_{j} P(\xi=x_{i},\eta=y_{j}) \ &= rac{6}{27} \cdot 1 \cdot 1 + rac{3}{27} \cdot 1 \cdot 2 + rac{3}{27} \cdot 2 \cdot 1 = rac{18}{27} \ \cos(\xi,\eta) &= rac{18}{27} - 1 \cdot 1 = -rac{1}{3} \
ho_{\xi\eta} &= rac{\cos(\xi,\eta)}{\sqrt{D_{\xi}}\sqrt{D_{\eta}}} = -rac{rac{1}{3}}{rac{1}{27}} = -rac{1}{2} \end{aligned}$$

Свойства числовых характеристик

1.
$$M(\xi + \eta) = M\xi + M\eta$$

2.
$$M(\alpha \xi) = \alpha M(\xi)$$

3.
$$M(\alpha) = \alpha$$

4.
$$D_{\xi} = M(\xi - M\xi)^2 = M(\xi^2 - 2\xi M\xi + (M\xi)^2) = M(\xi^2) - 2M\xi \cdot M\xi + (M\xi)^2 = M(\xi^2) - (M\xi)^2$$

5.
$$D\alpha = M(\alpha^2) - (M\alpha)^2 = 0$$

6.
$$D(\alpha \xi) = M(\alpha^2 \xi^2) - (M\alpha \xi)^2 = \alpha^2 D\xi$$

7.
$$D(\xi+\eta)=M(\xi+\eta)^2-(M\xi+M\eta)^2=M\xi^2-(M\xi)^2+M\eta^2-(M\eta)^2+2M(\xi\eta)-2M\xi M\eta=D\xi$$
 Если случайные величины независимы, то $\rho_{\xi\eta}=0=\mathrm{cov}(\xi,\eta)$. Обратное утверждение неверно.

Условие независимости случайных величин.

$$orall i,j: \ P(\xi=xi,\eta=yj)=P(\xi=xi)P(\eta=yj)$$

8.
$$cov(\xi, \eta) = cov(\eta, \xi)$$

9.
$$cov(\xi + \eta, \zeta) = cov(\xi, \zeta) + cov(\eta, \zeta)$$

10.
$$cov(\alpha \xi, \eta) = \alpha cov(\xi, \eta)$$

11.
$$\operatorname{cov}(\xi,\xi) = D\xi \ge 0$$

cov - это скалярное произведение в пространстве случайных величин.

$$ho_{\xi\eta}=rac{\mathrm{cov}(\xi,\eta)}{\sqrt{\mathrm{cov}(\xi,\eta)}\sqrt{\mathrm{cov}(\xi,\eta)}}$$
 - "косинус" угла между случайными величинами $-1\leq
ho_{\xi,\eta}\leq 1$ 12) $\mathrm{cov}(lpha+\xi,\eta)=\mathrm{cov}(\xi,\eta)+M(lpha\eta)-(Mlpha)M(\eta)=\mathrm{cov}(\xi,\eta)$ 13) $D(\xi+lpha)=D\xi$

Пример:

Зависимость между оценками по кратным интегралам и термехом:

 ξ — кратные интегралы

•	-
η — термех	
3, 3-7	
3,4-1	
3,5-0	
4,3-27	
4,4-9	
4,5-0	
5, 3-19	
5, 4-24	
5,5-13	
n=100	

$\xi ackslash \eta$	3	4	5
3	0.07	0.27	0.19
4	0.01	0.09	0.24
5	0	0	0.13

 ξ :

x_i	3	4	5
P_{i}	0.08	0.36	0.56

 η :

y_j	3	4	5
P_{j}	0.53	0.34	0.13

$$M\xi = 4.48 \ D\xi = 0.41 \ M\eta = 3.6 \ D\eta = 0.5 \ {
m cov}(\xi,\eta) = 0.2 \
ho_{\xi\eta} = rac{{
m cov}(\xi,\eta)}{\sqrt{D\xi}\sqrt{D\eta}} = 0.45$$

$$F(x+0) - F(x) = P(\xi = x)$$
$$P(\alpha \le \xi < \beta) = F(\beta) - F(\alpha)$$

$$F_{\xi}(x) = egin{cases} 0, & x \leq 3 \ 0.08, & 3 < x \leq 4 \ 0.44, & 4 < x \leq 5 \ 1, & 5 < x \end{cases}$$

10 апреля РК

#конец