1

2

3

4

5

1

2

What Is Claimed Is:

1	1. A method for receiving multiple streams of Internet Protocol (IP)
2	packets that are interleaved together into a single stream of transport packets,
3	comprising:
4	receiving the single stream of transport packets, wherein the single stream
5	of transport packets includes multiple streams of IP packets that converted into
6	transport protocol packets and are then interleaved together into the single stream
7	of transport packets;
8	using the single stream of transport packets to reassemble IP packets for
9	the multiple streams of IP packets within a single IP packet buffer;
10	keeping track of the order in which reassembly is completed for IP packets
11	within the single IP packet buffer;
12	reading the IP packets out of the single IP packet buffer in the order in
13	which reassembly is completed; and
14	forwarding the reassembled IP packets to their destinations as specified by
15	IP addresses contained in the IP packets.

- 2. The method of claim 1, wherein keeping track of the order in which reassembly is completed involves maintaining a circular buffer containing pointers to completed IP packets in the single IP packet buffer, wherein a pointer to a completed IP packet is entered into the circular buffer upon completion of the IP packet.
- 3. The method of claim 2, wherein reading the IP packets out of the single IP packet buffer in the order in which packets are completed involves:

3	advancing a buffer pointer around the circular buffer containing pointers to
4	completed IP packets; and
5	reading the completed IP packets through pointers that are pointed to by
6	the buffer pointer;
7	whereby the completed IP packets are read out of the single IP packet
8	buffer in the order in which they were completed.
1	4. The method of claim 1, wherein the single IP packet buffer is
2	organized as a circular buffer, wherein buffers for incoming IP packets are
3	appended to the end of the circular buffer.
1	5. The method of claim 1, wherein reassembling the IP packets from
2	the transport packets involves maintaining a write pointer into the single IP packet
3	buffer for each stream of IP packets, wherein each write pointer points to a packet
4	being reassembled for an associated stream of IP packets.
1	6. The method of claim 5, wherein each write pointer includes:
2	a start pointer that points to the start of a packet being received for the
3	associated stream within the single IP packet buffer;
4	a number of bytes received so far for the packet being received; and
5	logic that calculates the write pointer from the start pointer and the number
6	of bytes received so far.
1	7. The method of claim 1, wherein using the single stream of
2	transport packets to reassemble IP packets involves:
3	receiving a single transport packet that includes an end section of a first IP
4	packet and a beginning section of a second IP packet;

5	directing the end section of the first IP packet to a first location in the
6	single IP packet buffer where the first IP packet is being reassembled; and
7	directing the beginning section of the second IP packet to a second
8	location in the single IP packet buffer where the second IP packet is being
9	reassembled.

- 1 8. The method of claim 1, wherein the single stream of transport packets includes MPEG2 transport packets.
- 9. The method of claim 1, wherein reassembling IP packets involves filtering transport packets based upon packet identifiers (PIDs) to filter out transport packets containing data that is not of a specified type for the IP packets.
- 1 10. The method of claim 1, wherein reassembling IP packets involves 2 checking continuity for transport packets to ensure that all transport packets that 3 make up an IP packet are received in sequential order.
- 1 11. The method of claim 1, further comprising, filtering IP packets
 2 based upon media access control (MAC) addresses to filter out IP packets that are
 3 not directed to an IP destination address on a local network.
- 1 12. The method of claim 1, wherein the single stream of transport 2 packets is received from a satellite.
- 1 13. An apparatus that is configured to receive multiple streams of
 2 Internet Protocol (IP) packets that are interleaved together into a single stream of
 3 transport packets, comprising:

4	a receiver that is configured to receive the single stream of transport
5	packets, wherein the single stream of transport packets includes multiple streams
6	of IP packets that converted into transport protocol packets and are then
7	interleaved together into the single stream of transport packets;
8	a single IP packet buffer in which IP packets are reassembled;
9	a reassembly mechanism that is configured to reassemble IP packets for
10	the multiple streams of IP packets from the single stream of transport packets;
11	an ordering mechanism that is configured to keep track of the order in
12	which reassembly is completed for IP packets within the single IP packet buffer;
13	a reading mechanism that is configured to read the IP packets out of the
14	single IP packet buffer in the order in which reassembly is completed; and
15	a forwarding mechanism that is configured to forward the reassembled IP
16	packets to their destinations as specified by IP addresses contained in the IP
17	packets.
1	14. The apparatus of claim 13,
2	wherein the ordering mechanism includes a circular buffer containing
3	pointers to completed IP packets in the single IP packet buffer; and
4	wherein the ordering mechanism is configured to enter a pointer to a
5	completed IP packet into the circular buffer upon completion of the IP packet.
1	15. The apparatus of claim 14, wherein the reading mechanism is
2	configured to:
3	advance a buffer pointer around the circular buffer containing pointers to
4	completed IP packets; and to
5	read the completed IP packets through pointers that are pointed to by the
6	buffer pointer;

Inventors: Cardoso

8

7	whereby the completed IP packets are read out of the single IP packet
8	buffer in the order in which they were completed.
1	16. The apparatus of claim 13, wherein the single IP packet buffer is
2	organized as a circular buffer, wherein buffers for incoming IP packets are
3	appended to the end of the circular buffer.
1	17. The apparatus of claim 13, wherein the reassembly mechanism
2	includes a write pointer into the single IP packet buffer for each stream of IP
3	packets, wherein each write pointer points to a packet being reassembled for an
4	associated stream of IP packets.
1	18. The apparatus of claim 17, wherein each write pointer includes:
2	a start pointer that points to the start of a packet being received for the
3	associated stream within the single IP packet buffer;
4	a number of bytes received so far for the packet being received; and
5	logic that calculates the write pointer from the start pointer and the number
6	of bytes received so far.
1	19. The apparatus of claim 13, wherein the reassembly mechanism is
2	configured to:
3	receive a single transport packet that includes an end section of a first IP
4	packet and a beginning section of a second IP packet;
5	direct the end section of the first IP packet to a first location in the single
6	IP packet buffer where the first IP packet is being reassembled; and to
7	direct the beginning section of the second IP packet to a second location

in the single IP packet buffer where the second IP packet is being reassembled.

- 1 20. The apparatus of claim 13, wherein the single stream of transport packets includes MPEG2 transport packets.
- 1 21. The apparatus of claim 13, wherein the reassembly mechanism
- 2 includes a packet identifier (PID) filter that is configured to filter transport packets
- 3 based upon packet identifiers (PIDs) in order to filter out transport packets
- 4 containing data that is not of a specified type for the IP packets.
- 1 22. The apparatus of claim 13, wherein the reassembly mechanism
- 2 includes a continuity checker that is configured to check continuity for transport
- 3 packets to ensure that all transport packets that make up an IP packet are received
- 4 in sequential order.
- 1 23. The apparatus of claim 13, further comprising, media access
- 2 control (MAC) filter that is configured to filter IP packets based upon MAC
- 3 addresses in order to filter out IP packets that are not directed to an IP destination
- 4 address on a local network.
- 1 24. The apparatus of claim 13, wherein the single stream of transport
- 2 packets is received from a satellite.