## S-gráf alapú ütemező algoritmus párhuzamos hozzárendelést megengedő feladatokhoz

Molnár Gergő Mérnökinformatikus Bsc.

Témavezető: dr. Hegyháti Máté, tudományos

főmunkatárs

Tudományos és Művészeti Diákkör 2019. Széchenyi István Egyetem 2019.11.21.

#### **Tartalom**

- Ütemezési feladatok
- Megoldó módszerek
- S-gráf keretrendszer
- Problémadefiníció
- A megoldó módszer
- Teszteredmények

### Ütemezés

- Általánosan
  - Erőforrások, feladatok, korlátok
- Gyártórendszerek ütemezése
  - > Termékek, berendezések
  - Végrehajtási-, tisztítási-, átállási idők
  - Tárolási irányelvek

### Megoldó módszerek

- MILP (Mixed-Integer Linear Programming) modellek
  - Időfelosztásos (Time discretization based)
  - Precedencia alapú (Precedence based)
- Analízis alapú eszközök
  - Időzített automaták
  - Időzített Petri hálók
- S-gráf keretrendszer

### Az S-gráf keretrendszer

- Irányított gráfon alapuló modell
- Receptek és ütemtervek vizualizációja
- Recept gráf:



### Az S-gráf keretrendszer

- Ütemezési algoritmusok → ütemezési élek
- Ütemezési gráf:



### Throughput maximalizálás

Termékek batch darabszámai alapján konfigurációk



- T. Majozi and F. Friedler, "Maximization of throughput in a multipurpose batch plant under a fixed time horizon: S-graph approach," Industrial & Engineering Chemistry Research, vol. 45, no. 20, pp. 6713–6720, 2006.
- T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler, "An automated algorithm for throughput maximization under fixed time horizon in multipurpose batch plants: Sgraph approach," vol. 24, pp. 649 654, 2007.

#### Probléma definíció

- Rögzített batch méret
  - Ismert jövedelem
  - > 1 berendezés 1 feladathoz
- Változó batch méret
  - Több berendezés ugyanahhoz a feladathoz
  - Összes különböző hozzárendelés rögzítése
  - Külön termékként kezelve

#### Probléma definíció



 $3^3 = 27$  rögzített recept

#### Probléma definíció

Összevont esetek a dominált hozzárendelések eltávolítása után

| Eset      | Reakció 1    | Reakció 2 | Reakció 3    | Max bevétel |
|-----------|--------------|-----------|--------------|-------------|
| 4,5,13,14 | $R1 \lor R2$ | R2        | $R1 \lor R2$ | 53,75       |
| 2,11      | $R1 \lor R2$ | R1        | R2           | 71,67       |
| 1,10      | $R1 \lor R2$ | R1        | R1           | 86,00       |
| 16        | R2           | R1&R2     | R1           | 89,58       |
| 7         | R1           | R1&R2     | R1           | 114,67      |
| 9         | R1           | R1&R2     | R1&R2        | 139,75      |

6 recept → 6 termék → 6 dimenziós tér

### Az új megoldó módszer

- Berendezések párhuzamos hozzárendelése feladatokhoz
- Előfeldolgozó lépes kihagyása



#### Vezérlő

- N dimenziós rácstér
- Megvalósíthatóság metódus minden rácspontra
- Megvalósíthatatlan rácspont és nagyobbak elvetése
- Maximális profit megkeresése
- Változás:
  - Nincs revenue line emelés

### Megvalósíthatóság metódus

- Ütemezés elvégzése
- Nem megvalósítható részütemezések elvetése
- Változás:
  - Összes megvalósítható megoldás megkeresése
  - Elvégzendő feladatok halmaza nem csökken
  - Levél egy részfeladat: minden berendezés ütemezése lezárt

#### Profitmaximalizáló

- Egy részfeladat jövedelme
- Minden csúcs kapacitásának kiszámolása
- Minden elérhető berendezés hozzárendelése azokhoz a részfeladatokhoz, amelyet el tud még végezni

### Teszteredmények

- Helyes megoldás
- Kisebb feladatokra jobb futási idő



### Teszteredmények

Nagyobb feladatokra rosszabb futási idő



### Teszteredmények

Kevesebb rácspont vizsgálat



# Összefoglalás

- S-gráf keretrendszer és korábbi megoldó módszer bemutatása
- Az új, párhuzamos hozzárendelést megengedő módszer kidolgozása, a keretrendszerbe történő implementálása
- Új módszer tesztelése, majd a régi megoldóval történő összehasonlítása

Köszönöm a figyelmet!