Project Development Phase Model Performance Test

Project Development Phases with Model Performance Focus

1. Problem Definition & Requirement Analysis

- **Goal**: Classify fruits/vegetables as *rotten* or *fresh*.
- **Success Metric**: High precision and recall for *rotten* detection (important to avoid selling bad produce).

2. Data Collection

- Sources:
 - o Kaggle datasets (e.g., [Fruits 360, Rotten Fruits Image Dataset]).
 - o Field data collection (smartphone/camera images).
- **Data Types**: Images with labels (*fresh*, *rotten*, sometimes per fruit type).
- ✓ Key Performance Need: Diverse, high-quality images directly affect model performance.

3. Data Preprocessing

- Resize all images to a fixed size (e.g., 224x224).
- Label encoding (e.g., 0 = fresh, 1 = rotten).

- Data augmentation:
 - o Rotation, zoom, flip, brightness adjustment.
- Impact: Helps improve generalization and reduces overfitting.

4. Model Selection

Choose models based on computational power and dataset size:

- Baseline: Simple CNN (3 conv layers)
- Advanced: Transfer learning (VGG16, ResNet50, MobileNet)
- ✓ *Model Performance Tuning Begins*: Compare training speed, accuracy, and loss.

5. Training and Validation

- Split: 70% train, 15% validation, 15% test
- Use Adam optimizer, cross-entropy loss
- Track:
 - Training & validation accuracy
 - Training & validation loss
 - Use early stopping

Example:

Epoc h	Train Acc	Val Acc	Train Loss	Val Loss
1	65%	62%	0.89	0.91
10	92%	90%	0.23	0.27
20	96%	93%	0.08	0.12

6. Model Evaluation

- Use confusion matrix, classification report:
 - O Precision, Recall, F1-score
 - Focus on:
 - Recall for "rotten" class (to avoid missing bad produce)
 - **F1-score** (balance between precision & recall)

Good model performance:

- F1-score > 90%
- Accuracy > 92%
- High Recall for rotten (>95%)

7. Deployment

• Convert model to **TensorFlow Lite / ONNX** for mobile or edge device.

- Create a web or mobile app interface.
- Integrate with camera hardware for real-time predictions.

8. Monitoring & Feedback

- Track real-world predictions vs actual rot.
- Re-train with new data periodically to handle:
 - New fruit types
 - o Changing conditions (light, temperature, etc.)

★ Summary Table

Phase	Performance Focus
Data Preprocessing	Image quality, class balance
Model Training	Accuracy, loss curves, overfitting control
Evaluation	Confusion matrix, Precision, Recall, F1
Deployment	Inference speed, real-time accuracy
Feedback	Continuous improvement via new data