Н.Н. Ефанов, А. И. Отращенко

НИСХОДЯЩИЙ СИНТАКСИЧЕСКИЙ АНАЛИЗ

Учебно-методическое пособие

 $\begin{array}{c} \text{MOCKBA} \\ \text{M}\Phi\text{T}\text{II} \\ 2024 \end{array}$

Рецензент:

Доктор физико-математических наук, доцент Н. И. Хохлов

Ефанов, Н. Н., Отращенко, А. И.

Нисходящий синтаксический анализ: учебно-методическое пособие — М.: М Φ ТИ, 2024. — 24 с.

В пособии рассматриваются теоретические и алгоритмические основы, а также практические аспекты реализации безоткатных нисходящих синтаксических анализаторов строк как на основе построения управляющих таблиц, так и методом рекурсивного спуска. Предназначено для студентов старших курсов и аспирантов, специализирующихся в области компьютерных наук.

УДК 519.22

ISBN 978-5-7417-0606-0

- © Ефанов Н.Н., Отращенко А.И., 2024
- © Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»,

2024

Оглавление

1.	Ал	горитмы нисходящего синтаксического анализа	4	
	1.1.	Нисходящий синтаксический анализ	4	
	1.2.	LL-алгоритм синтаксического анализа	13	
		1.2.1. Алгоритм LL(1)-анализа	14	
	1.3.	Рекурсивный спуск	19	
	1.4.	Преобразования грамматики к LL(1)	22	
		1.4.1. Устранение левой рекурсии	22	
		1.4.2. Левая факторизация	23	
2.	Пр	актические задания	25	
	2.1.	1. Задания по теоретическому блоку		
	2.2.	. Разработка LL(1)-анализатора на языке Python		
		2.2.1. Реализация алгоритма разбора по управляющей		
		таблице	26	
		2.2.2. Реализация алгоритма построения управляющей		
		таблицы	27	
	2.3.	Задания для самостоятельного программирования	28	

Глава 1. Алгоритмы нисходящего синтаксического анализа

1.1. Нисходящий синтаксический анализ

Нисходящий синтаксический анализ идеологически можно рассматривать как задачу поиска левого порождения входной строки, либо, что эквивалентно, как процесс построения дерева разбора добавлением узлов в прямом порядке обхода в глубину, начиная с корня.

Для контекстно-свободной (КС) грамматики $G = \langle \Sigma, N, S, P \rangle$ огранизация нисходящего анализа выглядит следующим образом: анализатор, разбирающий входную строку w, заканчивающуюся символом конца строки \$, в каждый момент работы содержит в своей памяти пару (α, v) , где v – ещё не прочитанная часть входной строки. Алгоритм анализа пытается разобрать vкак конкатенацию $\alpha = X_1 \dots X_l$,где $l \geq 0, X_1, \dots, X_l \in \Sigma \cup N$ последовательность символов, хранящаяся на стеке так, что X_1 лежит на вершине. На каждом шаге ключевым действием является определение правила, применяемого для раскрытия соответствующего нетерминала. Когда правило выбрано, следует произвести проверку соответствия входной строки и терминальных символов правой части правила, и выполнить дальнейшие шаги для её нетерминальных символов. Если в конце разбора v = \$, то есть удалось дойти до конца строки, и при этом все нетерминалы удалось раскрыть, — строка успешно разобрана.

В данной главе мы рассмотрим два подхода к нисходящему анализу: LL-анализ, использующий входной буфер, стек для хранения промежуточных данных, и управляющую таблицу, хранящую правила, применяемые в ходе анализа, а также анализ методом рекурсивного спуска, использующий в качестве стека стек вызовов программных процедур, реализующих применение правил в соответствующих ситуациях.

Дадим необходимые определения.

А Определение 1. Говорят, что грамматика содержит *левую рекурсию*, если в ней существует вывод вида $A \vdash^* A\alpha$. Если при этом в грамматике содержится правило $A \vdash A\alpha$, левая рекурсия называется непосредственной, или явной. В противном случае

левая рекурсия называется косвенной, или неявной.

- **Деримника Врамматика называется** *однозначной*, если у каждого слова имеется не более одного дерева разбора в этой грамматике.
- ▲ Определение 3. Левым порождением, или левосторонним выводом слова ω называется такой вывод ω , в котором каждая последующая строка получена из предыдущей заменой самого левого встречающегося в строке нетерминала по одному из правил. Символически, левое порождение обозначается как \vdash_{lm}^* , а любой его шаг как \vdash_{lm} .
 - Лемма 1 Пусть $G = \langle \Sigma, N, S, P \rangle KC$ -грамматика. Предположим, что существует дерево разбора с корнем, отмеченным A, и кроной $\omega \in \Sigma^*$. Тогда в грамматике G существует левое порождение $A \vdash_{lm}^* \omega$.

Доказательство производится индукцией по высоте дерева (рекомендуем читателям проделать его самим).

Лемма 2 Для каждой грамматики $G = \langle \Sigma, N, S, P \rangle$ и $\omega \in \Sigma^*$, цепочка ω имеет два разных дерева разбора тогда и только тогда, когда ω имеет два разных левых порождения из P.

Для описания построения нисходящего анализатора введем два вспомогательных множества, содержащих, соответсвенно, все возможные первые и непосредственно следующие k символов в результирующем выводе.

А Определение 4. Пусть $G=\langle N,\Sigma,P,S\rangle$ — КС-грамматика. Множество $FIRST_k$ определяется для сентенциальной формы α как:

 $FIRST_k(\alpha) = \{\omega \in \Sigma^* \mid \alpha \to^* \omega \text{ и } |\omega| < k \text{ либо } \exists \beta : \alpha \to^* \omega \beta \text{ и } |\omega| = k \}$, где $\alpha, \beta \in (N \cup \Sigma)^*$.

▲ Определение 5. Пусть $G = \langle N, \Sigma, P, S \rangle$ — КС-грамматика. Множество $FOLLOW_k$ строки формы $\beta \in (\Sigma \cup \Gamma)^*$ как: $FOLLOW_k(\beta) = \{\omega \in \Sigma^* \mid \exists \gamma, \alpha : S \vdash^* \gamma \beta \alpha \text{ и } \omega \in FIRST_k(\alpha)\}$

Согласно определениям, $FIRST_k(A)$ и $FOLLOW_k(A)$ содержат, соответсвенно, все возможные первые и непосредственно

следующие k символов в результирующем выводе, при использовании нетерминала A

Пусть дана грамматика $\langle \Sigma, N, S, P \rangle$. Алгоритм построения $FIRST_k$ следующий:

```
orall A\in N, FIRST_k(A)\leftarrow \varnothing orall a\in \Sigma, FIRST_k(a)\leftarrow \{a\} пока FIRST_k(A)|_{a\in N} изменяется for A\vdash X_1\dots X_l\in P FIRST_k(A)\leftarrow FIRST_k(FIRST_k(X_1)\cdot\dots\cdot FIRST_k(X_l)) end for end пока
```

Для построения $FOLLOW_k$ нужно выполнить сдедующее:

```
FOLLOW_k(S) \leftarrow \{\varepsilon\} \forall A \in N \setminus \{S\} \ FOLLOW_k(A) \leftarrow \varnothing пока FOLLOW_k(A)|_{A \in N} изменяется for B \vdash \beta \in P for \beta = \mu A \nu разбиений, где A \in N, \mu, \nu \in (\Sigma \cup \{\$\} \cup N)^* FOLLOW_k(A) \leftarrow FOLLOW_k(A) \cup FIRST_k(FIRST_k(\nu) \cdot FOLLOW_k(B)) end for end for end пока
```

Введём понятие таблицы, управляющей разбором. Определение 6. Управляющая таблица для грамматики $G = \langle \Sigma, N, P, S \rangle$ – это частичная фунция $T_k : N \times \Sigma^{\leq k} \vdash P \cup \{-\}$, отображающая пару: нетерминал A и m терминальных символов — $t_1 \dots t_m$, где $m \leq k$ — в правило, которое нужно применять, если такое правило есть в P.

По строкам в управляющей таблице размещаются все нетерминалы грамматики, по столбцам – всевозможные последова-

тельности терминалов, длиной не более $k^{1,2}$, а также столбец для маркера конца строки — \$. В ячейке таблицы указано правило, которое нужно применять, если рассматривается нетерминал A, а следующие m символов строки — $t_1 \dots t_m$, где $m \leq k$, либо прочерк, если такого правила нет.

	 $t_1 \dots t_m$	 \$
\overline{A}	 $A \vdash \alpha$	

Управляющая таблица строится алгоритмически на основании построения для каждого нетерминала A вспомогательных множеств $FIRST_k(A)$ и $FOLLOW_k(A)$.

Приведём алгоритм построения T_k для всех $A \in N$ и $x \in \Sigma^{\leq k} \cup \{\$\}, k > 0$ по $FIRST_k$ и $FOLLOW_k$ (в начале элементы T_k инициализированы '—').

```
for A \vdash \alpha \in P for x \in FIRST_k(FIRST(\alpha) \cdot FOLLOW_k(A)) если T_k(A,x) = - то T_k(A,x) \leftarrow (A \vdash \alpha) иначе Произошел конфликт: нет однозначного правила для A,x end если end for end for
```

Заметим, что в псевдокоде построения таблицы ветвь с сообщением о конфликте нужна для сигнализирования о неоднозначности в заполнении ячейки: не для всех КС-грамматик по множествам $FIRST_k$ и $FOLLOW_k$ возможно выбрать применяемое правило, следовательно, нельзя и построить однозначную управляющую таблицу. Класс грамматик, для которых управ-

 $^{^1}$ На практике таблица может получиться довольно разреженной, поэтому столбцы для последовательностей, не выводимых из нетерминалов грамматики, опускают

 $^{^2}$ Теоретически показательный характер роста количества столбцов от k на практике, как правило, не реализуется, так как реальные языки программирования обычно не задаются грамматиками, дающими теоретически худший случай

ляющую таблицу можно построить без конфликтов, называют классом LL(k)-грамматик.

\Delta Определение 7. LL(k) грамматика — грамматика, для которой для некоторого $k \geq 1$ существует управляющая таблица T_k , по которой можно однозначно определить, какое правило применять.

Теорема Для LL(k)-грамматики $G = \langle N, \Sigma, P, S \rangle$, для 3. (о построении $X \in FIRST_k(FIRST_k(X_1) \cdot \dots \cdot FIRST_k(X_l) \cdot \dots \cdot FIRST_k(X_l)$ управляющей $X \in FIRST_k(X_l) \cdot \dots \cdot FIRST_k(X_l)$ обержите единственное правило $X \mapsto X_l \cdot \dots \cdot X_l \cdot \dots \cdot X_l$

Теорема 3 утверждает, что для LL(k)-грамматики управляющая таблица может быть построена без возникновения конфликтов. Если же её условие приводит к противоречиям, то грамматика не является LL(k).

Критерий того, что грамматика является LL(k) грамматикой, непосредственно следует из определения:

Лемма 4 $G=\langle N, \Sigma, P, S \rangle$ является LL(k) грам(об экви- матикой тогда и только тогда, когда
валентном $(\forall A \vdash \alpha | \beta \in P) \Rightarrow (FIRST_k(\alpha \gamma) \cap FIRST_k(\beta \gamma) =$ определе- $=\varnothing)$ при всех таких $\omega A \gamma$, что $S \vdash_{lm}^* \omega A \gamma$.
нии)

Дальнейшие рассуждения и построения будут проводиться для k=1. Важно заметить, что при больших k управляющая таблица сильно разрастается³, поэтому на практике алгоритм применим для небольших k.

B частном случае для k=1:

- ▲ Определение 8. $FIRST(\alpha) = \{a \in \Sigma \mid \exists \gamma \in (N \cup \Sigma)^* : \alpha \vdash^* a\gamma\}$, где $\alpha \in (N \cup \Sigma)^*$
- ▲ Определение 9. $FOLLOW(\beta) = \{a \in \Sigma \mid \exists \gamma, \alpha \in (N \cup \Sigma)^* : S \vdash^* \gamma \beta a \alpha \}$, где $\beta \in (N \cup \Sigma)^*$ Множество FIRST можно вычислить, пользуясь следующими соотношениями:

³Хоть и не показательно, как в теоретически худшем случае

- $FIRST(a\alpha) = \{a\}, a \in \Sigma, \alpha \in (N \cup \Sigma)^*$
- $FIRST(\varepsilon) = \{\varepsilon\}$
- $FIRST(\alpha\beta) = FIRST(\alpha) \cup (FIRST(\beta),$ если $\varepsilon \in FIRST(\alpha))$
- $FIRST(A) = FIRST(\alpha) \cup FIRST(\beta)$, если в грамматике есть правило $A \vdash \alpha \mid \beta$

Algorithm 1 Алгоритм для вычисления множества FOLLOW

```
Вход: Грамматика G = \langle \Sigma, N, S, P \rangle
Выход: FOLLOW(A) для всех A \in N
Положим FOLLOW(X) \leftarrow \varnothing, \forall X \in N
FOLLOW(S) \leftarrow FOLLOW(S) \cup \{\$\}, где S — стартовый нетерминал пока множества FOLLOW меняются

Для всех правил вида A \vdash \alpha X\beta:
FOLLOW(X) \leftarrow FOLLOW(X) \cup (FIRST(\beta) \setminus \{\varepsilon\}).
Для всех правил вида A \vdash \alpha X и A \vdash \alpha X\beta, где \varepsilon \in FIRST(\beta):
FOLLOW(X) \leftarrow FOLLOW(X) \cup FOLLOW(A)
end пока
```

Алгоритм для вычисления множества FOLLOW представлен в 1.

lacktriangle Задача 1 Рассмотрим грамматику G со следующими правилами:

- $S \vdash aS'$
- $A' \vdash b \mid a$
- $S' \vdash AbBS' \mid \varepsilon$
- $B \vdash c \mid \varepsilon$
- $A \vdash aA' \mid \varepsilon$

Посчитать множества FIRST и FOLLOW.

Решение

FIRST для нетерминалов грамматики G:

$$\begin{aligned} FIRST(S) &= \{a\} & FIRST(B) &= \{c, \varepsilon\} \\ FIRST(A) &= \{a, \varepsilon\} & FIRST(S') &= \{a, b, \varepsilon\} \\ FIRST(A') &= \{a, b\} & \end{aligned}$$

FOLLOW для нетерминалов грамматики G:

$$FOLLOW(S) = \{\$\}$$

$$FOLLOW(S') = \{\$\}$$

$$FOLLOW(A) = \{b\}$$

$$FOLLOW(A') = \{b\}$$

$$FOLLOW(B) = \{a, b, \$\}$$

$$(S' \vdash AbBS', \varepsilon \in FIRST(S'))$$

Задача решена.

Теперь рассмотрим пример грамматики, не являющейся $\mathrm{LL}(1)$.

А Задача 2 Построить не-LL(1) грамматику. Решение

Грамматика $S \vdash aS|a$, согласно теореме 4, не является LL(1)-грамматикой, так как $FIRST(aS) = FIRST(a) = \{a\}$ и $FIRST(aS) \cap FIRST(a) = \{a\}$, но LL(2)-грамматикой, так как $FIRST_2(aS) = \{aa\}$, $FIRST_2(a) = \{a\}$, и $FIRST_2(aS) \cap FIRST_2(a) = \emptyset$ — является.

Задача решена.

Очевидно, что в случае LL(1)-грамматики управляющая таблица заполняется следующим образом: правила $A \vdash \alpha, \alpha \neq \varepsilon$ помещаются в ячейки с индексами (A,a), где $a \in FIRST(\alpha)$, правила $A \vdash \alpha$ — в ячейки (A,a), где $a \in FOLLOW(A)$, если $\varepsilon \in FIRST(\alpha)$, а если при этом и $\$ \in FOLLOW(A)$, то и в

ячейку (A,\$). Иногда, для небольших грамматик, в целях наглядности в таблицу добавляют 2 столбца с FIRST, FOLLOW множествами для нетерминалов.

 \blacktriangle Задача 3 Построить таблицу для грамматики $S \vdash aSbS \mid \varepsilon$ Решение

Задача решена.

Теорема о связи LL(1)-грамматики с видом множеств FIRST и FOLLOW приведена ниже:

Лемма 5 (об эквивалентном определении)

Грамматика $G = \langle \Sigma, N, S, P \rangle$ и $\omega \in \Sigma^*$ является LL(1) тогда и только тогда, когда выполнены 2 условия:

1)
$$(\forall A \vdash \alpha | \beta \in P) \Rightarrow (FIRST(\alpha) \cap FIRST(\beta) = \emptyset)$$

2)
$$(\forall A \vdash \alpha | \beta \in P : \varepsilon \in FIRST(\alpha)) \Rightarrow (FOLLOW(A) \cap FIRST(\beta) = \emptyset)$$

 $3 decb \ \alpha, \beta \in (N \cup \Sigma)^* - dee$ сентенциальные формы G.

Вернёмся к решению задачи 2 в свете леммы 5.

▲ Задача 3 Проверить, что грамматика, задающая язык строк с равным количеством символов a и b: $S \vdash aSbS|bSaS|\varepsilon$, не является LL(1).

Решение

Но грамматика содержит правило $S \vdash \varepsilon$, и $\varepsilon \in FIRST(\varepsilon)$, следовательно, нужно проверять (2). $FOLLOW(S) = \{a,b,\$\}$ имеет непустое пересечение как с FIRST(aSbS), так и с FIRST(bSaS), поэтому (2) не выполняется, и грамматика не является LL(1). Но грамматика содержит правило $S \vdash \varepsilon$, и $\varepsilon \in FIRST(\varepsilon)$, следовательно, нужно проверять (2). $FOLLOW(S) = \{a,b,\$\}$ имеет непустое пересечение как с FIRST(aSbS), так и с FIRST(bSaS), поэтому (2) не выполняется, и грамматика не является LL(1).

Задача решена.

Условия критерия накладывают довольно серьёзные ограничения на вид грамматики. В особенности:

1) Грамматика должна быть однозначной:

Пример 1.

$$G: \\ S \vdash aA|B|c \\ A \vdash b|aA \\ B \vdash aA|a\varepsilon$$

Если анализируемая строка начинается с a, невозможно сделать однозначный выбор между $S \vdash aA \ u \ S \vdash B$.

2) Даже вывод ε из двух правил альтернативы невозможен:

Пример 2.

$$G: \\ S \vdash aA \\ A \vdash BC|B \\ C \vdash b|\varepsilon \\ B \vdash \varepsilon$$

Рассмотрим два разных левых порождения а в G:

- $S \vdash_{lm} aA \vdash_{lm} aB \vdash_{lm} a$
- $S \vdash_{lm} \underline{aA} \vdash_{lm} \underline{aBC} \vdash_{lm} a$

В виду того, что из $B \vdash_{lm}^* \varepsilon$ и $BC \vdash_{lm}^* \varepsilon$, нельзя однозначно произвести подчёркнутый шаг левого порождения, а в G имеет два различных дерева вывода, и грамматика не является LL(1).

1.2. LL-алгоритм синтаксического анализа

 $\mathrm{LL}(\mathbf{k})$ — синтаксический анализ — семейство алгоритмов нисходящего анализа без отката, с предпросмотром. Решение о том, какое правило применять, принимается по управляющей таблице T_k на основании просмотра k символов, непосредственно следующих за текущим во входной строке. Временная сложность алгоритма O(n), где n — длина входной строки.

Для КС грамматики $\langle \Sigma, N, P, T \rangle$ алгоритм использует:

- входной буфер с указателем на позицию текущего символа
- стек с алфавитом $\Gamma = N \cup \Sigma \cup \{\$\}$ для хранения промежуточных данных
- таблицу T_k , управляющую разбором.

При чтении анализируемой строки во входе, алгоритм может заглядывать вперёд на k символов.

Конфигурацией алгоритма назовём пару $\langle x, X\alpha \rangle$ из множества таких пар Q, где x — неразобранная часть входной строки, $X\alpha \in \Gamma^*$ — содержимое стека, $X \in \Gamma$ — символ на вершине. При анализе строки w будем называть конфигурацию $\langle w, S\$ \rangle$ — стартовой, конфигурацию $\langle \$, \$ \rangle$ — конечной. Алгоритм, начиная со стартовой, на каждом шаге анализирует текущую конфигурацию, и выполняет действия, с учётом прочитанной части анализируемой строки: определяется цепочка исследуемых входных символов $u, |u| \leq k$ и символ на вершине стека X, затем, если $X \in N$, рассматривается элемент управляющей таблицы $T_k(X,u)$, и замена содержимого вершины стека правой частью правила из этого элемента; если X — терминальный символ, происходит сравнение с первым символом u, и в случае совпадения — извлечение X и сканирование очередного символа из ввода.

Опишем действия над конфигурациями, $\{f: Q \to Q, f \in \{match, lookup, success, error\}\}$, выполняемые в ходе работы алгоритма:

- match в случае, когда на вершине стека терминал, и символ на текущей позиции равен этому терминалу, то снять элемент со стека, сдвинуть указатель на 1 позицию вправо. $\langle x, X\alpha \rangle$ переводится в $\langle x', \alpha \rangle$, если x = ax' и X = a
- lookup в случае, когда текущая врешина стека нетерминал X_i , и предпросмотрена подстрока u, найти в управляющей таблице T ячейку с координатами (X_i, u) , положить на стек содержимое правой части этой ячейки так, чтобы самый левый символ оказался на вершине. $\langle x, X\alpha \rangle$ переводится в $\langle x, \beta\alpha \rangle$, если $T_k(X, u) = X \vdash \beta$ и X = a
- success равершить работу при достижении конфигурации $\langle \$,\$ \rangle$
- error сигнализировать об ошибке и завершить работу.

Если алгоритм оказался в конечной конфигурации — разбор успешно завершён.

1.2.1. Алгоритм LL(1)-анализа

Опишем работу алгоритма LL(1)-анализа, как частного случая LL-анализа с предпросмотром на k=1 символ. Алгоритм по-прежнему использует входную строку, управляющую таблицу, стек, и работает следующим образом:

- На каждом шаге алгоритма его конфигурация это позиция во входной строке, начиная с которой расположена неразобранная её часть, и стек.
- В начале работы стек пуст, а позиция во входной строке соответствует её началу. На певом шаге в стек добавляются последовательно \$ и стартовый нетерминал S.
- На каждом шаге анализируется текущая конфигурация и совершается одно из действий:

```
stack.push(\$, S)
c \leftarrow input.scan()
пока stack.top() \neq \$
   X \leftarrow stack.top()
   если X = c то // match:
       stack.pop()
       c \leftarrow input.scan()
   иначе если X \in N то // lookup(X,c):
       если T[X,c]=X\vdash X_1\ldots X_m то
          stack.pop()
          stack.push(X_m, \ldots, X_1)
       иначе
          ошибка: пустая ячейка таблицы! //error
       end если
   иначе
       ошибка! //error
   end если
end пока
если c \neq \$ то
   ошибка: не вся строка разобрана! //error
end если//success
```

- Действие success. Если текущая позиция конец строки, и вершина стека символ конца строки, то разбор успешно завершен. Иначе, если стоим на конце строки error.
- Действие **match**. Если текушая вершина стека терминал, то анализатор проверяет, что позиция в строке соответствует этому терминалу. Если да, то снимает элемент со стека, сдвигает указатель на 1 позицию вправо, и продолжает разбор. Иначе завершает разбор с ошибкой **error**.
- Действие **lookup**. Если текущая врешина стека нетерминал X_i , и текущий входной символ c, то ищет в управляющей таблице T ячейку с координатами (X_i,c) и кладёт на стек содержимое правой части этой ячейки так, чтобы самый левый символ оказался на вершине (операция stack.push применена к символам правой части справа налево), иначе сигнализирует об ошибке **error**.

Пример 3. Пример работы LL(1) анализатора. Рассмотрим грамматику $S \vdash aSbS \mid \varepsilon$ и выводимое слово $\omega = abab$.

Расмотрим пошагово работу LL(1)-алгоритма. Используем управляющую таблицу, построенную в предыдущем примере. Символ строки, доступный по указателю позиции в строке, выделен жирным шрифтом.

1)	Начало	работы.

Стек пуст, по указателю доступен первый символ слова.

2) Кладём \$ и стартовый символ S на стек

3) Ищем ячейку с координатами (S, a), применяем правило из ячейки.

	$Bxoднoe\ cлoвo: egin{array}{ c c c c c c c c c c c c c c c c c c c$
7)	Ищем ячейку с координатами (S, a) , применяем правило из ячейки.
	$Cme\kappa$: $egin{array}{ c c c c c c c c c c c c c c c c c c c$
8)	C нимаем терминал a со стека и с d вигаем указатель. C тек: $\boxed{S \mid b \mid S \mid \$}$ Входное слово: $\boxed{a \mid b \mid a \mid b \mid \$}$
9)	Ищем ячейку с координатами (S, b) , применяем правило из ячейки. Стек: $b S S$
	$Bxodнoe\ cлoвo: egin{array}{ c c c c c c c c c c c c c c c c c c c$
10)	C нимаем терминал b со стека и сдвигаем указатель. C тек: \boxed{S} $\boxed{\$}$ \boxed{B} \boxed{S} \boxed{B} \boxed{S}
11)	Ищем ячейку с координатами $(S, \$)$, применяем правило из ячейки. Стек: \P
	$Bxoднoe\ cлoвo: egin{array}{ c c c c c c c c c c c c c c c c c c c$
12)	Оказались в конце строки и на вершине стека символ кон- ца — завершаем разбор.

4) Снимаем терминал а со стека и сдвигаем указатель.

 $a \mid b$

 $| \boldsymbol{b} | a | b$

6) Снимаем терминал в со стека и сдвигаем указатель.

5) Ищем ячейку с координатами (S, b), применяем правило

|b|

\$

\$

 $Cme\kappa$: S

из ячейки.

Стек: b S \$

Входное слово: a

 $Cme\kappa$: $\overline{ S}$

Входное слово: а

Шаг	Стек	Остаток строки	Текущее действие
0		abab\$	stack.push(\$,S)
1	\$ S	abab\$	lookup(S, a)
2	\$ S b S a	abab\$	match
3	\$ S b S	bab\$	lookup(S, b)
4	\$ S b	bab\$	match
5	\$ S	${f ab\$}$	lookup(S, a)
6	\$ S b S a	ab\$	match
7	\$ S b S	b \$	lookup(S, b)
8	\$ S b	b \$	match
9	\$ S	\$	lookup(S,\$)
10	\$	\$	match

Таблица 1.1. Разбор слова abab в грамматике $S \vdash aSbS \mid \varepsilon$ по $\mathrm{LL}(1)$ -алгоритму

Можно расширить данный алгоритм так, чтобы он строил дерево вывода. Дерево будет строиться сверху вниз, от корня к листьям. Для этого необходимо расширить действия:

- В ситуации, когда выполняется **match** (на вершине стека и во входе одинаковые терминалы), нужно создать листовую вершину с соответствующим терминалом.
- В ситуации, когда нетерминал в стеке заменяется на правую часть правила в ходе выполнения **lookup**, нужно создать нелистовую вершину, соответствующую нетерминалу в левой части применяемого правила.

Дерево вывода для LL(1), как и в целом для LL(k), будет строиться однозначно, что следует из однозначности грамматик.

Также отметим, что LL-анализ, как и безоткатный рекурсивный спуск, не работает с леворекурсивными грамматиками: алгоритм может зациклиться. Таким образом, по некоторым грамматикам можно построить LL(k)-анализатор (для LL(k) грамматик), но не по всем. Методы борьбы с левой рекурсией даны в следующих разделах, а вот с неоднозначностями ничего не поделаешь.

1.3. Рекурсивный спуск

Идея рекурсивного спуска основана на использовании стека вызовов программы в качестве стека анализатора следующим образом:

- Для каждого нетерминала программируется функция, принимающая необработанный остаток строки *s* и возвращающая пару: результат вывода префикса данной строки из соответствующего нетерминала (выводится/не выводится) и новый необработанный остаток строки.
- Каждая функция реализует обработку цепочки согласно правым частям правил для соответствующих нетерминалов: считывание символа ввода при обработке терминального символа, вызов соответствующей функции при обработке нетерминального.

У данного подхода есть два ограничения:

- 1) Неприменим для грамматик, содержащих левую рекурсию. Иначе анализатор может зациклиться.
- 2) Шаги должны быть однозначными. Иначе нет возможности детерминированно выбрать конкретную функцию для вызова в некоторых ситуациях.

Если в грамматике, для которой разрабатывается рекурсивный спуск, есть альтернатива $A \vdash u_1 | \dots | u_z$, то однозначный выбор применяемой функции обработки нетерминала A (либо применяемого правила в вызываемой функции, если для каждого правила в альтернативе не реализована отдельная функция) может быть автоматизированно осуществлён по проверке условия наличия префикса ещё не обработанной части строки s длины не более k в $FIRST_k(u_j), j \in [1, z]$, причём условие должно выполняться не более чем для одного j, иначе грамматика неоднозначна. Если такой j не найден, но существует $\hat{j} \in [1, z]$, такой, что, $u_{\hat{j}} \vdash^* \varepsilon$, и данный префикс принадлежит $FOLLOW_k(A)$, то можно положить $j = \hat{j}$. В данных и только в данных случаях правило $A \vdash u_j$ может быть выбрано для применения. Следовательно, для однозначного выбора правила требуется проанализиро-

вать $FIRST_k(A)$ и $FOLLOW_k(A)$, и, классически, рекурсивному спуску подлежат языки, задаваемые классом LL(k) грамматик⁴.

Приведём алгоритм выбора правила из альтернативы для k=1.

```
Рассматривается альтернатива: A \vdash u_1 | \dots | u_z inSym — первый символ необработанной части строки если (\exists j \in [1,z]): inSym \in FIRST(u_j)) то Выбрать правило A \vdash u_j иначе если (\exists \hat{j} \in [1,z]): u_{\hat{j}} \vdash^* \varepsilon \& inSym \in FOLLOW(A)) то Выбрать правило A \vdash u_{\hat{j}} иначе Ошибка! еnd если
```

Приведём общий вид функции обработки funcA нетерминала A, символически обозначая считывание символа из входного потока s, моделируемого объектом класса строки, реализующего методы s.current, возвращающий символ в текущей позиции, и s.scan, который возвращает терминальный символ и модифицирует s так, что в нём после вызова c = s.scan() остаток строки, расположенный за c. Если возвращаеммое значение самой первой в стеке вызовов функции — пара вида (True, []), то разбор завершился успехом. Временная сложность алгоритма от длины строки n - O(n), так как строка сканируется только один раз.

⁴ на практике это ограничение может быть ослаблено различными ухищрениями, вроде откатов и пр.

```
если len(s) = 0 то
   return(True, w)
end если
Текущее правило: A \vdash X_1 X_2 \dots X_k
for i \in [1, k]
   если X_i \in N то
        res, s \leftarrow funcX_i(s) // call, C()
       если res = False то
           return (False, s) / return, R()
       end если
   иначе если (X_i \in \Sigma \cup \{\varepsilon\}) & ((X_i = \varepsilon)||X_i = s.current()) то
       if X_i \neq \varepsilon: s.scan() // match\_terminal, <math>M_{\Sigma}()
       если i = k то
           return (True, s) // return, R()
       end если
   иначе
       return (False, s) / return, R()
   end если
end for
```

Заметим, что алгоритм совершает 3 типа действий⁵:

- 1) **call**, C(): если символ на текущей позиции рассматриваемого правила нетерминал, совершить вызов функции его обработки.
- return, R(): возврат из вызова. Производится при попытке сдвига с крайней правой позиции в рассматриваемом правиле, либо в случае пустого слова во вводе, либо в случае ошибки.
- 3) match terminal, M_{Σ} (): если символ на текущей позиции в правиле ε , просто сдвинуть позицию на 1. Если терминал проверить соответствие его текущему входному символу, и, если они равны, то сдвинуть позицию в правиле на 1 и считать следующий символ.

Заметим, что действия call и return реализуют логику lookup из алгоритма анализа по таблице, match terminal — логику match.

⁵ Как правило, на практике эти действия не формализуют

Рассмотрим работу рекурсивного спуска реализующего разбор слова aabb по грамматике $S \vdash aSbS \mid \varepsilon$

Шаг	Стек вызовов	Остаток строки	Текущее действие
0	main S(aabb\$)	aabb\$	$M_{\Sigma}(S \vdash \mathbf{a}SbS, aabb\$)$
1	main S(aabb\$)	abb\$	$C(S \vdash a\mathbf{S}bS, S)$
2	$ \min S S(abb\$)$	abb\$	$M_{\Sigma}(S \vdash \mathbf{a}SbS, abb\$)$
3	$ \min S S(abb\$)$	bb\$	$C(S \vdash a\mathbf{S}bS, S)$
4	$ \min S S S(bb\$)$	bb\$	$M_{\Sigma}(S \vdash \varepsilon, bb\$), R()$
5	main S S(abb\$)	bb\$	$M_{\Sigma}(S \vdash aSbS, bb\$)$
6	main S S(abb\$)	b \$	$C(S \vdash aSb\mathbf{S}, S)$
7	main S S (b\$)	b \$	$M_{\Sigma}(S \vdash \varepsilon, b\$), R()$
8	main S S(abb\$)	b\$	R()
9	main S(aabb\$)	b \$	$M_{\Sigma}(S \vdash aS\mathbf{b}S, b\$)$
10	main S(aabb\$)	\$	$C(S \vdash aSb\mathbf{S}, S)$
11	main S S(\$)	\$	$M_{\Sigma}(S \vdash \varepsilon, \$), R()$
12	main S(aabb\$)	\$	R()

Таблица 1.2. Разбор слова aabb в грамматике $S \vdash aSbS \mid \varepsilon$ рекурсивным спуском.

Данный подход применяется как для ручного написания синтаксических анализаторов, так и при генерации анализаторов по грамматике, например средствами ANTLR.

1.4. Преобразования грамматики к LL(1)

Иногда грамматику $G = \langle \Sigma, N, S, P \rangle$, не являющуюся LL(1), можно привести к LL(1) грамматике. В первую очередь, можно применить методы устранения левой рекурсии и левую факторизацию. Следует отметить, что в ходе преобразований не всякая грамматика становится LL(1), а также то, что грамматика может стать менее понятной. Также доказано, что существование LL грамматики, эквивалентной G, является алгоритмически неразрешимой задачей.

1.4.1. Устранение левой рекурсии

Непосредственная левая рекурсия, то есть правила вида $A \vdash A\alpha$, можно устранить следующим образом.

- 1) Группируем правила с A в левой части: $A \vdash A\alpha_1 | \dots | A\alpha_m | \beta_1 | \dots | \beta_n$, где никакая из сентенциальных форм β_i не начинается с A.
- 2) Добавляем новый нетерминал A'
- 3) Заменяем этот набор правил на

$$A \vdash \beta_1 A' | \dots | \beta_n A'$$
$$A' \vdash \alpha_1 A' | \dots | \alpha_m A' | \varepsilon$$

Теперь из A можно вывести те же строчки, что и раньше, но без левой рекурсии. Заметим, что в ходе данного преобразования появляются новые ε -правила, по одному на каждый добавленный нетерминал. Метод выше устраняет только непосредственную левую рекурсию.

Пусть дана грамматика $G=\langle \Sigma,N,S,P\rangle$, не содержащая ε -правил. Для удаления из G скрытой левой рекурсии, включающей два и более шага, применяется следующий алгоритм:

```
Нетерминалы пронумерованы в произвольном порядке, n \leftarrow |N| for i \in [1,n] for j \in [1,i-1] A_j \vdash \beta_1| \dots |\beta_k — все текущие правила для A_j Заменить все A_i \vdash A_j \alpha на A_i \vdash \beta_1 \alpha| \dots |\beta_k \alpha end for удалить правила A_i \vdash A_i устранить непосредственную левую рекурсию для A_i. end for
```

Полученная грамматика не содержит левой рекурсии. В ходе преобразования могут появиться ε -правила.

1.4.2. Левая факторизация

Идея левой факторизации лежит в том, чтобы в случае, когда неясно, какую из альтернатив применять для раскрытия нетерминала A, изменить правила для A так, чтобы отложить решение до тех пор, пока не будет достаточно информации для принятия однозначного решения.

Преобразование: для правил $A \vdash \alpha\beta_1 | \alpha\beta_2$ грамматики $G = \langle \Sigma, N, S, P \rangle$ и непустой строчки с префиксом, выводимым из α , когда неизвестно, какое правило применять, можно добавить новое правило $A \vdash \alpha A'$, и после анализа того, что выводимо из α , попробовать применить новое правило $A' \vdash \beta_1$ либо $A' \vdash \beta_2$.

```
пока В грамматике есть альтернативы с общим префиксом 

Для каждого A \in N найти самый длинный префикс \alpha для альтернатив в P с A в левой части.

если \alpha \neq \varepsilon то

Заменить все A \vdash \alpha \beta_1 | \dots | \alpha \beta_m | \gamma на:
A \vdash \alpha A' | \gamma
A' \vdash \beta_1 | \dots | \beta_m
епd если
еnd пока
```

После преобразования грамматика может остаться не LL(1) (см. задачу 2).

Глава 2. Практические задания

2.1. Задания по теоретическому блоку

▲ Для самостоятельного решения

- 1) а) Приведите пример LL(0) грамматики
 - **b)** Приведите пример LL(2), но не LL(1) грамматики.
 - c^*) Приведите пример не LL(2) грамматики.
- 2) Для грамматик из задачи 1 постройте LL-анализаторы и разберите слово длины хотя бы 5 символов.
- 3) Является ли грамматика $G \ \mathrm{LL}(1)$ грамматикой:

$$G:$$

$$S \vdash A|B$$

$$A \vdash aA|c$$

$$B \vdash aB|b$$

- 4) В литературе по рекурсивному спуску иногда приводят так называемый канонический вид грамматики для рекурсивного спуска:
 - **А** Определение. Грамматика $G = \langle \Sigma, N, S, P \rangle$ и $\omega \in \Sigma^*$ называется грамматикой в каноническом виде для рекурсивного спуска, если её правила удовлетворяют одному из следующих видов:
 - $A \vdash \alpha, \alpha \in (N \cup \Sigma)^*$ единственное правило вывода для $A \in P$
 - $A \vdash a_1\alpha_1 | \dots | a_m\alpha_m : \alpha_i \in (N \cup \Sigma)^*, a_i \in \Sigma, \forall i = 1 \dots m,$ и $\alpha_i \neq \alpha_j$, если $i \neq j$
 - $A \vdash a_1\alpha_1|\dots|a_m\alpha_m|\varepsilon: \alpha_i \in (N\cup\Sigma)^*, a_i \in \Sigma, \forall i=1\dots m,$ и $\alpha_i \neq \alpha_j$, если $i \neq j$, и $FIRST(A) \cap FOLLOW(A) = \varnothing$.

Докажите, что грамматики, заданные определением, являются $\mathrm{LL}(1)$.

Следует отметить, что в реализациях безоткатного рекурсивного спуска¹ для реальных языков программирования условия из задачи 4 могут нарушаться.

¹не говоря уже о рекурсивном спуске с откатом

5) Рассмотрим классический пример 'if, if-else' в реализации некоторых языков программирования:

$$S \vdash if E : S|if E : S else : S|a$$

 $E \vdash b$

После левой факторизации грамматика имеет вид:

$$S \vdash if \ E : \ SS' | a$$

 $S' \vdash else : \ S | \varepsilon$
 $E \vdash b$

Самостоятельно проведите левую факторизацию. Является ли полученная грамматика LL(1) грамматикой?

2.2. Разработка LL(1)-анализатора на языке Python

▲ Задача на программирование

Реализуйте LL(1) анализатор, состоящий из 4 модулей:

- 1) Реализация алгоритма разбора по управляющей таблице.
- 2) Реализация алгоритма построения FIRST.
- 3) Реализация алгоритма построения FOLLOW.
- 4) Реализация алгоритма построения управляющей таблицы.

Приведем возможный вариант реализации модулей 1,4. Модули 2,3 выделим читателям на самостоятельную работу.

2.2.1. Реализация алгоритма разбора по управляющей таблице

Листинг 2.1. Реализация LL(1)-разбора

```
def ll1_algorithm(
  input_string: str,
  parsing_table: dict[tuple[str, str], dict[str, str]],
  starting_symbol: str,
end symbol: str,
```

```
epsilon symbol: str,
):
    taken len = 0
    stack = []
    stack.append(end symbol)
    stack.append(starting symbol)
    non term term pairs = parsing table.keys()
    non terminals = { pair [0] for pair in non term term pairs}
    terminals = \{pair[1] \text{ for } pair \text{ in } non \text{ } term \text{ } term \text{ } pairs\}
    current = input string[taken len]
    taken len += 1
    while \operatorname{stack}[-1] != \operatorname{end} \operatorname{symbol}:
        stack\ top = stack[-1]
        if stack top == epsilon symbol:
            stack.pop()
            continue
        if stack top == current:
            stack.pop()
            current = input string[taken len]
            taken len += 1
        elif stack top in non terminals:
            corresponding rule = parsing table[stack top, current]
            if corresponding rule is None:
                raise LookupError(
                    f"parsing_table_empty_with_non_term\
 = \{ current \}, which is \
____taken len}_symbol_from_{input string}"
            stack.pop()
            stack.extend(corresponding rule[stack top][::-1])
        else:
            raise LookupError(
                f"terminal_{current}_#{taken len}_from\
bubble control in put of input string for is not equal to \
if current != end symbol:
        raise LookupError(
           f"parsing_of_input_{input_string}_with\
 .....len {len (input string)}
   ____ended_on_{taken len}_symbol"
       )
```

2.2.2. Реализация алгоритма построения управляющей таблицы

```
def make parsing table (
   terminals: set[str],
   non terminals: set[str],
   rule set: dict[str, set[str]],
   first: dict[str, set[str]],
   follow: dict[str, set[str]],
   epsilon symbol: str,
) -> dict[tuple[str, str], dict[str, str]]:
   parsing table = {}
   for non term in non terminals:
       for term in terminals:
           parsing table [(non term, term)] = None
   for non term in non terminals:
       for expand str in rule set [non term]:
           rule to add = {non term: expand str}
           term pool = first [expand str[0]]
           if epsilon symbol in term pool:
               term pool.remove(epsilon symbol)
               term pool = term pool | follow [non term]
           for term in term pool:
               if parsing table [(non term, term)] is None:
                   parsing table [(non term, term)] = rule to add
               else:
                   raise ValueError (
                       f"Conflicting_rules_for_{non_term}_and
table [(term, one term)]}
undulation add } "
   return parsing table
```

2.3. Задания для самостоятельного программирования

- 1) Реализуйте функцию построения FIRST для использования в реализации LL(1)-анализатора из Подраздела 2.2.
- 2) Реализуйте функцию построения FIRST для использования в реализации LL(1)-анализатора из Подраздела 2.2.

3) Реализуйте программу, производящую по введенной любым удобным способом LL(1)-грамматике соответственно построение FIRST, FOLLOW, таблицы разбора, и LL(1)-анализатора, использующего данную таблицу, для разбора тестовых слов, вводимых любым удобным способом. Протестируйте и отладьте полученную программу на примерах из Главы 1.

В заданиях предполагается, что функция, отображающая нетерминал в соответствующее множество, задается как словарь, ключами которого являются нетерминалы, заданные строками, а значениями – множества строк.

Учебное издание

Ефанов Николай Николаевич **Отращенко** Алексей Иванович

НИСХОДЯЩИЙ СИНТАКСИЧЕСКИЙ АНАЛИЗ

Учебно-метолическое пособие

Редактор *И. А. Волкова*. Корректор *Н. Е. Кобзева* Компьютерная верстка *Н. Е. Кобзева*

Подписано в печать 05.08.2024. Формат 60×84 ¹/₁₆. Усл. печ. л. 5,9. Уч.-изд. л. 5,3. Тираж 50 экз. Заказ № 000.

Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел. (495) 408-58-22, e-mail: rio@mail.mipt.ru

Отдел оперативной полиграфии «Физтех-полиграф» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел. (495) 408-84-30, e-mail: polygraph@mail.mipt.ru