

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Learning objectives of today

Goals: Understand the key concepts underlying neural networks in general and feedforward networks in particular

- The components of a neural network and how they interact
- Learning with neural networks using gradient descent
- Parameter initialization
- The reasons for deep (compared to shallow) learning

How will we do this?

- The discussion expands on what we have seen about logistic regression (a very simple neural network with one neuron)
- The components that have already come up are introduced more systematically
- Using the knowledge here, we can start working with arbitrarily complex feedforward networks

A neural network and its components

Schema of a logistic regression

Putting multiple neurons together

A (deep) neural network

CITY, UNIVERSITY OF LONDON

Source: Liang

Components

CITY, UNIVERSITY OF LONDON

Source: Liang

Hidden units

Hidden layers

- Input to the neuron: weighted linear combination of the outputs from the previous layer
 - Previous layer / input x are essentially the same from the point of view of the neuron
- Output from the neuron: result of a non-linear function applied to the input

Source: Liang

Hidden layers

"
$$x$$
" = $a^{[l-1]}$ $z = a^{[l-1]}w + b$ $f(z)$

- *f* is what we call an "activation function"
- There are many activation functions, and new ones are invented all the time
- Many of these functions do just fine, or slightly better than existing ones
- To get a publication, your activation function must perform noticeably better than existing ones

Different activation functions

Logistic (sigmoid) function

Hyperbolic tangent

$$f(z) = \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1}$$

Different activation functions

Related:

- Absolute ReLU
- Parametric ReLU

 $f(z) = \max\{0.1z, z\}$

Why non-linear activation functions?

Why non-linear activation functions?

Why non-linear activation functions?

$$a^{[1](i)} = x^{(i)}W^{[1]} + b^{[1]}$$
 $a^{[2](i)} = a^{[1](i)}W^{[2]} + b^{[2]}$

But:
$$a^{[2](i)} = x^{(i)}W^{[1]}W^{[2]} + b^{[1]}W^{[2]} + b^{[2]}$$

$$\widehat{W} \qquad \widehat{b}$$

Hence,
$$\boldsymbol{a}^{[2](i)} = \boldsymbol{x}^{(i)} \widehat{\boldsymbol{W}} + \widehat{\boldsymbol{b}}$$

Some additional remarks on activation functions

- Use ReLUs (or their generalizations), unless there is a good reason not to
 - A good reason could be a specific application
- Many hidden units perform similarly to ReLUs
 - Make your life easier by sticking with a ReLU
- Sigmoids are rarely used for hidden layers anymore, but quite important for outputs

Output units

Binary classification

- Input: $a^{[L-1](i)}$
- As usual, we make a linear transformation: $z^{[L](i)} = a^{[L-1](i)} w^{[L]} + b^{[L]}$
- We then use the logistic sigmoid function $\hat{y}^{(i)} = f(z^{[L](i)}) = \sigma(z^{[L](i)}) = \frac{1}{1 + e^{-z^{[L](i)}}}$
- We can interpret the output as the probability of $y^{(i)} = 1$

Regression

- Input: $a^{[L-1](i)}$
- As usual, we make a linear transformation: $z^{[L](i)} = \boldsymbol{a}^{[L-1](i)} \boldsymbol{w}^{[L]} + b^{[L]}$
- We leave out the non-linearity
- We can interpret the output as our estimate, $\hat{y}^{(i)} = z^{[L](i)}$

Multi-dimensional regression

- Same as a normal regression, just that we now have multiple output units:
 - $\mathbf{z}^{[L](i)} = \mathbf{a}^{[L-1](i)} \mathbf{W}^{[L]} + \mathbf{b}^{[L]}$
 - $\widehat{\mathbf{y}}^{(i)} = \mathbf{z}^{[L](i)}$

Multi-class classification

- We again make a linear transformation with a matrix of weights: $\mathbf{z}^{[L](i)} = \mathbf{a}^{[L-1](i)} \mathbf{W}^{[L]} + \mathbf{b}^{[L]}$
- Note that $\mathbf{z}^{[L](i)} = \begin{pmatrix} z_1^{[L](i)} & z_2^{[L](i)} & \cdots & z_K^{[L](i)} \end{pmatrix}$
- We then use the softmax function on each of the outputs:

$$\hat{y}_k^{(i)} = f(\mathbf{z}^{[L](i)}) = \frac{e^{-z_k^{[L](i)}}}{\sum_{k=1}^K e^{-z_k^{[L](i)}}}$$

- This implies that $\hat{y}_k^{(i)} \in (0,1)$ and $\sum_{k=1}^K \hat{y}_k^{(i)} = 1$
- Hence, we can interpret $\hat{y}_k^{(i)}$ as the probability that $y^{(i)} = k$ ("belongs to class k")

Softmax output

• E.g., when performing object recognition, we might represent our prediction $\widehat{m{y}}^{(i)}$ as

Cost functions

Why a cost function?

- Given an input $x^{(i)}$, our neural network spits out $\hat{y}^{(i)} = f(x^{(i)})$
- We "train" our neural network, so that $f(x^{(i)}) \approx f^*(x^{(i)})$
 - For example, in supervised learning, $f^*(x^{(i)}) = y^{(i)}$
- Training a model means running an optimization algorithm, where we aim to minimize the distance between $f(x^{(i)})$ and $f^*(x^{(i)})$. You can think of the distance between the desired output and the actual output as your cost
- Of course, we can define arbitrary cost functions (and sometimes specific applications require specific cost functions), but there are some that are typically used because they tend to work well in practice

Cross-entropy

Recall from logistic regression:

$$J(\mathbf{w}, b) = \frac{1}{n} \sum_{i=1}^{n} L^{(i)} = -\frac{1}{n} \sum_{i=1}^{n} \left[y^{(i)} \ln \hat{y}^{(i)} + (1 - y^{(i)}) \ln (1 - \hat{y}^{(i)}) \right]$$

• Generally, to learn parameters θ , we define the cross-entropy

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L^{(i)} = -\frac{1}{n} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}} (y^{(i)} | \boldsymbol{x}^{(i)})$$

- Also known as "maximum likelihood estimator"
- Mean square error tends to perform poorly, especially when we have activation functions with e^{z}

Putting it together – architecture

Depth and width of a neural network

Depth = L

CITY, UNIVERSITY OF LONDON

Source: Liang

Gradient-based learning in a neural network

Minimizing the cost function through gradient descent

- We need to compute $J(\theta)$ for a given vector of parameters θ
- We then need to find the gradient $\nabla_{\theta} J(\theta)$ at the current position
- Using the gradient, we "update" our parameter vector $\theta := \theta \alpha \nabla_{\theta} J(\theta)$
- We repeat the above steps, until we get to the "best" solution

Step 1: Forward propagation through the computational graph

Step 2: Back-propagation through the computational graph

- Looking at the first parameter, we can think of the cost function as $J\left(f_3\left(f_2\left(f_1(w^{[1]}\right)\right)\right)\right)$
- We need to find $\frac{\partial J}{\partial w^{[1]}} = J'\left(f_3\left(f_2\left(f_1(w^{[1]})\right)\right)\right)f_3'\left(f_2\left(f_1(w^{[1]})\right)\right)f_2'\left(f_1(w^{[1]})\right)f_1'(w^{[1]})$
- But we also need to find, e.g., $\frac{\partial J}{\partial w^{[2]}} = J' \left(f_3 \left(f_2(w^{[2]}) \right) \right) f_3' \left(f_2(w^{[2]}) \right) f_2'(w^{[2]})$
- Back-propagation (BackProp) allows us to use the chain rule efficiently (without re-computing everything over and over again)

Step 2: Back-propagation through the computational graph

Forward-propagation algorithm

•
$$A^{[0]} = X$$

- for l = 1, ..., L:
 - $Z^{[l]} = A^{[l-1]}W^{[l]} + B^{[l]}$
 - $A^{[l]} = f(\mathbf{Z}^{[l]})$
- $\widehat{\mathbf{y}} = \mathbf{A}^{[L]}$
- $J = J(\widehat{y}, \mathbf{y})$

Back-propagation algorithm

•
$$g \coloneqq \nabla_{\widehat{y}} J(\widehat{y}, y)$$

- for l = L, L 1 ..., 1:
 - $g := \nabla_{\mathbf{Z}^{[l]}} J(\widehat{\mathbf{y}}, \mathbf{y}) = g \odot f'(\mathbf{Z}^{[l]})$
 - $\nabla_{\boldsymbol{W}^{[l]}} J(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = \boldsymbol{A}^{[l-1]^T} \boldsymbol{g}$
 - $\nabla_{\boldsymbol{h}^{[l]}} J(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = \boldsymbol{g}$
 - $g \coloneqq \nabla_{A^{[l]}} J(\widehat{y}, y) = g W^{[l]}^T$

Derivatives of activation functions

Derivative of the logistic sigmoid function

Derivative of the hyperbolic tangent

$$f(z) = \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1}$$

Derivative of the Rectified Linear Unit

CITY, UNIVERSITY OF LONDON

Derivative of the Leaky ReLU

$$f(z) = \max\{0, z\}$$

Parameter initialization

Assume instead that the weights are initialized to the same values

- We have $a_1^{[1]} = a_2^{[1]} = f(\alpha(x_1 + x_2 + x_3) + \beta)$
- We also have that $\frac{\partial J}{\partial a_1^{[1]}} = \frac{\partial J}{\partial a_2^{[1]}}$ (feel free to verify this!)
- · Hence, when we update our parameters, they remain the same.

What to do instead?

- Initialize weights to small random values (e.g., np.random.randn(shape of W) * 0.01)
- Bias terms can be initialized randomly, but can also just be initialized to zero (e.g., np.zeros(shape of b))

The Universal Approximator Theorem and depth

The Universal Approximator Theorem

- Original theorem: 1989, extended 1993 to more general activation functions
- Idea: one hidden layer in a neural network is enough to represent an approximation of any function to an arbitrary degree of accuracy

Intuition behind the Universal Approximation Theorem

Source: Czarnecki

The Universal Approximator Theorem

- Original theorem: 1989, extended 1993 to more general activation functions
- Idea: one hidden layer in a neural network is enough to represent and approximation of any function to an arbitrary degree of accuracy
- Just because functions can be represented, that doesn't mean they can be learned
 - Optimization algorithm may not be able to find the right parameters
 - We may end up overfitting (= learning the wrong function)
- In practice, we may prefer a deep network
 - The deep network is better at avoiding overfitting
 - The width needed from a shallow network might be exponentially more than that needed from a deep network

Better generalization / less overfitting with depth

Source: Goodfellow

Reminder – what individual neurons learn

Source: Czarnecki

Representation advantage of depth

Source: Montufar

We see this effect when looking at what activates neurons at each layer

Sources

- Czarnecki, 2020, Neural Networks Foundations: https://storage.googleapis.com/deepmind-media/UCLxDeepMind 2020/L2%20-%20UCLxDeepMind%20DL2020.pdf
- DeepLearning.AI, n.d.: <u>deeplearning.ai</u>
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: http://www.deeplearningbook.org
- Liang, 2016, Introduction to Deep Learning: https://www.cs.princeton.edu/courses/archive/spring16/cos495/
- Montufar et al., 2014, On the Number of Linear Regions of Deep Neural Networks: https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

