Grundkurs für Excel Part IV

Nico Ludwig

Themen

- Von linearen zu quadratischen Gleichungssystemen
- Verschiedene Möglichkeiten quadratische Gleichungssysteme grafisch zu lösen
- Koordinatensysteme f
 ür quadratische Graphen mit Excels Liniendiagrammen erstellen und Gleichungen damit grafisch l
 ösen
- Grafische Interpretation der Lösungen von Normalparabel-Gerade Kombinationen

Quadratische Gleichungssysteme

- Das Lösen von LGS ist nach etwas Übung relativ einfach.
 - Das Lösungsverfahren, ob rechnerisch oder grafisch, ist immer gleich.
 - Die Veranschaulichung als Graph ist besonders eingängig und verständlich.
 - Mit Excel, das WT und Diagramme unterstützt, sind LGS kein Problem.
- Darauf aufbauend wollen mir uns jetzt noch ein anderes GS anschauen.
 - Wir werden nun <u>quadratische</u>, also <u>nicht-lineare</u> GS lösen (QGS).
 - Hierbei können wir Excel genauso einsetzen, wie bei den LGS.

Quadratische Gleichungssysteme lösen – Part I

- Ein QGS, ist ein GS, in dem eine Unbekannte vorkommt, die quadriert wird.
 - Wir verwenden wieder zwei Gleichungen, um das zu besprechen:

$$I \quad x^2 - 2x = -8$$

$$II - x^2 + x = -7$$

- Wir können die Gleichungen direkt <u>einheitlich (y_1 und y_2) umformen</u>, das ist recht einfach:
 - (Das geht mit einer gewöhnlichen Äquivalenzumformung.)

$$y_1 = x^2 - 2x + 8$$

$$y_2 = -x^2 + x + 7$$

- Eigentlich ist das QGS dem LGS ziemlich ähnlich.
 - Es ist aber ein sogenanntes "quadratisches Glied" hinzugekommen.
 - Wir müssen gleich noch ein paar <u>mathematische Fachbegriffe</u> einführen.
 - Wir werden in diesem Kurs jedoch keine QGS rechnerisch lösen, sondern nur ein paar Ansätze besprechen!

Quadratische Gleichungssysteme lösen – Part II

- Wir müssen zunächst noch klären, was die Gliederung einer Gleichung ist.
 - Allgemein hat eine quadratische Gleichung folgenden Aufbau:

$$y = ax^2 + bx + c \qquad a \neq 0$$

- ax^2 heißt <u>quadratisches Glied</u>. Es hat den <u>Koeffizienten</u> a, d.h. lediglich, dass x^2 mit a multipliziert wird.
- bx ist das <u>lineare Glied</u> mit dem Koeffizienten b. <u>Wir kennen es schon von den linearen Gleichungen.</u>
 - Eine quadratische Gleichung mit linearem Glied wird auch als gemischt quadratisch bezeichnet.
- c ist das Absolutglied, welches wir auch bei linearen Gleichungen finden.
 - Das Absolutglied ist <u>nicht veränderlich</u>, <u>da es von x gar nicht erst abhängt!</u>
- Also gliedern wir den <u>Term</u> unserer Gleichung y₁ "auseinander":

$$x^2 - 2x + 8$$

- x² ist das quadratische Glied, es hat keinen Koeffizienten,
 d.h. aber nur das der Koeffizient den Wert 1 hat
- -2x ist das lineare Glied, es hat den Koeffizienten -2.
- Und letztlich ist die 8 das Absolutlied.

Gut zu wissen:

Wenn ein Glied den Koeffizienten 1 hat, sagt man <u>das Glied ist in der Normalform</u>. Der Koeffizienten 1 wird ja einfach weggelassen, denn <u>die Multiplikation mit 1 ist neutral</u>. Also <u>in unserem y_1 ist das quadratische Glied in der Normalform</u>.

Quadratische Gleichungssysteme lösen – Part III

- Wir besprechen jetzt <u>drei Auffassungen</u>, wie die Lösung von quadratischen Gleichungen <u>rechnerisch</u> formuliert werden kann.
- (1) Ein GS von mindestens zwei quadratischen Gleichungen lösen -> wir suchen wieder die gemeinsame(n) Stelle(n), für die beides zutrifft:

$$y_1 = x^2 - 2x + 8$$

$$y_2 = -x^2 + x + 7$$

• (2) Umformung/<u>Zusammenfassung der Gleichung, so dass die Nullstelle(n)</u> ermittelt werden.

$$x^{2} - 2x + 8 = -x^{2} + x + 7 \quad | -7$$

$$x^{2} - 2x + 1 = -x^{2} + x \quad | -x$$

$$x^{2} - 3x + 1 = -x^{2} \quad | +x^{2}$$

$$2x^{2} - 3x + 1 = 0$$

Quadratische Gleichungssysteme lösen – Part IV

• (3) Das <u>quadratische Glied in der Normalform alleinstellen</u>, dann haben wir eine <u>lineare</u> und eine <u>quadratische "Normalgleichung"</u> auf den jew. Seiten des =:

$$x^{2} - 2x + 8 = -x^{2} + x + 7$$
 | -7
 $x^{2} - 2x + 1 = -x^{2} + x$ | -x
 $x^{2} - 3x + 1 = -x^{2}$ | -x² | quadratische Gleichung (Normalform): $y = x^{2}$
 $-3x + 1 = -2x^{2}$ | : -2 | lineare Gleichung: $y = \frac{3}{2}x - \frac{1}{2}$

- Alle Lösungsansätze lassen sich mit <u>mathematischen Verfahren</u> lösen.
 - Es wurde eben angedeutet, dass QGS sogar mehrere Lösungen haben können!
- Wir werden sie aber mit Excel, <u>WT und Diagrammen grafisch lösen</u>.
 - Also, wie versprochen: wir werden sie nicht rechnerisch lösen!

Quadratische Gleichungssysteme grafisch lösen – Part I

• Ansatz (1): Suche einer gemeinsamen Stelle zweier quadratischer Gleichungen:

$$y_1 = x^2 - 2x + 8$$

$$y_2 = -x^2 + x + 7$$

- An WT und dem Graphen erkennt man, dass es zwei gemeinsame Punkte gibt!
 - Es handelt sich um keine lineare Gleichungen: Die Graphen quadratischer Gleichungen stellen Kurven dar!
 - Die Graphen quadratischer Gleichungen heißen <u>Parabeln</u>.
 - Die Schnittpunkte der Parabeln liegen bei $S_1(0,5,7,25)$ und $S_2(1,7)$.

Quadratische Gleichungssysteme grafisch lösen – Part II

Ansatz (2): Nullstellensuche der zusammengefassten quadratischen Gleichung:

$$y_1 = x^2 - 2x + 8$$
 $\Rightarrow 2x^2 - 3x + 1 = 0$
 $y_2 = -x^2 + x + 7$

- An WT und Graph erkennt man, dass es <u>auch zwei Nullstellen</u> gibt!
 - => Also gibt es zwei Lösungen: die Stellen $x_1 = 0.5$ und $x_2 = 1$.
 - Eingesetzt in y_1 : $0.5^2 2 \cdot 0.5 + 8 = 7.25$; $1^2 2 \cdot 1 + 8 = 7 \Rightarrow P_1(0.5, 0.75)$ und $P_2(1, 7)$.

Quadratische Gleichungssysteme grafisch lösen – Part III

• Ansatz (3): quadratisches Glied in der Normalform und lineare Gleichung:
$$y_1 = x^2 - 2x + 8$$
 $\Rightarrow x^2 - 2x + 8 = -x^2 + x + 7 \Rightarrow 2x^2 - 3x + 1 = 0 \Rightarrow x^2 = \frac{3}{2}x - \frac{1}{2} \Rightarrow \begin{cases} y = x^2 \\ g: y = \frac{3}{2}x - \frac{1}{2} \end{cases}$

- An den Graphen ist die Lösung kaum zu erkennen, aber die WT gibt Aufschluss!
 - Wieder die Bestätigung: Die Schnittpunkte von Parabel/Gerade liegen auch hier bei x_1 = 0,5 und x_2 = 1.
 - Für y_1 ergibt sich: $0.5^2 2 \cdot 0.5 + 8 = 7.25$; $1^2 2 \cdot 1 + 8 = 7 \Rightarrow P_1(0.5, 0.75)$ und $P_2(1, 7)$

Quadratische Gleichungssysteme grafisch lösen – Part IV

• Wir verwenden den Ansatz quadratisches Glied in Normalform und lineare Gleichung.

• Gründe:

- Simples Zeichnen der Graphen
 - ullet Die normalisierte Form des quadratischen Gliedes sieht immer so aus: $y=x^2$
 - Der Clou: die <u>Parabel</u> des <u>normalisierten quadratischen Gliedes sieht auch immer gleich aus</u>, sie heißt <u>Normalparabel</u>.
 - Für das Einzeichnen der Normalparabel kann man immer die selbe Schablone verwenden!
 - Die "Spitze" der Normalparabel, der Scheitelpunkt, sitzt immer am selben Punkt (0, 0), dem Ursprung des KS (0).
 - Ursprungspunkt des KS wird mit einem großen O bezeichnet (lat. origio = Ursprung).
 - Die Normalparabel ist <u>achsensymmetrisch zur y-Achse</u>.
 - Das Einzeichnen des Graphen der linearen Gleichung ist mit dem Lineal sowieso einfach.
- Die Lösungen dieses GS kann man an den beiden Graphen (Gerade und Parabel) gut veranschaulichen.
 - Dazu später mehr!
- Der Ansatz bietet eine gute Basis, um noch komplexere Gleichungen/GS zu lösen.
 - Wir schauen uns auch hierzu später noch ein Beispiel an!

Quadratische Gleichungssysteme grafisch lösen – Part V

- Wenn wir eine <u>Normalparabel von Hand zeichnen</u>, sieht das <u>schrecklich</u> aus:
 - Immerhin können wir <u>in etwa den</u>
 <u>Verlauf</u>, die <u>Symmetrie zur y-Achse</u>
 und den <u>Scheitelpunkt S(0, 0)</u>
 erkennen.
 - Für KS mit der <u>Dimensionierung</u>
 <u>1LE ≜ 1cm</u> gibt es eine
 <u>Normalparabelschablone</u> im
 Handel.
 - Die Graphen mit der Normalparabel-Schablone sehen dann "glatt" aus!
- Aber ... Eins nach dem anderen!

Quadratische Gleichungssysteme grafisch lösen – Part VI

Der Vollständigkeit halber, setzen wir erst mal Ansatz (1) mit Excel um.

Achtung: in einer Excel-Formel schreiben wir anstatt x² x², bzw. B5².

Quadratische Gleichungssysteme grafisch lösen – Part VII

- Der Vollständigkeit halber, setzen wir auch noch Ansatz (2) mit Excel um.
 - D.h. Nullstellensuche der zusammengefassten quadratischen Gleichung.

Quadratische Gleichungssysteme grafisch lösen – Part VIII

- Nun setzen wir auch den Ansatz (3), den wir weiter besprechen wollen, mit Excel um.
 - D.h. <u>quadratisches Glied in</u>
 <u>Normalform und lineare Gleichung.</u>

$$\frac{3}{2}x - \frac{1}{2} = x^2 \Rightarrow \begin{cases} y = x^2 \\ g: y = \frac{3}{2}x - \frac{1}{2} \end{cases}$$

Quadratische Gleichungssysteme grafisch lösen – Part IX

- Also, der Ansatz <u>quadratisches Glied in Normalform und lineare Gleichung</u> ermöglicht es die <u>Lösungen eines QGS gut zu veranschaulichen</u>.
 - => Die Normalparabel/Gerade Graphenkombination kennt nur <u>einfache Varianten</u>.
 - Insbesondere hat die Normalparabel ihren Scheitelpunkt immer am Ursprung des KS!
- Variante 1: existieren <u>zwei Lösungen</u>.
 - Die Gerade schneidet die Parabel in zwei Punkten.
 - Man sagt: "Die Gerade ist eine <u>Sekante</u> der Parabel."
 - lat. secare = schneiden
 - Die Sekante schließt mit der Parabel eine Segmentfläche ein.
 - Sie wird in der BWL auch manchmal als "Linse" bezeichnet.

Quadratische Gleichungssysteme grafisch lösen – Part X

- Variante 2: existiert genau eine Lösung.
 - Die Gerade <u>berührt die Parabel</u> in <u>genau einem Punkt</u>.
 - Man sagt: "Die Gerade ist eine <u>Tangente</u> der Parabel."
 - lat. tangere = berühren

Quadratische Gleichungssysteme grafisch lösen – Part XI

- Variante 3: existiert gar keine Lösung:
 - Die Gerade <u>verläuft an der Parabel vorbei</u>.
 - Man sagt: "Die Gerade ist eine <u>Passante</u> der Parabel."
 - frz. passer = vorbeigehen

