Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работе 5.2.2 Изучение спектров атома водорода и молекул йода

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Исследовать сериальные закономерности в оптическом спектре водорода. Исследовать поглощения паров йода в видимой области.

Теория

Атом водорода является простейшей квантовой системой, для которой уравнение Шредингера может быть решено точно. Это также верно для водородоподобных атомов, то есть атомов с одним электроном на внешней оболочке. Из решения уравнения Шредингера следует, что внешний электрон в таких атомах обладает дискретным энергетическим спектром:

$$E_n = -\frac{m_e(Ze^2)^2}{2\hbar^2} \frac{1}{n^2},\tag{1}$$

где n есть номер энергетического уровня, Z есть зарядовое число ядра рассматриваемого атома, которое в случае атома водорода равно 1.

При переходе электрона с *n*-го на *m*-й уровень излучается фотон с энергией

$$E_{\gamma} = E_n - E_m = \frac{m_e e^2}{2\hbar^2} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right). \tag{2}$$

Длина волны соответствующего излучения $\lambda_{n,m}$ связана с номерами уровней следующим соотношением:

$$\lambda_{n,m}^{-1} = \frac{m_e e^2}{4\pi\hbar^3 c} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right) = \text{Ry} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right), \tag{3}$$

где $\mathrm{Ry} = \frac{m_e e^2}{4\pi\hbar^3 c}$ есть постоянная Ридберга.

В данной работе будет исследоваться серия Бальмера атома водорода, в которой электроны совершают переходы с некоторого уровня n на уровень m=2.

В первом приближении энергия молекулы может быть представлена в виде:

$$E = E_e + E_o + E_r, (4)$$

где E_e есть энергия электронных уровней, E_o есть энергия колебательных уровней, E_r есть энергия вращательных уровней.

В настоящей работе рассматриваются оптические переходы, то есть переходы, связанные с излучением фотонов в видимом диапазоне длин волн. Они соответствуют переходам между различными электронными состояниями. При этом также происходят изменения вращательного и колебательного состояний, однако в реальности ввиду малости характерных энергий вращательные переходы не наблюдаемы.

Более конкретно, изучаются переходы из колебательного состояния с номером n_1 основного электронного уровня с энергией E_1 в колебательное состояние с номером n_2 на электронный уровень с энергией E_2 . Энергия таких переходов описывается формулой:

$$h\nu_{n_1,n_2} = (E_2 - E_1) + h\nu_2(n_2 + \frac{1}{2}) - h\nu_1(n_1 + \frac{1}{2}), \tag{5}$$

где ν_1 и ν_2 суть энергии колебательных квантов на электронных уровнях с энергиями E_1 и E_2 .

При достаточно больших квантовых числах n_1 и n_2 колебательные уровни переходят в непрерывный спектр, что соответствует диссоциации молекулы. Наименьшая энергия, которую нужно сообщить молекуле в нижайшем колебательном состоянии, чтобы она диссоциировала, называется энергией диссоциации.

В данной работе определяются энергии диссоциации на первых двух электронных уровнях.

Изучение молекулярного спектра йода в данной работе проводиться с помощью источника сплошного спектра - лампы накаливания. Кристаллы йода подогреваются в результате этого частично возгоняются, образуя пары. Спектрометр позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы.

Экспериментальная установка:

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматор-спектрометр УМ-2, предназначенный для спектральных исследований в диапазоне от 0.38 до 1.00 мкм

Рис. 1: Схема установки

Ход работы:

1. Проградуируем спектрометр по спектру неона. Расположение спектральных линий неона и длины волн приведем на Рис 2. Полученные данные занесем в таблицу 1.

Рис. 2: Расположение спектральных линий неона и длины волн линий неона. Расположение спектральных линий ртути, длины волн основных спектральных линий ртути.

$N_{\bar{0}}$	1	2	3	4	5	6	7	8	9	10	11	12	13
θ , $^{\circ}$	2632	2600	2538	2524	2496	2476	2464	2418	2414	2398	2388	2368	2350
$N_{\bar{0}}$	14	15	16	17	18	19	20	21	22	23	24	25	
θ , $^{\circ}$	2328	2314	2300	2290	2268	2240	2224	2198	2182	1914	1872	1868	

Таблица 1: Значения угла барабана при различных спектральных линиях неона. $\sigma_{\theta}=\pm 2^{\circ}$

2. Проградуируем спектрометр по спектру ртути. Расположение спектральных линий ртути и длины волн основных спектральных линий приведем на Рис 2. Полученные данные занесем в таблицу 2.

$\mathcal{N}_{\bar{0}}$	K1	K2	1	2	3	4	5	6
θ , $^{\circ}$	2588	2354	2146	2136	1954	1526	852	290

Таблица 2: Значения угла барабана при различных спектральных линиях ртути. $\sigma_{\theta}=\pm 2^{\circ}$

3. По полученным данным построим градуировочную кривую. По оси X отложим углы барабана, а по оси Y - длины волн соответствующих линий. Полученный график приведем на Puc 3.

Рис. 3: Интерполяция полученных данных кубическим сплайном.

Рис. 4: Аппроксимация полученной функции экспонентой

4. Измерим спектр водородной лампы для линий H_{α} , H_{β} , H_{γ} , H_{δ} . По градуировочной кривой определим значения длин волн соответствующих спектральных линий. Для каждой наблюдаемой линии определим постоянную Ридберга. Определим ее среднее значение и погрешность. Полученные данные занесем в таблицу 3.

Nº	H_{α}	H_{β}	H_{γ}	H_{δ}		
θ , \circ	2482	1470	822	400		
λ, A	6551 ± 6	4883 ± 2	4338 ± 1	4100 ± 1		
$R, \cdot 10^7 \text{ m}^{-1}$	$1,0992 \pm 0,0003$	$1,0927 \pm 0,0003$	$1,0973 \pm 0,0003$	$1,0972 \pm 0,0003$		
\overline{R} , M^{-1}	$1,0961 \pm 0,0005$					

Таблица 3: Значения угла барабана при различных спектральных линиях водорода. $\sigma_{\theta}=\pm 2^{\circ}$

Расчет Ридберга проводится по формуле:

$$\lambda_{n,m}^{-1} = \frac{m_e e^2}{4\pi\hbar^3 c} \left(\frac{1}{m^2} - \frac{1}{n^2} \right) = R \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 (6)

Расчет погрешности проводился по формулам:

$$\sigma_{\overline{R}} = \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\overline{R} - R_i)^2} = 0,002 \cdot 10^7 \text{M}^{-1}$$
 (7)

$$\sigma_{\overline{R}_{\Sigma}} = \sqrt{\sigma_{\overline{R}}^2 + \sigma_{\lambda_{n,m}^{-1}}^2}, \qquad \sigma_{\lambda_{n,m}^{-1}} \cdot R = \sigma_R \cdot \lambda$$
 (8)

градуировочная кривая аппроксимирована функцией:

$$\lambda = 234 \cdot exp(\frac{\theta}{980}) + 3740 \tag{9}$$

Погрешность определения λ :

$$\sigma_{\lambda} = \frac{234}{980} \cdot exp(\frac{\theta}{980}) \cdot \sigma_{\theta} \tag{10}$$

5. Определим деления барабана монохроматора, соответствующие: а) линии $h\nu_{1,0}$ - одной нз самых длинноволновых хорошо видимых линий поглощения $(n_1,0)$, б) линии $h\nu_{1,5}$ - шестой по счету от выбранной длинноволновой линии $(hv_{1,5})$, в) $h\nu_{\rm rp}$ - границе схождения спектра (началу сплошного спектра поглощения). По градуировочной кривой определим значения длин волн соответствующих спектральных линий. Полученные данные занесем в таблицу 4.

$\mathcal{N}_{ar{0}}$	$h\nu_{1,0}$	$h\nu_{1,5}$	$h u_{ ext{rp}}$
θ , $^{\circ}$	2404	2354	1664
λ , Å	6416 ± 5	6234 ± 5	5103 ± 3

Таблица 4: Значения угла барабана при различных спектральных линиях йода

6. Вычислим энергию колебательного кванта возбужденного состояния молекулы йода.

$$h\nu_2 = (h\nu_{1.5} - h\nu_{1.0})/5 = (1,9170 - 1,9732)/5 = 0,01124 \pm 0,00002 \text{ 3B}$$

Погрешность считается по формуле:

$$\sigma_E = \frac{hc}{\lambda^2} \cdot \sigma_\lambda \tag{11}$$

Рис. 5: Электронные и электронно колебательные энергетические уровни двухатомной молекулы

- 7. По полученным данным и известным значениям энергии колебательно кванта в основном состоянии $h\nu_1=0,027$ эВ, энергия возбужденного атома $E_a=0,94$ эВ, вычислим:
 - а) энергию электронного перехода $h\nu_{\rm эл}$,

$$h\nu_{1,0} = h\nu_{\text{\tiny 3Л}} + h\nu_2(0 + \frac{1}{2}) - h\nu_1(1 + \frac{1}{2})$$

$$h\nu_{\text{\tiny 9JI}} = 2,086 - \frac{1}{2} \cdot 0,011 + \frac{3}{2} \cdot 0,027 = 2,121 \pm 0,003 \text{ } 9B$$

б) энергию диссоциации молекулы в основном состоянии Д1;

$$D_1 = h\nu_{rp} - E_a = 2,410 - 0,940 = 1,470 \pm 0,002 \text{ }9B$$

в) энергию диссоциации молекулы в возбужденном состоянии Д2.

$$D_2 = h\nu_{\text{rp}} - h\nu_{\text{эл}} = 2,410 - 2,116 = 0,294 \pm 0,005 \text{ 9B}$$

Обсуждение результатов и выводы:

В ходе данной работы мы исследовали сериальные закономерности в оптическом спектре водорода. Также исследовали поглощения паров йода в видимой области. Построили граду-ировочную кривую спектрометра по измерениям спектра неона и ртути.

По результатам измерений мы определили константу Ридберга $\overline{R}=1,0961\pm0,0005\cdot10^7~{\rm m}^{-1}$. В пределах погрешности значение не совпадает с теоретическим $R=1,0973\cdot10^7~{\rm m}^{-1}$, хотя находится достаточно близко.

Получили энергию колебательного кванта возбужденного состояния молекулы йода $h\nu_2=0,01124\pm0,00002$ эВ, энергию электронного перехода $h\nu_{\rm эл}=2,121\pm0,003$ эВ и энергии диссоциации молекулы в основном $D_1=1,470\pm0,002$ эВ и в возбужденном состоянии $D_2=0,294\pm0,005$ эВ.

Используемый нами спектрометр позволяет получать значения длин волн с достаточно большой точностью, поэтому дальнейшие расчеты, использующие градуировочную кривую также имеют высокую точность. Соответственно, последующие расчеты хорошо согласуются с теоретическими оценками.