Fauna de Operadores Lineales:

Operadores Nulos, Biyectivos, Adjunto y Hermíticos

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

14 de septiembre de 2020

Agenda de Fauna de Operadores Lineales

Espacio nulo e imagen de un operador

Ejemplos de Transformaciones Nulas

Operadores biyectivos, inversos y adjuntos

El detalle de los adjuntos

Hermíticos y Unitarios

Ejercicio

Espacio nulo e imagen de un operador

▶ $|v\rangle \in \mathbf{V}_1/\mathbb{A} |v\rangle = |0\rangle$, se denomina espacio nulo, núcleo o kernel (núcleo en alemán) de la transformación \mathbb{A} y lo denotaremos como $\mathbb{R}(\mathbb{A})$, es decir $\mathbb{R}(\mathbb{A}) = \{|v\rangle \in \mathbf{V}_1 \land \mathbb{A} |v\rangle = |0\rangle\}$.

Espacio nulo e imagen de un operador

- ▶ $|v\rangle \in \mathbf{V}_1/\mathbb{A} |v\rangle = |0\rangle$, se denomina espacio nulo, núcleo o kernel (núcleo en alemán) de la transformación \mathbb{A} y lo denotaremos como $\mathbb{R}(\mathbb{A})$, es decir $\mathbb{R}(\mathbb{A}) = \{|v\rangle \in \mathbf{V}_1 \land \mathbb{A} |v\rangle = |0\rangle\}$.
- ▶ Definiremos la imagen (rango o recorrido) de \mathbb{A} , a $\mathbb{A}\{\mathbf{V}\} = \{|v'\rangle \in \mathbf{V}_2 \quad \land \quad \mathbb{A}\,|v\rangle = |v'\rangle\}$,

Espacio nulo e imagen de un operador

- ▶ $|v\rangle \in \mathbf{V}_1 / \mathbb{A} |v\rangle = |0\rangle$, se denomina espacio nulo, núcleo o kernel (núcleo en alemán) de la transformación \mathbb{A} y lo denotaremos como $\mathbb{A}(\mathbb{A})$, es decir $\mathbb{A}(\mathbb{A}) = \{|v\rangle \in \mathbf{V}_1 \land \mathbb{A} |v\rangle = |0\rangle\}$.
- ▶ Definiremos la imagen (rango o recorrido) de \mathbb{A} , a $\mathbb{A}\{\mathbf{V}\} = \{|v'\rangle \in \mathbf{V}_2 \quad \land \quad \mathbb{A}|v\rangle = |v'\rangle\}$,
- ► Si \mathbf{V} es de dimensión n: dim $[\aleph(\mathbb{A})]$ + dim $[\mathbb{A}\{\mathbf{V}\}]$ = dim $[\mathbf{V}]$,

Operador indentidad y nulo

► Transformación identidad: Sea \mathbb{I} : $V_1 \rightarrow V_2$, la transformación identidad, entonces

$$\forall \ |\nu\rangle \in \boldsymbol{V}_1 \ / \ \mathbb{I} \ |\nu\rangle = |\nu\rangle \ \Rightarrow \ \aleph\left(\mathbb{I}\right) = \left\{|0\rangle\right\} \subset \boldsymbol{V}_1 \ \wedge \ \mathbb{A} \ \left\{\boldsymbol{V}\right\} \equiv \boldsymbol{V}_1 \,.$$

Operador indentidad y nulo

► Transformación identidad: Sea I: V₁→V₂, la transformación identidad, entonces

$$\forall \ |\nu\rangle \in \boldsymbol{V}_1 \ / \ \mathbb{I} \, |\nu\rangle = |\nu\rangle \ \Rightarrow \ \aleph\left(\mathbb{I}\right) = \left\{|0\rangle\right\} \subset \boldsymbol{V}_1 \ \wedge \ \mathbb{A} \left\{\boldsymbol{V}\right\} \equiv \boldsymbol{V}_1 \,.$$

▶ Sistemas de ecuaciones lineales: En V^n las soluciones a los sistemas de ecuaciones lineales representan el espacio nulo, $\aleph(\mathbb{A})$, para vectores de $V^n \mathbb{A} |x\rangle = |0\rangle \leftrightarrows$

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & & \cdots \\ \vdots & & \ddots & \\ A_{n1} & A_{n2} & & A_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftrightarrows A_j^i x_i = 0,$$

con j ecuaciones $(j = 1, 2, \dots, n)$. Recordemos que estamos utilizando la convención de Einstein para suma de índices.

Operadores biyectivos, inversos y adjuntos

▶ **Operadores biyectivos:** Se dice que $\mathbb{A}: \mathbf{V}_1 \rightarrow \mathbf{V}_2$ es biyectiva (uno a uno o biunívoco) si dados $|v_1\rangle, |v_2\rangle \in \mathbf{V}_1, \ \land \ |v'\rangle \in \mathbf{V}_2$, se tiene que: $\mathbb{A}\ |v_1\rangle = |v'\rangle \ \land \ \mathbb{A}\ |v_2\rangle = |v'\rangle \ \Rightarrow \ |v_1\rangle = |v_2\rangle$, es decir, será biyectiva si \mathbb{A} transforma vectores distintos de \mathbf{V}_1 en vectores distintos de \mathbf{V}_2 .

Operadores biyectivos, inversos y adjuntos

- ▶ Operadores biyectivos: Se dice que $\mathbb{A}: \mathbf{V}_1 \rightarrow \mathbf{V}_2$ es biyectiva (uno a uno o biunívoco) si dados $|v_1\rangle, |v_2\rangle \in \mathbf{V}_1, \ \land \ |v'\rangle \in \mathbf{V}_2$, se tiene que: $\mathbb{A}\ |v_1\rangle = |v'\rangle \ \land \ \mathbb{A}\ |v_2\rangle = |v'\rangle \ \Rightarrow \ |v_1\rangle = |v_2\rangle$, es decir, será biyectiva si \mathbb{A} transforma vectores distintos de \mathbf{V}_1 en vectores distintos de \mathbf{V}_2 .
- ▶ Operadores Inversos: Las transformaciones lineales biyectivas posibilitan definir inversa. Diremos que \mathbb{A}^{-1} : $\mathbf{V}_2 \rightarrow \mathbf{V}_1$ es el inverso de \mathbb{A} , si $\mathbb{A}^{-1}\mathbb{A} = \mathbb{I} = \mathbb{A}\mathbb{A}^{-1}$.
- ▶ Operadores adjuntos: Si $\mathbb{A}: \mathbf{V} \to \mathbf{W}$ de tal forma que $\mathbb{A} | v \rangle = | v' \rangle$, Definiremos $\mathbb{A}^{\dagger}: \mathbf{V}^{*} \to \mathbf{W}^{*}$, de tal forma que $\langle v' | = \langle v | \mathbb{A}^{\dagger}$, donde \mathbf{V}^{*} y \mathbf{W}^{*} son los duales de \mathbf{V} y \mathbf{W} , respectivamente. Entonces \mathbb{A}^{\dagger} es el adjunto de \mathbb{A} . Es decir: $|v\rangle \iff \langle v | \implies |v'\rangle = \mathbb{A} | v \rangle \iff \langle v' | = \langle v | \mathbb{A}^{\dagger}$.
- ▶ Entonces, a partir de la definición de producto interno tendremos: $\langle \tilde{x} | y \rangle = \langle y | \tilde{x} \rangle^* \quad \forall \quad |\tilde{x}\rangle = \mathbb{A} |x\rangle, |y\rangle \in \mathbf{V} \Rightarrow \langle x | \mathbb{A}^{\dagger} | y \rangle = \langle y | \mathbb{A} | x \rangle^* \quad \forall \quad |x\rangle, |y\rangle \in \mathbf{V}.$

El detalle de los adjuntos

▶ Esta última relación $\langle x|\,\mathbb{A}^\dagger\,|y\rangle = \langle y|\,\mathbb{A}\,|x\rangle^* \quad \forall \ |x\rangle\,,|y\rangle \in \mathbf{V}\,,$ nos permite asociar \mathbb{A}^\dagger con \mathbb{A} ,

El detalle de los adjuntos

- ▶ Esta última relación $\langle x| \mathbb{A}^{\dagger} |y\rangle = \langle y| \mathbb{A} |x\rangle^* \quad \forall |x\rangle, |y\rangle \in \mathbf{V}$, nos permite asociar \mathbb{A}^{\dagger} con \mathbb{A} ,
- y además deducir las propiedades de los adjuntos: $(\mathbb{A}^{\dagger})^{\dagger} = \mathbb{A}$, $(\lambda \mathbb{A})^{\dagger} = \lambda^* \mathbb{A}^{\dagger}$, $(\mathbb{A} + \mathbb{B})^{\dagger} = \mathbb{A}^{\dagger} + \mathbb{B}^{\dagger}$, $(\mathbb{A} \mathbb{B})^{\dagger} = \mathbb{B}^{\dagger} \mathbb{A}^{\dagger}$ y consecuentemente, $[\mathbb{A}, \mathbb{B}]^{\dagger} = -[\mathbb{A}^{\dagger}, \mathbb{B}^{\dagger}] = [\mathbb{B}^{\dagger}, \mathbb{A}^{\dagger}]$.

El detalle de los adjuntos

- ► Esta última relación $\langle x| \mathbb{A}^{\dagger} |y\rangle = \langle y| \mathbb{A} |x\rangle^* \quad \forall |x\rangle, |y\rangle \in \mathbf{V}$, nos permite asociar \mathbb{A}^{\dagger} con \mathbb{A} ,
- y además deducir las propiedades de los adjuntos: $(\mathbb{A}^{\dagger})^{\dagger} = \mathbb{A}$, $(\lambda \mathbb{A})^{\dagger} = \lambda^* \mathbb{A}^{\dagger}$, $(\mathbb{A} + \mathbb{B})^{\dagger} = \mathbb{A}^{\dagger} + \mathbb{B}^{\dagger}$, $(\mathbb{A} \mathbb{B})^{\dagger} = \mathbb{B}^{\dagger} \mathbb{A}^{\dagger}$ y consecuentemente, $[\mathbb{A}, \mathbb{B}]^{\dagger} = -[\mathbb{A}^{\dagger}, \mathbb{B}^{\dagger}] = [\mathbb{B}^{\dagger}, \mathbb{A}^{\dagger}]$.
- ► En conclusión, para obtener el adjunto de una expresión se debe proceder de la siguiente manera:
 - ▶ Cambiar constantes por sus complejas conjugadas $\lambda \leftrightarrows \lambda^*$.
 - Cambiar los kets por sus bras asociados y viceversa (bras por kets): |v⟩ ⊆ ⟨v|.
 - ▶ Cambiar operadores lineales por sus adjuntos $\mathbb{A}^{\dagger} \leftrightarrows \mathbb{A}$.
 - ▶ Invertir el orden de los factores: $(|v\rangle\langle w|)^{\dagger} = |w\rangle\langle v|$.

Operadores Hermíticos y Unitarios

▶ Operadores Hermíticos: Un operador será hermítico (o autoadjunto) si: $\mathbb{A}^{\dagger} = \mathbb{A}$, esto implica $\langle x | \mathbb{A}^{\dagger} | y \rangle \equiv \langle x | \mathbb{A} | y \rangle = \langle y | \mathbb{A} | x \rangle^*$. Estos operadores juegan el rol de los números reales en el sentido de que son "iguales a su propio complejo conjugado".

Operadores Hermíticos y Unitarios

- ▶ Operadores Hermíticos: Un operador será hermítico (o autoadjunto) si: $\mathbb{A}^{\dagger} = \mathbb{A}$, esto implica $\langle x | \mathbb{A}^{\dagger} | y \rangle \equiv \langle x | \mathbb{A} | y \rangle = \langle y | \mathbb{A} | x \rangle^*$. Estos operadores juegan el rol de los números reales en el sentido de que son "iguales a su propio complejo conjugado".
- Operadores Unitarios: Un operador será unitario si su inversa es igual a su adjunto: U⁻¹ = U[†] ⇒ U[†]U = UU[†] = I. Podemos decir varias cosas:
 - Las transformaciones unitarias dejan invariante al producto interno: $\langle \tilde{y} | \tilde{x} \rangle = \langle y | \mathbb{U}^{\dagger} \mathbb{U} | x \rangle = \langle y | x \rangle$
 - $\begin{tabular}{l} El \ producto \ de \ dos \ operadores \ unitarios \ también \ es \ unitarios \ (\mathbb{UV})^\dagger \, (\mathbb{UV}) = \mathbb{V}^\dagger \, \underline{\mathbb{U}}^\dagger \mathbb{U} \, \mathbb{V} = \mathbb{V}^\dagger \mathbb{V} = \mathbb{I} \\ \end{tabular}$

Operadores Hermíticos y Unitarios

- Operadores Hermíticos: Un operador será hermítico (o autoadjunto) si: A[†] = A, esto implica ⟨x|A[†]|y⟩ ≡ ⟨x|A|y⟩ = ⟨y|A|x⟩*.
 Estos operadores juegan el rol de los números reales en el sentido de que son "iguales a su propio complejo conjugado".
- Operadores Unitarios: Un operador será unitario si su inversa es igual a su adjunto: U⁻¹ = U[†] ⇒ U[†]U = UU[†] = I. Podemos decir varias cosas:
 - Las transformaciones unitarias dejan invariante al producto interno: $\langle \tilde{y} \mid \tilde{x} \rangle = \langle y \mid \mathbb{U}^{\dagger} \mathbb{U} \mid x \rangle = \langle y \mid x \rangle$
 - ▶ El producto de dos operadores unitarios también es unitario: $(\mathbb{U}\mathbb{V})^{\dagger}(\mathbb{U}\mathbb{V}) = \mathbb{V}^{\dagger}\underbrace{\mathbb{U}^{\dagger}\mathbb{U}}_{\mathbb{I}}\mathbb{V} = \mathbb{V}^{\dagger}\mathbb{V} = \mathbb{I}$
 - Los operadores unitarios aplican una base ortogonal en otra: $\left< \tilde{\mathbf{e}}^i \mid \tilde{\mathbf{e}}_j \right> = \left< \tilde{\mathbf{e}}^i \mid \mathbb{U} \mid \mathbf{e}_j \right> = \left< \mathbf{e}^i \mid \mathbb{U}^\dagger \mathbb{U} \mid \mathbf{e}_j \right> = \left< \mathbf{e}^i \mid \mathbf{e}_j \right> = \delta^i_j \,.$

Ejercicio

Considere los siguientes operadores: $\mathbb{A}=\mathbb{A}^{\dagger}$ hermítico, $\mathbb{K}=-\mathbb{K}^{\dagger}$ antihermítico; $\mathbb{U}^{-1}=\mathbb{U}^{\dagger}$ unitario, \mathbb{P} y \mathbb{Q} dos operadores genéricos. Pruebe las siguientes afirmaciones:

1. En general:

$$\begin{split} &1.1 \ \left(\mathbb{P}^{\dagger}\right)^{-1} = \left(\mathbb{P}^{-1}\right)^{\dagger}.\\ &1.2 \ \left(\mathbb{PQ}\right)^{-1} = \mathbb{Q}^{-1}\mathbb{P}^{-1}\\ &1.3 \ \text{Si} \left[\mathbb{P}, \mathbb{Q}\right] = 0, \text{ entonces } \mathbb{P}(\mathbb{Q})^{-1} = (\mathbb{Q})^{-1}\mathbb{P} \end{split}$$

- 2. Si $\mathbb A$ es hermítico entonces $\tilde{\mathbb A}=\mathbb U^{-1}\mathbb A\mathbb U$ también será un operador hermítico.
- 3. Si \mathbb{K} es antihermítico entonces $\widetilde{\mathbb{K}} = \mathbb{U}^{-1}\mathbb{K}\mathbb{U}$ es también lo será. En particular eso se cumple para $\widetilde{\mathbb{K}} = i\mathbb{A}$. Es decir, podemos construir un operador antihermítico a partir de uno hermítico.
- 4. Dados dos operadores \mathbb{A} y \mathbb{B} , hermíticos, su composición \mathbb{AB} , será hermítica *si* y *sólo si* \mathbb{A} y \mathbb{B} conmuntan.

