教师答字

总成绩

实验(四十三) 光电效应法测定普朗克索数

一. 实验目的

- 1. 加深对光电效应及光的量子性的重解。
- 2. 学习验证爱困斯坦光电效应方程的实验方法,并测定普朗克 2. 茶来遊仪器具有机高的灵趣感。所以觅食干扰。目或在实势声温中自动

- 1. 光电效应与爱因斯坦方程:以合适用频率的光照射在金属表面上,有电 子从表面逐出的现象物为光电效应。光电效应有如下规律:0光强一定时,随着 光电管两端电压增大, 光电流, 超于一个阳全值, 对于不同的光强, 饱合电流, 与光强 L成正比。@光电管两端作反向电压时, 光电流迅速减小, 反向电压到U。时, 光电流路的 O, U。 即截止电压。老电子最大动能仅与光频率有关。②U。与光频率U成线性关系。由无论光再 怎么弱,几乎光一思射就有光电子中生,延迟时间不超过10%。爱国斯坦光量子候说侵没 光子能量为hu.电子脱离原需吸收强的力那4多能量有hu= 之mVm+W
- 2.截止电压的实验测量: 长电管伏安特性复杂。在在暗电流和城电流。目存在反向电 流, ①属系统误差,必须测出并作图消去其影响。②应用交点来确定截止电压儿。
- 3.宋硷仪器:主季有 0 光源 @ 干片混光片 图 光阑 图 实验仪 图 实验仪 面 实验仪面 放介 仍。
- 4.操作要点及注意事项:(11)仪器电压源与光电管连接;预热口冷肿,选择模式量量。
- 心测截止电压时,电流来量程选择合适的性色。(3)电流表键量量,按系统清零解除。 61 实验这些中,不管频繁开阔录灯,光闸及滤光片屏后不**复钟**及光学表面。 三. 实验主要步骤或操作要点

- 1.调整光电管与录灯之间。距离为400mm,并将实验众及录灯电源接通。承灯及 光电管暗箱遮光盖盖上). 预热20分钟
- 2.测量前仪器的电流显示器雾进行凋零、放换量程时也要凋零,调要的 方法是将"电流量程"选择开关量于所洗挡位,将无电管暗轴电流输出 端断开, 旋转"调零旋钮, 使电流推示为 800. 8。周坛后, 用高频匹配电线

将电流输入连接起来,按"调整确认一系统清整"键,系统进入测试状态。 * 注意事而

1. 滤光片及光阑应轻雾轻放,从仪器上卸下后,这即放入盒中特定位置,

2. 家实验仪器具有极高的灵敏感,所从易受干扰,因此在实验过程中动作要轻、不要碰测试电缆线等,不要使实验分受到振动。

2.截止屯正旬宋を次量、北京電化で降性泉泉の石在時見地の保在水地、の石在大河地、水水水水、の石在大河、の石を外、東京、水水川田午作園将在東京南、西は田文本、京南大海、南京山、田、水、の石を外、東南大海、東南大海山、西山、

3.宋平众器、主宰有 0光辰,0元龄,度光片 0光图 0 宋慈介 3 宋乾介 重核介促。

生操作零点及生意等成:《《卷笔压無与光电管连接、新效的偏,选择模式、量鬼。 (1) 测截止电压转,电风采量程,选择合适,新植伦。(3)电镜装度量色, 我拿流清里解除。

的文法这经中不管积繁无面车灯、无闻及底无间径不置触及无客意面。

。调整光电管与汞灯之间能离为400mm,有将家庭伦茨柔灯电隔接通库灯马 大电管暗错遮光着盖以、预览20分钟。

2.测量简介等的电流、显示器专进行调要、改作量程介也要调度、销售的方法是、将电流量程"选择介充置于的近诸役、将花电管路幅电流、输出、端断开、掠鼓调零旅组、使电流循讯为 100.0。虽然而用高惯正直飞电缆

四. 实验数据

1.测量普朗克常数记录表 (I:10th Ø=2mm).

液Kcmm	577	546	436	405	365
X104版年(He)	5.199	5.495	6.881	7.407	8.219
裁LP压(V)	-0.566	-0.698	-1.254	-1.418	-1.796

2.测量长取管伏安特性曲线 (577nm)

パルの主力して	7 BIL	CX.	0 -		10.								1	
	-1	0	1	2	3	4	5	6	7	8	9	10	11	12
13) I(A) \$2	-0.2	1.5	10-3	24-3	34.3	40.5	44.6	47.8	50.2	21.3	54.6	58.5	60.7	62.5
2) 64	-0-4	0-2	26	7.5	11.8	14.6	16-7	17.8	18.2	185	18-7	19.2	19.9	20.8
(2) \$8	-0.5	- 0-6	9.2	21.8	34.8	44.2	50.7	56.9	60.6	64.5	67.7	71.2	74.8	78.3
	13	14	15	16	17	18	19	20	21	22	23	24	25	26
I ca \$2	64.9	22.2	68.5	23.7	71.3	73.1	75.6	78.3	80.8	82.9	84.3	85.7 27.0	87.2	88.9 27-2
\$8	81.4	85.1	88.	6 91.	1 93.9	86.9	100.	2 103.	1064	109.7	113.2	117.1	120.1	123.4
										36	37	38	39	
Ica 62	27.3	91.5	92.1	13.4	93.8 27.6	94.4	94.8	95.	9 27.	95.	0 28	0 96	2 96.0	1 28-6
\$8	126.0	128	1 130.0	132.9	134.8	136.	2137	4 138	.5 139	3 140	. 140	.7 141	1 146.	0 141.0
ALIA PA	41	42		43	44	45	-	46	47	48	49	5	0	
I(A) \$2	96.3	96.		6.2	96.0			16.2	96.6		1 96		.4	
ø4 ø8	28.2	- 18 ·		41-1	141.0	2 28	1000	141.2	28A 141.			.2 2 H.2		

五. 数据处理

1. 普朗克常数的测量

(测量音韻充常数记录表 (下面都 中江四一)

五、穀湯处理

八普朗克常教的測量

しまこれ・リーをか

 $\frac{1}{\sqrt{k_{s}}} = \frac{1}{\sqrt{k_{s}}} = \frac{1}$

.4.

六. 实验结论及现象分析

经由实验测得,由光电效应则得普朗克常数约为6.416×10⁻³⁴ J·s, 与精确值,6.626×10⁻³⁴ J·s 误差为3.2%。同时,由实验得到了光电管的伏安特性曲线,曲线前段上升速度较快,逐渐超于矛援,直至饱合不再增大。

本实验测定表电管的伏安特性曲线时,在577nm下, 42孔径时, I盒较小:采用10岁测量数值较大但系统随机误差波动也会较大;采用10沟测量,数值只有一位小数, 略有波动也会造成很大误差。另外, 本实验可重复性很差(伏安特性部分)、几乎每次调至一个租月电压时, 电流值都会有较大差异, 曲线走势也有很大不同, 因此我作的曲线可能会有较大偏差。

七. 讨论问题

1. 不需再测量任何参数。得到5个点(U, Uc)后,利用最小二乘法有

$$\begin{cases} k = \overline{U \cdot U_c} - \overline{V \cdot U_c} \\ (\overline{U})^2 - \overline{V}^2 \end{cases}$$
 其中 be = W 即遊出功.

$$b = \overline{U_c} - k\overline{V} \qquad (U_c = \frac{h}{e}V - \frac{hV_c}{e}W = hV_c)$$

2. 由于金属不同仅造成 逸出功不同, 所以仍存

1-2-3 401×10 - 16×10-1 = 4 416×10