1

Matrix Theory Assignment 12

Ritesh Kumar EE20RESCH11005

Abstract—This problem is all about to to introducing the concept of linear algebra over a filed.

All the codes for this document can be found at

https://github.com/Ritesh622/Assignment_EE5609/ tree/master/Assignment 12

1 Problem

If a and b are element of a filed \mathbb{F} and $a \neq 0$, show that the ploynomial $1, ax + b, (ax + b)^2, (ax + b)^3, \dots$ form a basis of $\mathbb{F}[x]$.

2 solution

Let consider we have a set S such that,

$$S = \left\{1, ax + b, (ax + b)^2, (ax + b)^3, \dots\right\} \quad (2.0.1)$$

And let $\langle S \rangle$ be the subspace, that is spanned by S.

Since

$$1 \in S \tag{2.0.2}$$

and

$$ax + b \in S, \tag{2.0.3}$$

$$\implies b.1 + \frac{1}{a}(b + ax) \in \langle S \rangle \tag{2.0.4}$$

and hence, it follows

$$\implies x \in \langle S \rangle$$
 (2.0.5)

Now to prove

$$x^2 \in \langle S \rangle \tag{2.0.6}$$

let consider another element form S which is

$$(ax+b)^2 (2.0.7)$$

Subtracting $1.a^2 + 2.a.b.x$ from $(ax + b)^2$

$$\implies (ax + b)^2 - a^2 - 2.a.b.x = a^2.x^2$$
 (2.0.8)

$$\implies a^2.x^2 \in \langle S \rangle$$
 (2.0.9)

$$\implies \frac{1}{a^2}.a^2.x^2 \in S.$$
 (2.0.10)

$$\implies x^2 \in \langle S \rangle$$
. (2.0.11)

Now, Thus Hence using this concept with higher degree we can prove that,

$$x^n \in \langle S \rangle, \forall n$$
 (2.0.12)

Consider,

$$S' = \{1, x, x^2, x^3, \dots\}$$
 (2.0.13)

Hence we can say that, (2.0.13) span the space of all polynomials which form with the help of

$$(ax+b)^n (2.0.14)$$

Hence we conclude that *S* spans the space of all polynomials. We can summarize our procedure step by step using table1.

TABLE 1: Step for the solution

Sr. No	Description	Mathematical representation
1.	Consider a set S	$S = \{1, ax + b, \ldots\}$
2.	Provide a proof that subset S span	Since $1 \in S$ and $ax + b \in S$, \Longrightarrow
	the subspace $\langle S \rangle$	$b.1 + \frac{1}{a}(b + ax) \in \langle S \rangle \implies x \in \langle S \rangle$
		Given element are $\in S$
3.	Repeat step 2 for the higher degree	Since $(ax + b)^2 \in S \implies$
	of polynomial also lie in the sub-	$(ax + b)^2 - a^2 - 2.a.b.x = a^2.x^2 \implies$
	space and the also lie in the subset	$a^2.x^2 \in \langle S \rangle \implies \frac{1}{a^2}.a^2.x^2 \in$
	S.	$S. \implies x^2 \in \langle S \rangle$ Given element
		$are \in S$
4.	After providing proof for all ele-	$S' = \{1, x, x^2, x^3, \dots\}$
	ment $\in S$ find the basis.	,
5.	Show the element $\in S'$ are able to	Hence S form basis of \mathbb{F}
	form all element S over \mathbb{F} .	