## Resumo OBI

#### Aleardo Manacero

2020

# 1 Ordenação com quicksort

A função qsort() faz a ordenação dos elementos de um vetor. Dentro do seu programa ela é chamada assim:

```
qsort (nome_vetor, num_elementos, tamanho_elemento, funcao_escolha);
```

A funcao\_escolha compara dois elementos e decide qual deles deve aparecer antes no vetor. Seu código é algo do tipo:

```
int funcao_escolha (const void *a, const void *b)
{ return ( (int)(*a) - (int)(*b) ); // se o vetor for de inteiros
}
```

Mas qsort() pode ser usado para mais coisas, como ordenar um vetor de inteiros colocando primeiro os pares e depois os ímpares, sempre ordenados. Para isso a função fica:

```
int funcao_escolha (const void *p, const void *q)
{    // Recebe os valores dos dois inteiros
    int l = *(const int *)p;
    int r = *(const int *)q;

    // Se os dois forem impares ou os dois forem pares coloque o menor antes
    if ( ((l&1) && (r&1)) || ( !(l&1) && !(r&1) ) )
        return (l-r);

    // Se um for impar e o outro par, coloque primeiro o par
    if (!(l&1))
        return -1;
    // l é impar, coloque depois
    return 1;
}
```

## 2 Caminho mínimo

O código a seguir resolve o problema do caminho mínimo. No caso ele está aplicado ao problema FRETE da OBI de 2017.

```
#include "stdio.h"
#define MAX 1001
#define BIG 1000000 // valor "infinito" inicial
int frete[MAX], marca[MAX], cidade[MAX][MAX];
// função para encontrar vértice com menor valor de frete
// e que ainda nao foi "percorrido"
int mincusto(int N)
{int i, menor=N;
 for (i=N-1; i>1; i--) // procura vértice com menor custo
     if (frete[i] < frete[menor] && marca[i] == 0)</pre>
         menor = i;
  if (menor != N) // se não existirem mais vértices faz menor = -1
     return(menor);
    else
     return (-1);
}
int main()
{int i, j, N, M, A, B, C, cand;
  scanf("%d %d", &N, &M);
  for (i = 0; i <= N; i++) // Preenche tudo como custo "infinito"
    for (j = 0; j \le N; j++)
        cidade[i][j] = BIG;
 for (i = 0; i < M; i++ ) // Lê as ligações e custos conhecidos
  { scanf("%d %d %d", &A, &B, &C);
    cidade[A][B] = cidade[B][A] = C;
 for (i = 1; i <= N; i++)
  { cidade[i][i] = 0;
   frete[i] = cidade[1][i]; // Determina fretes iniciais
   marca[i] = 0; // Indica que não foi percorrida ainda
 // começa dizendo que o frete da cidade 1 para ela mesma é 0
  // e diz que a primeira candidata é a própria cidade 1
  frete[1] = 0;
                  cand = 1;
```

# 3 Uso de produto vetorial

Aplicações envolvendo posições relativas entre segmentos de reta podem ser resolvidas com a aplicação de produto vetorial. Considerando dois vetores,  $p_1$  e  $p_2$ , com origem em um ponto comum (aqui será o ponto (0,0)), temos que o produto vetorial deles será:

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$$
$$= x_1 \cdot y_2 - x_2 \cdot y_1$$
$$= -p_2 \times p_1$$

#### 3.1 Determinando posição relativa entre segmentos

Considerando os segmentos a e b, que tenham um ponto de partida em comum, digamos  $p_0$ , podemos determinar a posição entre eles com o cálculo do produto vetorial. Assim, se  $a \times b$  é positivo, então a está a direita de b, isto é, se considerarmos o movimento dos ponteiros de um relógio, passamos primeiro por b e depois por a. Se esse produto for negativo, então a está a esquerda. Se o produto for zero, então são colineares.

Considerando que o segmento a tem origem em  $p_0 = (x_0, y_0)$  e termina em  $p_1 = (x_1, y_1)$  e o segmento b tem origem em  $p_0$  e termina em  $p_2 = (x_2, y_2)$ , então o produto vetorial é dado por:

$$a \times b = (x_1 - x_0).(y_2 - y_0) - (x_2 - x_0).(y_1 - y_0)$$

## 3.2 Determinando a direção de um caminho

Supondo agora que os segmentos a e b tem como intersecção o ponto final do primeiro e inicial do segundo, de forma a que a comece em  $p_0$  e termine em  $p_1$  e que b comece em  $p_1$  e termine em  $p_2$ , então a direção da "curva" feita em  $p_1$  pode ser determinada calculando o produto vetorial entre a e o segmento formado pelos pontos  $p_0$  e  $p_2$ , que chamaremos de  $p_0p_2$ . Assim, se  $p_0p_2 \times a$  for positivo, então  $p_0p_2$  está a direita e a curva foi para a direita. Se for negativo, então a curva foi para a esquerda.



## 3.3 Interseção entre dois segmentos

Podemos usar o produto vetorial também para determinar se dois segmentos se interceptam, ou seja, apresentam um ponto de interseção. Para determinar isso se aplica primeiro o chamado teste de rejeição, que procura verificar se as "caixas de limitação" dos segmentos apresentam interseção. Se as caixas não tiverem interseção (em x e em y), então é impossível que os segmentos se interceptem.

#### 3.3.1 Teste de rejeição

Considerando os segmentos da figura abaixo, os segmentos passariam no teste de rejeição, observando que os pontos na equação são os vértices marcados e não as extremidades dos segmentos, se e somente se:

$$(x_2 \ge x_3) \land (x_4 \ge x_1) \land (y_2 \ge y_3) \land (y_4 \ge y_1)$$



#### 3.3.2 Determinando se existe intersecção

Se os segmentos passarem no teste de rejeição, então é necessário verificar se os mesmos se interceptam ou não. Isso é feito calculando o produto vetorial

entre um segmento e segmentos imaginários que levam ao outro segmento, como representado graficamente a seguir.



Então, considerando os segmentos  $P_0P_1$  e  $P_2P_3$ , primeiro calculamos os produtos  $P_0P_1 \times P_0P_2$  e  $P_0P_1 \times P_0P_3$  (segmentos em vermelho). Para que exista a possibilidade de cruzamento entre os segmentos, então esses produtos devem ter sinais contrários.

Depois temos que fazer o mesmo a partir do ponto  $P_2$ , com os segmentos em verde. Se os sinais também forem contrários, então os segmentos se interceptam.

# 4 Algoritmos para números

## 4.1 Cálculo do MDC entre dois números

Para isso se usa o algoritmo de Euclides, que basicamente determina o valor do MDC recursivamente, do seguinte modo:

```
MDC(a, b) = MDC(b, a\%b)
```

Isso prossegue até que tenhamos b=0. Em C isso fica:

```
int mdc(int a, int b)
{ if (b == 0)
     return(a);
    else
     return( mdc(b, a%b) );
}
```