

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2017

BRANCHE	SECTIONS	ÉPREUVE ÉCRITE
MATHÉMATIQUES II	C, D	Durée de l'épreuve 2 h 45
		Date de l'épreuve 20 septembre 2017
		Numéro du candidat

QUESTION 1 (4+(6+4)=14 points)

(1) Démontrez la propriété suivante :

Si F et G sont des primitives de f sur un intervalle $I \subset dom_c f$, alors il existe une constante réelle C telle que :

$$(\forall x \in I)$$
 $F(x) - G(x) = C$

(2) Résolvez dans ℝ:

(a)
$$\log_{\frac{1}{2}} (2-x) - \log_{\sqrt{2}} \sqrt{x+4} \ge \log_2 \frac{1}{(x+3)^2}$$

(b)
$$9+10\cdot 5^{-1-x}=5^{x+1}$$

QUESTION 2 (3+(4+4)+4+(3+3)=21 points)

- (1) Calculez la limite suivante : $\lim_{x\to 0} (1-2x)^{\frac{1}{2x}}$.
- (2) Déterminez les intégrales suivantes :

(a)
$$\int_0^3 \frac{3x+1}{\sqrt{9-x^2}} \, dx$$

(b)
$$\int_{2}^{2e} (1+x^2) \ln\left(\frac{x}{2}\right) dx$$

(3) On considère la fonction f définie par $f(x) = \sin(2x)\cos^2 x$.

Déterminez la primitive F de f sur \mathbb{R} qui prend la valeur $\frac{1}{8}$ pour $x = \frac{\pi}{4}$.

(4) Dans un repère orthonormé on considère les courbes des fonctions définies par

$$f(x) = \frac{1}{4}x^2$$
 et $g(x) = 2\sqrt{x}$.

- (a) Etudiez la position de $\,C_{f}\,$ par rapport à $\,C_{g}\,$.
- (b) Calculez le volume engendré par rotation autour de l'axe Ox de la surface délimitée par C_f et $C_{\bf g}$.

QUESTION 3 (13+4+(6+2)=25 points)

Soit la fonction f définie par : $f(x) = (2x+1)^2 \cdot e^{-x}$.

- (1) Faites l'étude de f: domaine, limites aux bornes du domaine et asymptotes éventuelles, dérivée, dérivée seconde, tableau récapitulatif complet (sens de variation, extrema, concavité, points d'inflexion).
- (2) Représentez graphiquement la fonction f dans un repère orthonormé (unité : 1 cm sur les deux axes).
- (3) (a) Calculez l'aire $A(\lambda)$ de la partie du plan délimitée par C_f , l'axe des abscisses et la droite d'équation $x=\lambda$, où $\lambda>-\frac{1}{2}$.
 - (b) Calculez $\lim_{\lambda \to +\infty} A(\lambda)$.