Selection Bias

Prof. Tzu-Ting Yang 楊子霆

Institute of Economics, Academia Sinica 中央研究院經濟研究所

September 10, 2024

- In many applications, we might be interested in the ATE or the ATT
- These causal effects are defined by comparing potential outcomes
- But we only know:
 - Whether an individual was treated or not
 - The **observed outcome** of the individual

- If we do not implement any causal inference methods, we can only establish association (correlation)
- Naive solution: Comparing observed difference in outcome between treated and untreated individuals

$$\begin{aligned} & \text{ODO} = \mathrm{E}[\mathrm{Y}_i|D_i = 1] - \mathrm{E}[\mathrm{Y}_i|D_i = 0] \\ &= \underbrace{\frac{1}{N_1} \sum_{i:D_i = 1} [\mathrm{Y}_i|D_i = 1]}_{\text{Treated units}} - \underbrace{\frac{1}{N_0} \sum_{i:D_i = 0} [\mathrm{Y}_i|D_i = 0]}_{\text{Untreated units}} \end{aligned}$$

 The observed difference in outcome usually mix up causal effect (ATT) and selection bias

$$\begin{split} &\underbrace{\mathrm{E}[Y_{i}|D_{i}=1]-\mathrm{E}[Y_{i}|D_{i}=0]}_{\mathrm{ODO}} \\ &=\mathrm{E}[Y_{i}^{1}|D_{i}=1]-\mathrm{E}[Y_{i}^{0}|D_{i}=1]+\mathrm{E}[Y_{i}^{0}|D_{i}=1]-\mathrm{E}[Y_{i}^{0}|D_{i}=0] \\ &=\underbrace{\mathrm{E}[Y_{i}^{1}-Y_{i}^{0}|D_{i}=1]+\mathrm{E}[Y_{i}^{0}|D_{i}=1]-\mathrm{E}[Y_{i}^{0}|D_{i}=0]}_{\mathrm{ATT}} + \underbrace{\mathrm{E}[Y_{i}^{0}|D_{i}=1]-\mathrm{E}[Y_{i}^{0}|D_{i}=0]}_{\mathrm{Selection Bias}} \end{split}$$

- Selection Bias implies:
 - The value of potential outcomes for two groups are different even if both groups were under the same untreated scenario
 - $E[Y_i^0|D_i = 1] \neq E[Y_i^0|D_i = 0]$
 - There are genuine differences between treated and untreated individuals

A Numerical Example

 The observed differences in outcome between treated and untreated individuals

i	D_i	\mathbf{Y}_{i}^{1}	\mathbf{Y}_{i}^{0}	Y_i	$\mathbf{Y}_{i}^{1}-\mathbf{Y}_{i}^{0}$	
David	1	3	?	3	?	
Tina	1	2	?	2	?	
Mary	0	?	1	1	?	
Bill	0	?	1	1	?	
$E[Y_i D_i=1]$	2.5					
$E[Y_i D_i=0]$	1					

$$\underbrace{E[Y_i|D_i = 1] - E[Y_i|D_i = 0]}_{ODO} = 1.5$$

A Numerical Example

• But we are interested in causal effect (ATT):

i	Di	Y_i^1	Y_i^0	Yi	$Y_i^1 - Y_i^0$
David	1	3	2	3	1
Tina	1	2	1	2	1
Mary	0	1	1	1	0
Bill	0	1	1	1	0
$E[Y_i^1 D_i=1]$		2.5			
$E[Y_i^0 D_i=1]$			1.5		

Compare the difference in potential outcomes for treated individuals

$$\underbrace{\mathrm{E}[\mathrm{Y}_{\mathit{i}}^{1}-\mathrm{Y}_{\mathit{i}}^{0}|\mathit{D}_{\mathit{i}}=1]}_{\mathsf{ATT}}=1$$

A Numerical Example

$$\begin{split} &\underbrace{\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0]}_{\text{ODO (1.5)}} \\ &= \underbrace{\mathbb{E}[Y_i^1 - Y_i^0|D_i=1]}_{\text{ATT (1)}} + \underbrace{\mathbb{E}[Y_i^0|D_i=1] - \mathbb{E}[Y_i^0|D_i=0]}_{\text{Selection Bias (0.5)}} \end{split}$$

A Numerical Example

i	D_i	Y_i^1	Y_i^0	Yi	$Y_i^1 - Y_i^0$	
David	1	3	2	3	1	
Tina	1	2	71	2	1	
Mary	0	1	ווש	1	0	
Bill	0	1	1	1	0	
$E[Y_i^0 D_i = 1]$ $E[Y_i^0 D_i = 0]$	1.5					
$E[Y_i^0 D_i=0]$	1					

Here, selection bias is positive (0.5 million NT\$)

$$\underbrace{\mathrm{E}[\mathrm{Y}_i^0|D_i=1] - \mathrm{E}[\mathrm{Y}_i^0|D_i=0]}_{\text{Selection Bias}} = 0.5$$

 Those who attend graduate school could be more intelligent so they can earn more even if they did not attend graduate school

Sources of Selection Bias

Selection to Treatment

- Economists have long been concerned with selection bias arising from selection to treatment
 - Since the core of economics is analyzing how people make a choice – select a treatment
- When individuals self-select into a treatment based on observable and unobservable characteristics
 - It leads to systematic differences between the treated and untreated groups
 - Failure to account for this non-random selection process can result in biased estimates of the causal effect
- Many economics models describe this non-random selection process

Selection to Treatment

Generalized Roy Model

- Roy (1951) provides a framework for understanding how individuals self-select into different working sectors (treatments)
 - Based on their comparative advantages and expected returns.
 - It is a cornerstone of the literature in applied economics and policy evaluation
- This framework has been applied and extended to a wide range of other contexts
 - See Heckman and Taber (2008); Heckman and Vytlacil (2007a,b); Heckman and Pinto (2023)

Selection to Treatment

Generalized Roy Model

- The Generalized Roy Model is characterized by the following equations:
 - Potential outcome in treatment 1: $Y_i^1 = g^1(X) + U^1$
 - Potential outcome in treatment 0: $Y_i^0 = g^0(X) + U^0$
 - X are observed factors affecting outcomes and choice
 - *U* are unobserved factors affecting outcomes and choice
 - Cost: $C = g_c(\mathbf{Z}, \mathbf{X}) + U_c$
 - Z serves as an instrumental variable
 - Could be external policy or any exogenous factors cause C change
 - Treatment choice: $D = \mathbf{1}\{Y_i^1 Y_i^0 C \ge 0\}$
 - Choose treatment 1 when Y¹_i ≥ Y⁰_i + C ⇒ D = 1 % 研究所的效应
 - Choose treatment 0 when $Y_i^1 < Y_i^0 + C \Rightarrow D = 0$

- People make different treatment choices based on their value of potential outcomes
- This self-selection behavior would result in selection bias:
 - $\mathrm{E}[\mathrm{Y}_i^0|D_i=1] \neq \mathrm{E}[\mathrm{Y}_i^0|D_i=0]$ $\mathrm{E}[\mathrm{Y}_i^1|D_i=1] \neq \mathrm{E}[\mathrm{Y}_i^1|D_i=0]$
- The differences in potential outcomes between treated and untreated group reflect their observed and unobserved characteristics are different

Selection to Treatment

Generalized Roy Model

- The Roy model actually highlights possible strategies to eliminate selection bias
 - Do not allow individuals to self-select into treatment
 - Randomized Controlled Trials (RCTs)
 - 2 Control for all possible observed confounding factors X and assume no unobserved confounding factors U
 - Matching, regression, causal machine learning
 - 3 Exploit exogenous variation in treatment *D* induced by an instrumental variable *Z*
 - Difference-in-Differences (DID), Instrumental Variables (IV), Regression Discontinuity Design (RDD)

Causal Effect and Identification Strategy

- identification strategy tells us what we can learn about a causal effect from the observed data
 - The main goal of identification strategy is to eliminate the selection bias
 - Identification depends on assumptions, not on estimation strategies
 - Estimation strategies: OLS, MLE, GMM
 - If an effect is not identified, no estimation method will recover it
 - "What's your identification strategy?" =
 - What are the assumptions that allow you to claim you've estimated a causal effect?

Suggested Readings

- Chapter 1 and 2, Mastering Metrics: The Path from Cause to Effect
- Chapter 2, Mostly Harmless Econometrics
- Chapter 4, Causal Inference: The Mixtape