Ejercicio 7:

Un DECODIFICADOR es un circuito combinacional que convierte información binaria de 'N' entradas codificadas ($\bf A$), a ' $\bf 2^{N'}$ salidas <u>únicas</u> ($\bf X$). Esto quiere decir que sólo una salida $\bf X$ está activa y representa el valor de las señales de entrada $\bf A$.

Considere un decodificador activo por bajo (salida activa = '0') con N=2 y 2^N=4 (deco 2 x 4).

- a. Expresar las tablas de verdad de las cuatro salidas X_0 , X_1 , X_2 y X_3 .
- b. Encontrar las expresiones de X₀, X₁, X₂ y X₃ como suma de minitérminos y como producto de maxitérminos.
- c. Encontrar expresiones minimizadas de X_0 , X_1 , X_2 y X_3 utilizando el método de Karnaugh o un método algebraico.
- d. Implementar las expresiones anteriores a través del uso de compuertas lógicas.
- e. Repetir el punto (d) agregando una entrada de HABILITACIÓN (**E**) activa por bajo, de tal forma que cuando **E**='1' ninguna señal de salida permanezca habilitada.

4.	A.	K3	K,	٤,	K٥
0	0 1 0 1	1	1	•	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	A	1	1

	minitélaine	Max Lés Mino		
K ₃	A.A. +A.A. +A.A.	91+00		
KZ	0A1A+0A1A+0A1A	4+ 400		
٤,	A.A. + A.A. + A.A.	A+Ao		
Ko	1 A.A. + A.A. + A.A.	A1+A0		

Ε	41	A.	K3	κz	K,	K _o
0	0	0 1 0 1	1	Λ	1	0
0	0	1	1	1	0	1
0	1	0	л	0	1	1
0	1	1	0	1	1	1
1	ĸ	ĸ	1	1	1	1

