Übungsblatt

Grundlagen der Künstlichen Intelligenz

10.11.2023, DHBW Lörrach

Naive-Bayes Spam-Filter

Aufgabe 1

Wir wollen die Wahrscheinlichkeit dafür berechnen, dass eine empfangene E-Mail m entweder Spam oder Ham (erwünschte E-Mail) ist, unter der Bedingung, dass die Wörter $m = (Wort_1, ..., Wort_n)$ in der Mail gefunden wurden:

$$P(S|Wort_1 \wedge ... \wedge Wort_n) = \frac{P(Wort_1 \wedge ... \wedge Wort_n|S) \cdot P(S)}{P(Wort_1 \wedge ... \wedge Wort_n)}$$
(1)
$$= \frac{P(Wort_1|S) \cdot ... \cdot P(Wort_n|S) \cdot P(S)}{P(Wort_1) \cdot ... \cdot P(Wort_n)}$$
(2)

a) Begründen Sie anhand der Gleichung die Naivität des Spam-Filters.

Lösung

Für die zweite Gleichung wurde die Annahme verwendet, dass die gefundenen Wörter voneinander stochastisch unabhängig auftreten (Gegenbeispiele: *Baden* und *Württemberg*, *Naiv* und *Bayes*).

b) Welcher Klassifikations-Algorithmus beschreibt das Kategorisierungsverhalten des Spam-Filters ($cat \in \{S, H\}$)? Begründen Sie Ihre Auswahl.

$$classify(m) = classify(Wort_1, ..., Wort_n)$$

$$= \underset{cat}{argmin} P(cat) \cdot \Pi_{i=1}^n P(Wort_i|cat)$$

$$= \underset{cat}{argmax} P(cat) \cdot \Pi_{i=1}^n P(Wort_i|cat)$$

$$= \underset{cat}{arg} P(cat) \cdot \Pi_{i=1}^n P(Wort_i|cat)$$

Lösung

- zweite Möglichkeit
- Begründung: Die Auswahl fällt durch direkten Vergleich mit der Formel auf diejenige Kategorie, die die bedingte Wahrscheinlichkeit maximiert.

Aufgabe 2

Betrachten Sie das Python Code-Fragment aus einer Zeitreihenanalyse von Passagierzahlen zwischen 1949 und 1960, in dem die Zeitreihe mit dem Dickey-Fuller Test auf Stationarität geprüft wird:

```
from statsmodels.tsa.stattools import adfuller
def test_stationarity(timeseries):
    #Determing rolling statistics
    rolmean = pd.rolling_mean(timeseries, window=12)
    rolstd = pd.rolling_std(timeseries, window=12)
    #Plot rolling statistics:
    orig = plt.plot(timeseries, color='blue',label='Original')
    mean = plt.plot(rolmean, color='red', label='Rolling Mean')
    std = plt.plot(rolstd, color='black', label = 'Rolling Std')
    plt.legend(loc='best')
    plt.title('Rolling Mean & Standard Deviation')
    plt.show(block=False)
    #Perform Dickey-Fuller test:
    print 'Results of Dickey-Fuller Test:'
    dftest = adfuller(timeseries, autolag='AIC')
    dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observa
    for key,value in dftest[4].items():
        dfoutput['Critical Value (%s)'%key] = value
    print dfoutput
```

a) Formulieren Sie die Nullhypothese zur Prüfung auf Stationarität im Dickey-Fuller Test.

b) Welche Aussage über die Nullhypothese lässt sich entsprechend der zeitlichen Abhängigkeit des Erwartungswertes basierend auf dem Plot ableiten?

Lösung

Der Erwartungswert ist nicht konstant, sondern monoton steigend mit der Zeit, was die Stationarität der Zeitreihe widerlegt.

c) Recherchieren Sie - z.B. online - Kriterien, die für die Widerlegung der Null-Hypothese aus a) erfüllt sein müssen und geben die entsprechende Quelle an.

Lösung

- Test Statistic (ca. 0.82) < Critical Value (ca. -2.6 bei 10 Prozent Konfidenzintervall) und
- p-value (vgl. MacKinnon) < 0.05
- $\bullet \ \ Quelle: https://www.analyticsvidhya.com/blog/2021/06/statistical-tests-to-check-stationarity-in-time-series-part-1/$