Solutions to Practice Problems (Continued)

2. Since $x_5 \le 500$, the equations D and A for x_1 and x_2 imply that $x_1 \ge 100$ and $x_2 \le 700$. The fact that $x_5 \ge 0$ implies that $x_1 \le 600$ and $x_2 \ge 200$. So, $100 < x_1 < 600$, and $200 < x_2 < 700$.

1.7 Linear Independence

The homogeneous equations in Section 1.5 can be studied from a different perspective by writing them as vector equations. In this way, the focus shifts from the unknown solutions of $A\mathbf{x} = \mathbf{0}$ to the vectors that appear in the vector equations.

For instance, consider the equation

$$x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{1}$$

This equation has a trivial solution, of course, where $x_1 = x_2 = x_3 = 0$. As in Section 1.5, the main issue is whether the trivial solution is the *only one*.

DEFINITION

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights c_1, \dots, c_p , not all zero, such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0} \tag{2}$$

Equation (2) is called a **linear dependence relation** among $\mathbf{v}_1, \dots, \mathbf{v}_p$ when the weights are not all zero. An indexed set is linearly dependent if and only if it is not linearly independent. For brevity, we may say that $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly dependent when we mean that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a linearly dependent set. We use analogous terminology for linearly independent sets.

EXAMPLE 1 Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

- a. Determine if the set $\{v_1, v_2, v_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among v_1 , v_2 , and v_3 .

SOLUTION

a. We must determine if there is a nontrivial solution of equation (1) above. Row operations on the associated augmented matrix show that

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Clearly, x_1 and x_2 are basic variables, and x_3 is free. Each nonzero value of x_3 determines a nontrivial solution of (1). Hence v_1, v_2, v_3 are linearly dependent (and not linearly independent).

b. To find a linear dependence relation among v_1 , v_2 , and v_3 , completely row reduce the augmented matrix and write the new system:

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 & -2x_3 = 0 \\ x_2 + x_3 = 0 \\ 0 = 0 \end{array}$$

Thus $x_1 = 2x_3$, $x_2 = -x_3$, and x_3 is free. Choose any nonzero value for x_3 —say, $x_3 = 5$. Then $x_1 = 10$ and $x_2 = -5$. Substitute these values into equation (1) and obtain

$$10\mathbf{v}_1 - 5\mathbf{v}_2 + 5\mathbf{v}_3 = \mathbf{0}$$

This is one (out of infinitely many) possible linear dependence relations among v_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

Linear Independence of Matrix Columns

Suppose that we begin with a matrix $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]$ instead of a set of vectors. The matrix equation $A\mathbf{x} = \mathbf{0}$ can be written as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{0}$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution of $A\mathbf{x} = \mathbf{0}$. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has *only* the trivial solution. (3)

EXAMPLE 2 Determine if the columns of the matrix $A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$ are

linearly independent.

SOLUTION To study $A\mathbf{x} = \mathbf{0}$, row reduce the augmented matrix:

$$\begin{bmatrix} 0 & 1 & 4 & 0 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & -2 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 13 & 0 \end{bmatrix}$$

At this point, it is clear that there are three basic variables and no free variables. So the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, and the columns of A are linearly independent.

Sets of One or Two Vectors

A set containing only one vector—say, v—is linearly independent if and only if v is not the zero vector. This is because the vector equation $x_1 \mathbf{v} = \mathbf{0}$ has only the trivial solution when $\mathbf{v} \neq \mathbf{0}$. The zero vector is linearly dependent because $x_1 \mathbf{0} = \mathbf{0}$ has many nontrivial solutions.

The next example will explain the nature of a linearly dependent set of two vectors.

EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ b. $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

SOLUTION

- a. Notice that \mathbf{v}_2 is a multiple of \mathbf{v}_1 , namely $\mathbf{v}_2 = 2\mathbf{v}_1$. Hence $-2\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0}$, which shows that $\{v_1, v_2\}$ is linearly dependent.
- b. The vectors \mathbf{v}_1 and \mathbf{v}_2 are certainly *not* multiples of one another. Could they be linearly dependent? Suppose c and d satisfy

$$c\mathbf{v}_1 + d\mathbf{v}_2 = \mathbf{0}$$

If $c \neq 0$, then we can solve for \mathbf{v}_1 in terms of \mathbf{v}_2 , namely $\mathbf{v}_1 = (-d/c)\mathbf{v}_2$. This result is impossible because \mathbf{v}_1 is *not* a multiple of \mathbf{v}_2 . So c must be zero. Similarly, d must also be zero. Thus $\{v_1, v_2\}$ is a linearly independent set.

The arguments in Example 3 show that you can always decide by inspection when a set of two vectors is linearly dependent. Row operations are unnecessary. Simply check whether at least one of the vectors is a scalar times the other. (The test applies only to sets of two vectors.)

A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the same line through the origin. Figure 1 shows the vectors from Example 3.

Linearly independent

(3, 1)

Linearly dependent

FIGURE 1

 x_2

Sets of Two or More Vectors

The proof of the next theorem is similar to the solution of Example 3. Details are given at the end of this section.

THEOREM 7

Characterization of Linearly Dependent Sets

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_i (with i > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{i-1}$.

Theorem 7 does *not* say that *every* vector in a linearly dependent set is a linear combination of the preceding vectors. A vector in a linearly dependent set may fail to be a linear combination of the other vectors. See Practice Problem 1(c).

EXAMPLE 4 Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by \mathbf{u} and \mathbf{v} ,

and explain why a vector w is in Span $\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

SOLUTION The vectors **u** and **v** are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 . (See Section 1.3.) In fact, Span $\{\mathbf{u}, \mathbf{v}\}\$ is the x_1x_2 -plane (with $x_3 = 0$). If \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} , then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}\$ is linearly dependent, by Theorem 7. Conversely, suppose that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}\$ is linearly dependent. By Theorem 7, some vector in $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linear combination of the preceding vectors (since $\mathbf{u} \neq \mathbf{0}$). That vector must be \mathbf{w} , since \mathbf{v} is not a multiple of \mathbf{u} . So \mathbf{w} is in Span $\{\mathbf{u}, \mathbf{v}\}$. See Figure 2.

FIGURE 2 Linear dependence in \mathbb{R}^3 .

Example 4 generalizes to any set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ in \mathbb{R}^3 with \mathbf{u} and \mathbf{v} linearly independent. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ will be linearly dependent if and only if \mathbf{w} is in the plane spanned by \mathbf{u} and v.

The next two theorems describe special cases in which the linear dependence of a set is automatic. Moreover, Theorem 8 will be a key result for work in later chapters.

THEOREM 8

FIGURE 3

If p > n, the columns are linearly dependent.

FIGURE 4

A linearly dependent set in \mathbb{R}^2 .

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if

PROOF Let $A = [\mathbf{v}_1 \ \cdots \ \mathbf{v}_p]$. Then A is $n \times p$, and the equation $A\mathbf{x} = \mathbf{0}$ corresponds to a system of n equations in p unknowns. If p > n, there are more variables than equations, so there must be a free variable. Hence $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, and the columns of A are linearly dependent. See Figure 3 for a matrix version of this theorem.

Theorem 8 says nothing about the case in which the number of vectors in the set does *not* exceed the number of entries in each vector.

EXAMPLE 5 The vectors
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ are linearly dependent by Theorem 8, because there are three vectors in the set and there are only two entries in each vector.

Notice, however, that none of the vectors is a multiple of one of the other vectors. See Figure 4.

THFORFM 9

If a set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

PROOF By renumbering the vectors, we may suppose $\mathbf{v}_1 = \mathbf{0}$. Then the equation $1\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_p = \mathbf{0}$ shows that S is linearly dependent.

EXAMPLE 6 Determine by inspection if the given set is linearly dependent.

a.
$$\begin{bmatrix} 1\\7\\6 \end{bmatrix}$$
, $\begin{bmatrix} 2\\0\\9 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\5 \end{bmatrix}$, $\begin{bmatrix} 4\\1\\8 \end{bmatrix}$ b. $\begin{bmatrix} 2\\3\\5 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\8 \end{bmatrix}$ c. $\begin{bmatrix} -2\\4\\6\\10 \end{bmatrix}$, $\begin{bmatrix} 3\\-6\\-9\\15 \end{bmatrix}$

SOLUTION

- a. The set contains four vectors, each of which has only three entries. So the set is linearly dependent by Theorem 8.
- b. Theorem 8 does not apply here because the number of vectors does not exceed the number of entries in each vector. Since the zero vector is in the set, the set is linearly dependent by Theorem 9.
- c. Compare the corresponding entries of the two vectors. The second vector seems to be -3/2 times the first vector. This relation holds for the first three pairs of entries, but fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and hence they are linearly independent.

In general, you should read a section thoroughly *several* times to absorb an important concept such as linear independence. The notes in the *Study Guide* for this section will help you learn to form mental images of key ideas in linear algebra. For instance, the following proof is worth reading carefully because it shows how the definition of linear independence can be *used*.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets)

If some \mathbf{v}_j in S equals a linear combination of the other vectors, then \mathbf{v}_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight (-1) on \mathbf{v}_j . [For instance, if $\mathbf{v}_1 = c_2\mathbf{v}_2 + c_3\mathbf{v}_3$, then $\mathbf{0} = (-1)\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + 0\mathbf{v}_4 + \cdots + 0\mathbf{v}_p$.] Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If \mathbf{v}_1 is zero, then it is a (trivial) linear combination of the other vectors in S. Otherwise, $\mathbf{v}_1 \neq \mathbf{0}$, and there exist weights c_1, \ldots, c_p , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

Let j be the largest subscript for which $c_j \neq 0$. If j = 1, then $c_1 \mathbf{v}_1 = \mathbf{0}$, which is impossible because $\mathbf{v}_1 \neq \mathbf{0}$. So j > 1, and

$$c_{1}\mathbf{v}_{1} + \dots + c_{j}\mathbf{v}_{j} + 0\mathbf{v}_{j+1} + \dots + 0\mathbf{v}_{p} = \mathbf{0}$$

$$c_{j}\mathbf{v}_{j} = -c_{1}\mathbf{v}_{1} - \dots - c_{j-1}\mathbf{v}_{j-1}$$

$$\mathbf{v}_{j} = \left(-\frac{c_{1}}{c_{j}}\right)\mathbf{v}_{1} + \dots + \left(-\frac{c_{j-1}}{c_{j}}\right)\mathbf{v}_{j-1} \quad \blacksquare$$

Practice Problems

1. Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ -4 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -6 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} 3 \\ 7 \\ -5 \end{bmatrix}$.

a. Are the sets $\{u,v\}$, $\{u,w\}$, $\{u,z\}$, $\{v,w\}$, $\{v,z\}$, and $\{w,z\}$ each linearly independent? Why or why not?

- b. Does the answer to Part (a) imply that $\{u, v, w, z\}$ is linearly independent?
- c. To determine if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ is linearly dependent, is it wise to check if, say, w is a linear combination of **u**, **v**, and **z**?
- d. Is $\{u, v, w, z\}$ linearly dependent?
- 2. Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly dependent set of vectors in \mathbb{R}^n and \mathbf{v}_4 is a vector in \mathbb{R}^n . Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is also a linearly dependent set.

1.7 Exercises

In Exercises 1–4, determine if the vectors are linearly independent. Justify each answer.

1.
$$\begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 6 \end{bmatrix}$$
 2.
$$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ -8 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$$

$$\mathbf{2.} \quad \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ -8 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\begin{bmatrix} -3 \\ 6 \end{bmatrix}$ 4. $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 8 \end{bmatrix}$

4.
$$\begin{bmatrix} -1 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ 8 \end{bmatrix}$

In Exercises 5-8, determine if the columns of the matrix form a linearly independent set. Justify each answer.

5.
$$\begin{bmatrix} 0 & -8 & 5 \\ 3 & -7 & 4 \\ -1 & 5 & -4 \\ 1 & -3 & 2 \end{bmatrix}$$
 6.
$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$$

$$\mathbf{6.} \begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$$

7.
$$\begin{bmatrix} 1 & 4 & -3 & 0 \\ -2 & -7 & 5 & 1 \\ -4 & -5 & 7 & 5 \end{bmatrix}$$

7.
$$\begin{bmatrix} 1 & 4 & -3 & 0 \\ -2 & -7 & 5 & 1 \\ -4 & -5 & 7 & 5 \end{bmatrix}$$
 8.
$$\begin{bmatrix} 1 & -3 & 3 & -2 \\ -3 & 7 & -1 & 2 \\ 0 & 1 & -4 & 3 \end{bmatrix}$$

In Exercises 9 and 10, (a) for what values of h is \mathbf{v}_3 in Span $\{v_1, v_2\}$, and (b) for what values of h is $\{v_1, v_2, v_3\}$ linearly dependent? Justify each answer.

9.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 10 \\ -6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -7 \\ h \end{bmatrix}$$

10.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2 \\ 10 \\ 6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -10 \\ h \end{bmatrix}$$

In Exercises 11–14, find the value(s) of h for which the vectors are linearly dependent. Justify each answer.

11.
$$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 5 \\ h \end{bmatrix}$ 12. $\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 7 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 8 \\ h \\ 4 \end{bmatrix}$

12.
$$\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}, \begin{bmatrix} -6 \\ 7 \\ -3 \end{bmatrix}, \begin{bmatrix} 8 \\ h \\ 4 \end{bmatrix}$$

13.
$$\begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ -9 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 3 \\ h \\ -9 \end{bmatrix}$ 14. $\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 8 \\ 7 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -2 \\ h \end{bmatrix}$

14.
$$\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} -6 \\ 8 \\ 7 \end{bmatrix}, \begin{bmatrix} 4 \\ -2 \\ h \end{bmatrix}$$

Determine by inspection whether the vectors in Exercises 15–20 are linearly independent. Justify each answer.

15.
$$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 7 \end{bmatrix}$ **16.** $\begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -3 \\ 9 \end{bmatrix}$

17.
$$\begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 5 \\ 4 \end{bmatrix}$$
 18.
$$\begin{bmatrix} 4 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 8 \\ 1 \end{bmatrix}$$

19.
$$\begin{bmatrix} -8 \\ 12 \\ -4 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$

20.
$$\begin{bmatrix} 1 \\ 4 \\ -7 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

In Exercises 21–28, mark each statement True or False (T/F). Justify each answer on the basis of a careful reading of the text.

- 21. (T/F) The columns of a matrix A are linearly independent if the equation Ax = 0 has the trivial solution.
- 22. (T/F) Two vectors are linearly dependent if and only if they lie on a line through the origin.
- 23. (T/F) If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
- 24. (T/F) If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
- **25.** (T/F) The columns of any 4×5 matrix are linearly dependent.
- **26.** (T/F) If \mathbf{x} and \mathbf{y} are linearly independent, and if \mathbf{z} is in Span $\{x, y\}$, then $\{x, y, z\}$ is linearly dependent.
- 27. (T/F) If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$.
- **28.** (T/F) If a set in \mathbb{R}^n is linearly dependent, then the set contains more vectors than there are entries in each vector.

In Exercises 29–32, describe the possible echelon forms of the matrix. Use the notation of Example 1 in Section 1.2.

- **29.** A is a 3×3 matrix with linearly independent columns.
- **30.** A is a 2×2 matrix with linearly dependent columns.
- **31.** A is a 4×2 matrix, $A = [\mathbf{a}_1 \ \mathbf{a}_2]$, and \mathbf{a}_2 is not a multiple
- **32.** A is a 4×3 matrix, $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$, such that $\{\mathbf{a}_1, \mathbf{a}_2\}$ is linearly independent and a_3 is not in Span $\{a_1, a_2\}$.

- 33. How many pivot columns must a 7×5 matrix have if its columns are linearly independent? Why?
- **34.** How many pivot columns must a 5×7 matrix have if its columns span \mathbb{R}^5 ? Why?
- **35.** Construct 3×2 matrices A and B such that $A\mathbf{x} = \mathbf{0}$ has only the trivial solution and $B\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- **36.** a. Fill in the blank in the following statement: "If A is an $m \times n$ matrix, then the columns of A are linearly independent if and only if A has _____ pivot columns."
 - b. Explain why the statement in (a) is true.

Exercises 37 and 38 should be solved without performing row operations. [Hint: Write $A\mathbf{x} = \mathbf{0}$ as a vector equation.]

37. Given
$$A = \begin{bmatrix} 2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1 \end{bmatrix}$$
, observe that the third column

is the sum of the first two columns. Find a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

38. Given
$$A = \begin{bmatrix} 5 & 1 & 8 \\ -9 & 5 & 6 \\ 6 & -5 & -9 \end{bmatrix}$$
, observe that the first col-

umn plus three times the second column equals the third column. Find a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

Each statement in Exercises 39–44 is either true (in all cases) or false (for at least one example). If false, construct a specific example to show that the statement is not always true. Such an example is called a *counterexample* to the statement. If a statement is true, give a justification. (One specific example cannot explain why a statement is always true. You will have to do more work here than in Exercises 21–28.)

- **39.** (T/F-C) If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are in \mathbb{R}^4 and $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly dependent.
- **40.** (T/F-C) If v_1, \ldots, v_4 are in \mathbb{R}^4 and $v_3 = 0$, then $\{v_1, v_2, v_3, v_4\}$ is linearly dependent.

STUDY GUIDE offers additional resources for mastering the concept of linear independence.

- **41.** (T/F-C) If \mathbf{v}_1 and \mathbf{v}_2 are in \mathbb{R}^4 and \mathbf{v}_2 is not a scalar multiple of \mathbf{v}_1 , then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.
- **42.** (T/F-C) If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are in \mathbb{R}^4 and \mathbf{v}_3 is *not* a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent.
- **43.** (T/F-C) If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are in \mathbb{R}^4 and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is also linearly dependent.
- **44.** (T/F-C) If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are linearly independent vectors in \mathbb{R}^4 , then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent. [*Hint:* Think about $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + 0 \cdot \mathbf{v}_4 = \mathbf{0}$.]
- **45.** Suppose A is an $m \times n$ matrix with the property that for all \mathbf{b} in \mathbb{R}^m the equation $A\mathbf{x} = \mathbf{b}$ has at most one solution. Use the definition of linear independence to explain why the columns of A must be linearly independent.
- **46.** Suppose an $m \times n$ matrix A has n pivot columns. Explain why for each \mathbf{b} in \mathbb{R}^m the equation $A\mathbf{x} = \mathbf{b}$ has at most one solution. [*Hint:* Explain why $A\mathbf{x} = \mathbf{b}$ cannot have infinitely many solutions.]

In Exercises 47 and 48, use as many columns of A as possible to construct a matrix B with the property that the equation $B\mathbf{x} = \mathbf{0}$ has only the trivial solution. Solve $B\mathbf{x} = \mathbf{0}$ to verify your work.

$$47. \ A = \begin{bmatrix} 8 & -3 & 0 & -7 & 2 \\ -9 & 4 & 5 & 11 & -7 \\ 6 & -2 & 2 & -4 & 4 \\ 5 & -1 & 7 & 0 & 10 \end{bmatrix}$$

48.
$$A = \begin{bmatrix} 12 & 10 & -6 & -3 & 7 & 10 \\ -7 & -6 & 4 & 7 & -9 & 5 \\ 9 & 9 & -9 & -5 & 5 & -1 \\ -4 & -3 & 1 & 6 & -8 & 9 \\ 8 & 7 & -5 & -9 & 11 & -8 \end{bmatrix}$$

- **11 49.** With A and B as in Exercise 47 select a column v of A that was not used in the construction of B and determine if v is in the set spanned by the columns of B. (Describe your calculations.)
- 50. Repeat Exercise 49 with the matrices *A* and *B* from Exercise 48. Then give an explanation for what you discover, assuming that *B* was constructed as specified.

Solutions to Practice Problems

- **1.** a. Yes. In each case, neither vector is a multiple of the other. Thus each set is linearly independent.
 - b. No. The observation in Part (a), by itself, says nothing about the linear independence of $\{u, v, w, z\}$.
 - c. No. When testing for linear independence, it is usually a poor idea to check if one selected vector is a linear combination of the others. It may happen that the selected vector is not a linear combination of the others and yet the whole set of vectors is linearly dependent. In this practice problem, w is not a linear combination of u, v, and z.
 - d. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.

2. Applying the definition of linearly dependent to $\{v_1, v_2, v_3\}$ implies that there exist scalars c_1 , c_2 , and c_3 , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}.$$

Adding $0 \mathbf{v}_4 = \mathbf{0}$ to both sides of this equation results in

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + 0\,\mathbf{v}_4 = \mathbf{0}.$$

Since c_1, c_2, c_3 and 0 are not all zero, the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ satisfies the definition of a linearly dependent set.

Introduction to Linear Transformations

The difference between a matrix equation $A\mathbf{x} = \mathbf{b}$ and the associated vector equation $x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n = \mathbf{b}$ is merely a matter of notation. However, a matrix equation $A\mathbf{x} = \mathbf{b}$ can arise in linear algebra (and in applications such as computer graphics and signal processing) in a way that is not directly connected with linear combinations of vectors. This happens when we think of the matrix A as an object that "acts" on a vector **x** by multiplication to produce a new vector called Ax.

For instance, the equations

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix} \text{ and } \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

say that multiplication by A transforms x into b and transforms u into the zero vector. See Figure 1.

FIGURE 1 Transforming vectors via matrix multiplication.

From this new point of view, solving the equation $A\mathbf{x} = \mathbf{b}$ amounts to finding all vectors \mathbf{x} in \mathbb{R}^4 that are transformed into the vector \mathbf{b} in \mathbb{R}^2 under the "action" of multiplication by A.

The correspondence from \mathbf{x} to $A\mathbf{x}$ is a *function* from one set of vectors to another. This concept generalizes the common notion of a function as a rule that transforms one real number into another.

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T, and \mathbb{R}^m