Київський національний університет імені Тараса Шевченка Кафедра ядерної фізики

В.А. ПЛЮЙКО, К.М. СОЛОДОВНИК

ЗБІРНИК ЗАДАЧ З ЯДЕРНОЇ ФІЗИКИ З РОЗВ'ЯЗКАМИ

МЕТОДИЧНИЙ ПОСІБНИК З КУРСУ

"ФІЗИКА АТОМНОГО ЯДРА ТА ЕЛЕМЕНТАРНИХ ЧАСТИНОК"

Плюйко В.А., Солодовник К.М. Збірник задач з ядерної фізики з розв'язками.

Посібник включає задачі та їх розв'язки з нормативного курсу ядерної фізики для університетів. Значна частина задач відноситься до застосувань базових понять і принципів квантової механіки та базових моделей опису структури атомних ядер. Розв'язування задач дає змогу засвоїти курс ядерної фізики при його самостійному, або дистанційному опануванні та оцінити рівень засвоєння матеріалу, а також можливості опанування спеціалізованих видань з конкретних питань ядерних досліджень з нерелятивістськими енергіями.

Для студентів, аспірантів та викладачів фізичних і фізико-технічних спеціальностей вищих навчальних закладів.

K.: 2020. - 112 c.

Навчальне видання.

Рецензенти:В.Ю. Денисов, чл.-кор. НАН України, д-р фіз.-мат. наук, проф.; О.В. Нестеров, д-р фіз.-мат. наук.

Затверджено на засіданні кафедри ядерної фізики фізичного факультету (Протокол №3 від 22.10. 2020р.)

3MICT

Передмова	4
РОЗДІЛ 1. Основні властивості атомних ядер	5
РОЗДІЛ 2. Двонуклонні системи та ядерна взаємодія	22
РОЗДІЛ З. Одночастинкові та колективні явища в ядрах	38
РОЗДІЛ 4. Електромагнітне випромінювання ядер	63
РОЗДІЛ 5. Радіоактивний розпад ядер з вильотом частинок	71
РОЗДІЛ 6. Загальні закономірності ядерних реакцій	85
РОЗДІЛ 7. Елементи теорії ядерних реакцій	94
РОЗДІЛ 8. Поділ атомних ядер	97
ДОДАТКИ	
Додаток 1. Енергії зв'язку деяких атомних ядер 10	00
Додаток 2. Деякі фізичні константи 11	11

Передмова

Даний посібник є збірником задач з ядерної фізики, який складений у відповідності до програми лекцій, що викладаються на фізичному факультеті Київського національного університету імені Тараса Шевченка в рамках загального курсу фізики. Разом з тим, у збірнику наведено достатня кількість задач, які виходять за рамки загального курсу, що дозволяє використовувати його також і при вивченні різноманітних спецкурсів. Для розв'язування деяких задач необхідне знання основ квантової механіки.

Збірник містить 60 задач з детальним розв'язуванням, які розподілені відповідно до розділів, присвячених основним властивостям атомних ядер, взаємодії між нуклонами, феноменологічним ядерним моделям, електромагнітному випромінюванню ядер, а також радіоактивному розпаду та ядерним реакціям.

Запропонований збірних задач адресовано широкій студентській аудиторії, а також аспірантам та викладачам природничих факультетів.

Основним учбовим посібником до курсу з ядерної фізики є підручник І.М. Каденко, В.А. Плюйко «Фізика атомного ядра та частинок, К.: ВПЦ «Київський університет», 2019р. Питання, які розглядаються у задачах та при їх розв'язуваннях, не виходить за межі цього підручника.

РОЗДІЛ 1.

Основні властивості атомних ядер

№1.1

Користуючись моделлю рідкої краплини, з врахуванням енергії асиметрії атомного ядра, отримати загальне співвідношення, що зв'язує заряд Z найбільш стабільного ядра серед усіх ізобар з масовим числом A.

Розв'язування.

Енергія спокою (маса атомного ядра) дорівнює (c=1):

$$M(Z, A) = Zm_p + (A - Z)m_n - B(Z, A),$$

де B(Z,A) — енергія зв'язку ядра, яка в моделі рідкої краплини описується неперервною частиною виразу Вайцзекера:

$$B(Z, A) = a_1 A - a_2 A^{\frac{2}{3}} - a_3 Z^2 A^{-\frac{1}{3}} - a_4 \frac{(A - 2Z)^2}{A}$$

Найбільш стабільне ядро для даного ланцюжка ізобарів з A = const визначається з умови мінімуму маси ядра, тобто з умови рівності нулю похідної за зарядом Z від функції M(Z,A). Для ядер з масовим числом A маємо:

$$\frac{\partial M(Z, A)}{\partial Z} = m_p - m_n + 2a_3 A^{-\frac{1}{3}} Z - 4 \frac{a_4}{A} (A - 2Z) = 0.$$

Звідки

$$Z = \frac{A(1 - \frac{\Delta m_p}{4a_4})}{2 + \frac{a_3}{a_4} \times A^{\frac{2}{3}}/2},$$

де різниця мас протона і нейтрона є $\Delta m_p = (m_p - m_n) = -1$, 293 MeB; $a_3 = 0.71$ MeB; $a_4 = 23.7$ MeB. Тому отримуємо

$$Z = \frac{1.01364 A}{2 + 0.014979 \cdot A^{\frac{2}{3}}} \simeq \frac{A}{1.973 + 0.0148 \cdot A^{\frac{2}{3}}}.$$

Записати загальний вираз для енергії Q_f , що виділяється при поділі ${}^A_Z X \to {}^{A_1}_{Z_1} Y_1 + {}^{A_2}_{Z_2} Y_2 + Q_f$ атомного ядра на два уламки, за відомих питомих енергій зв'язку $\overline{B}(Z_l,A_l) = B(Z_l,A_l)/A_l$. Оцінити енергію, яка може виділитися при симетричному поділі важких ядер з A=240. Вважати, що питома енергія зв'язку змінюється на 1 MeB.

Розв'язування.

Енергія Q_f , що виділяється при поділі, дорівнює:

$$\begin{split} Q_f &= M(Z,A) - M(Z_1,A_1) - M(Z_2,A_2) = & m_p Z + m_n (A-Z) - B(Z,A) - \\ &- \left[\begin{array}{ccc} m_p Z_1 + m_n (A_1-Z_1) - B(Z_1,A_1) + & m_p Z_2 + m_n (A_2-Z_2) - B(Z_2,A_2) \end{array} \right] = \\ &= A_1 \cdot \overline{B}(Z_1,A_1) + A_2 \cdot \overline{B}(Z_2,A_2) - A \cdot \overline{B}(Z,A) \,. \end{split}$$

При $A_1 = A_2 = A/2$, $Z_1 = Z_2 = Z/2$ маємо $Q = A \cdot \overline{B}(Z/2, A/2) - A \cdot \overline{B}(Z,A) = A \cdot \Delta \overline{B}(Z/2, A/2) = 240$ MeB. Тобто при симетричному поділі може виділитися енергія 1 МеВ на нуклон.

№1.3

Отримати загальний вираз для енергії Q_s , що виділяється при злитті (синтезі) двох довільних легких ядер $\frac{A_l}{Z_l}X_1 + \frac{A_2}{Z_2}X_2 \to \frac{A}{Z}Y + Q_s$, за відомих питомих енергій зв'язку $\overline{B}(Z_l,A_l) = B(Z_l,A_l)/A_l$. Оцінити енергію, яка може виділитися при синтезі двох однакових ядер з A=2. Вважати, що питома енергія зв'язку змінюється на 4 МеВ.

Розв'язування.

Енергія, що виділяється при синтезі двох ядер дорівнює:

$$\begin{split} Q_s &= M(Z_1, A_1) + M(Z_2, A_2) - M(Z, A) = \\ m_p Z_1 + m_n (A_1 - Z_1) - B(Z_1, A_1) + m_p Z_2 + m_n (A_2 - Z_2) - B(Z_2, A_2) - [m_p Z + m_n (A - Z) - B(Z, A)] = \\ &= A \cdot \overline{B}(Z, A) - A_1 \cdot \overline{B}(Z_1, A_1) - A_2 \cdot \overline{B}(Z_2, A_2) \,. \end{split}$$

Для реакції $\frac{A}{2} + \frac{A}{2} \rightarrow A$ знаходимо:

 $Q_s = A \cdot \overline{B}(Z,A) - A_1 \cdot \overline{B}(Z_1,A_1) - A_2 \cdot \overline{B}(Z_2,A_2) = = A \cdot (\overline{B}(Z,A) - \overline{B}(Z/2,A/2)) = A \cdot \Delta \overline{B} = 16$ МеВ. Тобто при синтезі однакових ядер може виділитися енергія 4 МеВ на нуклон.

№1.4

Визначити до якої температури повинен бути нагрітий газ дейтерію для того, щоб з'явилась можливість реакції ядерного синтезу в результаті його нагрівання. Вважати, що відстань на якій починають ефективно діяти ядерні сили дорівнює R=10фм ($k_B=8.617\cdot10^{-5}$ eB/K). Використати систему одиниць в MeB та фм.

Розв'язування.

Для початку реакції ядерного синтезу дейтрони повинні зблизитися на відстань, де починають ефективно діяти ядерні сили. Так як дейтрони заряджені ядра, то зблизитися на маленьку відстань їм заважає відштовхувальний кулонівський потенціал $V_k(r)$, який на відстані R формує кулонівський бар'єр $V_B = V_k(r = R)$. Такий бар'єр можна подолати, якщо дейтрони будуть мати кінетичну енергію E_k більшу ніж висота бар'єра: $E_k > V_B$.

Спочатку запишемо вираз для кулонівського потенціалу взаємодії ядер з зарядами $q_i = |e| \cdot Z_i$ у несистемних одиницях MeB та фм та отримаємо значення висоти бар'єру:

$$V = k \frac{q_1 q_2}{r} = k \frac{e^2 Z_1 Z_2}{r} = \frac{k e^2 \hbar c}{\hbar c} \frac{Z_1 Z_2}{r} = \alpha \hbar c \frac{Z_1 Z_2}{r} = 1.44 \frac{Z_1 Z_2}{r (\phi M)}$$
(MeB),
$$V_P = V_L (r = 10 \phi M) = 0.144 \text{ MeB},$$

 $\det \alpha = \frac{ke^2}{\hbar c} = \frac{1}{137.0388}$ - стала тонкої структури, $\hbar c = 197.3286$ МеВ фм. Обчислимо мінімальну температуру за якої ядра можуть подолати кулонівський бар'єр

$$E_{k,\text{min}} = \frac{3}{2}k_B T = V_B \implies T = \frac{2}{3k_B}V_B = \frac{2 \cdot 0.144 \cdot 10^6}{3 \cdot 8.617 \cdot 10^{-5}} = 1.1 \cdot 10^9 \text{ K}$$

Знайти зв'язок між дифузністю (a) і товщиною (t) поверхневого прошарку розподілу нуклонів у вигляді функції Фермі, на якому густина спадає з 90 до 10 процентів.

Розв'язування.

Функція Фермі, що реалістично описує розподіл нуклонів у середніх і важких сферичних ядрах, залежить від трьох параметрів і має вигляд:

$$\rho(r) = \rho_0 \frac{1}{1 + \exp\{\frac{r - R_0}{a}\}}.$$

Тут r - відстань від центра ядра; R_0 - відстань на якій густина змінюється у два рази; a - дифузність розподілу, що визначає швидкість зміни густини біля поверхні; параметр ρ_0 практично збігається з густиною розподілу у центрі ядра $\rho_0 \cong \rho(r=0)$ так як, зазвичай, $R_0 >> a$. Відмітимо, що саме величину R_0 називають радіусом ядра.

Рис. 1. Густина розподілу нуклонів у вигляді функції Фермі.

3 визначення товщини t, на якій значення густини спадає з $0.9\rho_0$ до $0.1\rho_0$ (див. Рис. 1), маємо

$$t=R_2-R_1,$$

де радіуси R_1, R_2 обчислюємо із їх визначень

$$\rho(r=R_{1})=0.9\rho_{0}, \ \rho(r=R_{2})=0.1\rho_{0}$$
.

Звідки

$$1 = 0,9(1 + e^{\frac{R_1 - R_0}{a}}), \qquad \exp\left\{\frac{R_1 - R_0}{a}\right\} = \frac{1}{9}, \qquad R_1 - R_0 = a\ln\left(\frac{1}{9}\right), \quad R_1 = R_0 - 2a\ln 3;$$

$$1 = 0,1(1 + e^{\frac{R_2 - R_0}{a}}), \qquad \exp\left\{\frac{R_2 - R_0}{a}\right\} = 9, \qquad \qquad R_2 = R_0 + 2a\ln 3,$$

$$t = 4a\ln 3 = (\ln 3 \cong 1,1) \cong 4,4a.$$

№1.6

Отримати загальні вирази для енергій відокремлення нейтрона S_n , протона S_p і альфачастинки S_α , як функцій питомих енергій зв'язку \overline{B} . Показати, що в наближенні неперервної залежності енергій зв'язку для ізотопів від масового числа, значення \overline{B} і S_n збігаються в області атомних ядер, де зміна питомих енергій зв'язку ε повільною.

Розв'язування.

Питома енергія зв'язку $\overline{B}(Z,A)$ ядра з зарядом Z і масовим числом A ϵ енергією зв'язку B(Z,A), що приходиться на один нуклон: $\overline{B}(Z,A) = B(Z,A)/A$.

Запишемо вираз для енергії відокремлення нейтрона ${}_z^A X \to {}_z^{A-1} Y + n$, тобто енергії S_n яку необхідно надати ядру, щоб з нього вилетів нейтрон. Згідно закону збереження енергії $S_n + M(Z,A)c^2 = M(Z,A-1)c^2 + m_nc^2$. Звідки маємо

$$\begin{split} S_n &= [M(Z,A-1) + m_p]c^2 - M(Z,A)c^2 = \\ &= [Zm_pc^2 + (A-Z)m_nc^2 - B(Z,A-1) + m_nc^2] = \\ &= B(Z,A) - B(Z,A-1) = A\overline{B}(Z,A) - (A-1)\overline{B}(Z,A-1). \end{split}$$

Аналогічно, для нейтрона та альфа-частинки:

$${}_{Z}^{A}X \rightarrow {}_{Z}^{A-1}Y + n, \quad S_{p} = A \cdot \overline{B}(Z, A) - (A - 1)\overline{B}(Z - 1, A - 1);$$

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-2}Y + {}_{2}^{4}He, \quad S_{\alpha} = A \cdot \overline{B}(A, Z) - (A - 4)\overline{B}(A - 4, Z - 2) - 4\overline{B}(4, 2).$$

У наближенні неперервної залежності енергії зв'язку для ізотопів від масового числа, знаходимо:

$$S_n(Z,A) = \overline{B}(Z,A-1) + A \cdot [\overline{B}(Z,A) - \overline{B}(Z,A-1)] \cong \overline{B}(Z,A-1) \cong \overline{B}(Z,A).$$

Тобто при сталих питомих енергіях зв'язку значення \bar{B} і S_n будуть майже однаковими.

№1.7

Отримати перетворення сферичних просторових координат при операції інверсії та проаналізувати можливість збереження парності частинки, що рухається у таких потенціалах:

1)
$$V(\vec{r}) = \left[m\omega^2 r^2 \left(1 + \beta \cdot \cos\theta\right)\right]/2, \qquad 2) \qquad V(\vec{r}) = \left[m\omega^2 r^2 \left(1 + \beta \cdot \sin\theta\right)\right]/2,$$

 $3)V(\vec{r}) = \left[m\omega^2r^2\left(1+eta\cdot\cos^2 heta
ight)
ight]/2$. Довести, що одночастинкові стани аксіальносиметричного еліпсоїдального ядра з потенціалом, що залежить від кутів як радіус ядра $R(\theta) = R_0\left[1+eta_2Y_{20}(\theta,\,\varphi)
ight]$ мають певну парність.

Розв'язування.

Розглянемо операцію інверсії. У декартовій системі координат вона відповідає такій зміні координат:

$$x \rightarrow x' = -x$$
, $y \rightarrow y' = -y$, $z \rightarrow z' = -z$

Так як потенціали записані у сферичній системі координат, то проаналізуємо як змінюються сферичні координати r, θ , φ при операції інверсії. Сферичні координати зв'язані з сферичними такими співвідношеннями:

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\theta = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$, $\varphi = \arctan\left(\frac{y}{x}\right)$.

Позначимо сферичні координати після інверсії як r', θ' , φ' . Тоді

$$r - > r' = \sqrt{(-x)^2 + (-y)^2 + (-z)^2} = r,$$

$$\cos \theta' = \frac{-z}{\sqrt{(-x)^2 + (-y)^2 + (-z)^2}} = -\frac{z}{\sqrt{x^2 + y^2 + z^2}} = -\cos \theta \equiv \cos(\pi - \theta), \ \theta - > \theta' = \pi - \theta,$$

$$tg \varphi' = \frac{-y}{-x} = \frac{y}{x} = tg(\varphi), \ \varphi \to \varphi' + \varphi + \pi$$

Отже, це така операція, при якій подіявши оператором інверсії \hat{P}_r на деяку функцію від сферичних координат $\psi(r,\theta,\varphi)$, отримуємо функцію $\psi(r',\theta',\varphi')$: $\hat{P}_r\psi(r,\theta,\varphi)=\psi(r',\theta',\varphi')$ з r'=r, $\varphi'=\varphi+\pi$, $\theta'=\pi-\theta$.

3 квантової механіки відомо, що парність зберігається, коли оператор інверсії \hat{P}_r та гамільтоніан $\hat{H} = \frac{\hat{p}^2}{2m} + V$ комутують: $\left[H,\,\hat{P}_r\right] = 0$. Так як оператор кінетичної енергії комутує з оператором інверсії, то при збереженні парності повинні комутувати гамільтоніан і потенціал взаємодії: $\left[V,\,\hat{P}_r\right] = 0$. Тобто при зміні координат у відповідності з операцією інверсії потенціали повинні збігатися: $V(r',\theta',\varphi') = V(r,\theta,\varphi)$. Збереження парності для даних вище потенціалів залежить тільки від парності функцій $\sin(\theta)$ та $\cos(\theta)$. Згідно правил їх перетворення: $\cos(\pi-\theta) = -\cos(\theta)$, $\sin(\pi-\theta) = \sin(\theta)$. Тому маємо

1.
$$V(r', \theta', \phi') = \frac{m\omega^2 r^2 (1 - \beta \cos(\theta))}{2} \neq V(r, \theta) = \frac{m\omega^2 r^2 (1 + \beta \cos(\theta))}{2}$$
,

$$2.V(r', \theta', \varphi') = \frac{m\omega^2 r^2 \left(1 - \beta \sin(\pi - \theta)\right)}{2} = \frac{mw^2 r^2 \left(1 - \beta \sin(\theta)\right)}{2} = V(r, \theta),$$

$$3.V(r', \theta', \varphi') = \frac{m\omega^2 r^2 \left(1 - \beta \cos^2\left(\pi - \theta\right)\right)}{2} = \frac{m\omega^2 r^2 \left(1 - \beta \cos^2\left(\theta\right)\right)}{2} = V(r, \theta).$$

Тобто для першого потенціалу парність не зберігається а для другого та третього - зберігається.

Проаналізуємо парність одночастинкових станів еліпсоїдального ядра в яких потенціал має вигляд функції від радіуса ядра $V(R(\theta))$. При операції інверсії цей потенціал перетворюється у такий $V(R(\theta'))$, де $R(\theta) = R_0 \left[1 + \beta_2 Y_{20}(\theta, \varphi) \right]$. Згідно перетворення сферичної функції $Y_{20}(\theta', \varphi') = Y_{20}(\theta, \varphi)$. Тому $V(R(\theta')) = V(R(\theta))$ і стани у такому потенціалі мають певну парність.

Обчислити вираз для проекції \hat{L}_z оператора $\hat{\bar{L}}$ кутового моменту нуклона на вісь Z у сферичній системі координат.

Розв'язування.

Згідно визначення

$$\hat{\vec{L}} = \begin{bmatrix} \vec{r} \times \hat{\vec{p}} \end{bmatrix} = \begin{pmatrix} e_x & e_y & e_z \\ x & y & z \\ \hat{p}_x & \hat{p}_y & \hat{p}_z \end{pmatrix},$$

де e_{x_i} - одиничні орти вздовж відповідних осей. Тому

$$\hat{L}_z = x\hat{P}_y - y\hat{P}_x = x(-i\hbar\frac{\partial}{\partial y}) - y(-i\hbar\frac{\partial}{\partial x}) = -i\hbar\tilde{L}_z,$$

де $\tilde{L}_z=x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}$. Перейдемо до сферичної системи координат, в якій Декартові координати

визначаються співвідношеннями: $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \varphi$, тобто

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\varphi = \arctan \frac{y}{x}$, $\theta = \arccos \frac{z}{r}$.

Представимо частинні похідні $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ у сферичній системі координат. Маємо

$$\frac{\partial}{\partial x} = \frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta} + \frac{\partial \varphi}{\partial x}\frac{\partial}{\partial \varphi}, \qquad \qquad \frac{\partial}{\partial y} = \frac{\partial r}{\partial y}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial y}\frac{\partial}{\partial \theta} + \frac{\partial \varphi}{\partial y}\frac{\partial}{\partial \varphi}.$$

Звідки

$$\tilde{L}_z = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} = -\left(x \frac{\partial r}{\partial y} - y \frac{\partial r}{\partial x}\right) \frac{\partial}{\partial r} + \left(x \frac{\partial \theta}{\partial y} - y \frac{\partial \theta}{\partial x}\right) \frac{\partial}{\partial \theta} + \left(x \frac{\partial \varphi}{\partial y} - y \frac{\partial \varphi}{\partial x}\right) \frac{\partial}{\partial \varphi}.$$

Так як похідні $\frac{\partial r}{\partial x}$, $\frac{\partial \theta}{\partial x}$ та $\frac{\partial r}{\partial y}$, $\frac{\partial \theta}{\partial y}$ відповідно пропорційні координатам x та y,

$$\frac{\partial r}{\partial x} = \frac{2x}{2\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r}, \quad \frac{\partial r}{\partial y} = \frac{y}{r},$$

$$\frac{\partial \theta}{\partial x} = \left(\arccos\left(\frac{z}{r}\right)\right)'_{x} = \left(\arccos\left(y\right)\right)'_{y=\frac{z}{r}} \cdot \left(\frac{z}{r}\right)'_{x} =$$

$$= -\left(\arccos\left(y\right)\right)'_{y=\frac{z}{r}} \cdot \frac{z}{r^2} \cdot \frac{\partial r}{\partial x} = -x \cdot \left(\arccos\left(y\right)\right)'_{y=\frac{z}{r}} \cdot \frac{z}{r^3},$$

$$\frac{\partial \theta}{\partial y} = \left(\arccos\left(\frac{z}{r}\right) \right)'_{y} = -y \cdot \left(\arccos\left(y\right) \right)'_{y=\frac{z}{r}} \cdot \frac{z}{r^{3}},$$

то у виразі для оператора \tilde{L}_z залишається лише компонент пропорційний похідній по азимутальному куту

$$\tilde{L}_z = \left(x \frac{\partial \varphi}{\partial y} - y \frac{\partial \varphi}{\partial x} \right) \frac{\partial}{\partial \varphi}.$$

Так як

$$\frac{\partial \varphi}{\partial x} = \left(\arctan \frac{y}{x}\right)'_{x} = -\frac{y}{x^{2} + y^{2}}, \qquad \frac{\partial \varphi}{\partial y} = \left(\arctan \frac{y}{x}\right)'_{y} = \frac{x}{x^{2} + y^{2}},$$

TO

$$\tilde{L}_z = \left(x \cdot \frac{x}{x^2 + y^2} + y \cdot \frac{y}{x^2 + y^2}\right) \frac{\partial}{\partial \varphi} = \frac{\partial}{\partial \varphi},$$

i

$$L_{z}=-i\hbar\tilde{L}_{z}=-i\hbar\frac{\partial}{\partial\varphi}.$$

№1.9

Наближено визначити масове число A та заряд Z атомного ядра на лінії бета-стабільності, енергія зв'язку B(Z,A) якого приблизно дорівнює енергії спокою нуклона. Для енергії спокою нуклона взяти середню масу протона та нейтрона.

Розв'язування.

Для енергії спокою нуклона маємо:

$$m_{nuc} = \frac{m_p + m_n}{2} = \frac{938.3 + 939.6}{2} \approx 939$$
 MeB.

Тобто енергія зв'язку ядра, що має бути визначеним дорівнює $B(Z,A) = \overline{B}(Z,A) \cdot A = 939$ МеВ. Таке значення енергії зв'язку відповідає атомним ядрам середньої ваги, Тому для питомої енергії зв'язку приймаємо значення $\overline{B}(Z,A) = 8$ МеВ. Звідки

$$A = \frac{B(Z,A)}{\overline{B}(Z,A)} = \frac{938.95}{8} \approx 117.$$

Значення заряду знаходимо із співвідношення між зарядом і масовим числом для ядер на лінії бета-стабільності:

$$Z = \frac{A}{1.97 + 0.015A^{2/3}} = \frac{117}{2 + 0.015 * 24} \approx 50.$$

3 періодичної таблиці хімічних елементів маємо, що таке ядро відповідає ізотопу олова $^{117}_{50}\,Sn$.

№1.10

Знайти середньоквадратичний радіус однорідного розподілу заряду в сферичних та деформованих ядрах. Вважати, що густина розподілу заряду має вигляд сходинки:

$$\rho(\vec{r}) = \rho_0 \, \theta(R-r) \,, \quad \text{де} \quad \rho_0 = \text{const} \,, \quad R(\theta, \; \varphi) = R_0 \Bigg[1 + \sum_{\lambda \geq 2}^{\lambda_{\max}} \sum_{\mu = -\lambda}^{\lambda} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta, \; \varphi) \Bigg] \,. \quad \text{В} \quad \text{деформованих}$$

ядрах використати лінійне наближення по параметрам деформації $\beta_{\lambda\mu}$.

Розв'язування.

Середньоквадратичний радіус R_{rms} визначається з умови збігу виразів для середнього квадрату радіуса розподілу нуклонів $< r^2 > \;$ у даному ядра та у еквівалентному сферичному ядрі з однорідним розподілом густини $\rho(\vec{r}) = \rho_0 \, \theta(R_{rms} - r)$. Згідно визначенню маємо:

$$\langle r^2 \rangle = \int r^2 w(\vec{r}) d\vec{r} ,$$

де $w(\vec{r})$ - щільність розподілу густини $w(\vec{r}) = \rho(\vec{r}) / \int \rho(\vec{r}) d\vec{r}$, тобто

$$< r^2 > = \frac{\int r^2 \rho(\vec{r}) d\vec{r}}{\int \rho(\vec{r}) d\vec{r}} = \frac{I_2}{I_0}, \ I_n = \int r^n \rho(\vec{r}) d\vec{r}.$$

Обчислимо вираз для інтегралу I_n у еквівалентному сферичному ядрі з однорідним розподілом густини $\rho(\vec{r}) = \rho_0 \, \theta(R_{rms} - r)$. Диференціал об'єму у сферичній системі координат має вигляд $d\vec{r} = r^2 \, dr \, d\Omega$. Тому

$$I_{n} = \rho_{0} \int_{4\pi}^{\infty} \Theta(R_{rms} - r) r^{n+2} d\Omega dr = \rho_{0} \int_{4\pi}^{R_{rms}} \int_{0}^{r+2} r^{n+2} d\Omega dr = \rho_{0} \frac{4\pi}{n+3} R_{rms}^{n+3},$$

$$\langle r^{2} \rangle = I_{2} / I_{0} = \frac{3}{5} R_{rms}^{2}$$

i

$$R_{rms} = \sqrt{\frac{5}{3} < r^2 >} = 1,29 \cdot [< r^2 >]^{1/2}.$$

Звідки у сферичних ядрах з однорідним розподілом $\rho(\vec{r}) = \rho_0 \, \theta(R_0 - r)$: $R_{rms} = R_0 = r_0 \cdot A^{1/3}$. Для деформованих ядер в лінійному наближенні по параметрам деформації отримуємо:

$$\begin{split} I_{n} &= \int_{4\pi}^{\infty} \int_{0}^{n+2} r^{n+2} \rho_{0} \Theta(R(\theta, \varphi) - r) r^{2} dr d\Omega = \rho_{0} \int_{4\pi}^{R(\theta, \varphi)} \int_{0}^{n+2} r^{n+2} dr d\Omega = \frac{1}{n+3} \rho_{0} \int_{4\pi}^{n+3} R^{n+3} (\theta, \phi) d\Omega = \\ &= \rho_{0} \frac{R_{0}^{n+3}}{n+3} \int d\Omega \left(1 + \sum_{\lambda \mu} \beta_{\lambda \mu} \cdot Y_{\lambda \mu} \right)^{n+3} \approx \rho_{0} \frac{R_{0}^{n+3}}{n+3} \int d\Omega \left(1 + (n+3) \sum_{\lambda \mu} \beta_{\lambda \mu} \cdot Y_{\lambda \mu} \right) = \\ &= \rho_{0} R_{0}^{n+3} \left[\frac{4\pi}{n+3} + \sum_{\lambda \mu} \beta_{\lambda \mu} \cdot \int Y_{\lambda \mu} d\Omega \right] = \rho_{0} R_{0}^{n+3} \left[\frac{4\pi}{n+3} + 2\sqrt{\pi} \sum_{\lambda \geq 2}^{\lambda_{\max}} \sum_{\mu = -\lambda}^{\lambda} \beta_{\lambda \mu} \, \delta_{\lambda 0} \cdot \delta_{\mu 0} \right] = \rho_{0} \frac{4\pi R_{0}^{n+3}}{n+3} \, . \end{split}$$

Тут була використана така умова ортонормування сферичних функцій

$$\int Y_{\lambda \mu} d\Omega = \delta_{\lambda 0} \delta_{\mu 0} 2\sqrt{\pi} .$$

Звідки для деформованих ядер в лінійному наближенні по параметрам деформації маємо

$$R_{rms} = \sqrt{\frac{5}{3} < r^2 >} = 1,29 \cdot [< r^2 >]^{1/2} = R_0.$$

Знайти в наближенні малих деформацій обмеження на параметри радіуса деформованого атомного ядра з умови збігу його об'єму з об'ємом еквівалентного за масовим числом сферичного ядра.

Розв'язування.

Радіус деформованого ядра можна представити у вигляді такого розкладу по повній системі сферичних функцій $Y_{\lambda \mu}(\theta,\,\varphi)$:

$$R(\theta, \varphi) = R_0 \left[1 + \sum_{\lambda > \lambda_0}^{\lambda_m} \sum_{\mu = -\lambda}^{\lambda} \beta_{\lambda \mu} Y_{\lambda \mu}(\theta, \varphi) \right].$$

Тут R_0 є параметр радіусу, $\beta_{\lambda\mu}$ - параметри деформації поверхні ядра мультипольності λ , $\lambda_0 > 1$. Об'єм еквівалентного за масовим числом A сферичного ядра дорівнює

$$V_{c\phi._{
m R}\partial pa}=\int\limits_{V_{c\phi._{
m R}\partial pa}}dec{r}=\int\limits_{0}^{R_{0}}r^{2}dr\int\limits_{4\pi}d\Omega=rac{4}{3}\pi R_{0}^{3}\;,$$

де $R_0 = r_0 A^{1/3}$ радіус еквівалентного сферичного ядра.

Обчислимо об'єм деформованого ядра

$$\begin{split} V_{\partial e \phi. \, {\scriptscriptstyle R} \partial p a} &= \int\limits_{V_{\partial e \phi. \, {\scriptscriptstyle R} \partial p a}} d\vec{r} = \int_{4\pi} d\Omega \int\limits_{0}^{R(\theta,\phi)} r^2 dr = \frac{1}{3} \int_{4\pi} d\Omega \, R^3(\theta,\phi) = (\beta_{\lambda\mu} << 1) = \\ &= \frac{R_0^{'3}}{3} \int\limits_{4\pi} d\Omega \bigg[1 + 3 \sum_{\lambda\mu} \beta_{\lambda\mu} \cdot Y_{\lambda\mu} \, \bigg] \cdot = \frac{4\pi R_0^{'3}}{3} \; . \end{split}$$

3 умови

$$V_{c\phi} = \frac{4}{3}\pi R_0^3 = V_{\partial e\phi} = \frac{4\pi R_0^3}{3}$$

отримуємо $R_{0}^{'}=R_{0}$.

Знайти в наближенні малих деформацій обмеження на параметри радіуса деформованого атомного ядра з однорідним розподілом речовини $\rho(\vec{r})$ з умови рівності нулю координати центра мас $\vec{R}_c = \int \vec{r} \, \rho(\vec{r}) \, d\vec{r} \, / \int \rho(\vec{r}) \, d\vec{r} \, ; \qquad \rho(\vec{r}) = \rho(r, \, \theta, \, \varphi) = \rho_0 \, \Theta(R(\theta, \, \varphi) - r) \, ,$ $R(\theta, \, \varphi) = R_0 \left[1 + \sum_{\lambda > \lambda_0}^{\lambda_m} \sum_{\mu = -\lambda}^{\lambda} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta, \, \varphi) \right], \; \lambda_0 \ge 1 \, , \; \beta_{\lambda\mu} <<1 \, .$

Розв'язування.

Рівність нулю координати центру мас означає рівність нулю інтегралу $\vec{I}_c \equiv \int \vec{r} \rho(\vec{r}) d\vec{r}$. При обчисленні компонент цього інтегралу використаємо циклічну коваріантну систему координат з одиничними ортами e^μ ($\mu = 0, \pm 1$):

$$\vec{I}_{c} = \sum_{\mu} I_{\mu} \cdot e^{\mu}, \quad I_{\mu} = \int r_{\mu} \rho(\vec{r}) d\vec{r}, \quad r_{\mu} = \sqrt{\frac{4\pi}{3}} r Y_{1\mu}(\theta, \varphi).$$

Отже,

$$\begin{split} I_{\mu} &= \sqrt{\frac{4\pi}{3}} \int r Y_{1\mu}(\theta, \ \varphi) \, \rho_0 \, \Theta(R(\theta, \ \varphi) - r) r^2 dr \, d\Omega = \\ &= \sqrt{\frac{4\pi}{3}} \rho_0 \int Y_{1\mu}(\theta, \ \varphi) \frac{R^4(\theta, \ \varphi)}{4} \, d\Omega \end{split}$$

Підставляємо формулу для радіусу ядра у цей вираз та розкладаємо в ряд Тейлора до членів 1-го порядку малості по деформації, отримуємо

$$I_{\mu} = \sqrt{\frac{4\pi}{3}} \rho_0 R_0^4 \left[\frac{1}{4} \int Y_{1\mu}(\theta, \varphi) d\Omega + \sum_{\lambda \geq 1}^{\lambda_m} \sum_{\mu' = -\lambda}^{\lambda} \beta_{\lambda \mu'} \int Y_{1\mu}(\theta, \varphi) Y_{\lambda \mu'}(\theta, \varphi) d\Omega \right]$$

Після інтегрування по тілесному куту знаходимо

$$I_{\mu} = \sqrt{\frac{4\pi}{3}} \rho_0 R_0^4 \sum_{\lambda>1}^{\lambda_m} \sum_{\mu'=-\lambda}^{\lambda} \beta_{\lambda\mu'} \cdot \delta_{1\lambda} \cdot \delta_{\mu\mu'}.$$

У системі центру мас $I_{\mu}=0$, тому значення параметрів дипольної деформації у слабко деформованих ядер дорівнюють нулю: $\beta_{10}=\beta_{1+1}=\beta_{1-1}=0$ $\beta_{1-1}=0, \beta_{10}=0, \beta_{11}=0$.

Отримати вираз для внутрішнього квадрупольного моменту Q_0 еліпсоїдального ядра з однорідним розподілом протонів в лінійному наближені по параметру квадрупольної деформації. Визначити параметр квадрупольної деформації ядра золота $^{197}_{79}\mathrm{Au}$, якщо його електричний квадрупольний момент дорівнює $Q_0 = 6 \cdot 10^{-27} \, \mathrm{cm}^2$.

Розв'язування.

Внутрішній квадрупольний момент задається виразом

$$Q_0 = \sqrt{\frac{16\pi}{5}} \int r^2 Y_{20}(\theta, \varphi) \rho(\vec{r}) d\vec{r}$$

Тут $\rho(\vec{r})$ - густина розподілу протонів в ядрі, яка визначає кількість протонів $\int \rho(\vec{r}) d\vec{r} = Z$. Обчислимо внутрішній квадрупольний момент для еліпсоїдального ядра з однорідним розподілом кількості протонів $\rho(\vec{r}) = \rho_p \Theta(R(\theta, \varphi) - r)$, де $R(\theta, \varphi) = R_0 \left[1 + \beta Y_{20}(\theta, \varphi) \right]$ - радіус ядра, β -параметр квадрупольної деформації, ρ_p - стала.

$$\begin{split} Q_{0} &= \sqrt{\frac{16\pi}{5}} \rho_{0} \int_{4\pi} d\Omega Y_{20}(\theta, \ \varphi) \int_{0}^{\infty} dr \cdot r^{4} \Theta(R(\theta, \ \varphi) - r) = \\ &= \frac{1}{5} \sqrt{\frac{16\pi}{5}} \rho_{0} \int_{4\pi} R^{5}(\theta, \ \varphi) Y_{20}(\theta, \ \varphi) d\Omega = \\ &\simeq \frac{1}{5} \sqrt{\frac{16\pi}{5}} \rho_{0} R_{0}^{5} \int_{4\pi} (1 + 5\beta \cdot Y_{20}(\theta, \ \varphi)) \cdot Y_{20}(\theta, \ \varphi) d\Omega = \sqrt{\frac{16\pi}{5}} \rho_{0} R_{0}^{5} \beta \end{split}$$

Знаходимо ρ_p з умови $\int \rho(\vec{r}) d\vec{r} = Z$. Тому $Z = \int \rho(\vec{r}) d\vec{r} \simeq \rho_p \int \frac{R_0^3}{3} (1 + 3\beta_{20} Y_{20}(\theta, \, \phi)) d\Omega$ $= \frac{4\pi}{3} \rho_p R_0^3$, де $R_0 = r_0 A^{1/3}$. Звідки $\rho_p = \frac{3Z}{4\pi R_0^3}$ і в лінійному наближенні по параметру деформації

$$Q_0 = \sqrt{\frac{16\pi}{5}} \rho_p R_0^5 \beta = \left(\frac{9}{5\pi}\right)^{1/2} R_0^2 Z \beta \simeq 1.3 \cdot A^{2/3} Z \beta \quad \phi \text{M}^2$$

з $r_0 = 1.2$ фм.

Тепер обчислимо значення параметру квадрупольної деформації для ізотопу золота $^{197}_{79}\mathrm{Au}$, користуючись значенням його електричного квадрупольного моменту $Q_0 = 6 \cdot 10^{-27} \, \mathrm{cm}^2$.

$$\beta = \frac{Q_0[\Phi M^2]}{1.3 \cdot A^{2/3}Z} = \frac{6 \cdot 10^{-27} \cdot 10^{+26}}{1.3 \cdot (197)^{2/3} \cdot 79} \simeq \frac{0.6}{1.3 \cdot 33.86 \cdot 79} \simeq 0.2 \cdot 10^{-3}.$$

№1.14

Отримати вираз для внутрішнього квадрупольного моменту Q_0 еліпсоїдального ядра з однорідним розподілом кількості протонів в лінійному наближені по параметру квадрупольної деформації. Порівняти значення параметрів деформації ядер $^{188}_{76}$ Os та $^{238}_{92}$ U , якщо відомі електричні квадрупольні моменти цих ядер: $Q_{0s} = 5,1 \cdot 10^{-24} \, \text{cm}^2$, $Q_{U} = 1,1 \cdot 10^{-23} \, \text{cm}^2$

Розв'язування.

Внутрішній квадрупольний момент задається виразом

$$Q_0 = \sqrt{\frac{16\pi}{5}} \int r^2 Y_{20}(\theta, \, \varphi) \rho(\vec{r}) \, d\vec{r} \, .$$

Тут $\rho(\vec{r})$ - густина розподілу протонів в ядрі, яка визначає кількість протонів $\int \rho(\vec{r}) d\vec{r} = Z$. Обчислимо внутрішній квадрупольний момент для еліпсоїдального ядра з однорідним розподілом кількості протонів $\rho(\vec{r}) = \rho_p \, \Theta(R(\theta,\, \phi) - r)$, де $R(\theta,\, \phi) = R_0 \big[1 + \beta \, Y_{20}(\theta,\, \phi) \big]$ - радіус ядра, β -параметр квадрупольної деформації, ρ_p - стала.

$$\begin{split} Q_{0} &= \sqrt{\frac{16\pi}{5}} \rho_{0} \int_{4\pi} d\Omega Y_{20}(\theta, \ \varphi) \int_{0}^{\infty} dr \cdot r^{4} \Theta(R(\theta, \ \varphi) - r) = \\ &= \frac{1}{5} \sqrt{\frac{16\pi}{5}} \rho_{0} \int_{4\pi} R^{5}(\theta, \ \varphi) Y_{20}(\theta, \ \varphi) d\Omega = \\ &\simeq \frac{1}{5} \sqrt{\frac{16\pi}{5}} \rho_{0} R_{0}^{5} \int_{4\pi} (1 + 5\beta \cdot Y_{20}(\theta, \ \varphi)) \cdot Y_{20}(\theta, \ \varphi) d\Omega = \sqrt{\frac{16\pi}{5}} \rho_{0} R_{0}^{5} \beta \end{split}$$

Знаходимо ρ_p з умови $\int \rho(\vec{r}) d\vec{r} = Z$. Тому $Z = \int \rho(\vec{r}) d\vec{r} \simeq \rho_p \int \frac{R_0^3}{3} (1 + 3 \beta_{20} Y_{20}(\theta, \varphi)) d\Omega$ $= \frac{4\pi}{3} \rho_p R_0^3$, де $R_0 = r_0 A^{1/3}$. Звідки $\rho_p = \frac{3Z}{4\pi R_0^3}$ і в лінійному наближенні по параметру деформації

$$Q_0 = \sqrt{\frac{16\pi}{5}} \rho_p R_0^5 \beta = \left(\frac{9}{5\pi}\right)^{1/2} R_0^2 Z \beta \simeq 1.3 \cdot A^{2/3} Z \beta \quad \phi \text{M}^2$$

 $r_0 = 1.2 \, фм.$

Далі порівняємо значення параметрів деформації ядер $^{188}_{76}$ Os та $^{238}_{92}$ U за відомих значень їх квадрупольних моментів $Q_{\rm Os} = 5,1\cdot 10^{-24}{\rm cm}^2$, $Q_{\rm U} = 1,1\cdot 10^{-23}{\rm cm}^2$:

$$\frac{\beta_{\text{Os}}}{\beta_{\text{U}}} = \frac{Q_{\text{Os}}}{Q_{\text{U}}} \cdot \frac{Z_{\text{U}} \cdot A_{U}^{2/3}}{Z_{\text{Os}} \cdot A_{Os}^{2/3}} = \frac{5.1}{11} \cdot \frac{92}{76} \cdot \left(\frac{238}{188}\right)^{2/3} \simeq 0,66.$$

№1.15

Користуючись Декартовою системою координат, довести, що власний електричний дипольний момент основного стану ядра дорівнює нулю.

Розв'язування.

Дипольний момент задається таким виразом

$$\vec{D} = e_p \cdot \int \vec{r} \, \rho(\vec{r}) \, d\vec{r},$$

де e_p - заряд протона, $\rho(\vec{r})$ - густина розподілу протонів. Основний стан ядра має певну парність і з інваріантності відносно відображень маємо таку умову симетрії для густини розподілу $\rho(\vec{r}) = \rho(-\vec{r})$. Обчислимо вираз для x-компоненти дипольного моменту ядра з урахуванням симетрії розподілу заряду

$$D_{x} = e_{p} \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} dz \ x \ \rho(x, y, z) dx dy dz = (\vec{r} => \vec{r}' = -\vec{r}) =$$

$$= e_{p} (-1)^{4} \int_{+\infty}^{+\infty} dx' \int_{+\infty}^{-\infty} dy' \int_{+\infty}^{-\infty} dz' \ x' \ \rho(-x', -y', -z') dx' dy' dz' =$$

$$= -e_{p} \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \int_{-\infty}^{+\infty} dz' \ x' \ \rho(x', y', z') dx' dy' dz' = -D_{x}$$

Звідки $D_{\scriptscriptstyle x}=0$. Аналогічно $D_{\scriptscriptstyle y}=D_{\scriptscriptstyle z}=0$, тому $\vec{D}=0$.

РОЗДІЛ 2.

Двонуклонні системи та ядерна взаємодія

№2.1

Знайти значення сумарного ізоспіну та його проекції для системи двох нейтронів, що знаходиться у станах з такими хвильовими функціями: $\xi_n(1)\xi_n(2)$.

Розв'язування.

В ізотопічному просторі нейтронний стани відповідають хвильовими функціями $\xi_n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Квантове число T, що визначає квадрат векторного оператору ізоспіну для даної системи, можна визначити, розв'язавши рівняння на власні значення квадрату векторного оператору

ізоспіну \hat{T}^2 :

$$\vec{\hat{T}}^2\Psi = T(T+1)\Psi,$$

де оператор ізотопічного спіну $\vec{\hat{T}}$ в системі з двох нуклонів має вигляд суми операторів ізоспіну першого та другого нуклону: $\vec{\hat{T}} \equiv \vec{\hat{t}}_1 + \vec{\hat{t}}_1 = \frac{1}{2}(\vec{\hat{\tau}}_1 + \vec{\hat{\tau}}_2)$ із компонентами оператору $\hat{\tau}$ у

вигляді: $\hat{\tau}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\hat{\tau}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\hat{\tau}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Дія компонент оператору ізоспіну $\hat{\tau}_i$ на

хвильову функцію нейтрона така:

$$\begin{split} \hat{\tau}_x \xi_n &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \xi_p \; ; \quad \hat{\tau}_y \xi_n = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -i \\ 0 \end{pmatrix} = -i \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -i \xi_p \; ; \\ \hat{\tau}_z \xi_n &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -\xi_n \end{split}$$

Оператори ізотопічного спіну додаються та множаться за правилами векторної алгебри, де квадрат оператору ізоспіну системи двох нуклонів $\vec{\hat{T}}^2$ має вигляд:

$$\hat{T}^2\Psi = (\hat{T}_1 + \hat{T}_2)^2 \Psi = {\hat{T}_1^2 + \hat{T}_2^2 + 2(\hat{T}_1 \cdot \hat{T}_2)}\Psi$$

Розглянемо компоненти цієї суми:

$$\vec{T}_{1}^{2} = (\vec{T}_{1} \cdot \vec{T}_{1}) = (\hat{T}_{1x}\hat{T}_{1x} + \hat{T}_{1y}\hat{T}_{1y} + \hat{T}_{1z}\hat{T}_{1z}) = \frac{1}{4}(\hat{\tau}_{1x}\hat{\tau}_{1x} + \hat{\tau}_{1y}\hat{\tau}_{1y} + \hat{\tau}_{1z}\hat{\tau}_{1z}) = x$$

$$= \frac{1}{4} \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} = \frac{1}{4}(\hat{I} + \hat{I} + \hat{I}) = \frac{3}{4}\hat{I}$$

Тут $\hat{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ - одинична матриця. Аналогічно, $\vec{\hat{T}}_2^2 = \frac{3}{4}\hat{I}$. Розглянемо дію скалярного

добутку $(\hat{T}_1 \cdot \hat{T}_2)$ на хвильову функцію Ψ , врахувавши, що оператор ізоспіну першого нуклону $\vec{\hat{T}}_i$, i=1,2 діє лише на хвильову функцію i -того нуклона, маєм:

$$\begin{split} (\hat{T}_1 \cdot \hat{T}_2) \Psi &= (\hat{T}_{1x} \hat{T}_{2x} + \hat{T}_{1y} \hat{T}_{2y} + \hat{T}_{1z} \hat{T}_{2z}) \Psi = \frac{1}{4} (\hat{\tau}_{1x} \hat{\tau}_{2x} + \hat{\tau}_{1y} \hat{\tau}_{2y} + \hat{\tau}_{1z} \hat{\tau}_{2z}) \xi_n(1) \xi_n(2) = \\ &= \frac{1}{4} (\hat{\tau}_{1x} \xi_n(1) \cdot \hat{\tau}_{2x} \xi_n(2) + \hat{\tau}_{1y} \xi_n(1) \cdot \hat{\tau}_{2y} \xi_n(2) + \hat{\tau}_{1z} \xi_n(1) \cdot \hat{\tau}_{2z} \xi_n(2)) = \\ &= \frac{1}{4} (\xi_p(1) \cdot \xi_p(2) + (-i) \xi_p(1) \cdot (-i) \xi_p(2) + (-1) \xi_n(1) \cdot (-1) \xi_n(2)) = \frac{1}{4} \xi_n(1) \xi_n(2) = \frac{1}{4} \Psi \;. \end{split}$$

Рівняння на власті значення тоді має такий вигляд:

$$\hat{T}^{2}\Psi = \{\hat{T}_{1}^{2} + \hat{T}_{2}^{2} + 2(\hat{T}_{1} \cdot \hat{T}_{2})\}\Psi = \frac{3}{4}\Psi + \frac{3}{4}\Psi + 2\frac{1}{4}\Psi = 2\Psi = T(T+1)\Psi \Rightarrow T = 1$$

Квантове число T_z , що визначає z-проекцію оператору ізоспіну, можна визначити, розв'язавши рівняння на власні значення оператору проекції ізоспіну $\vec{\hat{T}}_z$:

$$\hat{T}_{z}\Psi = T_{z}\Psi$$

Для системи нуклонів у стані з заданою хвильовою функцією, дане рівняння запишеться :

$$\hat{T}_{z}\Psi = (\hat{T}_{1z} + \hat{T}_{2z})\xi_{n}(1)\xi_{n}(2) = \frac{1}{2}(\hat{\tau}_{1z} + \hat{\tau}_{2z})\xi_{n}(1)\xi_{n}(2) = \frac{1}{2}(\xi_{n}(2) \cdot \hat{\tau}_{1z}\xi_{n}(1) + \xi_{n}(1) \cdot \hat{\tau}_{2z}\xi_{n}(2)) = \frac{1}{2}(-\xi_{n}(2) \cdot \xi_{n}(1) - \xi_{n}(1) \cdot \xi_{n}(2)) = \frac{1}{2}(-2\xi_{n}(1) \cdot \xi_{n}(2)) = -\Psi = T_{z}\Psi \Rightarrow T_{z} = -1$$

Таким чином, квантове число, яке визначає значення сумарного ізоспіну системи двох нуклонів є T=1,а квантове число, яке визначає проекцію сумарного ізоспіну системи двох нуклонів на вісь $Z \in T_z = -1$.

Знайти значення сумарного ізоспіну та його проєкції для системи двох протонів, що знаходиться станах з такими хвильовими функціям: $\xi_p(1)\xi_p(2)$

Розв'язування.

В ізотопічному просторі протонні стани протона описуються хвильовими функціями ξ_p , які

у матричному вигляді записуються як $\xi_p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Квантове число T, що визначає квадрат

векторного оператору ізоспіну для даної системи, можна визначит, розв'язавши рівняння на власні значення квадрату векторного оператору ізоспіну $\vec{\hat{T}}^2$:

$$\vec{\hat{T}}^2\Psi = T(T+1)\Psi$$

Оператор ізотопічного спіну $\vec{\hat{T}}$ в системі з двох нуклонів має вигляд суми операторів ізоспіну першого та другого нуклону: $\vec{\hat{T}} \equiv \vec{\hat{t}}_1 + \vec{\hat{t}}_1 = \frac{1}{2}(\vec{\hat{\tau}}_1 + \vec{\hat{\tau}}_2)$ із компонентами оператору $\hat{\tau}$ у вигляді:

$$\hat{\tau}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{\tau}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{\tau}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Зазначимо, що дія компонент оператору ізоспіну $\hat{\tau}_i$

на хвильову функцію протона така:

$$\begin{split} \hat{\tau}_x \xi_p &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \xi_n \; ; \; \hat{\tau}_y \xi_p = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix} = i \begin{pmatrix} 0 \\ 1 \end{pmatrix} = i \xi_n \; ; \\ \hat{\tau}_z \xi_p &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \xi_p \end{split}$$

Оператори ізотопічного спіну можна додаються та множаться за правилами векторної алгебри. Тоді квадрат оператору ізоспіну системи двох нуклонів $\vec{\hat{T}}^2$ можна записати наступним чином:

$$\hat{T}^2 \Psi = \left(\hat{T}_1 + \hat{T}_2\right)^2 \Psi = \{\hat{T}_1^2 + \hat{T}_2^2 + 2(\hat{T}_1 \cdot \hat{T}_2)\} \Psi$$

Розглянемо компоненти цієї суми:

$$\begin{aligned} \vec{\hat{T}}_{1}^{2} &= (\vec{\hat{T}}_{1} \cdot \vec{\hat{T}}_{1}) = (\hat{T}_{1x} \hat{T}_{1x} + \hat{T}_{1y} \hat{T}_{1y} + \hat{T}_{1z} \hat{T}_{1z}) = \frac{1}{4} (\hat{\tau}_{1x} \hat{\tau}_{1x} + \hat{\tau}_{1y} \hat{\tau}_{1y} + \hat{\tau}_{1z} \hat{\tau}_{1z}) = \\ &= \frac{1}{4} \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} = \frac{1}{4} (\hat{I} + \hat{I} + \hat{I}) = \frac{3}{4} \hat{I} \end{aligned}$$

Тут $\hat{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ - одинична матриця, $\hat{T}_2^2 = \frac{3}{4}\hat{I}$. Розглянемо дію скалярного добутку $(\hat{T}_1 \cdot \hat{T}_2)$ на

хвильову функцію Ψ , беручи до уваги, що оператор ізоспіну і-того нуклону \hat{T}_i , i=1,2 діє лише на хвильову функцію i -того нуклона. Отримуємо:

$$\begin{split} (\hat{T}_{1} \cdot \hat{T}_{2})\Psi &= (\hat{T}_{1x}\hat{T}_{2x} + \hat{T}_{1y}\hat{T}_{2y} + \hat{T}_{1z}\hat{T}_{2z})\Psi = \frac{1}{4} \{\hat{\tau}_{1x}\hat{\tau}_{2x} + \hat{\tau}_{1y}\hat{\tau}_{2y} + \hat{\tau}_{1z}\hat{\tau}_{2z}\}\xi_{p}(1)\xi_{p}(2) = \\ &= \frac{1}{4} \{\hat{\tau}_{1x}\xi_{p}(1) \cdot \hat{\tau}_{2x}\xi_{p}(2) + \hat{\tau}_{1y}\xi_{p}(1) \cdot \hat{\tau}_{2y}\xi_{p}(2) + \hat{\tau}_{1z}\xi_{p}(1) \cdot \hat{\tau}_{2z}\xi_{p}(2)\} = \\ &= \frac{1}{4} \{\xi_{n}(1) \cdot \xi_{n}(2) + (i)\xi_{n}(1) \cdot (i)\xi_{n}(2) + \xi_{p}(1) \cdot \xi_{p}(2)\} = \frac{1}{4}\xi_{p}(1)\xi_{p}(2) = \frac{1}{4}\Psi \end{split}$$

Звідки

$$\hat{T}^{2}\Psi = \{\hat{T}_{1}^{2} + \hat{T}_{2}^{2} + 2(\hat{T}_{1} \cdot \hat{T}_{2})\}\Psi = \frac{3}{4}\Psi + \frac{3}{4}\Psi + 2\frac{1}{4}\Psi = 2\Psi = T(T+1)\Psi \Rightarrow T = 1$$

Квантове число T_z , що визначає z -проекцію оператору ізоспіну, знаходиться з розв'язавши рівняння на власні значення оператору проекції ізоспіну $\vec{\hat{T}}_z$:

$$\hat{T}_z \Psi = T_z \Psi$$

Для системи нуклонів у стані з заданою хвильовою функцією, дане рівняння запишеться:

$$\hat{T}_{z}\Psi = (\hat{T}_{1z} + \hat{T}_{2z})\xi_{n}(1)\xi_{n}(2) = \frac{1}{2}(\hat{\tau}_{1z} + \hat{\tau}_{2z})\xi_{p}(1)\xi_{p}(2) = \frac{1}{2}(\xi_{p}(2) \cdot \hat{\tau}_{1z}\xi_{p}(1) + \xi_{p}(1) \cdot \hat{\tau}_{2z}\xi_{p}(2)) =$$

$$= \frac{1}{2}(\xi_{p}(2) \cdot \xi_{p}(1) + \xi_{p}(1) \cdot \xi_{p}(2)) = \frac{1}{2}(2\xi_{p}(1) \cdot \xi_{p}(2)) = \Psi = T_{z}\Psi \Rightarrow T_{z} = 1$$

Тому квантове число, яке визначає значення проекції сумарного ізоспіну системи двох нуклонів на вісь $Z \in T = 1$, а $T_z = 1$.

Знайти значення сумарного ізоспіну та його проєкції для системи двох нуклонів, що перебувають у станах змішаному протон-нейтронному стані з симетричною функцією: $\xi_{n}(1)\xi_{n}(2)+\xi_{n}(1)\xi_{n}(2)$.

Розв'язування.

В ізотопічному просторі протонний та нейтронний стани нуклона описуються хвильовими функціями ξ_p та ξ_n , які у матричному вигляді записуються як $\xi_p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\xi_n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Квантове число T, що визначає квадрат векторного оператору ізоспіну для даної системи, знайти можна з розв'язку рівняння на власні значення квадрату векторного оператору ізоспіну \vec{T}^2 :

$$\vec{\hat{T}}^2\Psi = T(T+1)\Psi.$$

Оператор ізотопічного спіну $\vec{\hat{T}}$ в системі з двох нуклонів має вигляд суми операторів ізоспіну першого та другого нуклону: $\vec{\hat{T}} \equiv \vec{\hat{t}}_1 + \vec{\hat{t}}_1 = \frac{1}{2}(\vec{\hat{\tau}}_1 + \vec{\hat{\tau}}_2)$ із компонентами оператору $\hat{\tau}$ у вигляді:

 $\hat{\tau}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{\tau}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{\tau}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Дія компонент оператору ізоспіну $\hat{\tau}_i$ на хвильову функцію протона та нейтрона така:

$$\hat{\tau}_{x}\xi_{p} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \xi_{n},$$

$$\hat{\tau}_{x}\xi_{n} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \xi_{p}$$

$$\hat{\tau}_{y}\xi_{p} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix} = i\begin{pmatrix} 0 \\ 1 \end{pmatrix} = i\xi_{n}$$

$$\hat{\tau}_{y}\xi_{n} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -i \\ 0 \end{pmatrix} = -i\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -i\xi_{p}$$

$$\hat{\tau}_{z}\xi_{p} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \xi_{p}$$

$$\hat{\tau}_{z}\xi_{n} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -\xi_{n}$$

Оператори ізотопічного спіну додаються та множиться за правилами векторної алгебри. Тоді квадрат оператору ізоспіну системи двох нуклонів $\vec{\hat{T}}^2$ можна записати таким чином:

$$\hat{T}^2 \Psi = (\hat{T}_1 + \hat{T}_2)^2 \Psi = {\hat{T}_1^2 + \hat{T}_2^2 + 2(\hat{T}_1 \cdot \hat{T}_2)}\Psi$$

Розглянемо компоненти цієї суми:

$$\begin{split} \vec{T}_{1}^{2} &= (\vec{T}_{1} \cdot \vec{T}_{1}) = (\hat{T}_{1x} \hat{T}_{1x} + \hat{T}_{1y} \hat{T}_{1y} + \hat{T}_{1z} \hat{T}_{1z}) = \frac{1}{4} (\hat{\tau}_{1x} \hat{\tau}_{1x} + \hat{\tau}_{1y} \hat{\tau}_{1y} + \hat{\tau}_{1z} \hat{\tau}_{1z}) = \\ &= \frac{1}{4} \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} = \frac{1}{4} (\hat{I} + \hat{I} + \hat{I}) = \frac{3}{4} \hat{I}. \end{split}$$

Тут $\hat{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ - одинична матриця: $\vec{\hat{T}}_2^2 = \frac{3}{4}\hat{I}$. Розглянемо дію скалярного добутку $(\hat{T}_1 \cdot \hat{T}_2)$ на

хвильову функцію Ψ , беручи до уваги, що оператор ізоспіну першого нуклону \hat{T}_i , i=1,2 діє лише на хвильову функцію i -того нуклона:

$$\begin{split} (\hat{T}_{1} \cdot \hat{T}_{2})\Psi &= (\hat{T}_{1x}\hat{T}_{2x} + \hat{T}_{1y}\hat{T}_{2y} + \hat{T}_{1z}\hat{T}_{2z})\Psi = \frac{1}{4}\{\hat{\tau}_{1x}\hat{\tau}_{2x} + \hat{\tau}_{1y}\hat{\tau}_{2y} + \hat{\tau}_{1z}\hat{\tau}_{2z}\}\{\xi_{p}(1)\xi_{n}(2) + \xi_{n}(1)\xi_{p}(2)\} = \\ &= \frac{1}{4}\{\hat{\tau}_{1x}\xi_{p}(1) \cdot \hat{\tau}_{2x}\xi_{n}(2) + \hat{\tau}_{1x}\xi_{n}(1) \cdot \hat{\tau}_{2x}\xi_{p}(2) + \hat{\tau}_{1y}\xi_{p}(1) \cdot \hat{\tau}_{2y}\xi_{n}(2) + \hat{\tau}_{1y}\xi_{n}(1) \cdot \hat{\tau}_{2y}\xi_{p}(2) + \\ &\quad + \hat{\tau}_{1z}\xi_{p}(1) \cdot \hat{\tau}_{2z}\xi_{n}(2) + \hat{\tau}_{1z}\xi_{n}(1) \cdot \hat{\tau}_{2z}\xi_{p}(2)\} = \frac{1}{4}\{\xi_{n}(1) \cdot \xi_{p}(2) + \xi_{p}(1) \cdot \xi_{n}(2) + \\ &\quad + i\xi_{n}(1) \cdot (-i)\xi_{p}(2) + (-i)\xi_{p}(1) \cdot i\xi_{n}(2) + \xi_{p}(1) \cdot (-1)\xi_{n}(2) + (-1)\xi_{n}(1) \cdot \xi_{p}(2)\} = \\ &\quad = \frac{1}{4}\{\xi_{n}(1) \cdot \xi_{p}(2) + \xi_{p}(1) \cdot \xi_{n}(2)\} = \frac{1}{4}\Psi \end{split}$$

В результаті рівняння на власті значення має такий вигляд:

$$\hat{T}^{2}\Psi = \{\hat{T}_{1}^{2} + \hat{T}_{2}^{2} + 2(\hat{T}_{1} \cdot \hat{T}_{2})\}\Psi = \frac{3}{4}\Psi + \frac{3}{4}\Psi + 2\frac{1}{4}\Psi = 2\Psi = T(T+1)\Psi \Rightarrow T = 1$$

Квантове число T_z , що визначає Z--проекцію оператору ізоспіну, знаходимо з рівняння на власні значення оператору проекції ізоспіну $\vec{\hat{T}}_z$:

$$\hat{T}_{x}\Psi = T_{x}\Psi$$

Для системи нуклонів у стані з заданою хвильовою функцією, дане рівняння запишеться:

$$\begin{split} \hat{T}_z \Psi &= (\hat{T}_{1z} + \hat{T}_{2z}) \Psi = \frac{1}{2} \left(\hat{\tau}_{1z} + \hat{\tau}_{2z} \right) \left\{ \xi_p(1) \xi_n(2) + \xi_n(1) \xi_p(2) \right\} = \\ &= \frac{1}{2} \left(\xi_n(2) \cdot \hat{\tau}_{1z} \xi_p(1) + \xi_p(2) \cdot \hat{\tau}_{1z} \xi_n(1) + \xi_p(1) \cdot \hat{\tau}_{2z} \xi_n(2) + \xi_n(1) \cdot \hat{\tau}_{2z} \xi_p(2) \right) = \\ &= \frac{1}{2} \left(\xi_n(2) \cdot \xi_p(1) + \xi_p(2) \cdot (-1) \xi_n(1) + \xi_p(1) \cdot (-1) \xi_n(2) + \xi_n(1) \cdot \xi_p(2) \right) = 0 = T_z \Psi \Rightarrow T_z = 0 \end{split}$$

Таким чином квантове число, яке визначає значення сумарного ізоспіну системи двох нуклонів T=1, а квантове число, яке визначає проекцію сумарного ізоспіну системи двох нуклонів на вісь $\epsilon \, Z \, \epsilon \, T_z = 0$.

№2.4

Знайти значення сумарного ізоспіну та його проекції для системи двох нуклонів, що перебувають у змішаному протон-нейтронному стані з антисиметричною хвильовою функцією: $\xi_p(1)\xi_n(2)-\xi_n(1)\xi_p(2)$.

Розв'язування.

В ізотопічному просторі протонний та нейтронний стани нуклона описуються хвильовими функціями ξ_p та ξ_n , які у матричному вигляді записуються як $\xi_p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\xi_n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Квантове число T, що визначає квадрат векторного оператору ізоспіну для даної системи, можна визначити, розв'язавши рівняння на власні значення квадрату векторного оператору ізоспіну \vec{T}^2 :

$$\vec{\hat{T}}^2\Psi = T(T+1)\Psi.$$

Оператор ізотопічного спіну $\vec{\hat{T}}$ в системі з двох нуклонів має вигляд суми операторів ізоспіну першого та другого нуклону: $\vec{\hat{T}} \equiv \vec{\hat{t}}_1 + \vec{\hat{t}}_1 = \frac{1}{2}(\vec{\hat{\tau}}_1 + \vec{\hat{\tau}}_2)$ із компонентами оператору $\hat{\tau}$ у вигляді:

$$\hat{\tau}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{\tau}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{\tau}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Зазначимо, що дія компонент оператору ізоспіну $\hat{\tau}_i$

на хвильову функцію протона та нейтрона така:

$$\hat{\tau}_{x}\xi_{p} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \xi_{n},$$

$$\hat{\tau}_{x}\xi_{n} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \xi_{p}$$

$$\hat{\tau}_{y}\xi_{p} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix} = i\begin{pmatrix} 0 \\ 1 \end{pmatrix} = i\xi_{n}$$

$$\hat{\tau}_{z}\xi_{p} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -i\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -i\xi_{p}$$

$$\hat{\tau}_{z}\xi_{n} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -\xi_{n}$$

Оператори ізотопічного спіну можна додаються і множиться за правилами векторної алгебри. Тоді квадрат оператору ізоспіну системи двох нуклонів $\vec{\hat{T}}^2$ задається таким чином:

$$\hat{T}^2 \Psi = \left(\hat{T}_1 + \hat{T}_2\right)^2 \Psi = \{\hat{T}_1^2 + \hat{T}_2^2 + 2(\hat{T}_1 \cdot \hat{T}_2)\} \Psi$$

Розглянемо компоненти цієї суми:

$$\vec{\hat{T}}_{1}^{2} = (\vec{\hat{T}}_{1} \cdot \vec{\hat{T}}_{1}) = (\hat{T}_{1x}\hat{T}_{1x} + \hat{T}_{1y}\hat{T}_{1y} + \hat{T}_{1z}\hat{T}_{1z}) = \frac{1}{4}(\hat{\tau}_{1x}\hat{\tau}_{1x} + \hat{\tau}_{1y}\hat{\tau}_{1y} + \hat{\tau}_{1z}\hat{\tau}_{1z}) =$$

$$= \frac{1}{4} \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} = \frac{1}{4}(\hat{I} + \hat{I} + \hat{I}) = \frac{3}{4}\hat{I}$$

Тут $\hat{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ - одинична матриця. Аналогічно, $\vec{T}_2^2 = \frac{3}{4}\hat{I}$. Розглянемо дію скалярного добутку $(\hat{T}_1 \cdot \hat{T}_2)$ на хвильову функцію Ψ , беручи до уваги, що оператор ізоспіну першого нуклону \vec{T}_i , i=1,2 діє лише на хвильову функцію i-того нуклона $\xi(i)$ в повній хвильовій функції системи Ψ . звідки .

$$\begin{split} (\hat{T}_{1} \cdot \hat{T}_{2})\Psi &= (\hat{T}_{1x}\hat{T}_{2x} + \hat{T}_{1y}\hat{T}_{2y} + \hat{T}_{1z}\hat{T}_{2z})\Psi = \frac{1}{4}\{\hat{\tau}_{1x}\hat{\tau}_{2x} + \hat{\tau}_{1y}\hat{\tau}_{2y} + \hat{\tau}_{1z}\hat{\tau}_{2z}\}\{\xi_{p}(1)\xi_{n}(2) - \xi_{n}(1)\xi_{p}(2)\} = \\ &= \frac{1}{4}\{\hat{\tau}_{1x}\xi_{p}(1) \cdot \hat{\tau}_{2x}\xi_{n}(2) - \hat{\tau}_{1x}\xi_{n}(1) \cdot \hat{\tau}_{2x}\xi_{p}(2) + \hat{\tau}_{1y}\xi_{p}(1) \cdot \hat{\tau}_{2y}\xi_{n}(2) - \hat{\tau}_{1y}\xi_{n}(1) \cdot \hat{\tau}_{2y}\xi_{p}(2) + \\ &\quad + \hat{\tau}_{1z}\xi_{p}(1) \cdot \hat{\tau}_{2z}\xi_{n}(2) - \hat{\tau}_{1z}\xi_{n}(1) \cdot \hat{\tau}_{2z}\xi_{p}(2)\} = \frac{1}{4}\{\xi_{n}(1) \cdot \xi_{p}(2) - \xi_{p}(1) \cdot \xi_{n}(2) + \\ &\quad + i\xi_{n}(1) \cdot (-i)\xi_{p}(2) - (-i)\xi_{p}(1) \cdot i\xi_{n}(2) + \xi_{p}(1) \cdot (-1)\xi_{n}(2) - (-1)\xi_{n}(1) \cdot \xi_{p}(2)\} = \\ &= \frac{1}{4}\{\xi_{n}(1) \cdot \xi_{p}(2) - \xi_{p}(1) \cdot \xi_{n}(2) + \xi_{n}(1) \cdot \xi_{p}(2) - \xi_{p}(1) \cdot \xi_{n}(2) + \xi_{n}(1) \cdot \xi_{p}(2)\} = -\frac{3}{4}\Psi \end{split}$$

Рівняння на власті значення тоді має такий вигляд:

$$\hat{T}^{2}\Psi = \{\hat{T}_{1}^{2} + \hat{T}_{2}^{2} + 2(\hat{T}_{1} \cdot \hat{T}_{2})\}\Psi = \frac{3}{4}\Psi + \frac{3}{4}\Psi + 2(-\frac{3}{4})\Psi = 0 = T(T+1)\Psi \Rightarrow T = 0$$

Далі Квантове число T_z , що визначає z-проекцію оператору ізоспіну, можна визначити, розв'язавши рівняння на власні значення оператору проекції ізоспіну $\vec{\hat{T}}_z$:

$$\hat{T}_z \Psi = T_z \Psi$$

Для системи нуклонів у стані з заданою хвильовою функцією, дане рівняння запишеться:

$$\begin{split} \hat{T}_z \Psi &= (\hat{T}_{1z} + \hat{T}_{2z}) \Psi = \frac{1}{2} \left(\hat{\tau}_{1z} + \hat{\tau}_{2z} \right) \left\{ \xi_p(1) \xi_n(2) - \xi_n(1) \xi_p(2) \right\} = \\ &= \frac{1}{2} \left(\xi_n(2) \cdot \hat{\tau}_{1z} \xi_p(1) - \xi_p(2) \cdot \hat{\tau}_{1z} \xi_n(1) + \xi_p(1) \cdot \hat{\tau}_{2z} \xi_n(2) - \xi_n(1) \cdot \hat{\tau}_{2z} \xi_p(2) \right) = \\ &= \frac{1}{2} \left(\xi_n(2) \cdot \xi_p(1) - \xi_p(2) \cdot (-1) \xi_n(1) + \xi_p(1) \cdot (-1) \xi_n(2) - \xi_n(1) \cdot \xi_p(2) \right) = 0 = T_z \Psi \Rightarrow T_z = 0 \end{split}$$

Тому квантове число, яке визначає значення сумарного ізоспіну системи двох нуклонів є T=0, а квантове число, яке визначає проекцію сумарного ізоспіну системи двох нуклонів на вісь Z дорівнює $T_z=0$.

№2.5

Визначити стани системи двох нуклонів з повними моментами I=0-:- 5.

Розв'язування.

Стани системи двох нуклонів характеризуються значенням орбітального моменту, спінового моменту та повного кутового моменту. Стан системи з повним моментом імпульсом I, орбітальним моментом L та спіном S позначається як :

$$^{2S+1}L_{r}$$

Величина 2S+1 визначає кількість проекцій спінових станів з фіксованим спіном S у системі двох нуклонів і називається мультиплетністю стану. Оператор спіну системи двох нуклонів дорівнює $\hat{S} = \hat{S}_1 + \hat{S}_2$, де \hat{S}_j - оператор спіну j-го нуклона. Тому значення квантового числа S системи, що визначає власне значення квадрату оператора спіну $\hbar^2 S(S+1)$, знаходиться з нерівності:

$$|S_1 - S_2| \le S \le S_1 + S_2 = 0 \le S \le 1 \longrightarrow S = 0,1.$$

Стани з S=0 називаються синглетними, а стани з S=1 триплетними. Таким чином, система з двох нуклонів може знаходитися лише у синглетному або триплетному спінових станах. Замість числового позначення L , зазвичай, використовують літери букви латинського алфавіту , а саме стани із значенням L рівним 0, 1, 2, 3, 4, 5 позначають літерами S , P , D ,

F , G , H , (по аналогії з одночастинковими станами, але великими). Оператор повного моменту-імпульса $\vec{\hat{I}}$ ϵ сумою оператора орбітального моменту та повного спіну $\vec{\hat{I}} = \vec{\hat{S}} + \vec{\hat{L}}$. Тому значення квантового числа L системи за відомих значень квантових чисел S та I знаходяться у інтервалі $|I-S| \le L \le I+S$, а парність системи з двох нуклонів дорівнює $\pi = (-1)^L$, так як внутрішня парність нуклонів ϵ позитивною. Наприклад, при I=1, I=10 отримуємо

$$|1-0| \le L \le 1$$
, $L=1 \Longrightarrow P$, $\pi = (-1)^L = (-1)^1 = -1$,
 $^{2S+1}L_I = ^1P_1$, $\pi = -1$,

а при I=1, S=1 знаходимо $|1-1| \le L \le 1+1$, тобто

$$L = 0 \Rightarrow S$$
 $\pi = (-1)^{L} = (-1)^{0} = +1,$
 $1 \Rightarrow P$, $\pi = (-1)^{1} = -1,$,
 $2 \Rightarrow D$, $\pi = (-1)^{2} = +1,$

тому

$$^{2S+1}L_{I} = ^{3}S_{1}$$
 , $\pi = +1$ $^{3}P_{1}$, $\pi = -1$ $^{3}D_{1}$, $\pi = +1$

Загалом, таблиця, що визначає можливі стани системи двох нуклонів має вигляд:

Повний	Спінові синглетні стани		Спінові триплетні стани	
момент, І	(S=0)		(S=1)	
	$\pi_r = +1$	$\pi_r = -1$	$\pi_r = +1$	$\pi_r = -1$
0	$^{1}S_{0}$			$^{3}P_{0}$
1	-	${}^{1}P_{1}$	${}^{3}S_{1} + {}^{3}D_{1}$	$^{3}P_{1}$
2	$^{1}D_{2}$	-	$^{3}D_{2}$	$^{3}P_{2}+^{3}F_{2}$
3	-	${}^{1}F_{3}$	$^{3}D_{3} + ^{3}G_{3}$	$^{3}F_{3}$
4	$^{1}G_{4}$	-	3G_4	$^{3}F_{4} + ^{3}H_{4}$
5	-	$^{1}H_{5}$	${}^{3}G_{5} + {}^{3}I_{5}$	$^{3}H_{5}$

Відмітимо, що система, що складається з протона і нейтрона може бути як стабільною, так і нестабільною. Наприклад, ядро дейтрона (важкого водню) стабільне. Разом з тим, нестійка система з двох протонів або нейтронів може утворитися при їхньому розсіянні.

№2.6

Довести, що квадрат спіну нуклона є пропорційним одиничному оператору $\vec{\hat{s}}^2 = \frac{3}{4}\hbar^2\hat{I}$.

Розв'язування.

Запишемо квадрат векторного оператору спіну нуклона як суму квадратів його проекцій на осі координат:

$$\vec{\hat{s}}^2 \equiv (\vec{\hat{s}} \cdot \vec{\hat{s}}) = \hat{s}_x^2 + \hat{s}_y^2 + \hat{s}_z^2$$
.

Оператори проекції спіну нуклона пропорційні спіновим матрицям Паулі $\vec{\hat{s}} = \frac{\hbar}{2} \vec{\sigma}$ і мають вигляд двовимірних матриць:

$$\hat{s}_{x} = \frac{\hbar}{2}\sigma_{x} = \frac{\hbar}{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{s}_{y} = \frac{\hbar}{2}\sigma_{y} = \frac{\hbar}{2}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{s}_{z} = \frac{\hbar}{2}\sigma_{z} = \frac{\hbar}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Розрахуємо квадрати операторів проекцій спіну:

$$\hat{s}_{x}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\hbar}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{\hbar}{4} \hat{I} , \quad \hat{s}_{y}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \frac{\hbar^{2}}{4} \begin{pmatrix} -i^{2} & 0 \\ 0 & -i^{2} \end{pmatrix} = \frac{\hbar^{2}}{4} \hat{I} ,$$

$$\hat{s}_{z}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{\hbar^{2}}{4} \hat{I} .$$

Підсумувавши отримаємо: $\vec{\hat{s}}^2 = \hat{s}_x^2 + \hat{s}_y^2 + \hat{s}_z^2 = \frac{3}{4}\hbar^2\hat{I}$.

No 2.7

Обчислити хвильові функції для основного стану дейтрона, користуючись наближенням парної взаємодії із сферичним потенціалом прямокутної ями глибиною V_0 і радіусом $R:V(r)=-V_0\cdot\theta\big(R-r\big);\ R=1.7$ фм. Оцінити глибину такого потенціалу за відомої енергії зв'язку $\varepsilon=2,225\,\mathrm{MeB}$.

Розв'язування.

Запишемо рівняння Шредінгера для руху нейтрона (частинка 1) і протона (2) у потенціалі $V(\vec{r}_1 - \vec{r}_2)$:

$$\left\{-\frac{\hbar^2}{2m_1}\Delta_1 - \frac{\hbar^2}{2m_2}\Delta_2 + V(\vec{r}_1 - \vec{r}_2)\right\}\Psi(\vec{r}_1, \vec{r}_2) = E\Psi(\vec{r}_1, \vec{r}_2),$$

де $\Delta_j = \frac{\partial^2}{\partial^2 x_j} + \frac{\partial^2}{\partial^2 y_j} + \frac{\partial^2}{\partial^2 z_j}$ - оператор Лапласа в декартових координатах для j - тої частинки.

Використаємо наближення $m_1 \approx m_2 = m$ і введемо відносну координату $\vec{r} = \vec{r_1} - \vec{r_2}$ та координату центра мас системи двох нуклонів $\vec{R} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2} \approx \frac{\vec{r_1} + \vec{r_2}}{2}$. В рівнянні Шредінгера перейдемо від координат $\vec{r_1} = (x_1, y_1, z_1)$, $\vec{r_2} = (x_2, y_2, z_2)$ до координат $\vec{r} = (x, y, z)$, $\vec{R} = (X, Y, Z)$.

Другу похідну по координаті x_1 першої частинки приймає вигляд

$$\frac{\partial^2}{\partial^2 x_1} = \frac{\partial}{\partial x_1} \left(\frac{\partial}{\partial x_1} \right) = \left(\frac{\partial}{\partial x} \frac{\partial x}{\partial x_1} + \frac{\partial}{\partial X} \frac{\partial X}{\partial x_1} \right) \left(\frac{\partial}{\partial x} \frac{\partial x}{\partial x_1} + \frac{\partial}{\partial X} \frac{\partial X}{\partial x_1} \right) = \frac{\partial^2}{\partial x^2} + \frac{1}{4} \frac{\partial}{\partial x} \frac{\partial}{\partial X} + \frac{1}{4} \frac{\partial^2}{\partial x^2} .$$

Для координати x_2 другої частинки маємо $\frac{\partial^2}{\partial^2 x_2} = \frac{\partial^2}{\partial x^2} - \frac{1}{4} \frac{\partial}{\partial x} \frac{\partial}{\partial X} + \frac{1}{4} \frac{\partial^2}{\partial^2 X}$. Тому сума

операторів Лапласа дорівнює $\Delta_1 + \Delta_2 = 2\Delta_{\bar{r}} + \frac{1}{2}\Delta_{\bar{R}}$, а рівняння Шредінгера має вигляд

$$\left\{-\frac{\hbar^2}{2\mu}\Delta_{\vec{r}} - \frac{\hbar^2}{2(2m)}\Delta_{\vec{R}}\right\} + V(\vec{r})\right\}\Psi(\vec{r},\vec{R}) = E\Psi(\vec{r},\vec{R}),$$

де значення зведеної маси $\mu = \frac{m_1 m_2}{m_1 + m_2} = \frac{m}{2}$. Розв'язок цього рівняння є добутком відносної хвильової функції на функцію руху центра мас $\Psi(\vec{r}, \vec{R}) = \varphi(\vec{r}) \psi(\vec{R})$ і рівняння розділяється на

два незалежні. Енергія системи визначаються рівнянням Шредінгера для відносної координати

$$-\frac{\hbar^2}{2\mu}\Delta_{\vec{r}}\varphi(\vec{r}) + [V(\vec{r}) + \varepsilon]\varphi(\vec{r}) = 0.$$

Тут ε — енергія зв'язку, що визначає енергію системи (- ε) відносно енергії спокою двох нуклонів. Так як нас цікавлять властивості системи у сферично симетричному потенціалі

 $V(\vec{r}) = V(r)$, то перейдемо до сферичних координат. Оператор Лапласа у сферичних координатах ϵ

$$\Delta_{\vec{r}} = \Delta_r + \frac{1}{r^2} \Delta_{\theta, \varphi}, \ \Delta_r = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}, \ \Delta_{\theta, \varphi} = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}.$$

Кутова частина оператора Лапласу $\Delta_{\theta,\phi}$ пропорційна квадрату оператора орбітального моменту кількості руху: $\hat{L}^2 = -\hbar^2 \Delta_{\theta,\phi}$, а власними функціями оператора \hat{L}^2 ϵ сферичні функції $Y_{LM}(\theta,\phi)$:

$$\hat{L}^2 Y_{L,M}(\theta,\varphi) = -\hbar^2 \Delta_{\theta,\varphi} Y_{L,M}(\theta,\varphi) = \hbar^2 L(L+1) Y_{L,M}(\theta,\varphi) ,$$

де L визначає значення квадрата орбітального моменту стану, а M є його проекцією на вісь Z, що має 2L+1 значення. Представимо хвильову функцію у вигляді добутку:

$$. \varphi(r,\theta,\varphi) = R_{L,n}(r)Y_{L,n}(\theta,\varphi).$$

Тут індекс n відповідає порядковому номеру значення енергії у стані з фіксованим L; в силу сферичної симетрії системи радіальна функція не залежить від проекції M. В результаті рівняння для радіальної функції приймає вигляд :

$$-\frac{\hbar^2}{2\mu}\Delta_r R_{L,n}(r) + \frac{\hbar^2}{2\mu}\frac{L(L+1)}{r^2}R_{L,n}(r) + V(r)R_{L,n}(r) = -\varepsilon R_{L,n}(r).$$

При центральній взаємодії між нуклонами, станом двонуклонної системи з найменшою енергією ϵ стан з нульовим орбітальним моментом $L\!=\!0$ (S -стан).

Будемо шукати хвильову функцію $R_{L=0,n=0}(r)$ у вигляді: $R_{L=0,n=0}(r)=u(r)/r$. Тоді радіальне рівняння Шредінгера для функції u(r) є

$$u''(r) + \frac{2\mu}{\hbar^2} (V_0 \cdot \theta(R-r) - \mathcal{E}) u(r) = 0$$

Інтервал змін координати r розіб'ємо на дві області: $0 \le r \le R$ (область 1) та r > R (область 2). В області 1 рівняння набуває вигляду ($u(r) = u_1(r)$):

$$u_1'' + \chi^2 u_1 = 0$$
, $\chi^2 = \frac{2\mu}{\hbar^2} (V_0 - \varepsilon)$

Розв'язком цього рівняння є суперпозиція тригонометричних функцій:

$$u(r) = A\sin(\chi r) + \tilde{A}\cos(\chi r)$$
.

Оскільки функція $R_{n,L}(r) = \frac{u_{n,L}(r)}{r}$ в нулі координат r = 0 має бути скінченною, то маємо

$$u(r=0)=0$$
, $\tilde{A}=0$ i $u(r)=A\sin(\chi r)$.

В області 2 рівняння має вигляд ($u(r) = u_2(r)$):

$$u_2'' - \alpha^2 u_2 = 0$$
, $\alpha^2 = \frac{2\mu}{\hbar^2} \varepsilon$.

Розв'язком цього рівняння ϵ суперпозиція експоненційних функцій: $u_2(r) = Be^{-\alpha r} + \tilde{B}e^{\alpha r}$.

Оскільки хвильова функція $R_2(r) = \frac{u_2(r)}{r}$ на нескінченності має прямувати до нуля швидче

ніж $\frac{1}{r}$, то $u_2(r \to \infty) = 0$, $\tilde{B} = 0$ і $u_2(r) = Be^{-\alpha r}$. Тобто у всьому інтервалі хвильова функція ϵ

$$u(r) = A\sin(\chi r)\theta(R-r) + Be^{-\alpha r}\theta(r-R)$$

Хвильова функція та її похідна мають бути неперервними на межі потенціалу:

$$\begin{cases} u_1(R) = u_2(R) \\ u_1'(R) = u_2'(R) \end{cases} = \begin{cases} A\sin(\chi R) = Be^{-\alpha R} \\ A\chi\cos(\chi R) = -\alpha Be^{-\alpha R} \end{cases}$$

Поділивши ліві і праві частини другого та першого рівнянь отримуємо трансцендентне рівняння для визначення енергії ε при заданому потенціалі V_0 :

$$\chi \operatorname{ctg}(\chi R) = -\alpha$$

Після замін $y = \alpha R, x = \chi R$ з $\chi^2 = \frac{2\mu}{\hbar^2} (V_0 - \varepsilon)$, $\alpha^2 = \frac{2\mu}{\hbar^2} \varepsilon$, це рівняння можна представити у вигляді системи двох рівнянь

$$\begin{cases} y = -x \operatorname{ctg}(x) \\ x^2 + y^2 = x_0^2 \end{cases}$$

з $x_0 = \left[\frac{2\mu}{\hbar^2}V_0R^2\right]^{1/2}$. Цю систему рівнянь легко розв'язати графічно і розв'язки їїзалежать лише від x_0 . Кола $x^2 + y^2 = x_0^2$ різних радіусів x_0 і крива $y = -x \cdot \text{ctg}(x)$ зображені на рисунку.

Точки перетину цих двох кривих і ϵ розв'язками рівнянь. Коло радіуса $x_0 \equiv n$ відповідає випадку взаємодії з характеристиками

$$V_0 R^2 = x_0^2 \frac{\hbar^2}{2\mu} = \frac{\hbar^2 n^2}{2\mu}.$$

В області $y \ge 0$ гілка кривої $y = -x \cdot \text{ctg}(x)$, яка найближче розташована до нуля координат, починається з точки $x_0 = \pi/2$, y = 0, а далі зростає до нескінченності при $x = \pi$. Наступна гілка цієї функції починається лише з $x_0 = 3\pi/2$, тому при $x_0 < \pi/2$ ($V_0 R^2 < \pi^2 \hbar^2/(8\mu)$) рівняння розв'язків не мають, і зв'язані стани в системі нейтрон-протон відсутні. Якщо x_0 лежить в інтервалі $\pi/2 < x_0 < 3\pi/2$ ($\pi^2 \hbar^2/(8\mu) < V_0 R^2 < 9\pi^2 \hbar^2/(8\mu)$), то функції $x^2 + y^2 = x_0^2$, $y = -x \cdot \text{ctg}(x)$ можуть перетинатися лише один раз, тоді система може мати лише один розв'язок, тобто для x_0 у цій області може існувати лише один стан. Таким чином, параметри взаємодії для утворення найнижчого стану у $\mathbf{n} - \mathbf{p}$ -системі з потенціалом у вигляді прямокутної ями лежать в інтервалі

$$\frac{\pi^2 \hbar^2}{8\mu} < V_0 R^2 < \frac{9\pi^2 \hbar^2}{8\mu}.$$

Згідно із цим співвідношенням, можливість утворення стійкої протон-нейтронної системи залежить не від окремо взятих значень V_0 і R, а від їхнього добутку V_0R^2 . Тобто стабільний стан дейтрона може існувати як у випадку широкого і мілкого потенціалу, так і у випадку вузької, але глибокої потенціальної ями. При R=1.7 фм маємо $35 \le V_0 \le 320$ MeB.

№2.8

Якісно порівняти глибини ядерних потенціалів у дейтроні та системі з двома нейтронами у триплетному спіновому стані (S=1). Врахувати принцип Паулі та загальне співвідношення між квантовими характеристиками двонуклонних станів: $(-1)^T = (-1)^{L+S+1}$, де T і L— значення ізоспіну та відносного орбітального моменту двох нуклонів.

Розв'язування:

Із властивостей симетрії хвильової функції системи двох нуклонів маємо співвідношення: $(-1)^T = (-1)^{S+L+1}$, де T і L — ізоспін та відносний орбітальний момент двох нуклонів. Хвильова функція зарядових змінних системи двох нейтронів має вигляд $\Psi_{1-1} = \xi_n(1)\xi_n(2)$, значення ізоспіну системи T=1, а за умовою задачі, S=1, тому можливі тільки непарні значення орбітального моменту L=1,3. У системі нейтрон-протон, можливі значення квантових чисел ізоспіну T=0,1, а спіну S=0,1. Для цієї системи мінімальне значення відносного орбітального моменту L=0. Тобто, у системі n-n діє додаткова відцентрова сила, що відповідає L=1, і тому, з врахуванням симетрії ядерної взаємодії, як і в дейтроні у у системі n-n, не може існувати зв'язаний стан з L=1.

РОЗДІЛ 3.

Одночастинкові та колективні явища в ядрах

№3.1

Отримати вираз для кінетичної енергії в основному стані та імпульсу Фермі, використовуючи модель однокомпонентного Фермі-газу. Використати співвідношення для густин розподілу нуклонів у імпульсному та координатному просторах:

$$\rho_{\vec{p}}(\vec{p}) = \rho_{\vec{p}}^{(0)} \cdot \theta(p_F - p), \quad \rho_{\vec{p}}^{(0)} = \frac{4V}{(2\pi\hbar)^3}, \quad \rho(\vec{r}) = \rho_0 \theta(R - r), \quad \rho_0 = \frac{A}{V} = \frac{3}{4\pi r_0^3}$$

Розв'язування.

В моделі фермі-газу ядро розглядається як система невзаємодіючих нуклонів, що підпорядковуються принципу Паулі. В імпульсному просторі повна кількість нуклонів в ядрі визначається таким інтегралом за об'ємом в імпульсному просторі:

$$A = \int \rho_{\vec{p}}(\vec{p}) d\vec{p}$$

В сферичній системі координат $d\vec{p} = p^2 dp d\Omega$ і

$$A = \int \rho_{\vec{p}}(\vec{p})d\vec{p} = \int_{p=0}^{\infty} \int_{\Omega \in 4\pi} \rho_{\vec{p}}^{(0)} \theta(p_F - p) p^2 dp d\Omega = 4\pi \rho_{\vec{p}}^{(0)} \int_{0}^{p_F} p^2 dp = 4\pi \rho_{\vec{p}}^{(0)} \frac{p_F^3}{3} = 4\pi \rho_{\vec{p}}^{(0)} \frac{p_F^3}{3} = \frac{16\pi V}{(2\pi\hbar)^3} \frac{p_F^3}{3}$$

Кількість нуклонів у координатному просторі визначається виразом $A = \int \rho(r) d\vec{r} = \rho_0 \cdot V = \frac{3}{4\pi r_0^3} V \ .$ Прирівнюючи вирази для кількості нуклонів у імпульсному та

координатному просторах отримуємо вираз для хвильового числа Фермі

$$k_F \equiv \frac{p_F}{\hbar} = \left(\frac{3}{2}\pi^2 \rho_0\right)^{1/3} \equiv \left(\frac{9\pi}{8}\right)^{1/3} \frac{1}{r_0}.$$

Сумарна кінетична енергія системи нуклонів:

$$E = \int \frac{p^2}{2m} \rho_{\vec{p}}(\vec{p}) d\vec{p} = \int_{p=0}^{\infty} \int_{\Omega} \int_{0}^{\infty} \frac{p^2}{2m} \rho_p^{(0)} \theta(p_F - p) p^2 dp d\Omega = \frac{4\pi}{2m} \rho_p^{(0)} \int_{0}^{p_F} p^4 dp = \frac{4\pi}{2m} \rho_p^{(0)} \frac{p_F^5}{5}.$$

Поділивши енергію на кількість нуклонів знаходимо

$$\frac{E}{A} = \frac{3}{5} \frac{p_F^2}{2m} = \frac{3}{5} \varepsilon_F = \varepsilon_{av},$$

де $\varepsilon_{av}=\frac{p_F^2}{2m}$ - енергія Фермі, а $\varepsilon_{av}=\frac{3}{5}\frac{p_F^2}{2m}$ - середня енергія, що припадає на один нуклон в ядрі.

№3.2

Отримати вирази для енергії Фермі та кінетичної енергії основного стану атомного ядра, користуючись моделлю двокомпонентного Фермі-газу. Записати вираз для енергії симетрії в найнижчому порядку по надлишку нейтронів та порівняти з відповідною компонентою формули Вайцзекера. Використати такі співвідношення для густин розподілу протонів і нейтронів у імпульсному та координатному просторах відповідно:

$$\rho_{\vec{p}}^{(p)}(\vec{p}) = \rho_{p}^{(0)}\theta(p_{F}^{(p)} - p), \quad \rho_{\vec{p}}^{(n)}(\vec{p}) = \rho_{p}^{(0)}\theta(p_{F}^{(n)} - p), \quad \rho_{p}^{(0)} = 2V/(2\pi\hbar)^{3}$$

$$\rho_{0}^{(p)}(r) = \frac{Z}{V} = \rho_{0}\frac{Z}{A}\theta(R - r), \quad \rho_{0}^{(n)}(r) = \frac{N}{V} = \rho_{0}\frac{N}{A}\theta(R - r), \quad \rho_{0} = \frac{A}{V} = \frac{3}{4\pi r^{3}}$$

Розв'язування.

В моделі двокомпонентного фермі-газу враховано, що ядро складається із нуклонів різних типів, а саме із протонів та нейтронів, тому ядерну систему розглядають як суміш двох вироджених фермі-газів з густинами $\rho_{\vec{p}}^{(p)}(\vec{p})$ та $\rho_{\vec{p}}^{(n)}(\vec{p})$, що знаходяться в одному і тому самому об'ємі. За визначенням, кількість протонів Z, нейтронів N та повна кількість нуклонів A у ядрі, а також повні кінетичні енергії протонів $E^{(Z)}$, нейтронів $E^{(N)}$ та нуклонів $E^{(A)}$ у ядрі задаються виразами:

$$Z = \int \rho_{\vec{p}}^{(p)}(\vec{p}) d\vec{p} , \qquad E^{(Z)} = \int \frac{p^2}{2m_p} \rho_{\vec{p}}^{(p)}(\vec{p}) d\vec{p} ,$$

$$N = \int \rho_{\vec{p}}^{(n)}(\vec{p}) d\vec{p} , \qquad E^{(N)} = \int \frac{p^2}{2m_n} \rho_{\vec{p}}^{(n)}(\vec{p}) d\vec{p} ,$$

$$A = \int \rho_{\vec{p}}(\vec{p}) d\vec{p} , \qquad E^{(A)} = \int \frac{p^2}{2m} \rho_{\vec{p}}(\vec{p}) d\vec{p} .$$

Обчислимо інтеграли для кількості та сумарної кінетичної енергії протонів:

$$Z = \int \rho_{\vec{p}}^{(p)}(\vec{p}) d\vec{p} = \int_{p=0}^{\infty} \int_{\Omega} \rho_{p}^{(0)} \theta(p_{F}^{(p)} - p) p^{2} dp d\Omega = 4\pi \rho_{p}^{(0)} \int_{0}^{p_{F}^{(p)}} p^{2} dp = 4\pi \rho_{p}^{(0)} \frac{\left(p_{F}^{(p)}\right)^{3}}{3},$$

$$E^{(Z)} = \int \frac{p^2}{2m_p} \rho_{\vec{p}}(\vec{p}) d\vec{p} = \int_{p=0}^{\infty} \int_{\Omega \in 4\pi} \frac{p^2}{2m_p} \rho_p^{(0)} \theta(p_F^{(p)} - p) p^2 dp d\Omega = \frac{4\pi}{2m_p} \rho_p^{(0)} \int_0^{p_F^{(p)}} p^4 dp = \frac{4\pi}{2m_p} \rho_p^{(0)} \frac{\left(p_F^{(p)}\right)^5}{5}.$$

Поділивши енергію на кількість протонів знаходимо

$$\frac{E^{(Z)}}{Z} = \frac{3}{5} \frac{\left(p_F^{(p)}\right)^2}{2m_p} = \frac{3}{5} \varepsilon_F^{(p)},$$

де $\varepsilon_F^{(p)}$ - енергія Фермі для протонів. Аналогічно отримуємо відповідні вирази для нейтронів та нуклонів

$$N = 4\pi \rho_p^{(0)} \frac{\left(p_F^{(n)}\right)^3}{3} , E^{(N)} = \frac{4\pi}{2m_n} \rho_p^{(0)} \frac{\left(p_F^{(n)}\right)^5}{5} = \frac{3}{5} N \frac{\left(p_F^{(n)}\right)^3}{2m_n} = \frac{3}{5} N \varepsilon_F^{(n)}$$

$$A = 4\pi (2\rho_p^{(0)}) \frac{(p_F)^3}{3}, \quad E^{(A)} = \frac{4\pi}{2m} (2\rho^{(0)}) \frac{(p_F)^5}{5} = \frac{3}{5} A \frac{(p_F)^3}{2m} = \frac{3}{5} A \varepsilon_F$$

Виразимо імпульси Фермі протонів та нейтронів через імпульс Фермі в системі нуклонів та вирази для кінетичних енергій протонів і нейтронів через вираз для нуклонів. Для цього поділимо відповідні співвідношення. Отримуємо

$$2\frac{Z}{A} = \left(\frac{p_F^{(p)}}{p_F}\right)^3, \ 2\frac{N}{A} = \left(\frac{p_F^{(n)}}{p_F}\right)^3.$$

Звідки

$$p_F^{(p)} = \left(\frac{2Z}{A}\right)^{1/3} p_F \,, \quad \mathcal{E}_F^{(p)} = \left(\frac{2Z}{A}\right)^{2/3} \left(\frac{m}{m_p}\right) \mathcal{E}_F \,, \quad p_F^{(n)} = \left(\frac{2N}{A}\right)^{1/3} p_F \,, \quad \mathcal{E}_F^{(n)} = \left(\frac{2N}{A}\right)^{2/3} \left(\frac{m}{m_n}\right) \mathcal{E}_F \,.$$

Сумарна кінетична енергія системи протонів та нейтронів, що відповідає основному стану ядра, дорівнює:

$$E_{0} = E^{(Z)} + E^{(N)} = \frac{3}{5} (Z \varepsilon_{F}^{(p)} + N \varepsilon_{F}^{(n)}) = \frac{3}{5} Z \left(\frac{2Z}{A}\right)^{2/3} \left(\frac{m}{m_{p}}\right) \varepsilon_{F} + \frac{3}{5} N \left(\frac{2N}{A}\right)^{2/3} \left(\frac{m}{m_{n}}\right) \varepsilon_{F} = \frac{A}{2} \varepsilon_{av} \left\{ \left(\frac{2Z}{A}\right)^{5/3} + \left(\frac{2N}{A}\right)^{5/3} \right\}$$

де було використано перетворення $Z\left(\frac{2Z}{A}\right)^{2/3} = \frac{2}{A}\frac{A}{2}Z\left(\frac{2Z}{A}\right)^{2/3} = \frac{A}{2}\left(\frac{2Z}{A}\right)^{5/3}$ і наближення

наближенні $m_p \approx m_n \approx m$,а $\varepsilon_{av} = \frac{3}{5} \varepsilon_F$ — середнє значення енергії окремого нуклону в ядрі.

Запишемо вираз для енергії симетрії ядра, тобто різниці між повними енергіями системи двокомпонентного та однокомпонентного Фермі-газу:

$$E^{sym} = E^{(Z)} + E^{(N)} - E^{(A)} = \frac{A}{2} \varepsilon_{av} \left\{ \left(\frac{2Z}{A} \right)^{5/3} + \left(\frac{2N}{A} \right)^{5/3} \right\} - A \varepsilon_{av}.$$

Перепишемо цей вираз з використанням відносного нейтронного надлишку I = (N - Z)/A:

$$\left(\frac{2Z}{A}\right)^{5/3} = \left(\frac{Z + Z + N - N}{A}\right)^{5/3} = \left(\frac{A - (N - Z)}{A}\right)^{5/3} = \left(1 - I\right)^{5/3},$$

$$\left(\frac{2N}{A}\right)^{5/3} = \left(\frac{N + N + Z - Z}{A}\right)^{5/3} = \left(\frac{A + (N - Z)}{A}\right)^{5/3} = \left(1 + I\right)^{5/3},$$

$$E^{sym} = \frac{A}{2} \varepsilon_{av} \left\{ \left(1 - I\right)^{5/3} + \left(1 + I\right)^{5/3} \right\} - A\varepsilon_{av}$$

3 точністю до доданків другого порядку малості по I знаходимо:

$$(1-I)^{5/3} = 1 - \frac{5}{3}I + \frac{5}{3}\frac{2}{3}\frac{1}{2}I^2 + \dots, \quad (1+I)^{5/3} = 1 + \frac{5}{3}I + \frac{5}{3}\frac{2}{3}\frac{1}{2}I^2 + \dots$$

В результаті

$$E^{sym} = \frac{A}{2} \varepsilon_{av} \left\{ 2 + \frac{10}{9} I^2 \right\} - A \varepsilon_{av} = \frac{5}{9} I^2 A \varepsilon_{av} = \frac{5}{9} \frac{(N-Z)^2}{A} \frac{3}{5} \varepsilon_F = \frac{1}{3} \frac{(N-Z)^2}{A} \varepsilon_F.$$

Порівняємо це співвідношення з відповідним компонентом формул Вейцзеккера для енергії симетрії, а саме з $E^{sym} = a_4 \frac{(N-Z)^2}{A}$, де експериментальне значенням константи дорівнює $a_4 \approx 23.7$ MeB. В моделі двокомпонентного Фермі-газу, числове значення коефіцієнту при

енергії симетрії дорівнює $\frac{\mathcal{E}_F}{3} = \frac{34 \text{ MeB}}{3} \approx 11,3 \text{ MeB}$. Таке теоретичне значення приблизно вдвічі менше експериментального. Це зумовлено тим, що сумарна енергія $E_0 = E^{(Z)} + E^{(N)}$ є лише повною кінетичною енергією системи нуклонів і не враховує потенціальну енергію взаємодії між нуклонами у ядрі, яка в гармонічному наближенні має збігатися з кінетичною.

№3.3

Отримати загальний наближений вираз для середнього поля в атомних ядрах. Пояснити причини його виникнення, властивості та прояви.

Розв'язування.

Покажемо, що в ядрах нуклони рухаються в деякому самоузгодженому полі. Розглянемо окремий нейтрон n, положення якого в ядрі позначимо як \vec{r}_n . Цей нейтрон взаємодіє з усіма іншими нейтронами ядра n' (з координатами \vec{r}_n) та з усіма іншими протонами ядра p (з координатами \vec{r}_n). Використаємо наближення парної взаємодії:

$$V_n = \sum_{n'} V_{nn'} \left(\vec{r}_n, \vec{r}_{n'} \right) + \sum_p V_{np} \left(\vec{r}_n, \vec{r}_p \right).$$

Розіб'ємо об'єм ядра на i маленьких об'ємів. Нехай в i-тому об'ємі $\Delta \vec{r}_{in'}(\vec{r}_{in'})$ знаходяться $\Delta N(\vec{r}_{in'})$ нейтронів на деякій середній відстані $\vec{r}_{in'}$ від нейтрона n', та, відповідно, $\Delta N(\vec{r}_{ip})$ протонів в i-тому об'ємі $\Delta \vec{r}_{ip}(\vec{r}_{ip})$ на відстані \vec{r}_{ip} . Тоді потенціал взаємодії розглядуваного нейтрона з усіма іншими нуклонами запишеться має вигляд:

$$V_{n} = \sum_{in'} V_{n,in'} \left(\vec{r}_{n}, \vec{r}_{in'} \right) \cdot \Delta N \left(\vec{r}_{in'} \right) + \sum_{ip} V_{n,ip} \left(\vec{r}_{n}, \vec{r}_{ip} \right) \cdot \Delta N \left(\vec{r}_{ip} \right) =$$

$$=\sum_{in'}V_{n,in'}\left(\vec{r}_{n},\vec{r}_{in'}\right)\cdot\Delta N\left(\vec{r}_{in'}\right)\frac{\Delta\vec{r}_{in'}}{\Delta\vec{r}_{in'}}+\sum_{ip}V_{n,ip}\left(\vec{r}_{n},\vec{r}_{ip}\right)\cdot\Delta N\left(\vec{r}_{ip}\right)\frac{\Delta\vec{r}_{ip}}{\Delta\vec{r}_{ip}}=$$

Кількість нуклонів в одиниці об'єму є густиною розподілу нуклонів: $\frac{\Delta N(\vec{r}_{in})}{\Delta \vec{r}_{in'}} \equiv \rho_n(\vec{r}_{in'})$,

$$\frac{\Delta N(\vec{r}_{ip})}{\Delta \vec{r}_{ip}} \equiv \rho_p(\vec{r}_{ip})$$
 . Спрямуємо елементи об'єму до нуля $\Delta \vec{r}_{in'} \rightarrow 0; (\Delta \vec{r}_{ip} \rightarrow 0)$ та виконуємо

граничний перехід від підсумовування до інтегрування, після перепозначень координат нуклонів $\vec{r}_n \to \vec{r}$, $\vec{r}_{in'} \to \vec{r}'$, $\vec{r}_{ip} \to \vec{r}'$, отримуємо

$$V_{n} = \int V_{nn'}(\vec{r}, \vec{r}') \rho_{n}(\vec{r}') d\vec{r}' + \int V_{np}(\vec{r}, \vec{r}') \rho_{p}(\vec{r}') d\vec{r}'.$$

Відмітимо, що після проведення інтегрування виразу по координаті \vec{r} результат інтегрування не буде залежати від цієї координати \vec{r} , а лише залишиться залежність від координати \vec{r} . Такі потенціали отримали назву середніх потенціалів: $V_n = V_{av}^{(n)}(\vec{r})$. Крім того він є самоузгодженим з густиною $\rho_{\alpha}(\vec{r})$ розподілу нейтронів $(\alpha = n)$ і протонів $(\alpha = p)$, визначається повною хвильовою функцією ядра $\psi(\vec{r_1},...,\vec{r_A})$, що залежить від координат усіх нуклонів (для нейтронів $X_n = N$, а протонів $X_p = Z$):

$$\rho_{\alpha}(\vec{r}) = \int |\psi(\vec{r}_{1},...,\vec{r}_{A})|^{2} \sum_{i=1}^{X_{\alpha}} \delta(\vec{r}_{i} - \vec{r}) d\vec{r}_{1}...d\vec{r}_{A}.$$

Середній потенціал в ядрі породжується наявністю плавної густини розподілу нуклонів у координатному просторі, яка формується взаємним притяганням нуклонів і відсутністю повного стискання системи (через принцип Паулі та відштовхування на малих відстанях). Особливістю середнього поля є те, що в його вираз входять хвильові функції, які залежать від координат всіх нуклонів. Тому точно визначити середнє поле можна тільки після розв'язування багаточастинкового рівняння Шредінгера (наприклад, методом Хартрі-Фока-Боголюбова). Але можна отримати деякі наближені феноменологічні вирази для середнього поля. Якщо апроксимувати парний потенціал потенціалом з нульовим радіусом дії

$$\begin{split} V_{nn'}(\vec{r},\vec{r}\,') = & V_{nn'}^{(0)} \delta(\vec{r}-\vec{r}\,') \ , \ V_{np}(\vec{r},\vec{r}\,') = & V_{np}^{(0)} \delta(\vec{r}-\vec{r}\,') \ , \ \text{To} \\ \\ V_n = & \int & V_{nn'}(\vec{r},\vec{r}\,') \rho_n(\vec{r}\,') d\vec{r}\,' + \int & V_{np}(\vec{r}\,,\vec{r}\,') \rho_p(\vec{r}\,') d\vec{r}\,' = \\ \\ = & \int & V_{nn'}^{(0)} \delta(\vec{r}_n-\vec{r}\,') \rho_n(\vec{r}\,') d\vec{r}\,' + \int & V_{np}^{(0)} \delta(\vec{r}_n-\vec{r}\,') \rho_p(\vec{r}\,') d\vec{r}\,' = \\ \\ = & V_{nn'}^{(0)} \rho_n(\vec{r}\,_n) + V_{np}^{(0)} \rho_p(\vec{r}\,_n) \,. \end{split}$$

В таких виразах густини ймовірностей, що входять у середнє поле апроксимують певними відомими функціями, наприклад функцією Фермі (потенціал Саксона-Вудса). Проявом середнього поля ϵ , зокрема, існування одночастинкових рівнів та наявність магічних ядер.

Обчислити енергії та хвильові функції *s*-станів у сферичному потенціалі прямокутної ями з нескінченними стінками:

$$\begin{cases} V(r) = -V_0, r \le R \\ V(r) = \infty, r > R \end{cases}$$

Розв'язування.

Стаціонарне рівняння Шредінгера у загальному вигляді э

$$\hat{H}\Psi = E\Psi$$

$$\hat{H} = -\frac{\hbar^2}{2m}\Delta + V(r)$$

$$-\frac{\hbar^2}{2m}\Delta\Psi(\vec{r}) + V(r)\Psi(\vec{r}) = E\Psi(\vec{r})$$

Оскільки потенціал сферично-симетричний, то оператор Лапласа записуємо в сферичних координатах:

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} = \Delta_r + \frac{1}{r^2} \Delta_{\theta, \varphi}.$$

Кутова частина оператора Лапласу $\Delta_{\theta,\phi}$ пропорційна виразу для квадрату оператора орбітального моменту кількості руху: $\hat{L}^2 = -\hbar^2 \Delta_{\theta,\phi}$. Власними функціями оператора \hat{L}^2 є сферичні функції $Y_{lm}(\theta,\phi)$, а рівняння на власні значення має вигляд $\hat{L}^2 Y_{lm}(\theta,\phi) = -\hbar^2 \Delta_{\theta,\phi} Y_{lm}(\theta,\phi) = \hbar^2 l(l+1) Y_{lm}(\theta,\phi)$. Тому хвильову функцію можна представити у вигляді: $\Psi(r,\theta,\phi) = R_{n,l}(r) Y_{lm}(\theta,\phi)$, а радіальна функція є розв'язком рівняння

$$-\frac{\hbar^2}{2m}\Delta_r R_{n,l}(r) + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}R_{n,l}(r) + V(r)R_{n,l}(r) = E_n R_{n,l}(r).$$

Тут індекс n відповідає порядковому номеру значення енергії у стані з фіксованим l; в силу сферичної симетрії системи радіальна функція не залежить від проекції m.

За умовою задачі розглядаються s- стани з l=0. Будемо шукати хвильову функцію $R_{n,l=0}(r)$ у вигляді: $R_{n,0}(r)=u_n(r)/r$. Тоді

$$\Delta_r R_{n,0}(r) = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \frac{u_n(r)}{r} \right) = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{u_n'(r)r - u_n(r)}{r^2} \right) = \frac{u_n''}{r} .$$

радіальне рівняння Шредінгера для функції $u_n(r)$ в області $r \le R$ має вигляд

$$u_n'' + k_n^2 u_n = 0$$
, $k_n^2 = \frac{2m}{\hbar^2} (V_0 + E_n)$

Розв'язком цього рівняння є суперпозиція тригонометричних функцій:

$$u_n(r) = A\sin(k_n r) + B\cos(k_n r)$$

Оскільки функція $R_{n,0}(r) = \frac{u_n(r)}{r}$ в нулі координат r=0 має бути скінченною, то маємо $u(r=0)=0, \ B=0$ і $u_n(r)=A\sin(k_nr)$ при $r\leq R$. Так як в області r>R потенціал нескінченний відштовхувальний, то в цій області хвильова функція дорівнює нулю, тобто з умови неперервності повинна виконуватися така гранична умова $u_n(r=R)=A\sin(k_nR)=0$. Звідки знаходимо, що значення добутку k_nR дискретні і дорівнюють нулям синуса: $k_nR=\pm\pi\cdot n$ з цілими значеннями $n=1,2,3,\ldots$, що приводить до дискретних значень енергії:

$$k_n^2 \equiv \frac{2m}{\hbar^2} (V_0 + E_n) = \frac{\pi^2 n^2}{R^2} \Longrightarrow E_n = \frac{\pi^2 \hbar^2 n^2}{2mR^2} - V_0,$$

а повна хвильова функція для s-стану дорівнює

$$\Psi_{n,0}(r,\theta,\varphi) = A\theta(R-r) \frac{\sin(n\pi r/R)}{r} \cdot Y_{0,0}(\theta,\varphi)$$

Сталу А знаходимо з умови нормування:

$$\int_{r=0}^{\infty} \int_{\Omega \in 4\pi} \left| \Psi_{0,n}(r,\theta,\varphi) \right|^2 r^2 dr d\Omega = 1 = A^2 \int_{0}^{R} u_n^2(r) dr = A^2 \int_{0}^{R} \sin^2(n\pi r/R) dr$$

$$= A^2 \int_{0}^{R} \frac{1 - \cos(n\pi r/R)}{2} dr = \frac{A^2}{2} \left\{ R - \sin(n\pi r/R) \right|_{r=0}^{r=R} \right\} = \frac{A^2}{2} R = 1 \implies A = \sqrt{\frac{2}{R}}.$$

Тобто повна хвильова функція для s-стану дорівнює

$$\Psi_{n,0}(r,\theta,\varphi) = \sqrt{\frac{2}{R}} \frac{\sin(n\pi r/R)}{r} \theta(R-r) \cdot Y_{0,0}(\theta,\varphi).$$

Користуючись оболонковою моделлю у сферичному потенціалі, записати конфігурації ¹³₆C основних $^{39}_{19} \, \text{K}$ станів та ядер $(n_1 \times x(l_1)_{j_1})^{k_1 p m_1 n} (n_2 \times x(l_2)_{j_2})^{k_2 p m_2 n} \dots (n_{\max} \times x(l_{\max})_{j_{\max}})^{k_{\max} p m_{\max} n}$, де n_i - головне квантове число, l_i орбітальний момент нуклона, а $x(l_i)$ його символьне позначення, j_i - повний момент кількості руху, а верхні індекси вказують на кількості протонів (k_i) та нейтронів (m_i) . Визначити спіни і парності основних станів ядер. Вважати, що вони визначаються квантовими числами одночасткового стану останнього непарного нуклона (оболонкова феноменологічним розглядом спарювання). Порівняти результати модель експериментальними даними.

Розв'язування.

Одночастинковий стан нуклону з енергією $E_{n,l,j}$ характеризується квантовими числами n, l j і у відповідність до принципу Паулі кількість нуклонів одного сорту, що може знаходитися на одному рівні з повним кутовим моментом j дорівнює (2j+1). В одночастинковій сферичній оболонковій моделі з урахуванням спін-орбітальної взаємодії, порядок розміщення енергетичних рівнів, починаючи з меншого значення енергії, та їх характеристики такі: $1s_{1/2}$, $1p_{3/2}$, $1p_{1/2}$, $1d_{5/2}$, $2s_{1/2}$, $1d_{3/2}$, $1f_{7/2}$ і так далі.

Спочатку визначимо кількості протонів і нейтронів у ядрах: ${}^{13}_6$ С складається з 6-ти протонів та 7-ми нейтронів; ${}^{39}_{19}$ К складається з 19-ти протонів та 20-ти нейтронів. Обчислимо максимальну кількість нуклонів, яка може знаходитися на кожному з одночастинкових рівнів. На першому рівні $1s_{1/2}$ з повним кутовим моментом j=1/2 може знаходитися $2j+1=2\cdot 1/2+1=2$ нуклони одного сорту. Тому його заповнення можна представити як: $\left(1s_{1/2}\right)^{2p^{2n}}$. На другому рівні $1p_{3/2}$ з повним кутовим моментом j=3/2 може знаходитися $2j+1=2\cdot 3/2+1=4$ нуклони одного сорту і на цьому рівні знаходитиметься 4 протони і 4

нейтрони: $(1p_{3/2})^{4p4n}$. Розглядаючи далі заповнення інших рівнів, отримуємо, що конфігурація основного стану ядра $^{13}_6$ С є

$$(1s_{1/2})^{2p2n}(1p_{3/2})^{4p4n}(1p_{1/2})^{1n}$$
.

Конфігурація основного стану ядра ³⁹ К знаходиться аналогічним чином і має вигляд

$$(1s_{1/2})^{2p2n}(1p_{3/2})^{4p4n}(1p_{1/2})^{2p2n}(1d_{5/2})^{6p6n}(2s_{1/2})^{2p2n}(1d_{3/2})^{3p4n}\,.$$

Згідно оболонкової моделі з феноменологічним розглядом спарювання спін і парність I^π ядер визначаються характеристиками останнього непарного нуклона: спін ядра I дорівнює повному кутовому моменту непарного нуклона на останньому рівні j_{\max} , а парність ядра π визначається орбітальним моментом непарного нуклона: $\pi = (-1)^{l_{\max}}$. У ядрі ${}^{13}_6$ С неспарений нуклон є нейтроном і знаходиться у стані $1p_{1/2}$, тобто його орбітальний момент $l_{\max} = 1$, а повний кутовий момент $j_{\max} = 1/2$. Тому парність ядра $\pi = (-1)^{l_{\max}} = (-1)^1 = -1$, а спін $I = j_{\max} = 1/2$: $I^\pi({}^{13}_6$ C) $= \frac{1}{2}^-$. Аналогічним чином знаходимо характеристики основного стані ядра ${}^{39}_{19}$ K: $I^\pi({}^{39}_{19}$ K) $= \frac{3}{2}^+$. Теоретичні розрахунки спіну та парності основних станів ядер збігаються з експериментальними даними.

№3.6

Користуючись оболонковою моделлю у сферичному потенціалі, записати конфігурації основних станів ядер $(n_1 \times x(l_1)_{j_1})^{k_1 p m_1 n} (n_2 \times x(l_2)_{j_2})^{k_2 p m_2 n} \dots (n_{\max} \times x(l_{\max})_{j_{\max}})^{k_{\max} p m_{\max} n}$, де n_i - головне квантове число, l_i орбітальний момент нуклона, а $x(l_i)$ його символьне позначення, j_i - повний момент кількості руху, а верхні індекси вказують на кількості протонів (k_i) та нейтронів (m_i) . Визначити спіни і парності основних станів ядер. Вважати, що вони визначаються квантовими числами одночасткового стану останнього непарного нуклона (оболонкова феноменологічним спарювання). Порівняти модель розглядом результати 3 експериментальними даними.

Розв'язування.

Одночастинковий стан нуклону з енергією $E_{n,l,j}$ характеризується квантовими числами n, l j і у відповідності до принципу Паулі кількість нуклонів одного сорту, що може знаходитися на одному рівні з повним кутовим моментом j дорівнює (2j+1). В одночастинковій сферичній оболонковій моделі з урахуванням спін-орбітальної взаємодії, порядок розміщення енергетичних рівнів, починаючи з меншого значення енергії, та їх характеристики такі: $1s_{1/2}$, $1p_{3/2}$, $1p_{1/2}$, $1d_{5/2}$, $2s_{1/2}$, $1d_{3/2}$, $1f_{7/2}$ і так далі.

Спочатку визначимо кількості протонів і нейтронів у ядрах: $^{27}_{13}$ AI, яке складається з 13-ти протонів та 14-ми нейтронів; $^{35}_{17}Cl$ складається з 17-ти протонів та 18-ти нейтронів. Обчислимо максимальну кількість нуклонів, яка може знаходитися на кожному з одночастинкових рівнів. На першому рівні $1s_{1/2}$ з повним кутовим моментом j=1/2 може знаходитися $2j+1=2\cdot 1/2+1=2$ нуклони одного сорту. Тому його заповнення можна представити як: $(1s_{1/2})^{2p^{2n}}$. На другому рівні $1p_{3/2}$ з повним кутовим моментом j=3/2 може знаходитися $2j+1=2\cdot 3/2+1=4$ нуклони одного сорту і на цьому рівні знаходитиметься 4 протони і 4 нейтрони: $(1p_{3/2})^{4p^{4n}}$. Розглядаючи далі заповнення інших рівнів, отримуємо таку конфігурацію основного стану ядра $^{27}_{13}$ AI:

$$(1s_{1/2})^{2p2n}(1p_{3/2})^{4p4n}(1p_{1/2})^{2p2n}(1d_{5/2})^{5p6n}$$

Конфігурація ядра $^{35}_{17}$ Cl знаходиться аналогічним чином і ε

$$(1s_{1/2})^{2p2n}(1p_{3/2})^{4p4n}(1p_{1/2})^{2p2n}(1d_{5/2})^{6p6n}(2s_{1/2})^{2p2n}(1d_{3/2})^{1p2n}$$

Згідно оболонкової моделі з феноменологічним розглядом спарювання спін і парність I^π ядер визначаються характеристиками останнього непарного нуклона: спін ядра I дорівнює повному кутовому моменту непарного нуклона на останньому рівні j_{\max} , а парність ядра π визначається орбітальним моментом непарного нуклона: $\pi = (-1)^{l_{\max}}$.

У ядрі $^{27}_{13}$ Al непарним нуклоном є протон і знаходиться у стані $1d_{5/2}$, тобто його орбітальний момент $l_{\max}=2$, а повний кутовий момент $j_{\max}=5/2$. Тому парність ядра

 $\pi = (-1)^{l_{\text{max}}} = (-1)^2 = +1$, а спін $I = j_{\text{max}} = 5/2$: $I^{\pi}(^{27}_{13}\text{Al}) = \frac{5}{2}^+$. Аналогічним чином знаходимо характеристики основного стані ядра $^{35}_{17}\text{Cl}$: $I^{\pi}(^{35}_{17}\text{Cl}) = \frac{3}{2}^+$. Теоретичні розрахунки спіну та парності основних станів ядер збігаються з експериментальними даними.

№3.7

Проаналізувати співвідношення між енергіями низькоенергетичних колективних (ротаціного та вібраційного) станів та одночастинкових станів, базуючись на загальних уявленнях адіабатичної узагальненої моделі Бора-Моттельсона та квантової механіки.

Розв'язування.

В адіабатичному наближенні моделі Бора-Моттельсона різні типи рухів — одночастинкові, коливальні та обертальні — вважаються незалежними і не вливають один на одного. Тому співвідношення між енергіями різних рухів можна якісно оцінити, якщо розглядати періоди відповідних незалежних рухів. Оскільки ротаційний рух зв'язаний з переміщенням великої кількості нуклонів, то можна вважати, що він має велику інерційність і відбувається з найбільшим періодом T_{rot} . В середніх і важких ядра вібраційні стани формуються коливаннями, які розміщені поблизу поверхні ядра T_{vib} . Одночастинковий рух є рухом окремого нуклона, тому він має найменшу інерційність і відбувається з найменшим періодом $T_{s.p.}$. В результаті, можна очікувати справедливість таких співвідношень періодами рухів нуклонів у різних станах :

$$T_{rot} \ge T_{vib} >> T_{in}$$
.

Згідно визначення період руху T_{α} у деякому стані α з хвильовою функцією $\Psi_{\alpha}(\{\vec{r}_j\},t)$ і енергією E_{α} є мінімальним часом за який система повертається до початкового стану:

$$\Psi_{\alpha}(\{\vec{r}_j\},t+T_{\alpha})=\Psi_{\alpha}(\{\vec{r}_j\},t).$$

Низько-розташовані стани ядер ϵ стаціонарними і у відповідності до базових уявлень квантової механіки їх повну хвильову функцію $\Psi_{\alpha}(\{\vec{r}_j\},t)$ і енергію E_{α} можна обчислити за допомогою нестаціонарного та стаціонарного рівнянь Шредінгера:

$$i\hbar \frac{\partial \Psi_{\alpha}(\{\vec{r}_j\},t)}{\partial t} = \hat{H}(\{\vec{r}_j\})\Psi_{\alpha}(\{\vec{r}_j\},t); \quad \hat{H}(\{\vec{r}_j\})\Psi_{\alpha}(\{\vec{r}_j\},t) = E_{\alpha}\Psi_{\alpha}(\{\vec{r}_j\},t).$$

Тут $\hat{H}(\{\vec{r}_j\})$ гамільтоніан системи, що залежить тільки внутрішніх координат $\{\vec{r}_j\}$ і не залежить від часу. Тому повну хвильову функцію можна представити у вигляді добутку функцій: $\Psi_{\alpha}(\{\vec{r}_i\},t) = \varphi_{\alpha}(t) \cdot \Phi_{\alpha}(\{\vec{r}_i\})$. Тому період руху T_{α} визначається із співвідношення:

$$\varphi_{\alpha}(t+T) = \varphi_{\alpha}(t)$$
.

Після підстановки загального виразу для $\Psi_{\alpha}(\{\vec{r}_j\},t)$ у нестаціонарне рівняння, отримаємо рівняння для залежної від часу функції

$$i\hbar \frac{d\varphi_{\alpha}(t)}{dt} = E_{\alpha} \cdot \varphi_{\alpha}(t).$$

Розв'язуючи його отримуємо:

$$\int \frac{1}{\varphi_{\alpha}(t)} d\varphi_{\alpha}(t) = \int \frac{E_{\alpha}}{i\hbar} dt \, , \, \ln(\varphi_{\alpha}(t)) = E_{\alpha} t / i\hbar + const \, ,$$

$$\varphi_{\alpha}(t) = const \cdot \exp\{E_{\alpha}t / i\hbar\}.$$

Тому період руху знаходимо із співвідношення $\exp\{-iE_{\alpha}(t+T_{\alpha})/\hbar\} = \exp\{-iE_{\alpha}t/\hbar\}$, тобто $\exp\{-iE_{\alpha}T_{\alpha}/\hbar\} = \cos(E_{\alpha}T_{\alpha}/\hbar) - i\sin(E_{\alpha}T_{\alpha}/\hbar) = 1$ і

$$T_{\alpha} = 2\pi\hbar / E_{\alpha}$$
.

Із отриманого співвідношення видно, що енергія руху та його період ϵ обернено пропорційними, тому енергії рухів будуть знаходитися у такому відношенні:

$$E_{\rm s.p.}>>E_{\rm vib}\geq E_{\rm rot}$$
 .

Графічне зображення між енергіями різного типу представлено на рисунку.

$$\Delta E_{\text{\tiny s.p.}} \cong 1 \div 5 \text{ MeB}; \ \Delta E_{\text{\tiny vib}} \cong 0,5 \text{ MeB}; \ \Delta E_{\text{\tiny rot}} \cong 0,1 \text{ MeB}$$

№3.8

Проаналізувати особливості енергетичного спектру вібраційних станів в сферичних ядрах. Визначити можливі значення спінів другого вібраційного рівня, який обумовлений квадрупольними коливаннями поверхні. Для побудови можливих проекцій спінів станів використати таблицю Слетера.

Розв'язування.

Енергетичний спектр вібраційних станів є еквідистантним і задається формулою

$$E_{vib} = \sum_{\lambda \geq 2} \sum_{\mu = -\lambda}^{\lambda} \hbar \omega_{\lambda} \left(N_{\lambda \mu} + \frac{1}{2} \right) = \sum_{\lambda \geq 2} \hbar \omega_{\lambda} \left(N_{\lambda} + \frac{2\lambda + 1}{2} \right),$$

де λ мультипольність коливання поверхні ядра; додатні числа $N_{\lambda} \ge 0$ визначають кількість елементарних збуджень фіксованої мультипольності з характеристичною енергією $\hbar \omega_{\lambda}$. Згідно квантової механіки, збудження мультипольності λ з $N_{\lambda} = 1$ слід трактувати як квазічастинку коливального типу (фонон) зі спіном $\vec{I}_{\lambda} = \lambda$ і парністю $\pi = (-1)^{\lambda}$. Величина $(2\lambda + 1)\hbar \omega_{\lambda} / 2 \equiv E_{0,\lambda}$ є енергією нульових коливань і визначає енергію початкового стану з мультипольністю λ .

Розглянемо ядра з квадрупольною динамічною деформацією поверхні ($\lambda=2$): спін і парність фонона дорівнюють $I_{\lambda=2}^{-\pi}=2^+$, а енергетичний спектр має вигляд:

$$E_N = \left(N + \frac{5}{2}\right)\hbar\omega_{2^+}, \quad N = 0, 1, 2, 3, \dots$$

Другий збуджений рівень відповідає поглинанню двох фононів $N_{\lambda}=2$ з $\lambda=2$, тому енергія дорівнює $E_{N=+2}=2\hbar\omega_{2^+}+E_{0,2^+}$. Векторне правило додавання моментів кількості руху дає нам такі можливі значення спінів другого збудженого стану: $|\lambda-\lambda|\leq I\leq |\lambda+\lambda|$, I=0,1,2,3,4, але деякі з них є тотожними і відповідають однаковим значенням проекції $M=m_1+m_2$ з симетричними значеннями проекції m_1 та m_2 на вісь Z моменту кількості руху кожного з двох квадрупольних фононів. Кожна з таких проекцій може дорівнювати 0, 1, 2, -1, -2.. Однофононні стани, які лише відрізняються обміном проекцій, є тотожними. Вони формують один і той самий двохфононний стан з однаковими значеннями M, тому їх потрібно враховувати один раз. Для побудови можливих проекцій спінів станів будемо використовувати таблицю Слетера вигляду:

$m_1 \mid m_2$	-2	-1	0	1	2
-2	-4	-3	-2	1	0
-1	-3	-2	-1	0	1
0	-2	-1	0	1	2
1	-1	0	1	2	3
2	0	1	2	3	4

Оскільки фонони є бозонами, тобто їх хвильова функція симетрична відносно їхніх перестановок, то стани, що розташовані симетрично відносно діагоналі є тотожними. Тому необхідно відкинути стани, що розташовані нижче (або вище) діагоналі. Тоді залишаються тільки стани з такими значеннями проєкцій: $M=\pm 4,\pm 3,\pm 2,\pm 1,0$, $M=\pm 2,\pm 1,0$, M=0. Оскільки $|M|\leq I$, то маємо, що перший набір відповідає спіну I=4 , другий I=2 , третій I=0. Тому згідно з моделлю поверхневих коливань у сферичних ядрах другий квадрупольний стан є виродженим триплетним з такими значеннями спінів $I^\pi=0^+$, 2^+ , 4^+ і з енергією, яка приблизно вдвічі перевищую енергію першого квадрупольного рівня з $I^\pi=2^+$. Вібраційні стани з подібними характеристиками збуджуються у сферичних парно-парних ядрах.

Проаналізувати та класифікувати спектр енергетичних станів ядра ¹⁰⁶ Pd. Визначити найбільш ймовірний шлях у-переходів із стану 4⁺ в основний стан.

I^{π}	0+	2 ₁ ⁺	2_{2}^{+}	0+	4+
Еі, кеВ	0	0,51	1,127	1,133	1,229

Розв'язування.

Згідно з моделлю поверхневих коливань, у сферичних ядрах існує триплет вібраційних станів з $I = 0^+, 2^+, 4^+$ $I = 0^+, 2^+, 4^+,$ з енергією, яка приблизно вдвічі перевищує енергію першого збудженого рівня 2⁺. Енергетичний спектр вібраційних станів - еквідистантний і має вигляд:

$$E_N = (N + \frac{5}{2})\hbar\omega_{2^+}, \quad N = 0,1,2,3$$

Таким чином, теоретично відношення енергії другого збудженого рівня до першого буде:

$$\frac{E_{N=2} - E_{N=0}}{E_{N=1} - E_{N=0}} = \frac{2\hbar\omega}{\hbar\omega} = 2$$

Перевіримо це:

$$\frac{E_{4^{+}}}{E_{2^{+}_{1}}} = \frac{1229}{510} = 2,41; \qquad \qquad \frac{E_{0^{+}}}{E_{2^{+}_{1}}} = \frac{1133}{510} = 2,22; \qquad \qquad \frac{E_{2^{+}_{2}}}{E_{2^{+}_{1}}} = \frac{1127}{510} = 2,21.$$

Як бачимо, спектр ϵ триплетний, що відповіда ϵ рівню з N=2, тобто двом фононам та рівні з N=1 та N=0. Отже спектр вібраційний.

Запишемо всі можливі переходи, їх мультипольності та типи, з вищого рівня на нижчі, використовуючи формули

$$|I_{i} - I_{f}| \leq \lambda \leq I_{i} + I_{f}$$

$$E\lambda \Rightarrow \pi_{i} \cdot \pi_{f} = (-1)^{\lambda}$$

$$M\lambda \Rightarrow \pi_{i} \cdot \pi_{f} = (-1)^{\lambda+1}$$

Розглянемо такі переходи:

1) $4^{+} \rightarrow 2_{1}^{+} (0.51 \text{ MeB})$ $2 \le \lambda \le 6$ 2) $4^{+} \rightarrow 2_{2}^{+} (1.127 \text{ MeB})$ $2 \le \lambda \le 6$ 3) $4^{+} \rightarrow 0^{+} (1.229 \text{ MeB})$ $\lambda = 4$ можливі переходи Е2, Е4, Е6, М3, М5 можливі переходи Е2, Е4, Е6, М3, М5

 $4^+ \to 0^+ \text{ (1,229 MeB)}$ $\lambda = 4$ 3) можливі переходи Е4

Користуючись оцінкою Вайскопфа, можна отримати, що відношення імовірностей між $E\lambda$ та $M(\lambda+1)$ переходами:

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_{\gamma}^2(MeB)} , \qquad \frac{w_w(M\lambda)}{w_w(E(\lambda+1))} \approx \frac{100}{E_{\gamma}^2(MeB)} A^{-\frac{2}{3}} ,$$

де знехтувана залежність від λ . Тобто найімовірнішими ϵ електричні переходи з мінімальним λ . З цих оцінок можна отримати, що $\frac{w_w(E\lambda)}{w_w(E(\lambda+2))} \approx \frac{10^8}{E_\gamma^4 (\text{MeB})} A^{-\frac{2}{3}}$. Тобто E2 переходи ϵ значно імовірнішими, ніж E4. Отже, перехід зі стану 4^+ в основний буде відбуватися двома E2 переходами: $4^+ \to 2_1^+ \to 0^+$. Оскільки імовірність електричного переходу $w_w(E\lambda) \sim (E_\gamma)^{2\lambda+1}$, то перший E2 перехід буде в стан 2_1^+ (0,51 MeB), оскільки у нього значно більша різниця енергій з 4^+ станом. Отже, найбільш ймовірний шлях γ -

№3.10

Проаналізувати особливості енергетичного спектру ротаційних станів в парно-парних аксіально-деформованих ядрах. Отримати правило інтервалів для основної ротаційної смуги.

Розв'язування.

переходів: $4^+(1,229) \rightarrow 2_1^+(0,510) \rightarrow 0^+$.

Якщо ядро в основному стані має форму витягнутого еліпсоїда, то збуджені стани еліпсоїдального ядра складаються з ротаційних смуг, тобто послідовності рівнів, енергія яких пропорційна I(I+1). Для парно-парних ядер, власний кутовий момент ядра $\vec{J}=0$, тому проекція повного кутового моменту на вісь z' $I_{z'}=K=0$ і енергія збуджених обертальних рівнів ядра буде розраховуватися за формулою:

$$E_I = \frac{\hbar^2}{2F}I(I+1)\,,$$

де I - спін збудженого стану ядра, F - момент інерції ядра. У випадку парно-парних ядер, квантові числа кутового моменту та парності можуть приймати значення $I^{\pi} = 0^+, 2^+, 4^+, \dots$ Обрахуємо енергії збуджених рівнів основної ротаційної смуги :

$$E_2 = \frac{\hbar^2}{2F} 2(2+1) = \frac{\hbar^2}{2F} \cdot 6$$
; $E_4 = \frac{\hbar^2}{2F} \cdot 20$, $E_6 = \frac{\hbar^2}{2F} \cdot 42$, $E_8 = \frac{\hbar^2}{2F} \cdot 72$

Правило інтервалів для основної ротаційної смуги:

$$\frac{E_2}{E_2} \div \frac{E_4}{E_2} \div \frac{E_6}{E_2} \div \frac{E_8}{E_2} = \frac{6}{6} \div \frac{20}{6} \div \frac{42}{6} \div \frac{72}{6} = 1 \div 3, 3 \div 7 \div 12$$

Правило смуг виконується в сильнодеформованих рідкоземельних елементів з масовими числами $155 \le A \le 190$ та актиноїдах $225 \le A \le 250$.

Проаналізувати особливості енергетичного спектру ротаційних станів в парно-парних аксіально-деформованих ядрах. Отримати співвідношення для обчислення енергій обертальних станів основної ротаційної полоси за відомої енергії першого стану. Обчислити енергії третього та четвертого обертальних станів ядра ^{182}W , якщо перший ротаційний стан у цьому ядрі вище основного на 0,1 MeB.

Розв'язування.

Якщо ядро в основному стані має форму витягнутого еліпсоїда, то збуджені стани еліпсоїдального ядра складаються з ротаційних смуг, тобто послідовності рівнів, енергія яких пропорційна I(I+1). Для парно-парних ядер, власний кутовий момент ядра $\vec{J}=0$, тому проекція повного кутового моменту на вісь z' $I_{z'}=K=0$ і енергія збуджених обертальних рівнів ядра буде розраховуватися за формулою:

$$E_I = \frac{\hbar^2}{2F}I(I+1)\,,$$

де I - спін збудженого стану ядра, F - момент інерції ядра. У випадку парно-парних ядер, квантові числа кутового моменту та парності можуть приймати значення $I^{\pi} = 0^+, 2^+, 4^+, \dots$ За відомим значенням енергії першого збудженого стану можна отримати:

$$E_{2^{+}} = \frac{\hbar^{2}}{2F} 2(2+1) = \frac{\hbar^{2}}{2F} \cdot 6 \rightarrow \frac{\hbar^{2}}{2F} = \frac{E_{2+}}{6}$$

Тоді енергії наступних збуджених рівнів з I > 2 будуть:

$$E_I = \frac{E_{2+}}{6}I(I+1)$$

Для ядра ^{182}W , енергія першого ротаційного стану з $I^{\pi}=2^{+}$ дорівнює 100 кеВ, тоді $\frac{\hbar^{2}}{2F}=\frac{E_{2+}}{6}=\frac{100}{6}$ кеВ. Тоді, енергії наступних обертальних станів ядра ^{182}W будуть:

$$E_{4^{+}} = \frac{E_{2+}}{6}I(I+1) = \frac{100}{6}4(4+1) = 333$$
 кеВ – другий обертальний рівень,

$$E_{6^{+}} = \frac{E_{2+}}{6}I(I+1) = \frac{100}{6}6(6+1) = 700 \text{ кеВ} - \text{третій обертальний рівень,}$$

$$E_{8^{+}} = \frac{E_{2+}}{6}I(I+1) = \frac{100}{6}8(8+1) = 1200 \text{ кеВ} - \text{четвертий обертальний рівень.}$$

№3.12

Проаналізувати особливості енергетичного спектру ротаційних станів в парно-парних аксіально-деформованих ядрах. Використовуючи модель рідкої краплі, порівняти деформації ядер ^{222}Ra і ^{228}Th , якщо енергії перших обертальних рівнів цих ядер рівні відповідно $E(2^+)=112$ кеВ, $E(2^+)=58$ кеВ.

Розв'язування.

Якщо ядро в основному стані має форму витягнутого еліпсоїда, то збуджені стани еліпсоїдального ядра складаються з ротаційних смуг, тобто послідовності рівнів, енергія яких пропорційна I(I+1). Для парно-парних ядер, власний кутовий момент ядра $\vec{J}=0$, тому проекція повного кутового моменту на вісь z' $I_{z'}=K=0$ і енергія збуджених обертальних рівнів ядра буде розраховуватися за формулою:

$$E_I = \frac{\hbar^2}{2F}I(I+1)\,,$$

де I - спін збудженого стану ядра, F - момент інерції ядра. У випадку парно-парних ядер, квантові числа кутового моменту та парності можуть приймати значення $I^{\pi} = 0^+, 2^+, 4^+, \dots$

Використаємо гідродинамічну модель для розрахунку моменту інерції F для аксіальносиметричного ядра і отримання виразу для параметру деформації β_2 :

$$F = F_{hydr} = \frac{9}{4\pi} Am R_0^2 \beta_2^2 \frac{\left(1 + \frac{1}{4} \sqrt{\frac{5}{4\pi}} \beta_2\right)^2}{\left(2 + \sqrt{\frac{5}{4\pi}} \beta_2 + \frac{26}{16\pi} \beta_2^2\right)}$$

Перетворимо даний вираз, нехтуючи у дробовому виразі членами порядку eta^2 та врахувавши вираз для радіусу еквівалентного ядра $R_0 = r_0 \sqrt[3]{A}$:

$$\begin{split} F_{hydr} &= \frac{9}{4\pi} Am R_0^2 \beta_2^2 \frac{2}{2} \frac{1 + 2\frac{1}{4} \sqrt{\frac{5}{4\pi}} \beta_2 + \frac{1}{16} \frac{5}{4\pi} \beta_2^2}{(2 + \sqrt{\frac{5}{4\pi}} \beta_2 + \frac{26}{16\pi} \beta_2^2)} = \frac{9}{8\pi} Am R_0^2 \beta_2^2 = \frac{9}{8\pi} Am r_0^2 A^{2/3} \beta_2^2 = \frac{9}{8\pi} m r_0^2 A^{5/3} \beta_2^2 \\ &\rightarrow \beta_2^2 = \frac{8\pi}{9m r_0^2} \frac{F_{hydr}}{A^{5/3}} \end{split}$$

Значення моменту інерції ядра визначає енергії обертальних рівнів:

$$E_I = \frac{\hbar^2}{2F}I(I+1) \rightarrow F = \frac{1}{E_I}\frac{\hbar^2I(I+1)}{2}$$

Використовуючи енергії перших обертальних рівнів $I^{\pi}=2^{+}$: $F=\frac{1}{E_{\gamma^{+}}}\frac{\hbar^{2}2(2+1)}{2}=\frac{3\hbar^{2}}{E_{\gamma^{+}}}$

Тоді вираз для параметру деформації буде: $\beta_2^2 = \frac{24\pi\hbar^2}{9mr_0^2} \frac{1}{A^{5/3} \cdot E_{2^+}}$. Порівняємо деформації ядер

 $^{222}Ra\,$ і $^{228}Th\,,\,$ як відношення їх параметрів деформації $\,eta_2\,$:

$$\frac{\beta_2(^{222}Ra)}{\beta_2(^{228}Th)} = \sqrt{\frac{E_{2^+,Th}}{E_{2^+,Ra}} \left(\frac{A_{Th}}{A_{Ra}}\right)^{5/3}} = \sqrt{\frac{58}{112}} \left(\frac{228}{222}\right)^{5/6} = 0,74$$

№3.13

Проаналізувати особливості енергетичного спектру ротаційних станів в парно-парних аксіально-деформованих ядрах. Отримати правило інтервалів для основної ротаційної смуги. Проаналізувати та класифікувати спектр енергетичних станів ядра $^{160}_{66}Dy$:

I^{π}	0+	2+	4+	6+	8+
E_{I} , ке ${ m B}$	0	86,79	283,82	581,08	967,2

Визначити найбільш ймовірний шлях γ - переходів із стану 8^+ в основний стан.

Розв'язування.

Якщо ядро в основному стані має форму витягнутого еліпсоїда, то збуджені стани еліпсоїдального ядра складаються з ротаційних смуг, тобто послідовності рівнів, енергія яких пропорційна I(I+1). Для парно-парних ядер, власний кутовий момент ядра $\vec{J}=0$, тому проекція повного кутового моменту на вісь z' $I_{z'}=K=0$ і енергія збуджених обертальних рівнів ядра буде розраховуватися за формулою:

$$E_I = \frac{\hbar^2}{2F}I(I+1)\,,$$

де I - спін збудженого стану ядра, F - момент інерції ядра. У випадку парно-парних ядер, квантові числа кутового моменту та парності можуть приймати значення $I^{\pi} = 0^+, 2^+, 4^+, \dots$

Ядро $^{160}_{66} Dy$ ϵ парно-парним, отже власний кутовий момент ядра $\vec{I} = 0$. Обрахуємо енергії збуджених рівнів основної ротаційної смуги :

$$E_2 = \frac{\hbar^2}{2F} 2(2+1) = \frac{\hbar^2}{2F} \cdot 6$$
; $E_4 = \frac{\hbar^2}{2F} \cdot 20$, $E_6 = \frac{\hbar^2}{2F} \cdot 42$, $E_8 = \frac{\hbar^2}{2F} \cdot 72$

Правило інтервалів для основної ротаційної смуги:

$$\frac{E_2}{E_2} \div \frac{E_4}{E_2} \div \frac{E_6}{E_2} \div \frac{E_8}{E_2} = \frac{6}{6} \div \frac{20}{6} \div \frac{42}{6} \div \frac{72}{6} = 1 \div 3, 3 \div 7 \div 12$$

Обчислимо відношення енергій для даного спектру:

$$\frac{E_2}{E_2} \div \frac{E_4}{E_2} \div \frac{E_6}{E_2} \div \frac{E_8}{E_2} = \frac{86,79}{86,79} \div \frac{238,82}{86,79} \div \frac{581,08}{86,79} \div \frac{967,2}{86,79} = 1 \div 2,75 \div 6,7 \div 11,1 \approx 1 \div 3,3 \div 7 \div 12$$

Оскільки експериментальні значення енергій відповідають правилу інтервалів, то таким чином доведено, що спектр ядра $^{160}_{66}$ Dy ϵ основною ротаційною смугою.

Визначимо найбільш ймовірні γ -переходи зі стану 8^+ . Значення мультипольності λ та парності π_γ гамма-кванта, який випромінюється при переході $i \to f$ обмежені законами збереження моменту кількості руху та парності: $\vec{J}_i = \vec{J}_f + \vec{\lambda}$, $\pi_i = \pi_f \cdot \pi_\gamma$. Можуть випромінюватися лише γ - кванти з мультипольністю $\left| J_i - J_f \right| \leq \lambda \leq J_i + J_f$ та парністю $\pi_\gamma = \pi_i \pi_f$. Значення парності гамма-кванта дозволяє визначити його тип: якщо $\pi_\gamma = (-1)^{\lambda}$, то випромінювані кванти є електричного типу і позначаються як $E\lambda$, якщо $\pi_\gamma = (-1)^{\lambda+1}$, то

випромінювані кванти ϵ магнітного типу і позначаються як $M\lambda$. Абсолютно забороненими ϵ переходи з $\lambda = 0$.

Перехід
$$8^+ \rightarrow 6^+$$
:

Мультипольність γ - кванта:

Парність у - кванта:

Тип γ - кванта:

$$|8-6| \le \lambda \le 8+6$$

 $\lambda = 2, 4, 6, 8, 10, 12, 14$

= 3,5,7,9,11,13

$$\lambda = 2, 4, 6, 8, 10, 12, 14$$
 $\pi_{\gamma} = \pi_{i}\pi_{f} = (+1)(+1) = +1$

$$\pi_{\gamma} = +1 = \begin{cases} (-1)^{\lambda(naphe)} \\ (-1)^{\lambda(nenaphe)+1} \end{cases} \rightarrow$$

 \Rightarrow E2, E4, E6, E8, E10, E12, E14;

 \Rightarrow M3, M5, M7, M9, M11, M13;

Аналогічно:

$$8^+ \to 4^+$$
:

$$4 \le \lambda \le 12, \ \pi_{x} = +1$$

$$8^+ \rightarrow 4^+$$
: $4 \le \lambda \le 12$, $\pi_{\gamma} = +1$ $\Rightarrow E4, E6, E8, E10, E12$;

$$\Rightarrow$$
 M5, M7, M9, M11;

$$8^+ \rightarrow 2^+$$

$$8^+ \rightarrow 2^+$$
: $6 \le \lambda \le 10$; $\pi_{\gamma} = +1$ $\Rightarrow E6, E8, E10$; $\Rightarrow M7, M9$;

$$\Rightarrow$$
 E6, E8, E10

$$\Rightarrow M7.M9$$

$$8^+ \to 0^+$$

$$8^+ \to 0^+$$
: $\lambda = 8, \ \pi_{\gamma} = +1$

$$\Rightarrow E8$$

Згідно з оцінкою Вайскопфа, відношення імовірностей конкуруючих переходів таке:

$$\frac{w_{w}(E\lambda)}{w_{w}(M(\lambda+1))} \approx \frac{10^{6}}{E_{v}^{2}(MeB)} ,$$

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_{\gamma}^2(MeB)} , \qquad \frac{w_w(M\lambda)}{w_w(E(\lambda+1))} \approx \frac{100}{E_{\gamma}^2(MeB)} A^{-\frac{2}{3}} .$$

Тобто найімовірнішими ϵ електричні переходи з мінімальною мультипольністю λ . Таким чином, найбільш ймовірним буде перехід $8^+ \to 6^+$ із випроміненням $E2 \gamma$ - кванта.

№3.14

Довести, що спектр збуджених станів ядра ^{238}Pu -ротаційний. Визначити найімовірніші γ переходи зі стану 4⁺.

Розв'язування.

Ядро $^{238}_{94}Pu$ є парно-парним, отже власний кутовий момент ядра $\vec{J}=0$, тому проекція повного кутового моменту на вісь z K=0 і енергія обертальних рівнів ядра розраховується:

$$E_I = \frac{\hbar^2}{2F}I(I+1)\,,$$

де I - спін збудженого стану ядра, F момент інерції ядра.

Обрахуємо енергії збуджених рівнів: $E_2 = \frac{\hbar^2}{2F} 2(2+1) = \frac{\hbar^2}{2F} \cdot 6$; $E_4 = \frac{\hbar^2}{2F} \cdot 20$

Правило інтервалів для основної ротаційної смуги: $\frac{E_2}{E_2} \div \frac{E_4}{E_2} = \frac{6}{6} \div \frac{20}{6} = 1 \div 3,3$

Обчислимо відповідні відношення для даного спектру: $\frac{E_2}{E_2} \div \frac{E_4}{E_2} = \frac{43}{43} \div \frac{146}{43} = 1 \div 3,40$

Оскільки експериментальні значення енергій відповідають правилу інтервалів, то таким чином доведено, що спектр ядра $^{238}_{94}Pu$ ϵ основною ротаційною смугою.

Визначимо найбільш ймовірні γ -переходи зі стану 4^+ . Значення мультипольності λ та парності π_γ гамма-кванта, який випромінюється при переході $i \to f$ обмежені законами збереження моменту кількості руху та парності: $\vec{J}_i = \vec{J}_f + \vec{\lambda}$, $\pi_i = \pi_f \cdot \pi_\gamma$. Можуть випромінюватися лише γ - кванти з мультипольністю $\left| J_i - J_f \right| \leq \lambda \leq J_i + J_f$ та парністю $\pi_\gamma = \pi_i \pi_f$. Значення парності гамма-кванта дозволяє визначити його тип: якщо $\pi_\gamma = (-1)^\lambda$, то випромінювані кванти є електричного типу і позначаються як $E\lambda$, якщо $\pi_\gamma = (-1)^{\lambda+1}$, то випромінювані кванти є магнітного типу і позначаються як $M\lambda$. Абсолютно забороненими є переходи з $\lambda = 0$.

Перехід
$$4^+ \rightarrow 2^+$$
:

Мультипольність γ - кванта: Парність γ - кванта: Тип γ - кванта:

$$\begin{aligned} \left|4-2\right| &\leq \lambda \leq 4+2 \\ \lambda &= 2,3,4,5,6 \end{aligned} \qquad \begin{aligned} \pi_{\gamma} &= +1 = \begin{cases} (-1)^{\lambda(napne)} \\ (-1)^{\lambda(nenapne)+1} \end{cases} \rightarrow \\ &\Rightarrow E2,E4,E6; \Rightarrow M3,M5 \end{aligned}$$

Аналогічно для переходу $4^+ \rightarrow 0^+$: $\lambda = 4$, $\pi_{\gamma} = +1 \Longrightarrow E8$.

Згідно з оцінкою Вайскопфа, відношення імовірностей конкуруючих переходів таке:

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_{\gamma}^2(MeB)} , \qquad \frac{w_w(M\lambda)}{w_w(E(\lambda+1))} \approx \frac{100}{E_{\gamma}^2(MeB)} A^{-\frac{2}{3}} .$$

Тобто найімовірнішими ϵ електричні переходи з найменшою мультипольністю λ . Отже, найбільш ймовірним ϵ перехід $4^+ \to 2^+$ з випромінюванням квадрупольного γ -кванта E2.

№3.15

Довести, що спектр ядра 180 Hf ϵ ротаційною полосою. Визначити найбільш ймовірні γ - переходи зі стану 8^+ .

кеВ	
1079	 8+
637	 6+
307	 4+
93	 2+
0	 0

Розв'язування.

Ядро $^{180}_{72}$ Hf ϵ парно-парним, отже власний кутовий момент ядра $\vec{J}=0$, тому проекція повного кутового моменту на вісь z K=0 і енергія обертальних рівнів ядра розраховується

$$E_I = \frac{\hbar^2}{2F}I(I+1)\,,$$

де I - спін збудженого стану ядра, F момент інерції ядра. Обрахуємо енергії збуджених

$$\text{рівнів:} \ E_2 = \frac{\hbar^2}{2F} \, 2(2+1) = \frac{\hbar^2}{2F} \cdot 6 \ ; \ E_4 = \frac{\hbar^2}{2F} \cdot 20 \,, \ E_6 = \frac{\hbar^2}{2F} \cdot 42 \,, \ E_8 = \frac{\hbar^2}{2F} \cdot 72 \,.$$

Правило інтервалів для основної ротаційної смуги:

$$\frac{E_2}{E_2} \div \frac{E_4}{E_2} \div \frac{E_6}{E_2} \div \frac{E_8}{E_2} = \frac{6}{6} \div \frac{20}{6} \div \frac{42}{6} \div \frac{72}{6} = 1 \div 3, 3 \div 7 \div 12$$

Обчислимо відповідні відношення для даного спектру:

$$\frac{E_2}{E_2} \div \frac{E_4}{E_2} \div \frac{E_6}{E_2} \div \frac{E_8}{E_2} = \frac{93}{93} \div \frac{307}{93} \div \frac{637}{93} \div \frac{1079}{93} = 1 \div 3, 3 \div 6, 9 \div 11, 6$$

Оскільки експериментальні значення енергій відповідають правилу інтервалів, то таким чином доведено, що спектр ядра $^{180}_{72}$ Hf ϵ основною ротаційною смугою.

Визначимо найбільш ймовірні γ -переходи зі стану 8^+ . Значення мультипольності λ та парності π_γ гамма-кванта, який випромінюється при переході $i \to f$ обмежені законами збереження моменту кількості руху та парності: $\vec{J}_i = \vec{J}_f + \vec{\lambda}$, $\pi_i = \pi_f \cdot \pi_\gamma$. Можуть випромінюватися лише γ - кванти з мультипольністю $\left| J_i - J_f \right| \leq \lambda \leq J_i + J_f$ та парністю $\pi_\gamma = \pi_i \pi_f$. Значення парності гамма-кванта дозволяє визначити його тип: якщо $\pi_\gamma = (-1)^\lambda$, то випромінювані кванти є електричного типу і позначаються як $E\lambda$, якщо $\pi_\gamma = (-1)^{\lambda+1}$, то випромінювані кванти є магнітного типу і позначаються як $M\lambda$. Абсолютно забороненими є переходи з $\lambda = 0$.

Перехід
$$8^+ \rightarrow 6^+$$
:

Мультипольність γ - кванта: Парність γ - кванта: Тип γ - кванта:

$$\begin{split} |8-6| &\leq \lambda \leq 8+6 \\ \lambda &= 2,4,6,8,10,12,14 \\ &= 3,5,7,9,11,13 \end{split} \qquad \begin{aligned} \pi_{\gamma} &= \pi_{i}\pi_{f} = (+1)(+1) = +1 \\ &\Rightarrow E2,E4,E6,E8,E10,E12,E14; \\ &\Rightarrow M3,M5,M7,M9,M11,M13; \end{aligned}$$

Аналогічно:

$$\begin{array}{lll} 8^+ \rightarrow 4^+ \colon & 4 \leq \lambda \leq 12 \;, \; \pi_{\gamma} = +1 & \Rightarrow E4, E6, E8, E10, E12; & \Rightarrow M5, M7, M9, M11; \\ 8^+ \rightarrow 2^+ \colon & 6 \leq \lambda \leq 10 \;; \; \pi_{\gamma} = +1 & \Rightarrow E6, E8, E10; & \Rightarrow M7, M9; \\ 8^+ \rightarrow 0^+ \colon & \lambda = 8 \;, \; \pi_{\gamma} = +1 & \Rightarrow E8 \end{array}$$

Згідно з оцінкою Вайскопфа, відношення імовірностей конкуруючих переходів таке:

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_{\gamma}^2(MeB)} , \qquad \frac{w_w(M\lambda)}{w_w(E(\lambda+1))} \approx \frac{100}{E_{\gamma}^2(MeB)} A^{-\frac{2}{3}} .$$

Тобто найімовірнішими ϵ електричні переходи з найменшою мультипольністю λ . Отже, найбільш ймовірним ϵ перехід $8^+ \to 6^+$ з випромінюванням γ -кванта E2.

РОЗДІЛ 4.

Електромагнітне випромінювання ядер

№4.1

Знайти вираз для ефективного кінематичного заряду нуклона в ЛСК при дипольних гаммапереходах. Враховувати, що у системі центра мас оператор дипольного переходу має вигляд $\overrightarrow{D} = e \sum_{i=1}^{z} \overrightarrow{\rho}_{i} \; .$

Розв'язування.

У системі центра мас, оператор дипольного переходу має вигляд:

$$\vec{D} = e \sum_{j_p=1}^{z} \vec{r}'_{j_p}$$

Тут \vec{r}'_{j_p} - координати протонів у СЦМ. При переході в ЛСК потрібно врахувати рух центру

мас системи: $\vec{r}'_{j_p} = \vec{r}_j - \vec{R}$, $\vec{R} = \frac{1}{A} \sum_{j=1}^A \vec{r}_j = \frac{1}{A} \left\{ \sum_{j_n=1}^Z \vec{r}_{j_n} + \sum_{j_n=1}^N \vec{r}_{j_n} \right\}$. Після підстановки отримуємо:

$$\begin{aligned} \overrightarrow{D} &= e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{\sum_{j_{p}=1}^{z} \overrightarrow{R}} = \sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}} - eZ\overrightarrow{R} = e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{Z} \underbrace{A}_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}} + \sum_{j_{n}=1}^{N} \overrightarrow{r}_{j_{n}} = e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{Z} \underbrace{A}_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}} - e^{Z} \underbrace{A}_{j_{n}=1}^{z} \overrightarrow{r}_{j_{n}} = e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{Z} \underbrace{A}_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}} - e^{Z} \underbrace{A}_{j_{n}=1}^{z} \overrightarrow{r}_{j_{n}} = e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{Z} \underbrace{A}_{j_{n}=1}^{z} \overrightarrow{r}_{j_{p}} - e^{Z} \underbrace{A}_{j_{n}=1}^{z} \overrightarrow{r}_{j_{n}} = e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{Z} \underbrace{A}_{j_{n}=1}^{z} \overrightarrow{r}_{j_{p}} - e^{\sum_{j_{p}=1}^{z} \overrightarrow{r}_{j_{p}}} - e^{\sum_{$$

Оскільки $\vec{D} = \sum_{j=1}^A e_j (\lambda = 1) \vec{r}_j$, то таким чином показано, що ефективний кінематичний заряд

для протона в ЛСК : $e_j(\lambda=1)=e\frac{N}{A}$, а ефективний кінематичний заряд для нейтрона в ЛСК :

$$e_j(\lambda=1)=-e\frac{Z}{A}.$$

Оцінити час напіврозпаду ізомерного стану ^{107m}Ag ядра срібла з характеристиками $I^{\pi}=(7/2)^{+},\ E_{m}=93,13$ кеВ, у припущенні, що він розпадається гамма-переходами для яких можна використовувати оцінки Вайскопфа:

$$\frac{1}{T_{1/2}} = \frac{w_w(E\lambda)}{\ln 2} \cong 3, 2 \cdot \frac{(1+1/\lambda)}{(1+\lambda/3)^2} \cdot \frac{E_{\gamma}}{[(2\lambda+1)!!]^2} (k_{\gamma}R_0)^{2\lambda} \cdot 10^{19} \quad \text{(c-1)},$$

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_{\gamma}^2 (MeB)} A^{-2/3},$$

де $k_{\gamma}R_{0}\cong 6\cdot 10^{-3}\,A^{1/3}E_{\gamma}$. Порівняти результат з експериментальними даними ($T_{1/2}=44,3$ секунди) та якісно пояснити причини можливих розходжень. Спін I і парність π основного стану срібла такі $I^{\pi}=(1/2)^{-}$.

Розв'язування.

Спочатку визначимо найбільш ймовірні γ -переходи між станами $\frac{7}{2}^+ \to \frac{1}{2}^-$. Значення мультипольності λ та парності π_γ гамма-кванта, який випромінюється при переході $i \to f$ обмежені законами збереження моменту кількості руху та парності: $\vec{J}_i = \vec{J}_f + \vec{\lambda}$, $\pi_i = \pi_f \cdot \pi_\gamma$. Можуть випромінюватися лише γ - кванти з мультипольністю $\left| J_i - J_f \right| \le \lambda \le J_i + J_f$ та парністю $\pi_\gamma = \pi_i \pi_f$. Значення парності гамма-кванта дозволяє визначити його тип: якщо $\pi_\gamma = (-1)^\lambda$, то випромінювані кванти є електричного типу і позначаються як $E\lambda$, якщо $\pi_\gamma = (-1)^{\lambda+1}$, то випромінювані кванти є магнітного типу і позначаються як $M\lambda$. Абсолютно забороненими є переходи з $\lambda = 0$.

Перехід
$$\frac{7}{2}^+ \rightarrow \frac{1}{2}^-$$
:

Мультипольність γ - кванта: Парність γ - кванта: Тип γ - кванта:

$$\left|\frac{7}{2} - \frac{1}{2}\right| \le \lambda \le \frac{7}{2} + \frac{1}{2}$$

$$\pi_{\gamma} = \pi_{i}\pi_{f} = (+1)(-1) = -1$$

$$\pi_{\gamma} = \pi_{i}\pi_{f} = (+1)(-1) = -1$$

$$\Rightarrow E3$$

$$\Rightarrow M4$$

Отже, можливими ϵ *E*3 та *M*4 переходи. З оцінки Вайскопфа, відношення імовірностей конкуруючих переходів таке:

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_v^2(MeB)} A^{-2/3}$$
,

Тобто найімовірнішими ϵ електричні переходи з мінімальною мультипольністю λ . Це означа ϵ , що внесок E3 переходів сутт ϵ во переважа ϵ внесок M4 переходів.

Розрахуємо значення періоду напіврозпаду ізомерного стану ядра з A = 103 за рахунок E3 переходів із енергією гамма-квантів $E_{\gamma} = 0.09313$ MeB:

$$\frac{1}{T_{1/2}(E3)} = \frac{w_w(E3)}{\ln 2} \cong 3,2 \cdot \frac{(1+1/3)}{(1+3/3)^2} \cdot \frac{0,09313}{[(2\cdot3+1)!!]^2} (6\cdot10^{-3}\cdot107^{1/3}\cdot0,09313)^{2\cdot3}\cdot10^{19} =$$

$$\cong 3,2 \cdot \frac{1}{3} \cdot \frac{0,09313}{[7\cdot5\cdot3]^2} (6\cdot10^{-3}\cdot107^{1/3}\cdot0,09313)^6\cdot10^{19} = 1,07\cdot8,4\cdot10^{-6}\cdot3,48\cdot10^{-16}\cdot10^{19} = 31,27\cdot10^{-3}$$

$$T_{1/2}(E3) = \frac{1}{31\cdot27}\cdot10^3 = 31,9 \text{ c}$$

Оцінки ймовірностей електромагнітних переходів на основі одночастинкової моделі Вайскопфа не враховують реальну оболонкову структуру ядра. Також при отриманні формули Вайскопфа кутові інтеграли приймались рівними одиниці, і через це явно не враховувалися правила відбору за кутовим моментами. Саме тому ми і маємо розбіжності між експериментальними даним і отриманим результатом з оцінки Вайскопфа.

№4.3

Оцінити час напіврозпаду ізомерного стану ^{111m}Cd ядра кадмію з характеристиками $I^{\pi}=(11/2)^{-},\ E_{m}=396,2$ МеВ, у припущенні, що він розпадається гамма-переходами для яких можна використовувати оцінки Вайскопфа:

$$\frac{1}{T_{1/2}} = \frac{w_w(E\lambda)}{\ln 2} \cong 3.2 \cdot \frac{(1+1/\lambda)}{(1+\lambda/3)^2} \cdot \frac{E_{\gamma}}{[(2\lambda+1)!!]^2} (k_{\gamma}R_0)^{2\lambda} \cdot 10^{19} \quad \text{(c-1)},$$

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_{\gamma}^2 (MeB)} A^{-2/3},$$

де $k_{\gamma}R_{0}\cong 6\cdot 10^{-3}A^{1/3}E_{\gamma}$. Порівняти результат з експериментальними даним ($T_{1/2}=48,3$ секунди) та якісно пояснити причини можливих розходжень. Спін I і парність π основного стану кадмію такі $I^{\pi}=(1/2)^{+}$.

Розв'язування.

Спочатку визначимо найбільш ймовірні γ -переходи між станами $\frac{11}{2}^- \to \frac{1}{2}^+$. Значення мультипольності λ та парності π_γ гамма-кванта, який випромінюється при переході $i \to f$ обмежені законами збереження моменту кількості руху та парності: $\vec{J}_i = \vec{J}_f + \vec{\lambda}$, $\pi_i = \pi_f \cdot \pi_\gamma$. Можуть випромінюватися лише γ - кванти з мультипольністю $\left| J_i - J_f \right| \le \lambda \le J_i + J_f$ та парністю $\pi_\gamma = \pi_i \pi_f$. Значення парності гамма-кванта дозволяє визначити його тип: якщо $\pi_\gamma = (-1)^\lambda$, то випромінювані кванти є електричного типу і позначаються як $E\lambda$, якщо $\pi_\gamma = (-1)^{\lambda+1}$, то випромінювані кванти є магнітного типу і позначаються як $M\lambda$.

Перехід
$$\frac{11}{2}^- \rightarrow \frac{1}{2}^+$$
:

Мультипольність γ - кванта: Парність γ - кванта: Тип γ - кванта:

$$\left|\frac{11}{2} - \frac{1}{2}\right| \le \lambda \le \frac{11}{2} + \frac{1}{2}$$

$$\pi_{\gamma} = \pi_{i}\pi_{f} = (-1)(+1) = -1$$

$$\pi_{\gamma} = -1 = \begin{cases} (-1)^{5} \\ (-1)^{6+1} \end{cases} \rightarrow E5, \Rightarrow M6$$

Отже, можливими ϵ *E*5 та *M*6 переходи. З оцінки Вайскопфа, відношення імовірностей конкуруючих переходів таке:

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_v^2(MeB)} A^{-2/3}$$
,

Тобто найімовірнішими ϵ електричні переходи з мінімальною мультипольністю λ . Це означа ϵ , що внесок E5 переходів сутт ϵ во переважа ϵ внесок M6 переходів.

Розрахуємо значення періоду напіврозпаду ізомерного стану ядра з A = 111 за рахунок E5 переходів із енергією гамма-квантів $E_{\gamma} = 0.3962$ MeB:

$$\frac{1}{T_{1/2}(E5)} = \frac{w_w(E5)}{\ln 2} \cong 3,2 \cdot \frac{(1+1/5)}{(1+5/3)^2} \cdot \frac{0,3962}{[(2\cdot5+1)!!]^2} (6\cdot10^{-3}\cdot111^{1/3}\cdot0,3962)^{2\cdot5}\cdot10^{19} =$$

$$= 3,2 \cdot \frac{6\cdot9}{5\cdot64} \cdot \frac{0,3962}{[11\cdot9\cdot7\cdot5\cdot3]^2} (6\cdot10^{-3}\cdot4,8\cdot0,3962)^{2\cdot5}\cdot10^{19} = 3,2\cdot0,16875 \cdot \frac{0,3962}{10395^2} (0,0114246)^{10}\cdot10^{19} =$$

$$= 1,97997\cdot10^{-9}\cdot3,78792\cdot10^{-20}\cdot10^{19} = 7,5\cdot10^{-10} \text{ c}$$

$$T_{1/2}(E5) = 1,3\cdot10^9 \text{ c}$$

Оцінки ймовірностей електромагнітних переходів на основі одночастинкової моделі Вайскопфа не враховують реальну оболонкову структуру ядра. Також при отриманні формули Вайскопфа кутові інтеграли приймались рівними одиниці, і через це явно не враховувалися правила відбору за кутовим моментами. Саме тому ми і маємо розбіжності між експериментальними даним і отриманим результатом з оцінки Вайскопфа.

№4.4

Користуючись схемою збуджених станів ядра ^{208}Pb визначити мультипольності γ -переходів та найбільш ймовірний шлях розпаду збудженого стану 5^- .

Розв'язування.

Визначимо найбільш ймовірні γ -переходи зі стану 8^+ . Значення мультипольності λ та парності π_γ гамма-кванта, який випромінюється при переході $i \to f$ обмежені законами збереження моменту кількості руху та парності: $\vec{J}_i = \vec{J}_f + \vec{\lambda}$, $\pi_i = \pi_f \cdot \pi_\gamma$. Можуть випромінюватися лише γ - кванти з мультипольністю $\left| J_i - J_f \right| \leq \lambda \leq J_i + J_f$ та парністю $\pi_\gamma = \pi_i \pi_f$. Значення парності гамма-кванта дозволяє визначити його тип: якщо $\pi_\gamma = (-1)^\lambda$, то випромінювані кванти є електричного типу і позначаються як $E\lambda$, якщо $\pi_\gamma = (-1)^{\lambda+1}$, то

випромінювані кванти ϵ магнітного типу і позначаються як $M\lambda$. Абсолютно забороненими ϵ переходи з $\lambda=0$.

Перехід
$$5^- \rightarrow 3^-$$
:

Мультипольність γ - кванта:

Парність
$$\gamma$$
 - кванта:

Тип у - кванта:

$$|5-3| \le \lambda \le 5+3$$

$$\pi_{\gamma} = \pi_{i}\pi_{f} = (-1)(-1) = +1$$

$$\lambda = 2, 3, 4, 5, 6, 7, 8$$

$$\pi_{\gamma} = +1 = \begin{cases} (-1)^{\lambda(naphe)} \\ (-1)^{\lambda(nenaphe)+1} \end{cases}$$

 \Rightarrow E2, E4, E6, E8;

 \Rightarrow M3, M5

Аналогічно для переходів:

$$5^{-} \rightarrow 0^{+}$$
:

$$\lambda = 5$$
, $\pi_{\gamma} = -1$ $\Rightarrow E5$;

$$3^{-} \rightarrow 0^{+}$$
:

$$\lambda = 3; \; \pi_{\gamma} = -1 \qquad \Rightarrow E3.$$

Згідно з оцінкою Вайскопфа, відношення імовірностей конкуруючих переходів таке:

$$\frac{w_w(E\lambda)}{w_w(M(\lambda+1))} \approx \frac{10^6}{E_{\gamma}^2(MeB)} , \qquad \frac{w_w(M\lambda)}{w_w(E(\lambda+1))} \approx \frac{100}{E_{\gamma}^2(MeB)} A^{-\frac{2}{3}} .$$

Тобто найімовірнішими ϵ електричні переходи з найменшою мультипольністю λ . Отже, найбільш ймовірним шляхом розпаду ϵ перехід $5^- \to 3^- \to 0^+$ з послідовним випромінюванням E2 та E3 γ - квантів.

№4.5

Використовуючи схему рівнів ядра ^{30}Si знайти мультипольності γ переходів та визначити найбільш ймовірний шлях розпаду збудженого стану 0_1^+ . Вважати, що ймовірність E2 переходів значно перевищує ймовірність M1 переходів.

Розв'язування.

Визначимо найбільш ймовірний шлях розпаду збудженого стану 0_1^+ шляхом гамма-переходів. Значення мультипольності λ та парності π_γ гамма-кванта, який випромінюється при переході $i \to f$ обмежені законами збереження моменту кількості руху та парності: $\vec{J}_i = \vec{J}_f + \vec{\lambda}$, $\pi_i = \pi_f \cdot \pi_\gamma$. Можуть випромінюватися лише γ - кванти з мультипольністю $\left| J_i - J_f \right| \le \lambda \le J_i + J_f$ та парністю $\pi_\gamma = \pi_i \pi_f$. Значення парності гамма-кванта дозволяє визначити його тип: якщо $\pi_\gamma = (-1)^\lambda$, то випромінювані кванти є електричного типу і позначаються як $E\lambda$, якщо $\pi_\gamma = (-1)^{\lambda+1}$, то випромінювані кванти є магнітного типу і позначаються як $M\lambda$. Абсолютно забороненими є переходи з $\lambda = 0$.

Розглянемо 3 шляхи розпаду у основний стан, врахувавши, що перехід $0_1^+ \to 0^+ \ \epsilon$ абсолютно забороненим. Знайдемо всі можливі переходи, їх мультипольності та типи.

Розглянемо переходи зі стану 0_1^+ :

Перехід: Мультипольність
$$\gamma$$
 - кванта: Парність γ - кванта: Тип γ - кванта:
$$|0^+ \to 1^+ \qquad \qquad |0-1| \le \lambda \le 0+1 \,, \qquad \qquad \pi_\gamma = \pi_i \pi_f = (+1)(+1) = +1 \qquad \pi_\gamma = +1 = (-1)^{\lambda+1}$$
 $\lambda = 1 \qquad \Longrightarrow M1$

Аналогічно для переходу:

$$0_1^+ \rightarrow 2_{1,2}^+$$
: $\lambda = 2$, $\pi_{\gamma} = +1 = (-1)^2$ $\Longrightarrow E2$

Переходи зі стану 1^+ :

$$1^+ \rightarrow 2_{1,2}^+$$
: $1 \le \lambda \le 3$, $\pi_{\gamma} = +1$ $\Rightarrow E2$, $\Rightarrow M1, M3$

$$1^{\scriptscriptstyle +} \rightarrow 0^{\scriptscriptstyle +} \hspace{1cm} \lambda = 1 \,, \ \pi_{\scriptscriptstyle \gamma} = +1 \hspace{1cm} \Longrightarrow M1$$

Переходи зі стану 2_2^+ :

$$2_{2}^{+} \rightarrow 2_{1}^{+} \qquad \qquad 1 \leq \lambda \leq 4 \,, \quad \pi_{\gamma} = +1 \qquad \qquad \Rightarrow E2, E4 \,, \Rightarrow M1, M3$$

$$2_2^+ \rightarrow 0^+ \qquad \lambda = 2, \ \pi_{\gamma} = +1 \qquad \Rightarrow E2$$

Перехід зі стану 2_1^+ :

$$2_{1}^{+} \rightarrow 0^{+} \hspace{1cm} \lambda = 2 \; , \; \pi_{\gamma} = +1 \hspace{1cm} \Longrightarrow E2 \label{eq:lambda}$$

Згідно з оцінкою Вайскопфа, відношення імовірностей конкуруючих переходів таке:

$$\frac{w_{\scriptscriptstyle w}(E\lambda)}{w_{\scriptscriptstyle w}(M(\lambda+1))} \approx \frac{10^6}{E_{\scriptscriptstyle \gamma}^{\;2}(MeB)} \; , \qquad \qquad \frac{w_{\scriptscriptstyle w}(M\lambda)}{w_{\scriptscriptstyle w}(E(\lambda+1))} \approx \frac{100}{E_{\scriptscriptstyle \gamma}^{\;2}(MeB)} A^{-\frac{2}{3}} \; .$$

Тобто найімовірнішими є переходи з найменшою мультипольністю λ . Також врахуємо, що ймовірність E2 переходів значно перевищує ймовірність M1 переходів. Враховуючи, що ймовірність гамма-переходу в одиницю часу має вигляд:

$$w_{w}(E\lambda) = \alpha \frac{2(\lambda+1)}{\lambda[(2\lambda+1)!!]^{2}} (\frac{3}{3+\lambda})^{2} \frac{E_{\gamma}^{2\lambda+1}}{\hbar} (\frac{R_{0}}{\hbar c})^{2\lambda},$$

то за однакових типу і мультипольності переходи з більшою зміною енергії більш ймовірні. Отже, можемо бачити, що найбільш ймовірним ϵ такий шлях розпаду $0_1^+ \to 2_1^+ \to 0^+$, з послідовним випромінюванням двох γ -квантів типу E2.

РОЗДІЛ 5.

Радіоактивний розпад ядер з вильотом частинок

№5.1

Знайти кількість ядер, що розпалася у 10 мг ізотопу вуглецю ^{14}C за 1000 років. Визначити вік стародавніх дерев'яних кладок, що були знайдені при розкопках, якщо питома активність ізотопу вуглецю ^{14}C (яка накопичується лише в період росту дерев) в попелі кладок складає а) 0,3; б) 0,5 в) 0,8 від значень питомої активності золи свіжозрубаних дерев ($T_{1/2}(^{14}C)$) = 5700 років).

Розв'язування.

Знайдемо кількість ядер, що розпалася у 10 мг ізотопу вуглецю ^{14}C за 1000 років. Для цього запишемо закон радіоактивного розпаду $N(t) = N_0 \cdot e^{-\lambda t}$. Тут N_0 - кількість радіоактивних ядер у початковий момент часу $(t_0 = 0)$, N(t) - кількість радіоактивних ядер в момент часу t (тобто ядра, що не розпалися). Тоді, кількість ядер $\Delta N(t)$, що розпалися за час t, дорівнює

$$\Delta N(t) = N(t) - N_0 = N_0 \left(1 - \exp\{-\ln 2 \cdot \frac{t}{T_{1/2}}\} \right) = N_0 \left(1 - \exp\{-\ln 2 \cdot \frac{1000}{5700}\} \right) = 0.11 \cdot N_0$$

Кількість ядер N_0 можна визначити з маси радіоактивного препарату через сталу Авогадро $N_A = 6{,}022 \cdot 10^{23}$ [моль-1], молярну масу речовини μ [г/моль] та масу речовини m [г]:

$$N_0 = \frac{m}{\mu} N_A = \frac{0.01}{14} \cdot 6,022 \cdot 10^{23} = 4,3 \cdot 10^{20}$$
.

Далі знаходимо кількість ядер, що розпалися: $\Delta N(t) = 0.11 \cdot 4.3 \cdot 10^{20} = 4.73 \cdot 10^{19}$ ядер.

Радіовуглецевий метод аналізу дозволяє проводити датування всього, що колись було живим і використовувало повітря. В атмосфері постійно напрацьовується нестабільний ізотоп ^{14}C за рахунок реакції азоту із нейтронами $^{14}N+n \rightarrow ^{14}C+p$, тому у всіх живих об'єктах, доки вони поглинають повітря, підтримується постійна концентрація ізотопу ^{14}C . Коли

поглинання повітря об'єктом припиняється, то припиняється і надходження ізотопу ^{14}C і з часом відбувається лише його розпад.

В даній задачі розглядається деревина, яка була виготовлена зі зрубаних в певний момент часу дерев. Тому по кількості ізотопу ^{14}C в одиниці маси деревини, можна визначити час, який пройшов від моменту вирубки дерева.

Питома активність A_m — це активність, що приходиться на одиницю маси досліджуваного об'єкта $A_m = A/m$. Питому активність можна знайти із закону радіоактивного розпаду $N(t) = N_0 \exp\{-\lambda t\}$, домноживши дане рівняння зліва і справа та сталу розпаду λ та поділивши на масу досліджуваної речовини m, оскільки активність $A(t) = \lambda N(t)$, тоді $A_m(t) = A_{m,0} \exp\{-\lambda t\}$.

Відношення η питомої активності ізотопу ^{14}C в золі дерев'яних кладок відносно питомої активності ізотопу ^{14}C в золі свіжозрубаних дерев:

$$\eta = \frac{A_m(t)}{A_{m,0}} = \exp\{-\frac{\ln 2}{T_{1/2}}t\}$$

3 чого слідує, що вік дерев'яних кладок t може бути визначено, як

$$t = \frac{T_{1/2}}{\ln 2} \ln{\lbrace \frac{1}{\eta} \rbrace}$$

Тоді для заданих відношень η , отримуємо такі часи:

$$\eta = 0,3$$
 $t = \frac{5700}{\ln 2} \ln \{\frac{10}{3}\} = \frac{5700}{\ln 2} \ln \{\frac{3}{3}\frac{10}{3}\} \approx \frac{5700}{\ln 2} \{\ln 3 + \ln \frac{10}{9}\} \approx \frac{5700}{\ln 2} \{1 + \frac{1}{10} + \frac{1}{9}\} = 9903$ років $\eta = 0,5$ $t = \frac{5700}{\ln 2} \ln \{2\} = 5700$ років $\eta = 0,7$ $t = \frac{5700}{\ln 2} \ln (\frac{10}{7}) \approx \frac{5700}{\ln 2} \frac{3}{7} = 2934$ роки

Знайти кількість ядер, що розпалися у 1 Γ радіоактивного фосфору $^{32}_{15}P$ за сім діб. Період напіврозпаду радіоактивного фосфору 14,5 діб.

Розв'язування.

Запишемо закон радіоактивного розпаду $N(t) = N_0 \cdot e^{-\lambda t}$. Тут N_0 - кількість радіоактивних ядер у початковий момент часу $(t_0 = 0)$, N(t) - кількість радіоактивних ядер в момент часу t (тобто ядра, що не розпалися). Тоді, кількість ядер $\Delta N(t)$, що розпалися за час t, дорівнює

$$\Delta N(t) = N(t) - N_0 = N_0 \left(1 - \exp\{-\ln 2 \cdot \frac{t}{T_{1/2}}\} \right) =$$

$$= N_0 \left(1 - \exp\{-\ln 2 \cdot \frac{7}{14,5}\} \right) \approx N_0 \left(1 - \exp\{\ln 2^{-\frac{1}{2}}\} \right) = N_0 \left(1 - \frac{1}{\sqrt{2}} \right) \approx \frac{1}{3} N_0$$

Кількість ядер N_0 можна визначити з маси радіоактивного препарату через сталу Авогадро $N_A = 6{,}022 \cdot 10^{23}$ [моль⁻¹], молярну масу речовини μ [г/моль] та масу речовини m [г]:

$$N_0 = \frac{m}{\mu} N_A = \frac{1}{32} \cdot 6,022 \cdot 10^{23} = \frac{1}{5} \cdot 10^{23} = 2 \cdot 10^{22}$$
.

Далі знаходимо кількість ядер, що розпалися: $\Delta N(t) \approx \frac{2}{3} 10^{22}$ ядер.

№5.3

Яка доля початкової кількості ядер радіоактивного препарату з середнім часом життя τ : а) залишиться після інтервалу часу, рівному 10τ ; б) розпадеться за інтервал часу між $t_1 = \tau$ і $t_2 = 2\tau$.

Розв'язування.

Запишемо закон радіоактивного розпаду $N(t) = N_0 \cdot \exp\{-\lambda t\} = N_0 \cdot \exp\{-t/\tau\}$. Тут N_0 - кількість радіоактивних ядер у початковий момент часу $(t_0 = 0)$, N(t) - кількість

радіоактивних ядер в момент часу t (тобто ядра, що не розпалися), λ - стала розпаду, $\tau = \frac{1}{\lambda} = \frac{T_{1/2}}{\ln 2}$ - середній час життя.

А) Кількість ядер радіоактивного препарату, що не зазнає розпаду до моменту часу $t = 10\tau$:

$$N(10\tau) = N_0 e^{-\frac{10\tau}{\tau}} = N_0 e^{-10}$$

Доля початкової кількості ядер: $N(10\tau)/N_0 = e^{-10} = 4,54 \cdot 10^{-5}$.

Б) Кількість ядер радіоактивного препарату $\Delta N(t_1 \to t_2)$, що розпадеться за період часу від $t_1 = \tau$ і $t_2 = 2\tau$ можна визначити, як різницю між кількістю ядер, що не розпалась в момент часу $t_1 = \tau$ та кількості ядер, що не розпалась в момент часу $t_2 = 2\tau$:

$$\Delta N(t_1 \to t_2) = N(t_1) - N(t_2) = N_0(e^{-\frac{t_1}{\tau}} - e^{-\frac{t_2}{\tau}}) = N_0(e^{-\frac{\tau}{\tau}} - e^{-\frac{2\tau}{\tau}}) = N_0(e^{-1} - e^{-2})$$

Доля від початкової кількості ядер: $\frac{\Delta N(t_1 \to t_2)}{N(0)} = e^{-1} - e^{-2} = 0,2325 \ .$

№5.4

Знайти вираз для кількості ядер першого материнського ядра, що утворилися у випадку двостадійного радіоактивного розпаду.

Розв'язування.

Розглянемо випадок розпаду, коли внаслідок розпаду материнського ядра типу 1 зі сталою розпаду λ_1 утворюються дочірні ядра типу 2 зі сталою розпаду λ_2 , які у свою чергу, розпадаються і утворюють стабільні ядра типу 3. Схематично такий процес виглядає як $1 \rightarrow 2 \rightarrow 3$. У цьому випадку, зміна кількості ядер N_1 типу 1, кількості ядер N_2 типу 2 та кількості ядер N_3 типу 3 визначається системою рівнянь :

$$\frac{dN_1}{dt} = -\lambda_1 N_1; \ \frac{dN_2}{dt} = -\lambda_2 N_2 + \lambda_1 N_1; \ \frac{dN_3}{dt} = \lambda_2 N_2.$$

Зміст даних рівнянь такий: кількість ядер 1 зменшується за рахунок їх розпаду, кількість ядер 2 зменшується за рахунок їх власного розпаду та збільшується за рахунок розпаду ядер типу 1. Кількість стабільних ядер типу 3 поповнюється за рахунок розпаду ядер типу 2.

Припустимо, що в початковий момент часу $t_0=0$ маємо N_{10} материнських ядер, а ядер типу 2 і 3 немає, то $N_1(t_0=0)=N_{10}$, $N_2(t_0=0)=N_3(t_0=0)=0$. Проінтегруємо рівняння для N_1 :

$$\int_{N_{10}}^{N_1} \frac{dN_1}{N_1} = \int_{0}^{t} -\lambda_1 dt \; , \; \ln N_1 \mid_{N_{10}}^{N} = -\lambda_1 t \; , \; \ln N_1 = \ln N_{10} -\lambda_1 t \; , \; \; \rightarrow \; \; N_1 = N_{10} e^{-\lambda_1 t} \; .$$

Проінтегруємо рівняння для N_2 :

$$\frac{dN_2}{dt} = -\lambda_2 N_2 + \lambda_1 N_1 = -\lambda_2 N_2 + \lambda_1 N_{10} e^{-\lambda_1 t};$$

Маємо лінійне неоднорідне диференційне рівняння першого порядку $\frac{dN_2}{dt} + \lambda_2 N_2 = \lambda_1 N_{10} e^{-\lambda_1 t}$. Це рівняння можна розв'язати методом варіації довільної сталої. В цьому методі спочатку розглядають рівняння $\frac{dN_2}{dt} + \lambda_2 N_2 = 0$, інтегрують його $\int \frac{dN_2}{N_2} = \int -\lambda_2 dt$, отримуючи загальний вигляд для функції $N_2 = \tilde{C} \cdot \exp\{-\lambda_2 t\}$. Далі розглядають константу як функцію : $\tilde{C} = \tilde{C}(t)$ і розраховують її похідну: $\frac{dN_2}{dt} = \frac{d\tilde{C}}{dt} \cdot \exp\{-\lambda_2 t\} - \lambda_2 \tilde{C} \exp\{-\lambda_2 t\}$. Прирівнюємо значення похідної до виразу з розглядуваного рівняння:

$$\frac{dN_2}{dt} = \frac{d\tilde{C}}{dt} \cdot \exp\{-\lambda_2 t\} - \lambda_2 \tilde{C} \exp\{-\lambda_2 t\} = -\lambda_2 \tilde{C} \cdot \exp\{-\lambda_2 t\} + \lambda_1 N_{10} \exp\{-\lambda_1 t\}$$

Звідки отримуємо після скорочення:

$$\frac{d\tilde{C}}{dt} \cdot \exp\{-\lambda_2 t\} = \lambda_1 N_{10} \exp\{-\lambda_1 t\} \rightarrow \frac{d\tilde{C}}{dt} = \lambda_1 N_{10} \exp\{(\lambda_2 - \lambda_1)t\}$$

Інтегруючи, отримаємо вираз для сталої $\tilde{C} = C_0 + \frac{\lambda_1 N_{10}}{(\lambda_2 - \lambda_1)} \exp\{(\lambda_2 - \lambda_1)t\}$.

Тоді загальний вигляд функції N_2 буде:

$$N_{2} = \tilde{C} \cdot \exp\{-\lambda_{2}t\} = \left\{C_{0} + \frac{\lambda_{1}N_{10}}{(\lambda_{2} - \lambda_{1})} \exp\{(\lambda_{2} - \lambda_{1})t\}\right\} \cdot \exp\{-\lambda_{2}t\} = C_{0} \exp\{-\lambda_{2}t\} + \frac{\lambda_{1}N_{10}}{(\lambda_{2} - \lambda_{1})} \exp\{-\lambda_{1}t\}$$

 $\mbox{3 початкової умови} \ \ N_2(t=0) = 0 \ , \ \mbox{знаходимо:} \ \ N_2(t=0) = C_0 + \frac{\lambda_1 N_{10}}{(\lambda_2 - \lambda_1)} = 0 \ \rightarrow C_0 = -\frac{\lambda_1 N_{10}}{(\lambda_2 - \lambda_1)} \ .$

Тоді

$$N_{2} = \frac{\lambda_{1} N_{10}}{(\lambda_{2} - \lambda_{1})} \exp\{-\lambda_{1} t\} - \frac{\lambda_{1} N_{10}}{(\lambda_{2} - \lambda_{1})} \exp\{-\lambda_{2} t\} = N_{10} \frac{\lambda_{1}}{(\lambda_{2} - \lambda_{1})} \left\{ e^{-\lambda_{1} t} - e^{-\lambda_{2} t} \right\}.$$

Кількість ядер N_3 знаходимо з інтегрування рівняння $\frac{dN_3}{dt} = \lambda_2 N_2$:

$$\begin{split} N_{3} &= \lambda_{2} \int_{0}^{t} dt' N_{2} = \lambda_{2} \int_{0}^{t} N_{10} \frac{\lambda_{1}}{(\lambda_{2} - \lambda_{1})} \left\{ e^{-\lambda_{1}t'} - e^{-\lambda_{2}t'} \right\} dt' = N_{10} \frac{\lambda_{1} \lambda_{2}}{(\lambda_{2} - \lambda_{1})} \left\{ \frac{e^{-\lambda_{1}t'}}{-\lambda_{1}} \Big|_{t'=0}^{t'=t} - \frac{e^{-\lambda_{2}t}}{-\lambda_{2}} \Big|_{t'=0}^{t'=t} \right\} = \\ &= N_{10} \frac{\lambda_{1} \lambda_{2}}{(\lambda_{2} - \lambda_{1})} \left\{ \frac{e^{-\lambda_{2}t}}{\lambda_{2}} - \frac{e^{-\lambda_{1}t}}{\lambda_{1}} + \frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}} \right\} = N_{10} \left\{ 1 + \frac{\lambda_{1}}{(\lambda_{2} - \lambda_{1})} e^{-\lambda_{2}t} - \frac{\lambda_{2}}{(\lambda_{2} - \lambda_{1})} e^{-\lambda_{1}t} \right\} \end{split}$$

№5.5

Знайти вираз для зміни з часом кількості ядер, що утворюються у випадку тристадійного радіоактивного розпаду.

Розв'язування.

Розглянемо випадок тристадійного розпаду. При цьому внаслідок розпаду материнського ядра типу 1 зі сталою розпаду λ_1 утворюються дочірні ядра типу 2 зі сталою розпаду λ_2 , які розпадаються і утворюють дочірні ядра типу 3 зі сталою розпаду λ_3 , які у свою чергу розпадаються на стабільні ядра типу 4. Схематично такий процес виглядає як $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$. У цьому випадку, зміна кількості ядер N_1 , N_2 , N_3 , N_4 типів 1,2,3,4 відповідно, визначається системою рівнянь:

$$\frac{dN_1}{dt} = -\lambda_1 N_1 (1); \quad \frac{dN_2}{dt} = -\lambda_2 N_2 + \lambda_1 N_1 (2); \quad \frac{dN_3}{dt} = -\lambda_3 N_3 + \lambda_2 N_2 (3); \quad \frac{dN_4}{dt} = \lambda_3 N_3 (4)$$

Зміст даних рівнянь такий: кількість ядер 1 зменшується за рахунок їх розпаду, кількість ядер типів 2 і 3 зменшується за рахунок їх власного розпаду та збільшується за рахунок розпаду ядер типу 1 і 2 відповідно. Кількість стабільних ядер типу 4 поповнюється за рахунок розпаду ядер типу 3.

Припустимо, що в початковий момент часу $t_0=0$ маємо N_{10} материнських ядер, а ядер типу 2, 3 і 4 немає, тоді $N_1(t_0=0)=N_{10},\ N_2(t_0=0)=N_3(t_0=0)=N_4(t_0=0)=0$.

3 рівняння (4) в загальному вигляді кількість ядер типу 4 буде визначатися:

$$\int_{0}^{N_{4}} dN_{4} = \int_{0}^{t} \lambda_{3} N_{3}(t') dt' \to N_{4} = \int_{0}^{t} \lambda_{3} N_{3}(t') dt'$$
 (5)

Для зручності, домножимо зліва і справа рівняння (1) на $\exp{\{\lambda_l t\}}$, тоді, отримаємо для рівняння (1):

$$\frac{dN_1}{dt} \cdot e^{\lambda_1 t} = -\lambda_1 N_1 \cdot e^{\lambda_1 t}$$

Дане рівняння еквівалентне такому:

$$\frac{d(N_1 \cdot e^{\lambda_1 t})}{dt} = e^{\lambda_1 t} \frac{dN_1}{dt} + \lambda_1 e^{\lambda_1 t} N_1 = 0 \quad \to \tag{6}$$

$$N_1 \cdot e^{\lambda_1 t} = C_1 = N_{10} \rightarrow N_1(t) = N_{10} \cdot e^{-\lambda_1 t}$$
 (7)

Аналогічно помноживши рівняння (2) і (3) на $\exp\{\lambda_2 t\}$ та $\exp\{\lambda_3 t\}$ відповідно, отримуємо:

$$\frac{dN_2}{dt} \cdot e^{\lambda_2 t} = -\lambda_2 N_2 \cdot e^{\lambda_2 t} + \lambda_1 N_1 \cdot e^{\lambda_2 t} \quad \to \quad \frac{d(N_2 \cdot e^{\lambda_2 t})}{dt} = \lambda_1 N_1 \cdot e^{\lambda_2 t} ; \tag{8}$$

$$\frac{dN_3}{dt} \cdot e^{\lambda_3 t} = -\lambda_3 N_3 \cdot e^{\lambda_3 t} + \lambda_2 N_2 \cdot e^{\lambda_3 t} \quad \to \quad \frac{d(N_3 \cdot e^{\lambda_3 t})}{dt} = \lambda_2 N_2 \cdot e^{\lambda_3 t}; \tag{9}$$

3 рівнянь (8) та (7) отримуємо вираз для N_2 :

$$\begin{split} N_{2} \cdot e^{\lambda_{2}t} &= \int_{0}^{t} \lambda_{1} N_{1}(t') \cdot e^{\lambda_{2}t'} dt' = \int_{0}^{t} \lambda_{1} \cdot N_{10} \cdot e^{-\lambda_{1}t} \cdot e^{\lambda_{2}t'} dt' = \lambda_{1} N_{10} \int_{0}^{t} e^{(\lambda_{2} - \lambda_{1})t'} dt' = \\ &= \frac{\lambda_{1} N_{10}}{(\lambda_{2} - \lambda_{1})} e^{(\lambda_{2} - \lambda_{1})t} \Big|_{t'=0}^{t'=t} = \frac{\lambda_{1} N_{10}}{(\lambda_{2} - \lambda_{1})} \left\{ e^{(\lambda_{2} - \lambda_{1})t} - 1 \right\} \rightarrow \\ N_{2} &= \frac{\lambda_{1} N_{10} e^{-\lambda_{2}t}}{(\lambda_{2} - \lambda_{1})} \left\{ e^{(\lambda_{2} - \lambda_{1})t} - 1 \right\} = N_{10} \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} \left\{ e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right\} \equiv N_{10} \frac{\lambda_{1}}{\lambda_{1} - \lambda_{2}} \left\{ e^{-\lambda_{2}t} - e^{-\lambda_{1}t} \right\} \end{split} \tag{10}$$

3 рівнянь (10) та (9) отримуємо вираз для N_3 :

$$N_{3} \cdot e^{\lambda_{3}t} = \int_{0}^{t} \lambda_{2} N_{2}(t') \cdot e^{\lambda_{3}t'} dt' = \int_{0}^{t} \lambda_{2} \cdot N_{10} \frac{\lambda_{1}}{\lambda_{1} - \lambda_{2}} \{ e^{-\lambda_{2}t'} - e^{-\lambda_{1}t'} \} \cdot e^{\lambda_{3}t'} dt' =$$

$$= N_{10} \frac{\lambda_{1} \cdot \lambda_{2}}{\lambda_{1} - \lambda_{2}} \int_{0}^{t} \{ e^{(\lambda_{3} - \lambda_{2})t'} - e^{(\lambda_{3} - \lambda_{1})t'} \} dt' = N_{10} \frac{\lambda_{1} \cdot \lambda_{2}}{\lambda_{1} - \lambda_{2}} \{ \frac{e^{(\lambda_{3} - \lambda_{2})t}}{\lambda_{3} - \lambda_{2}} - \frac{e^{(\lambda_{3} - \lambda_{1})t}}{\lambda_{3} - \lambda_{1}} - 2 \} \rightarrow$$

$$N_{3} = N_{10} \frac{\lambda_{1} \cdot \lambda_{2}}{\lambda_{1} - \lambda_{2}} e^{-\lambda_{3}t} \{ \frac{e^{(\lambda_{3} - \lambda_{2})t} - 1}{\lambda_{3} - \lambda_{2}} - \frac{e^{(\lambda_{3} - \lambda_{1})t} - 1}{\lambda_{3} - \lambda_{1}} \} =$$

$$= N_{10} \frac{\lambda_{1} \cdot \lambda_{2}}{\lambda_{1} - \lambda_{2}} \{ \frac{e^{-\lambda_{2}t}}{\lambda_{3} - \lambda_{2}} - \frac{e^{-\lambda_{1}t}}{\lambda_{3} - \lambda_{1}} + \frac{\lambda_{1} - \lambda_{2}}{(\lambda_{3} - \lambda_{1})(\lambda_{3} - \lambda_{2})} e^{-\lambda_{3}t} \} \equiv$$

$$\equiv N_{10} \frac{\lambda_{1} \cdot \lambda_{2}}{\lambda_{1} - \lambda_{2}} \{ \frac{e^{-\lambda_{1}t}}{\lambda_{3} - \lambda_{2}} - \frac{e^{-\lambda_{2}t}}{\lambda_{3} - \lambda_{3}} + \frac{\lambda_{1} - \lambda_{2}}{(\lambda_{1} - \lambda_{2})(\lambda_{3} - \lambda_{2})} e^{-\lambda_{3}t} \}$$

$$\equiv N_{10} \frac{\lambda_{1} \cdot \lambda_{2}}{\lambda_{1} - \lambda_{3}} \{ \frac{e^{-\lambda_{1}t}}{\lambda_{1} - \lambda_{2}} - \frac{e^{-\lambda_{2}t}}{\lambda_{3} - \lambda_{3}} + \frac{\lambda_{1} - \lambda_{2}}{(\lambda_{1} - \lambda_{2})(\lambda_{3} - \lambda_{2})} e^{-\lambda_{3}t} \}$$

$$(11)$$

3 рівнянь (5) та (11) отримуємо вираз для N_4

$$\begin{split} N_4 &= \int\limits_0^t \lambda_3 N_3(t') dt' = \int\limits_0^t \lambda_3 \cdot N_{10} \frac{\lambda_1 \cdot \lambda_2}{\lambda_1 - \lambda_2} \{ \frac{e^{-\lambda_1 t'}}{\lambda_1 - \lambda_3} - \frac{e^{-\lambda_2 t'}}{\lambda_2 - \lambda_3} + \frac{(\lambda_1 - \lambda_2)e^{-\lambda_2 t'}}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} \cdot dt' = \\ &= N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \int\limits_0^t \{ \frac{e^{-\lambda_1 t'}}{\lambda_1 - \lambda_3} - \frac{e^{-\lambda_2 t'}}{\lambda_2 - \lambda_3} + \frac{(\lambda_1 - \lambda_2)e^{-\lambda_2 t'}}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} \cdot dt' = \\ &= N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \{ \frac{e^{-\lambda_1 t} - 1}{(\lambda_1 - \lambda_3)(-\lambda_1)} - \frac{e^{-\lambda_2 t} - 1}{(\lambda_2 - \lambda_3)(-\lambda_2)} + \frac{(\lambda_1 - \lambda_2)e^{-\lambda_2 t} - (\lambda_1 - \lambda_2)}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)(-\lambda_2)} \} = \\ &= N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \{ -\frac{e^{-\lambda_1 t}}{\lambda_1 (\lambda_1 - \lambda_3)} + \frac{1}{\lambda_1 (\lambda_1 - \lambda_3)} + \frac{e^{-\lambda_2 t}}{\lambda_2 (\lambda_2 - \lambda_3)} - \frac{1}{\lambda_2 (\lambda_2 - \lambda_3)} - \frac{(\lambda_1 - \lambda_2)e^{-\lambda_2 t}}{\lambda_3 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} + \frac{(\lambda_1 - \lambda_2)e^{-\lambda_2 t}}{\lambda_3 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} + \frac{(\lambda_1 - \lambda_2)}{\lambda_1 (\lambda_1 - \lambda_3)} \} = \\ &= N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_3 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} = N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \{ -\frac{e^{-\lambda_1 t}}{\lambda_1 (\lambda_1 - \lambda_3)} + \frac{e^{-\lambda_2 t}}{\lambda_1 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} \} = \\ &= N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \{ -\frac{e^{-\lambda_1 t}}{\lambda_2 (\lambda_2 - \lambda_3)} + \frac{(\lambda_1 - \lambda_2)}{\lambda_3 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} \} = \\ &= N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \{ -\frac{e^{-\lambda_1 t}}{\lambda_2 (\lambda_2 - \lambda_3)} + \frac{(\lambda_1 - \lambda_2)}{\lambda_3 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} \} = \\ &= N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \{ -\frac{e^{-\lambda_1 t}}{\lambda_2 (\lambda_2 - \lambda_3)} + \frac{(\lambda_1 - \lambda_2)}{\lambda_3 (\lambda_2 - \lambda_3)(\lambda_2 - \lambda_3)} \} \} + \\ &+ \frac{1}{\lambda_1 (\lambda_1 - \lambda_3)} \cdot \{ -\frac{1}{\lambda_2 (\lambda_2 - \lambda_3)} + \frac{(\lambda_1 - \lambda_2)}{\lambda_3 (\lambda_2 - \lambda_3)(\lambda_2 - \lambda_3)} \} \} + \\ &+ \frac{1}{\lambda_1 (\lambda_1 - \lambda_3)} \cdot \{ -\frac{1}{\lambda_2 (\lambda_2 - \lambda_3)} - \frac{1}{\lambda_1 (\lambda_2 - \lambda_3)(\lambda_2 - \lambda_3)} + \frac{(\lambda_1 - \lambda_2)e^{-\lambda_2 t}}{\lambda_1 \lambda_2 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} \} + \\ &+ N_{10} \cdot \frac{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}{\lambda_1 - \lambda_2} \cdot \{ \frac{\lambda_2 \cdot \lambda_3 (\lambda_2 - \lambda_3) - \lambda_1 \cdot \lambda_3 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)}{\lambda_1 \cdot \lambda_2 \cdot \lambda_3 (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \} \}$$

Спростимо другий доданок з рівняння (12):

$$\begin{split} N_{10} \cdot \frac{\lambda_2 \cdot \lambda_3 (\lambda_2 - \lambda_3) - \lambda_1 \cdot \lambda_3 (\lambda_1 - \lambda_3) + \lambda_1 \cdot \lambda_2 (\lambda_1 - \lambda_2)}{(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} = \\ &= N_{10} \frac{\lambda_2 \cdot \lambda_3 \lambda_2 - \lambda_2 \cdot \lambda_3 \lambda_3 - \lambda_1 \cdot \lambda_3 \lambda_1 + \lambda_1 \cdot \lambda_3 \lambda_3 + \lambda_1 \cdot \lambda_2 \lambda_1 - \lambda_1 \cdot \lambda_2 \lambda_2}{(\lambda_1^2 - \lambda_1 \lambda_3 - \lambda_1 \lambda_2 + \lambda_2 \lambda_3)(\lambda_2 - \lambda_3)} = \\ &= N_{10} \frac{\lambda_2^2 \cdot \lambda_3 - \lambda_2 \cdot \lambda_3^2 - \cdot \lambda_3 \lambda_1^2 + \lambda_1 \cdot \lambda_3^2 + \lambda_2 \lambda_1^2 - \lambda_1 \cdot \lambda_2^2}{(\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2 \lambda_2 + \lambda_2 \lambda_3 \lambda_2) - (\lambda_1^2 \lambda_3 - \lambda_1 \lambda_3 \lambda_3 - \lambda_1 \lambda_2 \lambda_3 + \lambda_2 \lambda_3 \lambda_3)} = \\ &= N_{10} \frac{\lambda_2^2 \cdot \lambda_3 - \lambda_1 \cdot \lambda_2^2 + \lambda_1 \cdot \lambda_3^2 - \lambda_2 \cdot \lambda_3^2 + \lambda_2 \lambda_1^2 - \cdot \lambda_3 \lambda_1^2}{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2 \lambda_2 + \lambda_2 \lambda_3 \lambda_2 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3 \lambda_3 + \lambda_1 \lambda_2 \lambda_3 - \lambda_2 \lambda_3 \lambda_3)} = \\ &= N_{10} \frac{\lambda_2 \lambda_1^2 - \lambda_1 \cdot \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3 \lambda_3 + \lambda_1 \lambda_2 \lambda_3 - \lambda_2 \lambda_3 \lambda_3}{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2} = \\ &= N_{10} \frac{\lambda_2 \lambda_1^2 - \lambda_1 \cdot \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2}{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2} = \\ &= N_{10} \frac{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2}{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2} = \\ &= N_{10} \frac{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2}{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2} = \\ &= N_{10} \frac{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \cdot \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2}{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3^2 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2} = \\ &= N_{10} \frac{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_3 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \cdot \lambda_3^2}{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \lambda_3^2} = \\ &= N_{10} \frac{\lambda_1^2 \lambda_2 - \lambda_1 \lambda_2^2 + \lambda_2^2 \lambda_3 - \lambda_1^2 \lambda_3 + \lambda_1 \lambda_3^2 - \lambda_2 \lambda_3^2}{\lambda_1^2 \lambda_3 - \lambda_1 \lambda_3^2 - \lambda_1 \lambda_3^2$$

Таким чином, вираз для N_4 буде:

$$N_{4} = N_{10} + N_{10} \cdot \{ \frac{-e^{-\lambda_{1}t} \lambda_{2} \lambda_{3} (\lambda_{2} - \lambda_{3}) + e^{-\lambda_{2}t} \lambda_{1} \lambda_{3} (\lambda_{1} - \lambda_{3}) - \lambda_{1} \lambda_{2} (\lambda_{1} - \lambda_{2}) e^{-\lambda_{3}t}}{(\lambda_{1} - \lambda_{3})(\lambda_{1} - \lambda_{2})(\lambda_{2} - \lambda_{3})} \} \equiv$$

$$\equiv N_{10} \{ 1 - \frac{\lambda_{2} \lambda_{3}}{(\lambda_{1} - \lambda_{3})(\lambda_{1} - \lambda_{2})} e^{-\lambda_{1}t} + \frac{\lambda_{1} \lambda_{3}}{(\lambda_{1} - \lambda_{2})(\lambda_{2} - \lambda_{3})} e^{-\lambda_{2}t} - \frac{\lambda_{1} \lambda_{2}}{(\lambda_{1} - \lambda_{3})(\lambda_{2} - \lambda_{3})} e^{-\lambda_{3}t} \}$$

$$(13)$$

Запишемо загальну відповідь для кількості ядер:

$$N_1(t) = N_{10} \cdot e^{-\lambda_1 t}$$

$$N_{2} = N_{10} \{ -\frac{\lambda_{1}}{\lambda_{1} - \lambda_{2}} e^{-\lambda_{1}t} + \frac{\lambda_{1}}{\lambda_{1} - \lambda_{2}} e^{-\lambda_{2}t} \}$$

$$N_3 = N_{10} \left\{ \frac{\lambda_1 \lambda_2}{(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)} e^{-\lambda_1 t} - \frac{\lambda_1 \cdot \lambda_2}{(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3)} e^{-\lambda_2 t} + \frac{\lambda_1 \cdot \lambda_2}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} e^{-\lambda_3 t} \right\}$$

$$N_{4} = N_{10} \left\{ 1 - \frac{\lambda_{2}\lambda_{3}}{(\lambda_{1} - \lambda_{3})(\lambda_{1} - \lambda_{2})} e^{-\lambda_{1}t} + \frac{\lambda_{1}\lambda_{3}}{(\lambda_{1} - \lambda_{2})(\lambda_{2} - \lambda_{3})} e^{-\lambda_{2}t} - \frac{\lambda_{1}\lambda_{2}}{(\lambda_{1} - \lambda_{3})(\lambda_{2} - \lambda_{3})} e^{-\lambda_{3}t} \right\}$$

Слід відмітити, що система рівнянь (1) – (4) відображає закон збереження кількості ядер при радіоактивному розпаді:

$$\frac{dN_1}{dt} + \frac{dN_2}{dt} + \frac{dN_3}{dt} + \frac{dN_4}{dt} = \frac{d}{dt} \sum_{i} N_i = 0 \rightarrow \sum_{i} N_i = const$$

$$N_4(t) = N_{10} - N_1(t) - N_2(t) - N_3(t)$$

В момент часу $t \to \infty$ кількість ядер буде

$$N_4(t \to \infty) = N_{10}, \ N_1(t \to \infty) = N_2(t \to \infty) = N_3(t \to \infty) = 0$$

№5.6

Пояснити, чому α –розпад парно-парних ядер відбувається з переходом на основний стан дочірнього ядра. В яких випадках ймовірність розпаду з переходом в збуджений стан більше ймовірності розпаду з переходом в основний стан? Пояснити, чому ймовірність вильоту α – частинки з переходом ядра $^{212}_{83}Bi(I_i^{\pi_i}=1^-)$ з основного стану у основний стан ядра $^{208}_{81}Tl$ $I_{f_0}=5, \ \pi_{f_0}=+1$) є меншою за ймовірність переходу у його перший збуджений стан $^{208}_{81}Tl$ $(I_{f_1}=4, \ \pi_{f_1}=+1, \ E_f=40 \ \text{keB}).$

Розв'язування.

Середня ймовірність розпаду за одиницю часу визначається сталою розпаду. Вираз для сталої розпаду з вильотом α - частинки з орбітальними моментом l_{α} має вигляд:

$$\lambda_{l_{\alpha}} = \lambda^{(0)} \cdot \exp\{-G_{l_{\alpha}}\}, \quad G_{l_{\alpha}} = (\frac{8m_{\alpha}}{\hbar^2})^{1/2} \cdot \int_{R}^{r_2} (V_{l_{\alpha}} - E_{\alpha})^{1/2} dr.$$

Тут G_{l_a} - показник Гамова, а V_{l_a} - ефективний потенціальний бар'єр:

$$V_{l_{\alpha}}(r) = V(r) + \frac{\hbar^{2}}{2m_{\alpha}r^{2}}l_{\alpha}(l_{\alpha}+1) = \frac{2(Z-2)e^{2}}{r} + \frac{\hbar^{2}}{2m_{\alpha}r^{2}}l_{\alpha}(l_{\alpha}+1)$$

Таким чином видно, що стала α -розпаду, а отже і ймовірність α — розпаду залежить від енергії α —частинки та її відносного орбітального моменту l_{α} .

Із приведених співвідношень видно, що якщо $l_{\alpha}=0$, то ймовірність розпаду залежить лише від E_{α} та зростає зі збільшенням її енергії. Відповідно найбільша ймовірність відповідатиме розпаду з переходом на основний стан дочірнього ядра, тому більшість α - розпадів відбуватиметься на основний стан.

Якщо $l_{\alpha} \neq 0$, то ймовірність зростає зі збільшенням E_{α} та падає зі збільшенням орбітального моменту l_{α} . В такому випадку, вплив орбітального моменту на ефективний потенціальний бар'єр може бути більш значним і ймовірність розпаду на збуджений стан стає більшою ніж ймовірність розпаду на основний.

Розглянемо розпад ^{212}Bi .

Розпад з основного стану ядра ^{212}Bi із характеристиками $I^{\pi}=1^-$ на основний стан ядра ^{208}Tl із характеристиками $I^{\pi}=5^+$ може відбуватися шляхом вильоту α - частинок із такими орбітальними моментами

$$|I_i - I_f| \le l_\alpha \le I_i + I_f$$
, $|1 - 5| \le l_\alpha \le 1 + 5$, $l_\alpha = 4,5,6$.

Враховуючи закон збереження парності

$$\pi_{\alpha} = \pi_i \pi_f = (-1)^{l_{\alpha}} = (-1)(+1) = (-1) = (-1)^{l_{\alpha}(\text{непарне})},$$

можливими будуть лише непарні значеннями $l_{\alpha} = 5$.

Розпад з основного стану ядра ^{212}Bi із характеристиками $I^{\pi}=1^-$ на збуджений стан ядра ^{208}Tl із характеристиками $I^{\pi}=4^+$ може відбуватися шляхом вильоту α - частинок із такими

орбітальними моментами $|1-4| \le l_\alpha \le 1+4$, $l_\alpha = 3,4,5$. Враховуючи закон збереження парності $\pi_\alpha = \pi_i \pi_f = (-1) = (-1)^{l_\alpha (\mathit{непарне})}$, можливими будуть лише непарні значеннями $l_\alpha = 3,5$.

У результаті для переходів на основний стан $l_{\alpha}=5$ ефективний бар'єр є більшим ніж для переходів на збуджений стан з $l_{\alpha}=3$ і він зростає значно більше, ніж зменшується енергія переходу (різниця між енергіями станів лише 40 кеВ). Тому, для розглядуваного ядра ймовірність α –розпаду на основний стан менша, ніж на перший збуджений стан дочірнього ядра.

№5.7

Користуючись методом Фермі, отримати вираз для спектра електронів з урахуванням можливого існування маси антинейтрино ($m_{\nu} \neq 0$). Порівняти спектри електронів з врахуванням та без маси антинейтрино. В ситуації основного внеску в спектр електронів релятивістських енергій і при $m_{\nu} = 0$, отримати вираз для періоду напіврозпаду у бета процесах.

Розв'язування.

Форма енергетичного спектру визначається кількістю електронів dN/dT_e , що вилітають в одиницю часу у межах інтервалу кінетичних енергій від T_e до T_e+dT_e . Форма спектру є добутком повної кількості розпадів N_0 та ймовірності dw/dT_e вильоту електрона в одиничний інтервал по енергії:

$$\frac{dN}{dT_e} = N_0 \frac{dw}{dT_e}.$$

Величина ймовірності dw/dT_e визначається ймовірністю $dw(\vec{p},\vec{k})/(dpd\Omega_p d\vec{k})$ вильоту електрона з імпульсом в інтервалі від p до p+dp в елемент тілесного кута $d\Omega_p$ та антинейтрино з імпульсом в інтервалі від \vec{k} до $\vec{k}+d\vec{k}$ таким чином:

$$\frac{dw}{dT_e} = \frac{dw(p)}{dp} \frac{dp}{dT_e} = \frac{dw(p)}{dp} p'_{T_e},$$

$$\frac{dw(p)}{dp} = \int d\Omega_p d\vec{k} \, \frac{dw(\vec{p}, \vec{k})}{dp d\Omega_p d\vec{k}} \, .$$

Знайдемо ймовірність $dw(\vec{p},\vec{k})$ вильоту електрона та антинейтрино з імпульсами, значення яких містяться в об'ємах $d\vec{p}$ та $d\vec{k}$. Дана ймовірність обчислюється методом Фермі, в якому використовується перший порядок теорія збурень за слабкою взаємодією з деяким потенціалом V_w . Згідно з золотим правилом Фермі, ймовірність $dw(\vec{p},\vec{k})$ вильоту електрона та антинейтрино є добутком квадрата модуля матричного елементу $\langle f|V_w|i\rangle$ переходу між початковими станами $|i\rangle$ та кінцевими станами $\langle f|$ та кількості $\Delta\Gamma_{\beta}$ можливих кінцевих станів лептонів з імпульсами в інтервалах $d\vec{p}$ та $d\vec{k}$:

$$\begin{split} dw(\vec{p}, \vec{k}) &= \frac{2\pi}{\hbar} \left| \left\langle f \left| V_{w} \right| i \right\rangle \right|^{2} \delta(T_{\text{max}} - T_{e} - T_{v}) \Delta \Gamma_{\beta} \equiv D \delta(T_{\text{max}} - T_{e} - T_{v}) p^{2} dp d\Omega_{p} k^{2} dk d\Omega_{k} \\ \Delta \Gamma_{\beta} &= \frac{d\vec{p}}{(2\pi\hbar)^{3}} \frac{d\vec{k}}{(2\pi\hbar)^{3}}, \quad D &= \frac{2\pi}{\hbar} \left| \left\langle f \left| V_{w} \right| i \right\rangle \right|^{2} \frac{1}{(2\pi\hbar)^{6}}. \end{split}$$

Тут $d\Omega_k$ - елемент тілесного кута вильоту нейтрино, T_e - кінетична енергія електронів, T_v - кінетична енергія нейтрино, \vec{k} - імпульс нейтрино. За допомогою узагальненої δ - функції Дірака враховується закон збереження енергії: $T_{\max} = T_e + T_v$. Тут через T_{\max} позначено сумарну кінетичну енергію лептонів при бета-розпаді:

$$T_{\text{max}} = M(Z, A)c^2 - M(Z \pm 1, A)c^2 - m_e c^2 - m_v c^2$$

де знехтувана віддача ядра та вважається, що маса спокою антинейтрино не дорівнює нулю. Тому кінетична енергія нейтрино задається виразом

$$T_{v} = c\sqrt{k^2 + m_{v}^2 c^2} - m_{v}c^2$$
,

а диференційний спектр дорівнює:

$$\frac{dw(\vec{p},\vec{k})}{dpd\Omega_{p}d\vec{k}} = Dp^{2}\delta(T_{\text{max}} - T_{e} - T_{v}).$$

Припустимо, що величина $D \in$ деякою сталою, тоді:

$$\frac{dw(p)}{dp} = Dp^2 \int d\Omega_k d\Omega_p \delta(T_{\text{max}} - T_e - T_\nu) k^2 dk.$$

Обчислимо інтеграл, користуючись властивостями дельта-функції та ввівши для спрощення запису такі величини: $a = m_{\nu}^2 c^2$, $b = T_{\text{max}} - T_e + m_{\nu} c^2$:

$$\int \delta(T_{\text{max}} - T_e - T_v) k^2 dk = \int \delta(b - c\sqrt{k^2 + a}) k^2 dk.$$

Зробимо заміну змінних $x = c\sqrt{k^2 + a}$, тоді $k = \left(\frac{x^2}{c^2} - a\right)^{1/2}$, $dk = \frac{x/c^2}{\left(x^2/c^2 - a\right)^{1/2}}dx$ і

$$\int \delta(b - c\sqrt{k^2 + a})k^2 dk = \int \delta(b - x) \cdot \left(\frac{x^2}{c^2} - a\right)^{1/2} \cdot \frac{x}{c^2} \cdot dx = \left(\frac{b^2}{c^2} - a\right)^{1/2} \cdot \frac{b}{c^2} = \frac{b^2}{c^2} - \frac{b^2}{c^2} + \frac{b^2}{c^2} +$$

$$= \frac{1}{c^3} \sqrt{(T_{\text{max}} - T_e + m_v c^2)^2 - m_v^2 c^4} \cdot (T_{\text{max}} - T_e + m_v c^2).$$

Вираз для спектру бета-частинок приймає вигляд

$$N(T_e) = \frac{dN}{dT_e} = N_0 \frac{dw}{dT_e} = N_0 \frac{dw(p)}{dp} p'_{T_e} = N_0 \cdot p'_{T_e} \cdot Dp^2 \int d\Omega_k d\Omega_p \delta(T_{\text{max}} - T_e - T_v) k^2 dk .$$

Значення похідної p'_{T_e} отримуємо із релятивістського співвідношення між кінетичною енергію електрона та його імпульсом:

$$T_e = c\sqrt{p^2 + (m_e c)^2} - m_e c^2 \implies p^2 = T_e (T_e + 2m_e c^2)/c^2 \implies p'_{T_e} = (T_e + m_e c^2)/c^2 p$$
.

В результаті

$$N(T_e) = \frac{N_0 16\pi^2 D}{c^6} \cdot c \cdot p \cdot (T_e + m_e c^2) \cdot \sqrt{(T_{\text{max}} - T_e + m_v c^2)^2 - m_v^2 c^4} (T_{\text{max}} - T_e + m_v c^2).$$

Тобто

$$N(T_e) = N_0 \cdot \bar{B} \cdot \sqrt{T_e(T_e + 2m_ec^2)} \cdot (T_e + m_ec^2) \sqrt{(T_{\rm max} - T_e)(T_{\rm max} - T_e + 2m_vc^2)} (T_{\rm max} - T_e + m_vc^2) \,,$$
 де $\bar{B} = 16\pi^2 D/c^6$, $T_{\rm max} = M(Z,A)c^2 - M(Z\pm 1,A)c^2 - m_ec^2 - m_vc^2$.

Без врахування маси антинейтрино ($m_v = 0$), маємо

$$\begin{split} N^*(T_e) &\equiv N(T_e)\big|_{m_v=0} = N_0 \cdot \overline{B} \cdot \sqrt{T_e(T_e + 2m_e c^2)} \cdot (T_e + m_e c^2) \sqrt{(T_{\text{max}}^* - T_e)^2} (T_{\text{max}}^* - T_e) = \\ &= N_0 \cdot \overline{B} \cdot \sqrt{T_e(T_e + 2m_e c^2)} \cdot (T_e + m_e c^2) \cdot (T_{\text{max}}^* - T_e)^2 \end{split}$$

3
$$T_{\text{max}}^* = T_{\text{max}} + m_{\nu}c^2 = M(Z,A)c^2 - M(Z \pm 1,A)c^2 - m_ec^2$$
.

Особливості спектру бета-розпаду: 1) неперервність; 2) наявність максимуму при певному значенні енергії T_e ; 3) наявність верхньої границі по енергії, тобто наявність такого значення енергії, вище якої спектр обривається (наслідок закону збереження енергії). Без врахування можливого існування маси у антинейтрино збільшується значення максимальної енергії з

якою можуть вилітати електрони $T_{\max}^* > T_{\max}$, а також змінюється поведінка спектру біля максимальної енергії електронів:

$$N(T_e \sim T_{\rm max}) \sim \sqrt{(T_{\rm max} - T_e)} \;, \;\; N^*(T_e \sim T_{\rm max}^*) \sim (T_{\rm max}^* - T_e)^2 \;.$$

У нерелятивістському наближенні малих енергій $(T_e \ll m_e c^2 \cong 0,5 \text{ MeB})$: $N^*(T_e) \sim \sqrt{T_e} (T_{\text{max}} - T_e)^2$. В ультра-релятивістському наближенні $(T_e \gg m_e c^2)$: $N^*(T_e) \sim T_e^2 (T_{\text{max}} - T_e)^2$.

Для врахування дії кулонівського поля, у функції \bar{B} виділяють функцію $\Phi(Z,T_e)$, яка визначає дію кулонівського поля і обчислюється явно. Тоді фактор $B=\bar{B}/\Phi(Z,T_e)$ залежить тільки від структури ядра, а розподіл електронів за енергіями T_e , наприклад, у відсутності маси спокою антинейтрино, буде описуватися співвідношенням:

$$N^*(T_e) = N_0 B \sqrt{T_e(T_e + 2m_e c^2)} (T_e + m_e c^2) (T_{\text{max}}^* - T_e)^2 \Phi(Z, T_e).$$

Використовуючи вираз спектру можна обчислити сталу β - розпаду λ . Ця стала збігається із відносною кількістю ядер, які розпалися в одиницю часу з вильотом β - частинок усіх можливих енергій, тобто:

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{1}{N_0} \int_{0}^{T_{\text{max}}} N(T_e) dT_e = Bf(T_{\text{max}}, Z).$$

Тут $f(T_{\max},Z)$ - деяка складна але відома функціям від T_{\max},Z , яку можна обчислити після інтегрування явного виразу для спектра. Наприклад, в ультра-релятивістському наближенні для спектра $N^*(T_e)$ з $\Phi(Z,T_e)=1$, після інтегрування маємо:

$$f(T_{\text{max}}^*, Z) = \int_{0}^{T_{\text{max}}^*} dT_e T_e^2 (T_{\text{max}}^* - T_e^2) = (T_{\text{max}}^*)^5 \int_{0}^{1} dx \, x^2 (1 - x^2) = \frac{1}{30} T_{\text{max}}^{*5}.$$

Така залежність ймовірності розпаду в одиницю часу називається правилом Сарджента. Період напіврозпаду в такому наближенні дорівнює $T_{1/2} = \frac{30 \ln 2}{\overline{B} T_{\max}^{*-5}}$, що дозволяє знайти значення коефіцієнта B, якщо відомий період напіврозпаду.

РОЗДІЛ 6.

Загальні закономірності ядерних реакцій

№6.1

Впишіть частинки або ядра, що відсутні: 1) $_{_{19}}^{^{39}}K(p,\gamma)$?; 2) $_{_{63}}^{^{153}}Eu(?,p)_{_{63}}^{^{154}}Eu$; 3) $?(\alpha,d)_{_{33}}^{^{77}}As$; 4) $^{192}_{81}Tl\left(^{7}_{3}Li,^{8}_{4}Be\right)$?; 5) $^{137}_{56}Ba(n,\gamma)$?; 6) $^{137}_{56}Ba(n,\gamma)^{137}_{55}Cs$; 7) $^{2}_{1}H(d,\gamma)^{4}_{2}He$; 8) $^{197}_{79}Au(\alpha,d)$?. Який хімічний елемент утворюється при таких радіоактивних розпадах: a) $^{32}_{15}P(\beta^-)$; б) $^{35}_{16}S(\beta^-)$; в) $_{86}^{222} Rn(\alpha)$ (записати схеми розпаду).

Розв'язування.

Для визначення частинок та ядер, що відстуні, використовуємо закони збереження електричного та баріонного зарядів. Повний електричних заряд у будь-якій реакції зберігається, тобто електричний заряд частинок, що вступають в реакцію повинен дорівнювати електричному заряду частинок, що отримуються в результаті реакції $\Sigma Z_i(\epsilon x i \partial ho ro \kappa a ha x y) = \Sigma Z_i(\epsilon x i \partial ho ro \kappa a ha x y)$. Алгебраїчна сума баріонних зарядів (для реакцій з енергіями E < 3 ГеВ - масових чисел) усіх частинок залишається незмінною при будь-яких процесах, $\Sigma A_i = const$.

1)
$$\int_{19}^{39} K(p,\gamma)?; \int_{19}^{39} K + \int_{1}^{1} p \to_{0}^{0} \gamma + \int_{2}^{A} X, \begin{cases} Z: & 19+1=0+Z \to Z=20 \\ A: & 39+1=0+A \to A=40 \end{cases} \to \int_{20}^{40} Ca$$

3)
$$?(\alpha,d)_{33}^{77}As$$
, ${}^{A}_{Z}X + {}^{4}_{2}\alpha \rightarrow {}^{2}_{1}d + {}^{77}_{33}As$, $\begin{cases} Z: Z+2=1+33 \rightarrow Z=32 \\ A: A+4=2+77 \rightarrow A=75 \end{cases} \rightarrow {}^{75}_{32}Ge$

1)
$${}^{39}_{19}K(p,\gamma)?;$$
 ${}^{39}_{19}K+^{1}_{1}p \rightarrow^{0}_{0}\gamma +^{A}_{Z}X,$ $\begin{cases} Z: 19+1=0+Z \rightarrow Z=20 \\ A: 39+1=0+A \rightarrow A=40 \end{cases} \rightarrow {}^{40}_{20}Ca$

2) ${}^{153}_{63}Eu(?,p)^{154}_{63}Eu, {}^{153}_{63}Eu +^{A}_{Z}X \rightarrow^{1}_{1}p + {}^{154}_{63}Eu,$ $\begin{cases} Z: 63+Z=1+63 \rightarrow Z=1 \\ A: 153+Z=1+154 \rightarrow A=2 \end{cases} \rightarrow {}^{2}_{1}H=d$

3) ${}^{2}(\alpha,d)^{77}_{33}As,$ ${}^{A}_{Z}X +^{4}_{2}\alpha \rightarrow^{2}_{1}d + {}^{77}_{33}As,$ $\begin{cases} Z: Z+2=1+33 \rightarrow Z=32 \\ A: A+4=2+77 \rightarrow A=75 \end{cases} \rightarrow {}^{75}_{32}Ge$

4) ${}^{192}_{81}Tl({}^{7}_{3}Li, {}^{8}_{4}Be)?,$ ${}^{192}_{81}Tl + {}^{7}_{3}Li \rightarrow {}^{8}_{4}Be + {}^{A}_{Z}X,$ $\begin{cases} Z: 81+3=4+Z \rightarrow Z=80 \\ A: 192+7=8+A \rightarrow A=191 \end{cases} \rightarrow {}^{191}_{80}Hg$

5) ${}^{137}_{56}Ba(n,\gamma)?,$ ${}^{137}_{56}Ba + {}^{1}_{0}n \rightarrow^{0}_{0}\gamma + {}^{A}_{Z}X,$ $\begin{cases} Z: 56+0=0+Z \rightarrow Z=56 \\ A: 137+1=0+A \rightarrow A=138 \end{cases} \rightarrow {}^{138}_{56}Ba$

7)
$${}^{2}_{1}H(d,?)^{4}_{2}He$$
, ${}^{2}_{1}H+^{2}_{1}d \rightarrow^{A}_{Z}X+^{4}_{2}He$, $\begin{cases} Z: & 1+1=Z+2 \rightarrow Z=0 \\ A: & 2+2=A+4 \rightarrow A=0 \end{cases} \rightarrow \gamma$ -квант

8)
$$\int_{79}^{197} Au(\alpha,d)?$$
, $\int_{79}^{197} Au +_2^4 \alpha \to_1^2 +_Z^4 X$, $\begin{cases} Z: & 79+2=1+Z \to Z=80 \\ A: & 197+4=2+A \to A=199 \end{cases} \to \int_{80}^{199} H_8$

а)
$$^{32}_{15}P(\beta^-)$$
, $^{32}_{15}P$ — $^{\beta^-}$ \rightarrow $^{32}_{16}S+e^-+\tilde{\nu}_e$, утворилося ядро $^{32}_{16}S$

б)
$$^{35}_{16}S\left(eta^{-}
ight),\ ^{35}_{16}S \xrightarrow{\beta^{-}} ^{35}_{17}Cl + e^{-} + \tilde{\nu}_{_{e}}$$
 , утворилося ядро $^{35}_{17}Cl$

в)
$$^{222}_{86}Rn(\alpha)$$
, $^{222}_{86}Rn$ $\stackrel{\alpha}{\longrightarrow}$ $^4_2He+^{218}_{84}Po$, Утворилося ядро $^{218}_{84}Po$.

№6.2

Визначити спін та парність проміжного складеного ядра в реакції $n+\frac{7}{4}Be \rightarrow \alpha+\alpha$ в припущенні таких значень орбітальних моментів відносного руху частинок: $l_{\alpha}, l_{p} \leq 1$, $J^{\pi}(^{7}Be) = (3/2)^{-}$.

Розв'язування.

Запишемо розглядувану реакцію із утворенням складеного ядра ${}^{8}_{4}Be$:

$${}^{7}_{4}Be + {}^{1}_{0}n \rightarrow {}^{8}_{4}Be \rightarrow \alpha + \alpha$$

Квантові числа для частинок в даній реакції будемо визначати, використовуючи закон збереження повного моменту кількості руху і парності:

$$\begin{cases} \vec{I}_{Be} + \vec{s}_n + \vec{l}_n = \vec{I}_{Be^8} = \vec{s}_\alpha + \vec{s}_\alpha + \vec{l}_\alpha \\ \pi_{Be} \cdot \pi_n \cdot (-1)^{l_n} = \pi_{Be^8} = \pi_\alpha \cdot \pi_\alpha \cdot (-1)^{l_\alpha} \end{cases}$$

Тут введено позначення \vec{l}_{α} для орбітального моменту відносного руху α - частинок та \vec{l}_{n} для орбітального моменту відносного руху нейтрона відносно ядра 7 Be .

Розглянемо вихідний канал реакції і врахуємо те, що спіни та парності α - частинок $s_{\alpha}=0$, $\pi_{\alpha}=+1$, тоді рівняння будуть:

$$\vec{I}_{Be^8} = \vec{l}_{\alpha} \rightarrow I_{Be^8} = l_{\alpha} ; \qquad \pi_{Be^8} = (-1)^{l_{\alpha}} .$$

За умовою задачі слід розглянути 2 варіанти:

$$l_{\alpha} = 0 \rightarrow J_{Re^8}^{\pi} = 0^+$$

$$l_{\alpha} = 1 \rightarrow J_{Be^8}^{\pi} = 1^-.$$

Розглянемо вхідний канал реакції і врахуємо те, що спіни та парності ядер та частинок із вхідного каналу даної реакції мають такі значення: $I^{\pi}(^{7}Be) = (3/2)^{-}$, $s_{n} = 1/2$, $\pi_{n} = +1$ та за умовою задачі лід розглянути 2 варіанти орбітального моменту нейтрона $l_{n} = 0$ та $l_{n} = 1$. Використовуючи правила векторного додавання спінів, запишемо нерівність для визначення можливих спінів та визначимо можливі парності:

$$\begin{split} \left|I_{Be}-s_n-l_n\right| &\leq I_{Be^8} \leq I_{Be}+s_n+l_n \,. \\ \Pi \text{ри } l_n=0 \ : & \left|\frac{3}{2}-\frac{1}{2}\right| \leq I_{Be^8} \leq \frac{3}{2}+\frac{1}{2} \ \to \ I_{Be^8}=1,2 \ ; \\ \\ \pi_{Be^8}=\pi_{Be}\cdot\pi_n\cdot(-1)^{l_n}=(-1)\cdot(+1)\cdot(-1)^0=-1 \,. \end{split}$$

Видно, що у вхідному та у вихідному каналі збігається лише 1 стан $I_{Be^8}^\pi=1^-$, який реалізується при $l_n=0$ та $l_\alpha=1$.

При $l_n = 1$:

$$\left| \frac{3}{2} - \frac{1}{2} - 1 \right| \le I_{Be^8} \le \frac{3}{2} + \frac{1}{2} + 1 \implies I_{Be^8} = 0, 1, 2, 3;$$

$$\pi_{Be^8} = \pi_{Be} \cdot \pi_n \cdot (-1)^{l_n} = (-1)(+1)(-1)^1 = +1$$

$$\implies I_{Be^8}^{\pi} = 0^+, 1^+, 2^+, 3^+$$

Видно, що у вхідному та у вихідному каналі збігається лише 1 стан $I_{Be^8}^\pi=0^+$, , який реалізується при $l_n=1$ та $l_\alpha=0$.

У підсумку, отримали, що можливими ϵ такі стани компаунд-ядра:

$$I^\pi_{^8Be}=1^-$$
 при $l_{_n}=0$ та $l_{_{lpha}}=1$ та $I^\pi_{^8Be}=0^+$ при $l_{_n}=1$ та $l_{_{lpha}}=0$.

Визначити орбітальний момент нейтрону l_n в реакції радіаційного поглинання $^{115}_{49}In(n,\gamma)^{116}_{49}In$ з вильотом Е1 та М1 гамма-квантів ($I^{\pi}(^{115}_{49}In) = (9/2)^+, I^{\pi}(^{116}_{49}In) = 1^+$).

Розв'язування.

Запишемо розглядувану реакцію у вигляді:

115
In + n \rightarrow 116 In + γ

Квантові числа для частинок в даній реакції будемо визначати, використовуючи закон збереження повного моменту кількості руху і парності:

$$\begin{cases} \vec{I}_{115In} + \vec{s}_n + \vec{l}_n = \vec{I}_{116In} + \vec{\lambda} \\ \pi_{115In} \cdot \pi_n \cdot (-1)^{l_n} = \pi_{116In} \cdot \pi_{\gamma} \end{cases}$$

Тут введено позначення \vec{l}_n для орбітального моменту відносного руху нейтрона відносно ядра 115 In . Врахуємо те, що спіни та парності ядер і частинок з даної реакції мають такі значення: $I^{\pi}(^{115}In) = (9/2)^+$, $s_n = 1/2$, $\pi_n = +1$, $I^{\pi}(^{116}In) = 1^+$, $\lambda(E1,M1) = 1$, $\pi_{\gamma}(E1) = (-1)^{\lambda} = (-1)$, $\pi_{\gamma}(M1) = (-1)^{\lambda+1} = (+1)$. Використовуючи правила векторного додавання спінів, запишемо нерівність для визначення можливих орбітальних моментів нейтрона:

$$\left|I_{115ln} - s_n - \lambda - I_{116ln}\right| \le l_n \le I_{115ln} + s_n + \lambda + I_{116ln},$$

$$\left|\frac{9}{2} - \frac{1}{2} - 1 - 1\right| \le l_n \le \frac{9}{2} + \frac{1}{2} + 1 + 1, \ 2 \le l_n \le 7, \ l_n = 2, 3, 4, 5, 6, 7$$

Використаємо закон збереження парності:

$$(-1)^{l_n} = \pi_{116ln} \cdot \pi_{\nu} \cdot \pi_{115ln} \cdot \pi_n = (+1) \cdot \pi_{\nu} \cdot (+1) \cdot (+1) = \pi_{\nu}.$$

Для реакції з вильотом Е1 кванта, закон збереження парності виконується лише для непарних значень орбітального моменту нейтрона:

E1:
$$(-1)^{l_n(\text{henaphe})} = \pi_{\gamma} = (-1)^{\lambda} = (-1), \qquad \Rightarrow l_n = 3,5,7.$$

Для реакції з вильотом М1 кванта закон збереження парності виконується лише для парних значень орбітального моменту нейтрона:

*M*1:
$$(-1)^{l_n(naphe)} = \pi_v = (-1)^{\lambda+1} = (+1)$$
 $\Rightarrow l_n = 2,4,6.$

Визначити орбітальний момент нейтрона l_n (в одиницях \hbar) в реакції ${}^9_4 Be(\alpha,n){}^{12}_6 C$ при припущенні, що орбітальний момент альфа-частинки l_α дорівнює нулю $(I^\pi ({}^9_4 Be) = (3/2)^-, I^\pi ({}^{12}_6 C) = 0^+).$

Розв'язування.

Запишемо розглядувану реакцію у вигляді:

$$^{9}Be + \alpha \rightarrow n + ^{12}C$$

Квантові числа для частинок в даній реакції будемо визначати, використовуючи закон збереження повного моменту кількості руху і парності:

$$\begin{cases} \vec{I}_{Be} + \vec{s}_{\alpha} + \vec{l}_{\alpha} = \vec{I}_{C} + \vec{s}_{n} + \vec{l}_{n} \\ \pi_{Be} \cdot \pi_{\alpha} \cdot (-1)^{l_{\alpha}} = \pi_{C} \cdot \pi_{n} \cdot (-1)^{l_{n}} \end{cases}$$

Тут введено позначення \vec{l}_{α} для орбітального моменту відносного руху α - частинки відносно ядра 9Be та \vec{l}_n для орбітального моменту відносного руху нейтрона відносно ядра ^{12}C . Врахуємо те, що спіни та парності ядер і частинок з даної реакції мають такі значення: $I^{\pi}(^9Be)=(3/2)^{-},\ s_{\alpha}=0\ ,\ \pi_{\alpha}=+1,\ l_{\alpha}=0$ (за умовою задачі), $I^{\pi}(^{12}C)=0^+,\ s_n=1/2\ ,\ \pi_n=+1$. Використовуючи правила векторного додавання спінів, запишемо нерівність для визначення можливих орбітальних моментів нейтрона:

$$|I_{Be} - s_{\alpha} - l_{\alpha} - I_{C} - s_{n}| \le l_{n} \le I_{Be} + s_{\alpha} + l_{\alpha} + I_{C} + s_{n}, \quad \left|\frac{3}{2} - \frac{1}{2}\right| \le l_{n} \le \frac{3}{2} + \frac{1}{2}, \quad l_{n} = 1, 2.$$

Використаємо закон збереження парності:

$$(-1)^{l_n} = \pi_{Be} \cdot (-1)^{l_\alpha} \cdot \pi_C \cdot \pi_n = (-1) \cdot (-1)^0 \cdot (+1) \cdot (+1) = (-1) .$$

Таким чином видно, що із законом збереження парності узгоджуються непарні значення орбітального моменту, тобто в даній реакції орбітальний момент нейтрона дорівнює одиниці: $l_n = 1$.

Обчислити енергії порогів (n,p) реакцій з участю нерелятивістських нуклонів на ядрах $^{99}_{42}Mo$ та $^{100}_{43}Tc$.

Розв'язування.

Для бінарної реакції типу $X + a \rightarrow Y + b$ у випадку нерелятивістського руху частинок, теплотою реакції називається величина:

$$Q = [M(Z_x, A_x)c^2 + M(Z_a, A_a)c^2 - M(Z_y, A_y)c^2 - M(Z_b, A_b)c^2]$$

Використовуючи поняття дефекту мас: $\Delta(Z,A) = M(Z,A)c^2 - Am_uc^2$, легко показати, що теплоту реакції можна виразити через значення дефектів мас для ядер і частинок:

$$Q = [\Delta(Z_X, A_X)c^2 + \Delta(Z_a, A_a)c^2 - \Delta(Z_Y, A_Y)c^2 - \Delta(Z_b, A_b)c^2].$$

Реакція X(a,b)Y можлива лише у випадку, коли кінетична енергія у вхідному каналі T_{α} , перевищує значення $-Q:T_{\alpha}>-Q$. Якщо Q>0, то реакція називається екзотермічною, тобто відбувається при нульовому значенні кінетичної енергії у вхідному каналі, тобто є безпороговою. Якщо Q<0, то реакція називається ендотермічною і є пороговою, при цьому значення енергії порогу, тобто значення мінімальної кінетичної енергії налітаючої частинки в лабораторній системі координат, починаючи з якої реакція є енергетично можливою, розраховується як:

$$E_{nopoe.} = \frac{m_a + m_X}{m_Y} |Q|,$$

Оцінимо енергії порогів реакцій, скориставшись наближенням $\frac{m_a + m_\chi}{m_\chi} \approx \frac{A_a + A_\chi}{A_\chi}$ табличними значеннями дефектів мас.

Розглянемо реакцію

$$^{99}_{42}Mo + n \rightarrow p + ^{99}_{41}Nb$$
.

Дефекти мас в МеВ рівні: $\Delta(n) = 8,071$, $\Delta\binom{99}{42}Mo) = -85,966$, $\Delta(p) = 7,289$, $\Delta\binom{99}{41}Nb) = -82,33$. Теплота та поріг реакції:

$$Q = 8,071 - 85,966 - 7,289 + 82,33 = -2,854$$
 MeB – реакція є ендотермічною,

$$E_{nopoe.} = \frac{A_a + A_X}{A_X} |Q| = \frac{1+99}{99} 2,854 = 2,88 \text{ MeB}.$$

Розглянемо реакцію

$$^{100}_{43}Tc + n \rightarrow p + ^{100}_{42}Mo$$
.

Дефекти мас в МеВ рівні: $\Delta(n) = 8,071$, $\Delta(^{100}_{43}Tc) = -86,016$, $\Delta(p) = 7,289$, $\Delta(^{100}_{42}Mo) = -86,184$. Теплота та поріг реакції:

$$Q = 8,071 - 86,016 - 7,289 + 86,184 = 0,95$$
 MeB.

Тобто реакція ϵ екзотермічною, енергія порогу рівна нулю.

№6.6

Обчислити енергії порогу реакцій (n,p) на ізотопах ${}^{14}_{7}N$, ${}^{32}_{16}S$ та реакцій (n,α) на ізотопах ${}^{6}_{3}Li$, ${}^{14}_{7}N$.

Розв'язування.

Для бінарної реакції типу $X + a \rightarrow Y + b$ у випадку нерелятивістського руху частинок, теплотою реакції називається величина:

$$Q = [M(Z_x, A_x)c^2 + M(Z_a, A_a)c^2 - M(Z_y, A_y)c^2 - M(Z_b, A_b)c^2]$$

Використовуючи поняття дефекту мас: $\Delta(Z,A) = M(Z,A)c^2 - Am_uc^2$, легко показати, що теплоту реакції можна виразити через значення дефектів мас для ядер і частинок:

$$Q = [\Delta(Z_X, A_X)c^2 + \Delta(Z_a, A_a)c^2 - \Delta(Z_Y, A_Y)c^2 - \Delta(Z_b, A_b)c^2].$$

Реакція X(a,b)Y можлива лише у випадку, коли кінетична енергія у вхідному каналі T_{α} , перевищує значення $-Q:T_{\alpha}>-Q$. Якщо Q>0, то реакція називається екзотермічною, тобто відбувається при нульовому значенні кінетичної енергії у вхідному каналі, тобто є безпороговою. Якщо Q<0, то реакція називається ендотермічною і є пороговою, при цьому значення енергії порогу, тобто значення мінімальної кінетичної енергії налітаючої частинки в лабораторній системі координат, починаючи з якої реакція є енергетично можливою, розраховується як:

$$E_{nopoe.} = \frac{m_a + m_X}{m_X} |Q|,$$

Оцінимо енергії порогів реакцій, скориставшись наближенням $\frac{m_a + m_\chi}{m_\chi} \approx \frac{A_a + A_\chi}{A_\chi}$ та табличними значеннями дефектів мас.

Розглянемо реакцію

$$_{7}^{14}N + n \rightarrow p +_{6}^{14} C$$
.

Дефекти мас в MeB рівні: $\Delta(n) = 8,071$, $\Delta(_7^{14}N) = 2,863$, $\Delta(p) = 7,289$, $\Delta(_6^{14}C) = 3,020$.

Теплота та поріг реакції:

$$Q = 2,863 + 8,071 - 3,020 - 7,289 = 0,625$$
 MeB.

Тобто реакція ϵ екзотермічною, енергія порогу рівна нулю.

Розглянемо реакцію

$$_{16}^{32}S + n \rightarrow p +_{15}^{32} P$$
.

Дефекти мас в МеВ рівні: $\Delta(n) = 8,071$, $\Delta\binom{32}{16}S) = -26,016$, $\Delta(p) = 7,289$, $\Delta\binom{32}{15}P) = -24,305$.

Теплота та поріг реакції:

$$Q = -26,016 + 8,071 + 24,305 - 7,289 = -0,929$$
 MeB – реакція є ендотермічною,

$$E_{nopoe.} = \frac{A_a + A_X}{A_X} |Q| = \frac{1+32}{32} 0,929 = 0,96 \text{ MeB}.$$

Розглянемо реакцію

$$_{3}^{6}Li+n\rightarrow\alpha+_{1}^{3}H$$
.

Дефекти мас в МеВ рівні: $\Delta(n) = 8,071$, $\Delta(_3^6Li) = 14,087$, $\Delta(\alpha) = 2,425$, $\Delta(_1^3H) = 14,950$.

Теплота та поріг реакції:

$$Q = 14,087 + 8,071 - 2,425 - 14,950 = 4,783$$
 MeB.

Тобто реакція ϵ екзотермічною, енергія порогу рівна нулю.

Розглянемо реакцію

$$_{7}^{14}N + n \rightarrow \alpha +_{5}^{11} B$$
.

Дефекти мас в MeB рівні: $\Delta(n) = 8,071$, $\Delta(^{14}_{7}N) = 2,863$, $\Delta(\alpha) = 2,425$, $\Delta(^{11}_{5}B) = 20,174$.

Теплота та поріг реакції:

Q = 2,863 + 8,071 - 2,425 - 20,174 = -11,665 MeB – реакція є ендотермічною,

$$E_{nopoe.} = \frac{A_a + A_X}{A_Y} |Q| = \frac{1 + 14}{14} 11,665 = 12,5 \text{ MeB}.$$

№6.7

Знайти переріз реакції поглинання нейтронів ядрами міді, якщо вихід цієї реакції, тобто частка $Y = (I_0 - I(\Delta))/I_0$ нейтронів, які зазнали взаємодії і вибули з пучка є $Y = 3,2 \cdot 10^{-2}$, а товщина плоскої мішені з міді $\Delta = 0,1$ см. Врахувати, що густина міді (A=65) рівна 8,89 г/см³.

Розв'язування.

Що знайти зв'язок між перерізом реакції та виходом реакції, запишемо закон ослаблення кількості нейтронів у пучку в залежності від товщини поглинача у такому вигляді:

$$I(\Delta) = I_0 e^{-N\sigma_t \Delta}$$
,

де I_0 [част/с] - інтенсивність пучка нейтронів, що падає на мішень, $I(\Delta)$ - інтенсивність пучка нейтронів після проходження товщини мішені Δ [см], N - кількість ядер в одиниці об'єму мішені [1/см³], σ_t - мікроскопічний переріз взаємодії частинок з ядрами мішені [см²]. Тоді, вихід реакції буде:

$$Y = \frac{I_0 - I(\Delta)}{I_0} = \frac{I_0 - I_0 e^{-N\sigma_t \Delta}}{I_0} = 1 - \exp\{-N\sigma_t \Delta\}.$$

Отримаємо вираз для зв'язку перерізу і виходу реакції, використавши розклад функції логарифму в ряд Тейлора : $\exp\{-N\sigma_t\Delta\} = (1-Y), -N\sigma_t\Delta = \ln\{1-Y\} \approx -Y$:

$$\sigma_{t} \approx \frac{Y}{N\Delta}$$
.

Зазначимо, що кількість ядер мішені N, визначається через сталу Авогадро $N_A = 6{,}022 \cdot 10^{23}$ [моль⁻¹], молярну масу речовини μ [г/моль] та густину речовини ρ [г/см³]:

$$N = \frac{N_A \rho}{\mu} = \frac{8,89 \cdot 6,022 \cdot 10^{23}}{65} = 8,24 \cdot 10^{22} \text{ cm}^{-3}.$$

Тоді, підставивши отримані числові значення матимемо: $\sigma_t = \frac{3.2 \cdot 10^{-2}}{0.1 \cdot 8.24 \cdot 10^{22}} = 3.88 \cdot 10^{-24} \text{ cm}^2$.

РОЗДІЛ 7.

Елементи теорії ядерних реакцій

№7.1

У борнівському наближенні для амплітуди $f(\theta, \varphi)$ розсіяння обчислити диференціальний переріз розсіяння $d\sigma/d\Omega$, припускаючи, що взаємодія між ними описується такими точковими потенціалами: 1) $V(\vec{r}) = a\delta(r)$, 2) $V(\vec{r}) = a\delta(x)\delta(y)\delta(z)$.

Розв'язування.

В борнівському наближенні амплітуда розсіяння розраховується таким чином:

$$f(\theta, \varphi) = -\frac{\mu}{2\pi\hbar^2} \int V(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$

У Декартовій системі координат, добуток векторів у показнику експоненти зручно представити у вигляді $(\vec{q} \cdot \vec{r}) = q_x x + q_y y + q_z z$. У сферичній системі координат: $(\vec{q} \cdot \vec{r}) = qr \cos \theta$. Зв'язок між перерізом та амплітудою розсіяння:

$$\frac{d\sigma}{d\Omega} = |f(\theta, \varphi)|^2$$

Для потенціалу $V(\vec{r}) = a\delta(r)$, маємо:

$$f(\theta,\varphi) = -\frac{\mu}{2\pi\hbar^2} \int a\delta(r)e^{i\vec{q}\vec{r}}d\vec{r} = -\frac{\mu}{2\pi\hbar^2} \cdot a \cdot \int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} \delta(r)e^{iqr\cos\theta}r^2 \sin\theta dr d\theta d\varphi =$$

$$= -\frac{\mu}{2\pi\hbar^2} \cdot a \cdot \int_{0}^{2\pi} d\varphi \int_{0}^{\infty} \delta(r)r^2 dr \int_{0}^{\pi} e^{iqr\cos\theta} \sin\theta d\theta = -\frac{\mu}{2\pi\hbar^2} \frac{i2\pi a}{qr} \int_{0}^{\infty} \delta(r)r^2 e^{iqr\cos\theta} \Big|_{\theta=0}^{\theta=\pi} dr =$$

$$= -\frac{\mu}{2\pi\hbar^2} \frac{i2\pi a}{qr} \int_{0}^{\infty} \delta(r)r^2 \Big\{ e^{-iqr} - e^{iqr} \Big\} dr = -\frac{\mu}{2\pi\hbar^2} \frac{i2\pi a}{qr} \int_{0}^{\infty} \delta(r)r^2 \frac{i\sin qr}{2} dr = \frac{\mu}{2\pi\hbar^2} \frac{\pi a}{qr} r^2 \sin(qr) \Big|_{r=0} = 0$$

$$\frac{d\sigma}{d\Omega} = 0$$

Для потенціалу $\vec{V(r)} = a\delta(x)\delta(y)\delta(z)$, маємо:

$$f(\theta,\varphi) = -\frac{\mu}{2\pi\hbar^2} \int a\delta(x)\delta(y)\delta(z)e^{i\vec{q}\cdot\vec{r}}d\vec{r} = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(x)e^{iqx}dx \int_{-\infty}^{\infty} \delta(y)e^{iqy}dy \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(x)e^{iqx}dx \int_{-\infty}^{\infty} \delta(y)e^{iqy}dy \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(x)e^{iqx}dx \int_{-\infty}^{\infty} \delta(y)e^{iqy}dy \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(x)e^{iqx}dx \int_{-\infty}^{\infty} \delta(y)e^{iqy}dy \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(x)e^{iqx}dx \int_{-\infty}^{\infty} \delta(y)e^{iqy}dy \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(x)e^{iqx}dx \int_{-\infty}^{\infty} \delta(y)e^{iqx}dx \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(x)e^{iqx}dx \int_{-\infty}^{\infty} \delta(y)e^{iqx}dx \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz = -\frac{\mu a}{2\pi\hbar^2} \int_{-\infty}^{\infty} \delta(z)e^{iqz}dz$$

$$= -\frac{\mu a}{2\pi\hbar^2} e^{iqx} \Big|_{x=0} e^{iqy} \Big|_{y=0} e^{iqz} \Big|_{z=0} = -\frac{\mu a}{2\pi\hbar^2}$$
$$\frac{d\sigma}{d\Omega} = \left(\frac{\mu a}{2\pi\hbar^2}\right)^2$$

№7.2

Довести та проаналізувати рівняння неперервності у випадку комплексного потенціалу взаємодії частинки з ядром.

Розв'язування.

В оптичній моделі ядро розглядається, як напівпрозоре оптичне середовище, яке одночасно поглинає та розсіює падаючу хвилю. Для цього вводять комплексний потенціал:

$$V(\vec{r}) = V_{\text{Re}}(\vec{r}) + iV_{\text{Im}}(\vec{r})$$

Для такого потенціалу залежне від часу рівняння Шредінгера буде:

$$\hat{H}\psi = -\frac{\hbar^2}{2m}\Delta\psi + \{V_{\rm Re}(\vec{r}) + iV_{\rm Im}(\vec{r})\}\psi = i\hbar\frac{\partial}{\partial t}\psi$$

Рівняння неперервності пов'язує зміну в часі $\rho(\vec{r},t) = \left| \psi(\vec{r},t) \right|^2$ - густини ймовірності розташування частинки в точці \vec{r} в момент часу t із потоком частинок $div\vec{j}$, де

$$\vec{j} = \frac{i\hbar}{2m} \left\{ \psi \vec{\nabla} \psi^* - \psi^* \vec{\nabla} \psi \right\}.$$

У випадку дійсного потенціалу, рівняння неперервності має вигляд: $\frac{\partial \rho(\vec{r},t)}{\partial t} + di \vec{v} \vec{j} = 0$.

Для отримання рівняння неперервності для комплексного потенціалу, розрахуємо величину $\frac{\partial \rho(\vec{r},t)}{\partial t} = \frac{\partial}{\partial t} (\psi \psi^*) = \psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t}.$ Для зручності, будемо розглядати звичайне та комплексно спряжене рівняння Шредінгера і помножимо ці рівняння на хвильову функцію ψ^* та ψ відповідно:

$$\begin{cases} \hat{H}\psi = i\hbar\frac{\partial\psi}{\partial t} & | \quad \cdot\psi^* \\ (\hat{H}\psi)^* = -i\hbar\frac{\partial\psi^*}{\partial t} & | \quad \cdot\psi \end{cases}, \begin{cases} -\frac{\hbar^2}{2m}\psi^*\Delta\psi + \left\{V_{\mathrm{Re}}(\vec{r}) + iV_{\mathrm{Im}}(\vec{r})\right\}\psi^*\psi = i\hbar\psi^*\frac{\partial\psi}{\partial t} \\ -\frac{\hbar^2}{2m}\psi\Delta\psi + \left\{V_{\mathrm{Re}}(\vec{r}) - iV_{\mathrm{Im}}(\vec{r})\right\}\psi\psi^* = -i\hbar\psi\frac{\partial\psi^*}{\partial t} \end{cases}$$

Віднімемо від першого рівняння друге рівняння, отримаємо:

$$i\hbar(\psi^* \frac{\partial}{\partial t} \psi + \psi \frac{\partial}{\partial t} \psi^*) = -\frac{\hbar^2}{2m} \psi^* \Delta \psi + \left\{ V_{\text{Re}} + iV_{\text{Im}} \right\} \psi^* \psi - \frac{\hbar^2}{2m} \psi \Delta \psi^* - \left\{ V_{\text{Re}} - iV_{\text{Im}} \right\} \psi \psi^*$$
$$i\hbar \frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m} \left\{ \psi^* \Delta \psi - \psi \Delta \psi^* \right\} + 2iV_{\text{Im}} \psi^* \psi$$

Розглянемо вираз для потоку частинок $div\vec{j}$:

$$div\vec{j} = (\vec{\nabla} \cdot \vec{j}) = \frac{i\hbar}{2m} \{ \vec{\nabla} \psi \cdot \vec{\nabla} \psi^* + \psi \Delta \psi^* - \vec{\nabla} \psi^* \vec{\nabla} \psi - \psi^* \Delta \psi \} = \frac{i\hbar}{2m} \{ \psi \Delta \psi^* - \psi^* \Delta \psi \}$$

Таким чином, із останніх двох виразів видно, що

$$i\hbar \frac{\partial \rho}{\partial t} = \frac{\hbar^2}{2m} \left\{ \frac{2m}{i\hbar} div \, \vec{j} \right\} + 2iV_{\text{Im}} \psi^* \psi$$
$$\frac{\partial \rho}{\partial t} = -div \, \vec{j} + \frac{2}{\hbar} V_{\text{Im}} \rho$$

Дана рівність є рівнянням неперервності. Наявність уявної частини потенціалу призводить до зміни кількості частинок, які проходять через поверхню, що оточує центр розсіяння. Якщо $V_{\rm Im} < 0~$ - кількість частинок зменшується, таким чином описується поглинання, якщо $V_{\rm Im} > 0~$ - частинки народжуються.

РОЗДІЛ 8. Поділ атомних ядер

№8.1

Показати, що нейтрон з кінетичною енергією E_1 при лобовому пружному розсіянні з нерухомим ядром з масовим числом A втрачає енергію $\Delta E = E_1 - E_2 = 4E_1A/(A+1)^2$. Обчислити відповідну втрату енергії при зіткненнях нейтрона з ядрами гідрогену, карбону та урану.

Розв'язування.

Направимо вісь x Декартової системи координат вздовж напрямку руху нейтрона до зіткнення. В розглядуваному зіткненні частинки рухаються вздовж однієї прямої, будемо записувати закони збереження для проекцій векторів імпульсу на задану вісь. Позначимо кінетичну енергію, імпульс та швидкість нейтрона до зіткнення відповідно як E_1 , p_1 , v_1 , після зіткнення як E_2 , $-p_2$, $-v_2$ (враховуючи напрямок руху нейтрона після зіткнення). Нерухоме ядро з масовим числом A при зіткненні отримує кінетичну енергію E_A , імпульс та швидкість p_A та v_A . Прийнявши наближено, що маси протона та нейтрона наближено рівні $m_p \approx m_n = m$, будемо використовувати позначення маси нейтрона m, а маси ядра $A \cdot m$.

Закони збереження енергії та імпульсу запишуться так:

$$\begin{cases} E_1 = E_2 + E_A \\ p_1 = -p_2 + p_A \end{cases}.$$

Виконаємо перетворення:

$$\begin{cases} \frac{mv_1^2}{2} = \frac{mv_2^2}{2} + \frac{Amv_A^2}{2}, & \begin{cases} v_1^2 - v_2^2 = Av_A^2, & (v_1 + v_2)(v_1 - v_2) = Av_A^2, \\ v_1 + v_2 = Av_A, & Av_A(v_1 - v_2) = Av_A^2, \end{cases}, \begin{cases} v_1 - v_2 = v_A, \\ v_1 + v_2 = Av_A, \end{cases}$$

Почергово додавши та віднявши ці 2 рівняння, отримуємо вирази для швидкостей

$$\begin{cases} 2v_1 = v_A(A+1) \\ 2v_2 = v_A(A-1) \end{cases}, \begin{cases} v_1 = v_A(A+1)/2 \\ v_2 = v_A(A-1)/2 \end{cases}, \left(\frac{v_2}{v_1}\right)^2 = \left(\frac{A-1}{A+1}\right)^2$$

Втрата енергії нейтрона ΔE може бути представлена як:

$$\Delta E = E_1 - E_2 = E_1 (1 - \frac{E_2}{E_1}) = E_1 (1 - \frac{v_2^2}{v_1^2}) = E_1 (\frac{v_1^2 - v_2^2}{v_1^2}) = E_1 \frac{Av_A^2}{(v_A(A+1)/2)^2} = E_1 \frac{4A}{(A+1)^2}$$

Для зіткненнями з ядрами гідрогену, карбону та урану відповідно матимемо: 1) A = 1,

$$\Delta E / E_1 = 1; 2)$$
 $A = 12$, $\Delta E / E_1 = \frac{4 \cdot 12}{13^2} \approx 0,28; 3)$ $A = 238$, $\Delta E / E_1 = \frac{4 \cdot 238}{239^2} \approx 0,017$.

№8.2

Користуючись законами збереження енергії та імпульсу, оцінити кінетичні енергії та швидкості уламків з масовими числами 200 і 35, що утворюються при поділі $\frac{235}{92}U$, якщо повна кінетична енергія уламків становить 160 MeB.

Розв'язування.

Під час поділу важке ядро перетворюється на кілька уламків з меншими масами і виділяється енергія Q_f : $(Z,A) \rightarrow (Z_1,A_1) + (Z_2,A_2) + Q_f$. Енергія, що виділяється при розглядуваному поділі переходить у кінетичну енергію уламків поділу. Позначимо уламки як $A_1 = 200$, $A_2 = 35$, а їх кінетичні енергії та імпульси як E_1 (E_2) і $\vec{p}_1(\vec{p}_2)$ відповідно, $Q_f = 160$ MeB за умовою задачі. Закон збереження енергії запишеться так:

$$Q_f = E_1 + E_2 .$$

У відповідності із законом збереження імпульсу, імпульси уламків повинні бути рівні по модулю та мати протилежний напрямок руху, оскільки до поділу ядро урану знаходиться у стані спокою з нульовим імпульсом:

$$\vec{p}_1 + \vec{p}_2 = 0 \Longrightarrow p_1 = p_2$$

Виконаємо перетворення:

$$Q_f = E_1 + E_2 = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} = \frac{p_1^2}{2m_1} + \frac{p_1^2}{2m_2} = \frac{p_1^2}{2} \left(\frac{1}{m_1} + \frac{1}{m_2}\right) = \frac{p_1^2}{2} \left(\frac{m_1 + m_2}{m_1 m_2}\right) = E_1 \frac{m_1 + m_2}{m_2}.$$

Звідси можна знайти кінетичні енергії уламків:

$$E_1 = Q_f \frac{m_2}{m_1 + m_2}; E_2 = Q_f - E_1 = Q_f - Q_f \frac{m_2}{m_1 + m_2} = Q_f (1 - \frac{m_2}{m_1 + m_2}) = Q_f \frac{m_1}{m_1 + m_2}$$

Прийнявши, що маси протона та нейтрона наближено рівні $m_p \approx m_n = m$, розрахуємо маси уламків як $m_1 \approx A_1 \cdot m$ та $m_2 \approx A_2 \cdot m$. Тоді для оцінки кінетичних енергій уламків, маємо:

$$E_1 = Q_f \frac{A_2}{A_1 + A_2} = 160 \frac{35}{235} = 23.8 \text{ MeB}$$

$$E_2 = Q_f \frac{A_1}{A_1 + A_2} = 160 \frac{200}{235} = 136,2 \text{ MeB}$$

Оцінимо швидкості нуклонів в одиницях швидкості світла c та у км/с, наближено вважаючи масу нуклона за $m = 939 \, \mathrm{MeB/c^2}$:

$$\upsilon_{1} = \frac{p_{1}}{m_{1}} = \frac{\sqrt{2m_{1}T_{1}}}{m_{1}} = \sqrt{\frac{2T_{1}}{mA_{1}}} = \sqrt{\frac{2*23.8}{200*939}} = 0,016 \cdot c = 4800 \text{ km/c}$$

$$\upsilon_2 = \frac{p_2}{m_2} = \sqrt{\frac{2T_2}{mA_2}} = \sqrt{\frac{2*136,2}{35*939}} = 0,091 \cdot c = 27300 \text{ km/c}.$$

Додаток 1. Енергії зв'язку деяких атомних ядер

Елемент,	A	B, MeB	- · · · · · ·
ізотоп			Вміст, %
11	1		99,985
₁ H	2	2,2	0,015
	3	8,5	
	3	7,7	0,000137
₂ He	4	28,3	99,99986
	5	27,3	
	6	29,3	
	5	26,3	
₃ Li	6	32	7,5
	7	9,2	92,5
	8	41,3	
	6	26,9	
₄ Be	7	37,6	
	8	56,5	
	9	58,2	100
	10	65	
	11	65,5	
	8	37,7	
5B	9	56,3	
	10	64,7	
	11	76,2	19,9
	12	79,6	80,1
	13	84,5	
	10	60,3	
₆ C	11	73,4	
	12	92,2	98,89
	13	97,1	1,11
	14	105,3	
	15	106,5	
	16	110,8	
	12	73,8	
7 N	13	94,1	
	14	104,7	99,634
	15	115,5	0,366

Елемент,	A	B, MeB	Вміст, %
ізотоп			DMICI, 70
	16	118	
7 N	17	123,9	
	13	77,1	
	14	98,7	
^{8}O	15	111,9	
	16	127,6	99,762
	17	131,8	0,038
	18	139,8	0,2
	19	143,8	
	20	151,4	
	17	128,2	
9 F	18	137,4	
	19	147,8	100
	20	145,4	
	21	163,5	
	18	131,1	
₁₀ Ne	19	143,8	
101 10	20	160,3	90,48
	21	167,4	0,27
	22	177,8	9,25
	23	183	
	24	191,9	
	20	144,6	
₁₁ Na	21	163,1	
IIINa	22	174,1	
	23	186,6	100
	24	193,5	
	25	202,6	
	26	209	
	22	168,3	
₁₂ Mg	23	181,7	
	24	198,3	78,99
	25	205,6	10
	26	216,7	11,01

Елемент, ізотоп	A	B, MeB	Вміст, %
₁₂ Mg	27	223,1	
121 V1 g	28	231,6	
	24	183,4	
₁₃ Al	25	200,5	
137 11	26	211,9	
	27	225	100
	28	232,7	
	29	242,1	
	30	249,1	
	26	206	
₁₄ Si	27	219,4	
1451	28	236,5	92,23
	29	245	4,67
	30	255,2	3,1
	31	262,2	
	32	271,5	
	67	585,1	4,1
$_{30}$ Zn	68	595,4	18,8
	69	601,7	
	70	611	0,6
	71	317	
	72	625	
	64	551,2	
	65	563	
31Ga	66	572,2	
	67	583,4	
	68	591,7	
	69	601,9	60,108
	70	609,6	
	71	618,8	39,892
	72	625,8	
	73	634,8	
	74	640,8	
	65	557,5	
₃₂ Ge	66	568,4	
	67	578,2	
	68	590,2	
	69	598,9	

Елемент,	Α	B, MeB	
ізотоп			Вміст, %
	70	610,5	21,23
	71	617,8	
	72	629	27,66
	73	635,6	7,73
₃₂ Ge	74	645,7	35,94
	75	652,2	
	76	661,6	7,44
	77	667,6	
	78	676,5	
	69	594,2	
	70	603,2	
	71	615	
33 A S	72	623,8	
	73	634,4	
	74	642,3	
	75	652,6	100
	76	659,9	
	77	669,6	
	78	676,6	
	79	685,5	
	80	691,6	
	81	700,7	
	71	609,8	
	73	630,9	
₃₄ Se	74	642,9	0,89
3456	75	650,9	
	76	662	9,36
	77	669,5	7,63
	78	679,9	23,78
	79	686,9	
	80	696,9	49,61
	81	703,7	
	82	712,9	8,73
	83	718,8	
	74	636,1	
35 B r	75	647,4	
	76	656,6	
	77	667,3	

Елемент,	A	B, MeB	
ізотоп		Í	Вміст, %
	78	675,6	
_	79	686,3	50,69
35 B r	80	694,2	
	81	704,3	49,31
	82	712	
	83	721,5	
	84	728,3	
	85	735,5	
	87	747,5	
	74	631,2	
	77	663,6	
17	78	675,6	0,35
₃₆ Kr	79	683,9	
	80	695,4	2,25
	81	703,3	
	82	714,3	11,6
	83	721,7	11,5
	84	732,2	57
	85	739,4	
	86	749,2	17,3
	87	754,7	
	88	762	
	80	689,5	
	81	700,3	
37 R b	82	709,3	
	84	728,8	
	85	739,4	72,165
	86	747,9	
	87	757,9	27,835
	88	764	
	89	771,7	
	90	776,8	
	84	728,9	0,56
₃₈ Sr	85	734,5	
	86	748,9	9,86
	87	757,3	7
	88	768,4	82,58
	89	774,8	

Елемент,	Α	B, MeB	
ізотоп		,	Вміст, %
₃₈ Sr	90	782,6	
3801	91	788,4	
	92	795,7	
	85	733,7	
	86	742,9	
39 Y	87	754,9	
	88	764	
	89	775,5	100
	90	782,4	
	91	790,3	
	92	796,9	
	93	804,2	
	94	810,5	
	87	750,6	
	89	771,9	
40 Z r	90	783,8	51,45
	91	791,1	11,22
	92	799,7	17,15
	93	806,4	
	94	814,7	17,38
	95	821,1	
	96	828,9	2,8
	97	834,6	
	89	767,2	
	90	776,9	
41Nb	91	778,6	
412.0	92	796,8	
	93	805,6	100
	94	812,8	
	95	821,5	
	96	828,4	
	97	836,5	
	98	842,3	
	99	850	
	90	773,6	
42 M o	91	783,4	
	92	796,5	14,84
	93	804,3	

Елемент,	A	B, MeB	
ізотоп			Вміст, %
	94	814,2	9,25
	95	821,6	15,92
₄₂ Mo	96	830,8	16,68
	97	837,6	9,55
	98	846,1	24,13
	99	852,4	
	100	860,4	9,63
	101	866,2	
	102	874,7	
	92	789,3	
	93	800,4	
43Tc	94	809,1	
	95	819,2	
	96	827	
	98	844,4	
	99	853	
	100	859,4	
	101	868,2	
	102	875,1	
	95	816,2	
	96	826,7	5,52
44Ru	98	845,3	1,88
	99	852,5	12,7
	100	862	12,6
	101	869,1	17
	102	878,4	31,6
	103	884,7	
	104	893,4	18,7
	105	899,4	
	106	907,7	
	98	840,3	
D1	99	849,6	
₄₅ Rh	100	857,6	
	101	867,9	
	102	875,3	
	103	884,6	100
	104	891,4	
	105	900,5	

Елемент,	A	B, MeB	Вміст, %
ізотоп			DMICI, 70
45Rh	106	907	
	107	915,4	
	99	845	
	100	856,4	
	101	865,4	
D 1	102	975,7	1,02
₄₆ Pd	103	883,3	
	104	893,1	11,14
	105	900,3	22,33
	106	909,7	27,33
	107	916,1	
	108	925,2	26,46
	109	931,4	
	110	940,8	11,72
	111	946,1	
	112	954	
	103	880,3	
	104	888	
	105	897,9	
₄₇ Ag	106	906	
	107	915,4	51,839
	108	922,6	
	109	931,8	48,161
	110	938,6	
	111	947,5	
	112	953,6	
	113	962,1	
	114	968,6	
	115	976,6	
	116	982,5	
	106	905,6	1,25
C1	107	913,2	
₄₈ Cd	108	923,6	0,89
	109	930,8	
	110	940,7	12,49
	111	947,8	12,8
	112	956,8	24,13
	113	963,3	12,22

Елемент,	A	B, MeB	
ізотоп		_,	Вміст, %
G.1	114	972,4	28,73
₄₈ Cd	115	978,7	
	116	987,2	7,49
	117	993,2	
	108	917,7	
	109	928	
49 I n	110	935,9	
49111	111	946	
	112	953,4	
	113	962,9	4,29
	114	970,2	
	115	979,4	95,71
	116	986,1	
	117	994,9	
	118	1001,6	
	119	1010	
	111	942,8	
	112	953,3	0,97
	113	961,4	
₅₀ Sn	114	971,4	0,65
	115	979,1	0,34
	116	988,6	14,54
	117	995,6	7,68
	118	1005	24,22
	119	1011,5	8,58
	120	1020,6	32,59
	121	1026,9	
	122	1035,8	4,63
	123	1041,7	
	124	1050,1	5,79
	113	1055,8	
C1.	114	956,1	
51 S b	115	964,3	
	116	975,3	
	117	983,3	
	118	993	
	119	1000,3	
	120	1010,2	

Елемент, ізотоп	A	B, MeB	Вміст, %
	121	1017,1	57,21
₅₁ Sb	122	1026,5	
5130	123	1033,3	42,79
	124	1042,3	
	125	1048,6	
	126	1057,3	
	127	1071,9	
	116	980,9	
	117	988,8	
	119	1007,5	
₅₂ Te	120	1016,8	0,096
	122	1034,5	2,603
	123	1041,3	0,908
	124	1050,7	4,816
	125	1057,3	7,139
	126	1066,4	18,952
	127	1072,8	
	128	1081,2	31,867
	129	1087,5	
	130	1095,5	33,799
	131	1101,8	
	132	1109,9	
	122	1029,6	
	124	1046,7	
T	125	1056,4	
53 I	126	1063,5	
	127	1072,7	100
	128	1079,4	
	129	1088,2	
	130	1094,7	
	131	1103,3	
	132	1109,6	
	133	1118,1	
	136	1135,6	
	124	1046	0,1
54Xe	126	1064	0,09
	127	1071,2	
	128	1080,7	1,91

Елемент,	A	B, MeB	
ізотоп			Вміст, %
	129	1087,6	26,4
37	130	1096,9	4,1
₅₄ Xe	131	1103,5	21,2
	132	1112,4	26,9
	133	1119,2	
	134	1127,4	10,4
	135	1133,9	
	136	1141,8	8,9
	126	1058,4	
	127	1068,3	
	128	1076	
	129	1085,6	
₅₅ Cs	130	1093,1	
5505	131	1102,4	
	132	1109,8	
	133	1118,8	100
	134	1125,6	
	135	1134,3	
	136	1141,2	
	137	1149,5	
	138	1154,4	
	139	1159,7	
	129	1081,4	
	130	1092,8	0,106
₅₆ Ba	132	1110	0,101
56Da	133	1117,6	
	134	1126,8	2,417
	135	1133,8	6,592
	136	1143	7,854
	137	1149,9	11,23
	138	1158,5	71,7
	139	1163,2	
	140	1169,6	
	141	1174,6	
	132	1104,4	
₅₇ La	133	1114,6	
	134	1122,4	
	135	1131,9	

Елемент, ізотоп A B, MeB Вміст, відотоп 136 1139,3 138 1156 0,090 139 1164,8 99,90 140 1169,9 141 1176,7 143 1188,1 136 1138,8 0,19	98
138 1156 0,090 139 1164,8 99,90 140 1169,9 141 1176,7 143 1188,1	98
139 1164,8 99,90 140 1169,9 141 1176,7 143 1188,1	98
140 1169,9 141 1176,7 143 1188,1)
141 1176,7 143 1188,1	
143 1188,1	
136 1138,8 0,19	
	,
138 1156,3 0,25	
₅₈ Ce 139 1163,8	
140 1172,9 88,4	8
141 1178,3	
142 1185,5 11,0	8
143 1190,6	
144 1197,5	
145 1203	
146 1209,2	
139 1161	
_ 140 1168,8	
⁵⁹ Pr 141 1178,1 100	
142 1184	
143 1191,3	
144 1197	
145 1204,2	
146 1209,4	
141 1175,5	
142 1185,4 27,1	3
60Nd 143 1191,4 12,1	8
144 1199,2 23,8	3
145 1205,2 8,3	
146 1212,8 17,1	9
147 1217,9	
148 1225,4 5,76	5
149 1230,3	
150 1237,6 5,64	1
151 1242,4	
B 141 1171,1	
61Pm 142 1179,8	
143 1189,5	

Елемент,	Α	B, MeB	
ізотоп			Вміст, %
	145	1204,3	
₆₁ Pm	146	1210,3	
611 111	147	1218	
	148	1223,9	
	149	1231,2	
	150	1236,5	
	151	1244	
	143	1185,3	
	144	1196	3,1
	145	1202,9	
	146	1211	
₆₂ Sm	147	1217,5	15
623111	148	1225,6	11,3
	149	1231,5	13,8
	150	1239,5	7,4
	151	1245	
	152	1253,3	26,7
	153	1259,3	
	154	1267,1	22,7
	155	1272,6	
	156	1279,8	
	146	1206	
	147	1214,9	
₆₃ Eu	150	1236,3	
	151	1244,3	47,8
	152	1250,7	
	153	1259,3	52,2
	154	1265,6	
	155	1273,6	
	156	1279,9	
	157	1287,5	
	159	1300,8	
	148	1221,1	
₆₄ Gd	149	1228,1	
	150	1236,6	
	152	1251,7	
	153	1258,3	
	154	1266,8	2,18

Елемент, ізотоп	A	B, MeB	Вміст, %
	155	1273,1	14,8
₆₄ Gd	156	1281,6	20,47
₀₄ Gu	157	1288	15,65
	158	1295,9	24,84
	159	1302,2	
	160	1309,2	21,86
	161	1315,2	
	151	1239,6	
₆₅ Tb	152	1247,1	
	158	1294,2	
	159	1302,4	100
	160	1308,8	
	161	1316,4	
	152	1245,6	
	153	1252,8	
	154	1261,4	
Dv	156	1278,5	0,06
₆₆ Dy	158	1294,4	0,1
	159	1301,2	
	160	1309,8	2,34
	161	1316,2	18,9
	162	1324,4	25,5
	163	1330,7	24,9
	164	1338,3	28,2
	165	1343,7	
	166	1350,7	
	158	1292,4	
₆₇ Ho	162	1321,4	
6/110	163	1329,9	
	164	1336,1	
	165	1344,3	100
	166	1350,4	
	167	1357,8	
	162	1320,7	0,14
₆₈ Eu	164	1336,4	1,61
	165	1343,4	
	166	1351,5	33,6
	167	1358	22,95

Елемент,	A	B, MeB	
ізотоп			Вміст, %
	168	1365,8	26,8
₆₈ Eu	169	1371,6	
	170	1379	14,9
	171	1384,6	
	172	1391,4	
	164	1331,6	
	166	1348,3	
₆₉ Tm	168	1363,2	
	169	1371,2	100
	170	1377,8	
	171	1385,3	
	172	1391,5	
	173	1398	
	175	1410,6	
	168	1362,8	0,13
	170	1378	3,05
3 71	171	1384,6	14,3
₇₀ Yb	172	1392,6	21,9
	173	1399	16,12
	174	1406,4	31,8
	175	1412,3	
	176	1419,1	12,7
	177	1424,6	
	170	1373,7	
_	173	1397,6	
₇₁ Lu	174	1404,2	
	175	1412	97,41
	176	1418,3	2,59
	177	1425,2	
	178	1431,2	
	179	1437,9	
	174	1403,7	0,162
₇₂ Hf	175	1410,6	
72111	176	1418,6	5,206
	177	1424,9	18,606
	178	1432,6	27,297
	179	1438,7	13,629
	180	1446	35,1

Елемент,	A	B, MeB	Вміст, %
ізотоп			DMICI, 70
₇₂ Hf	181	1452	
/2111	182	1458,6	
	183	1463,7	
	180	1444,3	0,12
	181	1451,3	
74 W	182	1459,2	26,498
	183	1465,4	14,314
	184	1472,9	30,642
	185	1478,6	
	186	1485,9	28,426
	187	1491,1	
	188	1498	
	184	1470,5	
₇₅ Re	185	1478,3	37,4
	186	1484,4	
	187	1491,7	62,6
	188	1497,6	
	190	1510,1	
	184	1469,8	0,02
	185	1476,5	
	186	1484,7	1,58
76 O S	187	1490,9	1,6
	188	1498,9	13,3
	189	1504,9	16,1
	190	1512,6	26,4
	191	1518,3	
	192	1526,2	41
	193	1531,4	
	186	1480,1	
77 I r	188	1495,3	
//11	190	1509,8	
	191	1517,8	37,3
	192	1523,9	
	193	1531,7	62,7
	194	1538	
D.	188	1494	
₇₈ Pt	190	1509,8	0,01
	192	1524,6	0,79

Елемент,	Α	B, MeB	
ізотоп			Вміст, %
	193	1530,9	
₇₈ Pt	194	1539,4	32,9
/81 t	195	1545,6	33,8
	196	1553,6	25,3
	197	1559,4	
	198	1567,3	7,2
	199	1572,5	
	192	1520,6	
	194	1536,1	
79 A u	195	1544,6	
	196	1551,3	
	197	1559,4	100
	198	1565,9	
	199	1573,5	
	200	1579,6	
	201	1586,7	
	194	1535,2	
	196	1551,2	0,15
	198	1566,5	9,97
₈₀ Hg	199	1573,2	16,87
	200	1581,2	23,1
	201	1587,4	13,18
	202	1595,2	29,86
	203	1601,2	
	204	1608,6	6,87
	205	1614,2	
	196	1545,8	
	198	1562,2	
TI	199	1571,3	
81Tl	200	1577,9	
	201	1586,2	
	202	1593,3	
	203	1600,9	29,524
	204	1607,5	
	205	1615	70,476
	206	1621,6	
	207	1628,4	
	208	1632,2	

Елемент,	A	B, MeB	D : 0/
ізотоп			Вміст, %
81Tl	209	1637,2	
8111	210	1640,9	
	202	1592,4	
	203	1599,1	
₈₂ Pb	204	1607,5	1,4
82PU	205	1614,2	
	206	1622,3	24,1
	207	1629	22,1
	208	1636,4	52,4
	209	1640,4	
	210	1645,6	
	211	1649,3	
	212	1654,5	
	214	1663,3	
	203	1595,1	
	204	1602,4	
	205	1610,8	
₈₃ Bi	206	1617,9	
83D1	207	1625,9	
	208	1632,8	
	209	1640,2	100
	210	1644,8	
	211	1649,9	
	212	1654,3	
	213	1659,5	
	214	1663,6	
	215	1668,6	
	206	1615,4	
	207	1622,2	
₈₄ Po	208	1630,6	
	209	1637,5	
	210	1645,5	
	211	1649,8	
	212	1655,8	
	213	1660,1	
	214	1666	
	215	1670,1	
	215	1675,9	

Елемент,	A	B, MeB	Design 0/
ізотоп			Вміст, %
₈₄ Po	218	1685,5	
	207	1617,5	
	208	1624,9	
₈₅ At	209	1633,3	
85At	210	1640,6	
	211	1648,2	
	213	1659,1	
	214	1664,2	
	215	1670,1	
	216	1674,6	
	217	1680,6	
	218	1685,1	
	219	1690,5	
	210	1637,5	
	211	1644,5	
86Rn	212	1652,5	
	215	1669,3	
	216	1675,9	
	217	1680,5	
	218	1687	
	219	1691,4	
	220	1697,8	
	222	1708,2	
	212	1646,7	
	217	1678,9	
87Fr	218	1684,5	
	219	1690,9	
	220	1696,6	
	221	1702,5	
	223	1713,4	
	219	1689,4	
₈₈ Ra	220	1696,6	
	221	1702	
	222	1708,7	
	223	713,8	
	224	1720,3	
	225	1725,3	
	226	1731,6	

Елемент, ізотоп	A	B, MeB	Вміст, %
₈₈ Ra	227	1736,1	
881\a	229	1742,3	
	221	1699,5	
	222	1705,7	
89Ac	223	1712,4	
	224	1718,1	
	225	1724,8	
	226	1730,1	
	227	1736,6	
	228	1741,6	
	231	1758,9	
	223	1710	
	224	1717,6	
₉₀ Th	225	1723,6	
90 1 11	226	1730,5	
	227	1735,9	
	228	1743	
	229	1748,4	
	230	1755,2	
	231	1760,2	
	232	1766,5	100
	233	1771,6	
	234	1777,7	
	226	1727	
	227	1734,1	
	228	1740,2	
91 P d	229	1747,4	
	230	1753,2	
	231	1759,8	
	232	1765,4	
	233	1772	
	234	1777,1	
	235	1783,2	
	237	1794,1	
	227	1731,4	
92 U	228	1739,1	
	229	1745,4	
	230	1752,8	

Епомоми	A	B, MeB	
Елемент, ізотоп		3, 11103	Вміст, %
	231	1758,6	
	232	1765,9	
₉₂ U	233	1771,8	
/-	234	1778,6	0,0055
	235	1783,8	0,72
	236	1790,2	,
	237	1795,7	
	238	1801,7	99,2745
	239	1806,5	·
	240	1812,3	
	231	1756	
	233	1770	
93 N p	234	1776	
	235	1782,9	
	236	1788,6	
	237	1795,4	
	238	1800,8	
	239	1807	
	240	1812	
	241	1818,2	
	232	1760,7	
	233	1767,3	
	234	1774,8	
₉₄ Pu	235	1781	
94 F U	236	1788,4	
	237	1794,4	
	238	1801,3	
	239	1806,9	
	240	1813,3	
	241	1818,8	
	242	1825	
	243	1830	
	246	1846,6	
	237	1792,2	
95 A m	239	1805,4	
	241	1818	_
	242	1823,5	
	243	1829,8	

Елемент,	A	B, MeB	
ізотоп			Вміст, %
Δ	244	1835	
95 A m	245	1814,4	
	246	1846,2	
	238	1796,5	
	240	1810,3	
96Cm	241	1816,5	
	242	1823,4	
	243	1289	
	244	1835,7	
	245	1841,5	
	246	1847,7	
	249	1864	
	243	1826,8	
97 B k	245	1839,9	
	247	1852,3	
	248	1857,7	
	249	1864,1	
	250	1868,8	
	244	1831,3	
₉₈ Cf	245	1837,6	
9801	246	1844,8	
	248	1857,6	
	249	1863,5	
	250	1869,8	
	253	1886,2	
	249	1861,3	
99 Es	251	1874	
	252	1879,3	
	253	1885,7	
	254	1890,6	
	248	1851,5	
₁₀₀ Fm	250	1865,6	
	252	1878,7	
	254	1890,8	
₁₀₁ Md	255	1894,8	

Додаток 2. Деякі фізичні константи

Швидкість світла у вакуумі с	2,99792458·10 ⁸ м/с
Заряд електрона е	1,60217653·10 ⁻¹⁹ Кл
Стала Планка \hbar	$1,05457168 \cdot 10^{-34}$ Дж· $c = 6,58211915 \cdot 10^{-22}$ MeB· c
$\hbar c$	197,326968 МеВ. фм
\hbar^2 / m_u	41,80159 MeB· фм ²
\hbar^2/m_p	41,49961962 MeB· фм²
\hbar^2/m_n	41,4424945MeB· фм²
Стала тонкої структури $\alpha = e^2 / \hbar c \text{ (СГС)} = e^2 / k_{\varepsilon} \hbar c \text{ (CI)}$	1/137,03599911
Стала Больцмана k	$8,617343 \cdot 10^{-5} \mathrm{eB} \cdot \mathrm{K}^{-1} = 1,3806505 \cdot 10^{-23} \mathrm{Дж} \cdot \mathrm{K}^{-1}$
Число Авогадро N_A	$6,0221415 \cdot 10^{23} \mathrm{моль}^{-1}$
Атомна одиниця маси (а. о. м.)	931,494043 MeB = $1,66053886 \cdot 10^{-27}$ кг
1 електронвольт (eB)	1,60217653·10 ⁻¹⁹ Дж
Маса електрона m_e	$0,510998918 \text{ MeB}/c^2 = 9,1093826 \cdot 10^{-31} \text{ κ}$ Γ
Maca протона m_p	938,272029 MeB / c^2 = 1,00727646688 a.o.m. =
m_p	$=1836,15267261m_{\rm e}=1,67262171\cdot10^{-27}{\rm K}\Gamma$
Mass voymava	939,56536MeB / c^2 = 1,0086649156 a.o.m. =
Маса нейтрона m_n	$=1838,68336405 m_e = 1,67492738 \cdot 10^{-27} $ κΓ
Різниця мас нейтрона і протона $m_n - m_p$	1,2933317 MeB/ c ²
Ядерний магнетон $\mu_0 = \frac{e\hbar}{2m_p c}$	3,152451259 · 10 ⁻¹⁴ MeB· T ⁻¹

навчальне видання

ПЛЮЙКО Володимир Андрійович СОЛОДОВНИК Катерина Миколаївна

ЗБІРНИК ЗАДАЧ З ЯДЕРНОЇ ФІЗИКИ З РОЗВ'ЯЗКАМИ

МЕТОДИЧНИЙ ПОСІБНИК З КУРСУ "ФІЗИКА АТОМНОГО ЯДРА ТА ЕЛЕМЕНТАРНИХ ЧАСТИНОК"

(ЕЛЕКТРОННА ВЕРСІЯ)

Редактори В. А. Плюйко, К. М. Солодовник