-> Introduction -> Array → Linked List

→ Stack

→ Queue

→ Tree

→ Heap

→ Graph

→ Hashing What is Data Steucture? 1 store 2 Organize 3 Access 4) Manipulate (2) LDS VS NLDS -> Adjacently Attached -> Hierarchically Attached -> Multiple Level → single Level -> Difficult -> Easy -> Multiple Runs → Single Run > In efficient way Memory is not Utilized in efficient way > Array, Stack, LL

- 3 Array
 - -> store
 - > Same type
 - -> Contiguous memory Locations
 - > Index Accessing

- Datatype Array Name [A_size]

 Int Arr [10]
- >> Random Accessing
- -> Easy Reteieval
- -> Easy to use & understand
- -> fixed nature
- > Insert / Delete Issues

$$\rightarrow BA = 1000$$

$$U = 8$$

$$L = 0$$

$$S = 1$$

Addr
$$(arr[i]) = BA + S[i-L]$$
 $i=0 = 1000 + 1[0-0]$
 $i=1 = 1000 + 1[1-0]$
 $i=1 = 1000 + 1[1-0]$

Addr (arr[i][j])= BA + S[(i-L_R)(U-L_C+1)+(j-L_C)]

$$\frac{1}{2}$$
 = 1000 + 1[(1-0)(3)+(2-0)]
= 1005

Addr (are CijCjj) = BA +
$$S[(j-L_c)(U_R-L_{R}+1)+(i-L_R)]$$

$$1 = 1000+1[(2-0)(3)+(1-0)]$$

$$= 1000+7$$

Traversal operation:

> Insertion Operation:-

$$P \rightarrow \frac{1}{2} \frac{3}{3} \frac{4}{4} \frac{5}{5} \frac{3}{8} \frac{4}{9} \frac{3}{4} \frac{3}{4} \frac{4}{5}$$

Best case (Insert at expression)

2 3 4 5 Best case (Insert at end)

1 2 3 4 Sworst Case (Insert at (I=0))

$$P = I + I$$
or
 $I = P - I$

node * head = malloc (size of (node))

head → data = 5 head → link = NULL

head -data = 1

head -> link = 20

head -> Ink -> data = 2

head - link - link = 30

head - link - link - data = 3

head - link - link - link = NULL

Travelsal

⇒ current = head

while (current !=NULL)

printf (current → data)

current = current → next
}

```
Searching
     > current = head
          while (current != NULL)
                if (awwent → data = = key)

2 return current
3
                cutrent = current -> link
Insert -> At Beginning.

\begin{array}{c|c}
 & 20 \\
 & 10 \\
 & 20 \\
 & 30
\end{array}

             head
      > NULL
      1 new -> next = head
                10
15 + node
(10)
      @ head = new.
                 Head.
```

Insect - after a node.

Insert -> of End

Delete - At Beginning.

- 1 del = head
- @ head = del → link
- 3 free (del)

Delete - after a node.

- O del = prev 11°nk
- @ prev-link = del link
- 3 free (del)

the state of the state of

-> Circulate Linked List

-> Element at Top (TOS)


```
-> Push (arr, n, Tos, x)
    If (TOS == n-1)

{ printf (" Stack is full")
       TOS = TOS+1
       arr [TOS] = 2
 > pop (arr, n, Tos)
         If (TOS ==-1)
           Epsintf (" Stack is empty")
          X = arr [TOS]
          TOS = TOS -1
          return (x)
Q > push(1), push(3), pop(), push(5), push(10)
    push(10), pop(), po(), pop(), pop()
```

$$\frac{\text{Infix}}{\text{a+b}*x+y}$$

$$(1-R-x)$$

$$(Tx)$$

$$x+y$$

$$(Tx)$$

Postfix

$$++a*bxy$$
 $(R-l-r)$

$$++a*bxy$$
 $abx*+y+$ $(R-l-r)$ $(l-r-R)$

$$\frac{a+b*x+y}{\downarrow}$$

$$\frac{a+bx*+y}{\downarrow}$$

$$\frac{a+bx*+y}{\downarrow}$$

$$\frac{a+bx*+y+}{\downarrow}$$

$$9+b * x + y = 1 + 2 * 3 + 5$$
 4
 5
 4
 12

++a*bxy=++1*235

$$\Rightarrow a * b|c + d|e * f + g - h * i$$

$$(a*b|c+d|e*f * g) (h*i)$$

$$a*b|c+d|e*f * g$$

$$a*b|c d|e*f$$

$$a*b c d|e * f$$

$$a*b c d|e * f$$

$$a*b c d|e * f$$

-> Implementation using LL:

0 2 14 2 3 2 1 3 0 1

⇒Tree

· Depth: Root -> node

$$(A) = 0$$
 $(D) = 2$

$$(B) = 1 (E) = 2$$

· Height: node - leaf*

$$(A) = 3$$
 $(c) = 2$

. 200t = A

• Path =
$$A \rightarrow C \rightarrow F \rightarrow H$$

 $(A \rightarrow H)$

Ancestor & Decendant

Degree $E, F \times$ of node $\rightarrow A = 2$ B = 2

$$D = 0$$

Roof at $\rightarrow 1$ Left $\rightarrow 2*$ child $\rightarrow 2*$ Right $\rightarrow 2*$ the thild $\rightarrow 2*$ child

-> Binary Tree (LL)

⇒ BST

Inorder > 5,8,9,10,11,12,13,15,17

· Searching becomes easy (13)

· Inserting (50, 40, 30, 60, 80, 20, 70)

Deletion

- -> leaf node (Easy) direct (NO Impact)
- → One child node (14) → Replace it with that child (13)
- > 2 child node (4) -> Replace it with incoder Predicessor. (2).

2,4,5,6,7,8,10,14,13for $(8) \rightarrow ?45 (7)$.

1 Left Rotate

$$\begin{array}{c}
BF=2\\
A\\
BF=1
\end{array}$$

$$A C$$

@ Right Rotate

(3) LR rotate (1) blids

A RL notate

A

A

B

A

B

A

B

-> Complete Binary Tree -> Min heap (Parent < child) -> Max heap (Parent > child)

@ Multi Graph

P NULL Graph

0

> Representation of graph:

Adjacency Mateix

Adjacency List

· DAS

$$D \rightarrow A, E$$

Ans: AEFGCDB

keys
$$\rightarrow$$
 (10,11,12,13,14,15,16,17,18,19)
 f^{n} : K mod n
 $n = 10$

Keys \rightarrow (10,11,12,13,14,15,16,17,18,19)

 $n = 10$

$$\Rightarrow 12 \rightarrow \text{Square} \rightarrow 144$$

$$I=4 \text{ (store 12)}$$

$$\Rightarrow \boxed{1} \rightarrow \text{Squarer} \rightarrow 121$$

$$I=2 \text{ (Store II)}$$

*
$$K = 123456$$
 (folding method)
 $123 + 456$
 $\frac{123}{579} \mod n$

Collision

Chaining

$$k \rightarrow (12, 42, 55, 35, 16, 26)$$

Linear Probing

kmod 10

$$k \rightarrow (12, 42, 33, 44, 45)$$

 $h(k) \rightarrow 2 2 3 4 5$

$$8k = 42$$

 $h(k) = 2$ (collision)
 $i = 1$
 $h(k) + i = 2 + 1 = 3$

Problems

Ly Primary clustering

Quadratic Probing

h(k) = kmod 10

Double Hashing

79	— I
60	23456789
98	5 6 7
98	8910
	11

$$h1(79) = 79\%13 = 1$$

 $h1(69) = 69\%13 = 4$

$$h1(98) = 98\%13 = 7$$

 $h1(72) = 72\%13 = 7$ [Collision]
 $\Rightarrow i = 1$

$$[7+1*(1+72%11)]%13$$

 $\Rightarrow i=2$ [collision