Exercice1

1) Symbole d'une bascule RS asynchrone

R	S	Qn	Qn+1	Qn+1 Remarque		
0	1	0	1	Mise à 1		
ф	0	0	0	Maintient à 0		
1	0	1	0	Mise à 0		
0	ф	1	1	Maintient à 1		

2) Chronogramme:

Exercice2

Chronogramme:

Exercice3

- 1) Bascule JK synchrone
- 2) $S_D=0$ et $R_D=0$
- 3) Non le signal d'horloge n'a pas d'influence sur la sortie Q pour le cas $S_D=1$ et $R_D=0$ puisque dans ce cas la bascule est forcée à 1

Laboratoire génie électrique 3Sctech	Correction de la Série N°3	Bascules-compteurs	Page 2 /10

4) Table de vérité de la bascule :

Q _n	Н	S _D	R _D	J	К	Q _{n+1}	mode de fonctionnement (synchrone ou asynchrone).
0	\rightarrow	0	0	1	1	1	synchrone
0	\rightarrow	0	0	0	1	0	synchrone
1	\downarrow	0	0	0	1	0	synchrone
1	\rightarrow	0	0	0	0	1	synchrone
1	↑	0	0	1	1	1	synchrone
0	↑	0	0	1	0	0	synchrone
Ф	Ф	0	1	Ф	Ф	0	asynchrone
Ф	Ф	1	0	Ф	Ф	1	asynchrone

5) Chronogramme «Sans tenir compte des entrées de forçage». À t=0, Q=0

6) Chronogramme:

7) La bascule JK est modifiée, selon la figure (1). Compléter le chronogramme de la sortie Q.

Prof : Borchani hichem et Hammami mourad

Exercice4

1) Chronogramme de la sortie Q de la bascule JK suivante

2) La bascule JK est transformée comme le montre la figure 2. Sachant que les entrées asynchrones ($\overline{R}\overline{S}$) sont au niveau haut et que la sortie est initialement au niveau haut,

2-1- compléter le chronogramme de la sortie Q.

FIGURE « 2 »

2-3-
$$T_Q = 2 T_H$$
 puisque $f = \frac{1}{T}$

$$\frac{1}{T_o} = \frac{1}{2T_H}$$

$$f_Q = \frac{1}{2}f_H$$

2-3-
$$T_Q=2$$
 T_H puisque $f = \frac{1}{T}$ $\frac{1}{T_Q} = \frac{1}{2T_H}$ $f_Q = \frac{1}{2}f_H$
2-4- $T_Q=0.02s$; $f_H = 2f_Q$ $f_H = \frac{2}{0.02} = 100Hz$ $f_H = 100Hz$

$$f_{\rm H}=100{
m Hz}$$

Exercice5

Type	Symbole	Table de vérité	Diagramme de fluence	Table de transition			
			3		Qn	Q_{n+1}	D
Bascule D synchrone	D Q — — — — — — — — — — — — — — — — — —	D Q _{n+1} 0 0	D=1	3	0	1	1
			μ_0 μ_1	δ	1	0	0
				μ_0	0	0	0
		<u> </u>	D=0 δ D=1	μ_1	1	1	1
			D=0				

2) Chronogramme de la sortie Q.

3) Bascule D à partir des bascules JK et RS.

4) Chronogramme de Q de la bascule D (figure 3) sachant qu'à t=0 Q = 1.

Figure3

Exercice 6

1) Chronogrammes de \overline{S} , \overline{R} et Q; à t=0 Q=0

2) Le rôle du bouton poussoir (BP) est de commander la remise à zéro de la bascule et par suite d'arrêter la sonnerie.

Prof: Borchani hichem et Hammami mourad

Exercice 7

1 - Bascule T à partir des bascules JK, RS et D.

2 - Chronogramme:

Exercice N°8:

Cherchons le nombre de bascules $2^3 < 11 \le 2^4$ On utilise 4 bascules JK

On doit forcer le compteur à 0 pour la valeur 11 ou si on appui sur le bouton RAZ

$$R = QD \bullet QB \bullet QA + RAZ$$
 $\overline{R} = \overline{QD \bullet QB \bullet QA + RAZ} \Rightarrow \overline{R} = \overline{QD \bullet QB \bullet QA \bullet RAZ}$

Prof: Borchani hichem et Hammami mourad

Exercice N°9:

a) Cherchons le nombre de bascules : $2^3 < 9 \le 2^4$ On utilise 4 bascules D

On doit forcer le compteur à 0 pour la valeur 9 ou si on appui sur le bouton RAZ

b)
$$f_{QD} = \frac{f_H}{modulo} = \frac{90}{9} = 10Hz$$

Exercice N°10:

Le nombre de bascules : $8 = 2^3$ On utilise 3 bascules JK

La bascule utilisée pour réaliser ce compteur réversible est à front montant :

$$H_i = a \bullet \overline{Q}_{i-1} + \overline{a} \bullet Q_{i-1}$$
 $H_i = a \oplus Q_{i-1}$

Exercice N°11:

Cherchons le nombre de bascules : $2^3 < 10 \le 2^4$ On utilise 4 bascules D

On doit forcer le décompteur à 9 pour la valeur 15 ou si on appui sur le bouton INIT, pour forcer le circuit

à 9 on doit commander les entrées de forçages S_D , R_C , R_B et S_A , Soit CF la condition de forçage :

$$CF_{(9)} = S_D = R_C = R_B = S_A = QA \bullet QB \bullet QC \bullet QD + INIT$$

Exercice N°12:

Soit le circuit suivant :

- a) C'est un compteur
- b) D'après le schéma la valeur 6 ou le bouton Init force le compteur à la valeur 2 donc le cycle de comptage est le suivant : 2-3-4-5-2 etc....
- c) Modulo 4

Exercice N°13:

- 1°) On désire réaliser un compteur asynchrone modulo 20
- $2^4 < 20 \le 2^5$ On utilise 5 bascules. a) Cherchons le nombre de bascules :
- b) Logigramme du compteur binaire (état initial 0)

On doit forcer le compteur à 0 pour la valeur 20, pour forcer le compteur à 0 on doit commander les entrées de forçages R. 20₍₁₀₎=10100₍₂₎

Pour les entrées de forçages actives a niveau haut $R = QE \cdot QC$

Page 8 /10

Pour les entrées de forçages actives a niveau bas $\overline{R} = \overline{QE \cdot QC}$

Exercice N°14:

1°) Compteur asynchrone qui décrit la séquence suivante : « 2,3,4,5,6 »

On doit forcer le compteur à 2 pour la valeur 7, ou si on appui sur le bouton Init.

Pour forcer le compteur à 2 on doit commander les entrées de forçages \overline{R}_2 , \overline{S}_1 , \overline{R}_0 . $7_{(10)}=111_{(2)}$

$$CF_{(2)} = R_2 = S_1 = R_0 = Q_0 \bullet Q_1 \bullet Q_2 + Init$$

$$\overline{CF}_{(2)} = \overline{R}_2 = \overline{S}_1 = \overline{R}_0 = \overline{Q}_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 + Init$$

Exercice N°15:

- a- Bascule T
- b- Compteur asynchrone

Décompteur asynchrone

- c- $CF = Q_C.Q_B.Q_A + INIT$
- d- Cycle: 1,2,3,4,5,6,1: Modulo: 6
- e- Chronogramme de CF et valeurs en décimal affichées par le circuit sachant qu'il débute par 3

