Übungen zum Kurs Exponentialgleichungen

1.Exponentialgleichungen mit 2 Summanden (davon 1 Absolutglied) die durch Exponentenvergleich gelöst werden sollen:

1a)	$10^{x} = 100$	L={2}	1b)	$2^{x}=32$	$L={5}$
1c)	$5^{x}=125$	$L={3}$	1d)	$3^{x} = 81$	$L={4}$
1e)	$5^{x-1}=25$	L={3}	1f)	$3^{x+5}=9$	$L=\{-3\}$
1g)	$2^{x+5}=64$	$L=\{1\}$	1h)	$32^{x-7}=1024$	L={9}
1i)	$4^{2x} = 8$	$L = \left\{ \frac{3}{4} \right\}$	1k)	$9^{2x+2} = 27$	$L = \left\{-\frac{1}{4}\right\}$
1m)	$25^{x+2}=125$	$L=\left\{-\frac{1}{2}\right\}$	1n)	$8^{2x} = 16$	$L = \left\{ \frac{2}{3} \right\}$

2.Exponentialgleichungen mit 2 Summanden (davon 1 Absolutglied) die durch <u>Logarithmieren</u> gelöst werden sollen:

 $512^{x+1}=625$ L= $\{0.031968\}$

2m)

2n) $50^x = 2048$ L= $\{1.949022\}$

Übungen zum Kurs Exponentialgleichungen

3. Exponentialgleichungen mit zwei Summanden (kein Absolutglied) die durch Exponentenvergleich gelöst werden sollen:

3a)	$2^{3x}=2^{x+8}$	L={4}	3b)	$7^{x+5} - 7^{6x} = 0$	L={1}
3c)	$10^{2x+30} = 100^{6x}$	L={3}	3d)	$2^{x+9} = 16^x$	$L={3}$
3e)	$2^{12x} = 8^{x+15}$	$L={5}$	3f)	$3^{4x} = 9^{x+2}$	$L=\{2\}$
3g)	$4^{x+1}=8^{x-1}$	L={5}	3h)	$25^{x+1}=125^{x-1}$	$L={5}$
3i)	$9^{x+2}=27^{x-1}$	$L={7}$	3k)	$4^{3x+1}=8^{x+2}$	$L=\left\{\frac{4}{3}\right\}$

4. Exponentialgleichungen mit zwei Summanden (kein Absolutglied) die durch Logarithmieren gelöst werden sollen:

die durch Logantiffilieren gefost werden sollen.							
4a)	$4^{x+1}=8^{x-1}$	$L={5}$	4b)	$32^{x-1}=4^{2x}$	$L={5}$		
4c)	$32^{2x-1}=4^{x+2}$	$L=\{1.125\}$	4d)	$64^{x-2}=2^{2x}$	$L={3}$		
4e)	$125^{x-2}=25^{x+1}$	$L={8}$	4f)	$128^{x-4}=2^{3x}$	$L={7}$		
4g)	$32^{x+1}=16^{x-1}$	$L=\{-9\}$	4h)	$512^{x-1}=16^{2x}$	L={9}		
4i)	$128^{2x+2}=16^{x-5}$	$L=\{-3.4\}$	4k)	$1024^{x-3}=2^{4x}$	$L={5}$		
4m)	$64 \cdot 8^{x} = 256^{x} \cdot 2^{-x}$	$L=\{1.5\}$	4n)	$32 \cdot 2^{x} = 64^{x} \cdot 16^{-x}$	L={5}		
40)	$64 \cdot 2^{x+9} = 4^{x+2} \cdot 8^{x+1}$	L={2}	4p)	$1024 \cdot 32^{x+1} = 4^{x+3} \cdot 16^{x+2}$	L={1}		
4q)	$8 \cdot 4^{x+3} = 16^{x+1} \cdot 8^{x+2}$	$L=\{-0.2\}$	4r)	$32 \cdot 16^{x+1} = 8^{x+2} \cdot 4^{x+4}$	$L=\{-5\}$		

Übungen zum Kurs Exponentialgleichungen

5. Exponential gleichungen mit drei Summanden (davon 1 Absolutglied)

Hinweise zum Lösungsweg und Schwierigkeitsgrad:

Aufgabe a bis d: Durch Substitution und Binomische Formeln lösbar.

Aufgabe e bis h: Durch Substitution und Lösungsformel für quadratische Gleichungen lösbar Aufgabe i bis n: Als zusätzliche Schwierigkeit treten im Exponenten auch Summen auf.

Die Lösung erhält man durch Substitution und Anwenden des 2.Binoms

5a)
$$2^{6x} - 4 \cdot 2^{3x} + 4 = 0$$
 $L = \left\{\frac{1}{3}\right\}$

5b)
$$20^{2x} - 40 \cdot 20^x + 400 = 0$$
 L={1}

5c)
$$5^{4x} - 10 \cdot 5^{2x} + 25 = 0$$
 $L = \left\{ \frac{1}{2} \right\}$

5d)
$$2^{8x} - 16 \cdot 2^{4x} + 64 = 0$$
 $L = \left\{ \frac{3}{4} \right\}$

5e)
$$5^{4x} - 30 \cdot 5^{2x} + 125 = 0$$
 $L = \{\frac{1}{2}, 1\}$

5f)
$$4^{6x} - 18 \cdot 4^{3x} + 32 = 0$$
 $L = \left\{ \frac{1}{6}; \frac{2}{3} \right\}$

5g)
$$2^{6x} - 80 \cdot 2^{3x} + 1024 = 0$$
 L= $\left\{2; \frac{4}{3}\right\}$

5h)
$$8^{4x} - 12 \cdot 8^{2x} + 32 = 0$$
 $L = \left\{ \frac{1}{3}; \frac{1}{2} \right\}$

5i)
$$2^{4x} - 2^{2x+6} + 1024 = 0$$
 $L = \left\{\frac{5}{2}\right\}$

5k)
$$5^{6x} - 2 \cdot 5^{3x+3} + 15625 = 0$$
 L={1}

5m)
$$5^{8x+1} - 2 \cdot 5^{4x+3} + 3125 = 0$$
 L= $\left\{\frac{1}{2}\right\}$

5n)
$$2^{6x+1} - 2^{3x+8} + 8192 = 0$$
 L={2}

6.Exponentialgleichungen mit drei Summanden (davon 1 Absolutglied), wobei die variablen Glieder <u>unterschiedliche</u> Basen haben:

6a)
$$16^x - 512 \cdot 2^{2x} + 65536 = 0$$
 L={4}

6b)
$$5^{6x} - 50 \cdot 125^x + 625 = 0$$
 $L = \left\{\frac{2}{3}\right\}$

6c)
$$4^{5x} - 32^{x+1} + 256 = 0$$
 L= $\left\{\frac{4}{5}\right\}$

6d)
$$25^{10x} - 2 \cdot 5^{10x+2} + 625 = 0$$
 $L = \left\{ \frac{1}{5} \right\}$

6e)
$$2^{8x+1} - 4^{2x+5} + 131072 = 0$$
 L={2}

6f)
$$25^{4x+1} - 2 \cdot 5^{4x+4} + 15625 = 0$$
 L= $\left\{\frac{1}{2}\right\}$