특 2002-0035986

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. Cl.⁷ HOLL 21/3213 (11) 공개번호 특2

특2002-0039986

(43) 공개일자 2002년05월16일

Unitr Siveria		
(21) 출원번호	10-2000-0065830 2000년 11월 07일	
(22) 출원일자	광주괴학기술원 김효근 -	
(71) 출원인	광주 북구·오롱동·1번지	
(72) 발명자	황연상	
	광주광역시광산구월계동금광이파트103동304호	
	전상훈	
	전라북도군산시서홍남동848-30	
(74) 대리인	허진석	
<i>의사용구 : 있음</i>	·	

(54) 반도처장치의 게이트절면막 제조방법

分子

본 발명은, 실리콘 기판 상에 금속산화물을 형성하는 단계와, 상기 금속산화물에 질소성분을 합유시키는 결화처리 단계와, 상기 질소성분이 합유된 금속산화물을 산화시키는 재산화 단계를 포함하는 것을 특징으로 한다. 여기서, 상기 금속산화물로는 700을 사용하거나 배인, LeQ, AlQ, 또는 TeQ, 을 사용할 수 있으며, ZrSi,0, HSI,0, LaSI,0, AlSI,0, 또는 TeSI,0, 을 사용할 수 있다. 그리고, 상기 질화처리 단계는 상기 금속산화물이 형성된 결과물을 질소함유기체 분위기에서 말처리하며 수행하거나, 상기 금속산화물을 질소함유 플라즈마 분위기에 노출시켜 플라즈마 처리하며 수행하거나, 또는 상기 금속산화물에 질소물을 집소함유 플라즈마 분위기에 노출시켜 플라즈마 처리하며 수행하거나, 또는 상기 금속산화물에 질소물을 이온주입하여 수행할 수 있다. 본 발명에 의하면, 금속산화막을 형성한 후에 질화처리 및 재산화 공정을 거참으로써 고온후속열처리 공정에 의한 유효두께 및 누설전류의 증가를 현저히 감소시킬 수 있다.

四班车

⊊1

4201

게이트철연막, 고유전박막, Zr02, 누설전류, 유효두께

BAIN

도면의 견단한 설명

도 1은 호속열처리 시에 ZrO,N,막과 ZrO,막에 대한 유효두께의 증가를 비교하여 나타낸 그래프;

도 2는 호속열처리 사에 ZrON,막과 ZrO막에 대한 누설전류의 증가를 비교하여 나타낸 그래프;

도 3a 및 도 3b는 2r0,막과 Zr0,N,막을 800 c에서 5분동만 각각 열처리한 경우의 전자현미경 단면사진들이 다.

발명의 상시한 설명

보명의 목적

발명이 속하는 기술분야 및 그 분야의 증례기술

본 발명은 반도체장치의 게이트절면막 제조방법에 관한 것으로서, 특히 질화처리를 이용하며 고유전율을

갖는 게이트 절면막을 제조하는 방법에 관한 것이다.

차세대 고유전 게이트 절면막으로 많이 연구되고 있는 고유전박막인 Zro. 박막은 다양한 공정 최적화를 통하여 우수한 전기적 특성을 얻을 수 있음이 보고되고 있다. 그러나, 대부분의 다른 금속산화물과 마찬가지로 Zro.박막을 MOSFET의 게이트절연막으로 응용할 경우에 필수적으로 거치는 고온열처리 과정에서, 결정화에 기안한 누설전류의 증가와, 실리콘 기판과 Zro.박막과의 계면에 형성되는 실리케이트(silicate) 또는 실리콘산화물(silicon oxide)과 같은 계면총의 성장에 기인한 유효두께의 급격한 증가가 문제시 되고 있다.

蓝图的 이루고자 하는 기술적 承재

[마라서, 본 발명이 이루고자 하는 기술적 과제는, ZrO,막 등과 같은 금속산화막을 일단 형성하고 질화 및 재산화공정을 거참으로써, 고온공정에서도 유효투제 및 누설전류의 증가가 억제되는 반도체장치의 게이트 절연막 제조방법을 제공하는 데 있다.

발범의 구성 및 작용

상기 기술적 과제를 달성하기 위한 본 발명에 따른 반도체장치의 게이트절면막 제조방법은, 실리콘 기판 상에 금속산화물을 형성하는 단계와, 상기 금속산화물에 질소성분을 함유시키는 질화처리 단계와, 상기 질소성분이 함유된 금속산화물을 산화시키는 재산화 단계를 포함하는 것을 특징으로 한다.

여기서, 상기 금속산화물로는 ZrO. 을 사용하기다 HfO., Lo.O., AlaO. 또는 To.O. 을 사용할 수 있으며, ZrSiO., H(Si,O., LaSi,O., AlSi,O. 또는 TaSi,O. 을 사용할 수도 있다.

그리고, 상기 질화처리 단계는 상기 금속산화물이 형성된 결과물을 질소함유기체 분위기에서 열처리하여 수행하거나, 상기 금속산화물을 결소함유 플라즈마 분위기에 노출시켜 플라즈마 처리하여 수행하거나, 또 는 상기 금속산화물에 결소성분을 이온주입하여 수행할 수 있다.

이 때, 상기 질소합유기체로는 N.O. NO 또는 NH. 기체를 사용할 수가 있으며, 상기 열처리는 300~1000°C 의 온도범위에서 10초 내지 1시간 동안 수행하는 것이 비참직하다. 상기 질소함유 클라즈마로는 N. 또는 NH. 플라즈마를 사용할 수 있다.

한편, 상기 재산화 단계는 0., 0. 또는 H.O(g) 분위기에서 열처리함으로써 수행할 수 있으며, 이 때의 열 처리는 300-1000·C의 온도범위, 10초 내지 1시간 동안 행하는 것이 바람직하다.

이하에서, 본 발명의 비람직한 실시예름을 첨부한 도면들을 참조하며 상세히 설명한다.

[실시예 1]

먼저, 실리콘 기판 상에 Zro.막을 증확한다. 다음에 NH, 기체 분위기에서 700억에서 60초간 열처리를 하며 Zro.막 내에 질소성분을 합유시킨다. 그리고, 425억에서 상기 질소성분이 합유된 Zro.막을 습식산화법으로 다시 산화하여 Zro.막을 형성한다.

[실시예 2]

면자, 실리콘 기판 상에 ZrO,막을 증착한다. 다음에, ZrO,막을 NH, 또는 N, 플라즈마 분위기에 노출시켜 ZrO,막을 플라즈마 처리함으로써 Zro,막 내에 결소성분을 함유시킨다. 그리고, 상기 결소성분이 함유된 Zro,막을 산소함유 플리즈마에 노출시켜 재산화시킴으로써 Zro,N,막을 형성한다.

[실시예3]

먼저, 실리콘 기판 상에 ZrQ 막을 증착한다. 다음에, 질소 이온주입 및 열처리를 수행하여 ZrQ 막 내에 질 소성분을 함유시킨다. 그리고, 잘소성분이 함유된 ZrQ 막을 425c에서 습식산화법으로 다시 산화하여 ZrQ N막을 형성한다.

[비교예 1]

도 1은 호속열처리 시에 실시에 1에서 형성된 Zro.N.막과 증래의 Zro.막에 대한 유효두께의 증가를 비교하여 LIEFU 그래프이다. 도 1를 참고하면, Zro.막의 경우에 비해 Zro.N.막의 경우가 유효두께의 증가가 현저히 작음을 알 수 있다.

[비교예 2]

도 2는 후속열처리 시에 실시에 1에서 형성된 ZrO.N 막과 중래의 ZrO.막에 대한 누설전류의 증가를 비교하며 나타낸 그래프이다. 누설전류는 1.5V를 인가하여 측정하였다. 도 2를 참조하면, 700°c 이상에서는 ZrO. 의 누설전류가 큰 쪽으로 감소하기는 하지만 전체적으로 ZrO.막의 경우가 ZrO.N 막의 경우보다 큰 누설전류를 갖는다는 것을 알 수 있다. 특히, 700°c 이하에서는 ZrO.막보다는 ZrO.N 막의 경우가 누설전류가 훨씬 작다는 것을 알 수 있다.

ZrQ,N,막은 후속열처리 이후에도 여전히 비정할 구조를 유지하지만, ZrQ,막은 후속열처리에 의해 결정화되어, 다결정 구조를 갖게 된다. 이렇게 다결정 구조를 갖기 때문에 같은 유효두께에 대해 ZrQ,N의 경우보다 ZrQ,의 경우가 더 큰 누설전류를 갖게 되는 것이다.

[비교예 3]

도 3a 및 도 3b는 스퍼터링방법으로 형성된 ZrQ,막과 실시에 1에서 형성된 ZrQ, 막을 800°C에서 5분동안 각각 열처리한 경우의 전자현미경 단면사진들이다. 도면을 참조하면, 모두가 계면층들이 형성되기는 하였 지만 도 3a의 경우가 물리적인 두께가 더 몸을 알 수 있다.

29957

ZrON 마을 형성하는 방법만을 구체적으로 예로 들어 설명하였지만, 일반적인 금속산화물막의 경우에도 본 발명을 적용할 수 있으며, 본 발명에 따른 반도체장치의 게이트절면막 제조방법에 의하면, 금속산화막을 형성한 후에 질화처리 및 재산화 공정을 거침으로써 고온후속열처리 공정에 의한 유효두께 및 누설전류의 증가를 현재히 감소시킬 수 있다.

본 발명은 상기 실시예들에만 한정되지 않으며, 본 발명의 가술적 사상 내에서 당 분야에서 통상의 지식 을 가진 지에 의해 많은 변형이 가능함은 명백하다.

(57) 경구의 방위

청구항 1

실리콘 기판 상에 금속산화물을 형성하는 단계와;

상기 금속산화물에 질소성분을 함유시키는 질화처리 단계와,

상기 집소성분이 합유된 금속산화물을 산화시키는 재산화 단계를 포함하는 것을 특징으로 하는 반도체장 치의 게이트절연막 제조방법:

원그하 2

제 항에 있어서, 상기 금속산화물이 ZrQ인 것을 특징으로 하는 반도체장치의 게이트절연막 제조방법.

청구한 3

제 항에 있어서, 상기 금속산화물이 HfQ, LaQ, ALQ, 및 TaQ, 으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 반도체장치의 게이트점면막 제조방법.

청구한 4

제1항에 있어서, 상기 금속산화물이 ZrS1.0., HfS1.0., LeS1.0., AlS1.0.및 TeS1.0.로 미루어진 군 중에서 선택된 어느 하나면 것을 특징으로 하는 반도체장치의 게이트절면막 제조방법.

청구항 5.

제 항에 있어서, 상기 질화처리 단계가 상기 금속산화물이 형성된 결과물을 질소함유기체 분위기에서 열 처리함으로써 수행되는 것을 특징으로 하는 반도체장치의 게이트절연막 제조방법.

청구한 6

제5항에 있어서, 상기 질소함유기체가 N.O. NO 또는 NH. 기체 인 것을 특징으로 하는 반도체장치의 게이트 절면막 제조방법

청구한 7

제5항에 있어서, 상기 열처리가 300~1000℃의 온도범위에서 행해지는 것을 특징으로 하는 반도체장치의 게이트절면막 제조방법

청구항 8

제7항에 있어서, 상기 열차리가 10초 내지 1시간 동안 수행되는 것을 특징으로 하는 반도체장치의 게이트

절연막 제조방법.

청구항 9

٠,

4

제 1항에 있어서, 상기 집화처리 단계가 상기 금속산화물을 질소합유 플라즈마 분위기에 노출시켜 플라즈마 처리함으로써 수행되는 것을 특징으로 하는 반도체장치의 게이트절연막 제조방법

청구한 10

제9형에 있어서, 상기 질소함은 플라즈마가 N. 또는 NH. 플라즈마인 것을 특징으로 하는 반도체장치의 게 이트절연막 제조방법.

청구항 11

제 l항에 있어서, 상기 질화 처리단계가 상기 금속산화물에 질소성분을 미온주입함으로써 수행되는 것을 특징으로 하는 반도체장치의 게이트절면막 제조방법,

청구항 12

제 1항에 있어서, 상기 재산화 단계가 Q., Q. 또는 H.O(9) 분위기에서 열처리함으로써 수행되는 것을 특징으로 하는 반도체장치의 게이트절면막 제조방법

청구항 13

제 I항에 있어서, 장기 재산화 단계가 300-1000 c의 온도범위에서 수행되는 것을 특징으로 하는 반도체장 지의 게이트절연막 제조방법

원그라 14

제 13항에 있어서, 장기 재산화 단계가 10초 내지 1시간 동안 수행되는 것을 특징으로 하는 반도체장치의 게이트절연막 제조방법

<u>도</u>即

5B1

*도만3*8

