Recent and Future Updates to LDpred2 for Polygenic Scores and Inference

WCPG 2023

Florian Privé (Aarhus Uni, DK)

Nothing to disclose

Overview of what LDpred2-auto can now provide

Prior model: spike and slab

LDpred2 assumes the following model for effect sizes,

$$eta_j = S_j \gamma_j \sim egin{cases} \mathcal{N}\left(0, rac{h^2}{Mp}
ight) & ext{with probability p,} \ 0 & ext{otherwise,} \end{cases}$$

where

- p is the proportion of causal variants (aka polygenicity),
- *M* the number of variants,
- h^2 the (SNP) heritability,
- γ the effect sizes on the allele scale,
- S the standard deviations of the genotypes,
- β the effects of the scaled genotypes.

Prior model: spike and slab

LDpred2 assumes the following model for effect sizes,

$$eta_j = S_j \gamma_j \sim egin{cases} \mathcal{N}\left(0, rac{h^2}{Mp}
ight) & ext{with probability p,} \ 0 & ext{otherwise,} \end{cases}$$

where

- p is the proportion of causal variants (aka polygenicity),
- *M* the number of variants,
- h^2 the (SNP) heritability,
- γ the effect sizes on the allele scale,
- *S* the standard deviations of the genotypes,
- β the effects of the scaled genotypes.

LDpred2 uses a Gibbs sampler to sample causal variants and their effects. LDpred2-auto directly estimates h^2 and p from the Gibbs sampler.

Extended 3-parameter model (for LDpred2-auto)

$$eta_j = S_j \gamma_j \sim egin{cases} \mathcal{N}\left(0, \; \sigma_eta^2 \cdot (S_j^2)^{(lpha+1)}
ight) & ext{with probability p,} \ 0 & ext{otherwise.} \end{cases}$$

- similar to the model assumed in SBayesS
- previous 2-parameter model assumes lpha=-1 and $\sigma_{eta}^2=rac{h^2}{Mp}$
- σ_{eta}^2 and lpha are estimated using maximum likelihood estimation (MLE)

Extended 3-parameter model (for LDpred2-auto)

$$eta_j = S_j \gamma_j \sim egin{cases} \mathcal{N}\left(0, \; \sigma_eta^2 \cdot (S_j^2)^{(lpha+1)}
ight) & ext{with probability p,} \ 0 & ext{otherwise.} \end{cases}$$

- similar to the model assumed in SBayesS
- previous 2-parameter model assumes lpha=-1 and $\sigma_{eta}^2=rac{h^2}{Mp}$
- σ_{eta}^2 and lpha are estimated using maximum likelihood estimation (MLE)

⚠ More flexibility is not always better.

Inference can become unstable when power is low.

The 2-parameter model can be used instead by setting use_MLE = FALSE.

Inference with LDpred2-auto

Recent work on:

- properly validating the inference of h^2 , p, and α (and their CIs) using extensive simulations
- showing calibrated per-variant probabilities of being causal
- inferring the out-of-sample predictive performance r^2 directly from the Gibbs sampler

Inference with LDpred2-auto

Recent work on:

- properly validating the inference of h^2 , p, and α (and their CIs) using extensive simulations
- showing calibrated per-variant probabilities of being causal
- inferring the out-of-sample predictive performance r^2 directly from the Gibbs sampler

■ Soon to be published in AJHG. Stay tuned
■ @privefl.

Inferred r^2 estimates vs the ones from a test set

An extended set of variants for LDpred2

- We have recommended to use a set of 1,054,330 HapMap3 variants
 - good coverage of the genome
 - generally well imputed and available in most studies
- We now provide an extended set with 37% more variants
 - designed to maximize tagging of 11.5M common variants in diverse genetic ancestries
 - called HapMap3+
- Using this new set of variants, in UK Biobank analyses, on average,
 - we capture 12% more SNP heritability h^2
 - \circ obtain 6% more predictive performance r^2

An extended set of variants for LDpred2

- We have recommended to use a set of 1,054,330 HapMap3 variants
 - good coverage of the genome
 - generally well imputed and available in most studies
- We now provide an extended set with 37% more variants
 - designed to maximize tagging of 11.5M common variants in diverse genetic ancestries
 - called HapMap3+
- Using this new set of variants, in UK Biobank analyses, on average,
 - we capture 12% more SNP heritability h^2
 - \circ obtain 6% more predictive performance r^2

⚠ Using more variants won't necessarily give you better polygenic scores.

UKBB results with HapMap3+ (1.4M) vs HapMap3 (1M)

Overview of what LDpred2-auto can now provide

Future development

- Design automated decisions for choosing parameters such as use_MLE
- Provide means for enhanced quality control of GWAS summary statistics
- Extend LDpred2-auto for
 - using more variants
 - incorporating functional annotations
 - multi-ancestry prediction and inference
- and for (smaller priority):
 - using multiple phenotypes and estimating genetic correlation
 - imputing GWAS summary statistics

Acknowledgments

Co-authors:

- Bjarni J. Vilhjálmsson (Aarhus Uni, DK)
- Julyan Arbel (INRIA Grenoble, FR)
- Hugues Aschard (Pasteur Institute, FR)
- Bogdan Pasaniuc (UCLA, CA, USA)
- Yi Ding (UCLA)
- Clara Albiñana (Aarhus Uni)

Funding:

- Danish National Research Foundation (Niels Bohr Professorship to Prof. John McGrath)
- Lundbeck Foundation (Fellowship to Prof. B.J. Vilhjálmsson)

Thanks!

Presentation available at bit.ly/ldpred2_wcpg2023

Slides created via the R package **xaringan**