

PM2 Workshop 1

Mbed Studio / Nucleo F446RE

M. Peter

E-Mail: pmic@zhaw.ch

Office: TE 309

C. Huber

E-Mail: hurc@zhaw.ch

Office: TE 673

Ablauf

Workshop 1

- Kennenlernen von Arm Mbed und Nucleo F446RE
- Mbed Studio / Keil Studio Cloud
- Arm Mbed Code Repositories
- Herunterladen und Aufsetzen eines ersten Programms
- Inbetriebnahme einfacher Hardware
- IR-Sensor kalibrieren

Software / Accounts

Arm Mbed

- Open Source Plattform und Betriebssystem für 32-Bit-ARM Cortex-M-Mikrocontroller
- Erstellen Sie sich einen Account mit Ihrer privaten E-Mail für Mbed und github:
 - https://os.mbed.com/
 - https://github.com/

PuTTY (optional)

- Freeware SSH an telnet client: https://www.putty.org/
- Datenausgabe via serieller Schnittstelle und Daten loggen

MATLAB

Studenten Account: https://ch.mathworks.com/

Zürcher Hochschule für Angewandte Wissenschaften

Arm Mbed: https://os.mbed.com

What is Mbed?

Mbed makes device development quicker

Operating system

Voll integrierte Lösung

- Mbed OS 6 Real-Time Operating System
- Mbed Studio

Mbed Studio

Mbed Studio is a free IDE for Mbed OS application and library development, including all the dependencies and tools you need in a single package so that you can create, compile and debug your Mbed programs on the desktop.

Mbed Version und Nucleo F446RE

Arm Mbed OS 6

- Wir arbeiten ausschliesslich mit Mbed OS 6
- Es gibt auch ältere Versionen. Die Funktionalität und die Syntax sind versionsabhängig → sind Sie sich dessen bewusst, auch bei der Suche von öffentlichen Treibern und Beispielprogrammen

Hardware

Nucleo F446RE

- Specs, Interfaces und Pinout: https://os.mbed.com/platforms/ST-Nucleo-F446RE/
- Zusammen mit Mbed: Plug and Play

PES-Board

Hardwaretreiber

- 3 DC-Motoren (brushed)
- 4 Servos (besetzen die 4 DI/O falls verwendet)
- 4 DI/O, 3.3V (5V tolerant)
- 4 AI/O, 3.3V (5V tolerant)

Sensoren

3 Encoder-Counter (für Geschwindigkeitsregelung der DC-Motoren)

Sensoren

Sharp GP2Y0A41SK0F analog IR Distanz Sensor

Nichtlineare Sensorkennlinie → muss kalibriert werden

Workflow Firmware Entwicklung

Arm Mbed / Mbed Studio

Nucleo F446RE & PES-Board

- Erstellen Sie ein Flussdiagram
- Testen und Debuggen Sie Schritt f
 ür Schritt

Auswertung Daten / Algorithmen entwickeln

Datenausgabe / Debugging

Einlesen analoger IR Distanz Sensor

Aufgabenstellung

- 1. Stecken Sie die nachfolgende Hardware ein und testen Sie das Beispielprogramm. Sie benötigen: https://os.mbed.com/platforms/ST-Nucleo-F446RE/ und PES_board_peripherie.pdf
 - Zusätzliche LEDs auf PB_9 gegenüber Ground direkt am Nucleo F446RE
 - Mechanischer Schalter PC_5 gegenüber Ground am PES-Board
- Erweitern Sie das Beispielprogramm bei allen auskommentierten Stellen //??? so dass Sie den analogen IR Sensor in eine Variable einlesen, skalieren und über die serielle Schnittstelle ausgeben können. Sie benötigen: GP2Y0A41SK0F datasheet.pdf
 - Erzeugen des AnalogIn Objekt: AnalogIn ir analog in (PC 2);
 - Einlesen des Spannungssignals: ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
 - Anmerkung: AnalogIn mappen (0-3.3 V) \rightarrow (0-1), AnalogOut mappen (0-1) \rightarrow (0-3.3 V)
 - Stecken Sie den IR Sensor an PC_2 direkt am PES-Board ein
- Messen Sie die Sensorkennlinie und stellen Sie diese in MATLAB dar. Als Beispiel steht Ihnen eval_ir_sensor.m zur Verfügung. Darin ist bereits Beispielcode um die inverse Kennlinie über einen analytischen Funktionsansatz abzubilden. Die Koeffizienten werden durch einen nummerischen Abgleich / Fit bestimmt (optimiert).
- 4. Implementieren Sie die gefundene inverse Funktion (float), so dass Sie direkt den Abstand in cm ausgeben.

Das Beispielprogramm finden Sie unter dem branch workshop_1 in Ihrem Fork auf github.