PHYSICS Topic:- FRICTION

	Find the magnitude of frication force acting on the block of mass 5 kg in following case $(\mu_s = 0.4 \text{ and } \mu_k = 0.3)$ (Take $g = 10 \text{ m/s}^2$.									
1.	5kg block at rest									
2.	$ \begin{array}{c} \hline 1) 0 \\ 15 \text{ N} \rightarrow \boxed{5kg} \end{array} $	2) 1.5	3) 2	4) 5						
3.	$ \begin{array}{c} 1) 0 \\ 20 \text{ N} \rightarrow \boxed{5kg} \end{array} $	2) 20	3) 15 N	4) 30						
	1) 0	2) 20	3) 15	4) 10						
4.										
	1) $2m/s^2$	2) $5m/s^2$	3) $1m/s^2$	4) $0 m / s^2$						
5.	$\xrightarrow{25N}$ $5kg$ \longleftrightarrow	Find is acceleration	on of the block? ($\mu_s =$	$0.4\mu_k=0.3)$						
	1) $2m/s^2$		3) $4m/s^2$							
6.	to the horizontal b	y applying a force F a	long the plane upwards at the block does not m	ne. Making an angle of 37° s as shown in the figure.						
	1) 76 N	2) 50 N	3) 30 N	4) 44 N						
7.	A 5 kg block slides down a plane inclined at 30° to the horizontal find acceleration of block									
	if co-efficient of kinetic frication is $\frac{1}{2\sqrt{3}} \left(g = 10 m / s^2 \right)$									
	1) $\frac{5}{2}$	2) $\frac{7}{2}$	3) $\frac{3}{2}$	4) $\frac{1}{2}$						
8.	F 60° m=√3kg µ	$= \frac{1}{2\sqrt{3}}$ Find max value of	of F such that the block	t does not move.						
	1) 10	2) 30	3) 20	4) 15						
9.	Determine the mag	gnitude of frictional fo	orce and acceleration of	f block. $(\mu_k = 0.25 \mu_s = 0.3)$						
	1) 20, 0	2) 30, 0	3) 15, 2	4) 20, 3						
	In the above problem if driving force acting on block in 60 N find acceleration of block									
10.	-	_	•							
10.	1) $3.5 m/s^2$	2) $0 m / s^2$	3) $4.5 m/s^2$	4) $5.5 m/s^2$ force of 100 N is applied if						

The ratio of acceleration without to with frication is $(g = 10m/s^2)$ 2) $\frac{3}{5}$ 3) 2 4) $\frac{1}{4}$

1) $\frac{5}{3}$

1) Static, $9.4m/s^2$ 2) keneli, $9.4m/s^2$ 3) Static, $10m/s^2$ 4) Kineti, $10m/s^2$

A block of mass 30 kg slides over a rough surface when a mass of 4 kg is suspended through an inextensible mass less string passing over a friction less pulley as shown below the acceleration of block is $(\mu_k = 0.02 \ g = 10 \ m/s^2)$

1) $2m/s^2$ 2) $4m/s^2$

3) $5m/s^2$

4) $1m/s^2$

16. A block of mass 6 kg is placed at rest on a table of rough surface now, if a force of 60 N is applied on the direction Parallel to surface of table the block slides through a distance of 25m in an time interval of 10 sec. co-efficient of kinetic friction is $(g = 10 \, m \, / \, s^2)$

1) 0.4

15.

2) 0.3

3) 0.5

4) 0.6

17. A body of mass 10 kg is moving with an initial speed of 30 m/s the body stops after 5 sec due to friction between body and the floor. The value of co-efficient of friction is $(g = 10 \, m \, / \, s^2)$

1)0.4

2) 0.6

3) 0.5

4) 0.1

18. A block of mass m slides down the plane inclined at angle 60° with an acceleration $\frac{\sqrt{3}g}{4}$. The value of co-efficient of kinetic friction is

1) $\frac{\sqrt{3}}{2}$

2) $\sqrt{3}$

3) $5\sqrt{3}$

4) $\frac{3\sqrt{3}}{4}$

19. Find the maximum value of Force F such that both blocks move together

1) 20 N

2) 10 N

3) 30 N

4) 6 N

20. In the above problem force is applied on 5 kg block. Find F_{mcx} so that blocks move together.

1) 15 N

2) 20 N

3) 10 N

4) 5 N

PHYSICS

1	2	3	4	5	6	7	8	9	10
1	3	2	1	2	4	1	2	1	1
11	12	13	14	15	16	17	18	19	20
4	4	_	_						
1	4	1	2	4	3	2	1	3	1
21	22	23	24	25	26	2 27	28	29	30

HINTS

- 1. There is no external force trying to move block therefore there is no friction
- 2. $F_{applied} < (fs)_{mex}$. Hence block is at rest static frictional force acts on the block $f_{statis} = 15 N$
- 3. $F_{applied} < (fs)_{mcx}$. Hence block is at rest static frictional force acts on the block $f_{statis} = 20 N$
- 4. $(f_s)_{mex} = \mu(mg) = 0.4 \times 5 \times 10 = 20N$

 $F_{applied} > (fs)_{max}$. So block will move and frictional force acting on block is kinetic acceleration

$$f_k = \mu_k N$$

$$a = \frac{25 - 15}{m}$$

$$f_k = \mu_k M$$

$$f_k = \mu_k mg$$

$$a = \frac{10}{5} = 2m/s^2$$
 $f_k = 0.3 \times 5 \times 10$ $f_k = 15 N$

5. $F_{net} = 5N$

$$F_{net} < (f_s)_{max}$$
 Hence block will not move $\Rightarrow a = 0$

6. Frictional force alone is unable to balance $mg \sin \theta$ Hence F is required for balancing limiting friction

$$f_l = \mu N = \mu mg \cos 37 = 0.2 \times 10 \times 10 \times 0.8 = 16 N$$

$$mg \sin 37 = 10(10)(0.6) = 60N$$

If block is at rest then,

$$F + f_l = 60$$

$$F + 16 = 60$$

$$F = 60 - 16 = 44 \text{ N}$$

7.
$$m = 5kg$$

$$N = mg \cos 30$$

$$N = 5(10)\frac{\sqrt{3}}{2} = 25\sqrt{3}$$

$$f_k = \mu_k N = \frac{1}{2\sqrt{3}} (25\sqrt{3}) = \frac{25}{2}$$

$$F_{net} = mg\sin 30 - f_k$$

$$ma = 5(10)\left(\frac{1}{2}\right) - \frac{25}{2}$$

$$5(a) = 25 - \frac{25}{2}$$

$$5a = \frac{25}{2}$$

$$a = \frac{25}{2 \times 5}$$

$$a = \frac{5}{2}m/s^2$$

8.

$$f_L = F\cos 60$$

$$\mu N = F\left(\frac{1}{2}\right)$$

$$\Rightarrow \mu N = \frac{F}{2} - - - - (1)$$

$$N = F\sin 60 + mg$$

$$N = F\left(\frac{\sqrt{3}}{2}\right) + \sqrt{3}\left(10\right)$$

$$N = \sqrt{3} \left[\frac{F}{2} + 10 \right] - - - - - (2)$$

From eqns (1) & (2)

$$\mu N = \frac{F}{2}$$

$$\frac{1}{2\sqrt{3}}\left(\sqrt{3}\right)\left(\frac{F}{2}+10=\frac{F}{2}\right)$$

$$\Rightarrow F = 20$$

9.
$$f_{\text{lim}iting} = \mu N = \mu mg = 0.3 \times 10 \times 10 = 30N$$

$$f_{\text{lim}\,iting} > F_{\text{extend}}$$

$$\Rightarrow$$
 block is at rest

$$\Rightarrow$$
 acceleration a = 0

Friction will be of statis nature

$$\Rightarrow$$
 friction force = 20 N

10.
$$f_k = \mu_k N = \mu_k mg = 0.25 \times 10 \times 10 = 25N$$

$$a = \frac{F - f_k}{m}$$

$$a = \frac{60 - 25}{10} = \frac{35}{10} = 3.5 \, m \, / \, s^2$$

11. (i) without friction

$$a_1 = \frac{F}{m} = \frac{100}{20} = 5$$

(ii) with frication,

$$a_{2} = \frac{F - f_{k}}{m} = \frac{F - \mu N}{m} = \frac{F - \mu_{k} (mg)}{m} = \frac{100 - 0.2(20)(10)}{20} \Rightarrow a_{2} = 3$$

$$\Rightarrow \frac{a_{1}}{a_{2}} = \frac{5}{3}$$

12.

$$mg = 5g = 50N$$

$$f_2 = 30\cos 30 = 30\frac{\sqrt{3}}{2} = 15\sqrt{3}$$

$$N + 30\sin 30 = mg$$

$$N+30\left(\frac{1}{2}\right)=5\left(10\right)$$

$$N + 15 = 50$$

$$N = 35$$

$$f_k = \mu_k N$$

$$15\sqrt{3} = 35 N$$

$$N = \frac{15\sqrt{3}}{35} \implies N = \frac{3\sqrt{3}}{7}$$

13.
$$N = 100$$

$$f = \mu N$$

$$f = 0.3(100) = 30N$$

14.

$$N = 100 \sin 37 + 50$$

$$N = 110$$

$$(f_s)_{mer} = \mu N = 0.4 \times 110 = 44N$$

$$f_k = \mu_k N = 0.3 \times 110 = 33N$$

$$100\cos 37 = 80 > (f_s)_{mcx}$$

Hence block will move and friction acting on block will be kinetic

$$a = \frac{100\cos 37 - f_k}{m}$$
$$a = \frac{80 - 33}{5} = \frac{47}{5} = 9.4 \, m / s^2$$

15. Frictional force on block 30 kg is
$$f = \mu N = \mu mg = 0.02(30)(10) = 6N$$

$$T - f = ma$$

$$F-10=10(2)$$

 $F-10=20$
 $F=30N$

20.
$$f_l = 10N$$

$$f_L \leftarrow \boxed{5kg} \rightarrow F$$

$$F - f_L = 5a$$

$$F - 10 = 5a - -(1)$$

$$a_{mcx} = \frac{f_L}{m} = \frac{10}{10} = 1 \, m \, / \, s^2$$

Hence
$$F - 10 = 5$$

$$\Rightarrow F_{mcx} = 15$$

21.
$$a_{common} = \frac{F}{Total \ mass}$$

$$a_c = \frac{10}{10+5} = \frac{10}{15} = \frac{2}{3}$$

22. Common acceleration (a)
$$a_m = \frac{F}{5+4} = \frac{F}{9}$$

Limiting friction $f_L = 0.5 \times 4 \times 10 = 20N$

For 4 kg block

$$f = 4\left(\frac{F}{9}\right)$$

$$20 = 4\left(\frac{F}{9}\right)$$

$$F = 45N$$

23.
$$f_{\text{lim}iting} = \mu mg = 0.5 \times 4 \times 10 = 20N$$

Common acceleration $a = \frac{F}{9}$

For 5 kg,

$$f = 5\left(\frac{F}{9}\right)$$

$$20 = 5\left(\frac{F}{9}\right)$$

$$\Rightarrow F = 36$$

24.
$$f \leftarrow 2kg \rightarrow F = 20N$$

$$F - f = F_{Net}$$

$$20 - \mu mg = ma_1$$

$$20 - 0.5 \times 2 \times 10 = 2a_1$$

$$20 - 10 = 2a_1$$

$$10 = 2a$$
, $a_1 = 5 m/s^2$

$$25. \qquad \boxed{4kg} \rightarrow a_2$$

$$f = ma_2$$

$$10 = 4a_2$$

$$a_2 = \frac{10}{4} = 2.5 \, m \, / \, s^2$$

$$26. F_{mcx} = (m_1 + m_2) a_{mcx}$$

$$F_{mcx} = (2 + \mu)\mu_s g$$

 $F_{mcx} = 6 \times 0.5 \times 10 = 30N$ (or)

The maximum acceleration of 2 kg block is $2kg \rightarrow f_{mcx}$

$$f_{mcx} = \mu N = \mu mg$$

$$f_{mcx} = 0.5 \times 2 \times 10 = 10$$

$$a_{mcx} = \frac{f_{mcx}}{m} = \frac{10}{2} = 5 \, m \, / \, s^2$$

$$f \leftarrow \boxed{4kg} \rightarrow F$$

$$F - f = F_{Net}$$

$$F - 10 = 4a$$

$$F-10=4(5)$$

$$F = 30N$$

27. If $F_{applied} < F_{mcx}$ then both the blocks will move together

$$\therefore a = \frac{F_{applied}}{Total \ mass}$$

$$a = \frac{18}{2+4} = \frac{18}{6} = 3 \, m \, / \, s^2$$

- 28. If $F_{applied} > F_{mcx}$ then both the blocks will move separately
 - For 2 kg blocks

$$2kg \rightarrow f$$

$$f = 2a_1$$

$$f = 2a_1$$

$$a_1 \frac{10}{2} = 5 \, m \, / \, s^2$$

For 4 kg block,

$$f = 10N \leftarrow \boxed{4kg} \rightarrow F = 36N$$

$$F - f = 4a_2$$

$$36-10=4a_2$$

$$26 = 4a_2$$

$$a_2 = \frac{26}{9} = 6.5 \, m \, / \, s^2$$

29.
$$F_{mcx} = (m_1 + m_2)(\mu_1 + \mu_2)g$$

$$F_{mcx} = (2+4)(0.5+0.1)10$$

$$F_{mcx} = 6(0.6)(10)$$

$$F_{mcx} = 36N$$

30.
$$F_{mcx} = (m_1 + m_2)(\mu_1 + \mu_2)g$$

$$F_{mcx} = (10 + 20)(0.1 + 0.2)10$$

$$=30\times3=90N$$