A functional perspective of adaptation

 Function composition augments a model's functions with new task-specific functions:

$$f_i'(\boldsymbol{x}) = f_{\theta_i}(\boldsymbol{x}) \odot f_{\phi_i}(\boldsymbol{x})$$

 Most commonly used in multi-task learning where modules of different tasks are composed.

Function Composition

The Adapter Framework

Adapter (Houlsby et al. 2019)

- Insert a new function f_ϕ between layers of a pretrained model to adapt to a downstream task ---- known as "adapters"
- An adapter in a Transformer layer consists of:
 - A feed-forward down-projection $W^D \in \mathbb{R}^{k \times d}$
 - A feed-forward up-projection $W^U \in \mathbb{R}^{d \times k}$

•
$$f_{\phi}(\mathbf{x}) = W^{U}(\sigma(W^{D}\mathbf{x}))$$

CS60010

drood si

Where is the adapter placed?

How many parameters?

Consider one adapter

- Feed-forward down-projection: $r \times d_{model} + r$
- Feed-forward up-projection: $d_{model} \times r + d_{model}$
- ullet For L layers in the decoder, there would be 2L adapters
- Number of parameters: $2L \times (2 \times d_{model} \times r + d_{model} + r)$

Comparison of various PEFT methods

	Method	Hyperparameters	# Trainable Parameters	WikiSQL	MNLI-m
	Fine-Tune	-	175B	73.8	89.5
		$l_p = 32, l_i = 8$	0.4 M	55.9	84.9
^		$l_p = 64, l_i = 8$	0.9 M	58.7	88.1
80	PrefixEmbed	$l_p = 128, l_i = 8$	1.7 M	60.6	88.0
3280		$l_p = 256, l_i = 8$	3.2 M	63.1	88.6
407 10	,	$l_p = 512, l_i = 8$	6.4 M	55.9	85.8
		$l_p = 2, l_i = 2$	5.1 M	68.5	89.2
		$l_p = 8, l_i = 0$	10.1 M	69.8	88.2
1,1	PrefixLayer	$l_p = 8, l_i = 8$	20.2 M	70.1	89.5
7		$l_p = 32, l_i = 4$	44.1 M	66.4	89.6
₩		$l_p = 64, l_i = 0$	76.1 M	64.9	87.9
7/3, 8 VP	Ì	r=1	7.1 M	71.9 •	89.8
(/v v/c		r = 4	21.2 M	73.2	91.0
1,7 24	Adapter ^H	r = 8	40.1 M	73.2	91.5
N T		r = 16	77.9 M	73.2	91.5
, 'λ,		r = 64	304.4 M	72.6	91.5
		$r_v = 2$	4.7 M	73.4	91.7
		$r_q = r_v = 1$	4.7 M	73.4	91.3
Q [*]	LoRA	$r_q = r_v = 2$	9.4 M	73.3	91.4
·V		$r_q = r_k = r_v = r_o = 1$	9.4 M	74.1	91.2
١,		$r_q = r_v = 4$	18.8 M	73.7	91.3
0.t		$r_q = r_k = r_v = r_o = 2$	18.8 M	73.7	91.7
`7`		$r_q = r_v = 8$	37.7 M	73.8	91.6
		$r_q = r_k = r_v = r_o = 4$	37.7 M	74.0	91.7
		$r_q = r_v = 64$	301.9 M	73.6	91.4
		$r_q = r_k = r_v = r_o = 64$	603.8 M	73.9	91.4