Problem Set 6 (SOLUTIONS)

The purpose of the first part of this problem set is to estimate, interpret the results, and compare the results across different binary dependent variable models. In the second part you will estimate and compare different specifications of an endogenous selection model.

First part will be discussed in week 9 and the second part in week 10 of this term.

The data file for this exercise is on Moodle: mus16data.dta. It is a subset of the data used by P. Deb, M. Munkin and P.K. Trivedi (2006): "Bayesian Analysis of Two-Part Model with Endogeneity", Journal of Applied Econometrics, 21, 1081-1100. Data is for 2001 and comes from the Medical Expenditure Survey. Sample has 3,328 observations.

The main outcome variable of interest is ambulatory expenditure (ambexp) and the regressors are given below.

Since the expenditure data is skewed, we will be using the logged expenditure variable as our dependent variable. You should read Cameron A.C. and Trivedi, P.K. Micro-econometrics using Stata to see the pros and cons regarding whether to log the dependent variable or not.

Note, there is one individual who has an expenditure=1 and this will get coded as 0 when variable is logged. Since it is only one individual, we will ignore the problem by not doing anything. If there are many individuals like this, you will need to see whether you can say why this might be the case.

Dependent variable

- ambexp: Ambulatory medical expenditures (excluding dental and outpatient mental). There are 526 individuals with zero expenditure. There is one individual who has expenditure=\$1. I am going to assume that this individual did not spend any money.
- lambexp: $\ln(\text{ambexp})$ given ambexp > 0; missing otherwise
- dambexp: 1 if ambexp > 0 and 0 otherwise (binary indicator)

Regressors

- ins: health insurance measures, either PPO or HMO type insurance
- totchr: health status measures: number of chronic diseases
- age: age age in years/10
- female: 1 for females, zero otherwise
- educ: years of schooling of decision maker
- blhisp: either black or Hispanic
- income: income in USD/1000

Preamble

```
<IPython.core.display.HTML object>
```

Create a do-file for this problem set and include a preamble that sets the directory and opens the data. For example,

```
clear
//or, to remove all stored values (including macros, matrices, scalars, etc.)
*clear all

* Replace $rootdir with the relevant path to on your local harddrive.
cd "$rootdir/problem-sets/ps-6"

cap log close
log using problem-set-6-log.txt, replace

use mus16data.dta, clear
```

C:\Users\neil_\OneDrive - University of Warwick\Documents\EC910\website\warwick
> -ec910\problem-sets\ps-6

name: <unnamed>

log: C:\Users\neil_\OneDrive - University of Warwick\Documents\EC910\we

> bsite\warwick-ec910\problem-sets\ps-6\problem-set-6-log.txt

log type: smcl

opened on: 19 Nov 2024, 16:48:49

Questions

Part 1

1.1. Obtain and comment on the descriptive statistics for ambexp, lambexp, age, female, educ, blhisp, totchr, ins, income.

su dambexp ambexp lambexp age female educ blhisp totchr ins income

Variable | Obs Mean Std. dev. Min Max

dambexp	3,328	.8419471	.3648454	0	1
ambexp	3,328	1386.519	2530.406	0	49960
lambexp	2,802	6.555066	1.41073	0	10.81898
age	3,328	4.056881	1.121212	2.1	6.4
female	3,328	.5084135	.5000043	0	1
	+				
educ	3,328	13.40565	2.574199	0	17
blhisp	3,328	.3085938	.4619824	0	1
totchr	3,328	.4831731	.7720426	0	5
ins	3,328	.3650841	.4815261	0	1
income	3,328	36.80485	26.70121	-90.05	237.301

1.2. Estimate a LP, Probit and a Logit model to explain dambexp. Store the β coefficients and report them in a table.

```
global xlist age i.female educ i.blhisp totchr i.ins income //Define regressor list $xlist
bys dambexp: su $xlist

** LPM
eststo LPM: reg dambexp $xlist, robust // heterosk needs to be corrected

** probit
eststo probit: probit dambexp $xlist

** logit
eststo logit: logit dambexp $xlist

esttab LPM probit logit, se scalar(N r2 ll) mtitle("LPM" "Probit" "Logit") title(Estimated Company)
```

 $[\]rightarrow$ dambexp = 0

Variable	l Obs	Mean	Std. dev.	Min	Max
age	526 	3.695627	1.076467	2.1	6.4
female	l				
0	526	.7338403	.4423695	0	1
1	526	.2661597	.4423695	0	1
	l				
educ	526	12.48859	2.697241	0	17

 blhisp						
0	526	.5171103	.5001828	0	1	
1	526	. 4828897	.5001828	0	1	
totchr	526	.0912548	.3074311	0	2	
ins		2077.402	450000			
0 1		.6977186 .3022814	.4596837	0	1 1	
į						
income	526	31.63409	23.17116	0	166.78	
-> dambexp = 1						
Variable	0bs	Mean	Std. dev.	Min	Max	
age 	2,802	4.124697	1.116641	2.1	6.4	
female						
0		.4461099		0	1	
1	2,802	.5538901	.49/1/01	0	1	
educ	2,802	13.5778	2.513906	0	17	
blhisp						
0	2,802	.7241256	. 4470336	0	1	
1	2,802	.2758744	.4470336	0	1	
totchr	2,802	.5567452	.809943	0	5	
ins						
0	2,802	.6231263	.4846893	0	1	
1 	2,802	.3768737	. 4846893	0	1	
income	2,802	37.77552	27.20742	-90.05	237.301	
Linear regress	ion			mber of obs 7, 3320)	= =	3,328 69.43

Prob > F	=	0.0000
R-squared	=	0.1276
Root MSE	=	.34114

dambexp	 -	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
age	İ	.0216413	.0056048	3.86	0.000	.0106521	.0326304
1.female		.1394928	.0119061	11.72	0.000	.1161487	.1628368
educ		.0143544	.0025774	5.57	0.000	.009301	.0194078
1.blhisp		0889738	.0143088	-6.22	0.000	1170288	0609188
totchr		.0830088	.0057913	14.33	0.000	.0716539	.0943637
1.ins		.0364663	.0119311	3.06	0.002	.0130733	.0598592
income		.000443	.0002215	2.00	0.046	8.70e-06	.0008774
_cons	I	.4485313	.0430509	10.42	0.000	.3641224	.5329402

Iteration 0: Log likelihood = -1452.4289
Iteration 1: Log likelihood = -1218.0426
Iteration 2: Log likelihood = -1195.6199
Iteration 3: Log likelihood = -1195.5158
Iteration 4: Log likelihood = -1195.5158

Probit regression

Number of obs = 3,328 LR chi2(7) = 513.83 Prob > chi2 = 0.0000 Pseudo R2 = 0.1769

Log likelihood = -1195.5158

dambexp		Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
age	i	.0868152	.0274556	3.16	0.002	.0330032	.1406272
1.female		.6635053	.0609648	10.88	0.000	.5440164	.7829941
educ		.061884	.012039	5.14	0.000	.038288	.0854801
1.blhisp		3657835	.0619095	-5.91	0.000	4871239	2444432
totchr	1	.7957496	.0712174	11.17	0.000	.656166	.9353332
1.ins	I	.169107	.0629296	2.69	0.007	.0457673	.2924467
income	I	.0026773	.0013105	2.04	0.041	.0001088	.0052458
_cons		6686471	.1941247	-3.44	0.001	-1.049125	2881698

Iteration 0: Log likelihood = -1452.4289

Iteration 1: Log likelihood = -1238.914
Iteration 2: Log likelihood = -1194.7039
Iteration 3: Log likelihood = -1192.8189
Iteration 4: Log likelihood = -1192.8089
Iteration 5: Log likelihood = -1192.8089

Logistic regression

Number of obs = 3,328 LR chi2(7) = 519.24 Prob > chi2 = 0.0000 Pseudo R2 = 0.1787

Log likelihood = -1192.8089

dambexp	Coefficient +	Std. err.	z	P> z	[95% conf.	interval]
age	.1618629	.0496641	3.26	0.001	.0645229	.2592028
1.female	1.226724	.1130182	10.85	0.000	1.005212	1.448235
educ	.1080498	.0210874	5.12	0.000	.0667192	.1493804
1.blhisp	6666381	.1093362	-6.10	0.000	8809332	452343
totchr	1.554664	.1499606	10.37	0.000	1.260746	1.848581
1.ins	. 296996	.1133154	2.62	0.009	.0749019	.5190901
income	.00462	.0024332	1.90	0.058	000149	.009389
_cons	-1.26832	.3407805	-3.72	0.000	-1.936237	600402

Estimated Coefficients

	(1) LPM	(2) Probit	(3) Logit
main			
age	0.0216***	0.0868**	0.162**
	(0.00560)	(0.0275)	(0.0497)
0.female	0	0	0
	(.)	(.)	(.)
1.female	0.139***	0.664***	1.227***
	(0.0119)	(0.0610)	(0.113)
educ	0.0144***	0.0619***	0.108***
	(0.00258)	(0.0120)	(0.0211)
0.blhisp	0	0	0

	(.)	(.)	(.)
1.blhisp	-0.0890***	-0.366***	-0.667***
	(0.0143)	(0.0619)	(0.109)
totchr	0.0830***	0.796***	1.555***
	(0.00579)	(0.0712)	(0.150)
0.ins	0	0	0
	(.)	(.)	(.)
1.ins	0.0365**	0.169**	0.297**
	(0.0119)	(0.0629)	(0.113)
income	0.000443*	0.00268*	0.00462
	(0.000222)	(0.00131)	(0.00243)
_cons	0.449***	-0.669***	-1.268***
	(0.0431)	(0.194)	(0.341)
N	 3328	3328	3328
r2	0.128		
11	-1139.1 	-1195.5 	-1192.8

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

1.3. Estimate the Marginal Effect at the Mean for each model, and report them in a table. You will want to use the estpost margins post-estimation command, with the relevant option for MEM. Pay special attention to the treatment of discrete regressors. Hint: check to see any differences in the estimated MEs based on whether you use factor notation; for example, i.female vs female.

```
** LPM
qui reg dambexp $xlist, robust
estpost margins, dydx(*) atmean
est store LPM

** probit
qui probit dambexp $xlist
```

```
estpost margins, dydx(*) atmean
est store probit
** logit
qui logit dambexp $xlist
estpost margins, dydx(*) atmean
est store logit
esttab LPM probit logit, se scalar(N r2 11) mtitle("LPM" "Probit" "Logit") title(Marginal Ef
Conditional marginal effects
                                                Number of obs = 3,328
Model VCE: Robust
Expression: Linear prediction, predict()
dy/dx wrt: age 1.female educ 1.blhisp totchr 1.ins income
         = 4.056881 (mean)
At: age
   0.female = .4915865 (mean)
   1.female = .5084135 (mean)
         = 13.40565  (mean)
   0.blhisp = .6914063 (mean)
   1.blhisp = .3085938 (mean)
   totchr = .4831731 (mean)
   0.ins = .6349159  (mean)
   1.ins = .3650841 (mean)
   income = 36.80485 (mean)
                    Delta-method
               dy/dx std. err. t P>|t| [95% conf. interval]
______
       age | .0216413 .0056048 3.86 0.000
                                                .0106521 .0326304
                                                .1161487 .1628368
   1.female | .1394928 .0119061 11.72 0.000
      educ | .0143544 .0025774 5.57 0.000
                                                 .009301 .0194078
   1.blhisp | -.0889738 .0143088 -6.22 0.000 -.1170288 -.0609188
     totchr | .0830088 .0057913 14.33 0.000
                                                .0716539 .0943637
     1.ins | .0364663 .0119311
                                                          .0598592
                                 3.06 0.002
                                                .0130733
```

Note: dy/dx for factor levels is the discrete change from the base level.

income | .000443 .0002215 2.00 0.046 8.70e-06 .0008774

Conditional marginal effects

Number of obs = 3,328

Model VCE: OIM

Expression: Pr(dambexp), predict()

dy/dx wrt: age 1.female educ 1.blhisp totchr 1.ins income

At: age = 4.056881 (mean)
0.female = .4915865 (mean)
1.female = .5084135 (mean)
educ = 13.40565 (mean)
0.blhisp = .6914063 (mean)
1.blhisp = .3085938 (mean)
totchr = .4831731 (mean)
0.ins = .6349159 (mean)
1.ins = .3650841 (mean)

income = 36.80485 (mean)

	 -	dy/dx	Delta-method std. err.	z 	P> z	[95% conf.	interval]
age	İ	.0152201	.004837	3.15	0.002	.0057396	.0247005
1.female		.1184629	.0112862	10.50	0.000	.0963423	.1405835
educ		.0108492	.0021305	5.09	0.000	.0066736	.0150249
1.blhisp		0701607	.0130287	-5.39	0.000	0956964	0446249
totchr		.1395073	.0102098	13.66	0.000	.1194966	.1595181
1.ins		.0288089	.0104412	2.76	0.006	.0083445	.0492733
income		.0004694	.0002295	2.05	0.041	.0000195	.0009192

Note: dy/dx for factor levels is the discrete change from the base level.

Conditional marginal effects Number of obs = 3,328

Model VCE: OIM

Expression: Pr(dambexp), predict()

dy/dx wrt: age 1.female educ 1.blhisp totchr 1.ins income

At: age = 4.056881 (mean)
0.female = .4915865 (mean)
1.female = .5084135 (mean)
educ = 13.40565 (mean)
0.blhisp = .6914063 (mean)
1.blhisp = .3085938 (mean)
totchr = .4831731 (mean)
0.ins = .6349159 (mean)
1.ins = .3650841 (mean)

income = 36.80485 (mean)

		dy/dx	Delta-method std. err.	l z	P> z	[95% conf.	interval]
age		.0135771	.0042044	3.23	0.001	.0053365	.0218176
1.female	-	.1068865	.0107295	9.96	0.000	.085857	.1279159
educ		.0090632	.0018074	5.01	0.000	.0055208	.0126056
1.blhisp		062462	.0116115	-5.38	0.000	0852201	039704
totchr	1	.1304052	.0093686	13.92	0.000	.112043	.1487674
1.ins	1	.0241537	.0089994	2.68	0.007	.0065151	.0417922
income	1	.0003875	.0002043	1.90	0.058	0000128	.0007879

Note: dy/dx for factor levels is the discrete change from the base level.

Marginal Effects at the Mean

	(1)	(2)	(3)
	LPM	Probit	Logit
age	0.0216***	0.0152**	0.0136**
_	(0.00560)	(0.00484)	(0.00420)
0.female	0	0	0
	(.)	(.)	(.)
1.female	0.139***	0.118***	0.107***
	(0.0119)	(0.0113)	(0.0107)
educ	0.0144***	0.0108***	0.00906***
	(0.00258)	(0.00213)	(0.00181)
0.blhisp	0	0	0
	(.)	(.)	(.)
1.blhisp	-0.0890***	-0.0702***	-0.0625***
-	(0.0143)	(0.0130)	(0.0116)
totchr	0.0830***	0.140***	0.130***
	(0.00579)	(0.0102)	(0.00937)
0.ins	0	0	0

```
(.)
                       (.)
                                 (.)
           0.0365**
                    0.0288**
                               0.0242**
1.ins
          (0.0119) (0.0104) (0.00900)
                   0.000469*
          0.000443*
                             0.000388
income
         (0.000222) (0.000230) (0.000204)
N
            3328
                      3328
                                3328
r2
           0.128
          -1139.1 -1195.5 -1192.8
11
______
```

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

1.4. Estimate the Average Marginal Effect at the Mean for each model, and report them in a table. You will want to use the estpost margins post-estimation command, with the relevant option for AME.

```
est clear

** LPM
qui reg dambexp $xlist, robust
estpost margins, dydx(*)
est store LPM

** probit
qui probit dambexp $xlist
estpost margins, dydx(*)
est store probit

** logit
qui logit dambexp $xlist
estpost margins, dydx(*)
est store logit
esttab LPM probit logit, se scalar(N r2 ll) mtitle("LPM" "Probit" "Logit") title(Average Margins)
```

Average marginal effects

Number of obs = 3,328

Model VCE: Robust

Expression: Linear prediction, predict()

dy/dx wrt: age 1.female educ 1.blhisp totchr 1.ins income

Delta-method | dy/dx std. err. t P>|t| [95% conf. interval] age | .0216413 .0056048 3.86 0.000 .0106521 .0326304 1.female | .1394928 .0119061 11.72 0.000 .1161487 .1628368 educ | .0143544 .0025774 .009301 .0194078 5.57 0.000 1.blhisp | -.0889738 .0143088 -6.22 0.000 -.1170288 -.0609188 totchr | .0830088 .0057913 14.33 0.000 .0716539 .0943637 1.ins | .0364663 .0119311 3.06 0.002 .0130733 .0598592 income | .000443 .0002215 2.00 0.046 8.70e-06 .0008774 ______

Note: dy/dx for factor levels is the discrete change from the base level.

Average marginal effects

Number of obs = 3,328

Model VCE: OIM

Expression: Pr(dambexp), predict()

dy/dx wrt: age 1.female educ 1.blhisp totchr 1.ins income

	 dy/dx	Delta-metho	-	P> z	[95% conf	. interval]
age	.0173895	.0054832	3.17	0.002	.0066426	.0281365
1.female	.132906	.0118133	11.25	0.000	.1097524	.1560596
educ	.0123957	.0023862	5.19	0.000	.0077189	.0170725
1.blhisp	0777517	.0137954	-5.64	0.000	1047901	0507133
totchr	1.1593929	.0139062	11.46	0.000	.1321371	.1866486
1.ins	.033324	.0121638	2.74	0.006	.0094834	.0571646
income	.0005363	.0002621	2.05	0.041	.0000225	.0010501

Note: dy/dx for factor levels is the discrete change from the base level.

Average marginal effects

Number of obs = 3,328

Model VCE: OIM

Expression: Pr(dambexp), predict()

dy/dx wrt: age 1.female educ 1.blhisp totchr 1.ins income

	 dy/dx +	Delta-method std. err.	d z	P> z	[95% conf	. interval]
age	.0181007	.0055261	3.28	0.001	.0072697	.0289317
1.female	1 .1357958	.0117423	11.56	0.000	.1127813	.1588102
educ	.0120829	.0023248	5.20	0.000	.0075264	.0166394
1.blhisp	0795676	.0136638	-5.82	0.000	1063481	0527871
totchr	1 .1738536	.0164518	10.57	0.000	.1416087	.2060985
1.ins	.0326182	.0121752	2.68	0.007	.0087552	.0564812
income	.0005166	.0002718	1.90	0.057	000016	.0010493

Note: dy/dx for factor levels is the discrete change from the base level.

Average Marginal Effects

	(1)	(2)	(3)
	LPM	Probit	Logit
age	0.0216***	0.0174**	0.0181**
_	(0.00560)	(0.00548)	(0.00553)
0.female	0	0	0
	(.)	(.)	(.)
1.female	0.139***	0.133***	0.136***
	(0.0119)	(0.0118)	(0.0117)
educ	0.0144***	0.0124***	0.0121***
	(0.00258)	(0.00239)	(0.00232)
0.blhisp	0	0	0
•	(.)	(.)	(.)
1.blhisp	-0.0890***	-0.0778***	-0.0796***
•	(0.0143)	(0.0138)	(0.0137)
totchr	0.0830***	0.159***	0.174***
	(0.00579)	(0.0139)	(0.0165)
0.ins	0	0	0
	(.)	(.)	(.)

1.ins	0.0365**	0.0333**	0.0326**
	(0.0119)	(0.0122)	(0.0122)
income	0.000443*	0.000536*	0.000517
	(0.000222)	(0.000262)	(0.000272)
N	3328	3328	3328
r2	0.128		
11	-1139.1	-1195.5 	-1192.8

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

1.5. Check to see how well the prodbit model predicts the outcome using the estat classification post-estimation command.

qui probit dambexp age i.female educ i.blhisp totchr i.ins income
estat classification

Probit model for dambexp

		True		
Classified	l D	~D		Total
	+		+	
+	2768	469		3237
_	l 34	57		91
	+		+	
Total	l 2802	526	١	3328

Classified + if predicted Pr(D) >= .5True D defined as dambexp != 0

Sensitivity	Pr(+ D)	98.79%
Specificity	Pr(- ~D)	10.84%
Positive predictive value	Pr(D +)	85.51%
Negative predictive value	Pr(~D -)	62.64%
False + rate for true ~D	Pr(+ ~D)	89.16%
False - rate for true D	Pr(- D)	1.21%
False + rate for classified +	Pr(~D +)	14.49%
False - rate for classified -	Pr(D -)	37.36%

Correctly classified 84.89%

1.6. Construct and interpret the LR test for the omission of income in the probit model. Do this in two ways: (1) using the post estimation lrtest; (2) manually recreate (1)'s results (both test-statistic and p-value).

```
** Remove income from xlist
global xlist age i.female educ i.blhisp totchr i.ins

eststo modU: qui probit dambexp $xlist income
scalar logl_U = e(l1)

eststo modR: qui probit dambexp $xlist
scalar logl_R = e(l1)

lrtest modU modR

** Replicate
scalar stat = 2 * (logl_U - logl_R)
scalar pval = chi2tail(1,stat)
scalar list
```

```
Likelihood-ratio test
Assumption: modR nested within modU

LR chi2(1) = 4.30

Prob > chi2 = 0.0382

    pval = .03817363
    stat = 4.297269

logl_R = -1197.6644

logl_U = -1195.5158
```

Part 2

Estimate the following models for lambexp treating the selection into non-zero lambexp value as endogenous using, both Heckman 2-step method and also MLE.

In the main data lambexp is missing for values of ambexp=0. Before proceeding,

```
replace lambexp = 0 if ambexp==0
```

(526 real changes made)

This will correction will also treat observations with ambexp=1 as equivalent to =0; however, this is only a single observation.

```
** Remove income from xlist
global xlist age i.female educ i.blhisp totchr i.ins
```

2.1. Estimate the Heckman 2-step estimator and store the results. In addition, store the Mills ratio as a separate variable. Use **income** as the excluded variable. This means that **income** appears in the selection equation, but NOT the main equation.

eststo heck_2sW: heckman lambexp \$xlist, select(dambexp = \$xlist income) twostep mills(mills

Heckman selection model two-step estimates (regression model with sample selection)				Number S	3,328 2,802 526	
				Wald ch	i2(6) =	193.43
				Prob >	chi2 =	0.0000
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lambexp						
age	.2024668	.0242202	8.36	0.000	.1549961	.2499374
1.female	.2921341	.0725756	4.03	0.000	.1498886	.4343796
educ	.0123889	.0115682	1.07	0.284	0102844	.0350622
1.blhisp	1828659	.0653449	-2.80	0.005	3109396	0547922
totchr	.5006332	.0485548	10.31	0.000	.4054675	.5957988
1.ins	0465097	.0529742	-0.88	0.380	1503373	.0573179
_cons	5.288927	. 288522	18.33	0.000	4.723435	5.85442
dambexp	+ 					
age	.0868152	.0274556	3.16	0.002	.0330032	.1406272
1.female	.6635053	.0609648	10.88	0.000	.5440165	.7829941

```
educ |
                 .061884
                           .012039
                                      5.14
                                             0.000
                                                        .038288
                                                                  .0854801
   1.blhisp |
                          .0619095
              -.3657835
                                      -5.91
                                             0.000
                                                      -.4871239
                                                                 -.2444432
                                                                 .9353332
     totchr |
               .7957496
                          .0712174
                                     11.17
                                             0.000
                                                        .656166
      1.ins |
                          .0629296
                                      2.69
                                                                  .2924467
                 .169107
                                             0.007
                                                       .0457673
     income |
              .0026773
                          .0013105
                                      2.04
                                             0.041
                                                       .0001088
                                                                  .0052458
      cons
              -.6686471
                          .1941247
                                      -3.44
                                             0.001
                                                      -1.049125
                                                                 -.2881698
/mills
     lambda | -.4637133
                          . 2825997
                                     -1.64 0.101
                                                      -1.017598
                                                                   .090172
        rho | -0.35907
      sigma | 1.2914258
```

2.2. Replicate these results by applying the following steps: (1) estimate the selection equation using a probit model; (2) create the mills ratio; (3) compare your mills ratio with the one stored above; (4) estimate the main equation, including the mills ratio.

```
probit dambexp $xlist income
predict index, xb
gen mills = normalden(index)/normal(index)
compare mills mills_a
reg lambexp $xlist mills
```

```
Iteration 0: Log likelihood = -1452.4289
Iteration 1: Log likelihood = -1218.0426
Iteration 2: Log likelihood = -1195.6199
Iteration 3: Log likelihood = -1195.5158
Iteration 4: Log likelihood = -1195.5158
```

Probit regression Number of obs = 3,328LR chi2(7) = 513.83Prob > chi2 = 0.0000Log likelihood = -1195.5158 Pseudo R2 = 0.1769

 -	Coefficient			P> z	[95% conf.	interval]
	.0868152			0.002	.0330032	.1406272
1.female	.6635053	.0609648	10.88	0.000	.5440164	.7829941
educ	.061884	.012039	5.14	0.000	.038288	.0854801

1.blhisp		3657835	.0619095	-5.91	0.000	4871239	2444432
totchr		.7957496	.0712174	11.17	0.000	.656166	.9353332
1.ins		.169107	.0629296	2.69	0.007	.0457673	.2924467
income		.0026773	.0013105	2.04	0.041	.0001088	.0052458
_cons		6686471	.1941247	-3.44	0.001	-1.049125	2881698

		Count	 Minimum		erence - verage		
mills <mills_a< td=""><td></td><td>1660</td><td></td><td></td><td>01e-09</td><td></td><td></td></mills_a<>		1660			01e-09		
mills>mills_a		1668 	7.75e-15	8.6	4e-09	5.456	9-08
Jointly define	ed	3328	-5.02e-08	-1.1	.0e-10	5.45	e-08
Total		3328					
Source	l SS	df	MS		er of ob		3,328
M-3-7	+		002 670206	-	3320)		164.14
Model Residual	6325.70678 18278.1125) > F		0.0000
residuai	10270.1125	3,320	5.5054555 <i>1</i>		luared R-square		0.2571 0.2555
Total	24603.8193	3,327	7.39519666	Ū	MSE		2.3464
lambexp	 Coefficient +	Std. err.	t 	P> t	[95%	 conf.	interval]
age	.1628716	.0410937	3.96	0.000	.0823	001	. 2434431
1.female	.1898127	.1257893	1.51	0.131	0568	198	.4364451
educ	0016555	.0199775	-0.08	0.934	0408	251	.037514
1.blhisp	1086689	.1107824	-0.98	0.327	3258	776	.1085397
totchr	.4202052	.0839337		0.000	.2556		.5847723
1.ins					2450		
		.4582359			-5.490		-3.693739
_cons	5.904903	.5004624	11.80	0.000	4.923	657	6.886149

2.3 Estimate the marginal effects of the selection equation. You can do this using the estpost margins command. This should correspond to a probit model estimation above.

```
qui heckman lambexp $xlist, select(dambexp = $xlist income) twostep
estpost margins, dydx(*) predict(psel)
```

Average marginal effects Number of obs = 3,328

Model VCE: Conventional

Expression: Pr(dambexp), predict(psel)

dy/dx wrt: age 1.female educ 1.blhisp totchr 1.ins income

:hod		
er. z P	?> z [95% c	conf. interval]
32 3.17 0	.00664	26 .0281365
33 11.25 0	.000 .10975	.1560596
52 5.19 0	.000 .00771	.0170725
54 -5.64 0	0.00010479	0010507133
32 11.46 0	.000 .13213	.1866486
38 2.74 0	.00948	.0571646
21 2.05 0	.00002	.0010501
	z F 32 3.17 0 33 11.25 0 52 5.19 0 54 -5.64 0 52 11.46 0 38 2.74 0	32 3.17 0.002 .00664 33 11.25 0.000 .10975 52 5.19 0.000 .00771 54 -5.64 0.00010479 52 11.46 0.000 .13213 38 2.74 0.006 .00948

Note: dy/dx for factor levels is the discrete change from the base level.

2.4. Estimate the Maximum Likelihood version of the Heckmann correction (with an excluded variable) and store the results.

eststo heck_mlW: heckman lambexp \$xlist, select(dambexp = \$xlist income) nolog mills(mills_a

Heckman selection model (regression model with sample selection)					of obs = elected = onselected =	3,328 2,802 526
Log likelihood = -5836.219				Wald chi		288.88 0.0000
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lambexp						
age	.2119749	.0230072	9.21	0.000	.1668816	.2570682
1.female	.3481441	.0601142	5.79	0.000	.2303223	.4659658
educ	.018716	.0105473	1.77	0.076	0019563	.0393883
1.blhisp	2185714	.0596687	-3.66	0.000	3355199	101623

totchr	.53992	.0393324	13.73	0.000	.4628299	.61701
1.ins	0299871	.0510882	-0.59	0.557	1301182	.0701439
_cons	5.044056	.2281259	22.11	0.000	4.596938	5.491175
+-						
dambexp						
age	.0879359	.027421	3.21	0.001	.0341917	.14168
1.female	.6626649	.0609384	10.87	0.000	.5432278	.7821021
educ	.0619485	.0120295	5.15	0.000	.0383711	.0855258
1.blhisp	3639377	.0618734	-5.88	0.000	4852073	2426682
totchr	.7969518	.0711306	11.20	0.000	.6575383	.9363653
1.ins	.1701367	.0628711	2.71	0.007	.0469117	.2933618
income	.0027078	.0013168	2.06	0.040	.000127	.0052886
_cons	6760546	.1940288	-3.48	0.000	-1.056344	2957652
+						
/athrho	1313456	.1496292	-0.88	0.380	4246134	
/lnsigma	.2398173	.0144598	16.59	0.000	.2114767	.268158
rho	1305955	.1470772			4008098	.1605217
sigma	1.271017	.0183786			1.235501	1.307554
lambda	1659891 	.1878698 			5342072 	.2022291
LR test of inde	ep. eans. (r	no = 0): chi	2(1) = 0	.91	Prob > chi	12 = 0.3406
	-	/ • •	\-,			

2.5. Now re-estimate the two-step and MLE approach without an excluded variable, storing the results each time. This means that the same set of regressors enter both equations. i.e. include income in the outcome equation.

Wald chi2(7)

Prob > chi2

192.92

0.0000

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lambexp	 					
age	.2043022	.0244086	8.37	0.000	.1564622	.2521422
1.female		.0750154	3.72	0.000	.1316602	.4257151
educ	.0141631	.0118462	1.20	0.232	0090551	.0373812
1.blhisp	1797416	.0656337	-2.74	0.006	3083812	051102
totchr	.4938391	.049539	9.97	0.000	.3967445	.5909337
1.ins	0461181	.053113	-0.87	0.385	1502176	.0579815
income	0007456	.0010158	-0.73	0.463	0027367	.0012454
_cons	5.306311	.2901551	18.29	0.000	4.737617	5.875004
dambexp	 					
age	.0868152	.0274556	3.16	0.002	.0330032	.1406272
1.female	.6635053	.0609648	10.88	0.000	.5440165	.7829941
educ	.061884	.012039	5.14	0.000	.038288	.0854801
1.blhisp	3657835	.0619095	-5.91	0.000	4871239	2444432
totchr	.7957496	.0712174	11.17	0.000	.656166	.9353332
1.ins	.169107	.0629296	2.69	0.007	.0457673	.2924467
income	.0026773	.0013105	2.04	0.041	.0001088	.0052458
_cons	6686471	.1941247	-3.44	0.001	-1.049125	2881698
/mills	· 					
lambda	5087361	. 2894687	-1.76	0.079	-1.076084	.0586121
rho	-0.39250					
sigma	1.2961455					
Heckman select	tion model			Number	of obs =	3,328
(regression mo	odel with samp	le selection	n)	S	elected =	2,802
				N	onselected =	526
				Wald ch	i2(7) =	285.98
Log likelihood	d = -5836.09				chi2 =	
	Coefficient					interval]
lambexp	+ 					
-	.2137594	.0232969	9.18	0.000	.1680983	.2594205
•	.342293					
	.0202746					
			-			

1.blhisp	2185104	.0598099	-3.65	0.000	3357357	1012852
totchr	.5375964	.0398453	13.49	0.000	.459501	.6156918
1.ins	0287728	.0511856	-0.56	0.574	1290946	.0715491
income	0005026	.000989	-0.51	0.611	0024411	.0014359
_cons	5.041712	.229726	21.95	0.000	4.591458	5.491967
dambexp						
age	.0878613	.0274099	3.21	0.001	.034139	.1415837
1.female	.6628035	.060929	10.88	0.000	.5433848	.7822223
educ	.0617998	.0120332	5.14	0.000	.0382152	.0853844
1.blhisp	3636885	.0618724	-5.88	0.000	4849562	2424207
totchr	.7968988	.0711265	11.20	0.000	.6574934	.9363041
1.ins	.1699645	.0628669	2.70	0.007	.0467476	.2931815
income	.0027483	.0013209	2.08	0.037	.0001595	.0053372
_cons	675346	.1939739	-3.48	0.000	-1.055528	295164
/athrho	1419126	. 1535634	-0.92	0.355	4428913	.1590661
/lnsigma	.240186	.0146925	16.35	0.000	.2113892	.2689828
rho	1409675	.1505118			4160382	.157738
sigma	1.271486	.0186813			1.235393	1.308633
lambda	1792382	.1924853			5565025	.1980261
LR test of indep. eqns. (rho = 0): chi2(1) = 1.02					Prob > ch	i2 = 0.3122

2.6. Create a table that reports the four models alongside one another and compare the results.

esttab heck_2sW heck_sw0 heck_mlW heck_mlw0, se scalar(N) mtitle("2-step,w/" "2-step,w/o" "1

Heckman Selection Models

	(1) 2-step,w/	(2) 2-step,w/o	(3) ML,w/	(4) ML,w/o
lambexp				
age	0.202***	0.204***	0.212***	0.214***
	(0.0242)	(0.0244)	(0.0230)	(0.0233)
1.female	0.292***	0.279***	0.348***	0.342***
	(0.0726)	(0.0750)	(0.0601)	(0.0616)

educ	0.0124	0.0142	0.0187	0.0203
	(0.0116)	(0.0118)	(0.0105)	(0.0110)
1.blhisp	-0.183**	-0.180**	-0.219***	-0.219***
	(0.0653)	(0.0656)	(0.0597)	(0.0598)
totchr	0.501***	0.494***	0.540***	0.538***
	(0.0486)	(0.0495)	(0.0393)	(0.0398)
1.ins	-0.0465	-0.0461	-0.0300	-0.0288
	(0.0530)	(0.0531)	(0.0511)	(0.0512)
income		-0.000746 (0.00102)		-0.000503 (0.000989)
_cons	5.289*** (0.289)	5.306*** (0.290)	5.044*** (0.228)	
dambexp				
age	0.0868**	0.0868**	0.0879**	0.0879**
	(0.0275)	(0.0275)	(0.0274)	(0.0274)
1.female	0.664***	0.664***	0.663***	0.663***
	(0.0610)	(0.0610)	(0.0609)	(0.0609)
educ	0.0619***	0.0619***	0.0619***	0.0618***
	(0.0120)	(0.0120)	(0.0120)	(0.0120)
1.blhisp	-0.366*** (0.0619)	-0.366*** (0.0619)	-0.364*** (0.0619)	
totchr	0.796***	0.796***	0.797***	0.797***
	(0.0712)	(0.0712)	(0.0711)	(0.0711)
1.ins	0.169**	0.169**	0.170**	0.170**
	(0.0629)	(0.0629)	(0.0629)	(0.0629)
income	0.00268*	0.00268*	0.00271*	0.00275*
	(0.00131)	(0.00131)	(0.00132)	(0.00132)
_cons	-0.669***	-0.669***	-0.676***	-0.675***
	(0.194)	(0.194)	(0.194)	(0.194)

/mills					
lambda	-0.464	-0.509			
	(0.283)	(0.289)			
/					
athrho			-0.131	-0.142	
			(0.150)	(0.154)	
lnsigma			0.240***	0.240***	
-			(0.0145)	(0.0147)	
N	3328	3328	3328	3328	
Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001					

Postamble

log close

name: <unnamed>

log: C:\Users\neil_\OneDrive - University of Warwick\Documents\EC910\we

> bsite\warwick-ec910\problem-sets\ps-6\problem-set-6-log.txt

log type: smcl

closed on: 19 Nov 2024, 16:48:57
