Introduction

Let us start by going over mathematical basics that we will need for this course.

• A set is a collection of objects. Examples include the set of integers \mathbb{Z} , the set of real numbers \mathbb{R} , the set of nonnegative integers $\mathbb{Z}_{>0}$.

 $A \subseteq B$ indicates that every element in A is also an element in B. We say in this case that A is a *subset* of B.

A subset may be declard by pruning a set by a specified condition. For example the set of even integers or the set of odd integers.

$$\mathbb{E} = \{ n \in \mathbb{Z} \mid n \text{ is even } \} \subseteq \mathbb{Z}$$

$$\mathbb{O} = \{ n \in \mathbb{Z} \mid n \text{ is odd} \} \subseteq \mathbb{Z}$$

If $A \subseteq B$ and at least one element of B is not in A, we say that A is properly contained in B, in symbols $A \subseteq B$.

• A function $A \xrightarrow{f} B$ between sets is an assignment that chooses for every $a \in A$ an element $f(a) = b \in B$. For example

$$\mathbb{Z} \xrightarrow{g} \mathbb{Z}$$
$$x \mapsto 2x + 1$$

sends every real number x to twice its value plus one. That is, g(1) = 3, g(2) = 5, and so on domain, codomain, image of x under f

The set of all possible functions between two sets A and B is denoted by $\mathcal{F}(A, B)$.

For any set A, there is the function $A \xrightarrow{\mathrm{id}_A} A$ that sends every element back to itself.

$$id_A(a) = a$$
 for all $a \in A$

• A function $A \xrightarrow{f} B$ can have the following properties:

injective

No two distinct elements $a\neq b$ in A have the same value $f(a)\neq f(b)$ under f.

In other words, if f is injective, then $f(a)\neq f(b)$ implies that $a\neq b$.

surjective

Every element b in B is the image of some element a in A.

Equivalently, for all $b \in B$ there is an $a \in A$ such that b = f(a).

bijective

The function is both injective and surjective.

Discussion

Which of these properties apply to g(x) = 2x + 1 defined above as a function from \mathbb{Z} to \mathbb{Z} ? If not, how can you change the definition to make it bijective?

• Two functions of the form $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ may be concatinated. This means, whatever the first f functions spits out is fed back into the next function g.

$$a \mapsto f(a) \mapsto g(f(a))$$

This is formally called composition of f and g and denoted by

$$(g \circ f)(a) = g(f(a))$$

Notice, this only makes sense if the domain of g is also the codomain of f.

• An inverse of a function $A \xrightarrow{f} B$ is a function in the opposite direction $B \xrightarrow{h} A$ with the property that

$$h(f(a)) = a$$
 for all $a \in A$

and

$$f(h(b)) = b$$
 for all $b \in B$

Intuitively, this means h is undoing whatever f was doing. For example, the function $h(y) = \frac{y-1}{2}$ from $\mathbb O$ to $\mathbb Z$ is an inverse to the function g(x) = 2x + 1.

We will wrap up this introduction with the following theorem

Theorem

A function $A \xrightarrow{f} B$ is invertible if and only if it is bijective

Vector spaces

Textbook: Section 1.1

Definition 1.1.1. A (real) vector space $(V, +, \cdot)$ consists of a set V and two operations that we call *addition* (+) and *scalar multiplication*

$$V\times V\xrightarrow{+}V$$

$$\mathbb{R} \times V \xrightarrow{\cdot} V$$

such that the following axioms hold

- 1. (additive closure) $\vec{x} + \vec{y} \in v$, for all $\vec{x}, \vec{y} \in V$
- 2. (multiplicative closure) $\alpha \cdot \vec{x} \in V$, for all $\vec{x} \in V$ and scalar $\alpha \in V$
- 3. (commutativity) $\vec{x} + \vec{y} = \vec{y} + \vec{x}$, for all $\vec{x}, \vec{y} \in V$
- 4. (additive associativity) $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$, for all $\vec{x}, \vec{y}, \vec{z} \in V$
- 5. (additive identity) There exists a vector $\vec{0} \in V$ such that $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$
- 6. (additive inverse) For each $\vec{x} \in V$, there exists a vector $-\vec{x} \in V$ with the property that $\vec{x} + (-\vec{x}) = \vec{0}$
- 7. (multiplicative associativity) $(\alpha \cdot \beta) \cdot \vec{x} = \alpha \cdot (\beta \cdot \vec{x})$, for all $\alpha, \beta \in \mathbb{R}$ and $\vec{x} \in V$
- 8. (distributivity over vector addition) $\alpha \cdot (\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$, for all $\alpha \in \mathbb{R}$ and $\vec{x}, \vec{y} \in V$
- 9. (distributivity over scalar addition) $(\alpha + \beta) \cdot \vec{x} = \alpha \vec{x} + \beta \vec{x}$, for all $\alpha, \beta \in \mathbb{R}$ and $\vec{x} \in V$
- 10. (identity property) $1 \cdot \vec{x} = \vec{x}$, for all $\vec{x} \in V$

Remark

- For elements in a vector space V, we write $\vec{x}, \vec{y}, \ldots \in V$. The textbook writes $\mathbf{x}, \mathbf{y}, \ldots \in V$.
- We often abbreviate $\alpha \cdot \vec{x}$ with $\alpha \vec{x}$.
- Elements in a vetcor space a called vectors. Be aware that anything can be a vector, even functions for example.
- We say that a vector space is *real* if the scalars are real numbers. For now every vector space is real, we will only later allow the scalars to be *complex numbers* and such.

Examples

- 1. The real numbers \mathbb{R} form a vector space with 'usual' addition + and multiplication \cdot .
- 2. An n-tuple of real numbers can be written as (v_1, v_2, \dots, v_n) where each $v_i \in \mathbb{R}$. The set of n-tuples is a vector space denoted by \mathbb{R}^n .

What are the operations + and \cdot ? What is the additive identity element $\vec{0}$?

- 3. The set $\mathrm{Mat}_{n,m}(\mathbb{R})$ of $n \times m$ matrices with componentwise addition and scalar multiplication.
- 4. The set

$$\mathcal{P}_n(\mathbb{R}) = \{ a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n | a_0, \dots, a_n \in \mathbb{R} \}$$

is a vector space.

Addition of two polynomials is applied to coefficientwise and the identity element $\vec{0}$ is the polynomial that is constantly zero p(x) = 0.

5. The set

$$\mathcal{F}(\mathbb{R},\mathbb{R})$$

of functions from the real numbers to the real numbers is a vector space

Intuition

In many cases vectors may be represented with vectors becasue they too have a direction and a magnitude. But be careful, every analogy has its limitations.

Discussion

(I) Is the set of 2-tuples of integers \mathbb{Z}^2 a real vector space?

Hint: To verify that something is a vector space, we need to check *all* axioms in the definition. However, to prove the contrary, it is enough to disprove *one single* axiom!

(II) Is the set $\mathcal{P}_n(\mathbb{R})'$ of polynomials of exactly degree n a vector space?

Some Properties of vector spaces

Whenever we introduce a new mathematical *object*, such as a vector space, we may not take anything for granted. In some ways, vectors behave like real numbers (addition, scalar multiplication, zero element, additive inverse . . .) but in many ways they do not!

For example, for $3 \in \mathbb{R}$ we can write $\frac{1}{3}$, but for a vector $\vec{v} \in V$ we may not wirte $\frac{1}{\vec{v}}$. To be a good mathematican, it is very helpful to be extremely pedantic!

Theorem (Cancellation)

Let V be a vector space and $\vec{u}, \vec{v}, \vec{w} \in V$. If

$$\vec{u} + \vec{w} = \vec{v} + \vec{w}$$

the

$$\vec{u} = \vec{v}$$

Proof. To practice, write down which property of vector spaces we are using in the following!

$$\vec{u} = \vec{u} + 0$$
$$= \vec{u} + (\vec{w} - \vec{w})$$

:

Proposition Let V be a vector space and $\vec{v} \in V$, then

$$0\vec{v} = \vec{0}$$

Explain the difference between 0 and $\vec{0}$.

Proof.

$$\vec{0} + 0\vec{v} = 0\vec{v}$$
$$= (0+0)\vec{v}$$
$$= 0\vec{v} + 0\vec{v}$$

So by the cancellation theorem we can simplify

$$\vec{0} + 0\vec{v} = 0\vec{v}$$

to

$$\vec{0} = 0\vec{v}$$

Proposition Let V be a vector space and $\vec{v} \in V$, then

$$-1 \cdot \vec{v} = -\vec{v}$$

Proof.

Notice that the symbol + does *not* necessarily refer to the standard addition, it could be defined in a different way as we can observe in the following. **Discussion** Let (V, \diamond, \star) be a vector space with the following ingredients:

- 1. The set V of 2-tuples of real numbers $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$.
- 2. Addition of 2-tuples

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \diamond \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 + 1 \\ u_2 + v_2 + 1 \end{pmatrix}$$

3. Scalar multiplication

$$\alpha \star \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \alpha u_1 + \alpha - 1 \\ \beta u_2 + \beta - 1 \end{pmatrix}$$

Is this a vector vector space? What would the identity element $\vec{0}$ be? What is the inverse of an element $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$? **Hint** Look at the propositions from the previous page.

Subspaces

Textbook: Section 1.2

Definition

A subspace U of a vector space $(V, +, \cdot)$ is a subset $U \subseteq V$ that is a vector space in its own right (with the same addition and scalar multiplication of V)