H29 国 以下記范は欧州山 記述を歩づくものとする。

一下以時動野賣 (D)

A	В	4	2
0	0	0	0
0	ţ	0	1
Ţ	0	0	1
1	1		0

(2) (1) FY	
$\int d = AB$	•
$d = A \oplus B = A \times QP$	β)
$= A\overline{B} + \overline{A}B$	(= t73 t=xn
HAO 回路は以下の 痛り	

(3) 真理值款以下

X	A	B	C	S
0	0	0		0
0	0		0	
0		O	0	
0				U
	0	0	0	
(0			D
((0		0

(4) FAO 回路QX下面。

切 NコのFAで直列に連結して、L番目のFAでは2つの物をbit目と、2-1コ的FAがのま行生がりを入りとて受けてる。その連結の様子を以下に図といます。

(個(. Ai, Bilitalish スカ当れと思め ibit目の値, Silit A+Bのibit目の値 を表もなする。)

この成はカスケード式接続と呼ばることがある。

- (b) 切の方式では、高位の下Aにかける桁上がり信号の生成の遅延が下には例に大きくは3ため、現棟の大型力の準務に向かないとう欠点がある。この欠点を解消のまめ、 Ao、一Ait、Bo、-- Bitから直接 FAIに入る木介土がり信号を生成の3分は満理回路を設計の3下弦かとれる。二小でキャリールックアヘッド方式などと呼ぶ。 この方式は、カスケード おことで取り 多くの 素子を要なが、遅延のオーダをしゅかにもし例を値に収込るができる。
- (7) Nbit 符号計算数A,Bを知にもち、A-Bを計算移回路を表記。 この時、物でBの補散を動ものとすると、

$$A-B=A+B=A+(2^{N}-B)=A+(2^{N}-1-B)+1$$

= $A+(BnAbitを呼引は秋)+1$
をなるかり、切に用いたカスケード方式の回路を以下のむに書き扱いることで、減算器を作ることがさる。

(8) 切切的回路を統一了了了了,力解/派华選択付生回路的以初的日本日子。

(9) JA = An+Anz-- Ao と初之 B = Bn+Bnz-- Po

A×B=(AM-A0+Bo) + (AM… Ao × Bm… Bo) «1 と表記さることで 利用して、None加算器を理結することで得分的3年算器を構成ると、以下のおいた書はる。

打ち、簡単を対加算器ADERをブラウオッなとて使用にいる(イターフェースロめに準ずる)