2022-2023 MP2I

DM 8, pour le vendredi 20/01/2023, non ramassé

PROBLÈME Théorème de Fermat-Euler

L'objectif de ce problème est de montrer le théorème suivant :

« Soit p un nombre premier impair. Alors p est somme de deux carrés si et seulement si $p \equiv 1$ [4]. »

Question préliminaire :

Soit $k \geq 1$ un entier impair. Combien y-a-t-il d'entiers relatifs dans l'intervalle $\left| -\frac{k}{2}, \frac{k}{2} \right|$? Expliquer alors sans démonstration pourquoi pour tout entier $n \in \mathbb{Z}$, il existe un unique entier $n_0 \in \mathbb{Z}$ tel que $n \equiv n_0$ [k] et $|n_0| < \frac{k}{2}$.

Partie I.

1) Quelles sont les possibilités pour x^2 [4] quand $x \in \mathbb{Z}$? En déduire que si p est premier impair somme de deux carrés, alors $p \equiv 1$ [4].

Dans toute la suite, on suppose que p est premier impair et vérifie $p \equiv 1$ [4].

- 2) Soit $a \in [1, p-1]$.
 - a) Justifier que $a \wedge p = 1$ et en déduire qu'il existe $u \in \mathbb{Z}$ tel que $au \equiv 1$ [p].
 - b) Montrer qu'il existe un unique $u_0 \in [1, p-1]$ tel que $au_0 \equiv 1$ [p].

On notera alors $a^{-1} = u_0$ et on dira que a^{-1} est l'inverse de a modulo p.

- c) Montrer que $a^2 \equiv 1$ $[p] \Leftrightarrow a \equiv 1$ [p] ou $a \equiv -1$ [p].
- d) En déduire que les seuls éléments $a \in [1, p-1]$ vérifiant $a = a^{-1}$ sont a = 1 ou a = p-1.
- e) En regroupant les éléments de [1, p-1] par paires, montrer que :

$$(p-1)! \equiv -1 \ [p].$$

3) Montrer que $(p-1)! \equiv \left(\left(\frac{p-1}{2}\right)!\right)^2 [p].$

Dans le produit (p-1)!, on pourra se ramener à un produit d'entiers compris entre $-\frac{p}{2}$ et $\frac{p}{2}$.

1

4) Déduire des questions précédentes qu'il existe $x_0 \in \mathbb{Z}$ tel que $x_0^2 + 1 \equiv 0$ [p] et $|x_0| < \frac{p}{2}$.

Partie II.

On suppose toujours dans cette partie que p est un nombre premier impair tel que $p \equiv 1$ [4].

On pose $E=\{q\in\mathbb{N}^*\ /\ \text{il existe}\ a,b\in\mathbb{N}\ \text{tels que}\ a^2+b^2=qp\}.$

- 5) Soit $x_0 \in \mathbb{Z}$ tel que $x_0^2 + 1 \equiv 0$ [p] et $|x_0| < \frac{p}{2}$. Cet élément existe d'après la partie précédente.
 - a) Soit $k \in \mathbb{Z}$ tel que $x_0^2 + 1 = kp$. Vérifier que $1 \le k < p$.
 - b) En déduire que E contient un élément compris entre 1 et p-1, puis que E admet un minimum.

On note alors m le minimum de E (qui est donc compris entre 1 et p-1) et on fixe a,b dans \mathbb{N} tels que $a^2+b^2=mp$.

- 6) On suppose par l'absurde que m est pair.
 - a) Montrer que a et b ont même parité.
 - b) Obtenir une absurdité en développant $\left(\frac{a+b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2$.
- 7) On va à présent montrer que m=1. On suppose par l'absurde que $m\geq 3.$
 - a) Établir l'identité de Lagrange :

$$(\alpha^2 + \beta^2)(\gamma^2 + \delta^2) = (\alpha\gamma + \beta\delta)^2 + (\alpha\delta - \beta\gamma)^2.$$

2

- b) Soient $a_0, b_0 \in \mathbb{Z}$ tels que $|a_0| < \frac{m}{2}$, $|b_0| < \frac{m}{2}$, et $a_0 \equiv a$ [m], $b_0 \equiv b$ [m]. On pose $n = a_0^2 + b_0^2$. Montrer que $n \neq 0$.
- c) Montrer qu'il existe $u \in \mathbb{Z}$ tel que n = um, puis que $1 \le u < \frac{m}{2}$
- d) Montrer que up est une somme de deux carrés d'entiers.

On pourra partir du produit (um) × (mp) et utiliser l'identité de Lagrange.

e) Conclure.