

KONKURS MATEMATYCZNY

dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2018/2019

Model odpowiedzi i schematy punktowania

Za każde poprawne i pełne rozwiązanie, inne niż przewidziane w schemacie punktowania rozwiązań zadań, przyznajemy maksymalną liczbę punktów.

W zadaniach otwartych (od zad. 5 do zad.12) za zastosowanie w pełni poprawnej metody przyznajemy 1 punkt, zaś za pełne, poprawne rozwiązanie **całego zadania** przyznajemy 2 punkty.

ROZWIĄZANIA ZADAŃ ZAMKNIĘTYCH

Nr zadania	1.	2.	3.	4.
Maks. liczba punktów	1 pkt	1 pkt	1 pkt	1 pkt
Prawidłowa odpowiedź	D	С	A	D

ROZWIĄZANIA ZADAŃ OTWARTYCH

Zadanie 5. (2 pkt)

Na boku AB trójkąta równobocznego ABE zbudowano prostokąt ABCD o bokach |AB|=2 i |AD|=1 tak, że obydwie figury częściowo się pokrywają. Oblicz, jakie jest pole tej części trójkąta, którą zakrywa prostokąt.

Uczeń:

1. analizuje dane zadania i zauważa, że szukaną figurą jest trapez równoramienny,

1p.

następnie oblicza wysokość h w trójkącie FGE: $h=\sqrt{3}$ - 1 oraz bok trójkąta równobocznego

$$FGE$$
, bok $|FG| = 2 - \frac{2}{3}\sqrt{3}$

2. oblicza pole trapezu *ABGF*: $P_{ABGF} = 2 - \frac{\sqrt{3}}{3}$

1p.

Uwaga: dopuszcza się obliczenia bez usuwania niewymierności z mianownika.

Zadanie 6. (2 pkt)

Wykaż, że prostokąt o wymiarach 16 × 36 można podzielić na dwa wielokąty, z których da się złożyć kwadrat.

Uczeń:

- oblicza pole prostokąta 36 · 16 = 576 i bok kwadratu o takim samym polu bok kwadratu jest równy 24;
- 2. dzieli prostokąt rysuje łamaną zgodnie z rysunkiem.

1p.

Zadanie 7. (2 pkt)

Suma pewnych dwóch liczb wynosi $\sqrt{20}$, a ich różnica $\sqrt{12}$. Wykaż, że iloczyn tych liczb jest równy 2.

Uczeń:

1. zapisuje sumę i różnicę dwóch liczb np. dla a i b $a+b=\sqrt{20}=2\sqrt{5} \ , \ a-b=\sqrt{12}=2\sqrt{3} \ \text{i oblicza} \ a=\sqrt{5}+\sqrt{3} \ , b=\sqrt{5}-\sqrt{3}$ 2. oblicza iloczyn liczb a i b $(\sqrt{5}+\sqrt{3})\cdot(\sqrt{5}-\sqrt{3})=5-3=2$ lub
1. korzysta z tożsamości $4ab=(a+b)^2-(a-b)^2$ lub przekształca tożsamość otrzymując $(a+b)^2-(a-b)^2=4ab$ 2. oblicza $4ab=(\sqrt{20})^2-(\sqrt{12})^2=8$, więc ab=2

Zadanie 8. (2 pkt)

Dwa samochodziki *A* i *B*, ustawione na linii START ruszyły jednocześnie w kierunku METY. Samochodzik *A* pokonał początkowe 25 cm w czasie 4 sekund. Samochodzik *B* pokonał początkowe 30 cm w czasie 5 sekund. Na całej trasie samochodziki nie zmieniały prędkości. Na metę jeden z nich przyjechał dwie sekundy przed drugim. Jak długa była trasa wyścigu?

Uczeń:

1. oblicza prędkości samochodziku A i B

1p.

A 25: 4 = 6,25 [cm/s]

B = 30 : 5 = 6 [cm/s]

2. oblicza czas (t) potrzebny na przebycie drogi od startu do mety

1p.

$$6,25 \cdot t = (t+2) \cdot 6$$
, skad $t = 48$ [s].

Oblicza drogę $S = 6.25 \cdot 48 = 300$ [cm] lub $S = 6 \cdot 50 = 300$ [cm] = 3[m].

lub

1. znajduje NWW (25,30) = 150 i oblicza czas przejazdu tego odcinka dla każdego samochodziku: \mathbf{B} przejeżdża dystans 150 cm w ciągu $5 \cdot 5 = 25$ [s]

1p.

A przejeżdża dystans 150 cm w ciągu $6 \cdot 4 = 24$ [s]

2. wnioskuje, że na 150 cm różnica czasu jest 25 - 24 = 1[s], to droga jest równa

$$2 \cdot 150 = 300 \text{ [cm]} = 3\text{[m]}$$

1p.

Odp. Trasa wyścigu miała długość 3 m (300 cm).

Zadanie 9. (2 pkt)

Mamy prostopadłościenne klocki o wymiarach 1 x 2 x 4. Jaka jest najmniejsza liczba takich klocków, aby można było z nich zbudować sześcian o krawędzi wyrażającej się liczbą naturalną? Jak zmieni się liczba klocków, gdy będziemy budować sześcian z klocków o wymiarach 2 x 4 x 8? Odpowiedź uzasadnij.

Uczeń:

zauważa, że najmniejszym sześcianem zbudowanym z klocków o wymiarach
 x 2 x 4 jest sześcian o krawędzi 4 i wnioskuje, że należy dołożyć jeszcze 7 takich prostopadłościanów (Odp. Razem należy użyć minimum 8 klocków);

1p.

zauważa, że dla prostopadłościanów, których krawędzie są dwa razy większe tj.
 x 4 x 8 liczba dostawionych sześcianów jest taka sama, krawędź nowego sześcianu jest równa 8 (Odp. Liczba klocków nie zmieni się).

1p.

Zadanie 10. (2 pkt)

Bok *kwadratu nr I* ma długość 12. Bok *kwadratu nr II* ma długość równą długości przekątnej *kwadratu nr I*. Ogólnie: bok *kwadratu nr n* ma długość równą długości przekątnej *kwadratu nr (n-1)*. Jaki numer będzie miał kwadrat, którego bok ma długość większą od 100 i mniejszą od 200? Odpowiedź uzasadnij.

Uczeń:

1. oblicza kolejne boki i przekątne kwadratów:

1p.

Numer kwadratu	bok	przekątna
I	12	$12\sqrt{2}$
II	$12\sqrt{2}$	$12\sqrt{2}\cdot\sqrt{2}=24$
III	24	$24\sqrt{2}$
IV	$24\sqrt{2}$	$24\sqrt{2}\cdot\sqrt{2}=48$
V	48	$48\sqrt{2}$
VI	$48\sqrt{2}$	$48\sqrt{2}\cdot\sqrt{2}=96$
VII	96	$96\sqrt{2}$
VIII	$96\sqrt{2}$	$96\sqrt{2}\cdot\sqrt{2}=192$
IX	192	

2. stwierdza, że *kwadrat nr VIII* będzie miał bok równy $96\sqrt{2}$ ($100 < 96\sqrt{2} < 200$) <u>lub</u> stwierdza, że *kwadrat nr IX* będzie miał bok równy 192 (100 < 192 < 200).

1p.

Odp. Kwadrat nr VIII, kwadrat nr IX.

Uwaga: dopuszcza się podanie w odpowiedzi tylko jednego kwadratu.

Zadanie 11. (2 pkt)

W trapezie równoramiennym przekątna jest prostopadła do ramienia i dzieli kąt ostry trapezu na dwa kąty o równej mierze. Uzasadnij, że długość jednej podstawy trapezu jest dwa razy dłuższa od długości drugiej podstawy.

1. przedłuża ramiona trapezu i otrzymuje trójkąt ABE, stwierdza, że jest to trójkąt równoboczny, bo trójkąt prostokątny ABD ma kąty ostre 60° i 30° , miara kąta ABE jest równa 60° , więc miara kąta AEB jest równa się 60° ;

1p.

1p.

1p.

1p.

2. zauważa, że przekątna DB jest wysokością trójkąta równobocznego ABC, dzieli więc bok AE na połowy (|AE| = |AB|). Zauważa, że trójkąt DCE jest trójkątem o kątach równych 60° jest więc równoboczny, a zatem bok |DC| = |DE| = 0,5 |AB|.

lub

- 1. zaznacza środek M boku AB w trapezie ABCD i uzasadnia, że czworokąt MBCD jest rombem;
- 2. wskazuje na równość boków czworokąta MBCD i wnioskuje, że |MB| = |DC| = 0,5 |AB|.

Zadanie 12. (2 pkt)

Miesięczny dochód pana Piotra stanowi $\frac{5}{8}$ łącznego miesięcznego dochodu pana Piotra i pana Jana. Natomiast suma miesięcznych wydatków obu panów stanowi $\frac{7}{8}$ ich łącznych miesięcznych dochodów. Każdy z panów oszczędza miesięcznie 600 zł. Oblicz roczny dochód pana Jana.

Uczeń:

- 1. oznacza np. przez x łączne miesięczne dochody, przez $\frac{7}{8}x$ łączne miesięczne wydatki. Korzystając z zależności podanych w zadaniu układa i rozwiązuje równanie: $\frac{5}{8}x + \frac{3}{8}x 1200 = \frac{7}{8}x$; otrzymuje x = 9600 zł,
- oblicza miesięczny dochód pana Jana 3/8 · 9600 = 3600 zł, następnie oblicza roczny 1p. dochód pana Jana 43200 zł. Odp. Roczny dochód pana Jana to 43200 zł.