Model evaluation approaches

Train and Test on the Same Dataset

Train/Test Split

Train and test on the same dataset

What is training & out-of-sample accuracy?

Training Accuracy

- · High training accuracy isn't necessarily a good thing
- · Result of over-fitting
 - Over-fit: the model is overly trained to the dataset, which may capture noise and produce a non-generalized model

Out-of-Sample Accuracy

- · It's important that our models have a high, out-of-sample accuracy
- How can we improve out-of-sample accuracy?

Train/Test split evaluation approach

Train/Test split evaluation approach

MACHINE LEARNING

What is machine learning?

Machine learning is the subfield of computer science that gives "computers the ability to learn without being explicitly programmed."

Siva Rai

How machine learning works?

Major machine learning techniques

- · Regression/Estimation
 - · Predicting continuous values
- Classification
 - · Predicting the item class/category of a case
- Clustering
 - · Finding the structure of data; summarization
- Associations
 - · Associating frequent co-occurring items/events

Major machine learning techniques

- Anomaly detection
 - · Discovering abnormal and unusual cases
- Sequence mining
 - · Predicting next events; click-stream (Markov Model, HMM)
- Dimension Reduction
 - · Reducing the size of data (PCA)
- Recommendation systems
 - Recommending items

Supervised vs unsupervised learning

Supervised Learning

- Classification:
 Classifies labeled data
- Regression:
 Predicts trends using previous labeled data
- Has more evaluation methods than unsupervised learning
- · Controlled environment

Unsupervised Learning

- Clustering:
 Finds patterns and groupings
 from unlabeled data
- Has fewer evaluation methods than supervised learning
- · Less controlled environment

What is classification?

Classification is the process of predicting discrete class labels or categories.

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class			J . 1
1000025	5	1	1	11	2	1	3	1	1	benign	1 0		工士工
1002945	5	4	4	5	7	10	3	2	1	benign	a'		44
1015425	3	1	1	1	2	2	1	1	1	malignant	0	`.+	十二世
1016277	6	.8	13	1	3	4	3	7	1	benign	080	**	71-14
1017023	4	1	1	3	2	1	3	1	1	benign	1 3		+
1017122	8	10	10	8	7	10		7	1	malignant	<u> </u>		1
1018099	1	1	1	1	2	10	3	1	1	benign	5	0 8	'.
1018561	2	1	2	H	-1	1	3	1	1	benign	3		``
1033078	2	1	1	Ci)	2	1	1	1	5	benign	es		1
1033078	4	2	1	-1	2	1	2	1	1	benim]	0 00	

What is regression?

Regression is the process of predicting continuous values.

	COZEMISSIONS	FUELCONSUMPTION_COMB	CYLINDERS	ENGINESIZE	1
1	196	8.5	4	2.0	ŀ
8	221	9.6	4	2.4	١
ontinu	136	5.0	4	1.5	
2	255	11.1	11 6	3.5	þ
> Jour	244	10.6	6	3.5	ł
	230	10.0	6	3.5	ı
/alues	232	10.1	6	3.5	ı
DS.	255	G > 11.1	6	3.7	7
	267	11.6	6	3.7	3
	(3)	9.2	4	2.4	1

What is clustering?

Clustering is grouping of data points or objects that are somehow similar by:

- Discovering structure
- Summarization
- Anomaly detection

Python libraries for machine learning

- Scikit-learn is a library containing many machine learning algorithms.
- It utilizes a generalized "estimator API" framework to calling the models.
- This means the way algorithms are imported, fitted, and used is uniform across all algorithms.
- Scikit-learn also comes with many convenience tools, including train test split functions, cross validation tools, and a variety of reporting metric functions.
- This leaves Scikit-Learn as a "one-stop shop" for many of our machine learning needs.
- Scikit-Learn's approach to model building focuses on applying models and performance metrics.

More about scikit-learn

- · Free software machine learning library
- Classification, Regression and Clustering algorithms
- Works with NumPy and SciPy
- Great documentation
- Easy to implement

scikit-learn functions

```
from sklearn import preprocessing
X = preprocessing.StandardScaler().fit(X).transform(X)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

from sklearn import svm
clf = svm.SVC(gamma=0.001, C=100.)

clf.fit(X_train, y_train)

clf.predict(X_test)

from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, yhat, labels=[1,0]))

import pickle
s = pickle.dumps(clf)
```