CAUSAL SURVIVAL ANALYSIS

Barbra Dickerman, Joy Shi, Miguel Hernán DEPARTMENTS OF EPIDEMIOLOGY AND BIOSTATISTICS

Learning objectives At the end of this lecture you will be able to

- Describe the peculiarities of survival analysis
- Construct survival curves via nonparametric hazard estimates
- Construct survival curves adjusted for confounders via parametric hazard estimates
- ☐ Key concepts
 - Hazard
 - Risk, survival

Survival analysis

A new type of causal question

- ☐ So far we have been concerned with the causal effect of treatment on an outcome at a particular time point
 - effect of smoking cessation on weight gain in 1982
 - effect of smoking cessation on death status in 1992
- ☐ Today we discuss the causal effect of treatment on the time until the occurrence of an event of interest
 - effect of smoking cessation on the time until death, whenever death occurs
- ☐ This is an example of a **causal survival analysis**

Survival analysis 3

Survival analysis also known as failure time analysis

- ☐ The use of the word "survival" does not imply that the event of interest must be death
 - the event may be death, marriage, incarceration, cancer, flu infection, etc.
 - Here we will use the terms "survival" and "death" for simplicity
- ☐ Survival analyses require some special techniques
 - EPI289 describes techniques for time-fixed treatments
 - EPI207 for time-varying treatments

Study population

- ☐ 1629 cigarette smokers
- ☐ Aged 25-74 years when interviewed in 1971-75 and alive on Jan 1, 1983 (baseline)
 - answered the general medical history questionnaire in 1971-75
 - known sex, age, race, weight, height, education, alcohol use, and smoking intensity between baseline and 1982
- □ 318 individuals died by the end of 1992
 - Follow-up: 10 years

Survival analysis 5

Key variables

Treatment A	Quit smoking between baseline and 1982 1: yes, 0: no
Time of death T	Month of death Ranges from 1 (start of follow-up, in January 1983) to 120 (administrative end of follow-up)
Baseline (pre-treatment) covariates	Age, sex, race, alcohol use, intensity of smoking, weight

Survival analysis

So far we have defined the average causal effect as a difference of counterfactual means

if everybody had quit smoking

- \blacksquare $E[Y^{a=1}]$
- $Y^{a=1}$ is a subject's outcome under a=1

if nobody had quit smoking

- \blacksquare $E[Y^{a=0}]$
- $Y^{a=0}$ is a subject's outcome under a=0
- \square The average causal effect is $E[Y^{a=1}] E[Y^{a=0}]$?
 - Ignore censoring for now

Administrative end of follow-up

- ☐ The time when a follow-up study stops
 - 120 months in our study
- \square Time of death T is unknown for individuals who reach the end of follow-up alive
 - these individuals are administratively censored
 - \blacksquare cannot compute mean survival time E[T]
- ☐ In our data with 1629 individuals:
 - 318 died before the end of 1992
 - 1,311 were administratively censored

See survival.R, lines 9-13

Survival analysis

_

Administrative censoring is typically present

- ☐ Follow-up studies will rarely follow all individuals until all of them die
 - or develop the event of interest
- ☐ Survival analyses need measures that accommodate administrative censoring
 - For example, the survival probability
 - Not the mean time of death
- ☐ Of course, survival analyses also need to handle non-administrative censoring by loss to follow-up
 - Same as any other analyses

Survival probability (or just Survival)

- \square Pr [T > k]
 - where $k = 0, 1, 2... k_{end}$ is time of follow-up
 - \blacksquare Probability of not having the event by time k
- ☐ Survival curve
 - Plot of survival probabilities for $k = 0, 1, 2... k_{end}$
 - Starts at 1 at time k=0 and decreases monotonically
- \square The survival curve can be plotted separately for the treated A=1 and the untreated A=0

Survival analysis 11

In randomized experiments

- \square The survival probability at time k in the treated is the survival probability if everybody had been treated
- ☐ And same in the untreated
 - $Pr[T>k|A=0] = Pr[T^{a=0}>k]$
- \square Comparing survivals between A=1 and A=0 is therefore a natural way to quantify causal effects in survival analyses
 - Pr[T>k|A=1] Pr[T>k|A=0] for all k

In the smoking cessation data

- \square Survival at end of follow-up k_{end} was
 - 0.76 in *A*=1
 - 0.82 in *A*=0
- □ Survival difference
 - -0.06
- ☐ Sometimes curves compared via the log-rank test
 - p-value = 0.005 suggests that difference not due to chance
 - ☐ But not randomized, so differences possibly due to confounding

See survival.R, lines 15-27

Survival analysis

13

An alternative measure: Cumulative incidence (or Risk)

- \square Pr $[T \leq k]$
 - where $k = 0, 1, 2... k_{end}$ is time of follow-up
 - Probability of having the event by time k
 - 1 Survival
- ☐ Cumulative incidence curve
 - Plot of risks for $k = 0, 1, 2... k_{end}$
 - Starts at 0 at time k=0 and increases monotonically
- \square In randomized experiments, comparing risks between A=1 and A=0 is a natural way to quantify causal effects in survival analyses
 - Because $Pr[T \le k | A = a] = Pr[T^a \le k]$

Survival analysis

Another widely used measure: Hazard

- \square Pr $[T=k \mid T>k-1] = \lambda_T(k)$
 - where $k = 0, 1, 2... k_{end}$ is time of follow-up
 - Probability of having the event between k-1 and k
- ☐ Technically, this is a discrete-time hazard
 - The hazard in a study in which time is measured in discrete intervals rather than continuously
 - In real-world studies, time is indeed measured in discrete intervals (years, months, days...)
- ☐ In randomized experiments

Survival analysis 15

Hazards vs. risks Over time...

- ☐ ... the risk stays flat or increases
 - monotonically increasing
 - because its denominator (number of individuals at baseline) is constant across times *k* and its numerator (all events between baseline and *k*) is cumulative
- ☐ ... the hazard may increase or decrease
 - because its denominator (number of individuals alive at k-1) varies across times k and its numerator includes only recent events during interval k-1 to k

In our smoking cessation example

- \Box The hazard at the end of follow-up k_{end} was
 - 0% among quitters
 - □ because the last death happened at 113 months in this group
 - 1/986 = 0.10% among non-quitters
- ☐ The hazard curves between 0 and 120 months had roughly the shape of a letter *M*
 - In contrast, the cumulative incidence curves are monotonically increasing

Survival analysis 17

Hazard ratio

 $\lambda_T(k|A=1) / \lambda_T(k|A=0)$

- ☐ *The* hazard ratio is likely the most commonly used effect measure in randomized trials
 - $\lambda_T(k|A=1) / \lambda_T(k|A=0) = \lambda_T a=1(k) / \lambda_T a=0(k)$
- ☐ A consequence of the popularity of the Cox proportional hazards model

 - \blacksquare where β_1 is the log hazard ratio
- ☐ A Cox model is a semiparametric approach
 - No restrictions about the baseline hazard $\lambda_T(k|A=0)$
 - Hazard ratio $exp(\beta_1)$ is assumed to be constant

EXAMPLE: Women's Health Initiative Randomized trial of ~16,000 postmenopausal women ☐ Estrogen plus progestin hormone therapy vs. placebo ☐ Outcome: coronary heart disease ☐ Intention-to-treat analysis ☐ Hazard ratio by period of follow-up ■ All years 1.23 ■ 0-2 years 1.51 ■ >2-5 years 1.31 ■ >5 years 0.67 Survival analysis 19

The hazard ratio is a flawed measure of causal effect

- □ Built-in selection bias
 - See WHI example
- □ Not such a thing as **the** hazard ratio
 - Because the hazards vary over time, their ratio also does
- ☐ Often survival analyses report a single hazard ratio
 - a weighted average of the time-varying hazard ratios
 - not easily comparable across studies: the magnitude of the hazard ratio depends on the length of follow-up
 - testing for proportional hazards is often underpowered

Survival analysis 21

Hazards are helpful to estimate survival if there is non-administrative censoring

- ☐ Using the product-limit or Kaplan-Meier method
 - used for the nonparametric survival curves shown before
- ☐ To describe the method, we define
 - D_k as an indicator of death by time k (1 if $T \le k$, 0 if T > k)
 - $lacktriangleq C_k$ as an indicator of non-administrative censoring by k
- \square Hazard at k among those who are uncensored by k
 - $Pr[D_k=1|D_{k-1}=0, C_k=0]$
- \square One minus the hazard at k is the probability of surviving the interval between k-1 and k among those at risk
 - uncensored and alive at the start of the interval

Kaplan-Meier method (review)

K	N _k	D _k	Ck	λ_k	$1-\lambda_k$	S _k
0	100	0	0	0/100=0	1	1
1	100	10	0	10/100=0.1	0.9	1*0.9=0.9
2	90	45	0	45/90=0.5	0.5	1*0.9*0.5=0.45

Survival analysis 23

Kaplan-Meier method (review)

- $\hfill\square$ Survival at k is the product of (one minus the hazard) between 0 and k
 - For k=2, $Pr[D_2=0] = Pr[D_1=0]Pr[D_2=0|D_1=0, C_2=0]$
 - For any k, $Pr[D_k=0] = \prod_{m=1}^k (1 Pr[D_m=1|D_{m-1}=0, C_m=0])$
- \Box This survival at k is the counterfactual survival that would have been observed in the absence of censoring
 - Under the assumption that there is no selection bias due to censoring, e.g., censoring at random

Typically, hazards cannot be estimated nonparametrically

- ☐ We cannot estimate the hazard at each interval as
 - # deaths in the interval / # individuals at risk
- ☐ Because we need to adjust for confounding and selection bias
- ☐ Parametric estimation of hazards is often a useful intermediate step for estimating survivals and risks
- ☐ Let's see how
 - for simplicity, first in a setting without confounding and censoring
 - See Chapter 17 for more discussion

Survival analysis 25

Parametric estimation of survival Steps

- 0. Arrange data
- 1. Parametric estimation of hazards
- 2. Computation of survivals
- 3. Estimation of variance

Step #0: Arrange data with a person-time structure

- ☐ One row per persontime
 - In our smoking cessation example, each row is a person-month
- ☐ From time k=0 to the minimum of T and k_{end}

ID	Month	A	D_{k+1}
1	0	1	0
1	1	1	0
•••			•••
1	119	1	0
2	0	0	0
2	1	0	0
2	16	0	0
2	17	0	1

Survival analysis 27

Step #1:

Parametric estimation of hazards

☐ Fit a pooled logistic regression model to the data

$$logit(Pr[D_{k+1}=1|D_k=0,A]) = \theta_{0,k} + \theta_1 A$$

lacktriangle the time-varying intercept $heta_{0,k}$ is a function of time, e.g.,

$$\theta_{0k} = \theta_0 + \theta_4 k + \theta_5 k^2$$

- which allows the hazard to vary over time
- \square exp(θ_1) is approximately the hazard ratio of death for A=1 vs. A=0
 - \blacksquare when the hazard is small at all times k

Step #1:

Parametric estimation of hazards

 \square Allow for time-varying hazard ratio by adding product terms between A and time k

logit(Pr[
$$D_{k+1}$$
=1| D_k =0, A]) = $\theta_{0,k} + \theta_1 A + \theta_2 A k + \theta_3 A k^2$

- ☐ That is, we do not impose a single hazard ratio
 - not a proportional hazards model

Survival analysis 29

Step #2:

Computation of survivals (or risks)

☐ Remember: one minus the predicted value from the hazards model

logit(Pr[
$$D_{k+1}$$
=1| D_k =0, A]) = $\theta_{0,k}$ + $\theta_1 A$ + $\theta_2 A k$ + $\theta_3 A k^2$ estimates the conditional survival in each interval

- \square Predict the conditional survival for each k under each treatment level A
 - Plot the survival curves for A=1 and A=0

But our smoking cessation study is not a randomized experiment ☐ Need to construct survival curves that are adjusted for confounding ■ So that, under conditional exchangeability, the survival curve is the counterfactual survival curve in A=a that would have been observed if everybody had been assigned to treatment level a ☐ Let's see how that can be done using ■ IP weighting ■ Standardization / G-formula

IP weighting for survival analysis Steps

- 0. Arrange data
- 1. Estimation of IP weights
- 2. Parametric estimation of hazards
- 3. Computation of survivals
- 4. Estimation of variance

Survival analysis

33

Step #1: Estimation of IP weights

Fit a logistic regression model

logit
$$Pr[A=1|L] = \theta_0 + \theta_1 L$$

- lacksquare θ_1 is a vector parameter, we assume exchangeability conditional on the same 9 variables L as in previous sections
- lacktriangle and a separate logistic model without L

Compute the estimated stabilized IP weights SW⁴

- Predicted values from the first model are used for the denominator
- Predicted values from the second model are used for the numerator

Survival analysis

Step #2:

Parametric estimation of hazards

☐ Fit a weighted pooled logistic regression model

logit
$$Pr[D_{k+1}=1|D_k=0, A] = \theta_{0,k} + \theta_1 A + \theta_2 Ak + \theta_3 Ak^2$$

- $\theta_{0,k} = \theta_0 + \theta_4 k + \theta_5 k^2$ is a time-varying intercept to allow the hazard to vary over time
- the product terms $\theta_2Ak + \theta_3Ak^2$ allow the hazard ratio to vary over time
- \square Each person-time receives the IP weight SW^A

Survival analysis 35

Step #3:

Computation of survivals

- \square Survival at k is the product of conditional probabilities of having survived each interval between 0 and k (one minus the hazards)
- \square For example, for k=2

$$Pr[D_2=0] = Pr[D_1=0]Pr[D_2=0|D_1=0]$$

☐ Risk is one minus survival probability

$$Pr[D_2=1] = 1 - Pr[D_2=0] = 1 - Pr[D_1=0]Pr[D_2=0|D_1=0]$$

Survival analysis

IP weighted survival curves in smoking cessation example

- ☐ 10-year survival estimates
 - 80.8% under smoking cessation (*A*=1)
 - 80.5% under no smoking cessation (A=0)
- ☐ Difference in 10-year survival
 - **■** 0.3%

See survival.R, lines 82-145

Survival analysis

37

Step #4: Estimation of variance

- □ Bootstrapping
- □ Difference in 10-year survival (95% CI)
 - 0.3% (-4.2 to 4.1)

Survival analysis

If there is selection bias due to non-administrative censoring

 \square Then estimate IP weights for censoring SW^C

 \square and conduct the analysis with weights $SW^A \times SW^C$

Survival analysis

39

Standardization/G-formula for survival analysis Steps

- 0. Arrange data
- 1. Parametric estimation of conditional hazards
- 2. Computation of weighted average of survivals
- 3. Estimation of variance

Survival analysis

Step #1:

Parametric estimation of conditional hazards

Fit a pooled logistic regression model

logit
$$Pr[D_{k+1}=1|D_k=0, A, L] = \theta_{0,k} + \theta_1 A + \theta_2 Ak + \theta_3 Ak^2 + \theta_4 L$$

- $\theta_{0,k} = \theta_0 + \theta_5 k + \theta_6 k^2$ is a time-varying intercept to allow the hazard to vary over time
- the product terms $\theta_2Ak + \theta_3Ak^2$ allow the hazard ratio to vary over time
- \blacksquare θ_4 is a vector parameter

We assume exchangeability conditional on the same 9 variables L as in previous sections

Survival analysis 41

Aside

☐ Parametric estimation of the hazards can be conditional on propensity score

logit(Pr[
$$D_{k+1}$$
=1| D_k =0, A , PS]) = $\theta_{0,k} + \theta_1 A + \theta_2 A k + \theta_3 A k^2 + \theta_4 P S + \theta_5 P S^2 + ...$

Step #2: Computation of weighted average of survivals

Sum over all combinations of values of L

- Again this integral can be approximated by using the empirical distribution of the confounders
- That is, compute the average of estimated survivals for each individual in the population under treatment (A=1) and under no treatment (A=0)

Survival analysis 43

Standardized survival curves in smoking cessation example

- □ 10-year survival estimates
 - 80.4% under smoking cessation (*A*=1)
 - 80.6% under no smoking cessation (*A*=0)
- ☐ Difference in 10-year survival
 - **0.2%**

Step #4:		
Estimation of variance		
☐ Bootstrapping		
☐ Difference in 10-year survival		
■ 0.2% (-4.6 to 4.1)		
= 0.270 (0 to1)		
	See survival.R, lines 148-196	
Survival analysis	45	

Readings Causal Inference, What If. Chapter 17 Survival analysis 46

Progress report

- 1. Introduction to modeling
- 2. Stratified analysis:
 - Outcome regression
 - Propensity scores
- 3. Standardization
- 4. Inverse probability weighting
 - Marginal structural models
- 5. Instrumental variable estimation
- 6. G-estimation
- 7. Causal Survival Analysis
- 8. The bias of traditional methods