

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC4741$

HIGH PERFORMANCE QUAD OPERATIONAL AMPLIFIER

DESCRIPTION

The μ PC4741 consists of four independent frequency compensated operational amplifiers featuring higher speed, broader band than general purpose type as 741. The μ PC4741 is most appropriate for AC signal amplifier applications such as active filters or pulse amplifiers.

FEATURES

- · Internal frequency compensation
- · Low noise
- · Output short circuit protection

EQUIVALENT CIRCUIT (1/4 Circuit)

Q14 Q12 Q1 ₹R₅ Q10 $\stackrel{>}{\geqslant}$ R₆ $\stackrel{\downarrow}{\geqslant}$ R₇ Q_6 Q15 Q13 **D**₁ Q7 O OUT Q4 Q11 ₹R₃ ≶R₂ V- 0-

CONNECTION DIAGRAM (Top View)

ORDERING INFORMATION

PART NUMBER	PACKAGE	QUALITY GRADE	
μPC4741C	14 PIN PLASTIC DIP (300 mil)	Standard	
μPC4741G2	14 PIN PLASTIC SOP (225 mil)	Standard	

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

PARAMETER		SYMBOL	μPC4741	UNIT	
Voltage between V ⁺ and V ⁻ (Note 1)		V+ - V-	-0.3 to +40	V	
Differential Input Voltage		Vid	±30	V	
Input Voltage (Note 2)		(Note 2)	Vı	V ⁻ -0.3 to V ⁺ +0.3	V
Output Voltage (Not		(Note 3)	Vo	V0.3 to V++0.3	V
Power Dissipation	C Package	(Note 4)	Рт	570	mW
	G2 Package	(Note 5)		550	mW
Output Short Circuit Duration (Note 6)			10	sec	
Operating Temperature Range			Topt	-20 to +80	°C
Storage Temperature Range			T _{stg}	-55 to +125	°C

- Note 1. Reverse connection of supply voltage can cause destruction.
- **Note 2.** The input voltage should be allowed to input without damage or destruction. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The normal operation will establish when the both inputs are within the Common Mode Input Voltage Range of electrical characteristics.
- **Note 3.** This specification is the voltage which should be allowed to supply to the output terminal from external without damage or destructive. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The output voltage of normal operation will be the Output Voltage Swing of electrical characteristics.
- Note 4. Thermal derating factor is -7.6 mW/°C when ambient temperature is higher than 50 °C.
- Note 5. Thermal derating factor is -5.5 mW/°C when ambient temperature is higher than 25 °C.
- **Note 6.** Pay careful attention to the total power dissipation not to exceed the absolute maximum ratings, Notes 4 and 5.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V [±]	±4		±16	V

ELECTRICAL CHARACTERISTICS ($T_a = 25$ °C, $V^{\pm} = \pm 15V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Offset Voltage	V ₁₀		±1.0	±5.0	mV	$R_S \leq 100 \Omega$
Input Offset Current (Note 7)	lio		±30	±5.0	nA	
Input Bias Current (Note 7)	Ів	,	100	300	nA	
Large Signal Voltage Gain	Aυ	25,000	50,000			$R_L \ge 2 k\Omega$, $V_0 = \pm 10 V$
Power Consumption	Pd		150	210	mW	lo = 0 A, All Amplifiers
Common Mode Rejection Ratio	CMR	80	90		dB	
Supply Voltage Rejection Ratio	SVR		50	100	μV/V	
Maximum Output Voltage	Vom	±12	±13.7		V	$R_L \ge 10 \ k\Omega$
Maximum Output Voltage	Vom	±10	±12.5		V	$R_L \geq 2~k\Omega$
Common Mode Input V. Range	Vicм	±12	±14		V	
Slew Rate	SR		1.6		V/μs	$A_{\upsilon} = 1$
Input Equivalent Noise Voltage Density	eп		9		nV/√Hz	f = 1 kHz
Channel Separation			108		dB	f = 10 kHz

Note 7. Input bias currents flow out from IC. Because each currents are base current of PNP-transistor on input stage.

Please be careful with followings:

In low input level circuits, relative interferences may sometimes occur due to the temperature gradient in the IC chip when the difference of power dissipation between channels is extremely large.

MEASUREMENT CIRCUIT

Fig. 1 Channel Separation Measurement Circuit

TYPICAL PERFORMANCE CHARACTERISTICS (Ta = 25 °C, TYP.)

OPEN LOOP FREQUENCY RESPONSE

LARGE SIGNAL FREQUENCY RESPONSE

COMMON MODE INPUT VOLTAGE RANGE

OUTPUT VOLTAGE SWING

VOLTAGE FOLLOWER PULSE RESPONSE

CHANNEL SEPARATION

INPUT EQUIVALENT NOISE VOLTAGE DENSITY

SUPPLY CURRENT

14PIN PLASTIC DIP (300 mil)

P14C-100-300B1

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	20.32 MAX.	0.800 MAX.
В	2.54 MAX.	0.100 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ^{± 0.10}	0.020 +0.004
F	1.2 MIN.	0.047 MIN.
G	3.6 ^{±0.3}	0.142 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
М	0.25 + 0.10	0.010-0.003
Z	0.25	0.01

14 PIN PLASTIC SOP (225 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

S14GM-50-225B, C-2

ITEM	MILLIMETERS	INCHES	
Α	10.46 MAX.	0.412 MAX.	
В	1.42 MAX.	0.056 MAX.	
С	1.27 (T.P.)	0.050 (T.P.)	
D	0.40+0.10	0.016+0.004	
Е	0.1±0.1	0.004±0.004	
F	1.8 MAX.	0.071MAX.	
G	1.49	0.059	
Н	6.5±0.3	0.256±0.012	
ı	4.4	0.173	
J	1.1	0.043	
K	0.15 ^{+0.10} _{-0.05}	0.006+0.004	
L.	0.6±0.2	0.024+0.008	
М	0.12	0.005	
N	0.15	0.006	

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

[μPC4741G2]

Soldering method	Soldering conditions	Recommended condition symbol
Infrared ray reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 1, Exposure limit *: None	IR30-00-1
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 1, Exposure limit *: None	VP15-00-1
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Number of flow process: 1, Exposure limit *: None	WS15-00-1
Partial heating method	Terminal temperature: 300 °C or below, Flow time: 10 seconds or below, Exposure limit *: None	0

^{*} Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Note Do not apply more than a single process at once, except for "Partial heating method".

TYPES OF THROUGH HOLE DEVICE

[μPC4741C]

Soldering method	Soldering conditions	Recommended condition symbol
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below	0

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6