

Arm® Cortex®-A710 Core

Revision: r2p1

Technical Reference Manual

Non-Confidential

Issue 07

Copyright © 2019-2021 Arm Limited (or its affiliates). $101800_0201_07_en$ All rights reserved.

Arm[®] Cortex[®]-A710 Core

Technical Reference Manual

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue	Date	Confidentiality	Change
0000-01	25 October 2019	Confidential	First alpha release for rOpO
0000-02	24 January 2020	Confidential	First beta release for r0p0
0000-03	30 March 2020	Confidential	First limited access release for rOpO
0100-04	12 June 2020	Confidential	First limited access release for r1p0
0200-05	21 August 2020	Confidential	First early access release for r2p0
0200-06	25 May 2021	Non-Confidential	Second early access release for r2p0
0201-07	10 December 2021	Non-Confidential	First release for r2p1

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this document.

If you find offensive terms in this document, please contact terms@arm.com.

Contents

1 Introduction	18
1.1 Product revision status	18
1.2 Intended audience	18
1.3 Conventions	18
1.4 Additional reading	20
1.5 Feedback	21
2 The Cortex®-A710 core	22
2.1 Cortex®-A710 core features	23
2.2 Cortex®-A710 core configuration options	24
2.3 DSU-110 dependent features	25
2.4 Supported standards and specifications	25
2.5 Test features	28
2.6 Design tasks	29
2.7 Product revisions	30
3 Technical overview	31
3.1 Core components	31
3.2 Interfaces	35
3.3 Programmers model	35
4 Clocks and resets	36
5 Power management	37
5.1 Voltage and power domains	37
5.2 Architectural clock gating modes	39
5.2.1 Wait for Interrupt and Wait for Event	39
5.2.2 Low-power state behavior considerations	40
5.3 Power control	41
5.4 Core power modes	41
5.4.1 On mode	43
5.4.2 Off mode	43
5.4.3 Emulated off mode	ΔΔ

5.4.4 Full retention mode	44
5.4.5 Debug recovery mode	45
5.4.6 Warm reset mode	45
5.5 Cortex®-A710 core powerup and powerdown sequence	46
5.5.1 Managing RAS fault and error interrupts during the core powerdown	46
5.6 Debug over powerdown	47
6 Memory management	49
6.1 Memory Management Unit components	49
6.2 Translation Lookaside Buffer entry content	51
6.3 Translation Lookaside Buffer match process	
6.4 Translation table walks	52
6.5 Hardware management of the Access flag and dirty state	53
6.6 Responses	
6.7 Memory behavior and supported memory types	
6.8 Page-based hardware attributes	56
7 L1 instruction memory system	
7.1 L1 instruction cache behavior	
7.2 L1 instruction cache Speculative memory accesses	
7.3 Program flow prediction	59
8 L1 data memory system	62
8.1 L1 data cache behavior	62
8.2 Instruction implementation in the L1 data memory system	
8.3 Internal exclusive monitor	64
8.4 Data prefetching	64
8.5 Write streaming mode	65
9 L2 memory system	67
9.1 L2 cache	67
9.2 Support for memory types	67
9.3 Transaction capabilities	68
10 Direct access to internal memory	69
10.1 L1 cache encodings	69
10.1.1 L1 instruction tag RAM returned data	73
10.1.2 L1 instruction data RAM returned data	73

10.1.3 L1 BTB RAM returned data	74
10.1.4 L1 GHB RAM returned data	74
10.1.5 L1 BIM RAM returned data	75
10.1.6 L1 instruction TLB returned data	75
10.1.7 LO macro-operation RAM returned data	77
10.1.8 L1 data tag RAM returned data	78
10.1.9 L1 data data RAM returned data	79
10.1.10 L1 data TLB returned data	79
10.2 L2 cache encodings	81
10.2.1 L2 tag RAM returned data	83
10.2.2 L2 data RAM returned data	84
10.2.3 L2 TLB RAM returned data	85
10.2.4 L2 Victim RAM returned data	87
11 RAS Extension support	88
11.1 Cache protection behavior	88
11.2 Error containment	90
11.3 Fault detection and reporting	90
11.4 Error detection and reporting	90
11.4.1 Error reporting and performance monitoring	91
11.5 Error injection	91
11.6 RAS register summary	92
12 GIC CPU interface	93
12.1 Disable the GIC CPU interface	93
12.2 AArch64 GIC register summary	92
13 Advanced SIMD and floating-point support	95
14 Scalable Vector Extensions support	96
15 System control	97
15.1 AArch64 Identification register summary	97
16 Debug	99
16.1 Supported debug methods	
16.2 Debug register interfaces	
16.2.1 Core interfaces	

16.2.2 Effects of resets on debug registers	102
16.2.3 External access permissions to Debug registers	102
16.2.4 Breakpoints and watchpoints	103
16.3 Debug events	103
16.4 Debug memory map and debug signals	103
16.5 ROM table	104
16.6 CoreSight component identification	104
16.7 AArch64 Debug register summary	105
16.8 Debug register summary	105
16.9 CoreROM register summary	106
17 Performance Monitors Extension support	107
17.1 Performance monitors events	107
17.2 Performance monitors interrupts	117
17.3 External register access permissions	117
17.4 AArch64 Performance Monitors register summary	117
17.5 PMU register summary	118
18 Embedded Trace Extension support	120
18.1 Trace unit resources	121
18.2 Trace unit generation options	121
18.3 Reset the trace unit	122
18.4 Program and read the trace unit registers	123
18.5 Trace unit register interfaces.	125
18.6 Interaction with the Performance Monitoring Unit and Debug	125
18.7 ETE events	126
18.8 AArch64 Trace register summary	126
18.9 ETE register summary	127
19 Trace Buffer Extension support	129
19.1 Program and read the trace buffer registers	129
19.2 Trace buffer register interface	129
20 Activity Monitors Extension support	130
20.1 Activity monitors access	
20.2 Activity monitors counters	
20.3 Activity monitors events	

20.4 AArch64 Activity Monitors register summary	132
20.5 AMU register summary	132
A AArch32 registers	134
A.1 Generic system control register summary	
A.1.1 FPSCR, Floating-Point Status and Control Register	
B AArch64 registers	138
B.1 Generic system control register summary	138
B.1.1 AIDR_EL1, Auxiliary ID Register	140
B.1.2 ACTLR_EL1, Auxiliary Control Register (EL1)	141
B.1.3 ACTLR_EL2, Auxiliary Control Register (EL2)	142
B.1.4 HACR_EL2, Hypervisor Auxiliary Control Register	145
B.1.5 ACTLR_EL3, Auxiliary Control Register (EL3)	147
B.1.6 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)	149
B.1.7 LORID_EL1, LORegionID (EL1)	152
B.1.8 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)	153
B.1.9 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)	156
B.1.10 RMR_EL3, Reset Management Register (EL3)	157
B.1.11 IMP_CPUACTLR_EL1, CPU Auxiliary Control Register (EL1)	159
B.1.12 IMP_CPUACTLR2_EL1, CPU Auxiliary Control Register 2 (EL1)	160
B.1.13 IMP_CPUACTLR3_EL1, CPU Auxiliary Control Register 3 (EL1)	162
B.1.14 IMP_CPUACTLR4_EL1, CPU Auxiliary Control Register 4 (EL1)	163
B.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register	165
B.1.16 IMP_CPUECTLR2_EL1, CPU Extended Control Register 2	174
B.1.17 IMP_CPUPPMCR3_EL3, CPU Power Performance Management Control Register	179
B.1.18 IMP_CPUPWRCTLR_EL1, CPU Power Control Register	180
B.1.19 IMP_ATCR_EL1, CPU Auxiliary Translation Control Register (EL1)	183
B.1.20 IMP_CPUACTLR5_EL1, CPU Auxiliary Control Register 5 (EL1)	185
B.1.21 IMP_CPUACTLR6_EL1, CPU Auxiliary Control Register 6 (EL1)	187
B.1.22 IMP_CPUACTLR7_EL1, CPU Auxiliary Control Register 7 (EL1)	188
B.1.23 IMP_ATCR_EL2, CPU Auxiliary Translation Control Register (EL2)	190
B.1.24 IMP_AVTCR_EL2, CPU Virtualization Auxiliary Translation Control Register (EL2)	192
B.1.25 IMP_CPUPPMCR_EL3, CPU Power Performance Management Control Register	194
B.1.26 IMP_CPUPPMCR2_EL3, CPU Power Performance Management Control Register	196
B.1.27 IMP_CPUPPMCR4_EL3, CPU Power Performance Management Control Register	197
B.1.28 IMP_CPUPPMCR5_EL3, CPU Power Performance Management Control Register	198

B.1.29 IMP_CPUPPMCR6_EL3, CPU Power Performance Management Control Register	200
B.1.30 IMP_CPUACTLR_EL3, CPU Auxiliary Control Register (EL3)	201
B.1.31 IMP_ATCR_EL3, CPU Auxiliary Translation Control Register (EL2)	202
B.1.32 IMP_CPUPSELR_EL3, Selected Instruction Private Select Register	204
B.1.33 IMP_CPUPCR_EL3, Selected Instruction Private Control Register	206
B.1.34 IMP_CPUPOR_EL3, Selected Instruction Private Opcode Register	207
B.1.35 IMP_CPUPMR_EL3, Selected Instruction Private Mask Register	208
B.1.36 IMP_CPUPOR2_EL3, Selected Instruction Private Opcode Register 2	210
B.1.37 IMP_CPUPMR2_EL3, Selected Instruction Private Mask Register 2	211
B.1.38 IMP_CPUPFR_EL3, Selected Instruction Private Flag Register	212
B.1.39 FPCR, Floating-point Control Register	214
B.1.40 AFSRO_EL2, Auxiliary Fault Status Register 0 (EL2)	217
B.1.41 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)	220
B.1.42 AFSRO_EL1, Auxiliary Fault Status Register 0 (EL1)	222
B.1.43 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)	224
B.1.44 AFSRO_EL3, Auxiliary Fault Status Register 0 (EL3)	227
B.1.45 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)	228
B.2 AArch64 Debug register summary	230
B.2.1 IMP_IDATAO_EL3, Instruction Register 0	230
B.2.2 IMP_IDATA1_EL3, Instruction Register 0	231
B.2.3 IMP_IDATA2_EL3, Instruction Register 0	232
B.2.4 IMP_DDATA0_EL3, Data Register 0	233
B.2.5 IMP_DDATA1_EL3, Data Register 1	234
B.2.6 IMP_DDATA2_EL3, Data Register 2	235
B.3 system-instruction register summary	236
B.3.1 SYS_IMP_RAMINDEX, RAM Index	236
B.4 AArch64 Identification register summary	238
B.4.1 MIDR_EL1, Main ID Register	239
B.4.2 MPIDR_EL1, Multiprocessor Affinity Register	241
B.4.3 REVIDR_EL1, Revision ID Register	242
B.4.4 ID_PFRO_EL1, AArch32 Processor Feature Register 0	244
B.4.5 ID_PFR1_EL1, AArch32 Processor Feature Register 1	246
B.4.6 ID_DFRO_EL1, AArch32 Debug Feature Register 0	247
B.4.7 ID_AFRO_EL1, AArch32 Auxiliary Feature Register 0	249
B.4.8 ID_MMFRO_EL1, AArch32 Memory Model Feature Register 0	251
B.4.9 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1	253

B.4.10 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2	255
B.4.11 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3	257
B.4.12 ID_ISARO_EL1, AArch32 Instruction Set Attribute Register O	258
B.4.13 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1	
B.4.14 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2	262
B.4.15 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3	264
B.4.16 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4	266
B.4.17 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5	268
B.4.18 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4	270
B.4.19 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6	272
B.4.20 MVFRO_EL1, AArch32 Media and VFP Feature Register O	274
B.4.21 MVFR1_EL1, AArch32 Media and VFP Feature Register 1	276
B.4.22 MVFR2_EL1, AArch32 Media and VFP Feature Register 2	278
B.4.23 ID_PFR2_EL1, AArch32 Processor Feature Register 2	279
B.4.24 ID_DFR1_EL1, Debug Feature Register 1	281
B.4.25 ID_AA64PFRO_EL1, AArch64 Processor Feature Register 0	282
B.4.26 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1	285
B.4.27 ID_AA64ZFRO_EL1, SVE Feature ID register 0	286
B.4.28 ID_AA64DFRO_EL1, AArch64 Debug Feature Register 0	288
B.4.29 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1	290
B.4.30 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0	292
B.4.31 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1	293
B.4.32 ID_AA64ISARO_EL1, AArch64 Instruction Set Attribute Register 0	294
B.4.33 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1	297
B.4.34 ID_AA64MMFRO_EL1, AArch64 Memory Model Feature Register O	300
B.4.35 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1	302
B.4.36 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2	304
B.4.37 CLIDR_EL1, Cache Level ID Register	306
B.4.38 GMID_EL1, Multiple tag transfer ID register	310
B.4.39 CTR_ELO, Cache Type Register	311
B.4.40 DCZID_ELO, Data Cache Zero ID register	313
B.4.41 MPAMIDR_EL1, MPAM ID Register (EL1)	315
B.4.42 IMP_CPUCFR_EL1, CPU Configuration Register	316
B.5 AArch64 Performance Monitors register summary	318
B.5.1 PMMIR_EL1, Performance Monitors Machine Identification Register	318
B.5.2 PMCR_ELO, Performance Monitors Control Register	320

B.5.3 PMCEIDO_ELO, Performance Monitors Common Event Identification register O	324
B.5.4 PMCEID1_ELO, Performance Monitors Common Event Identification register 1	331
B.6 AArch64 GIC register summary	338
B.6.1 ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)	338
B.6.2 ICV_CTLR_EL1, Interrupt Controller Virtual Control Register	342
B.6.3 ICC_APORO_EL1, Interrupt Controller Active Priorities Group 0 Registers	345
B.6.4 ICV_APORO_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers	346
B.6.5 ICC_AP1RO_EL1, Interrupt Controller Active Priorities Group 1 Registers	348
B.6.6 ICV_AP1R0_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers	349
B.6.7 ICH_VTR_EL2, Interrupt Controller VGIC Type Register	350
B.6.8 ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)	352
B.7 AArch64 Activity Monitors register summary	356
B.7.1 AMEVTYPER10_ELO, Activity Monitors Event Type Registers 1	357
B.7.2 AMEVTYPER11_ELO, Activity Monitors Event Type Registers 1	358
B.7.3 AMEVTYPER12_ELO, Activity Monitors Event Type Registers 1	359
B.7.4 AMCFGR_ELO, Activity Monitors Configuration Register	361
B.7.5 AMCGCR_ELO, Activity Monitors Counter Group Configuration Register	363
B.7.6 AMEVTYPEROO_ELO, Activity Monitors Event Type Registers O	364
B.7.7 AMEVTYPER01_ELO, Activity Monitors Event Type Registers 0	365
B.7.8 AMEVTYPERO2_ELO, Activity Monitors Event Type Registers 0	366
B.7.9 AMEVTYPERO3_ELO, Activity Monitors Event Type Registers 0	367
B.8 AArch64 Trace register summary	368
B.8.1 TRCIDR8, ID Register 8	369
B.8.2 TRCIMSPECO, IMP DEF Register 0	370
B.8.3 TRCIDR2, ID Register 2	372
B.8.4 TRCIDR3, ID Register 3	374
B.8.5 TRCIDR4, ID Register 4	376
B.8.6 TRCIDR5, ID Register 5	378
B.8.7 TRCIDR10, ID Register 10	380
B.8.8 TRCIDR11, ID Register 11	382
B.8.9 TRCIDR12, ID Register 12	383
B.8.10 TRCIDR13, ID Register 13	384
B.8.11 TRCIDRO, ID Register 0	386
B.8.12 TRCIDR1, ID Register 1	388
B.8.13 TRCCIDCVRO, Context Identifier Comparator Value Registers <n></n>	390
B.9 MPAM register summary	391

B.9.1 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register	391
B.9.2 MPAMVPMO_EL2, MPAM Virtual PARTID Mapping Register 0	394
B.9.3 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1	396
B.9.4 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7	
B.10 RAS register summary	400
B.10.1 ERRIDR_EL1, Error Record ID Register	400
B.10.2 ERRSELR_EL1, Error Record Select Register	402
B.10.3 ERXFR_EL1, Selected Error Record Feature Register	403
B.10.4 ERXCTLR_EL1, Selected Error Record Control Register	406
B.10.5 ERXSTATUS_EL1, Selected Error Record Primary Status Register	409
B.10.6 ERXADDR_EL1, Selected Error Record Address Register	414
B.10.7 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register	416
B.10.8 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register	419
B.10.9 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register	422
B.10.10 ERXMISCO_EL1, Selected Error Record Miscellaneous Register 0	423
B.10.11 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1	428
B.10.12 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2	430
B.10.13 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3	432
C External registers	434
C.1 CoreROM register summary	434
C.1.1 COREROM_ROMENTRY0, Core ROM table Entry 0	434
C.1.2 COREROM_ROMENTRY1, Core ROM table Entry 1	435
C.1.3 COREROM_ROMENTRY2, Core ROM table Entry 2	436
C.1.4 COREROM_ROMENTRY3, Core ROM table Entry 3	
C.1.5 COREROM_AUTHSTATUS, Core ROM table Authentication Status Register	438
C.1.6 COREROM_DEVARCH, Core ROM table Device Architecture Register	439
C.1.7 COREROM_DEVTYPE, Core ROM table Device Type Register	440
C.1.8 COREROM_PIDR4, Core ROM table Peripheral Identification Register 4	441
C.1.9 COREROM_PIDRO, Core ROM table Peripheral Identification Register 0	442
C.1.10 COREROM_PIDR1, Core ROM table Peripheral Identification Register 1	443
C.1.11 COREROM_PIDR2, Core ROM table Peripheral Identification Register 2	444
C.1.12 COREROM_PIDR3, Core ROM table Peripheral Identification Register 3	445
C.1.13 COREROM_CIDRO, Core ROM table Component Identification Register 0	445
C.1.14 COREROM_CIDR1, Core ROM table Component Identification Register 1	446
C 1 15 COREROM CIDR2 Care ROM table Component Identification Register 2	

C.1.16 COREROM_CIDR3, Core ROM table Component Identification Register 3	448
C.2 PPM register summary	449
C.2.1 CPUPPMCR, Power Performance Management Register	449
C.2.2 CPUPPMCR2, Power Performance Management Register	
C.2.3 CPUPPMCR3, Power Performance Management Register	451
C.2.4 CPUPPMCR4, Power Performance Management Register	451
C.2.5 CPUPPMCR5, Power Performance Management Register	452
C.2.6 CPUPPMCR6, Power Performance Management Register	453
C.3 PMU register summary	
C.3.1 PMPCSSR, Snapshot Program Counter Sample Register	455
C.3.2 PMCIDSSR, Snapshot CONTEXTIDR_EL1 Sample Register	456
C.3.3 PMCID2SSR, Snapshot CONTEXTIDR_EL2 Sample Register	457
C.3.4 PMSSSR, PMU Snapshot Status Register	458
C.3.5 PMCCNTSR, PMU Cycle Counter Snapshot Register	458
C.3.6 PMEVCNTSRO, PMU Event Counter Snapshot Register	459
C.3.7 PMEVCNTSR1, PMU Event Counter Snapshot Register	460
C.3.8 PMEVCNTSR2, PMU Event Counter Snapshot Register	461
C.3.9 PMEVCNTSR3, PMU Event Counter Snapshot Register	462
C.3.10 PMEVCNTSR4, PMU Event Counter Snapshot Register	462
C.3.11 PMEVCNTSR5, PMU Event Counter Snapshot Register	463
C.3.12 PMEVCNTSR6, PMU Event Counter Snapshot Register	464
C.3.13 PMEVCNTSR7, PMU Event Counter Snapshot Register	465
C.3.14 PMEVCNTSR8, PMU Event Counter Snapshot Register	466
C.3.15 PMEVCNTSR9, PMU Event Counter Snapshot Register	466
C.3.16 PMEVCNTSR10, PMU Event Counter Snapshot Register	467
C.3.17 PMEVCNTSR11, PMU Event Counter Snapshot Register	468
C.3.18 PMEVCNTSR12, PMU Event Counter Snapshot Register	469
C.3.19 PMEVCNTSR13, PMU Event Counter Snapshot Register	470
C.3.20 PMEVCNTSR14, PMU Event Counter Snapshot Register	470
C.3.21 PMEVCNTSR15, PMU Event Counter Snapshot Register	471
C.3.22 PMEVCNTSR16, PMU Event Counter Snapshot Register	472
C.3.23 PMEVCNTSR17, PMU Event Counter Snapshot Register	473
C.3.24 PMEVCNTSR18, PMU Event Counter Snapshot Register	474
C.3.25 PMEVCNTSR19, PMU Event Counter Snapshot Register	474
C.3.26 PMSSCR, PMU Snapshot Capture Register	475
C.3.27 PMCFGR. Performance Monitors Configuration Register	476

C.3.28 PMCR_ELO, Performance Monitors Control Register	477
C.3.29 PMCEIDO, Performance Monitors Common Event Identification register O	479
C.3.30 PMCEID1, Performance Monitors Common Event Identification register 1	482
C.3.31 PMCEID2, Performance Monitors Common Event Identification register 2	486
C.3.32 PMCEID3, Performance Monitors Common Event Identification register 3	489
C.3.33 PMMIR, Performance Monitors Machine Identification Register	493
C.3.34 PMDEVARCH, Performance Monitors Device Architecture register	494
C.3.35 PMDEVID, Performance Monitors Device ID register	495
C.3.36 PMDEVTYPE, Performance Monitors Device Type register	496
C.3.37 PMPIDR4, Performance Monitors Peripheral Identification Register 4	496
C.3.38 PMPIDRO, Performance Monitors Peripheral Identification Register O	497
C.3.39 PMPIDR1, Performance Monitors Peripheral Identification Register 1	498
C.3.40 PMPIDR2, Performance Monitors Peripheral Identification Register 2	499
C.3.41 PMPIDR3, Performance Monitors Peripheral Identification Register 3	500
C.3.42 PMCIDRO, Performance Monitors Component Identification Register O	501
C.3.43 PMCIDR1, Performance Monitors Component Identification Register 1	502
C.3.44 PMCIDR2, Performance Monitors Component Identification Register 2	503
C.3.45 PMCIDR3, Performance Monitors Component Identification Register 3	504
C.4 Debug register summary	505
C.4.1 EDRCR, External Debug Reserve Control Register	505
C.4.2 EDACR, External Debug Auxiliary Control Register	506
C.4.3 EDPRCR, External Debug Power/Reset Control Register	507
C.4.4 MIDR_EL1, Main ID Register	508
C.4.5 EDPFR, External Debug Processor Feature Register	509
C.4.6 EDDFR, External Debug Feature Register	511
C.4.7 EDDEVARCH, External Debug Device Architecture register	513
C.4.8 EDDEVID2, External Debug Device ID register 2	514
C.4.9 EDDEVID1, External Debug Device ID register 1	514
C.4.10 EDDEVID, External Debug Device ID register 0	515
C.4.11 EDDEVTYPE, External Debug Device Type register	516
C.4.12 EDPIDR4, External Debug Peripheral Identification Register 4	517
C.4.13 EDPIDRO, External Debug Peripheral Identification Register O	518
C.4.14 EDPIDR1, External Debug Peripheral Identification Register 1	519
C.4.15 EDPIDR2, External Debug Peripheral Identification Register 2	519
C.4.16 EDPIDR3, External Debug Peripheral Identification Register 3	520
C.4.17 EDCIDRO, External Debug Component Identification Register O	521

C.4.18 EDCIDR1, External Debug Component Identification Register 1	522
C.4.19 EDCIDR2, External Debug Component Identification Register 2	523
C.4.20 EDCIDR3, External Debug Component Identification Register 3	523
C.5 AMU register summary	
C.5.1 AMEVTYPEROO, Activity Monitors Event Type Registers O	525
C.5.2 AMEVTYPER01, Activity Monitors Event Type Registers 0	526
C.5.3 AMEVTYPERO2, Activity Monitors Event Type Registers O	527
C.5.4 AMEVTYPERO3, Activity Monitors Event Type Registers O	527
C.5.5 AMEVTYPER10, Activity Monitors Event Type Registers 1	528
C.5.6 AMEVTYPER11, Activity Monitors Event Type Registers 1	529
C.5.7 AMEVTYPER12, Activity Monitors Event Type Registers 1	530
C.5.8 AMEVTYPER13, Activity Monitors Event Type Registers 1	531
C.5.9 AMCGCR, Activity Monitors Counter Group Configuration Register	532
C.5.10 AMCFGR, Activity Monitors Configuration Register	533
C.5.11 AMIIDR, Activity Monitors Implementation Identification Register	535
C.5.12 AMDEVARCH, Activity Monitors Device Architecture Register	536
C.5.13 AMDEVTYPE, Activity Monitors Device Type Register	537
C.5.14 AMPIDR4, Activity Monitors Peripheral Identification Register 4	537
C.5.15 AMPIDRO, Activity Monitors Peripheral Identification Register O	538
C.5.16 AMPIDR1, Activity Monitors Peripheral Identification Register 1	539
C.5.17 AMPIDR2, Activity Monitors Peripheral Identification Register 2	540
C.5.18 AMPIDR3, Activity Monitors Peripheral Identification Register 3	541
C.5.19 AMCIDRO, Activity Monitors Component Identification Register O	542
C.5.20 AMCIDR1, Activity Monitors Component Identification Register 1	543
C.5.21 AMCIDR2, Activity Monitors Component Identification Register 2	544
C.5.22 AMCIDR3, Activity Monitors Component Identification Register 3	545
C.6 ETE register summary	545
C.6.1 TRCAUXCTLR, Auxiliary Control Register	547
C.6.2 TRCIDR8, ID Register 8	547
C.6.3 TRCIDR9, ID Register 9	548
C.6.4 TRCIDR10, ID Register 10	549
C.6.5 TRCIDR11, ID Register 11	549
C.6.6 TRCIDR12, ID Register 12	550
C.6.7 TRCIDR13, ID Register 13	551
C.6.8 TRCIMSPECO, IMP DEF Register 0	552
C.6.9 TRCIDRO, ID Register 0	552

C.6.10 TRCIDR1, ID Register 1	554
C.6.11 TRCIDR2, ID Register 2	555
C.6.12 TRCIDR3, ID Register 3	557
C.6.13 TRCIDR4, ID Register 4	559
C.6.14 TRCIDR5, ID Register 5	560
C.6.15 TRCIDR6, ID Register 6	561
C.6.16 TRCIDR7, ID Register 7	562
C.6.17 TRCITCTRL, Integration Mode Control Register	563
C.6.18 TRCCLAIMSET, Claim Tag Set Register	564
C.6.19 TRCCLAIMCLR, Claim Tag Clear Register	565
C.6.20 TRCDEVARCH, Device Architecture Register	565
C.6.21 TRCDEVID2, Device Configuration Register 2	567
C.6.22 TRCDEVID1, Device Configuration Register 1	567
C.6.23 TRCDEVID, Device Configuration Register	568
C.6.24 TRCDEVTYPE, Device Type Register	569
C.6.25 TRCPIDR4, Peripheral Identification Register 4	570
C.6.26 TRCPIDR5, Peripheral Identification Register 5	571
C.6.27 TRCPIDR6, Peripheral Identification Register 6	571
C.6.28 TRCPIDR7, Peripheral Identification Register 7	572
C.6.29 TRCPIDRO, Peripheral Identification Register O	573
C.6.30 TRCPIDR1, Peripheral Identification Register 1	574
C.6.31 TRCPIDR2, Peripheral Identification Register 2	574
C.6.32 TRCPIDR3, Peripheral Identification Register 3	575
C.6.33 TRCCIDRO, Component Identification Register 0	576
C.6.34 TRCCIDR1, Component Identification Register 1	577
C.6.35 TRCCIDR2, Component Identification Register 2	578
C.6.36 TRCCIDR3, Component Identification Register 3	579
D Cortex®-A710 AArch32 UNPREDICTABLE behaviors	580
D.1 Use of R15 by Instruction	580
D.2 Load/Store accesses crossing page boundaries	580
D.3 Armv8-A debug UNPREDICTABLE behaviors	581
D.4 Other UNPREDICTABLE behaviors	583
E Document revisions	585
E.1 Revisions	585

1 Introduction

1.1 Product revision status

The $r_x p_y$ identifier indicates the revision status of the product described in this manual, for example, $r_1 p_2$, where:

rx Identifies the major revision of the product, for example, r1.

py Identifies the minor revision or modification status of the product, for example, p2.

1.2 Intended audience

This manual is for system designers, system integrators, and programmers who are designing or programming a *System on Chip* (SoC) that uses an Arm core.

1.3 Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions

Convention	Use	
italic	Introduces citations.	
bold	Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.	
monospace	Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.	
monospace bold	Denotes language keywords when used outside example code.	
monospace <u>underline</u>	Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.	
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:	
	MRC p15, 0, <rd>, <crn>, <opcode_2></opcode_2></crn></rd>	

Convention	Use Use
SMALL CAPITALS	Used in body text for a few terms that have specific technical meanings, that are defined in the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.
Caution	This represents a recommendation which, if not followed, might lead to system failure or damage.
Warning	This represents a requirement for the system that, if not followed, might result in system failure or damage.
Danger	This represents a requirement for the system that, if not followed, will result in system failure or damage.
Note	This represents an important piece of information that needs your attention.
- Tip	This represents a useful tip that might make it easier, better or faster to perform a task.
Remember	This is a reminder of something important that relates to the information you are reading.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Figure 1-1: Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

1.4 Additional reading

This document contains information that is specific to this product. See the following documents for other relevant information:

Table 1-2: Arm publications

Document Name	Document ID	Licensee only
Cortex®-A710 Release Note	-	Yes
Arm® Cortex®-A710 Core Cryptographic Extension Technical Reference Manual	101802	No
Arm® Cortex®-A710 Core Configuration and Integration Manual	101801	Yes
Arm® DynamlQ™ Shared Unit-110 Technical Reference Manual	101381	No
Arm® DynamlQ™ Shared Unit-110 Configuration and Integration Manual	101382	Yes
Arm® Architecture Reference Manual Armv8, for A-profile architecture	DDI 0487	No
Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitoring (MPAM) for Armv8- A	DDI 0598	No
Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile	DDI 0608	No
Arm [®] Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A architecture profile	DDI 0587	No
Arm® Architecture Reference Manual Supplement The Scalable Vector Extension (SVE) for Armv8-A	DDI 0584	No
AMBA® 5 CHI Architecture Specification	IHI 0050	No

Document Name	Document ID	Licensee only
Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4	IHI 0069	No
Arm® CoreSight™ Architecture Specification v3.0	IHI 0029	No
Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference Manual	101089	No

Table 1-3: Other publications

Document ID	Document Name
-	-

1.5 Feedback

Arm welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic
 procedures if appropriate.

Feedback on content

Information about how to give feedback on the content.

If you have comments on content then send an e-mail to errata@arm.com. Give:

- The title Arm® Cortex®-A710 Core Technical Reference Manual.
- The number 101800 0201 07 en.
- If applicable, the page number(s) to which your comments refer.
- A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.

2 The Cortex®-A710 core

The Cortex®-A710 core is a high-performance, low-power, and constrained area product that implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Armv8-A architectures up to Arm®v8.5-A. The Cortex®-A710 core targets clamshell and premium high-end smartphone applications.

The Cortex®-A710 core is implemented inside a DynamlQ $^{\text{M}}$ -110 cluster and is always connected to the *DynamlQ* $^{\text{M}}$ Shared Unit-110 (DSU-110) that behaves as a full interconnect with L3 cache and snoop control.

This configuration is also used in systems with different types of cores where Cortex®-A710 is either the high-performance or balanced-performance core.

The following figure shows an example configuration with four Cortex®-A710 cores in a DynamlQ[™] cluster.

Figure 2-1: Cortex®-A710 example configuration

This manual applies to the Cortex $^{\mathbb{R}}$ -A710 core only. Read this manual together with the Arm $^{\mathbb{R}}$ DynamlQ $^{\mathbb{M}}$ Shared Unit-110 Technical Reference Manual for detailed information about the DSU-110.

This manual does not provide a complete list of registers. Read this manual together with the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

2.1 Cortex®-A710 core features

The Cortex®-A710 core might be used in standalone DynamlQ[™] configurations, that is in a homogenous cluster of one to four Cortex®-A710 cores. It might also be used either as the high-performance or balanced-performance core in a heterogenous cluster.

However, regardless of the cluster configuration, the Cortex®-A710 core always has the same features.

Core features

- Implementation of the Armv9-A A32, T32, and A64 instruction sets
- AArch32 Execution state at Exception level ELO and AArch64 Execution state at all Exception levels, ELO to EL3
- Memory Management Unit (MMU)
- 40-bit Physical Address (PA) and 48-bit Virtual Address (VA)
- Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt distributor
- Generic Timers interface that supports 64-bit count input from an external system counter
- Implementation of the Reliability, Availability, and Serviceability (RAS) Extension
- Implementation of the Scalable Vector Extension (SVE) with a 128-bit vector length and Scalable Vector Extension 2 (SVE2)
- Integrated execution unit with Advanced Single Instruction Multiple Data (SIMD) and floatingpoint support
- Support for the optional Cryptographic Extension, which is licensed separately
- Activity Monitoring Unit (AMU)

Cache features

- Separate L1 data and instruction caches
- Private, unified data and instruction L2 cache
- Error protection on L1 instruction and data caches, L2 cache, and MMU Translation Cache (MMU TC) with parity or Error Correcting Code (ECC) allowing Single Error Correction and Double Error Detection (SECDED)
- Support for Memory System Resource Partitioning and Monitoring (MPAM)

Debug features

- Armv9.0-A debug logic
- Performance Monitoring Unit (PMU)
- Embedded Trace Extension (ETE)
- Trace Buffer Extension (TRBE)
- Optional Embedded Logic Analyzer (ELA)

Related information

3 Technical overview on page 31

2.2 Cortex®-A710 core configuration options

You can choose the options that fit your implementation needs at build-time configuration. These options apply to all cores in the cluster.

You can configure your Cortex®-A710 core implementation using the following options:

L1 instruction cache size

Configure the L1 instruction cache to be 32KB or 64KB. All the cores in the cluster can have different cache sizes.

L1 data cache size

Configure the L1 data cache to be 32KB or 64KB. All the cores in the cluster can have different cache sizes.

L2 cache size

Configure the L2 cache to be 256KB or 512KB. All the cores in the cluster can have different cache sizes.

L2 transaction queue size

Configure the L2 transaction queue size to be 48, 56, or 62.

Cryptographic Extension

Configure your implementation with or without the Cryptographic Extension. The selected option applies to all cores in the cluster.

CoreSight[™] Embedded Logic Analyzer (ELA)

Include support for integrating ELA-600 as a separate licensable product.

PMU Event Counters

Configure the number of PMU events counters to be 6 or 20.

Size of the ATB FIFO depth in the core ELA

Configure the size of the ATB FIFO to be 4, 8, 16, 32, or 64.

Timing closure

Configure the L2 data cache RAMs timing behavior.

See RTL configuration process in the Arm® Cortex®-A710 Core Configuration and Integration Manual for detailed configuration options and guidelines.

2.3 DSU-110 dependent features

Support for some $DynamIQ^{\mathbb{M}}$ Shared Unit-110 (DSU-110) features and behaviors depends on whether your licensed core supports a particular feature.

The following table describes which DSU-110 dependent features are supported in your Cortex®-A710 core.

Table 2-1: Cortex®-A710 core features that have a dependency on the DSU-110

Feature	Supported in the Cortex®-A710 core	Dependency on the DSU-110
Direct connect	No	Direct connect support at the DynamlQ [™] -110 cluster level only applies when your licensed core also supports Direct connect.
Core included in a complex	No	Affects the DynamlQ™ cluster configuration and external signals.
Cryptographic Extension	Yes	Affects the external signals of the DSU-110.
Statistical Profiling Extension (SPE) architecture	No	

The Cryptographic Extension is supplied under a separate license.

2.4 Supported standards and specifications

The Cortex®-A710 core implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Armv8-A architectures up to Arm®v8.5-A. The Cortex®-A710 core also implements specific Arm architecture extensions and supports interconnect, interrupt, timer, debug, and trace architectures.

The Cortex®-A710 core supports AArch32 at ELO and AArch64 at all Exception levels, ELO to EL3, and supports all mandatory features of each architecture version.

The following tables show, for each Armv8-A architecture version, the optional features that the Cortex®-A710 core supports.

Table 2-2: Armv8.0-A optional feature support in the Cortex®-A710 core

Feature	Status	Notes
Cryptographic Extension	Supported using a configurable option	See the Arm® Cortex®-A710 Core Cryptographic Extension Technical Reference Manual for more technical reference and register information. This extension is licensed separately and access to the documentation is restricted by contract with Arm.
Advanced Single Instruction Multiple Data (SIMD) and floating-point support	Supported	See 13 Advanced SIMD and floating-point support on page 95 for more technical reference and register information.

Feature	Status	Notes
Performance Monitoring Extension (PME)	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this feature.

Table 2-3: Arm®v8.1-A optional feature support in the Cortex®-A710 core

Feature	Status	Notes
FEAT_HAFDBS, Hardware management of the Access flag and dirty state		See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for
FEAT_VMID16, 16-bit VMID	Supported	information on these features.

Table 2-4: Arm®v8.2-A optional feature support in the Cortex®-A710 core

Feature	Status	Notes
FEAT_HPDS2, Translation Table Page-Based Hardware Attributes	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on these features.
FEAT_PCSRv8p2, PC Sample- based profiling	Supported	
Armv8.2-SHA, FEAT_SHA512 and FEAT_SHA3 functionality	Supported as part of Armv8-A Cryptographic Extension	
FEAT_VPIPT, VMID-aware PIPT instruction cache	Not supported	
Armv8.2-SM, FEAT_SM3 and FEAT_SM4 functionality	Supported as part of Armv8-A Cryptographic Extension	
FEAT_BF16, 16-bit floating- point instructions	Supported	
FEAT_18MM, Int8 Matrix Multiply instructions	Supported	
Armv8.2-AA32BF16, 16-bit floating-point instructions	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on these features.
Armv8.2-AA32I8MM, Int8 Matrix Multiply instructions	Supported	
FEAT_SVE	Supported	See 14 Scalable Vector Extensions support on page 96 and the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this extension.
FEAT_LPA, Large Physical Address (PA) and Intermediate PA (IPA) support	Not supported	-
FEAT_LVA, Large Virtual Address(VA) support	Not supported	-
FEAT_LSMAOC, Load/Store Multiple Atomicity and Ordering Controls	Not supported	-
FEAT_AA32HPD, AArch32 Hierarchical Permission Disables	Not supported	-
FEAT_SPE	Not supported	-

Table 2-5: Arm®v8.3-A optional feature support in the Cortex®-A710 core

Feature	Status	Notes
FEAT_NV, Nested Virtualization	Not supported	-
FEAT_CCIDX, Cache extended number of sets	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this feature.
FEAT_Pauth2, Pointer Authentication enhancements	Supported	-
FEAT_FPAC, Faulting Pointer Authentication Code (FPAC)	Supported	-

Table 2-6: Arm®v8.4-A optional feature support in the Cortex®-A710 core

Feature	Status	Notes	
FEAT_AMUv1	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this feature.	
FEAT_MPAM		See the Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A for information on this extension.	
FEAT_NV2, enhanced support for Nested Virtualization	Not supported	-	

Table 2-7: Arm®v8.5-A optional feature support in the Cortex®-A710 core

Feature	Status	Notes
FEAT_MTE, Memory Tagging Extension (MTE)	Supported	The Cortex®-A710 core always implements MTE and therefore is compliant with the CHI Issue E protocol. See CHI master interface in the Arm® DynamIQ™ Shared Unit-110 Technical Reference Manual for information on CHI.E commands inferred by MTE.
FEAT_RNG, Random Number Generator instructions	Not supported	-
FEAT_ExS, Context Synchronization and Exception Handling	Not supported	-

The following table shows the Arm®v9.0-A features that the Cortex®-A710 core supports.

Table 2-8: Arm®v9.0-A feature support in the Cortex®-A710 core

Feature	Status	Notes	
FEAT_SVE2	Supported	See 14 Scalable Vector Extensions support on page 96.	
FEAT_ETE	Supported	See 18 Embedded Trace Extension support on page 120.	
FEAT_TRBE	Supported	See 19 Trace Buffer Extension support on page 129.	
FEAT_SVE_SM4	Supported	These algorithms are UNDEFINED if the Cryptographic Extension is not enabled.	
FEAT_SVE_SHA3	Supported		
FEAT_SVE_AES	Supported		
FEAT_SVE_BitPerm	Supported	-	
FEAT_TME	Not supported	-	

The following table shows the other standards and specifications that the Cortex®-A710 core supports.

Table 2-9: Other standards and specifications support in the Cortex®-A710 core

Standard or specification	Version	Notes
FEAT_GICv4p1	GICv4.1	See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 for more information.
FEAT_Debugv8p4, Debug Relaxations and Extensions	-	Arm®v9.0-A architecture implemented with Arm®v8.4-A Debug architecture support and Arm®v8.3-A debug over powerdown support See the Arm®v8.5 Debug Architecture for
		information on this architecture.
CoreSight	v3.0	See the Arm® CoreSight™ Architecture Specification v3.0 for more information.
FEAT_RAS	-	All extensions up to Arm®v9.0-A with Error Correcting Code (ECC) configured.
		See 11 RAS Extension support on page 88 for more information on the implementation of this extension in the core.

Related information

3.1 Core components on page 31

2.5 Test features

The Cortex®-A710 core provides test signals that enable the use of both *Automatic Test Pattern Generation* (ATPG) and *Memory Built-In Self Test* (MBIST) to test the core logic and memory arrays.

The Cortex®-A710 core includes an ATPG test interface that provides signals to control the *Design* for *Test* (DFT) features of the core. To prevent problems with DFT implementation, you must carefully consider how you use these signals.

Arm also provides MBIST interfaces that enable you to test the RAMs at operational frequency. You can add your own MBIST controllers to automatically generate test patterns and perform result comparisons. Optionally, you can use your EDA tool to test the physical RAMs directly instead of using the supplied Arm interfaces.

See Design for Test integration guidelines in the Arm® Cortex®-A710 Core Configuration and Integration Manual for the list of test signals and information on their usage. See also Design for Test integration guidelines in the Arm® DynamlQ $^{\text{M}}$ Shared Unit-110 Configuration and Integration Manual for the list of external scan control signals.

The Arm[®] Cortex[®]-A710 Core Configuration and Integration Manual and Arm[®] DynamlQ^{$^{\text{M}}$} Shared Unit-110 Configuration and Integration Manual are confidential documents that are available with the appropriate product licenses.

2.6 Design tasks

The Cortex®-A710 core is delivered as a synthesizable RTL description in SystemVerilog. Before you can use the Cortex®-A710 core, you must implement, integrate, and program it.

A different party can perform each of the following tasks:

Implementation

The implementer configures the RTL, adds vendor cells/RAMs, and takes the design through the synthesis and place and route (P&R) steps to produce a hard macrocell.

The implementer chooses the options that affect how the RTL source files are rendered. These options can affect the area, maximum frequency, power, and features of the resulting macrocell.

Other components such as DFT structures and, if necessary, power switches can be added to the implementation flow.

Integration

The integrator connects the macrocell into a SoC. This task includes connecting it to a memory system and peripherals.

The integrator configures some features of the core by tying inputs to specific values. These configuration settings affect the start-up behavior before any software configuration is made and can also limit the options available to the software.

Software programming

The system programmer develops the software to configure and initialize the core and tests the application software.

The programmer configures the core by programming values into registers. The programmed values affect the behavior of the core.

The operation of the final device depends on the build configuration, the configuration inputs, and the software configuration.

See RTL configuration process in the Arm® Cortex®-A710 Core Configuration and Integration Manual and in the Arm® DynamlQ $^{\text{m}}$ Shared Unit-110 Configuration and Integration Manual for implementation options. See also Functional integration in the Arm® DynamlQ $^{\text{m}}$ Shared Unit-110 Configuration and Integration Manual for signal descriptions.

2.7 Product revisions

The following table indicates the main differences in functionality between product revisions.

Table 2-10: Product revisions

Revision	Notes
rOpO	First release
r1p0	Second release
r2p0	Third release. Added support for 20 PMU counter configuration.
r2p1	First release

Changes in functionality that have an impact on the documentation also appear in E.1 Revisions on page 585.

3 Technical overview

All components in the Cortex®-A710 core are always present. These components are designed to make the Cortex®-A710 core a high-performance or balanced-performance core.

The main blocks include:

- The L1 instruction and L1 data memory systems
- The L2 memory system
- The register rename
- The instruction decode
- The instruction issue
- The execution pipeline
- The Memory Management Unit (MMU)
- The Trace unit and Trace buffer
- The Performance Monitoring Unit (PMU)
- The Activity Monitors Unit (AMU)
- The Generic Interrupt Controller (GIC) CPU interface

The Cortex®-A710 core interfaces with the DSU-110 through the CPU bridge.

The Cortex®-A710 core implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Armv8-A architectures up to Arm®v8.5-A. The programmers model and the architecture features implemented, such as the Generic Timer, are compliant with the standards in 2.4 Supported standards and specifications on page 25.

3.1 Core components

The Cortex®-A710 core includes components designed to make it a high-performance, low-power, and constrained area product. The Cortex®-A710 core includes a CPU bridge that connects the core to the $DynamIQ^{\text{TM}}$ Shared Unit-110 (DSU-110). The DSU-110 connects the core to an external memory system and the rest of the System on Chip (SoC).

The following figure shows the Cortex®-A710 core components.

Figure 3-1: Cortex®-A710 core components

L1 instruction memory system

The L1 instruction memory system fetches instructions from the instruction cache and delivers the instruction stream to the instruction decode unit.

The L1 instruction memory system includes:

- A 32KB or 64KB, 4-way set associative L1 instruction cache with 64-byte cache lines.
- A fully associative L1 instruction *Translation Lookaside Buffer* (TLB) with native support for 4KB, 16KB, 64KB, and 2MB page sizes.
- A 1536-entry, 4-way skewed associative *LO Macro-OP* (MOP) cache, which contains decoded and optimized instructions for higher performance.
- A dynamic branch predictor.

Instruction decode

The instruction decode unit decodes AArch32 and AArch64 instructions into internal format.

Register rename

The register rename unit performs register renaming to facilitate out-of-order execution and dispatches decoded instructions to various issue queues.

Instruction issue

The instruction issue unit controls when the decoded instructions are dispatched to the execution pipelines. It includes issue queues for storing instructions pending dispatch to execution pipelines.

Integer execute

The integer execution pipeline is part of the overall execution pipeline and includes the integer execute unit that performs arithmetic and logical data processing operations.

Vector execute

The vector execute unit is part of the execution pipeline and performs Advanced SIMD and floating-point operations (FPU), executes the *Scalable Vector Extension* (SVE) and *Scalable Vector Extension* 2 (SVE2) instructions, and can optionally execute the cryptographic instructions (Crypto).

Advanced SIMD and floating-point support

Advanced SIMD is a media and signal processing architecture that adds instructions primarily for audio, video, 3D graphics, image, and speech processing. The floating-point architecture provides support for single-precision and double-precision floating-point operations.

Cryptographic Extension

The Cryptographic Extension is optional in Cortex®-A710 cores. The Cryptographic Extension adds new instructions to the Advanced SIMD and the *Scalable Vector Extension* (SVE) instruction sets that accelerate:

- Advanced Encryption Standard (AES) encryption and decryption.
- The Secure Hash Algorithm (SHA) functions SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.
- Army8.2-SM SM3 hash function and SM4 encryption and decryption instructions.
- Finite field arithmetic that is used in algorithms such as Galois/Counter Mode and Elliptic Curve Cryptography.

The optional Cryptographic Extension is not included in the base product. Arm supplies the Cryptographic Extension only under an additional license to the Cortex®-A710 core license.

Scalable Vector Extension

The Scalable Vector Extension (SVE) is an extension to the Armv8-A architecture.

SVE is defined for the AArch64 Execution state only.

It complements but does not replace AArch64 Advanced SIMD and floating-point functionality.

The Advanced SIMD architecture, its associated implementations, and supporting software, are also referred to as NEON™ technology.

L1 data memory system

The L1 data memory system executes load and store instructions and encompasses the L1 data side memory system. It also services memory coherency requests.

The L1 data memory system includes:

- A 32KB or 64KB, 4-way set associative cache with 64-byte cache lines.
- A fully associative L1 data TLB with native support for 4KB, 16KB and 64KB page sizes and 2MB and 512MB block sizes.

Memory Management Unit

The Memory Management Unit (MMU) provides fine-grained memory system control through a set of virtual-to-physical address mappings and memory attributes that are held in translation tables.

These are saved into the TLB when an address is translated. The TLB entries include global and Address Space IDentifiers (ASIDs) to prevent context switch TLB invalidations. They also include Virtual Machine IDentifiers (VMIDs) to prevent TLB invalidations on virtual machine switches by the hypervisor.

L2 memory system

The L2 memory system includes the L2 cache. The L2 cache is private to the core and is 8-way set associative. You can configure its RAM size to be 256KB or 512KB. The L2 memory system is connected to the DSU-110 through an asynchronous CPU bridge.

Embedded Trace Extension and Trace Buffer Extension

The Cortex®-A710 core supports a range of debug, test, and trace options including a trace unit and trace buffer.

The Cortex®-A710 core also includes a ROM table that contains a list of components in the system. Debuggers can use the ROM table to determine which CoreSight components are implemented.

All the debug and trace components of the Cortex®-A710 core are described in this manual. The Arm® Cortex®-A710 Core Configuration and Integration Manual provides information about the Embedded Logic Analyzer (ELA).

Performance Monitoring Unit

The *Performance Monitoring Unit* (PMU) provides six or 20, depending on your configuration, performance monitors that can be configured to gather statistics on the operation of each core and the memory system. The information can be used for debug and code profiling.

GIC CPU interface

The GIC CPU interface, when integrated with an external distributor component, is a resource for supporting and managing interrupts in a cluster system.

CPU bridge

In a cluster, there is one CPU bridge between each Cortex®-A710 core and the DSU-110.

The CPU bridge controls buffering and synchronization between the core and the DSU-110.

The CPU bridge is asynchronous to allow different frequency, power, and area implementation points for each core. You can configure the CPU bridge to run synchronously without affecting the other interfaces such as debug and trace which are always asynchronous.

Related information

- 6 Memory management on page 49
- 7 L1 instruction memory system on page 58
- 8 L1 data memory system on page 62
- 9 L2 memory system on page 67
- 12 GIC CPU interface on page 93
- 17 Performance Monitors Extension support on page 107
- 18 Embedded Trace Extension support on page 120

3.2 Interfaces

The DSU-110 manages all Cortex®-A710 core external interfaces to the System on Chip (SoC).

See Technical overview in the Arm[®] DynamlQ $^{\text{M}}$ Shared Unit-110 Technical Reference Manual for detailed information on these interfaces.

3.3 Programmers model

The Cortex®-A710 core implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Armv8-A architectures up to Arm®v8.5-A. The Cortex®-A710 core supports the AArch32 Execution state at ELO and the AArch64 Execution state at all Exception levels, ELO to EL3.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about the programmers model.

Related information

2.4 Supported standards and specifications on page 25

4 Clocks and resets

To provide dynamic power savings, the Cortex®-A710 core supports hierarchical clock gating. It also supports Warm and Cold resets.

Each Cortex®-A710 core has a single clock domain and receives a single clock input. This clock input is gated by an architectural clock gate in the CPU bridge.

In addition, the Cortex®-A710 core implements extensive clock gating that includes:

- Regional clock gates to various blocks that can gate off portions of the clock tree
- Local clock gates that can gate off individual registers or banks of registers

The Cortex®-A710 core receives the following reset signals from the *DynamlQ*[™] *Shared Unit-110* (DSU-110) side of the CPU bridge:

- A Warm reset for all registers in the core except for:
 - Some parts of Debug logic
 - Some parts of trace unit logic
 - Reliability, Availability, and Serviceability (RAS) logic
- A Cold reset for the logic in the core, including the debug logic, trace logic, and RAS logic.

For a complete description of the clock gating and reset scheme of the core, see the following sections in the $Arm^{\mathbb{R}}$ Dynaml $Q^{\mathbb{M}}$ Shared Unit-110 Technical Reference Manual:

- Clocks and resets
- Power and reset control with Power Policy Units

5 Power management

The Cortex®-A710 core provides mechanisms to control both dynamic and static power dissipation.

The dynamic power management includes the following features:

- Hierarchical clock gating
- Per-core Dynamic Voltage and Frequency Scaling (DVFS)

The static power management includes the following features:

- Powerdown
- Dynamic retention, a low-power mode that retains the register and RAM state

5.1 Voltage and power domains

The DynamIQ™ Shared Unit-110 (DSU-110) Power Policy Units (PPUs) control power management for the Cortex®-A710 core. The core supports one power domain, PDCORE, and one system power domain, PDCLUSTER. Similarly, it supports one core voltage domain, VCORE, and one cluster system voltage domain, VCLUSTER. The power domains and voltage domains have the same boundaries.

The PDCORE power domain contains all Cortex®-A710 core logic and part of the core asynchronous bridge that belongs to the VCORE domain. The PDCLUSTER power domain contains the part of the CPU bridge that belongs to the VCLUSTER domain.

The following figure shows the Cortex®-A710 core power domain and voltage domain. It also shows the cluster power domain and voltage domain that cover the system side of the CPU bridge.

Figure 5-1: Cortex®-A710 core voltage domains and power domains

You can tie the VCORE and VCLUSTER voltage domains to the same supply if either:

- The core is configured to run synchronously with the DSU-110 sharing the same clock.
- The core is not required to support Dynamic Voltage and Frequency Scaling (DVFS).

In a cluster with multiple Cortex®-A710 cores, there is one PDCORE<n> power domain per core, where n is the core instance number. If a core is not present, then the corresponding power domain is not present.

This diagram shows the power domains for an example Cortex®-A710 configuration with a four-core cluster:

Figure 5-2: Core power domains in a cluster with four Cortex®-A710 cores

Clamping cells between power domains are inferred through power intent files (UPF) rather than instantiated in the RTL. See *Power management* in the *Arm® Cortex®-A710 Core Configuration and Integration Manual* for more information.

The Arm® Cortex®-A710 Core Configuration and Integration Manual is a confidential document that is available with the appropriate product license.

For detailed information on the DSU-110 cluster power domains and voltage domains, see *Power management* in the Arm® DynamlQ $^{\text{m}}$ Shared Unit-110 Technical Reference Manual.

5.2 Architectural clock gating modes

The WFI and WFE instructions put the core into a low-power mode. These instructions disable the clock at the top of the clock tree. The core remains fully powered and retains the state.

5.2.1 Wait for Interrupt and Wait for Event

Wait for Interrupt (WFI) and Wait for Event (WFE) are features that put the core in a low-power state by disabling most of the core clocks, while keeping the core powered up. When the core is in WFI or WFE state, the input clock is gated externally to the core at the CPU bridge.

There is a small amount of dynamic power used by the logic that is required to wake up the core from WFI or WFE low-power state. Other than this power use, the power that is drawn is reduced to static leakage current only.

When the core executes the WFI or WFE instruction, it waits for all instructions in the core, including explicit memory accesses, to retire before it enters a low-power state. The WFI and WFE instructions also ensure that store instructions have updated the cache or have been issued to the L3 memory system.

Executing the wfE instruction when the event register is set does not cause entry into low-power state, but clears the event register.

The core exits the WFI or WFE state when one of the following events occurs:

- The core detects a reset.
- The core detects one of the architecturally defined WFI or WFE wakeup events.

WFI and WFE wakeup events can include physical and virtual interrupts.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about entering low-power state and wakeup events.

5.2.2 Low-power state behavior considerations

You must consider how certain events affect the *Wait for Interrupt* (WFI) and *Wait for Event* (WFE) low-power state behavior of the Cortex®-A710 core.

While the core is in WFI or WFE state, the clocks in the core are temporarily enabled when any of the following events are detected:

- A system snoop request that must be serviced by the core L1 data cache or the L2 cache
- A cache or *Translation Lookaside Buffer* (TLB) maintenance operation that must be serviced by the core L1 instruction cache, L1 data cache, L2 cache, or TLB
- An access on the Utility bus interface
- A Generic Interrupt Controller (GIC) CPU access or debug access through the Advanced Peripheral Bus (APB) interface

The core does not exit WFI or WFE state when the clocks are temporarily enabled.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about WFI and WFE.

5.3 Power control

The DSU-110 Power Policy Units (PPUs) control all core and cluster power mode transitions.

Each of the cores have their own individual PPU for controlling their respective core power domain. For example there is a PPU for PDCOREO and a PPU for PDCOREO.

In addition, there is a PPU for the cluster.

The PPUs decide and request any change in power mode. The Cortex®-A710 core then performs any actions necessary to reach the requested power mode. For example, the core might gate clocks, clean caches, or disable coherency before accepting the request.

See Power management and Power and reset control with Power Policy Units in the Arm® DynamlQ[™] Shared Unit-110 Technical Reference Manual for more information about the PPUs for the cluster and the cores.

Related information

B.1.25 IMP_CPUPPMCR_EL3, CPU Power Performance Management Control Register on page 194

C.2.1 CPUPPMCR, Power Performance Management Register on page 449

5.4 Core power modes

The Cortex®-A710 core power domain has a defined set of power modes and corresponding legal transitions between these modes. The power mode of each core can be independent of other cores in a cluster.

The Power Policy Unit (PPU) of a core manages at the cluster level the transitions between the power modes for that core. See Power management in the Arm® DynamlQ $^{\text{M}}$ Shared Unit-110 Technical Reference Manual for more information.

The following table shows the supported Cortex®-A710 core power modes.

Power modes that are not shown in the following table are not supported and must not occur. Deviating from the legal power modes can lead to **UNPREDICTABLE** results. You must comply with the dynamic power management and powerup and powerdown sequences described in 5.5 Cortex-A710 core powerup and powerdown sequence on page 45.

Table 5-1: Cortex®-A710 core power modes

Power mode	Short name	Power state
On	ON	The core is powered up and active.

Power mode	Short name	Power state
Full retention	FULL_RET	The core is in retention. In this mode, only power that is required to retain register and RAM state is available. The core is not operational.
		A core must be in Wait for Interrupt (WFI) or Wait for Event (WFE) low-power state before it enters this mode.
Off	OFF	The core is powered down.
Emulated Off	OFF_EMU	Emulated off mode permits you to debug the powerup and powerdown cycle without changing the software.
		In this mode, the core powerdown is normal, except:
		The clock is not gated and power is not removed when the core is powered down.
		Only a Warm reset is asserted. The debug logic is preserved in the core and remains accessible by the debugger.
Debug recovery	DBG_RECOV	The RAM and logic are powered up.
recovery		This mode is for applying a Warm reset to the cluster, while preserving memory and RAS registers for debug purposes. Both cache and RAS state are preserved when transitioning from DBG_RECOV to ON.
		Caution: This mode must not be used during normal system operation.
Warm reset	WARM_RST	A Warm reset resets all state except for the trace logic and the debug and RAS registers.

The following figure shows the supported modes for the Cortex®-A710 core power domain and the legal transitions between them.

Power management

ON WARM_RST

OFF_EMU

DBG_RECOV
From any mode

Figure 5-3: Cortex®-A710 core power mode transitions

Related information

- 5.2 Architectural clock gating modes on page 39
- 5.4.4 Full retention mode on page 44
- 5.2.1 Wait for Interrupt and Wait for Event on page 39

5.4.1 On mode

In the On power mode, the Cortex®-A710 core is on and fully operational.

The core can be initialized into the On mode. When a transition to the On mode is completed, all caches are accessible and coherent. Other than the normal architectural steps to enable caches, no additional software configuration is required.

5.4.2 Off mode

In the Off power mode, power is removed completely from the core and no state is retained.

In Off mode, all core logic and RAMs are off. The domain is inoperable and all core state is lost. The L1 and L2 caches are disabled, cleaned and invalidated, and the core is removed from coherency automatically on transition to Off mode.

Power management

A Cold reset can reset the core in this mode.

An attempted debug access when the core domain is off returns an error response on the internal debug interface, indicating that the core is not available.

5.4.3 Emulated off mode

In Emulated off mode, all core domain logic and RAMs are kept on. All Debug registers must retain their state and be accessible from the external debug interface. All other functional interfaces behave as if the core were in Off mode.

5.4.4 Full retention mode

Full retention mode is a dynamic retention mode that is controlled using the *Power Policy Unit* (PPU). On wakeup, full power to the core can be restored and execution can continue.

In Full retention mode, only power that is required to retain register and RAM state is available. The core is in retention state and is non-operational.

The core enters Full retention mode when all of the following conditions are met:

- The retention timer has expired. For more information on setting the retention timer, see B.1.18 IMP CPUPWRCTLR EL1, CPU Power Control Register on page 180.
- The core is in Wait for Interrupt (WFI) or Wait for Event (WFE) low-power state.
- The core clock is not temporarily enabled for any of the following reasons:
 - L1 snoops or L2 snoops
 - Cache or Translation Lookaside Buffer (TLB) maintenance operations
 - Debug or Generic Interrupt Controller (GIC) access

The core exits Full retention mode when it detects any of the following events:

- A WFI or WFE wakeup event, as defined in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.
- An event that requires the core clock to be temporarily enabled without exiting the WFI or WFE low-power state. For example:
 - L1 snoops or L2 snoops
 - Cache or TLB maintenance operations
 - Debug access from the DebugBlock of the DynamlQ[™] Shared Unit-110 (DSU)
 - GIC access

5.4.5 Debug recovery mode

Debug recovery mode supports debug of external watchdog-triggered reset events, such as watchdog timeout.

By default, the core invalidates its caches when it transitions from Off to On mode. Using Debug recovery mode allows the L1 cache and L2 cache contents that were present before the reset to be observable after the reset. The contents of the caches are retained and are not altered on the transition back to the On mode.

In addition to preserving the cache contents, Debug recovery supports preserving the *Reliability*, *Availability*, *and Serviceability* (RAS) state. When in Debug recovery mode, a DynamlQ[™]-110 cluster-wide Warm reset must be applied externally. The RAS and cache state are preserved when the core is transitioned to the On mode.

Debug recovery is strictly for debug purposes. It must not be used for functional purposes, because correct operation of the caches is not guaranteed when entering this mode.

Debug recovery mode can occur at any time with no guarantee of the state of the core. A request of this type is accepted immediately, therefore its effects on the core, the DynamlQ $^{\text{\tiny M}}$ cluster, or the wider system are **UNPREDICTABLE**, and a wider system reset might be required. In particular, any outstanding memory system transactions at the time of the reset might complete after the reset. The core is not expecting these transactions to complete after a reset, and might cause a system deadlock.

If the system sends a snoop to the DynamlQ[™] cluster during Debug recovery mode, depending on the cluster state:

- The snoop might get a response and disturb the contents of the caches
- The snoop might not get a response and cause a system deadlock

5.4.6 Warm reset mode

A Warm reset resets all state except for the trace logic, debug registers, and *Reliability*, *Availability*, and *Serviceability* (RAS) registers.

A Warm reset is applied to the Cortex®-A710 core when the core receives a Warm reset signal from the *DynamlQ*™ *Shared Unit-110* (DSU-110) side of the CPU bridge.

The Cortex®-A710 core implements the Arm®v8-A Reset Management Register, RMR_EL3. When the core runs in EL3, it requests a Warm reset if you set the RMR_EL3.RR bit to 1.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about RMR EL3.

5.5 Cortex®-A710 core powerup and powerdown sequence

There is no specific sequence to power up the Cortex®-A710 core . To power down the core, you must follow a specific sequence. There are no software steps required to bring a core into coherence after reset.

To powerdown the Cortex®-A710 core:

- 1. If required, save the state of the core to system memory to allow for retrieval of the core state during core powerup.
- 2. Disable interrupts to the core.
 - a. Disable the interrupt enable bits in the ICC_IGRPEN0_EL1 and ICC_IGRPEN1_EL1 registers.
 - b. Set the GIC distributor wake-up request for the core using the GICR_WAKER register.
 - c. Read the GICR_WAKER register to confirm that the ChildrenAsleep bit indicates that the interface is quiescent.
- 3. Disable the interrupt outputs from the RAS registers. Alternatively, re-direct the core RAS fault and error interrupt outputs to the system error manager. For more information, see 5.5.1 Managing RAS fault and error interrupts during the core powerdown on page 46.
- 4. Set the IMP_CPUPWRCTLR_EL1.CORE_PWRDN_EN bit to 1 to indicate to the power controller that a powerdown is requested.
- 5. Execute an ISB instruction.
- 6. Execute a wfi instruction. Once the wfi instruction is executed, the powerdown sequence cannot be interrupted.

After you have executed the wfi instruction, and subsequently received a powerdown request from the power controller, the hardware:

- Disables and cleans the core caches
- Removes the core from system coherency

When the IMP_CPUPWRCTLR_EL1.CORE_PWRDN_EN bit is set, executing a wfi instruction automatically masks all interrupts and wakeup events in the core. As a result, applying a reset is the only way to wake up the core from the *Wait for Interrupt* (WFI) state.

5.5.1 Managing RAS fault and error interrupts during the core powerdown

After the WFI instruction is executed, the power management architecture does not permit interrupting the core software.

Therefore, the core software cannot be interrupted to manage any RAS fault or error when either of the following is true:

Power management

- A RAS fault or error is detected before the core powerdown procedure executes the WFI
 instruction and the error has not been cleared.
- A RAS fault or error is detected after the core powerdown procedure executes the WFI instruction.

You must manage the status of the RAS fault and error interrupts to complete the core powerdown sequence. Any active RAS fault or error interrupt output from the core prevents the core from powering down, so that:

- The core is left powered ON, but the software remains inactive.
- All requests from the core PPU to power off the core are denied.
- A full cluster reset is the only mechanism available to restart the core software.

If the RAS fault and error interrupt outputs are disabled before the core powerdown procedure, and if the error detection and correction response is enabled, then the following is true:

- Correctable errors are corrected
- Deferrable errors are deferred as part of the automatic cache clean and invalidation procedures
- Error records for the correctable and deferrable errors are lost when the core is powered OFF
- If there is an uncorrectable error when the core is powering off, this error is not signaled to the system and might corrupt the system behavior

If preferable, you can disable the generation of RAS faults and error interrupts for correctable and deferrable errors while enabling the error interrupt for uncorrectable errors. However, the core error interrupt output must be re-routed to the system error manager before executing the WFI instruction in the core powerdown procedure. To do this, configure the ERxCTLR_EL1 register as follows:

- ERXCTLR EL1.CFI = 0
- ERXCTLR EL1.FI = 0
- ERXCTLR EL1.UI = 1

If an uncorrectable error occurs during the powerdown, the core remains powered ON and the software remains inactive. The system error manager is then responsible for resetting the entire cluster and the wider system that interacts with the core and cluster. To use this approach, the system must be designed to allow the core RAS error interrupt to re-route to the system error manager. As the core RAS registers are only accessible to software running on the core, the system error manager is unable to identify where the uncorrectable error occurred within the core.

5.6 Debug over powerdown

The Cortex®-A710 core supports debug over powerdown, which allows a debugger to retain its connection with the core even when powered down. This behavior enables debug to continue

through powerdown scenarios, rather than having to re-establish a connection each time the core is powered up.

The debug over powerdown logic is part of the DebugBlock in the $DynamlQ^{\mathbb{M}}$ Shared Unit-110 (DSU-110). The DebugBlock is external to the $DynamlQ^{\mathbb{M}}$ -110 cluster and must remain powered on during the debug over powerdown process.

See Debug in the Arm[®] DynamlQ[™] Shared Unit-110 Technical Reference Manual for more information.

6 Memory management

The Memory Management Unit (MMU) translates an input address to an output address.

This translation is based on address mapping and memory attribute information that is available in the Cortex®-A710 core internal registers and translation tables. The MMU also controls memory access permissions, memory ordering, and cache policies for each region of memory.

An address translation from an input address to an output address is described as a stage of address translation. The Cortex®-A710 core can perform:

- Stage 1 translations that translate an input Virtual Address (VA) to an output Physical Address (PA) or Intermediate Physical Address (IPA).
- Stage 2 translations that translate an input IPA to an output PA.
- Combined stage 1 and stage 2 translations that translate an input VA to an IPA, and then translate that IPA to an output PA. The Cortex®-A710 core performs translation table walks for each stage of the translation.

In addition to translating an input address to an output address, a stage of address translation also defines the memory attributes of the output address. With a two-stage translation, the stage 2 translation can modify the attributes that the stage 1 translation defines. A stage of address translation can be disabled or bypassed, and cores can define memory attributes for disabled and bypassed stages of translation.

Each stage of address translation uses address translations and associated memory properties that are held in memory-mapped translation tables. Translation table entries can be cached into a *Translation Lookaside Buffer* (TLB). The translation table entries enable the MMU to provide fine-grained memory system control and to control the table walk hardware.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information on this feature.

6.1 Memory Management Unit components

The Cortex®-A710 Memory Management Unit (MMU) includes several Translation Lookaside Buffers (TLBs), an MMU Translation Cache (MMUTC), and a translation table prefetcher.

A TLB is a cache of recently executed page translations within the MMU. The Cortex®-A710 core implements a two-level TLB structure. The TLB stores all translation table sizes and is responsible for breaking these down into smaller tables when required for the L1 data or instruction TLB.

The following table describes the MMU components.

Table 6-1: MMU components

Component	Des	scription
L1 instruction TLB	•	Caches entries at the 4KB, 16KB, 64KB, or 2MB granularity of Virtual Address (VA) to Physical Address (PA) mapping only
	•	Fully associative
	•	48 entries
L1 data TLB	•	Caches entries at the 4KB, 16KB, 64KB, 2MB, or 512MB granularity of VA to PA mappings only
	•	Fully associative
	•	32 entries
L1 Trace Buffer Extension (TRBE) TLB	•	VA to PA translations of any page and block size
	•	2 entries
L2 TLB	•	Shared by instructions and data
	•	VA to PA mappings for 4KB, 16KB, 64KB, 2MB, 32MB, 512MB, and 1GB block sizes
	•	Intermediate Physical Address (IPA) to PA mappings for:
		 2MB and 1GB block sizes in a 4KB translation granule
		 32MB block size in a 16KB translation granule
		 512MB block size in a 64KB granule
	•	Intermediate PAs (IPAs) obtained during a translation table walk
	•	4-way set associative
	•	1024 entries
Translation table prefetcher	•	Detects access to contiguous translation tables and prefetches the next one
	•	Can be disabled in the ECTLR register

TLB entries contain a global indicator and an Address Space Identifier (ASID) to allow context switches without requiring the TLB to be invalidated.

TLB entries contain a *Virtual Machine IDentifier* (VMID) to allow virtual machine switches by the hypervisor without requiring the TLB to be invalidated.

A hit in the L1 instruction TLB provides a single **CLK** cycle access to the translation, and returns the PA to the instruction cache for comparison. It also checks the access permissions to signal an Instruction Abort.

A hit in the L1 data TLB provides a single **CLK** cycle access to the translation, and returns the PA to the data cache for comparison. It also checks the access permissions to signal a Data Abort.

A miss in the L1 data TLB or a hit in the L2 TLB has a 3-cycle penalty compared to a hit in the L1 data TLB. This penalty can be increased depending on the arbitration of pending requests.

6.2 Translation Lookaside Buffer entry content

Translation Lookaside Buffer (TLB) entries store the context information required to facilitate a match and avoid the need for a TLB clean on a context or virtual machine switch.

Each TLB entry contains:

- A Virtual Address (VA)
- A Physical Address (PA)
- A set of memory properties that includes type and access permissions

Each TLB entry is associated with either:

- A particular Address Space IDentifier (ASID)
- A global indicator

Each TLB entry also contains a field to store the *Virtual Machine IDentifier* (VMID) in the entry applicable to accesses from ELO and EL1. The VMID permits hypervisor virtual machine switches without requiring the TLB to be invalidated.

Related information

6.4 Translation table walks on page 52

6.3 Translation Lookaside Buffer match process

The Armv8-A architecture provides support for multiple *Virtual Address* (VA) spaces that are translated differently.

Each TLB entry is associated with a particular translation regime.

- EL3 in Secure state
- EL2 (or ELO in VHE mode) in Secure state
- EL1 or EL0 in Secure state
- EL1 or EL0 in Non-secure state

A TLB match entry occurs when the following conditions are met:

Memory management

- The VA bits[48:N], where N is log₂ of the block size for that translation that is stored in the TLB entry, matches the requested address.
- Entry translation regime matches the current translation regime.
- The ASID matches the current ASID held in the TTBR0_ELx or TTBR1_ELx register associated with the target translation regime, or the entry is marked global.
- The VMID matches the current VMID held in the VTTBR EL2 register.

The ASID and VMID matches are ignored when ASID and VMID are not relevant. ASID is relevant when the translation regime is:

- EL2 in Secure state with HCR EL2.E2H and HCR EL2.TGE set to 1
- EL1 or EL0 in Secure state
- EL1 or EL0 in Non-secure state

VMID is relevant for EL1 or EL0 in Non-secure state when HCR_EL2.E2H and HCR_EL2.TGE are not both set. It is also relevant in Secure state when SCR_EL3.EEL2 is 1.

6.4 Translation table walks

When the Cortex®-A710 core generates a memory access, the *Memory Management Unit* (MMU) searches for the requested *Virtual Address* (VA) in the *Translation Lookaside Buffers* (TLBs). If it is not present, then it is a miss and the MMU proceeds by looking up the translation table during a translation table walk.

When the Cortex®-A710 core generates a memory access, the MMU:

- 1. Performs a lookup for the requested VA, current Address Space IDentifier (ASID), current Virtual Machine IDentifier (VMID), and current translation regime in the relevant instruction or data L1 TLB.
- 2. If there is a miss in the relevant L1 TLB, the MMU performs a lookup in the L2 TLB for the requested VA, current ASID, current VMID, and translation regime.
- 3. If there is a miss in the L2 TLB, the MMU performs a hardware translation table walk.

Address translation is performed only when the MMU is enabled. They can also be disabled for a particular translation base register, in which case the MMU returns a translation fault.

You can program the MMU to make the accesses that are generated by translation table walks cacheable. This means that translation table entries can be cached in the L2 cache, the L3 cache, and external caches.

During a lookup or translation table walk, the access permission bits in the matching translation table entry determine whether the access is permitted. If the permission checks are violated, the MMU signals a permission fault. See the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile for more information.

The following figure shows the translation table walk process.

Figure 6-1: Translation table walks

In translation table walks the descriptor is fetched from the L2 memory system.

Related information

- 7 L1 instruction memory system on page 58
- 8 L1 data memory system on page 62
- 9 L2 memory system on page 67

6.5 Hardware management of the Access flag and dirty state

The core includes the option to perform hardware updates to the translation tables.

This feature is enabled in TCR_ELx (where x is 1-3) and VTCR_EL2. To support hardware management of dirty state, translation table descriptors include the *Dirty Bit Modifier* (DBM) field.

The Cortex®-A710 core supports hardware updates to the Access flag and to dirty state only when the translation tables are held in Inner Write-Back and Outer Write-Back Normal memory regions. If software requests a hardware update in a region that is not Inner Write-Back or Outer Write-Back Normal memory, then the Cortex®-A710 core returns an abort with the following encoding:

- ESR ELx.DFSC = 0b110001 for Data Aborts
- ESR_ELx.IFSC = 0b110001 for Instruction Aborts

6.6 Responses

Certain faults and aborts can cause an exception to be taken because of a memory access.

MMU responses

When one of the following operations is completed, the *Memory Management Unit* (MMU) generates a translation response to the requester:

• An L1 instruction or data Translation Lookaside Buffer (TLB) hit

- An L2 TLB hit.
- A translation table walk

The responses from the MMU contain the following information:

- The Physical Address (PA) that corresponds to the translation
- A set of permissions
- Secure or Non-secure state information
- All the information that is required to report aborts

MMU aborts

The MMU can detect faults that are related to address translation and can cause exceptions to be taken to the core. Faults can include address size faults, translation faults, access flag faults, and permission faults.

External aborts

External aborts occur in the memory system, and are different from aborts that the MMU detects. Normally, external memory aborts are rare. External aborts are caused by errors that are flagged by the external memory interfaces or are generated because of an uncorrected *Error Correcting Code* (ECC) error in the L1 data cache or L2 cache arrays.

External aborts are reported synchronously when they occur during translation table walks, data accesses due to all loads to Normal memory, all loads with acquire semantics and all AtomicLd, AtomicCAS, and AtomicSwap instructions. The address captured in the Fault Address Register (FAR) is the target address of the instruction that generated the synchronous abort. External aborts are reported asynchronously, then they occur for loads to Device memory without release semantics, stores to any memory type, and AtomicSt, Cache maintenance, TLBI, and IC instructions.

Cortex®-A710 takes a synchronous abort on a Normal memory ldrx that receives an non-EXOK response from CHI. The abort is asynchronous for Device memory ldrx. For strx, OK and EXOK responses are expected and do not cause aborts. NDErr and DErr responses for WriteNoSnp Excl=1 cause asynchronous aborts.

Misprogramming contiguous hints

A programmer might mis-program the translation tables so that:

- The block size being used to translate the address is larger than the size of the input address.
- The address range translated by a set of blocks that is marked as contiguous, by use of the contiguous bit, is larger than the size of the input address.

If there is this kind of mis-programming, the Cortex®-A710 core does not generate a translation fault.

Conflict aborts

The Cortex®-A710 core does not generate Conflict aborts.

When a TLB conflict is detected in the L1 TLB or L2 TLB, hardware automatically handles the conflict by invalidating the conflict entries.

6.7 Memory behavior and supported memory types

The Cortex®-A710 core supports memory types defined in the Armv8-A architecture.

Device memory types have the following attributes:

G - Gathering

The capability to gather and merge requests together into a single transaction

R - Reordering

The capability to reorder transactions

E - Early Write Acknowledgment

The capability to accept early acknowledgment of write transactions from the interconnect

In the following table, the n prefix means the capability is not allowed.

The following table shows how memory types are supported in the Cortex®-A710 core.

Table 6-2: Supported memory types

Memory attribute type	Shareability	Inner Cacheability	Outer Cacheability	Notes
Device nGnRnE	Outer Shareable	-	-	Treated as Device nGnRnE
Device nGnRE	Outer Shareable ¹	-	-	Treated as Device nGnRE
Device nGRE	Outer Shareable ¹	-	-	Treated as Device nGRE
Device GRE	Outer Shareable ¹	-	-	Treated as Device GRE
Normal	Outer Shareable ¹	Non-cacheable	Any	Treated as Non-cacheable
Normal	Outer Shareable ¹	Write-Through Cacheable	Any	Treated as Non-cacheable
Normal	Outer Shareable ¹	Write-Back Cacheable	Non- cacheable	Treated as Non-cacheable
Normal	Outer Shareable ¹	Write-Back Cacheable	Write- Through Cacheable	Treated as Non-cacheable

¹ Non-cacheable and Device are treated as Outer Shareable. Combinations of Non-cacheable and Write-Through are treated as Non-cacheable, and therefore are Outer Shareable.

Memory attribute type	Shareability	Inner Cacheability	Outer Cacheability	Notes
Normal	See Table 6-3: Shareability for Normal memory on page 56.	Write-Back Cacheable (any allocation hint)	Write-Back Cacheable No Allocate	Treated as Write-Back Read and Write Allocate but the outer cacheability propagated to the <i>DynamIQ™ Shared Unit-110</i> (DSU-110) is 0 (No Allocate)
Normal	See Table 6-3: Shareability for Normal memory on page 56.	Write-Back Cacheable (any allocation hint)	Write-Back Read or Write Allocate	Treated as Write-Back Read and Write Allocate but the outer cacheability propagated to the DSU-110 is 1, therefore upgraded to Write and Read Allocate

The following table shows how the shareability is treated for certain Normal memory.

Table 6-3: Shareability for Normal memory

Shareability	Treated as
Non-shareable	Non-shareable
Outer Shareable	Outer Shareable
Inner Shareable	Outer Shareable

6.8 Page-based hardware attributes

Page-Based Hardware Attributes (PBHA) is an optional, IMPLEMENTATION DEFINED feature.

It allows software to set up to four bits in the translation tables, which are then propagated though the memory system with transactions and can be used in the system to control system components. The meaning of the bits is specific to the system design.

For information on how to set and enable the PBHA bits in the translation tables, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture. When disabled, the PBHA value that is propagated on the bus is 0.

For memory accesses caused by a translation table walk, the AHTCR, ATTBCR, and AVTCR registers control the PBHA values.

PBHA combination between stage 1 and stage 2 on memory accesses

PBHA should always be considered as an attribute of the physical address.

When stage 1 and stage 2 are enabled:

- If both stage 1 PBHA and stage 2 PBHA are enabled, the final PBHA is stage 2 PBHA.
- If stage 1 PBHA is enabled and stage 2 PBHA is disabled, the final PBHA is stage 1 PBHA.
- If stage 1 PBHA is disabled and stage 2 PBHA is enabled, the final PBHA is stage 2 PBHA.
- If both stage 1 PBHA and stage 2 PBHA are disabled, the final PBHA is defined to 0.

Enable of PBHA has a granularity of 1 bit, so this property is applied independently on each PBHA bit.

Document ID: 101800_0201_07_en Issue: 07 Memory management

Mismatched aliases

If the same physical address is accessed through more than one virtual address mapping, and the PBHA bits are different in the mappings, then the results are **UNPREDICTABLE**. The PBHA value sent on the bus could be for either mapping.

7 L1 instruction memory system

The Cortex®-A710 L1 memory system is responsible for fetching instructions and predicting branches. It includes the L1 instruction cache, the L1 instruction *Translation Lookaside Buffer* (TLB), and the *Macro-operation* (MOP) cache.

The L1 instruction memory system provides an instruction stream to the decoder. To increase overall performance and reduce power consumption, the L1 instruction memory system uses dynamic branch prediction and instruction caching.

The following table shows the L1 instruction memory system features.

Table 7-1: L1 instruction memory system features

Feature	Description
L1 instruction cache	32KB or 64KB
	4-way set associative
	Virtually Indexed, Physically Tagged (VIPT) behaving as Physically Indexed, Physically Tagged (PIPT)
	Always protected with parity
Cache line length	64 bytes
Macro-operation (MOP) cache	1536 Macro-operations
	4-way skewed associative
	Virtually Indexed, Virtually Tagged (VIVT) behaving as Physically Indexed, Physically Tagged (PIPT)
	Level 0 instruction cache working in the fetch stages of the pipeline to improve throughput and latency
Cache policy	Pseudo-Least Recently Used (LRU) cache replacement policy

The L1 instruction TLB also resides in the L1 instruction memory system. However, it is part of the *Memory Management Unit* (MMU) and is described in 6 Memory management on page 49.

7.1 L1 instruction cache behavior

The L1 instruction cache is invalidated automatically at reset unless the core power mode is initialized to Debug Recovery.

In Debug Recovery mode, the L1 instruction cache is not functional.

L1 instruction cache disabled behavior

If the L1 instruction cache is disabled, then instruction fetches cannot access any of the instruction cache arrays, except for cache maintenance operations which can execute normally.

If the L1 instruction cache is disabled, then all instruction fetches to cacheable memory are treated as if they were non-cacheable. This treatment means that instruction fetches might not be coherent with caches in other cores, and software must take this into account.

No relationship between cache sets and *Physical Address* (PA) can be assumed. Arm recommends that cache maintenance operations by set/way are used only to invalidate the entire cache.

Related information

5.4.5 Debug recovery mode on page 44

7.2 L1 instruction cache Speculative memory accesses

Instruction fetches are Speculative and there can be several unresolved branches in the pipeline.

A branch instruction or exception in the code stream can cause a pipeline flush, discarding the currently fetched instructions. On instruction fetches, pages with Device memory type attributes are treated as Non-Cacheable Normal Memory.

Device memory pages must be marked with the translation table descriptor attribute bit *eXecute Never* (XN). The device and code address spaces must be separated in the physical memory map. This separation prevents Speculative fetches to read-sensitive devices when address translation is disabled.

If the L1 instruction cache is enabled and if the instruction fetches miss in the L1 instruction cache, then they can still look up in the L1 data cache. However, the lookup never causes an L1 data cache refill, regardless of the data cache enable status. The line is only allocated in the L2 cache, provided that the L1 instruction cache is enabled.

7.3 Program flow prediction

The Cortex®-A710 core contains program flow prediction hardware, also known as branch prediction. Branch prediction increases overall performance and reduces power consumption.

Program flow prediction is enabled when the *Memory Management Unit* (MMU) is enabled for the current exception level. If program flow prediction is disabled, then all taken branches incur a penalty that is associated with cleaning the pipeline. If program flow prediction is enabled, then it predicts whether a conditional or unconditional branch is to be taken, as follows:

- For conditional branches, it predicts whether the branch is to be taken and the address to which the branch goes, known as the branch target address.
- For unconditional branches, it only predicts the branch target address.

Program flow prediction hardware contains the following functionality:

- A Branch Target Buffer (BTB) holding the branch target address of previously observed taken branches
- A branch direction predictor that uses the previous branch history
- The return stack, a stack of nested subroutine return addresses
- A static branch predictor
- An indirect branch predictor

Predicted and non-predicted instructions

Unless otherwise specified, the following list applies to A64, A32, and T32 instructions. Program flow prediction hardware predicts all branch instructions, and includes:

- Conditional branches
- Unconditional branches
- Indirect branches that are associated with procedure call and return instructions
- Branches that switch between A32 and T32 states

Exception return branch instructions are not predicted.

T32 state conditional branches

A T32 unconditional branch instruction can be made conditional by inclusion in an *If-Then* (IT) block. It is then treated as a conditional branch.

Return stack

The return stack stores the address and instruction set state. This address is equal to the link register value stored in R14 in AArch32 state or X30 in AArch64 state.

In AArch64, any of the following instructions causes a return stack push:

- BL
- BLR
- BLRAA
- BLRAAX
- BLRAB
- BLRABZ

Any of the following instructions cause a return stack pop:

- RET
- RETAA
- RETAB

In AArch32, any of the following instructions causes a return stack push:

- BL r14
- BLX

• MOV pc, r14

Any of the following instructions cause a return stack pop:

- BX
- LDR pc, [r13], #imm
- LDM r13, {...pc}

The following instructions are not predicted:

- ERET
- ERETAA
- ERETAB

8 L1 data memory system

The Cortex®-A710 L1 data memory system is responsible for executing load and store instructions, as well as specific instructions such as atomics, cache maintenance operations, and memory tagging instructions. It includes the L1 data cache and the L1 data *Translation Lookaside Buffer* (TLB).

The L1 data memory system executes load and store instructions and services memory coherency requests.

The following table shows the L1 data memory system features.

Table 8-1: L1 data memory system features

Feature	Description			
L1 data cache	32KB or 64KB			
	4-way set associative			
	Virtually indexed, Physically Tagged (VIPT) behaving as Physically Indexed, Physically Tagged (PIPT)			
	Always protected with Error Correcting Code (ECC)			
Cache line length	64 bytes			
Cache policy	Pseudo-Least Recently Used (LRU) cache replacement policy			
Interface with integer execute pipeline and vector	3×64-bit read paths and 4×64-bit write paths for the integer execute pipeline			
execute	3×128-bit read paths and 2×128-bit write paths for the vector execute pipeline			

The L1 data TLB also resides in the L1 data memory system. However, it is part of the *Memory Management Unit* (MMU) and is described in 6 Memory management on page 49.

8.1 L1 data cache behavior

The L1 data cache is invalidated automatically at reset unless the core power mode is initialized to Debug recovery.

In Debug recovery mode, the L1 data cache is not functional.

There is no operation to invalidate the entire data cache. If software requires this function, then it must be constructed by iterating over the cache geometry and executing a series of individual invalidates by set/way instructions. DCCISW operations perform both a clean and invalidate of the target set/way. The values of HCR_EL2.SWIO have no effect.

L1 data cache disabled behavior

If the L1 data cache is disabled, then:

• A new line is not allocated in the L2 or L3 caches as a result of an instruction fetch.

- All load and store instructions to cacheable memory are treated as Non-cacheable.
- Data cache maintenance operations continue to execute normally.

The L1 data and L2 caches cannot be disabled independently. When a core disables the L1 data cache, cacheable memory accesses issued by that core are no longer cached in the L1 or L2 cache.

To maintain data coherency between multiple cores, the Cortex®-A710 core uses the *Modified Exclusive Shared Invalid* (MESI) protocol.

Related information

5.4.5 Debug recovery mode on page 44

8.2 Instruction implementation in the L1 data memory system

The Cortex®-A710 core supports the atomic instructions added in the Arm®v8.1-A architecture. Atomic instructions to Cacheable memory can be performed as either near atomics or far atomics, depending on where the cache line containing the data resides.

If an instruction hits in the L1 data cache, then the Cortex®-A710 core tries to perform it as a near atomic. Then, based on system behavior, the core can decide to perform it as a far atomic.

If the operation misses everywhere within the cluster and the interconnect supports far atomics, then the atomic is passed on to the interconnect to perform the operation. If the operation hits anywhere inside the cluster, or if an interconnect does not support atomics, then the L3 memory system performs the atomic operation. If the line is not already there, it allocates the line into the L3 cache.

Therefore if software prefers that the atomic is performed as a near atomic, then precede the atomic instruction with a PLDW OF PRFM PSTLIKEEP instruction. Alternatively, CPUECTLR can be programmed such that different types of atomic instructions attempt to execute as a near atomic. One cache fill is made on an atomic. If the cache line is lost before the atomic operation can be made, then it is sent as a far atomic.

The Cortex®-A710 core supports atomics to Device or Non-cacheable memory, however this relies on the interconnect also supporting atomics. If such an atomic instruction is executed when the interconnect does not support them, then it results in an abort.

8.3 Internal exclusive monitor

The Cortex®-A710 core includes an internal exclusive monitor with a 2-state, open and exclusive state machine that manages Load-Exclusive and Store-Exclusive accesses and Clear-Exclusive (CLREX) instructions.

You can use these instructions to construct semaphores, ensuring synchronization between different processes running on the core, and also between different cores that are using the same coherent memory locations for the semaphore. A Load-Exclusive instruction tags a small block of memory for exclusive access. CTR_ELO defines the size of the tagged blocks as 16 words, one cache line.

A load/store exclusive instruction is any of the following:

- In the A32 and T32 instruction sets, any instruction that has a mnemonic starting with LDREX, STREX, LDAEX, OR STLEX.
- In the A64 instruction set, any instruction that has a mnemonic starting with LDX, LDAX, STX, Or STLX.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information on these instructions.

8.4 Data prefetching

Data prefetching can boost execution performance by fetching data before it is needed.

Preload instructions

The Cortex®-A710 core supports the AArch64 prefetch memory instructions, PRFM, the AArch32 Prefetch Data, PLD, and the AArch32 Preload Data With Intent To Write, PLDW, instructions.

These instructions signal to the memory system that memory accesses from a specified address are likely to occur soon. The memory system takes actions that aim to reduce the latency of memory accesses when they occur.

PRFM instructions perform a lookup in the cache. If they miss and are to a cacheable address, then a linefill starts. However, a PRFM instruction retires when its linefill is started, and it does not wait until the linefill is complete.

The *Preload Instruction* (PLI) memory system hint performs preloading in the L2 cache for cacheable accesses if they miss in the L2 cache. Instruction preloading is performed in the background.

For more information about prefetch memory and preloading caches, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Data prefetching and monitoring

The load/store unit includes a hardware prefetcher that is responsible for generating prefetches targeting both the L1 and the L2 caches. The load side prefetcher uses the *Virtual Address* (VA) to prefetch to both the L1 and L2 caches. The store side prefetcher uses the *Physical Address* (PA), and only prefetches to the L2 cache.

The B.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register on page 165 allows control over the prefetcher.

Data cache zero

In the Cortex®-A710 core, the *Data Cache Zero by Virtual Address* (DC ZVA) instruction enables a block of 64 bytes in memory, aligned to 64 bytes in size, to be set to zero.

For more information, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

8.5 Write streaming mode

The Cortex®-A710 core supports write streaming mode, sometimes referred to as read allocate mode, both for the L1 and the L2 cache.

A cache line is allocated to the L1 or L2 cache on either a read miss or a write miss. However, writing large blocks of data can pollute the cache with unnecessary data. It can also waste power and performance when a linefill is performed only to discard the linefill data because the entire line was subsequently written by the memset (). In some situations, cache line allocation on writes is not required. For example, when executing the C standard library memset () function to clear a large block of memory to a known value.

To prevent unnecessary cache line allocation, the *Bus Interface Unit* (BIU) can detect when the core has written a full cache line before the linefill completes. If this situation is detected on a configurable number of consecutive linefills, then it switches into write streaming mode.

When in write streaming mode, load operations behave as normal, and can still cause linefills. Writes still lookup in the cache, but if they miss then they write out to the L2 or L3 cache rather than starting a linefill.

More than the specified number of linefills might be observed on the master interface, before the BIU switches to write streaming mode.

The BIU continues in write streaming mode until either:

- It detects a cacheable write burst that is not a full cache line.
- There is a load operation from the same line that is being written to the L2 or the L3 cache.

When a Cortex®-A710 core has switched to write streaming mode, the BIU continues to monitor the bus traffic. It signals to the L2 or L3 cache to go into write streaming mode when it observes a further number of full cache line writes.

The write streaming threshold defines the number of consecutive cache lines that are fully written without being read before store operations stop causing cache allocations. You can configure the write streaming threshold for each cache:

- IMP CPUECTLR EL1.L1WSCTL configures the L1 write streaming mode threshold.
- IMP_CPUECTLR_EL1.L2WSCTL configures the L2 write streaming mode threshold.
- IMP_CPUECTLR_EL1.L3WSCTL configures the L3 write streaming mode threshold.

Related information

B.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register on page 165

9 L2 memory system

The Cortex®-A710 L2 memory system connects the core with the *DynamIQ*™ *Shared Unit-110* (DSU-110) through the CPU bridge. It includes the L2 *Translation Lookaside Buffer* (TLB) and private L2 cache.

The L2 cache is unified and private to each Cortex®-A710 core in a cluster.

The following table shows the L2 memory system features.

Table 9-1: L2 memory system features

Feature	Туре
L2 cache	256KB or 512KB
	8-way set associative, 2 banks
	Physically Indexed, Physically Tagged (PIPT)
	Always protected with Error Correcting Code (ECC)
Cache line length	64 bytes
Cache policy	Dynamic biased cache replacement policy
Interface with the DSU-110	One CHI Issue E compliant interface with 256-bit read and write DAT channel widths

9.1 L2 cache

The integrated L2 cache handles both instruction and data requests from the instruction and data side, as well as translation table walk requests.

The L1 instruction cache and L2 cache are weakly inclusive. Instruction fetches that miss in the L1 instruction cache and L2 cache allocate both caches, but the invalidation of the L2 cache does not cause back-invalidates of the L1 instruction cache. The L1 data cache and L2 cache are strictly inclusive. Any data contained in the L1 data cache is also present in the L2 cache. Victimization of L2 data can cause invalidations of the L1 data cache.

The L2 cache is invalidated automatically at reset unless the core power mode is initialized to Debug Recovery.

Related information

5.4.5 Debug recovery mode on page 44

9.2 Support for memory types

The Cortex®-A710 core simplifies coherency logic by downgrading some memory types.

Memory that is marked as both Inner Write-Back Cacheable and Outer Write-Back Cacheable is cached in the L1 data cache and the L2 cache.

Memory that is marked as Inner Write-Through is downgraded to Non-cacheable.

Memory that is marked Outer Write-Through or Outer Non-cacheable is downgraded to Non-cacheable, even if the inner attributes are Write-Back Cacheable.

The additional attribute hints are used as follows:

Allocation hint

Allocation hints help to determine the rules of allocation of newly fetched lines in the system.

Transient hint

All cacheable reads and writes allocate into the L1 cache and thus the L2 cache due to inclusivity.

An allocating read to the L1 data cache that has the transient bit set is allocated in the L1 cache. Such reads are marked as most likely to be evicted, according to the L1 eviction policy. Transient lines evicted from the L2 cache do not allocate downstream caches.

9.3 Transaction capabilities

The CHI Issue E interface between the Cortex®-A710 L2 memory system and the *DynamIQ*™ *Shared Unit-110* (DSU-110) provides transaction capabilities for the core.

The following table shows the maximum possible values for read, write, *Distributed Virtual Memory* (DVM) issuing, and snoop capabilities of the Cortex®-A710 L2 cache.

Table 9-2: Cortex®-A710 transaction capabilities

Attribute	Maximum value	Description
Write issuing capability 46, 54, or 60		This is the maximum number of outstanding write transactions.
		It depends on the configured Transaction Queue (TQ) size: 48, 56, or 62.
Read issuing capability	46, 54, or 60	This is the maximum number of outstanding read transactions.
		It depends on the configured TQ size: 48, 56, or 62.
Snoop acceptance capability	29, 33, or 36	This is the maximum number of outstanding snoops accepted.
		It depends on the configured TQ size: 48, 56, or 62.
DVM issuing capability	46, 54, or 60	This is the maximum number of outstanding DVM operation transactions.
		It depends on the configured TQ size: 48, 56, or 62.

10 Direct access to internal memory

The Cortex®-A710 core provides a mechanism to read the internal memory that the L1 and L2 caches and TLB structures use, through **IMPLEMENTATION DEFINED** system registers. This functionality can be useful when investigating issues where the coherency between the data in the cache and data in system memory is broken.

It is not possible to update the contents of the caches or TLB structures.

Direct access to internal memory is available only in EL3. In all other modes, executing these instructions results in an Undefined Instruction exception. There are read-only (RO) registers used to access the contents of the internal memory. The internal memory is selected by programming the **IMPLEMENTATION DEFINED** RAMINDEX register. The following table shows the registers that are used to read the data.

Table 10-1: System registers used to access internal memory

Register name	Function	Access	Operation	Rd Data
IMP_DDATA0_EL3	Data Register 0	RO	MRS <xd>, S3_6_c15_c1_0</xd>	Data
IMP_DDATA1_EL3	Data Register 1	RO	MRS <xd>, S3_6_c15_c1_1</xd>	Data
IMP_DDATA2_EL3	Data Register 1	RO	MRS <xd>, S3_6_c15_c1_2</xd>	Data
IMP_IDATA0_EL3	Instruction Register 0	RO	MRS <xd>, S3_6_c15_c0_0</xd>	Data
IMP_IDATA1_EL3	Instruction Register 1	RO	MRS <xd>, S3_6_c15_c0_1</xd>	Data
IMP_IDATA2_EL3	Instruction Register 2	RO	MRS <xd>, S3_6_c15_c0_2</xd>	Data

10.1 L1 cache encodings

Both the L1 data and instruction caches are 4-way set associative.

The size of the configured cache determines the number of sets in each way. The encoding that is used to locate the cache data entry for tag and data memory is set in x_n in the appropriate sys instruction. It is similar for both the tag and data RAM access.

The following tables show the encodings required for locating and selecting a given cache line.

Table 10-2: Cortex®-A710 L1 instruction cache tag location encoding for 32KB

Bit field of Xn	Description
[31:24]	RAMID = 0x00
[23:20]	Reserved
[19:18]	Way
[17:13]	Reserved

Bit field of Xn	Description
[12:6]	Virtual address [12:6]
[5:0]	Reserved

Table 10-3: Cortex®-A710 L1 instruction cache tag location encoding for 64KB

Bit field of Xn	Description
[31:24]	RAMID = 0x00
[23:20]	Reserved
[19:18]	Way
[17:14]	Reserved
[13:6]	Virtual address [13:6]
[5:0]	Reserved

Table 10-4: Cortex®-A710 L1 instruction cache data location encoding for 32KB

Bit field of Xn	Description
[31:24]	RAMID = 0x01
[23:20]	Reserved
[19:18]	Way
[17:13]	Reserved
[12:3]	Virtual address [12:3]
[2:0]	Reserved

Table 10-5: Cortex®-A710 L1 instruction cache data location encoding for 64KB

Bit field of Xn	Description
[31:24]	RAMID = 0x01
[23:20]	Reserved
[19:18]	Way
[17:14]	Reserved
[13:3]	Virtual address [13:3]
[2:0]	Reserved

Table 10-6: Cortex®-A710 L1 BTB data location encoding

Bit field of Xn	Description
[31:24]	RAMID = 0x02
[23:16]	Reserved
[15:4]	Index [11:0]
[3:0]	Reserved

Table 10-7: Cortex®-A710 L1 GHB data location encoding

Bit field of Xn	Description
[31:24]	RAMID = 0x03
[23:15]	Reserved

Bit field of Xn	Description
[14:5]	Index [9:0]
[4:0]	Reserved

Table 10-8: Cortex®-A710 L1 instruction TLB data location encoding

Bit field of Xn	Description
[31:24]	RAMID = 0x04
[23:8]	Reserved
[7:0]	TLB entry (0-47)

Table 10-9: Cortex®-A710 BIM data location encoding

Bit field of Xn	Description
[31:24]	RAMID = 0x05
[23:14]	Reserved
[13:4]	Index [9:0]
[3:0]	Reserved

Table 10-10: Cortex®-A710 LO Macro-operation cache data location encoding

Bit field of Xn	Description
[31:24]	RAMID = 0x06
[23:10]	Reserved
[9:0]	Index [9:0]

Table 10-11: Cortex®-A710 L1 data cache tag location encoding for 32KB

Bit field of Xn	Description
[31:24]	RAMID = 0x08
[23:20]	Reserved
[19:18]	Way
[17:16]	Сору:
	0ь00
	Tag RAM associated with Pipe 0
	0b01
	Tag RAM associated with Pipe 1
	0b10
	Tag RAM associated with Pipe 2
	0b11
	Reserved
[15:13]	Reserved
[12:7]	Physical address [12:7]
[5:0]	Reserved

Table 10-12: Cortex®-A710 L1 data cache tag location encoding for 64KB

Bit field of Xn	Description
[31:24]	RAMID = 0x08
[23:20]	Reserved
[19:18]	Way
[17:16]	Сору:
	0ь00
	Tag RAM associated with Pipe 0
	0ь01
	Tag RAM associated with Pipe 1
	0b10
	Tag RAM associated with Pipe 2
	0b11
	Reserved
[15:14]	Reserved
[13:6]	Physical address [13:6]
[5:0]	Reserved

Table 10-13: Cortex®-A710 L1 data cache data location encoding for 32KB

Bit field of Xn	Description
[31:24]	RAMID = 0x09
[23:20]	Reserved
[19:18]	Way
[17:16]	BankSel
[15:13]	Unused
[12:6]	Physical address [12:6]
[5:0]	Reserved

Table 10-14: Cortex®-A710 L1 data cache data location encoding for 64KB

Bit field of Xn	Description
[31:24]	RAMID = 0x09
[23:20]	Reserved
[19:18]	Way
[17:16]	BankSel
[15:14]	Unused
[13:6]	Physical address [13:6]
[5:0]	Reserved

Table 10-15: Cortex®-A710 L1 data TLB location encoding

Bit field of Xn	Description
[31:24]	RAMID = 0x0A
[23:6]	Reserved

Bit field of Xn	Description
[5:0]	TLB Entry (0-47)

10.1.1 L1 instruction tag RAM returned data

For each register, any access to the L1 instruction tag RAM returns data.

The following tables show the L1 instruction cache tag format for instruction registers.

Table 10-16: L1 instruction cache tag format for Instruction Register 0

Bit field	Description
[31]	Non-secure identifier for the physical address
[30:3]	Physical address [39:12]
[2:1]	Instruction state [1:0]
	0ь00
	Invalid
	0ь01
	T32
	0ь10
	A32
	0b11
	A64
[O]	Parity

Table 10-17: L1 instruction cache tag format for Instruction Register 1

Bit field	Description
[63:0]	0

Table 10-18: L1 instruction cache tag format for Instruction Register 2

Bit field	Description
[63:0]	0

10.1.2 L1 instruction data RAM returned data

For each register, any access to the L1 instruction data RAM returns data.

The following tables show the L1 instruction cache data format for instruction registers.

Table 10-19: L1 instruction cache data format for Instruction Register 0

Bit field	Description
[63:0]	Data [63:0]

Table 10-20: L1 instruction cache data format for Instruction Register 1

Bit field	Description
[63:9]	0
[8:0]	Data [72:64]

Table 10-21: L1 instruction cache data format for Instruction Register 2

Bit field	Description
[63:0]	0

10.1.3 L1 BTB RAM returned data

For each register, any access to the L1 Branch Target Buffer (BTB) RAM returns data.

The following tables show the L1 BTB cache format for instruction registers.

Table 10-22: L1 BTB cache format for Instruction Register 0

Bit field	Description
[63:0]	Data [63:0]

Table 10-23: L1 BTB cache format for Instruction Register 1

Bit field	Description
[63:28]	0
[27:0]	Data [91:64]

Table 10-24: L1 BTB cache format for Instruction Register 2

Bit field	Description
[63:0]	0

10.1.4 L1 GHB RAM returned data

For each register, any access to the L1 Global History Buffer (GHB) RAM returns data.

The following tables show the L1 GHB cache format for instruction registers.

Table 10-25: L1 GHB cache format for Instruction Register 0

Bit field	Description
[63:0]	Data [63:0]

Table 10-26: L1 GHB cache format for Instruction Register 1

Bit field	Description
[63:0]	Data [127:64]

Table 10-27: L1 GHB cache format for Instruction Register 2

Bit field	Description
[63:0]	0

10.1.5 L1 BIM RAM returned data

For each register, any access to the L1 Bimodal Predictor (BIM) RAM returns data.

The following tables show the L1 BIM cache format for instruction registers.

Table 10-28: L1 BIM cache format for Instruction Register 0

Bit field	Description
[63:16]	0
[15:0]	Data [15:0]

Table 10-29: L1 BIM cache format for Instruction Register 1

Bit field	Description
[63:0]	0

Table 10-30: L1 BIM cache format for Instruction Register 2

Bit field	Description
[63:0]	0

10.1.6 L1 instruction TLB returned data

For each register, any access to the L1 instruction TLB returns data.

The following tables show the L1 instruction TLB format for instruction registers.

Table 10-31: L1 instruction TLB format for Instruction Register 0

Bit field	Description
[63:61]	Virtual address [17:12]
[60:59]	PBHA [1:0]
[58]	TLB attribute

1

Bit field	Description
[7:5]	MSID[2:0]:
	06000
	Secure EL1/EL0
	06001
	Secure EL2
	0b101
	Secure EL3
	0b010
	Non-secure EL1/EL0
	0b011
	Non-secure EL2
[4:1]	TLB attribute
[O]	Valid

Table 10-32: L1 instruction TLB format for Instruction Register 1

Bit field	Description
[63]	TLB attribute
[62]	Non-secure
[61:34]	Physical address [39:12]
[33:0]	Virtual address [48:15]

Table 10-33: L1 instruction TLB format for Instruction Register 2

Bit field	Description
[63:1]	Reserved
[0]	TLB attribute

10.1.7 L0 macro-operation RAM returned data

For each register, any access to the LO Macro-operation (MOP) RAM returns data.

The following tables show the LO MOP cache format for instruction registers.

Table 10-34: L0 MOP cache format for Instruction Register 0

Bit field	Description
[63:0]	Macro-operation data [63:0]

Table 10-35: L0 MOP cache format for Instruction Register 1

Bit field	Description
[63:28]	0
[27:0]	Macro-operation data [103:64]

Table 10-36: L0 MOP cache format for Instruction Register 2

Bit field	Description
[63:0]	0

10.1.8 L1 data tag RAM returned data

For each register, any access to the L1 data tag RAM returns data.

The following tables show the L1 data cache tag format for data registers.

Table 10-37: L1 data cache tag format for Data Register 0

Bit field	Description	
[63]	0	
[62:56]	ECC	
[55:27]	Non-secure identifier, physical address [39:12]	
[26]	Origin	
[25]	Prefetch	
[24]	Transient/WBNA	
[23:20]	Memory Tagging Extension (MTE) tag poison	
[19:4]	MTE tag data	
[3:2]	MTE tag state:	
	0ъ00 Invalid	
	0b01	
	Shared	
	0b11 Dirty	
[1:0]	Modified Exclusive Shared Invalid (MESI):	
[1.0]	Ob00	
	Invalid	
	0ь01	
	Shared	
	0ь10	
	Exclusive	
	0b11	
	Modified	

Table 10-38: L1 data cache tag format for Data Register 1

Bit field	Description
[63:0]	0

Table 10-39: L1 data cache tag format for Data Register 2

Bit field	Description
[63:0]	0

10.1.9 L1 data data RAM returned data

For each register, any access to the L1 data data RAM returns data.

The following tables show the L1 data cache data format for data registers.

Table 10-40: L1 data cache data format for Data Register 0

Bit field	Description
[63:0]	word1_data[31:0], word0_data[31:0]

Table 10-41: L1 data cache data format for Data Register 1

Bit field	Description
[63:0]	word3_data[31:0], word2_data[31:0]

Table 10-42: L1 data cache data format for Data Register 2

Bit field	Description
[63:32]	0
	word3_ecc [6:0], word3_poison, word2_ecc [6:0], word2_poison, word1_ecc [6:0], word1_poison, word0_ecc [6:0], word0_poison

10.1.10 L1 data TLB returned data

For each register, any access to the L1 data TLB returns data.

The following tables show the L1 data TLB format for data registers.

Table 10-43: L1 data TLB format for Data Register 0

Bit field	Description
[63]	Virtual address [12]
[62:61]	LOR ID [1:0]
[60]	LOR match
[59]	Outer-shared
[58]	Inner-shared
[57:56]	S1 translation regime [1:0]
[55:54]	S2 translation regime [1:0]

Bit field	Description
[53:51]	Memory attributes [2:0]:
	0ь000
	Device nGnRnE
	06001
	Device nGnRE
	06010
	Device nGRE
	0ь011
	Device GRE
	0b100 Non-cacheable
	0b101 Write-Back No-Allocate
	0b110
	Write-Back Transient
	0b111
	Write-Back Read-Allocate and Write-Allocate
[50]	Outer allocate
[49]	S2 DBM bit
[48]	S1 DBM bit
[47]	TLB coalesced bit
[46:43]	Permission bit [3:0]
[42]	Device/Non-cacheable HTRAP
[41]	nG bit
[40]	Smash bit
[39:37]	Page size [2:0]:
	0ь000
	4KB
	0b001
	16KB
	0b010 64КВ
	0b011
	Reserved
	0b100
	2MB
	0b101
	Reserved
	0b110
	512MB
	0ь111
	Reserved

Bit field	Description
[36]	Non-secure
[35:33]	MSID [2:0]
[32:17]	ASID [15:0]
[16:1]	VMID [15:0]
[O]	Valid

Table 10-44: L1 data TLB format for Data Register 1

Bit field	Description
[63:36]	Physical address [39:12]
[35:0]	Virtual address [48:13]

Table 10-45: L1 data TLB format for Data Register 2

Bit field	Description
[63:6]	Reserved
[5]	Tagged MTE
[4]	FWB override
[3:0]	PBHA [3:0]

10.2 L2 cache encodings

The L2 cache is 8-way set associative.

The size of the configured cache determines the number of sets in each way. The encoding that is used to locate the cache data entry for tag and data memory is set in x_n in the appropriate sys instruction. It is similar for both the tag and data RAM access.

The following tables show the encodings required for locating and selecting a given cache line.

Table 10-46: Cortex®-A710 L2 cache tag location encoding for 256KB ²

Bit field of Xn	Description
[31:24]	RAMID = 0x10
[23:21]	Reserved
[20:18]	Way (0-7)
[17:15]	Reserved
[14:13]	Index [14:13]
[12:10]	XOR(index[12:10], Way[2:0])
[9:7]	Index [9:7]
[6]	XOR(Index [6], IndexPhysical address [10], Way[0])

² index[14:7]=XOR(Physical Address[14:7],Physical Address[22:15]) index[6]=XOR(Physical Address[6], Physical Address[10])

Bit field of Xn	Description
[5:0]	Reserved

Table 10-47: Cortex®-A710 L2 cache tag location encoding for 512KB $^{\rm 3}$

Bit field of Xn	Description	
[31:24]	RAMID = 0x10	
[23:21]	RESO RESO	
[20:18]	Way (0-7)	
[17:16]	RESO RESO	
[15:12]	Index [15:12]	
[11:9]	XOR(Index [11:9], Way [2:0])	
[8:7]	Index [8:7]	
[6]	XOR(index [6], Index [10], Way [1])	
[5:0]	RESO RESO	

Table 10-48: Cortex®-A710 L2 cache data location encoding for 256KB

Bit field of Xn	Description	
[31:24]	RAMID = 0x11	
[23:21]	Reserved	
[20:18]	Way (0-7)	
[17:15]	Reserved	
[14:13]	Index [14:13]	
[12:10]	XOR(Index [12:10], Way[2:0])	
[9:7]	Index [9:7]	
[6]	XOR(Index [6],Index [10], Way[0])	
[5:4]	Physical address [5:4]	
[3:0]	Reserved	

Table 10-49: Cortex®-A710 L2 cache data location encoding for 512KB

Bit field of Xn	Description
[31:24]	RAMID = 0x11
[23:21]	RESO RESO
[20:18]	Way (0-7)
[17:16]	RESO RESO
[15:12]	XOR(Index [15:12], 4'b1000)
[11:9]	XOR(Index [11:9], Way [2:0])
[8:7]	Index [8:7]
[6]	XOR(Index [6], Index [10], Way [1])
[5:4]	Physical address [5:4]

³ Index[15:7]=XOR(Physical Address[15:7],Physical Address[24:16]) Index[6]=XOR(Physical Address[6], Physical Address[10])

Bit field of Xn	Description
[3:0]	RESO RESO

Table 10-50: Cortex®-A710 L2 TLB location encoding

Bit field of Xn	Description
[31:24]	RAMID = 0x18
[23:21]	RESO RESO
[20:18]	Way (0-4)
[17:8]	RESO RESO
[7:0]	TLB entry (0-255)

Table 10-51: Cortex®-A710 L2 victim location encoding

Bit field of Rd	Description
[31:24]	RAMID = 0x12
[23:16]	Reserved
[15:7]	Index [15:7]
[6]	XOR(Index[10], Index[6])
[5:0]	Reserved

10.2.1 L2 tag RAM returned data

For each register, any access to the L2 tag RAM returns data.

The following tables show the L2 tag cache format for data registers. In the first table:

For 256KB L2 cache

n=34, m=15

For 512KB L2 cache

n=33, m=16

Table 10-52: L2 tag cache format for Data Register 0

Bit field	Description
[63:n+22]	0
[n+21:n+13]	ECC
[n+12]	MPAM_PMG
[n+11:n+6]	MPAM_PARTID
[n+5]	MPAM_NS
[n+4:n+1]	PBHA[3:0]
[n:10]	Physical tag [39:m]
[9]	Non-secure
[8:7]	Virtual address [13:12]
[6]	Shareable

Bit field	Description
[5]	L1 data cache valid
[4:3]	MTE state:
	0ь00
	Invalid
	0b10
	Clean
	0b11
	Dirty
[2:0]	L2 state:
	0b101
	UniqueDirty
	0b001
	UniqueClean
	0bx11
	SharedClean
	0bxx0
	Invalid

Table 10-53: L2 tag cache format for Data Register 1

Bit field	Description
[63:0]	0

Table 10-54: L2 tag cache format for Data Register 2

Bit field	Description
[63:0]	0

10.2.2 L2 data RAM returned data

For each register, any access to the L2 data RAM returns data.

The following tables show the L2 data RAM format for instruction registers.

Table 10-55: L2 data RAM format for Data Register 0

Bit field	Description
[63:0]	Data [63:0]

Table 10-56: L2 data RAM format for Data Register 1

Bit field	Description				
[63:0]	Data [127:64]				

Table 10-57: L2 data RAM format for Data Register 2

Bit field	Description				
[63:20]	0				
[19:4]	[15:8] is ECC for Data [127:64], [7:0] is ECC for Data [63:0]				
[3:0]	MTE tags				

10.2.3 L2 TLB RAM returned data

For each register, any access to the L2 TLB RAM returns data.

The following tables show the L2 TLB format for instruction registers.

Table 10-58: L2 TLB format for Instruction Register 0

Bit field	Description								
[63]	Outer Shareable								
[62]	Inner Shareable								
[61]	Outer allocate								
[60:58]	Memory attributes:								
	0ь000								
	Device nGnRnE								
	0ь001								
	Device nGnRE								
	0ь010								
	Device nGRE								
	0ь011								
	Device GRE								
	0ь100								
	Non-cacheable								
	0b101								
	Write-Back No-Allocate								
	0ь110								
	Write-Back Transient								
	0b111								
	Write-Back Read-Allocate and Write-Allocate								
[57:54]	Reserved								

Bit field	Description								
[53:20]	Physical address								
	When bit[6] is 0:								
	• [53:26] = PA[39:12]								
	• [25:20] = Reserved								
	When bit[6] is 1:								
	• [53:28] = PA[39:14]								
	• [27:26] = PA[13:12] for page 3 (highest memory address)								
	• [25:24] = PA[13:12] for page 2								
	• [23:22] = PA[13:12] for page 1								
	• [21:20] = PA[13:12] for page 0 (lowest memory address)								
[19:17]	Page size:								
	0ь000								
	4KB								
	0ь001								
	16KB								
	0ь010								
	64KB								
	0ь100								
	2MB								
	0b101								
	32MB								
	0b110								
	512MB								
	0b111 1GB								
[1/.7]									
[16:7]	Reserved Coologged entry								
[6]	Coalesced entry								
[5:2]	Valid bits								
[1:0]	Reserved								

Table 10-59: L2 TLB format for Instruction Register 1

Bit field	Description
[63:51]	ASID[12:0]
[50:47]	РВНА
[46]	Walk cache entry
[45:17]	Virtual address [48:20]
[16:13]	Reserved
[12]	Non-secure
[11:1]	Reserved
[0]	nG, indicates a non-global page

Table 10-60: L2 TLB format for Instruction Register 2

Bit field	Description					
[63:22]	Reserved					
[21:19]	MSID[2:0]:					
	0ь000					
	Secure EL1					
	0ь001					
	Secure EL2					
	06010					
	Non-secure EL1					
	0b011					
	Non-secure EL2					
	0ь101					
	EL3					
[18:3]	VMID[15:0]					
[2:0]	ASID[15:13]					

10.2.4 L2 Victim RAM returned data

For each register, any access to the L2 victim RAM returns data.

The following tables show the L2 victim RAM format for instruction registers.

Table 10-61: Cortex®-A710 L2 victim format for data register 0

Bit field of Rd	Description
[63:56]	Prefetch bit
[55:48]	Data source
[47:40]	Transient bit
[39:32]	Outer allocation hint
[31:24]	Pointer fill counter
[23:0]	Replacement [23:0]

Table 10-62: Cortex®-A710 L2 victim format for data register 1

Bit field of Rd	Description				
[63:0]	0				

Table 10-63: Cortex®-A710 L2 victim format for data register 2

Bit field of Rd	Description				
[63:0]	0				

11 RAS Extension support

The Cortex®-A710 core supports the *Reliability, Availability, and Serviceability* (RAS) Extension, including all extensions up to Arm®v9.0-A.

In particular, the Cortex®-A710 core supports:

- Cache protection with Single Error Correct Double Error Detect (SECDED) ECC on the RAMs that contain dirty data. This includes the L1 data tag and data RAMs, the L2 tag and data RAMs, and the L2 Transaction Queue (TQ) RAMs.
- Cache protection with *Single Error Detect* (SED) parity on the RAMs that only contain clean data. This includes the L1 instruction tag and data cache, the *Macro-operation* (MOP) cache, and the *Memory Management Unit* (MMU) RAMs.
- The Error Synchronization Barrier (ESB) instruction. When an ESB instruction is executed, the core ensures that all SError Interrupts that are generated by instructions before the ESB are either taken by the core or pended in DISR_EL1.
- Poison attribute on bus transfers
- Error Data Record registers
- Fault Handling Interrupts (FHIs)
- Error Recovery Interrupts (ERIs)
- Error injection

The Cortex®-A710 core features the following nodes:

- Node 0 that includes the shared L3 memory system in the DynamlQ[™] Shared Unit-110 (DSU-110)
- Node 1 that includes the private L1 and L2 memory systems in the core

For more information on the architectural RAS Extension and the definition of a node, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A architecture profile.

For information on the node that includes the shared L3 memory system, see RAS Extension Support in the $Arm^{\$}$ Dynaml $Q^{\texttt{M}}$ Shared Unit-110 Technical Reference Manual.

11.1 Cache protection behavior

The configuration of the *Reliability*, *Availability*, *and Serviceability* (RAS) Extension that is implemented in the Cortex®-A710 core includes cache protection. In this case, the Cortex®-A710 core protects against errors that result in a RAM bitcell holding the incorrect value.

The RAMs in the Cortex®-A710 core have the following capability:

SED parity

Single Error Detect. One bit of parity is applicable to the entire word. The word size is specific for each RAM and depends on the protection granule.

SECDED ECC

Single Error Correct, Double Error Detect. When the datum and code bits are all-zero or allone, the interpretation is that an error has occurred that the ECC scheme cannot correct. However, it might be corrected by other means, such as refetching cached data.

The following table shows which protection type is applied to each RAM in the Cortex®-A710 core. The core can progress and remain functionally correct when there is a single bit error in any RAM.

Table 11-1: RAM cache protection

RAM	ECC or parity
L1 instruction cache data	SED parity
L1 instruction cache tag	SED parity
LO Macro-operation (MOP) cache data	SED parity
L1 data cache data	SECDED ECC
L1 data cache tag	SECDED ECC
MMU Translation Cache (MMUTC)	SED parity
L2 cache data	SECDED ECC
L2 cache tag	SECDED ECC
L2 Transaction Queue (TQ)	SECDED ECC

If there are multiple single bit errors in different RAMs or within different protection granules within the same RAM, then the core also remains functionally correct.

If there is a double bit error in a single RAM within the same protection granule, then the behavior depends on the RAM:

- For RAMs with SECDED capability, the core detects, reports and may defer the error. If the error is in a cache line containing dirty data, then that data might be lost.
- For RAMs with only SED, the core does not detect a double bit error. This might cause data corruption.

If there are errors that are three or more bits within the same protection granule, then depending on the RAM and the position of the errors within the RAM, the core might or might not detect the errors.

The cache protection feature of the core has a minimal performance impact when no errors are present.

11.2 Error containment

The Cortex®-A710 core supports error containment for data errors, which means that detected errors are not silently propagated.

Data errors are propagated using data poisoning to ensure that a consumer is aware of the error. Uncorrectable L1 data cache and L2 cache tag errors are not containable.

Error containment also implies support for poisoning if there is a double error on an eviction. This ensures that the error of the associated data is reported when it is consumed.

Support for the *Error Synchronization Barrier* (ESB) instruction in the core also allows further isolation of imprecise exceptions that are reported when poisoned data is consumed.

11.3 Fault detection and reporting

When the Cortex®-A710 core detects a fault, it raises a Fault Handling Interrupt (FHI) exception or an Error Recovery Interrupt (ERI) exception through the fault or the error signals. FHIs and ERIs are reflected in the Reliability, Availability, and Serviceability (RAS) registers, which are updated in the node that detects the errors.

Fault handling interrupts

When ERR1CTLR.FI is set, all detected Deferred errors, Uncorrected errors, and overflows of the corrected error counters cause an FHI to be generated. When ERR1CTLR.CFI is set, all detected Corrected errors also cause an FHI to be generated.

FHIs from core *n* are signaled using **nCOREFAULTIRQ[n]**.

Error recovery interrupts

When ERR1CTLR.UI is set, all detected Uncorrected errors that are not deferred generate an ERI.

ERIs from core *n* are signaled using **nCOREERRIRQ[n]**.

Related information

11.6 RAS register summary on page 92

B.10.4 ERXCTLR_EL1, Selected Error Record Control Register on page 406

B.10.5 ERXSTATUS EL1, Selected Error Record Primary Status Register on page 409

11.4 Error detection and reporting

When the Cortex®-A710 core consumes an error, it raises different exceptions depending on the error type.

The Cortex®-A710 core might raise:

A Synchronous External Abort (SEA)

- An Asynchronous External Abort (AEA)
- An Error Recovery Interrupt (ERI)

Error detection and reporting registers

The following registers are provided:

- Error Record Feature Registers, ERR<n>FR. These read-only registers specify various error record settings.
- Error Record Control Registers, ERR<n>CTLR. These registers enable error reporting and also enable various interrupts that are related to errors and faults.
- Error Record Miscellaneous Registers, ERR<n>MISCO-3. These registers record details of the error location and counts.
- Pseudo-fault Generation Feature register, ERR<n>PFGF. This read-only register specifies various error settings.

11.4.1 Error reporting and performance monitoring

All detected memory errors, *Error Correcting Code* (ECC) or parity errors, trigger the MEMORY ERROR event.

The MEMORY_ERROR event is counted by the *Performance Monitoring Unit* (PMU) counters if it is selected and the counter is enabled.

In Secure state, the event is counted only if MDCR_EL3.SPME is asserted. See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for a description of MDCR EL3.

Related information

17.1 Performance monitors events on page 107

11.5 Error injection

Error injection consists of inserting an error in the error detection logic to verify the error handling software.

Error injection uses the error detection and reporting registers to insert errors. The Cortex®-A710 core can inject the following error types:

Corrected errors

A Corrected Error (CE) is generated for a single Error Correcting Code (ECC) error on an L1 data cache access.

Deferred errors

A Deferred Error (DE) is generated for a double ECC error on eviction of a cache line from the L1 cache to the L2 cache, or as a result of a snoop on the L1 cache.

Uncontainable errors

An *Uncontainable Error* (UC) is generated for a double ECC error on the L1 tag RAM following an eviction.

An error can be injected immediately or when a 32-bit counter reaches zero. You can control the value of the counter through the Error Pseudo-fault Generation Countdown Register, ERROPFGCDN. The value of the counter decrements on a per clock cycle basis. See the Arm® Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A architecture profile for more information about ERROPFGCDN.

Error injection is a separate source of error within the system and does not create hardware faults.

11.6 RAS register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** RAS registers in the core. Individual register descriptions provide detailed information.

Table 11-2: RAS register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
ERRIDR_EL1	3	C5	0	C3	0	See individual bit resets.	64-bit	Error Record ID Register
ERRSELR_EL1	3	C5	0	C3	1	See individual bit resets.	64-bit	Error Record Select Register
ERXFR_EL1	3	C5	0	C4	0	See individual bit resets.	64-bit	Selected Error Record Feature Register
ERXCTLR_EL1	3	C5	0	C4	1	0x0	64-bit	Selected Error Record Control Register
ERXSTATUS_EL1	3	C5	0	C4	2	0x0	64-bit	Selected Error Record Primary Status Register
ERXADDR_EL1	3	C5	0	C4	3	See individual bit resets.	64-bit	Selected Error Record Address Register
ERXPFGF_EL1	3	C5	0	C4	4	See individual bit resets.	64-bit	Selected Pseudo-fault Generation Feature register
ERXPFGCTL_EL1	3	C5	0	C4	5	0x0	64-bit	Selected Pseudo-fault Generation Control register
ERXPFGCDN_EL1	3	C5	0	C4	6	See individual bit resets.	64-bit	Selected Pseudo-fault Generation Countdown register
ERXMISCO_EL1	3	C5	0	C5	0	See individual bit resets.	64-bit	Selected Error Record Miscellaneous Register 0
ERXMISC1_EL1	3	C5	0	C5	1	0x0	64-bit	Selected Error Record Miscellaneous Register 1
ERXMISC2_EL1	3	C5	0	C5	2	0x0	64-bit	Selected Error Record Miscellaneous Register 2
ERXMISC3_EL1	3	C5	0	C5	3	0x0	64-bit	Selected Error Record Miscellaneous Register 3

12 GIC CPU interface

The Generic Interrupt Controller (GIC) supports and controls interrupts. The GIC distributor connects to the Cortex®-A710 core through a GIC CPU interface. The GIC CPU interface includes registers to mask, identify, and control the state of interrupts that are forwarded to the core.

Each core in a DynamlQ[™]-110 cluster has a GIC CPU interface, which connects to a common external distributor component.

The GICv4.1 architecture implemented in the Cortex®-A710 core supports:

- Two Security states
- Secure virtualization
- Software-Generated Interrupts (SGIs)
- Message-based interrupts
- System register access for the CPU interface
- Interrupt masking and prioritization
- Cluster environments, including systems that contain more than eight cores
- Wakeup events in power management environments

The GIC includes interrupt grouping functionality that supports:

- Configuring each interrupt to belong to either Group 0 or Group 1, where Group 0 interrupts are always Secure
- Signaling Group 1 interrupts to the target core using either the IRQ or the FIQ exception request. Group 1 interrupts can be Secure or Non-secure
- Signaling Group 0 interrupts to the target core using the FIQ exception request only
- A unified scheme for handling the priority of Group 0 and Group 1 interrupts

See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 for more information about interrupt groups.

12.1 Disable the GIC CPU interface

The Cortex®-A710 core always includes the *Generic Interrupt Controller* (GIC) CPU interface. However, you can disable it to meet your requirements.

To disable the GIC CPU interface, assert the **GICCDISABLE** signal HIGH at reset. If you disable it this way, then you can use an external GIC IP to drive the interrupt signals (**nFIQ**, **nIRQ**). If the Cortex®-A710 core is not integrated with an external GIC interrupt distributor component (minimum GICv3 architecture) in the system, then you must disable the GIC CPU interface.

If you disable the GIC CPU interface, then:

- The virtual input signals **nVIRQ** and **nVFIQ** and the input signals **nIRQ** and **nFIQ** can be driven by an external GIC in the SoC.
- GIC system register access generates **UNDEFINED** instruction exceptions.

If you enable the GIC CPU interface, then you must tie off **nVIRQ** and **nVFIQ** to HIGH. This is because the GIC CPU interface generates the virtual interrupt signals to the core. The **nIRQ** and **nFIQ** signals are controlled by software, therefore there is no requirement to tie them HIGH.

See Functional integration in the Arm[®] DynamlQ^{M} Shared Unit-110 Configuration and Integration Manual for more information on these signals.

12.2 AArch64 GIC register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** GIC registers in the core. Individual register descriptions provide detailed information.

Table 12-1: GIC register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
ICC_CTLR_EL1	3	C12	0	C12	4	See individual bit resets.	64-bit	Interrupt Controller Control Register (EL1)
ICV_CTLR_EL1	3	C12	0	C12	4	See individual bit resets.	64-bit	Interrupt Controller Virtual Control Register
ICC_APORO_EL1	3	C12	0	C8	4	See individual bit resets.	64-bit	Interrupt Controller Active Priorities Group O Registers
ICV_APORO_EL1	3	C12	0	C8	4	See individual bit resets.	64-bit	Interrupt Controller Virtual Active Priorities Group 0 Registers
ICC_AP1R0_EL1	3	C12	0	C9	0	See individual bit resets.	64-bit	Interrupt Controller Active Priorities Group 1 Registers
ICV_AP1R0_EL1	3	C12	0	C9	0	See individual bit resets.	64-bit	Interrupt Controller Virtual Active Priorities Group 1 Registers
ICH_VTR_EL2	3	C12	4	C11	1	See individual bit resets.	64-bit	Interrupt Controller VGIC Type Register
ICC_CTLR_EL3	3	C12	6	C12	4	See individual bit resets.	64-bit	Interrupt Controller Control Register (EL3)

13 Advanced SIMD and floating-point support

The Cortex®-A710 core supports the Advanced SIMD and scalar floating-point instructions in the A32, T32, A64 instruction sets without floating-point exception trapping. The Cortex®-A710 core floating-point implementation includes Arm®v8.3-A and Arm®v8.5-A features.

The Cortex®-A710 core implements all scalar operations in hardware with support for all combinations of:

- Rounding modes
- Flush-to-zero
- Default Not a Number (NaN) modes

14 Scalable Vector Extensions support

The Cortex®-A710 core supports the *Scalable Vector Extension* (SVE) and the *Scalable Vector Extension 2* (SVE2). SVE and SVE2 complement and do not replace AArch64 Advanced SIMD and floating-point functionality.

SVE is an optional extension introduced by the Armv8.2 architecture. SVE is supported in AArch64 state only. SVE provides vector instructions that, primarily, support wider vectors than the Arm Advanced SIMD instruction set.

The Cortex®-A710 core implements a scalable vector length of 128 bits.

All the features and additions that SVE introduces are described in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information about SVE2.

15 System control

The system registers control and provide status information for the functions that the core implements.

The main functions of the system registers are:

- System performance monitoring
- Cache configuration and management
- Overall system control and configuration
- Memory Management Unit (MMU) configuration and management
- Generic Interrupt Controller (GIC) configuration and management

The system registers are accessible in both AArch32 execution state at ELO only and AArch64 execution state at ELO to EL3.

Some of the system registers are accessible through the external debug interface or Utility bus interface.

15.1 AArch64 Identification register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Identification registers in the core. Individual register descriptions provide detailed information.

Table 15-1: Identification register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
MIDR_EL1	3	C0	0	C0	0	See individual bit resets.	64-bit	Main ID Register
MPIDR_EL1	3	CO	0	C0	5	See individual bit resets.	64-bit	Multiprocessor Affinity Register
REVIDR_EL1	3	CO	0	CO	6	See individual bit resets.	64-bit	Revision ID Register
ID_PFR0_EL1	3	CO	0	C1	0	See individual bit resets.	64-bit	AArch32 Processor Feature Register 0
ID_PFR1_EL1	3	C0	0	C1	1	See individual bit resets.	64-bit	AArch32 Processor Feature Register 1
ID_DFR0_EL1	3	CO	0	C1	2	See individual bit resets.	64-bit	AArch32 Debug Feature Register 0
ID_AFRO_EL1	3	C0	0	C1	3	0x0	64-bit	AArch32 Auxiliary Feature Register 0
ID_MMFRO_EL1	3	CO	0	C1	4	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 0
ID_MMFR1_EL1	3	CO	0	C1	5	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 1
ID_MMFR2_EL1	3	C0	0	C1	6	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 2
ID_MMFR3_EL1	3	CO	0	C1	7	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 3
ID_ISARO_EL1	3	CO	0	C2	0	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 0
ID_ISAR1_EL1	3	C0	0	C2	1	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 1
ID_ISAR2_EL1	3	CO	0	C2	2	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 2
ID_ISAR3_EL1	3	CO	0	C2	3	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 3
ID_ISAR4_EL1	3	CO	0	C2	4	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 4

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
ID_ISAR5_EL1	3	C0	0	C2	5	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 5
ID_MMFR4_EL1	3	CO	0	C2	6	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 4
ID_ISAR6_EL1	3	CO	0	C2	7	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 6
MVFRO_EL1	3	CO	0	C3	0	See individual bit resets.	64-bit	AArch32 Media and VFP Feature Register 0
MVFR1_EL1	3	CO	0	C3	1	See individual bit resets.	64-bit	AArch32 Media and VFP Feature Register 1
MVFR2_EL1	3	CO	0	C3	2	See individual bit resets.	64-bit	AArch32 Media and VFP Feature Register 2
ID_PFR2_EL1	3	CO	0	C3	4	See individual bit resets.	64-bit	AArch32 Processor Feature Register 2
ID_DFR1_EL1	3	CO	0	C3	5	0x0	64-bit	Debug Feature Register 1
ID_AA64PFR0_EL1	3	CO	0	C4	0	See individual bit resets.	64-bit	AArch64 Processor Feature Register 0
ID_AA64PFR1_EL1	3	CO	0	C4	1	See individual bit resets.	64-bit	AArch64 Processor Feature Register 1
ID_AA64ZFR0_EL1	3	CO	0	C4	4	See individual bit resets.	64-bit	SVE Feature ID register 0
ID_AA64DFR0_EL1	3	CO	0	C5	0	See individual bit resets.	64-bit	AArch64 Debug Feature Register 0
ID_AA64DFR1_EL1	3	C0	0	C5	1	0x0	64-bit	AArch64 Debug Feature Register 1
ID_AA64AFR0_EL1	3	CO	0	C5	4	0x0	64-bit	AArch64 Auxiliary Feature Register 0
ID_AA64AFR1_EL1	3	CO	0	C5	5	0x0	64-bit	AArch64 Auxiliary Feature Register 1
ID_AA64ISAR0_EL1	3	CO	0	C6	0	See individual bit resets.	64-bit	AArch64 Instruction Set Attribute Register 0
ID_AA64ISAR1_EL1	3	CO	0	C6	1	See individual bit resets.	64-bit	AArch64 Instruction Set Attribute Register 1
ID_AA64MMFR0_EL1	3	CO	0	C7	0	See individual bit resets.	64-bit	AArch64 Memory Model Feature Register 0
ID_AA64MMFR1_EL1	3	C0	0	C7	1	See individual bit resets.	64-bit	AArch64 Memory Model Feature Register 1
ID_AA64MMFR2_EL1	3	CO	0	C7	2	See individual bit resets.	64-bit	AArch64 Memory Model Feature Register 2
CLIDR_EL1	3	CO	1	CO	1	See individual bit resets.	64-bit	Cache Level ID Register
GMID_EL1	3	CO	1	CO	4	See individual bit resets.	64-bit	Multiple tag transfer ID register
CTR_EL0	3	CO	3	CO	1	See individual bit resets.	64-bit	Cache Type Register
DCZID_EL0	3	CO	3	CO	7	See individual bit resets.	64-bit	Data Cache Zero ID register
MPAMIDR_EL1	3	C10	0	C4	4	See individual bit resets.	64-bit	MPAM ID Register (EL1)
IMP_CPUCFR_EL1	3	C15	0	CO	0	See individual bit resets.	64-bit	CPU Configuration Register

16 Debug

The DynamlQ[™]-110 cluster provides a debug system that supports both self-hosted and external debug. It has an external DebugBlock component, and integrates various CoreSight debug related components.

The CoreSight debug related components are split into two groups, with some components in the DynamlQ $^{\text{m}}$ cluster, and others in the separate DebugBlock.

The DebugBlock is a dedicated debug component in the DSU-110, separate from the cluster. The DebugBlock operates within a separate power domain, enabling connection to a debugger to be maintained when the cores and the DynamlQ $^{\text{m}}$ cluster are both powered down.

The connection between the cluster and the DebugBlock consists of a pair of Advanced Peripheral Bus APB interfaces, one in each direction. All debug traffic, except the authentication interface, takes place over this interface as read or write APB transactions. This debug traffic includes register reads, register writes, and Cross Trigger Interface (CTI) triggers.

The debug system implements the following CoreSight debug components:

- Per-core trace unit, integrated into the CoreSight subsystem.
- Per-core CTI, contained in the DebugBlock.
- Cross Trigger Matrix (CTM)
- Debug control provided by AMBA® APB interface to the DebugBlock

The following figure shows how the debug system is implemented with the DynamlQ[™] cluster.

Figure 16-1: DynamIQ[™] cluster debug components

The primary debug APB interface on the DebugBlock controls the debug components. The APB decoder decodes the requests on this bus before they are sent to the appropriate component in the DebugBlock or in the Dynaml Q^{TM} cluster. The per-core CTIs are connected to a CTM.

Each core contains a debug component that the debug APB bus accesses. The cores support debug over powerdown using modules in the DebugBlock that mirror key core information. These modules allow access to debug over powerdown CoreSight™ registers while the core is powered down.

The trace unit in each core outputs trace, which is funneled in the DynamlQ[™] cluster down to a single AMBA® 4 ATBv1.1 interface.

See Debug in the Arm[®] DynamlQ^{$^{\text{M}}$} Shared Unit-110 Technical Reference Manual for more information about the DynamlQ^{$^{\text{M}}$} cluster debug components.

The Cortex®-A710 core also supports direct access to internal memory, that is, cache debug. Direct access to internal memory allows software to read the internal memory that the L1 and L2 cache and *Translation Lookaside Buffer* (TLB) structures use. See 10 Direct access to internal memory on page 69 for more information.

16.1 Supported debug methods

The DynamlQ[™]-110 cluster along with its associated cores is part of a debug system that supports both self-hosted and external debug.

The following figure shows a typical external debug system.

Figure 16-2: External debug system

Debug host

A computer, for example a personal computer, that is running a software debugger such as the Arm® Debugger. You can use the debug host to issue high-level commands. For example, you can set a breakpoint at a certain location or examine the contents of a memory address.

Protocol converter

The debug host sends messages to the debug target using an interface such as Ethernet. However, the debug target typically implements a different interface protocol. A device such as DSTREAM is required to convert between the two protocols.

Debug target

The lowest level of the system implements system support for the protocol converter to access the debug unit. For DSU-110 based devices, the mechanism used to access the debug unit is based on the CoreSight architecture. The DSU-110 DebugBlock is accessed using an APB interface and the debug accesses are then directed to the selected A710 core inside the DynamlQ $^{\text{M}}$ cluster. An example of a debug target is a development system with a test chip or a silicon part with a A710 core.

Debug unit

Helps debugging software that is running on the core:

- DSU-110 and external hardware based around the core.
- Operating systems.
- Application software.

With the debug unit, you can:

- Stop program execution.
- Examine and alter process and coprocessor state.
- Examine and alter memory and the state of the input or output peripherals.
- Restart the processing element (PE).

For self-hosted debug, the debug target runs debug monitor software that runs on the core in the $\mathsf{Dynam} \mathsf{IQ}^\mathsf{M}$ cluster. This way, it does not require expensive interface hardware to connect a second host computer.

16.2 Debug register interfaces

The Cortex®-A710 core implements the Arm®v9.0-A Debug architecture. It also supports the Arm®v8.4-A Debug architecture and Arm®v8.3-A Debug over powerdown.

The Debug architecture defines a set of Debug registers. The Debug register interfaces provide access to these registers either from software running on the core or from an external debugger. See Debug in the Arm^{\otimes} $DynamlQ^{\rightarrow}$ Shared Unit-110 Technical Reference Manual for more information.

Related information

5.6 Debug over powerdown on page 47

16.2.1 Core interfaces

System register access allows the Cortex®-A710 core to access certain debug registers directly. The debug register interfaces provide access to these registers either from software running on the core or from an external debugger.

Access to the debug registers is partitioned as follows:

Debug

This function is both system register based and memory-mapped. You can access the debug register map using the APB slave port that connects into the DebugBlock of the *DynamlQ*[™] *Shared Unit-110* (DSU-110).

Performance monitoring

This function is system register based and memory-mapped. You can access the performance monitor registers using the APB slave port that connects into the DebugBlock of the DSU.

Trace

This function is system register based and memory-mapped. You can access the trace unit registers using the APB slave port that connects into the DebugBlock of the DSU.

ELA registers

This function is memory-mapped. You can access the *Embedded Logic Analyzer* (ELA) registers using the APB slave port that connects into the DebugBlock of the DSU.

For information on the APB slave port interface, see Interfaces in the Arm[®] DynamlQ $^{\text{M}}$ Shared Unit-110 Technical Reference Manual.

16.2.2 Effects of resets on debug registers

The **complexporeset_n** and **complexreset_n** signals of the core affect the debug registers.

complexporeset_n maps to a Cold reset that covers reset of the core logic and the integrated debug functionality. This signal initializes the core logic, including the trace unit, breakpoint, watchpoint logic, performance monitor, and debug logic.

complexreset_n maps to a Warm reset that covers reset of the core logic. This signal resets some of the debug and performance monitor logic.

16.2.3 External access permissions to Debug registers

External access permission to the Debug registers is subject to the conditions at the time of the access.

The following table shows the core response to accesses through the external debug interface.

Table 16-1: External access conditions to registers

Name	Condition	Description
Off	EDPRSR.PU = 1	Because Armv8.3-DoPD, Debug over PowerDown, is implemented, access to this field is <i>Read-As-One</i> (RAO). When the core power domain is in a powerup state, the Debug registers in the core power domain can be accessed. When the core power domain is OFF, accesses to the Debug registers in the core power domain, including EDPRSR, return an error.
OSLK	OSLSR_EL1.OSLK = 1	OS Lock is locked.
EDAD	AllowExternalDebugAccess() == FALSE	External debug access is disabled. If an error is returned because of an EDAD condition code, and this is the highest priority error condition, then EDPRSR.SDAD is set to 1. Otherwise, SDAD is unchanged.

Name	Condition	Description
Default	-	This is normal access, none of the conditions apply.

16.2.4 Breakpoints and watchpoints

The Cortex®-A710 core supports six breakpoints, four watchpoints, and a standard *Debug Communications Channel* (DCC).

A breakpoint consists of a breakpoint control register and a breakpoint value register. These two registers are referred to as a *Breakpoint Register Pair* (BRP). Four of the breakpoints (BRP 0-3) match only to the *Virtual Address* (VA) and the other two (BRP 4 and 5) match against either the VA or context ID, or the *Virtual Machine ID* (VMID).

You can use watchpoints to stop your target when a specific memory address is accessed by your program. All the watchpoints can be linked to two breakpoints (BRP 4 and 5) to enable a memory request to be trapped in a given process context.

16.3 Debug events

A debug event can be either a software debug event or a Halting debug event.

The Cortex®-A710 core responds to a debug event in one of the following ways:

- It ignores the debug event
- It takes a debug exception
- It enters debug state

In the Cortex®-A710 core, watchpoint debug events are always synchronous. Memory hint instructions and cache clean operations, except DC ZVA, and DC IVAC do not generate watchpoint debug events. Store exclusive instructions generate a watchpoint debug event even when the check for the control of exclusive monitor fails. Atomic CAS instructions generate a watchpoint debug event even when the compare operation fails.

A Cold reset sets the Debug OS Lock. For the debug events and debug register accesses to operate normally, the Debug OS Lock must be cleared.

16.4 Debug memory map and debug signals

The debug memory map and debug signals are handled at the DynamlQ[™]-110 cluster level.

See Debug and ROM tables in the Arm® DynamlQ[™] Shared Unit-110 Technical Reference Manual.

16.5 ROM table

The Cortex®-A710 core includes a ROM table that contains a list of components in the system. Debuggers can use the ROM table to determine which CoreSight components are implemented.

The ROM table is a CoreSight debug related component that aids system debug along with CoreSight SoC and is for the Cortex®-A710 core. There is one ROM table for each core and ROM tables comply with the Arm® CoreSight[™] Architecture Specification v3.0.

The $DynamIQ^{\mathbb{T}}$ Shared Unit-110 (DSU-110) has its own ROM tables, one for the cluster and one for the DebugBlock, and has entry points in the cluster ROM table for the ROM tables belonging to each core. See ROM tables in the $Arm^{\mathbb{B}}$ DynamIQ $^{\mathbb{T}}$ Shared Unit-110 Technical Reference Manual for more information.

The Cortex®-A710 core ROM table includes the following entries:

Table 16-2: Core ROM table

Offset	Name	Description
0x0000	ROMENTRYO	Core debug
0x0004	ROMENTRY1	Core PMU
0x0008	ROMENTRY2	Core Trace unit
0x000C	ROMENTRY3	Optional ELA

Related information

16.9 CoreROM register summary on page 106

16.6 CoreSight component identification

Each component associated with the Cortex®-A710 core has a unique set of CoreSight ID values.

Table 16-3: Cortex®-A710 CoreSight component identification

Component	Peripheral ID	Component ID	DevType	DevArch	Revision
Trace Unit	0x04002BBD47	0xB105900D	0x00000013	0x47705a13	r2p1
PMU	0x04002BBD47	0xB105900D	0x00000016	0x47702a16	r2p1
DBG	0x04002BBD47	0xB105900D	0x00000015	0x47709a15	r2p1
ROM Table	0x04002BBD47	0xB105900D	0x00000000	0x47700af7	r2p1

For details on the CoreSight component identification for the Cortex®-A710 core ELA, see the Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference Manual.

16.7 AArch64 Debug register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Debug registers in the core. Individual register descriptions provide detailed information.

Table 16-4: Debug register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
IMP_IDATA0_EL3	3	C15	6	C0	0	See individual bit resets.	64-bit	Instruction Register 0
IMP_IDATA1_EL3	3	C15	6	C0	1	See individual bit resets.	64-bit	Instruction Register 0
IMP_IDATA2_EL3	3	C15	6	C0	2	See individual bit resets.	64-bit	Instruction Register 0
IMP_DDATA0_EL3	3	C15	6	C1	0	See individual bit resets.	64-bit	Data Register 0
IMP_DDATA1_EL3	3	C15	6	C1	1	See individual bit resets.	64-bit	Data Register 1
IMP_DDATA2_EL3	3	C15	6	C1	2	See individual bit resets.	64-bit	Data Register 2

16.8 Debug register summary

The summary table provides an overview of all Debug registers in the core. Individual register descriptions provide detailed information.

Table 16-5: Debug register summary

Offset	Name	Reset	Width	Description
0x090	EDRCR	See individual bit resets.	32-bit	External Debug Reserve Control Register
0x094	EDACR	0x0	32-bit	External Debug Auxiliary Control Register
0x310	EDPRCR	See individual bit resets.	32-bit	External Debug Power/Reset Control Register
0xD00	MIDR_EL1	See individual bit resets.	32-bit	Main ID Register
0xD20	EDPFR	See individual bit resets.	64-bit	External Debug Processor Feature Register
0xD28	EDDFR	See individual bit resets.	64-bit	External Debug Feature Register
0xFBC	EDDEVARCH	See individual bit resets.	32-bit	External Debug Device Architecture register
0xFC0	EDDEVID2	0x0	32-bit	External Debug Device ID register 2
0xFC4	EDDEVID1	See individual bit resets.	32-bit	External Debug Device ID register 1
0xFC8	EDDEVID	See individual bit resets.	32-bit	External Debug Device ID register 0
0xFCC	EDDEVTYPE	See individual bit resets.	32-bit	External Debug Device Type register
0xFD0	EDPIDR4	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 4
0xFE0	EDPIDRO	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 0
0xFE4	EDPIDR1	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 1
0xFE8	EDPIDR2	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 2
OxFEC	EDPIDR3	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 3
0xFF0	EDCIDR0	See individual bit resets.	32-bit	External Debug Component Identification Register 0
0xFF4	EDCIDR1	See individual bit resets.	32-bit	External Debug Component Identification Register 1
0xFF8	EDCIDR2	See individual bit resets.	32-bit	External Debug Component Identification Register 2
0xFFC	EDCIDR3	See individual bit resets.	32-bit	External Debug Component Identification Register 3

16.9 CoreROM register summary

The summary table provides an overview of all CoreROM registers in the core. Individual register descriptions provide detailed information.

Table 16-6: CoreROM register summary

Offset	Name	Reset	Width	Description
0x000	COREROM_ROMENTRY0	See individual bit resets.	32-bit	Core ROM table Entry 0
0x004	COREROM_ROMENTRY1	See individual bit resets.	32-bit	Core ROM table Entry 1
0x008	COREROM_ROMENTRY2	See individual bit resets.	32-bit	Core ROM table Entry 2
0x00C	COREROM_ROMENTRY3	See individual bit resets.	32-bit	Core ROM table Entry 3
0xFB8	COREROM_AUTHSTATUS	See individual bit resets.	32-bit	Core ROM table Authentication Status Register
0xFBC	COREROM_DEVARCH	See individual bit resets.	32-bit	Core ROM table Device Architecture Register
0xFCC	COREROM_DEVTYPE	See individual bit resets.	32-bit	Core ROM table Device Type Register
0xFD0	COREROM_PIDR4	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 4
0xFE0	COREROM_PIDRO	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 0
0xFE4	COREROM_PIDR1	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 1
0xFE8	COREROM_PIDR2	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 2
OxFEC	COREROM_PIDR3	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 3
0xFF0	COREROM_CIDRO	See individual bit resets.	32-bit	Core ROM table Component Identification Register 0
0xFF4	COREROM_CIDR1	See individual bit resets.	32-bit	Core ROM table Component Identification Register 1
0xFF8	COREROM_CIDR2	See individual bit resets.	32-bit	Core ROM table Component Identification Register 2
0xFFC	COREROM_CIDR3	See individual bit resets.	32-bit	Core ROM table Component Identification Register 3

17 Performance Monitors Extension support

The Cortex®-A710 core implements the Performance Monitors Extension, including Arm®v8.4-A and Arm®v8.5-A performance monitoring features.

The Cortex®-A710 core Performance Monitoring Unit (PMU):

- Collects events through an event interface from other units in the design. These events are used as triggers for event counters.
- Supports cycle counters through the Performance Monitors Control Register.
- Implements PMU snapshots for context samples.
- Provides six or 20 PMU 64-bit counters that count any of the events available in the core. The absolute counts that are recorded might vary because of pipeline effects. This variation has negligible effect except in cases where the counters are enabled for a very short time.

You can program the PMU using either the System registers or the external Debug APB interface.

17.1 Performance monitors events

The Cortex®-A710 Performance Monitoring Unit (PMU) collects events from other units in the design and uses numbers to reference these events.

The following table lists the Cortex®-A710 performance monitors events. Event reference numbers that are not listed are reserved.

Unless otherwise indicated, each of these events can be exported to the Trace unit and selected in accordance with the Arm® Embedded Trace Extension.

Table 17-1: Performance monitors Events

Event number	Mnemonic	Description
0x0	SW_INCR	Software increment
		This event counts any instruction architecturally executed (condition code check pass).
0x1	L1I_CACHE_REFILL	L1 instruction cache refill
		This event counts any instruction fetch which misses in the cache.
		The following instructions are not counted:
		Cache maintenance instructions
		Non-cacheable accesses

Event number	Mnemonic	Description
0x2	L1I_TLB_REFILL	L1 instruction TLB refill
		This event counts any refill of the L1 instruction TLB from the MMU Translation Cache (MMUTC). This includes refills that result in a translation fault.
		The following instructions are not counted:
		TLB maintenance instructions
		This event counts regardless of whether the MMU is enabled.
0x3	L1D_CACHE_REFILL	L1 data cache refill
		This event counts any load or store operation or translation table walk access which causes data to be read from outside the L1, including accesses which do not allocate into L1.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches
		Stores of an entire cache line, even if they make a coherency request outside the L1
		Partial cache line writes which do not allocate into the L1 cache.
		Non-cacheable accesses
		This event counts the sum of L1D_CACHE_REFILL_RD and L1D_CACHE_REFILL_WR.
0×4	L1D_CACHE	L1 data cache access
		This event counts any load or store operation or translation table walk access which looks up in the L1 data cache. In particular, any access which could count the L1D_CACHE_REFILL event causes this event to count.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches
		Non-cacheable accesses
		This event counts the sum of L1D CACLIE DD and L1D CACLIE WD
0x5	L1D_TLB_REFILL	This event counts the sum of L1D_CACHE_RD and L1D_CACHE_WR. L1 data TLB refill
UAS		This event counts any refill of the data L1 TLB from the MMUTC. This includes refills that result in a translation fault. TLB maintenance instructions are not counted.
		This event counts regardless of whether the MMU is enabled.
0x8	INST_RETIRED	Instruction architecturally executed.
		This event counts all retired instructions, including those that fail their condition check.
0x9	EXC_TAKEN	Exception taken
0x0A	EXC_RETURN	Instruction architecturally executed, condition code check pass, exception return
0x0B	CID_WRITE_RETIRED	Instruction architecturally executed, condition code check pass, write to CONTEXTIDR
		This event only counts writes to CONTEXTIDR_EL1.
		Writes to CONTEXTIDR_EL12 and CONTEXTIDR_EL2 are not counted.

Event	Mnemonic	Description			
number	Trinemonic	Description 2			
0x10	BR_MIS_PRED	Mispredicted or not predicted branch speculatively executed			
		This event counts any predictable branch instruction which is mispredicted either because of dynamic misprediction or because the MMU is off and the branches are statically predicted not taken.			
0x11	CPU_CYCLES	Cycle			
0x12	BR_PRED	Predictable branch speculatively executed.			
		This event counts all predictable branches.			
0x13	MEM_ACCESS	Data memory access.			
		This event counts memory accesses due to load or store instructions.			
		The following instructions are not counted:			
		Instruction fetches			
		Cache maintenance instructions			
		Translation table walks or prefetches			
		This event counts the sum of MEM_ACCESS_RD and MEM_ACCESS_WR.			
0x14	L1I_CACHE	L1 instruction cache access or <i>Macro-op</i> (MOP) cache access.			
		This event counts any instruction fetch which accesses the L1 instruction cache or MOP cache.			
		The following instructions are not counted:			
		Cache maintenance instructions			
		Non-cacheable accesses			
0x15	L1D_CACHE_WB	L1 data cache Write-Back			
		This event counts any write-back of data from the L1 data cache to L2 or L3. This counts both victim line evictions and snoops, including cache maintenance operations.			
		The following instructions are not counted:			
		Invalidations which do not result in data being transferred out of the L1			
		Full-line writes which write to L2 without writing L1, such as write streaming mode			
0x16	L2D_CACHE	L2 cache access			
		This event counts any transaction from L1 which looks up in the L2 cache, and any write-back from the L1 to the L2.			
		Snoops from outside the core and cache maintenance operations are not counted.			
0x17	L2D_CACHE_REFILL	L2 cache refill			
		This event counts any cacheable transaction from L1 which causes data to be read from outside the core. L2 refills caused by stashes into L2 are not counted.			

Event number	Mnemonic	Description
0x18	L2D_CACHE_WB	L2 cache write-back
		This event counts any write-back of data from the L2 cache to outside the core. This includes snoops to the L2 which return data, regardless of whether they cause an invalidation.
		Invalidations from the L2 which do not write data outside of the core and snoops which return data from the L1 are not counted.
0x19	BUS_ACCESS	Bus access
		This event counts for every beat of data transferred over the data channels between the core and the <i>Snoop Control Unit</i> (SCU). If both read and write data beats are transferred on a given cycle, this event is counted twice on that cycle.
		This event counts the sum of BUS_ACCESS_RD, BUS_ACCESS_WR, and any snoop data responses.
0x1A	MEMORY_ERROR	Local memory error
		This event counts any correctable or uncorrectable memory error (ECC or parity) in the protected core RAMs.
0x1B	INST_SPEC	Operation speculatively executed
0x1C	TTBR_WRITE_RETIRED	Instruction architecturally executed, condition code check pass, write to TTBR
		This event only counts writes to TTBRO_EL1/TTBR1_EL1.
		Accesses to TTBRO_EL12/TTBR1_EL12 or TTBRO_EL2/TTBR1_EL2 are not counted.
0x1D	BUS_MASTER_CYCLE	Bus cycles
		This event duplicates CPU_CYCLES.
0x1E	COUNTER_OVERFLOW	For odd-numbered counters, this event increments the count by one for each overflow of the preceding even-numbered counter. For even-numbered counters, there is no increment.
0x20	CACHE_ALLOCATE	L2 data cache allocation without refill.
		This event counts any full cache line write into the L2 cache which does not cause a linefill, including write-backs from L1 to L2 and full-line writes which do not allocate into L1.
0x21	BR_RETIRED	Instruction architecturally executed, branch
		This event counts all branches, taken or not. This excludes exception entries, debug entries and CCFAIL branches.
0x22	BR_MIS_PRED_RETIRED	Instruction architecturally executed, mispredicted branch
		This event counts any branch counted by BR_RETIRED which is not correctly predicted and causes a pipeline flush.
0x23	STALL_FRONTEND	No operation issued because of the frontend
		The counter counts on any cycle when there are no fetched instructions available to dispatch.

Event number	Mnemonic	Description
0x24	STALL_BACKEND	No operation issued because of the backend
		The counter counts on any cycle fetched instructions are not dispatched due to resource constraints.
0x25	L1D_TLB	Level 1 data TLB access
		This event counts any load or store operation which accesses the data L1 TLB. If both a load and a store are executed on a cycle, this event counts twice. This event counts regardless of whether the MMU is enabled.
0x26	L1I_TLB	Level 1 instruction TLB access
		This event counts any instruction fetch which accesses the instruction L1 TLB.
		This event counts regardless of whether the MMU is enabled.
0x29	L3D_CACHE_ALLOCATE	Attributable L3 cache allocation without refill
		This event counts any full cache line write into the L3 cache which does not cause a linefill, including write-backs from L2 to L3 and full-line writes which do not allocate into L2.
0x2A	L3D_CACHE_REFILL	Attributable L3 cache refill
		This event counts for any cacheable read transaction returning data from the SCU for which the data source was outside the cluster.
		Transactions such as ReadUnique are counted as read transactions, even though they can be generated by store instructions.
0x2B	L3D_CACHE	Attributable L3 cache access
		This event counts for any cacheable read transaction returning data from the SCU, or for any cacheable write to the SCU.
0x2D	L2TLB_REFILL	Attributable L2 TLB refill
		This event counts on any refill of the MMUTC, caused by either an instruction or data access.
		This event does not count if the MMU is disabled.
0x2F	L2TLB_REQ	Attributable L2 TLB access
		This event counts on any access to the MMUTC (caused by a refill of any of the L1 TLBs).
		This event does not count if the MMU is disabled.
0x31	REMOTE_ACCESS	Access to another socket in a multi-socket system
0x34	DTLB_WLK	Access to data TLB that caused a page table walk
		This event counts on any data access which causes L2D_TLB_REFILL to count.
0x35	ITLB_WLK	Access to instruction TLB that caused a translation table walk.
		This event counts on any instruction access which causes L2D_TLB_REFILL to count.

Event	Mnemonic	Description
number		
0x36	LL_CACHE_RD	Last level cache access, read
		If CPUECTLR.EXTLLC is set, then this event counts any cacheable read transaction which returns a data source of interconnect cache.
		If CPUECTLR.EXTLLC is not set, then this event is a duplicate of the L*D_CACHE_RD event corresponding to the last level of cache implemented L2D_CACHE_RD if only one is implemented, or L1D_CACHE_RD if neither is implemented.
0x37	LL_CACHE_MISS_RD	Last level cache miss, read
		If CPUECTLR.EXTLLC is set, then this event counts any cacheable read transaction which returns a data source of DRAM, remote, or inter-cluster peer.
		If CPUECTLR.EXTLLC is not set, then this event is a duplicate of the L*D_CACHE_REFILL_RD event corresponding to the last level of cache implemented L2D_CACHE_REFILL_RD if only one is implemented, or L1D_CACHE_REFILL_RD if neither is implemented.
0x39	L1D_CACHE_LMISS_RD	Level 1 data cache long-latency miss
0x3A	OP_RETIRED	Micro-operation architecturally executed
0x3B	OP_SPEC	Micro-operation speculatively executed
0x3C	STALL	No operation sent for execution
0x3D	STALL_SLOT_BACKEND	No operation sent for execution on a slot due to the backend
0x3E	STALL_SLOT_FRONTEND	No operation sent for execution on a slot due to the frontend
0x3F	STALL_SLOT	No operation sent for execution on a slot
0x40	L1D_CACHE_RD	L1 data cache access, read
		This event counts any load operation or page table walk access which looks up in the L1 data cache. In particular, any access which could count the L1D_CACHE_REFILL_RD event causes this event to count.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches
		Non-cacheable accesses
0x41	L1D_CACHE_WR	L1 data cache access, write
		This event counts any store operation which looks up in the L1 data cache. In particular, any access which could count the L1D_CACHE_REFILL_WR event causes this event to count.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches
		Non-cacheable accesses

Event number	Mnemonic	Description
0x42	L1D_CACHE_REFILL_RD	L1 data cache refill, read
		This event counts any load operation or page table walk access which causes data to be read from outside the L1, including accesses which do not allocate into L1.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches
		Non-cacheable accesses
0x43	L1D_CACHE_REFILL_WR	L1 data cache refill, write
		This event counts any store operation which causes data to be read from outside the L1, including accesses which do not allocate into L1.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches
		Stores of an entire cache line, even if they make a coherency request outside the L1
		Partial cache line writes which do not allocate into the L1 cache.
		Non-cacheable accesses
0x44	L1D_CACHE_REFILL_INNER	L1 data cache refill, inner
		This event counts any L1 data cache linefill (as counted by L1D_CACHE_REFILL) which hits in the L2 cache, system L3 cache, or another core in the cluster.
0x45	L1D_CACHE_REFILL_OUTER	L1 data cache refill, outer
		This event counts any L1 data cache linefill (as counted by L1D_CACHE_REFILL) which does not hit in the L2 cache, system L3 cache, or another core in the cluster, and instead obtains data from outside the cluster.
0x46	L1D_CACHE_WB_VICTIM	L1 data cache write-back, victim
0x47	L1D_CACHE_WB_CLEAN	L1 data cache write-back cleaning and coherency
0x48	L1D_CACHE_INVAL	L1 data cache invalidate
0x4C	L1D_TLB_REFILL_RD	L1 data TLB refill, read
0x4D	L1D_TLB_REFILL_WR	L1 data TLB refill, write
0x4E	L1D_TLB_RD	L1 data TLB access, read
0x4F	L1D_TLB_WR	L1 data TLB access, write
0x50	CACHE_ACCESS_RD	L2 cache access, read
		This event counts any read transaction from L1 which looks up in the L2 cache.
		Snoops from outside the core are not counted.
0x51	CACHE_ACCESS_WR	L2 cache access, write
		This event counts any write transaction from L1 which looks up in the L2 cache or any write-back from L1 which allocates into the L2 cache.
		Snoops from outside the core are not counted.

Event	Mnemonic	Description
number	OACHE DD DEFIN	
0x52	CACHE_RD_REFILL	L2 cache refill, read
		This event counts any cacheable read transaction from L1 which causes data to be
		read from outside the core. L2 refills caused by stashes into L2 should not be counted. Transactions such as ReadUnique are counted as read transactions, even though they can
		be generated by store instructions.
0x53	CACHE_WR_REFILL	L2 cache refill, write
		This event counts any write transaction from L1 which causes data to be read from outside the core. L2 refills caused by stashes into L2 should not be counted.
		Transactions such as ReadUnique are not counted as write transactions.
0x56	CACHE_WRITEBACK_VICTIM	L2 cache write-back, victim
0x57	CACHE_WRITEBACK_CLEAN_COH	L2 cache write-back, cleaning and coherency
0x58	L2CACHE_INV	L2 cache invalidate
0x5C	L2TLB_RD_REFILL	L2 TLB refill, read
0x5D	L2TLB_WR_REFILL	L2 TLB refill, write
0x5E	L2TLB_RD_REQ	L2 TLB access, read
0x5F	L2TLB_WR_REQ	L2 TLB access, write
0x60	BUS_ACCESS_RD	Bus access read
		This event counts for every beat of data transferred over the read data channel between the core and the SCU.
0x61	BUS_ACCESS_WR	Bus access write
		This event counts for every beat of data transferred over the write data channel between the core and the SCU.
0x66	MEM_ACCESS_RD	Data memory access, read
		This event counts memory accesses due to load instructions.
		The following instructions are not counted:
		• Instruction fetches
		Cache maintenance instructions
		Translation table walks
		• Prefetches

Event number	Mnemonic	Description			
0x67	MEM_ACCESS_WR	Data memory access, write			
		This event counts memory accesses due to store instructions.			
		The following instructions are not counted: • Instruction fetches.			
		Cache maintenance instructions			
		Translation table walks			
		• Prefetches			
0x68	UNALIGNED_LD_SPEC	Unaligned access, read			
0x69	UNALIGNED_ST_SPEC	Unaligned access, write			
0x6A	UNALIGNED_LDST_SPEC	Unaligned access			
0x6C	LDREX_SPEC	Exclusive operation speculatively executed, LDREX or LDX			
0x6D	STREX_PASS_SPEC	Exclusive operation speculatively executed, STREX or STX pass			
0x6E	STREX_FAIL_SPEC	Exclusive operation speculatively executed, STREX or STX fail			
0x6F	STREX_SPEC	Exclusive operation speculatively executed, STREX or STX			
0x70	LD_SPEC	Operation speculatively executed, load			
0x71	ST_SPEC	Operation speculatively executed, store			
0x73	DP_SPEC	Operation speculatively executed, integer data-processing			
0x74	ASE_SPEC	Operation speculatively executed, Advanced SIMD instruction			
0x75	VFP_SPEC	Operation speculatively executed, floating-point instruction			
0x76	PC_WRITE_SPEC	Operation speculatively executed, software change of the PC			
0x77	CRYPTO_SPEC	Operation speculatively executed, Cryptographic instruction			
0x78	BR_IMMED_SPEC	Branch speculatively executed, immediate branch			
0x79	BR_RETURN_SPEC	Branch speculatively executed, procedure return			
0x7A	BR_INDIRECT_SPEC	Branch speculatively executed, indirect branch			
0x7C	ISB_SPEC	Barrier speculatively executed, ISB			
0x7D	DSB_SPEC	Barrier speculatively executed, DSB			
0x7E	DMB_SPEC	Barrier speculatively executed, DMB			
0x81	EXC_UNDEF	Counts the number of undefined exceptions taken locally			
0x82	EXC_SVC	Exception taken locally, Supervisor Call			
0x83	EXC_PABORT	Exception taken locally, Instruction Abort			
0x84	EXC_DABORT	Exception taken locally, Data Abort and SError			
0x86	EXC_IRQ	Exception taken locally, IRQ			
0x87	EXC_FIQ	Exception taken locally, FIQ			
0x88	EXC_SMC	Exception taken locally, Secure Monitor Call			
0x8A	EXC_HVC	Exception taken locally, Hypervisor Call			
0x8B	EXC_TRAP_PABORT	Exception taken, Instruction Abort not taken locally			
0x8C	EXC_TRAP_DABORT	Exception taken, Data Abort or SError not taken locally			

Event number	Mnemonic	Description					
0x8D	EXC_TRAP_OTHER	Exception taken, Other traps not taken locally					
0x8E	EXC_TRAP_IRQ	Exception taken, IRQ not taken locally					
0x8F	EXC_TRAP_FIQ	Exception taken, FIQ not taken locally					
0x90	RC_LD_SPEC	Release consistency operation speculatively executed, load-acquire					
0x91	RC_ST_SPEC	Release consistency operation speculatively executed, store-release					
0xA0	L3_CACHE_RD	L3 cache read					
0x4004	CNT_CYCLES	Constant frequency cycles					
0x4005	STALL_BACKEND_MEM	No operation sent due to the backend and memory stalls					
0x4006	L1I_CACHE_LMISS	L1 instruction cache long latency miss					
0x4009	L2D_CACHE_LMISS_RD	L2 cache long latency miss					
0x400B	L3D_CACHE_LMISS_RD	L3 cache long latency miss					
0x400C	TRB_WRAP	Trace buffer current write pointer wrapped					
0x4010	TRCEXTOUT0	PE Trace Unit external output 0					
0x4011	TRCEXTOUT1	PE Trace Unit external output 1					
0x4012	TRCEXTOUT2	PE Trace Unit external output 2					
0x4013	TRCEXTOUT3	PE Trace Unit external output 3					
0x4018	CTI_TRIGOUT4	Cross-trigger Interface output trigger 4					
0x4019	CTI_TRIGOUT5	Cross-trigger Interface output trigger 5					
0x401A	CTI_TRIGOUT6	Cross-trigger Interface output trigger 6					
0x401B	CTI_TRIGOUT7	Cross-trigger Interface output trigger 7					
0x4020	LDST_ALIGN_LAT	Access with additional latency from alignment					
0x4021	LD_ALIGN_LAT	Load with additional latency from alignment					
0x4022	ST_ALIGN_LAT	Store with additional latency from alignment					
0x4024	MEM_ACCESS_CHECKED	Checked data memory access					
0x4025	MEM_ACCESS_RD_CHECKED	Checked data memory access, read					
0x4026	MEM_ACCESS_WR_CHECKED	Checked data memory access, write					
0x8005	ASE_INST_SPEC	Advanced SIMD operations speculatively executed					
0x8006	SVE_INST_SPEC	SVE operations speculatively executed					
0x8014	FP_HP_SPEC	Half-precision floating-point operation speculatively executed					
0x8018	FP_SP_SPEC	Single-precision floating-point operation speculatively executed					
0x801C	FP_DP_SPEC	Double-precision floating-point operation speculatively executed					
0x8074	SVE_PRED_SPEC	SVE predicated operations speculatively executed					
0x8075	SVE_PRED_EMPTY_SPEC	SVE predicated operations with no active predicates speculatively executed					
0x8076	SVE_PRED_FULL_SPEC	SVE predicated operations speculatively executed with all active predicates					
0x8077	SVE_PRED_PARTIAL_SPEC	SVE predicated operations speculatively executed with partially active predicates					
0x8079	SVE_PRED_NOT_FULL_SPEC	SVE predicated operations speculatively executed with a Governing predicate in which at least one element is FALSE					
0x80BC	SVE_LDFF_SPEC	SVE First-fault load operations speculatively executed					
0x80BD	SVE_LDFF_FAULT_SPEC	SVE First-fault load operations speculatively executed which set FFR bit to 0					
0x80C0	FP_SCALE_OPS_SPEC	Scalable floating-point element operations speculatively executed					

Event number	Mnemonic	Description
0x80C1	FP_FIXED_OPS_SPEC	Non-scalable floating-point element operations speculatively executed
0x80E3	ASE_SVE_INT8_SPEC	Operation counted by ASE_SVE_INT_SPEC where the largest type is 8-bit integer
0x80E7	ASE_SVE_INT16_SPEC	Operation counted by ASE_SVE_INT_SPEC where the largest type is 16-bit integer
0x80EB	ASE_SVE_INT32_SPEC	Operation counted by ASE_SVE_INT_SPEC where the largest type is 32-bit integer
0x80EF	ASE_SVE_INT64_SPEC	Operation counted by ASE_SVE_INT_SPEC where the largest type is 64-bit integer

17.2 Performance monitors interrupts

The *Performance Monitoring Unit* (PMU) can be configured to generate an interrupt when one or more of the counters overflow.

When the PMU generates an interrupt, the **nPMUIRQ[n]** output is driven LOW.

17.3 External register access permissions

The Cortex®-A710 core supports access to the *Performance Monitoring Unit* (PMU) registers from the system register interface and a memory-mapped interface.

Access to a register depends on:

- Whether the core is powered up
- The state of the OS Lock
- The state of External Performance Monitors Access Disable

The behavior is specific to each register and is not described in this manual. For a detailed description of these features and their effects on the registers, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture. The register descriptions provided in this manual describe whether each register is read/write or read-only.

17.4 AArch64 Performance Monitors register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Performance Monitors registers in the core. Individual register descriptions provide detailed information.

Table 17-2: Performance Monitors register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
PMMIR_EL1	3	C9	0	C14		See individual bit resets.	64-bit	Performance Monitors Machine Identification Register
PMCR_EL0	3	C9	3	C12	-	See individual bit resets.	64-bit	Performance Monitors Control Register

Name	Ор0	CRn	Op1	CRm	Op2	Reset	Width	Description
PMCEIDO_ELO	3	C9	3	C12	6	See individual bit resets.	64-bit	Performance Monitors Common Event Identification register 0
PMCEID1_EL0	3	C9	3	C12	'	See individual bit resets.	64-bit	Performance Monitors Common Event Identification register 1

17.5 PMU register summary

The summary table provides an overview of all PMU registers in the core. Individual register descriptions provide detailed information.

Table 17-3: PMU register summary

Offset	Name	Reset	Width	Description
0x600	PMPCSSR	See individual bit resets.	64-bit	Snapshot Program Counter Sample Register
0x608	PMCIDSSR	See individual bit resets.	32-bit	Snapshot CONTEXTIDR_EL1 Sample Register
0x60C	PMCID2SSR	See individual bit resets.	32-bit	Snapshot CONTEXTIDR_EL2 Sample Register
0x610	PMSSSR	0x1	32-bit	PMU Snapshot Status Register
0x618	PMCCNTSR	See individual bit resets.	64-bit	PMU Cycle Counter Snapshot Register
0x620	PMEVCNTSR0	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x628	PMEVCNTSR1	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x630	PMEVCNTSR2	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x638	PMEVCNTSR3	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x640	PMEVCNTSR4	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x648	PMEVCNTSR5	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x650	PMEVCNTSR6	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x658	PMEVCNTSR7	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x660	PMEVCNTSR8	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x668	PMEVCNTSR9	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x670	PMEVCNTSR10	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x678	PMEVCNTSR11	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x680	PMEVCNTSR12	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x688	PMEVCNTSR13	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x690	PMEVCNTSR14	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x698	PMEVCNTSR15	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6A0	PMEVCNTSR16	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6A8	PMEVCNTSR17	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6B0	PMEVCNTSR18	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6B8	PMEVCNTSR19	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6F0	PMSSCR	See individual bit resets.	32-bit	PMU Snapshot Capture Register
0xE00	PMCFGR	See individual bit resets.	32-bit	Performance Monitors Configuration Register
0xE04	PMCR_EL0	See individual bit resets.	32-bit	Performance Monitors Control Register

Offset	Name	Reset	Width	Description
0xE20	PMCEID0	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 0
0xE24	PMCEID1	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 1
0xE28	PMCEID2	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 2
0xE2C	PMCEID3	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 3
0xE40	PMMIR	See individual bit resets.	32-bit	Performance Monitors Machine Identification Register
OxFBC	PMDEVARCH	See individual bit resets.	32-bit	Performance Monitors Device Architecture register
0xFC8	PMDEVID	See individual bit resets.	32-bit	Performance Monitors Device ID register
0xFCC	PMDEVTYPE	See individual bit resets.	32-bit	Performance Monitors Device Type register
0xFD0	PMPIDR4	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 4
0xFE0	PMPIDR0	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 0
0xFE4	PMPIDR1	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 1
0xFE8	PMPIDR2	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 2
OxFEC	PMPIDR3	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 3
0xFF0	PMCIDR0	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 0
0xFF4	PMCIDR1	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 1
0xFF8	PMCIDR2	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 2
0xFFC	PMCIDR3	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 3

18 Embedded Trace Extension support

The Cortex®-A710 core implements the *Embedded Trace Extension* (ETE). The trace unit performs real-time instruction flow tracing based on the ETE. The trace unit is a CoreSight component and is an integral part of the Arm real-time debug solution.

The following figure shows the main components of the trace unit:

Figure 18-1: Trace unit components

Core interface

The core interface monitors and generates PO elements that are essentially executed branches and exceptions traced in program order.

Trace generation

The trace generation logic generates various trace packets based on PO elements.

Filtering and triggering resources

You can limit the amount of trace data that the trace unit generates by filtering. For example, you can limit trace generation to a certain address range. The trace unit supports other logic analyzer style filtering options. The trace unit can also generate a trigger that is a signal to the Trace Capture Device to stop capturing trace.

FIFO

The trace unit generates trace in a highly compressed form. The First In First Out (FIFO) enables trace bursts to be flattened out. When the FIFO is full, the FIFO signals an overflow. The trace generation logic does not generate any new trace until the FIFO is emptied. This behavior causes a gap in the trace when viewed in the debugger.

Trace out

Trace from the FIFO is output on the AMBA ATB interface or to the trace buffer.

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information.

18.1 Trace unit resources

Trace resources include counters, external input and output signals, and comparators.

The following table shows the trace unit resources, and indicates which of these resources the A710 core implements.

Table 18-1: Trace unit resources implemented

Description	Configuration
Number of resource selection pairs implemented	8
Number of external input selectors implemented	4
Number of Embedded Trace Extension (ETE) events	4
Number of counters implemented	2
Reduced function counter implemented	Not implemented
Number of sequencer states implemented	4
Number of Virtual Machine ID comparators implemented	1
Number of Context ID comparators implemented	1
Number of address comparator pairs implemented	4
Number of single-shot comparator controls	1
Number of core comparator inputs implemented	0
Data address comparisons implemented	Not implemented
Number of data value comparators implemented	0

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information.

18.2 Trace unit generation options

The Cortex®-A710 core trace unit implements a set of generation options.

The following table shows the trace generation options that are implemented in the Cortex®-A710 core trace unit.

Table 18-2: Trace unit generation options implemented

Description	Configuration
Instruction address size in bytes	8
Data address size in bytes	O, as the <i>Embedded Trace Extension</i> (ETE) does not implement data tracing
Data value size in bytes	O, as the ETE does not implement data tracing
Virtual Machine ID size in bytes	4
Context ID size in bytes	4
Support for conditional instruction tracing	Not implemented
Support for tracing of data	Not implemented
Support for tracing of load and store instructions as PO elements	Not implemented
Support for cycle counting in the instruction trace	Implemented
Support for branch broadcast tracing	Implemented
Number of events that are supported in the trace	4
Return stack support	Implemented
Tracing of SError exception support	Implemented
Instruction trace cycle counting minimum threshold	4
Size of Trace ID	7 bits
Synchronization period support	Read/write
Global timestamp size	64 bits
Number of cores available for tracing	1
ATB trigger support	Implemented
Low-power behavior override	Not implemented
Stall control support	Not implemented
Support for overflow avoidance	Not implemented
Support for using CONTEXTIDR_EL2 in Virtual Machine IDentifier (VMID) comparator	Implemented

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information.

18.3 Reset the trace unit

The reset for the trace buffer is the same as a Cold reset for the core. When using the *TRace Buffer Extension* (TRBE), a Warm reset disables the trace buffer and therefore it is not possible to use the trace buffer to capture trace for a Warm reset.

If the trace unit is reset, then tracing stops until the trace unit is reprogrammed and re-enabled. However, if the core is reset using Warm reset, the last few instructions provided by the core before the reset might not be traced.

18.4 Program and read the trace unit registers

You program and read the trace unit registers using either the Debug APB interface or the System register interface.

The core does not have to be in debug state when you program the trace unit registers. When you program the trace unit registers, you must enable all the changes at the same time. Otherwise, if you program the counter, it might start to count based on incorrect events before the correct setup is in place for the trigger condition. To disable the trace unit, use the TRCPRGCTLR.EN bit. See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information about the following registers:

- Programming Control Register, TRCPRGCTLR
- Trace Status Register, TRCSTATR

The following figure shows the flow for programming trace unit registers using the Debug APB interface:

Figure 18-2: Programming trace unit registers using the Debug APB interface

The following figure shows the flow for programming trace unit registers using the System register interface:

Figure 18-3: Programming trace registers using the System register interface

18.5 Trace unit register interfaces

The Cortex®-A710 core supports an APB memory-mapped interface and a system register interface to trace unit registers.

Register accesses differ depending on the trace unit state. See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for information on the behaviors and access mechanisms.

18.6 Interaction with the Performance Monitoring Unit and Debug

The trace unit interacts with the *Performance Monitoring Unit* (PMU) and it can access the PMU events.

Interaction with the PMU

The Cortex®-A710 core includes a PMU that enables events, such as cache misses and executed instructions, to be counted over time.

The PMU and trace unit function together.

Use of PMU events by the trace unit

The PMU architectural events are available to the trace unit through the extended input facility.

The trace unit uses four extended external input selectors to access the PMU events. Each selector can independently select one of the PMU events, that are then active for the cycles where the relevant events occur. These selected events can then be accessed by any of the event registers within the trace unit.

Related information

17 Performance Monitors Extension support on page 107

17.1 Performance monitors events on page 107

18.7 ETE events

The Cortex®-A710 trace unit collects events from other units in the design and uses numbers to reference these events.

Other than the events mentioned in 17.1 Performance monitors events on page 107, the following events are also exported:

Table 18-3: ETE events

Event number	Event mnemonic	Description
0x400D	PMU_OVFS	PMU overflow, counters accessible to EL1 and EL0
0x400E TRB_TRIG		Trace buffer Trigger Event
0x400F	PMU_HOVS	PMU overflow, counters reserved for use by EL2

18.8 AArch64 Trace register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Trace registers in the core. Individual register descriptions provide detailed information.

Table 18-4: Trace register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
TRCIDR8	2	CO	1	C0	6	See individual bit resets.	64-bit	ID Register 8
TRCIMSPEC0	2	C0	1	C0	7	See individual bit resets.	64-bit	IMP DEF Register 0
TRCIDR2	2	CO	1	C10	7	See individual bit resets.	64-bit	ID Register 2
TRCIDR3	2	CO	1	C11	7	See individual bit resets.	64-bit	ID Register 3
TRCIDR4	2	CO	1	C12	7	See individual bit resets.	64-bit	ID Register 4
TRCIDR5	2	CO	1	C13	7	See individual bit resets.	64-bit	ID Register 5
TRCIDR10	2	C0	1	C2	6	0x0	64-bit	ID Register 10
TRCIDR11	2	CO	1	C3	6	0x0	64-bit	ID Register 11
TRCIDR12	2	CO	1	C4	6	0x0	64-bit	ID Register 12
TRCIDR13	2	CO	1	C5	6	0x0	64-bit	ID Register 13
TRCIDR0	2	CO	1	C8	7	See individual bit resets.	64-bit	ID Register 0

Name	Ор0	CRn	Op1	CRm	Op2	Reset	Width	Description
TRCIDR1	2	C0	1	C9	7	See individual bit resets.	64-bit	ID Register 1
TRCCIDCVR0	2	C3	1	C0	0	See individual bit resets.	64-bit	Context Identifier Comparator Value Registers <n></n>

18.9 ETE register summary

The summary table provides an overview of all ETE registers in the core. Individual register descriptions provide detailed information.

Table 18-5: ETE register summary

Offset	Name	Reset	Width	Description
0x018	TRCAUXCTLR	0x0	32-bit	Auxiliary Control Register
0x180	TRCIDR8	See individual bit resets.	32-bit	ID Register 8
0x184	TRCIDR9	See individual bit resets.	32-bit	ID Register 9
0x188	TRCIDR10	See individual bit resets.	32-bit	ID Register 10
0x18C	TRCIDR11	See individual bit resets.	32-bit	ID Register 11
0x190	TRCIDR12	0x0	32-bit	ID Register 12
0x194	TRCIDR13	0×0	32-bit	ID Register 13
0x1C0	TRCIMSPEC0	See individual bit resets.	32-bit	IMP DEF Register 0
0x1E0	TRCIDRO	See individual bit resets.	32-bit	ID Register 0
0x1E4	TRCIDR1	See individual bit resets.	32-bit	ID Register 1
0x1E8	TRCIDR2	See individual bit resets.	32-bit	ID Register 2
0x1EC	TRCIDR3	See individual bit resets.	32-bit	ID Register 3
0x1F0	TRCIDR4	See individual bit resets.	32-bit	ID Register 4
0x1F4	TRCIDR5	See individual bit resets.	32-bit	ID Register 5
0x1F8	TRCIDR6	0x0	32-bit	ID Register 6
0x1FC	TRCIDR7	0x0	32-bit	ID Register 7
0xF00	TRCITCTRL	See individual bit resets.	32-bit	Integration Mode Control Register
0xFA0	TRCCLAIMSET	See individual bit resets.	32-bit	Claim Tag Set Register
0xFA4	TRCCLAIMCLR	See individual bit resets.	32-bit	Claim Tag Clear Register
0xFBC	TRCDEVARCH	See individual bit resets.	32-bit	Device Architecture Register
0xFC0	TRCDEVID2	0x0	32-bit	Device Configuration Register 2
0xFC4	TRCDEVID1	0x0	32-bit	Device Configuration Register 1
0xFC8	TRCDEVID	0×0	32-bit	Device Configuration Register
0xFCC	TRCDEVTYPE	See individual bit resets.	32-bit	Device Type Register
0xFD0	TRCPIDR4	See individual bit resets.	32-bit	Peripheral Identification Register 4
0xFD4	TRCPIDR5	0×0	32-bit	Peripheral Identification Register 5
0xFD8	TRCPIDR6	0x0	32-bit	Peripheral Identification Register 6
0xFDC	TRCPIDR7	0x0	32-bit	Peripheral Identification Register 7
0xFE0	TRCPIDRO	See individual bit resets.	32-bit	Peripheral Identification Register 0
0xFE4	TRCPIDR1	See individual bit resets.	32-bit	Peripheral Identification Register 1

Offset	Name	Reset	Width	Description
0xFE8	TRCPIDR2	See individual bit resets.	32-bit	Peripheral Identification Register 2
OxFEC	TRCPIDR3	See individual bit resets.	32-bit	Peripheral Identification Register 3
0xFF0	TRCCIDRO	See individual bit resets.	32-bit	Component Identification Register 0
0xFF4	TRCCIDR1	See individual bit resets.	32-bit	Component Identification Register 1
0xFF8	TRCCIDR2	See individual bit resets.	32-bit	Component Identification Register 2
OxFFC	TRCCIDR3	See individual bit resets.	32-bit	Component Identification Register 3

19 Trace Buffer Extension support

The Cortex®-A710 core implements the *TRace Buffer Extension* (TRBE). The TRBE writes the program flow trace generated by the trace unit directly to memory. The TRBE is programmed through System registers.

When enabled, the TRBE can:

- Accept trace data from the trace unit and write it to L2 memory.
- Discard trace data from the trace unit. In this case, the data is lost.
- Reject trace data from the trace unit. In this case, the trace unit retains data until the TRBE
 accepts it.

When disabled, the TRBE ignores trace data and the trace unit sends trace data to the AMBA® *Trace Bus* (ATB) interface.

19.1 Program and read the trace buffer registers

You can program and read the *TRace Buffer Extension* (TRBE) registers using the System register interface.

The core does not have to be in debug state when you program the TRBE registers. When you program the TRBE registers, you must enable all the changes at the same time. Otherwise, if you program the counter, it might start to count based on incorrect events before the correct setup is in place for the trigger condition. To disable the TRBE, use the TRBLIMITR EL1.E bit.

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for information on the TRBE register behaviors and access mechanisms.

19.2 Trace buffer register interface

The Cortex®-A710 core supports a System register interface to *TRace Buffer Extension* (TRBE) registers.

Register accesses differ depending on the TRBE state. See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for information on the behaviors and access mechanisms.

20 Activity Monitors Extension support

The Cortex®-A710 core implements the Activity Monitors Extension to the Arm®v8.4-A architecture. Activity monitoring has features similar to performance monitoring features, but is intended for system management use whereas performance monitoring is aimed at user and debug applications.

The activity monitors provide useful information for system power management and persistent monitoring. The activity monitors are read-only in operation and their configuration is limited to the highest Exception level implemented.

The Cortex®-A710 core implements seven counters in two groups, each of which is a 64-bit counter that counts a fixed event. Group 0 has four counters 0-3, and Group 1 has three counters 0-2.

20.1 Activity monitors access

The Cortex®-A710 core supports access to activity monitors from the System register interface and supports read-only memory-mapped access using the Utility bus interface.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on the memory mapping of these registers.

Access enable bit

The access enable bit AMUSERENR_ELO.EN controls access from ELO to the activity monitors System registers.

The CPTR_EL2.TAM bit controls access from EL0 and EL1 to the activity monitors System registers. The CPTR_EL3.TAM bit controls access from EL0, EL1, and EL2 to the Activity Monitors Extension System registers. The AMUSERENR_EL0.EN bit is configurable at EL1, EL2, and EL3. All other controls, as well as the value of the counters, are configurable only at the highest implemented Exception level.

For a detailed description of access controls for the registers, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

System register access

The activity monitors are accessible using the MRS and MSR instructions.

External memory-mapped access

Activity monitors can be memory-mapped accessed from the Utility bus interface. In this case, the activity monitors registers only provide read access to the Activity Monitor Event Counter Registers.

The base address for Activity Monitoring Unit (AMU) registers on the Utility bus interface is 0x<n>90000, where n is the Cortex®-A710 core instance number in the DynamlQ $^{\text{M}}$ -110 cluster.

These registers are treated as RAZ/WI if either:

- The register is marked as Reserved.
- The register is accessed in the wrong Security state.

20.2 Activity monitors counters

The Cortex®-A710 core implements four activity monitors counters, 0-3, and three auxiliary counters, 10-12.

Each counter has the following characteristics:

- All events are counted in 64-bit wrapping counters that overflow when they wrap. There is no support for overflow status indication or interrupts.
- Any change in clock frequency, including when a WFI and WFE instruction stops the clock, can affect any counter.
- Events 0-3 and auxiliary events 10-12 are fixed, and the AMEVTYPERO<n>_ELO and AMEVTYPER1<n>_ELO evtCount bits are read-only.
- The activity monitor counters are reset to zero on a Cold reset of the power domain of the core. When the core is not in reset, activity monitoring is available.

20.3 Activity monitors events

Activity monitors events in the Cortex®-A710 core are either fixed or programmable, and they map to the activity monitors counters.

The following table shows the mapping of counters to fixed events.

Table 20-1: Mapping of counters to fixed events

Activity monitor counter <n></n>	Event	Event number	Description
AMEVCNTR00	CPU_CYCLES	0x0011	Core frequency cycles
AMEVCNTR01	CNT_CYCLES	0x4004	Constant frequency cycles
AMEVCNTR02	Instructions retired	0x0008	Instruction architecturally executed This counter increments for every instruction that is executed architecturally, including instructions that fail their condition code check.
AMEVCNTR03	STALL_BACKEND_MEM	0x4005	Memory stall cycles This counter counts cycles in which the core is unable to dispatch instructions from the front end to the back end due to a back end stall caused by a miss in the last level of cache within the core clock domain.
AMEVCNTR10	Reserved	0x0300	Reserved
AMEVCNTR11	Reserved	0x0301	Reserved

Activity monitor counter <n></n>	Event	Event number	Description
AMEVCNTR12	Reserved	0x0302	Reserved

20.4 AArch64 Activity Monitors register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Activity Monitors registers in the core. Individual register descriptions provide detailed information.

Table 20-2: Activity Monitors register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
AMEVTYPER10_EL0	3	C13	3	C14	0	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER11_EL0	3	C13	3	C14	1	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER12_EL0	3	C13	3	C14	2	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 1
AMCFGR_EL0	3	C13	3	C2	1	See individual bit resets.	64-bit	Activity Monitors Configuration Register
AMCGCR_EL0	3	C13	3	C2	2	See individual bit resets.	64-bit	Activity Monitors Counter Group Configuration Register
AMEVTYPEROO_ELO	3	C13	3	C6	0	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER01_EL0	3	C13	3	C6	1	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER02_EL0	3	C13	3	C6	2	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER03_EL0	3	C13	3	C6	3	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0

20.5 AMU register summary

The summary table provides an overview of all AMU registers in the core. Individual register descriptions provide detailed information.

Table 20-3: AMU register summary

Offset	Name	Reset	Width	Description
0x400	AMEVTYPER00	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x404	AMEVTYPER01	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x408	AMEVTYPER02	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x40C	AMEVTYPER03	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x480	AMEVTYPER10	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1

Offset	Name	Reset	Width	Description
0x484	AMEVTYPER11	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1
0x488	AMEVTYPER12	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1
0x48C	AMEVTYPER13	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1
0xCE0	AMCGCR	See individual bit resets.	32-bit	Activity Monitors Counter Group Configuration Register
0xE00	AMCFGR	See individual bit resets.	32-bit	Activity Monitors Configuration Register
0xE08	AMIIDR	See individual bit resets.	32-bit	Activity Monitors Implementation Identification Register
0xFBC	AMDEVARCH	See individual bit resets.	32-bit	Activity Monitors Device Architecture Register
0xFCC	AMDEVTYPE	See individual bit resets.	32-bit	Activity Monitors Device Type Register
0xFD0	AMPIDR4	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 4
0xFE0	AMPIDR0	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 0
0xFE4	AMPIDR1	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 1
0xFE8	AMPIDR2	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 2
0xFEC	AMPIDR3	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 3
0xFF0	AMCIDR0	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 0
0xFF4	AMCIDR1	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 1
0xFF8	AMCIDR2	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 2
0xFFC	AMCIDR3	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 3

Appendix A AArch32 registers

This appendix contains the descriptions for the Cortex®-A710 AArch32 registers.

A.1 Generic system control register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Generic system control registers in the core. Individual register descriptions provide detailed information.

Table A-1: Generic system control register summary

Name	Ор0	CRn	Op1	CRm	Op2	Reset	Width	Description
FPSCR	3	C0	0	C4	1	See individual bit resets.	32-bit	Floating-Point Status and Control Register

A.1.1 FPSCR, Floating-Point Status and Control Register

Provides floating-point system status information and control.

Configurations

The named fields in this register map to the equivalent fields in the AArch64 AArch64-FPCR and AArch64-FPSR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes

Width

32

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure A-1: AArch32_fpscr bit assignments

Table A-2: FPSCR bit descriptions

Bits	Name	Description	Reset			
[31]	N	Negative condition flag. This is updated by floating-point comparison operations.				
[30]	Z	Zero condition flag. This is updated by floating-point comparison operations.				
[29]	С	Carry condition flag. This is updated by floating-point comparison operations.				
[28]	V	Overflow condition flag. This is updated by floating-point comparison operations.				
[27]	QC	Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated since 0 was last written to this bit.				
[26]	AHP	HP Alternative half-precision control bit:				
		0ь0				
		IEEE half-precision format selected.				
		0b1				
		Alternative half-precision format selected.				
		This bit is only used for conversions between half-precision floating-point and other floating-point formats.				
		The data-processing instructions added as part of the ARMv8.2-FP16 extension always use the IEEE half-precision format, and ignore the value of this bit.				
[25]	DN	Default NaN mode control bit:				
		0ь0				
		NaN operands propagate through to the output of a floating-point operation.				
		0b1				
		Any operation involving one or more NaNs returns the Default NaN.				
		The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Default NaN setting, regardless of the value of the DN bit.				
[24]	FZ	Flush-to-zero mode control bit:				
		ОБО				
		Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754 standard.				
		0b1				
		Flush-to-zero mode enabled.				
		The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Flush-to-zero setting, regardless of the value of the FZ bit.				
		This bit has no effect on half-precision calculations.				

Bits	Name	Description	Reset
[23:22]	RMode	Rounding Mode control field. The encoding of this field is:	
		0ь00	
		Round to Nearest (RN) mode.	
		0b01	
		Round towards Plus Infinity (RP) mode.	
		0b10	
		Round towards Minus Infinity (RM) mode.	
		0b11 Round towards Zero (RZ) mode.	
		Nound towards Zero (NZ) mode.	
		The specified rounding mode is used by almost all scalar floating-point instructions. Advanced SIMD arithmetic always uses the Round to Nearest setting, regardless of the value of the RMode bits.	
[21:20]	RES0	Reserved	0b00
[19]	FZ16	Flush-to-zero mode control bit on half-precision data-processing instructions:	
		0ъ0	
		Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754 standard.	
		0ь1	
		Flush-to-zero mode enabled.	
		The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.	
[18:8]	RES0	Reserved	0b0
[7]	IDC	Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-point exception has occurred since 0 was last written to this bit.	
		How VFP instructions update this bit depends on the value of the IDE bit.	
		Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the IDE bit.	
[6:5]	RES0	Reserved	0b00
[4]	IXC	Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact floating-point exception has occurred since 0 was last written to this bit.	
		How VFP instructions update this bit depends on the value of the IXE bit.	
		Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the IXE bit.	
		The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For details, see 'Flush-to-zero'.	

Bits	Name	Description	Reset
[3]	UFC	Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point exception has occurred since 0 was last written to this bit.	
		How VFP instructions update this bit depends on the value of the UFE bit.	
		Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the UFE bit.	
		The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For details, see 'Flush-to-zero'.	
[2]	OFC	Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0 was last written to this bit.	
		How VFP instructions update this bit depends on the value of the OFE bit.	
		Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the OFE bit.	
[1]	DZC	Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has occurred since 0 was last written to this bit.	
		How VFP instructions update this bit depends on the value of the DZE bit.	
		Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the DZE bit.	
[O]	IOC	Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has occurred since 0 was last written to this bit.	
		How VFP instructions update this bit depends on the value of the IOE bit.	
		Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the IOE bit.	

Appendix B AArch64 registers

This appendix contains the descriptions for the Cortex®-A710 AArch64 registers.

B.1 Generic system control register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Generic system control registers in the core. Individual register descriptions provide detailed information.

Table B-1: Generic system control register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
AIDR_EL1	3	C0	1	C0	7	0x0	64-bit	Auxiliary ID Register
ACTLR_EL1	3	C1	0	CO	1	0x0	64-bit	Auxiliary Control Register (EL1)
ACTLR_EL2	3	C1	4	C0	1	0x0	64-bit	Auxiliary Control Register (EL2)
HACR_EL2	3	C1	4	C1	7	0x0	64-bit	Hypervisor Auxiliary Control Register
ACTLR_EL3	3	C1	6	CO	1	0x0	64-bit	Auxiliary Control Register (EL3)
AMAIR_EL2	3	C10	0	C3	0	0x0	64-bit	Auxiliary Memory Attribute Indirection Register (EL2)
LORID_EL1	3	C10	0	C4	7	See individual bit resets.	64-bit	LORegionID (EL1)
AMAIR_EL1	3	C10	5	C3	0	0x0	64-bit	Auxiliary Memory Attribute Indirection Register (EL1)
AMAIR_EL3	3	C10	6	C3	0	0x0	64-bit	Auxiliary Memory Attribute Indirection Register (EL3)
RMR_EL3	3	C12	6	C0	2	See individual bit resets.	64-bit	Reset Management Register (EL3)
IMP_CPUACTLR_EL1	3	C15	0	C1	0	See individual bit resets.	64-bit	CPU Auxiliary Control Register (EL1)
IMP_CPUACTLR2_EL1	3	C15	0	C1	1	See individual bit resets.	64-bit	CPU Auxiliary Control Register 2 (EL1)
IMP_CPUACTLR3_EL1	3	C15	0	C1	2	See individual bit resets.	64-bit	CPU Auxiliary Control Register 3 (EL1)
IMP_CPUACTLR4_EL1	3	C15	0	C1	3	See individual bit resets.	64-bit	CPU Auxiliary Control Register 4 (EL1)
IMP_CPUECTLR_EL1	3	C15	0	C1	4	See individual bit resets.	64-bit	CPU Extended Control Register
IMP_CPUECTLR2_EL1	3	C15	0	C1	5	See individual bit resets.	64-bit	CPU Extended Control Register 2
IMP_CPUPPMCR3_EL3	3	C15	0	C2	4	See individual bit resets.	64-bit	CPU Power Performance Management Control Register
IMP_CPUPWRCTLR_EL1	3	C15	0	C2	7	0x0	64-bit	CPU Power Control Register
IMP_ATCR_EL1	3	C15	0	C7	0	0x0	64-bit	CPU Auxiliary Translation Control Register (EL1)
IMP_CPUACTLR5_EL1	3	C15	0	C8	0	See individual bit resets.	64-bit	CPU Auxiliary Control Register 5 (EL1)

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
IMP_CPUACTLR6_EL1	3	C15	0	C8	1	See individual bit resets.	64-bit	CPU Auxiliary Control Register 6 (EL1)
IMP_CPUACTLR7_EL1	3	C15	0	C8	2	See individual bit resets.	64-bit	CPU Auxiliary Control Register 7 (EL1)
IMP_ATCR_EL2	3	C15	4	C7	0	0x0	64-bit	CPU Auxiliary Translation Control Register (EL2)
IMP_AVTCR_EL2	3	C15	4	C7	1	0x0	64-bit	CPU Virtualization Auxiliary Translation Control Register (EL2)
IMP_CPUPPMCR_EL3	3	C15	6	C2	0	See individual bit resets.	64-bit	CPU Power Performance Management Control Register
IMP_CPUPPMCR2_EL3	3	C15	6	C2	1	See individual bit resets.	64-bit	CPU Power Performance Management Control Register
IMP_CPUPPMCR4_EL3	3	C15	6	C2	4	See individual bit resets.	64-bit	CPU Power Performance Management Control Register
IMP_CPUPPMCR5_EL3	3	C15	6	C2	5	See individual bit resets.	64-bit	CPU Power Performance Management Control Register
IMP_CPUPPMCR6_EL3	3	C15	6	C2	6	See individual bit resets.	64-bit	CPU Power Performance Management Control Register
IMP_CPUACTLR_EL3	3	C15	6	C4	0	See individual bit resets.	64-bit	CPU Auxiliary Control Register (EL3)
IMP_ATCR_EL3	3	C15	6	C7	0	0x0	64-bit	CPU Auxiliary Translation Control Register (EL2)
IMP_CPUPSELR_EL3	3	C15	6	C8	0	See individual bit resets.	64-bit	Selected Instruction Private Select Register
IMP_CPUPCR_EL3	3	C15	6	C8	1	See individual bit resets.	64-bit	Selected Instruction Private Control Register
IMP_CPUPOR_EL3	3	C15	6	C8	2	See individual bit resets.	64-bit	Selected Instruction Private Opcode Register
IMP_CPUPMR_EL3	3	C15	6	C8	3	See individual bit resets.	64-bit	Selected Instruction Private Mask Register
IMP_CPUPOR2_EL3	3	C15	6	C8	4	See individual bit resets.	64-bit	Selected Instruction Private Opcode Register 2
IMP_CPUPMR2_EL3	3	C15	6	C8	5	See individual bit resets.	64-bit	Selected Instruction Private Mask Register 2
IMP_CPUPFR_EL3	3	C15	6	C8	6	See individual bit resets.	64-bit	Selected Instruction Private Flag Register
FPCR	3	C4	3	C4	0	See individual bit resets.	64-bit	Floating-point Control Register
AFSRO_EL2	3	C5	0	C1	0	0×0	64-bit	Auxiliary Fault Status Register 0 (EL2)
AFSR1_EL2	3	C5	0	C1	1	0×0	64-bit	Auxiliary Fault Status Register 1 (EL2)
AFSRO_EL1	3	C5	5	C1	0	0×0	64-bit	Auxiliary Fault Status Register 0 (EL1)
AFSR1_EL1	3	C5	5	C1	1	0x0	64-bit	Auxiliary Fault Status Register 1 (EL1)
AFSRO_EL3	3	C5	6	C1	0	0x0	64-bit	Auxiliary Fault Status Register 0 (EL3)
AFSR1_EL3	3	C5	6	C1	1	0x0	64-bit	Auxiliary Fault Status Register 1 (EL3)

B.1.1 AIDR_EL1, Auxiliary ID Register

Provides **IMPLEMENTATION DEFINED** identification information.

The value of this register must be interpreted in conjunction with the value of AArch64-MIDR_EL1.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

 0×0

Bit descriptions

Figure B-1: AArch64_aidr_el1 bit assignments

Table B-2: AIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO .	Reserved	0x0

Access

MRS <Xt>, AIDR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AIDR_EL1	0b11	0b001	0b0000	0b0000	0b111

Accessibility

MRS <Xt>, AIDR EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID1 == '1' then
```

B.1.2 ACTLR_EL1, Auxiliary Control Register (EL1)

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

Arm recommends the contents of this register have no effect on the PE when AArch64-HCR_EL2.{E2H, TGE} is {1, 1}, and instead the configuration and control fields are provided by the AArch64-ACTLR_EL2 register. This avoids the need for software to manage the contents of these register when switching between a Guest OS and a Host OS.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-2: AArch64_actlr_el1 bit assignments

Table B-4: ACTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, ACTLR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ACTLR_EL1	0b11	0b000	0b0001	0b0000	0b001

MSR ACTLR_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ACTLR_EL1	0b11	0b000	0b0001	0b0000	0b001

Accessibility

MRS <Xt>, ACTLR EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TACR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
        return NVMem[0x118];
    else
        return ACTLR_EL1;
elsif PSTATE.EL == EL2 then
    return ACTLR_EL1;
elsif PSTATE.EL == EL3 then
    return ACTLR_EL1;
```

MSR ACTLR_EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TACR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
        NVMem[0x118] = X[t];
    else
        ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ACTLR_EL1 = X[t];
```

B.1.3 ACTLR_EL2, Auxiliary Control Register (EL2)

Provides **IMPLEMENTATION DEFINED** configuration and control options for EL2.

Arm recommends the contents of this register are updated to apply to ELO when AArch64-HCR_EL2.{E2H, TGE} is {1, 1}, gaining configuration and control fields from the AArch64-ACTLR_EL1. This avoids the need for software to manage the contents of these register when switching between a Guest OS and a Host OS.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-3: AArch64_actlr_el2 bit assignments

Table B-7: ACTLR_EL2 bit descriptions

Bits	Name	Description	Reset		
[63:13]	RES0	Reserved			
[12]	CLUSTERPMUEN	Performance Management Registers enable. The possible values are:			
		 Ob0 CLUSTERPM* registers are not write-accessible from EL1. This is the reset value. Ob1 CLUSTERPM* registers are write-accessible from EL1 if they are write-accessible from EL2. 			
[11]	SMEN	Scheme Management Registers enable. The possible values are: 0b0 Registers CLUSTERACPSID, CLUSTERSTASHSID, CLUSTERPARTCR, CLUSTERBUSQOS, and CLUSTERTHREADSIDOVR are not write-accessible EL1. This is the reset value. 0b1	0×0		
		Registers CLUSTERACPSID, CLUSTERSTASHSID, CLUSTERPARTCR, CLUSTERBUSQOS, and CLUSTERTHREADSIDOVR are write-accessible EL1 if they are write-accessible from EL2.			

Bits	Name	ne Description			
[10]	TSIDEN	Thread Scheme ID Register enable. The possible values are:	0x0		
		0b0 Register CLUSTERTHREADSID is not write-accessible from EL1. This is the reset value. 0b1			
		Register CLUSTERTHREADSID is write-accessible from EL1 if they are write-accessible from EL2			
[9]	RESO	Reserved			
[8]	Reserved	Reserved ObO Reserved	0x0		
		0b1 Reserved			
[7]	PWREN	Power Control Registers enable. The possible values are: 0b0 Registers CPUPWRCTLR, CLUSTERPWRCTLR, CLUSTERPWRDN, CLUSTERPWRSTAT, CLUSTERL3HIT and CLUSTERL3MISS are not write accessible from EL1. This is the reset value.	0x0		
		Registers CPUPWRCTLR, CLUSTERPWRCTLR, CLUSTERPWRDN, CLUSTERPWRSTAT, CLUSTERL3HIT and CLUSTERL3MISS are write-accessible from EL1 if they are write-accessible from EL2			
[6:2]	RES0	Reserved			
[1]	ECTLREN	Extended Control Registers enable. The possible values are: 0b0 CPUECTLR*_EL1 and CLUSTERECTLR_EL1 are not write-accessible from EL1. This is the reset value.	0b0		
		0b1			
[O]	ACTLREN	Auxiliary Control Registers enable. The possible values are: 0b0 CPUACTLR*_EL1 and CLUSTERACTLR are not write-accessible from EL1. This is the reset value.	0b0		
		0b1 CPUACTLR*_EL1 and CLUSTERACTLR are write-accessible from EL1 if they are write-accessible from EL2			

Access

MRS <Xt>, ACTLR_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ACTLR_EL2	0b11	0b100	0b0001	000000	0b001

MSR ACTLR_EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ACTLR_EL2	0b11	0b100	0b0001	000000	0b001

Accessibility

MRS <Xt>, ACTLR EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return ACTLR_EL2;
elsif PSTATE.EL == EL3 then
    return ACTLR_EL2;
```

MSR ACTLR EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    ACTLR EL2 = X[t];
elsif PSTĀTE.EL == EL3 then
    ACTLR_EL2 = X[t];
```

B.1.4 HACR_EL2, Hypervisor Auxiliary Control Register

Controls trapping to EL2 of **IMPLEMENTATION DEFINED** aspects of EL1 or EL0 operation.

Arm recommends that the values in this register do not cause unnecessary traps to EL2 when AArch64-HCR_EL2. $\{E2H, TGE\} == \{1, 1\}$.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-4: AArch64_hacr_el2 bit assignments

Table B-10: HACR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO RESO	Reserved	0x0

Access

MRS <Xt>, HACR_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
HACR_EL2	0b11	0b100	0b0001	0b0001	0b111

MSR HACR_EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
HACR_EL2	0b11	0b100	0b0001	0b0001	0b111

Accessibility

MRS <Xt>, HACR_EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return HACR_EL2;
elsif PSTATE.EL == EL3 then
    return HACR_EL2;
```

MSR HACR EL2, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

```
if EL2Enabled() && HCR_EL2.NV == '1' then
          AArch64.SystemAccessTrap(EL2, 0x18);
else
          UNDEFINED;
elsif PSTATE.EL == EL2 then
          HACR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
          HACR_EL2 = X[t];
```

B.1.5 ACTLR_EL3, Auxiliary Control Register (EL3)

Provides IMPLEMENTATION DEFINED configuration and control options for EL3.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

 0×0

Bit descriptions

Figure B-5: AArch64_actlr_el3 bit assignments

Table B-13: ACTLR_EL3 bit descriptions

lame	Description	Reset
RESO	Reserved	0x0
CLUSTERPMUEN	Performance Management Registers enable. The possible values are:	0x0
	 Ob0 CLUSTERPM* registers are not write-accessible from EL2 and EL1. This is the reset value. Ob1 CLUSTERPM* registers are write-accessible from EL2 and EL1 if they are write-accessible 	
R E	ESO ESO	Reserved LUSTERPMUEN Performance Management Registers enable. The possible values are: 0b0 CLUSTERPM* registers are not write-accessible from EL2 and EL1. This is the reset value.

Bits	Name	Description	Reset
[11]	SMEN	Scheme Management Registers enable. The possible values are:	0x0
		0b0 Registers CLUSTERACPSID, CLUSTERSTASHSID, CLUSTERPARTCR, CLUSTERBUSQOS, and CLUSTERTHREADSIDOVR are not write-accessible EL2 and EL1. This is the reset value.	
		Registers CLUSTERACPSID, CLUSTERSTASHSID, CLUSTERPARTCR, CLUSTERBUSQOS, and CLUSTERTHREADSIDOVR are write-accessible EL2 and EL1 if they are write-accessible from EL2.	
[10]	TSIDEN	Thread Scheme ID Register enable. The possible values are:	0x0
		0b0 Register CLUSTERTHREADSID is not write-accessible from EL2 and EL1. This is the reset value.	
		Register CLUSTERTHREADSID is write-accessible from EL2 and EL1 if they are write-accessible from EL2	
[9]	RES0	Reserved	0x0
[8]	Reserved	Reserved 0b0	0x0
		Reserved Ob1 Reserved	
[7]	PWREN	Power Control Registers enable. The possible values are:	0x0
		Registers CPUPWRCTLR, CLUSTERPWRCTLR, CLUSTERPWRDN, CLUSTERPWRSTAT, CLUSTERL3HIT and CLUSTERL3MISS are not write accessible from EL2 and EL1. This is the reset value.	
		Registers CPUPWRCTLR, CLUSTERPWRCTLR, CLUSTERPWRDN, CLUSTERPWRSTAT, CLUSTERL3HIT and CLUSTERL3MISS are write-accessible from EL2 and EL1 if they are write-accessible from EL2	
[6:2]	RES0	Reserved	000000
[1]	ECTLREN	Extended Control Registers enable. The possible values are: 0b0 CPUECTLR*_EL2 and EL1 and CLUSTERECTLR_EL2 and EL1 are not write-accessible from EL2 and EL1. This is the reset value.	0b0
		Ob1 CPUECTLR*_EL2 and EL1 and CLUSTERECTLR_EL2 and EL1 are write-accessible from EL2 and EL1 if they are write-accessible from EL2.	
[0]	ACTLREN	Auxiliary Control Registers enable. The possible values are: 0b0	0b0
		CPUACTLR*_EL2 and EL1 and CLUSTERACTLR are not write-accessible from EL2 and EL1. This is the reset value.	
		Ob1 CPUACTLR*_EL2 and EL1 and CLUSTERACTLR are write-accessible from EL2 and EL1 if they are write-accessible from EL2	

Access

MRS <Xt>, ACTLR_EL3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ACTLR_EL3	0b11	0b110	0b0001	0b0000	0b001

MSR ACTLR_EL3, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ACTLR_EL3	0b11	0b110	0b0001	000000	0b001

Accessibility

MRS <Xt>, ACTLR EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return ACTLR_EL3;
```

MSR ACTLR_EL3, <Xt>

```
if PSTATE.EL == EL0 then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
     UNDEFINED;
elsif PSTATE.EL == EL2 then
     UNDEFINED;
elsif PSTATE.EL == EL3 then
     ACTLR_EL3 = X[t];
```

B.1.6 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

Provides **IMPLEMENTATION DEFINED** memory attributes for the memory regions specified by AArch64-MAIR EL2.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

AMAIR_EL2 is permitted to be cached in a TLB.

Figure B-6: AArch64_amair_el2 bit assignments

Table B-16: AMAIR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, AMAIR_EL2

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AMAIR_EL2	0b11	0b100	0b1010	0b0011	00000

MSR AMAIR_EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMAIR_EL2	0b11	0b100	0b1010	0b0011	0b000

MRS <Xt>, AMAIR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMAIR_EL1	0b11	00000	0b1010	0b0011	00000

MSR AMAIR_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMAIR_EL1	0b11	0b000	0b1010	0b0011	0b000

Accessibility

MRS <Xt>, AMAIR_EL2

if PSTATE.EL == ELO then
 UNDEFINED;

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   return AMAIR_EL2;
elsif PSTATE.EL == EL3 then
   return AMAIR_EL2;
```

MSR AMAIR EL2, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    AMAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    AMAIR_EL2 = X[t];
```

MRS <Xt>, AMAIR EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TRVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.AMAIR_EL1 == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x148];
    else
         return AMAIR EL1;
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then
         return AMAIR_EL2;
    else
         return AMAIR EL1;
elsif PSTATE.EL == \overline{EL}3 then
    return AMAIR EL1;
```

MSR AMAIR EL1, <Xt>

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.AMAIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x148] = X[t];
else
        AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AMAIR_EL2 = X[t];
else
        AMAIR_EL1 = X[t];
```

elsif PSTATE.EL == EL3 then
 AMAIR_EL1 = X[t];

B.1.7 LORID_EL1, LORegionID (EL1)

Indicates the number of LORegions and LORegion descriptors supported by the PE.

Configurations

If no LORegion descriptors are implemented, then the registers AArch64-LORC_EL1, AArch64-LORN_EL1, AArch64-LOREA_EL1, and AArch64-LORSA_EL1 are RESO.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-7: AArch64_lorid_el1 bit assignments

Table B-21: LORID_EL1 bit descriptions

Bits	Name	Description	Reset
[63:24]	RES0	Reserved	0x0
[23:16]	LD	Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.	
		0ь00000100	
		Four LOR descriptors are supported	
[15:8]	RES0	Reserved	0000000000
[7:0]	LR	Number of LORegions supported by the PE. This is an 8-bit binary number.	
		Note: If LORID_EL1 indicates that no LORegions are implemented, then LoadLOAcquire and StoreLORelease will behave as LoadAcquire and StoreRelease.	
		0ь00000100	
		Four LORegions are supported	

Access

MRS <Xt>, LORID_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
LORID_EL1	0b11	00000	0b1010	0b0100	0b111

Accessibility

MRS <Xt>, LORID EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.LORID_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TLOR == '1' then
        AArch\overline{6}4.SystemAccessTrap(EL3, 0x18);
         return LORID EL1;
elsif PSTATE.EL == \overline{EL}2 then
    if SCR EL3.TLOR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return LORID EL1;
elsif PSTATE.EL == E\overline{L}3 then
    return LORID EL1;
```

B.1.8 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

Provides **IMPLEMENTATION DEFINED** memory attributes for the memory regions specified by AArch64-MAIR_EL1.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

AMAIR_EL1 is permitted to be cached in a TLB.

Figure B-8: AArch64_amair_el1 bit assignments

Table B-23: AMAIR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, AMAIR EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMAIR_EL1	0b11	0b000	0b1010	0b0011	0b000

MSR AMAIR_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMAIR_EL1	0b11	0b000	0b1010	0b0011	0b000

MRS <Xt>, AMAIR_EL12

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AMAIR_EL12	0b11	0b101	0b1010	0b0011	00000

MSR AMAIR_EL12, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AMAIR_EL12	0b11	0b101	0b1010	0b0011	00000

Accessibility

MRS <Xt>, AMAIR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.AMAIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x148];
else
    return AMAIR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AMAIR_EL2;
else
```

```
return AMAIR_EL1;
elsif PSTATE.EL == EL3 then
return AMAIR_EL1;
```

MSR AMAIR EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.AMAIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x148] = X[t];
    else
         AMAIR EL1 = X[t];
elsif PSTATE.\overline{E}L == EL2 then
    if HCR EL2.E2H == '1' then
        \overline{AMAIR} EL2 = X[t];
    else
        AMAIR EL1 = X[t];
elsif PSTATE.\overline{E}L == EL3 then
    AMAIR_EL1 = X[t];
```

MRS <Xt>, AMAIR EL12

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        return NVMem[0x148];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AMAIR_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        return AMAIR_EL1;
else
        UNDEFINED;
```

MSR AMAIR EL12, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.<NV2,NV1,NV> == '101' then
        NVMem[0x148] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AMAIR_EL1 = X[t];
    else
        UNDEFINED;
```

```
elsif PSTATE.EL == EL3 then
  if EL2Enabled() && HCR_EL2.E2H == '1' then
         AMAIR_EL1 = X[t];
else
         UNDEFINED;
```

B.1.9 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

Provides **IMPLEMENTATION DEFINED** memory attributes for the memory regions specified by AArch64-MAIR_EL3.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

AMAIR_EL3 is permitted to be cached in a TLB.

Figure B-9: AArch64_amair_el3 bit assignments

Table B-28: AMAIR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO RESO	Reserved	0x0

Access

MRS <Xt>, AMAIR_EL3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMAIR_EL3	0b11	0b110	0b1010	0b0011	0b000

MSR AMAIR_EL3, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMAIR_EL3	0b11	0b110	0b1010	0b0011	0b000

Accessibility

MRS <Xt>, AMAIR EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return AMAIR_EL3;
```

MSR AMAIR_EL3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    AMAIR_EL3 = X[t];
```

B.1.10 RMR_EL3, Reset Management Register (EL3)

A write to the register at EL3 can request a Warm reset.

Configurations

When EL3 is implemented:

- If EL3 can use all Execution states then this register must be implemented.
- If EL3 cannot use AArch32, then it is IMPLEMENTATION DEFINED whether the register is implemented.

Otherwise, direct accesses to RMR_EL3 are UNDEFINED.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-10: AArch64_rmr_el3 bit assignments

Table B-31: RMR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:2]	RES0	Reserved	0x0
[1]	RR	Reset Request. Setting this bit to 1 requests a Warm reset.	0x0
[0]	RAO/WI	Reserved	

Access

MRS <Xt>, RMR_EL3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
RMR_EL3	0b11	0b110	0b1100	0b0000	0b010

MSR RMR_EL3, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
RMR_EL3	0b11	0b110	0b1100	0b0000	0b010

Accessibility

MRS <Xt>, RMR_EL3

```
if PSTATE.EL == EL3 then
    return RMR_EL3;
else
    UNDEFINED;
```

MSR RMR_EL3, <Xt>

```
if PSTATE.EL == EL3 then
   RMR_EL3 = X[t];
else
   UNDEFINED;
```

B.1.11 IMP_CPUACTLR_EL1, CPU Auxiliary Control Register (EL1)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-11: AArch64_imp_cpuactlr_el1 bit assignments

Table B-34: IMP_CPUACTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt > , S3 0 C15 C1 0

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_0_C15_C1_0	0b11	00000	0b1111	0b0001	00000

MSR S3_0_C15_C1_0, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_0_C15_C1_0	0b11	00000	0b1111	0b0001	00000

Accessibility

MRS < Xt > , S3 0 C15 C1 0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

MSR S3_0_C15_C1_0, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.TIDCP == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR EL2.ACTLREN == '0' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif ACTLR EL3.ACTLREN == '0' then
       AArch64.SystemAccessTrap(EL3, 0x18);
       IMP CPUACTLR EL1 = X[t];
elsif PSTATE.EL == \overline{EL2} then
    if ACTLR EL3.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
       IMP CPUACTLR EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP_CPUACTLR_EL1 = X[t];
```

B.1.12 IMP_CPUACTLR2_EL1, CPU Auxiliary Control Register 2 (EL1)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-12: AArch64_imp_cpuactlr2_el1 bit assignments

Table B-37: IMP_CPUACTLR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt >, S3_0_C15_C1_1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_1	0b11	0b000	0b1111	0b0001	0b001

MSR S3_0_C15_C1_1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_1	0b11	0b000	0b1111	0b0001	0b001

Accessibility

MRS < Xt>, S3_0_C15_C1_1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR2_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR2_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUACTLR2_EL1;
```

MSR S3_0_C15_C1_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif ACTLR_EL3.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        IMP CPUACTLR2 EL1 = X[t];
```

```
elsif PSTATE.EL == EL2 then
   if ACTLR_EL3.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        IMP_CPUACTLR2_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   IMP_CPUACTLR2_EL1 = X[t];
```

B.1.13 IMP_CPUACTLR3_EL1, CPU Auxiliary Control Register 3 (EL1)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-13: AArch64_imp_cpuactlr3_el1 bit assignments

Table B-40: IMP_CPUACTLR3_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_0_C15_C1_2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_2	0b11	0b000	0b1111	0b0001	0b010

MSR S3_0_C15_C1_2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_2	0b11	0b000	0b1111	0b0001	0b010

Accessibility

MRS < Xt>, S3_0_C15_C1_2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR3_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR3_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUACTLR3_EL1;
```

MSR S3 0 C15 C1 2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif ACTLR_EL3.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        IMP_CPUACTLR3_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if ACTLR_EL3.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        IMP_CPUACTLR3_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        IMP_CPUACTLR3_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        IMP_CPUACTLR3_EL1 = X[t];
```

B.1.14 IMP_CPUACTLR4_EL1, CPU Auxiliary Control Register 4 (EL1)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-14: AArch64_imp_cpuactlr4_el1 bit assignments

	63	32	1.
	Reserved		İ
	31	0	1
i	Reserved		

Table B-43: IMP_CPUACTLR4_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3 0 C15 C1 3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_3	0b11	0b000	0b1111	0b0001	0b011

MSR S3_0_C15_C1_3, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_3	0b11	0b000	0b1111	0b0001	0b011

Accessibility

MRS < Xt>, S3 0 C15 C1 3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR4_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR4_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUACTLR4_EL1;
```

MSR S3 0 C15 C1 3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
```

B.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-15: AArch64_imp_cpuectlr_el1 bit assignments

Table B-46: IMP_CPUECTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:61]	CMC_MIN_WAYS	Limits how many ways of L2 can be used by CMC. The possible values are:	
		0ь000	
		CMC disabled	
		0ь001	
		CMC must leave at least 1 way for data in L2	
		0ь010	
		CMC must leave at least 2 ways for data in L2 - This is the default value.	
		0ь011	
		CMC must leave at least 3 ways for data in L2	
		0ь100	
		CMC must leave at least 4 ways for data in L2	
		0b101	
		CMC must leave at least 5 ways for data in L2	
		0b110	
		CMC must leave at least 6 ways for data in L2	
		0b111	
		CMC must leave at least 7 ways for data in L2	

Bits	Name	Description	Reset
[60:58]	L2_INST_PART	Partition the L2 cache for Instruction. The possible values are:	
		0ь000	
		No ways reserved for instructions. This is the reset value	
		0b001	
		Reserve 1 way for instruction. Only instruction fetches can allocate way 7	
		0ь010	
		Reserve 2 ways for instruction. Only instruction fetches can allocate ways 7:6	
		0ь011	
		Reserve 3 ways for instruction. Only instruction fetches can allocate ways 7:5	
		0ь100	
		Reserve 4 ways for instruction. Only instruction fetches can allocate ways 7:4	
		0b101	
		Reserve 5 ways for instruction. Only instruction fetches can allocate ways 7:3	
		0ь110	
		Reserve 6 ways for instruction. Only instruction fetches can allocate ways 7:2	
		0b111	
		Reserve 7 ways for instruction. Only instruction fetches can allocate ways 7:1	
[57:55]	L2_DATA_PART	Reserve L2 capacity for data accesses. The possible values are:	
		0ь000	
		No ways reserved for data. This is the reset value	
		0ь001	
		Reserve 1 way for data. Only data accesses can allocate way 0	
		0ь010	
		Reserve 2 ways for data. Only data accesses can allocate ways 1:0	
		0ь011	
		Reserve 3 ways for data. Only data accesses can allocate ways 2:0	
		0ь100	
		Reserve 4 ways for data. Only data accesses can allocate ways 3:0	
		0b101	
		Reserve 5 ways for data. Only data accesses can allocate ways 4:0	
		0b110	
		Reserve 6 ways for data. Only data accesses can allocate ways 5:0	
		0b111	
		Reserve 7 ways for data. Only data accesses can allocate ways 6:0	
[54]	MM_VMID_THR	VMID filter threshold. The possible values are:	
		0ь0	
		VMID filter flush after 16 unique VMID allocations to the MMU Translation Cache. This is the default value.	
		0b1	
		VMID filter flush after 32 unique VMID allocations to the MMU Translation Cache	

Bits	Name	Description	Reset
[53]	MM_ASP_EN	Disables allocation of splintered pages in L2 TLB. The possible values are:	
		0ь0	
		Enables allocation of splintered pages in the L2 TLB. This is the default value.	
		0ь1	
		Disables allocation of splintered pages in the L2 TLB.	
[52]	MM_CH_DIS	Disables use of contiguous hint. The possible values are:	
		0ъ0	
		Enables use of contiguous hint. This is the default value.	
		0b1	
		Disables use of contiguous hint.	
[51]	MM_TLBPF_DIS	Disables TLB prefetcher. The possible values are:	
		060	
		Enables TLB prefetcher. This is the default value.	
		0b1	
		Disables TLB prefetcher.	0b000
1	RESO Reserved		
[47]	HPA_L1_DIS	Disables hardware page aggregation in L1 TLBs. The possible values are:	
		0ъ0	
		Enables hardware page aggregation in L1 TLBs. This is the default value.	
		061	
F 4 4 7	LIDA DIG	Disables hardware page aggregation in L1 TLBs.	
[46]	HPA_DIS	Disable Hardware page aggregation. The possible values are:	
		0ъ0	
		Enables hardware page aggregation. This is the default value.	
		0b1 Disables hardware page aggregation.	
[45:44]	DCC	Downstream Cache Control. Controls whether evictions of clean cache-lines send data on	
[43.44]	DCC	the CHI interface. Set this based on whether there is a cache on the path to memory. The possible values are:	
		0ъ00	
		Disables sending data when clean cache-lines are evicted.	
		0ь01	
		Enables sending WriteEvictFull transactions when Unique Clean cache-lines are evicted. Shared Clean cache-line evictions do not send data.	
		0b10	
		Enables sending WriteEvictOrEvict transactions when Unique Clean cache-lines are evicted. Shared Clean cache-line evictions do not send data. This is the default value when the SCU is not present	
		0b11	
		Enables sending WriteEvictOrEvict transactions when Unique Clean or Shared Clean cache-lines are evicted. This is the default value when SCU is present	

Bits	Name	Description	Reset
[43]	EFC	Eviction flush control. Controls whether hardware cache flushes and DC CISW instructions send data when evicting clean cachelines on the CHI interface. The possible values are:	
		Disables sending data when hardware cache flushes or DC CISW instructions evict a clean cacheline. Sending of Evict transactions is controlled by Downstream Snoop Filter Present (DSFP). This is the default value.	
		0b1	
		Sending of data when hardware cache flushes or DC CISW instructions evict clean cachelines is controlled by Downstream Cache Control (DCC). Sending of Evict transactions is controlled by Downstream Snoop Filter Present (DSFP).	
[42]	DFSP	Downstream snoop filter present. Enables sending Evict transactions on the CHI when clean cachelines are evicted without data. Enable this if there is at least one snoop filter in the path to memory. The possible values are:	
		0ь0	
		Disables sending Evict transactions when clean cachelines are evicted without data	
		Ob1 Enables sending of Evict transactions when clean cachelines are evicted without data. This is the default value	
[41:40]	PFT_MM	DRAM prefetch using PrefetchTgt transactions for tablewalk requests. The possible values are:	
		0600 Disable prefetchtgt generation for requests from the Memory Management unit (MMU). This is the default value.	
		0b01 Conservatively generate prefetchtgt for cacheable requests from the MMU, always generate for Non-cacheable.	
		0b10 Aggressively generate prefetchtgt for cacheable requests from the MMU, always generate for Non-cacheable.	
		Ob11 Always generate prefetchtgt for cacheable requests from the MMU, always generate for Non-cacheable.	
[39:38]	PFT_LS	DRAM prefetch using PrefetchTgt transactions for load and store requests. The possible values are:	
		0b00 Disable prefetchtgt generation for requests from the Load-Store unit (LS). This is the default value.	
		0b01	
		Conservatively generate prefetchtgt for cacheable requests from the LS, always generate for Non-cacheable.	
		0b10 Aggressively generate prefetchtgt for cacheable requests from the LS, always generate for Non-cacheable.	
		0b11	
		Always generate prefetchtgt for cacheable requests from the LS, always generate for Non-cacheable.	

Bits	Name	Description	Reset
[37:36]	PFT_IF	DRAM prefetch using PrefetchTgt transactions for instruction fetch requests. The possible values are:	
		Оb00 Disable prefetchtgt generation for requests from the Instruction Fetch unit (IF). This is the default value.	
		Ob01 Conservatively generate prefetchtgt for cacheable requests from the IF, always generate for Non-cacheable.	
		Ob10 Aggressively generate prefetchtgt for cacheable requests from the IF, always generate for Non-cacheable.	
		Ob11 Always generate prefetchtgt for cacheable requests from the IF, always generate for Non-cacheable.	
[35:34]	RESO	Reserved	0b00
[33]	ATOMIC_LD_FORCE_NEAR	A load atomic (including SWP & CAS) instruction to WB memory will be performed near. The possible values are:	
		0b0 Load-atomic is near if cache line is already Exclusive, otherwise make far atomic request.	
		Ob1 Load-atomic will be performed near by bringing the line into the L1D Cache. This is the default value.	
[32]	ATOMIC_ACQ_NEAR	An atomic instruction to WB memory with acquire semantics that does not hit in the cache in Exclusive state, may make up to one fill request. The possible values are:	
		Acquire-atomic is near if cache line is already Exclusive, otherwise make far atomic request.	
		Acquire-atomic will make up to 1 fill request to perform near. This is the default value.	
[31]	ATOMIC_ST_NEAR	A store atomic instruction to WB memory that does not hit in the cache in Exclusive state, may make up to one fill request. The possible values are:	
		ОъО Store-atomic is near if cache line is already Exclusive, otherwise make far atomic request. This is the default value.	
		Ob1 Store-atomic will make up to 1 fill request to perform near.	
[30]	ATOMIC_REL_NEAR	An atomic instruction to WB memory with release semantics that does not hit in the cache in Exclusive state, may make up to one fill request. The possible values are:	
		0ь0 Release-atomic is near if cache line is already Exclusive, otherwise make far atomic request.	
		Release-atomic will make up to 1 fill request to perform near. This is the default value.	

Bits	Name	Description	Reset
[29]	ATOMIC_LD_NEAR	A load atomic (including SWP & CAS) instruction to WB memory that does not hit in the cache in Exclusive state, may make up to one fill request. The possible values are:	
		0ь0	
		Load-atomic is near if cache line is already Exclusive, otherwise make far atomic request. This is the default value.	
		0b1	
		Load-atomic will make up to 1 fill request to perform near.	
[28]	TLD_PRED_DIS	Disable Transient Load Prediction. The possible values are:	
		0ь0	
		Enables transient load prediction. This is the default value.	
		0b1	
		Disables transient load prediction.	
[27]	TLD_PRED_MODE	Aggressive Transient Load Prediction. The possible values are:	
		0ь0	
		Disables aggressive transient load prediction. This is the default value.	
		0b1	
		Enables aggressive transient load prediction.	
[26]	DTLB_CABT_EN	Enables TLB Conflict Data Abort Exception. The possible values are:	
		0b0	
		Disables TLB conflict data abort exception. This is the default value.	
		0b1 Enables TLB conflict data abort exception.	
[25.24]	WS_THR_L2	Threshold for direct stream to L2 cache on store. The possible values are:	
[23.24]	VV3_111K_LZ		
		0b00 256B - This is the default value	
		0b01	
		4KB	
		0b10	
		8KB	
		0b11	
		Disables direct stream to L2 cache on store.	
[23:22]	WS_THR_L3	Threshold for direct stream to L3 cache on store. The possible values are:	
		0ь00	
		128KB	
		0ь01	
		256KB - This is the default value	
		0ь10	
		512KB	
		0b11	
		Disables direct stream to L3 cache on store.	

Bits	Name	Description	Reset
[21:20]	WS_THR_L4	Threshold for direct stream to L4 cache on store. The possible values are:	
		0ь00	
		256KB	
		0ь01	
		512KB - This is the default value	
		0b10	
		1MB	
		0b11	
		Disables direct stream to L4 cache on store.	
[19:18]	WS_THR_DRAM	Threshold for direct stream to DRAM on store. The possible values are:	
		0ь00	
		512KB	
		0ь01	
		1MB - This is the default value	
		0b10	
		2MB	
		0b11	
[250	Disables direct stream to DRAM on store.	
[17:16]		Reserved	0b00
[15]	PF_DIS	Disables hardware prefetching. The possible values are:	
		0ь0	
		Enables hardware prefetching. This is the default value.	
		0b1	
[4 4]	DECO	Disables hardware prefetching. Reserved	01.0
[14]	RESO		0b0
[13:12]	PF_SS_L2_DIST	Single cache line stride prefetching L2 distance. The possible values are:	
		0b00 22 lines ahead	
		0b01 40 lines ahead	
		0b10	
		60 lines ahead	
		0b11	
		Dynamic. This is the default value.	
[11:10]	RFS0	Reserved	0b00
[9]	PF_STS_DIS	Disable store-stride prefetches. The possible values are:	12200
''	515_515	0b0	
		Enables store prefetching. This is the default value.	
		0b1	
		Disables store prefetching.	
1		o.	

Bits	Name	Description	Reset
[8]	PF_STI_DIS	Disable store prefetches at issue (not overridden by ls_hw_pref_disable). The possible values are:	
		0ь0	
		Enables store prefetching. This is the default value.	
		0b1	
		Disable store prefetching.	
[7:6]	RESO	Reserved	0b00
[5:4]	RPF_MODE	Region prefetcher aggressiveness. The possible values are:	
		0ъ00	
		Dynamic region prefetch aggressiveness. This is the default value.	
		0ь01	
		Conservative region prefetching.	
		0b10	
		Very Conservative region prefetching.	
		0b11	
		Most Conservative region prefetching. This will disable the region prefetcher.	
[3]	RPF_LO_CONF	Region Prefetcher single accesses training behavior. The possible values are:	
		0ь0	
		Mostly don't train PHT on single access. This is the default value.	
		0b1	
		Always train the PHT on single access. This results in fewer prefetch requests.	
[2:1]	RES0	Reserved	0b00
[O]	EXTLLC	Internal or external Last-level cache (LLC) in the system. The possible values are:	
		0ь0	
		Indicates that an internal Last-level cache is present in the system, and that the DataSource field on the master CHI interface indicates when data is returned from the LLC. This is used to control how the LL_CACHE* PMU events count. This is the default value.	
		0b1	
		Indicates that an external Last-level cache is present in the system, and that the DataSource field on the master CHI interface indicates when data is returned from the LLC. This is used to control how the LL_CACHE* PMU events count.	

Access

MRS <Xt>, S3_0_C15_C1_4

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_4	0b11	0b000	0b1111	0b0001	0b100

MSR S3_0_C15_C1_4, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_4	0b11	00000	0b1111	0b0001	0b100

Accessibility

MRS < Xt>, S3_0_C15_C1_4

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUECTLR_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUECTLR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUECTLR_EL1;
```

MSR S3_0_C15_C1_4, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR_EL2.ECTLREN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif ACTLR_EL3.ECTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        IMP_CPUECTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if ACTLR_EL3.ECTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        IMP_CPUECTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP_CPUECTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP_CPUECTLR_EL1 = X[t];
```

B.1.16 IMP_CPUECTLR2_EL1, CPU Extended Control Register 2

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-16: AArch64_imp_cpuectlr2_el1 bit assignments

Table B-49: IMP_CPUECTLR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:17]	RESO RESO	Reserved	0x0
[16:15] TXREQ_MIN		Minimum number of TXREQ transactions outstanding from the L2 Transaction Queue. The possible values are:	
		0ь00	
		1/4 of L2 TQ size - This is the default value	
		0ь01	
		1/8 of L2 TQ size	
		0ь10	
		1/16 of L2 TQ size	
		0ь11	
		1/32 of L2 TQ size	

Bits	Name	Description	Reset
[14:11]	PF_MODE	Prefetcher Aggressiveness Modes. With mode 0 representing the most aggressive mode and 3 representing the most conservative mode. The possible values and associated ranges are:	
		0ь0000	
		Modes [0,0] (statically at the most aggressive mode)	
		0b0001	
		Modes [0,1]	
		0ь0010	
		Modes [0,2]	
		0ь0011	
		Modes [0,3] - This is the default value.	
		0ь0100	
		Modes [1,1]	
		0ь0101	
		Modes [1,2]	
		0ь0110	
		Modes [1,3]	
		0b0111	
		Modes [2,2]	
		0b1000	
		Modes [2,3]	
		0b1001	
		Modes [3,3] (statically at the most conservative mode)	
		0b1010	
		reserved	
		0b1011	
		reserved	
		0b1100	
		reserved	
		0b1101	
		reserved	
		0b1110	
		reserved	
		0b1111	
		reserved	

[10:9] CBUSY_FILTER_WINDOW Number of CBusy responses in one sampling window. The possible values ar 0ь00 256 - This is the default value	re:
256 - This is the default value	
0b01	
64	
0610	
128	
0b11	
512	
[8:7] CBUSY_FILTER_THRESHOLD Fraction of of CBusy responses in the sampling window necessary to be con sample of that CBusy value. The possible values are:	sidered a valid
0600	
1/16 - This is the default value	
0601	
1/32	
0610	
1/8	
0b11	
1/4	
[6:5] TXREQ_LIMIT_DEC Dynamic TXREQ limit decrement. Controls how quickly the dynamic TXREQ decreased when CBusy indicates value of 3. The possible values are:	limit is
0ь00	
4 - This is the default value	
0601	
8	
0b10	
16	
0b11	
[4:3] TXREQ_LIMIT_INC Dynamic TXREQ limit increment. Controls how quickly the dynamic TXREQ increased when CBusy indicates values less than 2. The possible values are:	limit is
0b00 4 - This is the default value	
0b01	
8	
0b10	
16	
0b11	
2	

Bits	Name	Description	Reset
[2]	TXREQ_LIMIT_DYNAMIC	Selects static or dynamic control of TXREQ limit. Dynamic TXREQ limit will adjust based on CBusy responses on RXDAT and RXRSP in the range of the static limit selected by CPUECTLR2_EL1[1:0] and 1/4 of the L2 TQ SIZE. The possible values are:	
		0ь0	
		maximum number of TXREQ transactions statically set by CPUECTLR2_EL1[1:0] - This is the default value.	
		0ь1	
		maximum number of TXREQ transactions dynamically controlled	
[1:0]	TXREQ_MAX	Maximum number of TXREQ transactions outstanding from the L2 Transaction Queue. The possible values are:	
		0ь00	
		full L2 TQ size - This is the default value	
		0ь01	
		3/4 of L2 TQ size	
		0ь10	
		1/2 of L2 TQ size	
		0ь11	
		1/4 of L2 TQ size	

Access

MRS < Xt>, S3_0_C15_C1_5

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_5	0b11	00000	0b1111	0b0001	0b101

MSR S3_0_C15_C1_5, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C1_5	0b11	0b000	0b1111	0b0001	0b101

Accessibility

MRS < Xt>, S3_0_C15_C1_5

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUECTLR2_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUECTLR2_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUECTLR2_EL1;
```

MSR S3_0_C15_C1_5, <Xt>

```
if PSTATE.EL == ELO then
```

B.1.17 IMP_CPUPPMCR3_EL3, CPU Power Performance Management Control Register

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-17: AArch64_imp_cpuppmcr3_el3 bit assignments

Table B-52: IMP_CPUPPMCR3_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_0_C15_C2_4

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_0_C15_C2_4	0b11	0b000	0b1111	0b0010	0b100

MSR S3_0_C15_C2_4, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C2_4	0b11	0b000	0b1111	0b0010	0b100

Accessibility

MRS < Xt>, S3_0_C15_C2_4

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPPMCR3_EL3;
```

MSR S3_0_C15_C2_4, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPPMCR3_EL3 = X[t];
```

B.1.18 IMP_CPUPWRCTLR_EL1, CPU Power Control Register

This register controls various power aspects of the core.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-18: AArch64_imp_cpupwrctlr_el1 bit assignments

Table B-55: IMP_CPUPWRCTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:10]	RES0	Reserved	0x0
[9:7]	WFE_RET_CTRL	Wait for Event retention control. The possible values are:	0x0
		0ь000	
		Dynamic retention is disabled.	
		0ь001	
		2 system counter ticks are required before retention entry.	
		0ь010	
		8 system counter ticks are required before retention entry.	
		0b011	
		32 system counter ticks are required before retention entry.	
		0ь100	
		64 system counter ticks are required before retention entry.	
		0b101	
		128 system counter ticks are required before retention entry.	
		0b110	
		256 system counter ticks are required before retention entry.	
		0b111	
		512 system counter ticks are required before retention entry.	

Bits	Name	Description	Reset				
[6:4]	WFI_RET_CTRL	Wait for Interrupt retention control. The possible values are:	0x0				
		0ь000					
		Dynamic retention is disabled.					
		0ь001					
		2 system counter ticks are required before retention entry.					
		0b010					
		8 system counter ticks are required before retention entry.					
		0b011					
		32 system counter ticks are required before retention entry.					
		0ь100					
		64 system counter ticks are required before retention entry.					
		0b101					
		128 system counter ticks are required before retention entry.					
		0b110					
		256 system counter ticks are required before retention entry.					
		0b111					
		512 system counter ticks are required before retention entry.					
[3:1]	RES0	Reserved	0b000				
[O]	CORE_PWRDN_EN	Indicates to the power controller if the CPU wants to power down when it enters WFE/WFI state. The possible values are:	0d0				
		0ь0					
		CPU does not want to power down when it enters WFE/WFI state.					
		0b1					
		CPU wants to power down when it enters WFE/WFI state.					

Access

MRS <Xt>, S3_0_C15_C2_7

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C2_7	0b11	0b000	0b1111	0b0010	0b111

MSR S3_0_C15_C2_7, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_0_C15_C2_7	0b11	00000	0b1111	0b0010	0b111

Accessibility

MRS <Xt>, S3_0_C15_C2_7

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
```

```
return IMP_CPUPWRCTLR_EL1;
elsif PSTATE.EL == EL2 then
   return IMP_CPUPWRCTLR_EL1;
elsif PSTATE.EL == EL3 then
   return IMP_CPUPWRCTLR_EL1;
```

MSR S3_0_C15_C2_7, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.TIDCP == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
                                             '0' then
    elsif EL2Enabled() && ACTLR EL2.PWREN ==
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif ACTLR EL3.PWREN == '0' then
       AArch64.SystemAccessTrap(EL3, 0x18);
       IMP CPUPWRCTLR EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if ACTLR EL3.PWREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        IMP_CPUPWRCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   IMP CPUPWRCTLR EL1 = X[t];
```

B.1.19 IMP_ATCR_EL1, CPU Auxiliary Translation Control Register (EL1)

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

 0×0

Bit descriptions

Figure B-19: AArch64_imp_atcr_el1 bit assignments

Table B-58: IMP_ATCR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15]	HWVAL162	Value of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN162 is set.	0x0
[14]	HWVAL161	Value of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN161 is set.	0x0
[13]	HWVAL160	Value of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN160 is set.	0x0
[12]	HWVAL159	Value of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN159 is set.	0x0
[11]	HWVAL062	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL1 if HWEN062 is set.	0x0
[10]	HWVAL061	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL1 if HWEN061 is set.	0x0
[9]	HWVAL060	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL1 if HWEN060 is set.	0x0
[8]	HWVAL059	Value of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL1 if HWEN059 is set.	0x0
[7]	HWEN162	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0x0
[6]	HWEN161	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0x0
[5]	HWEN160	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0x0
[4]	HWEN159	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0x0
[3]	HWEN062	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL1. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0x0
[2]	HWEN061	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL1. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0x0
[1]	HWEN060	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL1. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0x0
[O]	HWEN059	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL1. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0x0

Access

MRS <Xt>, S3_0_C15_C7_0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C7_0	0b11	0b000	0b1111	0b0111	0b000

MSR S3_0_C15_C7_0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C7_0	0b11	0b000	0b1111	0b0111	00000

Accessibility

MRS < Xt >, S3_0_C15_C7_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_ATCR_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_ATCR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_ATCR_EL1;
```

MSR S3_0_C15_C7_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        IMP_ATCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    IMP_ATCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP_ATCR_EL1 = X[t];
```

B.1.20 IMP_CPUACTLR5_EL1, CPU Auxiliary Control Register 5 (EL1)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-20: AArch64_imp_cpuactlr5_el1 bit assignments

	63	32	1.
	Reserved		İ
	31	0	1
i	Reserved		

Table B-61: IMP_CPUACTLR5_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3 0 C15 C8 0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C8_0	0b11	00000	0b1111	0b1000	00000

MSR S3_0_C15_C8_0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C8_0	0b11	0b000	0b1111	0b1000	00000

Accessibility

MRS <Xt>, S3 0 C15 C8 0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR5_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR5_EL1;
elsif PSTATE.EI == EL3 then
    return IMP_CPUACTLR5_EL1;
```

MSR S3 0 C15 C8 0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
```

B.1.21 IMP_CPUACTLR6_EL1, CPU Auxiliary Control Register 6 (EL1)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-21: AArch64_imp_cpuactlr6_el1 bit assignments

Table B-64: IMP_CPUACTLR6_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_0_C15_C8_1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C8_1	0b11	0b000	0b1111	0b1000	0b001

MSR S3_0_C15_C8_1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C8_1	0b11	0b000	0b1111	0b1000	0b001

Accessibility

MRS < Xt>, S3 0 C15 C8 1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR6_EL1;
elsif PSTATE.EL == EL2 then
        return IMP_CPUACTLR6_EL1;
elsif PSTATE.EL == EL3 then
        return IMP_CPUACTLR6_EL1;
```

MSR S3_0_C15_C8_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif ACTLR_EL3.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        IMP_CPUACTLR6_EL1 = X[t];
elsif PSTATE.EL == ELZ then
    if ACTLR_EL3.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        IMP_CPUACTLR6_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP_CPUACTLR6_EL1 = X[t];
```

B.1.22 IMP_CPUACTLR7_EL1, CPU Auxiliary Control Register 7 (EL1)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-22: AArch64_imp_cpuactlr7_el1 bit assignments

	63	32	1.
	Reserved		İ
	31	0	1
i	Reserved		

Table B-67: IMP_CPUACTLR7_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3 0 C15 C8 2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C8_2	0b11	0b000	0b1111	0b1000	0b010

MSR S3_0_C15_C8_2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_0_C15_C8_2	0b11	0b000	0b1111	0b1000	0b010

Accessibility

MRS < Xt>, S3 0 C15 C8 2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR7_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR7_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUACTLR7_EL1;
```

MSR S3 0 C15 C8 2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
```

B.1.23 IMP_ATCR_EL2, CPU Auxiliary Translation Control Register (EL2)

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-23: AArch64_imp_atcr_el2 bit assignments

Table B-70: IMP_ATCR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15]	HWVAL162	Value of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN162 is set.	0x0
[14]	HWVAL161	Value of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN161 is set.	0x0

Bits	Name	Description	Reset
[13]	HWVAL160	Value of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN160 is set.	0x0
[12]	HWVAL159	Value of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN159 is set.	0x0
[11]	HWVAL062	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN062 is set.	0x0
[10]	HWVAL061	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN061 is set.	0x0
[9]	HWVAL060	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN060 is set.	0x0
[8]	HWVAL059	Value of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL2 if HWEN059 is set.	0x0
[7]	HWEN162	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0x0
[6]	HWEN161	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0x0
[5]	HWEN160	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0x0
[4]	HWEN159	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0x0
[3]	HWEN062	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0x0
[2]	HWEN061	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0x0
[1]	HWEN060	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0x0
[0]	HWEN059	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0x0

Access

MRS <Xt>, S3_4_C15_C7_0

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_4_C15_C7_0	0b11	0b100	0b1111	0b0111	00000

MSR S3_4_C15_C7_0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_4_C15_C7_0	0b11	0b100	0b1111	0b0111	00000

Accessibility

MRS < Xt>, S3_4_C15_C7_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return IMP_ATCR_EL2;
elsif PSTATE.EL == EL3 then
    return IMP_ATCR_EL2;
```

MSR S3_4_C15_C7_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    IMP_ATCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    IMP_ATCR_EL2 = X[t];
```

B.1.24 IMP_AVTCR_EL2, CPU Virtualization Auxiliary Translation Control Register (EL2)

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-24: AArch64_imp_avtcr_el2 bit assignments

Table B-73: IMP_AVTCR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15]	HWVAL162	Value of PBHA[3] on memory accesses due to translation table walks using VSTTBR_EL2 if HWEN162 is set.	0x0
[14]	HWVAL161	Value of PBHA[2] on memory accesses due to translation table walks using VSTTBR_EL2 if HWEN161 is set.	0x0
[13]	HWVAL160	Value of PBHA[1] on memory accesses due to translation table walks using VSTTBR_EL2 if HWEN160 is set.	0x0
[12]	HWVAL159	Value of PBHA[0] on memory accesses due to translation table walks using VSTTBR_EL2 if HWEN159 is set.	0x0
[11]	HWVAL062	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN062 is set.	0x0
[10]	HWVAL061	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN061 is set.	0x0
[9]	HWVAL060	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN060 is set.	0x0
[8]	HWVAL059	Value of PBHA[0] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN059 is set.	0x0
[7]	HWEN162	Enable use of PBHA[3] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0x0
[6]	HWEN161	Enable use of PBHA[2] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0x0
[5]	HWEN160	Enable use of PBHA[1] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0x0
[4]	HWEN159	Enable use of PBHA[0] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0x0
[3]	HWEN062	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0x0
[2]	HWEN061	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0x0
[1]	HWEN060	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0x0
[O]	HWEN059	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0x0

Access

MRS <Xt>, S3_4_C15_C7_1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_4_C15_C7_1	0b11	0b100	0b1111	0b0111	0b001

MSR S3_4_C15_C7_1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_4_C15_C7_1	0b11	0b100	0b1111	0b0111	0b001

Accessibility

MRS < Xt>, S3_4_C15_C7_1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return IMP_AVTCR_EL2;
elsif PSTATE.EL == EL3 then
    return IMP_AVTCR_EL2;
```

MSR S3_4_C15_C7_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    IMP_AVTCR_EL2 = X[t];
elsif PSTATE.ĒL == EL3 then
    IMP_AVTCR_EL2 = X[t];
```

B.1.25 IMP_CPUPPMCR_EL3, CPU Power Performance Management Control Register

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-25: AArch64_imp_cpuppmcr_el3 bit assignments

Table B-76: IMP_CPUPPMCR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C2_0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C2_0	0b11	0b110	0b1111	0b0010	0b000

MSR S3_6_C15_C2_0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C2_0	0b11	0b110	0b1111	0b0010	0b000

Accessibility

MRS < Xt>, S3_6_C15_C2_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPPMCR_EL3;
```

MSR S3_6_C15_C2_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPPMCR_EL3 = X[t];
```

B.1.26 IMP_CPUPPMCR2_EL3, CPU Power Performance Management Control Register

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-26: AArch64_imp_cpuppmcr2_el3 bit assignments

Table B-79: IMP_CPUPPMCR2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3 6 C15 C2 1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C2_1	0b11	0b110	0b1111	0b0010	0b001

MSR S3_6_C15_C2_1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C2_1	0b11	0b110	0b1111	0b0010	0b001

Accessibility

MRS < Xt>, S3_6_C15_C2_1

if PSTATE.EL == ELO then

MSR S3_6_C15_C2_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPPMCR2_EL3 = X[t];
```

B.1.27 IMP_CPUPPMCR4_EL3, CPU Power Performance Management Control Register

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-27: AArch64_imp_cpuppmcr4_el3 bit assignments

Table B-82: IMP_CPUPPMCR4_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C2_4

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C2_4	0b11	0b110	0b1111	0b0010	0b100

MSR S3_6_C15_C2_4, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C2_4	0b11	0b110	0b1111	0b0010	0b100

Accessibility

MRS < Xt>, S3_6_C15_C2_4

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPPMCR4_EL3;
```

MSR S3_6_C15_C2_4, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPPMCR4_EL3 = X[t];
```

B.1.28 IMP_CPUPPMCR5_EL3, CPU Power Performance Management Control Register

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-28: AArch64_imp_cpuppmcr5_el3 bit assignments

Table B-85: IMP_CPUPPMCR5_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C2_5

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C2_5	0b11	0b110	0b1111	0b0010	0b101

MSR S3_6_C15_C2_5, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C2_5	0b11	0b110	0b1111	0b0010	0b101

Accessibility

MRS < Xt>, S3 6 C15 C2 5

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPPMCR5_EL3;
```

MSR S3 6 C15 C2 5, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPPMCR5_EL3 = X[t];
```

B.1.29 IMP_CPUPPMCR6_EL3, CPU Power Performance Management Control Register

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-29: AArch64_imp_cpuppmcr6_el3 bit assignments

Table B-88: IMP_CPUPPMCR6_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C2_6

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C2_6	0b11	0b110	0b1111	0b0010	0b110

MSR S3_6_C15_C2_6, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C2_6	0b11	0b110	0b1111	0b0010	0b110

Accessibility

MRS < Xt>, S3_6_C15_C2_6

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPPMCR6_EL3;
```

MSR S3_6_C15_C2_6, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPPMCR6_EL3 = X[t];
```

B.1.30 IMP_CPUACTLR_EL3, CPU Auxiliary Control Register (EL3)

This register contains control bits that affect the CPU behavior

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-30: AArch64_imp_cpuactlr_el3 bit assignments

Table B-91: IMP_CPUACTLR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C4_0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C4_0	0b11	0b110	0b1111	0b0100	00000

MSR S3_6_C15_C4_0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C4_0	0b11	0b110	0b1111	0b0100	0b000

Accessibility

MRS < Xt>, S3_6_C15_C4_0

```
if PSTATE.EL == EL0 then
        UNDEFINED;
elsif PSTATE.EL == EL1 then
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return IMP_CPUACTLR_EL3;
```

MSR S3_6_C15_C4_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUACTLR_EL3 = X[t];
```

B.1.31 IMP_ATCR_EL3, CPU Auxiliary Translation Control Register (EL2)

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-31: AArch64_imp_atcr_el3 bit assignments

Table B-94: IMP_ATCR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:12]	RES0	Reserved	0x0
[11]	HWVAL062	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL3 if HWEN062 is set.	0x0
[10]	HWVAL061	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL3 if HWEN061 is set.	0x0
[9]	HWVAL060	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL3 if HWEN060 is set.	0x0
[8]	HWVAL059	Value of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL3 if HWEN059 is set.	0x0
[7:4]	RES0	Reserved	0b0000
[3]	HWEN062	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL3. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0b0
[2]	HWEN061	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL3. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0b0
[1]	HWEN060	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL3. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0b0
[0]	HWEN059	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL3. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0b0

Access

MRS < Xt>, S3_6_C15_C7_0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C7_0	0b11	0b110	0b1111	0b0111	00000

MSR S3_6_C15_C7_0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C7_0	0b11	0b110	0b1111	0b0111	0b000

Accessibility

MRS < Xt>, S3 6 C15 C7 0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_ATCR_EL3;
```

MSR S3_6_C15_C7_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_ATCR_EL3 = X[t];
```

B.1.32 IMP_CPUPSELR_EL3, Selected Instruction Private Select Register

Selects the current instruction patch register for subsequent accesses to AArch64-IMP_CPUPCR_EL3, AArch64-IMP_CPUPOR_EL3, AArch64-IMP_CPUPMR_EL3, AArch64-IMP_CPUPMR2_EL3, and AArch64-IMP_CPUPFR_EL3

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-32: AArch64_imp_cpupselr_el3 bit assignments

Table B-97: IMP_CPUPSELR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C8_0

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C8_0	0b11	0b110	0b1111	0b1000	00000

MSR S3_6_C15_C8_0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_0	0b11	0b110	0b1111	0b1000	0b000

Accessibility

MRS < Xt>, S3_6_C15_C8_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPSELR_EL3;
```

MSR S3_6_C15_C8_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPSELR_EL3 = X[t];
```

B.1.33 IMP_CPUPCR_EL3, Selected Instruction Private Control Register

Configures current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-33: AArch64_imp_cpupcr_el3 bit assignments

Table B-100: IMP_CPUPCR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3 6 C15 C8 1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C8_1	0b11	0b110	0b1111	0b1000	0b001

MSR S3_6_C15_C8_1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C8_1	0b11	0b110	0b1111	0b1000	0b001

Accessibility

MRS < Xt>, S3 6 C15 C8 1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

```
UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPCR_EL3;
```

MSR S3_6_C15_C8_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPCR_EL3 = X[t];
```

B.1.34 IMP_CPUPOR_EL3, Selected Instruction Private Opcode Register

Opcode for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-34: AArch64_imp_cpupor_el3 bit assignments

Table B-103: IMP_CPUPOR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C8_2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_2	0b11	0b110	0b1111	0b1000	0b010

MSR S3_6_C15_C8_2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_2	0b11	0b110	0b1111	0b1000	0b010

Accessibility

MRS < Xt>, S3_6_C15_C8_2

```
if PSTATE.EL == EL0 then
        UNDEFINED;
elsif PSTATE.EL == EL1 then
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return IMP_CPUPOR_EL3;
```

MSR S3_6_C15_C8_2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPOR_EL3 = X[t];
```

B.1.35 IMP_CPUPMR_EL3, Selected Instruction Private Mask Register

Mask for current Instruction Patch selected by AArch64-IMP CPUPSELR EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-35: AArch64_imp_cpupmr_el3 bit assignments

Table B-106: IMP_CPUPMR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C8_3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_3	0b11	0b110	0b1111	0b1000	0b011

MSR S3_6_C15_C8_3, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_3	0b11	0b110	0b1111	0b1000	0b011

Accessibility

MRS < Xt>, S3_6_C15_C8_3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPMR_EL3;
```

MSR S3_6_C15_C8_3, <Xt>

```
if PSTATE.EL == EL0 then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
     UNDEFINED;
elsif PSTATE.EL == EL2 then
     UNDEFINED;
elsif PSTATE.EL == EL3 then
     IMP_CPUPMR_EL3 = X[t];
```

B.1.36 IMP_CPUPOR2_EL3, Selected Instruction Private Opcode Register 2

Opcode exclusion for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-36: AArch64_imp_cpupor2_el3 bit assignments

Table B-109: IMP_CPUPOR2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3 6 C15 C8 4

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_4	0b11	0b110	0b1111	0b1000	0b100

MSR S3_6_C15_C8_4, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C8_4	0b11	0b110	0b1111	0b1000	0b100

Accessibility

MRS < Xt>, S3 6 C15 C8 4

```
if PSTATE.EL == EL0 then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
```

```
UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPOR2_EL3;
```

MSR S3_6_C15_C8_4, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPOR2_EL3 = X[t];
```

B.1.37 IMP_CPUPMR2_EL3, Selected Instruction Private Mask Register 2

Mask exclusion for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-37: AArch64_imp_cpupmr2_el3 bit assignments

Table B-112: IMP_CPUPMR2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C8_5

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_5	0b11	0b110	0b1111	0b1000	0b101

MSR S3_6_C15_C8_5, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_5	0b11	0b110	0b1111	0b1000	0b101

Accessibility

MRS < Xt>, S3_6_C15_C8_5

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPMR2_EL3;
```

MSR S3_6_C15_C8_5, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPMR2_EL3 = X[t];
```

B.1.38 IMP_CPUPFR_EL3, Selected Instruction Private Flag Register

Instruction Patch flags for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-38: AArch64_imp_cpupfr_el3 bit assignments

Table B-115: IMP_CPUPFR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use.	

Access

MRS < Xt>, S3_6_C15_C8_6

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_6	0b11	0b110	0b1111	0b1000	0b110

MSR S3_6_C15_C8_6, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C8_6	0b11	0b110	0b1111	0b1000	0b110

Accessibility

MRS < Xt>, S3_6_C15_C8_6

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPFR_EL3;
```

MSR S3_6_C15_C8_6, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPFR_EL3 = X[t];
```

B.1.39 FPCR, Floating-point Control Register

Controls floating-point behavior.

Configurations

The named fields in this register map to the equivalent fields in the AArch32 AArch32-FPSCR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Attributes

Width

64

Functional group

Generic system control

Reset value

See individual bit resets.

Bit descriptions

Figure B-39: AArch64_fpcr bit assignments

Table B-118: FPCR bit descriptions

Bits	Name	Description	Reset
[63:27]	RES0	Reserved	0x0
[26]	AHP	Alternative half-precision control bit:	
		0ь0	
		IEEE half-precision format selected.	
		0b1	
		Alternative half-precision format selected.	
		This bit is only used for conversions between half-precision floating-point and other floating-point formats.	
		The data-processing instructions added as part of the ARMv8.2-FP16 extension always use the IEEE half-precision format, and ignore the value of this bit.	

Bits	Name	Description	Reset				
[25]	DN	Default NaN mode control bit:					
		0ь0					
		NaN operands propagate through to the output of a floating-point operation.					
		0b1					
		Any operation involving one or more NaNs returns the Default NaN.					
		The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.					
[24]	FZ	Flush-to-zero mode control bit.					
		060					
		Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754 standard.					
		0ь1					
		Flush-to-zero mode enabled.					
		The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.					
		This bit has no effect on half-precision calculations.					
[23:22]	RMode	Rounding Mode control field.					
		0ь00					
		Round to Nearest (RN) mode.					
		0b01					
		Round towards Plus Infinity (RP) mode.					
		Round towards Minus Infinity (RM) mode.					
		0b11					
		Round towards Zero (RZ) mode.					
[04.00]	DECO	The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.					
[21:20]	RESO	Reserved	0b00				
[19]	FZ16	Flush-to-zero mode control bit on half-precision data-processing instructions.					
		Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the					
		IEEE 754 standard.					
		0b1					
		Flush-to-zero mode enabled.					
		The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations. A half-precision floating-point number that is flushed to zero as a result of the value of the FZ16 bit does not generate an Input Denormal exception.					
[18:0]	RES0	Reserved	0b00000000				

Access

MRS <Xt>, FPCR

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
FPCR	0b11	0b011	0b0100	0b0100	0b000

MSR FPCR, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
FPCR	0b11	0b011	0b0100	0b0100	00000

Accessibility

MRS <Xt>, FPCR

```
if PSTATE.EL == ELO then
    if !(EL2Enabled() && HCR EL2.<E2H,TGE> == '11') && CPACR EL1.FPEN != '11' then
         if EL2Enabled() && HCR EL2.TGE == '1' then
             AArch64.SystemAccessTrap(EL2, 0x00);
        else
             AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && HCR_EL2.<E2H, TGE> == '11' && CPTR_EL2.FPEN != '11' then
         AArch64.SystemAccessTrap(EL2, 0x07);
    elsif EL2Enabled() && HCR EL2.E2H == '1' && CPTR EL2.FPEN == 'x0' then
    AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR EL2.E2H != '1' && CPTR EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL3, 0x07);
    else
        return FPCR;
elsif PSTATE.EL == EL1 then
    if CPACR\_EL1.FPEN == 'x0' then
         AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && HCR EL2.E2H != '1' && CPTR EL2.TFP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
        return FPCR;
elsif PSTATE.EL == EL2 then
  if HCR EL2.E2H == '0' && CPTR EL2.TFP == '1' then
         AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HCR EL2.E2H == '1' && CPTR EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL3, 0x07);
    else
        return FPCR;
elsif PSTATE.EL == EL3 then
if CPTR EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPCR:
```

MSR FPCR, <Xt>

```
if PSTATE.EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x00);
  else
        AArch64.SystemAccessTrap(EL1, 0x07);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then
```

```
AArch64.SystemAccessTrap(EL2, 0x07);
    elsif EL2Enabled() && HCR EL2.E2H == '1' && CPTR EL2.FPEN == 'x0' then
    AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL3, 0x07);
         FPCR = X[t];
elsif PSTATE.EL == EL1 then
    if CPACR EL1.FPEN == 'x0' then
         AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && HCR EL2.E2H != '1' && CPTR EL2.TFP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
         AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL3, 0x07);
         FPCR = X[t];
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '0' && CPTR EL2.TFP == '1' then
         \overline{AArch64}.SystemAccessTrap(\overline{EL2}, 0x07);
    elsif HCR EL2.E2H == '1' && CPTR EL2.FPEN == 'x0' then
         AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL3, 0x07);
    else
         FPCR = X[t];
elsif PSTATE.EL == EL3 then
if CPTR EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
         FPCR = X[t];
```

B.1.40 AFSRO_EL2, Auxiliary Fault Status Register 0 (EL2)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

Generic system control

Reset value

 0×0

Bit descriptions

Figure B-40: AArch64_afsr0_el2 bit assignments

Table B-121: AFSR0_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO .	Reserved	0x0

Access

MRS <Xt>, AFSRO_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL2	0b11	0b100	0b0101	0b0001	0b000

MSR AFSRO EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL2	0b11	0b100	0b0101	0b0001	0b000

MRS <Xt>, AFSR0 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL1	0b11	0b000	0b0101	0b0001	00000

MSR AFSRO_EL1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AFSRO_EL1	0b11	00000	0b0101	0b0001	0b000

Accessibility

MRS <Xt>, AFSRO_EL2

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   return AFSR0_EL2;
elsif PSTATE.EL == EL3 then
   return AFSR0_EL2;
```

MSR AFSRO EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    AFSR0_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    AFSR0_EL2 = X[t];
```

MRS <Xt>, AFSR0 EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR EL3.FGTEn == '1' && HFGRTR EL2.AFSR0 EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x128];
    else
         return AFSR0_EL1;
elsif PSTATE.EL == E\overline{L}2 then
    if HCR_EL2.E2H == '1' then
        return AFSR0 EL2;
        return AFSR0 EL1;
elsif PSTATE.EL == E\overline{L}3 then
    return AFSR0 EL1;
```

MSR AFSRO EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR EL3.FGTEn == '1' && HFGWTR EL2.AFSR0 EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x128] = X[t];
        AFSR0 EL1 = X[t];
elsif PSTATE.\overline{E}L == EL2 then
    if HCR\_EL2.E2H == '1' then
        \overline{AFSR0} EL2 = X[t];
        AFSR0_{EL1} = X[t];
elsif PSTATE.\overline{E}L == EL3 then
    AFSR0 EL1 = X[t];
```

B.1.41 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-41: AArch64_afsr1_el2 bit assignments

Table B-126: AFSR1_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, AFSR1_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSR1_EL2	0b11	0b100	0b0101	0b0001	0b001

MSR AFSR1_EL2, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AFSR1_EL2	0b11	0b100	0b0101	0b0001	0b001

MRS <Xt>, AFSR1 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSR1_EL1	0b11	0b000	0b0101	0b0001	0b001

MSR AFSR1 EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSR1_EL1	0b11	00000	0b0101	0b0001	0b001

Accessibility

MRS <Xt>, AFSR1 EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return AFSR1_EL2;
elsif PSTATE.EL == EL3 then
    return AFSR1_EL2;
```

MSR AFSR1_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    AFSR1 EL2 = X[t];
elsif PSTĀTE.EL == EL3 then
    AFSR1_EL2 = X[t];
```

MRS <Xt>, AFSR1 EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.AFSR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<0x18);
elsif EL2Enabled() && HCR_EL2.<0x18);
elsif EL2Enabled() && HCR_EL2.<0x18);
else
        return NVMem[0x130];
else
        return AFSR1_EL1;
elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' then
        return AFSR1_EL2;
else
        return AFSR1_EL1;
elsif PSTATE.EL == EL3 then
    return AFSR1_EL1;</pre>
```

MSR AFSR1 EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.AFSR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x130] = X[t];
else
        AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AFSR1_EL2 = X[t];
else
        AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        AFSR1_EL1 = X[t];
```

B.1.42 AFSRO_EL1, Auxiliary Fault Status Register 0 (EL1)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-42: AArch64_afsr0_el1 bit assignments

Table B-131: AFSRO_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, AFSRO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL1	0b11	00000	0b0101	0b0001	00000

MSR AFSRO_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL1	0b11	0b000	0b0101	0b0001	0b000

MRS <Xt>, AFSRO EL12

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL12	0b11	0b101	0b0101	0b0001	0b000

MSR AFSRO_EL12, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL12	0b11	0b101	0b0101	0b0001	0b000

Accessibility

MRS <Xt>, AFSR0 EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.AFSRO_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x128];
else
        return AFSRO_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AFSRO_EL2;
else
        return AFSRO_EL1;
elsif PSTATE.EL == EL3 then
    return AFSRO_EL1;
```

MSR AFSRO EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.AFSR0_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x128] = X[t];
else
```

```
AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AFSR0_EL2 = X[t];
    else
        AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    AFSR0_EL1 = X[t];
```

MRS < Xt>, AFSRO_EL12

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
       return NVMem[0x128];
    elsif EL2Enabled() && HCR EL2.NV == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
       UNDEFINED;
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
       return AFSR0 EL1;
       UNDEFINED;
elsif PSTATE.EL == EL3 then
   if EL2Enabled() && HCR_EL2.E2H == '1' then
       return AFSR0 EL1;
    else
        UNDEFINED;
```

MSR AFSRO_EL12, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.<NV2,NV1,NV> == '101' then
        NVMem[0x128] = X[t];
    elsif EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '1' then
        AF\overline{S}R0_{EL1} = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
    AFSR0_EL1 = X[t];
        UNDEFINED;
```

B.1.43 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-43: AArch64_afsr1_el1 bit assignments

Table B-136: AFSR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	0x0

Access

MRS <Xt>, AFSR1_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSR1_EL1	0b11	0b000	0b0101	0b0001	0b001

MSR AFSR1_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSR1_EL1	0b11	0b000	0b0101	0b0001	0b001

MRS <Xt>, AFSR1_EL12

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSR1_EL12	0b11	0b101	0b0101	0b0001	0b001

MSR AFSR1_EL12, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AFSR1_EL12	0b11	0b101	0b0101	0b0001	0b001

Accessibility

MRS <Xt>, AFSR1 EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.AFSR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<0x18);
elsif EL2Enabled() && HCR_EL2.<0x18);
elsif EL2Enabled() && HCR_EL2.<0x18);
else
        return NVMem[0x130];
else
        return AFSR1_EL1;
elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' then
        return AFSR1_EL2;
else
        return AFSR1_EL1;
elsif PSTATE.EL == EL3 then
    return AFSR1_EL1;</pre>
```

MSR AFSR1 EL1, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED:
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.TVM == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR EL3.FGTEn == '1' && HFGWTR EL2.AFSR1 EL1 == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2, NV1, NV> == '111' then
      NVMem[0x130] = X[t];
    else
if HCR EL2.E2H == '1' then
       AF\overline{S}R1 EL2 = X[t];
       AFSR1 EL1 = X[t];
elsif PSTATE.\overline{E}L == EL3 then
   AFSR1 EL1 = X[t];
```

MRS <Xt>, AFSR1 EL12

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        return NVMem[0x130];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AFSR1_EL1;
    else
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        return AFSR1_EL1;
    else
```

UNDEFINED;

MSR AFSR1_EL12, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.<NV2, NV1, NV> == '101' then
        NVMem[0x130] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
        AF\overline{S}R1 EL1 = X[t];
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR EL2.E2H == '1' then
        AFSR1_EL1 = X[t];
    else
         UNDEFINED;
```

B.1.44 AFSRO_EL3, Auxiliary Fault Status Register 0 (EL3)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-44: AArch64_afsr0_el3 bit assignments

Table B-141: AFSR0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, AFSRO_EL3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSRO_EL3	0b11	0b110	0b0101	0b0001	00000

MSR AFSRO_EL3, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AFSRO_EL3	0b11	0b110	0b0101	0b0001	0b000

Accessibility

MRS <Xt>, AFSRO_EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return AFSRO_EL3;
```

MSR AFSRO_EL3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    AFSRO_EL3 = X[t];
```

B.1.45 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic system control

Reset value

0x0

Bit descriptions

Figure B-45: AArch64_afsr1_el3 bit assignments

Table B-144: AFSR1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO .	Reserved	0x0

Access

MRS <Xt>, AFSR1_EL3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AFSR1_EL3	0b11	0b110	0b0101	0b0001	0b001

MSR AFSR1_EL3, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AFSR1_EL3	0b11	0b110	0b0101	0b0001	0b001

Accessibility

MRS <Xt>, AFSR1_EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return AFSR1_EL3;
```

MSR AFSR1_EL3, <Xt>

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   UNDEFINED;
elsif PSTATE.EL == EL2 then
   UNDEFINED;
```

elsif PSTATE.EL == EL3 then
 AFSR1_EL3 = X[t];

B.2 AArch64 Debug register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Debug registers in the core. Individual register descriptions provide detailed information.

Table B-147: Debug register summary

Name	Ор0	CRn	Op1	CRm	Op2	Reset	Width	Description
IMP_IDATA0_EL3	3	C15	6	C0	0	See individual bit resets.	64-bit	Instruction Register 0
IMP_IDATA1_EL3	3	C15	6	C0	1	See individual bit resets.	64-bit	Instruction Register 0
IMP_IDATA2_EL3	3	C15	6	C0	2	See individual bit resets.	64-bit	Instruction Register 0
IMP_DDATA0_EL3	3	C15	6	C1	0	See individual bit resets.	64-bit	Data Register 0
IMP_DDATA1_EL3	3	C15	6	C1	1	See individual bit resets.	64-bit	Data Register 1
IMP_DDATA2_EL3	3	C15	6	C1	2	See individual bit resets.	64-bit	Data Register 2

B.2.1 IMP_IDATA0_EL3, Instruction Register 0

Contains data from a preceding RAMINDEX operation.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Reset value

See individual bit resets.

Bit descriptions

Figure B-46: AArch64_imp_idata0_el3 bit assignments

Table B-148: IMP_IDATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	DATA	Contains data from a preceding RAMINDEX operation	

Access

MRS <Xt>, S3_6_C15_C0_0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C0_0	0b11	0b110	0b1111	000000	0b000

Accessibility

MRS < Xt>, S3_6_C15_C0_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_IDATAO_EL3;
```

B.2.2 IMP_IDATA1_EL3, Instruction Register 0

Contains data from a preceding RAMINDEX operation.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Reset value

See individual bit resets.

Bit descriptions

Figure B-47: AArch64_imp_idata1_el3 bit assignments

Table B-150: IMP_IDATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	DATA	Contains data from a preceding RAMINDEX operation	

Access

MRS < Xt>, S3_6_C15_C0_1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C0_1	0b11	0b110	0b1111	0b0000	0b001

Accessibility

MRS < Xt>, S3_6_C15_C0_1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_IDATA1_EL3;
```

B.2.3 IMP_IDATA2_EL3, Instruction Register 0

Contains data from a preceding RAMINDEX operation.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Reset value

See individual bit resets.

Bit descriptions

Figure B-48: AArch64_imp_idata2_el3 bit assignments

Table B-152: IMP_IDATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	DATA	Contains data from a preceding RAMINDEX operation	

Access

MRS <Xt>, S3_6_C15_C0_2

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C0_2	0b11	0b110	0b1111	000000	0b010

Accessibility

MRS < Xt>, S3_6_C15_C0_2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_IDATA2_EL3;
```

B.2.4 IMP_DDATA0_EL3, Data Register 0

Contains data from a preceding RAMINDEX operation.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Reset value

See individual bit resets.

Bit descriptions

Figure B-49: AArch64_imp_ddata0_el3 bit assignments

Table B-154: IMP_DDATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	DATA	Contains data from a preceding RAMINDEX operation	

Access

MRS <Xt>, S3_6_C15_C1_0

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_6_C15_C1_0	0b11	0b110	0b1111	0b0001	0b000

Accessibility

MRS < Xt>, S3_6_C15_C1_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_DDATA0_EL3;
```

B.2.5 IMP_DDATA1_EL3, Data Register 1

Contains data from a preceding RAMINDEX operation.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Reset value

See individual bit resets.

Bit descriptions

Figure B-50: AArch64_imp_ddata1_el3 bit assignments

Table B-156: IMP_DDATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	DATA	Contains data from a preceding RAMINDEX operation	

Access

MRS <Xt>, S3_6_C15_C1_1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C1_1	0b11	0b110	0b1111	0b0001	0b001

Accessibility

MRS < Xt>, S3_6_C15_C1_1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_DDATA1_EL3;
```

B.2.6 IMP_DDATA2_EL3, Data Register 2

Contains data from a preceding RAMINDEX operation.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Reset value

See individual bit resets.

Bit descriptions

Figure B-51: AArch64_imp_ddata2_el3 bit assignments

Table B-158: IMP_DDATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	DATA	Contains data from a preceding RAMINDEX operation	

Access

MRS < Xt>, S3_6_C15_C1_2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S3_6_C15_C1_2	0b11	0b110	0b1111	0b0001	0b010

Accessibility

MRS < Xt>, S3 6 C15 C1 2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_DDATA2_EL3;
```

B.3 system-instruction register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** system-instruction registers in the core. Individual register descriptions provide detailed information.

Table B-160: system-instruction register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
SYS_IMP_RAMINDEX	1	C15	6	C0	0	See individual bit resets.	64-bit	RAM Index

B.3.1 SYS_IMP_RAMINDEX, RAM Index

Read contents of the cache specified by the source register into AArch64-IMP_IDATA0_EL3, AArch64-IMP_IDATA1_EL3, AArch64-IMP_IDATA2_EL3, AArch64-IMP_DDATA0_EL3, AArch64-IMP_DDATA1_EL3, and AArch64-IMP_DDATA2_EL3.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

system-instruction

Reset value

See individual bit resets.

Bit descriptions

Figure B-52: AArch64_sys_imp_ramindex bit assignments

Table B-161: SYS_IMP_RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO	Reserved	0x0
[31:24]	ID	RAM ID (See Chapter 10)	
[23:0]	INDEX	RAM Index (See Chapter 10)	

Access

Accesses to this instruction use the following encodings:

SYS #6, C15, C0, #0, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
S1_6_C15_C0_0	0b01	0b110	0b1111	0b0000	0b000

Accessibility

Accesses to this instruction use the following encodings:

SYS #6, C15, C0, #0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    SYS_IMP_RAMINDEX(X[t]);
```

B.4 AArch64 Identification register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Identification registers in the core. Individual register descriptions provide detailed information.

Table B-163: Identification register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
MIDR_EL1	3	C0	0	C0	0	See individual bit resets.	64-bit	Main ID Register
MPIDR_EL1	3	C0	0	CO	5	See individual bit resets.	64-bit	Multiprocessor Affinity Register
REVIDR_EL1	3	C0	0	CO	6	See individual bit resets.	64-bit	Revision ID Register
ID_PFRO_EL1	3	C0	0	C1	0	See individual bit resets.	64-bit	AArch32 Processor Feature Register 0
ID_PFR1_EL1	3	C0	0	C1	1	See individual bit resets.	64-bit	AArch32 Processor Feature Register 1
ID_DFR0_EL1	3	C0	0	C1	2	See individual bit resets.	64-bit	AArch32 Debug Feature Register 0
ID_AFRO_EL1	3	C0	0	C1	3	0x0	64-bit	AArch32 Auxiliary Feature Register 0
ID_MMFR0_EL1	3	CO	0	C1	4	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 0
ID_MMFR1_EL1	3	C0	0	C1	5	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 1
ID_MMFR2_EL1	3	C0	0	C1	6	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 2
ID_MMFR3_EL1	3	C0	0	C1	7	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 3
ID_ISARO_EL1	3	C0	0	C2	0	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 0
ID_ISAR1_EL1	3	CO	0	C2	1	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 1
ID_ISAR2_EL1	3	CO	0	C2	2	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 2
ID_ISAR3_EL1	3	C0	0	C2	3	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 3
ID_ISAR4_EL1	3	C0	0	C2	4	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 4
ID_ISAR5_EL1	3	C0	0	C2	5	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 5
ID_MMFR4_EL1	3	CO	0	C2	6	See individual bit resets.	64-bit	AArch32 Memory Model Feature Register 4
ID_ISAR6_EL1	3	CO	0	C2	7	See individual bit resets.	64-bit	AArch32 Instruction Set Attribute Register 6
MVFR0_EL1	3	C0	0	C3	0	See individual bit resets.	64-bit	AArch32 Media and VFP Feature Register 0
MVFR1_EL1	3	C0	0	C3	1	See individual bit resets.	64-bit	AArch32 Media and VFP Feature Register 1
MVFR2_EL1	3	CO	0	C3	2	See individual bit resets.	64-bit	AArch32 Media and VFP Feature Register 2
ID_PFR2_EL1	3	CO	0	C3	4	See individual bit resets.	64-bit	AArch32 Processor Feature Register 2
ID_DFR1_EL1	3	CO	0	C3	5	0x0	64-bit	Debug Feature Register 1
ID_AA64PFR0_EL1	3	C0	0	C4	0	See individual bit resets.	64-bit	AArch64 Processor Feature Register 0
ID_AA64PFR1_EL1	3	C0	0	C4	1	See individual bit resets.	64-bit	AArch64 Processor Feature Register 1
ID_AA64ZFR0_EL1	3	C0	0	C4	4	See individual bit resets.	64-bit	SVE Feature ID register 0
ID_AA64DFR0_EL1	3	C0	0	C5	0	See individual bit resets.	64-bit	AArch64 Debug Feature Register 0
ID_AA64DFR1_EL1	3	CO	0	C5	1	0x0	64-bit	AArch64 Debug Feature Register 1
ID_AA64AFR0_EL1	3	C0	0	C5	4	0x0	64-bit	AArch64 Auxiliary Feature Register 0
ID_AA64AFR1_EL1	3	C0	0	C5	5	0x0	64-bit	AArch64 Auxiliary Feature Register 1
ID_AA64ISAR0_EL1	3	CO	0	C6	0	See individual bit resets.	64-bit	AArch64 Instruction Set Attribute Register 0
ID_AA64ISAR1_EL1	3	C0	0	C6	1	See individual bit resets.	64-bit	AArch64 Instruction Set Attribute Register 1
ID_AA64MMFR0_EL1	3	CO	0	C7	0	See individual bit resets.	64-bit	AArch64 Memory Model Feature Register 0
ID_AA64MMFR1_EL1	3	C0	0	C7	1	See individual bit resets.	64-bit	AArch64 Memory Model Feature Register 1

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
ID_AA64MMFR2_EL1	3	C0	0	C7	2	See individual bit resets.	64-bit	AArch64 Memory Model Feature Register 2
CLIDR_EL1	3	C0	1	C0	1	See individual bit resets.	64-bit	Cache Level ID Register
GMID_EL1	3	C0	1	C0	4	See individual bit resets.	64-bit	Multiple tag transfer ID register
CTR_EL0	3	C0	3	C0	1	See individual bit resets.	64-bit	Cache Type Register
DCZID_EL0	3	C0	3	C0	7	See individual bit resets.	64-bit	Data Cache Zero ID register
MPAMIDR_EL1	3	C10	0	C4	4	See individual bit resets.	64-bit	MPAM ID Register (EL1)
IMP_CPUCFR_EL1	3	C15	0	C0	0	See individual bit resets.	64-bit	CPU Configuration Register

B.4.1 MIDR_EL1, Main ID Register

Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-53: AArch64_midr_el1 bit assignments

Table B-164: MIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:24]	Implementer	Indicates the implementer code. This value is:	
		0ь01000001	
		Arm Limited	

Bits	Name	Description	Reset
[23:20]	Variant	An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.	
		0ь0010	
		r2p1	
[19:16]	Architecture	Indicates the architecture code. This value is:	
		0b1111	
		Architecture is defined by ID registers	
[15:4]	PartNum	An IMPLEMENTATION DEFINED primary part number for the device.	
		On processors implemented by Arm, if the top four bits of the primary part number are $0x0$ or $0x7$, the variant and architecture are encoded differently.	
		0b110101000111	
		Cortex-A710	
[3:0]	Revision	An IMPLEMENTATION DEFINED revision number for the device.	
		0ь0001	
		r2p1	

Access

MRS <Xt>, MIDR_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
MIDR_EL1	0b11	00000	000000	000000	0b000

Accessibility

MRS <Xt>, MIDR EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.MIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() then
        return VPIDR_EL2;
else
        return MIDR_EL1;
elsif PSTATE.EL == EL2 then
   return MIDR_EL1;
elsif PSTATE.EL == EL3 then
   return MIDR_EL1;
```

B.4.2 MPIDR_EL1, Multiprocessor Affinity Register

In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configurations

In a uniprocessor system Arm recommends that each Aff<n> field of this register returns a value of Ω

Attributes

Width

64

Functional group

identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-54: AArch64_mpidr_el1 bit assignments

Table B-166: MPIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:40]	RES0	Reserved	0x0
[39:32]	Aff3	Affinity level 3. See the description of Aff0 for more information.	
		Aff3 is not supported in AArch32 state.	
		The value will be determined by the CLUSTERIDAFF3 configuration pins.	
[31]	RES1	Reserved	0b1
[30]	U	Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:	
		0ь0	
		Processor is part of a multiprocessor system.	
[29:25]	RES0	Reserved	0b00000

Bits	Name	Description	Reset
[24]	MT	Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. See the description of AffO for more information about affinity levels. The possible values of this bit are:	
		0ь1	
		Performance of PEs at the lowest affinity level, or PEs with MPIDR_EL1.MT set to 1, different affinity level 0 values, and the same values for affinity level 1 and higher, is very interdependent.	
[23:16]	Aff2	Affinity level 2. See the description of Aff0 for more information.	
		The value will be determined by the CLUSTERIDAFF2 configuration pins.	
[15:8]	Aff1	Affinity level 1. See the description of AffO for more information.	
		Value read from the CPUID configuration pins. Identification number for each CPU in an cluster counting from zero.	
[7:0]	AffO	Affinity level O. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or AArch64-MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.	
		оьооооооо	
		Only one thread.	

Access

MRS <Xt>, MPIDR_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
MPIDR_EL1	0b11	0b000	0b0000	0b0000	0b101

Accessibility

MRS <Xt>, MPIDR EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.MPIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() then
        return VMPIDR_EL2;
else
        return MPIDR_EL1;
elsif PSTATE.EL == EL2 then
   return MPIDR_EL1;
elsif PSTATE.EL == EL3 then
   return MPIDR_EL1;
```

B.4.3 REVIDR_EL1, Revision ID Register

The REVIDR_EL1 provides revision information, additional to MIDR_EL1, that identifies minor fixes (errata) which might be present in a specific implementation of the Cortex-A710 core. Refer to the

Cortex-A710 Product Errata Notice (PEN) for information on how to interpret the values in this register.

Configurations

If REVIDR_EL1 has the same value as AArch64-MIDR_EL1, then its contents have no significance.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-55: AArch64_revidr_el1 bit assignments

Table B-168: REVIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	IMPLEMENTATION DEFINED	IMPLEMENTATION DEFINED	

Access

MRS <Xt>, REVIDR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
REVIDR_EL1	0b11	0b000	0b0000	0b0000	0b110

Accessibility

MRS < Xt>, REVIDR EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.REVIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
   return REVIDR_EL1;
```

```
elsif PSTATE.EL == EL2 then
   return REVIDR_EL1;
elsif PSTATE.EL == EL3 then
   return REVIDR_EL1;
```

B.4.4 ID_PFR0_EL1, AArch32 Processor Feature Register 0

Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with AArch64-ID_PFR1_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-56: AArch64_id_pfr0_el1 bit assignments

Table B-170: ID_PFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	RAS	RAS Extension version. Defined values are:	
		Ob0010 ARMv8.4-RAS present. As Ob0001, and adds support for additional ERXMISC <m> System registers. Error records accessed through System registers conform to RAS System Architecture v1.1, which includes simplifications to ext-ERR<n>STATUS and support for the optional RAS Timestamp Extension.</n></m>	
[27:24]	DIT	Data Independent Timing. Defined values are:	
		0b0001	
		AArch32 provides the CPSR.DIT mechanism to guarantee constant execution time of certain instructions.	

Bits	Name	Description	Reset
[23:20]	AMU	Activity Monitors Extension. Defined values are:	
		0ь0001	
		AMUv1 for Armv8.4 is implemented.	
[19:16]	CSV2	Speculative use of out of context branch targets. Defined values are:	
		0ь0001	
		Branch targets trained in one hardware described context can only affect speculative execution in a different hardware described context in a hard-to-determine way.	
[15:12]	State3	T32EE instruction set support. Defined values are:	
		0ь0000	
		Not implemented.	
[11:8]	State2	Jazelle extension support. Defined values are:	
		0ь0001	
		Jazelle extension implemented, without clearing of AArch32-JOSCR.CV on exception entry.	
[7:4]	State1	T32 instruction set support. Defined values are:	
		0ь0011	
		T32 encodings after the introduction of Thumb-2 technology implemented, for all 16-bit and 32-bit T32 basic instructions.	
[3:0]	State0	A32 instruction set support. Defined values are:	
		0ь0001	
		A32 instruction set implemented.	

Access

MRS <Xt>, ID_PFRO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_PFR0_EL1	0b11	00000	000000	0b0001	00000

Accessibility

MRS <Xt>, ID PFRO EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_PFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_PFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_PFR0_EL1;
```

B.4.5 ID_PFR1_EL1, AArch32 Processor Feature Register 1

Gives information about the AArch32 programmers' model.

Must be interpreted with AArch64-ID_PFRO_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-57: AArch64_id_pfr1_el1 bit assignments

Table B-172: ID_PFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	GIC	System register GIC CPU interface. Defined values are:	
		0ь0000	
		When GICCDISABLE is HIGH, GIC CPU interface is disabled.	
		0b0011	
		When Port GICCDISABLE is Low, GIC (version 4.1) CPU interface is enabled.	
[27:24]	Virt_frac	Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for features from the ARMv7 Virtualization Extensions. Defined values are:	
		0ь0000	
		No features from the ARMv7 Virtualization Extensions are implemented.	
[23:20]	Sec_frac	Security fractional field. When the Security field is 0b0000, determines the support for features from the ARMv7 Security Extensions. Defined values are:	
		0ь0000	
		No features from the ARMv7 Security Extensions are implemented.	

Bits	Name	Description	Reset
[19:16]	GenTimer	Generic Timer support. Defined values are:	
		0ь0001	
		Generic Timer is implemented.	
[15:12]	Virtualization	Virtualization support. Defined values are:	
		0ь0000	
		EL2, Hyp mode, and the HVC instruction not implemented.	
[11:8]	MProgMod	M profile programmers' model support. Defined values are:	
		0ь0000	
		Not supported.	
[7:4]	Security	Security support. Defined values are:	
		0ь0000	
		EL3, Monitor mode, and the SMC instruction not implemented.	
[3:0]	ProgMod	Support for the standard programmers' model for Armv4 and later. Model must support User, FIQ, IRQ, Supervisor, Abort, Undefined, and System modes. Defined values are:	
		0ь0000	
		Not supported.	

Access

MRS <Xt>, ID_PFR1_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_PFR1_EL1	0b11	0b000	000000	0b0001	0b001

Accessibility

MRS <Xt>, ID_PFR1_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_PFR1_EL1;
elsif PSTATE.EL == EL2 then
   return ID_PFR1_EL1;
elsif PSTATE.EL == EL3 then
   return ID_PFR1_EL1;
```

B.4.6 ID_DFR0_EL1, AArch32 Debug Feature Register 0

Provides top level information about the Debug system in AArch32 state.

Must be interpreted with the Main ID Register, AArch64-MIDR_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-58: AArch64_id_dfr0_el1 bit assignments

Table B-174: ID_DFR0_EL1 bit descriptions

Bits	Name	Description	Reset		
[63:32]	RES0	Reserved	0x0		
[31:28]	TraceFilt	Armv8.4 Self-hosted Trace Extension version. Defined values are:			
		0ь0001			
		Armv8.4 Self-hosted Trace Extension implemented.			
[27:24]	PerfMon	Performance Monitors Extension version.			
		This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID scheme used for the Performance Monitors Extension version'.			
		ed values are:			
		110			
		PMUv3 Implemented Armv8.5.			
[23:20]	MProfDbg	M Profile Debug. Support for memory-mapped Debug model for M profile processors. Defined values are:			
		0ь0000			
		Not supported.			
[19:16]	MMapTrc	Memory Mapped Trace. Support for memory-mapped Trace model. Defined values are:			
		0ь0001			
		Support for Arm Trace architecture, with memory-mapped access.			

Bits	Name	Description	Reset
[15:12]	CopTrc	Support for System registers-based Trace model, using registers in the coproc == 0b1110 encoding space. Defined values are:	
		0ь0001	
		Support for Arm Trace architecture, with System registers access.	
[11:8]	RES0	Reserved	0b0000
[7:4]	CopSDbg	Support for a System registers-based Secure Debug model, using registers in the coproc = 0b1110 encoding space, for an A profile processor that includes EL3.	
		If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RESO. Otherwise, this field reads the same as bits [3:0].	
		0ь1001	
		As per CopDbg	
[3:0]	CopDbg	Support for System registers-based Debug model, using registers in the coproc == 0b1110 encoding space, for A and R profile processors. Defined values are:	
		0b1001	
		Support for Armv8.4 Debug architecture.	

Access

MRS <Xt>, ID_DFRO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_DFR0_EL1	0b11	0b000	0b0000	0b0001	0b010

Accessibility

MRS <Xt>, ID_DFRO_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_DFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_DFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_DFR0_EL1;
```

B.4.7 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

Provides information about the **IMPLEMENTATION DEFINED** features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, AArch64-MIDR_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

0x0

Bit descriptions

Figure B-59: AArch64_id_afr0_el1 bit assignments

Table B-176: ID_AFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, ID_AFRO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AFRO_EL1	0b11	0b000	000000	0b0001	0b011

Accessibility

MRS <Xt>, ID_AFRO_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AFR0_EL1;
```

B.4.8 ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with AArch64-ID_MMFR1_EL1, AArch64-ID_MMFR2_EL1, AArch64-ID_MMFR3_EL1, and AArch64-ID_MMFR4_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-60: AArch64_id_mmfr0_el1 bit assignments

Table B-178: ID_MMFR0_EL1 bit descriptions

Bits	Name	Description	Reset		
[63:32]	RES0	Reserved	0x0		
[31:28]	InnerShr Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values are:				
		0ь0001			
		Implemented with hardware coherency support.			
[27:24]	FCSE	Indicates whether the implementation includes the FCSE. Defined values are:			
		0Р0000			
		Not supported.			
[23:20]	AuxReg	Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:			
		0ь0010			
		Support for Auxiliary Fault Status Registers (AArch32-AIFSR and AArch32-ADFSR) and Auxiliary Control Register.			

Bits	Name	Description	Reset		
[19:16]	TCM	Indicates support for TCMs and associated DMAs. Defined values are:			
		0ъ0000			
		Not supported.			
[15:12]	ShareLvl	Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:			
	0ь0001				
Two levels of shareability implemented.					
[11:8]	OuterShr	Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values are:			
	0ь0001				
		Implemented with hardware coherency support.			
[7:4]	PMSA	Indicates support for a PMSA. Defined values are:			
		0Ъ0000			
		Not supported.			
[3:0]	VMSA	Indicates support for a VMSA. Defined values are:			
		0ь0101			
		Support for VMSAv7, with support for remapping and the Access flag; The PXN bit in the Short- descriptor translation table format descriptors and the Long-descriptor translation table format			

Access

MRS <Xt>, ID_MMFRO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_MMFRO_EL1	0b11	0b000	000000	0b0001	0b100

Accessibility

MRS <Xt>, ID_MMFRO_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID MMFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID MMFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_MMFR0_EL1;
```

B.4.9 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with AArch64-ID_MMFR0_EL1, AArch64-ID_MMFR2_EL1, AArch64-ID_MMFR3_EL1, and AArch64-ID_MMFR4_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-61: AArch64_id_mmfr1_el1 bit assignments

Table B-180: ID_MMFR1_EL1 bit descriptions

Bits	Name	Description	Reset	
[63:32]	RES0	Reserved	0x0	
[31:28]	BPred	Branch Predictor. Indicates branch predictor management requirements. Defined values are:		
		00		
		For execution correctness, branch predictor requires no flushing at any time.		
[27:24]	L1TstCln	Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations, for Harvard or unified cache implementations. Defined values are:		
		0ь0000		
		None supported.		
[23:20]	L1Uni	Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a unified cache implementation. Defined values are:		
		0ь0000		
		None supported.		

Bits	Name	Description	Reset
[19:16]	L1Hvd	Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a Harvard cache implementation. Defined values are:	
		0ъ0000	
		None supported.	
[15:12]	L1UniSW	Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a unified cache implementation. Defined values are:	
		0ъ0000	
		None supported.	
[11:8]	L1HvdSW	Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set way, for a Harvard cache implementation. Defined values are:	
		0ъ0000	
		None supported.	
[7:4]	L1UniVA	Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a unified cache implementation. Defined values are:	
		0ъ0000	
		None supported.	
[3:0]	L1HvdVA	Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a Harvard cache implementation. Defined values are:	
		0ъ0000	
		None supported.	

MRS <Xt>, ID MMFR1 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_MMFR1_EL1	0b11	00000	000000	0b0001	0b101

Accessibility

MRS <Xt>, ID_MMFR1_EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_MMFR1_EL1;
elsif PSTATE.EL == EL2 then
    return ID_MMFR1_EL1;
elsif PSTATE.EL == EL3 then
    return ID_MMFR1_EL1;
```

B.4.10 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with AArch64-ID_MMFR0_EL1, AArch64-ID_MMFR1_EL1, AArch64-ID_MMFR3_EL1, and AArch64-ID_MMFR4_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-62: AArch64_id_mmfr2_el1 bit assignments

Table B-182: ID_MMFR2_EL1 bit descriptions

Bits	Name	Description	Reset		
[63:32]	RES0	Reserved	0x0		
[31:28]	HWAccFlg	Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for a Hardware Access flag, as part of the VMSAv7 implementation. Defined values are:			
		0			
		Not supported.			
[27:24]	WFIStall	Vait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values are:			
		00001			
		Support for WFI stalling.			
[23:20]	MemBarr	Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc==0b1111) encoding space:			
		060010			
		Supported memory barrier System instructions are Data Synchronization Barrier (DSB), Instruction Synchronization Barrier (ISB) and Data Memory Barrier (DMB).			

Bits	Name	Description	Reset				
[19:16]	UniTLB	Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation. Defined values are:					
		0ь0110					
		Supported unified TLB maintenance operations are - Invalidate all entries in the TLB Invalidate TLB entry by VA Invalidate TLB entries by ASID match Invalidate instruction TLB and data TLB entries by VA All ASID. This is a shared unified TLB operation Invalidate Hyp mode unified TLB entry by VA Invalidate entire Non-secure PL1 and PLO unified TLB Invalidate entire Hyp mode unified TLB TLBIMVALIS, TLBIMVAALIS, TLBIMVALHIS,					
[15:12]	HvdTLB	Harvard TLB. Indicates the supported TLB maintenance operations, for a Harvard TLB implementation:					
		оьоооо					
		Not supported.					
[11:8]	L1HvdRng	Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations, for a Harvard cache implementation. Defined values are:					
		60000					
		Not supported.					
[7:4]	L1HvdBG	Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch operations, for a Harvard cache implementation.					
		0ъ0000					
		Not supported.					
[3:0]	L1HvdFG	L1 Harvard cache Foreground fetch. Indicates the supported L1 cache foreground prefetch operations, for a Harvard cache implementation					
		0ъ0000					
		Not supported.					

MRS <Xt>, ID_MMFR2_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_MMFR2_EL1	0b11	0b000	000000	0b0001	0b110

Accessibility

MRS <Xt>, ID_MMFR2_EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_MMFR2_EL1;
elsif PSTATE.EL == EL2 then
    return ID_MMFR2_EL1;
elsif PSTATE.EL == EL3 then
    return ID_MMFR2_EL1;
```

B.4.11 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with AArch64-ID_MMFR0_EL1, AArch64-ID_MMFR1_EL1, AArch64-ID_MMFR2_EL1, and AArch64-ID_MMFR4_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-63: AArch64_id_mmfr3_el1 bit assignments

Table B-184: ID_MMFR3_EL1 bit descriptions

Bits	Name	Description	Reset		
[63:32]	RES0	Reserved	0x0		
[31:28]	Supersec	Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:			
		000			
		Supersections supported.			
[27:24]	CMemSz	Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:			
		ъ0010			
		1TB or more, corresponding to a 40-bit or larger physical address range.			
[23:20]	CohWalk	Coherent Walk. Indicates whether Translation table updates require a clean to the Point of Unification. Defined values are:			
		0ь0001			
		Updates to the translation tables do not require a clean to the Point of Unification to ensure visibility by subsequent translation table walks.			

Bits	Name	Description	Reset				
[19:16]	PAN	Privileged Access Never. Indicates support for the PAN bit in AArch32-CPSR, AArch32-SPSR, and AArch32-DSPSR in AArch32 state. Defined values are:					
		0ь0010					
		PAN supported and AArch32-ATS1CPRP and AArch32-ATS1CPWP instructions supported.					
[15:12]	MaintBcst	Bcst Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values are:					
		0ь0010					
		Cache, TLB, and branch predictor operations affect structures according to shareability and defined behavior of instructions.					
[11:8]	BPMaint	Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an implementation with hierarchical cache maintenance operations. Defined values are:					
		0ь0010					
		Supported branch predictor maintenance operations are : Invalidate all branch predictors and invalidate branch predictors by Virtual Address (VA).					
[7:4]	CMaintSW	Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an implementation with hierarchical caches. Defined values are:					
[3:0]	CMaintVA	Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an implementation with hierarchical caches. Defined values are:					

MRS <Xt>, ID_MMFR3_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_MMFR3_EL1	0b11	0b000	000000	0b0001	0b111

Accessibility

MRS <Xt>, ID MMFR3 EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_MMFR3_EL1;
elsif PSTATE.EL == EL2 then
    return ID_MMFR3_EL1;
elsif PSTATE.EL == EL3 then
    return ID_MMFR3_EL1;
```

B.4.12 ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with AArch64-ID_ISAR1_EL1, AArch64-ID_ISAR2_EL1, AArch64-ID_ISAR3_EL1, AArch64-ID_ISAR4_EL1, and AArch64-ID_ISAR5_EL1. For general information

about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-64: AArch64_id_isar0_el1 bit assignments

Table B-186: ID_ISARO_EL1 bit descriptions

Bits	Name	Description	Reset				
[63:28]	RES0	Reserved	0x0				
[27:24]	Divide	Indicates the implemented Divide instructions.					
		0ь0010					
		Adds SDIV and UDIV in the T32 instruction set and adds SDIV and UDIV in the A32 instruction set.					
[23:20]	3:20] Debug Indicates the implemented Debug instructions. Defined values are:						
		0ь0001					
		Adds BKPT.					
[19:16]	Coproc	Indicates the implemented System register access instructions. Defined values are:					
0Р0000							
		None implemented, except for instructions separately attributed by the architecture to provide access to AArch32 System registers and System instructions.					
[15:12]	CmpBranch	Indicates the implemented combined Compare and Branch instructions in the T32 instruction set. Defined values are:					
		0ь0001					
		Adds CBNZ and CBZ.					
[11:8]	BitField	BitField Indicates the implemented BitField instructions. Defined values are:					
		0ь0001					
		Adds BFC, BFI, SBFX, and UBFX.					

Bits	Name	Description	Reset	
[7:4]	BitCount	ndicates the implemented Bit Counting instructions. Defined values are:		
		0001		
		Adds CLZ.		
[3:0]	Swap	Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:		
		0ь0000		
		None implemented.		

MRS < Xt>, ID ISARO EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_ISARO_EL1	0b11	0b000	0b0000	0b0010	0b000

Accessibility

MRS <Xt>, ID_ISARO_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_ISARO_EL1;
elsif PSTATE.EL == EL2 then
   return ID_ISARO_EL1;
elsif PSTATE.EL == EL3 then
   return ID_ISARO_EL1;
```

B.4.13 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with AArch64-ID_ISAR0_EL1, AArch64-ID_ISAR2_EL1, AArch64-ID_ISAR3_EL1, AArch64-ID_ISAR4_EL1, and AArch64-ID_ISAR5_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-65: AArch64_id_isar1_el1 bit assignments

Table B-188: ID_ISAR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	Jazelle	Indicates the implemented Jazelle extension instructions. Defined values are:	
		0ь0001	
		Adds the BXJ instruction and the J bit in the PSR. This setting might indicate a trivial implementation of the Jazelle extension.	
[27:24]	Interwork	Indicates the implemented Interworking instructions. Defined values are:	
		0ь0011	
		Adds the BX instruction, and the T bit in the PSR. Adds the BLX instruction and guarantees that data-processing instructions in the A32 instruction set with the PC as the destination and the S bit clear have BX-like behavior.	
[23:20]	Immediate	Indicates the implemented data-processing instructions with long immediates. Defined values are:	
[19:16]	IfThen	Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:	
		0ь0001	
		Adds the IT instructions, and the IT bits in the PSRs.	
[15:12]	Extend	Indicates the implemented Extend instructions. Defined values are:	
		0ь0010	
		Adds the SXTB, SXTH, UXTB, and UXTH. It also adds SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB,UXTAB16, and UXTAH instructions	
[11:8]	Except_AR	Indicates the implemented A and R profile exception-handling instructions. Defined values are:	
		0ь0001	
		Adds the SRS and RFE instructions, and the A and R profile forms of the CPS instruction.	
[7:4]	Except	Indicates the implemented exception-handling instructions in the A32 instruction set. Defined values are:	
		0ь0001	
		Adds the LDM (exception return), LDM (user registers), and STM (user registers) instruction versions.	
[3:0]	Endian	Indicates the implemented Endian instructions. Defined values are:	
		0b0001	
		Adds the SETEND instruction, and the E bit in the PSRs.	

MRS <Xt>, ID_ISAR1_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_ISAR1_EL1	0b11	00000	000000	0b0010	0b001

Accessibility

MRS <Xt>, ID ISAR1 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_ISAR1_EL1;
elsif PSTATE.EL == EL2 then
   return ID_ISAR1_EL1;
elsif PSTATE.EL == EL3 then
   return ID_ISAR1_EL1;
```

B.4.14 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with AArch64-ID_ISAR0_EL1, AArch64-ID_ISAR1_EL1, AArch64-ID_ISAR3_EL1, AArch64-ID_ISAR4_EL1, and AArch64-ID_ISAR5_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-66: AArch64_id_isar2_el1 bit assignments

Table B-190: ID_ISAR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	Reversal	Indicates the implemented Reversal instructions. Defined values are:	
		0ь0010	
		Adds the REV, REV16, and REVSH and RBIT instructions	
[27:24]	PSR_AR	Indicates the implemented A and R profile instructions to manipulate the PSR. Defined values are:	
		0ь0001	
		Adds the MRS and MSR instructions, and the exception return forms of data-processing instructions.	
[23:20]	MultU	Indicates the implemented advanced unsigned Multiply instructions. Defined values are:	
		0b0010	
		As for 0b0001, and adds the UMAAL instruction.	
[19:16]	MultS	Indicates the implemented advanced signed Multiply instructions. Defined values are:	
		0ь0011	
		Adds the SMULL and SMLAL instructions. It adds the SMLABB, SMLABT, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds the Q bit in the PSRs. Adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSDX, SMLSLDX, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR, SMMULR, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions	
[15:12]	Mult	Indicates the implemented additional Multiply instructions. Defined values are:	
		0ь0010	
		Adds the MLA instruction+ and adds the MLS instruction	
[11:8]	MultiAccessInt	Indicates the support for interruptible multi-access instructions. Defined values are:	
		0ь0000	
		No support. This means the LDM and STM instructions are not interruptible.	
[7:4]	MemHint	Indicates the implemented Memory Hint instructions. Defined values are:	
		0ь0100	
		Adds the PLD, PLI and PLDW instruction	
[3:0]	LoadStore	Indicates the implemented additional load/store instructions. Defined values are:	
		0ь0010	
		Adds the LDRD and STRD instructions and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB, LDAEXH, LDAEX, LDAEXD) and Store Release (STLB, STLH, STL, STLEXB, TLEXH, STLEX, STLEXD) instructions	

MRS <Xt>, ID_ISAR2_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_ISAR2_EL1	0b11	0b000	000000	0b0010	0b010

Accessibility

MRS < Xt>, ID ISAR2 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_ISAR2_EL1;
elsif PSTATE.EL == EL2 then
   return ID_ISAR2_EL1;
elsif PSTATE.EL == EL3 then
   return ID_ISAR2_EL1;
```

B.4.15 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with AArch64-ID_ISAR0_EL1, AArch64-ID_ISAR1_EL1, AArch64-ID_ISAR2_EL1, AArch64-ID_ISAR4_EL1, and AArch64-ID_ISAR5_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-67: AArch64_id_isar3_el1 bit assignments

Table B-192: ID_ISAR3_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	T32EE	Indicates the implemented T32EE instructions. Defined values are:	
		0ь0000	
		None implemented.	
[27:24]	TrueNOP	Indicates the implemented true NOP instructions. Defined values are:	
		0b0001	
		Adds true NOP instructions in both the T32 and A32 instruction sets. This also permits additional NOP-compatible hints.	
[23:20]	T32Copy	Indicates the support for T32 non flag-setting MOV instructions. Defined values are:	
		0ь0001	
		Adds support for T32 instruction set encoding T1 of the MOV (register) instruction, copying from a low register to a low register.	
[19:16]	TabBranch	Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:	
		0ь0001	
		Adds the TBB and TBH instructions.	
[15:12]	SynchPrim	Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization Primitive instructions. Defined values are:	
		0ь0010	
		Adds the LDREX and STREX, CLREX, LDREXB, STREXB, LDREXD and STREXD instructions.	
[11:8]	SVC	Indicates the implemented SVC instructions. Defined values are:	
		0b0001	
		Adds the SVC instruction.	
[7:4]	SIMD	Indicates the implemented SIMD instructions. Defined values are:	
		0b0011	
		Adds the SSAT and USAT instructions, and the Q bit in the PSRs. It also adds the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, SHSUB16, SHSAX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX, USAD8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16 instructions. Also adds support for the GE[3:0] bits in the PSRs.	
[3:0]	Saturate	Indicates the implemented Saturate instructions. Defined values are:	
		0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in the PSRs.	

MRS <Xt>, ID_ISAR3_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_ISAR3_EL1	0b11	00000	000000	0b0010	0b011

Accessibility

MRS < Xt>, ID ISAR3 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_ISAR3_EL1;
elsif PSTATE.EL == EL2 then
   return ID_ISAR3_EL1;
elsif PSTATE.EL == EL3 then
   return ID_ISAR3_EL1;
```

B.4.16 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with AArch64-ID_ISAR0_EL1, AArch64-ID_ISAR1_EL1, AArch64-ID_ISAR2_EL1, AArch64-ID_ISAR3_EL1, and AArch64-ID_ISAR5_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-68: AArch64_id_isar4_el1 bit assignments

Table B-194: ID_ISAR4_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO .	Reserved	0x0
[31:28]	SWP_frac	Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined values are:	
		0ь0000	
		SWP or SWPB instructions not implemented.	
[27:24]	PSR_M	Indicates the implemented M profile instructions to modify the PSRs. Defined values are:	
		0ь0000	
		None implemented.	
[23:20]	SynchPrim_frac	Used in conjunction with AArch32-ID_ISAR3.SynchPrim to indicate the implemented Synchronization Primitive instructions. Possible values are:	
		0ь0000	
		If SynchPrim == 0b0000, no Synchronization Primitives implemented. If SynchPrim == 0b0001, adds the LDREX and STREX instructions. If SynchPrim == 0b0010, also adds the CLREX, LDREXB, LDREXH, STREXB, STREXH, LDREXD, and STREXD instructions.	
[19:16]	Barrier	Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values are:	
		0b0001	
		Adds the DMB, DSB, and ISB barrier instructions.	
[15:12]	SMC	Indicates the implemented SMC instructions. Defined values are:	
		0ь0000	
		None implemented.	
[11:8]	Writeback	Indicates the support for Writeback addressing modes. Defined values are:	
		0ь0001	
		Adds support for all of the writeback addressing modes.	
[7:4]	WithShifts	Indicates the support for instructions with shifts. Defined values are:	
		0ь0100	
		Adds support for shifts of loads and stores over the range LSL 0-3. It adds support for other constant shift options, both on load/store and other instructions. It also adds support for register-controlled shift options.	
[3:0]	Unpriv	Indicates the implemented unprivileged instructions. Defined values are:	
		0b0010	
		Adds the LDRBT, LDRT, STRBT, and STRT instructions and adds the LDRHT, LDRSBT, LDRSHT, and STRHT instructions.	

MRS <Xt>, ID_ISAR4_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_ISAR4_EL1	0b11	00000	000000	0b0010	0b100

Accessibility

MRS <Xt>, ID ISAR4 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_ISAR4_EL1;
elsif PSTATE.EL == EL2 then
   return ID_ISAR4_EL1;
elsif PSTATE.EL == EL3 then
   return ID_ISAR4_EL1;
```

B.4.17 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with AArch64-ID_ISAR0_EL1, AArch64-ID_ISAR1_EL1, AArch64-ID_ISAR2_EL1, AArch64-ID_ISAR3_EL1, and AArch64-ID_ISAR4_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-69: AArch64_id_isar5_el1 bit assignments

Table B-196: ID_ISAR5_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	VCMA	Indicates AArch32 support for complex number addition and multiplication where numbers are stored in vectors. Defined values are:	
		0 b0001 The VCMLA and VCADD instructions are implemented in AArch32.	
[27:24]	RDM	Indicates whether the VQRDMLAH and VQRDMLSH instructions are implemented in AArch32 state. Defined values are:	
		0b0001 VQRDMLAH and VQRDMLSH instructions implemented.	
[23:20]	DECO	Reserved	01- 0 0 0 0
		100000000000000000000000000000000000000	0b0000
[19:16]	CRC32	Indicates whether the CRC32 instructions are implemented in AArch32 state.	
		ОЪООО1 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions implemented.	
[15:12]	SHA2	Indicates whether the SHA2 instructions are implemented in AArch32 state.	
		0ъ0000 When Cryptographic extensions are not implemented or disabled then SHA2 instructions are not implemented.	
		0b0001 When Cryptographic extensions are implemented and enabled then SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 instructions are implemented.	
[11:8]	SHA1	Indicates whether the SHA1 instructions are implemented in AArch32 state.	
		0ь0000	
		When Cryptographic extensions are not implemented or disabled then SHA1 instructions are not implemented.	
		0b0001 When Cryptographic extensions are implemented and enabled then SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions are implemented.	
[7:4]	AES	Indicates whether the AES instructions are implemented in AArch32 state.	
		0ь0000	
		When Cryptographic extensions are not implemented or disabled then AES instructions are not implemented.	
		0ь0010	
		When Cryptographic extensions are implemented and enabled then AESE, AESD, AESMC, AESIMC and VMULL.64 instructions are implemented.	

Bits	Name	Description	Reset
[3:0]	SEVL	Indicates whether the SEVL instruction is implemented in AArch32 state.	
		0ь0001	
		SEVL is implemented as Send Event Local.	

MRS <Xt>, ID_ISAR5_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_ISAR5_EL1	0b11	0b000	000000	0b0010	0b101

Accessibility

MRS <Xt>, ID ISAR5 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_ISAR5_EL1;
elsif PSTATE.EL == EL2 then
   return ID_ISAR5_EL1;
elsif PSTATE.EL == EL3 then
   return ID_ISAR5_EL1;
```

B.4.18 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with AArch64-ID_MMFR0_EL1, AArch64-ID_MMFR1_EL1, AArch64-ID_MMFR2_EL1, and AArch64-ID_MMFR3_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-70: AArch64_id_mmfr4_el1 bit assignments

Table B-198: ID_MMFR4_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	EVT	Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the AArch32-HCR2.{TTLBIS, TOCU, TICAB, TID4} traps. Defined values are:	
		0ь0010	
		AArch32-HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.	
[27:24]	CCIDX	Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated. Defined values are:	
		0ь0001	
		64-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is implemented.	
[23:20]	RAZ	Reserved	
[19:16]	HPDS	Hierarchical permission disables bits in translation tables. Defined values are:	
		0ь0010	
		Supports disabling of hierarchical controls using the AArch32-TTBCR2.HPD0, AArch32-TTBCR2.HPD1, and AArch32-HTCR.HPD bits and adds possible hardware allocation of bits[62:59] of the translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED usage	
[15:12]	CnP	Common not Private translations. Defined values are:	
		0ь0001	
		Common not Private translations supported.	
[11:8]	XNX	Support for execute-never control distinction by Exception level at stage 2. Defined values are:	
		0ь0001	
		Distinction between ELO and EL1 execute-never control at stage 2 supported.	
[7:4]	AC2	Indicates the extension of the AArch32-ACTLR and AArch32-HACTLR registers using AArch32-ACTLR2 and rHACTLR2. Defined values are:	
		0b0001	
		AArch32-ACTLR2 and rHACTLR2 are implemented.	
[3:0]	SpecSEI	Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches. The defined values of this field are:	
		0ь0000	
		The PE never generates an SError interrupt due to an External abort on a speculative read.	

Access

MRS <Xt>, ID_MMFR4_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_MMFR4_EL1	0b11	0b000	0b0000	0b0010	0b110

Accessibility

MRS <Xt>, ID MMFR4 EL1

```
if PSTATE.EL == ELO then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && (!IsZero(ID_MMFR4_EL1) || boolean IMPLEMENTATION_DEFINED

"ID_MMFR4_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_MMFR4_EL1;
elsif PSTATE.EL == EL2 then
        return ID_MMFR4_EL1;
elsif PSTATE.EL == EL3 then
        return ID_MMFR4_EL1;
```

B.4.19 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with AArch64-ID_ISAR0_EL1, AArch64-ID_ISAR1_EL1, AArch64-ID_ISAR2_EL1, AArch64-ID_ISAR3_EL1, AArch64-ID_ISAR4_EL1 and AArch64-ID_ISAR5_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RESO from EL1, EL2, and EL3.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-71: AArch64_id_isar6_el1 bit assignments

Table B-200: ID_ISAR6_EL1 bit descriptions

Bits	Name	Description	Reset
[63:28]	RES0	Reserved	0x0
[27:24]	I8MM	Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in AArch32 state. Defined values of this field are:	
		0ь0001	
		VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT instructions are implemented.	
[23:20]	BF16	Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state. Defined values are:	
		0ь0001	
		VCVT, VCVTB, VCVTT, VDOT, VFMAL, and VMMLA instructions with BF16 operand or result types are implemented.	
[19:16]	SPECRES	Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:	
		0ь0001	
		CFPRCTX, DVPRCTX, and CPPRCTX instructions are implemented.	
[15:12]	SB	Indicates support for the SB instruction in AArch32 state. Defined values are:	
		0ь0001	
		SB instruction is implemented.	
[11:8]	FHM	Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined values are:	
		0ь0001	
		VFMAL and VMFSL instructions are implemented.	
[7:4]	DP	Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined values are:	
		0ь0001	
		UDOT and VSDOT instructions are implemented.	
[3:0]	JSCVT	Indicates support for the VJCVT instruction in AArch32 state. Defined values are:	
		0ь0001	
		The VJCVT instruction is implemented.	

Access

MRS <Xt>, ID_ISAR6_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_ISAR6_EL1	0b11	00000	0b0000	0b0010	0b111

Accessibility

MRS <Xt>, ID_ISAR6_EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (!ISZero(ID_ISAR6_EL1) || boolean IMPLEMENTATION_DEFINED

"ID_ISAR6_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_ISAR6_EL1;
elsif PSTATE.EL == EL2 then
    return ID_ISAR6_EL1;
elsif PSTATE.EL == EL3 then
    return ID_ISAR6_EL1;
```

B.4.20 MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with AArch64-MVFR1_EL1 and AArch64-MVFR2_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-72: AArch64_mvfr0_el1 bit assignments

Table B-202: MVFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	FPRound	Floating-Point Rounding modes. Indicates whether the floating-point implementation provides support for rounding modes. Defined values are:	
		0ь0001	
		All rounding modes supported.	
[27:24]	FPShVec	Short Vectors. Indicates whether the floating-point implementation provides support for the use of short vectors. Defined values are:	
		0ъ0000	
		Short vectors not supported.	
[23:20]	FPSqrt	Square Root. Indicates whether the floating-point implementation provides support for the ARMv6 VFP square root operations. Defined values are:	
		0ь0001	
		Supported.	
[19:16]	FPDivide	Indicates whether the floating-point implementation provides support for VFP divide operations. Defined values are:	
		0ь0001	
		Supported.	
[15:12]	FPTrap	Floating Point Exception Trapping. Indicates whether the floating-point implementation provides support for exception trapping. Defined values are:	
		0ь0000	
		Not supported.	
[11:8]	FPDP	Double Precision. Indicates whether the floating-point implementation provides support for double-precision operations. Defined values are:	
		0ъ0010	
		Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an instruction to load a double-precision floating-point constant, and conversions between double-precision and fixed-point values.	
[7:4]	FPSP	Single Precision. Indicates whether the floating-point implementation provides support for single-precision operations. Defined values are:	
		0ь0010	
		Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision floating-point constant, and conversions between single-precision and fixed-point values.	
[3:0]	SIMDReg	Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point implementation provides support for the Advanced SIMD and floating-point register bank. Defined values are:	
		0ъ0010	
		The implementation includes Advanced SIMD and floating-point support with 32 x 64-bit registers.	

Access

MRS <Xt>, MVFRO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MVFRO_EL1	0b11	0b000	000000	0b0011	00000

Accessibility

MRS <Xt>, MVFRO EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return MVFRO_EL1;
elsif PSTATE.EL == EL2 then
   return MVFRO_EL1;
elsif PSTATE.EL == EL3 then
   return MVFRO_EL1;
```

B.4.21 MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with AArch64-MVFR0_EL1 and AArch64-MVFR2_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-73: AArch64_mvfr1_el1 bit assignments

Table B-204: MVFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	SIMDFMAC	Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused multiply accumulate instructions. Defined values are:	
		0ь0001	
		Implemented.	
[27:24]	FPHP	Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:	
		0ь0011	
		As for 0b0010, and adds support for half-precision floating-point arithmetic.	
[23:20]	SIMDHP	Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:	
		0ь0010	
		As for 0b0001, and adds support for half-precision floating-point arithmetic.	
[19:16]	SIMDSP	Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides single-precision floating-point instructions. Defined values are:	
		0ь0001	
		Implemented. This value is permitted only if the SIMDInt field is 0b0001.	
[15:12]	SIMDInt	Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer instructions. Defined values are:	
		0ь0001	
		Implemented.	
[11:8]	SIMDLS	Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/store instructions. Defined values are:	
		0ь0001	
		Implemented.	
[7:4]	FPDNaN	Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN mode. Defined values are:	
		0ь0001	
		Hardware supports propagation of NaN values.	
[3:0]	FPFtZ	Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero mode of operation. Defined values are:	
		0ь0001	
		Hardware supports full denormalized number arithmetic.	

Access

MRS <Xt>, MVFR1_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
MVFR1_EL1	0b11	00000	000000	0b0011	0b001

Accessibility

MRS <Xt>, MVFR1_EL1

if PSTATE.EL == ELO then

B.4.22 MVFR2_EL1, AArch32 Media and VFP Feature Register 2

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with AArch64-MVFR0_EL1 and AArch64-MVFR1_EL1. For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-74: AArch64_mvfr2_el1 bit assignments

Table B-206: MVFR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:8]	RES0	Reserved	0x0

Bits	Name	Description	Reset
[7:4]	FPMisc	Indicates whether the floating-point implementation provides support for miscellaneous VFP features.	
		0ъ0100	
		As 0b0011, and Floating-point MaxNum and MinNum.	
[3:0]	SIMDMisc	Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.	
		0ь0011	
		As 0b0010, and Floating-point MaxNum and MinNum.	

MRS <Xt>, MVFR2_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MVFR2_EL1	0b11	00000	0b0000	0b0011	0b010

Accessibility

MRS <Xt>, MVFR2 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
    return MVFR2_EL1;
elsif PSTATE.EL == EL2 then
   return MVFR2_EL1;
elsif PSTATE.EL == EL3 then
   return MVFR2_EL1;
```

B.4.23 ID_PFR2_EL1, AArch32 Processor Feature Register 2

Gives information about the AArch32 programmers' model.

Must be interpreted with AArch64-ID_PFR0_EL1 and AArch64-ID_PFR1_EL1. For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-75: AArch64_id_pfr2_el1 bit assignments

Table B-208: ID_PFR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:8]	RES0	Reserved	000000
[7:4]	SSBS	Speculative Store Bypassing controls in AArch64 state. Defined values are:	
		0ь0001	
		AArch32 provides the PSTATE.SSBS mechanism to mark regions that are Speculative Store Bypass Safe.	
[3:0]	CSV3	Speculative use of faulting data. Defined values are:	
		0ь0001	
		Data loaded under speculation with a permission or domain fault cannot be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence	

Access

MRS <Xt>, ID_PFR2_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_PFR2_EL1	0b11	0b000	000000	0b0011	0b100

Accessibility

MRS < Xt>, ID PFR2 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_PFR2_EL1;
elsif PSTATE.EL == EL2 then
   return ID_PFR2_EL1;
elsif PSTATE.EL == EL3 then
   return ID_PFR2_EL1;
```

B.4.24 ID_DFR1_EL1, Debug Feature Register 1

Provides top level information about the Debug system in AArch32.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RESO from EL1, EL2, and EL3.

Attributes

Width

64

Functional group

Identification

Reset value

0x0

Bit descriptions

Figure B-76: AArch64_id_dfr1_el1 bit assignments

Table B-210: ID_DFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, ID_DFR1_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_DFR1_EL1	0b11	0b000	0b0000	0b0011	0b101

Accessibility

MRS <Xt>, ID DFR1 EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (!ISZero(ID_DFR1_EL1) || boolean IMPLEMENTATION_DEFINED

"ID_DFR1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_DFR1_EL1;
elsif PSTATE.EL == EL2 then
    return ID_DFR1_EL1;
elsif PSTATE.EL == EL3 then
    return ID_DFR1_EL1;
```

B.4.25 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

The external register ext-EDPFR gives information from this register.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-77: AArch64_id_aa64pfr0_el1 bit assignments

Table B-212: ID_AA64PFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:60]	CSV3	Speculative use of faulting data. Defined values are:	
		0ь0001	
		Data loaded under speculation with a permission or domain fault cannot be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence	
[59:56]	CSV2	Speculative use of out of context branch targets. Defined values are:	
		0ь0010	
		Branch targets trained in one hardware described context can only affect speculative execution in a different hardware described context in a hard-to-determine way. Contexts include the SCXTNUM_ELx register contexts, and these registers are supported.	
[55:52]	RES0	Reserved	0b0000
[51:48]	DIT	Data Independent Timing. Defined values are:	
		0ь0001	
		AArch64 provides the PSTATE.DIT mechanism to guarantee constant execution time of certain instructions.	
[47:44]	AMU	Indicates support for Activity Monitors Extension. Defined values are:	
		0b0001	
		AMUv1 for Armv8.4 is implemented.	
[43:40]	MPAM	Indicates support for MPAM Extension. Defined values are:	
		Ob0001 If AArch64-ID_AA64PFR1_EL1.MPAM_frac == Ob0000, MPAM Extension version 1.0 is implemented.	
		If AArch64-ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension version 1.1 is implemented.	
[39:36]	SEL2	Secure EL2. Defined values are:	
		0ь0001	
		Secure EL2 is implemented.	
[35:32]	SVE	Scalable Vector Extension. Defined values are:	
		0ь0001	
		SVE architectural state and programmers' model are implemented.	
[31:28]	RAS	RAS Extension version. Defined values are:	
		0ь0010	
		ARMv8.4-RAS present. As 0b0001, and adds support for ARMv8.4-DFE (If EL3 is implemented), additional ERXMISCm_EL1 System registers, additionalSystem registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to support the optional RAS Common Fault Injection Model Extension.	
[27:24]	GIC	System register GIC CPU interface. Defined values are:	
		0ь0000	
		When Port GICCDISABLE is High, GIC CPU interface is disabled.	
		0ь0011	
		When Port GICCDISABLE is Low, GIC (version 4.1) CPU interface is enabled.	

Bits	Name	Description	Reset		
[23:20]	AdvSIMD	Advanced SIMD. Defined values are:			
		0ь0001			
		Advanced SIMD is implemented, including support for half-precision floating-point arithmetic.			
[19:16]	FP	Floating-point. Defined values are:			
		0ь0001			
		Floating-point, including support for half-precision floating-point arithmetic, is implemented.			
[15:12]	EL3	EL3 Exception level handling. Defined values are:			
		0ь0001			
		EL3 can be executed in AArch64 state only.			
[11:8]	EL2	EL2 Exception level handling. Defined values are:			
		0ь0001			
		EL2 can be executed in AArch64 state only.			
[7:4]	EL1	EL1 Exception level handling. Defined values are:			
		0ь0001			
		EL1 can be executed in AArch64 state only.			
[3:0]	ELO	ELO Exception level handling. Defined values are:			
		0ь0010			
		ELO can be executed in either AArch64 or AArch32 state.			

MRS < Xt>, ID_AA64PFRO_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_AA64PFR0_EL1	0b11	00000	000000	0b0100	00000

Accessibility

MRS <Xt>, ID_AA64PFR0_EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then
    return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then
    return ID_AA64PFR0_EL1;
```

B.4.26 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-78: AArch64_id_aa64pfr1_el1 bit assignments

Table B-214: ID_AA64PFR1_EL1 bit descriptions

Bits	Name	Description	Reset		
[63:12]	RES0	Reserved	000000		
[11:8]	MTE	Support for the Memory Tagging Extension. Defined values are:			
		0ь0001			
		Memory Tagging Extension instructions accessible at ELO are implemented. Instructions and System Registers defined by the extension not configurably accessible at ELO are Unallocated and other System Register fields defined by the extension are RESO. This value is reported when the BROADCASTMTE input is LOW.			
		0ь0010			
		Memory Tagging Extension is implemented. This value is reported when the BROADCASTMTE input is HIGH.			
[7:4]	SSBS	Speculative Store Bypassing controls in AArch64 state. Defined values are:			
		0ь0010			
		AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative Store Bypassing Safe, and the MSR and MRS instructions to directly read and write the PSTATE.SSBS field			

Bits	Name	Description	Reset
[3:0]	ВТ	Branch Target Identification mechanism support in AArch64 state. Defined values are:	
		0ь0001	
		The Branch Target Identification mechanism is implemented.	

MRS <Xt>, ID_AA64PFR1_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64PFR1_EL1	0b11	0b000	0b0000	0b0100	0b001

Accessibility

MRS < Xt>, ID_AA64PFR1_EL1

```
if PSTATE.EL == ELO then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then
        return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then
        return ID_AA64PFR1_EL1;
```

B.4.27 ID_AA64ZFR0_EL1, SVE Feature ID register 0

Provides additional information about the implemented features of the AArch64 Scalable Vector Extension, when the AArch64-ID AA64PFRO EL1.SVE field is not zero.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.

Configurations

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RESO from EL1, EL2, and EL3.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-79: AArch64_id_aa64zfr0_el1 bit assignments

Table B-216: ID_AA64ZFR0_EL1 bit descriptions

Bits	Name	Description	Reset			
[63:48]	RES0	Reserved	0x0			
[47:44] I8MM		Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:				
		0ь0001				
	SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are implemented.					
[43:40]	SM4	Indicates support for SVE2 SM4 instructions. Defined values are:				
		0ь0000				
		SVE2 SM4 instructions are not implemented. This value is reported when Cryptographic extensions are not implemented or are disabled.				
		0ь0001				
		SVE2 SM4E and SM4EKEY instructions are implemented. This value is reported when Cryptographic extensions are implemented and enabled.				
[39:36]	RES0	Reserved	000000			
[35:32]	SHA3	Indicates support for the SVE2 SHA-3 instruction. Defined values are:				
		оьоооо				
		SVE2 SHA-3 instructions are not implemented. This value is reported when Cryptographic extensions are not implemented or are disabled.				
		0ь0001				
		SVE2 RAX1 instruction is implemented. This value is reported when Cryptographic extensions are implemented and enabled.				
[31:24]	RES0	Reserved	0000000000			
[23:20]	BF16	Indicates support for SVE BFloat16 instructions. Defined values are:				
		0ь0001				
		BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and BFMMLA instructions are implemented.				
[19:16]	BitPerm	Indicates support for SVE2 bit permute instructions. Defined values are:				
		0ь0001				
		SVE2 BDEP, BEXT and BGRP instructions are implemented.				
[15:8]	RES0	Reserved	0000000000			

Bits	Name	Description	Reset			
[7:4]	AES	Indicates support for SVE2-AES instructions. Defined values are:				
		0ь0000				
		SVE2-AES instructions are not implemented. This value is reported when Cryptographic extensions are not implemented or are disabled.				
		0b0010				
		SVE2 AESE, AESD, AESMC, and AESIMC instructions are implemented plus SVE2 PMULLB and PMULLT instructions with 64-bit source. This value is reported when Cryptographic extensions are implemented and enabled.				
[3:0]	SVEver	Scalable Vector Extension instruction set version. Defined values are:				
		ь0001				
		SVE and the non-optional SVE2 instructions are implemented.				

MRS < Xt>, ID AA64ZFR0 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64ZFRO_EL1	0b11	0b000	0b0000	0b0100	0b100

Accessibility

MRS < Xt>, ID_AA64ZFR0_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && (!IsZero(ID_AA64ZFRO_EL1) || boolean IMPLEMENTATION_DEFINED

"ID_AA64ZFRO_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64ZFRO_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64ZFRO_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64ZFRO_EL1;
```

B.4.28 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Provides top level information about the Debug system in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID registers.

Configurations

The external register ext-EDDFR gives information from this register.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-80: AArch64_id_aa64dfr0_el1 bit assignments

Table B-218: ID_AA64DFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:48]	RES0	Reserved	0x0
[47:44]	TraceBuffer	Trace Buffer Extension version. Defined values are:	
		0ь0001	
		Trace Buffer Extension implemented.	
[43:40]	TraceFilt	Armv8.4 Self-hosted Trace Extension version. Defined values are:	
		0ь0001	
		Armv8.4 Self-hosted Trace Extension implemented.	
[39:36]	DoubleLock	OS Double Lock implemented. Defined values are:	
		0b1111	
		OS Double Lock not implemented. AArch64-OSDLR_EL1 is RAZ/WI.	
[35:32]	RES0	Reserved	0b0000
[31:28]	CTX_CMPs	Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.	
		0ь0001	
		Two context-aware breakpoints are included	
[27:24]	RES0	Reserved	0b0000
[23:20]	WRPs	Number of watchpoints, minus 1. The value of 0b0000 is reserved.	
		0ь0011	
		Four Watchpoints	
[19:16]	RES0	Reserved	0b0000
[15:12]	BRPs	Number of breakpoints, minus 1. The value of 0b0000 is reserved.	
		0ь0101	
		Six Breakpoints	

Bits	Name	Description	Reset	
[11:8]	PMUVer	Performance Monitors Extension version. Defined value is:		
		0110		
		Performance Monitors Extension implemented, PMUv3 for Armv8.5		
[7:4]	TraceVer	Trace support. Indicates whether System register interface to a PE Trace unit is implemented. Defined values are:		
		0ь0001		
		PE Trace unit System registers implemented.		
[3:0]	DebugVer	Debug architecture version. Indicates presence of Armv8 Debug architecture. Defined values are:		
		0ь1001		
		Armv8.4 Debug architecture.		

MRS < Xt>, ID_AA64DFR0_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_AA64DFR0_EL1	0b11	0b000	0b0000	0b0101	0b000

Accessibility

MRS <Xt>, ID_AA64DFR0_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64DFR0_EL1;
```

B.4.29 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

Reserved for future expansion of top level information about the Debug system in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

0x0

Bit descriptions

Figure B-81: AArch64_id_aa64dfr1_el1 bit assignments

Table B-220: ID_AA64DFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	0x0

Access

MRS <Xt>, ID AA64DFR1 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64DFR1_EL1	0b11	0b000	0b0000	0b0101	0b001

Accessibility

MRS < Xt>, ID_AA64DFR1_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64DFR1_EL1;
```

B.4.30 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

0x0

Bit descriptions

Figure B-82: AArch64_id_aa64afr0_el1 bit assignments

Table B-222: ID_AA64AFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0b0000

Access

MRS <Xt>, ID_AA64AFR0_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64AFR0_EL1	0b11	0b000	0b0000	0b0101	0b100

Accessibility

MRS <Xt>, ID AA64AFRO EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
```

```
if EL2Enabled() && HCR_EL2.TID3 == '1' then
          AArch64.SystemAccessTrap(EL2, 0x18);
else
          return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL2 then
    return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL3 then
    return ID_AA64AFR0_EL1;
```

B.4.31 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

Reserved for future expansion of information about the **IMPLEMENTATION DEFINED** features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

0x0

Bit descriptions

Figure B-83: AArch64_id_aa64afr1_el1 bit assignments

Table B-224: ID_AA64AFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	0x0

Access

MRS < Xt>, ID AA64AFR1 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64AFR1_EL1	0b11	00000	000000	0b0101	0b101

Accessibility

MRS <Xt>, ID_AA64AFR1_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64AFR1_EL1;
```

B.4.32 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-84: AArch64_id_aa64isar0_el1 bit assignments

Table B-226: ID_AA64ISAR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:60]	RES0	Reserved	000000
[59:56]	TLB	Indicates support for Outer shareable and TLB range maintenance instructions. Defined values are:	
		0b0010	
		Outer shareable and TLB range maintenance instructions are implemented.	
[55:52]	TS	Indicates support for flag manipulation instructions. Defined values are:	
		0ь0010	
		CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG instructions are implemented.	
[51:48]	FHM	Indicates support for FMLAL and FMLSL instructions. Defined values are:	
		0ь0001	
		FMLAL and FMLSL instructions are implemented.	
[47:44]	DP	Indicates support for Dot Product instructions in AArch64 state. Defined values are:	
		0ь0001	
		UDOT and SDOT instructions implemented.	
[43:40]	SM4	Indicates support for SM4 instructions in AArch64 state. Defined values are:	
		0ь0000	
		When Cryptographic extensions are not implemented or disabled then SM3 instructions are not implemented.	
		0ь0001	
		When Cryptographic extensions are implemented and enabled then SM3 instructions SM4E and SM4EKEY are implemented.	
[39:36]	SM3	Indicates support for SM3 instructions in AArch64 state. Defined values are:	
		0ь0000	
		When Cryptographic extensions are not implemented or disabled then SM4 instructions are not implemented.	
		0ь0001	
		When Cryptographic extensions are implemented and enabled then SM4 instructions SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, and SM3PARTW2 are implemented.	
[35:32]	SHA3	Indicates support for SHA3 instructions in AArch64 state. Defined values are:	
		0ь0000	
		When Cryptographic extensions are not implemented or disabled then SHA3 instructions are not implemented.	
		0ь0001	
		When Cryptographic extensions are implemented and enabled then SHA3 instructions EOR3, RAX1, XAR, and BCAX are implemented.	
[31:28]	RDM	Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values are:	
		0b0001	
		SQRDMLAH and SQRDMLSH instructions implemented.	
[27:24]	RES0	Reserved	000000
[23:20]	Atomic	Indicates support for Atomic instructions in AArch64 state. Defined values are:	
		0b0010	
		LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN, CAS, CASP, and SWP instructions implemented.	

Bits	Name	Description	Reset
[19:16]	CRC32	CRC32 instructions implemented in AArch64 state. Defined values are:	
		0ъ0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, and CRC32CX instructions implemented.	
[15:12]	SHA2	SHA2 instructions implemented in AArch64 state. Defined values are:	
		0ъ0000 When Cryptographic extensions are not implemented or disabled then SHA2 instructions are not implemented.	
		 When Cryptographic extensions are implemented and enabled then SHA256H, SHA256H2, SHA256SU0, SHA256SU1, SHA512H, SHA512H2, SHA512SU0, and SHA512SU1 instructions are implemented. When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset 	
		Cryptographic Extensions are implemented	
[11:8]	SHA1	SHA1 instructions implemented in AArch64 state. Defined values are:	
		Оъ0000When Cryptographic extensions are not implemented or disabled then SHA1 instructions are not implemented.Оъ0001	
		When Cryptographic extensions are implemented and enabled then SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions are implemented.	
		When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset Cryptographic Extensions are implemented	
[7:4]	AES	AES instructions implemented in AArch64 state. Defined values are:	
		оьоооо When Cryptographic extensions are not implemented or disabled then AES instructions are not implemented.	
		0ь0010	
		When Cryptographic extensions are implemented and enabled then AESE, AESD, AESMC, and AESIMC instructions are implemented and also PMULL/PMULL2 instructions operating on 64-bit data quantities.	
		When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset Cryptographic Extensions are implemented	
[3:0]	RES0	Reserved	0b0000

MRS <Xt>, ID_AA64ISAR0_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64ISARO_EL1	0b11	0b000	0b0000	0b0110	0b000

Accessibility

MRS < Xt>, ID AA64ISAR0 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64ISARO_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64ISARO_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64ISARO_EL1;
```

B.4.33 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

If ID AA64ISAR1 EL1.{API, APA} == {0000, 0000}, then:

- The AArch64-TCR_EL1.{TBID,TBID0}, AArch64-TCR_EL2.{TBID0,TBID1}, AArch64-TCR_EL2.TBID and AArch64-TCR_EL3.TBID bits are RESO.
- AArch64-APIAKeyHi_EL1, AArch64-APIAKeyLo_EL1, AArch64-APIBKeyHi_EL1, AArch64-APIBKeyLo_EL1, AArch64-APDAKeyHi_EL1, AArch64-APDBKeyHi_EL1, AArch64-APDBKeyLo_EL1 are not allocated.
- 'SCTLR EL'.EnIA, 'SCTLR EL'.EnIB, 'SCTLR EL'.EnDA, 'SCTLR EL'.EnDB are all RESO.

If ID AA64ISAR1 EL1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

- AArch64-HCR EL2.APK and AArch64-HCR EL2.API are RESO.
- AArch64-SCR EL3.APK and AArch64-SCR EL3.API are RESO.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-85: AArch64_id_aa64isar1_el1 bit assignments

1	63					56	55		52	51		48	47		44	43	40	39		36	35		32
		F	RES	30				I8MM			RES0			BF16		SPI	ECRES		SB		Fl	RINTTS	3
	31	2	8 1	27		24	23		20	19		16	15		12	111	8	₁ 7		4	3		0
		GPI			GPA			LRCPC			FCMA			JSCVT		I	API		APA			DPB	

Table B-228: ID_AA64ISAR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:56]	RES0	Reserved	0b00000000
[55:52]	I8MM	Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in AArch64 state. Defined values of this field are:	
		0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are implemented.	
[51:48]	RFS0	Reserved	060000
[47:44]		Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values are:	
		0b0001 BFDOT, BFMLAL, BFMLAL2, BFMMLA, BFCVT, and BFCVT2 instructions are implemented.	
[43:40]	SPECRES	Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:	
		0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are implemented.	
[39:36]	SB	Indicates support for SB instruction in AArch64 state. Defined values are:	
		оьооо1 SB instruction is implemented.	
[35:32]	FRINTTS	Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented. Defined values are:	
		0 b 0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented.	
[31:28]	GPI	Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code authentication in AArch64 state. Defined values are:	
		0ь0000	
		Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not implemented.	
[27:24]	GPA	Indicates whether QARMA or Architected algorithm is implemented in the PE for generic code authentication in AArch64 state. Defined values are:	
		0b0001 Generic Authentication using the QARMA algorithm is implemented. This includes the PACGA instruction.	
[23:20]	LRCPC	Indicates support for weaker release consistency, RCpc, based model. Defined values are:	
		0 b0010 The LDAPR*, LDAPUR*, and STLUR* instructions are implemented.	

Bits	Name	Description	Reset
[19:16]	FCMA	Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined values are:	
		0ь0001	
		The FCMLA and FCADD instructions are implemented.	
[15:12]	JSCVT	Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64 state. Defined values are:	
		0ь0001	
		The FJCVTZS instruction is implemented.	
[11:8]	API	Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:	
		0ь0000	
		Address Authentication using an IMPLEMENTATION DEFINED algorithm is not implemented.	
[7:4]	APA	Indicates whether QARMA or Architected algorithm is implemented in the PE for address authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:	
		0ь0101	
		Address Authentication using the QARMA algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, the HaveFPACC) function returning TRUE, the HaveFPACCombined() function returning TRUE, and the HaveEnhancedPAC() function returning FALSE.	
[3:0]	DPB	Data Persistence writeback. Indicates support for the rDC CVAP and rDC CVADP instructions in AArch64 state. Defined values are:	
		0ь0010	
		DC CVAP and DC CVADP supported	

MRS <Xt>, ID_AA64ISAR1_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64ISAR1_EL1	0b11	0b000	0b0000	0b0110	0b001

Accessibility

MRS <Xt>, ID_AA64ISAR1_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64ISAR1_EL1;
```

B.4.34 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-86: AArch64_id_aa64mmfr0_el1 bit assignments

Table B-230: ID_AA64MMFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:44]	RES0	Reserved	0x0
[43:40]	TGran4_2	Indicates support for 4KB memory granule size for stage 2. Defined values are:	
		0ь0010	
		4KB granule supported at stage 2.	
[39:36]	TGran64_2	Indicates support for 64KB memory granule size for stage 2. Defined values are:	
		0ь0010	
		64KB granule supported at stage 2.	
[35:32]	TGran16_2	Indicates support for 16KB memory granule size for stage 2. Defined values are:	
		0ь0010	
		16KB granule supported at stage 2	

Bits	Name	Description	Reset
[31:28]	TGran4	Indicates support for 4KB memory translation granule size. Defined values are:	
		0ь0000	
		4KB granule supported.	
[27:24]	TGran64	Indicates support for 64KB memory translation granule size. Defined values are:	
		0ь0000	
		64KB granule supported.	
[23:20]	TGran16	Indicates support for 16KB memory translation granule size. Defined values are:	
		0ь0001	
		16KB granule supported.	
[19:16]	RES0	Reserved	0b0000
[15:12]	SNSMem	Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:	
		0ь0001	
		Does support a distinction between Secure and Non-secure Memory.	
[11:8]	BigEnd	Indicates support for mixed-endian configuration. Defined values are:	
		0ь0001	
		Mixed-endian support. The SCTLR_ELx.EE and SCTLR_EL1.E0E bits can be configured.	
[7:4]	ASIDBits	Number of ASID bits. Defined values are:	
		0ь0010	
		16 bits.	
[3:0]	PARange	Physical Address range supported. Defined values are:	
		0ь0010	
		40 bits, 1TB.	

MRS <Xt>, ID AA64MMFR0 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ID_AA64MMFR0_EL1	0b11	0b000	000000	0b0111	00000

Accessibility

MRS <Xt>, ID_AA64MMFRO_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64MMFR0_EL1;
```

B.4.35 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-87: AArch64_id_aa64mmfr1_el1 bit assignments

Table B-232: ID_AA64MMFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	XNX	Indicates support for execute-never control distinction by Exception level at stage 2. Defined values are:	
		0ь0001	
		Distinction between ELO and EL1 execute-never control at stage 2 supported.	
[27:24]	SpecSEI	Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches. The defined values of this field are:	
		0ь0000	
		The PE never generates an SError interrupt due to an External abort on a speculative read.	
[23:20]	PAN	Privileged Access Never. Indicates support for the PAN bit in PSTATE, AArch64-SPSR_EL1, AArch64-SPSR_EL2, AArch64-SPSR_EL3, and AArch64-DSPSR_EL0. Defined values are:	
		0ь0010	
		PAN supported and rAT S1E1RP and rAT S1E1WP instructions supported.	

Bits	Name	Description	Reset
[19:16]	LO	LORegions. Indicates support for LORegions. Defined values are:	
		0ь0001	
		LORegions supported.	
[15:12]	HPDS	Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation tables. Defined values are:	
		0ь0010	
		Disabling of hierarchical controls supported with the TCR_EL1.{HPD1, HPD0}, TCR_EL2.HPD or TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits and adds possible hardware allocation of bits[62:59] of the translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED use.	
[11:8]	VH	Virtualization Host Extensions. Defined values are:	
		0ь0001	
		Virtualization Host Extensions supported.	
[7:4]	VMIDBits	Number of VMID bits. Defined values are:	
		0ь0010	
		16 bits	
[3:0]	HAFDBS	Hardware updates to Access flag and Dirty state in translation tables. Defined values are:	
		0ь0010	
		Hardware update of both the Access flag and dirty state is supported.	

MRS <Xt>, ID_AA64MMFR1_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_AA64MMFR1_EL1	0b11	0b000	000000	0b0111	0b001

Accessibility

MRS <Xt>, ID_AA64MMFR1_EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then
    return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then
    return ID_AA64MMFR1_EL1;
```

B.4.36 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RESO from EL1, EL2, and EL3.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-88: AArch64_id_aa64mmfr2_el1 bit assignments

ı	63		60	59		56	55		52	51		48	47		44	43		40	39		36	35		32
		EOPD			EVT			BBM			TTL			RES0			FWB			IDS			AT	
1	31		28	27		24	23		20	19		16	15		12	11		8	7		4	3		0
		ST			RES0			CCIDX			RES0			IESB			RES0			UAO			CnP	

Table B-234: ID_AA64MMFR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:60]	EOPD	Indicates support for the EOPD mechanism. Defined values are:	
		0ь0001	
		EOPDx mechanism is implemented.	
[59:56]	EVT	Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the AArch64-HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps. Defined values are:	
		0ь0010	
		AArch64-HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are supported.	

Bits	Name	Description	Reset
[55:52]	BBM	Allows Identification of the requirements of the hardware to have break-before-make sequences when changing block size for a translation.	
		0ь0010	
		Level 2 support for changing block size is supported.	
[51:48]	TTL	Indicates support for TTL field in address operations. Defined values are:	
		0ь0001	
		TLB maintenance instructions by address have bits[47:44] holding the TTL field.	
[47:44]	RES0	Reserved	000000
[43:40]	FWB	Indicates support for AArch64-HCR_EL2.FWB. Defined values are:	
		0b0001 AArch64-HCR_EL2.FWB is supported.	
[39:36]	IDS	Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the feature ID space. Defined values are:	
		0ь0001	
		All exceptions generated by an AArch64 read access to the feature ID space are reported by ESR_ELx.EC == 0x18.	
[35:32]	AT	Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:	
		0ь0001	
		Unaligned single-copy atomicity and atomic functions with a 16-byte address range aligned to 16-bytes are supported.	
[31:28]	ST	Identifies support for small translation tables. Defined values are:	
		0ь0001	
		The maximum value of the TCR_ELx.{TOSZ,T1SZ} and VTCR_EL2.TOSZ fields is 48 for 4KB and 16KB granules, and 47 for 64KB granules.	
[27:24]	RES0	Reserved	0b0000
[23:20]	CCIDX	Support for the use of revised AArch64-CCSIDR_EL1 register format. Defined values are:	
		0ь0001	
		64-bit format implemented for all levels of the CCSIDR_EL1.	
[19:16]	RES0	Reserved	0b0000
[15:12]	IESB	Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:	
		0ь0001	
		IESB bit in the SCTLR_ELx registers is supported.	
[11:8]	RES0	Reserved	0b0000
[7:4]	UAO	User Access Override. Defined values are:	
		0b0001	
10.03	0.5	UAO supported.	
[3:0]	CnP	Indicates support for Common not Private translations. Defined values are:	
		0b0001	
		Common not Private translations supported.	

MRS <Xt>, ID_AA64MMFR2_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ID_AA64MMFR2_EL1	0b11	00000	000000	0b0111	0b010

Accessibility

MRS <Xt>, ID AA64MMFR2 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED
"ID_AA64MMFR2 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64MMFR2_EL1;
```

B.4.37 CLIDR_EL1, Cache Level ID Register

Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-89: AArch64_clidr_el1 bit assignments

Table B-236: CLIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:47]	RES0	Reserved	0x0
[46:45]	Ttype7	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	
		0ь00	
		No Tag Cache.	
[44:43]	Ttype6	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	
		0ь00	
		No Tag Cache.	
[42:41]	Ttype5	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	
		0ь00	
		No Tag Cache.	
[40:39]	Ttype4	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	
		0ь00	
		No Tag Cache.	
[38:37]	Ttype3	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	
		0ь00	
		When no L3 present, no tag cache.	
		0ь10	
		When L3 present, Unified Allocation Tag and Data cache at L3	
[36:35]	Ttype2	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	
		0ь10	
		Unified Allocation Tag and Data cache at L1	

Bits	Name	Description	Reset
[34:33]	Ttype1	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	
		0ь10	
		Unified Allocation Tag and Data cache at L1	
[32:30]	ICB	Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.	
		The possible values are:	
		0ь000	
		Not disclosed by this mechanism.	
		0b001	
		L1 cache is the highest Inner Cacheable level.	
		0ь010	
		L2 cache is the highest Inner Cacheable level.	
		0ь011	
		L3 cache is the highest Inner Cacheable level.	
		0ь100	
		L4 cache is the highest Inner Cacheable level.	
		0ь101	
		L5 cache is the highest Inner Cacheable level.	
		0ь110	
		L6 cache is the highest Inner Cacheable level.	
		0ь111	
		L7 cache is the highest Inner Cacheable level.	
[29:27]	LoUU	Level of Unification Uniprocessor for the cache hierarchy.	
		оьооо	
		Level of Unification Uniprocessor is before the L1 D-cache.	
[26:24]	LoC	Level of Coherence for the cache hierarchy.	
		0ь010	
		When no L3 present, Level 2	
		0ь011	
		When L3 present, Level 3	
[23:21]	LoUIS	Level of Unification Inner Shareable for the cache hierarchy.	
		0ь000	
		No cache level needs cleaning to Point of Unification	
[20:18]	Ctype7	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	
		0ъ000	
		No cache.	

Bits	Name	Description	Reset
[17:15]	Ctype6	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	
		0ъ000	
		No cache.	
[14:12]	Ctype5	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	
		0ъ000	
		No cache.	
[11:9]	Ctype4	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	
		0ь000	
		No cache.	
[8:6]	Ctype3	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	
		0ь000	
		No L3.	
		0ь100	
		Unified instruction and data caches at L3	
[5:3]	Ctype2	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	
		0ь100	
		Unified instruction and data caches at L2	
[2:0]	Ctype1	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	
		0ь011	
		Separate instruction and data caches at L1	

MRS <Xt>, CLIDR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
CLIDR_EL1	0b11	0b001	0b0000	0b0000	0b001

Accessibility

MRS <Xt>, CLIDR_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
```

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.CLIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return CLIDR_EL1;
elsif PSTATE.EL == EL2 then
    return CLIDR_EL1;
elsif PSTATE.EL == EL3 then
    return CLIDR_EL1;
```

B.4.38 GMID_EL1, Multiple tag transfer ID register

Indicates the block size that is accessed by the LDGM and STGM System instructions.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-90: AArch64_gmid_el1 bit assignments

Table B-238: GMID_EL1 bit descriptions

Bits	Name	Description	Reset
[63:4]	RES0	Reserved	0x0
[3:0]	BS	Log ₂ of the block size in words. The minimum supported size is 16B (value == 2) and the maximum is 256B (value == 6).	
		0ъ0100	
		Log2 of the block size is 4	

MRS <Xt>, GMID_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
GMID_EL1	0b11	0b001	000000	000000	0b100

Accessibility

MRS <Xt>, GMID_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID5 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return GMID_EL1;
elsif PSTATE.EL == EL2 then
   return GMID_EL1;
elsif PSTATE.EL == EL3 then
   return GMID_EL1;
```

B.4.39 CTR_ELO, Cache Type Register

Provides information about the architecture of the caches.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-91: AArch64_ctr_el0 bit assignments

Table B-240: CTR_EL0 bit descriptions

Bits	Name	Description	Reset
[63:38]	RES0	Reserved	0x0
[37:32]	TminLine	Tag minimum Line. Log_2 of the number of words covered by Allocation Tags in the smallest cache line of all caches which can contain Allocation tags that are controlled by the PE.	
		Note:	
		• For an implementation with cache lines containing 64 bytes of data and 4 Allocation Tags, this will be $log_2(64/4) = 4$.	
		• For an implementation with Allocations Tags in separate cache lines of 128 Allocation Tags per line, this will be $log_2(128*16/4) = 9$.	
		0ь000100	
		Log2 of number of words (64/4=16) covered by Allocation Tags in the smallest cache line of all caches	
[31]	RES1	Reserved	0b1
[30]	RES0	Reserved	0b0
[29]	DIC	Instruction cache invalidation requirements for data to instruction coherence.	
		000	
		Instruction cache invalidation to the point of unification is required for instruction to data coherence.	
[28]	IDC	Data cache clean requirements for instruction to data coherence. The meaning of this bit is:	
		0b1	
		Data cache clean to the Point of Unification is not required for instruction to data coherence.	
[27:24]	CWG	Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.	
		0ь0100	
		64 bytes.	
[23:20]	ERG	Exclusives reservation granule, and, if TME is implemented, transactional reservation granule. Log2 of the number of words of the maximum size of the reservation granule for the Load-Exclusive and Store-Exclusive instructions, and, if TME is implemented, for detecting transactional conflicts.	
		0ь0100	
		64 bytes.	
[19:16]	DminLine	Log_2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.	
		0ь0100	
		64 bytes.	
[15:14]	L1lp	Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:	
		0b11	
		Physical Index, Physical Tag (PIPT)	
[13:4]	RES0	Reserved	0x0
[3:0]	IminLine	Log_2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.	
		0ь0100	
		64 bytes.	

MRS <Xt>, CTR ELO

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
CTR_EL0	0b11	0b011	000000	000000	0b001

Accessibility

MRS <Xt>, CTR ELO

```
if PSTATE.EL == ELO then
    if !(EL2Enabled() && HCR EL2.<E2H,TGE> == '11') && SCTLR EL1.UCT == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
             AArch64.SystemAccessTrap(EL2, 0x18);
             AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && HCR EL2.<E2H,TGE> != '11' && HCR EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H, TGE> != '11' && SCR_EL3.FGTEn == '1' && HF\
GRTR_EL2.CTR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR EL2.<E2H,TGE> == '11' && SCTLR EL2.UCT == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        return CTR_ELO;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TID2 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.CTR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        return CTR ELO;
elsif PSTATE.EL == EL2 then
    return CTR ELO;
elsif PSTATE.\overline{EL} == EL3 then
    return CTR ELO;
```

B.4.40 DCZID_ELO, Data Cache Zero ID register

Indicates the block size that is written with byte values of 0 by the rDC ZVA (Data Cache Zero by Address) System instruction.

If ARMv8.5-MemTag is implemented, this register also indicates the granularity at which the rDC GVA and rDC GZVA instructions write.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-92: AArch64_dczid_el0 bit assignments

Table B-242: DCZID_EL0 bit descriptions

Bits	Name	Description	Reset
[63:5]	RES0	Reserved	0x0
[4]	DZP	Data Zero Prohibited. This field indicates whether use of rDC ZVA instructions is permitted or prohibited.	
		If ARMv8.5-MemTag is implemented, this field also indicates whether use of the rDC GVA and rDC GZVA instructions are permitted or prohibited.	
		0ь0	
		Instructions are permitted.	
[3:0]	BS	Log ₂ of the block size in words. The maximum size supported is 2KB (value == 9).	
		0ъ0100	
		Log2 of the block size is 4	

Access

MRS <Xt>, DCZID_EL0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
DCZID_EL0	0b11	0b011	000000	000000	0b111

Accessibility

MRS <Xt>, DCZID_EL0

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && SCR_EL3.FGTEn == '1' && HF\
GRTR_EL2.DCZID_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return DCZID_EL0;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.DCZID_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
    return DCZID_EL0;
elsif PSTATE.EL == EL2 then
    return DCZID_EL0;
elsif PSTATE.EL == EL3 then
    return DCZID_EL0;
elsif PSTATE.EL == EL3 then
    return DCZID_EL0;
```

B.4.41 MPAMIDR_EL1, MPAM ID Register (EL1)

Indicates the presence and maximum PARTID and PMG values supported in the implementation. It also indicates whether the implementation supports MPAM virtualization.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

MPAMIDR_EL1 indicates the MPAM implementation parameters of the PE.

Figure B-93: AArch64_mpamidr_el1 bit assignments

Table B-244: MPAMIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:40]	RES0	Reserved	0x0
[39:32]	PMG_MAX	The largest value of PMG that the implementation can generate. The PMG_I and PMG_D fields of every MPAMn_ELx must implement at least enough bits to represent PMG_MAX.	
		0b0000001	
		Max PMG field is 1 (1-bit)	
[31:21]	RES0	Reserved	0x0
[20:18]	VPMR_MAX	If HAS_HCR == 0, VPMR_MAX must be 0b000. Otherwise, it indicates the maximum register index n for the MPAMVPM <n>_EL2 registers.</n>	
		0ь001	
		2 MPAMVPMn_EL2 registers are implemented	

Bits	Name	Description	Reset
[17]	HAS_HCR	HAS_HCR indicates that the PE implementation supports MPAM virtualization, including AArch64-MPAMHCR_EL2, AArch64-MPAMVPMV_EL2 and MPAMVPM <n>_EL2 with n in the range 0 to VPMR_MAX. Must be 0 if EL2 is not implemented in either security state.</n>	
		0b1	
		MPAM virtualization is supported.	
[16]	RES0	Reserved	0b0
[15:0]	PARTID_MAX	The largest value of PARTID that the implementation can generate. The PARTID_I and PARTID_D fields of every MPAMn_ELx must implement at least enough bits to represent PARTID_MAX.	
		0ь00000000111111	
		Max PARTID field is 63	

MRS <Xt>, MPAMIDR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMIDR_EL1	0b11	0b000	0b1010	0b0100	0b100

Accessibility

MRS <Xt>, MPAMIDR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if MPAM3 EL3.TRAPLOWER == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && MPAMHCR EL2.TRAP MPAMIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return MPAMIDR_EL1;
elsif PSTATE.EL == EL2 then
    if MPAM3 EL3.TRAPLOWER == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    return MPAMIDR_EL1;
elsif PSTATE.EL == EL3 then
    return MPAMIDR_EL1;
```

B.4.42 IMP_CPUCFR_EL1, CPU Configuration Register

This register provides configuration information for the core.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification

Reset value

See individual bit resets.

Bit descriptions

Figure B-94: AArch64_imp_cpucfr_el1 bit assignments

Table B-246: IMP_CPUCFR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:3]	RES0	Reserved	0x0
[2]	no_scu	Indicates whether the SCU is present or not. Possible values of this bit are:	
		0ь0	
		The SCU is present.	
		0b1	
		The SCU is not present.	
[1]	RESO	Reserved	0x0
[0]	core_cache_protect	Indicates whether ECC is present or not. Possible values of this field are:	
		0ь0	
		ECC is not present.	
		0b1	
		ECC is present.	

Access

MRS <Xt>, S3_0_C15_C0_0

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
S3_0_C15_C0_0	0b11	00000	0b1111	000000	00000

Accessibility

MRS < Xt>, S3_0_C15_C0_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
    return IMP_CPUCFR_EL1;
```

elsif PSTATE.EL == EL2 then
 return IMP CPUCFR EL1;
elsif PSTATE.EL == EL3 then
 return IMP_CPUCFR_EL1;

B.5 AArch64 Performance Monitors register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Performance Monitors registers in the core. Individual register descriptions provide detailed information.

Table B-248: Performance Monitors register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
PMMIR_EL1	3	C9	0	C14	6	See individual bit resets.	64-bit	Performance Monitors Machine Identification Register
PMCR_EL0	3	C9	3	C12	0	See individual bit resets.	64-bit	Performance Monitors Control Register
PMCEIDO_ELO	3	C9	3	C12	6	See individual bit resets.	64-bit	Performance Monitors Common Event Identification register 0
PMCEID1_EL0	3	C9	3	C12	7	See individual bit resets.	64-bit	Performance Monitors Common Event Identification register 1

B.5.1 PMMIR_EL1, Performance Monitors Machine Identification Register

Describes Performance Monitors parameters specific to the implementation to software.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Performance Monitors

Reset value

See individual bit resets.

Bit descriptions

Figure B-95: AArch64_pmmir_el1 bit assignments

Table B-249: PMMIR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:8]	RES0	Reserved	0x0
[7:0]		Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the STALL_SLOT event is not implemented, this field might read as zero.	
		0ь00000101	
		The largest value by which the STALL_SLOT PMU event may increment in one cycle is 5.	

Access

MRS <Xt>, PMMIR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
PMMIR_EL1	0b11	0b000	0b1001	0b1110	0b110

Accessibility

MRS <Xt>, PMMIR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.PMMIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR_EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return PMMIR_EL1;
elsif PSTATE.EL == EL2 then
    if MDCR_EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return PMMIR_EL1;
elsif PSTATE.EL == EL3 then
    return PMMIR_EL1;
elsif PSTATE.EL == EL3 then
    return PMMIR_EL1;
```

B.5.2 PMCR_ELO, Performance Monitors Control Register

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Performance Monitors

Reset value

See individual bit resets.

Bit descriptions

Figure B-96: AArch64_pmcr_el0 bit assignments

Table B-251: PMCR_ELO bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:24]	IMP	Implementer code:	
		оъ00000000	
		No ID information is present in PMCR/PMCR_ELO. Software must use the MIDR_EL1 to identify the PE.	
[23:16]	RES0	Reserved	0b00000000
[15:11]	Ν	Number of event counters:	
		0ь00110	
		When configured for 6 PMU counters, denotes 6 PMU counters implemented	
		0ь10100	
		When configured for 20 PMU counters, denotes 20 PMU counters implemented	
[10:8]	RES0	Reserved	00000

Bits	Name	Description	Reset
[7]	LP	Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.	
		0ь0	
		Event counter overflow on increment that causes unsigned overflow of AArch64-PMEVCNTR <n>_EL0[31:0].</n>	
		0b1	
		Event counter overflow on increment that causes unsigned overflow of AArch64-PMEVCNTR <n>_EL0[63:0].</n>	
		If EL2 is implemented and AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range [AArch32-HDCR.HPMN(PMCR_EL0.N-1)] or [AArch64-MDCR_EL2.HPMN(PMCR_EL0.N-1)].	
		Note:	
		The effect of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN.	
[6]	LC	Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.	
		0ь0	
		Cycle counter overflow on increment that causes unsigned overflow of AArch64-PMCCNTR_EL0[31:0].	
		0ь1	
		Cycle counter overflow on increment that causes unsigned overflow of AArch64-PMCCNTR_EL0[63:0].	
		Arm deprecates use of AArch64-PMCR_ELO.LC = 0.	
[5]	DP	Disable cycle counter when event counting is prohibited.	
		0ь0	
		Cycle counting by AArch64-PMCCNTR_EL0 is not affected by this bit.	
		0ь1	
		When event counting for counters in the range [0(AArch64-MDCR_EL2.HPMN-1)] is prohibited, cycle counting by AArch64-PMCCNTR_EL0 is disabled.	
[4]	RESO	Reserved	0b0
[3]	D	Clock divider.	
		0ь0	
		When enabled, AArch64-PMCCNTR_EL0 counts every clock cycle.	
		0b1	
		When enabled, AArch64-PMCCNTR_ELO counts once every 64 clock cycles.	
		If PMCR_ELO.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.	
		Arm deprecates use of PMCR_ELO.D = 1.	

Bits	Name	Description	Reset
[2]	С	Cycle counter reset. The effects of writing to this bit are:	
		0ъ0	
		No action.	
		0ь1	
		Reset AArch64-PMCCNTR_EL0 to zero.	
		This bit is always RAZ.	
		Note:	
		Resetting AArch64-PMCCNTR_ELO does not change the cycle counter overflow bit. The value of PMCR_ELO.LC is ignored, and bits [63:0] of all affected event counters are reset.	
[1]	Р	Event counter reset. The effects of writing to this bit are:	
		0ъ0	
		No action.	
		0b1	
		Reset all event counters accessible in the current Exception level, not including AArch64-PMCCNTR_EL0, to zero.	
		This bit is always RAZ.	
		In ELO and EL1:	
		• If EL2 is implemented and enabled in the current Security state, and AArch64-MDCR_EL2.HPMN is less than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range [AArch64-MDCR_EL2.HPMN(PMCR_EL0.N-1)].	
		If EL2 is not implemented, EL2 is disabled in the current Security state, or AArch64-MDCR_EL2.HPMN equals PMCR_EL0.N, a write of 1 to this bit resets all the event counters.	
		In EL2 and EL3, a write of 1 to this bit resets all the event counters.	
		Note: Resetting the event counters does not change the event counter overflow bits.	
		If ARMv8.5-PMU is implemented, the values of AArch64-MDCR_EL2.HLP and PMCR_EL0.LP are ignored, and bits [63:0] of all affected event counters are reset.	

Bits	Name	Description	Reset
[0]	Е	Enable.	
		0ь0	
		All event counters in the range [0(PMN-1)] and AArch64-PMCCNTR_EL0, are disabled.	
		0ь1	
		All event counters in the range [0(PMN-1)] and AArch64-PMCCNTR_EL0, are enabled by AArch64-PMCNTENSET_EL0.	
		If EL2 is implemented, then:	
		If EL2 is using AArch32, PMN is AArch32-HDCR.HPMN.	
		If EL2 is using AArch64, PMN is AArch64-MDCR_EL2.HPMN.	
		• If PMN is less than PMCR_ELO.N, this bit does not affect the operation of event counters in the range [PMN(PMCR_ELO.N-1)].	
		If EL2 is not implemented, PMN is PMCR_EL0.N.	
		Note:	
		The effect of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN.	

MRS <Xt>, PMCR_ELO

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
PMCR_ELO	0b11	0b011	0b1001	0b1100	00000

MSR PMCR_ELO, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
PMCR_EL0	0b11	0b011	0b1001	0b1100	0b000

Accessibility

MRS <Xt>, PMCR_ELO

MSR PMCR ELO, <Xt>

```
if PSTATE.EL == ELO then
    if PMUSERENR ELO.EN == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
             AArch64.SystemAccessTrap(EL2, 0x18);
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && HCR EL2.\langle E2H, TGE \rangle != '11' && SCR EL3.FGTEn == '1' && HD\
FGWTR EL2.PMCR EL0 == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif EL2Enabled() && MDCR EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR EL2.TPMCR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR EL3.TPM == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
        PMCR ELO = X[t];
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && SCR EL3.FGTEn == '1' && HDFGWTR EL2.PMCR EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR EL2.TPM == '1'
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        PMCR ELO = X[t];
elsif PSTATE.EL == EL2 then
   if MDCR EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMCR ELO = X[t];
elsif PSTATE.EL == EL3 then
    PMCR ELO = X[t];
```

B.5.3 PMCEIDO_ELO, Performance Monitors Common Event Identification register 0

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted. Arm recommends that, if a common event is never counted, the value of the

corresponding register bit is 0. For more information about the common events and the use of the PMCEID<n>_ELO registers see 'The PMU event number space and common events'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Performance Monitors

Reset value

See individual bit resets.

Bit descriptions

Figure B-97: AArch64_pmceid0_el0 bit assignments

Table B-254: PMCEID0_EL0 bit descriptions

Bits	Name	Description	Reset
[63]	IDhi31	IDhi31 corresponds to a Reserved Event event (0x401f)	
		0ь0	
		The common event is not implemented, or not counted.	
[62]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x401e)	
		0ь0	
		The common event is not implemented, or not counted.	
[61]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x401d)	
		0ь0	
		The common event is not implemented, or not counted.	
[60]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x401c)	
		0р0	
		The common event is not implemented, or not counted.	
[59]	IDhi27	IDhi27 corresponds to common event (0x401b) CTI_TRIGOUT7	
		0b1	
		The common event is implemented.	
[58]	IDhi26	IDhi26 corresponds to common event (0x401a) CTI_TRIGOUT6	
		0ь1	
		The common event is implemented.	
[57]	IDhi25	IDhi25 corresponds to common event (0x4019) CTI_TRIGOUT5	
		0b1	
-		The common event is implemented.	
[56]	IDhi24	IDhi24 corresponds to common event (0x4018) CTI_TRIGOUT4	
		0b1	
[5.5]	151.00	The common event is implemented.	
[55]	IDhi23	IDhi23 corresponds to a Reserved Event event (0x4017)	
		0b0	
[[]	IDI-:00	The common event is not implemented, or not counted.	
[54]	IDhi22	IDhi22 corresponds to a Reserved Event event (0x4016)	
		ОЬО The common event is not implemented, or not counted.	
[53]	IDhi21	IDhi21 corresponds to a Reserved Event event (0x4015)	
[53]	IDIIIZI		
		ОЬО The common event is not implemented, or not counted.	
[52]	IDhi20	IDhi20 corresponds to a Reserved Event event (0x4014)	
[عد]	IDIIIZU	0b0	
		The common event is not implemented, or not counted.	
[51]	IDhi19	IDhi19 corresponds to common event (0x4013) TRCEXTOUT3	
[+]	.2	0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[50]	IDhi18	IDhi18 corresponds to common event (0x4012) TRCEXTOUT2	
		0b1	
		The common event is implemented.	
[49]	IDhi17	IDhi17 corresponds to common event (0x4011) TRCEXTOUT1	
		0b1	
		The common event is implemented.	
[48]	IDhi16	IDhi16 corresponds to common event (0x4010) TRCEXTOUTO	
		0b1	
		The common event is implemented.	
[47]	IDhi15	IDhi15 corresponds to common event (0x400f) Reserved	
		060	
		The common event is not implemented, or not counted.	
[46]	IDhi14	IDhi14 corresponds to common event (0x400e) TRB_TRIG	
		060	
		The common event is not implemented, or not counted.	
[45]	IDhi13	IDhi13 corresponds to common event (0x400d) PMU_OVFS	
		0ь0	
		The common event is not implemented, or not counted.	
[44]	IDhi12	IDhi12 corresponds to common event (0x400c) TRB_WRAP	
		0b1	
		The common event is implemented.	
[43]	IDhi11	IDhi11 corresponds to common event (0x400b) L3D_CACHE_LMISS_RD	
		0b1	
		The common event is implemented.	
[42]	IDhi10	IDhi10 corresponds to common event (0x400a) L2I_CACHE_LMISS	
		0ъ0	
		The common event is not implemented, or not counted.	
[41]	IDhi9	IDhi9 corresponds to common event (0x4009) L2D_CACHE_LMISS_RD	
		0ь1	
		The common event is implemented.	
[40]	IDhi8	IDhi8 corresponds to common event (0x4008) Reserved	
		0ъ0	
		The common event is not implemented, or not counted.	
[39]	IDhi7	IDhi7 corresponds to common event (0x4007) Reserved	
		0ъ0	
		The common event is not implemented, or not counted.	
[38]	IDhi6	IDhi6 corresponds to common event (0x4006) L1I_CACHE_LMISS	
		0b1	
		The common event is implemented.	
[37]	IDhi5	IDhi5 corresponds to common event (0x4005) STALL_BACKEND_MEM	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[36]	IDhi4	IDhi4 corresponds to common event (0x4004) CNT_CYCLES	
		0b1	
		The common event is implemented.	
[35]	IDhi3	IDhi3 corresponds to common event (0x4003) SAMPLE_COLLISION	
		0ь0	
		The common event is not implemented, or not counted.	
[34]	IDhi2	IDhi2 corresponds to common event (0x4002) SAMPLE_FILTRATE	
		0ъ0	
		The common event is not implemented, or not counted.	
[33]	IDhi1	IDhi1 corresponds to common event (0x4001) SAMPLE_FEED	
		0ъ0	
		The common event is not implemented, or not counted.	
[32]	IDhi0	IDhiO corresponds to common event (0x4000) SAMPLE_POP	
		0ь0	
		The common event is not implemented, or not counted.	
[31]	ID31	ID31 corresponds to common event (0x1f) L1D_CACHE_ALLOCATE	
		0ь0	
		The common event is not implemented, or not counted.	
[30]	ID30	ID30 corresponds to common event (0x1e) CHAIN	
		0b1	
		The common event is implemented.	
[29]	ID29	ID29 corresponds to common event (0x1d) BUS_CYCLES	
		0b1	
		The common event is implemented.	
[28]	ID28	ID28 corresponds to common event (0x1c) TTBR_WRITE_RETIRED	
		0ь1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x1b) INST_SPEC	
		0b1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x1a) MEMORY_ERROR	
		0b1	
[0.5]	IDOF	The common event is implemented.	
[25]	ID25	ID25 corresponds to common event (0x19) BUS_ACCESS	
		0b1	
[0.4]	ID04	The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x18) L2D_CACHE_WB	
		0b1 The common event is implemented.	
[00]	ID23		
[23]	IDZS	ID23 corresponds to common event (0x17) L2D_CACHE_REFILL	
		0b1 The common event is implemented.	
		The continion event is implemented.	

Bits	Name	Description	Reset
[22]	ID22	ID22 corresponds to common event (0x16) L2D_CACHE	
		0b1	
		The common event is implemented.	
[21]	ID21	ID21 corresponds to common event (0x15) L1D_CACHE_WB	
		0b1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x14) L1I_CACHE	
		0b1	
		The common event is implemented.	
[19]	ID19	ID19 corresponds to common event (0x13) MEM_ACCESS	
		0b1	
		The common event is implemented.	
[18]	ID18	ID18 corresponds to common event (0x12) BR_PRED	
		0b1	
		The common event is implemented.	
[17]	ID17	ID17 corresponds to common event (0x11) CPU_CYCLES	
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x10) BR_MIS_PRED	
		0b1	
		The common event is implemented.	
[15]	ID15	ID15 corresponds to common event (0xf) UNALIGNED_LDST_RETIRED	
		0ь0	
		The common event is not implemented, or not counted.	
[14]	ID14	ID14 corresponds to common event (0xe) BR_RETURN_RETIRED	
		0ь0	
		The common event is not implemented, or not counted.	
[13]	ID13	ID13 corresponds to common event (0xd) BR_IMMED_RETIRED	
		0ь0	
		The common event is not implemented, or not counted.	
[12]	ID12	ID12 corresponds to common event (0xc) PC_WRITE_RETIRED	
		0ь0	
		The common event is not implemented, or not counted.	
[11]	ID11	ID11 corresponds to common event (0xb) CID_WRITE_RETIRED	
		0b1	
		The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0xa) EXC_RETURN	
		0b1	
		The common event is implemented.	
[9]	ID9	ID9 corresponds to common event (0x9) EXC_TAKEN	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[8]	ID8	ID8 corresponds to common event (0x8) INST_RETIRED	
		0ь1	
		The common event is implemented.	
[7]	ID7	ID7 corresponds to common event (0x7) ST_RETIRED	
		0ъ0	
		The common event is not implemented, or not counted.	
[6]	ID6	ID6 corresponds to common event (0x6) LD_RETIRED	
		0ъ0	
		The common event is not implemented, or not counted.	
[5]	ID5	ID5 corresponds to common event (0x5) L1D_TLB_REFILL	
		0b1	
		The common event is implemented.	
[4]	ID4	ID4 corresponds to common event (0x4) L1D_CACHE	
		0b1	
		The common event is implemented.	
[3]	ID3	ID3 corresponds to common event (0x3) L1D_CACHE_REFILL	
		0b1	
		The common event is implemented.	
[2]	ID2	ID2 corresponds to common event (0x2) L1I_TLB_REFILL	
		0b1	
		The common event is implemented.	
[1]	ID1	ID1 corresponds to common event (0x1) L1I_CACHE_REFILL	
		0b1	
		The common event is implemented.	
[O]	ID0	ID0 corresponds to common event (0x0) SW_INCR	
		0ь1	
		The common event is implemented.	

MRS <Xt>, PMCEIDO_ELO

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
PMCEIDO_ELO	0b11	0b011	0b1001	0b1100	0b110

Accessibility

MRS <Xt>, PMCEIDO_ELO

```
if PSTATE.EL == EL0 then
  if PMUSERENR_EL0.EN == '0' then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
  else
        AArch64.SystemAccessTrap(EL1, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

B.5.4 PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted. Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0. For more information about the common events and the use of the PMCEID<n> ELO registers see 'The PMU event number space and common events'.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Performance Monitors

Reset value

Figure B-98: AArch64_pmceid1_el0 bit assignments

Table B-256: PMCEID1_EL0 bit descriptions

Bits	Name	Description	Reset
[63]	IDhi31	IDhi31 corresponds to a Reserved Event event (0x403f)	
		0ь0	
		The common event is not implemented, or not counted.	
[62]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x403e)	
		0ь0	
		The common event is not implemented, or not counted.	
[61]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x403d)	
		0ь0	
		The common event is not implemented, or not counted.	
[60]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x403c)	
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[59]	IDhi27	IDhi27 corresponds to a Reserved Event event (0x403b)	
		0ь0	
		The common event is not implemented, or not counted.	
[58]	IDhi26	IDhi26 corresponds to a Reserved Event event (0x403a)	
		0ь0	
		The common event is not implemented, or not counted.	
[57]	IDhi25	IDhi25 corresponds to a Reserved Event event (0x4039)	
		0ь0	
		The common event is not implemented, or not counted.	
[56]	IDhi24	IDhi24 corresponds to a Reserved Event event (0x4038)	
		0ь0	
		The common event is not implemented, or not counted.	
[55]	IDhi23	IDhi23 corresponds to a Reserved Event event (0x4037)	
		0ь0	
		The common event is not implemented, or not counted.	
[54]	IDhi22	IDhi22 corresponds to a Reserved Event event (0x4036)	
		0ь0	
		The common event is not implemented, or not counted.	
[53]	IDhi21	IDhi21 corresponds to a Reserved Event event (0x4035)	
		0ь0	
		The common event is not implemented, or not counted.	
[52]	IDhi20	IDhi20 corresponds to a Reserved Event event (0x4034)	
		0 ₀ 0	
		The common event is not implemented, or not counted.	
[51]	IDhi19	IDhi19 corresponds to a Reserved Event event (0x4033)	
		0ь0	
		The common event is not implemented, or not counted.	
[50]	IDhi18	IDhi18 corresponds to a Reserved Event event (0x4032)	
		0ь0	
		The common event is not implemented, or not counted.	
[49]	IDhi17	IDhi17 corresponds to a Reserved Event event (0x4031)	
		0ь0	
		The common event is not implemented, or not counted.	
[48]	IDhi16	IDhi16 corresponds to a Reserved Event event (0x4030)	
		0ь0	
		The common event is not implemented, or not counted.	
[47]	IDhi15	IDhi15 corresponds to a Reserved Event event (0x402f)	
		0ь0	
		The common event is not implemented, or not counted.	
[46]	IDhi14	IDhi14 corresponds to a Reserved Event event (0x402e)	
		0ь0	
		The common event is not implemented, or not counted.	

[45]	IDhi13	IDhi13 corresponds to a Reserved Event event (0x402d)	
-		TIDHI13 CORESPONDS to a Reserved Event event (0x402d)	
		0ь0	
		The common event is not implemented, or not counted.	
[44] I	IDhi12	IDhi12 corresponds to a Reserved Event event (0x402c)	
		ОРО	
		The common event is not implemented, or not counted.	
[43] I	IDhi11	IDhi11 corresponds to a Reserved Event event (0x402b)	
		0ь0	
		The common event is not implemented, or not counted.	
[42]	IDhi10	IDhi10 corresponds to a Reserved Event event (0x402a)	
		0ь0	
		The common event is not implemented, or not counted.	
[41] I	IDhi9	IDhi9 corresponds to a Reserved Event event (0x4029)	
		0ь0	
		The common event is not implemented, or not counted.	
[40] I	IDhi8	IDhi8 corresponds to a Reserved Event event (0x4028)	
		0ь0	
		The common event is not implemented, or not counted.	
[39]	IDhi7	IDhi7 corresponds to a Reserved Event event (0x4027)	
		0ь0	
		The common event is not implemented, or not counted.	
[38]	IDhi6	IDhi6 corresponds to common event (0x4026) MEM_ACCESS_CHECKED_WR	
		0b1	
		The common event is implemented.	
[37]	IDhi5	IDhi5 corresponds to common event (0x4025) MEM_ACCESS_CHECKED_RD	
		0b1	
		The common event is implemented.	
[36] I	IDhi4	IDhi4 corresponds to common event (0x4024) MEM_ACCESS_CHECKED	
		0b1	
		The common event is implemented.	
[35] I	IDhi3	IDhi3 corresponds to common event (0x4023) Reserved	
		060	
		The common event is not implemented, or not counted.	
[34] I	IDhi2	IDhi2 corresponds to common event (0x4022) ST_ALIGN_LAT	
		0b1	
		The common event is implemented.	
[33]	IDhi1	IDhi1 corresponds to common event (0x4021) LD_ALIGN_LAT	
		0b1	
		The common event is implemented.	
[32]	IDhi0	IDhiO corresponds to common event (0x4020) LDST_ALIGN_LAT	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[31]	ID31	ID31 corresponds to common event (0x3f) STALL_SLOT	
		0b1	
		The common event is implemented.	
[30]	ID30	ID30 corresponds to common event (0x3e) STALL_SLOT_FRONTEND	
		0b1	
		The common event is implemented.	
[29]	ID29	ID29 corresponds to common event (0x3d) STALL_SLOT_BACKEND	
		0b1	
		The common event is implemented.	
[28]	ID28	ID28 corresponds to common event (0x3c) STALL	
		0b1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x3b) OP_SPEC	
		0b1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x3a) OP_RETIRED	
		0b1	
		The common event is implemented.	
[25]	ID25	ID25 corresponds to common event (0x39) L1D_CACHE_LMISS_RD	
		0ь1	
		The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x38) REMOTE_ACCESS_RD	
		0ь0	
		The common event is not implemented, or not counted.	
[23]	ID23	ID23 corresponds to common event (0x37) LL_CACHE_MISS_RD	
		0b1	
		The common event is implemented.	
[22]	ID22	ID22 corresponds to common event (0x36) LL_CACHE_RD	
		0b1	
		The common event is implemented.	
[21]	ID21	ID21 corresponds to common event (0x35) ITLB_WALK	
		0b1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x34) DTLB_WALK	
		0b1	
		The common event is implemented.	
[19]	ID19	ID19 corresponds to a Reserved Event event (0x33)	
		0ь0	
		The common event is not implemented, or not counted.	
[18]	ID18	ID18 corresponds to a Reserved Event event (0x32)	
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[17]	ID17	ID17 corresponds to common event (0x31) REMOTE_ACCESS	
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x30) L2I_TLB	
		0ь0	
		The common event is not implemented, or not counted.	
[15]	ID15	ID15 corresponds to common event (0x2f) L2D_TLB	
		0ь1	
		The common event is implemented.	
[14]	ID14	ID14 corresponds to common event (0x2e) L2I_TLB_REFILL	
		0ъ0	
		The common event is not implemented, or not counted.	
[13]	ID13	ID13 corresponds to common event (0x2d) L2D_TLB_REFILL	
		0b1	
		The common event is implemented.	
[12]	ID12	ID12 corresponds to common event (0x2c) Reserved	
		0ь0	
		The common event is not implemented, or not counted.	
[11]	ID11	ID11 corresponds to common event (0x2b) L3D_CACHE	
		0b1	
		The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0x2a) L3D_CACHE_REFILL	
		0b1	
		The common event is implemented.	
[9]	ID9	ID9 corresponds to common event (0x29) L3D_CACHE_ALLOCATE	
		0ь1	
		The common event is implemented.	
[8]	ID8	ID8 corresponds to common event (0x28) L2I_CACHE_REFILL	
		0ъ0	
		The common event is not implemented, or not counted.	
[7]	ID7	ID7 corresponds to common event (0x27) L2I_CACHE	
		0ь0	
		The common event is not implemented, or not counted.	
[6]	ID6	ID6 corresponds to common event (0x26) L1I_TLB	
		0b1	
	15.5	The common event is implemented.	
[5]	ID5	ID5 corresponds to common event (0x25) L1D_TLB	
		0b1	
F 43	ID.	The common event is implemented.	
[4]	ID4	ID4 corresponds to common event (0x24) STALL_BACKEND	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[3]	ID3	ID3 corresponds to common event (0x23) STALL_FRONTEND	
		0ь1	
		The common event is implemented.	
[2]	ID2	ID2 corresponds to common event (0x22) BR_MIS_PRED_RETIRED	
		0ь1	
		The common event is implemented.	
[1]	ID1	ID1 corresponds to common event (0x21) BR_RETIRED	
		0ь1	
		The common event is implemented.	
[O]	ID0	IDO corresponds to common event (0x20) L2D_CACHE_ALLOCATE	
		0ь1	
		The common event is implemented.	

MRS <Xt>, PMCEID1_EL0

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
PMCEID1_EL0	0b11	0b011	0b1001	0b1100	0b111

Accessibility

MRS <Xt>, PMCEID1_EL0

```
if PSTATE.EL == ELO then
    if PMUSERENR ELO.EN == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && MDCR EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR EL3.TPM == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL3, 0x18);
return PMCEID1_EL0;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && MDCR EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR_EL3.TPM == '1' then
        AArch6\overline{4}. SystemAccessTrap(EL3, 0x18);
        return PMCEID1 ELO;
elsif PSTATE.EL == EL2 then
    if MDCR EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return PMCEID1 EL0;
elsif PSTATE.EL == EL3 then
    return PMCEID1 EL0;
```

B.6 AArch64 GIC register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** GIC registers in the core. Individual register descriptions provide detailed information.

Table B-258: GIC register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
ICC_CTLR_EL1	3	C12	0	C12	4	See individual bit resets.	64-bit	Interrupt Controller Control Register (EL1)
ICV_CTLR_EL1	3	C12	0	C12	4	See individual bit resets.	64-bit	Interrupt Controller Virtual Control Register
ICC_APORO_EL1	3	C12	0	C8	4	See individual bit resets.	64-bit	Interrupt Controller Active Priorities Group 0 Registers
ICV_APORO_EL1	3	C12	0	C8	4	See individual bit resets.	64-bit	Interrupt Controller Virtual Active Priorities Group 0 Registers
ICC_AP1R0_EL1	3	C12	0	С9	0	See individual bit resets.	64-bit	Interrupt Controller Active Priorities Group 1 Registers
ICV_AP1R0_EL1	3	C12	0	С9	0	See individual bit resets.	64-bit	Interrupt Controller Virtual Active Priorities Group 1 Registers
ICH_VTR_EL2	3	C12	4	C11	1	See individual bit resets.	64-bit	Interrupt Controller VGIC Type Register
ICC_CTLR_EL3	3	C12	6	C12	4	See individual bit resets.	64-bit	Interrupt Controller Control Register (EL3)

B.6.1 ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC

Reset value

Figure B-99: AArch64_icc_ctlr_el1 bit assignments

Table B-259: ICC_CTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:20]	RES0	Reserved	0x0
[19]	ExtRange	Extended INTID range (read-only).	
		0b1	
		CPU interface supports INTIDs in the range 10248191	
		All INTIDs in the range 10248191 are treated as requiring deactivation.	
[18]	RSS	Range Selector Support. Possible values are:	
		0ь0	
		Targeted SGIs with affinity level 0 values of 0 - 15 are supported.	
[17:16]	RES0	Reserved	0b00
[15]	A3V	Affinity 3 Valid. Read-only and writes are ignored. Possible values are:	
		0b1	
		The CPU interface logic supports non-zero values of Affinity 3 in SGI generation System registers.	
[14]	SEIS	SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:	
		0ь0	
		The CPU interface logic does not support local generation of SEIs.	
[13:11]	IDbits	Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:	
		0ь000	
		16 bits.	

Bits	Name	Description	Reset			
[10:8]	PRIbits	Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.				
		An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).				
		An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).				
		Note: This field always returns the number of priority bits implemented, regardless of the Security state of the access or the value of ext-GICD_CTLR.DS. For physical accesses, this field determines the minimum value of AArch64-ICC_BPR0_EL1.				
		If EL3 is implemented, physical accesses return the value from AArch64-ICC_CTLR_EL3.PRIbits.				
	0ь100					
		5 bits of priority are implemented				
[7]	RES0	Reserved	0b0			
[6]	PMHE	Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:				
		0ь0				
		Disables use of AArch64-ICC_PMR_EL1 as a hint for interrupt distribution.				
		0b1				
		Enables use of AArch64-ICC_PMR_EL1 as a hint for interrupt distribution.				
		If EL3 is implemented, this bit is an alias of AArch64-ICC_CTLR_EL3.PMHE. Whether this bit can be written as part of an access to this register depends on the value of ext-GICD_CTLR.DS:				
		• If ext-GICD_CTLR.DS == 0, this bit is read-only.				
		If ext-GICD_CTLR.DS == 1, this bit is read/write.				
[5:2]	RES0	Reserved	0b0000			
[1]	EOlmode	EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the interrupt:				
		0ь0				
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE.				
		0b1				
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.				
		The Secure AArch64-ICC_CTLR_EL1.EOlmode is an alias of AArch64-ICC_CTLR_EL3.EOlmode_EL1S.				
		The Non-secure AArch64-ICC_CTLR_EL1.EOImode is an alias of AArch64-ICC_CTLR_EL3.EOImode_EL1NS				

Bits	Name	Description Re	Reset				
[0]	CBPR	Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 interrupts:					
		0ь0					
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.					
		AArch64-ICC_BPR1_EL1 determines the preemption group for Group 1 interrupts.					
		0b1					
		AArch64-ICC_BPR0_EL1 determines the preemption group for both Group 0 and Group 1 interrupts.					
		If EL3 is implemented:					
		This bit is an alias of AArch64-ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the current Security state.					
		If ext-GICD_CTLR.DS == 0, this bit is read-only.					
		If ext-GICD_CTLR.DS == 1, this bit is read/write.					

MRS <Xt>, ICC_CTLR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_CTLR_EL1	0b11	0b000	0b1100	0b1100	0b100

MSR ICC_CTLR_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_CTLR_EL1	0b11	0b000	0b1100	0b1100	0b100

Accessibility

MRS <Xt>, ICC_CTLR_EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ICH HCR EL2.TC == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR EL2.FMO == '1' then
         return ICV CTLR EL1;
    elsif EL2Enabled() && HCR EL2.IMO == '1' then
    return ICV_CTLR_EL1; ^- elsif SCR_EL3.^<IRQ,^+FIQ> == '11' then
        AArch64.SystemAccessTrap(EL3, 0x18);
         if SCR EL3.NS == '0' then
             return ICC CTLR EL1 S;
         else
return ICC_CTLR_EL1_NS;
elsif PSTATE.EL == EL2 then
if SCR_EL3.<IRQ,FIQ> == '11' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         if SCR EL3.NS == '0' then
             return ICC_CTLR_EL1_S;
              return ICC CTLR EL1 NS;
elsif PSTATE.EL == EL3 then
```

```
if SCR_EL3.NS == '0' then
    return ICC_CTLR_EL1_S;
else
    return ICC_CTLR_EL1_NS;
```

MSR ICC_CTLR_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ICH HCR EL2.TC == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.FMO == '1' then
    ICV_CTLR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.IMO == '1' then
        ICV CTLR EL1 = X[t];
    elsif \overline{SCR} \overline{EL3}.\langle \overline{IRQ}, \overline{FIQ} \rangle == '11' then
         AArch\overline{6}4.SystemAccessTrap(EL3, 0x18);
         if SCR EL3.NS == '0' then
              IC\overline{C}_CTLR_EL1_S = X[t];
         else
              ICC CTLR EL1 NS = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.<IRQ,FIQ> == '11' then
         AArch64.SystemAccessTrap(EL3, 0x18);
    else
         if SCR EL3.NS == '0' then
              IC\overline{C}_CTLR_EL1_S = X[t];
              ICC CTLR EL1 NS = X[t];
elsif PSTATE.EL == EL3 then
    if SCR EL3.NS == '0' then
         IC\overline{C} CTLR EL1 S = X[t];
         ICC CTLR EL1 NS = X[t];
```

B.6.2 ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Controls aspects of the behavior of the GIC virtual CPU interface and provides information about the features implemented.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC

Reset value

Figure B-100: AArch64_icv_ctlr_el1 bit assignments

Table B-262: ICV_CTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:20]	RES0	Reserved	0x0
[19]	ExtRange	Extended INTID range (read-only).	
		0b1	
		CPU interface supports INTIDs in the range 10248191	
		All INTIDs in the range 10248191 are treated as requiring deactivation.	
[18]	RSS	Range Selector Support. Possible values are:	
		0ь0	
		Targeted SGIs with affinity level 0 values of 0 - 15 are supported.	
[17:16]	RES0	Reserved	0b00
[15]	A3V	Affinity 3 Valid. Read-only and writes are ignored. Possible values are:	
		0b1	
		The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation System registers.	
[14]	SEIS	SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local generation of SEIs:	
		0ь0	
		The virtual CPU interface logic does not support local generation of SEIs.	
[13:11]	IDbits	Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits supported:	
		0ь000	
		16 bits.	
[10:8]	PRIbits	Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.	
		An implementation must implement at least 32 levels of physical priority (5 priority bits).	
		Note: This field always returns the number of priority bits implemented. The division between group priority and subpriority is defined in the binary point registers AArch64-ICV_BPR0_EL1 and AArch64-ICV_BPR1_EL1.	
		0ь100	
		5 bits of priority are implemented	
[7:2]	RES0	Reserved	0b000000

Bits	Name	Description	Reset
[1]	EOlmode	Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:	
		 AArch64-ICV_EOIR0_EL1 and AArch64-ICV_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICV_DIR_EL1 are UNPREDICTABLE. AArch64-ICV_EOIR0_EL1 and AArch64-ICV_EOIR1_EL1 provide priority drop functionality only. AArch64-ICV_DIR_EL1 provides interrupt deactivation functionality. 	
[0]	CBPR	Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both virtual Group 0 and virtual Group 1 interrupts: ObO AArch64-ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts. Ob1 Reads of AArch64-ICV_BPR1_EL1 return AArch64-ICV_BPR0_EL1 plus one, saturated to 0b111. Writes to AArch64-ICV_BPR1_EL1 are ignored.	

MRS <Xt>, ICC_CTLR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_CTLR_EL1	0b11	0b000	0b1100	0b1100	0b100

MSR ICC_CTLR_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_CTLR_EL1	0b11	0b000	0b1100	0b1100	0b100

Accessibility

MRS <Xt>, ICC_CTLR_EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ICH HCR EL2.TC == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.FMO == '1' then
        return ICV CTLR EL1;
    elsif EL2Enabled() && HCR\_EL2.IMO == '1' then
    return ICV_CTLR_EL1; elsif SCR_EL3.<IRQ,FIQ> == '11' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         if SCR\_EL3.NS == '0' then
             return ICC_CTLR_EL1_S;
         else
return ICC_CTLR_EL1_NS;
elsif PSTATE.EL == EL2 then
    if SCR_EL3.<IRQ,FIQ> == '11' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         if SCR EL3.NS == '0' then
             return ICC_CTLR_EL1_S;
         else
```

```
return ICC_CTLR_EL1_NS;
elsif PSTATE.EL == EL3 then
  if SCR_EL3.NS == '0' then
    return ICC_CTLR_EL1_S;
else
    return ICC_CTLR_EL1_NS;
```

MSR ICC CTLR EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ICH HCR EL2.TC == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.FMO == '1' then
        ICV CTLR EL1 = X[t];
    elsif E\overline{L}2Ena\overline{b}led() && HCR\_EL2.IMO == '1' then
         ICV CTLR_EL1 = X[t];
    elsif \overline{SCR} \overline{EL3}.\langle \overline{IRQ}, \overline{FIQ} \rangle == '11' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         if SCR EL3.NS == '0' then
             IC\overline{C} CTLR EL1 S = X[t];
         else
             ICC CTLR EL1 NS = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.<IRQ,FIQ> == '11' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         if SCR EL3.NS == '0' then
              IC\overline{C} CTLR EL1 S = X[t];
              ICC CTLR EL1 NS = X[t];
elsif PSTATE.EL == EL3 then
    if SCR_EL3.NS == '0' then
         IC\overline{C} CTLR EL1 S = X[t];
         ICC CTLR EL1 NS = X[t];
```

B.6.3 ICC_APORO_EL1, Interrupt Controller Active Priorities Group 0 Registers

Provides information about Group 0 active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC

Reset value

Figure B-101: AArch64_icc_ap0r0_el1 bit assignments

Table B-265: ICC_APOR0_EL1 bit descriptions

Bits	Name	Description	Reset			
[63:32]	RES0	Reserved	0x0			
[31:0]	P <x></x>	rovides the access to the active priorities for Group 0 interrupts. Possible values of each bit are:				
		There is no Group 0 interrupt active with this priority level, or all active Group 0 interrupts with this priority level have undergone priority-drop.				
		0ь1				
		There is a Group 0 interrupt active with this priority level which has not undergone priority drop.				
		There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding to Priority[7:3].				

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Access

MRS <Xt>, ICC_APORO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_APORO_EL1	0b11	00000	0b1100	0b1000	0b100

MSR ICC_APORO_EL1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ICC_APORO_EL1	0b11	00000	0b1100	0b1000	0b100

B.6.4 ICV_APORO_EL1, Interrupt Controller Virtual Active Priorities Group O Registers

Provides information about virtual Group O active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC

Reset value

See individual bit resets.

Bit descriptions

Figure B-102: AArch64_icv_ap0r0_el1 bit assignments

Table B-268: ICV_APOR0_EL1 bit descriptions

Bits	Name	Description	Reset			
[63:32]	RES0	Reserved	0x0			
[31:0]	P <x></x>	ovides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:				
		50				
		There is no Group 0 interrupt active with this priority level, or all active Group 0 interrupts with this priority level have undergone priority-drop.				
		0ь1				
		There is a Group 0 interrupt active with this priority level which has not undergone priority drop.				
		There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding o Priority[7:3].				

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Access

MRS <Xt>, ICC_APORO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_APORO_EL1	0b11	0b000	0b1100	0b1000	0b100

MSR ICC_APORO_EL1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ICC_APORO_EL1	0b11	00000	0b1100	0b1000	0b100

B.6.5 ICC_AP1R0_EL1, Interrupt Controller Active Priorities Group 1 Registers

Provides information about Group 1 active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC

Reset value

See individual bit resets.

Bit descriptions

Figure B-103: AArch64_icc_ap1r0_el1 bit assignments

Table B-271: ICC_AP1R0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:0]	P <x></x>	Group 1 interrupt active priorities. When AArch64-SCR_EL3.NS == '1', accesses the priorities for Non-secure Group 1 interrupts, and when AArch64-SCR_EL3.NS == '0' accesses the priorities for Secure Group 1 interrupts. Possible values of each bit are:	
		0ь0	
		There is no Group 1 interrupt active with this priority level, or all active Group 1 interrupts with this priority level have undergone priority-drop.	
		0ь1	
		There is a Group 1 interrupt active with this priority level which has not undergone priority drop.	
		There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding to Priority[7:3].	
		When accessed from non-secure EL2 or EL1, only the 16 lowest-priority interrupts are visible in bits [15:0] of this register.	

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

MRS <Xt>, ICC_AP1R0_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ICC_AP1R0_EL1	0b11	0b000	0b1100	0b1001	0b000

MSR ICC_AP1R0_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_AP1R0_EL1	0b11	0b000	0b1100	0b1001	0b000

B.6.6 ICV_AP1R0_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers

Provides information about virtual Group 1 active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC

Reset value

See individual bit resets.

Bit descriptions

Figure B-104: AArch64_icv_ap1r0_el1 bit assignments

Table B-274: ICV_AP1R0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0

Bits	Name	Description	Reset
[31:0]	P <x></x>	Group 1 interrupt active priorities. Possible values of each bit are:	
		0ь0	
		There is no Group 1 interrupt active with this priority level, or all active Group 1 interrupts with this priority level have undergone priority-drop.	
		0ь1	
		There is a Group 1 interrupt active with this priority level which has not undergone priority drop.	
		There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding to Priority[7:3].	

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Access

MRS <Xt>, ICC_AP1R0_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ICC_AP1R0_EL1	0b11	00000	0b1100	0b1001	00000

MSR ICC AP1R0 EL1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ICC_AP1R0_EL1	0b11	00000	0b1100	0b1001	0b000

B.6.7 ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Reports supported GIC virtualization features.

Configurations

If EL2 is not implemented, all bits in this register are RESO from EL3, except for nV4, which is RES1 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

GIC

Reset value

Figure B-105: AArch64_ich_vtr_el2 bit assignments

Table B-277: ICH_VTR_EL2 bit descriptions

Bits	Name	Description	Reset							
[63:32]	RES0	Reserved	0x0							
[31:29]	PRIbits	Priority bits. The number of virtual priority bits implemented, minus one.								
		An implementation must implement at least 32 levels of virtual priority (5 priority bits).								
		This field is an alias of AArch64-ICV_CTLR_EL1.PRIbits.								
		0ь100								
	5 virtual priority bits are implemented									
[28:26]	PREbits	The number of virtual preemption bits implemented, minus one.								
		An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).								
		The value of this field must be less than or equal to the value of ICH_VTR_EL2.PRIbits.								
		The maximum value of this field is 6, indicating 7 bits of preemption.								
		This field determines the minimum value of AArch64-ICH_VMCR_EL2.VBPR0.								
		0b100								
		5 virtual pre-emption bits are implemented								
[25:23]	IDbits	The number of virtual interrupt identifier bits supported:								
		0ь000								
		16 bits.								
[22]	SEIS	SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:								
		0ь0								
		The virtual CPU interface logic does not support generation of SEIs.								
[21]	A3V	Affinity 3 Valid. Possible values are:								
		061								
		The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation System registers.								
[20]	nV4	Direct injection of virtual interrupts not supported. Possible values are:								
		0ь0								
		The CPU interface logic supports direct injection of virtual interrupts.								

Bits	Name	Description	Reset					
[19]	TDS	Separate trapping of EL1 writes to AArch64-ICV_DIR_EL1 supported.						
		Implementation supports AArch64-ICH_HCR_EL2.TDIR.						
[18:5]	RES0	Reserved	0x0					
[4:0]	ListRegs	The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of 16 List registers are implemented.						
		0ь00011						
		4 List registers						

MRS <Xt>, ICH_VTR_EL2

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ICH_VTR_EL2	0b11	0b100	0b1100	0b1011	0b001

Accessibility

MRS <Xt>, ICH_VTR_EL2

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   return ICH_VTR_EL2;
elsif PSTATE.EL == EL3 then
   return ICH_VTR_EL2;
```

B.6.8 ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC

Reset value

Figure B-106: AArch64_icc_ctlr_el3 bit assignments

Table B-279: ICC_CTLR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:20]	RES0	Reserved	0x0
[19]	ExtRange	Extended INTID range (read-only).	
		0ь1	
		CPU interface supports INTIDs in the range 10248191	
		All INTIDs in the range 10248191 are treated as requiring deactivation.	
[18]	RSS	Range Selector Support.	
		0ь0	
		Targeted SGIs with affinity level 0 values of 0-15 are supported.	
[17]	nDS	Disable Security not supported. Read-only and writes are ignored.	
		0ь1	
		The CPU interface logic does not support disabling of security, and requires that security is not disabled.	
[16]	RES0	Reserved	0x0
[15]	A3V	Affinity 3 Valid. Read-only and writes are ignored.	
		0ь1	
		The CPU interface logic supports non-zero values of the Aff3 field in SGI generation System registers.	
[14]	SEIS	SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs:	
		0ъ0	
		The CPU interface logic does not support generation of SEIs.	
[13:11]	IDbits	Identifier bits. Read-only and writes are ignored. Indicates the number of physical interrupt identifier bits supported.	
		0ь000	
		16 bits.	

Bits	Name	Description	Reset					
[10:8]	PRIbits	Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.						
		An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).						
		An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).						
		Note: This field always returns the number of priority bits implemented, regardless of the value of SCR_EL3.NS or the value of ext-GICD_CTLR.DS. The division between group priority and subpriority is defined in the binary point registers AArch64-ICC_BPRO_EL1 and AArch64-ICC_BPR1_EL1.						
		This field determines the minimum value of ICC_BPRO_EL1.						
		0b100						
		5 bits of priority are implemented						
[7]	RESO .	Reserved	0b0					
[6]	PMHE	Priority Mask Hint Enable.	0b0					
		0b0						
		Disables use of the priority mask register as a hint for interrupt distribution.						
		0b1						
		Enables use of the priority mask register as a hint for interrupt distribution.						
		 Software must write AArch64-ICC_PMR_EL1 to 0xFF before clearing this field to 0.						
		An implementation might choose to make this field RAO/WI if priority-based routing is always used						
		An implementation might choose to make this field RAZ/WI if priority-based routing is never used						
		If EL3 is present, AArch64-ICC_CTLR_EL1.PMHE is an alias of ICC_CTLR_EL3.PMHE.						
[5]	RESO .	Reserved	0b0					
[4]	EOlmode_EL1NS	EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt register also deactivates the interrupt.						
		0ь0						
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE.						
		0ь1						
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.						
		If EL3 is present, AArch64-ICC_CTLR_EL1(NS).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1NS.						

Bits	Name	Description	Reset
[3]	EOlmode_EL1S	EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt register also deactivates the interrupt. 0b0	
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE. 0b1	
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.	
		If EL3 is present, AArch64-ICC_CTLR_EL1(S).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.	
[2]	EOlmode_EL3	EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates the interrupt.	
		0ь0	
		AArch64-ICC_EOIR0_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE.	
		0b1	
		AArch64-ICC_EOIR0_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.	
[1]	CBPR_EL1NS	Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2.	
		0ь0	
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.	
		AArch64-ICC_BPR1_EL1 determines the preemption group for Non-secure Group 1 interrupts.	
		0b1	
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts and Non-secure Group 1 interrupts. Non-secure accesses to ext-GICC_BPR and AArch64-ICC_BPR1_EL1 access the state of AArch64-ICC_BPR0_EL1.	
		If EL3 is present, AArch64-ICC_CTLR_EL1(NS).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1NS.	
[O]	CBPR_EL1S	Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 Secure interrupts at EL1.	
		0ь0	
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.	
		AArch64-ICC_BPR1_EL1 determines the preemption group for Secure Group 1 interrupts.	
		0b1	
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts and Secure Group 1 interrupts. Secure EL1 accesses to AArch64-ICC_BPR1_EL1 access the state of AArch64-ICC_BPR0_EL1.	
		If EL3 is present, AArch64-ICC_CTLR_EL1(S).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1S.	

MRS <Xt>, ICC_CTLR_EL3

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_CTLR_EL3	0b11	0b110	0b1100	0b1100	0b100

MSR ICC CTLR EL3, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ICC_CTLR_EL3	0b11	0b110	0b1100	0b1100	0b100

Accessibility

MRS <Xt>, ICC_CTLR_EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return ICC_CTLR_EL3;
```

MSR ICC_CTLR_EL3, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    ICC_CTLR_EL3 = X[t];
```

B.7 AArch64 Activity Monitors register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Activity Monitors registers in the core. Individual register descriptions provide detailed information.

Table B-282: Activity Monitors register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
AMEVTYPER10_EL0	3	C13	3	C14	0	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER11_EL0	3	C13	3	C14	1	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER12_EL0	3	C13	3	C14	2	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 1
AMCFGR_EL0	3	C13	3	C2	1	See individual bit resets.	64-bit	Activity Monitors Configuration Register
AMCGCR_EL0	3	C13	3	C2	2	See individual bit resets.	64-bit	Activity Monitors Counter Group Configuration Register

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
AMEVTYPEROO_ELO	3	C13	3	C6	0	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER01_EL0	3	C13	3	C6	1	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER02_EL0	3	C13	3	C6	2	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER03_EL0	3	C13	3	C6	3	See individual bit resets.	64-bit	Activity Monitors Event Type Registers 0

B.7.1 AMEVTYPER10_EL0, Activity Monitors Event Type Registers 1

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR10 ELO counts.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

See individual bit resets.

Bit descriptions

Figure B-107: AArch64_amevtyper10_el0 bit assignments

Table B-283: AMEVTYPER10_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0

Bits	Name	Description	Reset					
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AArch64-AMEVCNTR1 <n>_ELO.</n>						
		It is IMPLEMENTATION DEFINED what values are supported by each counter.						
		If software writes a value to this field which is not supported by the corresponding counter AArch64-AMEVCNTR1 <n>_EL0, then:</n>						
		It is UNPREDICTABLE which event will be counted.						
		The value read back is UNKNOWN.						
		The event counted by AArch64-AMEVCNTR1 <n>_ELO might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED.</n>						
		If the corresponding counter AArch64-AMEVCNTR1 <n>_EL0 is enabled, writes to this register have UNPREDICTABLE results.</n>						

MRS <Xt>, AMEVTYPER10_EL0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMEVTYPER10_EL0	0b11	0b011	0b1101	0b1110	0b000

MSR AMEVTYPER10_EL0, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AMEVTYPER10_EL0	0b11	0b011	0b1101	0b1110	0b000

B.7.2 AMEVTYPER11_EL0, Activity Monitors Event Type Registers 1

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR11_ELO counts.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

Figure B-108: AArch64_amevtyper11_el0 bit assignments

Table B-286: AMEVTYPER11_EL0 bit descriptions

Bits	Name	Description	Reset	
[63:16]	RES0	Reserved	0x0	
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AArch64-AMEVCNTR1 <n>_ELO.</n>		
	It is IMPLEMENTATION DEFINED what values are supported by each counter.			
		If software writes a value to this field which is not supported by the corresponding counter AArch64-AMEVCNTR1 <n>_EL0, then:</n>		
		It is UNPREDICTABLE which event will be counted.		
		The value read back is UNKNOWN.		
		The event counted by AArch64-AMEVCNTR1 <n>_ELO might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED.</n>		
		If the corresponding counter AArch64-AMEVCNTR1 <n>_ELO is enabled, writes to this register have UNPREDICTABLE results.</n>		

Access

MRS <Xt>, AMEVTYPER11_EL0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMEVTYPER11_ELO	0b11	0b011	0b1101	0b1110	0b001

MSR AMEVTYPER11_ELO, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AMEVTYPER11_EL0	0b11	0b011	0b1101	0b1110	0b001

B.7.3 AMEVTYPER12_EL0, Activity Monitors Event Type Registers 1

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR12_ELO counts.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

See individual bit resets.

Bit descriptions

Figure B-109: AArch64_amevtyper12_el0 bit assignments

Table B-289: AMEVTYPER12_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AArch64-AMEVCNTR1 <n>_ELO.</n>	
		It is IMPLEMENTATION DEFINED what values are supported by each counter.	
		If software writes a value to this field which is not supported by the corresponding counter AArch64-AMEVCNTR1 <n>_EL0, then:</n>	
		It is UNPREDICTABLE which event will be counted.	
		The value read back is UNKNOWN.	
		The event counted by AArch64-AMEVCNTR1 <n>_ELO might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED.</n>	
		If the corresponding counter AArch64-AMEVCNTR1 <n>_EL0 is enabled, writes to this register have UNPREDICTABLE results.</n>	

Access

MRS <Xt>, AMEVTYPER12_EL0

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
AMEVTYPER12_EL0	0b11	0b011	0b1101	0b1110	0b010

MSR AMEVTYPER12_ELO, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMEVTYPER12_EL0	0b11	0b011	0b1101	0b1110	0b010

B.7.4 AMCFGR_ELO, Activity Monitors Configuration Register

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity monitor event counters implemented, and the size of the counters. AMCFGR ELO is applicable to both the architected and the auxiliary counter groups.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

See individual bit resets.

Bit descriptions

Figure B-110: AArch64_amcfgr_el0 bit assignments

Table B-292: AMCFGR_EL0 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	NCG	Defines the number of counter groups. The following value is specified for this product.	
		0ь0001	
		Two counter groups are implemented	
[27:25]	RES0	Reserved	0b000
[24]	HDBG	Halt-on-debug supported.	
		From Armv8, this feature must be supported, and so this bit is 0b1. 0b1	
		AArch64-AMCR_EL0.HDBG is read/write.	
[23:14]	RAZ	Reserved	

Bits	Name	Description	Reset
[13:8]	SIZE	Defines the size of activity monitor event counters.	
		The size of the activity monitor event counters implemented by the activity monitors Extension is defined as [AMCFGR_EL0.SIZE + 1].	
		From Armv8, the counters are 64-bit, and so this field is 0b111111.	
		Note: Software also uses this field to determine the spacing of counters in the memory-map. From Armv8, the counters are at doubleword-aligned addresses.	
		0b111111	
		64 bits.	
[7:0]	N	Defines the number of activity monitor event counters.	
		The total number of counters implemented in all groups by the Activity Monitors Extension is defined as [AMCFGR_EL0.N + 1].	
		0ь00000110	
		Seven activity monitor event counters	

Access

MRS <Xt>, AMCFGR ELO

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMCFGR_EL0	0b11	0b011	0b1101	0b0010	0b001

Accessibility

MRS <Xt>, AMCFGR ELO

```
if PSTATE.EL == ELO then
     if AMUSERENR ELO.EN == '0' then
         if EL2Enabled() && HCR_EL2.TGE == '1' then
              AArch64.SystemAccessTrap(EL2, 0x18);
    \label{eq:AArch64.SystemAccessTrap(EL1, 0x18);} \\ elsif EL2Enabled() && CPTR_EL2.TAM == '1' then \\ \\ \end{aligned}
         AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TAM == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
         return AMCFGR ELO;
elsif PSTATE.EL == EL\overline{1} then
     if EL2Enabled() && CPTR EL2.TAM == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TAM == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
         return AMCFGR ELO;
elsif PSTATE.EL == EL2 then
if CPTR_EL3.TAM == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         return AMCFGR_ELO;
elsif PSTATE.EL == EL\overline{3} then
     return AMCFGR ELO;
```

B.7.5 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

Provides information on the number of activity monitor event counters implemented within each counter group.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

See individual bit resets.

Bit descriptions

Figure B-111: AArch64_amcgcr_el0 bit assignments

Table B-294: AMCGCR_ELO bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15:8]	CG1NC	Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.	
		In AMUv1, the permitted range of values is 0x0 to 0x10.	
		0ь00000011	
		Three counters in the auxiliary counter group	
[7:0]	CG0NC	Counter Group 0 Number of Counters. The number of counters in the architected counter group.	
		In AMUv1, the value of this field is 0x4.	
		0b00000100	
		Four Counters in the architected counter group	

Access

MRS <Xt>, AMCGCR_EL0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMCGCR_EL0	0b11	0b011	0b1101	0b0010	0b010

Accessibility

MRS <Xt>, AMCGCR ELO

```
if PSTATE.EL == ELO then
     if AMUSERENR ELO.EN == '0' then
         if EL2Enabled() && HCR EL2.TGE == '1' then
              AArch64.SystemAccessTrap(EL2, 0x18);
              AArch64.SystemAccessTrap(EL1, 0x18);
     elsif EL2Enabled() && CPTR EL2.TAM == '1' then
     AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR_EL3.TAM == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         return AMCGCR ELO;
elsif PSTATE.EL == EL\overline{1} then
     if EL2Enabled() && CPTR EL2.TAM == '1' then
     AArch64.SystemAccessTrap(EL2, 0x18); elsif CPTR EL3.TAM == '1' then
         AArch6\overline{4}. SystemAccessTrap(EL3, 0x18);
         return AMCGCR ELO;
elsif PSTATE.EL == EL2 then
if CPTR_EL3.TAM == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         return AMCGCR ELO;
elsif PSTATE.EL == EL\overline{3} then
     return AMCGCR ELO;
```

B.7.6 AMEVTYPER00_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR00_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

Figure B-112: AArch64_amevtyper00_el0 bit assignments

Table B-296: AMEVTYPER00_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15:0]		Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTR00_EL0. The value of this field is architecturally required for each architected counter.	

Access

MRS <Xt>, AMEVTYPEROO_ELO

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMEVTYPEROO_ELO	0b11	0b011	0b1101	0b0110	0b000

B.7.7 AMEVTYPER01_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR01_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

Figure B-113: AArch64_amevtyper01_el0 bit assignments

Table B-298: AMEVTYPER01_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15:0]		Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTR01_EL0. The value of this field is architecturally required for each architected counter.	

Access

MRS <Xt>, AMEVTYPER01_EL0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMEVTYPERO1_ELO	0b11	0b011	0b1101	0b0110	0b001

B.7.8 AMEVTYPER02_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR02_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

Figure B-114: AArch64_amevtyper02_el0 bit assignments

Table B-300: AMEVTYPER02_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15:0]		Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTR02_EL0. The value of this field is architecturally required for each architected counter.	

Access

MRS <Xt>, AMEVTYPER02_EL0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMEVTYPERO2_ELO	0b11	0b011	0b1101	0b0110	0b010

B.7.9 AMEVTYPER03_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR03_ELO counts.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Activity Monitors

Reset value

Figure B-115: AArch64_amevtyper03_el0 bit assignments

Table B-302: AMEVTYPER03_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15:0]		Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTR03_EL0. The value of this field is architecturally required for each architected counter.	

Access

MRS <Xt>, AMEVTYPER03_EL0

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
AMEVTYPER03_EL0	0b11	0b011	0b1101	0b0110	0b011

B.8 AArch64 Trace register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** Trace registers in the core. Individual register descriptions provide detailed information.

Table B-304: Trace register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
TRCIDR8	2	C0	1	C0	6	See individual bit resets.	64-bit	ID Register 8
TRCIMSPEC0	2	C0	1	CO	7	See individual bit resets.	64-bit	IMP DEF Register 0
TRCIDR2	2	C0	1	C10	7	See individual bit resets.	64-bit	ID Register 2
TRCIDR3	2	C0	1	C11	7	See individual bit resets.	64-bit	ID Register 3
TRCIDR4	2	C0	1	C12	7	See individual bit resets.	64-bit	ID Register 4
TRCIDR5	2	C0	1	C13	7	See individual bit resets.	64-bit	ID Register 5
TRCIDR10	2	C0	1	C2	6	0x0	64-bit	ID Register 10
TRCIDR11	2	C0	1	C3	6	0x0	64-bit	ID Register 11
TRCIDR12	2	C0	1	C4	6	0x0	64-bit	ID Register 12
TRCIDR13	2	CO	1	C5	6	0x0	64-bit	ID Register 13
TRCIDR0	2	C0	1	C8	7	See individual bit resets.	64-bit	ID Register 0
TRCIDR1	2	C0	1	C9	7	See individual bit resets.	64-bit	ID Register 1
TRCCIDCVR0	2	C3	1	CO	0	See individual bit resets.	64-bit	Context Identifier Comparator Value Registers <n></n>

B.8.1 TRCIDR8, ID Register 8

Returns the maximum speculation depth of the instruction Trace element stream.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

See individual bit resets.

Bit descriptions

Figure B-116: AArch64_trcidr8 bit assignments

Table B-305: TRCIDR8 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:0]		Indicates the maximum speculation depth of the instruction Trace element stream. This is the maximum number of PO elements in the Trace element stream that can be speculative at any time.	
		оъооооооооооооооооооо	
		No speculation in the Trace element stream	

Access

MRS <Xt>, TRCIDR8

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
TRCIDR8	0b10	0b001	000000	000000	0b110

Accessibility

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

```
if CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR EL3.FGTEn == '1' && HDFGRTR EL2.TRCID == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
         return TRCIDR8;
elsif PSTATE.EL == EL2 then
    if CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL3, 0x18);
         return TRCIDR8;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR8;
```

B.8.2 TRCIMSPECO, IMP DEF Register 0

TRCIMSPECO shows the presence of any **IMPLEMENTATION DEFINED** features, and provides an interface to enable the features that are provided.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

See individual bit resets.

Bit descriptions

Figure B-117: AArch64_trcimspec0 bit assignments

Table B-307: TRCIMSPEC0 bit descriptions

Bits	Name	Description	Reset
[63:4]	RES0	Reserved	0x0
[3:0]	SUPPORT	Indicates whether the implementation supports IMPLEMENTATION DEFINED features.	
		0ь0000	
		No IMPLEMENTATION DEFINED features are supported.	

Access

MRS <Xt>, TRCIMSPECO

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCIMSPEC0	0b10	0b001	000000	000000	0b111

MSR TRCIMSPECO, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
TRCIMSPEC0	0b10	0b001	000000	000000	0b111

Accessibility

MRS <Xt>, TRCIMSPECO

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR EL1.TTA == '1' then
         AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCIMSPECn == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
         return TRCIMSPECO;
elsif PSTATE.EL == EL2 then
    if CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
        return TRCIMSPECO;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIMSPECO;
```

MSR TRCIMSPECO, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
```

B.8.3 TRCIDR2, ID Register 2

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

See individual bit resets.

Bit descriptions

Figure B-118: AArch64_trcidr2 bit assignments

Table B-310: TRCIDR2 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0

Bits	Name	Description	Reset
[31]	WFXMODE	Indicates whether WFI and WFE instructions are classified as PO instructions:	
		061	
		WFI and WFE instructions are classified as PO instructions.	
[30:29]	VMIDOPT	Indicates the options for Virtual context identifier selection.	
		0b10	
		Virtual context identifier selection not supported. AArch64-TRCCONFIGR.VMIDOPT is RES1.	
[28:25]	CCSIZE	Indicates the size of the cycle counter.	
		0ь0000	
		The cycle counter is 12 bits in length.	
[24:15]	RES0	Reserved	0x0
[14:10]	VMIDSIZE	Indicates the Trace unit Virtual context identifier size.	
		0b00100	
		32-bit Virtual context identifier size.	
[9:5]	CIDSIZE	Indicates the Context identifier size.	
		0ь00100	
		32-bit Context identifier size.	
[4:0]	IASIZE	Virtual instruction address size.	
		0ь01000	
		Maximum of 64-bit instruction address size.	

Access

MRS <Xt>, TRCIDR2

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCIDR2	0b10	0b001	000000	0b1010	0b111

Accessibility

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
   elsif EL2Enabled() && CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() && SCR EL3.FGTEn == '1' && HDFGRTR EL2.TRCID == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   else
        return TRCIDR2;
elsif PSTATE.EL == EL2 then
   if CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   elsif PSTATE.EL == EL3 then
```

```
if CPTR_EL3.TTA == '1' then
   AArch64.SystemAccessTrap(EL3, 0x18);
else
   return TRCIDR2;
```

B.8.4 TRCIDR3, ID Register 3

Returns the base architecture of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

See individual bit resets.

Bit descriptions

Figure B-119: AArch64_trcidr3 bit assignments

Table B-312: TRCIDR3 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31]	NOOVERFLOW	Indicates if overflow prevention is implemented.	
		0ь0	
		Overflow prevention is not implemented.	
[13:12, 30:28]	NUMPROC	Indicates the number of PEs available for tracing.	
		0ь00000	
		The Trace unit can Trace one PE.	

Reset
period.
0x0
0b00
HOLD.

Access

MRS <Xt>, TRCIDR3

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCIDR3	0b10	0b001	000000	0b1011	0b111

Accessibility

MRS <Xt>, TRCIDR3

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR EL1.TTA == '1' then
    \label{eq:AArch64.SystemAccessTrap(EL1, 0x18);} \\ \text{elsif EL2Enabled() && CPTR\_EL2.TTA == '1' then} \\ \\
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL3, 0x18);
         return TRCIDR3;
elsif PSTATE.EL == EL2 then
    if CPTR EL2.TTA == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDR3;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         return TRCIDR3;
```

B.8.5 TRCIDR4, ID Register 4

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

Figure B-120: AArch64_trcidr4 bit assignments

Table B-314: TRCIDR4 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:28]	NUMVMIDC	Indicates the number of Virtual Context Identifier Comparators that are available for tracing.	
		0ь0001	
		The implementation has one Virtual Context Identifier Comparator.	
[27:24]	NUMCIDC	Indicates the number of Context Identifier Comparators that are available for tracing.	
		0ь0001	
		The implementation has one Context Identifier Comparator.	
[23:20]	NUMSSCC	Indicates the number of Single-shot Comparator Controls that are available for tracing.	
		0ь0001	
		The implementation has one Single-shot Comparator Control.	
[19:16]	NUMRSPAIR	Indicates the number of resource selector pairs that are available for tracing.	
		0ь0111	
		The implementation has eight resource selector pairs.	
[15:12]	NUMPC	Indicates the number of PE Comparator Inputs that are available for tracing.	
		0ь0000	
		No PE Comparator Inputs are available.	
[11:9]	RES0	Reserved	0b000
[8]	SUPPDAC	Indicates whether data address comparisons are implemented. Data address comparisons are not implemented in ETE and are reserved for other Trace architectures. Allocated in other Trace architectures.	
		0ь0	
		Data address comparisons not implemented.	
[7:4]	NUMDVC	Indicates the number of data value comparators. Data value comparators are not implemented in ETE and are reserved for other Trace architectures. Allocated in other Trace architectures.	
		оьоооо	
		No data value comparators implemented.	
[3:0]	NUMACPAIRS	Indicates the number of Address Comparator pairs that are available for tracing.	
		0ь0100	
		The implementation has four Address Comparator pairs.	

Access

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
TRCIDR4	0b10	0b001	0b0000	0b1100	0b111

Accessibility

MRS <Xt>, TRCIDR4

```
if PSTATE.EL == ELO then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR EL1.TTA == '1' then
     \label{eq:AArch64.SystemAccessTrap(EL1, 0x18);} \\ elsif EL2Enabled() && CPTR_EL2.TTA == '1' then \\ \\ \end{aligned}
     AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
          AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TTA == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
          return TRCIDR4;
elsif PSTATE.EL == EL2 then
   if CPTR_EL2.TTA == '1' then
          AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TTA == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
          return TRCIDR4;
elsif PSTATE.EL == EL3 then
     if CPTR EL3.TTA == '1' then
          AArch64.SystemAccessTrap(EL3, 0x18);
          return TRCIDR4;
```

B.8.6 TRCIDR5, ID Register 5

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

Figure B-121: AArch64_trcidr5 bit assignments

Table B-316: TRCIDR5 bit descriptions

Bits	Name	Description	Reset
[63:31]	RESO .	Reserved	0x0
[30:28]	NUMCNTR	Indicates the number of Counters that are available for tracing.	
		0ь010	
		Two Counters implemented.	
[27:25]	NUMSEQSTATE	Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.	
		0ь100	
		Four Sequencer states are implemented.	
[24]	RESO	Reserved	0b0
[23]	LPOVERRIDE	Indicates support for Low-power Override Mode.	
		0ь0	
		The Trace unit does not support Low-power Override Mode.	
[22]	ATBTRIG	Indicates if the implementation can support ATB triggers.	
		0ь1	
		The implementation supports ATB triggers.	
[21:16]	TRACEIDSIZE	Indicates the Trace ID width.	
		0ь000111	
		The implementation supports a 7-bit Trace ID.	
[15:12]	RESO	Reserved	0b0000
[11:9]	NUMEXTINSEL	Indicates how many External Input Selector resources are implemented.	
		0ь100	
		4 External Input Selector resources are available.	
[8:0]	NUMEXTIN	Indicates how many External Inputs are implemented.	
		0b11111111	
		Unified PMU event selection.	

Access

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
TRCIDR5	0b10	0b001	0b0000	0b1101	0b111

Accessibility

MRS <Xt>, TRCIDR5

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR EL1.TTA == '1' then
         AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDR5;
elsif PSTATE.EL == EL2 then
if CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDR5;
elsif PSTATE.EL == EL3 then
   if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDR5;
```

B.8.7 TRCIDR10, ID Register 10

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

0x0

Figure B-122: AArch64_trcidr10 bit assignments

Table B-318: TRCIDR10 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, TRCIDR10

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCIDR10	0b10	0b001	0b0000	0b0010	0b110

Accessibility

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL3, 0x18);
        return TRCIDR10;
elsif PSTATE.EL == EL2 then
    if CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap(EL3, 0x18);
        return TRCIDR10;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR10;
```

B.8.8 TRCIDR11, ID Register 11

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

0x0

Bit descriptions

Figure B-123: AArch64_trcidr11 bit assignments

Table B-320: TRCIDR11 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, TRCIDR11

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCIDR11	0b10	0b001	000000	0b0011	0b110

Accessibility

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR_EL3.TTA == '1' then
```

```
AArch64.SystemAccessTrap(EL3, 0x18);
else
    return TRCIDR11;
elsif PSTATE.EL == EL2 then
    if CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    return TRCIDR11;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    return TRCIDR11;
```

B.8.9 TRCIDR12, ID Register 12

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

0x0

Bit descriptions

Figure B-124: AArch64_trcidr12 bit assignments

Table B-322: TRCIDR12 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCIDR12	0b10	0b001	000000	0b0100	0b110

Accessibility

MRS <Xt>, TRCIDR12

```
if PSTATE.EL == ELO then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
     if CPACR EL1.TTA == '1' then
     \label{eq:AArch64.SystemAccessTrap(EL1, 0x18);} \\ elsif EL2Enabled() && CPTR_EL2.TTA == '1' then \\ \\ \end{aligned}
     AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
          AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TTA == '1' then
          AArch64.SystemAccessTrap(EL3, 0x18);
          return TRCIDR12;
elsif PSTATE.EL == EL2 then
    if CPTR_EL2.TTA == '1' then
          AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TTA == '1' then
          AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
          return TRCIDR12;
elsif PSTATE.EL == EL3 then
   if CPTR EL3.TTA == '1' then
          AArch64.SystemAccessTrap(EL3, 0x18);
          return TRCIDR12;
```

B.8.10 TRCIDR13, ID Register 13

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

 0×0

Figure B-125: AArch64_trcidr13 bit assignments

Table B-324: TRCIDR13 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO .	Reserved	0x0

Access

MRS <Xt>, TRCIDR13

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
TRCIDR13	0b10	0b001	0b0000	0b0101	0b110

Accessibility

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR EL1.TTA == '1' then
         AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL3, 0x18);
         return TRCIDR13;
elsif PSTATE.EL == EL2 then
   if CPTR EL2.TTA == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap(EL3, 0x18);
         return TRCIDR13;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDR13;
```

B.8.11 TRCIDRO, ID Register 0

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

See individual bit resets.

Bit descriptions

Figure B-126: AArch64_trcidr0 bit assignments

Table B-326: TRCIDRO bit descriptions

Bits	Name	Description	Reset					
[63:31]	RESO .	Reserved	0x0					
[30]	COMMTRANS	Transaction Start element behavior.						
		0ь0						
	Transaction Start elements are PO elements.							
[29]	СОММОРТ	Indicates the contents and encodings of Cycle count packets.						
		0b1						
		Commit mode 1.						
[28:24]	TSSIZE	Indicates that the Trace unit implements Global timestamping and the size of the timestamp value.						
		0ь01000						
		Global timestamping implemented with a 64-bit timestamp value.						
[23:17]	RES0	Reserved	000000000					
[16:15]	QSUPP	Indicates that the Trace unit implements Q element support.						
		0ь00						
		Q element support is not implemented.						

Bits	Name	Description	Reset				
[14]	QFILT	Indicates if the Trace unit implements Q element filtering.					
		0ъ0					
		Q element filtering is not implemented.					
[13:12]	RES0	Reserved	0b00				
[11:10]	NUMEVENT	Indicates the number of ETEEvents implemented.					
		0b11					
		The Trace unit supports 4 ETEEvents.					
[9]	RETSTACK	Indicates if the Trace unit supports the return stack.					
		0b1					
		Return stack implemented.					
[8]							
[7]	TRCCCI	Indicates if the Trace unit implements cycle counting.					
		0b1					
		Cycle counting implemented.					
[6]	TRCCOND	Indicates if the Trace unit implements conditional instruction tracing. Conditional instruction tracing is not implemented in ETE and this field is reserved for other Trace architectures.					
		0ь0					
		Conditional instruction tracing not implemented.					
[5]	TRCBB	Indicates if the Trace unit implements branch broadcasting.					
		0b1					
		Branch broadcasting implemented.					
[4:3]	TRCDATA	Indicates if the Trace unit implements data tracing. Data tracing is not implemented in ETE and this field is reserved for other Trace architectures.					
		0600					
		Tracing of data addresses and data values is not implemented.					
[2:1]	INSTP0	Indicates if load and store instructions are P0 instructions. Load and store instructions as P0 instructions is not implemented in ETE and this field is reserved for other Trace architectures.					
		0500					
		Load and store instructions are not PO instructions.					
[0]	RES1	Reserved	0b1				

Access

MRS <Xt>, TRCIDRO

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
TRCIDR0	0b10	0b001	000000	0b1000	0b111

Accessibility

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR_EL1.TTA == '1' then
```

```
AArch64.SystemAccessTrap(EL1, 0x18);
     elsif EL2Enabled() && CPTR EL2.TTA == '1' then
     AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TTA == '1' then
         AArch6\overline{4}. SystemAccessTrap(EL3, 0x18);
          return TRCIDRO;
elsif PSTATE.EL == EL2 then
   if CPTR_EL2.TTA == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
     elsif CPTR EL3.TTA == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL3, 0x18);
          return TRCIDRO;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
     else
          return TRCIDRO;
```

B.8.12 TRCIDR1, ID Register 1

Returns the tracing capabilities of the Trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

See individual bit resets.

Bit descriptions

Figure B-127: AArch64_trcidr1 bit assignments

Table B-328: TRCIDR1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0

Bits	Name	Description	Reset
[31:24]	DESIGNER	Indicates which company designed the Trace unit. The permitted values of this field are the same as AArch64-MIDR_EL1.Implementer.	
		0ь01000001	
		Arm Limited	
[23:16]	RES0	Reserved	0b00000000
[15:12]	RES1	Reserved	0b1111
[11:8]	TRCARCHMAJ	Major architecture version.	
		0b1111	
		If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to AArch64-TRCDEVARCH.	
[7:4]	TRCARCHMIN	Minor architecture version.	
		0b1111	
		If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to AArch64-TRCDEVARCH.	
[3:0]	REVISION	Implementation revision that identifies the revision of the Trace and OS Lock registers.	
		0ь0010	
		Revision 2	

Access

MRS <Xt>, TRCIDR1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCIDR1	0b10	0b001	000000	0b1001	0b111

Accessibility

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if CPACR EL1.TTA == '1' then
         AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.TRCID == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
         AArch6\overline{4}.SystemAccessTrap(EL3, 0x18);
         return TRCIDR1;
elsif PSTATE.EL == EL2 then
   if CPTR EL2.TTA == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
         AArch6\overline{4}.SystemAccessTrap(EL3, 0x18);
         return TRCIDR1;
elsif PSTATE.EL == EL3 then
   if CPTR_EL3.TTA == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         return TRCIDR1;
```

B.8.13 TRCCIDCVR0, Context Identifier Comparator Value Registers <n>

Contains a Context identifier value.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace

Reset value

See individual bit resets.

Bit descriptions

Figure B-128: AArch64_trccidcvr0 bit assignments

Table B-330: TRCCIDCVR0 bit descriptions

Bits	Name	Description	Reset
[63:0]		Context identifier value. The width of this field is indicated by AArch64-TRCIDR2.CIDSIZE. Unimplemented bits are RESO. After a PE Reset, the Trace unit assumes that the Context identifier is zero until the PE updates the Context identifier.	

Access

MRS <Xt>, TRCCIDCVRO

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
TRCCIDCVR0	0b10	0b001	0b0011	000000	00000

MSR TRCCIDCVRO, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
TRCCIDCVR0	0b10	0b001	0b0011	000000	00000

B.9 MPAM register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** MPAM registers in the core. Individual register descriptions provide detailed information.

Table B-333: MPAM register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
MPAMVPMV_EL2	3	C10	4	C4	1	See individual bit resets.	64-bit	MPAM Virtual Partition Mapping Valid Register
MPAMVPM0_EL2	3	C10	4	C6	0	See individual bit resets.	64-bit	MPAM Virtual PARTID Mapping Register 0
MPAMVPM1_EL2	3	C10	4	C6	1	See individual bit resets.	64-bit	MPAM Virtual PARTID Mapping Register 1
MPAMVPM7_EL2	3	C10	4	C6	7	See individual bit resets.	64-bit	MPAM Virtual PARTID Mapping Register 7

B.9.1 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

Valid bits for virtual PARTID mapping entries. Each bit m corresponds to virtual PARTID mapping entry m in the MPAMVPM<n> EL2 registers where n = m >> 2.

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

MPAM

Reset value

Figure B-129: AArch64_mpamvpmv_el2 bit assignments

Table B-334: MPAMVPMV_EL2 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31]	VPM_V31	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[30]	VPM_V30	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[29]	VPM_V29	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[28]	VPM_V28	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[27]	VPM_V27	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[26]	VPM_V26	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[25]	VPM_V25	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[24]	VPM_V24	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[23]	VPM_V23	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[22]	VPM_V22	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[21]	VPM_V21	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[20]	VPM_V20	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[19]	VPM_V19	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[18]	VPM_V18	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[17]	VPM_V17	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[16]	VPM_V16	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[15]	VPM_V15	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[14]	VPM_V14	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[13]	VPM_V13	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[12]	VPM_V12	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[11]	VPM_V11	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	

Bits	Name	Description	Reset
[10]	VPM_V10	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[9]	VPM_V9	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[8]	VPM_V8	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[7]	VPM_V7	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[6]	VPM_V6	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[5]	VPM_V5	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[4]	VPM_V4	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[3]	VPM_V3	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[2]	VPM_V2	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[1]	VPM_V1	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	
[O]	VPM_V0	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	

Access

MRS <Xt>, MPAMVPMV_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPMV_EL2	0b11	0b100	0b1010	0b0100	0b001

MSR MPAMVPMV EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPMV_EL2	0b11	0b100	0b1010	0b0100	0b001

Accessibility

MRS <Xt>, MPAMVPMV_EL2

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.<NV2,NV> == '11' then
        return NVMem[0x938];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
       if MPAM3 EL3.TRAPLOWER == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if MPAM3 EL3.TRAPLOWER == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return MPAMVPMV EL2;
elsif PSTATE.EL == EL3 \overline{t}hen
    return MPAMVPMV_EL2;
```

MSR MPAMVPMV EL2, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED;
```

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x938] = X[t];
   elsif EL2Enabled() && HCR_EL2.NV == '1' then
        if MPAM3_EL3.TRAPLOWER == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
   else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   if MPAM3_EL3.TRAPLOWER == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   else
        MPAMVPMV_EL2 = X[t];
elsif PSTATE.EL == EL3 then
   MPAMVPMV_EL2 = X[t];
```

B.9.2 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

MPAMVPMO_EL2 provides mappings from virtual PARTIDs 0 - 3 to physical PARTIDs.

AArch64-MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 register. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If AArch64-MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2 register, AArch64-MPAMVPMO_EL2. Virtual PARTID mapping is enabled by AArch64-MPAMHCR_EL2.EL1_VPMEN for PARTIDs in AArch64-MPAM1_EL1 and by AArch64-MPAMHCR_EL2.EL0_VPMEN for PARTIDs in AArch64-MPAM0_EL1. A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the AArch64-MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

MPAM

Reset value

See individual bit resets.

Bit descriptions

Figure B-130: AArch64_mpamvpm0_el2 bit assignments

Table B-337: MPAMVPM0_EL2 bit descriptions

Bits	Name	Description	Reset
[63:48]	PhyPARTID3	Virtual PARTID Mapping Entry for virtual PARTID 3. PhyPARTID3 gives the mapping of virtual PARTID 3 to a physical PARTID.	
[47:32]		Virtual PARTID Mapping Entry for virtual PARTID 2. PhyPARTID2 gives the mapping of virtual PARTID 2 to a physical PARTID.	
[31:16]		Virtual PARTID Mapping Entry for virtual PARTID 1. PhyPARTID1 gives the mapping of virtual PARTID 1 to a physical PARTID.	
[15:0]	,	Virtual PARTID Mapping Entry for virtual PARTID 0. PhyPARTID0 gives the mapping of virtual PARTID 0 to a physical PARTID.	

Access

MRS <Xt>, MPAMVPMO_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPMO_EL2	0b11	0b100	0b1010	0b0110	0b000

MSR MPAMVPMO EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPMO_EL2	0b11	0b100	0b1010	0b0110	0b000

Accessibility

MRS <Xt>, MPAMVPMO_EL2

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.<NV2,NV> == '11' then
       return NVMem[0x940];
    elsif EL2Enabled() && HCR EL2.NV == '1' then
       if MPAM3 EL3.TRAPLOWER == '1' then
           AArch64.SystemAccessTrap(EL3, 0x18);
        else
           AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   if MPAM3 EL3.TRAPLOWER == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return MPAMVPM0 EL2;
elsif PSTATE.EL == EL3 then
   return MPAMVPM0 EL2;
```

MSR MPAMVPMO_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.<NV2,NV> == '11' then
        NVMem[0x940] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    if MPAM3_EL3.TRAPLOWER == '1' then
```

B.9.3 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

MPAMVPM1_EL2 provides mappings from virtual PARTIDs 4 - 7 to physical PARTIDs.

AArch64-MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented AArch64-MPAMVPMO_EL2 to AArch64-MPAMVPM7_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If AArch64-MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2 register, AArch64-MPAMVPMO_EL2. Virtual PARTID mapping is enabled by AArch64-MPAMHCR_EL2.EL1_VPMEN for PARTIDs in AArch64-MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in AArch64-MPAMO_EL1. A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the AArch64-MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

MPAM

Reset value

See individual bit resets.

Bit descriptions

Figure B-131: AArch64_mpamvpm1_el2 bit assignments

Table B-340: MPAMVPM1_EL2 bit descriptions

Bits	Name	Description	Reset
[63:48]	PhyPARTID7	Virtual PARTID Mapping Entry for virtual PARTID 7. PhyPARTID7 gives the mapping of virtual PARTID 7 to a physical PARTID.	
[47:32]		Virtual PARTID Mapping Entry for virtual PARTID 6. PhyPARTID6 gives the mapping of virtual PARTID 6 to a physical PARTID.	
[31:16]		Virtual PARTID Mapping Entry for virtual PARTID 5. PhyPARTID5 gives the mapping of virtual PARTID 5 to a physical PARTID.	
[15:0]	PhyPARTID4	Virtual PARTID Mapping Entry for virtual PARTID 4. PhyPARTID4 gives the mapping of virtual PARTID 4 to a physical PARTID.	

Access

MRS <Xt>, MPAMVPM1_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPM1_EL2	0b11	0b100	0b1010	0b0110	0b001

MSR MPAMVPM1 EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPM1_EL2	0b11	0b100	0b1010	0b0110	0b001

Accessibility

MRS <Xt>, MPAMVPM1_EL2

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.<NV2,NV> == '11' then
       return NVMem[0x948];
    elsif EL2Enabled() && HCR EL2.NV == '1' then
       if MPAM3 EL3.TRAPLOWER == '1' then
           AArch64.SystemAccessTrap(EL3, 0x18);
        else
           AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   if MPAM3 EL3.TRAPLOWER == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return MPAMVPM1 EL2;
elsif PSTATE.EL == EL3 then
   return MPAMVPM1 EL2;
```

MSR MPAMVPM1_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.<NV2,NV> == '11' then
        NVMem[0x948] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    if MPAM3_EL3.TRAPLOWER == '1' then
```

B.9.4 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

MPAMVPM7_EL2 provides mappings from virtual PARTIDs 28 - 31 to physical PARTIDs.

AArch64-MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If AArch64-MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2 register, AArch64-MPAMVPMO_EL2. Virtual PARTID mapping is enabled by AArch64-MPAMHCR_EL2.EL1_VPMEN for PARTIDs in AArch64-MPAM1_EL1 and by AArch64-MPAMHCR_EL2.EL0_VPMEN for AArch64-MPAMO_EL1. A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the AArch64-MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

MPAM

Reset value

See individual bit resets.

Bit descriptions

Figure B-132: AArch64_mpamvpm7_el2 bit assignments

-	63 48	47 32
	PhyPARTID31	PhyPARTID30
	31 16	15 0 1
-	PhyPARTID29	PhyPARTID28

Table B-343: MPAMVPM7_EL2 bit descriptions

Bits	Name	Description	Reset
[63:48]	PhyPARTID31	Virtual PARTID Mapping Entry for virtual PARTID 31. PhyPARTID31 gives the mapping of virtual PARTID 31 to a physical PARTID.	
[47:32]	PhyPARTID30	Virtual PARTID Mapping Entry for virtual PARTID 30. PhyPARTID30 gives the mapping of virtual PARTID 30 to a physical PARTID.	
[31:16]	PhyPARTID29	Virtual PARTID Mapping Entry for virtual PARTID 29. PhyPARTID29 gives the mapping of virtual PARTID 29 to a physical PARTID.	
[15:0]	PhyPARTID28	Virtual PARTID Mapping Entry for virtual PARTID 28. PhyPARTID28 gives the mapping of virtual PARTID 28 to a physical PARTID.	

Access

MRS <Xt>, MPAMVPM7_EL2

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPM7_EL2	0b11	0b100	0b1010	0b0110	0b111

MSR MPAMVPM7 EL2, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
MPAMVPM7_EL2	0b11	0b100	0b1010	0b0110	0b111

Accessibility

MRS <Xt>, MPAMVPM7_EL2

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.<NV2,NV> == '11' then
       return NVMem[0x978];
    elsif EL2Enabled() && HCR EL2.NV == '1' then
       if MPAM3 EL3.TRAPLOWER == '1' then
           AArch64.SystemAccessTrap(EL3, 0x18);
        else
           AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   if MPAM3 EL3.TRAPLOWER == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return MPAMVPM7 EL2;
elsif PSTATE.EL == EL3 then
   return MPAMVPM7 EL2;
```

MSR MPAMVPM7_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.<NV2,NV> == '11' then
        NVMem[0x978] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    if MPAM3_EL3.TRAPLOWER == '1' then
```

B.10 RAS register summary

The summary table provides an overview of all **IMPLEMENTATION DEFINED** RAS registers in the core. Individual register descriptions provide detailed information.

Table B-346: RAS register summary

Name	Op0	CRn	Op1	CRm	Op2	Reset	Width	Description
ERRIDR_EL1	3	C5	0	C3	0	See individual bit resets.	64-bit	Error Record ID Register
ERRSELR_EL1	3	C5	0	C3	1	See individual bit resets.	64-bit	Error Record Select Register
ERXFR_EL1	3	C5	0	C4	0	See individual bit resets.	64-bit	Selected Error Record Feature Register
ERXCTLR_EL1	3	C5	0	C4	1	0x0	64-bit	Selected Error Record Control Register
ERXSTATUS_EL1	3	C5	0	C4	2	0x0	64-bit	Selected Error Record Primary Status Register
ERXADDR_EL1	3	C5	0	C4	3	See individual bit resets.	64-bit	Selected Error Record Address Register
ERXPFGF_EL1	3	C5	0	C4	4	See individual bit resets.	64-bit	Selected Pseudo-fault Generation Feature register
ERXPFGCTL_EL1	3	C5	0	C4	5	0x0	64-bit	Selected Pseudo-fault Generation Control register
ERXPFGCDN_EL1	3	C5	0	C4	6	See individual bit resets.	64-bit	Selected Pseudo-fault Generation Countdown register
ERXMISCO_EL1	3	C5	0	C5	0	See individual bit resets.	64-bit	Selected Error Record Miscellaneous Register 0
ERXMISC1_EL1	3	C5	0	C5	1	0x0	64-bit	Selected Error Record Miscellaneous Register 1
ERXMISC2_EL1	3	C5	0	C5	2	0x0	64-bit	Selected Error Record Miscellaneous Register 2
ERXMISC3_EL1	3	C5	0	C5	3	0x0	64-bit	Selected Error Record Miscellaneous Register 3

B.10.1 ERRIDR_EL1, Error Record ID Register

Defines the highest numbered index of the error records that can be accessed through the Error Record System registers.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

See individual bit resets.

Bit descriptions

Figure B-133: AArch64_erridr_el1 bit assignments

Table B-347: ERRIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	0x0
[15:0]		Highest numbered index of the records that can be accessed through the Error Record System registers plus one. Zero indicates no records can be accessed through the Error Record System registers. Each implemented record is owned by a node. A node might own multiple records.	
		оьооооооооооо	
		Two Records Present.	

Access

MRS <Xt>, ERRIDR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERRIDR_EL1	0b11	0b000	0b0101	0b0011	0b000

Accessibility

MRS <Xt>, ERRIDR EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERRIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        return ERRIDR_EL1;
elsif PSTATE.EL == ELZ then
        if SCR_EL3.TERR == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
else
        return ERRIDR_EL1;
elsif PSTATE.EL == EL3 then
```

return ERRIDR EL1;

B.10.2 ERRSELR_EL1, Error Record Select Register

Selects an error record to be accessed through the Error Record System registers.

Configurations

If AArch64-ERRIDR_EL1 indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED whether ERRSELR_EL1 is UNDEFINED or RESO.

Attributes

Width

64

Functional group

RAS

Reset value

See individual bit resets.

Bit descriptions

Figure B-134: AArch64_errselr_el1 bit assignments

Table B-349: ERRSELR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:1]	RES0	Reserved	0x0
[0]	SEL	0b0 Selects record 0, containing errors from DSU RAMs 0b1	
		Selects record 1, containing errors from Core RAMs	

Access

MRS < Xt>, ERRSELR EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ERRSELR_EL1	0b11	0b000	0b0101	0b0011	0b001

MSR ERRSELR EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERRSELR_EL1	0b11	0b000	0b0101	0b0011	0b001

Accessibility

MRS <Xt>, ERRSELR EL1

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERRSELR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        return ERRSELR_EL1;
elsif PSTATE.EL == EL2 then
   if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
   return ERRSELR_EL1;
elsif PSTATE.EL == EL3 then
   return ERRSELR_EL1;
```

MSR ERRSELR_EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERRSELR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        ERRSELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        ERRSELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERRSELR_EL1 = X[t];
```

B.10.3 ERXFR_EL1, Selected Error Record Feature Register

Accesses ext-ERR<n>FR for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

See individual bit resets.

Bit descriptions

Figure B-135: AArch64_erxfr_el1 bit assignments

Table B-352: ERXFR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:26]	RES0	Reserved	0b000000
[25:24]	TS	Timestamp Extension. Indicates whether, for each error record <m> owned by this node, rERXMISC3_EL1 is used as the timestamp register, and, if it is, the timebase used by the timestamp.</m>	
		0ь00	
		The node does not support a timestamp register.	
[23:22]	CI	Critical error interrupt. Indicates whether the critical error interrupt and associated controls are implemented.	
		0ь00	
		Does not support the critical error interrupt. ERXCTLR_EL1.CI is RESO.	
[21:20]	INJ	Fault Injection Extension. Indicates whether the RAS Common Fault Injection Model Extension is implemented.	
		0ь01	
		The node implements the RAS Common Fault Injection Model Extension. See ERXPFGF_EL1 for more information.	
[19:18]	CEO	Corrected Error overwrite. Indicates the behavior when a second Corrected error is detected after a first Corrected error has been recorded by an error record <m> owned by the node.</m>	
		0ь00	
		Counts Corrected errors if a counter is implemented. Keeps the previous error syndrome. If the counter overflows, or no counter is implemented, then ERXSTATUS_EL1.OF is set to 0b1.	
[17:16]	DUI	Error recovery interrupt for deferred errors control. Indicates whether the control for enabling error recovery interrupts on deferred errors are implemented.	
		0ь00	
		Does not support the control for enabling error recovery interrupts on deferred errors. ERXCTLR_EL1.DUI is RESO.	
[15]	RP	Repeat counter. Indicates whether the node implements the repeat Corrected error counter in ERXMISCO_EL1 for each error record <m> owned by the node that implements the standard Corrected error counter.</m>	
		061	
		A first (repeat) counter and a second (other) counter are implemented. The repeat counter is the same size as the primary error counter.	

Bits	Name	Description	Reset
[14:12]	CEC	Corrected Error Counter. Indicates whether the node implements the standard Corrected error counter (CE counter) mechanisms in ERXMISCO_EL1 for each error record <m> owned by the node that can record countable errors.</m>	
		0ь010	
		Implements an 8-bit Corrected error counter in ERXMISCO_EL1[39:32].	
[11:10]	CFI	Fault handling interrupt for corrected errors. Indicates whether the control for enabling fault handling interrupts on corrected errors are implemented.	
		0b10	
		Control for enabling fault handling interrupts on corrected errors is supported and controllable using ERXCTLR_EL1.CFI.	
[9:8]	UE	In-band uncorrected error reporting. Indicates whether the in-band uncorrected error reporting (External Aborts) and associated controls are implemented.	
		0ь01	
		In-band uncorrected error reporting (External Aborts) is supported and always enabled. ERXCTLR_EL1.UE is RESO.	
[7:6]	FI	Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are implemented.	
		0b10	
		Fault handling interrupt is supported and controllable using ERXCTLR_EL1.FI.	
[5:4]	UI	Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and associated controls are implemented.	
		0b10	
		Error handling interrupt is supported and controllable using ERXCTLR_EL1.UI.	
[3:2]	DE	0600	
[1:0]	ED	Error reporting and logging. Indicates whether error record <n> is the first record owned the node, and, if so, whether it implements the controls for enabling and disabling error reporting and logging.</n>	
		0b10	
		Error reporting and logging is controllable using ERXCTLR_EL1.ED.	

MRS <Xt>, ERXFR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXFR_EL1	0b11	0b000	0b0101	0b0100	0b000

Accessibility

MRS <Xt>, ERXFR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXFR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
```

```
return ERXFR_EL1;
elsif PSTATE.EL == EL2 then
   if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   else
        return ERXFR_EL1;
elsif PSTATE.EL == EL3 then
   return ERXFR_EL1;
```

B.10.4 ERXCTLR_EL1, Selected Error Record Control Register

Accesses ext-ERR<n>CTLR for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

0x0

Bit descriptions

Figure B-136: AArch64_erxctlr_el1 bit assignments

Table B-354: ERXCTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:9]	RES0	Reserved	0x0

Bits	Name	Description	Reset
[8]	CFI	Fault handling interrupt for Corrected errors enable.	0x0
		This control applies to errors arising from both reads and writes.	
		The fault handling interrupt is generated when one of the standard CE counters on ERXMISCO_EL1 overflows and the overflow bit is set. The possible values are:	
		0ъ0	
		Fault handling interrupt not generated for Corrected errors.	
		Fault handling interrupt generated for Corrected errors.	
		The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.	
		Cold reset only. Unaffected by Warm reset	
[7:4]	RESO	Reserved	0b0000
[3]	FI	Fault handling interrupt enable.	0b0
		This control applies to errors arising from both reads and writes.	
		The fault handling interrupt is generated for all detected Deferred errors and Uncorrected errors. The possible values are:	
		0ь0	
		Fault handling interrupt disabled.	
		0b1 Fault handling interrupt enabled.	
		The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.	
		Cold reset only. Unaffected by Warm reset	
[2]	UI	Uncorrected error recovery interrupt enable.	0b0
		This control applies to errors arising from both reads and writes.	
		When enabled, the error recovery interrupt is generated for all detected Uncorrected errors that are not deferred.	
		0ь0	
		Error recovery interrupt disabled.	
		0b1 Error recovery interrupt enabled.	
		The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.	
		Cold reset only. Unaffected by Warm reset	
[1]	RES0	Reserved	0b0

Bits	Name	Description	Reset
[O]	ED	ror Detection and correction enable. The possible values are:	
		0ь0	
		Error detection and correction disabled.	
		0ь1	
		Error detection and correction enabled.	
		Cold reset only. Unaffected by Warm reset	

MRS < Xt>, ERXCTLR EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXCTLR_EL1	0b11	0b000	0b0101	0b0100	0b001

MSR ERXCTLR EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXCTLR_EL1	0b11	0b000	0b0101	0b0100	0b001

Accessibility

MRS <Xt>, ERXCTLR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXCTLR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        return ERXCTLR_EL1;
elsif PSTATE.EL == EL2 then
    if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    return ERXCTLR_EL1;
elsif PSTATE.EL == EL3 then
    return ERXCTLR_EL1;
elsif PSTATE.EL == EL3 then
    return ERXCTLR_EL1;
```

MSR ERXCTLR EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERXCTLR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        ERXCTLR_EL1 = X[t];
```

```
elsif PSTATE.EL == EL2 then
   if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        ERXCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   ERXCTLR_EL1 = X[t];
```

B.10.5 ERXSTATUS_EL1, Selected Error Record Primary Status Register

Accesses ext-ERR<n>STATUS for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

 0×0

Bit descriptions

Figure B-137: AArch64_erxstatus_el1 bit assignments

Table B-357: ERXSTATUS_EL1 bit descriptions

Bits	Name	Description	Reset		
[63:32]	RES0	Reserved	0x0		
[31]	AV	Address Valid. The possible values are:	0x0		
		0ъ0			
		ERXADDR_EL1 not valid.			
		0b1			
		ERXADDR_EL1 contains an address associated with the highest priority error recorded by this record.			
		bit is read/write-one-to-clear.			
		Cold reset only. Unaffected by Warm reset			

Bits	Name	Description	Reset
[30]	V	Status Register Valid. The possible values are:	0x0
		060	
		ERXSTATUS_EL1 not valid.	
		ERXSTATUS_EL1 valid. At least one error has been recorded.	
		This bit is read/write-one-to-clear.	
		Cold reset only. Unaffected by Warm reset	
[29]	UE	Uncorrected Error. The possible values are:	0x0
		0ь0	
		No errors have been detected, or all detected errors have been either corrected or deferred.	
		0b1	
		At least one detected error was not corrected and not deferred.	
		When clearing ERXSTATUS_EL1.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.	
		This bit is not valid and reads UNKNOWN if ERXSTATUS_EL1.V == 0b0.	
		This bit is read/write-one-to-clear.	
		Cold reset only. Unaffected by Warm reset	
[28]	ER	Error Reported. The possible values are:	0x0
		0ъ0	
		No in-band error (External Abort) reported.	
		0b1	
		An External Abort was signaled by the node to the master making the access or other transaction.	
		This bit is read/write-one-to-clear.	
		Cold reset only. Unaffected by Warm reset	
		Note: An External Abort signaled by the node might be masked and not generate any exception.	

Bits	Name	Description	Reset				
[27]	OF	Overflow. The possible values are:	0x0				
		0ъ0					
		If UE == 1, then no error status for an Uncorrected error has been discarded.					
		If UE == 0 and DE == 1, then no error status for a Deferred error has been discarded.					
		If UE == 0, DE == 0, and CE !== 0b00, then the corrected error counter has not overflowed.					
		0ь1					
		More than one error has occurred and so details of the other error have been discarded.					
	When clearing ERXSTATUS_EL1.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.						
		This bit is not valid and reads UNKNOWN if ERXSTATUS_EL1.V == 0b0.					
		Cold reset only. Unaffected by Warm reset					
		This bit is read/write-one-to-clear.					
[26]	MV	Miscellaneous Registers Valid. The possible values are:	0x0				
		0ь0					
		ERXMISC <m>_EL1 not valid.</m>					
		0ь1					
		This bit indicates that the ERXMISC <m>_EL1 registers contain additional information for an error recorded by this record.</m>					
		This bit is read/write-one-to-clear.					
		Cold reset only. Unaffected by Warm reset					
		Note: If the ERXMISC <m>_EL1 registers can contain additional information for a previously recorded error, then the contents must be self-describing to software or a user. For example, certain fields might relate only to Corrected errors, and other fields only to the most recent error that was not discarded.</m>					

Bits	Name	Description	Reset
[25:24]	CE	Corrected Error. The possible values are:	0x0
		0ь00	
		No errors were corrected.	
		0b01	
		At least one transient error was corrected.	
		0b10 At least one error was corrected.	
		Ob11	
		At least one persistent error was corrected.	
		When clearing ERXSTATUS_EL1.V to 0b0, if this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero.	
		This field is not valid and reads UNKNOWN if ERXSTATUS_EL1.V == 0b0.	
		This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN value.	
		Cold reset only. Unaffected by Warm reset	
[23]	DE	Deferred Error. The possible values are:	0x0
		0ь0	
		No errors were deferred.	
		0b1	
		At least one error was not corrected and deferred.	
		When clearing ERXSTATUS_EL1.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.	
		This bit is not valid and reads UNKNOWN if ERXSTATUS_EL1.V == 0b0.	
		This bit is read/write-one-to-clear.	
		Cold reset only. Unaffected by Warm reset	
[22]	PN	Poison. The value is:	0x0
		060	
		This core cannot distinguish a poisoned value from a corrupted value.	
		When clearing ERXSTATUS_EL1.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.	
		This bit is not valid and reads UNKNOWN if any of the following are true:	
		• ERXSTATUS_EL1.V == 0b0.	
		• ERXSTATUS_EL1.{DE,UE} == {0,0}.	
		This bit is read/write-one-to-clear.	
		Cold reset only. Unaffected by Warm reset	

Bits	Name	Description	Reset
[21:20]	UET	Uncorrected Error Type. The value is:	0x0
		0ь00	
		Uncorrected error, Uncontainable error (UC).	
		Cold reset only. Unaffected by Warm reset	
[19:5]	RESO	Reserved	0x0
[4:0]	SERR	Primary error code.	0x0
		The primary error code might be used by a fault handling agent to triage an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or generate a short log entry.	
		The possible values are:	
		0ъ00000	
		No error	
		0ъ00010	
		ECC error from internal data buffer.	
		0b00110	
		ECC error on cache data RAM.	
		0b00111	
		ECC error on cache tag or dirty RAM.	
		0ь01000	
		Parity error on TLB data RAM.	
		0ь10010	
		Error response for a cache copyback.	
		0b10101	
		Deferred error from slave not supported at the consumer. For example, poisoned data received from a slave by a master that cannot defer the error further.	
		Cold reset only. Unaffected by Warm reset	

MRS <Xt>, ERXSTATUS_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXSTATUS_EL1	0b11	0b000	0b0101	0b0100	0b010

MSR ERXSTATUS_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXSTATUS_EL1	0b11	00000	0b0101	0b0100	0b010

Accessibility

MRS <Xt>, ERXSTATUS_EL1

if PSTATE.EL == ELO then
 UNDEFINED;

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXSTATUS_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   else
        return ERXSTATUS_EL1;
elsif PSTATE.EL == EL2 then
   if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   else
        return ERXSTATUS_EL1;
elsif PSTATE.EL == EL3 then
   return ERXSTATUS_EL1;
```

MSR ERXSTATUS_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERXSTATUS_EL1 == '1'
 then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        ERXSTATUS EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        ERXSTATUS EL1 = X[t];
elsif PSTATE.EL = EL3 then
    ERXSTATUS EL1 = X[t];
```

B.10.6 ERXADDR_EL1, Selected Error Record Address Register

Accesses ext-ERR<n>ADDR for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

ras

Reset value

See individual bit resets.

Bit descriptions

Figure B-138: AArch64_erxaddr_el1 bit assignments

Table B-360: ERXADDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63]	NS	Non-secure attribute. The possible values are:	
		0ъ0	
		The address is Secure.	
		0ь1	
		The address is Non-secure.	
[62]	SI	Secure Incorrect. Indicates whether the NS bit is valid. The possible values of this bit are:	
		0ъ0	
		The NS bit is correct. That is, it matches the programmers' view of the Non-secure attribute for this recorded location.	
[61]	Al	Address Incomplete or incorrect. Indicates whether the PADDR field is a valid physical address. The possible values of this bit are:	
		0ъ0	
		The PADDR field is a valid physical address. That is, it matches the programmers' view of the physical address for this recorded location.	
[60:40]	RES0	Reserved	0x0
[39:0]	PADDR	Physical Address. Address of the recorded location	

Access

MRS <Xt>, ERXADDR_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXADDR_EL1	0b11	00000	0b0101	0b0100	0b011

MSR ERXADDR_EL1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ERXADDR_EL1	0b11	00000	0b0101	0b0100	0b011

Accessibility

MRS <Xt>, ERXADDR_EL1

```
if PSTATE.EL == EL0 then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TERR == '1' then
```

MSR ERXADDR EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERXADDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXADDR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXADDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        ERXADDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        ERXADDR_EL1 = X[t];
```

B.10.7 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register

Accesses ext-ERR<n>PFGF for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

See individual bit resets.

Bit descriptions

Figure B-139: AArch64_erxpfgf_el1 bit assignments

Table B-363: ERXPFGF_EL1 bit descriptions

Bits	Name	Description	Reset
[63:31]	RES0	Reserved	0x0
[30]	R	Restartable bit. When it reaches zero, the Error Generation Counter restarts from the ERXPFGCDN_EL1 value or stops. The value is:	
		0b1	
		Feature controllable.	
[29]	SYN	Syndrome. Fault syndrome injection. The value is:	
		0ь0	
		When an injected error is recorded, the node sets ERXSTATUS_EL1.{IERR, SERR} to IMPLEMENTATION DEFINED values. ERXSTATUS_EL1.{IERR, SERR} are UNKNOWN when ERXSTATUS_EL1.V == 0b0.	
[28:13]	RES0	Reserved	0x0
[12]	MV	Miscellaneous syndrome.	
		Additional syndrome injection. Defines whether software can control all or part of the syndrome recorded in the ERXMISC <m>_EL1 registers when an injected error is recorded.</m>	
		It is IMPLEMENTATION DEFINED which syndrome fields in ERXMISC <m>_EL1 this refers to, as some fields might always be recorded by an error. For example, a Corrected Error counter.</m>	
		0ь0	
		When an injected error is recorded, the node might record IMPLEMENTATION DEFINED additional syndrome in ERXMISC <m>_EL1. If any syndrome is recorded in ERXMISC<m>_EL1, then ERXSTATUS_EL1.MV is set to 0b1.</m></m>	
		Note:	
		If ERR <n>PFGF.MV == 0b1, software can write specific values into the ERR<n>MISC<m> registers when setting up a fault injection event. The values that can be written to these registers are IMPLEMENTATION DEFINED.</m></n></n>	
[11]	AV	Address syndrome. Address syndrome injection. The value is:	
		0ь0	
		When an injected error is recorded, the node either sets ERXADDR_EL1 and ERXSTATUS_EL1.AV for the access, or leaves these unchanged.	
[10]	PN	Poison flag. Describes how the fault generation feature of the node sets the ERXSTATUS_EL1.PN status flag. The value is:	
		0ь0	
		When an injected error is recorded, the node sets ERXSTATUS_EL1.PN to 0.	

Bits	Name	Description	Reset
[9]	ER	Error Reported flag. Describes how the fault generation feature of the node sets the ERXSTATUS_EL1.ER status flag. The value is:	
		0b0	
		When an injected error is recorded, the node sets ERXSTATUS_EL1.ER according to the architecture-defined rules for setting the ER bit.	
[8]	CI	Critical Error flag. Describes how the fault generation feature of the node sets the ERXSTATUS_EL1.Cl status flag. The value is:	
		0ь0	
		The node does not support this type of flag	
		This behavior replaces the architecture-defined rules for setting the CI bit.	
[7:6]	CE	Corrected Error generation. The value is:	
		0b01	
		The fault generation feature of the node allows generation of a non-specific Corrected Error, that is, a Corrected Error that is recorded as ERXSTATUS_EL1.CE == 0b10.	
		All other values are reserved.	
[5]	DE	Deferred Error generation. The value is:	
		0b1	
		The fault generation feature of the node allows generation of this type of error.	
[4]	UEO	Latent or Restartable Error generation. The value is:	
		0ь0	
		The fault generation feature of the node cannot generate this type of error.	
[3]	UER	Signaled or Recoverable Error generation. The value is:	
		0ь0	
		The fault generation feature of the node cannot generate this type of error.	
[2]	UEU	Unrecoverable Error generation. The value is:	
		0ь0	
		The fault generation feature of the node cannot generate this type of error.	
[1]	UC	Uncontainable Error generation. The value is:	
		0b1	
		The fault generation feature of the node allows generation of this type of error.	
[O]	OF	Overflow flag. Describes how the fault generation feature of the node sets the ERXSTATUS_EL1.OF status flag. The value is:	
		0ь0	
		When an injected error is recorded, the node sets ERXSTATUS_EL1.OF according to the architecture-defined rules for setting the OF bit.	

MRS <Xt>, ERXPFGF_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXPFGF_EL1	0b11	0b000	0b0101	0b0100	0b100

Accessibility

MRS <Xt>, ERXPFGF_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXPFGF_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        return ERXPFGF_EL1;
elsif PSTATE.EL == EL2 then
    if SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    return ERXPFGF_EL1;
elsif PSTATE.EL == EL3 then
    return ERXPFGF_EL1;
```

B.10.8 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register

Accesses ext-ERR<n>PFGCTL for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

0x0

Bit descriptions

Figure B-140: AArch64_erxpfgctl_el1 bit assignments

Table B-365: ERXPFGCTL_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31]	CDNEN	Countdown Enable. Controls transfers from the value that is held in the ERXPFGCDN_EL1 into the Error Generation Counter and enables this counter.	0x0
		0ъ0	
		The Error Generation Counter is disabled.	
		0b1	
		The Error Generation Counter is enabled. On a write of 0b1 to this bit, the Error Generation Counter is set to ERXPFGCDN_EL1.CDN.	
		Cold reset only. Unaffected by Warm reset	
[30]	R	Restart. Controls whether, upon reaching zero, the Error Generation Counter restarts from the ERXPFGCDN_EL1 value or stops.	0x0
		0ь0	
		On reaching 0, the Error Generation Counter will stop.	
		0b1	
		On reaching 0, the Error Generation Counter is set to ERXPFGCDN_EL1.CDN.	
		Cold reset only. Unaffected by Warm reset	
[29:8]	RESO	Reserved	0x0
[7:6]	CE	Corrected Error generation enable. Controls the type of Corrected Error condition that might be generated. The possible values are:	0x0
		0600	
		No error of this type will be generated.	
		0b01	
1		A non-specific Corrected Error, that is, a Corrected Error that is recorded as ERXSTATUS_EL1.CE == 0b10, might be generated when the Error Generation Counter decrements to zero.	
		Cold reset only. Unaffected by Warm reset	
[5]	DE	Deferred Error generation enable. The possible values are:	0x0
		0ь0	
		No error of this type will be generated.	
		0b1	
		An error of this type might be generated when the Error Generation Counter decrements to zero.	
		Cold reset only. Unaffected by Warm reset	
[4:2]	RESO	Reserved	0b000
[1]	UC	Uncontainable Error generation enable. The possible values are:	0b0
		0ь0	
		No error of this type will be generated.	
		0ь1	
		An error of this type might be generated when the Error Generation Counter decrements to zero.	
		Cold reset only. Unaffected by Warm reset	
[O]	RES0	Reserved	0b0

MRS <Xt>, ERXPFGCTL_EL1

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ERXPFGCTL_EL1	0b11	0b000	0b0101	0b0100	0b101

MSR ERXPFGCTL EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXPFGCTL_EL1	0b11	0b000	0b0101	0b0100	0b101

Accessibility

MRS <Xt>, ERXPFGCTL EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.FIEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXPFGCTL_EL1 == '1'
 then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.FIEN == '0' then
        AArch\overline{6}4.SystemAccessTrap(EL3, 0x18);
        return ERXPFGCTL EL1;
elsif PSTATE.EL == EL2 then
    if SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXPFGCTL_EL1;
elsif PSTATE.EL == EL3 then
    return ERXPFGCTL EL1;
```

MSR ERXPFGCTL EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERXPFGCTL_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXPFGCTL_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXPFGCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXPFGCTL_EL1 = X[t];
```

B.10.9 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register

Accesses ext-ERR<n>PFGCDN for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

See individual bit resets.

Bit descriptions

Figure B-141: AArch64_erxpfgcdn_el1 bit assignments

63		32
	RES0	
31		0]
	CDN	

Table B-368: ERXPFGCDN_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	0x0
[31:0]	CDN	Countdown value.	
		This field is copied to Error Generation Counter when either:	
		Software writes ERXPFGCTL_EL1.CDNEN with 1.	
		The Error Generation Counter decrements to zero and ERXPFGCTL_EL1.R == 0b1.	
		Unaffected by Cold or Warm reset.	
		Note: The current Error Generation Counter value is not visible to software.	

Access

MRS <Xt>, ERXPFGCDN_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXPFGCDN_EL1	0b11	0b000	0b0101	0b0100	0b110

MSR ERXPFGCDN_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXPFGCDN_EL1	0b11	0b000	0b0101	0b0100	0b110

Accessibility

MRS <Xt>, ERXPFGCDN EL1

```
if PSTATE.EL == ELO then
    UNDEFINED:
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.FIEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXPFGCDN_EL1 == '1'
 then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXPFGCDN EL1;
elsif PSTATE.EL == EL2 then
    if SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXPFGCDN EL1;
elsif PSTATE.EL == EL3 then
    return ERXPFGCDN EL1;
```

MSR ERXPFGCDN_EL1, <Xt>

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERXPFGCDN_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   else
        ERXPFGCDN_EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if SCR_EL3.FIEN == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
   else
        ERXPFGCDN_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   ERXPFGCDN_EL1 = X[t];
```

B.10.10 ERXMISCO_EL1, Selected Error Record Miscellaneous Register 0

Accesses ext-ERR<n>MISCO for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

See individual bit resets.

Bit descriptions

Figure B-142: AArch64_erxmisc0_el1 bit assignments

Table B-371: ERXMISCO_EL1 bit descriptions

Bits	Name	Description	Reset
[63:48]	RES0	Reserved	0x0
[47]	OFO	Sticky overflow bit, other. Set to 1 when ERXMISCO_EL1.CECO is incremented and wraps through zero.	
		0ъ0	
		Other counter has not overflowed.	
		0ь1	
		Other counter has overflowed.	
		A direct write that modifies this bit might indirectly set ERXSTATUS_EL1.OF to an UNKNOWN value and a direct write to ERXSTATUS_EL1.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.	
		Unaffected by Cold or Warm reset.	
[46:40]	CECO	Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing ERXMISCO_EL1.CECR.	
		Unaffected by Cold or Warm reset.	
[39]	OFR	Sticky overflow bit, repeat. Set to 1 when ERXMISCO_EL1.CECR is incremented and wraps through zero.	
		0ъ0	
		Repeat counter has not overflowed.	
		0ь1	
		Repeat counter has overflowed.	
		A direct write that modifies this bit might indirectly set ERXSTATUS_EL1.OF to an UNKNOWN value and a direct write to ERXSTATUS_EL1.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.	
		Unaffected by Cold or Warm reset.	

Bits	Name	Description	Reset
[38:32]	CECR	Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the error, and subsequently for each countable error that matches the recorded other syndrome.	
		This field resets to an IMPLEMENTATION DEFINED which might be UNKNOWN on a Cold reset. If the reset value is UNKNOWN, then the value of this field remains UNKNOWN until software initializes it.	
		Unaffected by Cold or Warm reset.	
[31:28]	WAY	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	
		[L1 Data Cache]	
		• Indicates which Tag RAM way or data RAM way detected the error. Upper 2 bits are unused.	
		[L2 TLB]	
		• Indicates which RAM detected an error. The possible values are 0 (RAM 1) to 9 (RAM 10).	
		[L1 Instruction Cache]	
		Indicates which way detected the error. Upper 2 bits are unused.	
		[L2 Cache]	
		Indicates which way detected the error. Upper 1 bit unused.	
		Unaffected by Cold or Warm reset.	
[27:26]	RESO	Reserved	0b00
[25]	SUBBANK	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	
		[L1 Instruction Cache]	
		Indicates which subbank detected the error, valid for Instruction Data Cache. For Tag errors this field is zero.	
		Unaffected by Cold or Warm reset.	
[24:23]	BANK	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	
		[L2 Cache]	
		Indicates which L2 bank detected the error. Upper 1 bit is unused.	
		[L1 Instruction Cache]	
		• Indicates which bank detected the error, valid for Instruction Data Cache. For Tag errors this field is zero.	
		Unaffected by Cold or Warm reset.	

Bits	Name	Description	Reset			
[22:19]	SUBARRAY	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:				
		[L2 Cache]				
		Indicates which L2 data doubleword detected the error. Upper 1 bit is unused.				
		[L1 Data Cache]				
		• Indicates for L1 Data RAM which word had the error detected. For L1 Tag RAMs which bank had the error (0b0000: bank0, 0b0001: bank1)				
		Unaffected by Cold or Warm reset.				
[18:6]	INDEX	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:				
		[L2 Cache]				
		Indicates which index detected the error. Upper bits of the index are unused depending on the cache size.				
		[L1 Data Cache]				
		Indicates which index detected the error. Upper bits of the index are unused depending on the cache size				
		[L2 TLB]				
		Index of TLB RAM. Upper 4 bits are unused.				
		[L1 Instruction Cache]				
		Indicates which index detected the error. Upper bits of the index are unused depending on the cache size.				
		Unaffected by Cold or Warm reset.				

Bits	Name	Description	Reset
[5:4]	ARRAY	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	
		[L2 Cache]	
		Indicates which array detected the error. The possible values are: • 0b00 L2 Tag RAM. • 0b01 L2 Data RAM. • 0b10 L2 TQ data RAM. • 0b11 CHI Error.	
		[L1 Data Cache]	
		 Indicates which array detected the error. The possible values are: O0 LS Tag RAM 0. O1 LS Tag RAM 1. 10 LS Data RAM. 11 LS Tag RAM 2. 	
		[L1 Instruction Cache]	
		Indicates which array that detected the error, Data Array has higher priority. The possible values are: • 0b00 Tag. • 0b01 Data. • 0b10 Macro-OP cache.	
[3:0]	UNIT	Unaffected by Cold or Warm reset. Indicates the unit which detected the error. The possible values are:	
[3.0]	OINII	Ob0001 L1 Instruction Cache. Ob0010 L2 TLB.	
		0b0100	
		L1 Data Cache. 0b1000	
		L2 Cache.	

MRS <Xt>, ERXMISCO_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXMISCO_EL1	0b11	0b000	0b0101	0b0101	0b000

MSR ERXMISCO_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXMISCO_EL1	0b11	0b000	0b0101	0b0101	0b000

Accessibility

MRS <Xt>, ERXMISCO EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXMISCn_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISCO_EL1;
elsif PSTATE.EL == EL2 then
    if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISCO_EL1;
elsif PSTATE.EL == EL3 then
    return ERXMISCO_EL1;
```

MSR ERXMISCO_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERXMISCn_EL1 == '1'
 then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
        AArch\overline{6}4.SystemAccessTrap(EL3, 0x18);
        ERXMISCO EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        ERXMISCO_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISCO EL1 = X[t];
```

B.10.11 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

Accesses ext-ERR<n>MISC1 for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

0x0

Bit descriptions

Figure B-143: AArch64_erxmisc1_el1 bit assignments

Table B-374: ERXMISC1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, ERXMISC1_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXMISC1_EL1	0b11	0b000	0b0101	0b0101	0b001

MSR ERXMISC1_EL1, <Xt>

<systemreg></systemreg>	op0	op1	CRn	CRm	op2
ERXMISC1_EL1	0b11	0b000	0b0101	0b0101	0b001

Accessibility

MRS <Xt>, ERXMISC1_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXMISCn_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISC1_EL1;
elsif PSTATE.EL == EL2 then
```

```
if SCR_EL3.TERR == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
else
         return ERXMISC1_EL1;
elsif PSTATE.EL == EL3 then
    return ERXMISC1_EL1;
```

MSR ERXMISC1 EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGWTR_EL2.ERXMISCn_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXMISC1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXMISC1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISC1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISC1_EL1 = X[t];
```

B.10.12 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

Accesses ext-ERR<n>MISC2 for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

0x0

Bit descriptions

Figure B-144: AArch64_erxmisc2_el1 bit assignments

Table B-377: ERXMISC2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO .	Reserved	0x0

Access

MRS <Xt>, ERXMISC2_EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXMISC2_EL1	0b11	0b000	0b0101	0b0101	0b010

MSR ERXMISC2_EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXMISC2_EL1	0b11	0b000	0b0101	0b0101	0b010

Accessibility

MRS <Xt>, ERXMISC2_EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXMISCn_EL1 == '1'
 then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXMISC2 EL1;
elsif PSTATE.EL == EL2 then
    if SCR EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXMISC2 EL1;
elsif PSTATE.EL == EL3 \overline{t}hen
    return ERXMISC2 EL1;
```

MSR ERXMISC2_EL1, <Xt>

```
if PSTATE.EL == EL0 then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
```

B.10.13 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

Accesses ext-ERR<n>MISC3 for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

RAS

Reset value

 0×0

Bit descriptions

Figure B-145: AArch64_erxmisc3_el1 bit assignments

Table B-380: ERXMISC3_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	0x0

Access

MRS <Xt>, ERXMISC3 EL1

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXMISC3_EL1	0b11	0b000	0b0101	0b0101	0b011

MSR ERXMISC3 EL1, <Xt>

<systemreg></systemreg>	ор0	op1	CRn	CRm	op2
ERXMISC3_EL1	0b11	00000	0b0101	0b0101	0b011

Accessibility

MRS <Xt>, ERXMISC3 EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' && HFGRTR_EL2.ERXMISCn_EL1 == '1'
 then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXMISC3 EL1;
elsif PSTATE.EL == EL2 \overline{t}hen
    if SCR_EL3.TERR == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXMISC3_EL1;
elsif PSTATE.EL == EL3 then
    return ERXMISC3 EL1;
```

MSR ERXMISC3_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TERR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() && SCR EL3.FGTEn == '1' && HFGWTR EL2.ERXMISCn EL1 == '1'
then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
       ERXMISC3 EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.TERR == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
    else
       ERXMISC3_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISC3 EL1 = X[t];
```

Appendix C External registers

This appendix contains the descriptions for the Cortex®-A710 external registers.

C.1 CoreROM register summary

The summary table provides an overview of all CoreROM registers in the core. Individual register descriptions provide detailed information.

Table C-1: CoreROM register summary

Offset	Name	Reset	Width	Description
0x000	COREROM_ROMENTRY0	See individual bit resets.	32-bit	Core ROM table Entry 0
0x004	COREROM_ROMENTRY1	See individual bit resets.	32-bit	Core ROM table Entry 1
0x008	COREROM_ROMENTRY2	See individual bit resets.	32-bit	Core ROM table Entry 2
0x00C	COREROM_ROMENTRY3	See individual bit resets.	32-bit	Core ROM table Entry 3
0xFB8	COREROM_AUTHSTATUS	See individual bit resets.	32-bit	Core ROM table Authentication Status Register
0xFBC	COREROM_DEVARCH	See individual bit resets.	32-bit	Core ROM table Device Architecture Register
0xFCC	COREROM_DEVTYPE	See individual bit resets.	32-bit	Core ROM table Device Type Register
0xFD0	COREROM_PIDR4	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 4
0xFE0	COREROM_PIDRO	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 0
0xFE4	COREROM_PIDR1	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 1
0xFE8	COREROM_PIDR2	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 2
OxFEC	COREROM_PIDR3	See individual bit resets.	32-bit	Core ROM table Peripheral Identification Register 3
0xFF0	COREROM_CIDRO	See individual bit resets.	32-bit	Core ROM table Component Identification Register 0
0xFF4	COREROM_CIDR1	See individual bit resets.	32-bit	Core ROM table Component Identification Register 1
0xFF8	COREROM_CIDR2	See individual bit resets.	32-bit	Core ROM table Component Identification Register 2
OxFFC	COREROM_CIDR3	See individual bit resets.	32-bit	Core ROM table Component Identification Register 3

C.1.1 COREROM_ROMENTRY0, Core ROM table Entry 0

Provides the address offset for one CoreSight component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0x000

Reset value

See individual bit resets.

Bit descriptions

Figure C-1: ext_COREROM_ROMENTRY0 bit assignments

Table C-2: COREROM_ROMENTRY0 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		0b00000000000010000	
		Core DBG component at address 0x1_0000.	
[11:3]	RES0	Reserved	0b0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	
		0ь0	
		A power domain ID is not provided.	
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table.	
		0b11	
		The ROM Entry is present.	

C.1.2 COREROM_ROMENTRY1, Core ROM table Entry 1

Provides the address offset for one CoreSight component.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0x004

Reset value

See individual bit resets.

Bit descriptions

Figure C-2: ext_COREROM_ROMENTRY1 bit assignments

Table C-3: COREROM_ROMENTRY1 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		0b00000000000100000	
		CORE PMU component at address 0x2_0000.	
[11:3]	RESO .	Reserved	0b0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	
		0ь0	
		A power domain ID is not provided.	
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table.	
		0b11	
		The ROM Entry is present.	

C.1.3 COREROM_ROMENTRY2, Core ROM table Entry 2

Provides the address offset for one CoreSight component.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

800x0

Reset value

Figure C-3: ext_COREROM_ROMENTRY2 bit assignments

Table C-4: COREROM_ROMENTRY2 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		0Ь0000000000110000	
		Core trace unit component at address 0x3_0000.	
[11:3]	RES0	Reserved	0b0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	
		0ь0	
		A power domain ID is not provided.	
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table.	
		0b11	
		The ROM Entry is present.	

C.1.4 COREROM_ROMENTRY3, Core ROM table Entry 3

Provides the address offset for one CoreSight component.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0x00C

Reset value

Figure C-4: ext_COREROM_ROMENTRY3 bit assignments

Table C-5: COREROM_ROMENTRY3 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		0ь00000000001000000	
		Core ELA component at address 0x4_0000. When the core is configured without ELA, this field is set to 0x000.	
[11:3]	RES0	Reserved	0b0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	
		0ь0	
		A power domain ID is not provided.	
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table.	
		0b11	
		The ROM Entry is present. When the core is configured without ELA, this field is set to 0x0.	

C.1.5 COREROM_AUTHSTATUS, Core ROM table Authentication Status Register

Provides information about the state of the authentication interface for debug.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFB8

Reset value

Figure C-5: ext_COREROM_AUTHSTATUS bit assignments

Table C-6: COREROM_AUTHSTATUS bit descriptions

Bits	Name	Description	Reset		
[31:8]	RES0	Reserved	0b0		
[7:6]	SNID	cure Non-invasive Debug.			
[5:4]	SID	Secure Invasive Debug.			
		Ob10 Secure invasive debug disabled. ExternalSecureInvasiveDebugEnabled() == FALSE. Ob11 Secure invasive debug enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.			
[3:2]	NSNID	Non-secure Non-invasive Debug. 0ь00 Debug level is not supported.			
[1:0]	NSID	Non-secure Invasive Debug. 0ь00 Debug level is not supported.			

C.1.6 COREROM_DEVARCH, Core ROM table Device Architecture Register

Identifies the architect and architecture of a CoreSight component.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

OxFBC

Reset value

Figure C-6: ext_COREROM_DEVARCH bit assignments

Table C-7: COREROM_DEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Architect.	
		0ь01000111011	
		JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.	
[20]	PRESENT	Present.	
		0b1	
		DEVARCH information present.	
[19:16]	REVISION	Revision.	
		0ь0000	
		Revision 0.	
[15:0]	ARCHID	Architecture ID.	
		0ь00001011110111	
		ROM Table v0. The debug tool must inspect ext-COREROM_DEVTYPE and ext-COREROM_DEVID to determine further information about the ROM Table.	

C.1.7 COREROM_DEVTYPE, Core ROM table Device Type Register

A debugger can use DEVTYPE to obtain information about a component that has an unrecognized part number.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

OxFCC

Reset value

Issue: 07 External registers

Bit descriptions

Figure C-7: ext_COREROM_DEVTYPE bit assignments

Table C-8: COREROM_DEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0d0
[7:4]	SUB	Sub number	
		0ь0000	
		Other, undefined.	
[3:0]	MAJOR	Major number	
		0ь0000	
		Miscellaneous.	

C.1.8 COREROM_PIDR4, Core ROM table Peripheral Identification Register 4

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFD0

Reset value

See individual bit resets.

Bit descriptions

Figure C-8: ext_COREROM_PIDR4 bit assignments

Table C-9: COREROM_PIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	SIZE	4KB count.	
		0ь0000	
		The component uses a single 4KB block.	
[3:0]	DES_2	JEP106 continuation code.	
		0ь0100	
		Arm Limited. Number of 0x7F bytes in full JEP106 code 0x7F 0x7F 0x7F 0x7F 0x3B.	

C.1.9 COREROM_PIDRO, Core ROM table Peripheral Identification Register 0

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFE0

Reset value

See individual bit resets.

Bit descriptions

Figure C-9: ext_COREROM_PIDRO bit assignments

Table C-10: COREROM_PIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]	PART_0	Part number bits [7:0].	
		0ь01000111	
		Cortex®-A710 Core ROM table. Bits [7:0] of part number 0xD47.	

C.1.10 COREROM_PIDR1, Core ROM table Peripheral Identification Register 1

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFE4

Reset value

See individual bit resets.

Bit descriptions

Figure C-10: ext_COREROM_PIDR1 bit assignments

Table C-11: COREROM_PIDR1 bit descriptions

Bits	Name	Description	Reset	
[31:8]	RES0	Reserved	0b0	
[7:4]	DES_0	JEP106 identification code bits [3:0].		
		51011		
		Arm Limited. Bits [3:0] of JEP106 identification code 0x3B.		
[3:0]	PART_1	Part number bits [11:8].		
		0b1101		
		Cortex®-A710 Core ROM table. Bits [11:8] of part number 0xD47.		

C.1.11 COREROM_PIDR2, Core ROM table Peripheral Identification Register 2

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFE8

Reset value

See individual bit resets.

Bit descriptions

Figure C-11: ext_COREROM_PIDR2 bit assignments

Table C-12: COREROM_PIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.	
		0ь0010	
		Revision r2p1.	
[3]	JEDEC	JEDEC assignee.	
		0ь1	
		JEDEC-assignee values is used.	
[2:0]	DES_1	JEP106 identification code bits [6:4].	
		0ь011	
		Arm Limited. Bits [6:4] of JEP106 identification code 0x3B.	

C.1.12 COREROM_PIDR3, Core ROM table Peripheral Identification Register 3

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

OxFEC

Reset value

See individual bit resets.

Bit descriptions

Figure C-12: ext_COREROM_PIDR3 bit assignments

Table C-13: COREROM_PIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVAND	Part minor revision. Parts using ext-EDPIDR2.REVISION as an extension to the Part number must use this field as a major revision number. 0b0000	
[3:0]	CMOD	Customer Modified.	
		0ъ0000	
		The component is not modified from the original design.	

C.1.13 COREROM_CIDRO, Core ROM table Component Identification Register 0

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFF0

Reset value

See individual bit resets.

Bit descriptions

Figure C-13: ext_COREROM_CIDR0 bit assignments

Table C-14: COREROM_CIDRO bit descriptions

Bits	Name	Description	
[31:8]	RESO	Reserved	
[7:0]	PRMBL_0	CoreSight component identification preamble.	
		рь00001101	
		CoreSight component identification preamble.	

C.1.14 COREROM_CIDR1, Core ROM table Component Identification Register 1

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFF4

Reset value

See individual bit resets.

Bit descriptions

Figure C-14: ext_COREROM_CIDR1 bit assignments

Table C-15: COREROM_CIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0
[7:4]	CLASS	CoreSight component class.	
		0ь1001	
		CoreSight component.	
[3:0]	PRMBL_1	CoreSight component identification preamble.	
		0ъ0000	
		CoreSight component identification preamble.	

C.1.15 COREROM_CIDR2, Core ROM table Component Identification Register 2

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

0xFF8

Reset value

Figure C-15: ext_COREROM_CIDR2 bit assignments

Table C-16: COREROM_CIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO .	leserved	
[7:0]	PRMBL_2	preSight component identification preamble.	
		b00000101	
		CoreSight component identification preamble.	

C.1.16 COREROM_CIDR3, Core ROM table Component Identification Register 3

Provides CoreSight discovery information.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

CoreROM

Register offset

OxFFC

Reset value

See individual bit resets.

Bit descriptions

Figure C-16: ext_COREROM_CIDR3 bit assignments

Table C-17: COREROM_CIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0

Bits	Name	Description	
[7:0]	PRMBL_3	CoreSight component identification preamble.	
		0ь10110001	
		CoreSight component identification preamble.	

C.2 PPM register summary

The summary table provides an overview of all PPM registers in the core. Individual register descriptions provide detailed information.

Table C-18: PPM register summary

Offset	Name	Reset	Width	Description
0x000	CPUPPMCR	See individual bit resets.	64-bit	Power Performance Management Register
0x010	CPUPPMCR2	See individual bit resets.	64-bit	Power Performance Management Register
0x020	CPUPPMCR3	See individual bit resets.	64-bit	Power Performance Management Register
0x080	CPUPPMCR4	See individual bit resets.	64-bit	Power Performance Management Register
0x088	CPUPPMCR5	See individual bit resets.	64-bit	Power Performance Management Register
0x090	CPUPPMCR6	See individual bit resets.	64-bit	Power Performance Management Register

C.2.1 CPUPPMCR, Power Performance Management Register

This register contains control bits that affect the CPU behavior

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PPM

Register offset

0x000

Reset value

Figure C-17: ext_CPUPPMCR bit assignments

Table C-19: CPUPPMCR bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	None	

C.2.2 CPUPPMCR2, Power Performance Management Register

This register contains control bits that affect the CPU behavior

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PPM

Register offset

0x010

Reset value

See individual bit resets.

Bit descriptions

Figure C-18: ext_CPUPPMCR2 bit assignments

Table C-20: CPUPPMCR2 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	None	

C.2.3 CPUPPMCR3, Power Performance Management Register

This register contains control bits that affect the CPU behavior

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PPM

Register offset

0x020

Reset value

See individual bit resets.

Bit descriptions

Figure C-19: ext_CPUPPMCR3 bit assignments

Table C-21: CPUPPMCR3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	None	

C.2.4 CPUPPMCR4, Power Performance Management Register

This register contains control bits that affect the CPU behavior

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PPM

Register offset

0x080

Reset value

See individual bit resets.

Bit descriptions

Figure C-20: ext_CPUPPMCR4 bit assignments

Table C-22: CPUPPMCR4 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	None	

C.2.5 CPUPPMCR5, Power Performance Management Register

This register contains control bits that affect the CPU behavior

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PPM

Register offset

0x088

Reset value

Figure C-21: ext_CPUPPMCR5 bit assignments

Table C-23: CPUPPMCR5 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	None	

C.2.6 CPUPPMCR6, Power Performance Management Register

This register contains control bits that affect the CPU behavior

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PPM

Register offset

0x090

Reset value

See individual bit resets.

Bit descriptions

Figure C-22: ext_CPUPPMCR6 bit assignments

Table C-24: CPUPPMCR6 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	None	

C.3 PMU register summary

The summary table provides an overview of all PMU registers in the core. Individual register descriptions provide detailed information.

Table C-25: PMU register summary

Offset	Name	Reset	Width	Description
0x600	PMPCSSR	See individual bit resets.	64-bit	Snapshot Program Counter Sample Register
0x608	PMCIDSSR	See individual bit resets.	32-bit	Snapshot CONTEXTIDR_EL1 Sample Register
0x60C	PMCID2SSR	See individual bit resets.	32-bit	Snapshot CONTEXTIDR_EL2 Sample Register
0x610	PMSSSR	0x1	32-bit	PMU Snapshot Status Register
0x618	PMCCNTSR	See individual bit resets.	64-bit	PMU Cycle Counter Snapshot Register
0x620	PMEVCNTSR0	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x628	PMEVCNTSR1	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x630	PMEVCNTSR2	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x638	PMEVCNTSR3	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x640	PMEVCNTSR4	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x648	PMEVCNTSR5	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x650	PMEVCNTSR6	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x658	PMEVCNTSR7	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x660	PMEVCNTSR8	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x668	PMEVCNTSR9	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x670	PMEVCNTSR10	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x678	PMEVCNTSR11	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x680	PMEVCNTSR12	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x688	PMEVCNTSR13	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x690	PMEVCNTSR14	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x698	PMEVCNTSR15	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6A0	PMEVCNTSR16	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6A8	PMEVCNTSR17	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6B0	PMEVCNTSR18	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6B8	PMEVCNTSR19	See individual bit resets.	64-bit	PMU Event Counter Snapshot Register
0x6F0	PMSSCR	See individual bit resets.	32-bit	PMU Snapshot Capture Register
0xE00	PMCFGR	See individual bit resets.	32-bit	Performance Monitors Configuration Register
0xE04	PMCR_EL0	See individual bit resets.	32-bit	Performance Monitors Control Register
0xE20	PMCEID0	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 0
0xE24	PMCEID1	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 1
0xE28	PMCEID2	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 2
0xE2C	PMCEID3	See individual bit resets.	32-bit	Performance Monitors Common Event Identification register 3
0xE40	PMMIR	See individual bit resets.	32-bit	Performance Monitors Machine Identification Register

Offset	Name	Reset	Width	Description
0xFBC	PMDEVARCH	See individual bit resets.	32-bit	Performance Monitors Device Architecture register
0xFC8	PMDEVID	See individual bit resets.	32-bit	Performance Monitors Device ID register
0xFCC	PMDEVTYPE	See individual bit resets.	32-bit	Performance Monitors Device Type register
0xFD0	PMPIDR4	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 4
0xFE0	PMPIDR0	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 0
0xFE4	PMPIDR1	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 1
0xFE8	PMPIDR2	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 2
OxFEC	PMPIDR3	See individual bit resets.	32-bit	Performance Monitors Peripheral Identification Register 3
0xFF0	PMCIDR0	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 0
0xFF4	PMCIDR1	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 1
0xFF8	PMCIDR2	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 2
0xFFC	PMCIDR3	See individual bit resets.	32-bit	Performance Monitors Component Identification Register 3

C.3.1 PMPCSSR, Snapshot Program Counter Sample Register

Captured copy of the Program Counter.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x600

Reset value

See individual bit resets.

Bit descriptions

Figure C-23: ext_PMPCSSR bit assignments

Table C-26: PMPCSSR bit descriptions

Bits	Name	Description	Reset
[63]	NS	Non-secure sample.	
		0ь0	
		The captured instruction was executed in Secure state.	
		0b1	
		The captured instruction was executed in Non-secure state.	
[62:61]	EL	Exception level sample. The Exception level the captured instruction was executed at.	
[60:56]	RES0	Reserved	0b0
[55:0]	PC	Sampled PC.	
		The instruction address for the sampled instruction. The sampled instruction must be an instruction recently executed by the PE.	
		The architecture does not require that all instructions are eligible for sampling. However, it must be possible to reference instructions at branch targets. The branch target for a conditional branch instruction that fails its Condition code check is the instruction following the conditional branch target.	
		The sampled instruction must be architecturally executed. However, in exceptional circumstances, such as a change in security state or other boundary condition, it is permissible to sample an instruction that was speculatively executed and not architecturally executed.	

C.3.2 PMCIDSSR, Snapshot CONTEXTIDR_EL1 Sample Register

Captured copy of the CONTEXTIDR_EL1 register.

The value captured must relate to the instruction captured in PMPCSSR.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0x608

Reset value

Figure C-24: ext_PMCIDSSR bit assignments

Table C-27: PMCIDSSR bit descriptions

Bits	Name	Description	Reset
[31:0]	PMCCIDSSR	PMCIDSR sample. Sampled CONTEXTIDR_EL1 snapshot.	

C.3.3 PMCID2SSR, Snapshot CONTEXTIDR_EL2 Sample Register

Captured copy of the CONTEXTIDR_EL2 register.

The value captured must relate to the instruction captured in PMPCSSR.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0x60C

Reset value

See individual bit resets.

Bit descriptions

Figure C-25: ext_PMCID2SSR bit assignments

Table C-28: PMCID2SSR bit descriptions

Bits	Name	Description	Reset
[31:0]	PMCCID2SSR	PMCID2SR sample. Sampled CONTEXTIDR_EL2 snapshot.	

C.3.4 PMSSSR, PMU Snapshot Status Register

Holds status information about the captured counters.

Configurations

This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0x610

Reset value

0x1

Bit descriptions

Figure C-26: ext_PMSSSR bit assignments

Table C-29: PMSSSR bit descriptions

Bits	Name	Description	Reset
[31:1]	RES0	Reserved	0b0
[0]	NC	No capture. Indicates whether the PMU counters have been captured.	0b1
		0ь0	
		PMU counters captured.	
		0ь1	
		PMU counters not captured.	

C.3.5 PMCCNTSR, PMU Cycle Counter Snapshot Register

Captured copy of PMCCNTR_ELO. Once captured, the value in PMCCNTSR is unaffected by writes to PMCCNTR_ELO and PMCR_ELO.C.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x618

Reset value

See individual bit resets.

Bit descriptions

Figure C-27: ext_PMCCNTSR bit assignments

Table C-30: PMCCNTSR bit descriptions

Bits	Name	Description	Reset
[63:0]	PMCCNTSR	PMCCNTR_ELO sample. Sampled cycle count.	

C.3.6 PMEVCNTSR0, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x620

Reset value

Figure C-28: ext_PMEVCNTSR19 bit assignments

Table C-31: PMEVCNTSR0 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.7 PMEVCNTSR1, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x628

Reset value

See individual bit resets.

Bit descriptions

Figure C-29: ext_PMEVCNTSR19 bit assignments

Table C-32: PMEVCNTSR1 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.8 PMEVCNTSR2, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x630

Reset value

See individual bit resets.

Bit descriptions

Figure C-30: ext_PMEVCNTSR19 bit assignments

Table C-33: PMEVCNTSR2 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.9 PMEVCNTSR3, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x638

Reset value

See individual bit resets.

Bit descriptions

Figure C-31: ext_PMEVCNTSR19 bit assignments

Table C-34: PMEVCNTSR3 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.10 PMEVCNTSR4, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x640

Reset value

See individual bit resets.

Bit descriptions

Figure C-32: ext_PMEVCNTSR19 bit assignments

Table C-35: PMEVCNTSR4 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.11 PMEVCNTSR5, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

PMU

Register offset

0x648

Reset value

Figure C-33: ext_PMEVCNTSR19 bit assignments

Table C-36: PMEVCNTSR5 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.12 PMEVCNTSR6, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x650

Reset value

See individual bit resets.

Bit descriptions

Figure C-34: ext_PMEVCNTSR19 bit assignments

Table C-37: PMEVCNTSR6 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.13 PMEVCNTSR7, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x658

Reset value

See individual bit resets.

Bit descriptions

Figure C-35: ext_PMEVCNTSR19 bit assignments

Table C-38: PMEVCNTSR7 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.14 PMEVCNTSR8, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x660

Reset value

See individual bit resets.

Bit descriptions

Figure C-36: ext_PMEVCNTSR19 bit assignments

Table C-39: PMEVCNTSR8 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.15 PMEVCNTSR9, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x668

Reset value

See individual bit resets.

Bit descriptions

Figure C-37: ext_PMEVCNTSR19 bit assignments

Table C-40: PMEVCNTSR9 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.16 PMEVCNTSR10, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x670

Reset value

Figure C-38: ext_PMEVCNTSR19 bit assignments

Table C-41: PMEVCNTSR10 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.17 PMEVCNTSR11, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x678

Reset value

See individual bit resets.

Bit descriptions

Figure C-39: ext_PMEVCNTSR19 bit assignments

Table C-42: PMEVCNTSR11 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.18 PMEVCNTSR12, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x680

Reset value

See individual bit resets.

Bit descriptions

Figure C-40: ext_PMEVCNTSR19 bit assignments

Table C-43: PMEVCNTSR12 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.19 PMEVCNTSR13, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x688

Reset value

See individual bit resets.

Bit descriptions

Figure C-41: ext_PMEVCNTSR19 bit assignments

Table C-44: PMEVCNTSR13 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.20 PMEVCNTSR14, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x690

Reset value

See individual bit resets.

Bit descriptions

Figure C-42: ext_PMEVCNTSR19 bit assignments

Table C-45: PMEVCNTSR14 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.21 PMEVCNTSR15, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x698

Reset value

Figure C-43: ext_PMEVCNTSR19 bit assignments

Table C-46: PMEVCNTSR15 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.22 PMEVCNTSR16, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x6A0

Reset value

See individual bit resets.

Bit descriptions

Figure C-44: ext_PMEVCNTSR19 bit assignments

Table C-47: PMEVCNTSR16 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.23 PMEVCNTSR17, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x6A8

Reset value

See individual bit resets.

Bit descriptions

Figure C-45: ext_PMEVCNTSR19 bit assignments

Table C-48: PMEVCNTSR17 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.24 PMEVCNTSR18, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n> ELO and PMCR ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x6B0

Reset value

See individual bit resets.

Bit descriptions

Figure C-46: ext_PMEVCNTSR19 bit assignments

Table C-49: PMEVCNTSR18 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.25 PMEVCNTSR19, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

• This register is available in configurations where 20 PMU event counters are implemented.

Attributes

Width

64

Functional group

PMU

Register offset

0x6B8

Reset value

See individual bit resets.

Bit descriptions

Figure C-47: ext_PMEVCNTSR19 bit assignments

Table C-50: PMEVCNTSR19 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR <n></n>	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	

C.3.26 PMSSCR, PMU Snapshot Capture Register

Provides a mechanism for software to initiate a sample.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0x6F0

Reset value

Figure C-48: ext_PMSSCR bit assignments

Table C-51: PMSSCR bit descriptions

Bits	Name	Description	Reset
[31:1]	RES0	Reserved	0b0
[O]	SS	Capture now.	
		0ь0	
		Ignored.	
		0b1	
		Initiate a capture immediately.	

C.3.27 PMCFGR, Performance Monitors Configuration Register

Contains PMU-specific configuration data.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xE00

Reset value

See individual bit resets.

Bit descriptions

Figure C-49: ext_PMCFGR bit assignments

Table C-52: PMCFGR bit descriptions

Bits	Name	Description	Reset
[31:28]	NCG	This feature is not supported, so this field is RAZ.	
[27:20]	RES0	Reserved	0b0
[19]	UEN	User-mode Enable Register supported. AArch64-PMUSERENR_ELO is not visible in the external debug interface, so this bit is RAZ.	
[18]	WT	This feature is not supported, so this bit is RAZ.	
[17]	NA	This feature is not supported, so this bit is RAZ.	
[16]	EX	Export supported.	
		0b1 ext-PMCR_ELO.X is read/write.	
[15]	CCD	Cycle counter has prescale.	
		0b1 ext-PMCR_ELO.D is read/write.	
[14]	CC	Dedicated cycle counter (counter 31) supported. This bit is RAO.	
[13:8]	SIZE	Size of counters, minus one. This field defines the size of the largest counter implemented by the Performance Monitors Unit.	
		From Armv8, the largest counter is 64-bits, so the value of this field is 0b111111.	
		This field is used by software to determine the spacing of the counters in the memory-map. From Armv8, the counters are a doubleword-aligned addresses.	
[7:0]	N	Number of counters implemented in addition to the cycle counter, ext-PMCCNTR_ELO. The maximum number of event counters is 31.	
		0ь0000000	
		Only ext-PMCCNTR_EL0 implemented.	
		0ь00000001	
		ext-PMCCNTR_ELO plus one event counter implemented.	

C.3.28 PMCR_ELO, Performance Monitors Control Register

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xE04

Reset value

See individual bit resets.

Bit descriptions

Figure C-50: ext_PMCR_EL0 bit assignments

Table C-53: PMCR_EL0 bit descriptions

Bits	Name	Description	Reset
[31:11]		Reserved	
	WI		
[10:8]	RES0	Reserved	0b0
[7]	LP	Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.	
		0b1	
		Event counter overflow on increment that causes unsigned overflow of ext-PMEVCNTR <n>_EL0[63:0].</n>	
[6]	LC	Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.	
		0ь0	
		Cycle counter overflow on increment that causes unsigned overflow of ext-PMCCNTR_EL0[31:0].	
		0b1	
		Cycle counter overflow on increment that causes unsigned overflow of ext-PMCCNTR_EL0[63:0].	
[5]	DP	Disable cycle counter when event counting is prohibited. The possible values of this bit are:	
		0ь0	
		Cycle counting by ext-PMCCNTR_ELO is not affected by this bit.	
		0b1	
		When event counting for counters in the range [0(AArch64-MDCR_EL2.HPMN-1)] is prohibited, cycle counting by ext-PMCCNTR_EL0 is disabled.	
[4]	Χ	Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.	
		0ь0	
		Do not export events.	
		0b1	
		Export events where not prohibited.	
[3]	D	Clock divider.	
		0ь0	
		When enabled, ext-PMCCNTR_ELO counts every clock cycle.	
		0b1	
		When enabled, ext-PMCCNTR_ELO counts once every 64 clock cycles.	

Bits	Name	Description	Reset
[2]	С	Cycle counter reset. The effects of writing to this bit are:	
		0ь1	
		Reset ext-PMCCNTR_EL0 to zero.	
[1]	Р	Event counter reset. The effects of writing to this bit are:	
		0ь1	
		Reset all event counters, not including ext-PMCCNTR_ELO, to zero.	
[0]	E	Enable	
		0ь1	
		All event counters in the range [0(PMN-1)] and ext-PMCCNTR_ELO, are enabled by ext-PMCNTENSET_ELO.	

C.3.29 PMCEID0, Performance Monitors Common Event Identification register 0

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x0000 to 0x001F

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

For more information about the common events and the use of the PMCEIDn registers, see 'The PMU event number space and common events'.

- Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.
- This view of the register was previously called PMCEIDO_ELO.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xE20

Reset value

Figure C-51: ext_PMCEID0 bit assignments

Table C-54: PMCEID0 bit descriptions

Bits	Name	Description	Reset
[31]	ID31	ID31 corresponds to common event (0x1f) L1D_CACHE_ALLOCATE	
		0ь0	
		The common event is not implemented, or not counted.	
[30]	ID30	ID30 corresponds to common event (0x1e) CHAIN	
		0b1	
		The common event is implemented.	
[29]	ID29	ID29 corresponds to common event (0x1d) BUS_CYCLES	
		0b1	
		The common event is implemented.	
[28]	ID28	ID28 corresponds to common event (0x1c) TTBR_WRITE_RETIRED	
		0b1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x1b) INST_SPEC	
		0b1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x1a) MEMORY_ERROR	
		0b1	
		The common event is implemented.	
[25]	ID25	ID25 corresponds to common event (0x19) BUS_ACCESS	
		0b1	
		The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x18) L2D_CACHE_WB	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[23]	ID23	ID23 corresponds to common event (0x17) L2D_CACHE_REFILL	
		0b1	
		The common event is implemented.	
[22]	ID22	ID22 corresponds to common event (0x16) L2D_CACHE	
		0b1	
		The common event is implemented.	
[21]	ID21	ID21 corresponds to common event (0x15) L1D_CACHE_WB	
		0ь1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x14) L1I_CACHE	
		0ь1	
		The common event is implemented.	
[19]	ID19	ID19 corresponds to common event (0x13) MEM_ACCESS	
		0b1	
		The common event is implemented.	
[18]	ID18	ID18 corresponds to common event (0x12) BR_PRED	
		0b1	
		The common event is implemented.	
[17]	ID17	ID17 corresponds to common event (0x11) CPU_CYCLES	
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x10) BR_MIS_PRED	
		0b1	
		The common event is implemented.	
[15]	ID15	ID15 corresponds to common event (0xf) UNALIGNED_LDST_RETIRED	
		0ъ0	
		The common event is not implemented, or not counted.	
[14]	ID14	ID14 corresponds to common event (0xe) BR_RETURN_RETIRED	
		0ъ0	
		The common event is not implemented, or not counted.	
[13]	ID13	ID13 corresponds to common event (0xd) BR_IMMED_RETIRED	
		0ь0	
		The common event is not implemented, or not counted.	
[12]	ID12	ID12 corresponds to common event (0xc) PC_WRITE_RETIRED	
		0ь0	
[4.1]	ID4:	The common event is not implemented, or not counted.	
[11]	ID11	ID11 corresponds to common event (0xb) CID_WRITE_RETIRED	
		0b1	
[4.6]	ID 43	The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0xa) EXC_RETURN	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[9]	ID9	ID9 corresponds to common event (0x9) EXC_TAKEN	
		0ь1	
		The common event is implemented.	
[8]	ID8	ID8 corresponds to common event (0x8) INST_RETIRED	
		0b1	
		The common event is implemented.	
[7]	ID7	ID7 corresponds to common event (0x7) ST_RETIRED	
		0ь0	
		The common event is not implemented, or not counted.	
[6]	ID6	ID6 corresponds to common event (0x6) LD_RETIRED	
		0ь0	
		The common event is not implemented, or not counted.	
[5]	ID5	ID5 corresponds to common event (0x5) L1D_TLB_REFILL	
		0b1	
		The common event is implemented.	
[4]	ID4	ID4 corresponds to common event (0x4) L1D_CACHE	
		0b1	
[0]	15.0	The common event is implemented.	
[3]	ID3	ID3 corresponds to common event (0x3) L1D_CACHE_REFILL	
		0b1	
[0]	IDO	The common event is implemented.	
[2]	ID2	ID2 corresponds to common event (0x2) L1I_TLB_REFILL	
		7 The common event is implemented.	
[1]	ID1	ID1 corresponds to common event (0x1) L1I_CACHE_REFILL	
[1]	IDI		
		0b1 The common event is implemented.	
[0]	ID0	IDO corresponds to common event (0x0) SW_INCR	
را		0b1	
		The common event is implemented.	
		The common event is implemented.	

C.3.30 PMCEID1, Performance Monitors Common Event Identification register 1

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x020 to 0x03F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

For more information about the common events and the use of the PMCEIDn registers, see 'The PMU event number space and common events'.

- Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.
- This view of the register was previously called PMCEID1_ELO.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xE24

Reset value

See individual bit resets.

Bit descriptions

Figure C-52: ext_PMCEID1 bit assignments

Table C-55: PMCEID1 bit descriptions

Bits	Name	Description	Reset
[31]	ID31	ID31 corresponds to common event (0x3f) STALL_SLOT	
		0b1	
		The common event is implemented.	
[30]	ID30	ID30 corresponds to common event (0x3e) STALL_SLOT_FRONTEND	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[29]	ID29	ID29 corresponds to common event (0x3d) STALL_SLOT_BACKEND	
,		0b1	
		The common event is implemented.	
[28]	ID28	ID28 corresponds to common event (0x3c) STALL	
,		0b1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x3b) OP_SPEC	
'		0ь1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x3a) OP_RETIRED	
,		0b1	
		The common event is implemented.	
[25]	ID25	ID25 corresponds to common event (0x39) L1D_CACHE_LMISS_RD	
		0ь1	
		The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x38) REMOTE_ACCESS_RD	
		0ь0	
		The common event is not implemented, or not counted.	
[23]	ID23	ID23 corresponds to common event (0x37) LL_CACHE_MISS_RD	
		0b1	
		The common event is implemented.	
[22]	ID22	ID22 corresponds to common event (0x36) LL_CACHE_RD	
		0b1	
		The common event is implemented.	
[21]	ID21	ID21 corresponds to common event (0x35) ITLB_WLK	
		0ъ1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x34) DTLB_WLK	
		0ь1	
		The common event is implemented.	
[19]	ID19	ID19 corresponds to a Reserved Event event (0x33)	
		0ъ0	
		The common event is not implemented, or not counted.	
[18]	ID18	ID18 corresponds to a Reserved Event event (0x32)	
		0ь0	
		The common event is not implemented, or not counted.	
[17]	ID17	ID17 corresponds to common event (0x31) REMOTE_ACCESS	
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x30) L2I_TLB	
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[15]	ID15	ID15 corresponds to common event (0x2f) L2TLB_REQ	
		0b1	
		The common event is implemented.	
[14]	ID14	ID14 corresponds to common event (0x2e) L2I_TLB_REFILL	
		0ь0	
		The common event is not implemented, or not counted.	
[13]	ID13	ID13 corresponds to common event (0x2d) L2TLB_REFILL	
		0ь1	
		The common event is implemented.	
[12]	ID12	ID12 corresponds to common event (0x2c) Reserved	
		0ь0	
		The common event is not implemented, or not counted.	
[11]	ID11	ID11 corresponds to common event (0x2b) L3D_CACHE	
		0b1	
		The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0x2a) L3D_CACHE_REFILL	
		0b1	
		The common event is implemented.	
[9]	ID9	ID9 corresponds to common event (0x29) L3D_CACHE_ALLOCATE	
		0b1	
		The common event is implemented.	
[8]	ID8	ID8 corresponds to common event (0x28) L2I_CACHE_REFILL	
		0ь0	
		The common event is not implemented, or not counted.	
[7]	ID7	ID7 corresponds to common event (0x27) L2I_CACHE	
		0ь0	
		The common event is not implemented, or not counted.	
[6]	ID6	ID6 corresponds to common event (0x26) L1I_TLB	
		0b1	
		The common event is implemented.	
[5]	ID5	ID5 corresponds to common event (0x25) L1D_TLB	
		0b1	
-		The common event is implemented.	
[4]	ID4	ID4 corresponds to common event (0x24) STALL_BACKEND	
		0b1	
	 	The common event is implemented.	
[3]	ID3	ID3 corresponds to common event (0x23) STALL_FRONTEND	
		0b1	
		The common event is implemented.	
[2]	ID2	ID2 corresponds to common event (0x22) BR_MIS_PRED_RETIRED	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[1]	ID1	ID1 corresponds to common event (0x21) BR_RETIRED	
		061	
		The common event is implemented.	
[O]	ID0	IDO corresponds to common event (0x20) L2D_CACHE_ALLOCATE	
		061	
		The common event is implemented.	

C.3.31 PMCEID2, Performance Monitors Common Event Identification register 2

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers, see 'The PMU event number space and common events'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xE28

Reset value

Figure C-53: ext_PMCEID2 bit assignments

Table C-56: PMCEID2 bit descriptions

Bits	Name	Description	Reset
[31]	IDhi31	IDhi31 corresponds to a Reserved Event event (0x401f)	
		0ъ0	
		The common event is not implemented, or not counted.	
[30]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x401e)	
		0ь0	
		The common event is not implemented, or not counted.	
[29]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x401d)	
		0ь0	
		The common event is not implemented, or not counted.	
[28]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x401c)	
		0р0	
		The common event is not implemented, or not counted.	
[27]	IDhi27	IDhi27 corresponds to common event (0x401b) CTI_TRIGOUT7	
		0b1	
		The common event is implemented.	
[26]	IDhi26	IDhi26 corresponds to common event (0x401a) CTI_TRIGOUT6	
		0b1	
		The common event is implemented.	
[25]	IDhi25	IDhi25 corresponds to common event (0x4019) CTI_TRIGOUT5	
		0b1	
		The common event is implemented.	
[24]	IDhi24	IDhi24 corresponds to common event (0x4018) CTI_TRIGOUT4	
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[23]	IDhi23	IDhi23 corresponds to a Reserved Event event (0x4017)	
		0ь0	
		The common event is not implemented, or not counted.	
[22]	IDhi22	IDhi22 corresponds to a Reserved Event event (0x4016)	
		0ь0	
		The common event is not implemented, or not counted.	
[21]	IDhi21	IDhi21 corresponds to a Reserved Event event (0x4015)	
		0ь0	
		The common event is not implemented, or not counted.	
[20]	IDhi20	IDhi20 corresponds to a Reserved Event event (0x4014)	
		0ь0	
		The common event is not implemented, or not counted.	
[19]	IDhi19	IDhi19 corresponds to common event (0x4013) TRCEXTOUT3	
		0ь1	
		The common event is implemented.	
[18]	IDhi18	IDhi18 corresponds to common event (0x4012) TRCEXTOUT2	
		0ь1	
		The common event is implemented.	
[17]	IDhi17	IDhi17 corresponds to common event (0x4011) TRCEXTOUT1	
		0b1	
		The common event is implemented.	
[16]	IDhi16	IDhi16 corresponds to common event (0x4010) TRCEXTOUT0	
		0b1	
		The common event is implemented.	
[15]	IDhi15	IDhi15 corresponds to common event (0x400f) Reserved	
		0ь0	
		The common event is not implemented, or not counted.	
[14]	IDhi14	IDhi14 corresponds to common event (0x400e) TRB_TRIG	
		0ь0	
		The common event is not implemented, or not counted.	
[13]	IDhi13	IDhi13 corresponds to common event (0x400d) PMU_OVFS	
		0ь0	
	151110	The common event is not implemented, or not counted.	
[12]	IDhi12	IDhi12 corresponds to common event (0x400c) TRB_WRAP	
		0b1	
[44]	IDI:44	The common event is implemented.	
[11]	IDhi11	IDhi11 corresponds to common event (0x400b) L3D_CACHE_LMISS_RD	
		0b1	
[10]	IDE:40	The common event is implemented.	
[10]	IDhi10	IDhi10 corresponds to common event (0x400a) L2I_CACHE_LMISS	
		The common event is not implemented or not counted	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[9]	IDhi9	IDhi9 corresponds to common event (0x4009) L2D_CACHE_LMISS_RD	
		0ь1	
		The common event is implemented.	
[8]	IDhi8	IDhi8 corresponds to common event (0x4008) Reserved	
		0ь0	
		The common event is not implemented, or not counted.	
[7]	IDhi7	IDhi7 corresponds to common event (0x4007) Reserved	
		0ь0	
		The common event is not implemented, or not counted.	
[6]	IDhi6	IDhi6 corresponds to common event (0x4006) L1I_CACHE_LMISS	
		0ь1	
		The common event is implemented.	
[5]	IDhi5	IDhi5 corresponds to common event (0x4005) STALL_BACKEND_MEM	
		0b1	
F . 3	1.=	The common event is implemented.	
[4]	IDhi4	IDhi4 corresponds to common event (0x4004) CNT_CYCLES	
		0b1	
[0]	IDI:0	The common event is implemented.	
[3]	IDhi3	IDhi3 corresponds to common event (0x4003) SAMPLE_COLLISION	
		0ь0 The common event is not implemented, or not counted.	
[2]	IDhi2	IDhi2 corresponds to common event (0x4002) SAMPLE_FILTRATE	
[ک]			
		0ь0 The common event is not implemented, or not counted.	
[1]	IDhi1	IDhi1 corresponds to common event (0x4001) SAMPLE_FEED	
[+]		0b0	
		The common event is not implemented, or not counted.	
[O]	IDhi0	IDhiO corresponds to common event (0x4000) SAMPLE_POP	
		060	
		The common event is not implemented, or not counted.	

C.3.32 PMCEID3, Performance Monitors Common Event Identification register 3

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers, see 'The PMU event number space and common events'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xE2C

Reset value

See individual bit resets.

Bit descriptions

Figure C-54: ext_PMCEID3 bit assignments

Table C-57: PMCEID3 bit descriptions

Bits	Name	Description	Reset
[31]	IDhi31	IDhi31 corresponds to a Reserved Event event (0x403f)	
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[30]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x403e)	
[]		0b0	
		The common event is not implemented, or not counted.	
[29]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x403d)	
[]		0b0	
		The common event is not implemented, or not counted.	
[28]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x403c)	
[20]		060	
		The common event is not implemented, or not counted.	
[27]	IDhi27	IDhi27 corresponds to a Reserved Event event (0x403b)	
[27]	IDIIIZ/	0b0	
		The common event is not implemented, or not counted.	
[26]	IDhi26	IDhi26 corresponds to a Reserved Event event (0x403a)	
	1011120	0b0	
		The common event is not implemented, or not counted.	
[25]	IDhi25	IDhi25 corresponds to a Reserved Event event (0x4039)	
	1011123	0b0	
		The common event is not implemented, or not counted.	
[24]	IDhi24	IDhi24 corresponds to a Reserved Event event (0x4038)	
الك ا	IDINZ I	0b0	
		The common event is not implemented, or not counted.	
[23]	IDhi23	IDhi23 corresponds to a Reserved Event event (0x4037)	
[20]	1811120	0b0	
		The common event is not implemented, or not counted.	
[22]	IDhi22	IDhi22 corresponds to a Reserved Event event (0x4036)	
[22]	1811122	0b0	
		The common event is not implemented, or not counted.	
[21]	IDhi21	IDhi21 corresponds to a Reserved Event event (0x4035)	
[2]	1811121	0b0	
		The common event is not implemented, or not counted.	
[20]	IDhi20	IDhi20 corresponds to a Reserved Event event (0x4034)	
[20]		060	
		The common event is not implemented, or not counted.	
[19]	IDhi19	IDhi19 corresponds to a Reserved Event event (0x4033)	
[+ /]	1311127	0b0	
		The common event is not implemented, or not counted.	
[18]	IDhi18	IDhi18 corresponds to a Reserved Event event (0x4032)	
[]		0b0	
		The common event is not implemented, or not counted.	
[17]	IDhi17	IDhi17 corresponds to a Reserved Event event (0x4031)	
[-,]	,	0b0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[16]	IDhi16	IDhi16 corresponds to a Reserved Event event (0x4030)	
		0b0	
		The common event is not implemented, or not counted.	
[15]	IDhi15	IDhi15 corresponds to a Reserved Event event (0x402f)	
		0ь0	
		The common event is not implemented, or not counted.	
[14]	IDhi14	IDhi14 corresponds to a Reserved Event event (0x402e)	
		0ь0	
		The common event is not implemented, or not counted.	
[13]	IDhi13	IDhi13 corresponds to a Reserved Event event (0x402d)	
		0ь0	
		The common event is not implemented, or not counted.	
[12]	IDhi12	IDhi12 corresponds to a Reserved Event event (0x402c)	
		0ь0	
		The common event is not implemented, or not counted.	
[11]	IDhi11	IDhi11 corresponds to a Reserved Event event (0x402b)	
		0ь0	
		The common event is not implemented, or not counted.	
[10]	IDhi10	IDhi10 corresponds to a Reserved Event event (0x402a)	
		0ь0	
		The common event is not implemented, or not counted.	
[9]	IDhi9	IDhi9 corresponds to a Reserved Event event (0x4029)	
		0ь0	
		The common event is not implemented, or not counted.	
[8]	IDhi8	IDhi8 corresponds to a Reserved Event event (0x4028)	
		0ь0	
		The common event is not implemented, or not counted.	
[7]	IDhi7	IDhi7 corresponds to a Reserved Event event (0x4027)	
		0ხ0	
		The common event is not implemented, or not counted.	
[6]	IDhi6	IDhi6 corresponds to common event (0x4026) MEM_ACCESS_CHECKED_WR	
		0b1	
		The common event is implemented.	
[5]	IDhi5	IDhi5 corresponds to common event (0x4025) MEM_ACCESS_CHECKED_RD	
		0b1	
		The common event is implemented.	
[4]	IDhi4	IDhi4 corresponds to common event (0x4024) MEM_ACCESS_CHECKED	
		0b1	
		The common event is implemented.	
[3]	IDhi3	IDhi3 corresponds to common event (0x4023) Reserved	
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[2]	IDhi2	IDhi2 corresponds to common event (0x4022) ST_ALIGN_LAT	
		0b1	
		The common event is implemented.	
[1]	IDhi1	IDhi1 corresponds to common event (0x4021) LD_ALIGN_LAT	
		0b1	
		The common event is implemented.	
[O]	IDhi0	IDhi0 corresponds to common event (0x4020) LDST_ALIGN_LAT	
		0b1	
		The common event is implemented.	

C.3.33 PMMIR, Performance Monitors Machine Identification Register

Describes Performance Monitors parameters specific to the implementation.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xE40

Reset value

See individual bit resets.

Bit descriptions

Figure C-55: ext_PMMIR bit assignments

Table C-58: PMMIR bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]		Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the STALL_SLOT event is implemented, this field must not be zero.	

C.3.34 PMDEVARCH, Performance Monitors Device Architecture register

Identifies the programmers' model architecture of the Performance Monitor component.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

OxFBC

Reset value

See individual bit resets.

Bit descriptions

Figure C-56: ext_PMDEVARCH bit assignments

Table C-59: PMDEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Defines the architecture of the component. For Performance Monitors, this is Arm Limited.	
		Bits [31:28] are the JEP106 continuation code, 0x4.	
		Bits [27:21] are the JEP106 ID code, 0x3B.	
[20]	PRESENT	When set to 1, indicates that the DEVARCH is present.	
		This field is 1 in Armv8.	
[19:16]	REVISION	Defines the architecture revision. For architectures defined by Arm this is the minor revision.	
		For Performance Monitors, the revision defined by Armv8 is 0x0.	
		All other values are reserved.	

Bits	Name	Description	Reset
[15:0]	ARCHID	Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further subdivided.	
		For Performance Monitors:	
		Bits [15:12] are the architecture version, 0x2.	
		Bits [11:0] are the architecture part number, 0xA16. This corresponds to Performance Monitors architecture version PMUv3.	
		Note: The PMUv3 memory-mapped programmers' model can be used by devices other than Armv8 processors. Software must determine whether the PMU is attached to an Armv8 processor by using the ext-PMDEVAFF0 and ext-PMDEVAFF1 registers to discover the affinity of the PMU to any Armv8 processors.	

C.3.35 PMDEVID, Performance Monitors Device ID register

Provides information about features of the Performance Monitors implementation.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFC8

Reset value

See individual bit resets.

Bit descriptions

Figure C-57: ext_PMDEVID bit assignments

Table C-60: PMDEVID bit descriptions

Bits	Name	Description	Reset
[31:4]	RES0	Reserved	0b0

Bits	Name	Description	Reset
[3:0]	PCSample	Indicates the level of PC Sample-based Profiling support using Performance Monitors registers.	
		0ь0001	
		PC Sample-based Profiling Extension is implemented in the Performance Monitors register space.	

C.3.36 PMDEVTYPE, Performance Monitors Device Type register

Indicates to a debugger that this component is part of a PEs performance monitor interface.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

OxFCC

Reset value

See individual bit resets.

Bit descriptions

Figure C-58: ext_PMDEVTYPE bit assignments

Table C-61: PMDEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	SUB	Subtype. Must read as 0x1 to indicate this is a component within a PE.	
[3:0]	MAJOR	Major type. Must read as 0x6 to indicate this is a performance monitor component.	

C.3.37 PMPIDR4, Performance Monitors Peripheral Identification Register

Provides information to identify a Performance Monitor component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFD0

Reset value

See individual bit resets.

Bit descriptions

Figure C-59: ext_PMPIDR4 bit assignments

Table C-62: PMPIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	SIZE	4KB count.	
		0ь0000	
		The component uses a single 4KB block.	
[3:0]	DES_2	Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.	
		0ь0100	
		Arm Limited. This is bits[3:0] of the JEP106 continuation code.	

C.3.38 PMPIDRO, Performance Monitors Peripheral Identification Register 0

Provides information to identify a Performance Monitor component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFE0

Reset value

See individual bit resets.

Bit descriptions

Figure C-60: ext_PMPIDR0 bit assignments

Table C-63: PMPIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]	PART_0	Part number, least significant byte.	
		0ь01000111	
		Least significant byte of the PMU unit part.	

C.3.39 PMPIDR1, Performance Monitors Peripheral Identification Register 1

Provides information to identify a Performance Monitor component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFE4

Reset value

See individual bit resets.

Bit descriptions

Figure C-61: ext_PMPIDR1 bit assignments

Table C-64: PMPIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	DES_0	Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.	
		0ь1011	
		Arm Limited. This is the least significant nibble of JEP106 ID code.	
[3:0]	PART_1	Part number, most significant nibble.	
		0ь1101	
		Part number, most significant nibble.	

C.3.40 PMPIDR2, Performance Monitors Peripheral Identification Register 2

Provides information to identify a Performance Monitor component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFE8

Reset value

Figure C-62: ext_PMPIDR2 bit assignments

Table C-65: PMPIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.	
		0ь0010	
		r2p1	
[3]	JEDEC	RAO. Indicates a JEP106 identity code is used.	
		0b1	
		RES1. Indicates a JEP106 identity code is used	
[2:0]	DES_1	Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.	
		0b011	
		Arm Limited. This is bits[6:4] of the JEP106 ID code.	

C.3.41 PMPIDR3, Performance Monitors Peripheral Identification Register 3

Provides information to identify a Performance Monitor component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

OxFEC

Reset value

Figure C-63: ext_PMPIDR3 bit assignments

Table C-66: PMPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVAND	Part minor revision. Parts using ext-PMPIDR2.REVISION as an extension to the Part number must use this field as a major revision number. 0b0001	
[3:0]	CMOD	Customer modified. Indicates someone other than the Designer has modified the component. Ob0000 The component is not modified from the original design.	

C.3.42 PMCIDR0, Performance Monitors Component Identification Register 0

Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFF0

Reset value

Figure C-64: ext_PMCIDR0 bit assignments

Table C-67: PMCIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]	PRMBL_0	Preamble. Must read as 0x0D.	
		0b00001101	
		Preamble byte 0	

C.3.43 PMCIDR1, Performance Monitors Component Identification Register 1

Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFF4

Reset value

See individual bit resets.

Bit descriptions

Figure C-65: ext_PMCIDR1 bit assignments

Table C-68: PMCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	CLASS	Component class. Reads as 0x9, debug component.	
		0ь1001	
		Debug Component	
[3:0]	PRMBL_1	Preamble. RAZ.	
		0ь0000	
		Preamble	

C.3.44 PMCIDR2, Performance Monitors Component Identification Register 2

Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

0xFF8

Reset value

See individual bit resets.

Bit descriptions

Figure C-66: ext_PMCIDR2 bit assignments

Table C-69: PMCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0

Bits	Name	Description	Reset
[7:0]	PRMBL_2	Preamble. Must read as 0x05.	
		0b0000101	
		Preamble byte 2.	

C.3.45 PMCIDR3, Performance Monitors Component Identification Register 3

Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

PMU

Register offset

OxFFC

Reset value

See individual bit resets.

Bit descriptions

Figure C-67: ext_PMCIDR3 bit assignments

Table C-70: PMCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]	PRMBL_3	Preamble. Must read as 0xB1.	
		0ь10110001	
		Preamble byte 3.	

C.4 Debug register summary

The summary table provides an overview of all Debug registers in the core. Individual register descriptions provide detailed information.

Table C-71: Debug register summary

Offset	Name	Reset	Width	Description
0x090	EDRCR	See individual bit resets.	32-bit	External Debug Reserve Control Register
0x094	EDACR	0x0	32-bit	External Debug Auxiliary Control Register
0x310	EDPRCR	See individual bit resets.	32-bit	External Debug Power/Reset Control Register
0xD00	MIDR_EL1	See individual bit resets.	32-bit	Main ID Register
0xD20	EDPFR	See individual bit resets.	64-bit	External Debug Processor Feature Register
0xD28	EDDFR	See individual bit resets.	64-bit	External Debug Feature Register
0xFBC	EDDEVARCH	See individual bit resets.	32-bit	External Debug Device Architecture register
0xFC0	EDDEVID2	0x0	32-bit	External Debug Device ID register 2
0xFC4	EDDEVID1	See individual bit resets.	32-bit	External Debug Device ID register 1
0xFC8	EDDEVID	See individual bit resets.	32-bit	External Debug Device ID register 0
0xFCC	EDDEVTYPE	See individual bit resets.	32-bit	External Debug Device Type register
0xFD0	EDPIDR4	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 4
0xFE0	EDPIDRO	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 0
0xFE4	EDPIDR1	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 1
0xFE8	EDPIDR2	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 2
OxFEC	EDPIDR3	See individual bit resets.	32-bit	External Debug Peripheral Identification Register 3
0xFF0	EDCIDR0	See individual bit resets.	32-bit	External Debug Component Identification Register 0
0xFF4	EDCIDR1	See individual bit resets.	32-bit	External Debug Component Identification Register 1
0xFF8	EDCIDR2	See individual bit resets.	32-bit	External Debug Component Identification Register 2
OxFFC	EDCIDR3	See individual bit resets.	32-bit	External Debug Component Identification Register 3

C.4.1 EDRCR, External Debug Reserve Control Register

This register is used to allow imprecise entry to Debug state and clear sticky bits in ext-EDSCR.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0x090

Reset value

See individual bit resets.

Bit descriptions

Figure C-68: ext_EDRCR bit assignments

Table C-72: EDRCR bit descriptions

Bits	Name	Description	Reset
[31:5]	RES0	Reserved	0d0
[4]	CBRRQ	This feature is not supported. Writes to this bit are ignored	
		0ь0	
		No action.	
		0ь1	
		Allow imprecise entry to Debug state, for example by canceling pending bus accesses.	
[3]	CSPA	Clear Sticky Pipeline Advance. This bit is used to clear the ext-EDSCR.PipeAdv bit to 0.	
		0ь0	
		No action.	
		0ь1	
		Clear the ext-EDSCR.PipeAdv bit to 0.	
[2]	CSE	Clear Sticky Error. Used to clear the ext-EDSCR cumulative error bits to 0.	
		0ъ0	
		No action.	
		0ь1	
		Clear the ext-EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in Debug state, the ext-EDSCR.ITO bit, to 0.	
[1:0]	RES0	Reserved	0d0

C.4.2 EDACR, External Debug Auxiliary Control Register

Allows implementations to support **IMPLEMENTATION DEFINED** controls.

Configurations

• This register is available in all configurations.

Issue: 07

Attributes

Width

32

Functional group

Debug

Register offset

0x094

Reset value

 0×0

Bit descriptions

Figure C-69: ext_EDACR bit assignments

Table C-73: EDACR bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	0b0

C.4.3 EDPRCR, External Debug Power/Reset Control Register

Controls the PE functionality related to powerup, reset, and powerdown.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0x310

Reset value

See individual bit resets.

Bit descriptions

Figure C-70: ext_EDPRCR bit assignments

Table C-74: EDPRCR bit descriptions

Bits	Name	Description	Reset			
[31:2]	RES0	Reserved	0b0			
[1]	CWRR	This feature is not supported. Writes to this bit are ignored				
		0ь0				
		No action.				
		0b1				
		Request Warm reset.				
[O]	CORENPDRQ	This field is in the Core power domain, and permitted accesses to this field map to the AArch32-DBGPRCR.CORENPDRQ and AArch64-DBGPRCR_EL1.CORENPDRQ fields.				
		0ь0				
		If the system responds to a powerdown request, it powers down Core power domain.				
		51				
		If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain.				

C.4.4 MIDR_EL1, Main ID Register

Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xD00

Reset value

See individual bit resets.

Bit descriptions

Figure C-71: ext_MIDR_EL1 bit assignments

Table C-75: MIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[31:24]	Implementer	Indicates the implementer code. This value is:	
		0ь01000001	
		Arm Limited	
[23:20]	Variant	An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.	
		0ь0010	
		r2p1	
[19:16]	Architecture	Indicates the architecture code. This value is:	
		0b1111	
		Architecture is defined by ID registers	
[15:4]	PartNum	An IMPLEMENTATION DEFINED primary part number for the device.	
		On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded differently.	
		0b110101000111	
		Cortex-A710	
[3:0]	Revision	An IMPLEMENTATION DEFINED revision number for the device.	
		0ь0001	
		r2p1	

C.4.5 EDPFR, External Debug Processor Feature Register

Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Register offset

0xD20

Reset value

See individual bit resets.

Bit descriptions

Figure C-72: ext_EDPFR bit assignments

63		56	55	52	51 48	47		44	43 4	0	39	36	35		32
UNKI	NOWN		RES0		UNKNOWN		AMU		UNKNOWN		SEL2			SVE	
31 28	27	24	23	20	19 16	15		12	11 8	3 1	7	4	3		0
UNKNOWN	GIC		AdvSIM	D	FP		EL3		EL2		EL1			EL0	

Table C-76: EDPFR bit descriptions

Bits	Name	Description	Reset					
[63:56]	UNKNOWN	Reserved						
[55:52]	RES0	rved						
[51:48]	UNKNOWN	ved						
[47:44]	AMU	Activity Monitors Extension. This value is :						
		0ь0001						
		Activity Monitors Extension version 1 is implemented.						
[43:40]	UNKNOWN	Reserved						
[39:36]	SEL2	Secure EL2. This value is :						
		0ь0001						
		Secure EL2 is implemented.						
[35:32]	SVE	Scalable Vector Extension. This value is :						
		0ь0001						
		SVE is implemented.						
[31:28]	UNKNOWN	Reserved						
[27:24]	GIC	System register GIC interface support						
		0ь0011						
		System register interface to version 4.1 of the GIC CPU interface is supported.						
[23:20]	AdvSIMD	Advanced SIMD. This value is:						
		0ь0001						
		As for 0b0000, and also includes support for half-precision floating-point arithmetic.						
[19:16]	FP	Floating Point. This value is:						
		0ь0001						
		As for 0b0000, and also includes support for half-precision floating-point arithmetic.						

Bits	Name	Description	Reset			
[15:12]	EL3	AArch64 EL3 Exception level handling				
		0ь0001				
		EL3 can be executed in AArch64 state only.				
[11:8]	EL2	AArch64 EL2 Exception level handling				
		0ь0001				
		EL2 can be executed in AArch64 state only.				
[7:4]	EL1	AArch64 EL1 Exception level handling				
		ъ0001				
		EL1 can be executed in AArch64 state only.				
[3:0]	ELO	AArch64 ELO Exception level handling				
		0ь0010				
		ELO can be executed in both Execution states.				

C.4.6 EDDFR, External Debug Feature Register

Provides top level information about the debug system.

Debuggers must use ext-EDDEVARCH to determine the Debug architecture version.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configurations

• This register is available in all configurations.

Attributes

Width

64

Functional group

Debug

Register offset

0xD28

Reset value

See individual bit resets.

Bit descriptions

Figure C-73: ext_EDDFR bit assignments

Table C-77: EDDFR bit descriptions

Bits	Name	Description	Reset
[63:44]	RES0	Reserved	0b0
[43:40]	TraceFilt	Armv8.4 Self-hosted Trace Extension version. This value is :	
		0ь0001	
		Armv8.4 Self-hosted Trace Extension is implemented.	
[39:32]	UNKNOWN	Reserved	
[31:28]	CTX_CMPs	Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.	
		In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of AArch64-ID_AA64DFR0_EL1.CTX_CMPs.	
[27:24]	RES0	Reserved	0b0
[23:20]	WRPs	Number of watchpoints, minus 1. The value of 0b0000 is reserved.	
		In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of AArch64-ID_AA64DFR0_EL1.WRPs.	
[19:16]	RES0	Reserved	0b0
[15:12]	BRPs	Number of breakpoints, minus 1. The value of 0b0000 is reserved.	
		In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of AArch64-ID_AA64DFR0_EL1.BRPs.	
[11:8]	PMUVer	Performance Monitors Extension version.	
		0ь0110	
		PMUv3 for Armv8.5. As 0b0101, and also includes support for:	
		64-bit event counters.	
		If EL2 is implemented, the AArch64-MDCR_EL2.HCCD control bit.	
		If EL3 is implemented, the AArch64-MDCR_EL3.SCCD control bit.	
[7:4]	TraceVer	Trace support. Indicates whether System register interface to a PE trace unit is implemented.	
		0ь0001	
		PE trace unit System registers implemented.	
[3:0]	UNKNOWN	Reserved	

C.4.7 EDDEVARCH, External Debug Device Architecture register

Identifies the programmers' model architecture of the external debug component.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

OxFBC

Reset value

See individual bit resets.

Bit descriptions

Figure C-74: ext_EDDEVARCH bit assignments

Table C-78: EDDEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Defines the architecture of the component. For debug, this is Arm Limited.	
		Bits [31:28] are the JEP106 continuation code, 0x4.	
		Bits [27:21] are the JEP106 ID code, 0x3B.	
[20]	PRESENT	When set to 1, indicates that the DEVARCH is present.	
		This field is 1 in Armv8.	
[19:16]	REVISION	Defines the architecture revision. For architectures defined by Arm this is the minor revision.	
		For debug, the revision defined by Armv8-A is 0x0.	
		All other values are reserved.	
[15:12]	ARCHVER	Defines the architecture version of the component. This is the same value as AArch64-ID_AA64DFR0_EL1.DebugVer and AArch32-DBGDIDR.Version. This value is :	
		0ь1001	
		Armv8.4 Debug architecture.	

Bits	Name	Description	Reset
[11:0]	ARCHPART	The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHPART is ARCHID[11:0].	
		0Ь101000010101	
		The part number of the Armv8-A debug component.	

C.4.8 EDDEVID2, External Debug Device ID register 2

Reserved for future descriptions of features of the debug implementation.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFC0

Reset value

0x0

Bit descriptions

Figure C-75: ext_EDDEVID2 bit assignments

Table C-79: EDDEVID2 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	0b0

C.4.9 EDDEVID1, External Debug Device ID register 1

Provides extra information for external debuggers about features of the debug implementation.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFC4

Reset value

See individual bit resets.

Bit descriptions

Figure C-76: ext_EDDEVID1 bit assignments

Table C-80: EDDEVID1 bit descriptions

Bits	Name	Description	Reset
[31:4]	RESO	Reserved	
[3:0]	PCSROffset	This field indicates the offset applied to PC samples returned by reads of ext-EDPCSR.	
		0ь0000	
		ext-EDPCSR not implemented.	

C.4.10 EDDEVID, External Debug Device ID register 0

Provides extra information for external debuggers about features of the debug implementation.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFC8

Reset value

See individual bit resets.

Bit descriptions

Figure C-77: ext_EDDEVID bit assignments

Table C-81: EDDEVID bit descriptions

Bits	Name	Description	Reset		
[31:28]	RES0	Reserved	0b0		
[27:24]	AuxRegs	Indicates support for Auxiliary registers.			
		0ь0000			
		None supported.			
[23:8]	RES0	Reserved	0b0		
[7:4]	DebugPower	Indicates support for the ARMv8.3-DoPD feature.			
		060001			
		ARMv8.3-DoPD implemented. All registers in the external debug interface register map are implemented in the Core power domain.			
[3:0]	PCSample	Indicates the level of PC Sample-based Profiling support using external debug registers.			
		060000			
		PC Sample-based Profiling Extension is not implemented in the external debug registers space.			

C.4.11 EDDEVTYPE, External Debug Device Type register

Indicates to a debugger that this component is part of a PEs debug logic.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

OxFCC

Reset value

See individual bit resets.

Bit descriptions

Figure C-78: ext_EDDEVTYPE bit assignments

Table C-82: EDDEVTYPE bit descriptions

Bits	Name	Description	
[31:8]	RES0	Reserved	0b0
[7:4]	7:4] SUB Subtype. Must read as 0x1 to indicate this is a component within a PE.		
[3:0]	MAJOR	Major type. Must read as 0x5 to indicate this is a debug logic component.	

C.4.12 EDPIDR4, External Debug Peripheral Identification Register 4

Provides information to identify an external debug component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFD0

Reset value

See individual bit resets.

Bit descriptions

Figure C-79: ext_EDPIDR4 bit assignments

Table C-83: EDPIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0

Bits	Name	Description	Reset
[7:4]	SIZE	4KB count.	
		0ь0000	
		The component uses a single 4KB block.	
[3:0]	DES_2	Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.	
		0ь0100	
		Arm Limited. This is bits[3:0] of the JEP106 continuation code.	

C.4.13 EDPIDRO, External Debug Peripheral Identification Register 0

Provides information to identify an external debug component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFE0

Reset value

See individual bit resets.

Bit descriptions

Figure C-80: ext_EDPIDR0 bit assignments

Table C-84: EDPIDR0 bit descriptions

Bits	Name	Description	
[31:8]	RESO	Reserved	
[7:0]	PART_0	Part number, least significant byte.	
		0ь01000111	
		Least Significant byte of the debug part number	

C.4.14 EDPIDR1, External Debug Peripheral Identification Register 1

Provides information to identify an external debug component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFE4

Reset value

See individual bit resets.

Bit descriptions

Figure C-81: ext_EDPIDR1 bit assignments

Table C-85: EDPIDR1 bit descriptions

Bits	Name	Description	Reset		
[31:8]	RES0	Reserved	0b0		
[7:4]	DES_0	Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.			
		0b1011			
		Arm Limited. This is the least significant nibble of JEP106 ID code.			
[3:0]	PART_1	Part number, most significant nibble.			
		0b1101			
		Part number, most significant nibble.			

C.4.15 EDPIDR2, External Debug Peripheral Identification Register 2

Provides information to identify an external debug component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFE8

Reset value

See individual bit resets.

Bit descriptions

Figure C-82: ext_EDPIDR2 bit assignments

Table C-86: EDPIDR2 bit descriptions

Bits	Name	Description	Reset		
[31:8]	RES0	Reserved	0b0		
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.			
		0ь0010			
		r2p1			
[3]	JEDEC	RAO. Indicates a JEP106 identity code is used.			
		0b1			
		RAO. Indicates a JEP106 identity code is used			
[2:0]	DES_1	Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.			
		0ь011			
		Arm Limited. This is bits[6:4] of the JEP106 ID code.			

C.4.16 EDPIDR3, External Debug Peripheral Identification Register 3

Provides information to identify an external debug component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

OxFEC

Reset value

See individual bit resets.

Bit descriptions

Figure C-83: ext_EDPIDR3 bit assignments

Table C-87: EDPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVAND	Part minor revision. Parts using ext-EDPIDR2.REVISION as an extension to the Part number must use this field as a major revision number. 0b0000	
[3:0]	CMOD	Customer modified. Indicates someone other than the Designer has modified the component. Ob0000	
		The component is not modified from the original design.	

C.4.17 EDCIDRO, External Debug Component Identification Register 0

Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFF0

Reset value

See individual bit resets.

Bit descriptions

Figure C-84: ext_EDCIDR0 bit assignments

Table C-88: EDCIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0d0

C.4.18 EDCIDR1, External Debug Component Identification Register 1

Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFF4

Reset value

See individual bit resets.

Bit descriptions

Figure C-85: ext_EDCIDR1 bit assignments

Table C-89: EDCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0

C.4.19 EDCIDR2, External Debug Component Identification Register 2

Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

0xFF8

Reset value

See individual bit resets.

Bit descriptions

Figure C-86: ext_EDCIDR2 bit assignments

Table C-90: EDCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0

C.4.20 EDCIDR3, External Debug Component Identification Register 3

Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

Debug

Register offset

OxFFC

Reset value

See individual bit resets.

Bit descriptions

Figure C-87: ext_EDCIDR3 bit assignments

Table C-91: EDCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO RESO	Reserved	0b0

C.5 AMU register summary

The summary table provides an overview of all AMU registers in the core. Individual register descriptions provide detailed information.

Table C-92: AMU register summary

Offset	Name	Reset	Width	Description
0x400	AMEVTYPER00	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x404	AMEVTYPER01	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x408	AMEVTYPER02	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x40C	AMEVTYPER03	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 0
0x480	AMEVTYPER10	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1
0x484	AMEVTYPER11	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1
0x488	AMEVTYPER12	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1
0x48C	AMEVTYPER13	See individual bit resets.	32-bit	Activity Monitors Event Type Registers 1
0xCE0	AMCGCR	See individual bit resets.	32-bit	Activity Monitors Counter Group Configuration Register

Offset	Name	Reset	Width	Description
0xE00	AMCFGR	See individual bit resets.	32-bit	Activity Monitors Configuration Register
0xE08	AMIIDR	See individual bit resets.	32-bit	Activity Monitors Implementation Identification Register
0xFBC	AMDEVARCH	See individual bit resets.	32-bit	Activity Monitors Device Architecture Register
0xFCC	AMDEVTYPE	See individual bit resets.	32-bit	Activity Monitors Device Type Register
0xFD0	AMPIDR4	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 4
0xFE0	AMPIDR0	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 0
0xFE4	AMPIDR1	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 1
0xFE8	AMPIDR2	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 2
OxFEC	AMPIDR3	See individual bit resets.	32-bit	Activity Monitors Peripheral Identification Register 3
0xFF0	AMCIDR0	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 0
0xFF4	AMCIDR1	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 1
0xFF8	AMCIDR2	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 2
0xFFC	AMCIDR3	See individual bit resets.	32-bit	Activity Monitors Component Identification Register 3

C.5.1 AMEVTYPER00, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR00_EL0 counts.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0x400

Reset value

See individual bit resets.

Bit descriptions

Figure C-88: ext_AMEVTYPER03 bit assignments

Table C-93: AMEVTYPER00 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter.</n>	
		The following table shows the mapping between required event numbers and the corresponding counters:	

C.5.2 AMEVTYPER01, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR01_EL0 counts.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0x404

Reset value

See individual bit resets.

Bit descriptions

Figure C-89: ext_AMEVTYPER03 bit assignments

Table C-94: AMEVTYPER01 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]		Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter.</n>	
		The following table shows the mapping between required event numbers and the corresponding counters:	

C.5.3 AMEVTYPER02, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR02_EL0 counts.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0x408

Reset value

See individual bit resets.

Bit descriptions

Figure C-90: ext_AMEVTYPER03 bit assignments

Table C-95: AMEVTYPER02 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter.</n>	
		The following table shows the mapping between required event numbers and the corresponding counters:	

C.5.4 AMEVTYPER03, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR03_ELO counts.

Configurations

• This register is available in all configurations.

Issue: 07 External registers

Attributes

Width

32

Functional group

AMU

Register offset

0x40C

Reset value

See individual bit resets.

Bit descriptions

Figure C-91: ext_AMEVTYPER03 bit assignments

Table C-96: AMEVTYPER03 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]		Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter.</n>	
		The following table shows the mapping between required event numbers and the corresponding counters:	

C.5.5 AMEVTYPER10, Activity Monitors Event Type Registers 1

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR10_EL0 counts.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0x480

See individual bit resets.

Bit descriptions

Figure C-92: ext_AMEVTYPER13 bit assignments

Table C-97: AMEVTYPER10 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter ext-AMEVCNTR1 <n>.</n>	
		It is IMPLEMENTATION DEFINED what values are supported by each counter.	
		If software writes a value to this field which is not supported by the corresponding counter ext-AMEVCNTR1 <n>, then:</n>	
		It is UNPREDICTABLE which event will be counted.	
		The value read back is UNKNOWN. Note: The event counted by ext-AMEVCNTR1 <n> might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED. If the corresponding counter ext-AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.</n></n>	

C.5.6 AMEVTYPER11, Activity Monitors Event Type Registers 1

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR11 ELO counts.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0x484

See individual bit resets.

Bit descriptions

Figure C-93: ext_AMEVTYPER13 bit assignments

Table C-98: AMEVTYPER11 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter ext-AMEVCNTR1 <n>.</n>	
		It is IMPLEMENTATION DEFINED what values are supported by each counter.	
		If software writes a value to this field which is not supported by the corresponding counter ext-AMEVCNTR1 <n>, then:</n>	
		It is UNPREDICTABLE which event will be counted.	
		The value read back is UNKNOWN. Note: The event counted by ext-AMEVCNTR1 <n> might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED. If the corresponding counter ext-AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.</n></n>	

C.5.7 AMEVTYPER12, Activity Monitors Event Type Registers 1

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR12 ELO counts.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0x488

See individual bit resets.

Bit descriptions

Figure C-94: ext_AMEVTYPER13 bit assignments

Table C-99: AMEVTYPER12 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter ext-AMEVCNTR1 <n>.</n>	
		It is IMPLEMENTATION DEFINED what values are supported by each counter.	
		If software writes a value to this field which is not supported by the corresponding counter ext-AMEVCNTR1 <n>, then:</n>	
		It is UNPREDICTABLE which event will be counted.	
		The value read back is UNKNOWN. Note: The event counted by ext-AMEVCNTR1 <n> might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED. If the corresponding counter ext-AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.</n></n>	

C.5.8 AMEVTYPER13, Activity Monitors Event Type Registers 1

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR13 ELO counts.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0x48C

See individual bit resets.

Bit descriptions

Figure C-95: ext_AMEVTYPER13 bit assignments

Table C-100: AMEVTYPER13 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	
[24:16]	RES0	Reserved	0b0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter ext-AMEVCNTR1 <n>.</n>	
		It is IMPLEMENTATION DEFINED what values are supported by each counter.	
		If software writes a value to this field which is not supported by the corresponding counter ext-AMEVCNTR1 <n>, then:</n>	
		It is UNPREDICTABLE which event will be counted.	
		The value read back is UNKNOWN. Note: The event counted by ext-AMEVCNTR1 <n> might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED. If the corresponding counter ext-AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.</n></n>	

C.5.9 AMCGCR, Activity Monitors Counter Group Configuration Register

Provides information on the number of activity monitor event counters implemented within each counter group.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xCE0

See individual bit resets.

Bit descriptions

Figure C-96: ext_AMCGCR bit assignments

Table C-101: AMCGCR bit descriptions

Bits	Name	Description	Reset
[31:16]	RES0	Reserved	0b0
[15:8]	CG1NC	Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.	
		In AMUv1, the permitted range of values is 0 to 16.	
		0ь00000011	
		Three counters in the auxiliary counter group	
[7:0]	CG0NC	Counter Group 0 Number of Counters. The number of counters in the architected counter group.	
		In AMUv1, the value of this field is 4.	
		0ь00000100	
		Four Counters in the architected counter group	

C.5.10 AMCFGR, Activity Monitors Configuration Register

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity monitor event counters implemented, and the size of the counters. AMCFGR is applicable to both the architected and the auxiliary counter groups.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xF00

See individual bit resets.

Bit descriptions

Figure C-97: ext_AMCFGR bit assignments

Table C-102: AMCFGR bit descriptions

Bits	Name	Description	Reset
[31:28]	NCG	Defines the number of counter groups. The following value is specified for this product.	
		0ь0001	
		Two counter groups are implemented	
[27:25]	RES0	Reserved	0b0
[24]	HDBG	Halt-on-debug supported.	
		From Armv8, this feature must be supported, and so this bit is 0b1.	
		0b1	
		ext-AMCR.HDBG is read/write.	
[23:14]	RAZ	Reserved	
[13:8]	SIZE	Defines the size of activity monitor event counters.	
		The size of the activity monitor event counters implemented by the Activity Monitors Extension is defined as [AMCFGR.SIZE + 1].	
		From Armv8, the counters are 64-bit, and so this field is 0b111111.	
		Note: Software also uses this field to determine the spacing of counters in the memory-map. From Armv8, the counters are at doubleword-aligned addresses.	
		0b111111 64 bits.	
[7:0]	N	Defines the number of activity monitor event counters.	
		The total number of counters implemented in all groups by the Activity Monitors Extension is defined as [AMCFGR.N + 1].	
		0ь00000110	
		Seven activity monitor event counters	

C.5.11 AMIIDR, Activity Monitors Implementation Identification Register

Defines the implementer and revisions of the AMU.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xE08

Reset value

See individual bit resets.

Bit descriptions

Figure C-98: ext_AMIIDR bit assignments

1	31 2	0	19 16	15	12	111	1 0	1
	ProductID		Variant	Re	vision		Implementer]

Table C-103: AMIIDR bit descriptions

Bits	Name	Description	Reset
[31:20]	ProductID	This field is an AMU part identifier.	
		0ь110101000111	
		Cortex-A710	
[19:16]	Variant	This field distinguishes product variants or major revisions of the product.	
		0ь0010	
		r2p1	
[15:12]	Revision	This field distinguishes minor revisions of the product.	
		0ь0001	
		r2p1	
[11:0]	Implementer	Contains the JEP106 code of the company that implemented the AMU.	
		For an Arm implementation, this field reads as 0x43B.	

C.5.12 AMDEVARCH, Activity Monitors Device Architecture Register

Identifies the programmers' model architecture of the AMU component.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

OxFBC

Reset value

See individual bit resets.

Bit descriptions

Figure C-99: ext_AMDEVARCH bit assignments

Table C-104: AMDEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Defines the architecture of the component. For AMU, this is Arm Limited.	
[20]	PRESENT	When set to 1, indicates that the DEVARCH is present.	
		061	
		DEVARCH is present	
[19:16]	REVISION	Defines the architecture revision. For architectures defined by Arm this is the minor revision.	
		0ь0000	
		Architecture revision is AMUv1.	
[15:0]	ARCHID	Defines this part to be an AMU component. For architectures defined by Arm this is further subdivided.	
		For AMU:	
		Bits [15:12] are the architecture version, 0x0.	
		Bits [11:0] are the architecture part number, 0xA66. This corresponds to AMU architecture version AMUv1.	

C.5.13 AMDEVTYPE, Activity Monitors Device Type Register

Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

OxFCC

Reset value

See individual bit resets.

Bit descriptions

Figure C-100: ext_AMDEVTYPE bit assignments

Table C-105: AMDEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	SUB	Subtype. Reads as 0x1, to indicate this is a component within a PE.	
[3:0]	MAJOR	Major type. Reads as 0x6, to indicate this is a performance monitor component.	

C.5.14 AMPIDR4, Activity Monitors Peripheral Identification Register 4

Provides information to identify an activity monitors component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xFD0

Reset value

See individual bit resets.

Bit descriptions

Figure C-101: ext_AMPIDR4 bit assignments

Table C-106: AMPIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	SIZE	4KB count.	
		0ь0000	
		The component uses a single 4KB block.	
[3:0]	DES_2	Designer. JEP106 continuation code, least significant nibble.	
		The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b0100.	
		0ь0100	
		Arm Limited. This is bits[3:0] of the JEP106 continuation code.	

C.5.15 AMPIDRO, Activity Monitors Peripheral Identification Register 0

Provides information to identify an activity monitors component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xFE0

See individual bit resets.

Bit descriptions

Figure C-102: ext_AMPIDR0 bit assignments

Table C-107: AMPIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0
[7:0]	PART_0	Part number, least significant byte.	
		The value of this field is IMPLEMENTATION DEFINED .	
		0ь01000111	
		Part number, least significant byte.	

C.5.16 AMPIDR1, Activity Monitors Peripheral Identification Register 1

Provides information to identify an activity monitors component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xFE4

Reset value

See individual bit resets.

Bit descriptions

Figure C-103: ext_AMPIDR1 bit assignments

Table C-108: AMPIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	DES_0	Designer, least significant nibble of JEP106 ID code.	
		The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b1011.	
		0b1011	
		Designer, least significant nibble of JEP106 ID code.	
[3:0]	PART_1	Part number, most significant nibble.	
		The value of this field is IMPLEMENTATION DEFINED.	
		0b1101	
		Part number, most significant nibble.	

C.5.17 AMPIDR2, Activity Monitors Peripheral Identification Register 2

Provides information to identify an activity monitors component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xFE8

Reset value

See individual bit resets.

Figure C-104: ext_AMPIDR2 bit assignments

Table C-109: AMPIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.	
		The value of this field is IMPLEMENTATION DEFINED.	
		0ь0010	
		r2p1	
[3]	JEDEC	RAO. Indicates a JEP106 identity code is used.	
		0ь1	
		RAO. Indicates a JEP106 identity code is used.	
[2:0]	DES_1	Designer, most significant bits of JEP106 ID code.	
		The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b011.	
		0b011	
		Arm Limited. This is bits[6:4] of the JEP106 ID code.	

C.5.18 AMPIDR3, Activity Monitors Peripheral Identification Register 3

Provides information to identify an activity monitors component.

For more information, see 'About the Peripheral identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

OxFEC

Reset value

See individual bit resets.

Figure C-105: ext_AMPIDR3 bit assignments

Table C-110: AMPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVAND	Part minor revision. Parts using ext-AMPIDR2.REVISION as an extension to the Part number must use this field as a major revision number. The value of this field is IMPLEMENTATION DEFINED . 0b0000	
[3:0]	CMOD	Customer modified. Indicates someone other than the Designer has modified the component. The value of this field is IMPLEMENTATION DEFINED. 0b0000 The component is not modified from the original design.	

C.5.19 AMCIDRO, Activity Monitors Component Identification Register 0

Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xFF0

Reset value

See individual bit resets.

Figure C-106: ext_AMCIDR0 bit assignments

Table C-111: AMCIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]	PRMBL_0	Preamble. Must read as 0x0D.	
		0b00001101	
		Preamble	

C.5.20 AMCIDR1, Activity Monitors Component Identification Register 1

Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xFF4

Reset value

See individual bit resets.

Bit descriptions

Figure C-107: ext_AMCIDR1 bit assignments

Table C-112: AMCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0
[7:4]	CLASS	Component class. Reads as 0x9, CoreSight component.	
		0ь1001	
		CoreSight component.	
[3:0]	PRMBL_1	Preamble. Reads as 0x0.	
		0ь0000	
		Preamble	

C.5.21 AMCIDR2, Activity Monitors Component Identification Register 2

Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configurations

This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

0xFF8

Reset value

See individual bit resets.

Bit descriptions

Figure C-108: ext_AMCIDR2 bit assignments

Table C-113: AMCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0
[7:0]	PRMBL_2	Preamble. Reads as 0x05.	
		0Ь0000101	
		Preamble byte 2	

C.5.22 AMCIDR3, Activity Monitors Component Identification Register 3

Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

AMU

Register offset

OxFFC

Reset value

See individual bit resets.

Bit descriptions

Figure C-109: ext_AMCIDR3 bit assignments

Table C-114: AMCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]	PRMBL_3	Preamble. Reads as 0xB1.	
		0b10110001	
		Preamble byte 3	

C.6 ETE register summary

The summary table provides an overview of all ETE registers in the core. Individual register descriptions provide detailed information.

Table C-115: ETE register summary

Offset	Name	Reset	Width	Description
0x018	TRCAUXCTLR	0x0	32-bit	Auxiliary Control Register

Offset	Name	Reset	Width	Description
0x180	TRCIDR8	See individual bit resets.	32-bit	ID Register 8
0x184	TRCIDR9	See individual bit resets.	32-bit	ID Register 9
0x188	TRCIDR10	See individual bit resets.	32-bit	ID Register 10
0x18C	TRCIDR11	See individual bit resets.	32-bit	ID Register 11
0x190	TRCIDR12	0x0	32-bit	ID Register 12
0x194	TRCIDR13	0x0	32-bit	ID Register 13
0x1C0	TRCIMSPEC0	See individual bit resets.	32-bit	IMP DEF Register 0
0x1E0	TRCIDRO	See individual bit resets.	32-bit	ID Register 0
0x1E4	TRCIDR1	See individual bit resets.	32-bit	ID Register 1
0x1E8	TRCIDR2	See individual bit resets.	32-bit	ID Register 2
0x1EC	TRCIDR3	See individual bit resets.	32-bit	ID Register 3
0x1F0	TRCIDR4	See individual bit resets.	32-bit	ID Register 4
0x1F4	TRCIDR5	See individual bit resets.	32-bit	ID Register 5
0x1F8	TRCIDR6	0x0	32-bit	ID Register 6
0x1FC	TRCIDR7	0x0	32-bit	ID Register 7
0xF00	TRCITCTRL	See individual bit resets.	32-bit	Integration Mode Control Register
0xFA0	TRCCLAIMSET	See individual bit resets.	32-bit	Claim Tag Set Register
0xFA4	TRCCLAIMCLR	See individual bit resets.	32-bit	Claim Tag Clear Register
0xFBC	TRCDEVARCH	See individual bit resets.	32-bit	Device Architecture Register
0xFC0	TRCDEVID2	0x0	32-bit	Device Configuration Register 2
0xFC4	TRCDEVID1	0x0	32-bit	Device Configuration Register 1
0xFC8	TRCDEVID	0x0	32-bit	Device Configuration Register
0xFCC	TRCDEVTYPE	See individual bit resets.	32-bit	Device Type Register
0xFD0	TRCPIDR4	See individual bit resets.	32-bit	Peripheral Identification Register 4
0xFD4	TRCPIDR5	0x0	32-bit	Peripheral Identification Register 5
0xFD8	TRCPIDR6	0x0	32-bit	Peripheral Identification Register 6
0xFDC	TRCPIDR7	0x0	32-bit	Peripheral Identification Register 7
0xFE0	TRCPIDRO	See individual bit resets.	32-bit	Peripheral Identification Register 0
0xFE4	TRCPIDR1	See individual bit resets.	32-bit	Peripheral Identification Register 1
0xFE8	TRCPIDR2	See individual bit resets.	32-bit	Peripheral Identification Register 2
0xFEC	TRCPIDR3	See individual bit resets.	32-bit	Peripheral Identification Register 3
0xFF0	TRCCIDR0	See individual bit resets.	32-bit	Component Identification Register 0
0xFF4	TRCCIDR1	See individual bit resets.	32-bit	Component Identification Register 1
0xFF8	TRCCIDR2	See individual bit resets.	32-bit	Component Identification Register 2
0xFFC	TRCCIDR3	See individual bit resets.	32-bit	Component Identification Register 3

C.6.1 TRCAUXCTLR, Auxiliary Control Register

The function of this register is **IMPLEMENTATION DEFINED**.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x018

Reset value

0x0

Bit descriptions

Figure C-110: ext_TRCAUXCTLR bit assignments

Table C-116: TRCAUXCTLR bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO RESO	Reserved	0b0

C.6.2 TRCIDR8, ID Register 8

Returns the maximum speculation depth of the instruction trace element stream.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x180

Reset value

See individual bit resets.

Bit descriptions

Figure C-111: ext_TRCIDR8 bit assignments

Table C-117: TRCIDR8 bit descriptions

Bits	Name	Description	Reset
[31:)] MAXSPEC	Indicates the maximum speculation depth of the instruction trace element stream. This is the maximum number of PO elements in the trace element stream that can be speculative at any time.	

C.6.3 TRCIDR9, ID Register 9

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x184

Reset value

See individual bit resets.

Bit descriptions

Figure C-112: ext_TRCIDR9 bit assignments

Table C-118: TRCIDR9 bit descriptions

Bits	Name	Description	Reset
[31:0]		Indicates the number of PO right-hand keys. Data tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.	

C.6.4 TRCIDR10, ID Register 10

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x188

Reset value

See individual bit resets.

Bit descriptions

Figure C-113: ext_TRCIDR10 bit assignments

Table C-119: TRCIDR10 bit descriptions

Bits	Name	Description	Reset
[31:0]		Indicates the number of P1 right-hand keys. Data tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.	

C.6.5 TRCIDR11, ID Register 11

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x18C

Reset value

See individual bit resets.

Bit descriptions

Figure C-114: ext_TRCIDR11 bit assignments

Table C-120: TRCIDR11 bit descriptions

Bits	Name	Description	Reset
[31:0]		Indicates the number of special P1 right-hand keys. Data tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.	

C.6.6 TRCIDR12, ID Register 12

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x190

Reset value

0x0

Figure C-115: ext_TRCIDR12 bit assignments

Table C-121: TRCIDR12 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO .	Reserved	000

C.6.7 TRCIDR13, ID Register 13

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x194

Reset value

0x0

Bit descriptions

Figure C-116: ext_TRCIDR13 bit assignments

Table C-122: TRCIDR13 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	0b0

C.6.8 TRCIMSPECO, IMP DEF Register 0

TRCIMSPECO shows the presence of any **IMPLEMENTATION DEFINED** features, and provides an interface to enable the features that are provided.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1C0

Reset value

See individual bit resets.

Bit descriptions

Figure C-117: ext_TRCIMSPEC0 bit assignments

Table C-123: TRCIMSPEC0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	EN	Enable. Controls whether the IMPLEMENTATION DEFINED features are enabled.	
		0ь0000	
		The IMPLEMENTATION DEFINED features are not enabled. The trace unit must behave as if the IMPLEMENTATION DEFINED features are not supported.	
[3:0]	SUPPORT	Indicates whether the implementation supports IMPLEMENTATION DEFINED features.	
		0ь0000	
		No IMPLEMENTATION DEFINED features are supported.	

C.6.9 TRCIDRO, ID Register 0

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1E0

Reset value

See individual bit resets.

Bit descriptions

Figure C-118: ext_TRCIDR0 bit assignments

Table C-124: TRCIDRO bit descriptions

Bits	Name	Description	Reset
[31]	RESO .	Reserved	0b0
[30]	COMMTRANS	Transaction Start element behavior.	
		0ь0	
		Transaction Start elements are PO elements.	
[29]	СОММОРТ	Indicates the contents and encodings of Cycle count packets.	
		0b1	
		Commit mode 1.	
[28:24]	TSSIZE	Indicates that the trace unit implements Global timestamping and the size of the timestamp value.	
		0ь01000	
		Global timestamping implemented with a 64-bit timestamp value.	
[23:18]	RES0	Reserved	0b0
[17]	TRCEXDATA	Indicates if the trace unit implements tracing of data transfers for exceptions and exception returns. Data tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.	
		0ь0	
		Tracing of data transfers for exceptions and exception returns not implemented.	
		0b1	
		Tracing of data transfers for exceptions and exception returns implemented.	

Bits	Name	Description	Reset
[16:15]	QSUPP	Indicates that the trace unit implements Q element support.	
		0600	
		Q element support is not implemented.	
[14]	QFILT	Indicates if the trace unit implements Q element filtering.	
		0ъ0	
		Q element filtering is not implemented.	
[13:12]	RES0	Reserved	0b0
[11:10]	NUMEVENT	Indicates the number of ETEEvents implemented.	
		0b11	
		The trace unit supports 4 ETEEvents.	
[9]	RETSTACK	Indicates if the trace unit supports the return stack.	
		0ь1	
		Return stack implemented.	
[8]	RES0	Reserved	0b0
[7]	TRCCCI	Indicates if the trace unit implements cycle counting.	
		0ь1	
		Cycle counting implemented.	
[6]	TRCCOND	Indicates if the trace unit implements conditional instruction tracing. Conditional instruction tracing is not	
		implemented in ETE and this field is reserved for other trace architectures.	
		ОъО	
[6]	TROPP	Conditional instruction tracing not implemented.	
[5]	TRCBB	Indicates if the trace unit implements branch broadcasting.	
		Ob1	
[4.0]	TDCDATA	Branch broadcasting implemented.	
[4:3]	TRCDATA	Indicates if the trace unit implements data tracing. Data tracing is not implemented in ETE and this field is reserved for other trace architectures.	
		0ь00	
		Data tracing not implemented.	
[2:1]	INSTP0	Indicates if load and store instructions are PO instructions. Load and store instructions as PO instructions	
		is not implemented in ETE and this field is reserved for other trace architectures.	
		0ъ00	
		Load and store instructions are not PO instructions.	
[O]	RES1	Reserved	0b1

C.6.10 TRCIDR1, ID Register 1

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1E4

Reset value

See individual bit resets.

Bit descriptions

Figure C-119: ext_TRCIDR1 bit assignments

Table C-125: TRCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:24]	DESIGNER	Indicates which company designed the trace unit. The permitted values of this field are the same as AArch64-MIDR_EL1.Implementer.	
		0b01000001	
		Arm Limited	
[23:16]	RES0	Reserved	0b0
[15:12]	RES1	Reserved	0b1
[11:8]	TRCARCHMAJ	Major architecture version.	
		0b1111	
		If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to ext-TRCDEVARCH.	
[7:4]	TRCARCHMIN	Minor architecture version.	
		0b1111	
		If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to ext-TRCDEVARCH.	
[3:0]	REVISION	Implementation revision that identifies the revision of the trace and OS Lock registers.	
		0ь0010	
		Revision 2	

C.6.11 TRCIDR2, ID Register 2

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1E8

Reset value

See individual bit resets.

Bit descriptions

Figure C-120: ext_TRCIDR2 bit assignments

Table C-126: TRCIDR2 bit descriptions

Bits	Name	Description	Reset
[31]	WFXMODE	Indicates whether WFI and WFE instructions are classified as PO instructions.	
		061	
		WFI and WFE instructions are classified as PO instructions.	
[30:29]	VMIDOPT	Indicates the options for Virtual context identifier selection.	
		0ь10	
		Virtual context identifier selection not supported. ext-TRCCONFIGR.VMIDOPT is RES1.	
[28:25]	CCSIZE	Indicates the size of the cycle counter.	
		0ь0000	
		The cycle counter is 12 bits in length.	
[24:20]	DVSIZE	Indicates the data value size in bytes. Data tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.	
		0ь01000	
		Data value tracing has a maximum of 64-bit data values.	
[19:15]	DASIZE	Indicates the data value size in bytes. Data tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.	
		0ь01000	
		Data address tracing has a maximum of 64-bit data addresses.	
[14:10]	VMIDSIZE	Indicates the trace unit Virtual context identifier size.	
		0ь00100	
		32-bit Virtual context identifier size.	
[9:5]	CIDSIZE	Indicates the Context identifier size.	
		0ь00100	
		32-bit Context identifier size.	

Bits	Name	Description	Reset
[4:0]	IASIZE	Virtual instruction address size.	
	0ъ01000		
		Maximum of 64-bit instruction address size.	

C.6.12 TRCIDR3, ID Register 3

Returns the base architecture of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1EC

Reset value

See individual bit resets.

Bit descriptions

Figure C-121: ext_TRCIDR3 bit assignments

Table C-127: TRCIDR3 bit descriptions

Bits	Name	Description	Reset
[31]	NOOVERFLOW	Indicates if overflow prevention is implemented.	
		0ь0	
		Overflow prevention is not implemented.	
[13:12, 30:28]	NUMPROC	Indicates the number of PEs available for tracing.	
		0ь00000	
		The trace unit can trace one PE.	

Bits	Name	Description	Reset
[27]	SYSSTALL	Indicates if stalling of the PE is permitted.	
		060	
		Stalling of the PE is not permitted.	
[26]	STALLCTL	Indicates if trace unit implements stalling of the PE.	
		060	
		Stalling of the PE is not implemented.	
[25]	SYNCPR	Indicates if an implementation has a fixed synchronization period.	
		060	
		ext-TRCSYNCPR is read-write so software can change the synchronization period.	
[24]	TRCERR	Indicates forced tracing of System Error exceptions is implemented.	
		0b1	
		Forced tracing of System Error exceptions is implemented.	
[23]	RESO	Reserved	0d0
[22]	EXLEVEL_NS_EL2	Indicates if Non-secure EL2 implemented.	
		0b1	
		Non-secure EL2 is implemented.	
[21]	EXLEVEL_NS_EL1	Indicates if Non-secure EL1 implemented.	
		0b1	
		Non-secure EL1 is implemented.	
[20]	EXLEVEL_NS_ELO	Indicates if Non-secure ELO implemented.	
		0b1	
		Non-secure ELO is implemented.	
[19]	EXLEVEL_S_EL3	Indicates if Secure EL3 implemented.	
		0b1	
		Secure EL3 is implemented.	
[18]	EXLEVEL_S_EL2	Indicates if Secure EL2 implemented.	
		0b1	
		Secure EL2 is implemented.	
[17]	EXLEVEL_S_EL1	Indicates if Secure EL1 implemented.	
		0b1	
		Secure EL1 is implemented.	
[16]	EXLEVEL_S_ELO	Indicates if Secure ELO implemented.	
		0b1	
		Secure ELO is implemented.	
[15:14]	RESO	Reserved	0d0
[11:0]	CCITMIN	Indicates the minimum value that can be programmed in ext-TRCCCCTLR.THRESHOLD.	
		If ext-TRCIDR0.TRCCCI == 0b1 then the minimum value of this field is 0x001.	
		If ext-TRCIDRO.TRCCCI == 0b0 then this field is zero.	
ĺ		S.C. T. SIBNOTT COST. ODG MICH WIIS HOLD IS ZOTO.	1

C.6.13 TRCIDR4, ID Register 4

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1F0

Reset value

See individual bit resets.

Bit descriptions

Figure C-122: ext_TRCIDR4 bit assignments

Table C-128: TRCIDR4 bit descriptions

Bits	Name	Description	Reset
[31:28]	NUMVMIDC	Indicates the number of Virtual Context Identifier Comparators that are available for tracing.	
		0b0001	
		The implementation has one Virtual Context Identifier Comparator.	
[27:24]	NUMCIDC	Indicates the number of Context Identifier Comparators that are available for tracing.	
		0ь0001	
		The implementation has one Context Identifier Comparator.	
[23:20]	NUMSSCC	Indicates the number of Single-shot Comparator Controls that are available for tracing.	
		0ь0001	
		The implementation has one Single-shot Comparator Control.	
[19:16]	NUMRSPAIR	Indicates the number of resource selector pairs that are available for tracing.	
		0ь0111	
		The implementation has eight resource selector pairs.	
[15:12]	NUMPC	Indicates the number of PE Comparator Inputs that are available for tracing.	
		000000	
		No PE Comparator Inputs are available.	
[11:9]	RES0	Reserved	0d0

Bits	Name	Description	Reset
[8]	SUPPDAC	Indicates whether data address comparisons are implemented. Data address comparisons are not implemented in ETE and are reserved for other trace architectures. Allocated in other trace architectures.	
		0ь0	
		Data address comparisons not implemented.	
[7:4]	NUMDVC	Indicates the number of data value comparators. Data value comparators are not implemented in ETE and are reserved for other trace architectures. Allocated in other trace architectures.	
		0ь0000	
		No data value comparators implemented.	
[3:0]	NUMACPAIRS	S Indicates the number of Address Comparator pairs that are available for tracing.	
		0ь0100	
		The implementation has four Address Comparator pairs.	

C.6.14 TRCIDR5, ID Register 5

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1F4

Reset value

See individual bit resets.

Bit descriptions

Figure C-123: ext_TRCIDR5 bit assignments

Table C-129: TRCIDR5 bit descriptions

Bits	Name	Description	Reset
[31]	RES0	Reserved	0b0

Bits	Name	Description	Reset			
[30:28]	NUMCNTR	Indicates the number of Counters that are available for tracing.				
		0ь010				
		Two Counters implemented.				
[27:25]	NUMSEQSTATE	Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.				
		0ь100				
		Four Sequencer states are implemented.				
[24]	RES0	Reserved	0b0			
[23]	LPOVERRIDE	Indicates support for Low-power Override Mode.				
		0ь0				
		The trace unit does not support Low-power Override Mode.				
[22]	ATBTRIG	Indicates if the implementation can support ATB triggers.				
		1				
		The implementation supports ATB triggers.				
[21:16]	TRACEIDSIZE	Indicates the trace ID width.				
		ь000111				
		The implementation supports a 7-bit trace ID.				
[15:12]	RES0	Reserved	0b0			
[11:9]	NUMEXTINSEL	Indicates how many External Input Selector resources are implemented.				
		0ь100				
		4 External Input Selector resources are available.				
[8:0]	NUMEXTIN	Indicates how many External Inputs are implemented.				
		0b11111111				
		Unified PMU event selection.				

C.6.15 TRCIDR6, ID Register 6

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1F8

Reset value

0x0

Figure C-124: ext_TRCIDR6 bit assignments

Table C-130: TRCIDR6 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO .	Reserved	0b0

C.6.16 TRCIDR7, ID Register 7

Returns the tracing capabilities of the trace unit.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0x1FC

Reset value

0x0

Bit descriptions

Figure C-125: ext_TRCIDR7 bit assignments

Table C-131: TRCIDR7 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	0b0

C.6.17 TRCITCTRL, Integration Mode Control Register

A component can use TRCITCTRL to dynamically switch between functional mode and integration mode. In integration mode, topology detection is enabled. After switching to integration mode and performing integration tests or topology detection, reset the system to ensure correct behavior of CoreSight and other connected system components.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xF00

Reset value

See individual bit resets.

Bit descriptions

Figure C-126: ext_TRCITCTRL bit assignments

Table C-132: TRCITCTRL bit descriptions

Bits	Name	Description	Reset
[31:1]	RES0	Reserved	0b0
[0]	IME	Integration Mode Enable.	
		0ъ0	
		The component must enter functional mode.	
		0b1	
		The component must enter integration mode, and enable support for topology detection and integration testing.	

C.6.18 TRCCLAIMSET, Claim Tag Set Register

In conjunction with ext-TRCCLAIMCLR, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFA0

Reset value

See individual bit resets.

Bit descriptions

Figure C-127: ext_TRCCLAIMSET bit assignments

Table C-133: TRCCLAIMSET bit descriptions

Bits	Name	Name Description			
[31:0]	SET <m> Claim Tag Set. Indicates whether Claim Tag bit m is implemented, and is used to set Claim Tag bit m to</m>				
		0ъ0			
	On a read: Claim Tag bit m is not implemented.				
		On a write: Ignored.			
	0ъ1				
	On a read: Claim Tag bit m is implemented.				
		On a write: Set Claim Tag bit m to 0b1.			

C.6.19 TRCCLAIMCLR, Claim Tag Clear Register

In conjunction with ext-TRCCLAIMSET, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFA4

Reset value

See individual bit resets.

Bit descriptions

Figure C-128: ext_TRCCLAIMCLR bit assignments

Table C-134: TRCCLAIMCLR bit descriptions

Bits	Name	ame Description			
[31:0]	CLR <m></m>	:0] CLR <m> Claim Tag Clear. Indicates the current status of the Claim Tag bit m, and is used</m>	Claim Tag Clear. Indicates the current status of the Claim Tag bit m, and is used to clear Claim Tag bit m to 0b0.		
	Оп a read: Claim Tag bit m is not set.				
	On a write: Ignored.				
		061			
On a read: Claim Tag bit m is set.					
		On a write: Clear Claim tag bit m to 0b0.			

C.6.20 TRCDEVARCH, Device Architecture Register

Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

OxFBC

Reset value

See individual bit resets.

Bit descriptions

Figure C-129: ext_TRCDEVARCH bit assignments

Table C-135: TRCDEVARCH bit descriptions

Bits	Name	Description	Reset				
[31:21]	ARCHITECT	Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.					
		0ь01000111011					
		JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.					
[20]	PRESENT	DEVARCH Present. Defines that the DEVARCH register is present.					
		0b1					
		Device Architecture information present.					
[19:16]	REVISION	Revision. Defines the architecture revision of the component.					
		50000					
		ETE Version 1.0.					
[15:12]	ARCHVER	Architecture Version. Defines the architecture version of the component.					
		ь0101					
		ETE Version 1.					
[11:0]	ARCHPART	Architecture Part. Defines the architecture of the component.					
		0ь101000010011					
		Arm PE trace architecture.					

C.6.21 TRCDEVID2, Device Configuration Register 2

Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFC0

Reset value

0x0

Bit descriptions

Figure C-130: ext_TRCDEVID2 bit assignments

Table C-136: TRCDEVID2 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO RESO	Reserved	0b0

C.6.22 TRCDEVID1, Device Configuration Register 1

Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFC4

Reset value

0x0

Bit descriptions

Figure C-131: ext_TRCDEVID1 bit assignments

Table C-137: TRCDEVID1 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO RESO	Reserved	0b0

C.6.23 TRCDEVID, Device Configuration Register

Provides discovery information for the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFC8

Reset value

0x0

Figure C-132: ext_TRCDEVID bit assignments

Table C-138: TRCDEVID bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	0b0

C.6.24 TRCDEVTYPE, Device Type Register

Provides discovery information for the component. If the part number field is not recognized, a debugger can report the information that is provided by TRCDEVTYPE about the component instead.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

OxFCC

Reset value

See individual bit resets.

Bit descriptions

Figure C-133: ext_TRCDEVTYPE bit assignments

Table C-139: TRCDEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0

Bits	Name	Description	Reset		
[7:4]	SUB	Component sub-type.			
		01			
		When MAJOR == 0x3 (Trace source): Associated with a PE.			
[3:0]	MAJOR	Component major type.			
		50011			
		Trace source.			

C.6.25 TRCPIDR4, Peripheral Identification Register 4

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFD0

Reset value

See individual bit resets.

Bit descriptions

Figure C-134: ext_TRCPIDR4 bit assignments

Table C-140: TRCPIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	SIZE	The component uses a single 4KB block.	
		0р0000	
[3:0]	DES_2	Arm Limited. This is bits[3:0] of the JEP106 continuation code.	
		0ь0100	

C.6.26 TRCPIDR5, Peripheral Identification Register 5

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFD4

Reset value

0x0

Bit descriptions

Figure C-135: ext_TRCPIDR5 bit assignments

Table C-141: TRCPIDR5 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	0b0

C.6.27 TRCPIDR6, Peripheral Identification Register 6

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFD8

Reset value

0x0

Bit descriptions

Figure C-136: ext_TRCPIDR6 bit assignments

Table C-142: TRCPIDR6 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO RESO	Reserved	0b0

C.6.28 TRCPIDR7, Peripheral Identification Register 7

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

OxFDC

Reset value

0x0

Figure C-137: ext_TRCPIDR7 bit assignments

Table C-143: TRCPIDR7 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO .	Reserved	000

C.6.29 TRCPIDRO, Peripheral Identification Register 0

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFE0

Reset value

See individual bit resets.

Bit descriptions

Figure C-138: ext_TRCPIDR0 bit assignments

Table C-144: TRCPIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:0]	PART_0	Least significant byte of the trace unit part.	
		0b01000111	

C.6.30 TRCPIDR1, Peripheral Identification Register 1

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFE4

Reset value

See individual bit resets.

Bit descriptions

Figure C-139: ext_TRCPIDR1 bit assignments

Table C-145: TRCPIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	DES_0	Arm Limited. This is the least significant nibble of JEP106 ID code.	
		0ь1011	
[3:0]	PART_1	Part number, most significant nibble.	
		0ь1101	

C.6.31 TRCPIDR2, Peripheral Identification Register 2

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFE8

Reset value

See individual bit resets.

Bit descriptions

Figure C-140: ext_TRCPIDR2 bit assignments

Table C-146: TRCPIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0
[7:4]	REVISION	r2p1 - Part major revision.	
		0ь0010	
[3]	JEDEC	JEDEC-assigned JEP106 implementer code is used.	
		0ь1	
		RES1. Indicates a JEP106 identity code is used	
[2:0]	DES_1	Arm Limited. Most significant nibble of JEP106 ID code.	
		0b011	

C.6.32 TRCPIDR3, Peripheral Identification Register 3

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

OxFEC

Reset value

See individual bit resets.

Bit descriptions

Figure C-141: ext_TRCPIDR3 bit assignments

Table C-147: TRCPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	0b0
[7:4]	REVAND	Part minor revision.	
		0b0001	
[3:0]	CMOD	Not Customer modified.	
		060000	

C.6.33 TRCCIDRO, Component Identification Register 0

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFF0

Reset value

See individual bit resets.

Bit descriptions

Figure C-142: ext_TRCCIDR0 bit assignments

Table C-148: TRCCIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0
[7:0]	PRMBL_0	Component identification preamble, segment 0.	
		0ь00001101	
		Preamble byte 0	

C.6.34 TRCCIDR1, Component Identification Register 1

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFF4

Reset value

See individual bit resets.

Bit descriptions

Figure C-143: ext_TRCCIDR1 bit assignments

Table C-149: TRCCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO RESO	Reserved	0b0
[7:4]	CLASS	Component class.	
		0ь1001	
		CoreSight peripheral.	
[3:0]	PRMBL_1	Component identification preamble, segment 1.	
		0ь0000	
		Preamble	

C.6.35 TRCCIDR2, Component Identification Register 2

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

0xFF8

Reset value

See individual bit resets.

Bit descriptions

Figure C-144: ext_TRCCIDR2 bit assignments

Table C-150: TRCCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	0b0
[7:0]	PRMBL_2	Component identification preamble, segment 2.	
		0ь00000101	
		Preamble byte 2.	

C.6.36 TRCCIDR3, Component Identification Register 3

Provides discovery information about the component.

For additional information see the CoreSight Architecture Specification.

Configurations

• This register is available in all configurations.

Attributes

Width

32

Functional group

ETE

Register offset

OxFFC

Reset value

See individual bit resets.

Bit descriptions

Figure C-145: ext_TRCCIDR3 bit assignments

Table C-151: TRCCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO RESO	Reserved	0b0
[7:0]	PRMBL_3	Component identification preamble, segment 3.	
		0ь10110001	
		Preamble byte 3.	

Appendix D Cortex®-A710 AArch32 UNPREDICTABLE behaviors

There are cases in which the Cortex®-A710 core implementation diverges from the preferred behavior described in Armv8-A AArch32 **UNPREDICTABLE** behaviors.

D.1 Use of R15 by Instruction

If the use of R15 as a base register for a load or store is **UNPREDICTABLE**, the value used by the load or store using R15 as a base register is the *Program Counter* (PC) with its usual offset and, in the case of T32 instructions, with the forced word alignment. In this case, if the instruction specifies WriteBack, then the load or store is performed without WriteBack.

The Cortex®-A710 core does not implement a *Read 0* or *Ignore Write* policy on **UNPREDICTABLE** use of R15 by instruction. Instead, the Cortex®-A710 core takes an **UNDEFINED** exception trap.

D.2 Load/Store accesses crossing page boundaries

The Cortex®-A710 core implements a set of behaviors for load or store accesses that cross page boundaries.

Crossing a page boundary with different memory types or shareability attributes

The Arm® Architecture Reference Manual Armv8, for A-profile architecture, states that a memory access from a load or store instruction that crosses a page boundary to a memory location that has a different memory type or shareability attribute results in **CONSTRAINED UNPREDICTABLE** behavior.

Crossing a 4KB boundary with a Device access

The Arm® Architecture Reference Manual Armv8, for A-profile architecture, states that a memory access from a load or store instruction to Device memory that crosses a 4KB boundary results in **CONSTRAINED UNPREDICTABLE** behavior.

Implementation (for both page boundary specifications)

For an access that crosses a page boundary, the Cortex®-A710 core implements the following behaviors:

- Store crossing a page boundary:
 - No alignment fault.
 - The access is split into two stores.
 - Each store uses the memory type and shareability attributes associated with its own address.

- Load crossing a page boundary (Device to Device and Normal to Normal):
 - No alignment fault.
 - The access is split into two loads.
 - Each load uses the memory type and shareability attributes associated with its own address.
- Load crossing a page boundary (Device to Normal and Normal to Device):
 - The instruction generates an alignment fault.

D.3 Armv8-A debug UNPREDICTABLE behaviors

The Cortex®-A710 core might have Armv8-A debug **UNPREDICTABLE** behaviors either when a topic has multiple options or when the behavior differs from either or both of the Options and Preferences behaviors.

This manual does not describe the behavior when a topic only has a single option and the core implements the preferred behavior.

Table D-1: Armv8 Debug UNPREDICTABLE behaviors

Scenario	Behavior
A32 BKPT instruction with condition code not AL	The core implements the following preferred option:
	Executed unconditionally.
Address match breakpoint match only on second halfword of an instruction	The core generates a breakpoint on the instruction if CPSR.IL=0. In the case of CPSR.IL=1, the core does not generate a breakpoint exception.
Address matching breakpoint on A32 instruction with	The core implements the following option:
DBGBCRn.BAS=1100	Does match if CPSR.IL=0.
Address match breakpoint match on T32 instruction at	The core implements the following option:
DBGBCRn+2 with DBGBCRn.BAS=1111	Does match.
Link to non-existent breakpoint or breakpoint that is not	The core implements the following option:
context-aware	No Breakpoint or Watchpoint debug event is generated, and the LBN field of the <i>linker</i> reads UNKNOWN .
DBGWCRn_EL1.MASK!=00000 and	The core behaves as indicated in the sole Preference:
DBGWCRn_EL1.BAS!=11111111	DBGWCRn_EL1.BAS is IGNORED and treated as if 0x11111111.
Address match breakpoint with	The core implements the following option:
DBGBCRn_EL1.BAS=0000	As if disabled.
DBGWCRn_EL1.BAS specifies a non-contiguous set of	The core implements the following option:
bytes within a double-word	A Watchpoint debug event is generated for each byte.
A32 HLT instruction with condition code not AL	The core implements the following option:
	Executed unconditionally.

Scenario	Behavior
Execute instruction at a given EL when the corresponding	The core behaves as follows:
EDECCR bit is 1 and Halting is allowed	Generates debug event and Halt no later than the instruction following the next Context Synchronization operation (CSO) excluding ISB instruction.
H > N or H = 0 at Non-secure EL1 and EL0, including	The core implements:
value read from PMCR_EL0.N	A simple implementation where all of HPMN[4:0] are implemented, and In Non-secure EL1 and EL0:
	∘ If H > N then M = N.
	∘ If H = 0 then M = 0.
H > N or H = 0: value read back in MDCR_EL2.HPMN	The core implements:
	A simple implementation where all of HPMN[4:0] are implemented and for reads of MDCR_EL2.HPMN, return H.
P ≥ M and P ≠ 31: reads and writes of PM	The core implements:
XEVTYPER_ELO and PMXEVCNTR_ELO	A simple implementation where all of SEL[4:0] are implemented, and if P ≥ M and P ≠ 31 then the register is RESO.
P ≥ M and P ≠ 31: value read in PMSELR_EL0.SEL	The core implements:
	A simple implementation where all of SEL[4:0] are implemented, and if P ≥ M and P ≠ 31 then the register is RESO.
P = 31: reads and writes of PMXEVCNTR_EL0	The core implements:
	• RESO.
n ≥ M: Direct access to PMEVCNTRn_ELO and	The core implements:
PMEVTYPERn_ELO	• If $n \ge N$, then the instruction is UNALLOCATED .
	• Otherwise if $n \ge M$, then the register is RESO .
Exiting Debug state while instruction issued through	The core implements the following option:
EDITR is in flight	The instruction completes in Debug state before executing the restart.
Using memory-access mode with a non-word-aligned address	The core behaves as indicated in the sole Preference:
address	Does unaligned accesses, faulting if these are not permitted for the memory type.
Access to memory-mapped registers mapped to Normal	The core behaves as indicated in the sole Preference:
memory	The access is generated, and accesses might be repeated, gathered, split or resized, in accordance with the rules for Normal memory, meaning the effect is UNPREDICTABLE.
Not word-sized accesses or (AArch64 only) doubleword-	The core behaves as indicated in the sole Preference:
sized accesses	Reads occur and return unknown data.
	Writes set the accessed register(s) to UNKNOWN .
External debug write to register that is being reset	The core behaves as indicated in the sole Preference:
	Takes reset value.

Scenario	Be	havior
Accessing reserved debug registers		e core deviates from preferred behavior because the hardware cost to de- de some of these addresses in debug power domain is significantly high.
	The	e actual behavior is:
	1.	For reserved debug registers in the address range 0x000-0xCFC and Performance Monitors registers in the address range 0x000, the response is either CONSTRAINED UNPREDICTABLE Error or RESO when any of the following errors occurs:
		Off
		The core power domain is either completely off or in a low-power state where the core power domain registers cannot be accessed.
		DLK
		DoubleLockStatus() is TRUE and OS double-lock is locked (EDPRSR.DLK is 1).
		OSLK
		OS lock is locked (OSLSR_EL1.OSLK is 1).
	2.	For reserved debug registers in the address ranges 0x400-0x4FC and 0x800-0x8FC, the response is CONSTRAINED UNPREDICTABLE Error or RESO when the conditions in 1 on page 583 do not apply and the following error occurs:
		EDAD
		AllowExternalDebugAccess() is FALSE. External debug access is disabled.
	3.	For reserved Performance Monitor registers in the address ranges $0 \times 000-0 \times 0$ FC and $0 \times 400-0 \times 47$ C, the response is either CONSTRAINED UNPREDICTABLE Error, or RESO when the conditions in 1 on page 583 and 2 on page 583 do not apply, and the following error occurs:
		EPMAD
		AllowExternalPMUAccess() is FALSE. External Performance Monitors access is disabled.
Clearing the clear-after-read EDPRSR bits when Core	The	e core behaves as indicated in the sole Preference:
power domain is on, and DoubleLockStatus() is TRUE	•	Bits are not cleared to zero.

D.4 Other UNPREDICTABLE behaviors

The Cortex®-A710 core implements a set of other **UNPREDICTABLE** behaviors.

Table D-2: Other UNPREDICTABLE behaviors

Scenario	Description	
CSSELR indicates a cache that is not implemented.	If CSSELR indicates a cache that is not implemented, then on a read of the CCSIDR the behavior is CONSTRAINED UNPREDICTABLE , and can be one of the following:	
	The CCSIDR read is treated as NOP.	
	The CCSIDR read is UNDEFINED .	
	The CCSIDR read returns an unknown value (preferred).	

Scenario	Description	
HDCR.HPMN is set to 0, or to a value larger than PMCR.N.	If HDCR.HPMN is set to 0, or to a value larger than PMCR.N, then the behavior in Non-secure ELO and EL1 is CONSTRAINED UNPREDICTABLE , and one of the following must happen:	
	• The number of counters accessible is an UNKNOWN non-zero value less than PMCR.N.	
	There is no access to any counters.	
	For reads of HDCR.HPMN by EL2 or higher, if this field is set to 0 or to a value larger than PMCR.N, the core must return a CONSTRAINED UNPREDICTABLE value that is one of:	
	PMCR.N.	
	The value that was written to HDCR.HPMN.	
	• (The value that was written to HDCR.HPMN) modulo 2h, where h is the smallest number of bits required for a value in the range 0 to PMCR.N.	
CRC32 or CRC32C instruction with size==64.	On read of the instruction, the behavior is CONSTRAINED UNPREDICTABLE , and the instruction executes with the additional decode: size==32.	
CRC32 or CRC32C instruction with	The core implements the following option:	
cond!=1110 in the A1 encoding.	Executed unconditionally.	

Appendix E Document revisions

This appendix records the changes between released issues of this document.

E.1 Revisions

Changes between released issues of this book are summarized in tables.

The first table is for the first release. Then, each table compares the new issue of the book with the last released issue of the book. Release numbers match the revision history in Release Information on page 2.

Table E-1: Issue 0000-01

Change	Location
First alpha release for r0p0	-

Table E-2: Differences between Issue 0000-01 and Issue 0000-02

Change	Location
First beta release for r0p0	Revisions history
Added ELA information	2.1 Cortex-A710 core features on page 22
	• 2.2 Cortex-A710 core configuration options on page 24
	3.1 Core components on page 31
Documented registers	13 Advanced SIMD and floating-point support on page 95
	• 15 System control on page 97
Added ROM table information	16 Debug on page 99
Restructured and updated memory management information	6 Memory management on page 49

Table E-3: Differences between Issue 0000-02 and Issue 0000-03

Change	Location
First limited access release for rOpO	Revisions history
Updated manual structure and reorganized registers	Entire manual
Added direct RAM access information	10 Direct access to internal memory on page 69
Updated system register descriptions	A AArch32 registers on page 134 B AArch64 registers on page 138
Added memory-mapped registers	C External registers on page 434

Table E-4: Differences between Issue 0000-03 and Issue 0100-04

Change	Location
First limited access release for r1p0	Revisions history
Editorial changes	Entire manual
Updated manual structure and reorganized registers	Entire manual

Change	Location
Updated number of instruction TLB and L1 data TLB entries	6.1 Memory Management Unit components on page 49
Added more details on external aborts	6.6 Responses on page 53
Updated MOP cache operations	7 L1 instruction memory system on page 58
Added BIM RAM returned data section	10 Direct access to internal memory on page 69
Updated L1 data TLB returned data tables	
Added victim location encoding	10.2 L2 cache encodings on page 81
Updated system register descriptions	A AArch32 registers on page 134 B AArch64 registers on page 138
Updated memory-mapped registers	C External registers on page 434

Table E-5: Differences between Issue 0100-04 and Issue 0200-05

Change	Location
First early access release for r2p0	Revisions history
Editorial changes	Entire manual
Updated performance monitoring unit section with additional details on configuration options	3.1 Core components on page 31
Updated for clarity	5.1 Voltage and power domains on page 37
Added more complete details on warm reset mode	5.4.6 Warm reset mode on page 45
Added more details on external aborts	6.6 Responses on page 53
Updated tables	10.2 L2 cache encodings on page 81
Added more complete details on fault detection and reporting	11.3 Fault detection and reporting on page 90
Added coresight component identification	16.6 CoreSight component identification on page 104
Updated system register descriptions	A AArch32 registers on page 134 B AArch64 registers on page 138
Updated memory-mapped registers	C External registers on page 434

Table E-6: Differences between Issue 0200-05 and Issue 0200-06

Change	Location
Second early access release for r2p0	Revisions history
Editorial changes	Entire manual
Progressive terminology information added.	Release Information on page 2
Note on cache indices removed	2.2 Cortex-A710 core configuration options on page 24
Section on DSU dependent features added	2.3 DSU-110 dependent features on page 24
Redundant bullet point removed	5.2.1 Wait for Interrupt and Wait for Event on page 39
Additional information added in caution note	5.4 Core power modes on page 41
Additional information added to Memory behavior and supported memory types section	6.7 Memory behavior and supported memory types on page 55
Note added	7.1 L1 instruction cache behavior on page 58
L1 data memory system features table updated	8 L1 data memory system on page 62
Write streaming mode section added	8.5 Write streaming mode on page 65
Debug chapter reorganized for clarity	16 Debug on page 99
DS-5 corrected to Arm Debugger	16 Debug on page 99
Bit fields updated	10.1.10 L1 data TLB returned data on page 79

Change	Location
Core interfaces additional description added to ELA registers	16.2.1 Core interfaces on page 101
Breakpoints and watchpoints topic updated	16.2.4 Breakpoints and watchpoints on page 103
Updated system register and register descriptions	A AArch32 registers on page 134 B AArch64 registers on page 138
Reset value corrected for PF_MODE	B.1.16 IMP_CPUECTLR2_EL1, CPU Extended Control Register
Descriptions corrected for TXREQ_LIMIT_DEC and TXREQ_LIMIT_INC	2 on page 174
Updated memory-mapped registers	C External registers on page 434

Table E-7: Differences between Issue 0200-06 and Issue 0201-07

Change	Location
First release for r2p1	Revisions history
Edits to DSU-110 dependent features section	2.3 DSU-110 dependent features on page 24
Clarified core powerup and powerdown sequence	5.5 Cortex-A710 core powerup and powerdown sequence on page 45
Added section on Page-based hardware attributes	6.8 Page-based hardware attributes on page 56
Updated ERXADDR_EL1, Selected Error Record Address Register	B.10.6 ERXADDR_EL1, Selected Error Record Address Register on page 414
Updated ARRAY in ERXMISCO_EL1, Selected Error Record Miscellaneous Register 0	B.10.10 ERXMISCO_EL1, Selected Error Record Miscellaneous Register 0 on page 423
Minor editorial change to registers PMEVCNTSR6 through to PMEVCNTSR19	C External registers on page 434