1) A F&B manager wants to determine whether there is any significant difference in the diameter of the cutlet between two units. A randomly selected sample of cutlets was collected from both units and measured? Analyze the data and draw inferences at 5% significance level. Please state the assumptions and tests that you carried out to check validity of the assumptions.

1 - Business Problem

Is there significant difference in the diameter of the cutlet?

2 - Data description

 $\alpha == 0.05$ (95% Confidence)

Y == Continious

X == Discrete

Is Y1 and Y2 normal?

H0 = Y1 and Y2 are normal

H1 = Y1 and Y2 are not normal

In [5]:

```
import pandas as pd
import numpy as np
from scipy import stats
df = pd.read_csv('Cutlets.csv')
df
```

Out[5]:

	llnit Δ	Unit B
		6.7703
0		
1	6.4376	
2		6.7300
3	7.3012	
4	7.4488	
5	7.3871	
6	6.8755	7.2212
7	7.0621	6.6606
8	6.6840	7.2402
9	6.8236	7.0503
10	7.3930	6.8810
11	7.5169	7.4059
12	6.9246	6.7652
13	6.9256	6.0380
14	6.5797	7.1581
15	6.8394	7.0240
16	6.5970	6.6672
17	7.2705	7.4314
18	7.2828	7.3070
19	7.3495	6.7478
20	6.9438	6.8889
21	7.1560	7.4220
22	6.5341	6.5217
23	7.2854	7.1688
24	6.9952	6.7594
25	6.8568	6.9399
26	7.2163	7.0133
27	6.6801	6.9182
28	6.9431	6.3346
29	7.0852	7.5459
30	6.7794	7.0992

31 7.2783 7.1180

	Unit A	Unit B
32	7.1561	6.6965
33	7.3943	6.5780
34	6.9405	7.3875

3 - Normality Test

P value for Unit B == $0.52 > \alpha$

```
In [6]:
stats.shapiro(df["Unit A"])
Out[6]:
ShapiroResult(statistic=0.9649458527565002, pvalue=0.3199819028377533)
P value for Unit A == 0.32 > α
In [7]:
stats.shapiro(df["Unit B"])
Out[7]:
ShapiroResult(statistic=0.9727300405502319, pvalue=0.5224985480308533)
```

HO is accepted. i.e; both Y1 and Y2 are normal

4 - External Condition - External condition are same.

Thus we can perform Paired T Test

5 - Model

H0 == Mean for Y1 and Y2 are equal (There is no significance difference between diameter of the Culets)

H1 == Mean for Y1 and Y2 are not equal (There is a significance difference between diameter of the Culets)

```
In [8]:
```

```
stats.ttest_rel(df["Unit A"], df["Unit B"])
```

Out[8]:

Ttest_relResult(statistic=0.7536787225614314, pvalue=0.4562300768038412)

Ttest_relResult(statistic=0.7536787225614323, pvalue=0.45623007680384076) P value of the Paired T Test is == $0.45 > \alpha$

Thus H0 is accepted.

Mean of both Y1 and Y2 are equal.