

TÖL403G GREINING REIKNIRITA

17. Jafnaðargreining 1

Hjálmtýr Hafsteinsson Vor 2022

Í þessum fyrirlestri

- Bestun á fail-færslu í KMP
 - Sem hluti af reikniritinu sjálfu
- Jafnaðargreining (amortized analysis)
 - Upphækkun á bitateljara
 - Ólíkar framsetninga á jafnaðargreiningu
 - Summa
 - Skattlagning
 - Rukkun
 - Stöðuorka
 - Hækkun og lækkun á teljara

DC 7.7

DC 9.1 - 9.3

Knuth-Morris-Pratt upprifjun

- Búa til stöðuvél úr mynstrinu á O(m) tíma
- Keyra textann í gegnum hana á O(n) tíma
- Upphaflega reikniritið:
 - Ef T[i] ≠ P[j] þá athugar reikniritið hvort T[i] sé = P[fail[j]], jafnvel þó P[j] = P[fail[j]]

Sáum síðast að það er hægt að laga *fail*-fylkið eftirá

```
OPTIMIZEFAILURE(P[1..m], fail[1..m]):

for i \leftarrow 2 to m

if P[i] = P[fail[i]]

fail[i] \leftarrow fail[fail[i]]
```

Prófa a aftur þó a passi ekki Prófa b aftur þó b passi ekki Prófa a aftur þó a passi ekki Prófa a aftur þó a passi ekki

Betra KMP reiknirit

Getum líka byggt bestunina inn í upphaflega reikniritið

Viðbót

```
\frac{\text{COMPUTEOPTFAILURE}(P[1..m]):}{j \leftarrow 0}
\text{for } i \leftarrow 1 \text{ to } m
\text{if } P[i] = P[j]
\text{fail}[i] \leftarrow \text{fail}[j]
\text{else}
\text{fail}[i] \leftarrow j
\text{while } j > 0 \text{ and } P[i] \neq P[j]
\text{$j \leftarrow \text{fail}[j]$}
\text{$j \leftarrow \text{fail}[j]$}
```

Áfram O(m) tími, með aðeins hærri fasta

Upphaflega var fail[i] sett sem j án þess að athuga P[i] og P[j]

En nú athugum við hvort P[i] sé = P[j] og ef svo er þá förum við einni *fail*-ör lengra aftur

Sýnidæmi

Upphafleg stöðuvél:

Upphaflegt fail:

Bestuð stöðuvél:

Bestað fail:

Gefur hraðvirkari strengleit – þurfum sjaldnar að bíða á sama textastaf

Jafnaðargreining (amortized analysis)

- Upphaflega sett fram af Robert Tarjan [1985]
- Önnur leið til að meta kostnað við reiknirit
- Gagnast þegar einstakar aðgerðir hafa áhrif á hver aðra
 - Ef við gerum þessa aðgerð þá munu aðrar aðgerðir dýrari
 - eða, ef ein dýr aðgerð er framkvæmd þá verða aðrar aðgerðir ódýrari
- Söfnum þá upp kostnaðinum og dreifum honum á allar aðgerðirnar
 - Þetta er versta tilfellis greining

Einfalt verkefni

Hækka tvíundarteljara (binary counter) um 1

Höfum tvíundarteljara með gildið *n*−1, hækkum hann í *n*

Geymdur í ótakmarkaða fylkinu B

B[i] = 1 ef og aðeins ef 2^i er í summunni n-1

Reiknirit:

Increment($B[0\infty]$):
i ← 0
while $B[i] = 1$
$B[i] \leftarrow 0$
$i \leftarrow i + 1$
$B[i] \leftarrow 1$

Til dæmis: 1000 → 1001

 $1001 \rightarrow 1010$

 $1010 \rightarrow 1011$

<u>Tími</u>:

Ef fyrstu (neðstu) k bitarnir eru 1 þá tekur reikniritið O(k) tíma

Til dæmis:

 $11111 \rightarrow 100000$

Tímaflækja tvíundarteljara

Ef teljarinn B táknar tölu á milli 0 og n, þá er versta tilfellis tími reikniritsins $Increment\ O(\log(n))$

En ef við köllum *n* sinnum á *Increment* með upphafsgildinu 0?

Tekur það $O(n \cdot \log(n))$ tíma?

En það eru bara örfáar aðgerðir sem eru dýrar og þær eru dýrar <u>vegna ódýru</u> aðgerðanna sem komu á undan

Til dæmis: $11100 \rightarrow 11101 \quad 1 \text{ br.}$ $11101 \rightarrow 11110 \quad 2 \text{ br.}$ $11110 \rightarrow 11111 \quad 1 \text{ br.}$ $11111 \rightarrow 100000 \quad 6 \text{ br.}$

Hægt að sýna að heildartími á *n* köllum á *Increment* er *O*(*n*)

Með jafnaðargreiningu (amortized analysis)

Getum þá sagt að jafnaðartími hverrar aðgerðar sé O(1)

Jafnaðargreining

- Munum skoða 4 aðferðir til að gera jafnaðargreiningu
 - Allar aðferðirnar eru jafngildar
 - en henta misvel fyrir einstök verkefni
- Summa (summation, aggregation)
 - Finna versta tilfellis tíma fyrir runu n aðgerða, deila svo í hann með n
- Skattlagning (taxation, accounting)
 - Láta hverja aðgerð borga gjald, sem nægir til að borga fyrir allar runur n aðgerða
- Rukkun (charging)
 - Dýrar aðgerðir geta rukkað fyrri aðgerðir um kostnað mjög svipuð skattlagningu
- Stöðuorka (potential)
 - Sumar aðgerðir byggja upp stöðuorku í gagnagrindinni sem hægt er að nota síðar

Summuaðferð

Þegar við hækkum teljarann frá 0 til n þá breytast ekki allir bitarnir

Auðvelt að sjá: Biti B[0] breytist í hvert sinn

Biti B[1] breytist í annað hvert sinn

Biti B[2] breytist í fjórða hvert sinn

:

Sjáum þá: Biti B[i] breytist $\lfloor n/2^i \rfloor$ sinnum þegar talið er frá 0 til n

Heildarfjöldi bitabreytinga er

$$\sum_{i=0}^{\lfloor \log_2 n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor < \sum_{i=0}^{\infty} \frac{n}{2^i} = 2n$$

Hægt að sýna að fjöldi bitabreytinga er nákvæmlega 2*n* – (fjöldi 1-bita í *n*)

Jafnaðartími Increment

Heildarfjöldi bitabreytingar við að telja frá 0 til n er 2n

Að meðaltali tekur því hver hækkun 2 bitabreytingar

Athugið að hér er meðaltalið yfir allar aðgerðirnar, ekki yfir mögulega keyrslutíma hverrar aðgerðir

Dreift yfir allar aðgerðirnar, svipað og jafngreiðslulán!

Segjum þá að hver hækkun taki 2 bitabreytingar <u>að jafnaði</u> (amortized)

Ef T(n) er versta-tilfellis tími fyrir runu n aðgerða þá er <u>jafnaðartími</u> hverrar aðgerðar T(n)/n

Höfum þá:

<u>versta tilfellistími</u> *Increment* er $O(\log(n))$ en <u>jafnaðartími</u> *Increment* er O(1)

Skattlagningaraðferð

- Leggjum skatt á hverja hækkun og notum hann til að borga fyrir framtíðaraðgerðir
- Við hverja hækkun (*Increment*) er lagður \$2 skattur

\$1 fer í að borga fyrir að breyta 0 í 1, en hinn er geymdur til að borga fyrir breytinguna til baka, úr 1 í 0

<u>Dæmi</u> :	<u>Hækkun</u>	<u>Skattur</u>	<u>Geymt</u>	
	$0000 \rightarrow 0001$	2	1	Notum geymda \$1 til að borga <i>B</i> [0] breytingu. Annar \$1 af skattinum
	0001 → 0010	2	1	borgar fyrir B[1] breytingu. Hinn geymdur
	0010 → 0011	2	2	Eigum nú fyrir báðum breytingunum til baka

Þurfum að finna út réttu upphæðina til að skattleggja og sýna að hún virki (þ.e. eigum alltaf fyrir aðgerðunum)

Rukkunaraðferð

- Þessi aðferð rukkar fyrri skref um kostnað við seinni skref
 - Í skattlagningu leggja fyrri skref fyrir upphæð vegna seinni skrefa

Dæmi:

Þegar bita er breytt frá 1 til 0 þá rukkum við það skref sem setti bitann sem 1

Þegar við þurfum að breyta *k* bitum í keyrslu á *Increment*, þá borgum við sjálf fyrir eina aðgerð og rukkum fyrri bita um hinar *k*–1 aðgerðirnar

Hver aðgerð kostar því 2: 1 fyrir að breyta einum bita og 1 sem einhver framtíðaraðgerð mun rukka okkur

Stöðuorkuaðferðin

Þetta er almennasta aðferðin (en líka oft flóknust)

Segjum að sumar aðgerðir byggi upp stöðuorku (*potential energy*) í gagnagrindinni sem hægt er að nota síðar til að borga fyrir aðrar aðgerðir

Lát D_i vera gagnagrindina eftir i aðgerðir á hana og Φ_i vera stöðuorku hennar c_i er raunkostnaður i-tu aðgerðarinnar, sem breytir D_{i-1} í D_i

Þá er jafnaðarkostnaður *i*-tu aðgerðarinnar: $a_i = c_i + \Phi_i - \Phi_{i-1}$

$$a_i = c_i + \Phi_i - \Phi_{i-1}$$
Raunkostn. Mismunur í

stöðuorku

Heildar jafnaðarkostnaður *n* aðgerða er þá:

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (c_i + \Phi_i - \Phi_{i-1}) = (\sum_{i=1}^{n} c_i) + \Phi_n - \Phi_0$$
Munur í stöðuorku frá upphafs gagnagrind

Viljum alltaf hafa að

$$\Phi_i - \Phi_0 \ge 0$$

Sýnidæmi um stöðuorku

- Í tvíundarteljara verkefninu getum við skilgreint stöðuorkuna Φ_i sem fjölda bita sem eru 1
 - Upphaflega eru allir bitarnir 0, svo $\Phi_0 = 0$

Kostnaður:

Reikniritið *Increment* breytir aðeins einum bita úr 0 í 1, svo jafnaðarkostnaður *Increment* er 2

Stöðuorkufall

- Hér er stöðuorkan nákvæmlega uppsafnaðir skattar í skattaaðferðinni
 - Fáum því nákvæmlega sömu útkomu
- Í sumum verkefnum er engin eðlileg leið til að túlka breytingu í stöðuorku sem "skatt" eða "rukkun"
- Stöðuorkuaðferðin gefur okkur almennari leið
 - Þegar ekki er hægt að dreifa kostnaðinum frá einni aðgerð til annarar

Getur verið erfitt að finna gott stöðuorkufall, sem passar vel

Viljum hafa þannig að það sé þétt (tight)

Hækkun og lækkun teljara

 Ef við leyfum að tvíundarteljarinn sé lækkaður líka þá getur það tekið langan tíma

Sniðug hugmynd:

Táknum teljarann með tveimur bitastrengjum (P, N)

Gildi teljarans er P - N

P og N túlkaðar sem tvíundartölur

Eina skilyrðið sem $P \circ g N \text{ verða að uppfylla er að } P^N = 0$

Pog NOG-aðar bita fyrir bita eru 00...00

eða:

Það má aldrei nema annar af bitunum *P[i]* og *N[i]* vera 1

Sýnidæmi um tvöfalda teljara

 Það er hægt að tákna sérhverja heiltölu á óendanlega marga vegu með þessari aðferð

neikvæðar tölur

Nema töluna 0, hún er alltaf (0, 0)

Dæmi: (01, 00) táknar 1, því 1-0 = 1 (010, 01) táknar 1, því 2-1 = 1 (100, 011) táknar 1, því 4-3 = 1 o.s.frv.

Hvað með 3-2?
Nei, (011, 010) uppfyllir ekki skilyrðið!
o.s.frv.

(0100, 1001) táknar -5, því 4-9 = -5

Hækkun og lækkun

• Höfum nú föllin *Increment* og *Decrement*:

Alveg eins og í upphaflega *Increment*

Verðum að athuga hvort *N*-bitinn er 1 áður en við setjum *P*-bitann

INCREMENT(P,N): $i \leftarrow 0$ while P[i] = 1 $P[i] \leftarrow 0$ $i \leftarrow i + 1$ if N[i] = 1 $N[i] \leftarrow 0$ else $P[i] \leftarrow 1$

Í stað þess að hækka P um 1, þá lækkum við það um 3 og lækkum N um 4

Dæmi:

$$P = 1001$$

$$N = 0100$$

$$P = N = 5$$

$$P = 1010$$

$$N = 0100$$

$$P = 1011$$

$$N = 0100$$

$$P = 1011$$

$$N = 0000$$

$$P = N = 8$$

$$P = 1000$$

$$N = 0000$$

$$P = N = 8$$

Lækkun

Lækkun virkar svipað, nema víxlað á P og N:

 $\frac{\text{DECREMENT}(P, N):}{i \leftarrow 0}$ while N[i] = 1 $N[i] \leftarrow 0$ $i \leftarrow i + 1$ if P[i] = 1 $P[i] \leftarrow 0$ else $N[i] \leftarrow 1$

Dæmi:

$$P = 0110$$
 $N = 1001$
 $P = 0100$
 $N = 1000$
 $P = N = -4$

Getum ekki hækkað N um 1, svo við lækkum það um 1 og lækkum P um 2

Almennt:

Ef <u>hækkun</u> veldur því að bitar P[k] og N[k] verða báðir 1 þá:

Lækkum við P um 2^k-1 og lækkum N um 2^k

Svo
$$(P - (2^k - 1)) - (N - 2^k) = P - 2^k + 1 - N + 2^k$$

= $P - N + 1$

Samskonar fyrir <u>lækkun</u>, nema víxlað á *P* og *N*

Fyrirlestraæfingar

- 1. Strengurinn "ababa" hefur *fail*-fylkið [0, 1, 1, 2, 3]. Reiknið bestaða útgáfu af fylkinu, þannig að textastafurinn sé ekki borinn aftur saman við sama tákn í mynstrinu.
- 2. Rökstyðjið að ef við bættum við einfalda tvíundarteljarann aðgerðinni *Lækka* (*Decrement*), þá gætu *n* aðgerðir á *k*-bita teljara tekið O(nk) tíma.
- 3. Framkvæmið *Lækka* á <u>samsetta</u> teljaranum (1010, 0101) (sem er (10, 5), þ.e. 10−5 = 5)