Following a consistent programming style often helps readability. One approach popular for requirements analysis is Use Case analysis. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Techniques like Code refactoring can enhance readability. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. However, readability is more than just programming style. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Also, specific user environment and usage history can make it difficult to reproduce the problem. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Whatever the approach to development may be, the final program must satisfy some fundamental properties. Programmable devices have existed for centuries. Also, specific user environment and usage history can make it difficult to reproduce the problem. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language.