SAT based Attacks on ML Models

Saaketh Gunti: 190101080

Department of Computer Science and Engineering, IIT Guwahati

April 26, 2023

- Introduction
- SMT Attack
- Results
- 4 Phase-2
- 6 End

Model Extraction Problem

Introduction

- High performance ML models are kept secret for multiple reasons.
- Only Black box access and Structure of the model are shared.
- Extracting the inner details of a trained ML model given the structure and black box access to it.
- There are two types of Model Extraction Attacks:
 - Task-Accuracy Extraction
 - Pidelity Extraction

Problem Statement

Introduction

- Given the structure and oracle access to the Neural network, we have to find a combination of parameters such that the network built gives the exact same result as the oracle for all valid input combinations using SAT-based attack.
- Formally, let $f: X \to Y$ represent the Neural Network, we want to find a function $g: X \to Y$, such that for every input vector $x \in X$, f(x) = g(x).

GS (IIT Guwahati) BT

Distinguishing Input Pattern (DIP)

$$S = \{K1, K2,, Kn\}$$

Figure: DIP

GS (IIT Guwahati)

SMT Attack

Figure: SMT Attack

GS (IIT Guwahati)

Insight

There can be multiple possible parameter sets that can exactly replicate the behavior of the oracle.

Example:

Figure: 2*2*1 NN with no biases

$$o = i_1 * (W_{1,1}^{(1)} * W_{1,1}^{(2)} + W_{1,2}^{(1)} * W_{2,1}^{(2)}) + i_2 * (W_{2,1}^{(1)} * W_{1,1}^{(2)} + W_{2,2}^{(1)} * W_{2,1}^{(2)})$$

April 26, 2023 GS (IIT Guwahati) BTP Presentation

oduction SMT Attack Results Phase-2

000 •0 000000000

Results

S No	Structure	Bias	Non Linearity	Known Keys	Total Keys	Time Taken	Result
1	2*1	None	None	None	2	0.02 sec	Success
2	4*1	None	None	None	4	0.04 sec	Success
3	1*1*1*1	None	None	None	4	3 sec	Success
4	2*2*1	None	None	None	6	32.97 sec	Success
5	2*2*1	None	2nd layer	None	6	512.77 sec	Success
6	2*2*1	1 at 2nd layer	None	None	7	27.19 sec	Success
7	2*2*1	2 at 2nd layer	None	None	8	96.85 sec	Success
8	2*2*1	1 at 2nd layer	2nd layer	None	7	2460.66 sec	Success
9	2*2*1	2 at 2nd layer	2nd layer	None	8	Infinite	Failed
10	2*2*1	2 at 2nd layer	2nd layer	1 Bias	7	Infinite	Failed
11	2*2*1	2 at 2nd layer	2nd layer	1 weight in L1	7	Infinite	Failed
12	2*2*1	2 at 2nd layer	2nd layer	1 weight in L2	7	Infinite	Failed
13	2*3*1	None	None	None	9	300.72 sec	Success
14	2*3*1	3 at 2nd layer	None	None	12	Infinite	Failed

Table: Data collected from experiments

GS (IIT Guwahati) BTP Presentation April 26, 2023 8 / 20

Observations

- 1 Time taken increases with an increase in the number of keys.
- 2 Time taken increases with an increase in non-linearity.
- 3 Time taken increases with an increase in the number of layers.
- 4 Time decreases because of the known keys.
- Impact of non-linearity in the time taken is more than the number of keys.
- **6** We are able to solve the network with a maximum of 7 keys with non-linearity and 12 keys without non-linearity.

 SMT Attack
 Results
 Phase-2

 000
 00
 •000000000

Updated Attack Model

End-End Oracle: {O}, Updated Oracle: {H1, H2, O}

$$h_{1} = i_{1} * W_{1,1}^{(1)} + i_{2} * W_{2,1}^{(1)}, h_{2} = i_{1} * W_{1,1}^{(2)} + i_{2} * W_{2,1}^{(2)}$$

$$o = i_{1} * (W_{1,1}^{(1)} * W_{1,1}^{(2)} + W_{1,2}^{(1)} * W_{2,1}^{(2)}) + i_{2} * (W_{2,1}^{(1)} * W_{1,1}^{(2)} + W_{2,2}^{(1)} * W_{2,1}^{(2)})$$

GS (IIT Guwahati) BTP Presentation April 26, 2023 10 / 20

Attack Strategy

- We use outputs of all layers to find all parameters at once.
- Use SMT Attack with all constraints.
- Now, the solver has more data to work with for the same number of DIP.
- 4 Reduces the number of queries and time consumption.

Results

S No	Structure	Bias	Non Linearity	Known Keys	Total Keys	Old Time	Updated Time	Queries	Result
1	2*1	None	None	None	2	0.02 sec	0.01 sec	2	Success
2	4*1	None	None	None	4	0.04 sec	0.01 sec	4	Success
3	1*1*1*1	None	None	None	4	3 sec	0.03 sec	2	Success
4	2*2*1	None	None	None	6	32.97 sec	0.04 sec	3	Success
5	2*2*1	None	2nd layer	None	6	512.77 sec	0.25 sec	5	Success
6	2*2*1	1 at 2nd layer	None	None	7	27.19 sec	0.03 sec	3	Success
7	2*2*1	2 at 2nd layer	None	None	8	96.85 sec	2.81 sec	3	Success
8	2*2*1	1 at 2nd layer	2nd layer	None	7	2460.66 sec	0.30 sec	4	Success
9	2*2*1	2 at 2nd layer	2nd layer	None	8	Timeout	0.07 sec	3	Success
10	2*2*1	2 at 2nd layer	2nd layer	1 Bias	7	Timeout	2.74 sec	3	Success
11	2*2*1	2 at 2nd layer	2nd layer	1 weight in L1	7	Timeout	1.22 sec	3	Success
12	2*2*1	2 at 2nd layer	2nd layer	1 weight in L2	7	Timeout	2.31 sec	3	Success
13	2*3*1	None	None	None	9	300.72 sec	0.21 sec	3	Success
14	2*3*1	3 at 2nd layer	None	None	12	Timeout	0.37 sec	3	Success
15	2*3*1	3 at 2nd layer	2nd layer	None	12	Timeout	47.79 sec	3	Success
16	Bool 10*10*10*1	None	None	None	210	Timeout	89.89 sec	162	Success
17	Bool 15*10*10*10*1	None	None	None	360	Timeout	970 sec	288	Success
18	3*4*4*1	None	None	None	32	Timeout	3617 sec	28	Success
19	10*10*10*1	None	None	None	210	Timeout	Timeout	-	Failed

Specific Query Approach

Specific Query Approach

$$h_1 = ReLU(i_1 * W_{1,1}^{(1)} + i_2 * W_{2,1}^{(1)} ... + i_n * W_{n,1}^{(1)})$$

- To solve an equation of n variables (weights), we need 'n' linearly independent equations.
- 2 To remove the effect of Non-linearity, we add a constraint output at the node is greater than 0.
- Seys of our SMT model are inputs of the neural network.
- We find a DIP such that the linear equation is linearly independent of the previously found DIP's.
- 5 Corner Case: All weights are 0.

GS (IIT Guwahati) BTP Presentation

Incremental SMT Attack

- We go layer by layer, and in each layer we find parameters for each node separately.
- Keys to our SMT solver are the parameters of the NN.
- Once, we find the keys of a layer, we fix those values in our structure and start computing for the next layer.
- The time to break a layer depends on the number of neurons in the previous layer and also the depth of the current layer.

15/20

GS (IIT Guwahati) BTP Presentation

$$h_1 = w_1 * (2i_1 + 4i_2) + w_2 * (3i_1 + 5i_2)$$

 $h_2 = w_3 * (2i_1 + 4i_2) + w_4 * (3i_1 + 5i_2)$

GS (IIT Guwahati) BTP Presentation April 26, 2023 16

oduction SMT Attack Results Phase-2 End

Incremental SMT Attack Results

S No	Structure	Bias	Non Linearity	Total Keys	Previous Time	Incremental Time	Queries	Result
1	3*4*1	None	ReLU	16	80 sec	4 sec	10	Success
2	5*5	None	ReLU	25	Timeout	1.224 sec	40	Success
3	3*4*4*1	None	ReLU	32	3617 sec	70.3 sec	19	Success
4	3*4*4*4	None	ReLU	44	Timeout	196.7 sec	17	Success
5	3*4*4*4	None	ReLU	44	Timeout	636.8 sec	23	Success
6	3*4*4*4*1	None	ReLU	48	Timeout	1528 sec	25	Success
7	3*4*4*4*4*1	None	ReLU	64	Timeout	Timeout	-	Failed
8	5*5*5	None	ReLU	25	Timeout	Timeout	-	Failed

S No	Structure	Non Linearity	Total Keys	Total	Layer 1	Layer 2	Layer 3	Layer 4	Result
1	3*4*1	ReLU	16	4 sec, 10	2.9 sec, 6	1.1 sec, 4	-	-	Success
2	3*4*4*1	ReLU	32	70.3 sec, 19	2.9 sec, 6	66.4 sec, 9	2.27 sec, 4	-	Success
3	3*4*4*4	ReLU	44	196.7 sec, 17	3 sec, 6	72 sec, 9	121.7 sec, 8	-	Success
4	3*4*4*4	ReLU	44	636.8 sec, 23	2.88 sec, 6	69.7 sec, 9	564.26 sec, 8	-	Success
5	3*4*4*4*1	ReLU	48	1528 sec, 25	2.88 sec, 6	69.7 sec, 9	564.26 sec, 8	892 sec, 2	Success
6	5*5*5	ReLU	50	1.224 sec, 40	Timeout	-	-	-	Failed

Table: Layer by Layer data for Incremental SMT Attack

GS (IIT Guwahati) BTP Presentation April 26, 2023 17 / 20

SMT Attack Results Phase-2

○○○ ○○ ○○ ○○○○○○○○○

Bounds on Parameters

- 1 'Int' datatype used in z3-py has no max limit.
- 2 In quantized neural networks, the weights are generally 8-bit integers.
- Sy keeping bounds on the parameters thereby reducing the key space decreases the overall queries and time consumption of our attack.
- 4 Two ways to implement are keeping bounds on the keys or replacing 'Int' with 'BitVectors'.

SMT Attack Results Phase-2

○○○ OOOOOOOOOO●

Automation Tool

- Input: Number of layers, Number of neurons in each layer
- Input: A file with bounds on each parameter or weight of the neural network.
- 3 Ouput: Python file with SMT code. (ready to be executed)
- Can be adapted to different datatypes such as 'Int', 'Real', and 'BitVec' for parameters.
- **5** Current Assumption: The Oracle is an executable file.

Thank You