Complex Analysis, Supplementary Homework Problems 1

Problem 1. Determine the maximum of |f| on $\overline{D} = \{z \in \mathbb{C} : |z| \leq 1\}$ for

(a)
$$f(z) = e^{z^2}$$

(a)
$$f(z) = e^{z^2}$$
 (b) $f(z) = \frac{z+3}{z-3}$

(c)
$$f(z) = 3 - |z|^2$$

Do any of these examples violate the maximum principle? Why or why not?

Problem 2. Which of the following functions have a removable singularity at z=0?

$$o) \qquad \frac{z}{e^z - }$$

(a)
$$\frac{e^z}{z^{17}}$$
 (b) $\frac{z}{e^z - 1}$
(c) $\frac{\cos z - 1}{z^2}$

Problem 3. Prove the complex version of L'Hopital's rule: if $f,g:\Omega\longrightarrow\mathbb{C}$ are holomorphic with zeroes at $w \in \Omega$ of the same order k, then the function $h = \frac{f}{g}$ has a removable singularity at w and

$$\lim_{z \to w} \frac{f(z)}{g(z)} = \frac{f^{(k)}(w)}{g^{(k)}(w)}.$$

Problem 4. Find the residues of the following meromorphic functions at all singular points:

(a)
$$\frac{z^3}{(1+z)^3}$$

(b)
$$\frac{1}{(z^2+1)}$$

(a)
$$\frac{z^3}{(1+z)^3}$$
, (b) $\frac{1}{(z^2+1)^3}$
(c) $\frac{1}{(z^2+1)(z-1)^2}$

Problem 5. Suppose f is a holomorphic function having exactly one simple zero inside the closed disk $\overline{D}_R =$ $\{|z| \leq R\}$ and not on the boundary $C_R = \partial \overline{D}_R$. Show that the location of the zero is given by

$$w = \frac{1}{2\pi i} \int_{C_R} \frac{zf'(z)}{f(z)} dz.$$

Problem 6. Use Rouché's theorem to determine the number of zeroes of the polynomial $z^7 - 5z^4 + iz^2 - 2$ inside the disk $\{|z| < 1\}$. (Hint: Let $f(z) = -5z^4$.)

Problem 7.

(a) For each of the following complex numbers z, calculate the principal value of the logarithm Log(z):

$$i, -i, -1, x \in (0, \infty), 1+i$$

(b) Calculate the principal values of the following numbers and compare them:

$$(i(i-1))^i$$
 and $i^i(i-1)^i$.

1