Kamil Matuszewski

21 kwietnia 2016

Zadanie 9

Znajdź najdłuższy podciąg rosnący ciągu $a_1 \dots a_k$ (longest increasing subsequence - LIS) (zadanie z bobrami - bobry to indeksy, ich wybranki to wartości. Zauważmy, że wtedy elementy są różne).

Chciałbym stworzyć tablicę $t_i(j)$ która będzie nam mówić, że j jest najmniejszym ostatnim elementem jakiegoś podciągu rosnącego długości i prefiksu $a_1 \dots a_i$. Jeśli taki element nie istnieje, niech $t_i(j) = \infty$. W ten sposób, największy indeks skończonego elementu tablicy t_n będzie nam mówić, jaki jest rozmiar najdłuższego podciągu rosnącego ciągu $a_1 \dots a_n$, co jest naszą szukaną wartością.

Udowodnijmy najpierw kilka rzeczy.

• W tablicy t_k dla danego prefiksu $a_1 \dots a_k$ wszystkie skończone elementy będą ustawione rosnąco.

Dowód. Jeśli w prefiksie $a_1 \dots a_k$ mamy podciąg długości i zakończony przez t(i), to oczywiście w $a_1 \dots a_k$ mamy podciąg długości i-1 zakończony t(i), bo wystarczy usunąć pierwszy element podciągu długości i. Zachodzi więc t(i-1) < t(i). Oczywiście, jeśli $t(i) = \infty$ nierówność jest trywialna. □

• Każde dwie tablice t_{k-1} oraz t_k różnią się w dokładnie jednym miejscu.

Dowód. Rozważmy poszerzenie naszego prefiksu o a_k . Innymi słowy zmianę z t_{k-1} na t_k . Skoro ciąg jest rosnący to istnieje taki indeks tablicy, powiedzmy j, że elementy $t(1) \dots t(j)$ są mniejsze od a_k a elementy $t(j+1) \dots t(n)$ są większe od a_k . Teraz tak:

- 1. Wiemy, że elementów $t(1) \dots t(j)$ nie poprawimy elementem a_k , ponieważ są tam już podciągi odpowiedniej długości, a zastąpienie ostatniego elementu przez a_k nie ma sensu, jako, że jest on większy od każdego z tych elementów.
- 2. t(j) mówi nam, że w prefiksie $a_1 \dots a_{k-1}$ jest podciąg rosnący o długości j zakończony elementem t(j), a skoro $t(j) < a_k$ to na koniec tego podciągu możemy dodać a_k i otrzymamy podciąg długości j+1 zakończony elementem $a_k < t(j+1)$, czyli $t(j+1) = a_k$
- 3. Elementy $t_{j+1}\dots t_n$ są większe od a_k więc nie możemy przedłużyć tych podciągów za pomocą a_k , więc nie zmienimy elementów $t_{j+2}\dots t_n$

 Skoro zachodzą dwa powyższe warunki to możemy znajdować indeks do zmiany elementu w tablicy za pomocą wyszukiwania binarnego.

1

Skoro tak, to mamy algorytm:

```
Dane: Tablica liczb a_1 \dots a_n.
Wynik: Liczba s taka, że s jest rozmiarem najdłuższego podciągu rosnącego w a_1 \dots a_k.
Niech\ t - tablica\ rozmiaru\ n;
for i \leftarrow 1 to n do
t[i] \leftarrow \infty;
end
for i \leftarrow 1 to n do
   j \leftarrow BinarySearch(a_i, t);
    \BinarySearch(a_i, t) zwraca najmniejszy taki indeks j, że a_i < t[j]
   t[j+1] \leftarrow a_i;
end
s \leftarrow 1;
while t[s] \neq \infty \&\& s < n \text{ do}
 s++;
end
return s
```

Algorytm 1: Długość LIS

Mamy pętlę przechodzącą n razy, a w każdej z nich dominującą operacją będzie wyszukiwanie binarne - $\log n$. Skoro tak, to złożoność czasowa naszego algorytmu to $O(n\log n)$. Przy złożoności pamięciowej potrzebujemy jednej tablicy t rozmiaru n, bo elementy możemy na bieżąco wrzucać do tablicy, co daje złożoność O(n).