Inhaltsverzeichnis

Vo	orwort	5
1	Der Körper C der komplexen Zahlen	7
2	Topologische Grundbegriffe	9
3	Konvergente Folgen komplexer Zahlen	13
4	Konvergente und absolut konvergente Reihen	17
5	Stetige Funktionen	21
6	Zusammenhängende Räume, Gebiete in $\mathbb C$	25
7	Komplexe Differentialrechnung	31
8	Holomorphe Funktionen	35
9	Konvergenzbegriffe der Funktionentheorie	39
10	Potenzreihen 10.1 Konvergenzkriterien	41 41 44 45
11	Elementar-transzendente Funktionen 11.1 Exponentialfunktion und trigonometrische Funktionen	49 49 51 53
12	Komplexe Integralrechnung $12.1 \text{ Wegintegrale in } \mathbb{C} \qquad \dots \qquad \dots \qquad \dots \\ 12.2 \text{ Eigenschaften komplexer Wegintegrale} \qquad \dots \qquad \dots \\ 12.3 \text{ Wegunabhängigkeit von Integralen, Stammfunktionen} \qquad \dots \qquad \dots \\ \dots \qquad \dots \qquad \dots \\ \dots \qquad \dots \qquad \dots \qquad \dots \\ \dots \qquad \dots \qquad$	55 55 55 55
13	Integralsatz, Integralformel und Potenzreihenentwicklung 13.1 Cauchyscher Integralsatz für Sterngebiete	59 59 62 64

In halts verzeichn is

4 Fundamentalsätze über holomorphe Funktionen						
14.1 Identitätssatz	69					
14.2 Existenz singulärer Punkte	71					
14.3 Konvergenzsätze von Weierstraß	73					
14.4 Offenheitssatz und Maximumprinzip	75					
14.5 Allgemeine Version von Cauchys Satz	79					
15 Isolierte Singularitäten	83					
15.1 Hebbare Singularitäten, Pole	83					
15.2 Entwicklung von Funktionen um Polstellen	86					

15

Isolierte Singularitäten

Definition 15.0.1

Ist f holomorph in einem Bereich D mit Ausnahme eines Punktes $c \in D$, so heißt der Punkt c eine isolierte Singularität voin f.

15.1 Hebbare Singularitäten, Pole

Definition 15.1.1

Eine isolierte Singularität c einer holomorphen Funktion $f \in \mathcal{O}(D \setminus \{c\})$ heißt hebbar, wenn f holomorph nach c fortsetzbar ist.

Beispiel

 $D = \overline{\mathbb{C}} \setminus \{0\}, f(z) = \frac{\sin z}{z} \text{ für } z \neq 0.$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = z \left(1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots \right) =: g(z)$$

 $g(z)=\frac{\sin z}{z}$, d.h. g(z) ist eine holomorphe Fortsetzung von $\frac{\sin z}{z}$ auf ganz $\mathbb C$. Also ist 0 eine hebbare Singularität von $\frac{\sin z}{z}$.

Satz 15.1.2 Hebbarkeitssatz

Der Punkt c ist genau dann eine hebbare Singularität von $f \in \mathcal{O}(D \setminus \{0\})$, wenn es eine Umgebung $U \subset D$ von c gibt, so dass f in $U \setminus \{c\}$ beschränkt ist.

Beweis: Folgt direkt aus dem Riemannschen Fortsetzungssatz,

Definition 15.1.3

Sei $f \in \mathcal{O}(D \setminus \{c\})$. Ist $(z-c)^n f(z)$ beschränkt für eine Zahl $n \in \mathbb{N}$ in einer Umgebung von c und für $n \neq 0$ nicht beschränkt, so heißt c ein Pol von f. Dann heißt die Zahl

$$m := \min\{k \in \mathbb{N} \mid (z-c)^k f(z) \text{ beschräkt um } c\} \ge 1$$

die Ordnung des Pols c von f.

Beispiel

 $D = \Delta \setminus \{0\}, f(z) = \frac{1}{1 - \cos z}.$

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots \Rightarrow 1 - \cos z = \frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \dots = z^2 \underbrace{\left(\frac{1}{2!} - \frac{z^2}{4!} + \frac{z^4}{6!} - \dots\right)}_{=:g(z) \in \mathcal{O}(\mathbb{C})}$$

Also $f(z) = \frac{1}{z^2} \frac{1}{g(z)}$. Die Ordnung des Pols 0 von f(z) ist also = 2. //

Satz 15.1.4

Folgende Aussagen über $f \in \mathcal{O}(D \setminus c)$ und $m \in \mathbb{N}$, $m \ge 1$, sind äquivalent:

- i) *f* hat in *c* einen Pol der Ordnung *m*.
- ii) Es gibt eine Funktion $g \in \mathcal{O}(D)$ mit $g(z) \neq 0$ so dass gilt:

$$f(z) = \frac{g(z)}{(z-c)^m} \forall z \in D \setminus c$$

- iii) Es gibt eine Umgebung $U \subset D$ von c und ein $h \in \mathcal{O}(U)$, $h(z) \neq 0 \forall z \in U$, h(z) hat eine Nullstelle der Ordnung m in c, so dass $f = \frac{1}{h}$ in $U \setminus c$.
- iv) $\exists U \subset D$ Umgebung von c, $\exists M > 0$, $\tilde{M} > 0$, so dass $\forall z \in U \setminus c$ gilt:

$$M|z-c|^{-m} \le |f(z)| \le \tilde{M}|z-c|^{-m}$$

Beweis:

- $i)\Rightarrow ii)$: $(z-c)^m f(z)$ ist in $U\setminus c$ beschränkt für eine Umgebung U von c. Dann $\exists g\in \mathcal{O}(U)$ so dass $(z-c)^m f(z)=g(z) \forall z\in U\setminus c$. Wir haben $g(c)\neq 0$, weil m die Ordnung von f ist. Also gilt $f(z)=\frac{g(z)}{(z-c)^m}$.
- ii) \Rightarrow iii): $g(c) \neq 0$: $\exists U \subset D$ Umgebung von c, so dass $g(z) \neq 0 \forall z \in U$. Dann ist $\tilde{h}(z) := \frac{1}{g(z)} \in \mathcal{O}(U)$ und $h(z) := (z c)^m \tilde{h}(z) \in \mathcal{O}(U)$, $\tilde{h}(c) \neq 0$ und

$$f = \frac{g(z)}{(z-c)^m} = \frac{1}{(z-c)^m \frac{1}{g(z)}} = \frac{1}{h(z)}$$

h hat eine Nullstelle der Ordnung in c.

iii) \Rightarrow iv): $f = \frac{1}{h}$, wobei $h(z) = (z - c)^m \tilde{h}(z)$, $\tilde{h}(c) \neq 0$. Da $\tilde{h} \in \mathcal{O}(U)$, folgt $\tilde{h} \in C(U)$ und $\exists U' \subset U$ eine Umgebung von c, $\exists M > 0$, $\tilde{M} > 0$ so dass

$$M \le |\tilde{h}(z)| \le \tilde{M} \, \forall z \in U'$$

Dann ist

$$\frac{1}{\tilde{M}} \le \left| \frac{1}{\tilde{h}(z)} \right| \le \frac{1}{M}$$

Und somit:

$$\frac{1}{\tilde{M}}|z-c|^{-m} \leq \left|\frac{1}{\tilde{h}(z)}|z-c|^{-m}\right| = |f(z)| \leq \frac{1}{M}|z-c|^{-m}$$

 $(iv) \Rightarrow i$: Aus iv) folgt $|f(z)(z-c)^m| \leq \tilde{M} \forall z \in U \setminus c$. z=c ist ein Pol von f. Sei k < m.

$$|f(z)(z-c)^m| \ge M|z-c|^{-m}|z-c|^k = M|z-c|^{k-m} \to \infty$$

D.h. m ist die Ordnung von f in c.

Korollar 15.1.5

Die Funktion $f \in \mathcal{O}(D \setminus c)$ hat genau dann einen Pol in c, wenn gilt:

$$\lim_{z \to c} f(z) = \infty$$

Beweis: Trivial. 'Hinrichtung' folgt aus iv), 'Rückrichtung' folgt aus iii) mit $h = \frac{1}{f}$.

15.2 Entwicklung von Funktionen um Polstellen

Satz 15.2.1

Es sei $f \in \mathcal{O}(D \setminus c)$ und es sei c ein Pol m—ter Ordnung von f. Dann gibt es $b_1,...,b_m \in \mathbb{C}$ mit $b_m \neq 0$ und $\tilde{f} \in \mathcal{O}(D)$ so dass:

$$f(z) = \frac{b_m}{(z-c)^m} + \frac{b_{m-1}}{(z-c)^{m-1}} + \dots + \frac{b_1}{z-c} + \tilde{f}(z), z \in D \setminus c$$
 (*)

Die Zahlen $b_1,...,b_m$ und die Funktion \tilde{f} sind eindeutig durch f bestimmt. Umgekehrt, hat jede Funktion $f \in \mathcal{O}(D \setminus c)$, für die (*) gilt, in c einen Pol der Ordnung m.

Beweis: f hat einen Pol in c m-ter Ordnung, also $f(z) = \frac{1}{(z-c)^m} g(z)$ mit $g(z) \in \mathcal{O}(D)$, $g(c) \neq 0$. Es gilt:

$$g(z) = a_0 + a_1(z - c) + a_2(z - c)^2 + ...$$

Also:

$$f(z) = \frac{a_0}{(z-c)^m} + \frac{a_1}{(z-c)^{m-1}} + \dots + \frac{a_{m-1}}{z-c} + \underbrace{a_m + a_{m+1}(z-c) + \dots}_{=:\tilde{f}(z)}$$

Die umgekehrte Richtung ist trivial.