

SEQUENCE LISTING

<110> Paul Young et al.

<120> PGRP-L Polynucleotides, Polypeptides, and Antibodies

<130> PF513P1

<150> 60/149,715

<151> 1999-08-20

<150> PCT/US00/22877

<151> 2000-08-18

<160> 18

<170> PatentIn version 3.1

<210> 1

<211> 1200

<212> DNA

<213> human

<400> 1

gacgcggctg gcactgggtg ggcccaca cgtcgccca caactccgg ggcttcggcg 60

tggccatagt gggcaactac accgcggcgc tgcccaccga ggccgctctg cgcacggtgc 120

gacacacgct cccagttgt gcggtgcgcg ccggcctcct gcccgcagac tacgcgctgc 180

tggccaccgg ccagctggtg cgacccgact gccccggaga cgccgtcttc gacctgctgc 240

gcacctggcc gcacttcacc gcggtgagtc ttgcagcct gcaactacacg gcccggcc 300

cctccgtcta cacaagctcc acgaggcccc tgccccctgc ctgtaacagc tgtgcggca 360

cagcctcagc caggcccca acttccggc ggacgtcta ttcaggaaac cttaggcccag 420

cctttgcggg tcactctgcg ggcaacatcc ctgatcctgt gacttctgcc tatgcagcct 480

cagctcagcc ccagacccag ccagcctgtc cttccccag ctccataatac ctctaccttt 540

ccagccaagg catggaccct gacacctgcc aacagccct ctgcctcac aacctcagcc 600

tggccttcat gacttctcta cccaaagtac aacctgtcag gctgcaccac ctcattctgg 660

cccgccgaac cttgaccta cccctgcccc taccggagg ctctctgtcc acacaacatg 720

aacctaggct gtgacctttt gccttcacaa cctctgtcca gtccttaatc ctgtgttgca 780

attctctgtc cagacaatct caactctgag gttgcttgg tgcgtccatc ctcatttaacc 840

cctgatgaca actcttatgc cagcacaact ttgacctgtat gacctcatcc cagcccttga 900

tgcctatcac taaaacaatt ttagaatcac acctggacaa tctcggtcta cctacatact 960

gccactccat ttcatattaagc tattgactag cacatccatc tcggcctata gttggctttg 1020

tcctcactct ctcactttgg gccactgtcc cctccctgtat aaaggggata tcaccaccga 1080

tcccacagaa atacaaacta ccatcagaga atactataaa cacctctatg caaataaaact 1140

agaaaatcta gaagaaaatgg ataaattcct caacacccac taccaaaaaa aaaaaaaaaa 1200

<210> 2
<211> 174
<212> PRT
<213> human

<400> 2

Arg Gly Trp His Trp Val Gly Ala His Thr Leu Gly His Asn Ser Arg
1 5 10 15

Gly Phe Gly Val Ala Ile Val Gly Asn Tyr Thr Ala Ala Leu Pro Thr
20 25 30

Glu Ala Ala Leu Arg Thr Val Arg Asp Thr Leu Pro Ser Cys Ala Val
35 40 45

Arg Ala Gly Leu Leu Arg Pro Asp Tyr Ala Leu Leu Gly His Arg Gln
50 55 60

Leu Val Arg Thr Asp Cys Pro Gly Asp Ala Leu Phe Asp Leu Leu Arg
65 70 75 80

Thr Trp Pro His Phe Thr Ala Val Ser Leu Arg Ser Leu His Tyr Thr
85 90 95

Ala Arg Arg Pro Ser Val Tyr Thr Ser Ser Thr Arg Pro Leu Pro Pro
100 105 110

Ala Cys Asn Ser Cys Ala Arg Thr Ala Ser Ala Arg Pro Pro Thr Ser
115 120 125

Arg Arg His Val Tyr Ser Gly Asn Leu Gly Pro Ala Phe Ala Gly His
130 135 140

Ser Ala Gly Asn Ile Pro Asp Pro Val Thr Ser Ala Tyr Ala Ala Ser
145 150 155 160

Ala Gln Pro Gln Thr Gln Pro Ala Cys Pro Phe Pro Ser Ser
165 170

<210> 3
<211> 1876
<212> DNA
<213> human

<400> 3

gccgttatgt	gaggtaagca	gctttctcca	acagaagttc	ctctctcctc	aaaggcccag	60
agtgtccagg	ccaaaccaact	gaccaagaat	tacaactgct	gaaactggcc	tccgaggttc	120
tctgctgggt	ctgtgccctg	gaactggaga	cccaccatga	aggcctgggg	tgccctctgg	180
atcggtcttg	gattgctgct	gtggccagag	ccaggggcag	cctcctcctt	gcctctgctc	240
atggactcca	tcatccaggc	ccttgctgaa	cttgagcaaa	aggtaccagt	gactgaggcc	300
agcatcactg	cctctgcatg	gattctgtca	gccaagaact	ccagcaccca	caattccctt	360
caccagcgct	tgctgctgaa	ggcaccaagc	cacaacacta	cagagccaga	tcctcactct	420
ctcagcccg	agcttcaagc	actgatttct	gaggtggctc	aacacgtgt	acagaatggg	480
cggaaatatg	gagtggtgct	ggcacctgat	ggctccacccg	tagctgtgaa	gcctctgctg	540
tttgggctag	aggccggct	acaggcacac	agcgttgcta	acttgccttc	agattgtctg	600
gctatcccct	gtgatactgg	agacaccttg	gccaatatta	gagccacctg	gccaggactc	660
atggatgctt	ttccaaatgc	ctcttctcca	gatgttggag	ccactttacc	aaacgacaaa	720
gccaagactc	ccaccactgt	ggacagactc	ctggcaatca	ccttggctgg	tgacttaggt	780
ctgaccttcc	tccacaggc	ccagacttgg	agtccctccag	gactggaaac	tgagggctgc	840
tgggaccagc	ttactgcccc	cagggtcttc	acactgttgg	accccccaggc	atccaggctc	900
accatggctt	tcctcaatgg	tgccttagat	ggagctctcc	ttgggaacca	cttgagccaa	960
atcccttaggc	cccacccacc	cctcagccac	ctgctaagag	agtactatgg	agctgggttg	1020
aatggagatc	cggtgttccg	aagtaacttc	cgaaggcaga	acggtgctgc	tttgacttca	1080
gcccttaccc	tggcccagca	ggtatggag	gcccttgtcc	tgttacagaa	actggagcca	1140
gaacacctac	agttgcagaa	cattagccaa	gagcagctgg	ctcaggtagc	caccttggct	1200
accaaggagt	tcactgagggc	tttcctggga	tgcccagcca	ttcacccccc	ctgccgttgg	1260
ggagcggctc	cctaccgagg	ccacccaaca	ccactccggc	tgccacttgg	attcttatat	1320
gtgcatacaca	catacgtgcc	agcgccaccc	tgcaccacct	tccagagctg	cggccggcat	1380
atgcgctcca	tgcagcgttt	ccaccaggat	gtgcgcaagt	gggatgacat	cggtacagat	1440
ttcgtggtag	gctccgacgg	ctatctgtac	cagggccgtg	gctggcactg	ggtaggtgcg	1500
cacacacgcg	gctacaactc	ccggcgcttc	ggtgtggcct	tcgtggcaa	ctacactgg	1560
tcactgcccc	acgaagctgc	gctgaacacg	gtgcgcgacg	cgctcccgag	ctgcgcatt	1620
cgcgaaggtc	tcttgcggcc	agactacaag	ctgcttggcc	accgccagct	agtgctcacc	1680
cactgccccg	ggaacgcgct	cttcaacttg	ctgcgcacct	ggcctcactt	cacagaggtt	1740
aaaaactaag	aactcctttg	agagaccctt	gaagatccag	gaggtattat	ccctgatgat	1800
ccttgagca	accacagacc	tccaataaag	ggaccactga	aaggaaaaaa	aaaaaaaaaa	1860

aaaaaaaaaaa aaaaaaa

1876

<210> 4
<211> 530
<212> PRT
<213> human

<400> 4

Met Lys Ala Trp Gly Ala Leu Trp Ile Val Leu Gly Leu Leu Leu Trp
1 5 10 15

Pro Glu Pro Gly Ala Ala Ser Ser Leu Pro Leu Leu Met Asp Ser Ile
20 25 30

Ile Gln Ala Leu Ala Glu Leu Glu Gln Lys Val Pro Val Thr Glu Ala
35 40 45

Ser Ile Thr Ala Ser Ala Trp Ile Leu Ser Ala Lys Asn Ser Ser Thr
50 55 60

His Asn Ser Leu His Gln Arg Leu Leu Leu Lys Ala Pro Ser His Asn
65 70 75 80

Thr Thr Glu Pro Asp Pro His Ser Leu Ser Pro Glu Leu Gln Ala Leu
85 90 95

Ile Ser Glu Val Ala Gln His Asp Val Gln Asn Gly Arg Glu Tyr Gly
100 105 110

Val Val Leu Ala Pro Asp Gly Ser Thr Val Ala Val Lys Pro Leu Leu
115 120 125

Phe Gly Leu Glu Ala Gly Leu Gln Ala His Ser Val Ala Asn Leu Pro
130 135 140

Ser Asp Cys Leu Ala Ile Pro Cys Asp Thr Gly Asp Thr Leu Ala Asn
145 150 155 160

Ile Arg Ala Thr Trp Pro Gly Leu Met Asp Ala Phe Pro Asn Ala Ser
165 170 175

Ser Pro Asp Val Gly Ala Thr Leu Pro Asn Asp Lys Ala Lys Thr Pro
180 185 190

Thr Thr Val Asp Arg Leu Leu Ala Ile Thr Leu Ala Gly Asp Leu Gly
195 200 205

Leu Thr Phe Leu His Arg Ser Gln Thr Trp Ser Pro Pro Gly Leu Gly
210 215 220

Thr Glu Gly Cys Trp Asp Gln Leu Thr Ala Pro Arg Val Phe Thr Leu
225 230 235 240

Leu Asp Pro Gln Ala Ser Arg Leu Thr Met Ala Phe Leu Asn Gly Ala
245 250 255

Leu Asp Gly Ala Leu Leu Gly Asn His Leu Ser Gln Ile Pro Arg Pro
260 265 270

His Pro Pro Leu Ser His Leu Leu Arg Glu Tyr Tyr Gly Ala Gly Val
275 280 285

Asn Gly Asp Pro Val Phe Arg Ser Asn Phe Arg Arg Gln Asn Gly Ala
290 295 300

Ala Leu Thr Ser Ala Pro Thr Leu Ala Gln Gln Val Trp Glu Ala Leu
305 310 315 320

Val Leu Leu Gln Lys Leu Glu Pro Glu His Leu Gln Leu Gln Asn Ile
325 330 335

Ser Gln Glu Gln Leu Ala Gln Val Ala Thr Leu Ala Thr Lys Glu Phe
340 345 350

Thr Glu Ala Phe Leu Gly Cys Pro Ala Ile His Pro Arg Cys Arg Trp
355 360 365

Gly Ala Ala Pro Tyr Arg Gly His Pro Thr Pro Leu Arg Leu Pro Leu
370 375 380

Gly Phe Leu Tyr Val His His Thr Tyr Val Pro Ala Pro Pro Cys Thr
385 390 395 400

Thr Phe Gln Ser Cys Ala Ala Asp Met Arg Ser Met Gln Arg Phe His
405 410 415

Gln Asp Val Arg Lys Trp Asp Asp Ile Gly Tyr Ser Phe Val Val Gly
420 425 430

Ser Asp Gly Tyr Leu Tyr Gln Gly Arg Gly Trp His Trp Val Gly Ala
435 440 445

His Thr Arg Gly Tyr Asn Ser Arg Gly Phe Gly Val Ala Phe Val Gly
450 455 460

Asn Tyr Thr Gly Ser Leu Pro Asn Glu Ala Ala Leu Asn Thr Val Arg
465 470 475 480

Asp Ala Leu Pro Ser Cys Ala Ile Arg Glu Gly Leu Leu Arg Pro Asp
485 490 495

Tyr Lys Leu Leu Gly His Arg Gln Leu Val Leu Thr His Cys Pro Gly
500 505 510

Asn Ala Leu Phe Asn Leu Leu Arg Thr Trp Pro His Phe Thr Glu Val
515 520 525

Glu Asn
530

<210> 5
<211> 733
<212> DNA
<213> human

<400> 5
gggatccgga gcccaaatct tctgacaaaaa ctcacacatg cccaccgtgc ccagcacctg 60
aattcgaggg tgcaccgtca gtcttcctct tcbbbbccaaa acccaaggac accctcatga 120
tctccggac tcctgaggtc acatgcgtgg tggtgacgt aagccacgaa gaccctgagg 180
tcaagttcaa ctggtaacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg 240
aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact 300
ggctgaatgg caaggagtac aagtgcagg tctccaacaa agccctccca acccccacatcg 360
agaaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcggc 420
catccccggga tgagctgacc aagaaccagg tcagcctgac ctgcctggc aaaggcttct 480
atccaagcga catcgccgtg gagtggaga gcaatggca gccggagaac aactacaaga 540
ccacgcctcc cgtgctggac tccgacggct ccttcttcct ctacagcaag ctcaccgtgg 600
acaagagcag gtggcagcag gggAACGTCT tctcatgctc cgtgatgcat gaggctctgc 660
acaaccacta cacgcagaag agcctctccc tgtctccggg taaatgagtg cgacggccgc 720
gactctagag gat 733

<210> 6
<211> 5
<212> PRT

```

<213>  human

<220>
<221>  MISC_FEATURE
<222>  (3)..(3)
<223>  Xaa equals any amino acid

<400>  6

Trp Ser Xaa Trp Ser
1          5

<210>  7
<211>  86
<212>  DNA
<213>  human

<400>  7
gcgcctcgag atttccccga aatcttagatt tcccccggaaat gatttccccg aaatgattc      60
ccccggaaatat ctgccatctc aattag                                86

<210>  8
<211>  27
<212>  DNA
<213>  human

<400>  8
gcggcaagct ttttgcaaaag cctaggc                                27

<210>  9
<211>  271
<212>  DNA
<213>  human

<400>  9
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tcccccggaaat gatttccccg      60
aaatatctgc catctcaatt agtcagcaac catagtccccg cccctaactc cgcccatccc      120
gcccttaact ccgcccagtt ccgcccattc tccgccccat ggctgactaa ttttttttat      180
ttatgcagag gccgaggccg cctcggcctc tgagctattc cagaagttagt gaggaggctt      240
ttttggaggc ctaggctttt gcaaaaagct t                                271

<210>  10
<211>  32
<212>  DNA
<213>  human

<400>  10
gcgcctcgagg gatgacagcgc atagaacccc gg                                32

<210>  11

```

<211>	31					
<212>	DNA					
<213>	human					
<400>	11					
gcgaagcttc	gcatcccc	ggatccgcct c	31			
<210>	12					
<211>	12					
<212>	DNA					
<213>	human					
<400>	12		12			
ggggactttc	cc					
<210>	13					
<211>	73					
<212>	DNA					
<213>	human					
<400>	13					
gcggcctcg	ggggactttc	ccggggactt	tccggggact	ttccgggact	ttccatcctg	60
ccatctcaat	tag					73
<210>	14					
<211>	256					
<212>	DNA					
<213>	human					
<400>	14					
ctcgaggaga	cttcccggg	gactttccgg	ggactttccg	ggactttcca	tctgccatct	60
caatttagtca	gcaaccatag	tcccgccct	aactccgccc	atcccgcccc	taactccgccc	120
cagttccgccc	cattctccgc	cccatggctg	actaattttt	tttatttatg	cagaggccga	180
ggccgcctcg	gcctctgagc	tattccagaa	gtagtgagga	ggctttttg	gaggcctagg	240
cttttgcaaa	aagctt					256
<210>	15					
<211>	30					
<212>	DNA					
<213>	human					
<400>	15					
gcagcacata	tgcgcggtcg	gcactgggtg		30		
<210>	16					
<211>	28					
<212>	DNA					
<213>	human					
<400>	16					
cagcaggtac	cttaggagct	ggggaaag		28		

<210> 17
<211> 43
<212> DNA
<213> human

<400> 17
gcagcaagga tccggccatcc gcggctggca ctgggtgggc gcc 43

<210> 18
<211> 39
<212> DNA
<213> human

<400> 18
gcagcaggta ccttaggagc tggggaaagg acaggctgg 39