

인공신경망과딥러닝심화

Lecture 01. 해 보자! 딥러닝

동덕여자대학교 데이터사이언스 전공 권 범

목차

- ❖ 01. 인공지능? 머신러닝? 딥러닝?
- ❖ 02. 딥러닝 실행을 위해 필요한 세 가지
- ❖ 03. 구글 코랩 실행하기

- 02. 딥러닝 실행을 위해 필요한 세 가지
- 03. 구글 코랩 실행하기

❖ 시작하기 전에 (1/2)

- 바야흐로 딥러닝(Deep Learning)의 전성시대
- 딥러닝이 암을 대신 진단하고 생명 현상의 신비를 풀어내며,
 각종 산업 전반에 커다란 변화를 가져오고 있음

❖ 시작하기 전에 (2/2)

- 딥러닝이 어느 날 갑자기 등장한 것은 아님
- 딥러닝은 사람을 닮은 인공지능을 만들기 위해 수십 년간 지속해 온 노력의 결실
- 사람이 할 수 있는 것과 유사한 판단을 컴퓨터가 해낼 수 있게끔 인공지능을 연구하던 중, 기존의 데이터를 이용해 앞으로 일을 예측하는 머신러닝(Machine Learning) 기법이 효과적임을 발견
- 이 머신러닝 안에는 여러 알고리즘이 있는데, 이 중 가장 좋은 효과를 내는 것이 바로 딥러닝

❖ 인공지능, 머신러닝, 딥러닝의 관계

❖ 진입 장벽 (1/2)

- 머신러닝은 많은 계산을 필요로 하기 때문에 여러 가지 수학 공식이 쏟아져 나오기도 함
- 꼭 필요한 머신러닝만 골라 주면서 진입 장벽을 자연스럽게 뛰어넘게 만드는 숙련된 가이드가 필요함

❖ 진입 장벽 (2/2)

딥러닝 학습에 꼭 필요한 **이론**과 **실습 예제** 난이도를 고려해 차례로 살펴볼 예정

공부하다 보면 선형 회귀, 로지스틱 회귀를 지나 자연스레 신경망을 만나게 되고, 실제 세상에 적용 가능한 딥러닝을 경험하게 될 것

수술 환자의 사망률을 예측하고, 아이리스의 품종을 맞추고, 손으로 쓴 글씨를 판별하는 등... 어느덧 딥러닝 마스터가 되어 있을 것

01. 인공지능? 머신러닝? 딥러닝?

03. 구글 코랩 실행하기

❖ 세 가지 준비 사항

- ❖ 세 가지 준비 사항: ① 데이터 (1/2)
 - 딥러닝은 데이터를 이용해 예측 또는 판별을 수행
 - 이때 사용되는 데이터는 이름표가 달려 있는지에 따라 두 종류로 나뉨

예를 들어

- ✓ 개와 고양이 사진으로 이루어진 데이터가 있다고 가정
- ✓ 각 사진에 '강아지' 또는 '고양이'라고 이름표가 붙어 있다면, 강아지 사진을 보고 '강아지'라고 판별하고 고양이 사진을 '고양이'라고 판별하는 딥러닝 모델을 만들 수 있음
- ✓ 이렇게 이름표가 주어진 데이터를 이용해 그 이름표를 맞히는 것을 지도 학습이라고 함

- ❖ 세 가지 준비 사항: ① 데이터 (2/2)
 - 반대로 이름표가 없이 개와 고양이 사진이 그냥 마구잡이로 섞여 있다고 가정
 - 이때도 딥러닝을 활용할 수 있음

예를 들어

- ✓ 사진 속에서 강아지 사진들의 공통적인 특징을 찾아내고 고양이 사진들의 특징을 찾아내, 이 두 그룹을 분류해 낼 수 있음
- ✓ 이렇게 이름표가 없는 데이터를 이용하는 것을 비지도 학습이라고 함
- ✓ 딥러닝을 설계할 때는 이처럼 주어진 데이터에 이름표가 있는지 없는지에 따라 지도 학습을 사용할지, 아니면 비지도 학습을 사용할지 결정하게 됨
- ✓ 본 교과목에서는 CNN, RNN 등의 지도 학습과 GAN, 오토인코더 등의 비지도 학습 계열을 모두 다루게 됨
- ✓ 앞으로 다룰 대부분의 예제는 이름표가 있는 지도 학습이지만, 강의 후반부에서는 비지도 학습 계열인 GAN과 오토인코더도 배움

- ❖ 세 가지 준비 사항: ② 컴퓨터 (CPU? GPU?)
 - 딥러닝을 컴퓨터의 CPU에서 동작시킬지 아니면 고속 그래픽 처리에 특화된 전용 프로세서인 GPU에서 동작시킬지 선택할 수 있음
 - 수업 시간에 다룰 예제들은 대부분 CPU와 GPU, 어떤 환경에서도 잘 작동
 - 다만 수업 시간에 배운 내용을 자신이 가지고 있는 더 많은 데이터에 적용하려면
 GPU 작업 환경을 갖추길 추천

❖ 세 가지 준비 사항: ③ 프로그램

- 데이터와 컴퓨터 장비가 준비되었다면,
 이제 딥러닝을 구동할 수 있게끔 프로그래밍을 해야 함
- 프로그래밍에 익숙하지 않아도, 수학에 자신이 없어도 구글 코랩(Google Colab)과 딥러닝 라이브러리를 활용하면 누구나 딥러닝을 어렵지 않게 구현할 수 있음

- 01. 인공지능? 머신러닝? 딥러닝?
- 02. 딥러닝 실행을 위해 필요한 세 가지

❖ 구글 코랩과 아나콘다 가상 환경 (1/2)

- 딥러닝을 만들고 작동시키는 대표적인 방법에는 구글이 제공하는 구글 코랩을 이용하는 방법과 내 컴퓨터에 아나콘다(Anaconda)를 설치한 후 가상 환경에서 실행하는 방법이 있음
 - ✓ 구글 코랩에는 딥러닝 실행을 위한 환경이 이미 갖추어져 있고, 무료로 제공되는 GPU/TPU등 빠른 프로세서를 사용할 수 있다는 장점이 있기 때문에 본 수업에서는 구글 코랩을 사용해 실습할 예정

- ❖ 구글 코랩과 아나콘다 가상 환경 (2/2)
 - 구글 코랩과 아나콘다 가상 환경을 이용하는 방법의 장단점

구분	장점	단점
구글 코랩	설치가 필요 없음 구글의 GPU와 TPU를 무료로 사용해 빠른 실행이 가능 구글 드라이브와 연동 가능	 아무 작업도 하지 않을 경우 90분 후 세션 종료 최대 세션 유지 시간은 12시간(무료 버전의 경우)
주피터 노트북	• 세션 유지 시간의 제약이 없음	• 아나콘다를 설치해야 이용 가능 • 컴퓨터 사양에 작업 성능이 종속됨

❖ 구글 코랩의 개요

- 구글 코랩을 사용하기 위해 필요한 소프트웨어는 웹 브라우저뿐임
- ① 웹 브라우저로 구글 코랩에 접속해서 ② 딥러닝을 위해 필요한 편집을 마치면,
 - ③ 구글 클라우드 서버에서 해당 프로그램이 실행되고, ④ 결과를 구글 코랩에 보여 줌
- 구글 코랩을 통해 만들고 실행한 파일은 구글 드라이버에 저장하고 불러올 수 있음

- ❖ 구글 코랩 실행하기 (1/10)
 - 구글 코랩을 사용하려면 구글 계정이 있어야 함
 - 구글 계정이 없다면 먼저 구글 웹 사이트에 접속해 계정을 만듦

- ❖ 구글 코랩 실행하기 (2/10)
 - 인증 과정과 약관 동의 과정을 거쳐 구글 계정을 만들고 해당 계정에 로그인하고 나면,
 - ① [Google 앱] 아이콘을 클릭한 후, ② [드라이브]를 클릭

구글 드라이브 선택

❖ 구글 코랩 실행하기 (3/10)

● 구글 드라이브가 열리면 왼쪽 상단의 ① [새로 만들기] > ② [더보기] > ③ [연결할 앱 더보기]를 차례로 선택

❖ 구글 코랩 실행하기 (4/10)

● ① Colaboratory를 검색하고 ② 해당 앱을 클릭한 후 ③ [설치]를 클릭

- ❖ 구글 코랩 실행하기 (5/10)
 - 화면에 나오는 대로 동의와 계정 선택 단계를 진행
 - 아래와 같이 뜨면 설치가 완료된 것
 - ① [확인]을 눌러 구글 코랩을 기본 앱으로 설정하고 ② [완료]를 눌러 설치를 마침

구글 코랩 설치 완료

- ❖ 구글 코랩 실행하기 (6/10)
 - 이제 다시 한 번 [새로 만들기] > [더보기]를 선택하면 [Google Colaboratory] 메뉴가 생긴 것을 확인할 수 있음
 - 클릭해서 구글 코랩을 실행

구글 코랩의 실행

- ❖ 구글 코랩 실행하기 (7/10)
 - 구글 코랩이 실행되면 먼저 파일명을 바꾸어 봄
 - ① 상단에 Untitled0.ipynb라고 되어 있는 부분을 클릭해 ② '나의 첫 코랩'이라고 입력

파일명 바꾸기

- ❖ 구글 코랩 실행하기 (8/10)
 - ① 우측의 [연결] 버튼을 클릭하고 잠시 기다리면
 - ② 메모리(RAM)와 디스크 사용량을 표시하는 막대 그래프가 표시

구글 클라우드 서버와 연결하기

❖ 구글 코랩 실행하기 (9/10)

- 추가 설정이 없을 경우 CPU 기반으로 구동
- 빠른 실행을 위해 GPU 또는 TPU와 연결
- 메뉴에서 ① [수정] > ② [노트 설정]을 클릭한 후 ③ [하드웨어 가속기]의 ④ [None]을 [GPU] 또는 [TPU]로 선택하고, [저장]을 누름
- 수업에서는 GPU를 선택

GPU 또는 TPU와 연결하기

❖ 구글 코랩 실행하기 (10/10)

- TPU는 구글에서 만든 데이터 분석 및 딥러닝용 하드웨어
- 구글 클라우드 서버 내에서만 사용할 수 있으며, GPU보다 특정 환경에서 훨씬 빠른 연산이 가능한 것으로 알려져 있음

❖ 코드 실행하기 (1/6)

- 이제 GPU 혹은 TPU를 이용해 구글 코랩을 사용할 준비가 되었음
- 간단한 코드를 입력해 보면서 사용법을 살펴볼 예정
- 딥러닝을 위한 코드는 파이썬(Python) 언어로 만들어짐
- 파이썬은 배우기 쉽고 데이터를 다루는 기능이 뛰어나, 딥러닝과 인공지능 분야에서 가장 많이 쓰이는 프로그래밍 언어

- ❖ 코드 실행하기 (2/6)
 - 다음과 같이 Hello, Deeplearning!을 출력하는 코드를 입력

```
print("Hello, Deeplearning!")
```

● 실행 버튼(▶)을 클릭한 후 출력을 확인

첫 코드 실행

❖ 코드 실행하기 (3/6)

- 메뉴 바로 밑에는 [+ 코드]와 [+ 텍스트 버튼]이 있음
- 이를 이용해 코드를 새로 입력할지, 텍스트를 입력할지 결정할 수 있음
- 먼저 코드를 새롭게 추가
- ① [+ 코드]를 클릭해서 ② 새로운 코드 편집창이 나타나는 것을 확인

새 코드 편집장 만들기

❖ 코드 실행하기 (4/6)

- 창 상단이나 하단에 마우스를 살짝 가져가도 [+ 코드], [+ 텍스트] 선택 버튼이 나옴
- 이후 코드가 길어질 때 상단 메뉴까지 이동하는 번거로움을 덜 수 있는 편리한 기능

또 다른 코드 편집창 생성법

- ❖ 코드 실행하기 (5/6)
 - 딥러닝을 위해 반드시 필요한 라이브러리는 텐서플로(TensorFlow)
 - 구글 코랩에는 텐서플로가 이미 설치되어 있음
 - 설치된 텐서플로의 버전을 확인하는 코드를 실행
 - 새로 연 코드 편집창에 다음과 같이 입력

```
import tensorflow as tf
print(tf.__version__)
```

- ❖ 코드 실행하기 (6/6)
 - 실행 버튼을 클릭하고 출력을 확인
 - 현재 사용 중인 텐서플로의 버전이 출력

새로운 코드 실행

② 실행 버튼 클릭

- ✓ 이 글을 쓰는 시점의 구글 코랩의 텐서플로 버전은 2.8.0
- ✓ 텐서플로의 버전에 따라 실행 결과나 특성이 조금씩 달라질 수 있음

- ❖ 텍스트 입력하기 (1/5)
 - 이번에는 텍스트를 입력하고 다루는 방법에 대해 알아볼 예정
 - ① [+ 텍스트]를 클릭해 ② 텍스트 입력창을 추가

새로운 텍스트 입력창 생성

- ❖ 텍스트 입력하기 (2/5)
 - 텍스트 입력창 왼쪽에 텍스트를 입력하면, 어떻게 보여질지 오른쪽에 나타남

텍스트의 입력과 미리 보기

❖ 텍스트 입력하기 (3/5)

- #이나 * 등 기호를 붙이면 텍스트의 크기나 굵기, 기울기 등을 조정할 수 있는데, 이것을 마크다운(Markdown) 언어라고 함
- 구글 코랩은 #이나 * 기호를 일일이 기억하지 않아도 이를 자동으로 붙여 주는 툴을 텍스트 입력창 상단에 제공
- 예를 들어,

 를 클릭하면 # 기호가 추가되면서 앞서 입력한 글씨의 크기가 변하는 것을 볼 수 있음

글씨 크기 변경하기 1

- ❖ 텍스트 입력하기 (4/5)
 - 또한, 를 한 번 더 누르면 # 기호가 두 번 나오면서 글씨 크기가 작아짐
 - 세 번까지 크기를 줄일 수 있음
 - 그 밖에 다른 아이콘들도 클릭해 보면 어떤 기능을 가지고 있는지 쉽게 확인할 수 있음

글씨 크기 변경하기 2

- ❖ 텍스트 입력하기 (5/5)
 - ESC 키를 누르면 텍스트 편집이 종료되며, 더블클릭하거나 ENTER 키를 눌러 다시 편집할 수 있음

텍스트 편집 종료

❖ 파일 저장하기

- 구글 코랩에서 작성한 노트북 파일은 구글 드라이브에 저장
- 메뉴의 ① [파일] > ② [저장]을 선택한 후 ③ 드라이브에 노트북 파일이 저장된 것을 확인

파일을 내 드라이브에 저장

끝맺음

- ❖ 01. 인공지능? 머신러닝? 딥러닝?
- ❖ 02. 딥러닝 실행을 위해 필요한 세 가지
- ❖ 03. 구글 코랩 실행하기

THANK YOU! Q & A

■ Name: 권범

■ Office: 동덕여자대학교 인문관 B821호

Phone: 02-940-4752

■ E-mail: <u>bkwon@dongduk.ac.kr</u>