CPE301 - SPRING 2018

Design Assignment (MID-TERM)

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Atmega328P
- FTDI chip
- Mini USB to USB cable
- Breadboard
- ESP8266 chip
- Resistors (20 ohms and 40 ohms)

2. INITIAL/DEVELOPED CODE OF TASK 1/A

```
#define F CPU 8000000UL
#define UBRR_115200 3 // for 8Mhz with 8.5% error
#define Domain "api.thingspeak.com"
#define API Write Key "K6HINW5F75HTUP18"
#define Channel ID "467279"
#define SSID ""
#define Password ""
#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>
#include <avr/interrupt.h>
#include <stdint.h>
// Function Declarations
void read adc(void);
void adc init(void);
void USART_init( unsigned int ubrr );
void USART_tx_string( char *data );
volatile unsigned int adc temp;
char outs[30];
int main(void)
       adc_init();
                                                        //Initialize the ADC (Analog /
Digital Converter)
      USART init(UBRR 115200);
                                                 //Initialize the USART (RS232 interface)
      delay ms(125);
                                                        //wait a bit
       snprintf(outs, sizeof(outs), "AT\r\n");
      USART_tx_string(outs);
      _delay_ms(2000);
       snprintf(outs, sizeof(outs), "AT+CWMODE=3\r\n"); //wifi mode
      USART_tx_string(outs);
      _delay_ms(2000);
       snprintf(outs, sizeof(outs), "AT+CIPMUX=0\r\n"); //single connection
      USART_tx_string(outs);
```

```
_delay_ms(2000);
       snprintf(outs, sizeof(outs), "AT+CIPMODE=0\r\n"); //normal mode
      USART tx string(outs);
      _delay_ms(2000);
      snprintf(outs,sizeof(outs),"AT+CWJAP=\"%s\",\"%s\"\n", SSID, Password);
      //connect to wifi network
      USART tx string(outs);
      delay ms(2000);
      snprintf(outs, sizeof(outs), "AT+CPISTART=\"TCP\", \"%s\",80\r\n",Domain);
      //connect to thingspeak
      USART_tx_string(outs);
      delay ms(2000);
      while(1)
      {
             read adc();
             snprintf(outs, sizeof(outs), "GET
/update?api_key=%s&field1=1\r\n",API_Write_Key); //send value
             USART_tx_string(outs);
             _delay_ms(150);
             snprintf(outs, sizeof(outs), "AT+CISEND=%3d\r\n", adc_temp);
             USART_tx_string(outs);
             _delay_ms(15000);
                                              //wait 15 seconds
      }
}
void adc_init(void)
       /** Setup and enable ADC **/
      ADMUX = 0;
                                         //select ADC0 Pin as input
      ADMUX = (0<<REFS1) | //Reference Selection Bits
                                  //AVcc - external cap at AREF
       (1<<REFS0)|
       (1<<ADLAR);
                                  //ADC left Adjust Result
      ADCSRA = (1 << ADEN) | //ADC ENable
       (1<<ADSC)
                                         //ADC Start Conversion
       (1<<ADATE)
                                  //ADC Auto Trigger Enable
                                         //ADC Interrupt Flag
       (0<<ADIF)
       (0<<ADIE)
                                         //ADC Interrupt Enable
                                 //ADC Pre-scaler of 64
       (1<<ADPS2)
       (1<<ADPS1)
       (0<<ADPS0);
}
/* READ ADC PINS*/
void read adc(void)
      unsigned char i = 4;
                                                       //set for 4 ADC reads
      adc_temp = 0;
                                                              //initialize temp to 0
      while (i--)
      {
             ADCSRA = (1 << ADSC);
                                                       //start the conversion
             while((ADCSRA & (1<<ADIF)) == 0); //wait for conversion to finish</pre>
             adc temp += ADCH*2;
                                                              //get temp value
             _delay_ms(50);
                                                                     //wait a bit
```

```
adc temp = adc temp / 4;
                                                       // Average a few samples
}
/* INIT USART (RS-232) */
void USART init( unsigned int ubrr )
{
      UBRR0H = (unsigned char)(ubrr>>8);
                                                     //set baud rate
      UBRR0L = (unsigned char)ubrr;
      UCSR0B = (1 << TXEN0) | (1 << RXEN0);
                                                     // Enable receiver, transmitter
      UCSROC = (1 << UCSZOO) | (1 << UCSZO1); //asynchronous 8-bit data 1 stop bit</pre>
}
/* SEND A STRING TO THE RS-232*/
void USART_tx_string( char *data )
{
      while ((*data != '\0'))
      {
             while (!(UCSR0A & (1 <<UDRE0))); //wait for the transmit buffer to empty
             UDR0 = *data;
                                                              //put the data into the
empty buffer, which sends the data
             _delay_ms(125);
                                                              // wait a bit
             data++;
      }
}
```

3. Flow chart

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

I could not get the terminal to display the values. I tried even to connect the esp8266 directly to the FTDI chip to display values and it still did not work.

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

https://youtu.be/b5qD7vp0Rd0

7. GITHUB LINK OF THIS DA

git@github.com:EilatAvidan/microcon.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Eilat Avidan