

Analysis of X-33 Linear Aerospike Plume Induced Base-Heating Environment During Power-Pack Out

Ten-See Wang
Robert Williams and Alan Droege
Mark D'agnostino and Young-Ching Lee
Stan Douglas

NASA – Marshall Space Flight Center April 4-5, 2001

Acknowledgment

• John Suter of X-33 Program Office

CFD Analysis of X33 Flex Seal Environments During PPO

Objective

- Predict dual-engine base-heating at 57% PL at sea level
- Predict dual-engine base-heating during PPO at 3 ascent abort trajectories

Approach

- 3D turbulent chemically reacting computational fluid dynamic and heat transfer analysis (FDNS, GASRAD and GRASP)
- Full-vehicle and slip stream effects with dual-engine, 40-thruster, and base-pillow bleeds
- Benchmarks
 - 7.75% scaled model cold flow test
 - 2.25% scaled model hot flow test
 - Installed full-scale engine hot-fire test

Layout of an X-33 Full-vehicle Surface Computational Grid with Surface Definitions

Comparison of Forebody and Aftbody Pressure Coefficients with a 7.75% Scaled Model Cold Flow Test

Comparison of Sea-Level Pillow Pressures with a 2.25% Scaled Model Hot-Fire Test

Comparison of Base Characteristic Pressures with a 2.25% Scaled Model Hot-Fire Test

Comparison of Base Horizontal Centerline Convective Heat Fluxes with a 2.25% Scaled Model Hot-Fire Test

Comparison of Cowl and Inner-Base Radiative Heat Fluxes with an Installed Engine Test

Preliminary Sea Level Qc (KW/m²) Contours

Preliminary Sea Level Qc (KW/m²) Results

Preliminary Sea Level Qc (KW/m²) Results

PPO Trajectory

Elapsed time, s

Run Matrix for PPO @ Launch + 30 s

Case	t, s	$\mathrm{M}_{\scriptscriptstyle\infty}$	h, ft	%PL _{LE}	%PL _{RE}	m LE ,bb	m _{RE,bb}
1	0	0.00	0	82	80	9.9	9.7
2	30	0.44	9495	100	100	12.1	12.2
3	40	0.37	13821	49	48	9.0	2.9
4	100	0.21	28954	50	49	9.1	3.0
5	200	1.39	77217	51	48	9.1	3.0
6	280	5.00	168498	46	40	7.9	2.6

Base-bleed Vectors after a PPO

Preliminary Qc Contours for PPO @ Launch + 30 s

Preliminary Qc Contours for PPO @ Launch + 30 s

Preliminary Qc Results for PPO @ Launch + 30 s

base horizontal centerline

Preliminary Qc Results for PPO @ Launch + 30 s

X-33 Lower Flex Seal Heat Fluxes

X-33 Upper Flex Seal Heat Fluxes

Summary

- A systematically anchored computational fluid dynamics and heat transfer model is being used to study the effect of reduced power level on base-heating environment during sea level testing and during PPO.
- Preliminary results show that convective heating is higher for 57% PL than that for 100% PL on most of the pillows and flex seals during sea level testing. This agrees with test observations.
- Preliminary results of PPO @ L +30 s show that convective heating on pillows and flex seals on the "off" engine side is higher than that on the "on" engine side.
- Future work includes study of PPO @ L + 60 s and PPO @ L + 120 s trajectories to bracket the heating envelope and radiative heating calculations.