Tumor Detected!

MARVLVS

Challenge

Come up with a software solution to a problem of accidental tumor findings being missed on regular brain CT scans when visiting the emergency room

Single out slices that have abnormalities for the doctor to examine in more detail.

Browser application used on the data from emergency room. P

CT is cheaper and faster than MRI.

Practical application

Screening software would single out suspicious slices

Slices are then sent to a radiologist/oncologist for further review

Large scale screening method could greatly increase the cancer survival rate

Comparison of two used methods

	Supervised slice classification with CNN	Unsupervised slice ordering based on brain symmetry	
Labels required	Yes	No	
Data hungry	Yes	No	
Recognizes tumors	Yes	No	
Robust towards rotation	Yes	No	
Train time	Long	Short	

Deep Learning Approach

Accessing the data

Preprocessing the data

- 1) Starting and ending point of each tumor in a CT
- 2) Resizing (w/ Aspect Ratio) 224x224 px
- 3) Associating slices with CT data (FrameOfRefUID)
- 4) Assigning "Tumor" or "Not Tumor" to slices

- And muuuch more

Feeding the neural net

- ConvNets standard for supervised learning with images
- VGG16
- Hungry for data

Brain Symmetry Approach

Using brain symmetry for tumor detection

Healthy

With tumors

Using brain symmetry for tumor detection

Recovery of symmetry axis of a mass.

Recovery of linear dependency of two splitted parts.

Techniques	Prior knowledge	User interaction required	Work in presence of noise	Simple
Supervised	Yes	Yes	Yes	No
Unsupervised	Yes	Yes	Yes	Yes
Registration	Yes	No	No	Yes
Symmetry	No	No	Yes	Yes

^{*} https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966434/pdf/CMMM2014-712783.pdf

Saddique, Mubbashar, Jawad Haider Kazmi, and Kalim Qureshi. "A Hybrid approach of using symmetry technique for brain tumor segmentation." Computational and mathematical methods in medicine 2014 (2014).

Challenges - Rotation

Original

Rotated

Challenges - Noise, Extreme values

Extreme values smoothed

Summary results - all tumor brains

Symmetry results- examples

Improperly rotated slice, with noise, very low correlation

Slice with tumor. Correlation coefficient in lower middle interval

Slice with high correlation coefficient

Software interface

