Geometry and the Kato square root problem

Lashi Bandara

Centre for Mathematics and its Applications Australian National University

7 June 2013

Geometric Analysis Seminar University of Wollongong

Outline

- Brief overview of the Kato square root problem on \mathbb{R}^n .
- A motivating application to hyperbolic PDE.
- Recent progress on the Kato square root problem on smooth manifolds by McIntosh and B.
- Recent progress on subelliptic Kato square root problems on Lie groups by ter Elst, McIntosh, and B.
- Kato square root problem on smooth manifolds with non-smooth metrics, connection to geometric flows and PDEs.

The Kato square root problem

Let $A \in L^{\infty}(\mathbb{R}^n, \mathcal{L}(\mathbb{C}^N))$ and $a \in L^{\infty}(\mathbb{R}^n)$. Suppose that there exists $\kappa_1, \kappa_2 > 0$ such that for all $u \in W^{1,2}(\mathbb{R}^n)$,

$$\operatorname{Re} a(x) \ge \kappa_1$$
 and $\operatorname{Re} \langle A\nabla u, \nabla u \rangle \ge \kappa_2 ||u||^2$.

The Kato square root problem on \mathbb{R}^n is the statement that

$$\mathcal{D}(\sqrt{-a\operatorname{div} A\nabla}) = W^{1,2}(\mathbb{R}^n)$$
$$\|\sqrt{-a\operatorname{div} A\nabla}u\| \simeq \|\nabla u\|. \tag{K1}$$

This was answered in the positive in 2002 by Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh and Phillipe Tchamitchian in [AHLMcT].

- If further $A=A^*$, (K1) is a trivial consequence of the Lax-Milgram Theorem.
- Solution to (K1) implies that $\mathcal{D}(\sqrt{-\operatorname{div} A \nabla}) = \mathcal{D}(\sqrt{-\operatorname{div} A^* \nabla})$. We can ask a more abstract question for accretive operators L on a Hilbert space \mathscr{H} . There, the question is whether $\mathcal{D}(\sqrt{L^*}) = \mathcal{D}(\sqrt{L})$. In general, this is not true by a counterexample of McIntosh in 1972 in [Mc72].
- A second related question is the following. Suppose that J_t is a family of closed, densely-defined, Hermitian forms on $\mathscr H$ with domain $\mathcal W$ and L(t) the associated self-adjoint operators to J_t with domain $\mathcal W$. If $t\mapsto J_t$ extends to holomorphic family (for small z), then is $\partial_t \sqrt{L(t)}: \mathcal V \to \mathscr H$ a bounded operator?
- Counterexample to this second question by McIntosh in 1982 in [Mc82].

Motivations from PDE

For k=1,2, let $L_k=-\operatorname{div} A_k \nabla$ where $A_k\in \mathrm{L}^\infty(\mathbb{R}^n,\mathcal{L}(\mathbb{C}^n))$ non-negative self-adjoint and L_k uniformly elliptic.

As aforementioned, $\mathcal{D}(\sqrt{L_k})=\mathrm{W}^{1,2}(\mathbb{R}^n)$ and $\|\sqrt{L_k}u\|\simeq \|\nabla u\|$ for $u\in\mathrm{W}^{1,2}(\mathbb{R}^n)$.

Let u_k be solutions to the wave equation with respect to L_k with the same initial data. That is,

$$\partial_t^2 u_k + L_k u_k = 0$$

$$\partial_t u_k|_{t=0} = g \in L^2(\mathbb{R}^n)$$

$$u_k(0) = f \in W^{1,2}(\mathbb{R}^n).$$

Suppose there exists a C > 0

$$\|\sqrt{L_1}u - \sqrt{L_2}u\| \le C\|A_1 - A_2\|_{\infty}\|\nabla u\|.$$
 (P)

Then, whenever t > 0, the following estimate holds:

$$||u_1(t) - u_2(t)|| + || \int_0^t \nabla(u_1(s) - u_2(s)) ds||$$

$$\leq Ct||A_1 - A_2||_{\infty}(||\nabla f|| + ||g||).$$

See [Aus].

The estimate (P) is related to the second question of Kato.

By solving the Kato square root problem (K1) for *complex* coefficients A, we are able to automatically obtain (P) from (K1).

Kato square root problem on manifolds

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure μ .

Write $\operatorname{div} = -\nabla^*$ in L^2 and let $S = (I, \nabla)$.

Assume
$$a \in L^{\infty}(\mathcal{M})$$
 and $A = (A_{ij}) \in L^{\infty}(\mathcal{M}, \mathcal{L}(L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})).$

Consider the following second order differential operator $L_A: \mathcal{D}(L_A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M})$ defined by

$$L_A u = aS^* A S u = -a \operatorname{div}(A_{11} \nabla u) - a \operatorname{div}(A_{10} u) + a A_{01} \nabla u + a A_{00} u.$$

The main theorem on manifolds

Theorem (B.-Mc, 2012)

Let \mathcal{M} be a smooth, complete Riemannian manifold with $|\mathrm{Ric}| \leq C$ and $\mathrm{inj}(M) \geq \kappa > 0$. Suppose the following ellipticity condition holds: there exists $\kappa_1, \kappa_2 > 0$ such that

$$\operatorname{Re} \langle av, v \rangle \ge \kappa_1 ||v||^2$$
$$\operatorname{Re} \langle ASu, Su \rangle \ge \kappa_2 ||u||_{W^{1,2}}^2$$

for $v \in L^2(\mathcal{M})$ and $u \in W^{1,2}(\mathcal{M})$. Then, $\mathcal{D}(\sqrt{L_A}) = \mathcal{D}(\nabla) = W^{1,2}(\mathcal{M})$ and $\|\sqrt{L_A}u\| \simeq \|\nabla u\| + \|u\| = \|u\|_{W^{1,2}}$ for all $u \in W^{1,2}(\mathcal{M})$.

Lipschitz estimates

Since we allow the coefficients a and A to be *complex*, we obtain the following stability result as a consequence:

Theorem (B.-Mc, 2012)

Let \mathcal{M} be a smooth, complete Riemannian manifold with $|\mathrm{Ric}| \leq C$ and $\mathrm{inj}(\mathcal{M}) \geq \kappa > 0$. Suppose that there exist $\kappa_1, \kappa_2 > 0$ such that $\mathrm{Re}\, \langle av, v \rangle \geq \kappa_1 \|v\|^2$ and $\mathrm{Re}\, \langle ASu, Su \rangle \geq \kappa_2 \|u\|^2_{\mathrm{W}^{1,2}}$ for $v \in \mathrm{L}^2(\mathcal{M})$ and $u \in \mathrm{W}^{1,2}(\mathcal{M})$. Then for every $\eta_i < \kappa_i$, whenever $\|\tilde{a}\|_{\infty} \leq \eta_1$, $\|\tilde{A}\|_{\infty} \leq \eta_2$, the estimate

$$\|\sqrt{\mathcal{L}_A} u - \sqrt{\mathcal{L}_{A+\tilde{A}}} u\| \lesssim (\|\tilde{a}\|_{\infty} + \|\tilde{A}\|_{\infty}) \|u\|_{\mathcal{W}^{1,2}}$$

holds for all $u \in W^{1,2}(\mathcal{M})$. The implicit constant depends in particular on A, a and η_i .

The Hodge-Dirac operator

Let $\Omega(\mathcal{M})$ denote the algebra of differential forms over \mathcal{M} under the exterior product \wedge .

Let d be the exterior derivative as an operator on $L^2(\mathbf{\Omega}(\mathcal{M}))$ and d^* its adjoint, both of which are *nilpotent* operators.

The Hodge-Dirac operator is then the self-adjoint operator $D=d+d^*.$ The Hodge-Laplacian is then $D^2=d\,d^*+d^*\,d.$

For an invertible $A \in L^{\infty}(\mathcal{L}(\Omega(\mathcal{M})))$, we consider perturbing D to obtain the operator $D_A = d + A^{-1}d^*A$.

Curvature endomorphism for forms

Let $\left\{ \theta^{i} \right\}$ be an orthonormal frame at x for $\Omega^{1}(\mathcal{M}) = \mathrm{T}^{*}\mathcal{M}.$

Denote the components of the curvature tensor in this frame by Rm_{ijkl} . The curvature endomorphism is then the operator

$$R \omega = Rm_{ijkl} \theta^i \wedge (\theta^j \perp (\theta^k \wedge (\theta^l \perp \omega)))$$

for $\omega \in \Omega_x(\mathcal{M})$.

This can be seen as an extension of Ricci curvature for forms, since $g(R \omega, \eta) = Ric(\omega^{\flat}, \eta^{\flat})$ whenever $\omega, \eta \in \Omega^1_x(\mathcal{M})$ and where $\flat : T^*\mathcal{M} \to T\mathcal{M}$ is the flat isomorphism through the metric g.

The Weitzenböck formula then asserts that $D^2 = \operatorname{tr}_{12} \nabla^2 + R$.

Theorem (B., 2012)

Let \mathcal{M} be a smooth, complete Riemannian manifold and let $\beta \in \mathbb{C} \setminus \{0\}$. Suppose there exist $\eta, \kappa > 0$ such that $|\mathrm{Ric}| \leq \eta$ and $\mathrm{inj}(\mathcal{M}) \geq \kappa$. Furthermore, suppose there is a $\zeta \in \mathbb{R}$ satisfying $\mathrm{g}(\mathrm{R}\,u,u) \geq \zeta \,|u|^2$, for $u \in \Omega_x(\mathcal{M})$ and $A \in \mathrm{L}^\infty(\mathcal{L}(\Omega(\mathcal{M})))$ and $\kappa_1 > 0$ satisfying

$$\operatorname{Re}\langle Au, u \rangle \geq \kappa_1 \|u\|^2.$$

Then,
$$\mathcal{D}(\sqrt{\mathrm{D}_A^2 + |\beta|^2}) = \mathcal{D}(\mathrm{D}_A) = \mathcal{D}(\mathrm{d}) \cap \mathcal{D}(\mathrm{d}^*A)$$
 and $\|\sqrt{\mathrm{D}_A^2 + |\beta|^2}u\| \simeq \|\mathrm{D}_A u\| + \|u\|.$

Lie groups

Let $\mathcal G$ be a Lie group of dimension n with Lie algebra $\mathfrak g$ and equipped with the left-invariant Haar measure μ .

We say that a linearly independent $\mathfrak{a}=\{a_1,\ldots,a_k\}\subset\mathfrak{g}$ is an algebraic basis if we can recover a basis for \mathfrak{g} through multi-commutation.

Let A_i denote the right-translation of a_i and $A^i = A_i^*$. Let $\mathrm{span}\,\{A_1,\ldots,A_k\} = \mathcal{A} \subset \mathrm{T}\mathcal{G}$ be the bundle obtained through the right-translation of \mathfrak{a} and $\mathcal{A}^* = \left\{A^1,\ldots,A^k\right\}$ the dual of \mathcal{A} .

Subelliptic distance

Theorem of Carathéodory-Chow tells us that for any two points $x,y\in\mathcal{G}$, we can find an absolutely continuous curve $\gamma:[0,1]\to\mathcal{G}$ such that

$$\dot{\gamma}(t) = \sum_{i} \dot{\gamma}^{i}(t) A_{i}(\gamma(t)) \in \mathcal{A}.$$

The length of such a curve then is given by

$$\ell(\gamma) = \int_0^1 \left(\sum_i \left|\dot{\gamma}^i(t)\right|^2\right)^{\frac{1}{2}} dt$$

Define distance d(x,y) as the infimum over the length of all such curves.

The measure μ is Borel-regular with respect to d.

Subelliptic operators

For $f \in C^{\infty}(\mathcal{G})$, define

$$\nabla f = A_i f A^i.$$

This defines an *sub-connection* on $C^{\infty}(\mathcal{M})$.

Each vector field A_i is a skew-adjoint differential operator. We consider it as a unbounded operator on $L^2(\mathcal{G})$ with domain $\mathcal{D}(A_i)$.

By also considering ∇ as a closed, densely-defined operator on $L^2(\mathcal{M})$, we obtain the first-order Sobolev space $W^{1,2}(\mathcal{G})'=\mathcal{D}(\nabla)=\cap_{i=1}^k\mathcal{D}(A_i)$.

We write the divergence as $\mathrm{div} = -\nabla^*$. Then, the subelliptic Laplacian associated to $\mathcal A$ is

$$\Delta = -\operatorname{div} \nabla = -\sum_{i=1}^{k} A_i^2.$$

Nilpotent Lie groups

The Lie group \mathcal{G} is *nilpotent* if the inductively defined sequence $\mathfrak{g}_1 = [\mathfrak{g}, \mathfrak{g}], \ \mathfrak{g}_2 = [\mathfrak{g}_1, \mathfrak{g}], \ldots$ is eventually zero.

Theorem (B.-E.-Mc., 2012)

Let (\mathcal{G}, d, μ) be a connected, nilpotent Lie group with \mathfrak{a} an algebraic basis, d the associated sub-elliptic distance, and μ the left Haar measure. Suppose that $a, A \in L^\infty$ and that there exist $\kappa_1, \kappa_2 > 0$ satisfying

$$\operatorname{Re}\langle av, v \rangle \ge \kappa_1 \|v\|^2$$
, and $\operatorname{Re}\langle A\nabla u, \nabla u \rangle \ge \kappa_2 \|\nabla u\|^2$.

for every $v \in L^2(\mathcal{G})$ and $u \in W^{1,2}(\mathcal{G})'$. Then, $\mathcal{D}(\sqrt{-a\operatorname{div} A \nabla}) = W^{1,2}(\mathcal{G})'$ and $\|\sqrt{-a\operatorname{div} A \nabla} u\| \simeq \|\nabla u\|$ for $u \in W^{1,2}(\mathcal{G})'$.

General Lie groups

Let $S = (I, \nabla)$ as in the manifold case.

Theorem (B.-E.-Mc., 2012)

Let (\mathcal{G}, d, μ) be a connected Lie group, \mathfrak{a} an algebraic basis, d the associated sub-elliptic distance, and μ the left Haar measure. Let $a, A \in L^{\infty}$ such that

$$\operatorname{Re}\langle av, v \rangle \geq \kappa_1 \|v\|^2$$
, and $\operatorname{Re}\langle ASu, Su \rangle \geq \kappa_2 \|u\|_{W^{1,2'}}$

 $\begin{array}{l} \text{for every } v \in \mathrm{L}^2(\mathcal{G}) \text{ and } u \in \mathrm{W}^{1,2}(\mathcal{G})'. \text{ Then, } \mathcal{D}(\sqrt{aS^*AS}) = \mathrm{W}^{1,2}(\mathcal{G})' \\ \text{with } \|\sqrt{aS^*AS}u\| \simeq \|u\|_{\mathrm{W}^{1,2'}} = \|u\| + \|\nabla u\|. \end{array}$

Operator theory

We adapt the framework due to Axelsson (Rosén), Keith, McIntosh in [AKMc].

Let $\mathscr H$ be a Hilbert space and $\Gamma:\mathscr H\to\mathscr H$ a closed, densely-defined, nilpotent operator.

Suppose that $B_1, B_2 \in \mathcal{L}(\mathscr{H})$ such that here exist $\kappa_1, \kappa_2 > 0$ satisfying

$$\operatorname{Re} \langle B_1 u, u \rangle \ge \kappa_1 \|u\|^2$$
 and $\operatorname{Re} \langle B_2 v, v \rangle \ge \kappa_2 \|v\|^2$

for $u \in \mathcal{R}(\Gamma^*)$ and $v \in \mathcal{R}(\Gamma)$.

Furthermore, suppose the operators B_1, B_2 satisfy $B_1B_2\mathcal{R}(\Gamma) \subset \mathcal{N}(\Gamma)$ and $B_2B_1\mathcal{R}(\Gamma^*) \subset \mathcal{N}(\Gamma^*)$.

The primary operator we consider is $\Pi_B = \Gamma + B_1 \Gamma^* B_2$.

If the quadratic estimates

$$\int_0^\infty ||t\Pi_B(1+t^2\Pi_B^2)^{-1}u||^2 \simeq ||u|| \tag{Q}$$

hold for every $u\in\overline{\mathcal{R}(\Pi_B)}$, then, \mathscr{H} decomposes into the spectral subspaces of Π_B as $\mathscr{H}=\mathcal{N}(\Pi_B)\oplus E_+\oplus E_-$ and

$$\mathcal{D}(\sqrt{\Pi_B^2}) = \mathcal{D}(\Pi_B) = \mathcal{D}(\Gamma) \cap \mathcal{D}(\Gamma^* B_2)$$
$$\|\sqrt{\Pi_B^2} u\| \simeq \|\Pi_B u\| \simeq \|\Gamma u\| + \|\Gamma^* B_2 u\|.$$

The Kato problems are then obtained by letting $\mathscr{H}=L^2(\mathcal{M})\oplus (L^2(\mathcal{M})\oplus L^2(T^*\mathcal{M}))$ and letting

$$\Gamma = \begin{pmatrix} 0 & 0 \\ S & 0 \end{pmatrix}, \ \Gamma^* = \begin{pmatrix} 0 & S^* \\ 0 & 0 \end{pmatrix}, \ B_1 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \ B_2 = \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix}.$$

Geometry and harmonic analysis

Harmonic analytic methods are used to prove quadratic estimates (Q).

The idea is to reduce the quadratic estimate (Q) to a *Carleson measure* estimate. This is achieved via a *local* T(b) argument.

Geometry enters the picture precisely in the harmonic analysis. We need to perform harmonic analysis on vector fields, not just functions.

One can show that this is *not* artificial - the Kato problem on functions immediately provides a solution to the dual problem on vector fields.

Elements of the proofs

Similar in structure to the proof of [AKMc] which is inspired from the proof in [AHLMcT].

- A dyadic decomposition of the space
- A notion of averaging (in an integral sense)
- Poincaré inequality on both functions and vector fields
- Control of ∇^2 in terms of Δ .

The case of non-smooth metrics on manifolds

We let \mathcal{M} be a smooth, complete manifold as before but now let g be a C^0 metric. Let μ_g denote the volume measure with respect to g.

Let $h \in C^0(\mathcal{T}^{(2,0)}\mathcal{M})$. Then, define

$$\|\mathbf{h}\|_{\text{op,g}} = \sup_{x \in \mathcal{M}} \sup_{|u|_{g} = |v|_{g} = 1} |\mathbf{h}_{x}(u, v)|.$$

If \tilde{g} is another C^0 metric satisfying $\|g - \tilde{g}\|_{\mathrm{op,g}} \leq \delta < 1$, then $L^2(\mathcal{M},g) = L^2(\mathcal{M},\tilde{g})$ and $W^{1,2}(\mathcal{M},g) = W^{1,2}(\mathcal{M},\tilde{g})$ with comparable norms.

Π_B under a change of metric

The operator $\Gamma_{\!g}$ does not change under the change of metric. However,

$$\Gamma_{\mathbf{g}}^* = C^{-1} \Gamma_{\tilde{\mathbf{g}}}^* C$$

where C is the bounded, invertible, multiplication operator on $L^2(\mathcal{M}) \oplus L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})$.

Thus,

$$\Pi_{B,g} = \Gamma_g + B_1 \Gamma_g^* B_2 = \Gamma_{\tilde{g}} + B_1 C^{-1} \Gamma_{\tilde{g}}^* C B_2.$$

This allows us to reduce the study of $\Pi_{B,\mathrm{g}}$ for a C^0 metric g to the study of $\Pi_{\tilde{B},\tilde{\mathrm{g}}}=\Gamma_{\tilde{\mathrm{g}}}+\tilde{B}_1\Gamma_{\tilde{\mathrm{g}}}^*\tilde{B}_2$ where $\tilde{B}_1=B_1C^{-1}$ and $\tilde{B}_2=CB_2$, but now with a smooth metric $\tilde{\mathrm{g}}$.

Connection to geometric flows

Given a C^0 metric g on a smooth $\emph{compact}$ manifold, we are able to always find C^∞ metric $\tilde{g}.$

The metric \tilde{g} has $\operatorname{inj}(\mathcal{M}, \tilde{g}) > \kappa$ and $|\operatorname{Ric}(\tilde{g})|_{\tilde{g}} \leq \eta$ so we obtain a corresponding Kato square root estimate in this setting.

The non-compact situation poses issues.

Smooth the metric via mean curvature flow for, say, a C^2 imbedding?

Smooth the metric via Ricci flow in the general case? Regularity of the initial metric?

Application to PDE

In the case we are able to find a suitable C^∞ metric near the C^0 one, then we have Lipschitz estimates.

Possible application to hyperbolic PDE?

"Stability" of geometries with Ricci bounds and injectivity radius bounds?

References I

- [AHLMcT] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph. Tchamitchian, *The solution of the Kato square root problem for second order elliptic operators on* \mathbb{R}^n , Ann. of Math. (2) **156** (2002), no. 2, 633–654.
- [AKMc-2] Andreas Axelsson, Stephen Keith, and Alan McIntosh, *The Kato square root problem for mixed boundary value problems*, J. London Math. Soc. (2) **74** (2006), no. 1, 113–130.
- [AKMc] _____, Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math. **163** (2006), no. 3, 455–497.
- [Aus] Pascal Auscher, *Lectures on the Kato square root problem*, Surveys in analysis and operator theory (Canberra, 2001), Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 40, Austral. Nat. Univ., Canberra, 2002, pp. 1–18.

References II

- [Christ] Michael Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. **60/61** (1990), no. 2, 601–628.
- [Mc72] Alan McIntosh, On the comparability of $A^{1/2}$ and $A^{*1/2}$, Proc. Amer. Math. Soc. **32** (1972), 430–434.
- [Mc82] _____, On representing closed accretive sesquilinear forms as $(A^{1/2}u,\,A^{*1/2}v)$, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981), Res. Notes in Math., vol. 70, Pitman, Boston, Mass., 1982, pp. 252–267.
- [Morris] Andrew J. Morris, *The Kato square root problem on submanifolds*, J. Lond. Math. Soc. (2) **86** (2012), no. 3, 879–910.