Задание на шестую неделю. Функции. Отношения. Булевые схемы

Ex. 1. Функция h из множества $\{0, 1, ..., 8\}$ в множество $\{a, b, ..., g\}$ определена следующим образом:

h:
$$1 \mapsto b$$
, $2 \mapsto c$, $3 \mapsto b$, $4 \mapsto e$, $5 \mapsto b$, $6 \mapsto e$, $8 \mapsto f$.

Найдите: **a)** Dom(h); **6)** Range(h); **в)** h({0, 1, 2, 3, 4}); **г)** h⁻¹({ α , b, c}); **д)** h⁻¹(h({0, 1, 2, 6, 7, 8})); **д)** h(h⁻¹({ α , b, c, d, e})).

Ex. 2. Пусть функция $f: X \to Y, A \cup B \subseteq Y$. Какой знак сравнения можно поставить вместо «?», чтобы утверждение

$$f^{-1}(A \setminus B)$$
 ? $f^{-1}(A) \setminus f^{-1}(B)$

стало верным?

- **Ex. 3.** Бинарное отношение на множестве из 6 элементов содержит 33 пары. Может ли оно быть **a)** симметричным; **б)** транзитивным?
- **Ex. 4.** Найдите число отношений на множестве $\{1, 2, 3, 4\}$.
- **Ex. 5.** Пусть в ориентированном графе для любой пары вершин $\mathfrak{u}, \mathfrak{v}$ есть либо ребро $(\mathfrak{u}, \mathfrak{v})$, либо ребро $(\mathfrak{v}, \mathfrak{u})$ (ровно одно из двух). Докажите, что в таком графе есть (простой) путь, включающий в себя все вершины.
- **Ex. 6.** Сколько линейных порядков можно задать на n-элементном множестве?

Бонусная задача. Покажите, что всякое отображение $M \stackrel{f}{\to} M$ из полного частично упорядоченного множества в себя, такое что $x \leqslant f(x) \forall x \in M$, имеет неподвижную точку, т.е. $\exists x_0 \in M$: $f(x_0) = x_0$.

Задание на шестую неделю. Функции. Отношения. Булевые схемы

Ex. 1. Функция h из множества $\{0, 1, ..., 8\}$ в множество $\{a, b, ..., g\}$ определена следующим образом:

h:
$$1 \mapsto b$$
, $2 \mapsto c$, $3 \mapsto b$, $4 \mapsto e$, $5 \mapsto b$, $6 \mapsto e$, $8 \mapsto f$.

Найдите: **a)** Dom(h); **6)** Range(h); **в)** h({0, 1, 2, 3, 4}); **г)** h⁻¹({ α , b, c}); **д)** h⁻¹(h({0, 1, 2, 6, 7, 8})); **д)** h(h⁻¹({ α , b, c, d, e})).

Ex. 2. Пусть функция $f: X \to Y, A \cup B \subseteq Y$. Какой знак сравнения можно поставить вместо «?», чтобы утверждение

$$f^{-1}(A \setminus B)$$
 ? $f^{-1}(A) \setminus f^{-1}(B)$

стало верным?

- **Ex. 3.** Бинарное отношение на множестве из 6 элементов содержит 33 пары. Может ли оно быть **a)** симметричным; **б)** транзитивным?
- **Ex. 4.** Найдите число отношений на множестве $\{1, 2, 3, 4\}$.
- **Ex. 5.** Пусть в ориентированном графе для любой пары вершин $\mathfrak{u}, \mathfrak{v}$ есть либо ребро $(\mathfrak{u}, \mathfrak{v})$, либо ребро $(\mathfrak{v}, \mathfrak{u})$ (ровно одно из двух). Докажите, что в таком графе есть (простой) путь, включающий в себя все вершины.
- **Ex. 6.** Сколько линейных порядков можно задать на n-элементном множестве?

Бонусная задача. Покажите, что всякое отображение $M \stackrel{f}{\to} M$ из полного частично упорядоченного множества в себя, такое что $x \leqslant f(x) \forall x \in M$, имеет неподвижную точку, т.е. $\exists x_0 \in M$: $f(x_0) = x_0$.