Categories of Compositeness, Purity, and Entanglement

Wayne Dam

October 22, 2025

Table 1: Quantum system conditions — Compositeness / Purity / Entanglement

Condition	Type	
Compositeness	Single Qubit: A	Two Qubits: AB (Composite, Bipartite)
	$\begin{aligned} \psi\rangle_A &= 0\rangle_A \\ \psi\rangle_A &= 0\rangle_A + 1\rangle_A \end{aligned}$	$\begin{aligned} \psi\rangle_{AB} &= 01\rangle_{AB} \\ \psi\rangle_{AB} &= 00\rangle_{AB} + 01\rangle_{AB} \end{aligned}$
Purity	Single State Vector (Pure)	Ensemble of SV's (Mixed, Mixture)
	$ \psi\rangle_{A}, \psi\rangle_{AB} \ ho_{A} = \psi\rangle_{A} \langle\psi _{A} \ ho_{AB} = \psi\rangle_{AB} \langle\psi _{AB}$	$ \{ \psi_i\rangle, p_i \} $ $ \rho = \sum_i p_i \psi_i\rangle \langle \psi_i $
Entanglement	Separable (Factored)	Entangled
	$\begin{aligned} \psi\rangle_{AB} &= 1\rangle_A \otimes 0\rangle_B \\ \psi\rangle_{AB} &= 0\rangle_A \otimes (\ 0\rangle_B + 1\rangle_B) \end{aligned}$	$\begin{split} \psi\rangle_{AB} &= 0\rangle_A \otimes 0\rangle_B + \\ 1\rangle_A \otimes 1\rangle_B \end{split}$

Figure 1: The three descriptive binary categories of a quantum system: Compositness, Purity and Engtanglement. **Note**: A single isolated qubit system is by definition NOT entangled with another. So two of the top corners of the cube, (Single, Entangled, Pure/Mixed), are not valid and left empty.

State-Classification Cube

Figure 2: The three descriptive binary categories of a quantum system: Compositness, Purity and Engtanglement.

Note: A single isolated qubit system is by definition NOT entangled with another. So two of the top corners of the cube, (Single, Entangled, Pure/Mixed), are not valid and left empty.