

Elements of solvation!

1.

Physics equation

Describing the phenomenon we'd like to isolate. Usually intractable as-is, we make hypothesis on the fluid properties to limit the complexity

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot \mathbf{T}_{D} + \mathbf{f}$$

2.

Discretization

Over a usually unstructured mesh, constructed by exploiting from remarkable symmetries of the system, strong hypothesis, and non-linear transforms

3.

Method

For solving the equation

- * Finite Difference Method (FDM)
- * Finite Volume Method (FVM)
- * Finite Element Method (FEM)
- * Lattice Boltzmann Method (LBM)

CFD 101

Elements of solvation!

1.

Physics equation

Describing the phenomenon we'd like to isolate. Usually intractable as-is, we make hypothesis on the fluid properties to limit the complexity

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot \mathbf{T}_{D} + \mathbf{f}$$

2.

Discretization

Over a usually unstructured mesh, constructed by exploiting from remarkable symmetries of the system, strong hypothesis, and non-linear transforms

3.

Method

For solving the equation

- * Finite Difference Method (FDM)
- * Finite Volume Method (FVM)
- * Finite Element Method (FEM)
- * Lattice Boltzmann Method (LBM)

A Simple Idea Known Limitations