JP 07160218/pn

L1 ANSWER 1 OF 1 JAPIO COPYRIGHT 2001 JPO

ACCESSION NUMBER: 1995-160218 JAPIC

TITLE: METHOD AND CIRCUIT FOR DRIVING SURFACE DISCHARGE TYPE

PLASMA DISPLAY PANEL

INVENTOR: KANAZAWA GIICHI

PATENT ASSIGNEE(S): FUJITSU LTD, JP (CO 000522)

PATENT INFORMATION:

PATENT NO KIND DATE ERA MAIN IPC

JP 07160218 A19950623 Heisei (6) G09G003-28

JР

APPLICATION INFORMATION

ST19N FORMAT: JP1993-310937 19931210 ORIGINAL: JP05310937 Heisei

ORIGINAL: JP05310937 Heisei

SOURCE: PATENT ABSTRACTS OF JAPAN (CD-ROM), Unexamined

. Applications, Vol. 95, No. 6

INT. PATENT CLASSIF.:

MAIN: (6) G09G003-28

ABSTRACT:

PURPOSE: To improve display quality by expanding the range capable of taking an applied voltage for address discharge and reducing luminance of a black color display.

CONSTITUTION: In a reset period, the pulse of the voltage higher than a discharge start voltage between maintaining electrodes X and Yi and the voltage for heightening the voltage between wall charge occurring on the maintaining electrode Yi side and the wall charge occurring on the maintaining electrode X side than the discharge start voltage is applied between the electrodes X and Yi, and at this time, address electrode potential is made a nearly mean value between both potential of the electrodes X and Yi. In an address period, the pulse of the potential -Vs is applied to the selected electrode Yi, and the pulse of the potential Va is applied to the address electrode Aa to be lightened. Where, Vsmin.ltoreq.Vs<Vfxymin, Va+Vs.gtoreq.Vfaymax, and Vsmin is a minimum voltage capable of continuing maintaining discharge, Vfxymin is a minimum discharge start voltage between the electrodes X and Y1-Yn and Vfaymax is a maximum discharge start voltage between the address electrodes A1-Am and the maintaining electrodes Y1-Yn.

(5) Japanese Patent Application Laid-Open No. 7-160218 (1995) (corresponds to JP No. 2,772,753 and USP No. 5,446,344)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-160218

(43)公開日 平成7年(1995)6月23日

(51) Int Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 9 G 3/28

E 9378-5G

審査請求 未請求 請求項の数17 OL (全 22 頁)

(21)出願番号

特願平5-310937

(22)出願日

平成5年(1993)12月10日

(71) 出願人 000005223

省士通株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 金澤 義一

神奈川県川崎市中原区上小田中1015番地

宫士通株式会社内

(74)代理人 弁理士 松本 眞吉

(54) 【発明の名称】 面放電型プラズマディスプレイパネルの駆動方法及び駆動回路

(57)【要約】

【目的】アドレス放電のための印加電圧の採り得る範囲をより広くし又黒色表示の輝度を低減することにより表示品質を向上させる。

【構成】リセット期間では、維持電極XとYs間の放電開始電圧より高い電圧且つ放電により維持電極Yi側に生ずる壁電荷と維持電極X側に生ずる壁電荷との間の電圧を該放電開始電圧より高くするための電圧のパルスを、電極XとYs間に印加し、この際、アドレス電極位を、電極XとYsの両電位の略平均値にする。アドレス期間では、選択した電極Ysに電位−Vsのパルスを印加し、同時に、点灯させるアドレス電極Aaに電位Vaのパルスを印加する。ここに、Vsmin≤Vs<Vfxymin、Va+Vs≧Vfaymaxであり、Vsminは維持放電持続可能な最小電圧、Vfayminは電極XとY1~Ynとの間の最小放電開始電圧、Vfaymaxは、アドレス電極A1~Amと維持電極Y1~Ynとの間の最大放電開始電圧である。

本発明の第2実施例のブラズマディスプレイパネル風動 方法を示す電路印加電圧波形図

【特許請求の範囲】

【請求項1】 第1基板に第1及び第2の電極が互いに 平行に、表示ライン毎に対をなして配置され、該第1基 板又は該第1基板と離間して対向配置された第2基板 に、該第1及び第2の電極と離間して交差するように第 3電極 (Aj) が配置され、該第1及び第2の電極の表 面が壁電荷蓄積用の誘電体層で被われ、該第2基板側に 蛍光体が形成され、該第1基板と該第2基板との間の空 間に放電用のガスが封入され、該第1及び第2の電極と 該第3電極との各交差部にセルが形成された面放電型プ 10 ラズマディスプレイパネルに対し、

該誘電体の表面の電荷分布を均一にさせるために互いに 隣接した該第1と第2の電極間に第1電圧のパルスを印 加して放電させるリセット工程と、

点灯させる該セルの該誘電体表面の該第1電極(X)に 対応した部分及び該第2電極 (Yi) に対応した部分に それぞれ一定量以上で極性が互いに逆の第1及び第2の 壁電荷を蓄積させるために、該第2電極と、点灯させる 該セルに対応した該第3電極との間に第2電圧のパルス を印加して放電させる書き込み工程と、

該第1と第2の壁電荷間の第3電圧と、該第3電圧と同 一極性で該第1電極と該第2電極との間に印加する第4 電圧との和が第1の放電開始電圧以上になる該セルを点 灯させ、放電毎に該第1壁電荷及び該第2壁電荷の極性 が逆になるようにするために、互いに隣接した該第1と 第2の電極間に該第4電圧のパルスとして交流電圧パル スを印加する維持放電工程と、

を繰り返し実行し、毎回の維持放電工程の最後の該交流 電圧パルスの極性が、該リセット工程での第1電圧のパ ルスの極性と逆になっている面放電型プラズマディスプ 30 前記第2電圧は、前記第2と第3の電極間の第2の放電 レイパネル駆動方法において、

該第1電圧のパルスは、該第1の放電開始電圧より高く 且つ放電により生ずる該第3電圧が該第1の放電開始電 圧より高くなる電圧パルスであり、該第1電圧のパルス 印加後の該第1、第2及び第3の電極の電位を互いに等 しくする、

ことを特徴とする面放電型プラズマディスプレイパネル 駆動方法。

【請求項2】 前記第1電圧のパルスを印加している 間、前記第3電極 (Aj) の電位を、該第1電極 (X) の電位と該第2電極 (Yi) の電位の略平均値にする、 ことを特徴とする請求項1記載の面放電型プラズマディ スプレイパネル駆動方法。

【請求項3】 前記第1電圧のパルスを、前記第2電極 (Yi) をグランドレベルにし前記第1電極 (X) に正 の電圧パルスを印加することにより生成する、

ことを特徴とする請求項2記載の面放電型プラズマディ スプレイパネル駆動方法。

【請求項↓】 前記第1電圧のパルスを印加している 間、前記第3電極 (Aj) の電位をグランドレベルにす 50 スプレイパネル駆動方法。

ことを特徴とする請求項2記載の面放電型プラズマディ スプレイパネル駆動方法。

2

【請求項5】 前記第1電圧のパルスの印加前及び後の 前記第1、第2及び第3の電極の電位はグランドレベル

ことを特徴とする請求項1乃至3のいずれか1つに記載 の面放電型プラズマディスプレイパネル駆動方法。

【請求項6】 前記リセット期間において、前記第1電 圧のパルスを印加した後、さらに、前記第1と第2の電 極間に、前記第1の放電開始電圧より低く、且つ、立ち 上がりの傾斜が緩やかな消去パルスを印加することによ り、異常セルであるために該第1電圧パルスで消去でき なかった前記第1及び第2の壁電荷に該消去パルスの電 圧を上乗せして放電させ該壁電荷を消去させることを特 徴とする請求項1乃至5のいずれか1つに記載の面放電 型プラズマディスプレイパネル駆動方法。

【請求項7】 異常セルであるために該第1電圧パルス で消去できなかった前記第1及び第2の壁電荷の極性を 統一し且つ増幅して前記消去パルスでより多く消去する ために、前記第1電圧のパルスと前記消去パルスとの間 の時間において、前記第1と第2の電極間に、前記第1 の放電開始電圧より低く極性が該第1電圧と逆のパルス を印加し、次に、該第1の放電開始電圧より低く極性が 該第1電圧と同一のパルスを印加し、次に印加する前記 消去パルスの極性を該第1電圧と逆にする、

ことを特徴とする請求項6記載の面放電型プラズマディ スプレイパネル駆動方法。

【請求項8】 前記書き込み工程において、

開始電圧以上であり、

前記第4電圧が機能する最小値をVsminとし、前記第 1の放電開始電圧をfxyminとしたとき、前記第1と第 2の電極間にVsmin≦Vs<Vfxyminなる第5電圧V s のパルスを印加する、

ことを特徴とする請求項1乃至7のいずれか1つに記載 の面放電型プラズマディスプレイパネル駆動方法。

【請求項9】 前記第5電圧を前記第1の放電開始電圧 に近い値にする、

ことを特徴とする請求項8記載の面放電型プラズマディ スプレイパネル駆動方法。

【請求項10】 前記第2電圧のパルスは、グランドレ ベルに対し前記第2電極 (Yi) の電位を負にし且つ前 記第3電極(Aj) をグランドレベルにした状態で該第 3 電極に印加した正パルスであり、

前記第5電圧のパルスは、前記第1電極(X)の電位を 該第3電極の電位に等しくした状態で該第2電極に印加 した負パルスである、

ことを特徴とする請求項8記載の面放電型プラズマディ

【請求項11】 前記第2電極 (Yi) の電位は、前記 第5電圧の1/4~3/4程度であることを特徴とする 請求項10記載の面放電型プラズマディスプレイパネル 駆動方法。

【請求項12】 前記第2電圧のパルスの幅を、前記第 5 電圧のパルスの幅よりも狭くする、

ことを特徴とする請求項1乃至11のいずれか1つに記 載の面放電型プラズマディスプレイパネル駆動方法。

【請求項13】 前記維持放電工程において、前記第3 電極 (Ai) の電位をグランドレベルに対し正の電位と 10

ことを特徴とする請求項1万至12のいずれか1つに記 載の面放電型プラズマディスプレイパネル駆動方法。

【請求項14】 前記維持放電工程の最初の該第4電圧 のパルスを印加する前に、前記第1及び第2の電極に同 時に、前記第3電極(Aj)との電位差が前記第4電圧 の1/4~3/4程度の正のパルスを印加する、

ことを特徴とする請求項13記載の面放電型プラズマデ ィスプレイパネル駆動方法。

【請求項15】 前記維持放電工程において、前記第3 20 電極 (Aj) に接続された駆動回路出力端をハイインピ ーダンスにする、

ことを特徴とする請求項1乃至14のいずれか1つに記 載の面放電型プラズマディスプレイパネル駆動方法。

【請求項16】 前記リセット工程を全ての前記セルに 対し同時に実行し、

次に、前記第2電極 (Yi) について一方から他方へ1 つずつ順に前記書き込み工程を実行し、

次に、全ての前記第1及び第2の電極について前記維持 放電工程を同時に実行する、

ことを特徴とする請求項1万至15のいずれか1つに記 載の面放電型プラズマディスプレイパネル駆動方法。

【請求項17】 第1基板に第1及び第2の電極が互い に平行に、表示ライン毎に対をなして配置され、複数の 該第1電極(X)が共通に接続され、該第1基板又は該 第1基板と離間して対向配置された第2基板に、該第1 及び第2の電極と離間して交差するように第3電極(A j) が配置され、該第1及び第2の電極の表面が壁電荷 蓄積用の誘電体層で被われ、該第2基板側に蛍光体が形 成され、該第1基板と該第2基板との間の空間に放電用 40 のガスが封入され、該第1及び第2の電極と該第3電極 との各交差部にセルが形成された面放電型プラズマディ スプレイパネルに対し、

該誘電体の表面の電荷分布を均一にさせるために互いに 隣接した該第1と第2の電極間に第1電圧のパルスを印 加して放電させ、点灯させる該セルの該誘電体表面の該 第1電極に対応した部分及び該第2電極(Yi)に対応 した部分にそれぞれ一定量以上で極性が互いに逆の第1 及び第2の壁電荷を蓄積させるために、該第2電極と、

圧のパルスを印加して放電させ、該第1と第2の壁電荷 間の第3電圧と、該第3電圧と同一極性で該第1電極と 該第2電極との間に印加する第4電圧との和が第1の放 電開始電圧以上になる該セルを点灯させ、放電毎に該第 1壁電荷及び該第2壁電荷の極性が逆になるようにする ために、互いに隣接した該第1と第2の電極間に該第4 電圧のパルスとして交流電圧パルスを印加する面放電型 プラズマディスプレイパネルの駆動回路において、

該面放電型プラズマディスプレイパネルの駆動回路は、 該第1電圧のパルスを、該放電開始電圧より高く且つ放 電により生ずる該第3電圧が該第1の放電開始電圧より 高くなる電圧のパルスとし、該第1電圧のパルス印加後 の該第1、第2及び第3の電極の電位を互いに等しくす ことを特徴とする面放電型プラズマディスプレイ バネルの駆動回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、面放電型プラズマディ スプレイパネルの駆動方法及び駆動回路に関する。

[0002]

30

【従来の技術】

[第1従来例] 図14は、3電極を有する面放電型プラ ズマディスプレイパネル (以下、PDPと言う) の第 i 行第 j 列の画素を構成するセル 1 0 の断面概略構成を示 す。紙面垂直方向に延びた一対の維持電極X及びY i は、ガラス基板11上に形成され、その上に壁電荷保持 用の誘電帯層12が被着され、さらにその上にMgO保 護膜13が被着されている。一方、紙面左右方向に延び たアドレス電極Ajは、ガラス基板11と対向配置され たガラス基板14上に形成され、その上に蛍光体15が 被着されている。蛍光体15は、誘電体でもある。ま た、ガラス基板14上には、画素境界に隔壁16が形成 されている。MgO保護膜13と蛍光体15との間の放 電空間17には、例えばNe+Xeペニング混合ガスが 封入されている。

【0003】PDPは、n×m画素、すなわち、i=1 ~n、j=1~mとする。任意の維持電極Yiとアドレ ス電極Ajとの交差部の点灯/消灯を可能にするため に、維持電極Y1~Yn間及びアドレス電極A1~Am 間は互いに絶縁されている。これに対し、各維持電極Y 1~Ynと互いに平行に対になっている維持電極Xは、 端部で共通に接続されている。

【0004】図15は、従来の第1のPDP駆動方法を 示す電極印加電圧波形図であり、1駆動サイクル分を示 す。この駆動方法は、線順次・自己消去アドレス方式で あり、維持電極Yiは、維持電極Y1~Ynの順に1つ ずつ選択される。以下、選択された維持電極YiをYs で表し、非選択の維持電極YiをYtで表す。例えばs = 1のとき、t=2~nである。また、維持電極Ysを 点灯させる該セルに対応した該第3電極との間に第2電 50 含む1行分のセルを選択ラインと称し、維持電極Ytを

含む1行分のセルを非選択ラインと称する。さらに、選択ラインのうち、点灯させるセルに対応したアドレス電極AjをAaで表し、消灯させるセルに対応したアドレス電極AjをAbで表す。

【0005】 (a) 維持電極Y t を 0 Vにした状態で、* VS+VW>V f xy>VW

を満たすように定められ(電位VSは後述のように定め られる)、選択ラインのみ、その全セルについて維持電 極XとYsとの間で書き込み放電Wが生ずる。この際、 放電が進むにつれて、選択ラインの維持電極Xの上方の 10 保護膜13の表面(以下、維持電極X側と言う)には電 子である負の壁電荷が蓄積され、一方、維持電極Ysの 上方の保護膜13の表面(以下、維持電極X側と言う)※

VS + Vwall1 > Vf > VS

を満たすように定められる。これにより、選択ラインのみについて維持電極XとYsとの間で維持放電Sが生じ、前回とは逆に、維持電極X側に正の壁電荷が蓄積される。

【0007】 (c) 維持電極X、Y t 及びアドレス電極 A a を 0 Vにした状態で、維持電極Y s に電位 − V S の★20

VA + VS + V wall 2 > V f ay > VS

満たすように定められる。これにより、選択ラインの消灯させるセルについてはさらに、アドレス電極Abと維持電極Ysとの間でも同時にアドレス放電が生じ、維持電極Ys側には正の壁電荷が過剰に蓄積される。電位VAはまた、このアドレス放電後、維持電極X、Ys及びアドレス電極Abを共に0Vとしたときに、壁電荷自身で維持電極XとYi間で放電が生ずるように定められる。しかし、この自己消去放電は、壁電荷量が充分でなく且つアドレスパルス印加後に充分な時間を確保できないので、壁電荷が残る場合がある。この残留壁電荷は、維持パルスの上乗せで維持放電が生じなければ問題ない。

【0008】この自己消去放電が生じたセルは、これ以降に維持電極XとYiとに交互に維持パルスが印加されても、維持放電が生ぜず、消灯状態になる。これに対し、点灯させるセルに対してはアドレス電極Ajにアドレスパスルが印加されないため、維持パルスにより維持放電を繰り返し、点灯状態となる。各表示ラインの駆動サイクルの変化を図16に示す。横軸は時間であり、縦40軸は表示ラインである。図中、Wは表示データ售換え駆動サイクル、Sは現フィールドの維持放電のみの駆動サイクル、sは前フィールドの維持放電のみの駆動サイクルである。

【0009】 [第2従来例] 図17は、従来の第2のP DP駆動方法を示す電極印加電圧波形図であり、1サブ フィールド分を示している。この駆動方法は、アドレス /維持放電分離型・自己消去アドレス方式であり、1サ ブフィールドは、全セルの壁電荷を少し残した状態にす るためのリセット期間と、点灯させる画素に対し後の維 50

*維持電極Xに電位VWの魯き込みパルスが印加され、同時に、維持電極Ysに電位VSのパルスが印加される。 維持電極XとYiとの間の放電開始電圧をVfxyとする と、電位VWは、

. . . (1)

※にはイオンである正の壁電荷が蓄積される。これら壁電 荷は放電空間内の電界強度を低減させるので、放電は直 ちに収束に向かい、1~数μsで終結する。終結したと きの壁電荷による電圧をVwalllで表す。

【0006】(b)維持電極Ys及びYtを0Vにした 状態で、維持電極Xに電位-VSの維持パルスが印加さ れる。電位VSは、

· · · (2)

★維持パルスが印加され、同時に、アドレス電極Abに電位-VAのアドレスパルスが印加される。これにより、 選択ラインの維持電極XとYsとの間で維持放電が生じる。アドレス電極AjとYiとの間の放電開始電圧をV fayとし、維持電極Ysの壁電荷の電位をVwall2する と、電位VAは、

・・・(3)を

持放電が可能な程度に壁電荷をアドレス放電により蓄積させるためのアドレス期間と、壁電荷に維持パルスを上乗せして、アドレス放電が生じたセルに対してのみ維持放電を生じさせるための維持放電期間とに分けられる。【0010】(a)リセット期間では、最初に、維持電極Y1~Ynを0Vにした状態で、維持電極Xに電位VS+VWの書き込みパルスが印加される。電位VWは、上式(1)を満たすように定められており、維持電極XとY1~Ynとの間で全面書き込み放電Wが生ずる。

【0011】(c)維持電極Y1~Ynを0Vにした状態で、電位VSより低い電位の消去パルスが維持電極Xに印加され、同時に、アドレス電極Abに電位-VSのアドレスパルスが印加される。これにより、一部の壁電荷が中和されて、壁電荷の削減が行われる。このとき、維持電極Y1~Ynに残った負の壁電荷は、低い電位VAで次のアドレス放電を生じさせるのに役立つ。この壁電荷の量は、アドレス期間でアドレス放電を行わなかったセルに対し維持放電期間で維持パルスにより維持放電が生じない程度にする必要がある。

【0012】次に、アドレス期間に移る。

- (d)維持電極X及びY1~Ynを電位VSにする。
- (e)維持電極Y1を選択し、すなわち維持電極Y1~ YnのうちY1のみにスキャンパルスが印加され、同時 に、選択ラインの点灯させるセルについてのみアドレス 電極Aaに電位VAのアドレスパルスが印加されて、書

6

き込み放電を生じさせる。以下、維持電極Y2~Ynを 順次選択して、書き込み放電を生じさせる。次に、維持 放電期間に移る。

【0013】(f)維持電極Y1~Ynの電圧波形を互いに同一にし、維持電極XとYとに交互に維持バルスが印加されて、アドレス期間で書き込みを行ったセルを点灯させる。

[0014]

【発明が解決しようとする課題】

[第1の問題]しかし、図17の駆動方法では、アドレ 10 ス放電を低くするためにリセット期間で壁電荷を残留させるので、残留壁電荷のばらつきや変化により、全ての条件下で安定に動作する電位VAの採り得る範囲が狭くなったり、電位VAの最適値が変化して、動作が不安定になり、表示品質が低下するという問題があった。残留壁電荷のばらつきや変化は、次のような原因により生ずる。

【0015】(1)全面書き込み放電によって作られる 壁電荷は、前のサプフィールドの点灯状態に依存する。

(2) PDPの電極も含めた駆動回路のインピーダンス 20 が温度によって変動し、このインピーダンスが放電特性 に影響する。

(3) セルの放電特性が温度に依存する。

【0016】図15の駆動方法においても、アドレス放電前に維持電極X及びYsに壁電荷が蓄積されているので、前記と同様の問題が生ずる。

[第2の問題] また、図17の駆動方法では、維持放電期間の長短、すなわち、維持パルスの回数によって、輝度が決定される。

【0018】リセット期間での2~3回の放電は、壁電筒の分布をより均一にするので、後の安定動作のために大きな役割を果たしているが、黒色表示でもこの放電で発光するため、コントラストの低下を招く。例えば、図17及び図18に示す駆動方式において、1フレーム内の維持放電回数を510×2=1020とする。1サブ 50

フィールド内のリセット期間では、全面書き込み放電と 維持放電と消去放電との3回の放電がある。この放電 は、維持放電期間での維持放電よりも規模が大きいの で、この3回の放電による明るさは、通常の維持放電の 5回分程度に相当する。したがって、最大輝度と、最小 輝度である黒色表示の輝度との比は、1020:5×8 =26:1となる。

【0019】これは、暗室中での値であるが、照明のある室内では、PDPの表面反射も加わるため、コントラストがより低い値となる。このため、高階調表示を行う意味が無くなる。また、映像表示においては、黒レベルが表示品質の重要なファクターであることからも、好ましくない。図15の駆動方法においても、選択ラインの全セルについて、書き込み放電Wと、次の維持放電Sと、アドレス放電と並行して消灯させるセルについても行われる維持放電Sとの計3回の放電が、最大輝度と黒色表示の最小輝度との比を低下させるという前記同様の問題が生ずる。

【0020】本発明の第1の目的は、上記問題点に鑑み、アドレス放電のための印加電圧の採り得る範囲をより広くすることにより、表示品質を向上させることができる面放電型プラズマディスプレイパネルの駆動方法及び駆動回路を提供することにある。本発明の第2の目的は、黒色表示の輝度を低減することにより、表示品質を向上させることができる面放電型プラズマディスプレイパネルの駆動方法及び駆動回路を提供することにある。

[0021] 【課題を解決するための手段及びその作用】図1及び図 2は、本発明に係る面放電型プラズマディスプレイパネ ル駆動方法の特徴部分の原理構成を示す。本第1発明で は、第1基板に第1及び第2の電極が互いに平行に、表 示ライン毎に対をなして配置され、該第1基板又は該第 1基板と離間して対向配置された第2基板に、該第1及 び第2の電極と離間して交差するように第3電極Ajが 配置され、該第1及び第2の電極の表面が壁電荷蓄積用 の誘電体層で被われ、該第2基板側に蛍光体が形成さ れ、該第1基板と該第2基板との間の空間に放電用のガ スが封入され、該第1及び第2の電極と第3電極Ajと の各交差部にセルが形成された面放電型プラズマディス プレイパネルに対し、該誘電体の表面の電荷分布を均一 にさせるために互いに隣接した該第1と第2の電極間に 第1電圧のパルスを印加して放電させるリセット工程 と、点灯させる該セルの該誘電体表面の第1電極Xに対 応した部分及び第2電極Yiに対応した部分にそれぞれ 一定量以上で極性が互いに逆の第1及び第2の壁電荷を 蓄積させるために、第2電極Yiと、点灯させる該セル に対応した第3電極Ajとの間に第2電圧のパルスを印 加して放電させる書き込み工程と、該第1と第2の壁電 荷間の第3電圧と、該第3電圧と同一極性で第1電極X と第2電極Yiとの間に印加する第4電圧との和が第1

の放電開始電圧以上になる該セルを点灯させ、放電毎に 該第1壁電荷及び該第2壁電荷の極性が逆になるように するために、互いに隣接した該第1と第2の電極間に該 第4電圧のパルスとして交流電圧パルスを印加する維持 放電工程と、を繰り返し実行し、毎回の維持放電工程の 最後の該交流電圧パルスの極性が、該リセット工程での 第1電圧のパルスの極性と逆になっている面放電型プラ ズマディスプレイパネル駆動方法において、例えば図2 に示す如く、該第1電圧のパルスは、該第1の放電開始 電圧より髙く且つ放電により生ずる該第3電圧が該第1 の放電開始電圧より高くなる電圧パルスであり、該第1 電圧のパルス印加後の該第1、第2及び第3の電極の電 位を互いに等しくする。

【0022】図1では第2電極Yiが第2基板に形成さ れているが、本発明は、公知の構成のように、第2電極 Yiが第1基板側の、第1電極X及び第2電極Yiに対 し該第2基板側又はこれと反対側に形成されていても適 用可能である。本第1発明のリセット工程での動作を、 図1及び図2を参照して説明する。

(a) リセット工程前では、壁電荷の量が前の表示状態 20 で異なるが、次の (b) での第1電圧のバルスが該壁電 荷に上乗せされるように、維持工程を終了する。

【0023】(b)第1電極Xと第2電極Yiとの間に 印加される第1電圧のパルスは、第1電極Xと第2電極 Yiとの間の第1の放電開始電圧より高いので、壁電荷 が存在しなくてもこれら電極間に、維持放電工程での放 電に比し大規模の放電が生ずる。

(c) 放電により生じた電子及び正イオンは、これと逆 極性の第1電極X又は第2電極Yiに引きつけられ、誘 電体層1の表面に蓄積され、第1電極X側の第1壁電荷 30 及び第2電極Yi側の第2壁電荷となる。これら壁電荷 は放電空間内の電界強度を低減させるので、放電は直ち に収束に向かい、1~数μsで終結する。

【0024】 (d) 第1電圧のパルスは、この1壁電荷 と第2壁電荷との間の第3電圧が第1の放電開始電圧よ り高くなる電圧パルスであるので、維持放電工程での放 電に比し大規模の放電が再度生ずる。

(e) この大規模放電と、第1、第2及び第3の電極の 電位が互いに等しいこととから、壁電荷は殆ど蓄積され ず且つ空間電荷は殆ど完全に中和される。維持放電程度 40 では、第1、第2及び第3の電極の電位を互いに等しく しても、このような自己消去放電は生じない。

【0025】 (f) 空間には、再結合しきれない多少の 電荷が漂っているが、この空間電荷は、次のアドレス放 電において、放電を起こし易くする種火の役割を果た す。自己消去放電がほぼ完全に行われるのに必要な待ち 時間は、セルの材質、寸法、封入ガスの種類及び密度等 により異なるが、5 μ s 程度以上である。待ち時間が長 すぎると、他の工程の時間が短縮され、また、プライミ

要がある。

【0026】この第1発明では、このような自己消去放 電を行って、壁電荷が殆ど完全に中和するようにしてい るので、点灯させるセルに書き込みを行う際には、第1 及び第2の電極付近の状態が均一化されている。これに より、書き込み工程でのパルスの第2電圧の採り得る範 囲が広くなり、書き込み放電前の電荷分布の状態や温度 の変化等によらず常時安定したアドレス放電を行うこと が可能となり、書き込みミスを防止して表示品質を向上 させることができる。

【0027】また、消灯させるセルについては、第1と 第2の電極間で放電が生じないようにできるので、最大 輝度と黒色表示の最小輝度との比が従来より髙くなり、 階調表示の品質が向上する。第1発明の第1態様では、 例えば図2(A)~(C)に示す如く、第1電圧のパル スを印加している間、第3電極Ajの電位を、第1電極 Xの電位と第2電極Yiの電位の略平均値にする。略平 均値は、平均値に近い方が好ましいが、(平均値) ± (第1電圧) / 4以内程度であればその効果が得られ る。

【0028】この第1態様では、第1電極Xに対する第 3電極Ajの電圧と第2電極Yjに対する第3電極Aj の電圧とが、絶対値が略等しく符号が逆になるので、第 3 電極 A j の正電荷に対する引力と負電荷に対する引力 が略等しくなり、第3電極Ai側で正電荷と負電荷が中 和して第3電極Ai側への壁電荷蓄積量が殆どOにな る。このため、第1発明の効果が高められる。

【0029】第1発明の第2態様では、例えば図2

(A) に示す如く、第1電圧のパルスを、第2電極Yi をグランドレベルにし第1電極Xに正の電圧パルスを印 加することにより生成する。この第2態様によれば、負 の髙圧パルスが不要であるので、駆動回路用電源を、簡 単、小型かつ安価に構成できる。

【0030】第1発明の第3態様では、例えば図2

(B) に示す如く、第1電圧のパルスを印加している 間、第3電極Ajの電位をグランドレベルにする。この 第3態様によれば、電源電圧を低くすることができる。 第1発明の第4態様では、例えば図2(A)~(C)に 示す如く、第1電圧のパルスの印加前及び後の第1、第 2及び第3の電極X、Yi及びAjの電位はグランドレ ベルである。

【0031】第1発明の第5態様では、例えば図6に示 す如く、リセット期間において、第1電圧のパルスを印 加した後、さらに、第1と第2の電極間に、第1の放電 開始電圧より低く、且つ、立ち上がりの傾斜が緩やかな 消去パルスを印加する。この第5態様によれば、異常セ ルであるために第1電圧パルスで消去できなかった第1 及び第2の壁電荷に消去パルスの電圧を上乗せして放電 させ壁電荷を消去させることができ、余剰点灯を防止し ング効果が小さくなるので、50μ s 程度以下にする必 50 て表示品質を向上させることができる。消去バルスの立 ち上がりの傾斜を緩やかにするのは、量にばらつきのあ る壁電荷を効率よく放電させるためである。

【0032】第1発明の第6態様では、例えば図6に示 す如く、第1電圧のパルスと消去パルスとの間の時間に おいて、第1と第2の電極間に、第1の放電開始電圧よ り低く極性が第1電圧と逆のパルスを印加し、次に、第 1の放電開始電圧より低く極性が第1電圧と同一のパル スを印加し、次に印加する消去パルス極性を第1電圧と 逆にする。

【0033】この第6態様によれば、異常セルであるた 10 めに第1電圧パルスで消去できなかった第1及び第2の 壁電荷の極性が統一され且つ増幅されるので、消去パル スで第5実施例よりも多く消去することができる。 異常 セルの割合は一般に少ないので、この消去により、書き 込みしなかった場合に維持放電工程で放電できない程度 壁電荷が残っていても問題はない。また、この残留壁電 荷の極性が、書き込み工程において第2電極と第3電極 との間の電圧を低下させる極性となるので、点灯させな いセルの放電が妨げられ、余剰点灯防止上好ましい。

【0034】第1発明の第7態様では、書き込み工程に 20 おいて、第2電圧は、第2と第3の電極間の第2の放電 開始電圧以上であり、第4電圧が機能する最小値をVs minとし、第1の放電開始電圧をfxymiとしたとき、第 1と第2の電極間にVsmin≦Vs<Vfxymiなる第5 電圧Vsのパルスを印加する。この第7態様によれば、 消灯させるセルについては、書き込み工程において確実 に第1と第2の電極間で放電が生じないようにすること ができる。

【0035】第1発明の第8態様では、第5電圧を第1 の放電開始電圧に近い値にする。この第8態様によれ ば、第2電極Yiと第3電極Ajとの間の小規模放電 で、充分に第1電極Xと第2電極Yiとの間の放電の引 き金となるので、駆動回路の消費電力を低減することが できる。第1発明の第9態様では、例えば図5に示す如 く、第2電圧のパルスは、グランドレベルに対し第2電 極Yiの電位を負にし且つ第3電極Ajをグランドレベ ルにした状態で第3電極Ajに印加した正パルスであ り、第5電圧のパルスは、第1電極Xの電位を第3電極 Ajの電位に等しくした状態で第2電極Yiに印加した 負パルスである。

【0036】この第9態様によれば、上記第8態様の効 果に加え、電源電圧の種類が1つ減るので、電源回路が より簡単となる。また、維持放電工程において維持放電 が可能な量の壁電荷を効率よく生成することができる。 第1発明の第10態様では、第2電極Yiの電位は、第 5 電圧の 1 / 4 ~ 3 / 4 程度である。

【0037】この第10態様によれば、セルに隔壁を設 けなくても、售き込み工程での放電による空間電荷が、 隣接セルへ飛来して、壁電荷を蓄積させることによる誤 様では、例えば図8に示す如く、第2電圧のパルスの幅 を、第5電圧のパルスの幅よりも狭くしている。

【0038】この第11態様によれば、書き込み工程に おいて第3電極Ajに蓄積される負の壁電荷量が低減す るので、維持工程での始めの維持パルスで第3電極Ai と第2電極Yiとの間の放電には到らず、正常な維持放 電が確保される。また、このように短くしても、第2電 圧のパルスは、第1と第2の電極間の放電に対し引き金 の役割を果たせばよいので、第2電圧はこの役割を果た すのに充分なパルス幅であれば第5電圧のパルスの幅よ りも狭くしても問題ない。このバルス幅の好ましい値 は、封入ガスの種類やセルの寸法及び材質によって異な るが、第2電圧のパルスの周期を3μsとした場合、1 ~ 2 μ s 程度である。

【0039】第1発明の第12態様では、例えば図8に 示す如く、維持放電工程において、第3電極Ajの電位 をグランドレベルに対し正の電位とする。この第12態 様によれば、書き込み工程で生じた第3電極Aj側の過 剰な負の壁電荷を正の電位で打ち消すことができるの で、維持工程で第3電極Ajと第2電極Yiとの間の放 電を防止でき、正常な維持放電が確保される。これによ り、表示ミスが防止されて、表示品質が向上する。ま た、維持放電の際にイオンが第3電極側へ飛来するのを 少なくして、第2基板側に形成された蛍光体の劣化を防 ぐことができる。

【0040】第1発明の第13態様では、例えば図7に 示す如く、維持放電工程の最初の第4電圧のパルスを印 加する前に、第1及び第2の電極に同時に、第3電極A jとの電位差が第4電圧の1/4~3/4程度の正のパ 30 ルスを印加する。この第13態様によれば、第2電極側 の過剰な正の壁電荷による電圧が該正パルスに上乗せさ れ、第2電極Yi側が第3電極Aj側より高い電位とな り、微弱な放電を起こすことができる。この放電によっ て、第3電極Aj側の過剰な負の壁電荷の一部が除去さ れるため、以降は正常な維持放電の継続が可能となる。 これにより、表示ミスが防止されて、表示品質が向上す

【0041】第1発明の第14態様では、維持放電工程 において、第3電極Ajに接続された駆動回路出力端を ハイインピーダンスにする。この第14態様によれば、 第3電極駆動回路の出力を一定に保持するための電力が 削減でき、低消費電力化を図ることができる。第1発明 の第15態様では、例えば図4に示す如く、リセットエ 程を全てのセルに対し同時に実行し、次に、第2電極Y iについて一方から他方へ1つずつ順に書き込み工程を 実行し、次に、全ての第1及び第2の電極について維持 放電工程を同時に実行する。

【0042】第2発明では、第1基板に第1及び第2の 他極が互いに平行に、表示ライン毎に対をなして配置さ 書き込みを防止することができる。第1発明の第11態 50 礼、複数の第1電極×が共通に接続され、該第1差板又

は該第1基板と雕間して対向配置された第2基板に、該 第1及び第2の電極と離間して交差するように第3電極 Ajが配置され、該第1及び第2の電極の表面が壁電荷 蓄積用の誘電体層で被われ、該第2基板側に蛍光体が形 成され、該第1基板と該第2基板との間の空間に放電用 のガスが封入され、該第1及び第2の電極と第3電極A j との各交差部にセルが形成された面放電型プラズマデ ィスプレイパネルに対し、該誘電体の表面の電荷分布を 均一にさせるために互いに隣接した該第1と第2の電極 間に第1電圧のパルスを印加して放電させ、点灯させる 10 該セルの該誘電体表面の第1電極Xに対応した部分及び 第2電極Yiに対応した部分にそれぞれ一定量以上で極 性が互いに逆の第1及び第2の壁電荷を蓄積させるため に、第2電極Yiと、点灯させる該セルに対応した第3 電極Aiとの間に第2電圧のパルスを印加して放電さ せ、該第1と第2の壁電荷間の第3電圧と、該第3電圧 と同一極性で第1電極Xと第2電極Yiとの間に印加す る第4 館圧との和が第1の放電開始電圧以上になる該セ ルを点灯させ、放電毎に該第1壁電荷及び該第2壁電荷 の極性が逆になるようにするために、互いに隣接した該 20 第1と第2の電極間に該第4電圧のパルスとして交流電 圧パルスを印加する面放電型プラズマディスプレイパネ ル駆動装置において、該面放電型プラズマディスプレイ パネル駆動装置は、該第1電圧のパルスを、該放電開始 電圧より高く且つ放電により生ずる該第3電圧が該第1 の放電開始電圧より高くなる電圧のパルスとし、該第1 電圧のパルス印加後の該第1、第2及び第3の電極の電 位を互いに等しくする。

$Vw + Vs \ge Vf$

を満たすように定められる。この様に定めることにより、選択ラインのみ、その全セルについて維持電極XとYsとの間で書き込み放電Wが生ずる。例えば、Vw=130V、Vs=180V、Vf=290Vであり、書き込みパルスの電圧Vw+Vsは維持パルスの電圧Vsよりも充分高いので、維持放電に比し大規模の放電が生ずる。この際、放電が進むにつれて、選択ラインの維持※

Vwall3>V f

を満たすように定められる。

【0048】(b)維持電極XとYsが同時に0Vに戻され、上式(5)により、維持電極X側の壁電荷と維持40電極Yi側の壁電荷との間の電圧で自己消去放電Cが生ずる。この放電においては、維持電極Xと維持電極Ysとアドレス電極Ajとの間の電位差がいずれも0Vであり、かつ、放電が大規模であるため、放電によって生じた空間電荷が維持電極X側、Ys側及びアドレス電極Aj側に壁電荷として殆ど蓄積されない(理論的には0)。したがって、空間電荷は、放電空間内で再結合し、殆ど完全に中和される。空間には、再結合しきれない多少の電荷が漂っているが、この空間電荷は、次のア★

V smin ≤ V s < V f xymin

*【0043】この第2発明によれば、上記第1発明と同じ効果が得られる。

[0044]

【実施例】以下、図面に基づいて本発明の好適な実施例を説明する。以下の各実施例においては、PDPは、例えば上述の図14に示すセル構造を有するものとする。また、選択された維持電極YiをYsで表し、非選択の維持電極YiをYtで表す。また、維持電極Ysを含む1行分のセルを選択ラインと称し、維持電極Ytを含む1行分のセルを選択ラインと称する。さらに、選択ラインのうち、点灯させるセルのアドレス電極AjをAaで表し、消灯させるセルのアドレス電極Ajをアドレス電極Abで表す。

【0045】 [第1実施例] 図3は、本発明の第1実施例のPDP駆動方法を示す電極印加電圧波形図であり、1駆動サイクル分を示す。この駆動方法は、線順次・書き込みアドレス方式であり、維持電極Yiは、Y1~Ynの順に1つずつ選択される。

【0046】(a) アドレス電極Aj及び維持電極Ytが0Vの状態で、維持電極Xに電位Vwの書き込みパルスが印加され、同時に、維持電極Ysに電位-Vsのパルスが印加される。なお、この(a) の前、すなわち、図3での1駆動サイクルの最後では、X電極に0又は正の壁電荷が蓄積され、維持電極Ysに0又は負の壁電荷が蓄積されている。この条件は、書き込みパルスの極性と1駆動サイクルの最後の維持パルスの極性とを逆にすることで満たされる。

【0047】電位Vw及びVsは、

. . . (4)

\cdots (5)

- ★ドレス放電において、放電を起こし易くする種火の役割 を果たす。この効果は、プライミング(種火)効果とし む て知られている。
 - 【0049】自己消去放電がほぼ完全に行われるのに必要な待ち時間は、セルの材質、寸法、封入ガスの種類及び密度等により異なるが、書き込みパルスが立ち下がってから $5\sim50\mu$ s 程度、例えば 20μ s である。
 - (c)維持電極X、Yt及びアドレス電極AbがOVの 状態で、維持電極Ysに電位-Vsのパルスが印加され、同時に、アドレス電極Aaに電位Vaのアドレスパ ルスが印加される。電位Va及びVsは、

$Va + Vs \ge Vfaymax$

を満たすように定められる。ここに、Vsminは、PDP内の全セルが後述の維持放電を持続できる最小電圧であり、VfxyminはPDP内での維持電極XとY1~Ynとの間の最小の放電開始電圧であり、Vfaymaxは、PDP内でのアドレス電極A1~Amと維持電極Y1~Ynとの間の最大の放電開始電圧である。

【0050】この様に定めることにより、点灯させるセルについては、アドレス電極Aaと維持電極Ysとの間でアドレス放電が生じ、この放電がトリガとなって直ち 10に、維持電極XとYsとの間にも放電が生じ、図15の従来の場合と異なり、維持電極X側とYs側にそれぞれ、後の維持放電バルスで維持放電を行うことが可能な量の負及び正の壁電荷が生成される。また、消灯させるセルについては、図15の従来の場合と異なり、維持電極XとYsとの間で放電が生じない。

【0051】(d)全電極を0Vにした状態で、維持電極Xに電位-Vsの維持パルスが印加され、アドレス放電が生じたセルについてのみ、維持放電が生ずる。この放電により、維持電極X側及びYi側にそれぞれ正及び20負の壁電荷が蓄積される。

(e) 全電極を 0 Vにした状態で、維持電極 $Y \text{ } 1 \sim Y \text{ } n$ に電位 - V s の維持パルスが印加され、 (d) で維持放電が生じたセルについてのみ、維持放電が生ずる。この放電により、維持電極 X 側及び Y i 側にそれぞれ負及び正の壁電荷が蓄積される。

【0052】以降、上記(d)及び(e)の動作が繰り返される。本第1実施例では、選択ラインの全セルに書き込み放電を行った後、自己消去放電を行って、壁電荷が殆ど完全に中和するようにしているので、選択ラインの全に表示データの書き込みを行う際には、選択ラインの全セルの状態が均一化されている。これにより、電位Vaの採り得る範囲が広くなり、書き込み放電前の電荷分布の状態や温度の変化等によらず常時安定したアドレス放電を行うことが可能となり、書き込みミスを防止して表示品質を向上させることができる。

【0053】また、上記(c)において、消灯させるセルについては図15の従来の場合と異なり、維持電極XとYsとの間で放電が生じないので、選択ラインの全セル放電発光の回数はWサイクルで2回となり、従来の2/3となる。このため、最大輝度と黒色表示の最小輝度との比が従来の3/2倍高くなり、階調表示の品質が向上する。

【0054】[第2実施例]図4は、本発明の第2実施例のPDP駆動方法を示す電極印加電圧波形図であり、 1サブフィールド分を示す。この駆動方法は、アドレス /維持放電分離型・書き込みアドレス方式であり、1サ プフィールドは、全セルの壁電荷を殆ど完全に消去する*

V s + V wall4 > V f > V s

を満たすように定められている。

16

 $\cdot \cdot \cdot (7)$

*ためのリセット期間と、点灯させる画素に対し後の維持 放電が可能な程度に壁電荷をアドレス放電により蓄積さ せるためのアドレス期間と、壁電荷に維持パルスを上乗 せして、アドレス放電が生じたセルに対してのみ維持放 電を生じさせるための維持放電期間とに分けられる。

【0055】電位Vw、Vs及びVaは上記第1実施例 と同一の条件式(4)~(7)を満たす。

(a) リセット期間では、最初に、全電極を 0 Vにした 状態で、維持電極 X に電位 V w の書き込みパルスが印加 され、同時に、維持電極 Y 1~Y n に電位 - V s のパル スが印加される。なお、この (a) の前、すなわち、図 4での 1 サブフィールドの最後では、維持電極に印加さ れる維持パルスの極性が書き込みパルスの極性と逆にな っているので、維持電極 X には 0 又は正の壁電荷が蓄積 され、維持電極 Y 1~Y n には 0 又は負の壁電荷が蓄積 されている。このため、壁電荷が存在する場合には必ず 書き込みパルスの電圧に上乗せされることになる。この 点に関しては、以下の各実施例においても同様である。 これにより、維持電極 X と Y 1~Y n との間で全面書き 込み放電Wが生ずる。

【0056】(b)維持電極XとYsが同時に0Vに戻されて等電位になることと、上式(5)とから、維持電極X側の壁電荷と維持電極Y1~Yn側の壁電荷との間の電圧で自己消去放電Cが生じ、壁電荷は殆ど蓄積されず且つ空間電荷は殆ど完全に中和される。次に、アドレス期間に移る。

【0057】(c)維持電極X、Y2~Yn及びアドレス電極Abが0Vの状態で、維持電極Y1に電位-Vsのパルスが印加され、同時に、アドレス電極Aaに電位Vaのアドレスパルスが印加される。これにより、第1選択ラインの点灯させるセルについては、アドレス電極Aaと維持電極Y1との間でアドレス放電が生じ、この放電がトリガとなって直ちに、維持電極XとY1との間にも放電が生じ、維持電極X側とY1側にそれぞれ、後の維持放電パルスで維持放電を行うことが可能な量の負及び正の壁電荷が生成される。また、消灯させるセルについては、アドレス放電が生じないので、維持電極XとY1との間の放電も生じない。

【0058】以降、維持電極Y2~Ynの順に(c)と同様の動作が行われる。次に、維持放電期間に移る。

(d) 全電極を0 Vにした状態で、維持電極Xに電位 V s の維持パルスが印加され、アドレス放電が生じたセルについてのみ、維持放電が生ずる。この放電により、維持電極X 側及びY 1 \sim Y n 側にそれぞれ正及び負の壁電荷が蓄積される。電位V s は、上式(2)に相当する、

· · · (2 A)

50 【0059】 (e) 全電極を0Vにした状態で、維持電

極Y1~Ynに電位-Vsの維持パルスが印加され、

(f) で維持放電が生じたセルについてのみ、維持放電 が生ずる。この放電により、維持電極X側及びYi側に それぞれ負及び正の壁電荷が蓄積される。以降、上記 (f) 及び (g) の動作が繰り返される。

【0.060】本第2実施例では、全面書き込み放電を行 った後、自己消去放電を行って、壁電荷が殆ど完全に中 和するようにしているので、アドレス期間で選択ライン に表示データの書き込みを行う際には、選択ラインの全 セルの状態が均一化されている。これにより、電位Va 10 の採り得る範囲が広くなり、書き込み放電前の電荷分布 の状態や温度の変化等によらず常時安定したアドレス放 電を行うことが可能となり、書き込みミスを防止して表 示品質を向上させることができる。

【0061】また、1サブフィールド内のリセット期間 における放電発光は2回であり、従来の2/3となる。 このため、最大輝度と黒色表示の最小輝度との比が従来 の3/2倍高くなり、階調表示の品質が向上する。

[第3実施例] 図5は、本発明の第3実施例のPDP駆 動方法を示す電極印加電圧波形図であり、1サブフィー 20 ルド分を示す。

【0062】維持放電及び全面書き込み放電を行う後述 の走査ドライバ及びX共通ドライバは、他のドライバに 比し電力消費が大きいため、大型となる。一方、負パル ス生成回路よりも正パルス生成回路の方が、簡単で安価 に構成できる。そこで、第3実施例では、リセット期間*

 $(V s + V w) / 4 \le V a w \le (V s + V w) / 2$

程度である。

【0065】(b)アドレス電極A1~Amと維持電極 (5) とから、維持電極X側の壁電荷と維持電極Y1~ Yn側の壁電荷との間の電圧で自己消去放電Cが生じ、 壁電荷は殆ど蓄積されず且つ空間電荷は殆ど完全に中和 される。次に、アドレス期間に移る。

【0066】(c)維持電極Xを電位Vaxにし、非選 択の維持電極Y2~Ynを電位-Vscにした状態で、※

 $V smin \le V a x + V y < V f xymin$

 $Va + Vy \ge V faymax$

を満たすように定められる。これにより、第1選択ライ ンの点灯させるセルについては、アドレス電極Aaと維 40 持電極Y1との間でアドレス放電が生じ、この放電がト リガとなって直ちに、維持電極XとY1との間にも放電 が生じ、維持電極X側とY1側にそれぞれ、後の維持放 電パルスで維持放電を行うことが可能な量の負及び正の 壁電荷が生成される。また、消灯させるセルについて は、アドレス放電が生ぜず、維持電極XとY1との間の 放電も生じない。

【0068】電位Vaxの好ましい値は、次の通りであ る。スイッチング回数が比較的多いアドレスドライバの 負担を少しでも軽減して、全消費電力を低減することが 50

*及び維持放電期間において、正パルスのみを使用する。 【0063】(a)リセット期間では、最初に、全電極 をOVにした状態で、維持電極Xに電位Vs+Vwの售 き込みパルスが印加され、同時に、アドレス電極A1~ Amに電位Vawのパルスが印加される。書き込みパル スを電位Vsと電位Vwとの和にしているのは、維持パ ルスにも使用される電位Vsの電源を主にし、ステップ アップ回路で電位Vsに電位Vwを上乗せして電位Vs + V w を生成するためである。

【0064】電位Vs+Vwは、上式(4)を満たすよ うに定められる。これにより、維持電極XとY1~Yn との間で全面書き込み放電Wが生ずる。この放電により アドレス電極A1~Am側に蓄積する壁電荷量は、アド レス電極A1~Am側の状態を均一にしてアドレス期間 で安定動作させるために、できるだけ少ない方が好まし い。ここで、Vaw= (Vs+Vw) / 2とすれば、維 持電極Xに対するアドレス電極A1~Amの電圧と維持 電極Y1~Ynに対するアドレス電極A1~Amの電圧 とが、絶対値が等しく符号が逆になるので、アドレス電 極A1~Amの正電荷に対する引力と負電荷に対する引 力が等しくなり、アドレス電極A1~Am側で正電荷と 負電荷が中和してアドレス電極A1~Am側への壁電荷 蓄積量が殆ど0になる。他方、電源回路を小型化するた めには、電位Vawは低い方が好ましい。これらのこと から、電位Vawの好ましい範囲は、

 $\cdot \cdot \cdot (8)$

※選択する維持電極Y1に電位-Vyのスキャンパルスが 印加され、同時に、アドレス電極Aaに電位Vaのアド Xとが同時に 0 Vに戻されて等電位になることと、上式 30 レスパルスが印加される。非選択の維持電極 Y 2 ~ Y n を電位-Vscにする理由は、後述のように電位Vaを 低くして消費電力を低減するためである。電位-Vsc の好ましい値は、(-Vy+Va)/2付近である。

【0067】電位Vax、Vy及び電位Vaは、上式 (6) 及び(7) に相当する、

· · · (6A)

· · · (7A)

好ましい。すなわち、アドレス電極に印加される電位V aを、上式 (7A) の制限下で低い電圧に設定すること が好ましい。アドレス電極Aaと維持電極Ysとの間の 放電を引き金として、維持電極XとYsの放電に移行 し、維持放電に必要な壁電荷を形成するというメカニズ ムからすると、電位Vaを低くするには、維持電極Xと Y s との間の電圧 V a x + V y を、上式 (6 A) の制限 下で大きくすることにより、アドレス電極Aaと維持電 極Ysとの間の小規模放電で、充分に維持電極XとYs との間の放電の引き金となるようにすればよい。

【0069】また、Vax=Vaとすれば、電源電圧の 種類が1つ減るので、電源回路が簡単となる。次に、維

20

持放電期間に移る。

(d) アドレス電極A1~AmをVs/2にし、維持電 極Xを0Vにした状態で、維持電極Y1~Ynに電位V sの維持パルスが印加される。

【0070】アドレス電極A1~Amが0Vのままであ ると、アドレス放電によって生成されたアドレス電極A 1~Am側の負の壁電荷と維持電極Y1~Yn側の正の 壁電荷とが、始めの維持パルスに上乗せされて作用する ため、維持電極XとY1~Ynとの間に維持放電が生ず る前に、アドレス電極A1~Amと維持電極Y1~Yn 10 との間で放電を開始して、維持電極XとY1~Ynとの 間の維持放電が生じなくなることがあり得る。これを防 ぐため、アドレス電極A1~Amに正の電圧(電位Vs /2) を印加して、アドレス電極A1~Am側の負の壁 電荷による電界を打ち消すようにしている。また、アド レス電極A1~Amを電位Vs/2にしておくことで、 電位Vawの場合と同じ理由により、維持放電の際にイ オンがアドレス電極Al~Am側へ飛来するのを少なく して、スパッタ等による蛍光体15の劣化を防ぐことが できる。

【0071】 電位 V s は、上式 (2A) を満たすように 定められており、維持電極XとY1~Ynとの間で全面 維持放電Sが生ずる。

(e) A1~Amを電位Vs/2にし、維持電極Y1~ YnをOVにした状態で、維持電極Xに電位Vsの維持 パルスが印加される。以降、維持電極Y2~Ynの順に 以上の (d) 及び (e) と同様の動作が行われる。

【0072】なお、維持放電期間において、最初の維持 パルスが維持電極Y1~Ynに印加されたときに、アド レス電極A1~Anの電位を電位Vs/2にし、その後 30 は、アドレス電極駆動回路の出力をハインピーダンス状 態にしてもよい。この場合、アドレス電極駆動回路の出 力を電位Vs/2に保持するための電力が削減でき、低 消費電力化を図ることができる。また、場合によって は、最初の維持パルスが印加される前にアドレス電極駆 動回路の出力端をハイインピーダンス状態にして、維持 放電の際にイオンがアドレス電極A1~Am側に蓄積さ れる量を低減させてもよい。

【0073】 [第4実施例] 図6は、本発明の第4実施 例のPDP駆動方法を示す電極印加電圧波形図であり、 1サプフィールドのリセット期間とアドレス期間とを示 す。

(a) 及び(b) での動作は、上記第3実施例の場合と 同一である。正常なセルは、(a)及び(b)での動作 により、壁電荷を完全に中和し、又は、壁電荷が残留し ていてもミス表示の原因にならない程度に中和すること ができる。

【0074】しかし、PDP作成の際のなんらかの原因 によって、セルの特性が通常と異なるために、自己消去 放電が不充分で多くの壁電荷が残ってしまったり、自己 50

消去放電が全く起こらずに全面書き込み放電の際に形成 された壁電荷がそのまま残ってしまう場合がある。これ らの異常セルは、アドレス放電をさせなくても維持放電 期間で発光し、余剰点灯となる。

【0075】そこで、本第4実施例では、これら壁電荷 をアドレス放電前に強制的に放電させて消去することに より、維持放電期間での余剰点灯を防止し、表示品質を 向上させる。

(b) から(c) までに必要な待ち時間は、上記第1実 施例と同一である。

(c) 全電極をOVにした状態で、維持電極Y1~Yn に電位Vsのパルスが印加される。これに応答して放電 するセルは、Y側に対し維持電極X側に相対的に負の壁 電荷が、維持放電可能な量残ってしまったセルである。 場合によっては、この放電により、壁電荷の極性が反転 して、維持電極X側に正の壁電荷が蓄積され、Y側に負 の壁電荷が蓄積される。電位Vsは、維持放電期間での 維持パルスの電位に必ずしも等しくする必要はなく、上 式 (6) を満たせばよい。

【0076】(d)全電極を0Vにした状態で、維持電 極Xに電位Vaのパルスが印加され、維持電極Y1~Y mに電位-Vyのパルスが印加される。すなわち、アド レス期間で維持電極XとYiとの間に印加される電圧の パルスが印加される。この電圧は、上式 (6A) でVa x=Vaとしたのを満たせばよい。これに応答して放電 するセルは、前記 (c) により又はその前に、Y側に対 し維持電極X側に相対的に正の壁電荷が、維持放電可能 な量残ってしまったセルである。この放電により、壁電 荷の極性が反転して、維持電極X側に負の壁電荷が蓄積 され、Y側に正の壁電荷が蓄積される。

【OO77】残留壁電荷の極性が、(c)及び(d)の 放電により統一される。また、(c)及び(d)の放電 により、壁電荷の電荷分布がより均一化され、かつ、次 の消去パルスの電圧が上乗せられて放電するに充分な壁 電荷の量に調整される。

(e) 全電極をOVにした状態で、維持電極Y1~Yn に、立ち上がりが緩やかな電位Vsの消去パルスが印加 され、同時に、アドレス電極A1~Amに電位Vawの パルスが印加される。これにより、セルによって放電開 始電圧にはらつきがあっても、大部分の壁電荷を消去可 能であり、少量の壁電荷が残留する。残留した壁電荷は 正電荷であり、次のアドレスパルスと逆極性となるの で、アドレス放電が生じ難く、余剰点灯が防止され、表 示品質が向上する。アドレス電極A1~Amに電位Va wのパルスを印加するのは、維持電極Y1~Ynとアド レス電極A1~Amとの間で不都合な放電が生ずるのを 避けるためである。

【0078】その後の動作は、上記第3実施例と同一で

[第5実施例]図7は、本発明の第5実施例のPDP駆

動方法を示す電極印加電圧波形図であり、1サブフィールド分を示す。リセット期間及びアドレス期間での動作は、上記第3実施例の場合と同一である。

【0079】リセット期間で全面自己消去放電が行われ、アドレス期間でアドレス放電が行われたセルは、維持電極X側に負の壁電荷が蓄積し、維持電極Yi側に正の壁電荷が蓄積し、アドレス電極Aj側に負の壁電荷が蓄積されている。何らかの原因で、アドレス電極Aj側に維持電極X側よりも大規模の負の壁電荷が蓄積された場合、維持パルスが印加されたときに、アドレス電極A 10 jに電位Vs/2の電位が印加されていても、アドレス電極Aj側の電位が維持電極X側の電位より低くなる場合には、維持電極Yiとアドレス電極Ajとの間で放電が生ずる。この放電が生ずると、維持電極XとYiとの間に放電が生ぜず、以降の維持放電が行えなくなる。

【0080】そこで、この第5実施例では、アドレス電極Aj側の過剰な負の壁電荷の一部を除去するために、アドレス電極Ajを電位Vs/2にした後に、維持電極X及びY1~Ynに電位Vsのパルスが印加される。この場合、維持電極Y1~Yn側の過剰な正の壁電荷によ 20る電圧が電位Vsに上乗せされ、維持電極Yi側がアドレス電極Aj側より高い電位となり、微弱な放電を起こすことができる。この放電によって、アドレス電極Aj側の過剰な負の壁電荷の一部が除去されるため、以降は正常な維持放電の継続が可能となる。これにより、表示ミスが防止されて、表示品質が向上する。

【0081】[第6実施例]図8は、本発明の第6施例のPDP駆動方法を示す電極印加電圧波形図であり、1サプフィールド分を示す。この第6実施例では、上記第5実施例で述べた問題点を別の方法で解決している。リ 30セット期間及び維持放電期間での動作は、上記第3実施例の場合と同一である。

【0082】アドレス期間において、アドレス電極Aa と維持電極Ysとの間で開始されたアドレス放電は、直 ちに維持電極XとYsとの放電に移行して、維持電極X 及びYsとの間で維持放電を行うことが可能な量の壁電 荷が生じ、放電を終了する。アドレス電極Aaに印加さ れる電位Vaのパルスは、維持電極XとYsとの間の放 電に対し引き金の役割を果たせばよいので、アドレス電 極Aaと維持電極Ysとの間で放電が開始された直後に 40 アドレス電極Aaの電位をOにする。この場合、アドレ ス電極Aaの電位は維持電極Xより低いので、維持電極 Xほど負の壁電荷を蓄積することはない。これにより、 始めの維持パルスでアドレス電極Aaと維持電極Ysと の間の放電には到らず、正常な維持放電が確保される。 アドレスパルスの好ましい幅は、封入ガスの種類やセル の寸法及び材質によって異なるが、アドレスサイクルを $3 \mu s$ とした場合、 $1 \sim 2 \mu s$ 程度である。

【0083】 [第7実施例] 図9は、本発明の第7実施 例のプラズマディスプレイ装置20のブロック図であ

る。プラズマディスプレイ装置20は、図6に示す駆動 方法を実施するためのものである。表示パネル21は、 一方のガラス基板上に互いに平行にアドレス電極 A 1 ~ Amが形成され、このガラス基板に対向する他方のガラ ス基板上に、アドレス電極A1~Amと直角な方向に維 持電極X及びY1~Ynが形成されている。維持電極X は、維持電極Y1~Ynの各々と対になっており、か つ、一端部が共通に接続されている。これら電極に印加 される電圧は、電源回路22で生成され、アドレスドラ イバ23、Y共通ドライバ24、走査ドライバ25及び X共通ドライバ26を介して該電極に供給される。アド レスドライバ23、Y共通ドライバ24、走査ドライバ 25及びX共通ドライバ26は、制御回路27からの信 号により制御される。制御回路27はこの信号を、外部 から供給される表示データDATA、表示データDAT Aに同期したドットクロックCLK、垂直同期信号VS YNC及び水平同期信号HSYNCに基づいて生成す

【0084】アドレスドライバ23は、制御回路27から直列の表示データ及びシフトバルスがそれぞれ直列データ入力端及びクロック入力端に供給されるシフトレジスタ231と、1行分の表示データがシフトレジスタ231の並列表示データが保持されるラッチ回路232と、ラッチ回路232の出力に基づいてオン/オフが定められ、駆動電圧出力のタイミングが制御回路27からの制御信号で制御されるアドレス電極駆動回路233とを有する。アドレス電極駆動回路233のm個の出力端はそれぞれ、アドレス電極系1~Amに接続されている。

【0085】走査ドライバ25は、サブフィールド内のアドレス期間の始端に同期して直列データ入力端に

'1'が供給され、アドレスサイクルに同期したシフトバルスがクロック入力端に供給されるY駆動回路252と、Y駆動回路252の各ビットの出力によりオン/オフが定められ、駆動電圧出力のタイミングが制御回路27からの制御信号で制御されるY駆動回路252とを有する。Y駆動回路252の出力端は、維持電極Y1~Ynに接続されている。Y共通ドライバ24は、Y駆動回路252を介して維持電極Y1~Ynに共通の駆動電圧を供給するためのものである。

【0086】図9中、電位Vccは論理回路用であり、電位Vdは駆動回路用である。表示パネル21の1個のセル10に対するアドレスドライバ23、Y共通ドライバ24、走査ドライバ25及びX共通ドライバ26の駆動回路部の概略構成を図10に示す。アドレス電極駆動回路233は、各jに共通の電圧ステップアップ回路233aと、出力端がアドレス電極Ajに接続されたAj駆動回路233bjとを有する。j=1~mの各々について、Aj駆動回路233bjの出力端がアドレス電極Ajに接続されるのに対し、1つの電圧ステップアップ

回路233aの出力端がA1~Am駆動回路233b1~233bmの各入力端に接続される。

【0087】電圧ステップアップ回路233aは、電位

Vaの電源配線がダイオードD1のアノード及び抵抗R 1の一端に接続され、抵抗 R 1の他端がツェナーダイオ ードD2のカソード、コンデンサC1の一端及びスイッ チ素子SW1の一端に接続されている。スイッチ素子S W1の他端はスイッチ素子SW2の一端及びコンデンサ C2の一端に接続され、コンデンサC2の他端はダイオ ードD1のカソードに接続されている。ツェナーダイオ 10 ードD2のアノード、コンデンサC1の他端及びスイッ チ素子SW2の他端は、グランド線に接続されている。 【0088】電圧ステップアップ回路233aは、アド レス期間においては、電位Vaを出力し、それ以外の期 間においては電位Vawを出力する。 コンデンサC1の 端子間電圧は、ツェナーダイオードD2の降伏電圧Va sに等しくなる。電圧ステップアップ回路233aの出 力電圧は、アドレス期間では、スイッチ素子SW1がオ フにされスイッチ素子SW2がオンにされて電位Vaと なり、アドレス期間以外では、スイッチ素子SW2がオ 200 フにされた後スイッチ素子SW1がオンにされて、コン デンサC1の電圧VaにコンデンサC2の電圧Vsが上 乗せられ、Vaw=Va+Vasとなる。

【0089】Aj駆動回路233bjは、ダイオードD3のアノード、ダイオードD4のカソード、スイッチ素子SW3の一端及びスイッチ素子SW4の一端が共にアドレス電極Ajに接続され、ダイオードD3のカソード及びスイッチ素子SW3の他端が電圧ステップアップ回路233aの出力端に接続され、ダイオードD4のアノード及びスイッチ素子SW4の他端がグランド線に接続30されている。

【0090】Aj駆動回路233bjは、スイッチ素子SW3をオンにし、スイッチ素子SW4をオフにすると、アドレス電極Ajに電圧ステップアップ回路233aの出力電位Va又はVawが印加され、また、スイッチ素子SW3をオフにし、スイッチ素子SW4をオンにすると、アドレス電極Ajが0Vになる。Y駆動回路は、各iに共通のY共通ドライバ24と、出力端が維持電極Yiに接続されたYi駆動回路252iとを有する。i=1~nの各々について、Yi駆動回路252iの出力端が維持電極Yiに接続されるのに対し、1つのY共通ドライバ24の出力端がY1~Yn駆動回路2521~252nの各入力端に接続される。

【0091】 Y共通ドライバ24は、スイッチ素子SW 5の一端がグランド線に接続され、スイッチ素子SW 6 の一端が電位Vsの電源配線に接続されている。スイッチ素子SW 5の他端は、一方ではダイオードD 5のアノードからカソードを通って電位Vsの電源配線に接続され、他方ではダイオードD 6のカソードからアノードを通って配線SDに接続されている。配線SDは、一方で 50

はダイオードD7のカソードからアノードを通りスイッチ素子SW7を介して電位-Vscの電源配線に接続され、他方ではスイッチ素子SW8を介して電位-Vyの電源配線に接続されている。スイッチ素子SW6の他端は、一方ではダイオードD8のカソードからアノードを通ってグランド線に接続され、他方ではスイッチ素子SW10を介して配線SUに接続されている。配線SUは、一方では抵抗R2及びスイッチ素子SW9を介して電位Vsに接続され、他方ではスイッチ素子SW11を介して電位-Vyの電源配線に接続されている。

【0092】Yi駆動回路252iは、ダイオードD9のアノード、ダイオードD10のカソード、スイッチ素子SW12の一端及びスイッチ素子SW13の一端が共に維持電極Yiに接続され、ダイオードD9のカソード及びスイッチ素子SW12の他端が配線SDに接続され、ダイオードD10のアノード及びスイッチ素子SW13の他端が配線SUに接続されている。

【0093】リセット期間においては、スイッチ素子SW8をオンにし、その他のスイッチ素子をオフにすることにより、維持電極YiからダイオードD9、配線SD及びスイッチ素子SW8を通って電流が流れ、維持電極Yiが電位-Vyとなり、また、スイッチ素子SW9をオンにし、その他のスイッチ素子をオフにすることにより、抵抗R2及びダイオードD10を通って、立ち上がりが緩やかな消去パルス用の電位VSが維持電極Yiに印加される。この立ち上がりの傾斜は、抵抗R2と電極間静電容量とによって決定される。

【0094】リセット期間及び維持放電期間での維持パ ルス用の電位Vsは、スイッチ素子SW6及びSW10 をオンにし、その他のスイッチ素子をオフにすることに より、スイッチ素子SW6、SW10及びダイオードD 10を通って維持電極Yiに印加される。アドレス期間 においては、スイッチ素子SW7とSW11をオンに し、その他のスイッチ素子をオフにすることにより、非 選択電位である-Vscと選択電位である-VyとがY i駆動回路252iに与えられる。この際、スイッチ素 子SW10をオフにすることにより、ダイオードD8を 通って電位-Vyの電源配線へ電流が流れるのが阻止さ れ、また、スイッチ素子SW5に接続されている保護用 の逆ダイオード (図11) を経由して配線SDへ電流が 流れ込むのをダイオードD6により阻止している。この 状態で、スイッチ素子SW13をオンにすることにより スキャンバルス用の電位-Vyが維持電極Yiに印加さ れ、スイッチ素子SW12をオンにすることにより非選 択電位であるーVscが維持電極Yiに印加される。こ の動作は、i=1~nについて順次行われる。

【0095】正電位の維持電極Yiを0Vに低下させる場合には、スイッチ案子SW5をオンにし、その他のスイッチ素子をオフにする。これにより、維持電極YiからダイオードD9、D6及びスイッチ素子SW5を通っ

て、維持電極YiをOVにするための電流が流れる。負電位の維持電極YiをOVに上昇させる場合には、スイッチ素子SW1Oをオンにし、その他のスイッチ素子をオフにする。これにより、ダイオードD8からスイッチ素子SW1O及びダイオードD1Oを通って、維持電極YiをOVにするための電流が流れる。

【0096】 X共通ドライバ26は、コンデンサC3の一端が、一方ではスイッチ素子SW14を介して電位Vwの電源配線に接続され、他方ではスイッチ素子SW15を介してグランド線に接続されている。コンデンサC103の他端は、一方ではダイオードD11のカソードからアノードを通って電位Vsの電源配線に接続され、他方ではスイッチ素子SW16を介して維持電極Xに接続されている。維持電極Xはまた、一方ではスイッチ素子SW17を介してグランド線に接続され、他方ではダイオードD12のカソードからアノードを通りスイッチ素子SW18を介して電位Vaの電源配線に接続されている。スイッチ素子SW16及びSW17にはそれぞれ逆方向のダイオードD13及びD14が並列接続されている。

【0097】ダイオードD11と、コンデンサC3と、 スイッチ素子SW13と、スイッチ素子SW14とは、 ステップアップ回路を構成しており、スイッチ素子SW 14をオフにし、スイッチ素子SW15をオンにするこ とによりダイオードD11のカソード電位がVsとな り、この状態かちスイッチ素子SW15をオフにした後 スイッチ素子SW14をオンにすることにより、ダイオ ードD11のカソード電位がVsからVs+Vwにステ ップアップされる。したがって、スイッチ素子SW16 をオンにすると、維持パルス用の電位 V s 又は書き込み 30 パルス用の電位Vs+Vwが維持電極Xに印加される。 【0098】アドレス期間では、スイッチ素子SW18 をオンにし、その他のスイッチ素子をオフにすることに より、維持電極Xが電位Vaに保持される。維持電極X をOVに低下させる場合には、スイッチ素子SW16及 びSW18をオフにして、スイッチ素子SW17をオン にする。電源電圧は、例えば、放電開始電圧がVfxymi n = 2 9 0 V、V f aymax = 1 8 0 Vのとき次の通りであ る。

[0099]

V s = 180 V, V a = 50 V, V w = 130 V -V y = -150 V, -V s c = -50 VV c c = 5 V, V d = 15 V

図11は、図10の中で特徴を有するY駆動回路の詳細を示す。スイッチ素子SW5、SW6、SW8、SW10、SW11及びSW13はnMOSトランジスタを有し、スイッチ素子SW7、SW9及びSW12はpMOSトランジスタを有する。これらMOSトランジスタのソース・ドレイン間に逆方向接続されたダイオードは、

SW7~9及びSW11のMOSトランジスタのゲート・ソース間に接続された抵抗は、デート電位のリーク抵抗であり、該抵抗に並列接続されたツェナーダイオードは、MOSトランジスタをオンにする際にゲート・ソース間の電圧を規定するものである。

【0100】M1~M5は、PDP駆動回路に一般的に使用されている、MOS-FETドライバIC(例えば、TI社製、型式SN75372P)であり、駆動対象のMOSトランジスタをオンにする際に必要なゲート電圧Vgsを発生するものである。このオン電圧Vgsのパルス化はコンデンサで行われる。M6は、この出力端に図示のスイッチ素子SW5及びSW6を接続することにより、プッシュブル回路を構成することが可能なMOS-FETドライバIC(例えば、IR社製、型式IR2110)である。

【0101】M7は、3端子レギレータであり、入力 I 側のコンデンサに蓄えられた電位V d から、Y i 駆動回路 252 i 用のフローテング 5V (F. V c c) を生成する。入力 I 側のコンデンサが充電される期間は、スイッチ素子 S W 5 がオンして配線 S Uが 0 V に保たれた時のみである。スイッチ素子 S W 1 9 は、M 7 の入力端に印加される電位V d のオン/オフと、スイッチ素子 S W 1 0 のオン動作とを行うためのものである。

【0102】スイッチ素子SW11は、スイッチ素子S W10のオフと、アドレス期間においてスキャン電位を 配線SUに印加する機能とを兼用しているので、回路が 簡単になっている。スイッチ素子SW11をオンにする と、配線SUから、スイッチ素子SW10のゲート・ソ ース間に接続されたダイオード及びツェナーダイオード を経由してスイッチ素子SW11を通り、電源配線電位 -Vyに電流が流れ、配線SUが電位-Vyまで低下 し、他方では、スイッチ素子SW10のゲート・ソース 間の電圧が0Vになってスイッチ素子SW10が自動的 にオフになる。これにより、効率のよい動作が行われ、 回路も簡単になる。再びスイッチ素子SW10をオンに する場合には、スイッチ素子SW5をオンにして配線S D及びSUを0Vにし、スイッチ素子SW19をオンに してスイッチ素子SW10にオン電圧Vgsを与える。 【0103】通常の設計では、スイッチ素子SW10用 40 のドライバをフローテング構成で新たに設ける必要があ るが、本実施例によれば、これを設けることなく、上記 のように効率のよい動作を安価な回路構成で実現でき る。図12及び図13は、図10中の、電極の印加電圧 波形及びスイッチ素子のオン/オフを示す。図中の数値 は、一例である。図12及び誘電帯層12の説明は、以 上の説明から容易に理解できることと、重複説明を避け るため、省略する。

Sトランジスタを有する。これらMOSトランジスタの 【0104】なお、本発明には外にも種々の変形例が含 ソース・ドレイン間に逆方向接続されたダイオードは、 まれる。例えば、本発明が適用されるPDPのセル構造 そのMOSトランジスタの保護用である。スイッチ素子 50 は図14の型に限定されず、互いに並行な一対のX維持

電極とYi維持電極と、これらと離間して交差するアド レス電極とを有するものであればよく、これら3電極が 同一基板側に配置されていてもよい。

[0105]

【発明の効果】以上説明した如く、本発明に係る面放電 型プラズマディスプレイパネルの駆動方法及び駆動回路 によれば、自己消去放電を行って、壁電荷が殆ど完全に 中和するようにしているので、点灯させるセルに書き込 みを行う際には、第1及び第2の電極付近の状態が均一 化されており、これにより、書き込み工程でのパルスの 10 第2電圧の採り得る範囲が広くなり、書き込み放電前の 電荷分布の状態や温度の変化等によらず常時安定したア ドレス放電を行うことが可能となり、書き込みミスを防 止して表示品質を向上させることができるという優れた 効果を奏する。また、消灯させるセルについては、第1 と第2の電極間で放電が生じないようにできるので、最 大輝度と黒色表示の最小輝度との比が従来より高くな り、階調表示の品質が向上するという優れた効果を奏す

【0106】本方法発明の第1態様では、第1電極に対 20 する第3電極の電圧と第2電極に対する第3電極の電圧 とが、絶対値が略等しく符号が逆になるので、第3電極 の正電荷に対する引力と負電荷に対する引力が略等しく なり、第3電極側で正電荷と負電荷が中和して第3電極 側への壁電荷蓄積量が殆ど0になり、このため、第1発 明の効果が髙められる。

【0107】本方法発明の第2態様によれば、負の髙圧 パルスが不要であるので、駆動回路用電源を、簡単、小 型かつ安価に構成できるという効果を奏する。本方法発 明の第3態様によれば、電源電圧を低くすることができ 30 るという効果を奏する。本方法発明の第5態様によれ ば、異常セルであるために第1電圧パルスで消去できな かった第1及び第2の壁電荷に消去パルスの電圧を上乗 せして放電させ壁電荷を消去させることができ、また、 消去パルスの立ち上がりの傾斜を緩やかにしているの で、量にばらつきのある壁電荷を効率よく放電させるこ とができ、余剰点灯を防止して表示品質を向上させるこ とができるという効果を奏する。

【0108】本方法発明の第6態様によれば、異常セル であるために第1電圧パルスで消去できなかった第1及 40 び第2の壁電荷の極性が統一され且つ増幅されるので、 消去パルスで第5実施例よりも多く消去することがで き、また、この残留壁電荷の極性が、書き込み工程にお いて第2電極と第3電極との間の電圧を低下させる極性 となるので、点灯させないセルの放電が妨げられ、余剰 点灯をより確実に防止することができるという効果を奏 する。

【0109】本方法発明の第7態様によれば、消灯させ るセルについては、 ひき込み工程において確実に第1と 第2の電極間で放電が生じないようにすることができ、

コントラストが向上するという上記本発明の効果が高め られる。本方法発明の第8態様によれば、第2電極と第 3 電極との間の小規模放電で、充分に第1 電極と第2電 極との間の放電の引き金となるので、駆動回路の消費電 力を低減することができるという効果を奏する。

【0110】本方法発明の第9態様によれば、上記第8 態様の効果に加え、電源電圧の種類が1つ減るので、電 源回路がより簡単となり、また、維持放電工程において 維持放電が可能な量の壁電荷を効率よく生成することが できるという効果を奏する。本方法発明の第10態様に よれば、セルに隔壁を設けなくても、書き込み工程での 放電による空間電荷が、隣接セルへ飛来して、壁電荷を 蓄積させることによる誤客き込みを防止することができ るという効果を奏する。

【0111】本方法発明の第11態様によれば、書き込 み工程において第3電極に蓄積される負の壁電荷量が低 減するので、維持工程での始めの維持パルスで第3電極 と第2電極との間の放電には到らず、正常な維持放電が 確保されるという効果を奏する。本方法発明の第12態 様によれば、書き込み工程で生じた第3電極側の過剰な 負の壁電荷を正の電位で打ち消すことができるので、維 持工程で第3電極と第2電極との間の放電を防止でき、 正常な維持放電が確保され、これにより、表示ミスが防 止されて、表示品質が向上し、また、維持放電の際にイ オンが第3電極側へ飛来するのを少なくして、セルの劣 化を防ぐことができるという効果を奏する。

【0112】本方法発明の第13態様によれば、第2電 極側の過剰な正の壁電荷による電圧が該正パルスに上乗 せされ、第2電極側が第3電極側より高い電位となり、 微弱な放電を起こすことができ、この放電によって、第 3電極側の過剰な負の壁電荷の一部が除去されるため、 以降は正常な維持放電の継続が可能となり、表示ミスが 防止されて、表示品質が向上するという効果を奏する。 【0113】本方法発明の第14態様によれば、第3電

極駆動回路の出力を一定に保持するための電力が削減で き、低消費電力化を図ることができるという効果を奏す る。

【図面の簡単な説明】

【図1】本発明の原理を示す壁電荷自己消去工程図であ

【図2】図1の工程を行わせるための電極印加電圧波形 例示図である。

【図3】本発明の第1実施例のプラズマディスプレイバ ネル駆動方法を示す電極印加電圧波形図である。

【図4】本発明の第2実施例のプラズマディスプレイパ ネル駆動方法を示す電極印加電圧波形図である。

【図5】本発明の第3実施例のプラズマディスプレイパ ネル駆動方法を示す電極印加電圧波形図である。

【図6】本発明の第4実施例のブラズマディスプレイバ 50 ネル駆動方法を示す電極印加電圧波形図である。

【図7】本発明の第5実施例のプラズマディスプレイバネル駆動方法を示す電極印加電圧波形図である。

【図8】本発明の第6実施例のプラズマディスプレイバネル駆動方法を示す電極印加電圧波形図である。

【図9】本発明の第7実施例のプラズマディスプレイ装置のブロック図である。

【図10】図9の装置の1つの表示セルに対する駆動回路概略図である。

【図11】図10中のY駆動回路の詳細図である。

【図 1 2 】図 1 0 の回路の、印加電圧波形及びスイッチ 10 素子のオン/オフを示す図である。

【図13】図12の続きを示す図である。

【図14】プラズマディスプレイパネルのセル断面構成 図である。

【図15】従来の第1のプラズマディスプレイパネル駆動方法を示す電極印加電圧波形図である。

【図16】図15の駆動方法において、各表示ラインの 駆動サイクルの変化を示す図である。

【図17】従来の第2のプラズマディスプレイパネル駆動方法を示す電極印加電圧波形図である。

【図18】図17の方法を用いて256階調表示するための1フレームの構成を示す図である。

【符号の説明】

【図1】

本発明の原理を示す壁電荷自己消去工程図

- 10 セル
- 11、14 ガラス基板
- 12 誘電帯層
- 13 保護膜
- 15 蛍光体
- 16 隔壁
- 17 放電空間
- 20 プラズマディスプレイ装置
- 21 表示パネル
- 22 電源回路
- 23 アドレスドライバ
- 24 Y共通ドライバ
- 25 走査ドライバ
- 26 X共通ドライバ
- 27 制御回路
- 231、251 シフトレジスタ
- 232 ラッチ回路
- 233 アドレス電極駆動回路
- 252 Y駆動回路
- 20 233a 電圧ステップアップ回路
 - 233bi Aj駆動回路
 - 233b1 アドレス電極駆動回路
 - 252 i Y i 駆動回路

【図2】

図1の工程を行わせるための電極印加電圧波形例示図

[図3]

本発明の第1実施例のプラズマディスプレイパネル駆動 方法を示す電極印加電圧波形図

【図14】

プラズマディスプレイパネルのセル断面構成図

【図4】

本発明の第2実施例のプラズマディスプレイパネル駆動 方法を示す電極印加電圧波形図

【図16】

図15の駆動方法において、各表示ラインの 駆動サイクルの変化を示す図

1型動サイクル															
表示ライン1	₩	S	S	S	S	s	S	S	S	s	S	S	\$	S	\bigcup
2	s	₩	S	S	S	S	S	S	S	S	S	S	S	S	
1 3	S	s	W	S	S	S	S	S	S	S	S	S	S	S	[]
4	\$	\$	S	W	S	S	S	S	S	S	S	S	S	S	П
* 5 _.	S	5	5	S	W	S	S	S	S	\$	S	S	S	S	
6	\$	5	S	\$	S	W	S	S	s	S	S	S	S	S	7
7	s	5	\$	S	S	\$	W	S	S	S	S	S	S	S	
	ت	\cup		_				_	_	_	_				–
						ᇘ	r Ei		-						

W:香換えの起動サイクル S:現フィールドの維持放電のみの運動サイクル S:削フィールドの維持放電のみの駆動サイクル [図5]

本発明の第3実施例のブラズマディスプレイパネル駆動 方法を示す電極印加電圧波形図

【図6】

本発明の第4実施例のプラズマディスプレイパネル駆動 方法を示す電極印加電圧波形図

【図7】

本発明の第5実施例のブラズマディスプレイパネル駆動 方法を示す電極印加電圧波形図

[図8]

本発明の第6実施例のプラズマディスプレイパネル駆動 方法を示す電極印加電圧波形図

【図9】

[図10]

図9の装置の1つの表示セルに対する駆動回路概略図

【図11】

図10中の維持電極Y側駆動回路の詳細図

【図12】

図10の回路の、電極印加電圧波形及びスイッチ素子のオン・オフ波形を示す図

【図13】

図12の続きを示す波形図

【図15】

従来の第1のブラズマディスプレイパネル駆動方法を示す 電極印加電圧波形図

図17の方法を用いて256階調表示するための 1フィールドの構成図

[図17]

従来の第2のプラズマディスプレイパネル駆動方法を示す 電極印加電圧波形図

