

IIC1253 — Matemáticas Discretas — 1' 2022

PAUTA INTERROGACIÓN 2

Pregunta 1

Sea A un conjunto y $\sim \subseteq A \times A$ una relación de equivalencia. Demuestre que el conjunto cuociente A/\sim es una partición de A.

Solución:

Se demuestran las siguientes tres propiedades:

1. $\forall X \in A/\sim . X \neq \emptyset$

Sea $X \in A/\sim$. Se quiere demostrar que $X \neq \emptyset$

Por definición de A/\sim , sabemos que existe un $x\in A$ tal que $X=[x]_{\sim}$, entonces por la propiedad 1 de las clases de equivalencia $(\forall x\in A.\ x\in [x]_{\sim})$, se tiene que:

$$\Rightarrow x \in [x]_{\sim}$$

$$\Rightarrow x \in X$$

Por lo tanto, $X \neq \emptyset$

** También, se puede justificar usando la definición de las clases de equivalencia, argumentando que la relación es relfeja

Dado lo anterior la distribución de puntaje es la siguiente:

- (1.5 Puntos) Por desarrollo
- (0.5 Puntos) Por justificación
- 2. $|A| \sim = A$

Sea $A/\sim=\{[x]_{\sim}\subseteq A\mid x\in A\}$. Utilizando esta definición, se debe demostrar que $\bigcup A/\sim\subseteq A$ y $A\subseteq\bigcup A/\sim$.

- \bullet Por definición de A/\sim , se obtiene directamente que $\bigcup A/\sim\subseteq A$
- $A \subseteq \bigcup A / \sim$. Sea $x \in A$.

 \Rightarrow Por definición de A/\sim se tiene que $[x]_{\sim}\in A/\sim$ y, por propiedad 1 de la definición de clases de equivalencia, se obtiene $x\in [x]_{\sim}$.

$$\Rightarrow x \in \bigcup A/\sim$$

Por lo tanto, $\bigcup A/\sim = A$.

Dado lo anterior la distribución de puntaje es la siguiente:

- (0.5 Puntos) Por mostrar que $\bigcup A / \sim \subseteq A$
- (1.5 Puntos) Por mostrar que $A \subseteq \bigcup A / \sim$. (1 Punto sin justificación).
- 3. $\forall X, Y \in A/\sim$. $X \neq Y \to X \cap Y = \emptyset$ Sea $X, Y \in A/\sim$ tales que $X \neq Y$.
 - Sabemos que existen $x, y \in A$ tales que $[x]_{\sim} = X$ y $[y]_{\sim} = Y$.
 - Usando la propiedad 2 de clases de equivalencia se tiene que como $[x]_{\sim} \neq [y]_{\sim}$, entonces $x \not\sim y$.
 - Finalmente usando la propiedad 3 se obtiene $x \nsim y \to [x]_{\sim} \cap [y]_{\sim} = \emptyset$.

Por lo tanto concluimos que $X \cap Y = \emptyset$.

Dado lo anterior la distribución de puntaje es la siguiente:

- (0.5 Puntos) Por llegar al primer item correcto.
- (0.75 Puntos) Por segundo item. (0.5 Puntos sin justificación).
- (0.75 Puntos) Por tercer item. (0.5 Puntos sin justificación).

Pregunta 2

Para $I \subseteq \mathbb{N}$, decimos que I es un *intervalo* si existen $a, b \in \mathbb{N}$ tal que:

$$I = \{c \in \{0,...,n\} \mid a \le c \le b\}$$

y lo denotamos por [a, b]. Sea $\mathcal{X} = \{[a, b] \mid a, b \in \mathbb{N} \text{ y } a \leq b\}$, esto es, el conjunto de todos los intervalos en \mathbb{N} . Se define la relación $R \subseteq \mathcal{X} \times \mathcal{X}$ entre intervalos tal que $(I_1, I_2) \in R$ si, y solo si, para todo $a_1 \in I_1$ y para todo $a_2 \in I_2$ se cumple que $a_1 \leq a_2$. Por último, sea R^r la clausura refleja de R.

Pregunta 2.a

Demuestre que R^r es un orden parcial sobre \mathcal{X} .

Solución:

PD: \mathbb{R}^r es orden parcial.

Para esto, es necesario demostrar que la relación es refleja, antisimetrica y transitiva.

- Refleja:
 - Como $R^r = R \cup \{(I, I) \mid I \in X\}$, entonces por definición, para todo $I \in X$, $(I, I) \in R^r$, y por tanto es refleja.
- Antisimetrica:

Suponga que $(I_1, I_2) \in R^r$ y $(I_2, I_1) \in R^r$.

PD: $I_1 = I_2$

Como $R^r = R \cup \{(I, I) \in X\}$, entonces tenemos dos posibles casos: (1) $(I_1, I_2) \in \{(I, I) \mid I \in X\}$ y $(I_2, I_1) \in \{(I, I) \mid I \in X\}$, o (2) $(I_1, I_2) \in R$ y $(I_2, I_1) \in R$.

- (1) Si $(I_1, I_2) \in \{(I, I) \mid I \in X\}$, entonces se cumple que $I_1 = I_2$.
- (2) Si $(I_1, I_2) \in R$ y $(I_2, I_1) \in R$: como I_1 e I_2 son intervalos, suponga que $I_1 = [a_1, b_1]$ y que $I_2 = [a_2, b_2]$, luego:
 - Como $(I_1, I_2) \in R$, entonces $b_1 \leq a_2$.
 - Como $(I_2, I_1) \in R$, entonces $b_2 \le a_1$.

Por ende, si juntamos lo anterior, queda:

$$a_1 \le b_1 \le a_2 \le b_2 \le a_1$$

Por lo que se debe cumplir:

$$a_1 = b_1 = a_2 = b_2 = a_1$$

Y por lo tanto:

$$I_1 = I_2 = [a, a]$$

■ Transitiva:

Suponga que $(I_1, I_2) \in R^r$ y que $(I_2, I_3) \in R^r$ PD: $(I_1, I_3) \in R^r$

- (1) Si $I_1 = I_2$ o $I_2 = I_3$, entonces tenemos directamente que $(I_1, I_3) \in \mathbb{R}^r$.
- (2) Si $I_1 \neq I_2$ y $I_2 \neq I_3$, entonces $(I_1, I_2) \in R$ y $(I_2, I_3) \in R$. Como I_1, I_2 , y I_3 son intervalos, entonces sea $I_1 = [a_1, b_1]$, $I_2 = [a_2, b_2]$ y $I_3 = [a_3, b_3]$. Demostraremos que $(I_1, I_3) \in R$, y para eso tomemos cualquier $a \in I_1$ y $a' \in I_3$.

PD: $a \leq a'$

- Como $a \in I_1$ y $(I_1, I_2) \in R$, entonces $a \leq a_2$.
- Como $a' \in I_3$ y $(I_2, I_3) \in R$, entonces $a_2 \leq a'$.

Por lo que se cumple $a \leq a'$, y por ende se cumple que $(I_1, I_3) \in R$, lo que implica que $(I_1, I_3) \in R^r$.

Dado lo anterior la distribución de puntaje es la siguiente:

- (1 Punto) Por la demostración de la propiedad refleja.
- (0.25 Puntos) Por la demostración del caso (1) de la propiedad antisimetrica.
- (0.75 Puntos) Por la demostración del caso (2) de la propiedad antisimetrica.
- (0.25 Puntos) Por la demostración del caso (1) de la propiedad transitiva.
- (0.75 Puntos) Por la demostración del caso (2) de la propiedad transitiva.

Pregunta 2.b

Demuestre que existe $S \subseteq \mathcal{X}$ con $S \neq \emptyset$ tal que S NO tiene elemento mínimo según R^r .

Solución:

Para responder esta pregunta, un ejemplo bastaba. Un ejemplo posible es $S = \{I_1, I_2\}$ con $I_1 = [1, 3]$ y $I_2 = [2, 4]$. Después había que demostrar que no tiene mínimo:

- Como $3 \in I_1$, $2 \in I_2$ y 2 < 3, entonces $(I_1, I_2) \notin R^r$.
- Como $4 \in I_2$, $3 \in I_1$, y 3 < 4, entonces $(I_2, I_1) \notin R^r$.

Entonces, como I_1 e I_2 son incomparables, S no tiene mínimo.

Dado lo anterior la distribución de puntaje es la siguiente:

- (2 Puntos) Por encontrar un ejemplo de S.
- (1 Punto) Por demostrar correctamente por qué se cumple que S no tiene mínimo.

Pregunta 3

Sea A un conjunto, y $S,T\subseteq A\times A$ ambas relaciones de equivalencia sobre A. Demuestre que:

$$S \circ T = T \circ S \quad \Leftrightarrow \quad S \circ T$$
 es una relación de equivalencia.

Solución:

- (\Rightarrow) Suponiendo $S \circ T = T \circ S$, debemos demostrar que $S \circ T$ sea una relación de equivalencia:
 - Refleja:

Dado que S y T son reflejas, $\forall a \in A.(a,a) \in S \land (a,a) \in T$. Luego por la definición de $S \circ T$, $\forall a \in A.(a,a) \in S \circ T$, por lo que es refleja.

Simétrica:

Sea $(a,b) \in S \circ T$, como $S \circ T = T \circ S$, $(a,b) \in T \circ S$. Por lo tanto

$$\exists z \in A.(a,z) \in T \land (z,b) \in S$$

que puede ser reescrito como

$$\exists z \in A.(z,b) \in S \land (a,z) \in T$$

y luego, dado que las relaciones S y T son simétricas, tenemos que $(b,z) \in S \land (z,a) \in T$ y así $(b,a) \in S \circ T$

■ Transitiva:

Sea $(a, b), (b, c) \in S \circ T$ entonces:

$$\exists z_1 \in A.(a, z_1) \in S \land (z_1, b) \in T$$

$$\exists z_2 \in A.(b, z_2) \in S \land (z_2, c) \in T$$

Y dado que $(z_1, z_2) \in T \circ S$ ya que $(z_1, b) \in T \land (b, z_2) \in S$, por lo tanto, como $S \circ T = T \circ S$ ocurre que:

$$(z_1, z_2) \in S \circ T$$

$$\exists z_3 \in A.(z_1, z_3) \in S \land (z_3, z_2) \in T$$

Como S y T son transitivas

$$(a, z_3) \in S \land (z_3, c) \in T$$

y entonces $(a, c) \in S \circ T$

- $\therefore S \circ T$ es una relación de equivalencia.
- (⇐) Suponiendo que $S \circ T$ es una relación de equivalencia, para demostrar que $S \circ T = T \circ S$, se busca probar que $S \circ T \subseteq T \circ S$ y $T \circ S \subseteq S \circ T$.
 - (1) En primer lugar, sea $(a,b) \in S \circ T$, por la simetría de $S \circ T$ se tiene que también $(b,a) \in S \circ T$. Luego, por la definición de composición se cumple que

$$\exists z \in A.(b,z) \in S \land (z,a) \in T$$

Ahora, dada la simetría de S y T se tiene que

$$\exists z \in A.(z,b) \in S \land (a,z) \in T$$

Además, por definición de composición dado que $\exists z \in A.(a,z) \in T \land (z,b) \in S$ entonces $(b,a) \in T \circ S$. Así queda demostrado que $S \subseteq T$.

(2) De manera análoga, sea $(a,b) \in T \circ S$, por definición de composición se tiene que

$$\exists z \in A.(a,z) \in T \land (z,b) \in S$$

Luego por simetría de S y T también se cumple que

$$\exists z \in A.(z,a) \in T \land (b,z) \in S$$

Finalmente dado que $\exists z \in A.(b,z) \in S \land (z,a) \in T$, se tiene que $(b,a) \in S \circ T$, y por simetría de $S \circ T$, también $(a,b) \in S \circ T$. Así queda demostrado que $T \circ S \subseteq S \circ T$.

Quedando demostrado que $S \circ T \subseteq T \circ S$ y $T \circ S \subseteq S \circ T$, se ha probado que $S \circ T = T \circ S$ dado que $S \circ T$ es una relación de equivalencia.

Dado lo anterior la distribución de puntaje es la siguiente:

- (**0.5 Puntos**) Por concluir que $S \circ T$ es refleja.
- (1 Punto) Por concluir que $S \circ T$ es simétrica.
- (1.5 Puntos) Por concluir que $S \circ T$ es transitiva.
- (0.7 Puntos) Por plantear y utilizar la simetría de $S \circ T$ para demostrar $S \circ T \subseteq T \circ S$.
- (0.7 Puntos) Por plantear y utilizar la simetría de S y T para demostrar $S \circ T \subseteq T \circ S$.
- (**0.1 Puntos**) Por concluir $S \circ T \subseteq T \circ S$.
- (0.7 Puntos) Por plantear y utilizar la simetría de S y T para demostrar $T \circ S \subseteq S \circ T$.
- (0.7 Puntos) Por plantear y utilizar la simetría de $S \circ T$ para demostrar $T \circ S \subseteq S \circ T$.
- (**0.1 Puntos**) Por concluir $T \circ S \subseteq S \circ T$.

Pregunta 4

Sea $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ es inyectiva}\}$. Demuestre que el conjunto \mathcal{F} es no-numerable.

Solución:

Supongamos que F es numerable.

Entonces existe una forma de listar los elementos de F. Suponemos que ese orden es:

$$f_0, f_1, f_2, \dots$$

con $f_i: \mathbb{N} \to \mathbb{N}$ invectiva para $i \geq 0$

Consideremos la siguiente tabla:

-	0	1	2	3	
f_0	$f_0(0)$	$f_0(1)$	$f_0(2)$	$f_0(3)$	
f_1	$f_1(0)$	$f_{1}(1)$	$f_1(2)$	$f_1(3)$	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	$f_2(3)$	

Definimos la función $g: \mathbb{N} \to \mathbb{N}$ dada por:

$$g(i) = 1 + i + \sum_{k=0}^{i} f_k(k)$$

Para la demostración se debe probar que g es inyectiva: Sean $i \neq j$ (SPDG i < j)

$$g(i) = 1 + i + \sum_{k=0}^{i} f_k(k)$$

$$g(j) = 1 + i + (j - i) + \sum_{k=0}^{i} f_k(k) + \sum_{k=i+1}^{j} f_k(k)$$

$$= g(i) + (j - i) + \sum_{k=i+1}^{j} f_k(k)$$

Como $j>i\to j-i>0$ y g(j)>g(i)Entonces g(j)=g(i). Esto prueba que g es inyectiva.

Como g es inyectiva, debe aparecer en la lista de F, i.e en alguna fila de la tabla. Supongamos que aparece en la fila m.

$$f_m(m) \neq g(m) = 1 + m + \sum_{k=0}^{m} f_k(k)$$

$$=\underbrace{1+m+\sum_{k=0}^{m}f_{k}(k)+f_{m}(m)}_{>0}$$

Como $g(m) \neq f_m(m) \forall m \in \mathbb{N}$, g no aparece en la lista. Como es función inyectiva de \mathbb{N} a \mathbb{N} , debiera aparecer, lo que es una contradicción.

 $\therefore F$ no es numerable.

Dado lo anterior la distribución de puntaje es la siguiente:

- $({\bf 1}\ {\bf Punto})$ Por encontrar una secuencia cualquiera sobre las funciones, para demostrar la enumerabilidad
- (2 Puntos) Por encontrar una función que no esté en la secuencia
- $(\mathbf{2}\ \mathbf{Puntos})$ Por demostrar que la función es inyectiva
- (1 Punto) Por concluir que el conjunto no es numerable.