Ramsey's Theorem

Thomas Cohn

10/18/2018

Extremal Problems: If G on n vertices avoids the same structure, how big is |E|?

Thm: (Turán) If G on n vertices avoids K_k , then $|E| \leq \frac{k-2}{2(k-1)}n^2 + C$, where C is a constant term.

If both G and \overline{G} on n vertices avoid K_k , then how big is n?

Ex: k = 2, then n < 2.

Prop: If n = 6, and the edges of K_n are colored R/B, then we can find a monochromatic triangle. Proof: Look at vertex v. $N(v) = X \sqcup Y$, where $X = \{x : xv \text{ is red}\}$ and $Y = \{y : yv \text{ is blue}\}$. |X| + |Y| = 5, so one of them (WOLOG X) has size at least 3.

Say $x_1, x_2, x_3 \in X$. Then vx_1x_2, vx_1x_3 , and vx_2x_3 are all triangles. If any x_1x_2, x_1x_3 , and x_2x_3 are red, then we have a red triangle vx_ix_j . If all are blue, then $x_1x_2x_3$ is a blue triangle. \square

Defn: For $r, s \in \mathbb{N}$, the Ramsey Number R(r, s) is the minimum $n \in \mathbb{N}$ s.t. any R/B coloring of the edges in K_n contains a red K_r or a blue K_s .

Ex: R(3,3) = 6

Thm: (Ramsey) $R(r,s) < \infty$, $\forall r,s \in \mathbb{N}$.

Proof: Induction on r, s.

Assume we know R(r-1,s) and R(r,s-1) are finite.

Claim: $R(r,s) \leq R(r-1,s) + R(r,s-1)$. Let $n = R(r-1,s) + R(r,s-1) \in \mathbb{N}$. Consider a R/B coloring of K_n . Let $X = \{x : xv \text{ is red}\}$ and $Y = \{y : yv \text{ is blue}\}$. Then |X| + |Y| = n - 1 = a + b - 1. Thus $|X| \geq a$ or $|Y| \geq b$.

Case 1: Let $|X| \ge a$. Let G_x be the complete subgraph on X. Then G_x has a red K_{r-1} or a blue K_s . If G_x contains a red K_{r-1} , then G has a K_r . If G_x contains a blue K_s , then G has a K_s .

Case 2: Just do the same thing.

We conclude that if n = a + b, then any R/B coloring of edges in K_n contains a red K_r or blue K_s , and $n \ge R(r, s)$. \square

Ex: R(4,4) = 18

R(3,5) = 14

R(3,6) = 18

R(3,7) = 23

R(3,8) = 28

R(3,9) = 36

Thm:
$$R(r,r) \ge 2^{(r-2)/2}$$
.

Thm: $R(r,r) \ge 2^{(r-2)/2}$. Proof: $n = 2^{(r-2)/2}$. There is a R/B coloring of edges in K)_n with <u>no</u> red K_r or blue K_r . Consider $X \subset [n]$ with |X| = r. Then $\mathbb{P}(G_x \text{ is mono}) = \frac{1}{2^{\binom{r}{2}}} + \frac{1}{2^{\binom{r}{2}}} = 2^{1-\binom{r}{2}}$ Let $Y = |\{X \subset [n] : |X| = r \land G_x \text{ is mono}\}|$.

Then
$$\mathbb{E}[y] = \sum_{X \subset [n], |X| = r} \mathbb{P}(G_x \text{ is mono}) = \binom{n}{r} \cdot 2^{1 - \binom{r}{2}}, \text{ and } \binom{n}{r} < n^r$$

So $\mathbb{E}[y] < n^r \cdot 2^{1 - \binom{n}{r}} = \left(2^{(r-2)/2}\right)^r = 2^{1 - \frac{r(r-1)}{2}} = 2^{r(r-2)/2 - r(r-1)/2 + 1} = 2^{-r/2 + 1} < 1$

So there exists a set of coin flips for which y = 0, and therefore, there is a R/B coloring on K_n for which no G_x is mono. \square