# 머신 러닝의 이해

Understanding Machine Learning

# 머신 러닝의 이해

| 09 |
|----|
|    |
|    |
| 29 |
|    |
|    |
|    |
| 34 |
|    |
|    |
|    |

#### 인공지능이란?

Artificial Intelligence

#### 답 러닝 (Deep Learning)

많은 데이터를 바탕으로 의사결정이 가능한 규칙과 적절한 특징(feature)들을 기계가 생성

## "의사결정이 가능한 기계"

## $AI \supset ML \supset DL$



#### 머신 러닝 (Machine Learning)

많은 데이터를 바탕으로 의사결정이 가능한 규칙을 기계가 생성

#### 규칙 기반 전문가 시스템

(Rule-based Expert System) 전문가의 지식을 바탕으로 의사결정이 가능한 규칙을 사람이 생성

## 머신 러닝의

Machine Learning

#### 목적

**머신 러닝**의 주 목적은 데이터의 알려진 속성들을 학습하여 예측 모델을 만드는 데 있다.

예측 Prediction

수치를 예측하는 것

분류 Classification

미리 정해진 카테고리 중 어디에 속하는지 판별

클러스터링 Clustering

같이 자주 발생하는 연관성, 패턴 찾기

연관관계 분석 Association Analysis

비슷한 성격의 항목들을 그룹으로 만들기

추천 Recommender

대부분 분석의 결론은 추천의 형태를 갖는다

## 통계와 머신 러닝의 차이는?

- 통계는 원인을 찾기 위한 목적 ⇒ (현상의 이해와 설명, 데이터 분포, 특성 파악)
- 머신 러닝은 예측을 위한 목적

## 머신 러닝의 Machine Learning 구성

머신 러닝은 **학습, 모델, 알고리즘**으로 구성된다.

# **Learning 데이터를 기반으로 규칙을 만드는 과정** (분류 기준 생성)

## Model

#### 분류 예측 추정 등의 목적에 부합하는 데이터 처리가 가능한 집합체

예) KNN, Linear 모델, Decision Tree, SVM, PCA, NMF, K-Means, DBSCAN, CNN, RNN, GAN, LSTM, GRU

## Algorithm 모델을 최적화 하기 위한 학습방법

예) Loss Function and Optimization : 최소제곱법(Least Squared), 경사하강법(Gradient Descent), 역전파(Backpropagation), 엔트로피 최소화(Entropy)

## 머신 러닝의

Machine Learning

## 프로세스

- 1. 데이터 기반 학습을 통해 적절한 **알고리즘을 선택**하고
- 2. **모델을 완성**하여
- 3. 새로운 데이터를 예측한다.



- Classification Model
- Regression Model
- Clustering Model
- Regularization(규제)
- Validation(유효성 검증) Confusion Matrix
- R<sup>2</sup>
  - Confusion Matrix (Accuracy, Precision, Recall, F1 score)
  - ROC curve, AUC

### 머신 러닝의 Machine Learning

변수 Variable, Feature, Attribute, Factor, Field, Column, ...

프로세스

## 현상들을 설명/표현하는 요소

- Predictor variables(예측변수)
- Input variables(입력변수)
- Independent(독립변수)
- Target variables(타겟변수)
- Output variables(출력변수)
- Dependent variables(독립변수)



## 머신 러닝의 Machine Learning

#### 머신 러닝의 분석 패턴

프로세스



학습알고리즘

: 오차값이 최소화 되도록 반복 학습

## 머신 러닝의

머신 러닝의 학습 방법에는 **지도 학습, 비지도 학습, 강화 학습이** 있다.

Machine Learning

#### 학습 방법



#### 강화 학습 Reinforcement Learning

행동심리학에서 영감을 받았으며, 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, **선택 가능한 행동들 중** 보상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법

## 머신 러닝의 Machine Learning

## 학습 방법

#### 지도 학습(Supervised Learning)

## 회귀 Regression

타겟 변수 Y가 연속형(Continuous), 범주형(Real Number) 일 때

예) - 내일 KOSPI 종가 예측 - 다음 달 매출액 예측



## 분류 Classification

타겟 변수 Y가 이산형(Discrete), 범주형(Categoria) 일 때

예) - 제품의 불량/ 정상 예측

- 메일의 스팸 예측
- 얼굴 인식



## 머신 러닝의 Machine Learning 학습 방법

### 비지도 학습(Unsupervised Learning)



### 군집화 Clustering

유사한 포인트들끼리 모아 군집 구조를 만드는 방법

## 분포 추정 Density Estimation

관측된 샘플의 확률 분포를 추정하는 방법

## 연관 규칙 분석 Association Rule Mining

아이템 간의 연관 규칙을 확률 기반으로 평가

## 잠재 요인 추출 Extracting Latent Factors

데이터 내 잠재되어 있는 새로운 변수/요인 추출

## 머신 러닝의 Machine Learning

## 학습 방법

## 머신 러닝 모델의 분류

| 구분 | 지도학습                                                                                                                                              | 비지도학습                                                                                        | 강화학습                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|
| 분류 | KneighborsClassifier Logistic Regression Linear SVC Naïve bayes Decision Tree RandomForest GradientBoosting SVM Feed-Forward Network CNN RNN LSTM | MinMaxScaler StanadScaler PCA NMF t-SNE K-means Agglomerative Clustering DBSCAN Autoencoders |                               |
| 회귀 | KNeighborsRegressor<br>Linear regression<br>Ridge regression<br>Rasso regression<br>Elastic-Net regression                                        |                                                                                              |                               |
| 기타 |                                                                                                                                                   |                                                                                              | Q-Learning<br>Deep-Q-Learning |

#### 2-1. 지도 학습

## 선형 회귀 모델(Linear Regression Model)

## 수치 예측

Regression Model

## 연속형 타겟 변수(continuous target variable) 와 여러 입력 변수들(input variable)의 관계를 만드는 모델

#### Simple Linear Regression

$$\hat{y} = w_0 + w_1 x_1$$



#### Multiple Linear Regression

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$
  $\hat{y} = w_0 + w_1 x_1^6 + w_2 x_1^5 + w_3 x_1^4 + \cdots$ 



\*3차원 이상일 때는 hiperplane



Polynomial Linear

Regression

$$= w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$
Intercept Coefficients (절편) (계수, 가중치, 웨이트)



#### 2-1. 지도 학습

## 수치 예측

Regression Model

#### 선형 회귀 모델(Linear Regression Model) - 학습 방법

## 손실 함수의 값을 최소화 하는 계수 찾기

손실 함수(Loss Function) = 기존 값과 예측 값의 차이

$$RSS(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$



<sup>\*</sup> Simple Linear Regression Case

#### 2-1. 지도 학습

## 범주 예측

Classification Model

## 로지스틱 회귀(Logistic Regression)

## 회귀선을 이용해 분류에 활용 → Sigmoid 함수 이용

## Linear Regression

선형 함수의 회귀 최적선을 찾는 것

# 

input variable X

artificial dataset

## Logistic Regression

Logistic 함수의 최적선을 찾고 반환값을 확률로 간주하는 것



#### 2-1. 지도 학습

## 범주 예측

Classification Model

## 로지스틱 회귀(Logistic Regression) — 예측(Prediction)

## cut-off value 이용

Pr(Y = 1) = -

- 일반적인 선택 : cut-off = 0.5
- 예측 성능을 높이기 위하여 검증 데이터 (Test set)를 고려하여 최적의 cut-off value를 찾는 방법도 있음

 $\frac{1+e^{-(\beta_0+\beta_1x_1+\beta_2x_2+...+\beta_px_p)}}{1+e^{-(\beta_0+\beta_1x_1+\beta_2x_2+...+\beta_px_p)}}$ 







cut-off = 0.5

#### 2-1. 지도 학습

#### 의사결정나무 모델(Decision Tree Model)

## 범주 예측

Classification Model

결정 트리(Decision Tree)는 데이터에 있는 규칙을 학습을 통해 자동으로 찾아내 트리(Tree) 기반의 분류 규칙을 만드는 것 → 따라서 데이터의 어떤 기준을 바탕으로 규칙을 만들어야 가장 효율적인 분류가 될 것인가가 알고리즘의 성능을 크게 좌우한다.



#### 2-1. 지도 학습

#### 의사결정나무 모델(Decision Tree Model) - CART(Classification and Regression Tree)

## 범주 예측

Classification Model

다음과 같이 새로운 데이터가 주어지면, 미리 학습 데이터를 이용하여, 구축한 의사결정나무 모델을 이용하여 새로운 데이터의 채무불이행 여부를 예측



| ID | 집 소유 | 결혼 | 연소득(K) | 채무<br>불이행 | 예측<br>클래스 |
|----|------|----|--------|-----------|-----------|
| 11 | No   | 미혼 | 55     | ?         | No        |
| 12 | Yes  | 기혼 | 80     | ?         | No        |
| 13 | Yes  | 미혼 | 110    | ?         | No        |
| 14 | No   | 기혼 | 95     | ?         | No        |
| 15 | No   | 이혼 | 300    | ?         | Yes       |

#### 2-1. **지도 학습**

## 범주 예측

Classification Model

## 의사결정나무(Decision Tree Model) - 앙상블 학습(Ensemble Learning)

여러 개의 분류기(Classifier)를 생성하고 그 예측을 결합함으로써 보다 정확한 최종 예측을 수행

#### 앙상블 학습 유형:

| 구분                   | 지도학습                                                                           | 비고                               |  |
|----------------------|--------------------------------------------------------------------------------|----------------------------------|--|
| 보팅<br>Voting         | 서로 다른 알고리즘이 같은 데이터 세트에 대해<br>학습하고 예측한 결과를 보팅                                   | 서로 다른<br>알고리즘                    |  |
| 스태깅<br>Stacking      |                                                                                |                                  |  |
| <b>배킹</b><br>Bagging | 단일 결정 트리로 데이터 샘플링을 서로 다르게<br>가져가면서 학습을 수행해 보팅                                  | 결정 트리<br>알고리즘<br><sup>에</sup> 기반 |  |
| 부스팅<br>Boosting      | 여러 개의 분류기가 순차적으로 학습하면서 앞에<br>서 학습한 분류기가 틀린 데이터에 대해서는 가중<br>치를 부여하면서 학습과 예측을 진행 |                                  |  |

#### 2-1. 지도 학습

## 범주 예측

Classification Model

#### 랜덤 포레스트(Random Forest)

여러 개의 결정 트리 분류기가 전체 데이터에서 배깅 방식으로 각자의 데이터를 샘플링해 개별적으로 학습을 수행한 뒤 최종적으로 모든 보팅을 통해 예측 결정

#### 최종 클래스 값 결정



#### 2-1. 지도 학습

## 범주 예측

Classification Model

## 랜덤 포레스트(Random Forest) - Hyperparameter

- 매개변수(n\_estimators) : 결정 트리의 개수 (디폴트 10개)
- max\_feature : 결정 트리에 사용된 max\_features 파라미터와 동일
- max\_depth나 min\_sample\_leaf와 같이 결정 트리에서 과적합을 개선하기 위해 사용되는 파라미터가 랜덤 포레스트에도 똑같이 적용



#### 2-1. 지도 학습

## 범주 예측

Classification Model

#### 나이브 베이즈 분류(Naïve Bayes Classification)

나이브 베이즈 분류기(Naïve Bayes Classifier)란, Bayes 정리에 기반을 두는 분류기로 가장 확률이 높은 곳으로 단순 분류

## Naïve Bayes Classification 개념

- ullet n 개의 특성을 가지는 데이터 벡터 :  $X=\left(x_{1},x_{2},...,x_{n}\right)$
- K 개의 가능한 확률적 결과들 (클래스)의 확률:

$$P(C_k|x_1, x_2,..., x_n) = P(C_k|X) = \frac{P(C_k) \cdot P(X|C_k)}{P(X)}$$

- 각 Xi 값들을 독립으로 가정하면  $=P(C_k)\prod_{i=1}^n P(x_i | C_k)$
- 클래스 예측 값 ← 최대 확률을 가지는 클래스

$$\hat{y} = \arg\max_{k \in \{1, \dots, K\}} P(C_k) \prod_{i=1}^n P(x_i | C_k)$$

#### 2-2. **비지도 학습**

## **군집 분석** Clustering

## 군집 분석(Clustering)**의 원리**

거리가 가까운 데이터 끼리 묶어 줌 (거리 distance 감소 = 유사도 similarity 증가) 서로 다른 배타적인 집단으로 나누는 것



2-2. 비지도 학습

**군집 분석** Clustering 군집 분석(Clustering) 에는 계층적(Hierarchical Clustering) 방법과 비계층적(Non-Hierarchical Clustering) 방법이 있다.



#### 2-2. 비지도 학습

### 군집 분석 Clustering

#### 계층적 군집 분석 - 병합 군집화(Agglomerative Clustering)

- 1) 정확히 하나의 레코드로 구성된 군집들로 시작
- 2) 종료 조건을 만족할 때까지 가장 가까운 두 군집들을 점진적으로 병합해 나감

# 

(이미지: tds, <u>Hierarchical clustering Clearly Explained</u>)

#### 병합 군집화 알고리즘 :

- N개의 군집으로 시작
- 가장 근접한 두 개의 레코드들은 하나의 군집으로 병합(merge)
- 매 단계에서, 가장 거리가 짧은 두 개의 군집들이 병합됨. (단일 레코드들이 기존의 군집에 추가되거나, 기존의 군집 두 개가 묶이는 것 의미)

2-2. **비지도 학습** 

**군집 분석** Clustering 계층적 군집 분석 – 덴드로그램(Dendrogram)

#### 군집화 과정을 간략하게 나타내는 나무 형태의 도표



2-2. 비지도 학습

**군집 분석** Clustering 비계층적 군집 분석 - K 평균 군집화(K-means Clustering)

군집의 중심이 되는 seed(씨드) 집합을 선택하여 그 seed 점과 거리가 가까운 개체들을 그룹화 하는 방법



#### <u>K 평균 군집화 알고리즘</u> :

- K 개의 관측 값을 선택하여 중심점(centroid)으로 정함
- 각 관측 값들을 '가장 가까운' 중심에 해당하는 군집에 할당
- 새로운 군집에 할당된 관측 값들로 새로운 중심을 계산
- 2)과 3)의 과정을 군집의 중심에 변화가 없을 때까지 반복

※ K 평균 군집분석의 단점: 사전에 군집 수에 대한 예상이 필요하고 처음 선정한 seed 점들에 따라서 군집의 분류가 달라질 가능성 有

#### 2-2. 비지도 학습

## 차원 축소

Dimensionality Reduction

## 차원 축소(Dimensionality Reduction)는, 데이터의 의미를 잘 표현하는 특징(Feature)을 추려내는 것

# 특징 추출(Feature Extraction)

- 원본 특징을 기반으로 새로운 특징 벡터를 생성함
- 모든 feature를 온전히 잘 설명하는 원래 벡터보다 작은 feature 벡터로 나타냄

$$(X_1, X_2, X_3, X_4, X_5)$$
  $(Z_1, Z_2, Z_3)$ 



$$(Z_1, Z_2, Z_3)$$

# 특징 선택(Feature Selection)

- 전체 입력된 feature 중에서 가장 의미 있는 feature들 만을 선택
- 원본 데이터에서 불필요한 feature(변수)들을 제거

$$(X_1, X_2, X_3, X_4, X_5)$$
  $(X_1, X_3, X_5)$ 

#### 2-2. 비지도 학습

## 차원 축소

Dimensionality Reduction

#### **주성성분분석**(Principal Component Analysis, PCA)

PCA는 분포의 주성분(principal component)을 분석해 주는 방법이며, 주성분은 그 방향으로 가장 분산이 큰 벡터를 의미한다.

#### 데이터 주성분 구하기:



#### 3. **머신 러닝 모델 평가**

## 수치 예측 Regression Model

## 모델 평가

## 회귀 모델(Regression Model)에 대한 성능 평가지표

| 평가 지표          | 설명                                                                                                                               | 수식                                                                                                                    |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| MAE            | Mean Absolute Error이며 실제 값과 예측 값의 차이를<br>절대값으로 변환해 평균한 것                                                                         | $\frac{1}{n}\sum_{i=1}^{n}  y_i - \hat{y}_i $                                                                         |
| MSE            | Mean Squared Error이며 실제 값과 예측 값의 차이를<br>제곱해 평균한 것 *MAE값이 같은데 MSE가 클 경우 편<br>차가 더 큼을 나타낸다.                                        | $\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$                                                                |
| RMSE           | MSE 값은 오류의 제곱을 구하므로 실제 오류 평균보다<br>더 커지는 특성이 있으므로 MSE에 루트를 씌운 것이<br>RMSE(Root Mean Squared Error)다.                               | $\sqrt{\frac{1}{n}\sum_{i=1}^{n} \left(y_{i} - \widehat{y}_{i}\right)^{2}}$                                           |
| R <sup>2</sup> | 분산 기반으로 예측 성능을 평가합니다. 실제 값의 분산<br>대비 예측값의 분산비율을 지표로 하며, 1에 가까울수<br>록 예측 정확도가 높다. *R² = 0.91인 경우, 전체 데이터<br>변동성의 91%를 선형회귀 모델이 설명 | $\frac{\Sigma \left(\widehat{y}_{i} - \overline{y}_{i}\right)^{2}}{\Sigma \left(y_{i} - \overline{y}_{i}\right)^{2}}$ |

#### 3. 머신 러닝 모델 평가

# 범주 예측

Classification Model

### 모델 평가

#### 분류 모델(Classification Model)에 대한 성능 평가지표

**혼동 행렬**(Confusion Matrix): 데이터의 실제 클래스와 모델에 의해 예측된 클래스를 비교하는 행렬

#### PREDICTIVE VALUES



$$Accuracy = (TP + TN) / (TP + FP + TN + FN)$$

Recall = Sensitivity = 
$$TP / (TP + FN) = TP / (Actual Yes)$$

$$Precision = TP / (TP + FP) = TP / (Predicted Yes)$$

#### 3. **머신 러닝 모델 평가**

#### **범주 예측** Classification Model

### 모델 평가

#### 분류 모델(Classification Model)에 대한 성능 평가지표

ROC(Receiver Operating Characteristic) Curve: FPR과 TPR을 x, y축으로 놓은 그래프 AUC(Area Under the Curve) Score: Curve 아래의 면적을 계산한 것, AUC는 0.5~1의 값을 가지며, 값이 1에 가까울수록 성능이 좋은 모델이다.



# 범주 예측

Classification Model

## 모델 평가

### 분류 모델(Classification Model) - 분류 평가

| Model X |       | Predicted Class |       |  |
|---------|-------|-----------------|-------|--|
|         |       | 1 (+)           | 0 (-) |  |
| Actual  | 1 (+) | 6               | 4     |  |
| Class   | 0 (-) | 50              | 940   |  |

- Accuracy = 946/1000 = 0.946
- Recall = 6 / (6 + 4) = 0.6
- Precision = 6 / (6 + 50) = 0.107
- F1-score = 0.18

| Ideal<br>Model |        | Predicted Class |       |     |
|----------------|--------|-----------------|-------|-----|
|                |        | 1 (+)           | 0 (-) |     |
|                | Actual | 1 (+)           | 10    | 0   |
| Cla            | Class  | 0 (-)           | 0     | 900 |

- Accuracy = 1
- Recall = 1
- Precision = 1
- F1-score = 1\* (Best)

## 클러스터링 Clustering Model 모델 평가

## 군집 모델(Clustering Model) – 클러스터링 평가

ARI(Adjusted Rand Index): > 분류된 군집의 정답 필요



## 실루엣 계수(Silhouette Coefficient):

군집의 밀집 정도



## 데이터셋 Dataset 으 종류

데이터셋 Dataset 의 머신 러닝을 위한 데이터는 Training, Validation, Test 셋으로 나눈다.

| Original Set |            |         |  |
|--------------|------------|---------|--|
|              |            |         |  |
| Training     | Testing    |         |  |
| Training     | Validation | Testing |  |

## Training Set

■ 모델 생성 및 학습에 이용

#### Validation Set

- ■모델의 오버피팅(Overfitting) 방지
- ■모델의 복잡도 축소
- ■모델의 파라미터(Parameter) 탐색

#### Test Set

■ 모델의 예측 성능(Predictive Performance) 평가

## K-겹 교차 검증

K-fold Cross Validation

#### K-겹 교차 검증은 모든 데이터가 최소 한 번은 테스트셋으로 쓰이도록 한다.

- 데이터를 K개의 겹치지 않는 folds로 분리
- K개의 folds 중 하나를 Validation Set, 나머지를 Training Set으로 사용
- 하나의 파라미터 셋에 대해 k번 모델을 생성하여 모델 성능 평가



# **End of Document**

2020. 05