Homework 8

Madilyn Simons

- 1. (a) Since $(x^7+25x^6-25x+5)$ is a nonconstant polynomial in \mathbb{Q} , $\mathbb{Q}/(x^7+25x^6-25x+5)$ is a field if and only if $(x^7+25x^6-25x+5)$ is irreducible in \mathbb{Q} . We know that $(x^7+25x^6-25x+5)$ is irreducible in \mathbb{Q} by Eisenstein's Criterion for prime 5. Thus, $\mathbb{Q}/(x^7+25x^6-25x+5)$ is a field.
 - (b) Consider $\mathbb{Z}/2\mathbb{Z}$. If $f(x) = x^3 + 2x^2 x + 1$, then $\overline{f}(x) = x^3 x + 1$. We know that $\overline{f}(x)$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$ because $\overline{f}(0) = \overline{f}(1) = 1$. Since $\overline{f}(x)$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$, f(x) is irreducible in \mathbb{Q} , which means that $\mathbb{Q}[x]/(x^3 + 2x^2 x + 1)$ is a field.
 - (c) Only first-degree and second-degree polynomials can be irreducible in $\mathbb{R}[x]$. Since $(x^5+42x^4+\pi x^3-1729x^2+ln(2)x-2019)$ is a fifth-degree polynomial, it is reducible in $\mathbb{R}[x]$. Therefore $\mathbb{R}[x]/(x^5+42x^4+\pi x^3-1729x^2+ln(2)x-2019)$ is NOT a field.
- 2. (a) Let $f(x) = x^3 + 2x + 1$. We know that f(x) is irreducible over $\mathbb{Z}/3\mathbb{Z}$ because f(0) = f(1) = f(2) = 1 and deg f(x) = 3. Therefore, K is a field
 - (b) We know that f(t) does not have any roots in K because $a \in \mathbb{Z}/3\mathbb{Z}$ is a root of f(t) if and only if t-a is a factor of f(t). By definition of $\mathbb{Z}/3\mathbb{Z}$, a can only be 0, 1, or 2. However, by the Division Algorithm,

$$t^3 + 2t + 1 = t(t^2 + 2) + 1,$$

$$t^3 + 2t + 1 = (t+1)(t^2 - t) + 1,$$

and

$$t^3 + 2t + 1 = (t+2)(t^2 - 2t) + 1.$$

Therefore, f(t) has no roots.

3. To prove that (a,b) = (d), first let us prove that $(a,b) \subseteq (d)$. Let $ar_1 + br_2$ be any element of (a,b). Since d is the greatest common divisor of a and b, a = dx and b = dy for some integers x and y. Therefore, $ar_1 + br_2 = dxr_1 + dyr_2 = d(xr_1 + dyr_2)$, which is an element of (d). Thus, $(a,b) \subseteq (d)$.

Next, let us prove $(d) \subseteq (a,b)$. Since d is the greatest common divisor of a and b, d = au + bv for some integers u and v. Let rd be any element

1

of (d). Therefore, $rd = r(au + bv) = rau + rbv = a(ru) + b(rv) \in (a, b)$. Thus $(d) \subseteq (a, b)$.

Since $(d) \subseteq (a, b)$ and $(a, b) \subseteq (d)$, (a, b) = (d).

4. Let $f(x) \in I$ and $g(x) \in \mathbb{Z}[x]$ such that

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + 2a_n x^n$$

and

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{m-1} x^{m-1} + 2b_m x^m.$$

Then,

$$f(x) * g(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0) + \dots + 2a_nb_mx^{n+m}$$

and

$$g(x)*f(x) = b_0a_0 + (b_0a_1 + b_1a_0)x + (b_0a_2 + b_1a_1 + b_2a_0) + \dots + 2b_ma_nx^{m+n}.$$

Since the leading coefficients of f(x) * g(x) and g(x) * f(x) are both even, $f(x) * g(x) \in I$ and $g(x) * f(x) \in I$. Therefore, I is an ideal of $\mathbb{Z}[x]$.

5. Let f(x), $g(x) \in I$ such that $g(x) \neq 0_F$. By the Division Algorithm, g(x) = f(x)q(x) + r(x) such that $r(x) = 0_F$ or $\deg r(x) < \deg g(x)$. By the definition of I,

$$g(7) = f(7)q(7) + r(7)$$

$$0 = f0 * q(7) + r(7)$$

$$0 = r(7)$$
.

Therefore, $r(x) \in I$ and f(x) divides g(x). Therefore, I is finitely-generated.