Лекции по математическому анализу.

Александр Титилин

Содержание

1	Пре	едел последовательности.	2
	$1.\overline{1}$	Окрестность точки	2
	1.2	окрестность	3
	1.3	Определение предела. Геометрическое	3
	1.4	Определение предела. Еще одно	3
	1.5	Определение предела, еще одно с кванторами, нормальное	3
	1.6	Запись предела	3
	1.7	Примеры	3
	1.8	Единственность предела	4
	1.9	Ограниченные последовательности	4
	1.10	Предельный переход в неравенстве	4
	1.11	Теорема о сжатой последовательности	4
	1.12	Арифметические операции над последовательностями	5
		1.12.1 Бесконечно малые последовательности	5
		1.12.2	5
		1.12.3 Сумма бесконечно малых последовательностей	5
		1.12.4 Произведение бесконечно малой на ограниченную	5
		1.12.5 Теорема о пределе суммы последовательности	6
		1.12.6 Теорема о пределе произведения последовательностей	6
		1.12.7 Теорема о пределе частного	6
		1.12.8 Предел квадратного корня	6
2	Под	последовательность	6
	2.1	Определение	6
	2.2		7
	2.3	Теорема Вейерштрасса	7
	2.4	Принцип выбора	7
3	При	имеры	7
4	Hep	равенство Бернулли по индукции	9
5			9
6			10
7			10
8			10

9		10
10		10
11	Задачка	10
12		11
13		11
14	Бесконечно большие последовательности	11
	14.1	11
	14.2	11
	14.3	11
	14.4	11
15	Расширеннная прямая	11
16	Предел функций.	12
	16.1 Предельная точка	12
	16.2	12
	16.2.1 Пример	12
	16.2.2 Пример	12
	16.3 Определение предела функции	12
	16.4 Запись предела функции	12
	16.5	12
	16.6	12
	16.7 Теорема о предельном переходе в неравенстве	13
	16.8	13
	16.9 Теорема о пределе суммы, произведения и частного	13
17	Композиция функций для вещественных функций	13
	17.1 Примеры	13
18	Предел композиции.	14
	18.1 Пример	14
19	Одностронние пределы.	14
20	Вычисление пределов	14
	20.1	14
1	Предел последовательности.	

1.1 Окрестность точки.

Окрестность точки а - это произвольный открытый промежуток, содержащий точку а.

1.2 окрестность

$$U_{\epsilon}(a) = (e - a; e + a)$$

1.3 Определение предела. Геометрическое

Число а называют пределом последовательности (x_n) если в любой окрестности точки а, содержатся все члены x_n , начиная с некоторого.

1.4 Определение предела. Еще одно

а является пределом x_n , если в любой симметричной последовательности точки а содержатся все члены последовательности начиная с некоторого.

1.5 Определение предела, еще одно с кванторами, нормальное

а является пределом x_n , если

$$\forall \epsilon > 0 \exists n_0 \forall n \ge n_0 : |x_n - a| < \epsilon \Leftrightarrow x_n \in (a - \epsilon, a + \epsilon).$$

Запись предела

$$\lim_{n \to \infty} x_n = a.$$

1.7 Примеры

1.6

- 1. $a_n=1$. Предел 1, так как все члены последовательности лежат в окрестности 1.
- 2. $a_n = \frac{1}{n}$ Предел 0. а,b концы окрестности . $\exists n_0 \forall n \geq n_0: x_n \in (a,b)$. $n_0 =$ любое число $> \frac{1}{b}$
- 3. $x_n = \frac{n}{2n^2+1}$ (a,b) окрестность 0.

$$\exists n_0 \forall n \geq n_0.$$

Надо доказать, что $x_n < b$

$$\frac{n}{n^2 + 1} < b.$$

4.
$$x_n = \frac{2n+1}{3n+2}$$
 Предел $\frac{2}{3}$

$$\frac{2n+1}{3n+2} = \frac{2+\frac{1}{n}}{3+\frac{2}{n}}.$$

1.8 Единственность предела

Теорема 1. У сходящийся последовательности есть только 1 предел.

$$x_n \to a \land x_n \to b \implies a = b.$$

Доказательство. Пусть a < b. Рассмотрим промежутки $(-\infty, \frac{a+b}{2})$ и $(\frac{a+b}{2}, +\infty)$. $a \in (-\infty, \frac{a+b}{2}) \land b \in (\frac{a+b}{2}, +\infty)$ Так как $x_n \to a \ \exists n_0 \forall n \geq n_0 x_n \in (-\infty, \frac{a+b}{2}), \exists x_1 \forall n \geq n_1 x_n \in (\frac{a+b}{2}, +\infty), n_2 = \max(n_0, n_1)$

1.9 Ограниченные последовательности

$$\exists M \forall n \ x_n \leq M.$$

 x_n Ограничена сверху.

Теорема 2. Всякая сходящаяся последовательность ограничена.

Доказательство. $x_n \to a$. Рассмотрим окрестность (a - 1,a + 1) ,точки a.

$$\exists n_0 \forall n \ge n_0 \ x_n \in (a-1, a+1).$$

 $x_{n_0}, x_{n_0+1}, \ldots$ - ограничена

1.10 Предельный переход в неравенстве

Теорема 3. $(x_n), (y_n)$ - последовательности такие, что

$$\forall n: x_n \le y_n.$$

$$\lim_{n \to \infty} x_n = a.$$

$$\lim_{n \to \infty} y_n = b.$$

Tог $\partial a \ a \leq b$

Заметим, что неравенство, выволняется с некоторого п. В условии теоремы нельзя оба знака неравенства заменить на строгие.

Доказательство. От противного. Пусть наши последовательности, такие что $x_n \leq y_n \ \forall n, a > b$ Рассмотрим $(-\infty, \frac{a+b}{2}), (\frac{a+b}{2}, +\infty)$. Первый окресность b, второй окрестность точки а. Так как $x_n \to a$,то

$$\exists n_0, \forall n \ge n_0 x_n \in (\frac{a+b}{2}, +\infty).$$

$$\exists n_1, \forall n \geq n_1 y_n \in (-\infty, \frac{a+b}{2}).$$

$$n_2 = \max n_0, n_1.$$

Тогда $n \geq n_2$

1.11 Теорема о сжатой последовательности.

Теорема 4. $(x_n),(y_n),(z_n)$ - последовательности такие, что \forall $nx_n \leq y_n \leq z_n$. Пусть $x_n \to a, z_n \to a$. То $y_n \to a$

Доказательство. Возьмем произвольную окрестность U точки а. Так как $x_n \to a$, то $\exists n_0 \ \forall n > n_0 x_n \in U. \ z_n \to a \ \exists n_1 \forall n > n_1 z_n \in U. n_2 = \max \left(n_0, n_1 \right) \ \forall n > n_2 x_n \in U z_n \in U.$ Но $x_n \leq y_n \leq z_n.$ Значит $y_n \in U.$

1.12 Арифметические операции над последовательностями

1.12.1Бесконечно малые последовательности

Последовательность называется бесконечно малой, если ее предел равен 0.

1.12.2

Теорема 5.

$$(x_n), a \in \mathbb{R}$$

. Рассмотри последовательность $\alpha_n = x_n - a$. Тогда $x_n \to a \leftrightarrow (\alpha_n)$ бесконечно малая.

Доказательство.

$$\alpha_n \to 0 \leftrightarrow \forall \epsilon \exists n_0 \forall n \ge n_0 \mid \alpha_n \mid < \epsilon.$$

1.12.3 Сумма бесконечно малых последовательностей

Теорема 6. Сумма бесконечно малых бесконечно малая.

Доказательство.

$$|x_n + y_n| \le |x_n| + |y_n|$$
.

Возьмем $\forall \epsilon > 0$. Рассмотри $\frac{e}{2}$. Так как $x_n \to 0$, $\exists n_1 \forall n \ge n_1$, $|x_n| < \frac{\epsilon}{2}$ $y_n \to 0$, $\exists n_2 \forall n > -n_2 |y_n| < \frac{\epsilon}{2}$

Tak kak
$$x_n \to 0$$
, $\exists n_1 \lor n \ge n_1$, $|x_n| \lor y_n \to 0$, $\exists n_2 \lor n > -n_2 \mid y_n \mid < \frac{\epsilon}{2}$

$$|x_n| + |y_n| < \epsilon$$
.

1.12.4 Произведение бесконечно малой на ограниченную

Теорема 7. (x_n) - бесконечно малая, (y_n) ограниченная $\to (x_n y_n)$ бесконечно малая.

Доказательство.

$$\exists n_0 \ \forall n \ge n_0 \mid x_n \mid < \frac{\epsilon}{C}.$$

$$\exists C > 0 \forall n \mid y_n \mid < C.$$

$$|x_ny_n|=|x_n||y_n|<\epsilon.$$

1.12.5 Теорема о пределе суммы последовательности

Теорема 8. Если

 $x_n \to a$.

$$y_n \to b$$
.

To

$$x_n + y_n \to a + b$$
.

Доказательство. $\alpha_n = x_n - a, \ \beta_n = y_n - b$ бесконечно малые. Рассмотрим сумму этимх последовательностей $(x_n + y_n) - (a + b) = \alpha_n + \beta_n$. Вторая сумма бесконечно малая, следовательно $x_n + y_n \to a + b$

1.12.6 Теорема о пределе произведения последовательностей

Теорема 9. Если $x_n \to a, y_n \to b$ то $x_n y_n \to ab$

$$x_n y_n = ab + a\beta_n + b\alpha_n + \alpha_n \beta_n.$$

Три последних слагаемых бесконечно малые.

1.12.7 Теорема о пределе частного

Теорема 10. *Если* $y_n \to b, \frac{1}{y_n} - \frac{1}{b} \to 0$

Доказательство.

$$\frac{b-y_n}{y_n-b}=(b-y_n)\frac{1}{b}\frac{1}{y_n}.$$

Достаточно доказать, что $\frac{1}{y_n}$ ограничена.

Теорема 11. Если $x_n \to a, y_n \to b, \forall n \ y_n \neq 0, b \neq_0, \ mor\partial a \ \frac{x_n}{y_n} \to \frac{a}{b}$

1.12.8 Предел квадратного корня

Теорема 12. $x_n \ \forall n \ x_n \geq 0 a \in \mathbb{R} x_n \rightarrow a \ mor \partial a \ \sqrt{x_n} = \sqrt{a}$

2 Подпоследовательность

2.1 Определение

 (x_n) - числовая последовательность. Выбираем любую строго возрастающую последовательность натуральных чисел $(n_1 < n_2 < n_3 \dots)$. Рассматриваем последовательность с элементами $x_{n_1}, x_{n_2}, \dots x_{n_k} \dots$

2.2

Теорема 13. Из всякой последовательности можно выбрать монотонную подпоследовательность.

Доказательство. Пусть x_n последовательность, у которой нет возрастающей подпоследовательности. Тогда докажем, что нее есть убывающая подпоследовательность. Если нет возрастающей подпоследовательность, то есть член, все члены с индексами больше него, строго меньше него. Назовем его x_{n_1} . Рассмотри такую подпоследовательность x_{n+1}, x_{n+2}, \ldots , в ней нет возрастающей подпоследовательности (в противном случае она возрастающая). Раз это так, то в ней есть x_{n_2} , Такой что все члены раньше него меньше него. Мы построили убывающую последовательность.

2.3 Теорема Вейерштрасса

Теорема 14. Всякая монотонная ограниченная последовательность имеет предел.

Доказательство. (x_n) возрастает. Пусть A - это множество значений последовтельности (x_n) . $A \neq \emptyset$. А ограниченно сверху. Пусть $\alpha = \sup A$. По свойству супремума $\forall \epsilon > 0 \exists x_{n_0}$ такой что $\alpha - x_{n_0} < \epsilon$. Тогда $\forall n \geq n_0 \ \alpha - x_n < \epsilon \implies |x_n - \alpha| < \epsilon x_n \to \alpha$ Для убывающей самим надо.

2.4 Принцип выбора

Теорема 15. Из любой ограниченной последовательность, сходящуюся подпоследовательность.

Доказательство. В полслова. Пусть x_n - ограниченная последовательность. По теореме 13 есть монотонная подпоследовательность, по теореме 14 нужная подпоследовательность имеет предел.

Другое

3 Примеры

1.

$$x_n = \frac{2n+5}{3n-7} = \frac{2+\frac{5}{n}}{3-\frac{7}{n}} \to \frac{2}{3}.$$

2.

$$\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=\lim_{n\to\infty}\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}=\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n}}=0.$$

3.

$$\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = \frac{1}{2}.$$

4.

$$x_1 = \sqrt{2}, x_{n+1} = \sqrt{2 + x_n}.$$

Пусть $x_n \to a$.

$$x_{n+1} = \sqrt{2 + x_n} \to a.$$

$$a = \sqrt{2 + a}.$$

$$a = 2.$$

Доказываем существание предела. Последовательность строго возрастает. Ограничена по теореме 14.

5.

$$x_n = \frac{1}{1*2} + \frac{1}{2*3} + \frac{1}{3*4} + \dots + \frac{1}{n(n+1)} = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n_1} = 1 - \frac{1}{n+1}.$$

6. $x_n=q^n$, если | q |< 1, то $x_n\to 0$. Нужно доказать, что $\forall \epsilon>0 \exists n_0 \forall n\geq n_0 \mid x_n\mid <\epsilon$

$$|q|^n < \epsilon.$$

$$n > \log_{|q|} \epsilon.$$

7. (x_n) последовательнось положительных чисел. Пусть $\frac{x_{n+1}}{x_n} \to c < 1$. Тогда $x_n \to 0$

Следствие 15.1.

$$|q| < 1, q^n \to 0.$$

$$x_n = |q|^n \frac{x_{n+1}}{x_n} = |q| \to |q| < 1.$$

$$|q|^n \to 0.$$

Следствие 15.2.

$$x_n = \frac{a^n}{n!}.$$

$$\frac{x_{n+1}}{x_n} = \frac{a}{n+1}.$$

Следствие 15.3. a > 1

$$x_n = \frac{n^k}{a^n}.$$

$$\frac{x_{n+1}}{x_n} = \frac{\left(1 + \frac{1}{n}\right)^k}{a} < 1.$$

Доказательство. 7

$$c < 1$$
.

Рассмотри произвольное q, такое что c < q < 1. Рассмотрим промежуток $(-\infty,q)$, это окрстность точки c. Так как отношение стремится к c, то $\exists n_0 \forall n \geq n \frac{x_{n+1}}{x_n} \in (-\infty,q)$

$$\frac{x_{n_0+1}}{x_{n_0}} < q.$$

$$\frac{x_{n_0+2}}{x_{n_0+1}} < q.$$

$$\frac{x_{n_0+k}}{x_{n_0+k+1}} < q.$$

Перемножили все.

$$\frac{x_{n_0+k}}{x_{n_0}} < q^k.$$

$$0 < x_{n_0+k} < x_{n_0} * q^k$$
.

По 1.11

$$x_{n_0+k} \to 0.$$

4 Неравенство Бернулли по индукции

$$(1+a)^n(1+a) \ge (1+na)(1+a).$$

$$(1+a)^{n+1} \ge 1 + a + na + na^2.$$

$$1 + a + na + na^2 > 1 + a + na$$
.

5

Теорема 16. $x_n = (1 + \frac{1}{n})^n$ имеет предел.

Доказательство. Докажем, что (x_n) возрастает.

$$\frac{x_{n+1}}{x_n} = \frac{(n+2)^{n+1}}{(n+1)^{n+1}} \frac{n^n}{(n+1)^n} = \frac{(n^2+2n)^{n+1}}{((n+1)^2)^{n+1}} * \frac{n+1}{n}.$$

$$(\frac{n^2+2n}{n^2+2n+1})^{n+1}*\frac{n+1}{n} = (1-\frac{1}{n^2+2n+1})*\frac{n+1}{n} > 1-(n+1)\frac{1}{n^2+2n+1}*\frac{n+1}{n}.$$

$$= (1-\frac{1}{n+1})*\frac{n+1}{n} = \frac{n}{n+1}*\frac{n+1}{n} = 1.$$

Докажем, что последовательность ограниченна сверху.

$$x_n = (1 + \frac{1}{n})^n = \sum_{k=0}^n C_n^k * 1 + \frac{1}{n}^k = \sum_{k=0}^n \frac{n(n-1)(n-2)\dots(n-(n-k))}{n^k} * \frac{1}{k!}.$$

$$\sum_{k=0}^{n} (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots * (1 - \frac{k-1}{n}) * \frac{1}{k!} < \sum_{k=1}^{n} \frac{1}{k}.$$

$$= 1 + 1 + \frac{1}{2!} + \frac{1}{3!} \dots \frac{1}{n!} < .$$

$$< 1 + (1 + \frac{1}{2} + (\frac{1}{2})^2 + \dots + (\frac{1}{n})^{n-1}) < 3.$$

По 14 последовательность имеет предел, назовем его e.

6

$$x_n \to b.$$

 $a > 0, a \neq 1.$
 $a^{x_n} \to a^b.$

7

$$x_n > 0.$$

 $x_n \to b > 0.$
 $\log_a x_n \to \log_a b.$

8

$$\alpha > 0.$$

$$x_n \to b \implies x_n^{\alpha} \to b^{\alpha}.$$

9

Теорема 17.

$$|\sin x| = |x|$$
.

Доказательство. При $0 < x < \frac{\pi}{2}$ Картинку потом нарисую.

10

Теорема 18.

$$x_n \to b \implies \sin x_n \to \sin a$$
.

Доказательство.

$$|\sin x_n - \sin a| = |\sin \frac{x_n - a}{2} \cos \frac{x_n + a}{2}| \le 2 |\frac{x_n - a}{2}| = |x_n - a|.$$

$$0 \le |\sin x_n - \sin a| \le |x_n - a|.$$

 $\Pi_0 \ 1.11 \sin x_n \to \sin a$

11 Задачка

$$\lim_{n\to\infty}(\frac{n+3}{n+1})^n=\lim_{n\to\infty}(1-\frac{2}{n+1})^n=\lim_{n\to\infty}((1+\frac{2}{n+1})^{\frac{n+1}{2}})^{\frac{2n}{n+1}}.$$

Тупо 1 добавили и вычли.

12

$$(1+\frac{1}{n})^n \to e.$$

$$x_n = \frac{1}{n} \to 0.$$

$$(1+x_n)^{\frac{1}{x_n}} \to e.$$

13

$$\lim_{n\to\infty}\frac{\log_a n}{n^k}=0.$$

14 Бесконечно большие последовательности

Попробуем дать точный смысл записи $x_n \to +\infty, x_n \to -\infty, x_n \to \infty.$

14.1

$$x_n \to +\infty \iff \forall C \; \exists n_0 \; \forall n \ge n_0 x_n > C.$$

14.2

$$x_n \to -\infty \iff \forall C \exists n_0 \ \forall n > n_0 \ x_n < C.$$

14.3

$$x_n \to \infty \iff |x_n| \to +\infty.$$

14.4

Теорема 19. Пусть (x_n) такова, что $\forall x_n \neq 0$, тогда (x_n) - бесконечно большая $\iff \frac{1}{x_n}$ бесконечно малая.

Доказательство.

$$x_n \to +\infty \iff \forall C \exists n_0 \ \forall n \ge n_0 \ | \ x_n \ | > C.$$

$$\frac{1}{x_n} \to 0 \iff \forall \epsilon \exists n_0 \ \forall n \ge n_0 \frac{1}{|x_n|} < \epsilon.$$

$$|x_n| > \frac{1}{\epsilon}.$$

15 Расширеннная прямая

$$\overline{\mathbb{R}}$$
 - это $\mathbb{R} \cup \{+\infty, -\infty\}$

$$-\infty < \infty$$
.

$$a \in \mathbb{R}, -\infty < a < +\infty.$$

16 Предел функций.

16.1 Предельная точка

 $X\subset \mathbb{R}, a\in X.$ Точка а называется предельной точкой множества X, если в любой окрестности точки a, есть хотя бы одно число из X, отличное от a.

16.2

Теорема 20. а - предельная точка множества $D \iff E$ сли существует (x_n) точек множества D отличных от a, такая что $x_n \to a$

Доказательство. 1. Пусть а предельная точка D. Смотрим промежуток (a-1;a+1). Рассмотрим $x_1 \in (a-1;a+1), x_1 \neq a, x_1 \in D.$ $x_2 \in (a-\frac{1}{2},a+\frac{1}{2}), x_2 \neq a, x_2 \in D$. И так далее, мы построили последовательность такую, что $\forall x_n \in D, xx_n \neq a, a-\frac{1}{n} < x_n < a+\frac{1}{n}$. По 1.11 $x_n \to a$

2. Пусть (x_n) такова, что $x_n \in D, x_n \neq a, x_n \to a$. Взяли произвольну окрестность а $\exists n_0 \ x_{n_0} \in U(a)$

16.2.1 Пример

Возьмем D=[0;1). Найдем все его предельные точки. Это все точки из [0;1)

16.2.2 Пример

Возьмем за $D = [0; 1) \cup \{2\}.$

16.3 Определение предела функции

Пусть $f:D\to\mathbb{R},$ а - предельная точка множества D. Число A называется пределом функции f в точке a, если $\forall (x_n)$

$$\begin{cases} \forall x_n \neq a \\ \forall x_n \in D \\ x_n \to a \end{cases} \implies f(x_n) \to A.$$

16.4 Запись предела функции

$$\lim_{x \to a} f(x) = A.$$

16.5

Пусть $\lim_{x\to a} f(x) = A \wedge \lim_{x\to a} f(x) = B$

16.6

Теорема 21. $f: D \to \mathbb{R}$, а предельная точка множества D. U - окрестность точки a, тогда предел функции b точке существует b существует предел на сужении $b \cap U$

16.7 Теорема о предельном переходе в неравенстве

Теорема 22. $f,g:D\to\mathbb{R},\ a\ npedeльная\ moчка\ множества\ D.$

$$\forall x \in Df(x) \le f(x).$$

$$\exists \lim_{x \to a} f(x), \lim_{n \to a} g(x).$$

Тогда $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$

16.8

Теорема 1.11, но про пределы функции.

16.9 Теорема о пределе суммы, произведения и частного

Пусть $f,g:D\to\mathbb{R}$,а предельна точка множества D. Пусть $\lim_{x\to a}f(x)=A,\lim_{x\to a}g(x)=b$ Тогда

- 1. $\lim_{x\to a} f(x) + g(x) = A + B$
- 2. $\lim_{x\to a} f(x) * g(x) = A * B$
- 3. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}, g(x) \neq 0, B \neq 0$

17 Композиция функций для вещественных функций

$$f:D\to\mathbb{R}.$$

$$g: E \to \mathbb{R}$$
.

$$f(D) \subset E$$
.

$$g \circ f = g(f(x)).$$

17.1 Примеры

$$F(x) = \sin^2 x.$$

$$f(x) = \sin x$$
.

$$g(x) = x^2$$
.

$$g \circ f = F$$
.

$$f \circ g = \sin x^2$$
.

18 Предел композиции.

Теорема 23. $f: D \to \mathbb{R}, g: E \to \mathbb{R}$. Пусть $f(D) \subset E$. пределеная точка множества D и $\lim_{x\to a} f(x) = b$. Пусть b предельная точка множества E и $\lim_{t\to b} g(t) = c$. Пусть выполняется одно из двух условий.

- 1. $\exists U$ точки a, такая что $\forall x \neq a \in U \cap D, f(x) \neq b$
- 2. $\lim_{t\to b} g(t) = g(b)$.

Tог $\partial a \lim_{x \to a} g(f(x)) = c$

Доказательство. Пусть 1 верно, мы хотим доказать, что $\lim_{x\to a}g(f(x))=c$ Возьмем $\forall (x_n)$ такую что $x_n\in D, x_a\neq ax_n\to a$

$$t_n = f(x_n).$$

$$t_n \to b$$
.

. . . .

Нужно проверить, что $g(f(x_n)) \to c$.

18.1 Пример

$$\lim_{x \to 0} \frac{\sin 3x}{x}.$$

$$3x = t.$$

$$\frac{\sin x}{x} = \frac{\sin t}{t/3} = 3\frac{\sin t}{t}.$$

19 Одностронние пределы.

Теорема 24. D - промежуток, $f: D \to \mathbb{R}$, а предельная точка. $\lim_{x \to a} f(x)$ сущесьтует \iff оба односторонних предела существуют и они равны друг другу.

20 Вычисление пределов

20.1

$$\lim_{x \to c} a^x = a^c$$

Доказательство. 1. a > 1

$$a^{x} - a^{c} = a^{c}(a^{x-c} - 1).$$

Докажем, что $a^{x-c} - 1 \to 0, x \to c$

$$t = x - c$$
.

$$\lim_{t \to 0} (a^t - 1) = 0?.$$

Докажем, что $a^{t_n}-1 \rightarrow 0$

$$\forall \epsilon > 0 \exists o \forall n \ge n_0 1 - \epsilon < a^{t_n} < 1 + \epsilon.$$

$$\log_a (1 - \epsilon) < t_n < \log_a (1 + \epsilon).$$

Расссмотрим промежуток $(\log_a (1 - \epsilon); \log_a (1 + \epsilon))$

$$\lim_{x \to c} \log_a x = \log_a c$$