University of Toronto

Department of Computer & Mathematical Sciences

MATC32: Graph theory and applications

Things you should know for the final

taught by Louis de Thanhoffer de Volcsey

-email me

-website

this document contains a detailed list of the things you should know in order to prepare for the final exam the exam takes place on Monday, December 18th at 7pm in IC 220

Planarity of Graphs Ch. 6

- You should know what a graph drawing in \mathbb{R}^n is: this includes polygonal curves and crossings (§6.1)
- You should know Euler's formula (6.1.21) and understand its proof (using edge contraction and the Jordan curve theorem 6.1.6)
- You should be able to apply this formula to obtain important inequalities (such as $E \leq 3V 6$ and $E \leq 2V 4$ 6.2.23).
- You should know Kuratowski's theorem and understand why the conditions are necessary (6.2.1-6.2.2)
- you should know what the dual of a planar graph is and how to use it in certain applications such as 6.1.13

Platonic solids: 6.1.28

- You should know what a platonic solid is and which 5 solids are platonic.
- You should understand the different steps in using planarity of graphs to classifying these solids

the Chromatic number and Brooks' Theorem §5.1

- You should understand the relation between graph colorings and partitions
- You should know what the chromatic number of a graph is and how to compute it in certain examples
- you should know the lower bounds for the chromatic number 5.1.7
- You should be able to execute the greedy coloring algorithm 5.1.12 and understand the upper bound 5.1.13 (in particular how succesor in the algorithm relate to a proper coloring)
- You should know Brooks theorem 5.1.22 and understand its proof in certain cases (in particular how the greedy algorithm gets used)

3,4,5-6-Colorability: online notes

- You should know that any planar graph is 5-colorable
- You should understand the proof of 6-colorability (in particular how the two statements imply the result and can be generalized)
- You should understand the proof of 5-colorability and how we manipulated colorings in certain cases

the Chromatic polynomial (§5.3)

- You should know what the chromatic polynomial is, and why the function is polynomial in particular
- You should know the contraction-deletion lemma (5.3.6)
- You should be able to apply the lemma to compute the chromatic polynomial of certain graphs such as cycles or trees

3 Algorithms (§2.3)

- You should know and be able to execute the two major algorithms we introduced to find a spanning tree: Kruskal's (2.3.1) and Prim's algorithm (ex. 2.3.10)
- You should know and be able to execute Dijkstra's algorithm (2.3.5) to find a shortest path. In particular know how to establish a Dijkstra table for a weighted graph.

Eulerian graphs (§1.2)

- You should know what Eulerian graphs are
- You should know and understand the equivalence between even graphs, decompositions of cycles and Eulerian graphs (1.2.26 and 1.2.27)
- You should be able to apply this theorem to make conclusions about Eulerian graphs.

Some general comments

- If you need to understand understand a proof, that does not mean you will be asked to reproduce it. However, some of the techniques used will help you solve other questions.
- You will be asked to prove certain statements yourself. In each case, the argument required will be rather short and direct
- Make sure you have as many examples and counterexamples as possible in order to improve your insight into the material
- If you should know/be able to state a result, make sure you can state it correctly! This will be actively tested
- It is a good idea to pick a certain graph and go through the material completely, checking how each result relates to said graph