FREIBURG

Kapitel 3 – Kombinatorische Logik

- 1. Kombinatorische Schaltkreise
- 2. Normalformen, zweistufige Synthese
- 3. Berechnung eines Minimalpolynoms
- 4. Arithmetische Schaltungen
- 5. Anwendung: ALU von ReTI

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer Professur für Rechnerarchitektur

Professur für Rechnerarchitel WS 2016/17

Anwendung: ALU von ReTI

- Die ALU (Arithmetic Logic Unit, arithmetisch-logische Einheit) dient der Berechnung von arithmetischen und logischen Operationen.
- Sie wird von den Compute-Befehlen verwendet und übernimmt weitere Aufgaben, z.B. Berechnung von Speicheradressen oder Erhöhung des *PC*.
- Erinnerung: Der Befehlssatz von ReTI hat die folgenden Compute-Befehle (s. nächste Folie).

Compute-Befehle: Kodierung

Тур	МІ	F	Befehl	Wirkung		
00	0	010	SUBI i	[ACC] := [ACC] - [i]	$\langle PC \rangle := \langle PC \rangle + 1$	
		011	ADDI i	[ACC] := [ACC] + [i]	$\langle PC \rangle := \langle PC \rangle + 1$	
		100	OPLUSI i	$ACC := ACC \oplus 0^{8}i$	$\langle PC \rangle := \langle PC \rangle + 1$	
		101	ORI i	$ACC := ACC \lor 0^8 i$	$\langle PC \rangle := \langle PC \rangle + 1$	
		110	ANDI i	$ACC := ACC \wedge 0^8 i$	$\langle PC \rangle := \langle PC \rangle + 1$	
0 0	1	010	SUB i	$[ACC] := [ACC] - [M(\langle i \rangle)]$	$\langle PC \rangle := \langle PC \rangle + 1$	
		011	ADD i	$[ACC] := [ACC] + [M(\langle i \rangle)]$	$\langle PC \rangle := \langle PC \rangle + 1$	
		100	OPLUS i	$ACC := ACC \oplus M(\langle i \rangle)$	$\langle PC \rangle := \langle PC \rangle + 1$	
		101	OR i	$ACC := ACC \lor M(\langle i \rangle)$	$\langle PC \rangle := \langle PC \rangle + 1$	
		110	AND i	$ACC := ACC \wedge M(\langle i \rangle)$	$\langle PC \rangle := \langle PC \rangle + 1$	

Spezifikation der ALU für ReTI

Eine n-Bit-ALU mit:

- Zwei *n*-Bit-Operanden *a*, *b*, Eingangscarry <u>c</u>,
 - ReTI: *n* = 32.
- Einem m-Bit select-Eingang, der ausgewählt, welche Funktion ausgeführt wird,
 - Hier: 8 Funktionen (s. nächste Folie), daher
 m = 3 Bits
- Einem (n + 1)-Bit-Ausgang.
 - n = 32.
- Insgesamt 68 Ein- und 33 Ausgänge.

Select-Eingang bei ReTI-ALU

Funktionsnummer			ALU-Funktion		
s_2	s ₁	s_0			
0	0	0	00		
0	0	1	[b] – [a]		
0	1	<u>0</u>	[a] – [b]		
0/	1	1	[a]+[b]+c		
\nearrow	0	0	$a \oplus b = (a_{n-1} \oplus b_{n-1}, \dots, a_0 \oplus b_0)$		
1	0	1	$a \vee b = (a_{n-1} \vee b_{n-1}, \ldots, a_0 \vee b_0)$		
1	1	0	$a \wedge b = (a_{n-1} \wedge b_{n-1}, \dots, a_0 \wedge b_0)$		
1	1	1	11		

Mögliche Realisierungen der ALU (1/2)

■ **Option 1**: Realisiere Funktionen f_0, \ldots, f_{2^m-1} getrennt durch SK_{f_i} für f_i , dann Auswahl durch einen verallgemeinerten Multiplexer.

Realisierung durch einen verallgemeinerten Multiplexer

Mögliche Realisierungen der ALU (2/2)

Option 1: Realisiere Funktionen f₀,..., f_{2^m-1} getrennt durch SK_{fi} für f_i, dann Auswahl durch einen Verallgemeinerten Multiplexer.

- Option 2: Gemeinsame Behandlung ähnlicher Funktionen.
 - Komplexer, aber effizienter.

Schaltrealisierung der ALU (1/2)

Schaltrealisierung der ALU (2/2)

SMILE - Vergleich Option 1 mit Option 2

Wie verhalten sich Kosten und Tiefe der beiden Realisierungsoptionen zueinander?

- a. (Tiefe(Option1) < Tiefe(Option2)) und $(Kosten(Option1) \leq Kosten(Option2))$
- b. (Tiefe(Option1) > Tiefe(Option2)) und $(Kosten(Option1) \leq Kosten(Option2))$
- c. (*Tiefe*(*Option*1) ≤ *Tiefe*(*Option*2)) und (Kosten(Option1) > Kosten(Option2))
- d. keine der obigen

Zusammenfassung Kombinatorische Logik

- Kombinatorische Schaltkreise setzen boolesche Funktionen um.
- PLAs sind zweistufig, mehrstufige Schaltungen bestehen aus Gattern und diese aus Transistoren.
- Minimierung von PLAs mit Verfahren von Quine-McCluskey und Lösen des Überdeckungsproblems.
- Statt Minimierung allgemeiner mehrstufiger Schaltkreise wurde eine Klasse (Addierer für Binär- und Zweierkomplementzahlen) betrachtet und ihre Integration in der ALU von ReTI diskutiert.

