Oblivious Computation Part I - Lower Bounds and Tree Based ORAMs

Gilad Asharov

Bar-Ilan University

Some slides were created by: Elaine Shi, Ilan Komargodski

Models of Computation

Metrics:

Size (how many wires, gates)
Depth (parallelism)

Time
Size of the memory

T N


```
func search(val, s, t)
```

mid = (s+t)/2

if val<mem[mid]</pre>

search(val,0,mid)

else search(val, mid+1, t)

Access Pattern of **binary search** leaks the **rank** of the number being searched

if (secret variable)

Read mem[x]

else

Write mem[y]

Access pattern reveals the value of the secret variable

Circuits

A program in the RAM model **Access Pattern** is "oblivious": Can be **simulated** from (T,N)

Example: Sorting

- Merge sort: $O(n \log n)$
 - non oblivious
- Bubble sort: $O(n^2)$
 - oblivious

Merge((1,2,3),(4,5,6))	Merge((1,3,5),(2,4,6))	
1,2,3 4,5,6	1,3,5	2,4,6
1,2,3 4,5,6	1,3,5	2,4,6
1,2,3 4,5,6	1,3,5	2,4,6
1,2,3 4,5,6	1,3,5	2,4,6
1,2,3 4,5,6	1,3,5	2,4,6
1,2,3 4,5,6	1,3,5	2,4,6

BubbleSort(1,2,3,4)	BubbleSort(4,3,2,1)
1,2,3,4	4,3,2,1
1,2,3,4	3,4,2,1
1,2,3,4	3,2,4,1
1,2,3,4	3,2,1,4
1,2,3,4	2,3,1,4
1,2,3,4	2,1,3,4
1,2,3,4	1,2,3,4

Models of Computation

Oblivious RAM (ORAM)

An algorithmic technique that provably encrypts access patterns

Goldreich and Ostrovsky (87′,90′,96′)

Permuting and shuffling elements around the memory

Security: Physical accesses independent of input logical sequence

Cloud computing:

Shroud: [RPMRS, Fast'12] Metal: [CP, NDSS'20] Ring ORAM: [RFKSS+, SEC'15]

ObliviStore: [SS, S&P'13] S3ORAM: [HOY, CCS'17], [HYG'19]

TaoStore: [SZALT, S&P'16]
O. R. ORAM: [CCR, CCS'19]
Obliviate: [AKSL, NDSS'18]
Others: [WNLCS+, CCS'14],
[BNPWH, CCS'15]

Theoretical crypto:

[GHL+, Eurocrypt'14], [GHR+, FOCS'14], [GLO, FOCS'15], [GLOS, STOC'15], [BCP, TCC'16], [CLT, TCC'16], [DDFRSW, TCC'16], [LO, CRYPTO'17], [CCS, Asiacrypt'17], [CNS, TCC'18], [CKNPS, Asiacrypt'18], [CL, TCC'19]

Programming lang:

[LHS, CSF'13], [DSLH, POPL'20]

Database:

Obladi: [CBCHAA, OSDI'18] ObliDB: [EZ, VLDB'20]

Architecture, secure processor:

OpenPiton: [BMFN+, CACM'19]
Phantom: [MLSTS+, CCS'13]

Ghostrider: [LHMHTS, ASPLOS'15, Best Paper] Ascend: [RFK+, TDSC'19] , [FRY+, HCPA'14],

Raccoon: [LRT, SEC'15]

Klotski: [ZSYZSJ, ASPLOS'20]

ZeroTrace: [SGF, NDSS'18] Obscuro: [AJX+, NDSS'19]

Others: [HO+, PETS'19], [HB+, CODASPY'20]

[RRM, C&S'20]

Multi-party computation:

ObliVM: [WHCSS, CCS'14], [LWNHS, S&P'15]

[NWIWTS, S&P'15],

ObliVC: [ZE'15]

SPDZ: [KY, Eurocrypt'18]

Others: [GKK+, CCS'12], [GHJR, ACNS'15],

[Keller'17], [GKW, Asiacrypt'18]

Blockchain, ML, misc:

Blockchain: [CZJKJS, CCS'17]

Proof of retrievability: [CKW, Eurocrypt'13]
Privacy-preserving ML: [NWIWTS, S&P'15],
[WLNHS, S&P'15]

[GO'87,90,96]

Hierarchical ORAM

 $O(\sqrt{N})$ $O(\log^3 N)$

[GM'11,KLO'12]

Hierarchical ORAM

 $\approx O(\log^2 N)$

[SCSL'11, SDS+13, WCS'15]

Tree Based ORAM

 $O(\log^3 N)$

 $O(\log^2 N)$

Simple, small constants

Statistical

[PPRY'18, AKL+'20]

Hierarchical ORAM

 $O(\log N)$

Matching the lower bound!

(Big constant)

Computational

[GO'87,90,96] [LN'18]

Lower Bound

 $\Omega(\log N)$

Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security

[OptORAMa, AKLNPS'20]

Statistical security

No dynamic memory accesses A[i]

Oblivious Parallelism

Oblivious PRAM compiler:
Introduced by Boyle, Chung and Pass in 2016

Recent work [AKLPS, SODA'22]:

Any PRAM program with T parallel time and N space $\implies T \log N$ parallel time and N space

Not Oblivious

No Parallelism

Not Oblivious

Parallelism

Oblivious

Parallelism

Oblivious

No Parallelism

Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security

[OptORAMa, AKLNPS'20]

Statistical security

Lower Bounds

Any ORAM compiler results in $\Omega(\log N)$ overhead

Lower Bounds

Goldreich and Ostrovsky ['96]:

 $\Omega(\log N)$

- **Balls and Bins** model
- Statistical Security
- **Offline** ORAM

Counting argument

Boyle and Naor ['16]:

An $\Omega(\log N)$ lower bound for offline ORAM not in the balls and bins model implies an $\Omega(N\log N)$ lower

bound for

sorting circuits

Larsen and Nielsen ['18]:

 $\Omega(\log N)$

- Not in Balls and Bins model
- Computational Security
- **Online** ORAM

Information transfer technique

The Lower Bound [LN'18]

- Based on information transfer technique of Pătrașcu & Demaine '06
- Cell probe model [Yao'81] computation is free, only charge for probes

The Lower Bound [LN'18]

Assign p_i^J = (Read/Write, addr) to an internal node v

iff v is the lower common ancestor of the two last physical accesses of addr

Logical Operations:

Physical probes: $p_1^1...,p_1^q$ $p_2^1...,p_2^q$ $p_3^1...,p_3^q$

 p_n^1,\ldots,p_n^q

Example

Assign $p_i^j = (\text{Read/Write}, \text{addr})$ to an internal node v iff v is the lower common ancestor of the two last physical accesses of addr

Logical Operations:

Physical probes: $p_1^1...,p_1^q$ $p_2^1...,p_2^q$ $p_3^1...,p_3^q$

 $p_n^1...,p_n^q$

Example

Assign $p_i^J = (\text{Read/Write}, \text{addr})$ to an internal node viff v is the lower common ancestor of the two last physical accesses of addr

 $P_{v} = \{p_{1}, ..., p_{k}\}$

Each physical probe is counted at most once

total # of probes
$$\geq \sum_{v \in \text{Tree}} |P_v|$$

Enough to bound

$$\sum_{v \in \mathsf{Tree}} |P_v| \geq ??$$

Physical probes: $p_1^1...,p_1^q$ $p_2^1...,p_2^q$ $p_3^1...,p_3^q$

 p_n^1,\ldots,p_n^q

5,10,20,1 12,11,20,44

4,44,50,20

Based on the physical access pattern - the adversary can compute the tree

Security: For all logical sequences, for all v, $\mid P_v \mid$ should be similar

Assumes online ORAM

For every v, we can show a **logical sequence** forcing $|P_v|$ to be large-

Based on the physical access pattern - the adversary can compute the tree

Security: For all logical sequences, for all v, $\mid P_v \mid$ should be similar

Assumes online ORAM

For every v, we can show a **logical sequence** forcing $|P_v|$ to be large-

Logical Operations:

Claim: For every node in depth d, $E[|P_v|] \ge \frac{N}{2^d}$

Proof by encoding / compression argument

O

•

2

Logical Operations:

Claim: For every node in depth d, $E[|P_v|] \ge \frac{N}{2^d}$

E[total #of probes]
$$\geq \sum_{v \in Tree} E[|P_v|] = \sum_{v \in Tree} \frac{N}{2^d} = \sum_{d=0}^{\log N-1} 2^d \cdot \frac{N}{2^d} = N \log N$$

We considered logical sequences of length N

 $\Omega(\log N)$ overhead per operation (in expectation)

References

Goldreich and Ostrovsky: Software Protection and Simulation on Oblivious RAMs, JACM 1996

Boyle and Naor: Is There an Oblivious RAM Lower Bound? ITCS 2016

Larsen and Nielsen: Yes! There is an Oblivious RAM Lower Bound, CRYPTO 2018

Weiss and Wichs: Is there an Oblivious RAM Lower Bound for Online Reads? TCC 2018

Pavel Hubacek, Michal Koucky, Karel Kral, Veronika Slivova: Strong Lower Bounds for Online ORAM, TCC 2019

Jacob, Larsen, Nielsen: Lower bounds for oblivious data structures, SODA 2019

Persiano and Yeo: Lower bounds for differentially private RAMs, EUROCRYPT 2019

Larsen, Simkin, Yeo: Lower bounds for multi-server oblivious RAMs, TCC 2020

Komargodski and Lin: A logarithmic lower bound for oblivious RAM (for all parameters), CRYPTO 2021

And more...

Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security [OptORAMa'20]

Statistical security

Tree Based ORAM

Simple constructions, statistical security, $O(\log^2 N)$ overhead

1 2 3 4 5 6 7 8

4 6 1 5 2 8 3 7

The adversary has no clue what the client is accessing

The adversary has no clue what the client is accessing

Repeated query!!!

Blocks must move around in memory!

Each bucket stores real and dummy blocks

CPU

Path invariant: every block mapped to a random path

Reading a block is simple!

After being read, block x must relocate!

Pick a new random path and move x there

Where on the new path can we write block x?

Can we write it to the leaf?

Writing to any non-root bucket leaks information

Write it to the root!

Security: every request, visit a random path that has not been revealed

Problem?

Problem: root will overflow

A background eviction process percolates blocks upwards

A background eviction process percolates blocks upwards

Every request: pick 2 random buckets per level to evict

Every request: pick 2 random buckets per level to evict

Eviction process does not leak information

Thm: bucket size = log n \Rightarrow no overflow w.h.p. [SCSL'11]

Proof: use queuing theory and measure concentration bounds.

Thm: bucket size = log n \square no overflow w.h.p. [SCSL'11]

Every request incurs O(log² n) cost

Position map

Store position map recursively in a

smaller ORAM

Position map

Position map

Cost with eviction: O(log³ n)

Previous construction - $O(\log^3 N)$ overhead:

- Each path has $O(\log N)$ nodes
- Each node has a bucket of size $O(\log N)$
- Recursion adds another $O(\log N)$

Improvement: Path ORAM ($O(\log^2 N)$) overhead)

- Each node has a bucket of size O(1)
- * Client has local stash of size poly $\log N$

[SDS+'13]

1:
$$x \leftarrow \mathsf{position}[\mathsf{a}]$$

2: position[a]
$$\leftarrow$$
 UniformRandom $(0 \dots 2^L - 1)$

3: for
$$\ell \in \{0, 1, ..., L\}$$
 do

4:
$$S \leftarrow S \cup \mathsf{ReadBucket}(\mathcal{P}(x, \ell))$$

6: data
$$\leftarrow$$
 Read block a from S

8:
$$S \leftarrow (S - \{(\mathsf{a}, \mathsf{data})\}) \cup \{(\mathsf{a}, \mathsf{data}^*)\}$$

10: for
$$\ell \in \{L, L-1, \ldots, 0\}$$
 do

11:
$$S' \leftarrow \{(a', \mathsf{data}') \in S : \mathcal{P}(x, \ell) = \mathcal{P}(\mathsf{position}[a'], \ell)\}$$

12:
$$S' \leftarrow \text{Select min}(|S'|, Z) \text{ blocks from } S'.$$

13:
$$S \leftarrow S - S'$$

14: WriteBucket(
$$\mathcal{P}(x, \ell), S'$$
)

16: return data

[SDS+'13]

Achieves O(log² n) cost with recursion

Summary: tree-based ORAMs

- A block is re-mapped to a new random path upon being read.
- The block must be relocated to the new path without revealing the new path
- Key challenge: design eviction process and prove no overflow.

Tree Based ORAM

Shi, Chan, Stefanov, Li: **Oblivious RAM with** $O(\log^3 N)$ **Worst-Case Cost**, ASIACRYPT 2011

Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas: Path ORAM: an Extemrely Simple Oblivious RAM Protocol, CCS 2013

Gentry, Goldman, Halevi, Jutla, Raykova, Wichs: **Optimizing ORAM and Using it Efficiently for Secure Computation**, PETS 2013

Chung, Pass: A Simple ORAM, 2013

Wang, Chan, Shi: Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower

Bound, CCS 2015

Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security [OptORAMa, AKLNPS'20]

Statistical security

Thank You!