Apellido y Nombres:	 ,	
2 0	Código Asignatura:	
	Profesor:	
Corros electrónico:		

Análisis Matemático III. Examen Integrador. Tercera fecha. 9 de abril de 2021.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. La función f tiene a $\sum_{n=1}^{\infty} \frac{n}{4^n} (z-1-i)^n$ como desarrollo de Taylor centrado en $z_0 = 1+i$, válido en un entorno D. Dadas las curvas $\gamma_1 = \{z \in \mathbb{C} : |z-i|=1\}$ y $\gamma_2 = \{z \in \mathbb{C} : |z-1|=1\}$, ambas orientadas en sentido positivo, sean $\Gamma_1 = f(\gamma_1 \cap D)$ y $\Gamma_2 = f(\gamma_2 \cap D)$. Verificar que Γ_1 y Γ_2 se intersecan en $f(z_0)$. Obtener $f(z_0)$ y la magnitud del ángulo determinado por Γ_1 y Γ_2 en $f(z_0)$. Estudiar el mismo problema para el caso en que la serie está dada por $\sum_{n=1}^{\infty} \frac{n-1}{4^n} (z-1-i)^n$.

Ejercicio 2. Se tiene un condensador que encierra la región del plano:

$$A = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + (y - 2)^2 \le 4, \ y \le x\}$$

para el cual la función potencial en los bordes satisface:

$$u(x,y) = \begin{cases} 0 & \text{para} \quad y = x, \ (x-2)^2 + (y-2)^2 < 4 \\ 1 & \text{para} \quad (x-2)^2 + (y-2)^2 = 4, \ y < x \end{cases}$$

Hallar una función T de variable compleja que transforme este condensador en uno equivalente de placas paralelas. Indicar cómo quedan las condiciones de contorno en las placas paralelas (no se pide hallar u(x,y)).

Ejercicio 3. Resolver el siguiente problema, indicando las hipótesis consideradas sobre f:

$$\begin{cases} u_{tt} = 2u_{xx} - 3x & 0 < x < \pi, \ t > 0 \\ u(0, t) = u(\pi, t) = 0 & t \geqslant 0 \\ u(x, 0) = f(x) & 0 \leqslant x \leqslant \pi \\ u_t(x, 0) = 0 & 0 \leqslant x \leqslant \pi \end{cases}$$

Ejercicio 4. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{si} \quad |x| \leqslant 1\\ e^{-2|x|} & \text{si} \quad |x| > 1 \end{cases}$$

Probar que existe \hat{f} , la transformada de Fourier de f. Determinar si f es cuadrado integrable y calcular el valor de la integral impropia $\int\limits_0^\infty |\hat{f}(\omega)|^2 d\omega$.

Ejercicio 5. Obtener y en términos de g, sabiendo que para t>0:

$$y(t) = \phi(t-2)H(t-2) + (H * \phi)(t)$$

 $\phi'(t) = \int_{0}^{t} g(\tau) d\tau$

con $\phi(0^+)=0$, siendo H(t) la función de Heaviside.