Quantum error-correction

Procesamiento cuántico de información Segundo cuatrimestre de 2020

23 de noviembre de 2020

Quantum error correction

Corrección de errores clásicos

Corrección de errores cuánticos

3 qubit flip code

3 qubit phase code

Shor code

Intro

Idea principal: Encodear mensajes de forma tal que sean resilientes al ruido

 \rightarrow Redundancia

Asunción: el encodeo y desencodeo de mensajes se puede hacer sin error

- ▶ Útil para cuando se envían mensajes por un canal ruidoso
- Existen formas de quitar esta asunción

Intro (cont.)

Figura 1: Esquema general de corrección de errores

Corrección de errores clásicos

- ► **Channel**: binary simmetric channel, alterna cada bit con probabilidad p
- ► Encoding:

$$0 \rightarrow 000$$

$$1 \rightarrow 111 \\$$

► **Decoding:** Majority voting

Corrección de errores clásicos (cont.)

- ► Sin corrección: p
- ightharpoonup Con corrección: $p_e = 3p^2 2p^3$

 \leftarrow 2 o 3 bits se alternaron

$$p_e < p$$
 si $p < \frac{1}{2}$

Corrección de errores cuánticos

Dificultades:

- ► No cloning
- ► Los errores son continuos
- ► Medir destruye información

Corrección de errores cuánticos (cont.)

Figura 2: Esquema general de corrección de errores cuánticos

3 qubit flip code

- **Channel:** bit flip channel, alterna $|\psi\rangle$ a $X|\psi\rangle$ con probabilidad p
- ► Encoding: $a |0\rangle + b |1\rangle \rightarrow a |000\rangle + b |111\rangle$

Error detection & recovery: error syndromes

3 qubit flip code (cont.)

► Encoding:

3 qubit flip code (cont.)

► Error detection & recovery:

Error detection	Recovery
$P_0 \equiv \ket{000}ra{000} + \ket{111}ra{111} ightarrow no$ error	$I \otimes I \otimes I$
$P_1 \equiv \ket{100}ra{100} + \ket{011}ra{011} ightarrow ext{first flipped}$	$X \otimes I \otimes I$
$P_2 \equiv \ket{010} ra{010} + \ket{101} ra{101} ightarrow ext{second flipped}$	$I \otimes X \otimes I$
$P_3 \equiv \ket{001} ra{001} + \ket{110} ra{110} ightarrow ext{third flipped}$	$I \otimes I \otimes X$

3 qubit flip code - análisis de error

Análisis simplificado: El algoritmo funciona perfectamente si hay bit flips en 1 o menos de los 3 qubits, lo cual sucede con probabilidad

$$p_c = (1-p)^3 + 3p(1-p)^2 = 1 - 3p^2 + 2p^3$$

Comparado con no utilizarlo:

$$p_c>1-p$$
 si $p<rac{1}{2}$

3 qubit flip code - análisis de error (cont.)

Fidelidad: medición de cercanía de estados

$$F(|\psi\rangle, \rho) = \sqrt{\langle \psi | \rho | \psi \rangle}$$
$$0 \leqslant F(|\psi\rangle, \rho) \leqslant 1$$

Fidelidad sin corrección:

$$\rho = (1 - p) |\psi\rangle \langle \psi| + pX |\psi\rangle \langle \psi| X$$
$$F(|\psi\rangle, \rho) = \sqrt{1 - p}$$

Fidelidad mínima con corrección:

$$\rho = [(1-p)^3 + 3p(1-p)^2] |\psi\rangle \langle \psi| + ...$$
$$F(|\psi\rangle, \rho) \geqslant \sqrt{(1-p)^3 + 3p(1-p)^2}$$

3 qubit flip code - alternative error detection

En vez de medir los projectores, se miden los observables

►
$$Z_1Z_2 = Z \otimes Z \otimes I$$

 $\rightarrow +1$, 1^{er} y 2^{do} qubit son iguales, o -1 si son distintos

$$Z_2Z_3 = I \otimes Z \otimes Z$$

 $\rightarrow +1$, 2^{do} y 3^{er} qubit son iguales, o -1 si son distintos

Projectores	1 ^{er} medición	2 ^{da} medición
P_0	+1	+1
P_1	-1	+1
P_2	-1	-1
P_3	+1	-1

3 qubit phase code

Channel: phase flip channel, alterna $|\psi\rangle$ a $Z|\psi\rangle$ con probabilidad p

Es unitarly equivalent a los bit flip channel ya que X = HZH:

3 qubit phase code (cont.)

- **Channel:** phase flip channel, alterna $|\psi
 angle$ a $Z\,|\psi
 angle$ con probabilidad p
- ► Encoding: $a|0\rangle + b|1\rangle \rightarrow a|+++\rangle + b|---\rangle$

$$|0\rangle
ightarrow |+++\rangle$$

$$|1\rangle \rightarrow |---\rangle$$

► Error detection & recovery: error syndromes

3 qubit phase code (cont.)

► Encoding:

3 qubit phase code (cont.)

Error detection & recovery:

$$P_j \to H^{\otimes^3} P_j H^{\otimes^3}$$

Figura 3: Projectores adaptados

$$H^{\otimes^3} Z_1 Z_2 H^{\otimes^3} = X_1 X_2$$

 $H^{\otimes^3} Z_2 Z_3 H^{\otimes^3} = X_2 X_3$

Figura 4: Observables adaptados

3 qubit phase code - análisis de error

Aplican los mismos resultados que en el análisis del *3 qubit flip code*

Shor code

- ► Channel: cualquier error en un único qubit
- ► **Encoding:** concatenation de 3 qubit phase flip code y 3 qubit bit flip code
- ► Error detection & recovery: ???

► Encoding:

$$\begin{split} |0\rangle \rightarrow |0_L\rangle &\equiv \frac{(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} \\ |1\rangle \rightarrow |1_L\rangle &\equiv \frac{(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \end{split}$$

► Encoding:

- ► Error detection & recovery: suponiendo que hubo bit flip en algún qubit:
 - Detection: Son detectadas mediante mediciones de Z_iZ_i
 - Recovery: Se aplica X al qubit afectado

- ► Error detection & recovery: suponiendo que hubo phase flip en algún qubit:
 - Detection: Phase flip en un qubit causa que se cambie el signo del bloque afectado

$$|000\rangle + |111\rangle \rightarrow |000\rangle - |111\rangle$$

Por lo que puede ser detectado comparando los signos de los bloques

• Recovery: Se aplica Z a cualquier qubit del bloque afectado

- ► Error detection & recovery: suponiendo que hubo phase y bit flip en algún qubit:
 - Correr el procedimiento de corrección y detección de bit flip, después del cual solo quedará un phase flip en el qubit afectado
 - 2. Correr el procedimiento de corrección y detección de phase flip

Error detection & recovery: cualquier error en algún qubit:

Representando el error como una operación que preserva traza ξ , dado un estado inicial $|\psi\rangle$:

$$\xi(|\psi\rangle\langle\psi|) = \sum_{i} E_{i} |\psi\rangle\langle\psi| E_{i}^{\dagger}$$

Cada E_i puede expandirse como:

$$E_i = e_{i0}I + e_{i1}X_1 + e_{i2}Z_1 + e_{i3}X_1Z_1$$

Entonces un error arbitrario se puede pensar como que lleva un estado ψ a una superposición de los estados:

$$|\psi\rangle$$
, X_1 $|\psi\rangle$, Z_1 $|\psi\rangle$, X_1Z_1 $|\psi\rangle$

Por lo que el procedimiento para corregirlo es:

 Correr el procedimiento de corrección y detección de bit flip, después del cual el estado quedará en superposición de:

$$|\psi\rangle$$
, $X_1|\psi\rangle$

2. Correr el procedimiento de corrección y detección de phase flip

Shor code - error en más de un qubit

Que pasa si el error afecta a más de un qubit?

- Si el error de cada qubit es independiente se lo puede achicar mediante los procedimientos descritos hasta ahora
- ► Sino hay que utilizar otros procedimientos

Bibliography

[1] M. A. Nielsen e I. L. Chuang, *Quantum Computation and Quantum Information*. Cambridge University Press, 2000, págs. 425-434.