Gegeben sei das primitive Polynom $f(D) = D^3 + D + 1$.

a.) Vervollständigen Sie das von $f(\alpha)$ gebildete Galois-Feld.

α^{i}	α^i mod $f(\alpha)$
-	0
α^{0}	1
α^1	α
α^2 α^3	α^2
α^3	α + 1
α^4	$\alpha^2 + \alpha$
α^5 α^6	$\alpha^2 + \alpha + 1$
α^6	$\alpha^2 + 1$
α^7	1

b.) Bilden Sie die Minimalpolynome $m_1(D)$, $m_3(D)$ und $m_5(D)$ in der Produktform

$$\begin{split} m_1(D) &= (D - \alpha) \cdot (D - \alpha^2) \cdot (D - \alpha^4) \\ m_3(D) &= (D - \alpha^3) \cdot (D - \alpha^6) \cdot (D - \alpha^5) \\ m_5(D) &= (D - \alpha^5) \cdot (D - \alpha^3) \cdot (D - \alpha^6) \end{split}$$

c.) Es sei $m_1(D) = D^3 + D + 1$. Bilden Sie das Generatorpolynom g(D) für einen mindestens 2 Fehler korrigierenden Code.

$$\begin{split} m_3(D) &= (D - \alpha^3) \cdot (D - \alpha^6) \cdot (D - \alpha^5) = (D^2 + \alpha^6 D + \alpha^3 D + \alpha^2) \cdot (D - \alpha^5) \\ &= D^3 + \alpha^6 D^2 + \alpha^3 D^2 + \alpha^2 D + \alpha^5 D^2 + \alpha^4 D + \alpha D + 1 \\ &= D^3 + (\alpha^6 + \alpha^3 + \alpha^5) \cdot D^2 + (\alpha^2 + \alpha^4 + \alpha) \cdot D + 1 \end{split}$$

$$t_2 = \alpha^6 + \alpha^3 + \alpha^5 = \alpha^2 + 1 + \alpha + 1 + \alpha^2 + \alpha + 1 = 1$$

$$t_1 = \alpha^2 + \alpha^2 + \alpha + \alpha = 0$$

$$m_3(D) = D^3 + D^2 + 1$$

$$G(D) = m_1(D) \cdot m_3(D) = (D^3 + D + 1) \cdot (D^3 + D^2 + 1) = D^6 + D^5 + D^3 + D^4 + D^3 + D + D^3 + D^2 + 1$$
$$= D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$

d.) Geben Sie alle gültigen Codeworte für diesen Code an. Weisen Sie die Gültigkeit dieser Codeworte nach.

$$\begin{split} N &= 7,\, N\text{-}K = 6,\, K = 1 \\ a_1(D) &= 1 \\ a_2(D) &= 0 \\ x_1(D) &= 1\cdot D^{N\text{-}K} + 1\cdot D^{N\text{-}K} \,\, \text{mod} \,\, g(D) = 1\cdot D^6 + D^6 \,\, \text{mod}(D^6 + D^5 + D^4 + D^3 + D^2 + D + 1) \\ &= D^6 + D^5 + D^4 + D^3 + D^2 + D + 1 \Rightarrow (1\,\,1\,\,1\,\,1\,\,1\,\,1) \\ x_2(D) &= 0 \Rightarrow (0\,\,0\,\,0\,\,0\,\,0\,\,0) \\ x_1(\alpha) &= \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1 = \alpha^2 + 1 + \alpha^2 + \alpha + 1 + \alpha^2 + \alpha + 1 + \alpha^2 + \alpha + 1 = 0 \end{split}$$

$$x_1(\alpha) = \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1 = \alpha^2 + 1 + \alpha^2 + \alpha + 1 + \alpha^2 + \alpha + \alpha + 1 + \alpha^2 + \alpha + 1 = 0$$

 $x_2(\alpha) = 0$

e.) Dekodieren Sie das empfangene Codewort $y(D) = D^4 + D^3 + D^2 + D + 1$.

$$\begin{split} S_1 &= \alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1 = \ \alpha^2 + \alpha + \alpha + 1 + \alpha^2 + \alpha + 1 = \alpha \\ S_2 &= \alpha^8 + \alpha^6 + \alpha^4 + \alpha^2 + 1 = \ \alpha + \alpha^2 + 1 + \alpha^2 + \alpha + \alpha^2 + 1 = \alpha^2 \\ S_3 &= \alpha^{12} + \alpha^9 + \alpha^6 + \alpha^3 + 1 = \ \alpha^2 + \alpha + 1 + \alpha^2 + \alpha^2 + 1 + \alpha + 1 + 1 = \alpha^2 \\ S_4 &= \alpha^{16} + \alpha^{12} + \alpha^8 + \alpha^4 + 1 = \ \alpha^2 + \alpha^2 + \alpha + 1 + \alpha + \alpha^2 + \alpha + 1 = \alpha^2 + \alpha = \alpha^4 \end{split}$$

$$S_1 + \sigma_1 = 0 \Rightarrow S_1 = \sigma_1 \Rightarrow \sigma_1 = \alpha$$

$$S_2 + \sigma_1 S_1 + 2 \sigma_2 = 0 \Rightarrow \alpha^2 + \alpha \alpha + 2 \sigma_2 = \alpha^2 + \alpha^2 + \sigma_2 + \sigma_2 = 0 \Rightarrow$$
 keine weitere Information

$$S_3 + \sigma_1 S_2 + \sigma_2 S_1 + 3 \sigma_3 = 0 \Rightarrow S_3 + \sigma_1 S_2 + \sigma_2 S_1 = 0 \Rightarrow \alpha^2 + \alpha \alpha^2 + \sigma_2 \alpha = 0 \Rightarrow \alpha + \alpha^2 + \sigma_2 = 0$$

 $\Rightarrow \alpha^4 + \sigma_2 = 0 \Rightarrow \sigma_2 = \alpha^4$

Fehlerpolynom:

$$\sigma^{(2)}(D) = 1 + \sigma_1 D + \sigma_2 D^2 = 1 + \alpha D + \alpha^4 D^2 = 0$$

Einsetzen von α in das Fehlerpolynom ergibt

$$1 + \alpha \alpha + \alpha^4 \alpha^2 = 1 + \alpha^2 + \alpha^6 = 1 + \alpha^2 + \alpha^2 + 1 = 0$$

Damit ist α die erste Nullstelle des Fehlerpolynoms.

Einsetzen von α^2 in das Fehlerpolynom ergibt

$$1 + \alpha \alpha^2 + \alpha^4 \alpha^4 = 1 + \alpha^3 + \alpha^8 = 1 + \alpha + 1 + \alpha = 0$$

Damit ist α^2 die zweite Nullstelle des Fehlerpolynoms.

$$\Rightarrow \beta_1^{-1} = \alpha \Rightarrow \beta_1 = \alpha^6$$

$$\Rightarrow$$
 $\beta_2^{-1} = \alpha^2 => \beta_2 = \alpha^5$

$$\Rightarrow$$
 e(D) = D⁶ + D⁵

$$\Rightarrow$$
 x(D) = e(D) + y(D) = D⁶ + D⁵ + D⁴ + D³ + D² + D + 1 -> (1 1 1 1 1 1 1)