Monolithic SiGE BiCMOS pixel detectors: Ultra fast timestamping performance and TeV-scale photon detection.

2021 - 2025

Written by Théo Moretti

Université de Genève, Suisse Section de Physique - Département de Physique Nucléaire et Corpusculaire theo.moretti@unige.ch

Supervised by Professor Giuseppe Iacobucci

Contents

. Iı	ntroduction				
S	ilicon pixel detectors				
2.	.1 Fundamentals of semiconductors				
	2.1.1 Properties of semiconductor materials				
	2.1.2 Intrinsic semiconductors				
	2.1.3 Doped semiconductors				
2.	.2 The pn junction for particle detection				
	2.2.1 Junctions				
	2.2.2 External voltage				
	2.2.3 Current and capacitance behavior				
2.	.3 Signal formation and charge carrier transport				
	2.3.1 Drift of electrons and holes				
	2.3.2 Weighting field				
	2.3.3 Shockley-Ramo theorem				
	2.3.4 Space charge and signal formation				
2.	.4 Pixelated detector technologies				
	2.4.1 Hybrid pixel detectors				
	2.4.2 Monolithic pixel detectors				
2.					
	2.5.1 Processes involved				
	2.5.2 Consequence of damages				
	2.5.3 Solutions and operation constraints				
\mathbf{S}	Signal processing: Front-End electronics				
3.					
	3.1.1 Charge-sensitive amplifier				
	3.1.2 Pulse shaping and amplifier characteristics				
3.	.2 Electronic noise				
	3.2.1 Noise sources				
	3.2.2 Equivalent Noise Charge				
3.					
	3.3.1 Time jitter				
	3.3.2 Time walk				
	3.3.3 Fixed threshold vs. Constant Fraction Discriminator				
\mathbf{T}	The MONOLITH ERC project: ultra-fast timing				
	.1 Timing detectors in HEP				
4.	.2 The recipe for ultra-fast timing				
	4.2.1 SiGe BiCMOS HRTs				

		4.2.2 Picosecond Avalanche Detector: PicoAD	5		
	4.3	Prototypes and characteristics	5		
			5		
			5		
	4.4		5		
			5		
			5		
			5		
	4.5		5		
5	FAS	SER: Looking for TeV-scale photons from ALPs decay	6		
	5.1		7		
	5.2		7		
		· · · · · · · · · · · · · · · · · · ·	7		
			7		
	5.3	· · · · · · · · · · · · · · · · · · ·	7		
		5.3.1 ASIC characteristics	7		
		5.3.2 Signal readout	7		
			7		
	5.4	•	7		
			7		
			7		
		5.4.3 Analog memory drift	7		
		5.4.4 Improvements for production ASIC	7		
	5.5	Trigger and Data Acquisition: TDAQ	7		
		5.5.1 The UniGe GPIO	7		
			7		
		g .	7		
	5.6		7		
		5.6.1 Assembly of modules	7		
			7		
			7		
		5.6.4 Threshold and Noise scans	7		
		5.6.5 Load scan and Charge calibration	7		
		5.6.6 Testbeam?	7		
6	Out	look and conclusion	8		
Bi	Bibliography 8				