K Means Clustering

Data: USArrests

Libraries

```
# God is Great!
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option('display.max_column',None)
from random import sample
from sklearn import preprocessing
from sklearn.preprocessing import scale
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from scipy.spatial import distance_matrix
from scipy.spatial import distance
from sklearn import datasets
from sklearn.metrics import silhouette score
from sklearn.metrics import silhouette_samples
from sklearn.decomposition import PCA
```

Data

```
In [2]: data=pd.read csv("C:/Users/Dr Vinod/Desktop/USArrests.csv")
In [3]: data=pd.DataFrame(data)
In [4]: data.head()
Out[4]:
      State Murder Assault UrbanPop Rape
0
     Alabama
            13.2
                       236
                                58 21.2
    Alaska 10.0
                      263 48 44.5
   Arizona 8.1 294
                               80 31.0
3 Arkansas 8.8 190 50 19.5
4 California
               9.0
                      276
                                91 40.6
In [5]: data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
    Column
            Non-Null Count Dtype
 0 State 50 non-null object
    Murder 50 non-null float64
            50 non-null int64
 2 Assault
 3 UrbanPop 50 non-null int64
    Rape
            50 non-null float64
dtypes: float64(2), int64(2), object(1)
memory usage: 2.1+ KB
```

```
# Making the column "State" as the index
data=data.set_index('State')
data.head()
```

Set Index as 'state'

	ata.head()			
Out[7]:	Murder	Assault	UrbanPop	Rape
State				•
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
Californi	a 9.0	276	91	40.6

■ data - DataFrame							
State	Murder	Assault	UrbanPop	Rape			
Alabama	13.2	236	58	21.2			
Alaska	10	263	48	44.5			
Arizona	8.1	294	80	31			
Arkansas	8.8	190	50	19.5			
California	9	276	91	40.6			
Colorado	7.9	204	78	38.7			

Creating a sample of 10 rows from the USArrests dataset
sample=data.sample(frac=0.20,replace=False,random_state=123)
len(sample)
sample

Sample 10 states

In [10]: sample							
Out[10]:		_	_				
	Murder	Assault	UrbanPop	Rape			
State							
Hawaii	5.3	46	83	20.2			
Indiana	7.2	113	65	21.0			
New Mexico	11.4	285	70	32.1			
Washington	4.0	145	73	26.2			
Maine	2.1	83	51	7.8			
Alabama	13.2	236	58	21.2			
South Dakota	3.8	86	45	12.8			
Illinois	10.4	249	83	24.0			
New Jersey	7.4	159	89	18.8			
Florida	15.4	335	80	31.9			

Distance Matrix to excel

Index means

1st column

Computing Distance Matrix

round(DM, 2)
DM.to_csv('DM2.csv')

4	Α	В	С	D	Е	F	G	Н	1	J	K
1	State	Hawaii	Indiana	New Mexic	Washingto	Maine	Alabama	South Dak	Illinois	New Jerse	Florida
2	Hawaii	0	69.40641	239.7266	99.69298	50.56679	191.8031	55.68671	203.0996	113.1873	289.4286
3	Indiana	69.40641	0	172.4814	33.54519	36.00347	123.3452	34.75342	137.2561	51.93149	222.9239
4	New Mexico	239.7266	172.4814	0	140.3516	204.5531	51.64349	201.634	39.13579	128.1791	51.14724
5	Washington	99.69298	33.54519	140.3516	0	68.33864	92.82047	66.66783	104.6986	22.76664	190.5556
6	Maine	50.56679	36.00347	204.5531	68.33864	0	154.1453	8.537564	170.0333	85.8434	255.1523
7	Alabama	191.8031	123.3452	51.64349	92.82047	154.1453	0	151.0891	28.45488	83.24302	102.0016
8	South Dakota	55.68671	34.75342	201.634	66.66783	8.537564	151.0891	0	167.875	85.52169	252.4388
9	Illinois	203.0996	137.2561	39.13579	104.6986	170.0333	28.45488	167.875	0	90.39934	86.55871
10	New Jersey	113.1873	51.93149	128.1791	22.76664	85.8434	83.24302	85.52169	90.39934	0	176.8972
11	Florida	289.4286	222.9239	51.14724	190.5556	255.1523	102.0016	252.4388	86.55871	176.8972	0

Visualize the matrix

```
# Visualizing the distance using matplotlib
plt.plot(DM)
plt.ylabel("Distances")
plt.grid(False)
plt.xticks(rotation = 90)
plt.title('Distances among states')
plt.show()
```



```
data_scaled=StandardScaler().fit_transform(data)
data_scaled
```

Scale the data

```
In [19]: data scaled
Out[19]:
array([[ 1.25517927, 0.79078716, -0.52619514, -0.00345116],
       [ 0.51301858, 1.11805959, -1.22406668, 2.50942392],
       [ 0.07236067, 1.49381682, 1.00912225, 1.05346626],
      [ 0.23470832, 0.23321191, -1.08449238, -0.18679398],
      [ 0.28109336, 1.2756352 , 1.77678094, 2.08881393],
      [ 0.02597562, 0.40290872, 0.86954794, 1.88390137],
      [-1.04088037, -0.73648418, 0.79976079, -1.09272319],
      [-0.43787481, 0.81502956, 0.45082502, -0.58583422],
      [ 1.76541475, 1.99078607, 1.00912225, 1.1505301 ],
       [ 2.22926518, 0.48775713, -0.38662083, 0.49265293],
      [ 0.16513075, -0.17890893, -0.17725937, -0.05737552],
      [-0.87853272, -0.31224214, 0.52061217, 0.53579242],
      [-0.48425985, -1.08799901, -1.85215107, -1.28685088],
      [-1.20322802, -1.42739264, 0.03210209, -1.1250778],
      [-0.22914211, -0.11830292, -0.38662083, -0.60740397]])
```

Find optimum nos of clusters

```
plt.figure(figsize = (10,8))

wcss = []
for i in range(1,11):
    kmeans = KMeans(n_clusters= i, init= 'random', random_state= 42)
    kmeans.fit(data_scaled)
    wcss.append(kmeans.inertia_)

wcss #10 values will appear

plt.plot(range(1,11), wcss, 'gx-')
plt.title('wcss of clusters')
plt.xlabel('Number of clusters')
plt.ylabel('wcss')
plt.show()
```


Clustering happened!

```
# Running KMeans to our desired number/optimum no of clusters (k = 4)
# just making the cluster in the backend (not fitted to dataset here)
kmeans=KMeans(n_clusters=4)
# fitting the cluster to the dataset
clusters=kmeans.fit_predict(data_scaled)
# cluster allocation
clusters
```

Cluster Membership

```
# We are not comfortable with the cluster 0, so 1 is added to the clusters
# to change cluster 0 to cluster 1, 1 to 2, 2 to 3 and so on.
# Therefore naming clusters 1-4 instead of 0-3 and adding to the dataframe
Final_Clusters=clusters+1
cluster=list(Final_Clusters)
data['member']=cluster # Addition of the column to the dataset
data.head()
```

ta.head()			
Murder	Assault	UrbanPop	Rape	member
13.2	236	58	21.2	<mark>2</mark>
10.0	263	48	44.5	1
8.1	294	80	31.0	1
8.8	190	50	19.5	2
9.0	276	91	40.6	1
	Murder 13.2 10.0 8.1 8.8	13.2 236 10.0 263 8.1 294 8.8 190	Murder Assault UrbanPop 13.2 236 58 10.0 263 48 8.1 294 80 8.8 190 50	Murder Assault UrbanPop Rape 13.2 236 58 21.2 10.0 263 48 44.5 8.1 294 80 31.0 8.8 190 50 19.5

Overall Silhouette Score

```
#____silhouette score_OVERALL
print(f'sil score(n=4): {silhouette_score(data_scaled, cluster)}') #0.34
```

```
In [36]: print(f'sil score(n=4): {silhouette_score(data_scaled, cluster)}') #0.34
sil score(n=4): 0.33968891433344395
```

Silhouette Score of each data point

```
#_____silhouette score--> EACH DATA POINT
sample_silhouette_values = silhouette_samples(data_scaled, cluster)

# sample_silhouette_values is an array, convert to DF
sample_silhouette_values = pd.DataFrame(sample_silhouette_values)

# Export to desktop
sample_silhouette_values.to_csv('C:/Users/Dr Vinod/Desktop/sil_values4.csv')
```

4	Α	В	С	D	Е	F	G	
1	State	Murder	Assault	UrbanPop	Rape	cluster	sil_score	
2	Alabama	13.2	236	58	21.2	2	0.485775	
3	Alaska	10	263	48	44.5	4	0.058252	
4	Arizona	8.1	294	80	31	4	0.415483	
5	Arkansas	8.8	190	50	19.5	2	0.118709	
6	California	9	276	91	40.6	4	0.435559	
7	Colorado	7.9	204	78	38.7	4	0.326542	
8	Connectic	3.3	110	77	11.1	1	0.227173	
9	Delaware	5.9	238	72	15.8	1	0.332977	
10	Florida	15.4	335	80	31.9	4	0.258017	
11	Georgia	17.4	211	60	25.8	2	0.371803	

Pattern of sil_score across clusters

```
sns.violinplot(x = 'cluster', y = 'sil_score', data = data1)
plt.title('ViolinPlot of Silhouette Scores')
```



```
#_____complete data
data.info() # cluster added already
data['sil_score'] = sample_silhouette_values # add silscore
data.to_csv('C:/Users/Dr Vinod/Desktop/ClstrUSArrsts.csv')
data1=pd.read_csv("C:/Users/Dr Vinod/Desktop/ClstrUSArrsts.csv")
data1=pd.DataFrame(data1)
```

```
#_____silhouette score of each cluster

from sklearn.metrics import silhouette_samples

num_clusters = 4

# sil score of each data point

Do it again as we had made a data frame of 'sample_silhouette_values' before
```

Cluster wise Sil score

```
sample_silhouette_values = silhouette_samples(data_scaled, cluster)

means_list = [] #empty list
for i in range(num_clusters):
    means_list.append(round(sample_silhouette_values[i == clusters].mean(),2))
    # clusters=kmeans.fit_predict(data_scaled); 0,1,2,3
print(means_list) # 0.27, 0.39, 0.37, 0.34
```

```
plotting sil score
import numpy as np
from matplotlib import cm
from sklearn.metrics import silhouette samples
cluster labels = np.unique(clusters)
n_clusters = cluster_labels.shape[0]
silhouette vals = silhouette samples(data scaled,clusters,metric='euclidean')
y_ax_lower, y_ax_upper = 0, 0
yticks = []
for i, c in enumerate(cluster_labels):
    c_silhouette_vals = silhouette_vals[clusters == c]
    c_silhouette_vals.sort()
    y ax upper += len(c silhouette vals)
    color = cm.jet(float(i) / n clusters)
    plt.barh(range(y_ax_lower, y_ax_upper),
                                                              Cluster
             c silhouette vals,
             height=1.0,
             edgecolor='none',
             color=color)
    yticks.append((y ax lower + y ax upper) / 2.)
    y_ax_lower += len(c_silhouette_vals)
silhouette avg = np.mean(silhouette vals)
plt.axvline(silhouette_avg,
            color="red",
                                                                                     0.2
                                                                                                          0.5
                                                                -0.1
                                                                        0.0
                                                                               0.1
                                                                                            0.3
                                                                                                   0.4
            linestyle="--")
                                                                                  Silhouette coefficient
plt.yticks(yticks, cluster labels + 1)
plt.ylabel('Cluster')
plt.xlabel('Silhouette coefficient')
```

Profiling of clusters

```
#____cluster profile
data.groupby(data['cluster']).mean()
```


