HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

_

Fakultät IV Wirtschaft und Informatik

Fahrzeugvernetzung – V2X

Lecture 1: Introduction and Basics

Short Bio

- ► Born and grew up in Cameroon
- ► Electrical Engineering at RWTH Aachen
 - ► Information and communications technology
- ► Ph.D. degree from the Leibniz University of Hannover
 - ► Vehicular communication and networking (V2X)
- ▶ Research Scientist at Robert Bosch GmbH
- ▶ Research Interests
 - ▶ Wireless communication
 - ► Artificial Intelligence (AI) for mobile networks
 - ► Cooperative autonomous driving

Schedule

► Lecture (V2)

- ► Wednesday 10:15 11:45
- ► Lecture Hall 1H.018
- ► Course overview: https://moodle.hs-hannover.de/course/view.php?id=18168

► Exercise (Ü2)

- ► Wednesday 12:30 14:00
- ► Lecture Hall 1H.018
- ➤ Start: October 13

Examination Information

- ► Written or oral depending on the number of registered students
- ► Only the lecture/exercise are relevant for the exam
- ► Number of credit points: 6
- ▶ Repetition session at the end of the semester
 - ► Highly recommended
- ► Consultation hour (On-demand)
 - ► Fixed dates if needed
 - ► Virtual room will be provided by mail

General Information

- ► Prerequisites
 - ► Interest in mobile communication and smart mobility
 - ► Knowledge from the lecture "Betriebssysteme/Netze 1/3" is an advantage
- ► Attending the lecture/exercise and taking notes is highly recommended
- ► Course material will be provided on the Moodle course page
 - ► https://moodle.hs-hannover.de/course/view.php?id=18168
 - ► Lecture slides and exercise/solution documents
 - ► No course code required to attend the course

Outline

- ▶ Motivation
- ► Road Safety Applications
- ► V2X Protocol Stacks
- ► ITS Reference Architecture
- ► Course Overview

Mobility and Transport (1/3)

- ► **Mobility** of people and goods as key factor in the economic expansion
 - ► Self-determination and personal freedom
 - ► Access to a large range of products
 - ► Ability to achieve long-distance travels
 - ► Job/study opportunity abroad
- ▶ People needs to reach other people, goods, places and services

Mobility and Transport (2/3)

, AUTO MATEDCARGO

➤ **Transport** is the instrument required for the implementation of mobility

- ► Transport is seen as a "tool" to satisfy the need for mobility
- ► Targeted **change of location** of persons or goods using energy and information

► Transport includes **vehicles**, **infrastructures** and **traffic rules**

H

▶ It is hard to say how much traffic is generated or required in the movement of people

Mobility and Transport (3/3)

- The growth of mobility is socially commendable for the political and economical policy makers
- ► The growth of traffic is an **undesirable objectives** for traffic scientists

- ► The success of mobility depends on the quality and efficiency of transport system
 - ► Safe travelling conditions
 - ► Enhance the quality of life
 - ► Avoid the waste of material **resources** and **energy**

Accident Statistics from WHO

- ▶ 1.35 million people die each year as a result of road traffic crashes
 - ► 3698 people each day 154 each hour
- ▶ Road traffic injuries are the leading cause of death for children and young adults aged 5-29 years
- ► More than half of all road traffic deaths are among vulnerable road users: pedestrians, cyclists, and motorcyclists
- ► WHO set a target of **halving the global number of deaths** and injuries from road traffic crashes by 2020

Source: World Health Organization (WHO)

Causes of Accidents from WHO (1/2)

- **▶** Speeding
 - ▶ In car-to-car side impacts the fatality risk for car occupants is 85% at 65 km/h
- ▶ Driving under the influence of alcohol and other substances
 - ► May increase the risk of a crash that results in death or serious injuries
- ► Nonuse of motorcycle helmets, seat-belts, and child restraints
 - ➤ Correct helmet use can lead to a 42% reduction in the risk of fatal injuries and a 69% reduction in the risk of head injuries
 - ➤ Wearing a seat-belt reduces the risk of death among drivers and front seat occupants by 45 50%

Source: World Health Organization (WHO)

Causes of Accidents from WHO (2/2)

▶ Distracted driving

- ► The distraction caused by **mobile phones** is a growing concern for road safety
- ► Using a phone while driving slows reaction times: longer braking reaction time, longer reaction to traffic signals

▶ Unsafe road infrastructure and vehicles

- ► Measures such as footpaths, cycling lanes, safe crossing points, and other traffic calming measures can be critical to reducing the risk of injury among these road users
- ➤ Vehicle manufacturers should meet front and side impact regulations by including electronic stability control and ensuring that airbags and seat-belts are fitted in all vehicles

Source: World Health Organization (WHO)

Rate of Death vs. Number of Vehicles Worldwide

- ► Steadily increase of registered vehicles
- ► Reduction of number of death of more than 50% in the last 15 years
 - ► Progress in mitigating the adverse effects of increasing motorized transport (Enhanced technologies: ABS, EPS)
 - ▶ Not fast enough to compensate for rapid population growth

Intelligent Transportation Systems (ITS)

- Growth of economy and mobility has generated an increase in the volume of road transport
 - ► Rise of congestion of road infrastructures
 - ► Air and water pollution, noise
- ► Expansion of existing road infrastructure not always the optimal solution
- ► A **communication** between different road actors: cars, buses, trains, motorcycles, bicycles and pedestrians is rather beneficial
- ► ITS integrates **information and telecommunication** into traffic engineering to efficiently control and manage transport systems
- ► ITS brings advanced applications providing **innovative services** to all kind of **modes of transport**
- ► Main goal: Achieve traffic efficiency by minimizing traffic problems

Intelligent Transportation Systems (ITS)

- ► Through ITS
 - ► Traffic participants are **better informed**, road infrastructures are **optimal utilized**
 - ► Traffic signal are controlled according to traffic conditions in urban environments

► Advanced Driver Assistance Systems (ADAS) will be extended by increasing the

driver's horizon

Intelligent Transportation Systems (ITS)

- ► The main goal is to use **advanced applications** for different modes of transport to better inform traffic participants
- ► Embrace a various forms of wireless communication-related services intended to
 - ► Increase travel safety
 - ► Improve traffic efficiency
 - ► Minimize environmental impact

- Some already implemented applications
 - ► Variable speed limit sign
 - ► Emergency vehicle notification (eCall)

Source: CAR 2 CAR Communication Consortium

Cooperative Intelligent Transportation Systems (C-ITS)

- ► Twelve European vehicle manufacturers signed a Memorandum of Understanding to bring Cooperative Intelligent Transport Systems and Services (C-ITS) onto European roads (In October 2012)
- ➤ Cooperation/Interaction between road users, infrastructure, vehicles to deliver the most safe, secure, efficient and comfortable journey
- ► Extend ITS with cooperation between traffic participants by means of V2X Communication

V2X Communication

- ► V2X stands for 'vehicle to everything'
- ► There are several components of V2X
 - ► Vehicle-to-vehicle (V2V)
 - ▶ Cars talk to other cars
 - ► Vehicle-to-infrastructure (V2I)
 - ► Cars talk to infrastructure
 - ► Vehicle-to-pedestrian (V2P)
 - ► Cars talk to pedestrian
 - ► Vehicle-to-network (V2N)
 - ► Cars talk to datacentres

Some Safety Applications

Application	Description	Direction
Emergency Electronic Brake Lights	Transmits a dedicated warning message if a vehicle is braking hard; receiving vehicles can warn their drivers in spite of Line of Sight (LOS) obstructions (other vehicles, fog, etc.)	V2V
Traffic Lights Violation Warning	Warns the driver to stop at the legally prescribed location if the traffic signal indicates a stop and it is predicted the driver will be in violation	
Forward Collision Warning	Warns the driver of an "impending rear-end collision" with a vehicle "ahead in traffic in the same lane and direction of travel"	V2V
Lange Change Warning	The lane change warning application warns the driver if an intended lane change may cause a crash with a nearby vehicle	V2V
Intersection and Cross Traffic Assistant	It informs the driver about crossing vehicles with right of way, especially when there is no line-of-sight between crossing vehicles	V2V, I2V

Intersection and Cross Traffic Assistant

Red vehicle is informed about the crossing vehicle (yellow) with right of way, even when there is **no line-of-sight** between both vehicles

Source: CAR 2 CAR Communication Consortium

Vehicle Merging assisted by V2V Communication (1/2)

Source: CAR 2 CAR Communication Consortium

Vehicle Merging assisted by V2V Communication (2/2)

Source: CAR 2 CAR Communication Consortium

V2X Standardization

- ► Why to standardize?
 - ► Ensure interconnection among V2X systems and components
 - ► Enable interoperability of implementations from different vendors
 - ► Create **trust of customers** in products and services
 - ► Create larger markets than proprietary systems
- ► V2X standardization is addressed by several standardization development organizations (SDOs)
 - ► Europe: **ETSI** (European Telecommunications Standards Institute)
 - ► Europe: **C2C-CC** (Car-to-Car Communication Consortium)
 - ► US: IEEE (Institute of Electrical and Electronics Engineers)
 - ► US: SAE (Society of Automotive Engineers)
 - ► Japan: ARIB (Association of Radio Industries and Businesses)

V2X Protocol Stack – Regional Standards

ITS Architecture

ITS Station Reference Architecture (1/2)

- ► Application and facilities blocks correspond to OSI layers 7 through 5
- ► Transport and networking blocks correspond to OSI layers 4 and 3
- ▶ Data link and physical layers correspond to OSI layers 2 and 1

ITS Station Reference Architecture (2/2)

- ► Management entity is responsible for the configuration of an ITS station as well as the cross layer information exchange among different layers and tasks
- ➤ Security entity is responsible for security and privacy services

ITS Application Layer

► Road traffic safety

► Improvement of road safety in critical situations

► Traffic efficiency

► Improvement of the traffic flow by exchanging traffic information between traffic management central and drivers on the road network

▶ Other applications

- ► Covers all type of application which do not belong to the safety or efficiency
- Services related to infotainment, comfort and vehicle life cycle management
- ► Media downloading, automatic access control/parking access

ITS Application Layer – Some Safety Applications

► Longitudinal collision refers to the collision between vehicles at any part of the front or rear side of the vehicle

► Lateral collision belongs to collision vehicles at any part of the vehicle side

Collision Type	Application	Description
Longitudinal	Forward Collision Warning	Avoid or mitigate a risk of forward or rear-end collision in the same lane
	Emergency Electronic Brake Lights	Inform a severe braking to local followers on the same lane
	Stationary Vehicle Warning	Alert approaching vehicles of the risk of collision with vehicles dangerously immobilized on the road
Lateral	Overtaking Vehicle Warning	Inform overtaking manoeuvre to concerned vehicle to secure the overtaking action
	Lane Change Assistance	Inform a lane change intention to vehicle on neighboring lanes
	Cooperation Merging Assistance	Negotiate the merging process together with involved vehicles to avoid collision

ITS Facilities Layer (1/2)

- ▶ Provides a collection of functions to support ITS application while satisfying functional and operational requirements
- ▶ Provides data structure to store, aggregate, and maintain from different type and source

ITS Facilities Layer (2/2)

- ➤ Application support supplies the application layer with common services and functionalities
 - ► Generation, transmission and reception of messages
 - ► CA (Cooperative Awareness) basic service responsible for the processing of CAM (Cooperative Awareness Message)
 - ► DEN (Decentralized environmental Notification) for **DENM (Decentralized environmental Notification Message)**

- ► Information support facility assures the maintenance of Local Dynamic Map
- ► Communication support facility
 determines the addressing mode for
 messages according to the
 dissemination destination

ITS Networking and Transport Layer

- ▶ Provides the capability to deliver data among ITS stations and from ITS station to other network node
- Provides the end-to-end delivery of data by ITS transport protocol

- ► Basic Transport Protocol (BTP)
 enables a connection-less transport
 service similar to UDP
- Enables a novel addressing scheme based on geographical areas called
 GeoNetworking

ITS Access Technologies Layer

- Groups the two lowest layers: Data link layer and physical layer
- ► Includes various types of media on wireless communication for external communication (ITS-G5), conventional wireless LAN technologies and cellular radio technologies

Spectrum and Channel Allocation

- ► Spectrum divided into 7 dedicated channels in the 5.9-GHz band
 - ► ITS-G5 for Europe
 - ▶ DSRC (Dedicated Short Range Communication) for US
- ► Control channel as a common "meeting point" which all vehicles are required to listen to on a regular basis
- ► Service channels are reserved for safety or non-safety usage

IEEE 1609: WAVE - ITS stack for the US (1/2)

- **► WAVE: Wireless Access in Vehicular Environments**
 - ▶ Designed with the assumption that vehicles might be equipped with just a single radio
 - ▶ But should be able to communicate on all channels
- ► Functionality on the physical layer enabling the **switching** between channels during a defined time intervals
- ▶ 1609.4 includes the upper half of the WAVE MAC
 - ► An extension to the MAC sublayer allowing for **multichannel communications**
- ► 1609.3 includes the Logical Link Layer (LLC), WAVE Short, IPv6, and UDP/TCP protocols

IEEE 1609: WAVE - ITS stack for the US (2/2)

- ► The 1609.3 standard specifies the network and transport layer services
 - **► WAVE Service Advertisements (WSA)**
 - ► Used to announce the availability of a service
 - ▶ Dissemination of network parameters
 - ► Transmissions only on control channel
 - ► WAVE Short Message Protocol (WSMP)
 - ► **Networking** protocol specifically designed for V2X communications
 - ► Transmissions either on control channel or service channel

Course Overview (1/2)

Lecture	Title	Topics	Date
Lecture 1	Introduction	ITS/C-ITS, V2X protocol stacks, ITS station reference architecture	29.09
Lecture 2	Facilities Layer – Message type, format and structure	Road safety and traffic efficiency applications, derivation of application requirements, overview on message types	06.10
Lecture 3	Geographic routing and forwarding	Geographic routing, forwarding algorithms, location service, duplicate packet detection	13.10
Lecture 4	Medium access protocols	Access mechanisms, CSMA/TDMA, semi-persistent scheduling	20.10
Lecture 5	Physical layer and channel modeling	802.11p, Signal propagation characteristics, V2X channel models	27.10

Course Overview (2/2)

Lecture	Title	Topics	Date
Lecture 6	Security and privacy	Security objectives, trust and privacy management	03.11
Lecture 7	Congestion control algorithms	Channel load, packet collision types, adaptive beaconing, decentralized congestion control, LIMERIC	10.11
Lecture 8	Cellular-based V2X communication	Cellular network, transmission modes, 5G for V2X	17.11
Lecture 9	5G for V2X communication	Overview on 5G and challenges	24.11
Lecture 10	Performance evaluation: Methods and measurement based analysis	Evaluation methodologies, field testing, impact of vegetation and interference	01.12
Lecture 11	Performance evaluation: Simulative analysis	Vehicular mobility, network simulation, road traffic simulation, bidirectional vehicular simulation, scenarios Modeling	08.12

Literature

- ► IEEE 802.11p-2010 IEEE Standard for Information technology Local and metropolitan area networks - Specific requirements
- ► SAE J2735, 2020 Edition, July 2020 (R) V2X Communications Message Set Dictionary
- ► 1609.2-2016 IEEE Standard for Wireless Access in Vehicular Environments--Security Services for Applications and Management Messages
- ► ETSI EN 302 665 V1.1.1: Intelligent Transport Systems (ITS); Communications Architecture
- ▶ "700 MHz Band Intelligent Transport Systems" in English ARIB STD T109-v1.2, ARIB, Dec. 2013
- Tessa Tielert: Rate-Adaptation Based Congestion Control for Vehicle Safety Communications. Karlsruhe Institute of Technology, 2014

