PCT

世界知的所有権機関 際事 務 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07K 14/52, C12N 15/19, 5/10, C12P 21/02, C07K 16/24, C12P 21/08, G01N 33/53, 33/577 // (C12N 5/10, C12R 1:91) (C12P 21/02, C12R 1:91) (C12P 21/08, C12R 1:91) (11) 国際公開番号

WO97/11969

(43) 国際公開日

1997年4月3日(03.04.97)

(21) 国際出願番号

PCT/JP96/02801

A1

(22) 国際出願日

1996年9月27日(27.09.96)

(30) 優先権データ

特願平7/249457 特願平8/56044

1995年9月27日(27.09.95)

1996年3月13日(13.03.96)

(71) 出願人(米国を除くすべての指定国について) 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP]

〒541 大阪府大阪市中央区道修町三丁目1番8号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

今井俊夫(IMAI, Toshio)[JP/JP]

〒602 京都府京都市上京区西堀川通元誓願寺上ル竪門前町 414-502 Kyoto, (JP)

吉田哲也(YOSHIDA, Tetsuya)[JP/JP]

〒569 大阪府高槻市上田辺町6-24-411 Osaka, (JP)

義江 修(YOSHIE, Osamu)[JP/JP]

〒651-14 兵庫県西宮市北六甲台5-22-17 Hyogo, (JP)

(74) 代理人

弁理士 青山 葆, 外(AOYAMA, Tamotsu et al.) 〒540 大阪府大阪市中央区城見1丁目3番7号 IMPビル

青山特許事務所 Osaka, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54) Title: TYPE CC CHEMOKINE-LIKE PROTEIN

(54)発明の名称 CC型ケモカイン様タンパク質

(57) Abstract

An isolated novel type CC chemokine-like protein which is expressed from monocytes of peripheral blood under an immunological stimulus and has a cell migration activity; a DNA encoding the protein; an expression vector and a transformant containing the DNA, a process for producing a recombinant protein by using the transformant; and a medicinal composition containing the protein.

免疫学的な刺激の存在下で末梢血単核球から発現され、細胞遊走活性を 有する、分離された新規なCC型ケモカイン様タンパク質、該タンパク質 をコードするDNA、該DNAを含有する発現ベクター及び形質転換体、 並びに該形質転換体を用いる組換えタンパク質の製造方法、及び該タンパ ク質を含有する医薬組成物。

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード ESTRABE RSSSSSSSTT MTUZBEFGJRYAFGHIM GGGGHIIIIJKKKKKLL TTTTTTUUUUVY トルクフ トルリコ トルリコダイナ ウガコ メロ ボーナクガン 米国 ベーキスタン 共和国 ヴィーゴ ブーニスフ ブーニスフ ブーニスフ ア インノーフィー・ジボアールカメルーン CNCZ チェッコ共和国 ドイツ デンマーク

明細書

CC型ケモカイン様タンパク質

技術分野

本発明は新規なCC型ケモカイン様のタンパク質、それをコードするDNA、該DNAを含有するベクター、該ベクターを含有する形質転換体に関する。さらに、本発明は、上記の新規なタンパク質の使用に関し、それを含有する医薬組成物、例えば抗炎症剤、免疫応答調節剤、炎症及び/又は免疫に関連する病気の診断薬に関する。本発明はまた、該タンパク質の単クローン抗体及び該抗体を産生し得るハイブリドーマに関する。

背景技術

物理的、化学的、又は生物学的な機序により起こる、外来性又は内因性の様々な組織障害、侵襲、抗原暴露などは、強い炎症反応や免疫反応を誘導する。これらの反応は重要な生体防御反応であるが、ときには急性又は慢性の疾患の原因ともなりうる。炎症反応や免疫反応を誘発する原因が組織に加えられると、まず好中球、顆粒球、リンパ球、あるいはマクロファージなどのような炎症性細胞あるいは免疫担当細胞の、血管内皮細胞への吸着及び血管外への移動、さらには侵襲あるいは障害された組織や抗原の存在する組織での集積が起こる。このような一連の細胞遊走反応を誘導する物質として一群のケモタクティック・サイトカイン、いわゆるケモカイン、が存在する。ケモカインは遊走反応(ケモタクティック反応)を誘導する一群のサイトカインであり、これまでにヒトでは少なくとも18種のケモカインが報告されている。これらケモカインはアミノ酸配列の類似性から構造的にも相互に密接に関係していることが分かっている。

共通に保存された4個のシステイン残基のうちの最初の2個の並び方か

ら、ケモカインは、 α あるいはCXC型(2個のシステインが1個のアミノ酸で隔てられている)と β あるいはCC型(2個のシステインが隣り合っている)に大別される。CXC型ケモカインとして、ヒトでは、IL-8、 β -TG、PF-4、MGSA/GRO、ENA-78、NAP-2、GCP-1、GCP-2、IP-10などが知られており、これらは主に好中球の活性化と遊走を誘導する。一方、CC型ケモカインとして、ヒトでは、MIP-1 α 、MIP-1 β 、RANTES、MCP-1、MCP-2、MCP-3、I-309、などが知られており、これらは主にモノサイト/マクロファージの活性化と遊走を誘導する。さらにCC型ケモカインには、T細胞、好塩基球、好酸球などに対して活性化と遊走誘導を示すものが知られている(J. J. Oppenheimら、Annu、Rev、Immunol、9: 617-648、1991: M. Baggiolini & C. A. Dahinden、Immunol、Todey 15: 127-133、1994)。さらに、最近では、これら2種類のケモカイングループのいずれにも属さない γ 型あるいはC型と考えられるケモカインSCM-1の存在が報告されている(T. Yoshidaら、FEBS Letters 360: 155-159、1995)。

既述のごとく、ケモカインは、生体の防御反応に深く関与していることから、新規なケモカインを同定し、活性を明らかにすることは、そのケモカインが関与する免疫応答の解明のみならず、関連する症状や異常の治療、予防又は診断方法の開発等に大きく貢献しうる。そのような目的には、ヒト由来のケモカインが有用であるが、必要な動物実験を行うためには、ヒト以外の動物、好ましくはマウス由来のケモカインを用いる必要がある。従って、新規なヒト由来ケモカイン並びに、対応するマウス由来のケモカインを得ることが望ましい。しかしながら、微量で活性を示す多くの生理活性物質と同様、新規なケモカインを得ることは容易でない。

本発明者らは、ケモカインが構造上の類似性を有する分泌タンパクであることに着目し、シグナル配列トラップ法により新規なケモカインを得る

ために、鋭意研究を重ねた。

即ち、独自に作製したシグナル配列トラップベクター(Yoshidaら、FEB S Letters 360:155-159.1995)を用いてマイトージェンで刺激した正常人末梢血単核球(単核細胞)から分泌タンパク質やI型膜タンパク質をコードする c DNA断片を多数分離し、その塩基配列を既存のデータベースと比較してCC型ケモカインに特徴的な配列をコードする可能性のある c DNA断片を見出した。次いで、そのcDNA断片を用いて全長cDNAを分離して塩基配列を決定し、同定を行った。このようにして、最終的に、シグナル配列を有し、シグナル配列が分離された後は成熟型のCC型ケモカインに属する分泌タンパク質をコードするDNAを得ることに成功した。

この新規なDNAを適当な発現ベクターに挿入し、該ベクターで適当な宿主細胞を形質転換し、形質転換体を培養すると、該形質転換体は、HUT78細胞等に対して細胞遊走活性を示す、CC型ヒトケモカイン様タンパク質を産生した。次いで、このヒト由来ケモカイン様タンパク質をコードするDNAを用いて、対応するマウスのゲノムDNA及びcDNAを得、最終的に形質転換体に発現させることに成功した。新規なヒト由来のCC型ケモカイン様タンパク質をコードするDNAの塩基配列及び推定のアミノ酸配列は配列番号1に、マウス由来のCC型ケモカイン様タンパク質をコードするDNAの塩基配列及び推定のアミノ酸配列は配列番号1

発明の開示

本発明は下記の特徴:

- 1) 免疫学的な刺激の存在下で末梢血単核細胞から発現が誘導され、
- 2) 非刺激下で胸腺から主として発現され、かつ脾臓からは発現されず、そして
 - 3) СС型ケモカインに特徴的な隣り合った2個のシステイン残基を有

している

を有するタンパク質を提供するものである。

本発明の新規なCC型ケモカイン様のタンパク質は、免疫学的な刺激の存在下、末梢血単核球から発現されるが、フィトへマグルチニン(PHA)及び液性免疫の誘導条件下でより良く発現される。特に、単球からの発現は、液性免疫の誘導に関与するGM-CSF、IL-3及びIL-4から選択されるサイトカインの存在下で、最も良く誘導される。しかし細胞性免疫を誘導するサイトカインであるTFN-α、INF-γでは誘導されず、又はLPSでも誘導されないという特徴を有する。

本発明者らは、本発明の新規なタンパク質を構成的に発現している臓器が胸腺であること、及び免疫学的刺激に応答してその産生が誘導されるという性状に基づいて、該タンパク質を「TARC」(Thymus and Activation-Regulated Chemokine)と命名した。従って、本明細書中、この新規なタンパク質をTARC又はTARCタンパク質、それをコードするDNAをTARC DNAと呼称する。「TARC」は、ヒト及びマウス由来のTARCを包含するが、必要に応じてヒト由来のTARCをヒトTARC又はhTARC、マウス由来のTARCをマウスTARC又はmTARCと呼称する。また、これらのタンパク質をコードするDNAをそれぞれヒトTARC DNA、トTARC DNA、マウスTARC DNA、mTARC DNAと呼称する。しかしながら、ヒトTARC及びそれをコードするDNAを指す場合には、単にTAR C及びTARC DNAと称することもある。なお、本明細書では、TARCに関して、それをコードするDNA又は遺伝子なる語句を相互変換可能に用いる。さらに、DNAは、合成されたDNA又は天然のDNAのいずれであってもよい。

また、本発明によってTARCをコードするDNAが明らかにされたので、当業者ならば、当該技術分野で既知の方法により、容易に1又はそれ以上のアミノ酸の置換、挿入又は欠失によって、上記アミノ酸配列を有するTARC

と実質的に同等の機能又は活性を有するTARC変異体を得ることができる。 従って、そのようにして得られた変異体もまた本発明のTARCに包含される ものとする。

従って本発明はまた、配列番号1のアミノ酸残基24~94のアミノ酸配列を有するヒトCC型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノ酸配列の置換、挿入、欠失を含む配列を有し、かつ該ヒトCC型ケモカイン様タンパク質と実質的に同等の機能又は活性を有する、その変異体を提供するものである。

さらに本発明は、配列番号1のアミノ酸残基1~94のアミノ酸配列を有するヒトCC型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノ酸配列の置換、挿入、欠失を含む配列を有し、かつ該ヒトCC型ケモカイン様タンパク質と実質的に同等の機能又は活性を有する、その変異体を提供するものである。

さらに本発明は、配列番号2のアミノ酸残基24~93のアミノ酸配列を有するマウスCC型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノ酸配列の置換、挿入、欠失を含む配列を有し、かつ該マウスCC型ケモカイン様タンパク質と実質的に同等の機能又は活性を有する、その変異体を提供するものである。

さらに本発明は、配列番号2のアミノ酸残基1~93のアミノ酸配列を有するマウスCC型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノ酸配列の置換、挿入、欠失を含む配列を有し、かつ該マウスCC型ケモカイン様タンパク質と実質的に同等の機能又は活性を有する、その変異体を提供するものである。 本明細書中、TARCの「変異体」は、明細書記載のアミノ酸配列を有するTARCと、機能又は活性が実質的に同等であれば、化学的又は生化学的な改変、又は天然もしくは非天然のアミノ酸を

含んでいてもよい。

図面の簡単な説明

図1はヒトTARCのcDNAの塩基配列と、推定のアミノ酸配列とを示す図である。

図2は本発明のヒトTARCタンパク質と、既知の7種のヒトCC型ケモカインとのアミノ酸配列を比較した結果を示す図である。

図3において、Aは正常人末梢血球単核球をPHAで刺激した後の時間及びhTARC mRNAの発現をノーザンブロットにより解析した結果、Bは各種のヒト組織でのhTARCmRNAの発現をノーザンブロットにより解析した結果を、それぞれ示す写真である。

図4は組換えベクターpVL-TARCの遺伝子地図である。

図6は発現ベクターpGEMEX-TARCの遺伝子地図である。

図7は大腸菌で発現したヒトTARCの精製の各段階におけるSDS-PAGEの結果を示す電気泳動の写真である。

図8はマウスTARCの c DNAの塩基配列と推定アミノ酸配列を示す図である。

図9は組換えベクターpVL-mTARCの遺伝子地図である。

図10において、Aは昆虫細胞で産生したマウスTARCの最終精製品のコスモシル5C4-300カラム(ナカライテスク)からの溶出パターンを示す図であり、BはSDS-PAGEの結果を示す電気泳動の写真である。

図11は昆虫細胞で産生し、精製したマウスTARCをBalb/Cマウスの皮下に注射して24時間後の細胞浸潤像をヘマトキシリン・エオジンで染色し

た組織の形態を示している。

図12はPBSのみをBalb/Cマウスに皮下注射し、24時間後の細胞浸潤像をヘマトキシリン・エオジンで染色した場合の組織の形態を示す写真である。

図13は125I標識TARCの様々な種類の細胞への特異的結合の結果を示す棒グラフ図である。

図14において、Aは¹²⁵I標識TARCの濃度を変化させた場合のJurkat細胞への特異的結合量の変化を示すグラフであり、Bはそのスキャッチャードグラフである。

図15において、Aは 125 I標識TARCの濃度を固定し、非標識TARCの濃度を変化させた場合のJurkat細胞への特異的結合量の変化を示すグラフであり、Bは 125 I標識TARC濃度を一定とした場合において、非標識ケモカイン非存在下もしくは200 nMの他のケモカイン又はTARCの存在下でのJurkat細胞への 125 I標識TARCの結合量を示すグラフである。

図16は125 I標識TARCの濃度を固定し、非標識の他のケモカインあるいはTARCの濃度を変化させた場合の赤血球への特異的結合量の変化を示すグラフである。

- 図17は図16に示したグラフのスキャッチャードグラフである。
- 図18はHUT78細胞の遊走活性に対するTARC濃度の影響を示すグラフである。
 - 図19は顆粒球の遊走活性に対するTARC濃度の影響を示すグラフである。
 - 図20は単球の遊走活性に対するTARC濃度の影響を示すグラフである。
- 図21はPHA、抗CD3抗体及びLPSによる刺激下の正常人末梢血単核球からのTARCの発現の経時変化を示すグラフである。
 - 図22は各種のサイトカイン [IL-1 α (R&D社製)、IL-2(シオノギ製

薬社製)、IL-3(ゼンザイム社製)、IL-4(ペプロテック社製)、IL-7(ペプロテック社製)、IL-7(ペプロテック社製)、IL-10(ゼンザイム社製)、GM-CSF(ゼンザイム社製)、INF-α(ペプロテック社製)、IFN-γ(シオノギ製薬社製)、M-CSF及びPHA(R&D社製)]の刺激下における正常人末梢血単核球からのTARCの発現量を示すグラフである。

図23はサイトカインの濃度と正常人末梢血単核球からのTARC発現量との関係を示すグラフである。

図24は正常人末梢血単核球から分離したCD14陽性単球とCD14陰性リンパ球における、PHA、PHA/PMA、GM-CSF、IL-3、IL-4によるTARCの発現誘導効果を示すグラフである。

図25はヒト末梢血単核球をPHA(GIBCO-BRL社製)、LPS(L4391、シグマ社製)、IL-4(ペプロテック社製)、IL-3(ゼンザイム社製)又は GM-CSF(ゼンザイム社製)で刺激した場合の、該細胞におけるTARC mRNAの発現をノーザンブロットで解析した結果を示す。

図26のAはサイトカイン(IL-4、IL-3又はGM-CSF)による刺激下に、正常人末梢血単球から分泌されるTARCの、T細胞株HUT78に対する遊走活性を示すグラフであり、図26のBはHUT78に対する遊走活性が抗TARC抗体でのみ消失することを示すグラフである。

図27はサイトカイン刺激下の正常人末梢血単核球からのTARC発現に対するサイトカインIFN-γ及びIL-10の発現抑制効果を示すグラフである。

図28はTARCをSEAPとの融合蛋白として発現させるための組換えベクターpDREF-TARC-SEAP(His)。の遺伝子地図である。

図29はTARC-SEAPの濃度を1 nMに固定し、非標識TARCの濃度を変化させた場合のCCR4を発現させた293/EBNA-1細胞へのTARC-SEAPの特異的結合量の変化を示すグラフである。

図30はTARC-SEAPの濃度を1 nMに固定した場合の、CCR4を発現させた2 93/EBNA-1細胞へのTARC-SEAPの結合に対するTARCを含む各種の非標識ヒトケモカイン200 nMによる阻害作用を示すグラフである。

図31はCCR4を発現させた293/EBNA-1細胞の遊走活性に対するTARC、RA NTES及びMIP-1α濃度の影響を示すグラフである。

発明を実施するための最良の形態

本発明のTARCについて、種々検討を加えた結果、下記のごとく既知のCC型ケモカインと異なる性質を有する、新規なタンパク質であることが明らかになった。

- (1) ヒトTARCは遺伝子レベルでは94個のアミノ酸からなるタンパク質であるが、構造上の解析から、成熟蛋白では23番目と24番目のアラニンの間でシグナル配列が切断されて、71個のアミノ酸からなる分子量約8kDaの塩基性タンパク質であると推定される。
- (2) 成熟型のTARCはCC型のケモカインと有意の相同性を示し、特にCC型ケモカインで保存されている4個のシステインはすべて保存されている.(図2参照)。
- (3) 既存のCC型ケモカインとの相同性は30%に満たず、最も高いRANTESに対しても29%程度である。
- (4)組織としては、既存のCC型ケモカインと異なり、ほとんど胸腺でのみ構成的に発現する。
- (5)免疫学的な刺激下、末梢血単核球 (PMBC)により発現される。
- (6) PMBCによる発現に関連し、例えば以下の特徴的な性質を有する。
- 1) T細胞特異的な抗CD3抗体よりも非特異的なフィトへマグルチニン(PHA)により、より強く刺激されるが、通常のケモカインに対して発現誘導活性を有するLPSでは誘導されない。

生理的条件の濃度のサイトカイン (GN-CSF, IL-3, IL-4) で発現が誘導される。

- 3) 既知のケモカインの発現を誘導する $\mathsf{INF-}\alpha$ 、 $\mathsf{IFN-}\gamma$ では、誘導されない。
 - 4) TARC mRNAの発現もPHA、GM-CSF、IL-3及びIL-4で誘導される。
- 5) GM-CSF、IL-3、IL-4刺激により単球のみから分泌され、PHA、PHA/P MA刺激では逆にリンパ球のみから分泌され、PHA刺激による発現誘導はPMA を加えることにより著しく抑制される。
- 6) TARCのmRNAは未刺激及びLPS刺激のヒト末梢血単核球ではほとんど発現していないが、GM-CSF、IL-3刺激で約400倍、IL-4、PHA刺激で約40倍の発現誘導が認められる。
- (7)マウスTARCは、ヒトTARCと同様の特徴を有するが、遺伝子レベルで は93個のアミノ酸からなるタンパク質であり、構造上の解析から、成熟 蛋白では23番目と24番目のアラニンの間でシグナル配列が切断されて、 70個のアミノ酸からなる分子量約8kDaの塩基性タンパク質であると推 定される。
- (8) ヒトTARCとマウスTARCとの相同性は高く、約64.4%である。
- (9) 白血球侵潤作用を有する(ケモカイン様活性を示す)。
- (10) TARCのレセプターはある種のT細胞(Jurkat、Molt3、CEM、Hut78、MT2、MT4、Hut102)、末梢血リンパ球、活性化末梢血T細胞に発現している。
- (11)細胞上のTARCレセプターは、他のケモカインのレセプターと独立 しており、TARCの結合は他のケモカインによって阻害されない。
- (12) 赤血球上のケモカインレセプターの1つであるDARCと特異的に結合する。

(13) IL-3及びGM-CSFで刺激した正常人末梢血単球の培養液はHUT78細胞の強い遊走を引き起こすが、未刺激あるいはIL-4で刺激した培養液は遊走を引き起こさない。また、GM-CSF処理の培養上清のHut78細胞に対する遊走活性はモルモット抗TARC抗体処理で殆ど消失する。

- (14) IL-4により誘導される液性免疫を抑制する $IFN-\gamma$ 、免疫反応全般を抑制するIL-10によって、GM-CSF、IL-3、IL-4刺激による末梢血単核球でのTARCの発現誘導は抑制される。
- (15) MIP-1α、RANTES、MCP-1のレセプターであると報告されているCC
 R4 (C. A. Power et al., J. Biol. Chem. vol. 270, No. 33, 19495-19500.
 1995) と特異的に結合する(この文献では、アフリカツメガエル卵細胞に発現されたCCR4の実験が報告されている)。
- (16) CCR4を発現させた293/EBNA-1細胞に対して遊走活性を示す。

以上から、本発明のTARCはCC型ケモカインに属する新規のサイトカインであることが明らかである。また、TARCは、免疫学的刺激により産生が誘導され、しかも殆ど胸腺でのみ構成的に発現しており、また、末梢では、ある種のサイトカイン(GM-CSF、IL-3又はIL-4)により刺激された末梢血単球から発現される。

従って、TARCは未熟なT細胞の胸腺組織への遊走や胸腺組織でのT細胞の分化成熟に関与していることが推測される。また末梢の単核球を免疫刺激することによって産生が誘導されてくることから、炎症および免疫反応で重要な働きをしていることが推測される。従って、TARCは生体内の炎症反応及び免疫反応において白血球の遊走と活性化を誘導すると共に、胸腺でのT細胞の分化成熟等にも重要な役割をはたす、医学上重要なタンパク質であると考えられる。

上記のTARCの発現における、既存のCC型ケモカインとの顕著な相違は、

TARCの生理学的機能の特異性を示すものである。例えば、T細胞特異的な抗CD3抗体よりも非特異的なフィトへマグルチニン(PHA)により、より強く刺激されることは、TARCがT細胞から直接分泌されるというよりむしろ、T細胞から分泌されたサイトカインの刺激下に、末梢血単核球(PMBC)から発現されることを示している。このことは、既知のケモカインの殆どの発現を誘導する、単球へのLPS刺激では、TARCが発現されなかったことからも明らかである。

具体的には、TARCの発現は、種々のサイトカインにより誘導され、特にGN-CSF、IL-3及びIL-4によって強く誘導される。これらのサイトカインの内、前2者はまた恒常的な免疫系の維持に関与し、IL-4はアレルギーなどの液性免疫の誘導に関与していることから、TARCもそのような液性免疫を誘導する状況下で機能していると推測される。なお、既知のケモカインの発現を誘導するTNF-α、IFN-γでは、誘導されないことも、TARCが他のケモカインとは異なる状況で発現し機能していることを示している。しかしながら、これらの事実は、正常人末梢単球以外に、リンパ球でもTARCが発現される可能性を否定するものではない。

さらに、多くのケモカインはPHAに加えてPMA(ホルボールミリステートアセテート)を加えると発現がより強く誘導されるが、TARCの場合には発現が減少した。このことは、TARCの発現がIL-4の発現と同様の制御下にあることを示唆しており、IL-4と同様の液性免疫に関与するとの推測を裏付けるものである。

また、正常人末梢血単球をGN-CSF、IL-3刺激して得られた培養液は、組換えTARCと同様にHUT78細胞に対して細胞遊走活性を示した。また、GN-CSF刺激して得られた培養液の遊走活性は抗TARC抗体によって中和された。このことは、組換えTARCと同様、正常人末梢血単球から分泌されるTARCも、

TARC特異的レセプターを発現している細胞に対して細胞遊走活性を持つことを示唆している。

既述のごとく、TARCは、他のケモカインと異なり、末梢血単核球を液性免疫誘導した時に発現が誘導される。液性免疫はIL-4で誘導され、IFN-γで抑制され、逆に細胞性免疫はIFN-γで誘導され、IL-4で抑制される。また、免疫全般はIL-10により抑制される。TARCのGM-CSF、IL-3及びIL-4による正常人末梢血単球からの発現がIFN-γ及びIL-10で抑制されたことは、TARCが免疫反応の誘導で発現し、しかも液性免疫状態で誘導され、逆に細胞性免疫状態では抑制されることを示している。従って、TARCは、特にアレルギー、アトピー、喘息などの液性免疫状態で発現し、機能していると考えられる。

本発明のTARCは、その機能の解明により、胸腺の機能、T細胞の分化と成熟、炎症反応及び免疫反応の制御等を解明するのに有用であり、それにより、炎症反応又は免疫反応を誘導したりあるいは抑制するための新たな手段を提供するために有用である。また、本発明のTARCをコードする遺伝子(DNA)、及び抗一TARC抗体は、TARCの遺伝子変異およびそのmRNAおよびタンパク質の発現状態を解析するのに有用であり、血液系疾患および免疫系疾患の原因究明や診断に新たな手段を提供し得、それによって血液系疾患および免疫系疾患の診断および治療方法の新たな開発に有用である。

また、本発明のTARCをコードする遺伝子(DNA)は適当なベクターに挿入されエクスビボで培養細胞に導入してからあるいは 直接に体内に投与されることにより、TARCの遺伝子の異常による遺伝性疾患、各種の癌、およびエイズなどの致死的性感染性疾患、等を対象にした遺伝子治療の開発に有用であり得る。

その他、TARCの血中濃度を測定することにより、アレルギー、アトピー、

喘息などの診断も可能と考えられる。また、TARCの発現や活性を抑制することで、アレルギー、アトピー、喘息などの治療又は予防、及びTARCの発現や活性を誘導することにより、液性免疫状態を誘導し、細胞性免疫を抑制することも可能と考えられる。

従って、本発明はまた、本発明のTARC又はその変異体を含む医薬組成物を提供する。本発明の医薬組成物は、予防薬、治療薬及び診断薬を包含し、その投与量及び投与経路は通常の方法によって、使用目的、投与される対象の病状等から適時決定することができる。なお本発明のTARCタンパク質は、本来、生体内活性物質であることから、該タンパク質の活性が生じる量、すなわち本発明の医薬組成物の使用量の範囲内では、その急性毒性は問題とならないことは容易に理解されるであろう。

これらの様々な目的には、TARC及びその活性部分を含む断片、該TARC又はその断片に対するモノクローナル(単クローン)又はポリクローナル抗体、TARCと特異的に結合する受容体等も有用と考えられる。

従って、本発明はまた、TARCに特異的なモノクローナル抗体及びそれを 生産するハイブリドーマを提供するものである。そのような抗体及びハイ ブリドーマは、後述の実施例に記載のごとく、当該技術分野で確立された 既知の方法で製造することができる。

また、本発明のTARCタンパク質の作用に鑑み、該タンパク質のアゴニスト又はアンタゴニストを検出することができれば、TARCに関連する疾患や異常の治療、予防又は診断に有用と考えられる。そのような物質のスクリーニングは、本発明で明らかにされた、TARCタンパク質の定量法、レセプター特異性等を利用して行うことができる。

従って、本発明はまた、TARCタンパク質のアゴニスト又はアンタゴニストをスクリーニングする方法であって、該アゴニスト又はアンタゴニスト

を含有すると推定される試料、該タンパク質を分泌する細胞及び該タンパク質の分泌を誘導するサイトカインを混合し、該タンパク質の分泌量を測定する工程を含む方法を提供するものである。

TARCタンパク質の定量は、例えば、後述の実施例に示されているタンパク定量法に従って行うことができる。

また、上記の方法に用いうるサイトカインとしては、GM-CSF、IL-3及びIL-4を例示することができ、TARCを分泌する細胞としては、末梢血単核球を挙げることができる。

さらに、本発明は、TARCタンパク質のアゴニスト又はアンタゴニストをスクリーニングする方法であって、該アゴニスト又はアンタゴニストを含有すると推定される試料と、該タンパク質に特異的なレセプターとを反応させ、その結合活性及び/又は反応性を測定する工程を含む方法を提供するものである。

上記の方法に用いうるレセプターとしては、CCR4を挙げることができ、 結合活性又は反応性の測定は、後述の実施例に記載の方法で行うことがで きる。

次に、本発明のTARCの製造法、同定法等を説明する。以下の記載は例示にすぎず、特に指示しない限り、当業者既知の遺伝子組換え技術、宿主細胞の形質転換及び形質転換体による組換えタンパク質の生産技術、発現したタンパク質の分離精製法及び分析法、及び免疫学的手法等を、適宜用いることができる。

I. TARCタンパク質をコードするDNAの配列決定

本発明のTARCタンパク質をコードするDNAを含むDNA断片は、例えば、フィトへマグルチニン (PHA) で刺激した正常人末梢血単核球 (PBMC) 由来のc DNAライブラリーから得ることができる。

(1) プローブの調製

cDNAライブラリーからTARCタンパク質をコードする遺伝子をクローニングするためのプローブを以下の方法で調製する。

TARCは分泌タンパク質であるから、そのmRNAの 5 端にはシグナル配列をコードする領域がある。そこで、まずPHA刺激PBMCからquickprep mRNA精製キット (Pharmacia社製)を用いてpoly(A)+RNAを抽出する。このmRNAよりランダムプライマー (GIBCO-BRL社製)を用いて一本鎖DNAを作製し、3 端にオリゴ (dC) アンカーを結合する。

次にオリゴ (dG) プライマーで2本鎖DNAを合成し、超音波処理により分解し、T4ポリメレースで修復する。これをUni-ampアダプター (Clontec h社製) と結合し、アガロース電気泳動に供した後、5 側配列に富む300-600bpの断片を抽出する。得られた断片をシグナル配列トラップベクター pDREF-CD4ST (Yoshidaら、FEBS Letters 360: 155-159. 1995) に挿入する。このベクターはエプシュタイン・バールウイルス (EBV) の複製起点を持つシャトルベクターであり、EBNA-1タンパク質の存在下で自己複製ができる。また強力なEF-1aプロモーターの下流にシグナル配列を欠くヒトのCD4をコードするDNAが挿入されており、この間にシグナル配列をコードする未知のcDNA断片が正しくフレームも合って挿入された場合、トランスフェクトされたRaji細胞でCD4が発現してくるという特徴を有する。

上記断片を挿入したベクターpDREF-CD4STでRaji細胞をトランスフェクトし、CD4陽性となったRaji細胞をソーティングにより濃縮し、そこからプラスミドを回収する。次いで、個々のプラスミドを再度Raji細胞に導入し、CD4の発現を確認することにより、最終的にシグナル配列をコードすると考えられるcDNA断片が挿入されたプラスミドを分離する。これらのプラスミドの挿入cDNAの塩基配列を決定し、既存のデータベースと比較する

ことにより、CC型ケモカインに特徴的な配列をコードするcDNA断片を選択する。このものは、目的の新規タンパク質をコードしている可能性があり、全長鎖cDNAを得るために、³²Pなどで標識して通常のPHA刺激ヒトPBMC由来のcDNAライブラリーのスクリーニングのためのプローブとして用いる。

cDNAライブラリーは、例えば、以下の方法で常法通り構築される。PHA 刺激ヒトPBMCよりquickprep micro mRNA精製キット (Pharmacia社製)を用いてpoly(A)+RNAを抽出し、このpoly(A)+RNAからオリゴ (dT)をプライマーとして逆転写酵素によりcDNAを合成し、例えばpSPORT 1 ベクター (GI BCO-BRL社製)に挿入する。ライブラリーのスクリーニングは、上記の項で得られたプローブを用い、組換えファージプラークのプラークハイブリダイゼーション及び組換え大腸菌のコロニーハイブリダイゼーション等の当業者既知の任意の方法で行われる。

次いで、得られた組換えプラスミドの挿入cDNAの塩基配列を決定する。配列決定は、例えば以下のように行われる。まず、挿入断片を該断片の内部に存在する制限酵素部位を用いて切断し、各cDNA断片を、それぞれ適当なシークエンスベクター、例えばpBluescript(Stratagene社製)にサブクローニングする。次にクローニングした断片の塩基配列を、例えばSanger法(F. Sangerら、Proc. Natl. Acad. Sci. USA, 74: 5463-5467, 1977)によって決定する。

II. 組換え型TARCタンパク質の発現

本発明のTARCタンパク質をコードするDNAを適当な発現ベクターに組み込み、得られた発現ベクターを適当な宿主細胞、例えば、細菌、酵母、昆虫細胞、又は動物細胞に導入して、形質転換体を得る。

本発明のTARC DNAの発現に適切な発現ベクターとして、宿主細胞が細菌の場合には、pRSET、pGEMEX及びpKK233-2、酵母の場合には、pYES2、昆虫

細胞の場合にはpVL1393、そして動物細胞の場合にはpEF-BOS、pSR α 及びp DR2等が例示されるが、これらに限定されない。

TARC DNAは、大腸菌等の原核微生物の場合には、強力なプロモーター(例えばT7プロモーター)の支配下に、原核微生物によって分泌されるタンパク質の天然前駆物質に由来するシグナル配列(例えばシグナルペプチドOMPa)と、成熟型TARCタンパク質からなる前駆体タンパク質として、強力なプロモーター(例えばT7プロモーター)の支配下に発現させることができる。

酵母の場合には、酵母によって分泌されるタンパク質の天然前駆物質に由来する配列(例えばフェロモンαのプレプロ配列)と成熟型TARCタンパク質からなる前駆体タンパク質として発現させることができる。

動物細胞の場合には、TARCタンパク質遺伝子を適当な発現ベクターの強力なプロモーター(例えばEF-1αプロモーター)の下流に挿入し、効果的な選択マーカー(例えばジヒドロ葉酸レダクターゼ)と共に動物細胞(例えば CHO dhfr- 細胞)に導入し、薬剤(この場合はメトトレキセート)に対する耐性により細胞を選択することにより、高発現の細胞株を樹立することができる。

ヒト細胞の場合には、TARCタンパク質遺伝子をウイルス又はレトロウイルスに組込み、この組換えウイルスを細胞に感染させる。 このようにして得られた形質転換体を、TARCの発現に適した条件下で培養すると、形質転換体によってTARCタンパク質が産生される。また、成熟型TARCタンパク質は、例えば固相法を用いて、及び2個のジスルフィド結合の存在に必要な注意を払って、公知の方法で全合成することも可能である。

従って、本発明は、上記の遺伝子工学的に、又は化学的に合成されたTA RCを包含する。

III. 抗TARC抗体の作製

既述のごとく、本発明のTARCに特異的な抗体は、TARCが関与する生理学的な事象の解明、TARC活性が関与する異常や疾患の治療、予防又は診断に有用である。従って、本発明はまた、TARCタンパク質に対する抗体を提供するものである。

タンパク質に対する抗体(ポリクローナル及びモノクローナル)の製造 方法は当該技術分野で周知である。

例えば、配列番号1又は2に記載のTARCのアミノ酸配列の一部に基づいて、通常のペプチド合成機で合成した合成ペプチドや、TARCを発現するベクターで形質転換した細菌、酵母、動物細胞、昆虫細胞、などにより産生されたTARCタンパク質を通常のタンパク化学的方法で精製し、これらを免疫原として、マウス、ラット、ハムスター、ウサギなどの動物を免疫することにより、その血清由来のポリクローナル抗TARC抗体を作製し得る。

又は、免疫したマウスやラットの脾臓又はリンパ節から細胞を取り出し、ミエローマ細胞と融合させてKohlerとMilsteinの方法 [Nature, 256, 495-497(1975)] 又はその改良法であるUedaらの方法 [Proc. Natl. Acad. Sci. USA, 79. 4386-4390(1982)] に従ってハイブリドーマを作製した後、該ハイブリドーマから単クローン(モノクローナル)抗TARC抗体を産生させることができる。単クローン抗体調製のための工程を以下に例示する。

- (a) TARCタンパク質によるマウスの免疫:
- (b) 免疫マウスのヒ臓の除去及びヒ臓細胞の分離;
- (c)分離されたヒ臓細胞及びマウスミエローマ細胞との融合促進剤(例えばポリエチレングリコール)の存在下での上記のKohlerらに記載の方法による融合:
 - (d)未融合ミエローマ細胞が成長しない選択培地での得られたハイブ

リドーマ細胞の培養;

- (e) ELISA法及び免疫電気移転法などによる所望の抗体を生産するハイブリドーマ細胞の選択及び限定希釈法等によるクローニング;及び
- (f) TARC単クローン抗体を生産するハイブリドーマ細胞の培養、及び 培養物からの単クローン抗体の分離。
- (IV) TARC mRNA及びTARCタンパク質の検出

本発明のTARC mRNA及びTARCタンパク質の存在は、それぞれ、通常の特異的なmRNA検出法、及びタンパク質検出法を用いて行うことができる。

mRNAは、例えば、アンチセンスRNAやcDNAをプローブに用いたノーザンブロット解析やインサイツ・ハイブリダイゼーション法により検出できる。また、mRNAを逆転写酵素でcDNAに変換したのち、適当なプライマーの組み合わせによるポリメレースチェインリアクション法(以下、PCRと称する)によっても検出することができる。

タンパク質は、上記 (III) で得られたTARC特異抗体を用いた通常の免疫沈降法やウエスタンブロット法により、その存在を確認することができる。

V. TARCタンパク質の免疫学的定量法

例えば、放射性アイソトープ、ペルオキシダーゼやアルカリフォスファターゼのような酵素、あるいは蛍光色素などで標識した一定量のTARCに、
濃度既知の非標識TARC、及び血清由来の抗TARCポリクローナル抗体又はモノクローナル抗体を加えて、抗原抗体競合反応を行わせる。
非標識抗原の
濃度を適当に変化させた後、抗体と結合した標識抗原と抗体に結合していない標識抗原とを適当な方法で分離して、抗体と結合した標識抗原の放射
能量、酵素活性、又は蛍光強度を測定する。
非標識抗原量が増すにつれ、
抗体と結合する標識抗原の量は減少する。
この関係をグラフにして標準曲

線を得る。またTARCタンパク質上の異なるエピトープを認識する2種類の単クローン抗体の一方を固相化し、他方を上記のいずれかの方法でラベルし、固相化抗体に結合したTARCの量をラベル抗体で検出定量する、いわゆるサンドイッチ法によっても可能である。

次に、上記の反応系に濃度既知の非標識抗原の代わりに未知量の抗原を含む試料を加え、これを反応させた後に得られる、放射能量、酵素活性、又は蛍光強度、を標準曲線にあてはめれば、試料中の抗原、すなわちTARCタンパク質の量を知ることができ、炎症反応や免疫反応又はT細胞の分化成熟をモニターするための新しい方法が提供され得る。

VI. TARCタンパク質のケモカイン活性の確認

本発明のTARC蛋白のケモカイン活性は、例えば、試験管内では、一定の口径のポアを有するフィルターを介在させて仕切った培養容器の一方の側にTARCを入れ、他方の側に標的細胞を入れて、一定時間後にフィルターのポアを通過してTARCの存在する側へ移動した細胞数をランダムな移動数と比較することにより、確認できる。また、生体内では、精製したTARC蛋白質を動物の皮下に投与して細胞の浸潤と集合を組織的方法で検出することによっても確認し得る。

本発明を以下の実施例によりさらに説明する。

実施例1 ヒトTARCをコードするDNAの単離

- I. ヒトTARC cDNAのクローニング
- (1)フィトフェマグルチニン刺激ヒト末梢血単核細胞由来のcDNAライブラリーの作製

フィトフェマグルチニン (PHA) で刺激した正常人末梢血単核細胞のcDN Aライブラリーは、GIBCO-BRL社製のcDNA合成システム及びcDNAクローニン グシステムを用い、文献(J. Sambrookら、Molecular Cloning: A Laborat ory Manual、第2版、Cold Spring Harbor Laboratory, New York (1989)) 既知の常法に従い、以下のように作製した。

まず、quickprep micro mRNA精製キット (Pharmacia社製)を用いて、PHAで利激した正常人末梢血単核細胞よりpoly(A)+RNAを抽出した。PHAで72時間刺激したヒト末梢血単核細胞2x10⁷個を付属の細胞溶解液により溶解した。次に、oligo-dT樹脂を加えて3分混和し、poly(A)+RNAをoligo-dT樹脂に結合させた後、TOMY遠心機MRX-150(トミー精工社製)で12000回転で1分間遠心分離した。得られた沈殿物を高塩濃度洗浄液で3回、低塩濃度洗浄液で5回洗浄した後、溶出液で溶出した。この溶出液に、0.1倍量の3M酢酸ナトリウムと2倍量のエタノールを加えて-80℃で1時間冷却し、TOMY遠心機MRX-150(トミー精工社製)で12000回転で5分間遠心分離して、沈殿したpoly(A)+RNAを滅菌蒸留水に溶解した。そして、波長260nmでの吸光度を測定することにより、回収したpoly(A)+RNA量を計算した。PHA刺激ヒト末梢血単核細胞より10μgのpoly(A)+RNAが得られた。

次に、精製したpoly(A)+RNAを鋳型として、cDNAの合成を以下のように行った。まず、4μgのpoly(A)+RNAを鋳型として逆転写酵素SUPER SCRIPT II RT (GIBCO-BRL社製)を用いて、反応緩衝液(50mM Tris-HCl、pH 8.3、75mM KCl、3mM MgCl₂、10mM DTT、500μM dNTP(dATP、dGTP、dCTP、dTTP)、50μg/ml NotIプライマーーアダプター (GIBCO-BRL社製)、及び2万U/ml逆転写酵素SUPER SCRIPT II RT)中で、37℃で1時間反応させて、1本鎖DNAを合成した。なお、NotIプライマーーアダプターの配列を配列表の配列番号3に示す。この1本鎖DNAを鋳型として、反応緩衝液(25mM Tris-HCl、pH 7.5、100mM KCl、5mM MgCl₂、10mM (NH₄)₂SO₄、1.2mM DTT、0.15mM β-NAD+、250μM dNTP(dATP、dGTP、dCTP、dTTP)、65U/ml DNAリガーゼ、250U/ml DNAリメラーゼI、及び13U/ml RNase H)中で、16℃で2時間反応させてcD

NAを合成した。次に、T4 DNAポリメラーゼを、最終濃度が65U/m1となるように加えて、さらに16℃で5分間反応させて2本鎖DNAとした。この2本鎖DN Aを、反応緩衝液 $(50mM\ Tris-HC1\ pH\ 7.6\ 10mM\ MgCl<math>_2\ 1mM\ DTT\ 1mM\ AT$ P、5% PEG $8000\ 200\ \mu g/m1\ Sall$ アダプター(GIBCO-BRL社製)、及び100U /m1の $T4\ DNA$ リガーゼ)中で、16℃で16時間反応させて、Sallアダプターに結合させた。なお、Sallアダプターは、配列表の配列番号 4 及び5 に示す DNAがアニーリングした 2 本鎖である。こうして完成したCDNAをpSPORT1ベクターのNotIとSalI部位の間に挿入してCDNAライブラリーを作製した。

(2)シグナルシークエンストラップ用cDNAライブラリーの作製

シグナルシーケンストラップライブラリーは、PHA刺激ヒト末梢血単核細胞からmRNAの5'末端近傍を濃縮したcDNAを調製し、GIBCO-BRL社製のcDNA合成システム、5'RACEシステム、及びcDNAクローニングシステムを用いて、文献(J. Sambrookら、Molecular Cloning: A Laboratory Manual、第2版、Cold Spring Harbor Laboratory、New York (1989))記載の常法に従い、作製した。

まず、PHA刺激ヒト末梢血単核細胞より得られたpoly(A)+RNAを鋳型として、mRNAの5'末端近傍を濃縮したcDNAを以下のように合成した。5 μg のpoly(A)+RNAを鋳型として、逆転写酵素SUPER SCRIPT II RT(GIBCO-BRL 社製)を用いて、反応緩衝液(50mM Tris-HC1、pH 8.3、75mM KC1、3mM MgC 12、10mM DTT、500μM dNTP(dATP、dGTP、dCTP、dTTP)、150ng ランダムプライマー(GIBCO-BRL社製)、及び2万U/m1逆転写酵素SUPER SCRIPT II R T)中で、37℃で1時間反応させて1本鎖DNAを合成した。この反応液に6N Na OHを最終濃度が0.4Nとなるように加えて、さらに65℃で30分間反応させて、鋳型poly(A)+RNAを加水分解した後、6N 酢酸を最終濃度が0.4Nとなるように加えて、かに、等量の10mM Tris-HC1、pH 8.0飽和フェノール

とクロロホルム混合液(1:1)を加えて撹拌した後、TOMY遠心機MRX-150で12 000回転で5分間遠心分離した。その水層を取り出して、0.2倍量の311酢酸 ナトリウム、2倍量のエタノールを加えて、-80℃で1時間冷却後、再びTOM Y遠心機MRX-150(トミー精工社製)で12000回転で5分間遠心分離して、その 沈殿物を滅菌蒸留水に溶解した。この1本鎖DNAを、反応緩衝液(20mM Tris -HC1、pH 8.4、50mM KC1、1.5mM MgCl2、200μM dCTP、及び400U/m1ター ミナルデオキシヌクレオチジルトランスフェラーゼ)中で、37℃で10分間 反応させて、3 端にオリゴdCテールを結合させた。さらに70℃で5分間 処理してターミナルデオキシヌクレオチジルトランスフェラーゼを失活さ せた。このオリゴdCテールを結合させた1本鎖DNAを、反応緩衝液(25mM Tr is-HC1, pH 7.5, 100mM KC1, 5mM MgC1₂, 10mM (NH₄)₂SO₄, 1.2mM DTT, 0. 15mM β -NAD+、250 μ M dNTP(dATP、dGTP、dCTP、dTTP)、500ng アンカー プライマー (配列表の配列番号6)、65U/ml DNAリガーゼ、250U/ml DNAポ リメラーゼI、及び13U/ml RNase H)中で、16℃で2時間反応させて、2本 鎖DNAを合成した。なお、アンカープライマーはDNA合成機(Cyclone Plus DNA Synthesizer、ミリジェン/バイオサーチ社製) で合成した。合成に はミリジェン/バイオサーチ社のβ-リンク・ベータシアノエチルホソホ アミダイド試薬を用いた。合成後、アンモニア水(28%、ナカライテスク 社製)2mlで合成カラムから合成オリゴヌクレオチドを溶出した後、60度C、 5 時間処理することにより保護基を離脱させた。脱保護したオリゴヌクレ オチドを10倍量のブタノールを加えてTOMY遠心機(トミー精工社製)で30 00回転で10分間遠心分離することにより沈殿させて回収した。回収したオ リゴヌクレオチドを滅菌水に溶解し、波長260nmでの吸光度を測定するこ とにより、その量を決定した。

この2本鎖DNAを、氷上で冷却しながら、TOMY超音波破砕装置UD-201(ト

ミー精工社製)で150秒間最大出力で部分分解し、T4 DNAポリメラーゼを、 最終濃度が650/m1となるように加えて、16℃で5分間反応させた後、反応 緩衝液(50mM Tris-HC1、pH 7.6、10mM MgC12、1mM DTT、1mM ATP、5% PEG 8000、200μg/ml UNI-Ampアダプター、及び100U/mlのT4 DNAリガーゼ)中 で、さらに16℃で16時間反応させて、 UNI-Ampアダプター (Clontech社製) に結合させた。なお、 UNI-Ampアダプターは、配列表の配列番号7及び8 に示すDNAがアニーリングしたものである。このようにしてできた部分分 解2本鎖DNAを鋳型として、反応緩衝液(10mM Tris-HC1、pH 8.3、50mM KC1、 1.5mM MgCl₂、0.1% ゼラチン、200μM dNTP(dATP、dGTP、dCTP、dTTP)、4 00nM UAPプライマー (GIBCO-BRL社製)、400nM UNI-Ampプライマー (Clont ech社製)、及び100U/ml AmpliTaq DNAポリメラーゼI)中で、PCR反応を 行った。なお、UAPプライマーとUNI-Ampプライマーの配列を配列表の配列 番号9と10に各々示す。PCRは宝酒造から購入したAmpliTaq Kit を 用い、DNA Thermal Cycler (Perkin-Elmer社製) で行った。反応は、94 ℃で3分間前処理した後、94℃で45秒間、58℃で45秒間、72℃で2分間の反 応サイクルを30回繰り返し、最後に72℃で3分間処理して行った。

こうして完成したmRNAの5 末端近傍を濃縮したcDNAを別途に作製したpDREF-CD4STベクター(Yoshidaら、FEBS Letters 360: 155-159, 1995)のSallとXbal部位の間に挿入して、シグナルシーケンストラップライブラリーを作製した。このシグナルシーケンストラップライブラリーを以下のように、ヒトB細胞株Rajiに導入し、細胞表面にCD4を発現させ得るクローンを同定することにより、シグナルシーケンスを持つ遺伝子の断片を選択した。

(3) シグナルシークエンストラップ

上記(2)で調製した、PHA刺激ヒト末梢血単核細胞由来の、mRNAの5

末端近傍を濃縮したcDNAからなるシグナルシークエンストラップcDNAライブラリー $10 \mu g$ を、 $500 \mu 1$ のPBSに懸濁した、 $1x10^7$ 個のRaji細胞に、エレクトロポレーション法を用いて導入した。エレクトロポレーションは、バイオラッド社のGene Pulserで、電圧250V、静電容量 $500 \mu F$ で行った。cDN Aライブラリーが導入されたRaji細胞は、ハイグロマイシン($200 \mu g/m1$) 存在下で1週間培養し、薬剤耐性を示す細胞を選択することにより得られた。この薬剤耐性を示す細胞を、マウス抗ヒトCD4抗体(0KT4、ATCCより入手)と 4° で30分間反応させ、洗浄した後、さらに、磁気ビーズ標識ヒツジ抗マウスIgG抗体(Dynabeads、ダイナル社より購入)と 4° で30分間反応させた。この磁気ビーズで標識した、細胞表面にCD4を発現する細胞を、磁気分離器を用いて分離した。この磁気分離を3回行い、最終的に45%の細胞が、細胞表面にCD4を発現する細胞集団が得られた。

この細胞集団から、Magic Minipreps DNA精製システム(プロメガ社製)によって、プラスミドDNAを回収し、再び、大腸菌DH10Bに導入した。この大腸菌をLB-アンピシリン-アガープレート(10gトリプトン、5gイーストエキストラクト、10g NaC1、15gアガー、50μg/ml アンピシリン/蒸留水1リッター)に播き、一晩37℃で培養した。プレートに生えた大腸菌の各々のコロニーを、5mlのLB-アンピシリン培地(10gトリプトン、5gイーストエキストラクト、10g NaC1、50μg/ml アンピシリン/蒸留水1リッター)で、一晩37℃で培養した。これら培養液から、Magic Minipreps DNA精製システム(プロメガ社製)によって、プラスミドDNAを精製し、再び、500μ1のPBSに懸濁した1x10⁷個のRaji細胞に、エレクトロポーレション法を用いて導入した。これらのRaji細胞を、マウス抗CD4抗体(0KT4、ATCCより入手)と4℃で30分間反応させ、洗浄した後、さらに、FITC標識ウサギ抗マウスIgG(Fab')2抗体(Dako社より購入)と4℃で30分間反応させた。このFITCで標

識した、細胞表面にCD4を発現する細胞を、FacStar Plus (Becton-Dickin son社製)を用いて同定した。100個の大腸菌のコロニーを調べ、最終的に、細胞表面へのCD4の発現を誘導した42クローンを得た。

これらのクローンの塩基配列を、Sanger法により、pharmacia社製のAut oread Sequence kit とA.L.F. II 自動シーケンサーを用いて決定した。これらのクローンの配列を既存のデータベースと比較した結果、クローン 98は、推定上のシグナルシーケンス切断部位の9アミノ酸下流に、2つの連続したシステインを有しており、細胞遊走性サイトカインの1種である、CC型ケモカインの特徴と一致する構造上の特徴を有することが分かった。

(4) ヒトTARCの完全長 cDNAのクローニング

次に、クローン98の完全長cDNAを得るために、207bpのクローン98のcDN A断片をプローブとして、マルチプライムDNA標識システム(Amersham Japa n社製)により³²Pで標識し、これを用いて、(1)で作製したPHA刺激ヒト末梢血単核細胞のcDNAライブラリーをコロニーハイブリダイゼション法によりスクリーニングした。コロニーハイブリダイゼション法は文献(J. Samb rookら、Molecular Cloning: A Laboratory Manual、第2版、Cold Spring Harbor Laboratory、New York (1989))に記載の既知の方法で行った。

ヒトPHA活性化末梢血単核細胞cDNAライブラリーの入った大腸菌DH10BをLB-アンピシリン-アガープレート(10gトリプトン、5gイーストエキストラクト、10g NaCl、15gアガー、 50μ g/ml アンピシリン/蒸留水 1 リッター)に播き、一晩37℃で培養した。プレートに生えた大腸菌のコロニーをナイロン膜(Hybond-N+、Amersham Japan社製)に転写した後、SDS処理(10% SDS)、アルカリ変性(0.5N NaOH、1.5M NaCl)、そして洗浄(2x SSC)の操作を行った。この膜を、 3^2 P標識クローン98をプローブとしてハイブリダイゼーションした。ハイブリダイゼーション溶液は、6x SSC(1x SSCは、0.5

15M NaC1、0.015M クエン酸ナトリウムからなる)、50% ホルムアミド、0.5% SDS、5倍の デンハート溶液、及び $100\,\mu\,g/ml$ サケ精子DNAを用い、 42° で一晩ハイブリダイゼーションを行った。膜の洗浄は2x SSC、0.1% SDSの緩衝液で室温で10分間、0.2x SSC、0.1% SDSの緩衝液で 60° でで30分間を2回行った後、X線フィルム(Kodak社製)に感光させ、それらを現像して、プローブと反応するコロニーを同定し、最終的に1つのcDNAクローン(clone D3A)を得た。このクローンD3Aに挿入されているcDNAの配列をSanger法により、Pharmacia社の、Autoread Sequence kit cA.L.F. II 自動シーケンサーを用いて決定し、さらに後述の様々な検討を加えた結果、該cDNAは、目的の新規なcCC型ケモカイン様タンパク質(cTARC)をコードしていることを確認した。

II. ヒトTARCの構造決定

(1) hTARC cDNAの塩基配列及びそれがコードするアミノ酸配列の解析上記のI.(4)で得たクローンD3Aの塩基配列を、Sanger法により、Pharma cia社の、Autoread Sequence kit とA.L.F. II 自動シーケンサーを用いて決定した。cDNAクローンD3Aの塩基配列および内部に翻訳終了コドンを持たないオープンリーディングフレームのアミノ酸配列を図1に示す。

図1に示されているように、クローンD3Aに挿入されている遺伝子は94個のアミノ酸よりなるオープンリーディングフレームを有し、N末端にシグナルペプチドに特徴的な、疎水性の強いアミノ酸配列を有する遺伝子であることが明らかとなった。この94個のアミノ酸からなるタンパク質の分子量計算値は、10.507である。また、推定上のシグナルペプチド切断部位は、計算によると、A1a-23とA1a-24の間であり、図1には縦棒で表示されている。この切断部位から9アミノ酸下流にCC型ケモカインの特徴である2つの連続するシステインが示されている。

さらに、シグナルペプチド切断後の、71個のアミノ酸からなる、推定上の成熟型タンパク質は分泌タンパク質であると推定される。この71個のアミノ酸からなる、推定上の成熟型分泌タンパク質の分子量計算値は8,083であり、等電点は、計算によると9.7である。

(2) CC型ケモカイン類との配列上の類似性

FASTAおよびClustalVプログラムを用い、hTARCのアミノ酸配列と、既知のCC型ケモカインのアミノ酸配列とを比較した。結果を図2に示す。図2中、hTARCを含めてすべてのCC型ケモカインで保存されているアミノ酸は影づけをしたうえに太線で囲み、一方ほとんどのケモカインで保存されているアミノ酸には影づけのみを行っている。またhTARCと他のCC型ケモカインとの相同性の程度を%で右側に示している。

図2から、hTARCの成熟型分泌タンパク質のアミノ酸配列はCC型ケモカインに属するRANTESと29%、MIP-1aと26%、MIP-1bと28%、I-309と24%、MCP-1と24%、MCP-2と24%、MCP-3と28%の相同性があることが明らかとなった。また、全てのCCケモカインで保存されている、4つのシステインはhTARCでも保存されていることが明らかとなった。以上の結果は、得られたアミノ酸配列が新規のヒトCC型ケモカインのものであることを示唆している。

III. ノーザンブロット解析によるhTARC mRNAの発現解析

各種のヒト組織より単離したpoly(A)+RNA 2μgを、アガロースゲル電気 泳動にかけ、ナイロン膜に転写したもの(マルチプルティッシュブロット)はClonetech社より購入した。またヒト末梢血単核細胞をPHAで刺激し、0、4、24、および72時間後に、quickprep micro mRNA精製キット (Pharmacia 社製)を用いて、poly(A)+RNAを抽出した。単離したpoly(A)+RNA 1μgを、0.66M ホルムアルデヒドを含む1% アガロースゲル中で電気泳動にかけ、ナイロン膜(Hybond-N+) (Amersham Japan社製)に転写した。これらの膜

を、マルチプライムDNA標識システム(Amersham Japan社製)により32Pで標識したhTARCの cDNAクローンD3AのSmaI-PstI断片をプローブとして、ハイブリダイゼーションを行った。ハイブリダイゼーショ溶液は5x SSPE (1x SSPEは、0.18M NaC1、0.01M リン酸ナトリウム、pH 7.5、1mM EDTAよりなる)、50% ホルムアミド、2% SDS、10x デンハート溶液、100μg/mlサケ精子DNAを用い、42℃で一晩ハイブリダイゼーションを行った。膜の洗浄は2x SSC、0.1% SDSの緩衝液で室温、10分間、0.2x SSC、0.1% SDSの緩衝液で60℃、30分間を2回行った後、X線フィルム(Kodak社製)に感光させ、それらを現像して解析した。PHAで刺激した後の時間及びTRACmRNAの発現を図3Aに、各種のヒト組織でのTRACmRNAの発現を図3Bに示す。

図3Aには、hTARCのmRNAは未刺激のヒト末梢血単核細胞では発現していないが、PHAで刺激すると、4時間後ではまだ検出されないものの、24時間後にはほぼ最大になるように誘導され、72時間後でも小量の発現が持続することが示されている。

また、図3Bには、hTARCのmRNAは胸腺において大量に発現し、肺、大腸、および小腸ではごく少量発現しているが、他の組織ではほとんど検出されないことが分かる。

これらの結果は、h TARCが、他のCC型ケモカインと異なり、胸腺でのみ構成的に発現しており、その産生が免疫学的刺激により誘導されることを示している。

実施例2 組換えヒトTARCのカイコ細胞での発現

(1)カイコ細胞における h TARC DNAの発現のための組換えベクターpVL-TARCの構築

両端にEcoRIおよびNotI部位を持ち、h TARCの翻訳開始コドンから翻訳 終了コドンまでを含む0.5kbのDNA断片を、実施例1記載のクローンD3AをE

coRIとNotI で同時に消化することにより得た。このDNA断片を、組換え型バキュロウイルスの作製に用いるpVL1393(Invitrogen社製)のEcoRI部位とNotI部位の間に挿入し組換えベクターpVL-TARCを得た。この組換えベクターpVL-TARCの遺伝子地図を図4に示す。

(2) 形質転換体の培養

次に、組換えベクターpVL-TARCと、致死的な欠失を持つ、直線状の、Ac NPVのDNAをSf9昆虫細胞に同時に導入し、組換えバキュロウイルスを得た。得られた組換えバキュロウイルスは、限界希釈法により純化し、さらに、Sf9昆虫細胞にM.O.I. = 0.1で感染させて、種ウイルスを得た。この種ウイルスを、Tn5B-4昆虫細胞(Invitrogen社製)(150 cm² のフラスコあたり1.2x10⁷個)にM.O.I. = 10から20で感染させて、EX-CELL 400 無血清培地(JRH Biosciences社製)(150 cm² のフラスコあたり30 ml)で、27℃で2日間培養した。

(3) 生成物の単離、精製

培養上清を回収し、0.22μmのフィルターメンブランでろ過した。このろ液に1/10容の500 mM MES (pH 6.5)を加え、A緩衝液(50 mM MES (pH 6.5) / 100 mM NaCl)で平衡化した1 mlのResouce-Sカラム(Pharmacia社製)にかけた。この h TARCタンパク質の結合したカラムを A緩衝液で洗浄後、A緩衝液およびB緩衝液(50 mM MES (pH 6.5)/1.0 M NaCl)を用いたNaClの塩濃度の勾配により溶出した。h TARCタンパク質を含むフラクションはSDS-PAGEと銀染色を用いて同定した。SDS-PAGEの結果を図5 Bに示す。図5 B中、FはFPLCフラクション(最終段階の1つ前の精製段階)、HはHPLCフラクションについての結果を各々示している。

この h TARCタンパク質を含むフラクションに最終濃度が0.1%となるようにTFAを加えた後、A緩衝液(0.1% TFA)で平衡化したコスモシル 5C4-300カ

ラム(ナカライテスク社製)にかけ、A緩衝液およびB緩衝液(0.1% TFA、60% アセトニトリル)を用いたアセトニトリルの濃度勾配により溶出した。 h TARCタンパク質の溶出パターンを図 5 A に示す。 h TARCタンパク質を含むフラクションを集めて、真空乾燥でアセトニトリルを揮発させ、エンドトキシンフリーのPBSに対して透析して最終的な精製品を得た。タンパク質の濃度はBCA kit (Pierce社製)を用いて、BSAを対照として決定した。培養上清300 mlから300 μgの精製hTARCタンパク質が得られ、発現量は良好であった。混入しているエンドトキシン量は Limulus amoebocyte lysate assay (QCL-1000、Bio Whitaker社製)を用いて定量し、4 pg/μg以下であった。精製 h TARCタンパク質のN末端アミノ酸配列は、アミノ酸シーケンサー(島津社製)を用いて決定し、ARGTNVGREであった。図 5 Cに示される様に、このアミノ酸配列は、塩基配列から予測されたシグナルペプチドが切断されたのちの、71個のアミノ酸からなる成熟型分泌タンパク質のN末端アミノ酸配列と一致した。

実施例3 組換えヒトTARCの大腸菌での発現

(1)大腸菌におけるhTARC DNAの発現のための組換えベクターpGEMEX-T ARCの構築

両端にNdeIおよびNotI部位を持ち、h TARCの成熟型の開始コドンから翻訳終了コドンまでを含む0.2kbのDNA断片を、実施例1記載のクローンD3Aを鋳型としてPCR法により得た。PCRに用いた2つのオリゴヌクレオチドの配列を、配列表の配列番号11および12に示す。PCRは宝酒造から購入したAmpliTaq Kit を用い、DNA Thermal Cycler (Perkin-Elmer社製)で行った。反応は、クローンD3AのDNAを鋳型として、反応緩衝液(10mM Tris-HC1、pH 8.3、50mM KC1、1.5mM MgC12、0.1% ゼラチン、200μM dNTP(dATP、dGTP、dCTP、dTTP)、400μM プライマー、および100U/ml AmpliTaq D

す。

発現ベクターpGEMEX-TARCを得た。このベクターの遺伝子地図を図6に示

(2) 形質転換体の培養

発現ベクターpGEMEX-TARCを導入した大腸菌BL21株を用いて、成熟型hTARCのアミノ末端にメチオニンが付加したタンパク質として発現させた。大腸菌BL21株の培養はIPTGを1mMとなるように加えたLB培地で行い、37℃で3時間培養した。

(3) 生成物の単離、精製

大腸菌をトリス緩衝液(50mM Tris-HC1、pH 8.0、1mM EDTA、1mM 2-ME、50mM NaC1、0.2mM PMSF)に懸濁し、凍結融解を5回行った。次いで、DNas eIを10μg/ml、MgC1₂を10mMとなるように加え、室温で10分間放置した。10,000回転、15分間、4℃の条件で遠心分離し、沈殿したhTARCタンパク質を洗浄液(0.5% Triton X-100、10mM EDTA)で3回洗浄し、部分精製した組換え型hTARCタンパク質を得た。hTARCの精製を示すSDS-PAGE泳動の結果を図7に示す。図7中、Sは遠心分離した上清について、W1.W2,W3は遠心分離により得られた沈殿を洗浄液で各々1、2及び3回洗った際の溶出物について、PはhTARCを含む洗浄後の沈殿についての結果である。

実施例4 マウスTARCをコードするDNAの単離

I. マウスTARCゲノムDNAのクローニング

マウスTARCのゲノムDNAを得るために、実施例1に記載のヒトTARCの cD

NAクローンD3AのSmaI-PstI断片をプローブとして、マルチプライムDNA標識システム(Amersham Japan社製)により³²Pで標識し、これを用いて、Balb/Cマウス由来のゲノムDNAライブラリー(Clontech社製)をプラークハイブリダイゼション法によりスクリーニングした。プラークハイブリダイゼション法は文献(Sambrookら、Molecular Cloning: A Laboratory Manual、第2版、Cold Spring Harbor Laboratory、New York (1989))記載の方法に従って行った。

Balb/Cマウス由来のゲノムDNAライブラリーのファージ液と大腸菌 LE3 92をLB-プレート(10gトリプトン、5gイーストエキストラクト、10g NaC1、15gアガー/1L蒸留水)に播き、一晩30℃で培養した。プレートに生えたファージのプラークをナイロン膜(Hybond-N+、Amersham Japan社製)に転写した後、SDS処理(10% SDS)、アルカリ変性(0.5N NaOH、1.5M NaC1)、そして洗浄(2X SSC)の操作を行った。この膜を、³2Pで標識したhTARCの cDNAクローンD3AのSmaI-PstI断片をプローブとしてハイブリダイゼションした。ハイブリダイゼーション溶液は、5x SSPE (1x SSPEは、0.18M NaC1、0.01Mリン酸ナトリウム、pH 7.5、1mM EDTAよりなる)、30% ホルムアミド、2% SDS、10x デンハート溶液、100μg/m1サケ精子DNAを用い、42℃で一晩ハイブリダイゼーションを行った。膜の洗浄は2x SSC、0.1% SDSで室温で10分間、2x SSC、0.1% SDSで60℃で30分間を2回行った後、X線フィルム(Kodak社製)に感光させ、それらを現像して、プローブと反応するプラークを同定した。最終的に8つのゲノムDNAクローンが得られた。

その内1つのクローン(clone #3)の4234個の塩基配列を、Sanger法により、pharmacia社の、Autoread Sequence kit とA.L.F. II 自動シーケンサーを用いて決定した。3つの領域において、ヒトTARCと同一性の高い部位が認められた。この3つの領域をエクソンと推定し、連結した塩基配列

は、93個のアミノ酸よりなるオープンリーディングフレームを有し、ヒトTARCと64.4%の高い同一性を示した。従って、このDNAを、マウスTARCのゲノムDNAであると判断した。

II. マウスTARC cDNAのクローニング

(1) PHA刺激Balb/Cマウス脾細胞由来のcDNAライブラリーの作製

PHAで刺激したBalb/Cマウス脾細胞由来のcDNAライブラリーは、文献(Sambrookら、Molecular Cloning: A Laboratory Manual、第2版、Cold Spring Harbor Laboratory, New York (1989))の記載に従い、GIBCO-BRL社製のcDNA合成システムおよびcDNAクローニングシステムを用いて以下のように作製した。

まず、quickprep micro mRNA精製キット (Pharmacia社製) を用いて、P HAで刺激したBalb/Cマウス脾細胞よりpoly(A)+RNAを抽出した。PHAで24時間刺激したBalb/Cマウス脾細胞2x10⁷個を付属の細胞溶解液により溶解した。次に、oligo-dT樹脂を加えて3分混和し、poly(A)+RNAをoligo-dT樹脂に結合させた後、TOMY遠心機MRX-150(トミー精工社製)で12000回転で1分間遠心分離した。得られた沈殿物を高塩濃度洗浄液で3回、低塩濃度洗浄液で5回洗浄した後、溶出液で溶出した。この溶出液に、0.1倍量の3M酢酸ナトリウムと2倍量のエタノールを加えて-80℃で1時間冷却し、TOMY遠心機MRX-150(トミー精工社製)で12000回転で5分間遠心分離して、沈殿したpoly(A)+RNAを滅菌蒸留水に溶解した。そして、波長260nmでの吸光度を測定することにより、回収したpoly(A)+RNA量を計算した。PHA刺激Balb/Cマウス脾細胞より10μgのpoly(A)+RNAが得られた。

次に、精製したpoly(A)+RNAを鋳型として、cDNAの合成を以下のように行った。まず、4μgのpoly(A)+RNAを鋳型として逆転写酵素SUPER SCRIPT II RT(GIBCO-BRL社製)を用いて、反応緩衝液(50mM Tris-HC1、pH 8.3、75

mM KC1, 3mM MgC1₂, 10mM DTT, 500 μ M dNTP(dATP, dGTP, dCTP, dTTP), 50μg/ml NotIプライマーーアダプター(GIBCO-BRL社製)、および20000U/m 1逆転写酵素SUPER SCRIPT II RT)中で、37℃で1時間反応させて1本鎖DNA を合成した。なお、NotIプライマーーアダプターの配列を配列表の配列番 号3に示す。この1本鎖DNAを鋳型として、反応緩衝液(25mM Tris-HC1、pH 7. 5. 100mM KCl. 5mM MgCl₂. 10mM (NH₄)₂SO₄. 1. 2mM DTT. 0. 15mM β -N AD+、250 μ M dNTP(dATP、dGTP、dCTP、dTTP)、65U/ml DNAリガーゼ、250U /ml DNAポリメラーゼI、および13U/ml RNase H)中で、16℃で2時間反応 させてcDNAを合成した。次に、T4 DNAポリメラーゼを、最終濃度が65U/ml となるように加えて、さらに16℃で5分間反応させて2本鎖DNAとした。こ の2本鎖DNAを、反応緩衝液(50mM Tris-HC1、pH 7.6、10mM MgC12、1mM DT T、1mM ATP、5% PEG 8000、200μg/ml EcoRIアダプター (Pharmacia社製)、 および100U/m1 - T4 DNAリガーゼ)中で、16℃で16時間反応させて、EcoRI アダプターに結合させた。なお、EcoRIアダプターは、配列表の配列番号 13および14に示すDNAがアニーリングした2本鎖である。こうして完 成したcDNAを A ExCellベクター(Pharmacia社製)のNotIとEcoRI部位の間 に挿入して、cDNAライブラリーを作製した。

(2) プローブの作製

上記(1)で調製したPHA刺激Balb/Cマウス脾細胞由来のcDNAライブラリーを鋳型として、反応緩衝液(10mM Tris-HC1、pH 8.3、50mM KC1、1.5m M MgCl₂、0.1% ゼラチン、200μM dNTP(dATP、dGTP、dCTP、dTTP)、400nM mG98 exon upper プライマー、400nM mG98 exon lowerプライマー、および100U/ml AmpliTaq DNAポリメラーゼI)中で、ポリメレースチェインリアクション (PCR) 反応を行った。なお、mG98 exon upper プライマーとmG98 exon lowerプライマーは、上記 I で得たマウスゲノムDNAに基づいて

設計された。これら各プライマーの配列を、それぞれ配列表の配列番号 $\,1\,$ 5と16に示す。mG98 exon upper プライマーとmG98 exon lowerプライ マーはDNA合成機(Cyclone Plus DNA Synthesizer、ミリジェン/バイオ サーチ社製)で合成した。合成にはミリジェン/バイオサーチ社の β -リ ンク・ベータシアノエチルホソホアミダイド試薬を用いた。合成後、アン モニア水(28%、ナカライテスク社製)2mlで合成カラムから合成オリゴヌ クレオチドを溶出した後、60度、5時間処理することにより保護基を離脱 させた。脱保護したオリゴヌクレオチドを10倍量のブタノールを加えてTO MY遠心機(トミー精工社製)で3000回転で10分間遠心分離することにより 沈殿させて回収した。回収したオリゴヌクレオチドを滅菌水に溶解し、波 長260nmでの吸光度を測定することにより、その量を決定した。PCRは宝酒 造から購入したAmpliTaq Kit を用い、DNA Thermal Cycler (Perkin-Elm er社製)で行った。反応は、94℃で3分間前処理した後、94℃で45秒間、6 0℃で45秒間、72℃で1分間の反応サイクルを40回繰り返し、最後に72℃で 3分間処理して行った。得られた321bpのDNA断片はマウスTARCの完全長cDN Aを得るためのプローブとして用いた。

(3) マウスTARCの完全長 cDNAのクローニング

マウスTARCの完全長cDNAを得るために、上記(2)で得た321bpのDNA断片をプローブとして、マルチプライムDNA標識システム(Amersham Japan社製)により32Pで標識し、これを用いて、(1)で作製したPHA刺激Balb/Cマウス脾細胞由来のcDNAライブラリーをプラークハイブリダイゼション法によりスクリーニングした。プラークハイブリダイゼション法は文献(T. Maniatisら、Molecular Cloning: A Laboratory Manual、第2版、Cold Spring Harbor Laboratory. New York (1989))記載の方法に従い、以下のように行った。

PHA刺激Balb/Cマウス脾細胞由来のcDNAライブラリーのファージ液と大 腸菌 LE392をLB-プレート(10gトリプトン、5gイーストエキストラクト、 10g NaCl、15gアガー/1L蒸留水)に播き、一晩30℃で培養した。プレート に生えたファージのプラークをナイロン膜(Hybond-N+、Amersham Japan社 製)に転写した後、SDS処理(10% SDS)、アルカリ変性(0.5N NaOH、1.5M Na C1)、そして洗浄(2X SSC)の操作を行った。この膜を、32P標識した321bp のDNA断片をプローブとしてハイブリダイゼションした。ハイブリダイゼ ーション溶液は、5x SSPE(1x SSPEは、0.18M NaCl、0.01M リン酸ナトリ ウム、pH 7.5、1mM EDTAよりなる)、50% ホルムアミド、2% SDS、10x デ ンハート溶液、100μg/mlサケ精子DNAを用い、42℃で一晩ハイブリダイゼ ーションを行った。膜の洗浄は2x SSC、0.1% SDSで室温で10分間、0.2x S SC、0.1% SDSで60℃で30分間を2回行った後、X線フィルム(Kodak社製)に 感光させ、それらを現像して、プローブと反応するプラークを同定した。 最終的に1つのcDNAクローン $(clone\ \#1)$ を得た。このクローン#1に挿入 されているcDNAの塩基配列を、Sanger法により、pharmacia社の、Autorea d Sequence kit とA.L.F. II 自動シーケンサーを用いて決定し、さらに 後述の様々な検討を加えた結果、該cDNAは、目的の新規なCC型ケモカイン 様タンパク質(mTARC)をコードしていることを確認した。

III. マウスTARCの構造決定

(1) mTARC cDNAの塩基配列及びそれがコードするアミノ酸配列の解析上記のII. (3) で得たマウスcDNAクローン#1の塩基配列および内部に翻訳終了コドンを持たないオープンリーディングフレームのアミノ酸配列を図8に示す。

図8に示されているように、クローン#1に挿入されている遺伝子は93個のアミノ酸よりなるオープンリーディングフレームを有し、N末端にシ

グナルペプチドに特徴的な、疎水性の強いアミノ酸配列を有する遺伝子であることが明らかとなった。この93個のアミノ酸からなるタンパク質の分子量計算値は10、466であり、推定上のシグナルペプチドの切断部位は、計算によると、A1a-23とA1a-24の間であり、図8には縦棒で表示されている。この切断部位から9アミノ酸下流にCC型ケモカインの特徴である2つの連続するステインが示されている。

さらに、シグナルペプチド切断後の、70個のアミノ酸からなる、推定上の成熟型タンパク質は、分泌タンパク質であると推定された。この70個のアミノ酸からなる、推定上の成熟型分泌タンパク質の分子量計算値は7,916である。この70個のアミノ酸からなる、推定上の成熟型分泌タンパク質の等電点は、計算によると10.2である。

(2) ヒトTARCとの類似性

成熟型分泌マウスTARCタンパク質のアミノ酸配列はヒトTARCと65%の同一性があることが明らかとなった。また、マウスTARCのオープンリーディングフレームの塩基配列はヒトTARCと74%の同一性があることが明らかとなった。全てのCCケモカインで保存されている、4つのシステインはマウスTARCでも保存されていることが明らかとなった。これらの事実は、マウスTARCがヒトTARCのマウス相同遺伝子およびタンパク質であることを示唆している。

実施例5 組換えマウスTARCのカイコ細胞での発現

(1)カイコ細胞におけるmTARC DNAの発現のための組換えベクターpVL-mTARCの構築

両端にEcoRIおよびNotI部位を持ち、マウスTARCの翻訳開始コドンから 翻訳終了コドンまでを含む0.5kbのDNA断片を、クローン#1をEcoRIとNot I で同時に消化することにより得た。このDNA断片を、組換え型バキュロ ウイルスの作製に用いるpVL1393(Invitrogen社製)のEcoRI部位とNotI部位の間に挿入し組換えベクターpVL-mTARCを得た。このベクターの遺伝子地図を図9に示す。

(2) 形質転換体の培養

次に、組換えベクターpVL-mTARCと、致死的な欠失を持つ、直線状の、A cNPVのDNAをSf9昆虫細胞に同時に導入し、組換えバキュロウイルスを得た。得られた組換えバキュロウイルスは、限界希釈法により純化し、さらに、Sf9昆虫細胞にM.O.I. = 0.1で感染させて、種ウイルスを得た。この種ウイルスを、Tn5B-4昆虫細胞(Invitrogen社製)(150 cm² のフラスコあたり1.2x10 7 個) にM.O.I. = 10から20で感染させて、EX-CELL 400 無血清培地(JRH Biosciences社製) (150 cm² のフラスコあたり30 m1) で、27℃で2日間培養した。

(3) 生成物の単離、精製

培養上清を回収し、0.22μmの フィルターメンブランでろ過した。この ろ被に1/10容の500 mM MES (pH 6.5)を加え、A緩衝液(50 mM MES (pH 6.5) / 100 mM NaC1)で平衡化した1 mlのResouce-Sカラム(Pharmacia社製) にかけた。このmTARCタンパク質の結合したカラムを A緩衝液で洗浄後、A 緩衝液およびB緩衝液(50 mM MES (pH 6.5)/1.0 M NaC1)を用いたNaClの塩濃度の勾配により溶出した。マウスTARCタンパク質を含むフラクションは SDS-PAGEと銀染色を用いて同定した。SDS-PAGEの結果を図10Bに示す。図10B中、FはFPLCフラクション(最終段階の1つ前の精製段階)、H はHPLCフラクションについての結果を各々示している。

このマウスTARCタンパク質を含むフラクションに最終濃度が0.1%となるようにTFAを加えた後、A緩衝液(0.1% TFA)で平衡化したコスモシル 5C4-300カラム(ナカライテスク社製)にかけ、A緩衝液およびB緩衝液(0.1% TFA、

60% アセトニトリル)を用いたアセトニトリルの濃度勾配により溶出した。マウスTARCタンパク質の溶出パターンを図10Aに示す。マウスTARCタンパク質を含むフラクションを集めて、真空乾燥でアセトニトリルを揮発させ、エンドトキシンフリーのPBSに対して透析して最終的な精製品を得た。タンパク質の濃度はBCA kit (Pierce社製)を用いて、BSAを対照として決定した。培養上清300 mlから168 μgの精製マウスTARCタンパク質が得られた。混入しているエンドトキシン量は Limulus amoebocyte lysate ass ay (QCL-1000、Bio Whitaker社製)を用いて定量し、2 pg/μg以下であった。精製mTARCタンパク質のN末端アミノ酸配列は、アミノ酸シーケンサー(島津社製)を用いて決定し、ARATNVGRE**LDYFであった。このアミノ酸配列は、図10 Cに示される様に、塩基配列から予測されたシグナルペプチドが切断されたのちの、70個のアミノ酸からなる成熟型分泌タンパク質のN末端アミノ酸配列と一致した。

実施例6 マウスTARCによる白血球侵潤の誘導

実施例5で得たマウスTARCのマウス皮内投与による白血球侵潤の誘導を調べた。

精製したマウスのTARCタンパク質を、Balb/cマウスの背中に皮内投与し、白血球侵潤の有無を調べることにより、mTARCのケモカイン様活性を確認した。詳細にはマウスTARCの精製品50 ngをエンドトキシンを含まないPBS に溶解し、50 μ 1として、Balb/cマウスの背中皮内に投与した。陰性コントロールとして、エンドトキシンを含まないPBS 50 μ 1を用いた。投与後、4、24時間後に、頚椎脱臼によりマウスを屠殺し、投与部位の皮膚を切り出し、10%ホルマリンで固定した。その後、固定した皮膚を、パラフィンに包埋し、マイクロトームで厚さ5 μ mの切片を作製し、ヘマトキシリンーエオジン染色を行った。この結果をmTARCについては図11に、コントロ

ールについては図12に各々示す。図11及び図12中、Aは倍率100の、Bは倍率400の投与24時間後の顕微鏡写真である。図11A及びBに示される様に、マウスのTARCを投与した皮下組織ではリンパ球およびモノサイトの浸潤がTARC投与の24時間後に見られた。一方、図12A及びBに示される様にPBSのみではそのような変化はみられなかった。

実施例7 TARCレセプターを発現する細胞の検出

ョード標識したヒトTARCを用いてTARCレセプターを発現している細胞を検出した。実施例 2 に記載の様に昆虫細胞で発現させ精製したヒトTARCタンパク質を、 125 I標識Bolton-Hunter試薬 (Amersham Japan社製)を用いて 125 Iで標識した。バイオーゲル (Bio-Gel) P6 (バイオラッド社製)を用いてゲルろ過で 125 I標識hTARCを精製し、比活性を求めたところ $^{81.6}$ μ Ci/ μ gであった。この標識hTARCを用いて様々な種類の細胞への結合実験を行った。

 $1 \times 10^6 \sim 8 \times 10^6$ の被検細胞を結合緩衝液(PRMI-1640、20 mM HEPES(pH7.4)、1% BSA、0.02% NaN₃)で洗浄後、 $100 \, \mu$ 1の結合緩衝液に懸濁した。この細胞懸濁液に 125 I標識 h TARCを最終濃度0.66 nMとなるように加えた $100 \, \mu$ 1の結合緩衝液を加え、室温で1時間結合を行った。結合反応を行った後、反応液を $300 \, \mu$ 1のジブチルフタル酸:オリーブ油(4:1)溶液に重層し、遠心により細胞に結合した 125 I標識TARCと非結合の 125 I標識TARCを分離した後、細胞に結合した 125 I標識TARCの放射線量をガンマカウンターを用いて測定を行った。h TARCの細胞への特異的結合は非標識TARC非存在下で結合した 125 I標識TARCの値から、 $200 \, \mathrm{nM}$ の非標識 h TARC存在下に非特異的に結合した 125 I標識TARCの値を差し引いて求めた。 125 I標識TARCの様々な種類の細胞 10^6 個あたりの特異的結合を図 $1.3 \, \mathrm{cm}$ す。

図13から明らかなように、かなりの特異的結合が一部のT細胞株(Jur

kat、Molt3、CEM、Hut78、MT2、MT4、Hut102)、末梢血リンパ球、活性化末梢血T細胞で認められる。その他のT細胞株(Molt4、HPB-ALL、TCL-Kan、TLOm1)、単球細胞株(U937、THP1)、赤芽球細胞株(K562)、末梢血単球では極めてわずかな特異的結合しか認められなかった。B細胞株(Raji)、胎児腎臓由来の細胞株(293E)、末梢血顆粒球では殆ど特異的結合は認められなかった。

以上の結果は、TARCのレセプターがある種のT細胞に多く発現していることを示している。

実施例8 TARCとレセプターとの結合特性

T細胞株 Jurkatを用いて、TARCのレセプターについて更に詳しく解析を行った。(1)結合定数とレセプター数

結合定数とレセプター数を求めるために、結合が平衡に達する条件を検討した。その結果、 125 Iで標識したヒトTARCのJurkat細胞への特異的結合は 15° C、1時間で平衡に達するとわかった。そこで、 125 I標識TARCの濃度を変化させた場合の $4x10^6$ 個のJurkat細胞への特異的結合量の変化を調べた。特異的結合量は、非標識TARC非存在下で結合した 125 I標識TARCの値から、 1μ Mの非標識TARC存在下に非特異的に結合した 125 I標識TARCの値を差し引いて求めた。その結果を図14Aに示す。 125 I標識TARCのJurkat細胞への特異的結合は飽和曲線を描いた。更にそのスキャッチャード(Scatchard)解析の結果を図14Bに示す。 125 I標識TARCのJurkat細胞への特異的結合部位は1種類で、結合定数は計算によると2.1 nM、1個の細胞あたりの結合数は603であった。

次に、125 I標識TARCの濃度を2 nMに固定し、非標識TARCの濃度を変化させた場合の4x106個のJurkat細胞への特異的結合量の変化を調べた。特異的結合量は、種々の濃度の非標識TARC存在下で結合した125 I標識TARCの値

から、 1μ Mの非標識TARC存在下に非特異的に結合した 125 I標識TARCの値を 差し引いて求め、非標識TARC非存在下での特異的結合量を100%として計算 した。その結果を、図15 Aに示す。スキャッチャード解析の結果、 125 I 標識TARCのJurkat細胞への特異的結合部位は1種類で、結合定数は計算に よると2.1 nM、1個の細胞あたりの結合数は948であった。

(2)他のCC型ケモカインによる結合阻害

TARCのJurkat細胞への結合が他のケモカインで競合されるかを調べた。 125 I標識hTARCの濃度を0.66 nMとし、非標識ケモカイン非存在下もしくは 200 nMのIL-8、RANTES、MCP-1、MIP- 1α (全てペプロテック社製)あるいはTARCの存在下での $4x10^6$ 個のJurkat細胞への結合を室温で1時間行った。その結果を図15 Bに示す。 125 I標識TARCの結合は非標識TARCでのみ競合阻害され、他のケモカインでは結合阻害は認められなかった。従って、Jurkat細胞上のTARCのレセプターは他のケモカインのレセプターとは異なる独立のレセプターであることがわかった。

(3)赤血球上のレセプターとの結合活性

赤血球には様々なケモカインが結合できるレセプター、ダッフィ抗原/ケモカイン受容体(Duffy antigen/receptor for chemokine (DARC))、が存在することが知られている。そこで、 125 I標識TARCの濃度を0.66 nM に固定し、非標識の他のケモカインIL-8、RANTES、MCP-1、MIP- 1α あるいはTARCの濃度を変化させた場合の 10^8 個の赤血球への特異的結合量の変化を調べた。特異的結合量は、種々の濃度の非標識ケモカイン存在下で結合した 125 I標識TARCの値から、 1μ Mの非標識TARC存在下に非特異的に結合した 125 I標識TARCの値を差し引いて求め、非標識TARC非存在下での特異的結合量を100%として計算した。その結果を、図16に示す。 125 I標識TARCの結結

とんど結合阻害は認められなかった。更にそのスキャッチャード解析の結果を図17に示す。125 I標識TARCの赤血球への特異的結合部位は1種類で、結合定数は計算によると17 nMであった。TARCの結合定数および競合阻害様式は他のケモカイン、例えばIL-8のDARCへの結合定数および競合阻害様式と同様であり、従ってTARCは赤血球上のDARCに結合することが明らかになった。

実施例 9 TARCの免疫学的定量法

- I. 固相化抗TARC抗体の作製
- (1) グルタチオンーSートランスフェラーゼとTARCとの融合タンパクの 調製

グルタチオン-S-トランスフェラーゼ (GST) とTARCとの融合タンパクを、該融合タンパクの発現ベクターpGEX-TARCを用いて調製した。

両端にBamH1及びNotI部位を持ち、TARC成熟型の開始コドンから翻訳終了コドンまでを含む0.2kbのDNA断片を、実施例1に記載のクローンD3Aを鋳型としてPCR法により得た。PCRに用いた2つのオリゴヌクレオチドの配列を、配列表の配列番号17及び18に示す。PCRは宝酒造から購入したAmpliTaq Kitを用い、DNA Thermal Cycler (Perkin-Elmer社製)で行った。反応は、クローンD3AのDNAを鋳型として、反応緩衝液(10mM Tris-HC1、pH 8.3、50mM KC1、1.5mM MgCl₂、0.1% ゼラチン、200μM dNTP(dATP、dGTP、dCTP、dTTP)、400μM プライマー、及び100U/ml AmpliTaq DNAポリメラーゼI)中で行った。反応は、94℃で3分間前処理した後、94℃で45秒間、57℃で45間、72℃で1分間の反応サイクルを15回繰り返し、最後に72℃で3分間処理して行った。この反応生成物をBamH1とNotIで同時に消化し、pGEX 4T-3 (ファルマシア社製)のBamH1部位とNotI部位の間に挿入し、発現ベクターpGEX-TARCを得た。

発現ベクターpGEX-TARCを導入した大腸菌JM109株を用いて、成熟型TARCのアミノ末端にGST付加したタンパク質として発現させた。大腸菌JM109株の培養はIPTGを0.1mMとなるように加えた0.2% glucoseを含む2xYT培地で行い、37℃で4時間培養した。その後大腸菌をSTE衝液(10mM Tris-HC1、pH 8.0、1mM EDTA、100mM NaC1、1mM PMSF、100μg/ml lysozyme)に懸濁し、氷上で15分間放置した。次いで、DTTを5mM、sarkosylを1.4%となるように加え、氷上で冷却しながら、TOMY超音波破砕装置UD-201(トミー精工社製)で300秒間最大出力で処理を行った。10.000回転、5分間、4℃の条件で遠心分離し、上清にTriton X-100を2.5%となるように加えた後、gultathione Sepharose 4B 樹脂を加え、4℃で一晩結合反応を行った。GST-TARC融合タンパク質が結合した樹脂はPBSで5回洗浄した後、樹脂と等容積の1% SDSを含むPBSを加え、100℃で5分間処理し、GST-TARC融合タンパク質を樹脂から解離させた。得られたGST-TARC融合タンパク質溶液には9倍で

(2) 抗TARC抗体の作製

抗体の作製にはモルモットを使用し、 $100 \, \mu \, g$ のGST-TARC融合タンパク質を等容積のフロイントコンプリートアジュバントと混合した後、皮下に投与した。追加免疫は2週間ごとに行い、 $100 \, \mu \, g$ のGST-TARC融合タンパク質を等容積のフロイントインコンプリートアジュバントと混合した後、皮下に投与した。合計3回免疫を行い、血清を採取した。

(3)抗TARC抗体の精製と標識

ビオチン化抗TARC抗体の作製は以下のように行った。Affi-Gel15樹脂(バイオラッド社製)に3倍容積の精製したGST-TARC融合タンパク質又はGSTタンパク質溶液を加え、4℃で一晩放置した。タンパク質溶液を除去した後、樹脂にブロッキング溶液(10mM ethanolamine、pH 8.0)を加え、4℃で

1時間放置した。樹脂は20倍容積のPBSで洗浄した後、結合緩衝液(20mM Tris-HC1、pH 7.2、0.5M NaC1)を加えた。得られた血清に等容積の飽和硫安を加え、4℃で一晩放置した後、12.000回転、20分間、4℃の条件で遠心分離した。得られた沈殿はPBSに溶解させ、更に等容積の飽和硫安を加え、4℃で2時間放置した後、12.000回転、20分間、4℃の条件で遠心分離した。得られた沈殿にPBSを加えて溶解し、結合緩衝液に対して透析し、まずGSTタンパク質結合樹脂にかけて室温で2時間放置し、GSTに対する抗体を除去した。この得られた素通り溶液を、GST-TARC融合タンパク質結合樹脂にかけて4℃で一晩放置し、樹脂は20倍容積の結合緩衝液で洗浄した後、TARC対する抗体を0.1M glycineで溶出した。この抗体溶液に1M Tris-HC1、pH 9.5を加えて、0.1M NaHCO3に対して透析し、NHS-LC-Biotin(ピアス社製)を加えて4℃で2.5時間放置した。このビオチン化抗体は50mM Tris-HC1、pH 7.5に対して透析し、次にPBSに対して透析した。

固相化用抗TARC抗体の精製は以下のように行った。抗血清にTris-HC1、pH 8.0を100mMになるように加え、Hitrap-protein Aカラムにかけて、カラムの10倍容積の100mM Tris-HC1、pH 8.0、つづいてカラムの10倍容積の10mM Tris-HC1、pH 8.0で洗浄した。結合した抗体は0.1M glycineで溶出し、1M Tris-HC1、pH 9.5を加えた後、PBSに対して透析した。

II. TARCタンパク質の免疫学的定量法

TARCタンパク質の定量は固相化抗体に結合したTARCの量をビオチン化抗体で検出定量する、いわゆるサンドイッチ法で以下の様に行った。まず、固相化用抗体を $10\,\mu\,\mathrm{g/m1}$ となるように $50\,\mathrm{mM}$ Tris-HC1、pH 8.0緩衝液に溶解し、 $96\,\mathrm{c}$ プレート(マキシソーブ、ヌンク社製)に $1\,\mathrm{c}$ あたり $50\,\mu\,\mathrm{l}$ ずつ加え、 $4\,\mathrm{c}$ で一晩放置した。抗体溶液を除去した後、 $1\,\mathrm{mg/m1}$ のBSA含むPBS $100\,\mu\,\mathrm{l}$ を加えて、室温で1時間放置し、 $0.02\,\mathrm{m}$ Tween- $20\,\mathrm{c}$ 含むPBSで $1\,\mathrm{m}$

洗浄した。濃度既知の昆虫細胞で発現させ精製した組換えヒトTARC又は未知量の抗原を含む試料にTriton X-100を0.5%となるように加えた後、1穴あたり 50μ 1ずつ加え、室温で1時間放置した。Tx-PBS溶液(0.5% Triton X-100)で3回洗浄した後、ビオチン化抗TARC抗体をTx-PBS溶液で1000倍 希釈し、1穴あたり 50μ 1ずつ加え、室温で30分間放置した。Tx-PBS溶液で3回洗浄した後、パーオキシダーゼ標識ストレプトアビジン(ベクター社製)をTx-PBS溶液で4000倍希釈し、1穴あたり 50μ 1ずつ加え、室温で30分間放置した。Tx-PBS溶液で3回洗浄し、PBSで1回洗浄した後、基質溶液($100\,\mathrm{mM}$ NaOAc、pH 5.5、 $1\,\mathrm{mM}$ EDTA、 $6.72\,\mathrm{mg/m1}$ TMB2、0.03% H $_2O_2$)を $100\,\mu$ 1加え呈色反応を行った。1N H $_2SO_4$ を $50\,\mu$ 1加えて反応を停止した後、 $45\,\mathrm{Onm}$ での吸光度を測定した。 次に、濃度既知の組換えヒトTARCを用いて標準曲線を作製し、これにあてはめ、試料中のTARCタンパク質の量を知ることができる。検出感度は $50\,\mathrm{pg/m1}$ であった。

実施例10 TARC誘導活性を有する物質

(1) TARCタンパク質を誘導する刺激の同定

正常人末梢血単核球を96穴プレート(コースター社製)に1穴あたり2. 5x10⁵個ずつ加え、刺激物質なし、あるいは刺激物質としてPHA(GIBCO-BR L社製)を100倍希釈、抗CD3抗体(OKT3)を10μg/mlもしくはLPS(L4391、シグマ社製)を100ng/mlとなるように加え、250μ1のRPMI-1640/10% FCS で培養した。6、12、24、36、48、72時間後に培養液を回収し、0.45μmのフィルターでろ過を行い、得られたろ液を用いてTARCタンパク質の定量を行った。その結果を図21に示す。図21に示される様にTARC タンパク質はPHA、抗CD3抗体刺激により時間依存的に発現し、発現量は72時間まで直線的に増加した。発現はPHA刺激で12時間、抗CD3抗体刺激で24時間から検出され、72時間ではPHA刺激で16ng/ml、抗CD3抗体刺激で2.5ng

/mlに達した。LPSや未刺激では発現はほとんど検出できなかった。

(2) TARCタンパク質を誘導するサイトカインの同定

PHAの方が抗CD3抗体より強いTARC発現誘導作用を有することから、この 誘導にはサイトカインの関与が考えられる。

そこで、正常人末梢血単核球を96穴プレート(コースター社製)に1穴あたり2.5x 10^5 個ずつ加え、サイトカインなしあるいはサイトカインとして10ng/ml IL-1α (R&D社製)、100U/ml IL-2 (シオノギ製薬社製)、50ng/ml IL-3 (ゼンザイム社製)、50ng/ml IL-4 (ペプロテック社製)、50ng/ml IL-7 (ペプロテック社製)、50ng/ml IL-10 (ゼンザイム社製)、10ng/ml GM-CSF (ゼンザイム社製)、50ng/ml TNF α (ペプロテック社製)、10ng/ml IFN- γ (シオノギ製薬社製)、10ng/ml M-CSF (R&D社製)を加え、250 μ 1のRPNI-1640/10% FCSで培養した。48時間後に培養液を回収し、0.45 μ mのフィルターでろ過を行い、得られたろ液を用いてTARCタンパク質の定量を行った。その結果を図22に示す。図22に示される様にTARCタンパク質はGM-CSF、IL-3、IL-4により発現が誘導され、発現量はそれぞれ12、6、2ng/ml程度であった。

同様にGM-CSF、IL-3、IL-4の濃度依存性を調べた。その結果を図23に示す。図23に示される様にGM-CSFではED50は0.7ng/mlで、発現は3.3ng/mlで最大に達し、更に高い濃度では逆に誘導がかからなくなった。IL-3、IL-4では飽和曲線を描き、 ED_{50} は0.5、0.8ng/mlであった。

上記の結果は、TARCの発現は、多くのケモカインの発現がTNF- α 、IFN- γ で誘導されることと対照的に極めて特徴的であることを示している。

実施例11 TARCタンパク質を発現する細胞の同定

(1) TARCを発現する細胞を同定するために正常人末梢血単核球をCD14陽性単球とCD14陰性リンパ球に分離して、PHA、PHA/PMA、GN-CSF、IL-3、IL

-4で刺激した。正常人末梢血単核球を2x10⁷/mlとなるように氷冷した分離 緩衝液(5mM EDTA、1% FCS、PBS)に懸濁し、FITCで標識した抗CD14抗体(B ecton-Dickinson社製)を1/50量加え、氷上で30分放置した。分離緩衝液 で洗浄し、10°細胞/ 80 μ1となるように分離緩衝液に懸濁し、10°細胞 あたり20 μ1の磁気ビーズ標識抗マウスIgG抗体(Miltenyi-Biotec社製) を加え、4℃で15分放置した。分離緩衝液で洗浄し、500 µ1の分離緩衝 液に懸濁し、MACS(Miltenyi-Biotec社製)を用いてCD14陽性単球とCD14 陰性リンパ球に分離した。96穴プレート(コースター社製)1穴あたり正 常人末梢血単核球とCD14陰性リンパ球は2.5x10⁵個、CD14陽性単球は1.8x1 05個ずつ加え、刺激なしあるいは刺激として100倍希釈PHA(GIBCO-BRL社) 製)、100倍希釈PHA(GIBCO-BRL社製)と50ng/ml PMA、50ng/ml IL-4(ペ プロテック社製)、50ng/ml IL-3(ゼンザイム社製)、10ng/ml GM-CSF(ゼ ンザイム社製) を加え、250μ1のRPMI-1640/10% FCSで培養した。48時間 後に培養液を回収し、0.45μmのフィルターでろ過を行い、得られたろ液 を用いてTARCタンパク質の定量を行った。その結果を図24に示す。図2 4のグラフに示される様にTARCはGN-CSF、IL-3、IL-4刺激により単球のみ から分泌された。PHA、PHA/PMA刺激では逆にリンパ球のみから分泌され、 PHA刺激による発現誘導はPMAを加えることにより著しく抑制されることが 示された。

(2) ノーザンブロット解析によるTARC mRNAの発現解析

ヒト末梢血単核細胞を未刺激あるいは100倍希釈PHA(GIBCO-BRL社製)、100ng/ml LPS(L4391、シグマ社製)、10ng/ml IL-4(ペプロテック社製)、10ng/ml IL-3(ゼンザイム社製)、4ng/ml GM-CSF(ゼンザイム社製)で刺激し、24時間後に、TRIZOL RNA精製試薬(GIBCO-BRL社製)を用いて、RNAを抽出した。単離したRNA 5μgを、0.66M ホルムアルデヒドを含む1.2%

アガロースゲル中で電気泳動にかけ、ナイロン膜(Hybond-N+) (Amersham Japan社製)に転写した。これらの膜を、マルチプライムDNA標識システム (Amersham Japan社製) により32Pで標識したTARCの cDNAクローンD3AのSmaI-PstI断片をプローブとして、ハイブリダイゼーションを行った。ハイブリダイゼーション溶液はQuickHyb液(Stratagene社製)、100μg/m1サケ精子DNAを用い、68℃で1.5時間ハイブリダイゼーションを行った。膜の洗浄は2x SSC、0.1% SDSの緩衝液で室温、10分間、0.2x SSC、0.1% SDSの緩衝液で55℃、30分間を2回行った後、X線フィルム(Kodak社製)に感光させ、それらを現像して解析した。図25の結果から、TARCのmRNAは未刺激及びLPS刺激のヒト末梢血単核細胞ではほとんど発現していないが、GM-CSF、IL-3刺激で約400倍、IL-4、PHA刺激で約40倍のmRNAの発現誘導が認められた。

以上の結果は、TARCのGM-CSF、IL-3、IL-4刺激による末梢血単核球での発現誘導は分泌顆粒等に蓄積されたタンパクの放出によるものではなく、主にmRNAの増加によることを示している。

実施例12 ヒトPBMC由来TARCのT細胞株に対する遊走活性

サイトカイン刺激で正常人末梢血単球から分泌されるTARCのT細胞株に対する遊走活性を以下の方法で調べた。

細胞遊走活性は48ウェルの走化性チャンバー (chemotaxis chamber、Ne uro Probe 社製)を用いて測定した。ヒト末梢血単球を未刺激あるいは、50ng/ml IL-4 (ペプロテック社製)、50ng/ml IL-3 (ゼンザイム社製)、10ng/ml GM-CSF (ゼンザイム社製)で刺激し、36時間後に培養液を回収し、0.45μmのフィルターでろ過を行い、得られたろ液を用いて細胞遊走活性を測定した。培養ろ液を下ウェルに加え、一方、緩衝液[RPMI-1640、20 m M Hepes (pH 7.4)、1% BSA]に懸濁した4x10⁵個のT細胞株HUT78を上ウェル

に加えた。

Type IV コラーゲン溶液(5μ g/ml 水溶液)で室温、1時間コートしたポリビニルピロリドン不含ポリカーボネート膜(口径 5μ m、Neuro Probe 社製)で上下ウェルの分離を行った。37 $^{\circ}$ で2時間培養後、膜を取り外し、PBSで上側を洗浄し、固定及び染色を行った。

遊走した細胞は800倍の顕微鏡下で、1ウェルにつき無作為に選んだ5視野 (HPF)について数を測定した。その結果を図26に示す。図26のグラフに示される様に、IL-3及びGM-CSFで刺激した培養液はHUT78細胞の強い遊走を引き起こしたが、未刺激あるいはIL-4で刺激した培養液は遊走を引き起こさなかった。

また、GM-CSF処理の培養上清のHut78細胞に対する遊走活性は10μg/ml モルモット抗TARC抗体(TARC Ab)処理で殆ど消失した。

これらの結果は、遊走活性を持つTARCがサイトカインの刺激により単球から分泌されることを示している。

実施例13 サイトカインによるTARC発現の抑制

液性免疫の誘導に関与するTh2タイプのサイトカインIL-4でTARCが誘導されることから、Th2の誘導を抑制するTh1タイプのサイトカインIFN- γ 、免疫反応全般を抑制するTh10の発現誘導に及ぼす影響を調べた。正常人末梢血単核球をTh10の発現誘導に及ぼす影響を調いた。正常人末梢血単核球をTh10の子の「コースター社製」にTh10の方の力が、サイトカインとして、Th10のTh11に Th11の Th11に Th12の Th13のTh13のTh13のTh14のTh13のTh14のTh13のTh14の

図27のグラフに示される様にGM-CSF、IL-3、IL-4刺激による末梢血単核球でのTARCの発現誘導はIFN- γ 、IL-10で抑制された。従ってTARCの分泌は液性免疫の誘導の刺激により誘導され、細胞性免疫の誘導状態では抑制されると考えられる。

実施例14 CCR4を発現させた293/EBNA-1細胞に対するTARCの結合活性

TARCをsecreted alkaline phosphatase (SEAP)-(Histidine)。との融合蛋白として産生し、これを用いて293/EBNA-1細胞表面に発現させたCCR4レセプターとの結合を検討した。

(1)融合タンパク (TARC-SEAP)の調製

TARCをSEAPとの融合蛋白として発現させるためのベクターpDREF-SEAP(His)6を図28に示す。まずこのベクターの作製法を説明する。Clontech社製のプラスミドpSEAP-Enhancerを鋳型として、ヒスチジンが6個つながった配列、(His)6部分をコードする領域を5'-XbaI-APプライマー(配列番号19)と3'-AP(HIS)6-NotIプライマー(配列番号20)を用いたPCRにより増幅し、得られたPCR産物を制限酵素XbaIとNotIで分解後、pDREF-Hyg (Yoshidaら、FEBS Letters 360: 155-159, 1995)のXbaIとNotIサイトの間に導入して、pDREF-SEAP(HIS)6を作製した。

: 1

¥...

次に、図28に示すように、pDREF-SEAP(His)₆ベクターのSallとXbalサイトの間にTARC cDNAのORFを挿入し、TARCが5個のアミノ酸からなるリンカー (Ser-Arg-Ser-Ser-Gly) を介してSEAP-(HIS)₆と融合した蛋白をコードするベクターpDREF-TARC-SEAP(HIS)₆を作製した。このベクターの作製法を次に説明する。

TARCをコードする塩基配列をTARC cDNAを鋳型として、TY98Fプライマー (配列番号3)とTY98Rプライマー(配列番号4)を用いたPCRで増幅し、 得られたPCR産物を制限酵素SallとXbalで分解後、pDREF-SEAP(HIS)6のSal IとXbaIサイトの間に導入して、pDREF-TARC-SEAP(HIS) $_6$ を作製した。このベクターを293/EBNA-1細胞(Invitrogen社製) にlipofectamin (Gibco-BRL 社製) を用いて導入した。培養 3-4 日後、培養上清を回収し、0.45 mm のポアサイズのフィルターを通し、20 mM HEPES (pH 7.4) と0.02% sodiu m azide を加えて4 % に保存した。

(2)融合タンパク (TARC-SEAP)のアッセイ

産生された融合蛋白(TARC-SEAP)の分析はサンドイッチ型の酵素ー結合 イムノソルベントアッセイ (enzyme-linked immunosorbent assay; ELISA) により行った。

すなわち、96穴マイクロテストプレート(Maxsorb)(Nunc社製)を単クローン型抗胎盤性アルカリホスファターゼ (placental alkaline phosphata se) (anti-PLAP)(Medix Biotech社製)(2 mg/ml, 50mM Tris-HCl, pH 9.5)でコートし、ウシ血清アルブミン (BSA)(1 mg/ml, phophate buffered sa line)でブロックした。検体は希釈液(0.02% Tween-20を含むPBS)で希釈し、マイクロプレートに加えて室温で1時間反応後、希釈液で洗浄後、500倍に希釈したビオチン化ウサギ抗PLAP抗体を加えて1時間反応した。さらに洗浄後、パーオキシダーゼ-結合ストレプトアビジン (Vector社製)を加えて30分間反応した。洗浄後、結合したパーオキシダーゼの活性を3.3'-5.5'-テトラメチルベンジジンで検出した。反応を1 N H_2 SO $_4$ で停止し、450 nmの吸光度を測定した。

アルカリホスファターゼ (AP) の活性をGreat EscApe Detection Kit (C lontech社製)を用いたケミルミネセンス法で測定し、relative light unit (RLU)/sとして求めた。AP標準曲線の作製は精製PLAP(Cosmo Bio社製)を用いて行った。用いたSEAPとTARC-SEAPは1 pmol当たりそれぞれ8.7x10⁷ R LU/sと1.2x10⁸ RLU/sであった。

(3) CCR4を発現する293/EBNA-1細胞の調製

ヒト胎盤ゲノムDNA(Clontech社製)を鋳型として、CCR4をコードする領域をCKR4-XbaFプライマー(配列番号23)とCKR4-XbaRプライマー(配列番号24)を用いたPCRにより増幅し、得られたPCR産物を制限酵素XbaIで分解後、pBluescript SK+(Stratagene社製)のXbaIサイトに導入した。得られたプラスミドから、CCR4をコードする領域をSalIとNotIで分解後、pDREF-Hyg(Yoshidaら、FEBS Letters 360: 155-159、1995)のSalIとNotIサイトの間に導入して、pDREF-CCR4を作製した。このベクターを293/EBN A-1細胞(Invitrogen社製)にリポフェクタミン(Gibco-BRL社製)を用いて導入した。CCR4が導入された293/EBNA-1細胞は、ハイグロマイシン(200μg/ml)存在下で1週間培養し、薬剤耐性を示す細胞を選択することにより得られた。

(4) TARC-SEAP融合タンパクのCCR4を発現させた293/EBNA-1細胞への特異的結合

TARC-SEAPの濃度を1 nMに固定し、非標識TARCの濃度を変化させた場合のCCR4を発現させた293/EBNA-1細胞への特異的結合量の変化を調べた。結合実験は20 mM HEPES (pH 7.4). 1% BSA, 0.02% sodium azideを含むRPMI-1640、200 μ1中で行った。排除型の結合実験では4x105の細胞に1 nMのTARC-SEAPと各種の濃度の非標識TARCを加え、室温で1時間反応させ、洗浄後、細胞を50 μ1の1% Triton X-100を含む10 mM Tris-HC1 (pH 8.0)で溶解し、細胞に由来するフォスファターゼを65℃10分間の処理で不活化し、遠心後、25μ1の上清中のAP活性を測定した。非特異的結合は1 nMのSEAPを用いて測定した。特異的結合量は、種々の濃度の非標識TARC存在下で結合したTARC-SEAPの値から、非特異的に結合したSEAPの値を差し引いて求め、非標識TARC非存在下での特異的結合量を100%として計算した。その結

果を、図29に示す。結合の強さを表す50%阻害濃度は約3㎡Vであり、従って、TARCはCCR4に強く結合するとわかった。

(5) TARC-SEAP融合タンパクのCCR4を発現させた293/EBNA-1細胞への特異的結合に対する他のケモカインの影響

TARCのCCR4を発現させた293/EBNA-1細胞への結合が他のケモカインにより競合されるか否かを調べた。

TARC-SEAPの濃度を1 nMとし、非標識ケモカイン非存在下もしくは200 n MのMCP-1、RANTES、MIP- 1α 、MIP- 1β 、(全てペプロテック社製)、LARC あるいはTARCの存在下での $4x10^5$ 個のCCR4を発現させた293/EBNA-1細胞への結合を室温で1時間行った。その結果を図30に示す。TARC-SEAPの結合は非標識TARCでのみ競合阻害され、他のケモカインでは結合阻害は認められなかった。この結果は、CCR4が他のケモカインとは強く結合せず、TRACとのみ強く結合するレセプターであることを示している。

実施例15 CCR4を発現させた293/EBNA-1細胞に対するhTARCの遊走活性

ヒトTARCの、CCR4を発現させた293/EBNA-1細胞に対する遊走活性を48ウェルの走化性チャンバー(chemotaxis chamber、Neuro Probe 社製)を用いて測定した。実施例2の記載に従い、昆虫細胞で発現させ精製した組換えヒトTARCは緩衝液 [RPMI-1640、20 mM Hepes (pH 7.4)、1% BSA] で希釈し、下ウェルに加え、 $1x10^5$ 個のCCR4を発現させた293/EBNA-1細胞を上ウェルに加えた。コラーゲン IV溶液($20\mu g/ml$ 水溶液)で 37° C、4時間コートしたポリビニルピロリドン不含ポリカーボネート膜(口径 8 μ m、Neuro Probe 社製)で上下ウェルの分離を行った。 37° Cで4時間培養後、膜を取り外し、PBSで上側を洗浄し、固定及び染色を行った。

遊走した細胞は400倍の顕微鏡下で、1ウェルにつき無作為に選んだ5視野(HPF)について数を測定した。その結果を図31に示す。図31のグラ

PCT/JP96/02801

WO 97/11969

フに示される様に、CCR4を発現させた293/EBNA-1細胞はTARCに対して濃度 依存的に遊走した。なお縦軸上の四角の印はTARCを添加しないコントロールの結果を示している。一方TARCとは異なる他のケモカインであるRANTES 及びMIP-1 α はCCR4を発現させた293/EBNA-1細胞に対し有意の遊走活性を示さなかった。

配列表

配列番号:1

配列の長さ:582

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源

生物名:ヒト

配列の特徴

特徴を表わす記号:CDS

存在位置:53..334

5

特徴を決定した方法:S

配列

35

CCCTGAGCAG AGGGACCTGC ACACAGAGAC TCCCTCCTGG-GCTCCTGGCA-CC ATG-GCC - 58-Met Ala

1

CCA CTG AAG ATG CTG GCC CTG GTC ACC CTC CTG GGG GCT TCT CTG 106 Pro Leu Lys Met Leu Ala Leu Val Thr Leu Leu Gly Ala Ser Leu

10 15

CAG CAC ATC CAC GCA GCT CGA GGG ACC AAT GTG GGC CGG GAG TGC TGC 154 Gln His Ile His Ala Ala Arg Gly Thr Asn Val Gly Arg Glu Cys Cys

30 25 20

40

CTG GAG TAC TTC AAG GGA GCC ATT CCC CTT AGA AAG CTG AAG ACG TGG 202 Leu Glu Tyr Phe Lys Gly Ala Ile Pro Leu Arg Lys Leu Lys Thr Trp 50 45

TAC CAG ACA TCT GAG GAC TGC TCC AGG GAT GCC ATC GTT TTT GTA ACT 250

Tyr Gln Thr Ser Glu Asp Cys Ser Arg Asp Ala Ile Val Phe Val Thr

55 60 65 GTG CAG GGC AGG GCC ATC TGT TCG GAC CCC AAC AAC AAG AGA GTG AAG 298 Val Gln Gly Arg Ala Ile Cys Ser Asp Pro Asn Asn Lys Arg Val Lys 70 75 80 AAT GCA GTT AAA TAC CTG CAA AGC CTT GAG AGG TCT TGA AG CCTCCTCACC 349 Asn Ala Val Lys Tyr Leu Gln Ser Leu Glu Arg Ser 85 90 CCAGACTCCT GACTGTCTCC CGGGACTACC TGGGACCTCC ACCGTTGGTG TTCACCGCCC 409 CCACCCTGAG CGCCTGGGTC CAGGGGAGGC CTTCCAGGGA CGAAGAAGAG CCACAGTGAG 469 GGAGATCCCA TCCCCTTGTC TGAACTGGAG CCATGGGCAC AAAGGGCCCA GATTAAAGTC 529 582 配列番号:2

配列の長さ:558

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:

起源

生物名:マウス

配列の特徴

特徴を表わす記号:CDS

存在位置: 2...280

特徴を決定した方法:S

配列

C ATG AGG TCA CTT CAG ATG CTG CTC CTG GCT GCT CTG CTT CTG GGG ACT

Met Arg Ser Leu Gln Met Leu Leu Leu Ala Ala Leu Leu Leu Gly Thr

1 5 10 15

TTT CTG CAG CAT GCC AGA GCT GCT CGA GCC ACC AAT GTA GGC CGA GAG 97

Phe Leu Gln His Ala Arg Ala Ala Arg Ala Thr Asn Val Gly Arg Glu	
20	-
TGC TGC CTG GAT TAC TTC AAA GGG GCC ATT CCT ATC AGG AAG TTG GTG	
Cys Cys Leu Asp Tyr Phe Lys Gly Ala Ile Pro Ile Arg Lys Leu Val	145
35	
45	•
AGC TGG TAT AAG ACC TCA GTG GAG TGT TCC AGG GAT GCC ATC GTG TTT Ser Trp Tyr Lys Thr Sor Vol Cly Cyr S	193
Ser Trp Tyr Lys Thr Ser Val Glu Cys Ser Arg Asp Ala Ile Val Phe	
60	
CTG ACT GTC CAG GGC AAG CTC ATC TGT GCA GAC CCC AAA GAC AAA CAT	241
Leu Thr Val Gln Gly Lys Leu Ile Cys Ala Asp Pro Lys Asp Lys His	
75 80	
GTG AAG AAG GCC ATC AGA TTG GTG AAA AAC CCA AGG CCG TGA CCTTCCCGC	292
Val Lys Lys Ala Ile Arg Leu Val Lys Asn Pro Arg Pro	
85 90	
TGAGGCATTT GGAGACGCCA GGGCTGCTGT CCATGGTTTC AACATAAAGC GGCCTGTGAC	352
CAGCAGAGCC CAAGAGCAGC CACAGAGCAG AAGTCCCTGT TCCCTTTTTT ATGGACTCTT	412
ATGCACTACA GGCGAACACA AAAAAAAGCA ACGGAATAAA GCCTTCCTCC CTCAAAAAAA	472
AAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	532
AAAAAAAA AAAAAAAA AAAAAA	558
配列番号:3	
配列の長さ:45	
配列の型:核酸	
鎖の数:一本鎖	
トポロジー:直鎖状	
配列の種類:他の核酸 合成DNA	
配列	
GATTAGTTCT AGATCGCGAC GCGGCCGCCC TTTTTTTTTT	A =
配列来导 4	45

配列の長さ:16

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

TCGACCCACG CGTCCG

16

配列番号:5

配列の長さ:12

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGGACGCGTG GG

12

配列番号:6

配列の長さ:48

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CTACTACTAC TAGGCCACGC GTCGACTAGT ACGGGGGGG GGGGGGG

48

配列番号:7

配列の長さ:31

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA 配列 -- -- -31 CCTCTGAAGG TTCCAGAATC GATAGTCTAG A 配列番号:8 配列の長さ:35 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 5' P-CTCTAGACTA TCGATTCTGG AACCTTCAGA GGTTT-3' 35 配列番号:9 配列の長さ:32 配列の型:核酸 鎖の数-: 一本鎖-----トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 32 CTACTACTAC TAGGCCACGC GTCGACTAGT AC 配列番号:10 配列の長さ:25 配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CCTCTGAAGG TTCCAGAATC GATAG

配列番号:11

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCCATATGG CTCGAGGGAC CAATGTG

27

配列番号:12

配列の長さ:29

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCGCGCCG CTCAAGACCT CTCAAGGCT

29

配列番号:13

配列の長さ:14

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

AATTCGGCAC GAGG

14

配列番号: 14

配列の長さ:10

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

PCT/JP96/02801

配列の種類:他の核酸 合成DNA 配列 10 5' P-GGAGCACGGC-3' 配列番号:15 配列の長さ:24 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 24 CTCTGCTTCT GGGGACTTTT CTGC 配列番号:16 配列の長さ:24 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 24

GGTCACAGGC CGCTTTATGT TGAA

配列番号:17

配列の長さ:27

配列の型:核酸 -

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCGGATCCG CTCGAGGGAC CAATGTG

配列番号:18

27

配列の長さ:29

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCGCGCCC CTCAAGACCT CTCAAGGCT

29

配列番号19

配列の長さ: 42

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCTCTAGAA GCTCCGGAAT CATCCCAGTT GAGGAGGAGA AC

42

配列番号20

配列の長さ:53

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCGCGCCG CTCAGTGATG GTGATGGTGA TGACCCGGGT GCGCGCCGTC GGT

53

配列番号21

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCGTCGACG GCACCATGGC CCCACTG

27

配列番号22

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGCTCTAGAA GACCTCTCAA GGCTTTG

27

配列番号23

配列の長さ:38

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCTCTAGAGC CACCATGAAC CCCACGGATA TAGCAGAT

38

配列番号24

配列の長さ:32

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGTCTAGACT ACAGAGCATC ATGGAGATCA TG

32

請求の範囲

.1. 下記の特徴:

- 1) 免疫学的な刺激の存在下で末梢血単核細胞から発現が誘導され、
- 2) 非刺激下で胸腺から主として発現され、かつ脾臓からは発現されず、そして
- 3) C C型ケモカインに特徴的な隣り合った 2 個のシステイン残基を有している

を有するタンパク質。

- 2. 免疫学的な刺激が、フィトヘマグルチニン又は液性免疫を誘導しうる刺激である請求項1記載のタンパク質。
- 3. 液性免疫を誘導しうる刺激が、生理的な濃度のGM-CSF、IL-3及びIL-4から選択されるサイトカインの存在である請求項2記載のタンパク質。
- 4. 細胞性免疫を誘導する条件下ではその発現が抑制される、請求項1記載のタンパク質。
- 5. 末梢血単球に対し遊走活性を示さない、請求項1記載のタンパク質。
- 6. 請求項1記載のタンパク質に特異的なレセプターを発現している細胞に対して遊走活性を示す請求項1記載のタンパク質。
- 7. 特異的なレセプターを発現している細胞がCCR4を発現している細胞である、請求項5記載のタンパク質。
- 8. CCR4を発現している細胞が下細胞、末梢血リンパ球及び活性化末梢血下細胞、Hut78及びHut102の中から選択される、請求項7記載のタンパク質。
- 9. CCR4を発現している細胞がT細胞株Jurkat、MT2及びMT4の中から選択される、請求項7記載のタンパク質。
- 10. 配列番号1のアミノ酸残基24~94のアミノ酸配列を有するヒト

CC型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノ酸配列の置換、挿入、欠失を含む配列を有し、かつ該ヒトCC型ケモカイン様タンパク質と実質的に同等の機能又は活性を有する、その変異体。

- 11. 配列番号1のアミノ酸残基1~94のアミノ酸配列を有するヒトC C型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノ酸 配列の置換、挿入、欠失を含む配列を有し、かつ該ヒトCC型ケモカイン 様タンパク質と実質的に同等の機能又は活性を有する、変異体。
- 12. 配列番号2のアミノ酸残基24~93のアミノ酸配列を有するマウスCC型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノ酸配列の置換、挿入、欠失を含む配列を有し、かつ該マウスCC型ケモカイン様タンパク質と実質的に同等の機能又は活性を有する、その変異体。
- 13. 配列番号2のアミノ酸残基1~93のアミノ酸配列を有するマウス CC型ケモカイン様タンパク質、又はこの配列にアミノ酸もしくはアミノー 酸配列の置換、挿入、欠失を含む配列を有し、かつ該マウスCC型ケモカ イン様タンパク質と実質的に同等の機能又は活性を有する、その変異体。
- 14. 請求項1~13のいずれかに記載のタンパク質又はその変異体をコードするDNA。
- 15. 請求項14記載のDNAを含有する発現ベクター。
- 16. 請求項15記載の発現ベクターを宿主細胞に導入して得られる形質転換体。
- 17. 宿主細胞がカイコ細胞である請求項16記載の形質転換体。
- 18. 請求項16記載の形質転換株を培養し、産生されたタンパク質を培養地から回収することを特徴とする、請求項1~13のいずれかに記載のタンパク質又はその変異体の製造法。
- 19. 請求項1~13のいずれかに記載のタンパク質またはその変異体を

含有する医薬組成物。

20. 請求項1~13のいずれかに記載のタンパク質またはその変異体に対する単クローン抗体。

- 21. 請求項20記載の単クローン抗体を産生するハイブリドーマ細胞。
- 22. 請求項1~13のいずれかに記載のタンパク質のアゴニスト又はアンタゴニストをスクリーニングする方法であって、該アゴニスト又はアンタゴニストを含有すると推定される試料、該タンパク質を分泌する細胞及び該タンパク質の分泌を誘導するサイトカインを混合し、該タンパク質の分泌量を測定する工程を含む方法。
- 23. 請求項1~13のいずれかに記載のタンパク質のアゴニスト又はアンタゴニストをスクリーニングする方法であって、該アゴニスト又はアンタゴニストを含有すると推定される試料と、該タンパク質に特異的なレセプターとを反応させ、その結合活性及び/又は反応性を測定する工程を含む方法。

Fig. 1

_		J	CCTC	CCCTGAGCAGGGACCTGCACACAGAGACTCCCTCCTGGGCTCCTGGCACC	GAGG	GACC	TGCA	CACA	GAGA	CTCC	CTCC	\mathtt{TGGG}	CTCC	TGGC	ACC	52
щ М	ATG M	ودر کی	CCA P	GCC CCA CTG AAG ATG CTG GCC CTG GCG A P L K M L A L V T L L L G	AAG K	ATG M	CTG L	GCC	CTG L	GTC V	ACC T	CTC L	CTC L	$_{ m L}^{ m cTG}$	9 999	97 15
89	GCT	TCT	CTG L	CAG Q	CAG CAC ATC CAC Q H I H	ATC I	CAC	GCA	GCA GCT CGA GGG ACC AAT GTG GGC	CGA R	ງ ວງງ	ACC T	AAT X	GTG V	ე ე	142 30
13	CGG R	GAG E	TGC	1 60	TGC CTG GAG TAC C L E Y	GAG E	TAC	TTC	TTC AAG GGA GCC ATT CCC CTT F K G A I P L	GGA G	₹ 200	ATT I	CCC - P	CTT	AGA R	18 <i>7</i> 45
38 46	AAG K	CTG L	AAG K	AAG ACG TGG TAC CAG ACA K T W Y Q T	TGG	TAC Y	CAG Q	ACA	TCT S	GAG E	TCT GAG GAC TGC TCC AGG S E D C S R	TGC	TCC	AGG R	GAT D	232
33	GCC	GCC ATC (GTT	GTT TTT GTA ACT GTG CAG GGC AGG GCC ATC TGT TCG	GTA	ACT T	GTG V	CAG	_ອ ວອອ	AGG R	9 ×	ATC I	TGT C	TCG S	GAC D	277 75
78 76	CCC	AAC	AAC	AAC AAG AGA GTG AAT GCA GTT AAA TAC CTG OO NOON NOON NOON NOON NOON NOON NOON	AGA R	GTG V	ÀAG K	AAT	GCA	GTT V	AAA K	TAC Y	CTG	CAA	AGC S	322 90
23 91	CTT	GAG E	AGG R	GAG AGG TCT TGA AGCCTCCTCACCCCAGACTCCTGACTGTCTCCCGGGACT	TGA *	AGC	CTCC	TCAG	CCCA	SACT	ccr6/	ACTG	rctc)9900	SACT	376 94
ΙΙ	ACC	\mathtt{TGGG}	ACCT	ACCTGGGACCTCCACCGTTGGTGTTCACCG¢CCCCACCCTGAGCGCCTGGGTCCAGGGG	CGTT(SGTG	TTCA	၁၅၁၁	CCCC	ACCC	rgagi	CGCC'	<u>r</u> GGG	TCCA	9999	435
36	AGG	CCTT	CCAG	AGGCCTTCCAGGGACGAAGAGAGCCACAGTGAGGGAGATCCCCATCCCCTTGTCTGAAC	GAAG.	AAGA	GCCA	CAGT	GAGG	GAGA'	rccc	ATCC	CCTT	GTCT	GAAC	494
98	TGG	AGCC	ATGG	TGGAGCCATGGGCACAAAGGGCCCCAG <u>ATTAAA</u> GTCTTTATCCTC	aaag	၁၁၁၅	CAGA	TTAA	<u>A</u> GTC	TTTA'	TCCT	O				538

Fig. 2

100% 29% 26% 24% 24% 24% 28%	
AR-GINVGRECCLEYFKGAII PLAKLKTWYO-TSEDCSR SPYSSDT-TPCCFAYIARPLPRAHIKEYF-YTSGKCSN ASLAADTPTACCFSYTSROII PONFIADYF-ETSSOCSK APMGSDPPTACCFSYTARKLPRNFVVDYY-ETSSLCSOK KSMOVPFSR-CCFSYTARKLPRNFVVDYY-ETSSLCSON OPDAINAPVTCCYNFTNRKIISVORLASYRRITSSKCPK OPDSVSIPITCCFNVINRKIIPIORLESYTRITNIOCPK OPVGINTSTTOCYRFINKKIIPKORLESYTRITSSHCPR	DAIVEVTVOGRAICSOPNNKRWKNAVKYLOSLERS PAVVENTRKNROVCANPEKKWVREYINSLEMS PGVIFLTKRSROVCADRSEWVOKYVSDLELSA PAVVEOTKRSKOVCADRSESWVOKYVSDLELN EGLIFKLKRGKEACALDTVGWVORHRKMLRHCPSKRK EAVIFKTKRGKEVCADRKGRWVRDSMKHLDOIFONLKP
TARC RANTES MIP-1A MIP-1b I-309 MCP-1 MCP-2 MCP-3	MIP-1A MIP-1A MIP-1b 1-309 MCP-1 MCP-2

3/29 差替え用紙(規則2**6)**

Fig. 4

予測された配列: MAPLKMLALVTLLL.GASLQHIHAARGTNVGRECC.... 決定された配列: ARGTNVGRE**

5/29 差替え用紙 (規則2**6)**

Fig. 6

7/29

差 替 え 用 紙 (規則26)

Fig. 8

															ပ	~
A	ATG A	AGG R	TCA S	CIT	CAG	ATG M	cre L	CTC L	CTG L	GCT A	GCT	CTG L	CTT L	CTG (9 999	46
A.	ACT 1 T	TTT F	CTG L	CAG Q	CAT H	200 P	AGA R	GCT GCT		CGA R	QCC A	ACC	AAT	GTA V	၁၅၅	91 30
S	CGA (GAG E	TGC	TGC	CTG L	GAT D	TAC Y	TTC F	AAA K	ງ ງງງ	€ •	ATT	CCT P	ATC	AGG R	136 45
æ	AAG Y	TTG L	GTG V	AGC S	TGG W	TAT Y	AAG K	ACC	TCA	GTG V	GAG E	TGT	TCC S	AGG R	GAT D	181
G	9 9 9	ATC I	GTG V	TTT F	CTG L	ACT	GTC V	CAG	ე ე	AAG K	CTC L	ATC I	TGT C	GCA	GAC D	226 75
J	CCC	AAA	GAC	AAA K	CAT	GTG V	AAG	AAG K	GCC A	ATC	AGA R	${ m TTG}$	GTG V	AAA	AAC N	271
9	CCA	AGG R	000 6	TGA		וכככנ	scTG/	, 12994	CCTTCCCGCTGAGGCATTTGGAGACGCCAGGGCTGCTGTCCAT	SGAGI)DDD\	CAGG(3CTG(CTGTC	CAT	326 93
J	3GTT	TCA	ACATI	AAAG(ງວອວ	TCT	SACCI	AGCA(GGTTTCAACATAAAGCGGCCTGTGACCAGCAGAGCCCAAGAGCAGCCACAGAGCAGAAG	CCAA	SAGC	AGCC	ACAG	4GCA(SAAG	385
-	וכככו	TCT	וכככי	rtti	TTAT(SGAC	rctī	ATGC	TCCCTGTTCCCTTTTTTATGGACTCTTATGCACTACAGGCGAACACAAAAAAAA	CAGG(CGAA(CACA	AAAA	AAAG(SAAC	444
	3622	TAA	¥GCC.	GGAATAAAGCCTTCCTCCTC	rccci	5 5										465

Fig. 9

予測された配列: MRSLOMLLLAALLLGTFLOHARAARATNVGRECCLDYF... 決定された配列: ARATNVGRE・・LDYF

10/29 差替え用紙(規則**26)**

А

В

11/29 差替え用紙(規則26)

Α

В

12/29

差 替 え 用 紙 (規則26)

末梢血リンパ球

活性化末梢血工細胞

Fig. 14

Fig. 15

Fig. 16

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 24

24/29

Fig. 27

Pig. -28

Fig. 31

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/02801

A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁶ C07K14/52, C12I C12N5/10, C12P21/02, C07K16/24, C12P21/08, G01N33/53 (C12N5/10, C12R1:91) (C12P21/02, C12R1:91), (C12P21/02)	3. GO1N33/577/		
According to International Patent Classification (IPC) or to both national classification and IPC	00, CI2RI:91)		
B. FIELDS SEARCHED	· · · · · · · · · · · · · · · · · · ·		
Minimum documentation searched (classification system followed by classification symbols) Int. Cl ⁶ C07K14/52, C12N15/19, C12N5/10, C12P21/02 C12P21/08, G01N33/53, G01N33/577	, C07K16/24,		
Documentation searched other than minimum documentation to the extent that such documents are included in the			
Electronic data base consulted during the international search (name of data base and, where practicable, search (CAS ONLINE, BIOSIS PREVIEWS, WPI/L	terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A Annu. Rev. Immunol., Vol. 9, 1991, see p. 617-648	1 - 23		
A Immunology Today, Vol. 15, No. 3, 1994, see p. 127-133	1 - 23		
A FEBS Letters, Vol. 360, 1995, see p. 155-159	1 - 23		
·			
Further documents are listed in the continuation of Box C. See patent family annex.			
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "But later document published after the inter date and not in conflict with the application of the principle or theory underlying the	ation but cited to understand		
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	ered to involve an inventive		
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "Exhibition of other means obviously to a remove other such to be an orange obviously to a remove other such to be an orange obviously to a remove other such to be an orange obviously to a remove of the such to be an orange obviously to a remove of the such to be	step when the document is documents, such combination		
"P" document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art document member of the same patent family			
Date of the actual completion of the international search December 17 1996 (17 13 96) December 25 1996 (17 13 96)	•		
December 17, 1996 (17. 12. 96) December 25, 1996 (25. 12. 96)		
Name and mailing address of the ISA/ Authorized officer			
Japanese Patent Office Facsimile No. Telephone No.			
Form PCT/ISA/210 (second sheet) (July 1992)			

	国際調査報告	国际山野市 7 1 0 1 7 7 1 0	
Int.ClCO	する分野の分類(国際特許分類(IPC)) 7K14/52, C12N15/19, C12N 2P21/08, G01N33/53, G01N 2P21/02, C12R1:91), (C12	033/577/(C12N5/10)	07K16/24, C12R1:91)
調査を行った最	った分野 小限資料(国際特許分類(IPC))		
Int.Cl ⁶ CO	7K14/52, C12N15/19, C121 2P21/08, G01N33/53, G01	N5/10, C12P21/02, C N33/577	07K16/24,
最小限資料以外	の資料で調査を行った分野に含まれるもの		
	した電子データベース(データベースの名称、 LINE、 BIOSIS PREVEWS、	· · · - · · ·	-
引用文献の	らと認められる文献	よい この間害士を第四の事元	関連する 請求の範囲の番号
カテゴリー*	引用文献名 及び一部の箇所が関連すると		
A	Annu. Rev. Immunol., Vol.9, 1991, see p.6		1-23
A	Immunology Today, Vol. 15, No. 3, 1994, see	e p. 127-133 	1 - 2 3
A	FEBS Letters, Vol.360, 1995, see p.155-1		1-23
□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出顧日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用するな文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの「P」国際出顧日前で、かつ優先権の主張の基礎となる出顧「&」同一パテントファミリー文献			
国際調査を完	プレた日 17.12.96	国際調査報告の発送日 2	5.12.96
国際調査機関	の名称及びあて先	特許庁審査官(権限のある職員)	4B 893

齊藤 真由美

電話番号 03-3581-1101 内線 3448

様式PCT/ISA/210 (第2ページ) (1992年7月)

東京都千代田区霞が関三丁目4 3号

日本国特許庁 (ISA/JP) 郵便 号100