Arquitetura e Organização de Computadores

APRESENTAÇÃO DO CURSO

Prof. Dra. Leiliane Pereira de Rezende Departamento de Ciência da Computação Universidade Federal de Uberlândia leily_rezende@yahoo.com.br

Sumário

- Gerencia do Curso
- Conteúdo
- Avaliação
- Referências

Gerencia do Curso

- Prof. Dra. Leiliane Pereira de Rezende
 - Sala: 1B 201b
 - e-mail: <u>leily_rezende@yahoo.com.br</u>
 - http://lattes.cnpq.br/5723831184865999
- Aulas
 - Teóricas nas segundas-feiras (20:50 22:30) e quintas-feiras (19:00 20:50)
 na sala 1B 108
- Atendimento: Terça 19:00 19:50

Quinta 18:10 - 19:00

- 1. Visão geral dos computadores modernos
 - a) Máquinas multinível
 - b) Componentes do computador
 - c) Modelo de Von Neumann
 - d) Conceituação, funcionamento e descrição dos componentes
 - e) Modelo de barramento de sistemas: barramento de dados, controle e endereço
 - f) Evolução da arquitetura dos computadores

- 2. Hierarquia de memória
 - a) Princípios básicos de cachê
 - b) Medindo e melhorando o desempenho da cachê
 - c) Memória virtual
 - d) Exemplos de hierarquias de memória virtual
- 3. Subsistema de entrada e saída, barramentos e dispositivos de E/S
 - a) Armazenamento e confiabilidade
 - b) Barramentos e outras conexões entre processadores, memória e dispositivos de E/S
 - c) Técnicas de Entrada e Saída (E/S), comunicação serial e paralela
 - d) Medidas de desempenho de E/S

- 4. Linguagem de máquina, conjunto de instruções e modos de endereçamento
 - a) Operações e operandos no hardware do computador
 - b) Representação de instruções de máquina
 - c) Operações lógicas e aritméticas
 - d) Instruções para tomada de decisões
 - e) Modos de endereçamento
 - f) Introdução ao funcionamento dos compiladores
 - g) Programação em linguagem de montagem (assembly)
 - h) Exemplos nas arquiteturas MIPS e IA-32

- 5. Caminho de dados e controle
 - a) Convenções lógicas de projeto
 - b) Implementação de caminho de dados de ciclo único e multiciclo
 - c) Tratamento de exceções
 - d) Projeto da unidade de controle
 - e) Microprogramação na unidade de controle
- 6. Avaliando e compreendendo o desempenho
 - a) Desempenho da UCP e seus fatores
 - b) Avaliando o desempenho
 - c) Benchmarks para avaliação de desempenho

- 7. Melhorando o desempenho com pipeline
 - a) Conceitos de pipelining
 - b) Hazards de dados e encaminhamento
 - c) Hazards de dados e stalls
 - d) Pipelining avançado
- 8. Computadores paralelos
 - a) Taxonomia de computadores paralelos
 - b) Computação em memória compartilhada e distribuída
 - c) Desempenho em sistemas paralelos

Avaliação

- 2 Listas de Exercícios Extras
 - Lista 1
 - $4.5 \text{ pts.} \rightarrow 30/09/2019$
 - Assunto: Itens 1 e 2 descritos em Conteúdo.
 - Lista 2
 - 5.5 pts. $\rightarrow 12/12/2019$
 - Assunto: Itens restantes descrito em Conteúdo.

- 1 Seminário
 - $-20.0 \text{ pts} \rightarrow 14/11 \text{ à } 05/12/2019$
 - Assunto: Itens 5.b à 8.c

- 2 Provas
 - Prova 1
 - 30 pts. \rightarrow 30/09/2019
 - Assunto: Itens 1 e 2 descritos em Conteúdo.
 - Prova 2
 - 35 pts. $\rightarrow 12/12/2019$
 - Assunto: Itens restantes descrito em Conteúdo.

- 1 Trabalho (Assembly)
 - $-15.0 \text{ pts} \rightarrow 19/12/2019$

Avaliação

Regras do Seminário

- Aula expositiva com duração de 45 min com 10 minutos destinado à arguição.
- Um plano de aula entregue no início da apresentação para o professor
 - Composto por: identificação do tema e dos pré-requisitos, objetivos, desenvolvimento do tema (máximo de 3 folhas), metodologia de avaliação e referências usadas para estudo.
- Uma lista de exercícios com pelo menos 5 exercícios sendo um deles realizado com o restante da turma.
- Recursos didáticos disponibilizados: quadro, giz ou pincel e projetor multimídia
- Todos os alunos devem estar presente em todas as apresentações.
 - Caso falte sem justificativa, a nota referente ao seminário será penalizada.
- A pontuação é dividida da seguinte forma
 - Plano de aula com pontuação de até 5 pontos;
 - Apresentação com pontuação de até 10 pontos;
 - Resolução do exercício com os espectadores com pontuação de até 5 pontos;
 - A cada falta não justificada durante o período das apresentações, será diminuído 10% da nota final.

Avaliação

- Cálculo da média final das listas
 - -(P1*0,15)+(P2*0,16)
 - A nota máxima permitida é 100 pontos, mesmo que o aluno consiga 110 pontos.
 - A nota mínima para ser aprovado é de 60 pontos.
 - Não haverá prova substituta.
 - Os resultados das avaliações serão divulgados via e-mail e por uma lista entregue em sala de aula.

Referencias

Básica

- HENNESSY, John L., PATTERSON, David A. Organização e Projeto de Computadores A interface Hardware/Software. 3ª edição, Editora Campus, 2005.
- TANEMBAUM, Andrew. S. *Organização Estruturada de Computadores*. 5ª edição, Prentice-Hall Brasil, 2007.
- STALLINGS, William. *Arquitetura e Organização de Computadores*. 5ª edição, Prentice-Hall Brasil, 2002.

Referencias

Complementar

- WEBER, Raul Fernando. *Fundamentos de Arquitetura de Computadores*. 3ª edição, Sagra-Luzzatto, 2004.
- HENNESSY, John L., PATTERSON, David A. *Arquitetura de Computadores Uma Abordagem Quantitativa*. 4ª edição, Editora Campus, 2008.
- MONTEIRO, Mário A. Introdução à Organização de Computadores. 4ª edição, LTC, 2001.
- MURDOCCA, M. J. *Introdução à Arquitetura de Computadores*. Rio de Janeiro: Campus, 2001.
- TOCCI, R.J., WIDMER, N.S, MOSS, G.L. Sistemas Digitais Princípios e Aplicações.
 10^a edição, Pearson Prentice-Hall, São Paulo, S.P., 2007, Brasil.

Dúvidas