## Exercise 8.1

1. Determine the quadrant of the coordinate plane in which the following points lie.

**Ans.** (i)P (-4, 3) II quadrant

(ii) Q(-5, -2) III quadrant

(iii) P(2, 2) I quadrant

(iv) S(2, -6) IV quadrant

2. Draw the graph of each of the following.

(i) x=2







iii) y = -1



(iv) 
$$y=3$$



$$(\mathbf{v}) \qquad y = 0$$



(vi) x=0



(vii) 
$$y = 3x$$

Table for y = 3x

| _ | X        | -1 | 0 | 1 |
|---|----------|----|---|---|
|   | <u>y</u> | -3 | 0 | 3 |



(viii) 
$$-y = 2x$$

Table for -y = 2x

| <b>X</b> | -1 | 0 | 1  |
|----------|----|---|----|
| y        | 2  | 0 | -2 |



$$(ix) x = \frac{1}{2}$$



$$(x) 3y = 5x$$

Table for 3y = 5x

| ſ   | x     | -1   | 0                                     | 1          |              |
|-----|-------|------|---------------------------------------|------------|--------------|
|     | y     | -1.7 | 0                                     | 1.7        |              |
| t : | ,     |      |                                       |            |              |
|     | 4     |      | Y                                     | 1          |              |
|     |       | : .  | ,                                     | (          |              |
|     |       |      | 1                                     | 1 7)       |              |
|     | •     | •    | $N_{i,i}$                             | 1./)       |              |
| X   |       |      | 0                                     |            | <b>≻</b> -}- |
| (   | -1,-1 | 1.7) |                                       |            |              |
|     |       |      |                                       | : •        |              |
| •   | 1     |      | i i i i i i i i i i i i i i i i i i i | home was a | <b></b>      |
| 3   | y=5x  |      | )                                     | - ?        | <u> </u>     |

$$(xi) 2x-y=0$$

Table for 2x - y = 0

| 1 | /10 1() | ,  |   |   |
|---|---------|----|---|---|
|   | X       | -1 | 0 | 1 |
|   | y       | -2 | 0 | 2 |



$$(xii) 2x - y = 2$$

Table for 2x - y = 2

$$-y = 2 - 2x$$

| ý | $\overline{x} = 2x$ | -2 |   |   |   |
|---|---------------------|----|---|---|---|
|   | X                   | 0  | 1 | 2 | 3 |
|   | v                   | -2 | 0 | 2 | 4 |



(xiii) 
$$x - 3y + 1 = 0$$
  
Table for  $x - 3y + 1 = 0$   
 $-3y = -x - 1$   
 $3y = x + 1$   
 $y = \frac{x+1}{3}$ 

| X (-1,0) (2,1) X |
|------------------|
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
| x-3y+1=0 $(0,0)$ |
| x-3y + 1=0       |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |

(xiv) 
$$3x-2y+1=0$$
  
 $-2y=-3x-1$   
 $2y=3x+1$   
 $y=\frac{3x+1}{2}$ 

Table for 
$$3x-2y+1=0$$

x -1 1



## Q.3 Are the following lines:

- (i) Parallel to x-axis
- (ii) Parallel to y-axis

(i) 
$$2x-1 = 3$$
  
 $2x = 3 + 1$   
 $x = \frac{4}{2} = 2$ 

Parallel to y-axis



(ii) 
$$x + 2 = -1$$
  
 $\Rightarrow x = -1-2$   
 $x = -3$ 

(iii) 
$$2y + 3 = 2$$
  
 $\Rightarrow 2y = 2 - 3$   
 $y = -\frac{1}{2}$ 

Parallel to x-axis



- (iv) x + y = 0  $\Rightarrow x = -y$ neither
- 2x 2y = 0 2x = 2y x = yneither
- Q.4 Find the value of m and c of the following lines by expressing them in the form y = mx + c

(a) 
$$x-2y = -2$$
  
 $-2y = -2 - x$   
 $2y = 2 + x$   
 $y = \frac{2+x}{2}$   
 $y = 1 + \frac{1}{2}x$   
 $y = \frac{1}{2}x + 1 \dots (1)$   
 $y = mx + c \dots (2)$   
comparing (1) and (2) we get  
 $m = \frac{1}{2}$  and  $c = 1$ 

(b) 
$$2x + 3y - 1 = 0$$
  
 $3y = -2x + 1$   
 $y = \frac{-2x + 1}{3}$   
 $y = \frac{-2}{3}x + \frac{1}{3}....(1)$   
 $y = mx + c......(2)$   
comparing (1) and (2) we get  
 $m = \frac{-2}{3}$  and  $c = \frac{1}{3}$ 

(c) 
$$3x + y - 1 = 0$$
  
 $y = -3x + 1.....(1)$   
Also  $y = mx + c.....(2)$   
Comparing (1) and (2)  
 $m = -3$  and  $c = 1$ 

(d) 
$$2x - y = 7$$
  
 $-y = 7 - 2x$   
 $y = -7 + 2x$   
 $y = 2x - 7 ....(1)$   
also  $y = mx + c .....(2)$   
comparing (1) and (2)  
 $m = 2$  and  $c = -7$ 

(e) 
$$3-2x+y=0$$
  
 $y = -3+2x$   
 $y = 2x-3....(1)$   
Also  $y = mx + c.....(2)$   
Comparing (1) and (2) we get  
 $m = 2$  and  $c = -3$ 

(f) 
$$2x = y + 3$$
  
 $y = 2x - 3 ......(1)$   
Also  $y = mx + c.....(2)$   
Comparing (1) and (2) we get  
 $m = 2$  and  $c = -3$ 

Q.5 Verify whether the following points lies on the line 2x - y + 1 = 0 or not.

Ans. 
$$2x - y + 1 = 0$$

(i) 
$$(2,3)$$
  $\Rightarrow$   $x = 2, y = 3$   
 $2x - y + 1 = 0$   
 $\Rightarrow 2(2) - 3 + 1 = 0$   
 $4 - 3 + 1 \neq 0$ 

 $2 \neq 0$  Point (2,3) does not lie on the line

(ii) 
$$(0,0) \Rightarrow x = 0, y = 0$$
$$2x - y + 1 = 0$$
$$\Rightarrow 2(0) - 0 + 1 = 0$$
$$1 \neq 0$$

Point (0,0) does not lie on the line

(iii) 
$$(-1, 1)$$
  $\Rightarrow x = -1, y = 1$   
 $2x - y + 1 = 0$   
 $\Rightarrow 2(-1) - (1) + 1 - 0 = 0$   
 $-2 - 1 + 1 = 0$ 

$$-2 \neq 0$$

Point (-1,1) does not lie on the line

(iv) 
$$(2, 5)$$
  $\Rightarrow$   $x = 2, y = 5$   
 $2x - y + 1 = 0$   
 $\Rightarrow 2(2) - 5 + 1 = 0$   
 $4 - 5 + 1 = 0$   
 $0 = 0$ 

Yes the Point (2,5) lies on the line

(v) 
$$(5,3) \Rightarrow x = 5, y = 3$$
  
 $2x - y + 1 = 0$   
 $\Rightarrow 2(5) - 3 + 1 = 0$   
 $10 - 2 = 0$   
 $8 \neq 0$ 

The point (5, 3) does not lie on the line