Homework 2

Stefan Konigorski

October 26, 2022

Download this R Markdown file, save it on your computer, and perform all the below tasks by inserting your answer in text or by inserting R chunks below. After you are done, upload this file with your solutions on Moodle.

Exercise 1

a) Create an R chunk here to insert R code. Add R code in this R chunk to perform a simple calculation (e.g. calculate the sum of 1 and 2).

```
a <- 1
b <- 2
c <- a + b
```

[1] 3

b) Create an R chunk with a basic calculation (e.g. 1+1). Try out the different ways how to include this in the knitted report.

```
\begin{aligned} a &= 1 \\ b &= 2 \end{aligned}
```

- 1. a * b is 2.
- 2. a + b equals 3.
- 3. a / b yields 0.5.
- c) Knit this Rmd file to html and to pdf.

Exercise 2: Manipulating variables and data frames

Load the Pima Indian dataset:

[&]quot;both html and pdf files are added with the assignment."

```
dat_ex2 <- read.csv(file = url("https://www.dropbox.com/s/tqrauwuxyi03kee/Pima_diabetes.csv?dl=1"))</pre>
and answer the following questions:
# How many women have Glucose levels 0?
table(dat_ex2$Glucose == 0)[2] # [2] means only true values are showing
## TRUE
##
      5
# How many women have Insulin levels 0?
table(dat_ex2$Insulin == 0)[2]
## TRUE
## 374
# How many women have both Glucose levels as well as Insulin levels 0?
table(dat_ex2$Glucose ==0 & dat_ex2$Insulin == 0)[2]
## TRUE
##
# How many women have either Glucose levels or Insulin levels 0?
sum(dat_ex2$Glucose == 0 | dat_ex2$Insulin ==0)
## [1] 375
# How many women have missing BMI values?
sum(is.na(dat_ex2$BMI))
## [1] O
# How many women have BMI larger than 40?
sum(dat_ex2\$BMI > 40)
## [1] 96
# Build a dataset that only includes the women with BMI>40
dat_n <- dat_ex2[dat_ex2$BMI > 40,]
dat_n <- data.frame(dat_n)</pre>
dat_n
       Pregnancies Glucose BloodPressure SkinThickness Insulin BMI
##
## 5
                 0
                       137
                                                     35
                                                            168 43.1
## 17
                 0
                                                     47
                                                             230 45.8
                       118
                                       84
## 19
                 1
                       103
                                       30
                                                     38
                                                             83 43.3
                                                               0 40.2
                 7
                                                      0
## 42
                       133
                                       84
## 44
                       171
                                      110
                                                     24
                                                             240 45.4
## 46
                                                               0 42.0
                 0
                       180
                                       66
                                                     39
```

##		0	100	88	60	110 46.8
##		0	146	82	0	0 40.5
	60	0	105	64	41	142 41.5
	68	2	109	92	0	0 42.7
##	73	13	126	90	0	0 43.4
##	79	0	131	0	0	0 43.2
##	85	5	137	108	0	0 48.8
##	93	7	81	78	40	48 46.7
##	100	1	122	90	51	220 49.7
##	121	0	162	76	56	100 53.2
##	126	1	88	30	42	99 55.0
##	127	3	120	70	30	135 42.9
	154	1	153	82	42	485 40.6
	155	8	188	78	0	0 47.9
	156	7	152	88	44	0 50.0
	160	17	163	72	41	114 40.9
##	163	0	114	80	34	285 44.2
	174	1	79	60	42	48 43.5
	178	0	129	110	46	130 67.1
	179	5	143	78	0	0 45.0
	194	11	135	0	0	0 52.3
	202	1	138	82	0	0 40.1
	212	0		85		0 42.8
			147		54	
	214	0	140	65	26	130 42.6
	216	12	151	70	40	271 41.8
	230	0	117	80	31	53 45.2
	231	4	142	86	0	0 44.0
	232	6	134	80	37	370 46.2
	236	4	171	72	0	0 43.6
	238	0	179	90	27	0 44.1
	248	0	165	90	33	680 52.3
	271	10	101	86	37	0 45.6
	276	2	100	70	52	57 40.5
	288	1	119	86	39	220 45.6
	293	2	128	78	37	182 43.3
	294	1	128	48	45	194 40.5
##	304	5	115	98	0	0 52.9
	329	2	102	86	36	120 45.5
	333	1	180	0	0	0 43.3
##	336	0	165	76	43	255 47.9
##	350	5	0	80	32	0 41.0
	351	4	92	80	0	0 42.2
##	355	3	90	78	0	0 42.7
##	379	4	156	75	0	0 48.3
##	380	0	93	100	39	72 43.4
##	388	8	105	100	36	0 43.3
##	392	5	166	76	0	0 45.7
##	406	2	123	48	32	165 42.1
##	410	1	172	68	49	579 42.4
##	413	1	143	84	23	310 42.4
##	421	1	119	88	41	170 45.3
##	423	0	102	64	46	78 40.6
##	425	8	151	78	32	210 42.9
##	429	0	135	94	46	145 40.6

##	436	0	141		0		() (42.4	
##	446	0	180		78		63	3 14	59.4	
##	470	6	154		78		41	. 140	46.1	
##	471	1	144		82		40) (41.3	
##	485	0	145		0		() (44.2	
##	486	0	135		68		42	250	42.3	
##	487	1	139		62		41	. 480	40.7	
##	488	0	173		78		32	265	46.5	
##	532	0	107		76		() (45.3	
##	533	1	86		66		52	2 65	41.3	
##	547	5	187		76		27	207	43.6	
##	559	11	103		68		40) (46.2	
##	562	0	198		66		32	274	41.3	
##	578	2	118		80		() (42.9	
##	581	0	151		90		46	3 0	42.1	
##	591	11	111		84		40) (46.8	
##	597	0	67		76		() (45.3	
##	609	0	152		82		39	272	41.5	
	623	6	183		94		(40.8	
	624	0	94		70		27		43.5	
##	639	7	97		76		32		40.9	
	662	1	199		76		43		42.9	
	674	3	123		100		35		57.3	
	682	0	162		76		36		49.6	
	683	0	95		64		39		44.6	
	690	1	144		82		46		46.1	
	692	13	158		114		(42.3	
	700	4	118		70		(44.5	
##	713	10	129		62		36		41.2	
##	733	2	174		88		37		44.5	
##	741	11	120		80		37		42.3	
##	745	13	153		88		37		40.6	
##	747	1	147		94		4:		49.3	
##	748	1	81		74		4:		46.3	
##	754	0	181		88		44		43.3	
	762	9	170		74		3:		44.0	
##		DiabetesPedi	igreeFunction	Age		.e				
##			2.288			1				
##			0.551			1				
##			0.183			0				
##			0.696			0				
##			0.721			1				
##			1.893			1				
##			0.962			0				
##			1.781	44		0				
##			0.173			0				
##			0.845			0				
##			0.583			1				
##			0.270	26		1				
##			0.270			1				
	93		0.261	42		0				
	100		0.201			1				
	121		0.759			1				
	126		0.496			1				
	120		0.100	20		-				

##	127	0.452	30	0
##	154	0.687	23	0
##	155	0.137	43	1
##	156	0.337	36	1
##	160	0.817	47	1
##	163	0.167	27	0
##	174	0.678	23	0
##	178	0.319	26	1
##	179	0.190	47	0
##	194	0.578	40	1
##	202	0.236	28	0
##	212	0.375	24	0
##	214	0.431	24	1
##	216	0.742	38	1
##	230	0.089	24	0
##	231	0.645	22	1
##	232	0.238	46	1
##	236	0.479	26	1
##	238	0.686	23	1
##	248	0.427	23	0
##	271	1.136	38	1
##	276	0.677	25	0
##	288	0.808	29	1
##	293	1.224	31	1
##	294	0.613	24	1
##	304	0.209	28	1
##	329	0.127	23	1
##	333	0.282	41	1
##	336	0.259	26	0
##	350	0.346	37	1
##	351	0.237	29	0
##	355	0.559	21	0
##	379	0.238	32	1
##	380	1.021	35	0
##	388	0.239	45	1
##	392	0.340	27	1
##	406	0.520	26	0
##	410	0.702	28	1
##	413	1.076	22	0
##	421	0.507	26	0
##	423	0.496	21	0
##	425	0.516	36	1
##	429	0.284	26	0
##	436	0.205	29	1
##	446	2.420	25	1
##	470	0.571	27	0
##	471	0.607	28	0
##	485	0.630	31	1
##	486	0.365	24	1
##	487	0.536	21	0
##	488	1.159	58	0
##	532	0.686	24	0
##	533	0.917	29	0
##	547	1.034	53	1

```
## 559
                             0.126
                                    42
                                              0
## 562
                             0.502
                                    28
                                              1
## 578
                             0.693
                                    21
                                              1
                             0.371
## 581
                                    21
                                              1
## 591
                             0.925
                                    45
                                              1
## 597
                             0.194
                                              0
                                    46
## 609
                             0.270
                                    27
                                              0
## 623
                             1.461
                                    45
                                              0
## 624
                             0.347
                                    21
                                              0
## 639
                             0.871
                                    32
                                              1
## 662
                             1.394
                                    22
                                              1
## 674
                             0.880
                                    22
                                              0
## 682
                             0.364
                                    26
                                              1
## 683
                             0.366
                                              0
                                    22
## 690
                             0.335
                                    46
                                              1
## 692
                             0.257
                                    44
                                              1
## 700
                            0.904
                                    26
                                              0
## 713
                             0.441
                                    38
                                              1
## 733
                             0.646
                                    24
                                              1
## 741
                             0.785
                                    48
                                              1
## 745
                             1.174
                                    39
                                              0
## 747
                             0.358
                                    27
                                              1
## 748
                             1.096
                                    32
                                              0
## 754
                             0.222
                                    26
                                              1
## 762
                             0.403
                                    43
                                              1
```

```
# Create a new variable named BMIOutlier, which has the value 0 if a women has BMI smaller or equal 50,
dat_ex2["BMIOutlier"] = ifelse(dat_ex2$BMI<=50,0,1)</pre>
```

Exercise 3 (optional)

Explore merging two datasets.

As a preparation, execute the following code to create different data frames

```
# import data
dat_ex3 <- read.csv(file = url("https://www.dropbox.com/s/tqrauwuxyi03kee/Pima_diabetes.csv?dl=1"))
# extract two smaller data sets
dat3_1 <- dat_ex3[1:100, 1:3]
dat3_2 <- dat_ex3[101:300, 1:3]

dat3_4 <- dat_ex3[1:100, 4:6]</pre>
```

Task 3a: Think about how you can use the [.] operator to respectively piece dat3_1 and dat3_2, and dat3_3 and dat3_4 together into one data frame.

Task 3b: Explore the help of the merge() function in R in order to achieve the same goal of combining dat3_3 and dat3_4 together into one data frame. Hint: first create an ID variable in each data frame, then use this in the "by" argument.

Exercise 4 (optional): Times and dates in R

Create an Excel file with 5 observations of 2 variables. Variable 1 is just an ID variable (number 1-5 or character string etc.), and variable 2 is a date/time variable. Use variable 2 to describe the time (and day) you had lunch in the last 5 days. Then try to import the Excel file with both variables into R and/or transform the variables in R to Date or POSIXct variables.