1. Exponentialfunktionen

1.1 Aufgabe 1

Graph	Ableitungsgraph	Funktion
G_1	A_4	f_1
G_2	A_3	f_3
G_3	A_2	f_4
G_4	A_1	f_2

1.2 Aufgabe 2a

1.3 Aufgabe 2b

e=2.71828, geht durch die Berechnung mit dem GTR hervor.

1.4 Aufgabe 3a

1. Für die Ableitung einer Exponentialfunktion vom Typ $f(x)=a^x(a>0)$ gilt also: $f'(x)=f'(0)\times a^x$

2.
$$\frac{f(x+h)-f(x)}{h}$$

$$3. = \frac{a^x \times a^h - a^x}{h}$$

4. =
$$\frac{a^{x+h}-a^x}{h}$$

5. =
$$\frac{a^x \times (a^h - 1)}{h}$$

6.
$$= a^x \times \frac{a^{0+h}-a^0}{h}$$

7. Die Ableitung einer Exponentialfunktion f ist somit proportional zu der Funktion f.

1.5 Aufgabe 3b

Laut Definition ist eine beliebige Zahl, die den Exponenten 0 hat, immer gleich 1. Dies gilt somit auch für die Eulersche-Zahl e

1.6 Aufgabe 3c

- **(1)** f(1.000.000) = 2.71828
- **(2)**

1.
$$\frac{e^{0+h}-e^0}{h}\approx 1$$

2. Mit $h = \frac{1}{n}$ erhält man:

3.
$$\frac{e^{\frac{1}{n}-1}}{\frac{1}{n}}\approx 1$$

4.
$$e^{\frac{1}{n}} - 1 \approx \frac{1}{n}$$

5.
$$e^{\frac{1}{n}} \approx 1 + \frac{1}{n}$$

6.
$$e = (e^{\frac{1}{n}})^n \approx (1 + \frac{1}{n})^n$$