Homework #3

Analysis of Algorithms

Illya Starikov

Due Date: September 19th, 2017

Question #1

```
1 def fn(n):
2    if n > 100:
3        return n - 10
4    return ((n - 101) % (c - 10)) + 91
```

Question #2

The following function tests random values up to in $\{-1\,000\,000,\ldots,1\,000\,000\}$. is_gcd_fast is a faster alternative because $\gcd \in \mathcal{O}\left(\log_{\frac{a}{a \mod b}}(a \times b)\right)$ while $\gcd_{fast} \in \mathcal{O}\left(c\right)$.

```
from fractions import gcd
2 import random
3
4
5
  def is_gcd(gcd_value, a, b):
6
       return gcd_value == gcd(a, b)
7
8
9
   def is_gcd_fast(gcd_value, a, b):
       return a % gcd_value == b % gcd_value == 0
10
12 for i in range(1000):
13
       a = random.randint(-1000000, 1000000)
       b = random.randint(-1000000, 1000000)
14
       g = gcd(a, b) if random.choice([True, False]) else random.randint
15
       (-1000000, 1000000)
16
       print(is_gcd_fast(g, a, b) == is_gcd(g, a, b))
17
```

Question #3

3.1 All Sums

```
# Warning, for all lists (with the exclusion of [1], [0] and []) this
      function does not stop
2
  def generate_all_sums(1):
3
      for element in 1:
4
           if element == 0:
               return [0] + generate_all_sums(element[1:])
5
6
           else:
7
               return [element] + [generate_all_sums([element*element])]
8
      return 1
```

3.2 $Sum(T) \notin \{all \ odds\}$

Take Sum to be the function that maps all elements to all of their multiples.

Theorem 1. There is not set T such that $Sum(T) = \{all \ odd \ integers\}.$

We prove so by proof of contradiction.

Proof. Suppose not. That is, suppose that is a set T such that $Sum(T) = \{\text{all odd integers}\}$. Set T, at a minimum, must have a single element (for the empty set \varnothing cannot produce any integers). We take an arbitrary element from this set T and name it q. There are two forms for q ($\exists m \in \mathbb{Z}$),

$$q = \begin{cases} 2m & \Leftrightarrow q \text{ is even} \\ 2m+1 & \Leftrightarrow q \text{ is odd} \end{cases}$$

If q is even, there is already a contradiction. If q is odd, then we have the following contradiction. Supposing we sum q twice, we have the following form:

$$q = a(2m+1) + b(2m+1)$$

Because a and b are arbitrary, we take them to be 1.

$$q = (2m + 1) + (2m + 1)$$
$$= 4m + 2$$
$$= 2(2m + 1)$$

Because we know the sum of integers and multiplication of integers to be integers, $2(2m+1) \equiv 2n, \exists n \in \mathbb{Z}$, which has the form of an even integer.

This has lead us to a contradiction. Therefore, our hypothesis is false, concluding there is not set T such that $Sum(T) = \{\text{all odd integers}\}.$

3.3 Fast Algorithm For S

To get d from an arbitrary set S, we simply take the greatest common divisor from all the sets.

```
1 from functools import reduce
2
3 def gcd(numbers):
4    def gcd_single(a, b):
5     while b:
6         a, b = b, a % b
7     return a
8
9    return reduce(gcd_single, numbers)
```

3.4 $d \in \{540051690381, 5404079462298, 3485942644184\}$

547.

Question #4

Theorem 2. $\forall i \in \mathbb{Z}^+$,

$$\sum_{i=1}^{n} (-1)^{i-1} i^3 = -\frac{1}{8} (-1)^n \left(4n^3 + 6n^2 - 1 \right) - \frac{1}{8}$$

Proof. Step #1 We wish to prove that for all natural numbers f(n) = g(n), where f and g are as defined as follows:

$$f(x) = \sum_{i=1}^{n} (-1)^{i-1} i^3$$
$$g(x) = -\frac{1}{8} (-1)^n (4n^3 + 6n^2 - 1) - \frac{1}{8}$$

Let D be the set of natural numbers (i.e., $D = \mathbb{Z}^+$). D includes the stopping value 1.

Step #2 Checking two values is trivial; take 2 and 3.

$$\sum_{i=1}^{2} (-1)^{i-1} i^3 = -\frac{1}{8} (-1)^2 \left(4 * 2^3 + 6 *^2 - 1 \right) - \frac{1}{8} = -7$$

$$\sum_{i=1}^{3} (-1)^{i-1} i^3 = -\frac{1}{8} (-1)^3 \left(4 * 3^3 + 6 * 3^2 - 1 \right) - \frac{1}{8} = 20$$

To check the stopping value, we check the first value. We clearly see that f(x) = g(x) = 1.

Step #3 If n in \mathbb{Z}^+ triggers a recursive call, then n > 0. The only value used in the call is n - 1, which is in \mathbb{Z} and greater than or equal to 0, because it is an integer and $n1 \ge 0$ since n > 0.

Step #4 We use the integer n as the counter. When recursion is called the function is called with the value n-1. The counter strictly decreases and the recursion halts.

Step # 5 To prove recursion stops, we take the following:

$$f(x) = f(n-1) + f(n) (1)$$

$$= f(n-1) + (-1)^{n-1}n^3$$
(2)

$$= -\frac{1}{8}(-1)^{(n-1)}\left(4(n-1)^3 + 6(n-1)^2 - 1\right) - \frac{1}{8} + (-1)^{n-1}n^3$$
 (3)

$$= -\frac{1}{8}(-1)^n \left(4n^3 + 6n^2 - 1\right) - \frac{1}{8} \tag{4}$$

$$=g(x) \tag{5}$$

Because f(n) = g(n), the property is inherited recursively.

Step #6 Since Steps 1–5 have been verified, it follows from the Principle of Recursion that P holds for all values in \mathbb{Z}^+ , i.e., $f(n) = g(n), \forall n \in \mathbb{Z}^+$

Table 1: The results from the explicit form, the series form, and the difference for the first 40 values.

Sum Value	Explicit Values	Difference
1	1	0
-7	-7	0
20	20	0
-44	-44	0
81	81	0
-135	-135	0
208	208	0
-304	-304	0
425	425	0
-575	-575	0
756	756	0
-972	-972	0
1225	1225	0
-1519	-1519	0
1856	1856	0
-2240	-2240	0
2673	2673	0
-3159	-3159	0
3700	3700	0
-4300	-4300	0
4961	4961	0
-5687	-5687	0
6480	6480	0
-7344	-7344	0
8281	8281	0
-9295	-9295	0
10388	10388	0
-11564	-11564	0
12825	12825	0
-14175	-14175	0
15616	15616	0
-17152	-17152	0
18785	18785	0
-20519	-20519	0
22356	22356	0
-24300	-24300	0
26353	26353	0
-28519	-28519	0
30800	30800	0

```
1 def sum_solution(n):
2
       if n <= 1:
3
           return 1
4
       else:
5
           return (-1)**(n - 1) * n**3 + sum_solution(n - 1)
6
7
8 def explicit_solution(n):
9
       return -int(
10
           (1.0 / 8.0) *
11
           ((-1)**n) *
12
           (4 * n**3 + 6 * n**2 - 1) +
13
           1.0 / 8.0)
14
15
16 \text{ def main()}:
17
       for n in range(1, 40):
           print(sum_solution(n), explicit_solution(n), sum_solution(n) -
18
       explicit_solution(n))
19
20
21 if __name__ == "__main__":
22
       main()
```