Lemma: Unione finita di sottospazi Sia \mathbb{K} un campo con infiniti elementi e V uno spazio vettoriale sul campo \mathbb{K} . Supponiamo che si possa scrivere $V = W_1 \cup \ldots \cup W_n$, allora $\exists i \ W_i = V$.

Dimostrazione: Supponiamo la minimalità dell'unione, ovvero se $\exists j$ t.c. $W_j \subseteq W_1 \cup W_2 \cup \ldots \cup W_{j-1} \cup W_{j+1} \cup \ldots \cup W_n$ allora riconsideriamo $V = W_1 \cup \ldots \cup W_{j-1} \cup W_{j+1} \cup \ldots \cup W_n$ (cioè se un sottospazio è interamente contenuto nell'unione degli altri lo togliamo).

Per la minimalità abbiamo $W_n \nsubseteq W_1 \cup \ldots \cup W_{n-1}$.

Sia ora $u \notin W_n$ ($u \in V$) e $v \in W_n \setminus (W_1 \cup \ldots \cup W_{n-1})$ e definiamo $S = \{v + tu \mid t \in \mathbb{K}\}.$

Siccome u non è il vettore nullo ed il campo \mathbb{K} è infinito, allora anche l'insieme S è infinito. Inoltre, poiché $S \subseteq V = W_1 \cup W_2 \cup \ldots \cup W_n$, uno dei W_i deve contenere infiniti vettori di S.

Ma, se W_n contenesse un'altro vettore di S oltre a v, allora esisterebbe $t \in \mathbb{K}$ tale che $v+tu \in W_n$, ma allora $tu=(v+tu)-v \in W_n$ e quindi avremmo $u \in W_n$, assurdo per come avevamo scelto u. Quindi W_n non può contenere infiniti elementi di S.

Poi, se quale W_i $(1 \ge i < n)$ contenesse due vettori distinti di S, allora esisterebbero $t_1 \ne t_2 \in \mathbb{K}$ tali che $v + t_1 u, v + t_2 u \in W_i$. Ma allora $(t_2 - t_1)v = t_2(v + t_1 u) - t_1(v + t_2 u) \in W_i$ e dovremmo avere $v \in W_i$, assurdo per come avevamo scelto v.

Quindi per $1 \ge i < n$, nessun W_i può contenere infiniti elementi di S. Ma questa è chiaramente una contraddizione, il che ci dice che $\exists i$ t.c. $W_i = V$ (questo infatti ci impedirebbe di dire che $W_n \nsubseteq W_1 \cup \ldots \cup W_{n-1}$ oppure che $\exists u \not\in W_n$)