Διανύσματα Εσωτερικό Γινόμενο Διανυσμάτων

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Τι, δεν τελειώσαμε με τα διανύσματα?

Αν προσέχατε μιλήσαμε για:

- 1 τι είναι
- ② μέτρο
- ③ άθροισμα διαφορά
- πολλαπλασιασμό με αριθμό
- 🗿 ισότητα
- παραλληλία

Τι, δεν τελειώσαμε με τα διανύσματα?

Αν προσέχατε μιλήσαμε για:

- 1 τι είναι
- 🛾 μέτρο
- ③ άθροισμα διαφορά
- Φ πολλαπλασιασμό με αριθμό
- 🗿 ισότητα
- ⑤ παραλληλία
- 🕖 τι έμεινε...

Τι, δεν τελειώσαμε με τα διανύσματα?

Αν προσέχατε μιλήσαμε για:

- 1 τι είναι
- ② μέτρο
- ③ άθροισμα διαφορά
- πολλαπλασιασμό με αριθμό
- 💿 ισότητα
- Φ παραλληλία
- 🕖 γωνίες, καθετότητα...

Νέος κόσμος

Κάθε διανυσματικός χώρος (?), εφοδιάζεται με ένα δικό του εσωτερικό γινόμενο. Για εμάς, να ναι καλά ο Ευκλείδης!

Ευκλείδειο Εσωτερικό Γινόμενο

Εστω $\vec{\alpha}=(x_{\alpha},y_{\alpha})$ και $\vec{\beta}=(x_{\beta},y_{\beta}).$ Ορίζουμε εσωτερικό γινόμενο την πράξη $\mathbb{R}^2\cdot\mathbb{R}^2\to\mathbb{R}$:

$$\vec{\alpha} \cdot \vec{\beta} = x_{\alpha} x_{\beta} + y_{\alpha} y_{\beta}$$

Η απλά για τους noobάδες: <u>εσωτερικό γινόμενο</u>

Ναι αλλά πού είναι η γωνία?

Για δυνατούς λύτες

Αν μάθατε τον τύπο των συνημιτόνων:

$$|AB|^2 = |OA|^2 + |OB|^2 - 2|OA| \cdot |OB| \cdot \sigma v \nu \theta$$

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}^2 = \sqrt{x_1^2 + y_1^2}^2 + \sqrt{x_2^2 + y_2^2}^2 - 2|OA| \cdot |OB| \cdot \sigma v \nu \theta$$

$$-2(x_1 x_2 + y_1 y_2) = -2|OA| \cdot |OB| \cdot \sigma v \nu \theta$$

$$x_1 x_2 + y_1 y_2 = |OA| \cdot |OB| \cdot \sigma v \nu \theta$$

Λόλας $(10^{o}$ ΓΕΛ) Δ ιανύσματα 5/28

Τι, δεύτερος τύπος?

Στο βιβλίο τον μαθαίνετε ως πρώτο (και stick to it)

Ευκλείδειο Εσωτερικό Γινόμενο

Εστω $\vec{\alpha}$ και $\vec{\beta}$ δύο μη μηδενικά διανύσματα. Ορίζουμε εσωτερικό γινόμενο την πράξη

$$\vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}| \cdot \sigma v \nu \theta$$

Τι, δεύτερος τύπος?

Στο βιβλίο τον μαθαίνετε ως πρώτο (και stick to it)

Ευκλείδειο Εσωτερικό Γινόμενο

Εστω $\vec{\alpha}$ και $\vec{\beta}$ δύο μη μηδενικά διανύσματα. Ορίζουμε εσωτερικό γινόμενο την πράξη

$$\vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}| \cdot \sigma v \nu \theta$$

Problems, problems!

Τι γίνεται αν
$$\vec{lpha}=\vec{0}$$
 ή $\vec{eta}=\vec{0}$?

Απλά από τον προηγούμενο τύπο $\vec{lpha}\cdot\vec{eta}=|\vec{lpha}|\cdot|\vec{eta}|\cdot\sigma v
u heta$

•
$$\vec{\alpha} \uparrow \uparrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}|$$

•
$$\vec{\alpha} \uparrow \downarrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = -|\vec{\alpha}| \cdot |\vec{\beta}|$$

•
$$\vec{\alpha} \perp \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = 0$$

$$\vec{\alpha}^2 = |\vec{\alpha}|^2$$

$$|\vec{\alpha}| = \sqrt{\vec{\alpha}^2}$$

Απλά από τον προηγούμενο τύπο $\vec{lpha}\cdot\vec{eta}=|\vec{lpha}|\cdot|\vec{eta}|\cdot\sigma v
u heta$

$$\bullet \ \vec{\alpha} \uparrow \uparrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \updownarrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = -|\vec{\alpha}| \cdot |\vec{\beta}|$$

•
$$\vec{\alpha} \perp \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = 0$$

$$\vec{\alpha}^2 = |\vec{\alpha}|^2$$

$$|\vec{\alpha}| = \sqrt{\vec{\alpha}^2}$$

$$\bullet \ \sigma v \nu \theta = \frac{\alpha \cdot \beta}{|\vec{\alpha}| \cdot |\vec{\beta}|}$$

Απλά από τον προηγούμενο τύπο $\vec{lpha}\cdot\vec{eta}=|\vec{lpha}|\cdot|\vec{eta}|\cdot\sigma v
u heta$

$$\bullet \ \vec{\alpha} \uparrow \uparrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \ \! \uparrow \! \! \downarrow \ \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = - |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \perp \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = 0$$

$$\vec{\alpha}^2 = |\vec{\alpha}|^2$$

$$|\vec{\alpha}| = \sqrt{\vec{\alpha}^2}$$

Λόλας $(10^{o}$ ΓΕΛ) Διανύσματα 7/28

Απλά από τον προηγούμενο τύπο $\vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}| \cdot \sigma v \nu \theta$

$$\bullet \ \vec{\alpha} \uparrow \uparrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \ \! \uparrow \! \! \downarrow \ \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = - |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \perp \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = 0$$

$$\bullet \ \vec{\alpha}^2 = |\vec{\alpha}|^2$$

$$|\vec{\alpha}| = \sqrt{\vec{\alpha}^2}$$

Απλά από τον προηγούμενο τύπο $\vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}| \cdot \sigma v \nu \theta$

$$\bullet \ \vec{\alpha} \uparrow \uparrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \ \! \uparrow \! \! \downarrow \ \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = - |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \perp \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = 0$$

$$\bullet \ \vec{\alpha}^2 = |\vec{\alpha}|^2$$

$$\bullet \ |\vec{\alpha}| = \sqrt{\vec{\alpha}^2}$$

$$\bullet \ \sigma \upsilon \nu \theta = \frac{\vec{\alpha} \cdot \vec{\beta}}{|\vec{\alpha}| \cdot |\vec{\beta}|}$$

Απλά από τον προηγούμενο τύπο $\vec{lpha}\cdot\vec{eta}=|\vec{lpha}|\cdot|\vec{eta}|\cdot\sigma v
u heta$

$$\bullet \ \vec{\alpha} \uparrow \uparrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \ \! \uparrow \! \! \downarrow \ \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = - |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \perp \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = 0$$

$$\vec{\alpha}^2 = |\vec{\alpha}|^2$$

$$ullet$$
 $|ec{lpha}| = \sqrt{ec{lpha}^2}$ και το αστέρι μας...

$$\bullet \ \sigma \upsilon \nu \theta = \frac{\vec{\alpha} \cdot \vec{\beta}}{|\vec{\alpha}| \cdot |\vec{\beta}|}$$

Απλά από τον προηγούμενο τύπο $\vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}| \cdot \sigma v \nu \theta$

$$\bullet \ \vec{\alpha} \uparrow \uparrow \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \ \! \uparrow \! \! \downarrow \ \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = - |\vec{\alpha}| \cdot |\vec{\beta}|$$

$$\bullet \ \vec{\alpha} \perp \vec{\beta} \iff \vec{\alpha} \cdot \vec{\beta} = 0$$

$$\bullet \ \vec{\alpha}^2 = |\vec{\alpha}|^2$$

$$\bullet \ |\vec{\alpha}| = \sqrt{\vec{\alpha}^2}$$

- $\vec{lpha}(ec{eta}+ec{\gamma})=ec{lpha}ec{eta}+ec{lpha}ec{\gamma}$ (Επιμεριστική)
- $\vec{\alpha}\vec{\beta} = \vec{\beta}\vec{\alpha}$ (Αντιμεταθετική)
- Γενικά $\vec{\alpha}(\vec{\beta}\vec{\gamma}) \neq (\vec{\alpha}\vec{\beta})\vec{\gamma}$, αλλά γιατί?

- $\vec{\alpha}(\vec{\beta} + \vec{\gamma}) = \vec{\alpha}\vec{\beta} + \vec{\alpha}\vec{\gamma}$ (Επιμεριστική)
- $\vec{\alpha} \vec{\beta} = \vec{\beta} \vec{\alpha}$ (Αντιμεταθετική)
- Γενικά $\vec{\alpha}(\vec{\beta}\vec{\gamma}) \neq (\vec{\alpha}\vec{\beta})\vec{\gamma}$, αλλά γιατί?

- $\vec{\alpha}(\vec{\beta} + \vec{\gamma}) = \vec{\alpha}\vec{\beta} + \vec{\alpha}\vec{\gamma}$ (Επιμεριστική)
- $\vec{\alpha} \vec{\beta} = \vec{\beta} \vec{\alpha}$ (Αντιμεταθετική)
- ullet $\lambda(\vec{lpha}\vec{eta})=\vec{lpha}(\lambda\vec{eta})=\lambda\vec{lpha}\vec{eta}$ (Προσεταιριστική με πραγματικό)
- Γενικά $\vec{\alpha}(\vec{\beta}\vec{\gamma}) \neq (\vec{\alpha}\vec{\beta})\vec{\gamma}$, αλλά γιατί

- $\vec{\alpha}(\vec{\beta} + \vec{\gamma}) = \vec{\alpha}\vec{\beta} + \vec{\alpha}\vec{\gamma}$ (Επιμεριστική)
- $\vec{\alpha} \vec{\beta} = \vec{\beta} \vec{\alpha}$ (Αντιμεταθετική)
- ullet $\lambda(\vec{lpha}\vec{eta})=\vec{lpha}(\lambda\vec{eta})=\lambda\vec{lpha}\vec{eta}$ (Προσεταιριστική με πραγματικό)
- ullet Γενικά $ec{lpha}(ec{eta}ec{\gamma})
 eq (ec{lpha}ec{eta})ec{\gamma}$, αλλά γιατί?

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Δίνονται δύο διανύσματα $\vec{\alpha}$, $\vec{\beta}$ για τα οποία ισχύουν $|\vec{\alpha}|=2$, $|\vec{\beta}|=1$ και $\widehat{(ec{lpha},ec{eta})}=rac{\pi}{3}.$ Να υπολογίσετε:

Λόλας (10^o ΓΕΛ) Διανύσματα 11/28

Δίνονται δύο διανύσματα $\vec{\alpha}$, $\vec{\beta}$ για τα οποία ισχύουν $|\vec{\alpha}|=2$, $|\vec{\beta}|=1$ και $\widehat{(ec{lpha},ec{eta})}=rac{\pi}{3}.$ Να υπολογίσετε:

- $\vec{\alpha}$ $\vec{\alpha}^2$

Λόλας (10^o ΓΕΛ) Διανύσματα 11/28

Αν $\vec{lpha} \precsim \vec{eta}$, $|\vec{lpha}|=3$ και $\vec{lpha}\vec{eta}=-6$, να βρείτε το $|\vec{eta}|$

Λόλας (10^o ΓΕΛ) Διανύσματα 12/28

Αν
$$\vec{\alpha}\perp\vec{\beta}$$
, $\vec{\alpha}\uparrow\downarrow\vec{\gamma}$ και $|\vec{\alpha}|=|\vec{\gamma}|=1$, να υπολογίσετε την τιμή της παράστασης
$$(\vec{\alpha}\vec{\beta})^{2023}+|\vec{\alpha}\vec{\gamma}|$$

Λόλας (10^o ΓΕΛ) Διανύσματα 13/28

Av $\vec{lpha}=(2,3)$ και $\vec{eta}=(4,5)$ να υπολογίσετε τα:

- $\mathbf{1}$ $\vec{\alpha}\vec{\beta}$

Λόλας (10^o ΓΕΛ) Διανύσματα 14/28

Αν $\vec{\alpha}=(2,3)$ και $\vec{\beta}=(4,5)$ να υπολογίσετε τα:

- $\mathbf{1}$ $\vec{\alpha}\vec{\beta}$

Λόλας (10^o ΓΕΛ) Διανύσματα 14/28

Αν τα διανύσματα $\vec{\alpha}=(x-1,-4)$, $\vec{\beta}=(6,x)$ είναι κάθετα, να βρείτε το x

Λόλας (10^o ΓΕΛ) Διανύσματα 15/28

Να αποδείξετε ότι το τρίγωνο $AB\Gamma$ με A(1,2), B(3,4) και $\Gamma(5,-2)$ είναι ορθογώνιο με $A=90^\circ$

Λόλας $(10^{o}$ ΓΕΛ) Διανύσματα 16/28

 Δίνεται ένα διάνυσμα $\vec{v}=(2,-1)$. Να βρείτε το διάνυσμα \vec{v} , ώστε να ισχύει $\vec{v}\vec{\nu}=0$ kal $|\vec{v}|=\sqrt{5}$

Λόλας (10^o ΓΕΛ) Διανύσματα 17/28

Δίνονται δύο διανύσματα $\vec{\alpha}$, $\vec{\beta}$ για τα οποία ισχύουν $|\vec{\alpha}|=2$, $|\vec{\beta}|=3$ και $\widehat{(\vec{lpha}, \vec{eta})} = \frac{2\pi}{3}$. Να υπολογίσετε:

Λόλας (10^o ΓΕΛ) Διανύσματα 18/28

Δίνονται δύο διανύσματα $\vec{\alpha}$, $\vec{\beta}$ για τα οποία ισχύουν $|\vec{\alpha}|=2$, $|\vec{\beta}|=3$ και $\widehat{(\vec{lpha}, \vec{eta})} = \frac{2\pi}{3}$. Να υπολογίσετε:

- $(3\vec{\alpha} \vec{\beta})^2$

Λόλας (10^o ΓΕΛ) Διανύσματα 18/28

Αν
$$|\vec{\alpha}|=2$$
, $|\vec{\beta}|=3$ και $\widehat{(\vec{\alpha},\vec{\beta})}=\frac{5\pi}{6}$. Να βρείτε το μέτρο του διανύσματος
$$\vec{v}=2\vec{\alpha}-3\vec{\beta}$$

Διανύσματα 19/28

Αν $|\vec{\alpha}|=1$, $|\vec{\beta}|=2$ και $\vec{\alpha}\cdot(\vec{\alpha}-\vec{\beta})=2$. Να βρείτε τη γωνία των διανυσμάτων $\widehat{(\vec{\alpha},\vec{\beta})}$

Λόλας $(10^{o}$ ΓΕΛ) Διανύσματα 20/28

Aν $\vec{\alpha}=(2,-1)$, $\vec{\beta}=(3,1)$ να βρείτε την γωνία των διανυσμάτων $\vec{\alpha}$ και $\vec{\beta}$.

Διανύσματα 21/28

Δίνονται τα διανύσματα $\vec{\alpha}$ και $\vec{\beta}$, όπου το $\vec{\alpha}$ είναι μοναδιαίο, $|\vec{\beta}|=2$ και η γωνία των διανυσμάτων $\vec{\alpha}$ και $\vec{\alpha}$ είναι 120° . Να βρείτε την γωνία των διανυσμάτων $\vec{\delta}$ και $\vec{\alpha}$, όπου $\vec{\delta}=2\vec{\alpha}-\vec{\beta}$.

Λόλας $(10^{\circ}$ ΓΕΛ) Διανύσματα 22/28

① Αν $\vec{\nu}$ και \vec{u} είναι δύο διανύσματα, τότε να αποδείξετε ότι:

$$|\vec{v} + \vec{\nu}|^2 + |\vec{v} - \vec{\nu}|^2 = 2|\vec{v}|^2 + 2|\vec{\nu}|^2$$

② Αν για τα διανύσματα \vec{v} και $\vec{\nu}$ ισχύουν $|\vec{v}|=1$, $|\vec{\nu}|=2$ και $|\vec{v}+\vec{\nu}|=3$, να βρείτε το $|\vec{v}-\vec{\nu}|$

Λόλας $(10^{\circ}$ ΓΕΛ) Διανύσματα 23/28

① Αν $\vec{\nu}$ και \vec{u} είναι δύο διανύσματα, τότε να αποδείξετε ότι:

$$|\vec{v} + \vec{\nu}|^2 + |\vec{v} - \vec{\nu}|^2 = 2|\vec{v}|^2 + 2|\vec{\nu}|^2$$

② Αν για τα διανύσματα \vec{v} και $\vec{\nu}$ ισχύουν $|\vec{v}|=1$, $|\vec{\nu}|=2$ και $|\vec{v}+\vec{\nu}|=3$, να βρείτε το $|\vec{v}-\vec{\nu}|$

Λόλας $(10^{\circ}$ ΓΕΛ) Διανύσματα 23/28

Aν
$$|\vec{lpha}|=2$$
, $|\vec{eta}|=1$ και $\widehat{(ec{lpha},ec{eta})}=rac{2\pi}{3}$ και $\vec{lpha}+2\vec{eta}+\vec{\gamma}=\vec{0}$, να υπολογίσετε:

- **1** το μέτρο του $\vec{\gamma}$

Διανύσματα 24/28

Aν
$$|\vec{\alpha}|=2$$
, $|\vec{\beta}|=1$ και $\widehat{(\vec{\alpha},\vec{\beta})}=\frac{2\pi}{3}$ και $\vec{\alpha}+2\vec{\beta}+\vec{\gamma}=\vec{0}$, να υπολογίσετε:

- **1** το μέτρο του $\vec{\gamma}$
- ② την τιμή της παράστασης $\vec{lpha} \vec{\gamma} + \vec{eta} \vec{\gamma}$

Διανύσματα 24/28

Εστω τα διανύσματα
$$\vec{\alpha}$$
, $\vec{\beta}$ με $|\vec{\alpha}|=2$, $|\vec{\beta}|=1$ και $\widehat{(\vec{\alpha},\vec{\beta})}=\frac{2\pi}{3}$

- Να αποδείξετε ότι: $\vec{\alpha} 2\vec{\beta} \neq \vec{0}$

Λόλας (10^o ΓΕΛ) Διανύσματα 25/28

Εστω τα διανύσματα
$$\vec{\alpha}$$
, $\vec{\beta}$ με $|\vec{\alpha}|=2$, $|\vec{\beta}|=1$ και $\widehat{(\vec{\alpha},\vec{\beta})}=\frac{2\pi}{3}$

- Να αποδείξετε ότι: $\vec{\alpha} 2\vec{\beta} \neq \vec{0}$
- Nα βρείτε διάνυσμα \vec{x} , ώστε:
 - $\vec{x} \parallel (\vec{\alpha} 2\vec{\beta})$ και
 - \bullet $\vec{\beta} \perp (\vec{\alpha} \vec{x})$

Λόλας (10^o ΓΕΛ) Διανύσματα 25/28

Αν $\vec{lpha}=(x,3)$ και $\vec{eta}=(1,7)$, να βρείτε την τιμή του x ώστε $\widehat{(\vec{lpha},\vec{eta})}=\frac{\pi}{4}$

Λόλας (10^o ΓΕΛ) Διανύσματα 26/28

Δίνονται τα σταθερά σημεία A και B. Να βρείτε το γεωμετρικό τόπο των σημείων M του επιπέδου, για τα οποία ισχύει

$$|\overrightarrow{\mathrm{MA}} - 2\overrightarrow{\mathrm{MB}}| = \sqrt{\overrightarrow{\mathrm{MA}}^2 + 4\overrightarrow{\mathrm{MB}}^2}$$

Λόλας $(10^{o}$ ΓΕΛ) Δ ιανύσματα 27/28

Δίνεται τρίγωνο $AB\Gamma$ με (AB)=6. Να βρείτε το γεωμετρικό τόπο των σημείων M του επιπέδου, για τα οποία ισχύει:

$$\overrightarrow{MA} \cdot \overrightarrow{M\Gamma} = 7 + \overrightarrow{MA} \cdot \overrightarrow{B\Gamma}$$

Λόλας (10^{o} ΓΕΛ) Διανύσματα 28/28