Mechatronic System Instrumentation - MECH 421 -

Minkyun Noh

Assistant Professor
UBC Mechanical Engineering

Course Summary

MECH 421 is about "Control and Instrumentation"

Control and Instrumentation are complementary

Control

:Theoretical knowledge to design and analyze mechatronic systems

Instrumentation

:Hardware-oriented knowledge to realize mechatronic systems

We need to understand these two to interconnect various subsystems, such as controller, sensors, actuators, and mechanical systems.

Circuits and electronics are "glue" between the subsystems.

Proposed Goal

Proposed Contents

Circuits

- Linear circuits
- Op-amp circuits
- Power amplifier
- Differential measurement

Controls

- LTI systems
- Loop shaping
- Digital control
- Noise Filtering

Motors

- Brushed dc motor
- Brushless dc motor

Course Schedule (Tentative)

Course	Scriedui	e (Terrialive)			
Week	Date	Lecture	HW Out	Prelab Out	Lab
1	Jan 11	Feedback system	Out	out	
	Jan 15	LTI systems review	1		
2	Jan 18	Op-amp static model			
	Jan 22	Op-amp dynamic model	2		
3	Jan 25	Loop shaping, 2 nd order systems and others			
	Jan 29	Crossover frequency and phase margin		1	
4	Feb 1	Brushed DC motor			
	Feb 5	Voltage-controlled brushed DC motor	3		
5	Feb 8	Current-controlled brushed DC motor			
	Feb 12	Transconductance amplifier		2	1
6	Feb 15	Midtown Duods			
	Feb 19	Midterm Break			
7	Feb 22	Differential measurement			_
	Feb 26	Op-amp non-idealities	4		2
8	Mar 1	Mid-term quiz			
	Mar 5	Feedback and stability – Nyquist	5	-3-	
9	Mar 8	Lead controller design			
	Mar 12	PI controller design	-5-	3	
10	Mar 15	Digital control, ADC: sampling, aliasing, quantization			2
ı	Mar 19	DAC: reconstruction, delay, etc.	6		-5
11	Mar 22	Digital control design via approximate mapping			
	Mar 26	Digital control design based on ZOH equivalent		-4-	3
12	Mar 29	Brushless DC motor			
	Apr 2	Brushless DC motor commutation	7		
13	Apr 5	Introductory power electronics			_4_
	Apr 9	Electromagnetic interference reduction techniques	-8-		7
14	Apr 12	Summary of the course			

Design Problem

Course Schedule (Tentative)

course ochequie (Tentative)											
		Week	Date	Lecture	HW Out	Prelab Out	Lab				
Control		1	Jan 11	Feedback system							
	\dashv		Jan 15	1st-order, 2nd-order, fractional-order integrator	1						
		2	Jan 18	LTI system review							
	Ì		Jan 22	Zero dynamics / op-amp terminal relations	2						
Circuit	\dashv	3	Jan 25	Op-amp circuits - statics							
			Jan 29	Op-amp circuits - dynamics		1					
Motor	7	4	Feb 1	Brushed DC motor							
			Feb 5	Voltage-controlled brushed DC motor	3						
		5	Feb 8	Current-controlled brushed DC motor			1				
			Feb 12	Transconductance amplifier		2	'				
Circuit		6	Feb 15	Midterm Break							
			Feb 19	Midlettii Break							
		7	Feb 22	Differential measurement			2				
	1		Feb 26	Op-amp non-idealities	4						
		8	Mar 1	Mid-term quiz							
			Mar 5	2nd-order system review	5	-3-					
Circuit		9	Mar 8	Motion control design via loop shaping							
			Mar 12	PID control design— Kp, PI, Lead, LPF	-5-	3					
		10	Mar 15	PID control – Sensitivity functions, anti-windup, impedance	e		3				
	\dashv		Mar 19	Feedback & stability (demo)	6						
		11	Mar 22	Digital control system: ADC, DAC (PAM, PWM), delay, etc.							
			Mar 26	Digital control design via approximate mapping		4	3				
		12	Mar 29	Stability assessment of LTI feedback systems							
			Mar 31	Nyquist test	7						
		13	Apr 9	Linear power amplifier			4				
	1		Apr 12	Switching power amplifier (power electronics)	-8-		7				
		14	Apr 14	Summary of the course							

Design Problem

Control View Point

Instrumentation View Point

Instrumentation View Point

Op-Amp Circuits

- Op-amp as a feedback system
- Op-amp dynamics (frequency vs. time)
- Gain and bandwidth
- Input/output impedance
- Non-idealities (offset voltage, bias current)
- Datasheet reading

DC Motor

- $\tau = K_t i$
- $e = K_t \dot{\theta}$
- Apparent impedance (elec. & mech.)
- Torque control = Current control
- Motivation for VCCS

Power Amplifier

- Transconductance amplifier (VCCS)
- Analog control design & implementation
- Design based on datasheet FRF
- $i \approx G_m u$ makes life easier

Loop Shaping

- Loop Transmission (L.T.) and Loop Return Ratio L(s)
- Bode plot of $L(j\omega)$
- Crossover frequency $\omega_c \to \text{Closed-loop}$ bandwidth $\omega_h \approx \omega_c$
- Phase margin $\phi_m o$ Closed-loop damping ratio $\zeta pprox \phi_m/100$
- Nyquist test: Z = N + P

Digital Control

Indirect design via Discrete-time Approximation

- Plant including DAC delay: $P(s)e^{-\frac{sT}{2}}$
- CT Controller C(s) for $P(s)e^{-\frac{sT}{2}}$
- Find DT Controller via numerical approximation (backward, forward, Tustin)

Direct design via Discrete-time Equivalents

• Zero-order hold equivalent: $P_{zoh}(z) = (1 - z^{-1})\mathcal{Z}\left\{\frac{P(s)}{s}\right\}$

Linear Amplifier

- BJT
- Push-pull stage
- Power dissipation

Switching Amplifier

- MOSFET
- Half-bridge stage
- H-bridge inverter
- Current ripples

Course Evaluation

