CM5239 Tutorial 5 - Molecular Mechanics & Molecular Dynamics

(1) For the two lowest energy conformations of *n*-butane, the MM2 force field calculations yield the individual strain energy terms (kcal mol⁻¹):

term	A	В
stretch	0.15	0.16
stretch-bend	0.05	0.07
bend	0.29	0.63
torsion	0.01	0.44
vdw	1.68	1.75
total	?.??	?.??

Of the conformations A and B, which is the lowest in energy? According to the MM2 force field, what are sources of energetic preference for the lowest energy conformation?

- (2) Suppose you are going to invent a new force field method, **MMHC**, for saturated compounds containing carbon and hydrogen only. Assume the following strain energy terms:
- (1) harmonic approximation for bond stretch, (2) harmonic approximation for angle bend, (3) 3rd order Fourier series for torsion, and (4) Lennard-Jones potential for nonbonded interaction, are used for the MMHC force field.
- (a) List down all the force field parameters required for the MMHC method.
- (b) What sort of data would you use for force field parametrization?
- (c) Suggest two ways to improve the reliability of the **MMHC** method.
- (3) With the use of the table of coordinates (in Å) given below and the following force field parameters: $k_{\rm r} = 700$ kcal mol⁻¹ Å⁻², $r_0 = 0.93$ Å, $k_{\rm \theta} = 100$ kcal mol⁻¹ rad⁻² and $\theta_0 = 104.5^{\circ}$, what is the stretch-strain energy for water at this geometry? What is the bend-strain energy for water at this geometry? [Use harmonic approximation for both bond stretching and angle bending terms ($E = \frac{1}{2}kx^2$)]

atom	X	у	Z
O	0.0	0.0	0.0
H_1	0.0	-0.65	0.60
H_2	0.0	0.65	0.60

(4) You are conducting a research project on the dynamics of protein-ligand interactions using molecular dynamics (MD) simulation. Your goal is to investigate the binding mechanism of a small molecule inhibitor to a target protein implicated in a disease pathway. Design a computational workflow, from system preparation to analysis and interpretation of simulation results, outlining the steps you would take to perform and analyze the MD simulation of the protein-ligand complex.