Zestaw komend stojący do dyspozycji programisty

Zestaw komend stojący do dyspozycji programisty

zależy od języka programowania

Zestaw komend stojący do dyspozycji programisty

- zależy od języka programowania;
- jest ograniczony

Zestaw komend stojący do dyspozycji programisty

- zależy od języka programowania;
- jest ograniczony;
- jest na tyle bogaty, że daje się z nich złożyć (jak z klocków) sensowne programy.

Zestaw komend stojący do dyspozycji programisty

- zależy od języka programowania;
- jest ograniczony;
- jest na tyle bogaty, że daje się z nich złożyć (jak z klocków) sensowne programy.

Umiejętność programowania jest sztuką odpowiedniego układania tych klocków.

Zestaw komend stojący do dyspozycji programisty

- zależy od języka programowania;
- jest ograniczony;
- jest na tyle bogaty, że daje się z nich złożyć (jak z klocków) sensowne programy.

Umiejętność programowania jest sztuką odpowiedniego układania tych klocków.

Do typowych komend należą:

patrz: następne 2 slajdy

Komendy proste

Komendy proste:

Rozgałęzienie warunkowe

Rozgałęzienie warunkowe

Budowa prostych programów

Zagnieżdżanie instrukcji:

C

Budowa prostych programów

Zagnieżdżanie instrukcji:


```
while (war_1) { if (war_2) {
      instr_1
   else {
      instr_2
```

schemat

```
a=A; b=B;
while (a != b) {
}
```

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48
180	48	132	48

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
   else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48
180	48	132	48
180	48	84	48

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48
180	48	132	48
180	48	84	48
180	48	36	48

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48
180	48	132	48
180	48	84	48
180	48	36	48
180	48	36	12

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48
180	48	132	48
180	48	84	48
180	48	36	48
180	48	36	12
180	48	24	12

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48
180	48	132	48
180	48	84	48
180	48	36	48
180	48	36	12
180	48	24	12
180	48	12	12

```
a=A; b=B;
while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

A	B	a	b
180	48		
180	48	180	48
180	48	132	48
180	48	84	48
180	48	36	48
180	48	36	12
180	48	24	12
180	48	12	12

$$\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)$$

$$\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)$$
$$\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)$$

```
\text{nwd}(a_1, a_2, a_3) = \text{nwd}(\text{nwd}(a_1, a_2), a_3)
       \operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)
wczytaj a; ile = 1;
while (ile < n){
 wczytaj b;
  ile = ile+1;
 while (a != b) {
   if (a > b) a = a-b;
   else b = b-a;
```

```
\text{nwd}(a_1, a_2, a_3) = \text{nwd}(\text{nwd}(a_1, a_2), a_3)
       \operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)
wczytaj a; ile = 1;
                                              n \mid a \mid b \mid ile \mid niewczytane
while (ile < n){
 wczytaj b;
  ile = ile+1;
 while (a != b) {
   if (a > b) a = a-b;
   else b = b-a;
```

```
\text{nwd}(a_1, a_2, a_3) = \text{nwd}(\text{nwd}(a_1, a_2), a_3)
       \operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)
wczytaj a; ile = 1;
                                                   a \mid b \mid ile \mid niewczytane
while (ile < n){
                                                                    90 108 168
 wczytaj b;
  ile = ile+1;
 while (a != b) {
   if (a > b) a = a-b;
   else b = b-a;
```

else b = b-a;

```
\text{nwd}(a_1, a_2, a_3) = \text{nwd}(\text{nwd}(a_1, a_2), a_3)
       \operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)
wczytaj a; ile = 1;
                                                           b | ile | niewczytane
                                                    a
while (ile < n){
                                                                    90 108 168
 wczytaj b;
  ile = ile+1;
 while (a != b) {
   if (a > b) a = a-b;
```

```
\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)
```

```
wczytaj a; ile = 1;
while (ile < n){
  wczytaj b;
  ile = ile+1;
while (a l= b) {</pre>
```

i	ile = ile+1;							
<i>V</i>	hi]	Le ((a	!=	b)	{		
	if	(a	>	b)	a	=	a-b;	
	els	se	b	= 1	b-a	•		
}	-							
1								

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168

```
\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)
```

```
wczytaj a; ile = 1;
while (ile < n){
 wczytaj b;
 ile = ile+1;
 while (a != b) {
  if (a > b) a = a-b;
 else b = b-a;
```

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168
3	90	108	1	168

```
\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)
```

```
wczytaj a; ile = 1;
while (ile < n){
 wczytaj b;
 ile = ile+1;
 while (a != b) {
  if (a > b) a = a-b;
 else b = b-a;
```

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168
3	90	108	1	168
3	90	108	2	168

$$\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)$$
$$\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)$$

```
wczytaj a; ile = 1;
while (ile < n){
  wczytaj b;
  ile = ile+1;

while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168
3	90	108	1	168
3	90	108	2	168
3	18	18	2	168

$$\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)$$
$$\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)$$

```
wczytaj a; ile = 1;
while (ile < n){
  wczytaj b;
  ile = ile+1;

while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168
3	90	108	1	168
3	90	108	2	168
3	18	18	2	168
3	18	168	2	

$$\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)$$
$$\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)$$

```
wczytaj a; ile = 1;
while (ile < n){
  wczytaj b;
  ile = ile+1;

while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
```

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168
3	90	108	1	168
3	90	108	2	168
3	18	18	2	168
3	18	168	2	
3	18	168	3	

$$\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)$$
$$\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)$$

```
wczytaj a; ile = 1;
while (ile < n){
  wczytaj b;
  ile = ile+1;

while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168
3	90	108	1	168
3	90	108	2	168
3	18	18	2	168
3	18	168	2	
3	18	168	3	
3	6	6	3	

$$\operatorname{nwd}(a_1, a_2, a_3) = \operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), a_3\right)$$
$$\operatorname{nwd}(a_1, a_2, \dots, a_n) = \operatorname{nwd}\left(\operatorname{nwd}\left(\operatorname{nwd}(a_1, a_2), \dots\right), a_n\right)$$

```
wczytaj a; ile = 1;
while (ile < n){
  wczytaj b;
  ile = ile+1;

while (a != b) {
  if (a > b) a = a-b;
  else b = b-a;
}
```

n	a	b	ile	niewczytane
3				90 108 168
3	90			108 168
3	90		1	108 168
3	90	108	1	168
3	90	108	2	168
3	18	18	2	168
3	18	168	2	
3	18	168	3	
3	6	6	3	

DEFINICJA:

 ${\it Niezmiennik~pętli~}$ while (war) instr — dowolna własność ${\it P}$ zmiennych programu taka, że

DEFINICJA:

Niezmiennik pętli while (war) instr — dowolna własność P zmiennych programu taka, że

jeśli przed wykonaniem instr spełnione jest $P\ \&\$ war, to po wykonaniu instr spełnione jest P

DEFINICJA:

Niezmiennik pętli while (war) instr — dowolna własność P zmiennych programu taka, że

jeśli przed wykonaniem instr spełnione jest $P\ \&\$ war, to po wykonaniu instr spełnione jest P

TWIERDZENIE:

Jeśli P jest niezmiennikiem pętli **while (war) instr** i po inicjalizacji pętli ten niezmiennik jest spełniony, to na wyjściu z pętli jest spełnione $P \& \neg war$.

(wzięte z http://pl.wikipedia.org/wiki/Meander_(geografia)
 oraz z http://pl.wikipedia.org/wiki/Kanał_wodny)

(wzięte z http://pl.wikipedia.org/wiki/Meander_(geografia)
 oraz z http://pl.wikipedia.org/wiki/Kanał_wodny)

Jaka będzie prędkość przepływu wody po zamknięciu rzeki w regularnym korycie?

PRZEKRÓJ KORYTA

przekrój koryta: $6 m^2$

PRZEKRÓJ KORYTA

przekrój koryta: $6 m^2$

średnia prędkość: $0.75\,m/s$

PRZEKRÓJ KORYTA

przekrój koryta: $6 m^2$

średnia prędkość: $0.75 \, m/s$

PRZEKRÓJ KORYTA

przekrój koryta: $3 m^2$

PRZEKRÓJ KORYTA

 $3\,m^2$ przekrój koryta:

średnia prędkość: $1.5 \, m/s$ PRZEPŁYW: $4.5 \, m^3/s$

RZEKA DZIKA

UREGULOWANY KANAŁ

przekrój koryta: $6 m^2$

średnia prędkość: $0.75 \, m/s$

PRZEPŁYW: $4.5 \, m^3/s$

przekrój koryta: $3 m^2$

średnia prędkość: $1.5 \, m/s$

RZEKA DZIKA

UREGULOWANY KANAŁ

przekrój koryta:

 $6 \, m^2$

średnia prędkość: $0.75 \, m/s$

PRZEPŁYW: $4.5 \, m^3/s$

przekrój koryta: $3 m^2$

średnia prędkość: $1.5 \, m/s$

PRZEPŁYW: $4.5 \, m^3/s$

Zmienia się zarówno przekrój koryta jak prędkość prądu.

RZEKA DZIKA

UREGULOWANY KANAŁ

przekrój koryta:

 $6 \, m^2$

średnia prędkość:

 $0.75 \, m/s$

PRZEPŁYW: $4.5 \, m^3/s$

przekrój koryta: $3 m^2$

średnia prędkość: $1.5 \, m/s$

PRZEPŁYW: $4.5 \, m^3/s$

Zmienia się zarówno przekrój koryta jak prędkość prądu. Ale zmieniają się w taki sposób, że ich iloczyn pozostaje stały.

RZEKA DZIKA	UREGULOWANY KANAŁ
przekrój koryta: $6 m^2$	przekrój koryta: $3 m^2$
średnia prędkość: $0.75m/s$	średnia prędkość: $1.5m/s$
PRZEPŁYW: $4.5 m^3/s$	PRZEPŁYW: $4.5 m^3/s$

Zmienia się zarówno przekrój koryta jak prędkość prądu. Ale zmieniają się w taki sposób, że ich iloczyn pozostaje stały.

Ten iloczyn jest **niezmiennikiem** — jest stały wzdłuż rzeki (jeśli nie ma dopływów), niezależnie od zmieniającego się kształtu koryta.

$$\frac{(2\,{\rm m/sek})^2}{2} + 10\,{\rm m/sek}^2 \cdot 12\,{\rm m} \ = \ \frac{v^2}{2} + 10\,{\rm m/sek}^2 \cdot 10\,{\rm m}$$

$$\frac{(2\,\mathrm{m/sek})^2}{2} + 10\,\mathrm{m/sek}^2 \cdot 12\,\mathrm{m} \ = \ \frac{v^2}{2} + 10\,\mathrm{m/sek}^2 \cdot 10\,\mathrm{m}$$

$$v \ = \ \sqrt{44}\,\mathrm{m/sek}$$

$$\frac{(2\,{\rm m/sek})^2}{2} + 10\,{\rm m/sek}^2 \cdot 12\,{\rm m} \ = \ \frac{v^2}{2} + 10\,{\rm m/sek}^2 \cdot 10\,{\rm m}$$

$$v \ = \ \sqrt{44}\,{\rm m/sek} \ \approx \ 6.63\,{\rm m/sek}$$

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik.

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

A — założenia wstępne

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

A — założenia wstępne

C — stan wynikowy

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

A — założenia wstępne

B — niezmiennik

C — stan wynikowy

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

A — założenia wstępne

B — niezmiennik

C — stan wynikowy

Trzeba zbadać:

1. przejście przez inicjalizację z A do B

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

- A założenia wstępne
- **B** niezmiennik
- C stan wynikowy

Trzeba zbadać:

- 1. przejście przez inicjalizację z A do B,
- 2. przejście przez ciało z B & warunek do B

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

- A założenia wstępne
- B niezmiennik
- C stan wynikowy

Trzeba zbadać:

- 1. przejście przez inicjalizację z A do B,
- 2. przejście przez ciało z B & warunek do B,
- 3. implikację $B \& \neg warunek \Rightarrow C$.

W trakcie obliczeń pętli wartości zmiennych stale się zmieniają, ale pozostaje w mocy pewien związek między nimi — niezmiennik. Z tego faktu wynikają własności pętli.

- A założenia wstępne
- B niezmiennik
- C stan wynikowy

Trzeba zbadać:

- 1. przejście przez inicjalizację z A do B,
- 2. przejście przez ciało z B & warunek do B,
- 3. implikację $B \& \neg warunek \Rightarrow C$.

Wtedy wiemy, że

dla każdych danych spełniających A wyniki spełniają C

N	s	n
5		

$$\begin{array}{c|c|c}
N & s & n \\
\hline
5 & 1 & 5 \\
\end{array}$$

N	S	n
5	1	5
	5	4

N	s	n
5	1	5
	5	4
	20	3

N	s	n
5	1	5
	5	4
	20	3
	60	2

N	S	n
5	1	5
	5	4
	20	3
	60	2
	120	1

N	s	n
5	1	5
	5	4
	20	3
	60	2
	120	1
	120	0

Ręczna symulacja: wartości zmiennych w *B* w kilku pierwszych obrotach pętli:

N	s	n
5	1	5
	5	4
	20	3
	60	2
	120	1
	120	0

Zależności między wartościami zmiennych:

$$s \cdot n! = N!$$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli
zmienne primowane —

po przejściu przez ciało pętli

Wiemy: $s \cdot n! = N! \& n > 0$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Wiemy:
$$s \cdot n! = N! \ \& \ n > 0$$
 oraz $s' = s \cdot n \ \& \ n' = n - 1$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Wiemy:
$$s \cdot n! = N! \ \& \ n > 0$$
 oraz $s' = s \cdot n \ \& \ n' = n - 1$

$$s' \cdot n'!$$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Wiemy:
$$s \cdot n! = N! \ \& \ n > 0$$
 oraz $s' = s \cdot n \ \& \ n' = n - 1$

$$s' \cdot n'! = (s \cdot n) \cdot (n-1)!$$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Wiemy:
$$s \cdot n! = N! \ \& \ n > 0$$
 oraz $s' = s \cdot n \ \& \ n' = n - 1$

$$s' \cdot n'! = (s \cdot n) \cdot (n-1)!$$
$$= s \cdot (n \cdot (n-1)!)$$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Wiemy:
$$s \cdot n! = N! \ \& \ n > 0$$
 oraz $s' = s \cdot n \ \& \ n' = n - 1$

$$s' \cdot n'! = (s \cdot n) \cdot (n-1)!$$

$$= s \cdot (n \cdot (n-1)!)$$

$$= s \cdot n!$$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Wiemy:
$$s \cdot n! = N! \ \& \ n > 0$$
 oraz $s' = s \cdot n \ \& \ n' = n - 1$

$$s' \cdot n'! = (s \cdot n) \cdot (n-1)!$$

$$= s \cdot (n \cdot (n-1)!)$$

$$= s \cdot n!$$

$$= N!$$

Czy $s \cdot n! = N!$ jest niezmiennikiem w B?

zmienne nieprimowane —

przed przejściem przez ciało pętli

zmienne primowane —

po przejściu przez ciało pętli

Wiemy:
$$s \cdot n! = N! \ \& \ n > 0$$
 oraz $s' = s \cdot n \ \& \ n' = n - 1$

Stąd wnioskujemy:

$$s' \cdot n'! = (s \cdot n) \cdot (n-1)!$$

$$= s \cdot (n \cdot (n-1)!)$$

$$= s \cdot n!$$

$$= N!$$

To dowodzi niezmienniczości tej formuły.

jeśli
$$s=1$$
 i $n=N$

jeśli
$$s=1$$
 i $n=N$, to
$$s\cdot n!$$

jeśli
$$s=1$$
 i $n=N$, to
$$s\cdot n! \ = \ 1\cdot N!$$

jeśli
$$s=1$$
 i $n=N$, to
$$s\cdot n! \ = \ 1\cdot N! \ = \ N!$$

Wejście do pętli:

jeśli
$$s=1$$
 i $n=N$, to
$$s\cdot n! \ = \ 1\cdot N! \ = \ N!$$

więc niezmiennik jest wtedy spełniony.

Wejście do pętli:

jeśli
$$s=1$$
 i $n=N$, to

$$s \cdot n! = 1 \cdot N! = N!$$

więc niezmiennik jest wtedy spełniony.

Wyjście z pętli:

jeśli
$$s \cdot n! = N!$$
 i $n = 0$

Wejście do pętli:

jeśli
$$s=1$$
 i $n=N$, to

$$s \cdot n! = 1 \cdot N! = N!$$

więc niezmiennik jest wtedy spełniony.

Wyjście z pętli:

jeśli
$$s \cdot n! = N!$$
 i $n = 0$, to

$$s = s \cdot 1$$

Wejście do pętli:

jeśli
$$s=1$$
 i $n=N$, to

$$s \cdot n! = 1 \cdot N! = N!$$

więc niezmiennik jest wtedy spełniony.

Wyjście z pętli:

jeśli
$$s \cdot n! = N!$$
 i $n = 0$, to

$$s = s \cdot 1 = s \cdot 0!$$

Wejście do pętli:

jeśli
$$s=1$$
 i $n=N$, to

$$s \cdot n! = 1 \cdot N! = N!$$

więc niezmiennik jest wtedy spełniony.

Wyjście z pętli:

jeśli
$$s \cdot n! = N!$$
 i $n = 0$, to

$$s = s \cdot 1 = s \cdot 0! = s \cdot n!$$

Wejście do pętli:

jeśli s=1 i n=N , to

$$s \cdot n! = 1 \cdot N! = N!$$

więc niezmiennik jest wtedy spełniony.

Wyjście z pętli:

jeśli
$$s \cdot n! = N!$$
 i $n = 0$, to

$$s = s \cdot 1 = s \cdot 0! = s \cdot n! = N!$$

Wejście do pętli:

jeśli s=1 i n=N , to

$$s \cdot n! = 1 \cdot N! = N!$$

więc niezmiennik jest wtedy spełniony.

Wyjście z pętli:

jeśli $s \cdot n! = N!$ i n = 0, to

$$s = s \cdot 1 = s \cdot 0! = s \cdot n! = N!$$

więc przy wyjściu z pętli s=N!

a	b	C	d
0	0	1	6

a	b	c	d
0	0	1	6
1	1	7	12

a	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18

	a	b	c	d
-	0	0	1	6
-	1	1	7	12
•	2	8	19	18
•	3	27	37	24

\underline{a}	$\mid b \mid$	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30

a	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30
5	125	91	36

a	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30
5	125	91	36
6	216	127	42

\underline{a}	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30
5	125	91	36
6	216	127	42
7	343	169	48

Ręczna symulacja: wartości zmiennych w *B* w kilku pierwszych obrotach pętli:

a	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30
5	125	91	36
6	216	127	42
7	343	169	48

Zależności między wartościami zmiennych

Ręczna symulacja: wartości zmiennych w *B* w kilku pierwszych obrotach pętli:

\underline{a}	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30
5	125	91	36
6	216	127	42
7	343	169	48

Zależności między wartościami zmiennych:

$$b = a^3$$

Ręczna symulacja: wartości zmiennych w *B* w kilku pierwszych obrotach pętli:

\underline{a}	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30
5	125	91	36
6	216	127	42
7	343	169	48

Zależności między wartościami zmiennych:

$$b = a^3 \qquad d = 6 \cdot (a+1)$$

Ręczna symulacja: wartości zmiennych w *B* w kilku pierwszych obrotach pętli:

\underline{a}	b	c	d
0	0	1	6
1	1	7	12
2	8	19	18
3	27	37	24
4	64	61	30
5	125	91	36
6	216	127	42
7	343	169	48

Zależności między wartościami zmiennych:

$$b = a^{3} d = 6 \cdot (a+1)$$

$$c = (a+1)^{3} - a^{3} = 3a^{2} + 3a + 1$$

Czy *B* jest niezmiennikiem?

$a \leftarrow 0; b \leftarrow 0; c \leftarrow 1; d \leftarrow 6$ $b=a^3\leqslant N\ \&\ d=6(a+1)$ po przejściu przez ciało pętli & $c = 3a^2 + 3a + 1$ $b+c \leqslant N \quad | \quad b+c > N$ $a \leftarrow a+1; b \leftarrow b+c$ $c \leftarrow c + d$ $d \leftarrow d + 6$

Czy *B* jest niezmiennikiem?

zmienne nieprimowane przed przejściem przez ciało pętli zmienne primowane —

Czy *B* jest niezmiennikiem?

zmienne nieprimowane —
przed przejściem przez ciało pętli
zmienne primowane —
po przejściu przez ciało pętli

Wiemy:

$$b = a^3 \le N \& d = 6(a+1) \& c = 3a^2 + 3a + 1 \& b + c \le N$$

Czy *B* jest niezmiennikiem?

zmienne nieprimowane —

przed przejściem przez ciało pętli
zmienne primowane —

1) po przejściu przez ciało pętli

Wiemy:

$$b = a^3 \le N \& d = 6(a+1) \& c = 3a^2 + 3a + 1 \& b + c \le N$$

$$a' = a + 1$$

Czy *B* jest niezmiennikiem?

zmienne nieprimowane —
przed przejściem przez ciało pętli
zmienne primowane —
po przejściu przez ciało pętli

Wiemy:

$$b = a^3 \le N \& d = 6(a+1) \& c = 3a^2 + 3a + 1 \& b + c \le N$$

$$a' = a + 1$$
$$b' = b + c$$

Czy *B* jest niezmiennikiem?

zmienne nieprimowane —
przed przejściem przez ciało pętli
zmienne primowane —
n po przejściu przez ciało pętli

Wiemy:

$$b = a^3 \le N \& d = 6(a+1) \& c = 3a^2 + 3a + 1 \& b + c \le N$$

$$a' = a + 1$$
 $c' = c + d$
 $b' = b + c$

Czy *B* jest niezmiennikiem?

zmienne nieprimowane —
przed przejściem przez ciało pętli
zmienne primowane —
n po przejściu przez ciało pętli

Wiemy:

$$b = a^3 \le N \& d = 6(a+1) \& c = 3a^2 + 3a + 1 \& b + c \le N$$

$$a' = a + 1$$
 $c' = c + d$
 $b' = b + c$ $d' = d + 6$

Czy *B* jest niezmiennikiem?

zmienne nieprimowane —
przed przejściem przez ciało pętli
zmienne primowane —
po przejściu przez ciało pętli

Wiemy:

$$b = a^3 \le N \& d = 6(a+1) \& c = 3a^2 + 3a + 1 \& b + c \le N$$

oraz

$$a' = a + 1$$
 $c' = c + d$
 $b' = b + c$ $d' = d + 6$

Stąd wnioskujemy:

$$b' \stackrel{?}{=} a'^3 \stackrel{?}{\leqslant} N \& d' \stackrel{?}{=} 6(a'+1) \& c' \stackrel{?}{=} 3a'^2 + 3a' + 1$$

 $\lfloor x \rfloor$ — część całkowita liczby rzeczywistej

Program oblicza

$$a = \left[\sqrt[3]{N}\right]$$

 $\lfloor x \rfloor$ — część całkowita liczby rzeczywistej

Przykłady programów

```
k=0; p=1; q=2;
while (p+q <= m) {
    k=k+1; p=p+q; q=p+p;
}</pre>
```

Przykłady programów

```
/* A: m \ge 1 */
k=0; p=1; q=2;

while (p+q <= m) {
    k=k+1; p=p+q; q=p+p;
}
/* D: k = \lfloor \log_3 m \rfloor */
```

```
/* A: m \geqslant 1 */
k=0; p=1; q=2;
/* B: p = 3^k \leqslant m \& q = 2 \cdot 3^k */
while (p+q <= m) {
    k=k+1; p=p+q; q=p+p;
}
/* D: k = \lfloor \log_3 m \rfloor */
```

```
/* A: m \geqslant 1 */
k=0; p=1; q=2;
/* B: p = 3^k \leqslant m \& q = 2 \cdot 3^k */
while (p+q <= m) {
    k=k+1; p=p+q; q=p+p;
}
/* D: k = \lfloor \log_3 m \rfloor */
```

Dowieść (zmienne primowane oznaczają *nowe* wartości)

```
/* A: m \geqslant 1 */
k=0; p=1; q=2;
/* B: p = 3^k \leqslant m \& q = 2 \cdot 3^k */
while (p+q <= m) {
    k=k+1; p=p+q; q=p+p;
}
/* D: k = \lfloor \log_3 m \rfloor */
```

Dowieść (zmienne primowane oznaczają *nowe* wartości):

1.
$$m \ge 1 \& k' = 0 \& p' = 1 \& q' = 2$$
 \Rightarrow $p' = 3^{k'} \le m \& q' = 2 \cdot 3^{k'}$

```
/* A: m \geqslant 1 */
k=0; p=1; q=2;
/* B: p = 3^k \leqslant m \& q = 2 \cdot 3^k */
while (p+q <= m) {
    k=k+1; p=p+q; q=p+p;
}
/* D: k = \lfloor \log_3 m \rfloor */
```

Dowieść (zmienne primowane oznaczają *nowe* wartości):

1.
$$m \ge 1 \& k' = 0 \& p' = 1 \& q' = 2$$
 \Rightarrow $p' = 3^{k'} \le m \& q' = 2 \cdot 3^{k'}$

2.
$$p = 3^k \le m \& q = 2 \cdot 3^k \& p + q \le m \& k' = k + 1 \& p' = p + q \& q' = p' + p' \implies p' = 3^{k'} \le m \& q' = 2 \cdot 3^{k'}$$

```
/* A: m \geqslant 1 */
k=0; p=1; q=2;
/* B: p = 3^k \leqslant m \& q = 2 \cdot 3^k */
while (p+q <= m) {
    k=k+1; p=p+q; q=p+p;
}
/* D: k = \lfloor \log_3 m \rfloor */
```

Dowieść (zmienne primowane oznaczają *nowe* wartości):

1.
$$m \ge 1 \& k' = 0 \& p' = 1 \& q' = 2$$
 \Rightarrow $p' = 3^{k'} \le m \& q' = 2 \cdot 3^{k'}$

2.
$$p = 3^k \le m \& q = 2 \cdot 3^k \& p + q \le m \& k' = k + 1 \& p' = p + q \& q' = p' + p' \implies p' = 3^{k'} \le m \& q' = 2 \cdot 3^{k'}$$

3.
$$p = 3^k \le m \& q = 2 \cdot 3^k \& p + q > m \implies k = \lfloor \log_3 m \rfloor$$

Przykład programu: największy wspólny dzielnik

```
/* A > 0 \& B > 0 */
a=A; b=B;
/* a > 0 \& b > 0 \& \operatorname{nwd}(a, b) = \operatorname{nwd}(A, B) */
while (a != b) {
   if (a > b) a = a-b;
   else b = b-a;
}
/* a = \operatorname{nwd}(A, B) */
```

Dzielenie całkowite z resztą

Dzielenie całkowite z resztą:

Dzielenie dokładne: q jest ilorazem n przez k

→ ???

Dzielenie całkowite z resztą:

Dzielenie dokładne: q jest ilorazem n przez k

$$\iff k \cdot q = n$$

Dzielenie całkowite z resztą:

Dzielenie dokładne: q jest ilorazem n przez k

$$\iff k \cdot q = n$$

Dzielenie z resztą: q jest ilorazem całkowitym a r jest resztą n przez k

 \iff

???

Dzielenie całkowite z resztą:

Dzielenie dokładne: q jest ilorazem n przez k

$$\iff k \cdot q = n$$

Dzielenie z resztą: q jest ilorazem całkowitym a r jest resztą n przez k

$$k \cdot q + r = n \& 0 \leqslant r < k$$

Dzielenie całkowite z resztą:

Dzielenie dokładne: q jest ilorazem n przez k

$$\iff k \cdot q = n$$

Dzielenie z resztą: q jest ilorazem całkowitym a r jest resztą n przez k

$$k \cdot q + r = n \& 0 \leqslant r < k$$

Dzielenie z resztą łatwo zorganizować przez wielokrotne odejmowanie

Dzielenie całkowite z resztą:

Dzielenie dokładne: q jest ilorazem n przez k

$$\iff k \cdot q = n$$

Dzielenie z resztą: q jest ilorazem całkowitym a r jest resztą n przez k

$$k \cdot q + r = n \& 0 \leqslant r < k$$

Dzielenie z resztą łatwo zorganizować przez wielokrotne odejmowanie:

• znaleźć jakiekolwiek q i r spełniające $k \cdot q + r = n \ \& \ 0 \leqslant r$

Dzielenie całkowite z resztą:

Dzielenie dokładne: q jest ilorazem n przez k

$$\iff k \cdot q = n$$

Dzielenie z resztą: q jest ilorazem całkowitym a r jest resztą n przez k

$$k \cdot q + r = n \& 0 \leqslant r < k$$

Dzielenie z resztą łatwo zorganizować przez wielokrotne odejmowanie:

- znaleźć jakiekolwiek q i r spełniające $k \cdot q + r = n \& 0 \leqslant r$,
- tak długo odejmować dzielnik k od r, aż dodatkowo będzie spełnione r < k (zakładamy k > 0).

Dzielenie całkowite z resztą (zał.: k > 0):

1. Przejście od *A* do *B*

- 1. Przejście od *A* do *B*
- 2. Wynikanie $B \& k \leqslant r \Rightarrow C$

- 1. Przejście od *A* do *B*
- 2. Wynikanie $B \& k \leqslant r \Rightarrow C$
- 3. Przejście od C do B (przez E)

- 1. Przejście od *A* do *B*
- 2. Wynikanie $B \& k \leqslant r \Rightarrow C$
- 3. Przejście od C do B (przez E)
- 4. Wynikanie $B \& r < k \Rightarrow D$

Dzielenie całkowite z resztą:

```
/* n \ge 0 & k > 0 */
q = 0; r = n;

/* n = k \cdot q + r & 0 \le r */
while (r>=k) {
q = q+1; r = r-k;
}
/* n = k \cdot q + r & 0 \le r < k */
```

Dzielenie całkowite z resztą:

```
/* n \ge 0 & k > 0 */

q = 0; r = n;

/* n = k \cdot q + r & 0 \le r */

while (r>=k) {

q = q+1; r = r-k;
}

/* n = k \cdot q + r & 0 \le r < k */
```

Dla poprawności należy sprawdzić:

```
1. jeśli n \ge 0 & k > 0, to po wykonaniu q = 0; r = n; jest n = k \cdot q' + r' & 0 \le r'
```

Dzielenie całkowite z resztą:

```
/* n \ge 0 & k > 0 */

q = 0; r = n;

/* n = k \cdot q + r & 0 \le r */

while (r>=k) {

q = q+1; r = r-k;
}

/* n = k \cdot q + r & 0 \le r < k */
```

Dla poprawności należy sprawdzić:

- 1. jeśli $n \ge 0$ & k > 0, to po wykonaniu q = 0; r = n; jest $n = k \cdot q' + r'$ & $0 \le r'$
- 2. jeśli $n=k\cdot q+r$ & $0\leqslant r$ & $r\geqslant k$, to po wykonaniu q=q+1; r=r-k; jest $n=k\cdot q'+r'$ & $0\leqslant r'$

Dzielenie całkowite z resztą:

```
/* n \ge 0 & k > 0 */
q = 0; r = n;

/* n = k \cdot q + r & 0 \le r */
while (r>=k) {
q = q+1; r = r-k;
}
/* n = k \cdot q + r & 0 \le r < k */
```

Dla poprawności należy sprawdzić:

- 1. jeśli $n \ge 0$ & k > 0, to po wykonaniu q = 0; r = n; jest $n = k \cdot q' + r'$ & $0 \le r'$
- 2. jeśli $n=k\cdot q+r$ & $0\leqslant r$ & $r\geqslant k$, to po wykonaniu q=q+1; r=r-k; jest $n=k\cdot q'+r'$ & $0\leqslant r'$
- 3. jeśli $n = k \cdot q + r \ \& \ 0 \leqslant r \ \& \ r < k$, to $n = k \cdot q' + r' \ \& \ 0 \leqslant r' < k$

• Z tego, że asercje rozmieszczone w programie są niezmiennikami, wnioskujemy o jego poprawności.

- Z tego, że asercje rozmieszczone w programie są niezmiennikami, wnioskujemy o jego poprawności.
- Konstruując program najpierw piszemy odpowiednie asercje; potem tak dobieramy komendy, żeby te asercje były niezmiennicze.

- Z tego, że asercje rozmieszczone w programie są niezmiennikami, wnioskujemy o jego poprawności.
- Konstruując program najpierw piszemy odpowiednie asercje; potem tak dobieramy komendy, żeby te asercje były niezmiennicze.
- Program powstaje więc razem z dowodem swojej poprawności; dowód zawsze "o pół kroku wcześniej".

- Z tego, że asercje rozmieszczone w programie są niezmiennikami, wnioskujemy o jego poprawności.
- Konstruując program najpierw piszemy odpowiednie asercje; potem tak dobieramy komendy, żeby te asercje były niezmiennicze.
- Program powstaje więc razem z dowodem swojej poprawności; dowód zawsze "o pół kroku wcześniej".
- Asercje mogą również pomóc w kontrolowanym transformowaniu programu do innej postaci.