Chapter 10

Straight Lines

- The lines $p(p^2 + 1)x y + q = 0$ and $(p^2 + 1)^2x +$ $(p^2 + 1)y + 2q = 0$ are perpendicular to a common line for [AIEEE-2009]
 - (1) Exactly one value of p
 - (2) Exactly two values of p
 - (3) More than two values of p
 - (4) No value of p
- 2. Three distinct points A, B and C are given in the 2 - dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1, 0) to the distance from the point (-1, 0)

is equal to $\frac{1}{3}$. Then the circumcentre of the triangle ABC is at the point [AIEEE-2009]

- (1) $\left(\frac{5}{4}, 0\right)$ (2) $\left(\frac{5}{2}, 0\right)$
- $(3) \quad \left(\frac{5}{3},0\right)$
- The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through the point (13, 32). The line K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$. Then the distance between L and K is [AIEEE-2010]
 - (1) $\frac{23}{\sqrt{15}}$
- (3) $\frac{17}{\sqrt{15}}$
- The lines x + y = |a| and ax y = 1 intersect each other in the first quadrant. Then the set of all possible values of *a* is the interval [AIEEE-2011]
 - (1) $(-1, \infty)$
- (2) (-1, 1]
- (3) $(0, \infty)$
- $(4) [1, \infty)$

- If A(2, -3) and B(-2, 1) are two vertices of a triangle and third vertex moves on the line 2x + 3y= 9, then the locus of the centroid of the triangle [AIEEE-2011]
 - (1) 2x + 3y = 3
- (2) 2x 3y = 1
- (3) x y = 1
- (4) 2x + 3y = 1
- If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3: 2, then k equals [AIEEE-2012]
 - (1) 5
- (2) 6
- (3) 11/5
- (4) 29/5
- A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it form a triangle OPQ where O is the origin. If the area of the triangle OPQ is least, then the slope of the line [AIEEE-2012] PQ is
 - (1) -4
- (2) -2
- (3) -1/2
- (4) -1/4
- A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected [JEE (Main)-2013]

 - (1) $y = x + \sqrt{3}$ (2) $\sqrt{3}y = x \sqrt{3}$
 - (3) $y = \sqrt{3}x \sqrt{3}$ (4) $\sqrt{3}y = x 1$
- The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0, 1), (1, 1) and (1, 0) is [JEE (Main)-2013]
 - (1) $2 + \sqrt{2}$
- (2) $2-\sqrt{2}$
- (3) $1+\sqrt{2}$
- (4) $1-\sqrt{2}$
- 10. Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is [JEE (Main)-2014]

 - (1) 4x + 7y + 3 = 0 (2) 2x 9y 11 = 0
 - (3) 4x 7y 11 = 0 (4) 2x + 9y + 7 = 0

11. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0 lies in the fourth quadrant and is equidistant from the two axes then

[JEE (Main)-2014]

- (1) 3bc 2ad = 0
- (2) 3bc + 2ad = 0
- (3) 2bc 3ad = 0
- (4) 2bc + 3ad = 0
- 12. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices (0, 0), (0, 41) and (41, 0), is

[JEE (Main)-2015]

- (1) 901
- (2) 861
- (3) 820
- (4) 780
- 13. Locus of the image of the point (2, 3) in the line $(2x-3y+4)+k(x-2y+3)=0, k \in R$, is a [JEE (Main)-2015]
 - (1) Straight line parallel to x-axis
 - (2) Straight line parallel to y-axis
 - (3) Circle of radius $\sqrt{2}$
 - (4) Circle of radius $\sqrt{3}$
- 14. Two sides of a rhombus are along the lines,

x - y + 1 = 0 and 7x - y - 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus?

[JEE (Main)-2016]

- (1) (-3, -8) (2) $\left(\frac{1}{3}, -\frac{8}{3}\right)$
- (3) $\left(-\frac{10}{3}, -\frac{7}{3}\right)$ (4) (-3, -9)
- 15. Let k be an integer such that the triangle with vertices (k, -3k), (5, k) and (-k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point [JEE (Main)-2017]

 - (1) $\left(1, \frac{3}{4}\right)$ (2) $\left(1, -\frac{3}{4}\right)$
 - (3) $\left(2, \frac{1}{2}\right)$ (4) $\left(2, -\frac{1}{2}\right)$
- 16. A straight line through a fixed point (2, 3) intersects the coordinate axes at distinct points P and Q. If O is the origin and the rectangle OPRQ is completed, then the locus of R is

[JEE (Main)-2018]

- (1) 3x + 2y = 6
- (2) 2x + 3y = xy
- (3) 3x + 2y = xy
- (4) 3x + 2y = 6xy

- 17. Consider the set of all lines px + qy + r = 0 such that 3p + 2q + 4r = 0. Which one of the following statements is true? [JEE (Main)-2019]
 - (1) The lines are all parallel
 - (2) The lines are not concurrent
 - (3) The lines are concurrent at the point $\left(\frac{3}{4}, \frac{1}{2}\right)$
 - (4) Each line passes through the origin
- 18. Let S be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in S has area 50 sq. units, then the number of elements in the set S is:

[JEE (Main)-2019]

- (1) 9
- (2) 32
- (3) 36
- (4) 18
- 19. Let the equations of two sides of a triangle be 3x - 2y + 6 = 0 and 4x + 5y - 20 = 0. If the orthocentre of this triangle is at (1, 1), then the [JEE (Main)-2019] equation of its third side is
 - (1) 26x 122y 1675 = 0
 - (2) 122y 26x 1675 = 0
 - (3) 122y + 26x + 1675 = 0
 - (4) 26x + 61y + 1675 = 0
- If the line 3x + 4y 24 = 0 intersects the x-axis at the point A and the y-axis at the point B, then the incentre of the triangle OAB, where O is the origin is [JEE (Main)-2019]
 - (1) (4, 3)
- (2) (3,4)
- (3) (4, 4)
- (4) (2, 2)
- 21. A point P moves on the line 2x 3y + 4 = 0. If Q(1, 4) and R(3, -2) are fixed points, then the locus of the centroid of ΔPQR is a line

[JEE (Main)-2019]

- (1) Parallel to y-axis (2) With slope $\frac{3}{2}$
- (3) With slope $\frac{2}{3}$ (4) Parallel to x-axis
- 22. Two vertices of a triangle are (0, 2) and (4, 3). If its orthocentre is at the origin, then its third vertex lies in which quadrant? [JEE (Main)-2019]
 - (1) Fourth
 - (2) Third
 - (3) First
 - (4) Second

- 23. The straight line x + 2y = 1 meets the coordinate axes at A and B. A circle is drawn through A, B and the origin. Then the sum of perpendicular distances from A and B on the tangent to the circle at the origin is [JEE (Main)-2019]
 - (1) $\frac{\sqrt{5}}{4}$
- (2) $\frac{\sqrt{5}}{2}$
- (3) $4\sqrt{5}$
- (4) $2\sqrt{5}$
- 24. In a triangle, the sum of lengths of two sides is xand the product of the lengths of the same two sides is y. If $x^2 - c^2 = y$, where c is the length of the third side of the triangle, then the circumradius of the triangle is [JEE (Main)-2019]
 - (1) $\frac{c}{\sqrt{3}}$
- (2) $\frac{3}{2}y$
- (3) $\frac{c}{3}$
- 25. If in a parallelogram ABDC, the coordinates of A, B and C are respectively (1, 2), (3, 4) and (2, 5), then the equation of the diagonal AD is

[JEE (Main)-2019]

- (1) 5x + 3y 11 = 0
- (2) 3x + 5y 13 = 0
- (3) 3x 5y + 7 = 0
- (4) 5x 3y + 1 = 0
- 26. If the straight line, 2x 3y + 17 = 0 is perpendicular to the line passing through the points (7, 17) and $(15, \beta)$, then β equals

[JEE (Main)-2019]

- $(1) -\frac{35}{3}$

- (3) 5
- 27. A point on the straight line, 3x + 5y = 15 which is equidistant from the coordinate axes will lie only [JEE (Main)-2019] in
 - (1) 4th quadrant
 - (2) 1st quadrant
 - (3) 1st, 2nd and 4th quadrants
 - (4) 1st and 2nd quadrants

Suppose that the points (h, k), (1, 2) and (-3, 4)lie on the line L_1 . If a line L_2 passing through the points (h, k) and (4, 3) is perpendicular to L_1 , then

 $\frac{k}{h}$ equals

[JEE (Main)-2019]

- (1) 3
- (3) 0
- Slope of a line passing through P(2, 3) and intersecting the line, x + y = 7 at a distance of 4 units from P, is [JEE (Main)-2019]

 - (1) $\frac{\sqrt{7}-1}{\sqrt{7}+1}$ (2) $\frac{1-\sqrt{7}}{1+\sqrt{7}}$
 - (3) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$
- (4) $\frac{1-\sqrt{5}}{1+\sqrt{5}}$
- 30. A rectangle is inscribed in a circle with a diameter lying along the line 3y = x + 7. If the two adjacent vertices of the rectangle are (-8, 5) and (6, 5), then the area of the rectangle (in sq. units) is

[JEE (Main)-2019]

- (1) 56
- (2) 84
- (3) 72
- (4) 98
- 31. If the two lines x + (a 1)y = 1 and $2x + a^2y = 1$ $(a \in R - \{0, 1\})$ are perpendicular, then the distance of their point of intersection from the origin [JEE (Main)-2019]
 - (1) $\sqrt{\frac{2}{5}}$

- 32. Lines are drawn parallel to the line 4x 3y + 2 = 0, at a distance $\frac{3}{5}$ from the origin. Then which one of the following points lies on any of these lines? [JEE (Main)-2019]
 - (1) $\left(\frac{1}{4}, -\frac{1}{3}\right)$ (2) $\left(\frac{1}{4}, \frac{1}{3}\right)$

 - (3) $\left(-\frac{1}{4}, \frac{2}{3}\right)$ (4) $\left(-\frac{1}{4}, -\frac{2}{3}\right)$

33. The equation $y = \sin x \sin(x + 2) - \sin^2(x + 1)$ represents a straight line lying in

[JEE (Main)-2019]

- (1) Third and fourth quadrants only
- (2) First, third and fourth quadrants
- (3) First, second and fourth quadrants
- (4) Second and third quadrants only
- 34. A plane which bisects the angle between the two given planes 2x - y + 2z - 4 = 0 and x + 2y + 2z-2 = 0, passes through the point

[JEE (Main)-2019]

- (1) (1, -4, 1)
- (2) (2, -4, 1)
- (3) (1, 4, -1)
- (4) (2, 4, 1)
- 35. A triangle has a vertex at (1, 2) and the mid points of the two sides through it are (-1, 1) and (2, 3). Then the centroid of this triangle is

[JEE (Main)-2019]

- (1) $\left(\frac{1}{3}, 2\right)$ (2) $\left(\frac{1}{3}, \frac{5}{3}\right)$
- (3) $\left(\frac{1}{3}, 1\right)$
- 36. A straight line L at a distance of 4 units from the origin makes positive intercepts on the coordinate axes and the perpendicular from the origin to this line makes an angle of 60° with the line x + y = 0. Then an equation of the line L is

[JEE (Main)-2019]

- (1) $(\sqrt{3} + 1)x + (\sqrt{3} + 1)y = 8\sqrt{2}$
- (2) $(\sqrt{3} 1)x + (\sqrt{3} + 1)y = 8\sqrt{2}$
- (3) $\sqrt{3}x + v = 8$
- (4) $x + \sqrt{3}y = 8$
- 37. Two sides of a parallelogram are along the lines, x + y = 3 and x - y + 3 = 0. If its diagonals intersect at (2, 4) then one of its vertex is

[JEE (Main)-2019]

- (1) (2, 1)
- (2) (3,5)
- (3) (2,6)
- (4) (3, 6)
- 38. The locus of the mid-points of the perpendiculars drawn from points on the line, x = 2y to the line x = y is [JEE (Main)-2020]
 - (1) 5x 7y = 0
- (2) 2x 3y = 0
- (3) 3x 2y = 0
- (4) 7x 5y = 0

- 39. Let two points be A(1, -1) and B(0, 2). If a point P(x', y') be such that the area of $\triangle PAB = 5$ sq. units and it lies on the line, $3x + y - 4\lambda = 0$, then a value of λ is [JEE (Main)-2020]
 - (1) 3
- (2) 4
- (3) 1
- (4) -3
- 40. Let C be the centroid of the triangle with vertices (3, -1), (1, 3) and (2, 4). Let P be the point of intersection of the lines x + 3y - 1 = 0 and 3x - y + 1 = 0. Then the line passing through the points C and P also passes through the point

[JEE (Main)-2020]

- (1) (-9, -6)
- (2) (-9, -7)
- (3) (9,7)
- (4) (7, 6)
- 41. The set of all possible values of θ in the interval (0, π) for which the points (1, 2) and ($\sin\theta$, $\cos\theta$) lie on the same side of the line x + y = 1 is

[JEE (Main)-2020]

- $(1) \left(0, \frac{\pi}{2}\right)$
- (2) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$
- (4) $\left(0, \frac{3\pi}{4}\right)$
- 42. If a $\triangle ABC$ has vertices A(-1, 7), B(-7, 1) and C(5, -5), then its orthocentre has coordinates

[JEE (Main)-2020]

- (1) (-3, 3)
- $(2) \quad \left(-\frac{3}{5}, \frac{3}{5}\right)$
- (3) (3, -3)
- (4) $\left(\frac{3}{5}, -\frac{3}{5}\right)$
- 43. A triangle ABC lying in the first quadrant has two vertices as A(1, 2) and B(3, 1). If $\angle BAC = 90^{\circ}$, and $ar(\triangle ABC) = 5\sqrt{5}$ sq. units, then the abscissa of the vertex C is [JEE (Main)-2020]
 - (1) $1+\sqrt{5}$
- (2) $1+2\sqrt{5}$
- (3) $2\sqrt{5}-1$
- (4) $2 + \sqrt{5}$
- 44. If the perpendicular bisector of the line segment joining the points P(1, 4) and Q(k, 3) has y-intercept equal to -4, then a value of k is

[JEE (Main)-2020]

- (1) $\sqrt{14}$
- $\sqrt{15}$

- 45. A ray of light coming from the point $(2, 2\sqrt{3})$ is incident at an angle 30° on the line x = 1 at the point A. The ray gets reflected on the line x = 1and meets x-axis at the point B. Then, the line AB passes through the point [JEE (Main)-2020]
 - (1) $\left(3, -\frac{1}{\sqrt{3}}\right)$ (2) $\left(3, -\sqrt{3}\right)$

 - (3) $(4, -\sqrt{3})$ (4) $(4, -\frac{\sqrt{3}}{2})$
- 46. Let L denote the line in the xy-plane with x and y intercepts as 3 and 1 respectively. Then the image of the point (-1, -4) in this line is

[JEE (Main)-2020]

- (1) $\left(\frac{29}{5}, \frac{8}{5}\right)$ (2) $\left(\frac{29}{5}, \frac{11}{5}\right)$
- (3) $\left(\frac{8}{5}, \frac{29}{5}\right)$ (4) $\left(\frac{11}{5}, \frac{28}{5}\right)$
- 47. Let A(1, 0), B(6, 2) and $C\left(\frac{3}{2}, 6\right)$ be the vertices of

a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line

segment PQ, where Q is the point $\left(-\frac{7}{6}, -\frac{1}{3}\right)$,

48. If the line, 2x - y + 3 = 0 is at a distance $\frac{1}{\sqrt{5}}$ and

 $\frac{2}{\sqrt{5}}$ from the lines $4x - 2y + \alpha = 0$ and $6x - 3y + \beta = 0$, respectively, then the sum of all possible values of α and β is

[JEE (Main)-2020]

49. A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of this line on

the coordinate axes is $\frac{1}{4}$. Three stones A, B and C

are placed at the points (1, 1), (2, 2) and (4, 4) respectively. Then which of these stones is/are on the path of the man? [JEE (Main)-2021]

- (1) C only
- (2) B only
- (3) All the three
- (4) A only

- 50. The image of the point (3, 5) in the line x y + 1= 0, lies on : [JEE (Main)-2021]
 - (1) $(x-4)^2 + (y+2)^2 = 16$
 - (2) $(x-4)^2 + (y-4)^2 = 8$
 - (3) $(x-2)^2 + (y-2)^2 = 12$
 - (4) $(x-2)^2 + (y-4)^2 = 4$
- 51. The intersection of three lines x y = 0, x + 2y = 3 and 2x + y = 6 is a :

[JEE (Main)-2021]

- (1) None of the above
- (2) Isosceles triangle
- (3) Right angled triangle (4) Equilateral triangle
- 52. Let A(-1, 1), B(3, 4) and C(2, 0) be given three points. A line y = mx, m > 0, intersects lines AC and BC at point P and Q respectively. Let A₁ and A₂ be the areas of ΔABC and ΔPQC respectively, such that A₁ = 3A₂, then the value of m is equal to :

[JEE (Main)-2021]

(1) 2

- (2) 3

- (4) 1
- 53. In a triangle PQR, the co-ordinates of the points P and Q are (-2, 4) and (4, -2) respectively. If the equation of the perpendicular bisector of PR is 2x - y + 2 = 0, then the centre of the circumcircle of the ΔPQR is [JEE (Main)-2021]
 - (1) (-2, -2)
- (2) (0, 2)
- (3) (1, 4)
- (4) (-1, 0)
- 54. Let $tan\alpha$, $tan\beta$ and $tan\gamma$; α , β , $\gamma \neq \frac{(2n-1)\pi}{2}$, $n \in \mathbb{N}$ be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of ABC coincides with origin and its orthocentre lies on y-axis, then the value of

$$\left(\frac{\cos 3\alpha + \cos 3\beta + \cos 3\gamma}{\cos \alpha \cos \beta \cos \gamma}\right)^2$$
 is equal to _____.

[JEE (Main)-2021]

55. The equation of one of the straight lines which passes through the point (1, 3) and makes an angle $\tan^{-1}(\sqrt{2})$ with the straight line, $y + 1 = 3\sqrt{2}x$ is:

[JEE (Main)-2021]

- (1) $4\sqrt{2}x 5y (5 + 4\sqrt{2}) = 0$
- (2) $4\sqrt{2}x + 5y 4\sqrt{2} = 0$
- (3) $4\sqrt{2}x + 5y (15 + 4\sqrt{2}) = 0$
- (4) $5\sqrt{2}x + 4y (15 + 4\sqrt{2}) = 0$

56. The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9and y = mx + 1 is also an integer, is :

[JEE (Main)-2021]

(1) 0

(2) 3

(3) 1

- (4) 2
- 57. Let the equation of the pair of lines, y = px and y = qx, can be written as (y - px)(y - qx) = 0. Then the equation of the pair of the angle bisectors of the lines $x^2 - 4xy - 5y^2 = 0$ is

[JEE (Main)-2021]

- (1) $x^2 3xy + y^2 = 0$ (2) $x^2 + 3xy y^2 = 0$
- (3) $x^2 3xy y^2 = 0$ (4) $x^2 + 4xy y^2 = 0$
- 58. Two sides of a parallelogram are along the lines 4x + 5y = 0 and 7x + 2y = 0. If the equation of one of the diagonals of the parallelogram is 11x + 7y = 9, then other diagonal passes through [JEE (Main)-2021] the point
 - (1) (2, 2)
- (2) (2, 1)
- (3) (1,3)
- (4) (1, 2)
- 59. Let ABC be a triangle with A(-3, 1) and $\angle ACB = \theta$,

 $0 < \theta < \frac{\pi}{2}$. If the equation of the median through B

is 2x + y - 3 = 0 and the equation of angle bisector of C is 7x - 4y - 1 = 0, then $\tan \theta$ is equal to

[JEE (Main)-2021]

(1) 2

- 60. Let A be a fixed point (0, 6) and B be a moving point (2t, 0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the y-axis at C. The locus of the mid-point *P* of *MC* is

[JEE (Main)-2021]

- (1) $3x^2 + 2y 6 = 0$ (2) $2x^2 + 3y 9 = 0$
- (3) $3x^2 2y 6 = 0$ (4) $2x^2 3y + 9 = 0$
- 61. Two circles each of radius 5 units touch each other at the point (1, 2). If the equation of their common tangent is 4x + 3y = 10, and $C_1(\alpha, \beta)$ and $C_2(\gamma, \delta)$, $C_1 \neq C_2$ are their centres, then $|(\alpha + \beta) (\gamma + \delta)|$ is equal to ____

[JEE (Main)-2021]

- 62. If p and q are the lengths of the perpendiculars from the origin on the lines, $x \csc \alpha - y \sec \alpha = k \cot 2\alpha$ and $x\sin\alpha + y\cos\alpha = k\sin2\alpha$ respectively, then k^2 is equal to: [JEE (Main)-2021]
 - (1) $2p^2 + q^2$
- (2) $p^2 + 4q^2$
- (3) $4p^2 + q^2$
- (4) $p^2 + 2q^2$
- 63. Let A be the set of all points (α, β) such that the area of triangle formed by the points (5, 6), (3, 2) and (α, β) is 12 square units. Then the least possible length of a line segment joining the origin to a point in A, is [JEE (Main)-2021]
 - (1) $\frac{8}{\sqrt{5}}$
- (3) $\frac{4}{\sqrt{5}}$
- (4) $\frac{12}{\sqrt{5}}$
- 64. A man starts walking from the point P(-3, 4), touches the x-axis at R, and then turns to reach at the point Q(0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50(PR)^2 + (RQ)^2$ is equal [JEE (Main)-2021]
- 65. If a straight line passing through the point P(-3, 4)is such that its intercepted portion between the coordinate axes is bisected at P, then its equation [JEE (Main)-2021]
 - (1) 3x 4y + 25 = 0 (2) 4x 3y + 24 = 0
- - (3) x y + 7 = 0 (4) 4x + 3y = 0
- 66. Let the area of the triangle with vertices $A(1, \alpha)$, $B(\alpha, 0)$ and $C(0, \alpha)$ be 4 sq. units. If the points $(\alpha, -\alpha)$, $(-\alpha, \alpha)$ and (α^2, β) are collinear, then β is equal to [JEE (Main)-2022]
 - (1) 64
- (2) -8
- (3) -64
- (4) 512
- 67. Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle, Then the area of ΔPQR is

[JEE (Main)-2022]

- (2) $\frac{25\sqrt{3}}{2}$

- 68. In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If (α, β) is the centroid of $\triangle ABC$, then $15(\alpha + \beta)$ is equal to [JEE (Main)-2022]
 - (1) 39

(2) 41

(3) 51

- (4) 63
- 69. Let a triangle be bounded by the lines $L_1: 2x + 5y = 10$; $L_2: -4x + 3y = 12$ and the line L_3 , which passes through the point P(2, 3), intersects L_2 at A and L_1 at B. If the point P divides the linesegment AB, internally in the ratio 1: 3, then the area of the triangle is equal to [JEE (Main)-2022]
 - (1) $\frac{110}{13}$
- (2) $\frac{132}{13}$
- (3) $\frac{142}{13}$
- (4) $\frac{151}{13}$
- 70. The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A'B (where B is the point
 - (2, 3)) subtend angle $\frac{\pi}{4}$ at the origin, is equal to

[JEE (Main)-2022]

(1) 10

(2) $\frac{48}{5}$

- (3) $\frac{52}{5}$
- (4) 3
- 71. A line, with the slope greater than one, passes through the point A(4, 3) and intersects the line x y 2 = 0 at the point B. If the length of the line segment AB is $\frac{\sqrt{29}}{3}$, then B also lies on the line

[JEE (Main)-2022]

- (1) 2x + y = 9
- (2) 3x 2y = 7
- (3) x + 2y = 6
- (4) 2x 3y = 3
- 72. The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x y = 3 respectively. If its orthocentre is
 - $(2, a), -\frac{1}{2} < a < 2$, then *p* is equal to _____.

[JEE (Main)-2022]

- 73. Let A(1, 1), B(-4, 3), C(-2, -5) be vertices of a triangle ABC, P be a point on side BC, and Δ_1 and Δ_2 be the areas of triangles APB and ABC, respectively. If $\Delta_1: \Delta_2 = 4: 7$, then the area enclosed by the lines AP, AC and the x-axis is [JEE (Main)-2022]
 - (1) $\frac{1}{4}$

(2) $\frac{3}{4}$

(3) $\frac{1}{2}$

- (4) 1
- 74. The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 39 and x y = 3 respectively and P(2, 3) is its circumcentre. Then which of the following is **NOT** true?

[JEE (Main)-2022]

- (1) $(AC)^2 = 9p$
- (2) $(AC)^2 + p^2 = 136$
- (3) $32 < area(\triangle ABC) < 36$
- (4) $34 < area(\Delta ABC) < 38$
- 75. Let m_1 , m_2 be the slopes of two adjacent sides of a square of side a such that $a^2 + 11a + 3(m_1^2 + m_2^2) = 220$. If one vertex of the square is $(10(\cos\alpha \sin\alpha), 10(\sin\alpha + \cos\alpha))$,

where $\alpha \in \left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal

is $(\cos \alpha - \sin \alpha)x + (\sin \alpha + \cos \alpha)y = 10$, then $72(\sin^4 \alpha + \cos^4 \alpha) + a^2 - 3a + 13$ is equal to

[JEE (Main)-2022]

- (1) 119
- (2) 128
- (3) 145
- (4) 155
- 76. Let $A(\alpha, -2)$, $B(\alpha, 6)$ and $C(\frac{\alpha}{4}, -2)$ be vertices

of a $\triangle ABC$. If $\left(5, \frac{\alpha}{4}\right)$ is the circumcentre of $\triangle ABC$,

then which of the following is **NOT** correct about $\triangle ABC$. [JEE (Main)-2022]

- (1) area is 24
- (2) perimeter is 25
- (3) circumradius is 5
- (4) inradius is 2

MATHEMATICS ARCHIVE - JEE (Main)

77. The distance of the origin from the centroid of the triangle whose two sides have the equations x - 2y + 1 = 0 and 2x - y - 1 = 0 and whose orthocenter is $\left(\frac{7}{3}, \frac{7}{3}\right)$ is **[JEE (Main)-2022]**

- (1) $\sqrt{2}$
- (2) 2
- (3) $2\sqrt{2}$
- (4) 4
- 78. Let the point $P(\alpha, \beta)$ be at a unit distance from each of the two lines $L_1: 3x-4y+12=0$, and $L_2: 8x+6y+11=0$. If P lies below L_1 and above L_2 , then $100(\alpha+\beta)$ is equal to
 - (1) -14
- (2) 42
- (3) -22
- (4) 14

[JEE (Main)-2022]

- 79. Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1, 1). If the line AP intersects the line BC at the point $Q(k_1, k_2)$, then $k_1 + k_2$ is equal to : [JEE (Main)-2022]
 - (A) 2

(B) $\frac{4}{7}$

(C) $\frac{2}{7}$

- (D) 4
- 80. A ray of light passing through the point P(2,3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2:1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be (α, β) . Then, the value of $7\alpha + 3\beta$ is equal to ______. [JEE (Main)-2022]