Задача А. Планирование заданий (2 балла)

Имя входного файла: schedule.in Имя выходного файла: schedule.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Имеется некоторое множество заданий и один исполнитель. На выполнение одного задания уходит единица времени. Задания можно выполнять начиная с момента времени 0. У каждого задания есть две характеристики: d_i и w_i . Если задание не было выполнено к моменту времени d_i , взимается штраф в размере w_i . Требуется минимизировать суммарный штраф.

Формат входного файла

Первая строка входного файла содержит натуральное число n — количество заданий $(1 \le n \le 100\,000)$. Следующие n строк содержат по два натуральных числа, разделенных пробелом — d_i и w_i $(0 \le d_i, w_i \le 10^9)$.

Формат выходного файла

Выведите одно число — минимальный суммарный штраф.

schedule.in	schedule.out
2	1
1 1	
1 2	

Задача В. Уничтожение графа (2 балла)

Имя входного файла: destroy.in Имя выходного файла: destroy.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан связный взвешенный граф. Требуется уничтожить максимальное количество ребер, чтобы были выполнены следующие условия: суммарная стоимость уничтоженных ребер не превосходила s, оставшийся после уничтожения граф должен быть связен.

Формат входного файла

Первая строка входного файла содержит числа n и m — количество вершин и ребер в графе, и s — максимальную суммарную стоимость уничтоженных ребер ($2 \le n \le 50\,000$, $1 \le m \le 100\,000$, $0 \le s \le 10^{18}$). Следующие m строк описывают ребра — для каждого ребра указаны номера вершин, которые оно соединяет, и стоимость уничтожения этого ребра (не превышает 10^{18}).

Формат выходного файла

На первой строке выходного файла выведите максимальное количество ребер, которые можно уничтожить. На второй строке выведите их номера в порядке возрастания (ребра нумеруются с единицы в порядке, в котором они заданы во входном файле).

destroy.in	destroy.out
6 7 10	2
1 2 3	1 5
1 3 3	
2 3 3	
3 4 1	
4 5 5	
5 6 4	
4 6 5	

Задача С. Паросочетание максимального веса (2 балла)

 Имя входного файла:
 matching.in

 Имя выходного файла:
 matching.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дан двудольный граф. Количество вершин в левой и правой доле совпадает и равно n. У каждой вершины левой доли есть вес, i-й вершине соответствует вес w_i . Вес паросочетания, ребрам которого инцидентны вершины левой доли a_1, a_2, \ldots, a_k есть $\sqrt{\sum_{i=1}^k w_{a_i}^2}$. Требуется найти паросочетание максимального веса.

Формат входного файла

Первая строка входного файла содержит натуральное число n — количество вершин в обеих долях ($1 \le n \le 1000$). Вторая строка входного файла содержит n целых чисел w_1, w_2, \ldots, w_n ($1 \le w_i \le 1000$). Следующие n строк содержат описания ребер, инцидентных соответствующей вершине левой доли. Формат описания: количество ребер, затем номера вершин правой доли, разделенные пробелом. Суммарное количество ребер не превосходит 200000.

Формат выходного файла

Выведите n чисел — для каждой вершины левой доли выведите номер вершины правой доли, с которой ее надо взять в паросочетание. Если вершина не входит в паросочетание, выведите 0.

matching.in	matching.out
4	2 1 0 4
1 3 2 4	
4 1 2 3 4	
2 1 4	
2 1 4	
2 1 4	

Задача D. Проверка (2 балла)

Имя входного файла: check.in
Имя выходного файла: check.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дано некоторое семейство множеств $S \subset 2^X$. Требуется проверить, может ли S быть семейством независимых множеств некоторого матроида.

Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — мощность множеств X и S соответственно ($1 \le n \le 10$, $0 \le m \le 2^n$). Каждая из следующих m строк содержит описание элемента множества S. Формат описания: количество элементов в подмножестве, затем через пробел номера этих элементов. Элементы множества X занумерованы начиная с единицы.

Формат выходного файла

Выведите «YES», если S может быть семейством независимых множеств некоторого матроида и «NO» иначе.

check.in	check.out
2 4	YES
0	
1 1	
1 2	
2 1 2	
2 3	NO
0	
1 1	
2 1 2	

Задача Е. Циклы (2 балла)

Имя входного файла: cycles.in
Имя выходного файла: cycles.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дано некоторое семейство множеств $S \subset 2^X$. Известно, что это множество циклов некоторого матроида. Кроме того, у каждого элемента множества X есть свой вес. Вес подмножества X есть сумма весов элементов, принадлежащих ему. Требуется найти базу максимального веса.

Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — мощность множеств X и S соответственно ($1 \le n \le 20$). Вторая строка входного файла содержит n чисел w_1, w_2, \ldots, w_n ($1 \le w_i \le 1000$). Здесь элементы множества X занумерованы начиная с единицы и w_i — вес i-го элемента множества X. Каждая из следующих m строк содержит описание элемента множества S. Формат описания: количество элементов в подмножестве, затем через пробел номера этих элементов.

Формат выходного файла

Выведите одно число — вес максимальной базы.

cycles.in	cycles.out
3 1	50
10 20 30	
3 1 3 2	