Calculus I

Homework

Exponents and logarithms review

1. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$.

(b)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^2$.

(c)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^3$.

(d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.

(e)
$$\frac{f(x) - f(a)}{x - a}$$
, where $f(x) = \frac{1}{x}$.

(f)
$$\frac{f(x) - f(1)}{x - 1}$$
, where $f(x) = \frac{x - 1}{x + 1}$.

2. Write down a formula for a function whose graphs is given below. The graphs are up to scale. Please note that there is more than one way to write down a correct answer.

(a)

(b)

(c)

(d)

3. Write down formulas for function whose graphs are as follows. The graphs are up to scale. All arcs are parts of circles.

- (a
- 4. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$.

- (b) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^2$.
- (c) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^3$.

- (d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.
- (e) $\frac{f(x) f(a)}{x a}$, where $f(x) = \frac{1}{x}$.
- (f) $\frac{f(x) f(1)}{x 1}$, where $f(x) = \frac{x 1}{x + 1}$.

5. Find the implied domain of the function.

(a)
$$f(x) = \frac{x+4}{x^2-4}$$
.

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
.

(c)
$$f(t) = \sqrt[3]{3t-1}$$
.

(d)
$$g(t) = \sqrt{5-t} - \sqrt{1+t}$$
.

(e)
$$h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}$$
.

(f)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
.

(g)
$$F(x) = \sqrt{10 - \sqrt{x}}$$
.

6. Find the implied domain of the function.

(a)
$$f(x) = \frac{x+4}{x^2-4}$$
.

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$

(c)
$$f(t) = \sqrt[3]{3t-1}$$
.

(d)
$$q(t) = \sqrt{5-t} - \sqrt{1+t}$$
.

(e)
$$h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}$$
.

(f)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
.

(g)
$$F(x) = \sqrt{10 - \sqrt{x}}$$
.

7. Compute the composite functions $(f \circ g)(x)$, $(g \circ f)(x)$. Simplify your answer to a single fraction. Find the domain of the composite function.

(a)
$$f(x) = \frac{x+2}{x-2}, g(x) = \frac{x-1}{x+2}.$$

(b)
$$f(x) = \frac{x+1}{3x-2}, g(x) = \frac{x-2}{x-1}.$$

(c)
$$f(x) = \frac{2x+1}{3x-1}, g(x) = \frac{x-2}{2x-1}$$

(d)
$$f(x) = \frac{x+1}{x-2}, g(x) = \frac{x+2}{2x-1}.$$

(e)
$$f(x) = \frac{5x+1}{4x-1}, g(x) = \frac{4x-1}{3x+1}$$

(f)
$$f(x) = \frac{3x-5}{x-2}$$
, $g(x) = \frac{x-2}{x-4}$.

(g)
$$f(x) = \frac{x-3}{x+2}$$
, $g(y) = \frac{y+3}{y-4}$.

8. Find the functions $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ and their implied domains. The answer key has not been proofread, use with caution.

(a)
$$f(x) = x^2 + 1$$
, $q(x) = x + 1$.

(b)
$$f(x) = \sqrt{x+1}$$
, $g(x) = x+1$.

(c)
$$f(x) = 2x, g(x) = \tan x$$
.

In this subproblem, you are not required to find the domain.

(d)
$$f(x) = \frac{x+1}{x-1}$$
, $g(x) = \frac{x-1}{x+1}$.

9. Convert from degrees to radians.

(a) 15° .

(h) 120° .

(o) 360° .

(b) 30° .

(i) 135°.

(p) 405° .

(c) 36°.

(j) 150° .

(d) 45°.

(k) 180°.

(g) 1200° .

(e) 60° .

(1) 225° .

 $(r) -900^{\circ}$.

(f) 75° .

(m) 270°.

(g) 90° .

(n) 305° .

(s) -2014° .

10. Convert from radians to degrees. The answer key has not been proofread, use with caution.

(a)
$$4\pi$$
.

(b)
$$-\frac{7}{6}\pi$$
.
(c) $\frac{7}{12}\pi$.

(c)
$$\frac{7}{12}\pi$$

(d)
$$\frac{4}{3}\pi$$
.

(e)
$$-\frac{3}{8}\pi$$
.

(f)
$$2014\pi$$
.

(h)
$$-2014$$
.

11. Prove the trigonometry identities.

(a)
$$\sin \theta \cot \theta = \cos \theta$$
.

(b)
$$(\sin \theta + \cos \theta)^2 = 1 + \sin(2\theta).$$

(c)
$$\sec \theta - \cos \theta = \tan \theta \sin \theta$$
.

(d)
$$\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$$

(e)
$$\cot^2 \theta + \sec^2 \theta = \tan^2 \theta + \csc^2 \theta$$
.

(f)
$$2\csc(2\theta) = \sec\theta \csc\theta$$
.

(g)
$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

(h)
$$\frac{1}{1 - \sin \theta} + \frac{1}{1 + \sin \theta} = 2 \sec^2 \theta$$
.

(i)
$$\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$

(j)
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
.

(k)
$$\sin(3\theta) + \sin \theta = 2\sin(2\theta)\cos \theta$$
.

(1)
$$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta.$$

(m)
$$1 + \tan^2 \theta = \sec^2 \theta$$
.

(n)
$$1 + \csc^2 \theta = \cot^2 \theta$$
.

(o)
$$2\cos^2(2x) = 2\sin^4\theta + 2\cos^4\theta - \sin^2(2\theta)$$
.

$$(p) \ \frac{1+\tan\left(\frac{\theta}{2}\right)}{1-\tan\left(\frac{\theta}{2}\right)} = \tan\theta + \sec\theta.$$

12. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.

(a)
$$2\cos x - 1 = 0$$
.

(b)
$$\sin(2x) = \cos x$$
.

(c)
$$\sqrt{3}\sin x = \sin(2x)$$
.

(d)
$$2\sin^2 x = 1$$
.

(e)
$$2 + \cos(2x) = 3\cos x$$
.

(f)
$$2\cos x + \sin(2x) = 0$$
.

(g)
$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0.$$

(h)
$$|\tan x| = 1$$
.

(i)
$$3\cot^2 x = 1$$
.

(j)
$$\sin x = \tan x$$
.

13. Evaluate the limits. Justify your computations.

(a)
$$\lim_{x \to 2} 2x^2 - 3x - 6$$
.

(b)
$$\lim_{x \to -1} \frac{x^4 - x}{x^2 + 2x + 3}$$

(c)
$$\lim_{x \to -1} \frac{1}{x^2 - 3x + 2}$$
.

(d)
$$\lim_{x \to -2} \sqrt{x^4 + 16}$$
.

(e)
$$\lim_{x \to 8} (1 + \sqrt[3]{x})(2 - x)$$
.

14. Evaluate the limit if it exists.

(a)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x - 2}$$
.

(b)
$$\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 2x - 3}$$
.

(c)
$$\lim_{x \to -2} \frac{2x^2 + x - 6}{x^2 - 4}$$

(d)
$$\lim_{x\to 2} \frac{x^2 - 5x - 6}{x - 2}$$
.

(e)
$$\lim_{x \to -1} \frac{x^2 - 3x}{x^2 - 2x - 3}$$
.

(f)
$$\lim_{x \to -2} \frac{x^2 - 4}{2x^2 + 5x + 2}$$
.

(g)
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{3x^2 - 2x - 5}$$

(h)
$$\lim_{x \to -4} \frac{x^2 + 7x + 12}{x^2 + 6x + 8}$$
.

(i)
$$\lim_{h \to 0} \frac{(-3+h)^2 - 9}{h}$$
.

(j)
$$\lim_{h\to 0} \frac{(-2+h)^3+8}{h}$$
.

(k)
$$\lim_{x \to -3} \frac{x+3}{x^3+27}$$
.

(1)
$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1}$$

(m)
$$\lim_{h\to 0} \frac{\sqrt{4+h}-2}{h}$$
.

(n)
$$\lim_{x \to 3} \frac{\sqrt{5x+1}-4}{x-3}$$
.

(o)
$$\lim_{x \to -3} \frac{\sqrt{x^2 + 16} - 5}{x + 3}$$
.

(p)
$$\lim_{x \to -3} \frac{\frac{1}{3} + \frac{1}{x}}{3 + x}$$
.

(q)
$$\lim_{x \to -2} \frac{x^2 + 4x + 4}{x^4 - 16}$$
.

(r)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
.

(s)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right).$$

(t)
$$\lim_{x\to 9} \frac{3-\sqrt{x}}{9x-x^2}$$
.

(u)
$$\lim_{h\to 0} \frac{(2+h)^{-1}-2^{-1}}{h}$$
.

(v)
$$\lim_{x\to 0} \left(\frac{1}{x\sqrt{1+x}} - \frac{1}{x}\right)$$
.

(w)
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$
.

(x)
$$\lim_{h\to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$
.

(y)
$$\lim_{h \to 0} \frac{\frac{1}{(2+h)^2} - \frac{1}{4}}{h}$$
.

(z)
$$\lim_{h\to 0} \frac{\frac{1}{(1+h)^2} - 1}{h}$$
.

15. Find the (implied) domain of f(x). Extend the definition of f at x = 3 to make f continuous at 3.

(a)
$$f(x) = \frac{x^2 - x - 6}{x - 3}$$
.

(b)
$$f(x) = \frac{x^3 - 27}{x^2 - 9}$$
.

16. Use the Intermediate Value Theorem to show that there is a real number solution of the given equation in the specified interval.

(a)
$$x^5 + x - 3 = 0$$
 where $x \in (1, 2)$.

- (b) $\sqrt[4]{x} = 1 x$ where $x \in \mathbb{R}$ (i.e., x is an arbitrary real number).
- (c) $\cos x = 2x$, where $x \in (0, 1)$.
- (d) $\sin x = x^2 x 1$, where $x \in \mathbb{R}$ (i.e., x is an arbitrary
- real number).
- (e) $\cos x = x^4$, where $x \in \mathbb{R}$ (i.e., x is an arbitrary real num-
- (f) $x^5 x^2 + x + 3 = 0$, where $x \in \mathbb{R}$.

- 17.
- i. Solve the equation $x^2 + 13x + 41 = 1$.
 - ii. Use the intermediate value theorem to prove that the equation $x^2 + 13x + 41 = \sin x$ has at least two solutions, lying between the two solutions to 17.a.i.
- i. Solve the equation $x^2 15x + 55 = 1$.
 - ii. Use the intermediate value theorem to prove that the equation $x^2 15x + 55 = \cos x$ has at least two solutions, lying between the two solutions to the equation in the preceding item.
- 18. For which values of x is f continuous?

•
$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

• $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{cases}$

•
$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{cases}$$

19. Show that f(x) is continuous at all irrational points and discontinuous at all rational ones.

$$f(x) = \begin{cases} \frac{1}{q^2} & \text{if } x \text{ is rational and } x = \frac{p}{q} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

where in the first item p, q are relatively prime integers (i.e., integers without a common divisor).

20. Show the following limits do not exist and compute whether they evaluate to ∞ , $-\infty$, or neither.

(a)
$$\lim_{x \to 3^+} \frac{x^2 + x - 1}{x^2 - 2x - 3}$$
.

(c)
$$\lim_{x \to 1^+} \frac{x^2 + 1}{\sqrt{x^2 + 3} - 2}$$
.

(e)
$$\lim_{x \to 2^+} \frac{\sqrt{x^3 - 8}}{-x^2 + x + 2}$$
.

(b)
$$\lim_{x \to 3^-} \frac{x^2 + x - 1}{x^2 - 2x - 3}$$
.

(d)
$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{\sqrt{x^2 + 3} - 2}$$
.

(f)
$$\lim_{x \to -1^+} \frac{\sqrt[3]{x^2 + 2x + 1}}{x^2 - 2x - 3}$$

21. Find the limit or show that it does not exist. If the limit does not exist, indicate whether it is $\pm \infty$, or neither. The answer key has not been proofread, use with caution.

(a)
$$\lim_{x \to \infty} \frac{x-2}{2x+1}.$$

(b)
$$\lim_{x \to \infty} \frac{1 - x^2}{x^3 - x - 1}$$
.

(c)
$$\lim_{x \to -\infty} \frac{x-2}{x^2+5}.$$

(d)
$$\lim_{x \to -\infty} \frac{3x^3 + 2}{2x^3 - 4x + 5}$$
.

(e)
$$\lim_{x \to \infty} \frac{\sqrt{x} + x^2}{\sqrt{x} - x^2}$$

(f)
$$\lim_{x \to \infty} \frac{3 - x\sqrt{x}}{2x^{\frac{3}{2}} - 2}$$

(g)
$$\lim_{x \to \infty} \frac{(2x^2+3)^2}{(x-1)^2(x^2+1)}$$
.

(h)
$$\lim_{x \to \infty} \frac{x^2 - 3}{\sqrt{x^4 + 3}}$$
.

(i)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1}.$$

$$\text{(j)} \lim_{x \to \infty} \frac{\sqrt{16x^6 - 3x}}{x^3 + 2}$$

(k)
$$\lim_{x \to -\infty} \frac{\sqrt{16x^6 - 3x}}{x^3 + 2}$$
.

(1)
$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 2x + 1}}{x + 1}$$
.

$$\lim_{x \to \infty} \sqrt{4x^2 + x} - 2x.$$

(n)
$$\lim_{x \to -\infty} x + \sqrt{x^2 + 3x}$$
.

(o)
$$\lim_{x \to \infty} \sqrt{x^2 + 2x} - \sqrt{x^2 - 2x}$$
.

$$(p) \lim_{x \to -\infty} \sqrt{x^2 + x} - \sqrt{x^2 - x}.$$

(q)
$$\lim_{x \to \infty} \sqrt{x^2 + ax} - \sqrt{x^2 + bx}.$$

(r)
$$\lim_{x \to \infty} \cos x$$
.

(s)
$$\lim_{x \to \infty} \frac{x^4 + x}{x^3 - x + 2}$$

(t)
$$\lim_{x \to \infty} \sqrt{x^2 + 1}$$

$$(\mathbf{u}) \lim_{x \to -\infty} (x^4 + x^5).$$

(v)
$$\lim_{x \to -\infty} \frac{\sqrt{1+x^6}}{1+x^2}$$
.

(w)
$$\lim_{x \to \infty} (x - \sqrt{x})$$
.

(x)
$$\lim_{x \to \infty} (x^2 - x^3)$$
.

$$x \to \infty$$

(y)
$$\lim_{x \to \infty} x \sin x$$
.

(z)
$$\lim_{x \to \infty} \sqrt{x} \sin x$$
.

22. Find the horizontal and vertical asymptotes of the graph of the function. If a graphing device is available, check your work by plotting the function.

(a)
$$y = \frac{2x}{\sqrt{x^2 + x + 3} - 3}$$
.

(b)
$$y = \frac{3x^2}{\sqrt{x^2 + 2x + 10} - 5}$$

(c)
$$y = \frac{3x+1}{x-2}$$

(d)
$$y = \frac{x^2 - 1}{2x^2 - 3x - 2}$$

(e)
$$y = \frac{2x^2 - 2x - 1}{x^2 + x - 2}$$

(f)
$$f(x) = \frac{-5x^2 - 3x + 5}{x^2 - 2x - 3}$$

(g)
$$y = \frac{1+x^4}{x^2-x^4}$$
.

(h)
$$y = \frac{x^3 - x}{x^2 - 7x + 6}$$
.

(i)
$$y = \frac{x-9}{\sqrt{4x^2+3x+3}}$$
.

(j)
$$y = \frac{\sqrt{x^2 + 1} - x}{x}$$
.

(k)
$$f(x) = \frac{x}{\sqrt{x^2 + 3} - 2x}$$

23. Find the inverse function. You are asked to do the algebra only; you are not asked to determine the domain or range of the function or its inverse.

(a)
$$f(x) = 3x^2 + 4x - 7$$
, where $x \ge -\frac{2}{3}$.

(b)
$$f(x) = 2x^2 + 3x - 5$$
, where $x \ge -\frac{3}{4}$.

(c)
$$f(x) = \frac{2x+5}{x-4}$$
, where $x \neq 4$.

(d)
$$f(x) = \frac{3x+5}{2x-4}$$
, where $x \neq 2$.

(e)
$$f(x) = \frac{5x+6}{4x+5}$$
, where $x \neq -\frac{5}{4}$.

(f)
$$f(x) = \frac{2x-3}{-3x+4}$$
, where $x \neq \frac{4}{3}$..

24. Find the inverse function and its domain.

(a)
$$y = \ln(x+3)$$
.

(b)
$$y = 4 \ln (x - 3) - 4$$
.

(c)
$$y = 2 \ln (-2x + 4) + 1$$

(d)
$$f(x) = e^{x^3}$$
.

(e)
$$y = (\ln x)^2, x \ge 1$$
.

(f)
$$y = \frac{e^x}{1 + 2e^x}$$
.

(g)
$$f(x) = 2^{2x} + 2^x - 2$$
.

25. Find the exact value of each expression.

- (a) $\log_5 125$.
- (b) $\log_3 \frac{1}{27}$.
- (c) $\ln\left(\frac{1}{e}\right)$.
- (d) $\log_{10} \sqrt{10}$.
- (e) $e^{\ln 4.5}$.
- (f) $\log_{10} 0.0001$.

- (g) $\log_{1.5} 2.25$.
- (h) $\log_5 4 \log_5 500$.
- (i) $\log_2 6 \log_2 15 + \log_2 20$.
- (j) $\log_3 100 \log_3 18 \log_3 50$.
- (k) $e^{-2\ln 5}$.
- (l) $\ln\left(\ln e^{e^{10}}\right)$.
- 26. Use the definition of a logarithm to evaluate each of the following without using a calculator.
 - (a) $\log_2 16$
 - (b) $\log_3\left(\frac{1}{9}\right)$
 - (c) $\log_{10} 1000$
 - (d) $\log_6 36^{-\frac{2}{3}}$
 - (e) $\log_2(8\sqrt{2})$
 - (f) $\log_7\left(\frac{49^x}{343^y}\right)$
- 27. Express each of the following as a single logarithm.
 - (a) $\ln 4 + \ln 6 \ln 5$
 - (b) $2 \ln 2 3 \ln 3 + 4 \ln 4$
 - (c) $\ln 36 2 \ln 3 3 \ln 2$
- 28. Solve each equation for x. If available, use a calculator to give an (\approx) answer in decimal notation. If available, use a calculator to verify your approximate solutions.
 - (a) $e^{7-4x} = 7$.
 - (b) ln(2x 9) = 2.
 - (c) $\ln(x^2 2) = 3$.
 - (d) $2^{x-3} = 5$.
 - (e) $\ln x + \ln(x 1) = 1$.
 - (f) $e^{2x+1} = t$.
 - (g) $\log_2(mx) = c$.
 - (h) $e e^{-2x} = 1$.
 - (i) $8(1+e^{-x})^{-1}=3$.

- (j) $\ln(\ln x) = 1$.
- (k) $e^{e^x} = 10$.
- (1) $\ln(2x+1) = 3 \ln x$.
- (m) $e^{2x} 4e^x + 3 = 0$.
- (n) $e^{4x} + 3e^{2x} 4 = 0$.
- (o) $e^{2x} e^x 6 = 0$.
- (p) $4^{3x} 2^{3x+2} 5 = 0$.
- (q) $3 \cdot 2^x + 2\left(\frac{1}{2}\right)^{x-1} 7 = 0$.