Análisis Estructurado

SISTEMAS Y ORGANIZACIONES

ISFT 130

Lic. Pablo Letier

1.- Introducción: Visión panorámica del AE

Análisis Estructurado:

- Método clave en el "desarrollo estructurado" o "convencional"
- Aparece a finales de los `70
- Facilita la comunicación en el proceso de desarrollo de un sistema de información
 - análisis y diseño
 - usuarios y analistas
- Sencillo, fácil de entender y fácil de aprender

1.- Introducción: Visión panorámica del AE. Características

- Amplia difusión
- Descomposición funcional
 - Orientada a procesos
 - Top/down
- Presente en numerosas metodologías
- Herramientas CASE disponibles

Bibliografía

- Texto principal
 - Yourdon, E., *Análisis estructurado moderno*. 1993: Prentice-Hall Hispanoamericana
- Referencias clásicas...
 - DeMarco, T., Structured analysis and system specification. 1979, Englewood Cliffs, New Jersey: Yourdon Press.
 - Gane, C. and T. Sarson, Análisis estructurado de sistemas. 1990, Buenos Aires: El Ateneo (traducción de Gane, C. and T. Sarson, Structured systems analysis, tools and techniques. Software series. 1979, New Jersey: Prentice-Hall.)

1.- Introducción: Visión panorámica del AE. Componentes

- LE (Lista de Eventos) y LER (Lista de Estímulos y Respuestas)
- DFD (Diagrama de Flujo de Dato *Dataflow diagram*)
- Diagrama E-R (Entidad-Relación), o alternativamente, DED (Diagrama de Estructura de Datos)
- Diagramas de Transición de Estados (STD, State Transition Diagram)

1.- Introducción: Visión panorámica del AE. componentes

- Lógica de procesos
 - Lenguaje estructurado
 - Pre y post-condiciones
 - Tablas de decisión
 - Arboles de decisión
- Diccionario de Datos (DD)

1.- Introducción: Visión panorámica del AE. DFD

- Visión general de las funciones y transformaciones de datos en una organización
- Modelo *lógico* y gráfico del sistema
 - también como modelo físico
- Identifica entradas, salidas, procesos y relaciones con el exterior
 - ...a nivel general
 - ...por refinamiento, a nivel detallado

1.- Introducción: Visión panorámica del AE. DFD Tipos de símbolos en los DFDs (notación de Yourdon/De Marco) ENTIDAD EXTERNA P1 Proceso D ALMACÉN DE DATOS

1.- Introducción: Visión panorámica del AE. DFD: Ejemplo Práctico

Ejemplo

Sistema de distribución sin inventario

"Se trata de un sistema que sirve pedidos de libros a unos clientes, con la particularidad de que no mantiene un *stock* o inventario interno. El sistema puede agrupar los pedidos que clientes distintos hacen a un mismo editor, de manera que se puedan conseguir descuentos."

Adaptado del capítulo 2 de Gane, C. and T. Sarson, *Análisis estructurado de sistemas*. 1990, Buenos Aires: El Ateneo.

1.- Introducción: Visión panorámica del AE. DFD: Ejemplo **Práctico** Análisis de los procesos del sistema ⇒ Aplicamos la visión sistémica Diagrama de contexto CLIENTE pedidos órdenes de compra libros entregados 0. Sistema de **EDITOR Pedidos** No son materiales, son libros pedidos datos.

1.- Introducción: Visión panorámica del AE. Diccionario de Datos

- "Es un conjunto de *metadatos*, es decir, de información (datos) sobre datos"
- Contiene las definiciones de todos los elementos de los diagramas
- Implementación
 - Manual
 - Procesador de textos
 - Base de datos
 - Automático e integrado

1.- Introducción: Visión panorámica del AE. Diccionario de Datos (II)

```
Flujo de datos: entrega
Descripción: Conjunto de libros enviados por un
  proveedor a la biblioteca, basado en la relación
  que previamente había recibido.
Sinónimos: *** none ***
Componente de: *** none ***
Composición:
   Libros
   + { Remito }
Información de entrada y salida
Origen
                              Destino
*** Off the diagram ***
                            Compra libros
PROVEEDORES
                              Biblioteca
```

Visión panorámica AE Diccionario de Datos (III)

```
Almacen: Facturas
Descripción: Información, por número de factura, sobre
  facturas en el sistema actual.
Sinónimos: *** none ***
Composición:
   @Número-factura
   + Fecha-factura
   + Dirección-cliente
   + { Número-producto
   + Cantidad-producto
   + Costo-unidad-producto }
   + Costo-envío
   + Neto-factura
   + Estado-factura
Procesos asociados: Según DFD general
       Proc_cancelación Proc_pago
                            Adjuntar_remito
       Proc_consultas
```

1.- Introducción: Visión panorámica del AE. Pseudocódigo.

Proceso: Verificar estado del socio

Número: 1.1.1

Descripción: Se examina si el socio no está sancionado

Miniespecificación:

Recibir "Socio ID" del socio

Leer "SOCIOS" para

Leer "Flag-de-precaución" Si OK, enviar "Socio ID válido"

Complejidad: Prioridad:

Ratio de transacciones: Memoria requerida (Kb):

Tiempo de proceso:

1.- Introducción: Visión panorámica del AE. Modelado de Datos

- Diagramas E-R y DED (*Diagrama de Estructura de Datos*)
- DED es, básicamente, un E-R limitado:
 - no relaciones ternarias
 - sólo cardinalidades 1:N
 - no atributos multivaluados ni compuestos

1.- Introducción: Visión panorámica del AE. Lógica de Proceso.

- Técnicas para describir la lógica de los procesos primitivos
 - Lenguaje estructurado
 - Pre y post-condiciones
 - ■Tablas de decisión
 - Arboles de decisión

1.- Introducción: Visión panorámica del AE. Lógica de Proceso.

Lenguaje estructurado

- SI la factura excede de \$300
 - SI la cuenta del cliente tiene alguna factura sin pagar más de 60 días, dejar la confirmación pendiente de este pago.
 - SI NO (la cuenta está en buen estado) hacer confirmación y factura
- SI NO (la factura es de \$300 o menos)
 - SI la cuenta del cliente tiene alguna factura sin pagar más de 60 días hacer la confirmación, la factura y escribir un mensaje sobre informe de crédito
 - SI NO (la cuenta está en buen estado) hacer confirmación y factura
- FIN-SI.

1.- Introducción: Visión panorámica del AE. Lógica de Proceso.

Pre y post-condiciones

Pre1 (la factura excede de \$300) Y (la cuenta del cliente tiene alguna factura sin pagar más de 60 días)

Pos1 (confirmación pendiente de este pago)

Pre2 (la factura excede de \$300) o (la cuenta del cliente no tiene ninguna factura sin pagar más de 60 días)

Pos2 (confirmación y factura realizadas)

Pre3 (la factura no excede de \$300) Y (la cuenta del cliente tiene alguna factura sin pagar más de 60 días)

Pos3 (confirmación y factura realizadas) Y (mensaje impreso sobre informe de crédito)

Pre4 (la factura no excede de \$300) Y (la cuenta del cliente no tiene ninguna factura sin pagar más de 60 días)

Pos4 (confirmación y factura realizadas)

1.- Introducción: Visión panorámica del AE. Lógica de Proceso.

Tablas de decisión

ESTADO DE LA CUENTA	CORRECTO	IMPAGA	CORRECTO	IMPAGA
NETO-FACTURA	>\$300	>\$300	<=\$300	<=\$300
CONFIRMACIÓN PENDIENTE		х		
HACER CONFIRMACIÓN	Х		х	х
HACER FACTURA	Х		х	х
ESCRIBIR MENSAJE				х

¿Y después del AE?

- DISEÑO ESTRUCTURADO (DE)
 - El diseño lógico de los requisitos del nuevo sistema de información se convierte en un modelo de la aplicación, plasmado en un DIAGRAMA DE ESTRUCTURA.
 - ■En el paso $AE \Rightarrow DE$,
 - Análisis de transacciones
 - Análisis de transformaciones

2.- Diagramas de Flujo de Datos (DFDs)

2.- Diagramas de Flujo de **Datos** Símbolos del DFD (notación Yourdon/De Marco) P Proceso Transformaciones o procesos (funciones, cálculo, selección) Entidad Externa Terminadores (Fuentes o Destinos) (personas, entidades) Flujos de información Flujo de datos (inputs-outputs) Flujo de eventos Flujos de control Ficheros o depósitos temporales de D ALMACÉN DE información (base de datos, armario, **DATOS** clasificador, etc.)

2.- Diagramas de Flujo de Datos (notación Métrica/SSADM) | D | Localización | Proceso | Transformaciones o procesos | Entidad | Externa | Terminadores (Fuentes o Destinos) | Flujo de datos | Flujos de información | Ficheros o depósitos temporales de información |

Procesos

2.- Diagramas de Flujo de Datos

- TRANSFORMACIÓN (cálculo, operación)
- FILTRO (verificación fecha, validación transacción)
- DISTRIBUCIÓN (menú, selección transacción)

2.- Diagramas de Flujo de Datos

Procesos (II)

- Nombres únicos, significativos y concisos
- Preferiblemente expresados en función de las entradas y salidas
- Recomendación: verbo (no ambiguo) + objeto
 - Evitar verbos ambiguos procesar, gestionar, manejar...
 - "objeto" está definido en el DD
- Los procesos se descomponen en "subprocesos", hasta llegar a los procesos primitivos

Diagrama de contexto

- Es el DFD más general de todos
- Está formado por un solo macroproceso (el sistema), las entidades externas (fuentes y destinos) y sus relaciones con el macroproceso
- Delimita el sistema y su entorno

2.- Diagramas de Flujo de Datos

Entidades externas

Señalan los límites del sistema y establecen sus relaciones con el entorno

Los identificadores (nombres) de las entidades externas serán únicos, significativos y concisos

Flujos de datos

- Los nombres de los FD deben ser únicos, significativos y concisos
- Son datos, deben denominarse como datos.
- Pueden estar indistintamente en singular o en plural, ya que en los DFDs no se representan cantidades
- Los nombres no sirven sólo para identificar los datos, sino también la información que se tiene sobre ellos

P.ej. Información (fecha-válida) > Información (fecha)

2.- Diagramas de Flujo de Datos

Flujos de datos (II)

- Flujos de datos interactivos (dialog flows)
 - Cuando dos FD establecen un diálogo o comparten una acción de estímulo-respuesta, pueden dibujarse como un único FD de doble flecha, donde ambos extremos deben llevar el nombre del FD que representan.

Flujos de datos (III)

Las flechas dobles con sentidos opuestos que transportan los mismos datos pueden sustituirse por flechas doblemente encabezadas

iPero sólo si transportan los mismos datos!

2.- Diagramas de Flujo de Datos (IV)

Se puede representar, si se desea, el FLUJO DE MATERIAL, usando flechas de trazo grueso

2.- Diagramas de Flujo de Datos Flujos de datos (V) Se pueden considerar flechas convergentes o divergentes, con un mismo nombre Particular validar cod postal dirección cli Observaciones: Sólo los procesos pueden separar FD No poner FD como señales de activación

2.- Diagramas de Flujo de Datos Flujos de datos (VII) Notación System Architect. Ejemplos FD convergentes (conectores XOR y AND)

2.- Diagramas de Flujo de Datos Flujos de datos (VIII)

¿El proceso "pide" el FD "pedido"? ¿El proceso "necesita" ambos FD?

- No lo sabemos, no importa:
 - Los aspectos procedurales no se manifiestan en los DFDs
 - Si tales aspectos son relevantes, se deben incluir en las miniespecificaciones

Flujos de control

- En los DFDs no se muestra el control ni el orden de ejecución
- No se puede mostrar:
 - Procesos que se realizan antes que otros
 - Sincronización
 - Periodificación
- Extensiones al AE para sistemas en tiempo real:
 - (Ward & Mellor 85)
 - (Hatley & Pirbhai 87)

2.- Diagramas de Flujo de Datos

Almacenes de datos

- Nombre único, significativo y conciso
- Convenciones de nombres en los FD a/desde un almacén:
 - No lleva etiqueta
 - El FD se refiere a un paquete (instancia) completo de la información contenida en el almacén
 - La etiqueta es la misma que la del almacén
 - El FD se refiere a uno o más paquetes completos (instancias) de la información contenida en el almacén
 - La etiqueta es distinta de la del almacén
 - El FD se refiere a uno o más componentes (atributos) de una o más instancias del almacén

Consistencia DFD / E-R

Para facilitar validaciones cruzadas entre DFDs y E-R (o DED)...

Correspondencia entre los almacenes de datos "principales" (permanentes) del DFD y las entidades del E-R:

- Cada almacén de un DFD representa una o varias entidades del E-R
- Cada entidad del E-R pertenece a un único almacén principal de un DFD

2.- Diagramas de Flujo de Datos

Consistencia DFD / E-R (II)

- ETIQUETA DE LOS ALMACENES
 - Según explosione a
 - Entidad de datos ⇒ Plural nombre entidad
 - Diagrama E-R (o DED) ⇒ Nombre diagrama
- DEFINICIÓN DE LOS ALMACENES
 - Pocos almacenes
 - Para cada uno, diagrama E-R (o DED)
 - 2. Tantos almacenes como entidades se hayan identificado
 - Preferible (si no hay muchas entidades)

Descomposición funcional

- Cada proceso se puede explotar, refinar o descomponer en un DFD más detallado
- El DFD de un sistema es realmente un conjunto de DFDs dispuestos jerárquicamente
- Los niveles de la jerarquía están determinados por la descomposición funcional de los procesos
- La raíz de la jerarquía es el "diagrama de contexto", que es el más general de todos

Consistencia en el DFD

- Cada proceso en un diagrama "padre" es una consolidación del DFD "hijo"
- Balanceo de DFDs
 - Las E/S de un proceso "padre" deben corresponderse con las E/S del DFD "hijo" que lo explica

2.- Diagramas de Flujo de Datos

Descomposición paralela

- Descomposiciones de funciones
 - Proceso en subprocesos (DFD)
- Descomposición de flujos de datos
- La regla de balanceo se aplica teniendo en cuenta la descomposición paralela

Jerarquía de DFDs

- En un DFD completo cada proceso tiene un número único que lo identifica en función de su situación en la jerarquía
- Cada DFD tiene también un número único que coincide con el proceso que describe
- Las hojas o nodos terminales corresponden a "procesos primitivos" o indescomponibles
- Para cada proceso primitivo existirá una miniespecificación.

Jerarquía de DFDs DFD 0

2.- Diagramas de Flujo de Datos

- El primer diagrama general que sigue al de contexto es el número 0 por convenio
- En el DFD 0 se hace una descomposición en subsistemas, es decir, se indican los procesos más importantes en el sistema

⇒ Han de ser SUBSISTEMAS

2.- Diagramas de Flujo de Descomposición funcional y Datos almacenes de datos

- Los almacenes aparecen lo más tarde posible
- En un nivel superior únicamente cuando son interfaz entre procesos
- Una vez que aparezca en un DFD, el almacén aparecerá otra vez en cada DFD de nivel más bajo relacionado

Tamaño de la jerarquía de DFDs

- Cada DFD debería tener alrededor de 7 procesos o menos
- En general, habrá varios niveles intermedios, dependiendo del tamaño y complejidad del sistema que se está modelando
- ¿Cuántos niveles son convenientes?

Yourdon: depende del problema

Métrica

Diagrama de contexto / sistema Diagrama de subsistemas Diagrama de funciones Diagrama de subfunciones Diagrama de procesos (opcional)

2.- Diagramas de Flujo de Datos

Reglas sintácticas en DFDs

- El origen y/o el destino de un FD es siempre un proceso
 - Excepción: almacenes en el diagrama de contexto

Reglas sintácticas en DFDs (II)

- Todo almacén y todo proceso tienen uno o más FD de E y uno o más FD de S
 - EXCEPCIÓN: un almacén puede no tener FD de salida, por simplificación (p.ej. BD Histórica)
 - RECOMENDACIÓN: si aparece un proceso fuente o sumidero, replantearse los límites del sistema

2.- Diagramas de Flujo de Datos

Ideas útiles para construir el DFD

- Identificar todos los elementos exógenos
- Identificar sus relaciones con el sistema
- Trabajar según alguna de las siguientes filosofías:
 - De inputs a outputs
 - De outputs a inputs
 - Desde una posición intermedia hacia delante o hacia atrás

Ideas útiles para construir el DFD (II)

- Nombrar adecuadamente todos los objetos del DFD
- Numerar adecuadamente procesos y diagramas
- Realizar una correcta división en subsistemas (DFD 0)
- Utilizar la descomposición funcional jerárquica hasta alcanzar las funciones primitivas

2.- Diagramas de Flujo de Datos

DFDs - Conclusiones

- Valiosa herramienta de comunicación
 - Usuario, analista, diseñador, programador
 - Se puede combinar con el uso de prototipos
- Fácil de entender y de aprender
- Facilita las relaciones con el usuario
- Amplia difusión

DFDs - Conclusiones (II)

- Superado por las metodologías OO, pero todavía vigente:
 - se enseña en las principales universidades
 - industria
 - administración
 - cuerpo de conocimiento de ingeniería del software
- El control no aparece hasta el final de la especificación estructurada
- No es inmediato el paso a la codificación y prueba ⇒ Diseño estructurado

2.- Diagramas de Flujo de Datos

DFDs – Conclusiones (III)

- Útil para el análisis y para el diseño del nuevo sistema
- Más adecuado para el nivel lógico, aunque también puede ser adecuado para el nivel físico (indicando personas concretas, lugares geográficos, formatos de datos, etc.)