Eine Woche, ein Beispiel 6.18 diagram chasing

Goal: Let's play the game of diagram chasing!

basic. five lemma, snake lemma, SES of complex => LES of homology

[Vakil] "where there is universal property, there is diagram chasing" e.p. Chap 1 Category + Adjoints + Spectral sequences Chap 2 Sheaf on topology space Please convert everything to Grothendieck topo! Chap 23 Derived functors

Chap 28 Base change
[J. S. Milne, étale cohomology] Prop II.1.5. one description of the étale sheaf

Now: "Fancy objects require a lot of diagram-chasing technique"

- Infinite category
- Stack related
- Condensed objects

```
Extension group
   1. Def of Ext_{A}^{n}(M,N)

E_{A}(M,N) = \{0 \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0\}/equivalence
                                     = fproj resolution P., H" (Homa (P.N)) 3/resolution
           devi derived
                                      = fing resolution I', H" (Homa (M, I')) 1/resolution
                                        = Sderivation I linner derivation
                                        = Hom_{D(A-mod)} (M, N[1])
   2. Special module/ring interact with Ext?
                  P \text{ proj} \Leftrightarrow E \times t_A^{(P,-)} = 0 \quad \forall n \ge 1 \iff E \times t_A^{(P,-)} = 0
                                ⇔ proj dim P =0
                  I proj \Leftrightarrow Ext_A^n(-,I)=0 \forall n>1 \Leftrightarrow Ext_A^1(-,I)=0
            A find alg \dim_k \operatorname{Ext}_A^1(S(i), S(j)) = \dim_k \operatorname{Hom}_A(\operatorname{rad}(P(i)), S(j))
= |Sae(U_1|S(a)=i, t(a)=j]|
Second level of detail
equivalent of SES = | = | = | = |
                                                                       \uparrow \times . \qquad 0 \longrightarrow \mathbb{Z} \xrightarrow{P} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/_{P\mathbb{Z}} \longrightarrow 0
0 \longrightarrow \mathbb{Z} \xrightarrow{P} \mathbb{Z} \xrightarrow{2:\pi} \mathbb{Z}/_{P\mathbb{Z}} \longrightarrow 0
      isomorphic 3 + 1 + 1 = 1
 pushout
                                                             pullback
                                                                                \Rightarrow E_A(M,N). Def, Difunctor and K-linear space structure O\Rightarrow O\Rightarrow O
f. \sim g. \Rightarrow H_n(f.) = H_n(g.)

g.f. \sim Id f.g. \sim Id \Rightarrow H_n(C.) = H_n(C.)

\Rightarrow Ext_n^2(M,N). Def, bifunctor and K-linear space structure 0 \Rightarrow 3
\Rightarrow E_A(M,N) \rightarrow Ext_A^2(M,N) @ well-defined by resolution & lift dequiv
                                                         2 bifunctor
                                                          3) K-linear map
                                      o→U→P→M→o
o→U'→P'→M→o
P,P' proj ⇒ U⊕P'≅U'⊕P
   Schanuel's lemma
 \int_{0}^{\infty} 0 \to U \to X \to V \to 0 \text{ Fnon-split} \Rightarrow \dim_{k} End_{A}(X) < \dim_{k} End_{A}(U \oplus V)
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dA - mod \quad 0 \to U \to X \to V \to 0 \text{ split} \iff X \cong U \oplus V \text{ as } A - module
```

Motivated:

https://arxiv.org/pdf/math/0001045.pdf

Standard reference:

S. Gelfand and Yu. Manin, Methods of Homological Algebra, Springer, 1996

we refer this without mention!

/quasi-iso

Remark. 1. For most time we view the category equivalence as "equal". However, the category defined by universal property is unique under isomorphism.

Ob(Kom(A)) = Ob(K(A)) = Ob(D(A))

2 localizing category BES-17 does not always have a good description e.g. D(A) = Kom(A)[quasi-iso]

However, when S is a localizing class, then we have a good description #2.8 e.g. D(A) = K(A)[quasi-iso]

Those two definitions define the same category D(A).

3. D(A) is a triangulated contegory. To define a distinguished triangle, we denote

$ \begin{array}{ccc} f_{\cdot} & \kappa & \longrightarrow L^{\cdot} \\ 0 & & & \\ \end{array} $	K, L. complexes	K° d' K' dk = dk = d L° d' to be short
Cyl(f): = k' @ KOJ' @ L'	$d_{cyl}(f) = \begin{bmatrix} d & -1 \\ -d & f \end{bmatrix}$	K°⊕K'GL°
C (f) = K[1] & L'		$k' \oplus L^{\circ} \xrightarrow{\left[\begin{array}{c} -d'_{k} \\ f' \end{array} \right]} k' \oplus L^{\circ}$

Then we have O SES on row
(Lemma II 3.3) ② 2, \beta. quasi-iso

distinguished triangle:

SES. What's your favorate SES?
$$0 \rightarrow I \rightarrow A \rightarrow A/I \rightarrow 0$$

$$0 \rightarrow A \rightarrow A \oplus B \rightarrow B \rightarrow 0$$

$$0 \rightarrow I \cap J \rightarrow I \oplus J \rightarrow I + J \rightarrow 0$$

$$o \rightarrow R/InJ) \rightarrow R/I \oplus R/J \rightarrow R/I+J) \rightarrow o$$

$$0 \rightarrow \mathcal{O}_X \rightarrow K_X \rightarrow \underset{x \in X \text{ closed}}{\bigoplus} \overset{\mathsf{T}}{\mathsf{I}_X} \rightarrow 0$$

$$0 \to I/I^{2} \to \mathcal{O}_{x \times x/I^{2}} \to \mathcal{O}_{x \times x/I} \to 0$$

$$\Delta_{x}^{\parallel} \Omega_{x} \qquad \Delta_{x}^{\parallel} \Omega_{x}$$

as A-mod

https://www.math.uni-bonn.de/people/g martin/UebungenAGWS20/AGExer12.pd

https://www.math.uni-bonn.de/people/gm artin/UebungenAGWS20/AGExer8.pdf

$$\begin{array}{c} 0 \longrightarrow I_q \longrightarrow D_q \longrightarrow \text{Gal}(k_q/k_p) \longrightarrow 0 \\ 0 \longrightarrow \mathcal{O}_k^{\times} \longrightarrow K^{\times} \longrightarrow \bigoplus_{\mu \in \mathcal{N}_k^{\times}} \mathbb{Z} \longrightarrow \mathbb{C}((k)) \longrightarrow 0 \end{array}$$

$$1 \rightarrow Z(G) \longrightarrow G \xrightarrow{conj} Aut(G) \longrightarrow Out(G) \longrightarrow 1$$

exponential
$$0 \rightarrow \underline{Z} \rightarrow \mathcal{O}_{M} \rightarrow \mathcal{O}_{M}^{\times} \rightarrow 1$$

generalization:https://ncatlab.org/nlab/sh ow/exponential+exact+sequence

$$1 \longrightarrow G_m \longrightarrow {}^{u}_{\uparrow *}G_{m, \uparrow} \longrightarrow Div(X) \longrightarrow 1 \qquad {}^{u}_{\uparrow : \uparrow} \underset{S_{pec}(k(X))}{\longrightarrow} X$$

$$\circ -- \ni f^* \Omega_{X/k} \to \Omega_{Y/k} \to \Omega_{Y/X} \to 0 \qquad f: Y \to X$$

$$0 \longrightarrow I/I^2 \longrightarrow i^* \Omega_{X/k} \longrightarrow \Omega_{Z/k} \longrightarrow 0$$

$$Z \stackrel{i}{\leftarrow} X \stackrel{i}{\leftarrow} U \longrightarrow Sh(Z\acute{e}t) \stackrel{i}{\vdash} \stackrel{i}{\rightarrow} \frac{1}{\downarrow} \stackrel{f}{\downarrow} \stackrel$$

For Zariski: j*=j-1, i* + i-1

https://mathoverflow.net/questions/38168/is-the-category-of-commutative-group-schemes-abelian

Kummer sequence
$$1 \xrightarrow{} \mu_{n} \xrightarrow{} G_{m} \xrightarrow{(-)^{n}} G_{m} \xrightarrow{} 1$$

$$0 \xleftarrow{} k [k]/(x^{n}-1)} \xleftarrow{} k [k] \times^{-1} 1 \xrightarrow{} k [k] \times^{-1} 1$$

$$0 \xleftarrow{} k [k]/(x^{n}) \xleftarrow{} k [k] \xleftarrow{} k [k] \xrightarrow{} 1$$

$$0 \xleftarrow{} k [k]/(x^{n}) \xleftarrow{} k [k] \xrightarrow{} G_{a} \xrightarrow{} 1$$

$$0 \xleftarrow{} k [k]/(x^{n}-x) \xleftarrow{} k [k] \xleftarrow{} k [k]$$

Zariski étale fref

Mn × when
$$n \in P(X, \mathcal{Q}_X)^X$$

× in general

 \mathcal{Q}_P

× × in general ✓

 \mathcal{Z}_{PZ}