Uncertainties in Measuring Planets

Astronomy 5205 SP22

Payton Cassel, Shannon McKinney, Madison Englerth, Richard Kane, Bailee Wolfe

1. Motivations

- Determine uncertainties in using radial velocity and transit methods to calculate the density of a planet
- How do these calculations compare to exoplanets of other systems?
- Compare results with Chen & Kipping Plot

2. Methods

- From the exoplanet system HD209458 b
- Use radial velocity and transit data to determine
 - Mass
 - Radius
 - Density
- Data pulled from the NASA Exoplanet Archive

Mass

Expression for radial velocity

$$K = \frac{m_p}{m_*} \cdot \sqrt{\frac{Gm_*}{a}} \cdot \sin(i)$$

Rearranged we get

$$m_p = Km_* \cdot \sqrt{\frac{a}{Gm_*}}$$

- K = radial velocity, m_{*}= mass of star, a = semi-major axis, G = gravitational constant. We assume sin(i) = 1, which is mostly true for transiting exoplanets.
- Values pulled from NEA

Mass Uncertainty

Uncertainty of planet mass

$$\left(\frac{\sigma_{m_p}}{m_p}\right)^2 \approx \frac{4}{9} \left(\frac{\sigma_{m_*}}{m_*}\right)^2 + \left(\frac{\sigma_{K_*}}{K_*}\right)^2$$

• Using σ_{K^*} =0.00826, K_{*}=84.7 m/s, and σ_{m^*} = 0.0374 we are able to calculate the uncertainty.

Radius

Expression for transit depth

$$\delta = \left(\frac{R_p}{R_*}\right)^2$$

Rearranging we get

$$R_p = R_* \sqrt{\delta}$$

- Where δ is the transit depth and R_* is the radius of the star.
- Values pulled from NEA

Radius Uncertainty

Uncertainty of the radius

$$\left(\frac{\sigma_{R_p}}{R_p}\right)^2 \approx \left(\frac{\sigma_{R_*}}{R_*}\right)^2 + \frac{1}{4} \left(\frac{\sigma_{\delta}}{\delta}\right)^2$$

• Given that σ_{R^*} = 0.017 and σ_{δ} = 0.0016, we can calculate uncertainty of the planet's radius.

Density

Expression for density

$$p = \frac{m_p}{4\pi (R_p)^2}$$

- Using m_p and the R_p we found previously, we calculate density.
- Values pulled from NEA

Density Uncertainty

Expression for the uncertainty of density

$$\left(\frac{\sigma_p}{p}\right)^2 \approx \left(\frac{\sigma_{m_p}}{m_p}\right)^2 + 9\left(\frac{\sigma_{R_*}}{R_*}\right) + \frac{9}{4}\left(\frac{\sigma_{\delta}}{\delta}\right)^2$$

• We found $\sigma_{Rn} = 0.00159$ and $\sigma_{mn} = 0.0548$ and calculate the uncertainty.

3. Results

- M_D: 0.701 Jupiter Masses
- Mass uncertainty: 7.084x10⁻³%

- R_p: 1.429 Jupiter Radii
- Radius uncertainty: 0.222%

- ρ: 318.429 kg m⁻³
- Density uncertainty: 3.98%

RV, Period, and Power Relation

The period is 3.52 days

4. Conclusions

- Using radial velocity and transit data of HD209458 b we can find the following.
 - Mass of planet
 - 0.701 ± 0.00005 Jupiter Masses
 - Radius of planet
 - 1.429 ± 0.0031 Jupiter Radii
 - Density of planet
 - \blacksquare 318.429 ± 12.673 kg/m³
 - Period of planet
 - 3.52 days

Comparisons

Comparison cont.

Citations

- Ford, E. B. (2005). Quantifying the Uncertainty in the Orbits of Extrasolar Planets. *The Astronomical Journal*, 129(3), 1706–1717. https://doi.org/10.1086/427962
- Rodríguez Martínez, R., Stevens, D. J., Gaudi, B. S., Schulze, J. G., Panero, W. R., Johnson, J. A., & Wang, J. (2021). Analytic Estimates of the Achievable Precision on the Physical Properties of Transiting Planets Using Purely Empirical Measurements. *The Astrophysical Journal*, 911(2), 84. https://doi.org/10.3847/1538-4357/abe941
- NASA Exoplanet Archive. (2022). NASA Exoplanet Archive.
 https://exoplanetarchive.ipac.caltech.edu/