1 Grundbegriffe

Definition Wahrscheinlichkeitraum

Ein Wahrscheinlichkeitraum ist ein Tupel $(\Omega, \mathcal{F}, \mathbb{P})$:

- Die Menge Ω nenen wir **Grundraum**. Ein $\omega \in \Omega$ nennen wir Elementarereignis.
- $\mathcal{F} \subseteq \mathbb{P}(\Omega)$ ist eine **Sigma-Algebra**.
- P ist ein Wahrscheinlichkeitsmass definiert auf (Ω, F).

Dabei ist $A \subseteq \Omega$ ein Ereignis.

1.1 Sigma-Algebra

Eine Sigma-Algebra $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ hat folgende Eigenschaften:

- 1. $\Omega \in \mathcal{F}$
- $2. \ A \in \mathcal{F} \implies A^{\complement} \in \mathcal{F}$
- 3. $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- 4. $\emptyset \in \mathcal{F}$
- 5. $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$
- 6. $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$
- 7. $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$

De-Morgan Regel

$$(\bigcup_{i=1}^{\infty} A_i)^{\complement} = \bigcap_{i=1}^{\infty} (A_i)^{\complement}$$

1.2 Wahrscheinlichkeitsmass

Ein Wahrscheinlichkeitsmass \mathbb{P} ist eine Abbildung $\mathbb{P}: \mathcal{F} \mapsto [0,1], A \mapsto \mathbb{P}[A]$ mit den Eigenschaften:

- 1. $\mathbb{P}[\Omega] = 1 \text{ und } \mathbb{P}[\emptyset] = 0$
- 2. $\mathbb{P}[A] = \sum_{i=1}^{\infty} P[A_i]$, falls $A = \bigsqcup_{i=1}^{\infty} A_i$
- 3. $\mathbb{P}[A^{\complement}] = 1 \mathbb{P}[A]$
- 4. $\mathbb{P}[A \cup B] = \mathbb{P}[A] + P[B] \mathbb{P}[A \cap B]$
- 5. $A \subseteq B \implies \mathbb{P}[A] < \mathbb{P}[B]$ (Monotonie)
- 6. $\mathbb{P}[\bigcup_{i=1}^{\infty} A_i] \leq \sum_{i=1}^{\infty} \mathbb{P}[A_i]$ (Union Bound)
- 7. Falls $A_1, \ldots A_n$ paarweise disjunkt, so gilt:

$$\mathbb{P}[A_1 \cup \ldots \cup A_n] = \mathbb{P}[A_1] + \ldots + \mathbb{P}[A_n]$$

Fast sichere Ereignisse

Wir sagen A tritt fast sicher (f.s.) ein, falls P[A] = 1.

1.3 Bedingte Wahrscheinlichkeiten

Defintion Bedingte Wahrscheinlichkeit

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$
, wobei $\mathbb{P}[B] > 0$

Sei im folgenden nun $B_1, \ldots, B_n \in \mathcal{F}$ eine **Partition von** Ω mit $\mathbb{P}[B_i] > 0$ für alle $1 \leq i \leq n$. Dann gilt:

Totale Wahrscheinlichkeit

$$\forall A \in \mathcal{F} \quad \mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i] \ \mathbb{P}[B_i]$$

Satz von Bayes

$$\mathbb{P}[B_i|A] = \frac{\mathbb{P}[A|B_i] \ \mathbb{P}[B_i]}{\mathbb{P}[A]} = \frac{\mathbb{P}[A|B_i] \ \mathbb{P}[B_i]}{\sum_{k=1}^n \mathbb{P}[A|B_k] \ \mathbb{P}[B_k]}$$

Wobei $\mathbb{P}[A] > 0$ gelten muss.

1.4 Unabhängigkeit von Ereignissen

Zwei Ereignisse $A, B \in \mathcal{F}$ sind unabhängig, falls gilt:

$$\mathbb{P}[A \cap B] = \mathbb{P}[A] \cdot \mathbb{P}[B] \text{ oder } \mathbb{P}[A|B] = \mathbb{P}[A]$$

- Falls $\mathbb{P}[A] \in \{0,1\}$ (Indikatorvariabel), dann ist A zu jedem Ereignis unabhängig.
- Wenn A, B unabhängig sind, dann sind auch A, B^{\complement} unabhängig.

Unabhängigkeit von mehreren Ereignissen

 $A_1, \ldots, A_n \in F$ sind unabhängig, falls:

$$\forall I \subseteq \{1, \dots, n\} \quad \mathbb{P}[\bigcap_{i \in I} A_i] = \prod_{i \in I} \mathbb{P}[A_i]$$

2 Zufallsvariablen

Definition Gewichtsfunktion

$$p_X : \mathbb{R} \mapsto [0, 1] : p_X(x) = \mathbb{P}[X = x] = \mathbb{P}[\{\omega | X(\omega) = x\}]$$

Es gilt: $\sum_{x \in \mathcal{W}(X)} p_X(x) = 1 \quad \text{und} \quad \forall x \in \mathcal{W}_X : 0 \le p_X(x) \le 1$

Definition Verteilungsfunktion

 $F_X: \mathbb{R} \mapsto [0,1] \quad \forall x \in \mathbb{R} \quad F_X(x) = \mathbb{P}[X \le x]$

- $F_X(x) = \int_{-\infty}^x f_X(x) dx$ bzw. $F_X(x) = \sum_{y \in \mathcal{W}_{X}, y \le x} p(y)$
- $a < b \implies \mathbb{P}[a \le X \le b] = F_X(b) F_X(a)$
- F ist monoton wachsend
- F ist rechtsstetig, d.h. $\lim_{t\to 0} F(x+t) = F(x)$
- $\lim_{x\to-\infty} F_X(x) = 0$ und $\lim_{x\to\infty} F_X(x) = 1$
- Median berechnen: x ist Median $\iff F_X(x) = 0.5$

2.1 Unabhängigkeit von ZV

 X_1, \ldots, X_n sind unabhängig, ist äquivalent zu:

- Diskreter Fall: $p(x_1, \ldots, x_n) = p_{X_1}(x_1) \cdot \ldots \cdot p_{X_n}(x_n)$
- Stetiger Fall: $f(x_1 \dots x_n) = f_{X_1}(x_1) \cdot \dots \cdot f_{X_n}(x_n)$
- $F_{X_1,...,X_n}(x_1...x_n) = F_{X_1}(x_1) \cdot ... \cdot F_{X_n}(x_n)$
- Für alle $\phi_1, \dots, \phi_n : \mathbb{R} \to \mathbb{R}$ gilt: $\mathbb{E}[\phi_1(x_1) \cdot \dots \cdot (x_n)] = \mathbb{E}[\phi_1(x_1)] \cdot \dots \cdot \mathbb{E}[\phi_n(x_n)]$

 $X_1, X_2, ...$ ist unabhängig und identisch verteilt (uiv.), falls $\forall i, j \mid F_{X_i} = F_{X_j}$ gilt. Seien $X_1, ..., X_n$ (diskret) unabhängig und $g_i : \mathbb{R} \to \mathbb{R}$. Dann sind auch $g_1(X_1), ..., g_n(X_n)$ unabhängig.

2.2 Diskrete Zufallsvariablen

Definition diskrete ZV

Eine ZV X heisst diskret, falls $\exists W \subset \mathbb{R}$ endlich oder abzählbar, so dass $X \in W$. Falls Ω endlich oder abzählbar ist, dann ist X immer diskret.

2.3 Diskrete Verteilungen

(Diskrete) Gleichverteilung (Laplace)

$$W = \{x_1, \dots, x_N\}. \ \mathbb{P}[X = x_i] = \frac{1}{N} \text{ und } \mathbb{E}[X] = \frac{\sum_{i=1}^{N} x_i}{N}$$

Bernoulli-Verteilung

Hat nur die Ereignisse $\{0,1\}$. $X \sim \text{Ber}(p)$

$$\mathbb{P}[X = 0] = 1 - p \text{ und } \mathbb{P}[X = 1] = p$$

$$\mathbb{E}[X] = p \text{ und } Var[X] = p(1-p)$$

Binomialverteilung

Wiederholung von Bernoulli-Exp. $X \sim Bin(n, p)$

$$\forall k \in \{0,\ldots,n\} \quad \mathbb{P}[X=k] = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

$$\mathbb{E}[X] = np$$
 und $\operatorname{Var}[X] = np(1-p)$

Falls $X \sim \text{Bin}(n_x, p)$ und $Y \sim \text{Bin}(n_y, p)$ unabhängig sind, dann gilt für Z := X + Y, dass $Z \sim \text{Bin}(n_x + n_y, p)$.

Negative Binomialverteilung

Warten auf den r-ten Erfolg von Bernoulli Experimenten (Falls r = 1, so ist $X \sim \text{Geo}(p)$). $X \sim \text{NB}(r, p)$

$$\mathbb{P}[X = k] = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

$$\mathbb{E}[X] = \frac{r}{p}$$
 und $\operatorname{Var}[X] = \frac{r \cdot (1-p)}{p^2}$

 $(X_i)_{i=1}^r \sim \text{Geo}(p) \text{ und } \mathbf{unabh.} \Rightarrow X := X_1 + \dots X_r \sim \text{NB}(r, p).$

Geometrische Verteilung

Beschreibt das 1. Auftreten eines Erfolges. $X \sim \text{Geom}(p)$

$$\mathbb{P}[X = k] = (1-p)^{k-1} \cdot p$$
 $F_X(k) = \mathbb{P}[X \le k] = 1 - (1-p)^k$

$$\mathbb{E}[X] = \frac{1}{p}$$
 und $\operatorname{Var}[X] = \frac{1-p}{p^2}$

Gedächtnislosigkeit: $\mathbb{P}[X > y + x | X > x] = \mathbb{P}[X > y]$

Hypergeometrische Verteilung

Urne mit n Elementen, davon r vom Typ 1 und n-r vom Typ 2. Ziehe m Elemente daraus, dann beschreibt X die Anzahl Elemente vom Typ 1.

$$\mathbb{P}[X=k] = \frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}} \quad \text{für } k \in \{0,1,...,min(m,r)\}$$

$$\mathbb{E}[X] = m \cdot \frac{r}{n}$$
 und $\operatorname{Var}[X] = m \cdot \frac{r}{n} (1 - \frac{r}{n}) \frac{n - m}{n - 1}$

Cauchy-Verteilung: Sind $Y, Z \sim \mathcal{N}(0, 1)$ unabhängig, so ist X := Y/Z Cauchy-verteilt. (EW und Varianz existieren nicht!) $f_X(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$ und $F_X(x) = \frac{1}{1} + \frac{1}{\pi} \cdot arctan(x)$

Poisson-Verteilung

Annäherung an die Binomialvert. (0-1-Exp.) für grosse nund kleine p (d.h. rare Ereignisse). $X \sim \text{Poisson}(\lambda)$

$$\forall k \in \mathbb{N}, \lambda > 0 \quad \mathbb{P}[X = k] = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$

$$\mathbb{E}[X] = \lambda$$
 und $\operatorname{Var}[X] = \lambda$

Sind X und Y **unabhängige** ZV mit $X \sim Po(\lambda_1)$ und $Y \sim Po(\lambda_2)$, dann gilt für $Z := X + Y \sim Po(\lambda_1 + \lambda_2)$.

2.4 Stetige Zufallsvariablen

Definition stetige ZV

Eine ZV X heisst stetig, wenn ihre Verteilungsfunktion F_X wie folgt geschrieben werden kann:

$$\forall x \in \mathbb{R} \quad F_X(x) = \int_{-\infty}^x f(y) dy$$

Die Verteilungsfunktion F_X sei stetig und stückweise C^1 . Dann ist X eine stetige ZV und $f(x) = F'_X(x)$.

Hierbei ist $f: \mathbb{R} \to \mathbb{R}^+$ die **Dichtefunktion** von X. Es gilt:

$$\int_{-\infty}^{+\infty} f(y)dy = 1 \quad \text{und} \quad \forall x \in \mathbb{R} : f_X(x) \ge 0$$

Es gelten folgende Eigenschaften: $\mathbb{P}[a \leq x \leq b] = \mathbb{P}[a < x < b]$ und $\mathbb{P}[X \in [a,b]] = \mathbb{P}[X \in (a,b)]$ Zudem gilt für stetige ZV: $\mathbb{P}[\mathbf{X} = \mathbf{x}] = \mathbf{0}$, $\forall x \in W_x$

Stetige Verteilungen

(Stetige) Gleichverteilung

Jedes Ereignis hat die gleiche W'keit. $X \sim \mathcal{U}[a, b]$

$$f_{a,b}(x) = \begin{cases} 0 & x \notin [a,b] \\ \frac{1}{b-a} & x \in [a,b] \end{cases}$$

$$F_{a,b}(x) = \int_{-\infty}^{x} f_{a,b}(t)dt = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

$$\mathbb{E}[X] = \frac{a+b}{2} \quad \text{ und } \quad \operatorname{Var}[X] = \frac{(a-b)^2}{12}$$

Exponentialverteilung

Das stetige Gegenstück zur Geometrischen Verteilung (verwendet für Warte- & Überlebenszeiten). $X \sim \text{Exp}(\lambda)$

$$f(x) = \begin{cases} 0 & x < 0 \\ \lambda \cdot e^{-\lambda x} & x \ge 0 \end{cases}$$

$$F(x) = \int_0^x f(t)dt = \begin{cases} 1 - e^{-\lambda \cdot x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\mathbb{E}[X] = \frac{1}{\lambda}$$
 und $\operatorname{Var}[X] = \frac{1}{\lambda^2}$

Skalierung: Für $X \sim \text{Exp}(\lambda)$, a > 0 und Y := aX: $Y \sim \text{Exp}(\frac{\lambda}{a})$.

Wartezeit: $\forall x \geq 0 : \mathbb{P}[X > x] = 1 - F(x) = e^{-\lambda \cdot x}$

Gedächtnislosigkeit: $\mathbb{P}[X > y + x | X > x] = \mathbb{P}[X > y]$

Normalverteilung

Additive Überlagerung einer großen Zahl von unabhängigen Einflüssen (Bsp.: Messfehler). $X \sim \mathcal{N}(m, \sigma^2)$

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}$$

$$\mathbb{E}[X] = m$$
 und $\operatorname{Var}[X] = \sigma^2$

 \Rightarrow 68.27% der Werte liegen im Intervall $\mu \pm \sigma$, 95,45% in $\mu \pm 2\sigma$ und 99,73% in $\mu \pm 3\sigma$. Zudem gilt: $\mathbb{P}[X \in [\mu - z\sigma, \mu + z\sigma]] = 2\phi(z) - 1$

Sei $X_i \sim \mathcal{N}(m_i, \sigma_i^2)$ unabhängig, dann: $Z := (m_0 + \lambda_1 \cdot X_1 + ... +$ $\lambda_n \cdot X_n \sim \mathcal{N}(m_0 + \lambda_1 \cdot m_1 + \dots + \lambda_n \cdot m_n, \lambda_1^2 \cdot \sigma_1^2 + \dots + \lambda_n^2 \cdot \sigma_n^2).$

Standardnormalvert.: Sei $Z \sim \mathcal{N}(0,1)$. Für eine normalverteilte ZV X gilt $X = m + \sigma \cdot Z \sim \mathcal{N}(m, \sigma^2)$. $\Rightarrow \mathbb{P}[X \leq x] = \mathbb{P}[Z \leq \frac{x-\mu}{\sigma}] = \phi(\frac{x-\mu}{\sigma})$

Ist $X \sim \mathcal{N}(\mu, \sigma^2)$, so ist $Y := e^X$ logarithmisch normalvert.

Erwartungswert und Varianz

Erwartungswert für diskrete ZV

$$\mathbb{E}[X] = \sum_{x \in W} x \cdot \mathbb{P}[X = x] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}[\omega]$$

Sei $\phi: \mathbb{R} \to \mathbb{R}$ eine Abbildung. Falls die Summe wohldefiniert ist (abs. konv.), gilt: $\mathbb{E}[\phi(X)] = \sum_{x \in W} \phi(x) \cdot \mathbb{P}[X = x]$ **Achtung:** EW existiert nicht immer! (Summe muss abs. konv.)

Erwartungswert für stetige ZV

Falls die Verteilung von X absolut stetig ist, gilt:

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

 \Rightarrow EW existiert nur, falls das Integral **absolut konvergiert!** Sei $\phi: \mathbb{R} \mapsto \mathbb{R}$ eine Abbildung, sodass $\phi(x)$ eine Zufallsvariable ist. Es gilt: $\mathbb{E}[\phi(X)] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$ Man kann den EW auch über die Verteilungsfunktion definieren:

$$\mathbb{E}[X] = \int_0^\infty (1 - F_X(x)) dx - \int_{-\infty}^0 F_X(x) dx$$

 \Rightarrow Für ZV mit nicht-neg. Werten gilt: $\mathbb{E}[X] = \int_0^\infty (1 - F_X(x)) dx$.

3.1 Rechnen mit Erwartungswerten

• Linearität: Seien X, Z Zufallsvariabeln mit $a, b \in \mathbb{R}$. Falls die Erwartungswerte wohldefiniert sind, gilt

$$\mathbb{E}[a \cdot X + b] = a \cdot \mathbb{E}[X] + b$$

- Monotonie: $X(\omega) \leq Y(\omega), \forall \omega \in \Omega \Rightarrow \mathbb{E}[X] \leq \mathbb{E}[Y]$
- Mon. Stetigkeit: $0 \le X_1 \le X_2 ... \implies \mathbb{E}[\lim_n X_n] = \lim_n \mathbb{E}[X_n]$
- Satz von Lebesgue: Sei $X_1, X_2...$ f.s. konv. Folge mit $|X_i(\omega)| \le X(\omega)$ für ZV X mit $\mathbb{E}[X] < \infty$, dann: $\mathbb{E}[\lim_n X_n] = \lim_n \mathbb{E}[X_n]$
- Für paarweise disjunkte Ereignisse $(A_i)_{i=1}^n, \bigcup_{i=1}^n A_i = \Omega$ und $\forall A_i : \mathbb{P}[A_i] > 0$, gilt:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \cdot \mathbb{P}[A_i]$$

- Mulitplikativität: Falls $X_1, ..., X_n$ unabhängig \Rightarrow $\mathbb{E}[g_1(X_1) \cdot ... \cdot g_n(X_n)] = \mathbb{E}[g_1(X_1)] \cdot ... \cdot \mathbb{E}[g_n(X_n)]$
- Extremwertformel: Sei X eine diskrete ZV mit Werten in N. Dann gilt folgende Identität (gilt auch analog für stetige ZV):

$$\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}[X \ge n]$$

• Waldsche Identität: Seien $X_1, X_2, ..., X_n$ uiv. ZV und N eine ZV mit Werten in \mathbb{N} . Dann gilt:

$$\mathbb{E}[\sum_{i=1}^{N} X_i] = \mathbb{E}[N] \cdot \mathbb{E}[X_1]$$

• Alternativdefinition unabhängige **ZV** Seien X_1, \ldots, X_n diskrete ZV. Dann gilt: X_1, \ldots, X_n sind unabhängig \iff Für jedes $\phi_1, \ldots, \phi_n : \mathbb{R} \mapsto \mathbb{R}$ beschränkt, gilt:

$$\mathbb{E}[\phi_1(X_1)\cdot\ldots\cdot\phi_n(X_n)] = \mathbb{E}[\phi_1(X_1)]\cdot\ldots\cdot\mathbb{E}[\phi_n(X_n)]$$

3.2 Bedingter Erwartungswert

Bedingter Erwartungswert

$$\mathbb{E}[X|Y] = \frac{\mathbb{E}[I_A \cdot X]}{\mathbb{P}[Y]} = \sum_{x \in X(\Omega)} x \cdot \mathbb{P}[X = x|Y]$$

Eigenschaften:

- $\mathbb{E}[a_1 \cdot X_1 + a_2 \cdot X_2 | A] = a_1 \cdot \mathbb{E}[X_1 | A] + a_2 \cdot \mathbb{E}[X_2 | A]$
- Ist X unabhängig von Y, so gilt: $\mathbb{E}[X|Y] = \mathbb{E}[X]$

Bedingt auf eine Partition

Sei $\mathcal{B} = (B_i)_{i \in I}$ eine Partition von Ω . Dann definieren wir die **Zufallsvariabel**:

$$\mathbb{E}[X|B](\omega) = \sum_{i \in I} \mathbb{E}[X|B_i] \cdot 1_{B_i}(\omega)$$

Eigenschaften:

- Totaler Erwartungswert: $\mathbb{E}[\mathbb{E}[X|\mathcal{B}]] = \mathbb{E}[X]$
- $\mathbb{E}[1_{B_i} \cdot \mathbb{E}[X|\mathcal{B}]] = \mathbb{E}[1_{B_i} \cdot X]$

Beispiel: Zwei Würfel werden geworfen. Sei $\Omega = \{1,2,\dots,6\}^2$ und $\mathbb{P}[(\omega_1,\omega_2)] = 1/36 \ \forall \omega \in \Omega.$ Sei Y := "Augenzahl des 2. Würfels" und sei $\mathcal{B} = (B_i)_{i=1}^6$ wobei $B_i = \{Y=i\}$. Berechne $\mathbb{E}[Y|\mathcal{B}](2,4)$. $\Rightarrow \mathbb{E}[Y|\mathcal{B}](2,4) = \sum_{i=1}^6 \mathbb{E}[Y|B_i] \cdot 1_{B_i}(2,4) = \mathbb{E}[Y|B_4] = \frac{\mathbb{E}[1_{Y=4}\cdot Y]}{\mathbb{P}[Y=4]} = \frac{4\cdot\mathbb{P}[(1,4)]+4\cdot\mathbb{P}[(2,4)]+\dots+4\cdot\mathbb{P}[(6,4)]}{\mathbb{P}[Y=4]} = \frac{24/36}{1/6} = 4$

3.3 Varianz

Varianz

Sei X eine ZV sodass $\mathbb{E}[X^2] < \infty$.

$$\mathrm{Var}[X] := \sigma_X^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$\mathrm{Var}[X] = \begin{cases} \sum_{x \in W_X} (x - \mathbb{E}[X])^2 \cdot \mathbb{P}[X = x] &, \ X \ \mathbf{diskret} \\ \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 \cdot f_X(x) dx &, \ X \ \mathbf{stetig} \end{cases}$$

Eigenschaften:

- $Var[a \cdot X + b] = a^2 \cdot Var[X]$
- $X_1,...X_n$ unabhängig $\Rightarrow \text{Var}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \text{Var}[X_i]$
- Allgemein $(Cov(X_i, Y_i) = 0$, wenn X_i und Y_i unabhängig):

$$\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] + 2 \cdot \sum_{i < j} \operatorname{Cov}(X_{i}, Y_{i})$$

3.4 Kovarianz

Definition Kovarianz

Sei X, Y zwei ZV mit $\mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty$.

$$\mathrm{Cov}(X,Y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

Eigenschaften der Kovarianz:

- Cov(X, X) = Var[X]
- X, Y unabhängig $\implies \text{Cov}(X, Y) = 0$
- Cov(X, Y) = Cov(Y, X)
- $Cov(X, a \cdot Y + b) = a \cdot Cov(X, Y)$ und Cov(X, b) = 0
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)
- $|Cov(X, Y)| \le \sigma(X) \cdot \sigma(Y)$

Korrelation

$$\rho(X,Y) \coloneqq \begin{cases} \frac{\operatorname{Cov}(X,Y)}{\sigma(X) \cdot \sigma(Y)} &, \text{ falls } \sigma(X) \cdot \sigma(Y) > 0\\ 0 &, \text{ sonst} \end{cases}$$

Korrelation misst den lin. Zshg. Es gilt $-1 \le \rho(X, Y) \le 1$. Ist Cov(X, Y) = 0, so nennt man X und Y unkorreliert. Es gilt: unabhängig \Rightarrow paarweise unabhängig \Rightarrow unkorreliert

3.5 Momente

Sei X eine Zufallsvariable und $p \in R_+$. Wir definieren:

- das p-te absolute Moment von X durch $M_p := \mathbb{E}[|X|^p]$ (kann ∞ sein)
- falls $M_n < \infty$ für ein n, dann ist das n-te (rohe) Moment von X durch $m_n := \mathbb{E}[X^n]$ definiert.
- Das n-te zentralisierte Moment von X durch $\mu_n := \mathbb{E}[(X \mathbb{E}[X])^n]$ definiert. (für n = 2 erhalten wir die Varianz)

Damit folgt sofort: $M_n < \infty$ für $n \in \mathbb{N} \Rightarrow |m_n| \leq M_n$. Hat X eine Dichte f_X , dann gilt zudem für das absolute Moment:

$$M_p = \int_{-\infty}^{\infty} |x|^p f_X(x) \ dx$$

Gilt dann $M_n < \infty$ für ein $n \in \mathbb{N}$, dann können wir auch das n-te Moment per Integral bestimmen:

$$m_n = \int\limits_{-\infty}^{\infty} x^n f_X(x) \ dx$$

und für diskrete ZV: $m_n = \sum_{i=1}^{\infty} x_i^n \cdot \mathbb{P}[X = x_i]$

4 Gemeinsame Verteilungen

Diskrete gemeinsame Verteilung

Seien X_1, \ldots, X_n diskrete ZV wobei $X_i \in W_i$ für $W_i \subset \mathbb{R}$. Die gemeinsame Verteilung von X_1, \ldots, X_n ist:

$$p(x_1,\ldots,x_n)=\mathbb{P}[X_1=x_1,\ldots,X_n=x_n]$$

Die **Randverteilung** ist definiert als $F_X(x) := \mathbb{P}[X \leq x] = \mathbb{P}[X \leq x, Y \leq \infty] = \lim_{y \to \infty} F(x, y)$ und die **Randdichte** erhalten wir durch "wegaddieren": $p_X(x) = \sum_{y \in \mathcal{W}(Y)} p(x, y)$ Der **Erwartungswert** ist definiert als $(\phi : \mathbb{R}^n \to \mathbb{R})$:

$$\mathbb{E}[\phi(X_1,\ldots,X_n)] = \sum_{x_1,\ldots,x_n} \phi(x_1,\ldots,x_n) \cdot p(x_1,\ldots,x_n)$$

Stetige gemeinsame Verteilung

Falls die gemeinsame Verteilungsfunktion F von $X_1,...,X_n$ (stetige ZV) sich schreiben lässt als

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(t_1,\ldots,t_n) dt_n \ldots dt_1$$

für eine Funktion $f: \mathbb{R}^n \to [0, \infty)$, dann ist f die **gemeinsame Dichte**.

Es gilt: $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(t_1, \dots, t_n) dt_n \dots dt_1 = 1$ Seien X_1, \dots, X_n stetige ZV mit einer gemeinsamen Dichte f und $\phi : \mathbb{R}^n \to \mathbb{R}$. Dann ist der **Erwartungswert** definiert als:

$$\mathbb{E}[\phi(X_1,\ldots,X_n)] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi(x_1,\ldots,x_n) f(x_1,\ldots,x_n) dx_n \ldots dx_1$$

Die Randverteilung ist definiert als $F_X(x) := \mathbb{P}[X \leq x] = \mathbb{P}[X \leq x, Y \leq \infty] = \lim_{y \to \infty} F(x, y)$ und die Randdichte erhalten wir durch "wegintegrieren": $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$.

Bedingte Dichte, Verteilung und EW

Die bedingte Verteilung für zwei stetige ZV X,Y ist (gilt analog auch für diskrete ZV):

$$f_{X\mid Y}(x\mid y):=\frac{f(x,y)}{f_Y(y)}$$
 , für $f_Y(y)>0$ und 0 sonst.

$$\mathbb{P}[Y > t \mid Y < a] = \frac{P[t < Y < a]}{P[Y < a]}$$

$$E[X_1 \mid X_2](x_2) = \int x_1 f_{X_1 \mid X_2}(x_1 \mid x_2) \ dx_1$$

4.1 Konvolution (Faltung)

Konvolution (Faltung)

Seien X und Y unabhängige kontinuierliche Zufallsvariabeln. Für die Dichte von $Z\coloneqq X+Y$ gilt:

$$f_Z(z) = (f_X * f_Y)(z) = \int_{-\infty}^{\infty} f(x, z - x) dx \stackrel{uiv.}{=} \int_{-\infty}^{\infty} f_X(x) \cdot f_Y(z - x) dx$$

und für die Verteilung erhalten wir:

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(x, v - x) dv dx = \int_{-\infty}^{\infty} F_X(z - x) f_Y(x) dx$$

Für diskrete Zufallsvariabeln gilt analog:

$$p_Z(z) = p_X(z) * p_Y(z) = \sum_{x \in W(X)} p_X(x) \cdot p_Y(z - x)$$

$$\begin{split} & \text{Es gilt: } \text{Ber}(p)*\text{Ber}(p) = \text{Bin}(2,p), \\ & \text{Bin}(n,p)*\text{Bin}(m,p) = \text{Bin}(n+m,p), \\ & \text{Poi}(\lambda_1)*\text{Poi}(\lambda_2) = \text{Poi}(\lambda_1+\lambda_2), \\ & \text{NB}(r,p)*\text{NB}(s,p) = \\ & \text{NB}(r+s,p), \\ & \mathcal{N}(0,1)*\mathcal{N}(0,1) = \\ & \mathcal{N}(0,2) \\ & \text{und} \\ & \mathcal{N}(\mu_1,\sigma_1^2)*\mathcal{N}(\mu_2,\sigma_2^2) = \mathcal{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) \end{split}$$

Beispiel: Seien X,Y unabh. und exp.vert. mit $\lambda>0$, berechne f_Z von $Z:=X+Y. \Rightarrow f_Z(z)=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx=\int_0^z\lambda e^{-\lambda x}\lambda e^{-\lambda(z-x)}dx=\int_0^z\lambda^2 e^{-\lambda z}dx=\lambda^2 z e^{-\lambda z}$, für $z\geq 0$. Wir sehen also $Z\sim Ga(2,\lambda)$.

5 Ungleichungen

Markov-Ungleichung

Sei X eine ZV die nur **nichtnegative** Werte annimmt, dann gilt für jedes a>0:

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

Sei $g:\mathcal{W}(X)\to [0,\infty)$ eine wachsende Funktion. Dann gilt sogar:

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[g(X)]}{g(a)}$$

Chebychev-Ungleichung

Wenn X eine ZV mit $\mathbb{E}[X^2] < \infty$ ist, dann gilt für jedes $a \ge 0$:

$$\mathbb{P}[|X - \mathbb{E}[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$$

Oder äquivalent: $\mathbb{P}[|X - \mathbb{E}[X]| \ge a \cdot \sqrt{\operatorname{Var}[X]}] \le \frac{1}{a^2}$

Jensen-Ungleichung

Sei X eine ZV und $\phi: \mathbb{R} \mapsto \mathbb{R}$ eine konvexe Funktion, dann gilt:

$$\phi(\mathbb{E}[X]) \le \mathbb{E}[\phi(X)]$$

 \Rightarrow Somit gilt: $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$ und $\mathbb{E}[|X|] \leq \sqrt{\mathbb{E}[X^2]}$

6 Grenzwertsätze

Seien im folgenden $X1, ..., X_n$ **u.i.v.** ZV (und somit $\mathbb{E}[X_i] = \mathbb{E}[X_j]$ und $\text{Var}[X_i] = \text{Var}[X_j]$ für $i, j \in \{1, ..., n\}$).

Gesetz der grossen Zahlen

Sei $\mathbb{E}[|X_i|] < \infty$, so gilt (fast sicher):

$$\lim_{n \to \infty} \frac{X_1 + \ldots + X_n}{n} = \mathbb{E}[X_i]$$

Zentraler Grenzwertsatz

Sei $S_n := X_1 + \ldots + X_n$, $\mu = \mathbb{E}[X_i]$ und $\sigma^2 = \text{Var}(X_i)$, so gilt:

$$\mathbb{P}\left[\frac{S_n - n \cdot \mu}{\sigma \sqrt{n}} \le a\right] \xrightarrow[n \to \infty]{} \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{\frac{-x^2}{2}} dx$$

für alle $a \in \mathbb{R}$, wobei Φ die Verteilungsfunktion der $\mathcal{N}(0,1)$ -Verteilung ist.

Der zentrale Grenzwertsatz sagt aus, dass die Verteilung einer ZV $Z_n = \frac{S_n - nm}{\sigma \sqrt{n}}$ ungefähr wie die Verteilung von $\mathcal{N}(0,1)$ aussieht, also $\mathbb{P}[Z_n \leq x] \approx \Phi(x)$ (für grosse n). Und somit auch $S_n \stackrel{\text{approx.}}{\sim} \mathcal{N}(n\mu, n\sigma^2)$. Zudem: $\lim_{n \to \infty} \mathbb{P}[a \leq Z_n \leq b] = \int_a^b \varphi(x) dx$

7 Random Walk

Definition Simple Random Walk: $0 und <math>X_i = \{-1, 1\}$ und $\mathbb{P}[X_i = +1] = p$ bzw. $\mathbb{P}[X_i = -1] = 1 - p$.

Gambler's Ruin: Nehmen wir einen Simple Rand. Walk mit Anfangsposition $a \geq 0$. Das Spiel ist beendet, falls der Zocker ein Kontostand von N oder 0 erreicht. Sei $p_{win}(a) := \mathbb{P}[$ "Kontostand N

erreicht von Startkapital a aus"] (wobei 0 < a < N). Es gilt folgende Rekurrenz: $p_{win}(a) = p \cdot p_{win}(a+1) + (1-p) \cdot p_{win}(a-1)$

Offensichtlich gilt: $p_{win}(0) = 0$ (bereits verloren) und $p_{win}(N) = 1$ (bereits gewonnen). Wir erhalten für $p_{win}(a)$ (und 1- $p_{win}(a)$ für Wahrscheinlichkeitkeit von Ruin):

$$p_{win}(a) = \begin{cases} \frac{1 - (\frac{1-p}{p})^a}{1 - (\frac{1-p}{p})^N} & \text{wenn } p \neq (1-p) \\ \frac{a}{N} & \text{wenn } p = (1-p) = 1/2 \end{cases}$$

8 Induktive Statistik: Basics

Idee: Man fasst die Daten $x_1,...,x_n$ auf als Realisierungen $X_1(\omega),...,X_n(\omega)$ von Zufallsvariablen $X_1,...,X_n$, und sucht dann (unter geeigneten Zusatzannahmen) Aussagen über die Verteilung von $X_1,...,X_n$. Die $x_1,...,x_n$ werden Stichprobe genannt, das n ist der Stichprobenumfang.

8.1 Schätzer

Sei $\vec{X} = (X_1, \dots, X_n)$ eine Stichprobe und sei $\Theta \subseteq \mathbb{R}$ der Parameterraum. Wir suchen für den Parameter $\vartheta \in \Theta$ einen Schätzer T aufgrund unserer Stichprobe.

Schätzer

Ein Schätzer ist eine ZV $T:\Omega\mapsto\mathbb{R}$ von der Form

$$T = t(X_1, \dots, X_n), \quad t : \mathbb{R}^n \to \mathbb{R}$$

mit Schätzwert $T(\omega) = t(X_1(\omega), ..., X_n(\omega)) = t(x_1, ..., x_n)$

Ein Schätzer T ist **erwartungstreu** (unbiased) für ϑ , falls für alle $\vartheta \in \Theta$ gilt:

$$\mathbb{E}_{\vartheta}[T] = \vartheta$$

 \Rightarrow Ist T erwartungstreu, so schätzt T im Mittel richtig.

Der **Bias** (erwartete Schätzfehler) von T im Modell \mathbb{P}_{ϑ} ist:

$$\mathbb{E}_{\vartheta}[T - \vartheta] = \mathbb{E}_{\vartheta}[T] - \vartheta$$

⇒ Für erwartungstreue Schätzer ist der Bias immer gleich Null.

Der mittlere quadratische Schätzfehler (MSE) von T im Modell \mathbb{P}_{ϑ} ist definiert als:

$$MSE_{\vartheta}[T] = \mathbb{E}_{\vartheta}[(T - \vartheta)^2] = Var_{\vartheta}(T) + (\mathbb{E}_{\vartheta}[T] - \vartheta)^2$$

 \Rightarrow Für erwartungstreue Schätzer sind Varianz und MSE dasselbe.

Eine Schätzvariable T heisst konsistent, wenn $\mathrm{MSE}_{\vartheta}[T] \to 0$ für $n \to 0$ gilt. Für genügend grosse n liegen also die Werte von T beliebig nahe am gesuchten Wert ϑ .

Beispiel: Für $\vartheta = \mathbb{E}[X]$ bzw. $\vartheta = \mathrm{Var}[X]$ eignen sich folgende Schätzer:

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
 und $S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

 \overline{X}_n und S_n^2 heissen (empirisches) Stichprobenmittel bzw. Stichprobenvarianz der Stichprobe X_1, \ldots, X_n u.i.v. und sind erwartungstreue Schätzer für den Erwartungswert bzw. Varianz.

8.2 Maximum-Likelihood-Methode

Die Likelihood-Funktion L entspricht der Wahrscheinlichkeit, dass wir die Stichprobe $x_1,...,x_n$ erhalten, wenn wir den Parameter mit dem Wert ϑ belegen.

Likelihood Funktion L

$$L(x_1, ..., x_n; \vartheta) := \begin{cases} p_{\vec{X}}(x_1, ..., x_n; \vartheta) & \text{(diskreter Fall)} \\ f_{\vec{X}}(x_1, ..., x_n; \vartheta) & \text{(stetiger Fall)} \end{cases}$$

Wobei $p_{\vec{X}}(x_1,...,x_n;\vartheta) = \mathbb{P}_{\vartheta}[X_1 = x_1,...,X_n = x_n]$ und falls X_i unter \mathbb{P}_{ϑ} u.i.v., dann sogar: $p_{\vec{Y}}(x_1,...,x_n;\vartheta) = \prod_{i=1}^n p_X(x_i;\vartheta)$.

Maximum-Likelihood-Schätzer T_{ML}

Der ML-Schätzer T_{ML} maximiert $\vartheta \mapsto L(x_1, \ldots, x_n; \vartheta)$:

$$T_{ML} = t_{ML}(X_1, \dots, X_n) \in \underset{\vartheta \in \Theta}{\operatorname{arg max}} L(x_1, \dots, x_n; \vartheta)$$

Oder anders definiert: $\hat{\vartheta}$ ist der ML-Schätzwert, wenn gilt: $L(x_1,...,x_n;\vartheta) \leq L(x_1,...,x_n;\hat{\vartheta})$ für alle ϑ .

Anwendung der Methode:

- 1. Gemeinsame Dichte/Verteilung der ZV finden
- 2. Bestimme Log-Likelihood-Funktion $f(\vartheta) := \ln(L(x_1, \dots, x_n; \vartheta))$
- 3. $f(\vartheta)$ nach ϑ ableiten
- 4. Nullstelle von $f'(\vartheta)$ finden
- \Rightarrow Unter gefundenem ϑ ist die Likelihood-Funktion maximal.

Beispiel: (Bernoulli-Verteilung) Sei X_1, \ldots, X_n u.i.v. $\sim \text{Be}(p)$, also $\vartheta = p$. Ziel: Wir wollen Parameter p schätzen.

- 1. $\Rightarrow p_X(x;\vartheta) = \mathbb{P}_{\vartheta}[X=x] = \vartheta^x \cdot (1-\vartheta)^{1-x}$ für $x \in \{0,1\}$
- 2. $L(x_1, ..., x_n; \vartheta) \stackrel{u.i.v.}{=} \prod_{i=1}^n p_X(x_i; \vartheta) = \vartheta^{\sum_{i=1}^n x_i} \cdot (1 \vartheta)^{n \sum_{i=1}^n x_i} \Rightarrow log \ L(x_1, ..., x_n; \vartheta) = \sum_{i=1}^n x_i log(\vartheta) + (n \sum_{i=1}^n x_i) log(1 \vartheta)$
- 3. $\frac{\partial}{\partial \vartheta} log L(x_1, ..., x_n; \vartheta) = \frac{1}{\vartheta} \sum_{i=1}^n x_i \frac{1}{1-\vartheta} (n \sum_{i=1}^n x_i)$
- 4. Nullstelle bei: $\vartheta = \frac{1}{n} \sum_{i=1}^n x_i$, da $(1-\vartheta) \sum_{i=1}^n x_i = \vartheta(n-\sum_{i=1}^n x_i)$
- \Rightarrow Der ML-Schätzer für ϑ bzw. pist also: $T=\frac{1}{n}\sum_{i=1}^n X_i=:\overline{X}$

9 Testen von Hypothesen

Grundproblem: Entscheidung zwischen zwei konkurrierenden Modellklassen zu treffen.

Die Nullhypothese H_0 und die Alternativhypothese H_A sind zwei Teilmengen $\Theta_0 \subseteq \Theta$, $\Theta_A \subseteq \Theta$, wobei $\Theta_0 \cap \Theta_A = \emptyset$. Eine Hypothese heisst *einfach*, falls die Teilmenge aus einem einzelnen

Wert besteht (z.B. $\Theta_0 = \{\vartheta_0\}$); sonst heissen sie zusammengesetzt. Die Hypothesen lauten also:

 H_0 : "der wahre Parameter ϑ liegt in Θ_0 ", also $\vartheta \in \Theta_0$ H_A : "der wahre Parameter ϑ liegt in Θ_A ", also $\vartheta \in \Theta_A$

Definition Teststatistik

Man hat eine Abb. $t: \mathbb{R}^n \to \mathbb{R}, (x_1, ..., x_n) \mapsto t(x_1, ..., x_n)$ und einen Verwerfungsbereich $K \subseteq \mathbb{R}$. Die ZV $T := t(X_1, ..., X_n)$ heisst dann Teststatistik.

- Die Hypothese H_0 wird verworfen, falls $T(\omega) \in K$.
- Die Hypothese H_0 wird akzeptiert, falls $T(\omega) \notin K$.

Wobei $T(\omega) = t(X_1(\omega), \dots, X_n(\omega))$ gilt.

Es handelt sich um einen **Fehler 1. Art**, wenn H_0 fälschlicherweise verworfen wird, obwohl sie richtig ist. Wahrscheinlichkeit für einen Fehler 1. Art:

$$\mathbb{P}_{\vartheta}[T \in K], \quad \vartheta \in \Theta_0$$

Es handelt sich um einen **Fehler 2. Art**, wenn H_0 fälschlicherweise akzeptiert wird, obwohl sie falsch ist:

$$\mathbb{P}_{\vartheta}[T \notin K] = 1 - \mathbb{P}_{\vartheta}[T \in K], \quad \vartheta \in \Theta_A$$

Ziel: Fehler 1. und 2. Art möglichst klein, also $\vartheta \mapsto \mathbb{P}_{\vartheta}[T \in K]$ auf Θ_0 minimieren und auf Θ_A maximieren. Unser primäres Ziel, ist den Fehler 1. Art zu minimieren (die Macht zu maximieren). \Rightarrow Schwieriger die Hypothese zu verwerfen, anstatt zu behalten. Ein seriöser Test wird deshalb als Hypothese immer die Negation der eigentlich gewünschten Aussage benutzen.

Signifikanzniveau und Macht

Ein Test hat Signifikanzniveau $\alpha \in [0, 1]$ falls:

$$\forall \vartheta \in \Theta_0 : \ \mathbb{P}_{\vartheta}[T \in K] \le \alpha \iff \sup_{\vartheta \in \Theta_0} \ \mathbb{P}_{\vartheta}[T \in K] \le \alpha$$

Die *Macht* wird definiert als:

$$\beta: \Theta_A \mapsto [0,1], \quad \vartheta \mapsto \beta(\vartheta) := \mathbb{P}_{\vartheta}[T \in K]$$

Ziel: $\vartheta \mapsto \beta(\vartheta)$ möglichst gross, bzw. $1 - \beta(\vartheta)$ möglichst klein.

9.1 Konstruktion von Tests

Ziel: Systematischer Ansatz zum finden von K und T. Sei $\vartheta_0 \in \Theta_0$ und $\vartheta_A \in \Theta_A$. Sei X_1, \ldots, X_n diskret oder gemeinsam stetig unter \mathbb{P}_{ϑ_0} und \mathbb{P}_{ϑ_A} , wobei $\vartheta_0 \neq \vartheta_A$.

Likelihood-Quotient

$$R(x_1, \dots, x_n; \vartheta_0, \vartheta_A) := \frac{L(x_1, \dots, x_n; \vartheta_A)}{L(x_1, \dots, x_n; \vartheta_0)}$$

(Falls $L(x_1, ..., x_n; \vartheta_0) = 0$ setzen wir $R(x_1, ..., x_n) = +\infty$.) \Rightarrow Wenn $R \gg 1$, so gilt $H_A > H_0$ (H_A ist wahrscheinlicher) und analog wenn $R \ll 1$, so gilt $H_A < H_0$.

Likelihood-Quotient-Test

Der Likelihood-Quotient-Test (LQ-Test) mit Parameter c>0 ist definiert durch:

$$T = R(x_1, \dots, x_n; \vartheta_0, \vartheta_A)$$
 und $K = (c, \infty]$

⇒ Der LQ-Test ist optimal, wenn Hypothese und Alternative beide *einfach* sind, da jeder andere Test mit kleinerem Signifikanzniveau auch eine kleinere Macht hat (*Neyman-Pearson-Lemma*).

9.2 Häufige Fälle

Einen allgemein approximativen Zugang liefert der ZGS. Oft ist ein Schätzer T eine Funktion einer Summe $\sum_{i=1}^n Y_i$, wobei die Y_i u.i.v. sind. Nach dem ZGS ist dann für grosse $n \sum_{i=1}^n Y_i$ approximativ normalverteilt mit $\mu = n \cdot \mathbb{E}_{\vartheta}[Y_i]$ und $\sigma^2 = n \cdot \operatorname{Var}_{\vartheta}[Y_i]$. Für normalverteilte Stichproben hat man exakte Aussagen (siehe z-Test und t-Test).

Approximativer Binomialtest

Annahmen: X_1, \ldots, X_n u.i.v. mit $X_i \sim Ber(p)$ mit $\vartheta = p$ unbekannt. Sei n hinreichend gross.

Hypothesen:

- 1. $H_0: p = p_0 \text{ gegen } H_A: p \neq p_0$
- 2. $H_0: p \ge p_0$ gegen $H_A: p < p_0$
- 3. $H_0: p \le p_0$ gegen $H_A: p > p_0$

Testgrösse:

$$T := \frac{\sum_{i=1}^{n} X_i - n \cdot p_0}{\sqrt{n \cdot p_0 \cdot (1 - p_0)}} \sim \mathcal{N}(0, 1) \quad \text{nach ZGS}$$

Ablehnungskriterium: für H_0 bei Signifikanzniveau α :

- 1. $|T| > z_{1-\alpha/2}$
- 2. $T < z_{\alpha}$
- 3. $T > z_{1-\alpha}$

Herleitung: Wir wissen: $T \sim \mathcal{N}(0,1)$ unter \mathbb{P}_{ϑ} . Seien $K_{>}, K_{<}$ und K_{\neq} die Verwerfungsbereiche zu den Fällen 1-3.

- 1. $\alpha = \mathbb{P}_{\vartheta_0}[T \in K_{\neq}] = \mathbb{P}_{\vartheta_0}[T < -c_{\neq}] + \mathbb{P}_{\vartheta_0}[T > c_{\neq}] = \mathbb{P}_{\vartheta_0}[T < -c_{\neq}] + (1 \mathbb{P}_{\vartheta_0}[T \le c_{\neq}]) = 2 \cdot (1 \Phi(c_{\neq})) \Rightarrow c_{\neq} = z_{1-\alpha/2}$
- 2. $\alpha = \mathbb{P}_{\vartheta_0}[T \in K_<] = \mathbb{P}_{\vartheta_0}[T < c_<] = \mathbb{P}_{\vartheta_0}[T > -c_<] = 1 \mathbb{P}_{\vartheta_0}[T \le -c_<] \Rightarrow c_< = -z_{1-\alpha} = z_{\alpha}$
- 3. $\alpha = \mathbb{P}_{\vartheta_0}[T \in K_>] = \mathbb{P}_{\vartheta_0}[T > c_>] = 1 \mathbb{P}_{\vartheta_0}[T \le c_>] = 1 \Phi(c_>) \Rightarrow c_> = \Phi^{-1}(1 \alpha) =: z_{1-\alpha}$

Wichtige Eigenschaften: $\Phi(c) := \mathbb{P}[Z \leq c]$ für $Z \sim \mathcal{N}(0, 1)$, $\Phi(-c) = 1 - \Phi(c)$, $\Phi(x)^{-1} := z_x = -z_{1-x}$ und $t_{m,x} = -t_{m,1-x}$

z-Test (Gausstest)

Annahmen: X_1, \ldots, X_n u.i.v. mit $X_i \sim \mathcal{N}(\mu, \sigma^2)$, wobei σ^2 bekannt und μ unbekannt ist. $\Rightarrow \overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$ Hypothesen:

- 1. $H_0: \mu = \mu_0 \text{ gegen } H_A: \mu \neq \mu_0$
- 2. $H_0: \mu \ge \mu_0$ gegen $H_A: \mu < \mu_0$
- 3. $H_0: \mu \le \mu_0$ gegen $H_A: \mu > \mu_0$

Testgrösse:

$$T := \frac{\overline{X} - \mu_0}{\sigma} \cdot \sqrt{n} \sim \mathcal{N}(0, 1)$$

Ablehnungskriterium: für H_0 bei Signifikanzniveau α :

- 1. $|T| > z_{1-\alpha/2}$ (für $\alpha = 5\%$ ist $z_{1-\alpha/2} = 1.96$)
- 2. $T < z_{\alpha}$
- 3. $T > z_{1-\alpha}$

t-Test

Annahmen: X_1, \ldots, X_n u.i.v. mit $X_i \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 und μ unbekannt.

${\bf Hypothesen:}$

- 1. $H_0: \mu = \mu_0 \text{ gegen } H_A: \mu \neq \mu_0$
- 2. $H_0: \mu \ge \mu_0$ gegen $H_A: \mu < \mu_0$
- 3. $H_0: \mu \le \mu_0$ gegen $H_A: \mu > \mu_0$

Testgrösse:

$$T := \frac{\overline{X} - \mu_0}{S} \cdot \sqrt{n} \sim t_{n-1}$$

Ablehnungskriterium: für H_0 bei Signifikanzniveau α :

- 1. $|T| > t_{n-1,1-\alpha/2}$
- 2. $T < t_{n-1,\alpha}$
- 3. $T > t_{n-1,1-\alpha}$

Zwei-Strichproben-t-Test

Annahmen: X_1, \ldots, X_n u.i.v. mit $X_i \sim \mathcal{N}(\mu_X, \sigma^2)$ und Y_1, \ldots, Y_m u.i.v. mit $Y_i \sim \mathcal{N}(\mu_Y, \sigma^2)$. Hypothesen:

- 1. $H_0: \mu_X = \mu_Y$ gegen $H_A: \mu_X \neq \mu_Y$
- 2. $H_0: \mu_X \geq \mu_Y$ gegen $H_A: \mu_X < \mu_Y$
- 3. $H_0: \mu_X \leq \mu_Y$ gegen $H_A: \mu_X > \mu_Y$

Testgrösse: Falls m = n (gepaarter Zweistichproben-Test), dann sei $Z_i := X_i - Y_i$ und somit $Z_i \sim \mathcal{N}(\mu_X - \mu_Y, 2\sigma^2)$ u.i.v.. Dann führe normal z-Test oder t-Test durch (abhängig ob σ^2 bekannt oder unbekannt).

Falls $m \neq n$ (ungepaarter Zweistichproben-Test), so unterscheidet man weiter ob σ^2 bekannt oder unbekannt ist. Falls σ^2 bekannt, so wähle:

$$T_1 := \frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1)$$

Falls σ^2 unbekannt, so wähle:

$$T_2 := \frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$$

, mit
$$S^2 = \frac{1}{m+n-2}((n-1)S_X^2 + (m-1)S_Y^2)$$

Ablehnungskriterium: für H_0 bei Signifikanzniveau α :

- 1. $|T_1| > z_{1-\alpha/2}$ bzw. $|T_2| > t_{m+n-2,1-\alpha/2}$
- 2. $T_1 < z_{\alpha}$ bzw. $T_2 < t_{m+n-2,\alpha}$
- 3. $T_1 > z_{1-\alpha}$ bzw. $T_2 > t_{m+n-2,1-\alpha}$

9.3 Vorgehen Tests

- 1. Wahl des Modells.
- 2. Formulierung von Hypothese und Alternative.
- 3. Bestimmung der Teststatistik T und der Form des kritischen Bereichs K; das kann aus einer Herleitung via LQ-Test stammen.
- 4. Festlegung des Niveaus α liefert (die Grenze für) den kritischen Bereich K; dazu braucht man die Verteilung von T unter \mathbb{P}_{ϑ} für alle $\vartheta \in \Theta_0$ (exakt oder approximativ).
- 5. Berechnen der Teststatistik $T(\omega)$ aus den Daten; ist $T(\omega) \in K$, so wird die Hypothese H_0 abgelehnt, andernfalls wird die Hypothese H_0 nicht verworfen.

10 Konfidenzintervalle

Das Konfidenzintervall gibt den Bereich an, der mit einer gewissen Wahrscheinlichkeit den Parameter ϑ einer Verteilung einer Zufallsvariablen einschließt.

Oftmals verwendet man nur eine Schätzvariavel T und konstruiert ein symmetrisches Konfidenzintervall $[T-\delta,T+\delta].$

Definition Konfidenzintervall

Sei $\alpha \in [0, 1]$. Ein Konfidenzintervall für ϑ mit Niveau $1-\alpha$ ist ein Zufallsintervall I = [A, B], sodass gilt

$$\forall \vartheta \in \Theta \quad \mathbb{P}_{\vartheta}[A \le \vartheta \le B] \ge 1 - \alpha$$

wobei A und B Zufallsvariablen der Form $A = a(X_1, \ldots, X_n), B = b(X_1, \ldots, X_n)$ mit $a, b : \mathbb{R}^n \to \mathbb{R}$ sind.

Beispiel Normalverteilung: (beidseitig) Sei $X_i \sim \mathcal{N}(\mu, \sigma^2)$ und somit ist $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, wobei $\vartheta = \mu$ der unbekannte Parameter und σ^2 bekannt. Dann gilt:

$$\mathbb{P}_{\vartheta}\left[-z_{1-\frac{\alpha}{2}} \le \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le z_{1-\frac{\alpha}{2}}\right] = 1 - \alpha$$

Wobei $z_{1-\frac{\alpha}{2}} = \Phi^{-1}(1-\alpha/2)$. Wir formen um und erhalten:

$$\mathbb{P}_{\vartheta}[\overline{X}_n - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X}_n + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}] = 1 - \alpha$$

Also erhalten wir für $\vartheta = \mu$ und Niveau $1 - \alpha$ das Konfidenzintervall:

$$I = [\ \overline{X}_n - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \ , \ \overline{X}_n + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \]$$

Beispiel Geometrische Verteilung: Sei $X_i \sim Geo(\vartheta), T_{ML} = \frac{n}{\sum_{i=1}^n X_i}$ und $\alpha = 0.05. \Rightarrow E[X_i] = 1/\vartheta$ und $Var[X_i] = (1-\vartheta)/\vartheta^2$, erhalten wir: $\frac{\sum_{i=1}^n X_i - n/\vartheta}{\sqrt{n(1-\vartheta)/\vartheta^2}} \sim \mathcal{N}(0,1)$ für $n \to \infty$ (folgt nach ZGS). Somit:

$$\mathbb{P}_{\vartheta}[-z_{1-\frac{\alpha}{2}} \leq \frac{\sum_{i=1}^{n} X_{i} - n/\vartheta}{\sqrt{n(1-\vartheta)/\vartheta^{2}}} \leq z_{1-\frac{\alpha}{2}}] \geq 1 - \alpha$$

11 Diverses

Die momenterzeugende Funktion einer ZV X ist definiert als: $M_X(t) := \mathbb{E}[e^{tX}]$, für $t \in \mathbb{R}$.

Chernoff Schranken

Seien X_1, \ldots, X_n u.i.v. ZV, wobei $M_X(t)$ endlich ist für alle $t \in \mathbb{R}$. Sei $S_n := \sum_{i=1}^n X_i$. Dann gilt für jedes $b \in \mathbb{R}$:

$$\mathbb{P}[S_n \ge b] \le \exp \left(\inf_{t \in \mathbb{R}} \left(n \log M_X(t) - tb \right) \right)$$

Schranke exponentiell in b und in $n \Rightarrow$ sehr gute Abschätzung

Chernoff für Bernoulli-Vert. ZV

Sei nun $X_i \sim Ber(p)$ u.i.v. und somit $S_n \sim Bin(n,p)$. Dann gilt:

$$\mathbb{P}[S_n \ge (1+\delta)\mu_n] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_n}$$

Beispiel: Wir werfen 100-Mal eine Münze und wollen $\mathbb{P}[S_100 \geq 60]$ berechnen, mit $p_i = 1/2$ für alle i und damit $\mu_n = 50$ und $\delta = 0.2$. Wir erhalten als Abschätzung:

$$\mathbb{P}[S_{100} \ge 60] \le \left(\frac{e^{0.2}}{1.2^{1.2}}\right)^5 0 = 0.3909$$

11.1 Anwendung: Simulationsalgorithmus

Satz

Sei F eine stetige und streng monoton wachsende Verteilungsfunktion, mit Umkehrfunktion F^{-1} . Ist $X \sim \mathcal{U}(0,1)$ und $Y = F^{-1}(X)$, so hat Y gerade die Verteilungsfunktion F.

Beweis: $F_Y(t) = \mathbb{P}[Y \leq t] = \mathbb{P}[F^{-1}(X) \leq t] = \mathbb{P}[X \leq F(t)] = F(t)$ **Algorithmus:** Man hat einen "Zufallszahlengenerator", d.h. einen deterministischen Algorithmus, der eine Folge (x1, x2, ...) von Zahlen in [0, 1] produziert, die sich in einem gewissen Sinn verhält wie die Realisierung einer Folge von unabhängigen $\mathcal{U}(0, 1)$ -verteilten Zufallsvariablen. In diesem Sinne simuliert also nach obigem Satz $F^{-1}(Zufallsgenerator)$ die Verteilung F.

Beispiel: Um eine Exponentialverteilung mit Parameter λ zu simulieren, nehmen wir die zugehörige Verteilungsfunktion $F(t) = 1 - e^{-\lambda \cdot t}$ für $t \geq 0$. Die Inverse können wir berechnen und erhalten: $F^{-1}(F(t)) = t = -\frac{\log(1-F(t))}{\lambda}$. Mit $X \sim \mathcal{U}(0,1)$ erhalten wir: $Y \coloneqq F^{-1}(X) = -\frac{\log(1-X)}{\lambda} \sim \operatorname{Exp}(\lambda)$

11.2 p-Wert

Der p-Wert ist Evidenzmaß für die Glaubwürdigkeit der Nullhypothese. Kleiner p-Wert $\Rightarrow H_0$ unwahrscheinlich.

Sei X_1, \ldots, X_n eine Stichprobe vom Umfang n. Wir wollen eine Hypothese $H_0: \vartheta = \vartheta_0$ gegen eine Alternative $H_A: \vartheta \in \Theta_A$ testen. Sei $T = t(X_1, \ldots, X_n)$ eine Teststatistik und $(T, K_t)_{t \geq 0}$ eine Familie von Tests.

Eine Familie von Tests heisst **geordnet** bzgl. T falls $K_t \subset \mathbb{R}$ und $s \leq t \implies K_t \subset K_S$. Beispiele:

- $K_t = (t, \infty)$ (rechtsseitiger Test)
- $K_t = (-\infty, -t)$ (linksseitiger Test)
- $K_t = (-\infty, -t) \cup (t, \infty)$ (beidseitiger Test)

Definition p-Wert

Sei $H_0: \vartheta=\vartheta_0$ eine einfache Nullhypothese. Sei $(T,K_t)_{t\geq 0}$ eine geordnete Familie von Tests. Der p-Wert ist eine ZV, mit:

$$G: \mathbb{R}_+ \mapsto [0, 1], \quad p - Wert := G(t) = \mathbb{P}_{\vartheta_0}[T \in K_t]$$

Der p-Wert hat folgende Eigenschaften:

- 1. Sei T stetig und $K_t = (t, \infty)$. Dann ist der p-Wert unter \mathbb{P}_{ϑ_0} auf [0, 1] gleichverteilt.
- 2. Für einen p-Wert γ gilt, dass alle Tests mit Signifikanzniveau $\alpha > \gamma$ die Nullhypothese verwerfen.

p-Wert ist klein $\implies H_0$ wird wahrscheinlich verworfen

Beispiel: Gegeben wir haben einen t-Test mit 8 Freiheitsgraden ausgeführt, wir wollen den p-Wert berechnen. Gegeben sei T(w) = -3.4 dann erhalten wir:

p-Wert(ω) = $P_{H_0}[T < t_0]|_{t_0 = T(W)} = P_{H_0}[T < -3.4] = 1 - P_{H_0}[T \le 3.4]$. Ablesen gibt uns die Schätzung 0.995 $\le P \le 1$.

11.3 Monte-Carlo Verfahren

Ziel: Integrale approximieren durch die Erzeugung von Zufallszahlen.

Nehmen wir an, wir wollen für eine gegebene Funktion $h:[0,1]\to\mathbb{R}$ das Integral

$$I \coloneqq \int_0^1 h(x) dx$$

berechnen. Allgemein auch: $I := \int_{[0,1]^d} h(\underline{x}) d\underline{x}$.

Idee: Fasse I als EW auf; ist nämlich $U \sim \mathcal{U}([0,1])$, so ist:

$$\mathbb{E}[h(U)] = \int_{-\infty}^{\infty} h(x) f_U(x) dx = \int_{0}^{1} h(x) dx = I$$

Haben wir eine Folge von ZV U_1, U_2, \ldots u.i.v. mit $U_i \sim \mathcal{U}([0,1])$ (mit Zufallsgenerator), so liefert das Gesetz der grossen Zahlen:

$$\overline{h(U_n)} = \frac{1}{n} \sum_{i=1}^n h(U_i) \xrightarrow[n \to \infty]{} \mathbb{E}[h(U_1)] = I \quad \text{(f.s)}$$

 \Rightarrow Wir erhalten also eine Approximation von *I*. Der zu erwartendene Fehler sinkt mit $\approx \frac{1}{\sqrt{n}}$

11.4 Weitere Verteilungen: Chi- & t-Vert.

Seien $X_i \sim \mathcal{N}(0,1)$, dann ist die Summe $Y = \sum_{i=1}^n X_i^2 \sim \chi_m^2$ (mit n Freiheitsgraden). Falls n=2, haben wir eine Exponentialverteilung mit Parameter $\frac{1}{2}$.

\mathcal{X}^2 -Verteilung (Chiquadrat-Verteilung)

 X_1, \ldots, X_n u.i.v. $\sim \mathcal{N}(0,1)$, so ist $Y := \sum_{i=1}^n X_i^2 \sim \mathcal{X}_n^2$.

$$f_Y(t) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{t}{2}} \quad t > 0$$

$$\mathbb{E}[\chi_n^2] = n$$
 und $\operatorname{Var}[\chi_n^2] = 2n$

Wobei die Gamma-Funktion für $v \ge 0$ definiert ist:

$$\Gamma(v) := \int_0^\infty t^{v-1} \cdot e^{-t} dt$$

Es gilt: $\Gamma(n) = (n-1)!$ für $n \in \mathbb{N}$ und $\forall r \in \mathbb{R} : r \cdot \Gamma(r) = \Gamma(r+1)$.

t-Verteilung

 $X \sim \mathcal{N}(0,1)$ und $Y \sim \chi_n^2$ unabh.: $Z \coloneqq \frac{X}{\sqrt{\frac{1}{m}Y}} \ t_m$ verteilt.

$$f_Z(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

 $\mathbb{E}[Z] = 0 \text{ für } n > 1 \quad \text{ und } \quad \operatorname{Var}[Z] = \frac{n}{n-2} \text{ für } n > 2$

Es gilt: $t_{n,x} \xrightarrow[n \to \infty]{} z_x$, mit $z_x := \Phi(x)^{-1}$

11.5 MLE Schätzer

- Bernoulli: $\hat{\lambda} = \hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{X}$
- Exponential: $\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{X}$ und $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i}$
- Geometrisch: $\hat{p} = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{X}$
- Binomial: $\hat{\mu} = \frac{1}{N} \frac{\sum_{i=1}^n x_i}{n}$ und $\hat{p} = \frac{\sum_{i=1}^n x_i}{n} = \overline{X}$
- Normalverteilung: $\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{X}$ und $\hat{\sigma}^2 = S^2$
- Poisson: $\hat{\lambda} = \hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{X}$
- Uniform: $\hat{b} = max(x_i)$, $\hat{a} = min(x_i)$

12 Math Stuff

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$ax^{2} + bx + c = 0$$
 $\Rightarrow x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

- (1) $\cos(z) = \cos(-z)$ und $\sin(-z) = -\sin(z)$
- (2) $\cos(\pi x) = -\cos(x)$ und $\sin(\pi x) = \sin(x)$
- $(3) \sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
- $(4) \cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$
- (5) $\cos(z)^2 + \sin(z)^2 = 1$
- $(6) \sin(2z) = 2\sin(z)\cos(z)$
- (7) $\cos(2z) = \cos(z)^2 \sin(z)^2$

$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$$
 und $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$

α	0	30°	45°	60°	90°	120°	150°	180°	270°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	N/A	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	0	N/A

12.1 Typische-Reihen

$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$			
$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$			

Die Geometrische Reihe: $\sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q}$ konvergiert wenn |q| < 1. Dies gilt auch bei $n \to \infty$:

$$\sum_{i=1}^{\infty} q^{i} = 1 + q + q^{2} + \dots = \frac{1}{1 - q}$$

Die Harmonische Reihe: Die Harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent. Die alternierende harmonische Reihe ist jedoch konvergent.

Die Zeta Funktion: Die Riemann-Zeta Funktion $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ konvergiert für s > 1.

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f}'(\mathbf{x})$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq 1)$	$a \cdot x^{a-1}$
$\frac{1}{k\ln(a)}a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\frac{1}{2}(x+\frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	$\tanh(x)$	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$rac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1-\ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$\frac{1}{\ln(a)x}$

Partielle Integration

$$\int_{a}^{b}f^{'}(x)\cdot g(x)dx=[f(x)\cdot g(x)]_{a}^{b}-\int_{a}^{b}f(x)\cdot g^{'}(x)dx$$

Substitution

$$\begin{split} &\int_{a}^{b} f(g(x)) \cdot g^{'}(x) dx = \int_{g(a)}^{g(b)} f(u) du \\ &\int_{\varphi(U)} f(\vec{v}) d\vec{v} = \int_{U} f(\varphi(\vec{u})) \cdot |\det(D\varphi)(\vec{u})| \; d\vec{u} \end{split}$$

Aufgaben

(HS17, Aufg. 3) Seien X und X ZV mit:

$$f(x,y) = \begin{cases} \frac{1}{x^2y^2} & \text{für } x \ge 1, y \ge 1\\ 0 & \text{sonst} \end{cases}$$

Sei $U := \frac{X}{V}$ und $V := X \cdot Y$.

b) Berechne F_v . a) Berechne F_{U} .

c) Bestimme f_{II} .

- d) Bestimme f_V .
- a) Für u < 0 haben wir $F_U(u) = 0$. Für u > 1 erhalten wir: $F_U(u) = \mathbb{P}\left[\frac{X}{Y} \leq u\right] = \mathbb{P}\left[X \leq Y \cdot u\right] =$ Für $0 < u \le 1$ erhalten wir: $F_U(u) = \int_{1/u}^{\infty} \int_{1}^{yu} \frac{1}{x^2 u^2} dx dy =$ $\int_{1/u}^{\infty} \frac{1}{u^2} (1 - \frac{1}{u^2}) dy = \int_{1/u}^{\infty} \frac{1}{u^2} - \frac{1}{u^2} dy = u - \frac{u}{2} = \frac{u}{2}.$
- b) Für v < 1 ist $F_V(v) = 0$. Für $v \ge 1$: $F_V(v) = \mathbb{P}[X \cdot Y \le 1]$ $[v] = \mathbb{P}[X \le v/Y] = \int_1^v \int_1^{v/y} \frac{1}{x^2 y^2} dx dy = \int_1^v \frac{1}{y^2} \int_1^{v/y} \frac{1}{x^2} dx dy$ $= \int_{1}^{v} \frac{1}{v^{2}} (1 - \frac{y}{v}) dy = \int_{1}^{v} \frac{1}{v^{2}} - \frac{1}{v} dy = 1 - \frac{1}{v} (1 + \log(v))$
- c) Für u>1 erhalten wir: $f_U(u)=\frac{dF_U(u)}{du}=\frac{1}{2u^2}$, für $0< u\leq 1$: $f_U(u)=\frac{1}{2}$ und für $u\leq 0$ haben wir: $f_{II}(u) = 0.$
- d) Für $v \geq 1$ erhalten wir: $f_V(v) = \frac{dF_V(v)}{dv} = \frac{log(v)}{v^2}$ und $f_V(v) = 0 \text{ für } v < 1.$

(HS16, Aufg. 3) Seien X und Y zwei unabhängige ZV, beide exponentialverteilt mit Parameter $\lambda > 0$. Sei $U := \frac{X}{X+Y}$ und V := X + Y.

- a) Berechne $f_U(u) \& F_U(u)$. b) $f_V(v) \& F_V(v)$.
- c) Bestimme $f_{U,V}$. Sind U und V unabhängig?
- a) U hat nur Werte in (0,1), also $u \in (0,1)$. $\mathbb{P}[U \leq u] =$ $\lambda^2 \int_0^\infty e^{-\lambda x} \left(\int_0^\infty 1_{\left\{ \frac{x}{x+y} \le u \right\}} e^{-\lambda x} dy \right) dx$ $= \lambda^2 \int_0^\infty e^{-\lambda x} \left(\int_0^\infty 1_{\left\{ \frac{x}{x} - x \le y \right\}} e^{-\lambda x} dy \right) dx$ $=\lambda \int_0^\infty e^{-\lambda x} (\int_{x-x}^\infty \lambda e^{-\lambda x} dy) dx$ $=\lambda \int_0^\infty e^{-\lambda x} e^{-\lambda x} (\frac{1}{u} - 1) dx = \lambda \int_0^\infty e^{-\frac{\lambda x}{u}} dx = u.$ Somit ist $U \sim \mathcal{U}(0,1)$ und darum: $f_U(u) = 1_{\{0 \le u \le 1\}}$.

- b) $\mathbb{P}[V \le v] = \lambda^2 \int_0^\infty e^{-\lambda x} (\int_0^\infty 1_{\{x+y \le v\}} e^{-\lambda y} dy) dx$ $= \lambda^2 \int_0^\infty e^{-\lambda x} \cdot 1_{\{x < v\}} (\int_0^\infty 1_{\{y < v - x\}} e^{-\lambda y} dy) dx$ $= \lambda \int_0^v e^{-\lambda x} \left(\int_0^{v-x} \lambda e^{-\lambda y} dy \right) dx = \lambda \int_0^v e^{-\lambda x} \left(1 - e^{-\lambda(v-x)} \right) dx = 1 - e^{-\lambda v} - \lambda v e^{-\lambda v} \text{ für } v > 0 \text{ und } F_V(v) = 0 \text{ für } v \le 0.$ Und die Dichte: $f_V(v) = \frac{dF_V(v)}{dv} = \lambda^2 v e^{-\lambda v} \cdot 1_{\{v>0\}}$.
- c) $\mathbb{P}[U \le u, V \le v] = \lambda^2 \int_0^\infty e^{-\lambda x} (\int_0^\infty 1_{\{\frac{x}{x+y} \le u, x+y \le v\}} e^{-\lambda y} dy) dx$ $=\lambda^2 \int_0^\infty e^{-\lambda x} (\int_0^\infty 1_{\{x(\frac{1}{2}-1) < y < v - x, x < uv\}} e^{-\lambda y} dy) dx$ $= \lambda \int_0^{uv} e^{-\lambda x} \left(\int_{x(\frac{1}{u}-1)}^{v-x} \lambda e^{-\lambda y} dy \right) dx$ $= \lambda \int_0^{uv} e^{-\lambda x} \left(e^{-\lambda x} \left(\frac{1}{u} - 1\right) - e^{-\lambda(v - x)}\right) dx$ $=\lambda \int_0^{uv} (e^{-\lambda \frac{x}{u}} - e^{-\lambda v}) dx = u(1 - e^{-\lambda v} - \lambda v e^{-\lambda v}).$ Somit: $F_{U,V}(u,v) = F_U(u) \cdot F_V(v) \Rightarrow U$ und V sind unabhängig. Und für die Dichte gilt somit: $f_{U,V} = f_U(u) \cdot f_V(v) = \lambda^2 v e^{-\lambda v} \cdot 1_{\{0 \le u \le 1, v > 0\}}$

(HS20) Seien U_1, U_2, U_3 u.i.v mit $U_i \sim \mathcal{U}([0,1])$. Sei $L := min(U_1, U_2, U_3)$ und $M := max(U_1, U_2, U_3)$. b) Bestimme $f_{M,L}(m,l)$.

- a) Berechne $f_M(m)$.
- c) Berechne $f_{L|M}(l,m)$.
- a) $F_M(m) = \mathbb{P}[U_1 \le m, U_2 \le m, U_3 \le m]$ $\stackrel{unab.}{=} \Pi_{i=1}^{3} \mathbb{P}[U_{i} \leq m] \stackrel{i.d.}{=} \begin{cases} 1 & m \geq 1 \\ m^{3} & 0 \leq m \leq 1 \\ 0 & \text{sonst} \end{cases}$
- b) $\mathbb{P}[M < m, L < l]$ $= \mathbb{P}[M < m] - \mathbb{P}[M < m, L > l]$ $= m^3 - \mathbb{P}[l < U_1 < m, l < U_2 < m, l < U_3 < m]$ $= m^3 - (\mathbb{P}[l < U_1 < m])^3$ $= m^3 - (m-l)^3$, für 0 < l < m < 1. $\Rightarrow f_{M,L}(m,l) = 6(m-l) \cdot 1_{\{0 \le l \le m \le 1\}}$
- c) $f_{L|M}(l,m) = \frac{f_{M,L}(m,l)}{f_M(m)} = \frac{6(m-l)}{3m^2} \cdot 1_{\{0 \le l \le m \le 1\}}$ $=2\frac{m-l}{m^2}\cdot 1_{\{0\leq l\leq m\leq 1\}}$

(HS20) Würfel mit sechs Seiten, vermutlich gezinkt (landet eher auf der 6). Experiment: Zehn Würfe (unabhängig). Sei $X_i = 1$, wenn der i-te Wurf eine sechs ist, und sonst gleich null. Wir wissen: $\sum_{i=1}^{1} 0X_i = 4$ (aus Tabelle).

- a) Führe einen Test mit $\alpha = 1\%$ und prüfe ob gezinkt
- b) Finde den P-Wert.

a) i. Modell: $X_i \stackrel{i.i.d}{\sim} Bernoulli(p), p$ unbekannt.

ii. Nullhypothese: $H_0: p = p_0 = 1/6$

iii. Alternativhypothese: $H_A: p > 1/6$

iv. Teststatistik: $T := \sum_{i=1}^{10} X_i$

v. Vert. Testst. unter H_0 : $T \sim Bin(10, 1/6)$

vi. Verwerfungsbereich: Wir möchten alle $k \in \{0, ..., 9\}$, sodass: $\mathbb{P}_{p_0}[T > k] \le 0,01 \iff \mathbb{P}_{p_0}[T \le k] > 0.99.$ $\Rightarrow K = \{6, 7, 8, 9\}$ (Werte aus Tabelle)

vii. Beob. Werte der Teststat.: $T(x_1,...,x_{10})=4$ viii. Testentscheid: $T(\omega) = 4 \notin \{6,7,8,9\} \Rightarrow \text{Wir}$ werfen H_0 nicht.

b) $\mathbb{P}_{p_0}[T \ge 4] = 1 - \mathbb{P}_{p_0}[T < 4] = 1 - 0.93 = 0.07$

((FS21, Aufg. 4, t-Test) Gegeben sind 9 unabhängige Temperaturmessung die $\mathcal{N}(\mu, \sigma^2)$ -verteilte ZV sind. Wir möchten auf einem 5%-Niveau testen, ob die erwartetet tägliche Höchsttemperatur im Vergleich zum Wert zum Vorjahr (22 Grad) gesunken ist. Gegeben: $\overline{X}_9 = 18, 6$ und $S_9 = 3$.

- a) Führe einen Test durch
- b) bestimme P-Wert
- a) i. Modell: X_1, \ldots, X_9 i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$ unter \mathbb{P}_{ϑ} , wobei $\vartheta = (\mu, \sigma^2)$ unbekannt.

ii. Hypothesen: $H_0: \mu = \mu_0 = 22$ und $H_A: \mu < \mu_0$ iii. Teststatistik & Verteilung unter H_0 : Da μ und σ^2 unbekannt, führen wir einen t-Test durch:

$$T = \frac{\overline{X}_9 - \mu_0}{S_9 / \sqrt{9}} \sim t_8$$

iv. Verwerfungsbereich: Nach der Alternative hat der kritische Bereich die Form $K_{\leq} = (-\infty, c_{\leq})$ für ein zu bestimmendes c_{\leq} . Für $\alpha = 0.05$ wählen wir c_{\leq} so, dass: $\alpha = \mathbb{P}[T < c_{\leq}] \quad \Rightarrow c_{\leq} = t_{n-1,\alpha} = -t_{n-1,1-\alpha} =$ $-t_{8.0.95} = -1.86 \implies K_{<} = (-\infty, -1.86).$

v. Wert der Teststatistik: Durch einsetzen:

$$T(\omega) = t(x_1, ..., x_9) = \frac{\overline{X}_9 - \mu_0}{S_9 / \sqrt{9}} = \frac{18.6 - 22}{3/3} = -3.4$$

vi. Testentscheid: Wegen $T \in (-\infty, -1.86) = K_{\leq}$ verwerfen wir die Hypothese und nehmen die Alternative an. ⇒ Daten sprechen dafür, dass die Temperatur tatsächlich gesunken ist.

b) p-Wert(ω) = $\mathbb{P}_{H_0}[T < -3.4] = 1 - \mathbb{P}_{H_0}[T < 3.4]$. Wegen $t_{8.0.995} = 0.355 < 3.4$, folgt: $0 \le \text{p-Wert}(\omega) \le 0.005$.

(FS21, Aufg. 2) Seien X und Y zwei unabh. ZV mit $X \sim Poi(\lambda)$ und $Y \sim Poi(\mu)$, wobei $\lambda, \mu > 0$.

- a) Zeige, dass $X + Y \sim Poi(\lambda + \mu)$
- b) Zeige, dass $X|X+Y=n\sim Bin(n,\frac{\lambda}{\lambda+\mu})$
- c) Bestimme $\mathbb{P}[X + Y = n | Y = l]$ für alle n, l
- a) $p_{X+Y}(k) = p_X(k) * p_Y(k) \stackrel{unab.}{=} \sum_{x=0}^k p_X(x) \cdot p_Y(k x) = \sum_{x=0}^k \frac{\lambda^x}{x!} e^{-\lambda} \cdot \frac{\mu^{k-x}}{(k-x)!} e^{-\mu} = \sum_{x=0}^k \frac{\lambda^x \mu^{k-x}}{x!(k-x)!} e^{-(\lambda+\mu)} = \sum_{x=0}^k \frac{\lambda^x \mu^{k-x}}{x!} e^{-(\lambda+\mu)} = \sum_{x=0}^k \frac{\lambda^x \mu^{k-x}}{x!} e^{-(\lambda+\mu)} e^{-(\lambda+\mu)} = \sum_{x=0}^k \frac{\lambda^x \mu^{k-x}}{x!} e^{-(\lambda+\mu)} e^{-(\lambda+\mu)} e^{-(\lambda+\mu)} e^{-(\lambda+\mu)} e^{-(\lambda+\mu)} e^{$ $e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{x=0}^k \frac{k!}{x!(k-x)!} \lambda^x \mu^{k-x} \stackrel{Bin_Satz}{=} e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^k}{k!}$
- b) $\mathbb{P}[X=k|X+Y=n] = \frac{\mathbb{P}[X=k,X+Y=n]}{\mathbb{P}[X+Y=n]} = \frac{\mathbb{P}[X=k,Y=n-k]}{\mathbb{P}[X+Y=n]} = \frac{\mathbb{P}[X=k,Y=n-k]}{\mathbb{P}[X+Y=n]} = \frac{\mathbb{P}[X=k,Y=n-k]}{\mathbb{P}[X=k,Y=n]} = \frac{\mathbb{P}[X=k,X+Y=n]}{\mathbb{P}[X=k,Y=n-k]} = \frac{\mathbb{P}[X=k,Y=n-k]}{\mathbb{P}[X=k,Y=n-k]} = \frac{\mathbb{P}[X=k,Y=n-k]}{\mathbb{P}$ $\frac{\mathbb{P}[X=k]\cdot[X+Y=n]}{\mathbb{P}[X+Y=n]} = \frac{\frac{\lambda^k}{k!}e^{-\lambda}\cdot\frac{\mu^{n-k}}{(n-k)!}e^{-\mu}}{\frac{(\lambda+\mu)^n}{e^{-(\lambda+\mu)}}} = \frac{n!}{k!(n-k)!}\cdot\frac{\lambda^k\mu^{n-k}}{(\lambda+\mu)^n} =$ $\binom{n}{k} \frac{\lambda^k \mu^{n-k}}{(\lambda+\mu)^k (\lambda+\mu)^n - k} = \binom{n}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}$
- c) Für $n \notin \mathbb{N}$ oder $l \notin \mathbb{N}$ oder $l, n \in \mathbb{N}, l > n$ ist P[X+Y=n|Y=l|=0 (trivial). Für den Fall $l,n \in \mathbb{N}, l \le n$: $P[X+Y=n|Y=l] = \frac{\mathbb{P}[X+Y=n,Y=l]}{\mathbb{P}[Y=l]} = \frac{\mathbb{P}[X=n-l,Y=l]}{\mathbb{P}[Y=l]} = \frac{\mathbb{P}[X=n-l]\cdot\mathbb{P}[Y=l]}{\mathbb{P}[Y=l]} = \frac{\mathbb{P}[X=n-l]\cdot\mathbb{P}[Y=l]}{\mathbb{P}[X=n-l]\cdot\mathbb{P}[Y=l]} = \frac{\mathbb{P}[X=n-l]\cdot\mathbb{P}[Y=l]}{\mathbb{P}[X=n-l]\cdot\mathbb{P}[Y=l]} = \frac{\mathbb{P}[X=n-l]\cdot\mathbb{P}[$ $\mathbb{P}[X = n - l] = \frac{\lambda^{n-l}}{(n-l)!} e^{-\lambda}$

(FS20, Aufg. 2) Zeige, dass für eine diskrete ZV Zmit Werten in \mathbb{N} gilt: $\exists q \in (0,1) : Z \sim Geo(q) \iff$ $\mathbb{P}[Z > n] = \mathbb{P}[Z > n + k|Z > k] \quad , n, k \ge 1$

- (\Rightarrow): Sei $Z \sim Geo(q), q \in [0,1]$. Dann gilt: $\mathbb{P}[Z > k] =$ $(1-q)^k$ und somit für alle $k, n \in \mathbb{N}$, dass: $\mathbb{P}[Z>n+k\mid Z>k] = \frac{\mathbb{P}[Z>n+k,Z>k]}{\mathbb{P}[Z>k]} = \frac{\mathbb{P}[Z>n+k]}{\mathbb{P}[Z>k]} = \frac{\mathbb{P}[Z>n+k]}{\mathbb{P}[Z>n+k]} = \frac{\mathbb{P}[Z>n+k]}{\mathbb{P}[Z>k]} = \frac{\mathbb{P}[Z>n+k]}{\mathbb{P}[Z>n+k]} = \frac{\mathbb{P}[Z>$ $\frac{(1-q)^{n+k}}{(1-q)^k} = (1-q)^n = \mathbb{P}[Z > n]$
- (\Leftarrow): Sei nun $\mathbb{P}[Z > n + k \mid Z > k] = \mathbb{P}[Z > n]$ für $n, k \in \mathbb{N}$. Dann gilt: $\mathbb{P}[Z > n] = \mathbb{P}[Z > n + k \mid Z > k] = \frac{\mathbb{P}[z > n + k]}{Z > k}$. Nun sei $f(n) := \mathbb{P}[Z > n]$. Es gilt also: $\forall n, k \in \mathbb{N} : f(n)$. f(k) = f(n+k). Wegen f(n+1) = f(n)f(1) folgt sofort durch Iteration, dass $f(n) = a^n$ mit a = f(1) und damit: $\mathbb{P}[Z = n] = \mathbb{P}[Z > n - 1] - \mathbb{P}[Z > n] = f(n - 1) - f(n) =$ $(1-a)a^{n-1}$. Schliesslich ist $a=f(1)=\mathbb{P}[Z>1]\in[0,1],$ also auch $q = 1 - a \in [0, 1]$ und damit $Z \sim Geo(q)$.

(FS20, Aufg. 3) Man wählt zufällig uniform verteilt einen Punkt A = (X, Y) in dem Gebiet $D = \{(x, y) \in$ $\mathbb{R}: 1/2 \le max(|x|, |y|) \le 1$. Somit ist:

$$f_{X,Y}(x,y) = \begin{cases} c & \text{falls } 1/2 \le \mid x \mid \le 1 \text{ und } \mid y \mid \le 1 \\ c & \text{falls } 1/2 \le \mid y \mid \le 1 \text{ und } \mid x \mid \le 1/2 \\ 0 & \text{sonst} \end{cases}$$

Sei $V = (2max(|X|, |Y|))^2$ die Fläche des achsenparallelen Quadrates, welches seinen Mittelpunkt im Ursprung O = (0,0) hat und bei welchem der Punkt A auf einer der Seitenkanten

liegt. Sei weiter σ der Abstand vom Punkt A zum Punkt B = (2,0). (a) Bestimme $c, f_X(x)$ und $f_y(y)$ (b) Finde $\mathbb{E}[X^2]$ & $\mathbb{E}[\sigma^2]$ (c) Berechne $f_V(v)$ & $\mathbb{E}[V]$

a) Zuerst berechnen wir c: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy$ $= \int_{-1}^{1} \int_{-1}^{1} c \, dx \, dy - \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} c \, dx \, dy = 4c - c$ $=3c\stackrel{!}{=}1$ $\Rightarrow c=\frac{1}{2}$ Für die Dichte erhalten wir: $f_X(x) = \begin{cases} \int_{-1}^{-\frac{1}{2}} c \, dy + \int_{\frac{1}{2}}^{1} c \, dy = c = \frac{1}{3} & \text{falls } |x| \le \frac{1}{2} \\ \int_{-1}^{1} c \, dy = 2c = \frac{2}{3} & \text{falls } \frac{1}{2} \le |x| \le 1 \end{cases}$

Zudem gilt: $f_X(k) = f_Y(k)$ aus Symmetrie gründen.

- b) $\mathbb{E}\left[X^2\right] = \int_{-1}^1 x^2 \cdot f_X(x) \, dx = 2 \cdot \left(\int_0^{\frac{1}{2}} x^2 \cdot \frac{1}{3} \, dx + \int_{\frac{1}{3}}^1 x^2 \cdot \frac{2}{3} \, dx\right)$ $=2\cdot\left(\left|\frac{1}{9}\cdot x^3\right|_0^{\frac{1}{2}}+\left|\frac{2}{9}\cdot x^3\right|_{\frac{1}{2}}^{\frac{1}{2}}\right)=2\cdot\left(\frac{1}{72}-\frac{2}{72}+\frac{2}{9}\right)=\frac{5}{12}$ Zudem gilt: $\mathbb{E}[X^2] = \mathbb{E}[Y^{\tilde{2}}]$ aus Symmetrie gründen. $\mathbb{E}\left[\varrho^{2}\right] = \mathbb{E}\left[\left(X - 2\right)^{2} + Y^{2}\right] = \mathbb{E}\left[X^{2} - 4X + 4 + Y^{2}\right]$ $=\mathbb{E}\left[X^{2}\right] - 4 \cdot E\left[X\right] + 4 + E\left[Y^{2}\right] = \frac{5}{12} - 4 \cdot 0 + 4 + \frac{5}{12} = \frac{29}{6}$
- c) Wir sehen, dass 1 < V < 4. Sei S := 2max(|X|, |Y|)(Seitenlänge von V). Nun gilt für $v \in [1, 4]$: $\mathbb{P}[V \leq v] = \mathbb{P}[S \leq \sqrt{v}] = \mathbb{P}[max(|X|, |Y|) \leq \sqrt{v}/2] =$ $\mathbb{P}[|X| \leq \sqrt{v}/2, |Y| \leq \sqrt{v}/2]$ $= \frac{1}{3} \int_{|y| \le 1} \int_{1/2 \le |x| < 1} 1_{\{|x| \le \sqrt{v}/2, |y| \le \sqrt{v}/2\}} dx dy$ $+\frac{1}{3}\int_{|x|<1/2}\int_{1/2<|y|<1}1_{\{|x|\leq\sqrt{v}/2,\ |y|\leq\sqrt{v}/2\}}dydx$ $=\frac{1}{3}\sqrt{v}(\sqrt{v}-1)+\frac{1}{3}(\sqrt{v}-1)=\frac{1}{3}(v-1).$ Somit ist: $f_V(v) = 1/3$ für $v \in [0, 4]$ und 0 sonst. Somit erhalten wir: $\mathbb{E}[V] = \frac{1}{2} \int_{1}^{4} v \ dv = \frac{5}{2}$.

(HS19, A3) Sei $P \sim \mathcal{U}(0,1)$ und $H \mid P \sim \mathcal{U}(0,p)$.

- (a) Bestimme $f_{H,P}$
- (b) Bestimme f_H
- (c) Bestimme $\mathbb{E}[H]$, $\mathbb{E}[P]$. (d) Bestimme cov(H, P).
- a) Wir wissen: $f_{H|P}(h \mid p) = \frac{1}{n} \cdot 1_{\{h \in (0,p)\}}$ $\Rightarrow f_{H,P}(h,p) = f_{H|P}(h \mid p) \cdot f_{P}(p) = \frac{1}{p} \cdot 1_{\{h \in (0,p) \land p \in [0,1]\}}$
- b) $f_H(h) = \int_{-\infty}^{\infty} f_{H,P}(h,p) dp = \int_{0}^{1} \frac{1}{n} \cdot 1_{\{h \in (0,p)\}} dp$ $=\int_{h}^{1} \frac{1}{n} dp = -ln(h)$, für $0 \le h \le 1$.
- c) $\mathbb{E}[H] = -\int_0^1 h \log h \, dh = \left[-\frac{h^2}{2} \log h \right]_0^1 + \int_0^1 \frac{h^2}{2} \frac{1}{h} \, dh$ = 1/4. Zudem ist $\mathbb{E}[P] = \frac{1}{2}$ und somit $\mathbb{E}[H] = \frac{\mathbb{E}[P]}{2}$.
- d) $\mathbb{E}[P \cdot H] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p \cdot h \cdot f_{P,H}(p,h) dp dh = \int_{0}^{1} \int_{0}^{p} h dh dp$ $=\int_0^1 \frac{p^2}{2} dp = \frac{1}{6}. \Rightarrow Cov(P, H) = \mathbb{E}[PH] - \mathbb{E}[P]\mathbb{E}[H]$ $=\frac{1}{6}-\frac{1}{4}\cdot\frac{1}{2}=\frac{1}{24}$. Somit sind P und H abhängig!

(FS19, A2) Zwei Halbleiter parallel geschaltet, Kontrolllicht leuchtet auf, falls einer der beiden ausfällt. Sei $X_1, X_2 \sim Exp(1/60)$ die Lebensdauer der beiden Halbleiter. Sei Z die Zeit bis die Kontrollleuchte aufleuchtet.

- (a) Finde Verteilung von Z
- (b) Finde W'keit, dass Bauteil > 35 Mal in 3 Jahren ersetzt wird (wird ersetzt falls Kontroll. leuchtet)
- a) Sei T := Zeit bis Kontrolllicht leuchtet. $\Rightarrow F_T(t) = \mathbb{P}[T < t] = \mathbb{P}[min(X_1, X_2) < t]$ $=1-\mathbb{P}[min(X_1,X_2)>t]=1-\mathbb{P}[X_1>t]\cdot\mathbb{P}[X_2>t]$ $= 1 - e^{-2/60}$ $\Rightarrow T \sim Exp(1/30)$
- b) Nach einer Zeit T_i (in Tagen) wir das erste Bauteil ersetzt. Es gilt $T_i i.i.d. \sim Exp(1/30)$. Sei $S := \sum_{i=1}^{36} T_i$. Wir wollen $\mathbb{P}[S < 3 \cdot 365]$ finden. Es gilt: $\mathbb{E}[S] = 36$ $\mathbb{E}[T_i] = 36 \cdot 30 = 1080 \text{ und } Var[S] = 36 \cdot Var[T_i] =$ $36 \cdot 30^2 = 32400$. Nach dem ZGS folgt: $\mathbb{P}[S < 3 \cdot$ $[365] = \mathbb{P}\left[\frac{S - \mathbb{E}[S]}{\sqrt{\text{Var}[S]}} \le \frac{3 \cdot 365 - \mathbb{E}[S]}{\sqrt{\text{Var}[S]}}\right] = \mathbb{P}\left[\frac{S - 1080}{180} \le \frac{15}{180}\right] =$ $\Phi(1/12) = \Phi(0.08) = 53.19\%$