Supervised Learning - Predicting Monthly Energy Prices By State

November 9, 2020

1 Predicting Retail Electricity Prices Using Fossil Fuel Prices

- 1.1 Supervised Machine Learning Approaches
- 1.1.1 Monthly Data by State, Energy Type, and Sector from January 2008 to July 2020

1.2 1. Introduction

I will be predicting average retail electricity prices throughout the United States for nearly twelve (12) years by month and state based upon fossil fuel prices and generation volumes by energy type. The power generation industry is a very long-term industry with most company revenue contracts and fixed asset investment horizons ranging from ten (10) to thirty (30) years long. When making such large, long-term investments and commitments, power generators expose themselves to significant known and unknown business risks. Today, generators are exposed more and more to fluctuating energy market prices with the continued establishment of idependent system operators (ISOs). Being able to forecast energy prices accurately will assist with strategic positioning (i.e. if this nuclear plant shuts down, what will power prices do for 1 month, 3 months, or 6 months) and risk management by calibrating hedging and swap portfolios.

- 1. Assuming trends in fossil fuel production and pricing markets, can we reasonably predict retail electricity prices by month and state? Being able to predict changes in electricity prices relative to changes in fossil fuel markets improves strategic visibility for regional acquisitions and could improve risk management by quantifying incoming market impacts from upstream events and improving calibration of hedging portfolios.
- 2. Can retail power prices be reasonably determined based only on the cost inputs of fossil fuels and not any renewable power or nuclear generation costs? If the modeled predictions are reasonably accurate, we can observe market spark margin efficiencies and conclude renewable power companies need to guide their merchant power price strategy based on expected long-term fossil-fuel markets.

1.3 2. Data

The dataset has downloaded Information been from the Energy Administration (EIA) website at https://www.eia.gov/electricity/data/browser/, https://www.eia.gov/opendata/qb.php?category=40. The data is somewhat comprehensive including generation statistics, average fuel costs, fuel deliveries, fuel consumption, and fuel inventories. For this project I used these feature variable to predict the average retail electricity prices in the United States on a monthly basis from 2001 to July 2020. The electricity price data is broken down by region, state, and sector, and has been downloaded into a usable .csv file in the local folder.

Within the electricity prices report, there are 7,701 observations and twenty-two (22) variables including location, sequential year, month number, sector, the target electricity price variable, the average cost of fossil fuels in electricity generation, net generation, fossil fuel stocks, and fuel consumption volumes by electricity generation. There are toggles so that the project can be run with state-level data or region-level data by location, but not both as to avoid the effects of overlapping and cocorrelation from variables which may overlap.

- Energy Types: Coal, Natural Gas, Petroleum Coke, Petroleum Liquids, Renewable and Other Forms, and General Electricity (the electricity prices are not broken down by energy type, but only location and sector really).
- Sectors: Commercial, Industrial, Residential, Electric Utility, Independent Power Producers

```
[1]: # # Import Python libraries.
     from custom_functions import (
         short_to_long_form_and_wrangle,
         correct_section_classification,
         correct_energy_units,
         show_category_breakdown,
         show_agg_stats_by_category,
         long_form_to_xdate,
         null_table_graph,
         back_forward_fill,
         drop_empty_multi_idx_cols,
         plot_discrete_features_by_col_idx,
         times_series_to_long_form,
         get model df,
         adjust_MMBtu_units,
         add chrono features,
         show_distributions,
         transform_check_distributions,
         discrete_feature_effects,
         split_training_test_data,
         show_correlations,
         generate_linear_regression,
         pd,
         np,
         plt,
         sns,
         df_img_out,
         RandomForestRegressor,
         RandomizedSearchCV,
         GridSearchCV.
         SVR,
```

```
GradientBoostingRegressor,
RidgeCV,
LassoCV,
ElasticNetCV,
cross_val_score,
mean_absolute_error,
mse,
rmse
)
%matplotlib inline
```

2 Import Raw Data and View Row/Column Schema

```
[2]: # Data obtained from EIA at https://www.eia.gov/electricity/data/browser/,

→'View a pre-generated report'.

eia_raw_data_df = pd.read_csv('eia_data.csv').drop(columns=['index'])

df_img_out(eia_raw_data_df.head(3).iloc[:, :7].describe(), 'eia_raw_data_df')

target_var = 'Average_retail_price_of_electricity_cents_per_kilowatthour'
```

	Jan 2008	Feb 2008	Mar 2008
count	3.000	3.000	3.000
mean	1.867	1.877	1.920
std	0.006	0.012	0.026
min	1.860	1.870	1.900
25%	1.865	1.870	1.905
50%	1.870	1.870	1.910
75%	1.870	1.880	1.930
max	1.870	1.890	1.950

3 Convert and Wrangle Data to Long-long Format

```
[3]: folder_df_nz_long = short_to_long_form_and_wrangle(eia_raw_data_df,_u \leftalor_method='state')

df_img_out(folder_df_nz_long.head(3).iloc[:, :7], 'folder_df_nz_long')
```

	variable	energy_type	location	sector	source key	year_month	values
index							
12432	$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu$	coal	Alabama	all sectors	ELEC.COST_BTU.COW-AL-98.M	2008-01-01	nan
12580	$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu$	coal	Alabama	all sectors	ELEC.COST_BTU.COW-AL-98.M	2008-02-01	nan
12728	$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu$	coal	Alabama	all sectors	ELEC.COST_BTU.COW-AL-98.M	2008-03-01	nan

4 Correct 'sector' Bad Data in Receipts of Fossil Fuels Variables

[4]: folder_df_nz_long_sct = correct_section_classification(folder_df_nz_long) df_img_out(folder_df_nz_long.head(3).iloc[:, :7], 'folder_df_nz_long_sct')

	variable	energy_type	location	sector	source key	year_month	values
index							
12432	$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu$	coal	Alabama	all sectors	ELEC.COST_BTU.COW-AL-98.M	2008-01-01	nan
12580	$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu$	coal	Alabama	all sectors	ELEC.COST_BTU.COW-AL-98.M	2008-02-01	nan
12728	Average cost of fossil fuels in electricity generation per Btu dollars per million Btu	coal	Alabama	all sectors	ELEC.COST_BTU.COW-AL-98.M	2008-03-01	nan

```
[5]: folder_df_nz_long_sct_conv = correct_energy_units(folder_df_nz_long_sct)
```

5 Data Structure: Categroical Variable Values (Location, Energy Type, and Industry Sector)

We can see that petroleum coke 'energy_type' and residential 'sector' have very limited data points, however, petroleum coke was not recorded as much throughout various states nor was it recorded over a similarly long period of time. Petroleum coke comprises a significant portion of the energy markets and is a key source of cost-effective energy value for electricity generation because it is a bi-product (not a primary output) of the petroleum refining process.

	0	1	2	3	4	5	45	6
Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware
Average_retail_price_of_electricity_cents_per_kilowatthour	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Vermont	Connecticut
Consumption_by_electricity_generation_MMBtu	Alabama	Alaska	Arizona	Arkansas	California	Colorado	West Virginia	Connecticut
Fossil_fuel_stocks_in_electricity_generation_MMBtu	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Wisconsin	Connecticut
Net_generation_thousand_megawatthours	Alabama	Alaska	Arizona	Arkansas	California	Colorado	West Virginia	Connecticut

	0	1	2	3	4
$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu_dollars_per_million_Btu_dollars_per_million_btu_dollars_per_m$	coal	natural_gas	petroleum_coke	petroleum_liquids	NaN
Consumption_by_electricity_generation_MMBtu	coal	natural_gas	petroleum_coke	petroleum_liquids	NaN
Net_generation_thousand_megawatthours	coal	natural_gas	petroleum_coke	petroleum_liquids	renewable_and_other
Receipts_of_fossil_fuels_electricity_generation_MMBtu	coal	natural_gas	petroleum_coke	petroleum_liquids	NaN
Fossil_fuel_stocks_in_electricity_generation_MMBtu	coal	petroleum_coke	petroleum_liquids	NaN	NaN

	0	1	3	2
Average_retail_price_of_electricity_cents_per_kilowatthour	all sectors	NaN	NaN	NaN
Fossil_fuel_stocks_in_electricity_generation_MMBtu	all sectors	NaN	NaN	NaN
Retail_sales_of_electricity_million_kilowatthours	all sectors	NaN	NaN	NaN
Revenue_from_retail_sales_of_electricity_million_dollars	commercial	industrial	NaN	residential
Consumption_by_electricity_generation_MMBtu	electric utility	independent power producers	commercial	industrial

6 Data Structure: Categorical Group Statistics and Value Ranges

values

		raides				
		min	mean	max	count	sum
variable	energy_type					
Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu	coal	0.440	2.368	18.230	6438	15,248.17
	natural_gas	0.460	4.788	59.320	8920	42,713.13
	petroleum_coke	0.300	1.933	15.300	813	1,571.39
	petroleum_liquids	3.060	17.129	53.310	5813	99,572.80
Average_retail_price_of_electricity_cents_per_kilowatthour	electricity	5.270	10.645	36.370	7701	81,977.76
Consumption_by_electricity_generation_MMBtu	coal	18.875	12,718.070	128,746.375	14724	187,260,856.87
	natural_gas	0.001	4.952	149.136	24106	119,375.04
	petroleum_coke	24.800	561.500	4,786.400	2349	1,318,963.20
	petroleum_liquids	5.698	175.982	12,581.184	12048	2,120,225.80
ossil_fuel_stocks_in_electricity_generation_MMBtu	coal	18.875	83,253.437	376,273.125	4940	411,271,980.50
	petroleum_coke	24.800	2,035.324	12,028.000	187	380,605.60
	petroleum_liquids	5.698	3,825.504	52,940.118	7043	26,943,021.49
let_generation_thousand_megawatthours	coal	-5.000	1,196.537	11,075.000	15315	18,324,970.00
	natural_gas	-93.000	666.761	19,682.000	22910	15,275,501.00
	petroleum_coke	-5.000	55.975	509.000	2529	141,560.00
	petroleum_liquids	-18.000	20.472	1,267.000	10620	217,413.00
	renewable_and_other	-31.000	859.097	23,440.000	24260	20,841,695.00
leceipts_of_fossil_fuels_electricity_generation_MMBtu	coal	18.875	14,534.364	117,987.625	12951	188,234,542.62
	natural_gas	0.001	7.251	158.772	16827	122,006.63
	petroleum_coke	24.800	921.032	6,026.400	1539	1,417,468.80
	petroleum_liquids	5.698	224.917	15,162.378	8861	1,992,989.46
Retail_sales_of_electricity_million_kilowatthours	electricity	389.000	6,100.060	43,866.000	7701	46,976,564.00
Revenue_from_retail_sales_of_electricity_million_dollars	electricity	1.000	206.722	2,427.000	23089	4,772,999.00

March Mar			values				
Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_bity dectric utility 0.460 7.48 59.30 1746 130,696.54 Average_retail_price_of_electricity_cents_per_kilowatthour all sectors 5.270 10.645 36.30 7701 81,977.760 Consumption_by_electricity_generation_MMBtu generation_tullity 0.001 7,430.26 101,962.75 18907 140,484,035.063 independent power producers 0.001 7,430.26 101,962.75 18907 140,484,035.063 Fossil_fuel_stocks_in_electricity_generation_MMBtu all sectors 5.09 30,039.08 128,746.37 14162 49,094,031.81 Fossil_fuel_stocks_in_electricity_generation_MMBtu all sectors 5.59 80,399.00 762,731.25 1217 438,596,07.590 Net_generation_fuel_stocks_in_electricity_generation_MMBtu momercial -6.00 17.17 20.700 1025 157,618.000 Net_generation_fuel_stocks_in_electricity_generation_MMBtu momercial -6.00 17.61 20.700 20.720 20.720 20.720 20.720,156.000 Net_generation_fuel_stoc			min	mean	max	count	sum
Independent power producers 0.30 6.284 35.80 4521 28,408.95	variable	sector					
Average_retail_price_of_electricity_cents_per_kilowatthour all sectors 5.270 10.645 36.370 7701 81,977.76 Consumption_by_electricity_generation_MMBtu commercial 0.001 7.43.266 10.967.75 69.78 0.118 dectric utility 0.001 7.43.266 10.962.75 189.07 140.484,036.063 independent power producers 0.001 3.666.00 128.746.37 14162 49.094,031.814 industrial 0.001 3.666.00 167.87 128.72 1.71,1757.327 Fossil_fuel_stocks_in_electricity_generation_MMBtu all sectors 5.69 36.930.00 76.273.125 1270 435.596,07.930 Net_generation_thousand_megawatthours commercial -6.000 17.175 207.000 1225 175.618.000 net_generation_thousand_megawatthours commercial -6.000 17.175 207.000 1225 175.618.000 net_generation_thousand_megawatthours dectric utility -3.000 1.063.926 23.400.00 20.000 23.000 20.000 22.427.552.000 Receipts_of_fossil_fue	$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu$	electric utility	0.460	7.484	59.320	17463	130,696.540
Consumption_by_electricity_generation_MMBtu commercial electric utility 0.001 10.514 679.500 6637 69,780.188 Electric utility 0.001 7,430.266 101,962.756 18907 140,484,035.063 Independent power producers 0.001 3,466.603 128,746.375 14162 49,094,031.814 Fossil_fuel_stocks_in_electricity_generation_MMBtu all sectors 5,698 36,039.080 376,273.125 1217 438,595,607.590 Net_generation_thousand_megawatthours commercial -6,000 17,175 207,000 10225 175,618.000 electric utility -3,100 1,961,775 12,932.000 21,11 30,037,157.000 Industrial -93,000 11,2437 4,023.00 29,11 30,037,157.000 Receipts_of_fossil_fuels_electricity_generation_MMBtu commercial 0.001 96,661 17,355.00 21,242,755.200 Receipts_of_fossil_fuels_electricity_generation_MMBtu commercial 0.001 96,661 17,355.00 21,00 23,242,755.200 Industrial 0.001 9,0661		independent power producers	0.300	6.284	35.880	4521	28,408.950
Parametrial	Average_retail_price_of_electricity_cents_per_kilowatthour	all sectors	5.270	10.645	36.370	7701	81,977.760
Independent power producers 0.00 3.466.00 3.476.375 3.162 49,094,031.814 Industrial 0.001 8.66.40 6.511.875 3.521 1.717,733.927 Fossil_fuel_stocks_in_electricity_generation_MMBtu all sectors 5.690 6.039.00 376.273.12 1.72 438,595,607.590 Net_generation_thousand_megawatthours commercial -6.000 17.175 207.00 1025 1.75,618.000 Industrial -9.000 1.063.92 2.3440.00 2.000 2.24.27,552.000 Industrial -9.000 1.24.37 4.023.00 1.96.01 2.24.27,552.000 Industrial -9.000 3.60.01 3.60.01 3.60.01 3.60.01 3.60.01 3.60.01 Industrial -9.000 3.60.01 3.60.01 3.60.01 Industrial -9.000 3.	Consumption_by_electricity_generation_MMBtu	commercial	0.001	10.514	679.500	6637	69,780.118
Nutstrial 0.001 86.648 6.511.875 3321 1,171,573.275 1,171,573.27		electric utility	0.001	7,430.266	101,962.750	18907	140,484,035.063
Positing time stocks in electricity generation MMBtu MIS South		independent power producers	0.001	3,466.603	128,746.375	14162	49,094,031.814
Net_generation_thousand_megawatthours commercial electric utility -6.00 17.175 207.00 10225 175,618.00 Receipts_of_fossil_fuels_electricity_generation_MMBtu commercial electric utility -5.000 1,196.175 18,238.000 21/10 20,2427,552.000 Receipts_of_fossil_fuels_electricity_generation_MMBtu commercial -93.000 112.437 4,023.000 19218 2,160.812.000 Receipts_of_fossil_fuels_electricity_generation_MMBtu commercial 0.001 8,104.982 101,415.375 179 133,2425.826 electric utility 0.001 8,104.982 101,415.375 179 139,381,369.121 industrial 0.001 3,750.793 117,987.625 2994 48,737,810.165 industrial 0.001 407.961 5,907.875 8617 3,515,402.412 Retail_sales_of_electricity_million_kilowatthours all sectors 389.00 6,100.06 43,866.00 7701 46,976,564.00 Revenue_from_retail_sales_of_electricity_million_dollars commercial 20.00 228.32 2,300.00 7701 1,758,311.00 <th></th> <th>industrial</th> <th>0.001</th> <th>86.648</th> <th>6,511.875</th> <th>13521</th> <th>1,171,573.927</th>		industrial	0.001	86.648	6,511.875	13521	1,171,573.927
Receipts_of_fossil_fuels_electricity_eneration_MMBtu	Fossil_fuel_stocks_in_electricity_generation_MMBtu	all sectors	5.698	36,039.080	376,273.125	12170	438,595,607.590
Independent power producers -5.00 1,063.92 23,440.00 21080 22,427,552.00 100.8112.00 112.437 4,023.00 19218 2,160,812.000 112.437 4,023.00 19218 2,160,812.000 100.8112.000 112.437 4,023.00 1370 132,425.826 100.8112.000	Net_generation_thousand_megawatthours	commercial	-6.000	17.175	207.000	10225	175,618.000
Industrial 93.00 112.437 4.023.00 19218 2.160,812.00 2.00,		electric utility	-31.000	1,196.175	18,238.000	25111	30,037,157.000
Receipts_of_fossil_fuels_electricity_generation_MMBtu commercial 0.001 96.661 1.736.500 137 132,425.826 electric utility 0.001 8.104.982 101,415.375 1719 139,381,369.121 independent power producers 0.001 3.750.793 117,987.625 1294 48,737,810.165 industrial 0.001 407.961 5,907.875 8617 3,515,402.412 Retail_sales_of_electricity_million_kilowatthours all sectors 389.00 6,100.06 43,866.00 7701 46,976,564.000 Revenue_from_retail_sales_of_electricity_million_dollars commercial 20.00 228.322 2,923.00 701 1,758,311.000 industrial 1.000 109,343 967.00 769 841,834.00		independent power producers	-5.000	1,063.926	23,440.000	21080	22,427,552.000
electric utility 0.001 8,104.982 101,415.375 17197 139,381,369.121 Independent power producers 0.001 3,750.793 17,987.625 1294 48,737,810.165 Industrial 0.001 407.961 5,907.875 8617 3,515,402.412 Retail_sales_of_electricity_million_kilowatthours all sectors 389.00 6,100.60 43,866.00 701 46,976,564.000 Revenue_from_retail_sales_of_electricity_million_dollars 0.001 1.000 109,343 967.00 7699 841,834.000		industrial	-93.000	112.437	4,023.000	19218	2,160,812.000
Independent power producers 0.001 3,750.793 17,987.625 12994 48,737,810.165 Industrial 0.001 407.961 5,907.875 8617 3,515,402.412 Retail_sales_of_electricity_million_kilowatthours all sectors 389.00 6,100.60 43,866.00 701 46,976,564.000 Revenue_from_retail_sales_of_electricity_million_dollars 0.001 28.322 2,323.00 701 1,758,311.000 Industrial 1.000 109.343 967.00 6,999 841,834.000	Receipts_of_fossil_fuels_electricity_generation_MMBtu	commercial	0.001	96.661	1,736.500	1370	132,425.826
Industrial 0.001 407.961 5.907.875 8617 3,515,402.412 Retail_sales_of_electricity_million_kilowatthours all sectors 389.000 6,100.060 43,866.000 7701 46,976,564.000 Revenue_from_retail_sales_of_electricity_million_dollars commercial 20.000 228.322 2,323.000 701 1,758,311.000 industrial 1.000 109.343 967.000 7699 841,834.000		electric utility	0.001	8,104.982	101,415.375	17197	139,381,369.121
Retail_sales_of_electricity_million_kilowatthours all sectors 389.000 6.100.060 43,866.000 7701 46,976,564.00 Revenue_from_retail_sales_of_electricity_million_dollars commercial 20.000 228.322 2,323.000 7701 1,758,311.000 industrial 1.000 109.343 967.000 7699 841,834.000		independent power producers	0.001	3,750.793	117,987.625	12994	48,737,810.165
Revenue_from_retail_sales_of_electricity_million_dollars commercial industrial 20.000 228.322 2,323.000 7701 1,758.311.000 1.000 109.343 967.000 7699 841,834.000		industrial	0.001	407.961	5,907.875	8617	3,515,402.412
industrial 1.000 109.343 967.000 7699 841,834.000	Retail_sales_of_electricity_million_kilowatthours	all sectors	389.000	6,100.060	43,866.000	7701	46,976,564.000
	Revenue_from_retail_sales_of_electricity_million_dollars	commercial	20.000	228.322	2,323.000	7701	1,758,311.000
residential 12.000 282.593 2,427.000 7689 2,172,854.000		industrial	1.000	109.343	967.000	7699	841,834.000
		residential	12.000	282.593	2,427.000	7689	2,172,854.000

7 Wrangle Data to Chronological Time-Series Format with 'year_month' as the X-axis.

[8]: folder_df_nz_xdate = long_form_to_xdate(folder_df_nz_long_sct_conv)
df_img_out(folder_df_nz_xdate.head(3).iloc[:, :7], 'folder_df_nz_xdate')

variable	Average_cost_	erage_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu											
location	Alabama					Alaska							
energy_type	coal		natural_gas		petroleum_liquids	coal	natural_gas						
sector	electric utility	independent power producers	electric utility	independent power producers	electric utility	electric utility	electric utility						
year_month													
2008-01-01	2.150	nan	8.240	8.810	18.210	1.340	4.050						
2008-02-01	2.120	nan	8.810	10.730	20.020	1.310	4.070						
2008-03-01	2.190	nan	9.770	nan	21.100	1.340	4.130						

8 Data Cleaning: Chronologically Forward-fill and Back-fill variable data after breaking it down by variable, location, and energy type.

```
[9]: null_table_graph(folder_df_nz_xdate.replace([0, np.inf, -np.inf], np.nan))
df_img_out(folder_df_nz_xdate.head(3).iloc[:, :7], 'folder_df_nz_xdate2')
```


variable	Average_cost_	erage_cost_of_fossil_tuels_in_electricity_generation_per_btu_dollars_per_million_btu										
location	Alabama					Alaska						
energy_type	coal		natural_gas		petroleum_liquids	coal	natural_gas					
sector	electric utility	independent power producers	electric utility	independent power producers	electric utility	electric utility	electric utility					
year_month												
2008-01-01	2.150	nan	8.240	8.810	18.210	1.340	4.050					
2008-02-01	2.120	nan	8.810	10.730	20.020	1.310	4.070					
2008-03-01	2.190	nan	9.770	nan	21.100	1.340	4.130					

Showing the difference in .describe() statistics after applying the fill assumptions.

variable	Average_cost_	erage_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu										
location	Alabama					Alaska						
energy_type	coal		natural_gas		petroleum_liquids	coal	natural_gas					
sector	electric utility	independent power producers	electric utility	independent power producers	electric utility	electric utility	electric utility					
year_month												
2008-01-01	2.150	3.000	8.240	8.810	18.210	1.340	4.050					
2008-02-01	2.120	3.000	8.810	10.730	20.020	1.310	4.070					
2008-03-01	2.190	3.000	9.770	13.150	21.100	1.340	4.130					

Change in count of columns after dropping: -99 (2,172 remaining columns)

variable	Average_cost_	cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu										
location	Alabama				Alaska				Arizona			
energy_type	coal		natural_gas		petroleum_liquids	coal	natural_gas	petroleum_liquids	coal	natural_gas		
sector	electric utility	independent power producers	electric utility	independent power producers	electric utility	electric utility	electric utility	electric utility	electric utility	electric utility		
year_month												
2008-01-01	2.150	3.000	8.240	8.810	18.210	1.340	4.050	19.700	1.620	8.010		
2008-02-01	2.120	3.000	8.810	10.730	20.020	1.310	4.070	20.550	1.690	8.620		
2008-03-01	2.190	3.000	9.770	13.150	21.100	1.340	4.130	22.680	1.720	9.520		

9 Chronological Trends in Raw Variable Values: Fossil Fuel Costs, Consumption, Inventory Stocks

[12]: plot_discrete_features_by_col_idx(folder_df_nz_xdate_fill_drop, target_var.

→split('__')[0])

• We can see that the average retail price of electricity tends to move seasonally throughout the year by the monthly data. If we had daily data, we would see the variation between on-peak and off-peak hours, but that is beyond the scope of this project.

- The gradual increase in electricity prices generally tend to appear inflationary and track coal
 prices, as coal is such a significant portion of the overall power grid. Natural gas, petroleum
 coke, and petroleum liquids fuel prices have trended downward over the past five years as
 the natural gas glut from fracking continues to maintain negative pricing pressure across the
 markets.
- It is interesting that the average cost of fuel between utilities and independent power generators generally shows that private companies are more efficient at maintaining low costs in their operational processes and procurement by a noticeable margin when compared to quasi-governmental utility generators which are heavily regulated.
- Looking at consumption of fuels for electricity, utilities are a much larger portion of the market than independent power producers but still cannot garner pricing economies of scale in fuel costs comparatively.
- Independent power generators have been steadily increasing their portion of total generation over the past decade and are now at a similar production level than utility companies.
- Coal generation has been decreasing to about half of its level a decade ago, while being replaced with natural gas and renewable energy sources.
- Receipts of all types of fossil fuels have been declining consistently, except for natural gas.
- Fossil fuel stocks of all types reaches a very low level in 2019.

```
[13]: df_fill_long = times_series_to_long_form(folder_df_nz_xdate_fill_drop)
df_img_out(df_fill_long.head(3).iloc[:, :10], 'df_fill_long')
```

	variable	location	energy_type	sector	year_month	values
0	Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu	Alabama	coal	electric utility	2008-01-01	2.150
1	$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu$	Alabama	coal	electric utility	2008-02-01	2.120
2	Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu	Alabama	coal	electric utility	2008-03-01	2.190

10 Data Wrangling: Make Data Ready for Machine Learning Models

In order to homogenize the data columns more, I converted each of the fossil-fuel-related variables from either tons, metric cubic feet, or gallons of fossil fuels into British Thermal Units (BTUs) so the figures the machine learning model is comparing are of the same units across various energy types of generation. We can also see a more accurate, relevant, and sometimes very different pricing perspective when comparing fossil fuel costs by energy content rather than weight or volume.

```
[30]: # Get DataFrame format ready for data modeling.
model_df = get_model_df(df_fill_long)
model_df = model_df.reset_index().drop(columns='location')
df_img_out(model_df.iloc[:3, :2], 'model_df')
df_img_out(model_df.iloc[:5, :20].transpose(), 'model_df')
```

	year_month	Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btucoal
0	2008-01-01	2.575
1	2008-02-01	2.560
2	2008-03-01	2.595

	0	1	2	3	4
year_month	2008-01-01 00:00:00	2008-02-01 00:00:00	2008-03-01 00:00:00	2008-04-01 00:00:00	2008-05-01 00:00:00
$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__coal$	2.575	2.560	2.595	2.595	2.705
$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__natural_gas$	8.525	9.770	11.460	11.645	12.895
$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__petroleum_liquids$	18.210	20.020	21.100	25.560	26.830
$Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__petroleum_coke$	1.640	1.640	1.640	1.640	1.640
Average_retail_price_of_electricity_cents_per_kilowatthourelectricity	7.680	7.490	7.220	7.490	7.880
Consumption_by_electricity_generation_MMBtucoal	18,510.083	16,641.458	18,503.792	18,428.292	20,347.250
Consumption_by_electricity_generation_MMBtunatural_gas	5.789	3.612	3.212	2.247	1.914
Consumption_by_electricity_generation_MMBtupetroleum_liquids	123.457	34.188	32.289	37.987	43.685
Consumption_by_electricity_generation_MMBtupetroleum_coke	756.400	756.400	756.400	756.400	756.400
Fossil_fuel_stocks_in_electricity_generation_MMBtucoal	85,937.875	90,165.875	89,580.750	87,900.875	82,615.875
Fossil_fuel_stocks_in_electricity_generation_MMBtu_petroleum_liquids	1,908.830	1,886.038	1,863.246	1,829.058	1,720.796
$Fossil_fuel_stocks_in_electricity_generation_MMBtu_petroleum_coke$	967.200	967.200	967.200	967.200	967.200
Net_generation_thousand_megawatthourscoal	2,101.667	1,889.000	2,088.333	2,040.333	2,222.667
Net_generation_thousand_megawatthoursnatural_gas	703.333	475.667	392.000	285.000	243.333
Net_generation_thousand_megawatthourspetroleum_liquids	11.667	4.333	6.333	8.000	6.667
Net_generation_thousand_megawatthoursrenewable_and_other	1,466.667	1,613.667	1,614.667	1,286.667	1,411.667
Net_generation_thousand_megawatthourspetroleum_coke	71.500	71.500	71.500	71.500	71.500
Receipts_of_fossil_fuels_electricity_generation_MMBtucoal	19,290.250	17,811.708	18,598.167	20,271.750	18,138.875
Receipts_of_fossil_fuels_electricity_generation_MMBtunatural_gas	6.305	4.011	3.616	2.602	2.257

11 Adjust MMBtu Variable Units to Decrease Relative Magnitude Versus Other Variable Values

```
[16]: model_df2 = adjust_MMBtu_units(model_df)
```

12 Create Chronological Features: Capturing Seasonality by Month and Sequential Time Increments of Years and Months

```
[17]: model_df3 = add_chrono_features(model_df2)
```

13 Review Distributions of Variables and Perform Log Transformations

- The average retail price of electricity does not have a normal distribution, and appears to be right-skewed.
- The remaining feature variables were log transformed (excluding chronological, etc.) to work with more normalized distributions of figures.

14 Review Impacts of Key Categorical Variables on Target Variable

• Electricity prices tend to be quite volatile and cyclical, with annual and hourly seasonality behaviors in between. Needless to say, there can be quite volatile and will generally show significant outliers from a variety of unique events impacting the market. For example, when a nuclear plant goes down on the east coast it can cause power prices in the area to rocket

up over \$1,000 per MWh for a brief period of time.

- Petroleum liquids have the largest variation and range in prices per Btu compared to natural gas, petroleum coke, and coal. Petroleum liquids are also the most expensive per Btu, however, petroleum coke is the most inexpensive, high-energy-value fuel in the market and comes off as a bi-product of the petroleum refining process.
- The total data points on petroleum liquids are lower than other energy types, so reliability could be slightly compromised with a smaller data set and a comparatively smaller grouping in the dataset.

15 Separate Data Into Training and Test Sets for Supervised Machine Learning Models

```
[20]: # Split data into training and test sets.
test_size = 0.20
random_state = 432
X_train, X_test, y_train, y_test = \
```

```
split\_training\_test\_data(model\_df4.copy(deep=True), target\_var, test\_size, \_u \\ \hookrightarrow random\_state)
```

The number of observations in training set is 6160 The number of observations in test set is 1541

16 Run a Linear Regression on the Model Data

OLS Regression Results

```
______
Dep. Variable:
              Average_retail_price_of_electricity_cents_per_kilowatthour__electricity
Model:
                                                                  OLS
Method:
                                                           Least Squares
Date:
                                                        Mon, 09 Nov 2020
Time:
                                                               15:30:43
No. Observations:
                                                                  6160
                                                                       Α
Df Residuals:
                                                                  6137
                                                                       В
Df Model:
                                                                   22
Covariance Type:
                                                              nonrobust
```

```
const
```

```
Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__coal
Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__natura
Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__petrole
Average_cost_of_fossil_fuels_in_electricity_generation_per_Btu_dollars_per_million_Btu__petrole
Consumption_by_electricity_generation_million_MMBtu__coal
Consumption_by_electricity_generation_million_MMBtu__petroleum_liquids
Consumption_by_electricity_generation_million_MMBtu__petroleum_coke
Fossil_fuel_stocks_in_electricity_generation_million_MMBtu__petroleum_liquids
Fossil_fuel_stocks_in_electricity_generation_million_MMBtu__petroleum_liquids
Fossil_fuel_stocks_in_electricity_generation_million_MMBtu__petroleum_coke
Net_generation_thousand_megawatthours__coal
Net_generation_thousand_megawatthours__natural_gas
```

Net_generation_thousand_megawatthours__petroleum_liquids Net_generation_thousand_megawatthours__renewable_and_other Net_generation_thousand_megawatthours__petroleum_coke Receipts_of_fossil_fuels_electricity_generation_million_MMBtu__coal Receipts_of_fossil_fuels_electricity_generation_million_MMBtu__natural_gas Receipts_of_fossil_fuels_electricity_generation_million_MMBtu__petroleum_liquids Receipts_of_fossil_fuels_electricity_generation_million_MMBtu__petroleum_coke year year_starting_2008

month

time_period

Omnibus:	792.311	Durbin-Watson:	1.989
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):	3006.763
Skew:	0.608	Prob(JB):	0.00
Kurtosis:	6.199	Cond. No.	4.33e+19

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.66e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The p-values are less than zero for all coefficients, so they are statistically significant.

Mean absolute error of the prediction is: 1.9
Mean squared error of the prediction is: 7.0
Root mean squared error of the prediction is: 2.6
Mean absolute percentage error of the prediction is: 18.2

Coefficients:

[1.15547373e-01 1.76815065e-01 1.22790864e-03 -2.43443167e-01 -1.31408713e+00 4.25659562e+02 2.03446639e+00 -2.47260670e+00 -9.26245826e-01 -1.69389703e-06 3.84222108e-01 8.05442952e-01 1.03262874e+00 1.76868209e-01 -1.13847279e+00 9.01165265e-01 -8.45427141e-02 -3.55878062e+02 3.64379054e-01 -3.18793059e+00 -3.12401893e-04 -3.12401965e-04 1.24072275e-02 8.65840814e-03]

Intercept:

10.55566095136773

The error term should be zero on average. Mean of the errors in the model is: -0.000

Bartlett test statistic value is 83.0 and p value is 0.000 Levene test statistic value is 86.7 and p value is 0.000 Bartlett and Levene tests both share a null hypothesis that the errors are homoscedastic. If the p-values are less than 0.05, then the results reject the null hypothesis and the errors are heteroscedastic.

Causes of heteroscedasticity include outliers in the data and omitted variables important in explaining the target variance. Include relevant features that target the poorly-estimated areas or transform the dependent variable. Models which suffer from heteroscedasticity still have estimated coefficients which are consistent (still valid). The reliability of some statistical tests, like the t-test, are affected and may make some estimated coefficients falsely appear to be statistically insignificant.

Individual features are only weakly correlated with one another, therefore we have low multicolinearity.

The error terms should be uncorrelated with one another (low R-values).

Jarque-Bera test statistics is 3,006.8 and p value is 0.000 Normality test statistics is 792.3 and p value is 0.000 The errors appear to be normally distributed from a visual inspection. The p-values of both tests (<0.05) indicate that our errors are not normally distributed.


```
Mean absolute error of the prediction is: 1.9

Mean squared error of the prediction is: 7.0

Root mean squared error of the prediction is: 2.6

Mean absolute percentage error of the prediction is: 18.2

SK Learn Linear Regression - Adjusted R-squared value: 0.57 with RMSE of 2.6.
```

17 Run a Random Forest Regression, Plain Vanilla

```
print("Root mean squared error of the prediction is: ${:,.2f}".
 →format(rmse(y_test, rfr_pred)))
print("Mean absolute percentage error of the prediction is: {:,.1f}%".format(np.
 →mean(np.abs((y_test - rfr_pred) / y_test)) * 100))
plt.scatter(y_test, rfr_pred)
plt.plot(y_test, y_test, color="red")
plt.xlabel("true values")
plt.ylabel("predicted values")
plt.title("Random Forest Regressor - Plain Vanilla")
plt.show()
count
        1,541.000
           10.693
mean
std
            3.970
            5.368
min
25%
           8.435
50%
           9.404
75%
           11.412
           33.776
max
dtype: float64
Adjusted R-value: 0.98
Cross Validation Scores:
array([0.98, 0.97, 0.94, 0.98, 0.99, 0.98, 0.98, 0.97, 0.98, 0.98])
Mean absolute error of the prediction is: $0.32
Mean squared error of the prediction is: $0.32
Root mean squared error of the prediction is: $0.56
```

Mean absolute percentage error of the prediction is: 39.3%

18 Random Forest Regression with Randomized Search Cross Validation for Hyperparameter Tuning

```
[23]: rf_regr_random = RandomForestRegressor(max_depth=None, random_state=432)
      random_grid = {
          'bootstrap': [True, False],
          'max_depth': [10, 20, 30],
          'max_features': [2, 3, 'sqrt'],
          'min_samples_leaf': [1, 2, 4],
          'min_samples_split': [2, 5, 10],
          'n_estimators': [50, 75, 100]
      }
      rf_random = RandomizedSearchCV(estimator=rf_regr_random,__
       →param_distributions=random_grid,
                                      n_iter=100, cv=3, verbose=2, random_state=42,__
       \rightarrown_jobs=-1)
                                      # scoring="neg_mean_squared_error")
      # Fit the random search model
      rf_random.fit(X_train, y_train)
      print("RF Random best parameters:", rf_random.best_params_)
```

```
rf_best_random = rf_random.best_estimator_
rfr_random_pred = pd.Series(rf_best_random.predict(X_test))
display(rfr_random_pred.describe())
print("Adjusted R-value: {:,.2f}".format(rf_best_random.score(X_test, y_test)),__
 →"\n\nCross Validation Scores:")
# display(cross val score(rf random, pd.concat([X train, X test]), pd.
 \rightarrow concat([y_train, y_test]), cv=10).round(2))
print("Mean absolute error of the prediction is: ${:,.2f}".
 →format(mean_absolute_error(y_test, rfr_random_pred)))
print("Mean squared error of the prediction is: ${:,.2f}".format(mse(y_test,_
 →rfr_random_pred)))
print("Root mean squared error of the prediction is: ${:,.2f}".
 →format(rmse(y_test, rfr_random_pred)))
print("Mean absolute percentage error of the prediction is: {:,.1f}%".format(np.
 →mean(np.abs((y_test - rfr_random_pred) / y_test)) * 100))
plt.scatter(y_test, rfr_random_pred)
plt.plot(y_test, y_test, color="red")
plt.xlabel("true values")
plt.ylabel("predicted values")
plt.title("Random Forest Regressor - Randomized Search Cross Validation")
plt.show()
Fitting 3 folds for each of 100 candidates, totalling 300 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n jobs=-1)]: Done 25 tasks
                                           | elapsed:
                                                          6.0s
[Parallel(n_jobs=-1)]: Done 146 tasks
                                           | elapsed:
                                                         23.2s
[Parallel(n jobs=-1)]: Done 300 out of 300 | elapsed:
                                                         45.0s finished
RF Random best parameters: {'n_estimators': 100, 'min_samples_split': 5,
'min_samples_leaf': 1, 'max_features': 'sqrt', 'max_depth': 20, 'bootstrap':
False}
count
        1,541.000
           10.701
mean
std
            3.970
            5.507
min
25%
            8.472
50%
            9.388
75%
           11.451
max
           33.894
dtype: float64
Adjusted R-value: 0.99
Cross Validation Scores:
```

Mean absolute error of the prediction is: \$0.29 Mean squared error of the prediction is: \$0.22 Root mean squared error of the prediction is: \$0.47 Mean absolute percentage error of the prediction is: 39.4%

19 Random Forest Regression with Grid Search Cross Validation for Hyperparameter Tuning

```
print(rf_grid_search.best_params_)
rf_best_grid = rf_grid_search.best_estimator_
rfr_grid_pred = pd.Series(rf_best_grid.predict(X_test))
display(rfr_grid_pred.describe())
print("Adjusted R-value: {:,.2f}".format(rf_best_grid.score(X_test, y_test)),__

¬"\n\nCross Validation Scores:")
# display(cross_val_score(rf_random, pd.concat([X_train, X_test]), pd.
 \rightarrow concat([y_train, y_test]), cv=10).round(2))
print("Mean absolute error of the prediction is: ${:,.2f}".
 →format(mean_absolute_error(y_test, rfr_grid_pred)))
print("Mean squared error of the prediction is: ${:,.2f}".format(mse(y test,,,
 →rfr_grid_pred)))
print("Root mean squared error of the prediction is: ${:,.2f}".
 →format(rmse(y_test, rfr_grid_pred)))
print("Mean absolute percentage error of the prediction is: {:,.1f}%".format(np.
 →mean(np.abs((y_test - rfr_grid_pred) / y_test)) * 100))
plt.scatter(y_test, rfr_grid_pred)
plt.plot(y_test, y_test, color="red")
plt.xlabel("true values")
plt.ylabel("predicted values")
plt.title("Random Forest Regressor - Grid Search Cross Validation")
plt.show()
Fitting 3 folds for each of 486 candidates, totalling 1458 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 25 tasks
                                           | elapsed:
                                                         2.2s
[Parallel(n jobs=-1)]: Done 146 tasks
                                           | elapsed:
                                                        13.3s
[Parallel(n jobs=-1)]: Done 349 tasks
                                           | elapsed:
                                                        37.5s
[Parallel(n jobs=-1)]: Done 632 tasks
                                           | elapsed: 1.2min
[Parallel(n_jobs=-1)]: Done 997 tasks
                                           | elapsed: 2.1min
                                           | elapsed: 3.4min
[Parallel(n_jobs=-1)]: Done 1442 tasks
[Parallel(n_jobs=-1)]: Done 1458 out of 1458 | elapsed: 3.4min finished
{'bootstrap': False, 'max_depth': 30, 'max_features': 'sqrt',
'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}
        1,541.000
count
           10.702
mean
            3.975
std
min
            5.559
25%
            8.465
50%
            9.391
75%
           11.401
max
           33.754
dtype: float64
```

Adjusted R-value: 0.99

```
Cross Validation Scores:
Mean absolute error of the prediction is: $0.29
Mean squared error of the prediction is: $0.20
Root mean squared error of the prediction is: $0.45
Mean absolute percentage error of the prediction is: 39.5%
```


20 Support Vector Machine (SVM), Plain Vanilla

```
10.466
mean
std
            2.056
            5.664
min
25%
            9.091
50%
           10.480
75%
           11.416
           30.823
max
dtype: float64
Adjusted R-value: 0.30
Mean absolute error of the prediction is: 1.8
Mean squared error of the prediction is: 11.4
Root mean squared error of the prediction is: 3.4
Mean absolute percentage error of the prediction is: 32.0
```

count

1,541.000

21 Gradient Boosting Regression, Plain Vanilla Hyperparameters

```
[26]: reg = GradientBoostingRegressor(random_state=0)
      reg.fit(X_train, y_train)
      gb_pred = pd.Series(reg.predict(X_test)) # [1:2]
      display(gb_pred.describe())
      print("{:,.2f}".format(reg.score(X_test, y_test)))
      print("Mean absolute error of the prediction is: {:,.1f}".
       →format(mean_absolute_error(y_test, gb_pred)))
      print("Mean squared error of the prediction is: {:,.1f}".format(mse(y_test,__
       →gb_pred)))
      print("Root mean squared error of the prediction is: {:,.1f}".
       →format(rmse(y_test, gb_pred)))
      print("Mean absolute percentage error of the prediction is: {:,.1f}".format(np.
       →mean(np.abs((y_test - gb_pred) / y_test)) * 100))
      plt.scatter(y_test, gb_pred)
      plt.plot(y_test, y_test, color="red")
      plt.xlabel("true values")
      plt.ylabel("predicted values")
      plt.title("Gradient Boosting - Regression")
```

plt.show()

count	1,541.000
mean	10.684
std	3.817
min	6.075
25%	8.588
50%	9.440
75%	11.354
max	33.635
dtype:	float64

0.95 Mean absolute error of the prediction is: 0.7 Mean squared error of the prediction is: 0.9 Root mean squared error of the prediction is: 0.9 Mean absolute percentage error of the prediction is: 38.4

22 Linear Regressions: Ridge Regression, Lasso Regression, and Elastic Regression

```
[32]: data_dict = {
          'index': [],
          'r2_training': [],
          'r2_test': [],
          'avg_abs_err': [],
          'avg_sqrd_err': [],
          'root mean sqrd err': [],
          'avg_abs_pct_err': [],
          'est regularization alpha': [],
          'intercept': [],
          'coef_vectors': [],
          '11_12_ratio': []
      }
      # Ridge Regression with Cross Validation.
      ridge_regr_cv = RidgeCV(
          alphas=(0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 3.00, 5.00, 10.00),
          fit_intercept=True,
          normalize=False,
          scoring=None,
          cv=5,
          gcv mode=None,
          store_cv_values=False # ridge_regr_cv.coef_
      )
      ridge_regr_cv.fit(X_train, y_train)
      y_preds_train_ridgecv = ridge_regr_cv.predict(X_train)
      y_preds_test_ridgecv = ridge_regr_cv.predict(X_test)
      data_dict['index'].append('Ridge Regression with CV')
      data_dict['r2_training'].append(ridge regr_cv.score(X_train, y_train))
      data_dict['r2_test'].append(ridge_regr_cv.score(X_test, y_test))
      data_dict['avg_abs_err'].append(mean_absolute_error(y_test,_
      →y_preds_test_ridgecv))
      data_dict['avg_sqrd_err'].append(mse(y_test, y_preds_test_ridgecv))
      data_dict['root_mean_sqrd_err'].append(rmse(y_test, y_preds_test_ridgecv))
      data_dict['avg_abs_pct_err'].append( np.mean( np.abs( (y_test -_
      →y_preds_test_ridgecv) / y_test ) ) * 100 )
      data_dict['est_regularization_alpha'].append(ridge_regr_cv.alpha_)
      data_dict['intercept'].append(ridge_regr_cv.intercept_)
      data_dict['coef_vectors'].append(ridge_regr_cv.coef_)
      data_dict['l1_l2_ratio'].append(np.nan)
      # Lasso Regression with Cross Validation.
      lasso_regr_cv = LassoCV(
```

```
alphas=(0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 3.00, 5.00, 10.00),
   fit_intercept=True,
   normalize=False,
   cv=5,
   n_alphas=None
lasso_regr_cv.fit(X_train, y_train)
y_preds_train_lassocv = lasso_regr_cv.predict(X_train)
y preds test lassocv = lasso regr cv.predict(X test)
data_dict['index'].append('Lasso Regression with CV')
data_dict['r2_training'].append(lasso_regr_cv.score(X_train, y_train))
data_dict['r2_test'].append(lasso_regr_cv.score(X_test, y_test))
data_dict['avg_abs_err'].append(mean_absolute_error(y_test,_
→y_preds_test_lassocv))
data_dict['avg_sqrd_err'].append(mse(y_test, y_preds_test_lassocv))
data_dict['root_mean_sqrd_err'].append(rmse(y_test, y_preds_test_lassocv))
data_dict['avg_abs_pct_err'].append( np.mean( np.abs( (y_test -_
→y_preds_test_lassocv) / y_test ) ) * 100 )
data_dict['est_regularization_alpha'].append(lasso_regr_cv.alpha_)
data_dict['intercept'].append(lasso_regr_cv.intercept_)
data_dict['coef_vectors'].append(lasso_regr_cv.coef_)
data_dict['11_12_ratio'].append(np.nan)
# ElasticNet Regression with Cross Validation.
elastic_regr_cv = ElasticNetCV(
   l1 ratio=[0.10, 0.50, 0.70, 0.90, 0.95, 0.99, 1.00],
   alphas=(0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 3.00, 5.00, 10.00),
   fit_intercept=True,
   normalize=False,
   cv=5,
   n_alphas=None
)
elastic regr cv.fit(X train, y train)
y_preds_train_elasticcv = elastic_regr_cv.predict(X_train)
y_preds_test_elasticcv = elastic_regr_cv.predict(X_test)
data_dict['index'].append('ElasticNet Regression with CV')
data_dict['r2_training'].append(elastic_regr_cv.score(X_train, y_train))
data_dict['r2_test'].append(elastic_regr_cv.score(X_test, y_test))
data_dict['avg_abs_err'].append(mean_absolute_error(y_test,__
→y_preds_test_elasticcv))
data_dict['avg_sqrd_err'].append(mse(y_test, y_preds_test_elasticcv))
data_dict['root_mean_sqrd_err'].append(rmse(y_test, y_preds_test_elasticcv))
data_dict['avg_abs_pct_err'].append( np.mean( np.abs( (y_test -_
→y_preds_test_elasticcv) / y_test ) ) * 100 )
data_dict['est_regularization_alpha'].append(elastic_regr_cv.alpha_)
data_dict['intercept'].append(elastic_regr_cv.intercept_)
```

```
data_dict['coef_vectors'].append(elastic_regr_cv.coef_)
data_dict['l1_l2_ratio'].append(elastic_regr_cv.l1_ratio_)

data_dict.pop('coef_vectors')
df = pd.DataFrame.from_dict(data_dict).set_index('index')
df_img_out(df.head(5).iloc[:, :7], 'ridge_lasso_elastic')
```

	r2_training	r2_test	avg_abs_err	avg_sqrd_err	root_mean_sqrd_err	avg_abs_pct_err	est_regularization_alpha
index							
Ridge Regression with CV	0.548	0.562	1.957	7.142	2.672	18.486	0.100
Lasso Regression with CV	0.497	0.503	2.018	8.112	2.848	18.823	0.100
ElasticNet Regression with CV	0.522	0.528	1.985	7.706	2.776	18.471	0.100

23 Analyze and Compare Model Approaches and Final Results

The Random Forest Regression with a Grid Search Cross Validation was the best model based upon the highest adjusted R-value of 0.987, indicating a goodness of fit to the test data and the lowest root mean squared error (RMSE) of \$0.45 indicating superior results with the test data or predictive modeling power.

- A Linear Regression resulted in an RMSE of the prediction of \$2.64 and adjusted R-squared value of 0.57. Linear regression kernel variations of Ridge Regression, Lasso Regression, and ElasticNet Regression came to similar figures but were slightly less optimal.
- A Random Forest Regression, Plain Vanilla resulted in an RMSE of \$0.56 and an adjusted R-squared value of 0.981. When Random Search or Grid Search Cross Validation were applied to hyperparameter tuning, the random forest regression improved to an RMSE of \$0.45 \$0.46 and an adjusted R-squared value of 0.987.
- A Support Vector Machine (SVM) Regression, plain vanilla, resulted in an RMSE of \$3.38 and an adjusted R-squared value of 0.30. These results were not comparable to the higher performances of other model approaches.
- A Gradient Boosting Regression resulted in an RMSE of \$0.94 and an adjusted R-squared value of 0.95.

```
'Adj. R-squared': lasso_regr_cv.score(X_test, y_test)
    },
    'ElasticNet Regression': {
        'Prediction RMSE': rmse(y_test, y_preds_test_elasticcv),
         'Adj. R-squared': elastic_regr_cv.score(X_test, y_test)
    },
    'Random Forest Regression, Plain Vanilla': {
        'Prediction RMSE': rmse(y_test, rfr_pred),
         'Adj. R-squared': rf regr score # rf regr.score(X test, y test)
    },
    'Random Forest Regression, Random Search': {
        'Prediction RMSE': rmse(y_test, rfr_random_pred),
         'Adj. R-squared': rf best random.score(X test, y test)
    },
    'Random Forest Regression, Grid Search': {
        'Prediction RMSE': rmse(y_test, rfr_grid_pred),
         'Adj. R-squared': rf_best_grid.score(X_test, y_test)
    },
    'SVM, plain vanilla': {
        'Prediction RMSE': rmse(y_test, svr_pred),
         'Adj. R-squared': svr.score(X_test, y_test)
    },
    'Gradient Boosting Regression': {
        'Prediction RMSE': rmse(y test, gb pred),
         'Adj. R-squared': reg.score(X_test, y_test)},
} ).transpose().sort_values(by=['Adj. R-squared'])
df_img_out(model_results_df.head(20).iloc[:, :7], 'model_results_df')
sns_df = model_results_df.reset_index().melt(id_vars=['index'])
plt.figure(figsize=(13,7))
ax = sns.barplot(x='index', y='value', hue='variable', data=sns_df)
ax.set_xticklabels(ax.get_xticklabels(), rotation=75)
for p in ax.patches:
        ax.annotate('{:<8,.2f}'.format(p.get_height()), (p.get_x() + 0.3, p.
→get_height() ),
                    ha='center', va='bottom', color='black', fontsize='medium')
ax.set_ylabel('')
ax.set xlabel('')
plt.show()
```

	Prediction RMSE	Adj. R-squared
SVM, plain vanilla	3.378	0.301
Lasso Regression	2.848	0.503
ElasticNet Regression	2.776	0.528
Ridge Regression	2.672	0.562
Linear Regression	2.641	0.572
Gradient Boosting Regression	0.940	0.946
Random Forest Regression, Plain Vanilla	0.562	0.981
Random Forest Regression, Random Search	0.470	0.986
Random Forest Regression, Grid Search	0.450	0.988

24 Appendix: Additional Data Wrangling Code to Create 'eia data.csv'.

```
[29]:
           Take a folder path and generate a 2D dictionary of file names and paths of \Box
       \hookrightarrow all .csv files
           within the selected folder. The keys are the file names with '.csv'_{\sqcup}
       \rightarrow extensions in the folder.
           Each item value is a 2-key dictionary holding 'path' and 'name.' This csv_{\sqcup}
       \hookrightarrow dictionary is later
           used as an input parameter for csv list to dataframes().
               Function call example:
               location = "C: \land dev \land Thinkful \land 25. Supervised Learning Capstone
       \hookrightarrow Project \setminus EIA \ Data \ Sources \setminus "
               csv_data_set1 = make_csv_dict(location)
       def make_csv_dict(location):
           file_list = []
           # r=>root, d=>directories, f=>files
           for r, d, f in os.walk(location):
              for item in f:
                 file_list.append(item) if '.csv' in item else next
           csv_data_set = {}
           for item in file list:
               csv_data_set[item.replace('.csv', '')] = {'path': location, 'name':
       →item}
           return csv_data_set
       11 11 11
           Read csv file to determine row number of data headers.
               Helper function for csv_list_to_df_dict().
               csv_header_row = get_header_row(full_csv_path)
       11 11 11
      def get_header_row(full_csv_path):
           file_obj = open(full_csv_path)
           csv_reader_obj = csv.reader(file_obj)
           header_row = 0
           for row in csv_reader_obj:
               if len(row) > 1:
                   break
               header_row += 1
           return header row
```

```
11 11 11
    Take a structured dictionary of CSV file locations or web addresses and \Box
\rightarrow download
    the data into a dictionary of dataframes. Also checks to see if all the
\hookrightarrow columns
    are matching on the tables or not. Function call example:
        columns_df = csv_list_to_dataframes(csv_data_set, df_dict)
11 11 11
def csv list to df dict(csv data set, df dict, na values):
    # Setup data buckets for loop through csv files.
    summary_df = pd.DataFrame()
    dfs_summary_dict = {}
    summary_df_col_index = []
    col_rename_dict = {}
    column_max_count, max_key = 0, ''
    # Loop keys/csv filenames to fill df dictionary and matching column check
\rightarrow table.
    for table_name in csv_data_set.keys():
        \# Download the csv file into a DataFrame and add it to the df_dict.
        full_csv_path = csv_data_set[table_name]['path'] \
                      + csv_data_set[table_name]['name']
        csv_header_row = get_header_row(full_csv_path)
        data = pd.read_csv(full_csv_path, header = csv_header_row,_
 →na_values=na_values)#.fillna(0)
        df_dict[table_name] = data.copy()
        # Collect summary information on the DataFrames.
        col data = list(df dict[table name].columns)
        dfs_summary_dict.update({ table_name: col_data })
        if len(df dict[table name].columns) > column max count:
            column_max_count = len(df_dict[table_name].columns)
            max_key = table_name
    # Select one of the largest DataFrames to set the column order.
    column_index_key = df_dict[max_key].columns
    # Modify list of column values in dfs_summary_dict > summary_df.
    matches, insertions = 0, 0
    for report, col_data in dfs_summary_dict.items():
        col_idx = 0
        for key_idx in range(0, len(column_index_key)):
            no_match = column_index_key[key_idx] != col_data[col_idx]
```

```
if no_match:
                col_data.insert(col_idx, np.nan)
                insertions += 1
                col_idx += 1
            else:
                matches += 1
                col idx += 1
   equalized_columns = { key: pd.Series(value) for key, value in_

→dfs_summary_dict.items() }
   equalized_columns_df = pd.DataFrame.from_dict(equalized_columns)
   summary_df_col_index += list(equalized_columns_df.columns)
   for i in range(len(summary_df_col_index)):
       col_rename_dict.update({i: summary_df_col_index[i]})
   concat_list = [summary_df, equalized_columns_df]
   summary_df = pd.concat(concat_list, copy=False,__
→axis='columns')[equalized_columns_df.columns]
   summary df.rename(columns=col rename dict, inplace=True)
   equal_columns = summary_df.apply(lambda row: row[0] == row.all(), axis=1)
   summary_df.insert(loc=0, column='_equal_table_columns', value=equal_columns)
   # Copy into a column-only dataframe, match_columns_df, excluding dimension_
\rightarrow rows.
   match columns df = summary df.reset index(drop=True).copy(deep=True)
   val_cnts = match_columns_df['_equal_table_columns'].value_counts()
   summary df.index.name = 'col pos'
   summary_df = summary_df.transpose()
   summary_df.index.name = 'table_names'
   summary_df.reset_index(inplace=True)
   print("\n{:,} matching columns and {:,} mis-matching columns (element-wise⊔
→including NaNs) for all csv tables > dataframes.".format(
       val_cnts.at[True] if True in val_cnts.index else 0,
       val_cnts.at[False] if False in val_cnts.index else 0))
   print("{:,} max columns across all dataframes.".format(column max count))
   return summary_df, column_index_key
11 11 11
   Take a dictionary of dataframes and convert them into a single large \sqcup
\hookrightarrow dataframe.
   Also checks to see if the columns names and total row numbers are matching \Box
\hookrightarrow on the tables or not.
   Function call example:
       folder_df1 = df_dict_to_single_df(df_dict1)
11 11 11
```

```
def df_dict_to_folder_df(df_dict, column_index_key):
    # Concatenate vertically along O/columns and multi-index on csv names.
    new_row_label = 'csv_table_names'
    df_list = []
    table_row_counts = []
    for key, df in df_dict.items():
        table_row_counts.append(df.shape[0])
        csv_name_col = df.apply(lambda row: key, axis=1)
        df.insert(loc=0, column=new_row_label, value=csv_name_col)
        df list.append(df)
    column_index_key = column_index_key.insert(0, new_row_label)
    folder_df = pd.concat(df_list)
    folder_df.reset_index(drop=True, inplace=True)
    # Check if concatenation may have date-based alignment errors.
    folder_df_concat_good = folder_df.shape[0] == sum(table_row_counts)
    if not folder_df_concat_good:
        print("ERROR: Concatenation of DataFrames did not result in the same⊔
 →number of rows.".format(bad_stat))
        print("{:,} total rows in the dictionary of DataFrames.".
 →format(sum(table row counts)))
        print("{:,} rows in the vertically concatenated DataFrame result.".
 →format(folder_df.shape[0]))
    return folder_df, column_index_key
11 11 11
    Drop zero-sum numeric rows from dataframe folder_df. If non numeric_cols_\( \)
\hookrightarrow are not provided
    in a manual list, then Numeric columns are selected by their data type_{\sqcup}
\hookrightarrow being either
    int64 or float64. Function call example:
        non_numeric_cols = ['description', 'units', 'source key']
        drop_zero_sum_numeric_rows(folder_df, non_numeric_cols)
,, ,, ,,
def drop_zero_sum_numeric_rows(folder_df, non_numeric_cols=None):
    if non_numeric_cols == None:
        non_numeric_cols = []
        dtype_dict = dict(folder_df.dtypes)
        for col in dtype_dict:
            if dtype_dict[col] != 'float64' and dtype_dict[col] != 'int64':
                non_numeric_cols.append(col)
    numeric_df = folder_df.drop(columns=non_numeric_cols)
    zero_rows_df = pd.DataFrame(numeric_df.apply(lambda row: True if np.
 \rightarrowsum(row) == 0 else False, axis=1),
```

```
columns=['zero_sum_rows'],
                                 index=numeric_df.index)
    zero_rows_only_df = zero_rows_df[zero_rows_df['zero_sum_rows'] == True]
    # Drop rows with zero sum numeric amounts.
    folder_df.drop(index=zero_rows_only_df.index, inplace=True)
    # Count rows and check for potential errors.
    all row ct = zero rows df.shape[0]
    zero_sum_row_ct = zero_rows_only_df.shape[0]
    remaining_row_ct = folder_df.shape[0]
    if all_row_ct != (zero_sum_row_ct + remaining_row_ct):
        print("Total rows {} less {} non-numeric rows equals {}, but folder df__
 →now has {}".format(
              all_row_ct, zero_sum_row_ct, all_row_ct - zero_sum_row_ct,_
→remaining_row_ct))
    folder_df.reset_index(drop=True, inplace=True)
    folder_df.index.rename('index', inplace=True)
    return folder_df
,, ,, ,,
    Aggregate functions to combine data from multiple CSV files within a_{\sqcup}
\hookrightarrow specified folder.
def csv_folder_to_df(folder_location, na_values):
    df dict = {}
    column index key = pd.DataFrame()
    csv_data_set = make_csv_dict(folder_location)
    summary_df, column_index_key = csv_list_to_df_dict(csv_data_set, df_dict,__
→na_values)
    folder_df, column_index_key = df_dict_to_folder_df(df_dict,__
→column_index_key)
    folder_df_non_zero = drop_zero_sum_numeric_rows(folder_df)
    return folder_df_non_zero
# folder_location = "C:\\dev\\Thinkful\\25. Supervised Learning Capstone_
→ Project \ EIA Data Sources \ \ "
# eia_raw_data_df = csv_folder_to_df(folder_location, na_values)
# eia_raw_data_df.to_csv('eia_data.csv')
# na_values = ['', '--', 'NM', 'W']
```