Прикладной статистический анализ данных

Введение в байесовскую статистику

Олег Бахтеев psad@phystech.edu

Монетку подбросили 5 раз, и все 5 раз выпал орел. Какова вероятность выпадения решки?

Монетку подбросили 5 раз, и все 5 раз выпал орел. Какова вероятность выпадения решки?

Подход на основе ММП ("фреквентисткий"): посчитаем вероятность выпадения решки по выборке. Ответ: 0.

Монетку подбросили 5 раз, и все 5 раз выпал орел. Какова вероятность выпадения решки?

Подход на основе ММП ("фреквентисткий"): посчитаем вероятность выпадения решки по выборке. Ответ: 0.

Проблема: выборка слишком мала, чтобы делать такие поспешные выводы о выпадении решки. Кроме того, мы можем предположить что монетка должна давать более-менее равномерные результаты (это наши априорные предположения).

Байесовская статистика: пример

Предположим, что параметр нашей модели (монетки) — случайная величина. Возьмем в качестве распределения модели — бета-распределение с параметрами 2,2.

- ullet $p(w) \sim \mathcal{B}(2,2)$ априорное распределение
- ullet p(X|w) правдоподобие
- ullet $p(w|X) = rac{p(w)p(X|w)}{p(X)}$ апостериорное распределение параметра.

Формальная постановка

$$\hat{w} = \arg\max\frac{p(X|w)p(w)}{p(X)},$$

- ullet p(X|w) правдоподобие.
- $p(w|X) = rac{p(w)p(X|w)}{p(X)}$ апостериорное распределение параметра.
- ullet \hat{w} оценка, полученная методом максимума апостериорной вероятности (MAP).
- \bullet p(X) обоснованность модели ("Evidence") насколько модель хорошо описывает выборку при разных значениях параметров.

Как назначаются априорные распределения

Априорные распределения назначаются на основе априорных ожиданий от поведения модели. Назначение априорного распределения, которое противоречит гипотезе о порождении данных — некорректно

Некоторые виды априорного распределения:

- Равномерное
- Равномерное неогрнаиченное
- На основе предыдущих экспериментов
- Для сдвигов
 - ▶ Нормальное распределение
 - ▶ Распределение Лапласа
- Для масштаба
 - ▶ Гамма и обратное гамма-распределение
 - ▶ Коши (и производные)

Распределение Джеффирса

Распределение соответствует объему информации, хранимому в выбокре относительно параметров:

$$p(w) \propto \sqrt{\det I(w)},$$

I(w) — информация Фишера:

$$I(w) \equiv -\frac{\partial^2}{\partial w^2} \log L(w)$$
.

- Инвариантно относительно замены переменных;
- Для среднего в нормальном распределении: $p(w) \propto 1$:
- ullet Для отклонения в нормальном распределении: $p(w) \propto rac{1}{w}$;
- ullet Для параметра в распределении Бернулли: $p(w) \propto rac{1}{\sqrt{p(1-p)}}.$

Нормальное распределение

$$\log p(w|X) \propto \log p(w)p(X|w) \propto \log p(X|w) - \frac{(w-\mu)^2}{2\sigma^2}$$

Получили l_2 -регуляризацию.

При распределении Лапласа получаем l_1 -регуляризацию.

Informative prior vs Uninformative prior

- Informative prior: соответствует экспертным знаниям о наблюдаемой переменной
 - Пример: температура воздуха: нормальная величина с известным средним и дисперсией, соответствующими прошлым наблюдениям.
- Uninformative prior: соответствует базовым предположениям о распределении переменной
 - ► Пример: температура воздуха: равномерное распределение (improper).
- Weakly-informative prior: где-то по середине
 - ▶ Пример: температура воздуха: равномерное распределение от -50 до +50.

Напоминание: Интервальные оценки

Доверительный интервал:

$$\mathbf{P}(\theta \in [C_L, C_U]) \geqslant 1 - \alpha,$$

1-lpha — уровень доверия, $C_L,\,C_U$ — нижний и верхний доверительные пределы.

Неверная интерпретация: неизвестный параметр лежит в пределах построенного доверительного интервала с вероятностью $1-\alpha$.

Верная интерпретация: при бесконечном повторении процедуры построения доверительного интервала на аналогичных выборках в $100(1-\alpha)\%$ случаев он будет содержать истинное значение θ .

Напоминание: для нормального распределения

$$X \sim N\left(\mu, \sigma^2\right), \ X^n = \left(X_1, \dots, X_n\right),$$

$$\bar{X}_n$$
 — оценка $\mathbb{E}X = \mu$,

$$\bar{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow$$

$$\mathbf{P}\left(\mu - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \bar{X}_n \leqslant \mu + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha \Rightarrow$$

доверительный интервал для μ :

$$\mathbf{P}\left(\bar{X}_n - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \bar{X}_n + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha,$$

 $z_{1-rac{lpha}{2}}$ — квантиль стандартного нормального распределения.

Байесовская интервальные оценка (credible interval)

Доверительный интервал:

$$\int_{w \in [C_L, C_U]} p(w|X) \geqslant 1 - \alpha,$$

1-lpha — уровень доверия,

 C_L , C_U — нижний и верхний доверительные пределы.

Интерпретация: неизвестный параметр, породивший выборку, лежит в пределах построенного доверительного интервала с вероятностью $1-\alpha$.

 Доверительные интервалы совпадают для параметров сдвига с равномерным распределением и масштаба с распределением Джеффриса.

$$X \sim \mathcal{N}(0,1), |X| = 10.\bar{X} = 0.17.$$

- Доверительный интервал: [-0.45,0.78]
- ullet Prior: $\mu \sim \mathcal{N}(0,0.01)$, доверительный интервал: [-0.002, 0.03].

$$X \sim \mathcal{N}(0,1), |X| = 100000.\bar{X} = 0.17.()$$

- Доверительный интервал: [0.1638,0.1763]
- ullet Prior: $\mu \sim \mathcal{N}(0,0.01)$, доверительный интервал: [0.16981, 0.16984].

Выбор моделей

Задан набор моделей, требуется определить, какой из них лучше подходит для работы с выборкой.

- \bullet Линейная модель R^2 и пр.
- Обобщенно-линейная модель остаточная аномальность.
- Что делать, если модель нелинейная?
- Что делать с параметрами априорного распределения, как их выбирать?

AIC

$$AIC = -2L + 2(k+1),$$

где k — количество параметров.

Критерий соответствует потерю в информации относительно истинного распределения данных:

$$AIC \approx KL(f|f_i),$$

где f — истинное распределение, f_i — модель-кандидат, описывающий распределение.

Связанный байесовский вывод

Первый уровень: выбираем оптимальные параметры:

$$w = \arg\max \frac{p(X|w)p(w)}{p(X)},$$

Второй уровень: выбираем модель, доставляющую максимум обоснованности модели. Обоснованность модели ("Evidence"):

$$p(X) = \int_{w} p(X|w)p(w)dw.$$

(b) Пример: полиномы

Принцип минимальной длины описания

$$\mathsf{MDL}(\mathbf{f},\mathfrak{D}) = L(\mathbf{f}) + L(\mathfrak{D}|\mathbf{f}),$$

где ${f f}$ — модель, ${\mathfrak D}$ — выборка, L — длина описания в битах.

Аппркосимация этой величины для достаточно большой мощности выборки n:

$$BIC = -2L + \log n(k+1).$$

$$\mathsf{MDL}(\mathbf{f},\mathfrak{D}) \sim L(\mathbf{f}) + \underline{L}(\mathbf{w}^*|\mathbf{f}) + \underline{L}(\mathfrak{D}|\mathbf{w}^*,\mathbf{f}),$$

 \mathbf{w}^* — оптимальные параметры модели.

f_1	$L(\mathbf{f_1})$	$L(w_1^* f_1)$	$L(\mathbf{D} \mathbf{w}_1^*,\mathbf{f}_1)$	
\mathbf{f}_2	$L(\mathbf{f}_2)$	$L(\mathbf{w}_2^* \mathbf{f}_2)$	$L(\mathbf{p} \mathbf{w}_2^*,\mathbf{f}_2)$	
\mathbf{f}_3	$L(\mathbf{f}_3)$	$L(\mathbf{w}_3^*)\mathbf{f}$	$L(\vec{\mathbf{p}} \mathbf{w}_3^*,\mathbf{f}_3)$	

MDL и Колмогоровская сложность

Колмогоровская сложность — длина минимального кода для выборки на предварительно заданном языке. **Теорема инвариантности**

Для двух сводимых по Тьюрингу языков колмогоровская сложность отличается не более чем на константу, не зависяющую от мощности выборки.

Отличия от MDL:

- Колмогоровская сложность невычислима.
- Длина кода может зависеть от выбранного языка. Для небольших выборок теорема инвариантности не дает адекватных результатов.

Evidence vs MDL

Evidence	MDL
Использует априорные знания	Независима от априорных знаний
Основывается на гипотезе о порождении	
выборки	Минимизирует длину описания выборки
вне зависимости от их природы	

Как считать Evidence?

- Для линейных моделей: аналитическая формула
- Для нелинейных моделей аппроксимация Лапласа:

$$p(X) = \int_{w} p(X, w) dw$$

ightharpoonup Разложим $\log p(X|w)$ в ряд Тейлора:

$$\log p(X|w) \approx \log p(X, w_0) - \frac{\partial^2}{2\partial w^2} \log p(X, w_0)(w - w_0)^2.$$

- lacktriangle Вычислим интеграл для ненормированной гауссовой величины $p(x,w_0) \exp(-rac{\partial^2}{2\partial w^2}\log p(X,w_0)(w-w_0)^2).$
- МСМС, вариационный вывод и пр.

Литература

- MacKay D. J. C., Mac Kay D. J. C. Information theory, inference and learning algorithms. Cambridge university press, 2003.
- Bishop C. M. Pattern recognition and machine learning. springer, 2006.
- https://www.thomasjpfan.com/2015/09/bayesian-coin-flips/
- https://people.stat.sc.edu/Hitchcock/stat535slidesday3.pdf
- Лекции Д. П. Ветрова на http://www.machinelearning.ru

Сэмлирование по значимости

Пусть мы не можем сэмплировать из p(z), но можем оценивать правдоподобие в каждой точке, и хотим получить интерал

$$\mathsf{E} f = \int f(z) p(z) dz.$$

Тогда введем распределение q:

$$\mathsf{E} f = \int f(z) p(z) dz = \int f(z) \frac{p(z)}{q(z)} q(z) dz \approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(z^l)}{q(z^l)} f(z^l).$$

Орг моменты

Алгоритм получения зачета:

- Заполнить форму (будет на гитхабе)
- ② Посмотреть свою предварительную оценку в таблице
- Варианты развития событий
 - Оценка≥ "Хор" и устраивает: ничего не делать (автомат)
 - ▶ Оценка не устраивает: сдавать зачет
 - ▶ Оценка < "Хор" сдавать зачет</p>
 - ▶ Оценка < "Хор" и зачет не сдан неявка

Запись на зачет будет осуществляться через гугл-диск с расписанием