Modeling of optimal phytosanitary policies in crops of economic importance in the state of Sonora.

Gabriel Adrián Salcedo Varela

Departamento de matemáticas, División de Ciencas Exactas y Naturales Universidad de Sonora

November 26, 2019

Contents

- Motivation
- Objetive
- Epidemical Model
- Controlled Model
 - Plant model

Figure: In the left we have tomato plant, in the right infected tomato plant.

Motivation Objetive Epidemical Model Controlled Model

Objetive

Model optimal phytosanitary policies for diseases in agricultural crops.

Figure: Alternative host plants.

Motivation Objetive Epidemical Model Controlled Model

Plant Model without control

Tomato Leaf Curl Virus Disease Using an Epidemiological Model

Figure: Diagram of dynamic in plants and vectors.

Consider the following ordinary differential equations:

$$\frac{dS_{p}}{dt} = -\beta_{p}S_{p}I_{v} + r(L_{p} + I_{p}),$$

$$\frac{dL_{p}}{dt} = \beta_{p}S_{p}I_{v} - bL_{p} - rL_{p},$$

$$\frac{dI_{p}}{dt} = bL_{p} - rI_{p},$$

$$\frac{dS_{v}}{dt} = -\beta_{v}S_{v}I_{p} - \gamma S_{v} - (1 - \theta)\mu,$$

$$\frac{dI_{v}}{dt} = \beta_{v}S_{v}I_{p} - \gamma I_{v} - \theta\mu.$$
(1)

Computing the R_0 we have,

$$R_0 = \sqrt{\frac{\beta_{\nu}\mu b\beta_{p}}{r^2(r+b)\gamma}}$$

Figure: Evolution of infectious plants.

Plant Model with control

Tomato Leaf Curl Virus Disease Using an Epidemiological Model

The controlled system is the following:

$$\frac{dS_{p}}{dt} = -\beta_{p}S_{p}I_{v} + (r + u_{1})L_{p} + (r + u_{2})I_{p},
\frac{dL_{p}}{dt} = \beta_{p}S_{p}I_{v} - bL_{p} - (r + u_{1})L_{p},
\frac{dI_{p}}{dt} = bL_{p} - (r + u_{2})I_{p},
\frac{dS_{v}}{dt} = -\beta_{v}S_{v}I_{p} - (\gamma + u_{3})S_{v} - (1 - \theta)\mu,
\frac{dI_{v}}{dt} = \beta_{v}S_{v}I_{p} - (\gamma + u_{3})I_{v} - \theta\mu,$$
(2)

Motivation

With the cost functional:

$$\int_0^T \left[A_1 I_p(t) + A_2 L_p(t) + A_3 I_v(t) + c_1 u_1(t)^2 + c_2 u_2(t)^2 + c_3 u_3(t)^2 \right] dt,$$
(3)

Case with one controls

Figure: Evolution of infectious plants with one control, $u_3(t)$: Fumigation.

Case with two controls

Figure: Evolution of infectious plants with two controls, $u_1(t)$: removed latent plants, $u_2(t)$: removed infected plants.

Case with three controls

Figure: Evolution of infectious plants with three controls, $u_1(t)$: removed latent plants, $u_2(t)$: removed infected plants, $u_3(t)$: Furnigation.