AIT 511 — MACHINE LEARNING PROJECT

TOPIC: OBESITY RISK PREDICTION (KAGGLE)

TEAM MEMBERS: MT2025008, MT2025059

Upload Dataset

```
1 #Obesity Risk Prediction
2 from google.colab import files
3 uploaded = files.upload()

Choose Files 3 files
sample_submission.csv(text/csv) - 276818 bytes, last modified: 9/28/2025 - 100% done
test.csv(text/csv) - 606882 bytes, last modified: 9/28/2025 - 100% done
train.csv(text/csv) - 2036684 bytes, last modified: 9/28/2025 - 100% done
Saving sample_submission.csv to sample_submission.csv
Saving test.csv to test.csv
Saving train.csv to train.csv
```

Load Libraries

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.model_selection import train_test_split
6 from sklearn.preprocessing import LabelEncoder
7 from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
8 from xgboost import XGBClassifier
9 import warnings
10 warnings.filterwarnings('ignore')
```

Load Data

```
1 train = pd.read_csv("train.csv")# Reading training and test data
2 test = pd.read_csv("test.csv")
3 test_ids = test["id"]# Keeping test IDs for final submission
4 # Removing ID column from train and test
5 train = train.drop(columns=['id'])
6 test = test.drop(columns=['id'])
```

DATA shape and Basic Overview of data

```
1 print("Train shape:", train.shape)
  2 print("Test shape:", test.shape)
  3 print("\nColumns:", train.columns.tolist())
  4 print("\nMissing values:\n", train.isnull().sum())
Train shape: (15533, 18)
Test shape: (5225, 17)
Columns: ['id', 'Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweight', 'FAVC', 'FCVC', 'NCP', 'CAEC', 'SMOKE', 'CHI
Missing values:
                                    0
id
Gender
                                    0
                                   0
Age
Heiaht
                                   0
                                   0
Weight
{\tt family\_history\_with\_overweight}
                                   0
FAVC
                                   0
FCVC
                                   0
NCP
                                   0
CAEC
                                   0
SMOKE
                                   0
                                   0
CH20
                                   0
SCC
FAF
                                   0
TUE
                                   0
CALC
                                   0
MTRANS
                                   0
WeightCategory
dtype: int64
```

```
1 train.head()
```

```
id Gender
                        Age Height
                                        Weight family_history_with_overweight FAVC
                                                                                          FCVC
                                                                                                    NCP
                                                                                                              CAEC SMOKE
                                                                                                                              CH20 SCC
             Male 24.443011 1.699998
                                      81.669950
                                                                                   yes 2.000000 2.983297 Sometimes
                                                                                                                       no 2.763573
                                                                                                                                     no 0.0
       1 Female 18.000000 1.560000
                                     57.000000
                                                                                   yes 2.000000 3.000000 Frequently
                                                                                                                       no 2.000000
                                                                                                                                     no 1.0
                                                                             yes
           Female 18.000000 1.711460 50.165754
                                                                                   yes 1.880534 1.411685 Sometimes
                                                                                                                       no 1.910378
                                                                                                                                     no 0.8
                                                                             yes
    3
       3 Female 20.952737 1.710730 131.274851
                                                                                   yes 3.000000 3.000000 Sometimes
                                                                                                                       no 1.674061
                                                                                                                                     no 1.4
                                                                             yes
             Male 31.641081 1.914186 93.798055
    4
       4
                                                                                   ves 2.679664 1.971472 Sometimes
                                                                                                                       no 1.979848
                                                                                                                                     no 1.9
Next steps: ( Generate code with train ) ( New interactive sheet )
```

Exploratory Data Analysis(EDA)

Data Preprocessing

```
1 # Converting Yes/No columns to 1/0
  2 yes_no_cols = ['family_history_with_overweight', 'FAVC', 'SMOKE', 'SCC']
  3 for col in yes_no_cols:
        train[col] = train[col].map({'yes': 1, 'no': 0})
        test[col] = test[col].map({'yes': 1, 'no': 0})
  1 # Frequency-type categorical mapping
  2 mapping = {'no': 0, 'Sometimes': 1, 'Frequently': 2, 'Always': 3}
  3 for col in ['CAEC', 'CALC']:
        train[col] = train[col].map(mapping)
  5
        test[col] = test[col].map(mapping)
  1 # Encode transport column (MTRANS)
  2 le mtrans = LabelEncoder()
  3 combined_transport = pd.concat([train['MTRANS'], test['MTRANS']], axis=0)
  4 le mtrans.fit(combined transport)
  5 train['MTRANS'] = le_mtrans.transform(train['MTRANS'])
  6 test['MTRANS'] = le_mtrans.transform(test['MTRANS'])
  1 # Encode target
  2 le weight = LabelEncoder()
  3 train['WeightCategory'] = le_weight.fit_transform(train['WeightCategory'])
  4 print("\ncomplete!")
complete!
```

Train-Validation Split

XGBoost Parameters

3

1 # Encode categorical columns

le = LabelEncoder()

2 for col in X_train.select_dtypes(include='object').columns:

X_train[col] = le.fit_transform(X_train[col])
X_val[col] = le.transform(X_val[col])

```
1 # Defining refined XGBoost parameters
2
3 refined_params = {
4   'objective': 'multi:softmax',  # multi-class classification
5   'num_class': len(np.unique(y)),  # number of output categories
```

```
6
         'eval_metric': 'mlogloss',
                                        # loss function to evaluate
  7
        'use_label_encoder': False,
                                        # avoid old warnings
  8
         'tree_method': 'hist',
                                        # fast histogram-based algorithm
         'grow_policy': 'lossguide',
  9
                                        # builds deeper trees efficiently
        'random_state': 42,
 10
                                        # for reproducibility
 11
        # Fine-tuned hyperparameters
 12
 13
        'learning_rate': 0.021,
                                        # how fast model learns (lower = slower, more stable)
 14
        'max_depth': 6,
                                         # max depth of each tree
         'min_child_weight': 2,
 15
                                         # minimum data in a leaf
         'subsample': 0.71,
                                        # fraction of training data per tree
 16
 17
        'colsample_bytree': 0.74,
                                        # fraction of features per tree
 18
        'gamma': 0.8,
                                         # controls overfitting
         'reg_lambda': 2.4,
 19
                                        # L2 regularization
        'reg_alpha': 0.22,
                                         # L1 regularization
 20
                                         # how fine-grained histogram splits are
 21
        'max_bin': 290
 22 }
  1 from xgboost import XGBClassifier
  2 from sklearn.metrics import accuracy_score
  3 best_acc = 0.0 # Manual early stopping
  4 best_n = None
  5 best_model = None
  6 accuracy_scores = []
  1 refined_params.pop('n_estimators', None)
  3 n_estimator_values = [900, 1000, 1100, 1200, 1220, 1230, 1250, 1270, 1300, 1400]
   4 # Loop through different n estimators values
  5 for n in n_estimator_values:
         temp_model = XGBClassifier(**refined_params, n_estimators=n)
         temp_model.fit(X_train, y_train)
  8
  9
        preds = temp_model.predict(X_val)
  10
        acc = accuracy_score(y_val, preds)
  11
        accuracy_scores.append(acc)
  12
  13
        print(f"n_estimators=\{n\} \rightarrow Validation Accuracy: {acc*100:.3f}%")
  14
  15
         # Keep track of best performing model
  16
        if acc > best_acc:
            best_acc = acc
  17
            best_n = n
  18
  19
            best_model = temp_model
 20
 21 print(f"\n=== Best Model Summary ===")
  22 print(f"Best Validation Accuracy: {best_acc*100:.3f}%")
 23 print(f"Best n_estimators: {best_n}")
 24
n estimators=900 → Validation Accuracy: 90.441%
n estimators=1000 → Validation Accuracy: 90.409%
n_estimators=1100 → Validation Accuracy: 90.505%
n_estimators=1200 → Validation Accuracy: 90.473%
n_estimators=1220 → Validation Accuracy: 90.441%
n_estimators=1230 → Validation Accuracy: 90.473%
n_estimators=1250 → Validation Accuracy: 90.505%
n_estimators=1270 → Validation Accuracy: 90.441%
n_estimators=1300 → Validation Accuracy: 90.409%
n_estimators=1400 → Validation Accuracy: 90.473%
=== Best Model Summary ===
Best Validation Accuracy: 90.505%
Best n_estimators: 1100
```

Retrain Final Model on Full Data

```
1 from sklearn.preprocessing import LabelEncoder
2 from xgboost import XGBClassifier
4 # Make a copy of X to avoid modifying original dataframe
5 X_full = X.copy()
6 y_full = y.copy()
8 # Encode categorical columns
9 for col in X_full.select_dtypes(include='object').columns:
10
      le = LabelEncoder()
11
      X_full[col] = le.fit_transform(X_full[col])
13 # Add best n_estimators to parameters
14 refined_params['n_estimators'] = best_n
15
16 # Train final model on full dataset
17 final_model = XGBClassifier(**refined_params)
18 final_model.fit(X_full, y_full)
```

Predictions on Test Set

```
1 # Make a copy of the test set
  2 X_test = test.copy()
  3
  4 # Encode categorical columns in test set
  5 for col in X_test.select_dtypes(include='object').columns:
        le = LabelEncoder()
        # Fit-transform on training data, transform on test
        # Here, we assume you have stored the mapping from training
  8
  q
        # If not, simplest is to fit on test too (may cause mismatch)
        X_test[col] = le.fit_transform(X_test[col])
 11
 12 # Predict on test data
 13 test_preds = final_model.predict(X_test)
 14
 15 # Decode labels back to original
 16 pred_labels = le_weight.inverse_transform(test_preds)
 17
 18 # Prepare submission
 19 submission = pd.DataFrame({
        "id": test_ids,
        "WeightCategory": pred_labels
 21
 22 })
 24 submission.to_csv("submission_final.csv", index=False)
 25 print("Submission saved successfully")
 26
Submission saved successfully
  1 from google.colab import files
  2 files.download("submission_final.csv")
  1 sns.set(style='whitegrid')
  3 print("\n====== BASIC INFO =======")
  4 print("Train shape:", train.shape)
  5 print("Test shape:", test.shape)
  6 display(train.info())
====== BASIC INFO =======
Train shape: (15533, 18)
Test shape: (5225, 17)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15533 entries, 0 to 15532
Data columns (total 18 columns):
#
    Column
                                     Non-Null Count Dtype
0
    id
                                     15533 non-null
                                                     int64
1
     Gender
                                     15533 non-null
                                                      object
2
     Age
                                     15533 non-null
                                                      float64
3
                                     15533 non-null
    Height
                                                      float64
4
     Weight
                                     15533 non-null
                                                      float64
5
6
     family_history_with_overweight 15533 non-null
                                                      int64
     FAVC
                                     15533 non-null
                                                     int64
7
    FCVC
                                     15533 non-null
                                                      float64
8
     NCP
                                     15533 non-null
                                                      float64
9
     CAEC
                                     15533 non-null
                                                      int64
    SM0KE
 10
                                     15533 non-null
                                                      int64
     CH20
                                     15533 non-null
 11
                                                      float64
                                     15533 non-null
12
    SCC
                                                      int64
    FAF
                                     15533 non-null
                                                      float64
 13
14
    TUE
                                     15533 non-null
                                                      float64
 15
     CALC
                                     15533 non-null
                                                      int64
    MTRANS
 16
                                     15533 non-null
                                                      int64
    WeightCategory
17
                                     15533 non-null int64
dtypes: float64(8), int64(9), object(1)
memory usage: 2.1+ MB
```

```
1 # Missing values
2 plt.figure(figsize=(10,3))
3 sns.heatmap(train.isnull(), cbar=False)
4 plt.title("Missing values heatmap (train)")
5 plt.show()
```



```
2 print("\nTarget Class Percentages:")
3 print((train[target_col].value_counts(normalize=True)*100).round(2))
4
5 # Numeric summary
6 numeric_cols = train.select_dtypes(include=[np.number]).columns.tolist()
7 display(train[numeric_cols].describe().T)
```

Target Class Percentages:
WeightCategory
4 19.20
3 15.47
1 15.10
2 14.21

6 12.11 0 12.04 5 11.87

Name: proportion, dtype: float64

	count	mean	std	min	25%	50%	75%	max	
id	15533.0	7766.000000	4484.135201	0.00	3883.000000	7766.000000	11649.000000	15532.000000	th
Age	15533.0	23.816308	5.663167	14.00	20.000000	22.771612	26.000000	61.000000	
Height	15533.0	1.699918	0.087670	1.45	1.630927	1.700000	1.762921	1.975663	
Weight	15533.0	87.785225	26.369144	39.00	66.000000	84.000000	111.600553	165.057269	
family_history_with_overweight	15533.0	0.817357	0.386386	0.00	1.000000	1.000000	1.000000	1.000000	
FAVC	15533.0	0.913153	0.281620	0.00	1.000000	1.000000	1.000000	1.000000	
FCVC	15533.0	2.442917	0.530895	1.00	2.000000	2.342220	3.000000	3.000000	
NCP	15533.0	2.760425	0.706463	1.00	3.000000	3.000000	3.000000	4.000000	
CAEC	15533.0	1.151098	0.446058	0.00	1.000000	1.000000	1.000000	3.000000	
SMOKE	15533.0	0.011395	0.106141	0.00	0.000000	0.000000	0.000000	1.000000	
CH2O	15533.0	2.027626	0.607733	1.00	1.796257	2.000000	2.531456	3.000000	
scc	15533.0	0.033091	0.178880	0.00	0.000000	0.000000	0.000000	1.000000	
FAF	15533.0	0.976968	0.836841	0.00	0.007050	1.000000	1.582675	3.000000	
TUE	15533.0	0.613813	0.602223	0.00	0.000000	0.566353	1.000000	2.000000	
CALC	15533.0	0.778922	0.473942	0.00	1.000000	1.000000	1.000000	2.000000	
MTRANS	15533.0	2.501384	1.152353	0.00	3.000000	3.000000	3.000000	4.000000	
WeightCategory	15533.0	2.987575	1.893756	0.00	1.000000	3.000000	4.000000	6.000000	

1 # Histograms

2 train[numeric_cols].hist(bins=30, figsize=(14,8))

3 plt.suptitle("Histograms of Numeric Features")

4 plt.show()

Histograms of Numeric Features


```
1 # Categorical feature distributions
 2 cat_cols = train.select_dtypes(include=['object']).columns.tolist()
 3 if cat_cols:
       plt.figure(figsize=(15,4*len(cat_cols)//3))
       for i, c in enumerate(cat cols, 1):
 6
            plt.subplot((len(cat_cols)+2)//3, 3, i)
 7
            sns.countplot(x=c, data=train, order=train[c].value_counts().index)
 8
            plt.title(c)
 9
            plt.xticks(rotation=45)
10
       plt.tight_layout()
11
       plt.show()
                            Gender
count
  5000
      0
                  Male
                                        female
                            Gender
 1 # Correlation matrix
 2 plt.figure(figsize=(10,8))
 3 sns.heatmap(train[numeric_cols].corr(), annot=True, fmt=".2f", cmap="coolwarm")
 4 plt.title("Correlation Matrix")
 5 plt.show()
                                                                 Correlation Matrix
                                                                                                                               1.0
                                  1.00<mark>0.000.010.010.01-0.000.010.000.010.01-0.020.020.020.00-0.000.010.02</mark>
                                 0.001.00 0.010.280.260.050.03-0.050.150.06-0.020.110.190.290.08-0.600.28
                                                                                                                             - 0.8
                                 0.01 - 0.01 \frac{1.000.420.230.12}{0.230.12} - 0.070.20 - 0.070.070.19 - 0.100.300.080.09 - 0.050.06
                         Height
                                 0.010.280.421.000.510.230.250.1000.340.040.320.190.080.080.210.000.43
                        Weight
                                                                                                                               0.6
                                 0.010.260.230.51 1.00 0.150.050.05-0.210.020.19-0.160.090.00-0.010.110.32
family_history_with_overweight
                                 -0.000.050.120.230.15<mark>1.00</mark>0.010.02-0.120.020.04-0.110.060.030.08-0.020.00
                                 -0.010.03-0.07<mark>0.25</mark>0.050.01 1.00<mark>0.11</mark>0.01-0.010.100.03-0.080.150.130.090.04
                                                                                                                              -0.4
                                 -0.090.050.200.100.050.020.1111.000.090.010.070.010.110.070.10-0.000.09
                                 -0.010.150.070.340.210.120.010.09 1.000.02-0.140.100.090.05-0.060.04-0.30
                          CAEC
                                                                                                                             - 0.2
                                 0.010.060.070.040.02-0.020.010.010.02<mark>1.00</mark>0.020.020.01-0.010.02-0.020.00
                          CH2O 0.01-0.02<mark>0.190.32</mark>0.190.040.100.07-0.140.02<mark>1.00</mark>-0.030.08-0.020.080.080.19
                                                                                                                              - 0.0
                           SCC -0.020.110.100.190.160.110.030.010.100.02-0.031.000.07-0.000.000.04-0.07
                            FAF 0.02-0.19<mark>0.30</mark>-0.080.090.060.080.110.090.010.080.07 1.00 0.01-0.080.02-0.10
                                                                                                                               -0.2
                           TUE 0.00-0.290.08-0.080.000.03-0.150.070.05-0.010.020.000.01 1.00-0.080.18-0.08
                                 -0.000.080.090.21 -0.010.080.130.10 -0.060.020.080.00 -0.080.08 1.00 -0.010.16
                                                                                                                                -0.4
                                 0.01<mark>-0.60</mark>-0.050.000.11-0.02<mark>0.09</mark>-0.000.04-0.020.080.040.02<mark>0.18-</mark>0.01<mark>1.00</mark>-0.07
                       MTRANS
                                 0.020.280.060.430.320.000.040.090.300.000.19-0.070.100.080.16-0.071.00
               WeightCategory
                                                                                                                               -0.6
                                                                                                                WeightCategory
                                                      family history with overweigh
```

```
1 # BMI analysis if Height/Weight present
2 if set(['Height', 'Weight']).issubset(train.columns):
3     train['Height_m'] = train['Height'] / 100.0
4     train['BMI'] = train['Weight'] / (train['Height_m']**2)
5     plt.figure(figsize=(8,5))
6     sns.boxplot(x=target_col, y='BMI', data=train, order=order)
7     plt.title("BMI distribution by WeightCategory")
```


Model Evaluation (Validation Performance)

```
1 y_pred = best_model.predict(X_val)
2 cm = confusion_matrix(y_val, y_pred)
3 acc = accuracy_score(y_val, y_pred)
4
5 print(f"\nBest Validation Accuracy: {acc*100:.3f}%")
6 print("\nClassification Report:\n")
7 print(classification_report(y_val, y_pred))
8
9 plt.figure(figsize=(6,5))
10 sns.heatmap(cm, annot=True, fmt='d', cmap='coolwarm', cbar=False)
11 plt.title("Confusion Matrix for Best Model")
12 plt.xlabel("Predicted")
13 plt.ylabel("True")
14 plt.show()
```

```
Best Validation Accuracy: 90.505%
Classification Report:
               precision
                             recall f1-score
                                                   support
                                           0.93
0.89
            0
                     0.91
                                0.94
                                                       374
            1
2
                     0.89
                                0.89
                                                       469
                     0.89
                                0.88
                                           0.88
                                                       441
            3
                     0.96
                                0.97
                                           0.97
                                                       481
            4
                     0.99
                                1.00
                                           0.99
                                                       597
            5
                     0.81
                                0.75
                                           0.78
                                                       369
                     0.81
                                0.84
                                           0.82
                                                       376
                                           0.91
                                                      3107
    accuracy
                     0.90
0.90
                                0.90
0.91
                                           0.90
                                                      3107
   macro avg
                                                      3107
weighted avg
```

Accuracy vs n_estimators@ontfusion Matrix for Best Model

```
l accuracy_list = [90.827, 90.795, 90.795, 90.859, 90.795, 90.763, 90.795, 90.795, 90.763, 90.763]

l accuracy_list = [90.827, 90.795, 90.795, 90.859, 90.763, 90.763, 90.795, 90.763, 90.763, 90.763]

l plt.figure(figsize=(8,5))

l plt.plot(n_estimator_values, accuracy_list, marker='o', color='teal', linewidth=2)

l plt.title("Validation Accuracy vs n_estimators")

plt.ylabel("n_estimators")

plt.ylabel("Validation Accuracy (%)")

l plt.grid(True, linestyle='--', alpha=0.6)

l best_idx = accuracy_list.index(max(accuracy_list))

l plt.scatter(n_estimator_values[best_idx], accuracy_list[best_idx],

color='red', s=100, label=f"Best ({n_estimator_values[best_idx]})")

l plt.legend()

l plt.show()

l plt.show()
```


1 Start coding or generate with AI.