# **GBM Family**

Data Scientist 안건이

#### 목차

- Boosting
  - AdaBoost
  - Gradient Boosting Machine (GBM)
  - XGBoost
  - LightGBM
- 데이터 실습

# **GBM Family**

#### AdaBoost vs Gradient Boosting Machine

- GBM : Gradient Boosting Machine
  - Adaboost : 하나의 Tree에서 발생한 Error가 다음 Tree에 영향을 줌
    - 여러 Tree가 순차적으로 연결되어 최종 결과를 도출함



- GBM : Gradient Boosting Machine
  - Adaboost : 하나의 Tree에서 발생한 Error가 다음 Tree에 영향을 줌
    - 여러 Tree가 순차적으로 연결되어 최종 결과를 도출함



$$j(y_i,f(x_i))=\frac{1}{2}(y_i-f(x_i))^2$$

$$\frac{\partial j(y_i, f(x_i))}{\partial f(x_i)} = \frac{\partial \left[\frac{1}{2}(y_i - f(x_i))^2\right]}{\partial f(x_i)} = f(x_i) - y_i$$

- GBM: Gradient Boosting Machine
  - Step1
  - Tree가 아닌 하나의 leaf (Single leaf) 부터 시작함 → 이 leaf는 Target 값에 대한 초기 추정 값을 나타냄
    - GBM은 single leaf 부터 시작하며, 그 single leaf 모델이 예측하는 Target 값 추정 값은 모든 Target의 평균 Step 1

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) |
|---------------|-------------------|--------|----------------|
| 1.6           | Blue              | Male   | 88             |
| 1.6           | Green             | Female | 76             |
| 1.5           | Blue              | Female | 56             |
| 1.8           | Red               | Male   | 73             |
| 1.5           | Green             | Male   | 77             |
| 1.4           | Blue              | Female | 57             |



Average Weight

| 71.2          | 2                 |        | *              | K.A.     |
|---------------|-------------------|--------|----------------|----------|
| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) | Residual |
| 1.6           | Blue              | Male   | 88             | 16.8     |
| 1.6           | Green             | Female | 76             | 4.8      |
| 1.5           | Blue              | Female | 56             | -15.2    |
| 1.8           | Red               | Male   | 73             | 1.8      |
| 1.5           | Green             | Male   | 77             | 5.8      |
| 1.4           | Blue              | Female | 57             | -14.2    |

Single leaf value: (88+76+56+73+77+57)/6 = 71.2

- GBM : Gradient Boosting Machine
  - Step 2
  - Residual(잔차)을 예측하는 Tree를 학습함
  - Terminal Node에 두 개 이상의 Residual 값이 있는 경우 평균으로 치환해서 넣어주게 됨 Step 2





- GBM : Gradient Boosting Machine
  - Step 3
  - Average Weight (Single leaf) + Predicted Residual

 $\mathsf{Step}\, 3$ 

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) | Average Weight  71.2       | Unicha                  |
|---------------|-------------------|--------|----------------|----------------------------|-------------------------|
| 1.6           | Blue              | Male   | 88             |                            | Height<1.6              |
| 1.6           | Green             | Female | 76             |                            | -14.7 4.8               |
| 1.5           | Blue              | Female | 56             | Average Weight             | Gen                     |
| 1.8           | Red               | Male   | 73             | 71.2                       | Height 1.6              |
| 1.5           | Green             | Male   | 77             |                            | -14.7 4.8               |
| 1.4           | Blue              | Female | 57             | so the <b>Predicted We</b> | eight = 71.2 + 16.8 = 8 |

- GBM : Gradient Boosting Machine
  - Step 4
  - Overfitting을 방지하기 위해 Learning Rate을 사용함
  - Learning Rate = 0 ~ 1

Step 4





Now the **Predicted Weight** =  $71.2 + (0.1 \times 16.8) = 72.9$ 

- GBM : Gradient Boosting Machine
  - Step 4
  - Overfitting을 방지하기 위해 Learning Rate을 사용함
  - Learning Rate = 0 ~ 1



- GBM : Gradient Boosting Machine
  - Step 5
  - Residual Update



- GBM : Gradient Boosting Machine
  - Step 6
  - Set up New Tree

| 1.6 | Blue  | Male   | 15.1  |                              |
|-----|-------|--------|-------|------------------------------|
| 1.6 | Green | Female | 4.3   | Gender=F                     |
| 1.5 | Blue  | Female | -13.7 | Height<1.6 Color not Blue    |
| 1.8 | Red   | Male   | 1.4   | Treight 1.0                  |
| 1.5 | Green | Male   | 5.4   | -12.7,-13.7 4.3 1.4,5.4 15.1 |
| 1.4 | Blue  | Female | -12.7 |                              |

- GBM : Gradient Boosting Machine
  - Step 6
  - Set up New Tree



- GBM : Gradient Boosting Machine
  - Step 6
  - Set up New Tree



- GBM : Gradient Boosting Machine
  - Step 6
  - Set up New Tree

Step 6



- GBM : Gradient Boosting Machine
  - Step 6
  - Set up New Tree



- GBM : Gradient Boosting Machine
  - Step 6
  - Set up New Tree



GBM: Gradient Boosting Machine

$$\underline{\hat{y}_i} = \phi(x_i) = \sum_{k=1}^K f_k(x_i), f_k \in F$$
 모든 CART Tree들을 담고 있는 함수 공간 
$$= f_1(x_i) + f_2(x_i) + f_3(x_i) + \dots + f_K(x_i)$$

새로운 함수, 어떤 기준으로 뽑을까?

기존의 함수 집합에 더해졌을 때, Loss Function이 최소가 되는 함수를 찾는다.

$$L(\phi) = \sum_{i=1}^{n} \frac{l(y_i, \hat{y}_i)}{|\nabla y_i|} + \sum_{k} \Omega(f_k) \longrightarrow \Omega(f) = \gamma T + \frac{1}{2} \lambda ||w||^2$$
Training Loss Regularization:
Complexity of the Trees



Solution: Additive Training (Boosting)

$$\hat{y}_i^0 = 0$$

$$\hat{y}_i^1 = f_1(x_i) = \hat{y}_i^0 + f_1(x_i)$$

$$\hat{y}_i^2 = f_1(x_i) + f_2(x_i) = \hat{y}_i^1 + f_2(x_i)$$

$$L(\phi) = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k} \Omega(f_k)$$

$$L(\phi) = \sum_{i=1}^{n} l(y_i, \hat{y}^{t-1} + f_t(x_i)) + \Omega(f_t)$$



Taylor Expansion

$$l(y_i,\hat{y}^{t-1}+f_t(x_i))$$



**>>>** 
$$l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)$$

# XGBoost & LightGBM



XGBoost : A Scalable Tree Boosting System



XGBoost : An optimized version of GBM enabling



- XGBoost: An optimized version of GBM enabling
  - Kaggle No.1 (2015) Algorithm

#### Performance Comparison using SKLearn's 'Make\_Classification' Dataset

(5 Fold Cross Validation, 1MM randomly generated data sample, 20 features)



- XGBoost: An optimized version of GBM enabling
  - Kaggle No.1 (2015) Algorithm



#### 2015 Kaggle Winning Solution



11 29 Used Deep Neural Nets



#### 2015 KDDcup

Top 10 all used XGBoost

- XGBoost: An optimized version of GBM enabling
  - Kaggle No.1 (2015) Algorithm

# **Innovations**

# Algorithmatic

- Tree Boosting
- Split Finding Algorithms

# **Systematic**

System Design

- XGBoost: An optimized version of GBM enabling
  - Kaggle No.1 (2015) Algorithm

#### Dense Data를 사용하면 좋지만…



# 현실에는 Sparse Data가 가득합니다

# XGBoost

- 1. Efficiency
- 2. Scalability

- XGBoost: An optimized version of GBM enabling
  - Kaggle No.1 (2015) Algorithm



1.5

1.5

1.9

1.8

- XGBoost : An optimized version of GBM enabling
  - Kaggle No.1 (2015) Algorithm
  - √ The most time-consuming part of tree learning
    - to get the data into sorted order
  - ✓ XGBoost propose to store the data in in-memory units called block
    - Data in each block is stored in the compressed column (CSC) format, with each column sorted by the corresponding feature value
    - This input data layout only needs to be computed once before training and can be reused in later iterations.



XGBoost : An optimized version of GBM enabling

Kaggle No.1 (2015) Algorithm

#### XGBOOST

**Gradient Boosting** 

Additive Optimization in Functional Space

Regularization

Prevent Overfitting

Column Sampling

Random Forest

Sparsity-Aware Learning

Parallel Tree Learning Systematic Improvement

Table 1: Comparison of major tree boosting systems.

| System       | exact<br>greedy | approximate<br>global | approximate<br>local | out-of-core | sparsity<br>aware | parallel |
|--------------|-----------------|-----------------------|----------------------|-------------|-------------------|----------|
| XGBoost      | yes             | yes                   | yes                  | yes         | yes               | yes      |
| pGBRT        | no              | no                    | yes                  | no          | no                | yes      |
| Spark MLLib  | no              | yes                   | no                   | no          | partially         | yes      |
| H2O          | no              | yes                   | no                   | no          | partially         | yes      |
| scikit-learn | yes             | no                    | no                   | no          | no                | no       |
| R GBM        | yes             | no                    | no                   | no          | partially         | no       |

#### LightGBM

- LightGBM
  - Level-wise Tree는 균형을 잡아주어야 하기 때문에 Tree Depth가 줄어 듬
    - 균형을 잡아주기 위한 연산이 추가 되어 시간이 조금 더 걸림
  - Leaf-wise Tree는 비대칭적이고 깊은 Tree가 생성됨
    - 동일한 leaf를 생성할 때 leaf-wise는 level-wise 보다 <u>손실을 더 줄일 수 있음</u>
    - 하지만 Overfitting 가능성이 있으며, 데이터 양이 적을 때 비효율 적임
    - 논문에서는 10,000개 데이터 미만일 때 너무 쉽게 Overfitting 될 수 있다고 기재되어 있음



# XGBoost vs LightGBM vs CatBoost

|                                                    | XGBoost                                                                 | Light                                                              | BGM                                     | CatBoost                                                                           |                                         |  |
|----------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|--|
| Parameters<br>Used                                 | max_depth: 50 learning_rate: 0.16 min_child_weight: 1 n_estimators: 200 | max_depth: 50 learning_rate: 0.1 num_leaves: 900 n_estimators: 300 |                                         | depth: 10 learning_rate: 0.15 l2_leaf_reg= 9 iterations: 500 one_hot_max_size = 50 |                                         |  |
| Training AUC Score                                 | 0.999                                                                   | Without passing indices of categorical features                    | Passing indices of categorical features | Without passing indices of categorical features                                    | Passing indices of categorical features |  |
| 555.5                                              |                                                                         | 0.992                                                              | 0.999                                   | 0.842                                                                              | 0.887                                   |  |
| Test AUC<br>Score                                  | 0.789                                                                   | 0.785                                                              | 0.772                                   | 0.752                                                                              | 0.816                                   |  |
| Training Time                                      | 970 secs                                                                | 153 secs                                                           | 326 secs                                | 180 secs                                                                           | 390 secs                                |  |
| Prediction<br>Time                                 | 184 secs                                                                | 40 secs                                                            | 156 secs                                | 2 secs                                                                             | 14 secs                                 |  |
| Parameter Tuning Time (for 81 fits, 200 iteration) | 500 minutes                                                             | 200                                                                | minutes                                 | 120 minutes                                                                        |                                         |  |

# Q & A