

Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

ttps://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Machine Learning

Error metrics for Imbalance classes

Mehran Safayani

Cancer classification example

Train logistic regression model $h_{\theta}(x)$. (y = 1 if cancer, y = 0 otherwise)

$$Accuracy = \frac{\#correctly\ classified}{\#total\ number}$$

Find that you got 99% accuracy (1% error rate) on test set.

10

Only 0.50% of patients have cancer.

```
function y = predictCancer(x)
    y = 0; %ignore x!
return
```

$$\frac{5}{99.5\%} = 0.995$$

$$\frac{5}{99.5\%} = 0.995$$

$$\frac{995}{1900} = 0.995$$

$$\frac{995}{1900} = 0.995$$

$$\frac{99.5\%}{1900} = 0.995$$

Precision/Recall

y=1 in presence of rare class that we want to detect

confusion ma	trix
--------------	------

			Actual Value (as confirmed by experiment)					
			positives	negatives				
	d Value	positives	TP True Positive	FP False Positive				
)	Predicted Value (predicted by the test)	negatives	FN False Negative	TN True Negative				

Precision

(Of all patients where we predicted y=1 , what fraction actually has cancer?)

$$Precision = \frac{TP}{TP + FP}$$

Recall

(Of all patients that actually have cancer, what fraction did we correctly detect as having cancer?)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Recall = \frac{TP}{TP + FN}$$

			p	
		Actual positives	Actual Negatives	×
	Predict positives	0	0	وا هو
	Predict negatives	10	90	A= ×
Accuracy =	$\frac{TP + TN}{TP + TN + FP + FN} = \frac{90}{10}$	$\frac{0}{0} Precision = \frac{TP}{TP + FP}$	$= \frac{0}{0} \qquad Recall = \frac{TP}{TP + FR}$	$\frac{1}{V} = \frac{0}{10}$
		Actual positives	Actual Negatives	
	Predict positives	1	0	
	Predict negatives	9	90	
$Accuracy = \frac{1}{T}$	$\frac{TP + TN}{TP + TN + FP + FN} = \frac{91}{100}$	$Precision = \frac{TP}{TP + FP}$	$=\frac{1}{1} \qquad Recall = \frac{TP}{TP + F}$	$\frac{1}{N} = \frac{1}{10}$
		Actual positives	Actual Negatives	
	Predict positives	10	90	7=1
	Predict negatives O	0	0	
$Accuracy = \frac{1}{T}$	$\frac{TP + TN}{TP + TN + FP + FN} = \frac{10}{100}$	$Precision = \frac{TP}{TP + FP}$	$=\frac{10}{100} \qquad Recall = \frac{TP}{TP + 1}$	$\frac{r}{FN} = \frac{10}{10}$

- •high recall + high precision: the class is perfectly handled by the model
- •low recall + high precision: the model can't detect the class well but is highly trustable when it does

Suppose we want to predict y = 1 (cancer) only if very confident.

•high recall + low precision: the class is well detected but the model also include points of other classes in it

Suppose we want to avoid missing too many cases of cancer

•low recall + low precision: the class is poorly handled by the model

F₁ Score (F score)

How to compare precision/recall numbers?

	Precision(P)	Recall (R)	
Algorithm 1	0.5	0.4 0.45	0.44
Algorithm 2	0.7	0.1 9.4	0.18
Algorithm 3	0.02	1.0 7=1	0.04

precision recall

h is half the harmonic mean

recall

precision

Average: $\frac{P+R}{2}$

 F_1 Score: $2\frac{PR}{P+R}$ harmanic

Trading off precision and recall

the precision-recall curve shows how the recall vs precision relationship changes as we vary the threshold for identifying a positive in our model.

Logistic regression:
$$0 \le h_{\theta}(x) \le 1$$

Predict 1 if $h_{\theta}(x) \geq 0.5$

Predict 0 if $h_{\theta}(x) < 0.5$

More generally: Predict 1 if $h_{\theta}(x) \geq$ threshold.

Suppose we want to predict y=1 (cancer) only if very confident. (higher threshold; higher precision; lower recall)

Suppose we want to avoid missing too many cases of cancer (avoid false negatives). (lower threshold; higher recall; lower precision)

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Receiver Operating Characteristic (ROC)

1.0

True positive rate =
$$\frac{TP}{TP + FN}$$
 False positive rate = $\frac{FP}{FP + TN}$

F_{β} -Measure

$$F_{\beta} = \frac{(1+\beta^2) * precision * recall}{\beta^2 * precision + recall}$$

- •F0.5-Measure (β =0.5): More weight on precision, less weight on recall.
- •F1-Measure (β =1.0): Balance the weight on precision and recall.
- •F2-Measure (β =2.0): Less weight on precision, more weight on recall

Multi-Class Metrics

	Actual Values					
		Α	В	С	D	
Predictions	Α	9	1	5	0	
	В	1	15	0	4	
	С	0	3	24	1	
	D	0	1	1	15	

True Positive

	Actual Values					
		Α	В	С	D	
Predictions	Α	9	1	5	0	
	В	1	15	0	4	
	С	0	3	24	1	
	D	0	1	1	15	

correctly identified prediction for each class

True Negative for class A

	Actual Values				
		Α	В	С	D
Predictions	Α	9	1	5	0
	В	1	15	0	4
	С	0	3	24	1
	D	0	1	1	15

correctly rejected prediction for certain class A

True Negative for class D

	Actual Values				
		Α	В	С	D
Predictions	Α	9	1	5	0
	В	1	15	0	4
	С	0	3	24	1
	D	0	1	1	15

correctly rejected prediction for certain class D

False Positive for class A

	Actual Values					
		Α	В	С	D	
Predictions	Α	9	1	5	0	
	В	1	15	0	4	
	С	0	3	24	1	
	D	0	1	1	15	

Incorrectly identified prediction for certain class A

False Positive for class B

	Actual Values					
		Α	В	С	D	
Predictions	Α	9	1	5	0	
	В	1	15	0	4	
	С	0	3	24	1	
	D	0	1	1	15	

Incorrectly identified prediction for certain class B

False Negative for class A

	Actual Values					
		Α	В	С	D	
Predictions	Α	9	1	5	0	
	В	1	15	0	4	
	С	0	3	24	1	
	D	0	1	1	15	

Incorrectly rejected for certain class A

Accuracy

Accuracy is calculated as the total number of correct predictions divided by the total number of datasets

	Actual Values					
		Α	В	С	D	
Predictions	Α	9	1	5	0	
	В	1	15	0	4	
	С	0	3	24	1	
	D	0	1	1	15	

Accuracy=(9+15+24+15)/80=0.78

Balance Data

Accuracy=32/40=0.8

	Actual Values						
		Α	В	С	D		
Predictions	Α	10	0	0	0		
	В	0	5	1	1		
	С	0	3	8	0		
	D	0	2	1	9		

Accuracy=29/40=0.725

	Actual Values						
		Α	В	С	D		
Predictions	Α	8	1	0	2		
	В	2	7	0	3		
	С	0	0	9	0		
	D	0	2	1	5		

Imbalance Data

Accuracy=126/230=0.547

		Actual Values						
			Α	В	С	D		
suc		Α	100	0	0	0		
Predictions	В	80	9	1	1			
	С	10	0	8	0			
		D	10	1	1	9		

Accuracy=201/230=0.87

	Actual Values						
		Α	В	С	D		
Predictions	Α	198	7	0	2		
	В	2	1	8	3		
	С	0	0	1	4		
	D	0	2	1	1		

Precision for Model 1 (Macro Average)

		Α	В	С	D		
ons	Α	100	0	0	0	TP=100	FP=0
Predictions	В	80	9	1	1	TP=9	FP=82
Pre	С	10	0	8	0	TP=8	FP=10
	D	10	1	1	9	TP=9	FP=12

Precision=TP/(TP+FP) P(A)=1 P(B)=9/91

P(C)=8/18

P(D)=9/21

Macro Average Precision=[P(A)+P(B)+P(C)+P(D)]/4=0.492

Recall for Model 1 (Macro Average)

	Actual Values							
		Α	В	С	D			
Predictions	Α	100	0	0	0			
	В	80	9	1	1			
	С	10	0	8	0			
	D	10	1	1	9			
		TP=100 FN=100	TP=9 FN=1	TP=8 FN=2	TP=9 FN=1			

Recall=TP/(TP+FN)

R(A)=100/200 R(B)=9/10

R(C)=8/10

R(D)=9/10

Macro Average Recall=[R(A)+R(B)+R(C)+R(D)]/4=0.775

F1 Score for Model 1

	Actual Values						
		Α	В	С	D		
suc	Α	100	0	0	0		
Predictions	В	80	9	1	1		
	С	10	0	8	0		
	D	10	1	1	9		

F1 Score=2*(Recall*Precision)/(Precision +Recall)

F1 Score=2*[0.492*0.775]/[0.492+0.775]=0.601

Imbalance Data

Accuracy=0.547 F1 Score=0.601

	Actual Values						
		Α	В	С	D		
Predictions	Α	100	0	0	0		
	В	80	9	1	1		
	С	10	0	8	0		
	D	10	1	1	9		

Accuracy=0.87 F1 Score=0.342

	Actual Values						
		Α	В	С	D		
suc	Α	198	7	0	2		
Predictions	В	2	1	8	3		
Pre	С	0	0	1	4		
	D	0	2	1	1		

Learning for Imbalance Data: Undersampling, oversampling and generating synthetic data

- •undersampling consists in sampling from the majority class in order to keep only a part of these points
- •oversampling consists in replicating some points from the minority class in order to increase its cardinality
- •generating synthetic data consists in creating new synthetic points from the minority class (see SMOTE method for example) to increase its cardinality

References and further readings

Andrew NG., Machine Learning Course, Coursera, slide: Error metrics for skewed classes

Minsuk Heo. "Performance measure on multiclass classification [accuracy, f1 score, precision, recall]." *YouTube*, 3 May. 2020, https://www.youtube.com/watch?v=HBi-P5j0Kec

<u>Baptiste Rocca, "</u>Handling imbalanced datasets in machine learning", 3 may 2020, https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28