Základní vlastnosti množiny $\mathbb R$

Úmluva 1. \mathbb{R} doplníme o další dva prvky $\{+\infty, -\infty\}$ a vzniklou množinu označíme \mathbb{R}^* . Rozšíříme na ni uspořádání a základní početní úkony (vzájemné sčítání, násobení, odčítání, dělení) takto:

1. $-\infty < x < \infty$ pro každé $x \in \mathbb{R}$.

2.

$$\begin{array}{llll} x+\infty &=& \infty, & x+(-\infty) &=& -\infty & \operatorname{pro} \, \forall x \in \mathbb{R} \\ x\cdot (\infty) &=& \infty, & x\cdot (-\infty) &=& -\infty & \operatorname{pro} \, \forall x \in \mathbb{R} \, \wedge \, x > 0 \\ x\cdot (\infty) &=& -\infty, & x\cdot (-\infty) &=& \infty & \operatorname{pro} \, \forall x \in \mathbb{R} \, \wedge \, x < 0 \\ \infty\cdot (-\infty) &=& -\infty, & \frac{x}{\infty} &=& \frac{x}{-\infty} &=& 0 & \operatorname{pro} \, \forall x \in \mathbb{R} \end{array}$$

$$\infty + (-\infty), \, \infty \cdot 0, \, -\infty \cdot 0, \, \frac{\pm \infty}{0}, \, \frac{\pm \infty}{\pm \infty}$$
 se nezavádí.

Definice 2. Množinu $M \subset \mathbb{R}$ nazveme zdola (shora) omezenou, jestli je takové $K \in \mathbb{R}$, že $K \leq x \ \forall x \in M \ (K \geq x \ \forall x \in M)$. Pak řekneme, že K omezuje M zdola (shora). K se taky říká dolní (horní) odhad, mez, hranice, omezení, závora množiny M.

Je-li M omezená shora i zdola, říkáme jí omezená.

Definice 3. Největším prvkem množiny M nazveme takové n, kde $x \leq n \ \forall x \in M$. Značíme max M. Obdobně se zavádí min M – nejmenší prvek M.

 $Poznámka~4.~\max{(0,1)}=1,~\max{(0,1)}$ nemá největší prvek. Má-li $M\subset\mathbb{R}$ nejmenší, případně největší prvek, je shora, příp. zdola omezená a sice číslem \max{M} , případně \min{M} .

Základní vlastnost množiny $\mathbb R$ vyjadřuje následující věta:

Věta 5 (O suprému). Buď $\emptyset \neq M \subset \mathbb{R}$, M shora omezená. Pak je jediné číslo s takové, že platí

- 1. $x \le s \text{ pro } \forall x \in M \text{ (s omezuje } M \text{ shora)}$
- 2. $\forall s' < s \ \exists x \in M$, že s' < x (s je nejmenší horní mez)

 $D\mathring{u}kaz$. Jedná se pouze o důkaz jednoznačnosti. Má-li s vlastnosti 1 a 2, pak je-li t < s, t nemá vlastnost 1 (podle 2) a je-li t > s, nemá vlastnost 2. Tedy číslo s s oběma vlastnostmi 1 a 2 je nejvýše jedno.

 $D\mathring{u}sledek$ 6 (věta o infímu). Je-li $\emptyset \neq M \in \mathbb{R}$ zdola omezená, pak existuje jediné číslo $d \in \mathbb{R}$ takové, že:

- 1. $x \ge d$ pro $\forall x \in M$ (d omezuje M zdola)
- 2. $\forall d' > d \; \exists x \in M$, že $d' < x \; (d \text{ je největší dolní mez})$

 $D\mathring{u}kaz$. Dokážeme úplnou větu, za předpokladu, že víme, že platí věta o suprému. Mnočina $-M = \{-x | x \in M\}$ je shora omezená a podle věty 5 je $s \in \mathbb{R}$, že

$$\tilde{1} \ y \le s \text{ pro } \forall y \in -M$$

 $\tilde{2} \ \forall d' > d \ \exists x \in -M : x < d'$

Ukážeme, že číslo -s má vlastnosti 1 a 2 (z důsledku věty 5).

Je-li d'>-s, je -d'< s a podle $\tilde{2}$ je $y\in -M$, že y>-d'. Je však y=-x pro nějaké xinM a tak -x>-d', odkud x< d', což je vlastnost 2 čísla -s vůči M, o které předpokládáme, že platí.

Tím se dokázalo, že pokud platí věta o suprému, platí i věta o infímu. Důkaz jednoznačnosti je podobný jako u věty o suprému. \Box

Definice 7. Číslu s z věty 5 a číslu d z důsledku věty 5 se říká suprémum (infímum) množiny M a značí se sup M (inf M).

```
Položíme ještě sup M=\infty (inf M=-\infty), není-li M shora (zdola) omezená. Dále sup \emptyset=-\infty a inf \emptyset=\infty a \emptyset=M je jediný případ, kdy inf M>\sup M.
```

Poznámka 8. Každá $M \subset \mathbb{R}^*$ má tedy definovanou hodnotu sup M, inf M. Je-li množina neprázdná, shora (zdola) omezená, je sup $M \in \mathbb{R}$ (inf $M \in \mathbb{R}$).

Každá shora (zdola) omezená neprázdná podmnožina $\mathbb R$ tam tedy má své suprémum (infímum). To ale neplatí v $\mathbb Q$. Například množina $M=\mathbb Q\cap(0,\pi)$ má sup $M\notin\mathbb Q$.

Má-li M největší (nejmenší) prvek, je tento zároveň suprémem (infímem) množiny M. Je sup $M \in M \Leftrightarrow M$ má největší prvek. Je-li to tak, je sup $M = \max M$. Obdobně to platí o infímu a nejmenším prvku.

Důkaz důsledku věty 5 ukazuje, že inf $M = -\sup -M$, obdobně $\sup M = -\inf -M$.

Limity posloupností

Definice 9. Zobrazení $a: \mathbb{N} \to \mathbb{R}$ ($\mathbb{N} \to \mathbb{C}$) nazveme posloupností reálných (komplexních čísel). Místo a(n) značíme a_n .

Definice 10. Číslo $a \in \mathbb{C}$ nazveme limitou posloupnosti $\{a_n\}$, pokud

$$\forall \varepsilon > 0 \ \exists k(\varepsilon) \in \mathbb{N}, \ \text{\'e} \ |a_n - a| < \varepsilon \ \forall n \ge k$$

píšeme $\lim_{n\to\infty}a_n=a$ ($\lim a_n=a,\,a_n\to a$) a říkáme, že $\{a_n\}$ má (konečnou) limitu, konverguje k a. Posloupnostem, které mají konečnou limitu, se říká konvergentní. Jestli pro reálnou posloupnost platí

$$\forall K \in \mathbb{R} \ \exists k(K) \in \mathbb{N}, \ \text{\'ee} \ a_n > K \ \forall n \geq k$$

píšeme $\lim_{n\to\infty} a_n = \infty$ ($\lim a_n = \infty$, $a_n\to\infty$) a říkáme, že $\{a_n\}$ jde k nekonečnu; diverguje. Obdobně, jestli pro reálnou posloupnost $\{a_n\}$ platí

$$\forall K \in \mathbb{R} \ \exists k(K) \in \mathbb{N}, \ \text{\'ee} \ a_n < K \ \forall n \geq k$$

píšeme $\lim_{n\to\infty}a_n=-\infty$ ($\lim a_n=-\infty,\ a_n\to-\infty$) a říkáme, že $\{a_n\}$ diverguje k $-\infty$.

Poznámka 11. Platí-li některá z podmínek v definici 10 pro nějaké $\varepsilon>0$, pak platí pro všechna $\varepsilon'>\varepsilon$.

Vlastnosti posloupností

Věta 12. Každá konvergentní posloupnost je omezená.

 $D\mathring{u}kaz$. Jestli $a_n \to a \in \mathbb{R}$, pak platí

$$\forall \varepsilon > 0 \ \exists k(\varepsilon) \in \mathbb{N}, \ \text{\'e} \ |a_n - a| < \varepsilon \ \forall n \ge k$$

takže to platí i pro $\varepsilon=1$, tj. $\exists k\in\mathbb{N}$, že $|a_n-a|<1$ $\forall n\geq k$. Neboli $|a|-1<|a_n|<|a|+1$ $\forall n\geq k$. Je tedy $|a_n|$ omezená zdola (shora) číslem |a|-1 (|a|+1) od nějakého konečného indexu k dál $\forall n\geq k$. Načež je $|a_n|$ zdola (shora) omezená číslem min ($|a_1|,|a_2|,\ldots,|a_{k-1}|,|a|-1$) (max ($|a_1|,|a_2|,\ldots,|a_{k-1}|,|a|+1$)) $\forall n\in\mathbb{N}$.

Věta 13. Posloupnost má nejvýše jednu limitu.

 $D\mathring{u}kaz$. Nechť $a_n \to a$, $a_n \to b$ a buďte třeba $a, b \in \mathbb{C}$. Protože $a_n \to a$, platí

$$\forall \varepsilon > 0 \ \exists k' \in \mathbb{N}, \ \text{\'e} \ |a_n - a| < \varepsilon \ \forall n \ge k'$$

protože $a_n \to b$, platí

$$\forall \varepsilon > 0 \ \exists \tilde{k} \in \mathbb{N}, \ \text{\'e} \ |a_n - b| < \varepsilon \ \forall n \geq \tilde{k}$$

Zvolme $\varepsilon > 0$. Pro $n \ge k$: $\max \left(k'(\varepsilon), \tilde{k}(\varepsilon) \right)$, pak je $|a - b| = |a - a_n + a_n - b| \le |a_n - a| + |a_n - b| < 2\varepsilon$ (ty absolutní hodnoty jsou obě $< \varepsilon$).

Je tedy $|a-b| < 2\varepsilon \ \forall \varepsilon > 0$, nezbývá tedy, než že |b-a| = 0, tj. a = b.

Je-li $a \in \mathbb{R}$, $b = \infty$, je $\{a_n\}$ podle věty 12 omezená, ale $a_n \to b = \infty$ dává neomezenost $\{a_n\}$, což je spor.

Jestli $a = \infty$, $b = -\infty$, pak $a_n \to \infty$ znamená, že

$$\forall K \in \mathbb{R} \ \exists k' \in \mathbb{N}, \ \text{\'ee} \ a_n > K \ \forall n \ge k'(K)$$
 (2.1)

a $a_n \to -\infty$ znamená, že

$$\forall K \in \mathbb{R} \ \exists \tilde{k} \in \mathbb{N}, \ \text{\'ee} \ a_n < K \ \forall n \ge \tilde{k}(K)$$
 (2.2)

takže, zvolíme-li K=0 v (2.1) a (2.2) máme pro $n \geq k = \max\left(k'(0), \tilde{k}(0)\right)$: $a_n > 0$ podle (2.1), ale $a_n < 0$ podle (2.2).

Věta 14 (Vztah limit posloupností a základních početních úkonů). $Nechť a_n \to a, b_n \to b, pak$

- 1. $a_n \pm b_n \rightarrow a \pm b$
- 2. $a_n \cdot b_n \to a \cdot b \ (nelze \ 0 \cdot \infty)$
- 3. $\frac{a_n}{b_n} \to \frac{a}{b} \ (b \neq 0 \ nebo \ zlomek \ \frac{a}{b} \ není \ ve \ tvaru \ \frac{\pm \infty}{\pm \infty})$

má-li pravá strana smysl, tj. například má-li $\frac{a}{b}$ smysl, má posloupnost $\frac{a_n}{b_n}$ limitu a ta se rovná $\frac{a}{b}$; obdobně ostatní případy.

 $D\mathring{u}kaz$. 1. (a) Nechť $a, b \in \mathbb{C}$, takže

$$\forall \sigma > 0 \ \exists k'(\sigma), \ \text{\'e} \ |a_n - a| < \sigma \ \forall n \ge k'$$
 (2.3)

$$\forall \sigma > 0 \ \exists \tilde{k}(\sigma), \ \text{\'e} \ |b_n - b| < \sigma \ \forall n \ge \tilde{k}$$
 (2.4)

Abychom ukázali, že $a_n + b_n \rightarrow a + b$, máme ukázat, že platí

$$\forall \varepsilon > 0 \ \exists k(\varepsilon), \ \text{\'e} \ |a_n + b_n - (a+b)| < \varepsilon \ \forall n \ge k$$

Buď tedy $\varepsilon > 0$. Pro $n \ge k = \max\left(k'(\varepsilon), \tilde{k}(\varepsilon)\right)$, pak je $|a_n + b_n - (a+b)| \le |a_n - a| + |b_n - b| < \varepsilon + \varepsilon = 2\varepsilon$.

- (b) Nechť $a \in \mathbb{R}$ a b je třeba ∞ (pro $-\infty$ se dokáže obdobně). Podle věty 12 je a_n omezená, je tedy i omezená zdola. Nechť $L \in \mathbb{R}$ je takové, že $a_n > L$ pro kažné $n \in \mathbb{N}$. Podle definice 10 ke každému $K \in \mathbb{R}$ existuje $n_1(K) \in \mathbb{N}$ tak, že $b_n > K L$ pro $n > n_1(K)$. Pro taková n je ovšem $a_n + b_n \ge L + b_n > L + K L = K$.
- 2. (a) Nechť $a,b \in \mathbb{R}$. Podle věty 12 je $\{a_n\}$ omezená. Buď K>0 nějaká konstanta, jež ji omezuje $(|a_n| \leq K \ \forall n \in \mathbb{N})$. Pak je $|a_nb_n-ab|=|a_nb_n-a_nb+a_nb-ab| \leq |a_n| \cdot |b_n-b|+|b|\cdot |a_n-a| \leq K \cdot \varepsilon + |b|\cdot \varepsilon = (K+|b|) \cdot \varepsilon$.
 - (b) Nechť $a\in\mathbb{R}^+$ a b je třeba ∞ (pro $a\in\mathbb{R}^-, a=\infty, a=-\infty$ a $b=-\infty$ se dokáže obdobně).

Víme, že pro nějaké $\alpha < a, \alpha > 0$ platí, že pro $\varepsilon = a - \alpha \, \exists k'$, že $|a_n - a| < a - \alpha \, \forall n \geq k'$, takže $a_n > \alpha \, \forall n \geq k'$ (pro $a = \infty$ platí totéž pro libovolně zvolené α).

Je-li $b=\infty$, pro libovolné L a $K=\frac{L}{\alpha}\,\exists \tilde{k},$ že $b_n>\frac{L}{\alpha}\,\forall n\geq \tilde{k}.$ Pro $k=\max(k',\tilde{k})$ platí $a_nb_n>\alpha b_n>L$ pro libovolná L.

3. (a) Nechť $a,b\in\mathbb{R}$. Buď te $K>0,\,L>0$ nějaké konstanty, které omezují $\{a_n\}$ a $\{b_n\}$ podle věty 12. Pak je $\left|\frac{a_n}{b_n}-\frac{a}{b}\right|=\left|\frac{a_nb-ab_n}{b_nb}\right|=\left|\frac{a_nb-a_nb_n+a_nb_n-ab_n}{b_nb}\right|\leq \frac{|a_n||b_n-b|+|a_n-a|\cdot|b_n|}{|b_nb|}<\frac{(K+L)}{|b|}\cdot\frac{1}{|b_n|}\cdot\varepsilon.$

Teď potřebujeme dokázat, že $\frac{1}{|b_n|}$ je omezené.

Protože $\frac{a}{b}$ má smysl, je $b \neq 0 \Rightarrow |b| \neq 0$, načež $||b_n| - |b|| \leq |b_n - b| < \varepsilon$ takže $|b_n| \geq |b| - \varepsilon$. Je-li $|b| - \varepsilon > 0$, tj. $\varepsilon < |b|$, je $\frac{1}{|b| - \varepsilon} > 0$ a tak

$$\frac{(K+L)\cdot\varepsilon}{|b|}\cdot\frac{1}{|b_n|}\leq\frac{(K+L)\cdot\varepsilon}{|b|}\cdot\frac{1}{|b|-\varepsilon}$$

Je-li dokonce $\varepsilon<\frac{|b|}{2},$ je $\frac{1}{|b|-\varepsilon}<\frac{1}{|b|-\frac{|b|}{2}}=\frac{2}{|b|}$ a tak je

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| < \frac{(K+L) \cdot \varepsilon}{|b|} \cdot \frac{2}{|b|}$$

a podle poznámky 11 je důkaz hotový.

(b) Nechť $a \in \mathbb{R}$ a $|b| = \infty$. Dokážeme, že $\lim_{n \to \infty} \frac{1}{b_n} = 0$ a pak můžeme použít již dokázaného tvrzení o součinu. Ke každému $\frac{1}{\varepsilon}$ existuje $k(\frac{1}{\varepsilon})$, že $|b_n| > \frac{1}{\varepsilon} \, \forall n \ge k(\frac{1}{\varepsilon})$. Ale $|b_n| > \frac{1}{\varepsilon}$ je totéž, co $\left|\frac{1}{b_n}\right| < \varepsilon$.

Věta 15 (2. věta o limitě součinu). $Bud'\{a_n\}$ omezená, $\{b_n\} \to 0$. Pak má $\{a_n \cdot b_n\}$ limitu a ta se rovná nule.

 $D\mathring{u}kaz$. $\exists k > 0$, že $|a_n| < K$ (omezenost $\{a_n\}$, definice 2). To, že $b_n \to 0$, znamená, že

$$\forall \varepsilon > 0 \; \exists k(\varepsilon) \in \mathbb{N}, \text{ a že } |b_n| < \varepsilon \; \forall n > k$$

Pro $n \geq k\left(\frac{\varepsilon}{K}\right)$ pak je $|a_n b_n| < K \cdot \frac{\varepsilon}{K} = \varepsilon$.

Věta 16 (2. věta o limitě převrácené hodnoty). Nechť $a_n \to 0$ $a \exists \tilde{k} \in \mathbb{N}$, že $a_n > 0$ $(a_n < 0) \forall n \geq \tilde{k}$. $Pak \frac{1}{a_n} \to \infty \ (-\infty)$.

 $D\mathring{u}kaz$. Buď $a_n>0 \ \forall n\geq \widetilde{k}$ a buď K>0. Ježto $a_n\to 0$, číslo $\frac{1}{K},\,k'\in\mathbb{N}$, že $|a_n|<\varepsilon=\frac{1}{K} \ \forall n\geq k',$ takže $\frac{1}{a_n}=\frac{1}{|a_n|}>K$ pro tato n.

Je-li $a_n < 0 \ \forall n \geq \tilde{k}$, je $b_n = -a_n > 0 \ \forall n \geq \tilde{k}$ a podle právě dokázaného je $\frac{1}{b_n} \to \infty$, odkud $\frac{1}{a_n} = \frac{1}{-b_n} = -\frac{1}{b_n} \to -\infty$.

Věta 17 (O přenášení nerovnosti z limit na posloupnosti). *Nechť* $a_n \to a$, $b_n \to b$ $a \in a$. $a \in b$. $b \in \mathbb{N}$, $b \in a$, $b \in a$, $b \in a$, $b \in a$.

 $D\mathring{u}kaz$. Buď třeba $a, b \in \mathbb{R}$. Platí

$$\forall \varepsilon > 0 \ \exists k'(\varepsilon) \in \mathbb{N}, \ \check{\text{ze}} \ |a_n - a| < \varepsilon \ \forall n > k'$$
 (2.5)

$$\forall \varepsilon > 0 \ \exists \tilde{k}(\varepsilon) \in \mathbb{N}, \ \check{z}e \ |b_n - b| < \varepsilon \ \forall n \ge \tilde{k}$$
 (2.6)

Pro $n \geq k = \max\left(k'\left(\frac{b-a}{2}\right), \tilde{k}\left(\frac{b-a}{2}\right)\right)$ je podle (2.5)

$$a_n < a + \frac{b-a}{2} = \frac{a+b}{2}$$

a podle (2.6) je

$$b_n > b + \frac{b-a}{2} = \frac{a+b}{2}$$

dohromady $a_n < \frac{a+b}{2} < b_n$.

Je-li $a \in \mathbb{R}, b = \infty$, platí (2.5) a $\forall K \in \mathbb{R} \ \exists \tilde{k}(K), \text{ že } b_n > K \ \forall n \geq \tilde{k}$.

Pro
$$n \ge k = \max(k'(1), \tilde{k}(a+1))$$
 je $a_n < a+1 < b_n$.

Věta 18. Nechť $a_n \to a$, $b_n \to b$ a nechť $\exists k \in \mathbb{N}$, že $a_n \leq b_n \ \forall n \geq k$. Pak $a \leq b$.

 $D\mathring{u}kaz$. Větu dokážeme sporem. b < a, existuje podle věty 17 index $k' \in \mathbb{N}$, že $b_n < a_n$ pro každé n > k'.

Pro
$$n \ge \max(k, k')$$
 je tedy $b_n < a_n$ a $a_n \le b_n$ a to je spor.

Věta 19 (O majorizované konvergenci (o dvou policajtech)). Nechť $a_n \to a$, $b_n \to a$ a existuje $k^* \in \mathbb{N}$, že $a_n \le c_n \le b_n \ \forall n \ge k^*$. Pak $\{c_n\}$ má limitu a ta se rovná a.

 $D\mathring{u}kaz.$ Buď třeba $a\in\mathbb{R}$ máme ukázat, že

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}, \ \text{\'e} \ |c_n - a| < \varepsilon \ \forall n \ge k$$

Buď tedy $\varepsilon > 0$. Protože $a_n \to a$, existuje $k' \in \mathbb{N}$, že $|a_n - a| < \varepsilon \ \forall n \ge k'$ a tak $a - \varepsilon < a_n \ \forall n \ge k'$. Protože $b_n \to a$, existuje $\tilde{k} \in \mathbb{N}$, že $|b_n - a| < \varepsilon \ \forall n \ge \tilde{k}$ a tak $b_n < a + \varepsilon \ \forall n \ge \tilde{k}$.

Pro
$$n \ge k = \max(k', \tilde{k})$$
 pak je $a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$, tj. $|c_n - a| < \varepsilon$.

Definice 20. Řekněme, že reálná posloupnost $\{a_n\}$ roste (neklesá, klesá, neroste), jestli $a_n < a_{n+1}$ $(a_n \le a_{n+1}, a_n > a_{n+1}, a_n \ge a_{n+1}) \ \forall n \in \mathbb{N}.$

Řekněme, že $\{a_n\}$ má některou z (těchto) vlastností od $k \in \mathbb{N}$, má-li ji $\forall n \geq k$.

Posloupnostem, které neklesají či nerostou se říká monotónní, těm co dokonce jenom rostou či klesají, se říká ryze monotónní.

Věta 21 (O existenci limity monotónní posloupnosti). *Jestli* $\{a_n\}$ *neklesá (neroste), má limitu. Ta se rovná* sup $\{a_n\}$ *(*inf $\{a_n\}$ *).*

 $D\mathring{u}kaz$. Nechť $\{a_n\}$ třeba neklesá. Je-li $a=\sup\{a_n\}\in\mathbb{R}$, zvolme $\varepsilon>0$. Je $a-\varepsilon< a$ a podle podle 2. vlastnosti suprému (věta 5) je nějaké $a_k>a-\varepsilon$.

Pro $n \ge k$ pak je $a - \varepsilon < a_k \le a_n \le a < a + \varepsilon$, tedy $|a_n - a| < \varepsilon$ pro tato n. Je-li sup $\{a_n\} = \infty$, není posloupnost $\{a_n\}$ shora omezená, a tak $\forall K \in \mathbb{R} \ \exists k \in \mathbb{N}$, že $a_k > K$ (definice 2). Ale $\{a_n\}$ neklesá a tak $a_n \ge a_k > K \ \forall n \ge k$.

Jestli
$$\{a_n\}$$
 neroste, tak $\{-a_n\}$ neklesá a tak $-a_n \to \sup\{-a_n\} = -\inf\{a_n\} \Rightarrow a_n \to \inf\{a_n\}$.

Definice 22. Vybranou posloupností z posloupnosti $\{a_n\}$ je posloupnost $\{a_{n_k}\}_{k=1}^{\infty}$, kde $\{n_k\}_{k=1}^{\infty}$ je rostoucí posloupnost přirozených čísel.

Říká se jí též podposloupnost.

Věta 23 (O limitě vybrané posloupnosti). Nechť $a_n \to a$ a $\{a_{n_k}\}_{k=1}^{\infty}$ je z ní vybraná. Pak má limitu a ta se rovná a.

 $D\mathring{u}kaz$. Nechť $a \in \mathbb{R}$. Buď $\varepsilon > 0$. Pak $\exists t \in \mathbb{N}$, že $|a_n - a| < \varepsilon \ \forall n \ge t$. Buď $s \in \mathbb{N}$ taková, že $n_s > t$ (takové s existuje, neboť $\{n_k\}$ roste). Pro $k \ge s$ pak je $n_k \ge n_s \ge t$. Takže $|a_{n_k} - a| < \varepsilon$.

Nechť $a=\infty$. Buď $K\in\mathbb{R}$. Pak $\exists t\in\mathbb{R}$, že $a_n>K$ $\forall n\geq t$. Opět existuje $s\in\mathbb{N}$, že $n_s\geq t$. Pro $k\geq s$ pak je $n_k\geq n_s\geq t$ a tak $a_{n_k}>K$.

Jestli
$$a_n \to -\infty$$
, tak $-a_n \to \infty \Rightarrow -a_{n_k} \to \infty \Rightarrow a_{n_k} \to -\infty$.

Důsledek 24. Obsahuje-li $\{a_n\}$ dvě vybrané posloupnosti s různými limitami, nemá limitu.

Věta 25. Buďte $\{a_{m_k}\}_{k=1}^{\infty}$ a $\{a_{n_l}\}_{l=1}^{\infty}$ vybrané z $\{a_n\}$, přičemž $\forall n \in \mathbb{N}$ je jedním z m_k nebo n_l (tj. $\{m_l\} \cup \{n_l\} = \mathbb{N}$).

 $\textit{Jestli } a_{m_k} \xrightarrow{k \to \infty} a, \ a_{n_l} \xrightarrow{l \to \infty} a, \ \textit{tak m\'a} \ \{a_n\} \ \textit{limitu a ta se rovn\'a} \ a.$

 $\begin{array}{ll} \textit{Důkaz.} \ \text{Bud'} \ a \in \mathbb{R}. \ \text{Zvolme} \ \varepsilon > 0. \ \text{Pak} \ \exists \tilde{k} \in \mathbb{N}, \ \text{že} \ |a_{m_k} - a| < \varepsilon \ \forall k \geq \tilde{k}. \ \exists \tilde{l} \in \mathbb{N}, \ \text{že} \ |a_{n_l} - a| < \varepsilon \ \forall l \geq \tilde{l}. \ \text{Tudíž pro} \ n \geq \max \left(m_{\tilde{k}}, n_{\tilde{l}} \right) \ \text{je} \ \text{bud'to} \ n = m_k \ \text{a protože je} \ n \geq m_{\tilde{k}}, \ \text{odkud} \ k \geq \tilde{k}, \ \text{takže} \\ |a_n - a| = |a_{m_k} - a| < \varepsilon \ \text{odkud plyne} \ l \geq \tilde{l}, \ \text{takže} \ |a_n - a| = |a_{n_l} - a| < \varepsilon. \end{array}$

Definice 26. Hromadnou hodnotou (hromadným bodem) posloupnosti $\{a_n\}$ nazveme limitu její vybrané posloupnosti.

Věta 27. Množina všech hromadných hodnot každé reálné posloupnosti $\{a_n\}$ je neprázdná, má největší prvek s a nejmenší d. Přitom je $s = \lim s_n$ a $d = \lim d_n$ kde $s_n = \sup \{a_n, a_{n+1}, \ldots\}$, $d_n = \inf \{a_n, a_{n+1}, \ldots\}$.

 $D\mathring{u}kaz.$ 1. Posloupnost $\{s_n\}$ ($\{d_n\}$) neroste (neklesá) a tak má podle věty 21 limitu. Označme ji s(d).

- 2. Dokážeme, že s je hromadným bodem $\{a_n\}$ (tj. limitou nějaké posloupnosti) takto: Podle věty 21 je $s = \inf\{s_n\}$ a buď $s \neq \infty$; to je pak $s_n \neq \infty \ \forall n$. Pak je
 - (a) $s_1-1 < s_1 = \sup\{a_1,a_2,\ldots\}$ a tak podle 2. bodu věty 5 ∃index $n_1 \in \mathbb{N}$, že $s_1-1 < a_{n_1} \le s_{n_1}$
 - (b) $s_{n_1+1}-\frac{1}{2}< s_{n_1+1}=\sup\{a_{n_1+1},a_{n_1+2},\ldots\}$ a tak podle 2. bodu věty 5 $\exists n_2\in\mathbb{N},$ že $s_{n_1+1}-\frac{1}{2}< a_{n_2}\leq s_{n_2}$
 - (c) $s_{n_2+1}-\frac{1}{3}< s_{n_2+1}=\sup\left\{a_{n_2+1},a_{n_2+2},\ldots\right\}$ a tak podle 2. bodu věty 5 $\exists n_3\in\mathbb{N},$ že $s_{n_2+1}-\frac{1}{3}< a_{n_3}\leq s_{n_3}$:

Mějme už $n_1 < n_2 < n_3 < n_4 < \cdots < n_k$, že

$$s_{n_j+1} - \frac{1}{j+1} < a_{n_{j+1}} \le s_{n_{j+1}} \qquad \forall j = 1, 2, \dots k (k \ge 1)$$
 (2.7)

Je $s_{n_k+1} - \frac{1}{k+1} < s_{n_k+1} = \sup \{a_{n_k+1}, a_{n_k+2}, \ldots\}$ a tak podle 2. bodu věty 5 $\exists n_{k+1} \in \mathbb{N}$, že $s_{n_k+1} - \frac{1}{k+1} < a_{n_{k+1}} \le s_{n_{k+1}}$.

Tím se dostane rostoucí posloupnost $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$, takže $\{a_{n_k}\}_{k=1}^{\infty}$ je z $\{a_n\}$ vybraná a že (2.7) platí pro $\forall j \in \mathbb{N}$.

Protože je s_{n_j+1} z $\{s_n\}$ vybraná, jde podle věty 18 a 14 levá i pravá strana v (2.7) k s a podle věty 19 je $a_{n_j} \xrightarrow{j \to \infty} s$.

Je-li $s = \infty$, pak z toho, že $s = \inf\{s_n\}$ plyne, že $s_n = \infty \ \forall n \in \mathbb{N}$.

- (a) $1 < s_1 = \sup \{a_1, a_2, \ldots\}$, takže podle věty 5 je index $n_1 \in \mathbb{N}$, že $a_{n_1} > 1$,
- (b) $2 < s_{n_1+1} = \sup \{a_{n_1+1}, a_{n_1+2}, \ldots\}$, takže podle věty 5 je index $n_2 \in \mathbb{N}$, že $a_{n_2} > 2$,
- (c) $3 < s_{n_2+1} = \sup \{a_{n_2+1}, a_{n_2+2}, \ldots\}$, takže podle věty 5 je index $n_3 \in \mathbb{N}$, že $a_{n_3} > 3$, \vdots

Vzniklá vybraná posloupnost $\{a_{n_k}\}_{k=1}^{\infty}$, kde $k < a_{n_k} \ \forall k \in \mathbb{N}$ a podle věty 19 je $a_{n_k} \xrightarrow{k \to \infty} \infty$, tj. $a_{n_k} \to s$.

3. s je největší hromadný bod $\{a_n\}$.

Je-li h hromadný bod $\{a_n\}$, je limitou z ní vybrané posloupnosti, již označíme $\{a_{n_k}\}_{k=1}^{\infty}$. Pak je $a_{n_k} \leq \sup\{a_{n_k}, a_{n_k+1}, \ldots\} = s_{n_k}, h = \lim_{k \to \infty} a_{n_k} \leq \lim_{k \to \infty} s_{n_k} = s$.

Definice 28. Největší (nejmenší) hromadná hodnota posloupnosti $\{a_n\}$ se nazývá její horní limitou nebo také *limes superior* (dolní limitou nebo také *limes inferior*) a značí se $\overline{\lim} a_n$ nebo $\lim \sup a_n$ ($\underline{\lim} a_n$ nebo $\lim \inf a_n$).

Věta 29. $\{a_n\}$ má limitu právě $kdy\tilde{z}$ $\overline{\lim} a_n = \underline{\lim} a_n$. Ta je pak rovna jejich společné hodnotě.

 $D\mathring{u}kaz$. \Rightarrow Existuje-li $\lim a_n$, má podle věty 23 každá z $\{a_n\}$ vybraná posloupnost limitu a rovnou $\lim a_n$. Protože $\overline{\lim} a_n$ i $\underline{\lim} a_n$ jsou limitami vybraných posloupností, platí to i pro ně. Takže jsou stejné a rovné limitě a_n .

 \Leftarrow Jelikož $d_n = \inf\{a_n, \ldots\} \le \{a_n\} \le \sup\{a_n, a_{n+1}, \ldots\} = s_n$ a $d = \lim d_n = \underline{\lim} a_n$, $s = \lim s_n = \overline{\lim} a_n$, je $d_n \le a_n \le s_n$ a tak má $\{a_n\}$ limitu rovnou společné hodnotě limit $\lim s_n$, $\lim d_n$.

Věta 30. Z každé omezené posloupnosti lze vybrat konvergentní.

Důkaz. Buď $\{a_n\}$ omezená a nechť je nejdřív reálná. Pak existuje $a,b \in \mathbb{R}, \ a < b,$ že $a \le a_n \le b \ \forall n \in \mathbb{N}$. Rozdělme $\langle a,b \rangle$ jeho středem s_1 ; je-li $a_n \in \langle a,s_1 \rangle$ pro nekonečně indexů n, buď n_1 jeden z nich a položme $p_1 = a, \ q_1 = s_1$. Jinak musí být $a_n \in \langle s_1,b \rangle$ pro nekonečně indexů n. Buď n_1 jeden z nich a položme $p_1 = s_1, \ q_1 = b$.

V obou případech je $a \le p_1 \le a_{n_1} \le q_1 \le b$.

Rozdělme $\langle p_1,q_1\rangle$ jeho středem s_2 ; buď je $a_n\in\langle p_1,s_2\rangle$ pro nekonečně indexů n, buď $n_2>n_1$ jeden z nich a položme $p_2=p_1,\ q_2=s_2$. Nebo je $a_n\in\langle s_2,q_1\rangle$ pro nekonečně indexů n. Buď $n_2>n_1$ jeden z nich a položme $p_2=s_2,\ q_2=q_1$. Je $a\le p_1\le p_2\le a_{n_2}\le q_2\le q_1b$.

Vznikne tak posloupnost $\{p_k\}$, $\{a_{n_k}\}$, $\{q_k\}$ a $a \le p_k \le a_{n_k} \le q_k \le b \ \forall k \in \mathbb{N}$. Je

$$|p_k - q_k| = \frac{b - k}{2^k}$$

Podle věty 21 má $\{p_k\}$, $\{q_k\}$ limitu $p_k \to p$, $q_k \to q$. Ježto $0 \le |p_k - q_k| = \frac{b-k}{2^k}$, je $|p-q| = \lim |p_k - q_k| = \lim \frac{b-k}{2^k} = 0 \Rightarrow p = q$. Podle věty 19 má limitu i $\{a_{n_k}\}$ rovnou p = q díky nerovnosti $a \le a_{n_k} \le b$ konečnou.

Věta 31 (Bolzano-Cauchyova podmínka konvergence). Posloupnost $\{a_n\}$ má vlastní (tj. konečnou) limitu právě když splňuje tzv. Bolzano-Cauchyovu podmínku.

$$\forall \varepsilon > 0 \ \exists k(\varepsilon) \in \mathbb{N}, \ \check{z}e \ |a_m - a_n| < \varepsilon \ \forall n, m \ge k(\varepsilon)$$
 (2.8)

Důkaz.

- \Rightarrow $\{a_n\}$ měj konečnou limitu, označme ji $a \in \mathbb{C}$. Buď $\varepsilon > 0$. Pak existuje $k(\varepsilon) \in \mathbb{N}$, že $|a_n a| < \varepsilon \ \forall n \geq k$, takže pro $m, n \geq k$ je $|a_m a_n| = |a_m a + a a_n| \leq |a_m a| + |a_n a| \leq 2\varepsilon$, což je (2.8).
- \Leftarrow Ukážeme nejdřív, že splňuje-li a_n podmínku (2.8), je omezená. Nechť tedy platí (2.8). Zvolíme-li tam třeba $\varepsilon=1$, pak tedy existuje index $k(1)\in\mathbb{N}$, že $|a_m-a_n|<1$ $\forall n,m\geq k(1)$. To tudíž platí i pro n=k(1), takže $\left|a_m-a_{k(1)}\right|<1$ $\forall m\geq k(1)$. To je $a_{k(1)}-1< a_m< a_{k(1)}+1$ $\forall m\geq k(1)$. Je tedy $\{a_n\}$ omezená shora (zdola) číslem $a_{k(1)}+1$ $(a_{k(1)}-1)$ od n=k(1), je tedy omezená.

Podle věty 30 existuje $\{a_{n_k}\}_{k=1}^{\infty}$ z $\{a_n\}$, která konverguje, její limitu označme a. Ukážeme, že $a_n \to a$. Buď $\varepsilon > 0$, podle (2.8) existuje $\tilde{k}(\varepsilon) \in \mathbb{N}$, že

$$|a_m - a_n| < \varepsilon \ \forall m, n > \tilde{k}(\varepsilon) \tag{2.9}$$

Protože $a_{n_k} \xrightarrow{k \to \infty} a$, je $k'(\varepsilon) \in \mathbb{N}$, že

$$|a_{n_k} - a| < \varepsilon \ \forall k \ge k'(\varepsilon)^1$$
 (2.10)

¹lze vzít $k'(\varepsilon) \geq \tilde{k}(\varepsilon)$

Pro
$$n \ge n_{k'(\varepsilon)}$$
, pak je (protože $n_{k'} \ge k' \ge \tilde{k}$) $|a_n - a| \le \underbrace{\left|a_n - a_{n_{k'}}\right|}_{< \varepsilon \text{ podle (2.9)}} + \underbrace{\left|a_{n_{k'}} - a\right|}_{< \varepsilon \text{ podle (2.10)}} < 2\varepsilon$

Věta 32 (Stolzova). Nechť $\{y_n\}$ roste a $y_n \to \infty$. Pak existuje-li $\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}}$, existuje i $\lim \frac{x_n}{y_n}$ a jsou stejné.

 $D\mathring{u}kaz.$ 1. Jsou-li zlomky $\frac{p_1}{q_1}$ a $\frac{p_2}{q_2}$ mezi reálnými čísly a a b, a < b $(a < \frac{p_1}{q_1} < \frac{p_2}{q_2} < b)$ a je-li $q_1 > 0,$ $q_2 > 0,$ je $a < \frac{p_1 + p_2}{q_1 + q_2} < b.$

Skutečně, je-li $a < \frac{p_1}{q_1} < b$, $a < \frac{p_2}{q_2} < b$, $q_1 > 0$, $q_2 > 0$, je $aq_1 < p_1 < bq_1$, $aq_2 < p_2 < bq_2$, takže $a(q_1 - q_2) < p_1 + p_2 < b(q_1 + q_2)$, odkud už přímo dostaneme $a < \frac{p_1 + p_2}{q_1 + q_2} < b$.

2. Pomocí dokázaného v 1. se budeme snažit z $\frac{x_n-x_{n-1}}{y_n-y_{n-1}}$ dostat pryč x_{n-1} a y_{n-1} .

Nechť existuje $l=\lim\frac{x_n-x_{n-1}}{y_n-y_{n-1}}$ a buď nejdřívlkonečné. Pak

$$\forall \varepsilon > 0 \ \exists k'(\varepsilon) \in \mathbb{N}, \ \check{\text{ze}} \ \left| \frac{x_n - x_{k'}}{y_n - y_{k'}} - l \right| < \varepsilon \ \forall n > k'$$
 (2.11)

Skutečně, buď $\varepsilon > 0$. Existence a konečnost l zaručuje, že

$$\exists k' \in \mathbb{N}, \, \text{\'{z}e} \left| \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - l \right| < \varepsilon \, \forall n > k'$$
 (2.12)

tj. $l-\varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < l + \varepsilon \ \forall n \geq k'.$ Je ale

$$\frac{x_n - x_{k'}}{y_n - y_{k'}} = \frac{x_n - x_{n-1} + x_{n-1} - x_{n-2} + x_{n-2} - \dots + x_{k'+1} - x_{k'}}{y_n - y_{n-1} + y_{n-1} - y_{n-2} + y_{n-2} - \dots + y_{k'+1} - y_{k'}}$$

a protože $y_j - y_{j-1} > 0 \ \forall j \geq k'$, plyne (2.11) z (2.12) podle bodu 1.

3. Je $\frac{x_n - x_{k'}}{y_n - y_{k'}} = \frac{\frac{x_n}{y_n} - \frac{x_{k'}}{y_n}}{1 - \frac{y_{k'}}{y_n}}$ což umožňuje vyjádřit $\frac{x_n}{y_n}$ pomocí $\frac{x_n - x_{k'}}{y_n - y_{k'}}$:

$$\frac{x_n}{y_n} = \frac{x_n - x_{k'}}{y_n - y_{k'}} \cdot \left(1 - \frac{x_{k'}}{y_n}\right) + \frac{x_{k'}}{y_n}$$

a tak

$$\frac{x_n}{y_n} - l = \frac{x_n - x_{k'}}{y_n - y_{k'}} - l - \frac{x_n - x_{k'}}{y_n - y_{k'}} \cdot \frac{y_{k'}}{y_n} + \frac{x_{k'}}{y_n}$$

načež

$$\left| \frac{x_n}{y_n} - l \right| \le \left| \frac{x_n - x_{k'}}{y_n - y_{k'}} - l \right| + \left| \frac{x_n - x_{k'}}{y_n - y_{k'}} \right| \cdot \left| \frac{y_{k'}}{y_n} \right| + \left| \frac{x_{k'}}{y_n} \right| \quad \text{pro } n > k'$$
 (2.13)

4. Buď $\varepsilon > 0$. Podle (2.11) je posloupnost $\left\{\frac{x_n - x_{k'}}{y_n - y_{k'}}\right\} n > k'$ omezená (omezující konstantu označme K a buď K > 0).

Protože $y_n \to \infty$, existuje, např. díky aritmetice limit, $k(\varepsilon)$, že

$$\left| \frac{y_{k'}}{y_n} \right| < \varepsilon, \left| \frac{x_{k'}}{y_n} \right| < \varepsilon \qquad \forall n \ge \tilde{k}(\varepsilon)$$
 (2.14)

Pro $n \geq k = \max\left(k'(\varepsilon), \tilde{k}(\varepsilon)\right)$ je pak podle (2.11), (2.12), (2.13) a (2.14)

$$\left| \frac{x_n}{y_n} - l \right| \le \varepsilon + K \cdot \varepsilon + \varepsilon = (2 + K) \cdot \varepsilon$$

Čímž máme důkaz pro $l \neq \infty$ hotov.

5. Pokud máme $l=\infty$, pak ke K=1 existuje $k\in\mathbb{N}$, že

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} > 1 \qquad \forall n \ge k$$

odkud $x_n - x_{n-1} > y_n - y_{n-1} > 0 \ \forall n \ge k.$

Takže jednak $x_n > x_{n-1} \ \forall n \ge k$ a

$$\begin{array}{rcl} x_n - x_k & = & x_n - x_{n-1} + x_{n-1} - x_{n-2} + x_{n-2} - \dots + x_{k+1} - x_k > \\ & > & y_n - y_{n-1} + y_{n-1} - y_{n-2} + y_{n-2} - \dots + y_{k+1} - y_k = \\ & = & y_n - y_k \quad \forall n \ge k \end{array}$$

a z toho plyne, že $x_n > y_n + x_k - y_k$ a protože $y_n \to \infty$, tak podle věty 19 $x_n \to \infty$ a navíc podle věty 17 $x_n > 0 \ \forall n \ge k^* \in \mathbb{N}$.

Je tedy $x_n > x_{n-1} \ \forall n \geq k$ a $x_n \to \infty$, navíc $\frac{y_n - y_{n-1}}{x_n - x_{n-1}}$ má konečnou limitu $\frac{1}{l} = \frac{1}{\infty} = 0$ a tak lze na posloupnost $\left\{\frac{y_n}{x_n}\right\}$ použít už dokázaného, což dává: $\left\{\frac{y_n}{x_n}\right\}$ má limitu a ta je rovna nule. Je však $\frac{y_n}{x_n} > 0 \ \forall n \geq k^*$ a tak podle věty 16 má převrácená hodnota $\frac{x_n}{y_n}$ limitu ∞ .

Důsledek 33.

1. Jestli $a_n \to a,$ pak $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$ má limitu a ta se rovná a.

2.
$$\frac{1+\sqrt{2}+\sqrt[3]{3}+\cdots+\sqrt[n]{n}}{n} \to 1$$

3.
$$\lim_{n\to\infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}$$
 $(k \in \mathbb{N})$

4.
$$\lim_{n\to\infty} n\left(\frac{1^k+2^k+\cdots+n^k}{n^{k+1}}-\frac{1}{k+1}\right)\to \frac{1}{2}$$

Důkaz.

1. Ve větě 32 položíme $x_n = a_1 + a_2 + a_3 + \cdots + a_n, y_n = n$.

2. V předchozím bodě položíme $a_n = \sqrt[n]{n}$ a užijeme toho, že $\sqrt[n]{n} \to 1$. To platí, protože $\sqrt[n]{\equiv} 1 + h_n \Rightarrow n = (1 + h_n)^n > 1 + \binom{n}{2} h_n^2 \Rightarrow \frac{n-1}{\binom{n}{2}} > h_n^2 \Rightarrow \frac{2}{n} > h_n^2 \Rightarrow h_n \to 0$ (věta 19).

3. Ve větě 32 položíme $x_n=1^k+2^k+\cdots+n^k,\,y_n=n^{k+1}.$ Pak je

$$\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \lim_{n \to \infty} \frac{n^k}{n^{k+1} - (n-1)^{k+1}} = \lim_{n \to \infty} \frac{n^k}{(k+1) \, n^k + \dots \, {}_{\text{(bin. věta)}}} = \frac{1}{k+1}$$

4.

$$\lim_{n \to \infty} n \left(\frac{1^k + 2^k + \dots + n^k}{n^{k+1}} - \frac{1}{k+1} \right) = \lim_{n \to \infty} \left(\frac{1^k + 2^k + \dots + n^k}{n^k} - \frac{n}{k+1} \right) = \lim_{n \to \infty} \frac{(k+1) \cdot \left(1^k + 2^k + \dots + n^k\right) - n^{k+1}}{(k+1) n^k}$$

Podle věty 32 to je

$$\lim_{n \to \infty} \frac{(k+1) n^k - n^{k+1} + (n-1)^{k+1}}{(k+1) \left(n^k - (n-1)^k\right)} = \lim_{n \to \infty} \frac{\binom{n+1}{2} n^{k-1} + \dots}{(k+1) \cdot k \cdot n^{k-1} + \dots} = \frac{\binom{k+1}{2}}{k(k+1)} = \frac{1}{2}$$

 $P\check{r}iklad$ 34. Posloupnost $a_n = \left(1 + \frac{1}{n}\right)^n$ roste a je shora omezená, má tedy podle věty 21 konečnou limitu, která se označuje e. Platí $2 < e \le 3$. Navíc je $e = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}\right)$ $D\mathring{u}kaz$.

1. Důkaz monotónnosti

$$\begin{split} a_n &= \left(1 + \frac{1}{n}\right)^n = 1 + \sum_{k=1}^n \binom{n}{k} \frac{1}{k} = 1 + \sum_{k=1}^n \left[\frac{n(n-1)\cdots(n-k+1)}{k!} \frac{1}{n^k}\right] = 1 + \sum_{k=1}^n \frac{1\left(1 - \frac{1}{n}\right)\cdots\left(1 - \frac{k-1}{n}\right)}{k!} \\ a_{n+1} &= \left(1 + \frac{1}{n+1}\right)^{n+1} = \dots = 1 + \sum_{k=1}^{n+1} \frac{1\left(1 - \frac{1}{n+1}\right)\cdots\left(1 - \frac{k-1}{n+1}\right)}{k!} \\ \left(1 - \frac{1}{n+1}\right) &\geq \left(1 - \frac{1}{n}\right) \text{ až } \left(1 - \frac{k-1}{n+1}\right) \geq \left(1 - \frac{k-1}{n}\right), \text{ navíc má součet o jeden prvek navíc, tedy} \\ a_{n+1} &\geq a_n. \end{split}$$

2.

$$a_n = 1 + 1 + \sum_{k=2}^{n} \frac{1\left(\frac{1}{n}\right)\cdots\left(\frac{1-k-1}{n}\right)}{k!}$$
 (2.15)

$$1 + 1 + \sum_{k=2}^{n} \frac{1\left(\frac{1}{n}\right) \cdots \left(\frac{1-k-1}{n}\right)}{k!} < 2 + \sum_{k=2}^{n} \frac{1}{k!} < 2 + \sum_{k=2}^{n} \frac{1}{2^{k-1}} = 2 + 1 - 2^{\frac{1}{n+1}} < 2 + 1 < 3$$

Je tedy $2 \le a_n \le 3$, odkud $2 \le \lim a_n \le 3$ dle 18, ale $\{a_n\}$ roste a tak $a_n < a_n < 3 \, \forall n, k \in \mathbb{N}, n \ge k$, limitou $n \to \infty$ a připevněním k plyne: $a_k < e < 3 \, \forall k \in \mathbb{N}$ a pro k = 2 dává $a_2 = \left(1 + \frac{1}{2}\right)^2 > 2$, takže $2 < a_2 \le e \le 3$.

3. Označíme-li $b_n = 1 + \sum_{k=1}^n \frac{1}{k!}$ a nahradíme v (2.15) v součtu závorky jedničkami, dá to $a_n \le b_n \, \forall n \ge 2$, odkud $e \le \lim b_n \; (\{b_n\} \text{ má limitu, neb očividně roste}).$

Ohleduplný úvod do základů teorie množin

Definice 35. Zobrazení f množiny A do množiny B nazveme prostým jestli platí: mají-li dva prvky z A stejný obraz, jsou totožné, tj. $x,y\in A, f(x)=f(y)\Rightarrow x=y$ (nebo $x,y\in A, f(x)\neq f(y)\Rightarrow x\neq y$).

Také se říká, že f zobrazuje A do B prostě.

Řekneme, že f zobrazuje A na B jestli $f(a)=\{f(x)\,,x\in A\}=B$, tj. $\forall y\in B\ \exists x\in A,$ že f(x)=y.

Důsledek 36. Jestli f zobrazuje prostě A na B, pak $\forall y \in B \exists ! x \in A$, že f(x) = y. Lze tedy ke každému prvku z B jednoznačně přiřadit jeho vzor $x \in A$ (tj. takové $x \in A$, že f(x) = y). Vznikne tak zobrazení B na A (opět prosté), jež se označuje f^{-1} a říká se mu inverzní zobrazení k f. Je tedy $f^{-1}: B \to A$. Vztahy y = f(x) a $x = f^{-1}(y)$ jsou pro $x \in A, y \in B$ rovnocenné.

Definice 37. Řekněme, že množiny A a B mají stejnou mohutnost, jestliže existuje prosté zobrazení A na B a B na A.

Definice 38. Množinu A nazveme spočetnou, existuje-li prosté zobrazení množiny $\mathbb N$ na A. Tj. zobrazení $a:\mathbb N\to A$. Jinak řečeno, jestli lze A uspořádat do posloupnosti, nebo jestli A lze "očíslovat", tj. jestli $A=\{a(1),a(2),\dots\}$.

Nazveme ji nejvýše spočetnou, je-li spočetná nebo konečná. (Někdy se spočetnou rozumí nejvýše spočetná)

Věta 39. Buď A_n spočetná $\forall n \in \mathbb{N}$. Pak je $\bigcup_{n=1}^{\infty} A_n$ spočetná (spočetné sjednocení spočetných množin je spočetná množina)

 $D\mathring{u}kaz$. Uspořádáme spočetné množiny A_1, A_2, \ldots do posloupností

$$A_1 = \{a_{11}, a_{12}, \dots\},\$$

 $A_2 = \{a_{21}, a_{22}, \dots\},\$
 $A_3 = \{a_{31}, a_{32}, \dots\},\$

Prosté zobrazení $b: \mathbb{N} \to \bigcup_{n=1}^{\infty}$ buď třeba takovéto: $b(1) = a_{11}, \, b(2) = a_{12}, \, b(3) = a_{21}, \, b(4) = a_{13}, \, b(5) = a_{22}, \, b(6) = a_{31}, \, b(7) = a_{14}, \, \ldots$ dál od rohu.

Důsledek 40. Jsou-li A_1, A_2, \ldots, A_n spočetné, je i $A = A_1 \times A_2 \times \cdots \times A_n$ spočetná.

$$\begin{array}{rcl} \textit{D\'ukaz.} \;\; \textit{Je-li} \;\; n=2, \; A_1=\{a_{11},a_{12},\dots\}, \; A_2=\{a_{21},a_{22},\dots\}, \; \textit{je} \\ \\ &A_1\times A_2 &=& \{[a_{11},a_{21}],[a_{11},a_{22}],[a_{11},a_{23}],\dots\} \cup \\ \\ &\cup & \{[a_{12},a_{21}],[a_{12},a_{22}],[a_{12},a_{23}],\dots\} \cup \\ \\ &\cup & \{[a_{13},a_{21}],[a_{13},a_{22}],[a_{13},a_{23}],\dots\} \cup \\ \\ &\cup & \dots \end{array}$$

Je to $\bigcup_{i=1}^{\infty} \{[a_{1i}, a_{21}], [a_{2i}, a_{22}], \dots\}$, což je spočetné sjednocení spočetných množin a podle věty 39 je tedy rovněž spočetné.

Věta 41. Každá (nekonečná) část spočetné množiny je spočetná.

 $D\mathring{u}kaz$. Je-li $B \subset A = \{a_1, a_2, \dots\}$, buď f(1) první index pro který je $a_{f(1)} \in B$, f(2) první index, pro který je $a_{f(2)} \in B - \{a_{f(1)}\}$, ... Máme-li už $a_{f(k)} \in B - \{a_{f(1)}, a_{f(2)}, \dots, a_{f(k-1)}\}$, $k \geq 2$, buď f(k+1) nejmenší index, že $a_{f(k+1)} \in B - \{a_{f(1)}, a_{f(2)}, \dots, a_{f(k)}\}$ a tak f prostě zobrazuje $\mathbb N$ na B.

Důsledek 42 (věty 39). Množina Q všech racionálních čísel je spočetná.

 $D\mathring{u}kaz$. $\mathbb{Q} \subset \{\frac{p}{q}|p\in\mathbb{Z},q\in\mathbb{N}\} \equiv \mathbb{N}\times Z$, obě množiny jsou spočetné a můžeme uplatnit důsledek 40

Tvrzení 43. Množina všech posloupností z nul a jedniček není spočetná.

 $D\mathring{u}kaz$. D $\mathring{u}kaz$ provedeme sporem. Označme tu množinu P a předpokládejme, že je spočetná. Tj. lze ji uspořádat do posloupnosti $\{p^1, p^2, \dots\}$. Je tedy

$$p^{1} = \{p_{1}^{1}, p_{1}^{2}, \dots\}$$

$$p^{2} = \{p_{2}^{1}, p_{2}^{2}, \dots\}$$

$$p^{3} = \{p_{3}^{1}, p_{3}^{2}, \dots\}$$

Nyní vytvořme posloupnost $q = \{q_1, q_2, \dots\}$, kde $q_j = 0$ jestli $p_j^i = 1$ a $q_j = 1$ jestli $q_j = 0$. Posloupnost q pak není žádná z p^1, p^2, \dots , co

Důsledek 44. \mathbb{R} není spočetná.

 $D\mathring{u}kaz$. Buď P množina všech posloupností z nul a jedniček, každé $a=\{a_1,a_2,\dots\}\in P$ přiřadíme číslo $s(a)=\sum\limits_{k=1}^{\infty}\frac{a_k}{2^k}$. Je $s(a)\in\langle 0,1\rangle$ a tak vzniká zobrazení $s:P\to\langle 0,1\rangle$. To však není prosté: jsou-li $a=\{a_1,a_2,\dots\},\ b=\{b_1,b_2,\dots\}\in P$ takové, že pro nějaké $k\geq 1$ je $a_k=0,\ b_k=1$ a $a_j=1,\ b_j=0\ \forall j>k$ a je-li k>1, je $a_j=b_j\ \forall j=1,\dots,k-1$, pak s(a)=s(b).

Příklad takových a a b je následující:

$$a = \{a_1, a_2, \dots, a_{k-1}, 1, 0, 0, \dots\}$$

 $b = \{a_1, a_2, \dots, a_{k-1}, 0, 1, 1, \dots\}$

Označme $P'=\{\{a_1,a_2,\dots\}\in P|a_k=0,a_{k+1}=a_{k+2}=\dots=1\text{ pro nějaké }k\geq 1\}.$ Je $P=\bigcup_{k=1}^\infty P_k$, kde $P_k=\{\{a_1,a_2,\dots\}\in P|a_k=0,a_j=1\ \forall j>k\}.$ Je P_k spočetná (dokonce konečná) $\forall k$, a tak P je spočetná a P-P' tedy není spočetná, jinak by $P=(P-P')\cup P'$ byla spočetná.

 $s': (P-P') \to \langle 0, 1 \rangle$ je prosté: je-li $a = \{a_1, a_2, \dots\}, b = \{b_1, b_2, \dots\} \in P-P', a \neq b$, existuje k, že $a_k \neq b_k$. Buď třeba $a_k < b_k$, tj. $a_k = 0$, $b_k = 1$. Protože $a \in P-P'$, není $a_{k+1} = a_{k+2} = \dots = 1$ a tedy s'(a) < s'(b), takže s' je prosté zobrazení nespočetné množiny P-P' do $\langle 0, 1 \rangle$, je tedy s'(P-P') nespočetná a tak $\langle 0, 1 \rangle$ obsahuje nespočetnou podmnožinu, nemůže být tedy podle věty 41 spočetná. Podle téže věty je tedy i $\mathbb R$ nespočetná.

Poznámka 45. Řekněme, že mohutnost množiny A je menší než mohutnost množiny B (moh $A < \operatorname{moh} B$), jestliže je nějaké prosté zobrazení A do B, ale žádné B do A. Tzv. hypotéza kontinua předpokládá, že není množina C, pro níž platí moh $\mathbb{N} < \operatorname{moh} C < \operatorname{moh} \mathbb{R}$.

Limity funkcí

Definice 46. Reálnou (komplexní) funkcí na množině M se rozumí zobrazení $f: M \to \mathbb{R}$ (\mathbb{C}). Funkci f nazveme shora (zdola) omezenou na M, jestli existuje nějaké číslo $k(K) \in \mathbb{R}$, že $f(x) \leq K \ \forall x \in M$, resp. $f(x) \geq k \ \forall x \in M$. Nazveme ji omezenou, je-li omezená jak shora, tak zdola. To je totéž jako to, že $\exists K > 0$ takové, že $|f(x)| \leq K \ \forall x \in M$.

Definice 47. Buď te $a, A \in \mathbb{R}$. Řekneme, že funkce f má v bodě a limitu A (resp. $\pm \infty$), jestli

$$\forall \varepsilon > 0 \exists \delta > 0$$
, že $|f(x) - A| < \varepsilon \ \forall 0 < |x - a| < \delta$

resp.

$$\forall K \in \mathbb{R} \ \exists \delta > 0, \ \text{\'ee} \ f(x) > K \ \forall 0 < |x - a| < \delta$$

 $\forall K \in \mathbb{R} \ \exists \delta > 0, \ \text{\'ee} \ f(x) < K \ \forall 0 < |x - a| < \delta$

Píšeme $\lim_{x\to a} f(x) = A(\text{resp. } \pm \infty).$

Řekneme, že f má v a limitu A ($\pm \infty$) zprava, jestli

$$\forall \varepsilon > 0 \; \exists \delta > 0, \; \text{\'e} \; |f(x) - A| < \varepsilon \; \forall x \in (a, a + \delta)$$

$$\forall K \in \mathbb{R} \; \exists \delta > 0, \; \text{\'e} \; f(x) > K \; \forall x \in (a, a + \delta)$$

$$\forall K \in \mathbb{R} \; \exists \delta > 0, \; \text{\'e} \; f(x) < K \; \forall x \in (a, a + \delta)$$

Píše se $\lim_{x\to a+} f(x) = A$ (resp. $\pm\infty$). Obdobně se zavádí limita f v a zleva (místo $a < x < a + \delta$ se bere $a - \delta < x < a$) a píše se $\lim_{x\to a-} f(x) = A$ (resp. $\pm\infty$). Místo příslušných limit zprava (zleva) se někdy psává f(a+), resp. f(a-).

Řekneme, že f má v ∞ limitu $A \in \mathbb{R}$ (resp. $\pm \infty$) jestli $\forall \varepsilon > 0 \ \exists k \in \mathbb{R}$, že $|f(x) - A| < \varepsilon$ ($\forall K \ \exists k \in \mathbb{R}$, že f(x) > k, resp. f(x) < k). Píše se $\lim_{x \to \infty} f(x) = A$ (resp. $\pm \infty$). U $-\infty$ se místo $x \geq k$ bere $x \leq k$ a píše se $\lim_{x \to -\infty} f(x) = A$ (resp. $\pm \infty$).

Poznámka 48.

- 1. Aby měla f limitu (zleva, zprava), musí být dána na nějakém $P(a,\delta) = \{x \in \mathbb{R} | 0 < |x-a| < \delta\}$ ($(a-\delta,a),\,(a,a-\delta)$), $\delta>0$. Této množině se říká prstencové (levé, pravé) δ -okolí bodu a. Není-li δ nutné uvádět, píše se jen P(a) ($P^+(a),\,P^-(a)$).
 - Množině (K, ∞) $((-\infty, K))$ lze říkat okolí nekonečna $(-\infty)$.
- 2. Definice $\lim_{x\to a} f(x) = A$ má smysl i pro komplexní funkci komplexní proměnné x pro $a,A\in\mathbb{C}.$
- 3. Má-li f v bodě a vlastní (tj. konečnou) limitu, je na nějakém $P(a, \delta)$ omezená (totéž pro lim v $\pm \infty$), například čísly A-1 a A+1.

Věta 49. f má v $a \in \mathbb{R}$ limitu právě když tam má limitu zprava i zleva a jsou stejné. V tom případě je hodnota limity rovna hodnotě obou jednostranných limit.

 $D\mathring{u}kaz$. Nechť $\exists \lim_{x\to\infty} f(x) = A$ a buď třeba $A\in\mathbb{C}.\ \forall \varepsilon>0\ \exists \delta>0,$ že $|f(x)-A|<\varepsilon\ \forall 0<0$ $|x-a| < \delta$ a tak tím spíš $\forall \varepsilon > 0 \; \exists \delta > 0$, že $|f(x)-A| < \varepsilon \; \forall a < x < a + \delta \; (a-\delta < x < a)$, což znamená, že $A = \lim_{x\to a+} f(x)$ $(A = \lim_{x\to a-} f(x))$.

Jestli naopak existuje f(a+), f(a-) a jsou stejné (označme je $A \in \mathbb{C}$), pak to znamená, že

$$\forall \varepsilon > 0 \ \exists \delta' > 0, \ \text{\'ze} \ |f(x) - A| < \varepsilon \ \forall a < x < a + \delta'$$
 (4.1)

$$\forall \varepsilon > 0 \ \exists \tilde{\delta} > 0, \ \text{\'e} \ |f(x) - A| < \varepsilon \ \forall a - \tilde{\delta} < x < a$$
 (4.2)

takže je-li $\varepsilon > 0$, položme $\delta = \min \delta(\varepsilon)$, $\tilde{\delta}(\varepsilon)$. Pro $0 < |x - a| < \delta$ pak platí (4.1) i (4.2) a tedy $|f(x) - A| < \varepsilon \ \forall x \in P(a, \delta).$

Případy, kdy
$$A = \infty \ (-\infty)$$
 se dokážou obdobně.

Důsledek 50. Má-li f v $a \in \mathbb{R}$ (\mathbb{C}) vlastní (tj. konečnou) limitu (zleva, zprava), je na nějakém prstencovém okolí $P(a,\delta)$ ($P^+(a,\delta)$, $P^-(a,\delta)$) omezená. Má-li ji u ∞ ($-\infty$), je omezená na nějakém okolí ∞ $(-\infty)$.

 $D\mathring{u}kaz$. Buď třeba $a \in \mathbb{R}$, $\lim_{x\to a} f(x) = A \in \mathbb{R}$. Pak k $\varepsilon = 1 \; \exists \delta > 0$, že $|f(x) - A| < \varepsilon \; \forall 0 < 0$ $|x-a| < \delta$, tj. $A-\varepsilon < f(x) < A+\varepsilon \ \forall x \in P(a,\delta)$ a tak pro $x \in P(a,\delta)$ je $||f(x)|-|A|| \le \delta$ $|f(x) - A| < \varepsilon$, odkud $|f(x)| < |A| + \varepsilon$.

Věta 51 (Heineho o vztahu limity funkce a posloupnosti). Funkce f má v $a \in \mathbb{R}$ (\mathbb{C}) limitu právě když platí

$$\forall \{a_n\} \subset \mathbb{R}(\mathbb{C}) \ takov\'e, \ \check{z}e \ a_n \to a, \ ale \ a_n \neq a \ \forall n, \ existuje \ \lim f(a_n)$$

Je-li tato podmínka splněna, je $\lim_{n\to\infty} f(a_n)$ stejná \forall takové posloupnosti a $\lim_{x\to a} f(x)$ se jí rovná.

 $D\mathring{u}kaz. \Rightarrow : \text{Je-li } \lim_{x\to a} f(x) = A, \text{ kde třeba } a, A \in \mathbb{C}, \text{ Bud' } \{a_n\} \subset \mathbb{C}, \ a_n \to a, \ a_n \neq a \ \forall n \in \mathbb{N}.$ Ukážeme, že $\{f(a_n)\}$ má limitu a.

Buď $\varepsilon > 0$. Protože $f(x) \xrightarrow{x \to a} A$, $a \subset \mathbb{C}$, existuje $\delta > 0$, že

$$|f(x) - A| < \varepsilon \,\forall 0 < |x - a| < \delta \tag{4.3}$$

Protože $a_n \to a$, tak $\exists k(\delta) \in \mathbb{N}$, že $|a_n - a| < \delta \ \forall n \geq k$. Ježto $a_n \neq a$, $\forall n \in \mathbb{N}$, je navíc

 $0 < |a_n - a| < \delta$ a podle (4.3) je $|f(a_n) - A| < \varepsilon \ \forall n \ge k$ a tak má $\{f(a_n)\}$ limitu (rovnou A). \Leftarrow : Nechť platí podmínka věty 51. Jestli $\{a_n\}, \{b_n\} \subset \mathbb{C}, \ a \in \mathbb{C}, \ a_n \to a, \ b_n \to a, \ a_n \ne a,$ $b_n \neq a \ \forall n \in \mathbb{N},$ pak $\{f(a_n)\}$ i $\{f(b_n)\}$ má limitu. Posloupnost $\{a_1,b_1,a_2,b_2,\dots\}$ opět jde ka(podle věty 25) a má členy různé od $a \forall n$, takže podle podmínky věty 51 má posloupnost

$$\{f(a_1), f(b_1), f(a_2), \dots\}$$

limitu. Ale $\{f(a_n)\}$ a $\{f(b_n)\}$ z ní jsou vybrané a tak mají limitu stejnou (věta 23). Označme ji A a buď třeba $A \in \mathbb{C}$. Ukážeme, že $\lim_{x\to a} f(x) = A$.

K důkazu (sporem) předpokládáme, že $\lim_{x\to a} f(x)$ není A. To pak

$$\exists \varepsilon_0 > 0 \ \forall \delta_n = \frac{1}{n} \ \exists x_n \in \mathbb{C}, \ 0 < |x_n - a| < \delta_n = \frac{1}{n}, \ \text{\'ze} \ |f(x) - A| \ge \varepsilon$$

Jelikož $0<|x_n-a|<\frac{1}{n}\ \forall n\ \text{a}\ \frac{1}{n}\to 0$, je jednak $x_n\to a$ (19), jednak $x_n\neq a\ \forall n$. Ale protože $|f(x_n)-A|\geq \varepsilon_0$, není $f(x_n)\to A$, což je spor.

Poznámka 52. Věta 51 pro jednostranné limity má tvar: Funkce reálné proměnné má v $a \in \mathbb{R}$ limitu zleva (zprava) právě když

$$\forall \{a_n\} \subset \mathbb{R}$$
 takové, že $a_n \to a$, ale $a_n < a \ \forall n \quad (a_n > a \ \forall n)$, existuje $\lim_{n \to \infty} f(a_n)$

Je-li tato podmínka splněna, je $\lim_{n\to\infty} f(a_n)$ stejná pro všechny takové posloupnosti $\{a_n\}$ z této podmínky a $\lim_{x\to a^-} f(x)$ ($\lim_{x\to a^+} f(x)$) je rovna jejich společné hodnotě.

Důsledek 53. Značka lim nechť znamená v každém tvrzení kteroukoliv z $\lim_{x \to a}$, $\lim_{x \to a+}$, $\lim_{x \to a-}$, $\lim_{x \to a-}$

- 1. f má nejvýše jednu limitu.
- 2. (aritmetika limit): existuje-li $\lim f$ a $\lim g$, pak
 - (a) $\lim (f+g) = \lim f + \lim g$
 - (b) $\lim fg = \lim f \cdot \lim g$
 - (c) $\lim \frac{f}{g} = \frac{\lim f}{\lim g}$

má-li pravá strana smysl (tj. pak existuje lim nalevo a platí rovnost).

Důkaz.

1. Nechť třeba

$$\lim_{x \to a} f(x) = A \tag{4.4}$$

$$\lim_{x \to a} f(x) = A \tag{4.4}$$

$$\lim_{x \to a} f(x) = B, \quad a \in \mathbb{C}$$

Buď $\{a_n\}$ takové, že $a_n \to a, a_n \neq a \ \forall n \in \mathbb{N}$. Podle věty 51 plyne z (4.4), že $\lim_{n\to\infty} f(a_n) =$ A a podle (4.5) $\lim_{x\to a} f(x) = B$ a podle věty 13 je A = B.

2. Nechť třeba jde o limitu $\lim_{x\to a^-} f(x)$ funkce reálné proměnné. Je-li $\{a_n\}\subset \mathbb{R}, a_n< a \ \forall n\in \mathbb{R}$ \mathbb{N} , $a_n \to a$ tak podle věty 51 implikace \Rightarrow platí $f(a_n) \to \lim f$, $g(a_n) \to \lim g$.

Má-li třeba smysl součin $\lim_{x \to \infty} f \cdot \lim_{x \to \infty} g$, má $\{f(a_n) \cdot g(a_n)\}$ limitu, a to $\lim_{x \to \infty} f \cdot \lim_{x \to \infty} g$. Podle věty 51 implikace \Leftarrow ji má i $f \cdot g$ a dokonce tutéž, je tedy dokázáno (b). Obdobně i pro další body (1) a (3).

Věta 54 (2. věta o limitě součinu). Jestli je $\lim_{x\to a} f(x) = 0$ a g(x) je omezená na nějakém prstencovém okolí bodu a, pak existuje i limita $\lim_{x\to a} f(x) \cdot g(x)$ a je rovna 0.

Důkaz. Důkaz je podle věty 51.

Věta 55 (2. věta o limitě převrácené hodnoty). *Jestli je* $\lim_{x\to a} f(x) = 0$ a f(x) > 0 (< 0) na nějakém prstencovém okolí bodu a, pak existuje i limita $\lim_{x\to a} \frac{1}{f(x)}$ a je rovna ∞ ($-\infty$).

Důkaz. Důkaz je podle věty 51.

Věta 56 (o přenosu nerovností z funkce na limity). Buď $f(x) \leq g(x)$ na nějakém prstencovém okolí bodu a a nechť existuje $\lim_{x\to a} f(x)$ a $\lim_{x\to a} g(x)$. Pak platí $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$.

 $D\mathring{u}kaz$. Důkaz provedeme pomocí věty 51 sporem. Nechť $A = \lim_{x \to a} f(x) > B = \lim_{x \to a} g(x)$. Je-li $\{x_n\}$ taková posloupnost, že $x_n \to a, \ x_n \neq a \ \forall n \in \mathbb{N}, \ \mathrm{pak} \ f(x_n) \to A, \ g(x_n) \to B.$ Je $f(x_n) \mid \leq g(x_n) \ \forall n > k$, protože existuje $\delta > 0$, že na $P(a, \delta) = \{x \mid 0 < |x - a| < \delta\}$ je f(x) < g(x)a ježto $x_n \to a$, tak k $\delta > 0 \; \exists k \in \mathbb{N}$, že $|x_n - a| < \delta \; \forall n \ge k$. Navíc $x_n \ne a \; \forall a \; \text{a tak} \; 0 < |x_n - a| < \delta$, tj. $x_n \in P(a, \delta)$, odkud $A \leq B$, což je ale spor.

Věta 57 (o přenosu nerovnosti z limity na funkce). Nechť $\exists A = \lim_{x \to a} f(x), B = \lim_{x \to a} g(x)$ a bud' A < B. Pak $\exists \delta > 0$, že $f(x) < g(x) \ \forall x \in P(a, \delta)$.

 $D\mathring{u}kaz$. Větu si dokážeme sporem. Předpokládáme tedy, že takové $\delta>0$ není.

$$\forall \delta > 0 \ \exists x_{\delta} \in P(a, \delta), \text{ \'ze } f(x_{\delta}) \geq g(x_{\delta})$$

Mezi jiným to tedy platí i pro $\delta_n = \frac{1}{n}$, tj.

$$\forall n \in \mathbb{N} \ \exists x_n \in P\left(a, \frac{1}{n}\right), \text{ \'{e}} \ f(x_n) \geq g(x_n)$$

Je teda $0 < |x_n - a| < \frac{1}{n} \ \forall n \in \mathbb{N}$ a tak $x_n \to a$ (pro $n \to \infty$). Navíc $x_n \neq a \ \forall n$ a tak podle věty 51 $\exists \lim f(x_n) = A$, $\lim g(x_n) = B$ a je $A \geq B$, což je spor.

Věta 58 (o sevřené konvergenci). Na nějakém okolí $P(a, \delta)$ buď $f \leq g \leq h$ a nechť $\exists \lim_{x \to a} f(x) = A$ a $\lim_{x \to a} h(x) = A$, pak $\exists \lim_{x \to a} g(x)$ a ta se rovná jejich společné hodnotě.

$$D\mathring{u}kaz$$
. Větou 51.

Definice 59. O reálné funkci f na intervalu $I \subset \mathbb{R}$ řekneme, že roste (neklesá, klesá, neroste), jestli $f(x_1) < f(x_2)$ ($f(x_1) \le f(x_2)$, $f(x_1) > f(x_2)$, $f(x_1) \ge f(x_2)$) $\forall x_1, x_2 \in I$, $x_1 < x_2$. Je-li f některá z těchto čtyř, nazveme ji monotónní. Jestli roste nebo klesá, nazveme ji ryze monotónní.

Věta 60. Buď f monotónní na intervalu $I \subset \mathbb{R}$. Není-li a jeho levý (pravý) krajní bod, existuje konečná limita funkce f(a-) (f(a+)). Je-li $a \in \mathbb{R}^*$ jeho levý (pravý) krajní bod, existuje f(a-) (f(a+)) - ta ale nemusí být konečná.

 $P\check{r}itom\ jestli\ f\ na\ I\ nekles\acute{a}\ (neroste),\ je\ f(a-) = \sup_{x\in I, x< a} f(x)\ (\inf_{x\in I, x< a} f(x))\ a\ f(a+) = \inf_{x\in I, x> a} f(x)\ (\sup_{x\in I, x> a} f(x)).$

 $D\mathring{u}kaz$. Nechť třeba f na I neklesá a $a \in I$ není levý krajní bod. Ukážeme třeba, že $\exists f(a-)$ a je to $s = \sup_{x \in I, x < a} f(x)$.

Protože je $f(x) \leq f(a) \ \forall x \in I, \ x < a$, je i $s \leq f(a)$ a a není levý krajní v I a tak $\exists \tilde{x} \in I$, $\tilde{x} < a$, odkud $f(\tilde{x}) \leq s$. A tak $f(\tilde{x}) \leq s \leq f(a)$, tzn. s je konečné. Ukážeme, že s = f(a-).

Buď $\varepsilon > 0$. Pak $s - \varepsilon < s$, proto $\exists x' \in I, \ x' < a$, že $f(x') > s - \varepsilon$ (věta 5) a protože f neklesá, je $f(x') \le f(x) \ \forall x' < x < a$. Takže $s - \varepsilon \le f(x) \le s < s + \varepsilon \ \forall x \in (x',a)$, což dokazuje žádané. Ostatní případy lze rozebrat obdobně.

Definice 61. O funkci f řekneme, že roste zleva (zprava) v bodě $a \in \mathbb{R}$, jestli $\exists \delta > 0$, že $f(x) < f(a) \ \forall x \in (a - \delta, a) \ (f(x) > f(a) \ \forall x \in (a, a + \delta).$

Obdobně se zavádí klesání f v a zleva a zprava.

Věta 62. f roste (klesá) na intervalu $I \subset \mathbb{R}$ právě když

- ullet roste (klesá) zleva v každém $a\in I$ který není případným levým krajním bodem I
- roste (klesá) zprava v každém $a \in I$ který není případným pravým krajním bodem I

 $D\mathring{u}kaz.$ \Rightarrow zjevné

 \Leftarrow je-li splněna podmínka věty, třeba v případě růstu, zvolme $x_1, x_2 \in I, \, x_1 < x_2;$ ukážeme, že $f(x_1) < f(x_2).$

Označme $A = \{x \in (x_1, x_2) | f(x) > f(x_1) \}$. Platí

- (a) $A \neq \emptyset$ neb $(x_1, x_1 + \delta') \subset A$ s nějakým $\delta' > 0$ (růst f v x_1 zprava)
- (b) jestli $\alpha \in A$, $\alpha < x_2$, tak $\exists \delta > 0$, že $(\alpha, \alpha + \delta) \subset A$ (růst f v α zprava)
- (c) $\sup A \in A$: nechť $b = \sup A$, je $b \ge x_1 + \delta'$ (z podbodu (a)) a tak je $b > x_1$, tudíž $\exists \delta > 0$, že

$$f(x) < f(b) \ \forall x \in (b - \delta, b)$$
 (4.6)

(růst f v b zleva)

Protože $b - \delta < b = \sup A$, existuje podle 2. vlastnosti supréma prvek $p \in A$, že $p > b - \delta$, takže $f(x_1) < f(p) \le f(b)$, což znamená, že $b \in A$.

Dokážeme, že $b = x_2$: je $b \le x_2$ a předpokládejme, že $b < x_2$. Protože $b \in A$ podle (c), je podle (b) $\langle b, b + \delta \rangle \subset A$ pro nějaké $\delta > 0$ a tak $b < \sup A = b$ a docházíme ke sporu. Je tedy $f(x_2) = f(b) > f(x_1)$.

Spojitost

Definice 63. Funkci f nazveme spojitou v $a \in \mathbb{C}$ jestli

- 1. f je v a definovaná
- 2. existuje $\lim_{x\to a} f(x)$
- 3. $\lim_{x \to a} f(x) = f(a)$

Funkci reálné proměnné nazveme spojitou v $a \in \mathbb{R}$ zprava (zleva) jestli

- 1. je v a definovaná
- 2. existuje f(a+) (f(a-))
- 3. f(a+) = f(a) (f(a-) = f(a))

Je-li f daná na okolí (pravém, levém) bodu a a neplatí bod 2 nebo 3, řekneme, že není v a spojitá nebo že je v a nespojitá, má v a nespojitost, a je jejím bodem nespojitosti, ... (zprava, zleva).

Definice 64. Nechť má f v $a \in \mathbb{R}$ nespojitost. Jestli existuje konečná f(a-) a f(a+), nazveme ji nespojitostí 1. druhu (ten skok), jinak jde o tzv. nespojitostí 2. druhu.

 $D\mathring{u}sledek$ 65. Funkce monotónní na intervalu $I\subset\mathbb{R}$ má v každém bodě z Inejvýš nespojitost 1. druhu.

Důsledek 66. Množina všech bodů nespojitosti monotónní funkce na intervalu je nejvýše spočetná.

 $D\mathring{u}kaz$. Buď f monotónní na intervalu $I, A \subset I$ množina jejích bodů nespojitosti. Je-li A konečná, je důkaz hotov, jinak každému $a \in A$ přiřadíme interval I_a mezi f(a-) a f(a+). Nechť třeba f neklesá, to pak je $I_a = (f(a-), f(a+))$.

V každém I_a vybereme racionální číslo r(a). Je-li $a, a' \in A, a \leq a',$ je f(a+) < f(a'-) (zvolme $b \in (a, a'),$ pro a < x < b < x' < a' je $f(x) \leq f(x'),$ odkud $f(a+) = \lim_{x \to a+} f(x) \leq f(x')$ $\forall b < x' < a',$ načež $f(a+) \leq \lim_{x \to a'-} f(x') = f(a'-)$.

Je tedy $r(a) < f(a+) \le f(a'-) < r(a')$, takže r je prosté zobrazení A do \mathbb{Q} . Protože je \mathbb{Q} spočetná (důsledek 42), $r(a) \subset \mathbb{Q}$, je i r(A) a i tedy A spočetná.

Věta 67 (Darbouxova vlastnost spojitých funkcí na intervalu). *Je-li f spojitá na intervalu I*, $a, b \in I$, pak nabývá všech hodnot mezi f(a) a f(b) (přesněji, je-li $a, b \in I$ a d mezi f(a) a f(b), pak je c mezi a a b, že f(c) = d).

 $D\mathring{u}kaz$. Buď $a,b\in I,\,a< b$ a třeba $f(a)\leq f(b)$. Je-li d jedno z f(a) nebo f(b), je buď to d=f(a) a pak c=a nebo d=f(b) a pak c=b.

Buď tedy f(a) < d < f(b) a označme $A = \{x \in \langle a, b \rangle, \text{ že } f(x) < d\}, c = \sup A$. Je $A \neq \emptyset$ (neb $a \in A$) a nemá největší prvek: je-li totiž $\alpha \in A$, pak z toho, že $\lim_{x \to \alpha} f(x) = f(\alpha)$ (spojitost f), existuje $\delta > 0$, že $f(x) < d \ \forall x \in (\alpha, \alpha + \delta)$, takže α není největší v A. Odtud plyne, že $c \notin A$, takže jednak c > a a jednak $f(c) \geq d$.

Kdyby bylo f(c) > d, existovalo by $\delta > 0$, že $f(x) > d \ \forall x \in (c - \delta, c + \delta)$ (spojitost f), takže $A \cap (c - \delta, c + \delta) = \emptyset$. Je $A \cap \langle c + \delta, b \rangle = \emptyset$ (jinak by bylo $c = \sup A \ge c + \delta$), načež $A \cap \langle c + \delta, b \rangle = A \cap [(c - \delta, c + \delta) \cup (c + \delta, b)] = [A \cap (c - \delta, c + \delta)] \cup [A \cap \langle c + \delta, b \rangle] = \emptyset$.

Tedy $c = \sup A \le c - \delta$, což je spor a platí f(c) = d.

Důsledek 68. Je-li f spojitá reálná funkce, na intervalu I, je f(I) interval.

 $D\mathring{u}kaz$. Je-li $p=\inf f(I), q=\sup f(I),$ je buď p=q a pak $f(I)=\{p\}$ nebo je p< q. Je-li pak p < d < q, existuje $a, b \in I$, že f(a) < d < f(b) a tedy podle věty 67 existuje c mezi a a b, že f(c) = d. Je tedy (inf f(I), sup f(I)) $\subset f(I) \subset (\inf f(I), \sup f(I))$, tedy f(I) je jedním z intervalů $\langle p,q\rangle, (p,q), \langle p,q\rangle, (p,q).$

Věta 69. Reálná funkce f spojitá na intervalu $\langle a,b \rangle \subset \mathbb{R}$ tam nabývá supréma a infíma – má tam tedy své maximum a minimum.

 $D\mathring{u}kaz$. Buď $s=\sup f(\langle a,b\rangle)$. Podle 2. vlastnosti supréma ke každému $n\in\mathbb{N}$ $\exists x_n\in\langle a,b\rangle$, že $s-\frac{1}{n} < f(x_n) \leq s$.

Podle věty 30 (z každé posl. lze vybrat konvergentní) vybereme z $\{x_n\}$ konvergentní $\{x_{n_k}\}_{k=1}^{\infty}$ a její limitu označíme l (pozor, vybrali jsme z x, l není limita ani hromadný bod f!). Pak $s - \frac{1}{n_k} \le 1$ $f(x_{n_k}) \leq s$ a limitou $(k \to \infty)$ odtud plyne: $s \leq \lim_{k \to \infty} f(x_{n_k}) = f(l) \leq s$ (rovnost plyne ze spojitosti funkce), tj. f(l) = s.

Věta 70 (O limitě složené funkce). Buďte $a, b \in \mathbb{R}^*$ a nechť

$$\lim_{x \to a} g(x) = b \tag{4.7}$$

$$\lim_{x \to a} g(x) = b$$

$$\lim_{x \to b} f(x) = A$$
(4.7)

 $Pak \lim_{x\to a} f(g(x)) = A \text{ jestli bud'to}$ $g(x) \neq b$ na nějakém okolí P(a) nebo f je v b spojitá.

 $D^{u}kaz$. Buď te třeba $a,b \in \mathbb{R}$ a nechť platí podmínka, že $g(x) \neq b$ na nějakém okolí P(a). Buď $\varepsilon > 0$. Podle (4.8) je

$$\delta > 0$$
, že $|f(y) - A| < \varepsilon \ \forall 0 < |y - b| < \delta$ (4.9)

Podle (4.7) je

$$\eta' > 0$$
, že $|g(x) - b| < \delta \ \forall 0 < |x - a| < \eta'$ (4.10)

Podle podmínky zvolme

$$\tilde{\eta} > 0$$
, aby $g(x) \neq b \ \forall 0 < |x - a| < \tilde{\eta}$ (4.11)

Pro $0 < |x - a| < \eta = \min(\eta', \tilde{\eta})$ je pak $0 < |g(x) - b| \stackrel{(4.10)}{<} \delta$ a podle (4.9) je $|f(g(x)) - A| < \varepsilon$. Jestli platí podmínka, že f je v b spojitá, pak (4.9) platí $\forall |y-b| < \delta$ (s hodnotou A = f(b)) a tak pro $0 < |x-a| < \eta'$ je $|g(x)-b| < \delta$ podle (4.10), načež podle (4.9) je $|f(g(x))-A| < \varepsilon$. \square

Poznámka 71. "Dodatečné" poznámky

- 1. K rekurentním posloupnostem: Buď $-\infty \le a < b \le \infty$, buď I interval s krajními body a,b. Nechť f na I neklesá a spojitě jej zobrazuje do sebe (tj. f(I) < I). Pro $c \in I$ zaveďme posloupnost $\{a_n\}$ takto: $a_1 = c, a_{n+1} = f(a_n)$. Pak má $\{a_n\}$ vždy limitu, ozmačme ji l. Je-li $f(c) \ge c$ $(f(c) \le c)$ a má li f na (c,b) ((a,c)) pevný bod, tj. takové p, že f(p) = p, $\alpha(\beta)$ a je $l=\alpha$ $(l=\beta)$. Nemá-li f na $\langle c,b\rangle$ ((a,c)) pevný bod, je l=b (l=a)..
- 2. Svaté skutečnosti: $\lim_{x\to 0} \frac{\sin x}{x} = 1$; $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$; $\lim_{x\to \infty} \left(1+\frac{1}{x}\right)^x = e$

Důsledek 72 (Důsledek Heineho věty pro spojitost). Fce f je v a spojitá, právě když:

- 1. je v a daná
- 2. pro všechna $\{x_n\}, x_n \to a$ existuje $\lim f(x_n)$ a rovná se f(a).

 $D^{u}kaz$. \Rightarrow Je-li f v a spojitá, je v a daná dle definice, má v a limitu a $\lim_{x \to a} f(x) = f(a)$. Tedy:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \text{\'e} \ |f(x) - f(a)| < \varepsilon \ \forall 0 < |x - a| < \delta(\varepsilon)$$
 (4.12)

a pro x=a je $|f(x)-f(a)|=0<\varepsilon,$ takže platí $\forall |x-a|<\delta(\varepsilon),$ tedy

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \text{\'e} \ |f(x) - f(a)| < \varepsilon \ \forall |x - a| < \delta(\varepsilon)$$
 (4.13)

Buď $\{x_n\}$ taková, že $x_n \to a$, tj.

$$\forall \vartheta > 0 \ \exists k(\vartheta) \in \mathbb{N}, \ \text{\'e} \ |x_n - a| < \vartheta \ \forall n \ge k(\vartheta)$$
 (4.14)

Máme ukázat, že

$$\forall \varepsilon > 0 \ \exists k(\varepsilon) \in \mathbb{N}, \ \text{\'e} \ |f(x_n) - f(a)| < \varepsilon \ \forall n \ge k(\varepsilon)$$
 (4.15)

Buď $\varepsilon > 0$. Podle (4.13) k němu najdeme $\delta(\varepsilon)$, že platí (4.13) a k číslu $\delta(\varepsilon)$ zvolme $k(\delta(\varepsilon))$ dle (4.14). Pak pro $n \ge k(\delta(\varepsilon))$ je $|x_n - a| < \delta(\varepsilon) \ \forall n \ge k(\delta(\varepsilon))$ podle vlastnosti (4.14), a $|f(x_n) - f(a)| < \varepsilon$ podle (4.13), což je (4.15) s $k(\varepsilon) = k(\delta(\varepsilon))$.

 \Leftarrow Z platnosti 2. plyne její platnost $\forall \{x_n\}$, kde $x_n \to a$ a $x_n \neq a$ pro všechna n, takže podle 51 existuje $\lim_{x\to a} f(x)$, navíc rovná společné hodnotě takových $\lim f(x_n)$, ale to je f(a).

Věta 73. Prostá a spojitá f na intervalu I je ryze monotónní.

 $D\mathring{u}kaz$. Budeme dokazovat sporem. Nechť pro $x_1, x_2, y_1, y_2 \in I, x_1 < x_2, y_1 < y_2$ je $f(x_1) < f(x_2)$ a $f(y_1) > f(y_2)$. Pak je buď to

- 1. $\langle x_1, x_2 \rangle \cap \langle y_1, y_2 \rangle$ nejvýš jednobodový a tedy $x_1 < x_2 \le y_1 < y_2$ (či $y_1 < y_2 \le x_1 < x_2$) nebo
- 2. jeden z těchto intervalů je částí druhého a tedy $x_1 \le y_1 < y_2 \le x_2$ (či $y_1 \le x_1 < x_2 \le y_2$) nebo
- 3. nenastává ani první, ani druhá možnost a tedy $x_1 < y_1 < x_2 < y_2$ (či $y_1 < x_1 < y_2 < x_2$)
- 1. Je-li $f(y_1) < f(x_2)$, nabývá f maxima na $\langle x_1, y_1 \rangle$, ale ne v krajních bodech Je-li $f(y_1) > f(x_2)$, nabývá f maxima na $\langle x_2, y_2 \rangle$, ale ne v krajních bodech Je-li $f(y_1) = f(x_2)$ (a pak $y_1 = x_2$), nabývá f maxima na $\langle x_1, y_2 \rangle$, ale ne v krajních bodech
- 2. Je-li $f(y_1) < f(x_1)$, nabývá f minima na $\langle x_1, x_2 \rangle$, ale ne v krajních bodech Je-li $f(y_1) > f(x_1)$, nabývá f minima na $\langle x_1, x_2 \rangle$, ale ne v krajních bodech
- 3. Je-li $f(y_1) < f(x_1)$, nabývá f minima na $\langle y_1, y_2 \rangle$, ale ne v krajních bodech Je-li $f(y_1) > f(x_1)$, nabývá f minima na $\langle x_1, x_2 \rangle$, ale ne v krajních bodech

Ve všech případech má funkce extrém na nějakém intervalu $\langle p,q\rangle\subset I$ p< q, ale ne v krajních bodech, tedy v nějakém $r\in (p,q)$. Přitom $f((p,r\rangle)$ i $f(\langle r,q\rangle)$ jsou podle věty 68 intervaly. Je tehdy f(r) jejich společným krajním bodem.

Protože je v r extrém funkce f na $\langle p,q\rangle$, je v r týž extrém jak na (p,r) tak i na $\langle r,q\rangle$ a tak je f(r) současně pravým, nebou současně levým krajním bodem intervalů f((p,r)), $f(\langle r,q\rangle)$. Ty se tedy protínají přinejmenším bodem f(r). Ale ani f((p,r)) ani $f(\langle r,q\rangle)$ není jednobodový (jinak by byla f na (p,r) nebo na $\langle r,q\rangle$ konstantní, což nelze, neb f je prostá), takže existuje $t \in f((p,r)) \cap f(\langle r,q\rangle)$, $t \neq f(r)$, načež existuje $v_1 \in (p,r)$ a $v_2 \in \langle r,q\rangle$, že $f(v_1) = t = f(v_2)$. Protože je $v_1 \neq v_2$, jedná se o spor s prostotou f.

Poznámka 74 (Inverzní zobrazení, inverzní funkce). Podle 36 je-li f prosté zobrazení množiny A do B, tj. jestli pro $x_1, x_2 \in A$, pro něž je $f(x_1) = f(x_2)$, je $x_1 = x_2$, platí:

$$\forall y \in f(A) \ \exists!^1 x \in A, \, \text{\'e} f(x) = y \tag{4.16}$$

Přiřadíme-li každému $y \in f(A)$ toto jediné $x \in A$, pro něž je f(x) = y, vzniká jedno zobrazení $f^{-1}: f(A) \to A$, kde pro $y \in f(A)$ je $f^{-1}(y) = x$, pro které f(x) = y. Říká se mu inverzní zobrazení k f, zobrazuje prostě f(A) na A a vztahy f(x) = y a $f^{-1}(y) = x$ jsou pro $x \in A, y \in f(A)$ rovnocenné.

Je-li f funkcí, t.j. zobrazením $A \to \mathbb{R}(\mathbb{C})$, mluvíme o inverzní funkci.

- 1. Funkce $f(x) = \sin x (\cos x; \tan x; \cot x)$ prostě zobrazuje $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ na $\langle -1, 1 \rangle$ ($\langle 0, \pi \rangle$ na $\langle -1, 1 \rangle$; $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ na $\mathbb{R}; \langle 0, \pi \rangle$ na \mathbb{R}) a tak má na $\langle -1, 1 \rangle$ ($\langle -1, 1 \rangle$, \mathbb{R}, \mathbb{R}) inverzní funkci arcsin y (arccos y; arctan y; arccot y).
- 2. Funkce $f(x) = x^n$ pro sudá (lichá) $n \in \mathbb{N}$ prostě zobrazuje $(0, \infty)$ (\mathbb{R}) na $(0, \infty)$ (\mathbb{R}), a tam má inverzní funkci zvanou n-tou odmocninou a značenou $\sqrt[n]{y}$.
- 3. Funkce $f(x) = e^x$ prostě zobrazuje \mathbb{R} na $(0, \infty)$, a tak má inverzní funkci zvanou ln y.
- 4. Funkce $f(x) = \sinh x = \frac{e^x e^{-x}}{2} (\cosh x = \frac{e^x + e^{-x}}{2}; \tanh x = \frac{\sinh x}{\cosh x}; \coth x = \frac{\cosh x}{\sinh x})$ prostě zobrazuje $\mathbb R$ na $\mathbb R$ $(\langle 0, \infty \rangle)$ na $\langle 1, \infty \rangle; \mathbb R$ na $(-1, 1), \mathbb R \setminus \{0\}$ na $(-\infty, -1) \cup (1, \infty)$), a tak tam má inverzní funkci zvanou arsinh y (arcosh y; artanh y, arcoth y) 2

Věta 75. Nechť je funkce f na intervalu I prostá a zobrazuje každý interval $J \subset I$ na interval. Pak je f^{-1} spojitá.

 $D\mathring{u}kaz$. Buď $b \in f(I)$, který třeba není jeho případným krajním bodem.

Zvolme $\varepsilon > 0$ takové, aby $I_{\varepsilon} = (f^{-1}(b) - \varepsilon, f^{-1}(b) + \varepsilon) \subset f(I)$.

Pak je $f(I_{\varepsilon})$ interval a bod $b = f(f^{-1}(b)) \in f(I_{\varepsilon})$ není jeho krajním bodem. Kdyby totiž byl, bylo by $b = \max f(I_{\varepsilon})$ nebo $b = \min f(I_{\varepsilon})$, buď to třeba maximum.

Pak $P = f((f^{-1}(b) - \varepsilon, f^{-1}(b)))$, $b \in Q = f((f^{-1}(b), f^{-1}(b) + \varepsilon))$ a tak $b = \max P$, $b = \max Q$, ale P a Q jsou intervaly, a tak $P \cap Q \neq Q$ - spor s prostotou funkce.

Je
$$\delta > 0$$
, že $(b - \delta, b + \delta) \subset f(I_{\varepsilon})$, tj. $f^{-1}((b - \delta, b + \delta)) \subset I_{\epsilon}$, což je spojitost f^{-1} v b .

Důsledek 76. Inverzní funkce ke spojité a prosté funkci f na intervalu I je na f(I) spojitá.

 $D\mathring{u}kaz$. Podle 68 zobrazuje f každý interval $J \subset I$ na interval a užijeme 75.

Důsledek 77. Prostá funkce na intervalu $I \subset \mathbb{R}$, která zobrazuje každý interval $J \subset I$, je spojitá.

 $D\mathring{u}kaz$. Podle věty 75 je f^{-1} na f(I) spojitá, podle 68 zobrazuje každý interval $K \subset f(I)$ na interval, a tak podle 75 užité na f^{-1} je $(f^{-1})^{-1} = f$ na $f^{-1}(f(I)) = I$ spojitá.

Definice 78. Buď $A \subset \mathbb{R}$, $a \in \mathbb{R}$ takový, že $P(a,\delta) \cap A \neq \emptyset \ \forall \delta > 0$. Řekneme, že f má v a limitu $L \in \mathbb{R}$ vůči A, jestli $\forall \varepsilon > 0 \ \exists \delta > 0$, že $|f(x) - L| < \varepsilon \ \forall 0 < |x - a| < \delta, \ x \in A$ (píšeme $\lim_{x \to a, x \in A} f(x) = L$)

Věta 79. Buď $A, B \subset \mathbb{R}$ (\mathbb{C}) a nechť $P(a, \delta) \cap A \neq \emptyset$, $P(a, \delta) \cap B \neq \emptyset \ \forall \delta > 0$. Pak $\lim_{x \to a, x \in A \cup B} existuje \ právě tehdy, když existují <math>\lim_{x \to a, x \in A} a \lim_{x \to a, x \in B} a \ jsou \ stejné$.

Je-li tato podmínka splněna, je hodnota $\lim_{x\to a,x\in A\cup B} f(x)$ rovna společné hodnotě obou zmíněných limit.

Existuje-li navíc $\sigma > 0$, že $P(a, \sigma) \subset A \cup B$, existuje $\lim_{x \to a} f(x)$ a rovná se s.

 $D\mathring{u}kaz.$ \Rightarrow zjevné

¹existuje právě jedno

 $^{^2}$ zvolil jsem rozšířenější a obvyklejší značení, ale na přednáškách se používá zápis sh, ch, th, cth, argsh, argch, je to totéž co napsané výše

 \Leftarrow Buď $\varepsilon>0.$ Pak

$$\exists \delta' > 0, \, \check{\mathbf{z}} \mathbf{e} \, |f(x) - a| < \varepsilon \, \forall 0 < |x - a| < \delta', \, \, x \in A \tag{4.17}$$

a také

$$\exists \tilde{\delta} > 0, \, \text{\'e} \, |f(x) - a| < \varepsilon \, \forall 0 < |x - a| < \tilde{\delta}, \, \, x \in B \tag{4.18}$$

a pro $0<|x-a|<\delta=\min(\delta',\tilde{\delta}),\,x\in A\cup B$ platí jak (4.17) tak (4.18), takže $|f(x)-s|<\varepsilon,$ což bylo dokázat.

Je-li navíc $P(a,\sigma)\subset A\cup B,$ je i pro $\delta=\min\left(\delta',\tilde{\delta},\sigma\right)P(a,\delta)=(P\left(a,\delta\right)\cap A)\cup(P\left(a,\delta\right)\cap B),$ a tak pro $x\in P(a,\delta)$ je $x\in P(a,\delta)\cap A$ nebo $x\in P(a,\delta)\cap B,$ načež $|f(x)-s|<\varepsilon$ v prvním případě podle (4.17), ve druhém případě podle (4.18).

Derivace

Definice 80. Derivací funkce f v a (zleva, zprava) se rozumí

$$\lim_{x \to a(a+,a-)} \frac{f(x) - f(a)}{x - a} \tag{5.1}$$

pokud existuje. Značíme f'(a) nebo $\frac{\mathrm{d}\,f(a)}{\mathrm{d}\,x}$ (resp. $f'_+(a),\,f'_-(a)$). Je-li konečná $(\infty,\,-\infty)$, říká se jí vlastní (nevlastní) derivace.

Poznámka 81.

1. Položíme-li v (5.1) x - a = t, máme podle věty 70

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{t \to 0} \frac{f(a + t) - f(a)}{t}$$
 (5.2)

má-li jedna strana smysl (tj. existuje-li limita vlevo (vpravo), tak i vpravo (vlevo)) a jsou stejné.

2. f má v $a \in \mathbb{R}$ derivaci právě tehdy, když existuje derivace zleva a zprava a tyto dvě derivace jsou si rovny.

Je-li podmínka splněna, je f'(a) rovna jejich společné hodnotě.

Důkaz. Důkaz pomocí věty 49.

Věta 82. Má-li f v a vlastní derivaci (zleva, zprava), je v a spojitá (zleva, zprava).

$$\begin{array}{ll} \textit{Důkaz. } f \text{ měj třeba vlastní derivaci } f'(a). \text{ Pak } \lim_{x \to a} \left(f(x) - f(a) \right) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a) = f'(a) \cdot 0 = 0 \text{ a tak } \lim_{x \to a} f(x) = \lim_{x \to a} \left(f(x) - f(a) + f(a) \right) = f(a) \end{array} \quad \Box$$

Věta 83. Nechť existuje f'(a), g'(a). Pak

- 1. (f(a) + g(a))' = f'(a) + g'(a)
- 2. (f(a)g(a))' = f'(a)g(a) + f(a)g'(a)
- 3. $\left(\frac{f(a)}{g(a)}\right)' = \frac{f'(a)g(a) f(a)g'(a)}{g^2(a)}$

Má-li příslušná pravá strana smysl (v bodě 2 je-li navíc jedna z funkcí v a spojitá a v bodě 3 je-li funkce g v a spojitá). Totéž platí s jednostrannými derivacemi.

 $D\mathring{u}kaz$. Třeba bod 2 (a buď v a spojitá třeba f).

$$(fg)'(a) = \lim_{x \to a} \frac{fg(x) - fg(a)}{x - a} = \lim_{x \to a} \frac{f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a)}{x - a} = \lim_{x \to a} \left(f(x) \frac{g(x) - g(a)}{x - a} + g(a) \frac{f(x) - f(a)}{x - a} \right)$$

Nebo bod 3:

$$\left(\frac{f}{g}\right)'(a) = \lim_{x \to a} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a} = \lim_{x \to a} \frac{f(x)g(a) - g(x)f(a)}{x - a} = \lim_{x \to a} \frac{g(a)\frac{f(x) - f(a)}{x - a} - f(x)\frac{g(x) - g(a)}{x - a}}{g(x)g(a)}$$

Věta 84 (O derivaci složené funkce). Funkce g měj derivaci v bodě a, funkce f v g(a) a bud' g v a spojitá. Pak má f(g(x)) v a derivaci a je $(f \circ g)(a) = f'(g(a))g'(a)$, má-li součin napravo smysl.

 $D\mathring{u}kaz.$ Zkoumejme $\lim_{x\to a}\frac{f(g(x))-f(g(a))}{x-a}.$ Pro ta x,kde $g(x)\neq g(a),$ je

$$\frac{f(g(x)) - f(g(a))}{x - a} = \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \cdot \frac{g(x) - g(a)}{x - a}$$
 (5.3)

Označme $A=\{x|g(x)\neq g(a)\},\ B=\{x|g(x)=g(a)\}.$ Protože je g v a spojitá, je $\lim_{x\to a}g(x)=g(a)$ a tak položíme-li g(x)=y, je

$$\lim_{x \to a, x \in A} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} = \lim_{y \to g(a)} \frac{f(y) - f(g(a))}{y - g(a)} = f'(g(a))$$
(5.4)

podle věty 70 použité na F(g(x)) s $F(y) = \frac{f(y) - f(g(a))}{y - g(a)}$ ($\lim_{y \to g(a)} F(y) = f'(g(a))$) a $\lim_{x \to a} g(x) = g(a)$, $g(x) \neq g(a)$ všude na A, takže existuje F(g(x)) = f'(g(a)).
Dále

existuje
$$\lim_{x \to a} \frac{g(x) - g(a)}{x - a} = g'(a)$$
 (5.5)

a tak z 5.3 plyne podle věty o limitě součinu

$$\lim_{x \to a, x \in A} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a, x \in A} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \cdot \frac{g(x) - g(a)}{x - a} = f'(g(a))g'(a)$$
 (5.6)

Pro $x \in B$ je zlomek nalevo v (5.3) a tedy jeho limita $\lim_{x\to a, x\in B}$, jakož i zlomek $\frac{g(x)-g(a)}{x-a}$ napravo nula. Protože existuje g'(a), je podle věty 79

$$\lim_{x \to a} \frac{g(x) - g(a)}{x - a} = \lim_{x \to a, x \in B} \frac{g(x) - g(a)}{x - a} = 0$$

tj. g'(a) = 0. Protože f'(g(a))g(a) má smysl, je f'(g(a))g'(a) = 0 a tak platí dotazovaná rovnost.

$$\lim_{x \to a, x \in B} \frac{f(g(x)) - f(g(a))}{x - a} = f'(g(a))g'(a)$$
(5.7)

Podle (5.6) a (5.7) a věty 79 platí dokazovaná rovnost.

Věta 85 (O derivaci inverzní funkce). Buď f^{-1} inverzní funkce ke spojité funkci f na intervalu $I \subset \mathbb{R}$, $a \in I$ a nechť existuje $f'(a) \neq 0$. Pak má f^{-1} v b = f(a) derivaci a je

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \left(= \frac{1}{f'(f^{-1}(b))} \right)$$

má-li pravá strana smysl (tj. je-li $f'(a) \neq 0$), jinak je $(f^{-1})'(b) = \infty(-\infty)$, jestli f na I roste (klesá).

 $D\mathring{u}kaz$. K použití věty 70 položme vnější funkci $V(x) = \frac{1}{\frac{f(x)-f(x)}{x-x}}$ a vnitřní $v(y) = f^{-1}(y)$. Platí

- 1. $\lim_{x\to a} V(x) = \frac{1}{f'(a)}$
- 2. $\lim_{x\to b} v(y) = f^{-1}(b)$ (f^{-1} je spojitá podle věty 76)
- 3. $v(y) = f^{-1}(y) \neq f^{-1}(b)$ na P(b) (dokonce všude na f(I) b, neb f^{-1} je prostá a tak $f^{-1}(y) = f^{-1}(b)$ jen pro y = b).

Podle věty 70 existuje

$$\lim_{y \to b} V(v(y)) = \lim_{y \to b} \frac{1}{\frac{f(f^{-1}(y) - b)}{f^{-1}(y) - f^{-1}(b)}} = \lim_{y \to b} \frac{1}{\frac{y - b}{f^{-1}(y) - f^{-1}(b)}} = \lim_{y \to b} \frac{1}{\frac{f^{-1}(y) - f^{-1}(b)}{y - b}} = (f^{-1})'(b)$$

Věta 86. Je-li f'(a) > 0 (< 0), f v bodě a roste (klesá). Obdobné tvrzení platí s derivací a růstem (klesáním) jednostranným.

 $D\mathring{u}kaz$. Buď třeba f'(a)>0, tj. $\lim_{x\to a}\frac{f(x)-f(a)}{x-a}>0$. Podle věty 57 je $\frac{f(x)-f(a)}{x-a}>0$ na nějakém $P(a,\delta)$. Pro $x\in(a,a+\delta)$ je však x>a a tak i f(x)>f(a), pro $x\in(a-\delta,a)$ je x<a a tak i f(x)< f(a).

Důsledek 87. Je-li $I \subset \mathbb{R}$ interval a f'(x) > 0 (< 0) $\forall x \in I$ (v případných krajních bodech se myslí příslušná jednostranná derivace), tak f na I roste (klesá).

 $D\mathring{u}kaz$. Podle věty 86 f roste (klesá) v každém $x \in I$ a podle věty 62 roste (klesá) na I.

Obecné věty o derivaci

Věta 88 (Rolleova). Bud' $a, b \in \mathbb{R}$, a < b, f bud' spojitá reálná funkce na $\langle a, b \rangle$, která má derivaci na (a, b), taková, že f(a) = f(b). Pak existuje $c \in (a, b)$, že f'(c) = 0.

 $D\mathring{u}kaz$. Je-li f na $\langle a,b\rangle$ konstantní, splňuje tvrzení každé $c\in(a,b)$.

Buď třeba f(a) = f(b) = 0 a předpokládejme, že třeba f(p) > 0 pro nějaké $p \in (a,b)$. Podle věty 69 je $c \in \langle a,b \rangle$, že $f(c) = \max_{x \in \langle a,b \rangle} f(x)$. Je f(a) = f(b) = 0, f(p) > 0 a tak $c \neq a$ a $c \neq b$, takže $c \in (a,b)$.

Protože existuje f'(c), ale podle věty 86 není f'(c) > 0, ani f'(c) < 0, takže f'(c) = 0.

Je-li $f(a) = f(b) \neq 0$, použijeme už dokázaného na h(x) = f(x) - f(a). Je h(a) = h(b) = 0 a tak 0 = h'(c) = f'(c) pro nějaké $c \in (a, b)$.

Věta 89 (O střední hodnotě, tzv. Lagrangeova). $Bud'a,b \in \mathbb{R},\ a < b,\ f\ spojitá\ reálná\ funkce\ na <math>\langle a,b \rangle,\ která\ má\ na\ (a,b)\ derivaci.\ Pak\ existuje\ c \in (a,b),\ \check{z}e\ f'(c) = \frac{f(b)-f(a)}{b-a}.$

 $D\mathring{u}kaz$. Od f odečteme lineární funkci l(x) takovou, že l(a)=f(a), l(b)=f(b). Vzniklá funkce h splňuje podmínky a tedy pro ni platí závěr věty 88.

Funkce l má tvar $l(x) = \frac{f(b) - f(a)}{b - a} (x - a) + f(a)$. Pro $h(x) = f(x) - \frac{f(b) - f(a)}{b - a} \cdot (x - a) - f(a)$ tedy existuje $c \in (a, b)$, že h'(c) = 0, tj. $h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$, což bylo dokázat.

Věta 90 (Zobecněná věta o střední hodnotě, tzv. Cauchyova). Buďte $a,b \in \mathbb{R}$, a < b, f a g spojité reálné funkce na $\langle a,b \rangle$, které mají všude na (a,b) derivaci, $g(x) \neq 0 \ \forall x \in (a,b)$. Pak je $c \in (a,b)$, že

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

 $D\mathring{u}kaz.\ h(x)=f(x)\left(g(b)-g(a)\right)-g(x)\left(f(b)-f(a)\right)$ splňuje podmínky věty 88. Tedy existuje c, že $h'(c)=\frac{h(a)-h(b)}{a-b}.$

h'(c) dává f'(x) (g(a)-g(b))-g'(x) (f(a)-f(b)), po dosazení $\frac{h(a)-h(b)}{a-b}=0$ a tak f'(x) (g(a)-g(b))=g'(x) (f(a)-f(b))

Poznámka 91. Funkce f měj derivaci v každém bodě otevřené úsečky (a,b) a buď f spojitá v každém bodě uzavřené úsečky $\langle a,b\rangle$.

Pak $|f(b) - f(a)| \le \sup |f'(c)| \cdot |b - a|$, kde $c \in (a, b)$.

Je-li tedy f' na (a,b) omezená číslem K, je $|f(b)-f(a)| \leq K|b-a|$

Důsledek 92. Nechť je $f'(x) > 0 \ (\ge 0, < 0, \le 0)$ na intervalu I (obsahuje-li některý z krajních bodů, rozumí se v něm příslušná jednostranná derivace). Pak f(I) roste (neklesá, klesá, neroste).

Důkaz. Buď f' > 0 na I a buď te $x_1, x_2 \in I$, $x_1 < x_2$. Pak je $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$ (použitá věta 89 na $\langle x_1, x_2 \rangle$) a pak $f(x_2) > f(x_1)$. Zbytek obdobně.

Důsledek 93. Buď f spojitá a nechť existuje $\lim_{x\to a} f'(x) = A$. Pak existuje f'(a) a rovná se A. $(f'(a) = \lim_{x\to a} f'(x))$ Totéž s jednostrannými limitami i derivacemi.

 $D\mathring{u}kaz$. Třeba pro $f'_{-}(a)$: existence $\lim_{x\to a^{-}} f'(x)$ dává existenci f'(x) na P(a), kde je tedy f(x) konečná a tedy f spojitá (věta 82). Protože je f zleva spojitá i va, je spojitá na $\langle x,a\rangle \ \forall x\in P(a)$. Navíc existuje f'(x) na $P^{-}(a)$ a tak podle věty 89 existuje $c(x)\in (x,a)$, tj. x< c(x)< a, že $\frac{f(x)-f(a)}{x-a}=f'(c(x))$.

Použijeme teď větu 70 na vnější funkci F(y) = f'(y) a vnitřní funkci g(x) = c(x). Je $x \le c(x) \le a$ a tak $\lim_{x\to a} c(x) = a$ (věta o majorizované konvergenci).

 $D\mathring{u}sledek$ 94 (l'Hospitalovo pravidlo). Buď $a \in \mathbb{R}^*$ a nechť existuje $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$. Pak existuje $\lim_{x \to a} \frac{f(x)}{g(x)}$ a je rovna A jestli

- 1. bud'to $\lim_{x\to a} g(x) = \lim_{x\to a} f(x) = 0$, nebo
- 2. $\lim_{x\to a} |q(x)| = \infty$

Podobně pro jednostranné limity.

 $D\mathring{u}kaz.$

1. Nechť nejdřív platí 1. Buď třeba $a \in \mathbb{R}$ a dokážeme tvrzení pro limitu zprava. Z existence $\lim_{x \to a+} \frac{f'(x)}{g'(x)}$ plyne, že existuje konečná f' i g' na nějakém $(a, a + \Delta)$, takže tam je f i g spojitá a navíc $g'(x) \neq 0 \ \forall x \in (a, a + \Delta)$. Položme F(x) = f(x) na $(a, a + \Delta)$, F(x) = 0 pro x = a. Dále G(x) = g(x) na $(a, a + \Delta)$ a rovna 0 pro x = a. Z toho, že $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$ plyne spojitost F a G v a zprava a tak jsou F i G spojité na $\langle a, x \rangle$, mají konečnou derivaci na $(a, x) \ \forall x \in (a, a + \Delta)$ a tak podle věty $90 \ \forall x \in (a, a + \Delta) \ \exists c(x) \in (a, x)$, tj. a < c(x) < x, že

$$\frac{f(x)}{g(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(c(x))}{G'(c(x))} = \frac{f'(c(x))}{g'(c(x))}$$

Podle věty 70 (s vnitřní funkcí c(x)a vnější $V(y) = \frac{f'(y)}{g'(y)})$ je

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(c(x))}{g'(c(x))} = \lim_{y \to a+} \frac{f'(y)}{g'(y)}$$

což byl dokázáti.

2. Nechť platí 2. Buď ale třeba $a \in \mathbb{R}$ a dokážeme tvrzení pro limitu zprava. Je-li $a < x < x_1 < a + \Delta$, splňuje f na $\langle x, x_1 \rangle$ podmínky věty 90 a tak existuje $c(x) \in (x, x_1)$, že $f(x_1) - f(x) = \frac{f'(c(x))}{g'(c(x))} \left(g(x_1) - g(x)\right)$. Po odečtení $f(x_1)$ a vydělení $-g(x) \ (\neq 0$ na $(a, a + \Delta)$) to dá

$$\frac{f(x)}{g(x)} = \frac{f'(c(x))}{g'(c(x))} \left(1 - \frac{g(x_1)}{g(x)} \right) + \frac{f(x_1)}{g(x)} \quad \text{pro } a < x < x_1 < a + \Delta$$
 (6.1)

Buď třeba $A \in \mathbb{R}$. Z (6.1) pak plyne

$$\frac{f(x)}{g(x)} - A = \frac{f'(c(x))}{g'(c(x))} - A - \frac{f'(c(x))}{g'(c(x))} \frac{g(x_1)}{g(x)} + \frac{f(x_1)}{g(x)} \\
\left| \frac{f(x)}{g(x)} - A \right| \le \left| \frac{f'(c(x))}{g'(c(x))} - A \right| + \left| \frac{f'(c(x))}{g'(c(x))} \right| \left| \frac{g(x_1)}{g(x)} \right| + \left| \frac{f(x_1)}{g(x)} \right| \qquad \forall a < x < x_1 < a + \Delta \quad (6.2)$$

Zvolme $\varepsilon>0$ ($\varepsilon<1$). Protože $\lim_{y\to a+}\frac{f'(y)}{g'(y)}=A$, lze zvolit $\Delta>0$ tak malé, aby

$$\left| \frac{f'(y)}{g'(y)} - A \right| < \varepsilon \qquad \forall y \in (a, a + \Delta)$$
 (6.3)

Zvolme $x_1 \in (a, a + \Delta)$, takže (6.2) platí pro všechna $x \in (a, x_1)$. Protože $\lim_{x \to a_+} |g(x)| =$ ∞ , je $\lim_{x\to a+} \frac{|f(x_1)|}{|g(x)|} = 0$, takže existuje δ ($\delta < \Delta$), že $\left| \frac{g(x_1)}{g(x)} \right| < \varepsilon$, $\left| \frac{f(x_1)}{g(x)} \right| < \varepsilon \ \forall x \in (a, a + \delta)$. Podle (6.3) pak pro toto x je $\left|\frac{f'(dx)}{g'(dx)}\right| < |A| + \varepsilon$ (neb $c(x) \in (a, a + \Delta)$) načež podle (6.2) je

$$\left| \frac{f(x)}{g(x)} - A \right| \le \varepsilon + (|A| + \varepsilon) \varepsilon + \varepsilon < \varepsilon + |A| \varepsilon + \varepsilon + \varepsilon = (|A| + 3) \varepsilon \ \forall x \in (a, a + \delta)$$

3. Je-li třeba $a = \infty$, je podle věty 70 $\lim_{x\to a} \frac{f(x)}{g(x)} \stackrel{x=\frac{1}{y}}{=} \lim_{y\to 0+} \frac{f(\frac{1}{y})}{g(\frac{1}{y})}$, což je podle už dokázaného $\lim_{y\to 0+} \frac{\left(f\left(\frac{1}{y}\right)\right)'}{\left(g\left(\frac{1}{y}\right)\right)'} = \lim_{y\to 0+} \frac{f'\left(\frac{1}{y}\right)\left(-\frac{1}{y^2}\right)}{g'\left(\frac{1}{y}\right)\left(-\frac{1}{z^2}\right)} = \lim_{y\to 0+} \frac{f'\left(\frac{1}{y}\right)}{g'\left(\frac{1}{y}\right)} \text{ a to je opět podle věty } 70 \lim_{x\to\infty} \frac{f(x)}{g(x)}.$

Věta 95. Pro $n \ge 1$ nechť existuje $f^{(n)}(c)$, $g^{(n)}(c)$ a $0 = f(c) = f'(c) = \cdots = f^{(n-1)}(c) = g(c) = g'(c) = \cdots = g^{(n-1)}(c)$. Pak existuje

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f^{(n)}(c)}{g^{(n)}(c)}$$

má-li tento podíl smysl.

 $D\mathring{u}kaz$. Důkaz provedem indukcí. Pro n=1 je

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x \to c} \frac{\frac{f(x) - f(c)}{x - c}}{\frac{g(x) - g(c)}{x - c}} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

(podle věty o limitě podílu).

Nechť dále tvrzení platí pro $n \ge 1$ a buď te podmínky věty splněny pro n+1. Pak F(x) = f'(x), G(x) = g'(x) splňují podmínky věty s n a platnost tvrzení pro n dá

$$\lim_{x \to c} \frac{F(x)}{G(x)} = \frac{F^{(n)}(c)}{G^{(n)}(c)} = \frac{f^{(n+1)}(c)}{g^{(n+1)}(c)}$$

tj. $\lim_{x\to c} g(x) = g(c) = 0$, $\lim_{x\to c} f(x) = f(c) = 0$ (existuje konečná f'(c), g'(c) a tak je f i g v cpodle věty 82 spojitá), načež věta 94 dává, že

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f^{(n+1)}(c)}{g^{(n+1)}(c)}$$

Věta 96 (Darbouxova vlastnost derivace spojité funkce). $Bud' - \infty < a < b < \infty$, f Bud' spojité $na \langle a,b \rangle$ a měj tam všude derivaci (v krajních bodech měj příslušné jednostranné derivace). Je-li $d \text{ mezi } f'_{+}(a) \text{ } a f'_{-}(b), \text{ pak existuje } c \in \langle a, b \rangle, \text{ } \check{z}e f'(c) = d.$

 $D\mathring{u}kaz$. Je-li $d = f'_{+}(a)$, je c = a. Je-li $d = f'_{-}(b)$, je c = b. Bud' tedy $d \neq f'_{+}(a), d \neq f'_{-}(b)$, tedy

 $f'_{+}(a) \neq f'_{-}(b) \text{ a buď třeba } f'_{+}(a) < f'_{-}(b), \text{ takže } f'_{+}(a) < d < f'_{-}(b).$ Buď F(x) = f(x) - dx na $\langle a, b \rangle$, je tam spojitá a $F'_{+}(a) = f'_{+}(a) - d < 0, F'_{-}(b) = f'_{-}(b) - d > 0,$ takže F v a zprava klesá a v b zleva roste. Protože je F na $\langle a,b\rangle$ spojitá, nabývá tam podle věty 69 (na intervalu nabývá minima i maxima) minima v nějakém $c \in \langle a, b \rangle$. Protože F v a klesá, je $c \neq a$ a v b roste, je $c \neq b$.

Je tedy
$$c \in (a, b)$$
. Podle věty 86 je $F'(c) = 0$, tj. $f'(c) = d$.

Mnohočleny

Tvrzení 97. Buď P mnohočlen stupně n a $a \in \mathbb{R}$ (\mathbb{C}). Pak

$$P(x) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} \cdot (x - a)^{k}$$

 $D\mathring{u}kaz$. Je $P(x) = \sum_{k=0}^{n} b_a (x-a)^k$, protože

$$P(x) = \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} a_k (x - a + a)^k$$

$$= \sum_{k=0}^{n} a_k \sum_{l=0}^{k} {k \choose l} (x - a)^l a^{k-l} = \sum_{\substack{0 \le k \le n \\ 0 \le l \le k}} a_k {k \choose l} a^{k-l} (x - a)^l$$

$$= \sum_{l=0}^{n} \left(\sum_{k=l}^{n} a_k {k \choose l} a^{k-l} \right) (x - a)^l = \sum_{l=0}^{n} b_c (x - a)^l$$

a tak $P^{(k)}(a)=k!b_k$, tj. $b_k=\frac{P^{(n)}(a)}{k!}$

Má-li f n-tou derivaci v a, napišme $\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$.

Definice 98. Existuje-li $f^{(n)}(a)$ pro nějaké $n \in \{0, 1, 2, \dots\}$, pak mnohočlen

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$$

nazveme Taylorovým mnohočlenem stupně n (funkce f se středem v a).

Rozdílu $R_{n+1,f,a}(x) = f(x) - T_{n,f,a}(x)$ se říká zbytek (funkce po $T_{n,f,a}(x)$).

Věta 99 (Taylorova). Buďte $a, x \in \mathbb{R}$, $a \neq x$, n celé, $n \geq 0$. Reálná funkce f měj n+1. na otevřeném intervalu I^0 a spojitou derivaci na uzavřeném intervalu I s krajními body a a x. Buď φ spojitá reálná funkce na I, která má na I^0 všude nenulovou derivaci. Pak

$$c \in I^0, \ \check{z}e \ R_{n+1}(x) = \frac{f^{(n+1)}(c)}{n!} \cdot (x-c)^n \cdot \frac{\varphi(x) - \varphi(a)}{\varphi'(c)}$$

$$(7.1)$$

 $Volba \varphi(t) = (x-t)^{n+1} d\acute{a}v\acute{a}$

$$R_{n+1}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$
(7.2)

(tzv. Lagrangeův tvar zbytku).

 $Volba \varphi(t) = t dává$

$$R_{n+1}(x) = \frac{f^{(n+1)}(c)}{n!} (x-c)^n (x-a)$$
(7.3)

(tzv. Cauchyův tvar zbytku).

 $D\mathring{u}kaz$. Položme ve vyjádření $R_{n+1}(x) = f(x) - \left(f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n\right)$ místo a proměnné t, tj.

$$F(t) = f(x) - \left(f(t) + \frac{f'(t)}{1!}(x - t) + \dots + \frac{f^{(n)}(t)}{n!}(x - t)^n\right)$$

Pak f je spojitá na I, má

$$F'(t) = -f(t) - \left(-\frac{f'(t)}{1!} + \frac{f''(t)}{1!} (x-t)\right) - \left(-\frac{f''(t)}{1!} (x-t) + \frac{f'''(t)}{2!} (x-t)^2\right) - \cdots - \left(-\frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} + \frac{f^{(n+1)}(t)}{n!} (x-t)^n\right)$$

$$= -\frac{f^{(n+1)}(t)}{n!} (x-t)^n \text{ na } I^0, F(x) = 0, F(a) = R_{n+1}(x)$$

a tak podle věty 90 je $c \in I^0$, že

$$\frac{F(x) - F(a)}{\varphi(x) - \varphi(a)} = \frac{-R_{n+1}(x)}{\varphi(x) - \varphi(a)} = \frac{F'(c)}{\varphi'(c)} = \frac{-f^{(n+1)}(c)(x-c)^n}{n!\varphi'(c)}$$

což je (7.1) a zmíněná volba φ dává (7.2) a (7.3)

 $P\check{r}iklad$ 99. Máme najít sínus 1 s přesností 10^{-6} .

Najdeme hodnotu $T_{n,\sin,0}(1)$ funkce $\sin x$, s takovým n, aby $|R_{n+1,\sin,0}(1)| < 10^{-6}$. Je T(1) = $\sum_{k=0}^n \frac{\sin^{(k)}0}{k!} x^k$. Použijeme-li Lagrangeova tvaru zbytku, je $R_{n+1}(x) = \frac{\sin^{(n+1)}c}{(n+1)!} \left(x-0\right)^{n+1}$ a tak

 $|R_{n+1}(1)| = \frac{|\sin^{(n+1)} c|}{(n+1)!} (x-0)^{n+1} \le \frac{1}{(n+1)!} \text{ a hledejme tedy } n, \text{ aby } \frac{1}{(n+1)!} < 10^{-6}.$ To je už pro n+1=10, tj. n=9. Spočítáme tedy $(\sin^{(2k)} 0=0, \sin^{(2k+1)} 0=(-1)^k)$

$$T_{9,\sin,0}(0) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \frac{1}{9!}$$

Definice 100. Funkce f a g buď te dány na P(a). Budeme psát $f(x) = o(g(x)), x \to a$ jestli $\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$ Obdobně jednostranné případy.

1. $f_1(x) = o(g(x)), f_2(x) = o(g(x)), x \rightarrow a, \text{ pak } \alpha f_1 + \beta f_2(x) = o(g(x)),$ $x \to a \ (\alpha, \beta \ \text{konst.})$

2.
$$f_1(x) = o(g_1(x)), f_2(x) = o(g_2(x)), x \to a, \text{ pak } f_1 \cdot f_2(x) = o(g_1(x)g_2(x)), x \to a$$

3.
$$f(x) = o(g(x)), x \to a$$
 a $h(x)$ buď omezená na $P(a)$, pak $f(x)h(x) = o(g(x)), x \to a$

4.
$$f(x) = o(g(x)), g(x) = o(h(x)), x \to a, \text{ pak } f(x) = o(h(x)), x \to a$$

Důkaz. Snadné ověření dle definice.

Věta 101 (Peanův tvar zbytku). Nechť existuje $f^{(n)}(a)$, pak $R_{n+1,f,a}(x) = o((x-a)^n)$, $x \to a$.

$$D\mathring{u}kaz$$
. Funkce $F(x) = R_{n+1,f,a}(x)$ a $g(x) = (x-a)^n$ splňují podmínky věty 95 $(F(a) = F'(a) = \cdots = F^{(n-1)}(a) = g(a) = g'(a) = \cdots = g^{(n-1)}(a), g^{(n)}(a) = n! \neq 0$). Takže $\lim_{x\to a} \frac{R_{n+1}(x)}{(x-a)^n} = \frac{R_{n+1}^{(n)}(a)}{((x-a)^n)^{(n)}} = \frac{R_{n+1}^{(n)}(a)}{n!} = 0$.

Lemma 102. Nechť existuje $f^{(n)}(a)$. Pak je

$$f(x) = o((x-1)^n) \Leftrightarrow f(a) = f'(a) = \dots = f^{(n)}(a) = 0$$

 $D\mathring{u}kaz$. Nejprve si ukážeme implikaci \Rightarrow . Ve větě 95 vezmeme $F(x) = f(x), g(x) = (x-a)^n$. Je $F(a) = F'(a) = \cdots = F^{(n-1)}(a) = g(a) = g'(a) = \cdots = g^{(n-1)}(a) = 0, g^{(n)}(a) = n! \neq 0$ a tak

$$\lim_{x \to a} \frac{f(x)}{(x-a)^n} = \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{F(x)}{g(x)} = \lim_{x \to a} \frac{F^{(n)}(x)}{g^{(n)}(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)} = \frac{f^{(n)}(a)}{n!} = 0$$

Teď dokážeme obrácenou implikaci nepřímým důkazem. Je-li $f^{(j)}(a) \neq 0$ pro nějaké $1 \leq j \leq n$, buď l nejmenší takové j. Pak pro F(x) = f(x), $g(x) = (x - a)^l$ je podle věty 95

$$\lim_{x \to a} \frac{F(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f^{(n)}(a)}{l!} \neq 0$$

a tak není $f(x) = o\left((x-a)^l\right)$ pro toto l < n. Je však $(x-a)^n = o\left((x-a)^l\right), x \to a$ a tak podle poznámky 101.3 není ani $f(x) = o((x-a)^n)$.

Důsledek 103. Nechť existuje $f^{(n)}(a)$ a P buď takový mnohočlen stupně n, že $f(x) - P(x) = o((x-a)^n), x \to a$. Pak $P(x) = T_{n,f,a}(x)$.

(Existuje-li tedy $f^{(n)}(a)$, pak pro mnohočlen P stupně n je $f(x) - P(x) = o((x-a)^n), x \to a$ právě když $P(x) = T_{n,f,a}(x)$).

Důkaz. Napišme podle tvrzení 97

$$P(x) = \sum_{k=0}^{n} a_k (x - a)^k$$

Jestli $f - P(x) = o((x - a)^n)$, je $f(x) - P(x) = o((x - a)^k) \ \forall k = 0, 1, ... n$. Pro každé takové k je podle věty 102 $(f(x) - P(x))^{(k)}(a) = 0$, tj. $f^{(k)}(a) = k!a_k = 0$.

Ohýbání

Tvrzení 104. Buď f funkce na intervalu $I \subset \mathbb{R}$. Následující podmínky jsou rovnocenné:

$$1. \ \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_3) - f(x_1)}{x_3 - x_1} \qquad \forall x_1, x_2, x_3 \in I, x_1 < x_2 < x_3$$

$$2. \ \ \tfrac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \tfrac{f(x_3) - f(x_2)}{x_3 - x_2} \qquad \ \forall x_1, x_2, x_3 \in I, x_1 < x_2 < x_3$$

$$3. \ \frac{\mathit{f}(x_3) - \mathit{f}(x_1)}{x_3 - x_1} \leq \frac{\mathit{f}(x_3) - \mathit{f}(x_2)}{x_3 - x_2} \qquad \forall x_1, x_2, x_3 \in I, x_1 < x_2 < x_3$$

$$4. \quad \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_4) - f(x_2)}{x_4 - x_2} \qquad \forall x_1, x_2, x_3, x_4 \in I, x_1 < x_2 < x_3 < x_4$$

5.
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_4) - f(x_3)}{x_4 - x_3}$$
 $\forall x_1, x_2, x_3, x_4 \in I, x_1 < x_2 < x_3 < x_4$

Důkaz. není nutný

Definice 105. Má-li f na I některou z vlastností 1 až 5 z tvrzení 104 (a tedy všechny), nazveme ji konvexní na I. Platí-li s ostrou (opačnou, ostrou opačnou) nerovností, nazveme ji ryze konvexní (konkávní, ryze konkávní) na I.

Věta 106. Buď f na I konvexní. Pak

- 1. má jednostranné derivace v každém x ∈ I, v němž má smysl, tj. ∃f'_(x) (f'_+(x)) v každém x ∈ I, který není levý (pravý) krajní. Přitom je f'_(x) (f'_+(x)) konečná v každém x, který není levým (pravým) krajním v I; je tedy f v každém takovém x spojitá zleva (zprava) a tak je spojitá v každém x ∈ I, jenž není krajním.
- 2. Pro $a, b \in I$, a < b je $f'_{+}(a) \leq f'_{-}(b)$.
- 3. Funkce $f'_+(a)$ a $f'_-(b)$ na I neklesá, takže existuje-li f' na intervalu $J\subset I$ tak f' neklesá na J.
- 4. $f'_{-}(a) \leq f'_{+}(b) \ \forall x \in I \ který není krajní. Množina <math>D = \{x \in I | f'(x) \ neexistuje\}$ je spočetná.
- 5. Tato tvrzení platí pro konkávní funkce na I, v B, C, D se jen obrátí nerovnosti a slova neklesá nahradíme slovy neroste.

Důkaz.

1. Buď $a \in I$, který není pravý krajní. Pak $\exists \delta > 0$, že $a + \delta \in I$ a na $(a, a + \delta)$ funkce $\varphi(x) = \frac{f(x) - f(a)}{x - a}$ neklesá (konvexnost f), takže existuje $\varphi(a+) = \lim_{x \to a+} \frac{f(x) - f(a)}{x - a} = f_+(a)$. Není-li a ani levý krajní, existuje $b \in I$, b < a, a je $\frac{f(a) - f(b)}{a - b} \le \varphi(x) \le \frac{f(a + \delta) - f(a)}{(a + \delta) - a}$ pro $a < x < a + \delta$, odkud $\frac{f(a) - f(b)}{a - b} \le f'_+(a) \le \frac{f(a + \delta) - f(a)}{\delta}$, takže $f'_+(a)$ je konečná, tudíž je f v a zprava spojitá.

2. Je-li $a, b \subset I$, a < b, pak pro všechny $y, z \in (a, b)$, y < z je

$$\frac{f(y) - f(a)}{y - a} \le \frac{f(z) - f(b)}{z - b}$$

Odtud limita $\lim_{y\to a+}$ při pevném z dává $f'_+(a) \leq \frac{f(z)-f(b)}{z-b} \ \forall z \in (a,b)$ a pak limita $z\to b$ dává $f'_{+}(a) \leq f'_{-}(b)$.

- 3. Je-li $a,b \in I, \ a < b,$ je $f'_+(a) \leq f'_-(b) \leq f'_+(b)$ (první nerovnost podle druhého bodu a z následujícího bodu)
- 4. Je-li x < b < y, je $\frac{f(b) f(x)}{b x} \le \frac{f(y) f(b)}{y b}$, zde $\lim_{x \to b^-}$ dá $f'_-(b) \le \frac{f(y) f(b)}{y b}$ a zde $\lim_{y \to b^+}$ dá $f'_-(b) \le f'_+(b)$. Dále jestli pro $a \in I$, který není krajní, neexituje derivace, je $f'_-(a) < f'_+(a)$. Lze proto každému takovému a přiřadit neprázdný interval $I_a = (f'_-(a), f'_+(a))$. Přitom jsou-li a, b dva takové body, je $f_+(a) \le f_-(b)$ podle bodu 2, takže $f'_-(a) < f'_+(a) \le f_-(b)$ $f'_{-}(b) < f'_{+}(b)$, takže $I_a \cap I_b = \emptyset$. Zvolíme-li v každém I_a racionální číslo a označíme $\psi(a)$, je pak ψ prosté zobrazení D do množiny $\mathbb Q$ racionálních čísel a tak je D spočetná.
- 5. Je-li f na I konkávní, je -f na I konvexní a tak tvrzení pro konkávní funkce plyne použitím věty na -f.

Věta 107. Buď f na intervalu I konvexní, $a,b \in I$, a < b a nechť b není pravý krajní. Je-li $f(a) \leq f(b)$, pak f neklesá na intervalu $J = \langle b, \infty \rangle \cap I$.

 $D\mathring{u}kaz$. Pro $x_1,x_2\in J,\ x_1< x_3$ je $\frac{f(b)-f(a)}{b-a}\leq \frac{f(x_2)-f(x_1)}{x_2-x_1}$. Ježto je $b>a,\ f(b)\geq f(a),$ je levý a tak i pravý zlomek nezáporný, takže i $f(x_2)\geq f(x_1)$.

Důsledek 108. Konvexní f na (a,b) $(a < b \le \infty)$ buď klesá, nebo existuje $c \in (a,b)$, že na (c,b)neklesá. V obou případech existuje $\lim_{x\to b^-} f(x)$ a ta není $-\infty$ je-li $b<\infty$.

 $D^{u}kaz$. Jestli f na (a,b) klesá, tvrzení platí. Jinak $\exists x_1, x_2 \in (a,b)$, že $f(x_1) \leq f(x_2)$ a podle věty 107 použité na $I = \langle x_1, b \rangle$ f na (x_2, b) neklesá.

Je-li $b < \infty$, zvolme $p, q \in (a, b), p < q$. Pak $\frac{f(q) - f(p)}{q - p} \le \varphi(x) = \frac{f(x) - f(q)}{x - q}, x > q$, odkud

$$\frac{f(q) - f(p)}{q - p} (x - q) \le \varphi(x) (x - q) = f(x) - f(q) \text{ na } (q, b)$$
(8.1)

Protože φ na (q,b) neklesá, má limitu a ježto $\lim_{x\to b^-}(x-q)=b-q$ je konečná, má ji i $\varphi(x)$ (x-q), tj. f(x)-f(q) a (8.1) dává: $\frac{f(q)-f(p)}{q-p}$ $(b-q)\leq \lim_{x\to b^-}(f(x)-f(q))$ odkud $\lim_{x\to b^-}f(x)=\frac{f(q)-f(p)}{q-p}$ $\lim_{x\to b^{-}} (f(x) - f(q)) + f(q) > -\infty.$

Věta 109. Konvexní f na I může mít ostré lokální maximum najvýše v případných krajních bodech. Ryze konvexní funkce na I může mít lokální maximum nejvýše tamtéž.

 $D^{u}kaz$. Je-li v $c \in I$ ostré lokální maximum a c není krajní, je $\delta > 0$, že f(y) < f(c), f(z) < f(c) $\forall y, z, c - \delta < y < c < z < c + \delta$, načež $\frac{f(c) - f(y)}{c - y} \le \frac{f(z) - f(c)}{z - c}$ (z konvexnosti), ale levý zlomek je nezáporný a pravý záporný, což je spor.

Věta 110. Konvexní funkce f má na I nejvýše jedno ostré lokální minimum. Má-li je, je minimem globálním.

 $D^{u}kaz$. Měj $f \vee a, b \in I$ ostré lokální minimum pro $a \neq b$ a buď třeba a < b. Pak existuje $\delta > 0$, že $f(a) < f(x) \ \forall a < x < a + \delta, \ f(b) < f(y) \ \forall b < y < b + \delta.$ Načež (z konvexnosti) víme, že $\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(y)}{b - y}$, ale zlomek vlevo je kladný a zpravo záporný. To je spor. Má-li funkce v $c \in I$ ostré lokální minimum, existuje $\delta > 0$, že

$$f(c) < f(x) \qquad \forall x \in [(c - \delta, c) \cup (c, c + \delta)] \cap I \tag{8.2}$$

Zvolme $b \in (c, c + \delta) \cap I$, takže f(c) < f(b). Podle věty 107 f neklesá na $\langle a, b \rangle \cap I$. Je-li tedy $x \in (c, \infty)$, je buďto $c < x \le b$ a tedy f(c) < f(x) podle (8.2), nebo je b < x a tak $f(c) < f(b) \le f(x)$, takže $f(c) < f(x) \ \forall x \in I, x > c$.

Je-li c levý krajní v I, je tedy f(c) nejmenší hodnotou f na I. Není-li, předpokládejme, že pro nějaké $c' \in I$, c' < c, je $f(c') \le f(c)$. Pak je $c' \le c - \delta$. Zvolme $x_1 \in I$ aby $c - \delta < x_1 < c$, $c' < x_1$.

Pak je $f(c) < f(x_1)$ podle (8.2) a $0 \le \frac{f(c) - f(c')}{c - c'} \le \frac{f(c) - f(x_1)}{c - x_1} < 0$, ale to je spor. Je tedy $f(x) > f(c) \ \forall x \in I, \ x < c$ a tak je $f(c) = \min_{x \in I} f(x)$.

Věta 111. Je-li f konvexní na $I \subset \mathbb{R}$ a f'(x) = 0 (pro krajní body se opět míní příslušná jednostranná derivace), nabývá f(c) své nejmenší hodnoty na I.

Pro konkávní f platí totéž, jen tentokrát je $f(c) = \max_{x \in I} f(x)$.

 $D\mathring{u}kaz.$ Není-li $c\in I$ pravý (levý) krajní, pak funkce $\varphi(x)=\frac{f(x)-f(c)}{x-c}$ na $I^+=\langle c,\infty\rangle\cap I$ ($I^-=(-\infty,c\rangle\cap I)$ neklesá, takže $0=f'_+(c)=\lim_{x\to c+}\varphi(x)=\inf_{x\in I^+}\varphi(x)$ ($0=f'_-(c)=\varphi(c-)=\sup_{x\in I^-}\varphi(x).$ Tudíž $\varphi(x)=\frac{f(x)-f(c)}{x-c}\geq 0$ (≤ 0) na I^+ (I^-), kde však x-c>0 (x-c<0) a tak $f(x)\geq f(c)$ $\forall x\in I.$

Věta 112. Bud' f funkce na intervalu $I \subset \mathbb{R}$. Pro vlastnosti

$$A f''(x) > 0 (\geq 0, < 0, \leq 0) na I,$$

B f' na I roste (neklesá, klesá, neroste),

C f je na I ryze konvexní (konvexní, ryze konkávní, konkávní)

 $\operatorname{plat\'{i}} A \Rightarrow B \Rightarrow C.$

Důkaz.

- 1. $A \Rightarrow B$: Použije se důsledek 92 na f'.
- 2. $B \Rightarrow C$: Je-li $x_1, x_2, x_3 \in I$, $x_1 < x_2 < x_3$, je podle věty 89

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c), \qquad \frac{f(x_3) - f(x_2)}{x_3 - x_2} = f'(d)$$

kde $x_1 < c < x_2 < d < x_3$. Protože f'(c) < f'(d) je $\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}$ (respektive obdobně pro \leq , >, \geq).

Definice 113.

- A. Bod $a \in \mathbb{R}$ nazveme inflexním bodem funkce f, jestli
 - (a) f je spojitá,
 - (b) existuje f'(a) a je-li konečná, pak

$$\exists \delta > 0$$
, že $f(x) \leq f'(a)(x-a) + f(a)$ (\geq) $\forall a - \delta < x < a$, a $\exists \delta > 0$, že $f(x) \geq f'(a)(x-a) + f(a)$ (\leq) $\forall a < x < a + \delta$

tj. f je na $(a - \delta, a)$ pod (nad) a na $(a, a + \delta)$ nad (pod) tečnou grafu f v [a, f(a)].

- B. Bod $a \in \mathbb{R}$ nazveme silně inflexním bodem funkce f, jestli
 - (a) f je v a spojitá,
 - (b) existuje f'(a),
 - (c) existuje $\delta>0$, že je f konkávní (konvexní) na $(a-\delta,a)$ a konvexní (konkávní) na $(a,a+\delta)$

Věta 114. Každý silně inflexní bod funkce f je taky inflexní.

 $D\mathring{u}kaz$. Buď f v a spojitá, měj f'(a) a buď třeba na $(a - \delta, a)$ konkávní a na $(a, a + \delta)$ konvexní, $\begin{aligned} &\delta > 0. \text{ Pak } \varphi(x) = \frac{f(x) - f(a)}{x - a} \text{ na } (a - \delta, a) \text{ neroste, na } (a, a + \delta) \text{ neklesá a tak } \varphi(x) \geq \varphi(a -) = \\ &f'_-(a) = f'(a) \text{ pro } x \in (a - \delta, a), \text{ také } \varphi(x) \geq \varphi(a +) = f'_+(a) = f'(a) \text{ pro } x \in (a, a + \delta). \end{aligned}$ $\text{Tj. na } (a - \delta, a) \text{ je } \frac{f(x) - f(a)}{x - a} \leq f'(a), \text{ odkud } f(x) - f(a) \leq f'(a) (x - a), \text{tj. } f(x) \leq f'(a) (x - a) + f(a), \text{ a na } (a, a + \delta) \text{ je } \frac{f(x) - f(a)}{x - a} \geq f'(a) \text{ odkud } f(x) \geq f'(a) (x - a) + f(a). \end{aligned}$

Tj. na
$$(a - \delta, a)$$
 je $\frac{f(x) - f(a)}{x - a} \le f'(a)$, odkud $f(x) - f(a) \le f'(a)$ $(x - a)$, tj. $f(x) \le f'(a)$ $(x - a) + f(a)$, a na $(a, a + \delta)$ je $\frac{f(x) - f(a)}{x - a} \ge f'(a)$ odkud $f(x) \ge f'(a)$ $(x - a) + f(a)$.

Věta 115. Je-li $f''(a) \neq 0$, není a pro f inflexní.

 $D\mathring{u}kaz$. Buď třeba f''(a) > 0. Podle věty 86 f' roste, existuje tedy

$$\delta > 0$$
, že $f'(x) < f'(a) < f'(y) \ \forall x, y, a - \delta < x < a < y < a + \delta$

Podle věty 89 tedy je f(x) - f(a) = f'(c)(x - a), kde x < c < a, je tedy $a - \delta < c < a$ a tak f'(c) < f'(a), načež f(x) - f(a) = f'(c)(x - a) < f'(a)(x - a), tj. f(x) < f'(a)(x - a) + f(a). Analogicky pro f(y) - f(a) = f'(d)(y - a), kde a < d < y, je tedy $a < d < a + \delta$ a tak f'(a) < f'(d), načež f(y) - f(a) = f'(d)(y - a) > f'(a)(y - a), tj. f(y) > f'(a)(y - a) + f(a).

Důsledek 116. Je-li $a \in \mathbb{R}$ pro f inflexní a existuje f''(a), je f''(a) = 0. Inflexní body funkce fmohou být jen tam, kde je 2. derivace nulová, nebo kde není.

Kapitola 9

Průběh funkce

Věta 117. Nechť existuje f'(x) na P(a), f'(a) = 0.

- 1. Jestli f' mění znaménko, tj. $\exists \delta > 0$, že $f' \leq 0 \ (\geq 0)$ na $(a \delta, a)$ a $f' \geq 0 \ (\leq 0)$ na $(a, a + \delta)$, má f v a extrém a sice lokální minimum (maximum). Při ostrých nerovnostech je příslušný extrém ostrý.
- 2. Jestli má f stejné znaménko na obou stranách bodu a, tj. f' > 0 (< 0) na $(a \delta, a)$ i $(a, a + \delta)$, f v a roste (klesá) a tak f v a extrém nemá.

 $D\mathring{u}kaz$. Je-li třeba f'(a) < 0 na $(a - \delta, a)$, f' > 0 na $(a, a + \delta)$. Podle věty 86 f na $(a - \delta, a)$ klesá, na $(a, a + \delta)$ roste, f je v a spojitá (f'(a) = 0, tedy je konečná) a je-li $a - \delta < u < v < w < a$, je f(u) > f(v) > f(w), odkud limitou $w \to a$ - plyne $f(u) > f(v) \ge f(a-) = f(a)$.

Je-li však třeba f' < 0 na $(a - \delta, a)$ i na $(a, a + \delta)$, pak $f(u) > f(a) \ \forall u \in (a - \delta, a)$ jak výše dokázáno, ale také obdobně $f(a) > f(u) \ \forall u \in (a, a + \delta)$ a tak f v a extrém nemá.

Věta 118. Je-li f'(a) = 0, $f''(a) \neq 0$, má f v a ostrý extrém a sice min. (max.) je-li f''(a) > 0 (< 0).

Důkaz. Je-li třeba f''(a) > 0, tak f' v a roste, takže existuje $\delta > 0$, že f'(x) < f'(a) = 0 na $(a - \delta, a)$ a f'(x) > f'(a) = 0 na $(a, a + \delta)$ a viz větu 117.1.

Věta 119. Pro $n \ge 1$, $1 \le k < n$ bud' $f^{(k)}(a) = 0$, $f^{(n)}(a) \ne 0$ (tj. $f^{(n)}(a) \ne 0$ a pro n > 1 bud' $f^{(k)}(a) = 0$ $\forall 1 \le k < n$). Pak

- 1. pro sudé n a $f^{(n)}(a) > 0$ (< 0) má f v a ostré lokální minimum (maximum),
- 2. pro liché n v a nemá extrém; při $f^{(n)}(a) > 0$ (< 0) f v a roste (klesá)

 $D\mathring{u}kaz$. Důkaz provedeme matematickou indukcí. Pro n=1 (2) to je věta 86 (118).

Nechť tvrzení platí pro $n \ge 2$. a buď $f^{(k)}(a) = 0$ pro $1 \le k < n$, $f^{(n+1)}(a) \ne 0$, třeba $f^{(n+1)}(a) > 0$. Pak je funkce g(x) = f'(x) splňuje požadavky věty pro n, takže

- 1. pro sudé n+1 je n liché a tak g v a roste, existuje tedy $\delta > 0$, že g(x) < g(a) na $(a-\delta,a)$, g(x) > g(a) na $(a,a+\delta)$. Je tedy f'(x) < f'(a) = 0 na $(a-\delta,a)$, f'(x) > f'(a) na $(a,a+\delta)$ a viz větu 117.2.
- 2. pro liché n+1 je n sudé a tak g v a má ostré minimum, existuje tedy $\delta>0$, že g(x)>g(a) na $(a-\delta,a)$ i $(a,a+\delta)$. Je tedy f'(x)< f'(a)=0 na $(a-\delta,a)$, f'(x)< f'(a) na $(a,a+\delta)$ a viz větu 117.1.

Věta 120. Pro 1 < k < n bud' $f^{(k)}(a) = 0$, $f^{(n)}(a) \neq 0$. Je-li n liché (sudé), má (nemá) f v a inflexní bod.

 $D\mathring{u}kaz$. Buď [x, f(x)] je nad či pod tečnou

$$y = f'(a)(x - a) + f(a)$$
(9.1)

právě když je g(x) = f(x) - f'(a)(x - a) - f(a) kladné či záporné. Je $g'(a) = \cdots = g^{(n-1)}(a) = 0$ a buď třeba $f^{(n)}(a) > 0$ takže pak je $g^{(n)}(a) > 0$ a podle věty 119 má funkce g

- 1. pro sudé n ostré lokální minimum, tj. existuje $\delta > 0$, že g(x) > g(a) = 0 na $(a \delta, a)$ a $(a, a + \delta)$, tedy a není inflexní.
- 2. pro liché n g v a podle věty 119.2 roste, tj. existuje $\delta > 0$, že g(x) < g(a) = 0 na $(a \delta, a)$, g(x) > g(a) = 0 na $(a, a + \delta)$, takže [x, f(x)] je pro $x \in (a - \delta, a)$ pod, ale pro $x \in (a, a + \delta)$ nad tečnou (podle (9.1)), tedy a je inflexní.

Věta 121. Je-li f'(a) = 0, f''(x) > 0 (< 0) na okolí bodu a, je v a lokální minimum (maximum).

 $D\mathring{u}kaz$. Podle věty 112 je f na okolí bodu a konvexní (konkávní) a tak na něm má podle věty 111 minimum (maximum).

Definice 120. Buď f dána na intervalu (a, ∞) $((-\infty, b))$. Přímku y = kx + q nazveme její pravou (levou) asymptotou, nebo taky asymptotou u ∞ (u $-\infty$) jestli $\lim_{x\to\infty} |f(x)-kx+q|=0$ $(\lim_{x \to -\infty} |f(x) - kx + q| = 0.$

Někdy se za asymptotu považuje ještě přímka x=a, je-li f dána na nějakém $(a-\delta,a)$ nebo $(a, a + \delta)$ a $f(a-) = \pm \infty$, nebo $f(a+) = \pm \infty$.

Věta 120. f má pravou asymptotu právě když platí: exstuje konečná limita $\lim_{x\to\infty} \frac{f(x)}{x}$ a ozna*číme ji k, existuje konečná* $\lim_{x\to\infty} (f(x)-kx)$.

 $\emph{Je-li podmínka splněna a označíme-li druhou z limit } q, je \ y = kx + q \ pravou \ asymptotou. (Má$ tedy f nejvýš jednu pravou asymptotu.)

Existuje-li $\lim_{x\to\infty} f'(x)$, pak existuje i $\lim_{x\to\infty} \frac{f(x)}{x}$ a rovná se jí, takže je-li konečná, je k=1 $\lim_{x\to\infty} f'(x)$.

Stejné tvrzení (s limitami $u - \infty$) platí pro levou asymptotu.

Důkaz. Důkaz implikace \Rightarrow : je-li y=kx+q asymptota u ∞ , je $\lim_{x\to\infty}|f(x)-kx-q|$, takže $0 = \lim_{x \to \infty} \frac{|f(x) - kx - q|}{x} = \lim_{x \to \infty} \left| \frac{f(x)}{x} - k \right| \text{ odkud } \lim_{x \to \infty} \left(\frac{f(x)}{x} - k \right) = 0, \text{ takže } \lim_{x \to \infty} \frac{f(x)}{x} = 0$ $\lim_{x\to\infty} \left(\frac{f(x)}{x} - k\right) + k = k$. Dále je $\lim_{x\to\infty} \left(fx - kx - q\right) = 0$, takže f(x) - kx = (f(x) - kx - q) + kq = q, odkud $\lim_{x \to \infty} (f(x) - kx) = q$.

Důkaz opačné implikace \Leftarrow : existuje-li konečná $k = \lim_{x \to \infty} \frac{f(x)}{x}$ a $q = \lim_{x \to \infty} (f(x) - kx)$ a položíme y=kx+q, je $\lim_{x\to\infty}|f(x)-kx-q|=0$. Existuje-li $\lim_{x\to\infty}f'(x)$, existuje $\lim_{x\to\infty}\frac{f(x)}{x}$ a rovná se jí (věta 94), takže je-li konečná, je

 $k = \lim_{x \to \infty} f'(x)$

Věta 121. Buď g derivací spojité funkce na intervalu I. Je-li monotónní, tak je spojitá.

 $D\mathring{u}kaz$. Buď bod $a \in I$, který není pravý krajní a buď g = f' na I. Pak existuje $\lim_{x \to a+} f'(x)$ (f'je monotónní) a je $f'_+(a) = \lim_{x \to a+} f'(x)$. Je tedy g = f' v a spojitá zprava. Obdobně se ukáže, že je v a spojitá zleva (není-li a levý krajní) tak je v a spojitá.

Příklad 121 (Průběh funkce). Při vyšetřování průběhu funkce postupujeme po následujících bodech:

- 1. Určíme definiční obor,
- 2. skládá-li se D_f z více intervalů, spočteme příslušné jednostranné limity u každého z jejich krajních bodů, který nepatří do D_f , včetně případných limit v nevlastních bodech $\pm \infty$,

- 3. f': najdeme stacionární body, intervaly monotónie (podle věty 92) a body, kde f nemá derivaci; zjistíme, kde jsou extrémy a jaké
- 4. f'': najdeme body, které mohou být inflexní a intervaly konkávnosti a konvexnosti (věta 112)
- 5. najdeme případné asymptoty
- 6. nakreslíme graf

Máme-li zkoumat celkové extrémy spojité funkce na $\langle a,b\rangle$, stačí srovnat její hodnoty ve všech případných stacionárních bodech, v bodech, kde případně nemá derivaci a v bodech a a b. Kde je hodnota největší (nejmenší), je globální maximum (minimum) funkce f na $\langle a,b\rangle$.

 $^{^1{\}rm kdybyste}$ znal někdo správné očíslování vět 117-121, napište na ic
q 310109616. díky

Kapitola 10

Řady

Definice 122. Součtem členů posloupnosti a_n se rozumí limita $\lim_{n\to\infty} s_n$, kde $s_n = \sum_{k=1}^n a_k$ je takzvaný n-tý částečný součet členů posloupnosti. Pokud tato limita existuje. Označíme-li ji v takovém případě s, píšeme $s = \sum_{n=1}^{\infty} a_n$; místo součet s, cástečný součet) členů posloupnosti

 $\{a_n\}_{n=1}^{\infty}$ je zvykem říkat součet (n. částečný součet) řady $\sum_{n=1}^{\infty}a_n.$

Je-li konečný, říkáme, že řada konverguje, jinak diverguje; zde ještě rozeznáváme divergence $\mathbf{k} \propto (-\infty)$ jestli $s = \infty \ (-\infty)$ a jestli $\{s_n\}_{n=1}^{\infty}$ nemá limitu, říká se, že řada nemá součet, nebo že osciluje.

Věta 123 (Nutná podmínka konvergence). Jestli $\sum_{n=1}^{\infty} a_n$ konverguje, pak $a_n \to 0$.

$$D\mathring{u}kaz. \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - s_{n-1} = s - s = 0.$$

Věta 124 (Bolzano-Cauchyova podmínka konvergence řad). $\sum_{n=1}^{\infty} a_n$ konverguje právě když

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}, \ \check{z}e \ |a_{m+1} + \dots + a_n| < \varepsilon \ \forall m, n \ge k$$

kterážto podmínka je rovnocenná podmínce

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}, \ \check{z}e \ |a_{k+1} + \dots + a_n| < \varepsilon \ \forall n \ge k$$

 $D\mathring{u}kaz$. Použití Bolzano-Cauchyovy podmínky pro posloupnosti $\{s_n\}_{n=1}^{\infty}$ pousloupnosti částečných součtů (věta 31).

Příklad 125. Harmonická řada $(\sum_{n=1}^{\infty} \frac{1}{n})$ konverguje k nekonečnu.

Důkaz.

$$\left| \sum_{k=2^{n+1}}^{2^{n+1}} \frac{1}{k} \right| = \frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}} \ge \frac{1}{2^{n+1}} \cdot \left(2^{n+1} - 2^n \right) = 1 - \frac{1}{2} = \frac{1}{2}$$

Protože toto platí $\forall n,$ tak podle BC podmínky řada diverguje.

Věta 126 (Srovnávací příznak (kritérium) pro řady s nezápornými členy). Nechť pro $\sum_{n=1}^{\infty} a_n$ a_n $\sum_{n=1}^{\infty} b_n$ existuje $l \in \mathbb{N}$, že $0 \le a_n \le b_n$ $\forall n \ge l$. Pak konverguje-li řada $\sum_{n=1}^{\infty} b_n$, tak i $\sum_{n=1}^{\infty} a_n$ (či naopak, diverguje-li $\sum_{n=1}^{\infty} a_n$, tak i $\sum_{n=1}^{\infty} b_n$).

41

 $D\mathring{u}kaz$. Jestli $\sum_{n=1}^{\infty} b_n$ konverguje, tak podle věty 124

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}, \ \check{\text{ze}} \ |b_m + \dots + b_n| < \varepsilon \ \forall m, n \ge k$$
 (10.1)

lze brát $k \geq l$. Ukážeme, že podmínku věty 124 splňuje i $\sum_{n=1}^{\infty} a_n$.

Buď tedy $\varepsilon > 0$. Vezměme k němu k podle (10.1). Pro $m, n \geq k$ pak je $|a_m + \cdots + a_n| = a_m + \ldots a_n \leq b_m + \cdots + b_n = |b_m + \cdots + b_n| < \varepsilon$ podle (10.1).

Důsledek 127 (tzv. odmocninový či Cauchyův příznak).

A Nechť pro $\sum\limits_{n=1}^\infty a_n$ s nezápornými členy $\exists k\in\mathbb{N},\ q\in(0,1),$ že $\sqrt[n]{a_n}\leq q\ \forall n\geq k.$ Pak $\sum\limits_{n=1}^\infty a_n$ konverguje.

Jestli $\sqrt[n]{a_n} \ge 1$ pro nekonečně $n, \sum_{n=1}^{\infty} a_n$ diverguje (k ∞).

B (limitní podoba) Jestli $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$ (> 1), řada konverguje (diverguje).

Důkaz.

A Z $\sqrt[n]{a_n} \le q \ \forall n \ge k$ plyne, že $a_n < q^n \ \forall n \ge k$ a geometrická řada $\sum_{n=1}^{\infty} q^n$ při $0 \le q < 1$ konverguje, takže podle věty 126 totéž platí pro $\sum_{n=1}^{\infty} a_n$.

Je-li $\sqrt[n]{a_n} \ge 1$ pro nekonečně mnoho n, je $a_n \ge 1$ pro tyto n a tak nejde $a_n \to 0$, proto $\sum_{n=1}^{\infty} a_n$ nemůže podle věty 123 konvergovat.

B Je-li $l=\lim_{n\to\infty}\sqrt[n]{a_n}<1$, zvolme q, aby l< q<1. Pak existuje k, že $\sqrt[n]{a_n}\le q$ $\forall n\ge k$ a případ A dává konvergenci.

Je-li l>1, existuje $k\in\mathbb{N}$, že $\sqrt[n]{a_n}>1$ $\forall n\geq k$ a bod A dává divergenci.

Věta 128 (tzv. podílový srovnávací příznak konvergence řad s kladnými členy). Nechť pro $\sum_{n=1}^{\infty} a_n$ $a \sum_{n=1}^{\infty} b_n$ existuje $l \in \mathbb{N}$, že $a_n, b_n > 0$ $a \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n} \ \forall n \geq l$. Pak jestli $\sum_{n=1}^{\infty} b_n$ konverguje, tak i $\sum_{n=1}^{\infty} a_n$ (a naopak, jestli $\sum_{n=1}^{\infty} a_n$ diverguje, tak i $\sum_{n=1}^{\infty} b_n$).

 $D\mathring{u}kaz$. Pro $n \ge l$ je

$$\frac{a_n}{a_l} = \frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{l+1}}{a_l} \le \frac{b_n}{b_{n-1}} \cdot \frac{b_{n-1}}{b_{n-2}} \cdots \frac{b_{l+1}}{b_l} = \frac{b_n}{b_l}$$

odkud $a_n \leq \frac{a_l}{b_l}b_n$ a z konvergence $\sum_{n=1}^{\infty}b_n$ plyne konvergence $\sum_{n=1}^{\infty}\frac{a_l}{b_l}b_n$ a tak konverguje i $\sum_{n=1}^{\infty}a_n$ podle věty 126.

Důsledek 129 (tzv. d'Alembertův podílový příznak).

A Nechť pro $\sum_{n=1}^{\infty} a_n$ s kladnými členy je $k \in \mathbb{N}, q \in (0,1)$, že $\frac{a_{n+1}}{a_n} \leq q \ \forall n \geq k$. Pak $\sum_{n=1}^{\infty} a_n$ konverguje; jestli je $\frac{a_{n+1}}{a_n} \geq 1 \ \forall n \geq k$, $\sum_{n=1}^{\infty} a_n$ diverguje.

B (limitní tvar) Jestli $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$ (> 1), $\sum_{n=1}^{\infty} a_n$ konverguje (diverguje).

Důkaz.

A Použije se věta 128 na $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} q^n$. Ta druhá při $q \in (0,1)$ konverguje. Je-li $\frac{a_{n+1}}{a_n} \ge 1 \ \forall n \ge k$, je $a_n \ge a_{n-1} \ge \cdots \ge a_k \ \forall n \ge k$ a tak $\lim_{n \to \infty} a_n \ne 0$ a viz větu 123.

B Jestli $l=\liminf \frac{a_{n+1}}{a_n}<1$, zvolme q, aby l< q<1. Pak $\exists k\in\mathbb{N}$, že $\frac{a_{n+1}}{a_n}\leq q\ \forall n\geq k$ a bod A dává konvergenci.

Je-li l>1, existuje $k\in\mathbb{N}$, že $\frac{a_{n+1}}{a_n}>1 \ \forall n\geq k$ a viz bod A.

Věta 130 (Kummerův příznak). Pro posloupnosti $\{a_n\}$ a $\{c_n\}$ nechť je $l \in \mathbb{N}$, že $a_n > 0$, $c_n > 0$ $\forall n \geq l$. Položíme

$$K_n = c_n \frac{a_n}{a_{n+1}} - c_{n+1} \qquad \text{pro } n \ge l$$
 (10.2)

A Jestli existuje $k \in \mathbb{N}$, $\delta > 0$, že $K_n \geq \delta \ \forall n \geq k$, tak $\sum_{n=1}^{\infty} a_n$ konverguje.

B Jestli $\sum_{n=1}^{\infty} \frac{1}{c_n}$ diverguje a existuje $k \in \mathbb{N}$, že $K_n \leq 0 \ \forall n \geq k$, tak $\sum_{n=1}^{\infty} a_n$ diverguje.

Limitní tvar: Jestli $K = \lim_{n \to \infty} K_n > 0 \ (< 0)$, tak řada konverguje (diverguje).

Důkaz.

A Z
$$K_n = c_n \frac{a_n}{a_{n+1}} - c_{n+1} \geq \delta$$
 pro $n \geq k, l$ plyne

$$c_n a_n - c_{n+1} a_{n+1} \ge \delta a_{n+1} \tag{10.3}$$

takže $c_n a_n - c_{n+1} a_{n+1} > 0$, tj. $c_n a_n > c_{n+1} a_{n+1}$ a tak $\{c_n a_n\}$ klesá, má tedy konečnou limitu L.

Pro částečné součty σ_n řady

$$\sum_{k=0}^{\infty} \left(c_k a_k - c_{k+1} a_{k+1} \right) \tag{10.4}$$

je

$$\lim_{n \to \infty} \sigma_n = \lim_{n \to \infty} \left[(c_1 a_1 - c_2 a_2) + (c_2 a_2 - c_3 a_3) + \dots + (c_n a_n - c_{n+1} a_{n+1}) \right] =$$

$$= \lim_{n \to \infty} \left[c_1 a_1 - c_{n+1} a_{n+1} \right] = c_1 a_1 - L$$

a tak řada (10.4), načež podle (10.3) a věty 126 i $\sum\limits_{n=1}^{\infty}a_{n}$ konverguje.

B Z $K_n \leq 0$ plyne

$$\frac{a_{n+1}}{a_n} \ge \frac{\frac{1}{c_{n+1}}}{\frac{1}{c_n}}$$

a tak divergence $\sum\limits_{n=1}^{\infty}\frac{1}{c_n}$ dává podle věty 128 totéž pro $\sum\limits_{n=1}^{\infty}a_n.$

Limitní podoba stejné jako u vět 127 a 129.

- 1. Položíme ve větě 130 $c_n = 1$, dostáváme podílový příznak z věty 129.
- 2. Položíme-li $c_n=n,$ dostáváme tzv. Raabeho příznak:

A Existuje-li
$$k \in \mathbb{N}$$
, $q > 1$, že $n\left(\frac{a_n}{a_{n-1}} - 1\right) \ge q \ \forall n \ge k$, pak $\sum_{n=1}^{\infty} a_n$ konverguje. Je-li $n\left(\frac{a_n}{a_{n-1}} - 1\right) \le 1 \ \forall n \ge l$, tak $\sum_{n=1}^{\infty} a_n$ diverguje.

B (limitní tvar) Jestli $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n-1}}-1\right) > 1$ (< 1), řada $\sum_{n=1}^{\infty} a_n$ konverguje (diverguje).

3. Položíme-li $c_n = n \ln n$, dostáváme tzv. Bertrandův příznak:

jestli
$$\lim_{n\to\infty} \ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] > 1$$
 (< 1), řada konverguje (diverguje).

 $D\mathring{u}kaz$. 1 a 2 plyne ihned z věty 130, limitní tvary obdobně jako v důkazu vět 127 a 129. ($\sum_{i=1}^{\infty} \frac{1}{n}$ diverguje).

Třetí bod: $c_n = n \ln n$ vyhovuje předpokladům věty 130 a tak

$$K_n = c_n \frac{a_n}{a_{n+1}} - c_{n+1} = n \ln n \frac{a_n}{a_{n+1}} - (n+1) \ln (n+1) =$$

$$= n \left(\frac{a_n}{a_{n+1}}\right) \ln n - n \ln n + n \ln n - (n+1) \ln (n+1) =$$

$$= n \left(\frac{a_n}{a_{n+1}} - 1\right) \ln n + n \ln n - (n+1) \ln (n+1) =$$

$$= n \left(\frac{a_n}{a_{n+1}} - 1\right) \ln n - \ln n + \ln n + n \ln n - (n+1) \ln (n+1) =$$

$$= \ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1\right) - 1\right] - \ln \left(1 + \frac{1}{n}\right)^{n+1}$$

takže $\lim_{n\to\infty} K_n = \lim_{n\to\infty} \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] - 1$ a věta 130 dává tvrzení. (divergence $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ dodatečně v příkladu)

Věta 132 (Gaussův příznak). $\sum_{n=1}^{\infty} a_n$ měj kladné členy a nechť existuje $k \in \mathbb{N}$, že $\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + \frac{\theta_n}{n^2}$

 $\forall n \geq k, \lambda, \mu > 0 \ a \ \{\theta_n\} \ je \ omezen\'a \ (\theta_n \leq L \ \forall n \geq l).$ $Pak \sum_{n=1}^{\infty} a_n \ konverguje \ je-li \ \lambda > 1, \ nebo \ \lambda = 1 \ a \ \mu > 1. \ Diverguje \ p\'ri \ \lambda < 1 \ nebo \ \lambda = 1 \ a$ $\mu \leq 1$.

 $D\mathring{u}kaz$. $\lambda < 1$ $(\lambda > 1)$ – věta 129, protože pak je limita $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lambda$. Buď $\lambda = 1$, pak $R_n = 1$ $n\left(\frac{a_n}{a_{n+1}}-1\right)=\mu+\frac{\theta_n}{n}, \lim_{n\to\infty}R_n=\mu$ a tak případy $\mu>1$ ($\mu<1$) dává důsledek 131.2 (Raabe). Při $\mu=1$ je $B_n=\ln n\left(R_n-1\right)=\frac{\ln n}{n}$. θ_n a tak $B_n\to 0$ a odpověď dává důsledek 131.3.

Věta 133 (sdružování členů řady). Bud' $\{n_k\}_{k=1}^{\infty}$ rostoucí posloupností přirozených čísel. Pro posloupnosti částečných součtů řady $\sum_{n=1}^{\infty} a_n$ položme $b_k = s_{n_k} - s_{n_{k-1}}$ (= $a_{n_{k-1}+1} + \cdots + a_{n_k}$).

A Jestli
$$\sum_{n=1}^{\infty} a_n = s$$
, tak i $\sum_{n=1}^{\infty} b_n = s$.

B Jestli je $a_n \geq 0 \ (\leq 0)$ od nějakého $l \in \mathbb{N}$, pak $\sum_{n=0}^{\infty} a_n = s$ právě když $\sum_{n=0}^{\infty} b_n = s$.

Důkaz.

A Posloupnost $\{\sigma_n\}$ částečných součtů řady $\sum_{n=1}^{\infty} b_n$ je vybraná z $\{s_n\}$, takže podle věty 23 jestli $s_n \to s$, tak i $\sigma_n \to s$.

B Zde je $\{s_n\}$ i $\{\sigma_n\}$ monotónní od l a tak mají limitu; označíme je s a σ . Podle věty 23 je $s=\sigma$.

Věta 134 (tzv. kondenzanční příznak konvergence). Nechť existuje $l \in \mathbb{N}$, že $0 \le a_{n+1} \le a_n \ \forall n \ge l$. Pak $\sum_{n=1}^{\infty} a_n$ konverguje právě tehdy, když konverguje řada $\sum_{n=1}^{\infty} 2^n a_{2^n}$.

 $D\mathring{u}kaz$. Pro $n \in \mathbb{N}$ je $(s_n$ je částečný součet řady $\sum_{n=1}^{\infty} a_n)$

$$\frac{1}{2}2^{n+1} \cdot a_{2^{n+1}} \le s_{2^{n+1}} - s_{2^n} = a_{2^n+1} + \dots + a_{2^{n+1}} \le 2^n a_{2^n}$$
 (10.5)

Proto $\sum_{n=1}^{\infty} 2^n a_{2^n}$ konverguje právě když konverguje $\sum_{n=1}^{\infty} (s_{2^{n+1}} - s_{2^n})$, která podle věty 133B konverguje právě když konverguje $\sum_{n=1}^{\infty} a_n$.

Příklad 135. $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ diverguje.

 $D\mathring{u}kaz$. $a_n = \frac{1}{n \ln n}$ vyhovuje požadavkům věty 134 a

$$\sum_{n=1}^{\infty} 2^n a_{2^n} = \sum_{n=1}^{\infty} 2^n \frac{1}{2^n \ln 2^n} = \sum_{n=1}^{\infty} \frac{1}{n \ln 2}$$

diverguje (příklad 125).

Řady s nestejnými znaménky

Věta 136 (Leibnitzův příznak). $Bud' 0 \le b_{n+1} \le b_n \ \forall n \ od \ nějakého \ l \in \mathbb{N}. \ Pak \sum_{n=1}^{\infty} (-1)^{n+1} b_n$ konverguje právě tehdy $když \ b_n \to 0$.

 $D\mathring{u}kaz$. Jestli $b_n \to 0$, řada $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n+1}$ a $\{b_n\}$ splňují podmínky věty 140B a tak $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ konverguje.

Jestli
$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n$$
 konverguje, tak $(-1)^{n+1} b_n \to 0$ a tak $b_n \to 0$.

Definice 137. Variací posloupnosti $\{a_n\}$ se rozumí číslo var $\{a_n\} = \sum_{n=1}^{\infty} (a_n - a_{n+1})$. Je-li konečná, říkáme, že posloupnost má konečnou variaci.

Tvrzení 138.

- A Monotónní a omezená posloupnost má konečnou variaci.
- B $M\acute{a}$ -li $\{a_n\}$ $kone\check{c}nou\ variaci,\ je\ omezen\acute{a}.$

45

Důkaz.

A Nechť $\{a_n\}$ třeba neklesá, $a_n \leq K$. Pak

$$\sum_{k=1}^{n} |a_{k+1} - a_k| = (a_2 - a_1) + (a_3 - a_2) + \dots + (a_{n+1} - a_n) = a_{n+1} - a_1 \le K - a_1$$

$$\Rightarrow \sum_{k=1}^{n} |a_{k+1} - a_k| \le K - a_1$$

B
$$a_n = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1) + a_1$$
 a tak $|a_n| \le |a_n - a_{n-1}| + \dots + |a_2 - a_1| + |a_1| \le \sum_{n=1}^{\infty} |a_{n+1} - a_n| + |a_1| = \text{var}\{a_1\} + |a_1|.$

Lemma 139 (Abelova parciální sumace). Pro $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$, (n > 1) buď $s_k = \sum_{j=1}^k a_j$. Pak je

$$a_1b_1 + \dots + a_nb_n = a_1 \cdot b_1 + (s_2 - s_1)b_2 + (s_3 - s_2)b_3 + \dots + (s_n - s_{n-1})b_n = s_1(b_1 - b_2) + s_2(b_2 - b_3) + \dots + s_{n-1}(b_{n-1} - b_n) + s_nb_n$$

Věta 140 (Abel-Dirichletův příznak konvergence). Posloupnost $\{b_n\}$ měj konečnou variaci (třeba buď monotónní a omezená), $\{a_n\} \subset \mathbb{C}$. Pak $\sum_{n=1}^{\infty} a_n b_n$ konverguje jestli

A Buďto $\sum_{n=1}^{\infty} a_n$ konverguje (Abellův příznak), nebo

 $B\sum_{n=1}^{\infty}a_n$ má omezenou posloupnost částečných součtů a $b_n\to 0$ (Dirichletův příznak).

 $D\mathring{u}kaz.$ Ukážeme, že $\sum\limits_{n=1}^\infty a_nb_n$ splňuje BC podmínku věty 124. Pro $k,p\in\mathbb{N},$ položme $\sigma_{k,p}=\sum\limits_{l=1}^p a_{k+l}.$ Podle tvrzení 139 je

$$|a_{k+1}b_{k+1} + \dots + a_{k+p}b_{k+p}| = |\sigma_{k,1}(b_{k+1} - b_{k+2}) + \dots + \sigma_{k,p-1}(b_{k+p-1} - b_{k+p}) + \sigma_{k,p}b_{k+p}|$$
(10.6)

A Protože $\sum_{n=1}^{\infty} a_n \left(\sum_{n=1}^{\infty} |b_n - b_{n+1}| \right)$ konverguje, existuje podle věty 124 $r \in \mathbb{N}$ $(s \in \mathbb{N})$, že pro $\varepsilon < 1$

$$|\sigma_{r,p}| = \left| \sum_{l=1}^{p} a_{r+l} \right| < \varepsilon \,\forall p \in \mathbb{N}$$
 (10.7)

$$\left(\sum_{n=p}^{q} |b_n - b_{n+1}| < \varepsilon \ \forall p, q \ge s\right) \tag{10.8}$$

Navíc je $\{b_n\}$ podle tvrzení 138B omezená, třeba $|b_n| \leq K$. Pro $k = \max(r, s)$ pak je podle (10.6)

$$|a_{k+1}b_{k+1} + \dots + a_{k+p}b_{k+p}| \le$$

$$\le |\sigma_{k,1}| |b_{k+1} - b_{k+2}| + \dots + |\sigma_{k,p-1}| |b_{k+p-1} - b_{k+p}| + |\sigma_{k,p}| |b_{k+p}| <$$

$$< \varepsilon (|b_{k+1} - b_{k+2}| + \dots + |b_{k+p-1} - b_{k+p}| + |b_{k+p}|) <$$

$$< \varepsilon (\varepsilon + K) < \varepsilon (1 + K)$$

П

46

B Pro $s_n = \sum_{k=1}^n a_k$ buď $|s_n| \leq K \ \forall n$, pak je $|\sigma_{k,p}| = |s_{k+p} - s_k| \leq |s_{k+p}| + |s_k| \leq 2K \ \forall k, p$. Protože $\sum_{n=1}^{\infty} |b_n - b_{n+1}|$ konverguje $(b_n \to 0)$, je podle věty 124 $s \in \mathbb{N}$ $(r \in \mathbb{N})$, že platí (10.8) $(|b_n| < \varepsilon \ \forall n \geq r)$. Pro $k = \max(r, s)$ pak je podle (10.6)

$$\begin{aligned} |a_{k+1}b_{k+1} + \cdots + a_{k+p}b_{k+p}| &\leq \\ &\leq |\sigma_{k,1}| |b_{k+1} - b_{k+2}| + \cdots + |\sigma_{k,p-1}| |b_{k+p-1} - b_{k+p}| + |\sigma_{k,p}| |b_{k+p}| &< \\ &< 2K \left(|b_{k+1} - b_{k+2}| + \cdots + |b_{k+p-1} - b_{k+p}| + |b_{k+p}| \right) &< \\ &< 2K \cdot 2\varepsilon = 4K\varepsilon \ \forall p \in \mathbb{N} \end{aligned}$$

Věta 141. Jestli $\sum |a_n|$ konverguje (tj. $\sum a_n$ konverguje tzv. absolutně) a $\{b_n\}$ je omezená, tak $\sum a_n b_n$ konverguje.

 $\begin{array}{l} \textit{D\mathring{u}kaz}. \text{ Je-li } \varepsilon > 0, \text{ tak z konvergence } \sum |a_n| \text{ plyne, } \check{z} \in \exists k \in \mathbb{N}, \, \check{z} e \sum_{l=1}^p |a_{k+l}| < \varepsilon \, \forall p \in \mathbb{N}. \\ \text{ Je-li naopak } \varepsilon > 0, \text{ tak tedy } |a_{k+1}b_{k+1} + \ldots + a_{k+p}b_{k+p}| \leq |a_{k+1}b_{k+1}| + \ldots + |a_{k+p}b_{k+p}| \leq K\left(|a_{k+1}| + \ldots + |a_{k+p}|\right) < K\varepsilon \, \forall p \in \mathbb{N}. \end{array}$

Věta 142. $Bud' \sum a_n \check{r}ada s nezápornými a \sum b_n s kladnými členy. Pak$

- 1. Jestli l=0 a $\sum b_n$ konverguje, pak $\sum a_n$ konverguje, právě když $\sum b_n$ konverguje
- 2. Jestli l=0 a $\sum b_n$ konverguje, tak i $\sum a_n$ konverguje (a tedy jestli $\sum a_n$ diverguje, tak i $\sum b_n$)
- 3. Jestli $l=\infty$ a $\sum b_n$ diverguje, tak i $\sum a_n$ (a tedy jestli $\sum a_n$ konverguje, tak i $\sum b_n$)

Důkaz.

- 1. Jestli $l = \lim \frac{a_n}{b_n} \in (0, \infty)$, pak je $\lim \frac{a_n}{b_n} < l + 1$ a tak $\frac{a_n}{b_n} < l + 1 \, \forall n \ge k$, tj. $a_n < (l+1)b_n$ a z konvergence $\sum b_n$ (a tedy $\sum (l+1)b_n$) plyne konverence $\sum a_n$.

 Pro α je $\lim \frac{a_n}{b_n} < \alpha$ a tak $\frac{a_n}{b_n} < \alpha \, \forall n \ge k$, tj. $a_n > \alpha b_n$ a tak z divergence $\sum b_n$ plyne totéž pro $\sum a_n$.
- 2. Zde je $0=l=\lim \frac{a_n}{b_n}<1$ a tak $\frac{a_n}{b_n}<1$ $\forall n\geq k,$ tj. $a_n< b_n,$ načež konvergence $\sum b_n$ dává totéž pro $\sum a_n.$
- 3. Zde je $\infty=l=\lim\frac{a_n}{b_n}>1$ a tak $a_n>b_n\,\forall n\geq k,$ načež divergence $\sum b_n$ dává divergenci $\sum a_n.$

Absolutní konvergence

Definice 143. Řadu $\sum_{n=1}^{\infty} a_n$ nazveme absolutně konvergentní jestli konverguje $\sum_{n=1}^{\infty} |a_n|$.

Věta 144. Absolutně konvergentní řada konverguje.

 $D\mathring{u}kaz$. Jestli $\sum_{n=1}^{\infty} |a_n|$ konverguje, tak podle věty 124 splňuje BC podmínku, tj.

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}, \ \text{\'ze} \ \left| \sum_{l=k+1}^{p} |a_l| \right| = \sum_{l=k+1}^{p} |a_l| < \varepsilon \ \forall p \in \mathbb{N}$$
 (10.9)

Buď $\varepsilon > 0$; najděme $k \in \mathbb{N}$, aby platilo (10.9). Pro $p \in \mathbb{N}$ pak je

$$|a_{k+1} + \dots + a_{k+p}| \le |a_{k+1}| + \dots + |a_{k+p}| < \varepsilon$$

což bylo dokázat.

Příklad 145. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ konverguje, ale ne absolutně.

Definice 146. Řadu $\sum a_n$ nazveme neabsolutně konvergentní, pokud konverguje, ale ne absolutně.

Poznámka 147. $\{a_{k(n)}\}$ $(\{a_{z(n)}\})$ buď vybraná posloupnost nezáporných (záporných) členů posloupnosti $\{a_n\}$. Pak nastává jediný z těchto případů:

1.
$$\sum_{n=1}^{\infty} a_{k(n)}$$
 i $\sum_{n=1}^{\infty} a_{z(n)}$ konverguje – pak $\sum_{n=1}^{\infty} a_n$ konverguje absolutně

2.
$$\sum_{n=1}^{\infty} a_{k(n)} = \infty$$
, $\sum_{n=1}^{\infty} a_{z(n)}$ konverguje – pak $\sum_{n=1}^{\infty} a_n = \infty$

3.
$$\sum\limits_{n=1}^{\infty}a_{k(n)}$$
konverguje, $\sum\limits_{n=1}^{\infty}a_{z(n)}=-\infty$ – pak $\sum\limits_{n=1}^{\infty}a_n=-\infty$

4.
$$\sum_{n=1}^{\infty} a_{k(n)} = \infty$$
, $\sum_{n=1}^{\infty} a_{z(n)} = -\infty$

Jestli $\sum_{n=1}^{\infty} a_n$ konverguje neabsolutně, nastává čtvrtá možnost.

Definice 148. Buď p prosté zobrazení $\mathbb{N} \to \mathbb{N}$. Pak řekneme, že řada $\sum_{n=1}^{\infty} a_{p(n)}$ vznikne z řady $\sum_{n=1}^{\infty} a_n$ přerovnáním.

Věta 149. Nechť $\sum_{n=1}^{\infty} a_n$ neabsolutně konverguje, $s \in \mathbb{R}^*$. Pak je přerovnání p množiny \mathbb{N} , že $\sum_{n=1}^{\infty} a_{p(n)} = s$.

 $D\mathring{u}kaz$. ¹ Buď $\{a_{k(n)}\}$ a $\{a_{z(n)}\}$ vybrané posloupnosti všech nezáporných (záporných) členů posloupnosti $\{a_n\}$; je

$$1. \sum_{n=1}^{\infty} a_{k(n)} = \infty$$

$$2. \sum_{n=1}^{\infty} a_{z(n)} = -\infty$$

Buď n_1 první $n \in \mathbb{N}$, že $\sigma_1 = a_{k(1)} + \cdots + a_{k(n)} > s$, n_2 první $n \in \mathbb{N}$, že $\sigma_2 = \sigma_1 + a_{z(1)} + \cdots + a_{z(n)} < s$, n_3 první $n \in \mathbb{N}$, že $\sigma_3 = \sigma_2 + a_{k(n_1+1)} + \cdots + a_{k(n)} > s$, n_4 první $n \in \mathbb{N}$, že $\sigma_4 = \sigma_3 + a_{z(n_2+1)} + \cdots + a_{z(n)} < s$,

Bud' $n: 1, 2, \ldots, n_1, n_1 + 1, n_1 + 2, \ldots, n_2, n_2 + 1, \ldots, n_3, n_3 + 1, \ldots, n_4, n_4 + 1, \ldots$ $p(n): k(1), k(2), \ldots, k(n_1), z(1), z(2), \ldots, z(n_2), k(n_1) + 1, \ldots, k(n_3), z(n_2) + 1, \ldots, z(n_4), k(n_3) + 1, \ldots, z(n_4), z(n$

 $^{^1}$ Tenhle důkaz mi nedává smysl, ať ho čtu, jak ho čtu, takže je asi nějak špatně. Kdybyste ho někdo měl dobře a chápete ho, napište na icq 310109616, díky.

Zobrazení p je prosté a zobrazuje $\mathbb N$ na $\mathbb N$, takže $\sum_{n=1}^{\infty} a_{p(n)}$ vznikla přerovnáním z $\sum_{n=1}^{\infty} a_n$.

Protože $\sum_{n=1}^{\infty} a_n$ konverguje, tak $a_n \to 0$, tudíž existuje $d \in \mathbb{N}$, že $|a_d| < \varepsilon \ \forall n \ge d$. Buď $t' \in \mathbb{N}$ takové, že $\{p(1), \ldots, p(t'-1)\}$ obsahuje všechna čísla $1, \ldots, d$. Je-li tedy $n \ge d$, je $p(n) \ge d$ a tak $a_{p(n)} < \varepsilon \ \forall n \ge t'.$

Zvolme ještě t' tak velké, aby $p(t') = n_{2l}$. Pak je navíc $a_{p(t')} = a_{k(2l+1)}$ a součet $\sum_{l=1}^{\infty} a_{p(n)}$ až po

tento index je větší než s, ale protože je $a_{p(t')} < \varepsilon$, je $s < \sum_{i=1}^{t'} a_{p(n)} < s + \varepsilon$.

Buď t > t' takové, aby $p(t) = a_{p(2k)}$. Pak je ještě $a_{p(t)} = a_{z(2l)} < s$, ale protože je $a_{p(t)} > -\varepsilon$, je $\begin{array}{l} \sum\limits_{n=1}^{t}a_{\mathit{p}(n)}>s-\varepsilon. \text{ Pro }n\geq t \text{ pak je }s-\varepsilon<\sum\limits_{n=1}^{t}a_{\mathit{p}(n)}<\sum\limits_{k=1}^{n}a_{\mathit{p}(k)}<\sum\limits_{n=1}^{t'}a_{\mathit{p}(n)}<s+\varepsilon. \\ \text{Bud' }n_{1} \text{ prvn\'i }n\in\mathbb{N}, \text{ \'ze }\sigma_{1}=a_{\mathit{k}(1)}+\cdots+a_{\mathit{k}(n)}>1, \\ n_{2} \text{ prvn\'i }n\in\mathbb{N}, \text{ \'ze }\sigma_{2}=\sigma_{1}+a_{\mathit{z}(1)}+\cdots+a_{\mathit{z}(n)}<1, \end{array}$

 n_3 první $n \in \mathbb{N}$, že $\sigma_3 = \sigma_2 + a_{k(n_1+1)} + \cdots + a_{k(n)} > 2$

 n_4 první $n \in \mathbb{N}$, že $\sigma_4 = \sigma_3 + a_{z(n_2+1)} + \cdots + a_{z(n)} < 2$,

Věta 150. Jestli $\sum_{n=1}^{\infty} a_n$ absolutně konverguje pak $\sum_{n=1}^{\infty} a_{p(n)}$ z ní vzniklá přerovnáním také absolutně konverguje a ke stejnému součtu.

 $D\mathring{u}kaz$. $\sum_{n=1}^{\infty} |a_n|$ konverguje a tak splňuje BC podmínku

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}, \ \check{z}e \ |a_{k+1}| + \dots + |a_{k+n}| < \varepsilon \ \forall p \in \mathbb{N}$$
 (10.10)

Buď $s_n = \sum_{k=1}^n a_k$, $\sigma_n = \sum_{k=1}^n a_{p(k)}$; ukážeme, že $\lim_{n\to\infty} (s_n - \sigma_n) = 0$, takže limita $\lim_{n\to\infty} \sigma_n = \lim_{n\to\infty} [s_n + (\sigma_n - s_n)] = \lim_{n\to\infty} s_n$.

Buď $\varepsilon > 0$, najdeme k podle (10.10) a zvolme $l \in \mathbb{N}$ tak velké, aby mezi $a_{p(1)}, \ldots, a_{p(l)}$ byly všochny šlony a spora spor

všechny členy a_1,\ldots,a_k . Pro $n\geq l$ se pak v $s_n-\sigma_n$ všechny členy a_1,\ldots,a_k vyruší a zůstanou jen členy a_{v_1}, \ldots, a_{v_s} .

 $v_1,\ldots,v_s\geq k$, takže existuje $p\in\mathbb{N}$, že mezi $k+1,\ldots,k+p$ jsou všechny v_1,\ldots,v_s , načež $|s_n-\sigma_n|=|a_{v_1}+\cdots+a_{v_s}|\leq |a_{v_1}|+\cdots+|a_{v_s}|\leq |a_{k+1}|+\cdots+|a_{k+p}|<\varepsilon$ podle (10.10). \square

Důsledek 151. Řada konverguje ke stejnému součtu při každém přerovnání právě když absolutně konverguje.

 $D\mathring{u}kaz. \Leftarrow \text{podle věty } 150, \Rightarrow \text{věta } 149.$

Definice 152. Buď a zobrazení spočetné množiny S do \mathbb{R} (\mathbb{C}), buď $s: \mathbb{N} \to S$ prosté zobrazení \mathbb{N} na S (takže $s(1), s(2), \ldots$ je uspořádání S do posloupnosti).

Jestli $\sum_{i=1}^{\infty}a_{s(n)}$ absolutně konverguje, tak (absolutně) konverguje pro každé takové sk témuž součtu σ , jenž nazveme součtem zobecněné řady $\sum_{s \in S} a(s)$ (a píšeme $\sigma = \sum_{s \in S} a(s)$).

Věta 153. Buď $\sum_{s \in S} a(s)$ absolutně konvergentní zobrazení řady se součtem σ , \mathcal{F} buď spočetná a disjunktní soustava podmnožin S (tj. $F_1 \cap F_2 \in \mathcal{F}$, $F_1 \neq F_2$) taková, že $\bigcup \mathcal{F} = \bigcup \langle F|F \in \mathcal{F} \rangle = S$.

- 1. $\forall F \in \mathcal{F}$ zobecněná řada $\sum_{s \in F} a(s)$ absolutně konverguje
- 2. označíme-li $\sigma_F = \sum_{s \in F} a(s)$, pak zobecněná řada $\sum_{F \in \mathcal{F}} \sigma_F$ absolutně konverguje

3.
$$\sum_{F \in \mathcal{F}} \sigma_F = \sigma$$

 $D\mathring{u}kaz$. Buď $\langle s(n)\rangle_{n=1}^{\infty}$ nějaké uspořádání S do posloupnosti. To uspořádává d posloupnosti každou $A\subset S$: buď n_1 první $n\in\mathbb{N}$, že $s(n)\in A$, n_2 první $n\in\mathbb{N}$, že $s(n)\in A-\{n_1\}$, n_3 první $n\in\mathbb{N}$, že $s(n)\in A-\{n_1,n_2\}$, ...

 $s(n) \in A - \{n_1, n_2\}, \ldots$ $\{s(n_k)\}_{k=1}^{\infty}$ je uspořádání A do posloupnosti, vytvořené uspořádáním s; označme je $\{s^A(k)\}_{k=1}^{\infty}$.

Je-li $A \subset B \subset S$ pak uspořádání s^B v B vytvoří takto též uspořádání její podmnožiny A – označme je $\{s^B\}_{k=1}^{A}$. Očividně je $\{s^B\}_{n=1}^{A}$. Očividně je $\{s^B\}_{n=1}^{A}$.

1. Je-li $G \subset S$, ukážeme, že $\sum_{k=1}^{\infty} a_{s^G(k)}$ absolutně konverguje. Je-li $t \in \mathbb{N}$, je $\sum_{k=1}^{t} \left| a_{s^G(k)} \right| \leq \sum_{k=1}^{s^G(t)} \left| a_{s(k)} \right| \leq \sum_{k=1}^{\infty} \left| a_{s(k)} \right| = M < \infty$ (řada $\sum_{k=1}^{\infty} \left| a_{s(k)} \right|$ absolutně konverguje) a tak je

$$\sum_{k=1}^{\infty} \left| a_{sG(k)} \right| = \lim_{t \to \infty} \sum_{k=1}^{t} \left| a_{sG(k)} \right| \le M$$

což bylo dokázat.

2. Označme $\sum_{k=1}^{\infty} \left| a_{s^G(k)} \right| = \sigma_G$. Uspořádejme \mathcal{F} do posloupnosti: $\mathcal{F} = \{F_1, F_2, \ldots\}$. Podle 1 každá $\sum_{n=1}^{\infty} a_{s^{F_k}(n)} \; (=\sigma_{F_k})$ absolutně konverguje. Ježto $\sum_{n=1}^{\infty} \left| a_{s(n)} \right|$ konverguje, platí podle BC podmínky $\forall \varepsilon > 0 \; \exists k \in \mathbb{N}, \; \text{že} \; \sum_{n=1}^{p} \left| a_{s(k+n)} \right| < \varepsilon \; \forall p \in \mathbb{N} \; \text{odkud limitou} \; p \to \infty \; \text{plyne}$

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}, \ \check{\text{ze}} \ \sum_{n=1}^{\infty} \left| a_{s(k+n)} \right| \le \varepsilon$$
 (10.11)

Buď $\varepsilon > 0$; najděme k a zvolme $l \in \mathbb{N}$, aby $\{s(1), s(2), \ldots, s(k)\} \subset F_1 \cup \cdots \cup F_l$ a pak $m \geq l$, aby $\{s(1), s(2), \ldots, s(k)\} \subset \{s^{F_1}(1), \ldots, s^{F_l}(m)\} \cup \cdots \cup \{s^{F_l}(1), \ldots, s^{F_l}(m)\}$ (označme D). Každé $a_{s(1)}, \ldots, a_{s(k)}$ tedy je mezi $a_{s(j)}$, kde $s(j) \in D$.

Pro $r, t \ge m \ (\ge l)$ se v

$$b(r) = \left| \sum_{n=1}^{r} a_{s(n)} - \sum_{n=1}^{r} a_{s} a$$

všechny členy $a_{s(1)}, \ldots, a_{s(k)}$ vyruší a zbydou pouze $a_{s(p)}$ s $p \geq k+1$, takže $b(r) \leq \varepsilon$ podle (10.11).

Je $\lim_{r\to\infty}b(r)=|\sigma-\sigma_{F_1}-\cdots-\sigma_{F_t}|\leq \varepsilon\ \forall t\geq m$. Ukázali jsme tedy, že $\forall \varepsilon>0\ \exists m\in\mathbb{N},$ že $\left|\sigma-\sum\limits_{k=1}^t\sigma_{F_k}\right|<\varepsilon\ \forall t\geq m$, tedy $\sum\limits_{k=1}^\infty\sigma_{F_k}$ konverguje k součtu σ .

Uspořádání \mathcal{F} do posloupnosti $\{F_1, F_2, \ldots\}$ bylo libovolné, tudíž $\sum_{k=1}^{\infty} \sigma_{F_k}$ pro každé z nich konverguje k témuž součtu σ a tak $\sum_{k=1}^{\infty} \sigma_{F_k}$ konverguje absolutně.

Násobení řad

Věta 154. Buďte $\sum\limits_{i=1}^{\infty}a_i=s$, $\sum\limits_{j=1}^{\infty}b_j=t$ absolutně konvergentní. Pak "dvojná" řada $\sum\limits_{i,j\in\mathbb{N}}a_ib_j$ absolutně konverguje k st.

 $D\mathring{u}kaz$. Uspořádáme členy dvojné řady do posloupnosti $\{c_n\}$

50

Odhadneme $\sum_{n=1}^{k} |c_n|$: Je $c_k = a_p b_q$ a pro každé $n=1,\ldots,k$ je $c_n = a_r b_s$, kde $r,s \leq p+q$ a tak $\sum_{n=1}^{k} |c_n| \leq \sum_{1 \leq r,s \leq p+q} |a_r| |b_s| \leq \sum_{r=1}^{p+q} |a_r| \sum_{s=1}^{p+q} |b_s| \leq ST$, kde $S = \sum_{n=1}^{\infty} |a_n|$, $T = \sum_{n=1}^{\infty} |b_n|$, což dokazuje absolutní konvergenci dvojné řady

Rozložme $S=\{(i,j)\,|i,j\in\mathbb{N}\}$ na $S=\bigcup_{k=1}^\infty F_k$, kde $F_k=\{(k,j)\,|j\in\mathbb{N}\}$ (takže množina všech dvojic a_kb_j $\{a_kb_j\,|\,(k,j)\in F_k\}$ tvoří členy k. řádku v (10.12)). Přitom

$$\sigma_{F_k} = \sum_{(i,j)\in F_k} a_i b_j = \sum_{j=1}^{\infty} a_k b_j = a_k t$$

a

$$\sum_{k=1}^{\infty}\sigma_{F_k}=\sum_{k=1}^{\infty}a_kt=st$$

Definice 155. Cauchyovým součinem řad se rozumí řada $\sum_{n=1}^{\infty} c_k$, kde $c_k = \sum_{i+j=k} a_i b_j$.

Jestli $\sum_{n=1}^{\infty} a_n = s$ a $\sum_{n=1}^{\infty} b_n = t$ konvergují a alespoň jedna absolutně, tak Cauchyův součin řad konverguje k st.

Přání 156. Přeji všechno nejlepší u zkoušek.

 $D\mathring{u}kaz$. Zjevné. Tohle všechno sepsáno původně sepsáno Jánem Zahornadským z přednášek Jaroslava Drahoše, poměrně dost opraveno a přečíslováno Karlem Bílkem (chyby hlašte na jeho icq, 310109616)