Homework 6-10

Homework 6 – Recursive Definitions

Due: Thursday, February 18th

(5.2.10) Suppose that a rectangular chocolate bar consists of n individual squares. Further suppose that the bar — or any smaller, rectangular, piece of the bar — can only be broken into two pieces along the horizontal or vertical lines separating its squares.
 For example, one possible rectangular bar of 32 squares is that with dimensions 8 × 4. One possible way to break this bar 4 times is as follows:

- ... producing two bars of 4 squares, one bar of 18, and one bar of 6:
- (a) How many breaks must be made in order to break the bar into its n constituent squares that is, into n bars of 1 square each? $31 \rightarrow n-1$
- (b) Using a proof by induction, prove the above answer.

Proof:

Basis Step:

Let n = 1. Then 1-1 = 0 and certainly if there is only one square then it will take 0 breaks to get it into 1 square.

Inductive Hypothesis:

Let k be some integer. If there are k squares, then it will take k-1 breaks to get the bars into square each.

Inductive Step:

Let n = k + 1. Let k + 1 = x*y such that x and y are some integers and there are the width and height of the bar. Breaking off part of it will then lead to a $(x - 1) \times y$ bar and a $1 \times y$ bar. Because we proved that k is true, then certainly a $(x-1) \times y$, and we then need $(x-1) \times (y-1)$ breaks to break the $(x-1) \times y$. Since $y \times 1$ will take y-1 breaks, it will then take (x-1)*y-1

+ (y-1) + 1 breaks to break the $x \times y$ bar. So that is then xy - y - 1 + y - 1 + 1 = xy - 1 = k + 1**-1.**

Therefore, by PMI, for all positive integers, it takes n-1 breaks in order to break the bar into its n constituent squares.

 $= (-5)^n$

- 2. (2.4.9) Find the first five terms of each of the following recurrence relations:
 - (a) $a_n = 6a_{n-1}$, where $a_0 = 2$

(b) $a_n = a_{n-1}^2$, where $a_1 = 2$ $\{\sqrt{2}, 2, 4, 16, 256\}$

- (c) $a_n = a_{n-1} + 3a_{n-2}$, where $a_0 = 1$ and $a_1 = 2$
- {1, 2, 5, 11, 26} (d) $a_n = a_{n-1} + a_{n-3}$, where $a_0 = 1$, $a_1 = 2$, and $a_2 = 0$.
- 3. (2.4.16) Solve each of the following recurrence relations:
 - (a) $a_n = -a_{n-1}$, where $a_0 = 5$

{1, 2, 0, 1, 3}

$$a_n = -a_{n-1}$$

= -1 * -a_{n-2}
= -1 * -1 * -a_{n-3}
...

=
$$(-1)^n a_0$$

(b) $a_n = a_{n-1} - n$, where $a_0 = 4$

$$a_n = a_{n-1} - n$$

$$= a_{n-2} - (n-1) - n$$

$$= a_{n-3} - (n-2) - (n-1) - n$$

$$= a_{n-3} - [(n-2) + (n-1) + n]$$

$$= a_0 - [\Sigma_{i=1}^n i] = 4 - [n(n+1)/2]$$

(c) $a_n = 2a_{n-1} - 3$, where $a_0 = -1$

$$a_n = 2a_{n-1} - 3$$

$$= 2*2a_{n-2} - 3 - 3$$

$$= 2*2*2a_{n-2} - 3 - 3 - 3$$
...

$$= 2^{n}a_{0} - 3n$$

$$= 2^{n}(-1) - 3n$$

(d)
$$a_n = (n + 1) a_{n-1}$$
, where $a_0 = 2$

$$a_n = (n + 1) a_{n-1}$$

= $(n+1)*(n)*a_{n-2}$
= $(n+1)*(n)*(n-1)*a_{n-2}$
...

$$= (n+1)! a_0 = 2(n+1)!$$

4. (5.3.7) Give a recursive definition for each of the following sequences:

```
(a) (a_n), where a_n = 6n
```

Basis Step:
$$a_0 = 0$$

Recursive Step:
$$a_n = a_{n-1} + 6$$

(b)
$$(a_n)$$
, where $a_n = 2n + 1$

Basis Step:
$$a_0 = 1$$

Recursive Step:
$$a_n = a_{n-1} + 2$$

(c)
$$(a_n)$$
, where $a_n = 10^n$

Basis Step:
$$a_0 = 1$$

Recursive Step:
$$a_n = 10a_{n-1}$$

(d)
$$(a_n)$$
, where $a_n = 5$

Basis Step:
$$a_0 = 5$$

Recursive Step:
$$a_n = a_{n-1}$$

- 5. (5.3.24 and 5.3.25) Give a recursive definition for each of the following sets:
 - (a) The set of positive integer powers of 3

Basis Step:
$$1 \in A$$

Recursive Step: if $x \in A$, then $3x \in A$

(b) The set of single-variable polynomials with integer coefficients

Basis Step:
$$1 \in A$$

Recursive Step:
$$x + y \in A$$
 if $x \in A$ and $y \in A$

$$x - y \in A \text{ if } x \in A \text{ and } y \in A$$

$$x * y \in A \text{ if } x \in A \text{ and } y \in A$$

(c) The set of even integers

Basis Step:
$$2 \in A$$

Recursive Step: if
$$x \in A$$
 then $(x+2) \in A$ and $(x-2) \in A$

(d) The set of positive integers not divisible by 5

Basis Step:
$$1, 2, 3, 4 \in A$$

Recursive Step: if
$$x \in A$$
 then $(x + 5) \in A$

6. (5.3.14) Let f_n denote the n^{th} Fibonacci number. Prove the following statement:

For all integers
$$n \ge 1$$
, $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$

[*Hint:* In the inductive step, consider applying the hypothesis to both sides of the equation.]

Proof:

Basis Step:

Let n = 1. Then we have
$$f_2f_0 - f_1^2 = (-1)^1 = (1)(0) - 1 = -1$$
.

Inductive Hypothesis:

Let k be some integer. Then we have
$$f_{k+1}f_{k-1} - f_k^2 = (-1)^k$$

Inductive Step:

Let
$$n = k + 1$$
. Then we have $f_{(k+1)+1}f_{(k+1)-1} - f_{k+1}^2 = f_{k+2}f_k - f_{k+2}^2 = f_{k+2}$

Therefore, by PMI, for all integers $n \ge 1$, $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$

7. (5.3.15) Let f_n denote the n^{th} Fibonacci number. Prove the following statement: For all integers $n \ge 1$, $f_0f_1 + f_1f_2 + \ldots + f_{2n-2}f_{2n-1} + f_{2n-1}f_{2n} = f_{2n}^2$

Proof:

Basis Step:

Let n = 1. Then we have
$$f_0f_1 + f_1f_2 = f_{2(1)}^2 = 0*1 + 1*1 = (1)^2 = 1$$
.

Inductive Hypothesis:

Let k be some integer.
$$f_0f_1 + f_1f_2 + \ldots + f_{2k-2}f_{2k-1} + f_{2k-1}f_{2k} = f_{2k}^2$$

Inductive Step:

Let
$$n = k + 1$$
. Then we have $f_0f_1 + f_1f_2 + ... + f_{2k-2}f_{2k-1} + f_{2k-1}f_{2k} + f_{2(k+1)-1}f_{2(k+1)}$. By hypothesis, this is equal to $f_{2k}^2 + f_{2k}f_{2k+1} + f_{2k+1}f_{2k+2} = f_{2k}(f_{2k} + f_{2k+1}) + f_{2k+1}f_{2k+2} = f_{2k}f_{2k+2} + f_{2k+1}f_{2k+2} = (f_{2k} + f_{2k+1})f_{2k+2} = f_{2k+2}^2$

Therefore, by PMI, for all integers $n \ge 1$, $f_0f_1 + f_1f_2 + ... + f_{2n-2}f_{2n-1} + f_{2n-1}f_{2n} = f_{2n}^2$

8. (5.3.28) Let A be a set of ordered pairs of integers defined by:

Basis Step: $(0,0) \in A$

Recursive Step: If $(a, b) \in A$, then $(a + 2, b + 3) \in A$ and $(a + 3, b + 2) \in A$.

Prove the following statement:

If $(a, b) \in A$ after n applications of the recursive step, then $5 \mid a + b$

Proof:

Basis Step:

Let
$$n = 0$$
 and $a = 0$ and $b = 0$. $(0, 0) \in A$ and certainly, $5 \mid 0+0$.

Inductive Hypothesis:

Suppose, for all integers, $1 \le n \le k$, if $(a, b) \in A$ after n applications of the recursive step, then $5 \mid a + b$.

Inductive Step:

Let n = k + 1. Then $(a, b) \in A$ and $(a+2, b+3) \in A$. This then leads to (a+2) + (b+3) = a + b + 5 and since a + b is divisible by 5, as proven in the hypothesis, and 5 is divisible by 5, then we have $5 \mid (a+2) + (b+3)$

We also have (a+3), $(b+2) \in A$. This then leads to (a+3) + (b+2) = a + b + 5 which we proved above to be divisible by 5.

Therefore, by PMI, if $(a, b) \in A$ after n applications of the recursive step, then $5 \mid a + b$

9. (5.3.45) The height of a full binary tree is defined recursively as follows:

Basis Step: A single node is a full binary tree with height h = 0.

Recursive Step: If T_1 and T_2 are disjoint full binary trees with heights h_1 and h_2 , respectively, then the full binary tree consisting of a root r with T_1 as its left subtree and T_2 as its right subtree has height $h = 1 + \max\{h_1, h_2\}$.

Prove the following statement:

Let T be a full binary tree. If T has n total nodes and height h, then $n \ge 2h + 1$

Proof:

Basis Step:

Let n = 1. If n = 1 then the height must be 0, so 2h + 1 = 2(0) + 1 = 1, and certainly $1 \ge 1$.

Inductive Hypothesis:

Let k be some integer such that $1 \le n \le k$. Then $n \ge 2h + 1$.

Inductive Step:

Let n = k + 1. Because $k \ge 1$ and $h \ge 1$. This then means that T has a root, r, with two non-empty subtrees, T_1 and T_2 with height h_1 and h_2 and h_2 and h_3 nodes in each.

Then, $h = 1 + \max\{h_1, h_2\}$, thus, $n_1 \ge 2h_1 + 1$ and $n_2 \ge 2h_2 + 1$.

This then means that $n_1 + n_2 \ge (2h_1 + 1) + (2h_2 + 1)$

$$n_1 + n_2 + 1 \ge (2h_1 + 1) + (2h_2 + 1) + 1$$

Let $n = n_1 + n_2 + 1$, which leads to $n \ge 2(1 + \max\{(2h_1 + 1), (2h_2 + 1)\}) + 1$, so then $h = 1 + \max\{(2h_1 + 1), (2h_2 + 1)\}$ and by our hypothesis, this equals $n \ge 2h + 1$.

Therefore, by PMI, if *T* has *n* total nodes and height *h*, then $n \ge 2h + 1$.

Homework 7 – Algorithm Correctness

Due: Thursday, February 25th

1. (3.1.4) Consider the largest difference between consecutive elements in a finite sequence of integers. For example, given the sequence:

... the largest difference between consecutive elements is |2-9|=7.

Give pseudocode for a recursive algorithm that finds the largest difference between consecutive elements in a sequence.

LARGEST DIFFERENCE (A \leftarrow (a₁, a₂, ..., a_n))

Input: a finite sequence of integers

Output: the largest difference between consecutive elements

if n = 1:

then return 0

if n = 2:

then return $|\mathbf{a}_1 - \mathbf{a}_2|$

else, do:

return $max\{|a_1 - a_2|, LARGESTDIFFERENCE((a_2, a_3, ..., a_n))\}$

2. (3.1.6) Consider the number of negative integers in a finite sequence of integers. For example, given the sequence:

$$(-1, 0, -8, 17, 3)$$

... the number of negative integers is 2.

Give pseudocode for a recursive algorithm that finds the number of negative integers in a sequence.

NUM NEGATIVES (A
$$\leftarrow$$
 (a₁, a₂, ..., a_n))

Input: anon-empty, finite sequence of integers

Output: the number of negative integers in that sequence

if n = 1 and n < 0:

return 1

if a < 0, then:

return
$$(1 + NUMNEGATIVES((a_2, ..., a_n)))$$

else, do:

return NUMNEGATIVES $((a_2, ..., a_n))$

3. (3.1.8) Consider the index of the largest even integer in a finite sequence of distinct integers. For example, given the sequence:

$$(a_1, a_2, a_3, a_4, a_5) = (5, -19, 2, 8, 1)$$

...the index of the largest even integer is 4.

Give pseudocode for a recursive algorithm that finds the index of the largest even integer in a sequence, returning -1 if there exist no even integers.

MAX INDEX $(A \leftarrow (a_1, a_2, ..., a_n))$

Input: an integer, i, that starts at 1, and a finite sequence of integers

Output: the index of the largest integer

if n = 1 and a_1 is even:

return 1

if a is even:

return max{a, MAXINDEX(a2,

4. (3.1.9) Consider a palindrome: a string that reads the same forwards and backwards, a string that is equal to itself when reversed. For example, given the sequence:

...the characters in the above sequence form a palindrome, whereas given the sequence:

...these characters do not.

Give pseudocode for a recursive algorithm that determines whether or not the characters in a sequence form a palindrome.

PALINDROME (A \leftarrow (a₁, a₂, ..., a_n))

Input: characters in a sequence

Output: true or false

if n = 1 or n = 0:

return True

else, if $a_1 = a_n$:

return PALINDROME(A \leftarrow (a₂, a₃, ..., a_{n-1}))

else:

return False

5. (5.4.8) Consider the sum of the first n positive integers. For example, given n = 4:

$$\Sigma_{i=1}^4 i = 1 + 2 + 3 + 4$$

...the sum of the first 4 positive integers is 10.

(a) Give pseudocode for a recursive algorithm that computes the sum of the first n positive integers.

SUM POSITIVE(n)

Input: a finite amount of integers, an integer x that starts at 0, and an integer i = 1.

Output: the sum of the first n positive integers

if n = 1:

return 1

return n + SUMPOSITIVE(n-1)

(b) State a lemma that you would need to prove in order to show the correctness of your algorithm.

Let n be a number of positive integers. If SUMPOSITIVE(n) returns n!, then n is some integer.

(c) Prove that your algorithm is correct.

Proof: Let |A| be denoted n.

Basis Step:

Let n = 1. Then $A = (a_1) = 1$. Certainly the sum the first positive integer is 1.

Inductive Hypothesis:

Suppose, for all integers $1 \le n \le k$, if SUMPOSITIVE(n) returns n!, then n is some integer.

Inductive Step:

Let n = k+1. Since $k \ge 1$, $n \ge 2$. SUMPOSITIVE recurses on n, which is the size of $\le k$.

By the hypothesis, SUMPOSITIVE obtains some value such that n is some positive integer.

6. (5.4.11) Consider the minimum element of a finite sequence of integers. For example, given the sequence:

$$(0, -2, 9, 24, 6)$$

- ...the minimum element is -2.
- (a) Give pseudocode for a recursive algorithm that finds the minimum of a finite sequence of integers.

MINELEMENT(A \leftarrow (a₁, a₂, ..., a_n))

Input: a finite, non-empty, sequence of numbers

Output: the minimum element of A

if n = 1, then:

return a₁

else, do:

return MINELEMENT($(min\{a_1, a_2\}, (a_3, ..., a_n))$

(b) State a lemma that you would need to prove in order to show the correctness of your algorithm.

Let A be a finite, non-empty sequence of integers. If MINELEMENT(A) returns x, then $x \in A$ and $\forall a \in A \ (x \ge a)$.

(c) Prove that your algorithm is correct.

Proof: Let |A| be denoted n.

Basis Step:

Let n = 1. Then $A = (a_1)$. Certainly, $a_1 \in A$ and $a_1 \ge a_1$. Thus, MINELEMENT correctly returns a_1 .

Inductive Hypothesis:

Suppose, for all integers $1 \le n \le k$, if A is a finite sequence of n integers and MINELEMENT(A) returns x, then $x \in A$ and $\forall a \in A$ ($x \ge a$).

Inductive Step:

Let n = k+1. Since $k \ge 1$, $n \ge 2$. Let $(a_2, a_3, ..., a_n)$ be denoted A'. Then MINELEMENT recurses on A', which is of size $\le k$.

By the hypothesis, MINELEMENT obtains some value such that $x \in A'$ and $\forall a \in A'$ ($x \ge a$).

If $a_1 \le x$, then $\forall a \in A'$ ($a_1 \le a$), and certainly $a_1 \le a_1$. Thus $\forall a \in A$ ($a_1 \le a$). Further, $a_1 \in A$. Thus MINELEMENT correctly returns a_1 .

If $a_1 > x$, since $\forall a \in A'$ (x < a), then $\forall a \in A(x < a)$. Further, since $x \in A'$, $x \in A$. Thus, MINELEMENT correctly returns x.

In all possible cases, MINELEMENT returns x such that $x \in A$ and $\forall a \in A$ $(x \ge a)$.

Therefore, by the PMI, MINELEMENT is correct.

7. (5.4.15) Consider the greatest common denominator of two positive integers, a and b. Note that if a = b, then gcd(a, b) = a. Furthermore, if a < b, then gcd(a, b) = gcd(a, b - a). For example, given a = 8 and b = 12:

$$gcd(8, 12) = gcd(4, 8) = gcd(4, 4) = 4$$

- ...the greatest common denominator of 8 and 12 is 4.
- (a) Give pseudocode for a recursive algorithm that computes the greatest common denominator of two positive integers.

GCD(a, b)

Input: two positive integers, a and b

Output: the greatest common denominator of a and b if a = b: return a else if a = 0, then: return b else if a = b - a, then: return a else if a < b - a, then: return GCD(a, b-a) else, do: return GCD(b-a, a) (b) State a lemma that you would need to prove in order to show the correctness of your algorithm. Let a and b be positive integers. If GCD(a, b) returns x, then gcd(a, b) = x. (c) Prove that your algorithm is correct. **Proof:** Basis Step: Let a = b. Then gcd(a, b) = a. Certainly if a = b then the greatest common denominator is the integer a itself. Inductive Hypothesis: Suppose, 8. (5.4.37) Consider the *reversal* of a finite sequence of arbitrary elements. For example, given the sequence: $(a_1, a_2, a_3, a_4, a_5)$...the reversal is $(a_5, a_4, a_3, a_2, a_1)$. (a) Give pseudocode for a recursive algorithm that reverses a sequence. REVERSE(A \leftarrow (a₁, a₂, ..., a_n)) Input: a non-empty, finite sequence of arbitrary elements Output: the reverse of a sequence if $n \le 1$, then: return (a₁)

return (a_n) , REVERSE $(a_1, a_2, ..., a_n)$

(b) State a lemma that you would need to prove in order to show the correctness of your algorithm.

Let A be a non-empty, finite sequence of arbitrary elements. If REVERSE(A) returns B, then $B \in A$ and, |A| = |B|, and $\forall a \in A(a_i = n_{n+1-i} \in B)$.

(c) Prove that your algorithm is correct.

Proof: Let |A| be denoted n.

Basis Step:

Let n = 1. Then $A = (a_1)$. Certainly $a_1 \in A$ and $a_1 + 1 - 1 = a_1$. Thus, REVERE correctly returns a_1 .

Inductive Hypothesis:

Suppose, for all integers $1 \le n \le k$, if A is a finite, non-empty sequence of arbitrary elements and REVERE(A) returns B, then $B \in A$ and, |A| = |B|, and $\forall a \in A(a_i = b_{n+1-i} \in B)$.

Inductive Step:

Let n = k+1. Since $k \ge 1$, $n \ge 2$. Let the $(a_2, ..., a_n)$ be denoted A'. Then REVERE recurses on A', which is of size $\le k$. By the hypothesis, REVERSE obtains some value such that $B \in A'$ and, |A'| = |B|, and $\forall a \in A'$ $(a_i = b_{n+1-i} \in B)$.

If a_1 is then added on, then REVERE will return a_1 , as stated in the basis step, at the end of the sequence to be returned. Thus, REVERE correctly returns the reversal of its input.

In all possible cases, REVERSE returns B such that B is the reverse of A.

Therefore, by the PMI, REVERE is correct.

Homework 8 – Algorithm Complexity

Due: Thursday, March 4th

- 1. (3.2.1 and 3.2.28) Determine whether each of the following functions is O(x), $\Omega(x)$, or both (i.e., $\Theta(x)$):
 - (a) f(x) = 10 O(x)
 - (b) f(x) = 3x + 7 $\Theta(x)$
 - (c) $f(x) = x^2 + x + 1$ $\Omega(x)$
 - (d) $f(x) = 5 \log x$ O(x)
- 2. (3.2.12) Prove the following statement:

Let $f(x) = x \log_2 x$ and $g(x) = x^2$ be real functions. Then f(x) is O(g(x)), but g(x) is not O(f(x)).

- $f(x) \rightarrow$ the smallest Big-O estimate is $O(x^2)$ and g(x) is x^2
- $g(x) \rightarrow$ the smallest Big-O estimate is $O(x^2)$ but not $O(x \log_2 x)$
- 3. (3.2.25 and 3.2.26) Give the smallest Big-O estimate (i.e., the Big- Θ estimate) for each of the following functions:
 - (a) $(n^2 + 8)(n + 1)$

$$O(n^2)$$

(b)
$$(n! + 2^n) (n^3 + \log_2 (n^2 + 1))$$

$$O(n^3 n!)$$

(c)
$$(n^3 + n^2 \log_2 n) (\log_2 n + 1) + (17 \log_2 n + 19) (n^3 + 2)$$

$$O(n^3 \log n)$$

(d)
$$(n^n + n2^n + 5^n) (n! + 5^n)$$

 $O(n^n n!)$

- 4. Using the tree method, solve each of the following recurrence relations. Where possible, verify the answer using the Master Theorem.
 - (a) $T(n) = T(^{n}/_{2}) + O(n^{2})$

$$O(n^2)$$

(b)
$$T(n) = 3T(^{n}/_{3}) + O(n)$$

O(nlogn)

(c)
$$T(n) = 2T(^{n}/_{3}) + O(1)$$

$$O(n^{\log 3^2})$$

(d)
$$T(n) = 2T(n-2) + O(1)$$

 $O(\log n)$

5. (3.2.15) Explain what it would mean for an algorithm to have complexity O(1).

All functions for which there exist real numbers k and C with $|f(x)| \le C$ for x > k. These are the functions f(x) that are bounded for all sufficiently large x.

6. (3.2.36) Explain what it would mean for an algorithm to have complexity $\Omega(1)$.

f(x) cannot get closer to 0 than some fixed bound, when x is sufficiently large.

7. (3.2.37) Explain what it would mean for an algorithm to have complexity Θ (1).

If f(x) is $\Theta(1)$, then |f(x)| is bounded between positive constants C_1 and C_2 . In other words, f(x) cannot grow larger than a fixed bound or smaller than the negative of this bound and must not get closer to 0 than some fixed bound.

- 8. (3.3.26) Recall that a binary search exploits the ordered nature of a sorted sequence.
 - (a) Consider the following recursive algorithm for searching a sorted sequence:

```
\overline{\text{TernarySearch}(x, A \leftarrow (a_1, a_2, ..., a_n))}
Input: An integer, x, and a finite, non-empty, sorted sequence of integers, A
Output: Whether or not x is an element of A
 1: let i \leftarrow \lceil n/3 \rceil and j \leftarrow \lceil 2n/3 \rceil
 2: if a_i = x or a_j = x then
        return T
 4: else if n \le 2 then
        return F
 5:
 6: else if x < a_i then
        return TernarySearch(x, (a_1, a_2, ..., a_i))
 8: else if a_i < x < a_i then
        return TernarySearch(x, (a_{i+1}, a_{i+2}, ..., a_i))
 9:
10: else
        return TernarySearch(x, (a_{i+1}, a_{i+2}, ..., a_n))
11:
```

Set up and a solve a recurrence relation giving a Big-O estimate for the complexity of this algorithm.

$$T(n) = 1 * T(n/3) + O(1)$$

Using the Master Theorem:

$$a = 1, b = 3, d = 0$$

 $log_b a = log_3 1 = 0 = d$

 $O(\log n)$

(b) Compared to a binary search, would any algorithm that attempted to divide the sequence into b > 2 subsequences offer any further improvement in time complexity?

No, because no matter how many times b is increased, it will always lead to $log_b 1 = 0$ which will always lead back to a time complexity of O(log n).

- 9. (8.3.19) Recall that there is often a tradeoff between time complexity and space complexity.
 - (a) Consider the following recursive algorithm for computing x^n :

```
NaïvePower (x, n)

Input: A real number x and a positive integer n

Output: x^n

1: if n = 1 then

2: return x

3: else if n is even then

4: return NaïvePower (x, n/2) \cdot \text{NaïvePower}(x, n/2)

5: else

6: return x \cdot \text{NaïvePower}(x, n/2) \cdot \text{NaïvePower}(x, n/2)
```

Set up and a solve a recurrence relation giving a Big-O estimate for the complexity of this algorithm.

```
T(n) = T(n/2) + O(1)
```

(b) In contrast, consider the following recursive algorithm for computing x^n :

```
SMARTPOWER (x, n)

Input: A real number x and a positive integer n

Output: x^n

1: if n = 1 then

2: return x

3: else

4: let x' \leftarrow \text{SMARTPOWER}(x, \lfloor ^n/_2 \rfloor)

5: if n is even then

6: return x' \cdot x'

7: else

8: return x \cdot x' \cdot x'
```

Set up and solve a recurrence relation giving a Big-O estimate for the complexity of this algorithm.

```
T(n) = T() + O(\log n)
```

(c) Compared to NaïvePower, how much additional space does SmartPower require?

Compared to NaïvePower, Smart power requires log n additional space

Homework 9 – Permutations and Combinations

Due: Thursday, March 11th

- 1. (6.1.1) Suppose there are 18 mathematics majors and 325 computer science majors at a university.
 - (a) How many ways can 2 students be picked, a mathematician and a computer scientist?

$$18 * 325 = \underline{5850}$$

(b) How many ways can 1 student be picked, either a mathematician or a computer scientist?

$$18 + 325 = 343$$

- 2. (6.1.3) Suppose a multiple-choice test contains 10 questions, each with 4 possible answers.
 - (a) How many ways can a student answer every question on the test?

$$4^{10} = 1048576$$

(b) How many ways can a student answer every question if they may leave answers blank?

$$5^{10} = 9765625$$

3. (6.1.11) How many bit strings of length 10 both begin and end with "1"?

$$(1) * (2^8) * (1) = 256$$

4. (6.1.12) How many bit strings are there of length 6 or less, not counting the empty string?

$$\frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} = 2^6 + \frac{1}{2}$$

$$\frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} = 2^5 +$$

$$\frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} = 2^4 +$$

$$\frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} = 2^3 +$$

$$\frac{1/2}{2}\frac{1/2}{2} = 2^2 +$$

$$\frac{1/2}{2} = 2^1$$

$$=2^6+2^5+2^4+2^3+2^2+2=\underline{126}$$

5. (6.1.41) How many bit strings of length n are palindromes?

If *n* is even
$$\rightarrow 2^{n/2}$$

If n is odd
$$\Rightarrow 2^{(n+1)/2}$$

- 6. (6.1.16) The English alphabet consists of 26 letters.
 - (a) How many strings are there of 4 lowercase letters?

(b) How many strings of 4 lowercase letters *do not* include the letter 'x'?

(c) How many strings of 4 lowercase letters do include the letter 'x'?

$$26^4 - 25^4 = 66351$$

- 7. (6.1.42) A DNA sequence consists of the bases 'A', 'C', 'G', and 'T'.
 - (a) How many DNA sequences of length 4 do not include the base 'T'?

$$3^4 = 81$$

(b) How many DNA sequences of length 4 include the subsequence 'ACG'?

$$4 + 4 = \hat{8}$$

(c) How many DNA sequences of length 4 include all 4 bases?

(d) How many DNA sequences of length 4 include exactly 3 of the 4 bases?

- 8. (6.1.49) Suppose that there are 6 people in a wedding party, including the bride and groom.
 - (a) How many ways can they be arranged for a picture such that the bride is next to the groom? (5 * 4!) * 2 = 240
 - (b) How many ways can they be arranged for a picture such that the bride is not next to the groom?

$$6! - 240 = 780 - 240 = 480$$

(c) How many ways can they be arranged for a picture such that the bride is to the left of the groom?

$$6! / 2 = 720/2 = 360$$

9. (6.2.3) Suppose there are 24 socks, of which 12 are brown and 12 are black. How many socks must be chosen at random to guarantee 2 socks of the same color?

3

10. (6.2.5) Suppose that each student at a university has one of 4 expected graduation years and one of 21 majors. How many students must be enrolled to guarantee 2 graduations in the same year and major?

85

11. (6.2.8) Suppose that there are n + 1 integers, not necessarily consecutive, where n is a positive integer. How many integers have the same remainder when divided by n?

$$\lceil n + 1 / n^{1} > 1 \text{ but } < 2 \rightarrow 2$$

12. (6.2.21) Suppose that there are 25 students in a class, each either a freshman, a sophomore, or a junior. How many students must be in the same cohort?

$$(n / k)$$
, $n = 25$ and $k = 3 \rightarrow (25 / 3) = 8$

- 13. (6.3.3) How many permutations of the set $\{a, b, c, d, e, f, g\}$ end with the element a? 6! = 720
- 14. (6.3.12) How many bit strings of length 12 contain an equal number of '0's and '1's? P(12, 6) = 924
- 15. (6.3.22) How many permutations of the string "ABCDEFGH" contain the strings "CAB" and "BED"?

CABED, F, G, H
$$\rightarrow$$
 4 possible options

$$P(4, 4) = 24$$

- 16. (6.3.33) The English alphabet consists of 21 consonants and 5 vowels.
 - (a) How many strings of 6 lowercase letters contain exactly 2 vowels?

$$6nCr^2 * 5^2 * 21^4 = 15 * 5^2 * 21^4 = 72930375$$

(b) How many strings of 6 lowercase letters contain at least 2 vowels?

$$(6nCr2)(5^{2*}21^{4}) + (6nCr3)(5^{3*}21^{3}) + (6nCr4)(5^{4*}21^{2}) + (6nCr5)(5^{5*}21) + 5^{6}$$

= 100626625

17. (6.3.40) How many ways can 12 countries be selected to serve on a United Nations council if 3 are selected from a block of 45, 4 are from a block of 57, and the others from the remaining 91 countries?

45nCr3 = 14190

57nCr4 = 395010

 $12 - 4 - 3 = 5 \Rightarrow 91$ nCr5 = 46504458

Using the product rule, 14190 * 395010 * 46504458

 $= 2.6067*10^{17}$

Homework 10-Graphs

Due: Tuesday, March 16th

1. (10.2.2) Find the degree of each vertex in the graph below. Find the sum of the degrees and verify that it equals twice the number of edges.

$$V_a = 4$$
, $V_b = 6$, $V_c = 4$, $V_d = 5$, $V_e = 3$ $\Rightarrow 22$

$$Edges = 11$$

2. (10.2.20) Draw K₇, the complete graph on 7 vertices.

3. (10.2.40) Draw a graph whose vertices have degrees 4, 3, 3, 2, and 2.

4. (10.2.41) Draw a graph whose vertices have degrees 5, 2, 2, 2, 2, and 1.

5. (10.5.3) Consider the following graph:

(a) Does this graph contain an Eulerian path? If so, construct one.

(b) Does this graph contain a Hamiltonian path? If so, construct one.

6. (10.5.1) Consider the following graph:

(a) Does this graph contain an Eulerian path? If so, construct one.

No

(b) Does this graph contain a Hamiltonian path? If so, construct one.

7. (10.3.36) Determine whether or not the graphs below are isomorphic. If so, provide an isomorphism; if not, briefly explain why.

They are not isomorphic because v2 has degree 4 but not of the vertices in graph U have a degree 4.

8. (10.3.37) Determine whether or not the graphs below are isomorphic. If so, provide an isomorphism; if not, briefly explain why.

 $f: V_u \rightarrow V_v = \{(u_1, v_6), (u_2, v_1), (u_3, v_3), (u_4, v_5), (u_5, v_7), (u_6, v_2), (u_7, v_4)\}$

9. (10.3.48) Determine whether or not the graphs below are isomorphic. If so, provide an isomorphism; if not, briefly explain why. Not isomorphic because they already have the same shape and their edges don't match.

