

Estimation of Heterosis Using Line × Tester Data

Heterosis, or hybrid vigor, is the phenomenon where hybrids (crosses) exhibit greater biomass, yield, or other traits compared to their parents. In Line × Tester mating design analysis, heterosis is commonly estimated as follows:

Types of Heterosis

- 1. **Mid-parent heterosis** deviation of the hybrid from the mean of both parents.
- 2. **Better-parent heterosis** deviation of the hybrid from the better-performing parent.
- 3. **Standard heterosis** deviation of the hybrid from a standard (commercial) check.

Step-by-Step Estimation in R

Suppose your data frame (1tdata) includes columns for line, tester, the cross mean, and parental means.

1. Calculating Mid-Parent and Better-Parent Heterosis

Formulas:

- Mid-parent heterosis (%) = $\frac{F_1-MP}{MP} imes 100$
 - \circ Where F_1 = mean of the hybrid (line \times tester cross), MP = mean of the two parents.
- Better-parent heterosis (%) = $\frac{F_1 BP}{BP} \times 100$
 - \circ Where BP = higher mean of the two parents.

2. Example R Script

Assume your data frame (1tdata) contains:

• line, tester, hybrid_mean, line_mean, tester_mean

```
# Example calculation of heterosis
ltdata$midparent_mean <- (ltdata$line_mean + ltdata$tester_mean) / 2
ltdata$midparent_heterosis <- ((ltdata$hybrid_mean - ltdata$midparent_mean) / ltdata$midparent_mean <- pmax(ltdata$line_mean, ltdata$tester_mean)
ltdata$betterparent_heterosis <- ((ltdata$hybrid_mean - ltdata$betterparent_mean) / ltdata$
# To view the results
ltdata[, c("line", "tester", "midparent_heterosis", "betterparent_heterosis")]</pre>
```

3. For Standard Heterosis

If you have a column check_mean (standard check/hybrid):

ltdata\$standard_heterosis <- ((ltdata\$hybrid_mean - ltdata\$check_mean) / ltdata\$check_mea

Practical Notes

- Usually, you extract parental and hybrid means from your experimental data after running an appropriate Line × Tester analysis.
- You can run these calculations across all your crosses to generate a heterosis table for reporting and selection.
- Positive heterosis values suggest the hybrid outperforms parents/check.

Summary Table Example

Line	Tester	Mid-parent Heterosis (%)	Better-parent Heterosis (%)	Standard Heterosis (%)
1	1	12.8	7.9	12.2
1	2	9.1	4.5	10.6

In plant breeding, significant positive heterosis indicates promising hybrid combinations for further evaluation and use.

Adapt the above R script for your data—replace column names as appropriate for your dataset. If you have specific data or wish to automate this, let me know!

