Correction - Résonance en charge : calcul de la bande-passante

1 Bande passante d'un filtre passe bas d'ordre 2

Pour un tel filtre, le gain s'écrit :

$$G(x) = \frac{1}{\sqrt{(1-x^2)^2 + \frac{x^2}{Q^2}}}$$

On cherche à établir la bande passante à -3 dB de ce filtre.

☐ Résonance ou non

Nous avons vu en cours que ce filtre présentait un phénomène de résonance à $x \neq 0$ pour $Q \geq Q_0 = \frac{1}{\sqrt{2}}$. Nous allons donc distinguer deux situations.

$\square Q < Q_0$

Le maximum du gain est obtenu pour x=0 et vaut 1. La bande passante en x correspond donc à la plage de fréquence pour laquelle $G(x) \geq \frac{1}{\sqrt{2}}$. Il s'agit d'un intervalle de la forme $x \in [0, x_+]$ et nous devons donc déterminer l'expression de x_+ . x_+ vérifie l'équation : $(1-x^2)^2 + \frac{x^2}{Q^2} = 2$ soit :

$$P(X) = X^2 + \left(\frac{1}{Q^2} - 2\right)X - 1 = 0$$
 avec $X = x^2$

Le discriminant s'écrit :

$$\Delta = \left(\frac{1}{Q^2} - 2\right)^2 + 4 > 0$$

On a donc:

$$X_{\pm} = -\frac{1}{2} \left[\left(\frac{1}{Q^2} - 2 \right) \pm \sqrt{\left(\frac{1}{Q^2} - 2 \right)^2 + 4} \right]$$

Seule la racine X_+ est positive et conduit à :

$$x_{+} = \sqrt{X_{+}} = \sqrt{-\frac{1}{2} \left[\left(\frac{1}{Q^{2}} - 2 \right) + \sqrt{\left(\frac{1}{Q^{2}} - 2 \right)^{2} + 4} \right]}$$

$\square Q > Q_0$

Dans cette situation, il y a résonance pour $x=x_{\text{rés}}=\sqrt{1-\frac{1}{2Q^2}}$. On a cette fois :

$$G_{\text{max}} = \frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}}$$

On cherche donc les fréquences pour lesquelles :

$$G(x) \ge \frac{Q}{\sqrt{2}\sqrt{1 - \frac{1}{4Q^2}}}$$

Les fréquences à la limite de la bande-passante doivent donc vérifier l'équation :

$$P(X) = X^2 + \left(\frac{1}{Q^2} - 2\right)X + \left(1 - \frac{2}{Q^2} + \frac{1}{2Q^4}\right) = 0$$

Le discriminant vaut :

$$\Delta = -\frac{1}{Q^4} + \frac{6}{Q^2}$$

Ce discriminant est positif si $Q \ge \frac{1}{\sqrt{6}} \simeq 0, 4$. Or dans la situation étudiée, $Q \ge \sqrt{2} \simeq 0, 7$. La condition est donc vérifiée et le discriminant est donc bien positif. On a donc :

$$X_{\pm} = \frac{1}{2} \left[-\left(\frac{1}{Q^2} - 2\right) \pm \sqrt{-\frac{1}{Q^4} + \frac{6}{Q^2}} \right]$$

$$= \underbrace{-\frac{1}{2} \left(\frac{1}{Q^2} - 2\right)}_{A \ge 0} \left[1 \pm \underbrace{\left(\frac{1}{Q^2} + \frac{6}{Q^2}\right)^2}_{B < 1 \text{ ou } B > 1} \right]$$

Combien y a-t-il de solutions positives? Si $B \ge 1$, il n'y aura qu'une seule racine positive x_+ au final. Si $B \le 1$, il y aura deux racines positives x_+ et x_- .

$$B \ge 1 \Leftrightarrow \frac{-\frac{1}{Q^4} + \frac{6}{Q^2}}{\left(\frac{1}{Q^2} - 2\right)^2} \ge 1$$

$$\Leftrightarrow -\frac{1}{Q^4} + \frac{6}{Q^2} \ge \frac{1}{Q^4} - \frac{2}{Q^2} + 4$$

$$\Leftrightarrow -\frac{2}{Q^4} + \frac{8}{Q^2} \ge 4$$

$$\Leftrightarrow \frac{1}{Q^2} \underbrace{\left(1 - \frac{1}{4Q^2}\right)}_{>0} \ge \frac{1}{2}$$

$$\Leftrightarrow \frac{Q^2}{1 - \frac{1}{4Q^2}} \le 2$$

$$\Leftrightarrow \frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}} \le \sqrt{2}$$

$$\Leftrightarrow G_{\text{max}} \le \sqrt{2}$$

On retrouve là une condition évidente. Pour qu'il y ait deux racines positives, il faut que le gain en limite de bande-passante soit supérieur au gain à fréquence nulle qui vaut 1 et donc que le gain maximal soit supérieur ou égal à $\sqrt{2}$. On veut connaître la valeur de Q correspondante :

$$Q^2 = 2 - \frac{1}{2Q^2}$$
 ou encore $q^2 - 2q + 1 = 0$

en posant $q=Q^2$. Ceci donne $\Delta=4-2=2$ et donc :

$$Q_1 = \sqrt{1 + \frac{\sqrt{2}}{2}}$$

On distingue par conséquent deux sous-cas :

- $\star Q \leq Q_1$ et il n'y a qu'une seule racine donc la bande-passante correspond à l'intervalle $[0; x_+]$.
- $\star~Q \geq Q_1$ et il y a deux racines donc la bande-passante correspond à l'intervalle $[x_-;x_+]$. avec :

$$x_{+} = \sqrt{\frac{1}{2} \left[-\left(\frac{1}{Q^{2}} - 2\right) + \sqrt{-\frac{1}{Q^{4}} + \frac{6}{Q^{2}}} \right]} \quad \text{et} \quad x_{-} = \sqrt{\frac{1}{2} \left[-\left(\frac{1}{Q^{2}} - 2\right) - \sqrt{-\frac{1}{Q^{4}} + \frac{6}{Q^{2}}} \right]}$$