

PRESENTATION SUTLINE

- I. CALCULATOR CHIPS HISTORY
 - A. REGISTER PROCESSORS
 - B. DIGIT PROCESSORS
- II, LCD III
 - A. DESIGNATIONS
 - B. DESIGN GOALS / METHODS
 - C. LCD III BLOCK DIAGRAM
 - D. SYSTEM CONFIGURATION POSSIBILITIES
- III. PRODUCT X
 - A. GOALS / FEATURES
 - B. BLOCK DIAGRAM
 - C. SCHEMATIC
 - D. I/o

COMMON FEATURES OF CALCULATOR CHIPS

- SINGLE CHIP MICROCOMPUTER
 - ON BOARD ROM
 - ON BOARD RAM
 - INTEGRATED I/O DECODING AND BUFFERING
- SIMPLE ALU
 - USUALLY BINARY ADDITION, NEGATION, AND COMPARE AVAILABLE
 - CALCULATIONS ARE CONVERTED TO DECIMAL BY SOFTWARE
- LARGE ROM
 - USUALLY DIVIDED INTO PAGES
 - USUALLY NOT EXPANDABLE
- RAM
 - USUALLY ORGANIZED AS 64 BIT REGISTERS
 - USUALLY NOT EXPANDABLE
- PROGRAM COUNTER
 - USUALLY A SHIFT COUNTER
 - COUNTS IN ODD SEQUENCE
 - MAKES IT VERY DIFFICULT TO USE INDIRECT OR RELATIVE ADDRESSING
- ALL OF THE FEATURES ABOVE REQUIRE THE MINIMUM SILICON AREA ON
 THE CHIP AND CONTRIBUTE TO LOW COST

CALCULATOR ARCHITECTURES

SPLIT ARCHITECTURE

- SEPARATE MEMORY AREAS FOR PROGRAM STORAGE AND DATA MEMORY
- SEPARATE ADDRESSING SCHEMES AND DIFFERENT BIT LENGTHS FOR THE TWO MEMORY TYPES

REGISTER PROCESSORS

- OPERATIONS ARE DONE ON ENTIRE REGISTERS
 - USUALLY 64 BIT REGISTERS (16 DIGITS x 4 BITS)
 INSTRUCTIONS SPECIFY ONE OF SEVERAL AVAILABLE "MASKS" TO OPERATE
 ON PORTIONS OF THE REGISTER: MANTISSA, EXPONENT, OR ALL
 - OPERATIONS INCLUDE DECIMAL ADDITION WITH AUTOMATIC CARRY BETWEEN DIGITS
- NO POINTER SYSTEM FOR DATA ADDRESSING
 - THE INSTRUCTION SPECIFIES WHICH REGISTERS
 - ADDRESSING INDIVIDUAL DIGITS IS NOT POSSIBLE
- INSTRUCTION CYCLES ARE TYPICALLY 80-100 MSEC
- EXCELLENT FOR FAST ARITHMETIC CALCULATIONS
- NOT FLEXIBLE ENOUGH FOR SPECIALTY PRODUCTS SINCE DIGIT MANIPULATION
 IS NOT POSSIBLE
- EXAMPLES: TMCO500, TMC1500, TMCO920, TPO310, (SEE FIGURE 1)

DIGIT PROCESSORS

- OPERATIONS ARE DONE ON 4 BIT DIGITS
 - A 4 BIT BINARY ADDER AND 4 BIT ACCUMULATOR (TEMPORARY HOLDING REGISTER) ARE THE BASIC TOOLS
- A POINTER SYSTEM LOCATES THE 4 BIT PIECE OF DATA TO BE OPERATED ON
 - ONE POINTER SELECTS ONE OF THE REGISTERS
 - ONE POINTER SELECTS ONE DIGIT IN THAT REGISTER
- INSTRUCTION CYCLES ARE TYPICALLY 15-30 MSEC
- EXECUTION OF ARITHMETIC CALCULATIONS IS TYPICALLY SLOWER THAN REGISTER PROCESSORS SINCE THESE CALCULATIONS REQUIRE A SUBROUTINE INSTEAD OF A SINGLE INSTRUCTION
 - SOME DIGIT PROCESSORS SUCH AS LCDIII HAVE SPECIAL FEATURES WHICH ALLOW ARITHMETIC CALCULATIONS AT REGISTER PROCESSOR SPEED
- EXTREMEMLY FLEXIBLE
 - EFFECTIVE REGISTER SIZE, NUMBER OF FLAGS, AND I/O ARE ALL CONTROLLED BY SOFTWARE
 - USEFUL AS CONTROLLERS AND FOR PROCESSING ODD DATA STRUCTURES (PRINTERS, SPECIALTY PRODUCTS)
- EXAMPLES: TMC1000, TMC0980, TMC1980, TMC0260, TMC0270, TPO320, TPO455, LCDIII (TPO475, TPO480) (SEE FIGURE 2)

CHIP DESIGNATIONS

OLD DESIGNATIONS

A = 1K ROM

B = 2K ROM

C = 3K POM

F = FAST ROM T = TIME KEEPING

C22FT = 3 x ROM, 22 x 16 x 4 bit RAM Registers, Fast ROM, and Time keeping

NEW DESIGNATIONS

TP 0480 = C22FT WITH 100 DRIVE (TI 55)

TP 0475 = C22 FT WITHOUT LCD DRIVE "PXT"

(PRODUCT X) SOMETIMES CALLED "PXT"

TP 0470 = C22F WITHOUT LCD DRIVE (PRODUCTX) SOMETIMES CALLED "PX"

10

COMPONENT DESIGN LCD III STATUS REVIEW

MAJOR SYSTEM GOALS

- CONVERT CALCULATOR PRODUCTS FROM BASIC CONSUMER THROUGH II-57 TO LONG BATTERY LIFE, LC DISPLAYS
- PROVIDE THE BASIS FOR A HIGH PERFORMANCE TI-59 REPLACEMENT
- AFFORD THE FLEXIBILITY TO PRODUCE NEW, NON-CALCULATOR CONSUMER PRODUCTS, INCLUDING COMPLEX TIMEKEEPING FUNCTIONS
- NON VOLATILE PROGRAM AND DATA STORAGE FOR MOST CALCULATOR
- LOW UNIT COST/FUNCTION
- O LONG DESIGN SERVICE LIFE

LCD III STATUS REVIEW COMPONENT DESIGN

APPR04CH

MODULAR DESIGN

EACH PROCESSOR IS A SUBSET OF THE NEXT LARGER CIRCUIT. LITTLE OR NO LAYOUT WORK IS REQUIRED TO GENERATE THE CORES OF THE SMALLER VERSIONS OF THE SYSTEM. LAYOUT:

CELL DESIGN: VHEREVER POSSIBLE, CELLS MITH SIMILAR FUNCTIONS WILL BE DESIGNED AS IDENTICAL UNITS.

LOCATIONS TO ELIMINATE SPECIAL INSTRUCTIONS. ROM AND RAM ADDRESSING IS PAGED TO PERMIT EASY EXPANSION WITH MINIMAL ARCHITECTURE: I/O AND SPECIAL FUNCTIONS ARE TREATED AS MEMORY BURDEN ON SMALLER VERSIONS.

 \prod

N

COMPONENT DESIGN LCD III STATUS REVIEW

APPROACH RATIONALE

- DEVELOPMENT OF SEVERAL CHIPS FROM ONE DESIGN REDUCES MONEY, TIME AND MANPOWER REQUIREMENTS
- MODULAR DESIGN GREATLY REDUCES DEVELOPMENT TIME AND COST FOR FUTURE CUSTOM PROCESSOR REQUIREMENTS
- COMMON INSTRUCTION SET REDUCES ALGORITHM DEVELOPMENT TIME BY UTILIZING PROGRAMMER LEARNING AND PREVIOUSLY DESIGNED ROUTINES

F

P

1

1

PROCESSOR APPLICABILITY

05-26-78 AH 039-639

COMPONENT DESIGN LCD III STATUS REVIEW

1

1

 \prod

 \prod

1

1

APPLICATIONS

LCD III VERSION	A	А	В	B + TIME	(2) B OR B + C	B + TIME, EXT RAM	В	J	Û
PRODUCT TYPE	TI 1000, 1025	LITTLE PROFESSOR	DATAMAN	CALCULATOR/CLOCK	EXECUTIVE REMINDER	TRAVEL ALARM	TI-30, BUSINESS ANALYST	11-55, 57	PRODUCT X CONTROLLER

IN GENERAL,

CHIP A REPLACES TMC 1000, TMC 0970, TMC 1990, TMC 0929 TP 0310

CHIP B REPLACES TMC 0980, TMC 1980, TMC 1100, TP 0320

CHIP C REPLACES TMC 1500

EACH VERSION IS MORE POWERFUL THAN THE CIRCUITS IT REPLACES

01/12/78 GLB 39/288

N

GRIBER.

GRAREA

COMPONENT DESIGNADVANCED SOFTWARE DEVELOPMENT

1

11

1

1

1

LCD 1111 FEATURES OF LCD 111 APPROACH

- EFFICIENT
- FLEXIBLE
- REDUCED PACKING PROBLEMS
- **®** MODULAR OR REUSABLE SOFTWARE
- SOFTWARE COMPABILITY AMONG CHIP SETS

1/12/73 039/639 ART HUNTER TI STRICTLY PRIVATE

MAY OPERATIONS REVIEW COMPONENT DESIGN LCD III PERFORMANCE GOALS

1

1

- EFFICIENCY OF A DIGIT PROCESSOR
- WELL STRUCTURED LOGIC ARRAYS WITH TIGHT DESIGN RULES MINIMIZE BAR AREA
- BIT/BYTE DATA ACCESS
- SOFTWARE DEFINABLE I/O BUS STRUCTURES
- SPEED OF A REGISTER PROCESSOR
- ONE CYCLE REGISTER ARITHMETIC
- DIRECT MEMORY ADDRESSING

05-26-78 AH 039-639

MAY OPERATIONS REVIEW COMPONENT DESIGN EXECUTION SPEED

1

1

1

1

1

1

LCD III DESIGN APPROACH: TO ACHIEVE FAST EXECUTION TIMES WITH A DIGIT PROCESSOR

FAST ROM

- 128 x 13 BITS SMALL SIZE ALLOWS FASTER ROM ACCESS
- BASIC ADD AND SHIFT LOOPS ARE PLACED IN FAST ROM
- REDUCES MULTIPLY TIMES BY 50%

DUAL REGISTER POINTER SYSTEM

- EACH OPERAND IN AN ADDITION HAS A SEPARATE POINTER
- NO WASTED TIME MOVING SINGLE POINTER BETWEEN TWO REGISTERS

HOLD PROGRAM COUNTER

ONE INSTRUCTION LOOP

05-26-78 AH 039-639

MAY OPERATIONS REVIEW COMPONENT DESIGN SPEED COMPARISONS

1

1

11

 \prod

1

IMC 0500

7 12/2 NOTESTIGETON	15 31		23 11 28
LIUN CYCLE	TO JUSEC		O) JI SEC
FAST ROM =	5 у sес		
MULTIPLY SUBROUTINE	30 MSEC		27 MSEC
FLAG TEST	30 Ju SEC		155 и ѕес
PEMORY ACCESS	STANDARD RAM	PC RAM	
PROGRAM STEP	0.65 MSEC	0,18 MSEC	0.5 MSEC
USER MEMORY	6.2 MSEC 1	4.1 MSEC	1.5 MSEC
ABSOLUTE 60T0	3,6 MSEC (0.55 MSEC	36.0 MSEC

05-26-78 AH 039-639

; ;

MAY OPERATIONS REVIEW
COMPONENT DESIGN
INSTRUCTION SET CAPABILITIES

N

Π

			TMC 0500	TMC 0980
•	DIRECT MEMORY ADDRESSING	FLAGS, BYTES	FLAGS,	ON
	MEMORY MAPPED 1/0	YES	NO NO	NO
	LOGIC INSTRUCTIONS	YES	ON	LIMITED
	INDIRECT ROM ADDRESSING	PC INDEXING	YES	ON
0	INDIRECT RAM ADDRESSING	YES	ON	LIMITED
•	ROM PAGING	1,4	1K	128
	CONDITIONAL BRANCHING	SET, RESET	SET, RESET	SET ONLY
8	SUBROUTINE LEVELS	9	1-LIMITED	

05-26-78 AH 039-639

COMPONENT DESIGN ADVANCED SOFTWARE DEVELOPMENT

LCD 111 INSTRUCTION SET TEST RESULTS EFFICIENCY

	PERFORMANCE		10.2% DECREASE		27,9% INCREASE		9.5% DECREASE		7.7% INCREASE	
	TCD III		105 INS.		307 INS.		57 INS.		125 IMS.	
EFFICIENCY	CAL. CHIP	1130 930	117 INS.	1155 1590	240 INS.	II 55 1500	63 INS.	1157 1599	116 INS.	
	TEST PROGRAM	MULTIPLICATION		2. E ^X		PROGRAMMING	(LRM)	PROGRAFIMING	(LRI)	
		ij		2.		3		4.		

COMPONENT DESIGN ADVANCED SOFTWARE DEVELOPMENT

N

FLEXIBILITY

- SPEED OF A REGISTER PROCESSOR WITH FLEXIBILITY OF DIGIT PROCESSOR.
- INPUT/OUTPUT IS ALL UNDER SOFTWARE CONTROL AND "MEMORY MAPPED" FOR FLEXIBILITY.
- RAM MAY BE SUBDIVIDED AS DESIRED WITH SOFTWARE
- MICROPROCESSOR APPLICATIONS CAN BE HANDLED AS EASILY AS REGISTER OPERATIONS.

1/12/78 039/639 ART HUNTER

CONPONENT DESIGNADIVANCED SOFTHARE DEVELOPMENT

1

N

1

 \prod

1

PACKING PROBLEMS

DUE TO LARGE 1K WORD ROM PAGES THE PROBLEMS OF PACKING ACROSS PAGE BOUNDARIES ARE LARGELY AVOIDED.

MODULAR SOFTWARE

FROM ONE ALGORITHM. AND FIT TOGETHER INTO OTHERS RATHER EASILY. LARGE ROM PAGES MEAN SOME STANDARD ROUTINES MAY BE REMOVED

SOFTWARE COMPATIBILITY

- ALL CHIPS IN THIS FAMILY USE THE SAME INSTRUCTION SET.
- PROGRAMMERS EXPERIENCED ON OME CHIP ARE EXPERIENCED ON ENTIRE FAMILY.
- ALGORITHM FROM ONE CHIP MAY BE USED ON ANY OTHER CHIP IN THE
- ALGORITHMS CAN BE EASILY CONVERTED FROM ONE CHIP TO A LARGER VERSION WHEN MORE SPACE IS NEEDED PART MAY THROUGH A PROGRAM.

1/12/73 039/639 ART HUNTER

MAY OPERATIONS REVIEW COMPONENT DESIGN EFFICIENCY OF BAR AREA

T

	LCD III-"C" CHIP	TMS 0500/TMS 0580, 0501
ROM SIZE	3K × 12 BIT (36, 864 BITS)	2,5K X 13 BIT (33,280 BITS)
RAM SIZE	20 REGISTERS (1280 BITS)	13 REGISTERS (832 BITS)
BAR SIZE/CHIP	48K SQ, MILS.	TMS 0580 = 48K SQ. MILS. TMS 0501 = 55K SQ. MILS.
TOTAL BAR AREA	48K SQ, MILS	103K SQ. MILS.

05-26-78 AH 039-639

: :

SYSTEM CONFIGURATIONS

- * PRIMARY GOAL: SINGLE CHIP SYSTEM TP 0480
- LCD ITT PROCESSORS CAN BE TEAMED

 IN ANY DESIRED NUMBER, BUT BECOME

 INCREASINGLY DIFFICULT TO USE

 UNLESS EACH HAS A SPECIFIC TACK.

 EXAMPLE PEPIPHERALS
- · EXPANSION DEVICES
 - 1. ROMS MAX & 35

OR

2, RAMS - MAX & 35

OR

- 3, COMBINATION OF RAMS /ROMS & 35
- 4. MATRIX DISPLAY DRIVER EXPANDABLE
 BY 8 DIGIT INCREMENTS TO
 ANY FORESEEABLE LENGTH

PRODUCT X DEFINITION REVIEW

1

1

N

PRODUCT OBJECTIVES

- TO PROVIDE UPGRADE LEADERSHIP PRODUCT TO REPLACE TI-59.
- EXPAND CONCEPTS OF PROBLEM SOLVING VIA CALCULATOR DEVICE.
- INCORPORATE:

STATE-OF-THE-ART-TECHNOLOGIES
SYSTEM DESIGN
SYSTEM EXPANSION

TO SIMPLIFY EASE OF USE AND PROVIDE MARKET EXPANSION AMONG PROFESSIONAL END USERS:

TECHNICAL PROFESSIONALS
NON-TECHNICAL PROFESSIONALS

PRODUCT X FEATURES COMPONENT DESIGN OPERATIONS REVIEW

F

- EQUATION OPERATING SYSTEM (EOS)
- FULL ALPHANUMBERIC DISPLAY; EQUATION TRACE AND PROMPTING IN THE DISPLAY 16 CHARACTER 5 X 7 DOT MATRIX DISPLAY
- MORE FLEXIBLE USER MEMORY
- BASIC MEMORY IS 1000 PROGRAM STEPS OR 125 DATA REGISTERS WITH PARTITIONING BY
- (CRAM), CROMS AND CRAMS ARE INTERCHANGABLE AND TWO SLOTS ARE AVAILABLE ON THE SOLID STATE SOFTWARE APPROACH (CROM) HAS BEEN EXPANDED TO INCLUDE DROP-IN RAM CALCULATOR.
- BASIC MEMORY CAN BE EXPANDED TO 3000 PROGRAM STEPS OR 375 DATA REGISTERS
- CROMS WILL BE 15K PROGRAM STEPS
 - UP TO 99 PROGRAMS PER CROM
- UP TO 10K STEPS PER PROGRAM
- EQUATION (EQN) MODE
- EQUATION CAN BE ENTERED WITHOUT EXECUTION
- DISPLAY WILL SCROLL WHEN FULL
- EQUATION MAY BE EDITED (BACKSTEP, INSERT, DELETE)
- EQUATION IS SAVED TO BE EXECUTED OR REPEATED WITH NEW DATA

AH

OPERATIONS REVIEW COMPONENT DESIGN

1

GOAL: DEFINE AN OPERATING SYSTEM OR "LANGUAGE" FOR PRODUCT X THAT ALLOWS THE USER TO PRODUCT X APPROACH

ENTER PROBLEMS AS THEY ARE NORMALLY WRITTEN

EQUATION OPERATING SYSTEM (EOS)

MORE POWERFUL THAN THE TI-59

WIICH EASIER AND MORE OBVIOUS TO USE THAN TI-59

UNARY AND BINARY OPERATIONS WILL BE ENTERED AS THEY ARE WRITTEN

EXAMPLES: 2 X 3 =

SIN 30 =

AUTOMATIC VARIABLE ASSIGNMENT

EXAMPLE: $30 \Rightarrow B$

10 = > 0

(A = 10.5)SIN B + C => A

IMPLIED MULTIPLICATION

SIN 2 TT = CALCULATES THE SIN OF (2 X TT) EXAMPLES:

2A + B = CALCULATES (2 X A) + B

INTEGER POWERS OF VARIABLES 9

EXAMPLES: A5 MEANS THE VALUE STORED IN "A" RAISED TO THE 5TH POWER

٠,

AH

OPERATIONS REVIEW COMPONENT DESIGN

1

EXAMPLE: QUADRATIC EQUATION

PRODUCT X VS. HP 67 VS. TI-59 VS. SHARP 1300

 $-B+ \sqrt{\frac{8}{9}} - 4 AC$ FORMULA:

HP67: RCL B X² RCL A RCI.C 4 X X - \sqrt{X} RCL B - RCL A 2 X ÷

 \sqrt{X}) ÷ (2 X RCL 0) = TI-59: (RCL1 +/- + (χ^2 - 4 X RCL 0 X RCL 2)

SHARP 1300: $(-B + \sqrt{(B * B - 4 * A * C)}) \div (2 * A) =$

PRODUCT X: $(-B + \sqrt{(B2 - 4AC)}) \div 2A =$

TI-59 11P 67

22*

SHARP 1300 26

PRODUCT X

NUMBER OF KEYSTROKES

24

*20 + 2 2ND FUNCTION KEYS

:;

NOTE: EXTERNAL CHIP-INTERFACE THRU EITHER PLUG-IN MODULE

08/03/79

9

039-397

PRODUCT X REVIEW COMPONENT DESIGN ERIPHERAL INTERFACE

PERIPHERAL INTERFACE

- PLUG-IN THROUGH CROM/CRAM SLOT (MEMORY EXPANSION)
- 8 LINE CONNECTION
- DATA RATE UP TO 266 K BITS/SECOND
- MEMORY EXPANSION MODULE ACCEPTS UP TO 8 CROMS/CRAMS, CHIP SELECTS ARE GENERATED BY MEMORY CONTROLLER USING AN EXTERNAL MULTIPLEXER.
- SINGLE LINE PERIPHERAL CONNECTION
- ONE REFERENCE LINE (GROUND) AND ONE SIGNAL LINE
 - PERIPHERALS ARE ON A COMMON BUS
- A DEVICE IDENTIFIER PRECEDES COMMUNICATION
- COMMUNICATION IS BETWEEN LCD PXT CHIP IN PRODUCT X AND AN EXTERNAL LCD III CHIP
- INCLUDES PRINTER, CASSETTE, ETC.
- DATA RATE UP TO 5K BITS/SECOND pprox 40 LINES/SEC

CASSETTE ALTERNATIVE

- SINCE KEYBOARD 1/0 CONTROLLER NOW HAS 3K ROM AVAILABLE, THE CASSETTE INTERFACE COULD BE INCLUDED ON THIS CHIP AT NO ADDITIONAL
- THIS WOULD REQUIRE LEVEL BUFFERING AND THREE ADDITIONAL JACKS ON PRODUCT X. (MICROPHONE, EARPHONE, AND PAUSE JACKS)

0-128 BITS TRANSFERRED 0-32 READS A TO B COMMUNICATION DATA | DATA ON BOARD CHIP TO CHIP COMMUNICATION TI INTERNAL DATA COMMUNICATION TECHNIQUES PRODUCT X REVIEW 14 BITS 1 - DATA COMMAND AND SYNCHRONIZES TIMING REQUEST READY 0/1 COMMAND ACCEPTS 039/620 ACH SIGNAL FROM B SIGNAL FROM A I/O DATA FROM A_ READ BY B REQUEST READY 07-25-79 2;

PRODUCT X ELECTRICAL DESIGN REVIEW

PERIPHERAL COMMUNICATION

· PRODUCT X CALCULATOR IS NORMALLY MASTER

- DNY - WILL MONITOR INCOMING TRANSMISSIONS ALLOW A DEVICE TO BECOME MASTER CALCULATOR IS IDLE
- FACH PERIPHERAL AND THE CALCULATOR HAS A DEVICE CODE
- COMMUNICATION IS BETWEEN:
- 1. CALCULATOR AND A PERIFHERAL 2. TWO FFILL TORS PERIPHERALS TWO
- ON PERIPHERAL IND THESE ARE PROGRAMMABLE · CALCULATOR HAS OF CODES TO SEND AND RECEIVE
- · COMMUNICATION STRING CONTAINS: CODE CODE 3. SENDING DEWCE COL 4. COMMAND CODE 5. 128 BITS OF DATA 6. ERROR DETECTION/C 2. KECFIVING DE VICE 1. START CODE

ENROR DETECTION/CORRECTION?

PERIPHERAL COMMUNICATION (CONTINUED)

Π

- AN OP CODE FOR SLOW SPEED TRANSMISSION WILL BE AVAILABLE FOR COMMUNICATION TO SLOWER PROCESSORS SUCH AS TROASS.

 DATA MATE & 10 LINES/SEC.
- PROTECTION AND FREGUENCY DETECTION WILL BE RATIO BIY TRANSAISS/3 & GOOD NOISE TOLERANCE FO F

	NERO
	SWE

クラング · DOUBLE DETECTION OF TRANSITIONS WILL BE BIT CLOCKING. TO FROMBE ACCURATE

3.1v Max. LOGIC 1 2.4v Min. LOGIC 1

MINIMUM NOISE MARGIN FOR 1081C 1 OR 0 = 1.2 V

CALCULATOR POWER SUPPLY
MUST PROVIDE ~ 2 MA
TO DRIVE 16 PERIPHERALS

VOL TAGE

LAV TRANSITION

0x 10G1C 0

REQUIRES S MA FOR

8-29-79 ACH

039-639

П

