### **PSALTer results panel**

 $\mathcal{S} = \\ \iiint \left(\frac{1}{6} \left(6 \,\,\mathcal{A}^{\alpha\beta\chi} \,\,\sigma_{\alpha\beta\chi} + 6 \,\,f^{\alpha\beta} \,\,\tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} + 12 \,r_{1} \,\partial_{\beta}\mathcal{A}_{i \,\,\theta}^{\,\,\theta} \,\partial^{i}\mathcal{A}_{\alpha}^{\,\,\alpha\beta} - 24 \,r_{3} \,\partial_{\beta}\mathcal{A}_{i \,\,\theta}^{\,\,\theta} \,\partial^{i}\mathcal{A}_{\alpha}^{\,\,\alpha\beta} + 12 \,r_{1} \,\partial_{\alpha}\mathcal{A}_{\beta}^{\,\,\alpha\beta} \,\partial^{i}\mathcal{A}_{\beta}^{\,\,\alpha\beta} + 12 \,r_{1} \,\partial_{\alpha}\mathcal{A}_{\beta}^{\,\,\alpha\beta} \,\partial^{i}\mathcal{A}_{\beta}^{\,$ 

### **Wave operator**



#### Saturated propagator

|                                   | $^{0\overset{+}{.}}\sigma^{\parallel}$ | $0.^{+}\tau^{\parallel}$ | $0.^+\tau^{\perp}$ | $0.\sigma^{\parallel}$                                     |                                        |                                    |                                        |                                                |                                |                                  |                                                      |                                        |                                    |                                            |
|-----------------------------------|----------------------------------------|--------------------------|--------------------|------------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------------------|--------------------------------|----------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------|
|                                   | $\frac{1}{6 k^2 (-r_1 + r_1)}$         | 0                        | 0                  | 0                                                          |                                        |                                    |                                        |                                                |                                |                                  |                                                      |                                        |                                    |                                            |
| 0. <sup>+</sup> τ <sup>  </sup> † |                                        |                          | 0                  | 0                                                          |                                        |                                    |                                        |                                                |                                |                                  |                                                      |                                        |                                    |                                            |
| <sup>0,+</sup> τ <sup>⊥</sup> †   | 0                                      | 0                        | 0                  | 0                                                          |                                        |                                    |                                        |                                                |                                |                                  |                                                      |                                        |                                    |                                            |
| <sup>0</sup> σ <sup>  </sup> †    | 0                                      | 0                        | 0                  | $\frac{1}{k^2 r. + t.}$                                    | $1^+ \sigma^{\parallel}_{\alpha\beta}$ | $1.^+\sigma^{\perp}_{\alpha\beta}$ | $1.^{+}\tau^{\parallel}_{\alpha\beta}$ | $\frac{1}{\alpha} \sigma^{\parallel}_{\alpha}$ | $1^{-}\sigma^{\perp}_{\alpha}$ | $1^{-}\tau^{\parallel}_{\alpha}$ | 1 <sup>-</sup> τ <sup>+</sup> α                      |                                        |                                    |                                            |
|                                   |                                        |                          |                    | $\dot{\Gamma}^+ \sigma^{\parallel} \uparrow^{\alpha\beta}$ | $\frac{6}{(3+k^2)^2t}$                 | $\frac{3\sqrt{2}}{(3+k^2)^2t.}$    | $\frac{3i \sqrt{2} k}{(3+k^2)^2 t}$    | 0                                              | 0                              | 0                                | 0                                                    |                                        |                                    |                                            |
|                                   |                                        |                          |                    | $1.^+\sigma^{\perp}$ † $^{\alpha\beta}$                    | $\frac{3\sqrt{2}}{(3+k^2)^2t.}$        | $\frac{3}{(3+k^2)^2t}$             | $\frac{3ik}{(3+k^2)^2t_{.2}}$          | 0                                              | 0                              | 0                                | 0                                                    |                                        |                                    |                                            |
|                                   |                                        |                          |                    | $1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$             | $-\frac{3i\sqrt{2}k}{(3+k^2)^2t}$      | $-\frac{3ik}{(3+k^2)^2t.}$         | $\frac{3k^2}{(3+k^2)^2t.}_{2}$         | 0                                              | 0                              | 0                                | 0                                                    |                                        |                                    |                                            |
|                                   |                                        |                          |                    |                                                            | 0                                      |                                    | 0                                      | 1                                              |                                | 0                                | 0                                                    |                                        |                                    |                                            |
|                                   |                                        |                          |                    | $\frac{1}{2}\sigma^{\perp} + \alpha$                       | 0                                      | 0                                  | 0                                      | 0                                              | 0                              | 0                                | 0                                                    |                                        |                                    |                                            |
|                                   |                                        |                          |                    | $1^{-}\tau^{\parallel} + \alpha$                           | 0                                      | 0                                  | 0                                      | 0                                              | 0                              | 0                                | 0                                                    |                                        |                                    |                                            |
|                                   |                                        |                          |                    | $1^{-}\tau^{\perp}\uparrow^{\alpha}$                       | 0                                      | 0                                  | 0                                      | 0                                              | 0                              | 0                                | 0                                                    | $2^+ \sigma^{\parallel}_{\alpha\beta}$ | 2. <sup>+</sup> τ <sup>  </sup> αβ | $^{2}\sigma^{\parallel}_{\alpha\beta\chi}$ |
|                                   |                                        |                          |                    |                                                            |                                        |                                    |                                        |                                                |                                |                                  | $^{2^{+}}\sigma^{\parallel}\dagger^{\alpha\beta}$    | 0                                      | 0                                  | 0                                          |
|                                   |                                        |                          |                    |                                                            |                                        |                                    |                                        |                                                |                                |                                  | $2.^{+}\tau^{\parallel}$ †                           | 0                                      | 0                                  | 0                                          |
|                                   |                                        |                          |                    |                                                            |                                        |                                    |                                        |                                                |                                |                                  | $2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$ | 0                                      | 0                                  | $\frac{1}{k^2 r_1}$                        |

## Source constraints

| Spin-parity form                                                                                                  | Covariant form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Multiplicities |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| $0^+_{\cdot} \tau^{\perp} == 0$                                                                                   | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              |  |  |  |
| $0^+_{\cdot}\tau^{\parallel}==0$                                                                                  | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |  |  |  |
| $1 r^{\perp \alpha} == 0$                                                                                         | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3              |  |  |  |
| $1 \cdot \tau^{\parallel \alpha} == 0$                                                                            | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3              |  |  |  |
| 1. σ <sup>1</sup> == 0                                                                                            | $\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              |  |  |  |
| $\overline{i k  1^+_{\cdot} \sigma^{\parallel}^{\alpha \beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha \beta}} = 0$ | $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta$ | 3              |  |  |  |
| $1^+_{\alpha\beta} = 1^+_{\alpha\beta} = 1^+_{\alpha\beta}$                                                       | $3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3              |  |  |  |
| $2^+_{1} \eta^{\alpha\beta} == 0$                                                                                 | $4\partial_{\sigma}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\partial_{\sigma}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi} + 3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\sigma}\partial_{\chi}\tau(\Delta+\mathcal{K})^{\chi\delta} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5              |  |  |  |
|                                                                                                                   | $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |  |  |
| $2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$                                                                   | $3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5              |  |  |  |
| Total expected gauge generators:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |

# **Massive spectrum**



## Massive particle

| Pole residue: | $-\frac{1}{r_{\dot{2}}} > 0$          |
|---------------|---------------------------------------|
| Square mass:  | $\frac{\frac{t}{2}}{\frac{r}{2}} > 0$ |
| Spin:         | 0                                     |
| Parity:       | Odd                                   |

### **Massless spectrum**

(No particles)

### **Unitarity conditions**

r. < 0 && t. > 0