Changes of topologies

Alessandro Andretta

Dipartimento di Matematica Università di Torino

A. Andretta (Torino)

Changes of topologies

AA 2024-2025

1 / 0

Lemma 2.2.1 [Kec95, Lemma 13.3]

 $X=(X,\tau)$ Polish and $(\tau_n)_{n\in\omega}$ be a sequence of Polish topologies on X with $\tau\subseteq\tau_n$ for every $n\in\omega$. Then the topology τ_∞ generated by $\bigcup_{n\in\omega}\tau_n$ is Polish. Moreover, if $\tau_n\subseteq \Sigma^0_\alpha(X,\tau)$ for every $n\in\omega$, then $\tau_\infty\subseteq \Sigma^0_\alpha(X,\tau)$.

Notice that if all τ_n are zero-dimensional, then so is τ_{∞} .

Proof.

Let $X_n=(X,\tau_n)$, and let $f\colon X\to\prod_n X_n$, $x\mapsto (x,x,x,\ldots)$. We claim that f(X) is closed in $\prod_n X_n$: if $(x_n)_n\notin f(X)$, then $x_i\neq x_j$ for some i< j, so if $U,V\in \tau$ are disjoint and $x_i\in U\in \tau_i$ and $x_j\in V\in \tau_j$, so $(x_n)_n\in X_0\times\ldots\times X_{i-1}\times U\times X_{i+1}\times\ldots\times X_{j-1}\times V\times X_{j+1}\times\ldots$ is open and disjoint from f(X).

Thus f(X) is Polish and $f:(X,\tau_\infty)\to f(X)$ is a homeomorphism. If \mathcal{B}_n is a countable basis for τ_n then $\bigcup_n \mathcal{B}_n\subseteq \Sigma^0_\alpha(X,\tau)$ is a countable subbasis for τ_∞ , hence $\tau_\infty\subseteq \Sigma^0_\alpha(X,\tau)$.

A. Andretta (Torino) Changes of topologies AA 2024–2025 2 / !

Theorem 2.2.2 (Kuratowski) [Kec95, Theorem 22.18 and Exercises 22.19 and 22.20]

 $X=(X,\tau)$ Polish, $1\leq \alpha<\omega_1$, and $A_n\subseteq X$ in $\Delta^0_\alpha(X,\tau)$ for all n. Then there is a Polish topology $\tau'\supseteq \tau$ on X such that $\tau'\subseteq \Sigma^0_\alpha(X,\tau)$ and $A_n\in \Delta^0_1(X,\tau')$ for all $n\in\omega$.

When $\alpha>1$ we can require τ' to be zero-dimensional, and if $\alpha>1$ is a successor ordinal and $\forall n(A_n=A)$, we may require $\tau'\subseteq \Delta^0_\alpha(X,\tau)$ (dropping zero-dimensionality, unless τ was already zero-dimensional).

Proof

If $\alpha = 1$, set $\tau' = \tau$.

If $\alpha=2$, then each A_n and its complement $X\setminus A_n$ are \mathbf{G}_δ , hence Polish. Let τ_n be the direct sum of the relative topologies on A_n and $X\setminus A_n$: then $\tau_n\supseteq \tau$ is still Polish, $A_n\in \mathbf{\Delta}^0_1(X,\tau_n)$, and $\tau_n\subseteq \mathbf{\Sigma}^0_2(X,\tau)$ because it consists of the sets of the form $(U\cap A_n)\cup (V\setminus A_n)$ for $U,V\in \tau$. Letting τ' be the topology generated by $\bigcup_{n\in\omega}\tau_n$, by Lemma 2.2.1 we get the desired result.

A. Andretta (Torino)

Changes of topologies

AA 2024-2025

2 / 0

Proof (continued)

 $\alpha = 2$.

If $A_n=A$, for all n then $\tau'=\{(U\cap A)\cup (V\setminus A)\mid U,V\in\tau\}$ so $\tau'\subseteq \Delta^0_2(X,\tau)$. To see that τ' can be zero-dimensional, it's enough to observe that w.l.o.g. $\{A_n\mid n\in\omega\}\supseteq \{X\setminus U_k\mid k\in\omega\}$, where $\{U_k\mid k\in\omega\}$ is any countable basis for τ : it follows that $\{U_k\cap A_n,U_k\setminus A_n\mid n,k\in\omega\}$ consists of τ' -clopen sets. α a limit ordinal. Then $A_n=\bigcup_{i\in\omega}A_{n,i}=\bigcap_{i\in\omega}B_{n,i}$, with $A_{n,i},B_{n,i}\in\Delta^0_{\alpha_{n,i}}(X,\tau)$ for some $1<\alpha_{n,i}<\alpha$. By inductive hypothesis, let $\tau'_{n,i}$ and $\tau''_{n,i}$ be (zero-dimensional) Polish topologies for $A_{n,i}$ and $B_{n,i}$, respectively. In particular $A_{n,i}\in\Delta^0_1(X,\tau'_{n,i})$ and $\tau\subseteq\tau'_{n,i}\subseteq\Sigma^0_{\alpha_{n,i}}(X,\tau)\subseteq\Sigma^0_{\alpha}(X,\tau)$, and similarly for $B_{n,i}$ and $\tau''_{n,i}$. Then letting τ' be the topology generated by $\bigcup_{n,i}(\tau'_{n,i}\cup\tau''_{n,i})$, we get from Lemma 2.2.1 that $\tau'\supseteq\tau$ is a Polish topology such that $\tau'\subseteq\Sigma^0_{\alpha}(X,\tau)$. Moreover, $A_n=\bigcup_i A_{n,i}=\bigcap_i B_{n,i}\in\Delta^0_1(X,\tau')$ because all the $A_{n,i}$ and $B_{n,i}$ are τ' -clopen.

Andretta (Torino) Changes of topologies AA 2024–2025 4/

Proof (continued)

Let $\alpha=\beta+1\geq 3$ be a successor ordinal. Then $A_n=\bigcup_i\bigcap_j A_{n,i,j}=\bigcap_i\bigcup_j B_{n,i,j}$ with $A_{n,i,j},B_{n,i,j}\in \Delta^0_\beta(X,\tau)$. By inductive hypothesis, for each $n,i,j\in \omega$ there are Polish topologies $\tau'_{n,i,j}$ and $\tau''_{n,i,j}$ refining τ such that $A_{n,i,j}$ is $\tau'_{n,i,j}$ -clopen, $B_{n,i,j}$ is $\tau''_{n,i,j}$ -clopen, and $\tau'_{n,i,j},\tau''_{n,i,j}\subseteq \Sigma^0_\beta(X,\tau)$. Let τ_∞ be the topology generated by $\bigcup_{n,i,j}(\tau'_{n,i,j}\cup\tau''_{n,i,j})$, so that all $A_{n,i,j}$ and $B_{n,i,j}$ are τ_∞ -clopen, $\tau\subseteq\tau_\infty\subseteq\Sigma^0_\beta(X,\tau)$, and τ_∞ is Polish by Lemma 2.2.1. It follows that $A_n\in\Delta^0_2(X,\tau_\infty)$. By case $\alpha=2$ applied to the A_n 's viewed as subsets of (X,τ_∞) , we get that there is a (zero-dimensional) Polish topology $\tau'\supseteq\tau_\infty\supseteq\tau$ such that each A_n is τ' -clopen and $\tau'\subseteq\Sigma^0_2(X,\tau_\infty)\subseteq\Sigma^0_{\beta+1}(X,\tau)$, whence τ' is as desired because $\beta+1=\alpha$.

Finally, if $\forall n(A_n=A)$ then we require $\tau'\subseteq \Delta^0_2(X,\tau_\infty)\subseteq \Delta^0_\alpha(X,\tau)$.

A. Andretta (Torino)

Changes of topologies

AA 2024-2025

5/9

Corollary 2.2.3, essentially [Kec95, Theorem 13.1 and Exercise 13.5]

Let $X=(X,\tau)$ be a Polish space and $A_n\in \mathbf{Bor}(X,\tau)$ for every $n\in\omega$. Then there is a Polish topology $\tau'\supseteq\tau$ such that $\mathbf{Bor}(X,\tau')=\mathbf{Bor}(X,\tau)$ and each A_n is clopen with respect to τ' . Moreover, τ' can be taken to be zero-dimensional.

Proof.

Let $\alpha>1$ be such that $A_n\in \Sigma^0_\alpha(X,\tau)$ for every $n\in\omega$, and let τ' be the (zero-dimensional) topology given by Theorem 2.2.2. By induction on $1\leq \beta<\omega_1$, one can easily show that

$$\Sigma^0_{\beta}(X,\tau) \subseteq \Sigma^0_{\beta}(X,\tau') \subseteq \Sigma^0_{\alpha+\beta}(X,\tau),$$

whence $\mathbf{Bor}(X,\tau') = \bigcup_{1 \leq \beta < \omega_1} \Sigma^0_{\beta}(X,\tau') = \bigcup_{1 \leq \beta < \omega_1} \Sigma^0_{\beta}(X,\tau) = \mathbf{Bor}(X,\tau).$

A Andretta (Torino)

There is no analogue of Corollary 2.2.3 for \aleph_1 -many Borel sets $\mathcal{A}=\{A_\alpha\mid \alpha<\omega_1\}$, even if we require that they have Borel rank bounded by the same $1<\beta<\omega_1$: if X is uncountable Polish space and $A\subseteq X$ of size \aleph_1 , then $\mathcal{A}=\{\{x\}\mid x\in A\}$ is a family of \aleph_1 -many closed sets. Then any τ' such that $\mathcal{A}\subseteq\tau'$ cannot be separable, as all points in A would be τ' -isolated.

Also the possibility of having a "good" change of topology turning a non-Borel set into an open (or even just Borel) one is hopeless. Theorem 3.2.5 shows that if f is an injective continuous function between Polish spaces X and Y, then $f(A) \in \mathbf{Bor}(Y)$ for every $A \in \mathbf{Bor}(X)$. Now suppose towards a contradiction that there is a set $A \subseteq X$ which is not Borel (with respect to the Polish topology τ on X), but it is such that there is a Polish topology $\tau' \supseteq \tau$ such that $A \in \mathbf{Bor}(X,\tau')$. Then the identity function $\mathrm{id}_X \colon (X,\tau') \to (X,\tau)$ would be continuous and injective, and since $A \in \mathbf{Bor}(X,\tau')$ then $\mathrm{id}_X(A) = A$ would be in $\mathbf{Bor}(X,\tau)$, a contradiction.

A. Andretta (Torino)

Changes of topologies

AA 2024-2025

7 / 0

Theorem (Alexandrov, Hausdorff) [Kec95, Theorem 13.6]

 (X,τ) Polish and $A\in \mathbf{Bor}(X)$. Then A has the PSP. In particular, every uncountable Borel subset of a Polish space has cardinality 2^{\aleph_0} .

Proof.

By Corollary 2.2.3, let $\tau' \supseteq \tau$ be a Polish topology on X such that $A \in \Delta^0_1(X,\tau')$, so that $(A,\tau' \upharpoonright A)$ is Polish (where $\tau' \upharpoonright A$ is the relative topology of τ' on the set A). If A is uncountable, then by Corollary 1.4.9 there is a continuous injection $f \colon 2^\omega \to (A,\tau' \upharpoonright A) \subseteq (X,\tau')$. As $\tau \subseteq \tau'$, the function f is continuous also as a function from 2^ω to (X,τ) , and thus it is an embedding of 2^ω into A (with respect to the original topology τ of X).

A. Andretta (Torino)

Proposition 2.2.5 (Lusin-Souslin) [Kec95, Theorem 13.7]

Let X be Polish and $A\subseteq X$ be Borel. There is a closed set $F\subseteq \omega^\omega$ and a continuous bijection $f\colon F\to A$. In particular, if $A\neq\emptyset$, there is also a continuous surjection $g\colon \omega^\omega\to A$ extending f.

Proof.

Apply Corollary 2.2.3 to get a Polish topology τ' refining the topology τ of X such that A is τ' -clopen (hence Polish with respect to the relative topology of τ'). Then by Theorem 1.3.17 there are F and f (or even g if $A \neq \emptyset$) as in the statement, except that f (respectively, g) is continuous as a function between F (respectively, ω^{ω}) and (X, τ') . But since $\tau \subseteq \tau'$, the function remains continuous when equipping X with its original topology τ , hence we are done.

A. Andretta (Torino)

Changes of topologies

AA 2024–2025

9/9