Умный дом

Модуль выключателя с поддержкой дистанционного управления по ИК и датчиком температуры

Modbus ASCII / RTU

Ключевые особенности

Размеры: диаметр 50 мм, высота 15 мм. Детектирование состояния кнопок Напряжение питания от 7 до 15 вольт. Детектирование фронтов сигналов

Максимальный потребляемый ток 9 мА. Интерфейс RS485.

Протоколы: Modbus ASCII and RTU. Три входя для подключения кнопок

Три выхода для светодиодов подсветки Встроенный датчик температуры Выходя для ИК светодиода Вход для ИК сенсора

Детектирование фронтов сигналов кнопок и устранение дребезга
Измерение времени нажатия кнопок
Управление светодиодами
Детектирование команд
большинства ИК пультов
дистанционного управления

Имитация ИК пульта дистанционного управления

Датчик температуры -40 to +85 C

Описание

Данный выключатель представляет собой модуль для домашней автоматизации. Он разработан в рамках хобби для установки в коробку выключателя в стене, таким образом, чтобы находиться за реальным выключателем. Подключив модуль к кнопкам реального выключателя можно получить текущее состояние кнопок с использованием протоколов Modbus ASCII/RTU. Так же модуль умеет устранять «дребезг контактов», детектировать момент нажатия кнопки, момент ее отпускания, и замерять временной интервал между этими двумя событиями в миллисекундах. Это первая функция модуля.

Второй функцией является возможность подсветки клавиш выключателя светодиодами. Подключив к разъему модуля светодиоды, и использовав выключатель с окошечками для индикации, Вы можете подсвечивать кнопки управляя светодиодами по протоколу Modbus.

Третья функция модуля, - измерение температуры. Датчик температуры DS18B20 установлен в верхней части модуля. Температуру можно прочитать, используя протокол Modbus. Температура сохраняется в формате, который отдает датчик DS18B20, т. е. единица это 0.0625°C.

Четвертая функция модуля, - прием и декодирование команд пультов дистанционного управления, работающих с использованием различных вариаций протокола NEC. Это самый распространенный на сегодняшний день протокол современных ИК пультов дистанционного управления. Принятая

команда сохраняется в регистрах и может быть прочитана с использованием протокола Modbus. Это позволяет организовать дистанционное управление элементами умного дома с использованием обыкновенного ПДУ, например от телевизора. Так же это позволяет прочитать и сохранить команду, например, кондиционера, для задания его режима работы в дальнейшем. Для приема ИК команд предусмотрен разъем, вход IR_IN которого следует подключить к выходу ИК датчика (например TSOP4836, аналогов много).

Пятая функция непосредственно связана с четвертой. Модуль может имитировать ИК пульт управления. Т. е. любая принятая и декодированная модулем ИК команда, а так же ИК команда, сгенерированная контроллером сети Modbus, может быть воспроизведена в любой момент времени. Для передачи ИК команд может быть использован внешний ИК светодиод, который должен быть подключен между выходами LED и +5V.

Описание регистров Modbus.

Address	Name	Description
0	Адрес устройства Modbus	Регистр содержит modbus-адрес устройства. Поддерживаются значения от 1 до 247. Значение по умолчанию: 1
1	Протокол (ASCII / RTU)	Значение регистра определяет протокол Modbus. Поддерживаемые режимы «ASCII» и «RTU». 0 - означает «режим Modbus ASCII», 7 бит данных. 1 - означает «режим Modbus RTU», 8 бит данных. Значение по умолчанию: 1
2	Скорость передачи на шине RS485 Modbus	Скорость интерфейса RS485: 0 – 4800 bps 1 – 9600 bps 2 – 19200 bps 3 – 38400 bps 4 – 57600 bps 5 – 115200 bps 3начение по умолчанию: 5
3	Четность Modbus	Настройка режима четности RS485: 0 — без четности, 1/2 стоп бита («8N2» or «8N1» or «7N2») 1 — even, 1 стоп бит («8E1» or «7E1») 2 — odd, 1 стоп бит («8O1» or «7O1») Значение по умолчанию: 0
4	Количество стоповых битов	Значение регистра задает количество стоповых битов в режиме Modbus RTU при отсутствии четности. Добавлен для совместимости с контроллерами ОВЕН. 1 — один стоповый бит 2 — два стоповых бита Значение по умолчанию: 2
5	Регистр переноса настроек в энергонезависи мую память	По умолчанию значения регистров 0,1,2,3 и 4 сохраняются во временной памяти, установленные значения применяются. Для переноса значений в постоянную память, необходимо записать «A251 hex» в регистр 4. В этом случае новые значения будут применяться и после повторного включения устройства.

6	Состояние	Значение по умолчанию: Читается как 0 Запись 0хА251, сохраняет настройки порта. Другие значения игнорируются. Регистр содержит состояние кнопок в реальном
	кнопок	времени. Бит 0 = 1, если «SW1» замкнут на «COMMON» Бит 1 = 1, если «SW2» замкнут на «COMMON» Бит 2 = 1, если «SW3» замкнут на «COMMON» Пример: Значение 0x06, означает «SW2» и «SW3» замкнуты на «COMMON», а «SW1» разомкнут. Значение по умолчанию: 0
7	Регистр детектировани я фронтов нажатия кнопок	Регистр содержит битовую маску кнопок. Каждый бит устанавливается в «1» когда произошло детектирование нажатия кнопки. Запись «1» в этот бит сбрасывает соответствующие кнопке биты в регистрах 6,7 соответствующее время в регистрах 8, 9, 10. Бит 0 установлен в «1» если было детектировано замыкание между «SW1» «COMMON», т. е. кнопка 1 была когда-то нажата. Бит 1 установлен в «1» если было детектировано замыкание между «SW2» «COMMON», т. е. кнопка 2 была когда-то нажата. Бит 2 установлен в «1» если было детектировано замыкание между «SW3» «COMMON», т. е. кнопка 3 была когда-то нажата.
8	Регистр детектировани я фронтов отпускания кнопок	Регистр содержит битовую маску кнопок. Каждый бит устанавливается в «1» когда произошло детектирование отпускания кнопки. Запись «1» в этот бит сбрасывает соответствующие кнопке биты в регистрах 6,7 соответствующее время в регистрах 8, 9, 10. Бит 0 установлен в «1» если было детектировано размыкание «SW1» и «COMMON», т. е. кнопка 1 была когда-то отпущена. Бит 1 установлен в «1» если было детектировано размыкание «SW2» и «COMMON», т. е. кнопка 2 была когда-то отпущена. Бит 2 установлен в «1» если было детектировано размыкание «SW3» и «СОММОN», т. е. кнопка 3

		была когда-то отпущена.
9	Время нажатия кнопки 1	Регистр содержит время в миллисекундах между нажатием и отпусканием кнопки 1. Т.е. время между моментом, когда «SW1» был подключен к «COMMON» и моментом их разъединения. Если данное время больше чем 65535 будет сохранено значение 65535.
10	Время нажатия кнопки 2	Регистр содержит время в миллисекундах между нажатием и отпусканием кнопки 2. Т.е. время между моментом, когда «SW2» был подключен к «COMMON» и моментом их разъединения. Если данное время больше чем 65535 будет сохранено значение 65535.
11	Время нажатия кнопки 3	Регистр содержит время в миллисекундах между нажатием и отпусканием кнопки 3. Т.е. время между моментом, когда «SW3» был подключен к «COMMON» и моментом их разъединения. Если данное время больше чем 65535 будет сохранено значение 65535.
12	Температура 0.0625°C	Регистр содержит значение температуры в 0.0625°С. Т.е. для получения температуры значение данного регистра нужно умножить на 0.0625°С при положительной температуре. И конвертировать согласно документации на DS18B20 при отрицательной. В случае если регистр содержит значение 21845 (5555 hex), температура еще не была измерена.
13	Температура float (младшие 2 байта)	Регистр содержит значение температуры в °C, младшую часть
14	Температура float (старшие 2 байта)	Регистр содержит значение температуры в °C, старшую часть
15	Управление светодиодами	Каждый бит (0,1,2) регистра ассоциирован с соответствующим выходом светодиодов Запись 1 в соответствующий бит позволяет включить светодиод, а запись 0 выключить. Бит 0 = 1 означает что выход «LED1» будет установлен в высокий уровень. Бит 1 = 1 означает что выход «LED2» будет

		установлен в высокий уровень. Бит 2 = 1 означает что выход «LED3» будет установлен в высокий уровень. Запись 0 в соответствующий бит сбросит уровень на выходе светодиодов на низкий.
16	Длинна ИК посылки	Разные вариации ИК протокола NEC используют различную длинну команды. Часто это 32 бита (телевизоры, музыкальные центры) иногда 96 бит (кондиционеры). Данный регистр содержит длинну команды в битах.
		В режиме приемника данный регистр содержит длинну принятой ИК команды в битах . Для того чтобы очистить приемный буфер после чтения ИК команды, запишите в данный регистр значение от 1 до 31.
		Для того чтобы перейти в режим передачи ИК команды, запишите в данный регистр значение от 32 до 96. Это отключит ИК приемник на время передачи. Записанное значение соответствует длительности передаваемой команды. Сразу за записью длинны команды должна следовать запись в регистр длительности преамбулы и регистр длительности паузы, а затем должна следовать запись ИК команды в соответствующие регистры. Как только последний бит ИК команды будет записан в регистр, начнется передача ИК команды.
17	Длительность перамбулы	Различные модификации протокола NEC используют различные длительности преамбулы. Оригинальный стандарт использует 560мкС Данный регистр в режиме приема содержит длительность преамбулы принятой ИК команды в
		микросекундах, а в режиме передачи используется для формирования преамбулы ИК команды
18	Длительность паузы	Различные модификации протокола NEC используют различные длительности паузы.

		Оригинальный стандарт использует 2250мкС Данный регистр в режиме приема содержит длительность паузы принятой ИК команды в микросекундах, а в режиме передачи используется для формирования паузы ИК команды
От 19 до 24	ИК команда	Данные принятой или передаваемой команды. При чтении вы можете прочитать содержимое принятой команды, а при передаче запишите в данные регистры ИК команду, которую желаете передать. Обычно длительность команды составляет от 32 до 96 бит.

Данный проект был разработан в рамках моего хобби и ориентирован на любителей, желающих сделать «умный дом» из доступных компонентов и как можно дешевле. По этому в модуле отсутствует опторазвязка шины RS485, применен самый дешевый контроллер, который был доступен мне на момент разработки (это ограничивает скорость передачи). Так же в модуле применены недорогие разъемы. Однако все свои функции он выполняет и имеет свою нишу. Поскольку проект является открытым не удивлюсь, если в скором будущем на Aliexpress появятся клоны данного устройства.

В случае, если Вам требуется разработать электронное изделие, прошу обращаться, используя контактную информацию приведенную ниже (с 9:00 до 21:00 GMT+3). Занимаюсь разработкой электроники от простой аналоговой, до сложной на базе процессоров семейств ArmCorex M / Arm Cortex A / Mips / Power PC / AVR / PIC / STM8 / TI DSP. Работаю как с проводными интерфейсами UART, USB, Ethernet, CPRI, и т.д. так и с беспроводными интерфейсами Bluetooth, WiFi, и т.д. Имеется возможность (на законных основаниях) провести реверс-инжиниринг схемотехники, прошивки, законно программного обеспечения, приобретенного изделия/ПО, с целью разработки Вашего ПО, совместимого по интерфейсу. Прототипирование корпусов электронных изделий (разработка, 3d печать, фрезеровка).

Телефон: +79081375847, +79525467157

e-mail: evgeny@vrnnet.ru, hwswdevelop@gmail.com

skype: evgenysbl