Pentagon problem

Created by Mr. Francis Hung

Last updated: 21 April 2011

Given a convex pentagon ABCDE with each side = 2a.

F is the mid point of AB. $\angle CFE = 90^{\circ}$. To prove $\angle AED + \angle BCD = 180^{\circ}$.

Proof: Produce CF to G so that CF = FG. Join EG.

$$\Delta AFG \cong \Delta BFC \tag{S.A.S.}$$

Join *CE*. Also,
$$\triangle EFG \cong \triangle EFC$$
 (S.A.S.)

So
$$AG = BC = 2a$$
, $EG = EC$ (corr. $\angle s \cong \Delta s$)

$$\Delta AEG \cong \Delta DEC \tag{S.S.S.}$$

Let $\angle AGE = x$, $\angle AGF = y$.

Then
$$\angle AEG = x$$
 (base \angle s. isos. \triangle)

$$\angle DCE = x = \angle DEC$$
 (corr. $\angle s \cong \Delta s$)

$$\angle ECF = x + y$$
 (corr. $\angle s \cong \Delta s$)

$$\angle BCF = y \text{ (corr. } \angle s \cong \Delta s)$$

$$\angle AED + \angle BCD = (x + \angle CEG - \angle AEG) + (x + \angle ECF + \angle BCF)$$

= $(x + \angle CEG - x) + (x + x + y + y)$
= $\angle CEG + \angle ECF + \angle EGF$
= 180° (\angle sum of $\triangle CEG$)

