Research Article Title	Skin Disease Detection using Machine Learning
Authors	Kritika Sujay Rao, Pooja Suresh Yelkar, Omkar Narayan Pise, Dr. Swapna Borde
Published Addressed/Identified	13-02-2021
Aim & objectives	The proposed system aims in automatic computer-based detection of skin diseases so as to reduce life risks. This has been no doubt a challenging task owing to the fine-grained variability in the appearance of skin.
Models /Algorithm Used	Convolutional Neural Network (CNN)
Results	Skin Diseases are ranked fourth most common cause of human illness, but many still do not consult doctors. We presented a robust and automated method for the diagnosis of dermatological diseases. Treatments for skin are more effective and less disfiguring when found early. We should point out that it is to replace doctors because no machine can yet replace the human input
Reference	https://www.ijert.org/skin-disease-detection- using-machine-learning

Research Article Title	Real Time Emotion Detection in Psychiatry Patients using Deep Learning
Authors	Preethu S, Puneeth Kumar V H, Rakshitha M, Rohith Gowda N S, Ladly Patel
Published Addressed/Identified	03-09-2022
Aim & objectives	This is a real-time project on human emotion recognition system that tracks a person's mood particularly meant for psychiatric patients.
Models / Algorithm Used	CNN (Convolutional Neural Network) or Conv-Net is a Deep Learning algorithm
Results	Emotion Recognition Model is fed a finely cropped image of a face, and the model classifies the image into its appropriate class and outputs the class label.
Reference	https://www.ijert.org/real-time-emotion- detection-in-psychiatry-patients-using-deep- learning

Research Article Title	Melanocytes Detection Using Convolutional Neural Network Based Approach
Authors	Samruddhi Suryakar , Prashant Adakane
Published Addressed/Identified	06-07-2022
Aim & objectives	The most dangerous kind of cancer in India is skin cancer, which has increased in recent years. The precise recognized causes of this form of cancer might change depending on the circumstance, state, environment, etc
Models / Algorithm Used	VCG-16 Architect image processing system for an artificial skin cancer diagnosis system.Convolutional Neural Network (CNN)
Results	The accuracy and loss function graph of the VGG16 model is displayed in Fig. 12. Every graph has two curves. The test curve is one, and the train curve is the other. Due to overfitting or training the model on a specific dataset, the training curve's model accuracy (a) is always greater than that of the test curve. At the utmost accuracy of 93.18 percent, it provides a value of 0.2603 in test loss (b) and a value of 0.1716 in test. loss.
Reference	https://www.ijert.org/melanocytes-detection- using-convolutional-neural-network-based- approach

Research Article Title	Skin Disease prediction
Authors	Mr. T.K.Jagtap Mr. H.P.Shinde Mr. O.V.Gaware Mr. S.R.Maurya
Published Addressed/Identifie d	Issue-3 2021
Aim & objectives	The diagnosis of the skin disease requires a high level of expertise and accuracy for dermatologist, so computer aided skin disease diagnosis model is proposed to provide more objective and reliable solution.
Models /Algorithm Used	deep learning; neural network, mobile platform; Convolutional Neural Network (CNN); MobileNet
Results	It is found that by using the ensembling features and deep learning we can achieve a higher accuracy rate and also we can go for the prediction of many more diseases than with any other previous models done before.
Reference	https://ijariie.com/AdminUploadPdf/Skin_disease_prediction_ijariie14600.pdf

Research Article Title	A Smartphone-Based Skin Disease Classification Using MobileNet CNN
Authors	Jessica Velasco , Cherry Pascion, Jean Wilmar Alberio , Jonathan Apuang, John Stephen Cruz , Mark Angelo Gomez , Benjamin Jr. Molina, Lyndon Tuala, August Thio-ac , Romeo Jr. Jorda
Published Addressed/Identified	September - October 2019, 2632- 2637
Aim & objectives	The MobileNet model was used by applying transfer learning on the 7 skin diseases to create a skin disease classification system on Android application.
Models /Algorithm Used	Skin Disease Classification, Deep Learning, Convolutional Neural Networks, Transfer Learning, Python
Results	The project achieved 94.4% accuracy in determining the seven skin diseases. Using undersampling method and the default preprocessing of input data achieved an 84.28% accuracy on the test dataset. While, using the imbalanced dataset and the default preprocessing of input data achieved a 93.6% accuracy. Then, the researcher used oversampling and the model attained a 91.8% accuracy. Lastly, using the oversampling and data augmentation technique provide an accuracy of 94.4%. In conclusion, in order to enhance the accuracy of the model different sampling techniques and preprocessing of input data can be explore. In our study, using oversampling and data augmentation generate the most accurate result.
Reference	http://www.warse.org/IJATCSE/static/pdf/file/ijatcse116852019.pdf