Chapter 9

Common-Mode Noise Suppression of Bended Coplanar Waveguide

National Taiwan University of Science and Technology

Chun-Long Wang

Outline

- Motivation
- Literature Survey
- Conventional Bended Coplanar Waveguide
- Bended Coplanar Waveguide Using U-Shaped Slot
- Bended Coplanar Waveguide Using Inductance-Compensated Slotline
- Conclusion

Motivation

Purpose

Methods

Using U-shaped slot or inductance-compensated slotline

Conventional bended CPW with air bridges

• Advantage:

To suppress coupled slot-line mode effects

Disadvantage:

Create parasitic capacitance and limit the operating bandwidth of the circuit

^{*} N. H. L. Koster, S. Koblowski, R. Bertenburg, S. A. H. S. Heinen, and I. A. W. I. Wolff, "Investigations on air bridges used for MMICs in CPW technique," in 19th Eur. Microw. Conf., pp. 666–671, 1989.

Chamfered bended CPW with air bridges

• Advantage:

Chamfering provides a simple way to partially compensate for the effects of the air-bridges

• Disadvantage:

Increase fabrication cost

^{*} P. M. Watson and K. C. Gupta, "Design and optimization of CPW circuits using EM-ANN models for CPW components," *IEEE Trans. Microw. Theory Tech.*, vol. 45, no. 12, pp. 2515–2523, Dec. 1997.

Step compensated CPW with air bridges

• Advantage:

To suppress coupled slot-line mode effects more effectively

Disadvantage:

A localized narrowing of the center conductor may not provide enough compensation

^{*} T. M. Weller, R. M. Henderson, K. J. Herrick, S. V. Robertson, R. T. Kihm, and L. P. B. Katehi, "Three-dimensional high-frequency distribution networks. I. Optimization of CPW discontinuities," *IEEE Trans. Microw. Theory Tech.*, vol. 48, no. 10, pp. 1635–1642, 2000.

Bended CPW with dielectric overlay on the inner slot

• Advantage:

Bondwire-free

Disadvantage:

Increase fabrication complexity, process steps, and fabrication cost

^{*} R. N. Simons and G. E. Ponchak, "Modeling of some coplanar waveguide discontinuities," *IEEE Trans. Microw. Theory Tech.*, vol. 36, no. 12, pp. 1796–1803, 1988.

Topology

Top view

W_s (mm)	$W_g(mm)$	s (mm)
3.08	18.48	0.35

Implementation

Reflection & Transmission Coefficients

• Radiation Power ($1-|S_{11}|^2-|S_{21}|^2$)

Radiation power of the bended coplanar waveguide without compensation.

Electric Field Distribution

Electric field distribution of the bended coplanar waveguide without compensation.

TDR & TDT

Eye Height & Eye Width & Jitter

	Eye Height (V)	Eye Width (ps)	Jitter (ps)	
Bit Rate= 2 Gbps, $t_r = 100 \text{ ps}$	0.233 (93.2%)	496 (99.2%)	4.00	
Bit Rate= 4 Gbps, t_r = 50 ps	0.218 (87.2%)	245 (98.0%)	5.00	
Bit Rate= 8 Gbps, t_r = 25 ps	0.160 (0.64%)	118.3 (94.6%)	6.75	
Bit Rate= 16 Gbps, t_r = 12.5 ps	0.064 (25.6%)	38.88 (62.2%)	22.81	

Parameters of the eye diagrams using various bit rates and rise times for the bended coplanar waveguide without compensation.

Topology

Top view

W_s	W_g	S	l_w	l_L
(mm)	(mm)	(mm)	(mm)	(mm)
3.08	18.48	0.35	3.285	4.545

Implementation

Cross-sectional view

Reflection & Transmission Coefficients

• Radiation Power ($1-|S_{11}|^2-|S_{21}|^2$)

Radiation power of the bended coplanar waveguide using U-shaped slot.

Electric Field Distribution

Electric field distribution of the bended coplanar waveguide using U-shaped slot.

TDR & TDT

Eye Height & Eye Width & Jitter

	Eye Height (V)	Eye Width (ps)	Jitter (ps)	
Bit Rate= 2 Gbps, $t_r = 100 \text{ ps}$	0.243 (97.2%)	498 (99.6%)	2.00	
Bit Rate= 4 Gbps, t_r = 50 ps	0.234 (93.6%)	248 (99.2%)	1.50	
Bit Rate= 8 Gbps, t_r = 25 ps	0.202 (80.8%)	122 (97.6%)	3.00	
Bit Rate= 16 Gbps, t_r = 12.5 ps	0.133 (53.2%)	57.87 (92.6%)	4.625	

Parameters of the eye diagrams using various bit rates and rise times for the bended coplanar waveguide using U-shaped slot.

Design Rule Divided into N sections

• Comparison between the frequency responses of S_{21} for various equivalent circuit models for (a), (c) and (e).

Inductance-Compensated Slotline

The bended inductance-compensated slotline

Simulated by ADS

Schematic view of the bended inductance-compensated slotline.

Implementation

Cross-sectional view

W_s	W_g	S	l_{is}	l_{ig}
3.08	18.48	0.35	8.915	10.79
mm	mm	mm	mm	mm

Reflection Coefficient

Transmission Coefficient

• Radiation Power ($1-|S_{11}|^2-|S_{21}|^2$)

Radiation power of the bended coplanar waveguides using the inductance-compensated slotline.

Electric Field Distribution

Electric field distribution of the bended coplanar waveguides using the inductance-compensated slotline.

TDR

TDT

• Eye Height & Eye Width & Jitter

Etching on signal line	Eye Height (V)	Eye Width (ps)	Jitter (ps)	
Bit Rate= 2Gbps, tr= 100 ps	0.239 (95.6%)	496 (99.2%)	4.0	
Bit Rate= 4Gbps, tr= 50 ps	0.224 (89.6%)	248 (99.2%)	2.50	
Bit Rate= 8Gbps, tr= 25 ps	0.163 (65.2%)	120 (96%)	4.5	
Bit Rate= 16Gbps, tr= 12.5 ps	0.177 (70.8%)	56.25 (90%)	6.083	

Etching on ground plane	Eye Height (V)	Eye Width (ps)	Jitter (ps)	
Bit Rate= 2Gbps, tr= 100 ps	0.23 (92%)	496 (99.2%)	4.0	
Bit Rate= 4Gbps, tr= 50 ps	0.229 (91.6%)	248 (99.2%)	2.50	
Bit Rate= 8Gbps, tr= 25 ps	0.166 (66.4%)	122 (97.6%)	3.00	
Bit Rate= 16Gbps, tr= 12.5 ps	0.151 (60.4%)	53.2 (85.12%)	8.981	

Conclusion

Better
Relier
Dettel

		Bended Coplanar Waveguide Without Compensation	Bended Coplanar Waveguide Using U-shaped Slot	Bended Coplanar Waveguide Using ICS Slot on the Signal Line	Bended Coplanar Waveguide Using CCS Slot on the Signal Line
Maximum Reflection	Simulation	-2.44	-12.44	-11.02	-14.25
Coefficient (dB)	Measurement	-2.74	-9.17	-7.76	-10.12
Minimum Transmission	Simulation	-15.75	-6.24	-2.19	-1.63
Coefficient (dB)	Measurement	-30.16	-5.54	-2.39	-2.79
Time-Domain Reflection Simulation	Simulation	0.033	0.028	0.029	0.015
Noise (Peak-to-Peak, V)	Measurement	0.050	0.029	0.034	0.024
Time-Domain Transmission	Simulation	0.040	0.027	0.033	0.022
Noise (Peak-to-Peak, V)	Measurement	0.030	0.029	0.029	0.015
Radiation Power (Peak, V)	Simulation	0.60	0.75	0.37	0.064