Homework 6

Kalvin Goode, Amil Khan December 8, 2018

Logistic Regression for Toxicity Data

A pest control company is testing the efficacy of a poison by exposing adult flour beetles to a gaseous compound. Their experiments proceed by administering various dose levels of the poison to to batches of beetles. The beetles' responses are typically characterized by a binary outcome (e.g. dead or alive). An experiment of this kind gives rise to data where each observation is a triplet (x_i, n_i, y_i) . x_i represents the log dosage in group i given to n_i beetles, of which y_i end up dying as a result of exposure. The company runs 4 experiments, each at a different dosages, on 5 beetles each. The resulting data can be seen below:

Part a.)

Solve for $\theta_i(x_i)$ as a function of α and β by inverting the logit function. Use this to write out the joint sampling distribution, $\prod_{i=1}^{N} p(y_i \mid \alpha, \beta, x_i, n_i)$.

Solution.

Assume that the number of beetle deaths Y_i given a chemical dosage, x_i , is

$$Y_i \sim \text{Binomial}(\theta(x_i), n_i)$$

where $\theta(x_i)$ is the probability of death given dosage x_i . We will assume that $logit(\theta_i(x_i)) = \alpha + \beta x_i$, where $logit(\theta)$ is defined as $log(\frac{\theta}{1-\theta})$. Hence substituting in what we know,

$$logit(\theta_i(x_i)) = \alpha + \beta x_i$$
$$log\left(\frac{\theta_i(x_i)}{1 - \theta_i(x_i)}\right) = \alpha + \beta x_i$$

To get rid of the log, we exponentiate both sides and multiply both sides by $(1 - \theta_i(x_i))$, which gives us

$$\exp^{\log\left(\frac{\theta_i(x_i)}{1-\theta_i(x_i)}\right)} = \exp^{\alpha+\beta x_i}$$
$$\theta_i(x_i) = \exp^{\alpha+\beta x_i}(1-\theta_i(x_i))$$

Next, we simply distribute and factor both sides to solve for $\theta_i(x_i)$, which gives us,

$$\theta_i(x_i)(1 + \exp^{\alpha + \beta x_i}) = \exp^{\alpha + \beta x_i}$$
$$\theta_i(x_i) = \frac{\exp^{\alpha + \beta x_i}}{1 + \exp^{\alpha + \beta x_i}}$$

Finally we will write out the joint sampling distribution, $\prod_{i=1}^{N} p(y_i \mid \alpha, \beta, x, n_i)$, and simplify,

$$\prod_{i=1}^{N} \binom{n_i}{y_i} (\theta_i(x_i))^{y_i} (1 - \theta_i(x_i))^{n_i - y_i}$$

$$\propto \prod_{i=1}^{N} \binom{n_i}{y_i} \left(\frac{\exp^{\alpha + \beta x_i}}{1 + \exp^{\alpha + \beta x_i}}\right)^{y_i} \left(1 - \frac{\exp^{\alpha + \beta x_i}}{1 + \exp^{\alpha + \beta x_i}}\right)^{n_i - y_i}$$

$$\propto \left(\frac{\exp^{\alpha + \beta x_i}}{1 + \exp^{\alpha + \beta x_i}}\right)^{\sum y_i} \left(1 - \frac{\exp^{\alpha + \beta x_i}}{1 + \exp^{\alpha + \beta x_i}}\right)^{\sum n_i - y_i}$$

Part b.)

The dose at which there is a 50% chance of being lethal, $\theta(x_i) = 0.5$ is known as LD50, and is often of interest in toxicology studies of this type. Solve for LD50 as a function of α and β .

Solution.

For $\theta(x_i) = 0.5$, we have,

$$\prod_{i=1}^{N} (\theta_i(x_i))^{y_i} (1 - \theta_i(x_i))^{n_i - y_i} \implies \prod_{i=1}^{N} (0.5)^{y_i} (0.5)^{n_i - y_i}$$

$$\propto (0.5)^{\sum y_i} (0.5)^{\sum n_i - y_i}$$

So, using what we found earlier,

$$\theta_i(x_i) = \frac{\exp^{\alpha + \beta x_i}}{1 + \exp^{\alpha + \beta x_i}}$$
$$0.5 = \frac{\exp^{\alpha + \beta x_i}}{1 + \exp^{\alpha + \beta x_i}}$$
$$\exp^{\alpha + \beta x_i} = \frac{0.5}{1 - 0.5}$$

Taking the log of both sides and solving for x_i ,

$$\alpha + \beta x_i = \log\left(\frac{0.5}{1 - 0.5}\right)$$
$$\alpha = -\beta x_i$$
$$x_i = -\frac{\alpha}{\beta}$$

Part c.)

Density of var1

Trace of var2

Density of var2

var1 var2 ## 946.0696 1573.8476

Series 1

Series 1 & Series 2

Series 2 & Series 1

Series 2

Plot of Posterior

Histograms for Posterior

Part d.)

```
xgrid \leftarrow seq(-1, 1, by = 0.01)
samples <- rw_metrop_multi(c(10, 10), 1000, 10000, matrix(c(5, 2.5, 2.5, 5), nrow = 2))
length(samples)
## [1] 20002
compute_curve <- function(samp) {</pre>
beta_0 <- samp[1]
beta 1 <- samp[2]
beta_0 + beta_1 * xgrid
res <- apply(samples, 1, compute_curve)</pre>
quantiles <- apply(res, 1, function(x) quantile(x, c(0.025, 0.25, 0.75, 0.975)))
posterior_mean <- rowMeans(res)</pre>
effectiveSize(samples)
##
       var1
                 var2
## 831.9741 931.1507
plot(as.mcmc(samples))
```

Trace of var1

Density of var1

Trace of var2

Density of var2

effectiveSize(samples)

var1 var2 ## 831.9741 931.1507

acf(samples)

Series 1

Series 1 & Series 2

Series 2 & Series 1

Series 2

Part e.)

