

Multi-label Graph Analysis and Computations Using GraphX

Qingbo Hu¹, Qiang Zhu²

- 1. Qingbo Hu is a Senior Business Analytics Associate at LinkedIn
- 2. Qiang Zhu currently works for Airbnb. The work introduced in this talk was done when he was a manager at LinkedIn

Overview

- Background
- Motivation and Goal
- Constructing Multi-label Graphs
- Multi-label PageRank
- Experiments
- Conclusion

Background

- Network Analysis
 - Applications:

Telecommunication Network

Bioinformatics

Social Network

Background

- Network Analysis (cont'd)
 - Features of interest:
 - (In/Out) degrees
 - # triangles
 - (Strongly) connected component
 - Etc.
 - Graph-based algorithms
 - PageRank [1]
 - Label Propagation [2]
 - HITS [3]
 - etc.

- Homogeneous Network
 - Single type of nodes and single type of edges
 - Example:
 - Citation networks: author, citation
 - Friendship networks: user, friendship
 - Not enough to depict complicated real-life networks
 - Supported by GraphX

- Heterogeneous Networks
 - Nodes of multiple types and edges of multiple types
 - Example:
 - Social Network User Activity Graph: user, reply, comment, like etc. LinkedIn Economic Graph: member, company, employment, connection etc.
 - Better resembles real-life networks
 - Can be represented by labels on nodes and edges
 - **■** Multi-label graphs
 - Not directly supported by GraphX

Social activity graph on LinkedIn

- Social activity graph on LinkedIn (cont'd)
 - Questions:
 - How many times a member likes/comments/shares other people's posts?
 - Who has the highest PageRank score in each company with respect to like/comment/share behavior?
 - Etc.

Network features with respect to labels

Graph-based algorithm on label level

Spark + GraphX

- No direct support
- Multiple subgraphs for different labels => waste of time and resource
- A unified solution is preferred

- Solutions based on GraphX to provide Multi-label graph analysis
- Short-term goals
 - Construction of multi-label graphs
 - Efficient computation of PageRank score with respect to all labels
- Long-term goals
 - A general API library supports the following additional operations:
 - Multi-label Graph transformation
 - Network features on the label level
 - Implementations for additional common graph-based algorithms
 - Label Propagation
 - HITS
 - Etc.

Constructing Multi-label Graphs

- Node
 - (ID, labels, nodeFeatures)
 - ID: a unique long associated with the node
 - labels: A set contains node labels
 - nodeFeatures: Other node dependent features
- Edge
 - (fromID, toID, label, edgeFeatures)
 - fromID: the ID of the edge's source node
 - toID: the ID of the edge's target node
 - label: A label associated with the edge
 - edgeFeatures: Other edge dependent features

Constructing Multi-label Graphs

- Node labels vs. edge labels
 - Edge label is more important in many network features
 - PageRank score, (in/out) degrees, strongly connected component etc.
 - Node labels are used to filter nodes
 - Why?
 - Edge labels are usually used to form meaningful subgraphs
 - Random walk follows edges, degrees are respect to edge labels etc.
 - Node labels can be absorbed in edges if necessary
 - a graph transform operation

Top influencers for each company

Top influencers within each company

Constructing Multi-label Graphs

- Methods to create a multi-label graph
 - NodeRDDs + EdgeRDDs
 - EdgeRDDs (no node labels)
 - Load directly from file:

```
A list of edges: (source, target, label)
A list of nodes: (ID, label_1, label_2, ..., label_n) => optional
```

Transformation from other multi-label graphs

PageRank

- Developed by Larry Page and Sergey Brin
- Used to rank web pages
- Important pages are always linked by other important pages
- Iteratively updating scores until they converge
- The obtained score: PageRank score

- PageRank (cont'd)
 - For an edge (p_j, p_i) , the edge weight is defined by $1/L(p_j)$, where $L(p_j)$ is the out degree of p_j
 - Initial score for every node: 1.0 or 1.0 / N
 - Later iteration:

$$PR(p_i) = \sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)}$$

 In order to ensure convergence, we allow a small probability to be "teleported" to any node (reset probability)

$$PR(p_i) = 1-d \ + d\sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)} \qquad ext{or} \qquad PR(p_i) = rac{1-d}{N} + d\sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)}$$

- PageRank (cont'd)
 - Power iteration through matrix manipulation
 - Vector: scores
 - Matrix: transitional matrix
 - Each iteration: vector * matrix
 - Waste resource if the transitional matrix is sparse
 - Directly simulate the computation process
 - Easier for parallel implementation
 - Pregel

Pregel

- A general programming interface for graph-based algorithms
- Proposed by Google
- Supported by GraphX
- Iterative algorithm until convergence conditions are met
- For each iteration, we need to consider:
 - 1. How to construct the message passed along edges?
 - => Message sender
 - 2. How to combine received messages on a node?
 - => Message combiner
 - 3. How to use the combined message to update the info on a node?
 - => Vertex Program

- Construct a graph used for PageRank computation
 - PageRankNodeType: Map[Int, (Double, Double)]
 - label: the label associated with the PageRank score
 - score: the value of PageRank score
 - score diff: the difference of scores between two iterations
 - PageRankEdgeType: [Int, Double]
 - label: the label associated with the message
 - weight: the transitional probability on the edge
 - PageRankMsgType: Map[Int, Double]
 - label: the label associated with the message
 - message: a double valued score used to update PageRank score

Why do we use Map[Int, Double] instead of (Int, Double)?

Message Sender

```
def sendMessage(edge: EdgeTriplet[PageRankNodeType, (Short, Double)]) = {
    // Label on the current edge
    val label = edge.attr._1
    if (edge.srcAttr(label)._2 > tol) {
        val msg = mutable.Map[Short, Double]()
        msg += label -> edge.srcAttr(label)._2 * edge.attr._2
        Iterator((edge.dstld, msg))
    }
    else {
        Iterator.empty
    }
}
Create the message to be passed on the edge as a map
```

Message Combiner

```
def messageCombiner(a : PageRankMsgType, b : PageRankMsgType) :
PageRankMsgType = {
    a ++ b.map{ case (k,v) => k -> (v + a.getOrElse(k, 0.0))}
}
```

Combine received maps into a single one

Vertex Program

```
def vertexProgram(id: VertexId, attr: PageRankNodeType, msgSum:
PageRankMsgType): PageRankNodeType = {
...
attr.map{
    case (label, (oldPR, lastDelta)) => {
      val newPR = oldPR + (1.0 - resetProb) * msgSum.getOrElse(label, 0.0)
      val newDelta = newPR - oldPR
      (label -> (newPR, newDelta))
    }
}
```

Using combined message to update PageRank score

9

Experiments

- LinkedIn social activity graph
 - Sampled from all social activities in Nov. 2016
 - Nodes: ~2 million users
 - Node labels: companies
 - Edge labels:
 - Like
 - Share
 - Comment
 - Edges: ~76 million
 - Rest probability: 0.15
 - Convergence granularity: 1e-3
 - Number of executor: 50
 - Executor cores: 3
 - Executor Memory: 12G

Experiments

- Convergence around 100 iterations
- Total running time: 30~40 mins
- A case study for LinkedIn:

Jeff Weiner

Kathy Caprino

⇔ Share

Isabelle Roughol

Jeff Weiner

Greg Call

Isabelle Roughol

Jeff Weiner

Akshay Kothari

□ Comment

Experiments

- Further discussions and lessons learned
 - For edge type in multi-label graphs
 (fromID, toID, label, edgeFeatures) => (fromID, toID, Map(label, edgeFeatures))
 - Reduce duplication and save space
 - Slower process time
 - Standard Pregel interface in GraphX
 - Although data from the last iteration is unpersisted, DAG will keep grow
 - Might cause out of memory error
 - Pregel interface with (local) checkpoint to cut off the DAG after several iteration
 - Test on larger data sets and various data sources

Conclusion

- Network Analysis
 - Graph features
 - Graph-based algorithms
- Homogeneous vs. Heterogeneous Networks
- Multi-label Graphs
 - Node & Node labels
 - Edge & Edge labels
 - Constructing a multi-label graph
- Multi-label PageRank
 - PageRank
 - Pregel-based implementation
- Experiments

References

- [1] Page, Lawrence, et al. *The PageRank citation ranking: Bringing order to the web*. Stanford InfoLab, 1999.
- [2] Zhu, Xiaojin, and Zoubin Ghahramani. "Learning from labeled and unlabeled data with label propagation." (2002): 1.
- [3] Kleinberg, Jon M. "Hubs, authorities, and communities." *ACM computing surveys (CSUR)* 31.4es (1999): 5.

Thank You!

Qingbo Hu (qihu@linkedin.com)