1. Sebuah lubang hitam supermasif memiliki massa $150 \times 10^6~M_{\odot}$ berada pada jarak 20 kpc. Tentukan panjang fokus teleskop minimum yang bisa digunakan supaya lubang hitam ini bisa terpotret dengan baik dan membentang di sensor kamera sepanjang 2 mm.

Astronom mempelajari sebuah galaksi spiral yang memiliki inklinasi 90° dan terang semu
 Mereka mengukur kecepatan rotasinya dan membuat plot kurva rotasinya.

- ------
- (a) Buat fungsi yang terdiri dari dua persamaan garis lurus untuk mendekati kurva rotasi galaksi pada gambar di atas.
- (b) Dengan menggunakan data yang sama, astronom ini memperkirakan bahwa periode rotasi dari gelombang tekanan pada piringan galaksi (P_{wave}) adalah setengah dari periode rotasi dari massa piringan galaksi (P_{mass}) . Tentukan periode yang diperlukan satu lengan spiral galaksi (P_{spiral}) untuk mengelilingi pusat galaksinya. (Petunjuk: kecepatan sudut spiral merupakan selisih kecepatan sudut tercepat dan terlambat pada gelombang tekanan pada piringan galaksi)

b)
$$P_{uvve} = \frac{1}{2}P_{mess}$$
 $P = \frac{2\pi}{\omega}$ $P_{weve} = \frac{2\pi}{\omega}$ $P_{weve} = \frac{2\pi}{\omega}$ P_{mess} $P_{mess} = \frac{2\pi}{\omega}$ P_{mes

16 kly = $15 \times 10^{5} \times 365$, $25 \times 24 \times 3600 \times 3 \times 10^{5}$ fm = 2.46×10^{-15} raw/s

= 1.42×10^{17} km

= 7.57×10^{17} fm

= 7.57×10^{17} fm

| Uspiral = 2.46×10^{5} | 2.46×10^{15} | 2.55×10^{1