23 Settembre 2019 A.A. 2018 - 2019

Mixed Reality applications in medical therapy

CANDIDATE:

Elena Camuffo

SUPERVISOR:

Prof. Simone Milani

CO-SUPERVISORS:

Hannah Luxenberg Tono Alberto Tono Fabio Capraro Sebastiano Verde

Sommario

La Mixed Reality

- Background
- Ambiti applicativi
- Settore Medico e Terapeutico

Dispositivi per Mixed Reality

- HoloLens
- Magic Leap One

Progetto: MR Dance

- Android
- HoloLens
- Magic Leap One

Test dei dispositivi

- Risultati
- Conclusioni

Background

Mixed Reality.

Tecnologia interdisciplinare che integra nel mondo reale, oggetti virtuali. Coinvolge l'utente, senza immergerlo completamente e astrarlo da ciò che lo circonda.

Mixed Reality

Realtà Virtuale

Immersione totale dell'utente nel mondo virtuale

Realtà Aumentata

Semplice sovrapposizione di oggetti virtuali al mondo reale

Principali ambiti applicativi

Militare

- Esercitazioni militari.
- Computer di bordo su aerei o elicotteri.

Industriale

- Sistema che valuta il posizionamento di nuovi macchinari.
- Visualizzazione dello status dei macchinari.

Pubblicitario

- Design e visualizzazione di prodotti per il compratore.
- Valutazione di prodotti in fase di sviluppo.

Ambito Medico e Terapeutico

Applicazioni Mediche

Visualizzazione di modelli biologici

Visualizzazione di cartelle cliniche

e Terapeutiche

Training chirurgici

Mixed Reality come mezzo di intrattenimento e riduzione dello stress emotivo negli ospedali pediatrici

Soluzioni per Mixed Reality

HoloLens

Microsoft

■ Piattaforma: Microsoft

Prezzo: 3000\$

■ Peso: 579 g

■ Durata della batteria: 2.5 - 5.5 ore

■ FoV orizzontale: 35°

Si può indossare con gli occhiali

■ Connettività: Bluetooth, WiFi

- 2 Computer Integrato
- 3) Display 'See through' e IMU
- 4) Audio Spazializzato

Magic Leap One 🔑

Magic Leap

Piattaforma: Lumin OS

Prezzo: 2295\$

■ Peso: 345 g lightwear, 415 g lightpack

Durata della batteria: 3 ore in media

FoV orizzontale: 40°

Inserti disponibili da terza parte

■ Connettività: Bluetooth, WiFi

- Display 'See through'
- Camere RGB e Sensori di profondità
- Audio Spazializzato
- Controller
- Lightpack

Progetto: MR dance

Scopo Terapeutico.

Vincoli implementativi:

- Il bambino deve stare fermo.
- Il medico deve poter spostare l'oggetto virtuale, in modo che non interferisca.

Software.

Il gioco è stato sviluppato con Unity 3D.

Animazioni.

Un Animator controller provede ad animare Bigvegas secondo l'input inserito dall'utente.

Comandi.

I comandi vengono forniti dall'utente.

Scena di Unity 3D.

- Bigvegas
- Sorgente luminosa
- Videocamera virtuale

Adattamento per sistemi Android

Posizionamento dell'oggetto

grazie al Marker tracking.


```
1 if (CrossPlatformInputManager.GetButtonDown("Idle"))
2 {
3     Idle();
4 }
```

Adattamento per HoloLens

- Gestione del cambio di danza con i Comandi Vocali.
- Interazione con il mondo reale e posizionamento di oggetti tramite Spatial Mapping e Gesture.


```
1 keywords.Add("Samba", () =>
2 {
3     // Call the Samba method on every descendant object.
4     this.BroadcastMessage("Samba");
5 });
```

Adattamento per Magic Leap One


```
1 // Change Elvis's position according to the pose of the left controller
    with an offset
2 elvis.transform.position = controller.Position + Vector3(0,0,6);
3
4 // Check if the bumper button is down. In that case change dance
5 if (controller.IsBumperDown && !down)
6 {
7 // Variable which stores the number of the dance
8 dancenum = (dancenum + 1) % 5;
9
10 // bumper is down. down variable is true
11 down = true;
12
13 switch (dancenum) [...]
```

- Animazioni sequenziali.
- Controllo tramite Bumper button sul Magic Leap Controller.
- Posizionamento che sfrutta i 6DoF.

Test e Risultati

7 Test soggettivi, 4 Test Oggettivi

Soggettivi

- HoloLens:
 - Qualità Immagine
 - Praticità di utilizzo
- <u>Magic Leap One:</u>
 - Reattività dei comandi
 - Campo Visivo (FoV)

Oggettivi

■ L'FPS medio è lo stesso

	HoloLens	Magic Leap One
Qualità dell'immagine	8.000	7.143
Fluidità delle animazioni	8.714	8.714
Reattività dei comandi	7.286	9.429
Praticità di utilizzo	7.714	6.571
TOTALE	7.929	7.964

59.0741

58.8852

FPS medio

Conclusioni e Sviluppi Futuri

Conclusioni

- Progetto per 3 piattaforme diverse.
- HoloLens e Magic Leap One hanno dimostrato avere prestazioni simili.

Sviluppi Futuri

- Il progetto verrà testato negli ospedali pediatrici.
- Videogioco più complesso sia dal punto di vista logico che nel numero di modelli coinvolti.
- La misura risulterà più accurata considerando:
 - Più persone
 - Più parametri oggettivi
 - Più complessità computazione degli oggetti visualizzati

Grazie!

