Chapter 2

Derivatives

2.2 The Derivatives as a Function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Dom of f: all x such that f'(x) wists.

EXAMPLE 1 The graph of a function f is given . Use it to sketch the graph of the derivative f'.

Desmos: https://www.desmos.com/calculator/o7lfvk2sar

EXAMPLE 3 If $f(x) = \sqrt{x}$, find the derivative of f. State the domain of f'.

(b) Illustrate this formula by comparing the graphs of f and f'. (Do it with Desmos)

(a)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) + f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) + f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) + f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) + f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{f(x+h) + f(x)}$$

$$= \lim_{h \to$$

EXAMPLE 4 Find
$$f'$$
 if $f(x) = \frac{1-x}{2+x}$.

It x +-2.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{1 - (x+h)}{2 + x + h} - \frac{1 - x}{2 + x} - \frac{0}{0}$$

$$= \lim_{h \to 0} \frac{(1 - (x+h))(2 + x) - (1 - x)(2 + x + h)}{h}$$

$$= \lim_{h \to 0} \frac{(1 - (x+h))(2+x) - (1-x)(2+x+h)}{(2+x+h)(2+x)h}$$

$$(\sqrt{x}) = (x^{h})^{2}$$

$$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-h}$$

$$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-h}$$

$$\frac{1}{2\sqrt{x'}} = \frac{1}{2}x^{1/2}$$

$$= \frac{1}{2}x^{1/2-1} = \frac{1}{2}x^{1/2}$$

$$=\lim_{h\to 0}\frac{-3}{(2+x+h)(2+x)}=\frac{3}{(2+x)^2}$$

Other notations for the derivative.

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{cx}$$

po Leibniz notalian $f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$ **Definition** A function f is **differentiable at** a if f'(a) exists. It is **differentiable on an open interval** (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

EXAMPLE 5 Where is the function f(x) = |x| differentiable?

Graph:

Problem at z=0 (corner)

Case() x <0 => |x| = -x

when h approaches

p.5

lim f(x+h)-f(x) = lim px+h |-1x|
h>0 h

=
$$\lim_{h\to 0} -\frac{(h+h)+x}{h} = \lim_{h\to 0} -1 = -1$$

ラ かんかニーゴ.

Cas(2) $x>0 \Rightarrow |x|=x = 1$

(use 3) = 0.

 $\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{|h| - |0|}{h}$ $= \lim_{h \to 0^{-}} \frac{-h - 0}{h} = \lim_{h \to 0^{-}} -1 = -1$

 $\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|h| - |0|}{h} = \lim_{h \to 0^+} \frac{h - 0}{h} = 1$

 $\Rightarrow \lim_{h\to 0} \frac{1}{h} \frac{1}{(0+h)-\frac{1}{2}(0)} \neq \Rightarrow \lim_{h\to 0} \frac{1}{h} \frac{1}{(0+h)-\frac{1}{2}(0)} \neq \frac{1}{h} \frac{1}{(0+h)-\frac{1}{2}(0)}$

Important Result:

4 Theorem If f is differentiable at a, then f is continuous at a.

Remark: $\frac{1}{2}$ continuous at a does not imply that $\frac{1}{2}$ is differentiable at a. (Example: $\frac{1}{2}(x)=|x|$).

How can a Function Fail to be diffentiable?

(a) A corner

- (b) A discontinuity
- (c) A vertical tangent

(b) When I is not continuous at z=a

(c)
$$\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h} = \pm \infty$$
 or $\lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h} = \pm \infty$

Example. The graph of the function is given. State, with reasons, the numbers at which the function is NOT differentiable.

Desmos: https://www.desmos.com/calculator/d0aztxzxta

I not diff.

at

九=-4

Higher Derivatives.

Second derivative:

$$\frac{d}{dx} \quad \left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$$
derivative of derivative second derivative

Other notations:

EXAMPLE 6 If
$$f(x) = x^3 - x$$
, find and interpret $f''(x)$.

$$\int_{1}^{1} |x| = \lim_{h \to 0} \frac{1}{(x+h)^{2} + 1} = \lim_{h \to 0} \frac{(x+h)^{3} - (x+h) - x^{3} + x}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + 3x^{2} + 3x^{2} + h^{3}}{h} = \lim_{h \to 0} \frac{3x^{2} + 3x^{2} + h^{3} - h}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + 3x^{2} + h^{3} + h^{3} - h}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + 3x^{2} + h^{3} + h^{3} - h}{h}$$

$$= \lim_{h \to 0} \frac{3(x^{2} + 3x^{2} + h^{2}) - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3(x^{2} + 2x^{2} + h^{2}) - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3(x^{2} + 2x^{2} + h^{2}) - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + bx + h^{2} - 3x^{2}}{h}$$

Acceleration: derivative of relocity $\rightarrow v(t)$ second derivative of position function. $\rightarrow s(t)$ $a(t) = v'(t) = \lim_{h \rightarrow 0} \frac{v(t+h) - v(t)}{h}$ $= \lim_{h \rightarrow 0} \frac{s'(t+h) - s'(t)}{h} = s''(t)$.

Third Derivative.

$$y''' = f'''(x) = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$

Jerk:
$$j = \frac{da}{dt} = \frac{d^3s}{dt^3}$$

n-th Derivative.

$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n}$$

EXAMPLE 7 If $f(x) = x^3 - x$, find f'''(x) and $f^{(4)}(x)$.

$$f'''(5i) = \lim_{h \to 0} \frac{f''(5i) - f''(5i)}{h}$$

$$= \lim_{h \to 0} \frac{(e(5i+h) - b)}{h} = \lim_{h \to 0} \frac{bk}{k} = 16$$

$$f''''(2) = \lim_{h \to 0} \frac{f'''(2+h) - f'''(2)}{h}$$

$$= \lim_{h \to 0} \frac{b - b}{h} = \lim_{h \to 0} 0 = \boxed{0}$$