TIME SERIES DATA FORMATS AND LIBRARIES

KATHARINA HOVESTADT UND CAROLIN WORTMANN

TIME SERIES

- Datenpunkte, die in einer bestimmten zeitlichen Ordnung vorliegen
- Unterscheidung zwischen diskret und kontinuierlich
 - kontinuierlich: y(t)
 - diskret: y_t mit t aus {1,...,n} als zeitdiskreter stochastischer Prozess
- Zeitreihenanalyse:
 - Zweck:
 - Untersuchung und Verständnis der einer Datenreihe zugrunde liegenden Kräfte, Strukturen, Abhängigkeiten und Muster
 - Anpassung von Modellen an die Daten
 - Nutzung zu Vorhersage, Monitoring und Reaktion
 - Art der Analyse stark abhängig von zu untersuchenden Daten und Zweck der Analyse
 - Sehr unterschiedliche Anwendungsgebiete
- → z.B. Veranstaltung "Einführung in die Modellierung dynamischer räumlicher Prozesse"

DATUMSFORMATE NACH XML-SCHEMA I I-2

- Perioden
 - -?PnYnMnDTnHnMnS
 - Beispiel: PIY3M2DT3H4M20S -> I Jahr, 3Monate, 2 Tage, 3 Stunden, 4Minuten, 20 Sekunden
- Zeitpunkte
 - Datum
 - Uhrzeit
 - YYYY-MM-DDTHH:MM:SSZTimezone
 - Beispiel: 2018-01-01T12:25:45+01.00 -> 1.1.2018 12Uhr 25 Minuten 45 Sekunden (MEZ) Winterzeit in Deutschland

VERSCHIEDENE DATENFORMATE ZUR SPEICHERUNG VON ZEITREIHEN

- Tabellarische Darstellung von Datums-/Zeitformaten
 - CSV
- Orthogonale mehrdimensionale Arrays zur Darstellung von Zeitformaten
 - NetCDF
- OGC Geopackage
 - SQLite mit SpatiaLite
- •

DATUMSANGABEN IN CSV DATEIEN (TABELLARISCHE DARSTELLUNG)

- Speicherung der Daten in Tabellen
- Erste Zeile beschreibt Tabellenkopf
- Trennzeichen zwischen den Zellen
- Datums- und Zeitdarstellung im xml-schema I I-2

Datum, Ort, Temperatur in Grad Celsius, 2018-09-25T12:00, Rheine, 2.5, 2018-09-25T12:00, Emden... 2018-09-27T12:00, Rheine, 3.5, 2018-09-27T12:00, Emden, 5.0

Datum	Ort	Temperatur in Grad Celsius
25.09.2018 12:00 Uhr	Rheine	12.5
25.09.2018 12:00 Uhr	Emden	
25.09.2018 12:00 Uhr	Rheine	13.5
25.09.2018 12:00 Uhr	Emden	15.0

NET CDF TIME SERIES ORTHOGONALE MEHRDIMENSIONALE ARRAYS ZUR DARSTELLUNG VON ZEITFORMATEN

- Standard im atmosphärischen und ozeanischen Bereich -> Windgeschwindigkeit, Wellenhöhe,...
- binäres Dateiformat
 - Header: Metadaten
 - Daten in Arrays
- Mehrdimensionale Arrays
 - Jede Achse enthält genau einen feature type
 - Nur eine Achse darf unendlich sein
- Zeitkoordinate wird in Sekunden seit einem Zeitpunkt gemessen
 - verschiedene Kalendertypen (n\u00e4heres im Handout)
- praktisch, wenn die Daten entlang einer Achse dieselben Koordinaten aufweisen
 - Bsp:Temperaturmessungen zu fünf gleichen Zeitpunkten an drei verschiedenen Orten
 - Zeitachse hat dann fünf Elemente; es gibt 3 Instanzen (Orte)
- Wenn nicht zu allen Zeitpunkten Daten verfügbar sind, ist das Array unvollständig multidimensional

NetCDF Time Series – Feature Types

- Verschiedene Feature Types:
 - Point: Einzelne Datenpunkte
 - Time series: Datenpunkte, gemessen am selben Ort, mit monoton steigender Zeit
 - Trajectory: Datenpunkt, gemessen entlang einer Strecke, mit monoton steigender Zeit
 - **Profile:** geordnetes Datenpunktpaket, gemessen entlang einer vertikalen Linie mit fixen horizontalen Positionen und einem bestimmten Zeitpunkt
 - Können kombiniert werden
 - Meistens: Rasterdaten entlang eines Zeitstrahls

OGC GEOPACKAGE

- GeoPackages sind SQLite Datenbanken.
- Dateiendung .gpkg.
- enthalten verschiedene Tabellen
 - Metadaten
 - benutzerdefinierten Daten (Shapefiles)
- Features der Tabellen und Metadatentabellen können Zeitstempel haben (Zeitpunkt der letzten Änderung)
- Rasterdaten und Vektordaten können gespeichert werden

VERGLEICH

- Arbeit mit CSV-Dateien in verschiedenen Kursen
 - leicht verständlich
- GeoPackage f
 ür Datenbanken-Fans hilfreich
 - SQLite kommt ohne Server aus
 - Ist darauf ausgelegt ist, wenig Ressourcen zu verbrauchen
 - → Man kann durch die SQL Anweisungen auf fast jedem Endgerät flexibel Daten selektieren
 - Möglichkeit mittels Packages z.B. Daten aus Excel-Dateien zu speichern
 - Raster- und Vektordaten
- NetCDF arbeitet mit Arrays, Standard für atmosphärische und ozeanische Daten
 - In ArcGis allerdings immer nur Ausschnitt der Daten sichtbar
 - Verschiedene Messungen an verschiedenen Orte entlang einer Strecke zu verschiedenen Zeitpunkten in verschiedenen Höhen -> flexibel

NUTZUNGSBEISPIELE FÜR DATUMS-/ZEITFORMATE

Windenergiegewinnung in Deutschland zwischen 2000 und 2015

id	power	dt	hubheight	diameter	NUTS_ID	lon	lat	N1
1	1500.0	01.12.2002	61.5	77.0	DE145	962.823.262	4.853.227.800. 000.000	DE1
2	1500.0	01.12.2002	61.5	77.0	DE145	963.619.308	4.853.290.663	DE1
3	750.0	07.07.1999	70.0	48.0	DE145	963.024.314	483.911.626	DE1
4	750.0	01.07.1999	70.0	48.0	DE145	963.005.164	4.839.274.454	DE1
5	2000.0	23.11.2012	138.38	82.0	DE145	97.591.964	4.844.863.777	DE1
6	2000.0	30.11.2012	138.38	82.0	DE145	976.413.263	4.844.806.099	DE1

- Daten wurden in CSV-Dateien gespeichert
- Stündliche Aufzeichnung

LIBRARIES

- Nutzen: Vermeidung von Programmierung vieler Analyse- und Visualisierungsfunktionen
- Stellen Funktionen/Methoden zur Analyse und Verarbeitung von Zeitreihen zur Verfügung, zum Beispiel:
 - Generierung und Manipulation von Zeitreihen
 - Arbeiten mit Zeitpunkten und Perioden
 - Konversion und Anpassung von Daten an bestimmte Frequenzen
 - Statistische Analyse
 - Bestimmung von saisonaler und Trendkomponente sowie Zufallsschwankungen
 - Plotten
 - Sortierung
 - Bedingte Selektion von Daten
 - Für verschiedenste Programmiersprachen und Anwendungen

Libraries

Beispiele:

• Python: Pandas

■ R: CRAN R – Time Series Analysis

Cronos

Java: Morpheus

PRAKTISCHE ERFAHRUNGEN

- SII: Assignment No. 5: Rest Services für Time series und queries → Abfragen von Daten eines REST Services in einem bestimmten Zeitraum
- Geostatistik I und II:Verarbeitung und Analyse von Zeitreihen und -daten in R
- Reference Systems: Temporal Data and Temporal Reference Systems (Sumrada, 2003) im Learnwebkurs verfügbar

DANKE FÜR EURE AUFMERKSAMKEIT!

Gibt es Fragen?

XML-SCHEMAII-2 VERSCHIEDENE DATENTYPEN

- duration
 - Zeitdauer
 - Konzept der Erfassung und Darstellung wurde von ISO8601 übernommen
 - Addition und Subtraktion werden unterstützt
 - Beispiel: PTY2M3DT4H5M6S: I Jahr, 2 Monate, 3 Tage, 4 Stunden, 5 Minuten und 6 Sekunden
- yearMonthDuration
 - (-)PYYYYMM
 - P2018-10-25
- dayTimeDuration
 - (-)PHH:MM:SS
 - P12:02:05

Xml-schema I I-2 verschiedene Datentypen

- dateTime
 - Zeitpunkt (mit Zeitzone)
 - Kein Wert, außer der Zeitzone darf fehlen
 - Beispiel: 2018-10-25T12:02:05+01:00 ☐ 25. Oktober 2018, 12:02Uhr und 5 Sekunden in der Zeitzone +1 ☐ MEZ (Winterzeit in Deutschland)
 - Angabe der Zeitzone ist freiwillig
 - dateTimeStamp → Zeitzone verpflichtend
- time
 - HH:MM:SSZTimezone
- date
 - YYYY-MM-DDZTimezone
- Extra Konventionen für Greogrianischen Kalender (wird jeweils ein g vorangestellt)
 - gYear, gMonth, gDay, gMonthDay, gYearMonth

QUELLEN

- W3C Recommendations Formats for Dates and Times: https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/#formats-for-dates-and-times
- W3C XML Schema Definition Language (XSD) Datatypes: https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/#bib-xmlschema11-2
- Orthogonal multidimensional array representation of time series: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions/v1.6.0/cf-conventions.html# orthogonal multidimensional array representation of time series:
- OGC GeoPackage Encoding Standard: http://www.geopackage.org/spec|20/
- GeoPackage Getting started with GeoPackage: http://www.geopackage.org/guidance/getting-started.html
- Wikipedia GeoTIFF: https://de.wikipedia.org/wiki/GeoTIFF
- NetCDF Features and Feature Type Conventions: http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html# features and feature types
- ArcGis Beschreibung von NetCDF Dateien in ArcGIS: https://pro.arcgis.com/de/pro-app/help/data/multidimensional/a-quick-tour-of-netcdf-data.htm
- Engineering Statistics Handbook Moving AVerage and Smoothing Techniques: https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc42.htm

Quellen

- Time Series Analysis: <a href="http://itfeature.com/time-series-analysis-and-forecasting/time-series-analysis-forecasting/time-series-analysis-forecasting/time-series-analysis-forecasting/time-series-analysis-forecasting/time-series-analysis-and-forecasting/time-series-analysis-forecasting/time-series-analysis-and-forecasting/time-series-analysis-and-forecasting/time-series-analysis-forecasting/time-series-analys
- Zeitreihenanalyse: https://de.statista.com/statistik/lexikon/definition/144/zeitreihenanalyse/
- W3 Formats for Dates and Times: https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/#formats-for-dates-and-times
- W3 XML Schema II-2: https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/#bib-xmlschema11-2
- Windenergiegewinnung Praxisbeispiel: https://zenodo.org/record/1435091#.W61Gi_ZCQ2w
- Pandas für Python: http://pandas.pydata.org/
- CRAN-R für R: https://cran.r-project.org/web/views/TimeSeries.html
- Cronos für C#: https://archive.codeplex.com/?p=cronos
- Morpheus für Java: https://github.com/zavtech/morpheus-core/blob/master/README.md