$\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"A fé e as demonstrações matemáticas são duas coisas inconciliáveis."

Fiódor Dostoiévski.

Refletindo sobre provas matemáticas

Vamos fazer alguns exercícios?

Prove, usando indução matemática, que todo inteiro n pode ser escrito como a soma de diferentes potências de 2.

Prove, usando indução matemática, que todo inteiro $n \ge 2$ pode ser fatorado como um produto de primos.

- a) O, Ω , Θ , o, ω são transitivas.
- b) O, Ω , Θ são reflexivas.
- c) Θ é simétrica.

- a) Se $f(n) \in O(g(n))$ e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.
- b) Se $f(n) \in o(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in o(h(n))$.

Indique a relação correta e demonstre:

- 1. 10^{1000} é O(1), $\Omega(1)$ ou $\Theta(1)$?
- 2. $10^{1000} \in O(n)$, $\Omega(n)$ ou $\Theta(n)$?
- 3. $3n^2 2n + 100 \in O(n)$, $\Omega(n)$ ou $\Theta(n)$?
- 4. $3n^2 2n + 100 \in O(n^2)$, $\Omega(n^2)$ ou $\Theta(n^2)$?
- 5. $3n^2 2n + 100 \in O(n^3)$, $\Omega(n^3)$ ou $\Theta(n^3)$?
 - 6. $\log_{100} n \in O(\log_{10} n)$, $\Omega(\log_{10} n)$ ou $\Theta(\log_{10} n)$?
 - 7. $\log_{100} n \in O(\log_{100} n)$, $\Omega(\log_{100} n)$ ou $\Theta(\log_{100} n)$?
 - 8. $\log_{100} n \in O(\log_{1000} n)$, $\Omega(\log_{1000} n)$ ou $\Theta(\log_{1000} n)$?

Ordene as seguintes funções por seu crescimento. De forma tal que f(n) esteja na frente de g(n) na ordem se f(n) = O(g(n)). Para cada par de funções consecutivas na sua ordem prove que a ordem é válida.

- a) $c \in \Theta(1)$ para qualquer c > 0.
- b) $f(n)g(n) \in \Theta(f(n))\Theta(g(n))$.
- c) $\max\{f(n),g(n)\}\in\Theta(f(n)+g(n)).$
- d) $\log(n^n) \in \Theta(\log(n!))$.
- e) Se $p(n) = \sum_{i=0}^{k} a_i n^i$ com $a_k > 0$, então $p(n) \in \Theta(n^k)$.
- f) $\log_a n \in \Theta(\log_b n)$ para quaisquer a, b.

- a) $(\log n)^a \in o(n^b)$ para quaisquer a, b > 0.
- b) $a^n \in o(b^n)$ para quaisquer b > a.
- c) $n^k \in o(c^n)$ para quaisquer $k \ge 0$ e c > 0.

 $\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

