brandenburg-kaggle

April 13, 2024

#

Kaggle Competition Assignment Ian Brandenburg (2304791)

GitHub Repo

0.1 # Introduction

This kaggle competition is aimed at developing models for binary classification. Machine Learning Tools are encorporated, with the primary metric being the AUC score. The RMSLE score is also used in this project to assist in determining the best models, while the AUC is the primary metric.

The objective to determine of the Mashable article is classified as popular or not. The articles themselves are not used, but statistics and variables related to these articles are used. The Kaggle competition provides a training (29,733 rows) and test set (9,911 rows). A total of 61 columns are included in the training set, one of them being is_popular, which is the target variable. timedelta and article_id were dropped from the models since they do not particularly relate to the predictions. The training set was then split into a training set and validation set at 20% going to the validation set.

The dataset provided seemed to already be cleaned after analyzing the exploratory anylsis. Additionally, many binary variables had already been developed. However, the dataset underwent an enhancement process where feature engineering techniques were applied to the variables. This included generating interaction features, as well as applying polynomial transformations such as squaring and cubing, to uncover nonlinear relationships and improve the model's predictive capabilities.

Many models were tested to determine the best models to predict if an article <code>is_popular</code>. Additionally, models that were not specifically covered during the course were also included to test out new methods. These models included: - Logistic Regression - Lasso - Stacking Model (Included Decision Tree, Random Forest, and XGB) - Deicision Tree Classifier - Random Forest - Gradient Boosted Random Forest - Light Gradient Boosting - Cat Boosting - Explainable Boosting Machine - Neural Network Models

These models experiement with different parameters and settings to attempt to find the best predictive models. Furthermore, GridSearchCV was used with certain models to determine the best parameters for those specific models. In the end, the most effective model based on the AUC metric was consistently the Explainable Boosting Machine.

0.2 ### Import Libraries

```
[1]: # General utilities
     import numpy as np
     import pandas as pd
     import time
     import os
     import warnings
     from itertools import combinations
     import matplotlib.pyplot as plt
     # Sklearn model selection, preprocessing, metrics, and ensemble methods
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.preprocessing import StandardScaler, MinMaxScaler
     from sklearn.metrics import roc auc score
     from sklearn.linear_model import LogisticRegression, LassoCV
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.ensemble import RandomForestClassifier, StackingClassifier
     from sklearn.inspection import permutation_importance
     # Sklearn pipeline utilities
     from sklearn.compose import ColumnTransformer
     from sklearn.pipeline import Pipeline, make_pipeline
     # XGBoost
     import xgboost as xgb
     # Cat Boost Classifier
     from catboost import CatBoostClassifier
     # Light GBM
     import lightgbm as lgb
     # InterpretML for explainable boosting
     from interpret.glassbox import ExplainableBoostingClassifier
     # TensorFlow and Keras for neural networks
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Dense, Dropout, Conv1D, MaxPooling1D,
      ⇒Flatten, BatchNormalization
     from tensorflow.keras.metrics import AUC
     from tensorflow.keras.callbacks import EarlyStopping
     from tensorflow.keras.optimizers import Adam
     # Suppress warnings
     warnings.filterwarnings('ignore')
```

0.3 # Data Wrangling

0.4 ## Data Import

The data was directly imported from GitHub after being downloaded into the GitHub Repo.

[2]: train_data = pd.read_csv("https://raw.githubusercontent.com/Iandrewburg/

```
⇔Data_Science/main/Data_Science_2/Assignments/Take_Home_Final/train.csv")
     train_data.head()
        timedelta n_tokens_title
[2]:
                                     n_tokens_content
                                                        n_unique_tokens
               594
                                                    702
                                                                 0.454545
     1
               346
                                  8
                                                   1197
                                                                 0.470143
     2
               484
                                  9
                                                    214
                                                                 0.618090
                                                    249
                                                                 0.621951
     3
               639
                                  8
               177
                                 12
                                                                 0.397841
                                                   1219
        n_non_stop_words
                            n_non_stop_unique_tokens
                                                        num_hrefs
                                                                    num_self_hrefs
     0
                                             0.620438
                      1.0
                                             0.666209
                                                                21
                                                                                  6
     1
     2
                      1.0
                                             0.748092
                                                                 5
                                                                                  2
     3
                      1.0
                                             0.664740
                                                                16
                                                                                  5
                      1.0
                                             0.583578
                                                                21
                                                                                  1
                   num videos
                                   max_positive_polarity
                                                            avg_negative_polarity
     0
                1
                             0
                                                  1.000000
                                                                          -0.153395
                2
     1
                            13
                                                  1.000000
                                                                          -0.308167
     2
                1
                             0
                                                  0.433333
                                                                          -0.141667
     3
                8
                                                  0.500000
                                                                          -0.500000
                             0
                1
                             2
                                                  0.800000
                                                                          -0.441111
                                                          title_subjectivity
        min_negative_polarity
                                 max_negative_polarity
     0
                                                   -0.10
                           -0.4
                                                   -0.10
                           -1.0
                                                                           0.0
     1
     2
                                                   -0.05
                           -0.2
                                                                           0.0
     3
                           -0.8
                                                   -0.40
                                                                           0.0
                           -1.0
                                                   -0.05
                                                                           0.0
        title_sentiment_polarity
                                    abs_title_subjectivity
     0
                               0.0
                                                         0.5
     1
                               0.0
                                                         0.5
     2
                               0.0
                                                         0.5
     3
                               0.0
                                                         0.5
                               0.0
                                                         0.5
        abs_title_sentiment_polarity
                                         is_popular
                                                      article_id
     0
                                   0.0
                                   0.0
                                                   0
                                                                3
     1
```

```
4
                                  0.0
     [5 rows x 61 columns]
[3]: test_data = pd.read_csv("https://raw.githubusercontent.com/Iandrewburg/
     Data_Science/main/Data_Science_2/Assignments/Take_Home_Final/test.csv")
     test data.head()
[3]:
        timedelta n_tokens_title n_tokens_content n_unique_tokens
                                                  217
                                                               0.631579
              134
                                11
     1
              415
                                11
                                                 1041
                                                               0.489423
     2
              625
                                 9
                                                  486
                                                               0.599585
     3
              148
                                14
                                                  505
                                                               0.509018
     4
              294
                                14
                                                  274
                                                               0.620301
        n_non_stop_words
                           n_non_stop_unique_tokens
                                                      num_hrefs
                                                                  num_self_hrefs
     0
                                            0.818966
                      1.0
                      1.0
                                            0.700321
                                                              22
                                                                                3
     1
     2
                      1.0
                                            0.727273
                                                               4
                                                                                3
     3
                                                               8
                                                                                4
                      1.0
                                            0.718861
     4
                      1.0
                                            0.726190
                                                               5
                                                                                1
                                                         max_positive_polarity
        num_imgs
                  num_videos
                                  min_positive_polarity
     0
               2
                            0
                                                0.136364
                                                                              0.5
     1
               0
                           14
                                                0.050000
                                                                              1.0
                                                                              0.7
     2
                1
                            0
                                                0.062500
     3
                1
                            1
                                                0.100000
                                                                              1.0
     4
                                                                              0.6
                1
                            0
                                                0.100000
                               min_negative_polarity max_negative_polarity \
        avg_negative_polarity
                                             -0.200000
     0
                     -0.170370
                                                                     -0.155556
     1
                     -0.426268
                                             -1.000000
                                                                      -0.100000
     2
                     -0.387821
                                             -1.000000
                                                                     -0.050000
     3
                     -0.284722
                                             -0.400000
                                                                     -0.050000
     4
                     -0.333333
                                             -0.333333
                                                                      -0.333333
                            title_sentiment_polarity
                                                         abs_title_subjectivity
        title_subjectivity
     0
                  0.288889
                                             -0.155556
                                                                        0.211111
     1
                  0.975000
                                              0.300000
                                                                        0.475000
     2
                  0.000000
                                              0.000000
                                                                        0.500000
     3
                  0.000000
                                              0.000000
                                                                       0.500000
     4
                  0.00000
                                              0.000000
                                                                       0.500000
        abs_title_sentiment_polarity
                                        article id
     0
                             0.155556
```

0.0

0.0

0

0

5

6

2

3

```
      1
      0.300000
      4

      2
      0.000000
      10

      3
      0.000000
      13

      4
      0.000000
      26
```

[5 rows x 60 columns]

[4]: test_data.columns

```
[4]: Index(['timedelta', 'n_tokens_title', 'n_tokens_content', 'n_unique_tokens',
            'n_non_stop_words', 'n_non_stop_unique_tokens', 'num_hrefs',
            'num_self_hrefs', 'num_imgs', 'num_videos', 'average_token_length',
            'num_keywords', 'data_channel_is_lifestyle',
            'data_channel_is_entertainment', 'data_channel_is_bus',
            'data_channel_is_socmed', 'data_channel_is_tech',
            'data_channel_is_world', 'kw_min_min', 'kw_max_min', 'kw_avg_min',
            'kw_min_max', 'kw_max_max', 'kw_avg_max', 'kw_min_avg', 'kw_max_avg',
            'kw_avg_avg', 'self_reference_min_shares', 'self_reference_max_shares',
            'self_reference_avg_sharess', 'weekday_is_monday', 'weekday_is_tuesday',
            'weekday_is_wednesday', 'weekday_is_thursday', 'weekday_is_friday',
            'weekday_is_saturday', 'weekday_is_sunday', 'is_weekend', 'LDA_00',
            'LDA_01', 'LDA_02', 'LDA_03', 'LDA_04', 'global_subjectivity',
            'global_sentiment_polarity', 'global_rate_positive_words',
            'global_rate_negative_words', 'rate_positive_words',
            'rate_negative_words', 'avg_positive_polarity', 'min_positive_polarity',
            'max_positive_polarity', 'avg_negative_polarity',
            'min_negative_polarity', 'max_negative_polarity', 'title_subjectivity',
            'title_sentiment_polarity', 'abs_title_subjectivity',
            'abs_title_sentiment_polarity', 'article_id'],
           dtype='object')
```

0.5 ## Exploratory Data Analysis

0.6 ### Variable Descriptions

- is_popular: Whether or not the article was among the most popular ones based on shares on social media
- article_id: Unique identifier of the article
- timedelta: Days between the article publication and the dataset acquisition (non-predictive)
- n_tokens_title: Number of words in the title
- n_tokens_content: Number of words in the content
- n_unique_tokens: Rate of unique words in the content
- n_non_stop_words: Rate of non-stop words in the content
- n_non_stop_unique_tokens: Rate of unique non-stop words in the content
- num_hrefs: Number of links
- num_self_hrefs: Number of links to other articles published by Mashable
- num imgs: Number of images
- num_videos: Number of videos

- average_token_length: Average length of the words in the content
- num_keywords: Number of keywords in the metadata
- data_channel_is_lifestyle: Is data channel 'Lifestyle'?
- data_channel_is_entertainment: Is data channel 'Entertainment'?
- data_channel_is_bus: Is data channel 'Business'?
- data_channel_is_socmed: Is data channel 'Social Media'?
- data channel is tech: Is data channel 'Tech'?
- data_channel_is_world: Is data channel 'World'?
- kw_min_min: Worst keyword (min. shares)
- kw_max_min: Worst keyword (max. shares)
- kw_avg_min: Worst keyword (avg. shares)
- kw_min_max: Best keyword (min. shares)
- kw_max_max: Best keyword (max. shares)
- kw_avg_max: Best keyword (avg. shares)
- kw_min_avg: Avg. keyword (min. shares)
- kw_max_avg: Avg. keyword (max. shares)
- kw_avg_avg: Avg. keyword (avg. shares)
- self_reference_min_shares: Min. shares of referenced articles in Mashable
- self_reference_max_shares: Max. shares of referenced articles in Mashable
- self_reference_avg_sharess: Avg. shares of referenced articles in Mashable
- weekday_is_monday: Was the article published on a Monday?
- weekday_is_tuesday: Was the article published on a Tuesday?
- weekday_is_wednesday: Was the article published on a Wednesday?
- weekday_is_thursday: Was the article published on a Thursday?
- weekday_is_friday: Was the article published on a Friday?
- weekday_is_saturday: Was the article published on a Saturday?
- weekday_is_sunday: Was the article published on a Sunday?
- is_weekend: Was the article published on the weekend?
- LDA 00: Closeness to LDA topic 0
- LDA_01: Closeness to LDA topic 1
- LDA_02: Closeness to LDA topic 2
- LDA_03: Closeness to LDA topic 3
- LDA_04: Closeness to LDA topic 4
- global_subjectivity: Text subjectivity
- global_sentiment_polarity: Text sentiment polarity
- global rate positive words: Rate of positive words in the content
- global rate negative words: Rate of negative words in the content
- rate_positive_words: Rate of positive words among non-neutral tokens
- rate_negative_words: Rate of negative words among non-neutral tokens
- avg_positive_polarity: Avg. polarity of positive words
- min_positive_polarity: Min. polarity of positive words
- max_positive_polarity: Max. polarity of positive words
- avg_negative_polarity: Avg. polarity of negative words
- min_negative_polarity: Min. polarity of negative words
- max_negative_polarity: Max. polarity of negative words
- title_subjectivity: Title subjectivity
- title_sentiment_polarity: Title polarity
- abs_title_subjectivity: Absolute subjectivity level

 $\bullet \ \mathtt{abs_title_sentiment_polarity} \colon \mathsf{Absolute} \ \mathsf{polarity} \ \mathsf{level}$

		_		
train_	_data.describe()			
	timedelta n	_tokens_title	n_tokens_cont	ent n_unique_tokens \
count	29733.000000	29733.000000	29733.000	-
mean	355.645646	10.390812	545.008	274 0.555076
std	214.288261	2.110135	469.358	037 4.064572
min	8.000000	2.000000	0.000	0.00000
25%	164.000000	9.000000	246.000	000 0.471400
50%	342.000000	10.000000	409.000	0.539894
75%	545.000000	12.000000	712.000	0.609375
max	731.000000	23.000000	8474.000	701.000000
	n_non_stop_word	s n_non_stop	_unique_tokens	num_hrefs \
count	29733.00000	0	29733.000000	29733.000000
mean	1.00585	2	0.695432	10.912690
std	6.03965	5	3.768796	11.316508
min	0.00000	0	0.000000	0.000000
25%	1.00000	0	0.626126	4.000000
50%	1.00000	0	0.690566	8.000000
75%	1.00000		0.755208	14.000000
max	1042.00000	0	650.000000	304.000000
	num_self_hrefs	num_imgs	num_videos	max_positive_polarity
count	29733.000000	29733.000000	29733.000000	29733.000000
mean	3.290788	4.524535	1.263546	0.757780
std	3.840874	8.213823	4.189080	0.247293
min	0.000000	0.000000	0.000000	0.000000
25%	1.000000	1.000000	0.000000	0.600000
50%	2.000000	1.000000	0.000000	0.800000
75%	4.000000	4.000000	1.000000	1.000000
max	74.000000	111.000000	91.000000	1.000000
	avg_negative_po		egative_polarit	
count	29733.		29733.00000	
mean		259709	-0.52098	
std		128488	0.29045	
min		000000	-1.00000	
25%		328704	-0.70000	
50%		252827	-0.50000	
75%		186494	-0.30000	
max	0.	000000	0.00000	0.000000
	title_subjectiv	• –	ntiment_polarit	, – – •
count	29733.000		29733.00000	
mean	0.281	878	0.06969	1 0.341427

std	0.323461	0.264379	0.188735
min	0.00000	-1.000000	0.000000
25%	0.00000	0.00000	0.166667
50%	0.144444	0.00000	0.500000
75%	0.500000	0.136364	0.500000
max	1.000000	1.000000	0.500000

	abs_title_sentiment_polarity	is_popular	article_id
count	29733.000000	29733.000000	29733.000000
mean	0.155234	0.121649	19834.913530
std	0.225066	0.326886	11432.376037
min	0.000000	0.000000	1.000000
25%	0.000000	0.000000	9965.000000
50%	0.000000	0.000000	19859.000000
75%	0.250000	0.000000	29742.000000
max	1.000000	1.000000	39643.000000

[8 rows x 61 columns]

After inspection, there do seem to be some variables with extreme values. However, these extreme values were considered important for the analysis and left in.

The shape of the training set is 29733 rows, and 61 columns.

There are a total of 0 missing values in the dataset.

The dataset does not have any missing values, so we can move on to the feature engineering. This suggests that the dataset was already cleaned prior to importing the data.

0.7 ## Feature Engineering

0.8 ### Defining Variable Groups

Here, the variables are split up into groups for the purpose of incremental model testing with different variable groups. This will help us see if certain variable groups perform better than others. There are 7 primary variable groups listed here: - basic_text_features - content_properties - keyword_performance - self_reference_metrics - publication_timing - content_topic_and_sentiment - title_sentiment

Certain variables included in the initial dataset were dropped from these variable groups as some are categorical variables that were transformed into binary variables, and a baseline variable is needed. From the publication_timing group, weekday_is_monday and is_weekend

were dropped to avoid autocorrelation. From the content_topic_and_sentiment variable group, data_channel_is_lifestyle was dropped for the same purpose.

```
[9]: # Defining variable groups
     basic text features = ['n tokens title',
                             'n tokens content',
                             'n unique tokens',
                             'n_non_stop_words',
                             'n_non_stop_unique_tokens',
                             'average_token_length',
                             'num keywords']
     content_properties = ['num_hrefs',
                            'num_self_hrefs',
                            'num_imgs',
                            'num_videos',
                            'global_subjectivity',
                            'global_sentiment_polarity',
                            'global_rate_positive_words',
                            'global_rate_negative_words']
     keyword performance = ['kw min min',
                             'kw_max_min',
                             'kw avg min',
                             'kw_min_max',
                             'kw_max_max',
                             'kw_avg_max',
                             'kw_min_avg',
                             'kw_max_avg',
                             'kw_avg_avg']
     self_reference_metrics = ['self_reference_min_shares',
                                'self_reference_max_shares',
                                'self_reference_avg_sharess']
     # dropped 'weekday_is_monday' and 'is_weekend'
     publication_timing = ['weekday_is_tuesday',
                            'weekday is wednesday',
                            'weekday_is_thursday',
                            'weekday is friday',
                            'weekday_is_saturday',
                            'weekday_is_sunday']
     # dropped 'data_channel_is_lifestyle'
     content_topic_and sentiment = ['data_channel_is_entertainment',
                                     'data_channel_is_bus',
                                     'data_channel_is_socmed',
                                     'data_channel_is_tech',
                                     'data_channel_is_world',
                                     'LDA_00',
```

```
'LDA_01',
                                 'LDA_02',
                                 'LDA_03',
                                 'LDA_04',
                                 'rate_positive_words',
                                 'rate_negative_words',
                                 'avg_positive_polarity',
                                 'min_positive_polarity',
                                 'max positive polarity',
                                 'avg_negative_polarity',
                                 'min_negative_polarity',
                                 'max_negative_polarity']
title_sentiment = ['title_subjectivity',
                    'title_sentiment_polarity',
                    'abs_title_subjectivity',
                    'abs_title_sentiment_polarity']
```

0.9 ### Feature Engineering Functions

Three functions were developed for the feature engineering process in order to loop all of the variables within a category through the loop. The first variable squares the features, while the second one cubes the features in the variable group. The third function interacts the features within the variable groups. Each of these functions create new variable groups for the feature engineered variables.

```
[10]: def square_features(variables, df):
          sqaured_features = []
          for var in variables:
              feature name = f'{var} squared'
              df[feature_name] = df[var] ** 2
              sqaured_features.append(feature_name)
          return sqaured_features
      def cube_features(variables, df):
          cubed_features = []
          for var in variables:
              feature_name = f'{var}_cubed'
              df[feature_name] = df[var] ** 3
              cubed_features.append(feature_name)
          return cubed_features
      def interact_features(variables, df):
          interacted_features = []
          for (var1, var2) in combinations(variables, 2):
              feature_name = f'{var1}_{var2}_interaction'
              df[feature name] = df[var1] * df[var2]
              interacted_features.append(feature_name)
```

```
# square basic features
     sqrd_basic_text_features = square_features(basic_text_features, train_data)
     square_features(basic_text_features, test_data)
     # square title sentiment features
     sqrd_title sentiment = square features(title_sentiment, train data)
     square_features(title_sentiment, test_data)
     # square content properties
     sqrd_content_properties = square_features(content_properties, train_data)
     square_features(content_properties, test_data)
     # square keyword performance
     sqrd keyword performance = square features(keyword performance, train data)
     square_features(keyword_performance, test_data)
     # square self reference metrics
     sqrd_self_reference_metrics = square_features(self_reference_metrics,__
      square_features(self_reference_metrics, test_data)
     # CUBED basic features
     cube_basic_text_features = cube_features(basic_text_features, train_data)
     cube_features(basic_text_features, test_data)
     # CUBED title sentiment features
     cube_title_sentiment = cube_features(title_sentiment, train_data)
     cube_features(title_sentiment, test_data)
     # CUBED content properties
     cube_content_properties = cube_features(content_properties, train data)
     cube_features(content_properties, test_data)
     # CUBED keyword performance
     cube_keyword_performance = cube_features(keyword_performance, train_data)
     cube_features(keyword_performance, test_data)
     # CUBED self reference metrics
     cube_self_reference_metrics = cube_features(self_reference_metrics, train_data)
     cube_features(self_reference_metrics, test_data)
     # Interacting the basic features
```

```
interaction_basic_text_features = interact_features(basic_text_features,__
 →train_data)
interact_features(basic_text_features, test_data)
# Interacting the title sentiment features
interaction title sentiment = interact features(title sentiment, train data)
interact features(title sentiment, test data)
# Interacting content properties
interaction_content_properties = interact_features(content_properties,__
 →train_data)
interact features(content properties, test data)
# Interacting keyword performance
interaction_keyword_performance = interact_features(keyword_performance,_
 ⇔train_data)
interact_features(keyword_performance, test_data)
# Interacting self reference metrics
interaction_self_reference_metrics = interact_features(self_reference_metrics,__
 →train_data)
interact features (self reference metrics, test data)
```

0.10 ### Perm Importance Variables

After running the code previously, the best model was found to be M9 EBM. So, a permutation importance was ran on this model to determine the most important variables that did not score below 0 on the importance test. These variables are listed below and used in their own variable group and modeling group to see if this specific set of variables performs better. They did perform very well compared to the other groups.

```
'global_sentiment_polarity',
'kw_min_min',
'kw_max_min',
'kw_avg_min',
'kw_min_max',
'kw_max_max',
'kw_avg_max',
'kw_min_avg',
'kw max avg',
'kw_avg_avg',
'self_reference_min_shares',
'self_reference_max_shares',
'self_reference_avg_sharess',
'weekday_is_thursday',
'weekday_is_friday',
'weekday_is_sunday',
'data_channel_is_entertainment',
'data_channel_is_bus',
'data_channel_is_socmed',
'data_channel_is_tech',
'data_channel_is_world',
'LDA_00',
'LDA_01',
'LDA 02',
'LDA_03',
'LDA 04',
'rate_positive_words',
'avg_positive_polarity',
'min_positive_polarity',
'avg_negative_polarity',
'min_negative_polarity',
'max_negative_polarity',
'title_subjectivity',
'abs_title_subjectivity']
```

0.11 ### Defining Variable Models

Below, the variable groups are organized into groups for modeling. M1 is the baseline group with just the basic_text_features, and each model from there grows marginally with new groups to test out which groups perform the best. M31 has all of the groups including all of the feature engineered groups.

```
[14]: # defining models
models = {
    'M1': basic_text_features,
    'M2': basic_text_features + content_properties,
    'M3': basic_text_features + content_properties + keyword_performance,
```

```
'M4': basic_text_features + content_properties + keyword_performance + L
⇔self reference metrics,
   'M5': basic_text_features + content_properties + keyword_performance +
⇒self reference metrics + publication timing,
   'M6': basic_text_features + content_properties + keyword_performance +
self_reference_metrics + publication_timing + content_topic_and_sentiment,
   'M7': basic_text_features + content_properties + keyword_performance +
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment +
⇔title_sentiment,
   'M8': basic_text_features + content_properties + keyword_performance + L
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ___
⇔title_sentiment + sqrd_title_sentiment,
   'M9': basic text features + content properties + keyword performance + 11
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment +
stitle_sentiment + sqrd_title_sentiment + sqrd_basic_text_features,
   'M10': basic_text_features + content_properties + keyword_performance + L
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ___
⇒interaction_basic_text_features,
   'M11': basic text features + content properties + keyword performance + 11
⇔self reference metrics + publication timing + content topic and sentiment + 11
otitle_sentiment + sqrd_title_sentiment + sqrd_basic_text_features + ∪
→interaction_basic_text_features + interaction_title_sentiment,
  'M12': perm_importance_variables,
  'M13': basic_text_features + content_properties + keyword_performance + L
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + L
utitle_sentiment + sqrd_content_properties + sqrd_keyword_performance,
  'M14': basic_text_features + content_properties + keyword_performance + L
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment +
otitle_sentiment + sqrd_title_sentiment + sqrd_basic_text_features + ⊔
⇔sqrd_content_properties,
  'M15': basic_text_features + content_properties + keyword_performance + L
⇒self reference metrics + publication timing + content topic and sentiment + 11
otitle_sentiment + sqrd_title_sentiment + sqrd_basic_text_features + ∪
sqrd_content_properties + sqrd_keyword_performance,
  'M16': basic_text_features + content_properties + keyword_performance + L
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ___
otitle_sentiment + sqrd_title_sentiment + sqrd_basic_text_features + ⊔
⇒sqrd_content_properties + sqrd_keyword_performance +

¬sqrd_self_reference_metrics,
  'M17': basic_text_features + content_properties + keyword_performance +
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ∪
stitle_sentiment + interaction_content_properties,
```

```
'M18': basic_text_features + content_properties + keyword_performance + L
-self_reference_metrics + publication_timing + content_topic_and_sentiment +__
→interaction_keyword_performance,
   'M19': basic_text_features + content_properties + keyword_performance +
⇔self reference metrics + publication timing + content topic and sentiment + 11
→title_sentiment + interaction_content_properties +
dinteraction_keyword_performance + interaction_self_reference_metrics,
   'M20': basic_text_features + content_properties + keyword_performance +
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ___
→title_sentiment + interaction_content_properties +
→interaction keyword performance + interaction self reference metrics +
→sqrd_title_sentiment + sqrd_basic_text_features + sqrd_content_properties +
sqrd_keyword_performance + sqrd_self_reference_metrics,
  'M21': basic_text_features + content_properties + keyword_performance + L
self reference_metrics + publication_timing + content_topic_and_sentiment +
→title_sentiment + interaction_content_properties +
→interaction_basic_text_features + interaction_title_sentiment +
→interaction_keyword_performance + interaction_self_reference_metrics + ⊔
⇒sqrd_title_sentiment + sqrd_basic_text_features + sqrd_content_properties +
sqrd_keyword_performance + sqrd_self_reference_metrics,
  'M22': basic text features + content properties + keyword performance + 11
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment +
stitle_sentiment + sqrd_title_sentiment + cube_title_sentiment,
  'M23': basic_text_features + content_properties + keyword_performance + L
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ___
→title_sentiment + sqrd_title_sentiment + cube_title_sentiment +
sqrd_basic_text_features + cube_basic_text_features,
  'M24': basic_text_features + content_properties + keyword_performance + L
self_reference_metrics + publication_timing + content_topic_and_sentiment +
⇔title_sentiment + sqrd_title_sentiment + cube_title_sentiment + __
⇒sqrd_basic_text_features + cube_basic_text_features +
sqrd_content_properties + cube_content_properties,
  'M25': basic text features + content properties + keyword performance + 11
⇒self_reference_metrics + publication_timing + content_topic_and_sentiment +
→title sentiment + sqrd title sentiment + cube title sentiment +

⇒sqrd_basic_text_features + cube_basic_text_features +
⇒sqrd_content_properties + cube_content_properties + sqrd_keyword_performance_

-+ cube_keyword_performance,
   'M26': basic_text_features + content_properties + keyword_performance + L
→self_reference_metrics + publication_timing + content_topic_and_sentiment +
otitle_sentiment + sqrd_title_sentiment + cube_title_sentiment + ∟
⇒sqrd_basic_text_features + cube_basic_text_features +
⇒sqrd_content_properties + cube_content_properties + sqrd_keyword_performance_
⇒cube_self_reference_metrics,
```

```
'M27': basic_text_features + content_properties + keyword_performance + L
 self reference_metrics + publication_timing + content_topic_and_sentiment +
 otitle_sentiment + sqrd_title_sentiment + cube_title_sentiment + ∟
 ⇒sqrd_basic_text_features + cube_basic_text_features +
 →sqrd_content_properties + cube_content_properties + sqrd_keyword_performance_
 Goube_self_reference_metrics + interaction_content_properties,
   'M28': basic_text_features + content_properties + keyword_performance +
 ⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ___
 otitle_sentiment + sqrd_title_sentiment + cube_title_sentiment + ∟
 ⇒sqrd_basic_text_features + cube_basic_text_features +
 ⇒sqrd_content_properties + cube_content_properties + sqrd_keyword_performance_
 ⇔cube_self_reference_metrics + interaction_content_properties +⊔
 ⇔interaction_basic_text_features,
   'M29': basic_text_features + content_properties + keyword_performance +
 ⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ∪
 stitle_sentiment + sqrd_title_sentiment + cube_title_sentiment +
 ⇒sqrd_basic_text_features + cube_basic_text_features +
 →sqrd_content_properties + cube_content_properties + sqrd_keyword_performance_
 →cube_self_reference_metrics + interaction_content_properties +
 →interaction_basic_text_features + interaction_title_sentiment,
   'M30': basic text features + content properties + keyword performance +11
 ⇔self reference metrics + publication timing + content topic and sentiment + 11
 →title_sentiment + sqrd_title_sentiment + cube_title_sentiment +
 ⇒sqrd_basic_text_features + cube_basic_text_features +
 →sqrd_content_properties + cube_content_properties + sqrd_keyword_performance_
 ⇔cube_self_reference_metrics + interaction_content_properties +
 ⇔interaction_basic_text_features + interaction_title_sentiment + ⊔
 →interaction_keyword_performance,
   'M31': basic_text_features + content_properties + keyword_performance +
 ⇒self_reference_metrics + publication_timing + content_topic_and_sentiment + ∪
 →title sentiment + sqrd title sentiment + cube title sentiment +

 ⇒sqrd_basic_text_features + cube_basic_text_features +
 →sqrd_content_properties + cube_content_properties + sqrd_keyword_performance_
 ⇔cube_self_reference_metrics + interaction_content_properties +
 \hookrightarrowinteraction_basic_text_features + interaction_title_sentiment +
 →interaction_keyword_performance + interaction_self_reference_metrics
}
```

0.12 ### Splitting the data

The data was split at 20% into a training and validation set. The columns is_popular, timedelta, and article_id were dropped from the X dataset, while the y dataset is set to is_popular.

0.13 # Models

0.14 ### RMSLE Function

The following RMSLE function was established for the purpose of additional evaluation between the models. Although, this may not be the most effective metric for certain models, such as neural networks, it will help with the interpretations of determining the best model incase the AUC scores are too similar. It will act as a tie-breaker.

0.15 ### Results List Initilialization

The results list will contain all of the AUC and RMSLE scores

```
[17]: # initilializing results list results = []
```

0.16 ## Logistic Regression

0.17 ### Simple Logistic Regression

```
[18]: for model_name, features in models.items():
    # appending "Logistic Regression" to the model name
    full_model_name = f"{model_name} Logistic Regression"

# pipeline steps
steps = [
    ("scale_features", ColumnTransformer([("scale", StandardScaler(), Geatures)], remainder='drop')),
```

```
("log_reg", LogisticRegression())
   ]
   # creating the pipeline
   pipeline = Pipeline(steps)
   # fitting the model on training data
   pipeline.fit(X_train[features], y_train)
   # predicting probabilities on the training and validation data
   train_prob = pipeline.predict_proba(X_train[features])[:, 1]
   val_prob = pipeline.predict_proba(X_val[features])[:, 1]
   # Calculate AUC
   train_auc = roc_auc_score(y_train, train_prob)
   val_auc = roc_auc_score(y_val, val_prob)
   # Calculate RMSLE
   train_rmsle = calculateRMSLE(train_prob, y_train)
   val_rmsle = calculateRMSLE(val_prob, y_val)
   # Append results
   results.append([full_model_name, train_auc, val_auc, train_rmsle,_
⇔val_rmsle])
# set the results of and columns, this will be important for the rest of the
results_df = pd.DataFrame(results, columns=['Model', 'Training AUC', __
results_df.tail(31)
```

[18]:		Model	Training AUC	Validation AUC	Training RMSLE	\
0	M1	Logistic Regression	0.548108	0.555135	0.2271	
1	M2	Logistic Regression	0.624687	0.627810	0.2253	
2	МЗ	Logistic Regression	0.682657	0.686424	0.2225	
3	M4	Logistic Regression	0.686342	0.688129	0.2224	
4	M5	Logistic Regression	0.687915	0.684988	0.2223	
5	M6	Logistic Regression	0.693311	0.694309	0.2220	
6	M7	Logistic Regression	0.694318	0.695099	0.2219	
7	M8	Logistic Regression	0.695176	0.696331	0.2219	
8	M9	Logistic Regression	0.695775	0.694353	0.2218	
9	M10	Logistic Regression	0.699305	0.693886	0.2216	
10	M11	Logistic Regression	0.699465	0.694220	0.2216	
1:	l M12	Logistic Regression	0.692398	0.697022	0.2220	
12	2 M13	Logistic Regression	0.701580	0.700482	0.2213	
13	8 M14	Logistic Regression	0.695972	0.694173	0.2218	

14	M15	Logistic	Regression	0.702613	0.699578	0.2212
15	M16	Logistic	Regression	0.709128	0.701346	0.2206
16	M17	Logistic	Regression	0.697060	0.688289	0.2216
17	M18	Logistic	Regression	0.703661	0.687535	0.2211
18	M19	Logistic	Regression	0.710787	0.688838	0.2205
19	M20	Logistic	Regression	0.716079	0.695409	0.2199
20	M21	Logistic	Regression	0.718754	0.696427	0.2197
21	M22	Logistic	Regression	0.695714	0.696995	0.2219
22	M23	Logistic	Regression	0.697076	0.695949	0.2218
23	M24	Logistic	Regression	0.698787	0.695604	0.2216
24	M25	Logistic	Regression	0.708691	0.705051	0.2208
25	M26	Logistic	Regression	0.715142	0.706303	0.2201
26	M27	Logistic	Regression	0.716938	0.698923	0.2199
27	M28	Logistic	Regression	0.719412	0.698379	0.2197
28	M29	Logistic	Regression	0.719210	0.698091	0.2197
29	M30	Logistic	Regression	0.721592	0.697905	0.2195
30	M31	Logistic	Regression	0.722127	0.697809	0.2194

Validation RMSLE

0	0.2314
1	0.2291
2	0.2259
3	0.2259
4	0.2260
5	0.2255
6	0.2253
7	0.2251
8	0.2252
9	0.2251
10	0.2251
11	0.2251
12	0.2245
13	0.2252
14	0.2244
15	0.2247
16	0.2261
17	0.2259
18	0.2262
19	0.2258
20	0.2255
21	0.2251
22	0.2251
23	0.2252
24	0.2240
25	0.2244
26	0.2253
27	0.2252

28	0.2253
29	0.2255
30	0.2254

0.18 #### Interpretation

This basic logistic regression model seems to be performing quite well. The scores could still be improved through other models, the training and validation sets are very closely related, suggesting that there is not an overfitting issue here. However, as we are not expecting this data to be able to fit linearly, it might be best to try out some other models and see how they perform as compared to this baseline model.

0.19 ### Tuned Logistic Regression

```
[19]: for model_name, features in models.items():
          # added a timer to visualize the progress of the model on each variable,
       ⇔ qroups
          start_time = time.time()
          # defining
          steps = [
              ("scale_features", ColumnTransformer([("scale", StandardScaler(),

¬features)], remainder='drop')),
              ("log reg", LogisticRegression(solver='liblinear'))
          1
          # creating the pipeline
          pipeline = Pipeline(steps)
          # defining a range of inverse regularization strength `C`
          param_grid = {
              'log_reg__C': [0.001, 0.01, 0.1, 1, 10, 100],
              'log_reg__penalty': ['12'] # L2 regularization
          }
          # GridSearchCV
          grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='roc_auc')
          # fit the model
          grid_search.fit(X_train[features], y_train)
          # determine best estimators
          best_model = grid_search.best_estimator_
          # predict
          train_prob = best_model.predict_proba(X_train[features])[:, 1]
          val_prob = best_model.predict_proba(X_val[features])[:, 1]
```

```
# Calculate AUC
    train_auc = roc_auc_score(y_train, train_prob)
    val_auc = roc_auc_score(y_val, val_prob)
    # Calculate RMSLE
    train_rmsle = calculateRMSLE(train_prob, y_train)
    val_rmsle = calculateRMSLE(val_prob, y_val)
    # Append results
    results.append([f"{model_name} Logistic Regression Tuned", train_auc,_
 →val_auc, train_rmsle, val_rmsle])
    end_time = time.time()
    print(f"Completed {model_name} in {end_time - start_time:.2f} seconds")
results_df = pd.DataFrame(results, columns=['Model', 'Training AUC', u
 results_df.tail(31)
Completed M1 in 0.98 seconds
Completed M2 in 1.91 seconds
Completed M3 in 4.39 seconds
Completed M4 in 4.96 seconds
Completed M5 in 6.05 seconds
Completed M6 in 10.84 seconds
Completed M7 in 12.25 seconds
Completed M8 in 17.74 seconds
Completed M9 in 25.21 seconds
Completed M10 in 111.26 seconds
Completed M11 in 91.14 seconds
Completed M12 in 8.28 seconds
Completed M13 in 31.09 seconds
Completed M14 in 29.58 seconds
Completed M15 in 45.38 seconds
Completed M16 in 44.61 seconds
Completed M17 in 28.90 seconds
Completed M18 in 73.55 seconds
Completed M19 in 80.24 seconds
Completed M20 in 187.04 seconds
Completed M21 in 341.66 seconds
Completed M22 in 22.43 seconds
Completed M23 in 37.47 seconds
Completed M24 in 60.85 seconds
Completed M25 in 88.07 seconds
Completed M26 in 106.10 seconds
```

Completed M27 in 141.23 seconds

Completed M28 in 263.02 seconds Completed M29 in 358.95 seconds Completed M30 in 408.96 seconds Completed M31 in 436.17 seconds

[19]:		Model	Training AUC	Validation AUC	\
31	M1 Logistic Regression		0.578511	0.597577	•
32	M2 Logistic Regression		0.625409	0.628886	
33	M3 Logistic Regression		0.683566	0.687520	
34	M4 Logistic Regression		0.686853	0.688830	
35	M5 Logistic Regression		0.688710	0.686084	
36	M6 Logistic Regression	Tuned	0.693308	0.694601	
37	M7 Logistic Regression	Tuned	0.694352	0.695420	
38	M8 Logistic Regression	Tuned	0.695495	0.696638	
39	M9 Logistic Regression	Tuned	0.695925	0.695024	
40	M10 Logistic Regression	Tuned	0.699440	0.694135	
41	M11 Logistic Regression	Tuned	0.698920	0.696317	
42	M12 Logistic Regression	Tuned	0.693144	0.698134	
43	M13 Logistic Regression	Tuned	0.701555	0.701145	
44	M14 Logistic Regression	Tuned	0.696147	0.694908	
45	M15 Logistic Regression	Tuned	0.702992	0.700911	
46	M16 Logistic Regression	Tuned	0.709479	0.702848	
47	M17 Logistic Regression	Tuned	0.695592	0.691340	
48	M18 Logistic Regression	Tuned	0.700774	0.694948	
49	M19 Logistic Regression	Tuned	0.707631	0.697339	
50	M20 Logistic Regression	Tuned	0.712031	0.700753	
51	M21 Logistic Regression	Tuned	0.713567	0.701898	
52	M22 Logistic Regression	Tuned	0.695370	0.696867	
53	M23 Logistic Regression	Tuned	0.696719	0.695677	
54	M24 Logistic Regression		0.698321	0.695671	
55	M25 Logistic Regression		0.709057	0.705078	
56	M26 Logistic Regression	Tuned	0.715581	0.706397	
57	M27 Logistic Regression	Tuned	0.717523	0.699163	
58	M28 Logistic Regression	Tuned	0.719902	0.699376	
59	M29 Logistic Regression		0.719965	0.699616	
60	M30 Logistic Regression		0.723291	0.699522	
61	M31 Logistic Regression	Tuned	0.723497	0.699059	
0.4	Training RMSLE Validat				
31	0.2267	0.230			
32	0.2388	0.241			
33	0.2225	0.225			
34	0.2224	0.225			
35	0.2223	0.226			
36	0.2221	0.225			
37	0.2220	0.225			
38	0.2219	0.225	01		

39	0.2219	0.2253
40	0.2216	0.2251
41	0.2217	0.2250
42	0.2220	0.2251
43	0.2214	0.2246
44	0.2218	0.2252
45	0.2213	0.2245
46	0.2207	0.2247
47	0.2227	0.2266
48	0.2223	0.2263
49	0.2216	0.2264
50	0.2213	0.2260
51	0.2212	0.2257
52	0.2220	0.2251
53	0.2219	0.2252
54	0.2217	0.2252
55	0.2208	0.2240
56	0.2201	0.2243
57	0.2198	0.2253
58	0.2196	0.2251
59	0.2196	0.2251
60	0.2192	0.2253
61	0.2192	0.2254

0.20 #### Interpretation

After applying the GridSearchCV and several parameters, the model performances do not improve. This is likely due to the fact that the models were already performing relatively well without the tuning, and adding regularization did not help since this is typically used for reducing overfitting issues.

0.21 ## Lasso Model

```
for group_name, features in models.items():
    start_time = time.time() # Start timer

# pipeline steps
steps = [
    ("scale_features", ColumnTransformer([("scale_numeric_features",
MinMaxScaler(), features)], remainder='drop')),
    ("lasso", LassoCV())
]

# create pipeline
pipe_lasso = Pipeline(steps)

# fit the model
```

```
pipe_lasso.fit(X_train[features], y_train)
    # predict
    train_scores = pipe_lasso.predict(X_train[features])
    val_scores = pipe_lasso.predict(X_val[features])
    # convert scores to binary predictions based on the median threshold
    threshold = np.median(train_scores)
    train_pred = np.where(train_scores > threshold, 1, 0)
    val_pred = np.where(val_scores > threshold, 1, 0)
    # Calculate AUC
    train_auc = roc_auc_score(y_train, train_pred)
    val_auc = roc_auc_score(y_val, val_pred)
    # Calculate RMSLE
    train_rmsle = calculateRMSLE(train_pred, y_train)
    val_rmsle = calculateRMSLE(val_pred, y_val)
    # Append results
    new_row = pd.DataFrame([[f"{group_name}] Lasso", train_auc, val_auc,__
  ⇔train_rmsle, val_rmsle]],
                            columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
    results_df = pd.concat([results_df, new_row], ignore_index=True)
    end time = time.time() # End timer
    print(f"Completed {group_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
Completed M1 in 0.29 seconds
```

```
Completed M2 in 0.29 seconds
Completed M3 in 0.35 seconds
Completed M4 in 0.40 seconds
Completed M5 in 0.41 seconds
Completed M6 in 1.13 seconds
Completed M7 in 1.11 seconds
Completed M8 in 1.14 seconds
Completed M9 in 1.28 seconds
Completed M10 in 1.97 seconds
Completed M11 in 2.08 seconds
Completed M12 in 0.87 seconds
Completed M13 in 1.56 seconds
Completed M14 in 1.33 seconds
Completed M15 in 1.60 seconds
Completed M15 in 1.60 seconds
Completed M16 in 1.27 seconds
```

Completed M17 in 1.46 seconds Completed M18 in 2.36 seconds Completed M19 in 2.14 seconds Completed M20 in 3.06 seconds Completed M21 in 3.99 seconds Completed M22 in 1.40 seconds Completed M23 in 1.46 seconds Completed M24 in 1.82 seconds Completed M25 in 2.70 seconds Completed M26 in 2.95 seconds Completed M27 in 3.77 seconds Completed M28 in 4.38 seconds Completed M29 in 4.61 seconds Completed M30 in 5.34 seconds Completed M30 in 5.34 seconds Completed M31 in 5.89 seconds

[20]:		Model	Training AUC	Validation AUC	Training RMSLE	Validation RMSLE
	62	M1 Lasso	_	0.531205	0.4853	0.4840
	63	M2 Lasso	0.589911	0.592422	0.4711	0.4696
	64	M3 Lasso	0.629210	0.625074	0.4625	0.4643
	65	M4 Lasso	0.631790	0.629762	0.4620	0.4616
	66	M5 Lasso	0.635561	0.631840	0.4611	0.4617
	67	M6 Lasso	0.642905	0.646199	0.4595	0.4580
	68	M7 Lasso	0.641516	0.654014	0.4598	0.4550
	69	M8 Lasso	0.642905	0.649153	0.4595	0.4568
	70	M9 Lasso	0.642508	0.644775	0.4596	0.4582
	71	M10 Lasso	0.644294	0.643148	0.4592	0.4592
	72	M11 Lasso	0.645088	0.645429	0.4590	0.4587
	73	M12 Lasso	0.642707	0.652782	0.4595	0.4550
	74	M13 Lasso	0.648661	0.646767	0.4582	0.4580
	75	M14 Lasso	0.643699	0.647354	0.4593	0.4569
	76	M15 Lasso	0.647669	0.642484	0.4584	0.4593
	77	M16 Lasso	0.651241	0.650000	0.4576	0.4571
	78	M17 Lasso	0.643302	0.649442	0.4594	0.4565
	79	M18 Lasso	0.643501	0.651839	0.4594	0.4549
	80	M19 Lasso	0.648264	0.653100	0.4583	0.4532
	81	M20 Lasso	0.652035	0.644014	0.4575	0.4584
	82	M21 Lasso	0.653424	0.646786	0.4572	0.4569
	83	M22 Lasso		0.647258	0.4594	0.4570
	84	M23 Lasso	0.641913	0.645256	0.4597	0.4578
	85	M24 Lasso		0.647450	0.4596	0.4568
	86	M25 Lasso	0.648463	0.645429	0.4583	0.4587
	87	M26 Lasso		0.648778	0.4571	0.4566
	88	M27 Lasso	0.652234	0.645342	0.4574	0.4582
	89	M28 Lasso		0.641936	0.4573	0.4582
	90	M29 Lasso		0.642504	0.4574	0.4582
	91	M30 Lasso	0.653028	0.646401	0.4573	0.4573

92 M31 Lasso 0.653226 0.646680 0.4572 0.4575

0.22 #### Interpretation

The Lasso model is performing significantly worse than the logistic regression. This is reflected in both the RMSLE and AUC scores; however, the training and validation scores are very similar to each other, suggesting that there is not overfitting here. The Lasso model is likely not a good canidate for the best predictive model.

0.23 ## Stacking Model

The stacking model is an ensemble method that stacks other types of models to see if combining models will create a better model overall. This is a model that I have not personally used before, so it is for experimentation purposes.

```
[21]: # defining the base models
      base_models = [
          ('dt', DecisionTreeClassifier(max_depth=5, random_state=20240407)),
          ('rf', RandomForestClassifier(max_depth=5, n_estimators=100,_
       ⇒random_state=20240407)),
          ('xgb', xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss',_
       →max_depth=3, n_estimators=100, random_state=20240407))
      ]
      # Meta-model
      meta_model = LogisticRegression()
      # Stacking classifier
      stacking_model = StackingClassifier(estimators=base_models,__
       ⇒final estimator=meta model, cv=5)
      for model_name, features in models.items():
          start_time = time.time() # Start timer
          # pipeline
          pipeline = Pipeline([
              ("scale_features", ColumnTransformer([("scale", StandardScaler(), __

¬features)], remainder='drop')),
              ("stacking", stacking_model)
          ])
          # Fit model
          pipeline.fit(X_train[features], y_train)
          # Predict probabilities
          train_prob = pipeline.predict_proba(X_train[features])[:, 1]
          val_prob = pipeline.predict_proba(X_val[features])[:, 1]
```

```
Completed M1 in 27.42 seconds
Completed M2 in 37.75 seconds
Completed M3 in 47.45 seconds
Completed M4 in 56.97 seconds
Completed M5 in 49.07 seconds
Completed M6 in 68.92 seconds
Completed M7 in 67.88 seconds
Completed M8 in 66.06 seconds
Completed M9 in 76.81 seconds
Completed M10 in 104.90 seconds
Completed M11 in 104.74 seconds
Completed M12 in 59.84 seconds
Completed M13 in 82.94 seconds
Completed M14 in 80.55 seconds
Completed M15 in 92.28 seconds
Completed M16 in 92.47 seconds
Completed M17 in 103.85 seconds
Completed M18 in 149.08 seconds
Completed M19 in 158.47 seconds
Completed M20 in 174.34 seconds
Completed M21 in 197.28 seconds
Completed M22 in 65.26 seconds
Completed M23 in 76.45 seconds
Completed M24 in 91.53 seconds
Completed M25 in 106.27 seconds
```

Completed M26 in 108.24 seconds Completed M27 in 143.81 seconds Completed M28 in 438.40 seconds Completed M29 in 171.27 seconds Completed M30 in 205.02 seconds Completed M31 in 206.20 seconds

[21]:			Model	Training AUC	Validation AUC	Training RMSLE	\
	93	M1	STACKED	0.999279	0.582803	0.1769	
	94	M2	STACKED	0.999535	0.647539	0.1329	
	95	МЗ	STACKED	1.000000	0.694660	0.0860	
	96	M4	STACKED	1.000000	0.701611	0.0851	
	97	M5	STACKED	1.000000	0.704613	0.0814	
	98	M6	STACKED	1.000000	0.714806	0.0774	
	99	M7	STACKED	1.000000	0.715391	0.0787	
	100	M8	STACKED	1.000000	0.716757	0.0797	
	101	M9	STACKED	1.000000	0.712760	0.0766	
	102	M10	STACKED	1.000000	0.710793	0.0816	
	103	M11	STACKED	1.000000	0.708077	0.0782	
	104	M12	STACKED	1.000000	0.714303	0.0787	
	105	M13	STACKED	1.000000	0.712307	0.0804	
	106	M14	STACKED	1.000000	0.708617	0.0783	
	107	M15	STACKED	1.000000	0.715043	0.0780	
	108	M16	STACKED	1.000000	0.714724	0.0809	
	109	M17	STACKED	1.000000	0.707926	0.0800	
	110	M18	STACKED	1.000000	0.709377	0.0832	
	111	M19	STACKED	1.000000	0.708620	0.0855	
	112	M20	STACKED	1.000000	0.717524	0.0840	
	113	M21	STACKED	1.000000	0.714015	0.0824	
	114	M22	STACKED	1.000000	0.704769	0.0785	
	115	M23	STACKED	1.000000	0.714010	0.0798	
	116	M24	STACKED	1.000000	0.710349	0.0793	
	117	M25	STACKED	1.000000	0.718301	0.0807	
	118	M26	STACKED	1.000000	0.704987	0.0812	
	119	M27	STACKED	1.000000	0.708281	0.0844	
	120	M28	STACKED	1.000000	0.711128	0.0818	
	121	M29	STACKED	1.000000	0.711505	0.0822	
	122	M30	STACKED	1.000000	0.711104	0.0806	
	123	M31	STACKED	1.000000	0.713077	0.0811	

Validation RMSLE 0.2308 0.2291 0.2254

96 0.2257 97 0.2256 98 0.2253

93

94

95

99	0.2244
100	0.2244
101	0.2252
102	0.2249
103	0.2251
104	0.2244
105	0.2252
106	0.2251
107	0.2245
108	0.2251
109	0.2258
110	0.2256
111	0.2257
112	0.2251
113	0.2248
114	0.2250
115	0.2247
116	0.2250
117	0.2242
118	0.2254
119	0.2254
120	0.2245
121	0.2252
122	0.2248
123	0.2250

0.24 #### Interpretation

There seems to be some improvement in the validation AUC scores by a small margin; however, the training set cannot be overlooked with a clear overfitting issue. More measures may need to be taken into considation in the future to reduce this overfitting, but it does not seem like this model will work out.

0.25 ## Decision Tree Classifier

Multiple depths were tested for the decision tree classifier, ending with a GridSearchCV to consider an array of max depths and determine the most appropriate max depth per variable group.

0.25.1 Decision Tree Classifer Max Depth 5

```
pipe_tree = Pipeline(steps)
    # Fit the model
    pipe_tree.fit(X_train[features], y_train)
    # Predict probabilities
    train_prob = pipe_tree.predict_proba(X_train[features])[:, 1]
    val_prob = pipe_tree.predict_proba(X_val[features])[:, 1]
    # Calculate AUC
    train_auc = roc_auc_score(y_train, train_prob)
    val_auc = roc_auc_score(y_val, val_prob)
    # Calculate RMSLE
    train_rmsle = calculateRMSLE(train_prob, y_train)
    val_rmsle = calculateRMSLE(val_prob, y_val)
    # Append results
    new_row = pd.DataFrame([[f"{group_name} Decision Tree MD5", train_auc,__
 →val_auc, train_rmsle, val_rmsle]],
                          columns=['Model', 'Training AUC', 'Validation AUC', |
 results_df = pd.concat([results_df, new_row], ignore_index=True)
    end_time = time.time() # End timer
    print(f"Completed {group name} in {end time - start time:.2f} seconds")
results_df.tail(31)
Completed M1 in 0.10 seconds
```

```
Completed M2 in 0.18 seconds
Completed M3 in 0.27 seconds
Completed M4 in 0.27 seconds
Completed M5 in 0.29 seconds
Completed M6 in 0.42 seconds
Completed M7 in 0.45 seconds
Completed M8 in 0.46 seconds
Completed M9 in 0.53 seconds
Completed M10 in 0.78 seconds
Completed M11 in 0.81 seconds
Completed M12 in 0.40 seconds
Completed M13 in 0.63 seconds
Completed M14 in 0.61 seconds
Completed M15 in 0.70 seconds
Completed M16 in 0.73 seconds
Completed M17 in 0.79 seconds
```

```
Completed M18 in 1.35 seconds Completed M20 in 1.65 seconds Completed M21 in 1.86 seconds Completed M21 in 1.86 seconds Completed M22 in 0.49 seconds Completed M23 in 0.60 seconds Completed M24 in 0.75 seconds Completed M25 in 0.94 seconds Completed M26 in 0.97 seconds Completed M27 in 1.32 seconds Completed M28 in 1.58 seconds Completed M29 in 1.61 seconds Completed M30 in 2.09 seconds Completed M31 in 2.20 seconds
```

[22]:				Mo	odel		•	tion AU0	Trainin	•	\
	124	M1	Decision	Tree	MD5	0.	593985	0.579518	3	0.2254	
	125	M2	Decision	Tree	MD5	0.	645188	0.613544	Ŀ	0.2229	
	126		Decision				689169	0.681748	3	0.2207	
	127	M4	Decision	Tree	MD5	0.	702222	0.677891	-	0.2197	
	128	M5	Decision	Tree	MD5	0.	702322	0.675899)	0.2197	
	129	M6	Decision	Tree	MD5	0.	701975	0.673412	2	0.2197	
	130	M7	Decision	Tree	MD5	0.	702134	0.669154	<u> </u>	0.2197	
	131	M8	Decision	Tree	MD5	0.	702134	0.668961	=	0.2197	
	132	M9	Decision	Tree	MD5	0.	702134	0.669002	2	0.2197	
	133	M10	Decision	Tree	MD5	0.	699318	0.672435	·)	0.2196	
	134	M11	Decision	Tree	MD5	0.	699161	0.671234	Ŀ	0.2196	
	135	M12	Decision	Tree	MD5	0.	701146	0.674605	·)	0.2197	
	136	M13	Decision	Tree	MD5	0.	702134	0.669234	Ŀ	0.2197	
	137	M14	Decision	Tree	MD5	0.	702134	0.669234	Ŀ	0.2197	
	138	M15	Decision	Tree	MD5	0.	702134	0.668961		0.2197	
	139	M16	Decision	Tree	MD5	0.	702134	0.668961		0.2197	
	140	M17	Decision	Tree	MD5	0.	700275	0.674260)	0.2193	
	141	M18	Decision	Tree	MD5	0.	700671	0.679698	}	0.2191	
	142	M19	Decision	Tree	MD5	0.	700671	0.679698	}	0.2191	
	143	M20	Decision	Tree	MD5	0.	700671	0.679698	3	0.2191	
	144	M21	Decision	Tree	MD5	0.	700574	0.680021	-	0.2191	
	145	M22	Decision	Tree	MD5	0.	702134	0.669002	2	0.2197	
	146	M23	Decision	Tree	MD5	0.	702134	0.669002	2	0.2197	
	147	M24	Decision	Tree	MD5	0.	702134	0.669002	2	0.2197	
	148	M25	Decision	Tree	MD5	0.	702134	0.669042	2	0.2197	
	149	M26	Decision	Tree	MD5	0.	702134	0.668961	-	0.2197	
	150	M27	Decision	Tree	MD5	0.	700275	0.674260)	0.2193	
	151	M28	Decision	Tree	MD5	0.	699245	0.676840)	0.2193	
	152	M29	Decision	Tree	MD5	0.	698546	0.681102	2	0.2193	
	153	M30	Decision	Tree	MD5	0.	700574	0.680021		0.2191	
	154	M31	Decision	Tree	MD5	0.	700574	0.680021		0.2191	

	Validation RMSLE
124	0.2309
125	0.2310
126	0.2274
127	0.2263
128	0.2265
129	0.2268
130	0.2275
131	0.2277
132	0.2275
133	0.2274
134	0.2279
135	0.2270
136	0.2272
137	0.2272
138	0.2277
139	0.2277
140	0.2286
141	0.2281
142	0.2281
143	0.2281
144	0.2283
145	0.2275
146	0.2275
147	0.2275
148	0.2274
149	0.2277
150	0.2286
151	0.2283
152	0.2280
153	0.2283
154	0.2283

0.26 #### Interpretation

The Max Depth 5 Decision Tree Classifier model performs decently, but still not consistently better than the initial logistic regression. Both the training and validation sets seem to be performing similarly here, which suggests that overfitting may not be an issue at max depth 5. We will now test other max depths to see how they perform.

0.27 ### Decision Tree Classifer Max Depth 6

```
[23]: for group_name, features in models.items():
    start_time = time.time() # Start timer

steps = [
```

```
("scale_features", ColumnTransformer([("scale_numeric_features", __
 ("tree", DecisionTreeClassifier(max_depth=6, random_state=20240407))
    pipe_tree = Pipeline(steps)
    # Fit the model
    pipe_tree.fit(X_train[features], y_train)
    # Predict probabilities
    train_prob = pipe_tree.predict_proba(X_train[features])[:, 1]
    val_prob = pipe_tree.predict_proba(X_val[features])[:, 1]
    # Calculate AUC
    train_auc = roc_auc_score(y_train, train_prob)
    val_auc = roc_auc_score(y_val, val_prob)
    # Calculate RMSLE
    train_rmsle = calculateRMSLE(train_prob, y_train)
    val_rmsle = calculateRMSLE(val_prob, y_val)
    # Append results
    new_row = pd.DataFrame([[f"{group_name} Decision Tree MD6", train_auc,__
 →val_auc, train_rmsle, val_rmsle]],
                         columns=['Model', 'Training AUC', 'Validation AUC', |
 results_df = pd.concat([results_df, new_row], ignore_index=True)
    end time = time.time() # End timer
    print(f"Completed {group_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
Completed M1 in 0.10 seconds
```

```
Completed M2 in 0.20 seconds
Completed M3 in 0.32 seconds
Completed M4 in 0.34 seconds
Completed M5 in 0.34 seconds
Completed M6 in 0.52 seconds
Completed M7 in 0.53 seconds
Completed M8 in 0.55 seconds
Completed M9 in 0.61 seconds
Completed M10 in 0.92 seconds
Completed M11 in 0.97 seconds
Completed M12 in 0.46 seconds
Completed M13 in 0.72 seconds
Completed M14 in 0.70 seconds
```

```
Completed M15 in 0.82 seconds
Completed M16 in 0.85 seconds
Completed M17 in 0.92 seconds
Completed M18 in 1.51 seconds
Completed M19 in 1.50 seconds
Completed M20 in 1.92 seconds
Completed M21 in 2.26 seconds
Completed M22 in 0.62 seconds
Completed M23 in 0.70 seconds
Completed M24 in 0.88 seconds
Completed M25 in 1.09 seconds
Completed M26 in 1.15 seconds
Completed M27 in 1.54 seconds
Completed M28 in 1.85 seconds
Completed M29 in 1.88 seconds
Completed M30 in 2.42 seconds
Completed M31 in 2.58 seconds
```

[23]:				Мо	del	Training	g AUC	Validat	tion A	AUC	Trainin	g RMSLE	\
	155	M1	Decision	Tree	MD6	0.6	06142	(0.563	066		0.2242	
	156	M2	Decision	Tree	MD6	0.6	59318	(0.615	339		0.2211	
	157	МЗ	Decision	Tree	MD6	0.7	02358	(0.683	364		0.2188	
	158	M4	Decision	Tree	MD6	0.7	15865	(0.6699	937		0.2173	
	159	M5	Decision	Tree	MD6	0.7	16589	(0.6729	902		0.2173	
	160	M6	Decision	Tree	MD6	0.7	17090	(0.670	325		0.2172	
	161	M7	Decision	Tree	MD6	0.7	17947	(0.6669	980		0.2174	
	162	M8	Decision	Tree	MD6	0.7	17947	(0.6669	980		0.2174	
	163	M9	Decision	Tree	MD6	0.7	17947	(0.6669	983		0.2174	
	164	M10	Decision	Tree	MD6	0.7	11630	(0.673	389		0.2175	
	165	M11	Decision	Tree	MD6	0.7	11634	(0.675	729		0.2174	
	166	M12	Decision	Tree	MD6	0.7	15329	(0.672	186		0.2172	
	167	M13	Decision	Tree	MD6	0.7	18217	(0.665	591		0.2173	
	168	M14	Decision	Tree	MD6	0.7	18217	(0.666	726		0.2173	
	169	M15	Decision	Tree	MD6	0.7	18217	(0.666	726		0.2173	
	170	M16	Decision	Tree	MD6	0.7	18217	(0.667	106		0.2173	
	171	M17	Decision	Tree	MD6	0.7	14122	(0.6683	302		0.2168	
	172	M18	Decision	Tree	MD6	0.7	16974	(0.673	574		0.2164	
	173	M19	Decision	Tree	MD6	0.7	16974	(0.672	723		0.2164	
	174	M20	Decision	Tree	MD6	0.7	16974	(0.673	623		0.2164	
	175	M21	Decision	Tree	MD6	0.7	16640	(0.672	329		0.2164	
	176	M22	Decision	Tree	MD6	0.7	17947	(0.667	172		0.2174	
	177	M23	Decision	Tree	MD6	0.7	17947	(0.666	791		0.2174	
	178	M24	Decision	Tree	MD6	0.7	18217	(0.665	591		0.2173	
	179	M25	Decision	Tree	MD6	0.7	18217	(0.665	399		0.2173	
	180	M26	Decision	Tree	MD6	0.7	18217	(0.665	591		0.2173	
	181	M27	Decision	Tree	MD6	0.7	14122	(0.666	611		0.2168	
	182	M28	Decision	Tree	MD6	0.7	13867	(0.668	258		0.2168	
	182	M28	Decision	Tree	MD6	0.7	13867	(0.668	258		0.216	8

183 M29 Decision Tree MD6	0.712036	0.679049	0.2168
184 M30 Decision Tree MD6	0.716640	0.672216	0.2164
185 M31 Decision Tree MD6	0.716640	0.672379	0.2164

	Validation RMSLE
155	0.2322
156	0.2326
157	0.2288
158	0.2285
159	0.2283
160	0.2282
161	0.2286
162	0.2286
163	0.2286
164	0.2285
165	0.2285
166	0.2281
167	0.2287
168	0.2287
169	0.2287
170	0.2283
171	0.2299
172	0.2297
173	0.2298
174	0.2296
175	0.2302
176	0.2284
177	0.2287
178	0.2287
179	0.2288
180	0.2287
181	0.2303
182	0.2299
183	0.2289
184	0.2303
185	0.2301

0.28 #### Interpretation

There seems to be a slight increase in the training AUC and a slight decrease in the validation AUC, suggesting that the increase in max depth may be triggering overfitting. Thus, this model performs worse than the Max Depth 5.

0.29 ### Decision Tree Classifer Max Depth 7

```
[24]: for group_name, features in models.items():
          start_time = time.time() # Start timer
          steps = [
              ("scale_features", ColumnTransformer([("scale_numeric_features",__

→MinMaxScaler(), features)], remainder='drop')),
              ("tree", DecisionTreeClassifier(max_depth=7, random_state=20240407))
          1
          pipe_tree = Pipeline(steps)
          # Fit the model
          pipe_tree.fit(X_train[features], y_train)
          # Predict probabilities
          train_prob = pipe_tree.predict_proba(X_train[features])[:, 1]
          val_prob = pipe_tree.predict_proba(X_val[features])[:, 1]
          # Calculate AUC
          train_auc = roc_auc_score(y_train, train_prob)
          val_auc = roc_auc_score(y_val, val_prob)
          # Calculate RMSLE
          train_rmsle = calculateRMSLE(train_prob, y_train)
          val_rmsle = calculateRMSLE(val_prob, y_val)
          # Append results
          new_row = pd.DataFrame([[f"{group_name} Decision Tree MD7", train_auc,__
       →val_auc, train_rmsle, val_rmsle]],
                                 columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
          results_df = pd.concat([results_df, new_row], ignore_index=True)
          end_time = time.time() # End timer
          print(f"Completed {group_name} in {end_time - start_time:.2f} seconds")
      results_df.tail(31)
     Completed M1 in 0.12 seconds
     Completed M2 in 0.21 seconds
     Completed M3 in 0.36 seconds
```

```
Completed M2 in 0.21 seconds
Completed M3 in 0.36 seconds
Completed M4 in 0.39 seconds
Completed M5 in 0.39 seconds
Completed M6 in 0.59 seconds
Completed M7 in 0.59 seconds
Completed M8 in 0.64 seconds
Completed M9 in 0.70 seconds
```

```
Completed M10 in 1.05 seconds
Completed M11 in 1.10 seconds
Completed M12 in 0.53 seconds
Completed M13 in 0.83 seconds
Completed M14 in 0.81 seconds
Completed M15 in 0.93 seconds
Completed M16 in 0.97 seconds
Completed M17 in 1.05 seconds
Completed M18 in 1.67 seconds
Completed M19 in 1.76 seconds
Completed M20 in 2.17 seconds
Completed M21 in 2.49 seconds
Completed M22 in 0.65 seconds
Completed M23 in 0.79 seconds
Completed M24 in 1.01 seconds
Completed M25 in 1.26 seconds
Completed M26 in 1.33 seconds
Completed M27 in 1.76 seconds
Completed M28 in 2.10 seconds
Completed M29 in 2.25 seconds
Completed M30 in 2.96 seconds
Completed M31 in 2.91 seconds
```

[24]:			Mode	l Tra	aining AUC	Valida	ation AUC	Training	RMSLE	\
18	86 M1	Decision	Tree MD	7	0.618633		0.574762		0.2229	
18	87 M2	Decision	Tree MD	7	0.676916		0.621189		0.2183	
18	88 M3	Decision	Tree MD	7	0.716705		0.679916		0.2162	
18	89 M4	Decision	Tree MD	7	0.731960		0.658502		0.2138	
19	90 M5	Decision	Tree MD	7	0.732297		0.660033		0.2137	
19	91 M6	Decision	Tree MD	7	0.732842		0.668368		0.2138	
19	92 M7	Decision	Tree MD	7	0.734117		0.666903		0.2140	
19	93 M8	Decision	Tree MD	7	0.734678		0.667129		0.2139	
19	94 M9	Decision	Tree MD	7	0.734117		0.665766		0.2140	
19	95 M10	Decision	Tree MD	7	0.726670		0.676924		0.2143	
19	96 M11	Decision	Tree MD	7	0.725687		0.675754		0.2141	
19	97 M12	Decision	Tree MD	7	0.730659		0.673338		0.2139	
19	98 M13	Decision	Tree MD	7	0.735542		0.660959		0.2139	
19	99 M14	Decision	Tree MD	7	0.734974		0.660638		0.2139	
20	00 M15	Decision	Tree MD	7	0.734974		0.662002		0.2139	
20	01 M16	Decision	Tree MD	7	0.734974		0.662615		0.2139	
20	02 M17	Decision	Tree MD	7	0.728223		0.665090		0.2133	
20	03 M18	Decision	Tree MD	7	0.731147		0.669459		0.2124	
20	04 M19	Decision	Tree MD	7	0.729218		0.671922		0.2124	
20	05 M20	Decision	Tree MD	7	0.729301		0.670441		0.2124	
20	06 M21	Decision	Tree MD	7	0.729804		0.666320		0.2122	
20	07 M22	Decision	Tree MD	7	0.734117		0.667091		0.2140	
20	08 M23	Decision	Tree MD	7	0.734117		0.666697		0.2140	

209	M24	Decision	Tree	MD7	0.734974	0.660912	0.2139
210	M25	Decision	Tree	MD7	0.735542	0.660876	0.2139
211	M26	${\tt Decision}$	Tree	MD7	0.735542	0.660919	0.2139
212	M27	${\tt Decision}$	Tree	MD7	0.728339	0.667062	0.2133
213	M28	${\tt Decision}$	Tree	MD7	0.726385	0.669269	0.2128
214	M29	Decision	Tree	MD7	0.725104	0.680026	0.2127
215	M30	Decision	Tree	MD7	0.730528	0.667052	0.2123
216	M31	Decision	Tree	MD7	0.729804	0.664633	0.2122

Validation RMSLE 186 0.2334 187 0.2361 188 0.2296 189 0.2317 190 0.2325 191 0.2314 192 0.2311 193 0.2310 194 0.2312 195 0.2302 196 0.2302 197 0.2309 198 0.2317 199 0.2320 200 0.2317 201 0.2310 202 0.2326 203 0.2320 204 0.2319 205 0.2319 206 0.2334 207 0.2310 208 0.2314 209 0.2316 210 0.2319 211 0.2317 0.2319 212 213 0.2332 214 0.2315 215 0.2333 216 0.2340

0.30 #### Interpretation

The results here further validate the interpretation from the max depth 6 model. This increase in max depth is causing overfitting in the models. The Grid Search will allow us to see which max depths are most appropriate for these models to avoid overfitting.

0.31 ### Decision Tree Classifer Grid Search

```
[25]: for group_name, features in models.items():
          start_time = time.time() # Start timer
          # pipeline steps
          steps = [
              ("scale_features", ColumnTransformer([("scale_numeric_features", __

→MinMaxScaler(), features)], remainder='drop')),
              ("tree", DecisionTreeClassifier(random_state=20240407))
          pipe_tree = Pipeline(steps)
          # the parameter grid to search over
          param_grid = {
              "tree_max_depth": range(3, 9)
          }
          # initialize GridSearchCV
          grid_search = GridSearchCV(pipe_tree, param_grid, cv=5, scoring='roc_auc',_u
       \rightarrown_jobs=-1)
          # Fit the model
          grid_search.fit(X_train[features], y_train)
          # Best model after grid search
          best_model = grid_search.best_estimator_
          # Predict probabilities
          train prob = best_model.predict_proba(X_train[features])[:, 1]
          val_prob = best_model.predict_proba(X_val[features])[:, 1]
          # Calculate AUC
          train_auc = roc_auc_score(y_train, train_prob)
          val_auc = roc_auc_score(y_val, val_prob)
          # Calculate RMSLE
          train_rmsle = calculateRMSLE(train_prob, y_train)
          val_rmsle = calculateRMSLE(val_prob, y_val)
          # Append results
          best_depth = best_model.named_steps['tree'].max_depth
          new_row = pd.DataFrame([[f"{group_name}] Decision Tree Grid Search", __
       →train_auc, val_auc, train_rmsle, val_rmsle]],
                                  columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
          results_df = pd.concat([results_df, new_row], ignore_index=True)
```

```
Completed M1 with best max_depth=7 in 5.48 seconds
Completed M2 with best max_depth=5 in 1.02 seconds
Completed M3 with best max depth=4 in 1.30 seconds
Completed M4 with best max_depth=5 in 1.51 seconds
Completed M5 with best max depth=5 in 1.57 seconds
Completed M6 with best max_depth=4 in 2.19 seconds
Completed M7 with best max_depth=4 in 2.31 seconds
Completed M8 with best max_depth=4 in 2.44 seconds
Completed M9 with best max_depth=4 in 2.69 seconds
Completed M10 with best max_depth=5 in 4.27 seconds
Completed M11 with best max_depth=5 in 4.52 seconds
Completed M12 with best max_depth=4 in 2.01 seconds
Completed M13 with best max_depth=4 in 3.25 seconds
Completed M14 with best max depth=4 in 3.17 seconds
Completed M15 with best max_depth=4 in 3.55 seconds
Completed M16 with best max depth=4 in 3.77 seconds
Completed M17 with best max_depth=3 in 3.89 seconds
Completed M18 with best max depth=5 in 6.64 seconds
Completed M19 with best max_depth=3 in 6.39 seconds
Completed M20 with best max depth=4 in 8.51 seconds
Completed M21 with best max_depth=3 in 9.25 seconds
Completed M22 with best max_depth=4 in 2.67 seconds
Completed M23 with best max_depth=4 in 3.21 seconds
Completed M24 with best max_depth=4 in 4.23 seconds
Completed M25 with best max_depth=4 in 4.97 seconds
Completed M26 with best max_depth=4 in 5.58 seconds
Completed M27 with best max_depth=3 in 6.80 seconds
Completed M28 with best max_depth=5 in 8.84 seconds
Completed M29 with best max_depth=5 in 8.87 seconds
Completed M30 with best max_depth=3 in 10.53 seconds
Completed M31 with best max_depth=3 in 10.65 seconds
```

```
[25]:
                                   Model Training AUC Validation AUC \
            M1 Decision Tree Grid Search
      217
                                               0.618633
                                                               0.574762
      218
            M2 Decision Tree Grid Search
                                               0.645188
                                                               0.613544
      219
            M3 Decision Tree Grid Search
                                               0.677494
                                                               0.677595
      220
            M4 Decision Tree Grid Search
                                               0.702222
                                                               0.677891
      221
            M5 Decision Tree Grid Search
                                               0.702322
                                                               0.675899
      222
            M6 Decision Tree Grid Search
                                               0.688481
                                                               0.671874
      223
            M7 Decision Tree Grid Search
                                               0.688161
                                                               0.671863
```

224	M8	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
225	M9	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
226	M10	Decision	Tree	${\tt Grid}$	Search	0.699318	0.672435
227	M11	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.699161	0.671234
228	M12	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688481	0.671874
229	M13	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
230	M14	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
231	M15	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
232	M16	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
233	M17	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.678634	0.673502
234	M18	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.700671	0.679698
235	M19	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.678560	0.673000
236	M20	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.690074	0.683425
237	M21	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.678560	0.673000
238	M22	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
239	M23	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
240	M24	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
241	M25	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
242	M26	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.688161	0.671863
243	M27	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.678634	0.673502
244	M28	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.699245	0.676840
245	M29	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.698546	0.681102
246	M30	${\tt Decision}$	Tree	${\tt Grid}$	Search	0.678560	0.673000
247	M31	Decision	Tree	${\tt Grid}$	Search	0.678560	0.673000

	Training RMSIF	Validation RMSLE
217	0.2229	0.2334
	*	*
218	0.2229	0.2310
219	0.2219	0.2268
220	0.2197	0.2263
221	0.2197	0.2265
222	0.2212	0.2271
223	0.2212	0.2272
224	0.2212	0.2272
225	0.2212	0.2272
226	0.2196	0.2274
227	0.2196	0.2279
228	0.2212	0.2271
229	0.2212	0.2272
230	0.2212	0.2272
231	0.2212	0.2272
232	0.2212	0.2272
233	0.2219	0.2271
234	0.2191	0.2281
235	0.2219	0.2270
236	0.2209	0.2271
237	0.2219	0.2270

238	0.2212	0.2272
239	0.2212	0.2272
240	0.2212	0.2272
241	0.2212	0.2272
242	0.2212	0.2272
243	0.2219	0.2271
244	0.2193	0.2283
245	0.2193	0.2280
246	0.2219	0.2270
247	0.2219	0.2270

0.32 #### Interpretation

The Grid Search found that the models performed best with lower max depth values. Max Depth 3, 4, and 5 were the most frequented, out of a range from 3 to 9. The AUC scores suggest that the models are performing better than when set to a specific max depth, and the overfitting issue is resolved; however, these models are not performing better than the logistic regression model from earlier, and thus, are not ideal to be selected as the best predictive models.

0.33 ## Random Forest

```
[26]: for group_name, features in models.items():
          start_time = time.time() # Start timer
          steps = [
              ("scale_features", ColumnTransformer([("scale_numeric_features",_

→MinMaxScaler(), features)], remainder='drop')),
              ("random_forest", RandomForestClassifier(random_state=20240407))
          pipe_rf = Pipeline(steps)
          # the parameter grid to search over
          param_grid = {
              "random_forest__max_depth": [None, 3, 5, 7],
              "random_forest__n_estimators": [10, 50, 100],
              "random_forest__min_samples_split": [2, 4]
          }
          # Initialize GridSearchCV
          grid_search = GridSearchCV(pipe_rf, param_grid, cv=5, scoring='roc_auc',_
       \rightarrown_jobs=-1)
          # Fit the model
          grid_search.fit(X_train[features], y_train)
          # Best model after grid search
          best_model = grid_search.best_estimator_
```

```
# Predict probabilities
    train prob = best_model.predict_proba(X_train[features])[:, 1]
    val_prob = best_model.predict_proba(X_val[features])[:, 1]
    # Calculate AUC
    train_auc = roc_auc_score(y_train, train_prob)
    val_auc = roc_auc_score(y_val, val_prob)
    # Calculate RMSLE
    train_rmsle = calculateRMSLE(train_prob, y_train)
    val_rmsle = calculateRMSLE(val_prob, y_val)
    # Append results
    best_params = grid_search.best_params_
    new_row = pd.DataFrame([[f"{group_name} Random Forest", train_auc, val_auc,_u
  ⇔train_rmsle, val_rmsle]],
                           columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
    results_df = pd.concat([results_df, new_row], ignore_index=True)
    end_time = time.time() # End timer
    print(f"Completed {group name} with best parameters {best params} in_
  results_df.tail(31)
Completed M1 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
17.49 seconds
Completed M2 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
23.53 seconds
Completed M3 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
31.09 seconds
Completed M4 with best parameters {'random forest_max depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
36.96 seconds
Completed M5 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
32.57 seconds
Completed M6 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
43.04 seconds
Completed M7 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
```

```
42.59 seconds
Completed M8 with best parameters {'random_forest__max_depth': 7,
'random forest min samples split': 4, 'random forest n estimators': 100} in
41.54 seconds
Completed M9 with best parameters {'random forest max depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
47.13 seconds
Completed M10 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
60.64 seconds
Completed M11 with best parameters { 'random forest max depth': 7,
'random forest min samples split': 2, 'random forest n estimators': 100} in
61.48 seconds
Completed M12 with best parameters { 'random forest max depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
40.40 seconds
Completed M13 with best parameters {'random_forest__max_depth': 7,
'random forest min samples split': 4, 'random forest n estimators': 100} in
50.61 seconds
Completed M14 with best parameters { 'random forest max depth': 7,
'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
49.37 seconds
Completed M15 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
56.47 seconds
Completed M16 with best parameters { 'random_forest__max_depth': 7,
'random forest min samples split': 4, 'random forest n estimators': 100} in
55.60 seconds
Completed M17 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
63.90 seconds
Completed M18 with best parameters {'random_forest__max_depth': 7,
'random forest min samples split': 2, 'random forest n estimators': 100} in
79.08 seconds
Completed M19 with best parameters { 'random forest max depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
85.83 seconds
Completed M20 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
92.56 seconds
Completed M21 with best parameters {'random_forest__max_depth': 7,
'random forest min samples split': 2, 'random forest n estimators': 100} in
103.58 seconds
Completed M22 with best parameters { 'random forest max depth': 7,
'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
40.73 seconds
Completed M23 with best parameters {'random_forest__max_depth': 7,
'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
```

```
Completed M24 with best parameters {'random_forest__max_depth': 7,
     'random forest min samples split': 4, 'random forest n estimators': 100} in
     56.03 seconds
     Completed M25 with best parameters { 'random forest max depth': 7,
     'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
     63.60 seconds
     Completed M26 with best parameters {'random_forest__max_depth': 7,
     'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
     63.69 seconds
     Completed M27 with best parameters { 'random_forest__max_depth': 7,
     'random forest min samples split': 4, 'random forest n estimators': 100} in
     82.93 seconds
     Completed M28 with best parameters { 'random forest max depth': 7,
     'random_forest__min_samples_split': 4, 'random_forest__n_estimators': 100} in
     88.33 seconds
     Completed M29 with best parameters {'random_forest__max_depth': 7,
     'random forest min samples split': 4, 'random forest n estimators': 100} in
     94.43 seconds
     Completed M30 with best parameters { 'random forest max depth': 7,
     'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
     109.03 seconds
     Completed M31 with best parameters {'random_forest__max_depth': 7,
     'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 100} in
     109.70 seconds
[26]:
                       Model
                              Training AUC Validation AUC Training RMSLE \
                                                  0.603921
          M1 Random Forest
                                  0.692130
      248
                                                                    0.2215
           M2 Random Forest
      249
                                  0.733817
                                                  0.656886
                                                                    0.2172
      250
          M3 Random Forest
                                  0.774158
                                                  0.708519
                                                                    0.2132
          M4 Random Forest
      251
                                  0.782287
                                                                    0.2109
                                                  0.711795
      252
          M5 Random Forest
                                                                    0.2114
                                  0.781630
                                                  0.712681
           M6 Random Forest
      253
                                  0.792354
                                                  0.714636
                                                                    0.2109
      254
           M7 Random Forest
                                  0.792197
                                                  0.715297
                                                                    0.2110
      255
          M8 Random Forest
                                  0.791399
                                                  0.713278
                                                                    0.2111
      256
           M9 Random Forest
                                  0.795269
                                                  0.714616
                                                                    0.2106
                                                  0.715590
      257 M10 Random Forest
                                  0.795790
                                                                    0.2104
      258 M11 Random Forest
                                  0.793728
                                                  0.717255
                                                                    0.2105
      259 M12 Random Forest
                                                                    0.2108
                                  0.794477
                                                  0.714816
      260 M13 Random Forest
                                                  0.713364
                                  0.792061
                                                                    0.2105
      261 M14 Random Forest
                                  0.794005
                                                  0.715745
                                                                    0.2107
      262 M15 Random Forest
                                  0.792506
                                                  0.716487
                                                                    0.2105
      263 M16 Random Forest
                                  0.792441
                                                  0.713936
                                                                    0.2100
      264 M17 Random Forest
                                  0.793682
                                                  0.713212
                                                                    0.2101
      265 M18 Random Forest
                                                  0.714930
                                                                    0.2094
                                  0.793187
      266 M19 Random Forest
                                                                    0.2090
                                  0.792326
                                                  0.715411
      267 M20 Random Forest
                                  0.791841
                                                  0.714108
                                                                    0.2089
```

47.14 seconds

268	M21	${\tt Random}$	Forest	0.793415	0.717114	0.2087
269	M22	${\tt Random}$	Forest	0.794812	0.714967	0.2110
270	M23	${\tt Random}$	Forest	0.795248	0.712613	0.2112
271	M24	${\tt Random}$	Forest	0.796912	0.710943	0.2103
272	M25	${\tt Random}$	Forest	0.796458	0.715752	0.2102
273	M26	${\tt Random}$	Forest	0.788110	0.713519	0.2102
274	M27	${\tt Random}$	Forest	0.790270	0.714281	0.2095
275	M28	${\tt Random}$	Forest	0.791918	0.711802	0.2093
276	M29	${\tt Random}$	Forest	0.793466	0.713869	0.2093
277	M30	${\tt Random}$	Forest	0.794712	0.713761	0.2087
278	M31	Random	Forest	0.793070	0.713840	0.2086

Validation RMSLE

	Validation imbel
248	0.2301
249	0.2279
250	0.2241
251	0.2241
252	0.2242
253	0.2240
254	0.2240
255	0.2241
256	0.2240
257	0.2239
258	0.2239
259	0.2239
260	0.2240
261	0.2240
262	0.2236
263	0.2239
264	0.2241
265	0.2237
266	0.2238
267	0.2241
268	0.2236
269	0.2239
270	0.2241
271	0.2243
272	0.2238
273	0.2240
274	0.2240
275	0.2240
276	0.2240
277	0.2239
278	0.2238

0.34 #### Interpretation

This random forest model is not performing too poorly. Grid Search CV was used on max depth, number of splits, and number of estimators, with tax depth typically being 7, number of estimators typically being 100, and a mixture of splits from 2 to 4. There is an overfitting problem with the training AUC scores being around 0.08 higher than the validation scores. The validation scores are higher than the logistic regression, and with the RMSLE scores not being too far apart from each other, the overfitting is not too significant. This would suggest that this random forest model is performing as one of the best models so far.

0.35 ## XGB

```
[27]: for group_name, features in models.items():
          start_time = time.time() # Timer start
          steps = [
              ("scale features", ColumnTransformer([("scale numeric features",

→MinMaxScaler(), features)], remainder='drop')),
              ("xgb", xgb.XGBClassifier(use label encoder=False,
       ⇔eval_metric='logloss'))
          pipe_xgb = Pipeline(steps)
          # the parameter grid
          param_grid = {
              "xgb_n_estimators": [100, 200],
              "xgb_max_depth": [3, 5, 7],
              "xgb_learning_rate": [0.01, 0.1]
          }
          # Initialize GridSearchCV
          grid_search = GridSearchCV(pipe_xgb, param_grid, cv=5, scoring='roc_auc',_
       \rightarrown_jobs=-1)
          # Fit the model
          grid_search.fit(X_train[features], y_train)
          # Best model after grid search
          best_model = grid_search.best_estimator_
          # Predict probabilities
          train prob = best_model.predict_proba(X_train[features])[:, 1]
          val_prob = best_model.predict_proba(X_val[features])[:, 1]
          # Calculate AUC
          train_auc = roc_auc_score(y_train, train_prob)
          val_auc = roc_auc_score(y_val, val_prob)
```

```
# Calculate RMSLE
    train_rmsle = calculateRMSLE(train_prob, y_train)
    val_rmsle = calculateRMSLE(val_prob, y_val)
    # Append results
    best_params = grid_search.best_params_
    new_row = pd.DataFrame([[f"{group_name}] XGBoost", train_auc, val_auc,__
  ⇔train_rmsle, val_rmsle]],
                           columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
    results_df = pd.concat([results_df, new_row], ignore_index=True)
    end time = time.time() # End timer
    print(f"Completed {group_name} with best parameters {best_params} in_u
 →{end_time - start_time:.2f} seconds")
results_df.tail(31)
Completed M1 with best parameters {'xgb_learning_rate': 0.01, 'xgb_max_depth':
5, 'xgb_n_estimators': 200} in 3.63 seconds
Completed M2 with best parameters {'xgb_learning_rate': 0.01, 'xgb_max_depth':
5, 'xgb_n_estimators': 200} in 6.17 seconds
Completed M3 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 9.08 seconds
Completed M4 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 10.31 seconds
Completed M5 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 10.84 seconds
Completed M6 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 16.22 seconds
Completed M7 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 16.97 seconds
Completed M8 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 17.61 seconds
Completed M9 with best parameters {'xgb_learning rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 20.20 seconds
Completed M10 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 29.73 seconds
Completed M11 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 31.75 seconds
Completed M12 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb n estimators': 100} in 14.56 seconds
Completed M13 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 22.79 seconds
Completed M14 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
3, 'xgb_n_estimators': 100} in 22.73 seconds
```

Completed M15 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':

```
Completed M16 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 27.66 seconds
     Completed M17 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb n estimators': 100} in 28.88 seconds
     Completed M18 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb n estimators': 100} in 48.34 seconds
     Completed M19 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb n estimators': 100} in 49.82 seconds
     Completed M20 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 64.94 seconds
     Completed M21 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 80.72 seconds
     Completed M22 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 18.37 seconds
     Completed M23 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 23.03 seconds
     Completed M24 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 29.36 seconds
     Completed M25 with best parameters {'xgb learning rate': 0.1, 'xgb max depth':
     3, 'xgb_n_estimators': 100} in 37.33 seconds
     Completed M26 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 40.43 seconds
     Completed M27 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 55.82 seconds
     Completed M28 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 68.48 seconds
     Completed M29 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 71.14 seconds
     Completed M30 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 97.89 seconds
     Completed M31 with best parameters {'xgb_learning_rate': 0.1, 'xgb_max_depth':
     3, 'xgb_n_estimators': 100} in 102.59 seconds
[27]:
                Model Training AUC Validation AUC Training RMSLE \
           M1 XGBoost
                           0.665216
                                                             0.2241
     279
                                           0.596593
     280
           M2 XGBoost
                           0.719108
                                           0.659764
                                                             0.2198
           M3 XGBoost
                           0.747470
                                                             0.2162
     281
                                           0.712439
     282
           M4 XGBoost
                           0.759199
                                           0.716104
                                                             0.2146
     283
           M5 XGBoost
                           0.759368
                                           0.716645
                                                             0.2145
     284
           M6 XGBoost
                           0.768038
                                           0.720897
                                                             0.2138
     285
           M7 XGBoost
                           0.769562
                                           0.719086
                                                             0.2135
     286
           M8 XGBoost
                           0.769562
                                           0.719086
                                                             0.2135
           M9 XGBoost
     287
                           0.769550
                                           0.719653
                                                             0.2135
     288 M10 XGBoost
                           0.771894
                                           0.722050
                                                             0.2131
     289 M11 XGBoost
                                           0.722890
                                                             0.2127
                           0.774262
     290 M12 XGBoost
                           0.767690
                                           0.722454
                                                             0.2138
```

3, 'xgb_n_estimators': 100} in 26.80 seconds

291	M13	XGBoost	0.770440	0.720937	0.2134
292	M14	XGBoost	0.769978	0.719701	0.2135
293	M15	XGBoost	0.769828	0.719955	0.2135
294	M16	XGBoost	0.769828	0.719955	0.2135
295	M17	XGBoost	0.773609	0.717837	0.2129
296	M18	XGBoost	0.776353	0.720049	0.2124
297	M19	XGBoost	0.778091	0.722872	0.2123
298	M20	XGBoost	0.778148	0.722158	0.2122
299	M21	XGBoost	0.780335	0.721468	0.2118
300	M22	XGBoost	0.769562	0.719086	0.2135
301	M23	XGBoost	0.769511	0.719509	0.2136
302	M24	XGBoost	0.769979	0.719701	0.2135
303	M25	XGBoost	0.769828	0.719955	0.2135
304	M26	XGBoost	0.769828	0.719955	0.2135
305	M27	XGBoost	0.773841	0.718111	0.2128
306	M28	XGBoost	0.776852	0.721188	0.2123
307	M29	XGBoost	0.776864	0.720156	0.2122
308	M30	XGBoost	0.780568	0.721286	0.2117
309	M31	XGBoost	0.780335	0.721468	0.2118

Validation RMSLE

Validation middle
0.2309
0.2287
0.2243
0.2243
0.2242
0.2241
0.2242
0.2242
0.2241
0.2235
0.2236
0.2237
0.2239
0.2241
0.2241
0.2241
0.2241
0.2241
0.2240
0.2241
0.2237
0.2242
0.2241
0.2241
0.2241
0.2241

305	0.2241
306	0.2237
307	0.2239
308	0.2237
309	0.2237

0.36 #### Interpretation

The XG Boost model does seem to be a slight improvement as compared to the random forest. The gap between the training and validation AUC scores seems to have been minimized slightly, and the validation AUC reached 0.72, which is the highest so far. This model seems to be performing very well compared to the previous models.

0.37 ## Light Gradient Boosting Model

LightGBM is a fast and efficient gradient boosting framework that uses tree-based learning. It's designed to be faster and use less memory than other methods, making it great for handling large datasets. LightGBM can also work with categorical features directly, which simplifies the data preparation process. This makes it a preferred choice for many machine learning tasks that involve large amounts of data.

0.38 ### Simple Light Gradient Boosting

```
[28]: for group_name, features in models.items():
          start_time = time.time()
          # creating datasets for LightGBM
          lgb_train = lgb.Dataset(X_train[features], label=y_train)
          lgb_val = lgb.Dataset(X_val[features], label=y_val, reference=lgb_train)
          # simplified params
          params = {
              'objective': 'binary',
              'metric': 'auc',
              'verbose': -1,
              'random state': 20240325
          }
          # Train model
          num_boost_round = 100
          lgb_model = lgb.train(params,
                                 lgb_train,
                                 num_boost_round=num_boost_round,
                                 valid_sets=[lgb_val])
          # predict
```

```
train_prob = lgb_model.predict(X_train[features], num_iteration=lgb_model.
 ⇔best_iteration)
   val_prob = lgb_model.predict(X_val[features], num_iteration=lgb_model.
 ⇒best iteration)
   # calculate AUC
   train_auc = roc_auc_score(y_train, train_prob)
   val_auc = roc_auc_score(y_val, val_prob)
   # Calculate RMSLE
   train_rmsle = calculateRMSLE(y_train, train_prob)
   val rmsle = calculateRMSLE(y val, val prob)
   # Append results
   new_row = pd.DataFrame([[f"{group_name} LightGBM Simple", train_auc,_
 oval_auc, train_rmsle, val_rmsle]],
                          columns=['Model', 'Training AUC', 'Validation AUC', |
 results_df = pd.concat([results_df, new_row], ignore_index=True)
   end time = time.time()
   print(f"Completed {group_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
```

```
Completed M1 in 0.61 seconds
Completed M2 in 0.52 seconds
Completed M3 in 0.56 seconds
Completed M4 in 0.56 seconds
Completed M5 in 0.57 seconds
Completed M6 in 0.64 seconds
Completed M7 in 0.65 seconds
Completed M8 in 0.68 seconds
Completed M9 in 0.71 seconds
Completed M10 in 0.79 seconds
Completed M11 in 0.83 seconds
Completed M12 in 0.63 seconds
Completed M13 in 0.77 seconds
Completed M14 in 0.89 seconds
Completed M15 in 0.91 seconds
Completed M16 in 0.93 seconds
Completed M17 in 0.91 seconds
Completed M18 in 1.13 seconds
Completed M19 in 1.19 seconds
Completed M20 in 1.16 seconds
Completed M21 in 1.45 seconds
Completed M22 in 0.70 seconds
```

```
Completed M23 in 0.74 seconds Completed M24 in 0.82 seconds Completed M25 in 0.91 seconds Completed M26 in 0.92 seconds Completed M27 in 1.05 seconds Completed M28 in 1.16 seconds Completed M29 in 1.26 seconds Completed M30 in 1.70 seconds Completed M31 in 1.73 seconds
```

[28]:				Model	Training AUC	Validation AUC	Training RMSLE	\
	310	M1	${\tt LightGBM}$	Simple	0.842516	0.591113	0.2070	
	311	M2	${\tt LightGBM}$	Simple	0.892884	0.641908	0.1952	
	312	МЗ	${\tt LightGBM}$	Simple	0.916443	0.703488	0.1869	
	313	M4	${\tt LightGBM}$	Simple	0.919905	0.706887	0.1838	
	314	M5	${\tt LightGBM}$	Simple	0.915052	0.706785	0.1845	
	315	M6	${\tt LightGBM}$	Simple	0.933078	0.711330	0.1802	
	316	M7	${\tt LightGBM}$	Simple	0.937193	0.708391	0.1791	
	317	M8	${\tt LightGBM}$	Simple	0.937193	0.708391	0.1791	
	318	M9	${\tt LightGBM}$	Simple	0.937193	0.708391	0.1791	
	319	M10	${\tt LightGBM}$	Simple	0.937184	0.709963	0.1774	
	320	M11	${\tt LightGBM}$	Simple	0.938791	0.716654	0.1774	
	321	M12	${\tt LightGBM}$	Simple	0.931819	0.716769	0.1805	
	322	M13	${\tt LightGBM}$	Simple	0.939260	0.714709	0.1791	
	323	M14	${\tt LightGBM}$	Simple	0.937708	0.711139	0.1786	
	324	M15	${\tt LightGBM}$	Simple	0.939260	0.714709	0.1791	
	325	M16	${\tt LightGBM}$	Simple	0.939260	0.714709	0.1791	
	326	M17	${\tt LightGBM}$	Simple	0.939677	0.709743	0.1756	
	327	M18	${\tt LightGBM}$	Simple	0.944691	0.714028	0.1732	
	328	M19	${\tt LightGBM}$	Simple	0.948079	0.711990	0.1730	
	329	M20	${\tt LightGBM}$	Simple	0.946868	0.713726	0.1733	
	330	M21	${\tt LightGBM}$	Simple	0.945169	0.709520	0.1724	
	331	M22	${\tt LightGBM}$	Simple	0.937193	0.708391	0.1791	
	332	M23	${\tt LightGBM}$	Simple	0.937193	0.708391	0.1791	
	333	M24	${\tt LightGBM}$	Simple	0.937708	0.711139	0.1786	
	334	M25	${\tt LightGBM}$	Simple	0.939260	0.714709	0.1791	
	335	M26	${\tt LightGBM}$	Simple	0.939260	0.714709	0.1791	
	336	M27	${\tt LightGBM}$	Simple	0.942648	0.714965	0.1763	
	337		${\tt LightGBM}$	-	0.942749	0.711064	0.1740	
	338		${\tt LightGBM}$	-	0.944236	0.719813	0.1745	
	339		${\tt LightGBM}$	-	0.945702	0.716667	0.1726	
	340	M31	${\tt LightGBM}$	Simple	0.945169	0.709520	0.1724	

Validation RMSLE 310 0.2311 311 0.2294 312 0.2251

313	0.2259
314	0.2261
315	0.2251
316	0.2256
317	0.2256
318	0.2256
319	0.2247
320	0.2245
321	0.2255
322	0.2250
323	0.2258
324	0.2250
325	0.2250
326	0.2255
327	0.2248
328	0.2249
329	0.2254
330	0.2251
331	0.2256
332	0.2256
333	0.2258
334	0.2250
335	0.2250
336	0.2249
337	0.2255
338	0.2246
339	0.2247
340	0.2251

0.39 #### Interpretation

The simple LightGBM seems to have some problematic overfitting. So this model is not performing the best. Additional parameters will be tested to try and reduce the overfitting problem. The validation AUC seems to be performing well, but with a training AUC 0.9+, there is clear overfitting.

0.40 ### Tuned Light Gradient Boosting

```
[29]: for group_name, features in models.items():
    start_time = time.time()

# Create datasets for LightGBM
    lgb_train = lgb.Dataset(X_train[features], label=y_train)
    lgb_val = lgb.Dataset(X_val[features], label=y_val, reference=lgb_train)

# adjusting parameters to reduce overfitting
    params = {
```

```
'objective': 'binary',
        'metric': 'auc',
        'learning_rate': 0.05, # Lowered learning rate
        'num_leaves': 20, # Fewer leaves
        'lambda_11': 0.5, # Added L1 regularization
        'lambda_12': 0.5, # Added L2 regularization
        'verbose': -1,
        'random_state': 20240325
    }
    # Train model
    lgb_model = lgb.train(params,
                          lgb_train,
                          valid_sets=[lgb_val],
                          num_boost_round=1000) # Maximum number of boosting_
 \hookrightarrowrounds
    # Prediction
    train_prob = lgb_model.predict(X_train[features], num_iteration=lgb_model.
 ⇔best_iteration)
    val_prob = lgb_model.predict(X_val[features], num_iteration=lgb_model.
 ⇔best_iteration)
    # Calculate AUC
    train_auc = roc_auc_score(y_train, train_prob)
    val_auc = roc_auc_score(y_val, val_prob)
    # Calculate RMSLE
    train_rmsle = calculateRMSLE(y_train, train_prob)
    val_rmsle = calculateRMSLE(y_val, val_prob)
    # Append results
    new_row = pd.DataFrame([[f"{group_name}] LightGBM Tuned", train_auc,__
 →val_auc, train_rmsle, val_rmsle]],
                           columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
    results_df = pd.concat([results_df, new_row], ignore_index=True)
    end_time = time.time()
    print(f"Completed {group_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
```

```
Completed M1 in 4.61 seconds
Completed M2 in 4.71 seconds
Completed M3 in 5.20 seconds
```

```
Completed M4 in 5.47 seconds
Completed M5 in 5.12 seconds
Completed M6 in 5.75 seconds
Completed M7 in 5.78 seconds
Completed M8 in 5.53 seconds
Completed M9 in 6.23 seconds
Completed M10 in 6.44 seconds
Completed M11 in 6.64 seconds
Completed M12 in 5.80 seconds
Completed M13 in 5.84 seconds
Completed M14 in 6.34 seconds
Completed M15 in 6.39 seconds
Completed M16 in 6.19 seconds
Completed M17 in 6.95 seconds
Completed M18 in 7.29 seconds
Completed M19 in 8.21 seconds
Completed M20 in 8.21 seconds
Completed M21 in 9.86 seconds
Completed M22 in 5.72 seconds
Completed M23 in 6.60 seconds
Completed M24 in 6.39 seconds
Completed M25 in 7.16 seconds
Completed M26 in 7.77 seconds
Completed M27 in 8.05 seconds
Completed M28 in 8.98 seconds
Completed M29 in 9.13 seconds
Completed M30 in 9.72 seconds
Completed M31 in 10.65 seconds
```

[29]:				Model	Training AUC	Validation AUC	Training RMSLE	\
	341	M1	LightGBM	Tuned	0.939188	0.573151	0.1857	
	342		LightGBM		0.976504	0.618826	0.1605	
	343		LightGBM		0.989452	0.687944	0.1446	
	344		LightGBM		0.989442	0.699864	0.1414	
	345	M5	LightGBM	Tuned	0.991744	0.698887	0.1390	
	346	M6	LightGBM	Tuned	0.995478	0.706937	0.1317	
	347		LightGBM		0.996543	0.703983	0.1292	
	348	M8	LightGBM	Tuned	0.996543	0.703983	0.1292	
	349	M9	LightGBM	Tuned	0.996543	0.703983	0.1292	
	350	M10	LightGBM	Tuned	0.997476	0.704864	0.1250	
	351	M11	LightGBM	Tuned	0.997174	0.702369	0.1253	
	352	M12	LightGBM	Tuned	0.995949	0.710317	0.1312	
	353	M13	LightGBM	Tuned	0.996994	0.702532	0.1283	
	354	M14	LightGBM	Tuned	0.996551	0.701504	0.1296	
	355	M15	LightGBM	Tuned	0.996994	0.702532	0.1283	
	356	M16	LightGBM	Tuned	0.996994	0.702532	0.1283	
	357	M17	LightGBM	Tuned	0.997594	0.705479	0.1237	

358	M18	${\tt LightGBM}$	Tuned	0.998806	0.703776	0.1166
359	M19	${\tt LightGBM}$	Tuned	0.998681	0.702071	0.1167
360	M20	${\tt LightGBM}$	Tuned	0.998657	0.705644	0.1158
361	M21	${\tt LightGBM}$	Tuned	0.998908	0.706279	0.1134
362	M22	${\tt LightGBM}$	Tuned	0.996543	0.703983	0.1292
363	M23	${\tt LightGBM}$	Tuned	0.996543	0.703983	0.1292
364	M24	${\tt LightGBM}$	Tuned	0.996482	0.702687	0.1296
365	M25	${\tt LightGBM}$	Tuned	0.996959	0.703153	0.1283
366	M26	${\tt LightGBM}$	Tuned	0.996959	0.703153	0.1283
367	M27	${\tt LightGBM}$	Tuned	0.997354	0.702421	0.1230
368	M28	${\tt LightGBM}$	Tuned	0.998384	0.706762	0.1197
369	M29	${\tt LightGBM}$	Tuned	0.998254	0.703443	0.1189
370	M30	${\tt LightGBM}$	Tuned	0.999104	0.709370	0.1134
371	M31	LightGBM	Tuned	0.998908	0.706279	0.1134

Validation RMSLE

	Variation mides
341	0.2336
342	0.2321
343	0.2273
344	0.2273
345	0.2274
346	0.2261
347	0.2265
348	0.2265
349	0.2265
350	0.2257
351	0.2263
352	0.2255
353	0.2264
354	0.2265
355	0.2264
356	0.2264
357	0.2262
358	0.2266
359	0.2270
360	0.2267
361	0.2264
362	0.2265
363	0.2265
364	0.2265
365	0.2263
366	0.2263
367	0.2272
368	0.2266
369	0.2271
370	0.2255
371	0.2264

0.41 #### Interpretation

The number of leaves and the learning rate were decreased, with L1 and L2 regularization added to reduce overfitting. This did not reduce overfitting, but actually created more overfitting. So, the simplier LightGBM performed better on all of the models. Nevertheless, the XGB model is still performing better. Additionally, the training AUC was increased and the validation AUC was decreased in the tuned lightGBM.

0.42 ## Cat Boosting

CatBoost is a machine learning algorithm that is very good with categorical data, without the need for extensive preprocessing like one-hot encoding. It provides fast results and is designed to prevent overfitting, making it highly effective, especially in datasets with many categorical features. CatBoost automatically detects the best parameters for the model during training, simplifying the process of model tuning. This makes it highly user-friendly and effective for a wide range of regression and classification tasks.

0.42.1 Simple Cat Boost

```
[30]: for group_name, features in models.items():
          start_time = time.time()
          # Defining CatBoost model
          cb model = CatBoostClassifier(
              iterations=500,
              learning rate=0.01,
              depth=4,
              random_state=20240325,
              verbose=False
          )
          # Fit the model
          cb_model.fit(X_train[features], y_train, eval_set=(X_val[features], y_val),_
       ⇔early_stopping_rounds=50, verbose=False)
          # Predict
          train_prob = cb_model.predict_proba(X_train[features])[:, 1]
          val prob = cb model.predict proba(X val[features])[:, 1]
          # Calculate AUC
          train_auc = roc_auc_score(y_train, train_prob)
          val_auc = roc_auc_score(y_val, val_prob)
          # Calculate RMSLE
          train_rmsle = calculateRMSLE(y_train, train_prob)
          val_rmsle = calculateRMSLE(y_val, val_prob)
          # Append results
```

```
new_row = pd.DataFrame([[f"{group_name} CatBoost Simple", train_auc,__
       →val_auc, train_rmsle, val_rmsle]],
                                columns=['Model', 'Training AUC', 'Validation AUC', |
       results_df = pd.concat([results_df, new_row], ignore_index=True)
         end_time = time.time()
         print(f"Completed {group_name} in {end_time - start_time:.2f} seconds")
     results_df.tail(31)
     Completed M1 in 3.44 seconds
     Completed M2 in 3.24 seconds
     Completed M3 in 3.49 seconds
     Completed M4 in 3.48 seconds
     Completed M5 in 3.20 seconds
     Completed M6 in 3.46 seconds
     Completed M7 in 3.58 seconds
     Completed M8 in 3.90 seconds
     Completed M9 in 3.89 seconds
     Completed M10 in 4.02 seconds
     Completed M11 in 4.21 seconds
     Completed M12 in 3.77 seconds
     Completed M13 in 3.98 seconds
     Completed M14 in 3.76 seconds
     Completed M15 in 4.07 seconds
     Completed M16 in 4.36 seconds
     Completed M17 in 4.11 seconds
     Completed M18 in 4.50 seconds
     Completed M19 in 4.69 seconds
     Completed M20 in 5.43 seconds
     Completed M21 in 5.57 seconds
     Completed M22 in 3.73 seconds
     Completed M23 in 4.11 seconds
     Completed M24 in 4.22 seconds
     Completed M25 in 4.32 seconds
     Completed M26 in 4.60 seconds
     Completed M27 in 5.31 seconds
     Completed M28 in 5.18 seconds
     Completed M29 in 5.47 seconds
     Completed M30 in 6.38 seconds
     Completed M31 in 5.87 seconds
[30]:
                        Model Training AUC Validation AUC Training RMSLE \
           M1 CatBoost Simple
                                   0.618453
                                                   0.595543
                                                                    0.2255
     372
     373
           M2 CatBoost Simple
                                   0.669739
                                                   0.656781
                                                                     0.2227
```

0.708040

0.2203

0.707846

374

M3 CatBoost Simple

375	5 M4	${\tt CatBoost}$	Simple	0.720150	0.714292	0.2191
376	6 M5	${\tt CatBoost}$	Simple	0.720699	0.713801	0.2191
377	7 M6	${\tt CatBoost}$	Simple	0.723002	0.715514	0.2190
378	8 M7	${\tt CatBoost}$	Simple	0.723666	0.717000	0.2189
379	9 M8	${\tt CatBoost}$	Simple	0.723455	0.716248	0.2189
380) M9	${\tt CatBoost}$	Simple	0.723954	0.717557	0.2188
381	1 M10	${\tt CatBoost}$	Simple	0.723738	0.715799	0.2189
382	2 M11	${\tt CatBoost}$	Simple	0.724089	0.716550	0.2187
383	3 M12	${\tt CatBoost}$	Simple	0.722991	0.717070	0.2190
384	1 M13	${\tt CatBoost}$	Simple	0.723679	0.716868	0.2188
385	5 M14	${\tt CatBoost}$	Simple	0.723793	0.716271	0.2189
386	6 M15	${\tt CatBoost}$	Simple	0.723694	0.716679	0.2188
387	7 M16	${\tt CatBoost}$	Simple	0.723898	0.716920	0.2188
388	3 M17	${\tt CatBoost}$	Simple	0.724818	0.717518	0.2188
389	9 M18	${\tt CatBoost}$	Simple	0.724918	0.717098	0.2187
390	M19	${\tt CatBoost}$	Simple	0.725062	0.717590	0.2186
391	M20	${\tt CatBoost}$	Simple	0.725010	0.717192	0.2186
392	2 M21	${\tt CatBoost}$	Simple	0.724701	0.717163	0.2186
393	8 M22	${\tt CatBoost}$	Simple	0.723191	0.716020	0.2189
394	1 M23	${\tt CatBoost}$	Simple	0.723381	0.715913	0.2189
395	5 M24	${\tt CatBoost}$	Simple	0.723900	0.716267	0.2188
396	6 M25	${\tt CatBoost}$	Simple	0.723863	0.717047	0.2188
397	7 M26	${\tt CatBoost}$	Simple	0.723881	0.715158	0.2188
398	8 M27	${\tt CatBoost}$	Simple	0.725017	0.715846	0.2186
399	9 M28	${\tt CatBoost}$	Simple	0.725118	0.716557	0.2186
400	M29	${\tt CatBoost}$	Simple	0.724827	0.714946	0.2186
401	M30	${\tt CatBoost}$	Simple	0.725759	0.716240	0.2185
402	2 M31	${\tt CatBoost}$	Simple	0.725350	0.716669	0.2185

Validation RMSLE

Variation middle
0.2303
0.2279
0.2244
0.2240
0.2241
0.2239
0.2238
0.2239
0.2238
0.2239
0.2239
0.2238
0.2238
0.2239
0.2238
0.2238
0.2238

389	0.2237
390	0.2237
391	0.2237
392	0.2237
393	0.2239
394	0.2239
395	0.2239
396	0.2238
397	0.2239
398	0.2239
399	0.2238
400	0.2239
401	0.2238
402	0.2238

0.43 #### Interpretation

This cat boost model is called simple since a more complex model was developed after this to test how the adjustment in parameters will influence the outcome. This "simple" model performs quite well, with no overfitting issue here. The training and validation AUC scores are very similar, and perform very well as compared to the XGB. The XGB does perform better since the validation AUC scores are slightly higher. A noteable observation from the simple cat boost model is how fast this model operated as compared to other models. This is something important for future projects to take into consideration, as pocessing time is important to reduce in larger scale projects.

0.43.1 Tuned Cat Boost

```
[31]: for group_name, features in models.items():
          start_time = time.time()
          cb model = CatBoostClassifier(
              iterations=2000, # Explore more iterations for deeper learning
              learning_rate=0.001, # Further reduce learning rate for more gradualu
       \hookrightarrow learning
              depth=7, # Slightly increase depth for capturing more complex patterns
              12_leaf_reg=5, # Increase L2 regularization to control overfit depth's
       → complexity
              bagging_temperature=1, # Introduce bagging for randomness, reducing_
       →overfitting
              early_stopping_rounds=100,
              random state=20240325,
              verbose=False) # Use only a portion of data for each tree, increasing
       \rightarrow diversity
          cb_model.fit(X_train[features], y_train, eval_set=(X_val[features], y_val),_
       ⇔early_stopping_rounds=50, verbose=False)
```

```
Completed M1 in 16.63 seconds
Completed M2 in 17.90 seconds
Completed M3 in 20.68 seconds
Completed M4 in 21.23 seconds
Completed M5 in 21.07 seconds
Completed M6 in 24.97 seconds
Completed M7 in 26.55 seconds
Completed M8 in 27.29 seconds
Completed M9 in 29.09 seconds
Completed M10 in 33.91 seconds
Completed M11 in 35.61 seconds
Completed M12 in 24.77 seconds
Completed M13 in 30.18 seconds
Completed M14 in 30.29 seconds
Completed M15 in 32.84 seconds
Completed M16 in 32.79 seconds
Completed M17 in 34.28 seconds
Completed M18 in 45.00 seconds
Completed M19 in 45.59 seconds
Completed M20 in 52.07 seconds
Completed M21 in 58.94 seconds
Completed M22 in 28.65 seconds
Completed M23 in 30.82 seconds
Completed M24 in 34.09 seconds
Completed M25 in 38.57 seconds
```

Completed M26 in 39.91 seconds Completed M27 in 47.98 seconds Completed M28 in 53.11 seconds Completed M29 in 55.45 seconds Completed M30 in 66.49 seconds Completed M31 in 66.22 seconds

[31]:			Model	Training AUC	Validation AUC	Training RMSLE	\
403	3 M1	CatBoost		0.626457	0.593662	0.2306	
404	4 M2	CatBoost	Tuned	0.682740	0.655602	0.2274	
409	5 M3	CatBoost	Tuned	0.716299	0.704937	0.2244	
406	6 M4	CatBoost	Tuned	0.728570	0.711844	0.2229	
407	7 M5	CatBoost	Tuned	0.729916	0.711713	0.2228	
408	8 M6	CatBoost	Tuned	0.734208	0.712797	0.2226	
409	9 M7	CatBoost	Tuned	0.736047	0.712959	0.2225	
410	0 M8	CatBoost	Tuned	0.736876	0.713473	0.2224	
41:	1 M9	CatBoost	Tuned	0.736553	0.713060	0.2225	
412	2 M10	CatBoost	Tuned	0.736948	0.713204	0.2224	
413	3 M11	CatBoost	Tuned	0.737306	0.713051	0.2224	
414	4 M12	CatBoost	Tuned	0.734932	0.714174	0.2226	
415	5 M13	CatBoost	Tuned	0.734330	0.713430	0.2225	
416	6 M14	${\tt CatBoost}$	Tuned	0.736037	0.713077	0.2225	
41	7 M15	${\tt CatBoost}$	Tuned	0.735528	0.714038	0.2225	
418	8 M16	${\tt CatBoost}$	Tuned	0.734902	0.713281	0.2224	
419	9 M17	${\tt CatBoost}$	Tuned	0.738524	0.712682	0.2223	
420	0 M18	${\tt CatBoost}$	Tuned	0.737946	0.714574	0.2221	
42:	1 M19	${\tt CatBoost}$	Tuned	0.737564	0.714739	0.2220	
422	2 M20	${\tt CatBoost}$	Tuned	0.737282	0.714359	0.2221	
423	3 M21	${\tt CatBoost}$	Tuned	0.739480	0.715113	0.2219	
424	4 M22	${\tt CatBoost}$	Tuned	0.736325	0.712568	0.2224	
425	5 M23	${\tt CatBoost}$	Tuned	0.735849	0.712147	0.2225	
426	6 M24	${\tt CatBoost}$	Tuned	0.735431	0.712291	0.2226	
427	7 M25	${\tt CatBoost}$	Tuned	0.735819	0.714331	0.2224	
428	8 M26	${\tt CatBoost}$	Tuned	0.735275	0.713497	0.2223	
429	9 M27	${\tt CatBoost}$	Tuned	0.737269	0.713180	0.2222	
430	0 M28	${\tt CatBoost}$	Tuned	0.738768	0.713571	0.2221	
43:	1 M29	${\tt CatBoost}$	Tuned	0.738677	0.713442	0.2221	
432	2 M30	${\tt CatBoost}$	Tuned	0.739003	0.714696	0.2220	
433	3 M31	${\tt CatBoost}$	Tuned	0.738665	0.714524	0.2219	
			var E				
401		idation RI					
403			2349				
404			2324				
409			2287				
406			2280				
407			2280				
408	ğ	0.3	2280				

409	0.2280
410	0.2280
411	0.2280
412	0.2280
413	0.2280
414	0.2279
415	0.2279
416	0.2281
417	0.2279
418	0.2279
419	0.2280
420	0.2278
421	0.2277
422	0.2278
423	0.2278
424	0.2281
425	0.2281
426	0.2281
427	0.2279
428	0.2279
429	0.2279
430	0.2279
431	0.2279
432	0.2278
433	0.2278

0.44 #### Interpretation

The further tuned cat boosting model does not perform as well. The training AUC increased, while the validation AUC did not change very much. Additionally, this model took significantly longer to run as compared to the simple cat boosting model from before. Therefore, the simple cat boosting model is optimal.

0.45 ## Explainable Boosting Machine

0.45.1 Simple EBM

```
[32]: for group_name, features in models.items():
    start_time = time.time() # Timer start

# Adjusted EBM pipeline without SimpleImputer for numerical data
    ebm = ExplainableBoostingClassifier(random_state=20240325)

# fit
    ebm.fit(X_train[features], y_train)

# Predict probabilities
    train_prob = ebm.predict_proba(X_train[features])[:, 1]
```

```
val_prob = ebm.predict_proba(X_val[features])[:, 1]
    # Calculate AUC
   train_auc = roc_auc_score(y_train, train_prob)
   val_auc = roc_auc_score(y_val, val_prob)
    # Calculate RMSLE
   train_rmsle = calculateRMSLE(train_prob, y_train)
   val_rmsle = calculateRMSLE(val_prob, y_val)
    # Append results
   new_row = pd.DataFrame([[f"{group_name} EBM", train_auc, val_auc,_u
 ⇔train rmsle, val rmsle]],
                           columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
   results_df = pd.concat([results_df, new_row], ignore_index=True)
   end_time = time.time() # End timer
   print(f"Completed {group_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
```

```
Completed M1 in 7.88 seconds
Completed M2 in 5.56 seconds
Completed M3 in 8.20 seconds
Completed M4 in 8.54 seconds
Completed M5 in 10.48 seconds
Completed M6 in 16.10 seconds
Completed M7 in 17.86 seconds
Completed M8 in 18.70 seconds
Completed M9 in 22.03 seconds
Completed M10 in 29.12 seconds
Completed M11 in 32.21 seconds
Completed M12 in 15.36 seconds
Completed M13 in 23.41 seconds
Completed M14 in 23.31 seconds
Completed M15 in 27.13 seconds
Completed M16 in 28.41 seconds
Completed M17 in 28.71 seconds
Completed M18 in 45.57 seconds
Completed M19 in 46.40 seconds
Completed M20 in 58.07 seconds
Completed M21 in 71.17 seconds
Completed M22 in 20.55 seconds
Completed M23 in 24.68 seconds
Completed M24 in 30.64 seconds
Completed M25 in 37.38 seconds
```

Completed M26 in 38.50 seconds Completed M27 in 51.10 seconds Completed M28 in 60.19 seconds Completed M29 in 62.76 seconds Completed M30 in 80.82 seconds Completed M31 in 82.06 seconds

[32]:		Model	Training AUC	Validation AUC	Training RMSLE	Validation RMSLE
	434	M1 EBM	0.628037	0.599450	0.2246	0.2300
	435	M2 EBM	0.687042	0.658695	0.2211	0.2276
	436	M3 EBM	0.727854	0.710408	0.2182	0.2242
	437	M4 EBM	0.743061	0.718112	0.2165	0.2240
	438	M5 EBM	0.744391	0.718935	0.2165	0.2239
	439	M6 EBM	0.761945	0.724416	0.2143	0.2235
	440	M7 EBM	0.765401	0.727386	0.2137	0.2232
	441	M8 EBM	0.766168	0.726259	0.2137	0.2233
	442	M9 EBM	0.762717	0.728033	0.2141	0.2232
	443	M10 EBM	0.766798	0.726993	0.2136	0.2231
	444	M11 EBM	0.766312	0.726887	0.2136	0.2232
	445	M12 EBM	0.760207	0.727088	0.2145	0.2231
	446	M13 EBM	0.760188	0.725832	0.2144	0.2232
	447	M14 EBM	0.761601	0.726991	0.2143	0.2232
	448	M15 EBM	0.760804	0.726864	0.2144	0.2231
	449	M16 EBM	0.761924	0.725496	0.2142	0.2233
	450	M17 EBM	0.771508	0.724410	0.2131	0.2235
	451	M18 EBM	0.783207	0.727065	0.2114	0.2233
	452	M19 EBM	0.790839	0.726561	0.2102	0.2234
	453	M20 EBM	0.783635	0.726916	0.2114	0.2233
	454	M21 EBM	0.783100	0.725566	0.2115	0.2234
	455	M22 EBM	0.765821	0.726432	0.2137	0.2234
	456	M23 EBM	0.762217	0.729273	0.2141	0.2230
	457	M24 EBM	0.760277	0.726308	0.2144	0.2233
	458	M25 EBM	0.759795	0.726340	0.2145	0.2231
	459	M26 EBM	0.756982	0.725016	0.2149	0.2233
	460	M27 EBM	0.762477	0.724901	0.2144	0.2234
	461	M28 EBM	0.763246	0.724333	0.2144	0.2234
	462	M29 EBM	0.758858	0.725428	0.2150	0.2231
	463	M30 EBM	0.779160	0.725136	0.2121	0.2234
	464	M31 EBM	0.781066	0.726712	0.2118	0.2233

0.46 #### Interpretation

This model is the best performing model consistently across each of the variable group models. Although this model takes longer than the simple cat boosting model, the performance of this model out performs other models with the validation AUC. The permutation importance was conducted on this model, specifically M7, as this was one of the best performing models out of variable groups.

0.46.1 Permutation Importance

```
ebm = ExplainableBoostingClassifier(random_state=20240325)
ebm.fit(X_train[models['M7']], y_train)

# computing the permutation based feature importance
perm_importance = permutation_importance(ebm, X_val[models['M7']], y_val,

n_repeats=10, random_state=42, scoring='roc_auc')

# retrieving and displaying feature importances
feature_names = np.array(models['M7'])
sorted_idx = perm_importance.importances_mean.argsort()

plt.figure(figsize=(12, 6))
plt.barh(feature_names[sorted_idx], perm_importance.

importances_mean[sorted_idx])
plt.xlabel("Permutation Importance")
plt.show()
```



```
perm_importance_positive = positive_importance_features.tolist()
print("Variable group with positive permutation importance:")
print(perm_importance_positive)
Features with positive permutation importance:
n_tokens_title
n_tokens_content
n_unique_tokens
n_non_stop_words
n_non_stop_unique_tokens
average_token_length
num hrefs
num_self_hrefs
num_imgs
num_videos
global_subjectivity
global_sentiment_polarity
kw_min_min
kw_max_min
kw_avg_min
kw_min_max
kw_max_max
kw_avg_max
kw_min_avg
kw_max_avg
kw_avg_avg
self_reference_min_shares
self_reference_max_shares
self_reference_avg_sharess
weekday_is_wednesday
weekday_is_thursday
weekday_is_saturday
weekday_is_sunday
data_channel_is_entertainment
data_channel_is_bus
data_channel_is_socmed
data_channel_is_tech
data_channel_is_world
LDA_00
LDA_01
LDA_02
LDA 03
LDA 04
avg_positive_polarity
min_positive_polarity
avg_negative_polarity
```

```
min_negative_polarity
title_subjectivity
title_sentiment_polarity
abs_title_subjectivity
abs title sentiment polarity
Variable group with positive permutation importance:
['n_tokens_title', 'n_tokens_content', 'n_unique_tokens', 'n_non_stop_words',
'n_non_stop_unique_tokens', 'average_token_length', 'num_hrefs',
'num_self_hrefs', 'num_imgs', 'num_videos', 'global_subjectivity',
'global_sentiment_polarity', 'kw_min_min', 'kw_max_min', 'kw_avg_min',
'kw_min_max', 'kw_max_max', 'kw_avg_max', 'kw_min_avg', 'kw_max_avg',
'kw avg avg', 'self reference min shares', 'self reference max shares',
'self_reference_avg_sharess', 'weekday_is_wednesday', 'weekday_is_thursday',
'weekday_is_saturday', 'weekday_is_sunday', 'data_channel_is_entertainment',
'data_channel_is_bus', 'data_channel_is_socmed', 'data_channel_is_tech',
'data_channel_is_world', 'LDA_00', 'LDA_01', 'LDA_02', 'LDA_03', 'LDA_04',
'avg_positive_polarity', 'min_positive_polarity', 'avg_negative_polarity',
'min_negative_polarity', 'title_subjectivity', 'title_sentiment_polarity',
'abs_title_subjectivity', 'abs_title_sentiment_polarity']
```

0.47 ### Adjusted EBM 1

```
[35]: for group name, features in models.items():
          start_time = time.time() # Timer start
          # Adjusted EBM pipeline without SimpleImputer for numerical data
          ebm_adjusted = ExplainableBoostingClassifier(
              random_state=20240325,
              learning_rate=0.01, # adjusted learning rate
              max_bins=256, # set max bins
              interactions=10, # set interactions
              early_stopping_rounds=50 # set early stopping roungs
          )
          # fit
          ebm_adjusted.fit(X_train[features], y_train)
          # Predict probabilities
          train_prob = ebm_adjusted.predict_proba(X_train[features])[:, 1]
          val_prob = ebm_adjusted.predict_proba(X_val[features])[:, 1]
          # Calculate AUC
          train_auc = roc_auc_score(y_train, train_prob)
          val_auc = roc_auc_score(y_val, val_prob)
          # Calculate RMSLE
          train_rmsle = calculateRMSLE(train_prob, y_train)
```

```
Completed M1 in 3.86 seconds
Completed M2 in 4.43 seconds
Completed M3 in 5.70 seconds
Completed M4 in 6.81 seconds
Completed M5 in 6.95 seconds
Completed M6 in 12.10 seconds
Completed M7 in 12.17 seconds
Completed M8 in 12.84 seconds
Completed M9 in 13.69 seconds
Completed M10 in 19.48 seconds
Completed M11 in 19.88 seconds
Completed M12 in 10.35 seconds
Completed M13 in 15.02 seconds
Completed M14 in 15.56 seconds
Completed M15 in 17.55 seconds
Completed M16 in 18.07 seconds
Completed M17 in 18.12 seconds
Completed M18 in 27.47 seconds
Completed M19 in 27.29 seconds
Completed M20 in 34.66 seconds
Completed M21 in 42.02 seconds
Completed M22 in 13.70 seconds
Completed M23 in 16.18 seconds
Completed M24 in 19.84 seconds
Completed M25 in 24.07 seconds
Completed M26 in 24.39 seconds
Completed M27 in 32.04 seconds
Completed M28 in 37.78 seconds
Completed M29 in 38.65 seconds
Completed M30 in 49.82 seconds
Completed M31 in 51.07 seconds
```

[35]:				Mode	٠,٦	Training AUC	Validation AUC	Training DMCIE	\
[33].	465	М1	FRM	Mode Adjusted		Training AUC 0.636023	Validation AUC 0.607193	Training RMSLE 0.2242	\
	466			Adjusted		0.678342	0.658737	0.2242	
	467	M3		Adjusted		0.718354	0.709401	0.2193	
	468			Adjusted		0.728440	0.718318	0.2185	
	469			Adjusted		0.729174	0.719371	0.2184	
	470			Adjusted		0.741476	0.724784	0.2172	
	471	M7		Adjusted		0.742880	0.725028	0.2170	
	472	M8		Adjusted		0.743572	0.725698	0.2169	
	473	M9		Adjusted		0.738593	0.726296	0.2175	
	474	M10		Adjusted		0.739305	0.727329	0.2174	
	475	M11	EBM	Adjusted	1	0.738411	0.726542	0.2175	
	476	M12	EBM	Adjusted	1	0.741744	0.724843	0.2171	
	477	M13	EBM	Adjusted	1	0.738455	0.725163	0.2175	
	478	M14	${\tt EBM}$	Adjusted	1	0.740413	0.726406	0.2173	
	479	M15	EBM	${\tt Adjusted}$	1	0.736548	0.725262	0.2178	
	480			${\tt Adjusted}$		0.737079	0.724997	0.2177	
	481			Adjusted		0.746843	0.726236	0.2167	
	482			Adjusted		0.755229	0.727098	0.2155	
	483			Adjusted		0.753422	0.728563	0.2156	
	484			Adjusted		0.748417	0.727667	0.2164	
	485			Adjusted		0.745826	0.727762	0.2167	
	486			Adjusted		0.741926	0.726765	0.2171	
	487			Adjusted		0.736410	0.725763	0.2178	
	488 489			Adjusted Adjusted		0.736663 0.737436	0.724825 0.724272	0.2179 0.2177	
	490			Adjusted		0.737436	0.724272	0.2177	
	491			Adjusted		0.735912	0.724735	0.2181	
	492			Adjusted		0.737813	0.724208	0.2177	
	493			Adjusted		0.736539	0.724705	0.2178	
	494			Adjusted		0.743963	0.726811	0.2170	
	495			Adjusted		0.742422	0.726985	0.2172	
				3					
		Val:	idat	ion RMSLE					
	465			0.2297					
	466			0.2277					
	467			0.2243					
	468			0.2239					
	469			0.2238					
	470			0.2235					
	471			0.2233					
	472			0.2233					
	473 474			0.2232 0.2231					
	474			0.2231					
	476			0.2231					
	477			0.2234					
	±1 1			V. ZZUZ					

478	0.2232
479	0.2232
480	0.2233
481	0.2232
482	0.2231
483	0.2230
484	0.2230
485	0.2230
486	0.2232
487	0.2232
488	0.2234
489	0.2233
490	0.2233
491	0.2234
492	0.2233
493	0.2232
494	0.2230
495	0.2230

0.48 #### Interpretation

The adjusted EBM included the learning rate, max bins, interactions, and early stopping rounds to attempt to improve the validation AUC and reduce the overfitting. The overfitting was reduced, but these modifications did not necessaily increase the validation AUC, they stayed relatively the same. However, the processing time was reduced by a decent amount. So, this model would overall be a better model than the simple EBM, since it has less overfitting, similar validation AUC scores, and lower processing time.

0.49 ### Adjusted EBM 2

```
for group_name, features in models.items():
    start_time = time.time()

    ebm_more_adjusted = ExplainableBoostingClassifier(
        random_state=20240325,
        learning_rate=0.005, # Slightly lower learning rate for more___

    fine-grained adjustments
        max_bins=512, # Increased number of bins for potentially capturing___

    more detail
    interactions=15, # Allowing for more interactions
        early_stopping_rounds=100, # More patience on early stopping to allow___

    more rounds for convergence
        n_jobs=-1 # Utilize all CPU cores for faster training
)

    ebm_more_adjusted.fit(X_train[features], y_train)
```

```
Completed M1 in 7.39 seconds
Completed M2 in 7.72 seconds
Completed M3 in 9.87 seconds
Completed M4 in 10.86 seconds
Completed M5 in 11.57 seconds
Completed M6 in 17.13 seconds
Completed M7 in 18.03 seconds
Completed M8 in 19.27 seconds
Completed M9 in 21.18 seconds
Completed M10 in 27.25 seconds
Completed M11 in 29.29 seconds
Completed M12 in 15.10 seconds
Completed M13 in 22.38 seconds
Completed M14 in 23.96 seconds
Completed M15 in 25.75 seconds
Completed M16 in 26.29 seconds
Completed M17 in 26.70 seconds
Completed M18 in 42.31 seconds
Completed M19 in 42.00 seconds
Completed M20 in 51.85 seconds
Completed M21 in 62.51 seconds
Completed M22 in 20.08 seconds
Completed M23 in 23.93 seconds
Completed M24 in 28.01 seconds
Completed M25 in 33.66 seconds
Completed M26 in 35.50 seconds
Completed M27 in 44.24 seconds
```

Completed M28 in 53.32 seconds Completed M29 in 55.19 seconds Completed M30 in 73.72 seconds Completed M31 in 73.84 seconds

[36]:				Model	Training AUC	Validation AUC	Training RMSLE	\
	496	M1	${\tt EBM}$	Adjusted 2	0.640790	0.604144	0.2240	
	497	M2	EBM	Adjusted 2	0.685208	0.658450	0.2213	
	498			Adjusted 2	0.725316	0.712219	0.2187	
	499	M4	EBM	Adjusted 2	0.735612	0.719000	0.2175	
	500	M5	EBM	Adjusted 2	0.736297	0.719678	0.2176	
	501	M6	EBM	Adjusted 2	0.745007	0.722964	0.2167	
	502			Adjusted 2	0.746603	0.725448	0.2165	
	503	M8	EBM	Adjusted 2	0.746996	0.725894	0.2164	
	504	M9	EBM	Adjusted 2	0.743411	0.725140	0.2170	
	505			Adjusted 2	0.740707	0.724105	0.2173	
	506	M11	EBM	Adjusted 2	0.738092	0.725196	0.2175	
	507	M12	EBM	Adjusted 2	0.742293	0.723971	0.2170	
	508	M13	EBM	Adjusted 2	0.745445	0.724357	0.2167	
	509			Adjusted 2	0.745211	0.725595	0.2167	
	510			Adjusted 2	0.742294	0.724800	0.2171	
	511	M16	EBM	Adjusted 2	0.743081	0.724533	0.2170	
	512	M17	EBM	Adjusted 2	0.749817	0.726238	0.2162	
	513			Adjusted 2	0.759832	0.728308	0.2149	
	514			Adjusted 2	0.756544	0.729734	0.2153	
	515	M20	EBM	Adjusted 2	0.753729	0.728196	0.2156	
	516	M21	EBM	Adjusted 2	0.750283	0.726772	0.2161	
	517			Adjusted 2	0.747202	0.726052	0.2164	
	518	M23	EBM	Adjusted 2	0.740450	0.724853	0.2174	
	519			Adjusted 2	0.742782	0.724551	0.2171	
	520			Adjusted 2	0.736484	0.725186	0.2178	
	521			Adjusted 2	0.734731	0.724442	0.2180	
	522			Adjusted 2	0.734562	0.724694	0.2181	
	523			Adjusted 2	0.736742	0.724625	0.2178	
	524	M29	EBM	Adjusted 2	0.736133	0.724560	0.2179	
	525			Adjusted 2	0.747995	0.727965	0.2164	
	526	M31	EBM	Adjusted 2	0.746505	0.726678	0.2166	
		Vali	idati	ion RMSLE				
	496			0.2297				
	497			0.2277				
	498			0.2240				
	499			0.2238				
	500			0.2237				
	501			0.2235				
	502			0.2233				
	503			0.2233				

504	0.2233
505	0.2233
506	0.2232
507	0.2233
508	0.2233
509	0.2232
510	0.2232
511	0.2233
512	0.2232
513	0.2231
514	0.2230
515	0.2230
516	0.2229
517	0.2233
518	0.2233
519	0.2233
520	0.2232
521	0.2233
522	0.2233
523	0.2232
524	0.2232
525	0.2228
526	0.2230

0.50 #### Interpretation

This model includes a slightly lower learning rate for more fine grained adjustments, an increased number of bins to attempt to capture more details, more interactions, more patience on early stopping to allow for more rounds of convergence, and utilizes all CPU cores to obtain faster training. This did not improve the processing time as compared to the simple EBM. There is less of an overfitting issues on this model as compared to the overfitting, but it does not necessarily improve the model as compared to the adjusted EBM 1 model, which runs much faster and has very similar results. Thus, the best model so far is the EBM 1 Adjusted.

0.51 ## Neural Network Models

Specific neural network models required that the data was transformed using the scaler or reshaped. This is done here so that the data transformations are easily visiable and able to be used throughout the NN models.

```
[37]: scaler = StandardScaler().fit(X_train)
    X_train_scaled = scaler.transform(X_train)
    X_val_scaled = scaler.transform(X_val)

n_features = X_train.shape[1]

# Reshape your data accordingly
    X_train_reshaped = X_train_scaled.reshape((-1, n_features, 1))
```

```
X_val_reshaped = X_val_scaled.reshape((-1, n_features, 1))
```

0.52 ### Simple Neural Network Model 1

```
[38]: for model_name, features in models.items():
          start time = time.time() # Timer start
          # Define the model
          model = Sequential([
              Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)),
              Dense(1, activation='sigmoid')
          ])
          # Compile the model
          model.compile(optimizer=Adam(), loss='binary_crossentropy',__
       →metrics=[AUC(name='auc')])
          model.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0,
                    validation data=(X val scaled, y val),
                    callbacks=[EarlyStopping(monitor='val_auc', patience=3,_
       →restore_best_weights=True, mode='max')])
          _, train_auc = model.evaluate(X_train_scaled, y_train, verbose=0)
          _, val_auc = model.evaluate(X_val_scaled, y_val, verbose=0)
          train_rmsle = calculateRMSLE(train_prob, y_train)
          val_rmsle = calculateRMSLE(val_prob, y_val)
          new_row = pd.DataFrame([[f"{group_name} NN Simple", train_auc, val_auc,_u
       ⇔train_rmsle, val_rmsle]],
                                 columns=['Model', 'Training AUC', 'Validation AUC', |
       →'Training RMSLE', 'Validation RMSLE'])
          results_df = pd.concat([results_df, new_row], ignore_index=True)
          end time = time.time() # End timer
          print(f"Completed {model_name} in {end_time - start_time:.2f} seconds")
      results_df.tail(31)
```

```
Completed M1 in 7.06 seconds
Completed M2 in 8.11 seconds
Completed M3 in 7.84 seconds
Completed M4 in 6.69 seconds
Completed M5 in 8.90 seconds
Completed M6 in 7.41 seconds
Completed M7 in 7.84 seconds
Completed M8 in 7.43 seconds
```

```
Completed M9 in 7.79 seconds
Completed M10 in 6.70 seconds
Completed M11 in 9.24 seconds
Completed M12 in 8.11 seconds
Completed M13 in 6.24 seconds
Completed M14 in 8.25 seconds
Completed M15 in 6.54 seconds
Completed M16 in 8.50 seconds
Completed M17 in 6.86 seconds
Completed M18 in 4.98 seconds
Completed M19 in 4.65 seconds
Completed M20 in 6.30 seconds
Completed M21 in 5.61 seconds
Completed M22 in 6.75 seconds
Completed M23 in 5.55 seconds
Completed M24 in 9.07 seconds
Completed M25 in 10.98 seconds
Completed M26 in 8.35 seconds
Completed M27 in 8.71 seconds
Completed M28 in 8.41 seconds
Completed M29 in 9.44 seconds
Completed M30 in 6.08 seconds
Completed M31 in 5.09 seconds
```

[38]:				Model	Training AUC	Validation AUC	Training RMSLE	\
	527	M31	NN	Simple	0.741335	0.697379	0.2166	
	528	M31	NN	Simple	0.762277	0.697792	0.2166	
	529	M31	NN	Simple	0.763364	0.697828	0.2166	
	530	M31	NN	Simple	0.748440	0.696561	0.2166	
	531	M31	NN	Simple	0.763079	0.701149	0.2166	
	532	M31	NN	Simple	0.759928	0.701576	0.2166	
	533	M31	NN	Simple	0.753629	0.691433	0.2166	
	534	M31	NN	Simple	0.759079	0.703278	0.2166	
	535	M31	NN	Simple	0.756915	0.699650	0.2166	
	536	M31	NN	Simple	0.747009	0.702391	0.2166	
	537	M31	NN	Simple	0.760823	0.702124	0.2166	
	538	M31	NN	Simple	0.764183	0.695668	0.2166	
	539	M31	NN	Simple	0.748486	0.701846	0.2166	
	540	M31	NN	Simple	0.764888	0.697487	0.2166	
	541	M31	NN	Simple	0.740686	0.697459	0.2166	
	542	M31	NN	Simple	0.764389	0.696239	0.2166	
	543	M31	NN	Simple	0.745908	0.695658	0.2166	
	544	M31	NN	Simple	0.713361	0.698802	0.2166	
	545	M31	NN	Simple	0.714093	0.698813	0.2166	
	546			Simple	0.727177	0.696039	0.2166	
	547	M31	NN	Simple	0.735637	0.699231	0.2166	
	548	M31	NN	Simple	0.754121	0.699695	0.2166	

549	M31	NN	Simple	0.736498	0.700157	0.2166
550	M31	NN	Simple	0.769709	0.699743	0.2166
551	M31	NN	Simple	0.775640	0.698962	0.2166
552	M31	NN	Simple	0.762922	0.694514	0.2166
553	M31	NN	Simple	0.768229	0.699622	0.2166
554	M31	NN	Simple	0.764222	0.697586	0.2166
555	M31	NN	Simple	0.766511	0.700379	0.2166
556	M31	NN	Simple	0.744096	0.691332	0.2166
557	M31	NN	Simple	0.722249	0.702998	0.2166

	Validation	RMSLE
527		0.223
528		0.223
529		0.223
530		0.223
531		0.223
532		0.223
533		0.223
534		0.223
535		0.223
536		0.223
537		0.223
538		0.223
539		0.223
540		0.223
541		0.223
542		0.223
543		0.223
544		0.223
545		0.223
546		0.223
547		0.223
548		0.223
549		0.223
550		0.223
551		0.223
552		0.223
553		0.223
554		0.223
555		0.223
556		0.223
557		0.223

0.53 #### Interpretation

This simple neural network model performs quite well, but does not perform better than the adjust EBM 1. This model does perform quite fast compared to other models, but the validation AUC

scores are not competitive enough with the other models. This model could be further improved, so modifications and adjustments will be made to improve the validation AUC.

0.54 ### Simple Neural Network Model 2

```
[39]: for model name, features in models.items():
         start_time = time.time()
         model = Sequential([
             Dense(32, activation='relu', input_shape=(X_train_scaled.shape[1],)),
             Dropout(0.5),
             Dense(16, activation='relu'),
             Dropout(0.5),
             Dense(1, activation='sigmoid')
         1)
         model.compile(optimizer=Adam(learning_rate=0.001),__
       ⇔loss='binary_crossentropy', metrics=[AUC(name='auc')])
         model.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0,
                   validation_data=(X_val_scaled, y_val),
                   callbacks=[EarlyStopping(monitor='val_auc', patience=5,_
       →restore_best_weights=True, mode='max')])
          _, train_auc = model.evaluate(X_train_scaled, y_train, verbose=0)
         _, val_auc = model.evaluate(X_val_scaled, y_val, verbose=0)
         train_rmsle = calculateRMSLE(train_prob, y_train)
         val_rmsle = calculateRMSLE(val_prob, y_val)
         new_row = pd.DataFrame([[f"{group_name} NN Simple 2", train_auc, val_auc,_u
       →train_rmsle, val_rmsle]],
                                columns=['Model', 'Training AUC', 'Validation AUC', 'I
       results_df = pd.concat([results_df, new_row], ignore_index=True)
         end_time = time.time()
         print(f"Completed {model_name} in {end_time - start_time:.2f} seconds")
     results_df.tail(31)
```

```
Completed M1 in 21.17 seconds
Completed M2 in 14.99 seconds
Completed M3 in 19.28 seconds
Completed M4 in 28.84 seconds
Completed M5 in 16.66 seconds
Completed M6 in 22.48 seconds
```

```
Completed M7 in 20.77 seconds
Completed M8 in 13.06 seconds
Completed M9 in 10.00 seconds
Completed M10 in 16.34 seconds
Completed M11 in 15.49 seconds
Completed M12 in 21.39 seconds
Completed M13 in 22.12 seconds
Completed M14 in 14.68 seconds
Completed M15 in 15.50 seconds
Completed M16 in 13.02 seconds
Completed M17 in 16.72 seconds
Completed M18 in 14.25 seconds
Completed M19 in 20.13 seconds
Completed M20 in 14.43 seconds
Completed M21 in 15.43 seconds
Completed M22 in 19.43 seconds
Completed M23 in 15.39 seconds
Completed M24 in 22.35 seconds
Completed M25 in 19.67 seconds
Completed M26 in 22.62 seconds
Completed M27 in 17.53 seconds
Completed M28 in 11.37 seconds
Completed M29 in 18.73 seconds
Completed M30 in 19.35 seconds
Completed M31 in 14.61 seconds
```

[39]:				Mode	el	Training AUC	Validation AUC	Training RMSLE	\
	558	M31	NN	Simple	2	0.735007	0.711569	0.2166	
	559	M31	NN	Simple	2	0.721606	0.709027	0.2166	
	560	M31	NN	Simple	2	0.730091	0.712359	0.2166	
	561	M31	NN	Simple	2	0.744425	0.713225	0.2166	
	562	M31	NN	Simple	2	0.722596	0.710438	0.2166	
	563	M31	NN	Simple	2	0.734413	0.709325	0.2166	
	564	M31	NN	Simple	2	0.734427	0.713802	0.2166	
	565	M31	NN	Simple	2	0.719356	0.713082	0.2166	
	566	M31	NN	Simple	2	0.714103	0.711539	0.2166	
	567	M31	NN	Simple	2	0.725969	0.711156	0.2166	
	568	M31	NN	Simple	2	0.724496	0.711650	0.2166	
	569	M31	NN	${\tt Simple}$	2	0.734949	0.712868	0.2166	
	570	M31	NN	Simple	2	0.735455	0.713970	0.2166	
	571	M31	NN	${\tt Simple}$	2	0.720712	0.710623	0.2166	
	572	M31	NN	${\tt Simple}$	2	0.725633	0.712650	0.2166	
	573	M31	NN	Simple	2	0.717147	0.711825	0.2166	
	574	M31	NN	Simple	2	0.723081	0.711703	0.2166	
	575	M31	NN	Simple	2	0.720874	0.712989	0.2166	
	576	M31	NN	${\tt Simple}$	2	0.729694	0.712246	0.2166	
	577	M31	NN	Simple	2	0.721147	0.710628	0.2166	

578	M31	NN	Simple	2	0.722792	0.711507	0.2166
579	M31	NN	Simple	2	0.729305	0.712246	0.2166
580	M31	NN	Simple	2	0.724951	0.710409	0.2166
581	M31	NN	Simple	2	0.735535	0.712052	0.2166
582	M31	NN	Simple	2	0.730657	0.714916	0.2166
583	M31	NN	Simple	2	0.736531	0.715483	0.2166
584	M31	NN	Simple	2	0.725283	0.709696	0.2166
585	M31	NN	Simple	2	0.715883	0.709546	0.2166
586	M31	NN	Simple	2	0.730486	0.715034	0.2166
587	M31	NN	Simple	2	0.731919	0.709702	0.2166
588	M31	NN	Simple	2	0.723552	0.709553	0.2166

Validation RMSLE 0.223 0.223 0.223

 560
 0.223

 561
 0.223

 562
 0.223

 563
 0.223

 564
 0.223

558

559

5650.2235660.2235670.2235680.223

 569
 0.223

 570
 0.223

 571
 0.223

572 0.223573 0.223574 0.223

 575
 0.223

 576
 0.223

 577
 0.223

 578
 0.223

 579
 0.223

 580
 0.223

 581
 0.223

 582
 0.223

 583
 0.223

 584
 0.223

 585
 0.223

 586
 0.223

587 0.223 588 0.223

0.55 #### Interpretation

This second model adds a dense layer as well as two dropout layers to avoid overfitting. The training time on this model is increased by a significant amount, but does show signs of improving the validation AUC while maintaining insignificant overfitting. This model does perform better than the first simple neural network model, but does not perform better than the adjusted EBM 1.

0.56 ### Simple Neural Network Model 3

```
[40]: for model_name, features in models.items():
          start_time = time.time()
          model = Sequential([
              Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)),
              Dropout(0.3),
              Dense(32, activation='relu'),
              Dropout(0.3),
              Dense(16, activation='relu'),
              Dense(1, activation='sigmoid')
          1)
          model.compile(optimizer=Adam(learning_rate=0.0005),__
       →loss='binary_crossentropy', metrics=[AUC(name='auc')])
          es = EarlyStopping(monitor='val_auc', patience=10,_
       →restore_best_weights=True, mode='max')
          model.fit(X_train_scaled, y_train, epochs=150, batch_size=64, verbose=0,
                    validation_data=(X_val_scaled, y_val),
                    callbacks=[es])
          train_pred = model.predict(X_train_scaled).flatten()
          val_pred = model.predict(X_val_scaled).flatten()
          _, train_auc = model.evaluate(X_train_scaled, y_train, verbose=0)
          _, val_auc = model.evaluate(X_val_scaled, y_val, verbose=0)
          train_rmsle = calculateRMSLE(y_train, np.clip(train_pred, 0, None)) #_
       ⇔clipping predictions to ensure non-negative values
          val_rmsle = calculateRMSLE(y_val, np.clip(val_pred, 0, None))
          new_row = pd.DataFrame([[f"{model_name} NN Simple 3", train_auc, val_auc,_u
       ⇔train_rmsle, val_rmsle]],
                                 columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
          results_df = pd.concat([results_df, new_row], ignore_index=True)
          end_time = time.time()
```

```
print(f"Completed {model_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
```

```
744/744
                    1s 876us/step
186/186
                    0s 744us/step
Completed M1 in 20.57 seconds
744/744
                    1s 927us/step
186/186
                    Os 770us/step
Completed M2 in 18.99 seconds
744/744
                    1s 841us/step
                    0s 726us/step
186/186
Completed M3 in 13.40 seconds
                    1s 967us/step
744/744
186/186
                    0s 852us/step
Completed M4 in 20.52 seconds
744/744
                    1s 1ms/step
186/186
                    0s 849us/step
Completed M5 in 18.80 seconds
744/744
                    1s 854us/step
186/186
                    0s 799us/step
Completed M6 in 19.23 seconds
744/744
                    1s 948us/step
186/186
                    0s 731us/step
Completed M7 in 17.98 seconds
744/744
                    1s 860us/step
186/186
                    0s 760us/step
Completed M8 in 16.23 seconds
744/744
                    1s 904us/step
186/186
                    0s 762us/step
Completed M9 in 13.84 seconds
744/744
                    1s 873us/step
186/186
                    0s 758us/step
Completed M10 in 16.96 seconds
744/744
                    1s 923us/step
186/186
                    0s 773us/step
Completed M11 in 14.72 seconds
744/744
                    1s 969us/step
186/186
                    0s 854us/step
Completed M12 in 13.14 seconds
744/744
                    1s 974us/step
186/186
                    0s 874us/step
Completed M13 in 15.90 seconds
744/744
                    1s 980us/step
186/186
                    0s 819us/step
Completed M14 in 16.22 seconds
744/744
                    1s 1ms/step
```

186/186				748us/step
${\tt Completed}$	M15	in	17.53	seconds
744/744			1s	896us/step
186/186			0s	756us/step
${\tt Completed}$	M16	in	20.48	seconds
744/744			1s	963us/step
186/186			0s	753us/step
Completed	M17	in	14.79	seconds
744/744			1s	919us/step
186/186			0s	846us/step
Completed	M18	in	24.28	seconds
744/744			1s	862us/step
186/186			0s	718us/step
Completed	M19	in	25.68	seconds
744/744			1s	976us/step
186/186			0s	- · · · · · · · · · · · · · · · · · · ·
Completed	M20	in	18.39	seconds
744/744			1s	
186/186			0s	752us/step
Completed	M21	in		-
744/744			1s	
186/186			0s	-
Completed	M22	in		-
744/744			1s	_
186/186			0s	
Completed	M23	in	21.93	-
744/744			1s	
186/186			0s	
Completed	M24	in		-
744/744			1s	_
186/186				718us/step
Completed	M25	in		-
744/744				902us/step
186/186				827us/step
Completed	M26	in		-
744/744				898us/step
186/186				759us/step
Completed	M27	in		-
744/744	1121	111		964us/step
186/186				876us/step
Completed	MOS	in		-
744/744	1120	111		898us/step
186/186				-
Completed	MOO	in		774us/step
-	r129	ΤII		
744/744				903us/step
186/186	MOO	:		913us/step
Completed	พงบ	ın		
744/744			18	871us/step

[40]:				Mode	el	Training AUC	Validatio	n AUC	Training RMSLE	\
	589	M1	NN	Simple	3	0.773596	0.7	07178	0.2166	
	590	M2	NN	Simple	3	0.762032	0.7	10935	0.2173	
	591	МЗ	NN	Simple	3	0.737172	0.7	11257	0.2203	
	592	M4	NN	Simple	3	0.764650	0.7	13795	0.2151	
	593	M5	NN	Simple	3	0.761089	0.7	10670	0.2185	
	594	M6	NN	Simple	3	0.764435	0.7	15658	0.2166	
	595	M7	NN	Simple	3	0.755129	0.7	08435	0.2165	
	596	M8	NN	Simple	3	0.753159	0.7	09823	0.2168	
	597	M9	NN	Simple	3	0.738479	0.7	11350	0.2236	
	598	M10	NN	Simple	3	0.758296	0.7	08929	0.2187	
	599	M11	NN	Simple	3	0.742851	0.7	09935	0.2187	
	600	M12	NN	Simple	3	0.740842	0.7	07439	0.2250	
	601	M13	NN	Simple	3	0.754575	0.7	11732	0.2195	
	602	M14	NN	Simple	3	0.755348	0.7	11463	0.2197	
	603	M15	NN	Simple	3	0.759631	0.7	12694	0.2162	
	604	M16	NN	Simple	3	0.770100	0.7	10377	0.2165	
	605	M17	NN	Simple	3	0.742443	0.7	09034	0.2208	
	606	M18	NN	Simple	3	0.778322	0.7	08297	0.2147	
	607	M19	NN	Simple	3	0.787028	0.7	08725	0.2148	
	608	M20	NN	Simple	3	0.766381	0.7	07720	0.2193	
	609	M21	NN	Simple	3	0.752942	0.7	07485	0.2198	
	610	M22	NN	Simple	3	0.762211	0.7	09287	0.2166	
	611	M23	NN	Simple	3	0.777090	0.7	09640	0.2167	
	612	M24	NN	Simple	3	0.764877	0.7	13710	0.2165	
	613	M25	NN	Simple	3	0.761254	0.7	11644	0.2178	
	614	M26	NN	Simple	3	0.765765	0.7	12541	0.2164	
	615	M27	NN	Simple	3	0.754383	0.7	11643	0.2174	
	616	M28	NN	Simple	3	0.765894	0.7	12757	0.2150	
	617	M29	NN	Simple	3	0.774746	0.7	11561	0.2173	
	618	M30	NN	Simple	3	0.751126	0.7	10251	0.2185	
	619	M31	NN	Simple	3	0.749497	0.7	11788	0.2184	
		Val:	ida	tion RMS						
	589			0.22						
	590			0.22	264					
	591			0.22	264					
	592			0.22	253					
	593			0.22	273					
	594			0.22	261					
	595			0.22	254					
	596			0.22	253					
	597			0.22	289					
	598			0.22	269					

599	0.2257
600	0.2311
601	0.2276
602	0.2272
603	0.2248
604	0.2269
605	0.2270
606	0.2262
607	0.2279
608	0.2281
609	0.2284
610	0.2259
611	0.2281
612	0.2257
613	0.2266
614	0.2258
615	0.2250
616	0.2250
617	0.2279
618	0.2263
619	0.2261

0.57 #### Interpretation

This third neural network model does not significantly improve the scores as compared to the second model. An additional dense layer was added along with a decrease in the learning rate, but the processing time is the same while the overfitting is actually increased. Additionally, the number of epochs was raised from 100 to 150 for a more indepth look. So this model is not an ideal model, and the best model so far amongst the neural network models is the second simple neural network model.

0.58 ### Complex Neural Network Model

```
[41]: for model_name, features in models.items():
    start_time = time.time()

model = Sequential([
    Dense(128, activation='relu', input_shape=(X_train_scaled.shape[1],)),
    BatchNormalization(),
    Dropout(0.5),
    Dense(64, activation='relu'),
    BatchNormalization(),
    Dropout(0.5),
    Dense(32, activation='relu'),
    BatchNormalization(),
    Dropout(0.3),
    Dense(1, activation='sigmoid')
```

```
])
    model.compile(optimizer=Adam(learning_rate=0.001),__
  ⇔loss='binary_crossentropy', metrics=[AUC(name='auc')])
    model.fit(X train scaled, y train, epochs=100, batch size=32, verbose=0,
              validation_data=(X_val_scaled, y_val),
              callbacks=[EarlyStopping(monitor='val_auc', patience=5,_

¬restore_best_weights=True, mode='max')])
    _, train_auc = model.evaluate(X_train_scaled, y_train, verbose=0)
    _, val_auc = model.evaluate(X_val_scaled, y_val, verbose=0)
    train_rmsle = calculateRMSLE(train_prob, y_train)
    val_rmsle = calculateRMSLE(val_prob, y_val)
    new_row = pd.DataFrame([[f"{model_name} NN Complex", train_auc, val_auc,_u
  ⇔train_rmsle, val_rmsle]],
                            columns=['Model', 'Training AUC', 'Validation AUC', |

¬'Training RMSLE', 'Validation RMSLE'])
    results_df = pd.concat([results_df, new_row], ignore_index=True)
    end_time = time.time()
    print(f"Completed {model_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
Completed M1 in 24.89 seconds
```

```
Completed M2 in 30.25 seconds
Completed M3 in 31.14 seconds
Completed M4 in 23.07 seconds
Completed M5 in 23.19 seconds
Completed M6 in 27.37 seconds
Completed M7 in 28.28 seconds
Completed M8 in 37.69 seconds
Completed M9 in 33.52 seconds
Completed M10 in 30.38 seconds
Completed M11 in 28.78 seconds
Completed M12 in 21.76 seconds
Completed M13 in 32.14 seconds
Completed M14 in 24.58 seconds
Completed M15 in 31.40 seconds
Completed M16 in 23.17 seconds
Completed M17 in 28.93 seconds
Completed M18 in 23.60 seconds
Completed M19 in 29.49 seconds
Completed M20 in 33.59 seconds
```

```
Completed M21 in 28.65 seconds
     Completed M22 in 29.43 seconds
     Completed M23 in 29.17 seconds
     Completed M24 in 23.39 seconds
     Completed M25 in 27.52 seconds
     Completed M26 in 27.00 seconds
     Completed M27 in 31.97 seconds
     Completed M28 in 28.92 seconds
     Completed M29 in 34.23 seconds
     Completed M30 in 26.95 seconds
     Completed M31 in 27.46 seconds
[41]:
                           Training AUC
                                         Validation AUC
                                                         Training RMSLE \
                    Model
                                                0.711864
                                                                  0.2166
      620 M31 NN Complex
                               0.736321
      621 M31 NN Complex
                               0.742054
                                                0.715358
                                                                  0.2166
      622 M31 NN Complex
                               0.743683
                                                0.717296
                                                                  0.2166
      623 M31 NN Complex
                                                0.709844
                                                                  0.2166
                               0.727441
      624 M31 NN Complex
                               0.728448
                                                0.714545
                                                                  0.2166
      625 M31 NN Complex
                               0.738683
                                                0.714576
                                                                  0.2166
      626 M31 NN Complex
                               0.739094
                                                0.712156
                                                                  0.2166
      627 M31 NN Complex
                               0.754559
                                                0.714179
                                                                  0.2166
      628 M31 NN Complex
                               0.747513
                                                0.715055
                                                                  0.2166
      629 M31 NN Complex
                                                0.720031
                                                                  0.2166
                               0.744133
      630 M31 NN Complex
                               0.735812
                                                0.713895
                                                                  0.2166
      631 M31 NN Complex
                               0.728398
                                                0.713818
                                                                  0.2166
      632 M31 NN Complex
                               0.744699
                                                0.713467
                                                                  0.2166
      633 M31 NN Complex
                               0.731408
                                                0.714155
                                                                  0.2166
      634 M31 NN Complex
                               0.743502
                                                0.716064
                                                                  0.2166
      635 M31 NN Complex
                               0.728712
                                                0.712847
                                                                  0.2166
      636 M31 NN Complex
                               0.738614
                                                0.714640
                                                                  0.2166
      637 M31 NN Complex
                                                0.712403
                               0.731331
                                                                  0.2166
      638 M31 NN Complex
                               0.739741
                                                0.714656
                                                                  0.2166
      639 M31 NN Complex
                               0.745247
                                                0.715128
                                                                  0.2166
      640 M31 NN Complex
                               0.739494
                                                0.717039
                                                                  0.2166
      641 M31 NN Complex
                               0.740445
                                                0.714874
                                                                  0.2166
      642 M31 NN Complex
                               0.739989
                                                0.710696
                                                                  0.2166
      643 M31 NN Complex
                                                                  0.2166
                               0.730830
                                                0.714468
      644 M31 NN Complex
                               0.738327
                                                0.715159
                                                                  0.2166
      645 M31 NN Complex
                               0.737683
                                                0.713959
                                                                  0.2166
      646 M31 NN Complex
                               0.744693
                                                0.715496
                                                                  0.2166
          M31 NN Complex
      647
                               0.738888
                                                0.713192
                                                                  0.2166
      648 M31 NN Complex
                               0.748208
                                                0.718108
                                                                  0.2166
      649
          M31 NN Complex
                               0.733689
                                                0.714462
                                                                  0.2166
          M31 NN Complex
      650
                               0.736184
                                                0.713266
                                                                  0.2166
```

Validation RMSLE 620 0.223

621	0.223
622	0.223
623	0.223
624	0.223
625	0.223
626	0.223
627	0.223
628	0.223
629	0.223
630	0.223
631	0.223
632	0.223
633	0.223
634	0.223
635	0.223
636	0.223
637	0.223
638	0.223
639	0.223
640	0.223
641	0.223
642	0.223
643	0.223
644	0.223
645	0.223
646	0.223
647	0.223
648	0.223
649	0.223
650	0.223

0.59 #### Interpretation

This more complex neural network includes batch normalization layers along with additional dropout layers. The overfitting is reduced in this model as compared to the third simple neural network model, and performs similarly to the second neural network model. The processing time is increased in the more complex model here, so it is less ideal as compared to the second simple NN. Additionally, this model does not out perform the adjusted EBM 1.

0.60 ### Conv1D Adjusted Neural Network 1

```
[42]: for model_name, features in models.items():
    start_time = time.time()

model = Sequential([
    # Applying Conv1D on the reshaped data; treating each feature as a_

timestep
```

```
Conv1D(filters=32, kernel_size=1, activation='relu', __
 →input_shape=(n_features, 1)),
       MaxPooling1D(pool_size=2, strides=2),
       Flatten().
       Dense(128, activation='relu'),
       Dropout(0.3),
       Dense(64, activation='relu'),
       Dropout(0.3),
       Dense(1, activation='sigmoid')
   ])
   model.compile(optimizer=Adam(learning_rate=0.0001),
                  loss='binary_crossentropy', metrics=[AUC(name='auc')])
    es = EarlyStopping(monitor='val_auc', patience=15,__

¬restore_best_weights=True, mode='max')
   model.fit(X_train_reshaped, y_train, epochs=200, batch_size=32, verbose=0,
              validation_data=(X_val_reshaped, y_val),
              callbacks=[es])
    _, train_auc = model.evaluate(X_train_reshaped, y_train, verbose=0)
    _, val_auc = model.evaluate(X_val_reshaped, y_val, verbose=0)
   # Prediction and RMSLE calculation need correct predictions
   train_pred = model.predict(X_train_reshaped).flatten()
   val_pred = model.predict(X_val_reshaped).flatten()
   train_rmsle = calculateRMSLE(y_train, np.clip(train_pred, 0, None))
   val_rmsle = calculateRMSLE(y_val, np.clip(val_pred, 0, None))
   new_row = pd.DataFrame([[f"{model_name} NN Conv1D Adjusted", train_auc,__
 ⇔val_auc, train_rmsle, val_rmsle]],
                           columns=['Model', 'Training AUC', 'Validation AUC', |
 →'Training RMSLE', 'Validation RMSLE'])
   results df = pd.concat([results df, new row], ignore index=True)
   end_time = time.time()
   print(f"Completed {model_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
```

```
744/744 1s 1ms/step
186/186 0s 1ms/step
Completed M1 in 80.89 seconds
744/744 1s 2ms/step
186/186 0s 2ms/step
Completed M2 in 90.04 seconds
```

744/744					1ms/step
186/186				0s	
Completed	МЗ	in	85.		seconds
744/744				1s	1ms/step
186/186				0s	
Completed	M4	in	99.	06	
744/744				1s	
186/186				0s	
Completed	M5	in	114		
744/744				1s	1ms/step
186/186				0s	,r
Completed	M6	in	64.		
744/744				1s	1ms/step
186/186				0s	
Completed	М7	in	96.		
744/744					2ms/step
186/186					1ms/step
Completed	M8	in	71.		
744/744					2ms/step
186/186					1ms/step
Completed	М9	in	79.		
744/744				1s	1ms/step
186/186				0s	
Completed	M10	in	82		
744/744				1s	, <u>F</u>
186/186				0s	1ms/step
Completed	M11	in	10		
744/744				1s	
186/186			0.4	0s	-
Completed	M12	ın	1 84		
744/744				1s	
186/186			07	0s	-
Completed	M13	ın	1 87		
744/744				1s	
186/186				0s	-
Completed	M14	in	10		
744/744					1ms/step
186/186			00		1ms/step
Completed	M15	ın	82		
744/744					2ms/step
186/186			20		1ms/step
Completed	M16	ın	63		
744/744				1s	
186/186	M	٠.	. 00		1ms/step
Completed	MIL	ın	1 98		
744/744					2ms/step
186/186	M4 0		A		1ms/step
${\tt Completed}$	M18	ın	1 /4	.86	seconds

744/744			1s 2ms/step
186/186			0s 1ms/step
Completed	M19	in	94.26 seconds
744/744			1s 2ms/step
186/186			0s 1ms/step
Completed	M20	in	64.36 seconds
744/744			1s 1ms/step
186/186			0s 2ms/step
Completed	M21	in	106.53 seconds
744/744			1s 1ms/step
186/186			0s 1ms/step
Completed	M22	in	103.11 seconds
744/744			1s 1ms/step
186/186			Os 1ms/step
Completed	M23	in	101.14 seconds
744/744			1s 1ms/step
186/186			0s 1ms/step
-	M24	in	90.51 seconds
744/744			2s 1ms/step
186/186			Os 1ms/step
-	M25	in	82.11 seconds
744/744			1s 2ms/step
186/186			Os 2ms/step
-	M26	in	78.79 seconds
744/744			1s 1ms/step
186/186			0s 1ms/step
_	M27	in	80.63 seconds
744/744			1s 2ms/step
186/186			Os 2ms/step
-	M28	in	105.85 seconds
744/744			1s 2ms/step
186/186			0s 2ms/step
Completed	M29	in	80.71 seconds
744/744			1s 1ms/step
186/186			0s 1ms/step
-	M30	in	84.54 seconds
744/744			1s 2ms/step
186/186			0s 2ms/step
Completed	M31	in	89.75 seconds

[42]:				Model	Training AUC	Validation AUC	Training RMSLE	\
	651	M1 NN	Conv1D	Adjusted	0.736287	0.711109	0.2167	
	652	M2 NN	Conv1D	Adjusted	0.743762	0.713524	0.2220	
	653	M3 NN	Conv1D	Adjusted	0.746032	0.710604	0.2183	
	654	M4 NN	Conv1D	Adjusted	0.755695	0.710115	0.2132	
	655	M5 NN	Conv1D	Adjusted	0.769245	0.713502	0.2139	
	656	M6 NN	Conv1D	Adiusted	0.722870	0.712042	0.2209	

657	M7	NN	Conv1D	Adjusted	0.756500	0.710696	0.2155
658	M8	NN	${\tt Conv1D}$	Adjusted	0.730564	0.710325	0.2168
659	M9	NN	${\tt Conv1D}$	Adjusted	0.744752	0.712093	0.2164
660	M10	NN	${\tt Conv1D}$	Adjusted	0.741162	0.711302	0.2184
661	M11	NN	${\tt Conv1D}$	Adjusted	0.763622	0.711633	0.2149
662	M12	NN	${\tt Conv1D}$	Adjusted	0.748451	0.711741	0.2181
663	M13	NN	${\tt Conv1D}$	Adjusted	0.750646	0.712623	0.2160
664	M14	NN	${\tt Conv1D}$	Adjusted	0.758349	0.708382	0.2132
665	M15	NN	${\tt Conv1D}$	Adjusted	0.745220	0.712818	0.2186
666	M16	NN	${\tt Conv1D}$	Adjusted	0.728950	0.710767	0.2219
667	M17	NN	${\tt Conv1D}$	Adjusted	0.757627	0.710231	0.2136
668	M18	NN	${\tt Conv1D}$	Adjusted	0.736233	0.710957	0.2167
669	M19	NN	${\tt Conv1D}$	Adjusted	0.750675	0.712858	0.2160
670	M20	NN	${\tt Conv1D}$	Adjusted	0.725361	0.709774	0.2208
671	M21	NN	${\tt Conv1D}$	Adjusted	0.766348	0.709069	0.2136
672	M22	NN	${\tt Conv1D}$	Adjusted	0.760813	0.708625	0.2160
673	M23	NN	${\tt Conv1D}$	Adjusted	0.766132	0.710065	0.2131
674	M24	NN	${\tt Conv1D}$	Adjusted	0.750844	0.710358	0.2164
675	M25	NN	${\tt Conv1D}$	Adjusted	0.747387	0.710534	0.2170
676	M26	NN	${\tt Conv1D}$	Adjusted	0.742208	0.709871	0.2197
677	M27	NN	${\tt Conv1D}$	Adjusted	0.735802	0.710878	0.2162
678	M28	NN	${\tt Conv1D}$	Adjusted	0.761499	0.712150	0.2143
679	M29	NN	${\tt Conv1D}$	Adjusted	0.739853	0.711530	0.2197
680	M30	NN	${\tt Conv1D}$	Adjusted	0.745729	0.710258	0.2176
681	M31	NN	${\tt Conv1D}$	Adjusted	0.744512	0.710516	0.2160

Validation RMSLE

651	0.2242
652	0.2294
653	0.2265
654	0.2232
655	0.2257
656	0.2259
657	0.2254
658	0.2234
659	0.2251
660	0.2261
661	0.2260
662	0.2264
663	0.2255
664	0.2241
665	0.2262
666	0.2277
667	0.2240
668	0.2240
669	0.2251
670	0.2261

671	0.2258
672	0.2268
673	0.2248
674	0.2254
675	0.2257
676	0.2269
677	0.2236
678	0.2249
679	0.2271
680	0.2255
681	0.2243

0.61 #### Interpretation

This neural networks includes a convolutional layer, along with max pooling, multiple dense layers, and an increased number of epochs for a deeper look. The performance of this model is similar to other NN models, but since it is significantly more complex and takes drastically longer to process, this model is not ideal since the validation AUC scores are not altered. Additionally, there is a bit of an overfitting increase as compared to the second simple NN. As a result of this, the second simple NN is preferred still.

0.62 ### Conv1D Adjusted Neural Network 2

```
[43]: for model_name, features in models.items():
          start_time = time.time()
          model = Sequential([
              Conv1D(filters=64, kernel_size=1, activation='relu',
       →input_shape=(n_features, 1)),
              MaxPooling1D(pool size=2),
              Conv1D(filters=64, kernel_size=1, activation='relu'), # Additionalu
       →Conv layer
              MaxPooling1D(pool_size=2),
              Flatten(),
              Dense(128, activation='relu'),
              Dropout(0.4), # Slightly increased dropout
              Dense(64, activation='relu'),
              Dropout(0.4),
              Dense(1, activation='sigmoid')
          ])
          model.compile(optimizer=Adam(learning_rate=0.0005), # Increased learning_
       \rightarrow rate
                        loss='binary_crossentropy', metrics=[AUC(name='auc')])
          es = EarlyStopping(monitor='val_auc', patience=10,_
       ⇒restore_best_weights=True, mode='max') # Adjusted patience
```

```
model.fit(X_train_reshaped, y_train, epochs=100, batch_size=64, verbose=0, __
 →# Reduced epochs, increased batch size
             validation_data=(X_val_reshaped, y_val),
             callbacks=[es])
    , train auc = model.evaluate(X train reshaped, y train, verbose=0)
   _, val_auc = model.evaluate(X_val_reshaped, y_val, verbose=0)
   train_pred = model.predict(X_train_reshaped).flatten()
   val_pred = model.predict(X_val_reshaped).flatten()
   train_rmsle = calculateRMSLE(y_train, np.clip(train_pred, 0, None))
   val_rmsle = calculateRMSLE(y_val, np.clip(val_pred, 0, None))
   new_row = pd.DataFrame([[f"{model_name} NN Conv1D Optimized 2", train_auc,__
 →val_auc, train_rmsle, val_rmsle]],
                          columns=['Model', 'Training AUC', 'Validation AUC', |
 results_df = pd.concat([results_df, new_row], ignore_index=True)
   end_time = time.time()
   print(f"Completed {model_name} in {end_time - start_time:.2f} seconds")
results_df.tail(31)
```

```
744/744
                    2s 2ms/step
186/186
                    Os 2ms/step
Completed M1 in 73.77 seconds
744/744
                    2s 2ms/step
186/186
                    Os 2ms/step
Completed M2 in 78.44 seconds
744/744
                    2s 2ms/step
186/186
                    Os 2ms/step
Completed M3 in 72.46 seconds
744/744
                    2s 2ms/step
186/186
                    Os 2ms/step
Completed M4 in 77.57 seconds
744/744
                    2s 2ms/step
186/186
                    Os 2ms/step
Completed M5 in 80.59 seconds
744/744
                    2s 2ms/step
186/186
                    Os 2ms/step
Completed M6 in 69.26 seconds
744/744
                    2s 2ms/step
186/186
                    Os 2ms/step
Completed M7 in 73.79 seconds
744/744
                    2s 2ms/step
```

100/100					o / .
186/186	140				2ms/step
Completed	M8 :	ın			
744/744					2ms/step
186/186					2ms/step
Completed	M9 :	in 8			
744/744					2ms/step
186/186					2ms/step
Completed	M10	in			
744/744					2ms/step
186/186					2ms/step
Completed	M11	in	83.	20	seconds
744/744			2	2s	2ms/step
186/186			C)s	2ms/step
Completed	M12	in	68.	57	seconds
744/744			2	2s	2ms/step
186/186					2ms/step
${\tt Completed}$	M13	in	55.	52	seconds
744/744			2	2s	2ms/step
186/186			()ຮ	2ms/step
Completed	M14	in	71.4	44	seconds
744/744			1	ls	2ms/step
186/186			()s	2ms/step
Completed	M15	in	57.3	33	seconds
744/744			2	2s	2ms/step
186/186			()s	2ms/step
Completed	M16	in	62.	23	seconds
744/744					2ms/step
186/186					2ms/step
Completed	M17	in			-
744/744					2ms/step
186/186					2ms/step
Completed	M18	in			-
744/744					2ms/step
186/186					2ms/step
Completed	M19	in			-
744/744					2ms/step
186/186					2ms/step
Completed	M20	in			-
744/744	1120				2ms/step
186/186					2ms/step
Completed	M21	in			_
744/744	1121	111			2ms/step
186/186					2ms/step 2ms/step
Completed	Maa	in			-
744/744	1122	TII			2ms/step
186/186					2ms/step 2ms/step
	Maa	i۳			-
Completed	rı23	τIJ			
744/744			2	2 S	2ms/step

186/186			0s	2ms/step
Completed	M24	in	73.09	seconds
744/744			2s	2ms/step
186/186			0s	2ms/step
Completed	M25	in	71.03	seconds
744/744			2s	2ms/step
186/186			0s	2ms/step
Completed	M26	in	66.63	seconds
744/744			2s	2ms/step
186/186			0s	2ms/step
Completed	M27	in	73.51	seconds
744/744			2s	2ms/step
186/186			0s	2ms/step
Completed	M28	in	79.45	seconds
744/744			2s	2ms/step
186/186			0s	2ms/step
Completed	M29	in	62.14	seconds
744/744			1s	2ms/step
186/186			0s	2ms/step
Completed	M30	in	83.21	seconds
744/744			2s	2ms/step
186/186			0s	2ms/step
Completed	M31	in	77.67	seconds

[43]:					Mode	el	Training AUC	Validation AUC	Training RMSLE	\
	682	M1	NN	Conv1D	Optimized	2	0.741977	0.712537	0.2164	
	683	M2	NN	Conv1D	Optimized	2	0.741016	0.712113	0.2155	
	684	МЗ	NN	Conv1D	Optimized	2	0.735827	0.716828	0.2167	
	685	M4	NN	Conv1D	Optimized	2	0.746041	0.712080	0.2159	
	686	M5	NN	Conv1D	Optimized	2	0.747499	0.715631	0.2159	
	687	M6	NN	Conv1D	Optimized	2	0.735628	0.712862	0.2171	
	688	M7	NN	Conv1D	Optimized	2	0.739474	0.713740	0.2173	
	689	M8	NN	Conv1D	Optimized	2	0.744471	0.711743	0.2175	
	690	M9	NN	Conv1D	Optimized	2	0.744813	0.716533	0.2163	
	691	M10	NN	Conv1D	${\tt Optimized}$	2	0.748764	0.714428	0.2146	
	692	M11	NN	Conv1D	Optimized	2	0.749263	0.713469	0.2167	
	693	M12	NN	Conv1D	${\tt Optimized}$	2	0.736619	0.714565	0.2179	
	694	M13	NN	Conv1D	${\tt Optimized}$	2	0.725337	0.713589	0.2182	
	695	M14	NN	Conv1D	${\tt Optimized}$	2	0.739692	0.715245	0.2166	
	696	M15	NN	Conv1D	${\tt Optimized}$	2	0.724454	0.711854	0.2173	
	697	M16	NN	Conv1D	${\tt Optimized}$	2	0.728835	0.712735	0.2183	
	698	M17	NN	Conv1D	${\tt Optimized}$	2	0.727925	0.714761	0.2183	
	699	M18	NN	Conv1D	${\tt Optimized}$	2	0.740541	0.713188	0.2177	
	700	M19	NN	Conv1D	${\tt Optimized}$	2	0.725578	0.713094	0.2183	
	701	M20	NN	Conv1D	${\tt Optimized}$	2	0.736986	0.714197	0.2163	
	702	M21	NN	Conv1D	${\tt Optimized}$	2	0.740667	0.714013	0.2191	
	703	M22	NN	Conv1D	Optimized	2	0.749898	0.713328	0.2162	

704	M23 N	N Conv1D	Optimized	2	0.745875	0.713304	0.2165
705	M24 N	N Conv1D	Optimized	2	0.737323	0.716395	0.2184
706	M25 N	N Conv1D	Optimized	2	0.740056	0.714612	0.2170
707	M26 N	N Conv1D	Optimized	2	0.734910	0.714037	0.2186
708	M27 N	N Conv1D	${\tt Optimized}$	2	0.741309	0.713575	0.2187
709	M28 N	N Conv1D	Optimized	2	0.751094	0.713018	0.2150
710	M29 N	N Conv1D	Optimized	2	0.728173	0.714781	0.2203
711	M30 N	N Conv1D	Optimized	2	0.751206	0.713651	0.2137
712	M31 N	N Conv1D	Optimized	2	0.745493	0.714612	0.2153

	Validation RMSLE
682	0.2236
683	0.2233
684	0.2228
685	0.2241
686	0.2238
687	0.2234
688	0.2241
689	0.2244
690	0.2235
691	0.2229
692	0.2248
693	0.2243
694	0.2233
695	0.2235
696	0.2230
697	0.2237
698	0.2236
699	0.2245
700	0.2236
701	0.2229
702	0.2254
703	0.2244
704	0.2239
705	0.2245
706	0.2238
707	0.2245
708	0.2255
709	0.2238
710	0.2255
711	0.2235
712	0.2235

0.63 #### Interpretation

This neural network has an additional convolutional layer, slightly increased dropout, increased learning rate, adjusted patient, reduced epochs, and increased batch size. This model does run

faster as compared to the last model, likely due to the decreased number of epochs. However, it does not show a significant difference in performance. It is still a slow running model, and does not have an enhanced validation AUC. Thus, the second simple NN is still preferred. Nevertheless, the adjusted EBM 1 performs the best out of all of the models based on analyzing the output here. An analysis over the dataframe of scores will be conducted to better determine the best models.

0.64 # Model Selection

Three primary methods for organizing the dataframe of scores is conducted to try and best rank the models. Since there are a total of 712 models to consider, this is a very difficult process to do just by eye.

- 1) The first method takes the difference in AUC scores between the training and validation sets to consider overfitting. Additionally, the complexity of the variable group is considered, with M1 being the most simple model and M31 being the most complex model. It is important to take into consideration the complexity of the model in order to select the best models. Finally, the dataframe is sorted by the highest validation, lowest AUC difference, and lowest complexity.
- 2) The second method takes into consideration the lowest RMSLE scores and highest AUC scores. This is for comparison purposes to the other rankings, as RMSLE is being considered secondarily in this analysis with such a wide array of different types of models.
- 3) The third model takes into consideration both RMSLE and AUC scores, but creates a combined score, applying a greater weight to the AUC score since it is more important to take into consideration.

0.65 ## Model Validation AUC, AUC Difference and COmplexity Ranking

```
[70]: Model Training AUC Validation AUC Training RMSLE \
514 M19 EBM Adjusted 2 0.756544 0.729734 0.2153
456 M23 EBM 0.762217 0.729273 0.2141
```

483	M19	EBM	Adjusted 3	0.753422	0.728	563 0.2156
513			Adjusted 2		0.728	308 0.2149
515			Adjusted 2		0.728	196 0.2156
442			M9 EBN	0.762717	0.728	0.2141
525	M30	EBM	Adjusted 2		0.727	
485			Adjusted 1		0.727	
484			Adjusted :		0.727	
440			M7 EBN		0.727	
474	M10	F.BM	Adjusted :		0.727	
482			Adjusted :		0.727	
445			M12 EBN		0.727	
451			M18 EBN		0.727	
443			M10 EBN		0.726	
447			M14 EBN		0.726	
495	M31	FRM	Adjusted 3		0.726	
453	1101	Б Б11	M20 EBN		0.726	
444			M11 EBN		0.726	
448			M15 EBN		0.726	
494	мзо	FRM	Adjusted :		0.726	
516			Adjusted 2		0.726	
486			Adjusted 2		0.726	
464	1122	ווטנו	M31 EBN		0.726	
526	M21	FRM	Adjusted 2		0.726	
452	1101	LDI	M19 EBN		0.726	
475	M11	грм	Adjusted 3		0.726	
455	LITT	LIDIT	M22 EBN		0.726	
478	M1/	EDW	Adjusted 3		0.726	
458	1117	LIDIT	M25 EBN		0.726	
457			M24 EBN		0.726	
473	МΩ	EDW	Adjusted 3		0.726	
441	НЭ	EDM	M8 EBM		0.726	
512	M17	грм			0.726	
481			Adjusted 2		0.726	
			Adjusted 3			
517			Adjusted 2		0.726	
503	MO	LDM	Adjusted 2		0.725 0.725	
446	MOO	LDM	M13 EBN			
487			Adjusted :		0.725	
472	M8	EBM	Adjusted 3	0.743572	0.725	698 0.2169
	17-7-	: -1	DMCLE	Difference AUC	C1	Narranalianal DMCIE \
E 1 /	val.	ıaat.		Difference AUC	Complexity	Normalized RMSLE \
514			0.2230	0.026810	19	0.539256
456			0.2230	0.032944	23	0.539256
483			0.2230	0.024858	19	0.539256
513			0.2231	0.031524	18	0.539050
515			0.2230	0.025534	20	0.539256
442			0.2232	0.034684	9	0.538843
525			0.2228	0.020030	30	0.539669

485	0.2230	0.018064	21	0.539256
484	0.2230	0.020750	20	0.539256
440	0.2232	0.038015	7	0.538843
474	0.2231	0.011977	10	0.539050
482	0.2231	0.028131	18	0.539050
445	0.2231	0.033119	12	0.539050
451	0.2233	0.056142	18	0.538636
443	0.2231	0.039804	10	0.539050
447	0.2232	0.034610	14	0.538843
495	0.2230	0.015437	31	0.539256
453	0.2233	0.056718	20	0.538636
444	0.2232	0.039425	11	0.538843
448	0.2231	0.033939	15	0.539050
494	0.2230	0.017152	30	0.539256
516	0.2229	0.023511	21	0.539463
486	0.2232	0.015160	22	0.538843
464	0.2233	0.054354	31	0.538636
526	0.2230	0.019827	31	0.539256
452	0.2234	0.064278	19	0.538430
475	0.2231	0.011869	11	0.539050
455	0.2234	0.039389	22	0.538430
478	0.2232	0.014007	14	0.538843
458	0.2231	0.033455	25	0.539050
457	0.2233	0.033969	24	0.538636
473	0.2232	0.012297	9	0.538843
441	0.2233	0.039908	8	0.538636
512	0.2232	0.023579	17	0.538843
481	0.2232	0.020607	17	0.538843
517	0.2233	0.021150	22	0.538636
503	0.2233	0.021101	8	0.538636
446	0.2232	0.034355	13	0.538843
487	0.2232	0.010646	23	0.538843
472	0.2233	0.017874	8	0.538636

	Combined Score
514	0.672591
456	0.672268
483	0.671771
513	0.671530
515	0.671514
442	0.671276
525	0.671476
485	0.671210
484	0.671144
440	0.670823
474	0.670845
482	0.670683

```
445
            0.670677
451
            0.670536
443
            0.670610
447
            0.670547
495
            0.670666
453
            0.670432
444
            0.670474
448
            0.670520
494
            0.670545
516
            0.670579
486
            0.670389
464
            0.670289
526
            0.670452
452
            0.670122
475
            0.670294
455
            0.670031
478
            0.670137
458
            0.670153
457
            0.670006
473
            0.670060
441
            0.669972
512
            0.670019
481
            0.670018
517
            0.669827
503
            0.669717
446
            0.669736
487
            0.669687
472
            0.669579
```

0.66 ## Model RMSLE and AUC Ranking

Top 20 Models Sorted by RMSLE:

```
[45]:
                                Model
                                       Training AUC
                                                     Validation AUC
                                                                      Training RMSLE \
      525
                  M30 EBM Adjusted 2
                                           0.747995
                                                                               0.2164
                                                            0.727965
            M3 NN Conv1D Optimized 2
      684
                                           0.735827
                                                            0.716828
                                                                               0.2167
      516
                  M21 EBM Adjusted 2
                                           0.750283
                                                            0.726772
                                                                               0.2161
```

```
691
    M10 NN Conv1D Optimized 2
                                      0.748764
                                                        0.714428
                                                                           0.2146
     M20 NN Conv1D Optimized 2
701
                                      0.736986
                                                        0.714197
                                                                           0.2163
514
            M19 EBM Adjusted 2
                                      0.756544
                                                        0.729734
                                                                           0.2153
                        M23 EBM
456
                                      0.762217
                                                        0.729273
                                                                           0.2141
483
            M19 EBM Adjusted 1
                                      0.753422
                                                        0.728563
                                                                           0.2156
            M20 EBM Adjusted 2
515
                                      0.753729
                                                        0.728196
                                                                           0.2156
485
            M21 EBM Adjusted 1
                                      0.745826
                                                        0.727762
                                                                           0.2167
            M20 EBM Adjusted 1
484
                                      0.748417
                                                        0.727667
                                                                           0.2164
495
            M31 EBM Adjusted 1
                                      0.742422
                                                        0.726985
                                                                           0.2172
494
            M30 EBM Adjusted 1
                                      0.743963
                                                        0.726811
                                                                           0.2170
            M31 EBM Adjusted 2
526
                                      0.746505
                                                        0.726678
                                                                           0.2166
629
                 M31 NN Complex
                                      0.744133
                                                        0.720031
                                                                           0.2166
648
                 M31 NN Complex
                                      0.748208
                                                        0.718108
                                                                           0.2166
                                      0.743683
622
                 M31 NN Complex
                                                        0.717296
                                                                           0.2166
                 M31 NN Complex
640
                                      0.739494
                                                        0.717039
                                                                           0.2166
634
                 M31 NN Complex
                                      0.743502
                                                        0.716064
                                                                           0.2166
                 M31 NN Complex
646
                                      0.744693
                                                        0.715496
                                                                           0.2166
     Validation RMSLE Difference AUC
                                          Complexity
525
                0.2228
                               0.020030
                                                  30
684
                0.2228
                                                   3
                               0.018998
                0.2229
                                                  21
516
                               0.023511
691
                0.2229
                               0.034336
                                                   10
701
                0.2229
                               0.022789
                                                  20
514
                0.2230
                                                   19
                               0.026810
456
                0.2230
                               0.032944
                                                  23
483
                0.2230
                               0.024858
                                                   19
515
                0.2230
                                                  20
                               0.025534
485
                0.2230
                               0.018064
                                                  21
484
                0.2230
                                                  20
                               0.020750
495
                0.2230
                               0.015437
                                                  31
494
                0.2230
                                                  30
                               0.017152
526
                0.2230
                               0.019827
                                                  31
629
                0.2230
                               0.024102
                                                   31
648
                0.2230
                               0.030100
                                                   31
622
                0.2230
                               0.026387
                                                  31
640
                0.2230
                               0.022455
                                                  31
634
                0.2230
                               0.027439
                                                  31
646
                0.2230
                               0.029197
                                                  31
```

0.67 ## Model RMSLE and AUC Combined Score Ranking

```
[71]: # normalizing the RMSLE

max_rmsle = results_df['Validation RMSLE'].max()

results_df['Normalized RMSLE'] = 1 - (results_df['Validation RMSLE'] /

□ max_rmsle)
```

Top 20 Models Sorted by Combined Score (AUC & RMSLE):

[71]:				Model	Training AUC	Validation AUC	Training RMSLE	\
	514	M19	EBM	Adjusted 2	0.756544	0.729734	0.2153	
	456			M23 EBM	0.762217	0.729273	0.2141	
	483	M19	EBM	Adjusted 1	0.753422	0.728563	0.2156	
	513	M18	EBM	Adjusted 2	0.759832	0.728308	0.2149	
	515	M20	EBM	Adjusted 2	0.753729	0.728196	0.2156	
	525	M30	EBM	Adjusted 2	0.747995	0.727965	0.2164	
	442			M9 EBM	0.762717	0.728033	0.2141	
	485	M21	EBM	Adjusted 1	0.745826	0.727762	0.2167	
	484	M20	EBM	Adjusted 1	0.748417	0.727667	0.2164	
	474	M10	EBM	Adjusted 1	0.739305	0.727329	0.2174	
	440			M7 EBM	0.765401	0.727386	0.2137	
	482	M18	EBM	Adjusted 1	0.755229	0.727098	0.2155	
	445			M12 EBM	0.760207	0.727088	0.2145	
	495	M31	EBM	Adjusted 1	0.742422	0.726985	0.2172	
	443			M10 EBM	0.766798	0.726993	0.2136	
	516	M21	EBM	Adjusted 2	0.750283	0.726772	0.2161	
	447			M14 EBM	0.761601	0.726991	0.2143	
	494	M30	EBM	Adjusted 1	0.743963	0.726811	0.2170	
	451			M18 EBM	0.783207	0.727065	0.2114	
	448			M15 EBM	0.760804	0.726864	0.2144	
	444			M11 EBM	0.766312	0.726887	0.2136	
	526	M31	EBM	Adjusted 2	0.746505	0.726678	0.2166	
	453			M20 EBM	0.783635	0.726916	0.2114	
	486	M22	EBM	Adjusted 1	0.741926	0.726765	0.2171	
	475	M11	EBM	Adjusted 1	0.738411	0.726542	0.2175	
	464			M31 EBM	0.781066	0.726712	0.2118	
	458			M25 EBM	0.759795	0.726340	0.2145	
	478	M14	EBM	Adjusted 1	0.740413	0.726406	0.2173	
	452			M19 EBM	0.790839	0.726561	0.2102	
	473	M9	EBM	Adjusted 1	0.738593	0.726296	0.2175	

455		M22 EBM	0.765821	0.726	432 0.2137
512	M17 EBM Ad	justed 2	0.749817	0.726	238 0.2162
481	M17 EBM Ad	justed 1	0.746843	0.726	236 0.2167
457		M24 EBM	0.760277	0.726	308 0.2144
441		M8 EBM	0.766168	0.726	259 0.2137
517	M22 EBM Ad	justed 2	0.747202	0.726	0.2164
446		M13 EBM	0.760188	0.725	832 0.2144
503	M8 EBM Ad	justed 2	0.746996	0.725	894 0.2164
487	M23 EBM Ad	justed 1	0.736410	0.725	763 0.2178
472	M8 EBM Ad	justed 1	0.743572	0.725	698 0.2169
		-			
	Validation	RMSLE Diffe	rence AUC	Complexity	Normalized RMSLE \
514	(0.2230	0.026810	19	0.539256
456	(0.2230	0.032944	23	0.539256
483	(0.2230	0.024858	19	0.539256
513	(0.2231	0.031524	18	0.539050
515	(0.2230	0.025534	20	0.539256
525	(0.2228	0.020030	30	0.539669
442	(0.2232	0.034684	9	0.538843
485	(0.2230	0.018064	21	0.539256
484	(0.2230	0.020750	20	0.539256
474	(0.2231	0.011977	10	0.539050
440	(0.2232	0.038015	7	0.538843
482	(0.2231	0.028131	18	0.539050
445	(0.2231	0.033119	12	0.539050
495	(0.2230	0.015437	31	0.539256
443	(0.2231	0.039804	10	0.539050
516	(0.2229	0.023511	21	0.539463
447	(0.2232	0.034610	14	0.538843
494	(0.2230	0.017152	30	0.539256
451	(0.2233	0.056142	18	0.538636
448	(0.2231	0.033939	15	0.539050
444	(0.2232	0.039425	11	0.538843
526	(0.2230	0.019827	31	0.539256
453	(0.2233	0.056718	20	0.538636
486	(0.2232	0.015160	22	0.538843
475	(0.2231	0.011869	11	0.539050
464	(0.2233	0.054354	31	0.538636
458	(0.2231	0.033455	25	0.539050
478	(0.2232	0.014007	14	0.538843
452	(0.2234	0.064278	19	0.538430
473	(0.2232	0.012297	9	0.538843
455	(0.2234	0.039389	22	0.538430
512	(0.2232	0.023579	17	0.538843
481	(0.2232	0.020607	17	0.538843
457	(0.2233	0.033969	24	0.538636
441	(0.2233	0.039908	8	0.538636

517	0.2233	0.021150	22	0.538636
446	0.2232	0.034355	13	0.538843
503	0.2233	0.021101	8	0.538636
487	0.2232	0.010646	23	0.538843
472	0.2233	0.017874	8	0.538636

Combined Score

	Combined Score
514	0.672591
456	0.672268
483	0.671771
513	0.671530
515	0.671514
525	0.671476
442	0.671276
485	0.671210
484	0.671144
474	0.670845
440	0.670823
482	0.670683
445	0.670677
495	0.670666
443	0.670610
516	0.670579
447	0.670547
494	0.670545
451	0.670536
448	0.670520
444	0.670474
526	0.670452
453	0.670432
486	0.670389
475	0.670294
464	0.670289
458	0.670153
478	0.670137
452	0.670122
473	0.670060
455	0.670031
512	0.670019
481	0.670018
457	0.670006
441	0.669972
517	0.669827
446	0.669736
503	0.669717
487	0.669687
472	0.669579

0.68 ## Model Considerations

As the EBM Adjusted and EBM models perform the best in both the first and third rankings, these will be considered. The RMSLE normal ranking shows different models as compared to the others rankings that put the emphasis on the AUC score. M19 EBM Adjusted 2, M23 EBM, and M19 EBM Adjusted 1 perform the best out of these rankings.

0.69 # Test Set Prediction

```
[47]: def prediction_folder(day):
    folder_path = f'Predictions/Day_{day}'
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
```

0.70 ### Prediction Functions

Since some models are repeated frequently, it will clean up the code to utilize functions.

0.71 #### Simple EBM Prediction Function

0.72 #### Adjusted EBM 1 Prediction Function

```
[49]: def ebm_adjusted_1_prediction(model, day):
    features = models[model]

# Adjusted EBM Model 1
    ebm_adjusted_1 = ExplainableBoostingClassifier(
        random_state=20240325,
        learning_rate=0.01,
        max_bins=256,
        interactions=10,
```

0.73 #### Adjusted EBM 2 Prediction Function

```
[50]: def ebm_adjusted_2_prediction(model, day):
          features = models[model]
          # Adjusted EBM Model 2
          ebm_adjusted_2 = ExplainableBoostingClassifier(
              random_state=20240325,
              learning_rate=0.005,
              max_bins=512,
              interactions=15,
              early_stopping_rounds=100,
              n jobs=-1
          ebm_adjusted_2.fit(X_train[features], y_train)
          X_test = test_data[features]
          # Predicting with the model
          test_data['score'] = ebm_adjusted_2.predict_proba(X_test)[:, 1]
          # Saving the required predictions
          test_data[['article_id', 'score']].to_csv(f'Predictions/Day_{day}/
       ⇔{model}_ebm_adjusted_2_predictions.csv', index=False)
```

0.74 ## Day 1 Predictions

All of the predictions from day one came from the simple EBM model

```
[51]: prediction_folder('1')
[52]: simple_ebm_prediction('M9', '1')
[53]: simple_ebm_prediction('M7', '1')
```

```
[54]: simple_ebm_prediction('M10', '1')
[55]: simple_ebm_prediction('M6', '1')
[56]:
      simple_ebm_prediction('M12', '1')
          ## Day 2 Predictions
[57]: prediction_folder('2')
[58]: simple_ebm_prediction('M11', '2')
[59]:
      ebm_adjusted_1_prediction('M10', '2')
[60]: ebm_adjusted_1_prediction('M11', '2')
      ebm_adjusted_1_prediction('M12', '2')
[61]:
[62]: ebm_adjusted_1_prediction('M9', '2')
     0.76 ## Day 3 Predictions
[63]: prediction_folder('3')
      ebm_adjusted_1_prediction('M19', '3')
[64]:
      ebm_adjusted_2_prediction('M18', '3')
[65]:
[66]:
      ebm_adjusted_2_prediction('M19', '3')
     ebm_adjusted_2_prediction('M20', '3')
[67]:
[68]: simple_ebm_prediction('M18', '3')
           ## Day 4 Predictions
[69]: prediction_folder('4')
[72]:
      simple_ebm_prediction('M23', '4')
[73]:
      simple_ebm_prediction('M19', '4')
[74]:
     simple_ebm_prediction('M31', '4')
[75]: simple_ebm_prediction('M24', '4')
```

```
[76]: simple_ebm_prediction('M13', '4')
     0.78 ## Day 5 Predictions
[77]: prediction_folder('5')
[78]:
      simple_ebm_prediction('M22', '5')
[79]:
      ebm_adjusted_2_prediction('M30', '5')
[80]:
     ebm_adjusted_1_prediction('M18', '5')
      ebm_adjusted_1_prediction('M31', '5')
[81]:
[82]: ebm_adjusted_2_prediction('M21', '5')
     0.79 ## Day 6 Predictions
[83]: prediction_folder('6')
[84]:
      simple_ebm_prediction('M14', '6')
[85]: simple_ebm_prediction('M15', '6')
     simple_ebm_prediction('M20', '6')
[86]:
[87]: simple_ebm_prediction('M25', '6')
      ebm_adjusted_1_prediction('M30', '6')
[88]:
     0.80 ## Day 7 Predictions
[89]: prediction_folder('7')
[90]: ebm_adjusted_2_prediction('M31', '7')
[91]:
      ebm_adjusted_1_prediction('M22', '7')
      ebm adjusted 1 prediction('M14', '7')
[92]:
 []:
```