Disclaimer

- All images/contents used in this presentation are copyright of original owners.
- The PPT has prepared for academic use only.

DIGITAL IMAGE PROCESSING

Basic Relationships between Pixels

By:

HARSHAVARDHANREDDY

AIET, GLB

Neighbors of a Pixel

Neighbors of a Pixel

$$f(0,0) \quad f(0,1) \quad f(0,2) \quad f(0,3) \quad f(0,4) - \cdots - f(1,0) \quad f(1,1) \quad f(1,2) \quad f(1,3) \quad f(1,4) - \cdots - f(2,0) \quad f(2,1) \quad f(2,2) \quad f(2,3) \quad f(2,4) - \cdots - f(3,0) \quad f(3,1) \quad f(3,2) \quad f(3,3) \quad f(3,4) - \cdots - I \quad I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad I \quad I \quad - \cdots - I \quad I \quad - \cdots \quad I \quad I \quad I \quad I \quad - \cdots \quad I \quad I \quad I \quad - \cdots \quad I \quad I \quad I \quad I \quad - \cdots \quad I \quad I \quad I \quad I \quad - \cdots \quad I \quad I$$

- A Pixel p at coordinates (x, y) has 4 horizontal and vertical neighbors.
- ☐ Their coordinates are given by:

$$(x+1, y)$$
 $(x-1, y)$ $(x, y+1)$ & $(x, y-1)$ $f(2,1)$ $f(0,1)$ $f(1,2)$

- \square This set of pixels is called the <u>4-neighbors</u> of p denoted by $N_{4}(p)$.
- □ Each pixel is unit distance from (x,y).

Neighbors of a Pixel

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & f(0,2) & f(0,3) & f(0,4) - \cdots \\ f(1,0) & f(1,1) & f(1,2) & f(1,3) & f(1,4) - \cdots \\ f(2,0) & f(2,1) & f(2,2) & f(2,3) & f(2,4) - \cdots \\ f(3,0) & f(3,1) & f(3,2) & f(3,3) & f(3,4) - \cdots \\ I & I & I & I & I - \cdots \\ I & I & I & I - \cdots \end{bmatrix}$$

- ☐ A Pixel p at coordinates (x, y) has 4 diagonal neighbors.
- ☐ Their coordinates are given by:

$$(x+1, y+1)$$
 $(x+1, y-1)$ $(x-1, y+1)$ & $(x-1, y-1)$ $f(0,0)$

- \square This set of pixels is called the <u>diagonal-neighbors</u> of p denoted by $N_D(p)$.
- ☐ diagonal neighbors + 4-neighbors = 8-neighbors of p.
- \square They are denoted by $N_8(p)$. So, $N_8(p) = N_4(p) + N_D(p)$

Adjacency: Two pixels are adjacent if they are neighbors and their intensity level 'V' satisfy some specific criteria of similarity.

```
e.g. V = {1}
V = {0, 2}
Binary image = {0, 1}
Gray scale image = {0, 1, 2, -----, 255}
```

In binary images, 2 pixels are adjacent if they are neighbors & have some intensity values either o or 1.

In gray scale, image contains more gray level values in range o to 255.

<u>4-adjacency:</u> Two pixels p and q with the values from set 'V' are 4-adjacent if q is in the set of $N_4(p)$.

$$e.g. V = {0, 1}$$

1	1	2
1	1	0
1	0	1

p in RED color q can be any value in GREEN color.

<u>8-adjacency:</u> Two pixels p and q with the values from set 'V' are 8-adjacent if q is in the set of $N_8(p)$.

e.g.
$$V = \{1, 2\}$$

p in RED color q can be any value in GREEN color

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

- (i) $q is in N_4(p)$ OR
- (ii) q is in $N_D(p)$ & the set $N_{\underline{A}}(p)$ $N_{\underline{A}}(q)$ have no pixels whose values are from 'V'.

$$e.g. V = \{1\}$$

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

(i) $q is in N_4(p)$

$$e.g. V = \{1\}$$

(i) b & c

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

(i)
$$q is in N_4(p)$$

e.g.
$$V = \{1\}$$
 (i) b & c

Soln: b & c are m-adjacent.

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

(i)
$$q is in N_4(p)$$

$$e.g. V = \{1\}$$

(ii) b & e

- O a (1b) 10
- O d 1 e O f
- Og Oh 11

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

(i)
$$q is in N_4(p)$$

Soln: b & e are m-adjacent.

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

```
(i) q is in N<sub>4</sub>(p) OR
```

```
e.g. V = {1}
(iii) e & i
```

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

q is in N_D(p) & the set N₄(p) N N₄(q) have no pixels whose values are from 'V'.

```
e.g.V={1}
(iii) e & i
O a 1 b 1 c
O d 1 e O f
O q O h 1 l
```

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

q is in N_D(p) & the set N₄(p) N N₄(q) have no pixels whose values are from 'V'.

```
e.g.V={1}
(iii) e & i
O a 1 b 1 c
O d 1 e O f
O g O h 1 i
```

Soln: e & i are m-adjacent.

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

- (i) $q i s in N_{L}(p)$ OR
- (ii) q is in N_D(p) & the set N₄(p) N N₄(q) have no pixels whose values are from 'V'.

<u>m-adjacency:</u> Two pixels p and q with the values from set 'V' are m-adjacent if

- (i) $q i s in N_4(p)$ OR
- q is in N_D(p) & the set N₄(p) N N₄(q) have no pixels whose values are from 'V'.

11

Oh

Soln: e & c are NOT m-adjacent.

O g

Connectivity: 2 pixels are said to be connected if their exists a path between them.

Let 'S' represent subset of pixels in an image.

Two pixels p & q are said to be connected in 'S' if their exists a path between them consisting entirely of pixels in 'S'.

For any pixel p in S, the set of pixels that are connected to it in S is called a **connected component of S**.

<u>Paths:</u> A path from pixel p with coordinate (x, y) with pixel q with coordinate (s, t) is a sequence of distinct sequence with coordinates (x₀, y₀), (x₁, y₁),, (x_n, y_n) where

$$(x, y) = (x_0, y_0)$$

& $(s, t) = (x_n, y_n)$

Closed path: $(x_0, y_0) = (x_n, y_n)$

Example # 1: Consider the image segment shown in figure. Compute length of the shortest-4, shortest-8 & shortest-m paths between pixels p & q where, V = {1, 2}.

```
4 2 3 20
3 3 1 3
2 3 2 2
0 2 1 2 3
```

```
Example # 1:
```

Shortest-4 path:

 $V = \{1, 2\}.$

4 2 3 2 q 3 3 1 3 2 3 2 2

 $p 2 \rightarrow 1 2 3$

```
Example # 1:
```

Shortest-4 path:

 $V = \{1, 2\}.$

```
Example # 1:
```

$$V = \{1, 2\}.$$

```
Example # 1:
```

$$V = \{1, 2\}.$$

```
Example # 1:
```

$$V = \{1, 2\}.$$

```
Example # 1:
```

Shortest-4 path:

$$V = \{1, 2\}.$$

So, Path does not exist.

Example # 1:

Shortest-8 path:

 $V = \{1, 2\}.$

4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3

Example # 1:

$$V = \{1, 2\}.$$

```
4 2 3 2 q
3 3 1 3
2 3 2 2
2 → 1 2 3
```

```
Example # 1:
```

$$V = \{1, 2\}.$$

```
Example # 1:
```

$$V = \{1, 2\}.$$

```
Example # 1:
```

$$V = \{1, 2\}.$$

```
Example # 1:
```

Shortest-8 path:

$$V = \{1, 2\}.$$

So, shortest-8 path = 4

Example # 1:

```
V = \{1, 2\}.
```

```
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
```

```
Example # 1:
```

```
V = \{1, 2\}.
```

```
4 2 3 2 q
3 3 1 3
2 3 2 2
2 → 1 2 3
```

Example # 1:

$$V = \{1, 2\}.$$

Example # 1:

Shortest-m path:

$$V = \{1, 2\}.$$

Example # 1:

Shortest-m path:

$$V = \{1, 2\}.$$

Example # 1:

Shortest-m path:

$$V = \{1, 2\}.$$

```
Example # 1:
```

Shortest-m path:

$$V = \{1, 2\}.$$

So, shortest-m path = 5

Regions & Boundaries

<u>Region:</u> Let R be a subset of pixels in an image. Two regions Ri and Rj are said to be adjacent if their union form a connected set.

Regions that are not adjacent are said to be disjoint.

We consider 4- and 8- adjacency when referring to regions.

Below regions are adjacent only if 8-adjacency is used.

```
1 1 1 R<sub>i</sub>
0 1 0 0 0 1 1 1 1 R<sub>j</sub>
```

Regions & Boundaries

<u>Boundaries (border or contour)</u>: The boundary of a region R is the set of points that are adjacent to points in the compliment of R.

RED colored 1 is NOT a member of border if 4-connectivity is used between region and background. It is if 8-connectivity is used.

Example:

(3=4)

(1=5)

Distance Measures

<u>Distance Measures:</u> Distance between pixels p, q & z with coordinates (x, y), (s, t) & (v, w) resp. is given by:

- a) $D(p,q) \ge o[D(p,q) = o \text{ if } p = q]$ called reflexivity
- b) D(p, q) = D(q, p)called symmetry
- c) $D(p, z) \le D(p, q) + D(q, z)$ called transmitivity

Euclidean distance between p & q is defined as-

$$D_{e}(p, q) = [(x-s)^{2} + (y-t)^{2}]^{1/2}$$

Distance Measures

City Block Distance: The D4 distance between p & q is defined as

$$D_4(p, q) = |x - s| + |y - t|$$

In this case, pixels having D_4 distance from (x, y) less than or equal to some value r form a diamond centered at (x, y).

Pixels with D₄ distance ≤ 2 forms the following contour of constant distance.

Distance Measures

<u>Chess-Board Distance</u>: The D₈ distance between p & q is defined as

$$D_8(p, q) = max(|x-s|, |y-t|)$$

In this case, pixels having D_8 distance from (x, y) less than or equal to some value r form a square centered at (x, y).

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Pixels with D₈ distance ≤ 2 forms the following contour of constant distance.

Set operations

Logical operations

 The AND operator is usually used to mask out part of an image.

 Parts of another image can be added with a logical OR operator.

Result of AND

Result of OR

OR

