Logistic Regression

edureka!

https://www.edureka.co/python

Topics Covered in Today's Training

What is Regression?

Logistic regression: What and Why?

Linear Vs Logistic Regression

Use-Cases

What Is Regression

What is Regression?

Regression Analysis is a predictive modelling technique

It estimates the relationship between a dependent (target) and an independent variable (predictor)

Logistic Regression: What And Why

Logistic Regression: What And Why?

Logistic Regression produces results in a binary format which is used to predict the outcome of a categorical dependent variable. So the outcome should be discrete/ categorical such as:

Why Not Linear Regression?

Why Not Linear Regression?

Logistic Regression Curve

The Sigmoid "S"
Curve

Logistic Regression Curve

The Logistic Regression Equation is derived from the Straight Line Equation

Equation of a straight line

$$Y = C + BIX1 + B2X2 +....$$

Range is from –(infinity) to (infinity)

The Logistic Regression Equation is derived from the Straight Line Equation

Equation of a straight line

$$Y = C + BIX1 + B2X2 +....$$

Range is from –(infinity) to (infinity)

Let's try to reduce the Logistic Regression Equation from Straight Line Equation

$$Y = C + BIX1 + B2X2 +...$$

In Logistic equation Y can be only from 0 to 1

The Logistic Regression Equation is derived from the Straight Line Equation

Equation of a straight line

Range is from –(infinity) to (infinity)

Let's try to reduce the Logistic Regression Equation from Straight Line Equation

$$Y = C + BIX1 + B2X2 +....$$

In Logistic equation Y can be only from 0 to 1

Now, to get the range of Y between 0 and infinity, let's transform Y

$$\begin{bmatrix} Y \\ \hline 1-Y \end{bmatrix}$$
 Y= 0 then 0
Y= 1 then infinity

Now, the range is between 0 to infinity

The Logistic Regression Equation is derived from the Straight Line Equation

Equation of a straight line

Range is from –(infinity) to (infinity)

Let's try to reduce the Logistic Regression Equation from Straight Line Equation

$$Y = C + BIX1 + B2X2 +....$$

In Logistic equation Y can be only from 0 to 1

Now, to get the range of Y between 0 and infinity, let's transform Y

Now, the range is between 0 to infinity

Let us transform it further, to get range between –(infinity) and (infinity)

$$\log \left[\frac{Y}{1-Y}\right] \Longrightarrow Y = C + BIX1 + B2X2 + \dots$$

Final Logistic Regression Equation

Linear Vs Logistic Regression

Linear Regression

Logistic Regression

- Continuous variables
- 2 Solves Regression Problems
- 3 Straight line

- Categorical variables
- Solves Classification Problems
- 3 S-Curve

Logistic Regression: Use - Cases

Logistic Regression: Use - Cases

Logistic Regression: Use - Cases

Logistic Regression: Use - Cases

Determines Illness

Demo

Titanic Data Analysis

1

Explore titanic dataset and explore about the people, both those who survived and those who did not. With today's technology, answering questions through data analysis is now easier than ever.

What factors made people more likely to survive the sinking of the Titanic?

Titanic Dataset

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
12	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500	NaN	S
13	14	0	3	Andersson, Mr. Anders Johan	male	39.0	1	5	347082	31.2750	NaN	S
14	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	female	14.0	0	0	350406	7.8542	NaN	S

Collecting Data Analyzing Data Data Wrangling Train & Test Accuracy Check

Collect Data: Import Libraries

```
In [33]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   import math
   %matplotlib inline

titanic_data= pd.read_csv('Titanic.csv')
```


Creating different plot to check relationship between variables

Creating different plot to check relationship between variables

Data Wrangling

Clean the data by removing the Nan values and unnecessary columns in the

dataset

	Survived	Age	SibSp	Parch	Fare	male	Q	S	2	3
0	0	22.0	1	0	7.2500	1	0	1	0	1
1	1	38.0	1	0	71.2833	0	0	0	0	0
2	1	26.0	0	0	7.9250	0	0	1	0	1
3	1	35.0	1	0	53.1000	0	0	1	0	0
4	0	35.0	0	0	8.0500	1	0	1	0	1

Train & Test Data

Build the model on the train data and predict the output on the test data

logistic = LogisticRegression()

logistic.fit(train_X,train_Y)

Accuracy Check

Calculate accuracy to check how accurate your results are.

from sklearn.metrics import accuracy_score accuracy_score(y_test,predictions)*100

SUV Data Analysis

A car company has released a new SUV in the market. Using the previous data about the sales of their SUV's, they want to predict the category of people who might be interested in buying this.

What factors made people more interested in buying SUV?

SUV Predictions

	User ID	Gender	Age	Estimated Salary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
5	15728773	Male	27	58000	0
6	15598044	Female	27	84000	0
7	15694829	Female	32	150000	1
8	15600575	Male	25	33000	0
9	15727311	Female	35	65000	0

Session in a Minute

Don't just learn it, MASTER it with

For more information please visit our website www.edureka.co