Home Appliances Demand Forecasting Using ARIMA model

Objective

Generate quarterly forecasts for Industry Shipment Demand for Q3 and Q4 of 2015 for each of the 13 product categories

Resources

- 1. Historical weekly shipment information from 2010
- 2. Macro-economic data like GDP, interest rates, etc.

Approaches

Using AR, MA and ARIMA as well as Seasonal ARIMA models for various products based on the trend pictured in using the Historical data.

Simpel Time Series Approach

- 1. Stationarized the series series, verified using Augmented Dickey-Fuller Test
- 2. Splitting trend, seasonal variation and white noise
- 3. Fitting and prediction using ARIMA model

(Illustrated using Dryer as example)

The time series plot of given series

The time series plot stationarized series (used diff function)

Duckey Fuller Test & ACF/PACF

#slicing time (vear-week) and units alone dataDrver <- data[data\$PRODUCT == "Dryer",c(3,5)]

#converting the dataframe to timeseries DrverTs <- ts(dataDrverSINDUSTRY UNITS. start=c(2010,1), end= c(2015,26), freq=54)

#Augmented Dickey-Fuller Test for given series adf.test(DryerTs)

#Augmented Dickev-Fuller Test after differencing adf.test(diff(DrverTs))
#acf graph after differencing acf(diff(DrverTs))
acf(diff(DryerTs), max.lag=200)

#pacf graph after differencing pacf(diff(DrverTs)) pacf(diff(DryerTs), max.laf=200)

ACF/PACF Graphs

-0.3

ACF/PACF, ACF and PACF cuts off at 1 corresponding to q and p respectively

ACF/PACF with lag upto 200 to check for seasonal pattern, P,Q,D

Fitting the model and forecasting

#fitting ARIMA model fitDryer <- arima(DryerTs, c(1,1,1),seasonal = list(order = c(0, 1, 1), period = 54))

#oredicting for next 2 quarters (27 weeks) predDryer <- predict(fitDryer, n.ahead=27)

#plotting the graph along with forecated value for Q3 and Q4 2015 ts.plot(DryerTs, predDryerSpred, lty = c(1,3))

Predicted value for Q3 and Q4 2015 represented by dotted lines

99.73%

Accuracy:

Accuracy for taken example, the Dryer

Overall Accuracy was close to 92.093%*

*Overall for the period of 27 weeks

Conclusion

The **Time series model** [MAPE = 0.09] has not taken into account the econometric data which represents the real world scenario and rather did a simple analysis of trend and seasonal effect.

Further the **Time Series model** can be improved to represent the real world by including the econometric data as **Explanatory variables.**

Product	Actual Unit	Predicted	Abs Error
2 Door Bottom Mount	121739	183433.76	0.2072151
Built-in Ovens	200132	386430.6	0.0478432
Cooktops	202712	392963.9	0.0119590
Dishwasher	1958321	3467227	0.0633827
Dryer	1865626	3550004	0.0121826
Free Standing Ranges	1884944	3451780	0.0498524
Freezer	574460	1091764.2	0.0601582
French Door	807973	1313876.1	0.1748515
Front Load	580620	1195009	0.0915116
MHC	1303157	2073968.5	0.1323911
Side by Side	642838	993138.3	0.1448725
Top Load	1865736	3248467	0.0561860
Top Mount	1407774	2364558	0.1319490

Thank you