Έστω ότι τα σύμβολα εκπομπής σε βασική ζώνη ενός ψηφιακού συστήματος είναι:

```
0.707+j0.707, -0.707+j0.707, -0.707-j0.707, 0.707-j0.707
```

- 1. Σχεδιάστε το διάγραμμα αστερισμού. Επίσης εκφράστε τα σύμβολα εκπομπής σε διέλευση ζώνης και εξηγήστε για ποια διαμόρφωση πρόκειται.
- 2. Αν ένα σύμβολο λήψης έχει τις συντεταγμένες (-0.5, 0.7) προσδιορίστε τον τρόπο με τον οποίο θα γίνει η εκτίμηση του πιθανότερου συμβόλου εκπομπής.
- 3. Για την παραπάνω διαμόρφωση, υπολογίστε την πιθανότητα σφάλματος του συμβόλου 0.707+j0.707 με κάθε ένα από τα άλλα τρία σύμβολα σε δίαυλο με προσθετικό λευκό Gaussian θόρυβο, με N0 = 0.1 W/Hz.

QPSK

Το σήμα που μεταδίδεται μπορεί να γραφτεί:

$$s(t) = a_I(t)V\cos(2\pi f_c t) + a_Q(t)V\sin(2\pi f_c t),$$

$$s(t) = \sqrt{a_I^2(t) + a_Q^2(t)} V \cos\left(2\pi f_c t - \tan^{-1}\left(\frac{a_Q(t)}{a_I(t)}\right)\right)$$
$$= \sqrt{2}V \cos[2\pi f_c t - \theta(t)],$$

$$\theta(t) = \begin{cases} \pi/4, & a_I = +1, a_Q = +1 \text{ (bits 11)} \\ -\pi/4, & a_I = +1, a_Q = -1 \text{ (bits 10)} \\ 3\pi/4, & a_I = -1, a_Q = +1 \text{ (bits 01)} \\ -3\pi/4, & a_I = -1, a_Q = -1 \text{ (bits 00)} \end{cases}$$

Απεικόνιση Gray Mapping

QPSK

$$\begin{cases} \phi_1(t) = \frac{V\cos(2\pi f_c t)}{\sqrt{V^2 T_b}} \\ \phi_2(t) = \frac{V\sin(2\pi f_c t)}{\sqrt{V^2 T_b}} \end{cases}, \quad 0 < t < T_s = 2T_b,$$

$$\phi_2(t) = \sqrt{\frac{2}{T_s}}\sin(2\pi f_c t) \qquad E_s = V^2 T_s$$

$$a_I = -1, a_\varrho = 1 \Rightarrow \theta(t) = 3\pi/4 \qquad a_I = 1, a_\varrho = 1 \Rightarrow \theta(t) = \pi/4$$

$$\sqrt{V^2 T_s} \qquad a_I = 1, a_\varrho = 1 \Rightarrow \theta(t) = \pi/4$$

Αστερισμός...

Βασική ζώνη Διέλευση ζώνης

$$s_1 = 0.707 + j0.707$$

$$s_1 = 0.707\cos(\omega_c t) + 0.707\sin(\omega_c t)$$

$$= [\sqrt{(0.707)^2 + (0.707)^2}]\cos(\omega_c t + \pi/4)$$

$$S_2 = -0.707\cos(\omega_c t) + 0.707\sin(\omega_c t)$$

= $1\cos(\omega_c t + 3\pi/4)$

$$S_3 = -0.707\cos(\omega_c t) - 0.707\sin(\omega_c t)$$

= $1\cos(\omega_c t + 5\pi/4)$

$$S_4 = 0.707\cos(\omega_c t) - 0.707\sin(\omega_c t)$$

= $1\cos(\omega_c t + 7\pi/4)$

Σύμφωνα με την maximum likelihood probability πρέπει να επιλεγεί εκείνο το σύμβολο (από τα S₁ S₂ S₃ S₄) Το οποίο έχει την μικρότερη Ευκλείδεια απόσταση από το σύμβολο λήψης (το οποίο έχει προβολές (**r**₁, **r**₂) = (-0.5, 0.7))

$$d(s_{1},r) = \sqrt{(s_{11} - r_{1})^{2} + (s_{12} - r_{2})^{2}}$$

$$= \sqrt{(0.707 - (-0.5))^{2} + (0.707 - 0.7)^{2}} \approx 1.2$$

$$d(s_{2},r) = \sqrt{(s_{21} - r_{1})^{2} + (s_{22} - r_{2})^{2}}$$

$$= \sqrt{(-0.707 - (-0.5))^{2} + (0.707 - 0.7)^{2}} \approx 0.2$$

$$d(s_{3},r) = \sqrt{(s_{31} - r_{1})^{2} + (s_{32} - r_{2})^{2}}$$

$$= \sqrt{(-0.707 - (-0.5))^{2} + (-0.707 - 0.7)^{2}} \approx 1.4$$

$$d(s_{4},r) = \sqrt{(s_{41} - r_{1})^{2} + (s_{42} - r_{2})^{2}}$$

$$= \sqrt{(0.707 - (-0.5))^{2} + (-0.707 - 0.7)^{2}} \approx 1.8$$

$$P[\text{error}] = Q\left(\frac{\text{απόσταση μεταξύ των σημάτων}}{2 \times \text{noise RMS value}}\right)$$

$$P_{12} = Q \left(\sqrt{\frac{d_{12}^2}{2N_0}} \right)$$

$$\begin{split} P_1 &= P_{12} + P_{13} + P_{14} \\ &= Q \Biggl(\sqrt{\frac{d_{12}^2}{2N_0}} \Biggr) + Q \Biggl(\sqrt{\frac{d_{13}^2}{2N_0}} \Biggr) + Q \Biggl(\sqrt{\frac{d_{14}^2}{2N_0}} \Biggr) \end{split}$$

$$d_{12}^{2} = d^{2}(s_{1}, s_{2}) = (s_{11} - s_{21})^{2} + (s_{12} - s_{22})^{2}$$

$$= (0.707 - (-0.707))^{2} + (0.707 - (0.707))^{2} = 1.41$$

$$d_{13}^{2} = d^{2}(s_{1}, s_{3}) = (s_{11} - s_{31})^{2} + (s_{12} - s_{32})^{2}$$

$$= (0.707 - (-0.707))^{2} + (0.707 - (-0.707))^{2} = 2$$

$$d_{14}^{2} = d^{2}(s_{1}, s_{4}) = (s_{11} - s_{41})^{2} + (s_{12} - s_{42})^{2}$$

$$= (0.707 - 0.707)^{2} + (0.707 - (-0.707))^{2} = 1.41$$

$$P_1 = P_{12} + P_{13} + P_{14} = 2Q\left(\sqrt{\frac{1.41}{2}}\right) + Q\left(\sqrt{\frac{2}{2}}\right)$$

Έστω ένα σύστημα μετάδοσης σε βασική ζώνη το οποίο στέλνει ως bit 1 το σύμβολο $s_1(t)$ και ως bit 0 το σύμβολο $s_2(t) = 0$ για διάρκεια T_b

- σχεδιάστε το δέκτη προσαρμοσμένου φίλτρου (matched filter), καθορίστε την κρουστική απόκριση του φίλτρου, και τις τιμές εισόδου στον φωρατή που αναμένονται για κάθε σύμβολο
- 2. ποιό θα πρέπει να είναι το κατώφλι απόφασης του φωρατή και γιατί
- 3. αν θεωρήσουμε ότι το λαμβανόμενο σήμα έχει προσθετικό λευκό Gaussian θόρυβο με μηδενική μέση τιμή και διακύμανση $\sigma_{\eta}^2 = N_0/2$ δώστε τις υποσυθήκη PDF $f(\mathbf{r}|\mathbf{s}_1)$ και $f(\mathbf{r}|\mathbf{s}_2)$
- 4. για ισοπίθανα σύμβολα, υπολογίστε τη μέση πιθανότητα σφάλματος για αυτή τη διαμόρφωση.

(ON-OFF signaling)

Ο παραπάνω δέκτης με ένα προσαρμοσμένο φίλτρο $h(t)=s_1(T_b-t)$ αρκεί διότι όταν το εισερχόμενο σύμβολο θα είναι το s_1 τότε θα έχουμε $z(T_b)=E_s=\int_0^{T_b}s_1^2(t)dt$ ENQ όταν το εισερχόμενο σύμβολο θα είναι το s_0 τότε θα έχουμε $z(T_b)=\int_0^{T_b}h(t)\cdot 0\cdot dt=0$

2. Επομένως το κατώφλι απόφασης πρέπει να είναι στο μέσο των δύο τιμών, δηλαδή

threshold =
$$\gamma_0 = \frac{E_s + 0}{2} = \frac{E_s}{2}$$

Threshold
$$=\frac{\hat{s}_{12}+\hat{s}_{22}}{2}+\frac{N_0}{2(\hat{s}_{22}-\hat{s}_{12})}\ln\left(\frac{P_1}{P_2}\right)$$

3.

Λόγω του θορύβου που προστίθεται στην είσοδο του δέκτη δεν θα έχουμε τις παραπάνω δύο τιμές z(T_b) (για κάθε ένα από τα δύο σύμβολα). Οι τιμές που θα εισέρχονται στο detector (φωρατής) θα είναι τυχαίες μεταβλητές με κατανομή (συνάρτηση πυκνότητας πιθανότητας)

$$p(z \mid s_0 \text{ transmitted}) = \frac{1}{\sigma_n \sqrt{2\pi}} \exp \left[-\frac{(z - 0)^2}{2\sigma_n^2} \right]$$

$$p(z \mid s_1 \text{ transmitted}) = \frac{1}{\sigma_n \sqrt{2\pi}} \exp \left[-\frac{(z - E_s)^2}{2\sigma_n^2} \right]$$

$$P_{12} = Q \left(\sqrt{\frac{d_{12}^2}{2N_0}} \right) = Q \left(\sqrt{\frac{E_s}{2N_0}} \right)$$

$$P_{21} = Q \left(\sqrt{\frac{d_{21}^2}{2N_0}} \right) = Q \left(\sqrt{\frac{E_s}{2N_0}} \right)$$

$$P_e = \Pr(s_1 \text{ sent}) \cdot P_{12} + \Pr(s_2 \text{ sent}) \cdot P_{21}$$

$$= \frac{1}{2} Q \left(\sqrt{\frac{E_s}{2N_0}} \right) + \frac{1}{2} Q \left(\sqrt{\frac{E_s}{2N_0}} \right) = Q \left(\sqrt{\frac{E_s}{2N_0}} \right)$$

(α) Δ είξτε ότι οι συναρτήσεις βάσης $\phi_1(t)$ και $\phi_2(t)$ είναι ορθοκανονικές

$$\phi_1(t) = \begin{cases} \sqrt{2}\cos(2\pi t) & \epsilon \acute{\alpha} \lor t \in [0, 1] \\ 0 & \alpha \lambda \lambda \iota \acute{\omega} \varsigma \end{cases}$$
$$\phi_2(t) = \begin{cases} \sqrt{2}\sin(2\pi t) & \epsilon \acute{\alpha} \lor t \in [0, 1] \\ 0 & \alpha \lambda \lambda \iota \acute{\omega} \varsigma \end{cases}$$

$$\int \phi_1(t)\phi_2^*(t)dt = \int_0^1 2\sin(2\pi t)\cos(2\pi t)dt = \int_0^1 \sin(4\pi t)dt =$$
$$= -\frac{1}{4\pi}\cos(4\pi t)\Big|_0^1 = 0.$$

$$\int \phi_1(t)\phi_1^*(t)dt = \int_0^1 2\cos^2(2\pi t)dt = \int_0^1 (1+\cos(4\pi t))dt = 1$$
$$\int \phi_2(t)\phi_2^*(t)dt = \int_0^1 2\sin^2(2\pi t)dt = \int_0^1 (1-\cos(4\pi t))dt = 1.$$

(β) Θεωρήστε τις παρακάτω διαμορφωμένες κυματομορφές

$$x_{0}(t) = \begin{cases} \sqrt{2} \left(\cos(2\pi t) + \sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{1}(t) = \begin{cases} \sqrt{2} \left(\cos(2\pi t) + 3\sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{2}(t) = \begin{cases} \sqrt{2} \left(3\cos(2\pi t) + \sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{3}(t) = \begin{cases} \sqrt{2} \left(3\cos(2\pi t) + 3\sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{4}(t) = \begin{cases} \sqrt{2} \left(\cos(2\pi t) - \sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{5}(t) = \begin{cases} \sqrt{2} \left(\cos(2\pi t) - 3\sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{6}(t) = \begin{cases} \sqrt{2} \left(3\cos(2\pi t) - \sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{7}(t) = \begin{cases} \sqrt{2} \left(3\cos(2\pi t) - \sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{7}(t) = \begin{cases} \sqrt{2} \left(3\cos(2\pi t) - 3\sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

$$x_{7}(t) = \begin{cases} \sqrt{2} \left(3\cos(2\pi t) - 3\sin(2\pi t) \right) & \text{ean } t \in [0, 1] \\ 0 & \text{alling} \end{cases}$$

Σχεδιάστε τον αστερισμό χρησιμοποιώντας τις συναρτήσεις βάσης του ερωτήματος (α).

$$x_0(t) = \phi_1(t) + \phi_2(t) = [1 \ 1][\phi_1(t) \ \phi_2(t)]^T,$$

$$x_1(t) = \phi_1(t) + 3\phi_2(t) = [1 \ 3][\phi_1(t) \ \phi_2(t)]^T,$$

$$x_2(t) = 3\phi_1(t) + \phi_2(t) = [3 \ 1][\phi_1(t) \ \phi_2(t)]^T,$$

$$x_3(t) = 3\phi_1(t) + 3\phi_2(t) = [3 \ 3][\phi_1(t) \ \phi_2(t)]^T,$$

$$x_4(t) = \phi_1(t) - \phi_2(t) = [1 \ -1][\phi_1(t) \ \phi_2(t)]^T,$$

$$x_5(t) = \phi_1(t) - 3\phi_2(t) = [1 \ -3][\phi_1(t) \ \phi_2(t)]^T,$$

$$x_6(t) = 3\phi_1(t) - \phi_2(t) = [3 \ -1][\phi_1(t) \ \phi_2(t)]^T,$$

$$x_7(t) = 3\phi_1(t) - 3\phi_2(t) = [3 \ -3][\phi_1(t) \ \phi_2(t)]^T \times \alpha_1(t) = 3\phi_1(t) - 3\phi_2(t) = [3 \ -3][\phi_1(t) \ \phi_2(t)]^T \times \alpha_1(t) = 3\phi_1(t) - 3\phi_2(t) = [3 \ -3][\phi_1(t) \ \phi_2(t)]^T \times \alpha_1(t) = 0, \dots, 7.$$

Αστερισμός Άσκησης

Άσκηση/Λύση

(γ) Υπολογίστε τη μέση ενέργεια \mathcal{E}_x και τη μέση ενέργεια ανά διάσταση $\bar{\mathcal{E}}_x$ (i) για την περίπτωση που όλα τα σήματα είναι ισοπίθανα.

$$\mathcal{E}_{inner} = 2$$
, $\mathcal{E}_{side} = 10$ kai $\mathcal{E}_{corner} = 18$.

$$E_{inner} = 1^2 + 1^2 = 2$$
 $E_{side} = 1^2 + 3^2 = 10$
 $E_{corner} = 3^2 + 3^2 = 18$

$$\mathcal{E}_x = \frac{1}{16}(4 \times 2 + 8 \times 10 + 4 \times 18) = 10$$

 $ar{\mathcal{E}}_x=5$, επειδή ο αστερισμός έχει N=2 διαστάσεις

Άσκηση/Λύση

(ii) για την περίπτωση που $p(x_0) = p(x_4) = p(x_8) = p(x_{12}) = \frac{1}{8}$ και $p(x_i) = \frac{1}{24}$ για τα υπόλοιπα i.

$$\mathcal{E}_x = \frac{1}{8}(4 \times 2) + \frac{1}{24}(8 \times 10 + 4 \times 18) = 1 + 19/3 = 22/3$$

$$\bar{\mathcal{E}}_x = 22/6$$

Η μέση ενέργεια είναι μικρότερη στη δεύτερη περίπτωση επειδή τα εσωτερικά σημεία του αστερισμού (τα οποία έχουν και τη μικρότερη ενέργεια) χρησιμοποιούνται με μεγαλύτερη πιθανότητα από τα υπόλοιπα.

Αστερισμός (Constellation)

Ένα σύνολο Μ διανυσμάτων (σημάτων) που ανήκουν σε ένα διανυσματικό χώρο ονομάζεται Αστερισμός.

Ιδιότητες:

- 1. Κάθε σήμα αναπαρίσταται σε ένα σημείο του αστερισμού και αντιστοιχεί σε μια διαφορετική κυματομορφή/σύμβολο. Όλες οι κυματομορφές ανήκουν στην ίδια ορθοκανονική βάση.
- 2. Μέση ενέργεια συμβόλου:

$$E_s = \sum_{i=1}^{M} \|s_i\|^2 \cdot P_r\left(s_i\right), \quad \|s_i\|^2 = \sum_{j=1}^{N} \left(s_{ij}\right)^2 \quad _{P_r\left(s_i\right) = \pi \imath \theta$$
ανότητα μετάδοσης συμβόλου, $s_{ij} = \sigma \nu \nu i$ στώσα

Η Ελαχιστοποίηση της Ε_s με σκοπό την Εξοικονόμηση Ενέργειας Εκπομπής απαιτεί την τοποθέτηση των σημείων κοντά στο 0.

Μικραίνουν οι Ευκλείδειες Αποστάσεις μεταξύ των Συμβόλων –

Αυξάνεται η Πιθανότητα Λάθους

(δ) Έστω

$$y_i(t) = x_i(t) + 4\phi_3(t), \text{ όπου}$$
$$\phi_3(t) = \begin{cases} 1 & \text{εάν } t \in [0, 1] \\ 0 & \text{αλλιώς} \end{cases}.$$

Υπολογίστε τη μέση ενέργεια, \mathcal{E}_y , του y(t) όταν όλα τα σήματα εισόδου είναι ισοπίθανα.

Πρέπει, κατ' αρχήν, να δούμε αν οι $\phi_1(t)$, $\phi_2(t)$ και $\phi_3(t)$ αποτελούν σύνολο ορθοκανονικών συναρτήσεων.

$$\int \phi_1(t)\phi_3^*(t)dt = \int_0^1 \sqrt{2}\cos(2\pi t)dt = \frac{\sqrt{2}}{2\pi}\sin(2\pi t)\bigg|_0^1 = 0.$$

Ομοίως, $\int \phi_2(t)\phi_3^*(t)dt = 0$. Επίσης, $\int |\phi_3(t)|^2 dt = 1$. Επομένως, οι $\phi_1(t)$, $\phi_2(t)$ και $\phi_3(t)$ είναι ορθοκανονικές.

Η ενέργεια κάθε συμβόλου είναι αυξημένη κατά 16 σε σχέση με τα προηγούμενα ερωτήματα. Επομένως, $\mathcal{E}_x=10+16=26$ και $\bar{\mathcal{E}}_x=26/3$.

Παρατηρήστε ότι νέος αστερισμός προχύπτει από τον προηγούμενο με προσθήχη μιας συνεχούς συνιστώσας (DC) πλάτους 4.