CS4004/CS4504: FORMAL VERIFICATION

Lecture 6: Propositional Logic

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

LOGICAL PROOFS

We are working with natural deduction proofs $A_1 ... A_n \vdash B$ in propositional logic. Deduction rules so far:

→ Conjunction:
$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

$$\rightarrow \text{ Disjunction: } \frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad \frac{A_2}{B} \vee e$$

→ Implication:
$$\frac{A \cdot A}{A \rightarrow B} \rightarrow i \quad \frac{A \cdot A \rightarrow B}{B} \rightarrow e$$

and the derived: $\frac{A_1 \rightarrow A_2}{\neg A_1} \text{ MT}$

A NOTE ABOUT IMPLICATION

Notice the introduction rule of implication:

It contains only one premise: L

A NOTE ABOUT IMPLICATION

Notice the introduction rule of implication:

А ... В

It contains only one premise:

This means that we can think of premises of the form $\frac{B}{B}$

as premises of the form $A \rightarrow B$

A NOTE ABOUT IMPLICATION

Notice the introduction rule of implication:

A ... B

It contains only one premise:

This means that we can think of premises of the form

as premises of the form $A \rightarrow B$

We would have exactly the same logic if we replaced all box-premises with implication-premises, except for the premise in $(\rightarrow i)$.

IMPLICATION PROOFS

We have seen how to prove Example statement: If it rained then the road is wet. Therefore, if the road is not wet then it did not rain.

$$p \to q \vdash \neg q \to \neg p$$

Exercise:

$$p \rightarrow q \rightarrow r, \ p, \ p \rightarrow q \vdash r$$

$$\frac{A}{A \to B} \to i \qquad \frac{A \quad A \to B}{B} \to e \qquad \frac{A_1 \to A_2 \quad \neg A_2}{\neg A_1} \text{ MT}$$

Is this entailment correct?

$$(p \lor q) \to r \vdash (p \to r) \land (q \to r)$$

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \vee e$$

$$\frac{A_1}{A_2} \wedge e_1 \qquad \frac{A_2}{A_2} \wedge e_2$$

$$\frac{A_1}{A_2} \wedge e_2 \qquad \frac{A_1}{B} \wedge e_2$$

$$\frac{A_1}{B} \wedge e_2 \wedge e_2$$

$$\frac{A_1}{B} \wedge e_2$$

ŀ

INNER PROOFS CAN USE OUTER FACTS

The following derivable rule has a trivial proof. Sometimes this is useful to prove the goals of inner proofs using the established facts before these proofs.

$$\frac{A}{A}$$
 COPY

Show the following theorem: $\vdash p \rightarrow q \rightarrow p$.

$$\frac{A \qquad A \to B}{B} \to e \qquad \frac{A \qquad A}{B} \to i \qquad \frac{A_1 \to A_2 \qquad \neg A_2}{\neg A_1} \text{ MT}$$

Writing contradictions in the logic:

- $\rightarrow p \land \neg p$
- \rightarrow $(p \land q) \land \neg(p \land q)$
- $\rightarrow \ (p \rightarrow \neg q \lor r) \land \neg (p \rightarrow \neg q \lor r)$
- \rightarrow ...

Writing contradictions in the logic:

Contradictions are formulas whose semantics returns F for all models.

Writing contradictions in the logic:

Contradictions are formulas whose semantics returns F for all models. They are unsatisfiable.

Formulas of the form $A \land \neg A$ are unsatisfiable.

Writing contradictions in the logic:

Contradictions are formulas whose semantics returns F for all models. They are unsatisfiable.

Formulas of the form $A \wedge \neg A$ are unsatisfiable.

They are all semantically equivalent: $A \wedge \neg A \equiv B \wedge \neg B$, for all A, B. ¹

 $^{^{1}}A \equiv B \text{ means } A \models B \text{ and } B \models A$

Writing contradictions in the logic:

Contradictions are formulas whose semantics returns F for all models. They are unsatisfiable.

Formulas of the form $A \land \neg A$ are unsatisfiable.

They are all semantically equivalent: $A \wedge \neg A \equiv B \wedge \neg B$, for all A, B. ¹

We should be able to prove $A \wedge \neg A \dashv \vdash B \wedge \neg B$, for all A, B. ²

 $^{^{1}}A \equiv B \text{ means } A \models B \text{ and } B \models A$

 $^{^{2}}A \dashv \vdash B \text{ means } A \vdash B \text{ and } B \vdash A$

Writing contradictions in the logic:

Contradictions are formulas whose semantics returns F for all models. They are unsatisfiable.

Formulas of the form $A \wedge \neg A$ are unsatisfiable.

They are all semantically equivalent: $A \wedge \neg A \equiv B \wedge \neg B$, for all A, B. ¹

We should be able to prove $A \land \neg A \dashv \vdash B \land \neg B$, for all A, B. ²

In fact we will show $A \land \neg A \vdash B$, for all A, B!

Intuition: if something as absurd as $A \land \neg A$ is considered true then any B can be shown to be true.

 $^{^{1}}A \equiv B \text{ means } A \models B \text{ and } B \models A$

 $^{^{2}}A \dashv \vdash B \text{ means } A \vdash B \text{ and } B \vdash A$

We will pick an atomic proposition (say *p*) and name the following:

- \rightarrow we write \perp (pronounced "bottom") to represent $p \land \neg p$
- \rightarrow we also write \top (pronounced "top") to represent $\neg(p \land \neg p)$ (we don't need the latter here but it will be useful to have later on)

We will pick an atomic proposition (say p) and name the following:

- \rightarrow we write \perp (pronounced "bottom") to represent $p \land \neg p$
- \rightarrow we also write \top (pronounced "top") to represent $\neg(p \land \neg p)$ (we don't need the latter here but it will be useful to have later on)

We will allow to introduce \bot from any contradiction (not just $p \land \neg p$). This rule **eliminates** \neg :

$$\frac{A}{\bot}$$
 $\neg A$

We will pick an atomic proposition (say p) and name the following:

- \rightarrow we write \bot (pronounced "bottom") to represent $p \land \neg p$
- \rightarrow we also write \top (pronounced "top") to represent $\neg(p \land \neg p)$ (we don't need the latter here but it will be useful to have later on)

We will allow to introduce \bot from any contradiction (not just $p \land \neg p$). This rule **eliminates** \neg :

$$\frac{A}{\Box}$$
 $\neg A$

To introduce a negation $\neg A$ we must show that from A we can derive bottom (a contradiction).

We will pick an atomic proposition (say p) and name the following:

- \rightarrow we write \bot (pronounced "bottom") to represent $p \land \neg p$
- \rightarrow we also write \top (pronounced "top") to represent $\neg(p \land \neg p)$ (we don't need the latter here but it will be useful to have later on)

We will allow to introduce \bot from any contradiction (not just $p \land \neg p$). This rule **eliminates** \neg :

$$\frac{A}{\Box}$$
 $\neg A$ $\neg e$

To introduce a negation $\neg A$ we must show that from A we can derive bottom (a contradiction).

We will pick an atomic proposition (say p) and name the following:

- \rightarrow we write \perp (pronounced "bottom") to represent $p \land \neg p$
- \rightarrow we also write \top (pronounced "top") to represent $\neg(p \land \neg p)$ (we don't need the latter here but it will be useful to have later on)

We will allow to introduce \bot from any contradiction (not just $p \land \neg p$). This rule **eliminates** \neg :

$$\frac{A}{\Box}$$
 $\neg A$ $\neg e$

To introduce a negation $\neg A$ we must show that from A we can derive bottom (a contradiction).

Finally, from bottom we are allowed to derive anything:

 $\frac{\perp}{A}$ $\perp e$

$$(p \rightarrow \neg q \lor r) \land \neg (p \rightarrow \neg q \lor r) \vdash s$$

$$p, \neg q \vdash \neg (p \rightarrow q)$$

$$\frac{A \qquad \neg A}{\bot} \neg e \qquad \frac{\Box}{\neg A} \neg i \qquad \frac{\bot}{A} \bot e \qquad \frac{A \qquad A \to B}{B} \to e$$