Chapter 1: Computer Abstractions and Technology

1.4: Under the Covers

1.5: Technologies for Building Processors and Memory

Arquitetura e Organização de Computadores

Os 5 Componentes

Os 5 Componentes

- Mesmos componentes em TODO os tipos de computadores:
 - Controle
 - Datapath (circuitos para o fluxo de dados, realiza operações aritméticas)
 - Memória (armazenamento)
 - Input (entrada)
 - Output (saída)
- Processador:
 - Controle + Datapath

Visão Geral: Input/Output

Visão Geral: Output: Monitores LCD

- LCD controla transmissão de luz (não gera luz):
 - Moléculas no líquido se curvam com sinais elétricos e deixam passar menos ou mais luz
 - A intensidade da luz e o filtro de cores determina a cor do pixel
 - Matriz ativa: 3 transistors/pixel
 - 24 bits/pixel (8 para cada dor)

Visão Geral: Output: Monitores LCD

- Bit map: matriz com os bits que formam cada pixel em um determinado instante
 - Frame buffer: suporte de hardware que armazena o bit map.
 A imagem (bit map) é armazenada no frame buffer que "lê" e envia para o monitor em um determinado "refresh rate" (60 Hz, 144 Hz, etc.)

Visão Geral: Input: Touchscreen

- Resistivos
 - Precisam de pressão
- Capacitivos
 - Sensíveis à distorções do campo eletromagnético da tela

Visão Geral: 5 componentes: iPhone XS Max

- I/O domina:
 - LCD, câmera, mic, alto-falantes, GPS, acelerômetro, giroscópio, Wi-Fi, Bluetooh
- Memória, datapath e controle: pequena parte

Visão Geral: 5 componentes: iPhone XS Max

- Memória, datapath e controle:
 - A12: processadores ARM (2 grandes e 4 pequenos), 2 GiB RAM, memória cache, ...

Visão Geral: 5 componentes: iPhone XS Max

- Memória, datapath e controle:
 - A12: processadores ARM (2 grandes e 4 pequenos), 2 GiB RAM, memória cache, ...

Visão Geral: 5 componentes: AMB Barcelona

- Memória, datapath e controle:
 - 4 cores, com caches L1 e L2, cache compartilhada L3 e demais circuitos

Visão Geral: Pontos Importantes

Datapath:

 Componente do processador que realiza operações aritméticas; circuitos para mover dados

Controle:

 Componente do processador que comanda o datapath, memória e dispositivos de I/O, de acordo com as instruções de um programa

Memória:

- Área de armazenamento na qual os programas são mantidos enquanto estão rodando. Contém: INSTRUÇÕES + DADOS
- DRAM: dynamic random access
- SRAM: static random access

Apple A5

Visão Geral: Memória

CPU Fan & Heatsink Mounting

Points

CPU Socket

Backup Battery

Connectors For

Integrated Peripherals

Visão Geral: Memória

- Memória Primária (ou Principal):
 - Armazena programas (dados e instruções) enquanto estão em execução. É memória VOLÁTIL.
 - DRAM, SRAM, …
- Memória Secundária:
 - Memória NÃO VOLÁTIL usada para armazenamento de longo prazo (enquanto o computador está desligado).
 - HD, flash memory, CD-ROM, ...
- Hierarquia de Memória:
 - Memórias formam um conjunto diverso, com aplicações diversas

Computer Memory Hierarchy

THE MEMORY HIERARCHY

- Transistor:
 - Uma espécie de "chave" liga/desliga controlada por um sinal elétrico.
- Circuito integrado:
 - Combina dezenas/centenas de transistores em um único chip.
- VLSI (very large-scale integrated circuit):
 - Combina centenas de milhares de transistores em um único chip.
- ULSI (ultra large-scale integrated circuit):
 - Combina milhões de transistores em um único chip.

- Performance/custo:
 - Com a introdução dos transistores e circuitos integrados, a performance aumentou mantendo o custo.

Year	Technology used in computers	Relative performance/unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit	900
1995	Very large-scale integrated circuit	2,400,000
2020	Ultra large-scale integrated circuit	500,000,000,000

- Tudo começa com o silício, um semicondutor
 - É possível "modificar" o silício para que ele se transforme em:
 - Excelente condutor de eletricidade
 - Excelente isolante de eletricidade
 - Uma espécie de "chave" que pode conduzir ou isolar eletricidade sob certas condições. Aqui estão os TRANSISTORES.

Wafer com 506 chips Intel Ice Lake 10^a geração.

AMD Opteron

Performance dos Computadores

- Como medir a performance?
 - Cenas dos próximos capítulos...

Airplane	Passenger capacity	Cruising range (miles)	Cruising speed (m.p.h.)	Passenger throughput (passengers × m.p.h.)
Boeing 737	240	3000	564	135,360
BAC/Sud Concorde	132	4000	1350	178,200
Boeing 777-200LR	301	9395	554	166,761
Airbus A380-800	853	8477	587	500,711

Até a próxima!