×

Assessing Performance

13 试题

1	

If the features of Model 1 are a strict subset of those in Model 2, the TRAINING error of the two models can **never** be the same.

True

False

2.

If the features of Model 1 are a strict subset of those in Model 2, which model will USUALLY have lowest TRAINING error?

Model 1

Model 2

O It's impossible to tell with only this information

3.

If the features of Model 1 are a strict subset of those in Model 2. which model will USUALLY have lowest TEST error?

O Model 1

O Model 2

It's impossible to tell with only this information

4.

If the features of Model 1 are a strict subset of those in Model 2, which model will USUALLY have lower BIAS?

O Model 1

Model 2

O It's impossible to tell with only this information

5. Which of the following plots of model complexity vs. RSS is most likely from TRAINING data (for a fixed data set)?

O a

O b

O c

O (

6.

Which of the following plots of model complexity vs. RSS is most likely from TEST data (for a fixed data set)?

- **O** b
- \mathbf{O}
- **O** d

7. It is **always** optimal to add more features to a regression model.

- O True
- False

8.

A simple model with few parameters is most likely to suffer from:

High Bias

O	High Variance
9. A com O	plex model with many parameters is most likely to suffer from: High Bias High Variance
	el with many parameters that fits training data very well but oorly on test data is considered to be
0	accurate
0	biased
0	overfitted
0	poorly estimated
	mon process for selecting a parameter like the optimal omial degree is: Bootstrapping
0	
0	Model estimation
0	Multiple regression
O	Minimizing test error
O	Minimizing validation error

12.

Selecting model complexity on test data (choose all that apply):

Ш	Allows you to avoid issues of overfitting to training data
	Provides an overly optimistic assessment of performance of the resulting model
	Is computationally inefficient
	Should never be done
	of the following statements is true (select all that apply): For a nodel complexity, in the limit of an infinite amount of training
	The noise goes to 0
	Bias goes to 0
	Variance goes to 0
	Training error goes to 0
	Generalization error goes to 0
	42 DII DII
	提交测试
	2

