

Data Warehousing

University of California, Berkeley School of Information INFO 257: Database Management

Announcements

- Questions about the Final Project
- I will be setting up a doodle soon for presentation order.
- All Slides should now be available
- "Lab": Work on Project

Lecture Outline

- Data Warehouses
- Introduction to Data Warehouses
- Data Warehousing
 - (Based on lecture notes from Modern
 Database Management Text (Hoffer,
 Ramesh, Topi); Joachim Hammer, University of Florida, and Joe Hellerstein and Mike Stonebraker of UCB)

Overview

- Data Warehouses and Merging Information Resources
- What is a Data Warehouse?
- History of Data Warehousing
- Types of Data and Their Uses
- Data Warehouse Architectures
- Data Warehousing Problems and Issues

Problem: Heterogeneous Information Sources

- Different interfaces
- Different data representations
- Duplicate and inconsistent information

Slide credit: J. Hammer

Problem: Data Management in Large Enterprises

- Vertical fragmentation of informational systems (vertical stove pipes)
- Result of application (user)-driven development of operational systems

Slide credit: J. Hammer

Issues with Fragmentation

- Inconsistent key structures
- Synonyms
- Free-form vs. structured fields
- Inconsistent data values
- Missing data

Figure 9-1 Examples of

heterogeneous data

STUDENT DATA

StudentNo	LastName	MI	FirstName	Telephone	Status	•••
123-45-6789	Enright	Т	Mark	483-1967	Soph	
389-21-4062	Smith	R	Elaine	283-4195	Jr	

STUDENT EMPLOYEE

StudentID	Address	Dept	Hours	•••
123-45-6789	1218 Elk Drive, Phoenix, AZ 91304	Soc	8	
389-21-4062	134 Mesa Road, Tempe, AZ 90142	Math	10	

STUDENT HEALTH

StudentName	Telephone	Insurance	ID	•••
Mark T. Enright	483-1967	Blue Cross	123-45-6789	
Elaine R. Smith	555-7828	?	389-21-4062	

Copyright © 2014 Pearson Education, Inc.

History Leading to Data Warehousing

- Improvement in database technologies, especially relational DBMSs
- Advances in computer hardware, including mass storage and parallel architectures
- Emergence of end-user computing with powerful interfaces and tools
- Advances in middleware, enabling heterogeneous database connectivity
- Recognition of difference between operational and informational systems

Goal: Unified Access to Data

- Collects and combines information
- Provides integrated view, uniform user interface
- Supports sharing

Slide credit: J. Hammer

The Traditional Research Approach

Query-driven (lazy, on-demand)

Disadvantages of Query-Driven Approach

- Delay in query processing
 - Slow or unavailable information sources
 - Complex filtering and integration
- Inefficient and potentially expensive for frequent queries
- Competes with local processing at sources
- Hasn't caught on in industry

The Warehousing Approach

Clients

 Information integrated in advance

 Stored in WH for direct querying and analysis

Extractor/

Monitor

Source

Advantages of Warehousing Approach

- High query performance
 - But not necessarily most current information
- Doesn't interfere with local processing at sources
 - Complex queries at warehouse
 - OLTP at information sources
- Information copied at warehouse
 - Can modify, annotate, summarize, restructure, etc.
 - Can store historical information
 - Security, no auditing
- Has caught on in industry

Not Either-Or Decision

- Query-driven approach still better for
 - Rapidly changing information
 - Rapidly changing information sources
 - Truly vast amounts of data from large numbers of sources
 - Clients with unpredictable needs

Data Warehouse Evolution

Slide credit: J. Hammer 2019.04.18 - SLIDE 16

What is a Data Warehouse?

"A Data Warehouse is a

- -subject-oriented,
- -integrated,
- -time-variant,
- non-volatile

collection of data used in support of management decision making processes."

-- Inmon & Hackathorn, 1994: viz. Hoffer, Chap 11

- Subject-Oriented:
 - The data warehouse is organized around the key subjects (or high-level entities) of the enterprise. Major subjects include
 - Customers
 - Patients
 - Students
 - Products
 - Etc.

- Integrated
 - The data housed in the data warehouse are defined using consistent
 - Naming conventions
 - Formats
 - Encoding Structures
 - Related Characteristics

- Time-variant
 - The data in the warehouse contain a time dimension so that they may be used as a historical record of the business

- Non-volatile
 - Data in the data warehouse are loaded and refreshed from operational systems, but cannot be updated by end-users

What is a Data Warehouse? A Practitioners Viewpoint

- "A data warehouse is simply a single, complete, and consistent store of data obtained from a variety of sources and made available to end users in a way they can understand and use it in a business context."
- -- Barry Devlin, IBM Consultant

A Data Warehouse is...

- Stored collection of diverse data
 - A solution to data integration problem
 - Single repository of information
- Subject-oriented
 - Organized by subject, not by application
 - Used for analysis, data mining, etc.
- Optimized differently from transactionoriented db
- User interface aimed at executive decision makers and analysts

... Cont' d

- Large volume of data (Gb, Tb)
- Non-volatile
 - Historical
 - Time attributes are important
- Updates infrequent
- May be append-only
- Examples
 - All transactions ever at WalMart
 - Complete client histories at insurance firm
 - Stockbroker financial information and portfolios

Need for Data Warehousing

- Integrated, company-wide view of high-quality information (from disparate databases)
- Separation of operational and informational systems and data (for improved performance)

Table 11-1 Comparison of Operational and Informational Systems

Characteristic	Operational Systems	Informational Systems
Primary purpose	Run the business on a current basis	Support managerial decision making
Type of data	Current representation of state of the business	Historical point-in-time (snapshots) and predictions
Primary users	Clerks, salespersons, administrators	Managers, business analysts, customers
Scope of usage	Narrow, planned, and simple updates and queries	Broad, ad hoc, complex queries and analysis
Design goal	Performance: throughput, availability	Ease of flexible access and use
Volume	Many, constant updates and queries on one or a few table rows	Periodic batch updates and queries requiring many or all rows

Warehouse is a Specialized DB

Standard (Operational) DB

- Mostly updates
- Many small transactions
- Mb Gb of data
- Current snapshot
- Index/hash on p.k.
- Raw data
- Thousands of users (e.g., clerical users)

<u>Warehouse</u> (Informational)

- Mostly reads
- Queries are long and complex
- Gb Tb of data
- History
- Lots of scans
- Summarized, reconciled data
- Hundreds of users (e.g., decision-makers, analysts)

Slide credit: J. Hammer

Warehouse vs. Data Mart

Table 11-2 Data Warehouse Versus Data Mart

Data Warehouse	Data Mart
Scope	Scope
 Application independent 	Specific DSS application
 Centralized, possibly enterprise-wide 	Decentralized by user area
Planned	 Organic, possibly not planned
Data	Data
 Historical, detailed, and summarized 	 Some history, detailed, and summarized
 Lightly denormalized 	Highly denormalized
Subjects	Subjects
Multiple subjects	 One central subject of concern to users
Sources	Sources
 Many internal and external sources 	 Few internal and external sources
Other Characteristics	Other Characteristics
Flexible	Restrictive
Data-oriented	Project-oriented
Long life	Short life
Large	 Start small, becomes large
Single complex structure	Multi, semi-complex structures, together complex

Adapted from Strange (1997)

Data Warehouse Architectures

- Generic Two-Level Architecture
- Independent Data Mart
- Dependent Data Mart and Operational Data Store
- Logical Data Mart and @ctive Warehouse
- Three-Layer architecture

All involve some form of extraction, transformation and loading (ETL)

Generic two-level data warehousing architecture

Periodic extraction \rightarrow data is not completely current in warehouse

Independent data mart data warehousing architecture

Data marts:

Mini-warehouses, limited in scope

Separate ETL for each *independent* data mart

Data access complexity due to *multiple* data marts

Dependent data mart with operational data store: a three-level architecture

Single ETL for enterprise data warehouse (EDW)

Dependent data marts loaded from EDW

Logical data mart and real time warehouse architecture

Near real-time ETL for Data marts are NOT separate databases, but logical views of the data warehouse Data Warehouse

→ Easier to create new data marts

Three-layer data architecture for a data warehouse

Data Characteristics Status vs. Event Data

Status

Event = a database action (create/update/delete) that results from a Status transaction

Data Characteristics Transient vs. Periodic Data

Table X (10/05)						
Α	В					
а	b					
С	d					
е	f					
g	h					
	A a c e					

Table X (10/06)						
	Key	Α	В			
	001	a	b			
•	002	r	d			
	003	е	f			
•	004	у	h			
•	005	m	n			

Table X (10/07)						
Key	Α	В				
001	a	b				
002	r	d				
003	е	t				
005	m	n				

With transient data, changes to existing records are written over previous records, thus destroying the previous data content

Data Characteristics Transient vs. Periodic Data

Key	Date	Α	В	Action
001	10/03	a	b	С
002	10/03	С	d	С
003	10/03	е	f	С
004	10/03	g	h	С

	Table X (10/06)						
	Key	Date	Α	В	Action		
	001	10/05	a	b	С		
	002	10/05	С	d	С		
	002	10/06	r	d	U		
	003	10/05	е	f	С		
	004	10/05	g	h	С		
•	004	10/06	у	h	U		
•	005	10/06	m	n	С		

	Table X (10/07)						
	Key	Date	Α	В	Action		
	001	10/05	a	b	С		
	002	10/05	С	d	С		
	002	10/06	r	d	U		
	003	10/05	е	f	С		
•	003	10/07	е	t	U		
	004	10/05	g	h	С		
	004	10/06	у	h	U		
•	004	10/07	у	h	D		
	005	10/06	m	n	С		

Periodic data are never physically altered or deleted once they have been added to the store

Other Data Warehouse Changes

- New descriptive attributes
- New business activity attributes
- New classes of descriptive attributes
- Descriptive attributes become more refined
- Descriptive data are related to one another
- New source of data

The Reconciled Data Layer

- Typical operational data is:
 - Transient–not historical
 - Not normalized (perhaps due to denormalization for performance)
 - Restricted in scope—not comprehensive
 - Sometimes poor quality-inconsistencies and errors
- After ETL, data should be:
 - Detailed—not summarized yet
 - Historical—periodic
 - Normalized—3rd normal form or higher
 - Comprehensive—enterprise-wide perspective
 - Timely—data should be current enough to assist decision-making
 - Quality controlled—accurate with full integrity

Types of Data

- Business Data represents meaning
 - Real-time data (ultimate source of all business data)
 - Reconciled data
 - Derived data
- Metadata describes meaning
 - Build-time metadata
 - Control metadata
 - Usage metadata
- Data as a product* intrinsic meaning
 - Produced and stored for its own intrinsic value
 - e.g., the contents of a text-book

Derived Data

Objectives

- Ease of use for decision support applications
- Fast response to predefined user queries
- Customized data for particular target audiences
- Ad-hoc query support
- Data mining capabilities

Characteristics

- Detailed (mostly periodic) data
- Aggregate (for summary)
- Distributed (to departmental servers)

Most common data model = dimensional model (usually implemented as a **star schema**)

Figure 9-9 Components of a star schema

Excellent for ad-hoc queries, but bad for online transaction processing

Copyright © 2014 Pearson Education, Inc.

UC Berkeley School of Information

Figure 9-10 Star schema example

Copyright © 2014 Pearson Education, Inc.

Figure 9-11 Star schema with sample data

Product									Perio	od					
Product Code	Description		Color		Size					iod de	Year	0	uarter	Mon	th
100	Sweat	er	Blue		40				001		2010)	1	4	
110	Shoes		Brown		10 1/2				00	2	2010)	1	5	
125	Gloves	3	Tan		M				003		2010)	1	6	
• • • •							• • •		•						
		Produ Cod			riod ode	Sto			nits old	1	ollars Sold		lars ost		
Sales		110 125		002 003		S1 S2			30 50	1500 1000			00		
			00		001	S		4	10	1	600		00		
		1	10	0	002	S	3	4	10	2	000	12	000		
		10	00	C	003	S	2	\$	30	1	200	7	50		
		•	• •												
						4									

	Store Code	Store Name	City	Telephone	Manager
Store	S1	Jan's	San Antonio	683-192-1400	Burgess
	S2	Bill's	Portland	943-681-2135	Thomas
	S3	Ed's	Boulder	417-196-8037	Perry
	• • •				

Copyright © 2014 Pearson Education, Inc.

Surrogate Keys

- Dimension table keys should be surrogate (non-intelligent and non-business related), because:
 - Business keys may change over time
 - Helps keep track of nonkey attribute values for a given production key
 - -Surrogate keys are simpler and shorter
 - Surrogate keys can be same length and format for all key

Grain of the Fact Table

- Granularity of Fact Table—what level of detail do you want?
 - Transactional grain—finest level
 - -Aggregated grain-more summarized
 - -Finer grains → better market basket analysis capability
 - Finer grain → more dimension tables, more rows in fact table
 - In Web-based commerce, finest granularity is a click

Duration of the Database

- Natural duration—13 months or 5 quarters
- Financial institutions may need longer duration
- Older data is more difficult to source and cleanse

Size of Fact Table

- Depends on the number of dimensions and the grain of the fact table
- Number of rows = product of number of possible values for each dimension associated with the fact table
- Example: assume the following:

```
Total number of stores = 1,000

Total number of products = 10,000

Total number of periods = 24 (2 years' worth of monthly data)
```

 Total rows calculated as follows (assuming only half the products record sales for a given month):

```
Total rows = 1,000 stores × 5,000 active products × 24 months = 120,000,000 rows (!)
```


Figure 9-12 Modeling dates

Fact tables contain time-period data

→ Date dimensions are important

Variations of the Star Schema

Multiple Facts Tables

- Can improve performance
- Often used to store facts for different combinations of dimensions
- Conformed dimensions

Hierarchies

- Sometimes a dimension forms a natural, fixed depth hierarchy
- Design options
 - Include all information for each level in a single denormalized table
 - Normalize the dimension into a nested set of 1:M table

Figure 9-13 Conformed dimensions

Two fact tables → two (connected) start schemas.

Conformed dimension
Associated with multiple fact tables

Figure 9-14 Fixed product hierarchy

Slowly Changing Dimensions (SCD)

- How to maintain knowledge of the past
- Kimble's approaches:
 - Type 1: just replace old data with new (lose historical data)
 - Type 3: for each changing attribute, create a current value field and several old-valued fields (multivalued)
 - Type 2: create a new dimension table row each time the dimension object changes, with all dimension characteristics at the time of change.
 Most common approach.

Figure 9-16 Example of Type 2 SCD Customer dimension table

2019.04.18 - SLIDE 53

The dimension table contains several records for the same customer. The specific customer record to use depends on the key and the date of the fact, which should be between start and end dates of the SCD customer record.

10 Essential Rules for Dimensional Modeling

- Use atomic facts
- Create single-process fact tables
- Include a date dimension for each fact table
- Enforce consistent grain
- Disallow null keys in fact tables

- Honor hierarchies
- Decode dimension tables
- Use surrogate keys
- Conform dimensions
- Balance requirements with actual data

The User Interface

- Identify subjects of the data mart
- Identify dimensions and facts
- Indicate how data is derived from enterprise data warehouses, including derivation rules
- Indicate how data is derived from operational data store, including derivation rules
- Identify available reports and predefined queries
- Identify data analysis techniques (e.g. drill-down)
- Identify responsible people

Figure 9-19 Example of drill-down

Starting with summary data, users can obtain details for particular cells

INFO 257 - Spring 2019

a) Summary report

Brand	Package size	\$75 \$100	
SofTowel	2-pack		
SofTowel	3-pack		
SofTowel	6-pack	\$50	

b) Drill-down with color attribute added

Brand	Package size	Color	Sales	
SofTowel	2-pack	White	\$30	
SofTowel	2-pack	Yellow	\$25	
SofTowel	2-pack	Pink	\$20	
SofTowel	3-pack	White	\$50	
SofTowel	3-pack	Green	\$25	
SofTowel	3-pack	Yellow	\$25	
SofTowel	wel 6-pack V		\$30	
SofTowel	6-pack	Yellow	\$20	

Data Warehousing: Two Distinct Issues

- (1) How to get information into warehouse
 - "Data warehousing"
- (2) What to do with data once it's in warehouse
 - "Warehouse DBMS"
- Both rich research areas
- Industry has focused on (2)

The ETL Process

2019.04.18 - SLIDE 58

- Capture/Extract
- Scrub or data cleansing
- Transform

INFO 257 - Spring 2019

Load and Index

ETL = Extract, transform, and load

Capture/Extract...obtaining a snapshot of a chosen subset of the source data for loading into the data warehouse

Static extract = capturing a snapshot of the source data at a point in time

Incremental extract = capturing changes that have occurred since the last static extract

Data Extraction

- Source types
 - Relational, flat file, WWW, etc.
- How to get data out?
 - Replication tool
 - Dump file
 - Create report
 - ODBC or third-party "wrappers"

Wrapper

Converts data and queries from one data model to another

Extends query capabilities for sources with limited capabilities

Queries

Slide credit: J. Hammer

Wrapper Generation

- Solution 1: Hard code for each source
- Solution 2: Automatic wrapper generation

Monitors

- Goal: Detect changes of interest and propagate to integrator
- How?
 - Triggers
 - Replication server
 - Log sniffer
 - Compare query results
 - Compare snapshots/dumps

Scrub/Cleanse...uses pattern recognition and AI techniques to upgrade data quality

Figure 11-10: Steps in data reconciliation (cont.)

Fixing errors: misspellings, erroneous dates, incorrect field usage, mismatched addresses, missing data, duplicate data, inconsistencies

Also: decoding, reformatting, time stamping, conversion, key generation, merging, error detection/logging, locating missing data

New approaches for Data Cleansing

- It is generally been found that 70-90
 percent of the time and effort in large data
 management and analysis tasks is taken
 up with data cleansing
- New tool "Data Wrangler" from Stanford and Berkeley CS folks
- http://vis.stanford.edu/wrangler/

Data Cleansing

- Find (& remove) duplicate tuples
 - e.g., Jane Doe vs. Jane Q. Doe
- Detect inconsistent, wrong data
 - Attribute values that don't match
- Patch missing, unreadable data
- Notify sources of errors found

Transform = convert data from format of operational system to format of data

Record-level:

Selection—data partitioning
Joining—data combining
Aggregation—data summarization

Field-level:

single-field—from one field to one field multi-field—from many fields to one, or one field to many

Data Transformations

- Convert data to uniform format
 - Byte ordering, string termination
 - Internal layout
- Remove, add & reorder attributes
 - Add key
 - Add data to get history
- Sort tuples

Refresh mode: bulk rewriting of target data at periodic intervals

Update mode: only changes in source data are written to data warehouse

Data Integration

- Receive data (changes) from multiple wrappers/monitors and integrate into warehouse
- Rule-based
- Actions
 - Resolve inconsistencies
 - Eliminate duplicates
 - Integrate into warehouse (may not be empty)
 - Summarize data
 - Fetch more data from sources (wh updates)
 - etc.

Warehouse Maintenance

- Warehouse data ≈ materialized view
 - Initial loading
 - View maintenance
- View maintenance

Differs from Conventional View Maintenance...

- Warehouses may be highly aggregated and summarized
- Warehouse views may be over history of base data
- Process large batch updates
- Schema may evolve

Differs from Conventional View Maintenance...

- Base data doesn't participate in view maintenance
 - Simply reports changes
 - Loosely coupled
 - Absence of locking, global transactions
 - May not be queriable

Warehouse Maintenance Anomalies

- Materialized view maintenance in loosely coupled, non-transactional environment
- Simple example

INFO 257 - Spring 2019

Warehouse Maintenance Anomalies

Sale(item,clerk)

Emp(clerk,age)

- 1. Insert into Emp (Mary, 25), notify integrator
- 2. Insert into Sale (Computer, Mary), notify integrator
- 3. (1) \rightarrow integrator adds Sale \bowtie (Mary, 25)
- 4. (2) \rightarrow integrator adds (Computer, Mary) \triangleright Emp
- 5. View incorrect (duplicate tuple)

Slide credit: J. Hammer

Warehouse Specification (ideally)

Business Performance Mgmt (BPM)

Figure 9-22 Sample Dashboard

BPM systems allow managers to measure, monitor, and manage key activities and processes to achieve organizational goals. Dashboards are often used to provide an information system in support of BPM.

Charts like these are examples of **data visualization**, the representation of data in graphical and multimedia formats for human analysis.

Data Mining

★Knowledge discovery using a blend of statistical, AI, and computer graphics techniques

★Goals:

- +Explain observed events or conditions
- +Confirm hypotheses
- +Explore data for new or unexpected relationships

TABLE 9-4 Data-Mining Techniques

Technique	Function
Regression	Test or discover relationships from historical data
Decision tree induction	Test or discover if then rules for decision propensity
Clustering and signal processing	Discover subgroups or segments
Affinity	Discover strong mutual relationships
Sequence association	Discover cycles of events and behaviors
Case-based reasoning	Derive rules from real-world case examples
Rule discovery	Search for patterns and correlations in large data sets
Fractals	Compress large databases without losing information
Neural nets	Develop predictive models based on principles modeled after the human brain

Additional Research Issues

- Historical views of non-historical data
- Expiring outdated information
- Crash recovery
- Addition and removal of information sources
 - Schema evolution

Warehousing and Industry

- Data Warehousing is big business
 - \$2 billion in 1995
 - \$3.5 billion in early 1997
 - Predicted: \$8 billion in 1998 [Metagroup]
- Wal-Mart said to have the largest warehouse
 - 1000-CPU, 583 Terabyte, Teradata system (InformationWeek, Jan 9, 2006)
 - "Half a Petabyte" in warehouse (Ziff Davis Internet, October 13, 2004)
 - 1 billion rows of data or more are updated every day (InformationWeek, Jan 9, 2006)
 - Reported to be 2.5 Petabytes in 2008
 - http://gigaom.com/2013/03/27/why-apple-ebay-and-walmarthave-some-of-the-biggest-data-warehouses-youve-ever-seen

Other Large Data Warehouses

(InformationWeek, Jan 9, 2006)

Those are small change today...

- Some databases are larger, however...
 - eBay: has two Teradata systems. Its primary data warehouse is 9.2 petabyes; its "singularity system" that stores web clicks and other "big" data is more than 40 petabytes. It includes a single table that's 1 trillion rows. (2013)
 - http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-havesome-of-the-biggest-data-warehouses-youve-ever-seen
 - Apple: "Multiple Petabytes" in 2013
 - Yahoo! for web user behavioral analysis, storing two petabytes and claimed to be the largest data warehouse using a heavily modified version of PostgreSQL (Wikipedia 2012)

Largest Data Warehouses Today

The Guinness World Record Largest Data Warehouse was creating in the SAP/Intel shared lab in Santa Clara, California. The data warehouse is 12.1PB of data running on 25 HP ProLiant DL580 G7 servers with Intel processors on a Red Hat® Enterprise Linux® 6.4 X86-64 operating system using SAP HANA and SAP IQ 16 with BMMsoft Federated EDMT® 9. The server environment is connected to a SAN comprised of 20 NetApp E5460 storage arrays through HP 8 Gb/s Fibre switches.

http://global.sap.com/news-reader/index.epx?category=ALL&articleID=22468

More Information on DW

- Agosta, Lou, The Essential Guide to Data Warehousing. Prentise Hall PTR, 1999.
- Devlin, Barry, Data Warehouse, from Architecture to Implementation. Addison-Wesley, 1997.
- Inmon, W.H., Building the Data Warehouse.
 John Wiley, 1992.
- Widom, J., "Research Problems in Data Warehousing." Proc. of the 4th Intl. CIKM Conf., 1995.
- Chaudhuri, S., Dayal, U., "An Overview of Data Warehousing and OLAP Technology." ACM SIGMOD Record, March 1997.