சுட்டிகளும் மடக்கைகளும்

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- 🔻 சமனான அடிகளையுடைய வலுக்களைப் பெருக்கல், வகுத்தல்
- 🗯 வலுவின் வலுவைக் கொண்ட சுட்டிக் கோவைகளைச் சுருக்குதல்
- 🔻 பூச்சியச் சுட்டியையும் மறைச் சுட்டியையும் அறிந்து கொள்ளலும் உரிய கணித்தல்களுக்குப் பயன்படுத்தலும்
- சட்டி விதிகளிலிருந்து கணித்தல்
- ஓர் எண்ணின் மடக்கையை அறிதல்
- ☀ சுட்டியுடனான ஒரு கோவையை மடக்கைக் கோவையாக எழுதுதல்.
- 🛊 மடக்கைக் கோவையைச் சுட்டி வடிவில் எழுதுதல் என்னும் தேர்ச்சிகளை அடைவீர்கள்.

இதற்கு முன்னர் சுட்டிகள் என்ற அலகில் நீங்கள் கற்ற விடயங்களைப் பின்வருமாறு முன்வைக்கலாம்.

- 1. வலுக்களை விரித்தெழுதுதல்
 - (i) $5^3 = 5 \times 5 \times 5 = 125$
 - (ii) $b^5 = b \times b \times b \times b \times b$
 - (iii) $(ab)^3 = a^3 \times b^3 = a \times a \times a \times b \times b \times b$ $(ab)^3 = ab \times ab \times ab = a \times a \times a \times b \times b \times b$
- 2. விரித்து எழுதப்பட்டுள்ள பெருக்கங்களைச் சுருக்கி எழுதுதல்
 - (i) $2 \times 2 \times 2 \times 2 \times 2 = 2^5 = 32$
 - (ii) $x \times x \times x \times x = x^4$
 - (iii) $3 \times 3 \times y \times y \times y = 3^2 \times y^3 = 9 y^3$
- 3. ஒரு பெருக்கத்தின் வலுவை, வலுக்களின் பெருக்கமாக எழுதுதல்
 - (i) $(ab)^3 = a^3 \times b^3 = a^3 b^3$
 - (ii) $(5\nu)^2 = 5^2 \times \nu^2 = 25 \nu^2$
- 4. வலுக்களின் பெருக்கத்தை ஒரு பெருக்கத்தின் வலுவாக எழுதுதல்
 - (i) $16 p^4 = 2^4 \times p^4 = (2 p)^4$ (ii) $q^2 \times n^2 = (qn)^2$

5. ஒற்றை வலுக்கள் **இரட்டை வலுக்கள்** $(-2)^5 = (-2) \times (-2) \times (-2) \times (-2) \times (-2) = (-32)$ $(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = +16$ $(-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = +81$ $(-3)^5 = (-3) \times (-3) \times (-3) \times (-3) \times (-3) = (-243)$ ஒற்றை வலு இரட்டை வலு (ഥறை எண்) = + பெறுமானம் (மறை எண்) = — பெறுமானம்

சமனான அடிகளையுடைய வலுக்களைப் பெருக்குதல் 12.1

உதாரணம் 12.1

$$3^{3} \times 3^{4} = (3 \times 3 \times 3) (3 \times 3 \times 3 \times 3)$$

= $3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
= 3^{7}

கோவை	விரித்தெழுதிச் சுருக்குதல்	சுட்டிகள் மூலம் சுருக்குதல்
1. $3^{3} \times 3^{2}$ 2. $m^{4} \times m^{2}$ 3. $p^{3} \times q^{2} \times p^{5} \times q^{2}$	$3 \times 3 \times 3 \times 3 \times 3 = 3^{5}$ $m \times m \times m \times m \times m \times m = m^{6}$ $(p \times p \times p) \times (q \times q) \times (p \times p \times p \times p \times p) \times q$ $= (p \times p \times p \times p \times p \times p \times p \times p) \times (q \times q \times q)$ $= p^{8} \times q^{3}$	$\begin{vmatrix} 3^{3+2} = 3^5 \\ m^{4+2} = m^6 \\ p^{3+5} \times q^{2+1} = p^8 q^3 \end{vmatrix}$

இதற்கேற்பa ஐ அடியாகக் கொண்டதும் m,n ஆகியவற்றைச் சுட்டிகளாகக் கொண்டதுமான இரண்டு வலுக்களின் பெருக்கத்தைப் பின்வருமாறு காட்டலாம்.

$$a^m \times a^n = a^{m+n}$$

அடிகள் சமனான இரண்டு வலுக்களைப் பெருக்கும் போது அதாவது அவற்றின் சுட்டிகள் கூட்டப்படும். அடி மாறாதிருக்கும்.

1. வெற்றிடங்களை நிரப்புக.

(i)
$$3^2 \times 3^6 = 3^{\square}$$

(ii)
$$a^3 \times a^8 = a^{\square}$$

(iii)
$$5^4 \times 8^2 \times 5^2 = 5^{(\square + 2)} \times 8^2$$

(iii)
$$5^4 \times 8^2 \times 5^2 = 5^{(\square + 2)} \times 8^2$$
 (iv) $p^3 \times q^4 \times p^6 \times q^3 = p^{(3+\square)} \times q^{(\square+\square)}$

(v)
$$a^4 \times b^5 \times a^6 \times b^2 = a^{(\Box)} \times b^{(\Box)}$$

(vi)
$$2^2 \times c^4 \times 2^4 \times c^5 = 2^{(\square_+ \square)} \times c^{(\square_+ \square)} = 2^{\square} \times c^{\square}$$

(vii)
$$4^{\square} \times k^1 \times 4^5 \times k^{\square} = 4^7 \times k^5$$
 (viii) $\left(\frac{1}{3}\right)^5 \times \left(\frac{1}{3}\right)^{\square} = \left(\frac{1}{3}\right)^9$

(ix)
$$x^{\Box} \times 7^2 \times x^4 \times 7^4 = x^6 \times 7^{\Box}$$

(ix)
$$x^{\square} \times 7^2 \times x^4 \times 7^4 = x^6 \times 7^{\square}$$
 (x) $(0.2)^3 \times (0.2)^5 \times (0.2)^{\square} = (0.2)^{20}$

- $a^x \times a^y = a^{50}$ என்பது உண்மையாவதற்கு x, y ஆகியவற்றுக்குப் பொருத்தமான 5 பெறுமானச் சோடிகளை வெவ்வேறாக எழுதுக.
- 3. வெற்றுக் கட்டங்களுக்குப் பொருத்தமான எண்களை எழுதுக.

$$\begin{array}{c}
5^{6} \times 5^{2} \times 5^{8} \times 5^{\square} \\
\parallel \\
5^{8} \times 5^{\square} =
\end{array}$$

$$\begin{array}{c}
5^{20} \\
\parallel \\
5^{4} \times 5^{3} \times 5^{\square}
\end{array}$$

$$\begin{array}{c}
x \times x^{\square} \\
x^{9} \times x^{\square} =
\end{array}$$

$$\begin{array}{c}
x^{9} \times x^{\square} =
\end{array}$$

$$\begin{array}{c}
x^{7} \times x^{\square}
\end{array}$$

12.2 சமனான அடிகளையுடைய வலுக்களை வகுத்தல்

உதாரணம் 12.2

சுருக்குக.

சுருக்குக.

$$3^{4} \div 3^{2}$$

$$3^{4} \div 3^{2} = \frac{3 \times 3 \times \cancel{3} \times \cancel{3}}{\cancel{3} \times \cancel{3}}$$

$$= \frac{c \times c \times c \times c \times c \times \cancel{c} \times \cancel{c} \times \cancel{c}}{\cancel{c} \times \cancel{c} \times \cancel{c}}$$

$$= 3^{2}$$

$$= c^{5}$$

மேலேயுள்ள இரண்டு உதாரணங்களிலும் வலுக்களின் சுட்டிகளைக் கழிப்பதன் மூலமும் மேற்குறித்த விடையையே பெறலாம் என்பதைப் பரீட்சித்துப் பார்க்க.

$$3^4 \div 3^2 = 3^{4-2} = 3^2$$
 $c^8 \div c^3 = c^{8-3} = c^5$

இதற்கேற்ப a ஐ அடியாகக் கொண்டதும் m, n ஆகியவற்றைச் சுட்டிகளாகக் கொண்டதுமான இரண்டு வலுக்களின் வகுத்தலைப் பின்வருமாறு காட்டலாம்.

$$a^m \div a^n = a^{m-n}$$
 அல்லது $a^m = a^{m-n}$

மேலேயுள்ள விளக்கத்திற்கேற்ப,

சமனான அடிகளையுடைய இரண்டு வலுக்களை வகுக்கும்போது அவற்றின் சுட்டிகள் கழிக்கப்படும். அடி மாறாதிருக்கும்.

இங்கு n இன் பெறுமானம் m இலும் கூடியதாயிருக்கும் சந்தர்ப்பங்களில் m-n இற்காக மறைப் பெறுமானமொன்று வருவதால் எமக்கு மறைச் சுட்டியொன்று கிடைக்கிறது. (இதுபற்றிப் பின்னர் விளக்கப்படும்)

1. வெற்றுக் கட்டங்களை நிரப்புக.

$$(i) \quad 5^7 \div 5^3 = 5^{\square}$$

(ii)
$$\frac{x^8}{x^5} = x^{\square}$$

(iii)
$$a^{\square} \div a^3 = a^{10}$$

(iv)
$$\frac{2^{\square} \times 2^4}{2^3} = \frac{2^9}{2^3} = 2^{\square}$$

(v)
$$\frac{y^5 \times y^{\square} \times y^3}{y^4 \times y^{\square}} = \frac{y^{10}}{y^8} = y^{\square}$$
 (vi) $\frac{c^{\square} \times c^5}{c^3 \times c^{\square}} = \frac{c^9}{c^{\square}} = c^4$

(vi)
$$\frac{c^{\square} \times c^5}{c^3 \times c^{\square}} = \frac{c^9}{c^{\square}} = c^4$$

வெற்றுக் கட்டங்களுக்குப் பொருத்தமான எண்களைக் காண்க.

$$\underbrace{\frac{3^{5} \times 3^{8}}{3^{\square}}}_{3^{\square}} = \underbrace{\frac{3^{12}}{3^{\square}}}_{3^{\square}} = \underbrace{\frac{a^{4} \times a^{3}}{a^{\square}}}_{3^{\square}} = \underbrace{\frac{a^{4} \times a^{3}}{a^{3}}}_{1} = \underbrace{\frac{a^{10}}{a^{5}}}_{1} = \underbrace{\frac{a^{1$$

12.3 மறைச் சுட்டி

 $x^2\div x^5$ இன் பெறுமானத்தைக் கீழே காட்டப்பட்டுள்ள இரண்டு முறைகளிலும் சுருக்கும்போது கிடைக்கும் விடைகளைப் பரீட்சித்துப் பார்க்க.

விரித்து எழுதுதல்	சுட்டி விதி மூலம்
$= \frac{\cancel{x}^{1} \times \cancel{x}^{1}}{\cancel{x}_{1} \times \cancel{x}_{1} \times x \times x \times x}$ $= \frac{1}{\cancel{x}^{3}}$	$x^{2} \div x^{5}$ $= x^{2-5}$ $= x^{-3}$

இதற்கேற்ப இவ்விரு விடைகளும் சமனாக வேண்டும்.

அதாவது,
$$x^{-3} = \frac{1}{x^3}$$
 ஆகும்.

இதற்கேற்ப n யாதாயினுமொரு எண்ணாயிருக்கும்போது $x^{-n}=\frac{1}{x^n}$ உம் $\frac{1}{x^{-n}}=x^n$ உம் ஆகும்.

இங்கு χ'' என்பது மறைச் சுட்டியுடனான ஒரு வலு எனப்படும்.

உதாரணம் 12.3

உதாரணம் 12.4

இன் பெறுமானத்தைக் காண்க.

 $\frac{1}{4^{-2}}$ இன் பெறுமானத்தைக் காண்க.

$$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

$$\frac{1}{4^{-2}} = 4^2 = 16$$

மேலேயுள்ள விளக்கத்திற்கேற்ப நாம் பின்வரும் முடிவைப் பெற்றுக் கொள்ளலாம்.

$$\frac{a^{-x}}{b^{-y}} = \frac{b^y}{a^x}$$

அதாவது மறைச் சுட்டியுடனான ஒரு வலுவை நேர்ச் சுட்டியுடனான ஒரு வலுவாக மாற்றுவதற்கு அதன் நிகர்மாறை எழுத வேண்டும்.

1. வெற்றிடங்களை நிரப்புக.

(i)
$$2^{-5} = \frac{1}{\Box}$$

(i)
$$2^{-5} = \frac{1}{\Box}$$
 (ii) $x^{-2} = \frac{1}{\Box}$ (iii) $\Box = \frac{1}{3}$

(iii)
$$\square = \frac{1}{3}$$

(iv)
$$2x^{-1} = \frac{2}{\Box}$$

$$(v) \frac{x^{-3}}{v^{\square}} = \frac{y^6}{x^{\square}}$$

(iv)
$$2x^{-1} = \frac{2}{\Box}$$
 (v) $\frac{x^{-3}}{y^{\Box}} = \frac{y^6}{x^{\Box}}$ (vi) $\frac{3}{2x^{-3}} = \frac{\Box}{2}$

பின்வரும் கோவைகளைச் சுருக்கி விடைகளை நேர்ச் சுட்டிகளில் தருக.

(i)
$$\frac{a^{-2} \times b^{-4}}{b^2}$$

(ii)
$$\frac{2^{-3} \times 5^2}{5^{-4} \times 2^4}$$

(i)
$$\frac{a^{-2} \times b^{-4}}{b^2}$$
 (ii) $\frac{2^{-3} \times 5^2}{5^{-4} \times 2^4}$ (ii) $\frac{(2x)^3 \times (2x)^{-4}}{(2x)^{-6}}$

(iv)
$$\frac{8x^2 \times 5y^{-3}}{15x^{-4} \times 2y^5}$$

(iv)
$$\frac{8x^2 \times 5y^{-3}}{15x^{-4} \times 2y^5}$$
 (v) $\frac{3^{-2} \times p^2 \times q^{-2}}{p^{-4} \times q^2}$ (vi) $\frac{c^3 \times m^{-4}}{m^3 \times c^{-3}}$

(vi)
$$\frac{c^3 \times m^{-4}}{m^3 \times c^{-3}}$$

3. வெற்றிடத்துக்குப் பொருத்தமான பெறுமானத்தை இட்டு நிரப்புக.

(i)
$$\frac{1}{128} = 2^{\square}$$
 (ii) $\frac{1}{125} = {\square}^{-3}$ (iii) $27^{-1} = {\left(\frac{1}{3}\right)}^{\square}$ (iv) $0.001 = {\square}^{-3}$

12.4 பூச்சியச் சுட்டி

 $5^3 \div 5^3$ இன் பெறுமானத்தை விரித்தெழுதுவதன் மூலமும் சுட்டி விதியின்படி சுருக்குவதன் மூலமும் பின்வரும் விடை பெறப்படும்.

விரித்து எழுதுதல்	சுட்டி விதி மூலம்
$5^3 \div 5^3$	$5^3 \div 5^3$
$=\frac{\cancel{5}\times\cancel{5}\times\cancel{5}}{\cancel{5}\times\cancel{5}\times\cancel{5}}$	$=5^{3-3}$
= 1	$=5^{0}$

இரண்டு விடைகளும் சமனானவை. அதாவது $5^{\circ} = 1$ ஆகும்.

அடி பூச்சியமல்லாத எந்தவொரு எண்ணினதும் சுட்டி பூச்சியமாகும்போது அதன் பெறுமானம் 1 இற்குச் சமனாகும்.

அதாவது $a \neq 0$ ஆகும்போது $a^0 = 1$

பயிற்சி 12.4

சுருக்குக.

(i)
$$x^5 \div x^5$$
 (ii) $\left(\frac{3}{x^2}\right)^0 \times \frac{x^3}{9}$ (iii) $\frac{(2x)^0 \times x^7}{x^{-2}}$

(iv)
$$\frac{x^{\frac{1}{2}} \times y^{\frac{2}{3}}}{y^{-\frac{1}{3}} \times x^{\frac{1}{2}}}$$
 (v) $\frac{(xy)^{\circ} \times a^{5} \times y^{4}}{a^{-3} \times y^{-3}}$ (vi) $\frac{m^{5} \times c^{-2} \times m^{-2}}{c^{4} \times m^{3} \times c^{-6}}$

12.5 வலுவின் வலு

(2²)³ என்பது வலுவின் வலுவுடைய ஒரு கோவையாகும். இது இரண்டின் இரண்டாம் வலுவின் மூன்றாம் வலுவாகும். இதனை விரித்தெழுதிச் சுருக்கலாம்.

$$(2^2)^3 = 2^2 \times 2^2 \times 2^2$$

= 2^{2+2+2} (சுட்டி விதியின்படி)
 $\therefore (2^2)^3 = 2^6$

இதனை $2^{2\times 3}=2^6$ எனவும் சுருக்கலாம். (சுட்டிகளைப் பெருக்குவதன் மூலம்) எனவே $(2^2)^3=2^6$ என எழுதலாம்.

இதற்கேற்ப, a பூச்சியமல்லாத எந்தவொரு எண்ணாகவும் இருக்கும்போது $(a^m)^n = a^{mn}$ என எழுதலாம்.

ஆகும்.

அதாவது வலுவின் வலுவைச் சுருக்கும்போது அவற்றின் சுட்டிகள் பெருக்கப்படும்.

1. சுருக்குக.

(i)
$$(3^2)^3$$

(ii)
$$(x^{-2})^3$$

(iii)
$$(y^2)^{\circ}$$

(iv)
$$\left(\frac{x^3}{y^2}\right)^2$$

(v)
$$(x^{-3})^{-2}$$

(v)
$$(x^{-3})^{-2}$$
 (vi) $\left(\frac{a^{-3}}{b^{-2}}\right)^{-3}$

2. வெற்றிடத்திற்கு பொருத்தமான எண்ணை எழுதுக.

(i)
$$x^{10} = (x^{-5}) \square$$

(i)
$$x^{10} = (x^{-5})$$
 (ii) $2^{12} = (2^{-6})$

(iii)
$$a^{10} = (a^{\square})^{-\frac{1}{2}}$$

(iv)
$$\frac{\left(x^3y^2\right)^3}{x^7y^5} = x^{\square} \times y^{\square}$$
 (v) $\left\{\frac{(0.5) \times (0.5)^6}{(0.5)^8}\right\}^2 = (0.5)^{\square}$ (vi) $\left(\frac{m^3}{n^2}\right)^{-2} = \frac{n^{\square}}{m^{\square}}$

மடக்கை 12.6

(a) ஓர் எண்ணின் மடக்கை

$$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$
 என்பதை

$$64 = 2^6$$
 என எழுதலாம்.

இது அடி இரண்டையுடைய 64 இன் மடக்கை 6 எனக் கூறப்படும்.

JOHN NAPIER கி.பி. (1550-1617) (இத்தாலியைச் சேர்ந்த ஜேரன் நேபியர் எனும் கணிதவியலாளர் மடக்கை பற்றிய கருத்தை முன்வைத்தார்.)

(b) சுட்டி வடிவிலுள்ள ஒரு கோவையை மடக்கை வடிவில் எழுதுதல்

சுட்டி வடிவம்	மடக்கை வடிவம்	மடக்கை வாசிக்கப்படும் முறை
$100 = 10^2$	$\log_{10} 100 = 2$	அடி 10 ஐ உடைய 100 இன் மடக்கை 2 ஆகும்.
$32 = 2^5$	$\log_2 \ 32 = 5$	அடி 2 ஐ உடைய 32 இன் மடக்கை 5 ஆகும்.
$49 = 7^2$	$\log_7 \ 49 = 2$	அடி 7 ஐ உடைய 49 இன் மடக்கை 2 ஆகும்.
$a = b^c$	$\log_{b} a = c$	அடி b ஐ உடைய a இன் மடக்கை c ஆகும்.
$8 = 2^3$	$\log_2 8 = 3$	அடி 2 ஐ உடைய 8 இன் மடக்கை 3 ஆகும்.
$\frac{1}{8} = 2^{-3}$	$\log_2 \frac{1}{8} = -3$	அடி 2 ஐ உடைய $\frac{1}{8}$ இன் மடக்கை -3 ஆகும்.
1 = 10°	$\log_{10} 1 = 0$	அடி 10 ஐ உடைய 1 இன் மடக்கை 0 ஆகும்.

பொதுவாக,

. ஓர் எண்ணை இன்னோர் எண்ணின் வலுவாகக் குறிப்பிடும்போது பெறப்படும் சுட்டியானது குறித்த அடியில் முன்னைய எண்ணின் மடக்கை எனப்படும்.

அதாவது $a=b^c$ ஆயின் அடி b ஐ உடைய a இன் மடக்கை c ஆகும். இது பின்வருமாறு காட்டப்படும்.

$$\left[\text{DL}_{b} a = c \right]$$
 அல்லது $\left[\log_{b} a = c \right]$

$$\log_{10} x = \lg x$$

a, b என்பற்றின் நேர் எண்கள் மாத்திரம் கருத்தில் கொள்ளப்படும்.

1. வெற்றிடத்துக்குப் பொருத்தமான பெறுமானத்தை இட்டு நிரப்புக.

(i)
$$128 = 2^{\Box}$$

(ii)
$$0.00001 = \Box^{-5}$$
 (iii) $\frac{1}{256} = 2^{\Box}$ (iv) $625 = \Box^{4}$

(iv)
$$625 = \Box^4$$

2. பின்வரும் கோவைகளை மடக்கைக் குறிப்பீட்டில் எழுதுக.

(i) அடி 10 ஐ உடைய 1000 இன் மடக்கை

(ii) அடி 2 ஐ உடைய 16 இன் மடக்கை

(iii)அடி p ஐ உடைய Q இன் மடக்கை

(iv)அடி m ஐ உடைய n இன் மடக்கை

 மடக்கைக் குறிப்பீட்டில் தரப்பட்டுள்ள பின்வரும் கோவைகளைச் சொற்களில் எழுதுக.

(i) log, 27

(ii) log₄ 1

(iii) log b

(iv) log_o512

4. பின்வரும் கோவைகளை மடக்கைக் குறிப்பீட்டில் எழுதுக.

(i) $128 = 2^{\prime}$

(ii) $10000 = 10^4$ (iii) $5 = 5^1$

(iv) $1 = 3^{\circ}$

(c) மடக்கை வடிவில் தரப்பட்டுள்ள ஒரு கோவையை சுட்டி வடிவில் எழுதுதல்

தரப்பட்டுள்ள மடக்கை வடிவக் கோவை ஒன்றைப் பின்வருமாறு சுட்டி வடிவில் எழுதலாம்.

மடக்கை வடிவம்	சுட்டி வடிவம்
(i) $\log_3 243 = 5$	$243 = 3^5$
(ii) $\log_2 1024 = 10$	$1024 = 2^{10}$
$ (iii) \log_5 625 = 4 $	$625 = 5^4$
$\left \text{ (iii) } \log_{b} a \right = c$	$a = b^c$

இதற்கேற்பத் தரப்பட்டுள்ள ஒரு மடக்கைக் கோவையைச் சுட்டி வடிவிலும் தரப்பட்டுள்ள ஒரு சுட்டிக் கோவையை மடக்கை வடிவிலும் (இரு திசையிலும்) எமுதலாம் என்பதை விளங்கிக் கொள்க. அதனைப் பின்வருமாறு குறிப்பிடலாம்.

$$a = b^c \iff log_b a = c$$

1.	பின்வரும்	கோவைகளை	சுட்டி	வடிவில்	தருக.
----	-----------	---------	--------	---------	-------

(i)
$$\log_{2} 125 = 3$$

(ii)
$$\log_{2} 81 = 2$$

(i)
$$\log_5 125 = 3$$
 (ii) $\log_9 81 = 2$ (iii) $\log_9 2 = 0.3010$ (iv) $\log_9 0.1 = -1$

2. வெற்றிடங்களை நிரப்புக.

(i)
$$2^7 = \square \rightarrow \log_2 \square = 7$$

(i)
$$2^7 = \square \rightarrow \log_2 \square = 7$$
 (ii) $5^{\square} = \square \rightarrow \log_5 \square = 2$

(iii)
$$\log_{\square} 125 = 3$$
 (iv) $\log_2 \square = 5$ (v) $\log_a \square = 4$

(iv)
$$\log_2 \square = 5$$

(v)
$$\log_a \square = 4$$

3. வெற்றிடங்களை நிரப்புக.

(i)
$$\log_2 32 =$$

(i)
$$\log_2 32 = \boxed{}$$
 (ii) $\log_5 25 = \boxed{}$ (iii) $\log_x 1 = \boxed{}$ (iv) $\log_a a = \boxed{}$

(iii)
$$\log_{x} 1 =$$

(iv)
$$\log_a a = \Box$$

4. வெற்றிடங்களை நிரப்புக.

(i)
$$\log_{\square} 1000 = 3$$

(ii)
$$\log_{\square} \frac{1}{x} = -1$$

(i)
$$\log_{\square} 1000 = 3$$
 (ii) $\log_{\square} \frac{1}{x} = -1$ (iii) $\log_{\square} \frac{1}{81} = -4$

(iv)
$$\log_{\square} 0.01 = -2$$
 (v) $\log_{\square} 16 = 2$ (vi) $\log_{\square} 4^{-2} = -2$

(v)
$$\log_{\square} 16 = 2$$

(vi)
$$\log_{\Box} 4^{-2} = -2$$

5. வெற்றிடங்களை நிரப்புக.

(i)
$$\log_5 3125 = 5$$
 \longrightarrow \square $= 5$

$$= -2$$
 \longrightarrow \square $= 10^{-2}$

(iv)
$$\log_{\square} 81 =$$

(i)
$$\log_5 3123 = 3$$
 $= 3$ $= 3$

(ii) $\log_7 \square = 0$ $= 10^{-2}$

(iii) $\log \square = -2$ $= 10^{-2}$

(iv) $\log \square 81 = 4$ $= 3$

$$= \square \longrightarrow 6 = 6$$

(vi)
$$\log 0.001 = -3 \implies 0.001 = \Box^{-3}$$

(v)
$$\log_6 6$$
 = \square \iff 6 = 6 \square

6.
$$\log_{\mathbb{R}} y = 3$$
 இற்குப் பொருத்தமான x, y என்பவற்றின் எண்சோடிகள் மூன்றை எழுதுக.

- 8. $\log_2 x = y$ இற்குப் பொருத்தமான x, y என்பற்றின் எண்சோடிகள் மூன்றை எழுதுக.