实验四

基于 FPGA 的 LCD 显示系统设计

实验目的:

在熟悉Quartus基本操作、Verilog编程语言的基本规则、SignalTap的基本应用后,学习LCD显示系统的设计方法。

预备知识:

- 1. DE2-115 的基本使用方法;
- 2. Verilog 语言基础知识;

实验环境:

- 1. 实验人数 50 人,每 2 人一组,每组两台电脑
- 2. 电脑 50 台

实验内容:

利用试验箱LCD显示器(CFAH1602B-TMC-JP),学习LCD设计方法,用 verilog语言编程,驱动LCD固定显示以下规定字符:

第一行: **FPGA DESIGNER** 第二行: **个人姓名的拼音**

实验原理:

1. LCD 显示器基本结构

图1. Cyclone IV E FPGA芯片和LCD模块间连接示意图

表1 LCD 模块引脚配置说明

信号名	FPGA 引脚号	说明	1/0 标准
LCD_DATA[7]	PIN_M5	LCD Data[7]	3.3V
LCD_DATA[6]	PIN_M3	LCD Data[6]	3.3V
LCD_DATA[5]	PIN_K2	LCD Data[5]	3.3V
LCD_DATA[4]	PIN_K1	LCD Data[4]	3.3V
LCD_DATA[3]	PIN_K7	LCD Data[3]	3.3V
LCD_DATA[2]	PIN_L2	LCD Data[2]	3.3V
LCD_DATA[1]	PIN_L1	LCD Data[1]	3.3V
LCD_DATA[0]	PIN_L3	LCD Data[0]	3.3V
LCD_EN	PIN_L4	启用 LCD	3.3V
LCD_RW	PIN_M1	LCD 读/写选择, 0 = 写, 1 =读	3.3V
LCD_RS	PIN_M2	LCD 命令/数据选择, 0 = 命令 d, 1 =数据	3.3V
LCD_ON	PIN_L5	LCD 电源开/关	3.3V
LCD_BLON	PIN_L6	LCD 背光开/关	3.3V

在DE2-115 中使用的LCD 模块并不含背光单元,故而LCD_BLON 信号在用户工程中的设定是无效的。

1602LCD显示的内容为16×2,即可以显示两行,每行16个字符,目前市面上字符液晶大多数是基于HD44780和SPLC780D液晶芯片,控制原理是完全相同的,因此基于HD44780和SPLC780D写的控制程序可以很方便地应用于市面上大部分的字符型液晶。本实验室所使用的是型号为CFAH1602B-TMC-JP的液晶,而其内部采用的正是HD44780液晶芯片。下图为LCD的原理框图。

图2. LCD原理框图

从上图可以看出,LCD显示模块内嵌了一个HD44780的控制器,控制器有两个8位的寄存器,指令寄存器(IR)和数据寄存器(DR)。

指令寄存器IR只能由MPU执行写入操作,其存储的内容包括:

- 1) 指令码(例如显示器清零、光标移位等);
- 2) 地址信息(DDRAM和CGRAM)

当地址信息被写入到IR中时,数据寄存器DR执行数据缓存操作,暂存的数据为准备写入DDRAM、CGRAM的数据,或者是从DDRAM、CGRAM读出的

数据。RS信号为寄存器选择信号,可以选择DR或IR。

2. LCD 显示器缓存分类

1602LCD中,除了DDRAM和CGRAM之外,还有一个CGROM,这几个存 储器的主要区别描述如下:

- 1) CGROM: 存储了一些标准的字符的字模编码,是液晶屏出厂时固化 在控制芯片中的,用户不能改变其中的存储内容,只能读取调用,包含 有标准的ASCII码、日文字符和希腊文字符。
- 2) CGRAM: 留给用户,用以存储用户自己设计的字模编码。(8个字节, {0000 X000~0000 X111})
- 3) DDRAM: 是和屏幕显示区域有对应关系的一组存储器,其功能有点中 转的性质。(80个字节)

为了便于理解,可以如下打一比方: CGROM和CGRAM中存储的字模信息相 当于厨房中的食品, CGROM是厨房中现成的熟食, CGRAM是用户自行制作的 菜肴,这些食品都要通过托盘DDRAM转移一下,才能送到餐桌上食用:类似的 字模编码都要先被读取到对应的DDRAM中,经如上中转以后,屏幕的相应位置 才显示出字符。

3. 基本操作时序

1602液晶的基本的操作分为以下四种:

- ▶ 状态字读操作: 输入 RS=低、RW=高、EP=高; 输出: DB0~7读出为状态字;
- ▶ 数据读出操作:输入 RS=高、RW=高、EP=高;输出:DBO[~]7读出为数据;
- ▶ 指令写入操作:输入 RS=低、RW=低、EP=上升沿; 输出:无;
- ▶ 数据写入操作:输入 RS=高、RW=低、EP=上升沿: 输出:无。

各类操作的时序图如下:

图3. 读操作的时序图

图4. 写操作的时序图

各类操作时序时间参数如下表:

tHD2

10

极限值 时序参数 符号 单位 测试条件 典型值 最小值 最大值 E 信号周期 tc 400 ns 引脚E E脉冲宽度 t_{PW} 150 ns E 上升沿/下降沿时间 tr, tr 25 ns 地址建立时间 tsp1 30 _ _ ns 引脚 E、RS、R/W 地址保持时间 tHD1 10 ns 数据建立时间(读操作) 100 tσ ns 数据保持时间(读操作) 20 tHD2 ns 引脚 DBO~DB7 数据建立时间(写操作) tsp2 40 ns

ns

表2. 时序时间参数

4. LCD 的指令

数据保持时间(写操作)

1602 LCD的控制器内置有80个byte的显存,而1602 LCD只有两行X 16个字符的显示区域,所以显存中有些地址是无法对应上LCD屏的,下图为显存地址对应图:

图5. 显存地址对应图

要显示字符时要先输入显示字符地址,也就是告诉模块在哪里显示字符,上

图是1602LCD的内部显示地址。例如第二行第一个字符的地址是40H,那么是否直接写入40H就可以将光标定位在第二行第一个字符的位置呢?这样不行,因为写入显示地址时要求最高位D7恒定为高电平1所以实际写入的数据应该是01000000B(40H)+10000000B(80H)=11000000B(C0H)。因此,第一行地址就必须加80H,而第二行地址就必须加C0H。

序号	指令	RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0	E-Cycle
1	清显示	0	0	0	0	0	0	0	0	0	1	1.64ms
2	光标返回	0	0	0	0	0	0	0	0	1	*	1.64ms
3	置输入模式	0	0	0	0	0	0	0	1	I/D	S	40us
4	显示开/关控制	0	0	0	0	0	0	1	D	С	В	40us
5	光标或字符移位	0	0	0	0	0	1	S/C	R/L	*	*	40us
6	置功能	0	0	0	0	1	DL	N	F	*	*	40us
7	置字符发生存贮器地址	0	0	0	1 字符发生存贮器地址						40us	
8	置数据存贮器地址	0	0	1	显示数据存贮器地址							40us
9	读忙标志或地址	0	1	BF	计数器地址							40us
10	写数到CGRAM或 DDRAM	1	0		要写的数据内容							40us
11	从CGRAM或DDRAM读 数	1	1			40us						

表3. 1602LCD控制指令

- ▶ 指令1——清显示,指令码01H,光标复位到地址00H位置。
- ▶ 指令2——光标返回,光标返回到地址00H。
- ▶ 指令3——置输入模式, I/D: 光标移动方向, 高电平右移, 低电平左移; S: 屏幕上所有文字是否左移或右移, 高电平表示有效, 低电平无效。
- ▶ 指令4——显示开/关控制, D: 控制整体显示的开/关, 高电平为开显示, 低电平为关显示; C: 控制光标的开与关, 高电平表示有光标, 低电平表示无光标; B: 控制光标是否闪烁, 高电平闪烁, 低电平不闪烁。
- ▶ 指令5——光标或字符移位, S/C: 高电平时移动显示的文字, 低电平时移动 光标。
- ▶ 指令6——功能设置命令,DL:高电平时为8位总线,低电平时为4位总线;N:低电平时为单行显示,高电平时双行显示;F:低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。
- ▶ 指令7——字符发生器RAM地址设置。
- ▶ 指令8——DDRAM地址设置。
- ▶ 指令9——读忙信号和光标地址,BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。
- ▶ 指令10——写数据。

- ▶ 指令11——读数据。
- 5. CGROM 字符映射表

Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL					LHHH	HLLL	HLLH	HLHL	нінн	HHLL	HHLH	HHHL	нннн
LLLL	CO RAM (1)						*-	::: -					ij	₩.		
LLLH	(2)			1			-==	-==			I:3	Ţ,	Ţ-	: <u>.</u>	ظة.	띡
LLHL	(3)		::	2		H	Ŀ	ļ			į	·1	IJ	.::: [*]	j ≣∺	
LLHH	(4)		#	3			£	: :: -			i	ij	ï	=	:≣:-	::-:
LHLL	(5)		#	4		T		ŧ			٠.	I	ŀ.	†::	l	572
LHLH	(6)		:::# ::::	<u></u> i		<u></u> i	===	<u></u>			::	₽	:ŀ		C.	<u></u> j
LHHL	(7)					Ļ	₽,	i.,.i			ij	Ħ			ı:::	E
LHIHH	(8)		: .	7			•==	<u>.</u>			::: :	÷	:::°	-	<u>ا</u>	T
HLLL	(1)		i.	8	H	K	ŀ'n	: :::			·į	٠.,	:#:	Ļ	i**	∺
HLLH	(2)		, <u>,</u>		I	¥	1	•!				Ť	ا.	ı İ.:	1	H
HLHL	(3)		:	::		Z		:::			::::		ľ	Ŀ·	<u>. j</u>	=p:
HLHH	(4)		į	:	H.	I.	Ŀ:	₹.			:: †	Ţ			:-:]=9
HHLL	(5)			٠: .		4	I.				-	<u> </u>		: <u>, </u>	4:-	H
HHLH	(6)			:::::			m	÷				.::	٠٠٠.	 :	ŧ	-÷-
HHHL	(7)		#			··*·	-";					t	T	:	l ^{:=} ı	
нннн	(8)		···					-E				١١	∵ !			

6. 液晶显示流程

图 6. 液晶显示流程图

7. LCD 设计顶层框图

LCD 设计顶层框图如图 7 所示。

图7 LCD显示顶层结构

各模块功能描述如下:

- ➤ 系统钟产生: 利用 PLL 产生 50MHz 时钟;
- ▶ 上电复位:产生全局上电复位脉冲;
- ▶ 显示驱动 (LCD TEST. v): 完成显示内容设置及驱动功能;
- ▶ 显示控制(LCD_Controller.v): 完成显示器时序控制功能;

时钟设计实验步骤:

- 1. 启动系统生成器,生成 project;
- 2. 构建模块并连接;
- 3. 确定显示内容
- 4. 编译:
- 5. 下载;
- 6. 利用 signalTap 调试、验证关键功能。

实验报告:

- 1. 简述实验步骤;
- 在实验原理部分简单描述各模块的流程图 具体要求:
 - 1) 画出 LCD TEST.v 程序段中的状态机转换图;

状态机由状态寄存器和组合逻辑电路构成,能够根据控制信号按照预先设定的状态进行状态转移,是协调相关信号动作、完成特定操作的控制中心。状态机简写为 FSM (Finite State Machine),主要分为 2 大类:

- ▶ 第一类, 若输出只和状态有关而与输入无关, 则称为 Moore 状态机:
- ➤ 第二类,输出不仅和状态有关而且和输入有关系,则称为 Mealy 状态机;

图 8 状态机流程

- 2) 对代码中注释有"描述此行代码含义"的行进行简单的分析;(可对应表 3. 1602LCD 控制指令分析)
- 3) 画出 LCD_Controller.v 程序段中状态机转换图。
- 3. 利用 SignalTap 分析重点时序; 时序分析图如下图,在报告中对时序进行解释。

log: 2	2016/11	/30 15:46:07 #1	click to insert time ba									
Туре	Alias	Name	-8 	0 8	16		1	40	48	56	64	72
5		9 LCD_TEST:inst6 iRST_N										
5		D_TEST:inst6 mLCD_Start										
5		CD_TEST:inst6 mLCD_RS										
out		LCD_RW										
5		Controller:inst5 LCD_EN										
S		⊞ST:inst6 mLCD_DATA	00h	XX						38h		
5		D_Controller:inst5 oDone										
B		±Controller:inst5 Cont	00h	XXXXXXX	XXXXXXXXXXX	χ					00	h

- 4. 提交设计顶层文件的截图;
- 5. 提交显示器的照片

6. 对本次实验做出心得体会。