Exercise sheet 5

Curves and Surfaces, MTH201

Additional exercises

NOTE: These exercises repeat many of the concepts / exercises covered earlier and are meant for you to identify gaps in your understanding. They are not exhaustive and the mid-semester examination will not be restricted to these questions.

Let $S \subset \mathbb{R}^3$ be a part of a surface and $\sigma: U \to S$ be a regular surface patch.

- 1. For each of the surface patches below, identify the surface that they (partially) cover:
 - (a) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (x,y,0)$.
 - (b) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (x,y,x+y)$.
 - (c) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x, y) = (\cos(x), \sin(x), y)$.
 - (d) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x, y) = (x, y, \sqrt{r^2 x^2 y^2})$.
 - (e) $\sigma : \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x, y) = (x, y, \sqrt{r^2 x^2 + y^2})$.
- 2. Consider a $\gamma:(a,b)\to S\subset\mathbb{R}^3$ parametrizing a curve that lies on the part of the surface covered by the surface patch. In other words, for each t, $\gamma(t)$ must, be in the image of σ , i.e. there is some x(t), and y(t) in U, so that $\gamma(t)=\sigma(x(t),y(t))$. Assuming that x(t) and y(t) are smooth,
 - (a) Consider the part of the surface covered by $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (\cos(x), \sin(x), y)$ and consider the curve $\gamma(t) = (0, 0, t)$. Note that it lies on the surface. Write it in the form, $\gamma(t) = \sigma(x(t), y(t))$ by finding suitable functions x(t) and y(t). Do the same for the curve $\gamma_2(t) = (\cos(t), -\sin(t), 0)$ which also lies on the surface.
 - (b) Show that

$$\dot{\gamma}(t_0) = x'(t_0)\sigma_x(x(t_0), y(t_0)) + y'(t_0)\sigma_y(x(t_0), y(t_0))$$

- 3. Show that $\sigma_x(x_0, y_0)$ and $\sigma_y(x_0, y_0)$ are each velocity vectors of curves that lie on the surface. Why are they linearly independent?
- 4. Why do the previous two exercises show that $\sigma_x(x_0, y_0)$ and $\sigma_y(x_0, y_0)$ are a basis for the tangent vectors?

1

- 5. Consider a point p on the part of the surface covered by a surface patch. Therefore, it is of the form $p = \sigma(x_0, y_0)$ for some x_0 an y_0 . Consider $\hat{n}(p) = \sigma_x(x_0, y_0) \times \sigma_y(x_0, y_0)$. Why is its dot product with $\sigma_x(x_0, y_0)$ and $\sigma_y(x_0, y_0)$ zero? Why is its dot product with any tangent vector (of the surface at p) zero?
- 6. Compute $\hat{n}(p)$ for any point p on a sphere.