Table des matières

- 1 Présentation
 - 1.1 Description
 - 1.2 Caractéristiques techniques principales
 - 1.3 Remarque
- 2 Installation
 - 2.1 Installation des logiciels
 - 2.2 Initialisation de la configuration par défaut
- 3 Commandes générales
 - 3.1 Accès aux commandes
 - 3.2 Commandes à la SOURIS
 - 3.2.1 Commandes de base
 - 3.2.2 Opérations sur blocs
 - 3.3 Sélection du pas de grille
 - 3.4 Réglage du ZOOM
 - 3.5 Affichage des coordonnées du curseur
 - 3.6 Commandes rapides au clavier (« Hot Keys »)
 - 3.7 Opérations sur blocs
 - 3.8 Barre des Menus
 - 3.8.1 Menu Fichiers
 - 3.8.2 Menu Préférences
 - 3.8.3 Menu Dimensions
 - 3.8.4 Menu Divers
 - 3.8.5 Menu Postprocesseurs
 - 3.8.6 Menu 3D Visu
 - 3.8.7 Menu Aide (Help)
 - 3.9 Commandes par icônes du toolbar de haut d'écran
 - 3.10 Commandes par icônes du toolbar de droite d'écran
 - 3.11 Icônes du toolbar de gauche d'écran
 - 3.12 Menu « Pop Up » et éditions rapides d'éléments
- 4 De la schématique à l'implantation
 - 4.1 Chaîne de génération
 - 4.2 Procédure de création d'un Circuit imprimé
 - 4.3 Procédure de correction d'un Circuit imprimé
- 5 Les couches (layers) de travail
 - 5.1 Les couches de cuivre
 - 5.1.1 Généralités:
 - 5.1.2 Sélection du nombre de couches:
 - 5.2 Les couches techniques auxiliaires
 - 5.3 Sélection de la couche active:
 - 5.3.1 Sélection par le toolbar horizontal:
 - 5.3.2 Sélection par le menu Popup:
 - 5.4 Sélection des couches pour les Vias:
- 6 Création / Correction d'une carte
 - 6.1 Création d'une carte
 - 6.1.1 Dessin du contour de la carte
 - 6.1.2 Lecture de la netliste issue de la schématique
 - 6.2 Correction d'une carte
 - 6.2.1 Marche à suivre:
 - 6.2.2 Effacement des pistes erronnées:
 - 6.2.3 Composants supprimés:
 - 6.2.4 Modules modifiés:
 - 6.2.5 Options avancées sélection par Signature Temporelle:
- 7 Placement des modules
 - 7.1 Aide au placement
 - 7.2 Placement manuel
 - 7.3 Réorientation générale des modules
 - 7.4 Répartition automatique des modules
 - 7.5 Placement automatique des modules
 - 7.5.1 Caractéristiques du placeur automatique
 - 7.5.2 Préparation
 - 7.5.3 Autoplacement interactif

```
Pcbnew
      7.5.4 - Remarque
8 - Routage de la carte
   8.1 - Choix des paramètres de routage et routage de la carte
   8.2 - Dimensions typiques selon la classe
      8.2.1 - Largeur de piste
      8.2.2 - Isolation
   8.3 - Exemples de configuration typique
      8.3.1 - Exemple « rustique » :
      8.3.2 - Exemple usuel :
   8.4 - Routage manuel
   8.5 - Création de zones de cuivre
      8.5.1 - Sélection de l'équipotentielle:
      8.5.2 - Création de la zone:
         8.5.2.1 - Création des limites de la zone:
         8.5.2.2 - Remplissage de la zone:
      8.5.3 - Options de remplissage:
         8.5.3.1 - Grille de travail pour le remplissage.
         8.5.3.2 - Isolation
         8.5.3.3 - Options des pads
9 - Finitions et Génération des documents de réalisation
   9.1 - Finitions
   9.2 - Test DRC final:
   9.3 - Génération des documents de phototraçage
      9.3.1 - Format GERBER:
      9.3.2 - Format HPGL:
      9.3.3 - Format POSTSCRIPT:
   9.4 - Réglage de la marge pour le vernis épargne:
   9.5 - Génération des documents de perçage
   9.6 - Génération des documents de câblage:
   9.7 - Génération du fichier de placement automatisé:
   9.8 - Options avancées de tracé:
10 - ModEdit: Gestion des LIBRAIRIES
   10.1 - Généralités: Présentation de ModEdit
   10.2 - ModEdit:
   10.3 - Ecran de ModEdit:
   10.4 - Toolbar principal de Modedit:
   10.5 - Créer un nouveau module:
   10.6 - Création d'une nouvelle librairie:
   10.7 - Sauver un module en librairie active:
   <u>10.8 - Transférer un module d'une librairie dans une autre:</u>
   10.9 - Sauver les modules d'un circuit en librairie active:
   10.10 - Documentation des modules en librairie:
   10.11 - Documenter les librairies : Méthode pratique:
11 - ModEdit: édition des modules
   11.1 - Généralités.
   11.2 - Eléments d'un module.
      11.2.1 - Les pads ou pastilles.
      11.2.2 - Les contours.
      11.2.3 - Les champs.
   11.3 - Accès à ModEdit et sélection du module à éditer.
   11.4 - Toolbars de l'édition de modules:
      11.4.1 - Outils du toolbar droit
      11.4.2 - Toolbar gauche d'options d'affichage.
   11.5 - Commandes contextuelles.
   11.6 - La boite de dialogue Proprieté des Modules
   11.7 - Créer un nouveau module
   11.8 - Ajout et édition des pastilles.
```

11.8.1 - Ajout d'une pastille.

11.10 - Attributs.

11.8.2 - Sélection des propriétés des pastilles. 11.9 - Informations pour l'Auto placement du Module

11.11 - Documentation des modules en librairie : 11.12 - Gestion de la visualisation en 3 dimensions

11.13 - Sauvegarde du module en librairie active

Rubriques:

- 5 Les couches (layers) de travail
 - 5.1 Les couches de cuivre
 - 5.1.1 Généralités:
 - 5.1.2 Sélection du nombre de couches:
 - 5.2 Les couches techniques auxiliaires
 - 5.3 Sélection de la couche active:
 - 5.3.1 Sélection par le toolbar horizontal:
 - 5.3.2 Sélection par le menu Popup:
 - 5.4 Sélection des couches pour les Vias:

1 - Les couches (layers) de travail

PCBNEW travaille sur 28 couches différentes :

- 16 couches de cuivre (ou de routage de pistes)
- 12 couches techniques auxiliaires.

1.1 - Les couches de cuivre

1.1.1 - Généralités:

Ce sont les couches usuelles de travail.

Le routeur automatique et le menu « Pistes » permettent d'exploiter ces couches.

La couche 1 est la couche « soudures » ou « Cuivre ». La couche 16 est la couche dite « composants ». Les autres couches sont les couches internes (2 à 15).

1.1.2 - Sélection du nombre de couches:

De façon à faciliter la navigation entre des couches, il est nécessaire de sélectionner le nombre de couches de travail.

Pour cela: activer le menu Preferences,

puis le menu Options.

Dans la boite de dialogue affichée, ajuster le nombre de couches (1 à 16).

1.2 - Les couches techniques auxiliaires

Certaines sont associées par paires, d'autres non.

Lorsque elles apparaissent par paire, la commande de changement de coté pour un module en tient compte et les éléments (pastilles, contours..) apparaissant sur une couche (soudure ou composant) apparaissent après inversion sur l'autre couche complémentaire.

Ce sont:

- Les couches Adhésives soudure et Composants :
 - Elles sont utilisées principalement pour y placer des composants « collés » à d'autres composants qui sont ,eux, sur la couche soudure ou composants. Ce sont par exemple des radiateurs de circuits intégrés ou de transistors, ou une résistance soudée sur une autre.
- 🔖 Les couches pâte SMD (ou CMS) soudure et composants :
 - Elles définissent les masques de fabrication pour les dépôts de pâte à souder des pastilles des composants **CMS** (Composants Montés en Surface).
 - En principe seules les pastilles **CMS** occupent ces couches.
- 🔖 Les couches Sérigraphie soudure et composants :
 - Ce sont les couches où apparaissent les dessins des composants :
- Les couches Masque soudures et composants :
 - Elles définissent le Vernis Epargne.
 - Normalement toutes les pastilles apparaissent sur l'une ou l'autre (ou les 2 pour les pastilles traversantes usuelles) pour éviter que le vernis épargne recouvre ces pastilles.
- ♦ Les couches à usage général :
 - couche comment
 - couche E.C.O. 1
 - couche E.C.O. 2
 - couche Draft.

Ces couches sont à usage libre. On peut y placer des textes comme des indications de montage ou de câblage, des cotations, des dessins d'obstacles mécaniques pour constituer un dossier de montage ou d'usinage.

La couche EDGE : c'est la couche réservée au dessin des contours de la carte.

Sa caractéristique particulière est que tout élément (segments, textes ...) placé sur cette couche apparaît aussi sur les autres couches.

1.3 - Sélection de la couche active:

La sélection de la couche active (ou couche de travail) peut se faire de plusieurs façons:

- · Par le toolbar horizontal.
- Par le menu Popup (bouton droit de la souris).
- Par les touches + et (Pour les couches de cuivre uniquement).

1.3.1 - Sélection par le toolbar horizontal:

La sélection de la couche est directe.

1.3.2 - Sélection par le menu Popup:

La sélection ouvre la boite de dialogue:

qui permet le choix direct de la couche de travail.

1.4 - Sélection des couches pour les Vias:

Lorsque **l'outil de tracé de pistes est activé**, le menu Popup est alors plus complet et donne accès au choix de la paire de couches pour les Vias:

La sélection ouvre la boite de dialogue:

qui permet le choix direct des couches de travail.

Lorsque l'on place une via, la couche active sera automatiquement commutée de la couche courante à l'autre couche qui deviendra la couche active.

Rubriques:

- 6 Création / Correction d'une carte
 - 6.1 Création d'une carte
 - 6.1.1 Dessin du contour de la carte
 - 6.1.2 Lecture de la netliste issue de la schématique
 - 6.2 Correction d'une carte
 - 6.2.1 Marche à suivre:
 - 6.2.2 Effacement des pistes erronnées:
 - 6.2.3 Composants supprimés:
 - 6.2.4 Modules modifiés:
 - 6.2.5 Options avancées sélection par Signature Temporelle:

2 - Création / Correction d'une carte

2.1 - Création d'une carte

2.1.1 - Dessin du contour de la carte

Il est en général bon de définir en premier lieu le contour de la carte à réaliser.

Dessiner le contour en le construisant graphiquement par une série de segments (Sélectionner la couche Edge Pcb comme couche active, et l'outil Segments, cliquer à chaque début de nouveau segment du contour, double-cliquer pour finir le tracé de la série de segments en cours).

En règle générale, une carte doit avoir des dimensions très précises.

Aussi on pourra (devra) s'aider de l'affichage des coordonnées du curseur lors des déplacements de celui-ci

On rappelle à ce propos que les coordonnées relatives peuvent être remises à zéro à tout instant par la barre d'espace, et que le changement d'unités d'affichage (pouces ou mm) peut être modifié à tout instant par la touche « Alt U ».

Ces coordonnées relatives permettent de tracer très facilement des contours à des cotes précises. On peut placer un contour circulaire (ou un arc) à la dimension désirée.

Pour cela:

- 1. Sélectionner l'outil Cercle,
- 2. Cliquer pour fixer le centre du cercle.
- 3. Régler le rayon par déplacement de la souris,
- 4. Finir en cliquant.

Remarque: La largeur du trait est réglable dans le menu **Dimensions/Autres dimensions**, (Dimension conseillée = 150 en 1/10 mils), mais n'est visible que si on choisit l'affichage de ces contours en mode autre que filaire.

On obtient un résultat tel que celui-ci:

2.1.2 - Lecture de la netliste issue de la schématique

Activer l'icône , la fenêtre de dialogue Netliste sera affichée:

Si le nom de la netliste affiché dans la bannière n'est pas correct, sélectionner la netliste désirée. (Sélectionner le fichier netliste voulu dans la liste des fichiers apparaissant dans la fenêtre d'affichage des fichiers disponibles).

Lire la netliste.

Les modules non déjà chargés apparaissent les uns sur les autres et pourront être par la suite automatiquement déplacés.

Si aucun module n'a déjà été chargé et placé, la totalité des modules est placée au même endroit, et les modules ne sont pas facilement reconnaissables.

On peut donc faire une répartition automatique (commande Global Place / Move module).

Se reporter au paragraphe suivant pour plus de détails.

Voici une répartition <u>automatique</u>, à partir de l'exemple précédent:

Remarque importante :

Si la modification porte sur le choix d'un nouveau module pour un ancien composant déjà existant sur le circuit imprimé (par exemple le changement d'une résistance 1/8 W en 1/2W), faite avec CVPCB, il faudra, avant lecture de la netliste, effacer l'ancien module pour que PCBNEW recharge un nouveau module.

Cependant, si on doit changer un module existant contre un autre (par exemple, remplacer une petite résistance par une plus grosse), on peut le faire plus efficacement par la boite de dialogue d'édition du module concerné.

2.2 - Correction d'une carte

Il est très fréquent de devoir corriger une implantation après avoir corrigé le schéma correspondant.

2.2.1 - Marche à suivre:

1. Créer une nouvelle netliste correspondante au nouveau schéma.

- Si des composants ont été ajoutés, associer à ces nouveaux composant leur module par cvpcb.
- 3. Faire lire cette nouvelle netliste par *pcbnew*.

2.2.2 - Effacement des pistes erronnées:

Pcbnew peut effacer automatiquement les pistes devenues erronées à la suite de ces changements. Il faut alors activer l'option **Effacer** du menu netliste:

Mais il est souvent plus habile de procéder manuellement (la fonction DRC permet de repérer les pistes erronées).

2.2.3 - Composants supprimés:

Pcbnew **ne supprime pas** les modules des composants supprimés dans la schématique.

Il faudra les supprimer manuellement.

Ceci parce qu'il y à généralement des modules rajoutés (trous de fixation par exemple) qui ne figurent pas dans la schématique.

2.2.4 - Modules modifiés:

Si l'on modifie en netliste (par C*vpcb*) un module déjà placé sur le circuit, ce module n'est pas

modifié par Pcbnew, sauf si on active l'option *Echange module / changer* :

Pour changer un module (par exemple une résistance petite par une plus grande), il est possible de le faire par édition directe du module.

2.2.5 - Options avancées sélection par Signature Temporelle:

Il arrive que l'on modifie l'annotation d'un schéma (c'est à dire les références telles que R5, U4 ...), sans le modifier réellement.

Le circuit imprimé est donc en principe non modifié (aux textes des références de modules près)

Cependant, les composants et les modules sont identifiés normalement précisément par leur référence.

Dans ce cas, on peut alors utiliser l'option suivante avant le lire la netliste:

en choisissant l'option Timestamp.

Dans ces conditions, pcbnew n'identifie plus les modules par les référence, mais par leur signature temporelle (« time stamp »), automatiquement générée par Eeschema

(c'est la date et heure à laquelle on a placé le composant en schématique). <u>Il faut être toutefois très prudent</u> (sauver le fichier avant !).

En effet cette technique pose problème dans le cas des composants « multiples » comme un 7400 qui a 4 éléments et 1 seul boitier.

Le « Time Stamp » n'est donc pas bien défini (il y en a 4!)

Mais elle permet en général de résoudre le problème de la réannotation.

Rubriques:

7 - Placement des modules

- 7.1 Aide au placement
- 7.2 Placement manuel
- 7.3 Réorientation générale des modules
- 7.4 Répartition automatique des modules
- 7.5 Placement automatique des modules
 - 7.5.1 Caractéristiques du placeur automatique
 - 7.5.2 Préparation
 - 7.5.3 Autoplacement interactif
 - 7.5.4 Remarque

3 - Placement des modules

3.1 - Aide au placement

Lors des déplacements de modules, leur chevelu dynamique peut être affiché.

Pour cela, il faut que l'icone du toolbar gauche soit activé.

3.2 - Placement manuel

Pointer le module par la souris, cliquer sur le bouton droit et sélectionner la commande **M**ove

On peut ainsi le placer à l'endroit désiré, en cliquent sur le bouton gauche, éventuellement après rotation et changement de coté.

On remarquera ici l'affichage du chevelu dynamique du module en cours de placement. Le circuit une fois placé peut être le suivant :

3.3 - Réorientation générale des modules

On remarquera que les modules sont chargés avec comme orientation l'orientation qu'ils avaient en librairie (normalement 0).

Si on désire les avoir tous avec une autre orientation (par exemple les avoir tous verticaux) le menu **AutoPlace/Orient** permet la réorientation des modules.

Cette réorientation peut être sélective (par exemple ne porter que sur les modules dont la référence commence par « IC ».

3.4 - Répartition automatique des modules

Remarque:

D'une façon générale, les modules ne pourront être déplacés que si leur attribut « **Fixe** » n'est pas activé.

La gestion de cet attribut se fait dans la boite d'édition des caractéristiques du module (commande Edit Module) ou par le menu Popup en « *Mode Module* » et est développée dans le chapitre relatif au placement automatique.

Comme signalé précédemment, les nouveaux composants chargés lors d'une lecture de netliste apparaissent empilés.

PCBNEW permet une répartition automatique des composants pour faciliter leur placement manuel par la suite.

Activer l'option « *Mode Module* » (Icône adu toolbar horizontal).

Le menu PopUp activé par le bouton droit de la souris est alors modifié:

Si un module est sous le curseur souris:

Si il n'y a rien sous le curseur souris

Dans les deux cas on a accès aux commandes:

- Déplace tous les Modules permet la répartition automatique de tous les composants non Fixes, et sera généralement utilisé après la première lecture d'une netliste.
- **Déplace nouveaux Modules** permet la répartition automatique des modules qui ont été placés en dehors du contour de la carte en cours d'implantation.

Cette commande nécessite donc qu'un contour de carte ait été dessiné, et que l'on ait chargé les composants à répartir hors de ce contour (et plus exactement hors du rectangle d'encadrement de ce contour).

3.5 - Placement automatique des modules

3.5.1 - Caractéristiques du placeur automatique

Le module de placement automatique permet le placement des composants sur les 2 faces de la carte (le changement de face des composants devant être sur la couche cuivre n'est toutefois pas automatique).

Il recherche également la meilleure orientation (0, 90, -90, 180 degrés) du composant. Le placement est fait selon un algorithme d'optimisation, qui cherche à minimiser la longueur des chevelus, leur inclinaison, et qui éloigne les composants d'autant plus qu'ils sont gros et pourvus de nombreuses pastilles.

L'ordre de placement est optimisé: gros composants et nombreuses pastilles d'abord.

3.5.2 - Préparation

PCBNEW peut donc placer automatiquement les modules, cependant il est nécessaire de guider ce placement, car aucun logiciel ne peut deviner ce que l'utilisateur veut faire. Un placement automatique ne s'improvise pas.

On doit:

- Créer le contour de la carte (Il peut être complexe, mais il doit être fermé, si la forme n'est pas rectangulaire). Ceci est trivial.
- Placer manuellement les composants dont les positions sont imposées (Connecteurs, trous de fixation...).
- De même, si certains modules CMS doivent être placés coté cuivre, il faudra les changer de côté manuellement.
- Placer quelques composants critiques (gros composants par exemple).
- Pour accéder a cette commande, l'icône doit être actif
 Activer l'attribut « Fixe » pour chacun de ces composants (Menu Pop Up ou commande Module/Edit/).
- Pour accéder a cette commande, l'icône doit être actif
 Puis alors on peut lancer le placement automatique (menu Pop Up, Move et Place Globaux/Autoplace Tous modules ou /Autoplace nouveaux modules.

Cependant si l'on veut que PCBNEW puisse réorienter les modules, il faudra que l'on ait correctement défini pour les modules utilisés, l'autorisation de rotation (voir **Module/Edit/Options**), donc peut être devra t-ont éditer les modules en librairie.

Usuellement, on autorise la rotation à 180 degrés pour les résistances, condensateurs non polarisés.

Certains modules (petits transistors par exemple) peuvent être autorisés à tourner à +/- 90 et 180 degrés.

On ajustera donc pour ces quelques modules les autorisations de rotation (rappel: un coefficient 0 rend impossible la rotation, le coefficient 10 l'autorise complètement, et une valeur intermédiaire est une pénalité pour la rotation).

On peut éditer après chargement l'autorisation de rotation pour chacun des modules, mais il est évidemment plus rapide de modifier les modules en librairie avant chargement.

3.5.3 - Autoplacement interactif

Il sera probablement nécessaire, en cours de routage automatique, de reprendre le contrôle manuel, pour repositionner un module.

La commande (menu Pop Up) **Autoplace Module Suivant** permet de reprendre le placement à partir du point d'arrêt.

La commande (menu Pop Up) **Autoplace nouveaux modules** ne place que les composants qui sont hors de la surface de la carte circuit imprimé, ce qui permet un placement automatique de composants non encore placés, sans devoir activer l'attribut **Fixe** pour les composants déjà en place.

La commande (menu Pop Up) **Autoplace Module** permet de replacer le module pointé par la souris, même si son attribut **Fixe** est actif.

3.5.4 - Remarque

PCBNEW détermine automatiquement la zone de placement possible des modules en respectant les formes du contour de la carte, qui n'est pas nécessairement rectangulaire (Elle peut être ronde, avoir des découpes ...).

Si la carte n'est pas rectangulaire, le contour devra être fermé, pour que PCBNEW puisse déterminer où est l'intérieur et où est l'extérieur du contour.

De même, s'il y a des découpes internes, leur contour devra être fermé.

PCBNEW calcule le rectangle d'encadrement des contours de la carte, puis à partir du centre de ce rectangle, détermine par continuité la surface où l'on peut placer les modules.

Rubriques:

8 - Routage de la carte

8.1 - Choix des paramètres de routage et routage de la carte

8.2 - Dimensions typiques selon la classe

8.2.1 - Largeur de piste

8.2.2 - Isolation

8.3 - Exemples de configuration typique

8.3.1 - Exemple « rustique » :

8.3.2 - Exemple usuel:

8.4 - Routage manuel

8.5 - Création de zones de cuivre

8.5.1 - Sélection de l'équipotentielle:

8.5.2 - Création de la zone:

8.5.2.1 - Création des limites de la zone:

8.5.2.2 - Remplissage de la zone:

8.5.3 - Options de remplissage:

8.5.3.1 - Grille de travail pour le remplissage.

8.5.3.2 - Isolation

8.5.3.3 - Options des pads

4 - Routage de la carte

4.1 - Choix des paramètres de routage et routage de la carte

Le choix se fait dans le menu Dimensions->Pistes et Vias.

Les dimension sont données en pouces ou mm, selon l'unité sélectionnée.

Rappel: 2,54 cm = 1 pouce (inch ou ") = 1000 mils = 10000 dixièmes de mils.

4.2 - Dimensions typiques selon la classe

4.2.1 - Largeur de piste

Utiliser la plus grande largeur possible en respectant les limites minimales suivantes :

Unité	CLASSE	CLASSE2	CLASSE	CLASSE	CLASSE
	1		3	4	5
mm	0,8	0,5	0,4	0,25	0,15
1/10mils	310	200	160	10	60

4.2.2 - Isolation

Unité	CLASSE	CLASSE	CLASSE	CLASSE	CLASSE
	1	2	3	4	5
mm	0,70	0,5	0,35	0,23	0,20
1/10mils	270	200	140	90	80

D'une façon générale l'isolation minimum est pratiquement identique à la largueur minimum des pistes.

4.3 - Exemples de configuration typique

4.3.1 - Exemple « rustique » :

- Isolation: 0,35mm (0,0138 pouces).
- Largeur de piste 0,8mm (0,0315 pouces).
- Diamètre des pastilles des CI ou des vias 1,91mm (0,0750 pouces).
- Diamètre des pastilles des composants discrets 2,54mm (0,1 pouces).
- Largeur de piste de masse 2,54mm (0,1 pouces).

4.3.2 - Exemple usuel:

- Isolation: 0,35mm (0,0138 pouces).
- Largeur de piste: 0,5mm (0,0127 pouces).
- Pastilles des CI : les éditer ovales pour permettre un passage suffisant pour la traversée et pour avoir une surface d'adhésion correcte (1,27 x 2,54 mm -->0,05x 0,1 pouces).
- Vias: 1,27mm (0,0500 pouces).

4.4 - Routage manuel

Le routage manuel est recommandé car lui seul permet d'être maître des priorités du câblage. Par exemple il est souhaitable de commencer le routage par les alimentations avec des pistes larges, de séparer les alimentations des circuits logiques de celles des circuits analogiques., de positionner

correctement les signaux sensibles.

En outre, le routage automatique fait appel à de nombreuses traversées (VIAS).

Par contre le routage automatique permet d'avoir une idée sur le bon placement des modules. Avec un peu d'expérience, on utilisera le routeur automatique pour générer très rapidement les pistes « évidentes » et on routera à la main les autres connexions.

4.5 - Création de zones de cuivre

Les zones de cuivre doivent être créées en dernier lieu, quand tout le routage est terminé.

En cas de modification du routage, il faudra effacer et recréer les zones.

Les pads de l'équipotentielle doivent déjà être connectés entre eux.

En effet:

- Tous les obstacles (pads, contours du circuit imprimé) doivent être connus.
- Pour des raisons de temps de calcul, le D.R.C. ne teste pas les zones.

Les zones de cuivre (plan de masse ou d'alimentation en général) sont usuellement rattachées à une équipotentielle.

Pour créer une zone de cuivre on doit:

- Sélectionner l'équipotentielle de rattachement (il suffit de mettre en surbrillance celle ci).
- Créer les limites de la zone (si on en place pas, tout le circuit sera rempli par la zone.)
- Remplir la zone à partir d'un point de départ.

Une zone est toujours d'un seul tenant, c'est à dire qu'il n'y a pas d'îlot de cuivre non connecté.

4.5.1 - Sélection de l'équipotentielle:

Sélectionner l'outil , et cliquer sur un pad de l'équipotentielle, qui doit apparaître en surbrillance.

4.5.2 - Création de la zone:

4.5.2.1 - Création des limites de la zone:

Sélectionner l'outil

Sélectionner la couche où l'on doit placer la zone.

Créer le ou les délimitation de zone, sur la couche active désirée.

Les délimitations sont un polygone créé en cliquant (bouton gauche) chaque point désiré.

Un double clic termine le contour.

Le polygone contour sera automatiquement fermé. Si les points de départ et de fin ne sont pas au même endroit, pcbnew ajoutera un segment terminal.

Voici un contour de zone placé (contour en trait fin):

4.5.2.2 - Remplissage de la zone:

Le remplissage de la zone se fait à partir d'un point de départ (Curseur de la souris). Pour cela, une fois le contour terminé, placer le curseur souris sur le point de remplissage désiré. ce point peut être à l'intérieur ou à l'extérieur de la zone, et sur un point sans obstacle.

Le menu suivant sera affiché:

Activer le bouton "Remplissage".

Voici le résultat du remplissage pour un point de départ à l'*intérieur* du polygone:

Voici le résultat du remplissage pour un point de départ à l'extérieur du polygone:

Le contour est donc une frontière pour le remplissage.

Remarque:

Il peut y avoir plusieurs polygones contour. Voici un exemple:

Voici le remplissage à partir d'un point à l'intérieur du grand polygone et a l'extérieur du petit:

4.5.3 - Options de remplissage:

On devra choisir:

- · La grille de travail pour le remplissage.
- · L'isolation.
- · Le traitement des pads pour le remplissage.

4.5.3.1 - Grille de travail pour le remplissage.

Plus la grille est fine, meilleur est le remplissage.

Cependant le remplissage étant réalisé par des segments de piste horizontaux et verticaux, plus la grille est fine et plus les fichiers générés sont gros.

Une grille de 0.01 pouce est un bon compromis.

4.5.3.2 - Isolation

Il est conseillé de la choisir un peu plus grande que celle qui a été choisie pour le routage.

4.5.3.3 - Options des pads

Les pads appartenant à l'équipotentielle peuvent être inclus ou exclus de la zone, ou encore y être connectés par des freins thermiques.

- S'ils sont inclus, le soudage et surtout le dessoudage peut être difficile.
- S'ils sont exclus, la connexion à la zone est moins bonne.
- Un frein thermique est un compromis.

Voici le résultat des 3 options:

Rubriques:

- 9 Finitions et Génération des documents de réalisation
 - 9.1 Finitions
 - 9.2 Test DRC final:
 - 9.3 Génération des documents de phototraçage
 - 9.3.1 Format GERBER:
 - 9.3.2 Format HPGL:
 - 9.3.3 Format POSTSCRIPT:
 - 9.4 Réglage de la marge pour le vernis épargne:
 - 9.5 Génération des documents de perçage
 - 9.6 Génération des documents de câblage:
 - 9.7 Génération du fichier de placement automatisé:
 - 9.8 Options avancées de tracé:

5 - Finitions et Génération des documents de réalisation

Remarque:

Tous les fichiers générés sont placés dans le répertoire de travail, c'est à dire celui où est placé le fichier **xxxxxx.brd** du circuit imprimé.

5.1 - Finitions

Il est nécessaire:

- D'indiquer les noms des faces et du projet : COMPOSANT et CUIVRE en plaçant les textes correspondants sur TOUTES les couches.
- Les textes sur la couche CUIVRE (ou SOUDURE) doivent être en vue Miroir.
- De créer les plans de masse en modifiant éventuellement des pistes pour faciliter cette création.
- De placer les *mires de centrage* et éventuellement des *cotations* pour le plan de découpe (Les cotations étant normalement mises sur une couche d'usage général).

Voici le résultat final, les plans de masse n'ont pas été placés ici pour une meilleure visibilité des éléments :

On pourra aussi remarquer l'identification des 4 couches cuivre de ce circuit:

5.2 - Test DRC final:

On ne saurait trop recommander de lancer un contrôle DRC global avant toute création de documents. Activer l'icone pour accéder à la boite de dialogue contrôle DRC:

et activer Test Drc

Un contrôle final évitera de mauvaises surprises...

5.3 - Génération des documents de phototraçage

Se fait par le menu Files/Plot (Fichiers/Tracé).

Normalement, les fichiers de phototraçage sont au format GERBER. On peut toutefois générer les fichiers de « phototraçage » au format HPGL ou POSTSCRIPT.

Dans ce cas, on peut ajuster finement l'échelle de tracé, pour corriger les défauts de l'imprimante:

5.3.1 - Format GERBER:

Pcbnew génère pour chaque couche un fichier à la norme **GERBER 274X**, normalement format 3.4 (chaque coordonnée est sur 7 chiffres, 3 de partie entiere et 4 de partie fractionnaire, et est en pouces).

Le tracé est toujours à l'échelle 1.

On doit normalement créer les fichiers des couches de cuivre, et selon finition du circuit, des couches de vernis épargne, de masque pour pâte à souder, et de sérigraphie.

Ceci se fait en une seule opération, en cochant toutes les cases correspondantes aux couches à générer.

A titre d'exemple, pour un circuit double face, avec verni épargne, sérigraphie et masque pour apport de soudure (pour les composants CMS), il existe alors 8 fichiers (« xxxxxx » étant le nom du fichier .brd) :

- xxxxxx.copper.pho pour la face cuivre.
- · xxxx.cmp.pho pour la face composants.
- xxxx.silkscmp.pho pour la sérigraphie face composants.
- xxxx.silkscu.pho pour la sérigraphie face cuivre.
- xxxx.soldpcmp.pho pour le masque soudure face composants.
- xxxx.soldpcu.pho pour la masque soudure face cuivre.
- xxxx.maskcmp.pho pour le masque de verni épargne face composants.
- xxxx.maskcu.pho pour le masque de verni épargne face cuivre.

5.3.2 - Format HPGL:

L'extension standard des fichiers générés est alors .plt.

Le tracé peut être alors réalisé aux échelles spécifiées et en miroir.

Selon l'option choisie dans la liste **Print Drill Opt**, les pastilles peuvent être pleines, percées au bon diamètre ou percées par un petit trou (guidage de perçage manuel).

Si l'option **Print Sheet Ref** est activée, le cartouche sera tracé.

5.3.3 - Format POSTSCRIPT:

L'extension standard des fichiers générés est alors .ps.

Le tracé peut être alors réalisé aux échelles spécifiées et en miroir.

Si l'option **Org = Centre** est activée, l'origine des coordonnées de la table traçante est supposée au centre de la feuille de dessin.

Si l'option Print Sheet Ref est activée, le cartouche sera tracé.

5.4 - Réglage de la marge pour le vernis épargne:

Il est accessible par le menu Préférences/Pistes et Vias:

On devra régler le paramètre « Retrait Masque » à la valeur désirée (usuellement 0,01 pouce).

5.5 - Génération des documents de perçage

On doit créer le fichier de perçage xxxxxx.drl.

Ce fichier est au standard EXCELLON.

Remarque:

On peut aussi crée un plan de perçage.

Ce fichier est au format HPGL (xxxxxx.plt) ou POSTSCRIPT (xxxxxx.ps). Il n'est utile que pour un contrôle supplémentaire.

Ces fichiers sont crées grâce à la boite de dialogue accessible par **Postprocesseurs/Créer fichiers de perçage:**

On devra définir ici le diamètre de perçage par défaut des vias (utilisé pour les vias dont le diamètre n'est pas spécifié).

Pour le tracé HPGL on peut définir le n° et la vitesse de la plume utilisée.

Origine des coordonnées:

Le choix se fait par le dialogue:

- Absolu: les coordonnées absolues sont utilisées
- Axe Auxiliaire: Les coordonnées sont relatives à la position de l'axe auxiliaire (Utiliser l'outil du toolbar de droite pour placer l'axe)

5.6 - Génération des documents de câblage:

Il est nécessaire de tracer les couches de sérigraphie coté cuivre et coté composant. Généralement celle relative à la couche Sérigraphie Composant ou SilkScreen Cmp suffit, pour les plans de câblage.

Il faudra tracer la couche cuivre avec l'option Miroir, pour que les textes soient lisibles.

5.7 - Génération du fichier de placement automatisé:

Ces fichiers sont crées grâce à la commande **Postprocesseurs/Créer Modules Pos**. Toutefois on ne pourra générer ce fichier que s'il y a au moins un module ayant l'attribut **Normal+Insert** activé (voir édition de modules).

Un ou deux fichiers seront créés selon qu'il y à des composants insérables sur une ou les deux faces du circuit imprimé.

Une boite de dialogue affiche le nom du ou des fichiers créés.

5.8 - Options avancées de tracé:

Les options ci dessous permettent la gestion avancée de l'impression. Ces options trouvent leur utilité surtout pour générer les couches de sérigraphie, donc en particulier pour réaliser correctement des documents de câblage.

Г	Imprimer cartouche
굣	Pads sur Sérigraphie
	Toujour tracer pads
굣	Imprimer Valeur Module
굣	Imprimer Référence Module
굣	Imprimer autres textes module
	Force tracé textes invisibles

Ces options sont:

Imprimer cartouche	Trace l'encadrement de la feuille et son cartouche.
Pads sur sérigraphie	Autorise l'impression des contours de pastilles sur les couches sérigraphie (Si les pastilles sont déjà décarées comme apparaissant sur cette couche). Utile pour supprimer toutes les pastilles sur ces couches.
Toujours tracer pads	Force le tracé des pastilles sur TOUTES les couches.
Imprimer Valeur Module	Autorise le tracé des textes VALEUR sur la sérigraphie
Imprimer Référence Module	Autorise le tracé des textes REFERENCE sur la sérigraphie
Imprimer autres texte Module	Autorise le tracé des textes type champs sur la sérigraphie
Force tracé textes invisibles	Force le tracé des champs (référence, valeur) déclarés comme invisibles. Permet, combiné avec les options « imprimer Référence Module » et « Imprimer Valeur Module » de réaliser des documents de dépannage ou de cablâge. Ces options sont nécessaires pour gérer des circuits utilisant des petits composants (CMS), trop petits pour placer les 2 textes référence, valeur visibles de façon distincte.

Rubriques:

- 10 ModEdit: Gestion des LIBRAIRIES
 - 10.1 Généralités: Présentation de ModEdit
 - 10.2 ModEdit:
 - 10.3 Ecran de ModEdit:
 - 10.4 Toolbar principal de Modedit:
 - 10.5 Créer un nouveau module:
 - 10.6 Création d'une nouvelle librairie:
 - 10.7 Sauver un module en librairie active:
 - 10.8 Transférer un module d'une librairie dans une autre:
 - 10.9 Sauver les modules d'un circuit en librairie active:
 - 10.10 Documentation des modules en librairie:
 - 10.11 Documenter les librairies : Méthode pratique:

6 - ModEdit: Gestion des LIBRAIRIES

6.1 - Généralités: Présentation de ModEdit

PCBNEW gère plusieurs librairies différentes simultanément et lorsque l'on charge un module, l'ensemble des librairies apparaissant dans la liste des librairies est analysé jusqu'à trouver le module (ou le premier module s'il existe dans plusieurs librairies).

Il est rappelé que l'on appelle ici librairie active la librairie sélectionnée dans Module Editor, ou **ModEdit**, dans laquelle se fait les diverses actions décrites par la suite.

ModEdit permet l'édition et la création de modules c'est a dire:

- · Ajout et suppression de pastilles
- Edition des caractéristiques de ces pastilles (formes, couches) pour chaque pastille, ou toutes les pastilles du module.
- Edition, ajout et modifications des éléments graphiques (contours, textes)
- Edition des champs (valeur, reference ..)
- Edition de la documentation associée (Description, mots clés).

ainsi que la maintenance de la librairie active, c'est à dire :

- Le listage des modules de la librairie active.
- · L'effacement d'un module de cette librairie.
- · La sauvegarde d'un module dans cette libraire.
- La sauvegarde de tous les modules différents d'un circuit imprimé.

On peut aussi créer une nouvelle librairie. Une librairie de modules est en fait constituée de deux fichiers :

- la librairie elle même (fichier d'extension .lib)
- La documentation associée (fichier d'extension .dcm)

Le fichier documentation est toujours recréé à chaque modification du fichier .lib correspondant, de sorte qu'en cas de perte il peut être facilement régénéré.

Il sert à accélérer les accès aux documentations des modules.

6.2 - ModEdit:

On accède à Module Editor de deux façons:

- Directement par l'icone du toolbar principal de Pcbnew
- A travers le menu d'édition du module courant dans Pcbnew, bouton « Ouvrir Editeur de Module »

Dans ce cas, le module du circuit imprimé sera directement chargé dans ModEdit, pour y être modifié (ou archivé).

6.3 - Ecran de ModEdit:

L'appel à ModEdit fait apparaître une fenêtre analogue à celle-ci:

6.4 - Toolbar principal de Modedit:

Les fonctions en sont les suivantes:

Les fonctions en sor	it les suivantes.
&	Sélection de la librairie active.
	Sauver le module courant dans la librairie active.
(Créer une nouvelle librairie et y sauver le module courant.
9	Supprimer un module dans la librairie active.
Ci.	Créer un nouveau module.
0	Charger un module à partir de la librairie courante.
3	Charger (importer) un module à partir du circuit imprimé.
	Exporter le module édité vers le circuit imprimé. Ci ce module a été importé, il remplacera le module correspondant dans le circuit imprimé (avec conservation de la position et de l'orientation) Ci ce module a été chargé depuis une librairie, il sera copié danas le circuit imprimé en position 0, orientation 0.
*1	Importer un module d'un fichier créé par la commande Export (1).

	Exporter un module. Cette commande est identique à la commande de création de
	librairie. La seule différence est que crée une librairie dans le répertoire courant,
	et que crée une librairie dans le répertoire des librairies (kicad/modules)
\mathbf{Z}	Propriétés du module.
4	Non utilisé.
	Commandes classiques de Zoom.
&	Appel au menu de gestion des caractéristiques des pastilles.
	Non utilisé.

6.5 - Créer un nouveau module:

Permet de créer un nouveau module.

Il sera demandé pour la création le nom du module (qui sera celui par lequel il sera désigné dans la librairie)

Ce texte est aussi la référence du module et sera remplacé par la suite la vraie référence (U1, IC3...). Il faudra lui rajouer:

- Les contours (et textes graphiques eventuellement).
- Les pastilles (Pads)
- Une valeur (texte muet qui sera remplacé par la vraie valeur par la suite)

Lorsque un nouveau module ressemble beaucoup à un module déjà existant dans une librairie ou un circuit imprimé déjà fait,une methode alternative et souvent plus interessante est la suivante:

- 1. Charger le module ressemblant (11, 21, ou 12)
- 2. Modifier le champ référence pour lui donner sa nouvelle appellation en librairie.
- 3. Editer et sauvegarder le nouveau module.

6.6 - Création d'une nouvelle librairie:

Une création d'une nouvelle librairie se fait par:

et le fichier est créé dans le répertoire des librairies.

Ou par:

et le fichier est créé dans le répertoire de travail.

Dans tous les cas, cette librairie contient la description du module édité, et le menu de gestion des fichiers permet de définir le nom et le répertoire réel de creation.

Si une ancienne librairie existe sous ce nom, elle sera supprimée et remplacée par la nouvelle.

6.7 - Sauver un module en librairie active:

L'opération de sauvegarde (modification physique du fichier de la librairie active) est activée par l'icone

Le nom du module en librairie sera demandé. On pourra donc conserver le nom actuel ou le modifier. Si un ancien module existe sous le même nom, il sera supprimé.

Dans la mesure où l'on doit se fier absolument par la suite aux modules en librairie, vérifier deux fois plutôt qu'une qu'il n'y a aucune erreur dans le module.

Il est conseillé également d'éditer, avant sauvegarde, la référence ou la valeur du module, pour lui donner le nom du module en librairie.

6.8 - Transférer un module d'une librairie dans une autre:

Selectionner la librairie source ().

Charger le module (11).

Selectionner la librairie destination ()

Sauver le module ().

Eventuellement, resélectionner la librairie source et supprimer l'ancien module (puis .).

6.9 - Sauver les modules d'un circuit en librairie active:

On peut copier en librairie tous les modules différents d'un même circuit imprimé. Ces modules conserveront leur nom librairie actuel.

Cette commande a deux utilisations :

- Créer une archive ou compléter une librairie avec les modules du circuit imprimé, en cas de perte de librairies.
- Mais surtout gérer correctement les librairies, en permettant de produire facilement la documentation de ces librairies, selon les techniques exposées ci dessous.

6.10 - Documentation des modules en librairie:

Il est plus que conseillé de documenter les modules créés, pour les retrouver ultérieurement facilement et sans risque d'erreurs.

Qui peut par exemple se souvenir des multiples variantes de brochage d'un module TO92. Le menu de *Proprieté des Modules* offre une aide simple à ce problème.

Il permet

- De créer une ligne de commentaire (Description)
- D'associer une série de mots clés à ce module

La ligne de commentaire est affichée avec les listes de composants dans CVPCB, et dans PCBNEW, dans les menus de sélection de module.

Les mots clés associés permettent d'afficher une liste de sélection restreinte aux modules pouvant correspondre à une sélection par mots clés.

Ainsi, si lors de la commande de chargement direct de modules (icône 👪 du toolbar d'outils de Pcbnew), on entre dans la boite de dialoque comme module à charger le texte = CONN, PCBNEW

affichera une liste de modules restreint aux seuls modules dont la liste des mots clés contient le mot CONN.

6.11 - Documenter les librairies : Méthode pratique:

Il est conseillé de **construire des librairies de façon indirecte**, en **passant par la création d'un (ou plusieurs) circuit imprimé auxiliaire**, qui constituera la « **source** » de la librairie (ou d'une partie de la librairie).

Pour cela:

- Créer un circuit imprimé au format A4, pour pouvoir le tracer facilement par la suite à l'échelle
- Créer les Modules, avec lesquels on veut constituer une librairie, sur ce circuit imprimé.
- La librairie elle même sera créée par la commande Fichier/Archiver modules/Créer Archive des modules.

Cependant la vraie « source » de la librairie sera ce circuit imprimé, et c'est sur ce circuit que l'on apportera toute modification ultérieure.

Evidemment plusieurs circuits imprimés peuvent être sauvés dans une même librairie.

L'option **Fichier/Archiver modules/Archiver nouveaux modules** permet l'ajout de modules a une librairie existante, ou la mise a jour des modules modifiés.

On aura intérêt à constituer des librairies par rubriques (supports, connecteurs, composants discrets, ...), puisque PCBNEW analyse autant de librairies différentes que l'on veut, lors des chargements de modules.

Une telle technique a plusieurs avantages :

- 1. Le circuit imprimé peut être tracé à l'échelle 1, et constituer la documentation de la librairie, sans aucun travail supplémentaire.
- 2. Des évolutions ultérieures de PCBNEW peuvent nécessiter une régénération des librairies, opération très rapide si l'on a pris la précaution de créer les sources sous forme de fichier type circuit imprimé.

En effet, il est garanti que les anciens fichiers de circuit imprimé seront compatibles avec toute évolution, ce qui n'est pas le cas pour les fichiers librairie.

Rubriques:

- 11 ModEdit: édition des modules
 - 11.1 Généralités.
 - 11.2 Eléments d'un module.
 - 11.2.1 Les pads ou pastilles.
 - 11.2.2 Les contours.
 - 11.2.3 Les champs.
 - 11.3 Accès à ModEdit et sélection du module à éditer.
 - 11.4 Toolbars de l'édition de modules:
 - 11.4.1 Outils du toolbar droit
 - 11.4.2 Toolbar gauche d'options d'affichage.
 - 11.5 Commandes contextuelles.
 - 11.6 La boite de dialogue Proprieté des Modules
 - 11.7 Créer un nouveau module
 - 11.8 Ajout et édition des pastilles.
 - 11.8.1 Ajout d'une pastille.
 - 11.8.2 Sélection des propriétés des pastilles.
 - 11.9 Informations pour l'Auto placement du Module
 - 11.10 Attributs.
 - 11.11 Documentation des modules en librairie :
 - 11.12 Gestion de la visualisation en 3 dimensions
 - 11.13 Sauvegarde du module en librairie active

7 - ModEdit: édition des modules

7.1 - Généralités.

ModEdit permet l'édition et la création de modules c'est a dire:

- Ajout et suppression de pastilles
- Edition des caractéristiques de ces pastilles (formes, couches) pour chaque pastille, ou toutes les pastilles du module.
- Edition, ajout et modifications des éléments graphiques (contours, textes)
- Edition des champs (valeur, reference ..)
- Edition de la documentation associée (Description, mots clés).

7.2 - Eléments d'un module.

Un module est la représentation physique de l'élément à implanter, mais doit également assurer un lien avec le schéma de la carte.

Il est constitué de trois types d'éléments très différents:

- Les pads ou pastilles.Les contours et textes graphiques.
- Les champs.

Enfin quelques autres paramètres doivent être correctement définis pour pouvoir utiliser les fonctions de placement automatique ou pour générer les fichiers d'insertion automatique.

7.2.1 - Les pads ou pastilles.

Deux paramètres sont importants:

- · La géométrie (forme, couches d'appartenance, trous de perçage).
- Le « numéro ». Ce numéro est constitué de quatre lettres ou chiffres. Ainsi un numéro peut être 1, 45 ou 9999, mais aussi AA56 ou ANOD. Ce numéro doit être identique à l'identification de la pin correspondante dans le schéma, car c'est par ce numéro que Pcbnew établit le lien entre cette pin et la pastille du module.

7.2.2 - Les contours.

Ils servent à dessiner la forme géométrique du module.

On dispose de lignes, de cercles, d'arc et de textes.

Ils ne sont que des éléments d'ordre esthétique pour le module.

7.2.3 - Les champs.

Ce sont des textes associés au module.

Deux champs sont obligatoires et toujours présents: La Référence et la Valeur.

Ces 2 champs sont automatiquement modifiés et mis a jour par pcbnew, lors des lectures de netliste du chargement des modules.

La référence est remplacée par la référence schématique du composant correspondant (U1, IC3...). La valeur est remplacée par la valeur du composant (en schématique) correspondant (47K, 74LS02...). On peut ajouter d'autres champs, qui seront alors des textes analogues aux textes graphiques.

7.3 - Accès à ModEdit et sélection du module à éditer.

Il est rappelé que l'on accède à ModEdit de deux façons:

- Directement par l'icone du toolbar principal de Pcbnew. On pourra créer ou éditer un module en librairie.
- A travers le menu d'édition du module courant dans Pcbnew, bouton « Goto Module Editor ».
 Dans ce cas, le module du circuit imprimé sera directement chargé dans ModEdit, pour y être modifié (ou archivé).

7.4 - Toolbars de l'édition de modules:

L'appel à ModEdit fait apparaître une fenêtre analogue à celle-ci:

7.4.1 - Outils du toolbar droit

Ce toolbar permet l'accès aux outils pour:

- Le placement de pastilles (Pads).
- Le placement d'éléments graphiques (contours, textes).
- Le positionnement de l'ancre.
- L'effacement d'éléments.

Les fonctions en sont les suivantes:

0	Ajout de pastilles.
	Outil de dessin de segments et polygones.
	Outil de dessin de cercles.
	Outil de dessin d'arcs de cercle.
	Ajout de texte graphique (les champs ne sont PAS gérés par cet outil).
	Positionne l'ancre du module.
	Outil d'effacement d'éléments.

7.4.2 - Toolbar gauche d'options d'affichage.

Ces outils gèrent les options d'affichage de l'écran de ModEdit
out out the government of a strong of the st

Les options sont (lorsque le bouton est activé):

	Affchage de la grille.
L	Affichage des coordonnées polaires.
13 [Affichage des unités en pouce ou en mm.
1	Curseur type réticule ou croix.
©	Affichage des pastilles en mode contour (sketch).
T	Affichage des textes en mode contour (sketch).
	Affichage des contours en mode contour (sketch).

7.5 - Commandes contextuelles.

Le bouton droit de la souris permet de faire apparaître des commandes selon l'élément sous le curseur:

7.6 - La boite de dialogue Proprieté des Modules

Elle est accessible lorsque le curseur est sur un module, en cliquant su le bouton droit, pusi en sélectionnant « Edit Module ».

On peut y définir les principaux parametres du module.

7.7 - Créer un nouveau module

ű

Permet de créer un nouveau module.

Il sera demandé pour la création le nom du module (qui sera celui par lequel il sera désigné dans la librairie)

Ce texte est aussi la référence du module et sera remplacé par la suite la vraie référence (U1, IC3...). Il faudra lui rajouter:

- · Les contours (et textes graphiques éventuellement).
- Les pastilles (Pads)
- Une valeur (texte muet qui sera remplacé par la vraie valeur par la suite)

Méthode alternative:

Lorsque un nouveau module ressemble beaucoup à un module déjà existant dans une librairie ou un circuit imprimé déjà fait,une méthode alternative plus rapide est la suivante:

- 1. Charger le module ressemblant (11, 3, ou 11)
- 2. Modifier le champ référence pour lui donner sa nouvelle appellation en librairie.
- 3. Editer et sauvegarder le nouveau module.

7.8 - Ajout et édition des pastilles.

Lorsque un module a été créé ou chargé, on est amené à ajouter, supprimer ou modifier des pastilles. La modification des pastilles peut être locale, pour la pastille sous le curseur de la souris, ou globale (pour toutes les pastilles du module).

7.8.1 - Ajout d'une pastille.

Sélectionner l'outil 🤦 du toolbar droit.

Les pastilles sont ajoutées à l'endroit voulu en cliquant sur le bouton gauche de la souris. Leurs caractéristiques sont celle prédéfinies dans le menu des *Propriétés des Pastilles*. Ne pas oublier d'éditer le **numéro de pastille**.

7.8.2 - Sélection des propriétés des pastilles.

Il y a trois façon de le faire.

- 1. Sélectionner l'outil du toolbar horizontal.
- 2. Cliquer sur une pastille déjà existante et sélectionner « **Edit Pad** ». La pastille sera alors modifiée selon les nouvelles caractéristiques.
- Cliquer sur une pastille déjà existante et sélectionner « Export Pad Settings». Dans ce cas la, les caractéristiques géométriques de la pastille sélectionnée deviendront les caractéristiques par défaut.

Dans les deux premiers cas, la fenêtre de dialogue suivante sera affichée:

On veillera aux couches d'appartenance de la pastille.

En particulier, la bonne gestion des couches autres que cuivre (triviales) est importante pour la fabrication du circuit et des documents (couches de soudure, de vernis épargne...).

La sélection **Pad Type** permet une sélection immédiate, raisonnable et usuellement suffisante de ces couches.

Remarque1:

Pour les modules cms du type VQFP, PQFP ... qui comportent des pastilles rectangulaires sur les quatre cotés, donc horizontales et verticales, il est conseillé de n'utiliser qu'une seule forme (par exemple une pastille de dimension X > Y, donc un rectangle normalement horizontal) que l'on placera en orientation 0 (rectangle horizontal) ou 90 degrés (rectangle vertical). Le redimensionnement global, le cas échéant, sera immédiat.

Remarque2:

Les rotations -90 ou -180 ne sont utiles que pour les pastilles trapézoïdales utilisées dans les modules en

hyper-fréquence.

7.9 - Informations pour l'Auto placement du Module

Si l'on désire utiliser pleinement les fonctions d'auto placement, il faut définir les autorisations de rotation du module(Boite de dialogue **Propriété des Modules**).

Usuellement, on autorise la rotation à 190 degrés pour les résistances, condensateurs non polarisés et autres éléments symétriques.

Certains modules (petits transistors par exemple) peuvent être autorisés à tourner à +/- 90 et 180 degrés. Par défaut un module créé a une autorisation de rotation = 0.

On aiustera donc pour ces modules les autorisations de rotation selon la règle suivante:

Un coefficient 0 rend impossible la rotation, le coefficient 10 l'autorise complètement, et une valeur intermédiaire est une pénalité pour la rotation).

Par exemple, une résistance pourra avoir une autorisation de rotation de 180 degrés réglée à 10 (liberté maximale), et une autorisation de rotation de +/- 90 degrés réglée à 5 (rotation autorisée, mais non favorisée).

7.10 - Attributs.

La section Attributs est la suivante:

- · Normal est l'attribut usuel.
- Normal+Insert indique que le module doit figurer dans la création du fichier de placement automatisé (Pour les machines de placement automatique de composants).
 Cet attribut est plutôt à choisir pour les composants CMS.
- **Virtual** indique un composant « virtuel »qui est directement crée par le circuit imprimé, comme par exemple un connecteur de bus de carte PC.ou une self constituée par une forme particulière du dessin d'une piste (cas de systèmes hyper-fréquence).

7.11 - Documentation des modules en librairie :

Il est plus que conseillé de documenter les modules créés, pour les retrouver ultérieurement facilement et sans risque d'erreurs.

Qui peut par exemple se souvenir des multiples variantes de brochage d'un module TO92. La boite de dialogue *Propriété des Modules* offre une aide simple à ce problème.

Doc
Regulateur T0220 serie LM78xx

Keywords
TR T0220

Attributs

Il permet

- De créer une ligne de commentaire (Description)
- D'associer une série de mots clés à ce module

La ligne de commentaire est affichée avec les listes de composants dans CVPCB, et dans PCBNEW, dans les menus de sélection de module.

Les mots clés associés permettent d'afficher une liste de sélection restreinte aux modules pouvant correspondre à une sélection par mots clés.

Ainsi, si lors de la commande de chargement direct de modules (icône **1** du toolbar d'outils de Pcbnew), on entre dans la boite de dialogue comme module à charger le texte =TO220, PCBNEW affichera une liste de modules restreint aux seuls modules dont la liste des mots clés contient le mot TO220.

7.12 - Gestion de la visualisation en 3 dimensions

On peut associer un fichier de représentation 3D au composant. Pour cela, cliquer sur l'onglet **3D Caract**. Le panneau des options est alors le suivant:

On doit y spécifier:

- le fichier le représentation 3D (créé par le modeleur 3D wings3d, au format vrml, par sa commande d'exportation au format vrml).
 Le chemin par défaut est kicad/modules/package3d/. Ici le fichier est discret/to_220horiz.wrl, dans le chemin par défaut)
- · L'échelle en X, Y, Z.
- son décalage (offset) par rapport au point d'ancrage du module (généralement 0).
- Sa rotation initiale (en degrés) sur chaque axe (généralement 0).

Si un tel fichier est précisé, on peut visualiser la représentation 3D:

Et naturellement, elle apparaîtra dans l'affichage 3D du circuit imprimé.

Remarque: On peut affecter plusieurs formes 3D pour un module. Par exemple on peut avoir une forme 3D pour un transistor plus une autre supplémentaire pour son radiateur, ou une vis de fixation.

7.13 - Sauvegarde du module en librairie active

L'opération de sauvegarde (modification physique du fichier de la librairie active) est activée par l'icone

Si un ancien module existe sous le même nom, il sera supprimé.

Dans la mesure où l'on doit se fier absolument par la suite aux modules en librairie, vérifier deux fois plutôt qu'une qu'il n'y a aucune erreur dans le module.

Il est conseillé également d'éditer, avant sauvegarde, la référence ou la valeur du module, pour lui donner le nom du module en librairie.