Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 9. Robust Watermarking

Lecturer: Jin HUANG

Valumetric Scaling

荒慶伸爐.

 $\mathbf{c} * 1.0$

c * 1.2

QIM is not Robust

高度变化时 www.e.左连

Error Illustration

Valumetric scaling on the E_LATTICE/D_LATTICE system.

Reason

$$z_{lc}(s) = (s\mathbf{c_w}) \cdot \mathbf{w_r}$$
$$= s(\mathbf{c_w}) \cdot \mathbf{w_r}$$
$$= s \cdot z_{lc}.$$

Possible solution?

Reason

不能改变结

$$z_{lc}(s) = (s\mathbf{c_w}) \cdot \mathbf{w_r}$$
$$= s(\mathbf{c_w}) \cdot \mathbf{w_r}$$
$$= s \cdot z_{lc}.$$

Possible solution?

$$z_{nc}(s) = \frac{s\mathbf{c_w}}{\|s\mathbf{c_w}\|} \cdot \mathbf{w_r}$$
$$= \frac{\mathbf{c_w}}{\|\mathbf{c_w}\|} \cdot \mathbf{w_r}$$
$$= \cos(\theta(\mathbf{c_w}, \mathbf{w_r})).$$

Linear Correlation

E_FIXED_LC/D_LC.

Correlation Coefficients

E_BLK_FIXED_R/D_BLK_CC.

z_{nc} with Dirty Paper

Angle QIM (Ourique et al. ICASSP 2005.):

Snap work to the closest "grid angle".

2-Dimensional Case

- Choosing two bases $\mathbf{X}_1, \mathbf{X}_2$. 考本不及始语等Bases
- Get coordinates x_1, x_2 .
- Evaluate the length and angle:

$$r = \sqrt{x_1^2 + x_2^2}, \quad \theta = \arctan(x_1/x_2).$$

Angle QIM:

$$\theta^{Q} = Q_{m,\Delta}(\theta) = \left[\frac{\theta + m\Delta}{2\Delta}\right] 2\Delta + m\Delta.$$

Restore:

$$x_1' = r\cos(\theta^Q), \quad x_2' = r\sin(\theta^Q).$$

L-Dimensional Case

• L bases: $\mathbf{X}_i, i = 1, \cdots, L$.

- 考试的考上为为绳
- L coordinates: $\mathbf{x}_i, i = 1, \cdots, L$.
- L-1 angles: $\mathbf{x}_i, i=1,\cdots,L-1$.

$$\theta_1 = \arctan(x_2/x_1)$$

$$\theta_i = \arctan\frac{x_{i+1}}{\sqrt{\sum_{k=1}^i x_k^2}}, i = 2, \dots L - 1.$$

Restore:

$$x_1' = r \prod_{k=1}^{L-1} \cos \theta_k^Q$$

$$x_i' = r \sin \theta_{i-1}^Q \prod_{k=i}^{L-1} \cos \theta_k^Q, i = 2, \dots, L.$$

Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 10. Watermark Security

Lecturer: Jin HUANG

Ambiguity Attacks with Blind Detection

I am the True Owner!

The owner hold $\mathbf{c_o}$ privately, and distribute $\mathbf{c_d} = \mathbf{c_o} + \mathbf{w_r}$.

If other people claim the ownership with c_d .

- ullet $\mathbf{c_d}$ containing $\mathbf{w_r}$.
- AND ONLY the owner has a copy $\mathbf{c_o}$ without $\mathbf{w_r}$.

Example

Ownership

	$\mathbf{c_o}$	$\mathrm{c_{d}}$	$\mathbf{c_f}$
$\mathbf{w}_{\mathbf{r}}$	-0.016	0.973	0.971

Example

	Ownership 真假判断			
	c _o	$\mathrm{c_{d}}$	$\mathbf{c_f}$	
$oldsymbol{\mathrm{w}_{\mathrm{r}}}$	-0.016	0.973	0.971	
$\mathbf{w_f}$	0.968	0.970	0.005	

$\mathbf{w_f}$ and $\mathbf{c_f}$

ullet w_f: large z_{lc} for $\mathbf{c_o}$ and $\mathbf{c_d} = \mathbf{c_o} + \mathbf{w_r}$

$$\mathbf{c_o} \cdot \mathbf{w_f}, \quad (\mathbf{c_o} + \mathbf{w_r}) \cdot \mathbf{w_f}.$$

ullet c_f: small z_{lc} to $\mathbf{w_f}$

$$\mathbf{c_f} \cdot \mathbf{w_f} \approx 0.$$

$\mathbf{w}_{\mathbf{f}}$ and $\mathbf{c}_{\mathbf{f}}$

ullet w_f: large z_{lc} for $\mathbf{c_o}$ and $\mathbf{c_d} = \mathbf{c_o} + \mathbf{w_r}$

$$\mathbf{c_o} \cdot \mathbf{w_f}, \quad (\mathbf{c_o} + \mathbf{w_r}) \cdot \mathbf{w_f}.$$

ullet c_f: small z_{lc} to $\mathbf{w_f}$

$$\mathbf{c_f} \cdot \mathbf{w_f} \approx 0.$$

- Idea:
 - ${\bf w_f}$ has high correlation with ${\bf c_d}$ (or ${\bf c_o}$): ${\bf w_f}\cdot{\bf c_d}=1.$
 - $\mathbf{c_f} = \mathbf{c_d} \mathbf{w_f} / \|\mathbf{w_f}\|^2$.

A Naive Solution

- Directly using $\mathbf{c_d}/\|\mathbf{c_d}\|^2$ as $\mathbf{w_f}$
 - $\mathbf{c_f} = \mathbf{c_d} \mathbf{c_d} \approx 0$ has poor fidelity

A Naive Solution

- Directly using $\mathbf{c_d}/\|\mathbf{c_d}\|^2$ as $\mathbf{w_f}$
 - $\mathbf{c_f} = \mathbf{c_d} \mathbf{c_d} \approx 0$ has poor fidelity
- So 馬城
 - ullet $\mathbf{w_f}$ has high z_{lc} to $\mathbf{c_o}$.
 - but, is noisy.

A Better Solution

Using the Fourier transformation F:

Project to Fourier bases:

$$\mathbf{c}_{\mathbf{d}}^{1} = F\mathbf{c}_{\mathbf{d}}.$$

• Scaling c_d^1 by a random diagonal matrix D into a random vector:

$$\mathbf{c}_{\mathbf{d}}^{2} = D\mathbf{c}_{\mathbf{d}}^{1}.$$

Reconstruct it back:

$$\mathbf{w_f} = F^T \mathbf{c_d^2} = F^T D F \mathbf{c_d}.$$

Check

$$\mathbf{w_f} \cdot \mathbf{c_o} = (F^T D F)(\mathbf{c_d}) \cdot \mathbf{c_o}$$

$$= \mathbf{c_o}^T (F^T D F) \mathbf{c_d}$$

$$= (D^{1/2} F \mathbf{c_o})^T (D^{1/2} F (\mathbf{c_o} + \mathbf{w_r}))$$

$$= \mathbf{c'_o} \cdot \mathbf{c'_o} + \mathbf{c'_o} \cdot \mathbf{w'_r}$$

$$\approx \mathbf{c'_o} \cdot \mathbf{c'_o}.$$

High correlation!

Illustration

More like noisy image, but not enough.

A Refinement

Add noise before applying Fourier transformation.

$$\mathbf{w_f} = (F^T D F)(\mathbf{c_d} + \mathbf{n}).$$

Check:

$$\mathbf{w_f} \cdot \mathbf{c_o} = (F^T D F)(\mathbf{c_d} + \mathbf{n}) \cdot \mathbf{c_o}$$

$$= (D^{1/2} F \mathbf{c_o})^T (D^{1/2} F(\mathbf{c_d} + \mathbf{n}))$$

$$\approx \mathbf{c'_o} \cdot \mathbf{c'_o} + \mathbf{c'_o} \cdot \mathbf{n'}$$

$$\approx \mathbf{c'_o} \cdot \mathbf{c'_o}$$

Illustration

A noisy image, but high correlation to $\mathbf{c}_{\mathbf{o}}$.

 $\mathbf{C}_{\mathbf{f}}$

$$\mathbf{c_f} = \mathbf{c_d} - 0.995 \mathbf{w_f}.$$
 Ownership

	$\mathbf{c_o}$	$\mathrm{c_{d}}$	$\mathbf{c_f}$
$\mathbf{w_r}$	-0.016	0.973	0.971

 $\mathbf{C}_{\mathbf{f}}$

$$\mathbf{c_f} = \mathbf{c_d} - 0.995 \mathbf{w_f}.$$
 Ownership

	c_{o}	$\mathbf{c}_{\mathbf{d}}$	$\mathbf{c_f}$
$\mathbf{w_r}$	-0.016	0.973	0.971
$\mathbf{w_f}$	0.968	0.970	0.005

Countering Ambiguity Attacks

Make the reference pattern dependent on c_o .

ullet No c_o , no reference pattern.

Using the md5 of the \mathbf{c}_{o} as the seed of pseudo-noise generator.

- Adding a constraint: $\mathbf{w_r} = \mathsf{PN}(\mathsf{md5}(\mathbf{c_o}))$.
- Difficult to find a w_f
 - $\mathbf{w_f} \cdot \mathbf{c_o}$ is high,
 - AND $\mathbf{w_f} = \mathsf{PN}(\mathsf{md5}(\mathbf{c_f}))$.