§ 7. Насыщенные пары и жидкости

При решении задач этого раздела используются данные таблиц 3,6,7,8,10 из приложения, кроме того, следует учесть указание к \S 5.

7.1. В таблице 8 дано давление водяного пара, насыщающего пространство при разных температурах. Как составить из этих данных таблицу m масс водяного пара в объеме $V = 1 \,\mathrm{m}^3$ воздуха, насыщенного водяным паром при разных температурах Для примера решить задачу при температуре $t = 50 \,\mathrm{°C}$.

Решение:

Из уравнения Менделеева — Клапейрона $m = \frac{pV\mu}{RT}$ — (1). При $T = 323 \, \mathrm{K}$ давление насыщенного пара $p_{_{\it H}} = 12.3 \, \mathrm{k}\Pi \mathrm{a}$

Молярная масса водяного пара $\mu = 0.018$ кг/моль, тогда из (1) получим m = 82 г.

7.2. Найти плотность $\rho_{\rm H}$ насыщенного водяного пара при температуре $t=50^{\circ}\,{\rm C}.$

Решение:

По таблице 8 находим давление водяного пара, насыщающего пространство при температуре $t=50^{\circ}\,\mathrm{C}$. Оно равно $p_{_{\mathrm{H}}}=12{,}302\,\mathrm{k}\Pi \mathrm{a}$. Из уравнения Менделеева — Кла-

пейрона
$$pV = \frac{m}{\mu}RT$$
 выразим плотность $\rho = \frac{m}{V} = \frac{p \cdot \mu!}{RT}$.

Подставляя в полученное выражение числовые данные.

найдем:
$$\rho = \frac{12,302 \cdot 10^3 \cdot 0.018}{8,31 \cdot 323} = 0,082 \text{ кг/м}^3$$
.

7.3. Во сколько раз плотность $\rho_{\rm H}$ насыщенного водяного пара при температуре $t=16^{\circ}\,{\rm C}$ меньше плотности ρ воды.

Решение:

Плотность насыщенного пара (см. задачу 7.2) $\rho_{\rm H} = \frac{P_{\rm H} \mu}{RT}$, где $p_{\rm H} = 1,809\,{\rm к}$ Па, тогда $\rho = 0.014\,{\rm кг/M}^3$ и отношение плотностей $\frac{\rho_{\rm K}}{\rho_{\rm H}} = 73754$.

7.4. Во сколько разных плотность $\rho_{\rm nl}$ насыщенного водяного пара при температуре $t_1 = 200^{\circ}$ С больше плотности $\rho_{\rm nl}$ насыщенного водяного пара при температуре $t_1 = 100^{\circ}$ С?

Решение:

Давления насыщенного пара при температуре t_1 и t_2 соответственно равны $p_{\rm H1} = 1549890~\Pi a$ и $p_{\rm H2} = 101080~\Pi a$.

Плотность насыщенного пара (см. задачу 7.2) $\rho_{\rm H} = \frac{p_{\rm H} \mu}{RT}$, тогда отношение плотностей $\frac{\rho_{\rm H\,I}}{\rho_{\rm D}} = \frac{p_{\rm H\,I} T_2}{p_{\rm D} T_2} = 12,09$.

7.5. Какая масса m водяного пара содержится в объеме $V = 1 \,\mathrm{m}^3$ воздуха в летний день при температуре $t = 30^\circ$ С и относительной влажности $\omega = 0.75$?

Решение:

Относительная влажность определяется соотношением

 $\omega = \frac{p}{p_{\rm H}}$, где p — давление водяного пара, находящегося в

воздухе, и $p_{\rm n}$ — давление водяного пара, насыщающего пространство при ланной температуре. Из уравнения Мен-

делеева—Клапейрона $m=\frac{pV\mu}{RT}=\frac{\omega p_{_{\rm H}}V\mu}{RT}$ — (1). При $T=303\,{\rm K}$ давление насыщенного пара $p_{_{\rm H}}=4.23\,{\rm kHz}$. Молярная масса водяного пара $\mu=0.018\,{\rm kr/моль}$. Тогда $_{\rm H3}$ (1) получим $m=22.5\,{\rm r}$.

7.6. В замкнутом объеме $V = 1 \,\mathrm{m}^3$ относительная влажность воздуха $\omega = 0.6$ при температуре $t = 20^{\circ}\,\mathrm{C}$. Какая масса Δm воды должна еще испариться в этот объем, чтобы водяной пар стал насыщенным?

Решение:

По определению, относительная влажность $\omega = \frac{p}{p_{\rm H}}$, где p — давление водяного пара, содержащегося в воздухе. $p_{\rm H}$ — давление насыщенного пара при той же температуре. Из уравнения Менделеева—Клапейрона $pV = \frac{m}{\mu}RT$ имеем $(p_{\rm H}-p)V = \frac{\Delta m}{\mu}RT$, где $p = \omega \cdot p_{\rm H}$, тогда $p_{\rm H}(1-\omega)V = \frac{\Delta m}{\mu}RT$, откуда $\Delta m = \frac{pV\mu(1-\omega)}{RT} = 6.88$ г.

7.7. Температура компаты $t_1 = 18^{\circ}$ C, относительная влажность $\omega = 0.5$. В металлический чайник налили холодную воду, какова температура t_2 воды, при которой чайник перестанет запотевать?

Решение:

Давление водяного пара, содержащегося в воздухе, при температуре $t_1 = 18^{\circ}$ С равно $p_1 = \omega \cdot p_{01}$, где p_{01} — давление насыщенного пара при той же температуре. Сравним давление p_1 с давлением p_{02} насыщенного водяного пара при температуре t_2 . Если $p_1 < p_{02}$, пар конденсироваться 348

не будет, т.е. чайник перестает запотевать при $p_1 = p_{02}$. Отсюда $\omega \cdot p_{01} = p_{02}$. Определив по таблице 8 значение p_{01} , вычислим $p_{02} = 1034$ Па, что соответствует температуре $t_2 \approx 7^{\circ}$ С.

7.8. Найти число n молекул насыщенного водяного пара, содержащихся в единице объема при температуре $t_1 = 30^{\circ}$ С.

Решение:

При $t=30^{\circ}$ С, по таблице 8 находим для данной температуры $p_{_{\rm H}}=4229\,\Pi{\rm a}$. Из уравнения Менделеева—Клапейрона $p_{_{\rm H}}V=vRT$ найдем число молей $v=\frac{p_{_{\rm H}}V}{RT}$. Число частиц в объеме V равно $N=vN_{_{\rm A}}=\frac{p_{_{\rm H}}vN_{_{\rm A}}}{RT}$, а в единице объема $n=\frac{N}{V}=\frac{p_{_{\rm H}}N_{_{\rm A}}}{RT}=1,011\cdot10^{24}\,{\rm m}^{-3}$.

7.9. Масса m=0.5 г водяного пара занимает объем $V_1=10$ л при температуре $t=50^{\circ}$ С, какова при этом относительная влажность ω ? Какая масса Δm пара сконденсируется, если изотермически уменьшить объем от V_1 до $V_2=V_1/2$?

Решение:

Из таблицы находим давление насыщенного пара при **тем**пературе $T = 323 \, \mathrm{K}$, которое равно $p_0 = 12302 \, \mathrm{\Pia}$. Из

уравнения Менделеева — Клапейрона $pV_1 = \frac{m}{u}RT$ нахо-

дим давление $p = \frac{mRT}{\mu V_1}$. Тогда относительная влажность

$$\omega = \frac{p}{p_0} = \frac{mRT}{p_0 \mu V_1}; \quad \omega = 0,606 \cdot 100\% = 60,6\%$$
. Найдем массу

водяного пара при относительной влажности 100% и и $\omega_1=1$, тогда давление $p=p_0=12302\,\Pi a$. Учитывая, что $V_2=\frac{V_1}{2}$ из уравнения Менделеева — Клапейрона $\frac{p_0V_1}{2}=\frac{m-\Delta m}{\mu}RT$ находим $m-\Delta m=\frac{p_0V_1\mu}{2RT}$. Отсюда масса сконденсированного пара равна $\Delta m=m-\frac{p_0V_1\mu}{2RT}=87,5\,\mathrm{Mf}$.

7.10. В камере Вильсона объемом $V=1\pi$ заключен воздух, насышенный водяным паром. Начальная температура камеры $t_1=20^{\circ}$ С. При движении поршня объем камеры увеличился до $V_2=1,25V_1$. Расширение считать адиабатическим, причем показатель адиабаты $\chi=\frac{c_p}{c_1}=1,4$. Найти: а) давление водяного пара до расширения; б) массу m_1 водяного пара в камере до расширения; в) плотность ρ_1 водяного пара до расширения; г) температуру t_2 пара после расширения (изменением температуры изавыделения тепла при конденсации пара пренебречь); д) массу Δm сконденсированного пара; е) плотность ρ_2 водяного пара после конденсации; ж) степень перенасыщения, т.е. отношение плотности водяного пара после расширения (но до конденсации) к плотности водяного пара, насыщающего пространство пуш температуре, установившейся после конденсации

Решение:

350

а) До расширения насыщенный водяной пар находится при температуре $t_1 = 20^{\circ}$ С, следовательно, давление этого пара $p_1 = 2,33$ кПа см. таблицу 8. б) Масса водяного пара до расширения $m_1 = \frac{p_1 \mu V_1}{RT_1} = 17,2 \cdot 10^{-6}$ кг. в) $\rho_1 = \frac{p_1 \mu}{RT_1} = 17.2 \times 10^{-6}$

 $\times 10^{-3} \, \mathrm{kr/m}^3$. г) Т.к. процесс считается адиабатическим, 10

$$T_2 = \frac{T_1}{(V_2/V_1)^{\gamma-1}} = 268\,\mathrm{K}$$
. д) При температуре $t_2 = -5^{\circ}\,\mathrm{C}$ давление насыщенного водяного пара $p_2 = 399\,\mathrm{\Pia}$. Масса пара в камере, соответствующая этому значению, $m_2 = \frac{p_2 \mu V_2}{RT_2} = 4.0 \cdot 10^{-6}\,\mathrm{kr}$. Следовательно, масса сконденсированного пара $\Delta m = m_1 - m_2 = (17.2 - 4.0) = 13.2 \cdot 10^{-6}\,\mathrm{kr}$. е) $\rho_2 = \frac{p_2 \mu}{RT_2} = 3.2 \cdot 10^{-3}\,\mathrm{kr/M}^3$. ж) Т. к. плотность водяного пара после расширения (но до конденсации) $\rho_3 = \frac{m_1}{V_2} = \frac{17.2 \cdot 10^{-6}}{1.25 \cdot 10^{-3}}\,\mathrm{kr/M}^3 = 13.7 \cdot 10^{-3}\,\mathrm{kr/M}^3$, то степень перенасыщения $s = \frac{\rho_3}{\rho_2} = 4.3$.

7.11. Найти удельный объем *v* воды в жидком и парообразном состояниях при нормальных условиях.

Решение:

По определению, удельный объем жидкости и пара **со**ответственно $v_{\text{ж}} = \frac{V_{\text{ж}}}{m} = \frac{V_{0\text{ж}}}{\mu}$ и $v_{\text{п}} = \frac{V_{\text{п}}}{m} = \frac{V_{0\text{п}}}{\mu}$. Молярный объем жидкости $V_{0\text{ж}} = \mu/\rho$, тогда удельный объем жидкости $v_{\text{ж}} = \frac{V_{0\text{ж}}}{\mu} = \frac{1}{\rho} = 10^{-3} \, \text{м}^3/\text{кг.}$ Молярный объем пара найдем из соотношения: $V_{0\text{п}} = \frac{RT}{n-n}$, тогда удельный

объем пара $v_{\rm n} = \frac{RT}{\mu(p - p_{\rm H})} = 1.25 \,{\rm M}^3/{\rm Kr}.$

7.12. Пользуясь первым законом термодинамики и данными таблицы 7 и 8, найти удельную теплоту парообразования $r_{\rm BOBH}$ при $t=200^{\circ}$ С. Для воды критическая температура $T_{\rm k}=647~{\rm K}$, критическое давление $p=22~{\rm MHa}$. Проверить правильность полученного результата по данным таблицы 9.

Решение:

352

Количество теплоты Q при испарении тратится на преодоление сил взаимодействия молекул и на работу расширения. Таким образом, согласно первому закону термодинамики имеем $Q = r_0 = \Delta W + A$ — (1), где r_0 — молярная теплота парообразования, ΔW — изменение молярной внутренней энергии сил взаимодействия при испарении, A — молярная работа, совершаемая против внешнего давления. $A = p_{\rm H}(V_{\rm 0p} - V_{\rm 0w})$ — (2), где $p_{\rm H}$ давление насыщенного пара, V_{0*} — молярный объем жидкости, $V_{0\pi}$ — молярный объем пара. Имеем $V_{0\pi}$ = $=\frac{\mu}{2}=18\cdot 10^{-6}\,{\rm M}^3/{\rm MOJ}$ ь, где μ — молярная масса и ρ плотность воды. Из уравнения Менделеева — Клапейрона $V_{0n} = \nu RT / p_{\mu}$. При $T = 473 \,\text{K}$ имеем (см. таблицу 8) $p_1 = 1,55 \,\mathrm{M\Pi a}$ и $V_{0_{\mathrm{H}}} = 2,5 \,\mathrm{n/моль}$. Считая, что изменение внутренней энергии взаимодействия молекул при испарении соответствует уравнению Ван-дер-Ваальса (см. задачу 6.18), имеем $\Delta W = \frac{v^2 a (V_{0n} - V_{0m})}{V_0 V_0}$ — (3), где $a = 5,56 \cdot 10^2 \, \mathrm{\Pia \cdot m^6/monb^2}.$ Поскольку $V_{\mathrm{0m}} << V_{\mathrm{0n}}$, то из (1) — (3) получим $r_0 = \frac{a}{V_{0\text{m}}} + p_{\text{H}}V_{0\text{m}} = \frac{a\rho}{\mu} + RT = 35 \text{ кДж/моль.}$ Следовательно, удельная теплота парообразования воды $r = \frac{r_0}{\mu} = 1,95 \,\mathrm{MДж/кr}$. Из таблицы 9, для температуры $t = 200^{\circ} \text{ C}$ значение r = 1.94 МДж/кг.

7.13. Какая часть теплоты парообразования воды при температуре $t = 100^{\circ}$ С идет на увеличение внутренней энергии системы?

Решение.

Согласно первому началу термодинамики $r_0 = \Delta W + A$, где $r_0 = r\mu$ — молярная теплота парообразования; ΔW — изменение внутренней энергии; $A = p_{_{\rm H}} (V_{0{\rm n}} - V_{0{\rm m}})$ — работа, совершаемая против сил внешнего давления. Тогда $\frac{\Delta W}{r_0} = \frac{r_0 - A}{r_0} = \frac{r\mu - p_{_{\rm H}} (V_{0{\rm n}} - V_{0{\rm m}})}{r\mu}$. Молярные объемы жид-

кости и пара соответственно равны
$$V_{0x} = \frac{\mu}{\rho}$$
 и $V_{0n} = \frac{RT}{p_{\rm H}}$, следовательно,
$$\frac{\Delta W}{r_0} = \frac{r\mu - p_{\rm H}(RT/p_{\rm H} - \mu/\rho)}{r\mu}; \quad \frac{\Delta W}{r_0} = 1 - \frac{p_{\rm H}}{r\mu} \left(\frac{RT}{p_{\rm H}} - \frac{\mu}{\rho}\right); \quad \frac{\Delta W}{r_0} = 0.924 \cdot 100\% = 92.4\% \; .$$

7.14. Удельная теплота парообразования бензола (C_6H_6) при температуре $t=77^{\circ}$ С равна $r=398\,\mathrm{кДж/кг}$. Найти изменение внутренней энергии ΔW при испарении массы $\Delta m=20\,\mathrm{r}$ бензола.

Решение:

Изменение внутренней энергии (см. задачу 7.13) $\Delta W = r_0 - A = \Delta mr - A$. Работа против сил внешнего давления $A = p\Delta V = \frac{\Delta m}{\mu}RT$, где $\mu = 0.078$ — молярная масса бензола. Тогда $\Delta W = \Delta m(r - RT/\mu) = 7.21$ кДж.

7.15. Пользуясь уравнением Клаузиуса — Клапейрона и данными таблицы 8, найти удельную теплоту парообразования r

воды при температуре t = 5° C. Проверить правильность полученного результата по данным таблицы 9.

Решение:

Из уравнения Клаузиуса – Клапейрона $\frac{dp}{dT} = \frac{r_0}{T(V_{0n} - V_{0m})}$ (1). Считая, что насыщенные пары подчиняются уравнению Менделеева — Клапейрона, для v=1 моль имеем $V_{0n} = \frac{RT}{p}$. Т. к. (см. таблицу 8) при $t=5^{\circ}$ С давление насыщенного пара $p_{\rm H}=870\,{\rm \Pi a}$, то $V_{0n}=2,65\,{\rm m}^3/{\rm MeV}$ в. Кроме того, $V_{0m}=\frac{\mu}{\rho}\leq 18\cdot 10^{-6}\,{\rm m}^3/{\rm моль}$. Таким образим. $V_{0m}<< V_{0m}$, и тогда уравнение (1) можно записать ак $\frac{dp}{dT}=\frac{r_0\,p}{RT^2}$ или $\frac{dp}{p}=\frac{r_0\,dT}{R\,T^2}$ — (2). Для небольшого ин ревала температур T_2-T_1 молярную теплоту испарения быможно считать постоянной, и тогда, интегрируя уравнение

(2), получим
$$\int_{\rho_1}^{\rho_2} \frac{dp}{p} = \frac{r_0}{R} \int_{T_1}^{T_2} \frac{dT}{T^2}; \qquad ln \frac{p_2}{p_1} = -\frac{r_0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right);$$

$$ln \frac{p_2}{p_1} = -\frac{r_0 \left(T_2 - T_1 \right)}{R T_1 T_2} - (3), \text{ откуда } r_0 = \frac{R T_1 T_2 ln \left(\frac{p_2}{p_1} \right)}{T_2 - T_1} - (4).$$
 Здесь p_1 и p_2 — давления насыщенного пара при температурах T_1 и T_2 . Для величин T_1 и T_2 можно взять

3десь p_1 и p_2 — давления насыщенного пара при температурах T_1 и T_2 . Для величин T_1 и T_2 можно взять значения $t_1 = 4^{\circ}$ С $t_2 = 6^{\circ}$ С. Тогда $p_1 = 811$ Па, $p_2 = 932$ Па (см. таблицу 8) и $\frac{p_2}{p_1} = 1.15$. Подставляя в (4) числовые данные, получим $r_0 = 45$ кДж/моль. Отсюда удельная теплота парообразования $r = \frac{r_0}{\mu} = 2,49$ МДж/кг. Построив по данным таблицы 9 график r = f(t), найдем, что при $t = 5^{\circ}$ С имеем t = 2,48 МДж/кг.

7.16. Давления насыщенного ртутного пара при температурах $t_1 = 100^{\circ}$ С и $t_2 = 120^{\circ}$ С равны $p_1 = 37,3$ Па и $p_2 = 101,3$ Па. **Найти** среднее значение удельной теплоты парообразования r **рту**ти в указанном интервале температур.

Решение:

Из уравнения Клаузиуса — Клапейрона
$$\frac{dp}{dt} = \frac{r_0}{T(V_{00} - V_{0\infty})}$$
,

равны $V_{0\text{H}} = \frac{RT}{p_{\text{H}}}$ и $V_{0\text{ж}} = \frac{\mu}{\rho}$, имеем $\frac{dp}{pt} = \frac{r_0p}{RT^2}$ или

$$\frac{dp}{p} = \frac{r_0}{R} \frac{dT}{T^2}$$
. Проинтегрировав полученное уравнение,

получим
$$ln\frac{p_2}{p_1}=\frac{r_0(T_2-T_1)}{RT_1T_2}$$
 или $r_0=\frac{RT_1T_2\ln(p_2/p_1)}{T_2-T_1}$. Тогда $r=\frac{r_0}{\mu}=\frac{RT_1T_2\ln(p_2/p_1)}{\mu(T_2-T_1)}$; $r=0.304\cdot 10^6$ Дж/кг.

7.17. Температура кипения бензола (C_6H_6) при давления p = 0.1 МПа равна $t_k = 80.2$ ° С. Найти давление p. насыщенного пара бензола при температуре t = 75.6° С. Среднее значеные удельной теплоты парообразования бензола в данном интервале температур принять равным r = 0.4 МДж/кг.

Решение:

Среднее значение удельной теплоты парообразования (см. задачу 7.16) $r = \frac{RT_1T_2\ln(p_2/p_1)}{\mu(T_2-T_1)}$. В нашем случае $p_2=p$ и $p_1=p_{_{\rm H}}$, тогда $\ln\frac{p}{p_{_{\rm H}}}=\frac{r\mu(T_2-T_1)}{RT_1T_2}$. Возьмем от обоих частей данного уравнения экспоненту $\frac{p}{p_{_{\rm H}}}=\exp\left(\frac{r\mu(T_2-T_1)}{RT_1T_2}\right)$, от-

7.18. Давления насыщенного пара этилового спирта (C_2H_5OH) при температурах $t_1=40^{\circ}\,\mathrm{C}$ и $t_2=60^{\circ}\,\mathrm{C}$ разны $p_1=17.7\,\mathrm{к}\Pi a$ и $p_2=67.9\,\mathrm{k}\Pi a$. Найти изменение энтропии ΔS при испарении массы $\Delta m=1\,\mathrm{r}$ этилового спирта, находящегося при температуре $t=50^{\circ}\,\mathrm{C}$.

Решение:

Из уравнения Клаузиуса – Клапейрона $\frac{dp}{dT} = \frac{r_0}{T(V_{0n} - V_{0m})}$ — (1), считая, что насыщенные пары подчиняются уравнению 356

Менделеева — Клапейрона, имеем для одного моля $V_{0n} = \frac{RT}{p}$. Кроме того, $V_{0*} << V_{0n}$. Тогда уравнение (1)

можно записать следующим образом: $\frac{dp}{dT} = \frac{r_0 p}{RT^2}$ или

$$\frac{dp}{p} = \frac{r_0}{R} \frac{dT}{T^2}$$
 — (2). Интегрируя уравнение (2), получим

$$ln\frac{p_2}{p_1} = \frac{r_0(T_2 - T_1)}{RT_1T_2}$$
 — (3), откуда $r_0 = \frac{RT_1T_2\ln(p_2/p_1)}{T_2 - T_1}$ —

(4). Изменение энтропии
$$\Delta S = \frac{vr_0}{T}$$
, где $v = \frac{\Delta m}{\mu}$ и с учетом

(4)
$$\Delta S = \frac{RT_1T_2 \ln(p_2/p_1)\Delta m}{(T_2-T_1)\mu T} = 2.92 \text{ Дж/K}.$$

7.19. Изменение энтропии при испарении количества $\Delta \nu = 1$ моль некоторой жидкости, находящейся при температуре $t_1 = 50^{\circ}$ С, равно $\Delta S = 133$ Дж/К. Давление насыщенного пара при температуре $t_1 = 50^{\circ}$ С равно $p_1 = 12.33$ кПа. На сколько меняется давление насыщенного пара жидкости при изменении температуры от $t_1 = 50^{\circ}$ С до $t_2 = 51^{\circ}$ С?

Решение:

Изменение энтропии (см. задачу 7.18) равно $\Delta S = \frac{RT_1T_2\ln(p_2/p_1)\Delta m}{(T_2-T_1)\mu T_1}.$ Преобразуя это выражение,

получим:
$$\Delta S = \frac{RT_1T_2\ln(p_2/p_1)\Delta v}{(T_2-T_1)T_1}$$
; $\Delta S = \frac{RT_2\ln(p_2/p_1)\Delta v}{T_2-T_1}$,

откуда
$$ln\left(\frac{p_2}{p_1}\right) = \frac{(T_2 - T_1)\Delta S}{RT_2\Delta \nu}$$
. Возьмем от обеих частей

экспоненту и найдем отношение
$$\frac{p_2}{p_1} = exp\left(\frac{\left(T_2 - T_1\right)\Delta S}{RT_2\Delta v}\right)$$
,

откуда
$$p_2 = p_1 \exp\left(\frac{(T_2 - T_1)\Delta S}{RT_2\Delta \nu}\right)$$
. Тогда изменение давления насыщенного пара $\Delta p = p_2 - p_1 = p_1 \left(\exp\left(\frac{(T_2 - T_1)\Delta S}{RT_2\Delta \nu}\right) - 1\right)$ $\Delta p = 12,33\cdot 10^3 \left(\exp\left(\frac{(324 - 323)\cdot 133}{8,31\cdot 324\cdot 1}\right) - 1\right) = 624\ \Pi a.$

7.20. До какого предельного давления p можно откачать сосуд при помощи ртутно-диффузионного насоса, работающего без ртутной ловушки, если температура водяной рубашки насоса $t = 15^{\circ}$ С? Давление насыщенного ртутного пара при температуре $t_0 = 0^{\circ}$ С равно $p_0 = 0.021$ Па, среднее значение удельной теплоты парообразования ртути в данном интервале температур принять равным r = 10.08 МДж/кг.

Решение:

До давления p = 93 мПа, т. е. до давления насыщенного ртутного пара при t = 15° С.

7.21. При температуре $t_0 = 0^{\circ}$ С плотность ртути $\rho_0 = 13.6 \times 10^{3}$ кг/м³. Найти ее плотность ρ при температуре $t = 300^{\circ}$ С. Коэффициент объемного расширения ртути $\beta = 1.85 \cdot 10^{-4}$ К⁻¹.

Решение:

Имеем
$$\rho_0 = \frac{m}{V_0}$$
 и $\rho = \frac{m}{V}$, где $V = V_0 (1 + \beta t)$. Тогда $\rho = \frac{\rho_0}{1 + \beta t} = 12.9 \cdot 10^3 \, \text{кг/м}^3$.

7.22. При температуре $t_1 = 100^{\circ}$ С плотность ртути $\rho_1 = 13.4 \times 10^{3}$ кг/м³. При какой температуре t_2 плотность ртути 358

 $\rho_2 = 13.4 \cdot 10^3 \, \text{кг/м}^3$? Коэффициент объемного расширения ртути $\beta = 1.8 \cdot 10^{-4} \, \text{K}^{-1}$.

Решение:

Относительное изменение объема при нагревании
$$\frac{\Delta V}{V} = \beta(t_1 - t_2).$$
 По определению, плотность $\rho = \frac{M}{V}$, тогда
$$\rho_1 = \frac{m}{V} - (1), \text{ а } \rho_2 = \frac{m}{V - \Delta V} - (2).$$
 Разделим (2) на (1)
$$\frac{\rho_2}{\rho_1} = \frac{V}{V - \Delta V} = \frac{1}{1 - \frac{\Delta V}{V}} = \frac{1}{1 - \beta(t_1 - t_2)}, \text{ откуда } \beta(t_1 - t_2) = \frac{1}{1 - \frac{\rho_1}{\rho_2}}.$$
 Тогда изменение температуры $t_1 - t_2 = \frac{\rho_2 - \rho_1}{\rho_2 \beta}$ и, окончательно, $t_2 = t_1 - \frac{\rho_2 - \rho_1}{\rho_2 \beta} = 227,2^{\circ}\text{ C}.$

7.23. Найти плотность ρ морской воды на глубине h=5 км, если плотность ее на поверхности $\rho_0=1.03\cdot 10^3$ кг/м³. Сжимаемость воды $k=4.8\cdot 10^{-10}\,\mathrm{\Pi a^{-1}}$. Указание: при вычислении гидростатического давления морской воды ее плотность приближенно полагать равной плотности воды на поверхности.

Решение:

Относительное изменение объема при сжатии $\frac{\Delta V}{V_0} = -k\Delta p$,

где k [Па $^{-1}$] — сжимаемость, величина, показывающая, на какую часть уменьшился объем жидкости при увеличении давления на 1 Па. Изменение давления Δp равно давлению водяного столба высотой h, которое по закону Паскаля $\Delta p = \rho_0 g h$, т.к. по условию плотность приблизительно равна плотности на поверхности. Плотность у поверхности

воды
$$\rho_0=\frac{m}{V_0}$$
, а на глубине $h-\rho=\frac{m}{V_0+\Delta V}$, гда отношение плотностей $\frac{\rho_0}{\rho}=\frac{V_0+\Delta V}{V_0}=1+\frac{\Delta V}{V_0}=1-\frac{h}{2}$. Отеюда плотность морской воды на глубине зна $\rho=\frac{\rho_0}{1-k\rho_0gh}=1.055\,\mathrm{kr/m}^3$.

7.24. При нормальных условиях сжимаемость 7.24х 7

Решение:

Относительное изменение объема жидкости при превании и сжатии соответственно $\frac{\Delta V}{V}\beta\Delta T$ и $\frac{\Delta V}{V}=k$ По условию объем бензола не меняется, поэтому $\beta\Delta T$ ΔP , откуда $\Delta p=\frac{\beta\Delta T}{k}=1{,}38\cdot10^6\,\mathrm{\Pi a}$.

7.25. Коэффициент объемного расширения ртути $\beta=32\times 10^{-4}\,\mathrm{K}^{-1}$. Чтобы при нагревании ртути на $\Delta t=1\,\mathrm{K}$ ес челем не изменился, необходимо увеличить внешнее давление на $\Delta p=4.7\,\mathrm{MHa}$. Найти сжимаемость k ртути.

Решение:

Чтобы объем не изменился (см. задачу 7.24), необходом чтобы $\beta \Delta T = k \Delta p$. Отсюда сжимаемость ртути $k = \frac{1}{2}$

$$= 3.87 \cdot 10^{-11} \, \Gamma la^{-1}.$$

7.26. Найти разность уровней Δh ртути в двух одинаковых сообщающихся стеклянных трубках, если левое колено поддерживается при температуре $t_0=0^{\circ}$ С, а правое нагрего до температуры $t=100^{\circ}$ С Высота левого колена $h_0=90$ см. Коэффициент объемного расширения ртути $\beta=1.82\cdot 10^{-4}~{\rm K}^{-1}$. Расширением стекла пренебречь.

Решение:

Относительное изменение объема жидкости при нагревании $\frac{\Delta V}{V_0} = \beta \Delta T$. Т. к. площадь поперечного сечения трубок одинакова и равиа S, то объем в колодном колене $V_0 = Sh_0$, а в подогретом колене $V_0 + \Delta V = S(h_0 + \Delta h)$, тогда $\frac{V_0 + \Delta V}{V_0} = 1 + \frac{\Delta V}{V_0} = 1 + \beta \Delta T = \frac{h_0 + \Delta h}{h_0}$. Отсюда разность уровней $\Delta h = h_0(1 + \beta \Delta T) - h_0 = h_0\beta \Delta T = 16$.

7.27. Ртуть надита в стеклянный сосуд высотой L = 10 см. При температуре $t = 20^{\circ}$ С уровень ртути на h = 1 мм ниже верхнего края сосуда. На сколько можно нагреть ртуть, чтобы она не вылилась из сосуда? Коэффициент объемного расширения ртути $\beta = 1.82 \cdot 10^{-4} \text{ K}^{-1}$. Расширением стекла пренебречь.

Решение:

Начальный объем ртути $V_0 = S(L-h)$, где S — площадь поперечного сечения сосуда, а ее конечный объем $V_0 + \Delta V = SL$. Тогда $\frac{V_0 + \Delta V}{V_0} = 1 \div \beta \Delta T = \frac{L}{L-h}$, откуда

после преобразования получаем $\Delta T = \frac{h}{(L-h)\beta} = 55.5 \text{ K}.$

7.28. Стеклянный сосуд, наполненный до краев ртутью, при **температуре** t = 0° С имеет массу M = 1 кг. Масса пустого

сосуда $M_0 = 0.1$ кг. Найти массу m ртути, которая мещет поместиться в сосуде при температуре $t = 100^{\circ}$ С. Коэффиционт объемного расширения ртути $\beta = 1.82 \cdot 10^{-4} \text{ K}^{-1}$. Расширения стекла пренебречь.

Зешение:

Масса ртути, находящаяся в сосуде при температуре t_0 , равна $m_0 = M - M_0$, тогда плотность ртути при данной температуре $\rho = \frac{m}{V}$. Отношение плотностей (см. задачу 7.22) $\frac{\rho}{\rho_0} = \frac{m}{m_0}$, тогда $\frac{m}{m_0} = \frac{1}{1 - \beta(t - t_0)}$, откуда $m_0 = m(1 - \beta(t - t_0)) = (M - M_0)(1 - \beta(t - t_0)) = 884 \, \text{г.}$

7.29. Решить предыдущую задачу, если коэффициент объемного расширения стекла $\beta' = 3 \cdot 10^{-5} \, \mathrm{K}^{-1}$.

Решение:

При нагревании объем сосуда стал $V = V_0 (1 + \beta t)$, соответственно плотность ртути $\rho = \frac{m}{V} = \frac{m}{V_0 (1 + \beta t)}$ — (1). С другой стороны, $\rho = \frac{\rho_0}{1 + \beta t} = \frac{m_0}{V_0 (1 + \beta t)}$ — (2). Приравнимя уравнения (1) и (2), получим $m = \frac{m_0 (1 + \beta t)}{1 + \beta t} = 887$ г.

7.30. Стеклянный сосуд наполнен до краев жидким мас. М при температуре $t_0 = 0^{\circ}$ С. При нагревании сосуда с маслом о температуры $t = 100^{\circ}$ С вытекло 6% налитого масла. Ная и коэффициент объемного расширения масла, если коэффициент объемного расширения $\beta = 3 \cdot 10^{-5}$ К⁻¹.

Решение:

При нагревании объем сосуда увеличился и стал равным $V_1 = V_0(1+\beta t)$, и объем масла также увеличился и стал равным $V_2 = V_0(1+\beta t)$. Количество масла, которое вытекло, $\Delta V = V_2 - V_1 = V_0[(1+\beta t) - (1+\beta t)] = V_0 t(\beta' - \beta)$.

По условию $\frac{\Delta V}{V_0} = 0.06$, тогда $(\beta' - \beta)t = 0.06$, откуда

$$\beta' = \frac{0.06}{t} + \beta = 6.3 \cdot 10^{-4} \text{ K}^{-1}.$$

7.31. Какую относительную ошибку мы допустим при нахождении коэффициента объемного расширения масла в условиях предыдущей задачи, если пренебрежем расширением стекла?

Коэффициент объемного расширения масла с учетом

Решение:

расширения стекла (см. задачу 7.30) $\beta' = 6,3 \cdot 10^{-4} \text{ K}^{-1}$. Если не учитывать расширения стекла, то количество масла, которое вытекло, $\Delta V = V_2 - V_0 = V_0 [(1 + \beta_0 t) - 1] = V_0 \beta_0 t$, где β_0 — коэффициент объемного расширения масла без учета расширения стекла. Тогда $\Delta V / V = \beta_0 t = 0.06$, тогда $\beta_0 = \frac{0.06}{t} = 6 \cdot 10^{-4} \text{ K}^{-1}$. Отсюда относительная ошибка $x = \frac{\beta' - \beta_0}{\beta} = 0.05 \cdot 100\% = 5\%$.

7.32. Температура помешения $t = 37^{\circ}$ C, атмосферное давление $p_0 = 101,3$ кПа. Какое давление p покажет ртутный барометр, находящийся в этом помещении? Коэффициент объемного расширения ртути $\beta = 1,82 \cdot 10^{-4} \text{ K}^{-1}$. Расширением стекла пренебречь.

Решение:

Т. к. температура в помещении постоянна, то по закону Бойля — Мариотта $pV_0=p_0V$, где $V=V_0(1+\beta\,t)$ — фоктический объем ртути в барометре. Тогда $pV_0=p_0V_0\times (1+\beta\,t)$, откуда $p=p_0(1+\beta\,t)=102\,\mathrm{kHa}$.

7.33. Какую силу F нужно приложить к горизонтальнему алюминиевому кольцу высотой $h=10\,\mathrm{mm}$, внутренним диаметром $d_1=50\,\mathrm{mm}$ и внешним диаметром $d_2=52\,\mathrm{mm}$, чтобы оторвать его от поверхности воды? Какую часть найденной силы составляет сила поверхностного натяжения?

Решение:

Будем считать, что кольцо касается воды только своей нижней поверхностью, не погружаясь. Сила, необходимыя для отрыва кольца от поверхности воды $F = F_1 + F_2$, где F_1 — сила тяжести, F_2 — сила поверхностного назяжения. $F_1 = \rho h \frac{\pi}{4} \left(d_2^2 - d_1^2 \right) g = 40 \, \mathrm{MH}$. При отрыве кольца водяная пленка разрывается по внутренней — d_2 и внешней — d_1 сторонам кольца. $F_2 = \pi \alpha \left(d_1 + d_2 \right) = 23.5 \, \mathrm{MH}$. Отсюда $F = 63.5 \, \mathrm{MH}$ и $\frac{F_2}{F} = 37\%$.

7.34. Кольцо внутренним диаметром $d_1=25~\mathrm{mm}$ и внешным диаметром $d_2=26~\mathrm{mm}$ подвешено на пружине и соприкасается с поверхностью жидкости. Жесткость пружины $k=9.8\cdot 10^{-1}~\mathrm{H}^{-1}$. При опускании поверхности жидкости кольцо оторвалось от нее при растяжении пружины на $\Delta l=5.3~\mathrm{mm}$. Найти поверхностные натяжение α жидкости.

Решение:

Сила поверхностного натяжения \vec{F}_1 жидкости уравновешивается силой упругости пружины \vec{F}_2 . Чтобы система находилась в равновесии, необходимо чтобы $\vec{F}_1 + \vec{F}_2 = 0$ или $F_1 = F_2$. По закону Гука $F_2 = k\Delta l$. При отрыве кольца

поверхностная пленка разрывается по внешней и внутренней поверхности кольца. Поэтому сила поверхностного натяжения будет складываться из двух $F_1 = F_{11} + F_{12}$, где $F_{11} = \alpha L_1$ и $F_2 = \alpha L_2$. Т.к. $L_1 = \pi d_1$ и $L_2 = \pi d_2$, то $F_1 = \pi \alpha (d_1 + d_2)$; $k\Delta l = \pi \alpha (d_1 + d_2)$, отсюда $\alpha = \frac{k\Delta l}{\pi (d_1 + d_2)} = 0.032 \text{ H/M}$.

7.35. Рамка ABCD с подвижной медной перекладиной KL затянута мыльной иленкой. Каков должен быть диаметр d перекладины KL, чтобы она находилась в равновесии? Найти длину I перекладины, если известно, что при перемещении перекладины на $\Delta h = 1$ см совершается изотермическая работа A = 45 мкДж. Поверхностное натяжение мыльного раствора $\alpha = 0.045$ H/м.

Решение:

Сила тяжести уравновешивается силой поверхностного натяжения. Чтобы перекладина находилась в равновесии, необходимо, чтобы $m\vec{g} + \vec{F} = 0$ или F = mg. Т.к.

$$m = \rho V$$
 и $V = \frac{\pi d^2}{4}l$, то $F = \frac{\pi d^2 l \rho g}{4}$. С

Другой стороны, $F = 2\alpha l$ (т. к. у пленки

две стороны). Отсюда
$$2\alpha l = \frac{\pi d^2 l \rho g}{4}$$
; $d^2 = \frac{8l\alpha}{\pi l \rho g} = \frac{8\alpha}{\pi \rho g}$;

 $d = \sqrt{\frac{8\alpha}{\pi \rho g}} = 1.2$ мм. Работа по перемещению перекладины $A = 2\alpha S$ (т.к. у пленки две стороны). Т.к. $S = l\Delta h$, то $A = 2\alpha l\Delta h$; $I = \frac{A}{2\alpha\Delta h} = 5$ см.

7.36. Спирт по каплям вытекает из сосуда через вертикальную трубку внутренним диаметром d=2 мм. Капли отрываются через время $\Delta \tau = 1$ с одна после другой. Через каксе время τ вытечет масса m=10 г спирта? Диаметр шейки капли з момент отрыва считать равным внутреннему диаметру трубки.

Решение:

Чтобы капля оторвалась от поверхности, необходимо разорвать поверхностную пенку длиной $l=2m^r$, где r — радиус шейки капли, силой тяжести $P=2m^r\alpha=\pi d\alpha$. В массе спирта содержится N капель, причем $N=\frac{mg}{P}=\frac{mg}{\pi d\alpha}=780$ капель. Т.к. по условию капли отрываются с промежутком в $\Delta \tau=1$ с, значит, общее время $\tau=N\Delta \tau=780$ с=13мин.

7.37. Вода по каплям вытекает из сосуда через вертикальную трубку внутренним диаметром d=3 мм. При остывании воды от $t_1=100^{\circ}$ С до $t_2=20^{\circ}$ С масса каждой капли изменилась на $\Delta m=13.5$ мг. Зная поверхностное натяжение α_2 воды при $t_2=20^{\circ}$ С, найти поверхностное натяжение α_1 воды при $t_1=100^{\circ}$ С. Диаметр шейки капли в момент отрыва считать равным внутреннему диаметру трубки.

Решение:

Сила тяжести, действующая на каплю, в момент ее отрыва должна разорвать поверхностную пленку по длине $l=2\pi r=\pi d$, т.к. по условию диаметр шейки капли равен внутреннему диаметру трубки. Тогда начальная сназа 366

тяжести $p_0 = \pi d\alpha_2$. При остывании капли сила тяжести **изме**нится на $\Delta p = \Delta mg$ и станет равной $p = p_0 - p = \pi d\alpha_2 - \Delta mg$. С другой стороны, $p = \pi d\alpha_1$, тогда $\pi d\alpha_1 = \pi d\alpha_1 - \Delta mg$, откуда $\alpha_1 = \frac{\pi d\alpha_2 - \Delta mg}{\pi d} = 0.059 \text{ H/m}$.

7.38. При плавлении нижнего конца вертикально подвешенной свинцовой проволоки диаметром d=1 мм образовалось N=20 капель свинца. На сколько укоротилась проволока? Поверхностное натяжение жидкого свинца $\alpha=0,47$ Н/м. Диаметр шейки капли в момент отрыва считать равным диаметру проволоки.

Решение:

Капля отрывается от проволоки, когда сила тяжести равна силе поверхностного натяжения, т. е. mg = F. Масса капли $m = \rho V_K$. Сила поверхностного натяжения $F = \alpha l$, где $l = \pi d$, откуда $F = \pi \alpha d$. Отсюда объем капли $V_K = \frac{\pi \alpha d}{\rho}$. Полный объем расплавленного свинца $V = NV_K = \frac{\pi N \alpha d}{\rho}$. С другой стороны, $V = \frac{\pi d^2}{4} \Delta l$. Тогда $\frac{\pi d^2}{4} \Delta l = \frac{\pi N \alpha d}{\rho}$, отсюда $\Delta l = \frac{4N\alpha}{\rho} = 34$ см.

7.39. Вода по каплям вытекает из вертикальной трубки внутренним радиусом $r=1\,\mathrm{mm}$. Найти радиус R капли в момент отрыва. Каплю считать сферической. Диаметр шейки капли в момент отрыва считать равным внутреннему диаметру трубки.

Решение:

Сила тяжести, необходимая для отрыва капли (см. задачу 7.37) $p = 2\pi r \alpha$. С другой стороны, сила тяжести p = mg,

где $m=\rho V$ — масса оторвавшейся капли. Т.к. по условию капля сферическая, то $V=\frac{4}{3}\pi R^3$, тогда $2\pi r\alpha=\frac{4}{3}\pi r^3\rho g$, откуда $R^3=\frac{3r\alpha}{2\rho g}$ или $R=\sqrt[3]{\frac{3r\alpha}{2\rho g}}=2,2$ мм.

7.40. На сколько нагреется капля ртуги, полученнуя от слияния двух капель радиусом r = 1 мм каждая?

Решение:

При слиянии двух капель ртути выделяется эт эгия $\Delta W = \alpha \Delta S$, где изменение площади поверх эсти $\Delta S = 4\pi r^2 \cdot 2 - 4\pi R^2$. Радиус большой капли R наздем, приравняв объем большой капли сумме объемов слившихся капель, т.е. $2 \cdot \frac{4\pi r^3}{3} = \frac{4\pi R^3}{3}$, откуда $R = r^3 \sqrt{2}$. Гогда $\Delta S = 4\pi r^2 \left(2 - \sqrt[3]{4}\right)$ и $\Delta W = \alpha \cdot 4\pi r^2 \left(2 - \sqrt[3]{4}\right)$ — (1). За счет выделенной энергии произойдет нагревание ртутной капли, тогда $\Delta W = cn\Delta T = c\rho \frac{4}{3}\pi R^3 \Delta T = c\rho \frac{8}{3}\pi r^3 \Delta T$ — (2). Приравнивая (1) и (2), найдем $\Delta T = \frac{3\alpha \left(2 - \sqrt[3]{4}\right)}{c\rho 2r} = 1,65 \cdot 10^{-4}$ К.

7.41. Какую работу A против сил поверхностного натяжения надо совершить, чтобы разделить сферическую каплю ртути радиусом R = 3 мм на две одинаковые капли?

Решение:

Т. к. капля разрывается на две одинаковые, то площадь ΔS , по которой произойдет разрыв, будет равна площади круга, проходящего через центр капли, т. е. $\Delta S = \pi R^2$. Тогда работа против сил поверхностного натяжения $A = \alpha \Delta S = \alpha \pi R^2 = 14,7$ мкДж.