# LABORATORY MANUAL FOR KATER'S PENDULUM: TO FIND g AT A PLACE





To determine *g*, the acceleration of gravity at a particular location.

## **A**PPARATUS

- 1. Kater's pendulum,
- 2. Stopwatch,
- 3. Meter scale and
- 4. Knife edges (Installed on a table).

## HEORY

Kater's pendulum, shown in Fig. 1, is a physical pendulum composed of a metal rod 1.20 m in length, upon which are mounted a sliding metal weight W<sub>1</sub>, a sliding wooden weight W<sub>2</sub>, a small sliding metal cylinder w, and two sliding knife edges K<sub>1</sub> and K<sub>2</sub> that face each other. Each of the sliding objects can be clamped in place on the rod. The pendulum can suspended and set swinging by resting either knife edge on a flat, level surface. The wooden weight W<sub>2</sub> is the same size and shape as the metal weight W<sub>1</sub>. Its function is to provide as near equal air resistance to swinging as possible in either suspension, which happens if W<sub>1</sub> and W<sub>2</sub>, and separately K<sub>1</sub> and K<sub>2</sub>, are constrained to be equidistant from the ends of the metal rod. The centre of mass G can be located by balancing the pendulum on an external knife edge. Due to the difference in mass between the metal and wooden weights W<sub>1</sub> and W<sub>2</sub>, G is not at the centre of the rod, and the distances h<sub>1</sub> andh<sub>2</sub> from G to the suspension points O<sub>1</sub>and O<sub>2</sub> at the knife edges K<sub>1</sub> and K<sub>2</sub> are not equal. Fine adjustments in the position of G, and thus in h<sub>1</sub> and h<sub>2</sub>, can be made by moving the small metal cylinder w.



In Fig. 1, we consider the force of gravity to be acting at G. If  $h_i$  is the distance to G from the suspension point  $O_i$  at the knife edge  $K_i$ , the equation of motion of the pendulum is

$$I_i \ddot{\theta} = -Mgh_i \sin \theta$$

where  $I_i$  is the moment of inertia of the pendulum about the suspension point  $O_i$ , and i can be 1 or 2. Comparing to the equation of motion for a simple pendulum

$$Ml_i^2\ddot{\theta} = -Mgl_i\sin\theta$$

we see that the two equations of motion are the same if we take

$$\frac{Mgh_i}{l_i} = \frac{g}{l_i} \tag{1}$$

It is convenient to define the radius of gyration of a compound pendulum such that if all its mass M were at a distance from  $O_i$ , the moment of inertia about  $O_i$  would be  $I_i$ , which we do by writing

$$I_i = Mk_i^2$$

Inserting this definition into equation (1) shows that

$$k_i^2 = h_i l_i \tag{2}$$

If  $I_G$  is the moment of inertia of the pendulum about its centre of mass G, we can also define the radius of gyration about the centre of mass by writing

$$I_G = Mk_G^2$$

The parallel axis theorem gives us

$$k_i^2 = h_i^2 + k_G^2$$

so that, using (2), we have

$$l_i = \frac{h_i^2 + k_G^2}{h_i}$$

The period of the pendulum from either suspension point is then

Squaring (3), one can show that

$$h_1 T_1^2 - h_2 T_2^2 = \frac{4\pi^2}{g} (h_1^2 - h_2^2)$$

and in turn,

$$\frac{4\pi^2}{g} = \frac{h_1 T_1^2 - h_2 T_2^2}{(h_1 + h_2)(h_1 - h_2)} = \frac{T_1^2 + T_2^2}{2(h_1 + h_2)} + \frac{T_1^2 - T_2^2}{2(h_1 - h_2)}$$

which allows us to calculate g,

$$g = 8\pi^2 \left[ \frac{T_1^2 + T_2^2}{h_1 + h_2} + \frac{T_1^2 - T_2^2}{h_1 - h_2} \right]^{-1}$$

Here, T<sub>1</sub>: time periods of the oscillating pendulum from knife-edge K<sub>1</sub>

T<sub>2</sub>: time periods of the oscillating pendulum from knife-edge K<sub>2</sub>

h<sub>1</sub>: distances between knife-edges K<sub>1</sub> and CG of the pendulum

h<sub>2</sub>: distances between knife-edges K<sub>2</sub> and CG of the pendulum

## PROCEDURE

- Balance the pendulum on a sharp wedge and mark the position of its center of gravity. Measure the distance of the knife-edge  $K_1$  as  $h_1$  and that of  $K_2$  as  $h_2$  from the center of gravity.
- Choose the position of knife edge, steel and wood cylinder by changing the sliders for it.
- Shift the weight  $W_1$  to one end of Kater's pendulum and fix it. Fix the knife edge  $K_1$  just below it.

- Keep the knife edge K<sub>2</sub> at the other end and fix the wooden weight W<sub>2</sub> symmetrical to other end. Keep the small weight 'w' near to center and fix the position. Do not move the positions of W<sub>1</sub>, W<sub>2</sub> and W during your experiments.
- Suspend the pendulum about the knife edge 1 and take the time for about 10 oscillations. Note down the time  $t_1$  using a stopwatch and calculate its time period using equation  $T_1=t_1/10$ .
- Now suspend about knife edge K<sub>2</sub> by inverting the pendulum and note the time t<sub>2</sub> for 10 oscillations. Calculate T<sub>2</sub> also.
- If  $T_1 \neq T_2$ , adjust the position of knife edge  $K_2$  so that  $T_1 \neq T_2$
- Repeat the experiment by changing the values of h<sub>1</sub> and h<sub>2</sub> which can be done by varying the distance between K<sub>1</sub>-W<sub>1</sub> and K<sub>2</sub>-W<sub>2</sub> as 1 cm, 2 cm, 3 cm.
- In each case note down the time difference between T<sub>1</sub> and T<sub>2</sub>. Comment on which case your determined value of g is more close to the actual value.

#### Balance the Kater's pendulum on a knife edge fixed on a table to find the center of gravity.

Step 1: Move the mass W at the middle of the rod.



Step 2: Set the distance between  $W_1 - K_1$  and  $W_2 - K_2$  as 1 cm on both sides. And make sure the apparatus is symmetric from both end.



Step 3: Now balance the whole apparatus on a knife edge fixed on a table to find center of gravity. Mark the point G with a marker/chalk. This is your center of gravity. Find the distances  $h_1$  and  $h_2$  and note down



Step 4: Find the time period T1 and T2 with this configuration. Repeat the process with the distance between  $W_1-K_1$  and  $W_2-K_2$  set as 2 cm and 3 cm.



Least count of the scale used fro measuring  $h_1$  and  $h_2 = ...$ 

Distance of  $K_1$  from C.G,  $h_1 = \dots m$ .

Distance of  $K_2$  from C.G,  $h_2 = \dots m$ .

#### **TABLE 1: Determination of T<sub>1</sub> and T<sub>2</sub>**

Least count of the stop watch: .... sec

| KNIFE EDGE            | Tir   | ne for 10 oscillat | Time period     |                                   |
|-----------------------|-------|--------------------|-----------------|-----------------------------------|
|                       | 1 (s) | 2 (s)              | Mean time t (s) | $T = \frac{t}{10} \text{ in sec}$ |
| <b>K</b> <sub>1</sub> |       |                    |                 | (T <sub>1</sub> )                 |
| K <sub>2</sub>        |       |                    |                 | (T <sub>2</sub> )                 |

Repeat the procedure for two other different values of  $h_1 \& h_2$ 

#### **TABLE 2:** Determination of T<sub>1</sub> and T<sub>2</sub>

Distance of  $K_1$  from C.G,  $h_1 = \dots m$ .

Distance of  $K_2$  from C.G,  $h_2 = \dots m$ .

Least count of the stop watch: .... sec

| KNIFE EDGE     | Tir   | me for 10 oscillation | Time period     |                                   |
|----------------|-------|-----------------------|-----------------|-----------------------------------|
|                | 1 (s) | 2 (s)                 | Mean time t (s) | $T = \frac{t}{10} \text{ in sec}$ |
| K <sub>1</sub> | MILLE | /                     | -ECHNI          | (T <sub>1</sub> )                 |
| K <sub>2</sub> |       |                       |                 | (T <sub>2</sub> )                 |

#### **TABLE 3: Determination of T\_1 and T\_2**

Distance of  $K_1$  from C.G,  $h_1 = \dots m$ . Distance of  $K_2$  from C.G,  $h_2 = \dots m$ .

Least count of the stop watch: .... sec

| KNIFE EDGE     | Tir     | me for 10 oscillatio | Time period     |                                   |
|----------------|---------|----------------------|-----------------|-----------------------------------|
|                | 1 (s)   | 2 (s)                | Mean time t (s) | $T = \frac{t}{10} \text{ in sec}$ |
| <b>K</b> 1     | A15.55. | 9                    |                 | (T <sub>1</sub> )                 |
| K <sub>2</sub> | THE     | 11-1-4-1             | WK61            | (T <sub>2</sub> )                 |

### CALCULATION

Distance of  $K_1$  from C.G,  $h_1 = \dots m$ .

Distance of  $K_2$  from C.G,  $h_2 = \dots m$ .

Time period  $T_1 = \dots s$ 

Time period  $T_2 = \dots s$ 

$$\therefore g = 8\pi^2 \left[ \frac{T_1^2 + T_2^2}{h_1 + h_2} + \frac{T_1^2 - T_2^2}{h_1 - h_2} \right]^{-1}$$

Acceleration due to gravity,  $g = \dots ms^{-2}$ .

# RESULT

The acceleration due to gravity at a given place is found to be =.....ms<sup>-2</sup>.

Among all of the three cases, the value of g which is closer to 9.81 m/s<sup>2</sup> is to be considered for the final value.

# EROR CALCULATION

$$g = 8\pi^2 \left[ \frac{T_1^2 + T_2^2}{h_1 + h_2} + \frac{T_1^2 - T_2^2}{h_1 - h_2} \right]^{-1}$$

Using the above formula do the error calculation and find  $\Delta g$ . The formula can be simplified by assumimng  $T_1 \approx T_2$ 

$$g = 8\pi^2 \left[ \frac{T_1^2 + T_2^2}{h_1 + h_2} \right]^{-1}$$

$$\therefore g' = g \pm \Delta g.$$

Aslo, calculate the standard error in g from actual value of  $g = 9.81 \text{ m/s}^2$ 

$$\frac{\Delta g}{g} \times 100 = \frac{g_{standard} - g_{measured}}{g_{standard}} \times 100 = \dots \%.$$

# PRECAUTIONS

- 1. The two knife-edges should be parallel to each other.
- 2. The amplitude of vibration should be small so that the pendulum satisfies the condition of simple harmonic motion.
- 3. To avoid any irregularity of motion the time period should be noted after the pendulum has made a few oscillation.
- 4. To avoid friction there should be glass surface on the rigid support.