Accelerating Research through Large Scale, Interpretable Machine Reading

By Enrique Noriega-Atala

- Postdoctoral Researcher @ Dept of Computer Science
- PhD from School of Information '20
- Specialize in Natural Language Processing

Presentation Outline

- Quick Overview of NLP
- Large Scale Information Extraction
- Learning to Generate Rules
- Visualization of Information Extraction

What is Natural Language Processing?

NLP, in part, is the application of computational techniques to understand texts written by people

Examples

- Sentiment classification
- Spam detection
- Machine translation
- Question answering

Enrique is presenting his research to the Data Science community at the Kiva Room

Enrique is presenting his research to the

Data Science community at the Kiva Room

Information Extraction

- Commonly trained using supervised machine learning
- Multi-step process:
 - Concept recognition
 - Normalization to database/ontology
 - Relation detection

Information Extraction

Large Scale Information Extraction

IE in the Biomedical Domain

REACH: Biomedical Information Extraction System

Scalability

Maintainability

- Different requirements:
 - Cancer Biology
 - Hematology
 - Frailty Syndrome
- Similar, but not the same ...
- Training data for each use case?

Statistical vs Rule-based

Obfuscated black-box models

Maintainable rule-based systems

*Graphical representation of a domain expert

Rule-based Information Extraction

```
- name: ${ eventName }_syntax_3_noun
priority: ${ priority }
example: "ERK- mediated serine ${ nominalTriggerLemma } of the GAB1 adaptor has been shown to ..."
label: ${ label }
action: ${ actionFlow }
pattern: |
   trigger = [lemma=/${ nominalTriggerLemma }/ & ${triggerPrefix} & !outgoing=/${passive_agents}/] # nominal predicate
   cause:BioChemicalEntity = /${conjunctions}|${noun_modifiers}/{1,2} #or /${genitive_case_marker}/ /${passive_agents}/
   theme:BioChemicalEntity = /${genitive_case_marker}/ /${conjunctions}|${noun_modifiers}/{1,2}
   site:Site? = /${any_preposition}|${conjunctions}|${noun_modifiers}/{1,2}
```

Rule-based Information Extraction

- 1. Match a Trigger: *inhibits*
- 2. Find biochemical entity: CYLD
- 3. Find a second biochemical entity: *TRAF2* or *TRAF6*
- 4. Constructing the biochemical event(s)

NLP pipeline

- Tokenization
- Part-of-speech tagging
- Syntactic parsing
- Named entity recognition

NLP pipeline

PubMed Size per Year

Machine reading performance

Potential cancer-driving mechanisms discovered

HUS1B → CHEK1: "Hus1 loss results in abnormal gammaH2AX localization and increased CHK1 phosphorylation."

PTEN → CHEK1: "PTEN also induces phosphorylation and monoubiquitination of DNA damage checkpoint kinase, Chk1"

PIK3CA → PTEN: "p110alpha inactivation can inhibit the impact of PTEN loss"

Legend for gene alteration frequency:

(protein level)

New discovery

WHAT RESEARCH IS LEFT?

Contextualize extractions

Automatically generating rules

Visualizing and analyzing extractions

Contextualizing Information Extraction

To date, the vast majority of experimental models are animal models, almost exclusively consisting of transgenic mice that express human genes that result in the formation of amyloid plaques (by expression of human APP alone or in combination with human PSEN1) and neurofibrillary tangles

Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 2017 Feb;133(2):155-175. doi: 10.1007/s00401-016-1662-x. Epub 2016 Dec 26. PMID: 28025715; PMCID: PMC5253109.

Transformer Neural Networks

ENSEMBLE	PRECISION	RECALL	F1	
Majority (3 votes)	.58	.50	.54	
Parameterized aggregation	.54	.49	.51	
One-hit	.41	.67	.50	
Post inverse distance	.57	.45	.50	
Nearest Mention	.54	.46	.49	
BASELINES				
Random forest	.44	.54	.48	
Logistic regression	.36	.69	.47	
Heuristic	.42	.55	.47	

ENSEMBLE	PRECISION	RECALL	F1		
Majority (3 votes)	.58	.50	.54		
Parameterized aggregation	.54	.49	.51		
One-hit	.41	.67	.50		
Post inverse distance	.57	.45	.50		
Nearest Mention	.54	.46	.49		
BASELINES					
Random forest	.44	.54	.48		
Logistic regression	.36	.69	.47		
Heuristic	.42	.55	.47		

ENSEMBLE	PRECISION	RECALL	F1	
Majority (3 votes)	.58	.50	.54	
Parameterized aggregation	.54	.49	.51	
One-hit	.41	.67	.50	
Post inverse distance	.57	.45	.50	
Nearest Mention	.54	.46	.49	
BASELINES				
Random forest	.44	.54	.48	
Logistic regression	.36	.69	.47	
Heuristic	.42	.55	.47	

ENSEMBLE	PRECISION	RECALL	F1	
Majority (3 votes)	.58	.50	.54	
Parameterized aggregation	.54	.49	.51	
One-hit	.41	.67	.50	
Post inverse distance	.57	.45	.50	
Nearest Mention	.54	.46	.49	
BASELINES				
Random forest	.44	.54	.48	
Logistic regression	.36	.69	.47	
Heuristic	.42	.55	.47	

Learning to Generate Rules

Rule Generation

Given a set of textual phrases with span annotations, generate a rule or set of rules that match the input

*but for information extraction rules

Query Q SEARCH	Stash
Empty	Empty

Odinsynth 2021.

Rule Generation

• Input:

```
She is already an honorary doctor of the <MATCH> Technical University of CLUJ-NAPOCA </MATCH>
```

... using a modified version of the TUD (<MATCH> Technical University of Denmark </MATCH>) radar.

*User Specification

• Output:

```
[word = Technical][tag = Noun] [word = of] [tag = Noun]
```


Rule Scoring

[SEP]

```
[CLS] [word = Technical][tag = Noun] [word = □] □[SEP] She is already
an honorary doctor of the <MATCH> Technical University of CLUJ-NAPOCA </MATCH>
[SEP]

[CLS] [word = Technical][tag = Noun] [word = □] □[SEP] ... using a
modified version of the TUD (<MATCH> Technical University of Denmark </MATCH> ) radar.
```


Rule Synthesis Performance

Loss Function	Spec Aggregation	Exact Matches	Partial Matches	Total Matches
Margin	Attention	13%	54%	67%
Margin	Average	11%	25%	36%
MSE	Attention	19%	51%	70%
MSE	Average	12%	49%	60%
Margin	No Specification	0%	6%	6%

Number of matches in the specifications of the testing set. Exact matches are cases in which all the spans in the specification are matched exactly. Partial matches are cases where a) a span is missing or b) an incorrect span is matched. The last column is the sum of both.

Rule Synthesis Performance

Loss Function	Spec Aggregation	Exact Matches	Partial Matches	Total Matches
Margin	Attention	13%	54%	67%
Margin	Average	11%	25%	36%
MSE	Attention	19%	51%	70%
MSE	Average	12%	49%	60%
Margin	No Specification	0%	6%	6%

Number of matches in the specifications of the testing set. Exact matches are cases in which all the spans in the specification are matched exactly. Partial matches are cases where a) a span is missing or b) an incorrect span is matched. The last column is the sum of both.

Rule Synthesis Performance

Loss Function	Spec Aggregation	Exact Matches	Partial Matches	Total Matches
Margin	Attention	13%	54%	67%
Margin	Average	11%	25%	36%
MSE	Attention	19%	51%	70%
MSE	Average	12%	49%	60%
Margin	No Specification	0%	6%	6%

Number of matches in the specifications of the testing set. Exact matches are cases in which all the spans in the specification are matched exactly. Partial matches are cases where a) a span is missing or b) an incorrect span is matched. The last column is the sum of both.

Automatically Generated Rules

Target Rule	Generated Rule	User Specification Match Rate
[tag=Noun] [lemma=in] [lemma=many] [lemma=of] [tag=Prep]	[tag=Noun] [lemma=in] [raw=many] [word=of] [tag=Prep]	100%
<pre>[tag=Adj] [lemma=policy] [tag=EX] [tag=Verb]</pre>	[lemma=same] [raw=policy] [tag=EX] [word=has]	100%
[tag=Verb] [lemma=how] [tag=Deet]	[lemma=describe] [raw=how] [word=the]	58.8%
[lemma=under lemma=water]	[lemma=latter tag=Noun]	4.7%

Discrepancies with the target rule are highlighted

Future Directions

• Introduce syntactic constraints

Improve run time and achieve interactivity

• Generate more than one rule to match a user specification

Visualization of Information Extraction

Visualization Design Goals

- Efficiently search and locate:
 - Mechanistic interactions
 - Underlying textual evidence
 - The pointer to the source of the information
- Reduce the *hairball* effect
- Search paradigm:
 - Narrow down search space
 - Iteratively search

Structural Search

Search, navigate, and visualize exploiting underlying network structure

Node-Link Visualization

Evidence Panel

Graphical Overview

Textual Search

Conclusions

Conclusions

- NLP can enhance your research capabilities
- Don't have to be an ML expert to leverage NLP
- Combining Viz + NLP helps drive new scientific discoveries

Thank You!