CMPT 413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

3/19/12

Finite-state transducers

- a : 0 is a notation for a mapping between two alphabets $a \in \Sigma_1$ and $0 \in \Sigma_2$
- Finite-state transducers (FSTs) accept pairs of strings
- Finite-state automata equate to regular languages and FSTs equate to regular relations
- e.g. L = $\{(x^n, y^n) : n > 0, x \in \Sigma_1 \text{ and } y \in \Sigma_2\}$ is a regular relation accepted by some FST. It maps a string of x's into an equal length string of y's

Finite-state transducers

Regular relations

- A generalization of regular languages
- The set of regular relations is:
 - The empty set and (x,y) for all $x, y \in \Sigma_1 \times \Sigma_2$ is a regular relation
 - If R₁, R₂ and R are regular relations then:

$$R_1 \cdot R_2 = \{(x_1x_2, y_1y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2\}$$

 $R_1 \cup R_2$

$$R^* = \bigcup_{i=0}^{\infty} R_i$$

- There are no other regular relations

• Formal definition:

- Q: finite set of states, $q_0, q_1, ..., q_n$
- Σ: alphabet composed of input/output pairs *i*:o where $i ∈ Σ_1$ and $o ∈ Σ_2$ and so $Σ ⊆ Σ_1 × Σ_2$
- $-q_0$: start state
- F: set of final states
- $-\delta(q, i:o)$ is the transition function which returns a set of states

3/19/12

Finite-state transducers: Examples

- (a^n, b^n) : map n a's into n b's
- rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. cipher → pvcure
- reversal of a fixed set of words
- reversal of all strings upto fixed length k
- input: binary number n, and output: binary number n+1
- upcase or lowercase a string of any length
- *Pig latin: $pig\ latin\ is\ goofy \rightarrow igpay\ atinlay\ is\ oofygay$
- *convert numbers into pronunciations,

e.g. 230.34 two hundred and thirty point three four $\frac{3}{19}$

5

- Following relations are cannot be expressed as a FST
 - $(a^n b^n, c^n)$: because $a^n b^n$ is not regular
 - reversal of strings of any length
 - $-a^{i}b^{j} \rightarrow b^{j}a^{i}$ for any i, j
- Unlike regular languages, regular relations are not closed under intersection
 - $-(a^n b^*, c^n) \cap (a^* b^n, c^n)$ produces $(a^n b^n, c^n)$
 - However, regular relations with input and output of equal lengths are closed under intersection

3/19/12

Regular Relations Closure Properties

- Regular relations (rr) are *closed* under some operations
- For example, if R_1 , R_2 are regular relns:
 - union $(R_1 \cup R_2 \text{ results in } R_3 \text{ which is a rr})$
 - concatenation
 - iteration (R_1 + = one or more repeats of R_1)
 - Kleene closure $(R_1^* = \text{zero or more repeats of } R_1)$
- However, unlike regular languages, regular relns are not closed under:
 - intersection (possible for equal length regular relns)
 - complement

Regular Relations Closure Properties

- New operations for regular relations:
 - composition
 - project input (or output) language to regular language; for FST t, input language = $\pi_1(t)$, output = $\pi_2(t)$
 - take a regular language and create the identity regular relation; for FSM f, let FST for identity relation be Id(f)
 - take two regular languages and create the cross product relation; for FSMs f & g, FST for cross product is $f \times g$
 - take two regular languages, and mark each time the first language matches any string in the second language

3/19/12

Regular Relation/FST Kleene Closure

Regular Expressions for FSTs

3/19/12 13

g:i ε:j (h:k)*

3/19/12 15

((a:0 | a:1) (b:0 | b:1))*

Subsequential FSTs

Subsequential FSTs

- Consider an FST in which for every symbol scanned from the input we can deterministically choose a path and produce an output
- Such an FST is analogous to a deterministic FSM. It is called a **subsequential** FST.
- Subsequential transducers with *p* outputs on the final state is called a *p*-subsequential FST
- p-subsequential FSTs can produce ambiguous outputs for a given input string

FST that is not subsequential

Input: x^n

Output: a^n if n is even, else b^n

3/19/12

FST Algorithms

- Compose: Given two FSTs f and g defining regular relations R_1 and R_2 create the FST $f \circ g$ that computes the composition: $R_1 \circ R_2$
- **Recognition**: Is a given pair of strings accepted by FST *t*?
- **Transduce**: given an input string, provide the output string(s) as defined by the regular relation provided by an FST

Composing FSTs on input side: $a^n == a^*$

What is T_1 composed with T_2 , aka T_1 o T_2 ?

3/19/12

Composing FSTs

Composing FSTs

Composing FSTs

Composing FSTs

Composing FSTs

Composing FSTs

FST Composition

- Input: transducer S and T
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs:

```
\begin{aligned} & \mathsf{match}(s,t) = \\ & \{ \ (s,t) \to^{x:z} (s',t') : s \to^{x:y} s' \in S.\mathsf{edges} \ \mathsf{and} \ t \to^{y:z} t' \in T.\mathsf{edges} \ \} \ \cup \\ & \{ \ (s,t) \to^{x:\epsilon} (s',t) : s \to^{x:\epsilon} s' \in S.\mathsf{edges} \ \} \ \cup \\ & \{ \ (s,t) \to^{\epsilon:z} (s,t') : t \to^{\epsilon:z} t' \in T.\mathsf{edges} \ \} \end{aligned}
```

Correctness: any path in composed transducer mapping u to w arises from a path mapping u to v in S and path mapping v to w in T, for some v

3/19/12

Complex FSTs with composition

- Take, for example, the task of constructing an FST for the Soundex algorithm
- Soundex is useful to map spelling variants of proper names to a single code (hashing names)
- It depends on a mapping from letters to codes

Soundex

• Mapping from letters to numbers:

$$b, f, p, v \rightarrow 1$$

 $c, g, j, k, q, s, x, z \rightarrow 2$
 $d, t \rightarrow 3$
 $l \rightarrow 4$
 $m, n \rightarrow 5$
 $r \rightarrow 6$

3/19/12 31

Soundex

- The Soundex algorithm:
 - If two or more letters with the same number are adjacent in the input, or adjacent with intervening h's or w's omit all but the first
 - Retain the first letter and delete all occurrences of a, e,
 h, i, o, u, w, y
 - Except for the first letter, change all letters into numbers
 - Convert result into LNNN (letter and 3 numbers), either truncate or add 0s

Soundex

• Example:

Losh-shkan, Los-qam Loshhkan, Losqam Lskn, Lsqm L225, L225

• Other examples:

Euler (E460), Gauss (G200), Hilbert (H416), **Knuth** (K530), Lloyd (L300), Lukasiewicz (L222), and Wachs (W200)

3/19/12

Soundex

- How can we implement Soundex as a FST?
- For each step in Soundex, the FST is quite simple to write
- Writing a single FST from scratch that implements Soundex is quite challenging
- A simpler solution is to build small FSTs, one for each step, and then use FST composition to build the FST for Soundex

FST that is not subsequential

Input: x^n

Output: a^n if n is even, else b^n

3/19/12 35

Conversion to subsequential FST

Input: x^n

- Step1 output: (x1/x2)*x2 if n is even, else (x1/x2)*x1
- Step2 output: reversal of Step1 output
- Step3 output: a^n if n is even, else b^n

Interesting fact: this can be done for any non-subsequential FST to convert it into a subsequential FST

Recognition of string pairs

```
function FSTRecognize (input[], output[], \delta):

Agenda = { (start-state, 0, 0) }

Current = (state, i, o) = pop(Agenda) // i :- inputIndex, o :- outputIndex while (true) {

if (Current is an accept item) return accept else Agenda = Agenda \cup GenStates(\delta, state, input, output, i, o) if (Agenda is empty) return reject else Current = (state, i, o) = pop(Agenda)
}

function GenStates (\delta, state, input[], output[], i, o):

return { (q, i, o) : for all q \in \delta(state, \epsilon:\epsilon) } \cup { (q, i+1, o) : for all q \in \delta(state, input[i+1]:\epsilon) } \cup { (q, i+1, o+1) : for all q \in \delta(state, input[i+1], output[i+1]) }
```

Transduction: input \rightarrow output

- The **transduce** operation for a FST *t* can be simulated efficiently using the following steps:
 - 1. Convert the input string into a FSM f (the machine only accepts the input string, nothing else).
 - 2. Convert f into a FST by taking Id(f) and compose with t to give a new FST $g = Id(f) \circ t$. (note that g only contains those paths compatible with input f)
 - 3. Finally project the output language of g to give a FSM for the output of transduce: $\pi_2(g)$
 - 4. Optionally, eliminate any transitions that only derive the empty string from the $\pi_2(g)$ FST.
- What follows is an alternate version that attempts to _{3/19/12} produce all output strings

38

Transduction: input → output

 $^{3/19/12}$ (3, 2, [dc, cd]) is an *accept* item: output = dc, cd

Transduction: input → output

```
function FSTtransduce (input[], \delta):

Agenda = { (start-state, 0, []) } // each item contains list of partial outputs

Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list

output = ()

while (true) {

if (Current is an accept item) output \oplus out

else Agenda = Agenda \cup GenStates(\delta, state, input, out, i)

if (Agenda is empty) return output

else Current = (state, i, o) = pop(Agenda)

}
```

Transduction: input → output

```
function FSTtransduce (input[], \delta):

Agenda = { (start-state, 0, []) } // each item contains list of partial outputs

Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list

output = ()

while (true) {

if (Current is an accept item) output \oplus out

else Agenda = Agenda \cup GenStates(\delta, state, input, out, i)

if (Agenda is empty) return output

else Current = (state, i, o) = pop(Agenda)

}

U adds new output to output lists in items seen before
```

3/19/12 41

Transduction: input \rightarrow output

```
function FSTtransduce (input[], \delta):
                        Agenda = \{ (start-state, 0, []) \} // each item contains list of partial outputs
                       Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
                       output = ()
                       while (true) {
                                                if (Current is an accept item) output @ out
                                                else Agenda = Agenda \cup GenStates(\delta, state, input, out, i)
                                                if (Agenda is empty) return output
                                                else Current = (state, i, o) = pop(Agenda)
                         }
function GenStates (\delta, state, input, out, i):
                       return \{(q, i, out) : \text{for all } q \in \delta(\text{state}, \epsilon : \epsilon)\} \cup
                                                             \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in 
                                                           \{ (q, i+1, out) : \text{for all } q \in \delta(\text{state}, \text{input}[i+1]:\epsilon) \} \cup
               3/19/12
                                                              \{(q, i+1, out \oplus newOut) : for all q \in \delta(state, input[i+1], newOut)\}
```

Transduction: input \rightarrow output

```
function FSTtransduce (input[], \delta):
                       Agenda = \{ (start-state, 0, []) \} // each item contains list of partial outputs
                     Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
                     output = ()
                      while (true) {
                                            if (Current is an accept item) output \oplus out
                                            else Agenda = Agenda \cup GenStates(\delta, state, input, out, i)
                                            if (Agenda is empty) return output
                                                                                                                                                                                                                                                                                              ⊕ concatenates new
                                            else Current = (state, i, o) = pop(Agenda)
                                                                                                                                                                                                                                                                                              output string to
                                                                                                                                                                                                                                                                                              each item in out (the
function GenStates (\delta, state, input, out, i):
                                                                                                                                                                                                                                                                                             output list for each item)
                     return \{(q, i, out) : \text{for all } q \in \delta(\text{state}, \epsilon : \epsilon)\} \cup
                                                         \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, i, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{ (q, out \oplus newOut) : for all q \in \delta(state, \epsilon:newOut) \} \cup \{
                                                     \{ (q, i+1, out) : \text{for all } q \in \delta(\text{state}, \text{input}[i+1]:\epsilon) \} \cup
              3/19/12
                                                         \{(q, i+1, out \oplus newOut) : for all q \in \delta(state, input[i+1], newOut)\}
```

Cross-product FST

• For regular languages L₁ and L₂, we have two FSAs, M₁ and M₂

$$M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1)$$

 $M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$

• Then a transducer accepting L₁×L₂ is defined as:

$$T = (\Sigma, Q_1 \times Q_2, \langle q_1, q_2 \rangle, F_1 \times F_2, \delta) \ \delta(\langle s_1, s_2 \rangle, a, b) = \delta_1(s_1, a) \times \delta_2(s_2, b)$$
 for any $s_1 \in Q_1, s_2 \in Q_2$ and $a, b \in \Sigma \cup \{\epsilon\}$

Cross-product FST

Summary

- Finite state transducers specify regular relations
 - Encoding problems as finite-state transducers
- Extension of regular expressions to the case of regular relations/FSTs
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, cross-product);
 - creating regular languages from regular relations (projection)
- FST algorithms
 - Recognition, Transduction
- Determinization, Minimization? (not all FSTs can be 3/19/12 determinized)

46