(1) Chiven β and θ_1 are distinct partitions of $[a_1b_3]$ (bounded) $a = a_0 \{a_1 \dots \{a_m = b\}\}$ Set $M_1 = \sup f([a_1, a_{1+1}])$ and $S_p = \sum M_1[a_{1+1} - a_1]$ $a = a_0 \{a_1 \dots \{a_m = b\}\}$ $M_1 = \sup f([a_1, a_{1+1}])$ $S_q = \sum M_1[a_{2+1} - a_2].$

Also we have P LIA is a refinement of [aib], considering the portitioning of P and a. we get . Spf > Spuat } =) 2 Spuat 5 Spf + Saf

 $EX = f(x) = x^{2}$ on [0,6], P = [0,3,6] A = [0,2,4,6]A = [0,1,2,3,4,5,6]

(2) Let f be integrable on Ea_ib_j . (Construction of P, m_i^2 , M_i^2 , M_i^2 and M_i^2 are the same as above Q_i .) take $h=c_if=0$ we have Cm_i^2 and CM_i^2 So $S_p^2h=\sum_i CM_i^2\left(x_{i+1}^2-x_i^2\right)$, $S_p^2h=\sum_i Cm_i^2\left(x_{i+1}^2-x_i^2\right)$. Since for a given Q_i^2 $S_p^2f-S_p^2f$ ($Q_i^2=0$) Q_i^2f Q_i

(3) Given Port E. we have Spf-Spf(E.
) on [a,6].

Let P' be the refinement of P considering the partitioning on [cid]. So, spif > spf and Spif S. Spf. By this we have Spi-Spf (E, Just omitting the subintoruals [aic] and [dib], say or, we obtain;

Saf-saf(E =)

f is intble, on [c.d].