

Simple Linear Regression

A firm has a chain of pizza restaurants around the country. To see the effectiveness of its advertising activities, it has collected the data from 19 randomly selected metropolitan regions. There are two variables in the data:

- Promote: Promotional Expenditure in thousand rupees
- Sales in thousand rupees

We are interested in building the relationship between the two variables.

Simple Linear Regression Model

Sales =
$$\beta_0 + \beta_1$$
 Promote + ε

Sales is a linear function of Promote plus ε

 β_0 and β_1 are parameters of the model, ε is a random variable.

The linear term of β_0 + β_1 *Promote* is the variations in Sales that can be explained by Promote

The error term of ε is variations in Sales that can not be explained by the liner relationship between Promote and Sales.

Simple Linear Regression Equation

For the time being let us forget ε . The following equation describes how the mean value of Sales is related to Promote.

Expected Sales =
$$\beta_0 + \beta_1$$
 Promote

 β_0 is the intersection with y axis, β_1 is the slope.

Scatter Diagram

Estimated Linear Regression Equation

We want to estimate the relationship between

Promotional Expenditure

Mean value of sales

We may rely on own judgement, and draw a line to fit them.

Then we measure the intersection with y axis and that is b_0 , and the slope is b_1

Judgmental Solution 1

Judgmental Solution 2

The Least Square Method

Judgmental Solution can't be a standard approach as it may be person dependent.

We need to use algebra and calculus for correctly calculating the optimal line.

Hence we follow The Least Square Method approach.

The Least Square Method

$$Min Z = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Min
$$Z = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Classic Minimization

Min
$$Z = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

We want to minimize this function with respect to b₀ and b₁

This is a optimization problem.

We may remember from high school algebra that to find the minimum value we should get the derivative and set it equal to zero.

The Least Square Method

Note: Our unknowns are b_0 and b_1 . x_i and y_i are known. They are our data.

$$Z = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Find the derivative of Z with respect to b_0 and b_1 and set them equal to zero

Derivatives

$$Z = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

$$\frac{\partial Z}{\partial b_0} = \sum_{i=1}^{n} 2(-1)(y_i - b_0 - b_1 x_i) = 0$$

$$\frac{\partial Z}{\partial b_1} = \sum_{i=1}^{n} 2(-x_i)(y_i - b_0 - b_1 x_i) = 0$$

b₀ and b₁

$$b_{1} = \frac{\sum xy - (\sum x \sum y) / n}{\sum x^{2} - (\sum x)^{2} / n}$$

$$\boldsymbol{b}_0 = \overline{\mathbf{y}} - \boldsymbol{b}_1 \overline{\mathbf{x}}$$

Example

Promote(X)	Sales (Y)	XY	X square	Y Square	
23	554	12742	529	306916	
56	1339	74984	3136	1792921	
34	815	27710	1156	664225	
25	609	15225	625	370881	
67	1600	107200	4489	2560000	
82	2000	164000	6724	400000	
46	1000	46000	2116	1000000	
14	300	4200	196	90000	
6	150	900	36	22500	
47	1150	54050	2209	1322500	
52	1200	62400	2704	1440000	
88	2000	176000	7744 4000000		
71	1750	124250	5041	3062500	
78	2000	156000	6084	400000	
66	1500	99000	4356	2250000	
44	1000	44000	1936 1000000		
68	1600	108800	4624 2560000		
90	2000	180000	8100 4000000		
22	550	12100	484	302500	

Totals	979	23117	1469561	62289	34744943

 b_1

$$b_1 = \frac{\sum xy - (\sum x \sum y) / n}{\sum x^2 - (\sum x)^2 / n}$$

$$b_1 = 23.506$$

 b_0

$$\overline{y} = b_o + b_1 \overline{x}$$

$$\overline{y} = \frac{23117}{20} = 1155.85$$

$$\overline{x} = \frac{979}{20} = 48.95$$

$$1155.85 = b_0 + 23.506(48.95)$$

$$b_0 = 5.48$$

Estimated Regression Equation

$$y = 5.48 + 23.51x$$

Now we can predict.

For example, if one of restaurants of this Pizza Chain is having an expenditure of 72

We predict the mean of its quarterly sales is

$$y = 5.48 + 23.51(72)$$

$$y = 1697.95$$
 thousand rupees

Summary: The Simple Linear Regression Model

Simple Linear Regression Model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

• Simple Linear Regression Equation

$$E(y) = \beta_0 + \beta_1 x$$

Estimated Simple Linear Regression Equation

$$\hat{y} = b_0 + b_1 x$$

Summary: The Least Square Method

• Least Squares Criterion

min
$$\Sigma (y_i - \hat{y}_i)^2$$

where

 y_i = observed value of the dependent variable for the i th observation

 \hat{y}_i = estimated value of the dependent variable for the *i* th observation

Summary: The Least Square Method

Slope for the Estimated Regression Equation

$$b_{I} = \frac{\sum x_{i} y_{i} - (\sum x_{i} \sum y_{i}) / n}{\sum x_{i}^{2} - (\sum x_{i})^{2} / n}$$

y -Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x}$$

 x_i = value of independent variable for i th observation

 y_i = value of dependent variable for i th observation

x = mean value for independent variable

y = mean value for dependent variable

n = total number of observations

Standard Error of the Estimate

- Residual: Difference between the observed value and fitted value.
 Denoted by ei
- It is a measure of goodness of fit.
- Lesser the Standard Error, better is the model fit
- Standard Error is calculated by the formula:

$$s_e = \sqrt{\frac{\sum e_i^2}{n-2}}$$

Coefficient of Determination

- It is the fraction of variation of the dependent variable explained by the regression line.
- It is another measure of goodness of fit
- Bigger the R^2 , better is the model fit
- Its formula is

$$R^{2} = 1 - \frac{\sum e_{i}^{2}}{\sum (Y_{i} - \overline{Y})^{2}} \qquad 0 \le R^{2} \le 1$$

Dummy Variables

- Categorical Variables can be converted into indicators called dummy variables.
- e.g.
 - Gender having values 1 and 0
 - Quarter: four dummy variables Q1-Q4 with 1s and 0s

Multiple linear regression

Multiple Linear Regression

- Instead of fitting a line we fit a plane.
- General Form is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \varepsilon$$

Assumptions of Linear Regression

- Normality: Errors are Normally Distributed with mean zero
- Independence: Errors are independent
- Linearity: Mean of dependent variable Y is linearly related to Xis
- Homoscedasticity: Errors have constant variance