

日本文字の分類

Author: Chaz Frazer

Table of Contents

Introduction

Business Question & Application

Data & Info

Sourcing, Datasets, Data Manipulation

Data Preparation

Preparing images from binary data for modeling & Evaluation

EDA

The story the data tells & insights

Modeling

Model preparation, Modeling techniques & results

Conclusion & Next Steps

Stretch goals and further MVP analysis

"相手の理解できる言語で話せば、その人の頭に入る。相手の言語で話せば、その人の 心に届く。"

If you talk to a man in a language he understands, that goes to his head. If you talk to him in his own language, that goes to his heart.

Can a viable product model be created to accurately transcribe, read, and identify Japanese text for the archiving of important literary works? This can be used to preserve the surviving texts of endangered languages from the Ainu and Ryukyu minority groups in Japan.

Secondly

Can this be expanded to create an accurate API that recognizes written Japanese characters for touchscreen devices (ie. dictionaries, translation apps).

Target audience is Japanese and English research orgs, higher learning institutions, linguistic preservation societies, and language students.

Source

The data is from the <u>ETL Character Database</u>, which includes over a billion total of Japanese characters hand-written and reorganized by the <u>Japanese National Institute of Advanced Industrial Science and Technology (AIST)</u> and <u>JEITA</u>.

Data Properties

Each file contains 5 data sets except ETL8G_33.

Each data set contains 956 characters all hand-written and collected from 1973-1984.

Each writer wrote 10 sheets (genkouyoushi) per data set.

Motivations

My background in linguistics provided the platform to dive into computational linguistics and deep learning for this project. Project to be expanded to create an accurate APL that recognizes written Japanese characters for touchscreen devices (ie. dictionaries, translation apps).

Japanese Writing Systems

Kanji (漢字)

Brought to Japan from China in the 8th century. Pictographs that convey meaning (anthropomorphic and abstract).

Hiragana (ひらがな)

Phonetic 'alphabet' used for participles and to inflect verbs and adjectives. Curved components from kanji.

Katakana (カタカナ)

Same phonetic sounds as hiragana. Angular components from kanji. Used for foreign words, sounds, & onomatopoeia.

From Binary to Black & White

Example Japanese Binary Image Table

Data read from binary code and saved to an .npz file to be re-read

> Images reshaped from 32x32 to 64x64 pixels

The story the data tells & insights

Character Image Counts

- Because of the sheer amount of kanji in Japanese (~3000 in daily use and over 35,000 known to exist), the record number is much larger to account for this robustness in the language
- Note that because only 71 characters exist in hiragana (46 individual + 29 diphthongs), the majority of the entries in ETL8G are kanji
- Reading the Kanji characters from the ETL8G file. Kanji and Hiragana share the same dataset, so Kanji had to be isolated

Initial Class Imbalance

Hiragana

71 unique hiragana characters (46 singular chars +

29 diphthongs)

11,360 images

46 unique katakana characters 64,906 images

883 unique kanji characters 215,946 images from combined three datasets

Initial Class Imbalance

- Kanji is a sub-sample of 883
 characters from the ~3,000 used
 on a daily basis (speaking & reading)
- This natural class imbalance is a direct result of the structure of the language, and was weighted appropriately during modeling to account for the imbalance
- Hiragana included the 29
 diphthongs (character
 combinations). I chose to omit
 them from the katakana images
 for model and data variation

Model preparation, techniques & results

Deep Learning Models

- ImageDataGenerator used to create variation and prevent overfitting
- Models run on AWS EC2 instance using g4dn
 Nvidia Tesla GPU architecture
- Tensorboard used to live track the model across epochs
- Reduce Learn Rate on Plateau callback utilized to adjust learning rate on the fly if accuracy did not improve after 3 epochs
- Early Stopping callback used to stop model training if accuracy did not improve after 5 epochs

CNN Confusion Matrix

Accuracy / True Positive Rate

- o = Hiragana
- 1 = Kanji
- 2 = Katakana

Test Loss

N/A

N/A

0.90%

0.019%

0.027%

99.48%

	HII I'IOOPI KESUITS					
	Training Accuracy	Training Coss	Validation Accuracy	Validation Coss	Test Accuracy	
KUU	92.67%	N/A	92.75%	N/A	95.95%	
Random Forest	94.50%	N/A	94.48%	N/A	94.95%	
CNN	99.79%	0.68%	99.40%	3.2%	99.73%	

0.017%

99.55%

99.95%

cupner (Muidia)

Conclusion & Next Steps

Stretch goals and further MVP analysis

Accuracy is Key

Over 200,000 unique characters trained to a recognition percentage of over 99% accuracy

Stretch Goals and Next Steps

Kuzushiji

Work with kuzushiji (Japanese cursive writing) KMINST dataset variations

iOS API

Handwriting recognition app using trained model

OpenCV

For live model image recognition using webcam

Cinquistics ELI

The CUNY Endangered Language
Initiative strives to preserve our dying
languages around the world. Use
model as a way to utilize
computational linguistics and
preserve precious texts and early
written Japanese history

References

Electrotechnical Caboratory Data Set (ECTCDB)

http://etlcdb.db.aist.go.jp/

Japanese National Institute of Advanced Industrial Science and Technology (AIST)

https://www.aist.go.jp/

Japan Electronics & Information Technology Industries
Association (JEITA)

http://www.jeita.or.jp/english/

ありがとうございました (Thanks!)

Questions are open!

Github.com/Mynusjanai

www.mynus.gg

Cinkedin.com/in/chazfrazer

