Лабораторная работа №6

Задача об эпидемии

Танрибергенов Эльдар

2023 г.

Российский университет дружбы народов, Москва, Россия

Цели и задачи

Рассмотреть простейшую модель эпидемии на примере задачи.

Задача:

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=6666) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=83, а число здоровых людей с иммунитетом к болезни R(0)=6. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I^*$
- 2. если $I(0) > I^*$

Материалы и методы

- · Julia
- · OpenModelica

Выполнение работы

Изучение теории

Если
$$I(0) \leq I^*$$
, то

$$\begin{cases} \frac{dS}{dt} = 0\\ \frac{dI}{dt} = -\beta I\\ \frac{dR}{dt} = \beta I \end{cases}$$

Если
$$I(0) > I^*$$

$$\begin{cases} \frac{dS}{dt} = -\alpha S \\ \frac{dI}{dt} = \alpha S - \beta I \\ \frac{dR}{dt} = \beta I \end{cases}$$

Написание кода для первого случая

,	
#подключаем модули using Plots using DifferentialEquations	model lr6 constant Integer n = 6666; constant Integer i_0 = 83;
#задаем начальные условия N = 6666 I0 = 83	constant Integer r_0 = 6; constant Integer s_0 = n-i_0-r_0;
R0 = 6 S0 = N-I0-R0 a=0.01 #коэффициент заболеваемости b=0.02 #коэффициент выздоровления	constant Real a = 0.01; constant Real b = 0.02;
#состояние системы u0 = [S0, I0, R0] #отслеживаемый промежуток времени time = [0.0, 100.0]	Real s(start=s_0); Real i(start=i_0); Real r(start=r_0);
#сама система function M!(du, u, p, t) du[1] = 0 du[2] = -b*u[2] du[3] = b*u[2]	equation der(s) = 0; der(i) = -b*i; der(r) = b*i; end lr6:

Результаты для первого случая

Из OpenModelica

Результаты, для первого случая

Написание кода для второго случая

```
Франмент кода на јина
                                                         код на оренмоченса
#полключаем модули
                                                         model lr62
using Plots
                                                          constant Integer n = 6666:
using DifferentialEquations
                                                          constant Integer i 0 = 83:
                                                          constant Integer r = 0 = 6;
#задаем начальные условия
N = 6666
                                                          constant Integer s 0 = n-i \ 0-r \ 0:
10 = 83
R0 = 6
                                                          constant Real a = 0.01:
S0 = N-10-R0
                                                          constant Real b = 0.02:
а=0.01 #коэффициент заболеваемости
b=0.02 #коэффициент выздоровления
                                                          Real s(start=s 0):
#состояние системы
                                                          Real i(start=i 0):
u0 = [S0, I0, R0]
                                                          Real r(start=r 0):
#отслеживаемый промежуток времени
time = [0.0, 100.0]
                                                         equation
#сама система
                                                           der(s) = -a*s;
function M!(du, u, p, t)
                                                           der(i) = a*s-b*i:
         du[1] = -a*u[1]
                                                           der(r) = b*i:
         du[2] = a*u[1]-b*u[2]
         du[3] = b*u[2]
                                                         end 1:62.
end
```


Из OpenModelica

Результаты

Результат

Рассмотрена простейшая модель эпидемии на примере задачи. Построены графики изменения числа особей в каждой из трех групп. Рассмотрено, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I^*$
- 2. если $I(0)>I^{st}$

Вывод

Вывод

Я рассмотрел простейшую модель эпидемии. Выполнил задание согласно варианту: построил графики изменения числа особей в каждой из трех групп для двух случаев.