Teoria Clássica de Campos

Matheus Pereira,

Instituto de Física, Universidade de São Paulo, Cidade Universitária, São Paulo, Brasil https://matheuspereira4.github.io/

 $E ext{-}mail: matheus.coutinho9@usp.br}$

Abstract: Trabalho em Progresso

 $^{^{1}\}mathrm{Corresponding}$ author.

Sumário

1	Aul	a 1	1
	1.1	Formalismo Lagrangeano	1
	1.2	Oscilador Harmônico	2
	1.3	Formalismo Hamiltoniano	3
	1.4	Leis de Conservação	3
		1.4.1 L não não depende de t - Conservação da Energia	3
		1.4.2 L não depende de q - Conservação de Momento	4
		$1.4.3~$ L não depende de ϕ - Conservação do Momento Angular	4
2	2 Aula 2		
	2.1	Variação diretamente na ação	5
	2.2	Teoria de Grupos e Rotações Infinitesimais	5
	2.3	Invariância da ação por rotação infinitesimal e simetria associada	9
	2.4	Passagem do discreto para o Contínuo	11
3	Aula 3		13
	3.1	Equação de Euler-Lagrange para Campos	13
	3.2	Relatividade Especial	13
	3.3	Transformações de Lorentz infinitesimais	14
	3.4	rotações	15
	3.5	Translações	15
	3.6	Equação de Movimento para Campos Relativísticos	15
4	$\mathbf{A}\mathbf{u}\mathbf{l}$	a 4	16
	4.1	Teorema de Noether	16
	4.2	Campo Escalar	19
5	5 Aula 5		
	5.1	Campo de Dirac	23
	5.2	Simetria de fase $U(1)$	25
	5.3	Condição de Majorana	25
6	6 Aula 6		
	6.1	Campo de Dirac/Fermiônico/Spinorial	26
	6.2	Supersimetria	26
		6.2.1 Modelo de 2 campo escalares e 1 campo de Majorana	26
	6.3	Campo Eletromagnético	26

7	Aula 7		28
	7.1	Teoria de Campo para spin 1- Campo Eletromagnético	28
	7.2	Ação de Maxwell	28
	7.3	Campo escalar complexo	28
	7.4	Acoplamento Mínimo	28
	7.5	Campo Eletromagnético e campo escalar	28
	7.6	Campo Eletromagnético e Campo de Dirac	28
	7.7	Campo de Yang-Mills - N campos de Gauge $A_{\mu}^{a}(\mathbf{x})$	29

1 Aula 1

1.1 Formalismo Lagrangeano

Para a descrição de campos o formalismo Newtoniano é pouco conveniente, no entanto o formalismo Lagrangeano é extremamente poderosos para tratar tais sistemas, começarei apresentando essa nova formulação para o caso de uma partícula, um ponto material, e depois mostrarei como extender para os sistema contínuos, que são de nosso interesse.

Começamos definindo um objeto matemática denominado de ação S, que não é uma função no sentido mais usual, mas sim um funcional, ou seja, um objeto que pega uma função e associa a ela um número. A função que o funcional toma é chamada de Lagrangeana L, que é função das coordenadas e velocidades

$$S = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$$

Nosso objetivo é determinar qual é a curva q(t) que faz com que a variação da ação δS seja nula. Para tanto, tomemos pequenas variações nas coordenadas

$$q(t) \rightarrow q'(t) = q(t) + \delta q(t)$$

Essas variaçõe devem se anular nos extremos

$$\delta q(t_1) = \delta q(t_2) = 0$$

A variação da ação é definida como

$$\delta S = S[q + \delta q, \dot{q} + \delta \dot{q}] - S[q, \dot{q}] = 0$$

Agora, ao impor que $\delta S=0$ obteremos uma equação dinâmica para L, que nos permitirá, dado uma função L que caracteriza o sistema, determinar a trajetória as equações de movimento q(t)

$$\delta S = \int L(q + \delta q, \dot{q} + \delta \dot{q}) dt - L(q, \dot{q}) dt$$

$$L(q + \delta q) = \frac{\partial L}{\partial q} \delta q + L(q)$$

$$L(\dot{q} + \delta \dot{q}) = \frac{\partial L}{\partial \dot{q}} \delta \dot{q} + L(\dot{q})$$

$$L(q + \delta q, \dot{q} + \delta \dot{q}) = \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} + L(q, \dot{q})$$

$$\delta S = \int \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right) dt = \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \frac{d}{dt} \delta \dot{q}\right) dt$$

Podemos integrar o segundo termo por partes

$$\delta S = \int \left[\frac{\partial L}{\partial q} \delta q - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) \right]$$

A integral da derivada total fornece um termo proporcional às variações δq mas como elas são nulas nos extremos ficamos simplesmente com

$$\delta S = \int \left(\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} \right) \delta q. dt = 0$$

$$\boxed{\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0}$$

Onde L = T - U

1.2 Oscilador Harmônico

$$U(x) = \frac{1}{2}k.x^2$$

$$T = \frac{1}{2}m.\dot{x}^2$$

$$L = \frac{1}{2}m.\dot{x}^2 - \frac{1}{2}k.x^2$$

$$\frac{\partial L}{\partial x} = -k.x \quad , \quad \frac{\partial L}{\partial \dot{x}} = m.\dot{x}$$

$$m.\ddot{x} = -k.x$$

1.3 Formalismo Hamiltoniano

$$p_i \equiv \frac{\partial L}{\partial \dot{q}_i}$$

$$L(q,\dot{q},t) \to H(q,p,t)$$

Transformada de Legendre

$$H(q, p, t) = \sum_{i} p_{i}.\dot{q}_{i} - L(q, \dot{q}, t)$$

Equações de Movimento

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$$

1.4 Leis de Conservação

1.4.1 L não não depende de t - Conservação da Energia

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \sum_{i} \left(\frac{\partial L}{\partial q_{i}} \frac{\mathrm{d}q_{i}}{\mathrm{d}t} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}\dot{q}_{i}}{\mathrm{d}t} \right)$$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \sum_{i} \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q} \right)$$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} - L \right) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i} p_{i} \cdot \dot{q}_{i} - L \right) = 0$$

 $\frac{\mathrm{d}H}{\mathrm{d}t} = 0$

1.4.2~L não depende de q
 - Conservação de Momento

$$\frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_i} = 0$$

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = 0$$

1.4.3 L não depende de ϕ - Conservação do Momento Angular

$$T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$$

Em coordenadas polares

$$T=\frac{1}{2}m(\dot{r}^2+r^2\dot{\phi}^2)$$

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) - U(r)$$

$$p_{\phi} = \frac{\partial L}{\partial \phi} = mr^2 \dot{\phi} =$$

momento angular

2 Aula 2

 \star Em geral, a variação δf de função f(x) é dada por

$$\delta f = \frac{\mathrm{d}f}{\mathrm{d}x} \delta x$$

Isso porque $\delta f = f(x + \delta x) - f(x)$

$$\delta f = f(x) + \frac{\mathrm{d}f}{\mathrm{d}x}\delta x - f(x) = \frac{\mathrm{d}f}{\mathrm{d}x}\delta x$$

Se for uma função de mais variáveis f(x,y)

$$\delta f = \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y$$

2.1 Variação diretamente na ação

Uma forma prática de derivar as equações de movimento é fazendo a variação diretamente na ação, usando as ideia de variação apresentada acima.

$$S = \int dt \left(\frac{1}{2} m \dot{q}_i^2 - U(q) \right)$$

$$\delta S = \int dt \left(m \dot{q}_i . \delta \dot{q} - \frac{dU}{dq} \delta q \right) = 0$$

$$\delta S = \int dt . \delta q \left(-m . \ddot{q} - \frac{dU}{dq} \right) = 0$$

$$m . \frac{d^2 q}{dt^2} = -\frac{dU}{dq}$$

Em poucas linhas recuperamos a equação de movimento para um potencial U(q) geral

2.2 Teoria de Grupos e Rotações Infinitesimais

Uma rotação em 2 dimensões de um vetor é implementada por uma matriz $R(\theta)$ pertencente ao grupo SO(2). As matrizes desse grupo são ortogonais, o que quer dizer que $R^{-1} = R^T$, e possuem determinante igual a 1. Essas propriedades podem facilmente ser deduzidas a partir do fato que essas matrizes devem manter invariante o produto escalar em \mathbb{R}^2 . Dadas as características do grupo SO(2), seus elementos podem ser parametrizados em termos de um ângulo θ , que define a rotação. Para um tratamento mais detalhado sobre teoria de grupos, vide https://matheuspereira4.github.io/P%C3%A1ginas/Notas__Grupos_e_Tensores%20(3).pdf

Dado um vetor representado por uma matriz coluna

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Uma matriz $R(\theta) \in SO(2)$ transforma esse vetor da seguinte forma

$$\mathbf{x} \to \mathbf{x}' = \mathrm{R}(\theta)\mathbf{x}$$

Essa equação pode ser escrita matricialmente

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\mathbf{x}' = \begin{pmatrix} \cos \theta \ x + \sin \theta \ y \\ -\sin \theta \ x + \cos \theta \ y \end{pmatrix}$$
$$x' = \cos \theta \ x + \sin \theta \ y$$
$$y' = -\sin \theta \ x + \cos \theta \ y$$

Como estamos interessados em rotações infinitesimais, podemos fazer expansões em primeira ordem nos elementos de $R(\theta)$

$$\lim_{\theta \to 0} \sin \theta = \theta$$
$$\lim_{\theta \to 0} \cos \theta = 1$$

$$R(\theta) = \begin{pmatrix} 1 & \theta \\ -\theta & 1 \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & \theta \\ -\theta & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Dizemos que as coordenadas do vetor se transformam de forma genérica segundo

$$x \to x' = x + \delta x$$

$$y \to y' = y + \delta y$$

Onde os δ' s representam as variações nas coordenadas. Para o caso das rotações infinitesimais temos

$$x' = x + \theta.y$$

$$y' = y - \theta.x$$

O que nos permite identificar as variações

$$\delta x = \theta.y$$

$$\delta y = -\theta . x$$

De forma absolutamente simétrica, podemos escrever a variação sobre a i-ésima componente como

$$\delta x_i = \epsilon_{ij}.x_j$$

$$x_i \to x_i' = x_i + \epsilon_{ij} x_j \tag{2.1}$$

Importante lembrar que o índice j está repetido, o que indica uma soma sobre as j-ésimas componentes, segundo a convenção de Einstein

Escrevendo a soma de forma explícita, temos

$$\delta x_1 = \epsilon_{11} x_1 + \epsilon_{12} x_2$$

$$\delta x_2 = \epsilon_{21} x_1 + \epsilon_{22} x_2$$

No caso das rotações infinitesimais, temos $\epsilon_{12}=1,\ \epsilon_{21}=-1$ e $\epsilon_{11}=\epsilon_{22}=0.$ Ou seja, ϵ_{ij} é uma matriz antisimétrica

Existem ainda uma outra forma de pensar no problema da rotação de um vetor, como já dito, os elementos do grupo SO(2) são parametrizados por um ângulo θ , e uma consequência muito importante desse fato é que é que qualquer elemento do grupo pode ser escrito a partir do chamado gerador J. Definido como

$$J = \left. \frac{\mathrm{d}R}{\mathrm{d}\theta} \right|_{\theta=0}$$

Os elementos de SO(2) são escritos como

$$R(\theta) = e^{\theta J}$$

No caso do grupo SO(2), temos

$$\frac{\mathrm{d}}{\mathrm{d}\theta}R(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} -\sin\theta & \cos\theta \\ -\cos\theta & -\sin\theta \end{pmatrix}$$
$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

A matriz geradora J corresponde justamente à matriz antissimétrica ϵ_{ij} , isso é evidente, pois agora uma rotação pode ser escrita em termos de J

$$\mathbf{x} \to \mathbf{x}' = e^{\theta J} \mathbf{x} \tag{2.2}$$

Se estamos interessados em rotações infinitesimais, podemos expandir a matriz $e^{\theta J}$ até primeira ordem

$$e^{\theta J} = 1 + \theta J$$

Substituindo em (2.2), obtemos

$$\mathbf{x}' = (\mathbb{1} + \theta J)\mathbf{x}$$

$$\mathbf{x}' = \mathbf{x} + \theta J\mathbf{x}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$x'_1 = x_1 + \theta x_2$$

$$x'_2 = -\theta x_1 + x_2$$

Nós conseguimos recuperar a transformação na forma (2.1) usando somente teoria de Grupos! Utilizamos as propriedades do grupo de rotações para encontrar a forma geral de um de seus elementos e o expressamos em termos do gerador, ao fazer uma expansão em primeira ordem nós recuperamos a lei de transformação das coordenadas. Muitas vezes não é claro ou imediato onde está a teoria de grupos quando falamos de teoria de campo, pois é comum expressar só as tranformações (das coordenadas ou dos campos), mas a forma da transformação pode ser identificada como uma pequena variação que pode ser expressa como o gerador do grupo que está por trás da transformação.

Fala-se muito na literatura a respeito do poder da teoria de grupos, e que ela é a ferramenta matemática apropriada para descrever as simetrias de um sistema físico. Utilizei aqui o grupo SO(2) apenas como exemplo, já que ele é um dos mais simples, para ilustrar a forma como a teoria de grupos se aplica na descrição das simetrias. No entanto, até agora apenas vimos que a ação de um grupo transforma as coordenadas de um vetor de uma forma particular, estamos prontos para investigar as consequências dessa transformação na ação que descreve um sistema físico.

2.3 Invariância da ação por rotação infinitesimal e simetria associada

$$U = U(r)$$

$$\delta U = \frac{\mathrm{d}U}{\mathrm{d}r} \delta r = 0$$

$$\delta S = \int \mathrm{d}t \left(\delta T - \delta U\right)$$

$$\delta S = \int \mathrm{d}t \, \delta T$$

$$\delta T = \frac{\mathrm{d}T}{\mathrm{d}\dot{x}} \delta \dot{x}_i = m.\dot{x}_i \delta \dot{x}_i$$

$$\delta S = \int \mathrm{d}t \left(m.\dot{x}_i \delta \dot{x}_i\right) = \int \mathrm{d}t \, m\dot{x}_i \frac{\mathrm{d}}{\mathrm{d}t} (\delta \dot{x}_i)$$

Podemos integrar por partes

$$\delta S = \int dt \left[m \frac{d}{dt} (\dot{x}_i \delta x_i) - m \ddot{x}_i \delta x_i \right]$$

Equação de movimento

$$m.\ddot{x}_{i} = -\frac{\mathrm{d}V}{\mathrm{d}x_{i}} = \frac{\mathrm{d}V}{\mathrm{d}r} \frac{\mathrm{d}r}{\mathrm{d}x_{i}}$$

$$r = \sqrt{x_{i}x_{i}}$$

$$\frac{\mathrm{d}r}{\mathrm{d}x_{i}} = \frac{x_{i}}{r}$$

$$m.\ddot{x}_{i} = -\frac{\mathrm{d}V}{\mathrm{d}r} \frac{x_{i}}{r}$$

$$\delta S = \int \mathrm{d}t \left(m \frac{\mathrm{d}}{\mathrm{d}t} (\dot{x}_{i} \delta x_{i}) + \frac{\mathrm{d}V}{\mathrm{d}r} \frac{x_{i}}{r} \delta x_{i} \right)$$

O segundo termo é claramente nulo devido à antissimetria da matriz ϵ_{ij} , o que restou foi o primeiro termo, que é uma derivada total

$$\delta S = \int \mathrm{d}t \left[m \frac{\mathrm{d}}{\mathrm{d}t} (\dot{x}_i \delta x_i) \right]$$

$$\delta S = \left. m \dot{x}_i \delta x_i \right|_{t_1}^{t_2}$$

Como estamos impondo que a ação é invariante por rotação $\delta S=0$, então

$$m\dot{x}_i\delta x_i\bigg|_{t_1}^{t_2}=m\dot{x}_i\epsilon_{ij}x_j\bigg|_{t_1}^{t_2}=0$$

A quantidade $m\dot{x}_i\epsilon_{ij}x_j$ é igual nos instantes t_1 e t_2 , como estamos tomando esses tempos arbitrariamente, concluímos que essa quantidade é conservada

$$\frac{\mathrm{d}}{\mathrm{d}t}(m.\dot{x}_i.\epsilon_{ij}x_j) = 0$$

Denotarei a quantidade conservada por L_{ij} , e lembramos que a matriz ϵ_{ij} já foi identificada como o gerador J do grupo de rotações, podemos substituir a matriz na equação

$$L_{ij} = m \frac{\mathrm{d}x_i}{\mathrm{d}t} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} x_j$$

$$L_{ij} = \frac{1}{2}m\left(x_i\frac{\mathrm{d}x_j}{\mathrm{d}t} - x_j\frac{\mathrm{d}x_i}{\mathrm{d}t}\right)$$

L é simplesmente o momento angular, isso pode ser visto se reescrevermos a expressão em termos do momento

$$L_{ij} = \frac{1}{2}m(x_ip_j - x_jp_i)$$

$$L = x \times p$$

Simetria da ação \rightarrow Lei de Conservação

2.4 Passagem do discreto para o Contínuo

Consideremos um sistema de massa acopladas e que oscilam verticalmente Lei de Newton

$$m.\ddot{\varphi}_i = \tau \sin \beta - \tau \sin \alpha$$

Como os ângulos são pequenos:

$$\sin \beta = \tan \beta$$

$$\sin \alpha = \tan \alpha$$

$$m.\ddot{\varphi}_i = \frac{\tau}{a} [(\varphi_{i+1} - \varphi_i) - (\varphi_i - \varphi_{i-1})]$$

$$\frac{\tau}{a} [(\varphi_{i+1} - \varphi_i) - (\varphi_i - \varphi_{i-1})] = F_R$$

$$U(\varphi_i) = -\int F. \, d\varphi_i$$

$$U = \frac{\tau}{2a} (\varphi_{i+1} - \varphi_i)^2 + \frac{\tau}{2a} (\varphi_i - \varphi_{i-1})^2$$

$$U = \sum_k \frac{\tau}{2a} (\varphi_{k+1} - \varphi_k)^2$$

$$T = \sum_k \frac{1}{2} m. \dot{\varphi}_k^2$$

$$L = \sum_k \frac{1}{2} m. \dot{\varphi}_k^2 - \sum_k \frac{\tau}{2a} (\varphi_{k+1} - \varphi_k)^2$$

$$a = \Delta x \to 0, \quad \varphi_i(t) \to \varphi(x, t)$$

$$L = \sum_k \Delta x \frac{1}{2} \frac{m}{\Delta x} \left(\frac{\partial \varphi}{\partial t}\right)^2 - \sum_k \Delta x^2 \frac{\tau}{2\Delta x} \left(\frac{\varphi(x + \Delta x, t) - \varphi(x, t)}{\Delta x}\right)^2$$

$$L = \lim_{\Delta x \to 0} \sum_k \Delta x \frac{1}{2} \frac{m}{\Delta x} \left(\frac{\partial \varphi}{\partial t}\right)^2 - \sum_k \Delta x \frac{\tau}{2} \left(\frac{\varphi(x + \Delta x, t) - \varphi(x, t)}{\Delta x}\right)^2$$

$$L = \mathrm{d}x \left[\frac{\sigma}{2} \left(\frac{\partial \varphi}{\partial t} \right)^2 - \frac{\tau}{2} \left(\frac{\partial \varphi}{\partial t} \right)^2 \right]$$

3 Aula 3

3.1 Equação de Euler-Lagrange para Campos

De forma geral

$$\mathcal{L} = \mathcal{L}\left(\varphi, \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial x}\right)$$

$$S = \int \int dt \, dx \, \mathcal{L}\left(\varphi, \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial x}\right)$$

$$\delta S = \int \int dt \, dx \left(\frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi + \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \delta \dot{\varphi} + \frac{\partial \mathcal{L}}{\partial \varphi'} \delta \varphi'\right)$$

$$\delta S = \int \int dt \, dx \left(\frac{\partial \mathcal{L}}{\partial \varphi} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial \varphi'}\right) \delta \varphi$$

$$\delta S = 0$$

$$\frac{\partial \mathcal{L}}{\partial \varphi} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial \varphi'} = 0$$

3.2 Relatividade Especial

$$ds = ds'$$

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$$

Quadri-vetor posição

$$x^{\mu} = (x^0, x^1, x^2, x^3)$$

$$\mathrm{d}s^2 = \eta_{\mu\nu} \, \mathrm{d}x^\mu \, \mathrm{d}x^\nu$$

Referencial $S \to x^{\mu}$

Referencial $S' \to x'^{\mu}$

$$x'^{\mu} = \Lambda^{\mu}_{\nu}.x^{\nu}$$

$$\Lambda^{\mu}_{
u} = \left(egin{array}{cccc} \gamma & -\gamma eta & 0 & 0 \\ -\gamma eta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight)$$

$$\Lambda^{\mu}_{\nu} = \begin{pmatrix} \cosh \alpha & -\sinh \alpha & 0 & 0 \\ -\sinh \alpha & \cosh \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$x'^{0} = \cosh \alpha . x^{0} - \sinh \alpha . x^{1}$$

$$x'^{1} = -\sinh \alpha . x^{0} + \cosh \alpha . x^{1}$$

$$x'^{2} = x^{2}$$

$$x'^{3} = x^{3}$$

$$ds'^{2} = \eta_{\mu\nu} dx'^{\mu} dx'^{\nu} = \eta_{\mu\nu} \Lambda^{\mu}_{\alpha} dx^{\alpha} \Lambda^{\nu}_{\beta} dx^{\beta} = \eta_{\alpha\beta} dx^{\alpha} dx^{\beta}$$
$$\eta_{\mu\nu} \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} = \eta_{\alpha\beta}$$

3.3 Transformações de Lorentz infinitesimais

$$x'^{\mu} = x^{\mu} + \epsilon^{\mu}_{\nu}.x^{\nu}$$

$$\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \epsilon^{\mu}_{\nu}$$

$$\eta_{\mu\nu} = (\delta^{\mu}_{\alpha} + \epsilon^{\mu}_{\alpha})(\delta^{\nu}_{\beta} + \epsilon^{\nu}_{\beta}) = \eta_{\alpha\beta}$$

$$\eta_{\mu\nu} = (\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} + \delta^{\mu}_{\alpha}\epsilon^{\nu}_{\beta} + \delta^{\nu}_{\beta}\epsilon^{\mu}_{\alpha} + \epsilon^{\mu}_{\alpha}\epsilon^{\nu}_{\beta}) = \eta_{\alpha\beta}$$

$$\eta_{\alpha\beta} + \eta_{\alpha\mu}\epsilon^{\nu}_{\beta} + \eta_{\mu\beta}\epsilon^{\mu}_{\alpha} = \eta_{\alpha\beta}$$

$$V^{\mu} \to V_{\mu} = \eta_{\mu\nu}V^{\nu}$$

$$\eta_{\alpha\nu}\epsilon^{\nu}_{\beta} \equiv \epsilon_{\alpha\beta}$$

$$\eta_{\mu\beta}\epsilon^{\mu}_{\alpha} = \epsilon_{\mu\alpha}$$

$$\epsilon_{\alpha\beta} + \epsilon_{\beta\alpha} = 0$$

 $\epsilon_{\alpha\beta}$ é anti-simétrica

3.4 rotações

3.5 Translações

Translações

$$x'^{\mu} = x^{\mu} + a^{\mu}$$

Translações infintesimais

$$x'^{\mu} = x^{\mu} + \epsilon^{\mu}$$

$$\delta x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} + \epsilon^{\mu}$$

$$\frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial x^{0}}, \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right) = \left(\frac{\partial}{\partial x^{0}, \vec{\nabla}}\right)$$
$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$$

3.6 Equação de Movimento para Campos Relativísticos

$$\mathcal{L} = \mathcal{L}(\phi, \partial_{\mu}\phi)$$

$$S = \int d^{4}x \mathcal{L}(\phi, \partial_{\mu}\phi)$$

$$\delta S = \int d^{4}x \left[\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \delta (\partial_{\mu}\phi) \right]$$

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \delta (\partial_{\mu}\phi) = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \partial_{\mu} (\delta \phi) = \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \delta \phi \right] - \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right] \delta \phi$$

$$\delta S = \int d^{4}x \left\{ \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \delta \phi \right] - \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right] \delta \phi \right\}$$

$$\delta S = \int d^{4}x \left\{ \left[\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right) \right] \delta \phi + \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \delta \phi \right] \right\}$$

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = 0$$

4 Aula 4

4.1 Teorema de Noether

Simetrias na ação:

Variação nas coordenadas

$$x^{\mu} \rightarrow x'^{\mu} = x^{\mu} + \delta x^{\mu}$$

Variação no campo

$$\phi \to \phi' = \phi + \delta \phi$$

É importante tomar o cuidado de considerar que uma variação nas coordenadas vai induzir uma mudança no elemento de volume quadrimensional $d^4x \to d^4x'$, essa diferença é fornecida pelo determinante do Jacobiano

$$d^4x' = \det J \ d^4x$$

Jacobiano da transformação de coordenadas

$$J^{\mu}_{\nu} = \frac{\partial x'^{\mu}}{\partial x^{\nu}}$$

$$J^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \partial_{\nu} \delta x^{\mu}$$

$$\det J = \det(\mathbb{1} + \partial \delta) = 1 + \operatorname{tr} \partial \delta$$

$$\det J = 1 + \partial_{\mu} \delta x^{\mu}$$

$$d^4x' = \det J \ d^4x = (1 + \partial_\mu \delta x^\mu) d^4x$$

$$d^4x' = d^4x + d^4x \partial_\mu \delta x^\mu$$

$$\delta(\mathrm{d}^4 x) = \mathrm{d}^4 x' - \mathrm{d}^4 x = \mathrm{d}^4 x \ \partial_\mu \delta x^\mu$$

$$S = \int \mathrm{d}^4 x \, \mathcal{L}(\phi, \partial_\mu \phi)$$

$$\delta S = \int \left[\delta(\mathrm{d}^4 x) \ \mathcal{L} + \mathrm{d}^4 x \ \delta \mathcal{L} \right]$$

$$\delta S = \int \left(d^4 x \, \partial_\mu \delta x^\mu \mathcal{L} + d^4 x \, \delta \mathcal{L} \right)$$
$$\delta S = \int d^4 x \, (\partial_\mu \delta x^\mu \mathcal{L} + \delta \mathcal{L})$$
$$\delta \mathcal{L} = \mathcal{L}'(x') - \mathcal{L}(x)$$

Como δx é uma variação infinitesimal, posso fazer uma expansão da função $\mathcal{L}(x+\delta x)$ em série de Taylor até primeira ordem

$$\delta \mathcal{L} = \mathcal{L}'(x + \delta x) - \mathcal{L}(x) = \mathcal{L}'(x) + \partial_{\mu} \mathcal{L}' \delta x^{\mu} - \mathcal{L}(x)$$

Definimos a diferença $\mathcal{L}'(x) - \mathcal{L}(x)$ como $\delta_0 \mathcal{L}$, denominada de variação funcional de \mathcal{L} , enquanto que $\delta x^{\mu} \partial_{\mu} \mathcal{L}'$ é chamado de termo de transporte

$$\delta_0 \mathcal{L} \equiv \mathcal{L}'(x) - \mathcal{L}(x)$$

$$\delta \mathcal{L} = \delta_0 \mathcal{L} + \delta x^\mu \partial_\mu \mathcal{L}'$$

Como estamos fazendo variações infinitesimais, a diferença entre \mathcal{L}' e \mathcal{L} é da ordem de δx , então \mathcal{L}' e \mathcal{L} só diferem por um termo quadrático adicional, que pode ser ignorado.

$$\delta \mathcal{L} = \delta_0 \mathcal{L} + \delta x^\mu \partial_\mu \mathcal{L}$$

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta_0 \phi + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta_0 \partial_\mu \phi + \delta x^\mu \partial_\mu \mathcal{L}$$

Integrando por partes

$$\frac{\partial \mathcal{L}}{\partial \phi} \delta_0 \phi + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \partial_\mu \delta_o \phi = \frac{\partial \mathcal{L}}{\partial \phi} \delta_0 \phi + \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta_0 \phi \right] - \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \right] \delta_0 \phi$$
$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta_0 \phi + \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta_0 \phi \right] - \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \right] \delta_0 \phi + \delta x^\mu \partial_\mu \mathcal{L}$$

Fatoramos $\delta_0 \phi$

$$\delta \mathcal{L} = \left[\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \right] \delta_{0} \phi + \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{0} \phi \right] + \delta x^{\mu} \partial_{\mu} \mathcal{L}$$

O primeiro termo entre parênteses é a equação de movimento do campo ϕ

$$\delta S = \int d^4 x \, \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta_0 \phi + \delta x^\mu \mathcal{L} \right]$$

$$\delta \phi = \phi'(x') - \phi(x)$$

$$\delta \phi = \phi'(x) + \delta x^\nu \partial_\nu \phi' - \phi(x) = \delta_0 \phi + \delta x^\nu \partial_\nu \phi$$

$$\delta \phi = \delta_0 \phi + \delta x^\nu \partial_\nu \phi$$

$$\delta S = \int d^4 x \, \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} (\delta \phi - \delta x^\nu \partial_\nu \phi) + \delta x^\mu \mathcal{L} \right]$$

$$\delta S = \int d^4 x \, \partial_\mu \left[\delta x^\mu \mathcal{L} - \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta x^\nu \partial_\nu \phi + \delta \phi \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \right]$$

$$\delta S = \int d^4 x \, \partial_\mu \left[\delta x^\nu \left(\delta^\mu_\nu \mathcal{L} - \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \partial_\nu \phi \right) + \delta \phi \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \right]$$

Pensemos um pouco no δx^μ em alguns casos específicos. No caso de uma transformação de Lorentz, temos

$$\delta x^{\mu} = \epsilon^{\mu}_{\nu} x^{\nu}$$

No caso de uma Translação

$$\delta x^{\mu} = \epsilon^{\mu}$$

Podemos expressar a variação em termos de uma parâmetro genérico

$$\delta x^{\mu} = \frac{\delta x^{\mu}}{\delta \omega^a} \delta \omega^a$$

Nesse caso, se identificamos ω^a como ϵ^μ_ν , retornamos à variação da transformação de Lorentz

$$\delta\omega^a \to \epsilon^\mu_\nu, \frac{\delta x^\mu}{\delta \epsilon^{\alpha\beta}} = x_\alpha \delta^\mu_\nu - x_\nu \delta^\mu_\alpha$$

$$\delta\omega^a \to \epsilon^\mu, \frac{\delta x^\mu}{\delta \epsilon^\nu} = \delta^\mu_\nu$$

Parâmetro genérico de transformação ω_a

$$\delta x^{\mu} = \frac{\delta x^{\mu}}{\delta \omega^a} \delta \omega^a$$

$$\delta\phi = \frac{\delta\phi}{\delta\omega^a}\delta\omega^a$$

Caso genérico

$$\delta S = \int d^4 x \, \partial_{\mu} \left[\left(\delta^{\mu}_{\nu} \mathcal{L} - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \frac{\delta x^{\nu}}{\delta \omega^{a}} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \frac{\delta \phi}{\delta \omega^{a}} \right] \delta \omega^{a} = 0$$

$$\frac{\delta x^{\nu}}{\delta \omega^{a}} \left(\delta^{\mu}_{\nu} \mathcal{L} - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) + \frac{\delta \phi}{\delta \omega^{a}} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = J^{\mu}_{a}$$

$$\int d^4 x \, \partial_{\mu} J^{\mu}_{a} \delta \omega^{a} = 0$$

 J_a^{μ} é a corrente de Noether

$$\partial_{\mu}J_{a}^{\mu}=0$$

Carga associada

$$Q = \int \mathrm{d}^3 x J^0$$

Conservação

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = 0$$

As simetrias da ação nos levam a uma corrente conservada, que tem uma carga associada.

4.2 Campo Escalar

Um campo escalar é mantido invariante por transformações de coordenadas. Esse campo descreve partículas de spin 0, um exemplo de partícula desse tipo é o Bóson de Higgs, detectado em 2012 pelo LHC

$$\phi'(\mathbf{x}') = \phi(\mathbf{x})$$

A equação de movimento do campo escalar, conhecida também como Equação de Klein-Gordon nasce como uma primeira tentativa de fazer a mecânica quântica compatível com a relatividade restrita

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2$$

Primeiramente, apresentarei uma motivação para a equação de Klein-Gordon. Na mecânica quântica a dinâmica de um sistema físico é regída pela equação de Schrodinger

$$-\frac{1}{2m}\nabla\psi + V(\mathbf{x})\psi = i\frac{\partial\psi}{\partial t}$$

$$i\frac{\partial\psi}{\partial t} = H\psi$$
(4.1)

Ela advém do fato que na mecânica quântica os observáveis físicos são descrito por operadores, então promovemos o momento e a energia à classe de operadores diferenciais

$$\mathbf{p} \to i \mathbf{\nabla}$$
 $H \to i \frac{\partial}{\partial t}$

No entanto, na relatividade a energia é expressa como

$$E^2 = p^2 + m^2$$

Substituindo em (4.1), obtemos

$$i\frac{\partial\phi}{\partial t} = \sqrt{p^2 + m^2}\phi$$

Fiz uma mudança de notação de ψ para ϕ , isso deve porque quero descrever uma equação para o campo $\phi(\mathbf{x},t)$ e não para a função de onda ψ , a diferença entre esses dois objetos e a necessidade de mudar a natureza do objeto que obedece a equação dinâmica pode ser apreciada em detalhes em um curso de teoria quântica de campos.

Agora lembremos que o momento é um operador de derivação

$$i\frac{\partial \phi}{\partial t} = \sqrt{-\nabla^2 + m^2}\phi$$
$$-\frac{\partial^2 \phi}{\partial t^2} = -(\nabla^2 + m^2)\phi$$
$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2\right)\phi(\mathbf{x}, t) = 0$$

Agora lembremos do operador ∂_{μ}

$$\partial_{\mu} = \left(\frac{\partial}{\partial t}, \boldsymbol{\nabla}\right)$$

$$\partial^{\mu} = \left(rac{\partial}{\partial t}, -oldsymbol{
abla}
ight)$$

$$\partial_{\mu}\partial^{\mu} = \partial^2 = \frac{\partial^2}{\partial t^2} - \nabla^2$$

Com isso expressamos a equação de Klein-Gordon em sua forma final. Importante dizer que essa não é a descrição correta da mecânica quântica relativístia, uma teoria consistente só veio com a equação Dirac em 1928, que será um dos campos apresentados na próxima seção. Todos os detalhes a respeito dos problemas dessa equação serão ignorados, essas discussões podem ser apreciadas em um bom livro de Teoria Quântica de Campos.

$$(\partial_{\mu}\partial^{\mu} + m^{2})\phi(\mathbf{x}, t) = 0$$
$$(\partial^{2} + m^{2})\phi(\mathbf{x}, t) = 0$$

Dada uma motivação para esse campo, vamos recuperar a sua equação de movimento a partir da Lagrangeana

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2$$

$$S = \int d^4x \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 \right]$$

Para derivar a equação de movimento desse campo é necessário considerar uma variação arbitrária no campo ϕ

$$\delta S = \int d^4x \left[\partial_{\mu} \phi \ \delta(\partial^{\mu} \phi) - \frac{dV}{d\phi} \delta \phi \right]$$

Sabemos que a variação comuta com aa derivada e com isso podemos integrar por partes o primeiro termo

$$\delta S = \int d^4x \left[\partial^{\mu} (\partial_{\mu} \phi \ \delta \phi) - \left(\partial^{\mu} \partial_{\mu} \phi + \frac{dV}{d\phi} \right) \delta \phi \right]$$

Com isso obtemos a equação de movimento para o campo ϕ

$$\partial^{\mu}\partial_{\mu}\phi + \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0$$

Podemos definir o operador ∂^2

$$\partial^2 = \partial^\mu \partial_\mu$$

$$\partial^2 \phi + \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0$$

Agora podemos investigar quais são as correntes conservadas e cargas associadas

Consideremos uma translação

$$\mathbf{x} \to \mathbf{x}' = \mathbf{x} + \delta \mathbf{x}$$

$$\delta x^{\mu} = \epsilon^{\mu}$$

O campo em si é invariante por translação, então $\delta\phi=0$

$$J^{\mu}_{\nu} = \mathcal{L}\delta^{\mu}_{\nu} - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\partial_{\nu}\phi$$

5 Aula 5

5.1 Campo de Dirac

O campo de Dirac é descrito por um vetor coluna

$$\psi(x) = \begin{pmatrix} \psi_1(\mathbf{x}) \\ \psi_2(\mathbf{x}) \\ \psi_3(\mathbf{x}) \\ \psi_4(\mathbf{x}) \end{pmatrix}$$

As componentes do campo de Dirac não são números reais. Números reais obviamente comutam entre si, isto é, dados a e b reais, é claro que ab=ba. Mas existem números especiais, chamados de números de Grassmman, que anticomutam, ou seja, dados dois números de Grassmman α e β , temos

$$\alpha\beta = -\beta\alpha$$

As componentes do campo de Dirac são números de Grassmman.

Para inserirmos o campo de Dirac dentro de uma lagrangeana, fazemos uso das matrizes de Dirac $(\gamma)_{4\times 4}$, que são matrizes que obedecem a seguinte álgebra definida pelo anticomutador

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$$

Essas matrizes podem ser representadas em termos das matrizes de Pauli

$$\gamma^i = \begin{pmatrix} 0 & -\sigma^i \\ \sigma^i & 0 \end{pmatrix}$$

е

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Duas propriedades importantes dessas matrizes são $\left(\gamma^0\right)^\dagger=\gamma^0$ e $\left(\gamma^i\right)^\dagger=-\gamma^i$

Definimos γ^5 como sendo

$$\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3 = \gamma^0$$

 γ^5 anticomuta com as outras matrizes e é hermitiano

$$\{\gamma^5, \gamma^\mu\} = 0$$

Também definimos o campo adjunto

$$\overline{\psi} = \psi^{\dagger} \gamma^0$$

Dados esses preliminares, podemos discutir o campo de Dirac em si. O campo de Dirac é um spinor, e descreve, na teoria quântica, uma partícula de spin 1/2. O qualitativo spinor é dado pela forma pela qual o campo se transforma ao sofrer uma transformação de Lorentz, que é da forma

$$\psi'(x') = \exp\left(\frac{i}{2}\Lambda^{\mu\nu}\sigma_{\mu\nu}\right)\psi(x)$$

Onde $\Lambda^{\mu\nu}$ é a matriz da transformação de Lorentz e $\sigma_{\mu\nu}$ é dado por

$$\sigma_{\mu\nu} = \frac{1}{2} [\gamma_{\mu}, \gamma_{\nu}]$$

Além disso, temos a variação funcional do campo de Dirac

$$\delta_0 \psi = \frac{i}{2} \epsilon^{\mu v} \sigma_{\mu v} \psi$$

Finalmente podemos pensar em uma lagrangeana para o campo de Dirac

$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi + m \overline{\psi} \psi$$

$$S = \int d^4x \, (\overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi + m \overline{\psi} \psi)$$

Podemos também usar uma notação abreviada, chamada de notação slash

$$\partial = \gamma^{\mu} \partial_{\mu}$$

$$\mathcal{L} = \overline{\psi}i \ \partial \psi + m\overline{\psi}\psi$$

$$S = \int d^4x \, (\overline{\psi}i \, \partial \!\!\!/ \psi + m \overline{\psi} \psi)$$

Equação de Dirac

$$(i \not \partial + m^2)\psi = 0$$

ou

$$(i\gamma^{\mu}\partial_{\mu} + m^2)\psi = 0$$

5.2 Simetria de fase U(1)

$$\psi \to \psi' = e^{i\alpha}\psi$$

 $\operatorname{Com}\,\alpha\in\mathbb{R}$

5.3 Condição de Majorana

- 6 Aula 6
- 6.1 Campo de Dirac/Fermiônico/Spinorial
- 6.2 Supersimetria
- 6.2.1 Modelo de 2 campo escalares e 1 campo de Majorana

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} A \ \partial^{\mu} A + \frac{1}{2} \partial_{\mu} B \ \partial^{\mu} B + \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi + \text{termos de massa} + \text{termos de interação}$$

6.3 Campo Eletromagnético

Até agora estudamos

- Campo escalar \rightarrow Spin 0
- Campo de Dirac \rightarrow Spin 1/2

Agora estudaremos o campo eletromagnético que descreve o fóton, uma partícula de spin 1

Primeiramente devemos incorporar a relatividade restrita aos campos eletromagnéticos, dessa forma obteremos uma formulação unificada do campo elétrico ${\bf E}$ e magnético ${\bf B}$. Definimos o tensor do campo eletromagnético

$$F_{\mu\nu} = \begin{pmatrix} 0 & E^1 & E^2 & E^3 \\ -E^1 & 0 & B^3 & -B^2 \\ -E^2 & -B^3 & 0 & B^1 \\ -E^3 & B^2 & -B^1 & 0 \end{pmatrix}$$

É fácil ver que as componentes podem ser escritas da seguinte forma

$$F_{0i} = E^i$$

$$F_{ij} = \epsilon_{ijk} B^k$$

Transformação de Lorentz

$$F^{\prime\mu\nu} = \Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta} \ F^{\alpha\beta}$$

É possível ainda reescrever as equações de Maxwell(no vácuo) e termos de $F^{\mu\nu}$

$$\nabla \cdot \mathbf{E} = 0 \tag{6.1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{6.2}$$

$$\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} \tag{6.3}$$

$$\nabla \times \mathbf{B} = -\frac{\partial \mathbf{E}}{\partial t} \tag{6.4}$$

$$\partial_{\mu}F^{\mu\nu} = 0$$

$$\partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu}$$

A solução da última equação é do tipo

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

Onde A_{μ} é o quadri-vetor potencial. É possível demonstrar que

$$A_{\mu} = (\phi, \mathbf{A})$$

- 7 Aula 7
- 7.1 Teoria de Campo para spin 1- Campo Eletromagnético
- 7.2 Ação de Maxwell

$$S = -\frac{1}{4} \int \mathrm{d}^4 x \ F^{\mu\nu} F_{\mu\nu}$$

7.3 Campo escalar complexo

$$\mathcal{L} = \partial_{\mu}\phi\partial^{\mu}\phi^{\star} - m^{2}|\phi|^{2}$$

7.4 Acoplamento Mínimo

$$\partial_{\mu} \rightarrow \partial_{\mu} + iA_{\mu}$$

Derivada covariante

$$D_{\mu} = \partial_{\mu} + iA_{\mu}$$

$$\mathcal{L} = D_{\mu}\phi D^{\mu}\phi^{\star} - m^2|\phi|^2$$

7.5 Campo Eletromagnético e campo escalar

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \partial_{\mu}\phi\partial^{\mu}\phi^{*} - m^{2}|\phi|^{2} - j^{\mu}A_{\mu} + A_{\mu}A^{\mu}|\phi|^{2}$$

7.6 Campo Eletromagnético e Campo de Dirac

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \overline{\psi}i\gamma^{\mu}D_{\mu}\psi - m\overline{\psi}\psi$$

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \overline{\psi}i\gamma^{\mu}\partial_{\mu}\psi - A_{\mu}\overline{\psi}\gamma^{\mu}\psi - m\overline{\psi}\psi$$

A quantização dessa teoria resulta na chamada Eletrodinâmica Quântica (QED), a teoria que descreve os elétrons e fótons

7.7 Campo de Yang-Mills - N
 campos de Gauge $A_\mu^a(\mathbf{x})$

$$\mathcal{L}_{YM} = \frac{1}{g^2} \sum_{a=1}^{N} F_{\mu\nu}^a F_a^{\mu\nu}$$

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + i f^{abc} A^b_\mu A^c_\nu$$

Álgebra de SU(N)

$$[T^a, T^b] = if^{abc}T^c$$

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + i[A_\mu, A_\nu]$$

$$\mathcal{L}_{YM} = -\frac{1}{2g^2} \operatorname{tr}(F_{\mu\nu} F^{\mu\nu})$$

Acknowledgments

This is the most common positions for acknowledgments. A macro is available to maintain the same layout and spelling of the heading.

Note added. This is also a good position for notes added after the paper has been written.

Referências

- [1] Author, Title, J. Abbrev. vol (year) pg.
- $[2] \ \ \text{Author}, \ \textit{Title}, \ \text{arxiv:} 1234.5678.$
- [3] Author, Title, Publisher (year).