

CSCE 771: Computer Processing of Natural Language Lecture 8: Review Recent Topics, Quiz

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 13TH SEPTEMBER, 2022

Carolinian Creed: "I will practice personal and academic integrity."

Acknowledgement: Used materials by Jurafsky & Martin,

Organization of Lecture 8

- Opening Segment
 - Announcements
- Main Lecture

- Concluding Segment
 - About Next Lecture Lecture 9

Main Section

- Review quiz
- Review parsing
- Introduce evaluation metrics in NLP context
- Review projects

6	Sep 8 (Th)	Statistical Parsing, QUIZ		
7	Sep 13 (Tu)	Review Parsing, Quiz review, Review Project, Introduce Evaluation		
8	Sep 15 (Th)	Semantics		
9	Sep 20 (Tu)	Review: Machine Learning for NLP, Evaluation – Metrics		
10	Sep 22 (Th)	Language Model – Vector embeddings, CNN/ RNN		
11	Sep 27 (Tu)	Guest Lecture – Dr. Amitava Das: Glove, Word2Vec, Transformer Review: Reasoning for NLP		
12	Sep 29 (Th)	Representation: Ontology, Knowledge Graph, QUIZ		
13	Oct 4 (Tu)	Representation: Embeddings, Language Models		
14	Oct 6 (Th)	Entity extraction		
15	Oct 11 (Tu)	Guest Lecture – Dr. Amitava Das: Using lang models to solve NLP tasks		

Announcements

GUEST LECTURES ON LANGUAGE MODELS BY DR. AMITAVA DAS

Recap of Lecture 7

- We discussed statistical parsing Probabilistic grammars
 - assign a probability to a sentence or string of words
 - In a probabilistic context-free grammar (PCFG), every rule is annotated with the probability of that rule being chosen assuming conditional independence.
 - The probability of a sentence is computed by multiplying the probabilities of each rule in the parse of the sentence.
 - We looked at Stanford parser
- We had Quiz 1

Review of Quiz 1

Main Lecture

Review Parsing

Levels of Linguistic Studies

Why Parsing

- Recognizing legal inputs from illegal
- Usage of parse representation parse tree
 - Grammar checking
 - Semantic analysis
 - Machine translation
 - Question answering
 - Information extraction
 - Speech recognition
 - ...

Adapted from material by Robert C. Berwick

An Example Using CFGs

Grammar	Rules	Examples
$S \rightarrow$	NP VP	I + want a morning flight
$NP \rightarrow$	Pronoun	I
	Proper-Noun	Los Angeles
	Det Nominal	a + flight
$Nominal \rightarrow$	Nominal Noun	morning + flight
	Noun	flights
$VP \rightarrow$	Verb	do
	Verb NP	want + a flight
	<i>Verb NP PP</i>	leave + Boston + in the morning
	Verb PP	leaving + on Thursday
		•
$PP \rightarrow$	Preposition NP	from + Los Angeles

From Jurafsky & Martin

[S[NP[Pro]]][NP[V]] = [NP[NP[Net]][NP[Net]] = [Nom[Net]][Nom[Net]][Nom[Net]]

Bracketed Notation

Example: Larger English CFG

Grammar
$S \rightarrow NP VP$.
$S \rightarrow NP VP$
$S \rightarrow$ "S", NP VP
$S \rightarrow -NONE$ -
$NP \rightarrow DT NN$
$NP \rightarrow DT NNS$
$NP \rightarrow NN CC NN$
$NP \rightarrow CD RB$
NP ightarrow DT JJ , $JJ N$
$NP \rightarrow PRP$
$NP o ext{-}NONE$ -
$VP \rightarrow MD VP$
$VP \rightarrow VBD ADJP$
$VP \rightarrow VBD S$
$VP \rightarrow VBN PP$
$VP \rightarrow VB S$
$VP \rightarrow VB SBAR$
$VP \rightarrow VBP \ VP$
$VP \rightarrow VBN PP$
$VP \rightarrow TO VP$
$SBAR \rightarrow IN S$
$ADJP \rightarrow JJ PP$
$PP \rightarrow IN NP$

Number	Tag	Description			
1.	CC	Coordinating conjunction			
2.	CD	Cardinal number			
3.	DT	Determiner			
4.	EX	Existential there			
5.	FW	Foreign word			
6.	IN	Preposition or subordinating conjunction			
7.	IJ	Adjective			
8.	JJR	Adjective, comparative			
9.	JJS	Adjective, superlative			
10.	LS	List item marker			
11.	MD	Modal			
12.	NN	Noun, singular or mass			
13.	NNS	Noun, plural			
14.	NNP	Proper noun, singular			
15.	NNPS	Proper noun, plural			
16.	PDT	Predeterminer			
17.	POS	Possessive ending			
18.	PRP	Personal pronoun			
19.	PRP\$	Possessive pronoun			
20.	RB	Adverb			
21.	RBR	Adverb, comparative			
22.	RBS	Adverb, superlative			
23.	RP	Particle			
24.	SYM	Symbol			
25.	то	to			
26.	UH	Interjection			
27.	VB	Verb, base form			
28.	VBD	Verb, past tense			
29.	VBG	Verb, gerund or present participle			
30.	VBN	Verb, past participle			
31.	VBP	Verb, non-3rd person singular present			
32.	VBZ	Verb, 3rd person singular present			
33.	WDT	Wh-determiner			
34.	WP	Wh-pronoun			
35.	WP\$	Possessive wh-pronoun			
36.	WRB	Wh-adverb			

Types of Parsing

- Phrase structure / Constituency Parsing: find phrases and their recursive structure. Constituency groups of words behaving as single units, or constituents.
 - **Shallow Parsing/ Chunking**: identify the flat, non-overlapping segments of a sentence: noun phrases, verb phrases, adjective phrases, and prepositional phrases.
- Dependency Parsing: find relations in sentences
- **Probabilistic Parsing**: given a sentence X, predict the most probable parse tree Y

Chunking

- Chunking process of identifying and classifying the flat, non-overlapping segments of a sentence that constitute the basic non-recursive phrases corresponding to the major contentword parts-of-speech:
 - noun phrases
 - verb phrases
 - adjective phrases, and
 - prepositional phrases

Example

[NP The morning flight] [PP from] [NP Denver] [VP has arrived.]

- Two operations in this type of parsing:
 - · segmenting finding the non-overlapping extents of the chunks and
 - labeling assigning the correct tag to the discovered chunks
- Some words may not be part of any chunk

IOB notation

- Chunking IOB tagging
 - B beginning of each chunk type
 - I inside of each chunk type
 - O one for tokens outside (O) any chunk
- Total: (2N + 1) tags for N chunk types

Example

Dependency Parsing

- Meaning depends on
 - · Words (lemmas) in a sentence
 - Their directed binary grammatical relations with other words
 - (and not on CFGs)
- Notation: Labeled arcs are from heads to dependents

No node corresponding to phrasal constituents or lexical categories in the dependency parse

Dependency Conditions

- 1. There is a single designated root node that has no incoming arcs.
- 2. With the exception of the root node, each vertex has exactly one incoming arc.
- 3. There is a unique path from the root node to each vertex in V.

Dependency Parsing

Edge: role that the dependent plays with respect to its head. Examples: subject, direct object and indirect object.

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Decisions with PCFG

Probability of parse tree T, given sentence S, is

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

Definition:

Yield of a parse tree = String of words allowed by parse tree

Of all parse trees with a yield of S, the disambiguation algorithm for parsing picks the parse tree that is most probable given S:

Interpretations of "Book the dinner flight"

"Book a flight that serves dinner"

"Book a flight on behalf of 'the dinner'

$$\hat{T}(S) = \underset{Ts.t.S=\text{yield}(T)}{\operatorname{argmax}} P(T|S)$$

$$\hat{T}(S) = \underset{Ts.t.S=\text{yield}(T)}{\operatorname{argmax}} P(T)$$

choosing the parse with the highest probability

Example

Interpretations of "Book the dinner flight"

"Book a flight that serves dinner"

	\checkmark
$P(T_{left}) = .05 * .20 * .20 * .20 * .75 * .30 * .60 * .10 * .40 = 2.2 × 10-6$	-
$P(T_{right}) = .05 * .10 * .20 * .15 * .75 * .75 * .30 * .60 * .10 * .40 = 6.1 × .$	10^{-7}

R	ules	P		Rı	ıles	P
$S \rightarrow$	VP	.05	S	\rightarrow	VP	.05
$VP \longrightarrow$	Verb NP	.20	VP	\rightarrow	Verb NP NP	.10
$NP \qquad \rightarrow$	Det Nominal	.20	NP	\rightarrow	Det Nominal	.20
Nominal \rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
Nominal \rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
			Nominal	\rightarrow	Noun	.75
Verb \rightarrow	book	.30	Verb	\rightarrow	book	.30
Det \rightarrow	the	.60	Det	\rightarrow	the	.60
Noun \rightarrow	dinner	.10	Noun	\rightarrow	dinner	.10
Noun \rightarrow	flight	.40	Noun	\rightarrow	flight	.40

Calculating Probability from Treebank

$$P(\alpha \to \beta | \alpha) = \frac{\text{Count}(\alpha \to \beta)}{\sum_{\gamma} \text{Count}(\alpha \to \gamma)} = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

Probability of each expansion of a non-terminal:

- counting the number of times an expansion occurs
- normalizing for all expansions

NLP Evaluation

Metric Types

• Effectiveness: what the <u>user</u> of a system sees, primarily cares about

Extrinsic evaluation (esp. downstream applications)

• Efficiency: what the <u>executor</u> in a system sees, primarily cares about

Intrinsic evaluation

Efficiency Metrics

Example: Detecting Spam in Email

- •Effectiveness: what the <u>user</u> of a system sees, primarily cares about
 - How many spams identified?
 - How many spams missed?
- Efficiency: what the <u>executor</u> in a system sees, primarily cares about
 - How fast were spams detected?
 - How much memory was used per million emails processed?

Metrics: Accuracy, Precision, Recall

	Predicted class		
A-to-al Glass		Class = Yes	Class = No
Actual Class	Class = Yes	True Positive	False Negative
	Class = No	False Positive	True Negative

Accuracy = (TP+TN)/ (TP+FP+FN+TN)

Evaluating Parsers - PARSEVAL

Degree to which the constituents in the hypothesis parse tree look like the constituents in a hand-labeled, gold-reference parse like PENN TreeBank

Overall measure is by F1 score

$$F_1 = \frac{2PR}{P+R}$$

labeled recall: = $\frac{\text{# of correct constituents in hypothesis parse of } s}{\text{# of correct constituents in reference parse of } s}$

labeled precision: = $\frac{\text{# of correct constituents in hypothesis parse of } s}{\text{# of total constituents in hypothesis parse of } s}$

Average Performance With Multiple Classes

Setting

Class A: 1 TP and 1 FP

Class B: 10 TP and 90 FP

Class C: 1 TP and 1 FP

Class D: 1 TP and 1 FP

Precision = (TP)/ (TP+FP)

- Average precision = ?
- Macro and micro average
 - A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally)
 - A micro-average will aggregate the contributions of all classes to compute the average metric.

A macro-average will then compute: $Pr = \frac{0.5 + 0.1 + 0.5 + 0.5}{4} = 0.4$ A micro-average will compute: $Pr = \frac{1 + 10 + 1 + 1}{2 + 100 + 2 + 2} = 0.123$

Source and credit: https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin

Code Sample – Metrics Calculation

Notebook:

https://github.com/biplav-s/course-nl-f22/blob/main/sample-code/l8-review-evalmetrics/Metric%20Calculations.ipynb

Review of Course Projects

Course Project – Deadlines and Penalty Rubric

What is next?

- Create project plan and put in your G-drive; project sub-dir; File name: "Project plan". Extension: .docx or .pdf
- File will contain
 - * Project Title
 - * Description: motivation and expected output
 - * Illustrative Test cases: i.e., Example input / output
 - * Data sources
 - * Technique and tools to use
 - * Metric for measuring output
 - * How will you collect results
 - * Format of report, presentation
 - * Time schedule, by Week
- Penalty: not ready by Sep 15, 2022 [-20%]

- Other penalties
 - Project report not ready by Nov 10, 2022 [-20%]
 - Project presentations not ready by Nov 15, 2022 [-10%]

Lecture 8: Concluding Comments

- We reviewed
 - Quiz 1
 - Parsing
 - Projects
- We looked at evaluation measures
 - accuracy, precision, recall, F1
 - Macro and micro averages

Concluding Segment

About Next Lecture – Lecture 9

Lecture 9

