In quantum mechanics we represent every state vector as a set of number (components) relative to a set of basis vectors. We do the same thing in \mathbb{R}^2 , and generally use the unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ as our basis vectors. We then represent an arbitrary vector \vec{A} as a column vector with two elements:

$$\vec{A} \leftrightarrow \begin{bmatrix} \vec{A} \cdot \hat{\mathbf{i}} \\ \vec{A} \cdot \hat{\mathbf{j}} \end{bmatrix}.$$

(1) On the axes below, draw in a vector \vec{A} , find its components, and write down its representation with respect to the unit vectors $\hat{\bf i}$ and $\hat{\bf j}$. (This will probably involve counting boxes.) Then draw in $\vec{B} = R_{30}\vec{A}$ and $\vec{C} = T_{45}\vec{A}$ and find *their* components and representations. (More counting boxes!)

$$\vec{B} = R_{30}\vec{A}$$

$$\vec{C} = T_{45}\vec{A}$$

In quantum mechanics, we represent operators based on their effect on the basis vectors. The result is a set of *matrix elements* that we arrange in a square matrix. In the context of \mathbb{R}^2 , we will represent operators as 2×2 matrices as follows.

Let H be an operator. We first calculate the results of H acting on the unit vectors \hat{i} and \hat{j} . Call the results \vec{h}_i and \vec{h}_i . The representation of the operator H is then the matrix

$$H \leftrightarrow \begin{bmatrix} \vec{h}_{\mathbf{i}} \cdot \hat{\mathbf{i}} & \vec{h}_{\mathbf{j}} \cdot \hat{\mathbf{i}} \\ \vec{h}_{\mathbf{i}} \cdot \hat{\mathbf{j}} & \vec{h}_{\mathbf{j}} \cdot \hat{\mathbf{j}} \end{bmatrix}.$$

The first column of this matrix is the representation of the vector \vec{h}_i , while the second is the representation of the vector \vec{h}_i .

- (1) One the axis below, draw in the results of acting with R_{30} and T_{45} on the unit vectors \hat{i} and \hat{j} and use the results to construct the representation of these operators.
 - When you're done with that use your representation of these operators to calculate the results of acting with them on your vector \vec{A} from the previous side, and compare the result with what you found there.

