2119116s 佐野 海徳 HW19

HW20

e の位数が 1 であるのは自明。まず、 σ は $\frac{2\pi}{4}=\frac{\pi}{2}$ 回転する操作であるので σ^2 は π だけ回転する操作。 σ^3 は $\frac{3\pi}{2}$ 回転する操作、 σ^4 は 2π だけ回転する操作であり、結果的に e と等しい。また、この操作で 1 と番号を振った頂点がもう一度 1 に戻るのは $2n\pi$ 回転 (n は任意の整数) したとき、言い換えればべきが 4 の倍数になるときである。よって、 σ の位数は 4, σ^2 の位数は 2, σ^3 の位数は 4。次に τ について考える。 τ はもう一度自身と同じ操作をすれば e になるので位数は e0。 e0 の位数は e0。 e1 の位数は e2。 e2 の位数は e3 の位数は e4。 同様にして e6 の位数は e7 の位数は e8 の位数は e9 の位数 e9 の位数は e9 の位数 e9