

特許協力条約に基づく国際出願願書

紙面による写し(注意:電子データが原本となります)

0	受理官庁記入欄 国際出願番号	
0-1		
0-2	国際出願日	
0-3	(受付印)	
0-4	様式-PCT/RO/101 この特許協力条約に基づく国際出願願書 は、 右記によって作成された。	
0-4-1		JPO-PAS 0321
0-5	申立て 出願人は、この国際出願が特許協力条約 に従って処理されることを請求する。	
0-6	出願人によって指定された受理官庁	日本国特許庁 (RO/JP)
0-7	出願人又は代理人の書類記号	664753
I	発明の名称	オプトデバイスのパッケージ構造
II	出願人 この欄に記載した者は 右の指定国についての出願人である。	出願人である (applicant only) 米国を除く全ての指定国 (all designated States except US)
II-1		
II-2		
II-4ja	名称	シャープ株式会社
II-4en	Name:	SHARP KABUSHIKI KAISHA
II-5ja	あて名	5458522 日本国
II-5en	Address:	大阪府大阪市阿倍野区長池町22番22号 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka 5458522 Japan
II-6	国籍(国名)	日本国 JP
II-7	住所(国名)	日本国 JP
II-11	出願人登録番号	000005049

特許協力条約に基づく国際出願願書

紙面による写し(注意:電子データが原本となります)

III-1	その他の出願人又は発明者 この欄に記載した者は	出願人及び発明者である (applicant and inventor) 米国のみ (US only)
III-1-2	右の指定国についての出願人である。	石井 順成
III-1-4ja	氏名(姓名)	ISHII, Yorishige
III-1-4en	Name (LAST, First):	6350052
III-1-5ja	あて名	日本国 奈良県大和高田市奥田 505
III-1-5en	Address:	505, Okuda, Yamatotakada-shi, Nara 6350052
III-1-6	国籍(国名)	Japan
III-1-7	住所(国名)	日本国 JP
IV-1	代理人又は共通の代表者、通知のあて名 下記の者は国際機関において右記のごとく 出願人のために行動する。	代理人 (agent)
IV-1-1ja	氏名(姓名)	河宮 治
IV-1-1en	Name (LAST, First):	KAWAMIYA, Osamu
IV-1-2ja	あて名	5400001 日本国 大阪府大阪市中央区城見1丁目3番7号IMPビル 青山特許事務所
IV-1-2en	Address:	AOYAMA & PARTNERS, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 5400001 Japan
IV-1-3	電話番号	06-6949-1261
IV-1-4	ファクシミリ番号	06-6949-0361
IV-1-6	代理人登録番号	100086405
IV-2	その他の代理人	筆頭代理人と同じあて名を有する代理人 (additional agent(s) with the same address as first named agent)
IV-2-1ja	氏名	山崎 宏 (100084146)
IV-2-1en	Name(s)	YAMAZAKI, Hiroshi (100084146)
V	国の指定	
V-1	この願書を用いてされた国際出願は、規則 4.9(a)に基づき、国際出願の時点で拘束さ れる全てのPCT締約国を指定し、取得しうる あらゆる種類の保護を求め、及び該当する 場合には広域と国内特許の両方を求める 国際出願となる。	
VI-1	先の国内出願に基づく優先権主張 出願日	2003年 11月 06日 (06. 11. 2003)
VI-1-1	出願番号	2003-376967
VI-1-3	国名	日本国 JP

特許協力条約に基づく国際出願願書

紙面による写し(注意:電子データが原本となります)

VI-2 VI-2-1 VI-2-2 VI-2-3	先の国内出願に基づく優先権主張 出願日 出願番号 国名	2004年 08月 09日 (09. 08. 2004) 2004-232371 日本国 JP	
VI-3	優先権証明書送付の請求 上記の先の出願のうち、右記の番号のものについて、出願書類の認証副本を作成し国際事務局へ送付することを、受理官庁に対して請求している。	VI-1, VI-2	
VII-1	特定された国際調査機関(ISA)	日本国特許庁 (ISA/JP)	
VIII VIII-1 VIII-2 VIII-3 VIII-4 VIII-5	申立て 発明者に関する申立て 出願し及び特許を与えられる国際出願日における出願人の資格に関する申立て 先の出願の優先権を主張する国際出願日における出願人の資格に関する申立て 発明者である旨の申立て(米国を指定国とする場合) 不利にならない開示又は新規性喪失の例外に関する申立て	申立て数 - - - - -	
IX IX-1 IX-2 IX-3 IX-4 IX-5 IX-7	照合欄 願書(申立てを含む) 明細書 請求の範囲 要約 図面 合計	用紙の枚数 4 21 4 1 7 37	添付された電子データ ✓ ✓ ✓ ✓ ✓
IX-8 IX-11 IX-17 IX-19 IX-20	添付書類 手数料計算用紙 包括委任状の写し PCT-SAFE 電子出願 要約書とともに提示する図の番号 国際出願の使用言語名	添付 - - - 1A 日本語	添付された電子データ ✓ ✓ - .
X-1 X-1-1 X-1-2 X-1-3	出願人、代理人又は代表者の記名押印 氏名(姓名) 署名者の氏名 権限	/100086405/ 河宮 治	

特許協力条約に基づく国際出願願書

紙面による写し(注意:電子データが原本となります)

受理官庁記入欄

10-1	国際出願として提出された書類の実際の受理の日	
10-2	図面	
10-2-1	受理された	
10-2-2	不足図面がある	
10-3	国際出願として提出された書類を補完する書類又は図面であってその後期間内に提出されたものの実際の受理の日(訂正日)	
10-4	特許協力条約第11条(2)に基づく必要な補完の期間内の受理の日	
10-5	出願人により特定された国際調査機関	ISA/JP
10-6	調査手数料未払いにつき、国際調査機関に調査用写しを送付していない	

国際事務局記入欄

11-1	記録原本の受理の日	
------	-----------	--

PCT手数料計算用紙(願書付属書)

紙面による写し(注意:電子データが原本となります)

[この用紙は、国際出願の一部を構成せず、国際出願の用紙の枚数に算入しない]

0	受理官庁記入欄			
0-1	国際出願番号			
0-2	受理官庁の日付印			
0-4	様式-PCT/RO/101(付風審) このPCT手数料計算用紙は、 右記によって作成された。			
0-4-1		JPO-PAS 0321		
0-9	出願人又は代理人の書類記号	664753		
2	出願人	シャープ株式会社		
12	所定の手数料の計算	金額/係数	小計 (JPY)	
12-1	送付手数料 T	⇒	13000	
12-2	調査手数料 S	⇒	97000	
12-3	国際出願手数料 (最初の30枚まで) i1		123200	
12-4	30枚を越える用紙の枚数 7			
12-5	用紙1枚の手数料 (x) 1300			
12-6	合計の手数料 i2		9100	
12-7	i1 + i2 = i		132300	
12-12	fully electronic filing fee reduction R		-26400	
12-13	国際出願手数料の合計 (i-R) I	⇒	105900	
12-17	納付するべき手数料の合計 (T+S+I+P)	⇒	215900	
12-19	支払方法	送付手数料: 予納口座引き落としの承認 調査手数料: 予納口座引き落としの承認 国際出願手数料 : 銀行口座への振込み		
12-20	予納口座 受理官庁	日本国特許庁 (RO/JP)		
12-20-1	上記手数料合計額の請求に対する承認	✓		
12-21	予納口座番号	163028		
12-22	日付	2004年 10月 12日 (12. 10. 2004)		
12-23	記名押印			

オプトデバイスのパッケージ構造

技術分野

[0001] 本発明は、例えば、光通信、照明または自動車等に使用され、比較的厳しい温度環境の下で用いられるオプトデバイスのパッケージ構造に関するものである。

背景技術

[0002] 従来、オプトデバイスのパッケージ構造としては、リードフレームのデバイス搭載部上に、CCD(電荷結合デバイス)等のオプトデバイスを搭載すると共に、このオプトデバイスと、リードフレームのリード部とをワイヤで接続し、上記オプトデバイスとワイヤとリードフレームとを、光透過性樹脂で封止したものがある(特開2000-173947号公報)。上記光透過性樹脂は、上記オプトデバイスに入射する光に対して良好な透過性を有する材料を用いて、概略直方体形状に形成されている。この光透過性樹脂の上側面にレンズを一体に形成して、このレンズを介して上記光がオプトデバイスに入射するようにしている。また、上記光透過性樹脂の側面から、上記リードフレームのリード部を突出して、このリード部でオプトデバイスのパッケージを所定の電極に接続するようにしている。

[0003] しかしながら、上記従来のオプトデバイスのパッケージ構造は、上記光透過性樹脂の光に対する透過性を確保するため、上記光透過性樹脂には、線膨張係数を低減させるフィラーを混入していない。したがって、上記光透過性樹脂の線膨張係数は、上記オプトデバイスおよびワイヤの材料の線膨張係数の数倍である。その結果、上記オプトデバイスのパッケージ構造が、例えば-40°C~105°Cの範囲で温度が変化するような厳しい温度環境で使用された場合、上記光透過性樹脂の熱応力により、上記ワイヤの破断や、上記オプトデバイスの破壊が生じるという問題がある。さらに、上記光透過性樹脂自体にクラックが生じるという問題がある。

発明の開示

発明が解決しようとする課題

[0004] そこで、本発明の課題は、オプトデバイスのパッケージ構造に関して、ワイヤの破断

やオプトデバイスの破壊を防止し、かつ、光透過性樹脂のクラックを防止することにある。

課題を解決するための手段

- [0005] 上記課題を解決するため、本発明のオプトデバイスのパッケージ構造は、
オプトデバイスと、
上記オプトデバイスに対して入射または出射する光が通過する孔を有すると共に上
記オプトデバイスを搭載する搭載部と、上記オプトデバイスに電気的に接続されるリ
ード部とを有するリードフレームと、
上記リードフレームの上記オプトデバイスが搭載された側に配置され、上記オプトデ
バイスとリード部とを電気的に接続するワイヤと、
上記リードフレームの上記オプトデバイスが搭載された側と反対側に配置され、上
記光に対して透過性を有する第1の樹脂と、
上記リードフレームの上記オプトデバイスが搭載された側に少なくとも一部が配置さ
れると共に、上記オプトデバイスとワイヤとを封止し、かつ、線膨張係数が上記第1の
樹脂よりも低い第2の樹脂と、
上記第1の樹脂にクラックが生じ難くするクラック防止構造と
を備えることを特徴としている。
- [0006] 上記構成によれば、上記オプトデバイスのパッケージ構造は、上記オプトデバイスと
ワイヤを封止する第2の樹脂が、上記第1の樹脂よりも低い線膨張係数を有するので
、温度の変化が比較的大きい環境で使用されても、上記オプトデバイスとワイヤに作用
する熱応力が効果的に低減される。したがって、上記オプトデバイスが破壊する問
題や、上記ワイヤが破断する問題が、効果的に防止される。
- [0007] また、上記第1の樹脂の線膨張係数は、上記リードフレーム等の線膨張係数よりも
大きいにもかかわらず、上記クラック防止構造によって、上記第1の樹脂にクラックが
生じ難くなる。したがって、温度の変化が比較的大きい環境で使用されても、上記第
1の樹脂にクラックが生じる問題が効果的に防止される。
- [0008] 一実施形態のオプトデバイスのパッケージ構造は、
上記クラック防止構造は、

上記リードフレームの上記リード部に設けられて上記オプトデバイスが搭載された側に屈曲した屈曲部と、

上記屈曲部よりも上記オプトデバイスが搭載された側と反対側に位置する第2の樹脂の部分と、

上記第2の樹脂の部分に接する上記第1の樹脂の端部とを含む。

[0009] 上記実施形態によれば、上記クラック防止構造において、上記リードフレームのリード部に、上記オプトデバイスが搭載された側に屈曲した屈曲部が設けられ、このリード部の屈曲部よりも上記オプトデバイスが搭載された側と反対側に、上記第2の樹脂の部分が位置する。この第2の樹脂の部分に、上記第1の樹脂の端部が接している。これにより、この第1の樹脂の端部に生じるせん断応力が、効果的に低減される。その結果、温度の変化が比較的大きい環境で使用されても、上記第1の樹脂にクラックが生じる問題が効果的に防止される。

[0010] 一実施形態のオプトデバイスのパッケージ構造は、

上記クラック防止構造は、

上記リードフレームの上記リード部に設けられると共に、上記オプトデバイスが搭載された側と反対側が凹となる凹部と、

上記凹部内に位置する第2の樹脂の部分と、

上記第2の樹脂の部分に接する上記第1の樹脂の端部とを含む。

[0011] 上記実施形態によれば、上記クラック防止構造において、上記リードフレームのリード部に、上記オプトデバイスが搭載された側と反対側が凹となる凹部が設けられ、この凹部内に、上記第2の樹脂の部分が位置する。この第2の樹脂の部分に、上記第1の樹脂の端部が接している。これにより、上記第1の樹脂の端部に生じるせん断応力が、効果的に低減される。その結果、温度の変化が比較的大きい環境で使用されても、上記第1の樹脂にクラックが生じる問題が効果的に防止される。

[0012] 一実施形態のオプトデバイスのパッケージ構造は、

上記クラック防止構造は、

上記リードフレームの上記リード部に設けられて上記オプトデバイスが搭載された側に屈曲した屈曲部と、

上記屈曲部の縁に連なる端面を有する上記第1の樹脂の端部と
を含む。

- [0013] 上記実施形態によれば、上記クラック防止構造において、上記リードフレームのリード部に、上記オプトデバイスが搭載された側に屈曲した屈曲部が設けられる。この屈曲部の縁に、上記第1の樹脂の端部の端面が連なっている。これにより、上記第1の樹脂の端部に生じるせん断応力が効果的に低減される。その結果、温度の変化が比較的大きい環境で使用されても、上記第1の樹脂にクラックが生じる問題が効果的に防止される。
- [0014] 一実施形態のオプトデバイスのパッケージ構造は、
上記第1の樹脂の端部の端面は、上記屈曲部の上記オプトデバイスが搭載された側と反対側の面と略同一平面上に形成されている。
- [0015] 上記実施形態によれば、上記第1の樹脂の端部の端面が、上記リードフレームのリード部に設けられた屈曲部の面と略同一平面上に形成されることにより、上記第1の樹脂の端部に生じるせん断応力が低減される。したがって、上記第1の樹脂にクラックが生じる問題が効果的に防止される。
- [0016] 一実施形態のオプトデバイスのパッケージ構造は、
上記第2の樹脂は、トランスマルチモールドで形成されている。
- [0017] 上記実施形態によれば、上記第2の樹脂は、上記トランスマルチモールドによって形成される。したがって、この第2の樹脂が封止するオプトデバイスやワイヤに生じる残留応力を、効果的に低減できる。
- [0018] 一実施形態のオプトデバイスのパッケージ構造は、
上記第2の樹脂は、離型剤が混合されていない。
- [0019] 上記実施形態によれば、上記第2の樹脂は、離型剤が混合されていないので、この第2の樹脂と、上記第1の樹脂との密着性が向上する。
- [0020] 一実施形態のオプトデバイスのパッケージ構造は、
上記第1の樹脂は、線膨張係数を低減するフィラーが混合されている。
- [0021] 上記実施形態によれば、上記第1の樹脂は、上記フィラーにより線膨張係数が低減されるので、上記第2の樹脂およびリードフレームの線膨張係数との差が縮小される

。したがって、上記第1の樹脂は、過大な熱応力の発生が防止されて、クラックの発生が効果的に防止される。

[0022] なお、上記第1の樹脂に混入するフィラーの量は、この第1の樹脂の上記光に対する透過性が大幅に低下しない程度であるのが好ましい。

[0023] 一実施形態のオプトデバイスのパッケージ構造は、
上記クラック防止構造は、上記第1の樹脂であり、
上記第1の樹脂は、上記オプトデバイスに対して入射または出射する光を集めるレンズ部と、このレンズ部に連なる基体部とを有し、
上記基体部は、厚みが0.5mm以下である。

[0024] 上記実施形態によれば、上記第1の樹脂の基体部に集中する応力が低減する。したがって、この第1の樹脂のクラックの発生が、効果的に防止される。

[0025] 一実施形態のオプトデバイスのパッケージ構造は、
上記クラック防止構造は、上記第1の樹脂であり、
上記第1の樹脂は、上記オプトデバイスに対して入射または出射する光を集めるレンズ部と、このレンズ部に連なる基体部とを有すると共に、上記光が出射または入射する方向から見て、上記リードフレームの搭載部の面積よりも小さい面積を有する。

[0026] 上記実施形態によれば、上記第1の樹脂の基体部に集中する応力が低減する。したがって、この第1の樹脂のクラックの発生が、効果的に防止される。

[0027] 一実施形態のオプトデバイスのパッケージ構造は、
上記クラック防止構造は、上記第1の樹脂であり、
上記第1の樹脂は、上記オプトデバイスに対して入射または出射する光を集めるレンズ部と、このレンズ部に連なる基体部とを有すると共に、上記光が出射または入射する方向から見て、上記リードフレームの搭載部の面積よりも小さい面積を有し、
上記基体部は、上記レンズ部の厚みよりも小さい厚みを有する。

[0028] 上記実施形態によれば、上記第1の樹脂の基体部に集中する応力が低減する。したがって、この第1の樹脂のクラックの発生が、効果的に防止される。

[0029] 一実施形態のオプトデバイスのパッケージ構造は、
上記第2の樹脂は、上記リードフレームの上記オプトデバイスが搭載された側と反

対側に一部が配置され、この第2の樹脂の一部は、上記リードフレームの上記第1の樹脂が配置された部分以外の部分の少なくとも一部に配置されている。

- [0030] 上記実施形態によれば、上記第2の樹脂の一部が、上記リードフレームの上記第1の樹脂が配置された側と同じ側に配置されているので、例えば、上記第2の樹脂の一部を基準にして他の機器等に搭載することができる。したがって、外形基準で位置合わせが可能なオプトデバイスのパッケージ構造が得られる。
- [0031] 一実施形態のオプトデバイスのパッケージ構造は、
上記クラック防止構造は、上記第1の樹脂であり、
上記第1の樹脂は、上記オプトデバイスに対して入射または出射する光を集めるレンズ部と、このレンズ部に連なる基体部とを有すると共に、少なくとも上記リードフレームに接着材で接着されている。
- [0032] 上記実施形態によれば、上記第1の樹脂は、例えばインサート成型によらないで、上記リードフレームとは別個に形成されて、上記接着材でリードフレームに接着される。したがって、例えばインサート成型で形成された場合のような成型収縮による応力の発生を防止できる。その結果、第1の樹脂へのクラックの発生を効果的に防止できる。
- [0033] 一実施形態のオプトデバイスのパッケージ構造は、
上記接着材は、最低保存温度よりも低いガラス転移点を有する樹脂を含む。
- [0034] 上記実施形態によれば、上記接着材は、最低保存温度よりも低いガラス転移点を有する樹脂を含むので、このオプトデバイスのパッケージ構造の通常の使用環境において、上記接着材は弾性が比較的大きい。したがって、上記第1の樹脂とリードフレームとの間に生じるせん断応力を低減できるので、上記第1の樹脂へのクラックの発生を効果的に防止できる。なお、上記保存温度とは、JIS-C7021-B10に定められるように、電気的負荷をかけずに保存できる周囲温度の範囲をいう。
- [0035] 一実施形態のオプトデバイスのパッケージ構造は、
上記接着材は、最低保存温度以上、かつ、最高保存温度以下の硬化点を有する樹脂を含む。
- [0036] 上記実施形態によれば、上記接着材は、最低保存温度以上、かつ、最高保存温度

以下の硬化点を有する樹脂を含むので、上記接着材の硬化時において、硬化によって生じる熱応力を比較的少なくできる。したがって、上記第1の樹脂に生じるせん断応力を低減できるので、この第1の樹脂におけるクラックの発生を効果的に防止できる。

- [0037] 一実施形態のオプトデバイスのパッケージ構造は、
上記クラック防止構造は、上記第1の樹脂であり、
上記第1の樹脂は、上記オプトデバイスに対して入射または出射する光を集める複数のレンズ部と、この複数のレンズ部に各々連なる複数の基体部とを有し、上記複数のレンズ部および基体部は、互いに分離されている。
- [0038] 上記実施形態によれば、上記複数のレンズ部および基体部は、互いに分離されているので、この第1の樹脂の基体部に集中する応力が低減する。したがって、この第1の樹脂のクラックの発生が、効果的に防止される。

発明の効果

- [0039] 以上のように、本発明のオプトデバイスのパッケージ構造は、リードフレームの搭載部の一方の側に、オプトデバイスに対して入射または出射する光を透過する第1の樹脂を配置し、上記搭載部の他方の側に、オプトデバイスとワイヤを封止する第2の樹脂とを配置し、上記第2の樹脂が、上記第1の樹脂よりも低い線膨張係数を有する。したがって、温度の変化が比較的大きい環境で使用されても、上記オプトデバイスとワイヤに作用する熱応力を効果的に低減できて、上記オプトデバイスの破壊や上記ワイヤの破断の問題を効果的に防止できる。
- [0040] また、上記第1の樹脂にクラックが生じ難くするクラック防止構造を備えるので、上記第1の樹脂はリードフレーム等よりも線膨張係数が大きいにもかかわらず、温度の変化が比較的大きい環境で使用されても、上記第1の樹脂にクラックが生じる問題を効果的に防止できる。

図面の簡単な説明

- [0041] [図1A]本発明の第1実施形態のオプトデバイスのパッケージ構造を示す断面図である。
- [図1B]第1実施形態のオプトデバイスのパッケージ構造を示す平面図である。

- [図2]第2実施形態のオプトデバイスのパッケージ構造を示す断面図である。
- [図3]第3実施形態のオプトデバイスのパッケージ構造を示す断面図である。
- [図4]比較例のオプトデバイスのパッケージ構造を示す断面図である。
- [図5]第4実施形態のオプトデバイスのパッケージ構造を示す断面図である。
- [図6]第5実施形態のオプトデバイスのパッケージ構造を示す断面図である。
- [図7]第6実施形態のオプトデバイスのパッケージ構造を示す断面図である。
- [図8]第7実施形態のオプトデバイスのパッケージ構造を示す断面図である。
- [図9]第5実施形態のオプトデバイスのパッケージ構造の変形例を示す平面図である。
- 。

符号の説明

- [0042]
- 2 低応力樹脂
 - 3 リードフレームのリード部
 - 5 リードフレームの搭載部
 - 5a リードフレームの搭載部の開口
 - 6 LED
 - 8 光透過性樹脂
 - 8a レンズ
 - 9 ワイヤ
 - 21 低応力樹脂の部分
 - 31 リード部の屈曲部
 - 81 光透過性樹脂の端部

発明を実施するための最良の形態

- [0043] 以下、本発明を図示の実施の形態により詳細に説明する。

- [0044] (第1実施形態)

図1Aは、本発明の第1実施形態のオプトデバイスのパッケージ構造を示す断面図であり、図1Bは、このオプトデバイスのパッケージ構造の平面図である。

- [0045] このオプトデバイスのパッケージ構造は、オプトデバイスとしてのLED(発光ダイオード)6を、リードフレームの搭載部5の図1における下側面に搭載している。上記リー

ドフレームの搭載部5には、上記LED6からの出射光を通過する開口5aが設けられており、この開口5aに上記LED6の光出射部が臨んでいる。上記LED6は、ワイヤ9によって、リードフレームのリード部3に電気的に接続されている。上記ワイヤ9は、上記リードフレームの搭載部の上記LED6が搭載された側に配置している。上記LED6およびワイヤ9を、フィラーとしてのシリカが混入された低応力樹脂2によって封止している。この低応力樹脂2は、上記リードフレームの搭載部5の上記LED6が搭載された側に配置している。一方、上記リードフレームの搭載部5の上記LED6が搭載された側と反対側には、上記光LED6の出射光に対して透過性を有する材料からなる光透過性樹脂8を配置している。この光透過性樹脂8は、上記LED6の出射光を集光するレンズ部8aと、このレンズ部8aを支持する基体部8bとを一体に形成している。上記基体部8bは、断面において台形を有すると共に、平面において矩形を有する。上記低応力樹脂2は、例えばエポキシ樹脂に線膨張係数の小さなシリカ等のフィラーを添加し、全体の線膨張係数を低減した樹脂が使用される。上記光透過性樹脂8は、例えば透明エポキシ樹脂が使用される。

- [0046] 上記オプトデバイスのパッケージ構造はクラック防止構造を備える。このクラック防止構造は、上記リードフレームの上記リード部に設けられた屈曲部31と、この屈曲部31よりも上記LED6が搭載された側と反対側に位置する低応力樹脂の部分21と、この低応力樹脂の部分21に接する上記光透過性樹脂の端部81とで構成されている。上記リードフレームのリード部の屈曲部31は、上記LED6が搭載された側に屈曲している。
- [0047] 上記構成のオプトデバイスのパッケージ構造は、上記LED6とワイヤ9とを低応力樹脂2で封止しており、この低応力樹脂2の線膨張係数は、Si(シリコン)及びGaAs(ガリウム砒素)で形成される上記LED6の線膨張係数や、上記リードフレーム、および、ワイヤの線膨張係数に近い値である。したがって、温度の変化が比較的大きい環境で使用されても、上記LED6とワイヤ9に作用する熱応力を効果的に低減できる。その結果、上記LED6の破壊の問題や、上記ワイヤ9の破断の問題を、効果的に防止できる。
- [0048] また、上記オプトデバイスのパッケージ構造は、上記クラック防止構造を有するので

、温度の変化が比較的大きい環境で使用された場合においても、上記光透過性樹脂8のクラックを効果的に防止できる。すなわち、上記光透過性樹脂8は、上記LED6からの光に対して良好な透過性を維持させるため、フィラーを混入していないので、上記リードフレームおよび低応力樹脂2の線膨張係数に対して数倍の線膨張係数を有する。しかしながら、上記クラック防止構造において、上記光透過性樹脂の端部81は、上記低応力樹脂の部分21に接しているので、この光透過性樹脂の端部81に生じるせん断応力が、例えばリードフレームのリード部に接する場合よりも小さくなる。その結果、上記光透過性樹脂8は、クラックの発生を効果的に防止できる。

[0049] また、上記オプトデバイスのパッケージ構造は、上記低応力樹脂2と光透過性樹脂8とを、上記リードフレームの下側と上側とに別個に成形することにより、容易に製作できる。すなわち、例えばLEDからの出射光を集光するためのガラス製レンズを、低応力樹脂でインサート成形するよりも、上記ガラス製レンズの位置決め等の手間が不要であるので、容易に製作できる。また、上記低応力樹脂2は、上記リードフレームのLED6を搭載した側のみに配置するので、従来におけるようにリードフレームの両側を光等価性樹脂のみで封止するよりも、成形の際における金型中の樹脂の流動性が良好である。したがって、封止樹脂に気泡が生じる問題が防止できる。また、成形用の金型のゲートの配置位置を、比較的少ない制限の下で設定できる。したがって、上記オプトデバイスのパッケージ構造は、2色成形によって比較的容易に安価に作製できる。

[0050] (第2実施形態)

図2は、本発明の第2実施形態のオプトデバイスのパッケージ構造を示す断面図である。

[0051] 第2実施形態のオプトデバイスのパッケージ構造は、クラック防止構造の構成が異なる点のみが、第1実施形態のオプトデバイスのパッケージ構造と異なる。第2実施形態において、第1実施形態と同一の構成部分には同一の参照番号を付して、詳細な説明を省略する。

[0052] 第2実施形態のオプトデバイスのパッケージ構造が備えるクラック防止構造は、リードフレームのリード部3に設けられた凹部32と、この凹部32内に位置する低応力樹脂

の部分22と、この低応力樹脂の部分22に接する光透過性樹脂の端部81とで構成されている。上記リードフレームのリード部の凹部32は、LED6が搭載された側と反対側が凹となっている。

[0053] 本実施形態のオプトデバイスのパッケージ構造は、温度の変化が比較的大きい環境で使用された場合においても、上記クラック防止構造により、光透過性樹脂8のクラックを効果的に防止できる。すなわち、上記クラック防止構造において、上記光透過性樹脂の端部81が、上記低応力樹脂の部分22に接しているので、この光透過性樹脂の端部81に生じるせん断応力が効果的に低減される。したがって、上記光透過性樹脂8は、リードフレームおよび低応力樹脂2の線膨張係数に対して数倍の線膨張係数を有するにもかかわらず、クラックの発生を効果的に防止できる。

[0054] (第3実施形態)

図3は、本発明の第3実施形態のオプトデバイスのパッケージ構造を示す断面図である。

[0055] 第3実施形態のオプトデバイスのパッケージ構造は、クラック防止構造の構成が異なる点のみが、第1実施形態のオプトデバイスのパッケージ構造と異なる。第3実施形態において、第1実施形態と同一の構成部分には同一の参照番号を付して、詳細な説明を省略する。

[0056] 第3実施形態のオプトデバイスのパッケージ構造が備えるクラック防止構造は、リードフレームのリード部3に設けられた屈曲部33と、この屈曲部33の縁に連なる端面83を有する光透過性樹脂の端部81とで構成されている。上記リードフレームのリード部の屈曲部33は、LED6が搭載された側に屈曲している。

[0057] 本実施形態のオプトデバイスのパッケージ構造は、温度の変化が比較的大きい環境で使用された場合においても、上記クラック防止構造により、光透過性樹脂8のクラックを効果的に防止できる。すなわち、上記クラック防止構造において、上記光透過性樹脂の端部81が上記リード部の屈曲部33に接すると共に、上記光透過性樹脂の端部の端面83が、上記屈曲部33の縁に連なる構成により、上記光透過性樹脂の端部81に生じるせん断応力が効果的に低減される。したがって、上記光透過性樹脂8は、リードフレームおよび低応力樹脂2の線膨張係数に対して数倍の線膨張係数を

有するにもかかわらず、クラックの発生を効果的に防止できる。

- [0058] 上記各実施形態において、上記光透過性樹脂8の成形方法は特に限定されない。一方、上記低応力樹脂2については、上記LED6およびワイヤ9等を封止するので、これらの部品への残留応力を低減するため、トランスファーモールドを用いるのが好ましい。
- [0059] また、上記低応力樹脂2には離型剤を用いないのが好ましい。低応力樹脂に離型剤を用いると、この低応力樹脂を成形した後に光透過性樹脂を成形する場合、低応力樹脂から離型剤が沁み出して、低応力樹脂と光透過性樹脂との密着性に悪影響を及ぼす場合があるからである。
- [0060] また、上記光透過性樹脂8には、透光性(光透過率)を損なわない程度にシリカ等のフィラーを混入して、線膨張係数を下げるようにもよい。これによって、光透過性樹脂に生じるせん断応力を更に低減することができて、この光透過性樹脂のクラックの発生を更に効果的に防止できる。
- [0061] また、上記LED6は、例えばCCD、VCSEL(面発光型半導体レーザ)及びPD(フォトダイオード)等のような他のオプトデバイスであってもよい。
- [0062] また、上記光透過性樹脂8および低応力樹脂2の形状は、直方体に限られず、必要に応じて他の形状に変更可能である。
- [0063] また、上記リードフレームの形状は、必要に応じて他の形状に変更可能である。例えば、搭載部5とリード部3を一体に形成してもよく、また、上記リード部3の本数は何本でもよい。
- [0064] (実施例)

第1乃至第3実施形態のオプトデバイスのパッケージ構造を製作し、−40°C～105°Cの範囲で温度が変化する環境で試験を行った。また、第1乃至第3実施形態のオプトデバイスのパッケージ構造について、電子計算機を用いたFEM(有限要素法)によるシミュレーションにより、上記試験の条件の下で生じるせん断応力を計算した。さらに、比較例として、本発明のクラック防止構造を有しないオプトデバイスのパッケージ構造の試験と、せん断応力の計算を行った。
- [0065] 図4は、比較例のオプトデバイスのパッケージ構造を示す断面図である。このオプト

デバイスのパッケージ構造は、リードフレームのリード部103が、光透過性樹脂8と低応力樹脂2との間の境界線に沿って側方に突出しており、クラック防止構造を有しない点以外は、第1実施形態のオプトデバイスのパッケージ構造と同一の構成部分を有する。図4の比較例において、図1の第1実施形態と同一の構成部分には同一の参照番号を付している。

[0066] 第1乃至第3実施形態と、比較例のオプトデバイスのパッケージ構造を作製する際に用いた材料は、以下のとおりである。すなわち、低応力モールド樹脂2に、住友ベークライト製EME6710を用いた。また、光透過性樹脂8に日東電工製NT600を用いると共に、リードフレームに神戸製鋼製銅合金KFCを用いた。そして、低応力樹脂2の厚みを2mmに形成し、光透過性樹脂8の厚みを1mmに形成すると共に、リードフレームの厚みを0.25mmに形成した。これらの構成部分により、パッケージサイズが6mm角のパッケージ構造を作成した。

[0067] 表1は、各構成部分の材料の物性値を示したものである。

[0068] [表1]

	線膨張係数 (ppm/k)	ヤング率 (GPa)	ポアソン比
GaAs	5.9	85.5	0.55
Si	2.8	187	0.25
Au	14.2	78	0.44
Cu合金	17	128	0.35
光透過性樹脂	60～70	3～3.5	0.3
低応力樹脂	8～18	15～30	0.25～0.3

[0069] 表1に示すように、低応力樹脂102の線膨張係数は、フィラーが混入されているので、リードフレームに用いられるCu合金や、ワイヤに用いられるAuや、LED6に用いられるGaAsおよびSiの線膨張係数に近い値となっている。一方、光透過性樹脂108は、上記LED6の出射光に対する透過性の低下を避けるため、フィラーを混入していないので、他の構成材料に対して数倍の大きさの線膨張係数を有する。

[0070] 表1に示す物性値を有する材料によって、第1乃至第3実施形態、および、比較例のオプトデバイスのパッケージ構造を作製した。このパッケージ構造は、LED6を実装したリードフレームに、低応力樹脂2をインサート成形した後、光透過性樹脂108

の成形を行って製作した。これらのオプトデバイスのパッケージ構造を、−40°C～105°Cの範囲で温度が変化する環境に置いて、温度サイクル試験を行った。

- [0071] その結果、比較例の光透過性樹脂8にクラックが発生した。具体的には、図4において、光透過性樹脂の端部81であって、リードフレームのリード部103に接すると共に低応力樹脂8と接する部分に、クラックが最も多く発生した。この次に多くクラックが発生したのは、光透過性樹脂の端部81であって、リードフレームのリード部103に接する部分であった。これらのクラックは、互いに接する各構成部品の線膨張が違うことによって光透過性樹脂の端部81に生じたせん断応力が、主な原因と考えられる。
- [0072] 一方、第1乃至第3実施形態のオプトデバイスのパッケージ構造では、光透過性樹脂の端部81には、クラックの発生は殆ど見られなかった。これは、第1および第2実施形態では、光透過性樹脂の端部81に接する低応力樹脂の部分21, 22は、光透過性樹脂8と線膨張係数が異なるが、ヤング率が比較的小さいので、これらの樹脂の境界に生じるせん断応力が、比較的小さかったためであると考えられる。また、第2実施形態では、光透過性樹脂の端部の端面83を、リードフレームのリード部の屈曲部31の縁に連なるように形成することにより、上記光透過性樹脂の端部81のせん断応力が、低減されたためであると考えられる。
- [0073] 以上の試験結果により、第1および第2実施形態では、リードフレームのリード部3を、第1の樹脂としての光透過性樹脂と、第2の樹脂としての低応力樹脂との境界から突出しないで、上記第2の樹脂のみから突出するように形成したことにより、上記第1の樹脂に過大なせん断応力が発生することを防止できたと考えられる。また、第2実施形態では、リードフレームのリード部3を、第1の樹脂としての光透過性樹脂と、第2の樹脂としての低応力樹脂との境界において、屈曲部の縁が位置するように形成したことにより、上記第1の樹脂に過大なせん断応力が発生することが防止できたと考えられる。
- [0074] 表2は、第1乃至第3実施形態、および、比較例のオプトデバイスのパッケージ構造について、FEMによるシミュレーションの計算結果を示したものである。このシミュレーションにおいて、光透過性樹脂8のガラス転移点は120°Cであるので、パッケージ構造の全体の応力がゼロとなる点を120°Cに設定して、温度条件を−40°C～105°C

の間で変化させて、温度サイクル試験に相当するシミュレーションを行った。

[0075] [表2]

	位置Aのせん断応力 (MPa)	位置Bのせん断応力 (MPa)
比較例	70	51
第1実施形態	35.8	28
第2実施形態	35.8	28
第3実施形態	45.8	40

[0076] 表2において、位置Aは、光透過性樹脂の端部81、または、この光透過性樹脂の端部81の近傍において、この光透過性樹脂8が、リードフレームのリード部3, 103の幅方向の端と、低応力樹脂2とに接する部分である。また、位置Bは、光透過性樹脂の端部81、または、この光透過性樹脂の端部81の近傍において、この光透過性樹脂8が、リードフレームのリード部3, 103の幅方向中央と接する部分である。

[0077] 表2のシミュレーションの結果は、実物による温度サイクル試験の結果に、良好に対応している。光透過性樹脂8の作製に用いた日東電工製NT600は、曲げ強さが130Mpaであり、一般に、樹脂のせん断強さは曲げ強さの1/3であることから、上記光透過性樹脂8のせん断強さは約45Mpaであると推定できる。上記シミュレーションで計算されたせん断応力の値が、上記光透過性樹脂のせん断強さを超えた場合に、せん断破壊が生じやすくなると判断できる。実際に、比較例では、シミュレーション計算によるせん断応力が、位置AおよびBのいずれも45Mpaを大幅に超えているところ、温度サイクル試験において光透過性樹脂の端部81に多くのクラックが生じた。一方、第1および第2実施形態では、シミュレーション計算によるせん断応力が、位置AおよびBのいずれも45Mpaを下回っているところ、温度サイクル試験において光透過性樹脂の端部81にはクラックが生じなかつた。また、第3実施形態では、シミュレーション計算によるせん断応力が、位置Aでは45Mpaを僅かに超えているものの、温度サイクル試験では光透過性樹脂の端部81にはクラックが生じなかつた。

[0078] これらの結果から、上記光透過性樹脂8に生じるクラックは、この光透過性樹脂の端部81がリードフレームのリード部103に接する部分において、特に、リード部103の

幅方向両端で低応力樹脂2にも接する部分に極めて大きなせん断応力が生じることが、原因であると考えられる。ここにおいて、本発明のオプトデバイスのパッケージ構造によれば、クラック防止構造により、光透過性樹脂の端部81のせん断応力を効果的に低減できるので、上記光透過性樹脂8のクラックを効果的に防止できると考えられる。

[0079] (第4実施形態)

図5は、本発明の第4実施形態のオプトデバイスのパッケージ構造を示す断面図である。

[0080] 第4実施形態のオプトデバイスのパッケージ構造は、クラック防止構造の構成が異なる点のみが、第1実施形態のオプトデバイスのパッケージ構造と異なる。第4実施形態において、第1実施形態と同一の構成部分には同一の参照番号を付して、詳細な説明を省略する。

[0081] 本実施形態のオプトデバイスのパッケージ構造が備えるクラック防止構造は、光透過性樹脂8の基体8bの厚みを所定の厚みにすることによって実現している。なお、上記基体8bとは、光透過性樹脂8のうち、レンズ8aを支持する部分をいう。この光透過性樹脂8に発生する熱応力は、主にリードフレーム3, 5に対して、線膨張係数とヤング率が異なることによって発生する。特に、上記光透過性樹脂8の基体8bの厚みが厚いほど、上記リードフレーム3, 5と光透過性樹脂8との間に生じるせん断応力が大きくなり、この光透過性樹脂8の端部に応力集中が発生し易くなつて、クラックが発生し易くなる。

[0082] ここで、上記光透過性樹脂8の基体8bの厚みを0.5mm以下にすることにより、上記光透過性樹脂の端部81に生じるせん断応力を効果的に低減できる。すなわち、上記光透過性樹脂8はリードフレーム3, 5および低応力樹脂2の線膨張係数に対して数倍の線膨張係数を有するにもかかわらず、上記クラック防止構造により、上記光透過性樹脂8のクラックの発生を効果的に防止できる。

[0083] なお、上記光透過性樹脂8の基体8bの厚みは、クラックを防止する観点からは薄ければ薄いほど良いが、成型時の樹脂の流動性の問題を考慮すれば、下限を0.3mm程度とするのが好ましい。

(第5実施形態)

図6は、本発明の第5実施形態のオプトデバイスのパッケージ構造を示す断面図である。

- [0084] 第5実施形態のオプトデバイスのパッケージ構造は、クラック防止構造の構成が異なる点のみが、第1実施形態のオプトデバイスのパッケージ構造と異なる。第5実施形態において、第1実施形態と同一の構成部分には同一の参照番号を付して、詳細な説明を省略する。
- [0085] 本実施形態のオプトデバイスのパッケージ構造が備えるクラック防止構造は、光透過性樹脂8の面積を、LED6の光の出射方向から見て、リードフレームの搭載部5の面積よりも小さくすることによって実現する。なお、上記光透過性樹脂8は、レンズ部8aと、このレンズ部8aを支持する基体部8bとで形成されており、この光透過性樹脂8の面積は、上記基体部8bの面積と同一である。上記光透過性樹脂8に発生する熱応力は、主にリードフレーム3, 5に対して、線膨張係数とヤング率が異なることによって発生する。特に、上記光透過性樹脂8の面積が大きいほど、この光透過性樹脂8の端部近傍において、上記リードフレーム3, 5との間に生じるせん断応力が大きくなり、この光透過性樹脂8の端部に応力集中が発生し易くなつて、クラックが発生し易くなる。
- [0086] ここで、上記光透過性樹脂8の面積を、上記LED6の光の出射方向から見て、上記リードフレームの搭載部5の面積よりも小さくすることによって、上記光透過性樹脂の端部81に生じるせん断応力を効果的に低減できる。すなわち、上記光透過性樹脂8はリードフレーム3, 5および低応力樹脂2の線膨張係数に対して数倍の線膨張係数を有するにもかかわらず、上記クラック防止構造により、上記光透過性樹脂8のクラックの発生を効果的に防止できる。
- [0087] また、第4実施形態と第5実施形態とを組み合わせて、光透過性樹脂8を薄く、かつ、面積を小さくすることにより、上記光透過性樹脂8のクラックの発生を、更に効果的に防止できる。また、図9に示されるように、光透過性樹脂8が、複数のレンズ部8a, 8a…と、この複数のレンズ部8aに連なる複数の基体部8b, 8b…で形成されている場合、この複数のレンズ部8aおよび基体部8bを互いに分離することにより、この光透

過性樹脂8のクラックの発生を更に効果的に防止できる。

(第6実施形態)

図7は、本発明の第6実施形態のオプトデバイスのパッケージ構造を示す断面図である。

- [0088] 第6実施形態のオプトデバイスのパッケージ構造は、クラック防止構造の構成と、第2の樹脂の配置位置が異なる点のみが、第1実施形態のオプトデバイスのパッケージ構造と異なる。第6実施形態において、第1実施形態と同一の構成部分には同一の参照番号を付して、詳細な説明を省略する。
- [0089] 本実施形態のオプトデバイスのパッケージ構造は、第5実施形態のオプトデバイスのパッケージ構造のクラック防止構造と同様のクラック防止構造を備える。すなわち、上記光透過性樹脂8が、レンズ部8aと、このレンズ部8aを支持する基体部8bとで形成されており、この光透過性樹脂8の面積である基体部8bの面積が、LED6の光の出射方向から見て、リードフレームの搭載部5の面積よりも小さく形成している。この場合、上記光透過性樹脂8は、LED6の光の透過のために必要最小限の寸法に形成することになるので、この光透過性樹脂8の表面を用いてパッケージ構造の位置合わせをすることができない場合が生じる。
- [0090] そこで、上記リードフレーム3、5に関して、上記光透光性樹脂8が配置される側の面において、この光透過性樹脂8が配置される部分以外の部分の少なくとも一部に、低応力樹脂の一部2aを配置する。この低応力樹脂の一部2aの表面を用いることにより、このパッケージ構造を搭載すべき機器に対して、このパッケージ構造の位置合わせを行うことができる。なお、上記低応力樹脂2をリードフレーム3、5に成型する際、光路となる部分であって、上記光透過性樹脂8を配置すべき位置にピン等を配置して、上記低応力樹脂の材料の流入を妨げるようにすればよい。
- [0091] なお、上記低応力樹脂の一部2aは、上記光透過性樹脂8の基体部8bの厚みを薄く形成した場合に、上記リードフレーム3、5の上記光透過性樹脂8が配置される側の面に形成してもよい。上記薄く形成された光透過性樹脂8の基体部8bで位置合わせができない場合であっても、上記低応力樹脂の一部2aの表面によって、このパッケージ構造の位置合わせを行うことができる。

(第7実施形態)

図8は、本発明の第7実施形態のオプトデバイスのパッケージ構造を示す断面図である。

- [0092] 第7実施形態のオプトデバイスのパッケージ構造は、クラック防止構造が異なる点のみが、第6実施形態のオプトデバイスのパッケージ構造と異なる。第7実施形態において、第6実施形態と同一の構成部分には同一の参照番号を付して、詳細な説明を省略する。
- [0093] 第7実施形態のオプトデバイスのパッケージ構造が備えるクラック防止構造は、LED6の光の出射方向から見て、光透過性樹脂8の面積がリードフレームの搭載部5の面積よりも小さいことに加えて、上記光透過性樹脂8を接着剤によって少なくともリードフレームの搭載部5に接着することにより、構成している。上記光透過性樹脂8は、レンズ部8aと、このレンズ部8aを支持する基体部8bとで形成されており、この基体部8bの下を、少なくともリードフレームの搭載部5に接着材で接着している。
- [0094] もし、光透過性樹脂8をインサート成型でリードフレーム3, 5と一緒に形成した場合、上記光透過性樹脂8には、成型収縮による応力や、光透過性樹脂の硬化開始時の温度から周囲温度に至るまでの温度差による熱応力等に起因して、残留応力が発生する。この残留応力は、上記光透過性樹脂8におけるクラックの発生の一因となる。
- [0095] ここで、本実施形態では、上記光透過性樹脂8をリードフレーム3, 5とは別個に形成し、この光透過性樹脂8を接着材10で少なくともリードフレームの搭載部5に固定する。これにより、上記接着材10の硬化開始時の温度と周囲温度との温度差による熱応力のみが、上記残留応力の原因となるので、光透過性樹脂8でのクラックの発生の可能性を低減できる。さらに、上記接着材10を応力の緩衝材として機能させることにより、光透過性樹脂8のクラックの発生を、効果的に防止することができる。
- [0096] 具体的には、上記接着材10として、オプトデバイスのパッケージの最低保存温度よりも低いガラス転移点を有する材料を用いるのが好ましい。これにより、このオプトデバイスのパッケージを使用する通常の環境において、上記接着材10をゴム状態にすることができる。これにより、上記接着材10のヤング率を低減することができるので、この接着材10が固定するリードフレーム3, 5と光透過性樹脂8との間の応力差を緩和

することができる。したがって、上記光透過性樹脂8への応力集中を効果的に防止して、クラックの発生を効果的に防止することができる。

- [0097] また、このオプトデバイスのパッケージの最低保存温度以上、かつ、最高保存温度以下の硬化点を有する接着剤10を用いることにより、この接着材10の硬化の過程において、硬化点から周囲温度に至る際の温度差を小さくすることができる。したがって、この接着材10の硬化時に発生する熱応力を小さくすることができて、光透過性樹脂8のクラックの発生を効果的に防止できる。なお、上記接着材10の硬化点は、このオプトデバイスのパッケージの最低保存温度の値と最高保存温度の値とを算術平均して得た値であるのが好ましい。
- [0098] 上記第4～第7実施形態において、上記光透過性樹脂8の成形方法は特に限定されない。一方、上記低応力樹脂2については、上記LED6およびワイヤ9等を封止するので、これらの部品への残留応力を低減するため、トランスファーモールドを用いるのが好ましい。
- [0099] また、上記低応力樹脂2には離型剤を用いないのが好ましい。低応力樹脂に離型剤を用いると、この低応力樹脂を成形した後に光透過性樹脂を成形する場合、低応力樹脂から離型剤が沁み出して、低応力樹脂と光透過性樹脂との密着性に悪影響を及ぼす場合があるからである。
- [0100] また、上記LED6は、例えばCCD、VCSEL及びPD等のような他のオプトデバイスであってもよい。
- [0101] また、上記光透過性樹脂8および低応力樹脂2の形状は、直方体に限られず、必要に応じて他の形状に変更可能である。
- [0102] また、上記リードフレームの形状は、必要に応じて他の形状に変更可能である。例えば、搭載部5とリード部3を一体に形成してもよく、また、上記リード部3の本数は何本でもよい。
- [0103] 表3は、上述の第4、第5および第7実施形態のオプトデバイスのパッケージ構造について、光透過性樹脂の端部81(表2の位置Bと同じ位置)に生じる最大せん断応力を、FEMシミュレーションによって算出した結果を示す表である。このFEMシミュレーションは、表2の結果が得られたFEMシミュレーションと同じ条件によって計算を行

った。なお、第5実施形態については、複数のレンズ8aおよび基体8bを有すると共に、この複数のレンズ8aおよび基体8bが互いに分離されてなる光透過性樹脂8についても計算を行った。また、第5実施形態については、光透過性樹脂8の厚みが0.5mmである薄型のものについても計算を行った。また、第7実施形態については、接着剤10が含む樹脂としてシリコーンを用いた場合と、その硬化点が75°Cである場合について計算を行った。表3には、比較のため、第1実施形態の計算結果も示している。

[0104] [表3]

	最大せん断応力 (MPa)
第1実施形態	2.8
第4実施形態	2.3
第5実施形態（レンズおよび基体毎に分離）	2.2
第5実施形態（薄型）	2.5
第7実施形態（シリコーン）	2.0
第7実施形態（硬化点75°C）	1.4

[0105] 上記表3から分かるように、第4、第5および第7実施形態のオプトデバイスのパッケージ構造は、第1実施形態と比較して、透過性樹脂8のせん断応力を更に低減することができる。したがって、光透過性樹脂8のクラックの発生を、更に効果的に防止することができると言える。

請求の範囲

- [1] オプトデバイス(6)と、
上記オプトデバイス(6)に対して入射または出射する光が通過する孔(5a)を有すると共に上記オプトデバイス(6)を搭載する搭載部(5)と、上記オプトデバイス(6)に電気的に接続されるリード部(3)とを有するリードフレームと、
上記リードフレームの上記オプトデバイス(6)が搭載された側に配置され、上記オプトデバイス(6)とリード部(3)とを電気的に接続するワイヤ(9)と、
上記リードフレームの上記オプトデバイス(6)が搭載された側と反対側に配置され、上記光に対して透過性を有する第1の樹脂(8)と、
上記リードフレームの上記オプトデバイス(6)が搭載された側に少なくとも一部が配置されると共に、上記オプトデバイス(6)とワイヤ(9)とを封止し、かつ、線膨張係数が上記第1の樹脂よりも低い第2の樹脂(2)と、
上記第1の樹脂にクラックが生じ難くするクラック防止構造(8, 21, 22, 31, 32, 81)と
を備えることを特徴とするオプトデバイスのパッケージ構造。
- [2] 請求項1に記載のオプトデバイスのパッケージ構造において、
上記クラック防止構造は、
上記リードフレームの上記リード部(3)に設けられて上記オプトデバイス(6)が搭載された側に屈曲した屈曲部(31)と、
上記屈曲部(31)よりも上記オプトデバイス(6)が搭載された側と反対側に位置する第2の樹脂の部分(21)と、
上記第2の樹脂の部分に接する上記第1の樹脂の端部(81)と
を含むことを特徴とするオプトデバイスのパッケージ構造。
- [3] 請求項1に記載のオプトデバイスのパッケージ構造において、
上記クラック防止構造は、
上記リードフレームの上記リード部(3)に設けられると共に、上記オプトデバイス(6)が搭載された側と反対側が凹となる凹部(32)と、
上記凹部(32)内に位置する第2の樹脂の部分(22)と、

上記第2の樹脂の部分(22)に接する上記第1の樹脂の端部(81)とを含むことを特徴とするオプトデバイスのパッケージ構造。

- [4] 請求項1に記載のオプトデバイスのパッケージ構造において、
 - 上記クラック防止構造は、
 - 上記リードフレームの上記リード部(3)に設けられて上記オプトデバイス(6)が搭載された側に屈曲した屈曲部(31)と、
 - 上記屈曲部の縁に連なる端面(83)を有する上記第1の樹脂の端部(81)とを含むことを特徴とするオプトデバイスのパッケージ構造。
- [5] 請求項4に記載のオプトデバイスのパッケージ構造において、
 - 上記第1の樹脂の端部の端面(83)は、上記屈曲部(31)の上記オプトデバイスが搭載された側と反対側の面と略同一平面上に形成されていることを特徴とするオプトデバイスのパッケージ構造。
- [6] 請求項1に記載のオプトデバイスのパッケージ構造において、
 - 上記第2の樹脂(2)は、トランスマルチモードで形成されていることを特徴とするオプトデバイスのパッケージ構造。
- [7] 請求項1に記載のオプトデバイスのパッケージ構造において、
 - 上記第2の樹脂(2)は、離型剤が混合されていないことを特徴とするオプトデバイスのパッケージ構造。
- [8] 請求項1に記載のオプトデバイスのパッケージ構造において、
 - 上記第1の樹脂(8)は、線膨張係数を低減するフィラーが混合されていることを特徴とするオプトデバイスのパッケージ構造。
- [9] 請求項1に記載のオプトデバイスのパッケージ構造において、
 - 上記クラック防止構造は、上記第1の樹脂(8)であり、
 - 上記第1の樹脂(8)は、上記オプトデバイスに対して入射または出射する光を集めレンズ部(8a)と、このレンズ部(8a)に連なる基部部(8b)とを有し、
 - 上記基部部(8b)は、厚みが0.5mm以下であることを特徴とするオプトデバイスのパッケージ構造。
- [10] 請求項1に記載のオプトデバイスのパッケージ構造において、

上記クラック防止構造は、上記第1の樹脂(8)であり、

上記第1の樹脂(8)は、上記オプトデバイス(6)に対して入射または出射する光を集めレンズ部(8a)と、このレンズ部(8a)に連なる基体部(8b)とを有すると共に、上記光が出射または入射する方向から見て、上記リードフレームの搭載部(5)の面積よりも小さい面積を有することを特徴とするオプトデバイスのパッケージ構造。

[11]

請求項1に記載のオプトデバイスのパッケージ構造において、

上記クラック防止構造は、上記第1の樹脂(8)であり、

上記第1の樹脂(8)は、上記オプトデバイス(6)に対して入射または出射する光を集めレンズ部(8a)と、このレンズ部(8a)に連なる基体部(8b)とを有すると共に、上記光が出射または入射する方向から見て、上記リードフレームの搭載部(5)の面積よりも小さい面積を有し、

上記基体部(8b)は、上記レンズ部(8a)の厚みよりも小さい厚みを有することを特徴とするオプトデバイスのパッケージ構造。

[12]

請求項10または11に記載のオプトデバイスのパッケージ構造において、

上記第2の樹脂(2)は、上記リードフレームの上記オプトデバイス(6)が搭載された側と反対側に一部が配置され、この第2の樹脂の一部(2a)は、上記リードフレームの上記第1の樹脂(8)が配置された部分以外の部分の少なくとも一部に配置されていることを特徴とするオプトデバイスのパッケージ構造。

[13]

請求項1に記載のオプトデバイスのパッケージ構造において、

上記クラック防止構造は、上記第1の樹脂(8)であり、

上記第1の樹脂(8)は、上記オプトデバイス(6)に対して入射または出射する光を集めレンズ部(8a)と、このレンズ部(8a)に連なる基体部(8b)とを有すると共に、少なくとも上記リードフレームに接着材(10)で接着されていることを特徴とするオプトデバイスのパッケージ構造。

[14]

請求項13に記載のオプトデバイスのパッケージ構造において、

上記接着材(10)は、最低保存温度よりも低いガラス転移点を有する樹脂を含むことを特徴とするオプトデバイスのパッケージ構造。

[15]

請求項13に記載のオプトデバイスのパッケージ構造において、

上記接着材(10)は、最低保存温度以上、かつ、最高保存温度以下の硬化点を有する樹脂を含むことを特徴とするオプトデバイスのパッケージ構造。

- [16] 請求項1に記載のオプトデバイスのパッケージ構造において、
上記クラック防止構造は、上記第1の樹脂(8)であり、
上記第1の樹脂(8)は、上記オプトデバイス(6)に対して入射または出射する光を
集める複数のレンズ部(8a)と、この複数のレンズ部(8a)に各々連なる複数の基体部
(8b)とを有し、上記複数のレンズ部(8a)および基体部(8b)は、互いに分離されて
いることを特徴とするオプトデバイスのパッケージ構造。

要 約 書

リードフレームの搭載部5に、開口5aに光出射部を面してLED6を搭載する。LED6とリードフレームのリード部3とを接続するワイヤ9を、LED6を搭載した側に配置する。リードフレームのLED6を搭載した側と反対側に、LED6からの出射光を透過する光透過性樹脂8を配置する。リードフレームのLED6を搭載した側に、LED6とワイヤ9を封止する低応力樹脂2を配置する。リード部3に設けられてLED6を搭載した側に屈曲する屈曲部31と、この屈曲部31のLED6を搭載した側と反対側に位置する低応力樹脂の部分21と、この低応力樹脂の部分21に接する光透過性樹脂の端部81とで、クラック防止構造を構成する。

[図1A]

[図1B]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

