Processamento de Fala 2004/05

3º Mini-teste

16 de Dezembro de 2004

Identifique o seu enunciado colocando o seu nome e número de aluno no espaço reservado no final. Só são aceites respostas às questões de escolha múltipla assinaladas no local apropriado no final do enunciado quando este estiver identificado.

- 1. Diga se as seguintes afirmações são verdadeiras ou falsas:
 - (a) Os modelos híbridos HMM/ANN não têm em conta o contexto do fone.
 - (b) Quando o material de treino é escasso, deve-se enveredar por unidades dependentes de contexto.
 - (c) Em sistemas LVCSR, a perplexidade aumenta com a ordem do modelo de n-grama adoptado.
 - (d) O cálculo de uma medida de confiança é essencial em métodos de adaptação ao orador não supervisionada.
 - (e) O reconhecimento humano é afectado por pistas audiovisuais.
 - (f) Num algoritmo de busca em dois passos, os modelos de bigramas devem ser usados no primeiro passo.
 - (g) O desempenho de um sistema de identificação da língua melhora com o aumento da duração das locuções de teste.
- 2. Coloque por ordem crescente HMMs discretos, contínuos e semi-contínuos em termos de:
 - (a) complexidade computacional
 - (b) quantidade de material de treino necessário
 - (c) precisão dos modelos
- 3. Indique 2 algoritmos de programação dinâmica usados em reconhecimento de fala.
- 4. Indique 2 métodos de parametrização acústica que explorem a estrutura temporal do sinal.
- 5. Indique 3 métodos de alisamento.
- 6. Indique 2 métodos de adaptação ao orador (supervisionada).
- 7. Considere um HMM discreto de 2 estados, que modela a extracção de bolas de 3 cores de 2 urnas diferentes. As probabilidades de observação são as seguintes:
 - Para a urna 1: Prob(branca)=0.6; Prob(preta)=0.25; Prob(cinzenta)=0.15.
 - Para a urna 2: Prob(branca)=0.25; Prob(preta)=0.6; Prob(cinzenta)=0.15.

As probabilidades de transição entre estados são as seguintes:

- Prob(permanecer na urna 1)=0.8
- Prob(permanecer na urna 2)=0.8
- Prob(transitar da urna 1 para a urna 2)=0.2
- Prob(transitar da urna 2 para a urna 1)=0.2

A primeira extracção é feita da urna 1.

- (a) Qual a probabilidade da 2ª extracção ser feita da urna 2?
- (b) Qual a probabilidade da 2ª bola ser branca?
- (c) Qual a probabilidade da 2ª bola ser extraída da urna 2, sabendo que é branca?

(Nota: basta indicar os cálculos com os valores numéricos)

8. Considere o corpus composto pelas seguintes frases:

O André comprou um livro. O Gonçalo comprou outro livro. O André comprou um livro ao Francisco. O Francisco não comprou.

Qual a probabilidade da frase seguinte usando um modelo de bigramas:

O André comprou outro livro.

9. Considere um sistema de reconhecimento de fala contínua e vocabulário extenso, independente do orador. Para um dado segmento de fala, com alguma música de fundo, a transcrição manual feita foi a seguinte:

O sol deverá voltar a brilhar amanhã. O Instituto de Meteorologia prevê céu limpo ou pouco nublado em todo o continente. Porto três a treze graus. Braga com mínimas de dois negativos e Bragança com três negativos. No centro Norte Coimbra dois a doze graus, Guarda e Leiria com um grau negativo de mínima. No centro Sul Lisboa a variar entre os cinco e os catorze graus.

A transcrição automática produzida pelo reconhecedor foi:

O sol deverá voltar a brilhar amanhã. O Instituto de Meteorologia prevê céu limpo ou pouco nublado em todo o continente. Porto três a três graus. De Braga com minas dois negativos e Bragança com três negativos. E o centro Norte de Coimbra dois a dois graus, Guarda e Leiria com um grau negativo termina. Num centro de saúde de Lisboa a variar entre os cinco e os catorze graus.

Complete os valores de H ("correct"), D ("deletions"), S ("substitutions"), I ("insertions"), N ("total"), %Corr, %Acc e %WER correspondentes.

10. Construa o léxico de pronúncia que dê conta do vocabulário da frase abaixo, tanto em situações de fala cuidadosamente articulada, como em situações de fala espontânea menos cuidada: *Molhei-me até ao joelho porque a água da piscina estava mesmo horrorosa*.

Resposta										
Nome	e:									
Número):									
1. (1,4 va								,		
a	b	c		d	e	f	g			
2. (1,8 va	al.)									
	xidade co		ional:							
quant. 1	nat. de tre	eino:								
precisão	o dos mod	elos:								
3. (1,4 va	al.)									
4 (1 4	1 \									
4. (1,4 va	al.)									
5 (16	.1 \									
5. (1,6 va	11.)									
6. (1,4 va	al)									
0. (1,7 %	11.)									
7. (3 val.)									
7. (8 741.	/									
8. (3 val.)									
	<u>/</u>									
9. (3 val.)									
H	D S	I	N	%Cor	r %Ac	c %WEF	3			
$\overline{}$			l							

A resposta à pergunta 10 deve ser dada na página seguinte (2 val.).