Feedback - Quiz 2

Help

Thank you. Your submission for this guiz was received.

You submitted this quiz on **Sat 15 Nov 2014 1:19 PM PST**. You got a score of **10.00** out of **10.00**.

Question 1

Consider the following data with x as the predictor and y as as the outcome.

```
x \leftarrow c(0.61, 0.93, 0.83, 0.35, 0.54, 0.16, 0.91, 0.62, 0.62)
y \leftarrow c(0.67, 0.84, 0.6, 0.18, 0.85, 0.47, 1.1, 0.65, 0.36)
```

Give a P-value for the two sided hypothesis test of whether β_1 from a linear regression model is 0 or not.

Your Answer		Score	Explanation
0.391			
0 2.325			
0.025			
0.05296	~	1.00	
Total		1.00 / 1.00	

Question 2 Consider the previous problem, give the estimate of the residual standard deviation. Your Answer Score Explanation ○ 0.05296 ○ 0.3552 ○ 0.4358 ○ 0.223 ✓ 1.00 Total 1.00 / 1.00 Question Explanation summary(lm(y ~ x))\$sigma ## [1] 0.223

Question 3

In the mtcars data set, fit a linear regression model of weight (predictor) on mpg (outcome). Get a 95% confidence interval for the expected mpg at the average weight.

our Answer	Score	Explan	ation
21.190			
18.991	✓ 1.00		
-6.486			
-4.00			
Total	1.00 / 1.	00	
Question Explanation			
<pre>data(mtcars) fit <- lm(mpg ~ I(wt - confint(fit)</pre>	<pre>mean(wt)), data = m</pre>	itcars)	
<pre>fit <- lm(mpg ~ I(wt - confint(fit)</pre>	mean(wt)), data = m .5 % 97.5 %	ntcars)	
<pre>fit <- lm(mpg ~ I(wt - confint(fit)</pre>	.5 % 97.5 %	ntcars)	

Question 4

Refer to the previous question. Read the help file for mtcars. What is the weight coefficient interpreted as?

Your Answer	Score	Explanation
The estimated 1,000 lb change in weight per 1 mpg increase.		
The estimated expected change in mpg per 1 lb increase in weight.		
It can't be interpreted without further information		

Total

Total

1.00

The estimated expected change in mpg per 1,000 lb increase in weight.

1.00

1.00 / 1.00

Question Explanation

This is the standard interpretation of a regression coefficient. The expected change in the response per unit change in the predictor.

Question 5

Consider again the mtcars data set and a linear regression model with mpg as predicted by weight (1,000 lbs). A new car is coming weighing 3000 pounds. Construct a 95% prediction interval for its mpg. What is the upper endpoint?

Your Answer		Score	Explanation
0 14.93			
21.25			
27.57	~	1.00	
O -5.77			
Total		1.00 / 1.00	

Question Explanation

```
fit <- lm(mpg ~ wt, data = mtcars)
predict(fit, newdata = data.frame(wt = 3), interval = "prediction")</pre>
```

fit lwr upr ## 1 21.25 14.93 27.57

Question 6

Consider again the mtcars data set and a linear regression model with mpg as predicted by weight (in 1,000 lbs). A "short" ton is defined as 2,000 lbs. Construct a 95% confidence interval for the expected change in mpg per 1 short ton increase in weight. Give the lower endpoint.

Your Answer		Score	Explanation
O 4.2026			
O -9.000			
O -6.486			
-12.973	~	1.00	
Total		1.00 / 1.00	

Question Explanation

```
fit <- lm(mpg ~ wt, data = mtcars)
confint(fit)[2, ] * 2</pre>
```

```
## 2.5 % 97.5 %
## -12.973 -8.405
```

```
## Or equivalently change the units
fit <- lm(mpg ~ I(wt * 0.5), data = mtcars)
confint(fit)[2, ]</pre>
```

```
## 2.5 % 97.5 %
## -12.973 -8.405
```

Question 7

If my X from a linear regression is measured in centimeters and I convert it to meters what would happen to the slope coefficient?

1.00	
1.00	
1.00	
1.00 / 1.00	
	1.00 / 1.00

It would get multiplied by 100.

Question 8

I have an outcome, Y, and a predictor, X and fit a linear regression model with $Y=\beta_0+\beta_1X+\epsilon \text{ to obtain } \hat{\beta}_0 \text{ and } \hat{\beta}_1.$ What would be the consequence to the subsequent slope and intercept if I were to refit the model with a new regressor, X+c for some constant, c?

Your Answer		Score	Explanation
$^{\odot}$ The new intercept would be $\hat{eta}_0 - c\hat{eta}_1$	~	1.00	
The new intercept would be $\hat{\beta}_0 + c\hat{\beta}_1$			
The new slope would be $\hat{\beta}_1 + c$			
igthtarrow The new slope would be $c \overset{\wedge}{eta}_1$			
Total		1.00 / 1.00	

Question Explanation

This is exactly covered in the notes. But note that if $Y=\beta_0+\beta_1X+\epsilon$ then

 $Y = \beta_0 - c\beta_1 + \beta_1(X + c) + \epsilon$ so that the answer is that the intercept gets subtracted by $c\beta_1$

Question 9

Refer back to the mtcars data set with mpg as an outcome and weight (wt) as the predictor. About what is the ratio of the sum of the squared errors, $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$ when comparing a model with just an intercept (denominator) to the model with the intercept and slope (numerator)?

Your Answer		Score	Explanation
0.25	~	1.00	
0.75			
0.50			
O 4.00			
Total		1.00 / 1.00	

Question Explanation

This is simply one minus the R^2 values

```
fit1 <- lm(mpg ~ wt, data = mtcars)
fit2 <- lm(mpg ~ 1, data = mtcars)
1 - summary(fit1)$r.squared</pre>
```

[1] 0.2472

```
sse1 <- sum((predict(fit1) - mtcars$mpg)^2)
sse2 <- sum((predict(fit2) - mtcars$mpg)^2)
sse1/sse2</pre>
```

[1] 0.2472

Oo the residuals always have to sum to 0 in linear regression?				
Your Answer	Score	Explanation		
If an intercept is included, the residuals most likely won't sum to zero.				
If an intercept is included, then they will sum to 0.	✓ 1.00			
The residuals must always sum to zero.				
The residuals never sum to zero.				
Total	1.00 /			
	1.00			