Package 'RiboProR'

February 14, 2020

Title R Tools for Ribosomal Footprints Profiling Analysis

Version 1.0

Author Hongen Zhang [aut, cre], Fujun Zhou [aut]
Maintainer Hongen Zhang <hzhang@mail.nih.gov></hzhang@mail.nih.gov>
Depends $R(>=3.4)$
Imports Biostrings, corrplot, DESeq2, IRanges, GenomicAlignments, GenomicRanges, gplots, grDevices, graphics, Hmisc, parallel, Rsamtools, rtracklayer, S4Vectors, stats, utils
Description A light version of RiboProTools providing simple methods for Ribosomal footprints profiling analysis including of: fp framing, fp counting, DESeq2 analysis for translational efficiency change, and few plot methods for data visualization.
License GPL (>=2.0)
biocViews Visualization, Riboseq, RNASeq, DESeq2
NeedsCompilation no
R topics documented:
RiboProTools-package
absoluteOuter alignASites
bedCdsIRangesList
bedGRangesList
checkBlocksInBed
checkChromosomeInfo
converToGenePredFormat
countAligns
countAtAsite
countingFrames
countingMetagenePosition
countSizes

covertToRNASequence11extractEfficiencyChange11extractTranscriptionChange12filterCountMatrix13filterOutAlignments13

fpCountsBoxPlot	4
fpFramePlot	
FpFraming	
	6
ϵ	7
	7
	8
getAnnotationFromBedFile	
	9
getAnnotationInfo	
getASiteProfile	
getASiteTable	
getBamFlagStat	
getBestFrame	
getBigWiggleFile	
getCDSGRanges	
getCDSInfoDefinedByBed	
getChromosomeSizesFromBam	
6	
ω 1	
getCodonIndex	
getComplementarySequence	
getCountMatrixFromFiles	
getCountMatrixFromTable	
getCountsData	
getDefaultParameters	
getDefaultStartCodon	
getDefaultStopCodon	
getDESeqDataSet	
getFilteredFPCenter	
getFootprintDensityCenter	
getFrameTable 3	
getMetageCountsMatrix	
getMetageneFrames	
getORFPositions	
getOriginalFPCenter	4
getPlotColors	
getPositionProfileTable	5
getPrettyLabels	5
getReadPeaks	6
getRegionFrames	6
getReversedSequence	7
getSequence	7
getSequenceFromMutipleFastaFiles	8
getSequenceFromOneFastaFile	8
getStartCodonContext	9
getTranscriptLength	9
getTranscriptReadsOnly	0
getUORCountMatrixFromOneFileSet	0
getUORFCountMatrixFromTwoFileSets	1
getUORFCountMatrixInFujunFormat	2
getUTRInfoDefinedByBed	3
getUTRInfoFromFastaFile	

	getWiggleCounts	44
	initializeMetageneFrameTable	45
	initializeMetageneTable	46
	irangeOuter	46
	is.DNA.sequence	47
	is.mRNA.sequence	47
	mapASite	48
	normalizeWiggleCounts	48
	plotCorrelationHeatmap	49
	plotCorrelationMatrix	49
	plotHeatmap	50
	plotMetageneCounts	50
	plotMetageneFrames	51
	plotMultiMetageneCounts	52
	plotRedBlueCorrelationImage	52
	plotReplicates	53
	plotTranslationEfficiency	53
	quickDESeq2Test	54
	readAsiteFromFile	55
	ReadBamToTable	56
	regionCountFrame	56
	relativeWithin	57
	ribo_pro_data	57
	runDESeq	58
	screenORF	59
	setCodonIndexPair	59
	sortTableByChromosomeNames	60
	summerizeMetageneFrames	60
	transcriptCdsIRanges	61
	transcriptGRanges	61
	trxRegionCountAligns	62
	trxRegionCountSizes	62
	trxRegions	63
	validateCodons	64
	validateParameters	64
	writeChromosomeSizesToFile	65
	writeORFInfoToFile	65
	writeWiggleFiles	66
	yeast_gene_description	66
Index		67

RiboProTools-package R Tools for Ribosomal Footprints Profiling Analysis

Description

A list of methods for Ribosomal footprints (fp) profiling analysis was provided including of: fp framing, fp counting, DESeq2 analysis, and data visualization.

4 absoluteOuter

Details

Package: RiboProTools

Type: Package Version: 1.0.0 Date: 2018-8-08 License: GPL (>=2)

Author(s)

Hongen Zhang Fujun Zhou Maintainer: Hongen Zhang hzhang@mail.nih.gov

absoluteOuter

Convert A Relative Position to An Absolute Genomic Coordinate

Description

Convert a transcript-relative position to an absolute genomic coordinate based on a transcript whose coordinates are given by a GRanges of exons (outer).

Usage

```
absoluteOuter(qpos, outer)
```

Arguments

qpos positive integer, a position relative to the start of a transcript.

outer GRanges object, genomic positions of a transctipt.

Value

Positive integer, the geneomic coordinate of the transcript-relative position.

References

Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379

alignASites 5

alignASites

Align a-site for GAlignments Object

Description

Covert GAligments objects for a transcript to a GAlignments object having the A site nucleotides only.

Usage

alignASites(asiteOffsets, alns)

Arguments

asiteOffsets A data frame of one column, row names are read lengths and column is A sites

for each read length.

alns A GAlignments objects for a transript.

Value

A GAlignments object for A site nucleotides only.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

bedCdsIRangesList

Get IRanges List for All CDS

Description

For each transcript in a BED file and the associated transcript GRanges as computed by bed-GRangesList, find the transcript-local CDS as per transcriptCdsIRanges and collect these as an IRangesList.

Usage

bedCdsIRangesList(bed, bedgrl)

Arguments

bed GRanges list imported from bed file.
bedgrl GRanges list of exons for all transcripts.

Value

IRanges list for each exon (CDS).

6 checkBlocksInBed

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

bedGRangesList

Get GRanges List for All Transcripts in A BED File

Description

For each transcript in a BED file GRanges, get the GRanges of its exons as per transcriptGRanges and collec these into a GRangesList with names taken from the name metadata column of the BED file GRanges.

Usage

bedGRangesList(bed)

Arguments

bed

GRanges list with block information defined.

Value

A GRanges list object for exons of all transcripts.

References

Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379

checkBlocksInBed

Validate the Information of Blocks Defined in BED File

Description

Check out if the block information defined in bed file are correct. Block count must be positvie integer. Block sizes and block starts must be comma seperated list. Number of block sized and starts must match to the block counts.

Usage

checkBlocksInBed(bed_info)

Arguments

bed_info

A data frame with 12 columns read from bigBed file.It should be checked before call this function and must have required standard column names.

Value

Logic, TRUE for everything is correct. Otherwise FALSE.

checkChromosomeInfo 7

References

https://genome.ucsc.edu/FAQ/FAQformat#format1.7

checkChromosomeInfo

Check Chromosome Information Between Fasta and BED Files

Description

Check out if the chromsome names and length are same in the given two files.

Usage

```
checkChromosomeInfo(DNA_seq, bed_info)
```

Arguments

DNA_seq A data frame with rows for chromosome(s) and columns for chromosome name(s)

and sequence(s).

bed_info A data frame with contents same as bigBed file.

Details

The first file is a fasta file with chromosome(s) and sequences. The second file is an annotation file in BigBed format (12 columns). This function will check if the number of chromosomes and chromosome names in the two files are same, and sequence length in fastq file is same as the chromosome length defined in bed file.

Value

Logic, TRUE if the relevant information in two files are same. Otherwise return an error message.

 ${\tt converToGenePredFormat}$

Covert ORF Information to GenePred Format

Description

Covert ORF table in tab-delimited format to GenePrep format.

Usage

```
converToGenePredFormat(ORF_file, is.one.based = TRUE, min_codon = 0)
```

Arguments

ORF_file Character vector, name (and path) of tab-delimited file for ORF information.

is.one.based Logic, if position is 1-based in input file. Default TRUE.

min_codon Integer. 0 or bigger. Number of codon(s) between start and stop codons.

8 countAligns

Details

The output has following columns (one column more than the ucsc gebe prediction table formt: gene_name orf_ID chromosomes strand tx_start tx_end cds_start cds_end num_exon exon_starts exon_end

Value

Data frame with 11 columns in GenePred format.

References

https://genome.ucsc.edu/FAQ/FAQformat.html#format9

		٠.	
coun	+ Δ	. 1 1	one

Count Aligned A-site for All Transcripts in Bed File

Description

Scan a bam file and count aligned a-site for each transcript defined in bed file.

Usage

```
countAligns(asiteOffsets, insets, bamfile, trxBed)
```

Arguments

asiteOffsets A data frame of one column with read length as row names and a-sites for each

read length in column.

insets List of integer with length of 4, insets in number of nucleotides for avoiding start

and stop position.

bamfile Character vector, name of a bam file (and path).

trxBed GRange object for all transcripts.

Value

List of list, number of aligned a-site in transcript, cds, 5'UTR, and 3'UTR region of each transcript.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

countAtAsite 9

countAtAs	site	Count A-site Along One Chromosome

Description

Count number of reads which overlap at A-site on transcripts of one chromosome.

Usage

```
countAtAsite(alignments, chrom_len, asite_table)
```

Arguments

alignments GRange list for alignments on one chromosome.

chrom_len Positive integer, length of the chromosome.

A data frame with one column for A-sites and rownames for qualified read

length.

Value

A list of 2 integer vectors for counts on forward and reverse strand at each base pair position.

References

https://github.com/ingolia-lab/RiboSeq

countingFrames	Count Total Number of Reading Frames for All Aligments

Description

Find the reading frames based on the start position of alignments.

Usage

```
countingFrames(alignments, cds_ranges, inset_5=34, inset_3=31)
```

Arguments

alignments	GRanges list for all reads from a bam file.
cds_ranges	GRanges list for all cds annotations.
inset_5	positive integer, shift distance after start position of cds to avoid start codon.
inset_3	positive integer, shift distance before end position of cds to avoid stop codon.

Value

A data frame of two columns for reading frames and read length of each read.

References

(https://github.com/ingolia-lab/RiboSeq)

10 countSizes

countingMetagenePosition

Count Metagene Positions for Aligments

Description

Find the positions relative to cds start and stop positions for all alignments.

Usage

```
countingMetagenePosition(alignments, annotation, shift_start=0, shift_end=0)
```

Arguments

alignments GRanges list for short reads in a bam file.

annotation GRanges list of cds annotations.

shift_start Positive integer, shift this distance to 5'end from start position of cds. shift_end Positive integer, shift this distance to 3'end from end position of cds.

Value

A data frame with 3 columns for 3 columns: distance to cds start, distance to cds end, and read length, for each alignments.

References

(https://github.com/ingolia-lab/RiboSeq)

countSizes

Calculate Region Sizes for All Transcripts

Description

Count sizes for whole transcript,, 5'UTR, cds, 3'UTR regions of each transcript.

Usage

```
countSizes(insets, trxBed)
```

Arguments

insets List of integer, insets in nucleotides for avoiding star tand stop codons.

trxBed GRanges list for all transcripts.

Value

List of sizes of whole transcript, cds, 5-UTR, and 3-UTR for each transcript.

covertToRNASequence

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

11

covertToRNASequence

Convert DNA Sequence to RNA

Description

Convert DNA sequence to RNA sequence and reverse it if it is for reverse strand.

Usage

```
covertToRNASequence(DNA_seq, strand)
```

Arguments

DNA_seq Character vector, a fragment of DNA sequences from forward strand.

strand Character, either "+" or "-".

Value

A character vector containing series of "A", "U", "G", "C".

extractEfficiencyChange

Extract Results from DESeqDataSet Object For Transclational Efficiency Change.

Description

Extract translational efficiency (TE) and transclational efficiency change (TEC) from DESeqDataSet object after calling of DESeq(). The output will contain all columns from results() and mcols().

Usage

```
extractEfficiencyChange(dds_object, control_name, mutant_name,
efficiency_type="TE", meta_cols=c(1:3))
```

Arguments

dds_object	A DESeq object, on which DESeq() has already been called. The design model must be ~ genotype + condition + genotype:condition.
control_name	Character vectors, name of control group, used for generation of output file name.
<pre>mutant_name efficiency_type</pre>	Character vectors, name of mutant group, used for generation of output file name.
erriciency_cype	
	Character vectors, name of efficiency. Use "TE" for translational efficiency analysis or "RRO" for relative ribosomal occupancy analysis.
meta_cols	Positive integers, columns of meta-data to be attached to output. Set to NULL if

all columns are attached or 0 for no meta-data.

Value

DESeqDataSet object, same for input. All results extracted are saved to files.

References

https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf

extractTranscriptionChange

Extract Results from DESeqDataSet Object For Transcription Change

Description

Extract transcription change between Riboseq samples and between RNASeq samples from DESeqDataSet object after running of DESeq(). The output will contain all columns from results() and mcols().

Usage

```
extractTranscriptionChange(dds_object, control_name, mutant_name,
change_one="mRNA", change_two="Ribo", meta_cols=c(1:3))
```

Arguments

dds_object	A DESeq object, on which DESeq() has already been called. The design model must use a grouping variable.
control_name	Character vectors, name of control group, used for generation of output file name.
mutant_name	Character vectors, name of mutant group, used for generation of output file name.
change_one	Character vector, name of changes between groups of RNASeq samples.
change_two	Character vector, name of changes between groups of RiboSeq samples.
meta_cols	Positive integers, columns of meta-data to be attached to output. Positive integers, columns of meta-data to be attached to output. Set to NULL if all columns are attached or 0 for no meta-data.

Value

A DESeq object, same as the input.

References

https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf

filterCountMatrix 13

filterCountMatrix	Filter Data Matrix Based on RiboSeq fp Counts and/or RNAseq
	Counts

Description

Filter data matrix based on RiboSeq fp counts and RNAseq counts. Any rows with mean of RiboSeq fp counts or mean of RNASeq counts below the definded values will be removed.

Usage

```
filterCountMatrix(count_matrix=NULL, mRNA_col=NULL,
    ribo_col=NULL, mRNA_level=10, ribo_level=0)
```

Arguments

count_matrix	Data matrix with both RiboSeq fp counts and RNASeq reads counts.
mRNA_col	Positive integer, columns in the matrix for RNASeq reads counts.
ribo_col	Positive integer, columns in the matrix for RiboSeq reads counts.
mRNA_level	Numeric, threshold to filter rows by mean of RNASeq reads counts.
ribo_level	Numeric, threshold to filter rows by mean of RiboSeq fp counts.

Value

A data matrix same as input matrix with unqualified rows removed.

Examples

```
data(ribo_pro_data);

mRNA_col <- c(4:6, 10:12);
ribo_col <- c(1:3, 7:9);

mRNA_level <- 10;
Ribo_level <- 0;

count_matrix <- filterCountMatrix(ribo_pro_data, mRNA_col, ribo_col, mRNA_level, Ribo_level);</pre>
```

filterOutAlignments Filter

Filter Aligments/Reads

Description

Filter out alignments/reads by read length and genomic regions.

Usage

```
filterOutAlignments(alignments, asite_table, annot_bed_file)
```

14 fpCountsBoxPlot

Arguments

alignments GRange list for alignments/reads in GRange list.

asite_table A data frame with one column for A-sites and rownames for qualified read

length.

annot_bed_file Character vector, name (and path) of annotation file in bed format.

Value

GRange list with qualified alignments/reads.

fpCountsBoxPlot Counts Data Box Plot

Description

Make box plot with counts data fron DESeqDataSet Object

Usage

```
fpCountsBoxPlot(dds, normalize=c("size", "fpm", "fpkm"),
label_area=2, main_text="Distribution of fp Counts")
```

Arguments

dds A DESeqDataSet object

 $normalize \qquad Character\ vector,\ method\ of\ normalization\ either\ "size",\ "fpm",\ "fpkm",\ or\ NULL.$

label_area Positive integer, height of area at botom of plot for sample labels.

main_text Character vector, text for title of the plot.

Examples

```
## Not run:
data(dds_TE)
fpCountsBoxPlot(dds_TE)
## End(Not run)
```

fpFramePlot 15

fpFramePlot	Bar Plot of Reading Frames Data	

Description

Plot reading frames distributions of ribosomal foot prints (bar plot).

Usage

```
fpFramePlot(frame_file, by_column=TRUE, fp_column=c(2:4), read_len=c(25:30),
legend_pos="topleft", title_text="Ribosomal fp Frame Distribution")
```

Arguments

frame_file	Character vector, name of the file (and path) with reading frame counts for each read length.
by_column	Logic, if the frame data arraned by column (row is for each read length). If TRUE, fp_column must be defined.
fp_column	Positive integer, column number for reading frame counts.
read_len	Positive integer vector, length of reads (alignments).
legend_pos	Character vector, location of legend, one of "topleft", "center", "topright".
title_text	Character vector, text for title.

Examples

```
## Not run:
frame_file <- system.file("extdata", "RiboProTools_ribo.frame_len.txt",
package = "RiboProTools")
fpFramePlot(frame_file)
## End(Not run)</pre>
```

FpFraming	Get Framing Information for All Reads in A Bam File

Description

Perform framing analysis for all reads in a bam file and generate profiles for reading frames, metagenes, and a-sites.

Usage

```
FpFraming(bam_file, bed_file, parameters=NULL, validate.parameters=TRUE, save.file=TRUE)
```

16 getAlignASites

Arguments

bam_file Character vector, name of bam file (and path).

bed_file Character vector, name of bed file (and path) for gene annotation.

parameters List of integers for FpFraming parameters.

validate.parameters

Logic, if TRUE, non-default parameters will be validated.

save.file Logic, if true, all tables (total of 6) will be saved to files.

Details

This is the main function for framing analysis. It scans a bam file and extract information for metagene, read frames, and find a-sites for reads of each qualified length. Outputs will be saved as tab-delimited text files.

Value

A data frame containing a-sites for fragments with selected length.

References

https://github.com/ingolia-lab/RiboSeq

getAlignASites Get Aligned A sites for A Transcript

Description

Scan bam file for all reads of a transcript then get aligned a-sites for the transcript.

Usage

```
getAlignASites(asiteOffsets, bamfile, trx)
```

Arguments

asiteOffsets A data frame of one column with read length as row names and a-sites for each

read length in column.

bamfile Character vector, name of a bam file (and path).

trx GRange object for a transcript.

Value

A GAlignments object for A site nucleotides only.

References

Oroginal code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

getAlignments 17

getAlignments

Get Alignments for A TRanscript from BAM File

Description

Read in all reads compatible with a processed transcript on the correct strand, as per findSpliceOverlaps.

Usage

```
getAlignments(bamfile, trx)
```

Arguments

bamfile Character vector, the name (and path) of the bam file to be read.

trx GRanges object for a transcript.

Value

A GAlignments object with all reads overlapping with the transcript.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

```
getAlignmentsFromBamFile
```

Read All Reads from BAM File

Description

Scan a BAM file and hold all reads with GRanges list.

Usage

```
getAlignmentsFromBamFile(bam_file)
```

Arguments

bam_file Character vector, a bam file name (and path).

Value

Granges list containing all reads in bam file. Keep the reads unfiltered but hold seqname, start and end, strand information only.

References

http://samtools.github.io/hts-specs/SAMv1.pdf

getAllAlignments

Get All Alignments for A Transcript from BAM File

Description

Get all reads overlapping the genomic extent of a primary transcript on the correct strand, including unspliced and purely intronic reads.

Usage

```
getAllAlignments(bamfile, trx)
```

Arguments

bamfile Character vector, the name (and path) of the bam file to be read.

trx GRanges object for a transcript.

Value

A GAlignments object with all reads overlapping with the transcript.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

```
getAnnotationFromBedFile
```

 $Read\ Annotation\ Information\ from\ BED\ File$

Description

Import annotation information from BED file and convert them to two GRanges lists.

Usage

```
getAnnotationFromBedFile(bed_file)
```

Arguments

bed_file

Character vector, file name (and path) for annotations in BED format. The file must be in Bed12 format (with thick columns defined).

Details

import() function from rtracklayer package is used to bring in annotation informaton to GRanges list.

Value

List of two GRanges objects. The first one contains all information in the bed file and the second one has cds information only.

References

https://genome.ucsc.edu/FAQ/FAQformat.html#format1.7

getAnnotationFromBigBedFile

Extract Annotation Information from BigBed File

Description

Read bigBed file (12 columns) into data frame and check the contents.

Usage

getAnnotationFromBigBedFile(bed_file, has.header=FALSE, sepcial_chrom=NULL)

Arguments

bed_file Character vector, name (and path) of the bigbed file.

has header Logic, if the bigbed file has column headers. Default is FALSE.

sepcial_chrom character vector, chromosome names other than digits, roman numbers, and "X",

"Y", "M".

Details

Fields in bigBed file: 1) chrom: chromosome name of each feature 2) chromStart: start position of each feature 3) chromEnd: end position of each feature 4) name: gene name of each feature 5) score: used for graphic display only 6) strand: chromosome strand of each feature 7) thickStart: starting position drawn thickly 8) thickEnd: ending position drawn thickly 9) itemRgb: used for graphic display only 10) blockCount: number of blocks of each feature 11) blockSizes: comma-separated list of block sizes 12) blokStarts: comma-separated list of block starts, relative to chromStart

chromStart and chromEnd are 0-based and half-open.

Value

A data frame with 12 columns.

References

https://genome.ucsc.edu/FAQ/FAQformat#format1.7

20 getASiteProfile

getAnnotationInfo	Extract Annotation Information for a List of Genes	

Description

Extract gene ID, gene name, and description for a list of genes from annotation file.

Usage

```
getAnnotationInfo(annotation, gene_list, id_column=1, name_column=2, description=3)
```

Arguments

annotation A data frame with at least 3 columns for	or gene ID, gene names, and descriptions.
gene_list Character vector, list of gene names extracted.	for which the annotation information is
id_column Positive integer, column of gene ID in	annotation file.
name_column Positive integer, column of gene name	in annotation file.
description Positive integer, column of gene descri	ption in annotation file.

Value

A data frame with 3 columns (gene ID, gene name, and description) for the list of genes.

getASiteProfile	Find All A-site for Alignments of A Transcript

Description

Count number of aligned a-sites at each base position of a transcripts.

Usage

```
getASiteProfile(asiteOffsets, bamfile, trx)
```

Arguments

asiteOffsets A data frame of one column with read length as row names and having a-sites

for each read length in the column.

bamfile Character vector, name of a bam file (and path).

trx GRange object for a transcript.

Value

Integer vector, total aligned a-site at each base position of a transcript.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

getASiteTable 21

	Generate A-site Table	Gene	getASiteTable
--	-----------------------	------	---------------

Description

Generate a-site table from the three position profile tables.

Usage

```
getASiteTable(frame_table, at_start, at_end, parameters)
```

Arguments

frame_table	A data frame with 7 columns for read_len, fraction, counts of the three reading frames.
at_start	A numeric matrix with rows for metagene positions realtive to cds start and columns for read length.
at_end	A numeric matrix with rows for metagene positions realtive to cds end and columns for read length.
parameters	List of length 13, all parameters for a-site calculation.

Value

A data frame with rows for each read length and columns (total of 9) for read length, fraction of each length, peak relative to cds start, peak relative to cds end, other information, fraction of frame0, frame1, frame2, and best a-site.

References

(https://github.com/ingolia-lab/RiboSeq)

Description

Scan bam flags to get statistics of the reads. This requires samtools available from system (either path to samtools is included in user's PATH variable or the module has been loaded in HPC system).

Usage

```
getBamFlagStat(bamFiles, outFile)
```

Arguments

bamFiles	Character vector, names of bam files.
outFile	Character vector, names of output file.

22 getBigWiggleFile

Value

None. Write the flags to output file.

References

http://www.htslib.org/doc/samtools.html

getBestFrame

Find the Best Reading Frame

Description

Find the best frame from Frame 0~2 for each read length.

Usage

```
getBestFrame(frame_table)
```

Arguments

frame_table

An data frame with counts of 3 readind frames for each read length.

Value

Positive integer vector, frame number for each read length,

References

(https://github.com/ingolia-lab/RiboSeq)

getBigWiggleFile

Generate Coverage File in bigWig Format ()

Description

Generate bigwig files from bam file. Only coverage of aligned reads are reported and no normalization performed. There will be two bigWig files saved to current directory, one for gorward strand and another for reverse strand.

Usage

```
getBigWiggleFile(bam_file, transcripts)
```

Arguments

bam_file Character vector, bam file name (and path)

transcripts GRange list for transcripts.

getCDSGRanges 23

Author(s)

Henry Zhant

Examples

```
## Not run:
yeast_bed <- rtracklayer:import("yeast-all.bed");
getBigWiggleFile("riboseq_t1.bam", yeast_bed)
## End(Not run)</pre>
```

getCDSGRanges

Extract CDS Regions from Transcript Definition

Description

Covert GRanges of transcripts to GRanges of CDS regions.

Usage

```
getCDSGRanges(bed_file)
```

Arguments

bed_file

character vector, name (and path) of a bed file defining transcripts and relevant CDS regions.

Value

GRange list for CDS regions.

```
{\tt getCDSInfoDefinedByBed}
```

Extract CDS Information and Sequence

Description

Extract genomice sequence and other annotation items for CDS defined in bed file.

Usage

```
getCDSInfoDefinedByBed(DNA_seq, bed_info)
```

Arguments

DNA_seq A data frame with rows for chromosome(s) and columns for chromosome name(s)

and their sequence(s).

bed_info A data frame with contents same as bigBed file (12 columns)

Value

A data frame with 7 columns for: chromosome, start_pos, end_pos, strand, locus, sequence, type ("CDS")

References

https://genome.ucsc.edu/FAQ/FAQformat#format1.7

getChromosomeSizesFromBam

Get Chromosome Sizes from A BAM File

Description

Extract length of each chromosome from bam file header.

Usage

```
getChromosomeSizesFromBam(bam_file)
```

Arguments

bam_file

Character vector, bam file name (and path).

Value

A data frame with 2 columns for chromosome names and lengths.

 ${\tt getCodonFromSequence}$

Split the Given mRNA Sequence to Codons

Description

Covert the given mRNA sequence to codons starting the position of start_at.

Usage

```
getCodonFromSequence(mRNA_seq, start_at)
```

Arguments

mRNA_seq

Character vector, mRNA sequence (base A, U, G, C only).

start_at

Positive integer, the start position to split the sequence. Must be 1, 2, or 3.

Value

Character vector, codons starting from the start_at position in the sequence.

Examples

```
getCodonFromSequence("GAUGAGCUAGGAC", start_at=2)
# "AUG" "AGC" "UAG" "GAC"
```

getCodonIndex 25

 ${\tt getCodonIndex}$

Get the Index of A Codon in Codon List

Description

Find which codon(s) in the codon list matches to the target codon.

Usage

```
getCodonIndex(codon_list, target_codon)
```

Arguments

codon_list Character vector, a serial codons from a RNA sequences.

target_codon Character vector, one or more start or stop codon(s).

Value

Positive integer vector, index of the codon(s) which matched to target codon.

 ${\tt getComplementarySequence}$

Convert a fragment of sequence to its complementary contents

Description

Get complementary sequence for a fragment of DNA sequence (no RNA)

Usage

```
getComplementarySequence(seq_fragment)
```

Arguments

seq_fragment Character vector, a fragment of DNA sequence.

Value

Character vector, the complementary sequence of the input with $A \rightarrow T$, $G \rightarrow C$, $T \rightarrow A$, and $C \rightarrow G$.

```
getCountMatrixFromFiles
```

Read Raw Counts from Text Files and Generate Counts Matrix

Description

Read multiple tab-delimited text files and extract raw counts column, then merge all raw counts as one matrix with rows for genes and columns for samples.

Usage

```
getCountMatrixFromFiles(directory_name, file_name_pattern, count_column,
rowname_column = 0, has.header = TRUE)
```

Arguments

directory_name character vector, name of directory where raw counts files are stored.

file_name_pattern

character vector, common pattern in all raw counts files. This pattern should not

be used by other files in same directory.

count_column Positive integer, number of column for raw counts in the file.

rowname_column Positive integer, the column in raw count file for row names. Set to 0 for raw

count files saved by write.table() with row.names=TRUE.

has. header Logical, if the raw count files have column headers.

Value

A numeric matrix with rows for genes and columns for samples. File names are used as column headers in this matrix.

Note

All raw counts files must be generated with same software or have same number of rows and columns as well as same row and column orders).

Examples

```
directory_name <- "raw_count_files"
file_name_pattern <- "raw_counts.txt"
count_column <- 2
rowname_column <- 0
has.header <- TRUE

## Not run: getCountMatrixFromFiles(directory_name, file_name_pattern, count_column, rowname_column, has.header)
## End(Not run)</pre>
```

```
getCountMatrixFromTable
```

Extract Raw Counts from A Matrix or Data Frame

Description

Generate a matrix from a matrix or data frame with defined columns.

Usage

```
getCountMatrixFromTable(count_table=NULL, ribo_control=NULL,
ribo_treatment=NULL, mRNA_control=NULL, mRNA_treatment=NULL)
```

Arguments

count_table	A data frame or matrix with raw counts from both Riboseq and RNAseq data for same samples. Row names must be gene names or gene IDs.
ribo_control	Positive integer vector, columns in input table for control samples of Riboseq data.
ribo_treatment	Positive integer vector, columns in input table for treatment or mutant samples of Riboseq data.
mRNA_control	Positive integer vector, columns in input table for control samples of RNASeq data.
mRNA_treatment	Positive integer vector, columns in input table for treatment or mutant samples of RNASeq data.

Value

A matrix with columns in the order of mRNA control samples, mRNA treatment samples, ribosomal control samples, and ribosomal treatment samples

Examples

```
## Not run:
data("ribo_pro_data.RData")
getCountMatrixFromTable(count_table=ribo_pro_data, ribo_control=7:9,
ribo_treatment=10:12, mRNA_control=1:3, mRNA_treatment=4:6)
## End(Not run)
```

getCountsData

Get Counts Data from DESeqDataSet Object

Description

Extract raw counts data or normalized counts from DESeqDataSet object.

Usage

```
getCountsData(dds, normalize=c("size", "fpm", "fpkm"))
```

28 getDefaultParameters

Arguments

dds A DESeqDataSet object.

normalize Character vector, method of normalization either "size", "fpm", "fpkm", or NULL.

Value

A matrix holds raw or normalize counts data.

Examples

```
## Not run:
data("dds_TE")
fpm <- getCountsData(dds_TE, normalize="fpm")
## End(Not run)</pre>
```

getDefaultParameters Get Default Parameters

Description

Methods used for get default parameters.

Usage

```
getAllDefaultParameters()
getDefaultInset()
getZeroInset()
getDefaultRiboSeqAsites()
getDefaultRNASeqAsites()
getDefaultFlank()
getDefaultCdsBody()
getDefaultLengths()
getDefaultMinLenFract()
getDefaultStartRange()
getDefaultEndRange()
getDefaultStartShift()
getDefaultEndShift()
getDefaultStartCodons()
getDefaultStopCodons()
getDefaultExtraBounds()
getDefaultMinNumberOfAminoAcid()
```

Value

```
getAllDefaultParameters() return a list of integers used for ribosomal footprints framing: shift_start:100 shift_end:100 inset_5: 34 inset_3: 31 min_len: 25 max_len: 34 minLenFract: 0.05, minStartRange: -17, maxStartRange: -8, minEndRange: -22, maxEndRange: -13, startShift: 3, endShift: -2 getDefaultInset() return a list of integers in order to avoid start and stop codons:
```

getDefaultStartCodon 29

```
utr5Inset3: 6, cdsInset5: 45, cdsInset3: 15, utr3Inset5: 6
```

getZeroInset() return a list of 4 zeros for utr5Inset3, cdsInset5, cdsInset3, and utr3Inset5.

getDefaultRiboSeqAsites() return a data frame of 1 colum for a-sites for Riboseq reads with length 26:31.

getDefaultRNASeqAsites() return a data frame of 1 colum for a sites for RANSeq reads with length 18:51.

getDefaultFlank() return an integer vector of length 2 for flank regions at both end of gene cds: -100 and 100.

getDefaultCdsBody() return an integer vector of length 2 to calculate CDS body range: 34 and 31.

getDefaultLengths() return an integer vector of length 2 for minimum and mazimum read length: 25 and 34.

getDefaultMinLenFract() return a numeric for minimum required fraction of read length: 0.05.

getDefaultStartRange() return an integer vector of length 2 for range before start codon.

getDefaultEndRange() return an integer vector of length 2 for range before stop codon.

getDefaultStartShift() return a integer (3) for start position when shift starts.

getDefaultEndShift() return a integer (-2) for stop position when shif stops.

getDefaultStartCodons() return a character vector of length 10 for start codons.

getDefaultStopCodons() return a character vector of length 3 for stop codons.

getDefaultExtraBounds() return an integer vector of length 2 for extra bound of a region (such as cds).

getDefaultMinNumberOfAminoAcid() return an integer (2) for minimum number of ammino acids required for a gene.

getDefaultStartCodon Get the Default Start Codon List

Description

The default start codon list will be "AUG", "AUC", "AUU", "AUA", "AGG", "ACG", "AAG", "CUG", "UUG", and "GUG".

Usage

getDefaultStartCodon()

Value

Character vector, the default set of start codons.

30 getDESeqDataSet

getDefaultStopCodon

Get the Default Stop Codon List

Description

The default stop codon set is "UAG", "UGA", "UAA".

Usage

getDefaultStopCodon()

Value

Character vector, the default set of stop codons.

getDESeqDataSet

Initialize A DESeqDataSet object

Description

Generate a DESeqDataSet object with a counts matrix that contains control and treatment/mutant samples from both RiboSeq and RNASeq data.

Usage

```
getDESeqDataSet(count_matrix, num_Ribo_wildtype, num_Ribo_mutant,
num_mRNA_wildtype, num_mRNA_mutant, annotation_info=NULL)
```

Arguments

count_matrix A matrix with columns in the order of: mRNA control samples, and mRNA treatment samples, ribosomal control samples, and ribosomal treatment samples.

num_Ribo_wildtype

Positive integer, total number of wildtype/control samples with RiboSeq fp counts.

num_Ribo_mutant

Positive integer, total number of mutant/treament samples with RiboSeq fp counts.

num_mRNA_wildtype

Positive integer, total number of wildtype/control samples with RNASeq fp counts.

 ${\tt num_mRNA_mutant}$

 $Positive\ integer,\ total\ number\ of\ mutant/treament\ samples\ with\ RNASeq\ fp\ counts.$ annotation_info

Data frame with columns for gene ID, gene name, and description.

Details

This function set up a DESeqDataSet using DESeqDataSetFromMatrix(). The countData will be the count_matrix, colData will have both condition ("mRNA and "Ribo") and genotype("wildtype" and "mutant"), and design will be \sim genotype + condition + genotype:condition. The annotation_info will be added into mcols, if provided.

getFilteredFPCenter 31

Value

A DESeqDataSet object.

References

https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf

getFilteredFPCenter

Calculate Center of Filtered Ribosomal Footprints for A Transcript

Description

Calculate center of ribosomal footprints for a transcript by removing positions where have no a-site aligned.

Usage

```
getFilteredFPCenter(asiteProfile)
```

Arguments

asiteProfile

Vector of positive integer, counts of a-site on each nucleotide position of a transcript

Value

Positive float number, length of the 5' end of transcript that has half of total counts divided by transcript length

getFootprintDensityCenter

Main Function to Calculate Center of Ribosomal Footprint Densities

Description

Calculate centers of ribosomal footprint density for each transcript in a bam file .

Usage

```
getFootprintDensityCenter(a_sites, transcripts, bam_file, weight = FALSE)
```

Arguments

a_sites Data frame with 1 column for a-site. Row names are read length.

transcripts GRanges list of all transcripts.

bam_file Character vector, name (and path) of a bam file.

weight Logic, if the position with zero count should be filtered out.

Value

A data frame with one column of positive integers for density center of all transcripts. Row names of the data frame are gene ID/names.

getFrameTable

Generate Reading Frame Table from Frame Profile Table

Description

Convert readind frame profile to readind frame table for total number and fraction of each frame.

Usage

```
getFrameTable(frameProfile)
```

Arguments

frameProfile A data frame with two columns for frames and length of each read

Value

A data frame with 7 columns for read_len, fraction, counts of the three reading frames.

References

(https://github.com/ingolia-lab/RiboSeq)

getMetageCountsMatrix Generate Matrix of Reads Counts for Metagene Positions

Description

By giving a list of metagene frame table files, generate a matrix for metagene counts plot. Rows of the matrix are reads counts on each defined metagene position and columns are samples. The matrix is sorted by maximum value of each column in decreasing order so that the y range of the plot will be automatically decided.

Usage

```
getMetageCountsMatrix(count_files, from_position, to_position)
```

Arguments

count_files Character vector, names (and path) of metagene reads count files.

from_position Integer, start position of metagene to plot. to_position Integer, stop position of metagene to plot

Value

Data matrix with read counts along metagene position from multiple samples.

Author(s)

Henry Zhang

getMetageneFrames 33

getMetageneFrames	Write Reading Frames of Metagene to Files	

Description

Counting total number of reading frames for all metagene positions (positions of read start relative to cds start).

Usage

```
getMetageneFrames(posProfile, bam_file_name)
```

Arguments

posProfile A data frame with three columns for to_start, to_end, and read_len of each reads

in a Ba file.

bam_file_name Character vector, name of bam file from which the reads are scaned for metagene

positions. Used for output file generation.

Details

Two output files will be generated. One for metagene positions relative to cds start and one for metagene position relative to cds stop. Each file has three columns for total counts, frame, and metagene position.

getORFPositions	Calculate Relevant Genomic Positions for a ORF	
-----------------	--	--

Description

Calculate genomic positions, for a ORF, includeing of start, stop, distance to cap (UTR start), and distance to main AUG codon.

Usage

```
getORFPositions(seq_info, start_index, stop_index, start_at, include_stop_codon)
```

Arguments

seq_info Information of UTR (one row from data frame)

start_index Integer, start codon index in an ORF.
stop_index Integer, stop codon index in an ORF.

start_at Integer, start point in sequence to read codons (frame)

include_stop_codon

Logic, if include stop codon in outputs.

Value

Positive integer vector for start and stop positions, distance from cap and to main AUG codon.

34 getPlotColors

getOriginalFPCenter

Calculate Center of Ribosomal Footprint Density Without Filtering

Description

Calculate center of ribosomal footprint density for a transcript without filtering.

Usage

```
getOriginalFPCenter(asiteProfile, trx_length)
```

Arguments

asiteProfile Vector of positive integers, count of asite aligned to the transcript at each nt

position.

trx_length Positive integer, length of the transcript.

Value

Positive float number, ratio of length of the 5' end of transcript that has half of total counts divided by transcript length

getPlotColors

Get R Colors for Plot

Description

Generate a default color list of length 24 or rainbow colors with length more than 24.

Usage

```
getPlotColors(num_colors)
getDefaultColors()
```

Arguments

num_colors

Positive integer, total number of colors.

Value

```
getPlotColors(num_colors) returns a vector of R colors with length of num_colors. getDefaultColors() returns a vector of predifined R colors with length of 24.
```

getPositionProfileTable 35

```
getPositionProfileTable
```

Generate Metagene Table

Description

Convert position profile table to metagene table.

Usage

```
getPositionProfileTable(positionProfile=NULL, at_which=1,
meta_start=-100, meta_end=100)
```

Arguments

positionProfile

A data frame of 3 columns for relative position to cds start, to cds end, and read

length.

at_which A positive integer, 1 for to start position or 2 for to end position.

meta_start Negative integer, position before cds start in metagene table

meta_end Positive integer, position after cds end inmetagene table

Value

A numeric matrix with rows for metagene positions and columns for read length.

References

(https://github.com/ingolia-lab/RiboSeq)

getPrettyLabels

Format Axis Labels

Description

Modifiy the axis labels for metagene frame plot.

Usage

```
getPrettyLabels(min_val, max_val)
```

Arguments

min_val Integer, minimum value of the axis label.

max_val Integer, maximum value of the axis label.

Value

Integer vector.

36 getRegionFrames

References

http://bioconductor.org/packages/riboSeqR/

Examples

```
label_5p <- getPrettyLabels(-50, 200);</pre>
```

getReadPeaks

Find Read Peaks from Metagene Table

Description

Find count peaks for each read length from metagene length table.

Usage

```
getReadPeaks(metagene, min_range, max_range)
```

Arguments

metagene A data frame with columns for each read length and rows for counts in each

position of metagene.

min_range Positive integer, minimum index of the row to find peak.

max_range Positive integer, maximum index of the row to find peak.

Value

An integet vector, distance from metagene start for each read length.

References

(https://github.com/ingolia-lab/RiboSeq)

getRegionFrames

Generate Metagene Frame Table for A Specific Region

Description

Extract a subset from full metagene frame table and convert them to a three row data frame.

Usage

```
getRegionFrames(frame_file, from, to)
```

Arguments

frame_file Character vecor, name (and path) of the file continning frames at each metagene

position.

from Integer, the start of a sub region of the metagene. to Integer, the end of a sub region of the metagene.

getReversedSequence 37

Value

A data frame with 3 rows for counts of frame0, frame1, and frame2 at each metagene position.

Examples

```
## Not run:
frame_file <- system.file("extdata", "frame_at_start.txt",
package="RiboProTools")
frame_table <- getRegionFrames(frame_file, -50, 200);
## End(Not run)</pre>
```

getReversedSequence

Reverse a Fragment of DNA/RNA Sequence

Description

Simply reverse a fragment of sequence (character vector).

Usage

```
getReversedSequence(seq_fragment)
```

Arguments

seq_fragment Character vector, a fragment of DNA/RNA sequence.

Value

Character vector, same bases as input sequences but in reversed order.

getSequence

Extract Sequence From Fasta File

Description

Get sequence from fasta file for a transcript.

Usage

```
getSequence(fafile, trx)
```

Arguments

fafile Character vector, the fasta file name (and path).

trx GRanges object for a transcript.

Value

Character vector, DNA sequence of the transcript.

getSequenceFromMutipleFastaFiles

Extract Genomic Sequences from Multiple Fasta Files

Description

Read fasta files which are organized by chromosome and extract relevant chromosome names and sequence.

Usage

```
getSequenceFromMutipleFastaFiles(file_path, file_type)
```

Arguments

file_path character vector, path to the directory which holds the fasta files.

file_type Character vector, file extention. Valid types are "fa", "FA", "fasta", and "FASTA".

Value

A data frame containing sequence data where rows are for each chromosome and columns are for chromosome names and sequences

getSequenceFromOneFastaFile

Extract Chromosome Names and Sequences from Fasta File

Description

Read fasta file which include multiple chromosomes and relevant sequences. Simply put them in data frame for easy use.

Usage

```
getSequenceFromOneFastaFile(file_name)
```

Arguments

file_name Character vector, name (and path) of a fasta file.

Value

A data frame wiht row(s) for chromosome(s) and columns for chromosome names and sequences.

getStartCodonContext 39

getStartCodonContext Extract Contex for A Start Codon

Description

Build the context (a short sequence fragment from the third nucleotide before start codon and the one nucleotide next to start codon). There will be total of 7 nucleotides, e.g., GACAUGG, AUCAUGC).

Usage

```
getStartCodonContext(codon_list, start_index, mRNA_seq, start_at)
```

Arguments

codon_list Character vector, codons from the sequence.

start_index Integer, index of start codon. Always greater than 0.

mRNA_seq Character vector, mRNA sequence converted from UTR/CDS sequence

start_at Integer, either 1, 2 or 3.

Value

Character vector, nucleotides around start codon.

getTranscriptLength Calculate Length of Transcripts

Description

Calculate transcript length for exon only (remove introns, if any).

Usage

```
getTranscriptLength(transcripts)
```

Arguments

transcripts GRange list with transcripts

Value

A data frame of one column for transcript length and with gene names as row names.

```
getTranscriptReadsOnly
```

Filter Alignments/Reads in GRange List by Genomic Regions

Description

Filter out alignments/reads to keep that overlapped with genomic regions defined in annotation file.

Usage

```
getTranscriptReadsOnly(alignments, annot_bed_file)
```

Arguments

```
alignments GRange object of all alignments to be filtered out.

annot_bed_file Character vector, name (and path) of annotation file in bed format.
```

Value

GRange object of filtered alignments.

```
getUORCountMatrixFromOneFileSet
```

Generate uORF Counts Matrix from One Set of Files

Description

Generate uORF count matrix from files which contains both fp counts for uORF and cds regions.

Usage

```
getUORCountMatrixFromOneFileSet(directory_name,
uorf_file_pattern, mrna_file_pattern=NULL,
count_column=2, rowname_column=0, has.header=TRUE,
uorf_ID_patter1 = "^.{4}-", uorf_ID_patter2=NULL)
```

Arguments

directory_name Character vector, name of the directory where raw counts files are stored. uorf_file_pattern

Character vector, the common pattern of raw counts files.

mrna_file_pattern

Character vector, the common pattern of RNASeq raw count files if using RNASeq reads counts instead of cds fp counts.

count_column Positive integer, the column of raw count in counts files.

rowname_column Positive integer, the column in raw counts file for row names of new matrix. set

to 0 if raw counts files were saved by write.table() with row.names=TRUE.

has . header Logical, if the raw counts files have column headers.

```
uorf_ID_patter1
```

Character vector, unique pattern used to extract gene ID from uorf ID.

uorf_ID_patter2

Character vector, the second unique pattern, if exists, used to extract gene ID from uorf ID.

Value

An integer matrix with raw footprints (fp) counts of both uORF and fp counts (or reads counts, if using RNASeq) cds regions. Rows of the matrix are for uORF/genes and columns for samples. The left half of the matrix is fp counts from cds regions of each gene and the right half is fp counts from uORF region of same gene. The samples in uORF part and cds part have same orders.

```
getUORFCountMatrixFromTwoFileSets
```

Generate uORF Counts Matrix from Two Counts Files

Description

Generate raw uORF counts matrix from two sets of counts files: footprint counts for uORF regions and footprints counts for gene cds regions.

Usage

```
getUORFCountMatrixFromTwoFileSets(file_directory,
uorf_file_pattern="uorf_conserved_fpcounts.txt",
cds_file_pattern="cds_for_uorf_fpcounts.txt",
count_column=2, rowname_column=0, has.header=TRUE,
seperator = "\\.")
```

Arguments

file_directory Character vector, name of a directory where raw counts files are stored. uorf_file_pattern

Character vectors, common pattern in uORF counts files.

cds_file_pattern

Character vectors, common pattern in cds counts files.

count_column Possitive interger, the column of raw counts in counts file.

rowname_column Possitive interger, which column will be used as row names. Set to 0 if count

files are output from R write.table() with row.names=TRUE.

has.header Logic, if the input files have headers.

seperator Character vector, unique pattern to separate gene name and uorf ID in uorf

names. It CANNOT be any character used in gene name or uorf id.

Value

An integer matrix with raw footprints (fp) counts of both uORF and cds regions. Rows of the matrix are for uORF/genes and columns for samples. The left half of the matrix is fp counts from cds regions of each gene and the right half is fp counts from uORF region of same gene. The samples in uORF part and cds part have same orders.

Note

The two file sets have different rows, one is for uORF fp counts only and another is for cds region fp counts only. The uORF ID/names in raw uORF counts file must contain gene name and uORF ID separated by the 'seperator', e.g., "YGL134W.255638" where YGL134W is gene name, "." is separator, and 255638 is uORF ID. The data matrix generated with this function is for DESeq2 analysis with normalization by subset, i.e., normalizing uORF and cds fp counts seperately. It MAY NOT be suitable for default normalization.

```
getUORFCountMatrixInFujunFormat
```

Generate uORF FP Counts Matrix in Fujun Format

Description

Generate a uORF footprints counts matrix in a special format. See Details.

Usage

```
getUORFCountMatrixInFujunFormat(file_directory,
uorf_file_pattern = "uorf_conserved_fpcounts.txt",
cds_file_pattern = "cds_for_uorf_fpcounts.txt",
count_column=2, rowname_column=0, has.header=TRUE)
```

Arguments

file_directory Character vector, name of a directory where raw footprints counts files are stored.

uorf_file_pattern

Character vectors, common pattern in uORF footprints counts files.

cds_file_pattern

Character vectors, common pattern in cds footprints counts files.

count_column Possitive interger, the column of raw counts in counts files.

rowname_column Possitive interger, which column will be used as row names. Set to 0 if count

files are output from R write.table() with row.names=TRUE.

has header Logic, if the input files have headers.

Details

The Fujun Format is specifically designed for relative risobomal occupancy (RRO, uORF fp counts divided by cds fo counts) analysis. Since in most cases the uORF fp counts is much lower than the counts of cds region in same gene, simply normalizing the uORF counts with relative cds fp counts together may extremely shift the values of log2 change ratio. With Fujun Format, the coumns for uORF counts in the matrix contains fp counts for all uORFs and all cds regions, the columns for cds region fp counts have cds region fp counts of genes matched to each uORF plus fp counts of all genes. A default DESeq2 analysis could be applied with data matrix in this format.

Value

An integer matrix with raw footprints (fp) counts of both uORF and cds regions. Rows of the matrix are for uORF/genes and columns for samples. The left half of the matrix is fp counts from uORF regions of each gene and the right half is fp counts from cds region of same gene. The samples in uORF part and cds part have same orders.

Note

The input files are outputs based on two different BED files but the rows in two BED files are matched each other. The uORF ID/names in raw uORF counts file must contain gene name and uORF ID separated by the 'seperator', e.g., "YGL134W.255638" where YGL134W is gene name, "." is separator, and 255638 is uORF ID.

getUTRInfoDefinedByBed

Extract UTR Information From Both of Fasta and BED Files

Description

Extract annotation information from bed file and sequence from fasta file.

Usage

getUTRInfoDefinedByBed(DNA_seq, bed_info)

Arguments

DNA_seq A data frame with rows for chromosome(s) and columns for chromosome name(s)

and sequence.

bed_info A data frame with contents same as bigBed file.

Value

A data frame with 7 columns for:

chromosome: chromosome name of each UTR start_pos: start position of each UTR end_pos: end position of each UTR strand: strand of each UTR locus: gene name of each UTR sequence: DNA sequence of each UTR type: type of each fragment (5UTR or 3UTR)

All positions are forward strand based.

References

https://genome.ucsc.edu/FAQ/FAQformat#format1.7

getUTRInfoFromFastaFile

Extract UTR Information from Fasta File

Description

Process fasta file for UTR to get annotation items and sequence for each UTR, e.g., 5UTR.fa downloaded from https://www.pombase.org/downloads/utr

Usage

```
getUTRInfoFromFastaFile(fasta_file, header_name)
```

44 getWiggleCounts

Arguments

fasta_file Character vector, name (and path) of fasta file.
header_name Character vector, definition of each header field.

Details

A typical record in fast format is much like below:

The header line includes items for Systematic_ID UTR ID Gene Start Gene_End Strand Chromosome Feature Type Description

Value

A data frame with rows for UTR and columns for annotation items and sequence.

References

https://www.pombase.org/downloads/utr

getWiggleCounts Get A-site Counts for Wiggle File Generation

Description

Count total number of aligned a-sites for full genome or transcripts only.

Usage

```
getWiggleCounts(bam_file, asite_table, annot_bed_file)
```

Arguments

bam_file Chraracter vector, name of bam file (and path)

asite_table A data frame with 1 column for a-site and rownames for read length. A file

name is also accepted.

annot_bed_file Chraracter vector, name of a bed file for gene/transcript annotation.

Value

List of list with each sub-list is wiggle counts for forward and reverse strand of one chromosome.

Note

This function counts coverage for forward and reverse strand separately and the coverage is on the A-site only.

References

https://github.com/ingolia-lab/RiboSeq

 $initialize {\tt MetageneFrameTable}$

Initialize A Metagene Frame Table

Description

Initialized a matirx with 3 columns for counts, frames, and unique metagene positions.

Usage

```
initializeMetageneFrameTable(position_set)
```

Arguments

position_set Integer vector, unique position set of all metagene positions (position relative to cds start or cds stop positions)

Value

A data frame of 3 columns for number of frames, frame names, and metagene positions.

References

https://github.com/ingolia-lab/RiboSeq

Examples

```
## Not run:
positions <- -100:100;
frames_table <- initializeMetageneFrameTable(positions);
head(frames_table);
## End(Not run)</pre>
```

46 irangeOuter

```
initializeMetageneTable
```

Initialize A New Metagene Table

Description

Initialize an empty matrix with rows for base positions of metagene and columns for read length.

Usage

```
initializeMetageneTable(meta_start=-100, meta_end=100, min_len=25, max_len=34)
```

Arguments

max_len

meta_start Negative integer, distance before cds start for metagene start.

meta_end Positive integer, distance after cds end for metagene end.

min_len Positive integer, minimum length of a read.

Positive integer, maximum length of a read.

Value

A matrix of 0s(zero) with rows for metagene positions and columns for read length.

References

(https://github.com/ingolia-lab/RiboSeq)

irangeOuter Get Genomic Ranges for Transcript-Relative IRanges

Description

Convert transcript-relative query IRanges to an absolute genomic GRanges based on a transcript coordinates in a GRanges of exons.

Usage

```
irangeOuter(qranges, outer)
```

Arguments

qranges IRanges object with relative positions to a start of transcript.

outer GRanges object, genomic positions of a transctipt.

Value

A GRanges object for the genomic positions.

is.DNA.sequence 47

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

is.DNA.sequence

Check Out If A Sequence Is from DNA

Description

Check out the given sequence is DNA by matching its based to A, T, G, and C.

Usage

```
is.DNA.sequence(DNA_seq)
```

Arguments

DNA_seq

Character vector, s fragment of DNA sequence. No 'N' or white space allowed.

Value

Logic, TRUE if the given sequence is from DNA Otherwise FALSE.

Examples

```
is.DNA.sequence("AGCTTAGGCCAAT") # TRUE
is.DNA.sequence("AGCUUAGGCCAAU") # FALSE
```

is.mRNA.sequence

Check Out If A Sequence Is from mRNA

Description

Check out if the given sequence is from mRNA, i.e., its bases must be A, U, G, or C.

Usage

```
is.mRNA.sequence(mRNA_seq)
```

Arguments

 ${\tt mRNA_seq}$

Character vector, s fragment of mRNA sequence. No 'N' or white space allowed.

Value

Logic, TRUE if the given sequence is from mRNA Otherwise FALSE.

Examples

```
is.mRNA.sequence("AUGCGAAUGGCC") # TRUE
is.mRNA.sequence("ATGCGAATGGCC") # FALSE
```

mapASite

Mapping A-site for Each Alignment/Read

Description

Convert the GRange object to one base width GRanges based on relevant a-site.

Usage

```
mapASite(alignments, asite_table)
```

Arguments

alignments GRange object of alignments on one strand to be filtered out.

asite_table A data frame of 1 columns to hold a-site for each read length which are repre-

sented by row names.

Value

GRange object with one base width.

normalizeWiggleCounts Normalize Wiggle Track Counts

Description

Normalize wiggle track counts to a defined total counts.

Usage

```
normalizeWiggleCounts(all_counts, normalize_factor = NULL)
```

Arguments

all_counts

List of list, each list element has two numeric vectors for read counts forward and reverse strand at base pair level.

normalize_factor

positive numeric, scaling factor. If not provided, total wiggle counts will be scaled to 1000000000.

Value

List of list, normalized counts for each strand.

References

https://github.com/ingolia-lab/RiboSeq

```
plotCorrelationHeatmap
```

Plot Correlation Heastmap for samples

Description

Make a correlation image for samples in DESeqDataSet with blue and red colors.

Usage

```
plotCorrelationHeatmap(dds, normalize=c("size", "fpm", "fpkm"),
image_name, image_type="pdf", image_size=12)
```

Arguments

```
dds A DESeqDataSet object.

normalize Character vector, method of normalization either "size", "fpm", "fpkm", or NULL.

image_name Character vector, output image file name.

image_type Character vector, output image format, either "pdf", "tiff", or "png".

image_size Positive integer, image height.
```

Examples

```
## Not run:
data("dds_TE")
plotCorrelationHeatmap(dds_TE, image_name="corr.image.pdf")
## End(Not run)
```

plotCorrelationMatrix Plot Correlation Matrix Data

Description

Plot correlation matrix with corrplot() provided by corrplot package.

Usage

```
plotCorrelationMatrix(plot_data, cor_method="rcorr",
cor_type="spearman", shape_type="ellipse", p_threshold=0.01)
```

Arguments

plot_data	A numeric matrix, the data with which correlation coefficients will be calculated.
cor_method	Character vector, function name for correlation calculation, either "rcorr" (default) or "cor".
cor_type	Character vector, correlation type, either "spearman" or "pearson".
shape_type	Character vector, shape to represent the correlation coefficients on the plot image, one of "circle", "square", "ellipse", "number", "shade", "color", or "pie".
p_threshold	Numeric, the threshold for significant level to filter the correlation coefficients.

50 plotMetageneCounts

plotHeatmap	Heatmap Plot with Data Matrix

Description

Make heatmap plot with data matrix and heatmap.2() in gplots package.

Usage

```
plotHeatmap(plot_value, sample_name, gene_name,
image_type="pdf", image_width = 8,
is.log2=FALSE, scale_by="row")
```

Arguments

plot_value	Numeric matrix, values for heatmap plot.
sample_name	Character vector, column (sample) labels.
gene_name	Character vector, row (gene) labels.
image_type	Character vector, output image format, one of "pdf", "tiff", and "png".
image_width	Positive integer, width of output image in inches.
is.log2	Logic, is the data log2 transformed.
scale_by	Character vector, how the data is scaled, either "row" or "column"

plotMetageneCounts Plot Metagene Counts Distribution

Description

Make line plot showing metage counts distribution around positions relative to CDS start and stop positions.

Usage

```
plotMetageneCounts(count_file, from_position=-50,
to_position=50, codon="Start", x_interval=10)
```

Arguments

count_file	Character vector, name of the file which contains frame name and frame counts for each metagene position relative to cds start position.
from_position	Integer, leftmost position relative to cds start or stop position.
to_position	Integer, rightmost position relative to cds start or stop position.
codon	Character vector, either 'Start' or 'Stop'.
x_interval	Integer, length between tick-marks for x-axis.

plotMetageneFrames 51

Examples

```
## Not run:
at_start <- system.file("data", "ribo_meta_start_frames.txt",
plotMetageneCounts(at_start);
title("Metagene Counts Distribution");
## End(Not run)</pre>
```

plotMetageneFrames

Plot Frames of Metagene Regions

Description

Make bar plot showing frame distribution at positions relative to CDS start and stop positions.

Usage

Arguments

metagene_atStart

Character vector, name of the file which contains frame name and frame counts for each metagene position relative to cds start position.

metagene_atStop

Character vector, name of the file which contains frame name and frame counts for each metagene position relative to cds stop position.

min_5p Integer, minimum distance to cds start positon.

max_5p Integer, maximum distance to cds start positon.
min_3p Integer, minimum distance to cds stop positon.

max_3p Integer, maximum distance to cds stop positon.

frame_colors Character vector or R colors vector of length 3, plot colors for reading frames.

beside Logic, if the columns for same group alongside each other.

Examples

```
## Not run:
at_start <- system.file("data", "ribo_meta_start_frames.txt",
package="RiboProTools");
at_stopt <- system.file("data", "ribo_meta_stop_frames.txt",
package="RiboProTools");
plotMetageneFrames(at_start, at_stopt);
title("Metagene Frame Distribution");
## End(Not run)</pre>
```

```
plotMultiMetageneCounts
```

Plot Reads Counts on Metagene Positions

Description

Generate a line plot to show reads counts on each defined metagene position for multiple samples.

Usage

```
plotMultiMetageneCounts(count_files, from_position=-50, to_position=50, codon="Start", x_interval=10, line_colors = c("red", "blue", "green"))
```

Arguments

count_files Character vector, names (and path) of metagene reads count files generated by

FpFraming().

from_position Integer, start position of metagene to plot. to_position Integer, stop position of metagene to plot.

codon Character vector, codon name, either "Start" or "Stop" for x-axis labeling.

x_interval Positive integer, interval for metagene position lables on x-axis.

line_colors Character vector of R color names for lines.

Author(s)

Henry Zhang

```
plotRedBlueCorrelationImage
```

Plot Correlation Image with Red-Blue Colors

Description

Plot pairwise correlation matrix with blue and red colors.

Usage

```
plotRedBlueCorrelationImage(corr_data, image_name, image_type="pdf", image_width=12)
```

Arguments

corr_data Numeric matrix, pairwise correlation coefficients of samples.

image_name Character vector, output image file name.

image_type Character vector, output image format, either "pdf", "tiff", or "png".

image_width Positive integer, size of squared image.

Note

There is no scree output and image will be saved to file.

plotReplicates 53

plotReplicates	Plot Raw or Normalized Counts of Sample Replicates
p	

Description

Make scatter plot with count data of two replicate samples in DESeqDataSet.

Usage

```
plotReplicates(dds, normalize=c("size", "fpm", "fpkm"),
replicates=c(1, 2), show.cor=TRUE, is.log2=FALSE,
point_color="grey", line_color="red",
x_label="replicate 1", y_label="replicate 2",
main_text="Distribution of fp Counts")
```

Arguments

dds	A DESeqDataSet object.
normalize	Character vector, method of normalization either "size", "fpm", "fpkm", or NULL.
replicates	Positive integer vector of length 2. The columns in counts data to be plotted.
show.cor	Logic, if plot corelation coefficiency and the regression line.
is.log2	Logic, is the data log2 transformed.
point_color	Character vector of R colors names, color for the point background.
line_color	Character vector, colors for regression line.
x_label	Character vector, text for x axis label
y_label	Character vector, text for y axis label
main_text	Character vector, text for title of the plot

Examples

```
## Not run:
data("dds_TE")
plotReplicates(dds_TE, replicates=1:2)
## End(Not run)
```

```
\verb|plotTranslationEfficiency|\\
```

Scatter Plot with Translational Efficiency Data

Description

Scatterplot with too translational efficiency (TE) values.

54 quickDESeq2Test

Usage

```
plotTranslationEfficiency(dds, ratio_level=1,
x_label="TE of Wild Type", y_label="TE of Mutant",
title_text="Translation Efficiency Of Mutant",
x_pos=0, y_pos=12)
```

Arguments

dds A DESeqDataSet object.

ratio_level Positive numeric, threshold to change point colors.

x_label Character vector, text for x axis label.y_label Character vector, text for y axis label.title_text Character vector, text for title of the plot.

x_pos Integer, x coordinate for text showing pearson's r y_pos Integer, y coordinate for text showing pearson's r

Examples

```
## Not run:
data("dds_TE")
plotTranslationEfficiency(dds_TE)
## End(Not run)
```

quickDESeq2Test

Perform A Quick DESeq Analysis for Ribosomal Footprints Profiling

Description

A simple way to perform DESeq2 analysis with ribosomal footprints profiling data and gene annotation information.

Usage

```
quickDESeq2Test(count_table, Ribo_wildtype, Ribo_mutants,
mRNA_wildtype, mRNA_mutants, control_name, mutant_name,
mRNA_level, Ribo_level, annotation_file)
```

Arguments

both control and treamtment/mutant samples.

Ribo_wildtype Positive integer vectors, column numbers in count matrix for raw counts of Ri-

boSeq wildtype samples.

Ribo_mutants Positive integer vectors, column numbers in count matrix for raw counts of Ri-

boSeq treatment/mutant samples.

mRNA_wildtype Positive integer vectors, column numbers in count matrix for raw counts of

RNASeq wildtype samples.

readAsiteFromFile 55

mRNA_mutants	Positive integer vectors, column numbers in count matrix for raw counts of RNASeq treatment/mutant samples.
control_name	Character vector, name of control group.
mutant_name	Character vector, names of treatment/mutant group.
mRNA_level	Numeric, threshold to filter out the matrix based on row means of RNASeq samples.
Ribo_level	Numeric, threshold to filter out the matrix based on row means of RiboSeq samples.
annotation_file	

Character vector, name of gene annotation file

Value

None. All results will be saved to file.

Examples

```
## Not run:
data("ribo_pro_data.RData")
annotation_file <- system.file("data", "yeast_gene_descriptions.txt",
package="RiboProTools");
quickDESeq2Test(ribo_pro_data, Ribo_wildtype=c(1:3), Ribo_mutants=c(7:9),
mRNA_wildtype=c(4:6), mRNA_mutants=c(10:12),
control_name="ribo_WT", mutant_name="ribo_MT",
mRNA_level=10, Ribo_level=1, annotation_file)
## End(Not run)</pre>
```

readAsiteFromFile

Read a_site from A-site file

Description

Read a-site table generated by FpFraming(), covert it to a one column data frame with required column name.

Usage

```
readAsiteFromFile(a_site_file)
```

Arguments

a_site_file Characte vector, name (and path) of a-site file.

Value

A data frame with one column for a-site of each read length. Read length are used for row names.

References

Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

56 regionCountFrame

ReadBamToTable

Scan A BAM File and Convert Results to A Data Frame

Description

Read a bam file and convert the object (list of list) to a data frame

Usage

ReadBamToTable(bam.file)

Arguments

bam.file

character vector, name of the bam file (and path).

Value

A data frame with all conternts read from BAM file.

References

Morgan M, Pages H, Obenchain V and Hayden N (2016). Rsamtools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import. R package version 1.26.1,

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html.

 ${\tt regionCountFrame}$

Convert Aligned A-site of All Transcripts to A Data Frame

Description

Convert the aligned a-site of all transcripts from a list of list to a data frame.

Usage

regionCountFrame(counts)

Arguments

counts

List of list, number of aligned a-site in transcript, cds, 5'UTR, and 3'UTR region of each transcript.

Value

Data frame with 4 columns, total number of aligned a-site in transcript, cds, 5'UTR, and 3'UTR region of each transcript.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

relativeWithin 57

relativeWithin	Convert a Genomic Position to Position Relative to CDS Start

Description

Convert an absolute genomic query position (qpos) to a transcript-relative coordinate position within a transcript.

Usage

```
relativeWithin(qpos, outer)
```

Arguments

qpos A positive integer, a genomic coordinate inside of a transcript.

outer GRanges object, genomic positions of a transctipt.

Value

Positive integer, a poistion relative to the start of transctipt or NA if the absolute position is not in any exon (no hit).

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

ribo_pro_data Sample Data for DESeq2 Analysis

Description

A numeric matrix of raw counts from RiboSeq and RNASeq Data including 5440 genes and 6 samples for both RNASeq and RiboSeq. Row names are gene names.

Usage

```
data("ribo_pro_data")
```

Format

The format is: numeric matrix.

Source

Unpublished data.

58 runDESeq

Examples

```
## Not run:
data(ribo_pro_data)
dim(ribo_pro_data)
head(ribo_pro_data)
## End(Not run)
```

runDESeq

Run DESeq on A DESeqDataSet

Description

Run DESeq() or other related functions based on the contents of the DESeqDataSet.

Usage

```
runDESeq(deseq_dataset, has.SizeFactors=FALSE,
reset.design=FALSE, fit_type="parametric")
```

Arguments

deseq_dataset A DESeqDataSet with design model of ~ genotype + condition + genotype:condition,

on which DESeq() or other related functions will be called.

has.SizeFactors

Logic, if the deseq_dataset has size factor already or not.

reset.design Logic, if need reset design model.

fit_type Character vector, fit type used by DESeq() or estimateDispersions().

Details

This function will apply DESeq() or other related functions based on the contents of the DESeq-DataSet object. If the DESeqDataSet has no sizeFactors calculated, it will call DESeq() otherwise it will call estimateDispersions() and nbinomWaldTest(). By default, the design model is ~ genotype + condition + genotype:condition, which is for translational efficiency test. For transcription test, it must be changed to ~group. This will be done if set reset.design to TRUE.

Value

 $A\ DESeqDataSet, on\ which\ DESeq()\ or\ relative\ functions\ has\ been\ called.$

References

https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf

screenORF 59

screenORF	Extract ORF Information from A Sequence Fragment	

Description

Screen a sequence fragment to get start codon, context from -3 to +4 base positions of start codon, length of ORF, distance from the cap, and distance to the uAUG in a list.

Usage

```
screenORF(seq_info, codon_list, codon_pair, start_at, mRNA_seq)
```

Arguments

seq_info	One row from a data frame, sequence info including of chromosome, start_pos, end_pos, strand, locus, sequence, and type.
codon_list	Character vector, codons converted from UTR sequence.
codon_pair	Matrix of column 2 for paired start and stop index.
start_at	Integer in 1, 2, 3, base where start to read (frame).
mRNA_seq	Character vector, a fragment of mRNA sequence.

Details

Screen a mRNA sequence to get information including of: gene_name chromosome seq_start seq_stop strand orf_id orf_start orf_stop start_codon context orf_length dis_from_cap dis_to_MUG

Value

A data frame with columns for information above.

setCodonIndexPair Pairing Start and Stop Codons in An ORF Range

Description

Pair start and stop codons in an ORF ranges. For each start codon, only the first stop codon in its downstream can be used. If there is no stop codon found, the end of sequence is used (index 0).

Usage

```
setCodonIndexPair(start_index, stop_index)
```

Arguments

start_index	Integer vector, start codon index, always greater than 0.
stop_index	Integer vector, stop codon index, could be 0 or integer(s) greater than 0.

sortTableByChromosomeNames

Sort A Table by Chromosome Names

Description

Sort a table by chromosome names (either Arabic or Roman numbers)

Usage

```
sortTableByChromosomeNames(chrom_info, name_col=1, type="digit")
```

Arguments

chrom_info A data frame or matrix with one column for chromosome names.

name_col Positive integer, number of the column for chromosome names.

type Character vector, type of chromosome numbers, either "digit" or "roman".

Value

Data frame or matrix same as the input but sorted by chromosome names.

summerizeMetageneFrames

Summerize Metagene Framse from Metagene Position Profile

Description

Summrize reading frames for each metagene position (position of read start relative to cds start or to cds stop position)

Usage

```
summerize {\tt MetageneFrames(posProfile, pos\_col=1)}
```

Arguments

posProfile A data frame with three columns for to_start, to_end, and read_len for each

reads.

pos_col Positive integer, column number in the data frame above.

Value

A data frame of 3 columns for total counts, frame, metagene position, and rows for each metagene position

transcriptCdsIRanges 61

transcriptCdsIRanges Convert Exons in GRanges Object to IRanges Object

Description

Convert the thick block information in a GRanges object to transcript-relative IRanges object.

Usage

transcriptCdsIRanges(trx, thickStart, thickEnd)

Arguments

trx GRanges object for a transcript with block information.
thickStart Positive integer, start position of CDS in the transcript.
thickEnd Positive integer, end position of CDS in the transcript.

Value

An IRanges object for relative start and end position of CDS.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

transcriptGRanges

Get GRanges from BED Content for Exons of A Transcript

Description

Extract exon information from a transcript GRanges object and hold with GRanges list.

Usage

transcriptGRanges(bedGRange)

Arguments

bedGRange

A GRange object for a transcript with blocks in metadata columns.

Value

GRanges list with one GRange per exon.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

62 trxRegionCountSizes

trxRegionCountAligns Count Aligned A-site in A Transcripts by Regions

Description

Check out if reads of a transcript has A site. If yes, get the total counts for transcript, cds, 5-UTR, and 3-UTR. Otherwise, set counts of the transcript to 0, and 0 or NA(if no cds defined) for cds, 5-UTR, and 3-UTR.

Usage

trxRegionCountAligns(asiteOffsets, insets, bamfile, trx, cds)

Arguments

asiteOffsets A data frame of one column with read length as row names and a-sites for each

read length in column.

insets List of integer of length 4, insets in number of nucleotides to avoid start and stop

cpdon.

bamfile Character vector, name of a bam file (and path).

trx GRange object for a transcript.

cds IRange object for cds in the transcript.

Value

List of integer with length 4, number of aligned a-site in transcript, cds, 5-UTR, and 3-UTR regions.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

trxRegionCountSizes Get Region Sized of A Transcript

Description

Calculate sizes of whole transcript, cds, 5'UTR, and 3'UTR of a transcript defined in bed file.

Usage

trxRegionCountSizes(insets, trx, cds)

Arguments

insets List of integers of length 2, insets in nucleotides to avoid start and stop positions.

trx GRange object for transcripts.

cds IRanges object for cds of the transcripts.

trxRegions 63

Value

List of integers pf length 4 for sizes of transcript, cds, 5-UTR, and 3-UTR..

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

trxRegions

Calculate Transcript Regions for UTR and CDS

Description

Calculate length of whole transcript, 5'UTR, cds, and 3'UTR regions for a transcript.

Usage

```
trxRegions(trx, cds, insetUtr5Start=0, insetUtr5End=0, insetCdsStart=0, insetCdsEnd=0, insetUtr3Start=0, insetUtr3End=0)
```

Arguments

trx GRanges object for a transcript.

cds GRanges object for cds in a transcript.

insetUtr5Start Positive integer, adjustment after start position of 5'UTR.

insetUtr5End Positive integer, adjustment before end position of 5'UTR.

insetCdsStart Positive integer, adjustment after start position of cds.

insetCdsEnd Positive integer, adjustment before end position of cds.

insetUtr3Start Positive integer, adjustment after start position of 3'UTR.

insetUtr3End Positive integer, adjustment before end position of 3'UTR.

Value

GRanges list representing cds, 5-UTR, and 3-UTR for a transcript.

References

Original code from Nicholas T. Ingolia, et al. (2014). Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365-1379.

64 validateParameters

validateCodons

Check Out If the Given Codons Are Qualified Ones

Description

Check out if each codon has correct length and correct bases.

Usage

```
validateCodons(codons)
```

Arguments

codons

character vector which holds one or more codons.

Details

Each codon must have exactly 3 bases from A, U, G, and C.

Value

None. Error message will be generated if any codon is a invalid one.

validateParameters

Validate All Parameters of FpFraming

Description

Validate all user defined parameters for FpFraming.

Usage

```
validateParameters(parameters)
```

Arguments

parameters paramete

parameters, list of numeric variables.

Value

None.

writeChromosomeSizesToFile

Write Chromosome Sizes to File

Description

Read in chromosome names and sizes from or Write chromosome names and sizes to a tab-delimited text file.

Usage

```
writeChromosomeSizesToFile(chromSizes, file_name)
readChromosomeSizesFromFile(file_name)
```

Arguments

chromSizes A data frame with 2 columns for chromosome names and lengths.

file_name Character vector, name of file (and path) for read from or write to.

Value

readChromosomeSizesFromFile() returns a data frame with 2 columns for chromosome names and lengths.

writeORFInfoToFile Save (

Save ORF Information to File

Description

Write ORF information to tab-delimited text file including column headers.

Usage

```
writeORFInfoToFile(seq_info, start_codons, stop_codons, out_file)
```

Arguments

seq_info	Data frame, UTR/CDS info including chromosome, start and stop position,
	strand, sequence, and type (CDS, 5_UTR or 3_UTR).
start_codons	Character vector, start codons.
stop_codons	Character vector, stop codons.
out_file	Character vector, name (and path) of the file to write.

Details

The output file will include, for each ORF, the gene_name, chromosome, seq_start, seq_stop, strand, orf_id, orf_start, orf_stop, start_codon, context, orf_length, dis_from_cap, dis_to_MUG.

Value

None

wri	teWi	ggleF	iles
WILL	CCIII	ggici	1163

Write Aligned A-site Counts to Wiggle Files

Description

Write aligned a-site Counts on each chromosome to wiggle track files by strand.

Usage

```
writeWiggleFiles(all_counts, bam_file, is.normalized=FALSE)
```

Arguments

all_counts List of list, each list element has two numeric vectors for read counts on forward

and reverse strand at base pair level.

bam_file character vector, name of bam file from which the wiggle track data is generated.

is.normalized Logic, if the all_counts are normalized.

Value

None. Write files only

References

https://github.com/ingolia-lab/RiboSeq https://genome.ucsc.edu/goldenpath/help/wiggle.html

```
yeast_gene_description
```

Yeast Gene Description

Description

A data Frame with three columns for gene ID, gene name, and gene description.

Usage

```
data("yeast_gene_description")
```

Format

A data frame with 7133 observations on the following 3 variables.

V1 a character vector

V2 a character vector

V3 a character vector

Examples

```
data(yeast_gene_description)
```

Index

*Topic datasets	<pre>getCountMatrixFromTable, 27</pre>
ribo_pro_data, 57	getCountsData, 27
yeast_gene_description, 66	getDefaultParameters, 28
*Topic methods	getDefaultStartCodon, 29
absoluteOuter, 4	getDefaultStopCodon, 30
alignASites,5	getDESeqDataSet, 30
bedCdsIRangesList,5	getFilteredFPCenter, 31
bedGRangesList, 6	getFootprintDensityCenter, 31
checkBlocksInBed, 6	getFrameTable, 32
checkChromosomeInfo, 7	getMetageCountsMatrix, 32
converToGenePredFormat, 7	getMetageneFrames, 33
countAligns, 8	getORFPositions, 33
countAtAsite, 9	getOriginalFPCenter, 34
countingFrames, 9	getPlotColors, 34
countingMetagenePosition, 10	getPositionProfileTable, 35
countSizes, 10	getPrettyLabels, 35
covertToRNASequence, 11	getReadPeaks, 36
extractEfficiencyChange, 11	getRegionFrames, 36
extractTranscriptionChange, 12	getReversedSequence, 37
filterCountMatrix, 13	getSequence, 37
filterOutAlignments, 13	<pre>getSequenceFromMutipleFastaFiles,</pre>
fpCountsBoxPlot, 14	38
fpFramePlot, 15	<pre>getSequenceFromOneFastaFile, 38</pre>
FpFraming, 15	getStartCodonContext, 39
getAlignASites, 16	getTranscriptLength, 39
getAlignments, 17	<pre>getTranscriptReadsOnly, 40</pre>
getAlignmentsFromBamFile, 17	<pre>getUORCountMatrixFromOneFileSet,</pre>
getAllAlignments, 18	40
<pre>getAnnotationFromBedFile, 18</pre>	<pre>getUORFCountMatrixFromTwoFileSets,</pre>
getAnnotationFromBigBedFile, 19	41
${\tt getAnnotationInfo,20}$	${\tt getUORFCountMatrixInFujunFormat},$
getASiteProfile, 20	42
getASiteTable, 21	getUTRInfoDefinedByBed,43
<pre>getBamFlagStat, 21</pre>	getUTRInfoFromFastaFile, 43
getBestFrame, 22	getWiggleCounts,44
<pre>getBigWiggleFile, 22</pre>	initializeMetageneFrameTable,45
getCDSGRanges, 23	initializeMetageneTable, 46
<pre>getCDSInfoDefinedByBed, 23</pre>	irangeOuter,46
<pre>getChromosomeSizesFromBam, 24</pre>	is.DNA.sequence,47
getCodonFromSequence, 24	is.mRNA.sequence,47
<pre>getCodonIndex, 25</pre>	mapASite, 48
getComplementarySequence, 25	normalizeWiggleCounts, 48
getCountMatrixFromFiles, 26	plotCorrelationHeatmap, 49

68 INDEX

plotCorrelationMatrix, 49	fpFramePlot, 15
plotHeatmap, 50	FpFraming, 15
plotMetageneCounts, 50	
plotMetageneFrames, 51	getAlignASites, 16
plotMultiMetageneCounts, 52	getAlignments, 17
plotRedBlueCorrelationImage, 52	<pre>getAlignmentsFromBamFile, 17</pre>
plotReplicates, 53	getAllAlignments, 18
plotTranslationEfficiency, 53	getAllDefaultParameters
quickDESeq2Test, 54	(getDefaultParameters), 28
readAsiteFromFile, 55	getAnnotationFromBedFile, 18
ReadBamToTable, 56	getAnnotationFromBigBedFile, 19
regionCountFrame, 56	getAnnotationInfo, 20
relativeWithin, 57	getASiteProfile, 20
	getASiteTable, 21
runDESeq, 58	getBamFlagStat, 21
screenORF, 59	getBestFrame, 22
setCodonIndexPair, 59	getBigWiggleFile, 22
sortTableByChromosomeNames, 60	getCDSGRanges, 23
summerizeMetageneFrames, 60	getCDSInfoDefinedByBed, 23
transcriptCdsIRanges, 61	getChromosomeSizesFromBam, 24
transcriptGRanges, 61	_
trxRegionCountAligns,62	getCodonFromSequence, 24
trxRegionCountSizes, 62	getCodonIndex, 25
trxRegions, 63	getComplementarySequence, 25
validateCodons, 64	getCountMatrixFromFiles, 26
validateParameters, 64	getCountMatrixFromTable, 27
writeChromosomeSizesToFile,65	getCountsData, 27
writeORFInfoToFile,65	getDefaultCdsBody
writeWiggleFiles,66	(getDefaultParameters), 28
*Topic package	<pre>getDefaultColors(getPlotColors), 34</pre>
RiboProTools-package, 3	getDefaultEndRange
, ,	(getDefaultParameters), 28
absoluteOuter, 4	getDefaultEndShift
alignASites, 5	(getDefaultParameters), 28
9	getDefaultExtraBounds
bedCdsIRangesList, 5	(getDefaultParameters), 28
bedGRangesList, 6	<pre>getDefaultFlank(getDefaultParameters),</pre>
G ,	28
checkBlocksInBed, 6	<pre>getDefaultInset (getDefaultParameters),</pre>
checkChromosomeInfo,7	28
converToGenePredFormat, 7	getDefaultLengths
countAligns, 8	(getDefaultParameters), 28
countAtAsite, 9	getDefaultMinLenFract
countingFrames, 9	(getDefaultParameters), 28
countingMetagenePosition, 10	getDefaultMinNumberOfAminoAcid
countSizes, 10	(getDefaultParameters), 28
covertToRNASequence, 11	getDefaultParameters, 28
cover crommasequence, 11	getDefaultRiboSeqAsites
ovtractEfficionsvChange 11	(getDefaultParameters), 28
extractEfficiencyChange, 11	getDefaultRNASeqAsites
extractTranscriptionChange, 12	(getDefaultParameters), 28
filterCountMatrix, 13	getDefaultStartCodon, 29
	getDefaultStartCodon, 29 getDefaultStartCodons
filterOutAlignments, 13	
fpCountsBoxPlot, 14	(getDefaultParameters), 28

INDEX 69

getDefaultStartRange	plotTranslationEfficiency, 53	
(getDefaultParameters), 28		
getDefaultStartShift	quickDESeq2Test, 54	
(getDefaultParameters), 28		
<pre>getDefaultStopCodon, 30</pre>	readAsiteFromFile, 55	
getDefaultStopCodons	ReadBamToTable, 56	
(getDefaultParameters), 28	readChromosomeSizesFromFile	
getDESeqDataSet, 30	(writeChromosomeSizesToFile)	
getFilteredFPCenter, 31	65	
getFootprintDensityCenter, 31	regionCountFrame, 56	
getFrameTable, 32	relativeWithin, 57	
<pre>getMetageCountsMatrix, 32</pre>	ribo_pro_data, 57	
getMetageneFrames, 33	RiboProTools (RiboProTools-package), 3	
getORFPositions, 33	RiboProTools-package, 3	
getOriginalFPCenter, 34	runDESeq, 58	
getPlotColors, 34	concenODE 50	
getPositionProfileTable, 35	screenORF, 59	
getPrettyLabels, 35	setCodonIndexPair, 59	
getReadPeaks, 36	sortTableByChromosomeNames, 60	
getRegionFrames, 36	summerizeMetageneFrames, 60	
getReversedSequence, 37	transcriptCdsIRanges, 61	
getSequence, 37	transcriptGRanges, 61	
getSequenceFromMutipleFastaFiles, 38	trxRegionCountAligns, 62	
getSequenceFromOneFastaFile, 38	trxRegionCountSizes, 62	
getStartCodonContext, 39	trxRegions, 63	
getTranscriptLength, 39	ti xitegions, 05	
getTranscriptReadsOnly, 40	validateCodons, 64	
getUORCountMatrixFromOneFileSet, 40	validateParameters, 64	
getUORFCountMatrixFromTwoFileSets, 41	7 d 2 2 d d d d d d d d d d d d d d d d	
getUORFCountMatrixInFujunFormat, 42	writeChromosomeSizesToFile, 65	
getUTRInfoDefinedByBed, 43	writeORFInfoToFile, 65	
getUTRInfoFromFastaFile, 43	writeWiggleFiles,66	
getWiggleCounts, 44		
getZeroInset (getDefaultParameters), 28	yeast_gene_description, 66	
initializeMetageneFrameTable, 45		
initializeMetageneTable, 46		
irangeOuter, 46		
is.DNA.sequence, 47		
is.mRNA.sequence,47		
mapASite, 48		
normalizeWiggleCounts,48		
plotCorrelationHeatmap, 49		
plotCorrelationMatrix,49		
plotHeatmap, 50		
plotMetageneCounts, 50		
plotMetageneFrames, 51		
plotMultiMetageneCounts, 52		
plotRedBlueCorrelationImage, 52		
plotReplicates, 53		