group labelle	d by [48,	, 14] in	the Small	Groups lib	ra

Ordinary character table of $G \cong (C12 \times C2) : C2$:

 $P_1 = Group([()]) \cong 1$

Trivial source character table of $G \cong (C12 \times C2)$: C2 at $p = 2$:																				
Normalisers N_i	N_1		N_2	N_3	l N	V_4	$N_5 \mid \Lambda$	6	N_7	N	8	N_9	N_{10}	N_{11}	N_{12}	N_{13}	N:	14 N	$V_{15} \mid \Lambda$	$N_{16} N_{17}$
p-subgroups of G up to conjugacy in G	P_1		P_2	P_3	I	P ₄	P_5 F	6	P_7	P	8	P_9	P_{10}	P_{11}	P_{12}	P_{13}			P_{15} I	$P_{16} P_{17}$
Representatives $n_j \in N_i$	1a 3a	$a \mid 1a$	3a	1a - 3a	$a \mid 1a$	3a	1a 1	$a \mid 1a$	3a	1a $3a$	3b		1a		1a	1a	1 <i>a</i>	3a		1a $1a$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 2 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	16 10	6 0	0	0 0	0	0	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
	16 –	8 0	0	0 0	0	0	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	8 8	8	8	0 0	0	0	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \end{vmatrix} $	8 -	4 8	-4	0 0	0	0	0 (0 0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 2 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	8 8	3 0	0	8 8	0	0	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 -	$4 \mid 0$	0	8 –	$4 \mid 0$	0	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	8 8	3 0	0	0 0	8	8	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} $	8 -	$4 \mid 0$	0	0 0	8	-4	0 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	8 8	3 0	0	0 0	0	0	4 (0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	8 8	3 0	0	0 0	0	0	0 4	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	4 4	4	4	4 4	: 4	4	0 () 4	4	0 0	0	0	0	0	0	0	0	0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \end{vmatrix} $	4 -	$2 \mid 4$	-2	4 –	$2 \mid 4$	-2	0 (4	-2	0 0	0	0	0	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	4 4	1 0	0	4 4	. 0	0	0 (0		2 2	2	0	0	0	0	0	0	0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} \end{vmatrix} $	4 -	$\begin{vmatrix} 2 & 0 \end{vmatrix}$	0	4 –	$2 \mid 0$	0	0 (0	0	2 2 * E(3)	\ /	0	0	0	0	0	0	0	0	0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18}$	4 -	$\begin{vmatrix} 2 & 0 \end{vmatrix}$	0	4 –	$\begin{vmatrix} 2 & 0 \end{vmatrix}$	0		0	0	2 2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	0	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	4 4	4	4	0 0	0	0	4 (0	0	0 0	0	4	0	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	4 4	4	4	0 0	0	0	0 4	0	0	0 0	0	0	4	0	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	4 4	1 0	0	4 4	. 0	0	2 2	2 0	0	0 0	0	0	0	2	0	0	0	0	0	0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}}$	4 4	1 0	0	0 0	4	4	2 2	2 0	0	0 0	0	0	0	0	2	0	0	0	0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	4 4	1 0	0	0 0	4	4	0 (0	0	0 0	0	0	0	0	0	2	0	0	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	2 2	2 2	2	2 2	2	2	0 () 2	2	2 2	2	0	0	0	0	0	2	2	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} \end{vmatrix} $	2 -	$1 \mid 2$	-1	2 -	$1 \mid 2$	-1	0 () 2	-1	2 -1	-1	0	0	0	0	0	2	-1	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	2 2	2 2	2	2 2	2	2	2 2	2 2	2	0 0	0	2	2	2	2	0	0	0	2	$\overline{0}$ $\overline{0}$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	2 2	2 2	2	2 2	2	2	0 () 2	2	0 0	0	0	0	0	0	2	0	0	0	2 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18}$	1 1	. 1	1	1 1	1	1	1	. 1	1	1 1	1	1	1	1	1	1	1	1	1	1 1
					-															

$P_2 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)]) \cong C_2(3,3,43)(3,3,43)(3,43)$ $P_3 = Group([(1,4)(2,8)(3,11)(5,14)(6,15)(7,18)(9,21)(10,22)(12,25)(13,26)(16,29)(17,30)(19,32)(20,33)(23,36)(24,37)(27,39)(28,40)(31,42)(34,43)(35,44)(38,46)(41,47)(45,48)]) \cong C_2(3,23)(3,2$

- $P_4 = Group([(1,14)(2,21)(3,25)(4,5)(6,29)(7,32)(8,9)(10,36)(11,12)(13,39)(15,16)(17,42)(18,19)(20,43)(22,23)(24,46)(26,27)(28,47)(30,31)(33,34)(35,48)(37,38)(40,41)(44,45)]) \cong C2(3,23)(3,23$
- $P_5 = Group([(1,2)(3,19)(4,8)(5,9)(6,24)(7,12)(10,17)(11,32)(13,45)(14,21)(15,37)(16,38)(18,25)(20,41)(22,30)(23,31)(26,48)(27,35)(28,34)(29,46)(33,47)(36,42)(39,44)(40,43)]) \cong \mathbb{C}_2$
- $P_6 = Group([(1,8)(2,4)(3,32)(5,21)(6,37)(7,25)(9,14)(10,30)(11,19)(12,18)(13,48)(15,24)(16,46)(17,22)(20,47)(23,42)(26,45)(27,44)(28,43)(29,38)(31,36)(33,41)(34,40)(35,39)]) \cong \mathbb{C}_2$
- $P_7 = Group([(1,4)(2,8)(3,11)(5,14)(6,15)(7,18)(9,21)(10,22)(12,25)(13,26)(16,29)(17,30)(19,32)(20,33)(23,36)(24,37)(27,39)(28,40)(31,42)(34,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(3,12)(4,44)(6,16)(7,19)(8,21)(10,22)(12,25)(13,26)(14,37)(27,39)(28,40)(31,42)(34,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(3,12)(4,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(3,12)(4,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(3,12)(4,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(3,12)(4,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(3,12)(4,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(43,43)(35,44)(38,46)(41,47)(45,48), (1,5)(2,9)(43,43$

- $P_{10} = Group([(1,8)(2,4)(3,32)(5,21)(6,37)(7,25)(9,14)(10,30)(11,19)(12,18)(13,48)(15,24)(16,46)(17,22)(20,47)(23,42)(26,45)(27,44)(28,43)(29,38)(31,36)(33,41)(34,40)(35,39), \\ (1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)] \\ \cong C_2 \times C_2 \times C_2 \times C_3 \times C_3 \times C_4 \times C_$

- $P_{15} = Group([(1,4)(2,8)(3,11)(5,14)(6,15)(7,18)(9,21)(10,22)(12,25)(13,26)(16,29)(17,31)(18,32)(20,34)(23,46)(41,47)(45,48), (1,2)(3,43)(35,44)(38,46)(41,47)(45,48), (1,2)(3,43)(45,48)(41,47)(45,48), (1,2)(3,43)(45,48)(41,47)(45,48), (1,2)(41,48)(41,47)(45,48), (1,2)(41,48)$
- $P_{16} = Group([(1,4)(2,8)(3,11)(5,14)(6,15)(7,18)(9,21)(10,22)(12,25)(13,26)(14,37)(27,39)(28,41)(30,42)(33,43)(35,45)(27,39)(28,41)(30,42)(33,43)(22,47,23,28)(24,27,46,26)]) \\ \cong C4 \times C2 \\ = C4 \times$
- $P_{17} = Group([(1,4)(2,8)(3,11)(5,14)(6,15)(7,18)(9,21)(10,23)(13,45)(14,21)(15,37)(15,38)(24,37)(27,38)(24,37)(27,38)(24,37)(27,38)(24,37)(27,38)(24,37)(27,38)(24,37)(27,38)(28,34)(29,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(24,37)(27,38)(28,34)(29,36)(28,34)(29,36)$

 $N_9 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,2)(3,19)(4,21)(15,37)(16,38)(18,25)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,44)(31,42,47)(38,45,46)(31,42)(33,43)(35,45)(37,44)(31,42,47)(38,45)(42,36)(42$

 $P_{14} = Group([(1,4)(2,8)(3,11)(5,14)(6,15)(7,18)(9,21)(10,22)(12,25)(13,26)(14,27)(15,29)(17,31)(18,32)(20,34)(24,37)(27,39)(28,41)(30,42)(33,43)(35,45)(43,47)(27,39)(28,41)(30,42)(33,43)(35,45)(43,47)(43,47)(43,48)(13,48)(13,48)$

- $N_1 = Group([(1,2)(3,19)(4,8)(5,9)(2,37)(2,39)(2,39)(2,37)(2,39)$

- $N_3 = Group([(1,2)(3,19)(4,8)(5,9)(2,34)(24,35)(2$
- $N_4 = Group([(1,2)(3,19)(4,8)(5,9)(6,24)(7,12)(10,29)(12,30)(23,34)(24,35)(24,37)(27,39)(28,41)(30,42)(33,43)(35,44)(38,45)(43,47)(36,42)(33,43)(35,44)(38,45)(43,47)(27,39)(28,41)(30,42)(33,43)(35,44)(38,45)(43,47)(45,48)(1,$ $N_5 = Group([(1,2)(3,19)(4,8)(5,9)(6,24)(7,12)(10,31)(4,8)(5,9)(6,24)(7,12)(10,31)(13,45)(14,21)(15,37)(16,38)(14,21)(15,37)(16,38)(14,21)(15,37)(16,38)(14,21)(15,37)(16,38)(14,21)(15,37)(16,38)(16,24)(17,23)(20,31)(26,44)(27,45)(29,37)(30,36)(24,37)(27,39)(28,40)(31,42)(34,43)(35,44)(36,42)(37,45)(29,37)(30,36)(33,47)(36,42)(39,44)(40,43)(11,18)(12,19)(13,35)(15,46)(16,24)(17,23)(20,33)(23,36)(24,37)(27,39)(28,40)(31,42)(34,43)(35,44)(38,46)(41,47)(45,48)(4$

- $V_{12} = Group([(1,14)(2,21)(3,25)(4,5)(6,29)(7,32)(8,9)(10,36)(11,12)(13,39)(15,16)(17,42)(13,43)(25,44)(36,42)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(25,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(26,48)(27,35)(28,47)(30,31)(28,47)(30,31)(33,34)(35,48)(37,38)$ $V_{13} = Group([(1,19,14,18)(2,12,21,11)(3,8,25,9)(4,32,5,7)(6,45,29,44)(10,41,36,40)(13,37,39,38)(15,48,16,35)(17,34,42,33)(20,30,43,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,5)(6,29)(7,32)(8,9)(10,36)(11,12)(13,39)(15,16)(17,42)(18,19)(20,33)(23,36)(24,27,46,26),(1,14)(2,21)(3,25)(4,5)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(2,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(4,31)(22,47,23,28)(24,27,46,26),(1,14)(22,21)(3,25)(43,24)(24,27,46,26),(1,14)(22,21)(3,25)(43,24)(24,27,46,26),(1,14)(22,21)(3,23)(24,2$
- $N_{15} = Group([(1,2)(3,19)(4,8)(5,9)(6,24)(7,12)(10,23)(12,36)(24,37)(27,39)(28,40)(31,42)(32,36)(24,37)(27,39)(28,40)(31,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,3)(2,36)(24,37)(27,39)(28,40)(31,42)(32,36)(32,36)($ $N_{16} = Group([(1,19,14,18)(2,12,21,11)(3,8,25,9)(4,32,57)(6,45,29,44)(10,41,36,40)(13,37,39,38)(15,48,16,35)(17,34,42,33)(20,30,43,31)(22,47,23,28)(24,27,46,26),(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(13,45)(14,21)(15,37)(16,38)(18,25)(20,34)(22,36)(24,37)(27,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48),(1,4)(2,8)(3,11)(5,14)(6,16)(7,19)(8,21)(10,23)(12,36)(24,37)(27,39)(28,40)(31,42)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(34,43)(35,44)(38,46)(41,47)(45,48),(1,2)(43,43)(35,45)(41,47)(45,48),(1,2)(43,43)(43,4$

-1 1 1 1 -1

 χ_{18} | 2 0 0 0 2 -2 -1 0 0 0 $E(3) - E(3)^2$ -2 -1 1 0 $E(3) - E(3)^2$ $-E(3)^2$ $E(3) + E(3)^2$ 1 $-E(3) + E(3)^2$

 $|\chi_6|$ 1 -1 E(4) -1 1 1 -E(4) 1 -E(4) E(4) E(4) $|\chi_7|$ 1 1 -E(4) -1 1 -E(4) -1 E(4) -2 -E(4) -1 -1 1 E(4) $|\chi_{10}|$ 2 0 2 2 2 -1 0 0 2 -1 2 -1 0

- $N_{17} = Group([(1,2)(3,19)(4,8)(5,9)(2,31)(2,$