General Purpose Transistors NPN Silicon

2N3903 2N3904*

*Motorola Preferred Device

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	Vсво	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	IC	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS(1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (2) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CE	0 40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CB	60	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EB	6.0	_	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	ICEX	_	50	nAdc

- 1. Indicates Data in addition to JEDEC Requirements.
- 2. Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 2

2N3903 2N3904

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted) (Continued)

	Characteristic		Symbol	Min	Max	Unit
ON CHARACTERIS	STICS					
DC Current Gain ⁽¹⁾ (I _C = 0.1 mAdc, V _C	_{DE} = 1.0 Vdc)	2N3903 2N3904	hFE	20 40	_	_
$(I_C = 1.0 \text{ mAdc}, V_C)$	CE = 1.0 Vdc)	2N3903 2N3904		35 70	_	
$(I_C = 10 \text{ mAdc}, V_C)$	e _E = 1.0 Vdc)	2N3903 2N3904		50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_C)$	_E = 1.0 Vdc)	2N3903 2N3904		30 60	_	
$(I_C = 100 \text{ mAdc}, V_c)$	CE = 1.0 Vdc)	2N3903 2N3904		15 30	_	
Collector-Emitter Sa (I _C = 10 mAdc, I _B = (I _C = 50 mAdc, I _B = 10 mAdc,	= 1.0 mAdc)		VCE(sat)	=	0.2 0.3	Vdc
Base-Emitter Satura (I _C = 10 mAdc, I _B and I _C = 50 mAdc,	= 1.0 mAdc)		V _{BE} (sat)	0.65 —	0.85 0.95	Vdc
SMALL-SIGNAL C	CHARACTERISTICS		•		•	-
Current-Gain — Bar (I _C = 10 mAdc, V _C	ndwidth Product c _E = 20 Vdc, f = 100 MHz)	2N3903 2N3904	fΤ	250 300	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E	= 0, f = 1.0 MHz)		C _{obo}	_	4.0	pF
Input Capacitance (VEB = 0.5 Vdc, IC	c = 0, f = 1.0 MHz)		C _{ibo}	_	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _C	CE = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback Ra (I _C = 1.0 mAdc, V _C	atio CE = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
Small–Signal Current (I _C = 1.0 mAdc, V _C	t Gain CE = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{fe}	50 100	200 400	_
Output Admittance (I _C = 1.0 mAdc, V _C	DE = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μAdc, V _C	Ω E = 5.0 Vdc, R _S = 1.0 k Ω, f = 1.0 kHz)	2N3903 2N3904	NF	_ 	6.0 5.0	dB
SWITCHING CHAR	RACTERISTICS					
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,		^t d	_	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r	_	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _{B1} = I _{B2} = 1.0 mAdc)	2N3903 2N3904	t _S	_	175 200	ns
Fall Time			t _f	_	50	ns

^{1.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

T_J = 25°C

Figure 3. Capacitance

Figure 4. Charge Data

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(VCE = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

Figure 9.

Figure 10.

h PARAMETERS

 $(VCE = 10 Vdc, f = 1.0 kHz, TA = 25^{\circ}C)$

100 h_{0e}, OUTPUT ADMITTANCE (μmhos) 50 20 10 5 2 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 I_C, COLLECTOR CURRENT (mA)

Figure 11. Current Gain

Figure 12. Output Admittance

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

2N3903 2N3904

Figure 16. Collector Saturation Region

Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

STYLE 1: PIN 1. EMITTER

BASE
 COLLECTOR

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

2N3903/D