Superheterodyne AM/ FM Receivers

S.N. Merchant, Gaurav S. Kasbekar Dept. of Electrical Engineering IIT Bombay

Frequency Division Multiple Access (FDMA)

- Frequency band (channel) divided into smaller bands
- Different transmitters transmit their signals on different bands
 - ☐e.g., different TV or radio stations
- Above is done to avoid interference between signals of different transmitters

Frequency Translation

- Frequency translator also known as "frequency converter" or "frequency mixer"
- Suppose we have a modulated signal $s_1(t)$, whose spectrum is centred on carrier frequency f_1 :
 - $\Box s_1(t) = a(t)\cos[2\pi f_1 t + \phi(t)]$
- Using $s_1(t)$, we want to generate a modulated signal $s_2(t)$, whose spectrum is centred on carrier frequency f_2 :
 - $\Box s_2(t) = a(t)\cos[2\pi f_2 t + \phi(t)]$
- How can we generate $s_2(t)$ from $s_1(t)$?
 - \square by multiplying $s_1(t)$ with $2\cos[2\pi f_l t]$ and band-pass filtering the product
 - \square where $f_l = f_2 f_1$ if $f_2 > f_1$ and $f_l = f_1 f_2$ if $f_1 > f_2$

Superheterodyne AM/ FM Receivers

- Radio receiver used in broadcast AM and FM systems called superheterodyne receiver
- Consists of following components (see fig.):
 - ☐ RF (radio-frequency) section
 - ☐ Frequency converter (mixer)
 - ☐ IF (intermediate frequency) amplifier
 - ☐ AM or FM demodulator (detector)
 - ☐ Audio amplifier

- RF section consists of a tunable band-pass filter and amplifier that:
 - picks up desired station by tuning the filter to the right frequency band
- Frequency converter translates carrier from frequency f_c to a fixed IF f_{IF} :
 - \Box by using local oscillator with frequency $f_{LO}=f_c+f_{IF}$
- Simultaneous tuning of local oscillator and RF tunable filter is done by one joint knob:
 - \Box tuning capacitors in both circuits are ganged together and designed such that frequency of LO is always f_{IF} above f_c
- Thus, every station that is tuned in is translated to fixed carrier frequency of f_{IF} for further processing

- Recall: every station that is tuned in is translated to fixed carrier frequency of f_{IF} for further processing
- E.g.:
 - □ FM radio: $f_c \in [88 \text{ MHz}, 108 \text{ MHz}]$; $f_{IF} = 10.7 \text{ MHz}$
 - \square AM radio: $f_c \in [535 \text{ kHz}, 1605 \text{ kHz}]; <math>f_{IF} = 455 \text{ kHz}$
 - \square TV: $f_c \in [54 \text{ MHz}, 88 \text{ MHz}], [174 \text{ MHz}, 216 \text{ MHz}], [470 \text{ MHz}, 806 \text{ MHz}]; <math>f_{IF} = 38 \text{ MHz}$

- Recall: every station that is tuned in is translated to fixed carrier frequency of f_{IF} for further processing
- Reason for above translation:
 - \Box difficult to design selective bandpass filters that retain desired station and filter out adjacent stations if center frequency is high (f_c)
 - especially true in case of *tunable* filters
 - \Box easier to design selective bandpass filters when center frequency is *low* and *fixed* (factory-tuned to exactly f_{IF})

- Recall: IF section effectively suppresses adjacent-channel interference due to its high selectivity
- Why have band-pass filtering in RF section at all?
 - \Box frequency converter also translates station at frequency $f_c' = f_c + 2f_{IF}$ to f_{IF}
 - \Box $f_c' = f_c + 2f_{IF}$ called *image frequency* of f_c
 - ☐ band-pass filter suppresses image frequency
- E.g.: in case of AM, $f_{IF} = 455$ kHz; if $f_c = 1000$ kHz, then f_c' :
 - □ 1910 kHz
- Note:
 - □ band-pass filter in RF section not very selective
 - although it cannot properly filter out adjacent channels, it can filter out image frequency well

- Superheterodyne receiver: uses LO of frequency $f_{LO}=f_c+f_{IF}$ to translate from RF to IF
- Subheterodyne receiver: uses LO of frequency $f_{LO}=f_{c}-f_{IF}$ to translate from RF to IF
- Reason for preferring superheterodyne receiver over subheterodyne receiver:
 - $oldsymbol{\square}$ former requires smaller ratio of maximum to minimum frequency f_{LO} than latter
 - ☐ easier to design local oscillator that is to be tuned over smaller frequency ratio
- E.g.:
 - \square AM radio: min. and max. values of f_c are 540 kHz and 1600 kHz, resp.; $f_{IF}=455$ kHz
 - ☐ Frequency ratio of superheterodyne receiver:

☐ Frequency ratio of subheterodyne receiver:

Automatic Gain Control (AGC)

- In general, signal strength of received AM signal varies dynamically due to time-varying nature of radio channels (fading)
- So by default, volume of sound emitted by AM radio receiver would fluctuate with time
- How can receiver compensate for this?
 - ☐ average voltage magnitude of detector output compared with reference level
 - ☐ signal amplified using a variable gain amplifier (VGA), whose gain is function of average voltage magnitude of detector output
- Thus, VGA output is relatively constant
- Above scheme called AGC

Homodyne Receiver

- Also known as "zero-IF receiver" or "direct conversion receiver"
- Modulated signal directly translated from carrier frequency to baseband
- Band-pass filtering to remove adjacent channels and demodulation performed in baseband
- Advantages:
 - ☐ simpler design than superheterodyne receiver; no need for IF stage
 - no need for image frequency suppression
- Disadvantages:
 - ☐ envelope detection for AM or differentiation/ slope detection followed by envelope detection for FM cannot be performed
 - ☐ need to perform coherent demodulation, which is expensive