- парабола симетрична відносно осі Oy.

В обидвох випадках **вершина** параболи, тобто точка O(0,0), яка лежить на **осі симетрії** Ox(Oy), знаходиться в початку координат.

Парабола (4.12) має фокус $F\left(\frac{p}{2},0\right)$ і директрису $x=-\frac{p}{2}$; фокальний **радіус-вектор точки** M(x,y) параболи визначається рівністю $r = x + \frac{p}{2}$.

Парабола (4.13) має фокус $F\left(0,\frac{p}{2}\right)$ і директрису $y=-\frac{p}{2}$; фокальний **радіус-вектор точки** M(x,y) параболи визначається рівністю $r = y + \frac{p}{2}$.

Ексцентриситет параболи $\varepsilon = 1$.

Дотична до параболи $y^2 = 2px$ у точці $M_0(x_0, y_0)$ визначається рівністю $yy_0 = p(x + x_0).$

Рівняння параболи з вершиною у точці $C_0(x_0,y_0)$ має вигляд (y- $(y_0)^2 = 2p(x-x_0).$

5. ВСТУП ДО МАТЕМАТИЧНОГО АНАЛІЗУ

5.1. Дійсні числа

Абсолютною величиною (модулем) дійсного числа $x \in \text{невід'ємне}$ число |x|, яке визначається за формулою

$$|x| = \begin{cases} x, & \text{якщо} \quad x \geqslant 0, \\ -x, & \text{якщо} \quad x < 0. \end{cases}$$
 (5.1)

Властивості модуля дійсного числа:

1) $a = b \Rightarrow |a| = |b|;$ 2) $|x| \ge x;$ 3) |x| = |-x|; 4) $|x + y| \le |x| + |y|;$ 5) $|x - y| \ge |x| - |y|;$

4)
$$|x + y| \le |x| + |y|;$$
 5) $|x - y| \ge |x| - |y|;$

6)
$$|x \cdot y| = |x| + |y|;$$
 7) $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, y \neq 0;$

8)
$$|x| \le a \Leftrightarrow -a \le x \le a$$
; 9) $|x| \ge a \Leftrightarrow x \ge a$, $x \le -a$.

Під множиною розуміють сукупність (сімейство, набір, зібрання) деяких об'єктів, об'єднаних за певною ознакою чи властивістю. Об'єкти, з яких складається множина, є її **елементами**. Якщо елемент x належить множині X, то пишуть $x \in X$. Запис $x \in X$ означає, що елемент x не належить множині X.

Множина, елементами якої є числа, називається числовою.

Множина, яка містить скінченну кількість елементів, є скінченною, а множина, яка містить нескінченну кількість елементів, є нескінченною. Множина, яка не містить жодного елемента, називається порожньою і позначається \emptyset .

Множина C, яка містить елементи, кожен з яких належить множині Aабо B, ϵ об'єднанням (сумою) множин A і B: $C = A \cup B$.

Множина D, що складається з елементів, кожний з яких належить одночасно множинам A і B, є **перерізом (добутком) множин** A і B: $D = A \cap B$.

Множина E, що складається з елементів, кожний з яких належить множині A і не належить множині B, є **різницею множин** A і B: $E = A \setminus B$.

5.2. Функція

5.2.1. Функція. Найпростіші властивості функції

Якщо кожному числу x з множини D за певним правилом поставлено у відповідність єдине число y, то y є функцією від x і позначається y = f(x), $x \in D$.

Змінна $x \in$ незалежною змінною або аргументом, а змінна y – залежною змінною, або функцією.

Множина D значень x, для яких функція y = f(x) має дійсний зміст, називається областю визначення цієї функції.

Множина E всіх чисел y, таких, що y=f(x) для кожного $x\in D,$ є множиною значень функції.

Функція f(x) є **парною**, якщо $f(-x) = f(x), x \in D$ і **непарною**, якщо $f(-x) = -f(x), x \in D$.

Функція f(x), яка визначена на всій числовій прямій, є **періодичною**, якщо f(x+T)=f(x). Число T називається **періодом функції**. Якщо T – період функції, то її періодом також є числа kT, де $k=\pm 1,\,\pm 2,\ldots$ Найменше з додатних чисел T є основним періодом функції.

Якщо функція f(x) визначена на множині D і для двох довільних різних значень x_1 і x_2 аргументу з цієї множини при умові $x_1 < x_2$ маємо:

- 1) $f(x_1) < f(x_2)$, то функція є **зростаючою**;
- 2) $f(x_1) > f(x_2)$, то функція є **спадною**;
- 3) $f(x_1) \le f(x_2)$, то функція є **неспадною**;
- 4) $f(x_1) \ge f(x_2)$, то функція є **незростаючою**.

Зростаючі, незростаючі, спадні і неспадні функції на множині D називаються монотонними на цій множині.

Функція f(x), визначена на множині D, є **обмеженою** на цій множині, якщо існує таке число M>0, що для всіх $x\in D$ виконується умова $|f(x)|\leqslant M$.

Якщо для функцій f(x) і g(x), які визначені на множині D, існує таке число N, що для всіх $x \in D$ виконується нерівність $|f(x)| \leq N$ або $|g(x)| \geq N$, то f(x) є обмеженою зверху, а g(x) – обмеженою знизу функцією.

Якщо рівняння F(x,y) = 0, яке не розв'язане відносно y, визначає y як функцію x, то y є **неявною** функцією x.

Функція $x = \varphi(y)$ є **оберненою** до функції y = f(x), якщо:

- 1) областю визначення функції φ є множина значень функції f;
- 2) множина значень функції φ є областю визначення функції f;
- 3) кожному значенню змінної $y \in E$ відповідає єдине значення змінної $x \in D$.

Функція $y = f(x), x \in D, y \in E$ має обернену функцію $x = \varphi(y)$ тоді і тільки тоді, коли вона є строго монотонною в області D.

Задання функціональної залежності між x і y у вигляді двох функцій $x=\varphi(t),\,y=\psi(t)$ однієї незалежної змінної t, які визначенні на одному й тому самому проміжку, є параметричним заданням функцій; змінна t при цьому називається параметром.

Якщо функція $x = \varphi(t)$ має обернену $t = \Phi(x)$, то змінну y можна розглядати як складену функцію від x: $y = \varphi(\Phi(x))$.

Найпростішими елементарними функціями є:

- 1) степенева $y = x^{\alpha}, \alpha \in R;$
- 2) показникова $y = a^x$, a > 0, $a \neq 1$;
- 3) логарифмічна $y = \log_a x, \, a > 0, \, a \neq 1;$
- 4) тригонометричні: $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$;
- 5) обернені тригонометричні: $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$.

5.3. Границя

5.3.1. Послідовність. Границя послідовності

Якщо кожному натуральному числу $n \in N$ за певним правилом ставиться у відповідність число x_n , то множину чисел

$$\{x_1, x_2, \ldots, x_n, \ldots\}$$

називають **числовою послідовністю** і позначають символом $\{x_n\}$, де x_1 , x_2, \ldots, x_n — члени або елементи послідовності, x_n — загальний член послідовності.

Число x_0 є **границею послідовності** $\{x_n\}$, якщо для довільного числа $\varepsilon > 0$ існує такий номер $N = N(\varepsilon)$, що при всіх n > N виконується нерівність $|x_n - x_0| < \varepsilon$.

Якщо x_0 є границею послідовності $\{x_n\}$, то пишуть

$$\lim_{n\to\infty} x_n = x_0.$$

Послідовність, яка має границю називається **збіжною**, в протилежному випадку – **розбіжною**.

5.3.2. Границя функції. Обчислення границь

Нехай функція f(x) визначена в деякому околі точки x_0 , крім, можливо, самої точки x_0 . Число A називається **границею функції** f(x) **в точці** x_0 (пишуть $\lim_{x\to x_0} f(x) = A$), якщо для довільного числа $\varepsilon > 0$ існує залежне від ε число $\delta = \delta(\varepsilon) > 0$ таке, що $|f(x) - A| < \varepsilon$ при $0 < |x - x_0| < \delta$.

Аналогічно, $\lim_{x\to\pm\infty}f(x)=A$, якщо для всякого числа $\varepsilon>0$ існує залежне від ε число N таке, що $|f(x)-A|<\varepsilon$ при |x|>N.

Якщо $x \to x_0$ і при цьому $x < x_0$, то пишуть $x \to x_0 - 0$; аналогічно, якщо $x \to x_0$ і при цьому $x > x_0$, то пишуть $x \to x_0 + 0$. Числа $f(x_0 - 0) = \lim_{x \to x_0 - 0} f(x)$ і $f(x_0 + 0) = \lim_{x \to x_0 + 0} f(x)$ називаються відповідно **границею зліва** функції f(x) в точці x_0 . Для існування границі функції f(x) при $x \to x_0$ необхідно і достатньо, щоб виконувалася умова $f(x_0 - 0) = f(x_0 + 0)$. Замість $x \to 0 - 0$ і $x \to 0 + 0$ пишуть $x \to -0$ і $x \to +0$ відповідно.

Ліва і права границі функції називаються **односторонніми границя**ми.

Властивості границь.

- 1) Границя постійної рівна самій постійній: $\lim c = c, c = \text{const.}$
- 2) Якщо кожна з функцій u(x) та v(x) має скінченну границю при $x \to x_0$ $(x \to \infty)$, то справедливі формули:
 - a) $\lim cu = c \lim u$;
 - б) $\lim(u \pm v) = \lim u \pm \lim v$;
 - $B) \lim(u \cdot v) = \lim u \cdot \lim v;$
 - r) $\lim \frac{u}{v} = \lim \frac{u}{\lim v}$, $\lim v \neq 0$.

Наслідки:

- 1) $\lim u^n = [\lim u]^n$, зокрема,
- 2) $\lim_{x \to x_0} x^n = x_0^n, \ n \in \mathbb{N}.$

Якщо для будь-якого як завгодно великого числа N існує таке число $\delta(N)$, що при $0<|x-x_0|<\delta(N)$ виконується нерівність |f(x)|>N, то функція y=f(x) називається **нескінченно великою** при $x\to x_0$ $(\lim_{x\to x_0}f(x)=\infty)$. Аналогічно визначається нескінченно велика f(x) при $x\to\infty$.

Якщо $\lim_{x\to x_0}\alpha(x)=0$, тобто для довільного $\varepsilon>0$ існує $\delta>0$, таке, що при $0<|x-x_0|<\delta$ справедлива нерівність $|\alpha(x)|<\varepsilon$, то $\alpha(x)$ називається нескінченно малою функцією при $x\to x_0$. Аналогічно визначається нескінченно мала $\alpha(x)$ при $x\to\infty$.

Деякі властивості нескінченно малих величин:

- 1) якщо при $x \to x_0$ $(x \to \infty)$ $\alpha(x)$ нескінченно мала, а f(x) нескінченно велика величина, то при $x \to x_0$ $(x \to \infty)$ $\frac{1}{\alpha(x)}$ і $\frac{1}{f(x)}$ відповідно нескінченно велика і нескінченно мала величини;
- 2) сума скінченого числа нескінченно малих величин є нескінченно малою величиною;
- 3) добуток обмеженої функції на нескінченно малу є нескінченно малою величиною;
- 4) частка від ділення нескінченно малої величини на функцію, яка має відмінну від нуля границю, є нескінченно малою величиною.

Порівняння нескінченно малих функцій.

Нехай при $x \to x_0 \ \alpha(x)$ та $\beta(x)$ є нескінченно малими функціями. Тоді:

- I. Якщо $\lim_{x\to x_0}\frac{\alpha}{\beta}=C,\ C\neq 0,\$ то α і β є нескінченно малими одного порядку; якщо C=0, то α є нескінченно малою вищого порядку ніж $\beta.$
- II. Якщо $\lim_{x\to x_0}\frac{\alpha}{\beta^k}=A\neq 0,$ $A\in R,$ то α називається **нескінченно малою** k-го порядку відносно $\beta.$
- III. Якщо $\lim_{x\to x_0}\frac{\alpha}{\beta}=1$, то α і β називаються **еквівалентними нескінченно малими**. Еквівалентність записується так: $\alpha\sim\beta$.

Границя відношення нескінченно малих функцій $\alpha(x)$ і $\beta(x)$ при $x \to x_0$ рівна границі відношення еквівалентних їм нескінченно малих функцій $\alpha^*(x)$ і $\beta^*(x)$ при $x \to x_0$, тобто справедливі граничні рівності:

$$\lim_{x \to x_0} \frac{\alpha}{\beta} = \lim_{x \to x_0} \frac{\alpha^*}{\beta} = \lim_{x \to x_0} \frac{\alpha}{\beta^*} = \lim_{x \to x_0} \frac{\alpha^*}{\beta^*}.$$

Часто зустрічаються наступні еквівалентні нескінченно малі величини при $x \to 0$:

$$\begin{aligned} \sin x &\sim x; & e^x - 1 &\sim x; \\ \operatorname{tg} x &\sim x; & a^x - 1 &\sim x \ln a; \\ \arcsin x &\sim x; & \log_a (1+x) &\sim x \log_a e; \\ \operatorname{arctg} x &\sim x; & \ln (1+x) &\sim x; \\ 1 - \cos x &\sim \frac{x^2}{2}; & (1+x)^k - 1 &\sim kx, \ k > 0. \end{aligned}$$

При обчисленні границь широко використовуються такі границі:

1) $\lim_{x\to 0}\frac{\sin x}{x}=1$, $\lim_{x\to 0}\frac{x}{\sin x}=1$ — **перша важлива границя**. За її допомогою розкривають невизначеність виду $\frac{0}{0}$, задану виразами, що містять тригонометричні функції.

 $(2) \lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = \lim_{\alpha \to 0} (1 + \alpha)^{\frac{1}{\alpha}} = e \approx 2,71828... -$ друга важлива границя, її використовують при розкритті невизначеності виду 1^{∞} .

5.3.3. Неперервність функції. Точки розриву

Функція y = f(x) називається **неперервною в точці** x_0 , якщо:

- 1) функція f(x) визначена в точці x_0 і деякому її околі;
- 2) існує скінчена границя функції f(x) в точці x_0 : $f(x_0 0) = f(x_0 + 0)$;