Tutorial 1: Calculus I (IC153)

Indian Institute of Technology Bhilai

- 1. Prove that $(n+1)! > 2^n$ for each $n \ge 2$
- 2. Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$
- 3. Prove that $3 + 11 + \cdots + (8n 5) = (4n^2 n)$ for all positive integer.
- 4. Let $a, b \in \mathbb{R}$. Then $a < b \implies a < \frac{a+b}{2} < b$. Hence prove that there is no least positive real.
- 5. Prove that the sum of a rational and an irrational is always irrational. What can you say about the product of a rational and an irrational?
- 6. Prove that if a < b are real numbers, then there is an irrational $\xi \in \mathbb{R}$ such that $a < \xi < b$.
- 7. If $S = \left\{ \frac{5}{n} : n \in \mathbb{N} \right\}$. Show that inf S = 0.
- 8. Let S be a non-empty bounded subset of \mathbb{R} . Prove that $\inf S \leq \sup S$. What can you say about S if $\inf S = \sup S$.
- 9. Let S and T be non-empty subsets of \mathbb{R} with the following property: $s \leq t$ for all $s \in S$ and $t \in T$.
 - (a) Prove that S is bounded above and T is bounded below.
 - (b) Prove that $\sup S \leq \inf T$.
 - (c) Give an example of such sets S and T where $S \cap T$ is nonempty.
 - (d) Give an example of such sets S and T where $\sup S = \inf T$ and $S \cap T$ is empty.
- 10. Show $\sup\{r \in \mathbb{Q} : r < a\} = a$ for each $a \in \mathbb{R}$
- 11. Prove the following using definition

(a)
$$\lim \frac{(-1)^n}{n} = 0$$
 (b) $\lim \frac{1}{n^{1/3}} = 0$ (c) $\lim \frac{2n-1}{3n+2} = \frac{2}{3}$ (d) $\lim \frac{n+6}{n^2-6} = 0$

- 12. Let $\{x_n\}$ be a bounded sequence, i.e., there exists M such that $|x_n| \leq M$ for all n, and let $\{y_n\}$ be a sequence such that $\lim y_n = 0$. Prove $\lim (x_n y_n) = 0$.
- 13. If $\lim a_n = a$ then prove that $\lim |a_n| = |a|$. Show by an example that the converse may not be true. When will be the converse is true. (A sequence $\{a_n\}$ is said to be null sequence if $\lim a_n = 0$)
- 14. Every bounded sequence is not convergent. Justify your answer.
- 15. Using the limit Theorems, prove the following. Justify all steps.

(a)
$$\lim \frac{n+1}{n} = 1$$
 (b) $\lim \frac{3n+7}{6n-5} = \frac{1}{2}$ (c) $\lim \frac{17n^5 + 73n^4 - 18n^2 + 3}{23n^5 + 13n^3} = \frac{17}{23}$

- 16. Suppose $\lim x_n = 3$, $\lim y_n = 7$ and all y_n are nonzero. Determine the following limits
 - (a) $\lim (x_n + y_n)$ (b) $\lim \frac{3y_n x_n}{y_n^2}$