11.4.2020

RECAP

- * receptive fields
 - * what kind of stuff in the world does a neuron (or voxel, or whatever) respond to?
- * spike-triggered average
 - * limited applicability

RECAP: SPIKE-TRIGGERED AVERAGE (STA)

* e.g. imagine this is the data:

```
* Y = [1,1,0,1,0]

X_1 = [1,1,0,1,0]

X_2 = [1,0,0,1,0]
```

- * STA would say that beta₁=1, and beta₂=0.66
- * but a simpler explanation would be that beta₂=0, since X_1 already explains everything about Y

- * y = output of a neuron that you are measuring
- * x = how many times per second the screen
 flashes

LEAST SQUARES

- * we start solving this problem by specifying an error function (or loss function)
- * the error function, E(b), tells us how wrong the model is if we use the weight b

LEAST SQUARES

- * the typical error function used for linear regression is the **squared error**
 - * (leading the type of linear regression we're talking about here to sometimes be called "linear least squares" or "ordinary least squares")

LEAST SQUARES

* it's defined as the total squared difference between actual and predicted data

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2$$

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2$$

* now suppose we have two input variables, X1, and X2, and an output Y

* we want to fit a model of the form:

Y = X1*b1 + X2*b2

$$* Y = X1*b1 + X2*b2$$

* again b1 and b2 are called weights or parameters

* here the error function takes two variables, E(b1, b2)

* so how do we find the values of b1 and b2 that minimize the loss function?

- * we could do it "greedily":
 - * first find the b1 that minimizes error
 while keeping b2=0
 - * then find the b2 that minimizes error while keeping b1 constant

* this would not work well

* this would not work well

* this would not work well

* the issue is that we need to account for how much X2 explains while fitting b1, while simultaneously accounting for how much X1 explains while fitting b2

- * one way to do this is to mimic the "greedy" solution, but taking tiny steps
- * which direction should each step point?
- * we can find the "best" direction by computing the derivative (aka gradient) of the loss function with respect to b1 & b2
- * this is called gradient descent

* (example)

- * but there's another way to find the optimal b1 and b2
- * what's the shape of the error function?

*

- * but there's another way to find the optimal b1 and b2
- * what's the shape of the error function?
 - * a parabola!

* there is an analytic solution to the minimum of a parabola!

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} Y$$

END