2 A motor drags a log of mass 452 kg up a slope by means of a cable, as shown in Fig. 2.1.

Fig. 2.1

The slope is inclined at 14.0° to the horizontal.

(a) Show that the component of the weight of the log acting down the slope is 1070 N.

[1]

- (b) The log starts from rest. A constant frictional force of 525 N acts on the log. The log accelerates up the slope at $0.130\,\mathrm{m\,s^{-2}}$.
 - (i) Calculate the tension in the cable.

tension = N [3]

	(ii)	The log is initially at rest at point S. It is pulled through a distance of 10.0 m to point P.		
		Cal	culate, for the log,	
		1.	the time taken to move from S to P,	
			time = s [2]	
			time = 5 [2]	
		2.	the magnitude of the velocity at P.	
			velocity = m s ⁻¹ [1]	
(c)	time	The cable breaks when the log reaches point P. On Fig. 2.2, sketch the variation with time t of the velocity v of the log. The graph should show v from the start at S until the og returns to S. [4]		
		V		

Fig. 2.2