READINGS: Sections 34.4, 34.5

Review:

• We can think of a decision problem as a set *A* of strings over some finite alphabet. We may as well assume the alphabet is {0,1}, since we can code other symbols as bit strings (e.g. ASCII code).

Thus if D(x) is a decision problem, then the corresponding set $A = \{x \mid D(x) = 1\}$.

• **Reducibility**: We define $A \leq_p B$ (A is polytime reducible to B) as follows:

 $A \leq_p B$ iff there is a polytime computable functions $f: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in A \Leftrightarrow f(x) \in B \text{ for all } x \in \{0,1\}^*$$

- Think $A \leq_p B$ means A is no harder than B.
- Facts about \leq_p
 - 1. \leq_p is **transitive**. That is, $A \leq_p B$ and $B \leq_p C$ implies $A \leq_p C$.
 - 2. $A \le B$ and $B \in \mathbf{P}$ implies $A \in \mathbf{P}$ $A \le B$ and $B \in \mathbf{NP}$ implies $A \in \mathbf{NP}$
 - 3. **Definition**: *A* is **NP**-hard if $B \leq_p A$ for all $B \in \mathbf{NP}$.
 - 4. **Definition**: *A* is **NP**-complete if *A* is **NP**-hard and $A \in NP$.
- Important Theorem: If A is NP hard and $A \leq_p B$ then B is NP hard.

Proof: This follows immediately from the definition of **NP**-hard and the transitivity of \leq_p . The above Theorem is important, since once we know that one problem **NP**-complete, we can use it to show many other problems are also **NP**-complete. The original problem shown to be **NP**-complete is SAT (the Boolean satisfiability problem). Here

SAT =
$$\{\varphi \mid \varphi \text{ is a satisfiable Boolean formula}\}$$

Cook-Levin Theorem:[1971] SAT is **NP**-complete.

It is easy to see that SAT is in **NP**: The certificate for a YES instance for a formula φ is a truth assignment to the variables of φ that satisfies φ (i.e. makes φ true).

The hard part of the proof is to show that SAT is **NP**-hard (every **NP** problem is polytime reducible to SAT). We will not prove this part in this course . (However last week we gave an intuitive argument that the related problem Circuit-SAT is **NP-complete**.)

Recall that a CNF (Conjunctive Normal Form) formula is a conjunction $C_1 \wedge C_2 \wedge \cdots \wedge C_m$ of clauses $(m \ge 1)$ where a clause $(\ell_1 \vee \cdots \vee \ell_j)$ $(j \ge 1)$ is a disjunction of literals, where each ℓ_i has the form x or \bar{x} , where x is a Boolean variable.

CNF-SAT is the problem SAT restricted to CNF formulas, and 3SAT is CNF-SAT restricted to formulas with exactly 3 distinct literals in each clause.

We will show that 3SAT is **NP**-complete. This is a useful result, since it can be used to show many other problems are **NP**-hard.

3SAT Theorem: 3SAT is **NP**-complete.

Fact: 2SAT is in **P**. It is an interesting excercise to give a polytime algorithm for 2SAT (not easy, but not that hard).

The easy part of the 3SAT Theorem is to show that 3SAT is in **NP**. The argument is that same as for SAT: A certificate for φ is a truth assignment to the variables of φ which make φ true.

To show that 3SAT is **NP**-hard we use both the Important Theorem above and the Cook-Levin Theorem. Thus it suffices to prove the following:

Lemma 1 SAT \leq_p 3SAT.

Our definition above of 3SAT requires that the input formula φ has exactly 3 literals in every clause. It is useful to relax this requirement a little:

Definition: 3SAT' is the same as 3SAT except we allow each clause to have *at most* 3 literals.

Lemma 2: 3SAT' \leq_p 3SAT.

This is an easy result. Suppose for example that an φ' is an input to 3SAT', and one of the clauses $(\ell_1 \vee \ell_2)$ has only two literals. Then we can replace this clause by two clauses $(\ell_1 \vee \ell_2 \vee y) \wedge (\ell_1 \vee \ell_2 \vee \bar{y})$, where y is a new variable. It is easy to see that the resulting formula is satisfiable iff the original formula φ is satisfiable. We then apply this idea repeatedly to convert all of the small clauses to conjuctions of 3-literal clauses.

Lemma 3 SAT \leq_p 3SAT'

Note that **Lemma 1** follows from Lemmas 1 and 2, because \leq_p is transitive. Thus it suffices to prove **Lemma 3**.

Definition: If φ and φ' are two formulas, then we say φ is *equivalent* to φ' (written $(\varphi \equiv \varphi')$) if $\tau(\varphi) = \tau(\varphi')$ for every truth assignment τ .

To prove **Lemma 3** we need a polytime algorithm which does the following:

Transform a Boolean formula φ to a 3CNF' formula φ' so φ is satisfiable iff φ' is satisfiable. (1)

To do this, it is tempting to use the fact that every Boolean formula φ is equivalent to a CNF formula. But there are two problems with this approach. The first difficulty is that there are formulas such as $x_1 \lor x_2 \lor x_3 \lor x_4$ that our not equivalent to *any* 3CNF formula. The second is that the CNF form φ' of φ could be exponentially bigger than φ , so there is no possibility of a polytime algorithm for producing φ' on input φ .

So instead of trying to make φ' equivalent to φ , we add many new variables to φ' that do not occur in φ , and instead of making φ' equivalent to φ we just want φ' to be satisfiable iff φ is satisfiable.

Here is an outline of the proof of **Lemma** 3, showing how to translate φ to φ' in polynomial time.

We start by removing each even length string of \neg 's in φ , so $\neg\neg$ does not occur in φ . For example $\neg\neg\neg x$ is changed to $\neg x$. Note that this modified form of φ is equivalent to the original φ . Now we perform the following steps.

- 1. For each binary subformula α of φ (i.e. one of the form $(\beta \wedge \gamma)$ or $(\beta \vee \gamma)$) associate a new variable $x_{\alpha} = \ell_{\alpha}$. (The idea is that we will add clauses to φ' which will force the literal ℓ_{α} to have the same truth value as α .)
- 2. For each subformula $\alpha' = \neg \alpha$ of φ , let the literal $\ell_{\alpha'} = \overline{x_{\alpha}}$.
- 3. For each binary subformula $\alpha = (\gamma \circ \delta)$ of φ , where \circ is either \wedge or \vee , we define a 3CNF' formula D_{α} using the variable x_{α} and the literals ℓ_{γ} and ℓ_{δ} such that D_{α} is equivalent to the formula $(x_{\alpha} \leftrightarrow (\ell_{\gamma} \circ \ell_{\delta}))$.

4. Let $\varphi' = \ell_{\varphi} \wedge D_{\alpha_1} \wedge \cdots \wedge D_{\alpha_m}$ where $\alpha_1, \dots, \alpha_m$ are the binary subformulas of φ .

We need to specify the 3CNF' formula D_{α} of step 3. Consider the case that \circ is \vee , so α is $(\gamma \vee \delta)$. Let D_{α} be $(x_{\alpha} \vee \overline{\ell_{\gamma}}) \wedge (x_{\alpha} \vee \overline{\ell_{\delta}}) \wedge (\overline{x_{\alpha}} \vee \ell_{\gamma} \vee \ell_{\delta})$. It is easy to verify that D_{α} is equivalent to $(x_{\alpha} \leftrightarrow (\ell_{\gamma} \vee \ell_{\delta}))$

The case α is $(\gamma \wedge \delta)$ is similar.

Now it is clear that the above is a polytime algorithm converting φ to φ' , and φ' is a CNF formula with at most 3 literals in each clause.

It remains to prove that φ is satisfiable iff φ' is satisfiable, where φ' is defined in step 4.

Suppose that the assignment τ' satisfies φ' . By induction on the depth of nesting of the subformulas α of φ , using the property of D_{α} stated in step 3 we see that $\tau'(\ell_{\alpha}) = \tau'(\alpha)$. In particular $\tau'(\ell_v arphi) = \tau'(\varphi)$. Since $\tau'(\varphi') = 1$ and ℓ_{φ} is a conjunct of φ' it follows that $\tau'(\varphi) = \tau'(\ell_{\varphi}) = 1$.

Conversely, suppose that τ is an assignment to the variables of φ , and $\tau(\varphi) = 1$. Then we can extend τ to an assignment τ' to the variables of φ' by defining $\tau'(x_\alpha) = \tau(\alpha)$ for each binary subformula α of φ (and so $\tau'(\neg \alpha) = \tau'(\overline{x_\alpha})$). In particular $\tau'(\ell_\varphi) = \tau(\varphi) = 1$.

Finally, for each binary subformula α of φ , by the property of D_{α} given in Step 3 we see that $\tau'(D_{\alpha}) = 1$. Thus $\tau'(\varphi') = 1$, so φ' is satisfiable.

This completes the proof that 3SAT is NP-complete.

Now we use 3SAT to prove that other problems are NP-complete.

Definition: Let G = (V, E) be an undirected graph. Then an *independent set* of G is a subset $V' \subseteq V$ of vertices such that if $u, v \in V'$ then (u, v) is **not** an edge of G.

Define the decision problem IND-SET as follows:

Input: $\langle G, k \rangle$, where G is an undirected graph and k is a positive integer.

Question: Does *G* have an independent set of size *k*?

Theorem: IND-SET in NP-complete.

Proof

Is is easy to see that IND-SET is in NP: The certificate for a YES instance $\langle G, k \rangle$ is an independent set V' of size k. It easy to check in polytime whether V' is an independent set of size k.

To show that IND-SET is NP-hard, by the Important Theorem at the beginning of the lecture, it suffices to show that 3SAT \leq_p IND-SET.

Let $\varphi = C_1 \wedge \cdots \wedge C_m$ be an instance of 3SAT, where each C_i is a clause $(\ell_{i1} \vee \ell_{i2} \vee \ell_{i3})$ where each ℓ_{ij} is a literal (i.e. a variable or a negated variable).

We transform φ to an instance $G_{\varphi} = (V, E), k_{\varphi}$ as follows.

Let $V = \{\langle i, j \rangle \mid 1 \le i \le m, 1 \le j \le 3\}$. Here we think if each node $\langle i, j \rangle$ as the *occurance* of the literal ℓ_{ij} in clause C_i . Note that if $i \ne i'$ then ℓ_{ij} and $\ell_{i'j'}$ might be the same literal, but they are distinct nodes in G.

We define the edge set $E = E_1 \cup E_2$. Here

$$E_1 = \{ (\langle i, 1 \rangle, \langle i, 2 \rangle), (\langle i, 1 \rangle, \langle i, 3 \rangle), (\langle i, 2 \rangle, \langle i, 3 \rangle) \mid 1 \le i \le m \}$$

$$E_2 = \left\{ (\langle i,j \rangle, \langle i',j' \rangle \mid \ell_{ij} = \overline{\ell_{i'j'}}, 1 \leq i,i' \leq m, 1 \leq j,j' \leq 3 \right\}$$

Let $k_{\varphi} = m$

Clearly the transformation from φ to $\langle G_{\varphi}, k_{\varphi} \rangle$ can be carried out in polynomial time.

We prove correctness of the transformation as follows.

Suppose that φ is satisfiable. Let τ be an assignment that satisfies φ . Then τ satisfies each clause C_i . For each $i, 1 \le i \le m$ choose j_i so that τ satisfies the literal ℓ_{ij_i} . Then the set

$$V' = \{\langle i, j_i \rangle \mid 1 \le i \le m\}$$

is an independent set of G of size $m = k_{\varphi}$. This is because no two distinct elements of V' have the same i value, so they cannot be connected by an edge in E_1 , and no two literals can be both true but complementary, so no edge in E_2 can connect them.

Conversely, let V' be an independent set of size $k_{\varphi} = m$. Then no two distinct elements $\langle i,j\rangle,\langle i',j'\rangle$ can have i=i', because then they would be connected by an edge in E_1 . Hence for $1 \le j \le m$ there is an element in V' of the form $\langle i,j\rangle$. We can define an assignment τ which makes every literal ℓ_{ij} such that $\langle i,j\rangle \in V'$ true, because no two of these literals are complementary because of the edges E_2 . Thus τ satisfies every clause in φ , and hence it satisfies φ .

Recall that a subset $V' \subset V$ in an undirected graph G = (V, E) is a *vertex cover* if every edge in E has at least one endpoint in V'.

Let

$$VC = \{\langle G, k \rangle \mid G \text{ is an undirected graph with a vertex cover of size } k \}$$

Theorem VC is NP-complete.

Clearly VC is in NP. To show VC is NP hard, it suffices to show that IND-SET \leq_p VC. This is an easy reduction, using the following easy result:

Lemma: Let $V' \subseteq V$ be a subset of V in an undirected graph G = (V, E). Then V' is a vertex cover of G iff V - V' is an independent set in G.