Package 'GauProMod'

November 1, 2016

Type Package												
Title Gaussian Process Modelling												
Version 0.1												
Date 2016-11-01												
Maintainer Emanuel Huber <emanuel.huber@alumni.ethz.ch></emanuel.huber@alumni.ethz.ch>												
Description A package for conditional and unconditional Gaussian Process Modelling (GauProMod).												
License MIT License												
LazyData TRUE												
Collate 'RcppExports.R' 'GauProMod.R' 'main.R'												
Depends base, methods, graphics, stats												
LinkingTo Rcpp, RcppEigen												
Imports Rcpp, RcppEigen, FastGP												
RoxygenNote 5.0.1												
R topics documented:												
GauProMod-package												
cholfac												
covm												
gpSim												
invm												
kernels												

2 covm

	mvrnorm2 setPosTime vecGrid																	. 5
Index																		6
GauPr	roMod-package	GauProMod: A package for simulating conditional and unconditional Gaussian Process.															nal	

Description

The GauProMod package provides R functions for Gaussian process (GP) modelling. The core functions are coded in C++ and based on the EIGEN library.

Features

- Conditional GP simulation
- Space-time GP
- GP with monomial mean functions
- GP conditioned to derivative observations

References

Several books!

cholfac

Return the lower Cholesky factor

Description

Return the lower Cholesky factor L such that X = L t(L)

Usage

```
cholfac(x)
```

covm

Covariance matrix

Description

Create a covariance matrix according to the kernel parametrisation

Usage

```
covm(x, y, covModel, d = 0, dx = 1, ...)
```

gpCond 3

gpCond

Conditional Gaussian Process simulation

Description

Conditional Gaussian Process simulation

Usage

```
gpCond(obs, targ, covModels, sigma = 0, op = 0, bc = NULL, sigmat = 0)
```

gpSim

Simulate a Gaussian Process

Description

Simulate a Gaussian Process

Usage

```
gpSim(A, L = NULL, n = 1)
```

invm

Inverse matrix

Description

This function first try the Cholesky decomposition

Usage

invm(x)

4 mvrnorm2

kernels

Kernels (covariance functions) for Gaussian process

Description

Squared Exponential Covariance Function (or radial basis or Gaussian) over-smoothness, infinitely differentiable at h=0

Usage

```
kGaussian(r, para, d = 0, w = 1)
kLinear(x, y, para, d = 0, w = 1)
kMatern(r, para, d = 0, w = 1)
```

 ${\tt matGrid}$

Create grid

Description

Create grid

Usage

```
matGrid(x, y)
```

mvrnorm2

Multi-variate Gaussian simulation

Description

A more robute alternative to the myrnorm function.

Usage

```
mvrnorm2(n, mu, Sigma)
```

setPosTime 5

 ${\tt setPosTime}$

Reshape target

Description

Reshape target

Usage

```
setPosTime(xy, tt, val, xystar)
```

vecGrid

Create vecgrid

Description

Create vecgrid

Usage

vecGrid(x, y)

Index

```
cholfac, 2
covm, 2

GauProMod (GauProMod-package), 2
GauProMod-package, 2
gpCond, 3
gpSim, 3

invm, 3

kernels, 4
kGaussian (kernels), 4
kLinear (kernels), 4
kMatern (kernels), 4
matGrid, 4
mvrnorm2, 4
setPosTime, 5

vecGrid, 5
```