```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [2]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")

In [3]: data.describe()

Out[3]:

	Unnamed: 0	TV	radio	newspaper	sales
coun	t 200.000000	200.000000	200.000000	200.000000	200.000000
meai	n 100.500000	147.042500	23.264000	30.554000	14.022500
sto	d 57.879185	85.854236	14.846809	21.778621	5.217457
miı	1.000000	0.700000	0.000000	0.300000	1.600000
25%	6 50.750000	74.375000	9.975000	12.750000	10.375000
50%	6 100.500000	149.750000	22.900000	25.750000	12.900000
75%	6 150.250000	218.825000	36.525000	45.100000	17.400000
max	x 200.000000	296.400000	49.600000	114.000000	27.000000

Column Non-Null Count Dtype

O Unnamed: 0 200 non-null int64

TV 200 non-null float64

2 radio 200 non-null float64

3 newspaper 200 non-null float64

4 sales 200 non-null float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

In [5]: data.head(10)

Out[5]:

	Unnamed: 0	TV	radio	newspaper	sales	
0	1	230.1	37.8	69.2	22.1	
1	2	44.5	39.3	45.1	10.4	
2	3	17.2	45.9	69.3	9.3	
3	4	151.5	41.3	58.5	18.5	
4	5	180.8	10.8	58.4	12.9	
5	6	8.7	48.9	75.0	7.2	
6	7	57.5	32.8	23.5	11.8	
7	8	120.2	19.6	11.6	13.2	
8	9	8.6	2.1	1.0	4.8	
9	10	199.8	2.6	21.2	10.6	

In [6]: data.shape

Out[6]: (200, 5)

Out[12]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [13]: cor=data1.corr()
cor
```

Out[13]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

```
In [15]: import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidth=.5,cmap='bwr')
```

Out[15]: <AxesSubplot:>


```
In [17]: y=data1['sales']
x=data1.drop('sales',axis=1)
```

```
In [18]: y
Out[18]: 0
                 22.1
                 10.4
          2
                  9.3
          3
                 18.5
                 12.9
          4
                  . . .
          195
                  7.6
          196
                  9.7
          197
                 12.8
          198
                 25.5
          199
                 13.4
          Name: sales, Length: 200, dtype: float64
In [19]: from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
In [20]: x_test.head(5)
Out[20]:
                    radio newspaper
           95 163.3
                     31.6
                               52.9
           15 195.4
                     47.7
                               52.9
              292.9
                               43.2
            30
                     28.3
           158
                11.7
                     36.9
                               45.2
```

128 220.3

49.0

3.2

```
In [21]: y test.head(5)
Out[21]: 95
                 16.9
          15
                 22.4
          30
                 21.4
         158
                  7.3
         128
                 24.7
         Name: sales, dtype: float64
In [22]: x train.head(5)
Out[22]:
                TV radio newspaper
           42 293.6
                     27.7
                               1.8
           189
               18.7
                    12.1
                              23.4
           90 134.3
                     4.9
                               9.3
           136
               25.6
                     39.0
                               9.3
           51 100.4
                     9.6
                               3.6
In [23]: y_train.head(5)
Out[23]: 42
                 20.7
         189
                  6.7
         90
                 11.2
         136
                  9.5
          51
                 10.7
         Name: sales, dtype: float64
In [24]: from sklearn.linear_model import LinearRegression
          reg=LinearRegression() #creating object of LinearRegression
          reg.fit(x train,y train) #training and fitting LR object using training data
Out[24]: LinearRegression()
In [25]: y pred=reg.predict(x test)
```

```
In [26]: y pred
Out[26]: array([16.58673085, 21.18622524, 21.66752973, 10.81086512, 22.25210881,
                13.31459455, 21.23875284, 7.38400509, 13.43971113, 15.19445383,
                 9.01548612, 6.56945204, 14.4156926, 8.93560138, 9.56335776,
                12.10760805, 8.86091137, 16.25163621, 10.31036304, 18.83571624,
                19.81058732, 13.67550716, 12.45182294, 21.58072583, 7.67409148,
                 5.67090757, 20.95448184, 11.89301758, 9.13043149, 8.49435255,
                12.32217788, 9.99097553, 21.71995241, 12.64869606, 18.25348116,
                20.17390876, 14.20864218, 21.02816483, 10.91608737, 4.42671034,
                 9.59359543, 12.53133363, 10.14637196, 8.1294087, 13.32973122,
                 5.27563699, 9.30534511, 14.15272317, 8.75979349, 11.67053724,
                15.66273733, 11.75350353, 13.21744723, 11.06273296, 6.41769181,
                 9.84865789, 9.45756213, 24.32601732, 7.68903682, 12.30794356,
                17.57952015, 15.27952025, 11.45659815, 11.12311877, 16.60003773,
                 6.906114781)
In [27]: | from sklearn.metrics import r2 score
         r2 score(y test,y pred)
Out[27]: 0.8555568430680086
In [28]: from sklearn.metrics import mean squared error
         mean squared error(y pred,y test)
Out[28]: 3.7279283306815105
In [29]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic=ElasticNet()
         parameters={'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20]}
         elastic regressor=GridSearchCV(elastic,parameters)
         elastic regressor.fit(x train,y train)
Out[29]: GridSearchCV(estimator=ElasticNet(),
                      param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                            5, 10, 20]})
```

```
In [34]: x_test
```

Out[34]:

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
97	184.9	21.0	22.0
31	112.9	17.4	38.6
12	23.8	35.1	65.9
35	290.7	4.1	8.5
119	19.4	16.0	22.3

66 rows × 3 columns

Out[39]: array([14.27162918, 25.54573805])

In []: