Twin-Arginine Translocation in Bacillus Bron et al. SN# 09/954,737 Docket No. GC634-2 Sheet 1 of 11

1/11

TatA(Eco)	M-GGISIWQLLIIAVIVVLLFGTKKLG	26
TatE(Eco)	M-GEISITKLLVVAALVVLLFGTKKLR	26
TatAy(Bsu)	MPIGPGSLAVIAIVALIIFGPKKLP	25
TatAd(Bsu)	MFSNIGIPGLILIFVIAIIIFGPSKLP	27
TatAc(Bsu)	MELSFTKILVILFVGFLVFGPDKLP	25
TatB (Eco)	MF-DIGFSELLLVFIIGLVVLGPQRLPVAVKTVAGWIRALRSLATTVQNELTQELKLQ	49
	*	
TatA(Eco)	PKQDKTSQDADFTAKTI	64
TatE(Eco)		63
TatAy(Bsu)	·-	57
TatAd(Bsu)	·-	64
TatAc(Bsu)		57
TatB (Eco)		114
	*	
TatA(Eco)	\$ DKO \$ DTNOE	89
TatE(Eco)		
TatAy(Bsu)		
TatAd(Bsu)		
TatAc(Bsu)		
TatB (Eco)	v	_
	FIG 1A	
TatC (Eco)	_ ~ ~	
TatCy (Bsu)		
TatCd (Bsu)		51
TatC (Eco)	QLPQGSTMIATDVASPFFTPIKLTFMVSLILSAPVILYQVWAF1APALYKHERR	
TatCd (Bsu)		98
TatC (Eco)	LVVPLLVSSSLLFYIGMAFAYFVVFPLAFGFLANTAPE-GVQVSTDIASYL	155
TatCy (Bsu)	VTLSYIPVSILLFLAGLSFSYYILFPFVVDFMKRISQDLNVNQVIGINEYF	155
TatCd (Bsu)	VTIMYIMYIPGLFALFLAGISFGYFVLFPIVLSFLTHLSSG-HFETMFTADRYF	151
	** *.*.**. *	
TatC (Eco)	SFVMALFMAFGVSFEVPVAIVLLCWMGITSPEDLRKKRPYVLVGAFVVGMLLTP	209
• •	<u> </u>	209
TatCd (Bsu)	HE THOUGHT TEE GRIDE AND A TIME DIMINGTA LEME DIVITIVITY IS INDIA TRUTTE!	
	'	205
		205
TatC (Eco)	RFMVNLSLPFGFLFEMPLVVMFLTRLGILNPYRLAKARKLSYFLLIVVSILITP	
TatC (Eco)	RFMVNLSLPFGFLFEMPLVVMFLTRLGILNPYRLAKARKLSYFLLIVVSILITP *** ******	205258254
TatC (Eco) TatCy(Bsu) TatCd(Bsu)	RFMVNLSLPFGFLFEMPLVVMFLTRLGILNPYRLAKARKLSYFLLIVVSILITP *** ******	

Twin-Arginine Translocation in Bacillus Bron et al. SN# 09/954,737 Docket No. GC634-2 Sheet 2 of 11

2/11

Twin-Arginine Translocation in Bacillus Bron et al. SN# 09/954,737 Docket No. GC634-2 Sheet 3 of 11

3 / 11

FIG._4A

FIG._4B

FIG._4C

FIG._ !

 $\bar{5}/\bar{11}$

FIG._6

Protein	N	h	RR-Motif	Н	h	С
AlbB	1	0.1	RRILL	27	2.0	AIA
AmyX TM	9	-0.8	RRSFE	15	1.1	- AIA
AppB TM	8	0.5	RRTLM	19	2.3	_
LipA	7	-1.1	RRIIA	19	1.2	AKA
OppB ™	8	-0.6	$\mathbf{RR} \mathbf{LV} \mathbf{Y}$	24	2.0	_
PbpX	2	-2.2	RR RK L	14	2.9	WNA
PhoD	3	-1.3	RRKFI	17	0.9	VGA
QcrA TM	1	-1.1	RROFL	19	1.3	_
TlpA TM	1	-0.8	RRLII	21	2.4	_
WapA [₩]	1	-3.0	RRNFK	18	2.3	VLA
WprA	8	-1.7	RRKFS	20	1.9	AAA
YceA TM	1	-0.4	RRAFL	21	2.2	_
YesM TM	1	-1.5	RRMKI	20	2.4	QYA
YesW	1	-1.3	RRSCL	19	2.0	VKA
YfkN TM	1	-1.2	RRTHV	17	1.7	IHA
YkpC	8	-1.0	RRVAI	17	2.3	SLA
YkuE	1	-1.3	RRQFL	17	1.0	GYA
YmaC	7	0.0	RRFLL	15	2.4	YSL
YubF TM	9	-2.7	$\mathbf{RR}\mathbf{NTV}$	23	2.0	_
YuiC	8	0.2	$\mathtt{RR} \bot \mathtt{LM}$	20	1.9	IEA
YvhJ ™	2	-1.7	RRKIL	18	2.5	_
YwbN	1	-1.8	RRDIL	23	1.4	QTA

FIG._7

6 / 11

7/11

FIG._9C

+

9/11

FIG._11A

FIG._11B

The state of the s

Twin-Arginine Translocation in Bacillus Bron et al. SN# 09/954,737 Docket No. GC634-2 Sheet 11 of 11

11 / 11

Homologs in B. alcalophilus

TatA MGGLSVGSVVLIALVALLIFGPKKLPELGKAAGSTLREFKNATK GLADDDDDTKSTNVQKEKA

TatC

MTMMTPNQQTSKKKKRKGRKGRVPMQDMSIMDHAEELRRRIF VVLAFFIVALIGGFFLAVPVITFLQNSPQAADMPFNAFRLTDPLRV YMNFAVITALVLIIPVILYQLWAFVSPGLKENEQKATLAYIPIAFL LFLAGIAFSYFILLPFVISFMGQMADRLEINEMYGINEYFSFLFQL TIPFGLLFQLPVVVMFLTRLGVVTPTFLRKIRKYAYFALLVIAGII TPPELTSHLFVTVPMLILYEISITISAITYRKYHGTTDHNGQESAK

FIG._14