Capítulo 2

Exercício 1

- a) $\neg \exists x \forall y (y \in x) \equiv \forall x \exists y (y \notin x)$
- b) $\exists ! x \forall y (y \notin x)$
- c) $\exists ! y (y \in x)$
- d) $\exists x \forall y ((y \in x) \to y = \phi)$
- e) r é subconjunto de $x\equiv \forall a((a\in r)\to (a\in x))\equiv A$, então podemos escrever $\forall w([A]^w_r\to w\in y)$

Exercício 2

- a) *y*
- b) *y*
- c) x
- d) Não há variáveis livres.
- e) x e y

Exercício 3

- 1. (a) $(\forall x(x=y)) \rightarrow (x \in y)$
 - (b) $(\forall x(x=y))$
 - (c) (x = y)
 - (d) $(x \in y)$
- 2. (a) $\forall x((x=y) \rightarrow (x \in y))$
 - (b) $(x = y) \rightarrow (x \in y)$
 - (c) (x = y)
 - (d) $(x \in y)$
- 3. (a) $\forall x(x=x) \to (\forall y \exists z(((x=y) \land (y=z)) \to \neg (x \in y)))$
 - (b) $\forall x(x=x)$
 - (c) (x = y)
 - (d) $\forall z \exists y (((x = y) \land (y = z)) \rightarrow \neg (x \in y))$
 - (e) $((x = y) \land (y = z))$
 - (f) (x = y)
 - (g) (y = z)

- (h) $\neg (x \in y)$
- (i) $(x \in y)$
- 4. (a) $(x = y) \rightarrow \exists y (x = y)$
 - (b) (x = y)
 - (c) $\exists y(x=y)$
 - (d) (x = y)