Photon Overlap Removal for top FCNC

 $t \rightarrow q \gamma$

Jason Barkeloo

April 26, 2018

Table of Contents

Top Quark Decays

► Standard model top branching ratio to bW $\simeq 100\%$

../../ThesisImages/topdecay.png

Figure: Leptonic final state diagram for a top decay

../../ThesisImages/topdecayprodu

Figure: Top quark pair decay final states [Nature]

FCNC: What are we looking for? $t\bar{t} \to W(\to l\nu)b + q\gamma$

- ► Final state topology
 - One Neutrino, from W
 - ► One Lepton, from W
 - ► One B-jet, SM top
 - ► One Photon, FCNC Top
 - ► One Jet, FCNC Top

../../ThesisImages/fcncttbar.png

Background Processes

- ▶ Due to all of the processes at hadron colliders it is important to model similar event topologies well.
- ▶ Major backgrounds include $t\bar{t}$, W+Jets, Z+Jets, + processes with an associated photon

../../ThesisImages/backgrounds.png

Monte Carlo Generation

- ► All of our MC data is put through a showering algorithm for propagation from final decay states
- Various showering algorithms are used at ATLAS Pythia, Herwigg, etc.
- ► All of these will add radiative photons
- ► These events can be contained in other samples with explicit photons originating from the hard interaction
- ▶ Need to remove these events or risk double counting events

Photon Overlap Removal

- ► Truth matching procedure is used to identify origin and type of truth particle corresponding to reconstructed photon
 - ▶ If reco photon is associated with a truth electron or within R=0.2 we can consider this $e \rightarrow \gamma$ fake
 - ► If origination from boson or lepton with a corresponding truth hadron: hadron fake
 - ▶ Otherwise the photon is considered coming from the hard interaction
 - ► The procedure rejects less than 1% of events in $t\bar{t} + \gamma$ and $V + \gamma$ samples (except $Z + \gamma$ in e+jets channel because of fake rates)

Photon Overlap Removal

- ▶ For $t\bar{t}$ and V+jets samples, the prompt photon contribution is subject to large statistical uncertainty and its modelling is less trusted, it is why the $t\bar{t}+\gamma$ and $V+\gamma$ samples are used.
- ► For this to work phase spaces of events must be close to identical otherwise the overlap removal will take out too much

../../ThesisImages/OverlapRemovalTTgam.png

Object Preselection

- We preselect events with objects that look like our expected topology
- Reminder that I require:
 - ▶ Exactly one lepton (e or μ) \geq 28 GeV
 - ► Exactly one Good photon ≥ 25GeV
 - ► Missing Transverse Energy ≥ 30GeV
 - ▶ ≥ 2 Jets (at least one being b-tagged)
- ▶ All following plots will have signal scaled to 0.2% of nonallhadronic $\sigma_{t\bar{t}}$, MC scaled to 36.07 fb^{-1}
- Only electron channel shown. Similar results for the muon channel are seen.

What does this mean?

- ightharpoonup Previous presentations have dramatically overcounted $t\bar{t}$ events
- ▶ 40 50% of the events in $t\bar{t}$ and W + jets base samples are removed with this procedure
- ► The inclusion could have hidden some potential differences in ways to remove one or the other background processes

Figure: No OVR Photon ptcone20

Figure: OVR Photon ptcone20

Signal Region

- Current Requirements:
 - ► Preselection Cuts
 - ► FCNC Top Mass: $m_{q\gamma}$ within 50GeV of m_t
 - ▶ SM Top Mass: $m_{bl\nu}$ within 50GeV of m_t
 - ▶ Z Mass: $m_{I\gamma} > 10 \, GeV$ from m_Z
 - ► Photon pt > 50 *GeV*
 - ► ==1 Bjet

SR Cuts

PreSelection

$t\bar{t} + \gamma$ rich region

- Preselection Cuts
- ► FCNC Top Mass Orthogonal to SR
- ▶ ≥ 4 Jets

../../ThesisImages/OverlapRemovalRegionEMpdiosEmages/RQveilWR2hmpt

Figure: γ_e Figure: $\Delta R_{l\gamma}$

Other Regions

- ▶ Developing more region to test the performance of MC samples
- Regions are designed to isolate various physics processes using orthogonal selections
- $ightharpoonup tar{t}(+\gamma)$ is of utmost important to model extremely well, especially with the increase in cross section at 13TeV

Conclusion, Outlook

- ► Orthogonal validation/control regions are in development
- ▶ Data grid run complete, need to incorporate into CR/VR plots
- ► Next grid run will include a couple of looser regions for CR/VRs
 - ▶ 0 Photon Samples for Backgrounds with no Real Photons
 - 0 BJet Samples possibly for WJets region
- ► Top Group Pushing for MVA, want to start investigations using these techniques

Backup

Jets/AntiKT

$$d_{ij} = min(rac{1}{
ho_{ti}^2}, rac{1}{
ho_{tj}^2})rac{\Delta_{ij}^2}{R^2}$$
 $d_{iB} = rac{1}{
ho_{ti}^2}$ $\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

- ▶ Find minimum of entire set of $\{d_{ij}, d_{iB}\}$
- ▶ If d_{ij} is the minimum particles i,j are combined into one particle and removed from the list of particles
- ▶ If d_{iB} is the minimum i is labelled as a final jet and removed from the list of particles
- ightharpoonup Repeat until all particles are part of a jet with distance between jet axes Δ_{ij} is greater than R

B-tagging

 $\dots / \dots / \texttt{ThesisImages/B-tagging_diagram.png}$

$$\mathcal{L}_{tq\gamma}^{eff} = -e\bar{c}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}}(\lambda_{ct}^{L}P_{L} + \lambda_{ct}^{R}P_{R})tA_{\mu} + H.c.$$