

Physique

Devoir de synthèse N°1

Classe Bac Scientifiques

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

CHIMIE:

Dans un ballon de capacité 200mL, préalablement rempli d'air, on verse une solution d'acide chlorhydrique de concentration molaire C=1 mol.L-1, de volume V=25 mL et 25 mL d'eau et on y plonge un ruban de magnésium de masse m=0,243 g et on déclenche simultanément un chronomètre. On bouche le ballon. Le gaz dihydrogène (H₂) qui se forme au cours de la réaction est recueilli par déplacement dans une éprouvette graduée retournée sur une cuve à eau (voir Figure 1).

On relève toutes les 20 secondes, le volume V(mL) de gaz -dihydrogène (H₂) formé, ce qui a permis de tracer la courbe de la figure 2.

N W N

On donne la masse molaire du magnésium M=24,3 g.mol⁻¹. Le volume molaire des gaz dans les conditions de l'expérience est V_m=24L.mol⁻¹.

1. L'équation de la réaction associée à la transformation chimique qui a lieu s'écrit :

$$Mg + 2H_3O^+ \longrightarrow Mg^{2+} + H_2 + 2H_2O$$

- **a-** Établir le tableau d'avancement de la réaction.
- **b-** Déterminer l'avancement maximal de la réaction.
- **c-** Déterminer à partir de la courbe l'avancement final de la réaction.
- 2. Définir la vitesse de la réaction.
- 3. Déterminer la vitesse de réaction à l'instant $t_0=0$ et à l'instant $t_1=175$ s
- **4.** Expliquer comment évolue cette vitesse au cours du temps?
- **5.** Déterminer le temps de demi-réaction.

Exercice 2

4 points

On réalise un mélange équimolaire de méthanoate d'éthyle (HCOOC₂H₅) et d'eau et on le répartit en plusieurs ampoules identiques que l'on ferme et que l'on porte à 80°C. Dans chaque ampoule il se produit la réaction :

$$HCOOC_2H_5 + H_2O HCO_2H + C_2H_5OH$$

L'analyse de ces mélanges réactionnels au cours du temps permet de tracer le graphe n(ester) = f(t) ci-dessous:

- **1.** Déterminer le taux d'avancement final au_f de la réaction.
- 2. Quel(s) caractère(s) de la réaction d'hydrolyse d'un ester met en évidence le graphe n(ester) = f (t) ? Justifier.
- 3. Montrer que l'expression de la constante d'équilibre K en fonction de au_f est :

$$K = \frac{{\tau_f}^2}{(1 - {\tau_f})^2}$$
; Calculer sa valeur.

- **4.** On part maintenant d'un mélange renfermant initialement **1 mol** d'ester, **2 mol** d'eau, **2 mol** d'acide et **1 mol** d'alcool.
 - **a-** Dire en le justifiant dans quel sens évolue le système chimique.
 - **b-** Déterminer la composition molaire du mélange à l'équilibre chimique.

PHYSIQUE:

Exercice 1

(5)

5 points

On donne : E=8~V ; $C=50~\mu F$; $R_2{=}100\Omega$.

On s'intéresse à la charge d'un condensateur de capacité **C** par un générateur de tension idéal de f.é.m. **E**. Un oscilloscope bicourbe à mémoire est relié au circuit comme l'indique la figure 3.

Avec ce montage on visualise la tension \mathbf{u}_C aux bornes du condensateur et \mathbf{u}_{R1} celle aux bornes de résistor.

Le condensateur est initialement déchargé. On bascule le commutateur sur la position 1. L'évolution au cours du temps de la tension \mathbf{u}_C aux bornes du condensateur et la tension aux bornes du conducteur ohmique de résistance \mathbf{R}_1 sont représentées sur la figure 4:

- 1. Identifier les courbes, Justifier la réponse.
- 2. Déterminer la valeur de l'intensité du courant électrique à l'instant t=0,02s
- 3. Sachant que l'on définit la constante de temps τ du circuit comme la durée au bout de laquelle le condensateur se charge 63% de sa charge maximale, déterminer graphiquement la valeur de τ puis en déduire que la valeur de la résistance R_1 est égale à 400 Ω .
- **4.** On bascule l'interrupteur sur la position 2. Sur la Voie Y_2 , on observe la courbe de la figure 5 :

Figure 5

- **a-** Interpréter l'allure de la courbe, en donnant une explication du retard d'établissement du courant dans le circuit.
- **b-** Déterminer graphiquement :
 - La valeur de l'intensité du courant en régime permanent Ip
 - La constante de temps τ
- c- Établir la relation entre E, L, r, R_1 , R_2 , i, et $\frac{di}{dt}$. En déduire une expression littérale de Ip.
- d- Montrer que la bobine a une inductance pure puis déterminer la valeur de L.

Exercice 2

(5)

8 points

Partie 1

On considère le circuit suivant avec E=10 V, C=10 μF , L=1H, $r=10\Omega$, $R_1=40\Omega$. Le commutateur **K** est initialement placé sur la position 1.

Le condensateur étant chargé, On bascule le commutateur sur la position 2 à un instant choisi comme origine des temps (t=0s) et à l'aide d'un oscilloscope, on visualise simultanément les tensions $u_c(t)$ (courbe C1) et $u_{R1}(t)$ (courbe C2) respectivement aux bornes du condensateur et du résistor R₁, on obtient les chronogrammes de la figure 6 :

Figure 6

- 1. Reproduire le schéma du circuit et indiquer les connexions nécessaires pour visualiser ces deux tensions sur l'oscilloscope : $\mathbf{u_c(t)}$ sur Y1 et $\mathbf{u_{R1}(t)}$ sur Y2.
- 2. Quelle est la nature de ces oscillations? Justifier.
- **3.** En appliquant la loi des mailles, établir l'équation différentielle régissant l'évolution de la charge **q(t)** aux bornes du condensateur.

4.

- a- Exprimer l'énergie totale électromagnétique en fonction de C, q, L et i
- **b-** Monter que l'énergie totale électromagnétique dans le circuit décroit au cours du temps.
- c- En utilisant la figure (6), ci-dessous, calculer l'énergie totale aux instants de dates
 t₁=0ms et t₂=25ms. En déduire la variation de l'énergie totale entre t₁ et t₂.
 Expliquer cette variation d'énergie.
- **d-** On donne maintenant plusieurs courbes représentant les variations de \mathbf{u}_c au cours du temps pour différentes valeurs de \mathbf{R} .

Donner le nom du régime de décharge de chaque courbe et comparer la valeur de ces résistances.

Partie 2:

On réalise le circuit suivant comportant un condensateur ${\bf C}$ initialement chargé, un interrupteur et une bobine purement inductive.

À un instant de date $\mathbf{t} = \mathbf{0}$, on ferme l'interrupteur et on suit l'évolution de la tension $\mathbf{u}_c(\mathbf{t})$ représentée par la courbe(\mathbf{A}).

1. Établir l'équation différentielle vérifiée par la tension u_c (t).

Soit : $U_c(t) = U_{cm} \sin(\omega_0 t + \frac{\pi}{2})$ est une solution de l'équation différentielle.

2. Déterminer graphiquement :

a- La valeur de la période propre T_o de l'oscillateur **LC**. En déduire sa pulsation propre ω_o .

b- L'amplitude des oscillations U_{cm} .

En déduire la charge maximale Q_{max} du condensateur, sachant que $C = 1 \mu F$.

- 3. Déterminer la valeur de l'inductance L.
- **4.** Établir l'expression du courant **i(t)** en fonction du temps.
- 5. Montrer que l'énergie totale E se conserve au cours du temps.
- **6.** On donne la courbe de variation d'une énergie en fonction du temps (figure 7).
 - a- Justifier qu'il s'agit de la courbe d'énergie magnétique.
 - b- Que représente chacun des grandeurs a et b?
 - c- Déterminer leurs valeurs.

Figure 7

Bonne Chance

