09 Machine Learning mit caret

Martin Hanewald

2019-02-19

Packages

```
library(tidyverse)
library(caret)
library(knitr)
library(DT)
library(GGally)
library(Metrics)
```

Überblick

Das caret Paket ist der einfachste Weg um eine Vielzahl von Machine-Learning Techniken anzuwenden. Es verfügt über ein einheitliches Interface um zahlreiche Modelle aus anderen Paketen anzusprechen.

Die zentralen FUnktionen sind:

- createDataPartition(): Splitting in Training- und Testset
- train(): Training von Modellen
- trainControl(): Steuerung der Validierungsmethodik und Parametertuning
- preProcess(): Optionales Pre-Processing der Daten (Centering, Scaling, etc.)
- predict(): Erzeugung der Prediction
- resamples(): Erzeugung von Cross-Validation Metriken mit summary()und bwplot()

Dataset

Wir betrachten einen mitgelieferten Datensatz über den Zusammenhang zwischen Häuserpreisen (price) und verschiedenen Hauseigenschaften wie Größe, Lage, Anzahl Badezimmer, etc.

```
data(Sacramento, package='caret')
Sacramento <- Sacramento %>% as_tibble()
# für scrollbaren HTML Output
Sacramento %>% sample_n(20) %>% datatable(options = list(scrollX=T))
```

Show	10 ▼ entries						Search:		
	city	*	zip 🌲	beds 🔷	baths 🌲	sqft 🌲	type 🔷	price 🔷	latitude 🔷
1	GOLD_RIVEF	₹	z95670	2	2	1520	Residential	299000	38.62869
2	CITRUS_HEI	GHTS	z95621	4	2	1280	Residential	167293	38.715781
3	SACRAMENT	0	z95864	3	1	1643	Residential	99000	38.588672
4	GALT		z95632	5	4	3746	Residential	420000	38.271646
5	SACRAMENT	0	z95826	3	2	1280	Residential	192067	38.560767
6	SACRAMENT	0	z95842	4	2	1578	Residential	195000	38.693071
7	SACRAMENT	0	z95841	3	2	1120	Residential	178000 CA COntr e	38.658734 oller akade

8	SACRAMENTO	z95815	2	1	1011	Residential	85000	38:6238	UNI
9	SACRAMENTO	z95818	2	1	1144	Residential	299000	38.556844	
10	CITRUS_HEIGHTS	z95621	3	2	1343	Residential	284893	38.715853	
4								>	
Show	ing 1 to 10 of 20 entries	6				Previous	s 1	2 Next	

Exploration

Ein einfacher Pairs Plot zwischen zwei ausgewählten Variabeln sqft und baths zeigt eine deutliche positivte Korrelation.

Sacramento %>% select(price, sqft, baths) %>% ggpairs()

Splitting und Training

Wir splitten den Datensatz gemäß der 80/20 Faustregel.

```
in_train <- createDataPartition(Sacramento$price, p = .8, list = FALSE)

training <- Sacramento[ in_train,]
testing <- Sacramento[-in_train,]</pre>
```

Danach fitten wir ein einfaches lineares Modell sowie einen Decision Tree.

Als Sampling Methode wählen wir die Cross-Validation (method='cv') und einige Pre-Processing Schritte für numerische Variablen. Als einzigen Prädiktor wählen wir zunächst nur die Variable sqft.

Evaluation

Die Evaluation anhand der Kreuzvalidierungssamples zeigt das lineare Modell eindeutig im Vorteil.

```
res <- resamples(list(lm = fit_lm, dtree = fit_dtree))</pre>
res %>% summary()
#>
#> Call:
#> summary.resamples(object = .)
#>
#> Models: Lm, dtree
#> Number of resamples: 10
#>
#> MAE
          Min. 1st Qu. Median Mean 3rd Qu.
#>
      49662.66 56608.57 61138.46 59482.88 63998.12 64976.63
#> dtree 59116.95 62521.25 68131.29 67158.75 69759.41 77328.92
#>
#> RMSE
          Min. 1st Qu. Median
                                 Mean 3rd Qu.
#> Lm 63948.38 70316.6 78445.73 79636.29 85436.34 111279.2 0
#> dtree 74841.75 79334.8 89396.70 88917.08 92501.02 114739.1
#>
#> Rsauared
#>
           Min. 1st Qu. Median
                                    Mean 3rd Qu.
#> dtree 0.3947227 0.4225706 0.5244397 0.5151145 0.6057425 0.6563568
res %>% bwplot(scales='free')
```


Auch die visuelle Inspektion der Prediction auf Basis des Testdatensatzes zeigt die Schwächen des Decision UNIS Tree Ansatzes.

Abschließende Beurteilung der Güte auf dem Testset anhand der Performance-Kennzahl MAPE (Mean Absolute Percentage Error).

Aufgabe: Verbessere obiges Modell durch Variation

- 1. Probiere ein Ensemble Modell aus (siehe caret Doku)
- 2. Füge zusätzliche Variablen hinzu