Заряды. Закон Кулона.

1	Как, имея электрический заряд, получить заряд другого знака?			
2	Когда А подносят к В, они отталкиваются. Когда В подносят к С, они тоже отталкиваются. Какие из следующих утверждений верны? (а) А и С заряжены одноимённо; (б) А и С заряжены разноимённо; (в) все три объекта заряжены одноимённо; (г) один из объектов не заряжен; (д) не хватает информации.			
3	Когда А подносят к В, они притягиваются. Когда В подносят к С, они отталкиваются. Какие из следующих утверждений верны? (а) А и С заряжены одноимённо; (б) А и С заряжены разноимённо; (в) все три объекта заряжены одноимённо; (г) один из объектов не заряжен; (д) не хватает информации.			
4	Электрический диполь состоит из двух зарядов q и $-q$, находящихся на расстоянии $2a$ друг от друга. Найдите электрическое поле диполя на серединном перпендикуляре к отрезку, соединяющему заряды. Как ведёт себя поле, если точка наблюдения находится очень далеко от диполя? (и что означают слова «очень далеко»?)			
5	Тонкое кольцо радиуса R заряжено зарядом $Q > 0$. Найдите электри ческое поле на оси, проходящей через центр кольца и перпендику лярной к его плоскости. Каким будет поле вдалеке от кольца? Каким будет поле в центре кольца?			
6	В условиях предыдущей задачи: в центре кольца поместили небольшой заряд $q < 0$. Затем его немного отклонили вдоль оси на расстояние $x \ll R$. Что будет происходить с зарядом? Указание. Напомним, что уравнение движения для грузика на пружинке выглядит так: $ma + kx = 0$. При этом грузик на пружинке совершает колебания с периодом $T = 2\pi \sqrt{m/k}$.			

Силовые линии. Теорема Гаусса.

1	Допустим, что электрический поток через некоторую замкнутую поверхность равен нулю. Какие из следующих утверждений верны? (а) внутри поверхности нет зарядов; (б) суммарный заряд внутри поверхности равен 0; (в) электрическое поле везде на поверхности равно 0; (г) количество силовых линий, входящих в поверхность, равно количеству силовых линий, покидающих её.	
2	Представьте сферическую поверхность, окружающую заряд Q . Что произойдёт с потоком через неё, если (a) заряд утроить; (б) объём сферы удвоить; (в) поменять сферу на куб; (г) переместить заряд в другое место внутри сферы.	
3	Нарисуйте приблизительную картину силовых линий для двух одноимённых зарядов.	
4	Заряд $Q > 0$ находится в пустом пространстве. Его окружают незаряженной проводящей сферой так, что заряд оказывается в центре сферы. Как будут устроены силовые линии, выходящие из заряда?	
5	Имеется равномерно заряженная тонкая бесконечная палочка с линейной плотностью заряда λ (это означает, что любой кусочек палочки длины l имеет заряд $q = \lambda l$). Найдите электрическое поле в точке на расстоянии r от палочки.	
6	Имеется равномерно заряженная тонкая бесконечная плоскость с поверхностной плотностью заряда σ (это означает, что любой кусочек плоскости площадью S имеет заряд $q = \sigma S$). Найдите электрическое поле в точке на расстоянии x от плоскости.	
7	Непроводящая сплошная сфера радиуса R заряжена равномерно с плотностью ρ (любой кусочек сферы объёмом V имеет заряд $q=\rho V$). С помощью закона Гаусса посчитайте электрическое поле в точке P на расстоянии r от центра сферы (рассмотрите случай $r \leq R$ и случай $r \geq R$).	
8	Теорема Ирншоу . Говорят, что система находится в устойчивом равновесии, если при попытке вывести её из равновесия на систему начинает действовать возвращающая сила. Докажите, что заряд во внешнем электрическом поле не может находиться в устойчивом равновесии (при условии отсутствия сил другой природы — например, гравитационных). <i>Указание</i> : попробуйте сместить заряд из положения равновесия и посмотреть, что получится.	

Потенциал.

1	Докажите, что во всех точках на поверхности проводника потенциал одинаков.		
2	Докажите, что внутри полого проводника поле равно нулю независимо от формы проводника и полости (это явление называется экранированием).		
3	Могут ли силовые линии электростатического поля быть замкнутыми?		
4	Возможно ли существование электростатического поля с силовыми линиями как на рисунке?		
5	Нарисуйте эквипотенциальные поверхности для поля точечного заряда. Докажите, что эквипотенциальные поверхности любой системы зарядов всегда перпендикулярны силовым линиям. Докажите, что работа по перемещению пробного заряда q в поле заряда Q не зависит от пути перемещения. А если зарядов Q будет много?		
6	Имеется проводящая заряженная зарядом Q сфера радиуса R . Найдите потенциал в любой точке пространства.		
7	Палочка длины L равномерно заряжена зарядом Q . Посчитайте электрическое поле в точке, которая находится на оси палочки на расстоянии a от её конца. Что будет, если точка находится далеко от палочки?		
8	Две проводящие сферы радиусами r_1 и r_2 находятся на значительном расстоянии друг от друга. Их соединяют длинным проводом. Сферы равномерно заряжены. Найдите отношение электрических полей на поверхностях сфер. Что будет с полем на сфере радиуса r_2 , если $r_2 \rightarrow 0$?		
	Докажите, что энергия взаимодействия системы N неподвижных зарядов q_1, \ldots, q_N выражается формулой		
	$W=rac{1}{2}\sum_{i=1}^N q_i arphi_i,$		
9	где φ_i — потенциал поля, создаваемый всеми зарядами, кроме i -го, в той точке где находится i -й заряд:		
	$arphi_i = k \sum_{j=1}^{N-1} rac{q_j}{r_i - r_j}.$		
	Указание. Это можно сделать по индукции.		

Конденсаторы.

1	Конденсатор заряжен до заряда Q при разности потенциалов на пластинах U . Что произойдёт, если разность потенциалов удвоят? (а) ёмкость уменьшится в два раза, заряд останется тем же; (б) ёмкость и заряд уменьшатся в два раза; (г) ёмкость и заряд увеличатся в два раза; (д) ёмкость останется той же, заряд увеличится в два раза.	
2	Зарядим конденсатор с помощью батарейки и затем отсоединим его от неё. Конденсатор представляет собой большие параллельные плоские пластины с воздухом между ними. Растащим их на небольшое расстояние. Что произойдёт с зарядом на них? С потенциалом? С энергией, запасённой в конденсаторе? С ёмкостью? С электрическим полем между пластинами? Совершается ли работа при таком перемещении пластин?	
3	Найдите разность потенциалов в конденсаторе, одна из пластин которого заряжена зарядом Q_1 , а другая — зарядом Q_2 .	
4	Найдите силу взаимодействия между пластинами площадью S в плоском конденсаторе. Поддерживается напряжение U , расстояние между пластинами d .	
5	Два конденсатора с ёмкостями C_1 и C_2 соединили последовательно. Можно ли их заменить одним конденсатором? Если да, то какая у него должна быть ёмкость?	
6	(объединение двух предыдущих задач) Между пластинами плоского конденсатора с площадью пластин S и расстоянием между ними d поддерживается постоянная разность потенциалов U . Как изменится сила взаимодействия между пластинами, если в конденсатор вставить параллельно обкладкам проводящую незаряженную пластину толщиной h ($h < d$)? Размеры проводящей пластины равны размерам пластин конденсатора.	
7	Во сколько раз изменится ёмкость плоского конденсатора, если поместить его в плоскую металлическую коробку? Расстояние от обкладок до стенок коробки равно расстоянию между обкладками.	

Метод изображений.

1	Заряд q поднесли на расстояние l к бесконечной проводящей плоскости. Найдите плотность поверхностных зарядов σ на плоскости.		
2	В условиях предыдущей задачи: какую работу надо совершить, чтобы удалить заряд q на бесконечность?		
3	Найдите силу, действующую на точечный заряд q , помещённый на биссектрису прямого двугранного угла между двумя проводящими плоскостями. Расстояние между зарядом q и вершиной двугранного угла равно a .	q ,	
4	Найдите силу взаимодействия заряда q и изолированной проводящей незаряженной сферы радиуса R . Заряд находится на расстоянии $L>R$ от центра сферы.		
5	То же, что в предыдущей задаче, но сфера заряжена зарядом Q . При каком Q сила взаимодействия обратится в ноль?		