ANÁLISE DA VARIÂNCIA

1

PLANEAMENTO EXPERIMENTAL

- Seleção dos fatores e identificação dos parâmetros que são objeto do estudo;
- Decisão sobre a magnitude dos erros padrão pretendidos;
- Escolha dos tratamentos (combinações de níveis de fatores) a serem incluídos na experiência, bem como o número de observações em cada tratamento;
- Atribuição dos tratamentos às unidades experimentais.

Prof^a Ana Cristina Braga, DPS

ANÁLISE DA VARIÂNCIA

O objetivo da Análise da Variância é isolar e avaliar as fontes de variação associadas com as variáveis experimentais, independentes e determinar como estas variáveis interatuam e afetam a variável resposta.

Nota histórica: Foi Sir Ronald Fisher quem desenvolveu esta técnica e a aplicou ao planeamento das experiências. Os seus livros *"Statistical Methods for Research Workers"*, editado em 1925 e *"The Design of Experiments"*, editado em 1935, são considerados clássicos na literatura.

Na Análise da Variância, a variação nas medidas observadas (resposta) é particionada em componentes que refletem os efeitos de uma ou mais variáveis independentes.

ANOVA - Analysis of Variance

Prof^a Ana Cristina Braga, DPS

3

Se o conjunto de dados consiste em n resultados $y_1, y_2, ..., y_n$ e se a média é \overline{y} , a variação total das observações em relação à média, soma dos quadrados das variações, é:

$$STQ = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

e designa-se por soma total dos quadrados (STQ) das variações.

O número de fontes de variação e as fórmulas para as componentes estão relacionadas como tipo de *planeamento* escolhido e com o modelo estatístico mais apropriado para a análise.

Prof^a Ana Cristina Braga, DPS

PLANEAMENTO COMPLETAMENTE CASUAL (PCA)

Tratamento		Observ	/ações			
Tratamento	1	2		n	Total	Média
1	y_{11}	y_{12}	•••	y_{1n}	$T_{1.}$	$\overline{y}_{1.}$
2	y_{21}	y_{22}	•••	y_{2n}	$T_{2.}$	$\overline{y}_{2.}$
:	:	:	•••	:	:	:
k	y_{k1}	y_{k2}	•••	y_{kn}	$T_{k.}$	$\overline{y}_{k.}$

Profa Ana Cristina Braga, DPS

5

PARTIÇÃO DA SOMA DOS QUADRADOS

$$(y_{ij} - \overline{y}_{..}) = (\overline{y}_{i.} - \overline{y}_{..}) + (y_{ij} - \overline{y}_{i.})$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^{2} = n \sum_{i=1}^{k} (y_{i.} - \overline{y}_{..})^{2} + \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^{2}$$

$$STQ = SQT + SQR$$

- STQ Soma Total dos Quadrados
- SQT Soma dos Quadrados dos Tratamentos
- SQR Soma dos Quadrados dos Resíduos

Prof^a Ana Cristina Braga, DPS

PLANEAMENTO COMPLETAMENTE CASUAL (PCA)

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij} \begin{cases} i = 1, 2, \dots, k \\ j = 1, 2, \dots, n \end{cases}$$

$$\varepsilon_{ij} \sim N(0,\sigma^2)$$

 $H_{01}: \alpha_i = 0 \quad i = 1, 2, ..., k$

 H_{11} : $\alpha_i \neq 0$ para pelo menos um valor de i

R.R: F > c

Prof^a Ana Cristina Braga, DPS

/

TABELA ANOVA

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Média dos Quadrados	F
Tratamentos	SQT	k-1	MQT	
Resíduos	SQR	k(n-1)	MQR	F=MQT/MQR
Total	STQ	kn-1		

Prof^a Ana Cristina Braga, DPS

EXEMPLO

estudo realizado para Um avaliar desenvolvimento de moscas consistiu na sua criação em três meio de cultura diferentes. A tabela apresenta o comprimento (mm×10-1) das asas de 5 moscas recolhidas aleatoriamente de cada meio. Verifique se existem diferenças entre os comprimentos das asas das moscas recolhidas de cada meio.

Profa Ana Cristina Braga, DPS

9

EXEMPLO

Meio 1	36	39	43	38	37
Meio 2	50	42	51	40	43
Meio 3	45	53	56	52	56

Prof^a Ana Cristina Braga, DPS

Resolução:

	Meio 1	Meio 2	Meio 3			
	36	50	45			
	39	42	53			
	43	51	56			
	38	40	52			
	37	43	56			
is	T1. =193	T2.= 226	T3.=262			
	T= 681					

$$\sum_{i,j} y_{ij}^2 = 31603$$

$$\begin{split} SQT = &\frac{1}{5} \Big(193^2 + 226^2 + 262^2\Big) - \frac{1}{15} 681^2 = 476, 4 \\ STQ = &31603 - 30917, 4 = 685, 6 \\ SQR = &685, 6 - 476, 4 = 209, 2 \\ \text{Prof}^{\text{a}} \text{ Ana Cristina Braga, DPS} \end{split}$$

11

TABELA ANOVA

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Média dos Quadrados	F
Tratamentos	476,4	2	238,2	F=12
Resíduos	209,2	12	19,85	Γ=12
Total	685,6	14		•

$$F_{2,12,0.05} = 3,89$$

Decisão: Como F> c, rejeita-se a H₀ para um nível de significância de 5%, pelo que existem diferenças estatísticamente significativas entre os valores médios de crescimento nos 3 meios.

Prof^a Ana Cristina Braga, DPS

Exemplo (Amostras desequilibradas)

Quatro grupos de vendedores foram sujeitos a diferentes programas de treino. Durante o programa de treino houve algumas desistências. No fim dos programas, a cada vendedor foi atribuída uma área de venda. A tabela regista as vendas ao fim de uma semana. Considere α =0,05.

Grupo de treino				
G1	G2	G3	G4	
65	75	59	94	
87	69	78	89	
73	83	67	80	
79	81	62	88	
81	72	83		
69	79	76		
	90			

Prof^a Ana Cristina Braga, DPS

13

Grupo de treino

	G1	G2	G3	G4		
	65	75	59	94		
	87	69	78	89		$\sum_{i,j} y_{ij}^2 = 139511$
	73	83	67	80		i, j
	79	81	62	88		
	81	72	83			
	69	79	76			
		90				
Totais	454	549	425	351	T = 1779	1
nj	6	7	6	4		

Prof^a Ana Cristina Braga, DPS

H₀: Não existem diferenças significativas nas vendas devido aos diferentes programas de treino

$$\mu_1 = \mu_2 = \mu_3 = \mu_4$$

$$\alpha j = 0 \text{ com } j = 1,2, 3, 4$$

H₁: Pelo menos 2 programas são diferentes

 $\alpha j \neq 0$ para pelo menos um valor de j.

R.R: F> c

$$SQT = \left(\frac{454^2}{6} + \frac{549^2}{7} + \frac{425^2}{6} + \frac{351^2}{4}\right) - \frac{1}{23}1779^2 = 712,6$$

$$STQ = 139511 - \frac{1}{23}1779^2 = 1909, 2$$

$$SQR = 1909, 2 - 712, 6 = 1196, 6$$

Prof^a Ana Cristina Braga, DPS

15

TABELA ANOVA

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Média dos Quadrados	F
Tratamentos	712,6	3	237,5	F 2.77
Resíduos	1196,6	19	62,97	F=3,77
Total	1909,2	22		

$$F_{3.19.0.05} = 3,13$$

Decisão: Como F> c, rejeita-se a H0 para um nível de significância de 5%, pelo que existem diferenças estatísticamente significativas entre os valores médios das vendas nos 4 grupos de treino.

Prof^a Ana Cristina Braga, DPS

Intervalos de confiança para as comparações múltiplas

$$T = \frac{\left(\overline{y}_{i} - \overline{y}_{i}\right) - \left(\mu_{i} - \mu_{i}\right)}{\sqrt{MQR\left(\frac{1}{n_{i}} + \frac{1}{n_{i}}\right)}} \sim t_{N-k}$$

$$\left(\overline{y}_{i} - \overline{y}_{j}\right) - t_{(\mathcal{L}),N-k} * \sqrt{MQR\left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)} < \mu_{i} - \mu_{j} < \left(\overline{y}_{i} - \overline{y}_{j}\right) - t_{(\mathcal{L}),N-k} * \sqrt{MQR\left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)}$$

$$\begin{aligned} &1.36 \leq \mu_4 - \mu_1 \leq 22.81^* & -14.42 \leq \mu_3 - \mu_1 \leq 4.76 & -1.09 \leq \mu_4 - \mu_2 \leq 19.73 \\ &-16.84 \leq \mu_3 - \mu_2 \leq 1.65 & 6.19 \leq \mu_4 - \mu_3 \leq 27.64^* & -6.48 \leq \mu_2 - \mu_1 \leq 12.00 \end{aligned}$$

Profa Ana Cristina Braga, DPS

17

※ 〇

Prof^a Ana Cristina Braga, DPS

Prof^a Ana Cristina Braga, DPS

19

Prof^a Ana Cristina Braga, DPS

ANOVA

Comprimento					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	476,400	2	238,200	13,663	,001
Within Groups	209,200	12	17,433		
Total	685,600	14			

21

PLANEAMENTO COM BLOCOS ALEATÓRIOS (PBA)

Permite comparar k tratamentos envolvendo n blocos, cada contendo k unidades experimentais relativamente homogéneas. Os k tratamentos são distribuídos aleatoriamente às unidades experimentais dentro de cada bloco, com uma unidade experimental por tratamento.

Prof^a Ana Cristina Braga, DPS

PLANEAMENTO COM BLOCOS ALEATÓRIOS (PBA)

Tratamento		Bloco				
Tratamento	1	2		n	Total	Média
1	y_{11}	<i>y</i> ₁₂	•••	y_{1n}	$T_{1.}$	$\overline{y}_{1.}$
2	y_{21}	y ₂₂	•••	y_{2n}	$T_{2.}$	$\overline{y}_{2.}$
÷ :	:	:	•••	:	:	:
k	y_{k1}	y_{k2}	•••	y_{kn}	$T_{k.}$	\overline{y}_{k} .

T.1 T.2 ... T.n

Profa Ana Cristina Braga, DPS

23

PLANEAMENTO COM BLOCOS ALEATÓRIOS (PBA)

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij} \begin{cases} i = 1, 2, ..., k \\ j = 1, 2, ..., b \end{cases} \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$$

$$H_{01}$$
: $\alpha_i = 0$ $i = 1, 2, ..., k$

$$H_{11}$$
: $\alpha_i \neq 0$ para pelo menos um valor de i

$$R.R: F_1 > c_1$$

$$H_{02}$$
: $\beta_j = 0$ $j = 1, 2, ..., b$

$$H_{12}: \beta_j \neq 0$$
 para pelo menos um valor de j

$$R.R: F_2 > c_2$$

Prof^a Ana Cristina Braga, DPS

PLANEAMENTO COM BLOCOS ALEATÓRIOS (PBA)

$$\begin{array}{ll} SQT = b \sum_{j=1}^k (\overline{y}_{.j} - \overline{Y})^2 \\ SQB = k \sum_{i=1}^b (\overline{y}_{i.} - \overline{Y})^2 \\ STQ = \sum_{i=1}^b \sum_{j=1}^k (y_{ij} - \overline{Y})^2 \\ SQR = \sum_{i=1}^b \sum_{j=1}^k (y_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{Y})^2 \end{array}$$

$$\begin{array}{ll} SQT = \frac{1}{b} \sum_{j=1}^k T_{.j}^2 - \frac{1}{kb} T_{..}^2 \\ SQB = \frac{1}{k} \sum_{i=1}^b T_{i.}^2 - \frac{1}{kb} T_{..}^2 \\ STQ = \sum_{i=1}^b \sum_{j=1}^k y_{ij}^2 - \frac{1}{kb} T_{..}^2 \\ SQR = STQ - SQT - SQB \end{array}$$

 $T_{i.}$ é o total dos valores obtidos para o bloco i ; $T_{.j}$ é o total dos valores obtidos para o tratamento j

Prof^a Ana Cristina Braga, DPS

25

TABELA ANOVA

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Média dos Quadrados	F
Tratamentos	SQT	k-1	MQT	F ₁ =MQT/MQR
Blocos	SQB	b-1	MQB	F ₂ =MQB/MQR
Resíduos	SQR	(k-1)(b-1)	MQR	_
Total	STQ	kb-1		

Prof^a Ana Cristina Braga, DPS

Exemplo: Considere o tempo (em minutos) que levou uma certa pessoa a conduzir de casa até ao emprego, de segunda a sexta, por 4 caminhos diferentes.

dias
 Seg.
 Ter.
 Qua.
 Qui.
 Sex.

 Caminho 1
 22
 26
 25
 25
 31

$$T_1 = 129$$

 Caminho 2
 25
 27
 28
 26
 29
 $T_2 = 135$

 Caminho 3
 26
 29
 33
 30
 33
 $T_3 = 151$

 Caminho 4
 26
 28
 27
 30
 30
 $T_4 = 141$
 $T_1 = 99$ $T_2 = 110$ $T_3 = 113$ $T_4 = 111$ $T_5 = 123$ $T = 556$

Comparar os tempos de percurso para o emprego, considerando α = 0.05.

Resolução:

Trata-se de um planeamento com blocos aleatórios (dias da semana), cujo modelo é:

$$y_{ij} = \mu_{ij} + e_{ij} = \mu + \alpha_j + \beta_i + e_{ij}$$

H₀₁: Não existem diferenças significativas nos tempos devido aos diferentes caminhos

$$\mu_1 = \mu_2 = \mu_3 = \mu_4$$
 ou $\alpha_j = 0$ com $j = 1, 2, 3, 4$

Hoz: Não existem diferenças significativas nos tempos devido aos diferentes dias da semana

$$\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5$$
 ou $\beta_i = 0$ com $i = 1, 2, 3, 4, 5$

 H_{11} : $\alpha_j \neq 0$ para pelo menos um valor de j.

Prof^a Ana Cristina Braga, DPS

27

 H_{12} : $\beta_i \neq 0$ para pelo menos um valor de i.

$$\Sigma \Sigma y_{ij}^{2} = 15610$$
 n = 5 k = 4 STQ = 153.2 SQT = 52.8 SQB = 73.2 SQR = 27.2

Tabela ANOVA

Fonte de variação	Soma dos Quadrados	Graus de liberdade	Média dos Quadrados	Estatística de teste, F
Tratamentos	52.8	3	17.6	F ₁ = 7.75
Blocos	73.2	4	18.3	
Resíduos	27.2	12	2.27	F ₂ = 8.06
Total	153.2	19		

<u>Decisão</u>: Como $F_1 = 7.75 \times F_{3,12,(0.05)} = 3.49 \text{ e } F_2 = 8.06 \times F_{4,12,(0.05)} = 3.26$, rejeitam-se ambas hipóteses nulas para um nível de significância 0.05, pelo que existem diferenças significativas nos tempos de percurso, quer devido aos diferentes caminhos quer devido aos diferentes dias da semana.

Prof^a Ana Cristina Braga, DPS