Assignment 4

Maharaj Teertha Deb, 40227747

2024-02-27

Section 3.1

Problem 1:

Consider the islands vector discussed in this section.

- (a) Compare the histograms that result when using breaks based on Sturges' and Scott's rules. Make this comparison on the log scale and on the original scale.
- (a) Answer:

```
data(islands)

par(mfrow=c(2,2))
hist(islands, breaks = "Sturges", main = "Sturges")
hist(islands, breaks = "Scott", main = "Scott")
hist(log(islands), breaks = "Sturges", main = "Sturges on log scale")
hist(log(islands), breaks = "Scott", main = "Scott on log scale")
```


(b) Construct a normal QQ plot, and compare the result with the plots in Figure 3.13; which one is most similar, and what does this tell you about this data set?

(b) Answer:

```
qqnorm(islands)
qqline(islands, col = "red")
```

Normal Q-Q Plot

(c) Construct a boxplot for these data on the log scale as well as the original scale.

(c) Answer:

```
par(mfrow=c(1,2))
boxplot(islands, main = "Original scale")
boxplot(log(islands), main = "Log scale")
```

Original scale

5000 10000 15000

0

Log scale

- (d) Construct a dot chart of the areas. Is a log transformation needed here?
- (d) Answer:

0

```
par(mfrow=c(1,2))
dotchart(islands,main="Original scale")
dotchart(log(islands),main="Log scale")
```

Original scale

Log scale

- (e) Which form of graphic do you think is most appropriate for displaying these data?
- (e) Answer:

dotchart(sort(log(islands)), main = "Log scale, sorted")

Log scale, sorted

Problem 3:

Consider the pressure data frame. There are two columns temperature and pressure

(a)

Construct a scatterplot with pressure on the vertical axis and temperature on the horizontal axis. Are the variables related linearly or nonlinearly?

(a) Answer:


```
correlation <- cor(pressure$temperature, pressure$pressure)

# Check for linearity
if(abs(correlation) < 0.005) {
  cat("The variables are related linearly (correlation =", correlation, ").\n")
} else {
  cat("The variables are related nonlinearly (correlation =", correlation, ").\n")
}</pre>
```

The variables are related nonlinearly (correlation = 0.7577923).

(b)

The graph of the following function passes through the plotted points reasonably well: $y = (0.168+0.007x)^{\frac{20}{3}}$. The differences between the pressure values predicted by the curve and the observed pressure values are called residuals. Here is a way to calculate them:

```
residuals < -with (pressure , pressure -(0.168 + 0.007 \times \text{temperature})^{\frac{20}{3}}
```

Construct a normal QQ plot of these residuals and decide whether they are normally distributed or whether they follow a skewed distribution.

(b) Answer:

```
# Calculate residuals
predicted_pressure <- (0.168 + 0.007 * pressure$temperature)^(20/3)
residuals <- pressure$pressure - predicted_pressure

# Construct a normal QQ plot
qqnorm(residuals)
qqline(residuals, col = 2)</pre>
```

Normal Q-Q Plot


```
# Assess normality
shapiro.test(residuals)
```

```
##
## Shapiro-Wilk normality test
##
## data: residuals
## W = 0.55893, p-value = 1.751e-06
```

(c)

Now, apply the power transformation $y^{\frac{3}{20}}$ to the pressure data values. Plot these transformed values against temperature. Is a linear or nonlinear relationship evident now?

(c) Answer:

Transformed Pressure vs Temperature


```
# Calculate correlation coefficient between transformed pressure and temperature
correlation_transformed <- cor(pressure$temperature, transformed_pressure)

# Check for linearity
if(abs(correlation_transformed) < 0.005) {
   cat("The relationship between transformed pressure and temperature appears to
        be linear (correlation =", correlation_transformed, ").\n")
} else {
   cat("The relationship between transformed pressure and temperature appears to
        be nonlinear (correlation =", correlation_transformed, ").\n")
}</pre>
```

The relationship between transformed pressure and temperature appears to
be nonlinear (correlation = 0.9984827).

(d)

Calculate residuals for the difference between transformed pressure values and those predicted by the straight line. Obtain a normal QQ plot, and decide whether the residuals follow a normal distribution or not.

(d) Answer:

```
# Fit a linear regression model to transformed pressure values and temperature
lm_model_transformed <- lm(transformed_pressure ~ pressure$temperature)

# Predict transformed pressure values using the linear model
predicted_transformed_pressure <- predict(lm_model_transformed)

# Calculate residuals
residuals_transformed <- transformed_pressure - predicted_transformed_pressure

# Construct a normal QQ plot of residuals
qqnorm(residuals_transformed)
qqline(residuals_transformed, col = 2)</pre>
```

Normal Q-Q Plot


```
# Assess normality
shapiro.test(residuals_transformed)
```

##

```
## Shapiro-Wilk normality test
##
## data: residuals_transformed
## W = 0.92153, p-value = 0.1208
```