In-Class Lab 14

ECON 4223 (Prof. Tyler Ransom, U of Oklahoma)

November 10, 2020

The purpose of this in-class lab is to use R to practice with time series forecasting. The lab should be completed in your group. To get credit, upload your .R script to the appropriate place on Canvas.

For starters

Open up a new R script (named ICL14_XYZ.R, where XYZ are your initials) and add the usual "preamble" to the top:

```
# Add names of group members HERE
library(tidyverse)
library(wooldridge)
library(broom)
library(magrittr)
library(modelsummary)
library(tsibble)
library(pdfetch)
library(tseries)
library(lubridate) # This package converts dates to a special date numbering system
library(fable)
                   # This one may take awhile to install
library(feasts)
                   # You also need to install this one
library(urca)
                 # and this one
```

Load the data

First we'll look at the return on a 3-month treasury bill over the period of 1960q1–1990q4. Second, we'll read in Google's and Apple's stock price data from January 3, 2005 until November 6, 2020.

Declare as time series objects

Plot time series data

Let's have a look at the 3-month T-bill return for the US over the period 1960–1990:

```
autoplot(df1) + xlab("Year") + ylab("T-bill return")

## Plot variable not specified, automatically selected `.vars = r3`
And now the Google adjusted closing price:
autoplot(df2) + xlab("Year") + ylab("Price")
```

Plot variable not specified, automatically selected `.vars = goog`

Testing for a unit root

Let's test for a unit root in each of the time series. The way to do this is the Augmented Dickey-Fuller (ADF) test, which is available as adf.test() in the tseries package.

The function tests H_0 : Unit Root, H_a : Stationary.

```
adf.test(df1$r3, k=1)
adf.test(df2$goog, k=1)
adf.test(df2$aapl, k=1)
```

Warning in adf.test(df2\$aapl, k = 1): p-value greater than printed p-value

1. Which of these time series has a unit root, according to the ADF test? Explain what the consequences are of analyzing a time series that contains a unit root.

Estimating AR(1) models

To alternatively examine the unit root, we can estimate AR(1) models for each series:

```
est.tbill <- lm(r3 ~ lag(r3,1), data=df1)
est.goog <- lm(goog ~ lag(goog,1), data=df2)
est.aapl <- lm(aapl ~ lag(aapl,1), data=df2)

modelsummary(list(est.tbill,est.goog,est.aapl))</pre>
```

2. Are the R^2 values from these estimates meaningful?

Forecasting

Now let's use our time series data to forecast future stock prices. First, we should create a shortened version of the time series so we can compare our forecast to actual data:

```
df2.short <- df2 %>% filter(year_week<yearweek("2018-10-01"))
```

Estimating simple ARIMA(1,1,0) models

```
simple.goog <- lm(difference(goog) ~ lag(difference(goog)), data=df2)
simple.aapl <- lm(difference(aapl) ~ lag(difference(aapl)), data=df2)</pre>
```

which is estimating

$$\Delta goog_t = \rho \Delta goog_{t-1} + u_t$$

Estimating ARIMA models

We can also use the ARIMA function in the fable package to allow the computer to choose the best ARIMA model:

```
auto.goog <- ARIMA(df2.short$goog)
auto.aapl <- ARIMA(df2.short$aapl)</pre>
```

Plotting forecasts

We can compare the 90-day-ahead (12-week-ahead) forecasts of each model by looking at their plots:

```
df2 %>%
  model(
    arima = ARIMA(goog),
    snaive = SNAIVE(goog)
) %>%
  forecast(h=12) %>% autoplot(filter(df2, year(year_week)>2017),level = NULL)
```

