Importar_Arquivo_de_Dados

April 15, 2020

- José O. Siqueira (siqueira@usp.br)
- Paulo S. P Silveira (paulo.silveira@fm.usp.br)
- Koichi Sameshima (koichi.sameshima@fm.usp.br)

1 IMPORTANDO ARQUIVOS DE DADOS

1.1 Exemplo 4.1 de Sardanelli & Di Leo (2008)

Example 4.1. Measuring myocardial delayed enhancement in cardiac MR imaging. Let us suppose we want to evaluate the difference in delayed enhancement of the myocardium provided by **two contrast agents (CAs)**. A sample of 50 post-ischemic patients undergo a cardiac MR with inversion recovery turbo- gradient-echo sequence ten minutes after the injection of 0.1 mmol/kg of CA 1. The signal intensity (SI), expressed in arbitrary units (a.u.), is measured in a region of interest placed in the infarcted myocardium. A second sample made up of another 50 post-ischemic patients is studied with the same technique but using 0.1 mmol/kg of CA 2. Data are summarized in Tables 4.2 and 4.3.

1.1.1 Resultados com CA1

Table 4.2. Signal intensity measurements after the administration of CA 1

Individual	SI (a.u.)	Individual	SI (a.u.)	Individual	SI (a.u.)
1	38.74	19	39.39	37	42.25
2	39.26	20	40.30	38	36.40
3	39.13	21	39.65	39	36.50
4	40.56	22	38.48	40	35.62
5	37.18	23	41.99	41	39.52
6	38.61	24	36.27	42	39.65
7	37.40	25	37.05	43	40.30
8	40.17	26	37.57	44	38.48
9	40.56	27	40.82	45	38.74
10	38.22	28	41.08	46	38.60
11	37.96	29	39.13	47	39.00
12	38.87	30	39.78	48	39.13
13	38.30	31	39.91	49	38.74
14	37.18	32	38.61	50	39.13
15	41.34	33	38.87		
16	41.86	34	38.09	m,	39.0
17	39.26	35	39.13	S ,	1.5
18	38.87	36	39.26	SÉ,	0.2

SI = signal intensity; CA = contrast agent; a.u. = arbitrary units.

1.1.2 Resultados com CA2

Table 4.3. Signal intensity measurements after the administration of CA 2

Individual	SI (a.u.)	Individual	SI (a.u.)	Individual	SI (a.u.)
1	50.36	19	51.21	37	54.93
2	51.04	20	52.39	38	47.32
3	50.87	21	51.55	39	47.45
4	52.73	22	50.02	40	46.31
5	48.33	23	54.59	41	51.38
6	50.19	24	47.15	42	51.55
7	48.62	25	48.17	43	52.39
8	52.22	26	48.84	44	50.02
9	52.73	27	53.07	45	50.36
10	49.69	28	53.40	46	50.18
11	49.35	29	50.87	47	50.70
12	50.53	30	51.71	48	50.87
13	49.79	31	51.88	49	50.36
14	48.33	32	50.19	50	50.87
15	53.74	33	50.53		
16	54.42	34	49.52	m,	50.7
17	51.04	35	50.87		1.9
18	50.53	36	51.04	SE ₂	0.3

SI = signal intensity; CA = contrast agent; a.u. = arbitrary units.

1.2 Arquivos e Diretórios/Pastas no R

Em ambiente R e no Jupyter Notebook, todos os arquivos serão lidos e salvos no diretório ativo, a menos que se especifique o contrário. Logo, a primeira coisa que você precisa se preocupar é como obter e configurar seu **diretório de trabalho**.

Para obter o diretório de trabalho corrente, execute: getwd ()

#Configure o diretório de trabalho: setwd ("C:/Documents and Settings/Aula06")

1.2.1 Diretório de Trabalho

Os códigos ou comandos executados a seguir assumirão que os arquivos de dados estão localizados num diretório relativo ao **diretório de trabalho R do Jupyter Notebook**. O diretório atual pode ser verificado com a função getwd. Assim no meu caso:

'/Users/koichi/Dropbox/0Aulas/mdr5728_2020/Aula06/R_Tidy_data'

Poderá selecionar diferentes diretórios de trabalho com a função setwd(), evitando-se assim a necessidade de especificar o caminho completo para arquivos de dados para leitura e gravação. Neste exemplo criou-se um diretório "Sardanelli" no caminho obtido por getwd(). Vamos verificar isso por meio da função list.files():

[2]: list.files()

1. 'anorexia_A.txt' 2. 'anorexia_B.txt' 3. 'anorexigenos_log.xls' 4. 'anorexigenos.xls' 5. 'cheat_sheet_data-import.pdf' 6. 'Data' 7. 'image' 8. 'Importar_Arquivo_de_Dados.ipynb' 9. 'Sardanelli' 10. 'Sardanelli_demo_exemplos_2008.ipynb' 11. 'tidy_data_slides.ipynb' 12. 'tidy_data.ipynb' 13. 'Untitled.ipynb'

Pronto, podemos verificar que há um arquivo ou diretório denominado Sardanelli.

[3]: dir.exists("Sardanelli") # Vamos testar se Sardanelli existe como um diretório ou não.

TRUE

[4]: # Verifica-se neste caso que Sardanelli é um diretório. Assim teremos sucesso em∟

→executar o seguinte comando

setwd("Sardanelli") # set working directory para o subdiretório ./Sardanelli

[5]: getwd()

'/Users/koichi/Dropbox/0Aulas/mdr5728 2020/Aula06/R Tidy data/Sardanelli'

Como pode ser verificado por meio de <code>getwd()</code>, o diretório corrente foi configurado para o subdiretório ./Aula06/Tidying_data/Sardanelli. Note que a barra normal (/) deve ser usada no abiente R como separador de diretórios, mesmo na plataforma Windows, ao invés da barra invertida (). Por exemplo > setwd("C:/Users/usuario/Documents")

1.2.2 Listando os arquivos e as pastas no diretório

```
#lista arquivos no diretório de trabalho
list.files()

#lista arquivos in a specific folder
list.files (path = "C:/Folder/Subfolder1/Subfolder2")

#lista arquivos no diretório escolhido, choose.dir() funciona somente no Windows
list.files(path = choose.dir())

#lista de subdiretórios e arquivos dentro dos subdiretórios recursivamente
list.files(recursive = TRUE)

#obtém o nome completo (caminho e nome de arquivos) de cada arquivo
list.files(full.name = TRUE)
```

Se a lista obtida for muito longa, poderá filtrar os resultados usando o argumento padrão da função list.files()

```
#lista todos os arquivos que contêm a palavra "anorex"
list.files(pattern = "anorex")
#lista arquivos que termina com a palavra "csv"
list.files (pattern = "csv$")
#lista arquivos que comecam com a palavra "anorex" seguid
```

#lista arquivos que começam com a palavra "anorex" seguida por quaisquer characteres e finalizado com "xlsx"
list.files(pattern = "^anorex(.*)xlsx\$")

Expressões regulares

Se ficou curioso o que são os símbolos "^", "", "*", "\$" nos comandos acima, bem estes são chamados **metacaracteres em expressões regulares**. Se você quiser saber mais sobre expressões regulares, consultem estas duas fontes: Cheat Sheet de "Expressões Regulares" ou "Expressões Regulares" que um programador R deve saber.

```
[6]: # Retornando ao diretório inicial
setwd("../")
# Verificando se o arquivo anorexigenos.xls
getwd()
list.files(pattern = "^anorex(.*)xls$")
```

'/Users/koichi/Dropbox/0Aulas/mdr5728_2020/Aula06/R_Tidy_data'

1. 'anorexigenos_log.xls' 2. 'anorexigenos.xls'

1.2.3 Checking if a file or folder exists

Como exercício vamos checar se o arquivo "anorexigenos.xls" existe no diretório de trabalho. A função para verificação é: > file.exists("filename.extension")

```
[7]: file.exists("anorexigenos.xls")
```

TRUE

Podemos ver que o resultado é TRUE, de modo que o arquivo em questão existe!

Agora vamos inicialmente checar se a pasta "Data" existe diretório corrente, se não existir cria-se o diretório:

'Diretorio já existe!'

1.3 Importando dados para Data.Frame

Tutorial genérico para importação dados em R

1.3.1 Arquivos textos

```
[9]: si_ca1 = read.table("./Sardanelli/table_4_2.txt",header=TRUE) # read text file si_ca2 = read.table("./Sardanelli/table_4_3.txt",header=TRUE) # read second text file
```

[10]: head(si_ca1)

```
[11]: head(si_ca2)
```

```
Individual
                                        SI
                           <int>
                                        <dbl>
                                        50.36
                                        51.04
A data.frame: 6 \times 2
                           3
                                        50.87
                           4
                                        52.73
                       5
                           5
                                        48.33
                       6 \mid 6
                                        50.19
```

[12]: tail(si_ca1)
mean(si_ca1\$SI)

		Individual <int></int>	SI <dbl></dbl>
	45	45	38.74
A data frame: 6×2	46	46	38.60
A data.frame: 0×2	47	47	39.00
	48	48	39.13
	49	49	38.74
	50	50	39.13

39.0182

		Individual <int></int>	SI <dbl></dbl>
•	45	45	50.36
A data frame: 6×2	46	46	50.18
A data.frame: 0 × 2	47	47	50.70
	48	48	50.87
	49	49	50.36
	50	50	50.87

50.724

1.3.2 Importando arquivo em formato CSV

CSV = comma separated values

		Individual <int></int>	SI <dbl></dbl>
	1	1	50.36
A data frama & x 2	2	2	51.04
A data.frame: 6×2	3	3	50.87
	4	4	52.73
	5	5	48.33
	6	6	50.19

Vamos calcular o sumário da Tabela 4.2:

```
[15]: summary(si_ca1_csv)
```

```
Individual
                       ST
Min. : 1.00
                        :35.62
                Min.
1st Qu.:13.25
                1st Qu.:38.34
Median :25.50
                Median :39.06
Mean
       :25.50
                        :39.02
                Mean
3rd Qu.:37.75
                3rd Qu.:39.75
       :50.00
Max.
                Max.
                        :42.25
```

1.4 Cálculo do Erro Padrão da Média (EPM)

Leia sobre EPM em An R Companion for the Handbook of Biological Statistics - SEM e neste site de John H. McDonald.

Recomendamos: Este site elaborado por Salvatore S. Mangiafico é uma excelente fonte para praticantes da análise estatística em R.

No R, o erro padrão da média (EPM) pode ser calculado com funções padrão no pacote de estatísticas nativas. Similar à função summary(), existe uma função de descrição no pacote psych, describe(), que inclui o cálculo do erro padrão da média junto com outras estatísticas descritivas. Esta função é útil para resumir várias variáveis em um quadro de dados. Nesse caso é interessante que os dados estejam no formato WIDE.

```
[16]: # Instala o pacote/bliblioteca `psych` se ainda não está presente
if (!require("psych")) install.packages("psych",repo="https://vps.fmvz.usp.br/CRAN/

→",dep=TRUE)
```

Loading required package: psych

```
[17]: library(psych)
```

1.4.1 Cálculo de EPM manualmente

$$EPM = \frac{\text{desvio-padrão}}{\sqrt{N}}$$

```
[18]: # Aplicação acima para cálculo do EPM para os contrastes CA1 e CA2.

se_ca1 <- sd(si_ca1$SI)/sqrt(length(si_ca1$SI[!is.na(si_ca1$SI)])) # se = standard_

→ error ~ epm

se_ca2 <- sd(si_ca2$SI)/sqrt(length(si_ca2$SI[!is.na(si_ca2$SI)]))
```

```
cat('sd_ca1 = ', sd(si_ca1$SI), '; sd_ca2 = ', sd(si_ca2$SI), '; ')
cat('se_ca1 = ', se_ca1, '; se_ca2 = ', se_ca2)
```

sd_ca1 = 1.460874; sd_ca2 = 1.899586; se_ca1 = 0.2065988; se_ca2 = 0.2686421

[19]: str(si_ca1)

'data.frame': 50 obs. of 2 variables: \$ Individual: int 1 2 3 4 5 6 7 8 9 10 ... \$ SI : num 38.7 39.3 39.1 40.6 37.2 ...

[20]: tail(si_ca1)

Individual SI<int><dbl>45 45 38.74 46 46 38.60 A data.frame: 6×2 47 47 39.0048 48 39.13 49 49 38.7450 50 39.13

[21]: head(si_ca1)

Individual SI<int><dbl>1 38.7439.262 A data.frame: 6×2 3 3 39.13 4 4 40.565 5 37.18 $6 \mid 6$ 38.61

[22]: help(read.table)

[24]: head(data1_csv)

Individual SI<int><dbl>1 38.742 39.26A data.frame: 6×2 3 39.13 4 4 40.565 5 37.18 $6 \mid 6$ 38.61

1.4.2 Acrescentando terceira coluna, a variável tipo de contrast

```
[25]: si_ca1$contrast <- "CA1"
    si_ca2$contrast <- "CA2"

head(si_ca1)
    head(si_ca2)</pre>
```

```
SI
                         Individual
                                               contrast
                                      <dbl>
                                               <chr>
                         <int>
                                      38.74
                                               CA1
                                      39.26
                                               CA1
A data.frame: 6 \times 3
                         3
                                      39.13
                                               CA1
                         4
                                      40.56
                                               CA1
                     5
                         5
                                      37.18
                                               CA1
                         6
                     6
                                      38.61
                                               CA1
                         Individual
                                      SI
                                               contrast
                         <int>
                                               <chr>
                                      <dbl>
                                      50.36
                                               CA2
                                               CA2
                                      51.04
A data.frame: 6 \times 3
                         3
                                      50.87
                                               CA2
                         4
                                      52.73
                                               CA2
                         5
                                               CA2
                     5
                                      48.33
                         6
                                      50.19
                                               CA2
```

1.5 Juntando dois dataframes ou arquivos

Dois conjunto de dataframes com nomes de colunas comuns podem ser juntados

Individual

SI

contrast

$1.5.1 \quad LONG => WIDE$

```
[27]: library(tidyr)
si_total_wide <- spread(si_total, contrast, SI)</pre>
```

[28]: head(si_total_wide)

```
Individual
                                        CA1
                                                  CA2
                           <int>
                                        <dbl>
                                                  <dbl>
                                        38.74
                                                  50.36
                           2
                                        39.26
                                                  51.04
A data.frame: 6 \times 3
                           3
                                        39.13
                                                  50.87
                           4
                                        40.56
                                                  52.73
                       5
                          5
                                        37.18
                                                  48.33
                       6 \mid 6
                                        38.61
                                                  50.19
```

1.6 Gerando sumários dos dados

```
[29]: library(psych)
```

[30]: summary(si_total_wide)

```
CA2
  Individual
                      CA1
      : 1.00
                        :35.62
                                         :46.31
Min.
                Min.
                                  Min.
1st Qu.:13.25
                 1st Qu.:38.34
                                  1st Qu.:49.85
Median :25.50
                 Median :39.06
                                  Median :50.78
Mean
       :25.50
                 Mean
                        :39.02
                                  Mean
                                         :50.72
3rd Qu.:37.75
                 3rd Qu.:39.75
                                  3rd Qu.:51.67
Max.
       :50.00
                        :42.25
                                         :54.93
                 Max.
                                  Max.
```

[31]: # A função describe do pacote psych requer dados no formato WIDE describe(si_total_wide)

		vars	n	mean	sd	median	$\operatorname{trimmed}$	mad	\min	max
		<int></int>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
A psych: 3×13	Individual	1	50	25.5000	14.577380	25.500	25.50000	18.532500	1.00	50.00
	CA1	2	50	39.0182	1.460874	39.065	39.01375	1.097124	35.62	42.25
	CA2	3	50	50.7240	1.899586	50.785	50.71800	1.423296	46.31	54.93

Note que os valores de EPM, se em inglês, estão na última coluna à direita. describe() emite um relatório mais completo que a função summary().

1.7 Visualizar os dados por box plots

Fonte: Statistical tools for high-throughput data analysis

```
[39]: if (!require("ggpubr")) install.packages("ggpubr",repo="https://vps.fmvz.usp.br/CRAN/

→",dep=TRUE)

library(ggpubr)

# Note que aqui é necessário usar o formato LONG de dados
```


Pela visualização do **box plot** fica evidente que o sinal gerado pelo contraste CA2 é bem maior que o do contraste CA1.

Com isso poderíamos ter feito um teste monocaudal de tal sorte que a hipótese alternativa poderia ser $H_1: si_{CA2} > si_{CA2}$

Mas insistiremos no teste bicaudal:

1.8 Teste t não pareado bicaudal

Neste caso o teste estatístico é

```
H_0: \mu_{CA1} = \mu_{CA2};

H_1: \mu_{CA1} \neq \mu_{CA2}.

\alpha = 5
```

```
[33]: ?t.test # Para visualizar o help de t.test
```

Welch Two Sample t-test

```
data: si_total_wide$CA2 and si_total_wide$CA1
t = 34.541, df = 91.94, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.03271 12.37889
sample estimates:
mean of x mean of y
50.7240 39.0182</pre>
```

1.9 Reordenando a posição das colunas

Parece ser lógico ordenar as variáveis de coluna hierarquicamente, por exemplo, nessa ordem: contrast => Individual => SI. Há diversas maneiras de se obter este efeito em R. Vejamos quatro métodos: