Teams

Project	Roll Number	Name
PID: Title		
Description		
Technology		

Team 1:

P0: Distribution of Basic Amenities like Food, Clothing,	2019PCS2007	Anupam
Medicine		Sharma
Design a menu-based donation website that perform collection of	2019PCS2015	Harnirvair
amenities, sorting and further its distribution during disasters while		Singh
performing optimized matching. Collected food should be	2017UCO1678	Ujjawal
measured on basis of calories and requirements of the evacuation		Pabreja
centres on the basis of population. Supply Chief should update the requirements of the centres on the daily basis. Also advertise	2017UCO2117	Таогоја
shortage of amenities after calculating requirements.	20170002117	Nimish
Genetic Algorithms		Mangal
Genetic Algorithms		Mangai

Team 2:

P1: Allocation of Resources (Drones and Humans)	2019PCS2003	Ashutosh
Design a website like a rescue personnel to register Volunteers		Sanyal
(Professionals, Amateurs) in a disaster stuck situation. Perform		
commissioning of drones or humans as per requirement of the	2019PCS2015	TT
location. Access locations on basis of the calamity affect (Drones		Harnirvair
to monitor the locations). Deploy drones to provide food or		Singh
medicine if humans cannot reach or to access if rescue is required.	2017UCO1682	Rishabh
Deploy humans if rescue operation is required. Humans may have	20170C01062	Gupta
skills like Swimmers, Psychiatrist, Doctors, Nurse, Knowledge of	2017UCO2117	
first aid, etc.	20170002117	Nimish
Natural Language Processing		Mangal

Team 3:

P2: Deriving skills set from a person's social media profile	2019PCS2002	
through world wide web & inviting them to volunteer		Mansi
Design an application and/or website that can extract the related		Teharia
skills set from a person's social media profile (say Facebook,	2019PCS2006	Vishal
Instagram, LinkedIn etc.) through his/her postings, pages/posts		Kumar
liked and shared, and other such activities. On the basis of derived		
skills set, notifications can be sent to the person inviting them to	2019PCS2016	Prachi
be a part of the interest groups formulated as per their attributes		Sharma
such as skill set, location, time of availability, past experiences,		
resources they can offer(such as food, shelter, nursing, counselling	2017UCO1579	Manvi
and so on). Meet – and – greet among the volunteers and victims,		Agrawal
acknowledgement of bravery acts to motivate others via award		
ceremonies.		
Natural Language Processing		

<u>Team 4:</u>

2019PCS2011	Richa
	Sharma

P3: Suggesting pair of bereaved people, going through complementary losses during a disaster, who can comfort	2019PCS2016	Prachi Sharma
each other. Design an application and/or website that can suggest pairs of	2017UCO1669	Raunaq Singh
people going through complementary losses, for instance a mother who has lost her kid can find some solace in taking care of kids who have lost their families in a calamity. The data can be	2017UCO1678	
collected from the listings of lost and found, death records, hospital reports and so on.		
References:		
https://www.ncbi.nlm.nih.gov/books/NBK217843/		
https://www.ncbi.nlm.nih.gov/books/NBK217845/		Ujjawal
Genetic Algorithms		Pabreja

<u>Team 5:</u>

P4: Recommender System for allocating doctors to Health	2019PCS2002	Mansi
camps		Teharia
Design an application to suggest possible allocation of doctors to different doctors to nearest health camps on shift – basis. The	2019PCS2014	Chahat
application must maintain list of doctors willing to volunteer	2019PCS2018	Ankit
during emergencies. Sign - up form should include doctor's	2017UCO1635	S Vignesh
willingness to volunteer while out of station as well.		Kumar
Genetic Algorithms		Pandian

Team 6:

P5: Centralized Management of Health Camps	2019PCS2003	Ashutosh
Design an application and/or website for immediate treatment in		Sanyal
emergency situations via centrally – managed health camps. It may include: • Availability of patient beds,	2019PCS2013	Rahul Makkar
 Types of first aid resources required in accordance with the calamity. 	2019PCS2018	Ankit
 Inter – camp communication. Display of real time status of resource availability and occupancy. 	2017UCO1579	Manvi Agrawal
Genetic Algorithms		

<u>Team 7:</u>

P6: Recommender System for setting up of Health camps	2019PCS2008	Avnish
Design an application to suggest possible locations in advance, for		Anand
setting – up of health camps at the time of calamity. Aspects to be	2019PCS2020	Charu
considered while setting up the camp: Region of Calamity, Season,		Bhargava
Population Density, Type of Calamity (such as Flood, Earthquake,		Tushar
Landslide, Tsunami, Avalanche).	2017UCO1530	Gupta
Genetic Algorithms	2017UCO1669	Raunaq
	20170001009	Singh

<u>Team 8:</u>

P7: Spam Detection and blocking of fake messages and	2019PCS2008	Avnish
websites during calamities		Anand

Design an application to detect fake messages and websites during calamities, engaged in spreading rumors. This prevents	2017UCO1561	Sharlin Kumar
exaggeration of the situation and prevents distraught in the public. Neural Networks	2017UCO1662	Nishant Singh
	2016UCO2531	Yash
		Bansal

<u>Team 9:</u>

P8: Property sign – up for local relief shelters in emergency	2019PCS2004	Dipanshu
Design a website where property owners can sign – up for		Kumar
volunteering their properties such as residence, office building,	2017UCO1585	Ashwani
farm house, banquets halls, etc. Sign – up form should include	20170C01383	Singh
details such as infrastructure size, amenities such as bathrooms,	2017UCO1631	Arjun
pantry, beddings, etc.	20170C01631	Singh
Natural Language Processing	2017UCO1657	Hemant
		Vashist

<u>Team 10:</u>

P9: Depression_Detection	2019PCS2001	Sheetal
Generate signs for individual for levels of depression (Can be		Bhati
colour coded: Red, Green, Yellow) on the basis of their location,		
time, input image. Suggestions can be given as per the diagnosis		
such as:		
Option to call favourite person (can be automatically	2019PCS2020	Classic
suggested on the basis of call history and messages		Charu
exchanged)		Bhargava
 Play favourite music or suggest music to enhance mood. 		
• Suggest some outdoor	2017UCO1585	Ashwani
activities(<u>https://www.entrepreneur.com/article/343004</u>).		Singh
 Suggestion to go on a holiday and Assistance in planning. 		Nishant
 Suggest change in lifestyle such as Yoga, Meditation, 		Singh
Walking, Dancing.	201711001662	Singii
Application of app/ website for students, corporate employees and	2017UCO1662	
whosoever is willing to seek help.		
Genetic Algorithms		

<u>Team 11:</u>

P10: Website for Lost and Found	2019PCS2004	Dipanshu
 Aadhar number can be used as the basis for identification 	20191 002001	Kumar
of individuals.	2019PCS2017	Aniket
• In case of victims such as minors, heavily – injured,	20171 C52017	Tomar
traumatized, their biometric traits can be used to fetch the records, so as to locate their permanent residence and/or	2017UCO1620	Vaibhav
contact their guardians.	2017UCO1657	Hemant
Genetic Algorithms		Vashist

<u>Team 12:</u>

P11: Website for financial assistance to victims in emergency List of identified victims with their Aadhar number.	2019PCS2010	Deepak Aryal
Following claims can be verified for settlement:	2017UCO1576	Mansi Joshi

Consolation amount to injured.	2017UCO1620	Vaibhav
• Condolence amount to the deceased's family. Genetic Algorithms, Natural Language Processing	2017UCO1698	Ayan Krishna
		Paul

<u>Team 13:</u>

P12: Psychological Aid for victims in emergency	2019PCS2006	Vishal
Design an application identify the types of psychologist for	2019FC32000	Kumar
counselling, gathering personality traits through social media	2017UCO1550	Anubhav
accounts, mapping of victims to psychologists on the basis of their	20170C01330	Dhankhar
mental state and the type of loss incurred.	2017UCO1576	Mansi
Neural Networks	20170C01376	Joshi
	2017UCO1621	Prabhat
		Kumar

<u>Team 14:</u>

P13: Allocation of Volunteers	2017UCO1528	Amit
Perform allocation of registered volunteers to perform different		Gupta
activities during disaster stuck situation. Advertise on social media	2017UCO1630	Silki
for skills requirement depending upon the disaster stuck situation.	20170C01030	Sharma
Humans may be required of skills like Carpentry, Social work, etc.	2017UCO1635	S Vignesh
Genetic Algorithms		Kumar
		Pandian
	2017UCO1653	Naman
		Jain

<u>Team 15:</u>

P14: Extraction of Skills	2019PCS2017	Aniket
Design a system which extracts skills from a text using Natural	20191 C32017	Tomar
language processing.	2017UCO1542	Gaurav
Natural Language Processing		Kumar
	2017UCO1614	Manoj
	2017UCO1614	Menpadi
	2017UCO1630	Silki
		Sharma

<u>Team 16:</u>

P15: Skill Ontology	2019PCS2010	Deepak
Design a Skill ontology, where a set of skills are clubbed into a	2019FC32010	Aryal
higher skill using some threshold value after calculating the	2019PCS2013	Rahul
distance between the words to see their closeness. The system	2019PC 3 2013	Makkar
should take a textual content into account and first provide its skills	2017UCO1653	Naman
and then determine the higher skills.		Jain
Neural Networks	2017UCO1680	Shorya
		Kumar
		Pradeep

<u>Team 17:</u>

P16: Extraction of Non-Technical skills from Resume		Amit
Design a system that perform extraction of non-technical skills	2017UCO1528	Gupta
from resumes using fuzzy theory. Also suggest approximate level	2017UCO1614	Manoj
of skills using years of experiences, project works involvement,	20170C01014	Menpadi
certification, etc.	2017UCO1621	Prabhat
Natural Language Processing, Fuzzy Theory	20170C01621	Kumar
	2017UCO1660	Ashmeet
	20170CO1000	Singh

<u>Team 18:</u>

P17: Job recommender System	2019PCS2009	Yathartha
Design a recommender system that takes Resumes as input and		Anirudh
recommend what 3 to 4 job profiles as a suggestion that maybe		Joshi
suitable for the candidate. Take education, experience, project	2019PCS2014	Chahat
work involvement, hobbies, certificate awarded into account.	2017UCO1525	Vaibhav
Genetic Algorithms, Natural Language Processing	2017UCO1660	Ashmeet
	201/UCO1660	Singh

<u>Team 19:</u>

P18: Teach a Neural Network to Read Handwriting	2019PCS2005	Anurag
Perform Handwriting recognition using MNIST Handwritten Digit		Sharma
Classification. Image data is generally harder to work with than	2019PCS2019	Simran
"flat" relational data. Data is beginner-friendly and is small enough		Sejwal
to fit on one computer. System doesn't need high computational	2017UCO1542	Gaurav
power.		Kumar
Neural Networks	2017UCO1682	Rishabh
		Gupta

<u>Team 20:</u>

P19: Image Classification with Convolutional Neural	2019PCS2007	Anupam
Networks		Sharma
Convolutional neural networks (CNN) is popularly used in image		
classification. The main task of image classification is acceptance		
of the input image and the definition of its class. This is a skill that		
people learn from their birth and are able to easily determine that	2019PCS2019	
the image in the picture is an elephant. But the computer sees the		
pictures quite differently:		
Instead of the image, the computer sees an array of pixels. For		Simran
example, if image size is 300 x 300. In this case, the size of the array		Sejwal
will be 300x300x3. Where 300 is width, next 300 is height and 3 is		Saurabh
RGB channel values. The computer is assigned a value from 0 to		Kumar
255 to each of these numbers. This value describes the intensity of	2017UCO1666	Mittal
the pixel at each point.		
To solve this problem the computer looks for the characteristics of		
the base level. In human understanding such characteristics are for	2017UCO1688	
example the trunk or large ears. For the computer, these		
characteristics are boundaries or curvatures. And then through the		
groups of convolutional layers the computer constructs more		
abstract concepts. To create such model, it is necessary to go		
through the following phases: model construction, training, testing,		
and its evaluation.		Shekhar
CNN, Python, Keras, Google's TensorFlow, Pycharm, Matplotlib.		Karna

<u>Team 21:</u>

P20: Emotion and Gender Classification Implement a general convolutional neural network (CNN) building framework for designing real-time CNNs. The goal is to	2019PCS2011	Richa Sharma
classify each facial image into one of the seven facial emotion categories "angry", "disgust", "fear", "happy", "sad", "surprise", "neutral". Validate the model by creating a real-time vision system	2019PCS2012	Ritik Jain
which accomplishes the tasks of face detection, gender classification and emotion classification simultaneously in one blended step using proposed CNN architecture. It should detect	2017UCO1680	Shorya Kumar Pradeep
frontal face in image format. Train a CNN model architecture which takes bounded face (48 x48 pixels) as input and predicts probabilities of 7 emotion in output layers. CNN, OpenCV, python, NumPy, Keras, TensorFlow, scipy.	2017UCO2514	Arushi Garg

<u>Team 22:</u>

P21: Object classification app using Neural Networks	2019PCS2005	Anurag
Design a system that performs object detection involving finding		Sharma
out which objects are present in an image. For example, a self-	2017UCO1561	Sharlin
driving car that needs to detect other cars on the road. The process		Kumar
involves providing an Object to the application and in return the	2017UCO1688	
application will provide the description of the object and other vital		
characteristics. Suggestive approach involves Convolution Neural		
Networks, to solve optimisation problem.		
CNN		Shekhar
		Karna

<u>Team 23:</u>

700 F.L. G	201070772012	D
P22: Fake Currency Recognition	2019PCS2012	Ritik Jain
Design a system which detects Fake currency by taking image as		Saurabh
input using mobile camera. Make a database storing key points of	2017UCO1666	Kumar
each and every rupee note to detect its authenticity later on.		Mittal
Neural Networks	2017UCO2514	Arushi
		Garg

<u>Team 24:</u>

P23: Handwritten Mathematical Expressions Recognition	2019PCS2009	Yathartha
Design a system which takes input in the form of image using		Anirudh
mobile camera which recognise the expression and provide name		Joshi
of the mathematical expression.		Ayan
Natural Language Processing	2017UCO1698	Krishna
		Paul
	2016UCO2531	Yash
		Bansal

<u>Team 25:</u>

P24: Personal Data Storage Recommender System	2017UCO1550	Anubhav
Design a recommender system which stores person's mobile data		Dhankhar
like contacts, text messages, images, videos, etc. and provides	2017UCO1560	Anmol
		Singh

recommendations (like type of food, places etc.) with	nout 2017UCO1675	Ankush
sacrificing privacy.		Grover
Natural Language Processing		

<u>Team 26:</u>

P25: Handwritten Chemistry Equations Recognition	2019PCS2001	Sheetal
Design a system which takes input in the form of image using		bhati
mobile camera which provides the name of the handwritten	2017UCO1560	Anmol
chemistry equation.		Singh
Natural Language Processing	2017UCO1675	Ankush
		Grover

<u>Team 27:</u>

P26: Data Anonymous	2017UCO1525	Vaibhav
Design a system that takes real data into account and make it		
anonymous to protect the privacy of the data. Especially in case of	2017UCO1530	Tushar
medical data where protection of patient's data is very crucial and		Gupta
ethical matter.	2017UCO1631	Arjun
Natural Language Processing		Singh