NMAM INSTITUTE OF TECHNOLOGY, NITTE Off-Campus Centre of Nitte (Deemed to be University)

I Sem B. Tech. (CBCS) Mid Semester Examinations - I, September 2022

PH1001-1 - ENGINEERING PHYSICS

Max. Marks: 20

Note: Answer any One full question from each Unit.

Duration: 1 Hour

List of constants: Velocity of light, c=3x108ms⁻¹, Planck's constant, h=6.63x10⁻³⁴ Js, Electron mass, m=9.11x10⁻³¹kg, Electron charge, e=1.6x10⁻¹⁹C, Boltzmann constant, k=1.38x10⁻²³J/K, Neutron mass=1.68 x10⁻²⁷ kg.

Avogadro number, $N_A = 6.023 \times 10^{26}$ / kg mole.

		· · ·	Marks	BT*	CO*	PO*
1.	a)	Unit – I Explain the terms (i) Mater waves (ii) Probability density	3	L*1	1	1,2
	b)	Obtain the expression for one-dimensional time independent Schrodinger's wave equation.	4	L2	1	1,2
	c)	Calculate the de-Broglie wavelength of an electron moving with an energy of 1.5 keV.	3	L3	1	1,2
2.	a)	What are the characteristics of wave function?	3	L1	1	1,2
	b)	Solve the Schrodinger's wave equation for a particle in one dimensional potential well of infinite height.	4	L3	1	1,2
27	c)	An electron is bound in a one-dimensional potential of width 1.5 Å, but of infinite wall height. Find its energy values in the ground state, and in the first excited states.	3	L3	1	1,2
		Unit – II				X
3.	a) b)	With neat diagram, explain any three crystal systems. What is inter-planar spacing? Obtain an expression for inter-planar spacing in terms of lattice parameter and Miller	. 3	L1	2	1,2
i i	e M.	indices for a cubic crystal.	4	L2	2	1,2
	c)	The lattice constant for a unit cell of aluminum is 4.031 Å. Calculate the interplanar spacing of (2 1 1) planes.				.,_
			3	L3	2	1,2
4.	a)		3	L1	2	1,2
	b)	factor for a face centered cubic (FCC) lattice by calculating number of atoms/unit cell and the relation between atomic radius			_	1,2
	c)	and lattice constant. Draw a cubic unit cell and plot the following planes:	4	L2	2	1,2
-		(1 4 1) and (3 2 1)	3	L3	2	1,2
	re Di	om's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outco	0mo			,-

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

USN NNM22AM058

MAM INSTITUTE OF TECHNOLOGY, NITTE

Off-Campus Centre of Nitte (Deemed to be University) I Sem B. Tech. (CBCS) Mid Semester Examinations - II, November 2022

Duration: 1 Hour

PH1001-1 - ENGINEERING PHYSICS

Max. Marks: 20

Note: Answer any One full question from each Unit.

List of constants:

Velocity of light, $c = 3x10^8 \text{ms}^{-1}$, Planck's constant, $h=6.63x10^{-34} \text{ Js}$, Electron mass, m=9.11x10⁻³¹kg, Electron charge, e=1.6x10⁻¹⁹C, Boltzmann constant, k=1.38x10⁻²³J/K, Mass of neutron=1.68 x10⁻²⁷ Kg.

Avogadro number, $N_A = 6.023 \times 10^{26}$ / kg mole.

		· · · · ·	Marks	BT*	CO*	PO*
1.	a)	Unit – I Distinguish between intrinsic and extrinsic semiconductor.	3	L*2	3	1,2
	b)	Obtain an expression for the conductivity of an extrinsic semiconductor	4	L3	3	1,2
	c)	Calculate the resistivity of intrinsic germanium if the intrinsic carrier density is 2.5x10 ¹⁹ m ⁻³ assuming electron and hole mobilities of 0.38 m ² v ⁻¹ s ⁻¹ and 0.18 m ² v ⁻¹ s ⁻¹ respectively.	3	L3	3	1,2
2.	a)	Explain the effect of temperature on the Fermi level in a n-type semiconductor	3	L2	3	1,2
	b)	What is Fermi factor? Discuss the variation of Fermi factor for different energy levels with temperature	4	L2	3	1,2
	c)	Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K	3	L3	3	1,2
		Unit – II				
3.	a)	Distinguish between direct and indirect band-gap semiconductors	3	L2	4	1,2
	b)	What is Hall effect? Obtain an expression for the Hall coefficient and Hall voltage of an n-type semiconductor	4	L2	4	1,2
	c)	A semiconductor sample of thickness 1.2x10 ⁻⁴ m is placed in a magnetic field of 0.2T acting perpendicular to its thickness. Find the Hall voltage generated when a current of 100 mA passes			·	.,_
		through it. Assume the carrier concentration to be 10 ²³ m ⁻³	3	L3	4	1,2
4.	a) b)	Explain Type-II superconductors with suitable diagrams. What are superconductors? Explain Critical magnetic field and	3	L2	4	1,2
	5,	Meissner effect in superconductors.	4	L2	4	1,2
	c)	The critical temperature and critical magnetic field for superconducting lead are 7.2 K and 800 gauss respectively. What will be the temperature up to which lead will be in			7	1,2
		superconducting state in a magnetic field of 400 gauss?	3	L3	4	1,2

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome