Arquitetura de Dispositivos Móveis

2015/2016 - 1º Teste (17/11/2015)

TeSP AM - Arquitetura de Dispositivos Móveis, André Pereira

Nome:	Nº:	
Nota 1: As perguntas assinaladas com CBi são as de competências	básicas (" i " indica o número da	
pergunta). As que estiverem assinaladas com CCi são perguntas de competências complementares.		
Nota 2: Para todas as respostas apresente todos os cálculos efetuado	los	

PARTE I

- 1. **Efetue** as seguintes conversões:
 - a. Converter 1010110.011_2 e 101.1_4 para decimal (base 10) (CB1)
 - b. Converter 10011012 para hexadecimal (base 16) (CB2)
 - c. Converter 0xD2F1 para binário (base 2) e decimal (base 10) (CB3)
- Converta os números 511 e -333 para uma representação binária, usando 10 bits, em cada uma das seguintes representações: (CB4)
 - a. Inteiro sem sinal
 - b. Sinal e Amplitude
 - c. Complemento para 1
 - d. Complemento para 2
 - e. Excesso 2ⁿ⁻¹
- 3. Considere os seguintes formatos para vírgula flutuante, representados com 16 bits:
 - FORMATO1:
 - o bit mais significativo contém o sinal
 - o os 6 *bits* seguintes formam o expoente (em excesso 2ⁿ⁻¹)
 - o s restantes 9 bits formam a mantissa
 - FORMATO2
 - o bit mais significativo contém o sinal
 - o s 7 bits seguintes formam o expoente (em excesso 2ⁿ⁻¹)
 - o s restantes 8 bits formam a mantissa

Para todos os restantes casos, as regras são as mesmas que as da norma IEEE (valor normalizado, desnormalizado, representação do 0, infinito, e NaN).

- a. Calcule os valores correspondentes aos seguintes padrões de bits para ambos os formatos: (CB5)
 - i. 0111111011000000₂
 - ii. 1001101101100000₂

PARTE II

- 1. Considere a representação de inteiros em Complemento para 2 com 8 bits. **Realize**, em binário, as seguintes operações aritméticas:
 - a. 0xC + 0x35 (CC1)
 - **b.** $11001001_2 + 00011010_2$ (CC2)
 - **c.** $01110110_2 + 01111001_2$ (**CC3**)
- 2. Considere uma estrutura de dados em árvore, que pode ter no máximo 50 ramos, e cada ramo pode conter até 30 folhas. Um ficheiro com um dado formato pode conter até 10 árvores. **Proponha** um formato de representação em binário da posição de uma folha dentro de um ficheiro, usando o mínimo de bits possível. (CC4)

Nota: use *x* bits para identificar a árvore num ficheiro, *y* bits para identificar o ramo na árvore e *z* bits para identificar a folha no ramo.

- Considere o FORMATO1 e FORMATO2 para a representação de números em vírgula flutuante. Represente os valores abaixo, que estão num dos formatos, no formato pedido.
 - a. 1110001110001101_2 (FORMATO1 para FORMATO2) (CC5)
 - b. 000000000000001₂ (FORMATO1 para FORMATO2) (CC6)
 - c. 0111111011011101₂ (FORMATO2 para FORMATO1) (CC7)

Normalized	±	0 < Exp < Max	Any bit pattern
Denormalized	±	0	Any nonzero bit pattern
Zero	±	0	0
Infinity	±	1111	0
Not a number	±	1111	Any nonzero bit pattern
	×	Sign bit	