

Indian Institute of Technology Bombay

Analog Circuits Lab EE 230

Lab 4
February 4, 2025

Mridul Choudhary 23B3933

Contents

1	Log	and Anti-Log Amplifier	2
	1.1	Aim of the experiment	2
	1.2	Design of the Circuit	2
	1.3	Experimental Results	5
	1.4	Conclusion and Inference	6
	1.5	Experiment Completion Status	7

1 Log and Anti-Log Amplifier

1.1 Aim of the experiment

- 1. Understand and Implement Log and Anti-Log Amplifiers: Design and analyze circuits that compute the logarithm and antilogarithm of an input signal.
- 2. **Develop a Square Root Amplifier:** Use logarithm and antilogarithm principles to construct a circuit that outputs the square root of the input voltage.
- 3. Analyze the Behavior of Diodes in Logarithmic and Antilogarithmic Circuits: Study the diode's voltage-current characteristics and its role in logarithmic computations.
- 4. Simulate the Square Root Amplifier Circuit: Validate circuit performance through SPICE simulations, comparing theoretical and simulated results.

1.2 Design of the Circuit

The experiment uses op-amps and diodes to implement logarithmic, anti-logarithmic, and square root functions.

1. Logarithmic Amplifier Design

- Uses a diode and an op-amp in an inverting amplifier configuration.
- Key Equation:

$$I_D = I_s(e^{\frac{V_D}{nV_T}} - 1) \tag{1}$$

• If $V_D >> nV_T$, approximation holds:

$$I_D = I_S e^{\frac{V_D}{nV_T}} \tag{2}$$

• Applying to the circuit:

$$I_D = \frac{V_{in}}{R} \tag{3}$$

• Resulting in:

$$V_{out1} = -nV_T ln(V_{in}) + a_2 \tag{4}$$

• This circuit transforms input voltage into a logarithmic signal.

2. Offset Removal Block

- A subtraction circuit removes the offset term a_2 .
- After subtraction:

$$V_{out2} = a_1 ln(V_{in}) (5)$$

3. Scaling Block

• The log output is scaled by 1/2 using an amplifier with gain $\beta = \frac{1}{2}$

• Output:

$$V_{out3} = \frac{-a_1}{2} ln(V_{in}) \tag{6}$$

4. Antilogarithmic Amplifier

- Uses a second diode to exponentiate the scaled output.
- Applying the exponential equation:

$$V_{out} = R_3 I_s e^{\frac{V_{b2}}{n_2 V_T}} V_{in}^{\frac{1}{2}} + V_{b2}$$
 (7)

• Final square-root result:

$$V_{out} = b_1 V_{in}^{\frac{1}{2}} \tag{8}$$

Figure 1: Log Anti-Log Circuit Diagram

1.3 Experimental Results

Sr. No.	Parameter	Value
1	n_1	1.880
2	n_2	1.852
3	I_{s1}	$4.097e^{-09} \text{ A}$
4	I_{s2}	$4.994e^{-09} \text{ A}$
5	(V_{d1}, I_{d1}) (D1)	$(0.5 \text{ V}, 1.192e^{-04} \text{ A})$

6	(V_{d2}, I_{d2}) (D1)	$(0.6 \text{ V}, 9.315e^{-04} \text{ A})$
7	(V_{d1}, I_{d1}) (D2)	$(0.5 \text{ V}, 1.698e^{-04} \text{ A})$
8	$(V_{d2}, I_{d2}) (D2)$	$(0.6 \text{ V}, 1.368e^{-03} \text{ A})$
9	R	16103Ω
10	a_1	0.048645
11	a_2	-0.35625967791100094
12	R_1	$10 \text{ k}\Omega$
13	V_{b1}	-0.178129838 V
14	β	0.492553
15	R_{21}	$10 \text{ k}\Omega$
16	R_{22}	$4925.53 \ \Omega$
17	V_{b2}	0.56 V
18	R_3	$530.9106 \ \Omega$

Figure 2: V_D v/s I_D of D1 and D2

Figure 3: Fitted line on V_D v/s I_D of D1

Figure 4: Fitted line on V_D v/s I_D of D2

Figure 5: V_{out} of the Log Anti-Log Amplifier

1.4 Conclusion and Inference

1. How to select the diode for log amplification?

- Choose a diode with a linear $ln(I_D)$ vs V_D relationship over a suitable current range.
- Avoid diodes with multiple linear regions (e.g., D4 in the graph in handout).

2. How to select the input voltage range?

- Determine the range where $ln(I_D)$ vs V_D is linear.
- Use $V_{in1} = I_{D1}/R$ and $V_{in2} = I_{D2}/R$.

3. How to extract diode model parameters?

- The saturation current I_S is obtained from the y-intercept of the $ln(I_D)$ vs V_D plot.
- The ideality factor n is extracted from the slope.

4. Which op-amp to choose?

• Choose a low-bias current op-amp like TL084, since high bias currents can distort low-current diode operation.

5. Simulation Steps:

- Plot $ln(I_D)$ vs V_D for provided diodes.
- Identify the linear range and determine I_S and n.
- Implement the SPICE model for these diodes.
- Verify circuit behavior with expected $ln(V_{out})$ vs $ln(V_{in})$.

1.5 Experiment Completion Status

The complete experiment was performed in front of the TA in the lab itself.