Sphère radioactive

On considère une sphère composée d'aluminium de rayon R_0 , bombardée par un rayonnement de particules α très intense et bref. Sous le bombardement des particules α , l'aluminium se transforme en phosphore radioactif, qui se désintègre lui-même en silicium, avec l'émission d'un positron e^+ et d'un neutrino électronique ν_e :

$$^{30}_{15}P \longrightarrow ^{30}_{14} Si + e^{+} + \nu_{e}$$

Le temps caractéristique de cette désintégration est τ : la probabilité pour qu'un noyau de phosphore se désintègre entre t et t+dt est dt/τ^1 . Les positrons e^+ issus de la désintégration sont émis de manière isotrope à la vitesse v_0 . Ce sont des particules de charge +e. On suppose que juste après le bombardement, à t=0, il y a N_0 atomes de phosphore radioactifs dans la sphère d'aluminium.

Dans cet exercice, on cherche à déterminer l'expression du champ électromagnétique engendré par cet émission de particules chargées. Dans toute la suite, on ne s'intéressera qu'aux rayons $r > R_0$.

Densité de charge

 \spadesuit Montrer que le le nombre de positron +e émis par unité de temps par la sphère n(t) (ou taux de désintégration) s'écrit :

$$n(t) = \frac{N_0}{\tau} \exp\left(-\frac{t}{\tau}\right)$$

On pourra commencer par calculer le nombre de particule de phosphore $N_P(t)$ au cours du temps.

- \spadesuit Quelle est la densité de charge pour $r > v_0 t$? Pour $r \le v_0 t$, à quel instant les charges arrivant en à l'instant t en r sont elles parties de O? En déduire, $\forall r > R_0$, la densité de charge $\rho(r,t)$.
- \spadesuit Représenter l'allure des courbes de $\rho(r,t)$ en fonction de t pour r donné et en fonction de r pour t donné.

Champ électrique

- \spadesuit Déterminer le champ électrique $\vec{E}(r,t) \ \forall r > R_0$ à partir du théorème de Gauss.
- \spadesuit Retrouver ce résultat grâce à équation de Maxwell-Ampère. On donne, pour un vecteur n'ayant qu'une composante radiale a_r :

$$\operatorname{div}(a_r) = \frac{1}{r^2} \frac{\partial (r^2 a_r)}{\partial r}$$

Champ magnétique

- \spadesuit Déterminer la densité de courant $\vec{j}(r,t) \ \forall r > R_0$.
- \spadesuit En déduire le champ magnétique $\vec{B}(r,t)$. L'équation de Maxwell-Ampère est-elle vérifiée ?

Énergie électromagnétique

 \spadesuit Calculer la densité d'énergie électromagnétique $\varepsilon_m(r,t)$ et le vecteur de Poynting $\Pi(r,t)$ et la puissance volumique P fournie par le champ électromagnétique aux particules chargées. Conclure.

¹Le temps caractéristique τ est reliée à la demi-vie $\tau_{1/2}$ de la désintégration par la relation $\tau = \tau_{1/2}/\ln 2$. On mesure $\tau_{1/2} = 3 \min 15$ sec.