Evaluation scheme

Evaluation for each of the days is attached below

Day-01: Optimization Intro and MATLAB warmup

- The first day is only warmup and is not evaluated

Day-02: Robot Design	[100]	
Five-bar workspace optimisation Working code to obtain the solution for the constrained problem	[50] [25]	
 Q1. What do you observe upon solving the unbounded optimisation problem, i.e., what solution and what does it mean? Q2. What do you observe upon solving the bounded optimisation problem, i.e., what solution and what does it mean? Q3. How do the results compare with the two-link robot optimised using pen and part of the optimal values of Explain the resulting optima (why the link lengths and the offsets are so) Q4. (Bonus) Considering collision between the robot links and the human ellipse as a linear constraint by checking intersection between links and the ellipse Attachment point optimisation Working code of the unconstrained problem 	[5] s is the [5] per? [2.5]	
 Q1. Draw the flow-chart for the bi-level optimisation problem (design and forces) Q2. Draw ADG for the optimisation problem Q3. Plot objective function value vs iterations of the optimisation Q4. Qualitatively how do you choose the termination iterations Q5. What are the optimal values for the design variables? Add an image of the cables and the link. Q6. Modify the swarm size with atleast two different values and repeat the experime document how it affects the optimal value and the computation time. Q7. What are the function and convergance tolerance for the chosen algorithm in the programming and how does it affect the solution? (see linprog documentation) 	[5]	
Day-03: Control Synthesis		
2R-robot trajectory optimisation Working code of the robot moving from [0,0,0,0] to [pi,0,0,0]	[50] [25]	
 Q1. Solve the problem using fmincon and provide reasons for your observations? Document the state and control values obtained for your chosen initial and f state values Document the motion of the robot as a gif/video Q2. Solve the problem using different algorithms available, `sqp`, `active-set`, `interior and note the following: Number of iterations Time taken Number of function evaluations Objective function value at optima 	[2] [2]	

		0	Difference in the obtained solution by plotting the corresponding states and to	rques
			on the same plot	[1]
	-		w does the final solution change when: (change atleast to two values and docur	nent
		the sol	ution obtained with atleast one expected reason for the solution)	[7]
		0	tf is changed	[1]
		0	N is changed	[1]
		0	x0 is changed	[1]
		0	xf is changed	[1]
		0	g is changed	[1]
		0	l1, l2, m1, m2 are changed	[1]
		0	Difference in the obtained solution by plotting the corresponding states and to on the same plot	rques [1]
	_	Q4. Giv	ve a better initial guess for the states and see how the simulation time and itera	
			e solution quality changes (Ex. Use any interpolation between initial and final sta	
		initial g		[2]
	_	_	odify the bounds on states and control and see how the behavior of the solution	
			es? can you find a solution for a small value of control bounds? Why?	[2]
	_	_	nus). Modify the discretisation scheme from Euler to Hermite-Simphson or anot	
			cument the nature of the solution. See how system behavior changes	[2.5]
	_		nus). Give the obtained control input to the system and observe the system	,
			mance? Does the robot reach the final position as expected?	[2.5]
		•	· · ·	
Μι	JSCL	ılo-ske	letal robot trajectory optimisation	[50]
			ng code for the musculo-skeletal robot	[20]
		VVOIRII	is code for the museulo skeletal robot	[20]
	-	Q1. Ho	w does modifying these variables effect the solution obtained?	[5]
	-	Q2. Plo	ot the resulting states and control input	[3]
	-	Q3. Wr	rite a code similar to `robolinplot` to visualise the resulting trajectory of the	
			lo-skeletal robot	[5]
	-	Q4. Re	peat Q1-Q2, Q3.1-3.4, Q4, Q5 from the previous problem	[17]
Da	ay-(04: Cc	o-design	[50]
2R	-pla	nar rol	bot: Bi-level optimisation	[50]
	•		ng code of the bi-level optimisation	[25]
			, source of the stricter optimisation	[20]
	-	Q1. Wł	nat is the trivial solution for link lengths when there are no constraints? Why?	[5]
	-	Q2. Ad	d a cost for control input (J), workspace, cost of the robot with appropriate weig	ghting
		to get a	a non-trivial solution? Qualitatively explain the solution.	[10]
	_	•	oose different weighting between cost functions and document the result of the	
			nical design variable values	[5]
	_		onus) Add strength constraints and re-optimise the problem and document and	[~]
	_			[[]
		qualita	tively explain the solution	[5]

Total score possible: 250

But since bonus is included you do not have to solve all the questions.