Chapitre 1 : Corps purs et solutions

Dans ce chapitre on va se concentrer sur une échelle de longueur restreinte entre le micromètre et le mètre.

Puissance	Préfixe	Symbole	Nombre décimal
10^{-15}	femto	f	0,0000000000000001
10^{-12}	pico	р	0,000000000001
10^{-9}	nano	n	0,000000001
10^{-6}	micro	μ (mu)	0,000001
10^{-3}	milli	m	0,001
10^{0}	_	_	1
10^{3}	kilo	k	1 000
10^{6}	mega	M	1 000 000
10^{9}	giga	G	1 000 000 000
10^{12}	tera	Т	1 000 000 000 000
10^{15}	péta	Р	1 000 000 000 000 000

Préfixes du système international d'unités.

En dessous du micromètre, on parle d'échelle **microscopique** (« micro » : petit en grec). Au dessus du micromètre, on parle d'échelle **macroscopique** (« macro » : grand en grec).

I – Corps purs et mélange

I.1 – Espèces chimiques

La matière est	constituée d	'entités chim	riques mic	eroscopiques:	
Une espèce c	himique est	constituée d'ur	n ensemble	d'entités chim	iques identiques.

Attention à ne pas confondre les deux termes! Une espèce chimique est un objet macroscopique caractérisé par une formule et des propriétés physico-chimiques particulières (couleur, état, odeur, etc.). Exemples d'espèce chimique : eau, fer, chlorure de sodium.

Un **corps pur** est constitué d'une seule espèce chimique. Un **mélange** est constitué de plusieurs espèces chimiques différentes.

1.2 - Mélange homogène et hétérogène

Un mélange est homogène si
Un mélange homogène est constitué d'une seule phase .

Exemples : le bronze est un mélange homogène de cuivre et d'étain, c'est un alliage. Le café est un mélange homogène d'eau, de caféine, de minéraux et d'acides aminés.

Deux liquides sont **miscibles** lorsqu'ils forment un mélange homogène.

Exemple : l'eau et l'éthanol sont miscible.

Miscible vient du latin « misceo », qui veut dire mélanger.

II.2 – Proportion massique

Soit une espèce E de masse m_E , dans un mélange de masse totale m. La proportion

massique de l'espèce E est

$$p_m(E) = \frac{m_E}{m} \times 100\% (1.2.2)$$

C'est une grandeur sans unité exprimée en pourcent.

Document 2 – Cloche en bronze
Les cloches traditionnelles des temples coréens sont en bronze.
Le bronze est un alliage constitué de 20% d'étain (Sn) et de 80%
de cuivre (Cu) en masse.
Donner ces proportions massiques sous la forme de fractions.
Calculer la masse de cuivre et d'étain d'une cloche de 500 kg.

III – Propriétés physiques

Une espèce chimique est caractérisée par plusieurs grandeurs physiques qui lui sont propres. Ici on va s'intéresser à trois grandeurs : la masse volumique ρ (rho), la température de fusion $T_{\rm f}$ et la température d'ébullition $T_{\rm \acute{e}b}$.

III.1 - Masse volumique

La masse volumique ρ d'un échantillon de matière est une grandeur égale au rapport de sa masse m par le volume qu'il occupe V

$$\rho = \frac{m}{V} \tag{1.3.1}$$

Dans cette expression la masse s'exprime en gramme (g), le volume en centimètre cube (cm³, 1 cm³ = 1 mL) et la masse volumique en gramme par centimètre cube (g/cm³).

Document 3 − Mesure de la masse volumique de l'air Schématiser l'expérience réalisé.
\blacktriangleright Noter la masse m_1 du ballon gonflé, m_2 la masse du ballon dégonflé et V le volume d'air expulsé.
la Calculer la valeur expérimentale de la masse volumique de l'air $\rho(air)_{exp}$, en g/L, à partir de ces mesures.
Données :
 Masse volumique du dioxyde de carbone CO₂gazeux : ρ(CO₂) = 1,87 g/L. Masse volumique du dioxygène O₂ gazeux : ρ(O₂) = 1,35 g/L. Masse volumique du diazote N₂ gazeux : ρ(N₂) = 1,18 g/L.
Nasse volumique du diazote N_2 gazeux : $\rho(N_2) = 1$, $\log \rho(L)$. • Calculer la valeur théorique de la masse volumique de l'air $\rho(air)_{theo}$, en g/L, en considérant qu'il n'est composé que de O_2 et de N_2 .
▶ Comparer la valeur théorique et expérimentale. Elles ont la même valeur ? Qu'est- ce qui pourrait expliquer cette différence ?
▶ Comparer la valeur théorique et expérimentale. Elles ont la même valeur ? Qu'est-

La masse volumique peut aussi s'exprimer en g/L, kg/L ou en kg/m^3 . On peut utiliser les règles de conversion suivantes pour passer de l'une à l'autre de ses unités :

$$1 \text{ mL} = 1 \text{ cm}^3$$

 $1 \text{ cm}^3 = 1 \times (10^{-2} \text{ m})^3 = 10^{-6} \text{ m}^3$

Soit

$$1 L = 10^{3} cm^{3}$$

$$= 10^{3} \times 10^{-6} m^{3}$$

$$= 10^{-3} m^{3}$$

$$\iff 1 m^{3} = 1000 L$$

Note : la masse volumique varie en fonction de la température et de la pression extérieure. Par exemple à pression atmosphérique et à 4° C, l'eau liquide a une masse volumique $\rho(H_2O) = 1,0000 \text{ g/mL}$. Pour une même pression, à 10° C elle n'est plus que de $\rho(H_2O) = 0,9997 \text{ g/mL}$.

III.2 - Températures de changement d'état

Le passage de la matière d'un état à un autre (solide, liquide, gazeux) est appelé changement d'état. Pour un corps pur, ce changement d'état se produit à une température fixe, qui dépend de l'espèce chimique constituant le corps pur.

