Fundamentos Matemáticos del Aprendizaje Profundo

1er cuat. 2025 Clase 4

Repaso

TEOREMA 4.2.2. Asumamos que $f: D \subset \mathbb{R}^n \to \mathbb{R}$ es de clase C^2 , que $\mathbf{x}^* \in D$ es un mínimo local estricto de f y que existe un entorno $\mathcal{V} \subset D$ de \mathbf{x}^* tal que $\nabla f(\mathbf{x}) \neq 0$ para $\mathbf{x} \in \mathcal{V} \setminus \{\mathbf{x}^*\}$. Entonces, dado $\mathbf{x}_0 \in \mathcal{V}$, existe una curva $\gamma: [0,1] \to \mathbb{R}^n$ tal que

- 1. $\gamma(0) = \mathbf{x}_0$;
- 2. $\gamma(1) = \mathbf{x}^*$;
- 3. $\gamma'(t)$ es perpendicular a $\mathcal{S}_{f(\gamma(t))}$ para $t \in [0,1)$.

$$S_c = f^{-1}(\{c\}) = \{ \mathbf{x} \in D \colon f(\mathbf{x}) = c \}.$$

¿Cómo implementamos una versión discreta de este procedimiento?

Algoritmos de descenso (versión discreta)

Buscamos $x_1,...,x_k,...$ tales que

- 1. $\mathbf{x}_k \in \mathcal{S}_{c_k}$;
- 2. $c_{k+1} < c_k$, para $k = 0, 1, \dots, m-1$;
- 3. el segmento $[\mathbf{x}_k \mathbf{x}_{k+1}]$ es perpendicular a \mathcal{S}_{c_k} .

Empezamos con x₀ "cercano" al mínimo. Se elige un parámetro η>0 (chico)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \frac{\nabla f(\mathbf{x}_k)}{\|\nabla f(\mathbf{x}_k)\|}.$$

Elección de η

a. el paso η es grande

b. el paso η es chico

Criterio de parada

- Típicamente se para cuando $c_{k+1} < c_k$ para k=1,...,m-1 y $c_{m+1} > c_m$.
- Se espera que si η es más pequeño, m sea más grande.
- Cuando $\eta \rightarrow 0$, la poligonal $x_0 x_1 \dots x_m$ aproxima la curva continua $\gamma(t)$.
- Al momento de parar se tiene $\|\mathbf{x}_0 \mathbf{x}^*\| m\eta \le \|\mathbf{x}_m \mathbf{x}^*\| \le \operatorname{diam}(\mathcal{S}_{c_m})$

Más sobre η

Al parámetro η se lo llama "tasa de aprendizaje".

La tasa de aprendizaje no conviene en la práctica que sea constante

$$\eta_k \sim \delta \|\nabla f(x_k)\|$$

Luego:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \delta \nabla f(\mathbf{x}_k)$$

PROPOSICIÓN 4.2.4. La sucesión $\{\mathbf{x}_k\}_{k\geq 0}$ definida en (4.2.5) resulta convergente si y sólo si la sucesión de gradientes tiende a 0, $\nabla f(\mathbf{x}_k) \to 0$ cuando $k \to \infty$.

Estimaciones para δ

$$f(\mathbf{x}_{k+1}) \simeq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k) \cdot (\mathbf{x}_{k+1} - \mathbf{x}_k) + \frac{1}{2} (\mathbf{x}_{k+1} - \mathbf{x}_k) H f(\mathbf{x}_k) (\mathbf{x}_{k+1} - \mathbf{x}_k)^t$$
$$= f(\mathbf{x}_k) - \delta \|\nabla f(\mathbf{x}_k)\|^2 + \frac{\delta^2}{2} \nabla f(\mathbf{x}_k) H f(\mathbf{x}_k) \nabla f(\mathbf{x}_k)^t.$$

Como $Hf(x_{min})>0$, podemos asumir que $Hf(x_k)>0$. Como $Hf(x_k)$ es simétrica se tiene

$$0 \le \frac{\delta^2}{2} \lambda_{\min} \|\nabla f(\mathbf{x}_k)\|^2 \le \frac{\delta^2}{2} \nabla f(\mathbf{x}_k) H f(\mathbf{x}_k) \nabla f(\mathbf{x}_k)^t \le \frac{\delta^2}{2} \lambda_{\max} \|\nabla f(\mathbf{x}_k)\|^2$$

Estimaciones para δ (2)

De donde

$$f(\mathbf{x}_{k+1}) \simeq f(\mathbf{x}_k) - \delta \|\nabla f(\mathbf{x}_k)\|^2 + \frac{\delta^2}{2} \nabla f(\mathbf{x}_k) H f(\mathbf{x}_k) \nabla f(\mathbf{x}_k)^t$$

$$\leq f(\mathbf{x}_k) - \delta \|\nabla f(\mathbf{x}_k)\|^2 + \frac{\delta^2}{2} \lambda_{\max} \|\nabla f(\mathbf{x}_k)\|^2,$$

Luego
$$f(x_{k+1}) < f(x_k)$$
 si se cumple $-\delta + \frac{\delta^2}{2} \lambda_{max} < 0 \iff \delta < \frac{2}{\lambda_{max}}$.

Esto da una cota para la tasa de aprendizaje

Búsqueda estocástica

<u>Caso determinístico</u>: Se busca una curva x'(t) = b(x(t)) de manera tal que f(x(t)) alcance el mínimo de f lo más rápido posible.

$$b(x) = -\nabla f(x)$$

<u>Variante estocástica:</u> Se introduce un *ruido* o perturbación aleatoria al modelo determinista

$$dX(t) = b(X(t)) dt + \sigma(X(t)) dW(t)$$

Pero.... ¿Qué es dW(t)?

Movimiento Browniano y ruido blanco

DEFINICIÓN 4.3.1. Un movimiento Browniano, o proceso de Wiener, es un proceso estocástico W_t , $t \ge 0$, tal que

- 1. $W_0 = 0$ casi seguramente;
- 2. si $0 \le u < s < t$, entonces $W_t W_s$ y $W_s W_u$ son independientes (el proceso tiene incrementos independientes);
- 3. $t \mapsto W_t$ es continuo casi seguramente;
- 4. los incrementos están normalmente distribuidos, con $W_t W_s \sim N(0, |t-s|)$.

Un ruido blanco: $dW(t) \sim N(0, dt)$

Un movimiento Browniano m-dimensional es $W_t = (W_t^1, \dots, W_t^m)$

Ecuación Diferencial Estocástica (SDE)

$$dX_t = \mathbf{b}(X_t) dt + \sigma(X_t) dW_t.$$

 $\mathbf{b} \colon \mathbb{R}^n o \mathbb{R}^n$ deriva (drift) $\sigma \colon \mathbb{R}^n o \mathbb{R}^{n imes m}$ difusión (diffusion)

¿Cómo se resuelve una SDE? Método de Euler-Maruyama

$$X_{k+1} - X_k = \mathbf{b}(X_k)\delta + \sigma(X_k)(W_{t_{k+1}} - W_{t_k}).$$

Ecuación Diferencial Estocástica (SDE) (2)

$$X_{k+1} - X_k = \mathbf{b}(X_k)\delta + \sigma(X_k)(W_{t_{k+1}} - W_{t_k}).$$

Llamando $B_k := W_{t_{k+1}} - W_{t_k} \sim N(0, \delta)$ obtenemos

$$X_{k+1} = X_k + \mathbf{b}(X_k)\delta + \sigma(X_k)B_k$$

El método de descenso de gradiente determinístico $\mathbf{x}_{k+1} = \mathbf{x}_k - \delta \nabla f(\mathbf{x}_k)$

Luego, si tomamos $\mathbf{b}(x) = -\nabla f(x)$ se obtiene una perturbación estocástica