

TUDelft Mobile aircraft detection with ADS-B integration

Lauri Warsen, Szymon Gołębiowski, Vladimir Petkov

Introduction and Problem Analysis

What aircraft is it? Just point your phone at the sky!

Dataset

29 data collectors from various locations in 9 countries

Potential issues

12.6%

10.8%

13.4%

7.4%

contain birds

contain other

- 931 videos, ~7 s each, manually labelled with CVAT
- Data split 70% training, 15% validation, 15% test
- Videos recorded by one person only in one split

contrails
filmed through glass
during sunset

Classes

aircraft

contrail

Contrail

27.5%

72.5%

Weather

clear sky

clouds

overcast

45.3%

46.2%

8.5%

Model - YOLOv8 Nano (2023)

- Lightweight: 129 layers; 3 mln parameters; 8.2 GFLOPs
- Multi-scale Feature Fusion combines features from different layers
- Anchor-free direct keypoint prediction more effective for small objects
- Data augmentation: translations, flips, rotations, mosaic combinations

Evaluation

Model trained on every second frame using resolution 960, batch size 32, 20 epochs

class	Precision	Recall	F1	aircrafts easier to detect
both	0.567	0.467	0.256	than contrails
contrail	0.492	0.334	0.199	
aircraft	0.642	0.600	0.310	

Research questions:

- How resolution (640, 960, 1440, 1920) affects results?
- Could collecting more data help to achieve better results?
- What are the most hindering factors? Weather? Birds? Other contrails?

Conclusions

Orientation + Location + ADS-B = Aircraft Positions works

The inaccuracy of a phone's magnetometer is the main limiting factor (needs calibration)

Our detection model is a good starting point, but needs further, tailor-made improvements

No ready-made Flutter packages for serving a real-time detection model