Aluffi, Algebra: Chapter 0

Danny Nygård Hansen 17th January 2022

I • Preliminaries: Set theory and categories

II • Groups, first encounter

1. Definition of group

EXERCISE 1.4

Suppose that $g^2 = e$ for all elements g of a group G; prove that G is commutative.

SOLUTION. The hypothesis implies that $g = g^{-1}$ for all $g \in G$. For $g, h \in G$ we thus have

$$gh = (gh)^{-1} = h^{-1}g^{-1} = hg$$

as desired.

EXERCISE 1.8

Let *G* be a finite abelian group with exactly one element *f* of order 2. Prove that $\prod_{g \in G} g = f$.

SOLUTION. Every element g in G different from e and f has order greater than two, hence $g \neq g^{-1}$. The product $\prod_{g \in G \setminus \{e, f\}} g$ therefore contains all such elements along with their inverses, and thus equals e. The claim follows. \square

EXERCISE 1.9

Let G be a finite group, of order n, and let m be the number of elements $g \in G$ of order exactly 2. Prove that n - m is odd. Deduce that if n is even, then G necessarily contains elements of order 2.

SOLUTION. Let G' denote the set of elements in G with order greater than 2. We claim that |G'| is even, and we give two arguments for this fact. First, simply notice that the elements of G' come in pairs $\{g, g^{-1}\}$ with $g \neq g^{-1}$.

For a more precise argument (using group theory language we haven't seen yet), consider the inversion map $g \mapsto g^{-1}$. This restricts to a well-defined map $\iota \colon G' \to G'$, and ι is a permutation of G'. Letting the cyclic group $\langle \iota \rangle \leq S_{G'}$ act on G' splits G' into orbits of size two, and since these orbits determine a partition of G', |G'| must be even.

Now notice that G' contains n-m-1 elements since e has order 1, hence n-m is odd. If n is even, then m must be odd and thus at least 1.

EXERCISE 1.11

Prove that for all g, h in a group G, |gh| = |hg|.

SOLUTION. Let $a, g \in G$, and let n = |g|. Then

$$(aga^{-1})^n = ag^na^{-1} = e$$
,

so the order of aga^{-1} divides the order of g. Substituting $g \to aga^{-1}$ and $a \to a^{-1}$ shows that |g| also divides $|aga^{-1}|$, so $|g| = |aga^{-1}|$. Finally substituting $g \to gh$ and $a \to h$ proves the claim.

Alternatively, the conjugation map $g \mapsto aga^{-1}$ is an isomorphism, so it preserves orders.

EXERCISE 1.13

Give an example showing that |gh| is not necessarily equal to lcm(|g|, |h|), even if g and h commute.

SOLUTION. In $\mathbb{Z}/4\mathbb{Z}$ we have $||2|_4| = 2$ and $||2|_4 + ||2|_4| = ||0|_4| = 1$.

EXERCISE 1.14

Prove that if g and h commute and gcd(|g|, |h|) = 1, then |gh| = |g||h|.

SOLUTION. First recall that lcm(|g|, |h|) = |g||h|, so Proposition 1.14 implies that |gh| divides |g||h|. Conversely, letting N = |gh| we have

$$e = (gh)^{|g|N} = g^{|g|N}h^{|g|N} = h^{|g|N},$$

so |h| divides |g|N. But since |g| and |h| are relatively prime, |h| divides N. So does |g|, so again using relative primality we find that |g||h| divides N. In total, |gh| = |g||h|.

2. Examples of groups

EXERCISE 2.1

One can associate an $n \times n$ matrix M_{σ} with a permutation $\sigma \in S_n$ by letting the entry at $(i, \sigma(i))$ be 1 and letting all other entries be 0. Prove that, with this notation,

$$M_{\sigma}M_{\tau}=M_{\tau\sigma}$$

for all σ , $\tau \in S_n$, where the product on the right is the ordinary product of matrices.

SOLUTION. Notice that, for $1 \le i, j \le n$,

$$(M_{\sigma}M_{\tau})_{ij} = \sum_{k=1}^{n} (M_{\sigma})_{ik} (M_{\tau})_{kj},$$

and that the summand $(M_{\sigma})_{ik}(M_{\tau})_{kj}$ is 1 just when $\sigma(i) = k$ and $\tau\sigma(i) = j$, and 0 otherwise. Thus,

$$(M_{\sigma}M_{\tau})_{ij} = \begin{cases} 1, & \tau\sigma(i) = j, \\ 0, & \text{otherwise,} \end{cases}$$

which is just the definition of the matrix $M_{\tau\sigma}$.

EXERCISE 2.13

Prove that if gcd(m, n) = 1, then there exist integers a and b such that

$$am + bn = 1$$
.

Conversely, prove that if am+bn=1 for some integers a and b, then gcd(m,n)=1.

SOLUTION. By Corollary 2.5, the class $[m]_n$ generates $\mathbb{Z}/n\mathbb{Z}$. Hence there exists an $a \in \mathbb{Z}$ such that $a[m]_n = [1]_n$. But then qn = am - 1 for some $q \in \mathbb{Z}$, i.e. am + (-q)n = 1.

Conversely, if am + bn = 1 and d divides both m and n, then d also divides 1 and hence $d = \pm 1$.

3. The category **Grp**

¹ Contrary to Aluffi, we prefer to let permutation act on the left.

EXERCISE 3.3

Show that if G, H are *abelian* groups, then $G \times H$ satisfies the universal property for coproducts in \mathbf{Ab} .

SOLUTION. Let $\varphi_G \colon G \to K$ and $\varphi_H \colon H \to K$ be homomorphisms into an abelian group K. Define a map $\psi \colon H \times G \to K$ by

$$\psi(g,h) = \varphi_G(g)\varphi_H(h).$$

We first show that ψ is a group homomorphism. For $g_1, g_2 \in G$ and $h_1, h_2 \in H$ we have

$$\begin{split} \psi((g_1,h_1)(g_2,h_2)) &= \psi(g_1g_2,h_1h_2) = \varphi_G(g_1g_2)\varphi_H(h_1h_2) \\ &= \varphi_G(g_1)\varphi_G(g_2)\varphi_H(h_1)\varphi_H(h_2) \\ &= \varphi_G(g_1)\varphi_H(h_1)\varphi_G(g_2)\varphi_H(h_2) \\ &= \psi(g_1,h_1)\psi(g_2,h_2). \end{split}$$

In the third equality we used that *K* is abelian. Next we show that the diagram

commutes, where $\iota_G(g)=(g,e_H)$ and $\iota_H(h)=(e_G,h)$. For the upper triangle we have

$$(\psi \circ \iota_G)(g) = \psi(g, e_G) = \varphi_G(g)\varphi_H(e_G) = \varphi_G(g)e_K = \varphi_G(g),$$

and similarly for the lower triangle.

EXERCISE 3.4

Let G, H be groups, and assume that $G \cong H \times G$. Can you conclude that H is trivial?

SOLUTION. Let H be any nontrivial group, and let $G = \prod_{n \in \mathbb{N}} H$. Then the map $\varphi \colon G \to H \times G$ given by

$$\varphi(h_1, h_2, h_3, \ldots) = (h_1, (h_2, h_3, \ldots))$$

is an isomorphism.

EXERCISE 3.5

Prove that \mathbb{Q} is not the direct product of two nontrivial groups.

SOLUTION. Let G and H be groups such that there is an isomorphism $\varphi \colon \mathbb{Q} \to G \times H$. Assume without loss of generality that G is nontrivial, and consider the map $\varphi_G = \pi_G \circ \varphi$. We claim that φ_G is injective.

First notice that if $g \in G$ has finite order then $g = 0_G$, since $(g, 0_H)$ has finite order in $G \times H$. Let $p, q \in \mathbb{Z}$ with $p, q \neq 0$, and notice that $\varphi_G(p/q) = 0_G$ implies that

$$0_G = q\varphi_G\left(\frac{p}{q}\right) = \varphi_G(p) = p\varphi_G(1).$$

Hence $\varphi_G(1) = 0_G$, and so $\mathbb{Z} \subseteq \ker \varphi_G$. Furthermore, if $a, b \in \mathbb{Z}$ with $b \neq 0$, then

$$b\varphi_G\left(\frac{a}{b}\right) = \varphi_G(a) = 0_G,$$

so $\varphi_G(a/b)$ has finite order and hence equals 0_G . Thus if $\ker \varphi_G$ is nontrivial, then $\ker \varphi_G = \mathbb{Q}$. But since φ_G is surjective and G is nontrivial, this is impossible. Hence φ_G is injective. On the other hand, the kernel of φ_G is clearly $1 \times H$, so H must be trivial.

EXERCISE 3.6

Consider the product $C_2 \times C_3$ of the cyclic groups C_2 , C_3 . By Exercise 3.3, this group is a coproduct of C_2 and C_3 in **Ab**. Show that it is *not* a coproduct of C_2 and C_3 in **Grp**.

SOLUTION. Denote by g and h generators of C_2 and C_3 respectively, and define group homomorphisms $\varphi_2 \colon C_2 \to S_3$ and $\varphi_3 \colon C_3 \to S_3$ by

$$\varphi_2(g) = (1\ 2)$$
 and $\varphi_3(h) = (1\ 2\ 3)$.

Assume that $C_2 \times C_3$ is a coproduct of C_2 and C_3 in **Grp**. Then there exists a homomorphism $\psi \colon C_2 \times C_3 \to S_3$ such that $\varphi_2 = \psi \circ \iota_2$ and $\varphi_3 = \psi \circ \iota_3$. Since $C_2 \times C_3$ is commutative, it follows that

$$(1\ 2)(1\ 2\ 3) = \psi(\iota_2(g)\iota_3(h)) = \psi(\iota_3(h)\iota_2(g)) = (1\ 2\ 3)(1\ 2).$$

But this is false, so $C_2 \times C_3$ is not a coprodut of C_2 and C_3 in **Grp**.

EXERCISE 3.8

Define a group G with two generators x, y subject (only) to the relations $x^2 = e_G$, $y^3 = e_G$. Prove that G is a coproduct of C_2 and C_3 in **Grp**.

SOLUTION. Denote the generators of C_2 and C_3 by g and h respectively, and let $\varphi_2 \colon C_2 \to H$ and $\varphi_3 \colon C_3 \to H$ be homomorphisms into a group H. Define a map $\psi \colon G \to H$ by letting $\psi(x) = \varphi_2(g)$ and $\psi(y) = \varphi_3(h)$ and extending to all elements in G by requiring that ψ be a homomorphism. Then $\varphi_2 = \psi \circ \iota_2$ and $\varphi_3 = \psi \circ \iota_3$, so G is indeed a coproduct.

4. Group homomorphisms

EXERCISE 4.1

Check that the function π_m^n defined in §4.1 is well-defined and makes the diagram commute. Verify that it is a group homomorphism.

SOLUTION. Recall that $\pi_m^n \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is defined by $\pi_m^n([a]_n) = [a]_m$, assuming that $m \mid n$. To show that this is well-defined, let $a, b \in \mathbb{Z}$ with $a \equiv b \pmod{n}$. This means that $n \mid a - b$, and hence that $m \mid a - b$, i.e. that $a \equiv b \pmod{m}$. In other words, $[a]_n = [b]_n$ implies that $[a]_m = [b]_m$, and thus π_m^n is well-defined. It is also obvious that the diagram

commutes, since $\pi_n(a) = [a]_n$ and $\pi_m(a) = [a]_m$.

Finally we show that π_m^n is a homomorphism. For $a, b \in \mathbb{Z}$ we have

$$\pi_m^n([a]_n + [b]_n) = \pi_m^n([a+b]_n) = [a+b]_m = [a]_m + [b]_m$$
$$= \pi_m^n([a]_n) + \pi_m^n([b]_n)$$

as desired.

EXERCISE 4.8

Let G be a group, and let $g \in G$. Prove that the function $\gamma_g \colon G \to G$ defined by $\gamma_g(a) = gag^{-1}$ is an automorphism of G. (The automorphisms γ_g are called 'inner' automorphisms of G.) Prove that the function $G \to \operatorname{Aut}(G)$ defined by $g \mapsto \gamma_g$ is a homomorphism. Prove that this homomorphism is trivial if and only if G is abelian.

SOLUTION. For $a, b \in G$ we have

$$\gamma_g(ab) = g(ab)g^{-1} = (gag^{-1})(gbg^{-1}) = \gamma_g(a)\gamma_g(b),$$

5. Free groups 7

so γ_g is a homomorphism. It is obviously invertible with $\gamma_g^{-1} = \gamma_{g^{-1}}$, hence an isomorphism.

Now let also $h \in G$. Then

$$(\gamma_{gh})(a) = (gh)a(gh)^{-1} = g(hah^{-1})g^{-1} = \gamma_g(hah^{-1}) = (\gamma_g \circ \gamma_h)(a),$$

so $g \mapsto \gamma_g$ is a homomorphism.

EXERCISE 4.9

Prove that if m, n are positive integers such that gcd(m, n) = 1, then $C_{mn} \cong C_m \times C_n$.

SOLUTION. The map $\pi = (\pi_m^{mn}, \pi_n^{mn})$ is a group homomorphism, and since the sets C_{mn} and $C_m \times C_n$ have the same cardinality, it suffices to show that π is injective. Using additive notation, if $\pi([a]_{mn}) = \pi([b]_{mn})$ then $[a]_m = [b]_m$, i.e. $m \mid a-b$. Similarly $n \mid a-b$, and since $\gcd(m,n) = 1$ we have $mn \mid a-b$. It follows that $[a]_{mn} = [b]_{mn}$ as desired.

- 5. Free groups
- 6. Subgroups

EXERCISE 6.6

Prove that the union of a family of subgroups of a group *G* is not necessarily a subgroup of *G*. In fact:

- (a) Let H, H' be subgroups of a group G. Prove that $H \cup H'$ is a subgroup of G only if $H \subseteq H'$ or $H' \subseteq H$.
- (b) On the other hand, let $H_0 \subseteq H_1 \subseteq H_2 \subseteq \cdots$ be subgroups of a group G. Prove that $\bigcup_{i \ge 0} H_i$ is a subgroup of G.

SOLUTION. (a) Assume that $H \cup H'$ is a subgroup of G and let $h \in H$ and $h' \in H'$. Then $hh' \in H \cup H'$, say $hh' \in H$. But then $h' = h^{-1}(hh') \in H$, so $h' \in H$ and hence $H' \subseteq H$. Similarly if $hh' \in H'$.

(b) Write $H = \bigcup_{i \geq 0} H_i$. If $g, h \in H$, then $g \in H_i$ and $h \in H_j$ for some $i, j \in \mathbb{N}$. Hence $g, h \in H_i \cup H_j = H_{i \vee j} \subseteq H$. We furthermore have $g^{-1} \in H_i \subseteq H$.

² The natural numbers include zero.

6. Subgroups 8

EXERCISE 6.7

Show that *inner* automorphisms (cf. Exercise 4.8) form a subgroup of Aut(G); this subgroup is denoted Inn(G). Prove that Inn(G) is cyclic if and only if Inn(G) is trivial if and only if G is abelian. Deduce that if Aut(G) is cyclic, then G is abelian.

SOLUTION. It is clear that Inn(G) is a subgroup of Aut(G). Assume that Inn(G) is cyclic, and let $a \in G$ be such that γ_a generates Inn(G). For $g \in G$ we then have $\gamma_g = \gamma_a^n = \gamma_{a^n}$ for some $n \in \mathbb{Z}$. Hence

$$gag^{-1} = \gamma_g(a) = \gamma_{a^n}(a) = a^n a a^{-n} = a$$
,

so a commutes with every $g \in G$. For $b \in G$ we thus have

$$\gamma_{\mathcal{S}}(b) = \gamma_{a^n}(b) = a^n b a^{-n} = b,$$

so γ_g is the identity map for every $g \in G$. Therefore Inn(G) is trivial, which is obviously equivalent to G being abelian.

Finally, if $\operatorname{Aut}(G)$ is cyclic then Propositions 6.9 and 6.11 imply that $\operatorname{Inn}(G)$ is also cyclic. But then G is abelian.