Отчет. Лабораторная работа №2.

ПОСТАНОВКА ЗАДАЧИ

В лабораторной работе №2 в качестве входных данных берется GTSRB - немецкий тест распознавания дорожных знаков. Ставится задача - разработать полностью связанную нейронную сетей с использованием одной из библиотек глубокого обучения для решения выбранной задачи. Цель экспериментов - поиск оптимальных параметров настройки сети.

Такими параметрами являются:

- Количество слоев
- Количество эпох
- Количество нейронов в скрытых слоях
- Функция активаций в скрытых слоях
- Функция инициализации весов в скрытых слоях
- Функция оптимизации

Классификация

Задача классификации — это задача присвоения меток объектам. Например, если объекты — это фотографии, то метками может быть содержание фотографий: содержит или изображение пешехода или нет, изображен ли мужчина или женщина, какой породы собака изображена на фотографии. Обычно есть набор взаимоисключающих меток и сборник объектов, для которых эти метки известны. Имея такую коллекцию данных, необходимо автоматически расставлять метки на произвольных объектах того же типа, что были в изначальной коллекции. Давайте формализуем это определение.

Допустим, есть множество объектов X. Это могут быть точки на плоскости, рукописные цифры, фотографии или музыкальные произведения. Допустим также, что есть конечное множество меток Y. Эти метки могут быть пронумерованы. Мы будем отождествлять метки и их номера. Таким образом $Y = \{red, green, blue\}$ в нашей нотации будет обозначаться как $Y = \{1,2,3\}$. Если $Y = \{0,1\}$, то задача называется задачей бинарной классификации, если меток больше двух, то обычно говорят, что это просто задача классификации. Дополнительно, у нас есть входная выборка $D = \{(x_i, y_i), x_i \in X, y_i \in Y, i = [1, ..., N]\}$. Это те самые размеченные примеры, на которых мы и будем обучаться проставлять метки автоматически. Так как мы не знаем классов всех объектов точно, мы считаем, что класс объекта — это случайная величина, которую мы для простоты тоже будем обозначать . Например, фотография собаки может классифицироваться как собака с вероятностью 0.99 и как кошка с

вероятностью 0.01. Таким образом, чтобы классифицировать объект, нам нужно знать условное распределение этой случайной величины на этом объекте p(y|x).

Задача нахождения p(y|x) при данном множестве меток Y и данном наборе размеченных примеров $D = \{(x_i, y_i), x_i \in X, y_i \in Y, i = [1, ..., N]\}$ называется задачей классификации.

Вероятностная постановка задачи классификации

Чтобы решить эту задачу, удобно переформулировать ее на вероятностном языке. Итак, есть множество объектов X и множество меток Y . $\xi: \Omega \Rightarrow X$ — случайная величина, представляющая собой случайный объект из X . $\eta: \Omega \Rightarrow Y$ — случайная величина, представляющая собой случайную метку из Y . Рассмотрим случайную величину $(\xi, \eta): \Omega \Rightarrow (X, Y)$ с распределением p(x|y), которое является совместным распределением объектов и их классов. Тогда, размеченная выборка — это сэмплы из этого распределения $(x_i, y_i) \sim p(x, y)$. Мы будем предполагать, что все сэмплы независимо и одинаково распределены.

Задача классификации теперь может быть переформулирована как задача нахождения p(x|y) при данном сэмпле $D = \{(x_i, y_i), x_i \in X, y_i \in Y, i = [1, ..., N]\}$.

ТРЕНИРОВОЧНЫЕ И ТЕСТОВЫЕ НАБОРЫ ДАННЫХ

Характеристики примеров

Количество классов	43
Максимальная ширина	243
Максимальная высота	225
Минимальная ширина, высота	25
Медиана для ширины, высоты	43

Распределение количества изображений по классам

Для тренировочного набора данных:

Class Id	Images	Class Id	Images	Class Id	Images
0	210	15	630	30	450
1	2220	16	420	31	780
2	2250	17	1110	32	240
3	1410	18	1200	33	689
4	1980	19	210	34	420
5	1860	20	360	35	1200
6	420	21	330	36	390
7	1440	22	390	37	210
8	1410	23	510	38	2070
9	1470	24	270	39	300
10	2010	25	1500	40	360
11	1320	26	600	41	240

12	2100	27	240	42	240
13	2160	28	540		
14	780	29	270		

Для тестового набора данных:

Class Id	Image number	Class Id	Image number	Class Id	Image number
0	60	15	210	30	150
1	720	16	150	31	270
2	750	17	360	32	60
3	450	18	390	33	210
4	660	19	60	34	120
5	630	20	90	35	390
6	150	21	90	36	120
7	450	22	120	37	60
8	450	23	150	38	690
9	480	24	90	39	90
10	660	25	480	40	90
11	420	26	180	41	90
12	690	27	60	42	90
13	720	28	150		
14	270	29	90		

Примеры изображений из каждого класса

МЕТРИКА КАЧЕСТВА РЕШЕНИЯ ЗАДАЧИ

Тренировочная выборка была разделена на основную тренировочную и проверочную (validation), для улучшения качества обучения и лучшей оценки получившегося результата, при использовании в реальных условиях.

За метрику качества решения взят максимальный процент, правильно определенных, дорожных знаков на проверочной выборке за время обучения.

Пример обучения

Epoch	Accuracy	Validation accuracy	Epoch	Accuracy	Validation accuracy
1	0.5367	0.8020	7	0.9717 🛕	0.9467 🔺
2	0.8700 🛦	0.8906 🛦	8	0.9771 🔺	0.9492
3	0.9274 🛕	0.9193 🛕	9	0.9818	0.9517 🔺
4	0.9254▼	0.9285 🛕	10	0.9857 🛕	0.9514▼
5	0.9565▲	0.9350 🛦	11	0.8884▼	0.9415
6	0.9651 🛦	0.9425 🛕	12	0.9793	0.9518 🔺

ИСХОДНЫЙ ФОРМАТ ХРАНЕНИЯ ДАННЫХ

Данные представляют собой набор изображений имеющие набор параметров

Nº	Path	Width	Height	Roi.X1	Roi.Y1	Roi.X2	Roi.Y2	ClassId
0	Test/00000.pn g	53	54	6	5	48	49	16
1	Test/00001.pn g	42	45	5	5	36	40	1
2	Test/00002.pn g	48	52	6	6	43	47	38
3	Test/00003.pn g	27	29	5	5	22	24	33
n		•••		•••	•••	•••		

Roi - отступы от левого верхнего угла для определения положения дорожного знака на изображении.

ФОРМАТ, В КОТОРОМ ДАННЫЕ ПРЕДОСТАВЛЯЮТСЯ НА ВХОД СЕТИ

Перед загрузкой в сеть входные данные обрабатываются:

- 1. Размер изображений уменьшается до величины 40х40
- 2. Изображения раскладываются из матрицы в вектор

РАЗРАБОТАННЫЕ ПРОГРАММЫ/СКРИПТЫ

Программа состоит из одного файла *Jupyter Notebook*. Код написан на языке программирования *Python*, с помощью *Keras* - оболочки для фреймворка *TensorFlow*.

Jupyter Notebook – это крайне удобный инструмент для создания красивых аналитических отчетов, так как он позволяет хранить вместе код, изображения, комментарии, формулы и графики. В Jupyter Notebook сразу видно, что возвращает та или иная функция, что особенно важно в начале, при ознакомляемся с данными (показывает изображения, статистику и прочее). Выводы дополняются комментариями для более простого понимания кода.

ТЕСТОВЫЕ КОНФИГУРАЦИИ СЕТЕЙ

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

В процессе экспериментов запускалось обучение нейронной сети с различным набором параметров. (В таблице присутствуют только скрытые слои)

Таблица с результатами

Nº	Ф-ия оптими зации	Скорос ть обучен ия	Количе ство эпох	Ф-ия инициа лизаци и	Парам етры	Dense Layer 1	Dense Layer 2	Трени ровочн ая точнос ть	Валид ационн ая точнос ть	Время (мин)
0	RMSpr op	0.001	20	glorot_ uniform	Neuron numbe r	128	-	90.31 %	89.15 %	4.83
					Activati on functio n	relu	-			
Попробу	ем добавл	ять слои								
1	RMSpr op	0.001	20	glorot_ uniform	NN	128	128	90.14 %	88.55 %	4.83
	ОР			dillionii	AF	relu	relu	70	70	
	Результат не улучшился. Но ошибка на валидационной выборке стала нестабильной. Попробуем уменьшить параметр скорости обучения.									
2	RMSpr op	0.0001	20	glorot_ uniform	NN	128	128	91.58 %	90.02	4.74
	3			dillionii	AF	relu	relu	,,	,0	
Все стал	о лучше. Г	Топробуем	и добавить	ь еще один	н слой.					
3	RMSpr op	0.0001	20	glorot_ uniform	NN	128	128(+1)	90.26 %	90.21 %	4.80
					AF	relu	relu(+1			
Стало ху	же. Прове	рим есть у	у этого дин	намика, до	обавим ещ	е один сло	ой.			
4	RMSpr op	0.0001	20	glorot_ uniform	NN	128	128(+2)	87.39 %	87.53 %	4.79
					AF	relu	relu(+2)			
	Динамика сохранилась, добавление слоев не помогает. Попробуем изменить количество нейронов в сети с двумя и тремя слоями.								в в сети	
5	RMSpr op	0.0001	20	glorot_ uniform	NN	256	128	92.07 %	89.95 %	5.10
	οp			GIIIIOIIII	AF	relu	relu	,,,	,,,	
6	RMSpr	0.0001	20	glorot_	NN	256	128	89.95	88.84	5.12

Точность увеличилась, как и время обучения. Два слоя лучше трех. Попробуем исследовать влияние алгоритма оптимизации на такой сетке. Возьмем Аdam и понизим для него скорость обучения, так как он обычно быстрее сходится, а для SGD наоборот, повысим. 7											
алгоритий оптимизации на такой сетке. Возьмем Адати и понизим для него скорость обучения, так как он обычно быстрее сходится, а для SGD наоборот, повысим. 7		ор			uniform	AF	relu	relu	%	%	
8 SGD 0.001 20 glorot_uniform NN 256 128 32.83 33.28 5.03 Adam дает лучший результат. Продолжим его использовать. Исследуем влияние функции активации. 9 Adam 0.0000 20 glorot_uniform NN 256 128 76.72 75.43 5.07 10 Adam 0.0000 20 glorot_uniform NN 256 128 98.60 95.63 5.04 Гиперболический тангенс дает лучшие результаты. Продолжим его использовать. Исследуем влияние функции инициализации весов. NN 256 128 98.65 95.63 5.04 11 Adam 0.0000 20 glorot_normal NN 256 128 98.65 95.65 5.07 12 Adam 0.0000 20 he_nor mal NN 256 128 98.65 95.58 5.06 13 Adam 0.0000 20 he_unif orm NN 256 128 98.63 95.73 % 13 Adam	алгорити	алгоритма оптимизации на такой сетке. Возьмем Adam и понизим для него скорость обучения, так как он									
8 SGD 0.001 20 glorot_uniform NN 256 128 32.83 33.28 5.03 Adam дает лучший результат. Продолжим его использовать. Исследуем влияние функции активации. 9 Adam 0.0000 20 glorot_uniform NN 256 128 76.72 75.43 5.07 10 Adam 0.0000 20 glorot_uniform NN 256 128 98.60 95.63 5.04 Гиперболический тангенс дает лучшие результаты. Продолжим его использовать. Исследуем влияние функции инициализации весов. 20 glorot_normal NN 256 128 98.65 95.65 5.07 11 Adam 0.0000 20 he_nor mal NN 256 128 98.65 95.58 5.06 12 Adam 0.0000 20 he_nor mal NN 256 128 98.63 95.73 5.05 13 Adam 0.0000 20 he_unif NN 256 128 98.63 95.73 5.05 13 Adam 0.0000 50 he_unif NN	7	Adam		20	-	NN	256	128			5.08
Адат дает лучший результат. Продолжим его использовать. Исследуем влияние функции активации. 9 Adam 0.0000 5 20 glorot uniform NN 256 128 76.72 75.43 7.43 7.43 7.43 7.43 7.44 7.44 7.44 7			ŭ		umom	AF	relu	relu	70	70	
Adam дает лучший результат. Продолжим его использовать. Исследуем влияние функции активации. 9 Adam 0.0000 5 20 glorot uniform NN 256 128 76.72 % 75.43 % 5.07 10 Adam 0.0000 5 20 glorot uniform NN 256 128 98.60 95.63 % 5.04 Гиперболический тангенс дает лучшие результаты. Продолжим его использовать. Исследуем влияние функции инициализации весов. NN 256 128 98.65 % 95.65 5.07 % 5.07 11 Adam 0.0000 5 20 glorot normal NN 256 128 98.65 % 95.65 % 5.07 12 Adam 0.0000 5 20 he_nor mal NN 256 128 98.69 % 95.58 5.06 13 Adam 0.0000 5 20 he_unif orm NN 256 128 98.63 % 95.73 % 5.05 Особой разницы в точности нет. Попробуем увеличить количество эпох. NN 256 128 99.96 % 96.58 % 10.90	8	SGD	0.001	20	_	NN	256	128			5.03
9 Adam 0.0000 5 20 glorot uniform AF sigmoi sigmoi d d d d d d d d d d d d d d d d d d d						AF	relu	relu	, ,	, ,	
10 Adam 0.0000 20 glorot_uniform	Adam да	ет лучший	і результа	т. Продол	жим его ис	пользоват	ъ. Исслед	уем влиян	ие функци	іи активац	ии.
AF sigmoi d sigmoi d sigmoi d sigmoi d d sigmoi d sigm	9	Adam		20	_	NN	256	128	_		5.07
Гиперболический тангенс дает лучшие результаты. Продолжим его использовать. Исследуем влияние функции инициализации весов. NN 256 128 98.65 95.65 5.07 11 Adam 0.0000 20 glorot_normal NN 256 128 98.65 95.65 5.07 12 Adam 0.0000 5 120 he_nor mal NN 256 128 98.69 95.58 5.06 13 Adam 0.0000 5 20 he_unif orm NN 256 128 98.63 95.73 5.05 АF tanh tanh tanh tanh 5 5.05 Особой разницы в точности нет. Попробуем увеличить количество эпох. 14 Adam 0.0000 50 he_unif orm NN 256 128 99.96 96.58 10.90			-			AF	_		,	,	
АF tanh tanh tanh Гиперболический тангенс дает лучшие результаты. Продолжим его использовать. Исследуем влияние функции инициализации весов. NN 256 128 98.65 95.65 5.07 11 Adam 0.0000 20 Bold of tanh NN 256 128 98.65 95.65 5.07 12 Adam 0.0000 20 Bold of tanh NN 256 128 98.69 95.58 5.06 13 Adam 0.0000 20 Bold of tanh NN 256 128 98.63 95.73 96.73 96.58 Особой разницы в точности нет. Попробуем увеличить количество эпох. 14 Adam 0.0000 50 Bold of tanh NN 256 128 99.96 96.58 10.90	10	Adam		20	_	NN	256	128			5.04
функции инициализации весов. 20 glorot_normal NN 256 128 98.65 95.65 5.07 12 Adam 0.0000 5 20 he_nor mal NN 256 128 98.69 % 95.58 % 5.06 13 Adam 0.0000 5 20 he_unif orm NN 256 128 98.63 % 95.73 % 5.05 Особой разницы в точности нет. Попробуем увеличить количество эпох. 14 Adam 0.0000 5 50 he_unif orm NN 256 128 99.96 % 96.58 % 10.90					dillionii	AF	tanh	tanh	70	70	
12 Adam 0.0000 5 20 he_nor mal NN 256 128 98.69 % 95.58 % 5.06 13 Adam 0.0000 5 20 he_unif orm NN 256 128 98.63 % 98.63 % 95.73 % 5.05 Особой разницы в точности нет. Попробуем увеличить количество эпох. 14 Adam 0.0000 5 50 he_unif orm NN 256 128 99.96 % 96.58 % 10.90 %				•	е результа	ты. Продо	пжим его і	использова	ать. Иссле	дуем влия	іние
12 Adam 0.0000 5 20 he_nor mal NN 256 128 98.69 % 95.58 % 5.06 13 Adam 0.0000 5 20 he_unif orm NN 256 128 98.63 % 95.73 % 5.05 AF tanh tanh Tanh tanh NN 256 128 98.63 % 95.73 % 5.05 Особой разницы в точности нет. Попробуем увеличить количество эпох. Аdam 0.0000 5 50 he_unif orm NN 256 128 99.96 % 99.96 % 96.58 % 10.90	11	Adam		20	_	NN	256	128			5.07
13 Adam 0.0000 5 20 he_unif orm NN 256 128 98.63 % 95.73 % 5.05 Особой разницы в точности нет. Попробуем увеличить количество эпох. 13 Adam 0.0000 5 50 he_unif orm NN 256 128 99.96 % 96.58 % 10.90 %			J		nonnai	AF	tanh	tanh	70	70	
13 Adam 0.0000 5 20 he_unif orm NN 256 128 98.63 % 95.73 % 5.05 Особой разницы в точности нет. Попробуем увеличить количество эпох. 128 99.96 % 96.58 % 10.90 %	12	Adam		20		NN	256	128			5.06
5 orm AF tanh tanh % % Особой разницы в точности нет. Попробуем увеличить количество эпох. 14 Adam 0.0000 5 50 he_unif orm NN 256 128 99.96 % 96.58 % 10.90 %			ŭ		mai	AF	tanh	tanh	70	70	
Особой разницы в точности нет. Попробуем увеличить количество эпох. 14 Adam 0.0000 5 50 he_unif orm NN 256 128 99.96 % 96.58 % 10.90 %	13	Adam		20	_	NN	256	128			5.05
14 Adam 0.0000 50 he_unif orm NN 256 128 99.96 % 10.90			Ü		31111	AF	tanh	tanh	,,,	,,,	
5 orm % %	Особой	разницы в	точности	нет. Попро	обуем увел	пичить кол	ичество э	пох.			
	14	Adam		50		NN	256	128			10.90
					5 ,	AF	tanh	tanh	, 0	, 0	

Запуск лучшего на тестовой выборке

Best	Accuracy
Network #14	86.84%

Сеть не очень хорошо обобщается на тестовую выборку. Методы регуляризации могут помочь, но сначала необходимо попробовать применить сверточные нейронные сети.