PARCIAL METODOS

Julian Álvarez

Laura Jiménez

Julian Garzón

Andrés González

2.

La trayectoria de un insecto está descrita por la función $f(x) = ln(6x + e^t + sen(t)) + cos(t^2) + 1$.

- a. Calcular el ángulo de salida con respecto al eje t.
- b. Calcular el recorrido (en unidades lineales) para $0 \le t \le 2$
- c. Determinar los tiempos en los que se tiene un máximo para $0 \le t \le 2$
 - a. Por medio del método de bisección se determina el valor del ángulo para una f(x)=0

Empezando con

Xi=0

Xd=π

La tabla queda de la forma para 15 iteraciones:

Xi	Xd	Xm	Xmi+1-Xmi	f(Xm)
0	3,14159265	1,57079633		2,94240028
0	1,57079633	0,78539816	0,78539816	3,84553238
0	0,78539816	0,39269908	0,39269908	3,42793251
0	0,39269908	0,19634954	0,19634954	2,95096876
0	0,19634954	0,09817477	0,09817477	2,58229281
0	0,09817477	0,04908739	0,04908739	2,33210562
0	0,04908739	0,02454369	0,02454369	2,17952643
0	0,02454369	0,01227185	0,01227185	2,09371806
0	0,01227185	0,00613592	0,00613592	2,04793857
0	0,00613592	0,00306796	0,00306796	2,02425193
0	0,00306796	0,00153398	0,00153398	2,01219832
0	0,00153398	0,00076699	0,00076699	2,00611747
0	0,00076699	0,0003835	0,0003835	2,00306334
0	0,0003835	0,00019175	0,00019175	2,00153282

Por lo tanto, el valor de t es igual a 0,00019

b.

Para determinar el valor del recorrido se utiliza la ecuación de longitud de curva de la siguiente forma:

Por lo tanto, se realiza la derivada de la función f(x) que queda de la forma:

f'(x)=

$$-2x\sin(x^2) + \frac{e^x + \cos(x) + 6}{6x + e^x + \sin(x)}$$

Y por medio del método simpson 3/8 se realiza la integral de 0<=t<=2

Con n=12

Quedando h=0,166

Se construye la tabla donde se muestra x, Y, Y' y L que hace referencia a la fórmula de S mostrada anteriormente:

X	0	0,16666667	0,33333333	0,5	0,66666667	0,83333333	1	1,16666667	1,33333333	1,5	1,66666667	1,83333333	2
γ	2	2,85286144	3,30831149	3,60365677	3,7847703	3,8529818	3,79786418	3,61786047	3,34124779	3,04453841	2,85599903	2,92654138	3,35689615
γι	8	3,42404723	2,01863267	1,16784024	0,47019437	-0,16398424	-0,71444578	-1,09331141	-1,17169217	-0,82734661	-0,02421703	1,09385537	2,1527164
L	8,06225775	3,56708557	2,25274896	1,53748197	1,10502613	1,01335622	1,22899666	1,48166455	1,54040986	1,29788382	1,00029319	1,48206598	2,37364443

Se obtienen los siguientes valores reemplazando:

Al sumar estos valores se multiplican por 0,0625 y obtiene el valor del recorrido que es igual a:

3,52202154u

c. Para determinar los máximos de la función se utiliza la derivada determinada anteriormente y se despeja el valor de t con el método de bisección

$$-2x\sin(x^{2}) + \frac{e^{x} + \cos(x) + 6}{6x + e^{x} + \sin(x)}$$

igualada a cero se tiene:

Xi	Xd	Xm	Xmi+1-Xmi	f(Xm)
				-
0	3,14159265	1,57079633		0,53896209
1,57079633	3,14159265	2,35619449	0,78539816	1,95990948
1,57079633	2,35619449	1,96349541	0,39269908	1,95187094
1,57079633	1,96349541	1,76714587	0,19634954	0,63103339
				-
1,57079633	1,76714587	1,6689711	0,09817477	0,01030869
1,6689711	1,76714587	1,71805848	0,04908739	0,29984715
1,6689711	1,71805848	1,69351479	0,02454369	0,14162006
1,6689711	1,69351479	1,68124294	0,01227185	0,06480983
1,6689711	1,68124294	1,67510702	0,00613592	0,02703219
1,6689711	1,67510702	1,67203906	0,00306796	0,00830632
				-
1,6689711	1,67203906	1,67050508	0,00153398	0,00101515
1,67050508	1,67203906	1,67127207	0,00076699	0,00364211
1,67050508	1,67127207	1,67088857	0,0003835	0,00131261
1,67050508	1,67088857	1,67069683	0,00019175	0,00014851

Por lo tanto el instante en el que tiene un máximo es con t=1,6706