

Controle Automático I

TRABALHO #1

Engenharia Elétrica Prof. Fernando Passold

Objetivos

O objetivo geral deste trabalho é avaliar o conhecimento adquirido na primeira parte da disciplina associado com equações diferenciais e transformada de Laplace e seu uso para análise de sistemas.

Execução

Este trabalho está previsto para ser executado em duplas de alunos ou no máximo, em equipes de 3 alunos. Cada equipe devolve para o professor um arquivo PDF contendo a resolução das questões.

Não se exige nenhuma "capa" para este trabalho, nem nenhuma formatação especial, mas **recomenda-se** uso de fonte tamanho 10 pt, espaçamento 1,1. Os gráficos podem ser traçados usando software como o MATLAB ou Octave.

Data de entrega: 09/05/2025.

Pontuação

Todos os itens valem a mesma pontuação.

ITENS:

1) A figura abaixo ilustra várias formas comuns de sinais de entrada para sistemas. Com auxílio de tabela, deduza as Transformadas de Laplace para estes sinais.

Obs.: (a) função degrau de amplitude 4 Volts; (b) função degrau atrasada de 2 segundos e amplitude de 4 Volts; (c) função rampa, com razão/taxa de 3 Volts/segundo; (d) função rampa deslocada (atrasada) no tempo em 2 segundos e com razão de 3 Volts/segundo; (e) impulso de amplitude 4 Volts no instante de tempo t=3 segundos; (f) onda senoidal de amplitude de 2 Volts de pico e frequência de 10 Hz.

2) Determine as transformas inversas de Laplace para:

a)
$$Y(s) = \frac{2}{s}$$
.
b) $Y(s) = \frac{3}{s}$

c)
$$Y(s) = \frac{2}{s+4}$$
.

3) Use a transformada de Laplace para resolver a seguinte equação diferencial:

$$3\frac{dx}{dt} + 2x = 4,$$

$$com x = 0 em t = 0.$$

Continua...

4) Questão sobre Respostas de Sistemas Lineares: Plote a curva (usando MATLAB, Octave, outro software) das seguintes funções no domínio tempo:

a) $y_1(t) = 5(1 - e^{-t})$, com 0 < t < 10 segundos;

b) $y_2(t) = 5(1 - e^{-t/4})$, com 0 < t < 10 segundos; Compare com (a) e eventualmente mostre no mesmo gráfico (a) e (b).

c)
$$y_3(t) = A\left[\left(\frac{\tau_1}{\tau_2} - 1\right) \cdot \exp\left(\frac{-t}{\tau_2}\right) + 1\right]$$

A função transferência (sistema) que gerou esta resposta é do tipo:
$$G_3(s) = A \frac{(\tau_1 s + 1)}{(\tau_2 s + 1)}$$
; onde $y_3(t)$ corresponde à resposta temporal deste sistema

quando submetido à um degrau unitário ou: $y_3(t) = \mathcal{L}^{-1}\left\{\frac{1}{s} \cdot G_3(s)\right\}$

Considere neste item: A = 2, $\tau_1 = 1$ (segundo) e $\tau_2 = 2$ (segundos); -1 < t < 7segundos. A equação acima só é válida a partir de t>0. Apresente uma figura, onde seu lado direito mostre este pólo e zero no plano-z (pode ser usada a função pzmap() e o lado direito a resposta temporal deste sistema quando submetido à uma entrada degrau unitário). Para os valores que foram passados neste item teremos um sistema do tipo: "avanço/atraso" (ou Lead/Lag) — observe a figura de $y_3(t)$ para compreender isto. Neste caso:

$$G_3(s) = \frac{2s+2}{2s+1} = 2\frac{(s+1)}{(2s+1)} = \frac{(s+1)}{(s+0.5)}.$$

d) Mesma equação geral do item anterior, mas agora: $\tau_1 = -1$. Note que neste caso, teremos um sistema do tipo:

$$G_4(s) = \frac{-2s+2}{2s+1} = 2\frac{(-s+1)}{(2s+1)} = \frac{-(s-1)}{(s+0.5)}$$

Neste caso temos o zero do sistema no semi-plano direito positivo do plano-s (ou o que se poderia tentar chamar de um "zero instável"). Este é um sistema do tipo: fase não mínima.

Apresente o mesmo tipo de figura (2 colunas) requerido para o item (c). Note que tanto no item (c) quanto (d), o sistema converge para $y(\infty) = 2$.

5) Considere um circuito RC série, conforme mostra a figura abaixo:

- a) Modele o circuito obtendo uma equação diferencial que permita prever a tensão v(t)(d.d.p.) desenvolvida nos terminais do capacitor em função da tensão de entrada V_s . b) Use a transformada de Laplace para obter a solução para a equação v(t) em função da tensão de entrada V_s . Neste caso, considere que V_s seja um **degrau** de amplitude 5,0 Volts
- aplicado no instante t = 0.
- c) Apresente um gráfico mostrando como varia a tensão v(t), depois de aplicada a tensão
- degrau de amplitude $V_s = 5$ Volts. d) Ressalte neste mesmo gráfico, o valor de v(t) comparado percentualmente com V_s quando: a) $t = \tau$ (uma constante de tempo), b) $t = 2\tau$ (2 constantes de tempo), e c) $t = 4\tau$ (4 constantes de tempo); Onde o termo $\tau = R \cdot C$, corresponde a constante de tempo deste sistema. Supor neste exercício que: $R=10~\mathrm{K}\Omega$ e $C=100~\mathrm{\mu}F$.
- 6) Considere o mesmo circuito RC anterior, mas agora a tensão de entrada V_s é uma rampa que segue uma inclinação (ou taxa) de 1,0 Volt por segundo. Calcule os mesmos items de (a) à (d) requeridos no item anterior, mas considerando agora este novo tipo de entrada. Apenas mude um pouco o gráfico requerido para o item (d): mostre usando uma linha tracejada, como varia a tensão na entrada do circuito e sobreposto no mesmo gráfico, como varia a tensão nos terminais do capacitor (tente obter algo semelhante ao mostrado na figura ao lado).

Realizar a expansão em frações parciais da função abaixo:

$$F(s) = \frac{s+5}{s^2+3s+2}$$

Obs.: Você pode usar as funções roots() e residue() do MATLAB.

Continua...

- 8) Seja um trocador de calor como o mostrado na figura abaixo. Existe um controlador Proporcional (simples ganho K) que tenta manter a temperatura de saída do processo, $T_s(t)$, no valor desejado $T_{s,ref}(t)$ mesmo quando o sistema é confrontado com variações na vazão do fluído do processo, W(t) e variações na temperatura de entrada $T_e(t)$. A vazão de vapor $W_v(t)$ é a variável sendo manipulada. Dados:
 - valor desejado da temperatura de saída do fluído de processo: $\overline{T}_{s,ref}$ = 90 °C;
 - vazão do fluído de processo a ser aquecido em regime permanente nas condições normais de operação: $\overline{W}=12$ Kg/s;
 - temperatura de entrada do fluído de processo em regime permanente nas condições normais de operação: $\overline{T}_e = 50 \, ^{\circ}\mathrm{C}$;
 - vazão máxima pela válvula de vapor: $W_v = 1.6$ Kg/s. Considera-se que a válvula tenha característica linear de vazão. Sua constante de tempo é de 3 segundos;
 - faixa calibrada do transmissor de temperatura: 50 à 150 °C. Constante de tempo do transmissor de temperatura: 10 segundos. Sinal de saída do transmissor: 3 a 15 psi;
 - calor específico do fluído no processo: $c_{P,L} = 3.75 \text{ kJ/(Kg } \circ \text{C)};$
 - calor latente do vapor: $\lambda_v = 2250 \text{ kJ/Kg}$;
 - massa do fluído do processo no interior do trocador de calor: $m_L=360~{
 m Kg}$.

Pede-se:

- a) Desenhe o diagrama de blocos da malha de controle de temperatura deste sistema, colocando o nome da variável que sai de cada bloco e sua respectiva unidade.
- b) Determine as funções transferência do transmissor de temperatura, G_T ; da válvula de controle, G_v ; do processo, G_p ; e das variáveis de carga $W(G_{L1})$ e $T_e(G_{L2})$;

Segue diagrama P&ID deste processo:

Deve ser obtido um diagrama de blocos semelhante ao mostrado na próxima figura:

Obs.: Esta questão foi baseada no exemplo 4.6.3 (páginas 227 à 234) do livro indicado abaixo:

GARCIA, Claudio. Controle de processos industriais: estratégias convencionais. Editora Blucher, 2017.
 (temporariamente disponibilizado na pasta: https://drive.google.com/drive/folders/1CuaqSVg3_UKR0p-gEv6nb9NUFS2_edFO?usp=sharing.).