Matlab Befehlsreferenz

Philipp Kälin Version vom 2. Januar 2013

1 Systemspezifische Befehle

Befeh	ıle
-------	-----

clc

Alle Variabelnzuweisungen löschen clear

Hilfe zu einer Funktion help

Variabelnzuweisung wieder laden load

lookfor Befehle nach einem Suchbegriff durchsuchen save Alle Variabelnzuweisungen speichern Dateien im aktuellen Verzeichnis anzeigen what

Commandfenster löschen

Verwendete Variabeln anzeigen whos Befehl ausführen ohne anzuzeigen

simplify() Ausdruck vereinfachen

pretty() Ausdruck in lesbarer Form anzeigen Gitterlinien in einem Diagramm anzeigen grid on

Variabeln

Letztes Resultat ans

рi

Imaginäre Einheit

Operatoren

- Matrix Multiplikation
- Array Multiplikation
- Array Division
- Matrix Exponent
- Array Exponene
- Transponiert (mit konjugiert komplexen Zahlen)
- Transponiert (ohne Veränderung der komplexen Zahlen)
- Lösung eines linearen Gleichungssystems

Diverse

Zufallszahlen zwischen 0 und 1 gleichverteilt rand(x) Zufallszahlen um 0 mit Gaussverteilung randn(x)

2 **Funktionen**

Allgemeine Mathematische Funktionen

Symbol	Matlab	Beschreibung
ln(x)dx	diff(log(x),x)	
x	abs(x)	Betrag
	angle(x)	Argument, Phase
	ceil(x)	Runden (grösser oder gleich) zur nächsten Zahl
	floor(x)	Runden (kleiner oder gleich) zur nächsten Zahl
	round(x)	Rundung zur nächsten ganzen Zahl
	conj(x)	Konjugiert komplexe Zahl
e^x	exp(x)	Exponentioalfunktion
ln(x)	log(x)	Natürlicher Logarithmus
log(x)	log10(x)	Zehnerlogarithmus
	imag(x)	Imaginärteil einer Zahl
	real(x)	Realteil einer Zahl
$\frac{x}{y}$ \sqrt{x} $x!$	rem(x,y)	Ganzzahliger Rest von
$\sqrt[3]{x}$	sqrt(x)	Quadratwurzel
x!	<pre>factorial(x)</pre>	Fakultät
$\binom{n}{k}$	nchoosek(n,k)	Binomialkoeffizient
$X_0 = \mu$	mean(Array)	Linearer Mittelwert
	var(Array)	Varianz
σ	std(Array)	Standardabweichung
X^2	$mean(Array.^2)$	Quadratischer Mittelwert
	[C, D] = xcorr(A, B)	Auto- bzw. Kreuzkorelation
$\frac{2}{\sqrt{\pi}} \cdot \int_{0}^{x} e^{-t^2} dt$	erf(x)	Errorfunktion
$\frac{2}{\sqrt{\pi}} \cdot \int_{0}^{x} e^{-t^2} dt$ $\frac{2}{\sqrt{\pi}} \cdot \int_{x}^{\infty} e^{-t^2} dt = 1 - erf(x)$	erfc(x)	Komplementäre Errorfunktion

2.2 Funktionen im Zeibereich

Name	Symbol	Matlab	Beschreibung
Einschaltfunktion	u(t)	heaviside(t)	
Signumfunktione	sgn(t)	sign(t)	
Rampenfunktion	r(t)	ramp(t)	$r(t) - t \cdot u(t)$
Reckteckimpuls	$p_a(t)$		u(t+a) - u(t-a)
Dreieckimpuls	$\Lambda_a(t)$		
Sincfunktion	$sinc_a(t)$	sinc(t)	$\frac{sin(\pi \cdot t)}{\pi t}$
Impulsfunktion	$\delta(t)$	<pre>dirac(t)</pre>	Nur Symbolisch

3 Arrays

3.1 Erstellung von Arrays

```
linspace(a,b,c) Erstellt einen Array von a bis b mit c (Anzahl) Werten. c kann optional auch weggelassen werden, als Standardwert wird dann 100 verwendet.

logspace(a,b,c) Erstellt einen Array von 10^a bis 10^b. Für c gilt dasselbe wie bei linspace.

rand(y,x) Erstellt einen Array mit y Spalten und x Zeilen mit Zufallszahlen zwischen x0 und x1.
```

3.2 Rechnen mit Arrays

4 Plotten

```
hist(Array, [min, step, max])

plot(x,y)

stem(f)

Erstellt eine Histogramm aus den Werten eines Arrays.

Erstellt einen normalen x-y Plot

Erstellt einen Plot bei dem die Werte als horizontale Pfeile dargestellt werden
```

5 Programmier-Syntaxe

5.1 Allgemeine Konstrukte

5.2 Zusammenhängende Beispiele

6 Beispiele

6.1 Lineares Gleichungssystem

Ein Gleichungssystem der Form Ax = b wird folgendermassen gelöst:

6.2 Polynomdivision

Ein und Ausgegeben wird jeweils nur ein Array mit den Koeffizienten des Polynoms

$$\frac{x^4 - 3x^3 + 3x^2 - x}{x - 1} = x^3 - 2x^2 + x$$

R = deconv([1 -3 3 -1 0], [1 -1]) R = [1 -2 :]

6.3 Laplace

$$f(t) = -1.25 + 3.5te^{-2t} + 1.25e^{-2t} \rightarrow F(s) = \frac{s-5}{s(s+2)^2}$$

f = -1.25 + 3.5 * t *
$$\exp(-2*t)$$
 + 1.25 * $\exp(-2*t)$
F = $\sup(-2*t)$ \rightarrow F = $(s - 5)/(s*(s + 2)^{\wedge} 2)$

6.4 Inverse Laplace

$$F(s) = \frac{s-5}{s(s+2)^2} \rightarrow f(t) = -1.25 + 3.5te^{-2t} + 1.25e^{-2t}$$

 $F = (s-5)/(s*(s+2)^2)$ simplify(ilaplace(F))

6.5 Partialbruchzerlegung

$$\begin{array}{llll} \mathbf{b} = [4\ 12] & \mathbf{Z\"{a}hlerpolynom} \\ \mathbf{a} = [1\ 3\ 2\ 0] & \mathbf{Nennerpolynom} \\ [\mathbf{r},\mathbf{p},\mathbf{k}] = \mathbf{residue}(\mathbf{b},\mathbf{a}) & \mathbf{Partialbruchzerlegung} \\ \mathbf{r} = [2;\ -8;\ 6] & \mathbf{Residuen} \\ \mathbf{p} = [-2;\ -1;\ 0] & \mathbf{Pole} \\ \mathbf{k} = [] & \mathbf{Restterm\ der\ Polynomdivision} \\ \rightarrow & \frac{r_n}{x-p_n} + \ldots + \frac{r_1}{x-p_1} + \frac{r_0}{x-p_0} \end{array}$$

6.6 LTI-Systeme

$$H(s) = \frac{s\frac{L}{R}}{s^2LC + s \cdot \frac{L}{R} + 1} \quad \Rightarrow \quad \frac{1s + 0}{1s^2 + 2s + 1}$$

 $R=1\Omega$ L=1H C=1F ightarrow H = tf([1 0], [12 1])