

הנדסת תוכנה

Software Engineering

פתרון תרגיל 2 להגשה במבני נתונים (קורס מס׳ 10117)

מרצה: ד"ר ראובן חוטובלי

<u>שאלה 1</u>

		סעיף	סעיף	סעיף	סעיף	סעיף	סעיף	סעיף	סעיף	סעיף	סעיף	סעיף	
יייג	יייב	יייאי	"	טי	ח׳	77	ין	הי	די	ג׳	בי	אי	
X			X		X			X		X	X	X	נכון
	X	X		X		X	X		X				לא נכון

		תשובה			
4	3	2	1		שאלה
X				א	.2
	X			ב	
	X			λ	
		X		T	
		X		ח	
			X	1	
			X	7	
		X		n	
	X			v	
	X			,	
X				וייא	
		X		יייב	
	X			רייג	
X				יייד	
X				טייו	
			X	טייז	
		X		רויד	
	X			יייח	
X				רייט	
	X			٥	
		X		כייא	
	Х			כייב	

שאלה 3

א.

... האם הטענה הבאה נכונה תמיד? אם כן ענה ב-יינכונהיי אחרת יילא נכונהיי. if $g(n)+f(n)\in\Omega(t(n))$ and $g(n)-f(n)\in O(t(n))$ then $f(n)\in\Omega(t(n))$ אם לדעתך הטענה נכונה אז הוכח אותה אחרת תנו דוגמא נגדית.

: **הטענה איננה נכונה** כי אם נבחר

$$f(n)=n$$
 and $g(n)=n^2$ and $t(n)=n^2$ אז נקבל:
$$f(n)+g(n)=n^2+n\geq c_1n^2 \quad \forall n\geq n_1 \quad \exists t\in S(n)=n$$
לכן מתקיים $f(n)+g(n)\in\Omega(t(n))$ כנדרש.

$$g(n) - f(n) = n^2 - n \le n^2 \le c_2 n^2$$
 $\forall n \ge n_2$, כמו כן,

לכן מתקיים כנדרש. $g(n) - f(n) \in O(t(n))$

עתה היא א פולה ? $n\in\Omega(n^2)$ האם ? כלומר האם ? $f(n)\in\Omega(t(n))$ האם היא לא.

 $n \notin \Omega(n^2)$ and $n^2 \in \Omega(n)$ ולפי המשפט ווו $\frac{n}{n^2} = 0$ כי

: כלומר אם הטענה הייתה נכונה אז יתקיים . $f(n)=3^{2n}$ א. הטענה אינה נכונה אז יתקיים

$$C_1^*3^n \le 3^{2n} \le C_2^*3^n$$

 3^n - לאחר חילוק כל האגפים ב

נקבל: $\mathbf{C}_1 \leq 3^n \leq \mathbf{C}_2$ ולא יכול להיות ש: $\mathbf{C}_1 \leq 3^n \leq \mathbf{C}_2$ משייל ולא יכול להיות ש: 3

<u>ډ.</u>

$$2^{O(\lg\lg n)} = O(\lg n)$$

לא נכון. הוכחה:

$$2^{O(\lg\lg n)} \leq 2^{c\lg\lg n}$$
 לפי הגדרה
$$= 2^{\lg((\lg n)^c)}$$
 חוקי לוגים
$$= (\lg n)^c \qquad \qquad 2^{\lg x} = x$$

$$\neq O(\lg n) \qquad \qquad \forall c > 1$$

<u>שאלה 4:</u>

סדר עולה (לא יורד) משמאל לימין

$$2^{\lg n}$$
, $\lg(n^2!)$, n^{10} , $\{2^{\lg^2 n}$, $n^{\lg n}\}$, $4^{\sqrt{n}}$, 3^n , $\{2^{2n}$, $4^n\}$, $(n+1)^n$, n^{n+1} , $(4n)!$

פונקציות תחת סוגריים מסולסלים יש להן אותה התנהגות אסימטוטית

$$2^{(\log n)^2} = 2^{\log n \times \log n} = n^{\log n} \to f_4 \in \Theta(f_5)$$

: טענת עזר

$$\log(n^{2}!) = \log(1 \cdot 2 \cdot \dots \cdot (n^{2} - 1) \cdot n^{2}) = \log(1) + \log(2) + \dots + \log(n^{2} - 1) + \log(n^{2})$$

$$\underbrace{\log(1) + \log(2) + \dots + \log(n^{2} - 1) + \log(n^{2})}_{n^{2} \text{ elements, } \log(n^{2}) \text{ being the largest}} \leq n^{2} \cdot \log(n^{2}) = 2n^{2} \log(n) \Rightarrow \log(n^{2}!) \in O(n^{2} \log(n))$$

$$\underbrace{\log(1)}_{0} + \underbrace{\log(2) + \dots + \log(n^2 - 1) + \log(n^2)}_{n^2 - 1 \text{ elements, } \log(2) \text{ being the smallest}} \geq (n^2 - 1) \underbrace{\log(2)}_{1 \text{ assuming base 2}} = n^2 - 1 \Rightarrow \log(n^2!) \in \Omega(n^2)$$

הוכחות עבור כל זוג עוקב:

$$\lim_{n\to\infty} \frac{2^{\log n}}{\log((n^2)!)} = \lim_{n\to\infty} \frac{n}{\log((n^2)!)} \le \lim_{n\to\infty} \frac{n}{n^2-1} = 0 \quad .1$$

$$\lim_{n \to \infty} \frac{\log((n^2)!)}{n^{10}} \le \lim_{n \to \infty} \frac{n^2 \log n^2}{n^{10}} = \lim_{n \to \infty} \frac{2n^2 \log n}{n^{10}} = \lim_{n \to \infty} \frac{\log n}{n^8} = 0 \quad .2$$

$$\lim_{n\to\infty} \frac{n^{10}}{n^{\log n}} = 0$$
, $10 < \log n$.

$$\lim_{n\to\infty} \frac{n^{\log n}}{2(\log n)^2} = \frac{n^{\log n}}{n^{\log n}} = 1 \quad .4$$

$$\lim_{n\to\infty} \frac{2^{(\log n)^2}}{4^{\sqrt{n}}} = \lim_{n\to\infty} \frac{n^{\log n}}{4^{\sqrt{n}}} = \lim_{n\to\infty} \frac{e^{\ln n^{\log n}}}{e^{\ln 4^{\sqrt{n}}}} \le \lim_{n\to\infty} \frac{e^{\log n*(\ln n)}}{e^{\sqrt{n}\ln(4)}} = 0, \log n*lnn < .5$$

 $\sqrt{n}\ln(4)$

$$\lim_{n \to \infty} \frac{4^{\sqrt{n}}}{3^n} < \lim_{n \to \infty} \frac{4^{\frac{n}{2}}}{3^n} = \lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} (\frac{2}{3})^n = 0 \quad .6$$

$$\lim_{n \to \infty} \frac{3^n}{4^n} = \lim_{n \to \infty} (\frac{3}{4})^n = 0 .7$$

$$\lim_{n \to \infty} \frac{4^n}{2^{2n}} = \frac{4^n}{4^n} = 1 .8$$

let
$$n_0 = 4$$
 and $\forall n \ge n_0$ $4^n < (n+1)^n$.9

$$\lim_{n \to \infty} \frac{(n+1)^n}{n^{n+1}} = \lim_{n \to \infty} \frac{(n+1)^n}{n \cdot n^n} = \lim_{n \to \infty} \frac{1}{n} \cdot \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} 0 \cdot e = 0 .10$$

$$\exists n_0: \ \forall n \ge n_0 \quad n^{n+1} > (n+1)^n$$

AFEKA אפקר המכללה האקדמית להנדסה בתל־אביב

$$a_{n+1} = \frac{(4n+4)!}{(n+1)^{n+2}}$$
 לכך $a_n = \frac{(4n)!}{n^{n+1}} : 11$. געדיר

$$\lim_{n \to \infty} \frac{\frac{(4n+4)!}{(n+1)^{n+2}}}{\frac{(4n)!}{n^{n+1}}} = \lim_{n \to \infty} \frac{n^{n+1} \cdot (4n+4)!}{(4n)! \cdot (n+1)^{n+2}} = \lim_{n \to \infty} \frac{n \cdot n^n \cdot (4n+4)!}{(4n)! \cdot (n+1)^n \cdot (n+1)^2} =$$

$$= \lim_{n \to \infty} \frac{n \cdot n^n \cdot (4n)! \cdot (4n+1)(4n+2)(4n+3)(4n+4)}{(4n)! \cdot (n+1)^n \cdot (n+1)^2} =$$

$$\lim_{n \to \infty} \frac{n^n}{(n+1)^n} \cdot \frac{n(4n+1)(4n+2)(4n+3)(4jn+4)}{(n+1)^2} =$$

:לכן אם נגדיר $b_{\scriptscriptstyle n} = \frac{n^{\scriptscriptstyle n+1}}{(4n)!}$ אז בהמשך למה שקיבלנו עד כה נקבל

$$\lim_{n \to \infty} \frac{(n+1)^n}{n^n} \cdot \frac{(n+1)^2}{n(4n+1)(4n+2)(4n+3)(4jn+4)} =$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \cdot \frac{(n+1)^2}{n(4n+1)(4n+2)(4n+3)(4jn+4)} = e \cdot 0 = 0$$

$$\Rightarrow (4n)! > n^{n+1}$$

<u>שאלה 5:</u>

<u>סעיף א</u>

.(a+b<1 חסום עבור $\sum_i (a+b)^i$ שימו לב שהסכום (שימו ל- $\Theta(\mathbf{n})$ חסום עבור $-\Theta(\mathbf{n})$

שבונים עץ רקורסיה רואים:

 $\left(lpha+eta
ight)^0\cdot n$: ברמה 0 סכום האיברים החופשיים ברמה

 $\left(lpha+eta
ight)^{\!1}\cdot\!n$: ברמה 1 סכום האיברים החופשיים הוא

 $\left(lpha+eta
ight)^2\cdot n$: ברמה 2 סכום האיברים החופשיים ברמה

 $\left(lpha+eta
ight)^3\cdot n$: ברמה 3 סכום האיברים החופשיים

וכך ממשיכים.

 $\left(\alpha+\beta\right)^i\cdot n$: לכן, ברמה \mathbf{i} סכום האיברים החופשיים הוא

. logn אך מס' הרמות שתפתחנה כמו שראינו בהרצאה הוא מסדר גודל

$$T(n) = \sum_{i=0}^{\log n} (\alpha + \beta)^i \cdot n = n \cdot \sum_{i=0}^{\log n} (\alpha + \beta)^i$$
 לכן נקבל:

$$lpha+eta<1$$
 כי עבור $T(n)=n\cdot\sum_{i=0}^{\infty}\left(lpha+eta
ight)^i=n\cdot c$ ני עבור ח-יים גדולים נקבל

.(סדרה הנדסית אינסופית יורדת) מתכנס $\sum_{i=0}^{\infty} \left(lpha + eta
ight)^i$ הטור

T(n) = O(n) לכן

<u>– סעיף ב</u>

$$T(n) = T(n/2 + \sqrt{n}) + \sqrt{6044}$$

T(n) = T(n/2) + : פתרון. קל לראות כי $n/2 > \sqrt{n}$ כמעט לכל $n/2 > \sqrt{n}$ כעת נוכיח שנוסחא המקורית היא אכן כזו. $\Theta(\log n)$. כעת נוכיח שנוסחא המקורית היא אכן כזו.

טענה 1. קיימים שני קבועים, $c, n_0 > 0$ כך שלכל $n > n_0$ טענה 1.

$$T(n) \le c \cdot \log n$$

:מתקיים $n/2+\sqrt{n}$ שעבור נניח שעבור עם הצעד, נתחיל עם האינדוקציה על מתקיים:

$$T(n/2 + \sqrt{n}) \le c \cdot \log(n/2 + \sqrt{n})$$

ולכן:

$$T(n) = T(n/2 + \sqrt{n}) + \sqrt{6044} \le c \cdot \log(n/2 + \sqrt{n}) + \sqrt{6044}$$

(נקבל: תקבל מ $, n/2 + \sqrt{n} \leq n/2 + n/4 = 3n/4$ כי: נקבל מקבל, ולכן מ $, n_0 = 16$

$$T(n) \leq c \cdot \log \left(n/2 + \sqrt{n}\right) + \sqrt{6044} \leq c \cdot \log \left(3n/4\right) + \sqrt{6044}$$

. נקבל: $c\log n$ מין מ' הנ"ל המיא עבור איזה אנו שואלים עבור איזה מ

$$\begin{array}{rcl} c \cdot \log{(3n/4)} + \sqrt{6044} & \leq & c \log{n} \\ & \sqrt{6044} & \leq & c \cdot (\log{n} - \log{(3n/4)}) = c \cdot (\log{4/3}) \\ & \frac{\sqrt{6044}}{\log{(4/3)}} & \leq & c \end{array}$$

. מתקיים מאינדוקציה אינדוקציה , $n \geq 16$ ועבור כנ"ל, ועבור כי עבור כי עבור

בסיס: השלם לבד.

. נהנ"ל אנו מסיקים כי $T(n) \in O(\log n)$ כעת נראה חסם תחתון.

יטענה 2. קיימים קבועים $c, n_0 > 0$ כך שלכל $n \ge n_0$ טענה 2. קיימים

$$T(n) \ge c \cdot \log n$$

הוכחה: צעד האינדוקציה: נניח נכונות עבור $n/2+\sqrt{n}$ שמתקיים:

$$T(n/2 + \sqrt{n}) \ge c \cdot \log(n/2 + \sqrt{n})$$

נקבל:

$$T(n) = T(n/2 + \sqrt{n}) + \sqrt{6044} \ge c \cdot \log\left(n/2 + \sqrt{n}\right) + \sqrt{6044} \ge c \cdot \log\left(n/2\right) + \sqrt{6044}$$
אנו אושלים מתי הנ"ל גדול מ ־ $c \cdot \log n$. נקבל:

$$\begin{array}{rcl} c \cdot \log \left(n/2 \right) + \sqrt{6044} & \geq & c \cdot \log n \\ & \sqrt{6044} & \geq & c \cdot \log 2 \\ & \sqrt{6044} & \geq & c \end{array}$$

. קטן מספיק, קטן לכל לכל אינדוקציה האינדוקציה וקיבלנו שצעד האינדוקציה וקיבלנו

בסיס - השלם לבד.

<u>– סעיף ג</u>

$$T(n) = T(\log n) + 1$$

נציב את הנוסחא בעצמה פעם אחת ונקבל:

$$T(n) = T(\log^{(2)} n) + 2$$

נציב פעם נוספת ונקבל:

$$T(n) = T(\log^{(3)} n) + 3$$

ובאופן כללי:

$$T(n) = T(\log^{(i)} n) + i$$

את הנ"ל יש להוכיח באינדוקציה. מתי נגיע לT(1) כלומר, מתי $\log^{(i)} n = 1$

נקבל: $i = \log^* n$ כאשר $i = \log^* n$, נקבל:

$$T(n) = 1 + \log^* n$$

 $\Theta(\log^* n)$ - ולכן הנוסחא היא

<u>– סעיף ד</u>

$$T(n) = \frac{1}{n} + \sum_{i=1}^{n-1} [T(i) - T(i-1)]$$
; $T(0) = 0$, $T(1) = 1$

נפתח את הסכום לעיל, נתחשב בתנאי ההתחלה T(0)=0, ונקבל

$$T(n) = \frac{1}{n} + T(1) - T(0) + T(2) - T(1) + T(3) - T(2) + \dots + T(n-2)$$
$$-T(n-3) + T(n-1) - T(n-2) = \frac{1}{n} - T(0) + T(n-1)$$
$$= \frac{1}{n} + T(n-1)$$

$$T(n) = T(n-1) + \frac{1}{n}: 2$$
בסה"כ קיבלנו
$$T(n) = T(n-1) + \frac{1}{n}: 3$$
כעת נבצע לנוסחא זו 1-1 איטרציות ונקבל:
$$T(n) = T(n-1) + \frac{1}{n} = T(n-2) + \frac{1}{n-1} + \frac{1}{n} = T(n-3) + \frac{1}{n-2} + \frac{1}{n-1} + \frac{1}{n}$$

$$= \dots = T(1) + \sum_{i=n}^{1} \frac{1}{i} = 1 + \sum_{i=1}^{n} \frac{1}{i} = 1 + \emptyset(\ln(n)) + O(1) = \emptyset(\log n)$$

שאלה 6:

 $.\emptyset(logn)$ הוא T(n) כלומר, קיבלנו כי סדר הגודל של

```
SimpleCheck(A,r,q)
   return (A[q] - A[r] > q-r)
}
                                .SimpleCheck(A,1,n) האלגוריתם המבוקש בשאלה אם כן הינו
     ,q ו r ושני מספרים טבעיים A נתאר אלגוריתם רקורסיבי בשם SolveB המקבל כפרמטרים מערך
                                                                       באשר r<q כדלקמן:
  SolveB(A,r,q)
      If (r+1 = q) return A[r]+1;
      m = (r+q) \operatorname{div} 2;
      if (SimpleCheck(A,r,m) == true)
         return SolveB(A,r,m);
      else
         return SolveB(A,m,q);
   }
                SolB(A,1,n)
                                                       האלגוריתם המבוקש בשאלה אם כן הינו
       if (SimpleCheck(A,1,n) == false)
          Print "There is no such element in A";
      else
          return SolveB(A,1,n);
    }
   _{
m q} ו _{
m I} המקבל כפרמטרים מערך A ושני מספרים טבעיים SolveC ג. נתאר אלגוריתם רקורסיבי בשם
                                                                       באשר r<q כדלקמן:
SolveC(A,r,q)
```



```
 \begin{array}{l} \mbox{if } (q < r) \mbox{ return false;} \\ \mbox{m} = (q + r) \mbox{ div 2;} \\ \mbox{if } (A[m] = m) \mbox{ return true;} \\ \mbox{if } (A[m] > m) \mbox{ return SolveC}(A,r,m-1) \\ \mbox{else return SolveC}(A,m+1,q); \\ \mbox{\}} \\ \end{array}
```

SolveC(A,1,n) האלגוריתם המבוקש בשאלה אם כן הינו

<u>שאלה 7</u>

A is a Boolean (1 or 0 values) matrix of size n*n.

Find a data structure that supports the following operations in the given time:

	<u>Operation</u>	Time
init(n)	Initialize A with the value 1	O(n ²)
flip(i,j)	A[i,j]=!A[i,j]	O(1)
hasRowOf1	Return true iff A has a row that contains only <u>1-s</u>	O(1)
hasRowOf0	Return true iff A has a row that contains only <u>0-s</u>	O(1)

Solution:

We will use the uses the following data structures:

- A[n][n] the matrix
- Sum[n] An array containing sums of the rows in A. Sum[i] = the sum of the row i in A.
- count1 = how many cells in Sum contains n
- count0 = how many cells in Sum contains 0

hasRowOf1()
return count1>0;
hasRowOf0()
return count0>0;

init()
fill A with 1's
fill Sum with n.
count1=n
count0=0

שאלה 8

4	3	2	1	
X				a
X				b
	X			c
	X			d
		X		e
		X		f