NICHOLAS SABRY

BC, Canada • (778) 581-6075 • Nicholas@Sabry-Engineering.com

Education

PhD, Mechanical Engineering University of British Columbia

May 2020 - Present

Sept 2016 - April 2020

University of British Columbia

BASc, Mechanical Engineering

With distinction

Language Proficiency

English (first language)

Awards/Recognition

- UBC Okanagan Graduate Research Scholarships (2022) \$4,200
- University Graduate Fellowship (2021) \$5,800
- Special University of BC Okanagan Graduate Award
- British Columbia Graduate Scholarship (2020) \$15,000
- Graduate Dean Entrance Scholarship (2020) \$5,000
- Go Global International Learning Programs Award (2019) \$2,000
- NSERC Undergraduate Student Research Award (2019) \$3,000
- BC Hydro Scholarship in Engineering (2018) \$1,000
- Deputy Vice-Chancellor Scholarship for Continuing Students (2016, 2019) \$1,000 per year
- 3rd Place Western Engineering Competition (2019)
- 1st Place UBC Re-Engineering Competition (2018)
- 1st Place UBC Hovercraft Best Presentation Award (2018)
- 1st Place UBC Hovercraft Competition (2018)
- 1st Place Gearbox Design Competition (2017)
- 1st Place UBC CAD/CAM Competition (2016)

Applicable Work Experience

Engineering and Materials Researcher

May 2020 - Present

High Performance Powertrain Materials Lab

- Lead researcher in Friction Stir Welding (FSW)
 - Coordinated successful equipment acquisition, managed neutron diffraction beamtime proposals, and implemented thorough safe operating procedures
 - o Directed the coordination of industry presentations, and monitored project deadlines to ensure efficient project completions
 - Conceptualized and executed a comprehensive characterization assessment, providing novel insights into the effects of friction stir welding on complex multi-welded components

Industrial Collaboration

May 2020 - Present

Nemak Canada and Nemak Global

- Established a research project that examined the effects of friction stir welding and subsequent straightening processes on the evolution of residual stress in dissimilar aluminum alloys (wrought 6061 - HPDC A365)
- Conducted extensive optical and scanning electron microscopy analyses to draw correlations between the residual stress, mechanical properties, and microstructure of the welded materials
- Utilized advanced Electron Backscatter Diffraction (EBSD) analyses to study texture evolution and its correlation to mechanical property variations at the weld surface

- Applied Energy-dispersive X-ray spectroscopy and computed tomographic 3D maps to characterize the stirring characteristics between dissimilar friction stir welded materials (wrought 6061 - high pressure die cast A365)
- The insights gained from this research were used to optimize the manufacturing process of highefficiency hybrid-electric vehicle battery trays, which are now in mass production

METALTec industrial R&D group

- Determined the effects of the order and application of friction stir welds on the evolution of residual stress standardized plates by conducting neutron diffraction studies
- Performed EBSD analyses to correlate texture evolution as a function of FSW tool traverse direction and speed parameters
- Once finished the results from this work will be used to optimize the application of welds on multi-welded components
- Developed an innovative casting design to standardize the casting plate material required of a dissimilar lap friction stir weld

Previous Research Collaborations

May 2018 - July 2018

LTH, Lund University of Technology

- Conducted fitness-for-service characterization of novel aluminum alloys for next-generation IC engines, utilizing state-of-the-art material analysis and testing equipment
- Employed state-of-the-art techniques to characterize the aluminum alloys with additions of rare earth elements, such as Cerium, to evaluate mechanical properties at room temperature, including creep, tensile, torsion, and fatigue
- Utilized advanced optical microscope and embedded analysis systems to accurately quantify differences in brittle and ductile modes of fracture and analyze the resulting fracture surface

Teaching Experience

ENGR 377 – Manufacturing Processes (Head Teaching Assistant)

Sept 2020 - Dec 2022

- Record of teaching a highly successful 3-credit course in Methods of Manufacturing (2020W1, 2021W1, and 2022W1), covering complex problem-solving and calculations across four sections of up to 35-40 students per section
- Diligently managed and coordinated a cohort of 140 engineering students, facilitating their successful completion of all group research reports
- Administered final exams with attention to detail, invigilating and correcting all final reports and exams to ensure academic quality

Software/Program Experience

Word/Excel/Powerpoint, Matlab, Solidworks, Fusion360, ThermoCalc, ImageJ, JavaScript, C++

Extracurriculars/Additional Interesting Projects

Production Enhancement – Tolko Industries

Sept 2019 – April 2020

- Led a team of 5 to successfully design, construct, and test an improved bin production layout for industrial fruit creates
- Designing processes, and production layouts for equipment installation, assembly, machining and material handling
- Utilizing 5S+1 systems, preventive maintenance schedules, and PLC upgrades to increase bin production efficiency and consistency

Oral Conference Presentations

 TMS 2023 Conference, "Effects on Microhardness, Texture, and Element Concentration Between the Sliding and Sticking Mechanism During Friction Stir Welding", San Diego, March 2023.

Publications

- N. Sabry, J. Stroh, D. Sediako, "Characterization of Microstructure and Residual Stress Following the Friction Stir Welding of Dissimilar Aluminum Alloys," CIRP Journal of Manufacturing Science and Technology, vol. 41, pp. 365-379, 2023. https://doi.org/10.1016/j.cirpj.2022.11.021
- N. Sabry, J. Stroh, D. Sediako, "Effects on Microhardness, Texture, and Element Concentration Between the Sliding and Sticking Mechanism During Friction Stir Welding," Light Metals 2023, 2023. http://dx.doi.org/10.1007/978-3-031-22532-1_51