- 1.
- a. For this pooled OLS regression, we are going to use three dependent variables vio (violent crime rate per 100,000), rob (robbery rate per 100,000), and mur (murder rate per 100,000). We will use the following regression formulas. Results can be seen in Table 1.
 - i. $vio_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + e_{it}$
 - ii. $rob_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + e_{it}$
 - iii. $mur_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + e_{it}$
- b. Now using the same data but preforming a random-effect regression we use the following formulas. Results can be seen in Table 2.
 - i. $vio_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + a_i + e_{it}$
 - ii. $rob_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + a_i + e_{it}$
 - iii. $mur_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + a_i + e_{it}$
- c. Now using the same data but preforming a fixed-effect regression we use the following formulas. Results can be seen in Table 3
 - i. $vio_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + a_i + e_{it}$
 - ii. $rob_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + a_i + e_{it}$
 - iii. $mur_{it} = b_0 + b_1 shall_{it} + b_2 year_{it} + b_3 avginc_{it} + b_4 pm1029_{it} + b_5 density + b_6 pop + a_i + e_{it}$
- d. For regressions a, we find a large effect and a high significance for most of our regressors especially for murder rate. This contrasts with our random regression which have no statistical significance and our fixed effect regression which shows very little statistical significance. Based on these results it is likely our pooled OLS regression and our random effect regression gives us inconsistent estimators.
- e. The results for our Hausman test can be seen in Table 4, Table 5, and Table 6. Based on these results all our tests reject the null hypothesis of being consistent. Based on this all our results are inconsistent. The requirements for using the Hausman test is that the data be homoscedastic and not be serially correlated.
- 2. |
- a. Our three regression results from the following equations can be seen in Table 7
 - i. Fatalityrate_{it} = = $b_0 + b_1$ sb usage_{it} + b_2 drinkage21_{it} + b_3 drinkage21_{it} * speed70_{it} + a_i + e_{it}
 - ii. Fatalityrate_{it} = = $b_0 + b_1$ sb_usage_{it} + b_2 drinkage21_{it} + b_3 drinkage21_{it} * speed70_{it} + a_i + λ_t + e_{it}
 - iii. Fatalityrate_{it} = = $b_0 + b_1$ sb_usage_{it} + b_2 drinkage21_{it} + b_3 drinkage21_{it} * speed70_{it} + a_i + λ_t + $\eta_i t$ + e_{it}

- b. Using the comparison seen in Table 8 and our previous results we can conclude that speed limit has no significant effect on DUI. In our results in part A we see that drinking age * Speed 70 has no statistical significance. Based on these two results we conclude that lowering the speed limit has no significant effect on DUI.
- c. Results can be seen in Table 9
 - i. Δ Fatalityrate_{it} = = b_o + b₁ Δ sb_usage_{it} + b₂ Δ drinkage21_{it} + b₃ Δ (drinkage21_{it} * speed70_{it}) + e_{it}
 - ii. Δ Fatalityrate_{it} = = b_o + b₁ Δ sb_usage_{it} + b₂ Δ drinkage21_{it} + b₃ Δ (drinkage21_{it} * speed70_{it}) + $\Delta\lambda_t$ + e_{it}
 - iii. Δ Fatalityrate_{it} = = $b_0 + b_1 \Delta sb_u sage_{it} + b_2 \Delta drinkage21_{it} + b_3 \Delta (drinkage21_{it} * speed70_{it})$ + $\Delta \lambda_t + \eta_i + e_{it}$
- d. To test for strict exogeneity we compare our coefficients from our FE and FD regressions. For our first regression given that they are significantly different from each other and cannot be explained by sampling variability we conclude that strict exogeneity is violated. For our model two and three our coefficients are not as significant different meaning there is possibility for strict exogeneity to hold but given that they are different we cannot make any definite conclusions without further analysis.

Appendix:

Table 1:

	1a1	1a2	1a3
	b/se	b/se	b/se
shall	-112.532***	-21.219***	-1.685***
	(16.48)	(4.92)	(0.24)
year	8.071***	-3.607***	0.238***
	(2.17)	(0.77)	(0.04)
avginc	4.553	7.342***	-0.315***
	(3.32)	(1.35)	(0.08)
pm1029	4.388	-8.088**	0.790***
	(7.49)	(2.49)	(0.16)
density	163.993***	95.515***	4.445***
	(10.64)	(5.79)	(0.50)
pop	21.519***	11.247***	0.256***
	(1.36)	(0.71)	(0.02)
constant	-474.248	425.900***	-24.009***
	(289.73)	(97.01)	(5.69)
R-sqr	0.610	0.770	0.607
dfres	1166	1166	1166
N	1173.0	1173.0	1173.0
* p<0.05, ** p<0.01, **	** p<0.001		

Table 2:

	1b1	1b2	1b3
	b/se	b/se	b/se
shall	-8.581	8.761	-0.277
	(20.48)	(7.40)	(0.38)
year	-1.822	-1.077	-0.339
	(4.15)	(1.11)	(0.23)
avginc	6.975	-4.268*	1.060
	(13.20)	(2.15)	(0.84)
pm1029	-27.389*	-4.711	-0.454
	(12.17)	(4.22)	(0.49)
density	52.118***	94.432***	0.965***
	(3.94)	(2.27)	(0.14)
рор	12.610*	7.936*	-0.161
	(5.97)	(3.12)	(0.21)
constant	931.150*	317.355	30.771
	(459.94)	(164.00)	(18.11)
R-sqr			
dfres			
N	1173.0	1173.0	1173.0
* p<0.05, ** p<0.01,	*** p<0.001		

Table 3:

	1c1	1c2	1c3
	b/se	b/se	b/se
shall	-4.349	10.251	-0.007
	(20.60)	(7.51)	(0.32)
year	1.425	0.681	-0.218*
	(2.74)	(1.17)	(0.11)
avginc	-2.686	-8.311*	0.765
	(6.90)	(3.49)	(0.45)
pm1029	-20.651*	-1.956	-0.156
	(10.02)	(4.32)	(0.19)
density	-220.303***	51.585***	-14.973***
	(16.55)	(11.75)	(0.93)
рор	10.592	-0.349	-0.446
	(6.99)	(3.18)	(0.30)
constant	774.256*	228.424	26.308***
	(351.06)	(149.41)	(7.25)
R-sqr	0.193	0.040	0.295
dfres	50	50	50
N	1173.0	1173.0	1173.0
* p<0.05, ** p<0.	01, *** p<0.001		

Table 4:

	—— Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fe_vio	re_vio	Difference	Std. err.
shall	-4.349308	-8.581308	4.232	1.682945
year	1.42478	-1.822223	3.247003	.5953309
avginc	-2.686343	6.97511	-9.661453	1.362451
pm1029	-20.65137	-27.38912	6.737753	1.503426
density	-220.3029	52.11817	-272.421	27.33049
рор	10.59238	12.61003	-2.01765	3.649897

 $b = \hbox{Consistent under H0 and Ha; obtained from x treg.} \\ B = \hbox{Inconsistent under Ha, efficient under H0; obtained from x treg.} \\$

Test of H0: Difference in coefficients not systematic

chi2(5) = $(b-B)'[(V_b-V_B)^{-1}](b-B)$ = 110.27

Prob > chi2 = 0.0000

Table 5:

	—— Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fe_rob	re_rob	Difference	Std. err.
shall	10.25076	8.761407	1.48935	1.111845
year	.6811256	-1.077104	1.758229	.3517464
avginc	-8.310881	-4.26825	-4.042631	.7983535
pm1029	-1.955505	-4.711253	2.755747	.9268223
density	51.58466	94.43171	-42.84705	14.11875
рор	349054	7.93578	-8.284834	2.015557

 $b = \hbox{Consistent under H0 and Ha; obtained from x treg.} \\ B = \hbox{Inconsistent under Ha, efficient under H0; obtained from x treg.} \\$

Test of H0: Difference in coefficients not systematic

 $chi2(5) = (b-B)'[(V_b-V_B)^{-1}](b-B)$

= 44.11

Prob > chi2 = 0.0000

Table 6:

	. —— Coeffi	cients ——			
	(b)	(B)	(b-B)	sqrt(diag(V_b-	V_B))
	fe_mur	re_mur	Difference	Std. err.	
shall	0066966	2766634	.2699668	.0852201	
year	2183879	3392672	.1208793	.0254853	
avginc	.7653751	1.060399	2950237	.0577867	
pm1029	1559347	4539376	.298003	.068866	
density	-14.97313	.9648073	-15.93793	.9483222	
рор	4461263	1612998	2848265	.1390948	
В :				obtained from a obtained from a	200000000000000000000000000000000000000
Test of H0: D:	ifference in co	efficients not	systematic		
chi2(5) =	(b-B)'[(V_b-V_	B)^(-1)](b-B)			
=	344.37				
Prob > chi2 =	0.0000				
(V_b-V_B is no	ot positive def	inite)			

Table 7:

	2a1	2a2	2a3
	b/se	b/se	b/se
sb_useage	-0.0173***	-0.0036*	-0.0028*
	(0.0008)	(0.0015)	(0.0013)
drinkage21	0.0006	-0.0007	-0.0010
	(0.0008)	(0.0007)	(0.0006)
dk_spd	-0.0002	0.0005	0.0006
	(0.0005)	(0.0005)	(0.0004)
constant	0.0283***	0.0255***	0.7800***
	(0.0008)	(0.0009)	(0.1428)
R−sqr	0.576	0.736	0.840
dfres	50	50	50
N	556.0	556.0	556.0

Table 8:

	reg2b1	reg2b2	reg2b3
	b/se	b/se	b/se
speed65=0 # speed7~0	0.0000	0.0000	0.0000
	(.)	(.)	(.)
speed65=0 # speed7~1	0.0000	0.0000	0.0000
	(.)	(.)	(.)
speed65=1 # speed7~0	-0.0057***	-0.0006	0.0003
	(0.0004)	(0.0009)	(0.0011)
speed65=1 # speed7~1	-0.0082***	-0.0003	0.0021
- VV	(0.0006)	(0.0013)	(0.0016)
constant	0.0255***	0.0272***	-0.5094***
	(0.0002)	(0.0005)	(0.0782)
R-sqr	0.425	0.697	0.796
dfres	48	48	48
N	676.0	676.0	676.0
* p<0.05, ** p<0.01, *	** p<0.001		

Table 9:

	reg2c1	reg2c2	reg2c3
	b/se	b/se	b/se
D.sb_useage	-0.005510***	-0.002439	-0.002347
	(0.001007)	(0.001358)	(0.001390)
D.drinkage21	-0.000352	-0.000881	-0.000956
	(0.000507)	(0.000640)	(0.000681)
D.dk_spd	0.000121	-0.000101	-0.000156
	(0.000296)	(0.000380)	(0.000468)
R-sqr	0.059	0.222	0.132
dfres	50	50	50
N	497.0	497.0	497.0