Today's Agenda

Which ad campaign would a customer most likely to accept based on their profiles and shopping behavior?

Basic Understanding

- Business Content
- Data Detail
- Relationships in Data

2

Modeling

- Ad Recommendation
- Model Details

3

Evaluation

- Acceptance Probability Models
- Ad Recommendations

Context

- Our online grocery store is testing a marketing campaign that consists of 5 ads.
- We showed all 5 ads to a selection of customers and recorded their responses.
- Goal: develop a way to recommend one of the 5 ads to a customer, based on their profile and shopping data, to maximize the probability they act on (or "accept") the ad.
- Solution: we developed ad recommendation algorithms using machine learning models that roughly doubled acceptance rates compared to the best individual ad.
- Benefits:
 - Marketing: improve effectiveness in advertising
 - Financial: reduce cost on unnecessary advertisement
 - Client: improve client's user experience

Overall Acceptance Rates					
Ad 1	6.4%				
Ad 2	1.3%				
Ad 3	7.3%				
Ad 4	7.5%				
Ad 5	7.3%				

Data Detail

- Data collected for 2,240 unique customers
- 8 Demographic data fields, including:
 - o Age, Income, Household Size, etc.
- 13 Shopping history fields, including:
 - Days since last purchase
 - Amount spent on various categories in last 2 years:
 - Fruit, Meat, Wine, Sweets, etc.
 - Number of purchases made with discount
- Data required minimal cleaning
- Data limitations:
 - Gathered over limited period of time

Relationships in Data

- Relationships exist between customer data and ad acceptance.
- ML models represent these relationships and predict the probability that a customer will act on each ad based on their profile and shopping history.
 - Example: customer who accept Ad 1 tend to buy at least some wine and be in upper half of income spectrum.
- Different ML models represent the relationships differently.
- We consider 3 alternatives:
 - Logistic Regression
 - Naive Bayes
 - Random Forest

Income and Wine Purchases Distribution, colored by Ad 1 response (accept in orange)

Ad Recommendation

- No matter which ML alternative we choose, the ad recommendation approach is the same.
- Acceptance probability: for each of the 5 ads we create a binary classification model to predict the probability that a customer accepts the ad.
- Ad recommendation: show the customer the ad where the predicted acceptance probability is highest among all 5 ads.

Model Details

Description / Advantages:

Logistic Regression

Naive Bayes

Random Forest LR: Linear relationship between customer data and odds of acceptance is *easy to understand*.

NB: Independence relationship between customer data is *easy to understand and performs* well in other contexts.

RF: Does *not make assumptions* about relationships between variables (can be nonlinear or dependent); *reduces overfitting* by averaging multiple decision trees.

Customer Data used in Modeling:

- 1. Year of birth
- 2. # kids
- 3. # teens
- 4. Recency
- 5. Wine purchases
- 6. Fruit purchases
- 7. Meat purchases
- 8. Fish purchases
- 9. Sweets purchases
- 10. Gold purchases
- 11. Purchases with discount
- 12. Web purchases
- 13. Catalog purchases
- 14. In-store purchases
- 15. Web visits per month
- 16. Complaints
- 17. Income range

Evaluation of Acceptance Probability Models

Average ROC AUC	Ad 1	Ad 2	Ad 3	Ad 4	Ad 5
Random Forest	91.85%	86.11%	80.98%	90.66%	96.95%
Logistic Regression	91.26%	81.56%	74.15%	87.38%	96.36%
Naive Bayes	86.03%	70.25%	64.29%	76.16%	91.95%

- We use the training data for cross-validation with **k=5 folds**; take the average ROC curve AUC over the 5 folds to assess model performance.
- In overall, Random Forest has the highest accuracy, and Naive Bayes has the lowest.

Evaluation of Ad Recommendations

Methodology Summary: Test ad-picking success on the customers held out of the training data. For comparison, show the acceptance rate of each ad individually.

	Ad 1	Ad 2	Ad 3	Ad 4	Ad 5	Random Forest	Logistic Regression	Naive Bayes
Acceptance	8.04%	1.56%	8.71%	8.04%	7.14%	17.41%	16.07%	15.85%

- Model-based ad-picking algorithms have much better acceptance rates than any single ad (about 2 times higher).
- The ad-picking algorithm based on Random Forest models has the highest acceptance rate.

Key Takeaways

- Model-based ad recommendations can greatly increase the rate of ad acceptance, potentially
 doubling the acceptance rate of any individual ad.
- We recommend the Random Forest ML alternative, based on:
 - Its recommendations had the **highest acceptance rate** on the test dat
 - Its 5 underlying acceptance probability models were the most accurate compared to other alternatives
- Model should be re-trained over time using new customer data
- Directions for future analysis:
 - Recommend ads based on expected profit
 - o Develop models for which ad to show second, third, etc.

Thank You!