Midterm Exam Practice

Multiple Choice Questions: [30 Points] Choose one option that answers the question best.

- 1. Advantages of threads over processes include
 - A. lower context switch time
 - B. no possibility of race conditions
 - C. sharing of heap and stack
 - D. smaller code size
 - E. All of the above
- 2. Which of the following is FALSE about IPC via pipes?
 - A. Basic primitives are send() and receive().
 - B. Communication can be blocking or non-blocking.
 - C. Pipes can be anonymous or named.
 - D. Pipes can be used for only one-way communication.
 - E. IPC via pipes is slower than IPC using shared memory.
- 3. Which of the following is NOT required for a system to be in deadlock?
 - A. mutual exclusion
 - B. no preemption
 - C. acquire and hold
 - D. circular dependency

Short Answer Questions: [30 Points]

Consider the following program code for the next question (Question 1).

```
int ret = fork();
if (ret == 0) {
    ret = fork();
    printf("Hello \n");
}
printf("World \n");
return 0;
```

1. How many times the following word will be printed?

A. "Hello": _____ times
B. "World": _____ times

Consider the following program code for the next question (Question 2).

```
int t;

void swap(int *x, int *y)
{
   int s;
   s = t;
   t = *x;
   *x = *y;
   *y = t;
   t = s;
}
```

- 2. Is there a possibility of a race condition updating variable t in the code above?
- 3. Mark each term with the letter of the correct statement.
- A. A piece of code functions correctly during simultaneous or concurrent execution by multiple threads.
- C. A function defined in the Linux kernel to copy data from kernel-space.
- B. A function defined in the Linux kernel to copy data to kernel-space.
- D. The procedure for replacing the currently executing process with another.

4. What is the I/O strategy of the device manager illustrated in the image below?

- A. direct I/O with polling
- B. direct I/O with interrupts
- C. DMA with interrupts
- D. hardware interrupts

Problems: [40 Points]

1. Consider three processes, P, Q and R with the following code:

• P: ps1; ps2; ps3; ps4;

• Q: qs1; qs2; qs3; qs4;

• R: rs1; rs2; rs3; rs4;

These processes have the following synchronization constraint:

- rs1 must be the first statement to execute
- process R should be the last process to exit
- ps3 must execute after qs2
- qs3 must execute after ps4 and rs3
- rs4 must execute after either ps4 or qs4 (or both) have executed

Using the provided semaphores, provide appropriate wait/signal calls for P, Q and R that satisfy these constraints. Initialize the semaphores (one for each constraint) by yourself here:

Process P	Process Q	<u>Process R</u>
<ps1></ps1>	<qs1></qs1>	<rs1></rs1>
<ps2></ps2>	<qs2></qs2>	<rs2></rs2>
<ps3></ps3>	<qs3></qs3>	<rs3></rs3>
<ps4></ps4>	<qs4></qs4>	<rs4></rs4>

2. Consider the set of processes with the length of the CPU-time given in milliseconds

Process	Original Priority	Arrival Time	Execution Time	Deadline
P1	2	0	80	100
P2	1	60	20	40
Р3	5	50	30	60

Show the Gantt chart for the execution of these processes, if the preemptive Round Robin scheduling algorithm is used with 20 tick time slice. Calculate the average turnaround time.

[EXTRA BLANK PAGE]