ЛАБОРАТОРНАЯ РАБОТА №8

Целочисленная арифметика многократной точности

В данной работе рассмотрим алгоритмы для выполнения арифметических операций с большими целыми числами. Будем считать, что число записано в b - ичной системе счисления, b – натуральное число, $b \ge 2$. Натуральное -разрядное число будем записывать в виде

$$u = u_1 u_2 \dots u_n.$$

При работе с большими целыми числами знак такого числа удобно хранить в отдельной переменной. Например, при умножении двух чисел, знак произведения вычисляется отдельно. Квадратные скобки обозначают, что берется целая часть числа.

Алгоритм 1 (сложение неотрицательных целых чисел).

 $Bxo\partial$. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$; разрядность чисел n; основание системы счисления b.

Bыход. Сумма $w=w_0w_1\dots w_n$, где w_0 — цифра переноса — всегда равная 0 либо 1.

- 1. Присвоить j := n, k := 0 (j идет по разрядам, k следит за переносом).
- 2. Присвоить $w_j = (u_j + v_j + k) \pmod{b}$, где w_j наименьший неотрицательный вычет в данном классе вычетов; $k = \left\lceil \frac{u_j + v_j + k}{b} \right\rceil$.
- 3. Присвоить $j \coloneqq j-1$. Если j>0, то возвращаемся на шаг 2; если j=0, то присвоить $w_0 \coloneqq k$ и результат: w.

Алгоритм 2 (вычитание неотрицательных целых чисел).

Вход. Два неотрицательных числа $u = u_1 u_2 \dots u_n$ и $v = v_1 v_2 \dots v_n$, u > v; разрядность чисел n; основание системы счисления b.

Выход. Разность $w = w_1 w_2 ... w_n = u - v$.

1. Присвоить $j := n, k \coloneqq 0 \ (k$ – заем из старшего разряда).

- 2. Присвоить $w_j = (u_j v_j + k) \pmod{b}$, где w_j наименьший неотрицательный вычет в данном классе вычетов; $k = \left[\frac{u_j v_j + k}{b}\right]$.
- 3. Присвоить $j \coloneqq j-1$. Если j>0, то возвращаемся на шаг 2; если j=0, то результат: w.

Алгоритм 3 (умножение неотрицательных целых чисел столбиком).

 $Bxo\partial$. Числа $u=u_1u_2\dots u_n, v=v_1v_2\dots v_m;$ основание системы счисления b. $Bыxo\partial$. Произведение $w=uv=w_1w_2\dots w_{m+n}.$

- 1. Выполнить присвоения: $w_{m+1} \coloneqq 0, w_{m+2} \coloneqq 0, ..., w_{m+n} \coloneqq 0, j \coloneqq m$ (*j* перемещается по номерам разрядов числа v от младших к старшим).
- 2. Если $v_i = 0$, то присвоить $w_i := 0$ и перейти на шаг 6.
- 3. Присвоить i := n, k := 0 (Значение i идет по номерам разрядов числа u, k отвечает за перенос).
- 4. Присвоить $t \coloneqq u_i \cdot v_j + w_{i+j} + k$, $w_{i+j} \coloneqq t \pmod{b}$, $k \coloneqq \frac{t}{b}$, где w_{i+j} наименьший неотрицательный вычет в данном классе вычетов.
- 5. Присвоить $i \coloneqq i-1$. Если i>0, то возвращаемся на шаг 4, иначе присвоить $w_i \coloneqq k$.
- 6. Присвоить $j \coloneqq j-1$. Если j>0, то вернуться на шаг 2. Если j=0, то результат: w.

Алгоритм 4 (быстрый столбик).

 $Bxo\partial$. Числа $u=u_1u_2\dots u_n, v=v_1v_2\dots v_m;$ основание системы счисления b. $Bыxo\partial$. Произведение $w=uv=w_1w_2\dots w_{m+n}.$

- 1. Присвоить $t \coloneqq 0$.
- 2. Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и 4.
- 3. Для i от 0 до s с шагом 1 выполнить присвоение $t \coloneqq t + u_{n-i} \cdot v_{m-s+i}$.
- 4. Присвоить $w_{m+n-s} \coloneqq t \pmod{b}$, $t \coloneqq \frac{t}{b}$, где w_{m+n-s} наименьший неотрицательный вычет по модулю b. Результат: w.

Алгоритм 5 (деление многоразрядных целых чисел).

 $Bxo \partial$. Числа $u=u_n \dots u_1 u_0, \ v=v_t \dots v_1 v_0, \ n\geq t\geq 1, \ v_t\neq 0,$ разрядность чисел

- $i=r_t\dots r_0.$ $i=r_t\dots r_0.$ 2. Пока $u\geq vb^{n-t}$, выполнять: $q_{n-t}\coloneqq q_{n-t}+1, u\coloneqq u-vb^{n-t}.$ 3. Для $i=n,n-1,\dots,t+1$ выполнять пункты 3.1-3.4: a_ib+u_{i-1} 3.1 если $u_i \geq v_t$, то присвоить $q_{i-t-1} \coloneqq b-1$, иначе присвоить $q_{i-t-1} \coloneqq$ $rac{u_i b + u_{i-1}}{v_t}$. 3.2 пока $q_{i-t-1}(v_t b + v_{t-1}) > u_i b^2 + u_{i-1} b + u_{i-2}$ выполнять $q_{i-t-1}\coloneqq$
 - $q_{i-t-1} 1$. 3.3 присвоить $u\coloneqq u-q_{i-t-1}b^{i-t-1}v$.

 - 3.4 если u < 0, то присвоить $u \coloneqq u + vb^{i-t-1}$, $q_{i-t-1} \coloneqq q_{i-t-1} 1$.
- 4. $r\coloneqq u$. Результат: q и r.

Задания к лабораторной работе

Реализовать рассмотренные алгоритмы программно.