DRINKING WATER SURVEILLANCE PROGRAM

SOUTHAMPTON WATER TREATMENT PLANT

REPORT FOR 1991 AND 1992

SOUTHAMPTON WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

SOUTHAMPTON WATER TREATMENT PLANT 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Southampton water treatment plant is a conventional treatment plant which treats water from Lake Huron. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. This plant has a design capacity of $6.3 \times 1000 \, \text{m}^3/\text{day}$. The Southampton water treatment plant serves a population of approximately 4,800.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Southampton water treatment plant, for the sample year 1992, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

SUMMARY TABLE BY SCAN

	SITE		TREATED	TREATED	TED		н.	HIGH ST		
SCAN	TESTS	POSITIVE	TESTS POSITIVE %POSITIVE		POSITIVE	TESTS POSITIVE %POSITIVE		TESTS POSITIVE %POSITIVE	%POSITIVE	
BACTERIOLOGICAL	27	9	22	٥	0	0	٥	-	Ξ	
CHEMISTRY (FIELD)	41	1,1	100	53	53	100	6	8	100	
CHEMISTRY (LABORATORY)	207	174	84	216	159	ß	357	310	88	
METALS	. 215	25	56	215	51	23	391	136	34	
CHLOROAROMATICS	122	0	0	122	0	0	125	0	0	
CHLOROPHENOLS	9	0	0	9	0	0	٠		•	
PESTICIDES AND PCB	311	0	0	311	0	0	197	0	0	
PHENOL I CS	٥	0	0.	٥	0	0	•	٠	٠	
POLYAROMATIC HYDROCARBONS	17 si	0	0	17	0	0	17	0	0	
SPECIFIC PESTICIDES	56	0	0	56	0	0	•	٠	٠	
VOLATILES	279	30	10	279	38	13	248	33	13	
RAD JONUCL IDES	14	7	. 28	14	7	28	•	•	•	
IOTAL	1,274	312		1,277	305		1,443	579		

DRINKING WATER SURVEILLANCE PROGRAM

SOUTHAMPTON WATER TREATMENT PLANT 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Southampton water treatment plant in April 1992. This is the first published DWSP report.

PLANT DESCRIPTION

The Southampton water treatment plant is a conventional treatment plant which treats water from Lake Huron. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. This plant has a design capacity of $6.3 \times 1000 \, \text{m}^3/\text{day}$. The Southampton water treatment plant serves a population of approximately 4,800.

The sample day flows ranged from 1.3 x 1000 m^3/day to 2.3 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water

between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- -THE TREATED AND DISTRIBUTED WATER;
- -ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- -POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C . The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 4 of 18 treated and distributed water samples with a maximum reported value of 18.8°C .

CHEMISTRY (LABORATORY)

The ODWos indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in 17 of 18 treated and distributed water samples with a maximum reported value of 156 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 8 of 18 treated and distributed water samples with a maximum reported value of 170 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that one parameter was detected at a trace level.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected.

PHENOLICS

The results of the phenolic test showed that none were detected above trace levels.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

M-xylene was found at positive levels in 2 of the 17 treated and distributed water samples analyzed. The maximum observed level was 1.0 ug/L. This was below the ODWO Aesthetic Objective of 300 ug/L.

Methylene chloride was found at a positive level in 1 of the 17 treated and distributed water samples analyzed. The maximum observed level was 5.0 ug/L. This was below the ODWO Maximum Acceptable Concentration of 50 ug/L.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 17 treated and distributed water samples analyzed with a maximum level of 74.9 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

Trihalomethanes were detected at positive levels in all raw water samples. Where prechlorination is practiced, the operator must ensure that no chlorine is present in the lowlift chamber or discharge line and that the lowlift pumps are in operation for some time before the raw water sample is taken.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bq/L). No results were above the available guidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The Southampton water treatment plant, for the sample year 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #:

SOUTHAMPTON WTP

210000078

UTM #:

169467304940707

DISTRICT: REGION:

OWEN SOUND SOUTHWEST

DISTRICT OFFICER:

H.W. PAGE

PUC MANAGER:

MR ROBERT MASTERSON

ADDRESS:

SOUTHAMPTON PUBLIC UTILITIES

235 HIGH STREET, P.O. BOX 1030

SOUTHAMPTON, ONTARIO NOH 2L0

MUNICIPALITY:

SOUTHAMPTON

AUTHORITY:

MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

(X 1000 M3)

DESIGN CAPACITY:

6.300 (X 1000 M3/DAY)

RATED CAPACITY:

(X 1000 M3/DAY)

MUNICIPALITY

POPULATION

SOUTHAMPTON

4,800

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	LAB RAW RAW	3 TIMES/DAY CONTINUOUS
TOTAL CHLORINE RESIDUAL	LAB TREATED	3 TIMES/DAY
PH	RAW TREATED	VARIABLE VARIABLE
TEMPERATURE	LAB TREATED RAW TREATED	DAILY CONTINUOUS CONTINUOUS
TURBIDITY	LAB TREATED RAW SETTLED TREATED	3 TIMES/DAY CONTINUOUS CONTINUOUS CONTINUOUS

Page 10

TABLE 3
ORINKING WATER SURVEILLANCE PROGRAM SOUTHAMPTON WTP SAMPLE DAY CONDITIONS
AND TREATMENT CHEMICAL DOSAGES FOR 1992

•										
POST CHLORINATION CHLORINE		1,41	1.00	•	1.10	1.07	.87	1.38	1.41	1.06
COAGULATION PO POLYALUMINUM CHLORIDE		6.00	6.00	9.00	9.00	00.9	6.00	00.9	9.00	12.00
PRE CHLORINATION CHLORINE		.42	.20		.72	.86	1.85	.91	1.12	5.
	FLOW (1000M3)	000	1.800	2.350	2.200	2.300	2.000	1.700	1.350	1.371
	DELAY * TIME(HRS)	00. 20	MAY 05 24.00	00. 20	08 24.00	05 24.00	09 24.00	06 24.00	03 24.00	08 24.00
	DATE	92 APR	92 MAY	NUL 26	92 JUL	92 AUG			92 NOV	92 DEC

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - 2. Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurement Amount
T >	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
! EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
! NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
! PR	No Data: Preservative Required
! QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!sm	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U	No Data: Sample Unsuitable For Analysis
! UB	No Data: Bottle Broken
· ! UN	No Data: Result Unreliable

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

USD Unreliable: Sample Decomposition Noted

WSD Wrong Sample Description On Bottle

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

Σ	GUIDELINE = 0 (A1)										GUIDELINE = 500 (A3)										GUIDELINE = 5/100ML (A1)						•				GUIDELINE = N/A										
DIST. SYSTEM HIGH ST STANDING	• • • • • • • • • • • • • • • • • • •		•	•	•	•	•			•		•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•		
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 0			. •							DET'N LIMIT = 0	÷ 0	^= > 0	<=> 9		^=> 0		340	°=> 0	<=> 7	LIMIT = 0										LIMIT = 0		٠,								
	N-130										DET'N	3 =>	^=> 0	3 <=>	(=> 0	(=> 0	<=> 0) <e></e>	2 <=>	(=> 0	DET'N LIMIT										DET'N LIMIT										
TREATMENT PLANT TREATED	.AL										•					_		_													~										
TREATMENT PLANT RAW	BACTERIOLOGICAL F (CT/100ML)	0	0	0	0		. 0	0	0	0	I MF (CT/ML								•		(CT/100ML)	BOL	10 A3C	B0L	BOL	BDL	108	B01	<u></u>	BOL	MF (CT/100ML	BDL	900 A3C	4400 A3C	BOL	2720 A3C	BDL	7	2	B01	
F 25	BACTERIOLOG FECAL COLIFORM MF (CT/100ML)	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV	1992 DEC	STANDRD PLATE CNT MF (CT/ML	1992 APR	1992 MAY		1992 JUL	1992 AUG	· 1992 SEP	1992 OCT	1992 NOV		TOTAL COLIFORM MF (CT/100ML		1992 MAY		1992 JUL	1992 AUG	1992 SEP		1992 NOV		T COLIFORM BCKGRD MF (CT/100ML)	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV	1992 DEC	

	ΜĮ
	SOUTHAMPTON
	1992
HOLE 4	PROGRAM
	SURVEILLANCE
	WATER
	DRINKING

							3.5 (A4)	
DIST. SYSTEM HIGH ST STANDING	GUIDELINE = N/A	. 140 . 100 . 100 . 050 . 050 . 100 . 300	GUIDELINE = N/A	. 24.0 . 2800 . 0500 . 1000 . 1000 . 200	GUIDELINE = N/A	.380 .3300 .150 .150 .150 .150 .300	GUIDELINE = 6.5-8.5 (A4)	7.300 7.300 7.300 7.300 7.300 7.300 7.300
DIST. SYSTEM DIST. SY HIGH ST HIGH ST FREE FLOW STANDING	DET'N'LIMIT = 0	.200 .140 .100 .100 .050 .050 .200 .200	DET'N LIMIT = 0	.400 .240 .300 .300 .300 .150 .150 .600	DET'N LIMIT = 0	.600 380 380 300 300 200 200 200 700	DET'N LIMIT = N/A	7.200 7.300 7.200 7.200 7.300 7.300 7.400
TREATMENT PLANT TREATED	(FIELD))	. 160 . 140 . 130 . 130 . 100 . 170 . 400		. 940 1.010 . 900 . 860 . 750 . 750 . 750 . 750 . 750	(1.100 1.150 1.030 .990 .850 .850 .950 .920 .7340		7.330 7.360 7.190 7.190 7.110 7.410 7.460
TREATMENT PLANT	`~	. 160	FREE (MG/L)	. 050 . 060 	FLD CHLORINE (TOTAL) (MG/L	. 14.0 . 220 	ESS)	7. 180 7. 450 7. 270 7. 270 7. 270 7. 270 7. 270 7. 270 7. 270
	CHEMIST FLD CHLORINE (COMB) (MG/L	1992 APR 1992 MAY 1992 JUL 1992 JUL 1992 AUG 1992 OCT 1992 NOV 1992 DEC	FLD CHLORINE FREE (MG/L	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 CET 1992 OCT 1992 NOV 1992 DEC	FLD CHLORINE	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 OCT	FLD PH (DMNSLESS	1992 APR 1992 JUL 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DCC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

DIST. SYSTEM HIGH ST STANDING

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED HIGH ST FRE FLOW

_												()									
E = 15 (A3)												E = 1.0 (A1)									
GUIDELINE = 15			006	21.400	000	.500	000	000	000	.500		GUIDELINE	.•	. 260	.100	140	.100	.070	.100	.150	.240
			12	21.	19	. 18	18	16	Ξ	7											
DET'N I IMIT = N/A		1.000	12,900	14.000	14.000	16.000	16.500	13.000	8.000	3.000	*************	DET'N LIMIT = N/A		.260	.100	.120	.100	0.00	060	.150	.200
190		7.400	10.900	13.900	14.500	16.000	18.800	14.900	11.300	10.500		130	.100	.150	.100	.080	.080	.070	090.	060.	.220
(FIELD)																					
CHEMISTRY	וחבתיר י	1.300	11 600	13 500	14.700	17.500	18,500	14.700	002.6	8,900		(FTU)	1,700	7,700	1.800	2,300	3.200	2.300	.950	1.100	1.600
	FLD LEMPEKATUKE			_						1992 DEC		FLD TURBIDITY (F									1992 DEC

ΥTΡ
SOUTHAMPTON
1992
PROGRAM
SURVEILLANCE
WATER
RINKING
٥

	GUIDELINE = 30-500 (A4)		GUIDELINE = 100 (F2)		GUIDELINE = 0.2 (A1)	GUIDELINE = 250 (A3)	
E	GUIDELIN	.0000000	GUIDELIN	.0000000	GUIDELIN	GUIDELIN	.00000
OIST. SYSTEM HIGH ST STANDING	- 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	106.400 98.500 81.600 80.500 77.300 99.600 107.500		37.500 34.500 34.500 29.400 28.000 27.900 35.650 35.650	_		13.000 11.500 10.400 10.400 12.100
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 0.2	87.600 106.900 80.600 80.200 81.300 88.700 88.600 106.700	DET'N LIMIT = 0.20	31.600 37.800 33.700 28.700 29.400 29.850 37.300 36.700 34.700	DET'N LIMIT = 0.001	DET'N LIMIT = 0.20	12.700 12.900 11.200 10.000 11.600
TREATMENT PLANT TREATED	BORATORY)	86.500 122.300 96.600 78.700 87.100 105.800 114.600 90.300		31.200 42.400 37.000 27.800 31.500 31.500 38.250 31.650	B0L		12.700 13.400 10.800 9.800 10.500 11.900
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	93.000 222.300 99.400 83.100 14.4.400 84.100 106.000 99.600	^	30.600 67.400 33.100 27.400 27.400 51.500 27.450 35.300 32.400 27.900			7.000 11.300 6.900 6.500 9.600 7.100
⊢ α	ALKALINITY (MG/L	1992 APR 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 NOV 1992 DEC	CALCIUM (MG/L	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 NOV 1992 DEC	CYANIDE (MG/L 9 SAMPLES	CHLORIDE (MG/L	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP

												-3			
	GUIDELINE = 5 (A3)				GUIDELINE = 400 (F2)				GUIDELINE = 5.0 (A3)			GUIDELINE = 1.5 (A1)			
DIST. SYSTEM 'HIGH ST STANDING	QUD	2.000	1.000 .500 <1	BDL 1.000 <t 1.500</t 		282	227 229	226 271 285 273	IdInb	1.600 1.400 1.400 1.000 1.100	1.900	G1105	. 080. 060.	.040 <1 .060 <1	.080
DIST. SYSTEM D HIGH ST H FREE FLOW S	DET'N LIMIT = 0.50	1.000 <1		80L .500 <t 1.000 <t< td=""><td>1.000 <t DET'N LIMIT = 1.0</t </td><td>248 281</td><td>222 231</td><td>234 247 282 267</td><td>DET'N LIMIT = 0.10</td><td>1.700 1.700 1.400 1.000 1.200</td><td> i</td><td>DEI'N LIMII = 0.01</td><td>090.</td><td>. 090</td><td>.080</td></t<></t 	1.000 <t DET'N LIMIT = 1.0</t 	248 281	222 231	234 247 282 267	DET'N LIMIT = 0.10	1.700 1.700 1.400 1.000 1.200	i	DEI'N LIMII = 0.01	090.	. 090	.080
TREATMENT PLANT TREATED	BORATORY)	.500 <7 1.000 BDI	1.000 <t BDL</t 	8DL 1.000 <t 1.500</t 	7> 005.	245	263 218 251	220 281 299 254	1	1.000 1.900 1.200 1.100 1.600	1.800		080	080. 080. 090.	.080 .100
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	2.000 18.000 1.500	1,000 <t< td=""><td></td><td>.500 <t< td=""><td>235</td><td>213 213 390</td><td>219 264 250 220</td><td>N (MG/L)</td><td>1.700 4.400 1.600 1.500 2.500 2.200</td><td>1.800</td><td>, U8U</td><td>000.</td><td> 080.</td><td>.080</td></t<></td></t<>		.500 <t< td=""><td>235</td><td>213 213 390</td><td>219 264 250 220</td><td>N (MG/L)</td><td>1.700 4.400 1.600 1.500 2.500 2.200</td><td>1.800</td><td>, U8U</td><td>000.</td><td> 080.</td><td>.080</td></t<>	235	213 213 390	219 264 250 220	N (MG/L)	1.700 4.400 1.600 1.500 2.500 2.200	1.800	, U8U	000.	 080.	.080
	COLOUR (HZU				1992 DEC CONDUCTIVITY (UMHO/CM		1992 JUL 1992 JUL 1992 AUG	1992 SEP 1992 OCT 1992 NOV 1992 DEC	DISS ORG CARBON (MG/L	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT	1992 NOV 1992 DEC		1992 MAY 1992 JUN 1992 JUN		1992 OCT 1992 NOV 1992 DEC

DIST. SYSTEM

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM

	000	GUIDELINE = 80-100 (A4)										GUIDELINE = N/A										GUIDELINE = 10 (F2)									GUIDELINE = N/A									
HIGH ST STANDING	č	G0105		138,000	128.000	106.000	105,000	100.830	132,000	134.000	130.000	GUIDE		1 180 NAF	345 NAF		2.813 NAF	3.577	.151	2.446	در.	GUIDE		1.110	1.000	1.070	. 980	.951	1.094	1.096	3010b		607.	.395	.179	.062 NAF	780.	.213	607.	.209
HIGH ST H		UE!'N LIMI! = U.5	115.000	139.000	124.000	104.000	107.000	108.670	116.940	135.000	126.000	DET'N LIMIT = N/A	.001	1 101 NAF			.018 NAF	.307	. 761	1.768	sus.	DET'N LIMIT = 0.01	1.080	1.130	066.	096.	076	676.	1.018	1.014	DET'N LIMIT = N/A	.303	.405	.379	. 143	.096 NAF	.159	.108	.401	.162
TREATED		-	114.000	156.000	126.000	101.000	117,000	97.570	138.000	142.000	116.000	8	270.	714 NAF	.493 NAF	1.479	.223 NAF	3.316	. 290	3.400	5.115	۵	1.060	1.110	026.	1.000	096.	. 905	1.082	666.	Q	.244	.552	.372	. 153	.148 NAF	.050	.325	.463	.035
RAW	CHEMISTRY (LABORATORY)	-	112.000	262.000	123.000	000.66	198.000	99.950	130.000	118.000	101.000	^	720.	2.752 NAF	.524 NAF	1.990	2.401 NAF	3.081	.013	1.964	790.7	^	1.050	1.400	.950	076	1.250	996.	1.025	.963	(OMNSLESS)	.381	1.266	767.	.222	.751 NAF	.226	.458	.349	960.
	170M2 SOUNDONN	HARUNESS (MG/L	1992 APR				1992 AUG				1992 DEC	IONCAL (DMNSLESS	1992 APR	1992 MAY						1992 NOV		POTASSIUM (MG/L	1992 APR			1992 JUL		1992 SEP	1302 7001		LANGELIERS INDEX (DMNSLESS	1992 APR		1992 JUN	1992 JUL		1992 SEP		1992 NOV	

		GUIDELINE = 30.0 (F2)			•						GUIDELINE = 200 (A4)										GUIOELINE = 0.05 (F2)				•			•	GUIDELINE = 1.0 (A1)								
. natovo tota	DISI. STSTEM HIGH ST STANDING	GUIDELINE	.000	10.900	7 880	7.880	7.560	10,200	10.540	10.040	GUIDELINE		4.180	4.050	3.770	3.790	3.740	4.210	4.200	4.000	i	.006 <t< th=""><th>1> 200.</th><th>.020</th><th>.010</th><th>.020</th><th>.022</th><th></th><th>GUIDELINE</th><th></th><th>.001 <⊤</th><th>.001 <⊺</th><th>.001 <⊺</th><th>.002 <t< th=""><th>.001 <⊺</th><th>.003 <t< th=""><th></th></t<></th></t<></th></t<>	1> 200.	.020	.010	.020	.022		GUIDELINE		.001 <⊤	.001 <⊺	.001 <⊺	.002 <t< th=""><th>.001 <⊺</th><th>.003 <t< th=""><th></th></t<></th></t<>	.001 <⊺	.003 <t< th=""><th></th></t<>	
A HELEVO TOTAL	ST . ST . FLOW	DET'N LIMIT = 0.1	8.790	. 000.01	077.2	8.040	8.300	8,810	10.480	9.610	DET'N LIMIT = 0.20	008.7	4.270	4.020	3.630	3.760	3.900	3.910	4.160	3.860	DET'N LIMIT = 0.002	.008 ×T	108	. 004 <1			.006 <1		DET'N LIMIT = 0.001	108	, 001 <t< td=""><td>B0L</td><td>108</td><td>BDL</td><td>BDL</td><td></td><td></td></t<>	B0L	108	BDL	BDL		
. Fueld Funtane	TREATED	BORATORY)	8.800	10,100	7 610	9 190	077.2	10,910	11.200	8.920		092.7	750	4.020	3.660	3.940	3.630	4.270	4.220	3.840		T> 400.	1 1 1 1 1	.002 <7			.002 <1				B0L	B0	. BDL	108	108 108	.001 <t< td=""><td></td></t<>	
THE IC THINK AND	RAW	CHEMISTRY (LABORATORY)	8.670	0.52	7 7.80	17.000	7.630	10.290	9.130	7.640	•	4.010	2.740	3.930	3.590	5.400	3.820	4.100	3.910	3.640	(MG/L)		. 100.		T> 400.	.010	. 000. 1> 800.		^	.003 <t< td=""><td>900.</td><td>.002 <t< td=""><td>. 001 <t< td=""><td>.005</td><td></td><td>.002 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	900.	.002 <t< td=""><td>. 001 <t< td=""><td>.005</td><td></td><td>.002 <t< td=""><td></td></t<></td></t<></td></t<>	. 001 <t< td=""><td>.005</td><td></td><td>.002 <t< td=""><td></td></t<></td></t<>	.005		.002 <t< td=""><td></td></t<>	
		MAGNESIUM (MG/L	1992 APR			1992 AUG	1992 SFP	1992 OCT		1992 DEC	SODIUM (MG/L	1007 APR						1992 OCT	1992 NOV	1992 UEC	AMMONIUM TOTAL (MG/L		1992 JUN				1992 NOV 1992 DEC		NITRITE (MG/L	1992 APR		1992 JUN		1992 AUG		1992 OCT	

	OUTHAMPTON WIP
	S
	1992
ABLE 4	PROGRAM
	SURVEILLANCE
	WATER
	DRINKING

			FREE FLOW	STANDING	
CHE NITRATE (TOTAL) (MG/L	CHEMISTRY (LABORATORY) (MG/L)	BORATORY)	DET'N LIMIT = 0.005	· · · · · · · · · · · · · · · · · · ·	GUIDELINE = 10.0 (A1)
2001					
1992 APK	067.1	044.	006.	• (
1007	202	20.		069.	
	. 300	003.	. 403	044.	
1003 4110	0.00	016.	018.	.370	
1992 AUG	C C.	262.	587	295	
1992 SEP	505.	567.	.310	.305	
130 2661	5/5:	405	.340	.395	
1992 NOV 1992 DEC	.370	097.	.425	087	
		0/7.	016.	ςςς.	
NITROGEN TOT KJELD (MG/L	ELD (MG/L)		DET'N LIMIT = 0.02	GUIDELINE	= N/A
1992 APR	. 140	1> 070	T> 000		
1992 MAY	.450			120	
	.230	140	071	150	
	140	1> 080 .	100	180	
	.300		.090 <t< td=""><td>500</td><td></td></t<>	500	
1992 SEP	.130			100	
	.180	. 140		190	
	.150	.130	.130	.230	
	. 140	.110	.120	. 150	
PH (DMNSLESS)			DET'N LIMIT = N/A	GUIDELINE	GUIDELINE = 6.5-8.5 (A4)
	8.340	8.230	8.280		
	8.550	8.280	8.230	8.240	
	8.400	8.280	8.290	8.290	
1992 JUL	8.270	8.220	8.190	8.210	
1992 AUG	8.330	8.130	8.130	8.120	
	8.270	8.160	8.190	8.160	
	8.310	8.160	8.070	8.090	
1992 NOV	8.260	8.260	8.240	8.250	
1992 DEC	8.130	8.000	8.060	8.090	
PHOSPHORUS FIL REACT (MG/L		^	DET'N LIMIT = 0.0005	OS GUIOELINE	= N/A
1992 APR	T> 100.	BOL			
1992 MAY	.003 <t< td=""><td>.001 <t< td=""><td>,</td><td></td><td></td></t<></td></t<>	.001 <t< td=""><td>,</td><td></td><td></td></t<>	,		
1992 JUN	.001 ×T	BDL			
1992 JUL	.001 <1	108		•	
1992 AUG	BDL	BDI	•	•	
1992 SEP	.001 <1	108	•		
1992 OCT		801			
1992 NOV	.002 <1	B0L			

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	•							
	GUIDELINE = 0.40 (F2)		GUIDELINE = 500 (A3)	9999999	GUIDELINE = 500 (A3)	* *	GUIDELINE = 1.0 (A1)	e
DIST. SYSTEM HIGH ST STANDING				183.000 CR0 174.000 CR0 148.000 CR0 147.000 CR0 176.000 CR0 281.000 CR0	3	19.350 21.040 17.510 18.040 17.850 22.090 21.380		360 360 450 240 USD 590 590 510 520
DIST. SYSTEM D HIGH ST H FREE FLOW S	DET'N LIMIT = 0.002		DET'N LIMIT = N/A	161.000 CR0 183.000 CR0 170.000 CR0 144.000 CR0 153.000 CR0 161.000 CR0 161.000 CR0 174.000 CR0	DET'N LIMIT = 0.20	17, 700 19, 490 20, 560 17, 090 18, 220 19, 020 19, 530 22, 190	DET'N LIMIT = 0.05	.330 .240 <1 .250 .140 <1 .180 <1 .270 .270 .330
TREATMENÌ PLANT TREATED	(LABORATORY)	801 .002 <1 .003 <1 .003 <1 .005 <1 .005 <1 .005 <1		159.000 CR0 205.000 CR0 171.000 CR0 142.000 CR0 163.000 CR0 183.000 CR0 183.000 CR0 165.000 CR0	0	17.860 23.510 23.510 17.190 22.610 17.420 23.670 18.650	٥	.590 .370 .370 .370 .390 .390 .370 .400
TREATMENT PLANT RAW	CHEMISTRY (MG/L)	.005 <1 .036 <1 .007 <1 .005 <1 .005 <1 .006 <1 .007 <1 .007 <1 .007 <1	(MG/L)	153.000 CRO 316.000 CRO 164.000 CRO 138.000 CRO 253.000 CRO 142.000 CRO 356.000 CRO 143.000 CRO	^	16.900 38.970 20.170 16.270 45.270 16.900 21.430 18.460	^	1,450 23,000 3,100 1,200 1,140 1,140 1,500 3,500
	PHOSPHORUS TOTAL	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 NOV 1992 DEC	RESIDUE FILTRATE (MG/L	1992 APR 1992 MAY 1992 JUL 1992 JUL 1992 AUG 1992 OCT 1992 NOV	SULPHATE (MG/L	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 OCT 1992 NOV	TURBIDITY (FTU	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DCC 1992 DCC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	⋖		0 (A4)									(A1)										00 (A2)									
	Ž		ē									. 25										ű.									
	₩		<u>"</u>									₩										۳ پ									
	GUIDELINE = N/A		GUIDELINE = 100 (A4)									GUIDELINE = 25 (A1)		₽			↓		₽	<u>_</u>		GUIDELINE = 1000 (A2)									;
DIST. SYSTEM HIGH ST STANDING		BOL		٠	62.000	100	110,000	86.000	93.000	89.000	61.000				BOL		.340	BOL		. 200	80F		٠	13.000	15.000	15.000	14.000	14.000	15,000	14.000	14.000
	0ET'N LIMIT = 0.05	BDL	1T = 0.10	000	000		000	000	000	86.000	000	1T = 0.10	250 <t< th=""><th>.130 <t< th=""><th>BOL</th><th></th><th>.180 <t< th=""><th>BOL</th><th></th><th>.210 <t< th=""><th>80L</th><th>11 = 0.05</th><th>13.000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>14.000.</th><th>14.000</th><th>000</th></t<></th></t<></th></t<></th></t<>	.130 <t< th=""><th>BOL</th><th></th><th>.180 <t< th=""><th>BOL</th><th></th><th>.210 <t< th=""><th>80L</th><th>11 = 0.05</th><th>13.000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>14.000.</th><th>14.000</th><th>000</th></t<></th></t<></th></t<>	BOL		.180 <t< th=""><th>BOL</th><th></th><th>.210 <t< th=""><th>80L</th><th>11 = 0.05</th><th>13.000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>14.000.</th><th>14.000</th><th>000</th></t<></th></t<>	BOL		.210 <t< th=""><th>80L</th><th>11 = 0.05</th><th>13.000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>000</th><th>14.000.</th><th>14.000</th><th>000</th></t<>	80L	11 = 0.05	13.000	000	000	000	000	000	14.000.	14.000	000
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIM		DET'N LIMIT	39.	57.000	. 8	120.	100.000	120.000	86.	42.	DET'N LIMIT	•	•		•	•		•	•		DET'N LIMIT	13.	15.	14.	13.	14.	14.	14.	14.	14.
TREATMENT PLANT TREATED	·	BOL		33.000	89.000	140 000	160.000	100.000	170.000	120.000	76.000		.360 <1	B0L	B0L		.340 <t< td=""><td>B0L</td><td>.300 <t< td=""><td>. 190 <⊤</td><td>BOL</td><td></td><td>13.000</td><td>13.000</td><td>15.000</td><td>14.000</td><td>15.000</td><td>14.000</td><td>14.000</td><td>14.000</td><td>14.000</td></t<></td></t<>	B0L	.300 <t< td=""><td>. 190 <⊤</td><td>BOL</td><td></td><td>13.000</td><td>13.000</td><td>15.000</td><td>14.000</td><td>15.000</td><td>14.000</td><td>14.000</td><td>14.000</td><td>14.000</td></t<>	. 190 <⊤	BOL		13.000	13.000	15.000	14.000	15.000	14.000	14.000	14.000	14.000
TREATMENT PLANT RAW	METALS)	BOL	^	16.000	140.000	14,000	53.000	12.000	12,000	15.000	36.000	^	T> 010.	.520 <t< th=""><th>BOL</th><th></th><th>T> 009.</th><th>BOL</th><th>1> 029.</th><th>.430 <1</th><th>T> 095.</th><th>^</th><th>14.000</th><th>17.000</th><th>15.000</th><th>16.000</th><th>17.000</th><th>15.000</th><th>14.000</th><th>14.000</th><th>15.000</th></t<>	BOL		T> 009.	BOL	1> 029.	.430 <1	T> 095.	^	14.000	17.000	15.000	16.000	17.000	15.000	14.000	14.000	15.000
	SILVER (UG/L	35 SAMPLES	ALUMINUM (UG/L			1002 2001					1992 DEC	ARSENIC (UG/L	1992 APR	1992 MAY							1992 DEC	BARIUM (UG/L					1992 AUG			1992 NOV	1992 DEC

DIST. SYSTEM HIGH ST STANDING	00 GUIDELINE = 5000 (A1)	17.000 < 7	15.000 <t 15.000 <t< th=""><th>21.000</th><th>32.000 18 000 <t< th=""><th>16.000 <t< th=""><th>17.000 <t< th=""><th>05 GUIDELINE = 6800 (04)</th><th></th><th></th><th>. 060 .</th><th>80L</th><th>BDL</th><th>BDL</th><th>80L</th><th>)5 GUIDELINE = 5.0 (A1)</th><th></th><th>BDL</th><th></th><th>.110 <1</th><th></th><th></th><th>.090 <t .070 <t< th=""><th>32 GUIDELINE = N/A</th><th></th><th>.220 <t< th=""><th>T> 090.</th><th></th><th>.230 <1</th><th>.170 <1</th><th></th></t<></th></t<></t </th></t<></th></t<></th></t<></th></t<></t 	21.000	32.000 18 000 <t< th=""><th>16.000 <t< th=""><th>17.000 <t< th=""><th>05 GUIDELINE = 6800 (04)</th><th></th><th></th><th>. 060 .</th><th>80L</th><th>BDL</th><th>BDL</th><th>80L</th><th>)5 GUIDELINE = 5.0 (A1)</th><th></th><th>BDL</th><th></th><th>.110 <1</th><th></th><th></th><th>.090 <t .070 <t< th=""><th>32 GUIDELINE = N/A</th><th></th><th>.220 <t< th=""><th>T> 090.</th><th></th><th>.230 <1</th><th>.170 <1</th><th></th></t<></th></t<></t </th></t<></th></t<></th></t<>	16.000 <t< th=""><th>17.000 <t< th=""><th>05 GUIDELINE = 6800 (04)</th><th></th><th></th><th>. 060 .</th><th>80L</th><th>BDL</th><th>BDL</th><th>80L</th><th>)5 GUIDELINE = 5.0 (A1)</th><th></th><th>BDL</th><th></th><th>.110 <1</th><th></th><th></th><th>.090 <t .070 <t< th=""><th>32 GUIDELINE = N/A</th><th></th><th>.220 <t< th=""><th>T> 090.</th><th></th><th>.230 <1</th><th>.170 <1</th><th></th></t<></th></t<></t </th></t<></th></t<>	17.000 <t< th=""><th>05 GUIDELINE = 6800 (04)</th><th></th><th></th><th>. 060 .</th><th>80L</th><th>BDL</th><th>BDL</th><th>80L</th><th>)5 GUIDELINE = 5.0 (A1)</th><th></th><th>BDL</th><th></th><th>.110 <1</th><th></th><th></th><th>.090 <t .070 <t< th=""><th>32 GUIDELINE = N/A</th><th></th><th>.220 <t< th=""><th>T> 090.</th><th></th><th>.230 <1</th><th>.170 <1</th><th></th></t<></th></t<></t </th></t<>	05 GUIDELINE = 6800 (04)			. 060 .	80L	BDL	BDL	80L)5 GUIDELINE = 5.0 (A1)		BDL		.110 <1			.090 <t .070 <t< th=""><th>32 GUIDELINE = N/A</th><th></th><th>.220 <t< th=""><th>T> 090.</th><th></th><th>.230 <1</th><th>.170 <1</th><th></th></t<></th></t<></t 	32 GUIDELINE = N/A		.220 <t< th=""><th>T> 090.</th><th></th><th>.230 <1</th><th>.170 <1</th><th></th></t<>	T> 090.		.230 <1	.170 <1	
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 2.00	13.000 <t 18.000 <t< td=""><td>15.000 <t 13.000 <t< td=""><td>25.000</td><td>28.000 18 000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>B01</td><td>80F</td><td>.070 <1</td><td>108</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>108</td><td>B0L</td><td>BDL .1</td><td>. 100 ×1</td><td></td><td>B0L</td><td>108 80L</td><td>DET'N LIMIT = 0.02</td><td>.240 <</td><td></td><td>T> 090.</td><td>.290 <1</td><td>.220 <t< td=""><td>.150 <1</td><td>.290 <1</td></t<></td></t<></td></t<></td></t<></td></t<></t </td></t<></t 	15.000 <t 13.000 <t< td=""><td>25.000</td><td>28.000 18 000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>B01</td><td>80F</td><td>.070 <1</td><td>108</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>108</td><td>B0L</td><td>BDL .1</td><td>. 100 ×1</td><td></td><td>B0L</td><td>108 80L</td><td>DET'N LIMIT = 0.02</td><td>.240 <</td><td></td><td>T> 090.</td><td>.290 <1</td><td>.220 <t< td=""><td>.150 <1</td><td>.290 <1</td></t<></td></t<></td></t<></td></t<></td></t<></t 	25.000	28.000 18 000 <t< td=""><td>15.000 <t< td=""><td>14.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>B01</td><td>80F</td><td>.070 <1</td><td>108</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>108</td><td>B0L</td><td>BDL .1</td><td>. 100 ×1</td><td></td><td>B0L</td><td>108 80L</td><td>DET'N LIMIT = 0.02</td><td>.240 <</td><td></td><td>T> 090.</td><td>.290 <1</td><td>.220 <t< td=""><td>.150 <1</td><td>.290 <1</td></t<></td></t<></td></t<></td></t<>	15.000 <t< td=""><td>14.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>B01</td><td>80F</td><td>.070 <1</td><td>108</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>108</td><td>B0L</td><td>BDL .1</td><td>. 100 ×1</td><td></td><td>B0L</td><td>108 80L</td><td>DET'N LIMIT = 0.02</td><td>.240 <</td><td></td><td>T> 090.</td><td>.290 <1</td><td>.220 <t< td=""><td>.150 <1</td><td>.290 <1</td></t<></td></t<></td></t<>	14.000 <t< td=""><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>B01</td><td>80F</td><td>.070 <1</td><td>108</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>108</td><td>B0L</td><td>BDL .1</td><td>. 100 ×1</td><td></td><td>B0L</td><td>108 80L</td><td>DET'N LIMIT = 0.02</td><td>.240 <</td><td></td><td>T> 090.</td><td>.290 <1</td><td>.220 <t< td=""><td>.150 <1</td><td>.290 <1</td></t<></td></t<>	DET'N LIMIT = 0.05	BOL	B01	80F	.070 <1	108	108	108	DET'N LIMIT = 0.05	108	B0L	BDL .1	. 100 ×1		B0L	108 80L	DET'N LIMIT = 0.02	.240 <		T> 090.	.290 <1	.220 <t< td=""><td>.150 <1</td><td>.290 <1</td></t<>	.150 <1	.290 <1
TREATMENT PLANT TREATED		14.000 <t 18.000 <t< td=""><td>15.000 <1 12.000 <1</td><td>28.000</td><td>35.000 18.000 <1</td><td>16.000 <t< td=""><td>. 14.000 <t< td=""><td></td><td>BDL</td><td>BOL</td><td>. 070 <1</td><td>80F</td><td>BÓL</td><td>108 801</td><td>108 BDL</td><td></td><td>BDL</td><td>80F</td><td>801</td><td>.080 <1</td><td></td><td>108</td><td>80L 80L</td><td></td><td>.210 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>. 280 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></t 	15.000 <1 12.000 <1	28.000	35.000 18.000 <1	16.000 <t< td=""><td>. 14.000 <t< td=""><td></td><td>BDL</td><td>BOL</td><td>. 070 <1</td><td>80F</td><td>BÓL</td><td>108 801</td><td>108 BDL</td><td></td><td>BDL</td><td>80F</td><td>801</td><td>.080 <1</td><td></td><td>108</td><td>80L 80L</td><td></td><td>.210 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>. 280 <t< td=""></t<></td></t<></td></t<></td></t<>	. 14.000 <t< td=""><td></td><td>BDL</td><td>BOL</td><td>. 070 <1</td><td>80F</td><td>BÓL</td><td>108 801</td><td>108 BDL</td><td></td><td>BDL</td><td>80F</td><td>801</td><td>.080 <1</td><td></td><td>108</td><td>80L 80L</td><td></td><td>.210 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>. 280 <t< td=""></t<></td></t<></td></t<>		BDL	BOL	. 070 <1	80F	BÓL	108 801	108 BDL		BDL	80F	801	.080 <1		108	80L 80L		.210 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>. 280 <t< td=""></t<></td></t<>						. 280 <t< td=""></t<>
TREATMENT PLANT RAW	METALS	14.000 <t . 24.000</t 	16.000 <t 15.000 <t< td=""><td>39.000</td><td>67.000 18.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <t< td=""><td>(</td><td>BDL</td><td>BOL</td><td>B0L 070 <t< td=""><td>1> 060.</td><td>BDL</td><td>30L</td><td>80L</td><td>^</td><td>BDL</td><td>80F</td><td>108</td><td>.090 <1</td><td>BDL</td><td>BDL</td><td>80L 80L</td><td>^</td><td>.180 <t< td=""><td>.510 <t< td=""><td></td><td></td><td>.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></t 	39.000	67.000 18.000 <t< td=""><td>12.000 <t< td=""><td>15.000 <t< td=""><td>(</td><td>BDL</td><td>BOL</td><td>B0L 070 <t< td=""><td>1> 060.</td><td>BDL</td><td>30L</td><td>80L</td><td>^</td><td>BDL</td><td>80F</td><td>108</td><td>.090 <1</td><td>BDL</td><td>BDL</td><td>80L 80L</td><td>^</td><td>.180 <t< td=""><td>.510 <t< td=""><td></td><td></td><td>.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td>15.000 <t< td=""><td>(</td><td>BDL</td><td>BOL</td><td>B0L 070 <t< td=""><td>1> 060.</td><td>BDL</td><td>30L</td><td>80L</td><td>^</td><td>BDL</td><td>80F</td><td>108</td><td>.090 <1</td><td>BDL</td><td>BDL</td><td>80L 80L</td><td>^</td><td>.180 <t< td=""><td>.510 <t< td=""><td></td><td></td><td>.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	15.000 <t< td=""><td>(</td><td>BDL</td><td>BOL</td><td>B0L 070 <t< td=""><td>1> 060.</td><td>BDL</td><td>30L</td><td>80L</td><td>^</td><td>BDL</td><td>80F</td><td>108</td><td>.090 <1</td><td>BDL</td><td>BDL</td><td>80L 80L</td><td>^</td><td>.180 <t< td=""><td>.510 <t< td=""><td></td><td></td><td>.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	(BDL	BOL	B0L 070 <t< td=""><td>1> 060.</td><td>BDL</td><td>30L</td><td>80L</td><td>^</td><td>BDL</td><td>80F</td><td>108</td><td>.090 <1</td><td>BDL</td><td>BDL</td><td>80L 80L</td><td>^</td><td>.180 <t< td=""><td>.510 <t< td=""><td></td><td></td><td>.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1> 060.	BDL	30L	80L	^	BDL	80F	108	.090 <1	BDL	BDL	80L 80L	^	.180 <t< td=""><td>.510 <t< td=""><td></td><td></td><td>.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<></td></t<></td></t<>	.510 <t< td=""><td></td><td></td><td>.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<></td></t<>			.380 <t< td=""><td>.170 <</td><td>.310 <t< td=""></t<></td></t<>	.170 <	.310 <t< td=""></t<>
	BORON (UG/L		1992 JUN 1992 JUL	1992 AUG	1992 SEP	1992 NOV	1992 DEC	BERYLLIUM (UG/L	1992 APR	1992 MAY	1992 JUN		1992 SEP	1992 OCT	1992 DEC	CADMIUM (UG/L	1992 APR	1992 MAY	NOC 2661				1992 NOV 1992 DEC	COBALT (UG/L	1992 APR	1992 MAY	1992 JUN		1992 AUG	1992 SEP	 1992 OCT

	TREATMENT PLANT RAU	TREATMENT PLANT TREATED	DIST. SYSTEM HIGH ST FREE FLOW	DIST. SYSTEM HIGH ST STANDING	
CHROMIUM (UG/L	METALS)		DET'N LIMIT = 0.50		GUIDELINE = 50.0 (A1)
1992 APR	BDI	IOB	IUM		
	3.900 <t< td=""><td>2.000 <t< td=""><td>2.100 <t< td=""><td>1.700 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	2.000 <t< td=""><td>2.100 <t< td=""><td>1.700 <t< td=""><td></td></t<></td></t<></td></t<>	2.100 <t< td=""><td>1.700 <t< td=""><td></td></t<></td></t<>	1.700 <t< td=""><td></td></t<>	
	108	801	108	BDL	
	108	901	108	BDL	
1992 AUG	3.600 <7	2.300 <1	2.000 <₹	1,500 <1	
1992 SEP	3,000 <7	2.700 <1	2.900 <1	2.700 <1	
1992 OCT	2.300 <t< td=""><td>2.300 <1</td><td>1.900 <1</td><td>2.800 <t< td=""><td></td></t<></td></t<>	2.300 <1	1.900 <1	2.800 <t< td=""><td></td></t<>	
1992 NOV	1,100 <t< td=""><td>2.500 <1</td><td>2.500 <1</td><td>2.600 <t< td=""><td></td></t<></td></t<>	2.500 <1	2.500 <1	2.600 <t< td=""><td></td></t<>	
1992 DEC	.870 <t< td=""><td></td><td>T> 059.</td><td>1.600 <t< td=""><td></td></t<></td></t<>		T> 059.	1.600 <t< td=""><td></td></t<>	
COPPER (UG/L	•	* * * * * * * * * * * * * * * * * * *	DET'N LIMIT = 0.50		GUIDELINE = 1000 (A3)
1992 APR	7> 010.	1.100 <t< td=""><td>4.800 <t< td=""><td></td><td></td></t<></td></t<>	4.800 <t< td=""><td></td><td></td></t<>		
		T> 066.	9.100	160.000	
	1.300 <t< td=""><td>1.300 <t< td=""><td>15.000</td><td>63.000</td><td></td></t<></td></t<>	1.300 <t< td=""><td>15.000</td><td>63.000</td><td></td></t<>	15.000	63.000	
1992 JUL	2.200 <⊺	T> 049.	13.000	110.000	
1992 AUG	1,700 <1	T> 000.	12.000	100.000	
	1.700 <t< td=""><td>1,100 <t< td=""><td>12,000</td><td>99.000</td><td></td></t<></td></t<>	1,100 <t< td=""><td>12,000</td><td>99.000</td><td></td></t<>	12,000	99.000	
	1.300 <1	1,100 <t< td=""><td>13.000</td><td>94.000</td><td></td></t<>	13.000	94.000	
1992 NOV	1.400 <7	5.800	8.800	110,000	
1992 DEC	3.400 <1	1.200 <t< td=""><td>7.500</td><td>100,000</td><td></td></t<>	7.500	100,000	
IRON (UG/L	(DET'N LIMIT = 6.00		GUIDELINE = 300 (A3)
1992 APR	21.000 <t< td=""><td>108</td><td>13.000 <t< td=""><td></td><td></td></t<></td></t<>	108	13.000 <t< td=""><td></td><td></td></t<>		
	250.000	108	6.600 <t< td=""><td>19.000 <t< td=""><td></td></t<></td></t<>	19.000 <t< td=""><td></td></t<>	
1992 JUN	29.000 <1	801	23,000 <t< td=""><td>33.000 <t< td=""><td></td></t<></td></t<>	33.000 <t< td=""><td></td></t<>	
	22.000 <t< td=""><td>108</td><td>14.000 <t< td=""><td>32,000 <t< td=""><td></td></t<></td></t<></td></t<>	108	14.000 <t< td=""><td>32,000 <t< td=""><td></td></t<></td></t<>	32,000 <t< td=""><td></td></t<>	
	65.000	B0L	7 > 000 < 7	30.000 <1	
	19.000 <t< td=""><td>108</td><td>11.000 <t< td=""><td>30,000 <t< td=""><td></td></t<></td></t<></td></t<>	108	11.000 <t< td=""><td>30,000 <t< td=""><td></td></t<></td></t<>	30,000 <t< td=""><td></td></t<>	
	13.000 <t< td=""><td>B0L</td><td></td><td>30,000 <1</td><td></td></t<>	B0L		30,000 <1	
	25.000 <t< td=""><td>108</td><td>8,800 <t< td=""><td>19.000 <1</td><td></td></t<></td></t<>	108	8,800 <t< td=""><td>19.000 <1</td><td></td></t<>	19.000 <1	
1992 DEC	39.000 <t< td=""><td>BOL</td><td>BOL</td><td>14.000 <t< td=""><td></td></t<></td></t<>	BOL	BOL	14.000 <t< td=""><td></td></t<>	
MERCURY (UG/L	^		DET'N LIMIT = 0.02		GUIDELINE = 1.0 (A1)
16 SAMPLES	BDL	108			

	•					
:	GUIDELINE = 50.0 (A3)		GUIDEL INE = N/A <t <t="" <t<="" th=""><th><pre><!-- cup = 1</th--><th>- - - -</th><th>GUIDELINE = 10 (A1)</th></pre></th></t>	<pre><!-- cup = 1</th--><th>- - - -</th><th>GUIDELINE = 10 (A1)</th></pre>	- - - -	GUIDELINE = 10 (A1)
DIST. SYSTEM HIGH ST STANDING	1	2.300 .970 1.100 2.300 2.200 2.200 2.200 2.500	.380 .270 .520 .520 .510	.420	1,400 BDL 2,100 1,400 1,200 3,900 2,400	4, 300 3,600 4, 400 5,100 7,300 19,000 4,900
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 0.05	2.200 1.800 4.300 2.700 1.700 1.300 2.000	DET 'N LIMIT = 0.05 .360 <t .230="" .360="" .380="" .440="" .480="" <t="" <t<="" td=""><td>.450 <1 .380 <7 .0ET'N LIMIT = 0.20</td><td>1.800 <7 2.000 <7 800 <7 7.700 <7 1.900 <7 801 801 801</td><td>. 180 <1 180 <1</td></t>	.450 <1 .380 <7 .0ET'N LIMIT = 0.20	1.800 <7 2.000 <7 800 <7 7.700 <7 1.900 <7 801 801 801	. 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1 180 <1
TREATMENT PLANT TREATED		. 570 11 800 11 500 . 890 . 930 . 930 . 100 1. 1	.410 <1 .320 <1 .270 <1 .510 .510 .510 .510 .510 .510 .510 .510	1> 064. 1> 074.	2.000 <7 .960 <7 .960 <7 .1,500 <7 .640 <1 .801 801 801	BDL 070 <1 070 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0
TREATMENT PLANT RAW	METALS	26.000 26.000 27.000 27.000 27.000 17.000 17.000	, 410 .220 .270 .270 .270 .550 .680 .400	.450 <t< td=""><td>1.400 <7 1.300 <7 1.800 <7 1.600 <7 1.400 <7 2.400 801 801</td><td>108 PB PB</td></t<>	1.400 <7 1.300 <7 1.800 <7 1.600 <7 1.400 <7 2.400 801 801	108 PB
	MANGANESE (UG/L	1992 APR 1992 MAY 1992 JUL 1992 AUE 1992 SEP 1992 OCT 1992 NOV		1992 NOV 1992 DEC NICKEL (UG/L	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 AUG 1992 OCT 1992 NOV 1992 DEC	1992 APR 1992 APR 1992 MAY 1992 JUL 1992 JUL 1992 AUG 1992 GCT 1992 CCT

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	.630 .160 <1 .370 <1 .370 <1 .370 <1 .370 <1 .370 <1 .370 <1 .670 <1	0ET'N LIMIT = 0.05 .430 <t .470="" .550="" .570="" .640="" .64<="" <t="" th=""><th>GUIDELINE = 146 (04) .470 <t .1.500="" .510="" .530="" .570="" .580="" .680="" .801="" .801<="" <t="" th=""></t></th></t>	GUIDELINE = 146 (04) .470 <t .1.500="" .510="" .530="" .570="" .580="" .680="" .801="" .801<="" <t="" th=""></t>
.510 .500 .4500 .4500 .4500 .4500 .4500 .4500 .6800 .6800 .6800 .6800 .110000 .110000 .110000 .110000 .1200000 .1200000 .1200000 .1200000 .1200000 .12000000000 .120000000000	.630 .160 ¢1 .370 ¢1 .370 ¢1 .470 ¢1 .670 ¢1	108 108 108 108 108 108 108 108 108 108	<pre><1 6010ELINE <1 </pre>
3.510 3.510 4.500 4.	1,500 ct 180 ct	1.50 of 1.50 o	¢T GUIDELINE
300 400 400 400 400 400 400 400	1,000 ct 1,370 ct 1,370 ct 1,570 ct 1,570 ct 1,570 ct 1,000	1.256 cf 1.390 cf 1.390 cf 1.470 cf 1.470 cf 1.470 cf 1.500	<pre><1 cut cut cut cut cut cut cut cut cut cut</pre>
, 4, 200 , 5, 200 , 5, 200 , 6, 200 , 6, 200 , 7, 200 , 8, 2	1.380 <1 1.370 <1 1.370 <1 1.370 <1 1.390 <1 1.700 <1 1.700 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1.00 <1 1.1	.350 <1 .390 <1 .390 <1 .390 <1 .410 <1 .470 <1 .530 .530 .530 .530 .530 .530 .530	0010ELINE
, 450 , 450	1370 <1 1370 <1 1370 <1 1470 <1 1570 <1 157	.390 <7 .460 ×7 .470 <7 .470 <7 .530 ×7 .530 ×	GUIDELINE <1
, 400 , 450 , 450	7.30 cf	.390 <7 .400 <7 .470 <7 .530 <7 .530 <7 .611 LIMIT = 1.00	GUIDELINE <1
, 430 , 550 , 560 , 560 , 560 , 660 , 660	1.700 <1 5.70 <1 5.	.400 <7 .410 <7 .530 .530 .511 LIMIT = 1.00 .601	GUIDELINE <t< td=""></t<>
, 430 , 500 , 500 , 500 , 600 ,	1,500 cf (5.70 cf (5.	.410 <1 .530 .530 .530 .530 .530 .530 .530 .530	GUIDELINE <1
, 680 , 680 , 680 , 680 , 150 , 690 , 690	7,00,7,00	.470 <t .530="" .531="" .531<="" td=""><td>GUIDELINE <t< td=""></t<></td></t>	GUIDELINE <t< td=""></t<>
, 680 , 1 , 801 , 80	1.700 <1 801 1.200 <1 1.200 <1 801 1.500 <1 801 801 801 801	.530 DET'N LIMIT = 1.00 BOL BOL BOL BOL	GUIDELINE
, 801 801 801 801 801 801 801 115000 120,000 14,000 15,000 15,000 16,000 16,000 17,000 18,000	1.700 <1 801 1.200 <1 1.200 <1 801 801 1.500 <1 801 801 801	DET'N LIMIT = 1.00 BOL BOL BOL BOL	GUIDELINE <t <t<="" td=""></t>
801 801 801 801 1500 1500 1600 1600 1600 1600 1600 16	1.700 801 1.200 1.200 1.500 1.500 801 801	108 108 108	
11.500 11.500 120.000	1,700 801 1,200 801 801 1,500 1,500 801	108 801 801	
10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.00	1.200 1.200 801 1.500 801 1.500 801 801	80r	
115.000 120.000 120.000 120.000 110.000 120.00	1.500 80L 1.500 1.500 80L	BOL	
1 801 1 801	1.200 8DL 8DL 1.500 1.500 8DL 8DL		
1500 1500 1500 1500 1600 1600 1600 1600	-	BOL	
1,500 801 801 801 120,000 140,000 190,000 190,000 190,000 170,	-	108	
1,200 1,200 1,000	-	108	
801 801 120.000 460.000 110.000 120.000 120.000 190.000 150.000 16.000 16.000 16.000 16.000 16.000 16.000 17.000 17.000 18.000 18.000 19.0000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.0000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.0000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.0000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.0000 19.	108 108	1 > 00 - 1	8DL 80L
120.000 460.000 110.000 110.000 120.000 130.000 150.000 16.000 16.000 16.000 16.000 16.000		80L	700
120.000 120.000 160.000 110.000 120.000 170.00			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
120.000 460.000 160.000 110.000 120.000 170.00	5	DET'N LIMIT = 0.10	GUIDELINE = N/A
460 000 1160 000 1160 000 120 000 190 000 150 000 150 000 150 000 160	120.000	120.000	•
160.000 110.000 540.000 120.000 190.000 110.000 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.000 1	190,000	160.000	160.000
110.000 540.000 120.000 150.000 110.000 1 4.200 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.000 1	170.000	170.000	180.000
540.000 190.000 150.000 110.000 110.000 1.600 1.600 4.200	110,000	120.000	130,000
120.000 190.000 150.000 110.000 4.200 1.600 4.200	180.000	130.000	130.000
190.000 150.000 110.000 4.200 16.000 1.600 4.200	100.000	130.000	120.000
150.000 110.000 16.000 1.600 4.200	210.000	160.000	180.000
110.000 4.200 16.000 1.600 4.200	210.000	180.000	180.000
4.200 16.000 1.600 4.200	140.000	150.000	160.000
APR 4.200 MAY 16.000 JUN 1.600 JUL 4.200		DET*N LIMIT = 0.50	GUIDELINE = N/A
MAY 16.000 JUN 1.600 JUL 4.200	1 3.400 <1	3.700 <1	
JUL 4.200	9.900	6.500	6.300
JUL 4.200		1.300 <1	1,200 <1
	3, 700		4, 200 <t< td=""></t<>
	3,900		3,300 <1
SED	1 000		1 300 sT
OCT 2.800	2.400	2.000 <ĭ	2,100 <1
1.800	1.700		
	2.400	2.900 <1	2.800 <1

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	= 13 (04)		SUIDELINE = 100 (A1)										= N/A										GUIDELINE = 5000 (A3)									
DIST. SYSTEM HIGH ST STANDING	GUIDELINE = 13 (D4)	B0L	GUIDELINE		108	.080 ×T	108	BOL	BOL	BOL	.100 <1	108	GUIDELINE = N/A		. 100 <t< th=""><th>108</th><th>.080 ×T</th><th>BOL</th><th>BOL</th><th>.210 <1</th><th>1> 071.</th><th>.160 <t< th=""><th>GUIDELINE</th><th></th><th>26.000</th><th>14.000</th><th>19.000</th><th>38.000</th><th>39.000</th><th>110.000</th><th>45.000</th><th>45.000</th></t<></th></t<>	108	.080 ×T	BOL	BOL	.210 <1	1> 071.	.160 <t< th=""><th>GUIDELINE</th><th></th><th>26.000</th><th>14.000</th><th>19.000</th><th>38.000</th><th>39.000</th><th>110.000</th><th>45.000</th><th>45.000</th></t<>	GUIDELINE		26.000	14.000	19.000	38.000	39.000	110.000	45.000	45.000
DIST. SYSTEM DI HIGH ST HI FREE FLOW ST	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.05	BOL	1> 060.		T> 090.	108	BOL	. T> 060.	1> 021.	.070 <	DET'N LIMIT = 0.05	150 <1	B0L	BOL	108	BDL	BDL	.120 <t< td=""><td>.150 <t< td=""><td>. 120 <t< td=""><td>DET'N LIMIT = 0.20</td><td>2,100</td><td>5.800</td><td>5.200</td><td>5.900</td><td>007.7</td><td>2.400</td><td></td><td>1.800 <t< td=""><td>4.300</td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>. 120 <t< td=""><td>DET'N LIMIT = 0.20</td><td>2,100</td><td>5.800</td><td>5.200</td><td>5.900</td><td>007.7</td><td>2.400</td><td></td><td>1.800 <t< td=""><td>4.300</td></t<></td></t<></td></t<>	. 120 <t< td=""><td>DET'N LIMIT = 0.20</td><td>2,100</td><td>5.800</td><td>5.200</td><td>5.900</td><td>007.7</td><td>2.400</td><td></td><td>1.800 <t< td=""><td>4.300</td></t<></td></t<>	DET'N LIMIT = 0.20	2,100	5.800	5.200	5.900	007.7	2.400		1.800 <t< td=""><td>4.300</td></t<>	4.300
TREATMENT PLANT TREATED	,	B0L .		108	1> 060		T> 090.	B0L	B0L	.120 <t< td=""><td>T> 071.</td><td>1> 090.</td><td></td><td>120 <1</td><td>BOL</td><td>801</td><td>801</td><td>B0L</td><td>80F</td><td>.120 <</td><td>1> 001.</td><td>. 110 <t< td=""><td>1</td><td>2.500</td><td>3.600</td><td>1.900 <1</td><td>1,600 <t< td=""><td>2.300</td><td>4.100</td><td>3.000</td><td>1.300 <1</td><td>4.100</td></t<></td></t<></td></t<>	T> 071.	1> 090.		120 <1	BOL	801	801	B0L	80F	.120 <	1> 001.	. 110 <t< td=""><td>1</td><td>2.500</td><td>3.600</td><td>1.900 <1</td><td>1,600 <t< td=""><td>2.300</td><td>4.100</td><td>3.000</td><td>1.300 <1</td><td>4.100</td></t<></td></t<>	1	2.500	3.600	1.900 <1	1,600 <t< td=""><td>2.300</td><td>4.100</td><td>3.000</td><td>1.300 <1</td><td>4.100</td></t<>	2.300	4.100	3.000	1.300 <1	4.100
TREATMENT PLANT RAW	METALS)	BDL	•	7> 012.	.540	. 240 <t< td=""><td>.230 <1</td><td>.330 <t< td=""><td>. 250 <1</td><td>7> 092.</td><td>. 240 <t< td=""><td>.220 <1</td><td>(</td><td>.250 <1</td><td>1> 074.</td><td>1> 061.</td><td>801</td><td>T> 090.</td><td>BOL</td><td>.170 <⊺</td><td>: 150 <t< td=""><td>.260 <1</td><td>(</td><td>1,900 <1</td><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td></t<></td></t<></td></t<></td></t<>	.230 <1	.330 <t< td=""><td>. 250 <1</td><td>7> 092.</td><td>. 240 <t< td=""><td>.220 <1</td><td>(</td><td>.250 <1</td><td>1> 074.</td><td>1> 061.</td><td>801</td><td>T> 090.</td><td>BOL</td><td>.170 <⊺</td><td>: 150 <t< td=""><td>.260 <1</td><td>(</td><td>1,900 <1</td><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td></t<></td></t<></td></t<>	. 250 <1	7> 092.	. 240 <t< td=""><td>.220 <1</td><td>(</td><td>.250 <1</td><td>1> 074.</td><td>1> 061.</td><td>801</td><td>T> 090.</td><td>BOL</td><td>.170 <⊺</td><td>: 150 <t< td=""><td>.260 <1</td><td>(</td><td>1,900 <1</td><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td></t<></td></t<>	.220 <1	(.250 <1	1> 074.	1> 061.	801	T> 090.	BOL	.170 <⊺	: 150 <t< td=""><td>.260 <1</td><td>(</td><td>1,900 <1</td><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td></t<>	.260 <1	(1,900 <1	5.800	2.400	6.200	5.100	6.500	3.200	3.400	6.200
	THALLIUM (UG/L	35 SAMPLES	URANIUM (UG/L	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV	1992 DEC	VANADIUM (UG/L	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV	1992 DEC	ZINC (UG/L	1992 APR	1992 MAY.	1992 JUN	1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV	1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

SYSTEM ST NG	GUIDELINE = 450 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 10000 (I)		GUIDELINE = 38000 (04)		GUIDELINE = N/A		GUIDELINE = 10 (C1)		GUIDELINE = 1900 (D4)	•							GUIDELINE = N/A	
DIST. SYSTEM DIST. HIGH ST HIGH S	DET'N LIMIT = 1.000	108	DET'N LIMIT = 5.000	108	DET'N LIMIT = 1,000	108	DET'N LIMIT = 1.000	108	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	901	DET'N LIMIT = 5.000	108	OET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	801	2.000 <t< td=""><td>15 000.2 BDI</td><td>1,000 <t< td=""><td>801</td><td></td><td>1.000 <t< td=""><td>DET'N LIMIT = 1.000</td><td>BDL</td></t<></td></t<></td></t<>	15 000.2 BDI	1,000 <t< td=""><td>801</td><td></td><td>1.000 <t< td=""><td>DET'N LIMIT = 1.000</td><td>BDL</td></t<></td></t<>	801		1.000 <t< td=""><td>DET'N LIMIT = 1.000</td><td>BDL</td></t<>	DET'N LIMIT = 1.000	BDL
TREATMENT PLANT TREATED	S	108		108		108		BOL		108		BDL		B01	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BOL	; ; ; ; ; ; ; ; ; ; ;	5.000 <t< td=""><td>3 000 v</td><td>2000.0</td><td>80r</td><td>108</td><td>3 000 7</td><td></td><td></td><td>108</td></t<>	3 000 v	2000.0	80r	108	3 000 7			108
TREATMENT PLANT RAW	CHLOROAROMATICS HEXACHLOROBUTADIENE (NG/L)	27 SAMPLES BOL	123-TRICHLOROBENZENE (NG/L)	25 SAMPLES BDL	1234-TETCLOROBENZENE (NG/L)	25 SAMPLES BOL	1235-TETCLOROBENZENE (NG/L)	24 SAMPLES BOL	124-TRICHLOROBENZENE (NG/L)	25 SAMPLES BDL	1245-TETCLOROBENZENE (NG/L)	27 SAMPLES BDL	135-TRICHLOROBENZENE (NG/L)	27 SAMPLES BDL	HEXACHLOROBENZENE (NG/L)	27 SAMPLES BDL	HEXACHLOROETHANE (NG/L)	APR	1992 MAY BDL	5	AUG	SEP	1992 OCT 80L		OCTACHLOROSTYRENE (NG/L)	27 SAMPLES BDL

		DKINKING WAIEK	DATE OF THE CONTEST O	
TREATM RAW	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DIST. SYSTEM HIGH ST FREE FLOW	DIST, SYSTEM High St Standing
CHLOROAROMATI PENTACHLOROBENZENE (NG/L)	CHLOROAROMATICS (NG/L)	SO	DET'N LIMIT = 1.000	GUIDELINE = 74000 (D4)
27 SAMPLES	108	BDL	BDL	
236-TRICHLOROTOLUENE (NG/L	(NG/L		DET'N LIMIT = 5.000	GUIDELINE = N/A
27 SAMPLES	BDL	108	BDL	
245-TRICHLOROTOLUENE (NG/L	L/DN)		DET'N LIMIT = 5.000	GUIDELINE = N/A
27 SAMPLES	BDL	BDL	108	
26A-TRICHLOROTOLUENE (NG/L	CNG/L	•	DET'N LIMIT = 5.000	GUIDELINE = N/A
27 SAMPLES	BDL	BDL	BDL	8

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON UTP

							(7)					
	N/A		= N/A		= N/A		GUIDELINE = 2600000 (D4)		GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	
Į.	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE		GUIDELINE		GUIDELINE	
DIST. SYSTEM HIGH ST STANDING	0.00		0.0	•	0.0	•	0.00	•	0.0	•	0.00	٠
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 100.0		DET'N LIMIT = 20.0	٠	DET'N LIMIT = 10.0		DET'N LIMIT = 100.0		0ET'N L)MIT = 20.0		DET'N LIMIT = 10.00	٠
TREATMENT PLANT TREATMENT PLANT TREATED TREATED		BOL		BDL	,	BDL		BOL		30.000 <7		10B
MENT PLANT	CHLOROPHENOLS	BDL	(NG/L)	BDL	(NG/L)	BDL	(NG/L)	BDL	(NG/L)	BDL	G/L)	BDL
TREAT	CHLOROPH 234-TRICHLOROPHENOL (NG/L	2 SAMPLES	2345-TETCHLOROPHENOL (NG/L	2 SAMPLES	2356-TETCHLOROPHENOL (NG/L	2 SAMPLES	245-TRICHLOROPHENOL (NG/L	2 SAMPLES	246-TRICHLOROPHENOL (NG/L	1992 NOV	PENTACHLOROPHENOL (NG/L	2 SAMPLES
	234-1	2	2345-	2	2356-	2	245-1	2	246-1	19	PENTA	2

DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAM		SOUTHAMPTON WTP	
URVEILLANCE PROGRAM		SOUTHAM	
URVEILLANCE		-	
. DRINKING WATER SURVEILLANCE	1100	PROGRAM	
. DRINKING WATER		SURVEILLANCE	
DRINKING		WATER	
		DRINKING	

	41)		G								6		(A1)		(A1)		(A1)		A1)		0 (A1)		(04)		(04)	
	GUIDELINE = 700 (A1)		GUIDELINE = 700 (G)								GUIDELINE = 300 (G)		GUIDELINE = 4000 (A1)		GUIDELINE = 7000 (A1)		GUIDELINE = 7000 (A1)		GUIDELINE = 700 (A1)		GUIDELINE = 900000 (A1)		GUIDELINE = 74000 (D4)		GUIDELINE = 74000 (D4)	
DIST. SYSTEM HIGH ST STANDING	; ; ; ; ; ;										30				; ; ; ;	•	ਰ		ਰ ਹ	•	ਰ ਹ	•	ල ප			
DIST. SYSTEM D HIGH ST H FREE FLOW S	DET*N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	1.000 <t< td=""><td>BDL</td><td>1,000 <t< td=""><td></td><td>1.000 <t< td=""><td>BDL BDL</td><td>BDL</td><td>DET'N LIMIT = 1.00</td><td>, BDL</td><td>DET'N LIMIT = 1.000</td><td>BDL</td><td>DET'N LIMIT = 2.000</td><td>. BDL</td><td>DET'N LIMIT = 2.00</td><td>108</td><td>DET'N LIMIT = 2.00</td><td>BOL</td><td>DET'N LIMIT = 5.0</td><td>BDL</td><td>DET'N LIMIT = 2.00</td><td>, TOB</td><td>DET'N LIMIT = 5.000</td><td>ica</td></t<></td></t<></td></t<>	BDL	1,000 <t< td=""><td></td><td>1.000 <t< td=""><td>BDL BDL</td><td>BDL</td><td>DET'N LIMIT = 1.00</td><td>, BDL</td><td>DET'N LIMIT = 1.000</td><td>BDL</td><td>DET'N LIMIT = 2.000</td><td>. BDL</td><td>DET'N LIMIT = 2.00</td><td>108</td><td>DET'N LIMIT = 2.00</td><td>BOL</td><td>DET'N LIMIT = 5.0</td><td>BDL</td><td>DET'N LIMIT = 2.00</td><td>, TOB</td><td>DET'N LIMIT = 5.000</td><td>ica</td></t<></td></t<>		1.000 <t< td=""><td>BDL BDL</td><td>BDL</td><td>DET'N LIMIT = 1.00</td><td>, BDL</td><td>DET'N LIMIT = 1.000</td><td>BDL</td><td>DET'N LIMIT = 2.000</td><td>. BDL</td><td>DET'N LIMIT = 2.00</td><td>108</td><td>DET'N LIMIT = 2.00</td><td>BOL</td><td>DET'N LIMIT = 5.0</td><td>BDL</td><td>DET'N LIMIT = 2.00</td><td>, TOB</td><td>DET'N LIMIT = 5.000</td><td>ica</td></t<>	BDL BDL	BDL	DET'N LIMIT = 1.00	, BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 2.000	. BDL	DET'N LIMIT = 2.00	108	DET'N LIMIT = 2.00	BOL	DET'N LIMIT = 5.0	BDL	DET'N LIMIT = 2.00	, TOB	DET'N LIMIT = 5.000	ica
TREATMENT PLANT TREATED		BDL		1.000 <t< td=""><td>BDL</td><td>1.000 <1</td><td></td><td>BDL .</td><td></td><td>1.000 <t< td=""><td></td><td>BDL</td><td>-</td><td>BDL</td><td></td><td>108</td><td></td><td>BOL</td><td></td><td>108</td><td>1</td><td>BOL</td><td></td><td>. 108</td><td>,</td><td>Ğ</td></t<></td></t<>	BDL	1.000 <1		BDL .		1.000 <t< td=""><td></td><td>BDL</td><td>-</td><td>BDL</td><td></td><td>108</td><td></td><td>BOL</td><td></td><td>108</td><td>1</td><td>BOL</td><td></td><td>. 108</td><td>,</td><td>Ğ</td></t<>		BDL	-	BDL		108		BOL		108	1	BOL		. 108	,	Ğ
TREATMENT PLANT RAW	PESTICIDES AND PCB	HDL	•	1.000 <t< td=""><td>BOL</td><td>1.000 <t< td=""><td>30F</td><td>BOL</td><td>80L 80L</td><td>1.000 <t< td=""><td>^</td><td>BOL</td><td>HC) (NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>^</td><td>BDL</td><td>/ل)</td><td>BOL</td><td>/۲)</td><td>BOL</td><td>lG/L)</td><td>Ğ</td></t<></td></t<></td></t<>	BOL	1.000 <t< td=""><td>30F</td><td>BOL</td><td>80L 80L</td><td>1.000 <t< td=""><td>^</td><td>BOL</td><td>HC) (NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>^</td><td>BDL</td><td>/ل)</td><td>BOL</td><td>/۲)</td><td>BOL</td><td>lG/L)</td><td>Ğ</td></t<></td></t<>	30F	BOL	80L 80L	1.000 <t< td=""><td>^</td><td>BOL</td><td>HC) (NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>(NG/L)</td><td>BDL</td><td>^</td><td>BDL</td><td>/ل)</td><td>BOL</td><td>/۲)</td><td>BOL</td><td>lG/L)</td><td>Ğ</td></t<>	^	BOL	HC) (NG/L)	BDL	(NG/L)	BDL	(NG/L)	BDL	^	BDL	/ل)	BOL	/۲)	BOL	lG/L)	Ğ
- œ	ALDRIN (NG/L	27 SAMPLES	ALPHA BHC (NG/L	1992 APR	1992 MAY	1992 JUL			1992 OC1 1992 NOV		BETA BHC (NG/L	27 SAMPLES	LINDANE (GAMMA BHC) (NG/L	27 SAMPLES	ALPHA CHLORDANE (NG/L	27 SAMPLES	GAMMA CHLORDANE (NG/L	27 SAMPLES	DIELDRIN (NG/L	27 SAMPLES	METHOXYCHLOR (NG/L	27 SAMPLES	ENDOSULFAN 1 (NG/L	27 SAMPLES	ENDOSULFAN 11 (NG/L	27 SAMPLES

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

TREATMENT PLANT TREATMEN RAW TREATED	IT PLANT DIST. SYSTEM HIGH ST. FREE FLOW	OIST. SYSTEM HIGH ST STANDING
PESTICIDES AND PCB	DET'N LIMIT = 5.000	GUIDELINE = 1600 (03)
B0L	8DL 80L	
ENDOSULFAN SULPHATE (NG/L)	DET'N LIMIT = 5.00	GUIDELINE = N/A
BDL .	8DL 80L	
HEPTACHLOR EPOXIDE (NG/L)	DET'N LIMIT = 1.000	GUIDELINE = 3000 (A1)
B0L	BDL 80L	
	DET'N LIMIT = 1.000	GUIDELINE = 3000 (A1)
108	. 108 108	
	DET'N LIMIT = 5.000	GUIDELINE = N/A
B0L	108 108	
	DET'N LIMIT = 2.000	GUIDELINE = N/A
109	108 por	
	DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)
108	108 por	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 20.00	GUIDELINE = 3000 (A2)
B0L	108 108	
	DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)
108	108 108	
	0ET'N LIMIT = 1.000	GUIDELINE = 30000 (A1)
801	108 108	
	DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)
80r	108 TO8	
	0ET'N LIMIT = 500.0	GUIDELINE = 5000 (A1)
B0L	108	

W	GUIDELINE = 300000 (D3)		GUIDELINE = 60000 (A2)										GUIDELINE = N/A		GUIDELINE = 10000 (A2)		GUIDELINE = 60000 (A2)		GUIDELINE = 10000 (A2)		GUIDELINE = 52500 (D3)		GUIDELINE = 700000 (D3)		GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)	
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 50.0		DET'N LIMIT = 50.0		•		•	•	•			11 11 11 11 11 11 11 11 11 11 11 11 11	DET'N LIMIT = 50.0	•	DET'N IMIT = 100.0		DET'N LIMIT = 200.0		0ET'N LIMIT = 200.0		DET'N LIMIT = 50.000		DET'N LIMIT = 50.000		DET'N LIMIT = 50.000		DET'N LIMIT = 100.0	
ANT TREATMENT PLANT TREATED	S AND PCB	BDL		č	3 G8	108 80L	108	<t 80l<="" td=""><td>BDL</td><td>BOL</td><td>108 801</td><td></td><td></td><td>108</td><td>^</td><td>BDL</td><td>•</td><td>BDL</td><td></td><td>BDL</td><td>, 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1</td><td>BDL</td><td>, 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1</td><td>BDL</td><td>. 1</td><td>. BDL</td><td></td><td>BDL</td></t>	BDL	BOL	108 801			108	^	BDL	•	BDL		BDL	, 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1	BDL	, 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	BDL	. 1	. BDL		BDL
TREATMENT PLANT RAW	PESTICIDES AND PCB AMETRINE (NG/L)	18 SAMPLES BDL	ATRAZINE (NG/L)	1002 ABB		NON	JUL	AUG 80.000		OCT	1992 NOV BDL 1992 DEC BDL		ATRATONE (NG/L)	18 SAMPLES BDL	CYANAZINE (BLADEX) (NG/L	18 SAMPLES BDL	DESETHYL ATRAZINE (NG/L	18 SAMPLES BDL	DESETHYL SIMAZINE (NG/L	18 SAMPLES BDL	PROMETONE (NG/L)	18 SAMPLES BDL	PROPAZINE (NG/L)	18 SAMPLES BDL	PROMETRYNE (NG/L)	18 SAMPLES BDL	METRIBUZIN (SENCOR) (NG/L	16 SAMPLES BDL

TABLE 4
ADDING DATES CIDNETT AND DOCUMENT TO THE

	WIP	
	PROGRAM 1992 SOUTHAMPTON	
	1992	
1	PROGRAM	
	URVEILLANCE	
	INKING WATER SURVI	
	DRINKING	

	IREAIMENT PLANI IREAMENI PLANI DISI, STSIEM RAW TREATED HIGH ST FREE FLOM	TREATED	HIGH ST FREE FLOW	HIGH ST STANDING	.
SIMAZINE (NG/L	PESTICIDES AND PCB SIMAZINE (NG/L)	D PC8	DET'N LIMIT = 50.00	= 50.00	GUIDELINE = 10000 (A2)
18 SAMPLES	108	BOL	•	٠	
ALACHLOR (LASSO) (NG/L	ALACHLOR (LASSO) (NG/L)	, , , , , , , , , , , , , , , , , , ,	DET'N LIMIT = 500.0 GUIDE	0.00	GUIDELINE = 5000 (A2)
18 SAMPLES		108	٠	•	
METOLACHLOR (NG/L	^		DET'N LIMIT = 500.0 GUIDE	0.00	GUIDELINE = 50000 (A2)
18 SAMPLES	901	BDL		•	

4F		= N/A									
UTHAMPTON W	π æ	GUIDELINE = N/A									
TABLE 4 PROGRAM 1992 SC	DIST. SYSTEM HIGH ST STANDING	0.2									
TAE SURVEILLANCE PRO	DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT =						•		•	
TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON UTP	TREATMENT PLANT TREATED		BDL	BDL	BDL	T> 004.	1>'007'	901	BDL	BDL	. 007
	TREATMENT PLANT RAW	PHENOLICS	. BDL	BDL	80F	BDL	BDL	BDL	BDL	T> 009.	-
	= &	PHENOLICS (UG/L	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV	1002 ner

	DRINKING WALEK	DRINKING WAIER SURVEILLANCE PROGRAM 1992 SUUTHAMPTON WIP	HAMPION VIP
TREATMENT PLANT RAW	ANT TREATED TREATED	DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	Ŧ.
PHENANTHRENE (NG/L)	POLYAROMATIC HYDROCARBONS	DET'N LIMIT = 10.0	GUIDELINE = N/A
3 SAMPLES BDL	BDL	. 801	
ANTHRACENE (NG/L)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 1.0	GUIDELINE = N/A
3 SAMPLES BDL	901	. 801	
FLUORANTHENE (NG/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 20.0	GUIDELINE = 42000 (D4)
3 SAMPLES BDL	108	. 801	
PYRENE (NG/L)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	DET'N LIMIT = 20.0	GUIDELINE = N/A
3 SAMPLES BDL	BDL	BDL	
BENZO(A)ANTHRACENE (NG/L		DET'N LIMIT = 20.0	GUIDELINE = N/A
3 SAMPLES BDL	108	BDL	
CHRYSENE (NG/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 50.0	GUIDELINE = N/A
3 SAMPLES BDL	BDL	BDL	
DIMETH. BENZ(A)ANTHR (NG/L	(DET'N LIMIT = 5.0	GUIDELINE = N/A
3 SAMPLES BDL	BDL	. 108	
BENZO(E) PYRENE (NG/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 50.0	GUIDELINE = N/A
3 SAMPLES BDL	BDL	. 108	
BENZO(B) FLUORANTHEN (NG/L	(DET'N LIMIT = 10.0	GUIDELINE = N/A
3 SAMPLES BDL	BDL	BDL	
PERYLENE (NG/L)	6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	DET'N LIMIT = 10.0	GUIDELINE = N/A
3 SAMPLES BDL	108	901	
BENZO(K) FLUORANTHEN (NG/L	(DET'N LIMIT = 1.0	GUIDELINE = N/A
3 SAMPLES BDL	108	. 901	
BENZO(A) PYRENE (NG/L)	0	DET'N LIMIT = 5.0	GUIDELINE = 10 (A1)
3 SAMPLES BDL	BDL	BDL	00

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

DIST. SYSTEM HIGH ST STANDING

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED HIGH ST FREE FLOW

POLYAROMATIC HYDROCARBONS BENZO(G,H,I) PERYLEN (NG/L) DET'N LIMIT = 20.0 GUIDELINE = N/A	. 108 108 108	H) ANTHRAC (NG/L) DET'N LIMIT = 10.0 GUIDELINE = N/A	108	2,3-C,D) PY (NG/L) DET'N LIMIT = 20.0 GUIDELINE = N/A	108 PDF	BENZO(B) CHRYSENE (NG/L) DET'N LIMIT = 2.0 GUIDELINE = N/A	108 108	L) DET'N LIMIT = 10.0
BENZO(G,H,I) PERYL	3 SAMPLES	DIBENZO(A, H) ANTHRAC (NG/L	3 SAMPLES	INDENO(1,2,3-C,D) PY (NG/L	3 SAMPLES	BENZO(B) CHRYSENE (NG/L	3 SAMPLES	CORONENE (NG/L

	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	SYSTEM T VG
2,4,5-T (NG/L	SPECIFIC PESTICIDES	1C10ES	DET'N LIMIT = 50.0	GUIDELINE = 280000 (A1)
2 SAMPLES	B0L	B01		
2,4-D (NG/L	^		DET'N LIMIT = 100.0	GUIDELINE = 100000 (A1)
2 SAMPLES	108	BOL		
2,4.DB (NG/L	^		DET'N LIMIT = 200.0	GUIDELINE = N/A
2 SAMPLES	108	BOL	٠	
2,4 D PROPIONIC ACID (NG/L	C ACID (NG/L		DET'N LIMIT = 100.0	GUIDELINE = N/A
2 SAMPLES	BOL	108	٠	•
DICAMBA (NG/L			DET'N LIMIT = 50.0	GUIDELINE = 120000 (A1)
2 SAMPLES	108	108		
2,4,5-TP (SILVEX) (NG/L	EX) (NG/L)	. I I I I I I I I I I I I I I I I I I I	DET'N LIMIT = 20.00	GUIDELINE = 10000 (A1)
2 SAMPLES	108	BOL		
DIAZINON (NG/L	•		DET'N LIMIT = 20.0	GUIDELINE = 20000 (A1)
2 SAMPLES	BDL	BOL		
DICHLOROVOS (NG/L	()		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	108	108		
CHLORPYRIFOS (NG/L	NG/L)		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BOL	B0L		
ETHION (NG/L	^	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	DET'N LIMIT = 20.0	GUIDELINE = 35000 (G)
2 SAMPLES	901	108	٠	
MALATHION (NG/L	,	٠	DET'N LIMIT = 20.0	GUIDELINE = 190000 (A1)
2 SAMPLES	BDL	BOL	-	
MEVINPHOS (NG/L	, ,		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	100	īda		

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	TEM
SPECIFIC PESTICIDES METHYL PARATHION (NG/L)	TICIDES	DET'N LIMIT = 50.0	GUIDELINE = 9000 (D3)
SAMPLES BDL	BDL		
METHYLTRITHION (NG/L)		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES BDL	BDL		
PARATHION (NG/L)		DET'N LIMIT = 20.0	GUIDELINE = 50000 (A1)
2 SAMPLES BDL	BDL		
PHORATE (NG/L)		DET'N LIMIT = 20.0	GUIDELINE = 2000 (A2)
2 SAMPLES BDL	BDL		
RELDAN (NG/L)		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES BDL	BDL		
RONNEL (NG/L)		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES BDL	BOL	•	
CARBOFURAN (NG/L)		DET'N LIMIT = 2000.0	GUIDELINE = 90000 (A1)
2 SAMPLES BDL	BDL .	•	
CHLORPROPHAM (CIPC) (NG/L		DET'N LIMIT = 2000.0	GUIDELINE = 350000 (G)
2 SAMPLES BDL	BDL		
DIALLATE (NG/L .)		DET'N LIMIT = 2000.0	GUIDELINE = N/A
2 SAMPLES BDL	108		
EPTAM (NG/L)		DET'N LIMIT = 2000.0	GUIDELINE = N/A
2 SAMPLES BOL	108		
IPC (NG/L)		DET'N LIMIT = 2000.0	GUIDELINE = N/A
2 SAMPLES BOL	BOL		
PROPOXUR (NG/L)		DET'N LIMIT = 2000.0	GUIDELINE = 140000 (D3)
SAMPLES 80L	BDI		

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WIP

	IREA MEN PLANI IKRAINENI PLANI DISI, SYSIEM RAW HIGH ST RREE FLOW	TREATED	HIGH ST FREE FLOW	HIGH ST STANDING	
CARBARYL (NG/L	SPECIFIC PESTICIDES)	ICIDES	SPECIFIC PESTICIDES CARBARYL (MG/L) GUIDE	0 GU	GUIDELINE = 90000 (A1)
2 SAMPLES	BDL	BDL			
BUTYLATE (NG/L	BUTYLATE (NG/L)		DET'N LIMIT = 2000.0 GUIDE	.0 GU	GUIDELINE = 245000 (D3)
2 SAMPLES	BDL	BDL		,	

	WIP.
	SOUTHAMPTON
	1992
ADLC 4	PROGRAM
	SURVE ILLANCE
	WATER
	DRINKING
	ō

	GUIDELINE = 300 (A3*)										GUIDELINE = 300 (A3*)										GUIDELINE = 100 (D1)						•				GUIDELINE = 7 (01)	
YSTEM	GUIDELI										GUIDELI										CU1DEL1										GUIDELI	
DIST. SYSTEM HIGH ST STANDING	0.10			_		_	_	_			0.05	_		_	_	_	_	-			0.05			_	_	_	_	_		_	0.100	
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 0.10	1.000		1> 001.	B0L	.200 <1	.200 <1	1> 007	BDL	BDL	DET'N LIMIT = 0.05	1> 057		.250 <1	T> 050.	150 <1	7> 002.	.300 <t< td=""><td>BDL</td><td>108</td><td>DET'N LIMIT = 0.05</td><td>108</td><td>•</td><td>150 <1</td><td>150 <1</td><td></td><td>. 250 <t< td=""><td>.250 <1</td><td>80L</td><td>.200 <1</td><td>DET'N LIMIT = 0.100</td><td>108</td></t<></td></t<>	BDL	108	DET'N LIMIT = 0.05	108	•	150 <1	150 <1		. 250 <t< td=""><td>.250 <1</td><td>80L</td><td>.200 <1</td><td>DET'N LIMIT = 0.100</td><td>108</td></t<>	.250 <1	80L	.200 <1	DET'N LIMIT = 0.100	108
TREATMENT PLANT TREATED	0	1.000 RMP	.500 <t< td=""><td>108</td><td>. 100 <t< td=""><td>.100 <t< td=""><td>.200 <1</td><td>80F</td><td>80L</td><td>B0L</td><td>0</td><td>.450 <1</td><td></td><td>100 <1</td><td>T> 050.</td><td>T> 050.</td><td>.100 <7</td><td>108</td><td>BOL</td><td>B0L</td><td>0</td><td>B01</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>B0L</td><td>BOL</td><td>B01</td><td>108</td><td>0</td><td>B0L</td></t<></td></t<></td></t<>	108	. 100 <t< td=""><td>.100 <t< td=""><td>.200 <1</td><td>80F</td><td>80L</td><td>B0L</td><td>0</td><td>.450 <1</td><td></td><td>100 <1</td><td>T> 050.</td><td>T> 050.</td><td>.100 <7</td><td>108</td><td>BOL</td><td>B0L</td><td>0</td><td>B01</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>B0L</td><td>BOL</td><td>B01</td><td>108</td><td>0</td><td>B0L</td></t<></td></t<>	.100 <t< td=""><td>.200 <1</td><td>80F</td><td>80L</td><td>B0L</td><td>0</td><td>.450 <1</td><td></td><td>100 <1</td><td>T> 050.</td><td>T> 050.</td><td>.100 <7</td><td>108</td><td>BOL</td><td>B0L</td><td>0</td><td>B01</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>B0L</td><td>BOL</td><td>B01</td><td>108</td><td>0</td><td>B0L</td></t<>	.200 <1	80F	80L	B0L	0	.450 <1		100 <1	T> 050.	T> 050.	.100 <7	108	BOL	B0L	0	B01	108	108	B0L	108	B0L	BOL	B01	108	0	B0L
TREATMENT PLANT RAW	VOLATILES)	BDL	108 80F	108	BOL	.200 <1	B 01	B01	BOL	BOL	(BOL	108 108	108	108	. 100 <t< td=""><td>80F</td><td>B0L</td><td>B0L</td><td>BOL</td><td></td><td>, BOL</td><td>150 <1</td><td>150 <1</td><td>. 100 <t< td=""><td>.250 <t< td=""><td>. 100 <t< td=""><td>.200 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>B0L</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80F	B0L	B0L	BOL		, BOL	150 <1	150 <1	. 100 <t< td=""><td>.250 <t< td=""><td>. 100 <t< td=""><td>.200 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>B0L</td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <t< td=""><td>. 100 <t< td=""><td>.200 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>B0L</td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>.200 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>B0L</td></t<></td></t<></td></t<>	.200 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>B0L</td></t<></td></t<>	B0L	.100 <t< td=""><td>YLENE (UG/L)</td><td>B0L</td></t<>	YLENE (UG/L)	B0L
_	M-XYLENE (UG/L	1992 APR	1992 MAY		1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV		0-XYLENE (UG/L	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG	1992 SEP				STYRENE (UG/L	1992 APR	1992 MAY	1992 JUN		1992 AUG	1992 SEP	1992 OCT		1992 DEC	1,1-DICHLOROETHYLENE (UG/L	26 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

TEM.	GUIDELINE = 50 (A1)		GUIDELINE = 70 (01)	GUIDELINE = N/A	GUIDELINE = 350 (A1+)		GUIDELINE = 200 (D1)	GUIDELINE = 5 (A1)	GUIDELINE = 5 (A1)	GUIDELINE = 5 (01)
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 0.50	108 108 108 108 108 108	DET'N LIMIT = 0.10 BDL	DET'N LIMIT = 0.100 BDL	DET'N LIMIT = 0.10	12.500 33.000 11.800 19.100 26.800 26.800 33.700	DET'N LIMIT = 0.02 BDL	DET'N LIMIT = 0.05 BDL	DET'N LIMIT = 0.20 BOL	DET'N LIMIT = 0.05 BOL
TREATMENT PLANT TREATED		108 108 108 108 108 708 108 108	, BDL	B0L		23.100 64.300 25.800 12.900 21.200 35.200 49.200 24.100	108	BDL	BOL	108
TREATMENT PLANT RAW	VOLATILES 1DE (UG/L)	108 108 108 108 108 108	rLENE (UG/L BDL	ANE (UG/L) BDL	^	2.300 11.700 6.200 5.700 11.200 8.200 9.800 18.700	AANE (UG/L) BDL	ANE (UG/L) BDL	ORIDE (UG/L BOL	PANE (UG/L ') BDL
F 4.	VOLATI METHYLENE CHLORIDE (UG/L	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DCT 1992 DCT	T12-DICHLOROETHYLENE (UG/L	1,1-DICHLOROETHANE (UG/L	CHLOROFORM (UG/L	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 NOV 1992 DEC	111, TRICHLOROETHANE 26 SAMPLES	1,2 DICHLOROETHANE (UG/L	CARBON TETRACHLORIDE (UG/L 26 SAMPLES BDL	1,2-DICHLOROPROPANE (UG/L 26 SAMPLES BDI

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WIP

SYSTEM ST ING	GUIDELINE = 50 (A1)		GUIDELINE = 350 (A1+)								GUIDELINE = 0.6 (04)		GUIDELINE = 350 (A1+)							•		GUIDELINE = 65 (A5)		GUIDELINE = 350 (A1+)		GUIDELINE = 0.17 (D4)	•	GUIDELINE ≈ 2 (D1)	
OIST. SYSTEM DIST. SY HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 0.10	BOL	DET'N LIMIT = 0.05	5.250	•	9.050	7.950	0.450	11.050	8.050 6.200	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.10	-	1.500	2.100	3.600	3.800	4.400 APS	4.800	1.900	OET'N LIMIT = 0.05	108	DET'N LIMIT = 0.20	. 108	0ET'N LIMIT = 0.05	108	DET'N LIMIT = 0.100	108
TREATMENT PLANT TREATED		B0L	^	8.850	9.500	9.700	000.6	7.930	10.300	10.000 9.550		108	^	002.0	2.300	2.600	4.100	3.500	4.300	7.500	2.600		80r		108	^	108		BOL
TREATMENT PLANT RAW	VOLATILES (UG/L)	· BOL	ANE (UG/L	1.300	.700	2.350	5.300	050	2.950	7.450 8.050	NE (UG/L)	BOL	ANE (UG/L	ā	80L	.400 <t< td=""><td>2.700</td><td>BOL</td><td>2.900</td><td>2 000.</td><td>3.500</td><td>4E (UG/L)</td><td>108</td><td>^</td><td>108</td><td>ANE (UG/L</td><td>BOL</td><td>3/L)</td><td>BOL</td></t<>	2.700	BOL	2.900	2 000.	3.500	4E (UG/L)	108	^	108	ANE (UG/L	BOL	3/L)	BOL
TR.	TRICHLOROETHYLENE	26 SAMPLES	DICHLOROBROMOMETHANE (UG/L	1992 APR			1992 JUL			1992 NOV 1992 DEC	112-TRICHLOROETHANE (UG/L	26 SAMPLES	CHLOROD I BROMOMETHANE	1002 400	1002 APK				1992 SEP		1992 DEC	TETRACHLOROETHYLENE (UG/L	26 SAMPLES	BROMOFORM (UG/L	26 SAMPLES	1122-TETCHLOROETHANE	26 SAMPLES	VINYL CHLORIDE (UG/L	26 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	GUIDELINE = 70 (D1)		GUIDELINE = 1510 (03)		GUIDELINE = 5 (A1)		GUIDELINE = 3750 (03)-		GUIDELINE = 200 (A1)		GUIDELINE = 50 (01)	*	GUIDELINE = 350 (A1)								
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 0.100	. 801	DET'N LIMIT = 0.10	. 108	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.10	. 801	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.05	. 801	DET'N LIMIT = 0.50	. 19.250		23.350	23.350	34.750	42.650	43.350	. 54.200
TREATMENT PLANT TREATED		BDL	• • • • • • • • • • • • • • • • • • •	BOL		BOL	, , , , , , , , , , , , , , , , , , ,	BDL		BDL		BDL		34.250	74.900	26.000	34.250	24.100	48.000	60.700	36.25U
TREATMENT PLANT RAW	VOLATILES C12-DICHLORDETHYLENE (UG/L)	26 SAMPLES BDL	CHLOROBENZENE (UG/L)	26 SAMPLES BDL	1,4-DICHLOROBENZENE (UG/L)	. 26 SAMPLES BDL	1,3-DICHLORDBENZENE (UG/L)	26 SAMPLES BDL	1,2-01CHLOROBENZENE (UG/L)	26 SAMPLES BDL	ETHYLENE DIBROMIDE (UG/L)	26 SAMPLES BOL	TOTL TRIHALOMETHANES (UG/L	APR	MAY 1		1992 AUG 12.950	SEP	. 100	NOV	1992 DEC 21.750

	SOUTHAMPTON WIP
	1992
TABLE 4	PROGRAM
	BINKING WATER SURVEILLANCE
	WATER
	DRINKING

	RAW	TREATED	HIGH ST HIGH ST FREE FLOW STANDING	•
COBALT 60 (BQ/L	RADIONUCLIDES		DET'N LIMIT = 0.70	GUIDELINE = N/A
4 SAMPLES	BDL	BDL		
CESIUM 134 (BQ/L	•		DET'N LIMIT = 0.70	GUIDELINE = N/A
4 SAMPLES	BOL	BDL		
CESIUM 137 (80/L	(• • • • • • • • • • • • • • • • • • •	DET'N LIMIT = 0.70	GUIDELINE = 50 (A1)
4 SAMPLES	BDL	BDL		
GROSS ALPHA COUNT (BG/L	IT (80/L))))))))))))) ()) ()) ()) ()	DET'N LIMIT = 0.04	GUIDELINE = 0.55 (01)
4 SAMPLES	BDL	BDL		
GROSS BETA COUNT (BO/L	(80/1)		DET'N LIMIT = 0.04	GUIDELINE = N/A
1992 MAY 1992 AUG	070.	.040		
TRITIUM (BQ/L	^		0ET'N LIMIT = 7.00	GUIDELINE = 40000 (A1)
1992 MAY 1992 AUG	9.000	12.000	, ,	
1001NE 131 (80/L	^	, , , , , , , , , , , , ,	DET'N LIMIT = 0.70	GUIDELINE = 10 (A1)
4 SAMPLES	108	BDL	•	

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1992

	UNIT	LIMIT	GUIDELINE	
• • • • • • • • • • • • • • • • • • • •				
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0	(A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML	(A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0 .	N/A	
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100ML	(A1)
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD PH	DMNSLESS	N/A		(A4)
FIELD TEMPERATURE	DEG.C	N/A	15.0	
FIELD TURBIDITY	FTU	N/A	1.0	(A1)
CHEMISTRY (LAB)				
ALKALINITY	MG/L	0.20	30-500	
AMMONIUM .TOTAL	MG/L	0.002		(F2)
CALCIUM	MG/L	0.20	100.0	
CHLORIDE	MG/L	- 0.20	250.0	(A3)
COLOUR	TCU	0.50	. 5.0	(A3)
CONDUCTIVITY	UMHO/CM	1.00	400.0	
CYANIDE	MG/L	0.001	0.2	
DISSOLVED ORGANIC CARBON	MG/L	0.10 0.01	5.0	(A1)
FLUOR I DE HARDNESS	MG/L MG/L	0.50	80-100	(A4)
IONCAL	DMNSLESS	N/A	N/A	(/4/
LANGELIERS INDEX	DMNSLESS	N/A	N/A	
MAGNESIUM	MG/L	0.10	30.0	(F2)
NITRATES (TOTAL)	MG/L	0.005	10.0	(A1)
NITRITE	MG/L	0.001	1.0	(A1)
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A	
PH	DMNSLESS	N/A	6.5-8.5	(A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A	
PHOSPHORUS TOTAL	MG/L	0.002	0.4	(F2)
POTASSIUM	MG/L	0.010	10.0	(F2)
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	500.0	(A3)
SODIUM	MG/L	0.20	200.0	(A4)
SULPHATE .	MG/L	0.20	500.0	(A4)
TURBIDITY	FTU	0.05	1.0	(A1)

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAR	MA	١T	I	С	s	

1,2,3-TRIC	CHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TE	TRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TE	TRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRIC	CHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TE	TRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1,3,5-TRIC	CHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRIC	CHLOROTOLUENE	NG/L	5.0	N/A	
2,4,5-TR10	CHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICH	ILOROTOLUENE	NG/L	5.0	N/A	
HEXACHLORO	DBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLORO	DBUTADIENE	NG/L	1.0	450	(D4)
HEXACHLORO	DETHANE	NG/L	1.0	1900	(D4)
OCTACHLORO	DSTYRENE	NG/L	1.0	N/A	
PENTACHLO	ROBENZENE	NG/L	. 1.0	74000	(D4)
CHLOR	ROPHENOLS				
2,3,4-TRI	CHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TE	TRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-1	TRACHLOROPHENOL	NG/L	10.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25 1000	(A1) (A2)
BARIUM BERYLLIUM	UG/L UG/L	0.05 0.05	6800	(D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	
COPPER	UG/L	0.50	1000	(A3)
IRON	UG/L	6.00	300	(A3)
LEAD MANGANESE	UG/L UG/L	0.05 0.05	10 50	(A1) (A3)
MERCURY	UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	(,,,,
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM	UG/L	0.10	N/A	15/1
THALLIUM TITANIUM	UG/L	0.05 0.50	13 N/A	(D4)
URANIUM	UG/L UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	(///
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	
BENZO(B) FLUORANTHENE BENZO(E) PYRENE	NG/L	10.0 50.0	N/A	
BENZO(E) PTRENE BENZO(G,H,1) PERYLENE	NG/L NG/L	20.0	N/A N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A	
PERYLENE . PHENANTHRENE	NG/L NG/L	10.0 10.0	N/A N/A	
PYRENE	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0 1.0	700 700	(A1)
ALPHA CHLORDANE	NG/L NG/L	2.0	7000	(G) (A1)
AMETRINE	NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	,,,,
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN ENDOSULFAN 1 (THIODAN I)	NG/L NG/L	2.0 2.0	700 74000	(A1) (D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	(04)
			,	

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1992

		DETECTION	CHIDELINE	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
		5.0	1600	(D3)
ENDRIN	NG/L	2.0	7000	(A1)
GAMMA CHLORDANE	NG/L	1.0	3000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	5.0	206000	(04)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	1.0	4000	(A1)
LINDANE (GAMMA BHC)	NG/L	5.0	900000	(A1)
METHOXYCHLOR	NG/L	500.0	50000	(A2)
METOLACHLOR	NG/L	100.0	80000	(A1)
METRIBUZIN (SENCOR)	NG/L	5.0	N/A	,
MIREX	NG/L	5.0	30000	(A1)
P,P-DDD	NG/L NG/L	5.0	30000	(A1)
		5.0	30000	(A1)
P,P-DDT	NG/L	1.0	30000	(A1)
P,P-DDE .	NG/L	2.0	N/A	(///
OXYCHLORDANE .	NG/L	20.0	3000	(A2)
PCB '	NG/L	50.0	52500	(03)
PROMETONE	NG/L		1000	(A2)
PROMETRYNE ·	NG/L	50.0	700000	(D3)
PROPAZINE	NG/L	50.0	10000	(A2)
SIMAZINE	NG/L	50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0	5000	(A2)
TOXAPHENE	NG/L	500.0	5000	(AI)
BUEVEL 100				
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	
PHENOLICS (ONFILIENCE REACTIVE)	00/ 1	0.2	***	
SPECIFIC PESTICIDES				
		•		
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	. 100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)	NG/L	200.0	N/A	
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(D3)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
1PC	NG/L	2000.0	N/A	
MALATHION	NG/L	20.0	190000	(A1)
METHYL PARATHION	NG/L	50.0	9000	(D3)
METHYLTRITHION	NG/L	20.0	N/A	
MEVINPHOS	NG/L	20.0	N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(D3)
RELDAN	NG/L	20.0	N/A	
RONNEL	NG/L	20.0	N/A	
		•	•	
VOLATILES				
1,1-DICHLOROETHANE	UG/L	0.10	N/A	
1,1-DICHLOROETHYLENE	UG/L	0.10	7	(D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200-	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5	(D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750	(D3)
1,4-DICHLOROBENZENE	UG/L	0.10	. 5	(A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200	(D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	٥.	
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05		17 (D4)

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1992

		DETECTION			
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE		
BENZENE	UG/L	0.05	5	(A1)	
BROMOFORM	UG/L	0.20	350	(A1+)	
CARBON TETRACHLORIDE	UG/L	0.20	5	(A1)	
CHLOROBENZENE	UG/L	0.10	1510	(D3)	
CHLORODIBROMOMETHANE	UG/L	0.10	350	(A1+)	
CHLOROFORM	UG/L	0.10	350	(A1+)	
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70		
DICHLOROBROMOMETHANE	UG/L	0.05	350		
ETHYLENE DIBROMIDE	UG/L	0.05	50		
ETHYLBENZENE	UG/L	0.05		.4 (A3)	
M-XYLENE .	UG/L	0.10	300		
METHYLENE CHLORIDE	UG/L	0.50	50		
O-XYLENE	UG/L	0.05	300		
P-XYLENE	UG/L	0.10	300		
STYRENE	UG/L	0.05	100		
TETRACHLOROETHYLENE	UG/L	0.05	65		
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70		
TOLUENE :	UG/L	0.05	24		
TOTAL TRIHALOMETHANES	UG/L	0.50	350		
TRICHLOROETHYLENE	UG/L	0.10	50		
VINYL CHLORIDE	UG/L	0.10	2	(D1)	
RADIONUCLIDES					
TRITIUM	BQ/L	7.0	40000	(A1)	
GROSS ALPHA COUNT	BQ/L	0.04	0	.55# (D1)	
GROSS BETA COUNT	BQ/L	0.04	N/A		
COBALT 60	BQ/L	0.70	N/A		
CESIUM 134	BQ/L	0.70	N/A		
CESIUM 137	BQ/L	0.70	50	(A1)	
IOD1NE 131	BQ/L	0.70	. 10	(A1)	

Equal to 15.0 Picocuries/litre

PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM_INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;

ii/ the water being sampled is not being modified by the sampling system;

iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and

iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MODE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

C'H

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 µg/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L'AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION, OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do <u>not</u> rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)
 (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC), (OWTRI)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO $_3$) and potassium dichromate ($K_2Cr_2O_7$) (Caution: HNO $_3$ & $K_2Cr_2O_7$ are corrosive)

Phenols -250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year)

-1 L amber glass bottle; instructions

as per organic

(PBVOL), (PBEXT)

-250 mL glass bottle

-do not rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) -45 mL glass vial with septum

(OPOPUP) (teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics -- 1 L amber glass bottle per scan

(OWOC) -do <u>not</u> rinse bottle

-fill to 2 cm from top

Polyaromatic Hydrocarbons -:

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

1. Record time of day on submission sheet.

2. Let cold water flow for five minutes.

3. Record temperature on submission sheet.

4. Fill all bottles as per instructions.

Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

