CO4	Remember the concept of Beta and Gamma function; analyze area and volume and Dirichlet's Theorem in multiple integral (K1, K4).			
Q. No.	Module-04 (Multiple Integration) Question Description	СО	Marks	BLT
	DOUBLE INTEGRATION			
1.	Evaluate the following integrals (a) $\int_{0}^{1} \int_{1}^{2} xy(1+x+y)dydx$ (b) $\int_{1}^{a} \int_{1}^{b} \frac{dydx}{xy}$ (c) $\int_{0}^{1} \int_{0}^{x^{2}} e^{y/x}dydx$ (d) $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^{2}\cos\theta drd\theta$	4	7	К4
2.	Evaluate the integrals $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dydx}{(1+x^2+y^2)}.$	4	7	K4
3.	Evaluate the integrals $\iint (x+y)^2 dxdy$ over the area bounded by ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	4	7	K4
4.	When the region R of integration is the triangle given by $y = 0$, $y = x$ and $x = 1$, then prove that $\iint_R \sqrt{4x^2 - y^2} dxdy = \frac{1}{3} \left(\frac{\pi}{3} + \frac{\sqrt{3}}{2} \right)$.	4	7	K4
5.	Evaluate the following integration $\iint_R \sqrt{xy - y^2} dxdy$ where R is a triangle with vertices $(0, 0)$, $(10,2)$ and $(1,2)$.	4	7	K4
6.	Evaluate the integral $\iint (x^2 + y^2) dx dy$ over the region in the positive quadrant For which $x + y \le 1$.	4	7	K4
7.	Evaluate the integral $\iint (x^2 + y^2) dx dy$ throughout the area enclosed by the Curves $y = 4x$, $x + y = 3$, $y = 0$ and $y = 2$.	4	7	K4
8.	Let <i>D</i> be the region in the first quadrant bounded by the curves $x y = 16$, $x = y$, $y = 0$ and $x = 8$. Sketch the region of integration of the given integral $\iint_D x^2 dx dy$ and evaluate it by expressing it as an appropriate repeated integral.	4	7	K4
9.	Evaluate $\int\limits_{0}^{\pi/2}\int\limits_{0}^{acos\theta}r\left(\sqrt{a^{2}-r^{2}}\right)drd\theta$	4	7	K4
10.	Evaluate $\iint r \sin \theta dr d\theta$ over the area of the cardioid $r = a(1 + \cos \theta)$ above the initial line	4	7	K4
11.	Evaluate $\iint \frac{r dr d\theta}{\sqrt{(a^2 + r^2)}}$ over one loop of the lemniscate $r^2 = a^2 \cos 2\theta$	4	7	K4
12.	Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and $r = 4\sin\theta$	4	7	K4
	TRIPLE INTEGRAL			
13.	Evaluate the integral $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z dz dx dy$	4	7	K4
14.	Evaluate the integral $\int_0^a \int_0^{a-x} \int_0^{a-x-y^x} (x+y+z)dzdydx$	4	7	K4
		•	•	

15.	Evaluate $\iiint_R (x+y+z) dx dy dz$ where R: $0 \le x \le 1, 1 \le y \le 2, 2 \le z \le 3$. area	4	7	K4
15.	Evaluate the integral $\iiint_R (x-2y+z)dzdydx$, where R is the region	4	7	K4
	determined by $0 \le x \le 1$, $0 \le y \le x^2$, $0 \le z \le x + y$.			
16.	Evaluate the integral $\int_0^{\pi/2} \int_0^{a\cos\theta} \int_0^{\sqrt{a^2-r^2}} r dz dr d\theta$	4	7	K4
	BETA AND GAMMA FUNCTIONS			
17.	Define Gamma and Beta functions. Prove that $\gamma(n+1) = n\gamma(n)$ and $\gamma(n+1) = n!$	4	2	K2
18.	Prove that $\gamma(n) = k^n \int_0^\infty e^{-kx} x^{n-1} dx$ and hence calculate $\int_0^\infty e^{-3x} x^5 dx$	4	2	К3
10	Prove that		_	17.0
19.	$\gamma(n) = \frac{1}{n} \int_{0}^{\infty} e^{-x^{1/n}} dx \text{ and hence prove that } \gamma(1/2) = 2 \int_{0}^{\infty} e^{-x^{2}} dx = \sqrt{\pi}$	4	7	К3
20.	Prove that $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$ and hence calculate $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx$	4	7	К3
	Prove that			
21.	$\beta(m,n) = \frac{\gamma(m)\gamma(n)}{\gamma(m+n)}, m > 0, n > 0 \text{ and hence calculate } \int_{0}^{\infty} \frac{x^4(1+x^6)}{(1+x)^{15}} dx$	4	7	К3
22.	Prove that $\beta(l,m).\beta(l+m,n).\beta(l+m+n,p) = \frac{\Gamma(l)\Gamma(m)\Gamma(n)\Gamma(p)}{\Gamma(l+m+n+p)}$	4	7	К3
23.	Provet hat $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$	4	7	К3
24.	Prove that $\int_{0}^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{1}{2}\beta(m,n)$ and hence show that $\int_{0}^{\frac{\pi}{2}} \sin^{m}\theta \cos^{n}\theta d\theta = \frac{\gamma\left(\frac{m+1}{2}\right)\gamma\left(\frac{n+1}{2}\right)}{2\gamma\left(\frac{m+n+2}{2}\right)}$	4	7	К3
25.	Prove that $\int_0^{\pi/2} \sin^3 x \cos^{5/2} x dx = \frac{8}{77}$.	4	7	К3
26.	Prove following results $(i) \int_{0}^{\pi/2} \sqrt{\tan \theta} d\theta = \int_{0}^{\pi/2} \sqrt{\cot \theta} d\theta = \frac{\pi}{\sqrt{2}} (ii) \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} * \int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta = \pi$	4	7	К3
27.	Using $\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)} dx = \frac{\pi}{\sin n\pi}, where 0 < n < 1, prove that \gamma(n) \gamma(n-1) = \frac{\pi}{\sin n\pi}$ Also, deduce the followings. (i) $\gamma(1/4) \gamma(3/4)$ (ii) $\gamma(1/3) \gamma(2/3)$	4	7	К3
28.	Prove the followings (i) $\int_{0}^{\pi/2} \tan^{n} x dx = \frac{\pi}{2} \sec \frac{n\pi}{2} \text{ (ii) } \int_{0}^{1} x^{5} (1 - x^{3})^{10} dx = \frac{1}{396}$ $(iii) \int_{0}^{2} x (8 - x^{3})^{1/3} dx = \frac{16\pi}{9\sqrt{3}} \text{ (iv) } \int_{0}^{2} \frac{dx}{\sqrt{1 + x^{4}}} dx = \frac{1}{8\sqrt{\pi}} (\gamma 1/4)^{2}$	4	7	К3
29.	Prove that $\int_0^\infty \sqrt{y} e^{-y^2} dx \times \int_0^\infty \frac{e^{-y^2}}{\sqrt{y}} dx = \frac{\pi}{2\sqrt{2}}.$	4	7	К3

	Duplication Formula			
30.	Prove that: $\gamma(m)\gamma(m+1/2) = \frac{\sqrt{\pi}}{(2)^{2m-1}}\gamma(2m)$, where m is positive. Also, show that $\beta(m,m) = 2^{1-2m}\beta(m,1/2)$	4	7	К3
	$\beta(m,m) = 2^{1-2m} \beta(m,1/2)$			
31.	Evaluate $\int_0^a \frac{x^2}{\sqrt{a-x}} dx$ $\frac{16}{15} a^{5/2}$	4	7	К3
32.	Evaluate the following integrals (i) $\int_{0}^{\infty} e^{-\sqrt{x}} x^{1/4} dx$ (ii) $\int_{0}^{1} \left(\frac{x^{3}}{(1-x^{3})}\right)^{1/3} dx$	4	7	К3
33.	Prove that $(i) \frac{\gamma(1/3)\gamma(5/6)}{\gamma(2/3)} = (2)^{1/3} \sqrt{\pi}$	4	7	К3
	Assuming			
34.	$\gamma(n)\gamma(1-n) = \pi \cos ec n\pi, 0 < n < 1, \text{ show that } \int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi}; 0 < p < 1$	4	7	К3
35.	Use Beta and Gamma functions to solve: $\int_{0}^{1} \left(\frac{1}{(1+x4)} \right) dx * \int_{0}^{\pi/2} \sqrt{\cot \theta} d\theta$	4	7	К3
36.	State Dirichlet's Integral theorem	4	2	K1
37.	Evaluate the integral $\iiint x^{l-1}y^{m-1}z^{n-1}dxdydz$ where x, y, z are all positive but limited by the condition $\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r \le 1$.	4	7	К1
	The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B and C. Apply Dirichlet's			
38.	integral to find the volume of the tetrahedron OABC. Also, find the mass if the density at any point is $k \times y \times z$.	4	7	K4
	Find the volume of the solid surrounded by the surface			
39.	$\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} + \left(\frac{z}{c}\right)^{2/3} = 1$	4	7	K4
	Evaluate $\iiint x^2 yz dx dy dz$ throughout the volume bounded by the			
40.	planes $x = 0$, $y = 0$, $z = 0$ and $\frac{x}{z} + \frac{y}{z} + \frac{z}{z} = 1$	4	7	K4
4.4	Show that $\iiint x^2 yz dx dy dz = \frac{1}{2} - \frac{5}{16}$ the integral being taken throughout the	_	_	***
41.	volume bounded by the planes $x = 0$, $y = 0$, $z = 0$ and $x + y + z = 1$.	4	7	K4
	Evaluate $\iiint_V e^{-(x+y+z)} dxdydz$ where the region of integration is bounded			
42.	by the planes $x=0$, $y=0$, $z=0$ and $x+y+z=a$, $a>0$ using Liouville's theorem.	4	7	K4
43.	Prove that $\iiint \frac{dx dy dz}{\sqrt{1 - x^2 - y^2 - z^2}} = \frac{\pi^2}{8}$, the integral being extended to all	4	7	К4
	positive values of the variables for which the expression is real.			
44.	Evaluate $\iiint \sqrt{\frac{1-x^2-y^2-z^2}{1+x^2+y^2+z^2}} dx dy dz$ integral being taken over all positive			
	values of x, y, z such that $x^2 + y^2 + z^2 < 1$.			

	CHANGE OF ORDER OF INTEGRATION			
45.	Evaluate the following integral by changing the order of integration $\int_{0}^{1} \int_{e^x}^{e^2} \frac{dydx}{\log y}$	4	7	K4
46.	Evaluate the integral by changing the order of integration: $\int_{0}^{1} \int_{2y}^{2} e^{x^2} dx dy$	4	7	K4
47.	Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xydydx$ and hence evaluate the same.	4	7	K4
48.	Evaluate the integral $\int_{0}^{\infty} \int_{0}^{x} xe^{-\frac{x^{2}}{y}} dydx$ by changing the order of integration.	4	7	K4
49.	Change the order of integration in $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2a-x} f(x, y) dy dx$	4	7	K4
50.	By changing the order of integration, evaluate the following integration $\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin px dx dy, \text{ and hence show that } \int_{0}^{\infty} \frac{\sin px}{x} dx = \frac{\pi}{2}.$	4	7	K4
	CHANGE OF VARIABLES OF AN INTEGRATION			
51.	Change into polar co-ordinates and evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$. Hence show that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.	4	7	K4
52.	Evaluate the following integral $\int \int \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dxdy$ over the positive quadrant of the circle $x^2+y^2=1$.	4	7	K4
53.	Evaluate $\iint \sqrt{(a^2 - x^2 - y^2)} dx dy$, over the semi-circle $x^2 + y^2 = ax$ in the positive quadrant.	4	7	K4
54.	Evaluate $\iint_R (x+y)^2 dx dy$, where <i>R</i> is the parallelogram in the <i>xy</i> plane with vertices $(1, 0)$, $(3, 1)$, $(2, 2)$, $(0, 1)$, using the transformation $u = x + y$ and $v = x - 2y$.	4	7	K4
55.	$v = x - 2y$. Using the transformation $x - y = u$, $x + y = v$, show that $\iint_{R} \sin\left(\frac{x - y}{x + y}\right) dx dy = 0$, where R is bounded by the co-ordinate axes and $x + y = 1$ in the first quadrant.	4	7	K4
56.	Evaluate by changing the variable, $\iint_R (x+y)^2 dx dy$, where <i>R</i> is the region bounded by the parallelogram $x+y=0$, $x+y=2$, $3x-2y=0$ and $3x-2y=2$.	4	7	K4