Corrigé du TD préliminaires geometriques

Exercice: le produit scalaire dans 182

Solent
$$\mathcal{R} = \begin{pmatrix} \infty_1 \\ \infty_2 \end{pmatrix} \in \mathbb{R}^2$$
, $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$

 $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ s'écrit en coordonnées polaises $x = (\|x\|, \phi)$. Idem $y = (\|y\|, \psi)$ en coordonnées polaises.

- donc = 1x1 cos q et se = 1x1 sin q

- et y_ = ||y|| cos y et y_ = ||y|| seny

(x,y) = x,y, + x2y2 = 11x11 cosq ||y|| cosy + 11x11 senq ||y|| sen y

= 11x1.11y11 cos of cos 4 + 11x1111y11 senop sen 4

= $\|x\| \|y\|$ (Cosqcos+ Senq Sen 4) = $\|x\| \|y\|$ Cos(4-9) $\int_{-\infty}^{\infty} rappeP: cos(a-b) = cosacosb + suna sen b$

= 1x11 11411 cos(O) over O Pargle who x et y

Remarque: l'orientation de 0 n'a pas d'importance puisque cos(-0) = cos(0)

Exercice: norme découlant d'un produit scafaire

Soit (, > en produit scalaire et 11.11 la norme enduite: 11x11=15x,x>

Vérifions les axiomes de la norme

* Separation: ||x||=0 (=> x =0

Supposons que $\|x\| = 0$. Alors $\sqrt{\langle x, x \rangle} = 0$ (=) $\langle x, x \rangle = 0$ =0 (axione de définition du produit sur faire)

Supposons maintenant que x=0. Alors trivialement $\langle x,x\rangle =0 \Rightarrow \|x\|=0$

_ C'axiome de separation est bien vori géé

* homogénéité: Yx E R°, Y A E R, II Ax II = IAI II x II

Soit $x \in \mathbb{R}^n$ et $\lambda \in \mathbb{R}$ Alors $\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = \|\lambda\| \langle x, x \rangle = \|\lambda\| \|x\|$ = 2 axiomes de synétrie et bilineavité du produit scalaire _ l'axiome d'homogeneité est bien verifie

* inegalité triangulaire: Yx, yER", ||x ty || < ||x || + ||y||

Scient $x, y \in \mathbb{R}^n$. Parlows de $||x + y||^2 : ||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$

= $\langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle$ (Symétrie du produit scalaire)

énégalité de Cauchy-Schwortz $= \|x\|^2 + 2\langle x, y \rangle + \|y\|^2$

 $= > ||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$ Et < x, y> « 1< x, y> / « 1 x 1 / 1 y 1

Les quantités || x+y|| et ||x||+||y|| étant récéssairement positives, on a Jone ||x+y|| < ||x||+||y||
_> C'axiome d'inegalité triangulaire est bien verifié

Exercice: érégalité triangulaire inversée

Soit x, y ∈ m?

On peut écrire x = x - y + y. Donc ||x|| = ||x - y + y|| < ||x - y|| + ||y|| (riegalité triangulaire classique) $\Rightarrow ||x|| - ||y|| < ||x - y||$

De mariore similare: y = y - x + x. Donc $\|y\| = \|y - x + x\| < \|y - x\| + \|x\| = \|x - y\| + \|x\|$ $\Rightarrow \|y\| - \|x\| < \|x - y\|$

Donc $\|x-y\| \ge \|x\| - \|y\| = \ell \|x-y\| \ge \|y\| - \|x\| \implies \|x-y\| \ge \|x\| - \|y\|$ ce qui prauve l'inégalité triangulaire enversée

Exercice: normes équivalentes

Sut $x \in \mathbb{R}^n$. On reppelle que $||x||_1 = \sum_{i=1}^n |x_i|_1$, $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ et $||x||_{\infty} = \max_{i=1,...n} |x_i|_1$

Montrons d'abord P'equivalence de 1.112 et 11.1100

 $\|x\|_1 = \frac{2}{n} \|x\|$ Or $\forall i, \|x\| \leq \max_{i} \|x_i\|$, denc $\sum_{i=1}^{n} \|x_i\| \leq \sum_{i=1}^{n} \max_{i} \|x_i\| \leq n \times \max_{i=1,\dots,n} \|x\|$

Et $\|x\|_1 = \frac{2}{\lambda_{i-1}} \|x_i\| = \|x_j\| + \frac{1}{\lambda_{i+1}} \|x_i\|$ avec $\|x_j\| = \max_{i} \|x_i\|$ (des la Somme $\|x_i\| + \|x_j\| + \dots + \|x_n\|$, if y = 0 max + d autres terms to as y = 0) $= \|x_j\| = \max_{i} \|x_i\|$

Donc ||x||2 > ||x||_ _ au final ||x||_ ||x||_ ||x||_ Ces normes || ||4 et || ||_ Sont bien equivalentes

Ne reste plus qu'à intercaler 11 11, dans l'inegalité précedente

Repartors de $\|\mathbf{x}\|_{\infty} = \max_{\mathbf{x}} |\mathbf{x}_{i}| = |\mathbf{x}_{i}|$ (Remax est attent pour l'endre j)

Or $|\mathbf{x}_{i}| = \sqrt{\mathbf{x}_{i}^{2}}$, et $\sqrt{\mathbf{x}_{i}^{2}} \leqslant \sqrt{\mathbf{x}_{i}^{2} + \sum_{i \neq j} \mathbf{x}_{i}^{2}} \leqslant \sqrt{\sum_{i = j}^{n} \mathbf{x}_{i}^{2}} = \|\mathbf{x}\|_{2}$ $\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_{2}$

Ne reste plus qu'à comparer $||x||_2$ avec $||x||_2 : ||x||_2 = \prod_{i=1}^2 |x_i| \iff ||x||_2^2 = (\prod_{i=1}^2 |x_i|)^2 = \prod_{i=1}^2 |x_i|^2 + 2 \prod_{1 \le i < j \le n} |x_i| |x_j|$ et $||x||_2 = (\prod_{i=1}^2 |x_i|^2 + 2 \prod_{i=1}^2 |x$

- 11x112 < 11x111

Au final, on obtient: $||x||_{\infty} \le ||x||_{2} \le ||x||_$

Exercice: deaire un lieu de 1R2

Soit $A \subset \mathbb{R}^2$ be lieu $A = J(x_1, x_2) \in \mathbb{R}^2$, $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\Rightarrow J(x_1, x_2) \in \mathbb{R}^2$, $J(x_1, x_2) \in \mathbb{R}^2$,