Data visualization and a grammar of graphics

Overview

Quick review of dplyr

The grammar of graphics

ggplot

Announcement

If you would like an additional review of ggplot, William (our course manager) is teaching a short course 2:30-4pm on Oct 13th

• In-person and online

You can sign up here

Very quick dplyr review

The **tidyverse** is a set of packages that makes it easy to process data frames

dplyr is a package that has a set of verbs for transformations data

- All these function take a data frame and other arguments and return a data frame
- 1. filter()
- 2. select()
- 3. mutate()
- 4. arrange()
- 5. summarize()
- 6. group_by()

```
age

2
hing
r

3
2
2
2
2
1111SGOD hing
```

```
film results <- movies |>
   filter(title type == "Feature Film") |>
   select(critics score, audience score, genre) |>
   mutate(audience prefers =
         audience score - critics score) |>
   group by(genre) |>
    summarize(mean_audience_prefers =
          mean(audience prefers)) |>
     arrange(desc(mean audience prefers))
head(film results)
```

Very quick dplyr review: group_by

group_by: split, apply, combine

group_by multiple items:

```
group_by(genre, mpaa_rating) |>
summarize(ms = mean(critics_score))
```

```
film results <- movies |>
   filter(title type == "Feature Film") |>
   select(critics score, audience score, genre) |>
   mutate(audience prefers =
         audience score - critics score) |>
   group_by(genre) |>
    summarize(mean_audience_prefers =
          mean(audience prefers)) |>
     arrange(desc(mean_audience_prefers))
head(film results)
```

Very quick dplyr review: summarize

One can summarize multiple variables:

One can use the n() function to count how many items are in each group

```
group_by(genre) |>
summarize(num_genre = n())
```

```
film results <- movies |>
   filter(title type == "Feature Film") |>
   select(critics_score, audience_score, genre) |>
   mutate(audience prefers =
         audience score - critics score) |>
   group_by(genre) |>
    summarize(mean audience prefers =
          mean(audience prefers)) |>
     arrange(desc(mean audience prefers))
head(film results)
```

Homework 5, part 2: flight delays

Steps:

- 1. What result do I want?
- 2. What steps can I take to get the result?
- 3. How can I implement these steps using dplyr?

Questions about dplyr?

Data visualization

Q: What are some reasons we visualize data rather than just reporting statistics?

Note: History of data visualization after midterm

Homework 5: Find an interesting data visualization

- https://www.reddit.com/r/dataisbeautiful/
- https://flowingdata.com/

We will also discuss these visualizations after the midterm exam

A grammar of graphics and ggplot

How have we plotted a single categorical variable?

How have we plotted a single quantitative variable?

Histograms

How have we plotted a two quantitative variables?

Scatter plots

Min Temperature (F)

Line chart

What are some similarities between these graphs?

The grammar of graphics

Leland Wilkinson noticed similarities between many graphs and tried to generate a 'grammar' that could be used to express a graph

• i.e., a list elements that can be combined together to create a graph

First edition

Second edition

Graphs are composed of...

A Frame: Coordinate system on which data is placed

• E.g., Cartesian coordinate system, polar coordinates, etc.

Glyphs: basic graphic unit representing cases or statistics

- Contains visual properties (aesthetics) such as: shape, color, size, etc.
- Need to specify how properties of the data are **mapped** onto these aesthetics

Scales and guides: shows how to interpret axes and other properties of the glyphs

• i.e., gives information about how the data values were mapped into glyph properties

Plots can also contain...

Facets: allows for multiple side-by-side graphs based on a categorical variable

• Makes it easier to compare different conditions

Layers: allows for more than one types of data to be mapped onto the same figure

Theme: contains finer points of display

• E.g., font size, background color, etc.

The variables are:

- 1. Log enzyme concentration
 - -3 to 5
- 2. Gene
 - MaeN, PtsG, ...
- 3. Target
 - CcpN, Uptake,...
- 4. Flux
 - Zero or positive
- 5. Molecule:
 - Glocose, Fructose, ...

What are the mappings between each variable and visual attribute?

	હ	\bowtie	COOK POLITICAL SEPORT	TRPR		wp
	NYT	538	Cook	Roth.	Sabato	WaPo
Competitive States	Aug 31	Aug 4	Aug 22	Aug 29	Aug 27	Aug 29
New Hampshire	84% Dem.	90% Dem.	Leaning	Likely	Likely	>99% Dem.
Michigan	74% Dem.	65% Dem.	Tossup	Leaning	Likely	99% Dem.
Colorado	57% Dem.	60% Dem.	Tossup	Tossup	Leaning	65% Dem.
lowa	53% Dem.	55% Dem.	Tossup	Tossup	Tossup	63% Rep.
Alaska	52% Dem.	Even	Tossup	Tossup	Tossup	66% Dem.
North Carolina	51% Rep.	Even	Tossup	Tossup	Tossup	91% Dem.
Louisiana	60% Rep.	55% Rep.	Tossup	Tossup	Tossup	51% Dem.
Arkansas	66% Rep.	60% Rep.	Tossup	Tossup	Tossup	65% Rep.
Georgia	82% Rep.	75% Rep.	Tossup	Likely	Leaning	83% Rep.
Kentucky	86% Rep.	80% Rep.	Tossup	Leaning	Likely	94% Rep.

- 1. What variables define the frame?
- 2. What is the glyphs and the mapping from data to glyph?
- 3. What sets the order for the vertical variable?

ggplot

ggplot2 is an R package that implements the grammar of graphics

• It builds up graphics by starting with a frame, adding glyphs, etc.

load the ggplot2 library

> library('ggplot2')

Get the book on GitHub

Example data: mtcars

PERFORMANCE	CADILLAC	LINCOLN	IMPERIAL	
Acceleration	100	3.97	40	
0-30 mph	4.30		4.2	
0-50 mph	8.49	- 8.00	9.15	
0-60 mph	12.00	9.50	12.1	
Standing Start 1/4-mile Mph	77.05	77.65	80.28	
Elapsed time	17.98	17.82	17.42	
Passing speeds	The second			
40-60 mph	6.58	5.9	7.1	
50-70 mph	7.00	6.8	6.8	
Stopping distance From 30 mph	32′1″	31'4"	27'5"	
From 60 mph	182'7"	153'10"	129'3"	
Gas mileage range	10.43	10.42	14.7	
Width – in.	79.8	80.0	79.7	
Front Track – in.	63.5	64.3	64	
Rear Track – in.	63.3	64.3	63.7	
Wheelbase – in	133.0	127.0	124.0	
Overall length – in.	233.7	232.6	231.1	
Height – in.	55.6	55.4	54.7	
Curb Weight-Ibs.	5,250	5,425	5,345	
Fuel Capacity – gals.	27	22.5	25	
Oil Capacity – qts.	4(1)	4 (1)	4 (1)	
Storage Capacity – cu. ft.	19.27	20.9	20+	
Base Price	\$9,312	\$7,637	\$7,062	
Price as tested	\$11,435	\$9,452	\$8,737	
Engine:	OHV V-8	OHV V-8	OHV V-8	
Bore & Stroke – ins.	4.3x4.06	4.36x3.85	4.32x3.75	
Displacement – cu. in.	472	460	440	
HP @ RPM	205 @ 3600	215@4000	230 @ 4000	
Torque: lbsft. @ rpm	365 @ 2000	350 @ 2600	350@3200	
Compression Ratio	8.25:1	NA	8.2:1	
Carburetion	4V	4V	4V	
Transmission	Auto. Turbo Hydra-Matic	Auto. Select Shift	Auto. Torqueflite	
Final Drive Ratio	2.93	3.00	3.23 (?)	
Steering Type	Recirculating Ball & Nut	Recirculating Ball & Nut With Integral	Recirculating Ba Power	
Ota a dia a Datia	Power	Power Unit	1001	
Steering Ratio	17.8-9.0	21.6 To 1	18.9:1	
Turning Diameter (curb-to-curb-ft.)	(Wall To Wall) 24.54'	46.7'	44.69'	
Wheel Turns (lock-to-lock)	2.83	3.99	3.5	
Fire Size	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radial Ply	
Brakes	Power Disc/Drum	Power Disc/Drum	Power Disc/Disc	
Front Suspension	Coils/Shocks Front Diagonal Tie Struts Stabilizer	Coils/Shocks Axial Strut Stabilizer	Torsion Bar Shocks Stabilizer	
Rear Suspension	4 Link, Coils/ Shocks	Three Link, Rubber Cushioned Pivots Coils/Shocks	Leaf Springs Shocks	
Body/Frame Construction	Perimeter Frame	Body On Perimeter Frame	Unitized Construction	

mtcars data frame

How can you determine what variables are in a data frame?

```
> View(mtcars) # only works in Rstudio, not in Markdown
```

- > glimpse(mtcars)
- > ? mtcars # this data frame as a code book

```
[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 4] hp Gross horsepower
[, 6] wt Weight (1000 lbs)
[, 9] am Transmission (0 = automatic, 1 = manual)
```

Do cars that weigh more use more fuel?

Question: do cars that weigh more use more fuel?

What variables in the mtcars data frame are of interest?

- mpg
- wt

We can create a scatter plot using base graphics...

> plot(mtcars\$wt, mtcars\$mpg)

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) +

geom_point()

_	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp [‡]
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

Adds a layer with glyphs

_	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp 🗦
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

A lot more that ggplot can do!

- More aesthetic mapping
- Multiple glyphs/layers
- Axis labels
- Facets
- Visual themes
- Different coordinate systems
- Etc.

The R Graph Gallery

Let's try the rest in R!

