巨量資料管理學院碩士在職專班

統計分析

2022/11/18 陳光宏

變異數分析 (Analysis of variance)

多個獨立樣本的檢定 Analysis of variance (ANOVA)

涉及兩個變項

Dependent variable (numerical)

Y = defect rate

may be affected by

Independent variable (categorical)

Treatment (plant location)

 T_1 = Lee's Bluff

 T_2 = Keckton

 $T_3 = Johnstown$

 $T_4 = Goetzville$

Dependent variable (numerical)

may be affected by

Independent variable (categorical)

Y =length of stay

Treatment (fracture type)

 $T_1 = \text{facial}$

 T_2 = radius or ulna

 T_3 = hip or femur

 T_4 = other lower extremity

 $T_5 =$ all other

Dependent variable (numerical)

may be affected by

Independent variable (categorical)

Y = paint viscosity

Treatment (temperature)

 $T_1 = \text{low } (15^{\circ}\text{C})$

 T_2 = medium (20°C)

 $T_3 = \text{high (25°C)}$

多個獨立樣本的檢定 Analysis of variance (ANOVA)

- •比較三組或三組以上的平均值
- 能否沿用兩個獨立樣本檢定的概念?
- 要解決什麼問題?
 - 假說怎麼建立?
 - 檢定統計量怎麼計算?

$$H_0$$
: $\mu_1 - \mu_2 = 0$

$$H_1: \mu_1 - \mu_2 \neq 0$$

假說建立

• 虛無假說:三個平均值均相等

• 對立假說:至少有兩個平均值不相等

$$H_0: \mu_1 = \mu_2 = \mu_3$$

$$H_1: \mu_1 \neq \mu_2 \neq \mu_3$$

概念

- 變異數分析
 - 組間變異 (Between-group variance)
 - 組內變異 (Within-group variance)
- 組間變異是否大於組內變異

• 補充: 變異 = 離平均的距離

假想的例子

	Data 1			Data 2			Data 3		
	Group 1	Group 2	Group3	Group 1	Group 2	Group3	Group 1	Group 2	Grou
	2	300	20	1	1	1	2.1	5.1	6.1
	3	350	30	2	2	2	2.2	5.2	6.2
	4	400	40	2	5	6	2.2	5.5	6.6
	5	450	50	2	8	10	2.2	5.8	7.0
	6	500	60	3	9	11	2.3	5.9	7.1
Ī	4	400	40	2	5	6	2.2	5.5	6.6
	2	5000	200	0.4	10	16.4	0.004	0.1	0.16

概念 - 組間 vs 組內變異

概念 - 組間 vs 組內變異

拆解變異數

Variation in Y = Explained Variation + Unexplained Variation (around its mean) = (due to factors) + (random error)

變異數 (Variance) =
$$SD^2 = \frac{平方和 Sum of squares (SS)}{自由度 Degree of freedom (df)}$$

拆解變異數

組間變異

組內變異

如何拆解

ANOVA table

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F Statistic
Treatment (between groups)	$SSB = \sum_{j=1}^{c} n_j (\bar{y}_j - \bar{y})^2$	c — 1	$MSB = \frac{SSB}{c - 1}$	$F = \frac{MSB}{MSE}$
Error (within groups)	$SSE = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2$	n — с	$MSE = \frac{SSE}{n - c}$	
Total	$SST = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (y_{ij} - \bar{y})^2$	n — 1		

F檢定統計量 (F分布)

F分布

範例

- 某公司有四個工作站,負責將商品裝箱,運送給零售商, 每個工作站每天可以完成200箱以上。
- 請參考data_w11.xlsx檔案
- 請比較四個工作站平均裝箱數是否有差異?

範例解答

• 假說建立

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ (the means are the same)

 H_1 : Not all the means are equal (at least one mean is different)

- 設定決策規則
 - P值法
 - 型I誤差 = 0.05

資料描述

nova: Single Factor

JMMARY

roups	Count	Sum	Average	Variance
tation 1	5	1210	242.0	72.5
tation 2	5	1232	246.4	92.3
tation 3	5	1144	228.8	147.7
tation 4	5	1130	226.0	166.0

NOVA

ource of Variation	SS	df	MS	F	P-value	F cr
etween Groups	1479.2	3	493.0667	4.121769	0.024124	3.23887
/ithin Groups	1914.0	16	119.6250			
otal	3393.2	19				

結論

- P值小於0.05,達到統計顯著,拒絕虛無假說。
- •至少有兩個工作站的平均裝箱數量有差異。

哪幾組有差異?

多重比較 (事後檢定)

$$H_0$$
: $\mu_j = \mu_k$

$$H_1: \mu_j \neq \mu_k$$

Bonferroni correction

•
$$\alpha^* = \frac{0.05}{6}$$

• Tukey事後檢定

$$T_{\text{calc}} = \frac{|\bar{y}_j - \bar{y}_k|}{\sqrt{MSE\left[\frac{1}{n_j} + \frac{1}{n_k}\right]}}$$

變異數分析的統計假設

- 獨立樣本 (Independence)
- 常態分布 (Normal distribution)
- 變異數相等 (Equal variance; homoscedasticity)