Insert 20, 15, 5, 9, 16, 8, 13, 4 into an initially empty hash table of 4 entries. Use the linear hashing scheme and hash functions  $h_i(K) = K \mod 2^i$  for  $i \ge 2$ .

0 1

2 3

Insert 20, 15, 5, 9, 16, 8, 13, 4 into an initially empty hash table of 4 entries. Use the linear hashing scheme and hash functions  $h_i(K) = K \mod 2^i$  for  $i \ge 2$ .

| 0 |  |
|---|--|
| 1 |  |
| 2 |  |
| 3 |  |

Initially, splitindex = 0.

| 0 | 20 |  |
|---|----|--|
| 1 |    |  |
| 2 |    |  |
| 3 |    |  |

- Initially, splitindex = 0.
- $h_i(20) = 0 > splitindex$ . Insert 20 to  $h_i(20) = 0$ .

| 0 | 20 |  |
|---|----|--|
| 1 |    |  |
| 2 |    |  |
| 3 | 15 |  |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.

| 20 |   |
|----|---|
| 5  |   |
|    |   |
| 15 |   |
|    | 5 |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.

| 0 | 20  |
|---|-----|
| 1 | 5 9 |
| 2 |     |
| 3 | 15  |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.

| 0 |     |
|---|-----|
| 1 | 5 9 |
| 2 |     |
| 3 | 15  |
| 4 | 20  |
|   |     |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.

| 0 | 16  |
|---|-----|
| 1 | 5 9 |
| 2 |     |
| 3 | 15  |
| 4 | 20  |
|   |     |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index.$  Insert 16 to  $h_{i+1}(16) = 0$ .

| 0 | 16 8 |
|---|------|
| 1 | 5 9  |
| 2 |      |
| 3 | 15   |
| 4 | 20   |
|   |      |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index$ . Insert 16 to  $h_{i+1}(16) = 0$ .
- $h_i(8) = 0 < split index$ . Insert 8 to  $h_{i+1}(8) = 0$ . The second collision and split.

| 0 | 16 8 |
|---|------|
| 1 | 9    |
| 2 |      |
| 3 | 15   |
| 4 | 20   |
| 5 | 5    |
|   |      |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index$ . Insert 16 to  $h_{i+1}(16) = 0$ .
- $h_i(8) = 0 < split index$ . Insert 8 to  $h_{i+1}(8) = 0$ . The second collision and split.
- Entry 1 is split, and 5 moves to  $h_{i+1}(5) = 5$ . splitindex = 2.

| 16 8 |
|------|
| 9    |
|      |
| 15   |
| 20   |
| 5 13 |
|      |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- h<sub>i</sub>(9) = 1 ≥ splitindex. It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index$ . Insert 16 to  $h_{i+1}(16) = 0$ .
- $h_i(8) = 0 < split index$ . Insert 8 to  $h_{i+1}(8) = 0$ . The second collision and split.
- Entry 1 is split, and 5 moves to  $h_{i+1}(5) = 5$ . splitindex = 2.
- $h_i(13) = 1 < split index$ . Insert 13 to  $h_{i+1}(13) = 5$ . The third collision and split.

| 0 | 16 8 |
|---|------|
| 1 | 9    |
| 2 |      |
| 3 | 15   |
| 4 | 20   |
| 5 | 5 13 |
| 6 |      |
|   |      |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index$ . Insert 16 to  $h_{i+1}(16) = 0$ .
- $h_i(8) = 0 < split index$ . Insert 8 to  $h_{i+1}(8) = 0$ . The second collision and split.
- Entry 1 is split, and 5 moves to  $h_{i+1}(5) = 5$ . splitindex = 2.
- $h_i(13) = 1 < split index$ . Insert 13 to  $h_{i+1}(13) = 5$ . The third collision and split.
- Entry 2 is split, but it is empty. splitindex = 3.

| 0 | 16 8 |
|---|------|
| 1 | 9    |
| 2 |      |
| 3 | 15   |
| 4 | 20 4 |
| 5 | 5 13 |
| 6 |      |
|   |      |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
  - Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index$ . Insert 16 to  $h_{i+1}(16) = 0$ .
- $h_i(8) = 0 < split index$ . Insert 8 to  $h_{i+1}(8) = 0$ . The second collision and split.
- Entry 1 is split, and 5 moves to  $h_{i+1}(5) = 5$ . splitindex = 2.
- $h_i(13) = 1 < splittindex$ . Insert 13 to  $h_{i+1}(13) = 5$ . The third collision and split.
- Entry 2 is split, but it is empty. splitindex = 3.
- $h_i(4) = 0 < split index$ . Insert 4 to  $h_{i+1}(4) = 4$ . The fourth collision and split.

| 0 | 16 8 |
|---|------|
| 1 | 9    |
| 2 |      |
| 3 |      |
| 4 | 20 4 |
| 5 | 5 13 |
| 6 |      |
| 7 | 15   |
|   |      |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index$ . Insert 16 to  $h_{i+1}(16) = 0$ .
- $h_i(8) = 0 < split index$ . Insert 8 to  $h_{i+1}(8) = 0$ . The second collision and split.
- Entry 1 is split, and 5 moves to  $h_{i+1}(5) = 5$ . splitindex = 2.
- $h_i(13) = 1 < split index$ . Insert 13 to  $h_{i+1}(13) = 5$ . The third collision and split.
- Entry 2 is split, but it is empty. splitindex = 3.
- $h_i(4) = 0 < split index$ . Insert 4 to  $h_{i+1}(4) = 4$ . The fourth collision and split.
  - Entry 3 is split, and 15 moves to  $h_{i+1}(15) = 7$ . splitindex = 0.



| 0 | 16 8 |
|---|------|
| 1 | 9    |
| 2 |      |
| 3 |      |
| 4 | 20 4 |
| 5 | 5 13 |
| 6 |      |
| 7 | 15   |
|   | ,    |

- Initially, splitindex = 0.
- $h_i(20) = 0 \ge splitindex$ . Insert 20 to  $h_i(20) = 0$ .
- Insert 15 and 5 to  $h_i(15) = 3$  and  $h_i(5) = 1$ , respectively.
- $h_i(9) = 1 \ge splitindex$ . It causes the first collision and split.
- Entry 0 is split, and 20 moves to  $h_{i+1}(20) = 4$ . splitindex = 1.
- $h_i(16) = 0 < split index$ . Insert 16 to  $h_{i+1}(16) = 0$ .
- $h_i(8) = 0 < split index$ . Insert 8 to  $h_{i+1}(8) = 0$ . The second collision and split.
- Entry 1 is split, and 5 moves to  $h_{i+1}(5) = 5$ . splitindex = 2.
- $h_i(13) = 1 < split index$ . Insert 13 to  $h_{i+1}(13) = 5$ . The third collision and split.
- Entry 2 is split, but it is empty. splitindex = 3.
- $h_i(4) = 0 < split index$ . Insert 4 to  $h_{i+1}(4) = 4$ . The fourth collision and split.
- Entry 3 is split, and 15 moves to  $h_{i+1}(15) = 7$ . splitindex = 0.
- Ready for the next round.

