ESS 512 HW 1

Simon-Hans Edasi

01/09/2023

1 Ch2 Ex3

a.

The first 10 cycles of the surface wave lasts from $20.1 * 10^2$ seconds to $23.5 * 10^2$ seconds, giving a dominant period of $23.5 * 10^2 - 20.1 * 10^2 = 340$ s. This gives us an individual period of 3.4 seconds.

b.

Frequency $f = \frac{1}{T}$, so our frequency is $f = \frac{1}{3.4s} = 0.30$ Hz

c.

Reading from the graph the maximum strain recorded on the seismogram looks like ± 275 microns.

d.

A seismic plane wave can be approximated as: $u_z = A \sin[2\pi f(t - (x/c))]$

$$\varepsilon = \frac{\partial u_z}{\partial x} \to \varepsilon = \frac{-2\pi f A}{c} \cos\left[\left(2\pi f \left(t - (x/c)\right)\right)\right]$$

The maximum occurs when cosine = -1, so:

$$\varepsilon_{max} = \frac{2\pi fA}{c} \rightarrow \varepsilon_{max} = \frac{2\pi \left(0.30s^{-1}\right)\left(275*10^{-6}m\right)}{3.9*10^{6}m/s} = 1.33*10^{-10}$$

2 Ch3 Ex1

Period T is to angular frequency ω $\left(\omega = \frac{2\pi}{T}\right)$ as wavelength λ is to wavenumber k $\left(k = \frac{2\pi}{\lambda}\right)$.

3 Ch3 Ex2

a.

Start out with a plain sine wave with an amplitude: $u_z(t) = A \sin \left[\omega t - kx + \phi\right]$. There is no phase shift, so $\phi = 0$, and we are given amplitude (A = 0.04m), wavelength $(\lambda = 8km)$, and wavespeed (c = 5km/s). We can find ω and k with given values from Table 3.1: $\omega = 2\pi f = 2\pi \frac{c}{\lambda}$; $k = \frac{2\pi}{\lambda}$

Rewriting the equation with our given and derived values:

$$u_z(t) = 4 * 10^{-5} \sin\left[2\pi \frac{c}{\lambda}t - \frac{2\pi}{\lambda}x\right] = 4 * 10^{-5} \sin\left[\left(\frac{2\pi}{\lambda}\right)(ct - x)\right]$$

b.

Strain $\varepsilon = \frac{\partial u_z}{\partial x} \to \varepsilon = \frac{-4*10^{-5}*2\pi}{\lambda} \cos\left[\left(\frac{2\pi}{\lambda}\right)(ct-x)\right]$. This equation is maximized when $(ct-x) = \frac{\lambda}{2}$, or when the argument of cos is π . This leaves $\varepsilon_{max} = \frac{4*10^{-5}*2\pi}{8*10^3} = 3.14*10^{-7}m$