CERTIFICATE OF MAILING BY FIRST CLASS MAIL (37 CFR 1.8) Applicant(s): Yoshinori NISHIWAKI et al.			Docket No. 2002JP314D			
Serial No. 10/532,364	Filing Date April 20,2005	Examiner To Be Assigned	Group Art Unit To Be Assigned			
Invention: CHEMICALLY AMPLIFIED POSITIVE PHOTOSENSITIVE RESIN COMPOSITION						
I hereby certify that this JP 57-37349 - 15 Pages (Identify type of correspondence) is being deposited with the United States Postal Service as first class mail in an envelope addressed to: The Commissioner of Patents and Trademarks, Washington, D.C. 20231-0001 on September 21, 2005 (Date)						
		MARIA T. SANC (Typed or Printed Name of Person Mail Mara (Signature of Person Mailing Co	ling Correspondence) San D			
Note: Each paper must have its own certificate of mailing.						

(9) 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭57—37349

Int. Cl. ³	識別記号	庁内整理番号	❸公開 昭和57年(1982)3月1日
G 03 C 1/72		6791—2H	
C 08 L 61/16		6946—4 J	発明の数 2
75/04		7016—4 J	審査請求 未請求
G 03 F 7/10		7267—2H	
7/16		7267—2H	
H 01 L 21/30		6741—5 F	
H 05 K 3/06		6465—5 F	(全 15 頁)

⊗ポジチブに作用する放射線に敏感な混合物及びレリーフ像の製法

②特 顯 昭56-94120

②出 願 昭56(1981)6月19日

優先権主張 ②1980年6月21日③西ドイツ (DE)③P3023201.0

⑦発 明 者 ハンス・ルツケルト ドイツ連邦共和国ヴィースバー デン・エルプゼン・アツカー21 砂発 明 者 ゲルハルト・ブール

ドイツ連邦共和国ケーニツヒシ ユタイン・アム・エルドベール シユタイン28

①出願人 ヘキスト・アクチエンゲゼルシャフト ドイツ連邦共和国フランクフルト・アム・マイン80

⑩復代理人 弁理士 矢野敏雄

最終頁に続く

明 紐 書

1 発明の名称

ポジチナに作用する放射線に敏感な混合物及 びレリーフ像の製法

- 2 特許請求の範囲
 - 1. a)酸により開裂され得る c_. o c 結合少なくとも1個を有する化合物。
 - b)照射の際に強酸を形成する化合物及び
 - c)水中で不溶でありかつ水性アルカリ性溶液 中で可溶性である結合剤

より成るポジチブに作用する放射線に敏感な混合物において、更に

d)結合剤 c)とは異なる溶解性を有しかつ d1) 有機イソシアネートとヒドロキシル基を含有する重合体とから得られるポリウレタン樹脂,d2)ポリピニルアルキルエーテル, d3)アルキルアクリレート重合体もしくは d4)ロジンの水紊化 又は部分水素化誘導体である樹脂少なくとも1種を含有するポジチブに作用する放射線に敏感な混合物。

- 2. 成分 d)を混合物の不揮発性成分に対して1~50重量%の量で含有する特許請求の範囲第1項記載の混合物。
- 3. 酸により開裂され得る化合物 a)がオルトカルポン酸誘導体、アセタール、エノールエーテル又はN-アシルイミノカーポネートである特許請求の範囲第1項記載の混合物。
- 4. 結合剤 c)がノポラックである特許請求の範囲第1項記載の混合物。
- 5. a)酸により開製され得る c o c 結合少なくとも 1 個を有する化合物 ,
 - b)照射の際に強酸を形成する化合物及び
- c) 水中で不溶でありがつ水性アルカリ性溶液 中で可溶性である結合剤並びに更に
- a)結合剤。)とは異なる溶解性を有しかつ a1) 有機イソシアネートとヒドロキシル基を含有する重合体とから得られるポリウレタン樹脂,d2)ポリピニルアルキルエーテル,d3)アルキルアクリレート重合体もしくは d4)ロジンの水素化 又は部分水素化誘導体である樹脂少なくとも1

3 発明の詳細な説明

本発明はポジチブに作用する放射線に敏感な混合物,換言すれば照射により可溶性になりかつ主要成分として

a)酸により開裂され得る C - O - C 結合少なくとも 1 個を有する化合物 ,

b)照射の際に強酸を形成する化合物及び

c)水に不溶でありかつ水性アルカリ性溶液に は可溶である結合剤 ...

を含有しかつ印刷版及びフォトレジストを製造するのに好適である混合物に関する。この組成の混合物は、例えば米国特許第3779778

樹脂の添加が記載されておりかつ西ドイツ国特 許公開第2617088号明細書には付加的に アルカリ可溶性ノポラックを含有していてよい 。・キノンジアジド層に有機イソシアネートと ノポラックとの反応生成物を添加することが記 載されている。

非常に多くの種々の用途に適用するために。 - キノン・ジアジドをペースとするポジチブに 作用する感光性層の特性を改良及び変更する多 種多様の提案(その若干のものはかなり以前に 提案された)がなされたが、それらの層はいま だにすべての要件を満たしていない。

特に、高い解像性と精確な線画鮮明度がペーキングを指揮を作ってあるというない。これをである。というなが、一切のではいる。のでは、ないのでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、ののでは、ないのでは、のでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないないないない。

号明細書・同第4101323号明細書及び同第4189323号明細書 , 西ドイツ国特許公開第2718254号明細書及び同第2928636号明細書並びにョーロッパ特許出願公開第0006627号明細書に記載されている。

これらの印刷物にはアルカリ可溶性結合剤に加えて他の重合体物質を添加することもできることが述べられているが、実際にはアルカリ可溶性結合剤、殊にフェノール樹脂ノポラックが専ち実施例に記載されている。

ところが。・キノン・ジャをベースをするポッチで作用する放射線に敏感な又は機能が既に公知である。例えば西ドイツの添加物をしてで西野田の添加を記載されており、西ドイツの特許の添加が記載されており、西ドイツの特別の添加が記載されており、西ドイツの特別の添加が記載されており、西ドイツの特別の添加が記載されており、西ドイツの特別の添加が記載されており、西ドイツの特別の添加が記載されており、西ドイツの特別の添加が記載されており、西ドイツの特別の添加が記載されており、西ドイツの特別の影響とである。

障害は、欠点、例えばペーキング後の鮮鋭度の 低下がこれらの樹脂の添加後に特定の操作工程 で製造条件下にジアゾ層中で起り得るという事 実であることは明らかである。

本発明の目的は、冒頭に挙げたような酸により開裂され得る化合物及び光分解性酸供与体をベースとするポッチナに作用する放射線に敏感な層の機械的及び化学的性質をそれらが非常に多くの用途に適合し得るように変更することであった。

本発明の出発点は、

a)酸により開裂され得る c - 0 - c 結合少なくとも1 つを有する化合物,

b)照射された際に強酸を形成する化合物及び c)水に不溶でありかつ水性アルカリ性溶液に 可溶である結合剤より成るポンチブに作用する 放射線に敏感な混合物である。

更に、本発明による放射線に敏感な混合物は 付加的に

d)結合剤 c)とは異なる溶解特性を有しかつ d1)

有機イソシアネートとヒドロキシル基を含有する 重合体とから得られるポリウレタン樹脂、d2) ポリピニルアルキルエーテル、d3) アルキルアクリレート重合体もしくは d4) ロジンの水素化及は部分水素化誘導体を含有する。

殆んど。-キノン-ジアジド/ノポラツク -暦はジアソ化合物の結晶~無定形特性並びに該

これは、酸により開裂され得る化合物とファックとの間の相互作用が、。・ナフトキノノシャンの間の付加物又は類のの状態をある。という子側により、概要きされる。それができる限り、相応する抵抗できる。という点に関してばかりではなく、複製性の質

実際に低下させずに層の他の性質を改良するために配合することのできる添加樹脂の量に関しても有利である。

本混合物の不揮発性成分に対する添加樹脂の 優的割合は樹脂の種類及び層の他の成分に応じ て1~50 飯最%である。

被覆される(テンテイング)。酸により開裂され得る物質及び層厚に応じてポリピニルメチルエーテル40%までが層中に存在してよく、良好な結果が得られる。その最大質は、現像液に対する抵抗性が著しく低下するか又は他の作用因子、例えば大気湿度が複写の結果に不利に作用する場合に使用される。

明細魯に記載されている)。

最良の結果はポリエチルアクリレートで得られ、低粘度の場合は2~12%及び高粘度の場合は1~6%を添加する。一般に、相対的に低分子の重合体が優れている。

ポリプチルアクリレート,ポリプチルメタクリレート及びその共重合体も使用することができるが、効果は低い。ポリピニルアルキルエーテルとポリアルキルアクリレートの混合物により、不利な相乗効果を生ぜしめずに望ましい特性の微妙な関節が行なわれる。

り、これは他の位置での不所望な沈穂を惹起し 得る。乾式レジスト層の製造ではこれを他の手 段により補償しなければならず、これは広範囲 に変更可能である新規なポッチプ系では酸によ り開裂され得る化合物の適当な選択により可能 である。

有用なロジン樹脂の概覚をカルステン(Karsten)が明らかにしている(** Lackrohstoff - Tabe-11en **, Vincentz-Varlag 出版; Hannover 在)。既に印刷インキ及び熱溶融型接着剤の製造に好適であることが明らかになつた樹脂が優れている。それらを前記の他の樹脂と組合せることができる。

水素化及び部分水素化ロジン誘導体、殊にテルペン樹脂エステル、例えばテルペン樹脂のメ

最後に、ポリウレタン樹脂もまた添加樹脂として好適である。これらは有機モノイリシアネートと重合体ヒドロキシ化合物と重合体ヒドロキシ化合物と重合体ヒドロキン化合物とはポリエステル、有利にはフェイール樹脂、殊にノポラックである。一般に5~20%の量で加ウレタンは3~30、殊に5~20%の量で加

18254号明細杏に記載されているポリアセ タールを使用すると特に有利である。

感光性混合物は可溶性の又は微分散性の染料 並びに用途に応じてUV吸収体も含有してよい 。トリフェニルメタン染料,殊にそのカルピノ ール塩基の形のそれが特に有用であることが明 らかになつた。該成分の最も有利な量的割合は それぞれの場合に前実験により容易に決定する ことができる。

えることができる。この場合、層中に未変性の 形で含有されてのと同じノボラックをイソ シフォートとの反応に使用することができれる 有利である。それ故、この場合に使用される 脂混合物は比較的大過剰量の未変換のノボラッ クを含有するノボラックとイソシアネートとの 反応生成物であってよい。

本発明による終性性混合物はまたきりのでするのでは、殊性を関係を対しているのでは、ない

は、層の成分と不可逆的には反応しない 溶剤を 使用することができる。

層厚 1 0 μm 以 上の 層の優れた支持材は 転移 層の 一時支持材として有用である プラスチック フィルムである。殊に、この目的及び色校正フィルムにはポリエステルフィルム,例えばポリ エチレンテレフタレートより成るものが優れて いる。しかしポリプロピレンのようなポリオレ フィンフィルムも同様に好適である。約10^{μm} よりも低い層厚に使用される層支持材は多くの 場合金属である。次のものをオフセット印刷版 に使用することができる:機械的に又は電気化 学的に粗面化されかつ所望の場合には陽極酸化 され、付加的に例えばポリピニルホスホン酸に より化学的に前処理されていてもよいアルミニ ウム並びに上層として Cu/Cr 又は黄銅/Cr を 有する複合金属板。凸版印刷版の場合には本発 明による層を単一工程エッチング法の亜鉛板又 はマグネシウム板に施すことができ、かつそれ らはエツチングすることのできるポリオキシメ チレンのような プラスチックに施すこともでき る。銅又はニツケル面に対するそれらの良好な 接着性及び耐エッチング性により本発明による 層はグラビア印刷版又はスクリーン印刷版に好 適である。同様に本発明による混合物をフォト レジストとして食刻に使用することもできかつ このために多数の特別な基材が市販されている

オマ食刻抵抗性を示す。

強装後乾燥する際に通常の装置及び条件を適用することができ、約100℃及び短時間の場合は120℃までの温度が放射線感受性を損うことなく許容される。

電子ビームによる電光は画像を形成するため

更に、木材・繊維材及び多くの工材の表面を被覆することができ、有利にこれらは投映により像形成されかつアルカリ性現像液の作用に対して抵抗性を有する。

最後に、強装は直接又は一時ってルムの を式層を移により、 を対してはは、 を対してはない。 を対してはない。 を対してはない。 を対してはない。 をは場合により接着を促進する前が、 ができる。 をはまいて、 をはまいて、 をはまいて、 をはまいる。 をはなる。 をなる。 をな。 をなる。 をな

非常に薄い l μm 以下の被膜は、ミクロ電子 工学で表面が酸化物層又は窓化物層を担持していてよくかつp - ドーピング又はなードーピング グされていてよいシリコンウェーハに施するのではないである混合物は特にこの適用分野においてないのであるは接着性、ベーキング時の流動安定性、それ枚解像性、寸法安定性及びプラ

の他の可能性である。電子ピームは多なを完全的他の可能性である。電子ピームは多なを完全的他生である。発明になる混合物の分を発展する。それな大照射像により原格なび、現像によりではないが、電子を較らには、ないない、できるのかには、ないないでである。とができるのかを現像液により除去することができる。

画像に応じてない。 では、 では、 できれるものとによりない。 できれるものとは、 のの手では、 のの手では、 のの手では、 のの手では、 のの手では、 のの手で、 ののもで、 のののもで、 ののので、 のののので、 のののので、 ののので、 のので、 択はその都度使用する層を用いて実験することにより確定することができる。必要な場合には 、現像を機械的に補助することができる。

次に、本発明による感光性混合物を実施例により記載する。特に記載のない限りパーセント及び量の割合は重量単位による。重量部(p.b.w.)及び容量部(p.b.w.)の関係は 3 / cd のそれと同じである。

69 1

高い充填密度のミクロ電子工学回路素子を作製するために、常法で研磨しかつ酸化により厚さ 0.2 μm の SiO₂ 層を施した市販のシリコンディスクを次のポジのフォトレジスト組成物で被覆した。

DIN53181により軟化点範囲

105~120℃を有するクレゾー

ル/ホルムアルデヒド-ノポラツク 18重量部

トリエチレングリコールピス・ジフ

エノキシメチルエーテル 9.5 重量部

2-(4-エトキシナフト-1-イ

より成る流動現像液中25℃で実施した。

次いで、そのディスクを完全脱塩水ですすぎかつ窒素で吹付乾燥した。

芳香脂肪族オルトエステルの代りに同量の脂肪族オルトエステル,即ちトリエチレングリコールのピスー(2,5-ジエチル-5-ブチルー1,3-ジオキサン-2-イル)エーテルを使用する場合に同じ結果が得られた。

例 2

厚さ 5 0 μm の乾式ポジレジスト層を、トリ クロル酢酸/ポリピニルアルコールで前処理し ル)-4,6-ピスートリクロルメ

チルーェートリアジン 1.2重量部

低粘度のポリエチルアクリレート 1.3重量部

(Plexisol B574)

をエチレングリコールエチルエーテルアセテート, 酢酸プチル及びキシレン (比 8 : 1 : 1)からの溶剤混合物 7 0 重量部中に溶解しかつ 0.5 дm のフイルターを通して遮過した。

数キャリャの回転塗布(9000 r・p・m・)の際に厚さ約1.2 μm のレジスト層が得られ、これを更に空気循環炉中90℃で10分間乾燥させた。冷却しかつ定義された気候条件23℃及び相対湿度40~50%下に状態関整した後で、レジスト層をウェーハ密着露光装置中で高解像力の試験区域を有する市販のクロムマスク下に200 Wの Hg 高圧灯を用いて露光した。

現像は、完全脱塩水 9 5.4 5 %中に溶解した

メタ珪酸ナトリウム・9 H20 2.67%

リン酸三ナトリウム・12 H20 1.71%

リン酸ニナトリウム

0.17%

5.4 重量部

た厚さ 2 5 μm のポリエステルフイルムに施し、ポリエチレン被覆フイルムを貼合せた。この乾 式レジスト層は次の溶液を塗布することにより 生成した:

エチレングリコールモノメチルエーテル 34.5重量部

メチルエチルケトン 21.0重量部

例1と同じノポラツク 27.5重量部

ポリグリコール2000 2 - エチル - プチルアルデヒドとトリエ

チレングリコールから得られたポリアセ

タール 9.7 重量部

2-[4-(2-エトキシ-エトキシ)

ナフト-1-イル]-4,6-ピスート

リクロルメチルーsートリア ジン 0.3重量部

シリコンをペースとする市販の被援助剤 1.9重量部

クリスタルパイオレツト塩基 · 0.02重量部・

網を貼合せた絶縁材板に、保護膜の剝離後、この乾式レジスト層をプリント配線板を作製するために市販されている貼合せ機中で熱圧の作用下に機層することにより被覆した。しばらく

0.06%

5.9%

冷却させたこの被腰プリント配線板材料から支持フィルムを剝離した後で、その板材を相応さする原稿下に距離140cmで5kmのハロゲッ化金属灯を用いて50秒間認光した。支持フィルムを通してすることもできる。しかりではより分間後乾燥させた後で露光すると有利をである。引続いて、層を噴霧装置中で次の現像をで現像した:

N a O H	0.6%
メタ珪酸ナトリウム・5 H20	0.5%
m - プタノール	1.0%
完全脱塩水	97.9%

ポリグリコールをポリエチルフクリレートに徐々に代えることにより層の敏度を任意に低下調整することができかつ耐現像液性及び電気メッキレジストとしての品質を改良することができる。被覆工程の際に強く乾燥されない場合、前記の前処理なしにポリエステルを支持フイルムとして使用することができる。

ポリピニルメチルエーテルの割合を20%に 高め、同時心層のノポラック含量を60%に低 下した場合、厚さ15μmの乾式ポジレジスト の噴霧現像が直径1 mmの穿孔にわたつて可能で

M 3

溶剤としてエチレングリコールモノメチルエーテルを使用して、

例1と同じノポラツク	6 5.0%
トリメチルオルトホルメートと	
2-エチル-2-ヒドロキシメ	
チル-4-オキサ -オクタン-	
1,8 - ジォールとの縮重合反	۴
応により生成した主要分子量 1	
470のポリオルトエステル	1 9.5%
例1に記載のトリアジン誘導体	0.7%

(95:5)

アジピン酸とプロパン-1,2-

クリスタルヴアイオレツト塩基 酢酸ピニル/クロトン酸 - 共重合体

ジオールから得られたポリエステル 5.9%

から成る厚さ 2 5 дm の乾 式 ポ ジレ ジスト層を例 2 に記載の 支持フィルムに施した。 スルーホールメッキした プリント配線板を作製する際にこの乾式レジストを、両面に銅が貼合せられ

あり、その際にレジスト膜は裂けなかつた。

トリメチルオルトホルメートと2 - エチル-2 - ヒドロキシメチル - 5 - メチル - 4 - オキサ - ヘプタン - 1 , 7 - ジォールから得られた 重合体オルトエステルを使用する場合に同じ結果が得られた。

例 4

例1と同じ溶剤混合物	76重量部
1,3-ピス-[2-(5-エチル	
- 5 - ブチル - 1 , 3 - ジオキサシ	
クロヘキソキシ)] - 2 - エチル -	
2 - ナチル - プロパン	6.6 重量部
例2に挙げたトリアジン	1.1重量部
ポリピニルエチルエーテル (Lutonal	
A 2 5)	2.7重量部

より成るポジのホトレジスト組成物を例1と 同様に精密な回路パターンをシリコンウエーハ に作製するために使用した。

この溶液を 6 0 0 0 r.p.m. で回転 強 布 しかつ 空気循環炉中で乾燥させた後でポジの P S ウ

また、両方の層の プラ スマエッチング挙動を 複写した ウェーハをベーキングせずに又はベーキングして それぞれ 1 2 0 ℃で 3 0 分間 調べた。プラ スマエッチングを 厳高 温度 2 3 0 ℃までで、 S102 8 0 n m が 1 0 分間でエッチングされるように実施した場合にベーキングした試験パ

3:2)中に攪拌しながら溶解してその都度全 畳100重量部の溶液を形成した:

例1と同じノポラツク

10重量部 .

1,8-ピスー(3,4-ジヒドロナフ

ト-2-イルオキシ) - 3,6-ジオキ

サーオクタン

3重量部

2-(7セナット-5-イル)-4,6

- ピスートリクロルメチル・8 - トリア

シン

0.25重量部

クリスタルパイオレツト塩基

0.1 重量部

及び次のいずれか1種:

1)ペンタエリスリトールでエステル化

されたロジン樹脂 (Resin B-106) 2重量部

2)部分水素化されたルーソロジンのグ

リセロ-ルエステル (Staybelite

Ester 5)

5重量部

3) 部分水素化されたロジンのグリセロー ルエステル(Staybelite Ester

610)

4重量部

(これらすべての生成物は Hercüles Inc. 社の製品)

ターンは殆んど同じであつた。ペーキングしなかつたパターンはこれらの条件下で被膜に対する著しい作用及びエッチングされた線の相応する拡大を呈した。

99 3

オートタイプの銅製グラビア印刷胴を作製するためのポジのホトレジスト組成物を製造するに当り、次の成分を1,1,1-トリクロルエタン,酢酸ロープチル及びエチレングリコ・ルモノエチルエーテルアセテートの混合物(5:

塩化第二鉄溶液による常法の凹版エッチングの前に、比較するもつの層部分上に修整刀を用いて機械的にマーキング及び付加的な線をを行なった。これは第3層において最も簡単にかつきれいに行なわれた。換ますると第3層においてレジストの微細な破砕のない最も滑らかなエッジを有しており、層1及び2がそれに続いた比較層は最も脆性でありかつエッチング後にランドの広範なアンダーカ

0.1 重量部

ツトが認められた。

例 6

この例では親油性及びォフセット印刷版の現像液に対する抵抗における改良を明らかにする

テトラヒドロフラン, エチレングリコールモ ノメチルエーテル及び酢酸プチル5: 4:1の 咨削混合物 9 0.8 重量部中の

変性フェノール/ホルムアルデヒドー ノポラツク (ノポラツク140重量部 と、トリレンジイソシアネート3モル 及びトリメチロールプロパン1モルか

生成) 7重量部

2 - (+7 - 2 - 4 + 2) - 55 - 3 + 4 + 1

ら得られた付加生成物 6.5 重量部から

ン-4-オン 2重量部

2 - (4 - メトキシ-アントラク - 1 - イル) - 4 . 6 - ピスートリクロル

メチル-s-トリアソン 0.4重量

から成る被覆溶液を片面でワイヤプラシ仕上げ

得られた層厚は層重量2 8/㎡に相当した。

4 - ジエチルアミノ - アソペンゼン

をしたアルミニウムに施した。

迅速に、実際に未変性のフェノール/ホルムアルデヒド・ノポラックで生成した相応する印刷版よりも迅速に吸収した。印刷版を230℃でペーキングした後その印刷版の表面の品質は同様に良好であつた。記載の変性樹脂の代りに、

オクタプシルイソシアネート5重量部と同じノ

0.4重量部 ポラック100重量部から得られた縮合生成物

6 重量部を使用した場合にも同じ結果が得られた。

例 7

本例では繊維印刷及び壁紙印刷用のニッケル回転ステンシルを電鋳法により製作することについて記載する。

次の組成:

ノポラツク 35% フェノール/ホルムアルデヒド-ノポ

ラック187重量部と例6に挙げたイ

ソシアホート付加生成物 6.5 重量部と

から得られた縮合生成物 25%

ポリピニルメチルエーテル

(Lutonal M40) 15%

N - ジフエノキシメチル・モーアミノ

カプロラクタム 24%

例5に挙げたトリアジン 1%

クリスタルパイオレツト塩基 0.1%

の厚さ約25μm の層を導電性分離層を施した 多少収縮性の光輝ニッケル円胴に中間乾燥しな がら吹付強3回することによりもたらした。

階類を常法でスクリン線数32/mにより種々の網点面積率を有する画像部に換えたかつ印刷すべきポジチブの下で前記の被覆円胴を十分に露光した。ナフトキノン・ジアジドをベースとする厚さどのポジ層には前記の露光時間の5倍が必要であつた。

完全脱塩水97.7%中のカセイソーダ

0.5% 0.8%

メタ珪酸ナトリウム・9H 0

エチレングリコールモノ - n. - プチル

 $z-\tau n$ 1.0%

から成る溶液を用いて現像を実施した。

ジァリ暦と比較して使用したレジストは比較

的厚いばかりでなく、良好な接着性をも有し、 弾性でありかつ脆性ではないので、円胴の露光 の際にフィルムの接合又は重ね合せにより形成 される位置合せ継目を機械的に刀又は精密ドリ ルにより修整することは比較的簡単で安全であ り、それ故実際に迅速に行なうことができた。

ポリピニルメチルエーテルの代りにロジンの 水素化メチルエステルを約同じパーセントで使 用する場合に厚層の接着性及び機械的特性につ

s - トリア*ジ*ン

0.13重量部

クリスタルパイオレツト塩基

0.007重量部

ポリプチルアクリレート

(Plaxisol D 592)

0.2重量部

から成る厚さ 2.2 μm の層を施した。

この層に、レーザー照射機(Bocom Corp. 社 製 Laserite[®] 150R)中でアルゴンイオンレーザー10mJ/cdで画像に応じて照射した。層の露光部分を

メタ珪酸ナトリウム・9H。0

5.5重量部

リン酸三ナトリウム・12H20

3.4 重量部

リン酸ナトリウム(無水)

0.4 重量部

完全脱塩

90.7重量部

から成る現像液を用いて2分間で除去した。

未照射区域を脂質インキでインキ着けすることにより非常に極だつた画像を作製することができた。

この印刷版をポリプチルアクリレートを含有 していないが他は同一である印刷版と比較する 場合に次の相違が明らかになつた。添加樹脂に いて同じ結果が得られた。 現像には約56 良くかかつたが、 これは多少高い 濃度 の現像液 を使用する ことにより 調整することができた。 酸により 開裂され得る アミドアセタールの 代りに 1 , 2 , 6 - トリス - (3 , 4 - ジヒドローナフト - 1 - イルオキシ) ヘキサンを使用する こともできる。

671 8

電気的に粗面化し、陽極酸化しかつポリピニ ルホスホン酸で前処理したアルミニウムから成るアルミニウム版に、

例1と同じノポラツク

2重量部

オルト蟻酸トリメチルエステルと 2 - メチル - 2 - ヒドロキシメチ ル - 4 - オキサ - オクタンジオー ルとから得られた分子量2580

の重合体オルトエステル

0.4 重量部

2 - [4 - (2 - x h + v - x h + v) - + 7 h - 1 - 1 N] - 4 ,6 - 2 X - h y 0 a n x f N -

例 9

ェッチレジスト及びガルパノレジスト用の乾 式ポジレジストを製造するために、

メチルエチルケトン

57重量部

例1に挙げたノポラツク

20重量部

例7に挙げた変性ノポラツク

10重量部

2-エチル・2-メトキシメチル-

1,3-プロパンジオールのピス・

(5-エチル-5-メトキシメチル

エーテル

4.5重量部

1,3-プロパンジオールピス-(

3,4-ジヒドローナフト-2-イ

ル)エーテル

4.0 重量部

例2に記載したトリアジン

0.2重量部

クリスタルパイオレツト塩基

0.05重量部

ジイソシアネートと芳香族ポリエス

テルから得られたポリウレタン

(Goodrich Co.社製のEstane

5715)

4.2重量部

から溶液を生成した。

二軸延伸しかつ熱固定した厚さ 2 5 дm の ポリエチレンテレフタレートフイルムをこの溶液で被 覆し、乾燥させかつ厚さ 1 2 дm の ポリプロピレン被覆フイルムと貼合せて、 2 つのワイ

加した2種,迅速に相容性のポリウレタン樹脂によるこの層の良好な接着性及び可撓性はり熱作用後でもかつ場合により熱作用の際に接触ばね上の絶縁層及び保護層としての際に接触ばね上の終加物を含まない場合には、レジストはしばらくの発性負後のポリエステルトで破砕した。更に、貼合せ後のポリエステルカ大の親水性前処理を必要としない程に改良された。

691 10

酸化したシリコンウェーハ上に次の組成:

例1と同じノポラツク

52重量部

フェノール/ホルムアルデヒド-ノポ

ラツク144重量部とチオノリン酸の

トリス・(4-イソシアネート-フエ

ニル)エステル4.6 重量部とから得ら

れた縮合生成物

21重量部

オルト蛾酸トリメチルエステルと2 -クロルメチル - 2 -ヒドロキシメチル ルムの間で均一な厚さのレジスト層を形成した。

このように一群で生成した化学的にミリング した案子を個別化する前に、接触端部を露出させかつ金メッキするために相応する原稿下で露 光し、現像しかつ最後に露出区域において薄く 金電気メッキした。続いでこれらのスイッチ素 子を正しい形状に折曲げかつ据付けた。殊に添

- 4 - オキサ - 1 , 8 - オクタンジ

オールとからの重合体オルトェステル 27重量部の厚さ 0.7 μm の層を回転塗布した。 酸により開製され得るポリオルトエステル自体がクロルメチル基中に脱離し得る塩素を含有しているので、開始剤を添加する必要もなく像形成を電子ピームにより行なうことができた。この樹脂組合せは同時に高い解像性と熱安定性(形状安定性)とを生ぜしめる。

像形成はエネルギー約3×10⁻² J/cdで電子11 Ke Vで照射することにより行なつた。

 クは著しく平滑になつた。

少なくとも 0.5 J / cm のエネルギーで照射する場合、有機レジスト材料は全く分解されかつ 架橋した。未照射部分を溶剤により又は原稿なしに露光しかつ例 1 の現像液で現像することにより除去するとネガ像が得られた。

691 1 1

例えば多色オフセット印刷におけるモンター ジュをチェックするための高感光性ポジの色校 正フィルムを製造した。 複写層は次の組成を有 していた:

例1と同じノポラツク

47重量部

アルキド樹脂型のロジン誘導体

(Hercules Inc. 社製 Neolyn 20) 38 重量部

2,2-23-(4-3711/49-

フェニル) - プロパン

13重量部

2,5-3x++>-4-(p-+)/

チォ) - ペンゼンジアソニウム塩ヘキサ

フルオルホスフエート

0.5重量部

ザポンエヒトプラウ (Zaponechtblau)

ノポラツク(例1のノポラツクと溶融

範囲110~120℃のフェノール/

ホルムアルデヒドーノポラツクとの1

: 1 - 混合物)

61重量部

例8と同じポリプチルアクリレート

10重量部

ジイソシアネートと芳香族ポリエステ

ルとからのポリウレタン (Good rich

社のEstane 5702)

6重量部

ペンメアルデヒドと1,5-ペンタン

ジォールとからのポリアセタール

22.7重量部

2-(5-メチル-6-メトキシーナ

フト-2-イル)-4,6-ピスート

リクロルメチル・8 - トリアジン

0.3 重量部

クリスタルパイオレツト塩基

0.05重量部

このレジストを使つて銅張り絶縁材料からの プリント回路板材料を常法で貼合せ機中で被理 しかつ相応する原稿下で複写した。厚さ 12 μm であり、複写に約130秒及び例2の現像液に よる噴霧現像15分間を必要とした市販の乾式 ジアソポジレジストに比べて、この厚さ70 μm HFL (C.I. 2880)

1.5重量部又は

ザポンエヒトロート (Zaponechtrot)

вв (с.г. 2864)

1.2重量部又は

フェットゲルプ (Fettgelb)50

(C.I. 補遺572)

2.0重量部。

層厚1~3μm及び染料量は、赤色・骨色・及び黄色校正フィルムが同じ感光性を有するように相互に適合させ、即ち露光時間及び水性でルカリ性現像液による現像時間の両方が同一である場合に、同時に複写されるハーフトーン試験で同じ長さの楔階段を与える。これらのカラーフィルムは変性テルペン樹脂を添加しなかつた比較として製造した色校正フィルムよりも明らかに耐引播性及び接着テープ安定性である

例 12

次の組成を有する厚さ 7 О дm の乾式ポジレジスト層を厚さ 2 5 дm のポリエステルフィルム上に施しかつポリエチレン被覆フィルムを貼合せた:

・のレジストは現像時間約3分間で露光時間僅か約60秒であつた。 Cu 表面,積層条件, 乾燥 , 露光及び露光後 5~10分間の現像を 最適に相互に適合させる場合に優れているエッジ鮮鋭度及び・形状の深さ70μmのレリーフが得られ、その際に約70μmまでの間隔の線が良好に再現される。 通常の電気メッキ 工程後にこのレジストをロウ接マスクとして使用した。その際にレジストは添加樹脂により~層熱安定性で接着強固になつた。

例 13.

凸版印刷版を製造するための亜鉛板の被覆に 際し、

例1と同じノポラツク

28.5重量部

ステイペライトエステル5(Stay-

belite Ester 5 ,例5参照)

10重量部

低粘度ポリエチルアクリレート

7.5 重量部

2-71/49-1,3-70%

ジオールのピスー(5-フエノキシ

- 1 , 3 - ジオキサン - 2 - イル)

エーテル

10.5重量部

例8に挙げたトリアジン

重量部中に溶解した。

2.2 重量部

ザポンエヒトパイオレツト (Zaponecht-

violett) B E (C.I. 12196) 0.3重優部 をエチレングリコールモノエチルエーテル41

露光した層部分を現像により除去した後で紫

最も簡単にはタンポンでぬぐい落した。

例1と同じノポラツク

54重量部

例11と同じ変性テルペン樹脂

21重量部

ポリピニルエチルエーテル

8.5重量部

トリメチルオルトホルメートと、2-エチル-5-メチル-2-ヒドロキシ

メチル-4-オキサ-1,7-ヘプタ

ンジオール及び2 - エチル - 2 -ヒド

ロキシメチル-4-オキサー1,7-

オクタンジオールの混合物とから生成

した重合体オルトエステル

8重量部

ジェチレングリコールジピニルエーテ

ルとシクロヘキサン・1,4-ジオー

ルとから得られたポリアセタール

8 重量部

例12に挙げたトリアジン

0.4 5 重量部

クリスタルパイオレツト塩基

0.05重量部

の厚さ 1 8 μm のポッの乾式レジスト層を厚さ 2 5 μm のポリエステルフィルム上に施しかつポリオレフィンフィルムを貼合せた。これを貼合せによりセラミック又はガラス基材を被覆するのに使用した。それらはマイクロ波回路,ハイブ

青色のレジスト画像が金属白色亜鉛上に存在し 、これをパウダレスエッチ機中でフランク保護 剤の添加下に硝酸でエッチングすることにより 処理して凸版を形成した。スクリーンに相応す る最も有利なエッチ深さは約5分後に達成され た。特に多色エッチの場合に階調修整のために 更に腐食することができる。この版は直接多く の画像の印刷にかつ紙型の作製に好適である。 レジスト層はなお感光性であるので、既にエッ チングを行なつたが例えばネガ活字を挿入する ために再度複写しかつエッチングすることがで きる。更に、1.75 mmより低い厚さの場合には 亜鉛ェッチ版を円形に折曲げることができる。 これは高い印刷強度を得るために層を場合によ り 1 0 0 ~ 2 0 0 ℃で 5 ~ 1 0 分間 ベーキング する場合にも可能である。添加した樹脂及びそ の混合物によりそれはこれらの条件下で高い接 着性,可撓性及び耐エッチング性を示す。

例 14

次の組成:

リッド素子又はディスプレイに殆んどの場合寸法10cm×10cmで使われかつ次の種類のものであつた:薄く金属で被覆された酸化アルミニウム(AL₂O₃/AL , AL₂O₃/Ti , AL₂O₃/Ti/Ni/Au), ガラス/Cr , ガラス/Ni , ガラス/Sn-In-酸化物/Cu

復代理人 弁理士 矢 野 敏 雄

第1頁の続き

⑦発 明 者 ハルトムート・シュテッパンドイツ連邦共和国ヴィースバーデン・パノラマシュトラーセ17

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.