

TERM END EXAMINATIONS (TEE) - December 2023- January 2024

ogramme	:	B.Tech.	Semester	:	Fall 2023-24
ourse Title/ ouse Code	:	Engineering Physics/ PHY1001	Slot	:	E11+E12+E14
me	:	3 Hrs.	Max. Marks	:	100

use C	ode		Engineering raysies rarrass				
ne			3 Hrs.	Max. Marks	:	100	
			Answer ALL the	Questions			
No.			Question D	escription		Mark	s
			PART A - (60				
1	(a)	cc	roller coaster starts from rest at the eaches the bottom, moving horizontally onservative forces if the coaster loses 5	top of a hill of heig y at 25 m/s. Calculat 0000 J due to friction	n	and air resistance during	
	(b)	A W	passenger of mass 72.2 kg is riding in hat does the scale read when the elevation i) Descending with constant velocities ii) Ascending with constant acceptance.	tor cab is ocity	an	ding on a piationn scale.	
				OR	6	· · · · · · · · · · · · · · · · · · ·	6
,	SOS	A	40 kg shell is flying at a speed of 72 l	km/hr. It explodes in	nte	two pieces, one piece of	O
		ma	ass 15 kg stops, Calculate the velocity ne four fundamental forces of natur	e are at the root	of	every interaction in the	6
	(d)	11	iverse. Explain them in the order of the	neir strength			
	(0)	Jan 1	deulate the value of de-Broglei wavel	ength associate with	12	7°C helium atom.	6
Œ	agai,	Ca	iculate the value of de-Blogier waves				6
,	(b)	De	erive time dependent Schrodinger equa	ation.			0
				OR			
	(c)	Ex	plain the concept of wave packet and	give mathematical	pı	coof of Heisenberg's	1
	(0)		1-1				1
	(a)	Ex	plain the classification of nanoma	terials based on d	llI	nension. Also discuss the	
~		dif	ferent types of carbon nanotubes.				
	6			OR	he	human footprint on the	
((b)	env	anotechnology has the potential vironment'. Justify the statement by a	mentioning some if	11]	portant applications	
((a)	Usi	ing Einstein's theory, show that in th	ne optical region sa	у,	at $\lambda = 5000 \text{ A}^0 \text{ and } T = 300$)
	-	K. 1	the light amplification is not possible	е			
4	85	Def	fine the following				
		-	i) Life Time				
		-	Population Inversion				

the maximum pulse broadening in time in step index fibre.

⇔⇔⇔